1 Motivation

We begin by recalling the definition of WLP:

Definition 1. Let $I \subseteq S = \mathbf{K}[x_1, \dots, x_n]$ be an ideal such that A = S/I is Artinian. Then A has the Weak Lefschetz property (WLP) if there is an $\ell \in S_1$ such that for all m, the map μ_{ℓ}

$$A_m \xrightarrow{\cdot \ell} A_{m+1}$$

is either injective or surjective.

To study the WLP one is motivated by the interest in determining the Hilbert functions of ideals generated by generic forms.

In the following we fix $I(\alpha_1, \ldots, \alpha_r) = (L_1^{\alpha_1}, \ldots, L_r^{\alpha_r})$.

2 Inverse systems

In [EI95], Emsalem and Iarrobino proved that there is a close connection between ideals generated by powers of linear forms, and ideals of fatpoints.

Let $R = \mathbf{K}[y_1, \dots, y_n]$, $p_i = [p_{i1} : \dots : p_{in}] \in \mathbb{P}^{n-1}$, $I(p_i) = \wp_i$. A fat point ideal is an ideal of the form

$$F = \bigcap_{i=1}^{r} \wp_i^{\alpha_i + 1} \subset R.$$

Define an action of R on S by partial differentiation: $y_j = \partial/\partial x_j$. Since F is a submodule of R, it acts on S. The set of elements annihilated by the action of F is denoted F^{-1} . Let $L_{p_i} = \sum_{j=1}^n p_{i_j} x_j \in S$. Emsalem and Iarrobino show

Theorem 2 (Emsalem and Iarrobino, [EI95]). Let F be an ideal of fatpoints:

$$F = \wp_1^{\alpha_1 + 1} \cap \dots \cap \wp_r^{\alpha_r + 1} \subset R.$$

Then

$$(F^{-1})_j = \begin{cases} S_j & \text{for } j \leq \max\{\alpha_i\} \\ L_{p_1}^{j-\alpha_1} S_{\alpha_1} + \dots + L_{p_r}^{j-\alpha_n} S_{\alpha_r} & \text{for } j \geq \max\{\alpha_i + 1\} \end{cases}$$

and

$$HF(F^{-1},j) = HF(\frac{R}{I(j-\alpha_1,\dots j-\alpha_r)},j).$$

We are trying to use the correspondence in the "reverse direction". Note that to obtain the Hilbert function of a fixed ideal of linear forms, it is necessary to consider an infinite family of ideals of fat points.

3 Powers of linear forms and blowing up projective space

There is a well-known correspondence between the graded pieces of an ideal of fat points $F \subseteq \mathbf{K}[x_1, \dots, x_r]$ and the global sections of a line bundle on the variety X which is the blow up of \mathbb{P}^{r-1} at the points. We briefly review this. Let $\mathcal{I}_Z(j)$ be the ideal sheaf of the fat points subscheme Z defined by F. Of course, $\dim_{\mathbf{K}} F_j = h^0(\mathbf{P}^{r-1}, \mathcal{I}_Z(j))$.

Let E_i be the class of the exceptional divisor over the point p_i , and E_0 the pullback of a hyperplane on \mathbb{P}^{r-1} . Define

$$D_j = jE_0 - \sum_{i=1}^n m_i E_i.$$

Moreover, $h^i(X, D) = h^i(\mathbf{P}^{r-1}, \mathcal{I}_Z(j))$ for all $i \geq 0$. Taking cohomology of the exact sequence

$$0 \longrightarrow \mathcal{I}_Z(j) \longrightarrow \mathcal{O}_{\mathbf{P}^{r-1}}(j) \longrightarrow \mathcal{O}_Z(j) \longrightarrow 0$$

and using the fact that $\mathcal{O}_Z(j) \cong \mathcal{O}_Z$ and thus $h^0(Z, \mathcal{O}_Z(j)) = h^0(Z, \mathcal{O}_Z) = \sum_i \binom{n-2+m_i}{n-1}$, shows that

$$h^{0}(X,D) = h^{0}(\mathcal{I}_{Z}(j)) = {\binom{n-1+j}{n-1}} - \sum_{i} {\binom{n-2+m_{i}}{n-1}} + h^{1}(\mathcal{I}_{Z}(j)).$$
 (3.1)

In the context of **Theorem 2**, taking $m_i = j - t + 1$ for all i and defining D_j to be $D_j = jE_0 - (j - t + 1)(E_1 + \cdots + E_n)$, we thus have:

$$\dim_{\mathbf{K}} I_j = \begin{cases} n\binom{r+j-t-1}{r-1} - h^1(\mathcal{I}_Z(j)) = n\binom{r+j-t-1}{r-1} - h^1(D_j) & \text{for } j \ge t \\ 0 & \text{for } 0 \le j < t \end{cases}$$
(3.2)

Alternatively, this can be stated for the quotient S/I = A as:

$$\dim_{\mathbf{K}} A_j = \begin{cases} h^0(D_j) & \text{for } j \ge t \\ {r-1+j \choose r-1} & \text{for } 0 \le j < t \end{cases}$$
 (3.3)

Definition 3. We will say that I has expected dimension in degree j if either $I_j = 0$ or $h^1(D_j) = 0$. We say D_j is irregular if $h^1(D_j) > 0$ and regular otherwise. We say D_j is special if $h^0(D_j)$ and $h^1(D_j)$ are both positive.

A landmark result on the dimension of linear systems is:

Theorem 4 (Alexander–Hirschowitz [AH92]). Fix $m, n-1 \geq 2$, and consider the linear system of hypersurfaces of degree m in \mathbf{P}^{n-1} passing through n general points with multiplicity two. Then

- 1. For m = 2, the system is special iff $2 \le r \le n 1$.
- 2. For m greater than two, the only special systems are

$$(n-1, m, r) \in \{(2, 4, 5), (3, 4, 9), (4, 4, 14), (4, 3, 7)\}.$$

In each of these four cases, the linear system is expected to be empty but in fact has projective dimension 0.

Example 5. Let A be the quotient of $\mathbf{K}[x_1, x_2, x_3]$ by the cubes of five general linear forms. The corresponding five points in \mathbf{P}^2 are general, and the first interesting computation involves $D_4 = 4E_0 - \sum_{i=1}^5 2E_i$, for which we have

$$\dim_{\mathbf{K}} A_4 = h^0(D_4) = {6 \choose 2} - 15 + h^1(D_4).$$

Since $H^0(D_4)$ contains the double of a conic through the five points, D_4 is special, and in fact we have $h^0(D_4) = 1 = h^1(D_4)$.

A famous open conjecture on the Hilbert function of fat points in \mathbf{P}^2 is expressed in terms of (-1)-curves (i.e., smooth rational curves E with $E^2=-1$):

Conjecture 6 (Segre-Harbourne-Gimigliano-Hirschowitz [?]). Suppose that $\{p_1, \ldots, p_n\} \subseteq \mathbf{P}^2$ is a collection of points in general position, X is the blowup of \mathbf{P}^2 at the points, and E_i the exceptional divisor over p_i . If $F_j = jE_0 - \sum_{i=1}^n a_i E_i$ is special, then there exists a (-1)-curve E with $E \cdot F_j \leq -2$.

Example 7. Let $C = 2(2E_0 - \sum_{i=1}^{5} E_i) + (E_0 - E_1 - E_2)$. Then $h^0(C) = 1$ and $h^1(C) = 1$, so C is special, but $E = 2E_0 - \sum_{i=1}^{5} E_i$ is rational by adjunction with $E^2 = -1$ and

 $E \cdot C = -2.$

4 Main results

The case of ideals generated by powers of linear forms in $\mathbf{K}[x_1,\ldots,x_3]$ has been answered in the affirmative in previous work [?].

Recall that one of the strategies (described in previous talk) of analyzing the WLP is through the syzygy bundle of the associated ideal sheaf restricted to a line bundle. In this section, we focus on powers of linear forms in $S = \mathbf{K}[x_1, \ldots, x_4]$ for which the associated (restricted) fat point subscheme is a subset of \mathbf{P}^2 and we furthermore restrict to fat point schemes whose Hilbert function is known. This means looking at fat point schemes supported at 8 or less points.

Recall that via the syzygy bundle techniques one obtains a long exact sequence in cohomology

$$0 \longrightarrow H^{0}(\mathcal{S}(I)(m)) \longrightarrow H^{0}(\mathcal{S}(I)(m+1)) \xrightarrow{\phi_{m}} H^{0}(\mathcal{S}(I)|_{L}(m+1))$$

$$H^{1}(\mathcal{S}(I)(m)) \xrightarrow{\mu_{\ell}} H^{1}(\mathcal{S}(I)(m+1)) \longrightarrow H^{1}(\mathcal{S}(I)|_{L}(m+1))$$

$$H^{2}(\mathcal{S}(I)(m)) \xrightarrow{\psi_{m}} H^{2}(\mathcal{S}(I)(m+1)) \longrightarrow \cdots .$$

$$(4.1)$$

We observed that surjectivity of the map ϕ_m implies injectivity of the WLP map and injectivity of ψ_m implies surjectivity of the WLP map. The present work translates these observations into the language of divisors on the blowup of \mathbf{P}^2 .

Theorem 8. If the divisor D_m (as defined in the previous section) on the blowup of \mathbf{P}^n is non-special and the divisor D_{m+1} on \mathbf{P}^{n-1} is special then WLP fails for the corresponding ideal generated by powers of linear forms.

Example 9. Here we apply the theorem to obtain the Hilbert function for $A = \mathbf{K}[x_1, x_2, x_3, x_4]/\langle x_1^3, x_2^3, x_3^3, x_4^3, (x_1+x_2+x_3+x_4)^3 \rangle$.

j	0	1	2	3	4	5	6	
$\dim_{\mathbf{K}} A_j$	1	4	10	15	15	6	0	
$HF(\cap_{i=1}^5 \wp_i^{j-2}, j)$	0	0	0	15	15	6	0	

We consider the restriction of this example to \mathbf{P}^2 in Example 5.

Example 10. But as in the proof of Proposition $\ref{eq:condition}(c)$, the kernel of $A_3 \to A_4$ has dimension $h^1(D_4')$, hence the cokernel has dimension $h^1(D_4')$, so μ_ℓ fails to have full rank, since $h^1(D_4') = 1$ by Theorem 4.

We employ this theorem together with the AlexanderHirschowitz (for 5 points) and Segre-Harbourne-Gimigliano-Hirschowitz Theorem to fully describe the failure of the WLP in the case of 5,6,7,8 fat points.

Theorem 11. Let $I = \langle l_1^t, ..., l_n^t \rangle \subseteq \mathbf{K}[x_1, x_2, x_3, x_4]$ with $l_i \in S_1$ generic. If $n \in \{5, 6, 7, 8\}$, then WLP fails, respectively, for $t \geq \{3, 27, 140, 704\}$.

5 Connections with Gelfand-Tsetlin patterns

Definition 12. A two-row Gelfand-Tsetlin pattern is a non-negative integer $2 \times n$ -matrix (λ_{ij}) that satisfies $\lambda_{2n} = 0$, $\lambda_{1,j+1} \geq \lambda_{2,j}$ and $\lambda_{i,j} \geq \lambda_{i,j+1}$ for i = 1, 2 and $j = 1, \ldots, n-1$.

In Proposition 3.6 of [SX10], Sturmfels-Xu show that for generic forms l_i , the Hilbert function of $\mathbf{K}[x_1,\ldots,x_r]/\langle l_1^{u_1},\ldots,l_{r+1}^{u_{r+1}}\rangle$ in degree i is the number of two-rowed Gelfand-Tsetlin patterns with $\lambda_{21}=i$ and $\lambda_{1j}+\lambda_{2j}=u_j+\cdots+u_{r+1}$ for $j=1,\ldots,r+1$.

References

- [AH92] J. Alexander and A. Hirschowitz, Un lemme d'horace differentiel: application aux singularites hyperquartiques de 15., J. Algebraic Geom 1 (1992), 411–426.
- [BS10] H. Schenck B.Harbourne and A. Seceleanu, *Inverse systems, gelfand-tsetlin patterns and the weak lefschetz property*, preprint, 2010.
- [DI00] C. D'Cruz and A. Iarrobino, High-order vanishing ideals at n+3 points of 1^n ., J. Pure Appl. Algebra 152 (2000), 75–82.
- [EI95] J. Emsalem and A. Iarrobino, *Inverse system of a symbolic power i*, J. Algebra **174** (1995), 1080–1090.
- [HMNW03] T. Harima, J. Migliore, U. Nagel, and J. Watanabe, *The weak and strong lefschetz properties for artinian* ¬-algebras., J. Algebra **262** (2003), 99–126.
- [Iar97] A. Iarrobino, Inverse system of a symbolic power iii: thin algebras and fat points., Compositio Math 108 (1997), 319–356.

- [MMRN] J. Migliore, R. Miró-Roig, and U. Nagel, Monomial ideals, almost complete intersections and the weak lefschetz property., Trans. Amer. Math. Soc., to appear.
- [MMRN10] J. Migliore, R. Miró-Roig, and U. Nagel, On the weak lefschetz property for powers of linear forms, preprint, July 2010.
- [SX10] B. Sturmfels and Z. Xu, Sagbi bases of cox-nagata rings, J. Eur. Math. Soc., 2010.