

Systeme II

2. Die physikalische Schicht

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg
Version 26.04.2017

Basisband und Breitband

Basisband (baseband)

- Das digitale Signal wird direkt in Strom- oder Spannungsveränderungen umgesetzt
- Das Signal wird mit allen Frequenzen übertragen
 - z.B. Durch NRZ (Spannung hoch = 1, Spannung niedrig = 0)
- Problem: Übertragungseinschränkungen
- Breitband (broadband)
 - Die Daten werden durch einen weiten Frequenzbereich übertragen
 - Weiter Bereich an Möglichkeiten:
 - Die Daten k\u00f6nnen auf eine Tr\u00e4gerwelle aufgesetzt werden (Amplitudenmodulation)
 - Die Trägerwelle kann verändert (moduliert) werden (Frequenz/ Phasenmodulation)
 - Verschiedene Trägerwellen können gleichzeitig verwendet werden

Struktur einer digitalen Basisband-

01010

Übertragung

Quellkodierung

- Entfernen redundanter oder irrelevanter Information
- Z.B. mit verlustbehafteter Komprimierung (MP3, MPEG 4)
- oder mit verlustloser Komprimierung (Huffman-Code)

Kanalkodierung

- Abbildung der Quellbits auf Kanal-Symbole
- Möglicherweise Hinzufügen von Redundanz angepasst auf die Kanaleigenschaften

Physikalische Übertragung

- Umwandlung in physikalische Ereignisse

Selbsttaktende Kodierungen

- Wann muss man die Signale messen
 - Typischerweise in der Mitte eines Symbols
 - Wann startet das Symbol?
 - Die Länge des Symbols ist üblicherweise vorher festgelegt.
- Der Empfänger muss auf der Bit-ebene mit dem Sender synchronisiert sein
 - z.B. durch Frame Synchronization

Synchronisation

- Was passiert wenn man einfach Uhren benutzt
- Problem
 - Die Uhren driften auseinander
 - Keine zwei (bezahlbare Uhren) bleiben perfekt synchron
- Fehler by Synchronisationsverlust (NRZ):

Lösung der Synchronisation

- Ohne Kontrolle keine Synchronisation
- Lösung: explizites Uhrensignal
 - Benötigt parallele Übertragung über Extra-Kanal
 - Muss mit den Daten synchronisiert sein
 - Nur für kurze Übertragungen sinnvoll

- z.B. Start eines Symbols oder eines Blocks
- Sonst läuft die Uhr völlig frei
- Vertraut der kurzzeitig funktionierenden Synchronität der Uhren
- Uhrensignal aus der Zeichenkodierung

Selbsttaktende Codes

- z.B. Manchester Code (Biphase Level)
 - 1 = Wechsel von hoch zu niedrig in der Intervallmitte
 - 0 = Umgekehrter Wechsel

 Das Signal beinhaltet die notwendige Information zur Synchronisation

Digitale Kodierungen (I)

0 00 0.0 00000

- Non-Return to Zero-Level (NRZ-L)
 - 1 = hohe Spannung, 0 = niedrig
- Non-Return to Zero-Mark (NRZ-M)
 - 1 = Wechsel am Anfang des Intervals
 - 0 = Kein Wechsel
- Non-Return to Zero-Space (NRZ-S)
 - 0 = Wechsel am Intervallanfang
 - 1 = Kein Wechsel
- Return to Zero (RZ)
 - 1 = Rechteckpuls am Intervallanfang
 - 0 = Kein Impuls
- Manchester Code (Biphase Level)
 - 1 = Wechsel von hoch zu niedrig in der Intervallmitte
 - 0 = Umgekehrter Wechsel

Tanenban

Digitale Kodierungen (II)

- Biphase-Mark
 - Immer: Übergang am Intervallanfang
 - 1 = zweiter Übergang in der Mitte
 - 0 = kein zweiter Übergang
- Biphase-Space
 - Immer: Übergang am Intervallanfang
 - 1/0 umgekehrt wie Biphase-Mark
- Differential Manchester-Code
 - Immer: Übergang in Intervallmitte
 - 1 = Kein Übergang am Intervallanfang
 - 0 = Zusätzlicher Übergang am Intervallanfang
- Delay Modulation (Miller)
 - Übergang am Ende, falls 0 folgt
- 1 = Übergang in der Mitte des Intervalls md heme am Ende
 - <u>0</u> = Kein Übergang falls 1 folgt
- Bipolar
 - 1 = Rechteckpuls in der ersten
 Hälfte, Richtung alterniert (wechselt)
 - 0 = Kein Rechteckpuls

12

24

Symbole und Bits

0,101110111101

- Für die Datenübertragung können statt Bits auch Symbole verwendet werder
- Z.B. 4 Symbole: A,B,C,D mit
 - A=00, B=01, C=10, D=11
- Symbole
 - Gemessen in Baud
 - Anzahl der Symbole pro Sekunde
- Datenrate
 - Gemessen in Bits pro Sekunde (bit/s)
 - Anzahl der Bits pro Sekunde
- Beispiel
 - 2400 bit/s Modem hat 600
 Baud (verwendet 16 Symbole)

$$|6 = 2^4$$

Struktur einer digitalen Breitband-Übertragung

MOdulation/DEModulation

- MODEM
- Übersetzung der Kanalsymbole durch
 - Amplitudenmodulation
 - Phasenmodulation
 - Frequenzmodulation
 - oder einer Kombination davon

Physikalische Grundlagen

 Bewegte elektrisch geladene Teilchen verursachen elektromagnetische Wellen

- f : Anzahl der Oszillationen pro Sekunde
 - Maßeinheit: Hertz

• λ: Distanz (in Metern) zwischen zwei Wellenmaxima

- Die Ausbreitungsgeschwindigkeit von elektro-magnetischen Wellen im Vakuum ist konstant:
 - Lichtgeschwindigkeit $c \approx 3 \cdot 10^8$ m/s
- Zusammenhang:

$$\lambda \cdot f = c$$

Amplitudendarstellung

Amplitudendarstellung einer Sinusschwingung

$$s(t) = A\sin(2\pi f t + \phi)$$

- A: Amplitude

- φ: Phasenverschiebung </

- f: Frequenz = $1/T \sim$

- T: Periode

Systeme II

2. Die physikalische Schicht

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg
Version 26.04.2017