UNIT-4:

LOGIC GATE And Boolean Algebra

- > Digital systems are said to be constructed by using logic gates.
- These gates are the AND, OR, NOT, NAND, NOR, EXOR and EXNOR gates.
- The basic operations are described with the aid of truth tables.
- ➤ Boolean functions practically implemented by using electronic gates
- ➤ Generally logic gate have 2 input 1 output
- ➤ Gate **INPUTS** are driven by voltages having two nominal values, 0V logic 0 and 5V logic 1
- The **OUTPUT** of a gate provides two nominal values of voltage only 0V logic 0 and 5V logic 1

AND gate

2 Input AND gate			
Α	В	A.B	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

high output (1) only if **all** its inputs are high

OR gate

2 Input OR gate				
А	В	A+B		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

high output (1) if one or more of its inputs are high.

NOT gate

NOT gate		
Д	Ā	
0	1	
1	0	

produces an inverted version of the input at its output.

NAND GATE

AND gate followed by a NOT gate.

2 Input NAND gate			
А	В	<mark>A.</mark> B	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

high output (1) only if **all** its inputs are low

NOR GATE

OR gate followed by a NOT gate.

2 Input NOR gate				
Д	В	A+B		
0	0	1		
0	1	0		
1	0	0		
1	1	0		

Low output (0) if **one or more** of its inputs are high.

EXOR GATE/XOR

2 Input EXOR gate				
А	В	А⊕В		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

high output (1) for different input

EXNOR GATE/XNOR

2 Input EXNOR gate			
Д	В	A⊕B	
0		1	
0	1	0	
1	0	0	
1	1	1	

High output (1) for same input

Practice Questions

Which of the following symbols represents a NOR gate?

Which one of the following truth tables represents the behavior a NAND gate?

Practice Questions

What type of logic gate does this symbol represent?

NOR

What type of logic gate's behavior does this truth table represent?

	?			
А	В	O	?	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	

- 2 input OR
- 3 input OR
- 3 input EXOR
- 4 input EXOR

Practice Questions

The output of an AND gate with three inputs, A, B, and C, is HIGH when _____.

- A. A = 1, B = 1, C = 0
- B. A = 0, B = 0, C = 0
- C. A = 1, B = 1, C = 1
- D. A = 1, B = 0, C = 1

If the input to a NOT gate is A and the output is X, then _____.

- A. X = A
- B. $A=^A$
- C. X = 0
- D. none of the above

How many inputs of a four-input AND gate must be HIGH in order for the output of the logic gate to go HIGH?

- A. any one of the inputs
- B. any two of the inputs
- C. any three of the inputs
- D. all four inputs

Circuit with Logic Gate

Draw circuit for
$$Y=AB+AC$$

Boolean Algebra

Analyze and simplify the digital (logic) circuits

Commutative law

(ii)
$$A + B = B + A$$

Associative law

(i)
$$(A.B).C = A.(B.C)$$

(ii)
$$(A + B) + C = A + (B + C)$$

Distributive law

AND law

$$A.(B+C) = A.B + A.C$$

(i)
$$A.0 = 0$$

(ii)
$$A.1 = A$$

(iv)
$$A.\overline{A} = 0$$

(i)
$$A + 0 = A$$

(ii)
$$A + 1 = 1$$

(iii)
$$A + A = A$$

(iv)
$$A + \overline{A} = 1$$

INVERSION law

$$\overline{\overline{A}} = A$$

De Morgan Law

$$\overline{A.B} = \overline{A} + \overline{B}$$

NAND = Bubbled OR

NAND

Bubbled OR

Bubbled OR

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

NOR = Bubbled AND

NOR

Bubbled AND

$$\Rightarrow A \Rightarrow Y = A \cdot B$$

Bubbled AND

Simplification

Simplify
$$C + \overline{BC}$$

$$C + (\overline{B} + \overline{C})$$

$$(C + \overline{C}) + [\overline{B}]$$

$$1 + \overline{B}$$

$$1$$

Simplify
$$F = ABC + A + A\overline{B}C$$

$$AC(B + \overline{B}) + A$$

$$AC + A$$

$$A(C + 1)$$

$$A$$

Logic Gate Implement with NAND-NOR

NOR

NAND

SOP-POS

Boolean function is an algebraic form of Boolean expression

Sum-of-Products (SOP) - variables are operated by AND (product) are OR(sum) together Product-of-sums (POS) - variables are operated by OR (sum) are AND (product) together

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

SOP Expression

- Write AND term for each input combination produces
 HIGH
- Write the input variables for 1 and compliment for 0.
- OR the AND terms to obtain the output function.

$$F(SOP) = A'BC + AB'C + ABC' + ABC$$

POS Expression

- Write OR term for each input combination produces LOW
- Write the input variables for 0 and complement for 1
- AND the OR terms to obtain the output function

$$F(POS) = F = (A + B + C) (A + B + C') (A + B' + C) (A' + B + C)$$

POS is compliment of SOP

Min Term –Max Term

	Variables		Min terms	Max terms
A	В	C	m _i	\mathbf{M}_{i}
0	0	0	A' B' C' = m 0	A + B + C = M 0
0	0	1	A' B' C = m 1	A + B + C' = M 1
0	1	0	A' B C' = m 2	A + B' + C = M 2
0	1	1	A' B C = m 3	A + B' + C' = M 3
1	0	0	A B' C' = m 4	A' + B + C = M 4
1	0	1	A B' C = m 5	A' + B + C' = M 5
1	1	0	A B C' = m 6	A' + B' + C = M 6
1	1	1	A B C = m 7	A' + B' + C' = M 7

Write SOP expression for min term $F(A, B, C) = \sum m(1, 2, 3)$

In binary 01 10 11
$$= \overline{A}B + A\overline{B} + AB$$

Write POS expression for min term $F(A, B, C) = \pi M(1, 2, 3)$

In binary = 01 10 11
$$(A + \overline{B}).(\overline{A} + B).(\overline{A} + \overline{B})$$

Write SOP expression for min term
$$F(A, B) = \sum m(1, 2, 3)$$

Inbinary 01 10 11
$$= \overline{A}B + A\overline{B} + AB$$

Write SOP expression for
$$F(A, B, C) = \sum m(2, 4, 6, 7)$$

In binary 010 100 110 111 $\overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$

SOP-POS Conversion

Convert the SOP expression to an equivalent POS expression:

$$\overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + ABC$$

The evaluation is as follows:

$$000+010+011+101+111$$

There are 8 possible combinations. The SOP expression contains five of these, so the POS must contain the other 3 which are: 001, 100, and 110.

$$(A+B+\overline{C})(\overline{A}+B+C)(\overline{A}+\overline{B}+C)$$

MCQ

A small circle on the output of a logic gate is used to represent

- A) NOT
- B) BUF

Output will be a LOW for any case when one or more inputs are zero

- A) AND
- B) OR

How many two-input AND and OR gates are required to realize Y = CD+EF+G

- A) 2,3
- B) 2,2

Which is XNOR gate equation

- A) AB + (-A)(-B)
- B) \sim AB + A(\sim B)

If one input of XOR gate is connected to high terminal, equivalent to

- A) NOT
- B) BUF

Which is not correct

- A) A.1=1
- B) A+A=A
- C) A+1=1
- D) A.A=A

POS is compliment of SOP

- A) True
- B) False

min term when x=0, y=0 and z=1

- A) x'y'z
- B) x+y+z'

Y=AB+BC+AC is

- A) SOP
- B) POS

Y=(A+B)(B+C)(C+A) shows

- A) POS
- B) SOP

K-MAP

Karnaugh map is a tool for simplification of Boolean algebra

K-Map diagram is made up of squares

K-map is a graphical representation of SOP (Minterm)

K-Map extensively reduce the calculation and provides best minimized solution

K-map solve the expression with grouping of neighbor cells

Kmap Simplification Rule

- 1) Construct k-map and place 1's in the squares according to the truth table.
- 2) Groupings can contain only 1s
- 3) Groups can be formed only at right angles; diagonal groups are not allowed.
- 4) The number of 1's in a group must be a power of 2
- 5) The groups must be made as large as possible.
- 6) Groups can overlap and wrap around the sides of the Kmap.
- 7) Every group puts a term in the solution

Optimized Solution

Minimum number of group

Each group covers maximum possible squares

Example

Out= $\overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + \overline{A}B\overline{C} + AB\overline{C}$

Out = C

Out=
$$\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C} + \overline{A}\overline$$

Out=
$$\overline{A}\overline{B}\overline{C}\overline{D}$$
 + $\overline{A}\overline{B}\overline{C}D$ + $\overline{A}\overline{B}CD$
+ $\overline{A}B\overline{C}\overline{D}$ + $\overline{A}B\overline{C}D$ + $\overline{A}BCD$
+ $\overline{A}B\overline{C}\overline{D}$ + $\overline{A}B\overline{C}D$ + $\overline{A}BCD$

$$f(A, B, C, D) = \sum_{m(0,1,3,4,5,7,12,13,15)}$$

$$f(A,B,C,D) = \prod_{M(2,6,8,9,10,11,14)}$$

$$f(A,B,C,D) = (\overline{A}+B)(\overline{C}+D)$$