11.1 Sequences

Sequences

A sequence can be thought of as a list of numbers written in a definite order:

$$a_1, a_2, a_3, a_4, \ldots, a_n, \ldots$$

The number a_1 is called the first term, a_2 is the second term, and in general a_n is the nth term.

Definition of a Sequence

A sequence is a function f whose domain is the set of positive integers. We usually write a_n instead of the function notation f(n). The values a_1, a_2, \ldots are called the terms of the sequence.

Notation: The sequence $\{a_1, a_2, a_3, \dots\}$ is also denoted by

$$\{a_n\}$$
 or $\{a_n\}_{n=1}^{\infty}$

EXAMPLE 1

Some sequences can be defined by giving a formula for the nth term.

(a)
$$a_n = \frac{1}{2^n} \to \{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \dots, \frac{1}{2^n}, \dots\}$$

(b)
$$\left\{\frac{n+1}{n}\right\}_{n=2}^{\infty} \to \left\{\frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}, \dots\right\}$$

(c)
$$\{3,4,5,6,\dots\} = \{n+2\}_{n=1}^{\infty} = \{n\}_{n=3}^{\infty}$$

(d)
$$\left\{ \frac{(-1)^n \cdot 3^n}{n+1} \right\}_{n=0}^{\infty} \to \left\{ 1, -\frac{3}{2}, 3, -\frac{27}{4}, \frac{81}{5}, \dots \right\}$$

EXAMPLE 2

Find a formula for the general term a_n of the sequence, assuming that the pattern of the first few terms continues.

$$\left\{\frac{3}{5}, -\frac{4}{25}, \frac{5}{125}, -\frac{6}{625}, \frac{7}{3125}, \dots\right\}$$

SOLUTION: The signs of the terms are alternating, starting with positive, so we can use $(-1)^{n-1}$. The numerator is n+2 and the denominator is 5^n .

$$a_n = (-1)^{n-1} \frac{n+2}{5^n}$$

1

EXAMPLE 3 (Recursive Sequences)

Some sequences do not have a simple defining equation but are defined recursively. The **Fibonacci** sequence $\{f_n\}$ is defined by:

$$f_1 = 1$$
 $f_2 = 1$ $f_n = f_{n-1} + f_{n-2}$ for $n \ge 3$

The first few terms are: $\{1, 1, 2, 3, 5, 8, 13, 21, \dots\}$

The Limit of a Sequence

Definition of a Limit of a Sequence (Intuitive)

A sequence $\{a_n\}$ has the **limit** L and we write

$$\lim_{n \to \infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty$$

if the terms a_n get arbitrarily close to L as n becomes sufficiently large. If $\lim_{n\to\infty} a_n$ exists, the sequence **converges**. Otherwise, it **diverges**.

Definition of a Limit of a Sequence (Precise)

A sequence $\{a_n\}$ has the limit L if for every $\varepsilon > 0$, there is a corresponding integer N such that

if
$$n > N$$
 then $|a_n - L| < \varepsilon$

Theorem :

If $\lim_{x\to\infty} f(x) = L$ and $f(n) = a_n$ when n is an integer, then $\lim_{n\to\infty} a_n = L$.

If $\{a_n\}$ and $\{b_n\}$ are convergent sequences and c is a constant, then

(a)
$$\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$$

(b)
$$\lim_{n\to\infty} (a_n - b_n) = \lim_{n\to\infty} a_n - \lim_{n\to\infty} b_n$$

(c)
$$\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n$$

(d)
$$\lim_{n\to\infty} (a_n b_n) = (\lim_{n\to\infty} a_n) \cdot (\lim_{n\to\infty} b_n)$$

(e)
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$$
 if $\lim_{n\to\infty} b_n \neq 0$

(f)
$$\lim_{n\to\infty} a_n^p = \left[\lim_{n\to\infty} a_n\right]^p$$
 if $p>0$ and $a_n>0$

If $a_n \leq b_n \leq c_n$ for $n \geq n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$.

Proof. Given $\lim_{n\to\infty} |a_n| = 0$. For any $\varepsilon > 0$, there is an integer N such that if n > N then $||a_n| - 0| < \varepsilon$, which means $|a_n| < \varepsilon$. But $-|a_n| \le a_n \le |a_n|$. Since $|a_n| < \varepsilon$, we have $-\varepsilon < a_n < \varepsilon$, which implies $|a_n - 0| < \varepsilon$. Therefore, $\lim_{n \to \infty} a_n = 0$.

EXAMPLE 4 - 9: Calculating Limits

Ex 4: Find $\lim_{n\to\infty}\frac{n}{n+1}$.

SOLUTION: Divide numerator and denominator by n: $\lim_{n\to\infty}\frac{1}{1+1/n}=1$.

Ex 5: Find $\lim_{n\to\infty} \frac{\ln n}{n}$.

SOLUTION: Use L'Hospital's Rule on $f(x) = \frac{\ln x}{x}$. $\lim_{x\to\infty} \frac{1/x}{1} = 0$.

Ex 6: Does $a_n = (-1)^n$ converge?

SOLUTION: No, it oscillates between 1 and -1. Divergent.

Ex 7: Find $\lim_{n\to\infty} \frac{(-1)^n}{n}$

Ex 7: Find $\lim_{n\to\infty} \frac{}{n}$.

SOLUTION: $\lim_{n\to\infty} \left| \frac{(-1)^n}{n} \right| = \lim_{n\to\infty} \frac{1}{n} = 0$. By Thm 4, the limit is 0.

Ex 8: Discuss convergence of $a_n = \frac{n!}{n^n}$.

SOLUTION: Use Squeeze Theorem. $0 < a_n = \frac{1 \cdot 2 \cdots n}{n \cdot n \cdots n} \le \frac{1}{n}$. Since $\lim_{n \to \infty} \frac{1}{n} = 0$, the limit is 0.

Theorem 4

If $\lim_{n\to\infty} |a_n| = L$, then the function f is continuous at L, then $\lim_{n\to\infty} f(a_n) = f(L)$.

Ex 9: Evaluate $\lim_{n\to\infty} \sin(\pi/n)$.

SOLUTION: Since $\sin x$ is continuous at 0, $\lim_{n\to\infty}\sin(\pi/n)=\sin(\lim_{n\to\infty}\pi/n)=\sin(0)=0$.

EXAMPLE 10

Discuss the convergence of the sequence $a_n = \frac{n!}{n^n}$, where $n! = 1 \cdot 2 \cdot 3 \cdots n$.

SOLUTION: Both the numerator and the denominator approach infinity as $n \to \infty$.

$$a_1 = 1$$
 $a_2 = \frac{1 \cdot 2}{2 \cdot 2}$ $a_3 = \frac{1 \cdot 2 \cdot 3}{3 \cdot 3 \cdot 3}$

$$a_n = \frac{1 \cdot 2 \cdot 3 \cdots n}{n \cdot n \cdot n \cdot \cdots n} = \frac{1}{n} \left(\frac{2 \cdot 3 \cdots n}{n \cdot n \cdots n} \right)$$

From this expression, it's clear that a_n is positive. We can also see that

$$0 < a_n \le \frac{1}{n}$$

because the fraction in the parentheses is less than or equal to 1. We know that $\lim_{n\to\infty} 1/n = 0$. Therefore, by the Squeeze Theorem, we have

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n!}{n^n} = 0$$

EXAMPLE 11

For what values of r is the sequence $\{r^n\}$ convergent?

SOLUTION: From the limits of exponential functions, we know that $\lim_{x\to\infty} r^x = \infty$ for r > 1 and $\lim_{x\to\infty} r^x = 0$ for 0 < r < 1. Therefore, putting $a_n = r^n$, we have

$$\lim_{n \to \infty} r^n = \begin{cases} \infty & \text{if } r > 1\\ 0 & \text{if } 0 < r < 1 \end{cases}$$

For r=1, $\lim_{n\to\infty} 1^n = \lim_{n\to\infty} 1 = 1$. For r=0, the sequence is $\{0,0,\ldots\}$ and converges to 0. If -1 < r < 0, then 0 < |r| < 1, so $\lim_{n\to\infty} |r^n| = \lim_{n\to\infty} |r|^n = 0$, and $\lim_{n\to\infty} r^n = 0$. If $r \le -1$, the sequence $\{r^n\}$ diverges.

In summary, the sequence $\{r^n\}$ is convergent if $-1 < r \le 1$ and

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } -1 < r < 1\\ 1 & \text{if } r = 1 \end{cases}$$

4

Monotonic and Bounded Sequences

Definitions

A sequence $\{a_n\}$ is called **increasing** if $a_n \leq a_{n+1}$ for all $n \geq 1$.

It is called **decreasing** if $a_n \ge a_{n+1}$ for all $n \ge 1$.

A sequence is **monotonic** if it is either increasing or decreasing.

EXAMPLE 12

Show that the sequence $a_n = \frac{n}{n^2 + 1}$ is decreasing.

SOLUTION: We must show that $a_{n+1} \leq a_n$, that is $\frac{n+1}{(n+1)^2+1} \leq \frac{n}{n^2+1}$. This inequality is equivalent to $(n+1)(n^2+1) \leq n((n+1)^2+1)$.

$$n^{3} + n + n^{2} + 1 \le n(n^{2} + 2n + 1 + 1)$$
$$n^{3} + n^{2} + n + 1 \le n^{3} + 2n^{2} + 2n$$
$$1 \le n^{2} + n$$

Since $n \geq 1$, this inequality is certainly true.

EXAMPLE 13

Investigate the sequence defined by the recurrence relation $a_1 = 2$, $a_{n+1} = \frac{1}{2}(a_n + 6)$ for $n \ge 1$. **SOLUTION:** We begin by computing the first few terms:

$$a_1 = 2$$
 $a_2 = \frac{1}{2}(2+6) = 4$ $a_3 = \frac{1}{2}(4+6) = 5$ $a_4 = \frac{1}{2}(5+6) = 5.5$

These initial terms suggest that the sequence is increasing and the terms are approaching 6. To confirm this, use mathematical induction to show that $\{a_n\}$ is increasing and bounded above by 6.

Definitions

A sequence $\{a_n\}$ is **bounded above** if there is a number M such that $a_n \leq M$ for all $n \geq 1$.

It is **bounded below** if there is a number m such that $m \leq a_n$ for all $n \geq 1$.

If it is bounded above and below, then $\{a_n\}$ is a **bounded sequence**.

For instance, the sequence $a_n = n$ is bounded below $(a_n > 0)$ but not above. The sequence $a_n = \frac{n}{n+1}$ is bounded because $0 < a_n < 1$ for all n.

We know that not every bounded sequence is convergent [for instance, the sequence $a_n = (-1)^n$ satisfies $-1 \le a_n \le 1$ but is divergent] and not every monotonic sequence is convergent $(a_n = n \to \infty)$. But if a sequence is both bounded and monotonic, then it must be convergent.

Monotonic Sequence Theorem (Theorem 6)

Every bounded, monotonic sequence is convergent.

Proof. Let $\{a_n\}$ be an increasing sequence. Since $\{a_n\}$ is bounded, the set $S = \{a_n | n \ge 1\}$ has an upper bound. By the Completeness Axiom of the real numbers, S has a least upper bound $L = \sup S$. We will show that $\lim_{n\to\infty} a_n = L$.

Given $\varepsilon > 0$, $L - \varepsilon$ is not an upper bound for S (since L is the *least* upper bound). Therefore, there exists an integer N such that $a_N > L - \varepsilon$.

Because the sequence is increasing, we have $a_n \ge a_N$ for every n > N. Thus, for n > N, we have

$$a_n > L - \varepsilon$$

Since L is an upper bound for S, we also have $a_n \leq L$ for all n. Therefore, for n > N, we have

$$L - \varepsilon < a_n \le L$$

This implies $|a_n - L| < \varepsilon$ for all n > N. Thus, by definition, $\lim_{n \to \infty} a_n = L$.

A similar proof can be constructed for a decreasing sequence bounded below.

EXAMPLE 14

Investigate the sequence defined by $a_1 = 2$, $a_{n+1} = \frac{1}{2}(a_n + 6)$.

SOLUTION: By induction, one can show the sequence is increasing and bounded above by 6, so it converges. Let $L = \lim_{n\to\infty} a_n$. Then $L = \frac{1}{2}(L+6)$, which gives 2L = L+6, so L=6.

Boundedness: We show that $a_n < 6$ for all $n \ge 1$. This is true for n = 1 since $a_1 = 2 < 6$. Assume that $a_k < 6$ for some $k \ge 1$. Then

$$a_{k+1} = \frac{1}{2}(a_k + 6) < \frac{1}{2}(6 + 6) = 6$$

Thus $a_{n+1} < 6$ whenever $a_n < 6$. So the sequence is bounded above by 6. It is also bounded below by 2 since a_n is increasing.

Monotonicity: We show that $a_{n+1} \ge a_n$ for all $n \ge 1$.

$$a_2 - a_1 = 4 - 2 = 2 > 0$$

Assume that $a_{k+1} > a_k$ for some $k \ge 1$. Then $a_k < a_{k+1}$, so $a_k + 6 < a_{k+1} + 6$, and $\frac{1}{2}(a_k + 6) < \frac{1}{2}(a_{k+1} + 6)$. Thus $a_{k+1} < a_{k+2}$. By the principle of mathematical induction, $a_{n+1} \ge a_n$ for all n. Since the sequence $\{a_n\}$ is bounded and increasing, it is convergent by the Monotonic Sequence Theorem. The limit must be 6.