

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

BUHR A

THE CIPT OF
For sty, the partners

MAG

d,

; ·

.

.

--

.

	·	

STRUCTURAL TIMBER HAND BOOK

 αs

PACIFIC COAST WOODS

PUBLISHED BY

THE WEST COAST LUMBERMEN'S ASSOCIATION
1016 White Building
Seattle, Wash.

Written and Compiled by

O. P. M. GOSS, Assoc. M. Am. Soc. C. E. Consulting Engineer for the Association.

Assisted by

CARL HEINMILLER
Assistant Engineer.

INTRODUCTION

The purpose of this book is to present information relative to structural timber which will be useful to engineers, architects, and contractors. Particular attention has been given to Pacific Coast species.

There have been published from time to time by the U. S. Forest Service and other organizations data showing the strength and durability of Pacific Coast timber. In writing this book an effort has been made to collect such of these data as are up to date and to present them in a concise form for general use.

A brief description is given of the four principal species of wood found in Washington and Oregon, viz., Douglas Fir, Western Red Cedar, Western Hemlock and Sitka Spruce. This information may be of interest to those not entirely familiar with Pacific Coast conditions.

Many thousands of computations have been made in preparing the tables in this book. All computations have been crosschecked to eliminate possible errors. Tables show the safe total loads and corresponding deflections for rectangular beams of various sizes. The number of pounds per board foot of lumber, supported by beams, is also shown, which will assist in effecting economical designs. Tables have been computed which show the safe loads on beams limited by the horizontal shearing stress. Other tables show safe total loads on columns of various sizes and still other tables give the maximum spans for mill and laminated floors, board measure for various dimensions and lengths, and board measure and weight for unit lengths of Douglas fir dimension timber.

Data and figures are given on timber frame-brick mill buildings, showing costs, insurance rates, and details of construction. Standard formulas for computing stresses covering the usual practical conditions are given. A grading rule for securing structural timbers of high strength is also included.

A considerable amount of data is presented on the creosoting of Douglas fir lumber in various forms, such as bridge stringers, mine timbers, piling, ties, bridge caps, paving blocks, silo staves, and other forms. Space is devoted to wooden silos and red cedar shingles. Kiln drying lumber is briefly discussed as well as other subjects of interest to the consumer of wood.

THE WEST COAST LUMBERMEN'S ASSOCIATION

Acknowledgment is herewith made of the able review of the manuscript of this book by Paul P. Whitham, Assoc. Mem. Am. Soc. C. E., Consulting Civil Engineer and former Chief Engineer, Port of Seattle, and Charles C. More, Assoc. Mem. Am. Soc. C. E., Professor of Civil Engineering, University of Washington, both of whom are men of wide experience in the use of structural timber.

A Giant Douglas Fir 17 Feet in Diameter.

THE WEST COAST LUMBERMEN'S ASSOCIATION

Fig. 1. Lumber cut of United States in 1913 and distribution of the standing timber supply.

PACIFIC COAST TIMBER

The largest and finest growth of timber in the world is found on the Pacific Coast. Figure 1 shows that Douglas fir, a single species, composes more than 25 per cent of the entire standing timber supply of the United States, including both softwoods and hardwoods.

The timber stand of Washington and Oregon is such as to insure a permanent source of supply of the highest class of lumber. The winter climate in this vast timber belt is very mild, enabling the lumber camps and mills to operate continuously, thereby producing a steady supply of manufactured products. Practically all log transportation is by water and many of the mills are located on tidewater. These conditions make possible the production of lumber at a minimum operating cost.

One of the most striking features of the timber supply of Washington and Oregon is the particularly large sizes of timbers which are available. Structural timbers of Douglas fir 18"x18"x120' to 140' in length may be had at any time and timbers 36"x36"x50' to 80' in length are as readily available. This gives some idea as to the possibilities in manufacturing structural forms from the huge logs available in these timber states.

Lumbering has for many years been the largest industry in the states of Washington and Oregon, and will continue to hold first place for many years to come. Statistics from the U.S. Department of Agriculture Bulletin No. 232 show the lumber cut of these states to have been 6.690.520.000 feet board measure in 1913. This cut amounted to 17.4 per cent of the total lumber cut in the United States in the same year. The lumber products of Washington and Oregon for 1913 were distributed to almost every part of the United States. Approximately 9 per cent were exported to foreign countries. The accompanying map (Fig. 2) was prepared by the U.S. Forest Service, Portland, Oregon, and shows the percentage of the lumber cut in Washington and Oregon in 1913 which was shipped to the various states. This wide distribution is accounted for by the fact that with Douglas Fir, Western Red Cedar, Western Hemlock and Sitka Spruce from which to select, it is possible to secure a material which will serve any use for which wood is adapted.

Fig. 2. Distribution of cut of Douglas Fir and associated species from the States of Washington and Oregon. Figures given in percentage of total cut, and in board feet per capita.

In order to give some idea of the uses to which these four species may best be placed, the following description may be of interest:

DOUGLAS FIR

(Pseudotsuga taxifolia)

Common names in use: Red fir, yellow fir, Oregon pine, Puget Sound pine and Douglas spruce.

The name Douglas fir has, however, recently been adopted by the U. S. Forest Service and is rapidly replacing other names previously used for this species.

Douglas fir is by far the most important of these species. It would be difficult to give a better general description of this wood than is found in the following quotations taken from U. S. Forest Service Bulletin No. 88.

"Douglas fir may, perhaps, be considered as the most important of American woods. Though in point of production it ranks second to southern yellow pine, its rapid growth in the Pacific Coast forests, its comparatively wide distribution and the great variety of uses to which its wood can be put, place it first. It is very extensively used in the building trades; by the railroads in the form of ties, piling, car and bridge material and by many of the manufacturing industries of the country. As a structural

timber it is not surpassed and probably it is most widely used and known in this capacity."

"Douglas fir is manufactured into almost every form known to the sawmill operator. A list of such forms and uses would represent many industries and would include piling and poles, mine timbers, railway ties, bridge and trestle timbers, timbers for car construction; practically all kinds of lumber for houses, material for the furniture maker and boat builder; special products for cooperage, tanks, paving blocks, boxes, and pulpwood; fuel; and a long line of miscellaneous commodities."

"Piling is extensively employed in harbor-improvement work and in preparing foundations in soft ground for bridges, trestles and other heavy structures. The long, straight, slightly tapering trunk of Douglas fir fits it for this use, and it is strong, resilient, and fairly durable. It has no important competitor as a pile timber in the western part of the United States, and is used almost exclusively for marine and railroad work on the Pacific Coast. The wood is sufficiently hard to penetrate readily most soils, and it acts well under the hammer. It is occasionally necessary to band the tops of piles to prevent brooming and splitting, but bands are used only where hard subsoils must be penetrated."

"Ties of Douglas fir are both sawed and hewed, though threefourths are sawed. Those which are sawed are made both from
second growth and from mature trees. About two-thirds of the
ties supplied by the forests of the western part of the United
States are of Douglas fir, the remaining one-third consisting
cniefly of western yellow pine, lodgepole pine, redwood and western hemlock. Practically all the large sawmills in Washington
and Oregon cut fir ties to order, and some small mills cut little or
nothing else. It is customary to saw ties from a large portion of
low-grade material obtained in the usual milling operations.
Douglas fir generally yields about 25 per cent of high-grade
lumber and the remaining 75 per cent must be worked into lower
grade lumber, dimension products, timbers, and ties."

"Bridge and Trestle Timbers. Probably the Pacific Coast railroads use more Douglas fir than is consumed by any other single industry. Bridge and trestle timbers of the wood compare favorably in their structural merits with those from any other American species. They are light and strong, fairly resilient and durable, and can be had in any desired size or specification. In

trestles, fir is used in the round form for piling, and in dimension sizes for posts, caps, sills, ties, girts, and braces."

"CAR MATERIAL. Douglas fir car sills are used in the construction and repair of freight and passenger cars throughout the United States. Their strength, elasticity, durability, and the ease with which the wood may be worked make them preferable to all others. The wood is much employed in car building for purposes other than sills. In fact, it is used for nearly all purposes, except for draft-rigging supports, which are made of oak or maple. It is employed for siding, framing, flooring, roofing, and many other parts of passenger cars. Though the interior finish of cars is generally of hardwood, Douglas fir has been given place in some dining and private cars, because of the beauty of its grain."

"House Construction Material. For house construction Douglas fir is manufactured into all forms of dimension stock, and is used particularly for general building and construction purposes. Its strength and comparative lightness fit it for joists, floor beams, rafters, and other timbers which must carry loads. Occasionally entire buildings are constructed of it, and in some parts of the Pacific States it is practically the only common lumber used. The largest consumption is in Washington, California, Oregon, Utah, Idaho, and Colorado."

"FLOORING. The comparative hardness of the wood fits it for flooring, and it meets a large demand. Douglas fir edge-grain flooring is often considered superior to that made from any other American softwood, and it is used on the Pacific Coast to the exclusion of nearly all others."

"Finish. Clear lumber, sawed flat grain, shows pleasing figures, and the contrast between the spring and summer wood has been considered as attractive as the grain of quarter-sawed oak. It takes stain well, and by staining, the beauty of the grain may be more strongly brought out, and a number of costly woods can be successfully imitated. Fir finish has been widely advertised, and the demand for it in the Eastern States, the Middle Western States, and in the Upper Mississippi Valley is rapidly increasing. Its chief use is for door and window casing, baseboards, and all kinds of panelwork. Practically all of the finish is used by the building trades, and the largest use naturally is near the points of production, though it is in great demand in Southern California and in Hawaii."

"PAVING BLOCKS. Paving blocks of Douglas fir, when given preservative treatment, are rapidly coming into use in municipal improvements. The wood's hardness and the comparative ease with which the blocks may be treated with creosote make it compare favorably with other paving woods. The blocks wear slowly under heavy traffic, are nearly noiseless, furnish fair toe hold to horses, are resilient, and are practically impervious to water. It is important, however, that they be thoroughly impregnated with preservative."

WESTERN RED CEDAR (Thuja nlicata)

Common names in use: Red cedar, Arborvitae, Western cedar, canoe cedar, and gigantic red cedar.

Western red cedar has certain individual qualifications which particularly fit it for certain purposes. The wood is soft and straight grained. It is especially suited for siding or any outside forms exposed to the weather since it has remarkable durability and holds paint and stains well. Red cedar is used for the construction of rowboats, canoes, motorboats, and similar small vessels. Having a low shrinkage factor, it readily resists alternate changes from wet to dry. Red cedar is cut extensively into shingles and for this use it has no equal. The life of the red cedar shingle is measured by its mechanical wear since it does not decay. Red cedar is a particularly favored wood for use in lining closets and making clothes chests. The odor of the wood is very pleasant, but it is objectionable to moths and similar insects.

Western red cedar is a beautiful wood to work since its grain is so uniform. It may be very smoothly finished and is beautiful for ceiling, paneling, or finishing in places where the wood is not subjected to hard wear.

Western red cedar is extensively used as a pole and post timber. It has the required strength for this use and its natural resistance to decay is responsible for its wide application in this field.

WESTERN HEMLOCK

(Tsuga heterophylla)

Common names in use: Hemlock, Western hemlock, Western hemlock fir, and Alaska pine.

As western hemlock is becoming better known it is gradually gaining a reputation as a distinctive wood, not to be confused in

its properties with other species of the same family. It is used extensively in building operations on the Pacific Coast and locally commands the same price as Douglas fir for this purpose. The following quotations are taken from U. S. Forest Service Bulletin 115 and give a fair idea of the merits and adaptability of this wood

"Structural Uses. The demand for western hemlock both in the form of ordinary lumber and for special uses will no doubt increase when its properties are better known. At present it has a very poor market standing because of the prejudice against the name "hemlock." The lumber is practically free from pitch, has a handsome grain, takes paints and stains well, and works smoothly, both spring and summer wood standing up well to the cutting edge. It is at present manufactured into the common forms of lumber, and is also used for pulp, boxes, barrels, sash and door stock, fixtures, furniture and other special uses."

"Bridge and Trestle Timbers. Western hemlock is well suited for use in all but the heaviest construction work, as shown by results of the tests discussed in this bulletin; but up to the present it has had a limited use in bridges and trestles. It has been used in some instances for caisson construction."

"Crossties. A considerable amount of western hemlock is cut into crossties. Many of the western railroads use Douglas fir, western larch, redwood, and western hemlock almost exclusively for tie material."

"Poles and Piling. Occasionally western hemlock is cut into telephone or telegraph poles, but its use in this form has been very limited. It has the requisite strength for pole use and grows in such dimensions as to make it very suitable for this class of work. With a good butt treatment with some efficient preserving fluid it should give good service as a pole material."

"Though practically all piling in the Pacific Northwest is of Douglas fir, western hemlock is used to a limited extent, however, for this class of work and has apparently given satisfaction."

"FLOORING. Western hemlock, when cut edge grain, makes an excellent flooring material. It finishes smoothly on account of the uniform texture of the wood and it also wears evenly. It is not suitable for use in damp places, on account of its tendency to warp under such conditions."

"Inside Finishing. As a finish lumber western hemlock has the advantage of containing practically no pitch; it has a beautiful grain, works smoothly, takes stain readily, and, when properly dried, will not shrink or swell materially under normal conditions. It presents a comparatively hard surface and consequently does not mar easily."

"Barrels and Boxes. Western hemlock is used to a large extent for barrels and boxes for shipping foodstuffs. For this purpose it serves admirably, since the wood is odorless and tasteless. Its strength and lightness also add to its value for these uses. It has some tendency to split when nails are driven into it, but this fault may be largely overcome by the use of fine nails."

SITKA SPRUCE (Picea sitchensis)

Common names in use: Tideland spruce, Great tideland spruce, and Western spruce.

The peculiar characteristics of spruce have obtained for it a wide variety of applications.

It is a very white, straight-grained wood of tough fiber, is entirely without taste or odor, and is of exceptionally light weight and extremely stiff. It is probably the stiffest softwood in the United States, in proportion to its weight.

It cuts to particular advantage for doors, window and door frames, mouldings, stepping, cornices, and is extensively used for bevel siding for house construction.

It is very desirable and economical for large doors, such as are used for garages, freight houses and similar structures.

Because of its entire lack of taste or odor it is unsurpassed for the manufacture of containers for shipping butter, meats and other food products, and it is given special preference for making refrigerators.

It is highly valued, and has a wide demand in the construction of pianos, organs, violins, guitars and mandolins.

Because of its stiffness, tough fiber, straight grain, and light weight, it has been given a prominent place in the building of aeroplanes.

Spruce has been used quite extensively in pontoon bridge construction. It is found to combine strength and lightness to the highest degree, and is easily transported from place to place, and is tough enough to stand rough usage.

MECHANICAL AND PHYSICAL PROPERTIES OF TIMBER

It is difficult to obtain a correct comparison of the strength properties of structural timbers, yet, from a practical point of view, structural sizes furnish the data sought by engineers and others to guide them in their designs.

In preparation of the following tables showing the various properties of structural timbers, every effort has been made to obtain the most up to date figures available. In all comparisons made consideration has been given to the size of the timbers, general quality, moisture condition and to other factors which affect the strength. Many publications have been issued from time to time containing values for structural timbers. In many cases the timbers have been unlike in grades and have varied materially in moisture content. Due to variations in such factors as mentioned, comparisons have been in many cases very misleading. This point has been recognized in preparing the following data and every effort has been made to eliminate comparisons which are not on the same basis.

VARIABILITY OF TIMBER

All species of timber show variations in weight and strength. These variations are considerable in some cases depending upon the quality of the clear wood as well as the grade and condition of seasoning of the timber. It is essential that the quality of the timbers of any species be determined by due consideration of these factors rather than locality of growth, etc. The density classification for Douglas fir timbers proposed on pages 31 to 33 is expected to eliminate to a large extent these variables and insure a product of uniform strength qualities.

BENDING STRENGTH OF LARGE STRINGERS

Tables 1 and 2 show results obtained from U. S. Forest Service Bulletin No. 108, pages 74 to 123. In order to make the comparison fair to all species approximately 30 per cent of the lowest tests were discarded, thus eliminating timbers with serious defects. This elimination is particularly necessary because of the fact that certain species were tested in many cases with large knots purposely placed on the tension face of the beam in order to determine the influence of such defects upon the strength. Douglas fir was the principal species used in studying the effect

					Ī	Tiher			Relative	Relative		Knots	Knots in Stringers Tested	ngers 7	ested	
	Cross	No.	Rings	Moisture	Weight	Stress	Modulus of Runfure	24	based on Modulus	based on Modulus	Vol. I	1.	Vol. II	п	Vol. III	H
Species	Test	Tests	Teh	Content		Limit per Sq. In.	Sq. In.	ticity per Sq. In.	Rupture. Douglas Fir=100 per cent	Elasticity. Douglas Fir=100 per cent	Less			1½ In. and	Less	and .
	Inches			Per Cent	Lbs.	Lbs.	Lbs.	1000 lbs.	Per Cent	Per Cent	172 III.	over	172 ID.	DAGE	1/2 ID.	OVE
Douglas	8x16	134	10.9	31.8	28.9 (132)	4282 (133)	9099	1611	100.0	100.0	1.2	0.5	1.7	0.7	10.0	00
Long- leaf Pine	10x16 8x16 6x16 6x10	13	14.6 (12)	29.3	35.4	3855	6437	1466	97.4	91.0	0.4	0.2	0.5	0.2	4.0	1.1
Short- leaf Pine	8x16 8x14 8x12	65	12.3	48.4	31.4	3376	5948	1546 (31)	0.00	96.0	0.4	0.1	0.1	0.1	4.2	53
Western	8x16	27	17.6	41.9	28.1	3761	5821	1489	88.1	92.4	0.7	2.0	1.5	9.4	4.	64
Loblolly	8x16 5x12	78	6.3	58.0	31.2	3266	5568	1467	84.4	91.1	0.2	0.3	0.3	0.7	4.6	5.7
Western	8x16 8x12	43	23.9	50.5	28.7	3677	5562	1364	84.2	84.6	6.0	0.2	2.3	0.6	9.01	1.3
Redwood	8x16 6x12 7x 9	30	19.5	90.2	23.3	4323	5327	1202	80.6	74.6	6.0	.0.1	1.6	1.3	80.	6.6
Tamarack	6x12	=	1.91	96.9	29.3	3231	4984	1268	75.5	78.7	6.0	4.0	1.4	9.0	4.8	0.7
Norway	6x12	11	13.2	52.1	25.2	2397	3767	1042	57.0	64.7	2.5	1.8	00	2.5	14.0	90

Note.—Subscript numbers indicate number of tosts when different from that shown in column "Number of Tests." See "Variability of Timber" page 14.

THE WEST COAST LUMBERMEN'S ASSOCIATION

TABLE	N	ľ			TOTAL TION	1	E OTOE	The service	Taken from U. S. Forest Service Bulletin 198.	Relative		Knots	Knots in Stringers Tested	gers Te	sted	
	Cross			Moisture		Stress	Modulus	of Flas-	based on Modulus	bused on Modulus	Vol	Vol. I	Vol.	п	Vol. III	H
Species	Test	No. Tests	Kugs per Inch	Content	Cu. Ft. Oven- dry	Elastic Limit per Sq. In.	E S	ticity per Sq. In.	Rupture. Douglas Fir = 100 per cent	of Elasticity. Douglas Fir = 100 per cent	Less than 1½ In.	13% In. and over	Less than 1½ In.	11½ In. and over	Less than 11/5 In.	13g In. and over
	Inches			Per Cent	Lbs.	Lbs.	Lbs.	1000 lbs.	Per Cent	Per Cent			5		1	
Oouglas	8x16	64	15.2	20.9	27.8	4931	7142	1641	100.0	100.0	0.5	0.1	1.2	0.2	12.1	0.0
Long- leaf Pine	8x16 6x16 6x10	×	12.7	21.6	38.6	3793	5957	1720	83.6	104.8	None	None	None	None	None	None
Short- leaf Pine	8x16 8x14 8x12	0	12.3	16.3	32.1	5186	7033	1782	98 2	108.6	None	None	0.2	0.5	.00	1.6
Western Hemlock	8x16	31	17.5	17.71	28.4	4828	7109	1805	9.66	0.011	0.3	0.1	1.6	0.5	8.0	0.7
Loblolly	8x16 6x16 6x10 8x 8	21	6 5	21.1	33.1	3706	6259	1521	7.78	92.7	0.4	1.1	0.4	8.0	8.	60
Western	8x16 8x12	36	23.0	18.2	29.8	3904	6534	1561	91.5	95.1	8.1	0.3	63	9.0	19.4	1.6
Redwood	8x16 6x12 7x 9	12	18.1	17.3	22.2	3747	4573	946	64.1	57.6	0.1	None	8.0	0.3	3.0	1.3
Tamarack	6x12	*	16.6	23.4	30.8	3643	5865	1385	82.3	84.4	1.8	None	8.0	None	18.0	0.5
Norway	6x12	4	7.8	17.0	26.4	2028	5255	1103	73.7	67.3	3.5	1.5	2,3	0.5	17.5	9.3

Note.—Subscript numbers indicate number of tests when different from that shown in column "Number of Tests."

See "Variability of Timber" page 14.

of knots, therefore approximately 30 per cent of the Douglas fir stringers, car sills and joists were chosen with knots in the tension face which materially affected the strength. Such timbers should not be included in establishing strength values for any species. No stringers were used in tables 1 and 2 in which the cross section was less than 60 square inches.

AVERAGE STRENGTH VALUES FOR STRUCTURAL TIMBERS
(Grade I, Tentative Grading Rules, U. S. Forest Service)
GREEN MATERIAL

Results taken from U. S. Forest Service Bulletin 108, Page 65, TABLE 3

Species	No. of Tests	Fiber Stress at Elastic Limit per Sq. In.	Modulus of Rupture per Sq. In.	Modulus of Elasticity per Sq. In.	Relative Strength based on Modulus of Rupture. Douglas Fir =100 per cent	Relative Stiffness based on Modulus of Elasticity. Douglas Fir =100 per cent
		Lbs.	Lbs.	1000 lbs.	Per Cent	Per Cent
Douglas Fir	81	4402	6919	1643	100.0	100.0
Longleaf Pine	17	3734	6140	1463	88.7	89.0
Lobiolly Pine	45	3513	5898	1535	85.3	93.4
Shortleaf Pine	35	3318	5849	1525	84.5	92.8
Western Hemlock	26	3689	5615	1481	81.1	90.2
Western Larch	45	3662	5479	1365	79.2	83.1
Tamarack	9	3151	5469	1276	79.0	77.7
Redwood	21	4031	4932	1097	71.3	66.8
Norway Pine	17	3082	4821	1373	69.6	83.6

Note.-See "Variability of Timber" page 14.

Table 3 probably shows the best available data published in any Government bulletin for comparing the strength of different species of structural timber. The data in this table are taken from U. S. Forest Service Bulletin No. 108, page 65. This table shows results of tests on a large number of stringers of different species graded by the tentative grading rule of the U. S. Forest Service. All these timbers were of practically the same grade. The results show Douglas fir to be the strongest wood with a modulus of rupture of 6,919 pounds per square inch. This value is based on 81 tests of full size bridge stringers. The modulus of elasticity for the same set of stringers is 1,643,000 pounds per square inch.

HORIZONTAL SHEAR. There seems to be an impression among those unfamiliar with Douglas fir that this wood is not capable of developing a high unit stress in horizontal shear. The erroneous impression has come largely from comparing the shearing stress developed in Douglas fir beams tested on long spans and in many

cases under center loading, with similar shearing stresses developed in timbers of other species tested on shorter spans under third point loading. Since the horizontal shear developed depends on the maximum load, it is very clear that a higher shear will be developed in beams tested under third point or uniform loading than in those tested under center loading. Due to this fact the horizontal shearing stress developed in Douglas fir stringers tested under center loading should not be compared to that developed in stringers of other species tested under third point loading.

Tables 4 and 5 show the horizontal shear developed in 8"x16"x16' Douglas fir bridge stringers tested under one-third point loading on a 15-foot span. These results were obtained from the Seattle Timber Testing Laboratory of the U. S. Forest Service and they do not appear in any other publication in the form here shown. The results are very significant and show that Douglas fir is capable of resisting high horizontal shearing stresses.

HORIZONTAL SHEAR DEVELOPED IN 53-8"x16"x16' DOUGLAS FIR BEAMS-GREEN MATERIAL

Tested on a 15-foot Span Under 1/3 Point Loading
Data furnished by U. S. Forest Service from results of tests made at
the Seattle Timber Testing Laboratory.
TABLE 4

Grade	No. of Tests	Maximum Horizontal Shear Developed per Sq. In.	Number Failing in Horisontal	St	ar Develope ringers Faili in orisontal She per Sq. In.	ng
			Shear	Average	Maximum	Minimum
		Lbs.		Lbs.	Lbs.	Lbs.
Clear and Select Merchantable Common	25 15 13	405 404 330	3 8 1	471 425 371	474 476 371	468 391 371

Table 4 shows results for green stringers and table 5 gives similar results for air seasoned material. Of 53 green stringers tested 25 were of clear and select grades, 15 merchantable and 13 common. The grading rule used in grading these timbers was the export rule of the West Coast Lumber Manufacturers' Association. Of the 25 stringers of clear and select grades, 3 failed in horizontal shear at an average stress of 471 pounds/sq. inch. The maximum was 474 and the minimum 468 pounds/sq. inch. Eight of the 15 merchantable sticks failed by horizontal

shear at an average stress of 425 pounds/sq. inch. The maximum was 476 and the minimum 391 pounds/sq. inch.

HORIZONTAL SHEAR DEVELOPED IN 19-8"x16"x16' DOUGLAS FIR BEAMS-AIR-SEASONED MATERIAL

Tested on a 15-foot Span Under 1/3 Point Loading
Data furnished by U. S. Forest Service from results of tests made at
the Seattle Timber Testing Laboratory.

TABLE 5

Grade	No. of Tests	Maximum Horizontal Shear Developed	Number Failing in Horizontal	S	ear Develope tringers Faili in orizontal She per Sq. In.	ng
		per Sq. In.	Shear	Average	Maximum	Minimum
		Lbs.		Lbs.	Lbs.	Lbs.
Clear	7 6 6	444 386 385	7 3 5	444 375 384	615 488 427	364 256 351

Table 5 shows similar results for 19 air seasoned stringers.

Of 16 full sized green bridge stringers recently tested at Portland by the Bureau of Standards (see table 16, page 43) 9 failed by horizontal shear developing an average stress of 426 pounds/sq. inch with a maximum of 503, and a minimum of 381 pounds/sq. inch.

CRUSHING STRENGTH OF LARGE SIZES

Tables 6 to 8 show the maximum compressive strength of short columns of Douglas fir, western hemlock, and western larch. In these tables the material has been grouped into four classes, namely, clear specimens, specimens containing knots $\frac{1}{2}$ " in diameter or less, specimens containing knots $\frac{1}{2}$ " to $\frac{1}{2}$ " in diameter, and specimens containing knots larger than $\frac{1}{2}$ " in diameter. Results are shown for both green and air seasoned material except in the case of Douglas fir.

In the mining districts of the United States both round and square timbers are used. In an effort to show the relative value of timbers used for this purpose, table 9 has been prepared. This table shows the maximum crushing strength in pounds per sq. inch for mine timbers of a number of western species. The strength of a number of the Rocky Mountain species which are used extensively in mine work is also given. This comparison shows the great superiority of the Coast woods over those grown in the high altitudes.

THE WEST COAST LUMBERMEN'S ASSOCIATION

AVERAGE STRENGTH VALUES FOR DOUGLAS FIR IN COM-PRESSION PARALLEL TO GRAIN

6"x6"x18" POSTS

Results taken from U. S. Forest Service Bulletin 88, Page 33, Table 6.

TABLE 6 GREEN MATERIAL

		Rings	Moisture Content		ht per Foot	Com- pressive Strength at Elastic	Crushing Strength at Maxi- mum	Modulus
Material	No. of Tests	per Inch	00	As Tested	Oven- dry	Limit per Sq. In.	Load per Sq. In.	per Sq. In.
			Per Cent	Lbs.	Lbs.	Lbs.	Lbs.	1000 lbs.
Clear	130	11.8	30.4	38.1	29.2 -	3099	3918	1321
Pin knots (½" or less in diameter) Standard knots (½" to 1½" in diam-	62	10.4	31.6	37.7	28.6	2931	3698	1401
eter)Large knots (over	227	9.0	30.9	37.8	28.9	2708	3386	1187
1½" in diameter)	97	9.4	29.9	38.0	29.3	2406	3062	940

AVERAGE STRENGTH VALUES FOR WESTERN HEMLOCK IN COMPRESSION PARALLEL TO GRAIN

6"x6"x24" POSTS

Results taken from U. S. Forest Service Bulletin 115, Page 21, Tables 5 and 6.

TABLE 7

GREEN MATERIAL

	!	Rings	Moisture		ht per c Foot	Com- pressive Strength at Elastic	at Maxi-	Modulus of Elas- ticity
Material	No. of Tests	per Inch	Content	As Tested	Oven- dry	Limit per Sq. In.	Load per Sq. In.	per Sq. In.
			Per Cent	Lbs.	Lbs.	Lbs.	Lbs.	1000 lbs.
ClearPin knots (1/2" or less	46	15.7	48.5	41.2	27.7	3018	3507	1676
in diameter) Standard knots (½"	12	12.5	48.4	38.1	25.6	2880	3396	1670
to 1½" in diameter)	11	15.7	42.0	36.6	25.8	2838	3197	1624
11/2" in diameter)	13	14.6	42.0	37.9	26.8	2590	2901	1364

AIR-SEASONED MATERIAL

Clear	64	18.6	18.4	32.9	27.8	5176	5952	2109
Pin knots (½" or less								
in diameter)	8	18.2	18.6	33.3	28.1	4523	6051	1756
Standard knots (1/2"					1			
to 1½" in diam-					1		ļ	
eter)	25	18.1	18.8	34.0	28.6	4556	5516	2217
Large knots (over					1		İ	ļ.
11/2" in diameter)	5	14.7	19.3	35.9	6 30.1	4248	5150	2215

AVERAGE STRENGTH VALUES FOR WESTERN LARCH IN COMPRESSION PARALLEL TO GRAIN

6"x6"x24" POSTS

Results taken from U. S. Forest Service Bulletin 122, Page 20, Tables 5 and 6

TABLE 8

GREEN MATERIAL

		Rings	Moisture	Weig Cubi	ht per c Foot	Com- pressive Strength at Elastic	at Maxi-	Modulus
Material	No. of Tests	per Inch	Content	As Tested	Oven- dry	Limit per Sq. In.	Load per Sq. In.	per Sq. In.
			Per Cent	Lbs.	Lbs.	Lbs.	Lbs.	1000 lbs.
Clear	51	25.4	52.3	44.8	29.3	2635	3630	1528
in diameter) Standard knots (½"	20	21.7	48.1	42.9	28.9	2955	3772	1820
to 1½" in diam- eter) Large knots (over	28	24.2	44.5	39.2	27.0	2577	3226	1521
1½" in diameter)	8	23.8	46.2	40.5	27.8	2569	3069	1442
	A :	IR-SE	ASONE	TAM C	ERIA	L _a		
Clear	67	26.5	15.0	36.1	31.3	3801	6253	1769
in diameter) Standard knots (½" to 1½" in diam-	69	24.3	15.8	35.5	30.7	3165	5994	2025
eter) Large knots (over	49	22.3	15.6	33.1	28.6	2553	4921	1500
11/2" in diameter)	8	22.9	15.5	31.8	27.5	J. 	4520	

STRENGTH OF CLEAR WOOD

Table 10 shows results of tests on small, clear, green specimens. The values given are averages and give a fair idea of the strength of the various species in this form of material.

The following diagram is taken from U. S. Forest Service Bulletin 88 and may be used in estimating the strength of small, clear specimens which have seasoned to a point where strength begins to increase. For example, U. S. Forest Service Bulletin 108, page 71, shows the strength of small, clear Douglas fir beams 2"x2" in cross section containing 19 per cent moisture to be 10,378 pounds/sq. inch. If similar 2"x2" beams of Douglas fir containing 16 per cent moisture had been tested the modulus of rupture should have been 10,378x12,400=13,840 pounds/sq. inch.

Any other corrections in strength values may be made in a similar manner.

THE WEST COAST LUMBERMEN'S ASSOCIATION

AVERAGE MAXIMUM CRUSHING STRENGTH FOR MINE TIMBERS* IN COMPRESSION PARALLEL TO GRAIN—GREEN MATERIAL

Results taken from U. S. Forest Service Bulletin 88, Page 33, Table 6, and U. S. Dept. of Agriculture, Bulletin 77, Page 5.

Table 2. TABLE 9

Species	Grade	No. Of Tests	Locality of Growth	Form of Material	Maximum Crushing Strength per Sq. In.	Relative Strength. Pacific Coast Douglas Fir= 100 per cent
					Lbs.	Per Cent
Douglas Fir. Douglas Fir. Western Yellow Pine. Alpine Fir. Lodgepole Pine. Englenann Spruce. Bristlo-cone Pine.	All Grades	516 10 10 9 10 11	Washington and Oregon Rocky Mountain Region	Square Timber Round Timber Round Timber Round Timber Round Timber Round Timber Round Timber	3500 2580 1940 1920 1865 1750	100.0 73.7 73.7 55.6 50.0 60.0 7

Square timbers-6"x6"x18" posts. Round timbers-6' length, 5" top diameter. Note.-See "Variability of Timber" page 14.

AVERAGE STRENGTH VALUES FOR SMALL CLEAR PIECES GREEN MATERIAL

Results taken from U. S. Forest Service Publications-Bulletins 88 and 108, Circular 213.

tesuits taken irom U. S. Forest Service Fublications—Bulletins 88 and 108, Circular 213.	Static Bending pression Com- com- com- com- com- com- com- com- c	Weight Per Cu. Fe. FiberStress at Modulus Modulus Strength ive Based on Crendry Elastic of Strength Elastic per Sq. In.	Lbs. Lbs. Lbs. Lbs. Lbs. Lbs. Lbs. Lbs.	5463 8350 1596 4100 570 765 290 5090 8830 11662 4280 491 1007 262 4406 77294 1448 3392 400 704 257 410 7870 1440 3340 630 270 4774 7571 1310 3890 569 742 317 3875 6820 1141 3190 569 742 317 2877 6820 1141 3190 589 227 289 577 589 207
n rrom ∪. S. F		Moisture Rings Content per Inch	Per Cent	31.0 63.0 551.7 13.6 51.8 12.1 70.9 5.4 46.2 26.2 77.5 19.1 38.8 11.4
Kesuits take		No. of Tests	1	423 250* 254 52 44 189 157 133
TABLE 10		Species		Douglas Fir. Longelas Pine. Shortlest Pine. Western Hemlock Lobbolly Pine. Western Larth Redwood Tananek

* Approximation. Note.—See "Variability of Timber" page 14.

GRADING RULES FOR STRUCTURAL TIMBERS

The dry weight of small clear specimens, particularly for wood containing little or no resinous substance, is a definite indication as to the strength of the wood fiber. This fact is shown for Douglas fir in U. S. Forest Service Bulletin 108, figure 15, page 39; with an increase in dry weight of from 19 to 36 pounds per cubic foot, there is an accompanying increase in strength (modulus of rupture) of from 5,500 to 10,500 pounds per square inch. These figures indicate increases of 47.2 and 47.7 per cent respectively for weight and strength based on the maximum values. The question now arises, does this same law hold for timbers of standard structural sizes? In order to get some data on this point, diagrams 2 and 3 have been prepared. These diagrams are obtained from the results of tests of Douglas fir bridge stringers in which defects did not cause first failure. The strength values are taken from U. S. Forest Service Bulletin 108. In each of these diagrams the timbers have been arranged in the order of their strength (modulus of rupture), and the corresponding dry weights in pounds per cubic foot plotted in each case. Diagram 2 shows results of tests of green Douglas fir timbers (8"x16"x16"). and diagram 3 shows similar results for air seasoned Douglas fir stringers. Diagram 2, "Green Timbers," shows that with an average increase in strength of from 4.800 to 8.250 pounds per square inch, there is an average increase in dry weight of from 26.7 to 31.8 pounds per cubic foot. These figures indicate that for an increase in strength of 41.9 per cent there is an increase in weight of 16.1 per cent. Diagram 3, "Air Seasoned Timbers." shows that with an average increase in strength of from 5,350 to 8,760 pounds per square inch, there is an average increase in dry weight of from 24.2 to 30.7 pounds per cubic foot.

These figures indicate that for an increase in strength of 39.0 per cent, there is an increase in weight of 21.2 per cent. In both diagrams 2 and 3 the dry weights often vary almost to extremes when no appreciable variation is found in the strength. In diagram 3 the last portion of the curve shows a marked increase in weight, which is accompanied by a very decided drop in strength. Diagram 2 shows no drop in weight over the last quarter of the curve where the drop in strength is very material. In other words, the relation found between dry weight and strength is erratic, and the dry weight cannot be depended upon

THE WEST COAST LUMBERMEN'S ASSOCIATION

Diagram 3. Relation between Modulus of Rupture and Dry Weight. Airseasoned Douglas fir bridge stringers 8"x16" in cross-section tested on 15' span.

to forecast the strength of structural timbers containing defects to any great degree of certainty.

Exhaustive tests show that good quality timbers exhibit high strength values both before and after seasoning. Some species show a greater tendency to check in seasoning than others, and consequently are apt to show less gain in strength and sometimes a loss due to seasoning. Douglas fir and western hemlock exhibit an average tendency to check, but tests show that timbers of these species maintain their original green strength after seasoning plus some additional strength, depending upon the character of the original material and the amount of checking which occurs due to seasoning.

For reasons, as shown above, it is not practicable to go to the refinement of determining the true density of individual timbers. It is sufficient to examine a timber and see that it has reasonable density based on the amount of summerwood and that it is free from injurious defects.

The standard grade used on the Pacific Coast at the present time to secure high grade structural timbers is "Selected Common." This grade covers timbers selected from the grade known as No. 1 Common as shown below.

"No. 1 COMMON"

"This grade shall consist of lengths 8 feet and over (except shorter lengths be ordered) of a quality suitable for ordinary constructional purposes. Will allow small amount of wane, large sound knots, large pitch pockets, colored sap one-third the width and one-half the thickness, slight variation in sawing and slight streak of solid heart stain."

"Defects to be considered in connection with the size of the piece."

"Discoloration through exposure to the elements or season checks not exceeding in length one-half the width of the piece shall not be deemed a defect excluding lumber from this grade, if otherwise conforming to the grade of No. 1 Common."

"SELECTED COMMON"

"This is a grade selected from the grade of No. 1 Common, and shall consist of lumber free from defects that materially impair the strength of the piece, well manufactured and suitable

for high class constructional and structural purposes or the purpose for which it is intended, including bridge timbers, floor joists, ship timbers, factories and warehouses, designed to carry heavy loads, etc."

The "Selected Common" grade will secure good material for general constructional purposes. There is a demand, however, for a rule which will make a still closer separation of timbers, eliminating all pieces not possessing high strength values.

In formulating the following proposed grading rules for "Selected Structural Douglas Fir Timbers" an effort has been made to form a rule which is simple, practicable and fair to both producer and consumer. Above all it has been the aim by means of this rule to obtain a grade of timber which is suitable for the highest class of construction work and which will admit only timbers of high strength values. There is a demand for such a rule and it will be possible with this rule to use a higher safe fiber stress than that in use at the present time for timbers of the ordinary grades. This rule does not in any way, take the place of other rules of the West Coast Lumbermen's Association, but it is intended for use in securing particularly strong timbers. Careful consideration in forming the rule has been given to defects of the common type and to the influence of quality of the wood fiber. The position of knots in stringers bears a very close relation to the strength of the piece, therefore special attention has been given to this subject. Figure 3 shows a beam divided into three volumes. Volumes 1 and 2 are portions in which maximum fiber stresses are developed and volume 3 is the portion of low tensile and compressive stresses.

Fig. 3. Division of stringer into volumes for considering position of knots,

Stringers of the highest grade must also be composed of dense strong fiber and free from all injurious defects. With these points in mind, the following specification has been prepared which allows fairly large knots in volume 3 but restricts to 1½" the size of the knots in volumes 1 and 2.

SELECTED STRUCTURAL DOUGLAS FIR SPECIFICATION FOR BRIDGE AND TRESTLE TIMBERS PROPOSED RULE

- 1. DEFINITIONS. The following definitions are used in connection with this grading rule:
- (a) Annual Ring. Each annual ring is composed of two distinct types of wood structure i. e., the porous, light colored and light weight springwood formed during the first part of the growing season and the hard, dense and darker colored summer wood formed during the latter part of the growing season.
- (b) Summerwood. Summerwood is the hard, dense portion of the annual ring. It is darker in color than the more porous springwood.
- (c) Sound and Tight Knot. A sound and tight knot is one which is solid across its face and which is as hard as the wood surrounding it; and is so fixed by growth or position that it will retain its place in the piece.
- (d) Encased Knot. An encased knot is one whose growth rings are not intergrown and homogeneous with the growth rings of the piece in which it occurs. The encasement may be partial or complete; if intergrown partially or so fixed by growth or position that it will retain its place in the piece, it shall be considered a sound and tight knot.
- (e) Loose Knot. A loose knot is one not firmly held in place by growth or position.
- (f) Rotten Knot. A rotten knot is one not as hard as the wood surrounding it.
 - (g) Measurement of Knots.

In Beams the diameter of a knot on the narrow or horizontal face shall be taken as its projection on a line perpendicular to the edge of the timber. On the wide or vertical face, the smallest dimension of a knot is to be taken as its diameter.

In Columns the diameter of a knot on any face shall be taken as its projection on a line perpendicular to the edge of the timber.

- (h) Diagonal Grain. (Including cross and spiral grain.) Diagonal grain is grain not parallel with all the edges of the piece.
- (i) Dense Douglas Fir. Shall show on either one end or the other an average of at least 6 annual rings per inch or 18 rings in 3 inches and at least 33 1/3 per cent summerwood, as measured

over the third, fourth and fifth inches on a radial line from the pith, for girders not exceeding 20" in height, and for columns 16" square or less. For larger timbers the inspection shall be made over the central 3 inches on the longest radial line from the pith to the corner of the piece. Wide ringed material excluded by the above will be accepted provided the amount of summerwood as above measured shall be at least 50 per cent.

In case where timbers do not contain the pith, and it is impossible to locate it with any degree of accuracy, the same inspection shall be made over 3 inches on an approximate radial line beginning at the edge nearest the pith.

The radial line chosen shall be representative. In case of disagreement between purchaser and seller as to what is a representative radial line the average summerwood and number of rings shall be the average of the two radial lines chosen.

2. GENERAL REQUIREMENTS.

- (a) Shall contain only Dense Douglas Fir timbers as defined in paragraph (i).
- (b) Shall consist of lumber, well manufactured, square edge and sawed standard size; solid and free from defects such as ring shakes and injurious diagonal grain; loose or rotten knots; knots in groups; decay; pitch pockets over 6 inches long or % inch wide or other defects that will materially impair its strength.
- (c) Occasional variation in sawing not to exceed ¼ inch scant at time of manufacture allowed.
- (d) When timbers 4"x4" and larger are ordered sized, they will be ½ inch less than rough size, either S1S1E or S4S, unless otherwise specified.

STRINGERS, GIRDERS AND DEEP JOISTS. Shall show not more than 15 per cent of sap on each of the four sides, measured across the sides anywhere in the length of the piece. Shall not have in volumes 1 and 2 knots greater in diameter than ½ the width of the face in which they occur with a maximum of 1½ inches in diameter. Shall not have in volume 3 knots larger than 1/3 the width of the face in which they occur with a maximum of 3 inches in diameter. Knots within the center half of the span shall not exceed in the aggregate the width of the face in which they occur. Shall not permit diagonal grain in volumes 1 or 2 with a slope greater than one in twenty. When stringers are of two span length they shall be considered as two separate pieces

and the above restrictions applied to each half. The inspector shall place his stamp on the edge of the stringer to be placed up in service.

Caps and Sills. Selected structural Douglas fir shall show not more than 15 per cent of sap on each of the four sides, measured across the sides anywhere in the length of the piece, and shall be free from knots larger than ¼ the width of the face in which they occur with a maximum of 3 inches in diameter. Knots shall not be in groups.

Posts. Selected structural Douglas fir shall show not more than 15 per cent of sap, measured across the face anywhere in the length of the piece, and shall be free from knots larger than ¼ the width of the face in which they occur with a maximum of 3 inches in diameter. Knots shall not be in groups.

LONGITUDINAL STRUTS OR GIRTS. Selected structural Douglas fir shall show no sap on one face; the other face and two sides shall show not more than 15 per cent of sap, measured across the face or side anywhere in the piece, and shall be free from knots over 2 inches in diameter.

LONGITUDINAL X-BRACES, SASH BRACES AND SWAY BRACES. Selected structural Douglas fir shall show not more than 15 per cent of sap on two faces and four square edges, and shall be free from knots over 2 inches in diameter.

Branding. The inspector shall brand each timber which conforms to the above requirements "Selected Structural Douglas Fir."

RECOMMENDED WORKING UNIT STRESSES

The following table shows the working stresses recommended in the latest building codes of the cities of Seattle, Wash., and Portland, Oregon. The City of Seattle Building Code was issued in 1914, while that of the City of Portland has more recently been revised

WORKING UNIT STRESSES RECOMMENDED IN SEATTLE AND PORTLAND BUILDING CODES
TABLE 11

		Extreme Fiber	Com-	Com-	Sh	ear	
Species	City	Stress and Tension with Grain	pression Parallel to Grain	pression across Grain	Horisontal in Beams	Parallel to Grain Direct	Tension across Grain
Douglas Fir.	Seattle Portland	1600 1800	1600 1600	400 400	150 175	200 240	100
Western Hemlock	Seattle Portland	1400 1500	1400 1500	350 290	130 120	180 180	75

After making a careful study of the structural properties of Douglas fir and western hemlock, the following values are recommended by the West Coast Lumbermen's Association for selected structural Douglas fir timbers:

WORKING UNIT STRESSES RECOMMENDED BY WEST COAST LUMBERMEN'S ASSOCIATION

TABLE 12

		Extreme	Com-	Com-	She	ar	
Species	Class of Construction	Fiber Stress and Tension with Grain	pression Parallel to Grain	pression across Grain	Horizontal in Beams	Parallel to Grain Direct	Tension across Grain
Douglas Fir.	Protected Structures. Highway	1800	1600	400	175	240	100
ougus ru	Structures Railway	1500	1330	330	150	200	85
	Structures	1200	1070	270	120	160	65
Vestern	Protected Structures Highway	1500	1500	310	120	180	75
Hemlock	Structures Railway	1250	1250	260	100	150	65
	Structures	1000	1000	210	80	120	50

KILN DRYING DOUGLAS FIR

Kiln drying is one of the important phases of lumber manufacture. Of late years a great many improvements have been made in the construction of kilns, and in the methods of piling, heating and ventilating. Some woods are much more difficult to kiln dry satisfactorily than others, but the general principles herein mentioned apply to all woods, and particularly to Pacific Coast species.

- 1. The heat should be carefully regulated. Extremely high temperatures cause the wood to become to brittle.
- 2. The piling should be such as to enable the heat to enter the wood uniformly, and the use of wide stickers should be avoided. Vertical piling has done a great deal toward the elimination of checking and warping.
- 3. Draughts of outside air and too much ventilation cause the lumber to check and warp. Steam baths before drying greatly aid in preventing checking, warping and case hardening.

Pacific Coast woods present no serious problems in kiln drying, and with the perfected methods now in use a thoroughly satisfactory product is obtained.

All finish lumber should be properly kiln dried before being placed in a building. Correct methods of kiln drying prevent the resin from oozing through the varnish and also largely eliminate shrinking and swelling, and aid in securing high class finish.

Dimension lumber is now dried for uses where dry material is desirable. No serious difficulties are experienced in drying dimension stock up to three inches in thickness.

CREOSOTING DOUGLAS FIR

The creosoting of Douglas fir has been practiced on the Pacific Coast for more than 25 years. The creosoting of such forms as lumber, piling and paving blocks has proved an entire success. Douglas fir is a hard wood to treat, however, and it has required a great deal of study and experimenting to produce thoroughly satisfactory results. There are two general classes of creosoted material, as follows:

- 1. Wood which must retain its full strength after treatment.
- 2. Wood in which the strength is not so important, the real problem being that of protection against wood-destroying agents.

The second class of material mentioned has caused no trouble. The difficulty has been with the first class.

Both the steaming and boiling processes of treatment have been employed in creosoting Douglas fir. The steaming process will produce a good penetration, probably slightly better than the boiling, but it also appears to weaken the timber slightly more than the boiling process. In such forms as bridge stringers and ties, treatments sufficiently severe to obtain satisfactory penetrations have caused a material loss in strength. The problem, therefore, which has confronted the industry on the Pacific Coast has been that of developing a process of creosoting these forms which would secure a thorough penetration and at the same time would not cause a material loss in strength.

From experiments which have been made it has been shown that high temperatures and high pressures in these treatments are largely responsible for the loss in strength of the wood, which under such treatments amounted to as much as 33 to 35 per cent in bridge stringers. Even greater losses than these have occurred in the treatment by the above processes of Douglas fir ties. These treatments in the past have been applied about as follows:

BOILING PROCESS

The timbers were placed in the retort in a green condition, and boiled in creosote oil under atmospheric pressure for 22 to 24 hours at a temperature ranging from 230° to 260° Fahr.. This boiling period was used to season the timber and prepare it for receiving the oil. After the boiling period was completed, pressure was applied beginning with zero and rising as high as 145 to 185 pounds per square inch. The pressure was continued over a period of 4 to 6 hours, at a temperature of approximately 210° to 230° Fahr.. By this method 10 to 14 pounds of oil per cubic foot were injected into the wood.

STEAMING PROCESS

The timbers were placed in the retort in a thoroughly green condition and steamed at 90 pounds per square inch for 4 to 7 hours at a temperature of approximately 325° to 335° Fahr.. A vacuum of approximately 20 inches was then applied for 18 to 20 hours at a temperature of about 220° Fahr.. At the end of the vacuum period creosote oil was introduced and pressure applied, rising from zero up to 160 pounds per square inch. This pressing period was continued for 2 to 4 hours at a temperature of approximately 208° Fahr.. Ten to 14 pounds of oil per cubic foot were usually injected by this process.

It will be noted that in both the above processes high temperatures were applied. The temperature used in the boiling process was lower than that used in the steaming, but was applied for a longer period. The steaming process employed a higher temperature for a shorter period of time.

In recent experiments both temperature and pressure have been reduced and the vacuum made to take a more important part in the process. The most successful treatment yet devised for treating bridge stringers and similar forms without loss in strength is that of "boiling under a vacuum." When green timbers are creosoted by this method the treatment requires approximately 26 hours, and is in general, as follows:

BOILING UNDER A VACUUM PROCESS

The timbers are placed in the retort and creosote oil introduced at a temperature of 160° to 180° Fahr.. Heat is applied and the temperature of the oil gradually raised to 190° Fahr. and held at that temperature for 5 to 6 hours, a sufficient length of time to warm the timbers through. When the timbers are thoroughly warmed a vacuum of 24 to 27 inches is drawn on the oil, still holding a temperature of 190° Fahr.. This vacuum is

drawn through an overhead pipe extending from the top of the retort for 36 feet vertically into the air and returning to the condenser. The purpose of this pipe is to prevent the crossote oil from boiling over into the condenser. This vacuum is started at 16 to 18 inches, and as the timber seasons is gradually raised to 24 to 27 inches. The full period of vacuum is 12 to 16 hours. It is continued until the rate of seasoning of the timber is 1/10 pound of water per cubic foot of wood perhour. After this finished rate of seasoning is reached the vacuum is broken and pressure on the oil started, which rises as high as 120 to 135 pounds per square inch, and continues over a period of 4 to 6 hours. The temperature of the oil during the pressure period drops from 190° to 180° Fahr.. By this process 10 to 14 pounds of oil per cubic foot may be pressed into the wood.

This method of treatment is a slight modification of the Boulton process and at the low temperatures used seasons the wood even better than the old boiling process, which employed so much higher temperatures. Timbers treated by the method of boiling under a vacuum apparently receive the creosote oil more readily than timbers treated under the old boiling process.

BRIDGE STRINGERS. In order to carry the test still further and to determine the effect of this treatment (Boiling Under a Vacuum) on the strength of the wood, two shipments of full-sized bridge stringers were selected, and treated in four different charges. These stringers were of three sizes, 7"x14"x28', 7"x16"x30' and 10"x14"x28'. After treatment the stringers were shipped to Portland, Oregon and tested by the Bureau of Standards. The results of the tests are shown in the following report:

City of Portland
Department of Public Works
Bureau of Standards

Report of bending tests of creosoted and natural stringers. Tested for O. P. M. Goss, consulting engineer for the Association of Creosoting Companies of the Pacific Coast.

PURPOSE. The purpose of these tests was to determine the effect of creosoting by the "Boiling Under a Vacuum" process on the strength of Douglas fir bridge stringers in transverse bending.

MATERIAL. The material consisted of merchantable grade Douglas fir stringers of the following sizes:

9— 7"x14"x28' 3— 7"x16"x30' 5—10"x14"x28'

They were selected so that the two halves of the stringers were of as nearly equal quality as it was possible to obtain.

They were then cut in the middle and one-half treated by the above process. Both natural and treated halves were brought to Portland, and tested by the Bureau. The untreated timbers were tested in a thoroughly green condition.

One of the 7"x16"x15' natural stringers and the corresponding treated one gave unusually low results when tested. Both the natural and the treated stringers were cut up into sections and thoroughly examined after test. It was discovered that a heart shake was present in both pieces, the creosote showing plainly along this shake in the treated timber. This stringer failed in shear along this shake at a very low load, atter which this load increased considerably before final rupture of the beam. The result of the tests on these defective stringers are therefore not included in this report, failure being due entirely to this defect present before treatment.

METHOD OF TEST. The method of testing was identical with that used in previous tests made on structural timbers by the U.S. Forest Service and described in Forest Service Circular No. 38 (Revised). The stringers were tested on a 150,000-pound Universal Riehle machine under third point loading, the load being applied at two points, each one-third the length of the span from the end supports. The 7"x14"x14' and the 10"x14"x14' pieces were tested on a 13-foot span and the 7"x16"15' pieces on a span of 14 feet. The load was applied continuously, the head of the machine descending at the rate of 0.139 inches per minute, and the load increments and corresponding deflections recorded. The manner of failure at maximum load was noted in each case. The strength values were computed from U.S. Forest Service formulae and are therefore comparable with previous tests on structural timber.

After the tests were completed, photographs were made of identification sections taken from each of the natural and treated stringers, except one set which was lost through a misunderstanding. These sections show the quality of the growth in the timbers and the amount of penetration secured in the treated pieces. The tables* and diagrams* complete this report. Table 13 contains results of the tests on the 7"x14"x14' stringers and shows the modulus of rupture or breaking strength of the treated material to be 101.2 per cent that of the natural. Table 14, giving strength values for 7"x16"x15' stringers shows a modulus of rupture for the treated of 101.8 per cent of the corresponding natural. Table 15 shows results of the 10"x14"x14' beams. The untreated material had a slight advantage in breaking strength, the treated being 95 per cent as strong as the natural. Table 16 is a summary of the preceding tables and shows the average modulus of rupture for the treated stringers of all sizes to be 99.2 per cent that of the natural pieces. The following diagrams show the results of the individual tests and a record of the treatment used. The graphs for the natural and corresponding treated stringers are given side by side.

^{*}Refers to tables 13 to 16 and diagrams 6 to 9.

40

BRIDGE STRINGERS

EFFECT OF CREGGOTING BY BOILING UNDER A VACUUM ON THE STRENGTH AND STIFFNESS OF DOUGLAS FIR, TREATED GREEN. TIMBERS 7X WX14.
TESTED UNDER \$ DOINT LOADING ON A 15 SPAN.

TABLE 13

ER		œ C	RINGS		FIBRE :	STRE55	Σ	MODULUS	5	X	MODULUS	5	HORIZ	MAXIMUM	MAXIMUM HORIZONTAL SHEAR	MANNER	ER
BMC	MARK	_	NCH		ELASTIC LIMIT	LIMIT	Œ ø	RUPTURE	URE SOIN	EL,	ELASTICITY	⊁ ±	28	DEVELOPED	PED	Ĭ.	JRE
M		Z	F	z	-	NATURAL	z	۲	MATURAL		+	% OF NATURAL	z	+	NATURAL	z	+
-	4-A-2 13	10	0	4620	4140		7330	5780	78.9	076	1730	878	503	393	783	TENSION &	TENSION & TENSION &
9	1-A		-	4190	4550	-	6069	1629	08.0	1700	1587	93.4	6	426	1025	TENSION	TENSION &
1	7 1-A-2 II	=		11 4140	4490	-	6070	6730	6.011	1897	1845	4 60	2	458	0.011	HORIZONTAL	HOR SHEAR
0	5.4.2 12	2	0	3930	4040	103.0	5500	5390	98.0	6771	1760	686	377	366	0.76	HOR SHEAR HOR SHEAR	HOR SHEAR
Ö	A-5	-	-	7 7 3720	3900		5422	5620	7.601	969	1545	10	371	383	103.2	TENSION	TENSION &
=	A-2		9	3680	-	-	5328	4980	93.3	12.95	1513	116.8	363	939	93.4	TENSION	HORIZONTAL
4	4 A.3	0	0	3685	4105	6113	4605	5440	18.2	1985	1760	93.4	416	369	17.5	TENSION	TENSION
10	4-A	7	4	3070	2885	940	4410	4750	107.7	1187	1266	1.901	298	319	107.0	TENSION	TENSION
9	16 3.A.2	=	=	3920	3,90	81.4	4408	4725	107.2	1450	1420	97.0	308	324	1108	TENSION	TENSION
4	AVE	9.01	SIIC	3884	1081103884 3853	2.00	5460	5460 4523	2 101	16.47	1603 073	97.8	373	375	100.5		

DEPARTMENT OF PUBLIC WORKS BUTEAU OF STANDARDS

TABULATION OF RESULTS OF TRANSCRISE BENOMS ON MATURAL AND TREATED STRINGERS

Results of bonding tests made on 7"x14"x14" Doug-law fir bridge stringers, natural and creesoted.

COMPUTED BY (408

BRIDGE STRINGERS

EFFECT OF CREOSOTING BY BOILING UNDER A VACUUM ON THE STRENGTH AND STIFFNESS OF DOUGLAS FIR, TREATED GREEN. TIMBERS IDXIA'SH. TESTED UNDER & POINT LOADING ON A 15 SPAN

REMI	RINGS PER MARK INCH	E . Z	RINGS PER INCH	7	FIBRE STRES AT ELASTIC LIMIT LB6, PER 50-IN.	STRESS LIMIT	ž «9	MODULUS OF RUPTURE	JS RE SO IN	MC EL/	MODULUS OF ELASTICITY MODULUS PER 59-IN-	JS TY	HORIZ	MAXIMUM RIZONTAL SE DEVELOPED	MAXIMUM HORIZONTAL SHEAR DEVELOPED LBS. PER 59.14.	MANNER OF FAILURE	R R
N		Z	1	z	F	% OF NATURAL	Z	۲	WATURAL	z	۲	% OF MATURAL	z	+	NATURAL	z	1
N	ė.		6 6	5740	3580	62.4	6700	5550	82.8	2019	1863	92.3	456	375	82,2	HORIZONTAL	TENSION
(1)	A-7	ñ	Ē	4420	3480	787	6210	4900	289	1739	1538	88.4	423	930	78.0	HORIZONTAL HORIZONTAL	HORIZONTAL
N	A-10		5	5190	5420	104.5	6130	6780	9.01	1702	757	103.2	418	459	109.8	7	HOR. SHEAR
80	A-8	80	00	_	5580 5430	67.6	5880	6280	5880 6280 106.8	1824	1750	95.9	403	425	105.5	HORIZONTAL	TENSION
U)	9-Y	7	5	3420	3050	89.2	5280	5160	7.76	1463	1395	95.4	359	350	97.5	TENSION	HORIZONTAL
4	AVE	15	2	2 12 4870 4192	4192	1.98	6040	6040 5734	95.0	1749 661	1001	646	412	388	94.2		
	TABLE 14	E	11				Ŋ	STRINGERS		7*16"x15" - 14"SPAN	4 SPAN						
4	A	$\overline{}$	9	4225	16 16 4225 4385	103.8	06190	6145	99.3	2032 1915	915	24.2	460	463	1001	HORIZONTALHORIZONTAL SHEAR SHEAR	HORIZONTAL
60	A-12	6	0	3858	3815	98.9	5275		5530 104.7	1815	1726	95.1	381	397	104.2	HORIZONTAL HORIZONTAL SHEAR SHEAR	HORIZONTAL
A	AVG.	45	4.5	4042	4100	45 45 4042 4100 101.4	5733	5838	5733 5838 101.8	924	1821	924 1821 946	42	430	430 102.2		

Results of bending tests made on 10"x14"x14' and 7"x16"x15' Douglas fir bridge stringers, natural and creosoted.

TABULATION OF RESULT.
OFTENSVERSE BENONS ON
NAVAL AND TRATES STRINGERS.
COMPUTED SY (98 b.

DEPARTMENT OF PUBLIC WORKS BUREAU OF STANDARDS

BRIDGE STRINGERS

EFFECT OF CREOSOTING BY BOLLING UNDER A VACULM ON THE STRENGTH
AND STIFFNESS OF DOUGLOS FIR. TREATED GREEN. TIMBERS, 7½14%, 7¾44, 7¾463,
AND IOXIAXIA, TESTED UNDER § POINT LOADING ON A 15/10 14/169AN.

TABLE 16

MBERR	N	-	2	0	4	in	9	1	8	9	0	1	2	ū	4	10	9	AV6.
MARK		4.A.2	8-A	A-7	A-C	A-io	W	1.A-2	A-8	5.A.2	A-5	A-Z	A-6	A-12	A-8	A-4	6 3.A.2	.6
_	2	5	Ü	10	3	H	1	u	60	12	7	0	2	0	Q	2	_	11.7
PER INCH	H	0	0	ī	9	ū	1	=	æ	6	٨	ō	13	ΨΩ.	6)	4	3	1.8
E A	z	4620	5740	4420	4225	5190	4190	4140	5580	3930	5720	3680	3420	3856	3685	3070	3920	11.7 11.8 4212
FIBRE STRESS AT ELASTIC LIMIT LAS. PER 50 IN.	H	4140	3580	3480	4385	5420	4550	4490	5430	4040	3900	3375	9050	3.815	4105	2885	9190	0666
STRESS LIMIT	NATURAL	9 68	624	7.87	9 60	045	5 80	108.3	873	0.80	1048	716	89.2	98.9	6	940	4 0	948
Σ α δ	z	7330	6700	6210	0619	6130	6083 6291	6070	5880	5500	5422	5328	5280	5225	4605	4410	4408	5676
RUPTURE RUPTURE	+	5780	5950	4900	6145	6780	629	6730	6280	5390	5620	4980	5)60	5530	5440	4750	4725	5628
JS RE	% OF	78.5	82.8	682	666	9011	6.60	601	106.8	980	1097	93.3	776	1047	2.911	1220	270	5.66
N 7300	_	0761	2019	1739	2602	1702	1700	1857	1824	6771	9699	1295	1463	1815	1885	1187	1450	6121
ELASTICITY	+	1730	1863	1538	1915	1757	1587	845	1750	1760	1545	1513	1305	1726	1760	1266	1420	1648
o F	NATURAL	878	6 26	88.4	546	1032	4.66	4.66	656	686	176	1168	95.4	1.56	93.4	106.7	616	56.3
HORIZO	z	503	456	423	460	914	415	415	409	577	176	565	359	186	4 6	862	302	266
MAXIMUM RECONTAL SH DEVELOPED	۲	393	375	330	465	469	426	458	425	366	583	339	350	397	369	916	324	386
MAXIMUM HORIZONTAL SHEAR DEVELOPED	% OF HATURAL	783	822	780	1001	9 601	1025	0.011	105.5	026	103.2	93.4	526	1042	5711	020	110.8	986
MANNER	z	HOR SHEAR	HORIZONTAL	HORIZONTAL	HORIZONTAL	HORIZONTAL	TENSION	HORIZONTAL	HORIZONTAL SHEAR	TENSION & HOR SHEAR	TENSION	TENSION	TENSION	HORIZONTAL	TENSION	TENSION	TENSION	
ER RE	۲	TENSION & HOR. SHEAR	TENSION	HORIZONTAL	SHEAR	TENSION &	TENSION &	HOR SHEAR	TENSION	TENSION B.	TENSION A	HORIZONTAL	HORIZONTAL	HORIZONTAL	TENSION	TENSION	TENSION	

Results of bending tests made on ""x14"x14", 10"x14"x14' and 7"x16"x15' Douglas fir bridge stringers, natural and creosoted.

TABULATION OF OF TRANSMER BENDING AND TREATED STEE

COMPUTED BY (9.8.

43

THE WEST COAST LUMBERMEN'S ASSOCIATION

THE WEST COAST LUMBERMEN'S ASSOCIATION

Disgrain 7. Load-deflection diagrams for 7"x14"x14" Douglas fir bridge stringers, natural and creosoted.

Diagram 8. Load-deflection diagrams for 7"x16"x15' Douglas fir bridge stringers, natural and creosoted.

THE WEST COAST LUMBERMEN'S ASSOCIATION

48

These tests show that the treatment used does not cause any appreciable loss in the strength of full size bridge stringers.

Approved by

Signed R. G. DIECK Signed R. S. DULIN Commissioner of Public Works Chief, Bureau of Standards.

Tables 13 to 16 and diagrams 6 to 9 are part of the above report by the Bureau of Standards, City of Portland.

The results of the above tests are also shown graphically in diagram 5. The untreated timbers were arranged in order of their strength based on the modulus of rupture, and plotted with the strongest timber to the left and the weakest timber to the extreme right of the diagram. Three factors are shown, as follows:

Modulus of Rupture:

Fiber Stress at Elastic Limit; Modulus of Elasticity.

The results of the treated and corresponding natural stringers are plotted on the same vertical line and are very close together for all of these factors. At the bottom of the diagram sections of both the treated and untreated stringers are shown. These sections show the penetration obtained and give an idea of the class of material used in these tests. The minimum penetration was 0.4 inch and the maximum 2.25 inches with an average of approximately 1.2 inches.

The above results are proof that Douglas fir bridge stringers may be effectively creosoted without injuring the strength, a fact which should be of interest to railroads and others consumers of structural timber.

Ties. The volume of lumber which is cut annually into railroad ties is extremely large. There is perhaps no form of timber which is subjected to a more strenuous test than a railroad tie. In the first place, a tie is so placed as to make it subject to attack by fungus. In the second place, a tie is stressed in a direction perpendicular to the grain. Practically no test on wood shows as low unit strength as the test in compression perpendicular to the grain. Therefore, a tie in order to best serve its purpose should at all times retain its natural strength.

An untreated tie shows its natural strength only up to the point when it begins to decay. The mechanical life of a Douglas fir tie of good grade is at least 15 years, but under conditions found in the ordinary roadbed, this class of ties will decay and become useless in from six to seven years.

THE WEST COAST LUMBERMEN'S ASSOCIATION

In an effort to overcome decay, a great many creosoted Douglas fir ties have been used. These ties, however, were creosoted by the boiling or steaming processes both of which employed high temperatures and produced a weakening of 30 to 40 per cent in the strength of the wood. It is very evident that this weakening was extremely serious. As mentioned before, wood is weak in compression perpendicular to the grain. To make it still weaker by methods of creosoting which injure its strength, is extremely objectionable when the wood is to be used in the form of ties. Many ties which have been treated by the use of high temperatures and placed in the track have shown weakness in resisting the impact of railway traffic. Such ties have shown marked improvement in their durability, but great weakness against mechanical wear.

In view of the above facts, the West Coast Lumbermen's Association has made a careful study of this subject in an effort to solve the difficulties. Two principal points have been held in mind during the experiments made to date:

Fig. 4. A machine used to perforate Douglas fir railway ties in order to better distribute the preservative, thus securing a more effective protection against decay. These perforations make the treatment of the tie possible without the application of high temperatures and pressures.

- (1) To prolong the natural life of Douglas fir ties by preservative treatment.
- (2) To apply the preservative treatment effectively without injuring the strength of the wood.

The accomplishment of the above points will produce the desired result, since Douglas fir, in comparison to other woods, is very strong in compression perpendicular to the grain.

In investigating this subject an effort has been made to take advantage of the fact that creosote oil enters wood along the grain with very much greater ease than in any other direction. It was therefore decided to perforate the timber to the desired depth of penetration and allow the oil to enter the wood with the least possible resistance. The question which naturally arose was whether or not this perforating could be done commercially.

The Columbia Creosoting Company of Portland, Oregon, took this matter up, and designed and built a machine for perforating ties. The photograph on page 50 gives some idea of the design of this machine.

The machine runs at a speed of approximately 70 feet per minute, and will perforate ties as rapidly as it is possible for la-

Fig. 6. A piece of Douglas fir which has been perforated on one side only. This shows that by means of perforations the penetration and distribution of creosote oil can be absolutely controlled.

RESULTS OF TESTS IN COMPRESSION PERPENDICULAR TO GRAIN ON DOUGLAS FIR TIE SEC-TIONS-NATURAL, UNPERFORATED-CREOSOTED AND PERFORATED-CREOSOTED

7"x8"x30" AIR-SEASONED MATERIAL

Tests made for the Association of Creosoting Companies of the Pacific Coast.

	4	Number of Tests	.53	Com	Compressive Strength at Elastic Limit per Sq. In.	th at 1. In.		Relative Strength of	
Tie Number	Natural	Unperfor- ated- Creosoted	Perforated- Creosoted	Natural	Unperfor- ated- Creosoted	Perforated- Creosoted	Unperforated- Creosoted in Per Cent of Natural. Natural	Perforated- Creosoted in Per Cent of Natural. Natural= 100 per cent	Perforated- Crecoted in Per Cent of Unperfor- ated-Crecoted. Unperforated- Crecoted= 100 per cent
				Lbs.	Lbs.	Lbs.	Per Cent	Per Cent	Per Cent
-25				684 464 484	595 604 559	567 570 513	87.0 130.2	82.9 122.9	85.84.8 8.4.6
410				38.8	498 498	516 487	100.7 127.7	93.1 124.9	92.5 97.8
Average				505	561	531	111.0	105.2	7.46

borers to handle them. The vertical rolls perforate the sides, and the horizontal rolls the top and bottom faces. The ties should, of course, be bored for spikes before treatment.

A good spacing for the perforations is shown by Fig. 5. It will be noted that these perforations are so arranged that it is only necessary for the creosote to pass along the grain a distance of $3\frac{1}{2}$ inches from each perforation, in order to give complete penetration on all faces of the tie, to a depth equal to that of the perforations.

Fig. 6 shows the results of creosoting perforated Douglas fir. One side of the specimen shown was perforated and the other side was treated in its natural condition. Note the even distribution of oil in the perforated side and the increased depth of penetration.

The question as to the effect of the perforating upon the strength of the wood came up immediately for consideration. For the purpose of securing reliable data on this point, strength tests were made on ties in both the natural and treated conditions.

Table 17 gives results of tests on three classes of material, namely, air-seasoned, natural, unperforated-creosoted and perforated-creosoted. The creosoted ties were treated by the "Boiling Under Vacuum Process."

The average results of these tests show the creosoted sections to be stronger than the natural.

In order to secure additional data on this subject it was decided to make further tests on ties perforated and treated by this method. The following report on the results of these tests gives reliable data on the effect of this method of perforating upon the strength of Douglas fir ties.

City of Portland Department of Public Works Bureau of Standards

Report of side compression test of creosoted tie sections. Tested for O. P. M. Goss, consulting engineer for the Association of Creosoting Companies of the Pacific Coast.

PURPOSE. To determine the effect of perforations on the strength of creosoted railroad tie sections in compression perpendicular to the grain.

MATERIAL. The material consisted of Douglas fir, merchantable grade, of the following dimensions:

10-10"x412"x5'.

One-half of each tie was perforated the other half being

unperforated. They were selected so that the two halves of each tie were of as nearly equal quality as it was possible to obtain. Each tie was treated by the "Boiling Under a Vacuum Process." After treatment the 20 sections were brought to Portland, Oregon, and tested by the Bureau. The test was applied to the corresponding side in each pair.

METHOD OF TESTS. The tie sections were tested on a 150,000 pound Universal Riehle Testing Machine. The specimen was placed on the bed of the testing machine and a steel compression plate 8"x12"x1\frac{1}{4}" was placed crosswise on the specimen. A 10-inch spherical compression tool was placed between the head of the testing machine and the steel compression plate to insure equal distribution of the load. The dimensions of the specimens were taken at the center directly under the compression plate.

Diagram 10. Load-deflection diagrams for creosoted Douglas fir ties, perforated and unperforated. Tests made in compression perpendicular to grain.

Diagram 11. Load-deflection diagrams for creosoted Douglas fir ties, perforated and unperforated. Tests made in compression perpendicular to grain.

being averages of two readings. The area of compression was 8 inches times the width of the specimen. An initial load of 1,000 pounds was applied to each section, after which the deflection reading apparatus, an Olsen Improved Deflectometer reading to 0.001 of an inch, was adjusted to zero reading when the load was applied continuously to well beyond the yield point. The rate of application of the load was 0.046 inch per minute.

RESULTS. The load deflection diagrams* and table* of re-

sults are attached.

Date of Tests: Tests made on November 26 and 27, 1915. Observers:

Oscar Beck

Approved by
Signed R. G. Dieck Sig

Commissioner of Public Works Chief, Bureau of Standards

Signed R. S. DULIN

John O. Baker

*Refers to diagrams 10 and 11 and to table 18.

RESULTS OF TESTS IN COMPRESSION PERPENDICULAR TO GRAIN ON CREOSOTED DOUGLAS FIR TIE SECTIONS

10"x4.5"x2'-6"

Tests made by the Bureau of Standards, Portland, Oregon.

TARLE 18

	Pines r	er Inch	Compressive	Strength at	Elastic Limit per Sq. In.
Tie Number			Unperforated	Perforated	Strength of Perforated in Per Cent of Unperforated. Unperforated = 100 per cent
	Unperforated	Perforated	Lbs.	Lbs.	Per Cent
1	6	6	419	481	114.8
78 79	9	9	350 765	376 900 .	107.5 117.6
78 79 82 83 88	7 6	7 6	545 523	631 512	115.8 97.9
88 90	6 9	6	616 366	666 480	108.1 131.1
91	5	5	375	595	158.6
93 96	7 7	7	555 670	590 845	106.3 126.1
Average	7.1	7.1	518	608	117.4

The table of results contained in this report shows the perforated ties to be 117.4 per cent as strong as the unperforated. In only one individual case is the unperforated piece stronger than the corresponding perforated section and in most instances the increase in strength due to perforation is marked. Thorough penetration was secured in all the ties by means of this method of perforation. These results correspond very closely to previous tests on perforated material and prove that by the proper method of perforation it is possible to creosote Douglas fir ties, distributing the oil where wanted and without loss in strength in the wood.

A good method of preparing for the treatment of railroad ties of Douglas fir or western hemlock would be as follows:

Cut ties in winter and early spring. Perforate and openpile for air seasoning, taking advantage of the summer months. The ties may then be treated during the fall and winter. Handling ties in this way will insure an absolute protection against decay, and will enable the wood to be creosoted without loss in mechanical strength. These two points will insure the greatest value possible in the way of service, from this form of material.

SPIKE PULLING TESTS. The relative value of the various species of wood used for ties has been the cause of considerable discussion in the past, particularly with regard to the holding

power of railroad spikes in these woods. With the increasing use of creosoted ties the screw spike is likewise becoming more popular, as the increased length of life of treated ties warrants the use of a more permanent method of rail fastening.

In order to determine the holding force of spikes under various conditions in natural and treated timber, the Seattle Timber Testing Laboratory of the U. S. Forest Service recently made a series of spike pulling tests on natural and creosoted commercial Douglas fir railway ties. Permission to publish the results of these tests has been granted through the courtesy of the Forest Service.

The test material consisted of 18 commercial grade Douglas fir ties, two sections of each tie being used for these tests. Both common and screw spikes were pulled from these sections, one of which was green and the other creosoted. Holes ranging in size from % to % inch were bored in each tie, those in the creosoted ties being bored before treatment.

Table 19 contains the complete results of these tests.

The following points are mentioned in connection with the use of this table:

- (1) The form of the point of the common spike is such that it inclines not to follow the hole.
- (2) Care was exercised in these tests to have the spikes follow the holes.
- (3) If the holes are not too large (three-eights inch or seven-sixteenths inch) and the spikes follow the holes closely the resistance to withdrawal will usually be increased.
- (4) If spikes do not follow the holes the resistance to withdrawal may be greatly reduced.
- (5) Spikes driven close to the holes but not into them will have their resistance lowered.
- (6) The splitting of the tie and the breaking of the fiber is reduced when the spikes are driven into bored holes.

In the tests on the holding power of common spikes the results for the treated and natural material show very little difference. In the natural wood the spikes driven into the %-inch holes showed the greatest holding power, while in the treated those driven into the ½-inch holes required the greatest force to pull them from the timber. The screw spikes, which were placed in %-inch holes, pulled considerably harder from the creosoted than from the natural ties.

TABLE SHOWING HOLDING FORCE OF COMMON AND SCREW SPIKES IN NATURAL AND TREATED DOUGLAS FIR TIES-GREEN MATERIAL

							Natu	Natural Ties						Treate	reated Ties		
						Force R	equired	Required to Pull	Spike				Force	Force Recuired to Pull	I to Pu	Il Spike	
	Specific					Con	Common Sp	Spikes		Spikes			Common	non Spikes	kes		Sorew Spikes
Reference	Ovendry Based on Green Volume	Rings per Inch	Summer-wood	Moisture	A star A solo Hole	Mark B	Mark C	Mark D	Mark E	Mark F	Moisture	A streM. sloH oV.	Mark B	Mark C	Mark D	Mark E	Mark F
			Per	Per	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	PerCent	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.
1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	0.428	10.0	30	333.0	4470	4910	3760	3740	3100	7450	26.0	3510	5490	4240	3800	3300	12430
	0.456	7.5	30	39.2	4530	4790	4150	3880	3650	8670		4920	5420	4450	4650	3930	10870
	0.531	50.0	45	32.2	4560	5660	5230	4120	2050	0606	23.8	4480	5400	5760	6320	3840	11280
	0.370	4.0	200	35.0	3000	4100	3960	4130	3100	9560		2990	2940	3260	2770	2710	7990
will officers.	0.482	14.0	28	31.8	4990	2600	4980	2080	3470	11220	23.6	4980	5360	5940	5270	3290	14050
	0.438	16.0	308	39. R	3510	4150	4570	3380	3450	8380		3310	3800	3650	3400	3070	8130
	0.438	11.0	35	32.7	4150	4030	3940	3720	3100	8100		3530	4990	3880	4970	4210	7390
12.	0.465	10.0	36	33.0	4770	4050	5450	5480	4520	9420	25.7	4670	4700	4880	6200	4190	11240
*** ** ** ** ** ** ** ** ** ** ** ** **	0.444	0 6	30	31.00	4610	4720	5990	3480	3270	7360		3800	7870	3840	3300	3/80	8560
And the Contract of the Contra	0.414	20.0	30	31.8	3720	3470	2910	2860	2750	8320		3840	3940	4270	4490	2960	10280
	0.457	8.0	25	33.6	4650	2990	4710	4550	3340	9130	A	4510	4210	6080	4380	4470	8630
	0.509	11.0	40	32.2	5070	5820 4870	5460	4800 5260	3710	9370	********	2000	4380	4980	4360	3960	8500
A verage			30		4555	4627	4507	4115	3646	2968	25.7	4160	4298	4352	4474	3778	10182
Maximum	0.531	20.0	45	39.5	6020	2990	5460	5480	4920	11220	32.1	2020	5490	9080	6320	4890	14050

The results of these tests together with those on the perforation of Douglas fir show marked progress in the preservation and utilization of creosoted Douglas fir railway ties and should encourage the use of this wood for tie purposes, to which it is unusually well adapted.

FORMULAE FOR RECTANGULAR BEAMS

The symbols below are used in all the following formulae:

l =Length of span, in inches.

b = Width of beam, in inches. (In mill and laminated floor computations, b = 12 inches.)

h = Height of beam, in inches.

V = Maximum vertical shear, in pounds.

J = Maximum unit horizontal shear, in pounds per square inch.

J' = Allowable unit horizontal shear (any safe value), in pounds per square inch.

I = Moment of inertia of cross section of beam about neutral axis, in inches.

A = Area of cross section of beam, in square inches.

S = Section modulus, in inches.

n = Distance from neutral axis to extreme fiber in inches. For a rectangular beam this equals one-half the height of beam.

f = Safe unit stress, extreme fiber, in pounds per square inch.

E = Modulus of elasticity, in pounds per square inch.

d = Maximum deflection, in inches.

D = Deflection equivalent to $\frac{1}{32}$ inch per foot of span.

w = Load on beam per foot of span, in pounds.

W = Total load on beam
$$\left(\frac{\mathbf{w} \ l}{12}\right)$$
, in pounds.

M = Maximum external bending moment; also the internal resisting moment of the beam cross section; in inch pounds.

L' = Total floor load per square foot, in pounds. Equals live load per square foot plus weight of floor per square foot. Used in computing maximum span tables for mill and laminated floors.

$$I = \frac{bh^3}{12} \qquad S = \frac{I}{n} = \frac{bh^2}{6} \qquad M = fS$$

MAXIMUM UNIT HORIZONTAL SHEAR IN RECTANGULAR BEAMS

When a beam is loaded the horizontal shear which is developed produces a tendency to split along the neutral axis*. The formula for maximum unit horizontal shear in a rectangular beam is:

 $J = 1.5 \left(\frac{V}{bh} \right)$

^{*} The neutral axis of a rectangular beam is in a plane separating the upper and lower haives when the beam is horizontal.

When a rectangular beam is symmetrically loaded the maximum vertical shear, V, is $\left(\frac{W}{2}\right)$ and therefore the maximum unit horizontal shear is:

$$J = 0.75 \left(\frac{W}{bh} \right)$$

From this formula it is seen that the maximum unit horizontal shear varies directly with the load. For a given fiber stress "f" (say 1,000 lbs. per sq. in.), developed in a beam, the safe load. W, for center loading is one-half that for uniform loading, and for third-point loading it is three-fourths of that for uniform loading. Therefore, the maximum unit horizontal shear for center loading is one-half of the horizontal shear for uniform loading and for third-point loading it is three-fourths of that for uniform loading.

SAFE LOADS LIMITED BY HORIZONTAL SHEAR

The safe load, W, in pounds, on a beam, limited by any given safe unit horizontal shearing stress, J', pounds per square inch, may be found by the formula:

$$W = \frac{J'bh}{0.75}$$

SAFE LOADS ON BEAMS (CONSIDERING BENDING ONLY)

CENTER LOADING:

$$\frac{\text{fI}}{\text{n}} = \text{M} = \left(\frac{\text{W}}{2}\right) \left(\frac{l}{2}\right) = \frac{\text{W}l}{4}$$

$$\text{W} = \frac{4\text{fI}}{l\text{n}} = \frac{4\text{f}}{l} \left(\frac{\text{bh}^2}{6}\right) = \frac{2}{3} \left(\frac{\text{fbh}^2}{l}\right)$$

THIRD POINT LOADING:

$$\begin{aligned} &\frac{\mathrm{fI}}{\mathrm{n}} &= \mathrm{M} &= \left(\frac{\mathrm{W}}{2}\right) \left(\frac{l}{3}\right) = \frac{\mathrm{W}l}{6} \\ &\mathrm{W} &= \frac{\mathrm{6fI}}{l\mathrm{n}} = \frac{\mathrm{6f}}{l} \left(\frac{\mathrm{bh}^2}{6}\right) = \left(\frac{\mathrm{fbh}^2}{l}\right) \end{aligned}$$

UNIFORM LOADING:

$$\begin{aligned} &\frac{\text{fI}}{\text{n}} = \text{M} = \left(\frac{\text{W}}{2}\right) \left(\frac{l}{2}\right) - \left(\frac{\text{W}}{2}\right) \left(\frac{l}{4}\right) = \frac{\text{W}l}{8} \\ &\text{W} = \frac{8\text{fI}}{l\text{n}} = \frac{8\text{f}}{l} \left(\frac{\text{bh}^2}{6}\right) = \frac{4}{3} \left(\frac{\text{fbh}^2}{l}\right) \end{aligned}$$

MAXIMUM DEFLECTION IN BEAMS

The following formulae apply only within the elastic limit of the beam:

CENTER LOADING:

$$\mathbf{d} = \begin{pmatrix} \frac{1}{48} \end{pmatrix} \begin{pmatrix} \frac{\mathbf{W}l^2}{\mathbf{EI}} \end{pmatrix} = \begin{pmatrix} \frac{1}{48} \end{pmatrix} \begin{pmatrix} \frac{\mathbf{W}l^2}{\mathbf{Ebh^2}} \end{pmatrix} = \frac{1}{4} \begin{pmatrix} \frac{\mathbf{W}l^3}{\mathbf{Ebh^3}} \end{pmatrix}$$

THIRD POINT LOADING:

$$\mathrm{d} = \left(\frac{23}{1296}\right) \, \left(\frac{\mathrm{W} l^{\, \mathfrak{s}}}{\mathrm{EI}}\right) = \left(\frac{23}{1296}\right) \, \left(\frac{\mathrm{W} l^{\, \mathfrak{s}}[12]}{\mathrm{Ebh}^{\, \mathfrak{s}}}\right) = \left(\frac{23}{108}\right) \, \left(\frac{\mathrm{W} l^{\, \mathfrak{s}}}{\mathrm{Ebh}^{\, \mathfrak{s}}}\right)$$

UNIFORM LOADING:

$$\mathrm{d} \,=\, \left(\frac{5}{384}\right) \, \left(\frac{\mathrm{W} l^{\, \mathrm{s}}}{\mathrm{EI}}\right) \,=\, \left(\frac{5}{384}\right) \, \left(\frac{\mathrm{W} \, l^{\, \mathrm{s}} [12]}{\mathrm{Ebh}^{\, \mathrm{s}}}\right) \,=\, \left(\frac{5}{32}\right) \, \left(\frac{\mathrm{W} \, l^{\, \mathrm{s}}}{\mathrm{Ebh}^{\, \mathrm{s}}}\right)$$

MAXIMUM SPAN-MILL AND LAMINATED FLOORS

CENTER LOADING:

$$\frac{\text{f I}}{\text{n}} = \frac{\text{W}l}{4} \therefore l = \frac{4\text{f}}{\text{W}} \left(\frac{1}{\text{n}}\right) = \frac{\frac{4\text{f}}{lL'}}{\frac{12}{6}} \left(\frac{\text{bh}^2}{6}\right)$$
$$l^2 = \frac{8\text{fbh}^2}{L'} \therefore l = \checkmark \frac{8\text{fbh}^2}{\frac{1}{1}}$$

THIRD POINT LOADING:

$$\frac{fI}{n} = \frac{Wl}{6} \therefore l = \frac{6f}{W} \left(\frac{I}{n}\right) = \frac{\frac{6f}{lL'}}{\frac{12}{l}} \left(\frac{bh^2}{6}\right)$$
$$l^2 = \frac{12fbh^2}{L'} \therefore l = \checkmark \frac{12fbh^2}{\frac{1}{l}}$$

UNIFORM LOADING:

$$\begin{aligned} &\frac{f\,I}{n} = \frac{W\,l}{8} \therefore W = \frac{8f\,I}{ln} \\ &l = \frac{8f}{W} \left(\frac{I}{n}\right) = \frac{8f}{W} \left(\frac{bh^2}{6}\right) = \frac{4}{3} \frac{f\,bh^2}{W} \\ &W = \frac{l}{12}\,L' \\ &\therefore l = \frac{4}{3} \cdot \begin{pmatrix} f\,bh^2 \\ \frac{l}{12}L' \end{pmatrix} = \frac{16f\,bh^2}{lL'} \\ &l^2 = \frac{16f\,bh^2}{L'} \therefore l = \checkmark \frac{\overline{16f\,bh^2}}{L'} \end{aligned}$$

DEFLECTIONS IN MILL AND LAMINATED FLOORS

CENTER LOADING:

$$d = \left(\frac{1}{48}\right) \left(\frac{Wl^{3}}{EI}\right) \qquad W = \frac{l}{12} L'$$

$$d = \left(\frac{1}{48}\right) \left(\frac{\frac{l}{12} L' l^{3}}{Ebh^{3}}\right) \cdot = \frac{1}{(48) (1,643,000)} \left(\frac{L' l^{4}}{bh^{3}}\right)$$

$$d = 0.000,000,012,68 \left(\frac{L' l^{4}}{bh^{3}}\right)$$

THIRD POINT LOADING:

$$d = \left(\frac{23}{1296}\right) \left(\frac{Wl^3}{EI}\right) \qquad W = \frac{l}{12} L'$$

$$d = \left(\frac{23}{1296}\right) \left(\frac{\frac{l}{12} L'l^3}{Ebh^3}\right) = \frac{23}{(1296) (1,643,000)} \left(\frac{L'l^4}{bh^3}\right)$$

$$d = 0.000,000,010,8 \left(\frac{L'l^4}{bh^3}\right)$$

UNIFORM LOADING:

$$d = \left(\frac{5}{384}\right) \left(\frac{Wl^3}{EI}\right) \qquad W = \frac{l}{12} \quad L'$$

$$d = \left(\frac{5}{384}\right) \left(\frac{\frac{l}{12}L'l^3}{\frac{Ebh^3}{12}}\right) = \frac{5}{(384)(1,643,000)} \left(\frac{L'l^4}{bh^3}\right)$$

$$d = 0.000,000,007,92 \left(\frac{L'l^4}{bh^3}\right)$$

BENDING MOMENT AND SHEAR

The following bending moment and shear diagrams are shown for cantilever beams and for free end beams supported at the two ends. Various methods of loading are shown for each type of beam. The bending moment and shear diagrams are shown above and below the beams, respectively.

Diagram 12. Bending moment and shear diagrams.

Diagram 13. Bending moment and shear diagrams.

Figure 7 is a chart taken from Engineering Record of June 26, 1915, and makes possible, rapid calculations for rectangular timber beams. Assume a working stress of 2000 pounds/sq. in. and it is desired to find a beam of sufficient size to resist a bending moment of 50,000 foot pounds. Place a straight edge on 2000 on the "Extreme Fiber Stress" scale and allow it to pass through 50 on the scale "Moment in Thousand Foot-pounds" and project to an intersection on the "Factor A" scale. Place the straight edge on this intersection point on "Factor A" scale as a pivot and read the width of beam required on the "Width in Inches" scale and the corresponding height of beam on the "Depth in Inches" scale. Any number of combinations of sizes may be selected which will fulfill the conditions assumed. The above operation may be reversed if the designer wishes to start with a definite size timber.

SAFE TOTAL LOADS AND OTHER PROPERTIES OF BEAMS

In the preparation of table 20 on beams, an effort has been made to tabulate information which will enable the designer to effect his design with minimum effort and maximum efficiency. The figures in the tables are based on beams of actual sizes surfaced S1S1E or S4S. A multiplying factor has also been computed which may be used to transfer rapidly the various loads, deflections, and other properties to the corresponding values for rough beams of full sizes as shown. These factors are written in bold face type for each size timber, and apply to figures in the same vertical column written. In this table, the area of cross section, the moment of inertia of the cross section, the section modulus, the span and the ratio of span to depth of beam are given, all for actual sizes of surfaced timbers. The safe loads and corresponding maximum deflections for uniformly distributed loads are also given, covering a range of safe fiber stresses varying from 1,000 to 2,000 pounds per square inch. The safe load, as shown, is the superimposed load, the weight of the beam having been deducted. The deflection given is that produced by the safe load shown plus the weight of the beam. The deflections are computed for beams of Douglas fir using a modulus of elasticity of 1,643,000 pounds per square inch. This value for the modulus of elasticity was determined by a careful consideration of all available data on the stiffness of Douglas fir as shown by the following tests:

Reference—	No. of Average
Gra	de Tests M. of E.
U. S. Forest Service Bulletin 108, table 8 Grade	I 81 1,643,000
U. S. Forest Service Bulletin 108, table 14 All Gi	ades 134 1,611,000
U. S. Forest Service Bulletin 88, table 8 Select	59 1,654,000
City of Portland, Oregon, Bureau of Standards Merch	. 16 1,713,000
Am. Ry. Eng. Assn. Bulletin 184, table 4 Santa	

Total 342 Av. 1,645,000

The above values include a large number of tests that are of an average grade below that used in general construction work and below that proposed by the West Coast Lumbermen's Association on pages 31 and 33. The only values falling below that used in this book are for those tests in which timbers of all grades were included. The remaining tests, representing average grades, show the figure for the modulus of elasticity of 1,643,000 herein used to be conservative.

There is also shown in table 20 the number of pounds supported by the actual sized beam per board foot of rough lumber. This may be termed "Efficiency Factor." This factor should be useful in determining an economical design. The higher the factor the greater is the efficiency of the beam.

In this table no loads are given which produce maximum horizontal shearing stresses of more than 185 pounds per square inch, which unitl stresses are justified as shown by the tests given on pages 18 and 19. The maximum unit horizontal shearing stresses actually produced by those loads supported on the shorter spans are given for each size beam. The values for longer spans will be lower.

The column "D," farthest to the right, shows deflections equivalent to $\frac{1}{32}$ of an inch per foot of span.

Deflections are proportional to loads, therefore, the ratio $\left(\frac{\text{Load}}{\text{Deflection}}\right)$ is constant for a given beam section and span. To

find the load (W') corresponding to any deflection, (d'), within the elastic limit and which is not shown in the tables, divide the "given load (W) plus weight of beam" by "given deflection (d)," and multiply the result by the particular deflection in question (d'), and subtract the weight of beam.

$$\frac{(W + weight \ of \ beam)}{d} = \frac{(W' + weight \ of \ beam)}{d'} = Constant$$
 therefore $W' = \left[\frac{(W + weight \ of \ beam)}{d}\right] d' - (weight \ of \ beam).$

Usually in practice the weight of the beam in the above computation may be neglected, which will simplify the operation to dividing the given load by the given deflection and multiplying the result by the particular deflection to secure the new load.

For safe loads on beams in which a concentrated load is applied at the center of the span, multiply the load given in the table by 0.50. For safe loads on beams in which equal concentrated loads are applied at the third points of the span, multiply the given load by 0.75.

For deflections in beams in which a concentrated load equal to one-half that shown in the table is applied at the center of the span, multiply the deflection given in the table by 0.802. For deflections in beams in which equal concentrated loads totaling three-fourths that shown in the table, are applied at the third points of the span, multiply the given deflection by 1.025.

TABLE OF SAFE LOADS AND DEFLECTIONS FOR DOUGLAS FIR BEAMS SUPPORTED AT BOTH ENDS AND UNIFORMLY LOADED

Values in this table are based on surfaced sizes. To get values for rough sizes multiply factor by number

Ref. No. 3.—Pounds supported per Board Foot. Ref. No. 4.—Maximum Horizontal Shearing Stress developed. Maximum Horizontal Shear allowed, 185 Pounds per Square Inch. Modulus of Elasticity used, 1,643,000 Pounds per Square Inch. in bold face type in same vertical column for any given size. Ref. No. 1.—Total Safe Superimposed Load, Pounds. Ref. No. 2.—Maximum Deflection, Inches.

For full explanation of this table see pages 68 to 70.

TABLE 20

Deflec- tion equiv- alent to 1/32	Foot of Span	Q	In.	0.0938	0.125	0.156	0.188
.5		9000	2000		0.161 443 151	942 0.252 283	783 0.363
lections		900	1800	1421 711 711 182	1063 0.145 399	847 0.227 254	0.327
Total Safe Loads in Pounds, and Maximum Deflections Inches, for Unit Stresses in Pounds per Square Inch, as indicated		9000	1000	1262 0.0726 631 161	0.129 354	752 0.202 226	625 0.290 158
Loads in Pounds, and Maximum Inches, for Unit Stresses in Pounds Square Inch, as indicated		004,	1900	1183 0.0681 592 151	885 0.121 332	0.189 212	585 0.272
Stresses		100	1400	1104 0.0636 552 141	826 0.113 310	0.176 197	545 0.254 136
Pound or Unit		9000	1300	1025 0.0590 513 131	0.105	0.164 0.164 183	506 0.236 127
oads in sches, fo		500	1200	945 0.0545 473 121	707 3.0969 265	0.151 169	466 0.218
Safe I		100	0011	866 0.0499 433 111	0.0888	515 0.139 155	0.200
Total		1900	1000	787 394 101	0.0808	9.126 0.126 140	387 0.182
Refer-	Num- ber					→ 24 to	H 04:00
Ratio of Span to Denth		1/1		6.6	13.2	16.6	19.9
Span			F.	65	7	10	9
Weight per Lineal Foot (Based	Green	lbs. per cu. ft.)	Lbs.		1.554	200	
Section. Modu- lus	bh ³	9	In.a		3.56	9	
Moment of Inertia	bha	12	In.4		6,45	8	
Area Cross Section	4		Sq. In.		5.80	500	
Size	Surfaced		In.		1fx3]		
80	Postoh		In.		2		

0.219	-	0.125	0.186	0.188	0.219	0.260	0.281	0.818	0.844	
0.087 1434 1434	25°			1892 0.234 315 156	1615 0.318 281	0.416 176	1248 0.526 139	0.650	0.785 92	93 5
64.5 44.8	550		2045 0 146 169	0.211 284	0.287 702 702	1266 0 874 158	0.472 125	0 88.0 0.0	0. 707. 28.	226
0.396	10.0		0.130 363 150	0 187 282	0.255 0.255 184	0.833	0.421 110	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.928 28.82 28.82	926
0.870 107	250	2134 0.0780 634 176	0.122	1416 0.176 236	1207 0 239 172	1052 0.812	0.08 108 108 108 108	888 0.487 88	0.585 889 889 889	325
0.346 99 99	250	1991 0.0728 498 164	1688 0.114 318	1320 0 164 220	1125 0 223 161	0.291 123	967 0.368 96	0.455 87	0.552 2522 2622	986
430 0.321 92	850	1848 0.0678 462 162	1474 0.106 295	1225 0.152 204	0.207	909 0.270 114	0 % 24.20 80 %	718 0.422 72	0.511 59	-0-
0.296 85	250	1706 0.0624 426 140	1360 0.0974 272	0.140 0.140 188	962 0.191 137	0.25% 105 105 105	740 0.316 82	0.390 661 66	0.471 7.471	525
362 0.272 78	850	391 391 129	240	0.120 271 271	981 0.178 126	588 888	0.289 75	0.357 80 80	544 0.432 40	627
0.247 0.247	25.0	365	226	1170	0 150 150 150	0.208 87	0.263	0.325	0 393 45	52 7
	-04		-864	-0164	-01:	-016	63 65	-010	-08	-0.4
23.2	to the	ec:	10.7	51 8	14.9	1.71	2 61	21.3	23.5	Multiplying Factor
1~	N Fig	* *	4 C	ç	t-	s.	c.	2	=	Mult
					14 5	1 313				,
					3. 15.	1.400				
				_	01	1 494				
		U.	-		=======================================	1 313				
					12,452					
	N.				576			*		

(Table 20 Continued on Next Page.)

For full explanation of this table see pages 68 to 70.	Deflection tion equivalent to 1/32	Inch per Foot of Span	Q	In.	0.156	0.188	0.219	0.250	0.281	0.313
pages 6			٤	999			2877 0.238 308 178	2512 0.311 236	2227 0 394 186	1998 0.486 150
e see 1	flection		Ş	199			2587 0.215 277 161	$\begin{array}{c} 2258 \\ 0.280 \\ 212 \end{array}$	2001 0.355 167	1795 0.438 135
is tabl	um De nds per		595	307		2688 0.140 336 167	2297 0.191 246	2004 0.249 188	0.316 148	0.389 119
n of th	Maxim in Pou	icated	5	ner		2519 0.131 315 156	2152 0.179 231	1878 0.234 176	1663 0.296 139	1491 0.365 112
lanatio	ds, and Stressee	bur ses ind	5	1400	2826 0.0852 424 175	2350 0.123 294	2007 0.167 215	1751 0.218 164	1550 0.276 129	1389 0.340 104
ıll exp	Total Safe Loads in Pounds, and Maximum Deffections in Inches, for Unit Stresse in Pounds per	Square Inch, as indicated	5	9061	2623 0.0791 393 162	2181 0.114 273	1862 0.155 200	1624 0.202 152	1437 0.256 120	1288 0.316 97
For fu	Loads i	n X	9	1200	2420 0.0730 363 150	2011 0.105 251	0.143 184 184	1497 0.187 140	1325 0.237 110	0.292 89
	al Safe I		:	31	2217 0.0669 332 137	0.0963 230	1572 0.131 168	1370 0.171 128	0.217 101	1085 0.267 81
	Totz		95	901	2014 0.0608 302 125	1673 0.0876 209	1427 0.119 153	1243 0.156 117	1099 0.197 92	983 0.243 74
		Num- ber			C C 4	22 € 4	1264	-26	-26	-0.60
	Ratio of Span to	Depth of Surfaced Timber	1/h		8.0.	9.6	11.2	12.8	14.4	16.0
		Span		표	rc.	9	۲-	∞	6	01
į	Weight per Lineal Foot (Based	Green Timber	lbs. per cu. ft.)	Lbs.			3.216			
	Section Modu- lus	bh²	چ ا	In.3			15.23			
nued.	Moment of Inertia	bh³	17	In.4			57.13 1.494			
20—Continued	Area Cross Section	A H		Sq. In			12.19			
	Size	Surfaced S1S1E	or S4S	la.			18x7\$			
TABLE	is.	Rough		Ę			2x8			

0.344	0.375	0.406	0.438	0.469		0.219	0.250	0.281	0.313
0.589 123	1653 0.701 103	1520 0.822 88	1405 0.954 75		1.40			3585 0.312 239 176	3219 0.385 193
1626 0.530 111	1484 0.631 93	1364 0.740 79	1260 0.858 68	0.986 59	1.40		3635 0.222 273 178	3223 0.281 215	2893 0.346 174
0.471 98	1315 0.561 82	1208 0.658 70	1115 0.763 60	1035 0.876 52	1.40	3697 0.151 317 181	3228 0.197 242	2861 0.249 191	2567 0.308 154
1350 0.442 92	1230 0.526 77	1130 0.617 65	1043 0.716 56	968 0.822 48	1.40	3465 0.141 297 170	3024 0.185 227	2680 0.234 179	2404 0.289 144
1257 0.412 86	1145 0.490 72	1051 0.576 61	970 0.668 52	900 0.767 45	1.40	3232 0.132 277 159	2820 0.172 212	2498 0.218 167	2241 0.269 134
0.383	1061 0,455 66	973 0.534 56	898 0.620 48	832 0.712 42	1.40	2999 0.123 257 147	2616 0.160 196	2317 0.203 154	2078 0.250 125
1073 0.353 73	976 0.420 61	895 0.493 52	825 0.572 44	764 0.657 38	1.40	2766 0.113 237 136	2413 0.148 181	2136 0.187 142	1915 0.231 115
980 0.324 67	892 0.385 56	817 0.452 47	0.525 40	697 0.602 35	1.40	2533 0.104 217 125	2209 0.135 166	1955 0.171 130	0.212 105
0.294	0.350	739 0.411 43	680 0.477 36	629 0.548 31	1.40	2300 0.0942 197 113	2005 0.123 150	1774 0.156 118	1589 0,192 95
-0100	-0100	H 03 00	-0100	+0100	-0.4	-01004	- ea to 4	-01004	-0100
17.6	19,2	20.8	22,4	24.0	Multiplying Factor	œ. œ.	10.1	11.4	12.6
#	23	13	14	15	Multi	1	90	6	10
			1.313				4.073	667	
			1.400				24.44	500	
			1.494				116.10	22	
	0	9	1,313				15.44	GR7'	
			15372				1[x9]		
		0	97				2x10		

73

Deflec- tion equiv- alent to 1/32 Inch per	Foot of Span	Ω	In.	0.344	0.375	0.406	0.438	0.469	0.500	0.531
.g		9	900	2919 0.465 159	2669 0.554 133	$\frac{2455}{0.650}$	0.754	2113 0.866 85	1973 0.985 74	
Total Safe Loads in Pounds, and Maximum Deflections Inches, for Unit Stresses in Pounds per Square Inch, as indicated		500	000	2623 0.419 143	2397 0.499 120	2204 0.585 102	2038 0.678 87	1896 0.779 76	1769 0.886 66	
num De nuds per d		200	2001	2326 0.372 127	2125 0.443 106	1953 0.520 90	1805 0.603 77	1678 0.693 67	1565 0.788 59	1465
Maxim s in Pou		9	1900	2178 0.349 119	1990 0.415 100	1828 0.487 84	1689 0.565 72	1570 0.649 63	1464 0.738 55	1370
Loads in Pounds, and Maximum De Inches, for Unit Stresses in Pounds per Square Inch, as indicated			00 1	2030 0.326 111	1854 0.388 93	1703 0.455 79	1573 0.528 67	1461 0.606 58	1362 0.689 51	1274
in Pour for Uni		- 5	1900	0.302 103	1718 0.360 86	1577 0.422 73	1456 0.490 62	1352 0.563 54	0.640 47	0.723
Loads Inches,		965] 	1733 0.279 95	0.332 79	1452 0.390	1340 0.452 57	0.519 50	1158 0.591 43	1082
al Safe			3	1585 0.256 8	1446 0.305	1326 0.357 61	0.415 52	0.476 45	1056 0.542	0.612
		٤	B	1437 0.233 78	1310 0.277 65	1201 0.325 55	1107 0.377 47	1026 0.433 41	954 0.492 36	0.556
Refer-	N. Jee		٠	-0100			357			-81
Ratio of Span to	Surfaced Timber	1/h		13.9	15.2	16.4	17.7	19.0	20.2	21.5
			Ft.	=	13	13	#	15	16	11
Weight per Lineal Foot (Based	Green Timber	lbs. per cu. ft.)	Lbs.			4.073	1.295			
Section Modu- lus	됩]	9	In.3			24.44	1.364			
Moment of Inertia	경	12	In.4	:		116.10	1.435			
Area Cross Section	A=b		Śą. In.	ļ		15.44	1.295		•	
Sire	Surfaced		ln.	; [15x91		-		
×	Rough		ij			2x10				

0.563	0.594		0.250	0.281	0.313	0.344	0.375	0.406	0.438
		1.36			1111	4288 0.384 195 174	3923 0.458 164	3610 0.537 139	3343 0.623 119
		1.36			4251 0.286 213 173	3854 0.346 175	3525 0.412 147	3243 0.483 125	3002 0.561 107
1377 0.997 46		1.36		4202 0,206 233 170	3773 0.254 189	3420 0.307 155	3127 0.366 130	2875 0.430 111	2661 0.498 95
1286 0.935 43		1.36	0.153 278 180	3937 0.193 219	3535 0.238 177	3203 0.288 146	2928 0.343 122	2692 0.403 104	2490 0.467 89
0.873 40	1124 0.972 36	1.36	4141 0.142 259 168	3672 0.180 204	3296 0.222 165	2985 0.269 136	2728 0.320 114	2508 0.376 96	2319 0.436 83
1105 0.810 37	1038 0.902 33	1.36 0.95 1.05	3843 0,132 240 156	3406 0.167 189	3057 0.207 153	2768 0.250 126	2529 0.297 105	2324 0.349 89	2149 0.405 77
0.748 34	953	1.36	3544 0.122 222 144	3141 0.155 175	2818 0.191 141	2551 0.231 116	2330 0,275 97	2140 0.322 82	1978 0.374 71
924 0.686 31	867 0.764 27	1.36	3246 0.112 203 132	2875 0.142 160	2579 0.175 129	2334 0.211 106	2131 0.252 89	1957 0,295 75	1808 0.343 65
833 0.623 28	781 0.694 25	1.36	2947 0.102 184 120	2610 0.129 145	2340 0.159 117	0.192 96	1932 0,229 81	1773 0.268 68	1637 0.312 58
-0000	-0100				-000	→ e4 co 4 4	-0100	- 0100	-10400
22.7	24.0	Multiplying Factor	00 00	9.4	10.4	11.5	12.5	13.6	14.6
18	19	Multi	œ	6	00	=	12	13	17
					4.931	28			
					35.82	1.340			
		:			205.95	988			
					18.69	1,285			
					18x114				
					2x12				

(Table 20 Continued on Next Page.)

0.0	tion equiv-	Foot of Span	Д	In.	0.469	0.500	0.531	0.563	0.594	0.625	0.656	
			9000	2000	3112 0.715 104	2907 0.813 91	2726 0.918 80				::	
	lections			1800	2793 0.643 93	2608 0.732 82	2445 0.826 72	2300 0.927 64	111			
	ım Def		4000	0001	2475 0.572 83	2310 0.650 72	2164 0.734 64	2034 0.824 57	0.917	111	10	
	Maxim in Pour	dicated	-	1500	1900	2316 0.536 77	2161 0.610 68	2024 0.688 60	1902 0.773 53	1792 0.860 47	1692 0.953	
	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per	Square Inch, as indicated		1400	2156 0.500 72	2011 0.569 63	1883 0.643 55	1769 0.721 49	1666 0.802 44	1573 0.889 39	1488	
	Pound or Unit	uare Inc		1300	1997 0.465 67	1862 0.528 58	1743 0.597 51	1636 0.670 45	0.745 0.745	1453 0.826 36	1374	
	oads it	S.		1200	1838 0.429 61	1713 0.488 54	1602 0.551 47	1503 0.618 42	1414 0.688 37	1334 0.762 33	1260	
	Safe I			0011	1678 0.393 56	1563 0.447 49	1462 0.505 43	1371 0.566 38	1289 0.631 34	1214 0.699 30	1147	
	Total	Refer- ence Num- ber	0000	0001	1519 0.358 51	1414 0.407	1321 0.459 39	1238 0.515 34	1163 0.573 31	1095 0.635 27	1033	
	Refer.	Refer- ence Num- ber		ī	-010	-010		-0100	-0100	-	-61	
Ī	Ratio of Span	Span to Depth of Surfaced Timber	1/1		15.7	16.7	17.7	18.8	19.8	20.9	21.9	
		Span		Ff.	15	16	17	18	10	20	21	
10.1.44	Weignt per Lineal Foot	Lineal Foot (Based on Green Timber at 38	lbs. per cu. ft.)	Lbs.				4,931				
of colors	Modu- lus	ph2	9	In.4				35.82				
10.00	Moment of Inertia	bh³	bh³					1.399				
1	Area Cross Section	A		Sq. In.				18.69				
	Size	rfaced	or S4S	Fi.				1{x11}				
	55	Rough		Į.				2x12				

0.688	0.719		0,281	0,313	0.344	0.375	0.406	0.438
	::::	1.34					4987 0.457 164 173	4619 0.530 141
		1.34	1111		5320 0.295 207 184	4864 0.350 174	4481 0.412 148	4149 0.477 127
		1.34		5206 0.216 1223 180	4722 0.262 184	4316 0.311 154	3975 0.366 131	3679 0.424 113
		1.34		4877 0.203 209 169	4423 0.245 172	4042 0.292 144	3722 0.343 123	3444 0.397 105
		1.34	5066 0.153 241 175	4548 0.189 195	4123 0.229 161	3767 0.273 135	3468 0.320 114	3209 0.371 98
1.000		1 04	4701 0.142 234 163	4219 0.176 181	3824 0.213 149	3493 0.253 125	3215 0.297 106	2974 0.344 91
0.923	::::	1.04	4335 0.131 206 150	3890 0.162 167	3525 0.196 137	3219 0.234 115	2962 0.274 98	2739 0.318 84
0.846 25	1030 0.925 22	1.34	3970 0.121 189 138	3561 0.149 153	3226 0.180 126	2945 0.214 105	2709 0.251 89	2504 0.292
0.769	926 0.841 20	1.34	3604 0.110 172 125	3232 0.135 139	2927 0.164 114	2671 0.195 95	2456 0.228 81	2269 0.265 69
-6166	-6150	ध्य क	¢4 to 4		4000	01 60	ल व्यक्त च	- 04 00
23.0	24.0	Multiplying Factor	8.0	8.9	8.6	10.7	11.6	12.4
53	23	Multi	•	10	11	12	13	77
					5 788			
					49.36	170		
					333.18	776:1		
					21.94	977.1		
					1,x13}			
					23.14			

	Deflec- tion equiv- alent	Inch per Foot of Span	Q	In.	0.469	0.500	0.531	0.563	0.594	0.625	0.656
			0000	2000	4299 0.608 123	4019 0.692 108	3772 0.781 95	3550 0.876 85	3354 0.976 76	111	
	ections		000	1800	3860 0.547 110	3608 0.623 97	3385 0.703 85	3185 0.789 76	3008 0.879 68	2845 0.973 61	***
	ım Def			1900	3432 0.486 98	3197 0.553 86	2998 0.625 76	2819 0.701 67	2661 0.781 60	2516 0.865 54	2385
	Maximu in Pour	ndicated		0000	3203 0.456 92	2991 0.519 80	2805 0.586 71	2637 0.657 63	2488 0.732 56	2352 0.811 50	2229
	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per	Square Inch, as indicated	001	1400	2983 0.426 85	2785 0.484 75	2611 0.547 66	2454 0.613 58	2315 0.684 52	2187 0.757 47	2072
	Pound or Unit	luare In	9000	1300	2764 0.395 79	2580 0.450 69	2418 0.508 61	0.570 54	2142 0.635 48	2023 0.703 43	1915
	oads in	ď	9000	1200	2545 0.365 73	2374 0.415 64	2224 0.469 56	2088 0.526 50	1968 0.586 44	1858 0.649 40	1758
	Safe I		0000	0011	2325 0.334 66	2169 0.381 58	2031 0.430 51	1906 0.482 45	1795 0.537 41	1694 0.595 36	1602
	Total	Refer- ence Num- ber	900	1000	2106 0.304 60	1963 0.346 53	1837 0.391 46	1723 0.438 41	1622 0.488 37	1529 0.541 33	1445
	200	to Refer- bepth ence of Num- rfaced ber			H 64 69	64 00	0100	- 04 00	₩ 04 00		
	Ratio of Span	to Depth of Surfaced Timber	q/1		13.3	14.2	15.1	16.0	16.9	17.8	18.7
	1 7	Foot Based on Span Green Timber at 38		野	15	16	17	8	19	20	21
	Weight per Lineal Foot		lbs. per cu, ft.)	Lbs.			5,788	1.276			
ľ	Section Modu- Ins	bh²	9	In.4			49.36	1.324			
	Moment of Inertia	bh3	12	In.4			333, 18	1.372			
-	Area Cross Section	A—bb	100	Sq. In.			21.94	1.276			
-	Size	Surfaced		In.			1kx134				
	Z	Rough		Ib.			2x14				

0.688	0.719	0.750	0.781	0.813		0.344	0.375	0.406	0.438
					1.32				6107 0.462 164 185
					1.32			5924 0.358 171 179	5487 0.416 147
					1.32		0.271 0.271 178 172	5256 0.318 152	4867 0.370 130
2116 0.981 41	111				1.32	5843 0.214 199 176	5346 0.254 167	4923 0.299 142	4557 0.347 122
1966 0.915 38	111				1.32	5449 0.200 186 164	4984 0.237 156	4589 0.279 132	4247 0.324 114
1817 0.850 35	0.930 32				1.32	5054 0.185 172 153	4622 0.221 144	4255 0.259 123	3937 0.300 105
1067 0.785 32	1584 0.858 30	1506 0.934 27			1.32	4660 0.171 159 141	4260 0.204 133	3921 0.239 113	3627 0.277 97
1518 0.719 30	1441 0.787 27	1369 0.857 24	1303 0.929		1.32	4265 0.157 145 129	3899 0.187 122	3587 0.219 103	3317 0.254 89
1368 0.654 27	1298 0.715 24	0.779 22	0.844 20	0.914 1115 18	1.32	3871 0.143 132 117	3537 0.170 111	3253 0.199 94	3007 0.231 81
-900	- 01 00		6160	-0100	-04	01 50	- C4 20 4	1101004	H 55 50 4
19.6	20.4	21.3	22.2	23.1	Multiplying Factor	90 40	9.3	10.1	10.8
22	23	22	25	26	Multi	=	61	22	#
		5.788	1.276				819 9	1.271	
		49.36	1.324				65.07	1.31	
		333.18	1.372				504 28	1.353	
		21.94	1.276				95,19	1.271	
		1£x134					18x151		
		2x14					2x16		

zo-Continuea.	-		Ш					l							-	
Area Moment Section Weight Ratio of Section Inertia hus Foot to to to On Section Inertia hus Read Span Louis Cased Con Span Con Span Con Span Depth	Section Per Meight Per Modu- Lineal Ius (Based On Span	Span		Ratio of Span to Depth		Refer-	Tota	Safe J	Loads in nches, f	a Poun or Unit uare In	Loads in Pounds, and Maximum De Inches, for Unit Stresses in Pounds per Square Inch, as indicated	Maxim in Pou	Total Safe Loads in Pounds, and Maximum Deflections in Inches for Unit Stresses in Pounds per Square Inch, as indicated	Bection		Deflec- tion equiv- alent to 1/32
A=bh 1=	bh² Timber S=— at 38 6 lbs. per cu. ft.)		Surface Timber	Surface Timber		pe be				17				N.		Span
In. In. In. Th. In. Ths. Ft.	Lbs.	-	F.				1000	1100	1200	1300	1400	1500	1600	1800	2000	In.
15 11 6	п	п	п			- 0100	2792 0.265 70	3081 0.292 77	3370 0.318 84	3660 0.345 91	3949 0.371 99	4238 0.398 106	4527 0.424 113	5106 0.477 128	5684 0.530 142	0.469
16 12 4	22	22	22			-6160	2605 0.302 61	2876 0.332 67	3147 0.362 74	3418 0.392 80	3689 0.422 86	3961 0.453 93	4232 0.483 99	4774 0.543 112	5316 0.603 125	0.500
25.19 504.28 65.07 6.648 17 13.2	65.07 6.648 17 13.	17 13.	13.			-0100	2439 0.341 54	2694 0.375 59	2949 0.409 65	3205 0.443 71	3460 0,477 76	3715 0.511 82	3970 0.545 88	4481 0.613 99	4991 0.681 110	0.531
1.353 1.311 1.271 18 13 9	1.311 1.271 18 13	18 13	13		0	-0100	2290 0.382 48	2531 0.420 53	2772 0.458 58	3013 0.496 63	3254 0.534 68	3495 0.572 73	3736 0.611 78	4218 0.687 88	4700 0_763 98	0.563
19	11	11	11	14.7		-0100	2157 0.425 43	2385 0.468 47	2614 0.510 52	2842 0.552 56	3070 0.595 61	3299 0.637 65	3527 0.680 70	3983 0.765 79	0.850 88	0.594
20 15,5				15,5		-0100	2037 0.471 38	0.518 42	2471 0.565 46	2688 0.612 50	2905 0.659 54	3122 0.706 59	3339 0.754 63	3773 0.848 71	4207 0.942 79	0.625
21 16.3	16	16	16		_	-01	1927	2134	2340	2547	2754	2961	3167	3581	V	0.656

0.688	0.719	0.750	0.781	0.813	0.844	0.875		0.375	0,406
		:::	:::		::::	: : :	1.31		
							1.31		
3009 0.912 51	2865 0.997 47	111		111			1.31		6705 0.282 172 180
2812 0.855 48	2676 0.935 44						1.31	6822 0.225 190 182	6280 0.265 161
2615 0.798 45	2487 0.872 41	2371 0.950 37	111	111		111	1.31	6361 0.210 177 170	5855 0.247 150
2418 0.741 41	2299 0.810 38	2190 0.882 34	2091 0.958 31		111	111	1.31	5900 0.195 164 158	5430 0.229 139
2220 0.684 38	2110 0.748 34	2010 0.814 31	0.884 29	1830 0.956 26	111	111	1.31	5440 0.180 151 146	5004 0.212 128
2023 0.627 34	1922 0.686 31	1829 0.746 29	1744 0.811 26	1663 0.876 24	1588 0.945 22	111	1.31	4979 0.165 138 134	4579 0.194 117
1826 0.570 31	1733 0.623 28	1648 0.679 26	0.737 0.737	1496 0.796 22	1427 0.859 20	1364 0.923 18	0.97	4518 0.150 125 122	4154 0.176 106
-0100	-0100	-0100	- 01 00	-0100	100	-0100	H014	401204	01 03 44
17.0	17.8	18.6	19.4	20.1	20.7	21.7	Multiplying Factor	61	6.9
21	53	24	25	26	27	89	Multi	12	13
			6.648	1.27				7,505	1 265
			20.59	1,311				82.94	1,303
			504.28	1,353				725.75	1.340
			25.19	1.271				28.44	1.266
			18x151					13x173	
			2x16					2x18	

(Table 20 Continued on Next Page.)

Weight Ratio per of Foot Span Span Per to Of Span Span Span Per to Of Span Span Span Span Span Span Span Span	S	S
<u> </u>		ļ
lbs. per cu. ft.)	lbs. per cu. ft.)	b ?
Lbs. Ft.	<u> </u>	<u> </u>
14	14	41
12	10	15
16 11.0		
7.505 1.265 17 11.7	11	11
18 12.3		
19 1		_
20 13.7		19 13.0

•	•	•		_	_	-	10	_	•	
0.656	0.688	0.719	0.750	0.781	0.813	0.844	0.875	0.90	0.938	
5106 0.920 81										85.2
	4357 0.909 66	4154 99.0 99.0								1.30 0.97 1.03
	3854 0.808 83	3673 0.884 53	3503 0.961 49							1.30
3780 0.080 0.080	3803 0.758 55	3433 0.828 50	3273 0.901 45	3129 0.979 42						1.30 0.97 1.03
3527 0.644 56	3352 0.708 51	3193 0.773 46	3043 0.841 42	2907 0.914 39	2783 0.987 36					1.30 0.97 1.03
3264 0.598 52	3101 0.657 47	2952 0.718	2813 0.781 39	2686 0.848 36	2570 0.917 33	2459 0.989 30				1.30 0.97 1.03
3000 0.552 48	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2712 0. 663 39	2582 0.721 36	2465 0.783 33	2357 0.846 30	2255 0.913 28	2160 0.982 26			1.30 0.97 1.03
2737 0.506	2598 0.556 39	2471 0.608 36	2352 0.661 33	2244 0.718 30	2145 0.775 28	2050 0.837 25	0.983 280 280 280	1879 0.965 22		1.30 0.97 1.03
2474 0.460 39	2347 0.505 36	2231 0.552	2122 0.601	2023 0.652 27	1932 0.705 25	1845 0.761 23	1765 0.818 21	1688 0.877 19	1618 0.939 18	1.30 0.97 1.03
-00	- 67 65	0. 60	-08	01 00	-25	357	357	21 65	61 65	124
14.4	15.1	15.8	16.5	17.1	17.8	18.5	19.2	19.9	20.6	Multiplying Factor
22	22	ឌ	24	25	26	27	88	81	30	Multi Fa
					7.505					
					82.94					
					725.75					
					28.44					
					18x178					
					2x18					

(Table 20 Continued on Next Page.)

Deflec- tion equiv- alent to 1/32	Foot of Span	D	In.	0.125	0.156	0.188	0.219	0.250	0.281
		0000	2000		3342 0.166 446 183	2778 0.239 309	2375 0.326 226	2071 0.425 173	1835
lections		900	1800		3006 0.149 401 165	2498 0.215 278	2135 0.293 203	1861 0.383 155	1648
um Def		9000	1900	3345 0.0850 558 183	2670 0.133 356	2218 0.191 247	1895 0.261 180	1651 0.340 138	1461
Maxim in Pour dieated		0045	1900	3135 0.0797 523 172	2502	2078 0.179 231	0.244 169	1546 0.319 129	1368
ls, and Stresses ch, as ir		901	1400	2925 0.0744 488 160	2334	1938 0.167 215	1655 0.228 158	0.298 120	1275
Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated		900	1300	2715 0.0691 0. 453 149	2166 0.108 289	1798 0.155 200	1535 0.212 146	1336 0.276 111	0.350
coads in nebes, fo		900	1200	2505 0.0638 418 137	1998	1658 0.144 184	1415 0.195 135	0.255 103	1088
Safe I		9	1100	2295 0.0585 383 383 126	1830	1518 0.132 168	1295 0.179 123	0.234 94	994
Tota		900	1000	2085 0.0532 0 348 115	1662	1378 0.120 153	0.163	1021 0.213 85	901
Refer-	Num-			-0100-4	01 to 41	-0100	6460	- 6100	-81
Ratio of Span to	Surfaced	1/h		8.7	10.9	13.1	15.3	17.5	19.6
Snen			17	*	10	9	7	90	6
Weight per Lineal Foot (Based	Green Timber	lbs. per cu. ft.)	Lbs.			3.630			
Section Modu- lus	ph:	9	In.3			12.60			
Moment of Inertia	bhi	13	In.4			34.66			
Area Cross Section	A Libb		Sq. In.			13.75			
Size	Surfaced	or 848	In.			24x54			
92	Rough		II.			3x6			

				10	21.8		0.332	888 0.365 59	972 0,398 65	1056 0.432 70	1140 0.465 76	1224 0.498 82	1308 0.531 87	1476 0.597 98	1644 0.664 110	0.313
				=	24.0	H 03 00	724 0.402 44	800 0.442 48	877 0.482 53	953 0.522 58	1030 0.563 62	1106 0.603 67	1182 0.643 72	1335 0.723 81	1488 0.804 90	0.344
				Mult	Multiplying Factor	400	1.43 0.92 1.09	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	
	li .			10	8.0	→ c4 co 4	3098 0.0608 310 125	3410 0.0669 341 137	3723 0.0730 372 150	4035 404 162	4347 0.0852 435 175					0.156
				9	9.6	H 63 60 44	2573 0.0876 214	2833 0.0963 236	3094 0.105 258	3354 0.114 280	3614 0.123 301	3875 0.131 323 156	4135 0.140 344 167			0.188
18.75	87.89	23.42	4.947	Þ	11.2	401004	0.119 0.119 157	0.131 173	2642 0.143 189	2865 0.155 205	3088 0.167 221	3312 0.179 237	3535 0.191 253	3981 0.215 284 161	4427 0.238 316 178	0.219
1.280	1.456	1.366	1.280	90	12.8	H 54 53	1912 0.156 120	0.171 0.171 132	2302 0.187 144	2498 0.202 156	2693 0.218 168	2888 0.234 180	3083 0.249 193	3474 0.280 217	3864 0.311 242	0.250
				6.	14.4	-00	1690 0.197 94	1864 0.217 104	2037 0.237 113	2211 0.256 123	2384 0.276 133	2558 0,296 142	2731 0.316 152	3078 0.355 171	3425 0.394 190	0.281
				10	16.0	H 03 03	1513 0.243 76	1669 0.267 83	1825 0.292 91	1982 0.316 99	2138 0.340 107	2294 0.365 115	2450 0.389 123	2763 0.438 138	3075 0.486 154	0.313
				=	17.6		1366 0.294 62	1508 0.324 69	1650 0.353 75	1792 0.383 81	1934 0.412 88	2076 0.442 94	2218 0.471 101	2502 0.530 114	2786 0.589 127	0.344

	Deflec- tion equiv- alent to 1/33 Inch per	Span	Q	In.	0.375	0.406	0.438	0.469		0.219
			0000	2000	2543 0.701 106	2338 0.822 90	2163 0.954 77		1.37	
	tions ir	-	000	1800	2283 0.631 95	2098 0.740 81	1940 0.858 69	1800	1.37	
	Deflect ds per		-	7000	2023 0.561 84	1858 0.658 71	0.763 61	1592 0.876 53	1.37	5686 0.151 325
	aximum in Pour cated			1200	1893 0.526 79	1738 0.617 67	1605 0.716 57	1488 0.822 50	1.37	5328 0.141 305
	and M Stresses			1400	1762 0.490 73	1617 0.576 62	1493 0.668 53	1383 0.767 46	1.37	4969 0.132
	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated		100	1300	1632 0.455 68	1497 0.534 58	1382 0.620 49	0.712 0.712 43	1.37	4611 0.123 264
	ads in I nches, fo			1200	1502 0.420 63	1377 0.493 53	1270 0.572 45	1175 0.657 39	1.37	4253 0.113
	safe Los			1100	1372 0.385 57	1257 0.452 48	0.525 41	1071 0.602 36,	1.37	3895 0.104 223
	Total S		4	1000	1242 0.350 52	1137 0.411 44	1047 0.477 37	967 0.548 32	1.37	3537 0.0942 202
1	Refer-	beir			-0100	H0160	-0100	-0100	HC3 4	H0100
ľ	Ratio of Span to Depth	Surfaced	1/1		19.2	8.02	22.4	24.0	Multiplying Factor	8.8
1	Span			野	12	13	17	15	Multi	2
1	Weight Per Lineal Foot (Based on	Timber at 38	lbs. per cu.f t.)	Lbs.			4.947			
	Section Modu- lus	ph.	9	In.			23.42			
	Moment of Inertia	bhs	12	In.4			1.456			
	Ares Cross Section	4-hh		Sq. In.			18.75			
	Size	Surfaced	or S4S	In.			23x75			
	22 -	Roneh		In.			33.8			

0.250	0.281	0.313	0.344	0.375	0.406	0.438	0.469	0.500	0.531
	5518 0.312 245 176	4953 0.385 198	4491 0.465 163	4103 0.554 137	3776 0.650 116	3494 0.754 100	3248 0.866 87	3034 0.985 76	: : :
0.222 0.222 178 178	4961 0.281 220	4451 0.346 178	4035 0.419 147	3685 0.499 123	3390 0.585 104	3136 0.678 90	2914 0.779 78	2721 0.886 68	
4964 0.197 248	0.249 0.249 196	3950 0.308 158	3579 0.372 130	3267 0.443 109	3004 0.520 92	0.603 79	2580 0.693 69	2407 0.788 60	2253 0.890 53
4651 0 185 233	4125 0.234 183	3699 0.289 148	3351 0.349 122	3059 0.415 102	2812 0.487 87	2599 0.565 74	2413 0.649 64	2251 0.738 56	2106 0.834 50
4338 0 172 217	3846 0.218 171	3448 0.269 138	3123 0.326 114	2850 0.388 95	2619 0.455 81	2419 0.528 69	2245 0.606 60	2094 0.689 52	1958 0.778 46
0 160 201 :	3567 0.203 158	3197 0.250 128	2895 0.302 105	2641 0.360 88	2426 0.422 75	2240 0.490 64	2078 0.563 55	1937 0.640 48	1811 0.723 43
3711 0.148 186	3288 0.187 146	2947 0.231 118	2667 0.279 97	2432 0.332 81	2233 0.390 69	2061 0.452 59	1911 0.519 51	1780 0.591 45	1663 0.667 39
0.135 170	0.171 0.171 134	2696 0.212 108	2439 0.256 89	2223 0.305 74	2040 0.357 63	1882 0.415 54	1744 0.476 47	1624 0.542 41	1516 0.612 36
0.123	2731 0 156	2445 0.192 98	2211 0.233 80	2014 0.277 67	1847 0.325 57	1703 0.377	1577 0.433 42	1467 0.492 37	1368 0.556 32
-0 to 4	01 62 4	-0.6	200	-00	-016	-26	-06	-00	-676
10.1	11.4	12.6	13.9	15.2	16.4	17.7	19.0	20.2	21.5
20	5	10	==	21	13	41	15	16	17
				6.270	1.263		* **	***	
				37.61	1 330				-
				178.62	1.400	•			
	-			23.75	1 263				****
				24x94					
				3x10					

	Deflec- tion equiv- alent to 1/32 Inch per	Span	D	In.	0.563	0.594		0.250	0.281	0.313
	.11		0000	2000			1.33			
	Bection		900	1900			1.33			6534 0.286 218
	um De		9000	0001	2116 0.997 47		1.33		6463 0.206 239 170	0.254
	Maxim in Pour dicated		0049	oner	0.935 44		1.05	0826 0.153 284 180	6055 0.193 224	5432 0.238
	is, and tresses		our.	1400	1837 0.873 41	1729 0.972 36	1.33	6366 0.142 265 168	5647 0.180 209	5065 0.222 160
	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated		1000	00er	1698 0.810 38	1597 0.902 34	1.33	5907 0.132 246 156	5239 0.167 194	4698 0.207
	osds in ches, fo		0000	1200	1559 0.748 35	1465 0.833 31	1.33	5448 0 122 227 144	4830 0.155 179	4330
	Safe I		94.	0011	1419 0.686 32	1333 0.764 28	1.33	4989 0.112 208 132	4422 0.142 164	3963 0.175
	Tota		9000	1000	1280 0.623 28	1201 0.694 25	1.33 1.05	4530 0.102 189 120	4014 0.129 149	3596 0.159
	Refer-	per			H 04 00	→ 63 69	-04	401004	-0100	H 54 69
	Ratio of Span to Depth	red .	4/1		22.7	24.0	Multiplying Factor	8.3	9.6	10.4
	Span		Ft.	18	19	Multip	*0	Oi Oi	10	
	Weight per Lineal Foot (Based on					6.270	204		7.590	8
	Section Modu- Ius	bh:	9	In.a	1.330			55.10 1.306		
	Moment of Inertia	Pha I	12	In.4		178.62	200		316.85	
1	Area Cross Section	A=bh		Sq. In.					1.252	
1	Size	Surfaced	or S4S	In.		23x93			24x114	
	55 -	Rough		Ē.		3x10			3x12	

0.344	0.375	0.406	0.438	0.469	0.500	0.531	0.563	0.594	0.625
0.384 174	6031 0.458 168	5557 0.537 143	5140 0.623 122	4786 0.715 106	4473 0.813 93	4193 0.918 82			
5929 0.346 180	5419 0.412 151	4991 0.483 128	4615 0.561 110	4296 0.643 95	4014 0.732 84	3761 0.826 74	3537 0.927 65		
0.307	4807 0.366 134	4428 0.430 113	4091 0.498 97	3806 0.572 85	3554 0.650 74	3329 0.734 65	3129 0.824 58	2950 0.917 52	
4927 0.288 149	4501 0.343 125	4143 0.403 106	3829 0.467 91	3561 0.536 79	3325 0.610 69	3113 0.688 61	2925 0.773 54	2757 0.860 48	2604 0.953 43
4593 0.269 139	4194 0.320 117	3860 0.376 99	3566 0.436 85	3316 0.500 74	3095 0.569 64	2896 0.643 57	2720 0.721 50	2564 0.802 45	2420 0.889 40
0.250	3888 0.297 108	3577 0.349 92	3304 0.405 79	3071 0.465 68	2865 0.528 60	2680 0.597 53	2516 0.670 47	2370 0.745 42	2236 0.826 37
3925 0.231 119	3582 0.275 100	3295 0.322 84	3042 0.374 72	2826 0.429 63	2635 0.488 55	2464 0.551 48	2312 0.618 43	2177 0.688 38	2052 0.762 34
3591 0.211 109	3276 0.252 91	3012 0.295 77	2779 0.343 66	2581 0.393 57	2406 0.447 50	2248 0.505 44	2108 0.566 39	1983 0.631 35	1869 0.699 31
3257 0.192 99	2970 0.229 83	2729 0.268 70	2517 0.312 60	2336 0.358 52	2176 0.407 45	2032 0.459 40	1904 0.515 35	1790 0.573 31	1685 0.635 28
-21004	67 69	- 67 89	-216	321	357	355	357	32.5	0.8
11.5	12.5	13.6	14.6	15.7	16.7	17.7	18.8	19.8	20.9
11	12	13	41	15	16	17	18	19	20
				7.590	1.252				
				55.10	1.306				
				316.85	1.364				
				28.75	1.252				
				24x114					
				3x12					

89

⊒ III																
Area Cross Section	Moment of Inertia	Section Modu- lus	Weight per Lineal Foot (Based	9	Ratio of Span to	Refer-	Tota	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Sourse Inch, as indicated	Loads in Pounds, and Maximum De Inches, for Unit Stresses in Pounds per Soure Inch, as indicated	in Pounds, and Maximu for Unit Stresses in Pour Souare Inch, as indicated	is, and Stressee	Maxim in Pou	num De inds per	fection		Deflec- tion equiv- alent to 1/32
	bh³	bh²	Green Timber	nado	of Surfaced Timber	Num- ber										Foot of Span
	12	9	lbs. per cu. ft.)		1/h		000	903	900	9000	0011	90.	0000	9000	0000	D
Sq. In.	In.4	In. ³	Lbs.	Ft.			1000	0011	1200	1300	1400	oner	1000	1800	2000	In.
				21	21.9	04 50	1591 0.701 25	1766 0.771 28	1941 0.841 31	2116 0.911 34	2291 0.981 36					0.656
28.75	316.85	55.10	7.590	22	23.0	-00	1503 0.769 23	1670 0.846 25	1837 0.923 28	2004 1.000 30	111	111				0.688
252	1.364	1 306	1.252	23	24.0	04 63	1423 0.841 21	1583 0.925 23			114					0.719
				Mult	Multiplying Factor	104	1.31	1.31	1.31	1.31	1.31	1.31	1.31	1.04	1.31	
33.75	512.58	75.94	8.900	6	8.0	-21004	5543 0_110 176 125	6105 0.121 194 138	6668 0.131 212 150	7230 0.142 230 163	0.153 247 175					0.281
1.245	1.338	1.291	1.245	10	8.9	101004	4971 0.135 142	5477 0.149 156	5983 0.162 171	6489 0.176 185	6995 0.189 200	7501 0.203 214 169	8007 0.216 229 180			0.313

0.344	0.375	0.406	0.438	0.469	0.500	0.531	0.563	0.594	0.625
		7668 0.457 169 173	7109 0.530 145	6614 0.608 126	6181 0.692 110	5806 0.781 98	5462 0.876 87	5159 0.976 78	
7210 0.295 187 184	7487 0.350 178	6890 0.412 151	6386 0.477 130	5939 0.547 113	5549 0.623 99	5210 0.703 88	4900 0.789 78	4626 0.879 70	4378 0.973 63
6398 0.262 166	6643 0.311 158	0.366 0.366 134	5662 0.424 116	5264 0.486 100	4916 0.553 88	4614 0.625 78	4338 0.701 69	4093 0.781 62	3872 0.865 55
5992 0.245 156	6222 0.292 148	6722 0.343 126	5301 0.397 108	4927 0.456 94	4600 0.519 82	4317 0.586 73	4057 0.657 64	3827 0.732 58	3619 0.811 52
0.229 145	5800 0.273 138	5333 0.320 117	4939 0.371 101	4590 0.426 87	4284 0.484 77	4019 0.547 68	3775 0.613 60	3561 0.684 54	3365 0.757 48
5180 0.213 135	5378 0.253 128	4944 0.297 109	4577 0.344 93	4252 0.395 81	3968 0.450 71	3721 0.508 63	3494 0.570 55	3294 0.635 50	3112 0.703 44
0.196	4956 0.234 118	4554 0.274 100	4215 0.318 86	3915 0.365 75	3651 0.415 65	3423 0.469 58	3213 0.526 51	3028 0.586 46	2859 0.649
0.180	4534 0.214 108	4165 0.251 92	3854 0.292 79	3577 0.334 68	3335 0.381 60	3125 0.430 53	2932 0.482 47	2761 0.537 42	2606 0.595 37
0.1 64 103	4112 0.195 98	3776 0.228 83	3492 0.265 71	3240 0.304 62	3019 0.346 54	2827 0.391 48	2651 0.438 42	2495 0.488 38	2353 0.541 34
– 61′£0 4.	357	0. w. 4	352	357	357	61 89	357	-228	357
8.6	10.7	11.6	12.4	13.3	14.3	15.1	16.0	16.9	17.8
=	12	13	#	15	16	17	18	19	93
				8.909			•	a root over take to be	
				75.94					
				512.58 1.338		_	_		
				33.75					
				2§x13§					
				3x14					

	Deflec- tion equiv- alent to 1/32 Inch per Foot of	D		In.	0.656	0.688	0.719	0.750	0.781	0.813	
	,E		0000	2000							1.29
	flection		1000	1900			7 1				1.29
	um De nds per		1000	1000	3669 0.954 50		111	7 7 1		415	1.29
	Maxim in Pou		8	mor	3428 0.895 47	3256 0.981 42	111		111	111	1 29
	ls, and Stresses ch, as i		9071	1400	3187 0.835 43	3025 0.915 39				111	1.29
	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per- Square Inch, as indicated		1900	nor	2946 0.775	2795 0.850 36	2656 0.930 33	111	111		1.29
ĺ	noads in		1000	1200	2705 0.716 37	2565 0.785 33	2436 0.858 30	2318 0.934 28	111	111	1.29
	Safe I		1100	0011	2464 0.656 34	2335 0.719 30	2216 0.787 28	2107 0.857 25	2003		1.29
	Total		1000	1000	2223 0.596 30	2105 0.654 27	1996 0.715 25	1896 0.779 23	1801 0.844 21	0.914 19	1.29
	Refer- ence Num-	Je J			0/100	0300	- 01 60	- 04 00	61 65	-0100	-01
ľ	Ratio of Span to Depth of	Timber	1/4		18.7	9.61	20.4	21.3	22,2	23 1	Multiplying
-	Span	Span			16	65	53	24	52	26	Multip
	Weight Per Lineal Foot (Based on Green						900	1.245			
	Nec	9		In.3			- 1	1.291			Į.
	Moment of Inertia	12 12 12	5	In.4			3	1.338			
	Area Cross Section	A=bb		Sq. In.			1	1 245			
-	Singe	S1S1E or S4S	I	II.			100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	55	Rough		In.			-	***************************************			

0.34	0.375	0.406	0.438	0.469	0.500	0.531	0.563	0.594	0.625
			9395 0.462 168 185	8747 0.530 146	8180 0.603 128	7682 0.681 113	7234 0.763 100	0.850	6474 0.942 81
		9114 0.358 175 179	8441 0.416 151	7857 0.477 131	7346 0.543 115	6896 0.613 101	6492 0.687 90	6129 0.765 81	5806 0.848 73
	8776 0.271 183 172	8086 0.318 156	7487 0.370 134	6967 0.424 116	6511 0.483 102	6111 0.545 90	5750 0.611 80	5427 0.680 71	5138 0.754 64
204 204 176	\$220 0.254 171	7573 0.299 146	7011 0.347 125	6522 0.398 109	6094 0.453 95	6718 0.511 84	5380 0.572 75	5076 0.637 67	4805 0.706 60
0.200 191 181	7664 0.237 160	7059 0.279 136	6534 0.324 117	0.371 101	5677 0.422 89	5325 0.477 78	5009 0.534 70	4724 0.595 62	4471 0.659 56
0.185 177 153	7108 0.221 148	0.259 126	6057 0.300 108	5632 0.345 94	5260 0.392 82	4932 0.443 73	4638 0.496 64	4373 0.552 58	4137 0.612 52
0.171 163 141	0.204 137	0.239 116	5580 0.277 100	5187 0.318 87	4842 0.362 76	4540 0.409 67	4267 0.458 59	4022 0.510 53	3803 0.565 48
0.157 149 129	5995 0.187 125	5518 0.219 106	5103 0.254 91	4742 0.292 79	4425 0.332 69	4147 0.375 61	3896 0.420 54	3670 0.468 48	3469 0.518 43
0.143 0.143 135 117	5439 0.170 113	5004 0.199	4626 0.231 83	4297 0.265 72	4008 0.302 63	3754 0.341 55	3525 0.382 49	3319 0.425 44	3135 0.471 39
-0.00 4		-004	01 co 4	-000	-0.6	-26	-0.00	2 %	-28
8.5	9.3	10.1	10.8	11.6	12.4	13.2	13.9	14.7	15.5
=	12	53	41	55	16	17	81	19	20
			9	10.22					
			9	1.279					
			3	1.321					
				38.75					
				24x154					
				3x16					

	Deflec- tion equiv- alent to 1/32 Inch per Foot of Span	Q	In.	0.656	0.688	0.719	0.750	0.781	0.813	9.84
		1	2000			111	111			:::
	ections	IE	1800	5509 0.935 66	111		111			
	im Def		1600	4873 0.831 58	4631 0.912 53	4408 0.997 48				11
	Maximi in Pour dicated		1500	4555 0.779 54	4328 0.855 49	4118 0.935 45				
	s, and Stresses sh, as in	Ī	1400	4237 0.728 50	4024 0.798 46	3828 0.872 42	3648 0.950 38			
	Loads in Pounds, and Maximum De Inches, for Unit Stresses in Pounds per Square Inch, as indicated		1300	3919 0.676 47	3721 0.741	3538 0.810 38	3370 0.882 35	3215 0.958		
	oads in rohes, fo		1200	3601 0.624 43	3417 0.684 39	3247 0.748 35	3092 0.814 32	2948 0.884 29	0.956	11
	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated		1100	3283 0.572 39	3114 0.627 35	2957 0.686 32	2814 0.746 29	2681 0.811 27	2560 0.876 25	2443
	Total		1000	2965 0.520 35	2810 0.570 32	2667 0.623 29	2536 0.679 26	2414 0.737 24	2303 0.796	2196
	Refer- ence Num- ber			-6150	-0100	-6100		-6169	-6169	-010
		m			17.0	17.8	18.6	19.4	20.1	20.9
	Span		F. C.	21	22	23	24	25	26	27
	Weight Per Lineal Foot (Based on Green	at 38 Ibs. per cu. ft.)	Lbs.				10 22			
-	Section Modu- lus	9	In.1				1,279			
	Moment of Inertia	12	In.4				775.81 † 321			
	Area Cross Section	A=bh	Sq In.				38, 75			
	Sise	SISIE or S4S	In.				24x154			
	65	Rough	In.				3x16			

0.875		0.375	0.406	0.438	0.469	0.500	0.531	0.563	0.594
	1.28				1111	10453 0.534 145 182	9814 0.603 128	9246 0.676 114	8739 0.753
	1.28				10037 0.423 149 175	9389 0.481 130	8813 0.543 115	8301 0.609 103	7843 0.678 92
	1.28		10319 0.282 176 180	9564 0.327 152	8902 0.376 132	8325 0.427 116	7812 0.482 102	7355 0.541 91	6947 0.603 81
	1.28	10497 0.225 194 182	9665 0.265 165	8956 0.307 142	8335 0.352 123	0.401	7312 0.452 96	6883 0.507 85	6500 0.565 76
	1.28	9788 0.210 181 170	9010 0.247 154	8348 0.287 133	7768 0.329 115	7262 0.374 101	6811 0.422 89	6410 0.473 79	6052 0.527 71
	1.28	9079 0.195 168 158	8356 0.229 143	7740 0.266 123	0.305	6730 0.347 93	6311 0.392 83	5937 0,440 73	5604 0.490 66
	1.28	8370 0.180 155 146	0.212	7133 0.246 113	6633 0.282 98	6198 0.321 S6	5810 0.362 76	5464 0.406 67	5156 0.452 60
	1.28	7661 0.165 142 134	0.194	6525 0,225 104	0.258	5666 0.294 79	5310 0.332 69	4992 0.372 62	4708 0.414 55
0.923	1.28	6952 0.150 129 122	6393 0.176 109	5917 0.205 94	5499 0.235 82	5134 0.267 71	4809 0.301 63	4519 0.338 56	4260 0.377 50
-0100	-04	-01034	- 0100 4	-0100		-00	61 60	-0.00	- 04 00
21.7	Multiplying Factor	8,2	8.9	9.6	10.3	11.0	11.7	12.3	13.0
38	Multi	12	13	4	15	16	17	18	19
					11,54				
					1 269				
					1116.54				
					1.234				
					24x173				
					3x18				

95

	Defloc- tion equiv- alent to 1/32 Inch per Foot of	Span	Q	In.	0.625	0.656	0.688	0.719	0.750	0.781	0.813
ľ			0000	2000	8277 0.834 92	7860 0.920 83	111	:::	111		::
	lections			nor	7426 0.751 83	7050 0.828 75	6710 0.909 68	6395 0.991 62			11
	um Dei ods per	ľ	000	0001	6575 0.668 73	6240 0.736 66	5936 0.808 60	5655 0.884 55	5395 0.961 50		***
	Maxim in Poun adicated	ľ	000	1900	6150 0.626 68	5835 0.690 62	5550 0.758 56	5285 0.829 51	5041 0.901 47	0.979 43	11
	ls, and Stresses ch, as in	ľ		1900	5725 0.584 64	5429 0.644 57	5163 0.708 52	4915 0.773 47	4686 0.841 43	4476 0.914 40	4281
	or Unit		0000	1300	5299 0.543 59	5024 0.598 53	4776 0.657 48	4545 0.718 44	4332 0.781 40	4136 0.848 37	3954
	Joseph in Sq. fc		000	1200	4874 0.501 54	4619 0.552 49	4389	4175 0.663 40	3977 0.721 37	3796 0.783 34	3625
	Safe J		100	0011	4448 0.459 49	4214 0.506 45	4002 0.556 40	3805 0.608 37	3623 0,661 34	3455 0.718 31	3299
	Tota		0000	1000	4023 0.417 45	3809	3615 0.505 37	3435 0.552 33	3268 0.601 30	3115 0.652 28	2972
-	Refer- ence Num-	per			- 0100	- 0100	-0100	-0100	0100	-0400	-010
1	Ratio of Span to Depth of Surfaced	bepth of Surfaced Timber			13.7	14.4	15.1	15.8	16.5	17.1	17.8
-	Span			Ff	20	22	53	23	24	52	98
	Weight per Lineal Foot (Based on Green	Timber at 38	lbs. per cu. ft.)	Lbs.			1	1.234			
	Section Modu- lus	S—S	9	In.8				1,269			
	Moment of Inertia	1 PP	13	In.4				1.306			
-	Area Cross Section	A=bh		Sq. In.				1 234			
	Size	Surfaced	or SES	In.			į	zyxici			
	55	Rough		In.				8118			

0.844	0.875	906 0	0.938		0.0938	0.125	0.156	0.188	0.219	
				1.27 0.97 1.03		0.167 445 146	1802 0.261 284	1571 0.376 197	1339 0.512 144	1.49
				1.27	2850 0.0845 712 175	2133 0.150 400	1701 0.235 255	0.339 177	1203 0.461 129	1.49
				1.27	2532 0.0752 633 156	1894 0.134 355	1510 0.209 226	1253 0.301 157	1067 0.409 114	1.49
				1.27	2374 0.0705 594 146	0.125	0.196 212	0.282 147	0.384 107	1.49
				1.27 0.97 1.03	2215 0.0658 554 136	0.117 311	1320 0.183 198	1004 0.263 137	930 0.358 100	1.49
3784 0.989				1.27 0.97	2056 0.0610 514 127	1537 0 109 288	0.170 184	1015 0.245 127	862 0.332 92	0.87
3469 0.913 29	3325 0.982 26			1.27 0.97 1.03	0.0564 474 117	0.100 266	0.157 0.157 169	935 0.226 117	794 0.307 85	0.87
3154 0.837 26	3021 0.900 24	2892 0.965 22		1.27 0.97 1.03	0.0517 435 107	0.0919 244	1033 0.144 155	856 0.207 107	726 0.281 78	0.87
2839 0.761 23	2717 0.818 22	2599 0.877 20	2491 0.939 18	1.27 0.97 1.03	1579 0 0470 395 97	0.0835	938 0.131 141	0.188 97	0.256 71	1.49
-0100	-0100	-0400	H 04 00	-014		-2462	-0100	6169	-0100	-04
18.5	19.2	19.9	20.6	Multiplying Factor	10.3	13.7	17.1	20.6	24.0	Multiplying Factor
22	58	59	30	Molti	60	7	10	9	7	Multi
		11.54	1,234				3,231			
		127.60	1.269				7.15			
		1116.54	1.306				12.51			
		43.75	1,234				12.25			
		24x174					34x34			
		3x18					4x4			

(Table 20 Continued on Next Page.)

	Deflec- tion equiv- alent to 1/32	Foot of Span	Q	In.	0.125	0.156	0.188	0.219	0.250	0.281
-	.9		0000	2000	1111	4679 0.166 468 183	3890 0.239 324	3326 0.326 237	2899 0.425 181	2568
	ections		900	1800		4209 0.149 421 165	3498 0.215 291	2990 0.293 214	2605 0.383 163	2307
	ım Def		5000	1600	4684 0850 586 183	3738 0.133 374	3106 0,191 259	2654 0.261 190	2311 0.340 145	2045
	Maximi in Pour		900	1200	4390 .0797 0. 549 172	3503 0.125 350	2910 0.179 243	2486 0.244 178	2164 0.319 135	1915
	s, and Stresses		907.	1400	4096 0744 0. 512 160	3268 0.116 327	2714 0.167 226	2317 0.228 165	2017 0.298 126	1784
	Total Safe Loads in Pounds, and Maximum Deflections Inches, for Unit Stresses in Pounds per Souare Inch. as indicated		9000	1300	3802 0.0691 475 149	3033 0.108 303	2518 0.155 210	2149 0.212 153	0.276 0.276 117	1653
	oads in ches, fo		900	1200	3508 0.0638 0.0438 137	2797	2322 0,144 194	1981 0.195 142	0.255 108	1522
	Safe I		90.	1100	3214 30585 402 126	2562 0.0913 0. 256	0.132 0.132 177	1813 0.179 130	1576 0.234 99	1392
	Total		0001	1000	2920 0.0532 365 115	2327	1930 0,120 161	1645 0.163 118	1429 0.213 89	1261
-	Defe	Refer- ence Num- ber				H 63 50 44	H 04 80	C3 53 FF	- 6160	-090
	Ratio of Span to	Ratio of Span to Depth R C Surfaced N Timber 1/h				10.9	13.1	15.3	17.5	19.6
	5			Ft.	4	1/2	9	7	20	ō
	Weight per Lineal Foot (Based	Green Timber	lbs. per cu. ft.)	Lbs.			5.080			
	Section Modu- Ius	bh*	9	In.8			17.64	96		
	Moment of Inertia	pp.	12	In.4			48.53			
	Area Cross Section	A=bh		Sq. In.			19,25	25		
	Size		or S4S	In.			34,54			
	55	Rough		In.			4x6			

0.313	0.344		0.156	0.188	0.219	0.250	0.281	0.313	0.344
2301 0.664 115	2082 0.804 95	1.36			6203 0.238 332 178	5415 0.311 254	4800 0.394 200	4307 0.486 162	3902 0.589
2066 0.597 103	1868 0.723 85	1.36			5578 0.215 299 161	4868 0.280 228	4314 0.355 180	3869 0.438 145	3504 0.530 119
1831 0.631 92	1654 0.643 75	1.36		5795 0.140 362 167	4953 0.191 265	4321 0.249 203	3828 0.316 159	3432 0.389 129	3106 0.471 106
1713 0.498 86	1548 0.603 70	1.36		5430 0.131 339 156	4640 0.179 249	4048 0.234 190	3585 0.296 149	3213 0.365 121	2908 0.442 99
1595 0.465 80	1441 0.563 66	1.36	6094 0.0852 457 175	5065 0.123 317	4327 0.167 232	3774 0.218 177	3341 0.276 139	2994 0.340 112	2709 0.412 92
1478 0.432 74	1334 0.522 61	1.36	5656 0.0791 424 162	4700 0.114 294	4015 0.155 215	3501 0.202 164	3098 0.256 129	2775 0.316 104	2510 0.383 86
1360 0.398 68	1227 0.482 56	1.36	5219 392 392 150	4336 0.105 271	3702 0.143 198	3227 0.187 151	2855 0.237 119	2557 0.292 96	2311 0.353 79
1243 0.365 62	0.442 0.442 51	1.36	4781 359 359 137	3971	3390 0.131 182	2954 0.171 139	2612 0.217 109	2338 0.267 88	2112 0.324 72
1125 0.332 56	1013 0.402 46	1.36	4343 0.0608 326 125	3606	3077 0.119 165	2680 0.156	2369 0.197 99	2119 0.243 79	1913 0.294 65
- 03 00	-0100	-04		-01004	-00		H 04 00	-0100	H 01 00
21.8	24.0	Multiplying Factor	8.0	9 6	11.2	12.8	14.4	16.0	17.6
10	Ħ	Multip	NO.	9	1~	90	6	21	#
						1.219			
						1.300			
						1.386			
						1.219			
					1	34x73			
					1	4x9			

99

Deflec- tion equiv- alent to 1/32 Inch per	Foot of Span	D	In.	0.375	0.406	0.438	0.469		0.219
		0000	2000	3563 0.701 111	3276 0.822 95	3029 0.954 81		1.30	
lections		9004	1800	3198 0.631 100	2939 0.740 85	2716 0.858 73	2522 0.986 63	1.30	
um Def		909	1000	2834 0.561 89	2603 0.658 75	2404 0.763 64	2230 0.876 56	1.06	7966 0.151
Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated		9025	met	2652 0.526 83	2435 0.617 70	2248 0.716 60	2085 0.822 52	1.30	7465 0.141 320
ls, and Stresses		900	1400	2469 0.490 77	2266 0.576 65	2091 0.668 56	1939 0.767 48	1.30	0.132
r Pounc or Unit		1000	1300	2287 0.455 71	2098 0,534 61	1935 0.620 52	1793 0,712 45	1.30	0.123
Jonds ir		0000	1200	2105 0.420 66	1930 0.493 56	0.572 48	1647 0.657 41	1.30	5959 0.113
Safe I		9000	1100	1922 0.385 60	1761 0.452 51	1622 0.525 43	1501 0.602 38	1.06	5458
Total		9005	1000	1740 0.350 54	1593 0,411 46	1466 0.477 39	1355 0,548 34	1.30	4956 0.0942 212
Refer-	Num- ber			-0100	H 61 65	÷ 64 65	61 60	-01-46	-0100
Ratio of Span to Denth	Surfaced	1/h		19.2	20.8	4.22.4	24.0	Multiplying Factor	8.8
S. C.			五	23	13	4	15	Multi	1
Weight per Lineal Foot (Based	Green Timber at 38	lbs. per	Lbs.			6,928			
Section Modu-	bh²	9	In.º			32.81			
Moment of Inertia	pps	12	In.			123.05			
Area Cross Section	A=bh		Sq. In.			1.219			
Size	Surfaced	or 848	In.			84x7			
555	Rough		In.			4x8			

0.250	0.281	0.313	0.344	0.375	0.406	0.438	0.469	0.500	0.531
	7723 0.312 258 176	6934 0.385 208	6287 0.465 172	5749 0.554 144	5288 0.650 122	4895 0.754 105	4550 0.866 91	4248 0.985 80	
0 22 22 24 27 27 27 27 27 27 27 27 27 27 27 27 27	0.281 231	6232 0.346 187	5649 0.419 154	5164 0.499 129	4748 0.585 110	4393 0.678 94	4082 0.779 82	3809 0.886 71	
6954 0.197 261	6163 0.249 206	5530 0.308 166	5010 0.372 137	4578 0.443 114	4208 0.520 97	3891 0.603 83	3614 0.693 72	3370 0.788 63	3155 0.890 56
6515 0.185 244	5773 0.234 192	5179 0.289 155	4691 0.349 128	4286 0.415 107	3938 0.487 91	3641 0.565 78	3380 0.649 68	3151 0.738 59	2949 0.834 52
6076 0.172 228	5382 0.218 179	4827 0.269 145	4372 0.326 119	3993 0.388 100	3667 0.455 85	3390 0.528 73	3145 0.606 63	2932 0.689 55	2742 0.778 48
5637 0 160 211	4992 0.203 166	4476 0.250 134	4053 0.302 111	3700 0.360 93	3397 0.422 78	3139 0.490 67	2911 0.563 58	2712 0.640 51	2536 0.723 45
5198 0.148 195	4602 0.187 153	4125 0.231 124	3733 0.279 102	3407 0.332 85	3127 0.390 72	2888 0.452 62	2677 0.519 54	2493 0.591 47	2329 0.667 41
4759 0.135 178	4212 0.171 140	3774 0.212 113	3414 0.256 93	3115 0.305 78	2857 0.357 66	2637 0.415 57	2443 0.476 49	2373 0.542 45	2123 0.612 37
0 88 16 16 16 16 16 16 16 16 16 16 16 16 16	3822 0.156 127	3423 0.192 103	3095 0.233 84	2822 0.277	2587 0.325 60	2386 0.377 51	2209 0.433 44	2054 0.492 39	1916 0.556 34
-064		- 226	07 69	67 69	26	426	01 60	-226	- 2 %
10.1	. II.	12.6	13.9	15.2	16.4	17.7	19.0	20.3	21.5
∞	6	10	=	12	13	4.	15	16	17
				8.775					
		•		52.65 1.265					
				250.07 1.332					
•				33.25					
				34x94					
				4x10					

Deflec- tion equiv- alent to 1/32 Inch per	Foot of Span	α.	In.	0.563	0.594		0.250	0.281	0.313
B.		-	2000		***	1.27			
lections			1800			1.27 0.95 1.05			9146
um Def			1800	2964 0.997 49	111	1.05		9045 0.206 251 170	8118 0.254 203
Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated			1500	2769 0.935 46		1.27	9556 0.153 299 180	8474 0.193 235	7604
Stresses		-	1400	2573 0.873 43	2420 0.972 38	1.27	8913 0.142 279 168	7902 0.180 220	7090 0.222 177
r Pound or Unit puare In			1300	2378 0.810 40	2235 0.902 35	1.27	8270 0,132 258 156	7331 0.167 204	6576 0.207 164
oads ir		3	1200	2183 0.748 36	2051 0.833 32	1.27	7627 0.122 238 144	6760 0.155 188	9062 0.191 152
Safe I			1100	1988 0.686 33	1866 0.764 29	0.95	6985 0.112 218 132	6188 0.142 172	5548 0.175 139
Total			1000	1793 0.623 30	1681 0.694 27	1.27	6342 0.102 198 120	5617 0.129 156	5034 0.159 126
Refer-	Num- ber			- 04 00	- 01 20	-04	- 53 55 4		-0100
Ratio of Span to Depth	of Surfaced Timber	1/h		22.7	24.0	Multiplying Factor	20	4.6	10.4
Span			超	18	19	Multi	20	0	10
Weight per Lineal Foot (Based on	Green Timber	lbs. per eu. ft.)	Lbs.		8.775			1, 193	
Section Modu- lus	pp.	9	In.4		52.65 1.265			1.245	
Moment of Inertia	bh ³	12	In.		1.332			1,299	
Area Cross Section	A Libb		Sq. In.		33.25			40.25 7 193	
Size	Surfaced S1S1E	or S48	In.		33x93			34111	
55	Rough	and the same of th	In.		4x10			4812	

_				_	_				
0.344	0.375	0.408	0.438	0.469	0.500	0.531	0.563	0.594	0.625
9231 0.384 210 174	8441 0.458 176	7774 0.537 150	7197 0.623 129	6699 0.715 112	6256 0.813 98	5867 0.918 86			
8296 0.346 189	7584 0.412 158	6983 0.483 134	6462 0.561 115	6013 0.643 100	5613 0.732 88	5262 0.826 77	4953 0.927 69	: : :	
7361 0.307 167	6727 0.366 140	6192 0.430 119	5728 0.498 102	5327 0.572 89	4971 0.650 78	4657 0.734 69	4382 0.824 61	4131 0.917 54	
0.288 157	6299 0.343 131	5796 0.403 111	5361 0.467 96	4985 0.536 83	4650 0.610 73	4355 0.688 64	4096 0.773 57	3860 0.860 51	3645 0.953 46
0.269 146	5871 0.320 122	5400 0.376 104	4993 0.436 89	4642 0.500 77	4328 0.569 68	4053 0.643 60	3810 0.721 53	3589 0.802 47	3387 0.889 42
5959 0.250 135	5442 0.297 113	5005 0.349 96	4626 0.405 83	4299 0.465 72	4007 0.528 63	3750 0.597 55	3524 0.670 49	3318 0.745 44	3130 0.826 39
0.231 125	5014 0.275 104	4609 0.322 89	4259 0.374 76	3956 0.429 66	3686 0.488 58	3448 0.551 51	3239 0.618 45	3048 0.688 40	2873 0.762 36
0.211	4585 0.252 96	4214 0.295 81	3891 0.343 69	3613 0.393 60	3364 0.447 53	3145 0.505 46	2953 0.566 41	2777 0.631 37	2616 0.699 33
4557 0 192 104	4157 0.229 87	3818 0.268 73	3524 0.312 63	3270 0.358 55	3043 0.407 48	2843 0.459	2667 0.515 37	2506 0.573 33	2359 0.635 29
01 CO 4	778	357	357	-98	357	351	351	35.1	357
11.5	12.5	13.6	14.6	15.7	16.7	17.7	18.8	19.8	20.9
=	51	51	4	. 23	16	17	. 18	19	50
				10.62	1.183				
				77.15	1.245				-
				443.59	1.299				
				40.25	1.193				
				3\$x11\$					
			-	4x12					

103

	Deflec- tion equiv- alent to 1/32 Inch per	Span D		In.	0.656	0.688	0.719	and the first	0.281	0.313
	n.		9000	PONT.				1.25		
	Beetion		1000	TOWN				1.04		
	um De		1800	1000				1.25		11213 0.216 240
	Maxim in Pou		1500	noor			::::	1.25	1111	10504 0.203 225 160
	s, and Stresses th, as in		1400	1400	3206 0.981 38	111		0.95	10917 0.153 260 175	9795 0.189 210
	Loads in Pounds, and Maximum De Inches, for Unit Stresses in Pounds per Square Inch, as indicated		1900	mer	2961 0.911 35	2805 1,000 32	100	1.25	10129 0.142 241 163	9087 0.176 195
	oads in ches, fo		1900	1500	2716 0.841 32	2572 0,023 29		1.25 0.95 1.04	9842 0.131 222 150	8378 0.162 180
	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated	-	1100	0011	2471 0.771 29	2338 0.846 27	2216 0.925 24	1 25	8554 0.121 204 138	7670 0.149 164
	Total		0001	_	0.701	0.769	1992 0.841	0.95	7766 0.110 185 125	6961 0.135 149
	Refer-	Num- ber			03 00	→ ¢4 cp	02.00	63 -44	-01004	-0.004
	Ratio of Span to Depth	Surfaced Timber	1/1		21.9	23.0	24.0	Multiplying Factor	8.0	8.9
,	Span			F.	17	64	53	Multi	6	10
	Weight per Lineal Foot (Based on	Green Timber at 38	cu, ft.)	Lbs.		10.62	1.193		12.46	1.185
1	Section Modu- lus	S E		In.3		77.15	1.245		. 106.31	1.229
	Moment of Inertia	bba 12		In.4		443.59	1.299		717, 61	1.275
	Area Cross Section	A=bb		Sq. In.		40.25	1.193		47.25	1,185
	Size	Surfaced S1S1E or S4S		In.		3}x112			34x134	
		Rough		In.		4x12			4x14	

0.344	0.375	0.406	0.438	0.469	0.500	0.531	0.563	0.594	0.625	
		10738 0.457 177 173	9948 0.530 152	9265 0.608 132	8661 0.692 116	8128 0 781 103	7654 0.876 91	7223 0.976 81	:::	
11459 0.295 223 184	10479 0.350 187	9648 0.412 159	8936 0.477 137	8320 0.547 119	7775 0.623 104	7294 0.703 92	6866 0.789 82	0.879 73	6127 0.973 66	
10170 0.262 198	9298 0.311 166	8558 0.366 141	7924 0.424 121	7375 0.486 105	6889 0.553 92	6460 0.625 81	6078 0.701 72	5731 0.781 65	5418 0.865 58	
9526 0.245 186	8708 0.292 156	8013 0.343 132	7418 0.397 114	6902 0.456 99	6446 0.519 86	6043 0.586 76	5685 0.657 68	5358 0.732 60	5064 0.811 54	
8882 0 229 173	8117 0.273 145	7468 0.320 123	6911 0.371 106	6429 0.426 92	.484 8083	5626 0.547 71	5291 0.613 63	4985 0.684 56	4710 0.757 50	
8238 0.213 161	7527 0.253 134	6923 0.297 114	6405 0.344 98	5957 0.395 85	5560 0.450 74	5209 0.508 66	4897 0.570 58	4612 0.635 52	4356 0.703 47	
7593 0.196 148	6936 0.234 124	6378 0.274 105	5899 0.318 90	5484 0.365 78	5117 0.415 68	4792 0.469 60	4503 0.526 54	4239 0.586 48	4001 0.649 43	
6949 0.180 135	6346 0.214 113	5833 0.251 96	5393 0.292 83	5012 0.334 72	4674 0.381 63	4375 0.430 55	4109 0.482 49	3866 0.537 44	3647 0.595 39	1
6305 0.164 123	5755 0.195 103	5288 0.228 87	4887 0.265 75	4539 0.304 66	4231 0.346 57	3958 0.391 50	3715 0.438 44	3493 0.488 39	3293 0.541 35	1
-084	-00		-26	-00	-26	-00	-0.00	-28	67 65	
8.6	10.7	11.6	12.4	13.3	14.2	15.1	16.0	16.9	17.8	
=	12	55	14	15	16	17	81	19	20	· :
	•			12.46	2					
				106.31	8 22.				•	
				717.61	1.275					
•				47.25	<u>2</u>					_
				34x134						
				4x14						

105

Defice- tion Total Safe Loads in Pounds, and Maximum Deflections in equr- lacks, for Unit Stresses in Pounds per about Somes Inch as indicated	Foot of Span	000,	1800 2000	36 0.656	0.688	0.719	0.750	0 781	0.813	1 23 1 23
Aximum Pounds p		_	1900 1900	4799 5136 0.895 0.954 49 52	4558 0.981 44					93 1 93
Loads in Pounds, and Maximum De Inches, for Unit Stresses in Pounds per Scutser Inch as indicated		_	0041	4462 4 0.835 0.	4235 4 0.915 0.			111		1 99 1
in Pound for Unit		0061	1300	4124 0.775 42	3913 0.850 38	3718 0.930 35				1 93
Loads Inches,		_	1200	8 0.716 5 39	9 3591 9 0.785 2 35	2 3410 7 0.858 9 32	8 3243 7 0.934 8 29	00 m+		1 99
otal Safe		1100	_	12 3449 36 0.656 35	17 3269 54 0.719 19 32	3102 15 0.787 36 29	2948 79 0.857 74 26	2808 4 0.929 24 24	840	1 00
		000	1000	3112 0.596 32	2947 0.654 29	2794 0.715 26	2653 9.779 24	2524 0.844 22	2403 0.914 20	1 00
4-0	Num- ber			~0100	→6169	-6460	-6460	H 64 69	40100	•
Ratio of Span to	of of Surfaced Timber	1/1	1	18.7	19,61	20.4	21.3	22.2	23.1	
	undo		Ft.	15	3)	23	24	25	. 36	
Weight per Lineal Foot (Based	Green Timber at 38	lbs. per cu. ft.)	Lbs.				12.46			
Section Modu- lus	S S	9	ľu.				106.31			
Moment of Inertia	. dd = I	21	ļi.				717 61			
Area Cross Section	A=bh		Sq. In.				47.25 1.185			
Size	Surfaced	ro Si	Ē				34x134			
: Z	Rough		ij				4x14			

0.344	0.375	0.406	0.438	0.469	0.500	0.531	0.563	0.594	0.625
			13156 0.462 176 185	12245 0.530 153	11451 0.603 134	10755 0.681 119	10124 0.763 106	9566	9058 0.942 85
		12754 0.358 184 179	11820 0.416 158	10999 0.477 138	10283 0.543 121	9655 0.613 107	9086 0.687 95	8582 0.765 85	8124 0.848 76
	12289 0.271 192 172	0.318 0.318 163	10485 0.370 140	9753 0.424 122	9115 0.483 107	8555 0.545 94	8048 0.611 84	7598 0.680 75	7189 0.754 67
12590 0.214 214 176	0.254 0.254 180	10598 0.299 153	9817 0.347 131	9130 0.398 114	8531 0.453 100	8006 0.511 88	7529 0.572 78	7107 0.637 70	6722 0.706 63
0.200 200 164	10731 0.237 168	9879 0.279 143	9149 0.324 123	8507 0.371 106	7947 0.422 93	7456 0.477 82	0.534	6615 0.595 65	6255 0.659 59
10890 0.185 186 153	9952 0.221 155	9160 0.259 132	8481 0.300 114	7884 0.345 99	7363 0.392 86	6906 0.443 76	6490 0.496 68	6123 0.552 60	5788 0.612 54
0.171 0.171 171 141	9174 0.204 143	8441 0.239 122	7814 0.277 105	7261 0.318 91	6779 0.362 79	6356 0.409 70	5971 0.458 62	5631 0.510 56	5320 0.565 50
9191 0,157 157 129	8395 0.187 131	0.219	7146 0.254 96	6638 0.292 83	6195 0.332 73	5806 0.375 64	5452 0.420 57	5139 0.468 51	4853 0.518 45
0.143 142 117	7616 0.170 119	0.199	6478 0.231 87	6015 0.265 75	5611 0.302 66	5256 0.341 58	4933 0,382 51	4647 0.425 46	4386 0.471 41
- 9 60	₩ 63 60 4	04 FO 18	103 EG -48	68 60	67 65	-08	- 21 85	67 65	-018
8.5	&	10.1	10.8	11.6	12.4	13.2	13.9	14.7	15.5
=	12	13	4	15	16	11	18	19	202
				14.31	3				
			31.1	140.15	117				
				1086.13	067:				
				54.25	<u> </u>				
				3}x15}					
				4x16					

Ш																
Area Cross Section	Moment of Inertia	Section Modu- lus	Weight per Lineal Foot (Based	S	Ratio of Span to	Refer-	Total	Safe I	loads in	Pound or Unit	ls, and Stresses	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Sourae Inch. as indicated	um De	Bection		Deflec- tion equiv- alent to 1/32
4	bh³	ph?	Green Timber	mado	Surfaced Timber	Num- ber										Foot of Span
i	112	ا ا	lbs. per cu. ft.)		1/h		000	9	9000	0000	-	004	5005	900	9000	D
Sq. In.	In.4	In.ª	Lbs.	Ft.			1000	0011	1200	1300	1400	noer	1900	1800	2000	In.
				21	16.3	- 04.00	4149 0.520 37	4594 0.572 41	5039 0.624 45	5484 0.676 49	5929 0.728 53	6374	6819 0.831 61	7709 0.935 69		0.656
				22	17.0	-0100	3934 0.570 34	4350 0.627 37	4784 0.684 41	5209 0.741 44	5634 0.798 48	6059 0.855 52	6483 0.912 55	111		0.688
54.25	1086.13	140.15	14.31	23	17.8	- 61 62	3734 0.623 30	4140 0.686 34	4547 0.748 37	4953 0.810 40	5359 0.872 44	5766 0.935 47	6172 0.997 50			0.719
1.180	1.256	1.217	1.180	24	18.6	- 61 20	3550 0 679 28	3939 0.746 31	4329 0.814 34	4718 0.882 37	5108 0.950 40					0.750
				22	19.4	5180	3382 0.737 25	3756 0.811 28	4130 0.884 31	4504 0.958 34						0.781
				36	20.1	-0110	3223 0.796 23	3583 0.876 26	3942 0.956		111	111				0.813
				27	20.9	010	3075	3421		* * * * * * * * * * * * * * * * * * * *				***	***	0.844

0.875		0.375	0.406	0,438	0.469	0.500	0.531	0.563	0.594
	1.22 0.97		::::			14635 0.534 152 182	13745 0.603 135	12949 0.676 120	12239 0.753 107
	1.22 0.97			111	14059 0.423 156 175	13146 0.481 137	12343 0.543 121	11625 0.609 108	10984 0.678 96
	1.22 0.97		14457 0.282 185 180	13398 0.327 160	12470 0.376 139	11656 0.427 121	10941 0.482 107	10301 0.541 95	9730 0.603 85
	1.22 0.97	0.225 0.225 204 182	13541 0.265 174	12547 0.307 149	11676 0.352 130	10912 0.401 114	10240 0.452 100	9639 0.507 89	9103 0.565 80
	1.22 0.97 1.03	13708 0.210 190 170	12624 0.247 162	11695 0.287 139	10881 0.329 121	10167 0.374 106	9539 0.422 94	8977 0.473 83	8475 0.527 74
	1.22	12715 0.195 177 158	11707 0.229 150	10844 0.266 129	10087 0.305 112	9422 0.347 98	8838 0.392 87	8315 0.440 77	7848 0,490 69
111	1.22 0.97 1.03	11722 0.180 163 146	10790 0.212 138	9992 0.246 119	9292 0.282 103	8677 0.321 90	8137 0.362 80	7653 0,406 71	7221 0,452 63
	1.22	10729 0.165 149 134	9874 0.194 127	9141 0.225 109	8498 0.258 94	7933 0.294 83	7436 0.332 73	6991 0.372 65	6593 0.414 58
2938	1.22	9736 0.150 135 122	8957 0.176 115	8289 0.205 99	7703 0.235 86	7188 0.267 75	6735 0.301 66	6329 0.338 59	5966 0.377 52
-0100	1624	-01004		04 00	-03004	-01004	-0100	-0100	-0100
21.7	Multiplying Factor	64	8.8	9.6	10.3	11.0	11.7	12.3	13.0
88	Multi	12	13	14	15	16	12	25	10
					1.175				
					1.209				
					1.244				
					1.175				
					34x174				
	9				4x18				

	Deflec- tion equiv- alent to 1/32	Foot of Span	Q	In.	0.625	0.656	0.688	0.719	0.750	0.781	0.813
	, g		9000	2000	11597 0.834 97	11015 0.920 87					
	lections		900	1900	10405 0.751 87	9880 0.828 78	9398 0.909 71	8952 0.994 65			11
	um Def		9001	nor	9213 0.668 77	8744 0.736 69	8314 0.808 63	7916 0.884 57	7559 0.961 52		
	Maxim in Pou		504	mer	8617 0.626 72	8177 0.690 65	0.758	7398 0.829 54	7063 0.901 49	6750 0.979 45	1
	s, and Stresses		907	1400	8021 0.584 67	7609 0.644 60	7231 0.708 55	6880 0.773 50	6566 0.841 46	6273 0.914 42	5998
	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Sonare Inch. as indicated		9044	1300	7425 0.543 62	7041 0.598 56	6689 0.657 51	6362 0.718 46	6069 0.781	5796 0.848 39	5539
	oads ir	7	900	1200	6829 0.501 57	6473 0.552 51	6147 0.606 47	5844 0.663 42	5572 0.721 39	5319 0.783 35	5081
	Safe I		901	1100	6233 0.459 52	5906 0.506 47	5605 0.556 42	5326 0.608 39	5076 0.661 35	4842 0.718 32	4622
	Total		9000	1000	5637 0.417 47	5338 0.460 42	5063 0.505 38	4808 0.552 35	4579 0.601 32	4365 0.652 29	4164
	Refer-	Nuro- ber			-0100	- 04 00	H 63 69	- 0100	-0.00	61 50	-010
	Ratio of Span to	-	1/h		13.7	14.4	15.1	15.8	16.5	17.1	17.8
1		undo		i.	20	25	22	23	24	25	26
	Weight per Lineal Foot (Based	Green Timber	lbs. per cu. ft.)	Lbs.				16.16			
	Section Modu- lus	bh ²	9	In.4				178.65			
ľ	Moment of Inertia	pps	12	In.4				1 244			
1	Area Cross Section	A-hh		Sq. In.				1.175			
	Sire	Surfaced	or S4S	Ju.				34x171			
	35	Roneh		Ju.				4x18			

0.84	0.875	906.0	0.938		0.125	0.156	0.188	0.219	0.250
				1.21		7360 0.166 491 183	6118 0.239 340	5228 0.326 249	4558 0.425 190
				1.21		6620 0,149 441 165	5501 0.215 306	4700 0.293 224	4096 0.383 171
				1.21	7365 0.0850 614 183	5880 0.133 392	4885 0.191 271	4171 0,261 199	3634 0.340 151
				1.21	6903 0.0797 575 172	0.125 0.125 367	4577 0.179 254	3907 0.244 186	3403 0.319 142
	111		111	1.21	6440 0.0744 536 160	5140 0.116 343	4268 0.167 237	3643 0 228 174	3171 0.298 132
5301 0.989				1.21	5978 0.0691 498 149	4770 0.108 318	3960 0.155	3379 0.212 161	2940 0.276 122
4860 0.913 30	4658 0.982 28		iii	1.21	5516 0.0638 460 137	4400	3652 0.144 203	3114 0,195 148	2709 0.255 113
4418 0.837 27	4232 0.900	4052 0.965 23		1.21	5053 0.0585 421 126	4030 268	3343 0.132 186	2850 0,179 136	2478 0.234 103
3977 0.761 25	3806 0.818 23	3641 0.877 21	3488 0.939 19	1.21	4591 0.0532 383 115	3660	3035 0.120 169	2586 0.163 123	2247 0.213 94
-0100	-0100	01 00	- 0100	104	401004	H 01 00 H	- 61.69	-0100	- 0100
18.5	19.2	19.9	20.6	Multiplying Factor	8.7	10.9	13.1	15.3	17.5
27	88	29	30	Multi	+	40	9	F	00
		16.16				7.980	1 190		
		178.65				27.73	1,298		
		1.244				76.26	1.416		
		61.25		- 3		30,25	1.190		
		34x174				51,x51			
		4x18				6x6			

Defice- tion equiv- alent to 1/32 Inch per	Foot of Span	D	In	0.281	0.313	0.344		0,156	0.188
		9000	2000	4036 0.539 149	3618 0.664 121	3274 0.804 99	1.30		11
lections		9000	1800	3625 0.485 134	3248 0.597 108	2938 0.723 89	1.30		11
um Der nds per		9000	0001	3214 0.431 110	2878 0.531 96	2602 0.643 79	1.30		0.140
Maxim in Pou		000	oner	3009 0.404 111	2694 0.498 90	2434 0.603 74	1.30		8524 0.131
ls, and Stresses ch, as ir		991	1400	2804 0.377 104	2509 0.465 84	2265 0.563 69	1.30	9567 478 175	7951
Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated		0000	1300	2598 0.350 96	2324 0.432 77	2097 0.522 64	1.30	8880 0.0791 0. 444 162	7379
Loads in			1200	2393 0.323 89	2139 0.398 71	1929 0.482 58	1.30	8192 0.0730 409 150	6806
Safe]		9	1100	2187 0.296 81	1954 0.365 65	1761 0.442 53	1.30	7505 375 375 137	6234
Tota		900	7000	1982 0,269 73	1769 0.332 59	1593 0.402 48	1.30	6818 0.0608 341 125	5661
Refer-	Num- ber		I	- 01 00	- 61 65	- 01 00	-614	- c1 to 4	010
Ratio of Span to Depth	Surfaced	1/16		19.6	27.8	24.0	Multiplying Factor	8.0	9.6
Soan			Ft.	6	9	(#	Mult	NO.	100
Weight per Lineal Foot (Based on	Green Timber	lbs. per cu. ft.)	Lbs.		7.980	1 190		10.88	1 164
Section Modu- lus	S bh²	9	In.1		27.73	1,298		51.56	1 242
Moment of Inertia	bh ^a	12	Jus		76.26	1,416		193.36	1 324
Area Cross Section	4—hh		Sq. In.		30.25	1 190		41.25	1 164
Sise	Surfaced	or S4S	lh.		54x54			54x74	
55	Rough		ln,		9x9			6x8	

	0.469	0.438	0.406	0.375	0.344	0.313	0.281	0.250	0.219
228		4754 0.954 85	5143 0.822 99	5595 0.701 117	6124 0.589 139	6761 0.486 169	0.394 208 208	8505 0.311 266	0.23 82.0 178 178
2.8	3961 0 986 66	4263 0.858 76	4615 0.740 89	5022 0.631 105	5500 0.530 125	6074 0.438 152	6776 0.355 188	7646 0.280 239	8762 0.215 313 161
0 24	3503 0.876 58	3773 0.763 67	4086 0.658 79	4450 0.561 93	4875 0.471 111	5387 0.389 135	6012 0.316 167	6787 0.249 212	7780 0.191 278
228	$\frac{3274}{0.822}$	3528 0.716 63	3822 0.617 73	4164 0.526 87	4563 0.442 104	5044 0.365 126	5631 0.296 156	6357 0.234 199	7289 0.179 260
228	3044 0.767 51	3282 0.668 50	3558 0.576 68	3877 0.490 81	4251 0.412 97	4700 0.340 117	5249 0.276 146	5927 0.218 185	0.167
228	2815 0.712 47	3037 0.620 54	3294 0.534 63	3591 0.455 75	3939 0.383 90	4357 0.316 109	4867 0.256 135	5498 0.202 172	6307 0.155
0 94	2586 0.657 43	2792 0.572 50	3029 0.493 58	3305 0.420 69	3626 0.353 82	4013 0.292 100	4485 0.237 125	5068 0.187 158	5816 0.143 208
0 94	2357 0.602 39	2546 0.525 45	2765 0.452 53	3018 0.385 63	3314 0.324 75	3670 0.267 92	4103 0.217 114	4639 0.171 145	5325 0.131 190
2.28	$\frac{2128}{0.548}$	2301 0.477 41	2501 0.411 48	2732 0.350 57	3002 0.294 68	3326 0.243 83	3721 0.197 103	4209 0.156 131	4834 0.119
- 614	-678	-618	252	-00	-0100	-0.60	-618	-0.6	
Multiplying Factor	24.0	22.4	20.8	19.2	17.6	16.0	14.4	12.8	11.2
M	15	#	13	21	=	01	6	30	~
					10.88				
					51.56			•	
					193.36				
					41.25	-			
					5½x7½				
					6x8				

Deflace	tion equiv- alent to 1/32	Foot of Span	Q	Ju.	0.219	0.250	0.281	0.313	0.344	0.375
		T	0000	2000			12126 0.312 270 176	10890 0.385 218	9872 0.465 180	9023
	lections		000	1800		0.222 307 178	10901 0.281 242	9787 0.346 196	8870 0.419 161	8104
	um Def		0000	1600	12511 0.151 357 181	0.197	9676 0.249 215	8684 0.308 174	7867 0.372 143	0 443
	Maxim in Pour dieated		-	1500	11723 0.141 335 170	10230 0.185 256	9064	8133 0.289 163	7366 0.349 134	6726
	s, and Stresses th, as in		1	1400	10935 0.132 312 159	9540 0.172 238	8451 0.218 188	7582 0.269 152	6865 0.326 125	6267
	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Scuare Inch, as indicated		0000	1300	10147 0.123 290 147	8851 0.160 221	7839 0.203 174	7030 0.250 141	6364 0.302 116	5807
	oads in sches, fo		000	1300	9359 0.113 267 136	8162 0.148 204	7226 0.187 161	6479 0.231 130	5862 0.279 107	5348
	Safe I		90.	0011	8571 0.104 245 125	7472 0.135 187	6614 0.171 147	5927 0.212 119	5361 0.256 97	4888
	Tota		900	1000	7783 0.0942 222 113	6783 0.123 170	6001 0.156 133	5376 0.192 108	4860 0.233 88	4429
	Refer-	Num-			- 64 00 4	01 50 4	64 60	-0100	-0100	-040
	Ratio of Span to	Surfaced	1/B		∞ ∞	10.1	4.11	12.6	13.9	15.2
	5	Tologi		Ft.	12	90	6	10	=	12
TALL TA	Per Lineal Foot (Based	Green Timber	lbs. per cu. ft.)	Lbs.			13.79			
	Section Modu- lus	bhr	9	In.ª			1,209			
	Moment of Inertia	pp ₃	12	In.4			392.96			
	Area Cross Section	44		Sq. In.		ä	1.148			
	Size	Surfaced	or SAS	In.			5½x94			
	67.	Rough		Ē			6x10			

0.281			14218 0.206 263 170	13320 0.193 246	12422 0.180 230	11524 0.167 213	10626 0.155 197	9728 0.142 180	8830 0.129 164	-0100 4 1	9.4	ō	1.138	1 188	1.240	1.138		
0.250				15032 0.153 313 180	14021 0.142 292 168	13010 0.132 271 156	11999 0.122 250 144	10988 0.112 229 132	9977 0.102 208 120	H01004	80.	00	16.69	121.23	697.07	63.25	5lx114	
	1.05	1.21	1.21	1.05	1.06	1.05	1.05	1.05	1.21	H04	Multiplying Factor	Mult						-
0.594					3801 0.972 40	3511 0.902 37	3220 0.833 34	2930 0.764 31	2640 0.694 28	01100	24.0	19						
0.563			4651 0.997 52	4345 0.935 48	4039 0.873 45	3733 0.810 41	3426 0.748 38	3120 0.686 35	2814 0.623 31	H0100	22.7	18						
0.531			4953 0.890 58	4629	4305 0.778 51	3981 0.723 47	3656 0.667 43	3332 0.612 39	3008 0.556 35	O100	21.5	17	1.148	1.209	1.273	1,148		
0.500	6673 0.985 83	5984 0.886 75	5294 0.788 66	4950 0.738 62	4605 0.689 58	4260 0.640 53	3915 0.591 49	3571 0.542 45	3226 0.492 40	-0100	20.3	91	13.79	82.73	392.96	52.25	54x94	0x10
0.469	7147 0.866 95	6412 0.779 85	5676 0.693 76	5309 0.649 71	4941 0.606 66	4573 0.563 61	4205 0.519 56	3838 0.476 51	3470 0.433 46	-6169	19.0	15						
0.438	7685 0.754 110	6897 0.678 99	6109 0.603 87	5716 0.565 82	5322 0.528 76	4928 0.490 70	4534 0.452 65	4140 0.415 59	3746 0.377 54	H 64 69	17.7	14						
0.406	8303 0.650 128	7455 0,585 115	0.520	6183 0.487 95	5758 0.455 89	5334 0.422 82	4910 0.390 76	4486 0.357 69	4062 0.325 63	- 64 69	16.4	13						

	Deflec- tion equiv- alent to 1/32 Inch per	Foot of Span	D	Ī.	0.313	0.344	0.375	0.406	0.438	0.469	0.500
1	.9		0000	2000		14512 0.384 220 174	13276 0.458 184	12221 0.537 159	11312 0.623 135	10528 0.715 117	9837
	dections		Work	1800	14381 0.286 240 173	13042 0.346 198	11908 0.412 166	10977 0.483 141	10157 0.561 121	9450 0.643 105	8827
	um Def ands per		Own	1600	12764 0.254 213	11573 0.307 175	10581 0.366 147	9733 0.430 125	9003 0.498 107	8372 0.572 93	7816
	Maxim s in Pou		90	1500	11956 0.238 199	10838 0.288 164	9907 0.343 138	9112 0.403 117	8426 0.467 100	7834 0.536 87	7311
	Stresses		900	1400	11148 0.222 186	10103 0.269 153	9233 0.320 128	8490 0.376 109	7848 0.436 93	7295 0.500 81	6806
	Total Safe Loads in Pounds, and Maximum Deflections Inches, for Unit Stresses in Pounds per Square Inch, as indicated		Over	1300	10340 0.207 172	9368	8559 0.297 119	7868 0.349 101	7271 0.405 87	6756 0.465 75	6301
	Loads ir nehes, fr		0001	1200	9531 0.191 159	8634 0.231 131	7886 0.275 111	7246 0.322 93	6694 0.374 80	6217 0.429 69	5795
	Safe J		1100	1100	8723 0.175 145	7899 0.211 120	7212 0.252 100	6624 0.295 85	6116 0.343 73	5678 0.393 63	5290
	Tota		000	1000	7915 0.159 132	7164 0.192 109	6538 0,229 91	6002 0.268 77	5539 0.312 66	5139 0.358 57	4785
	Refer-	Num-			-01004	-01:04		- 64 63			- 63.0
	Ratio of Span to Depth	-	1/Ъ		10.4	11.5	12.5	13.6	14.6	15.7	16.7
	Span			Ft.	10	=	12	13	14	22	16
	Weight per Lineal Foot (Based on	Green Timber at 38	lbs. per cu. ft.)	Lbs.			16,69	1.138			
	Section Modu- lus	ph2	9	ln.a			121,23	1.188		14	
	Moment of Inertia	ph ²	12	ln.4			70,769	1.240			
	Area Cross Section	A=bb		Sq. In.			63,25	1.138			
	Size	Surfaced	or S48	In,			54x114				
	82	Rough		In.			6x12				

0.531	0.563	0.594	0.625	0.656	0.688	0.719		0.281	0.313	0.344
9224 0.918 90		111	iii	111			1.19		* : : :	
8273 0.826 81	0.927		111		***		1.04			18000 0.295 234 184
7322 0.734 72	6886 0.824 64	6489 0.917 57					1.19		17628 0.216 252 180	15976 0.262 208
6847 0.688 67	6437 0.773 60	0.860 53	5728 0.953 48	111			1.19		16514 0.203 236 169	14964 0.245 194
0.643	5987 0,721 55	5639 0.802 49	5323 0.889 44	5040 0.981 40	111	111	1.19	17142 0.153 272 175	0.189 0.189	13952 0.229 181
5896 0.597 58	5538 0.670 51	5213 0.745 46	4919 0.826 41	4655 0.911 37	4409 1,000		1.19	15905 0.142 253 163	14286 0.176 204	12940 0.213 168
5421 0.551 53	5089 0.618 47	4788 0.688 42	4515 0.762 38	4270 0.841 34	4042 0.923 31		1.19	14668 0.131 233 150	13172 0.162 188	11928 0.196 155
4945 0.505 48	4640 0.566 43	4362 0.631 38	4111 0.699 34	3885 0.771 31	3674 0.846 28	3481 0.925 25	1.19	13431 0.121 213 138	12058 0.149 172	10916 0.180 142
0.459 44	4191 0.515 39	3937 0.573 35	3707 0.635 31	3500 0.701 28	3307 0.769 25	3130 0.841 23	1.19	12194 0.110 194 125	10944 0.135 156	9904 0.164 129
-6169	0400	-0100	63 to		⇔ 0100	-0100	-014	⇔ 01004	40004	H 6360 44
17.71	18.8	8.61	20.9	21.9	23.0	24.0	Multiplying Factor	8.0	6.8	8,6
11	18	61	30	21	55	83	Multip	6	10	п
			16.69	1.138		×			19.60	
			121.23	1.188					1.173	
8			70'.269	1.240					1.216	
			63.25	1.138					1.131	
			54x114						54x134	
			6x12						6x14	-1

	Deflec- tion equiv- alent to 1/32 Inch per Foot of Span	D	ij	0.375	0.406	0.438	0.469	0.500	0.531	0.563
-		1	2000		16875 0.457 186 173	15636 0.530 159	14550 0.608 139	13606 0.692 121	12769 0.781 107	12017
	ections		1800	16469 0.350 196	15162 0.412 167	14045 0.477 143	13066 0.547 124	12214 0.623 109	11459 0.703 95	10780
	um Def	1	1600	14613 0.311 174	13449 0.366 148	12454 0.424 127	11581 0.486 110	10822 0.553 97	10149 0.625 85	9543
	Maximi in Pour dicated		1500	13685 0.292 163	12593 0.343 138	11659 0.397 119	10839 0.456 103	10126 0.519 90	9494	8925
	, Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated	16	1400	12757 0.273 152	11736 0.320 129	10863 0.371 111	10097 0.426 96	9430	8838 0.547 74	8306
	r Pound or Unit uare In		1300	11829 0 253 141	10880 0.297 120	10068 0.344 103	9355 0.395 89	8734 0.450 78	8183 0.508 69	7688
	Joads in		1200	10901 0.234 130	10023 0.274 110	9272 0.318 95	8612 0.365 82	8038 0.415 72	7528 0.469 63	7069
	Safe I	H	1100	9973 0.214 119	9167 0.251 101	8477 0.292 87	7870 0.334 75	7342 0.381 65	6873 0.430 58	0.482
	Tota	T	1000	9045 0.195 108	8310 0.228 91	7681 0.265 78	7128 0.304 68	6646 0.346 59	6218 0.391 52	5832
	Refer- ence Num- ber			-0100	-01004	- 6760	- 51 50	- 01 50	- 01 00	-21
-	Ratio of Span to Depth of Surfaced	Timber 1/h		10.7	11.6	12.4	13.3	14.2	15.1	16.0
-	Span		F	12	13	41	15	16	17	100
	Weight Per Lineal Foot (Based on Green	at 38 lbs. per cu. ft.)	Lbs.		*		1,131			
	Section Modu- lus	9	In.a				1.173			
	Moment of Inertia	12	In.4				1.216			
	Area Cross Section	A=bb	Sq. In.				1.131			
	Size	SISIE or S4S	Jn.				0.00			
	85	Rough	Ju,				0X14			

0.626			0.688	0.719	0.750	0.781	0.813	17 96 04	0.344	0.375	
77 85	9631 0.973 69			111	111			0.96 0.96 1.04			
0.781	8517 0.865 61	8071 0.954		111			111	1.04		19314 0.271 201 172	
0.732	7960 0.811 57	7541 0.895 51	7161 0.981 46					1.17	19778 0.214 225 176	18090 0.254 188	
0.684	7403 0.757 53	0.835	6654 0.915 43					1.17	18443 0.200 210 164	16866 0.237 176	
0.635	6846 0.703 49	6481 0.775 44	6148 0.850 40	5844 0.930 36				1.17	17108 0.185 195 153	15642 0.221 163	
0.586	6290 0.649 45	5950 0.716 40	5642 0.785 37	5359 0.858 33	5098 0.934 30			1.17	15773 0.171 179 141	14418 0.204 150	ze.)
0.537	5733 0.595 41	5420 0,656 37	5136 0.719 33	4875 0.787 30	4634 0.857	4412 0.929 25		1.17	14438 0, 157 164 129	13194 0.187 137	xt Pag
0.488	5176 0.541 37	4890 0.596 33	4630 0.654 30	4391 0.715 27	4170 0.779 25	3966 0.844 23	3773 0.914 21	1.17	13103 0.143 149 117	11970 0.170 125	on Ne
- 6169	64 00	-0100			-0100	-016	-6460	-014		04 00 -4	tinued
16.9	17.8	18.7	19.6	20.4	21.3	22. 2	23.1	Multiplying Factor	40° 00°	6.3	(Table 20 Continued on Next Page.)
10	8	21	ĸ	æ	22	25	98	Multi Fa	11	12	(Table
				1.131					22.50	1.126	
				1.173					220.23	1.162	
				1.216					1706.78	1.200	
			ì	1.131					85.25	1.126	
			;	\$21 2 \$c					5\frac{1}{2}		
			;	0x14					6x16	-	

119

For full explanation of this table see pages 68 to 70.	Deflection tion equivalent to 1/32	Foot of Span	Q	la.	0 408	0.438	0.469	0.500	0.531	0.563
якен в		•	9	3		20665 0.462 184 185	19253 0 530 160	18000 0.603 141	16898 0.081 124	15915 0.763 110
e see p	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Souare Inch, as indicated		5	36	20047 0.358 193 179	18567 0 416 166	17294 0.477 144	16164 0.543 126	15170 0.613 112	14283 0.687 99
is tab	num De ands per d		99	2001	17787 0.318 171	16469 0.370 147	15335 0.424 128	14328 0.483 112	13442 0.545 99	12 6 51 0.611 88
n of th	Maxin s in Pot indicate		5	000	16657 0 299 160	15420 0.347 138	14356 0.398 120	13410 0.453 105	12579 0.511 93	0.572 82
lanatio	Loads in Pounds, and Maximum De Inches, for Unit Stresses in Pounds per Sonare Inch as indicated		3	9041	15527 0.279 119	14371 0.324 128	13376 0.371 111	12492 0.422 98	11714 0.477 86	11019 0.534 76
ull exp	in Poun for Unit quare L		5	961	14397 0.259 138	13322 0.300 1119	12397 0.345 103	11574 0.392 90	10850 0.443 80	10203 0.496 71
For f	Loads i		Ş	1200	13267 0 239 128	12273 0.277 110	11417 0.318 95	10656 0.362 83	9986 0.409 73	9387 0.458 65
	al Safe]		-	711	12137 0 219 117	11224 0 254 100	10438 0.292 87	9738 0.332 76	9122 0.375 67	8571 0.420 59
	Tot		٤	3	11007 0.199 106	10175 0 231 91	9458 0 265 79	8820 0.302 69	8258 0.341 61	7755 0.882 54
	Dofor				-01004		20.50	-016	-26	-012
	Ratio of Span to	of of Surfaced Timber	l/h		10.1	8.01	11 6	12.4	13.2	13.9
!	Ş			Ft.	13	#	15	16	17	29
:	Weight per Lineal Foot (Based	Green Timber	lbs. per cu. ft.	L. S.			22.50 1 126			
	Section Modu- lus	.dd S	9	, <u>ii</u>	ı		220.23 1 162			
nued.	Moment of Inertia	bb³	2				1706.78			
20—Continued	Area Cross Section	A=bh		<i>₹</i>			85.25 1.126			
11	Size	Surfaced	or SAS	Ė			54x154			
TABLE	₹	Rough	•	l.		·-·· -	6x16			

0.594	0.625	0.656	0.688	0.719	0.750	0.781	0.813	0.844	0.875	
15043 0.850 99	14234 0.942 89		:::	111	111	111	111			1.16
0.765	12766 0.848 80	12124 0.935 72	111	111					111	1 16 0 97
0.680	11297 0.754 71	10725 0.831 64	10191 0.912 58	9704 0,997 53		\$11 \$11	211			1.16
0.637	10563 0.706 66	10025 0.779 60	9524 0.855 54	9065 0.935 49	111			100		1 16 0 97 1 03
0.595 68	9829 0.659 61	9325 0.728 55	8856 0.798 50	8426 0.872 46	8028 0.950 42					1.16
9629 0.552 63	9095 0.612 57	8625 0.676 51	8188 0.741 46	7787 0.810	7416 0.882 39	7079 0,958 35	111			1.16
0.510 58	8360 0.565 52	7926 0.624 47	7520 0.684 43	7149 0.748 39	6804 0.814 35	6492 0.884 32	6194 0.956 30		1	1 16
0.468 53	7626 0.518 48	7226 0.572 43	6852 0.627 39	6510 0.686 35	6192 0.746 32	5904 0.811 30	5629 0.876 27	5377 0.945 25	0 0 0	1.16 0.97 1.03
0,425	6892 0.471 43	6526 0.520 39	6184 0.570 35	5871 0.623 32	5580 0.679 29	5316 0.737 27	5064 0.796 24	4833 0.859	4615 0.923 21	1 16 0.97
- 67 65	- 68	6452	0400	-0100	-90	58.00	-018	-6100	-218	-24
14.7	15.5	16.3	17.0	17.8	18.6	19.4	20.1	20.9	21.7	Multiplying Factor
19	20	21	22	83	7.	22	56	27		Multi
				9	1.126					
				9	1.162					
				9	1.200					
				è	1.126					
					\$01 x \$0					
					QI XQ					

Defice- tion equiv- alent to 1/32 luch per Foot of Span	Q	In.	0.906	0.938		0.438	0.469	0,500
ii.	0000	2000	1111		1.16			
flections	900	1800			1.16			25683
um De nds per	000	1600			1.16		24359 0.337 162 173	22779 0.384
Maxim r in Pou ndicate		1500	1111		1.16	24504 0.276 175 174	22810 0.316 152	21327
Stresses		1400	411	111	1.16	22844 0.257 163 163	21261 0.295 142	19875
Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated	1	1300	1		1.16	21184 0.239 151 151	19712 0.274 131	18423
oads in sches, fo	000	1200			1.16	19524 0.221 139 139	18163 0.253 121	16971 0.288
Safe I	-	0011	6361 0.965 24		1.16	17864 0.202 129 128	16614 0.232 111	15519
Total	-	1000	5716 0.877	0.939	1.16 0.97 1.03	16204 0.184 116 116	15065 0.211 100	14067
Refer- ence Num- ber			-0103	- 61 69	-014	-01004		100
Ratio of Span to Depth of Surfaced	1/h		19.9	20.6	Multiplying Factor	8.6	6	8.6
Span		Ft.	53	30	Multi	#	22	16
Weight per Lineal Foot (Based on Green Timber co.	lbs. per cu. ft.)	Lbs.		1.122			1.119	
Section Modu- lus	9	In.8		280,73			348.56	
Moment of Inertia	12	In.4		2456.38			1.177	
Area Cross Section	ng—u	Sq. In.		96,25			1.119	
Size Surfaced Grane	or S4S	In.		54x174			5§x19§	
<u> </u>	T Short	In,		6x18			6x20	

0.531	0.563	0.594	0.625	0.656	0.688	0.719	0.750	0.781	0.813
	26311 0.607 141 181	23922 0.676 126	22654 0.749 113	21526 0.826 103	20497 0.907 93	19549 0.991 85			
24107 0.487 142	22729 0.547 126	21476 0.609 113	20332 0.674 102	19314 0.743 92	18385 0.816 84	17529 0.802 76	16745 0.971 70		
21375 0.483 126	20147 0.486 112	19030 0.641 100	18010 0.599 90	17102 0.661 81	16273 0.725 74	15509 0.793 67	14809 0.863 62	14164 0.937 57	
20000 0.406 118	18866 0.455 106	17807 0.507 94	16849 0.562 84	15996 0.619 76	15217 0.680 69	14499 0.743 63	13841 0.809 58	13235 0.878 53	12673 0.950 49
18 64 3 0.879 110	17666 0.426 98	16584 0.474 87	15688 0.524 78	14890 0.578 71	14161 0.635 64	13489 0.694 59	12873 0.755 54	12305 0.820 49	11779 0.887 45
17277 0.352 102	16274 0.396 90	15361 0.440 81	14527 0.487 73	13784 0.537 66	13105 0.589 60	12479 0.644 54	11906 0.701 50	11376 0.761 46	10885 0.824 42
15911 0.324 94	14983 0.364	14138 0.406 74	13368 0.449 67	12678 0.496 60	12049 0.544 55	11469 0.595 50	10937 0.647 46	10446 0.703 42	9991 0.760 38
14545 0.298 86	13692	12915 0.372 68	12905 0.412 61	11572 0.454 55	10043 0.499 50	10459 0.545 45	9969 0.593	9517 0.644 38	9097 0.696 35
13179 0.271 78	12401 0.304 69	11692 0.338 62	-11044 0.375 55	10466 0.413 50	9937 0.454	9449 0.496 41	9001 0, 539 38	8587 0.586 34	8203 0.633 32
	000 4		⊷ 2) 10	-96	-40	-000	-28	-08	-00
10.5	11.1	11.7	12.3	12.9	13.5	14.2	14.8	15.4	16.0
17	82	19	50	21	22	53	24	25	58
				28.30	<u>.</u>				
				348.56	- - - -				
				3398.40	<u> </u>				
				107.25	 				
				64×194					
				6x20					

(Table 20 Continued on Next Page.)

	ľ					١	-	-									ľ	
Sise		Area Cross Section	Moment of Inertis	Section Modu- lus	Weight Per Lineal Foot (Based	Span	Ratio of Span to Depth en	Refer- ence	Total	Safe L	Loads in Pounds, and Maximum De Inches, for Unit Stresses in Pounds per Square Inch, as indicated	Pound r Unit nare In	ls, and Stresses cb, as i	in Pounds, and Maximi for Unit Stresses in Pour Square Inch, as indicated	um De inds per d	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated	, E	Deflec- tion equiv- alent to 1/32 Inch per
Rough	Surfaced S1S1E	A=bh	rqq	S S	Timber 38			d to						0				Span
•	SES 10		12	9	lbe. per cu. ft.)		1/P	9	_	-					, 3			D
념	In.	Sq. In.	In.4	ln.ª	Lbs.	Ę.	4	4	000	1100	1200	1300	1400	1500	1600	1800	2000	
						27	-	4 -	# Z	32	9562 0.820 35	10423 0.888 39	11283 0.956 42	1 1 1	555			0.844
						88	17.	-6189	5477 0.939 20	9	9168	9998						0.875
	3		306	3	ş	29	17.8	-04	1.03	1.03	97	111						0.906
	e sixia	1.119	1.17	1.148	1.119	98	18.5		16204 1	17864 0.202 129	19524	, 610						0.938
						31	19.1	+ +00			18163 0.253 121	1971 0.274 131						0.969
						8	19.7	4	1									1.000
						Multi	Multiplying	-01001	14067 0.240 88	15519 0,264 97	16971 0.288 106	18423 0.312 115	526	1.15	1.15	1.51	1.15	

0.186	0.188	0.219	0.260	0.281	0.313	0.84	0.878	0.406	0.438	
		13290 0.238 356 178	11599 0.311 272	0.386	9221 0.486 173	9357 0.589 142	7630 0.701 119	7015 0.822 101	0.988 974 87	
		0.215 320 161	10427 0.280 244	9239 0.355 193	8284 0.438 155	7506 0.530 128	0.631 107	6294 0.740 91	5818 0.858 . 78	
	12407 0 140 388 167	10611 0 191 284	9265 0.249 217	8197 0.816 171	7347 0.389 138	6653 0.471 113	6068 0.561 95	0.668 0.888	0.763 0.763	
	11626 0.131 364 156	0.179 286	8670 2034 203	7677 0.296 160	0.365 0.365 129	6227 0.442 106	5678 0.526 89	6213 0:617 75	4814 0.716 84	
0.0862 490	:	9272 0 167 248	8084 0.218 189	7156 0.276 149	0.340 120 0.340	6801 0.412 99	0.490 830 83	4863 0.576 70	0.66× 0.66×	
17277 0.352 102	16274 0.39614 90'4	153/ 0.4 A02 0.4 155 231	7498 0.202 176	6635 0.256 138	5942 0.316 111	6375 0.383 92	4897 0.455 77	1492 0.534 66	4144 0.620 55	
15911 0.324 04		14138 0.406 74 12268	0.449 67 1267	0. 0114 0.237 1 127	5473 0.292 103	0.353 848	4507 0 420 70	4132 0.493 60	3810 0.572 51	(:
14545 0.298 0.88				7:2	25.52	4523 0.324 77	4116 0.385 64	3771 0.452 54	3475 0.525 47	ext Pa
13179 0.271 78					3: }	7.62	3726 0.350 58	3411 0.411 49	3140 0.477 42	on N
-48	~61 to 4			~~~~	_ }	60	- 21 82	-25	- 2 %	thued
·Grad	-	خنيت	الجنا	*	J	17.6	19.2	20.8	22.4	Table 20 Continued on Next Page.
*0	•	-	æ	6	01	=	13	13	=	(Table
				14.85						
				70.31						
				263.67						
				56.25 1.138					! !	
				1474						
				8x8						

Sise	Area Cross Section	Moment of Inertia	Section Modu- lus	Weight per Lineal Foot (Based		Ratio of Span to	Refer-	Total	Rafe I	osds in	n Poun	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Second but a indicated	Maxim t in Pon	um De	flection		Deflec- tion equiv- alent to 1/32
Surfaced Rough SISIE	P P	bhs	- Se Se	Green Timber at 38	n sqr		Num- ber			ž.	nare i	rquare men, as mineated	ппсате				Foot of Span
or 848		12	•	lise per cu. ft.)		1/h		out.	100	9000	0000		00.1	0001	Control	Species	Q
ln.	₹ Ξ	In.4	In.8	Libs.	=			14MM	1100	12/11	1300	1410	19001	1000	TRIVI	2000	In.
					29	19.9	35-	5716 0.877	6361 0.965 24	100	3.53			1111			906.0
6x18 54x174	96.25	2456.38	280.73	25.40	30	20.6	- 62 69	5477 0.939 20		118		18:	11	100			0 938
					M.	Multiplying Factor	-24	1 16 0 97 1 03	1 16	1 16 0 97 1 03	1.16	1.16	1 16 0 97 1 03	1 16	1.18	1.03	
		!	i		41	8.6	-01224	16204 0.184 1116 1116	17864 0 202 129 128	19524 0.221 139 139	21184 0.289 151	22844 0.257 163	24504 0.276 175 174				0.438
6x20 54x194	107 25 1.119	3398.49	348.56	28.30	15	9.2	01 co	15065 0.211 100	10614 0 232 111	18163	0 274	21261	22810 0.316 152	24359 0.337 162 173			0.469
					6	& 6.	01 to 4	14067 0.240 88	15519 0.264 97	16971 0.288 106	18423 0.312 115	19875 0.336 124	21327 0.860 133	92779	25683 0.432 161 181		0 800

(Table 20 Continued on Next Page.)

LABLE 2	zo-Continued	inuea.							101	Capu	THE CLOSE	3		2	1909	FOR THE EXPLANATION OF MIS CAUSE SEE PASSES OF 10.
921.	Area Cross Section	Moment of Inertia	Section Modu- lus	Weight per Lineal Foot (Based	D.	Batio of Span to Ref		Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Sourae Inch. as indicated	Loads in Pounds, and Maximum De Inches, for Unit Stresses in Pounds per Sonare Inch. as indicated	in Pounds, and Maximu for Unit Stresses in Pour Souare Inch, as indicated	s, and stresses	Maximi in Pour dicated	um Def	lections		Deflec- tion equiv- alent to 1/32
Surfaced Rough SISIE	Sed A bh	dd	21	Green Timber at 38	Tredic.	Surfaced ber	RÀL.					00				Foot of
·克	x	2	æ	be. per cu. ft.)		1/16			9000	_	_	900	_	0000	9000	D
In In	\\ \frac{3}{1}	In.4	r.ii	Lbs.	Ft.	libr.	000	1100	1200	1300	1400	1900	1900	1800	2000	II.
 	i :				27	V	W -	8702 7, 752 32	9562 0.820 35	10423 0.888 39	11283 0.956 42	111		111		0.844
					8	- 211-	3 0.939	0 1 1 T	9168	9998				101		0.875
					29	17,8	2 0.97	3 1.03	90							0.906
6x20 5jx19j	1.119	1.17	348.56	28.30 1.119	30	18.5	16204 2 0.184 3 116	04 17864 84 0.202 16 129 16 128	19524 0.221 9 139 8 139							0.938
					31	1.61	1 15065 2 0.211 3 100	65 16614 11 0.232 00 111	18163 2 0.253 121	0.27						0.969
					32	19.7	1 14067		. 99	18423	111					1.000
					Mul	Multiplying	100 4		5	11 11 11 11 11 11 11 11 11 11 11 11 11	1,15	1.15	1 15	1 51	0.97	

	0.719	0.688	0.666	0.625	0.594	0.563	0.631	0.500	0.400	0.438
10.96							12573 0.918 92	13410 0.813 105	14851 0.715 120	25.0 88.8 88.8 88.8
-0- 582						10806 0.927 74	11277 0.826 83	12033 0.732 94	12882 0.643 107	13840 0.551 124
- 8 Z					8848 0.917 58	9382 0.824 65	9981 0.734 73	10655 0.650 83	11413 0.672 96	12275 0.498 110
				7810 0.953 49	8268 0.860 24	8770 0.773 61	9333 0.688 69	9969 0.610 78	10678 0.536 89	11488 0.467 108
- 82 - 82			6869 0.981 41	7259 0.889 45	7688 0.802 51	8158 0.721 57	8885 0.643 643	9278 0.569 73	200 200 200 200 200 200 200 200 200 200	0.450 0.450 0.680
-0- 582		1.001 34.00	6344 0.911 38	6708 0.826 42	7108 0.745 47	7546 0.670 52	8037 0.597 59	8589 0.528 67	0.468	9913 0.405 88
-0- 582		6511 0.923 31	5820 0.841 35	6157 0.762 38	6528 0.688 43	6934 0.618 48	7389 0.551 54	0.488 62	8474 0.459 71	9126 0.374 81
-0- 582	4746 0.925 26	0.846 28	5295 0.771 32	5606 0.699 35	5948 0.631 39	6322 0.566 44	6741 0.506 50	7212 0.447 56	0.885	0.34
-0- 582	4267 0.841 23	4509 0.769 28	4770 0.701 28	5065 0.635 32	5368 0.573 35	6710 0.515 40	6093 0.459 45	0.407 51	200.0 888.0 88.88	7852 0.312 67
~ e3 4	-00	-46	-28	-25	- cq 00	-0.00	-0.00		~~~	
Multiplying Factor	24.0	23.0	21.9	80.8	19.8	18.8	17.7	16.7	15.7	14.6
Multip Fac	83	22	21	ន	61	81	11	91	25	±
					1.113	27				
					1.162	5				
		4			1.212	# 5				
		-			1.113	, d				
					F	21-113				
				-	•	=======================================				

	Deflec- tion equiv- alent to 1/32 Inch per	Span	In	0.469		0.219	0.250	0,281	0.313
	,E		2000	111	1.21	1111		16539 0.312 276 176	14852
	lections		1800	5398 0.986 67	1.21		16770 0.222 315 178	14868 0.281 248	13348
	um Def uda per		1600	4774 0.876 60	1.21 0.94 1.06	17068 0.151 366 181	14890 0.197 279	13197 0.249 220	11844
	Maximi in Pou		1500	4462 0.822 56	1.21	15993 0.141 343 170	13950 0.185 262	12362 0.234 206	11092
	s, and Stresses cf., as in		1400	4149 0.767 52	1.21	14918 0.132 320 159	13010 0.172 244	11527 0.218 192	10340
	Total Safe Loads in Pounds, and Maximum Deflections Inches, for Unit Stresses in Pounds per Square Inch, as indicated	2	1300	3837 0,712 48	1.21	13843 0.123 297 147	12070 0.160 226	10691 0.203 178	9588
	oads in iches, fo		1200	3525 0.657 44	0.94	12768 0.113 274 136	0.148 0.148 209	9856	8836
	Safe I		1100	3212 0.602 40	1.21	11693 0.104 251	10190 0.135 191	9020	8084
	Total		1000	2900 0.548 36	1.21	10618 0.0942 228 113	9250 0.123 174	8185 0.156 136	7332
	Refer- ence Num-	per .		- 64 150	-04		-0004	- 0100-4	-010
1	Ratio of Span to Depth of	Surfaced	d/0	24.0	Multiplying Factor	80	10.1	11.4	12.6
	Span		古	15	Mult	-	œ	œ.	10
	Weight per Lineal Foot (Based on Green	Timber at 38 lbs. per	Lbs.	14.85	1.138		18.80	3	
	Nodu- las	S S S	ln.4	70.31	1.214		112.81	182	
	Moment of Inertia	bba 12	In.t	263.67	1.295		535.86	7.244	
1	Area Cross Section	A=bh	Sc. In.	56.25	1.138		71.25	123	
	Size	Surfaced S1S1E or S4S	To.	74x74			78x93		
	88	Rough	É	8x8			8x10		

0.406	0.531
154 11324 0.050 131 112 112 9744 0.866 9090 0.985	88 88 88 88
138 0.585 117 117 9403 0.678 0.678 874 0.7779 8159 0.888	
9010 0.520 0.520 104 104 8329 0.603 89 7.7 77 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	
9432 0.487 97 7792 0.565 83 72 83 0.649 0.749	
107 7854 0.455 91 7255 0.528 6736 0.606 0.606 6736	
99 7275 0.422 84 6718 0.490 72 6235 0.563 0.563 0.563	
6897 0.390 77 77 77 6181 0.452 66 5734 0.519 573 0.519	
6118 0.357 71 5644 0.415 60 60 60 4869 4869 0.542	
76 5540 0.325 64 64 64 4731 0.433 4399 0.489	4103 0.556 36 3841 0.623 3602 0.694 1.18 0.95
8 188 188 188 188 B	w 00 01 0
16.4 17.7 19.0	17 21.5 18 22.7 19 24.0 Multiplying Factor
13 14 15	17 18 19 Multi Fa
1.123	
112.81 1.182	
535.86	
71.25	
74x94	
8x10	

Deflec- tion equiv- alent to 1/32	Foot of Span	Q	In.	0.250	0.281	0.313	0.344	0.375	0.406
		0000	COND	11111		1111	19790 0.384 225 174	18087 0,458 188	16660
Bections		900	1900		1111	19608 0.286 245 173	17786 0.346 202	16251 0.412 160	14964 0.483
um Del		909	1000		19379 0.206 269 170	17404 0.254 218	15782 0.307 179	14415 0.366 150	13269
Maxim in Pour		0031	noor	20473 0.153 320 180	18155 0.193 252	16302 0.238 204	14780 0.288 168	13497 0.343 141	12421
ls, and Stresses		90.5	TANK	19096 0.142 298 168	16931 0.180 235	15200 0.222 190	13778 0.269 157	12579 0.320 131	11573
Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated		4000	mer	0.132 0.132 277 156	15707 0.167 218	14098 0.207 176	12776 0.250 145	11661 0.297 122	10725
oads ir		10/01	TOTAL	16342 0.122 255 144	14483 0.155 201	12996 0.191 163	0.231 134	10743 0.275 112	9878
Safe 1		905	1100	14965 0,112 234 132	13259 0.142 184	11892 0.175 149	10772 0 211 122	9825 0.252 102	9030
Tota		900	1000	13588 0.102 212 120	12035 0.129 167	10792 0.159	9770 0.192 111	8907 0.229 93	8182
Refer-	Num- ber			-0100+	-0100+	-01004		- 69 69	-010
Ratio of Span to to	-	4.7		20	9.4	10.4	11.5	12.5	13.6
No.	The state of the s		Ft.	90	6	10	11	27	13
Weight per Lineal Foot (Based	Green Timber at 38	lbs. per cu. ft.)	Lbs.			22.75	2		
Section Modu- lus	S bh2	9	In.4			165.31	701		
Moment of Inertia	bh³	12	In.4			950.55	717		
Area Cross Section	A==bh		Sq. In.			86.25	2		
Sige		or 848	Jn.			Tani.			
iZi	Rough		In.			8x (2			

0.438	0.469	0.500	0.531	0.563	0.594	0.625	0.656	0.688	0.719	
25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	14351 0.715 120	13410 0.813 105	12573 0.918 92							-0 888 888
0.58 0.58 124 124	12882 0.643 107	12033 0.732 94	11277 0.826 83	10606 0.927 74						- 0 - 5 8 2
0.498 110	11413 0.572 95	10655 0.650 83	9981 0.734 73	9382 0.824 65	8848 0.917 58					- 0 - 5 8 8
0.468 103	10678 0.536 89	9969 0.610 78	9333 0.688 69	8770 0.773 61	8268 0.860 54	7810 0.953 49				-0- 582
0.00 8.00 8.00 9.00 9.00 9.00 9.00 9.00	0.500 88	9278 0.569 73	8685 0.643 64	8158 0.721 57	7688 0.802 51	7259 0.889 45	6869 0.981 41			1.01 0.05 0.05
8.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	0.465	8589 0.528 67	8037 0.597 59	7546 0.670 52	7108 0.745 47	6708 0.826 42	6344 0.911 38	1.00 2.00 2.00 2.00 2.00		-0 589
9126 0.374	8474 0.420 71	0.488	7389 0.551 54	6934 0.618 48	6528 0.688 43	6157 0.762 38	5820 0.841 35	5511 0.923 31		- 0 - 5 8 2
88. 88. 88.	0.398 0.398	7212 0.447 56	6741 0.505 50	6322 0.566 44	5948 0.631 39	5606 0.699 35	5295 0.771 32	5010 0.846 28	4746 0.925 26	- 0 - 6 8 2
7552 0.312 67	7006 0.388 58	6523 0.407 51	6083 0.459 45	5710 0.515 40	5368 0.573 35	5055 0.635 32	4770 0.701 28	4509 0.769 28	4267 0.841 23	 582
-0.00	⊣ 0160		-25	0.00		327	-26	-00	-28	-04
14.6	15.7	16.7	17.71	18.8	19.8	20.9	21.9	23.0	24.0	Multiplying Factor
*	15	16	- 11	81	61	8	21	23	23	Multi Fa
				5	1.113					
				9	1.162					
				1 1 1	1.212					
				90	1.113	_				
		·			611x\$/					
				3	21 X8					

	Deflec- tion equiv- alent to 1/32 Inch per	Span	Д	In.	0.281	0.313	0.344	0.375	0.406	0.438
	,g		9000	2000				111	23013 0.457 190 173	21326
	dection		900	1800			24564 0.295 240 184	22449 0.350 201	20677 0.412 170	19156
	num De nds per		000	1000		24037 0.216 258 180	21802 0.262 213	19919 0.311 178	18341 0.366 151	16986
	Maxim in Pou		904	0001		22518 0.203 241 169	20421 0.245 200	18654 0.292 167	0.343	15901
	ls, and Stresses ch, as in		907	1400	23377 0.153 278 175	20999 0.189 225	19040 0.229 186	17389 0.213 155	16005	14816
	Total Safe Loads in Pounds, and Maximum Deflections Inches, for Unit Stresses in Pounds per Square Inch, as indicated		0001	1300	21690 0.142 258 163	19480 0.176 209	17659 0.213 173	16124 0.253 144	14837 0.297 122	13731
	ches, fo		0001	1200	20003 0.131 238 150	17961 0.162 193	16278 0.196 159	14859 0.234 133	13669 0.274 113	12646
	Safe I		4100	0011	18316 0.121 218 138	16442 0.149 176	14897 0.180 146	13594 0.214 121	12501 0.251 103	11561
	Total		000	7001	16629 0.110 198 125	14923 0.135 160	13516 0.164 132	12329 0.195 110	11333 0.228 93	10476
1	Refer-	ber			-0100-4		101004	63 20	1000	-616
-	Ratio of Span to Depth	Surfaced	1/1		8.0	8.8	8.	10.7	11.6	12.4
	Span			Ft.	6	10	=	15	53	2
	Weight per Lineal Foot (Based on	Timber at 38	lbs. per cu. ft.)	Lbs.			26.72	9		
	Section Modu- lus	Ph.	9	In.8			227.81	9		
	Moment of Inertia	bh ²	13	In.4			1537.74	2		
-	Area Cross Section	A=bh		Sq. In.			101.25	8		
	Size	Surfaced	or S4S	In.			74x134			
	100	Rouch		Įų.			8x14			

17815 19839 0.547 0.608 0.469 127 142 16654 18552 0.609		0.563	0.594	0.625	26	92	<u>o</u> .	92	==	l
	131 131		0	0.	0.656	0.688	0.719	0.750	0.781	
7815 127 127 18654		16389 0.876 98	15472 0.976 87							
	112 11627 0.703	14702 0.789 88	13874 0.879 78	13127 0.973 70						
15791 0.486 113 14756		13015 0.701 78	12276 0.781 69	11609 0.865 62	11007 0.954 56					
14779 0.456 106 13807		12172 0.657 72	11477 0.732 65	10850 0.811 58	10284 0.895 52	9762 0.981 48				
13767 0.426 98 12858		11328 0.613 67	10678 0.684 60	10091 0.757 54	9561 0.835 49	9072 0.915				
12755 0.395 91 11909		10485 0.570 62	9879 0.635 56	9332 0.703 50	8838 0.775 45	8382 0.850 41	7965 0.930 37			
11743 0.365 84 10960		9641 0.526 57	9080 0.586 51	8573 0.649 46	8115 0.716 41	7692 0.785 37	7305 0.858 34	6952 0.934 31		ge.)
10731 0.334 77		8798 0.482 52	8281 0.537 47	7814 0.595 42	7392 0.656 38	7002 0.719 34	0.787 0.787 31	6319 0.857 28	6013 0.929 26	xt Pa
9719	8480 0.391	7954 0.438 47	7482 0.488 42	7055 0.541 38	6669 0.596 34	6312 0.654 31	5985 0.715 28	5686 0.779 25	5406 0.844 23	On Ne
	160 CO CO	-446	-26	-218	-460	-0.0	-26	-26	0.60	tinued
13.3	15.1	16.0	16.9	17.8	18.7	19 6	20.4	21.3	22.2	(Table 20 Continued on Next Page.
51 2	21	18	19	8	21	22	g	24	22	(Table
			9	1.106						
		_		1.148						
				1.189						
			Š	1.108						
			3	/\$x133						
-			3	8x14	,					

		Somman.		-				-				,						
Weight Poet Lineal Foot (Based on Span	Section Per Meight Per Modu- Foot Foot On On Span	Weight Poet Lineal Foot (Based on Span	Section Per Meight Per Modu- Foot Foot On On Span	Weight Poet Lineal Foot (Based on Span	Span	M W D	Ratio of Span to Depth	Refer- ence	Total	Safe L	oads in ches, fo Squ	r Unit	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated	Maximi in Pour dicated	im Dei	flections		Deflec- tion equiv- alent to 1/32 Inch per
Green Timber at 38	bh* Timber S== at 38	Green Timber at 38	bh* Timber S== at 38	Green Timber at 38		S.F	of Surfaced Timber	Num- ber										Foct of Span
lbs. per cu. ft)	6 lbs. per cu. ft)	lbs. per cu. ft)	6 lbs. per cu. ft)				1/h		_	0075	000	9		0000		000	9000	D
in.3 Lbs. Ft.	In.3 Lbs.	Lbs.	In.3 Lbs.	Lbs.	Ft.				1000	1100	1200	1300	1400	1200	1000	1800	2000	In,
26.72	227.81 26.72 26	26.72	227.81 26.72 26	26.72	56		23.1	-0100	5145 0.914 21					1111				0.813
148 1.106 Multiplying Factor	1.148 1.106	1.106	1.148 1.106	1.106		tipl	ving	-614	1.15	1.04	1.15	1.15	1.15	1.15	1.15	1.15	1.15	N.
п	11	=	11	=	11		10.00		17873 0.143 152 117	19694 0.157 168 129	21515 0.171 183 141	23336 0.185 199 153	25157 0.200 215 164	26978 0.214 230 176				0.344
0.31 30.68	300.31 30.68	30.68	300.31 30.68	30.68			6.3	-01004	16322 0.170 127	17991 0.187 141	19660 0.204 154	21329 0.221 167	22998 0.237 180	24667 0.254 193	26336 0.271 206 172			0.375
136 1,101 13	1.136 1.101	1.101	1.136 1.101	1.101			10.1		15011 0.199 108	0.219	18093 0.239 130	19634 0.259 142	21175 0.279 153	0.299	24257 0.318 175	27339 0.358 197 179	1111	0.408
71	14	14	2		;		10.8	64	13881	15312	16743	18174	19605	21036	22467	25329	28191	0.438

0.469	0.500	0.531	0.563	0.594	0.625	0.656	0.688	0.719	0.750	
26240 0.530 164	24529 0.603 144	23058 0.681 127	21705 0.763 113	20497 0.850 101	19407 0.942 91					
23570 0.477 147	22027 0.543 129	20700 0.613 114	19479 0.687 101	18389 0.765 91	17405 0.848 82	16526 0.935 74				
20900 0.424 131	19525 0.483 114	18342 0.545 101	17253 0.611 90	16281 0.680 80	15403 0.754 72	14618 0.831 65	13888 0.912 59	13227 0.997 54		
19565 0.398 122	18274 0.453 107	17163 0.511 95	16140 0.572 84	15227 0.637 75	14402 0.706 67	13665 0.779 61	12978 0.855 55	12356 0.935 50		
18230 0.371 114	17023 0.422 100	15984 0.477 88	15027 0.534 78	14173 0.595 70	13401 0.659 63	12711 0.728 57	12068 0.798 51	11485 0.872 47	10947 0.950 43	
16895 0.345 106	15772 0.392 92	14805 0.443 82	13914 0.496 72	13119 0.552 65	12400 0.612 58	11757 0.676 53	11158 0.741 48	10614 0.810 43	10113 0.882 40	
15560 0.318 97	14521 0.362 85	13626 0.409 75	12801 0.458 67	12065 0.510 60	11399 0.565 53	10803 0.624 48	10247 0.684 44	9744 0.748 40	9278 0.814 36	ge.)
14225 0.292 89	13270 0.332 78	12447 0.375 69	11688 0.420 61	11011 0.468 54	10398 0.518	9849 0.572 44	9337 0.627 40	8873 0.686 36	8444 0.746 33	xt Pa
12890 0.266 81	12019 0.302 70	11268 0.341 62	10575 0.382 55	9957 0.425 49	9397 0.471 44	8895 0.520 40	8427 0.570 36	8002 0.623 33	7609 0.679 30	on Ne
-00	67 65	3.2	327	357	3 2 1	313	357	351	61 65	tinued
11.6	12.4	13.2	13.9	14.7	15.5	16.3	17.0	17.8	18.6	(Table 20 Continued on Next Page.)
22	16	17	18	19	20	21	22	23	24	(Table
				30.68	1.101			_		:
				300.31	1.136					
				2327.43	1.174					
				116.25	1.101					
				7\$x15}						
				8x16						
L										

	Deflec- tion equiv- alent to 1/32 Inch per	Foot of Span	В	In.	0.781	0.813	0.844	0.875		0.375		
	п.		0000	2000	****				1.14			
ı	fection		000	1800	131111		111		1.14 0.97			
	am De		2000	0001				111	1.14			
	Maximi in Pour cated		0049	1300		111		111	1.14	31489 0.225		
	s, and Stresses as indi		001	1400		111			1.14	29362 0.210 204		
	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated		9000	1300	9651 0.958				1.14	27235 0.195 189		
	oads in ches, fo Squa		400	1200	8850 0.884 33	8446 0.956 30	111		1.14	25108 0.180		
	Safe L		-	1100	8048 0.811 30	7675 0.876 28	7334		1.14	22981 0.165 160		
	Total		000	1000	7247 0.737 27	6905 0.796 25	6592 0.859 23	6293 0.923	1.14	20854 0.150 145		
	Refer-	Num-				2010	-0100	-0100	-04	-0100		
	Ratio of Span to Depth	-	4.7		19.4	20.1	20.9	21.7	Multiplying Factor	24.		
-	Span			FL	25	26	27	88	Multip	27		
	Weight per Lineal Foot Based ou	Green Timber	lbs. per	Lbs.			30.68					
	Section Modu- lus	pp:	9	In.3			300.31					
-	Moment of Inertia	12 12				fa.*			2327.43			
	Area Cross Section	1 - NA		Sq. In.			116.25					
1	Size	Surfaced	or 848	j.			7\x15\					
	Si	Bonnek	9	lp.			8x16					

92	90	6	2	=	22	4.	75	9	90	1
0.406	0.438	0.469	0.500	0.531	0.563	0.594	0.625	0.656	0.688	
			31346 0.534 163 182	29431 0.603 144	27736 0.676 128	26222 0.753 115	24827 0.834 103	23573 0.920		
		30098 0.423 167 175	28156 0.481 147	26429 0.543 130	24900 0.609 115	23534 0.678 103	22275 0.751 93	21143 0.828 84	20118 0.909 76	
30942 0.282 198 180	28683 0.327 171	26696 0.376 148	24966 0.427 130	23427 0.482 115	22064 0.541 102	20846 0.603 91	19723 0.668 82	18713 0.736 74	17798 0.808 67	
28980 0.265 186	26860 0.307 160	24995 0.352 139	23371 0.401 122	21926 0.452 108	20646 0.507 96	19502 0.565 86	18447 0.626 77	17498 0.690 69	16638 0.758 63	
27018 0.247 173	25037 0.287 149	23294 0.329 129	21776 0.374 113	20425 0.422 100	19228 0.473 89	18158 0.527 80	17171 0.584 72	16283 0.644 65	15478 0.708 59	
25056 0.229 161	23214 0.266 138	21593 0.305 120	20181 0.347 105	18924 0.392 93	0.440	16814 0.490 74	15895 0.543 66	15068 0.598 60	14318 0.657 54	
23094 0.212 148	21391 0.246 127	19892 0.282 110	18586 0.321 97	17423 0.362 85	16392 0.406 76	15470 0.452 68	14619 0.501 61	13853 0.552 55	13118 0.606 50	je.)
21132 0.194 135	19568 0.225 117	18191 0.258 101	16991 0.294 89	15922 0.332 78	14974 0.372 69	14126 0.414 62	13343 0.459 56	12638 0.506 50	11998 0.556 45	xt Pag
19170 0.176 123	17745 0.205 106	16490 0.235 92	15396 0.267 80	14421 0.301 71	13556 0.338 63	12782 0.377 56	12067 0.417 50	11423 0.460 45	10838 0.505 41	on Ne
12184	67 69		−61624	788		-0.69	0169	08	-28	Hnued
3 .	9.6	10.3	11.0	11.7	12.3	13.0	13.7	14.4	15.1	(Table 20 Continued on Next Page.
52	2	51	16	11	81	13	8	21	73	(Table
				34.63						
				382.81						
				3349.61						
				131.25						
				74x174						
			•	8x18						

	Deflec- tion equiv- alent to 1/32 Inch per Foot of	Span	D	In.	0.719	0.750	0.781	0.813	0.844	0.875	0.906
			2000	2000				111	111	111	
	Bection		100	1800	19185 0.994 70				1111		
	um Dei nds per			1800	16965 0.884 62	16193 0.961 56		1111	111	111	111
	Total Sale Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated			1500	15855 0.829 57	15129 0.901 53	14449 0.979 48			111	
	in Pounds, and Maxim for Unit Stresses in Pou Square Inch, as indicated			1400	14745 0 773 53	14065 0.841 49	13428 0.914 45	12844 0.987 41			
	Pound r Unit		*******	1300	13635 0.718 49	13001 0.781 45	12407 0.848 41	11862 0.917 38	11350 0.989 35		
	oads in ches, fo			1200	12525 0.663 45	11937 0.721 41	11386 0.783 38	10881 0.846 35	10405 0.913 32	9968	111
	Sale L			1199	11415 0.608 41	10873 0.661 38	10365 0.718 35	9899	9460	9057 0.900 27	8675
	Total			1000	10305 0.552 37	9809	9344 0.652 31	8917 0.705 29	8515 0.761 26	8145 0.818	7795
	Refer- ence Num-	per			- 04 00	04 00	c4 c0	H 04 00	H 04 00	-0900	-010
	Ratio of Span to Depth of	-	1/h		15.8	16.5	17.1	17.8	18.5	19.2	19.9
ľ	Span			Ft.	57	75	15	26	27	88	83
	Weight per Lineal Foot (Based on Green	Timber at 38	lbs. per cu. ft.)	Lbs.				34.63			
	Section Modu- lus	S-bb2	9	In.3				1.129			
	Moment of Inertia	pp ₂	21	In.4	5			1 181			
	Area Cross Section	A=bb		Sq. In.				131.25			-
		Surfaced	or S4S	In.				14x174			
	Size	Rough		In.				8x18			

0.938		0,438	0.469	0.500	0.531	0.563	0.594	0,625
	1.13	- : : : :				34526 0.607. 144 181	32627 0.676 129	30929 0.749
	1.13			35041 0.432 164 183	32897 0.487 145	31004 0.547 129	29291 0.609 116	27759 0.674 104
	0.97		33214 0.337 166 173	31079 0.384 146	29169 0.433 129	27482 0.486 114	25955 0.541 102	24589 0.599 92
	1.13	33405 0.276 179 174	31102 0.316 156	29098 0.360 136	27305 0.406 121	25721 0.455 108	24287 0.507 96	23004 0.562 86
	1.13	31142 0 257 167 163	28990 0 295 145	27117 0.336 127	25441 0.379 112	23960 0.425 100	22619 0.474 89	21419 0.524 80
333	1.13	28879 0.239 155 151	26878 0.274 134	25136 0.312 118	23577 0.352 104	22199 0.395 93	20951 0.440 83	19834 0.487 74
	1.13	26616 0.221 143 139	24766 0.253 124	23155 0.288 109	21713 0.324 96	20438 0.364 85	19283 0.406 76	18249 0.449 68
	1.13	24353 0.202 130 128	22654 0.232 113	21174	19849 0.298 88	18677 0.334 78	17615 0.372 70	16664 0.412 63
0.939	1.13	22090 0.184 118 116	20542 0.211 103	19193 0.240 90	17985 0.271 79	16916 0.304 71	15947 0.338 63	15079 0.375 57
- 0400		-0100 41	-01004	-0100 4	-0100	⇔6162.4¢	-0107	- 0100
20.6	Multiplying Factor	8.8	6	8.0	10.5	11.11	11.7	12.3
30	Mult	14	15	16	17	18	13	30
					1,094			
					1.121			
					1.150			
					1,094			
		P			7\$x19\$			
					8x20			

	Deflec- tion equiv- alent to 1/32	Foot of Span	Q	In.	0.656	0.688	0.719	0.750	0.781	0.813	0.844
			9000	2000	29370 0.826 105	27972 0.907 95	26673 0.991 87				
	ections		1000	1800	26352 0.743 94	25090 0.816 86	23917 0.892 78	22853 0.971			
	im Defi		9901	0001	23334 0.661 83	22208 0.725 76	21161 0.793 69	20211 0.863 63	19324 0.937 58		
	Maximi in Pour		9041	oner	21825 0.619 78	20767 0.680 71	19783 0.743 64	18890 0.809 59	18056 0.878 54	17282 0.950 50	
	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Sonare Inch. as indicated		907	1400	20316 0.578	19326 0.635 66	18405 0.694 60	17569 0.755 55	16788 0.820 50	16063 0.887 46	15395
	r Pound		1900	1300	18807 0.537 67	17885 0.589 61	17027 0.644 56	16248 0.701 51	15520 0.761 47	14844 0.824 43	14221
	oads in		1000	1200	17298 0.496 62	16444 0.544 56	15649 0.595 51	14927 0.647 47	14252 0.703 43	13625 0.760 39	13047
	Safe I		1001	7100	15789 0.454 56	15003 0.499 51	14271 0.545 47	13606 0.593 43	12984 0.644 39	12406 0.696 36	0.752
	Total		1000	1000	14280 0.413 51	13562 0.454 46	12893 0.496 42	12285 0.539 38	11716 0.586 35	11187 0.633 32	10699
-	Refer-	Num- ber			-0100	-0100	-0100	- 0100	- 67 00	-0100	-010
	Ratio of Span to	of Surfaced Timber	1/16	i	12.9	13.5	14.2	14.8	15.4	16.0	16.6
-	9	nado		Ff.	21	55	23	24	25	26	27
	Weight per Lineal Foot (Based	Green Timber at 38	lbs. per eu. fr.)	Lbs.				1.094			
	Section Modu- lus	bh²	9	In.4			į	1,121			
	Moment of Inertia	bha	13	In.3				1,150			
	Area Cross Section	A=bh		Sq. lu.				1.094			
	Sine	Surfaced		In.				(gariig			
	Ø	Rough		In.				OKA			

0.875	0.906	0.938	0.969	1.000		0.219	0.250	0.281	0.313
		111		111	1.12 0.97			20946 0.312 279 176	18802 0.385 226
					1.12 0.97		21247 0.222 319 178	18830 0.281 251	16898 0.346 203
					1.12	21609 0.151 371 181	18865 0.197 283	16714 0.249 223	14994 0.308 180
					1.12	20248 0.141 347 170	17674 0.185 265	15656 0.234 209	14042 0.289 169
					1.12	18887 0.132 324 159	16483 0.172 247	14598 0.218 195	13090 0.269 157
0.955					1.12	17526 0.123 301 147	15292 0.160 229	13540 0.203 181	12138 0.250 146
0.882	11998 0.946 31		111		1.12	16165 0.113 277 136	14101 0.148 211	12482 0.187 166	11186 0.231 134
0.808	10905 0.867 28	10459 0.928 26	10047 0.991 24		1.12	14804 0,104 254 125	0.135 0.135 194	0.171	10234 0,212 123
0.735	9812 0.788 25	9403 0.843	9025 0.901	8671 0.959 20	1.12	13443 0.0942 230 113	11719 0.123 176	10366 0.156 138	9282 0.192 111
40400	-6189	-0100	-0.00	H 01 00	H 63 44	401004	401004		
17.2	17.8	18.5	19.1	19.7	Multiplying Factor	8.8	10.1	11.4	12.6
88	50	80	31	88	Mult	~	90	6	10
		38.58	1.094				23.81	9	
		475.31	1.121				142.89	8	
		4634.30	1.150				678.76	77.	
		146.25	1.094				90,25	8	
		74x194					94x94		
		8x20					10x10		

For full explanation of this table see pages 68 to 70.	Deflection tion equiv- alent to 1/32	Foot of	<u>a</u>	! • . :	0 344	0.378	907.0	0.486	0.466	0.800	0.531
HRPH (N				(KK)2	17064 0.465 186	15644 0.554 156	14336 0.660 132	13271 0.784 114	12330 0.866 99	11521 0.986 86	
P MPP	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Stuare Inch, as indicated) X	15322 0 419 167	13997 0.499 140	12471 0 586 119	11911 0.678 102	110 69 0.779 89	10881 0.886 78	
IN TRD	num De inds per		· •	Ê	13591 0.372 148	12410 0 443 124	11407 0.520 105	10580 0.603 90	9800 0.698 78	9141 0.788 69	8667 0.890 60
n or th	Maxim s in Pou		•	<u> </u>	12725 0 349 139	11617 0 415 116	10675 0.487 99	9870 0.865 88	9166 0.649 73	8546 0.738 64	7997 0.884 56
1 B 1 B 1 1 C	de, and Streame			9	11859 0 326 129	10823 0.388 108	9942 0.455 92	9190 0.628 79		0.088 0.088 0.088	7436 0.778 52
ill exp	Loads in Pounds, and Maximum De Inches, for Unit Streeges in Pounds per Sunare Inch, as indicated			<u> </u>	10993 0.302 120	10030 0.380 100	9210 0.422 N5	H510 0.490 73	7895 0.568	7886 0.040 86	0.728 0.728
ا ا ا	Loads i			(N)2.1	10128 0.279 111	9236 0.332 92	847.0 880.0 87	7829 0.452 67	,261 0.519 58	0.591	4316 0.667 45
	l Safe			2	9262 0.256 101	9443 0.305 84	7745 0.357 72	7149 0.415 61	0.476 0.476 68	0.642 46	5756 0.612 41
1	Tota			8	8396 0.233	7649 0.277 76	7013 0.325 66	6469 0.377 55	0.438 48	0.402 422	5196 0.656 37
	Refer-	Ner La			-2122	-25	-0.00	-26	01 50	-00	61 65
	Ratio of Span to	Surfaced Timber	₹.		13.9	15.2	16.4	17.7	19.0	20.3	21.5
	S			Fr	=	21	13	7	16	6	
	Weight per Lineal Foot (Based	Green Timber	를 . 라. 라.	T.	! !		 1	1,108			
	Section Modu- lus	्र वि	e .	In.8			9	1.166			
nued.	Moment of Inertia	- I = I	12	In.4			0	1.227			
20—Continued.	Area Crose Section	¥=b		£ E	1 1		ě	1 108			
- 68 30	Sise	Surfaced 8191E	or P45	Ę	 		10-10	S A X S A			
TABLE	έδ	Rough)	5			Ş				

0.563	169.0		0.250	0.281	0.313	0.344	0.375	0,406	0.438
2 1 2 1	143	1.17				25083 0.384 228 174	22934 0.458 191	21105 0.537 162	19546 0.623 140
		1.17			24840 0.286 248 173	22543 0.346 205	20606 0.412 172	18957 0.483 146	17551 0.561 125
8035 0.997 54	111	1.17		24556 0.206 273 170	22018 0.254 220	20003 0.307 182	18278 0.366 152	16809 0.430 129	15556 0.498 111
7506 0.935 50		1.17	25959 0.153 325 180	23005 0.193 256	20652 0.238 207	18733 0.288 170	17114 0.343 143	15735 0.403 121	14559 0.467 104
0.873 46	6565 0 972 41	1.17	24213 0.142 303 168	21454 0.180 238	19256 0.222 193	17463 0.269 159	15950 0.320 133	14661 0.376 113	13561 0.436 97
6448 0.810	0.902 38	1.17	22467 0.132 281 156	19903 0.167 221	17860 0.207 179	16193 0.250 147	14786 0.297 123	13587 0.349 104	12564 0.405 90
5919 0.748 39	5562 0.833 35	1.05	20721 0.122 259 144	18352 0.155 204	16464 0.191 165	14923 0.231 136	13622 0.275 114	12513 0.322 96	11566 0.374 83
5390 0.686 36	5061 0.764	1.17	18975 0,112 237 132	16801 0.142 187	15068 0.175 151	13653 0.211 124	12458 0.252 104	11439 0.295 88	10569 0.343 75
4861 0.623 32	4560 0.694 29	1.17	17229 0.102 215 120	15250 0.129 169	13672 0.159 137	12383 0.192 113	11294 0.229 94	10365 0.268 80	9571 0.312 68
-0100	04 00	H 04-4	-01,00 -			- F1 52 4	- 24 50	- 2400	- 24 50
22.7	24.0	Multiplying Factor	80	4.0	10.4	11.5	12.5	13.6	14.6
20	19	Multi	00	9	9	11	12	13	25
					28.83	1.098			
					209.40	1.145			
					1204.03	1.196			
					109.25	1.098			
	111				94x11§				
					10x12				- 7

143

	Deflec- tion equiv- alent to 1/32 Inch per Foot of	Span	Ω	In.	0.469	0.500	0.531	0,563	0.594	0.625	0.656
ľ	.9		9000	2000	18183 0.715 121	16989 0.813 106	15946 0,918 94			:::	
	lections		000	1900	16321 0.643 109	15244 0.732 95	14302 0.826 84	13449 0.927 75		111	
	um Def	ľ	4000	1000	14460 0.572 96	13499 0.650 84	12659 0.734 75	11897 0.824 66	0.917 0.917		
	Maxim in Pou idicated		902	noer	13529 0.536 90	12627 0.610 79	11837 0.688 70	0.773 62	10477 0.860 55	9893	
	s, and Stresses	ľ	2001	1400	12598 0.500	11754 0.569 73	11015 0.643 65	10345 0.721 57	9742 0.802 51	9195 0.889 46	8704
	Total Safe Loads in Pounds, and Maximum Deflections Inches, for Unit Stresses in Pounds per Square Inch, as indicated		0001	1000	11667 0.465 78	10882 0.528 68	10193 0.597 60	9569 0.670 53	9007	8497 0.826 42	8039
	Joads ir		4000	1200	10737 0.429 72	10009 0.488 63	9372 0.551 55	8793 0.618 49	8272 0.688 44	0.762	7374
	Safe I		900	nwr.	9806	9137 0.447 57	8550 0.505 50	8017 0.566 45	7537 0.631 40	7101 0.699 36	6709
	Tota		9000	TOW	8875 0.358 59	8264 0.407 52	7728 0.459 45	7241 0.515 40	6802 0.573	6403 0.635 32	6044
	Refer- ence Num-	per			64 50		63 69	- 63 63	-0100	61 66	09
ľ	Ratio of Span to Depth of	Surfaced	1/b		15.7	16.7	17.7	18.8	19.8	20.9	21.9
	Span			Ft.	15	16	17	18	19	30	21
ľ	Weight per Lineal Foot (Based on Green	Timber at 38	lbs. per cu. ft.)	Lbs.				1.098			
ľ	Section Modu- lus	S CPS	9	In.ª			000	1.145			
	Moment of Inertia	P P	123	ln.4			907 700	1.196			
	Area Cross Section	A==bh	ē	Sq. In.			20 001				
	Size	Surfaced	or S4S	In.			111-10	PEXIL			
	85	Rough		I.				10X12			

0.688	0.719		0.281	0.313	0.344	0.375	0.406	0.438	0.469
		1.04					29160 0.457 192 173	27006 0.530 166	25132 0.608 144
		1.15			31092 0.295 242 184	28448 0.350 203	26200 0.412 173	24258 0.477 149	22568 0.547 129
		1.15		30429 0.216 261 180	27596 0.262 215	25242 0.311 180	23240 0.396 153	21510 0.424 132	20004 0.486 114
		1.15		28506 0.203 244 169	25848 0.245 202	23639 0.292 169	21760 0.343 143	20136 0.397 123	18722 0.456 107
		1.15	29613 0.153 282 175	26583 0.189 228	24100 0.229 188	22036 0.273 157	20280 0.820 134	18762 0.371 115	17440 0.426 100
1.000		1.05	27476 0.142 262 163	24660 0.176 211	22352 0.213 174	20433 0.253 146	18800 0.297 124	17388 0.344 106	16158 0.395 92
0.923		1.15	25339 0.131 241 150	0.162 0.162	20604 0.196 161	18830 0.234 134	17320 0.274 114	16014 0.318 98	14876 0.365 85
6348 0.846 29	6015 0.925 26	1.15	23202 0.121 221 138	20814 0.149 178	18856 0.180 147	17227 0.214 123	15840 0.251 104	14640 0.292 90	13594 0.334 78
5713 0.769 26	5408 0.841 24	1.15	21065 0.110 201 125	18891 0.135 162	17108 0.164 133	15624 0.195 112	14360 0.228 95	13266 0.265 81	12312 0.304 70
- 0100	- 6150	-014	-01004	-0400		-016	H01004	-010	-00
23.0	24.0	Multiplying Factor	8.0	8.8	8.6	10.7	11.6	12.4	13.3
53	83	Mult	6	10	=	12	13	2	15
					33.85	1.091			
					288.56	1.132			
					1947.80	1.174			
					128.25	1.091		1	
					94x134				
					10x14				

3 to 70.	Deflec- tion equiv- alent to 1/32	Foot of Span	Q	ln.	0.500	0.531	0.563	0.594	0.625	0.656	889 0
For full explanation of this table see pages 68 to 70.		-	8	300	23498 0.692 126	22045 0.781 111	20771 0.876 99	19597 0.976 88			
l aas a	fection		9	1001	21094 0.623 113	19783 0.703 100	18633 0.789 89	17573 0.879 79	16637 0.973 71		
is tabl	um De nds per		9	2001	18690 0.553 100	17521 0.625 88	16495 0.701 79	15549 0.781 70	14713 0.865 63	13945 0.954 57	
n of th	Maxim in Pou		3	0001	17488 0.519 94	16380 0.586 83	15426 0.657 73	14537 0.732 66	13752 0.811 59	13029 0.895 53	12365 0.981 48
anation	ls, and Stresses			P)+1	16286 0.484 87	15259 0.547 77	14357 0.613 68	13525 0.684 61	12790 0.757 85	12113 0.835 49	11491 0.915 45
ll expl	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Sennare Inch, as indicated		9	000	15084 0.450 81	14128 0.508 71	13288 0.570 63	12513 0.635 56	11828 0.703 51	11197 0.775 46	10617 0.850 41
For fu	Loads in nches, fo	•	9	151 151	13882 0.415 74	12997 0.469 66	12219 0.526 58	11501 0.586 52	10866 0.649 47	10281 0.716 42	9743 0.785 38
	l Safe]		3	3	12680 0.381 68	11866 0.430 60	11150 0.482 53	10489 0.537 47	9904 0.595 42	9366 0.656 38	8869 0.719 35
	Tota		901	3	11478 0.346 62	10735 0.391 54	10081 0.438 48	9477 0.488 43	8942 0.541 38	8449 0.596 34	7996 0.654 31
	Refer-	Num- per			357	-218	63 65	-28	-618	-018	-618
	Ratio of Span to	of of Surfaced Timber	1/h		14.2	15.1	16.0	16.9	17.8	18.7	19.6
	5	ned.		7.	16	17	18	19	જ્	22	22
	Weight per Lineal Foot (Based	Green Timber at 38	lbs. per cu. ft.)	Lbs.				33.85			
	Section Modu- lus	bh²	9	In.3				288.56	-		
nued.	Moment of lnertia	thd =[21	la.				1947.80			
20—Continued	Area Cross Section	A=bh		Sq. In.				128.25			
LE 20-	Size	Surfaced	or S4S	lp.				9\$x13}			
TABLE	SS.	Rough	'	렴				10×14			

0.719	0.750	0.781	0.813		0.344	0.375	0.406	0.438	0.469
				1.13				35696 0.462 191 185	33237 0.530 166
				1.13			34613 0.358 200 179	32072 0.416 172	29855 0.477 149
		111		1.13		33325 0.271 . 208		28448 0.370 152	26473 0.424 132
				1.13	34162 0.214 233 176	31213 0.254 195	28760 0.299 166	26636 0.347 143	24782 0.398 124
				1.13 0.96 1.04	31856 0.200 217 164	29101 0.237 182	26809 0.279 155	24824 0.324 133	23091 0.371 115
10089 0.930 38	111			1.13 0.96 1.04	29550 0.185 201 153	26989 0.221 169	24858 0.259 143	23012 0.300 123	21400 0.345 107
9253 0.858 34	8808 0.934 31		111	1.13 0.96 1.04	27244 0.171 186 141	24877 0.204 156	22907 0.239 132	21200 0.277. 114	19709 0.318 99
8417 0.787 31	8007 0.857 29	7617 0.929 26		1.13	24938 0.157 170 129	22765 0.187 142	20956 0.219 121	19388 0.254 104	18018 0.292 90
7581 0.715 28	7205 0.779 26	6848 0.844 23	6519 0.914	1.13	22632 0.143 154 117	20653 0.170 129	19005 0.199 110	17576 0.231 94	16327 0.265 82
-0100	H 61 00	40100	04 00	- 03 44			c1 co -4	c4 50 4	04 00
20.4	21.3	22.2	23.1	Multiplying Factor	10	9	10.1	10.8	11.6
23	24	25	36	Mult	=	12	13	14	15
		33.85					1.086		
		288.56					380.40		
		1.174					1.158		
		128.25					1,086		
		94x134					9 1 x15 1 3		
		10x14					10x16		

	Deflec- tion equiv- alent to 1/32	Span	D	lu.	0.500	0.531	0.563	0.594	0.625	0.656	0.688
-			0000	2000	31078 0.603 146	29179 0.681 129	27480 0.763 114	25961 0.850 102	24603 0.942 92	111	10
	flections		900	1300	27908 0.543 131	26195 0.613 116	24662 0.687 103	23291 0.765	22065 0.848 83	20028 0.935 75	11
	um De		0000	0001	24738 0.483 116	23211 0.545 102	21844 0.611 91	20621 0.680 81	19527 0.754 73	18512 0.831 66	17593
	Maxim in Pou		904	mort	23153 0.453 108	21719 0.511 96	20435 0.572 85	19286 0.637 76	18258 0.706 69	17304 0.779 62	16440
	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated		909	1400	21568 0.422 101	20227 0.477 89	19026 0.534 79	17951 0.595 71	16989 0.659 64	16096 0.728 58	15287
	r Pound or Unit		0000	1300	19983 0.392 94	18735 0.443 83	17617 0.496 73	16616 0.552 66	15720 0.612 59	14888 0.676 53	14134
	oads in		900	1200	18398 0.362 86	17243 0.409 76	16208 0.458 68	15281 0.510 60	14451 0.565 54	13680 0.624 49	12981
	Safe I		100	0017	16813 0.332 79	15751 0.375 69	14799 0.420 62	13946 0.468 55	13182 0.518 49	12472 0.572 45	11828
	Tota		900	1000	15228 0.302 71	14259 0.341 63	13390 0.382 56	12611 0.425 50	11913 0.471 45	11264 0.520 40	10675
	Refer-	Num-			- 0100	- 61 60	-6169	-6160	-0100	-0100	-010
	Ratio of Span to Depth	Surfaced	1/h		12.4	13.2	13.9	14.7	15.5	16.3	17.0
	Span			Ft.	16	17	18	19	30	55	22
-	Weight per Lineal Foot (Based on	Circen Timber	lbs. per cu. ft.)	Lbs.				38.88			
	Section Modu- lus	bh ²	9	Jn.8				380.40			
	Moment of Inertia	bhs	12	ln.4				1.158			
	Area Cross Section	A=bh		Sq. In.				1.086			
	Sine	Surfaced	or 848	In.				94x154			
	55	Roneh		In.				10x16		-7	

0.719	0.750	0.781	0.813	0.844	0.875		0.375	0.408	0.438
:::						1.12 0.97 1.03			
111		1111				1.12			
16754 0.997 55	111				Till	1.12		39205 0.282 201 180	36330 0.327 173
15651 0.935 51	111			111	111	1.12	39853 0,225 221 182	36719 0.265 188	34021 0.307 162
0.872 47	13851 0.950 43	111				1.12 0.97 1.03	37161 0.210 206 170	34233 0.247 176	31712 0.287 151
13445 0.810 44	12795 0.882 40	12223 0.958 37				1.12	34469 0.195 192 158	31747 0.229 163	29403 0.266 140
0.748	11739 0.814 37	11208 0.884 34	10699 0.956 31			1.12	31777 0.180 177 146	29261 0.212 150	27094 0.246 129
0.686	10683 0.746 33	10193 0.811 31	9723 0.876 28	9285 0.945 26		1.12	29085 0.165 162 134	26775 0.194 137	24785 0.225 118
10136 0.623 33	9627 0.679 30	9178 0.737 28	8747 0.796 25	8345 0.859 23	. 7971 0.923	1.12	26393 0.150 147 122	24289 0.176 125	22476 0.205 107
- 09 00	- 0100	0100	- 0100	- 0100	-0100	H 614	-01004	-00	-6480
17.8	18.6	19.4	20.1	20.9	21.7	Multiplying Factor	67.	8.8	9.6
23	25	55	26	27	88	Multip	12	133	14
			38.88				50	1.083	
			380.40				000	1.114	
			2948.07					1.145	
			1,086	1				1.083	
			94x154					99x179	
			10x16					10x18	

	Deflec- tion equiv- alent to 1/32	Foot of Span	A	In.	0.469	0.500	0.531	0.563	0.594	0.025
ľ	-		9000	2000		39698 0.534 165 182	37274 0.603 146	35110 0.676 130	33186 0.753 116	31442
	flections		9000	1900	38096 0.423 169 175	35658 0.481 149	33472 0.543 131	31520 0.609 117	29784 0.678 104	0.751
	um De		000	7000	33790 0.376 150	31618 0.427 132	29670 0.482 116	27930 0.541 103	26382 0.603 93	24978
	Maxim s in Pou			mer	31637 0.352 141	29598 0.401 123	27769 0.452 109	26135 0.507 97	24681 0.565 87	23362
	de, and Stresses		9000	1400	29484 0.329 131	27578 0.374 115	25868 0.422 101	24340 0.473 90	22980 0.527 81	21746
	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Sonare Inch, as indicated		9000	1900	27331 0.305 121	25558 0.347 107	23967 0.392 94	22545 0.440 84	21279 0.490 75	20130
	Loads i		900	1500	25178 0.282 112	23538 0.321 98	22066 0.362 87	20750 0.406	19578 0 452 69	18514
	Safe		90.	0011	23025 0.258 102	21518 0.294 90	20165 0.332 79	18955 0.372 70	17877 0.414 63	16898
	Tota		1000	7000	20872 0.235 93	19498 0.257 81	18264 0.301 72	17160 0.338 64	16176 0.377 57	15282
		Num- ber			H 54 55 44	⇔ €3504	63 65	51100	- 0110	-00
	Ratio of Span to	of Surfaced Timber	1/Б		10.3	11.0	11.7	12.3	13.0	13.7
		obau		F.	15	16	17	18	19	20
	Weight per Lineal Foot (Bused	Green Timber	lbs. per cu. ft.)	Lbs.			43.89			
	Section Modu- lus	S.	9	In.5			484.90			
	Moment of Inertia	pp ₂	12	In,4			4242.84		-	
	Area Cross Section	A=bh		Sq. In.			1 083	3		
-	Size	Surfaced	or S48	ln.			94x174			
	52	Rough		In.			10x18			

	97 0.97 03 1.03	1.11 1.11 0.97 0.97 1.03 1.03	1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.1	10981 0.965 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.1	10981 0.965 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.1	9867 10981	1 9867 10881 2 0.877 0.966 1 9453 2 2 2 2 0.059 2 1 1.11 1.11 1.11 1.11 1.11 1.11 1.11	6 2 0.877 0.965 6 2 0.877 0.965 7 0.965 7 0.965 7 0.965 7 0.965 7 0.965 7 0.965 7 0.965 7 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.	1 9867 10881 2 0 877 0 986 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 9867 10881 2 0 877 0 986 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 9867 10881	1 9867 10881 2 0.877 0.966 1 9453 2 21 2 0.039 2 1 1.11 1.11 1.11 1.11 1.11 1.11 1.11
1 10785 11982 13179 14376 2 0.761 0.837 0.913 0.999 2 0.818 0.900 0.982 3 25 27 30 1 9867 10981 2 0.877 0.965 3 23 24 1 111 1.11 1.11 1.11 1 111 1.11 1.11 1 111 1.11 1.11 1 103 1.03 1.03 1.03 1.03	1 10785 11932 13179 2 0.761 0.837 0.913 3 0.818 0.900 0.982 3 25 27 0.965 1 9463 22 25 2 0.877 0.965 3 2 23 25 4 1.03 1.03 1.03 4 1.03 1.03 1.03	1 10785 11982 0.761 0.837 2 0.781 0.905 2 0.818 0.906 2 0.87 0.965 2 0.87 0.965 1 0.83 0.93 2 1.11 1 1.11 1 1.11 1 0.97 0.97 2 0.97 0.97		2005 Managara Cara Van	27 18.5 28 19.2 29 19.9 30 20.6 Multiplying Factor	28 28 29 30 MG						

	Deflec- tion equiv- alent to 1/32 Inch per Foot of	Span		In.	0.438	0.469	0.500	0,531	0,563	0.594
1	.5		0000	2000					43720 0.607 146 181	41291 0.676 130
	flection		1000	ner			44380 0.432 167 183	41667 0,487 147	39260 0.547 131	37069
	um De		(Ann	Tunn		42083 0.337 168 173	39362 0.384 148	36945 0.433 130	34800 0.486 116	32847
	Maxim in Pou		9024	mer	42335 0.276 181 174	39407 0.316 158	36853 0.360 138	34584 0.406 122	32570 0.455 109	30736
	ls, and Stresses	-	1400	Na.	39467 0.257 169 163	36731 0.295 147	34344 0.336 129	32223 0.379 114	30340 0.425 101	28625
	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated		1900	1900	36599 0.239 157 151	34055 0.274 136	31835 0.312 119	29862 0.352 105	0.395 0.395	26514
	coads in aches, fo		10/01	1200	33731 0.221 145 139	31379 0.253 126	29326 0.288 110	27501 0.324 97	25880 0.364 86	24403
	Safe J		1100	0011	30863 0.202 132 128	28703 0.232 115	26817 0.264 101	25140 0,298 89	23650 0.334 79	22292 0.372
	Tota		1000	0001	27995 0.184 120 116	26027 0.211 104	24308 0.240 91	22779 0,271 80	21420 0.304 71	20181
		Det.						- 01 00	H 63 60 44	-010
	Ratio of Span to Depth of	Timber	1/h		9. 9.	9.2	8.6	10.5	1.1	11.7
	Span			Ft.	4	19	16	11	18	19
	Weight Per Lineal Foot (Based on Green	at 38	eu. ft.)	Lbs.			1.079			
	N N N N N N N N N N N N N N N N N N N	S oh		In.3			1.107			
	Moment of Inertia]== DB*		Ju.4			11.135			
	Area Cross Section	A=bh		Sq. ln.		1 6	1.079			
	Size	Surfaced S1S1E or S4S		In.			94x194			
	22	Rough		1			10x20			

10x20 94:19 185.25 5870.11 602.06 48.90 12.3 2 0.775 11.040 11	10											 I
94x194 185.25 5870.11 602.06 48.90 25 115.4 2 0.375 619 115.7 115.4 115.	0.625	0.656	0.688	0.719	0.750	0.781	0.813	0.844	0.875	906.0	0.938	
94-194 185-25 5870-11 602.06 48.90 25 115.9 2 0.538 0.549 0.545 0.549 0.												
94.194 185.25 5570.11 602.06 48.90 25 115.4 2 0.575 14410 15218 25129 2734 2942 1945 1945 1945 1945 1945 1945 1945 1945												
94x194 185.25 5870.11 602.06 48.90 12.8 12.0 12.8 12.0 5.80 6.645 19.645												
94x194 185.25 5870.11 602.06 48.90 25 15.4 2 0.683 0.694 0.750 0.812 0.494 0.487 0.701 0.812 0.494 0.487 0.701 0.812 0.494 0.827 0.828 0.8												
94x194 185.25 5870.11 602.06 48.90 12.3 19.02 11.0 23110 23118 1.079 1.136 1.107 1.079 25 15.4 2 0.633 0.859 0.756 0.75							20345 0.887 47					
94x194 185.25 5870.11 602.06 48.90 17.8 1 19.06 17.8 1 19.02 21110 17.14 1809 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.												
94x194 185.25 5870.11 602.06 48.90												1
94x194 185.25 5870.11 602.06 48.90												90
94x194 185.25 5870.11 602.06 48.90	19102 0.375 57	18083 0.413 52	17174 0.454 47	16325 0.496 43	15546 0.539 39	14837 0.586 36	14169 0.633 33	13540 0.683 30	12971 0.735 28	12422 0.788 26	11913 0.843 24	2
94x194 185.25 5870.11 602.06 48.90		01 60	67 65	-0.00	67 65	32	- 28	01 60	01 80	35-	- 67 89	Ponut
94x194 185.25 5870.11 602.06 48.90	12.3	12.9	13.5	14.2	14.8	15.4	16.0	16.6	17.2	17.8		6
94×194 185.25 5870.11 602.06 1.079 1.135 1.107	8	12	23	23	24	22	38	27	8	53	8	/mahla
94x194 185.25 5870.11					8	1.079						
9\$x19\$ 185.25 1.079					80.0	1.107						
99. 2 1.9 5.					5870 11	1.135						
					185 95	1.079						
10420												
					10+30							

Size		Area Cross Section	Momen: of Inertia	Section Modu- lus	Weight per Lineal Foot (Based		Ratio of Span to	Refer-		Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Source Inch. as indicated	Loads in Pounds, and Maximum De Inches, for Unit Stresses in Pounds per Science Inch as indicated	Pound or Unit	in Pounds, and Maxim, for Unit Stresses in Pou	Maxim in Pou	um De	flection		Deflec- tion equiv- alent to 1/32
Rough Su	Surfaced	A=bh	*4d	bh²	Green Timber	page	of Surfaced Timber	Num- ber			5							Foot Spar
6	SES		12	9	lbs. per cu. ft.)		1/h								T		T C	D
i.	ij	Sq. In.	li.	In.3	Lbs.	Ft.			1000	1100	1200	1300	1400	1500	1600	1800	2000	Ju.
						31	19:1	-0100	11434 0.901 22	12729 0.991 25			4 1					0.969
10x20 99	94x194	185.25	5870.11 1.135	602.06	48.90 1.679	22	19.7	-0100	10985 0.959 21									1.000
						Mult	Multiplying Factor	-24	1.11 0.97 1.03	1.11	1.11	1 11 11 0 3 1 0 3	1.11	0.97	1.11	1.11	1.11	
	İ					œ	8.3	6150-4	20841 0.102 217 120	22953 0.112 239 132	25065 0.122 261 144	27177 0.132 283 156	29289 0.142 305 168	31401 0.153 327 180				0.250
12x12 11	114x114	132.25	1457.51	253.48 1.136	34.90		9.4	-01004	18466 0.129 171	20344 0.142 188	22222 0.155 206	24100 0.167 223	25978 0.180 241	27856 0.193 258	29734 0.206 275 170			0.281
						10	10.4	H 0100 4	16551 0.159 138	18241 0.175 152	19931 0.191 166	21621 0.207 180	0.222	25001 0.238 208	26691 0.254	30071 0.286 251		0.313

0.344	0.375	0.406	0.438	0.469	0.500	0.531	0.563	0.594	0.625
30336 0.384 174	27761 0.458 193	25546 0.537 164	23651 0.623 141	21998 0.715 122	20562 0.813 107	19287 0.918 95			
27264 0.346 207	24943 0.412 173	22946 0.483 147	21237 0.561 126	19746 0.643 110	18450 0.732 96	17299 0.826 85	16270 0.927 75		
24192 0.307 183	22125 0.366 154	20346 0.430 130	18823 0.498 112	17494 0.572 97	16338 0.650 85	15311 0.734 75	14393 0.824 67	13571 0.917 60	
22656 0.288 172	20716 0.343 144	19046 0.403 122	17616 0.467 105	16368 0.536 91	15282 0.610 80	14317 0.688 70	13454 0.773 62	12683 0.860 56	11979 0.953 50
0.269	19307 0.320 134	17746 0.376 114	16409 0.436 98	15242 0.500 85	14226 0.569 74	13323 0.643 65	12515 0.721 58	11793 0.802 52	11133 0.889 46
19584 0.250 148	17898 0.297 124	16446 0.349 105	15202 0.405 91	14116 0.465 78	13170 0.528 69	12329 0.597 60	11576 0.670 54	10903 0.745 48	10288 0.826 43
18048 0.231 137	16489 0.275 115	15146 0.322 97	13995 0.374 83	12990 0.429 72	12114 0.488 63	11335 0.551 56	10638 0.618 49	10013 0.688 44	9443 0.762 39
16512 0.211 125	15080 0.252 105	13846 0.295 89	12788 0.343 76	11864 0.393 66	11058 0.447 58	10341 0.505 51	9699 0.566 45	9124 0.631 40	8598 0.699 36
14976 0.192 113	13671 0.229 95	12546 0.268 80	11581 0.312 69	10738 0.358 60	10002 0.407 52	9347 0.459 46	8760 0.515 41	8234 0.573 36	7753 0.635 32
	-0.6		-00	-00	01 00	228	3.22	200	-08
11.5	12.5	13.6	14.6	15.7	16.7	17.7	18.8	19.8	9.02
=	12	13	41	15	16	11	18	19	50
				34.90	1.089				
				253.48	1.136				
				1457.51	1.185				
				132.25	1.089				
				12x12 114x114					
				2x12		•			

Deflec- tion equiv- alent to 1/32 Inch per Foot of	Span		In.	0.656	0.688	0.719		0.281	0.313
,E		2000					1.14		1
flection		1800					1.14		
num De inds per		1600					1.14		36854
Maxim s in Pou		1500			111	111	1.14		34525
ds, and Stresse ch, as in		1400		10537 0.981 42			1.14	35877 0.153 285 175	32196
Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated		1300		9732 0.911 39	9216 1.000 35		1.14	33288 0.142 264 163	29867
Loads in		1200		8927 0.841 35	8448 0.923 32		1.14	30699 0.131 244 150	27538
Safe 1		1100		8122 0.771 32	7680 0.846 29	7282 0.925 26	1.14	28110 0.121 223 138	25209
Tota		1000		7317 0.701 29	6912 0.769 26	6547 0.841 24	1.14	25521 0.110 203 125	22880
Refer- ence Num-	per			-0100	- 0100	-0100	-04		H 69
94	Surfaced	(P		21.9	23.0	24.0	Multiplying Factor	8.0	6.8
Span			Ff.	21	22	23	Mult	6	10
Weight per Lineal Foot (Based on Green	Timber at 38 lbs. per	eu. ft.)	Lbs.		34.90	1.089		40.97	1.082
Section Modu- hus	S S		In.		253.48	1.136		349.31	1.122
Moment of Inertia	leha 12		In.4		1457.51	1,185		2357.86	1.164
Area Cross Section	A=bh		Sq. In.		132.25	1,089		155.25	1.082
Siae	Surfaced S1S1E or S4S		In.		114x113			114x134	
85 -	Rough		ii.		12x12			12x14	

			•							
0.344	0.375	0.406	0.438	0.469	0.500	0.531	0.563	0.594	0.625	
		35288 0.457 194 173	32707 0.530 167	30446 0.608 145	28445 0.692 127	26704 0.781 112	25143 0.876 100	23722 0.976 89		
37655 0.295 245 184	34446 0.350 205	31706 0.412 174	29379 0.477 150	27340 0.547 130	25535 0.623 114	23964 0.703 101	22555 0.789 90	21272 0.879 80	20133 0.973 72	
33421 0.262 217	30564 0.311 182	28124 0.366 155	26051 0.424 133	24234 0.486 115	22625 0.553 101	21224 0.625 89	19967 0.701 79	18822 0.781 71	17805 0.865 64	
31304 0.245 203	28623 0.292 170	26333 0.343 145	24387 0.397 124	22681 0.456 108	21170 0.519 95	19854 0.586 83	18673 0.657 74	17597 0.732 66	16641 0.811 59	
29187 0.229 190	26682 0.273 159	24542 0.320 135	22723 0.371 116	21128 0.426 101	19715 0.484 88	18484 0.547 78	17379 0.613 69	16372 0.684 62	15477 0.757 55	
27070 0.213 176	24741 0.253 147	22751 0.297 125	21059 0.344 107	19575 0.395 93	18260 0.450 82	17114 0.508 72	16085 0.570 64	15147 0.635 57	14313 0.703 51	
24953 0 196 162	22800 0.234 136	20960 0.274 115	19395 0.318 99	18022 0.365 86	16805 0.415 75	15744 0.469 66	14791 0.526 59	13922 0.586 52	13149 0.649 47	ge.)
22836 0.180 148	20859 0.214 124	19169 0.251 105	17731 0.292 90	16469 0.334 78	15350 0.381 69	14374 0.430 60	13497 0.482 54	12697 0.537 48	11985 0.595 43	xt Pa
20719 0.164 135	18918 0.195 113	17378 0.228 95	16067 0.265 82	14916 0.304 71	13895 0.346 62	13004 0.391 55	12203 0.438 48	11472 0.488 43	10821 0.541 39	on Ne
-004	-90	cs cs -4	-226	-0100	-00	- 2 8	-0.00	67 65	-0.8	tinued
80.	10.7	11.6	12.4	13.3	14.2	15.1	16.0	16.9	17.8	(Table 20 Continued on Next Page.
=	13	. 13	14	15	16	11	18	19	8	(Table
				40.97	1.082					
				349.31	1.122					
				2357.86	1.164					
		_		155.25	1.082					
				12x14 114x134		•				
				12x14						

	Deflec- tion equiv- alent to 1/32 Inch per	Span	D	In.	0.656	0.688	0,719	0.750	0.781	0.813	
	.5	7	0000	2000							1.12
	lections		900	0081		111	111		111	111	1.12
	um Def		0000	0001	16884 0 954 57						1.12
	Maximt in Pour dicated		9043	1300	15775 0.895 54	14969 0.981 49					1.12
	s, and Stresses h, as in		907	1400	14666 0,835 50	13911 0 915 45					1.12
	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated		1000	0001	13557 0.775 46	12853 0.850 42	0.930 38				1.12
	oads in ches, fo		000	TOWN.	12448 0.716 42	11795 0 785 38	11202 0.858 35	10659 0.934 32	III		1.12
	Safe L		_	707	11339 0.656 39	10737 0.719 35	10190 0.787 32	9689 0.857	9226 0.929	111	1.12
	Total		_	0001	10230 0.596 35	9679	9178 0.715 29	8719 0.779	8294 0.844	7894	1.12
	Refer- ence Num-	per			01 02	-01:0	₩ 01 00	- 64 85	01 00	-0100	69
	Ratio of Span to Depth	~	1/h		18.7	19.6	20.4	21.3	22.2	23.1	Multiplying
	Span			Ft.	12	22	23	24	52	36	Multip
	Weight per Lineal Foot (Based on Green	Timber at 38	lbs. per cu. ft.)	Lbs.				1.082			
	Section Modu- lus	S= bb2	9	In.1				349.31			
in a constant	Moment of Inertia	PP3	12	In.				1.164			
3100	Area Cross Section	A=bh		Sq. In.				1,082			
	Size	Surfaced	or 848	li.				114x134			
	£	Rough		Ju.	,			12x14			

0.344	0.375	0.408	0.438	0.469	0.500	0.531	0.563	0.594	0.625
			43182 0.462 193 185	40234 0.530 168	37607 0.603 147	35301 0.681 130	33253 0.763 115	31426 0.850 103	29759 0.942 93
		41887 0.358 201 179	38798 0.416 173	36140 0.477 151	33771 0.543 132	31691 0.613 117	29843 0.687 104	28194 0.765 93	26689 0.848 83
	40380 0.271 210 172	37165 0.318 179	34414 0.370 154	32046 0.424 134	29935 0.483 117	28081 0.545 103	26433 0.611 92	24962 0.680 82	23619 0.754 74
41348 0.214 176	37821 0.254 197	34804 0.299 167	32222 0 347 144	29999 0.398 125	28017 0.453 110	26276 0.511 97	24728 0.572 86	23346 0.637 77	22084 0.706 69
38557 0.200 219 164	35262 0.237 184	32443 0.279 156	30030 0.324 134	27952 0.371 116	26099 0.422 102	24471 0.477 90	23023 0.534 80	21730 0.595 72	20549 0.659 64
35786 0.185 153	32703 0.221 170	30082 0.259 145	27838 0.300 124	25905 0.345 108	24181 0.392 94	226A6 0.443 83	21318 0.496 74	20114 0.552 66	19014 0.612 59
32975 0.171 187 141	30144 0.204 157	27721 0.239 133	25646 0.277 115	23858 0.318 99	22263 0.362 87	20861 0.409 77	19613 0.458 68	18498 0.510 61	17479 0.565 55
30184 0.157 171 129	27586 0.187 144	25360 0.219 122	23451 0 254 105	21811 0.292 91	20345 0.332 80	19056 0.375 70	17908 0.420 62	16882 0.468 56	15944 0.518 50
27393 0.143 156	25026 0.170 130	22999 0.199 111	21262 0.231 95	19764 0.265 82	18427 0.302 72	17251 0.341 63	16203 0.382 56	15266 0.425 50	14409 0.471 45
		-084	-264	67 85	357	-26	351	-26	42.6
80 80	9.3	10.1	10.8	11.6	12.4	13.2	13.9	14.7	15.5
·=	13	13	14	15	16	17	18	19	20
				1.077					
				1.111					
				1.148					
				1.077					
				11 \$ ×15 \$					
				01X21	-				

	Deflec- tion equiv- alent to 1/32	Foot of Span	Д	Io.	0.656	0.688	0.719	0.750	0.781	0.813	0.844
	.g		0000	2000							
	ections		900	1800	25328 0.935 75			111	111		
	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Senare Inch as indicated		9001	1000	22404 0.831 67	21285 0.912 60	20278				***
	Maximi in Pour		904	1900	20942 0.779 62	19890 0.855 57	18943 0.935 51	111	111		1
	Loads in Pounds, and Maximum De Inches, for Unit Stresses in Pounds per Source Inch as indicated		907	1400	19480 0.728 58	18495 0.798 53	17608 0.872 48	16777 0.950 44			
	Pound or Unit		900	1300	18018 0.676 54	17100 0.741 49	16273 0.810 44	15498 0.882 40	14788 0.958 37		11
	oads ir	3	9000	1200	16556 0.624 49	15705 0.684 45	14938 0.748 41	14219 0.814 37	13560 0.884 34	12949 0.956 31	
	Safe 1		9011	B	15094 0.572 45	14310 0.627 41	13603 0.686 37	12940 0.746 34	12332 0.811 31	11768 0.876 28	11237
	Tota		900	1000	13632 0.520 41	12915 0.570 37	12268 0.623 33	11661 0.679 30	11104 0.737 28	10587 0.796 25	0.859
	Refer-	Num- ber			0300	6769	H 53 53	-0100	H 01 00	04 00	04.0
	Ratio of Span to	of of Surfaced Tymber	1/h		16.3	17,0	17.8	18.6	19.4	20.1	20.9
1		usdo		Ft	12	22	23	24	25	26	27
	Weight Per Lineal Foot (Based	Green Timber	lbs. per cu. ft.)	Lbs.				1.077			
	Section Modu- lus	bh	9	In.a				460.48			
	Moment of Inertia	bhs I	123	In.				1.148			
	Area Cross Section	A P		Sq. Jn.				178.25			
	Sixe	Surfaced	or 84S	In.				114x154			
	62	Rough		In.				12x16			

0.875		0.375	0.406	0.438	0.469	0.500	0.531	0.563	0.594
	1.11					48090 0.534 167 182	45117 0.603 148	42524 0.676 131	40191
	1.11				46184 0.423 171 175	43196 0.481 150	40515 0.543 132	38176 0.609 118	36071 0.678
	1.11 0.97 1.03		47486 0.282 203 180	44009 0.327 175	40964 0.376 152	38302 0.427 133	35913 0.482 117	33828 0.541 104	31951 0.603
	1.11 0.97 1.03	48278 0.225 223 182	44475 0.265 190	41212 0.307 164	38354 0.352 142	35855 0.401 125	33612 0.452 110	31654 0.507 98	29891 0.565 87
	1.11	45017 0.210 208 170	41464 0.247 177	38415 0.287 153	35744 0.329 132	33408 0.374 116	31311 0.422 102	29480 0.473 91	27831 0.527 81
	1.11	41756 0.195 193 158	38453 0.229 164	35618 0.266 141	33134 0.305 123	30961 0.347 108	29010 0.392 95	27306 0.440 84	25771 0.490 75
111	1.11	38495 0.180 178 146	35442 0.212 152	32821 0.246 130	30524 0.282 113	28514 0.321 99	26709 0.362 87	25132 0.406 78	23711 0.452 69
	1.11	35234 0.165 163 134	32431 0.194 139	30024 0.225 119	27914 0.258 103	26067 0.294 91	24408 0.332 80	22958 0.372 71	21651 0.414 63
9843 0.923 22	1.11	31973 0.150 148 122	29420 0.176 126	27227 0.205 108	25304	23620 0.267 82	22107 0.301 72	20784 0.338 64	19591
-0400	-04	→ 63 63 4 4		H-04:00	H01004		-6360	- 0400	-0100
21.7	Multiplying Factor	00 04	8.8	9.6	10.3	11.0	11.7	12.3	13.0
88	Multi	12	13	14	15	91	17	18	19
					53.10				
					1.104				
					1.136				
					201.25				
					114x174				
					12x18				

(Table 20 Continued on Next Page.)

					1,100		Weight	Weight	Weight	Weight	Weight
Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated	72	Tot		Refer- ence Num-	Ratio of Span Refer- to Depth ence of Num-	Ratio of Span Span to to to Span Depth ence of Num-	Lineal Agio Front Ratio Front Span Span Reference Green of Num-	Lineal Agio Front Span Refer- on Span Depth ence of Span Depth ence of Of Num-	Noction per Ratio Modu- Lineal Span Span Reference Span Popth Reneed Span Popth Reneed Norm- Ofference Off	Moment Section per Ratio of Modu-Lineal Span Span Reference on Span Depth ence of Green of Num-	Area Moment Section Per Ratio Cross of Modu- Lineal Span Span Prot Span Depth Cross Of Orea Cross Of Orea Cross Of Orea Of Ore
			Joer		2 1	Timber	at 38 Timber	Timber	at 38 Timber	S=- at 38 Timber 12	S= at 38 Timber Timber 6 lbs. per
1100 1200	_	0001	1000	1000	100	0.0	d/a	(u. 1.)	(, u,)	(1) (1)	() the cut of the cut
	111				rt.	DS. Ft.	Lbs. Ft.		Lbs.	In. In. Lbs.	In.a Lbs.
20454 22410 0.459 0.501 57 62		18498	1 18498 2 0.417 3 51	-248	13.7 2	-248	13.7 2	13.7 2	13.7 2	13.7 2	13.7 2
19389 21253 0.506 0.552 51 56		17525 0.460 46	1 17525 2 0.460 3 46	2 10 10	14.4 2	- 63 65	14.4 2	14.4 2	14.4 2	14.4 2	14.4 2
18412 20192 0.556 0.606 47 51		0.50	1 16632 2 0.505 3 42		15.1 2	-0100	15.1 2	15.1 2	15.1 2	15.1 2	15.1 2
17501 19203 0.608 0.663 42 46		0.55	1 15799 2 0.552 3 38		15.8 2	23 15.8 2	53.10 23 15.8 2 1.073 3	23 15.8 2	586.98 53.10 23 15.8 2 1.104 1.073 33 3	586.98 53.10 23 15.8 2 1.104 1.073 33 3	5136.07 586.08 53.10 23 15.8 2 1.136 1.104 1.073 23 15.8 3
16667 18298 0.661 0.721 39 42		0.60	1 15036 2 0.601 3 35		-0100	16.5 22	16.5 22	16.5 22	16.5 22	16.5 22	16.5 22
15898 17464 0.718 0.783 35 39		0.6	1 14332 2 0.652 3 32	-	17.1	-0100	17.1	17.1	17.1	17.1	17.1
15174 16679	39	136	_	-	1 13669	-	-	-	-	1	-

0.844	0.875	906.0	0.938		0.438	0.469	0.500	0.531
		111	111	1.10				
		111		1.10			53737 0.432 168 183	50456 0.487 140
		:::		1.10		50952 0.337 170 173	47661 0.384 149	44738 0.433 132
		111		1.10	51236 0.276 183 .174	47712 0.316 159	44623 0.360 140	41879 0.406 123
				1.10	47765 0.257 171 163	44472 0.295 148	41585 0.336 130	39020 0.379 115
17416 0.989 36	: : :			1.10	44294 0.239 158 151	41232 0.274 137	38547 0.312 121	36161 0.352 106
15966 0.913 33	15290 0.982 30			1.10	40823 0.221 146 139	37992 0.253 127	35509 0.288 111	33302 0.324 98
14516 0.837 30	13892 0.900 28	13310 0.965 26		1.10	37352 0.202 133 128	34752 0.232 116	32471 0.264 101	30443 0.298 90
13066 0.761 27	12494 0.818 25	11960 0.877 23	11456 0.939 21	1.10	33881 0.184 121 116	31512 0.211 105	29433 0.240 92	27584 0.271 81
- 0400	61 89	-0100	-0100	-014	- 0100 4	-0400 -		- 01 00
18.5	19.2	19.9	20.6	Multiplying Factor	8.0	6	80	10.5
27	88	53	30	Multi	14	10	9	17
		53.10				59.19		
		1.104				728.81		
		1.136				7105.93		
		201.25				224.25		
		114x174				111x194		
		12x18				2x20		

Deflec- tion equiv- alent to 1/32 Inch per	Foot of Span	D	In.	0.563	0.594	0.625	0.656	0.688	0.719
			2000	52935 0.607 147 181	50035 0.676 132	47416 0.749 119	45017 0.826 107	42878 0.907 97	40879
Sections			1800	47535 0.547 132	44919 0.609 118	42556 0.674 106	40391 0.743 96	38460 0.816 87	36655
um Dei			1600	42135 0,486 117	39803 0.541 105	37696 0.599	35765 0.661 85	34042 0.725	32431
Maxim in Pou			1500	39435 0.455 110	37245 0.507 98	35266 0.562 88	33452 0.619 80	31833 0.680 72	30319
ls, and Stresses ch, as in			1400	36735 0.425 102	34687 0.474 91	32836 0.524 82	31139 0.578 74	29624 0.635 67	28207
. Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated			1300	34035 0.395 95	32129 0.440 85	30406 0.487 76	28826 0.537 69	27415 0.589 62	26095
oads ir schee, fo			1200	31335 0.364 87	29571 0.406 78	27976 0.449 70	26513 0.496 63	25206 0.544 57	23983
Safe I			1100	28635 0.334 80	27013 0.372 71	25546 0.412 64	24200 0.454 58	22997 0.499 52	21871
Total			1000	25935 0.304 72	24455 0.338 64	23116 0.375 58	21887 0.413 52	20788 0.454 47	19759
Refer- ence	Num- ber			-01004			-0100	110000	-01
Ratio of Span to Depth	Surfaced Timber	1/b		пп	1.11	12.3	12.9	13.5	14.2
Span			F	18	19	20	21	55	23
Weight per Lineal Foot (Based on	Green Timber at 38	lbs. per cu. ft.)	Lbs.			59.19			
Section Modu- lus	S Sh	9	In.3			728.81			
Moment of Inertia	bha	13	fn.4			7105.93			
Area Cross Section	A=bh		Sq. 1n.			224.25			
Size		or S4S	In.			114x194			
85	Rough		In.			12x20			

0.750	0.781	0.813	0.844	0.875	0.906	0.938	0.969	1.000		
									1.10	
35011 0.971 73									0.97	
30963 0.863 65	29624 0.937 59								0.97	
28939 0.809	27680 0.878 55	26496 0.950 51							1.10	
26915 0.755 56	25736 0.820 52	24627 0.887 47	23601 0.956 44						1.0 1.0 1.03	
24891 0.701 52	23792 0.761	22758 0.824 44	21801 0.888	20911 0.955 37					1.00	
22867 0.647 48	21848 0.703 44	20889 0.760	20001 0.820 37	19175 0.882 34	18396 0.946 32				1.10	ge.)
20843 0.593 43	19904 0.644	19020 0.696 37	18201 0.752 34	17439 0.808 31	16720 0.867 29	16044 0.928 27	15413 0.991 25		1.10 0.97 1.03	xt Pa
18819 0.539 39	17960 0.586 36	17151 0.633 33	16401 0.683 30	15703 0.735 28	15044 0.788 26	14424 0.843 24	13846 0.901 22	13926 0.959 21	0.97	on Ne
		-96	-08	-00	-26	-08			∺ 84	tinued
14.8	15.4	16.0	16.6	17.2	17.8	18.5	19.1	19.7	Multiplying Factor	(Table 20 Continued on Next Page.)
*	æ	26	27	88	53	8	31	32	Multi	(Table
				59.19	1.070					
				728.81	1.087					
				7105.93	1.128					
				224.25	1.070					
				11 } x19}						
				12x20						

Deflec- tion equiv- alent to 1/32	Foot of Span	Q	In.	0.281	0.313	0.344	0.375	0 406	0.438
.g		1	2000		*			41415 0.457 195 173	38367
lections		000	1800			0.295 0.295 246 184	40427 0.350 206	37211 0.412 175	34463
um Der		-	1000		43231 0.216 265 180	39215 0.262 218	35871 0.311 183	33007 0.366 155	30559
Maxim in Pour dicated			0001		0.203	36731 0.245 204	33593 0.292 171	30905 0.343 146	28607
s, and Stresses		997	1400	42085 0.153 286 175	37767 0.189 231	34247 0.229 191	31315 0.273 160	28803 0.320 136	26655
Total Safe Loads in Pounds, and Maximum Deflections Inches, for Unit Stresses in Pounds per Square Inch, as indicated		9000	1300	39048 0.142 266 163	35035 0.176 215	31763 0.213 177	29037 0.253 148	26701 0.297 126	24703
oads in sches, fo		1000	1200	36011 0.131 245 150	32303 0.162 198	29279 0.196 163	26759 0.234 137	24599 0.274 116	0.318
Safe I		9000	0011	32974 0.121 224 138	29571 0.149 181	26795 0.180 149	24481 0.214 125	0.251 0.251 106	20799
Tota		9000	1000	29937 0.110 204 125	26839 0.135 164	24311 0.164 135	22203 0.195 113	20395 0.228 96	18847
Refer-	Num- ber			- 0100 4	-0004	- 64 65 4	- 64 60	-0100-4	-616
Ratio of Span to to	Surfaced	7.74		8.0	8.6	8.6	10.7	11.6	13.4
a de la companya de l			FÉ	6	10	=	12	13	14
Weight per Lineal Foot (Based	Green Timber	lbs. per cu. ft.)	Lbs.			48.10	000		
Section Modu- lus	pp ₂	9	In.t			410.06	2		
Moment of Inertia	pp ₃	13	Ind			2767 93	90		
Area. Cross Section	A — bh		St. In.				0.0		
Sice	Surfaced	or SES	In.			inivini			
85	Roneh		In.			14x14			

0.469	0.500	0.531	0.563	0.594	0.625	0.656	0.688	0.719	0.750	0.781	
35698 0.608 146	33391 0.692 128	31342 0.781 113	29514 0.876 100	27866 0.976 90							
32056 0.547 131	29975 0.623 115	28126 0.703 101	26476 0.789 90	24988 0.879 80	23626 0.973 72						
28414 0.486 116	26559 0.553 102	24910 0.625 90	23438 0.701 80	22110 0.781 71	20894 0.865 64	19806 0.954 58					
26593 0.456 109	24851 0.519 95	23302 0.586 84	21919 0.657 75	20671 0.732 67	19528 0.811 60	18505 0.895 54	17572 0.981 49				
24772 0.426 101	23153 0.454 88	21694 0.547 78	20400 0.613 69	19232 0.684 62	18162 0.757 56	17204 0.835 50	16330 0.915 45				
22951 0.395 94	21435 0.450 82	20086 0.508 72	18881 0.570 64	17793 0.635 57	16796 0.703 51	15903 0.775 46	15088 0.850 42	14338 0.930 38			
21130 0.365 86	19727 0.415 75	18478 0.469 67	17362 0.526 59	16354 0.586 53	15430 0.649 47	14602 0.716 43	13846 0.785 39	13150 0.858 35	12514 0.934 32		ge.)
19309 0.334 79	18019 0.381 69	16870 0.430 61	15843 0.482 54	14915 0.537 48	14064 0.595 43	13301 0.656 39	12604 0.719 35	11962 0.787 32	11375 0.857 29	10821 0.929 27	xt Pa
17488 0.304 71	16311 0.346 62	15262 0.391 55	14324 0.438 49	13476 0.488 43	12698 0.541 39	12000 0.596 35	11362 0.654 32	.10774 0.715 29	10236 0.779 26	978 0.844 24	on Ne
- 26	-226	357	35-	35-	321	3 5 7	357	- 67 82	35-	- 24 80	thued
13.3	14.2	15.1	16.0	16.9	17.8	18.7	19.6	20.4	21.3	22.2	(Table 20 Continued on Next Page.)
15	16	11	81	61	20	21	22	23	24	52	(Table
					1.075						
					1.115						
				9	2/6/.93 1.156						
					1.075						
					13\$x13\$						
					14x14		-				

Defica- tion equiv- alent to 1/32 Inch per Foot of Span	Q	Ju.	0.813		0.344	0.375	0.406	0.438
.s		2000		1.12				50727
flections		1800		1.12			49178 0.358 203 179	45577
um De		1600		1.12		47402 0.271 212 172	43634 0.318 180	0.370
Maxim in Pou		1500		1.12	48578 0.214 236 176	44398 0.254 198	40862 0.299 168	37852
ds, and Stresses ch, as in		1400		1.12	45299 0.200 221 164	41394 0.237 185	38090 0.279 157	35277
. Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated		1300		1.12 0.96	42020 0.185 205 153	38390 0.221 171	35318 0.259 146	32702
Loads in aches, f	-	1200		1.12	38741 0.171 189 141	35386 0.204 158	32546 0.239 134	30127
l Safe l		1100		1.12 0.96 1.04	35462 0.157 173 129	32982 0.187 147	29774 0.219 123	27552 0.254
Tota	000	1000	9260 0.914 22	1.12	32183 0.143 157 117	29378 0.170 131	27002 0.199 111	0.231
Rofer- ence Num- ber			-0100	₩ 63 4	H 03 103 44	→ c4 c0 44	-c1004	
Ratio of Span to Depth of Surfaced	1/15	ð	23.1	Multiplying Factor	5.5	9.3	10.1	10.8
Span		Ft.	26	Multi	=	12	13	14
Weight Per Lineal Foot Green Timber	lbs. per cu. ft.)	Lbs.	48.10	1.075		55.20	1.070	
Section Modu- lus	9	In.ª	410.06	1.115		540.56	1.106	
Moment of Inertia	12	In.4	2767.93	1.156		4189.37	1.141	
Area Cross Section		Sq. In.	182.25	1.075		209.25	1.070	
Size Surfaced Surfaced	or S4S	In.	134x134			134x154		
20	G C	ln.	14x14			14x16		

0.469	0.500	0.531	0.563	0.594	0.625	0.656	0.688	0.719	0.750	0.781
47212 0.530 169	44157 0.603 148	41462 0.681 131	39046 0.763 116	36891 0.850 104	34936 0.942 94					
0.477 0.477 152	39653 0.543 133	37222 0.613 117	35042 0.687 104	33097 0.765 93	31332 0.848 84	29728 0.935 76				
37804 0.424 134	35149 0.483 118	32982 0.545 104	31038 0.611 92	29303 0.680 83	27728 0.754 74	26296 0.831 67	25009 0.912 61	23818 0.997 55		
35202 0.398 126	32897 0.453 110	30862 0.511 97	29036 0.572 86	27406 0.637 77	25926 0.706 69	24580 0.779 63	23370 0.855 57	22250 0.935 52		
0.371	30645 0 422 103	28742 0.477 91	27034 0.534 80	25509 0.595 72	24124 0.659 65	22864 0.728 58	21731 0.798 53	20682 0.872 48	19717 0.950 44	
0.345 100	28393 0.392	26622 0.443 84	25032 0.496 75	23612 0.552 67	22322 0.612 60	21148 0.676 54	20092 0.741 49	19114 0.810 45	18214 0.882 41	17366 0.958 37
0.318	26141 0.362 88	24502 0.409 77	23030 0.458 69	21715 0.510 61	20520 0.565 55	19432 0.624 50	18453 0.684 45	17546 0.748 41	16711 0.814 37	15924 0.884 34
25594 0.292 91	23889 0.332 80	22382 0.375 71	21028 0.420 63	19818 0.468 56	18718 0.518 50	0.572 0.572	16814 0.627 41	15978 0.686 37	15208 0.746 34	14482 0.811 31
23192 0.265 83	21637 0.302 72	20262 0.341 64	19026 0.382 57	17921 0.425 51	16916 0.471 45	16000 0.520 41	15175 0.570 37	14410 0.623 34	13705 0.679 31	13040 0.737 28
-0.60	-0.00	357	352	351	357	-0.8	357	-88	-00	0160
11.6	12.4	13.2	13.9	14.7	15.5	16.3	17.0	17.8	18.6	19.4
15	16	17	18	19	8	21	22	æ	24	23
				55.20	1.070					
				540.56	1.16					
				4189.37	1,141					
				209.25	1.070					
				14x16 134x154						
				x16						

		Turner - Continued	ווומנת.															
浸	Size	Area Cries Section	Moment of Inertia	Nection Modu- lus	Weight per Lineal Foot (Based		Ratio of Span to	Refer-	Tota	l Safe	Loads in Pounds, and Maximum De Inches, for Unit Stresses in Pounds per Sourse Inch, as indicated	in Pounds, and Maxim for Unit Stresses in Pou	de, and Stresses	Maxim in Pou	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Sourse Inch, as indicated	flection	. £	Defice- tion equiv- alent to 1/33
Rough	Surfaced SISIE or SAS	A==bh	bh³ 12	S br	Green Timber at 38 lbs. per		Surfaced Timber	Num- ber										Your C
l i	Ë		Ju.	In.3	<u> </u>	Ft.			1000	1100	1200	1300	1400	1900	1600	8		ą
<u> </u>	 	1			;	36	20.1	-88	12425 0.796 26	13811 0.876 28	15197 0.956 31		1000	1000	333			0.813
14x16	13}x15}	209.25	209.25 4189.37	540.56	55.20	27	20.0	-610	0.859 0.859	13205 0.945 26			831		200			0.844
		1.070	1.14	13	1 070	28	21.7	-016	11334 0.623 22				1111					0.875
						Multi	Multiplying Factor	-014	1.03	1.03	1.03	1.03	1 03	1 03	1 11 03	-68	-01	
			 	: !	; ;	21	8.9	- 01 to 4	37532 0.150 149 122	41360 0.165 164 134	45188 0.180 179 146	49016 0.195 195 158	52844 0.210 210 170	56672 0.225 0.225 182				0.376
14x18 1	13\$x17\$	236.25 1.086	6029.30 1.128	689.06 1.086	62.33 1.066	2	8.8		34520 0.176 127	38053 0.194 139	41586 0.212 152	45119 0.229 165	48652 0.247 178	52185 0.265 191	55718 0.282 204			0.408
						2	9.6		31938	35219	38500	41781	45062	48343	51624			0.438

	,								
0.469	0.500	0.531	0.563	0.594	0.625	0.656	0.688	0.719	0.750
	56423 0.534 168 182	52981 0.603 148	49898 0.676 132	47176 0.753 118	44694 0.834 106	42451 0.920 96			: : :
54163 0.423 172 175	50681 0.481 151	47577 0.543 133	44796 0.609 119	42340 0.678 106	40100 0.751 95	38075 0.828 86	36231 0.909 78	34513 0.994 71	
48041 0.376 153	44939 0.427 134	42173 0.482 118	39694 0.541 105	37504 0.603 94	35506 0.668 85	33699 0.736 75	32053 0.808 69	30519 0.884 63	29128 0.961 58
0.352 0.352	42068 0.401 125	39471 0.452 111	37143 0.507 98	35086 0.565 88	33209 0.626 79	31511 0.690 71	29964 0.758 65	28522 0.829 59	27214 0.901 54
41919 0.329 133	39197 0.374 117	36769 0.422 103	34592 0.473 91	32668 0.527 82	30912 0.584 74	29323 0.644 67	27875 0.708 60	26525 0.773 55	25300 0.841 50
38858 0.305 123	36326 0.347 108	34067 0.392 95	32041 0.440 85	30250 0.490 76	28615 0.543 68	27135 0.598 62	25786 0.657 56	24528 0.718 51	23386 0.781 46
35797 0.282 114	33455 0.321 100	31365 0.362 88	29490 0.406 78	27832 0.452 70	26318 0.501 63	24947 0.552 57	23697 0.606 51	22531 0.663 47	21472 0.721
32736 0.258 104	30584 0.294 91	28663 0.332 80	26939 0.372	25414 0.414 64	24021 0.459 57	22759 0.506 52	21608 0.556 47	20534 0.608 43	19558 0.661 39
29675 0.235 94	27713 0.267 83	25961 0.301 73	24388 0.338 65	22996 0.377 58	21724 0.417 52	20571 0.460 47	19519 0.505 42	18537 0.552 38	17644 0.601 35
	~0.00 4	-26	-00	- 67 65	35	-26	-016	-0.0	-0.00
10.3	11.0	11.7	12.3	13.0	13.7	14.4	15.1	15.8	16.5
51	16	17	81	19	8	21	22	23	*
				62.33					
				689.06 1.096					
				6029.30 1.128					
				236.25					
				14x18 134x174					
				1x18					

	Deflec- tion equiv- alent to 1/32 Inch per Foot of	Span	Ω	Jn.	0.781	0.813	0.844	0.875	0.906	0.938	
	Indiana Indiana		0000	2000					1111		0.97
	flection		000	1800		iii	1111	111			1.10
	um De nds per	1	0000	1000					111		1.10
	Maxim in Pou idicated	-	90.4	1900	25997 0.979 50			111			1.10
	ls, and Stresses ch, as ir		900	1400	24160 0.914 46	23104 0.987 42					1.10
1	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated		9000	1300	22323 0.848 43	21338 0.917 39	20430 0.989 36				1.10
	oads in ches, fo	Ì	0000	1200	20486 0.783	19572 0.846 36	18729 0.913 33	17947 0.982 31			1.10
	Safe I		9	0011	18649 0.718 36	17806 0.775 33	17028 0.837 30	16306 0.900 28	15616 0.965 26		1.10
	Total		-	1000	16812 0.652 32	16040 0.705	15327 0.761 27	14665 0.818 25	14032 0.877 23	13440 0.939 21	1.10
ľ	Refer- ence Num-	per			C4 00	+0100		-0100	-6166		
		Surfaced	1/h	a	17.1	17.8	18.5	19.2	19.9	20.6	Multiplying
	Span			Ft.	25	26	27	28	59	98	Multi
	Weight per Lineal Foot (Based on Green	Timber at 38	lbs. per cu. ft.)	Lbs.				1.066			Ÿ
	Section Modu- lus	Spr	9	In.1				90.689			
	40	I pp	13	In.4				0029.30			
	Area Cross Section	A=bh		Sq. In.				1.066			
	Size	Surfaced	or SAS	lu.				13\\\x\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
	85	Rough		In.				14x18			

0.438	0.469	0.500	0.531	0.563	0.594	0.625	0.656	0.688
				62130 0.607 148 181	58700 0.676 132	55631 0.749 119	52841 0.826 108	50291 0.907 98
		63005 0.432 169 183	59173 0.487 149	55792 0.547 133	52698 0.609 119	49929 0.674 107	47411 0.743 97	45109 0.816 88
	59774 0.337 171 173	55881 0.384 150	52467 0.433 132	49454 0.486 118	46696 0.541 105	44227 0.599 95	41981 0.661 86	39927 0.725 78
0.276 0.276 184 174	55973 0.316 160	52319 0.380 140	49114 0.406 124	46285 0.455 110	43695 0.507 99	41376 0.562 89	39266 0.619 80	37336 0.680 73
56050 0.257 172 163	52172 0.295 149	48757 0.336 131	45761 0.379 115	43116 0.425 103	40694 0.474 92	38525 0.524 83	36551 0.578 75	34745 0.635 68
51977 0.239 159 151	48371 0.274 138	45195 0.312 121	42408 0.352 107	39947 0.395 95	37693 0.440 85	35674 0.487 76	33836 0.537 69	32154 0.589 63
0.221 0.221 147 139	0.253 0.253 127	41633 0.288 112	39055 0.324 98	36778 0.364 88	34692 0.406 78	32823 0.449 70	31121 0.496 64	29563 0.544 58
0.20 134 134 134	40769 0.232 116	38071 0.264 102	35702 0.298 90	33609 0.334 80	31691 0.372 71	29972 0.412 64	28406 0.454 58	26972 0.499 53
39768 0.184 1122 116	36968 0.211 106	34509 0.240 92	32349 0.271 82	30440	28690 0.338 65	27121 0.375 58	25691 0.413 52	24381 0.454 48
-204	⊣ 01004	⊣ 01004	428	∺0102.4	351	-26	-26	3 5 1
89.	9.2	8.6	10.5	11.1	11.7	12.3	12.9	13.5
7	15	16	11	18	61	82	21	22
			A0 45	1.084				
			0 1 1	1.091				
			8341 74	1.118				
			963 95	1.064				
			131×101					
			14-20	1				

Deflec- tion equiv- alent to 1/32	Foot of Span	۵	Ju.	0.719	0.750	0.781	0.813	0.844	0.875	0.908
-		0000	2000	48002 0.991 89				0.11	Ti i	
Rections		9001	1900	43042 0.892 80	41119 0.971 73	:::	111		171	
um Del		0009	7007	38082 0.793 71	36365 0.863 65	34760 0.937 60	111			7.0
Maxim in Pour		92	1900	35602 0.743 66	33988 0.809 61	32479 0.878 56	31074 0.950 51		111	240
in Pounds, and Maximi for Unit Stresses in Pour Souare Inch. as indicated		1400	7400	33122 0.694 62	31611 0.755 56	30198 0.820 52	28882 0.887 48	27665 0.956 44		110
Pound r Unit		0061	1900	30642 0.644 57	29234 0.701 52	27917 0.761 48	26690 0.824 44	25555 0.888 41	24536 0.955 38	
. Total Safe Loads in Pounds, and Maximum Deflections in laches, for Unit Stresses in Pounds per Sourae Inch. as indicated		over the same	7500	28162 0.595 52	26857 0.647 48	25636 0.703 44	24498 0.760 40	23445 0.820 37	22499 0.882 34	0.946
Safe I		- 5	WILL.	25682 0.545 48	24480 0.593 44	23355 0.644 40	22306 0.696 37	21335 0.752 34	20462 0.808 31	19613
Total		2000	1000	23202 0.496 43	22103 0.539 39	21074 0.586 36	20114 0.633 33	19225 0.683 31	18425 0.735	17647
Refer-	Num-		11	-0100	-0100	-25	-010	-0169	-0100	-010
	Surfaced	1/1		14.2	14.8	15.4	16.0	16.6	17.2	17.8
3	nado		Ft.	23	24	25	26	27	88	53
Weight per Lineal Fcot (Based	Green Timber	lbs. per cu. ft.)	Lbs.				1.064			
Section Modu- lus	ph:	9	In.r				1 091			
Moment of Inertia	th!	12	in.				1.118			
Area Cross Section	A	100	My. In.	1			26tt 25 1 064			
17.	Surfaced	# 848	In.	l .			14x20 133x193			
T.	Meanah		In.	1			14x20			

0.938	0.969	1.000		0.344	0.375	0.406	0.438	0.469	0.500
			1.09			1111	58232 0.462 195 185	54229 0.530 170	50726 0.603 149
			1.09			56452 0.358 204 179	52320 0.416 175	48711 0.477 152	45552 0.543 133
	111		1.09		54423 0.271 213 172	50088 0.318 181	46408 0.370 155	43193 0.424 135	40378 0.483 118
			1.09	55718 0.214 237 176	50974 0.254 199	46906 0.299 169	43452 0.347 146	10434 0.398 126	37791 0.453 111
			1.09	51957 0.200 221 164	47525 0.237 186	43724 0.279 158	40496 0.324 136	37675 0.371 118	35204 0.422 103
			1.09	48196 0.185 205 153	44076 0.221 172	40542 0.259 146	37540 0.300 126	34916 0.345 109	32617 0.392 96
			1.09	44435 0.171 189 141	40627 0.204 159	37360 0.239 135	34584 0.277 116	32157 0.318 101	30030 0.362 88
18828 0.928 27	18088 0.991 25	111	1.09	40674 0.157 173 129	37178 0.187 145	34178 0.219 123	31628 0.254 106	29398 0.292 92	27443 0.332 80.
16927 0.843	16248 0.901 22	15598 0.959 21	1.09	36913 0.143 157 117	33729 0.170 132	30996 0.199 112	28672 0.231 96	26639 0.265 83	24856 0.302 73
-0100	0100	-0100	-04	- 0100 4	-01004	- c1 co 44	c1 to -4	- 61 60	01 00
18.5	10.1	19.7	Multiplying Factor	×9.	9.3	10.1	10.8	11.6	12.4
98	31	32	Multi	п	23	13	3	15	91
	69.45	1.064				63.40			
	855.56	1.091				1.099	-		
	8341.74	1,118				1.135			
**	263.25	1.064				240.25			
	13½x19½					154x154			
	14x20					16x16			

	Deflec- tion equiv- alent to 1/32 Inch per	Span	Q	In.	0.531	0.563	0.594	0.625	0.656	0.688	0.719
	.g		0000	2000	47582 0.681 131	44839 0.763 117	42375 0.850 105	40112 0.942 94			******
	lections		900	1800	42716 0.613 118	40241 0.687 105	38017 0.765 94	35974 0.848 84	34147 0.935 76		
	um Def		9000	TOOT	37850 0.545 104	35643 0.611 93	33659 0.680 83	31836 0.754 75	30205 0.831 67	28701 0.912 61	27326
	Maxim in Pour		0000	1900	35417 0.511 98	33344 0.572 87	31480 0.637 78	29767 0.706 70	28234 0.779 63	26820 0.855 57	25527
	Total Safe Loads in Pounds, and Maximum Deflections Inches, for Unit Stresses in Pounds per Square Inch, as indicated		907	1400	32984 0.477 91	31045 0.534 81	29301 0.595 72	27698 0.659 65	26263 0.728 59	24939 0.798 53	23728
	Pound or Unit		9001	1300	30551 0.443 84	28746 0.496 75	27122 0.552 67	25629 0.612 60	24292 0.676 54	23058 0.741 49	21929
	coads in		900,	1200	28118 0.409 78	26447 0.458 69	24943 0.510 62	23560 0.565 55	22321 0.624 50	21177 0.684 45	20130
	Safe J		903	0011	25685 0.375 71	24148 0.420 63	22764 0.468 56	21491 0.518 50	20350 0.572 45	19296 0.627 41	18331
	Tota		0001	1000	23252 0.341 64	21849 0.382 57	20585 0.425 51	19422 0.471 46	18379 0.520 41	17415 0.570 37	16532
	Refer-	ber ber			0400	03 00	- 63 60	- 03 00	H 04 69	63 69	-010
1	Ratio of Span to Depth	Surfaced Timber	1/1		13.2	13.9	14.7	15.5	16.3	17.0	17.8
1	Span			Ft.	17	18	10	20	31	22	25
	Weight per Lineal Foot (Based on	Timber at 38	lbs. per eu. ft.)	Lbs.				63.40			
1	Section Modu- lus	ph²	9	lo.a				1.099			
	Moment of Inertia	pp ₃	12	10.4				1.135			
1	Area Cross Section	A=bh		Sq. in.				240.25 4810.01 1.065 1.135			9.
	Size	Surfaced	or 848	In.				154x154			
	100 m	Rough		In.				16x16			

0.750	0.781	0.813	0.844	0.875		0.375	0.406	0.438	0.469
					1.10				
			111	111	1.10				62232 0.423 173 175
			111		1.10		63981 0.282 205 180	59270 0.327 177	55198 0.376 153
					1.10	65051 0,225 226 182	59924 0.265 192	55503 0.307 165	51681 0.352 144
0.950					1.10	60657 0.210 211 170	55867 0.247 179	51736 0.287 154	48164 0.329 134
0.882	19930 0.958 37				1.10	56263 0.195 195 158	51810 0.229 166	47969 0.266 143	44647 0.305 124
0.814	18275 0.884 34	17443 0.956 31		111	1.10	51869 0.180 180 146	47753 0.212 153	44202 0.246 132	41130 0.282 114
0.746	16620 0.811 31	15852 0.876 29	15152 0.945	iii	1.10	47475 0.165 165 134	43696 0.194 140	40435 0.225 120	37613 0.258 105
0.679	14965 0.737	14261 0.796 26	13619 0.859 24	13005	1.10	43081 0.150 150 122	39639 0.176 127	36668 0.205 109	34096 0.235 95
-0100	H 03 00	400	H 6360	-250	H 63.4	-04004		-0.00	→ 03004
18.6	19.4	20.1	20.9	21.7	Multiplying Factor	00 64	8.8	9.6	10.3
24	55	56	27	38	Multi	12	13	71	15
1		63.40	1.065				71.58	1.08	
		620.64	1.099				791.15	90.	
		4810.01	1.136				6922.53	3	
		240.25	1.065				271.25	190.1	
		15\x15\f					154x174		
		16x16					16x18		

177

Deflec- tion equiv- alent to 1/32 Inch per	Poot of Span	ū	Ju.	0.500	0.531	0.563	0.594	0.625	0.666	1
.e		00000	2000	64775 0 534 169 182	60803 0 603 149	57311 0.676 133	54160 0.753 119	51309 0.834 107	48717 0.920 97	
dections		900	200	58183 0.481 152	54601 0 543 134	51451 0.809 119	48608 0.078 107	46085 0.751 96	43695 0.828 87	41580
um Def	-	1000	1040	51591 0.427 134	48399 0.482 119	45591 0 541 106	43056 0 603 94	40761 0.668 85	38673 0.736 77	36798
Maxim in Pour idicated		1 2000	(N)C	48295 0-401 126	45238 0.452	42661 0.507 99	40280 0.565 88	38124 0.626 79	36162 0.690	34395
Stresses	1	100	I I	0.374	42197 0.422 103	39731 0.473 92	37504 0.527 82	35487 0.584 74	33651 0 644 67	31997
Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stressey in Pounds per Square Inch, as indicated		, and	1300	41703 0.347 109	39096 0.392 96	36801 0.440 85	34728 0.490 76	32850 0.543 08	31140 0.598 62	29599
ouds in nehes, fo	3	2000	1200	38407 0.321 100	35995 0.362 88	33871 0.406 78	31952 0.452 70	30213 0.501 63	28629	27201
Nafe I		1001	1100	35111 0.294 91	32894 0.332 81	30941	29176 0.414 64	27576 0.459 67	26118 0.506 52	24803
Tota		, and	1000	31815 0.267 83	29793 0.301 73	28011 0.338 65	26400	24039 0.417 52	23607 0 460 47	29405
Refer-	Num-			- 0400 4	-00	-0100	- 24 00	-0400	01 00	1
Ratio of Span to Depth	inn	1, 14		11 10	11.3	12,3	13.0	12.	14.4	1
Span			P.C.	18	=	2	2	39	25	11
Weight per Lineal Foot (Based)	Timber at 38	lls per	Dis	L			1 001			
Section Modu- lus	生	2	100.3			9	1 091			
Moment of Inertia	差	12	1.01			2000	1, 123			
Area Crises Section	4 14		E. T.			-	1 961			
Size	Surfaced S181E	14 YES	E				671160			
6Z.	Rough		THE			200				

	1			174			139	128	116	•			3		-	990		
0.438				69068 0.276 185	64389 0.257 173	59710 0.239 160	55031 0.221 148	50352 0.202 135	45673 0.184 122 122	04 00 -4	8.6	1	12	79.80 14		1.058	982.31 79.80 1.086 1.058	9677.55 982.31 79.80 1.114 1.086 1.058
	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.03	-014	Multiplying Factor	1 3 6 7	Mul	Medi	Mul	Mul	Mai	Maj
0.938									15432 0.939 21	- 64 65	20.6		30	30	30	30	08	30
0.906							110	17934 0.965 26	16115 0.877 23	- 0300	19.9		53	29	29	29	53	50
0.875			111				20604 0.982 31	18720 0.900 28	16836 0.818 25	-0100	19.2		88	88	58	58	28	58
0.844	111					23470 0.989 36	21516 0.913 33	19562 0.837 30	17608 0.761 27	-0100	18.5		27		1.061	1.091 1.061	1.061 1.123 1.091 1.061	1.061 1.123 1.091 1.061
0.813	111	111			26545 0.987 43	24516 0.917 39	22487 0.846 36	20458 0.775 33	18429 0.705 30	-0.00	8.71		96	58		2	27 17 24 6000 50 170 14 74 50	9 17 31 50 00 00 00 00 00 00 00 00 00 00 00 00
0.781	111	111	111	29860 0.979	27750 0.914 46	25640 0.848 43	23530 0.783 39	21420 0.718 36	19310 0.652 32	-0150	17.1		25	25	25	25	52	52
0.750	111		33450 0.961 58	31252 0.901 54	29054 0.841 50	26856 0.781 47	24658 0.721 43	22460 0.661 39	20262 0.601 35	-0100	16.5		24	24	24	42		76
0.719		39610 0.994 72	35026 0.884 63	32734 0.829 59	30442 0.773 55	28150 0.718 51	25858 0.663 47	23566 0.608 43	21274 0.552 39	- 04 00	15.8		53	53	53	23	23	23

	Deflec- tion equiv- alent to 1/32 Inch per	Span	li.	0.469	0.500	0.531	0.563	0.594	0.625
1		1	2000				71364 0,607 149 181	67464 0.676 133	63904
	fections		1800		72397 0.432 170 183	67980 0.487 150	64084 0.547 134	60566 0.609 120	57354
	um De		1600	68691 0.337 172 173	64211 0.384 151	60276 0.433 133	56804 0.486 118	53668 0.541 106	50804
	Maxim in Pour idicated		1500	64323 0.316 161	60118 0.360 141	56424 0.406 125	53164	50219 0.507 99	47529
	ls, and Stresses ch, as in		1400	59955 0.295 150	56025 0.336 131	52572 0.379 116	49524 0.425 103	46770 0.474 92	44254
	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated		1300	55587 0.274 139	51932 0.312 122	48720 0.352 108	45884 0.395 96	43321 0.440 85	40979
	Loads in sches, fo		1200	51219 0.253 128	47839 0.288 112	44868 0.324 99	42244 0.364 88	33872 0.406 79	37704
	Safe I		1100	46851 0.232 117	43746 0.264 103	41016 0.298 90	38604 0.334 80	36423 0.372	34429
	Tota		1000	42483 0.211 106	39653 0.240 93	37164 0.271 82	34964	32974 0.338 65	31154
	Refer- ence Num-	100			H 03 to 4	H 69 69	- 0100 4	63 65	-8
	Ratio of Span to Depth of	Timber	n/2	9.2	8.6	10.5	11.1	11.7	12.3
	Span		<u>ئ</u> و <u>ب</u>	19	91	11	18	19	20
-	Weight Per Lineal Foot (Based on Green	at 38	Lbs.			79.80	860		
-	Section Modu- lus	Sections	ln.3			982.31	980		
	Moment of Inertia	12	In.4			9577.55	4		
	Area Cross Section	A=bh	Sq. In.				20.		
-	Size		In.			154x194			
	Si -	Rough	lp.		-	16x20 1			

0.656	0.688	0.719	0.750	0.781	0.813	0.844	0.875	906.0	0.938	0.969
0.826 108 108	57825 0.907 99	55145 0.991 90								
2.0 2.4 2.0 2.0 2.0	51867 0.816 88	49447 0.892 81	47225 0.971 74					: : :		
0.061 88	45909 0.725 78	43749 0.793 71	41765 0.863 65	39925 0.937 60			: : :			
0.619 81	42930 0.680 73	40900 0.743 67	39035 0.809 61	37305 0.878 56	35725 0.950 52					
0.578 75	39951 0.635 68	38051 0.694 62	36305 0.755 57	34685 0.820 52	33205 0.887 48	31824 0.956 44				
8 8 8 8 8 8 8 8 8 8	36972 0.589 63	35202 0.644 57	33575 0.701 52	32065 0.761 48	30685 0.824 44	29397 0.888 41	28186 0.955 38			
80. 88. 88.	33973 0.544 58	32353 0.595 53	30845 0.647 48	29445 0.703 44	28165 0.760 41	26970 0.820 37	25846 0.882 35	24794 0.946 32		
32644 0.454 58	31014 0.499 53	29504 0.545 48	28115 0.593 44	26825 0.644 40	25645 0.696 37	24543 0.752 34	23506 0.808 31	22535 0.867 29	21620 0.928 27	20759 0.991 25
0.413 53 53	28035 0.454 48	26655 0.496 43	25385 0.539 40	24205 0.586 36	23125 0.633 33	22116 0.683 31	21166 0.735 28	20276 0.788 26	19437 0.843 24	18647 0.901 23
-00	0.00		0100	-28				-28	-00	-08
12.9	13.5	14.2	14.8	15.4	16.0	16.6	17.2	17.8	18.5	19.1
21	22	23	*	25	58	27	88	23	30	31
				79.80	1.068					
				982.31	1.086					
				9577.55	1.114					
				302.25	1.068					
				15 } x19 }						
				16x20						

tion equivalent to 1/32 Inch per Foot of	Q	In,	1.000		0.469	0.500	0.531	0.563
		2000		1.09				
lections		1800		1.09		1 1 1 1		77995
um Def		1600		1.09		78146 0.348 167 179	73386	69153
Maximi in Pour dicated		1500		0.97	78256 0.287 178 179	73174 0.326 156	68706 0.368 138	64732
s, and Stresses th, as in		1400		1.09	72951 0.268 166 167	68202 0.304 145	64026 0.344 128	60311
Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated		1300		1.09	67646 0.248 154 155	63230 0.283 135	59346 0.319 119	55890
oads in sches, fo		1200	111	1.09	62341 0.229 142 143	58258 0.261 124	54666 0.295 110	51469
Safe I		0011		1.09	57036 0.210 130 132	53286 0.239 114	49986 0.270 100	47048
Total		0001	17927 0.959 21	1.09	51731 0.191 118 120	48314 0.217 103	45306 0.245 91	42627
Refer- ence Num-			-0100	-014		-01004	-6160	-01
Ratio of Span to Depth	Timber 1/h		19.7	Multiplying Factor	4.8	8.8	9.5	10.0
Span		Ft.	32	Multi	12	91	11	18
Weight Per Lineal Foot (Based on Green	at 38 lbs. per cu. ft.)	Lbs.	79.80	1 058		87.90	1.056	
Section Modu- lus	_	ln.ê	982.31	1 086		1194.15	1.081	
Moment of Inertia	12	In.4	9577.55	1,114		12837.07 1194.15	1.106	
Area Cross Section	A=bh	Sq. In.	302.25	1.058		333.25	1.056	
Size	SISIE or S4S	In.	15gx19g			154x214		
δ5 —	Rough	In.	16x20			16x22		

0.594	0.625	0.656	0.688	0.719	0.750	0.781	0.813	0.844	0.875
	77822 0.680 133 179	73954 0.749 120	70426 0.823 109	67179 0.900 100	64230 0.978 91		: : :		
73732 0.552 132	69864 0.612 119	66374 0.674 108	63190 0.740 98	60259 0.809 89	57596 0.880 82	55079 0.956 75			
65354 0.491 117	61906 0.544 105	58794 0.599 95	55954 0.658 87	53339 0.720 79	50962 0.783 72	48715 0.850 66	46691 0.918 61	44796 0.991 57	
61168 0.460 110	57927 0.510 99	55004 0.562 89	52336 0.617 81	49879 0.674 74	47645 0.734 68	45533 0.796 62	0.880 0.850 57	41848 0.930 53	40154 1.000 49
56976 0.429 102	53948 0.476 92	51214 0.525 83	48718 0.576 76	46419 0.630 69	44328 0.685 63	42351 0.744 58	#05.0 0.804 53	38900 0.867 49	37313 0.933 45
52787 0.399 95	49969 0.442 85	47424 0.487 77	45100 0.535 70	42959 0.584 64	41011 0.636 58	39169 0.690 53	37508 0.747 49	35952 0.805 45	34472 0.866 42
48598 0.368 87	45990 0.408 78	43634 0.449 71	41482 0.493 64	39499 0.539 59	37694 0.587 54	35987 0.637	34447 0.689 45	33004 0.743 42	31631 0.800 39
0.337 80	42011 0.374 72	39844 0.412 65	37864 0.453 59	36039 0.495 53	34377 0.538 49	32805 0.584	31386 0.632 41	30056 0.681 38	28790 0.733 35
40220 0.307 72	38032 0.340 	360 54 0.375 59	34246 0.411 53	32579 0.450 48	310 0 0 0.489 44	29623 0.531	28325 0.574 37	27108 0.619	25949 0.666 32
-~~	00°4	-0.60	3.2	357	67 69	-28	01 00		
10.6	11.2	11.7	12.3	12.8	13.4	14.0	14.5	15.1	15.6
61	8	21	22	23	24	25	98	27	88
				87.90					
				1194.15					
				12837.07 1194.15 1 106 1 081					
				333.25		•			
		*****************		16x22 154x214		· · · · · · · · · · · · · · · · · · ·			
•				.6x22					

Deflec- tion equiv- alent to 1/32	Foot of Span	Q	In.	906'0	0.938	0,969	1.000	1.031		0.500
.E.		1	2000						1.08	
Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Sourae Inch. as indicated			1800						1.08	
um De			1600						1.08	
Maxim in Pou			1500						1.08	87653 0.299 171
is, and Stresses			1400	35853 1.000 42	111				1.08	81707 0.279 160
Loads in Pounds, and Maximum De Inches, for Unit Stresses in Pounds per Souare Inch, as indicated			1300	33110 0.928 39	31838 0.994 36				1.02	75761 0.259 148
oads ir			1200	30367 0.857 36	29186 0.917 33	28091 0.981 31			1.08	69815 0.239 136
Safe I			1100	27624 0.786 32	26534 0.841 30	25523 0.898 28	24545 0.957 26		1.08	63869 0.219 125
Tota			1000	24881 0.714 29	23882 0.764 27	22955 0.817 25	22058 0.870 23	21209 0.925 22	1.08	57923 0.199
Refer-	Num- per			- 6360	09 80	-0100	-0100	-0100	-64	-0100
Ratio of Span to	Surfaced Timber	1/b		16.2	16.7	17.3	17.9	18.4	Multiplying Factor	63.5
Suna			Ft.	53	30	31	32	33	Multi	16
Weight Per Lineal Foot (Based	Green Timber	lbs. per cu. ft.)	Lbs.			87.90	9			
Section Modu- lus	bh*	9	In.s			1194.15	8			
Moment of Inertia	P PP	12	In.4			12837.07 1194.15	8			
Area Cross Section	A=bb		Sq. In.			333 25	8			
Size	Surfaced	or 848	In.			154x214				
65	Rough		In.			16x22				

0.531	0.563	0.594	0.625	0.656	0.688	0.719	0.750	0.781
					84407 0.753 120 178	80570 0.823 109	76994 0.895 100	73739 0.971 92
			83741 0.560 131 176	79539 0.617 118	75755 0.677 108	72292 0.740 98	69064 0.806 90	0.874 0.874 83
0.359 0.359 185 185 185	82830 0.403 144	78287 0.449 129	74223 0.498 116	70477 0.549 105	67103 0.602 95	64014 0.658 87	61134 0.716 80	58511 0.777 73
0.337	77545 0.378 135	73280 0.421 121	69464 0.467 109	65946 0.514 98	62777 0.564 89	59875 0.617 81	57169 0.672 74	54704 0.729 68
76753 0.316 141	72260 0.353 125	68273 0.393 112	04705	61415 0.480 91	58451 0.527 83	55736 0.576 76	53204 0.627 69	50897 0.680 64
0.292	66975 0.327 116	63266 0.365 104	59946 0.404 94	56884 0.446 85	54125 0.489	51597 0.535 70	49239 0.582 64	47090 0.632 59
0.270	61690 0.302 107	58259 0.337 96	55187 0.373 87	52353 0.411 78	49799 0.452 71	47458 0.494 64	45274 0.537 59	43283 0.583 54
0.247	56405 0.277 98	53252 0.309 88	50428 0.342	47822 0.377 71	45473 0.414 65	43319 0.453 59	41309 0.493 54	39476 0.534 49
0.225	51120 0.252 89	48245 0.281 79	45669 0.311 71	43291 0.343 64	41147	39180 0.411 53	37344 0.448 49	35669 0.486 45
		01 00			cs cs -4	0100	-0160	0.80
8.7	9.3	9.7	10.2	10.7	11.2	11.7	12.3	12.8
11	18	81	8	21	52	g	42	25
				96.10 1.064				
				1426.65				
				16763.10 1426.65 1.100 1.078				
				364.25			-	
				15 } x23 }				
				1925			_	

1	Deflee- tion equiv- alent to 1/32	Foot of Span	Q	In.	0.813	0.844	0.875	906.0	0 938	0.969	1.000
١			0000	2000							
	lections		900	1800	63382 0.946 76			101			
	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Sourse Inch. as indicated		0000	1000	56062 0.840 67	53792 0.907 62	51694 0.974 58				
	Maxim in Pou		00.1	0001	52402 0.788 63	50268 0.850 58	48295 0.913 54	46429 0.980 50			
	Loads in Pounds, and Maximum De Inches, for Unit Stresses in Pounds per Sonare Inch. as indicated		901	1400	48742 0.735 59	46744 0.793 54	44896 0.852 50	43148 0.915 47	41513 0.980 43		
	Pound or Unit uare In		900	1300	45082 0 683 54	43220 0.737 50	41497 0.792 46	39867 0.850 43	38342 0.910 40	36931 0.971 37	19111
	ches, fo		000	1200	41422 0.630 50	39696 0.680 46	38098 0.730	36586 0.784 39	35171 0.840 37	33861 0.896 34	32603 0.956
	Safe I		001.	0011	37762 0.578 45	36172 0.623 42	34699 0.670 39	33305 0.719 36	32000 0.170 33	30791 0.822 31	29630 0.876
	Tota		900	1000	34102 0.525 41	32648 0.567 38	31300 0.609 35	30024 0.653 32	28829 0.700 30	27721 0.747 28	26657
	Refer-	Number			04.00	64 69	- 61 60	-0100	-0400	- 0100	-0100
		Surfaced	1/1		13.3	13.8	14.3	14.8	15.3	15.8	16.3
	5			Ft.	26	27	28	58	30	31	25
	Weight per Lineal Foot (Based	Green	lbs. per cu. ft.)	Lbs.			96.10	69			
	Section Modu-	bhs	9	In.ª			1426.65	970.1			
	Moment, of Inertia	pp.	12	In,4			16763.10 1426.65	8			
	Area Cross Section	4		St. In.				- G			
	Sine	Surfaced	or S4S	Jn.			15§x23§				
	泛	Ronoh		In.			16824				

1.031	1.063	1.09		0.375	0.408	0.438	0.469	0.500	0.531
			888					73127 0.534 169 182	6866 0.603 150
			888				0.028 0.428 171 171	65685 0.481 152	61662 0.543 134
			1.01 88.83		72229 0.282 206 180	0.327 0.327	62291 0.376 154	58243 0.427 135	54658 0.482 119
			1.08	73445 0.225 227 182	67649 0.265 193	62664 0.307 166	58322 0.352 144	54522 0.401 126	51156 0.452 111
			1.08	68484 0.210 211 170	63069 0.247 180	58411 0.287 155	54353 0.329 134	50801 0.374 118	47654 0.422 104
			1.08	63523 0.195 196 158	58489 0.229 167	54158 0.266 143	50384 0.305 124	47080 0.347 109	44152 0.392 96
			1.08	58562 0.180 181 146	53909 0.212 154	49905 0.246 132	46415 0.282 115	43359 0.321 100	40650 0.362 89
28543 0.931 27	27533 0.988 25		1.08	53601 0.165 165 134	49329 0.194 141	45652 0.225 121	42446 0.258 105	39638 0.294 92	37148 0.332 81
25660 0.846 24	24733 0.899 23	23837 0.952 21	1.08	48640 0.150 150 122	0.176 0.176 128	41399 0.205 110	38477 0.235 95	35917 0.267 83	33646 0.301 73
-0100	-0100	-0100	-014	- 0300 4	-01004	- 0100	-0100	-004	-0100
16.9	17.4	17.9	Multiplying	80	8.9	9.6	10.3	11.0	11.7
26	75	52	Multi	15	23	2	15	16	17
	96.10	1.054				80.80	200		
	1426.65	1.076				893.23	880	0.5	
	16763.10 1426.65	1.10				7815.76	2		
	364.25	28					<u> </u>		
	154x234					18x18 17½x17½			
	16x24					8x18			

Deflection equivalent to 1/32	Foot of Span	Q	In.	0.563	0.594	0.625	0.656	0.688	0.719	0.750
		1	2000	64705 0.676 133	61125 0.753 119	57924 0.834 107	55023 0.920 97			
lections		-	1800	58089 0.609 120	54859 0.678 107	51970 0.751 96	49351 0.828 87	46948 0 909 79	44743 0.994 72	-
um Def			1600	51473 0.541 106	48593 0.603 95	46016 0.668 85	43679	41534 0.808 70	39565 0.884 64	37756
Maxim in Pou		90	1200	48165 0.507 99	45460 0.565 89	43039 0.626 80	40843 0.690 72	38827 0.758 65	36076 0.829 60	35275
Stresses		-	1400	44857 0.473 92	42327 0.527 83	40062 0.584 74	38007 0.644 67	36120 0.708 61	34387 0.773 55	32794
in Pounds, and Maxim, for Unit Stresses in Pou Square Inch, as indicated		000	1300	41549 0.440 86	39194 0.490 76	37085 0.543 69	35171 0.598 62	33413 0.657 56	31798 0.718 51	30313
Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated		000	1200	38241 0.406 79	36061 0.452 70	34108 0.501 63	32335 0.552 57	30706 0.606 52	29209 0.663	0.721
Safe I		0000	1100	34933 0.372	32928 0.414 64	31131 0.459 58	29499 0.506 52	27999 0.556 47	26620 0.608 43	25351
Total		900	1000	31625 0.338 65	29795 0.377 58	28154 0.417 52	26663 0.460 47	25292 0.505 43	24031 0.552 39	0.601
Refer-	Num- ber			-0400	- 0300		-0100	- 0100	04 00	- 64
Ratio of Span to Depth	Surfaced	4/2		12.3	13.0	13.7	14.4	15.1	15.8	16.5
Span			弘	18	19	20	21	55	23	8
Weight per Lineal Foot (Based on	Green Timber	lbe, per cu. ft.)	Lbs.				1.058		1	
Section Modu- hus	pps	9	In.3				1,088			
Moment of Inertia	P4d	12	1m.4				1.120			
Area Cross Section	Ambb	7	Sq. In.				306.25			
Size	Surfaced	or SAS	In.				18x18 174x174			
85	Rough	200	In.				8x18			

								!								1		
0.500		81719 0.432 170 183	72479 0.384 151	67859 0.360 141	63239 0.336 132	58619 0.312 122	53999 0.288 113	49379 0.264 103	44759 0.240 93	→0163 44	8.6	16						
0.469			77497 0.337 172 173	72569 0.316 161	67641 0.295 150	62713 0.274 139	57785 0.253 128	52857 0.232 118	47929 0.211 107	64 55	6.2	12	1.055	1.110 1.082	1.110	10	1.055	
0.438				77939 0.276 186 174	72659 0.257 173 163	67379 0.239 160 151	62099 0.221 148 139	56819 0.202 135 128	51539 0.184 123 116	-01004	9.0	4						
	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	-04	Multiplying Factor	Multi						
0.938				111					17426 0.939 22	- 0100	20.6	30						
906.0								20229 0.965 26	0.877 23	-6169	19.9	29						
0.875		111					23262 0.982 .31	21135 0.900 28	19008 0.818 25	-6189	19.2	58	1.058	1.088	7815.76 1.120		306.25	18x18 17\pm17\pm 306.25 1.058
0.844						26471 0.989 36	24267 0.913 33	22063 0.837 30	19859 0.761 27	-0120	18.5	27						
0.813				111	29959	27669 0.917 39	25379 0.846 36	23089 0.775 33	20799 0.705 30	-000	17.8	26						
0.781				33695 0.979 50	31314 0.914 46	28933 0.848	26552 0.783 39	24171 0.718 36	21790 0.652 32	01 09	17.1	22						

Deflection courter to 1/32 Inch per Foot of Span	2000 D	0.531	80499 0.607 149 181	76109 0.676 0.594 134	72119 0.749 0.625 120	68509 0.826 109
Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated	081	78715 0.487 150	72287 80 0.547 0. 134	0.609 0. 120	0.674 0. 0.674 0.	61469 0.743 0.98
Deflec per						
imum ounds ted	1600	6 0.433	6 64075 5 0.486 1 119	4 60545 7 0.541 9 106	57335 20.599 89	9 54429 19 0.661
d Max es in P indica(1500	63674 0.406 125	59969	56654 0.507	53639 0.562	50909 0.619
ds, and Stress ach, as	1400	59327 0.379 116	55863 0.425 104	52763 0.474 93	49943 0.524 83	47389 0.578 75
in Pounds, and Maxim , for Unit Streeses in Pou Square Inch, as indicated	1300	54980 0.352 108	51757 0.395 96	48872 0.440 86	46247 0.487 77	43869 0.537 70
Loads in Pounds, and Maximum De Inches, for Unit Stresses in Pounds per Square Inch, as indicated	1200	50633 0.324 99	47651 0.364 88	44981 0,406 79	42551 0.449 71	40349 0.496
Safe I	1100	46286 0.298 91	43545 0.334 81	41090 0.372 72	38865 0.412 66	36829 0.454 59
Total	1000	41939 0.271 82	39439 0.304 73	37199 0.338 65	35159 0.375 59	33309 0.413 53
Refer- ence Num- ber		-0180	-2504	-46	-28	-446
Ratio of Span to Depth of Surfaced	4/r	10.5	-	11.7	12.3	12.9
Span na	13	12	æ	61	8	21
Weight Per Lineal Foot (Based on Green	(1. (t.)			90.75 1.055		
Modul Modul		:	-	1.082		
Moment of Inertia	112			10813 37 1109 06 1 110 1 082		
₹5 <u>₹</u>	£ -			341 25		
Yise Mirfaced	N S S		_	18x20 174x194		
ž.	Kough	 i		8x20		

•	_	.	~	_	10	•	ac	•	_	
0.719	0.750	0.781	0.813	0.844	9.875	0.90 6	0.938	0.969	1.000	
62189 0.991 90								: : :		10.0
55763 0.892 81	53279 0.971 74						: : :			10.1
49337 0.793 72	47119 0.863 66	45061 0.937 60								10.87
46124 0.743 67	44039 0.809 61	42104 0.878 56	40289 0.950 52							1 08
42911 0.694 62	40959 0.755 57	39147 0.820 52	37447 0.887 48	35915 0.956 44					: :	10.1
39698 0.644 58	37879 0.701	36190 0.761 48	34605 0.824 44	33176 0.888 41	31 799 0.955 38		: : :			10.08
36485 0.595 53	34799 0.647 48	33233 0.703 44	31763 0.760 41	30437 0.820 38	29159 0.882 35	27977 0.946 32		: : :	: : • :	10.1
33272 0.545 48	31719 0.593 44	30276 0. 644	28921 0.696 37	27698 0.752 34	26519 0.808 32	25428 0.867 29	24392 0.928 27	23422 0.991 25		1.98
30059 0.496 44	28639 0.539 40	27319 0.586 36	26079 0.633 33	24959 0.583 31	23879 0.735 28	22879 0.788 26	21929 0.843 24	21039 0.901 23	20219 0.959 21	101
62 65	-25	357	35 1	357	-616	- 62 65	35-	778	-36	-04
14.2	14.8	15.4	16.0	16.6	17.2	17.8	18.5	19.1	19.7	Multiplying 2 0.87 0.87 0.87 8 1.08 1.08 1.08 1.08 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09
g	24	25	56	27	58	53	8	31	32	Multi
				i o	1.065					
				90	1.082					
				20 0011 72 0100 08	1.110				• • • •	
				20						
				121-101	1/34183					
				9						

Deflec- tion equiv- alent to 1/32	Foot of Span	Q	In.	0.469	0.500	0.531	0.563	0.594	0,625
		0000	2000				1111	111	87875 0.680 133 179
flection		000	1300				88051 0.496 148 179	83254 0.552 133	78889 0.612 120
um De		000	1000		88316 0.348 167 179	82905 0.393 148	78069 0.441 132	73794 0.491 118	69903 0.544 106
Maxim in Pou	М	90.	noer	88376 0.287 179 179	82697 0.326 157	77618 0.368 138	73078 0.413 123	69064 0.460 110	65410 0.510 90
ls, and Stresses ch, as ir		907	1400	82385 0.268 166 167	77078 0.304 146	72331 0.344 129	68087 0.386 115	64334 0.429 103	60917 0.476 92
Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated		0001	1300	76394 0.248 154 155	71459 0.283 135	67044 0.319 120	63096 0.358 106	59604 0.399 95	56424 0.442 86
osds in		000	1200	70403 0.229 142 143	65840 0.261 125	61757 0.295 110	58105 0.330 98	54874 0.368 88	51931 0.408 79
Safe I	17	9000	1100	64412 0.210 130 132	60221 0.239 114	56470 0.270 101	53114 0.303 89	50144 0.337 80	47438 0.374
Total		000	1000	58421 0.191 118 120	54602 0.217 103	51183 0.245 91	48123 0.275 81	45414 0.307 72	42945 0.340 65
Refer-	Number			-0004	H01004	-0100	-01004	-0100	
Ratio of Span to Denth	res	1/1		8.4	8.8	9.5	10.0	10.6	11.2
Span			Ft	15	91	11	18	19	20
Weight per Lineal Foot (Based on	Green Timber	lbs. per cu. ft.)	Lbs.			99.26	28.		
Section Modu- lus	pps	9	In.a			348.23			
Moment of Inertia	bh²	12	In.4			14493.47 1348.23	70.		
Area Cross Section	A=bb		Sq. In.				700		
Size	Surfaced	or S48	Ib.			17\\$x21\}			
85	Rough	0	In.			18x22			

	20					4	2		∞		1
0.666	0.688	0.719	0.750	0.781	0.813	948 .0	0.875	906.0	0.938	0.969	
83515 0.749 121	79536 0.823 110	75897 0.900 100	72518 0.978 92								
74955 0.674 108	7138 0.740 88	68079 0.809	65028 0.880 82	62229 0.956 75							
	63192 0.658 87	60261 0.720 72	57538 0.783 73	55039 0.850 67	52747 0.918 61	50584 0.991 57					
62115 0.562 90	59106 0.617 81	56352 0.674 74	53793 0.734 68	51444 0.796 62	49289 0.862 57	47255 0.930 53	45370 1.000 49				
67836 0.526 84	55020 0.576 76	52443 0.630	50048 0.685 63	47849 0.744 58	45831 0.804 53	43926 0.867 49	42160 0.933 46	40521 1.000 42			
53556 0.487 77	50834 0.535 70	48534 0.584 64	46303 0.636 58	44254 0.690 54	42373 0.747 49	40597 0.805 46	88950 0.866 42	37421 0.928 39	35969 0.994 36		
48275 0.446 71	46848 0.493 65	44625 0.539 59	42558 0.587 54	40659 0.637 49	38915 0.689 45	37268 0.743 42	35740 0.800 39	34321 0.857 36	32973 0.917 33	31722 0.981 31	ge.)
44995 0.412 65	42762 0.453 50	40716 0.495 54	38813 0.538 49	37064 0.584 45	35457 0.632 41	33939 0.681 38	32530 0.733 35	31221 0.786 32	29977 0.841 30	28822 0.898 28	xt Pa
40715 0.875 59	38676 0.411 53	36807 0.450	35068 0.489 44	33469 0.531 41	31999 0.574 37	30610 0.619 34	29320 0.666 32	28121 0.714 29	26981 0.764 27	25922 0.817 25	on Ne
-00		,-0m	-00	-00	-06	-28	-08	-06	-00	-616	tinued
11.7	12.3	12.8	13.4	14.0	14.5	15.1	15.6	16.2	16.7	17.3	(Table 20 Continued on Next Page.)
. 22	ĸ	ĸ	7%	ង	98	22	88	53	8	31	(Table
					99.26						
					1348.23						
					14493.47 1348.23 1.102 1.077				•		
					376.25						
					174x214						
-					18x22						

For full explanation of this table see pages 68 to 70.	Deflection tion equivalent to 1/32	Foot of Span	Q	ln.	1.000	1.031		0.500	0.531	0.563
pages 6	.g		006				0.98			
le see	sfleetion r		0031	1000			101			
ils tab	num De ands per		004				10.88		99275 0.359 162 186	93518 0.403 144
n of th	Maxin s in Pou		5.5	2061			1.08	98973 0.299 172 184	92955 0.337 152	87551 0.378 135
lanatio	ds, and Stresse ach, as i		1700	7011			1 08	92259 0.279 160 171	866 35 0.315 142	81584 0.353 126
ıll exp	Total Safe Loads in Pounds, and Maximum Deflections Inches, for Unit Stresses in Pounds per Square Inch, as indicated	•	0061	3			1.08	85545 0.259 149 159	80315 0.292 131	69650 75617 0.302 0.327 108 117
For fa	Loade i inches, i		500	170			1.08 0.98 1.02	78831 0.239 137 147	73995 0.270 121	69650 0.302 108
	l Safe		5	3	27722 0.957 26		1.08 0.98 1.02	72117 0.219 125 135	67675 0.247 111	63683 0.277 99
	Tots		2	3	24913 0.870 24	23953 0.925 22	1.08 0.98 1.02	65403 0.199 114	61355 0.225 100	57716 0.252 89
		Num- ber			-28	- 67 00	-24			00
	Ratio of Span to	of Surfaced	1/h		17.9	18.4	Multiplying Factor	8.2	8.7	9.2
	S	ngdo		Ft.	32	33	Mult	16	17	18
	Weight per Lineal Foot (Based	Green Timoer	lbs. per cu. ft.)	Lbs.		99.26			1.050	
	Section Modu- lus	ph²	٩	ln.3		1348 23			1610.73 1.072	
nued.	Moment of Inertia	ph3	12	In.4		376.25 14493.47 1348.23 1.052 1.102 1.077			18926.08 1610.73 1.095 1.072	
-Conti	Area Cross Section	4		Sq. In.		376.25			1.050	
TABLE 20—Continued	Size	Surfaced	or S4S	n n		174x213			17 } x23 }	
TAB	Œ.	Bough	900	In.		18x22			18x24	
<u> </u>										

0.59	0.625	0.656	0.688	0.719	0.750	0.781	0.813	0.844
			95271 0.753 120 178	90922 0.823 110	86954 0.895 101	83266 0.971 93		
	94507 0.560 131 176	89844 0.617 119	85505 0.677 108	81580 0.740 99	77998 0.806 90	74668 0.874 83	71554 0.946 76	
0. 24.0 129 129	83765 0.498 116	79608 0.549 105	75739 0.602 96	72238 0.658 87	69042 0.716 80	66070 0.777 73	63290 0.840 68	60749 0.907 63
82748 0.421 121	78394 0.467 109	74490 0.514 99	70856 0.564 90	67567 0.617 82	64564 0.672 75	61771 0.729 69	59158 0.788 63	56769 0.850 58
0.388 113	73023 0.435 101	69372 0.480 92	65973 0.527 83	62896 0.576 76	60086 0.627 70	57472 0.680 64	55026 0.735 59	52789 0.793 54
71440 0.365 105	67652 0.404 94	64254 0.446 85	61090 0.489 77	58225 0.535 70	55608 0.582 64	53173 0.632 59	50894 0.683 54	48809 0.737 50
65786 0.337 96	62281 0.373 87	59136 0.411 78	56207 0.452 71	53554 0.494 65	51130 0.537 59	48874 0.583 54	46762 0.630 50	44829 0.680 46
0.308 0.308 88	56910 0.342 79	54018 0.377 72	51324 0.414 65	48883 0.453 59	46652 0.493 54	44575 0.534 50	42630 0.578 46	40849 0.623 42
281 80 80	51539 0.311 72	48900 0.343 65	46441 0.376 59	44212 0.411 53	42174 0.448 49	40276 0.485 45	38498 0.525 41	36869 0.567 38
- 01 00	-01224	- 228	-0.04	01 00	01 00	⊣ 0100	-25	351
9.7	10.2	10.7	11.2	11.7	12.3	12.8	13.3	13.8
19	8	21	53	53	24	25	26	27
				108.55				
				1610.73 1.072			-	
				18926.08				
				1.050				
•				174x234				
				18x24				

	Defice- tion squiv- to 1/32	Foot of Span	Ω	ë	0.875	0.906	0.938	0.969	1.00	1.081	1.068
-			9000	SUND	1 1 1 1					111	
	Rection		1000	1900							
	um De		1000	1000	58352 0.974 58				111	111	
	Maxim in Pou		1200	mer	54515 0.913 54	52456 0.980 50					100
	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Founds per Souare Inch., as indicated		100	0061	50678 0.852 50	48749 0.915 47	46876 0.980 43		Ш	111	7
	Pound or Unit		1900	Mer	46841 0.792 46	45042 0.850 43	43295 0.910 40	41705 0.971 37	10	1111	10000
	coads in		0.00	1500	43004 0.730 43	41335	39714 0.840 37	38238 0.896 34	36835 0.956 32		
	Safe I		9011	0.11	39167 0.670 39	37628 0.719 36	36133 0.770	34771 0.822 31	33476 0.876 29	32244 0.931 27	31080
	Tota		5003	TOO	35330 0.609 35	33921 0.653 33	32552 0.700 30	31304	30117 0.796 26	28987 0.846 24	27919
	Refer-	Num-			-0100	-0100	- 01 00	-0100	-0100	- 5100	-011
	Ratio of Span to	Surfaced	1/1		14.3	14.8	15.3	15.8	16.3	16.9	17.4
	S			艺	88	29	30	31	25	88	25
	Weight per Lineal Foot (Based	Green Timber at 38	lbs. per cu. ft.)	Lbs.				1,050			
	Section Modu- lus	phi bhi	9	In.4				1.072			
	Moment of Inertia	Ph.	12	In.*				411,25 18926 08 1610,73 1,050 1,095 1,072			
	Area Cross Section	A=6h		Sq. In.				1.050			
	Stree	Surfaced	or 848	In.				18x24 174x23}			
	52	Rough		In.		4		18x24			

1.094		0.563	0.594	0.625	0.656	0.688	0.719	0.750
	1.07					****	107291 0.758 120 185	0.824 0.110
	1.07				105906 0.568 129 182	100873 0.624 118	0.682	92033 1 0.742
	1.02		0.414 0.414 141 179	98797 0.458 127	03864 0.505 115	0.554	85291 0.607 95	81493 0.660 87
	1.02	103255 0.348 147	97632 0.388 132	92475 0.430 119	87843 0.474 107	83629 0.520 98	79791 0.569 89	76223 0.618 81
	1.07	96230 0.325 137 165	90974 0.362 123	86153 0.401 110	81822 0.442 100	77881 0.485 91	74291 0.531 83	70953 0.577 76
	1.07	89205 0.302 127 154	84316 0.336 114	79831 0.374 102	75801 0.411	72133 0.451 84	68791 0.493 77	65683 0.536 70
	1.07	82180 0.278 117 142	77658 0.310 105	73509 0.344 94	69780 0.379 85	66385 0.415 77	63291 0.455 71	60413 0.495 65
	1.07	75155 0.255 107 130	71000	67187 0.315 86	63759 0.348 78	60637 0.381 71	57791 0.417 64	55143 0.454 59
0.952	1.07	68130 0.232 97 118	64342 0.258 87	60865 0.286 78	57738 0.316 71	54889 0.347 64	52291 0.379 58	49873 0.412 53
09.00	-04	c163 44	6165-4	6469	6450-4	-0100	03 00 -4 1	
17.9	Multiplying Factor	60	6.	9.4	6.6	10.4	10.8	11.3
35	Multi	20	19	30	12	55	23	24
					11.048			
					1.068			
					1.090 1.068			
					1.048			
					18x20 1/4x254			
					9			

Deflection equivalent to 1/32	Foot of Span	Q	Ip.	0.781	0.813	0.844	0.875	0.906	0.938	0.999
		0000	2000	98237 0.896 101	94239 0.968 93	111	3	133		Contract
lections		000	1800	88119 0.806 90	84509 0.871 83	81115 0.940 77				10
um Def ads per		0000	0001	78001 0.716 80	74779 0.774 74	71749 0.835 68	68991 0.898 63	66361 0.963 59		
Maxim in Pour		400	1900	72942 0 672 75	60914 0.726 69	67066 0.783 64	64473 0.842 59	62000 0.903 55	59738 0.967 51	10.5
Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Strupes Inch as indirected		2007	14(8)	67883 0.627 70	65049 0.678 64	62383 0.731 50	59955 0.786 55	57639 0.843 51	55520 0.902 47	53470
Pound r Unit S		2000	1300	62824 0.582 64	60184 0.629 59	57700 0.679 55	55437 0.730 51	53278 0.783 47	51302 0.838 44	49390
ches, fo	\$	17.00	1200	57765 0.537 59	55319 0.581 55	53017 0.626 50	50919 0.674 47	48917 0.722 43	47084 0.773 40	45310
l Safe I			8	52706 0.493 54	50454 0.532 50	48334 0.574 46	46401 0.618	44556 0.682 39	42866 0.709 37	41230
Tota		- 50	3	47647 0.448 49	45589 0.484 45	43651 0.522 41	41883 0.561 38	40195 0.002 38	38648 0.644 33	37150 0.688
Refer-	Num- ber			-016	-00	-26	-616	-00	-00	616
Ratio of Span to	Of Surfaced Timber	1/1		11.8	12.3	12.7	13.2	13.6	14.1	14.6
	Span		Ft.	25	26	27	88	29	30	31
Weight per Lineal Foot (Based	Green Timber at 38	lhs. per cu. ft.)	Lbs.				117.70			
Section Modu- lus	bhr S.	9	In.s				1.068			
Moment of loyr(in	this	12	Ju.(24181,13 1896,56 1,090 1,068			
Area Cross Nection	A High		Z. In.				1.048			
Sine	Surfaced	27. E	In.				174x254		*	- 3 10
55	Rough		In.				18x26			

	1.031	1.063	1.094	1.125		0.438	0.469	0.500	0.531
					1.07 0.98 1.02				
	111				1.07			91112 0.432 171 183	85558 0.487 151
					1.07		86399 0.337 173 173	80810 0.384 152	75862 0.433 134
			333		1.07	86855 0.276 186 174	80905 0.316 162	75659 0.360 142	71014 0.406 125
				101	1.02	80971 0.257 174 163	75411 0.295 151	70508 0.336 132	66166 0.379 117
47607 0.954 38	111		111	111	1.07	75087 0.239 161 161	69917 0.274 140	65357 0.312 123	61318 0 852 108
43655 0.882 35	42087 0.935 33	40636 0.993 31		1111	1.07	69203 0.221 148 139	64423 0.253 129	60206 0.288 113	56470 0.324 100
39708 0.806 32	38256 0.858 30	36916 0.911 28	35622 0.966 26		1.07	63319 0.202 136 128	58929 0.232 118	55055 0.264 103	51622 0.298 91
35751 0.733 20	34425 0.780 27	33196 0.828 25	32009 0.877 23	30881 0.928 22	1.07	57435 0.184 123 116	53435 0.211 107	49904 0.240 94	46774 0.271 82
03 00	- 04 00		-0100	03 FG	-04	-0.004	-01004	-01004	-0100
15.1	15.5	16.0	16.5	16.9	Multiplying Factor	9.8	9.2	9.6	10.5
32	88	34	32	36	Multi	14	15	16	17
		100	1.048				100.37	1.051	
		000	1.068				1235.81	1 078	
		000000000000000000000000000000000000000	1.090				12049 18 1235.81	1 106	
		9	1.048				380.25	1.051	
		10-10-	iozxi/I				194x194		
		90-0	18X20				20x20		

Deflec- tion equiv- alent to 1/32 Inch per Foot of Span	Q	In.	0.563	0.594	0.625	0.656	0.688	0.719	0.750
	1	2000	89774 0.607 150 181	84873 0.676 134	80412 0.749 121	76392 0.826 109	72731 0.907 99	69351 0.991 90	11
ections	900	1800	80616 0.547 134	76195 0.609 120	72170 0.674 108	68542 0.743 98	65237 0.816 89	62185 0.892 81	59385
um Def	-	1000	71458 0.486 119	67517 0.541 107	63928 0.599	60692 0.661 87	57743 0.725 79	55019 0.793 72	52519
Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated		1900	66879 0.455 112	63178 0.507 100	59807 0.562 90	56767 0.619 81	53996 0.680 74	51436 0.743 67	49086
Stresses Stresses	900	1400	62300 0.425 104	58839 0.474 93	55686 0.524 84	52842 0.578 76	50249 0.635 69	47853 0.694 62	45653
or Unit	0	1300	57721 0.395 96	54500 0.440 86	51565 0.487 77	48917 0.537 70	46502 0.589 63	44270 0.644 58	42220
Coads in	900	1200	53142 0.364 89	50161 0.406 79	47444 0.449 71	44992 0.496 64	42755 0.544 58	40687 0.595 53	38787
Safe I	9	1100	48563 0.334 81	45822 0.372	43323 0.412 65	41067 0.454 59	39008 0.499 53	37104 0.545 48	35354
Tota	900	1000	43984 0.304 73	41483 0.338 66	39202 0.375 59	37142 0.413 53	35261 0.454 48	33521 0.496 44	31921
Refer- ence Num- ber			-0100-0	-0100		-6160	→ 63 60	-0100	
Ratio of Span to Depth of Surfaced	1 imber		п.1	11.7	12.3	12.9	13.5	14.3	14.8
Span		F.	20	19	20	12	53	23	24
Weight per Lineal Foot (Based on Green	lbs. per cu. ft.)	Lbe.			5	1.061			
Section Modu- lus	9	In.5				1.078			
Moment of Inertia	12	In.4				1.106 1.078			
	A==bh	Sq. In.				1,051			
	or SAS	Ju.				199X129			
	Кенци	In.				20320			

	008 1 008 1 97 0 97 03 1 03 1 03 1 1 03 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.08 1.08 0.9 0.97 1.09 1.00 0.100 0.100 0.208 0.287 167 179 167 179	1.09 1.09 1.09 1.09 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08	1.08 1.08 1.08 0.037 0.037 0.037 1.03 1.03 1.03 85.167 91846 988225 0.248 0.248 0.2887 1.55 1.67 1.79	26139 25 1.08 1.08 1.08 1.08 1.08 1.03 7.0.97 0.97 0.97 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.13 1.43 1.55 1.67 1.79 1.13 1.43 1.55 1.67 1.79	1 23480 26139 2 0.901 0.991 2 0.959 2 1 0.97 0.97 0.97 0.97 0.97 0.97 4 1.03 1.03 1.03 1.03 1.03 1.03 1 65130 71809 78488 85167 91846 98225 2 0.191 0.210 0.229 0.248 0.982 0.87 1 120 132 1.43 1.65 1.67 179	1 23480 26139 2 0.901 0.991 2 0.956 2 0.956 2 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97	1 23480 26139 2 0.901 0.991 2 0.959 2 0.957 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.9	32 19.7 2 0.901 0.901	19.1 1 22480 26189	32 19.7 2 0.901 0.901	10 10 10 10 10 10 10 10
--	--	---	---	---	--	---	--	---	---	-----------------------	--------------------------	-----------------------	---------------------------------------

	Deflec- tion equiv- alent to 1/32 Inch per Foot of	Span	D	In.	0.500	0.531	0.563	0.594	0.625	0.656
			0000	2000		111			97968 0.680 134 179	93057
	fections		900	1800		101	98143 0.496 149 179	92776 0.552 133	87950 0.612 120	83519
	um De		000	0001	98390 0.348 168 179	92375 0.393 148	87017 0.441 132	82234 0.491 118	77932 0.544 106	73981
	Maxim in Pou		90.	0001	92130 0.326 157	86484 0.368 139	81454 0.413 123	76963 0.460 110	72923 0.510 99	69212
	ls, and Stresses ch, as in		907	1400	85870 0.304 146	80593 0.344 129	75891 0.386 115	71692 0.429 103	67914 0.476 93	64443
	Loads in Pounds, and Maximum De Inches, for Unit Stresses in Pounds per Square Inch, as indicated		000	1300	79610 0.283 136	74702 0.319 120	70328 0.358 107	66421 0.399 95	62905 0.442 86	59674
	Loads in nches, f		980	1200	73350 0.261 125	68811 0.295 110	64765 0.330 98	61150 0.368 88	57896 0.408 79	54905
	Total Safe Loads in Pounds, and Maximum Deflections in Thebes, for Unit Stresses in Pounds per Square Inch, as indicated		900	1100	67090 0.239 114	62920 0.270 101	59202 0.303 90	65879 0.337 80	52887 0.374 72	50136
	Tota		900	non	60830 0.217 104	57029 0.245 92	53639 0.275 81	50608 0.307 73	47878 0.340 65	45367
	Refer- ence Num-	per		Ī	₩ 53 50 49	- 0100	H 64 50 ₱	-0165	→ 6/1 00 4/1	011
	Ratio of Spau to Depth of	Surfaced	I/h		8.8	9.5	10.0	10.6	11.2	11.7
	Span			Ft.	16	2	×	13	20	12
	Weight per Lineal Foot (Based on Green	Timber at 38	lbs. per cu. ft.)	Lls.			110,60	1.049		
	Section Modu- lus	squ S	9	In.5			1502.31	1.074		
	Moment of Inertia	ppr	13	10.4			16119.87 1502.31	1.039		
	Area Cross Section	1.—bh		Sq. In.			419.35	1,049		
-	Size	Surfaced		In.			193421			
	72	Rottoh	0	In.			20x22			

0.688	0.719	0.750	0.781	0.813	0.844	0.875	906.0	0.938	0.969	1.000
98626 0.823 110	84535 0.900 100	80785 0.978 92								
0.0 0.7 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	75827 0.809 90	72441 0.880 82	69378 0.956 76							
70414 0.658 87	67119 0.720 80	64097 0.783 73	61362 0.850 67	58755 0.918 62	56372 0.991 57		: : :			
0.617 82 82 82	62765 0.674 74	59925 0.734 68	57354 0.796 63	54903 0.862 58	52662 0.930 53	50571 1.000 49		: : :		
0.576 0.578	58411 0.630 69	55753 0.685 63	53346 0.744 58	51051 0.804 54	48952 0.867 49	46993 0.933 46	45133 1.000 42			
0.535 70 70	54057 0.584 64	51581 0.636 59	49338 0.690 54	47199 0.747 50	45242 0.805 46	43415 0.866 42	41680 0.928 39	40088 0.994 36		
62202 0.493 65	49703 0.539 59	47409 0.587 54	45330 0.637 49	43347 0.689 45	41532 0.743 42	39837 0.800 39	38227 0.857 36	36749 0.917 33	35342 0.981 31	
0.453 85.05 85.05	45349 0.495 54	43237 0.538 49	41322 0.584 45	39495 0.632 41	37822 0.681 38	36259 0.733 35	34774 0.786 33	33410 0.841 30	32111 0.898 28	30890 0.957 26
0.411	40995 0.450	39065 0.489 44	37314 0.531 41	35643 0.574 37	34112 0.619 34	32681 0.666 32	31321 0.714 29	30071 0.764 27	28880 0.817 25	27760 0.870 24
-0100	-26	67 69	-26	61 69	-216	01 60	03 60	-0100	-0100	
12.3	12.8	13.4	14.0	14.5	15.1	15.6	16.2	16.7	17.3	17.9
22	æ	42	. 22	56	27	88	53	99	31	32
				9	1.049					
				9	1.074		•			
		-		9	1.099 1.074					
					1.049		-			
				3	1951219					
	,				77.07					

Deflec- tion equiv- alent to 1/32	Foot of Span	Q	ij	1.031		0.500	0.531	0.563	0.594
,u		9000	2000		1.07 0.98 1.02				
Bections		900	1800		1.07			111	
um Dei nds per		0000	1000	1 : :	1.07		103530 110569 0 .337 0 .359 152 163 185	97500 104145 0.378 0.403 135 145	98488
Maxim in Pou		92.5	0001		1.07	110221 0.299 172 184	0.337	97500 0.378 135	92189
Stresses		907,	0041		1.07	0.279 0.279 161 171	96491 0.315 142	90855 0.353 126	85890
Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Square Inch, as indicated		9000	mer		1.07 0.98 1.02	95267 102744 110221 0.259 0.279 0.299 149 161 172 159 171 184	89452 0.292 132	84210 0.327 117	79591
oads ir		900	0021		1.07	87790 0.239 137 147	82413 0.270 121	77565 0.302 108	73292
Safe I		991	0077		1.07 0.98 1.02	80313 0.219 125 135	75374 0.247 111	70920 0.277 98	66933
Tota		900,	0001	26710 0.925 22	1.07	72836 0.199 114 122	68335 0.225 101	64275 0.252 89	60694
Refer-	Num- ber			01 50	4614		→ c4 cc 4s	-0100	-0
Ratio of Span to to	_	1/h		18.4	olying	54	8.7	9.2	7.6
Snan			H.	33	Multiplying Factor	16	11	18	19
Weight per Lineal Foot (Based	Green Timber	lbs. per cu. ft.)	Lbs.	110.60	1.049		1.047		
Section Modu- lus	pp.	9	In.ª	1502.31	1.074		1.070		
Moment of Inertia	pps	12	In.4	16149.87 1502.31	1 088		21089.06 1794.81		
Area Cross Section	A=bh		Sq. In.	419.25	1.049		458.25		
Sine	Surfaced	or S48	In.	19}x21ş			20x24 194x234		
150	Rourh		In.	20x22			20x24		

0.625	0.656	0.688	0.719	0.750	0.781	0.813	0.844	0.875	0.906	
		106120 0.753 121 178	101240 0.823 110	96800 0.895 101	92699 0.971 93			: : :		
105222 0.560 132 176	100043 0.617 119	95242 0.677 108	90838 0.740 99	86830 0.806	83127 0.874 83	79676 0.946 77				
93262 0.498 117	88645 0.549 106	84364 0.602 96	80436 0.658 87	76860 0.716 80	73555 0.777 74	70474 0.840 68	67634 0.907 63	64969 0.974 58		
87282 0.467 109	82946 0.514 99	78925 0.564 90	75235 0.617 82	71875 0.672 75	68769 0.729 69	65873 0.788 63	63203 0.850 59	60697 0.913 54	58370 0.980 50	
81302 0.435 102	77247 0.480 92	73486 0.527 84	70034 0.576 76	66890 0.627 70	63983 0.680 64	61272 0.735 59	58772 0.793 54	56425 0.852 50	54245 0.915 47	
252	71548 0.446 85	68047 0.489 77	64833 0.535 71	61905 0.582 64	59197 0.632 59	56671 0.683 55	54341 0.737 50	52153 0.792 46	50120 0.850 43	
68342 0.373 87	65849 0.411 78	62608 0.452 71	59632 0.494 65	56920 0.537 59	54411 0.583 54	52070 0.630 50	49910 0.680 46	47881 0.730 43	45995 0.784 40	
63362	60150 0.377	57169 0.414 65	54431 0.453 59	51935 0.493 54	49625 0.534 50	47469 0.578 46	45479 0.623 42	43609 0.670 39	41870 0.719 36	1
57382 0.311 72	54451 0.343 65	51730 0.376 59	49230 0.411 54	46950 0.448 49	44839 0.486 45	42868 0.525 41	41048 0.567 38	39337 0.609 35	37745 0.653 33	:
		-0.04	-0.00	-010	-26	-26	- 2100	-00	#01m	
10.2	10.7	11.2	11.7	12.3	12.8	13.3	13.8	14.3	14.8	
8	21	22	g	22	ĸ	56	27	28	. 62	
				120.92	Š					
				1794.81	8					
				458.25 21089.06 1794.81	3 5				.,	
					<u>\$</u> -					
				194x234						
				20x24						

Ì	Deflec- tion equiv- alent to 1/32	Foot of Span	Q	Ju,	0.938	696 0	1.000	1.031	1.063	1.094	
	ii.		0000	2000							1.07
	fleetion		1000	1800		1					1.07
	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Sourse Inch. as indicated		1000	1900		133		111	166		1 07
	Maxim in Pou		1500	0007					111	111	1.07
	ls, and Stresses			1400	52206 0.980 44		111				1.07
	in Pounds, and Maxime for Unit Stresses in Pour Souare Inch. as indicated		1300	0061	48218 0.910 40	46420 0.971 37		111	100	191	1.07
	oads ir			1200	44230 0.840 37	42561 0.896 34	41000 0.956 32	111			1.07
	Safe I		1100	0011	40242 0 770 34	38702 0.822 31	37261 0.876 29	35897 0.931	34590 0.988 25	III	1.07
	Total		rong	1000	36254 0.700 30	34843 0,747 28	33522 0.796 26	32271 0.846 24	31080 0.899 23	29960 0.952	1.07
۱	Refer-	Num- per			H 64 55	H 54 55		-6166	H 69 69	-0100	-61
	Ratio of Span to	and .	1/1		15.3	15.8	16.3	16.9	17.4	17.9	Multiplying
	9			Ft.	30	31	32	33	25	32	Multi
	Weight per Lineal Foot (Based	Green Timber at 38	lbs. per cu. ft.)	Lbs.			5	1.047			
	Section Modu- lus	S. Uhr	9	In.4				1.070			
	Moment of Inertia	lahr.	12	Inch			200	1,093 1,070			
	Area Cross Section	A=bh	1	Sr. In,				1.047			
	Size	Surfaced	00 SAS	In.			100	20x24 195x205			
	ž	Rough		lo.				Z0X24			

0.563	0.594	0.625	0.656	0.688	0.719	0.750	0.781	0.813
					107321 119581 0 682 0 758 108 120 185	0.824 0.824 110	109500 0.896 101	104989 0.968 93
			118113 0.568 130 182	112403 0.624 118	107321 0.682 108	102546 0.742 99	98222 0.806 91	94149 0.871 84
	116196 0.414 141 179	$0.458 \\ 0.458 \\ 127$	104683 0.505 115	99593 0.554 104	95061 0 607 95	90802 0.660 87	86944 0.716 80	83309 0.774 74
115059 0.348 148 177	108778 0.388 132	103066 0.430 119	97968 0.474 108	93188 0.520 98	98931 0.569 89	84930 0.618 82	81305 0.672 75	77889 0.726 69
107231 0.325 138 165	101360 0.362 123	96020 0.401 111	91253 0.442 100	86783 0.485 91	82801 0.531 83	79058 0.577 76	75666 0.627 70	72469 0.678 64
99403 0.302 127	93942 0.336 114	88974 0.374 103	84538 0.411 93	80378 0.451 84	76671 0.493 77	73186 0.536 70	70027 0.582 65	67049 0.629 59
91575 0.278 117 142	86524 0.310 105	81928 0.344 94	77823 0.379 86	73973 0.415	70541 0.455 71	67314 0.495 65	64388 0.537 59	61629 0.581 55
83747 0.255 107 130	79105 0.284 96	74882 0.315 86	71108 0.348 78	67568 0.381 71	64411 0.417 65	61442 0.454 59	58749 0.493 54	56209 0.532 50
75919 0.232 97 118	71688 0.258 87	67836 0.286 78	64393 0.316 71	61163 0.347 64	58281 0.379 59	55570 0.412 53	53110 0.448 49	50789 0.484 45
02 K. 4	01 to 4	- 67 65		-68		35-	-016	-26
8.5	8.9	9.4	6.6	10.4	10.8	11.3	11.8	12.2
81	61	30		22	8	₹	25	36
				131.20				
				1.065				
				26944 74 2113.31 1.086 1.065		· ·		
				1.046				
				19 1 x254				
				20x26				

								-										
æ	Sise	Area Cross Section	Moment of Inertia	Section Modu- lus	Weight per Lineal Foot (Based		Ratio of Span to	Refer-	Tota	Safe I	Loads in	n Pound or Unit	Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Semane Inch as indicated	Maxim in Pou	um De	Bection	ii e	Deflec- tion equiv- alent to 1/32
Rough	Surfaced	1	Pha 1	tho bh	Green Timber	unde	Surfaced Timber	Num-										Foot of Span
4	or S4S		52	9	lbs. per cu. ft.)		7 h				2000	-			2000	-	-	D
4	ë	Sq. In.	In.	In.3	Lbs.	Pt.			1000	1100	1200	1300	1400	1900	1000	1800	2000	IB.
			: :			75	12.7	-0100	48659 0.522 42	53879 0.574	59099 0.626 51	64319 0.679 55	69539 0.731 59	74759 0.783 64	79979 0.835 68	90419		0.844
						20	13.2	-0100	46657 0.561 38	51690 0.618 43	56723 0.674 47	61756 0.730 51	66789 0.786 55	71822 0.842 59	76855 0.898 63			0.873
				_		56	13.6	-0100	44795 0.602 35	49655 0.662 40	54515 0.722 43	59375 0.783 47	64235 0.843 51	69095 0.903 55	73955 0.963 59		111	0.906
0x26	20x26 194x254	497.25 1.048	26944 74 2113.31 1.086 1.085	2113.31 1.065	1.046	30	14.1	-0100	43043 0.644 33	47741 0.709 37	52439 0.773 40	57137 0.838 44	61835 0.902 48	66533 0.967 51				0.938
						31	14.6	-0100	41401 0.688 31	45948 0.757 34	50495 0.826 38	55042 0.895 41	59589		111		1	0.969
						32	12.1	-0100	39941 0.733	44347 0.806 32	48753 0.882 35	53159 0.954	111			111		1.000
				-		33	15.5	-015	38380	42651	46922	11						1.031

1.063	1.094	1.125		0.594	0.625	0.656	0.688	0.719
			1.07					
			1.07			111		7 0.562 0.632 7 103 116 179
			1.07		120050 128242 0.399 0.425 129 137	121829 0.468 124	108563 116008 0.483 0.514 106 113	0.562
			1.07	126611 0.359 143 181	120050 0.399 129	0.439 0.439	108563 0.483 106	0.52
		III	1.07	1 109371 117991 1 7 0.312 0.336 1 123 133 1 157 169	0.372 0.372 120	0.380 0.410 0.439 101 108 116	0.450 98	96468 0.492 90
		111	1.07	0.312 0.312 123 157	0.345	98429 0.380 101	93673	89345 0.457 83
45291 0.993 31			1.07	100751 0.287 114 145	95474 0.319 102	90629 0.351 93	86228 0.386 84	82222 0.422 77
41145 0.911 28	39728 0.966 26		1.07	92131 0.264 104 133	87282 0.292 94	82829 0.322 85	78783 0.354 77	75099 0.386 70
36999	35699 0.877	34387 0.928 22	1.07	83511 0.240 94 121	79090	75029 0.293 77	71338 0.322 69	67976 0.351 63
- 64 65	- 04 00	- 64 60	-24	01 to 44	-01004	64 65	-0100	
16.0	16.5	16.9	Multiplying Factor	85.	8.7	9 2	9.6	10.0
25	28	36	Multip	61	30	5	81	88
	131.20	1.046			141.30	1 044	10.7	
	2113.31	1.065			457.81	1.063		
	26944.74 2113.31	1.086			33794.90 2457.81	1.083		
		1.046			536.25			
	194x254				19427J			
	0x26				20x28			

THE WEST COAST LUMBERMEN'S ASSOCIATION

Petter Common C	1	ij,	1	i	İ	1						l	!! -	i.	7	. ;	ij	
1 1 2 - 1 1 1 2 - 1 1 1 1 1 1 1 1		Area Cross Section		Section Modu- lus	Weight per Lineal Foot Based	Span	Ratio of Span to Depth	Refer- ence	Tota	Safe Is	Loads in aches, fa	Pound or Unit uare In	is, and Stressee ch, as in	Maxim m Pou dicated	um De nds per	fection		l'effec- tion equiv- alont to 1 32 inch per
12 6 1 1 1 1 1 1 1 1 1				1	Timber 33	•	Surfaced Timber	j je								!	; !	Span
10 10 10 10 10 10 10 10	2. 2.		22		d. fr.		q /			9					_	3	,	-
1.083 1.063 1.044 10.5 2.0 2.82 0.454 0.455		- E		E	Lbs	표			3	3	3	1300 1300			 8	<u> </u>		 =
1.083 1.063 1.063 1.063 1.063 1.063 1.063 1.064 1.06				:		77.		-0.00	64834 0.382 58	71657 0.420 64	78480 0.459 70	85303 0.497 76	92126 0 535 82	989-0 876-0 878-	0.5775 0.612 5.613 8.612	0.688 0.088 107		0 750
1.083 1.063 1.044 1.063 1.06						35	10.9	01 to 44	61991 0.415 53	68544 0.456 59		81650 0.539 70		94756 0.622 81	0.01309 0.664 87	0.747 0.747 98	127521 0.830 109 183	0.781
27 11.8 2 0.484 0.532 0.581 0.629 0.678 81104 87170 83236 10.5384 177600	20x2x 194x273	536 25		2457 81	141.50	26	11.3	-26	59321 0.449 49	65621 0.493 54	71921 0.538 59	78221 0.583 64		90821 0.673 75	97121 0.718 80	109721 0.807 90	0.897 101	0.813
12.2 2 0.550 0.672 0.625 0.677 0.728 0.781 0.833 0.937 2.0.550 0.672 0.625 0.677 0.728 0.781 0.833 0.937 0.93 0.937 0.625 0.677 0.728 0.781 0.833 0.937 0.937 0.938 0.93		<u> </u>		3	<u> </u>	27	11.8	61 89	56840 0.484 45	62906 0.532 50		75038 0.629 60	81104 0.678 64	87170 0.726 69	93236 0.774 74	0.872 84	0.968 0.968 93	0.844
12.7 2 0.658 0.614 0.670 0.725 0.782 0.837 0.938 89 43 47 47 51 55 60 897 0.93					•	88	12.2	61 65	54549 0.520	60400 0.572 46	66251 0.625 51	72102 0.677 55	77953 0.728 60	83804 0.781 64	89655 0.833 69	101357 0.937 78		0.878
						8	12.7	61 69	52388 0.558 39	58037 0.614 43		69335 0.725 51		80633 0.837	86232 0.393 64			906.0

0.938	0.969	1.000	1.031	1.063	1.094	1.125	1.156	1.188	
									1.08
									1.06
83117 0.956 59									1.08
77657 0.896 55	74843 0.957 52								1.06 1.08 1.08
72197 0.836 52	69561 0.893 48	67138 0.952 45							1.06 0.98 1.02
66737 0.777 48	64279 0.830 44	62019 0.883 42	59850 0.939 39	57837 0.998 36					1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
61277 0.717 44	58997 0.766 41	56900 0.816 38	54887 0.867 36	53018 0.921 33	51221 0.976 31				1 088
55817 0.657 40	53715 0.702 37	51781 0.748 35	49924 0.795 32	48199 0.844 30	46540 0.895 29	44957 0.946 27	43484 1.000 25		1.06
50357 0.597 36	48433 0.638 33	46662 0.680 31	44961 0.723 29	43380 0.767 27	41859 0.813 26	40407 0.860 24	39055 0.909 23	37723 0.958 21	1.08
- 67 65	357	35-	35-	-88	-0.00	-38	-0.60	357	124
13.1	13.5	14.0	14.4	14.8	15.3	15.7	16.1	16.6	Multiplying Factor
8	31	32	33	25	35	36	37	88	Multi Fa
				141.50	1.04				
				2457.81	1.063				
				33794.90 2457.81	1.083				
				536.25	1.04				
				19\$x27\$					
				20x28					

THE WEST COAST LUMBERMEN'S ASSOCIATION

Deflec- tion equiv- slent to 1/32	Foot of Span	Q	In.	0.625	0.656	0.688	0.719	0.750
,g		.000	2000		1 1 1			
flections		900	1800		. !!!	1111	111	0.641
um De		000	1000			0.479 0.479 122 179	0.524 111	0.570 0.570
Maxim in Pou		2	noer	0.371 0.371 138 184	131482 0.410 125	0.449	0.491	0.534
ls, and Stresses		1	1400	0.346 0.346 129 172	0.382	0.419	0.458 97	98460 106314 114168 122022 137730 0.463 0.499 0.534 0.570 0.641 82 89 95 102 115
Total Safe Loads in Pounds, and Maximum Deflections in Inches, for Unit Stresses in Pounds per Source Inch as indicated.		000	1300	100565 110016 110437 128558 138279 0.272 0.297 0.322 0.346 0.371 101 110 119 129 138 135 148 160 172 184	95570 104548 113526 1 0.300 0.327 0.355 91	99416 107979 116542 125105 133668 0.359 0.389 0.419 0.449 0.479 90 98 106 114 122	94861 103057 1 0.393 0.426 82 90	98460 0.463 82
oches, fo		0000	1200	0.297 110 148	0.327	0.359	94861 0.393 82	90606
Safe I		90	1100	0.272 0.272 101 135	95570 0.300 91	90853 0.329 83	86665 0.360 75	82752 0.392 69
Tota		000	1000	91174 0.247 91 123	86592 0.273 82	82290 0.299 75	78469 0.327 68	74898 0.356 62
Refer-	Num- ber			- 0400 44		6163 4	6460	-00
Ratio of Span to	Surfaced	1/b		8.1	50 10	9.0	9.4	8
			F	8	21	53	ន	*
Weight per Lineal Foot (Based	Green Timber	lbe. per cu. ft.)	Lbs.			151.80		
Section Modu- lus	ad J	9	In.ª			1.061		
Moment of Inertia	흄	13	In.			41717.62 2828.31 1.078 1.061		
Area Cross Section	Ī		Sq. In.			1.043		
Sise	Surfaced 8181E	or S4S	In.			20x30 194x294		
is is	Rolleh		Ë			20x30		

0.781	0.813	0.844	0.875	0.906	0.938	0.989	1.000	1.031	1.063
	: : :	2 107582 121542 125502 7 0.722 0.812 0.903 5 80 90 100	130390 0.971 93						: : :
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	126517 0.752 97	0.812	16926 0.874 84	112599 0.937 78					
94214 101753 109292 116831 131909 0.503 0.542 0.580 0.619 0.696 75 81 87 93 106	0.627 0.669 8 0.827 0.669	107582 0.722 80	103462 0.776 74	99599 0.833 6 9	95944 0.890 64	92576 0.952 60.			
109292 0.580 87	104773 0.627 81	93622 100602 1 0.632 0.677 69 75	96730 0.728 69	93099 0.781 64	89663 0.835 60	86496 0.892 56	83463 0.950 52		
101753 0.542 81	97528 0.588	93622 0.632 69	89998 0.679 64	86599 0.729 60	83382 0.779 56	80416 0.832 52	77575 0.886 48	74974 0.944 45	
	90277 0.544 69	86642 0.586 64	83266 0.631 59	80099 0.677 55	77101 0.724 51	74336 0.773 48	71687 0.823 45	69261 0.876 42	66912 0.930 39
86675 0.464 69	83029 0.502 64	79662 0.542 59	76534 0.582 55	73599 0.624 51	70820 0.668 47	68256 0.714 44	65799 0.760 41	63548 0.809 39	61368 0.858 36
79136 0.425 63	75781 0.460 58	72682 0.497 54	69802 0.534 50	67099 0.572 46	64539 0.612 43	62176 0.654 40	59911 0.697 37	57835 0.742 35	55824 0.787 33
71597 0.387 57	68533 0.418 53	65702 0.451 49	63070 0.485 45	60599 0.520 42	58258 0.556 39	56096 0.595 36	54023 0.634 34	52122 0.674 32	50280 0.715 30
~~~	-26	-004	07 69	-08	-0.00	-0.00	-0.00	-28	357
10.2	10.6	11.0	11.4	11.8	12.2	12.6	13.0	13.4	13.8
ĸ	8	27	88	82	98	31	33	æ	25
				151.80	<b>2</b> <b>5</b>				
				41717.62 2828.31	<u> </u>				
				41717.62	8 - -				
					<u>2</u>				•
				19 <del>}</del> x29 <del>}</del>					
			-	20x30					

	Area Cross Section	Moment of Inertia	Section Modu-	Weight per Lineal Foot (Based		Ratio of Span to	Refer-	Teta	Safe	Loads inches, f	n Poun or Unit	the, and Streams	Trial Safe Loads in Pounds, and Maximum Deflections in methes, for Unit Stresses in Pounds per Amaze 1004 to indicated	um De nds per	flections	Loffection tion (quiv-
Rough Siste	A=bh	bhs 13	sdd    S	On Green Timber at 38	ned?	Depth of Surfaced Timber	Num-						-			
		:	,	e :		۲/۶		1000	1100	1200	1300	1400	1500	1600	1800	3000
In. In.	Sq. In.	In.	In.3	Lbs.	<u>F</u>					-						
					35	? **	-0100	9.25x 0.75x 2x 2x	53902 0.833 31	59285 0.909 34	64668 0.985 37					
					36	14.6	- 6110	46908 0.802 26	52145 0.882 29	57382 0.963 32	: .					
20x30 194x294	575.25	41717.62 2828.31	2828.31	151.80	37	15.1	→ e1 m	45334 0.847 25	50429 0.932 27							
	1.043	1.078	1.06	1.043	38	15.5	-0100	43834 0.893 23	48794	*			:::			
					88	15.9	→ 54 00	42401 0.941 22							. :	: : :
					Mult	Multiplying	-014	1.06	1.06	0.98	0 00	888	288	288	888	988

### SAFE TOTAL LOADS FOR BEAMS, LIMITED BY HORIZONTAL SHEAR—ALSO SAFE VERTICAL SHEAR

Table 21 has been computed to show the safe loads on beams determined by the resistance to horizontal shear. Shearing values varying from 100 to 225 pounds per square inch have been used and are computed for beams surfaced S1S1E or S4S. If desirable to find the corresponding values for full size beams (rough) multiply loads in any horizontal line in the table by the factor given in bold face type in the column headed "Multiplying Factor."

Example: To find the load on a 12"x18" rough timber limited by a horizontal shear of 100 pounds per square inch. The table shows such a load to be 26,830 pounds for a beam surfaced to standard size. Multiply 26,830 by 1.07, shown in bold face type in the column headed "Multiplying Factor," and the limiting load required for a full size timber is found to be 28,710 pounds.

### THE WEST COAST LUMBERMEN'S ASSOCIATION

# SAFE LOADS IN POUNDS UNIFORMLY DISTRIBUTED FOR DOUGLAS FIR BEAMS—DETERMINED BY RESISTANCE TO HORIZONTAL SHEAR

Safe Load in pounds =  $W = \frac{Jbh}{0.75}$ , shown in light face type.

### Also

SAFE VERTICAL SHEAR IN POUNDS FOR DOUGLAS FIR BEAMS—DETERMINED BY RESISTANCE TO HORIZONTAL SHEAR

Safe Vertical Shear in pounds  $=\frac{W}{2}=V=\frac{Jbh}{1.50}$ , shown in italics.

Values in this table are based on surfaced sizes. To get values for rough sizes, multiply factor for any given size by number in bold face type.

TABLE 21

* See page 34

	Size					Vertical 8 unds per 8			
Rough	Surfaced S1S1E or S4S	Multi- plying Factor	100	R. R. 120* Struct- ures	125	Highway 150* Struct- ures	Pro- tected 175* Struct-	200	225
In.	In.						ures		
2x 4	15 8x 35 8	1.36	785	942	981	1178	1374	1570	1766
			393	471	491	589	687	785	885
2x 6	15 gx 55 g	1.31	1219	1463	1524	1828 914	2133 1067	2438 1219	2743 1574
2x 8	15 8x 712	1.31	610 1625	7 <i>32</i> 1950	76 <b>2</b> 2031	2438	2844	3250	3656
2X 8	19/8X 752	1.31	813	975	1016	1219	1488	1625	1828
2x10	15 xx 91 2	1.30	2059	2470	2574	3089	3603	4118	4633
2410	1784 0,2	1.50	1030	1235	1287	1545	1808	2059	2317
2x12	15/8x111/2	1.29	2491	2990	3114	3737	4359	4982	560
	1/8/11/2		1246	1495	1557	1869	2180	2491	280
2x14	15 ex 13 2	1.28	2925	3510	3656	4388	5119	5850	658
	17,8		1463	1755	1828	2194	2560	2925	329
2x16	15 8x 151 2	1.27	3359	4030	4199	5039	5878	6718	755
	-,		1680	2015	2100	2520	2939	<b>33</b> 59	377
2x18	15/8x171/2	1.27	3791	4550	4739	5687	6634	7582	853
			1896	2275	2370	2844	3317	<b>379</b> 1	426
3x 6	21/2x 51/2	1.31	1834	2200	2293	2751	3210	3668	412
	'- '-	1	917	1100	1147	1376	1605	1834	206
3x 8	21/2x 71/2	1.28	2500	3000	3125	3750	4375	5000	562
	1	·	1250	1500	156 <b>3</b>	1875	<b>£</b> 188	2500	281
3x10	2½x 9½	1.26	3168	3800	3960	4752	55 <del>44</del>	6336	712
			1584	1900	1980	2376	2772	3168	356
3x12	2½x11½	1.25	3833	4600	4791	5750	6708	7666	862
	1		1917	2300	2396	2875	3354	3833	431
3x14	2½x13½	1.25	4500	5400	5625	6750	7875	9000	1012
	01/15/		2250	2700	2813	3375	3938	4500	500
3x16	2½x15½	1.24	5167	6200	6459	7751	9042	10334	1162
9-10	01/-171/	1	2584	3100	3230 7294	8753	45 <b>2</b> 1 10211	5167 11670	581 1312
3x18	2½x17½	1.23	5835	7000			5106	58 <b>3</b> 5	656
	1	1	2918	3500	3647	4377	0100	0000	000
4x 4	31/2x 31/2	1.31	1633	1960	2041	2450	2858	3266	367
** *	3/24 3/2	1	817	980	1021	1225	1429	1655	185
4x 6	3½x 5½	1.25	2567	3080	3209	3851	4492	5134	577
0	0/24 0/2	1	1284	1540	1605	1926	2246	2567	288

(Table 21 Continued on Next Page.)

TABLE 21—Continued.

-	Size		Total S Ho	afe Loads rizontal Si	and Safe hear in Po	Vertical Sounds per	Shear in l Square In	Pounds Li ch as Indi	mited l
Rough	Surfaced S1S1E or S4S	Multi- plying Factor	100	R. R. 120* Struct- ures	125	Highway 150* Struct- ures	Pro- tected 175* Struct-	200	225
In.	In.			100		1,500	ures		
4x 8	3½x 7½	1.22	3500	4200	4375	5250	6125	7000	7876
4x10	3½x 9½	1.20	1750 4432	2100 5320	2188 5540	2625 6648	3063 7756	3500 8864	3938 9972
4x12	31/2×111/2	1.19	2216 5368	2660 6440	2770 6710	3324 8052	3878 9394	4432 10736	4986 12078
4x14	3½x13½	1.19	2684 6300	3220 7560	3355 7875	4026 9450	4697 11025	5368 12600	6038
4x16	3½x15½	1.18	3150 7234	3780 8680	3938 9043	4725 10851	5513 12660	6300 14468	7088 16277
4x18	3½x17½	1,18	3617 8165 4083	4340 9800 4900	4522 10206 5103	5426 12248 6124	6330 14289 7145	7234 16330 8165	8138 18371 9186
6x 6	51/2x 51/2	1.19	4067	4880	5084	6101	7117	8134	9151
6x 8	5½x 7½	1.16	2034 5500 2750	2440 6600 3300	2542 6875 3438	3051 8250 4125	3559 9625 4813	4067 11000 5500	4576 12378 6188
6x10	5½x 9½	1.15	6965 3483	8360 4180	8706 4353	10448	12189 6095	13930 6965	15671
6x12	5½x11½	1.14	8435 4218	10120 5060	10544 5872	12653 6327	14761 7381	16870 8435	18979
6x14	5½x13½	1.13	9900	11880 5940	12375 6188	14850	17325 8663	19800 9900	22278
6x16	5½x15½	1.13	4950 11366 5683	13650 6825	14208 7104	7425 17049 8525	19891 9946	22732 11366	25574
6x18	5½x17½	1.12	12835 6418	15400 7800	16044	19253 9627	22461 11231	25670 12835	28879
6x20	5½x19½	1.12	14300 7150	17160 8580	17875 8988	21450 10725	25025 12513	28600 14300	14446 32178 16088
8x 8	7½x 7½	1.14	7500 3750	9000 4500	9375 4688	11250 5625	13125 6563	15000 7500	16878 8438
8x10	7½x 9½	1.12	9500 4750	11400 5700	11875 5938	14250 7125	16625 8313	19000 9500	21378
8x12	7½x11½	1.11	11500 5750	13800	14375 7188	17250 8625	20125 10063	23000 11500	25878 12938
8x14	7½x13½	1.11	13500 6750	16200 8100	16875 8438	20250 10125	23625 11813	27000 13500	30378
8x16	7½x15½	1.10	15500 7750	18600 9300	19375 9688	23250 11625	27125 13563	31000 15500	3487
8x18	7½x17½	1.10	17500 8750	21000 10500	21875 10938	26250 13125	30625 15313	35000 17500	17488 39373 19688
8x20	7½x19½	1.09	19500 9750	23400 11700	24375 12188	29250 14625	34125 17063	39000 19500	4387 2193
10x10	9½x 9½	1.11	12037 6019	14450 7225	15046 7523	18056 9028	21065 10533	24074 12037	2708
10x12	9½x11½	1.10	14568 7284	17490 8745	18210 9105	21852 10926	25494 12747	29136 14568	13543 32778 16388
10x14	9½x13½	1.09	17100 8550	20520 10260	21375 10688	25650 12825	29925 14963	34200 17100	38478 19238
10x16	9½x15½	1.09	19640 9820	23570 11785	24550	29460 14730	34370 17185	39280	44190
10x18	9½x17½	1.08	22170 11085	26600 13300	12275 27713 13857	33255 16628	38798 19399	19640 44340 22170	22098 49883 24945
10x20	9½x19½	1.08	24700 12350	29640 14820	30875 15438	37050 18525	43225 21613	49400 24700	55578 87788

(Table 21 Concluded on Next Page.)

TABLE 21—Continued.

	Size		Total S	Safe Loads prizontal S	and Safe hear in Po	Vertical Sounds per	Shear in 1 Square In	Pounds Luch as Indi	imited b icated
Rough	Surfaced S1S1E or S4S	Multi- plying Factor		R. R. 120*		Highway 150*	Pro- tected		
			100	Struct- ures	125	Struct- ures	175* Struct-	200	225
In.	In.						ures		
2x12	11½2x11½2	1.09	17640	21160	22050	26460	30870	35280	39690
2x14	11½x13½	1.08	8820 20700	10580 24830	11025 25875	1 <i>3230</i> 31050	15435 36225	17640 41400	19848 46573
2x16	11½x15½	1.08	10350 23770	12415 28520	12938 29713	15525 35655	18113 41598	20700 47540	23288 53483
			11885	14260	14857	17828	20799	23770	2674
2x18	111 2x171 2	1.07	26830 13415	32200 16100	33538 16769	40245 20123	46958 23479	53660 26830	60368 3018
2x20	111 2x191 2	1.07	29900	35890	37375	44850	52325	59800	67273
	1		14950	17945	18688	22425	26163	29900	<b>33</b> 638
4x14	131 2x131 2	1.08	24300 12150	29170 14585	30375 15188	36450 18225	42525 21263	48600 24300	54678 27338
4x16	1312x1512	1.07	27900	33490	34875	41850	48825	55800	6277
4x18	13½x17½	1.07	13950 31500	16745 37800	17438 39375	20925 47250	24413 55125	27900 63000	3138 7087
			15750	18900	19688	23625	27563	31500	3543
4x20	131 2x 191 6	1.06	35100 17550	42110 21055	43875 21938	52650 26325	61425 30713	70200 35100	7897 <b>3</b> 948
6x16	151 /2151	1.07	32030	38430	40038	48045	56053	64060	1
	15½x15½	1.07	16015	19215	20019	24023	28027	32030	7206 3603
6x18	151 2x171 2	1.06	36170 18085	43400 21700	45213 22607	54255 27128	63298 <i>\$1649</i>	72340 36170	8138
6x20	151 2x 191 2	1.06	40300	48350	50375	60450	70525	80600	4069 9067
6x22	151 áx211 á	1.06	20150 44420	24175 53300	25188 55525	30225 66630	35263 77735	40300 88840	4553 9994
			22210	26650	27763	33315	38868	44420	4997
6x24	151 2x231 2	1.05	48580 24290	58270 29135	60725 <i>30365</i>	72870 36435	85015 42508	97160 48580	10930 <i>5465</i>
8x18	171 2x171 2	1.06	40820	48990	51025	61230	71435	81640	9184
e-an			20410	24495	25518	30615	<b>3</b> 5718	40820	4592
8x20	171 2x191 2	1.06	45500 22750	54600 27300	56875 28438	68250 34125	79625 39813	91000 45500	10237 5118
5122	171 2x211 2	1.05	50180	60200	28438 62725	75270	87815	45500 100360	11290
8x24	171 2x231 g	1.05	25090 54810	30100 65800	31363 68513	37635 82215	43908 95918	50180 109620	5645 12332
\$x26	171 x251 x	1.05	27:05 59500	32900 71400	34257 74375	41108 89250	47959 104125	54810 119000	6166. 13387
	!	1.00	29750	35700	37188	44625	52063	59500	6693
0x20	! 191 ₂ x191 ₂	1 05	50700	60820	63375	76050	88725	101400	11407
(12.22)	191 (x21)	1 05	25350 55880	30410 67070	31688 69850	38025 83820	44363 97790	50700 111760	5705 12573
	•		2.3.0	<b>3</b> 3535	34925	41910	48895	55880	6286
0x24	191 2231 2	1 05	61080	73300 \$6650	76350 38175	91620 45810	106890 53445	122160 61080	13743 6871
Un.26	191 ₂ x251 ₂	1 05	66270	79550	82838	99405	115973	132540	14910
(aux	19: ₂ x27: 2	104	- 33755 - 71460	\$9775 \$5750	\$9325	107190	57987 125055	66270 142920	7 <i>455</i> 16078
	, -		35 8.	2875	4.663	53535	62528	71460 153360	8039
(Exf)	19: 2229: 3	1 04	isso.	92(10)	95850 -1825	115020 57510	134190 67095	153360 76680	17253 8626

### MAXIMUM SPANS AND MAXIMUM DEFLECTIONS FOR MILL AND LAMINATED FLOORS

Tables 22 and 23 show the maximum spans for both mill and laminated floors limited by safe fiber stresses varying from 1,200 to 1,800 pounds per square inch, and by floor loads varying from 50 to 1,000 pounds per square foot. The maximum deflections in inches are also given for each span length shown. The dimensions of flooring given are standard as manufactured by the West Coast Lumbermen's Association. The weight of the floor has been added to the live load in computing the spans and deflections. A value of 1,643,000 pounds per square inch for the modulus of elasticity was used in computing deflections in mill and laminated floors.

### THE WEST COAST LUMBERMEN'S ASSOCIATION

Floor T	Floor Thickness	Area Cross Section	Moment of Inertia	Section Modulus	Weight per Square Foot	Live Load	Combined Load Live and	Maximu	Maximum Spans in Feet and Maximum Deflections in Inches, for Safe Fiber Stresses in	in Feet	and Maxi Fiber Str	mum Def	lections
Rough	Surfaced	A=bh	를 를 를	S=	(Based on air-dry weight at	Square Foot	weight of Floor per sq. ft.		Found	ber 5q.	in., <b>se</b> ind	licated	
•	5 S	b=12 In.	12 b . 12 In.	6 b=12 In.	34 lbs. per cu. ft.)		À						
ē	In.	₹. In	In.4	In.3	Lbs.	Lbs.	Lbs.	 0021	1300	9 <del>1</del>	906	1600	981
						100	106.02	8, 3,	8, 7,	8'11'			
			6	5	8	150	156.02	6,10, 6,10,	7, 1,	7, 4,	7, 7	7,10	
81 21 21	30 Ni	? ? -	8	50°6	20.0	200	206.02	5,11,	6,260	9, 28	6, 7	6,10	7, 3
						250	256.02	5' 4".	5, 6, 3378	.4850 5′9″ .3975	. 2086 5'11" .4511	6′ 2° 5230	6530.
						150	158.85	9/11	10, 4"	10′ 9°			
						200	208.82	\$ & §	90,0	4.5	8	10, 0,	
						250	258.85	, 60°, 60°, 60°, 60°, 60°, 60°, 60°, 60°	8, 1,	, ic	, % S	30.8	6
	_					300	308.80	7, 1,	7, 5	,	21.2	% % %	∞
716	```	3	6	5	ă	320	368.80	6, 26	0,10	<u>2</u> -8	7, 4	2, L	6,60
	<u>.</u>	?	8	8. A	8	<b>4</b> 00	408.85	6.90	6,9	8 8	6,11,0	2 % S	2 1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
						450	468.86	5,10	6, 1, 6, 1,	8,4 8,4	9,0	, d (e, j	2,2
						200	28.80	2,50	5, 8,	6, 0,	6, 280 6, 280	6, 50 6, 50	, 9 2 2 2 3
						900	908.86	5, 1,	5, 3,	5, 26 6, 96	333 8,83	38 <b>45</b> 5′10″	, 9 8 8
		_				2	70.00	1,815	2001	2474	.2800	.8175	8

TABLE 22—Continued.

Floor Thickness	hickness	Area Cross Section	Moment of Inertia	Section Modulus	Weight per Square	Live Load	Combined Load Live and	Maximu	Maximum Spans in Feet and Maximum Deflections in Inches, for Safe Fiber Stresses in	in Feet a	and Maxi Fiber Sta	mum Dei	Geotions
Rough	Surfaced	A=bh	· 경	*qq	Based on air-dry	Square Foot	weight of Floor per sq. ft.		Pound	Det Sq.	.i. <b>se</b> ind	icated	
}	P.S.	b=12 In.	12 b=12 In.	6 b=12 In.	34 lbs. per cu. ft.)		à	8	8	8	8	3	
i.	In.	Sq. In.	In.4	In.8	Lbs.	Lbs.	Lbs.	1200	1300	D#1	1900	1900	1800
						150	160.27	11, 6,	11,11,			:	:
						700	210.27	10, 0,	10, 5	10,10	11, 2		<u>: :</u>
						250	260.27	6,6 6.0	9, 4,	9,8	10, 1	10, 5	: :
-						300	310.27	8, 885 8, 3, 5	8, 7, 8, 7,	.6683 8′11°	9, 2,	.8748 9′6°	10, 1
						320	360.27	7, 8,	7,11	%, 228 %, 34 %, 258	% 9.340 9.30	.7266 8′10°	9.9203
:	ì		;		į	400	410.27	7,350	7, 2, 2	7, 9,	8, 0,	.6282 8, 3,	8, 8
<b>.</b>	8/8	6.5	<b>27.63</b>	26.27	10.27	450	460.27	.3105 6′ 9″	7,001	7,4,4	7, 7	2,2	9. % 9. %
						200	510.27	6, 5,	6, 2508 6, 8, 8	6,11,	7, 2,	7,5	7.10
						009	610.27	5,10	.2912 6′ 1°	6, 4,	.3882 6′ 7°	6, 9, 9,	7.55
						200	710.27	2028	5, 8,	5,11	6, 1,	.3671 6′3°	
						800	810.27	5, 1,	5,44	5,2468 2,2468	2,800	5'11' 8'11'	

MANIMUM SPANS AND MANIMUM DEFLECTIONS FOR LAMINATED FLOORS UNIFORMLY LOADED Values in this table are based on surfaced sizes. TARLE 93

Floor T	Floor Thickness	Area	Moment	Contion	Weight		Combined	Meximin	S	in Poot	nd Mari	Do.	lootions
		Section	Inertia	Modulus	Square	Live Load	Load	TAT BALLING	in Inches, for Safe Fiber Stresses in	, for Safe	Fiber Str	esses in	TOCATORIE
Rough	Surfaced S1S1E		bh³	ph2	Based on air-dry	Square Foot	Weight of Floor		T Omio	t ber ad a	11., 88 LIIQ	noaren	
	5.7	A:=:bh	]=	S= 	weight at		per Sq. Ft.						
	2	111111111111111111111111111111111111111	b=12 In.	b=12 In.	cu. ft.)		'n	1200	1300	1400	1200	1600	1800
Ju.	In.	S. In	In.4	In.³	Lbs.	Lhs.	Lbs.						
			İ			300	315.95	12, 8,	13, 2"	13, 8,	14, 2,		
						350	365.95	11, 9,	12, 3,	12, 8,	13, 26	13, 7	
						400	415.95	11, 0,	11' 6"	11,11	12, 4,	12, 9	
			-		_	450	465.95	10, 5,	10,10	11, 3,	11, 8,	12,0	12, 9,
	``	į	3	8	:	200	515.95	21.0	10, 4,	10, 8,	11, 1	11, 5,	12,25
•	8 %	6.30	177.80	8	es. es.	009	615.95	9, 1,	9,2%	9,10,	10, 2,	10,7	11.00
			-			200	715.95	8, 5,	8, 9°	9, 1,	8 6	9,50	10,18
						008	815.95	7.17	8, 2, 3	% % % %	8,10	9,6	8,00
						006	915.95	7. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	7, 81,	% % % % %	98,80	% 28.5 7.5	9,5
						1000	1015.95	7, 1,	4. 4. 5. 4. 5. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	1,7	7.11	% % %	8. 8. 8. 8.

450 421.25 14'7" 15'3" 15'9" 16'4" 6220 7370 8466 9751 450 471.25 130' 14'5" 15'1" 15'5" 15'11" 550 5512 13'2" 13'8" 14'2" 14'8" 15'2"	471.25 13'10' 14' 5' 14'11' 15' 5' 11' 15' 5' 11' 15' 5' 11' 15' 5' 11' 15' 5' 11' 15' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11' 5' 11'	521.25 13' 2' 13' 8' 14' 2' 14' 8' 14' 8'	521.25 13' 2" 13' 8" 14' 2" 14' 8" 1	7101	. 5071 . 5920 . 6853 . 7871 . 8973	600 621.25 12' 1" 12' 6" 13' 0" 13' 8" 13'11"	.4855 .3700 .0001 .7555 11' 8" 19' 1" 19' 8" 19'11"	3650 4319 4979 5717	10'11"   11' 4"   11' 8"   12' 1"	.3226 .3775 .4384 .4978 .5692	10, 3, 10, 8, 11, 1, 11, 5	2875 3330 3882 4491 5086	9, 9" 10' 2" 10' 6" 10'10"	.3011 .3529 .4030 .4574	18, 1,	7002 8171 9540	17, 3, 17,11,	. 6345 . 7438 . 8639 . 9870 .	15.10 16 5 17 0	5309 6262 7259 8339	726.91 14. 1 14. 8 15. 3 15. 9	. 0218.   4617.   9620.   0866.   2764.	13' 9" 14' 3" 14' 9" 15' 3"	12, 0, 12, 8, 12,11, 14, 5,	0 1 1 1 0 01 0 01 0 7 1 10 07 1 10 07 1 10 07 1 10 07 1 10 07 1 10 07 1 10 07 1 10 07 1 10 07 1 10 07 1 10 07 1	19, 4"   19,10"   13, 3"   13, 8"	3231 3801	
421.25	471.25		-	521.25	;	621.25	791 95	3					1021.25		476.91		526.91		626.91		726.91		826.91	096 01	10.020	1098 91		
•	400	450	¥	200	;	909	200	3	800	;	<b>0</b> 6		1000		450		200	000	3	ŝ	302		908	8	8	1000		
						à	21.25														3	76.91						8
						01	112.30														00.	180.50						-   [
						90	421.88														200	897.38				-		
						5	⊃. B.														;	114.0						
						È	22														ì	8% 8						
				-			<b>*</b>					_		_		_					•	2						

(Table 23 Concluded on Next Page.)

•	Ċ	į
1	ï	
	٤	
ζ		
	_	Į
Ć	Š	
í		
ļ		
ı		
		TATE OF CONTINUE

ections				1800					18, 5,	17' 6" 17' 6" .8758				•	<u>:</u>
num Defi	sees in			1600			19, 8,	18, 5,	2,5	.66. 6.00 6.00 6.00	:	21, 6	20,4	19,9	8
nd Maxir	Fiber Stra n. se indi			1500		20, 2,	19,8	17,10	16/10	16, 01 6100		20'10'	16.88 8.88 8.88	18, 9,	
in Feet a	, for Safe per So. I			1400		19, 9,	18, 4,	17, 3	16, 3,	15' 6'	21, 5	8,58 8,58 8,58	19,5	18, 1,	
m Spans	in Inches, for Safe Fiber Stresses in Pounds per Sq. In., as indicated			1300		19, 0	17, 8,	16, 7	15, 80	. 3008 14'11" . 4598	20, 8,	19, 5,	18, 4,	17, 5	0000
Maximu				1200		18' 4"	17, 0,	15,11	15, 1	3919	19/10	18, 8,	17,86	16,56 8,98 8,98	7004
Combined	Load Live and	Weight of Floor	per Sq. Ft.	ù	Lbs.	632.59	732.59	832.59	932.59	1032.59	738.25	838.25	938.25	1038.25	
	Live Load	Square			Lbs.	909	200	900	006	1000	200	908	006	1000	
Weight	Square	(Based on air-dry	weight at	or ft.)	Lbe.			1	32.59			30	38.20		
Section	Modulus	bh²		b=12 In.	In.³			;	264.50				304.30 304.30		
Moment	Inertia	pp.	<u> </u>	b=12 In.	In.4				1520.88				2460.38		
Area	Section		A=bh	D=12 III.	Sq. In.				138.0				162.0		
Floor Thickness		Surfaced	10.5	Ē	li.				11)2			;	13/2		
Floor T		Rough			Įi.				2			,	<b>*</b>		

# MAXIMUM BENDING OR RESISTING MOMENTS OF CROSS SECTION IN FOOT POUNDS FOR RECTANGULAR BEAMS

Table 24 shows the maximum resisting moments in foot pounds for timbers varying in size from 2"x4" to 20"x30" for safe fiber stresses varying from 1,000 to 2,000 pounds per square inch. The values given are for surfaced sizes. Multiplying factors are given which enable the values to be quickly converted to those for rough timbers full size.

MAXIMUM BENDING OR RESISTING MOMENTS OF CROSS SECTION IN FOOT POUNDS FOR RECTANDED TANGULAR BEAMS

Values in this table are based on surfaced sizes. To get values for rough sizes, multiply Resisting Moment for any given size by multiplying factor in bold face in same horizontal line.

# TABLE 24

	Size		The state of	de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la	Desir Desir D	S. Car	TO: 1. co.	D.		To an inch	100
Ronek	Surfaced	Multiplying	h ceasa	ng Moment	s in Foot P	ounds for S	riber	orreses in rounds per		eq. in., as indicated	cared
	or S4S		1000	1100	1000	1900	1400	1200	1000	1000	9000
In.	In.		TOO	0011	1200	mer	1300	noer	1000	nogr	2000
2x 4	15/8x 35/8	1.50	297	327	356	386	416	446	475	535	594
2x 6	198x 598	1.40	714	785	857	928	1000	1071	1142	1285	1428
2x 8	198x 7½	1,40	1269	1396	1523	1650	1777	1904	2030	2284	2538
2x10	198x 91/2	1,36	2037	2241	2444	2648	2852	3056	3259	3667	404
2x12	198x1132	1.34	2985	3284	3582	3881	4179	4478	4776	5373	5970
9x14	15/8/13/2	13.1	5493	5005	6507	7050	2509	8135	8677	0761	1084
2x18	15/8x173/2	1.30	6912	7603	8294	9868	7.296	10368	11059	12442	13824
3x 6	216x 516	1.43	1050	1155	1260	1365	1470	1575	1680	1890	2100
3x 8	23/2x 73/2	1.37	1952	2147	2342	2538	2733	2928	3123	3514	3904
3x10	2½x 9½	-33	3134	3447	3761	4074	4388	4701	5014	5641	626
SKIZ	275x1175	5.00	2804	2021	5510	0260	6429	8888	1341	8266	1906
9-16	272XI372	200	0070	0176	10010	10045	11870	10519	19947	15016	1669
3x18	23-5x173-5	1.27	10633	11696	12760	13823	14886	15950	17013	19139	2126
4x 4	3½x 3½	1.49	296	656	715	775	834	894	954	1073	119
4x 6	315x 515	1.36	1470	1617	1764	1161	2058	2205	2352	2646	2940
4x 8	35gx 75g	.30	2734	3007	3281	3554	3828	4101	4374	4921	246
dixio	875X B75	77.	4388	4827	2265	5704	6143	6582	7021	7898	877
4x14	316x1319	23.2	8859	9745	10631	11517	12403	13289	10286	11572	17718

	Sine		D. 1. 1.		4	0	The state of			-	
Rounk	Surfaced	Multiplying	Kesish	ng Moment	Kesisting Moments in Foot Founds for Safe Fiber Stresses in Founds per Sq. In., as industred	ounds for Sa	de Fiber St	resses in Por	nds per 5q	. In., as ma	icated
- Smoot	or 848		1000	0011	wer	1900	1400	1500	1800	1000	0000
In.	In.		1000	71100	1200	nor	7500	1900	1000	1900	2000
6x 6	515x 519 519x 710	1.30	2311	2542	2773	3004	3235	3467	3698	4160	4622
6x10	51.5x 91.5	1.21	6894	7583	8273	8962	9652	10341	11030	12409	13788
6x12	519x1139	1.19	10103	11113	12123	13134	14144	15155	16165	18185	20206
6x16	516x1516	1.16	18353	20188	22023	23859	25694	27530	29365	33035	36706
6x18 6x20	515x1715 515x1919	1.16	23394	31952	34856	30412	32752	35091	37430	42109	46788
8x 8	715x 71.2	1.21	5859	6445	7031	7617	8203	8789	9374	10546	11718
8x10	71.9x 91.2	1.18	19778	10341	11281	12221	13161	14102	15042	16922	18802
8x14	7) (x13) (2	25.	18984	20882	22781	24679	26578	28476	30374	34171	37968
8x18	715x1732	1.13	31901	35091	38281	32534	35036	47852	51042	57422	63802
8x20	735x1935	1.12	39609	43570	47531	51492	55453	59414	63374	71296	79218
10x10	916x 916	1.17	11908	13099	14289	15480	16671	17862	19053	21434	23816
10x12	91.5x111.2	100	17450	19195	20940	22685	24430	26175	27920	31410	34900
10x16	956x1536	1.12	31700	34870	38040	41210	44380	47550	50720	57060	63400
10x18	91.2x171.5	1.11	40408	44449	48490	52530	56571	60612	64653	72734	8081
10x20	9)2x19)2	1.1	50172	55189	60206	65224	70241	75258	80275	90310	10034
12x12	1139x1155	1.14	21123	23235	25348	27460	29572	31685	33797	38021	42246
12x14	111/5x13/2	1.12	29109	32020	34931	37842	40753	43664	46574	52396	5821
12x16	111/2x15/2		38373	42210	46048	49885	53722	57560	61397	69071	7674
12x18	1159X1/39	0.10	48910	93807	20003	08390	08481	13373	18204	100001	9/83

,	Nize		Domin	Nomonte	in Poort De	S ed open	fo Eibos Cts	Docietics Moments in Book Dounds for Oafs Dibas Chanson in Dounds now Co. In secindinated	S see	T se in	jostod
Rough	Surfaced S1S1E	Multiplying Factor	negav	and an onicing	1 1000 1 111	101 SD110		200 1 11 2 200			0
ln.	or SE		1000	1100	1200	1300	1400	1500	1600	1800	2000
14x14 14x16 14x18 14x20	131 2x1312 131 2x1512 131 2x1712 131 2x1912	892112	34172 45047 57422 71297	37589 49552 63164 78427	41006 54056 68906 85556	44424 58561 74649 92686	47841 63066 80391 99816	51258 67571 86133 106946	54675 72075 91875 114075	61510 81085 103360 128335	68344 90094 114844 142594
16x16 16x18 16x20 16x22 16x22	15 2x15 2 15 2x17 2 15 2x19 2 15 2x21 2 15 2x21 2	28888	51720 65929 81859 99513 118888	56892 72522 90045 109464 130777	62064 79115 98231 119415 142665	67236 85708 106417 129367 154554	72408 92301 114603 139318 166443	77580 98894 122789 149270 178332	82752 105486 130974 159221 190221	93096 118672 147346 179123 213998	103440 131858 163718 199026 237776
18x18 18x20 18x22 18x24 18x24	17) 2x1712 17) 2x1912 17) 2x2132 17) 2x2332 17) 2x2332	88855	74436 92422 112353 134228 158047	81880 101664 123588 147651 173852	89323 110906 134823 161073 189656	. 96767 120149 146059 174496 205461	104210 129391 157294 187919 221266	111654 138633 168530 201342 237071	119098 147875 179765 214765 252875	133985 166360 202235 241610 284485	148872 184844 224706 268456 316094
20120 20122 20128 20128 20138	19/5x19/2 19/5x21/5 19/5x23/5 19/5x23/5 19/5x25/5 19/5x29/5	86.00.00	102984 125193 149568 176109 204818	113282 137712 164525 193720 225300 256262	123581 150231 179481 211331 245781	133879 162751 194438 228942 266263 306401	144178 175270 209395 246553 286745	154476 187790 224352 264164 307227 363540	164774 200309 239309 281774 327709	185371 225347 269222 316996 368672	205968 250386 299136 352218 409636

### SAFE LOADS ON COLUMNS

In computing safe loads on columns two standard formulae have been used, one a straight line formula adopted by the American Railway Engineering Association, and the other a curved line formula established by the U. S. Department of Agriculture, Division of Forestry*. In both formulae safe fiber stresses in end compression have been used varying from 1,000 to 1,600 pounds per square inch.





Diagram 14. Graphic presentation of column formula adopted by the American Railway Engineering Association for safe fiber stresses of 1,000 to 1,600 pounds per square inch. See table 25 for explanation of formula.



Diagram 15. Graphic presentation of column formula established by U. S. Dept. of Agriculture, Forestry Division (now U. S. Dept. of Agriculture, Forest Service), for safe fiber stresses of 1,000 to 1,600 pounds per square inch. See table 26 for explanation of formula.

## FORMULA ADOPTED BY THE AMERICAN RAILWAY ENGINEERING ASSOCIATION

Working unit stress = C (1-I/60d) in pounds per square inch. C = Safe fiber stress in end compression, in pounds per square

1 = Length of column, in inches.

inch.

d = Least diameter or dimension of column, in inches.

### FORMULA ESTABLISHED BY THE U. S. DEPT. OF AGRICUL-TURE. FORESTRY DIVISION*

Working Unit Stress = 
$$C \frac{(700+15c)}{(700+15c+c^2)}$$

C = Safe fiber stress in end compression, in pounds per square

l = Length of column, in inches.

d = Least diameter or dimension of column, in inches.

c = l/d.

Diagrams 14 and 15 have been prepared and may be used for determining the working unit stresses for columns. The working unit stresses given in tables 25 and 26 have been taken directly from the diagrams and show in tabular form the corresponding safe fiber stresses for values of l/d varying from 15 to 32

In the preparation of tables 27 and 28, the diagrams have been used only for computing the total safe loads on columns in which the ratio of length to smallest dimension is 15 or greater. In figuring the safe loads on columns in which l/d is less than 15 the working unit stresses in end compression shown at the top of tables have been used.

The tables show safe bearing loads for columns 6"x6" to 26"x26" in cross section, surfaced S1S1E or S4S. The area of the actual cross section is shown in square inches, together with the length of the column and the ratio l/d. Multiplying factors are also shown in bold face in these tables, and may be used in converting the various values shown, to similar values, for full size (rough) columns. The figures in the column headed "Multiplying Factor" apply to the loads shown in the same horizontal line. For example, the table based on the U. S. Department of Agriculture formula shows that by using a working unit stress of 1,600 pounds per square inch a 14"x14" column 18 feet long, surfaced to  $13\frac{1}{2}$ "x $13\frac{1}{2}$ ", will support a load of 228,910 pounds. This same column in the rough size would support a load equal to 228,910x1.09 or 249,510 pounds.

^{*} Now the U. S. Dept. of Agriculture, Forest Service.

### WORKING UNIT STRESSES IN POUNDS PER SQUARE INCH FOR SQUARE END DOUGLAS FIR COLUMNS, SYMMETRICALLY LOADED

T.C

Ba:

=

Based on the formula adopted by the American Railway Engineering Association.

Working Unit Stress = C(1-l/60d).

C = Safe fiber stress in end compression, in pounds per square inch.

l = length of column, in inches.

d == least side or diameter, in inches.

When I/d is less than 15, use "C."

### TABLE 25

l/d				·			
1/u	1000	1100	1200	1300	1400	1500	1600
5	749	824	900	974	1049	1125	1200
8	732	806	879	952	1025	1100	1182
7	716	787	860	930	1002	1075	1145
8	700	769	840	909	979	1050	1119
9	683	750	819	887	955	1025	1092
0	666	732	800	866	932	1000	1065
1	649	714	779	843	909	975	1039
2	632	696	760	822	885	950	1012
3	616	677	739	801	862	925	985
4	600	659	720	779	839	900	959
5	582	640	699	757	815	875	932
3	566	622	680	735	792	850	906
7	549	604	659	714	769	825	879
8	533	585	639	692	746	800	852
9	516	567	620	670	722	775	825
b	500	548	599	649	699	750	799
1	483	530	580	627	675	725	772
2	466	512	559	606	651	700	745

### RKING UNIT STRESSES IN POUNDS PER SQUARE INCH FOR SQUARE END DOUGLAS FIR COLUMNS, SYMMETRICALLY LOADED

ed on formula established by the U. S. Dept. of Agriculture Forestry Division •

rking Unit Stress = 
$$C \frac{(700+15c)}{(700+15c+c^2)}$$
  $c = l/d$ .

- = Safe fiber stress in end compression, in pounds per square inch.
- = length of column, in inches.
- = least side or diameter, in inches.

ien 1/d is less than 15, use "C."

### 3LE 26

	1000	1100	1200	1300	1400	1500	1600
	804	884	965	1046	1127	1206	1284
	785	864	943	1022	1100	1179	1255
	767	844	921	998	1075	1150	1226
	749	823	899	974	1050	1124	1199
	730	805	878	950	1025	1097	1170
	712	786	857	928	1000	1071	1143
	695	768	837	905	975	1046	1117
	679	750	817	883	951	1020	1090
	663	731	796	861	929	996	1063
	647	714	778	841	906	971	1039
	631	697	759	821	884	949	1013
	617	681	741	802	864	927	989
	601	664	724	784	844	905	965
	587	648	707	766	824	883	942
	573	632	690	748	805	862	920
	559	617	674	730	787	841	899
	547	601	659	713	768	821	878
	534	587	643	696	750	801	856

^{&#}x27; Now U. S. Dept. of Agriculture, Forest Service.

# TABLE OF SAFE BEARING LOADS IN 1,000 POUND UNITS FOR SQUARE END DOUGLAS FIR COL-UMNS, SYMMETRICALLY LOADED

Based on the formula adopted by the American Railway Engineering Association

 l == length of column, in inches.
 d == least side or diameter, in inches.
 When I/d is less than 15, use "C." Working Unit Stress :- ('1 - l/60d.)

C == Safe fiber stress in end compression, in pounds per square

Values in this table are based on surfaced sizes. To get values for rough sizes, multiply bearing load by multiplying factor in bold face in same horizontal line. To get cross-section of rough size, multiply area given

Rough In.		_						0.000	,			1 - 4 1
Rough In.	Surfaced	Area	Length	P /	Multi-	Dare Bear	ing Loads	Date Dearing Loads in 1000 Found Units for values of		r values of	o ma indicated	cared
i i	S X Z Z	Section	Cohumn		plying Factor	900	1100	5000	5062		002	281
		Ϋ́. Ξ	Ŧ.			2001	0	15.00	0001	K	ANC:	C C C C C C C C C C C C C C C C C C C
9 x9	512x 512	30.25	e x 5	13.1	52.5		33.28 23.53	36.30 25.67	39.33 27.81	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25.38 25.38 25.38	48.40 34.22
		<u>.</u>	227	30.2	328	17.00						23.28
			∞≘		1.14	56.25	61.88 45.30				84.38	
8 8 8	73.2x 73.2	36.25 1.14	57.5	25.25 4.4.8	 	38.19 35.21 18.19	38.23 2.23 4.23	24.25 25.25 25.25	45.65 27.75 83.75	53.47 49.29 45.05	52.23 28.28 28.28	61.10 56.34 49
			22		28	29.19	32.11				43.79	
			8 OI	10.1	==	8.8		108.30	117.33			
10x10	91 2x 91 2	1.15	27 27	15.2	5.13	67.24	73.96 89.89	80.69 76.25	87.41 82.60	26.88 1.89.	100.86 95.31	107.58
			92	320	7.7							

211.60 211.60 152.56 145.15 137.74 130.35	291.60 291.60 213.46 204.99 196.24	384.40 384.40 284.46 275.23 264.85	490.00 490.00 366.53 354.77	608.40 608.40	739.60 739.60	883.60 883.60	1040.40
198.38 198.38 143.03 136.08 129.14 115.46	273.38 273.38 200.12 192.18 183.97	360.38 360.38 266.69 258.03 248.30	459.38 459.38 343.62 332.60	570.38 570.38	693.38 693.38	828.38 828.38	975.38
185.15 185.15 133.49 127.01 120.53 114.06	255.15 255.15 186.77 179.37 171.71	336.35 336.35 248.91 240.83	428.75 428.75 320.71 310.42	532.35 532.35	647.15 647.15	773.15	910.35
171.93 171.93 123.96 117.94 111.92 105.91	236.93 236.93 173.43 166.56 159.45 152.58	312.33 312.33 231.13 223.63 215.19	398.13 398.13 297.80 288.25	494.33 494.33	600.93 600.93	717.93	845.33
158.70 158.70 114.42 108.86 103.31 97.76	218.70 218.70 160.09 153.74 147.18	288.30 288.30 213.35 206.42 198.64	367.50 367.50 274.90 266.08	456.30 456.30	554.70 554.70	662.70 662.70	780.30
145.48 145.48 104.89 99.79 94.70 89.62	200.48 200.48 146.75 140.93 134.92	264.28 264.28 195.57 189.22	336.88 336.88 251.99 243.90	418.28	508.48	607.48 607.48	715.28
132.25 132.25 95.35 96.09 86.09 76.97	182.25 182.25 133.41 128.12 122.65 117.37	240.25 240.25 177.79 172.02 165.53	306.25 306.25 229.08 221.73	380.25 380.25	462.25 462.25	552.25 552.25	650.25
88-1-1-22	888885	70.1.07	0.1.06	8.5	9.0	22	83
25.0 25.0 25.0 25.0 25.0	7.1 14.2 16.0 17.8 19.6 21.3	7.7 14.0 15.5 17.0	6.9 13.7 15.1 16.5	6.2	5.6	5.1	7.4
2,22,23,25,25,25,25,25,25,25,25,25,25,25,25,25,	8 to 18 20 22 24 24	22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	24 13 20 to	10 to	10 24 24 25	10 to	10 to
132.25	1.08	240.25 1.07	306.25 1.06	380.25 1.05	462.25 1.05	552.25 1.04	650.25
111 ₂ x111/ ₂	13 ¹ / ₂ x13 ¹ / ₂	15½x15½	17½x17½	19½x19½	21½x21½	23½x23½	25½x25½
12×12	14x14	16x16	8x18	20x20	22x22	24x24	26x26

# TABLE OF SAFE BEARING LOADS IN 1,000 POUND UNITS FOR SQUARE END DOUGLAS FIR COL-UMNS, SYMMETRICALLY LOADED

. .

Based on the formula established by the U.S. Dept. of Agriculture-Forestry Division.

l == length of column, in inches. d == lenst side or diameter, in inches. When l d is less than 15, use "C." c = l.d.f - Safe fiber atress in end compression, in pounds (700 - 150 - (2) (7(E) - 15E) ٠ Working Unit Stress

Values in this table are based on surfaced sizes. To get values for rough sizes, multiply bearing load by multiplying factor in boid face in same horizontal line. To get cross-section of rough size, multiply area given by factor in boid face directly below. per square inch.

	J215.					Safe B.	Paring Load	s in 1000 P	ound Units	Safe Bearing Loads in 1000 Pound Units for Values of "C" as indicated	of "("." as in	dicated
	Surfaced	Area (Tress	Length		Multi-		,					
Rough	SINE STANE	Section	Column	P/1	plying Factor	900	901	96	1906		301	1
=	In	× = 1.5	Ft.			001 	911	NEI NEI	13(1)	<u> </u>	onet	987
9	; ;		9	13.1	1.19				39.33			35.0
=	Κ,	÷ -	° =	21.8	3 %				8.83 8.83 8.83 8.83			88
			27	26.2 30.5	8.58	18.57 16.73	20.43 18.40	22.28 20.08	24.14	28.00 23.42	27.86 25.10	28.7
		30	∞;	12.8	1.14						<b>86</b> .38	
< .	1; 2x 1; 3	3 <b>7</b>	22	19.0	1.1	# 9 F	45.07	49.18	88	57.43	61.5	28
			4 9	22.23 4.25.4	<b>∞</b> ∞						28.70 52.70	
			<b>8</b>	8.8	<b>9</b>						88.80	
			* Q	10.1	==	90.25	99.28	108.30	117.33	126.35	135.38	14.4
0 <b>x</b> 10	9) 2x 9) 2	90.25	2:	15.2	2					101.21		
		=	<b>2</b> 92	20.7	. <u>-</u>					80.14 80.14 80.14		108.72
			<b>2</b> 2	22.7	1.14					7		

211.60 211.60 163.36 165.31 147.49 133.52	291.60 291.60 228.91 218.99 209.95 201.20	384.40 305.60 294.83	490.00 490.00 393.47 379.74	608.40	739.60 739.60	883.60 883.60	1040.40 1040.40
198.38 153.15 145.61 131.52 125.18	273.38 273.38 214.61 205.31 196.83	360.38 360.38 286.50 276.41 265.59	459.38 459.38 368.88 356.01	570.38 570.38	693.38 693.38	828.38 828.38	975.38 975.38
185.15 1142.94 123.39 122.75 116.83	255.15 255.15 200.38 191.62 183.71 176.05	336.35 336.35 267.40 257.98	428.75 428.75 344.29 332.28	532.35 532.35	647.15 647.15	773.15	910.35 910.35
171.93 171.93 132.73 126.19 119.83 113.98	236.93 236.93 185.99 177.93 170.59	312.33 312.33 248.30 239.55 230.18	398.13 398.13 319.70 308.54	494.33 494.33	600.93 600.93	717.93	845.33 845.33
158.70 122.52 116.48 110.62 105.22	218.70 218.70 171.68 164.24 157.46 150.90	288.30 289.30 229.20 221.12 212.47	367.50 367.50 295.10 284.81	456.30 456.30	554.70 554.70	662.70 662.70	780.30 780.30
145.48 145.48 112.31 106.78 101.40 96.45 91.80	200.48 200.48 157.38 150.56 144.34 138.33	264.28 264.28 210.10 202.70 194.77	336.88 336.88 270.51 261.07	418.28 418.28	508.48 508.48	607.48 607.48	715.28 715.28
132.25 102.10 97.07 92.18 87.68	182.25 182.25 143.07 136.87 131.22	240.25 240.25 191.00 184.27 177.06	306.25 306.25 245.92 237.34	380.25 380.25	462.25 462.25	552.25 552.25	650.25 650.25
8822	8880000	7.1.1.08	1.06	5.5 8.5	88	22	<u> </u>
8.3 14.6 116.7 118.8 23.0 25.0	7.1 14.2 16.0 17.8 19.6 21.3	7.7 14.0 15.5 17.0	6.9 13.7 15.1 16.5	6.2 14.8	5.6	5.1	11.3
8 to 14 to 20 22 24 24	8 to 16 18 20 22 24	10 25 25 24 24 24 24 24 24 24 24 24 24 24 24 24	10 to 22 24 24 25 4	10 to	10 to	10 to 24	10 to 24
132.25	1.08	1.07	306.25 1.06	380.25 1. <b>05</b>	462.25 1.05	552.25 1.04	650.25 1.04
%111%/11	13)/2x13)/2	15½x15½	17!%x17!/2	19½x19½	21½x21½	23%x23%	25½x25½
12x12	14x14	16x16	18x18	. 20x20	22x22	24x24	26x26

*Now U. S. Department of Agriculture, Forest Service.

### JOIST CONSTRUCTION

Table 29 shows the lineal feet of joists per square foot of floor space required for joists spaced 12" to 24" on centers. This table also gives the number of board feet of joists and the weight in pounds per square foot of floor space for the various spacings of joists.

### JOIST CONSTRUCTION

Lineal feet, board feet and weight per square foot of floor surface for various sizes and spacings of Douglas fir joists.

TABLE 29

ł	Size			Per Squa	re Foot of F	loor Surfac	e
Rough	Surfaced S1S1E or S4S	Distance on Centers		Num	ber of		Weight (Air-dry material at 34 lbs. per cu. ft.)
In.	In.	In.	Linea	Feet	Board	Feet	Lbs.
2x 4	15/8x 35/8	12	1	1.00	2/3	.67	1.391
2x 4	15/8x 35/8	16	3/4	.75	1/2	.50	1.043
2x 4	15/8x 35/8	20	3/5	.60	2/5	.40	.8346
2x 6 2x 6 2x 6	15/8x 55/8 15/8x 55/8 15/8x 55/8	12 16 20	1 3/4 3/5	1.00 .75 .60	3/4 3/5	1.00 .75 .60	2.159 1.619 1.295
2x 8 2x 8 2x 8 2x 8	15/8x 71/2 15/8x 71/2 15/8x 71/2 15/8x 71/2	12 16 20 24	3/4 3/5 1/2	1.00 .75 .60 .50	1-1/3 1 4/5 2/3	1.33 1.00 .80 .67	2.879 2.159 1.727 1.440
2x10 2x10 2x10 2x10 2x10 2x10	15 8x 91 2 15 8x 91 2 15 8x 91 2 15 8x 91 2 15 8x 91 2	12 16 18 20 24	1 3/4 2/3 3/5 1/2	1.00 .75 .667 .60	1-2/3 1-1/4 1-1/9 1 5/6	1.67 1.25 1.11 1.00	3.644 2.733 2.441 2.186 1.822
2x12	15 gx 1112	12	1 3/4	1.00	2	2.00	4.412
2x12	15 gx 1112	16		.75	1-1/2	1.50	3.309
2x14	15 8x 13 ¹ 2	12	1	1.00	2-1/3	2.33	5.180
2x14	15 8x 13 ¹ 2	14	6/7	.857	2	2.00	4.439
2x14	15 8x 13 ¹ 2	16	3/4	.75	1-3/4	1.75	3.885
2x16	15 gx 15 1 2	12	1	1.00	$egin{array}{c} 2-2/3 \ 2-2/7 \ 2 \end{array}$ .	2.67	5.947
2x16	15 gx 15 1 2	14	6/7	.857		2.29	5.097
2x16	15 gx 15 1 2	16	3/4	.75		2.00	4.460
3x12	21 2x1112	12	1	1.00	3	3.00	6.788
3x12	21 2x1112	16	3/4	.75	2-1/4	2.25	5.091
3x14	2\2x13\2	12	1	1.00	3-1/2	3.50	7.967
3x14	2\2x13\2	14	6/7	.857	3	3.00	6.828
3x14	2\2x13\2	16	3/4	.75	2-5/8	2.63	5.975
3x16	2½x15½	12	1	1.00	4	4.00	9.144
3x16	2½x15½	14	6/7	.857	3-3/7	3.43	7.836
3x16	2½x15½	16	3/4	.75	3	3.00	6.858
4x16	31/2x151/2	12	1	1.00	5-1/3	5.33	12.80
4x16	31/2x151/2	14	6/7	.857	4-4/7	4.57	10.97
4x16	31/2x151/2	16	3/4	.75	4	4.00	9.600

# BOARD MEASURE AND WEIGHT PER LINEAL FOOT FOR VARIOUS SIZES

Table 30 shows the board feet per lineal foot for various sizes based on dimensions of rough timbers. This table also shows the weight per lineal foot for rough and surfaced lumber, both green and air-seasoned.

## BOARD MEASURE AND WEIGHT PER LINEAL FOOT FOR DOUGLAS FIR

Green weight based on 32 per cent moisture—38 pounds per cubic foot.

Air-seasoned weight based on 18 per cent moisture—34 pounds per cubic foot.

Oven-dry weight—29 pounds per cubic foot.

TABLE 30

Si	ze		Weight per Lineal Foot					
	Surfaced	Per Lineal Fcot	F	tough	Surfaced 8	181E or 848		
Rough	S1S1E or S4S		Green	Air Seasoned	Green	Air Seasoned		
In.	In.	Board Feet	Lbs.	Lbs.	Lbs.	Lbs.		
2x 4 2x 6 2x 8 2x10 2x12 2x14 2x16 2x18 2x20 3x 6 3x 8 3x10 3x12	15 x 35 x 15 x 55 x 15 x 75 x 15 x 75 x 15 x 1	74 114 114 126 2 214 226 3 316 114 2 2 2 2 2 2 3 3 3 3 3 4 3 3 3 3 3 3 3	2.111 3.168 4.220 5.280 6.335 7.390 8.440 9.500 10.540 4.750 6.335 7.918 9.500	1,890 2,832 3,777 4,723 5,665 6,612 7,553 8,500 9,443 4,250 5,665 7,085 8,500	1.554 2.411 3.216 4.073 4.931 5.788 6.648 7.505 8.360 3.630 4.947 6.270 7.590	1.391 2.159 2.879 3.644 4.412 5.180 5.947 6.718 7.480 3.248 4.427 5.008 6.788		
3x14 3x16 3x18 3x20	2½x13½ 2½x15½ 2½x17½ 2½x19½	31/5 4 41/5 5	11.080 12.660 14.250 15.820	9.915 11.320 12.750 14.160	8.909 10.220 11.540 12.860	7.967 9.144 10.330 11.510		
4x 4 4x 6 4x 8 4x10 4x12 4x14 4x16 4x18 4x20	31/2x 31/2 31/2x 51/2 31/2x 71/2 31/2x 91/2 31/2x 111/2 31/2x 131/2 31/2x 151/2 31/2x 171/2 31/2x 191/2	11/4 23/4 33/4 42/4 51/4 6	4.220 6.335 8.440 10.540 12.660 14.790 16.890 19.000 21.120	3,777 5,665 7,553 9,450 11,320 13,220 15,110 17,000 18,900	3.231 5.080 6.928 8.775 10.620 12.460 14.310 16.160 18.010	2.890 4.545 6.200 7.850 9.507 11.160 12.800 14.460 16.110		

(Table 30 Concluded on Next Page.)

### THE WEST COAST LUMBERMEN'S ASSOCIATION

T	Α	RI	.к	30	_Cor	ntin	ned

1	Size			Weight per l	ineal Foot	
	Surfaced	Per Lineal Foot	R	ough	Surfaced S	S1S1E or S4S
Rough	S1S1E or S4S	1000	Green	Air Seasoned	Green	Air Seasone
In.	In.	Board Feet	Lbs.	Lbs.	Lbs.	Lbs.
6x 6 6x 8 6x10 6x12 6x14 6x16 6x18 6x20	51 px 51 px 51 px 71 px 71 px 71 px 91 px 91 px 111 px 51 px 111 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151 px 151	3 4 5 6 7 8 9	9,50 12,66 15,82 19,00 22,16 25,34 28,50 31,67	8.50 11.32 14.16 17.00 19.82 22.67 25.50 28.32	7_98 10_88 13_79 16_69 19_60 22_50 25_40 28_30	7 142 9 74 12 34 14 93 17 54 20 12 22 72 25 32
8x 8 8x10 8x12 8x14 8x16 8x18 8x20	71 2x 71 2 71 2x 91 2 71 2x111 2 71 2x131 2 71 2x151 2 71 2x171 2 71 2x191 2	513 625 8 913 1025 12 1313	16.89 21.12 25.34 29.56 33.79 38.00 42.20	15.11 18.90 22.67 26.44 30.22 34.00 37.77	14.85 18.80 22.75 26.72 30.68 34.63 38.58	13.28 16.82 20.36 23.91 27.44 31.00 34.50
10x10 10x12 10x14 10x16 10x18 10x20	91 2x 912 91 2x1112 91 2x1312 91 2x1512 91 2x1712 91 2x1712	81.5 10 112.5 133.5 15 162.5	26.40 31.67 36.99 42.20 47.50 52.80	23 .60 28 .32 33 .02 37 .77 42 .50 47 .22	23.81 28.83 33.85 38.88 43.89 48.90	21.31 25.80 30.29 34.79 39.27 43.75
12x12 12x14 12x16 12x18 12x20	11\6x11\6 11\6x13\6 11\6x15\6 11\6x17\6 11\6x17\6 11\6x17\6	12 14 16 18 20	38.00 44.33 50.67 57.00 63.33	34.00 39.66 45.33 51.00 56.63	34.90 40.97 47.03 53.10 59.19	31.21 36.65 42.10 47.50 52.95
14x14 14x16 14x18 14x20	$\begin{array}{c} 13\frac{1}{2}x13\frac{1}{2} \\ 13\frac{1}{2}x15\frac{1}{2} \\ 13\frac{1}{2}x17\frac{1}{2} \\ 13\frac{1}{2}x19\frac{1}{2} \end{array}$	16½ 18¾ 21 23½	51.76 59.13 66.50 73.87	46.30 52.90 59.50 66.10	48.10 55.20 62.33 69.45	43.03 49.40 55.78 62.17
16x16 16x18 16x20 16x22 16x24	151 2x151 2 151 2x17 1 2 151 2x19 1 2 151 2x21 1 2 151 2x23 1 2	2136 24 2636 2936 32	67.57 76.00 84.40 92.90 101.30	60.46 68.00 75.50 83.18 90.60	63.40 71.58 79.80 87.90 96.10	56.71 64.02 71.40 78.67 86.00
18x18 18x20 18x22 18x24	$\begin{array}{c} 1716x1712\\ 1716x1912\\ 1712x2116\\ 1712x2112\\ \end{array}$	27 30 33 36	85 50 95 00 104 50 114 00	76.50 85.00 93.50 102.00	80.80 90.05 99.26 108.55	72.30 80.60 88.82 97.10
20x20 20x22 20x24	$\begin{array}{c} 19^{1} 2 x 19 1 2 \\ 19^{1} 2 x 21 1 2 \\ 19^{1} 2 x 23 1 2 \end{array}$	3315 3636 40	105.50 116.10 126.70	94.40 103.90 113.40	100.37 110.60 120.92	89.75 99.00 108.20
22x22 22x24	21\2x21\2 21\2x23\2	401 g	127.80 139.40	114.20 124.70	122.00 133.40	109.15 119.30
24x24	$23\frac{1}{2}x23\frac{1}{2}$	48	152,00	136.00	145.75	130.45
26x26	2534x2534	5634	178.40	159.60	171.50	153.50

					-	Length in Feet	in Feet					
Inches	10	12	14	16	18	20	22	24	26	28	30	32
2x 4	63%	8 67	995	1036	12	13%	1435	16	171%	1873	30	211/8
2x 8	1333	20	2335	2035	30.7	3333	36%	40.5	3434	3735	929	5375
2x12 2x14 2x16 2x20	23.7 26.5 30 33.1 33.1 33.1 33.1 33.1 33.1 33.1 3	38 28 4 40 33 5 5 4	3233 3233 427 453 4633	877% 48.2% 53.%	85448 85448	46% 533% 60 60%	513% 58% 66 73%	85.4528	603/5 693/5 78 863/5	6513 7478 84 84 9373	95889	742 743 853 96 1063
3x 6 3x 8 3x10 3x12 3x12 3x14 3x16 3x20	288888938	23 33 33 45 54 54 54 54	188844886	2554555 255455 255455 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 25545 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554 2554	284485188	25 25 20 20 20 20 20 20 20 20 20 20 20 20 20	25 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 6 5 1 5 6 5 6 5 6 5 6 6 6 6 6 6 6 6	26 26 26 26 26 26 26 26 26 26 26 26 26 2	39 52 78 78 104 117	25 25 25 25 25 25 25 25 25 25 25 25 25 2	\$6 25 25 25 25 25 25 25 25 25 25 25 25 25	\$4885 <u>124</u> 8
4x 4 4x 6 4x 8 4x 10 4x 12	2675 2675 3375 40	54254	1833 28 375 4635 56	2115 32 5335 64	28 38 23 23 23	25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55	293.8 733.8 88 733.8	28428	34%5 52 691% 863%	371/3 56 743/3 93/3	80 100 120	423% 64 851% 1063%
4x14 4x16 4x18 4x20	46% 53% 60 60 66%	86 72 68 80 72 68	6513 7435 84 9315	743% 853% 96 106%	84 108 120	9355 10675 120 1335	102% 117% 132 146%	128	12195 13835 156 17395	13025 14935 168 18625	000 000 000 000 000 000 000 000 000 00	1703

288 320 352 324 360 396 360 400 440
352 396 440
384 432 480
416 468 520
504 560
480 540 600

TABLE 31—Continued.

Sise in				•		Length in Feet	n Feet					
Inches	10	13	14	16	81.	20	22	24	26	28	30	32
14x14 14x16 14x18 14x20	163½ 186¾ 210 233⅓	196 224 252 280	22824 26114 294 32634	2613/5 2983/5 336 3733/5	294 336 378 420	32635 37335 420 46635	359½ 410% 462 513⅓	392 448 504 560	424% 4851% 546 606%	4571/3 5222/3 588 633/3	956 956 950 950 950 950 950 950 950 950 950 950	5223/5 5973/5 672 7463/5
16x16 16x18 16x20 16x22 16x24	21335 240 26635 29335 320	288 320 384 384 384	29836 336 37314 41036 448	3411/5 384 426% 4691/5 512	384 432 480 528 576	426% 480 5331% 640 640	4691% 528 5863% 6451%	512. 576 640 704 768	5543% 624 6933% 7622% 832	5971/8 672 7463/8 8211/8 896	988 980 980 980	682% 768 853% 938% 1024
18x18 18x20 18x22 18x24	270 330 360	324 380 396 432	378 420 462 504	432 480 528 576	486 540 594 648	25 20 20 20 20 20 20 20 20 20 20 20 20 20	594 660 726 792	648 720 792 864	702 780 858 936	756 840 924 1008	810 990 1080	864 960 1056 1152
20x20 20x22 20x24	3331/5 3662/5 400	400 440 480	466% 5131% 560	5331/5 5863/5 640	660 720	6663% 7333% 800	7331% 806% 880	00886	86635 95335 1040	9331/5 10262/5 1120	1000 1100 1200	106635 117335 1280
22x22 22x24	40333 440	484 528	5643/5 616	6451/s 704	726 792	806% 880	8871/8 968	968 1056	10483% 1144	11291/s 1232	1210 1320	12903% 1408
24x24	480	576	672	292	864	096	1056	1152	1248	1344	1440	1536
26x26	5631/5	929	7882.5	9011/8	1014	11263%	12391/3	1352	14642,5	15773%	1690	18023%

### MILL BUILDINGS

In recent years marked improvements have been made in the construction of mill buildings. These improvements have been of such a nature as to reduce maintenance cost, fire risk, and insurance rates, and to insure a longer life for the structure. This discussion will be confined largely to that type of building known as the timber-brick mill building.

There are a number of significant details which should be considered in the design of every modern mill building. The addition of these details is inexpensive, and the accruing benefits far outweigh the added cost. Some of the most significant features which should receive consideration in the design of the highest class of mill building, are as follows:

- 1. All exterior windows should be fitted with wired glass in metal frames:
- 2. As many subdivisions in the building as are practicable should be provided, both horizontally and vertically.
- 3. Protect timber details where necessary with a brush application of coal-tar creosote, or other suitable preservative;
  - 4. Install an automatic sprinkler system as a fire protection;
  - 5. Use only large timber joists, girders and posts;
- 6. Use wide spacing of joists, and thick tongued and grooved or laminated floors:
- 7. Laminated floor timbers should be thoroughly kiln dried before being placed in the building to prevent dry rot;
  - 8. Provide stairway and elevator enclosures.

The cost, durability, and insurance rates on a building and contents are factors which concern the builder who must finance the building. He will naturally endeavor to get a building low in first cost, and also low in insurance and maintenance cost. In other words, he will or should strive to get the greatest possible returns for each dollar spent. The following discussion bears on the above factors, and presents information which is of vital interest to the builder.

### DURABILITY

The durability of a mill building may be greatly increased by a few simple operations. The decay of wood, which is hastened by the presence of damp air and poor ventilation, starts most readily on the end grain of timbers such as girders and columns.









Fig. 8. Some details of heavy timber construction in a mill building recently constructed in Seattle. Note application of creosote at base of column in foreground

This fact should be recognized and methods of construction so modified as to prevent conditions favorable to decay. Dry lumber should be used wherever possible and in the construction of laminated floors all lumber should be thoroughly kiln dried before being placed in the structure.

Girders or joists which rest in masonry walls should not be sealed in. An air space of at least two inches should be provided all around the end to allow proper ventilation. Two brush applications of hot coal-tar creosote or other suitable preservative will assist materially in preventing decay. Ends of girders or joists should rest on cast iron plates or joist hangers, and the bearing surface should be protected by a piece of creosote-saturated felt or asbestos.

Columns, when resting on concrete or brick piers, should have ends thoroughly painted with two coats of hot coal-tar creosote, and a piece of thin creosote-saturated board should be placed between column and pier. A metal plate between the pier and column end is also desirable. Creosote applied to the ends of columns between floors will also assist in preventing dry rot.

The above details are particularly necessary in buildings which are unheated, and are desirable in all buildings. The ends of large girders and joists should never be encased in such a way as to prevent seasoning through the end surface. Seasoning takes place more rapidly through the end grain than from any other surface, and seasoned timber is safe from dry rot just as long as it is kept dry.

The limited use of coal-tar creosote as above described should not increase fire hazard. There are, of course, other preservatives such as zinc chloride and corrosive sublimate which could not possibly increase fire dangers. These preservatives are likely to be less effective, however, than coal-tar creosote, and corrosive sublimate is a deadly poison. Fig. 8 shows some details of the heavy timbering in a mill building recently constructed in Seattle. Note the application of creosote to prevent decay at base of column in the foreground.

# COST

The cost of mill buildings has been well established, and diagrams 16 to 18 will permit a quick estimate on varying sizes and heights of timber-brick mill buildings with floor loads up to 75 pounds per square foot.

These data have been taken from an article by Charles T. Main, M. Am. Soc. M. E., published in Engineering News, January 27, 1910. The diagrams are based upon the following unit values given by Mr. Main for the various materials used:

"The cost of brick walls is based on 22 bricks per cubic foot, costing \$18 per thousand, laid. Openings are estimated at 40 cents per sq. ft., including windows, doors and sills.

"Ordinary mill floors, including timbers, planking and top floor with Southern pine timber at \$40 per M ft. B. M. and spruce planking at \$30 per M., costs about 32 cents per sq. ft., which has been used as a unit price. Ordinary mill roofs covered with tar and gravel, with lumber at the above prices, cost about 25 cents per sq. ft. and this has been used in the estimates. Add for stairways, elevator wells, plumbing, partitions and special work."

The diagrams are to be used when all conditions are normal. There are many different conditions encountered in practice which influence the cost of buildings. The following special cases are mentioned in Mr. Main's discussion, which cover various conditions and classes of buildings.

- "(a) If the soil is poor or the conditions of the site are such as to require more than the ordinary amount of foundations, the cost will be increased.
- "(b) If the end or a side of the building is formed by another building, the cost of one or the other will be reduced slightly.
- "(c) If the building is to be used for ordinary storage purposes with low stories and no top floors, the cost will be decreased from about 10% for large low buildings, to 25% for small high ones, about 20% usually being a fair allowance.
- "(d) If the buildings are to be used for manufacturing purposes and are to be substantially built of wood, the cost will be decreased from about 6% for large one-story buildings, to 35% for small high buildings; 15% would usually be a fair allowance.
- "(e) If the buildings are to be used for storage with low stories and built substantially of wood, the cost will be decreased from 13% for large one-story buildings, to 50% for small high buildings; 30% would usually be a fair allowance.
- "(f) If the total floor loads are more than 75 lbs. per sq. ft, the cost is increased.

- "(g) For office buildings, the cost must be increased to cover architectural features on the outside and interior finish."
- Mr. Main makes the following significant deductions from the diagrams:
- "(1) An examination of the diagrams shows immediately the decrease in cost as the width is increased. This is due to the fact that the cost of the walls and outside foundations, which is an important item of cost, relative to the total cost, is decreased as the width increases.

"For example, supposing a three-story building is desired with 30.000 sq. ft. on each floor:

"If the building were 600 ft. x 50 ft., its cost would be about 99 cents per sq. ft..

"If the building were 400 ft. by 75 ft., its cost would be about 87 cents per sq. ft..

"If the building were 300 ft. x 100 ft., its cost would be about 83 cents per sq. ft..

"If the building were 240 ft. x 125 ft., its cost would be about 80 cents per sq. ft..

"(2) The diagrams show that the minimum cost per square foot is reached with a four-story building. A three-story building costs a trifle more than a four-story. A one-story building is the most expensive. This is due to the combination of several features: (a) The cost of ordinary foundations does not increase in proportion to the number of stories, and therefore their cost is less per square foot as the number of stories is increased, at least up to the limit of the diagram. (b) The roof is the same for a one-story building as for one of any other number of stories. and therefore its cost relative to the total cost grows less as the number of stories increases. (c) The cost of columns, including the supporting piers and castings, does not vary much per story as the stories are added. (d) As the number of stories increases, the cost of the walls, owing to increased thickness, increases in a greater ratio than the number of stories, and this item is the one which in the four story-building offsets the saving in foundations and roof.

Tables 32 and 33 show the unit values used in computing the diagrams:

# DATA FOR ESTIMATING COST OF BUILDINGS

TABLE 32

Height	Foundations Including Excavations Cost per Lin. Ft.		Brick Walls Cost per Sq. Ft. of Surface		Columns including Piers and Castings	
	For Outside	For Inside	Outside	Inside	Cost of	
	Walls	Walls	Walls	Walls	One	
One-Story Building. Two-Story Building. Three-Story Building. Four-Story Building. Five-Story Building. Six-Story Building.	\$2.00	\$1.75	\$0.40	\$0.40	\$15.00	
	2.90	2.25	.44	.40	15.00	
	3.80	2.80	.47	.40	15.00	
	4.70	3.40	.50	.43	15.00	
	5.60	3.90	.53	.45	15.00	
	6.50	4.50	.57	.47	15.00	

# DATA FOR APPROXIMATING COST OF MILL BUILDINGS OF KNOWN SIZE BUT WITHOUT DEFINITE

# TABLE 33

PLANS MADE

Foundations Including Excavation Cost per Lin. Ft.		Brick Walls Including Doors and Windows. Cost per Sq. Ft. of Surface	
For Outside Walls	For Inside Walls	Outside Walls	Inside Walls
\$2.00 2.90 3.80 4.70 5.60	\$1.75 2.25 2.80 3.40 3.90	\$0.40 .44 .47 .50 .53	\$0.40 .40 .43 .45
	For Outside Walls \$2.00 2.90 3.80 4.70	Including Excavation   Cost per Lin. Ft.	Including Excavation Cost per Lin. Ft.  For Outside Walls  \$2.00

Mr. Main gives the following general information which is useful in making estimates:

"From ground to first floor, 3 ft.. Buildings 25 ft. wide, stories 13 ft. high. Buildings 50 ft. wide, stories 14 ft. high. Buildings 75 ft. wide, stories 15 ft. high. Buildings 100 ft. wide, stories 16 ft. high. Buildings 125 ft. wide, stories 16 ft. high.

"Floors, 32 cents per sq. ft. of gross floor space not including columns. If columns are included, 38 cents.

"Roof, 25 cents per sq. ft., not including columns. If columns are included, 30 cents. Roof to project 18 inches all around buildings.

"Stairways, including partitions, \$100 each flight. Allow two stairways, and one elevator tower for buildings up to 150 ft. long. Allow two stairways and two elevator towers for buildings up to 300 ft. long. In buildings over two stories, allow three stairways and three elevator towers for buildings over 300 ft. long.

"In buildings over two stories, plumbing \$75 for each fixture, including piping and partitions. Allow two fixtures on each floor up to 5,000 sq. ft. of floor space and add one fixture for each additional 5.000 sq. ft. of floor or fraction thereof."

# INSURANCE RATES

Mill buildings of modern design are subject to low insurance rates. This fact is oftentimes lost sight of, due to confusing the good types of mill construction with poor ones. Of course, the insurance rate on poorly designed mill buildings is considerably higher than that on the fire-resisting type of construction. The following quotation is taken from an address by Chester J. Hogue, M. Am. Soc. C. E., given at a Lumbermen's Dinner in Portland, Oregon, October 15, 1915:

"Now the best comparison of safe types of fire-resisting construction can perhaps be shown by comparative insurance rates—by the judgment of men whose business it is to study this question. We have in Portland secured comparative insurance rates on a specific case, assuming a furniture store occupancy, and the rate on the wood construction building was 47 cents and on the fire proof building 35 cents, and with sprinklers, the comparison was 28 cents on the mill construction as against 21 cents on the fire proof, these rates being on the building, not the contents. The rate for the mill construction building, sprinklered, 28 cents, was less than the 35 cents on the unprinklered fire proof building.

"I also had rates from the Chicago Board of Fire Underwriters, assuming a machine shop occupancy. The rate on a building not sprinklered, of mill construction, was \$1.11 as against 24 cents for fire proof construction; and sprinklered, 15 cents for mill construction as against 14 cents for fire proof material. The

comparison there between the sprinklered mill construction building, shows 15 cents as against 24 cents for the non-sprinklered fire proof building, and where both are sprinklered, only 1 cent difference. On the contents, the rate on non-sprinklered mill construction was \$1.36 as against 64 cents for the fire proof construction; the rates on the contents sprinklered were 30 cents for the mill construction as against 26 cents for the fire proof building. The comparison there between the sprinklered mill construction was 30 cents as against 64 cents for non-sprinklered fire proof construction

"This shows clearly that a sprinklered mill construction building is a safer risk from a fire insurance standpoint than one of non-sprinklered fire proof construction. The sprinklered mill construction building is safer both as to building and contents than a fire proof building non-sprinklered. In the same way, a mill construction building with properly constructed stairways, and elevator shafts, is safer as to contents than a non-sprinklered fire proof structure with unprotected stairways and elevator shafts

"I believe, from my experience in both kinds of construction, that the mill construction building, with masonry walls, wire glass windows and sprinklered, would have almost as great an effect in stopping a conflagration as if the interior was of so-called fire proof construction—that is, of incombustible materials."

The modern timber-brick mill building is approximately 25% lower in first cost than a fire-resisting building, and is given almost the same advantage in insurance rates. Throughout the Pacific Coast territory where timber is inexpensive and plentiful, the difference in cost between these types of buildings will probably average above 25%.

Wood construction is safe when the proper design has been used. Its low first cost and maintenance, and its low insurance rates are strong arguments in its favor which should be carefully weighed by architects and engineers when contemplating the design of new buildings.

# PILING

Douglas fir has long been considered an ideal piling material. It possesses high strength values and may be obtained in lengths varying from 10 feet to 120 feet. Due to the fact that this species grows in thick stands, it is possible to secure straight sticks almost entirely free from knots and other defects. In order to obtain reliable figures on the dimensions of Douglas fir piling. a large number of measurements have been taken on piles from two of the principal producing districts of Oregon and Washington. Approximately 50 piles of each length were taken, the lengths varying from 50 to 111 feet. Piling from the Columbia River district in Oregon, and the Puget Sound district in Washington were used in obtaining these data. Diagrams 19 and 20 show the size and natural taper of the timber. For example, if it is desired to buy piling 80 feet long and of any given butt diameter, the probable corresponding top diameter is shown on these diagrams. Of course, there is considerable variation in the individual sticks. These diagrams, however, show what actually grows and should be useful in placing practicable dimensions on Douglas fir piling when writing specifications.

The following specification for Douglas fir piling is suggested as a guide for those writing specifications for this material.

# SPECIFICATION FOR DOUGLAS FIR PILING

The following specification covers two general classes of piling.

FOR CREOSOTING. Piling shall be cut from sound, live Douglas fir trees, free from felling or wind shakes, loose or unsound knots, large knots or small knots in great numbers, or other defects which in any way impair the strength or durability for the purpose intended. Each pile should have at least one-half inch of sapwood.

Piling shall be butt cut and free from swelling. Diameter three feet from butt shall not be smaller than the butt diameter by an amount greater than one inch. They shall be free from short or reverse bends. Piling shall be so straight that a line drawn from the center of the two ends shall at no point fall outside the pile. Some variations in this respect will be allowed in sticks 80 feet or more in length.

# THE WEST COAST LUMBERMEN'S ASSOCIATION





Piling shall be free from damage by sea worms or other insects and shall be carefully peeled free from bark, and all knots shall be smoothly dressed.

FOR TEMPORARY USE. Piling shall be of Douglas fir or other species which will stand driving, free from loose or unsound knots, felling shakes, heart or wind shakes, sea worm holes, or other defects which impair its use for the purpose intended. Knots shall be trimmed close and no short or reverse bends allowed. No crooks shall be permitted exceeding one-half the diameter of pile at the middle of the bend.

# CREOSOTED PILE DOCKS

During the past few years creosoted Douglas fir piling has been extensively used throughout this country for marine work. Properly creosoted Douglas fir piling withstands the attack of the marine borer for many years, and has come into very general use. Experience on the Pacific Coast has shown that a creosoted pile dock will last, on a very conservative estimate, for 18 to 20 years. In the same teredo-infested waters the life of an untreated pile dock would not exceed three to six years.

Creosoted Douglas fir piling has been found to be the most economical material for dock construction on the Pacific Coast. Large docks supporting superstructures when built on creosoted piling will cost approximately \$1.25 per square foot, while similar structures built on reinforced concrete will cost on the average approximately \$3.00 per square foot.

On the assumption that a creosoted pile dock costs \$1.25 per square foot and requires 30 per cent of the original cost to keep it in repair through a period of 25 years and that a reinforced concrete pile dock costs \$3.00 per square foot and lasts through a period of 50 years, the concrete dock will cost approximately 35 per cent more at the end of a 50-year period than the creosoted pile dock.

At the present time the commercial life of a dock of any type of construction will not exceed 30 years, due to the fact that methods of handling freight and shipping facilities are constantly changing. A dock which amply fulfills requirements today may be entirely inadequate 30 years from now. Due to this fact a

creosoted pile dock has the advantage of being entirely remodeled at the end of 25 to 30 years to meet the changed conditions of shipping. This is a practical point greatly in favor of a creosoted pile dock as against one of reinforced concrete, since the latter type would have to last much longer than 30 years to warrant the high initial cost of \$3.00 per square foot.

Due to the greater economy found in creosoted pile dock construction, the State Harbor Commission adopted this type of construction every place where it was practicable to drive wooden piling, in developing an elaborate system of docks in San Francisco Harbor. The "Port of Seattle Commission" also adopted creosoted pile dock construction in its extensive water front development projects for Seattle. Figures 9 to 11 show two of Seattle's dock projects during course of construction and one after completion.

1

# THE WEST COAST LUMBERMEN'S ASSOCIATION



Fig. 9. Hanford Street Wharf, Port of Scuttle. Driving 260,000 lineal feet of crossoted Douglas fir pilling in sait



Example of slow-burning dock construction. Hanford Street Wharf, Port of Seattle, after completion. Fig. 10.



Fig. 11. Smith Cove Dr ff. Part of Ba. As, one of the largest plers in the United States. Great Northern Dock on left where S. S. Minnesoin docks. Both docks built on creeseited Douglas fir pilling

# WOOD STAVE PIPES AND FLUMES

There is a large field for the use of creosote in connection with pipe and flume staves, used in irrigation and power development projects. Wood stave pipe has taken a prominent place in the development of irrigation districts in the West. Wood stave pipe and flumes are low in first cost and the co-efficient of friction is very small. Due to this latter fact a larger amount of water can usually be delivered through a wood pipe of a given size, all other conditions being the same, than through pipes of any other material. Wood pipe in general has the following advantages to recommend it:

- 1. It will stand high pressure.
- 2. It is light and may be readily and cheaply transported.
- 3. It has a very low co-efficient of friction.
- 4. It is simple and easy to install.
- 5. Connections may be quickly made at any point.
- 6. Wood pipe will not freeze and burst in winter.
- 7. It is not injured by slight settlements which may occur.

# CAUSES OF DECAY IN WOOD PIPE

If the fibers of the wood are thoroughly saturated with water, decay is impossible. Neither can the fungus thrive if the wood is thoroughly dry. There is, however, an intermediate condition of moisture, which assists the growth of wood-destroying fungi.

Most irrigation systems are in operation but a part of each year and are therefore empty a considerable portion of the time. This condition will result in a short life for untreated wood pipe as this lack of fiber saturation is the cause of almost all decay in wood pipe. Where the pipe is under sufficient hydrostatic pressure to assure thorough saturation of the fiber, and where the pipe line is exposed to the air, untreated pipe will give good service. But, where the pressure of the water is less than a 20-foot head, or where the pipe line is only filled a portion of the time, or again, where the pipe is buried in porous, sandy, gravelly or loam soils, untreated pipe is subject to decay.

The following conditions are discussed as most favorable for decay in the various styles of wood stave pipe:

CONTINUOUS STAVE. Continuous stave pipe which is exposed is most subject to decay at the joints. The following quotation

is taken from U. S. Department of Agriculture Bulletin No. 155 (Professional Paper).

"Decay of exposed pipes almost invariably starts at the ends of staves, as a result of leaky joints. Where water leaks out and runs down over the outside of the pipe favorable conditions are afforded for the growth of algae, which usually get a start, then mosses may begin to grow in the soil that collects on such spots, and decay spreads to adjoining staves."

Wood is more liable to attack by fungus on the end grain than on any other surface, which accounts for the development of decay at the end joints.

Wire-Wound Banded Couplings. The greatest point of weakness in this type of pipe is the banded joints. It is impossible to keep the bands saturated and hence decay sets in quickly, and spreads to other portions of the pipe.

Wire-Wound Inserted Couplings. This type of wood pipe also fails at the joints, resulting from a lack of water saturation due to physical conditions. The joints are most liable to attack by fungus when the pipe line deviates from a straight line, either in a vertical or horizontal direction. It is at these joints that decay almost always starts.

The three above mentioned types of wood stave pipe when used in an untreated condition, are also subject to decay under the following conditions:

- (1) When pipe line is under less than twenty-foot head hydrostatic pressure, or when pipe is empty a portion of the time.
- (2) When pipe line is buried in loam, sandy or gravelly soil.
  - (3) When vegetable matter comes in contact with the staves.

The following quotations are taken from U. S. Department of Agriculture Bulletin No. 155:

"Based upon the experience in Spokane, Wash., the life of machine-banded wood pipe is given as ranging from 4 to 12 years. Such short life in most instances is probably due to bad judgment in the matter of location or the use of pipe under conditions altogether unfavorable to its life."

"In contact with soil the durability is nearly always a matter of some uncertainty."

"Contrary to the theories commonly held 30 years ago, it has been found that the durability of wood pipe is usually dependent on the life of the wood pipe rather than on the life of the bands. Only in rare instances, some of which have been cited, have the bands failed first."

"Where pipes are to be placed in contact with the soil, and where the internal pressure is not sufficient to insure complete saturation of the staves, it is probable that their durability may be increased by treating with some preservative."

# ELIMINATING DECAY IN WOOD PIPE

There is no question but that a well creosoted wood stave pipe will prove a good investment under conditions unfavorable to untreated pipe. The treatment is not expensive since the pipe is composed of merely a wooden shell and does not require much oil per lineal foot of pipe.

CREOSOTED WOOD PIPE. The best creosote treatment for pipe is about as follows:

Pipe staves should be kiln dried and machined before treatment. Boil in oil or steam staves until in proper condition to receive the coal-tar creosote. Then press 10 to 11 pounds of oil per cubic foot into the wood at a temperature of 180 degrees Fahrenheit. Then release pressure and heat the charge in oil to a temperature of 230 to 240 degrees F., and hold at this temperature for one hour. This final heating bath expands the oil and removes the excess, thus preventing its mixing with the water later on when in service.

The pipe for use on the individual ranch, may after treatment, be buried in any kind of soil and subjected to severe adverse conditions without damage by decay. It so happens that the very point in the pipe which is most subject to decay, namely, the end grain at joints and couplings, becomes more thoroughly impregnated with preservative than any other portion of the stave. This physical condition aids greatly in securing the greatest durability from the creosote treatment.

Wood stave pipe used under unfavorable conditions, where decay would occur in five or six years, should, if properly creosoted, last 20 to 25 years and probably longer. The cost of the aforementioned treatment is small, amounting to but 15 to 30 per cent of the cost of untreated pipe installed and should result in an increased length of life of two to six times that of the untreated pipe, depending upon prevailing conditions of soil, moisture, exposure, etc.. Creosoted pipe cannot be too strongly recommended, for its use eliminates the uncertainties found in untreated wood pipe.

# FLUMES

There is an exceptionally good opportunity for the use of creosoted wood staves in flume building. The conditions for decay in wood pipe previously mentioned apply to open flumes and since it is not possible to depend on water saturation of the wood in open flumes, creosote treatment is highly recommended.

# DOUGLAS FIR SILOS

Wooden silos are the least expensive type of silo and are in more general use throughout the country than any other form. As a result of a systematic study of the good and bad points of the wooden silo, rapid progress has been made during the last few years in perfecting this type.

# MATERIALS OF CONSTRUCTION AND COST

A great variety of materials and forms of construction have been used in the past for silos with varying degrees of success. They may be divided into four classes, as follows:

- (1) Wooden silos;
- (2) Metal silos;
- (3) Monolithic concrete silos:
- (4) Block and concrete stave silos.

The cost of construction and maintenance of a silo is a very important factor in deciding the type to purchase. This cost varies considerably, according to the type, classes two and three being by far the most expensive and class one the least. The following table gives approximate cost of silos of the various types of construction:

Brick-Solid Wall	\$450	to	\$ 700
Brick-Air spaced hollow wall	650	to	1,200
Cement Block	450	to	800
Hollow Tile—Cement both sides	450	to	800
Stone*-Solid wall	485	to	800
Stone*-Double lined and air spaced	650	to	1,000
Concrete-Solid wall-monolithic construction	300	to	600
Concrete-Hollow wall-monolithic construction	650	to	1,000
Wooden Stave	200	to	300

These figures are based on silos of the same dimensions, and show wood to be the least expensive material.

The extensive use of the wooden silo has resulted in its being subjected to some of the most extreme tests. Its weaknesses have been carefully studied in an effort to eliminate all of its objectionable features and at the present time it is in very general use throughout the entire country.

There are very few species of wood which possess the necessary combination of qualities required for silo construction. Douglas fir is especially suited to this use since clear material is readily obtainable, the wood is durable and the staves are straight

^{*} No value placed on stone except labor.

and strong. Probably more Douglas fir lumber is used annually in silo construction than any other species.

The objectionable features of the early wooden silos were shrinkage and decay. Shrinkage occurred during the warm dry summer weather, causing the staves to become loose and liable to collapse during heavy windstorms. This fault has been largely eliminated by the use of automatic adjustable hoops which keep a constant pressure on the walls of the silo.

#### CREOSOTED STAVE SILOS

The use of creosoted silo staves overcomes the difficulties of shrinkage in a different way. The presence of oil in the wood tends to minimize volume changes in the staves.

Decay has played a comparatively small part in reducing the life of the silo, except in cases where unsuitable species of wood have been used. Decay takes place most readily in wood that is subject to alternate wet and dry conditions. For this reason, creosoted lumber is desirable, since it retards the progress of decay, both by retarding moisture changes and by the antiseptic properties of the creosote.

The antiseptic qualities of creosote oil are well known and recognized. There have been considerable and varied claims made concerning the disastrous effect on the health of animals fed with silage from a creosoted silo. In order to determine the facts in the case, the U. S. Forest Products Laboratory at Madison, Wisconsin, recently conducted an investigation on this subject, and the following extract is taken from the report:

"While but few of the experiment stations had had any experience with creosoted silos, and only a small number of owners of such silos could be located, not a single case was reported where the silage had been damaged or the health or appetite of the stock affected. It was the general opinion of the experiment stations that no danger need be anticipated on this account."

With the present methods of treating Fir lumber it is possible to remove all excess or free oil from the wood, thereby eliminating "bleeding."

If it is not practicable to purchase a creosoted stave silo, a great deal of good may be accomplished by thoroughly painting the base of the staves and the joints between staves with hot coal-tar creosote. The expense of this operation is practically nil, and it will add several years to the life of a silo.

# PAVING BLOCKS

Considerable original data have been collected regarding the effect of the various methods of treating upon the mechanical strength of the wood, and the total amount of shrinking and swelling which takes place in the wood when treated with different amounts of oil per cubic foot. The following specification provides a treatment which results in no material loss in strength of the fiber.

"The blocks shall be placed in the treating retort and a good grade of coal-tar creosote introduced and heated to approximately 215 degrees F. for two to four hours. The preservative shall then be drained off and a vacuum of 23 to 26 inches drawn to take out the surplus oil, vapors, gases, etc., from the wood cells. The vacuum shall then be broken by the introduction again of the preservative, which is then pressed into the wood at a temperature of 180 degrees F. until the blocks have received from 16 to 18 pounds of oil per cubic foot. After the blocks have received the required amount of oil, the pressure shall be released, and the temperature of the oil gradually raised to 215 to 230 degrees F.. and held for one hour. This final heating expands the oil, vapors and gases within the wood, and causes a certain amount of the preservative to be expelled, due to this expansion, and also effects further seasoning of the wood. A final vacuum of 23 to 26 inches shall then be drawn, which dries the blocks of the surplus surface oil, leaving a thoroughly impregnated block which will never 'bleed' after being placed in the street, since it is forced to do its 'bleeding' during the treatment."

Figures obtained from tests on commercial material indicate the loss in strength of the fiber due to this treatment to be no more than 2 to 5 per cent, which, from a practical point of view, may be entirely neglected. The Association has done some careful experimenting to determine as nearly as possible what effects different amounts of oil have on the swelling and shrinking under extreme conditions. Results of these and other experiments indicate that the thoroughness of penetration plays an important part in reducing volume changes. For example, blocks treated with 17 pounds of oil per cubic foot, which amount is afterwards reduced to 12 pounds per cubic foot, have the same properties when put to the soaking test as blocks which are treated with 17 pounds of oil, all of which is left in the wood. The swelling takes place in the more lightly treated block at a slightly more

EXTREME WATER SOAKING TEST ON DOUGLAS FIR PAVING BLOCKS OF CREOSOTED AND

# NATURAL WOOD

Data secured by the Engineering Department of the West Coast Lumbermen's Association,

TABLE 34

9	Total Change from Maximum after Soaking to Minimum after Re-drying Per Cent		Average Weight of Block	24.5 38.8 38.8 42.0 42.0 48.5
	Total Max	Re-	Average Total Length of Block	2.02 2.05 2.11 2.81 2.26 2.75
10	Removed from Soaking Tank and Air-Seasoned 69 Days	Average Weight of Blocks	Per Cent Change	0.64 0.53 0.53 4.76 2.31
			Ounces	18.0 13.1 13.1 13.3
		Average Total Length of Blocks	Per Cent Change	1.34 1.90 1.90 0.89 0.93
			Inches	6.899 7.031 7.050 6.919 6.930 6.932
7	After Soaking in Water 66 Days	Average Weight of Blocks	Per Cent Change	25.5 39.4 33.6 50.5 83.6
			soouno	19.9 26.2 26.2 19.1 19.1 19.6
		Average Total Length of Blocks	Per Cent Change	3.36 4.01 0.67 3.68
			Inches	7.037 7.173 7.197 7.117 7.088
65	Immediately after Treatment	Average Average Total Length Weight of Blocks	Per Cent	100.0 100.0 100.0 100.0 100.0
			SoounO	15.9 18.8 14.3 13.0
			Per Cent	100.0 100.0 100.0 100.0
			Inches	6.808 6.906 6.919 7.070 6.992 6.868
ote nent per Ft.		Per	19N	9.4 16.6 15.1 wood 9.9 wood
21	Creasote Treatment Lbs. per Cu. Ft.		Gross	14.4 22.3 20.7 Natura 14.1 Natura
T		Seasoning Condition of	Direcks when I restrict	Air-easoned, 1155 moisture. Air-easoned, 1157 moisture. Commercially Green, 30% Commercially Green, 30% moisture. Air-easoned, 1156 moisture.
		Refer- ence Num- her		ल≎कर 40 40

- sign denotes loss as compared to corresponding figure, Column 3.



rapid rate at first than in the block with the larger quantity of oil. In both cases it lasts through a long period of time. From a practical point of view, it is as easy to take care of the swelling in one case as in the other.

The material upon which the above mentioned tests were made, was selected to represent average commercial stock. Six planks were taken from as many logs and each cut into blocks. One block from each plank was used in each treatment shown in table 34. Due to this fact, the material in all treatments was similar and the results are comparable. It should be noted that the creosote treatment reduces the possible amount of swelling approximately 35 per cent. Comparing figures, column 6, under reference numbers 1 and 5, it will be seen that the total change in blocks treated green with approximately 14 pounds of oil is slightly greater than in air-seasoned blocks treated with the same amount of preservative. This is probably due to the fact that a less perfect coating of the cell walls is obtained with this amount of oil in the green blocks than in those seasoned before treatment. and indicates that green blocks should receive initial absorption of more than 14 pounds per cubic foot. The ideal treatment is to give a gross absorption sufficient to paint thoroughly the cell walls of the wood and afterwards reduce this absorption to 10 to 12 pounds per cubic foot. Blocks treated in this manner will be largely relieved of their tendency to shrink and swell and will not bleed under street conditions. Reducing the absorption in accordance with the above produces a better block at a lower cost. The treatment of blocks with 12 pounds per cubic foot as against 17 pounds represents a saving of approximately 15 cents per square yard, which, in view of the results, is worthy of consideration.

Creosoted Douglas fir paving blocks are gradually coming into more general use on the Pacific Coast. The City of Seattle up to 1915 had laid practically no wood block pavements. This city, together with the Port of Seattle Commission, laid more than 20,000 square yards of creosoted Douglas fir blocks in 1915. Diagram 21 shows the number of yards of creosoted wood blocks laid in Pacific Coast cities since 1908 and indicates the increased tendency to use this type of pavement.

# FENCE POSTS AND POLES

Cedar is the most durable of Pacific Coast timber when used in the natural condition. Cedar posts or poles in normal locations are very durable; however, under certain adverse conditions, they succumb to the attack of fungus. Both red cedar and Douglas fir may be materially improved when used for poles and posts by giving them preservative treatment.

# FENCE POSTS

Everyone is familiar with the decay characteristic in fence posts. The fungus, to thrive, must have food, warmth, moisture and air. Food and moisture are found in abundance in the wood. The other essentials are present through a large portion of the year in practically all climates in the United States. Rain soaks the ground all around the post and dries out slowly, thus making the moisture condition favorable for fungus growth, which accounts for its rapid development at this point.

The average layman has no conception as to the amount of lumber which is cut into fence posts annually. White oak, locust, Osage orange, and cedar have in the past stood at the head of the list in their ability to resist decay when used in a natural condition. Before preservation became so well established these species were used very largely for posts in all portions of the United States. The development of the creosoting industry, however, is changing past practice. When proper treatment is applied, all species are practically of equal durability. The following quotation is taken from U. S. Forest Service Circular No. 209, page 15, number 6:

"Species which, when untreated, decay most rapidly appear to give the greatest relative increase in service when treated. Loblolly pine, hemlock, beech and tamarack, which are the least resistant to decay when untreated, appear when treated to be equally as durable as treated longleaf pine, Spanish oak and white oak."

This makes it possible now to get good service out of wood which formerly would not have received any consideration. Experiments have been made on creosoted posts of some of the least durable woods found in the United States. These species have given good service for five years and are still sound. These

same posts, if set in a natural condition would have to be replaced on account of decay in two or three years. There is no question now but that a fence post when properly creosoted will last three to four times as long as a similar untreated post. This is particularly true of the less durable species.

The U. S. Forest Service has used a great many creosoted fence posts. Mr. Benedict, a forest supervisor at Hailey, Idaho, has recently used 500 lodgepole pine posts. This species is one of the least decay-resisting woods in the United States when used in a natural condition. The following quotation is taken from the March, 1915, number of "American Forestry," page 200, and shows what Mr. Benedict expects from treated lodgepole pine posts:

"In the ground, lodgepole pine untreated rots quickly. Given a bath in hot creosote from the bottom to a point above the ground line when set sufficiently to penetrate the outermost layers of the sapwood and all the openings through which decay could enter, the post should last from 12 to 20 years."

A Douglas fir heartwood post, without treatment, under conditions prevailing on the Pacific Coast, will last from five to six years. A similar post well creosoted, may be expected to last from 15 to 25 years.

If posts are creosoted, a smaller post may be used than is the usual custom. This is possible since it is not necessary to figure on the usual deterioration.

Creosoted posts do not require painting since the creosote gives the same effect as a brown stain. They can, however, if desired, be painted green, red or any dark color.

#### POLES

Poles, as in the case of posts, may be made durable by preservative treatment. Some poles are put up for temporary service and in such cases it would not be economy to treat them unless they would be removed and reset after serving in a temporary way. Poles for permanent use should, however, be given a thorough treatment before they are placed, which will give them fully twice the length of life secured from an untreated pole.

Figures 12 and 13, taken from U. S. Forest Service Bulletin No. 83, show an untreated Southern white cedar pole to be badly decayed after four years of service, and a creosoted loblolly pine pole with no sign of decay after 18 years.



Fig. 12, Untreated pole of Southern White Cedar (Chamaecyparis Thyoldes) after four years' service.

# THE WEST COAST LUMBERMEN'S ASSOCIATION



Fig. 13. Creosoted Lobiolly pine pole after 18 years' service. No sign of decay.

The greatest profit will result from the use of treated poles in localities where the initial cost of the pole is high and also where replacements are expensive. Under such conditions, poles should never be placed without an efficient preservative treatment. In fact any pole which is intended for permanent service should have a butt treatment with creosote.

The following quotations are taken from page 40 of U.S. Forest Service Bulletin No. 84, and show the advisability of creosoting poles:

"Preservative treatment is profitable financially, the increased durability of the time decreasing the annual service charge. Relatively greater benefits are derived from the treatment of non-durable woods than from the treatment of those which possess great natural durability."

"Preservative treatment makes possible the use of poles of smaller butt circumference, since allowance usually made for deterioration by decay need not be considered, when it is certain that the full size and strength of the poles will be retained through a long period of years."

A creosoted pole line is much less apt to suffer damage from a sleet storm than one built of untreated poles, since untreated poles decay at the ground line, the point of greatest stress.

# RED CEDAR SHINGLES

The physical characteristics of red cedar make it particularly adaptable to uses where durability and light weight are required, rather than tensile strength. Besides being practically immune from decay, this wood undergoes comparatively little shrinkage and swelling due to changes in moisture condition, and it holds paint well. The wood is soft and is not easily split by nails. These combined qualities place red cedar foremost as a shingle material. Approximately 85 per cent of Pacific Coast red cedar is manufactured into shingles.

The following method of laying red cedar shingles, taken, with slight changes, from the American Lumberman of November 27, 1915, unquestionably represents first-class practice.

#### CORRECT METHOD OF LAYING RED CEDAR SHINGLES

"The first essential is good Red Cedar shingles.

For rafters use sized 2x4s or 2x6s, spaced on not over two-foot centers, spiked solid and braced as load requires.

For roof boards or sheathing use good material. S1S strips 1x4 inches or random widths to not more than eight inches, spaced not more than two inches apart and nailed solid with 8d nails.

PREPARATION OF SHINGLES. If they are to be stained use dry shingles, dipping each one in the stain not less than eight inches from butt. Shingles that are not to be stained should be wet thoroughly before laving.

If additional fire-resistant quality is wanted, dip in good quality of mineral paint or such other approved fire-resistant treatment as may be available.

SHINGLE NAIL. Solid copper, solid zinc or hot-dipped zinccoated nails preferred. Where these are not available use oldfashioned cut nails.

Size of Nail. For 5 to 2 inches or thinner shingles, 3d; for thicker shingles, 4d.

LAYING THE SHINGLES. Start at eaves and lay first coarse 2-ply, giving first course 2 inches projection over crown mold and 1-inch projection at gables.

On one-third or more pitch lay 16-inch shingles 4½ inches to the weather; on less than one-third pitch lay 16-inch shingles

4 inches to the weather. On one-third or more pitch lay 18-inch shingles 5½ inches to the weather; on less than one-third pitch lay 18-inch shingles 4½ inches to the weather.

Use a straight edge to make sure courses are laid straight. Break all joints at least 1¼ inches, seeing that no break comes directly over another on any three consecutive courses, thereby covering all nails.

Nail shingles 6 inches from butt (for  $4\frac{1}{2}$  inch lap) and  $\frac{1}{2}$ -inch from sides, and put only two nails in each shingle. Shingle wider than 10 inches should be split.

Lay shingles so that water will run with the grain, and do not drive nail heads into shingles.

Lay wet shingles with butts close together. Leave ¼-inch space between dry shingles.

Use 14-inch galvanized iron, not less than 26-gauge, or best quality old-style tin, heavily coated, for valleys; copper or galvanized iron for ridge roll.

Use galvanized or heavily coated tin flashing around chimneys. If tin is used it should be painted two coats, one as soon as roof is completed and the second coat within two weeks. Galvanized metal should be painted two coats but should be given 30 days for oxidation before painting. No patent dryer or turpentine should be used.

Finish hips by laying a course of even width narrow shingles on both sides of hip over regular courses."



Fig. 14.

# THE WEST COAST LUMBERMEN'S ASSOCIATION



Fig. 15.



Fig. 16.



Fig. 17.

Figures 14 to 17 show four distinct styles of laying shingle siding.

# GRADING RULES FOR SHINGLES

Some very decided improvements have recently been made in the grading of Red Cedar shingles. It is possible now for the purchaser to obtain branded shingles. This branding guarantees quality.

GRADING RULES FOR RED CEDAR SHINGLES WHICH HAVE BEEN IN GENERAL USE SINCE 1908

PERFECTION. 18". Variation of 1", under or over, in length, allowed in 10 per cent. Random widths, but not narrower than 3". When dry 20 courses to measure not less than 8\%". To be well manufactured. Ninety-seven per cent to be clear, remaining 3 per cent admits slight defects 16" or over from butt.

PUGET A. 18". Random widths, but not narrower than 2". When dry, 20 courses to measure not less than 8\\\4". Admits feather tips and 16" shingles resulting from shims, and other defects 8" or over from butt.

EUREKA. 18". Variation of 1", under or over, in length allowed in 10 per cent. Random widths, but not narrower than 3". When dry, 25 courses to measure not less than 9\%". To be well manufactured. Ninety per cent to be clear, remaining 10 per cent admit slight defects 14" or over from butt.

SKAGIT-A. 18". Random widths, but not narrower than 2". When dry, 25 courses to measure not less than 9½". Will admit feather tips, and 16" shingles resulting from shims, and other defects 8" or over from butt.

EXTRA CLEAR. 16". Variation of 1", under or over, in length, allowed in 10 per cent. Random widths, but not narrower than  $2\frac{1}{2}$ ". When dry, 25 courses to measure not less than  $9\frac{1}{2}$ ". To be well manufactured, 90 per cent to be clear, remaining 10 per cent admits slight defects 12" or over from butt.

CHOICE A. 16". Random widths, but not narrower than 2". When dry, 25 courses to measure not less than 9". Admits wane and 12" shingles resulting from shims, and other defects 6" or over from butt.

EXTRA *A*. 16". Variation of 1", under or over, in length allowed in 10 per cent. Random widths. But not narrower than 2". When dry, 25 courses to measure not less than 7\%4". To be well manufactured. Eighty per cent to be clear, remaining 20 per cent admits defects 10" or over from butt. If not to exceed 2 per cent (in the 20 per cent allowing defects 10" from butt) shows defects closer than 10", the shingles shall be considered up to grade.

STANDARD A. 16". Random widths, but not narrower than 2". When dry, 25 courses to measure not less than 7½". Admits wane and 12" shingles resulting from shims, and other defects 6" or over from butt.

# PACKING

All shingles to be packed in regulation frame 20" in width. Openings shall not average more than 1½" to the course.

Perfection and Puget A shall be packed 20-20 courses to the bunch, 5 bunches to the M.

Eureka, Skagit A, Extra Clear, Choice A, Extra *A*, Standard A (dimension shingles excepted) shall be packed 25-25 courses to the bunch, 4 bunches to the M.

Dimension shingles (5") shall be packed 24-24 courses to the bunch, 4 bunches to the M.

The character "M" indicates the multiple or unit by which red cedar shingles are bought and sold.

Every bunch shall be branded with full name of the grade as stated in these rules.

Color of wood and sound sap shall not be considered defects. Percentage, when specified in these rules, applies in a general way to the total amount of shingles of like grade in a car.

GRADING RULE ADOPTED BY THE SHINGLE BRANCH OF THE WEST
COAST LUMBERMEN'S ASSOCIATION FOR SHINGLES
BEARING RITE-GRADE TRADEMARK

18" RITE-GRADE PERFECTS. Random widths but not narrower than 3". When dry, 20 courses to measure not less than 8%". To be strictly clear and vertical grain and free from sap.

18" RITE-GRADE SELECTS. Random widths but not narrower than 3". When dry, 20 courses to measure not less than 8%". Eighty per cent to be clear, remaining 20 per cent admits defects 12" or over from butt. To be free from sap.

16" RITE-GRADE PERFECTS. Random widths but not narrower than 3". When dry, 25 courses to measure not less than 9\\(^1\)2". To be strictly clear and vertical grain and free from sap.

16" RITE-GRADE SELECTS. Random widths but not narrower than 3". When dry,  $25_i$  courses to measure not less than  $9\frac{1}{2}$ ". Eighty per cent to be clear, remaining 20 per cent admits defects 10" or over from butt. To be free from sap.

16" RITE-GRADE PERFECTS 6/2. Random widths, but not narrower than 3". When dry, 25 courses to measure not less than 8". To be strictly clear and vertical grain and free from sap.

16" RITE-GRADE EXTRA *A*. Random widths, but not narrower than 3". When dry, 25 courses to measure not less than 8". Eighty per cent to be clear, remaining 20 per cent admits defects 10" or over from butt. To be free from sap.

16" DIMENSIONS RITE-GRADE. 5" wide. Made under specifications for above 16" grades but must be strictly clear.

#### PACKING

All shingles must be well manufactured.

18" Rite-Grade shall be packed 20-20 courses to the bunch, 5 bunches to the M.

16" Rite-Grade shall be packed 25-25 courses to the bunch, 4 bunches to the M.

Dimension Rite-Grade shall be packed 24-24 courses to the bunch, 4 bunches to the M.

# THE WEST COAST LUMBERMEN'S ASSOCIATION

All shingles to be packed in regulation frame 20" in width. Band sticks not less than 191/2" long.

Openings shall not average more than 11/2" to the course.

Every bunch shall be branded with full name of the grade as stated in these rules.

Color of wood is not a defect.

All shingles to be packed in straight courses.

One inch under and over in length admitted.

Any shingle not over  $\frac{1}{4}$ " off parallel shall be considered parallel.

Not over 4 per cent off grade admitted for discrepancy in inspection.

(Percentage, when specified in these rules, applies in a general way to the total amount of shingles of like grade in a car. The character "M" indicates the multiple or unit by which these shingles are bought and sold.)

