Background Check: A general technique to build more reliable and versatile classifiers

Miquel Perello-Nieto^{*1}, Telmo M. Silva Filho^{*2}, Meelis Kull¹ and Peter Flach¹

* Equal contribution

¹Department of Computer Science, University of Bristol, UK

²Centro de Informatica, Universidade Federal de Pernambuco, Brazil

Email: ¹{Miquel.PerelloNieto, Meelis.Kull, Peter.Flach}@bristol.ac.uk, ²tmsf@cin.ufpe.br

December 13, 2016

Evaluation & Results Motivation Method

- Cautious classification
- Outlier detection
- Classification with confidence

- Cautious classification
- 2. Outlier detection
- 3. Classification with confidence

- 1. Cautious classification
- 2. Outlier detection
- 3. Classification with confidence

	$p(C_1 x)$	$p(C_2 x)$	
Α	1	.0	
В	.5	.5	
С	.0	1	
D	.5	.5	
Е	.5	.5	

- 1. Cautious classification
- 2. Outlier detection
- 3. Classification with confidence

	$p(C_1 x)$	$p(C_2 x)$	p(b x)
Α	1	.0	
В	.5	.5	
С	.0	1	
D	.5	.5	
Е	.5	.5	

- 1. Cautious classification
- 2. Outlier detection
- 3. Classification with confidence

	$p(C_1 x)$	$p(C_2 x)$	p(b x)
Α	1 → .9	.0 ightarrow .0	.1
В	.5 → .5	.5 → .5	.0
С	.0 → .0	1 ightarrow .5	.5
D	.5 → .0	.5 → .0	1
Ε	.5 → .1	.5 ightarrow .1	.8

Performing Background Check

- Discriminative approach
 - Pre-trained classifier
 - Generate background
 - Train binary classifier

3/8

- Discriminative approach
 - Pre-trained classifier
 - Generate background
 - ► Train binary classifier

- Discriminative approach
 - Pre-trained classifier
 - Generate background
 - Train binary classifier

- Discriminative approach
 - Pre-trained classifier
 - Generate background
 - Train binary classifier

- Discriminative approach
 - Pre-trained classifier
 - Generate background
 - Train binary classifier

- Familiarity approach
 - Pre-trained classifier
 - ▶ Learn $q_f(x) \in [0, 1]$
 - Use inductive bias

- Familiarity approach
 - Pre-trained classifier
 - ▶ Learn $q_f(x) \in [0, 1]$
 - Use inductive bias

- Familiarity approach
 - Pre-trained classifier
 - ▶ Learn $q_f(x) \in [0, 1]$
 - Use inductive bias

- Familiarity approach
 - Pre-trained classifier
 - ▶ Learn $q_f(x) \in [0, 1]$
 - Use inductive bias

- Familiarity approach
 - Pre-trained classifier
 - ▶ Learn $q_f(x) \in [0, 1]$
 - Use inductive bias

- Familiarity approach
 - Pre-trained classifier
 - ▶ Learn $q_f(x) \in [0, 1]$
 - Use inductive bias

- Familiarity approach
 - Pre-trained classifier
 - ▶ Learn $q_f(x) \in [0, 1]$
 - Use inductive bias

- Familiarity approach
 - Pre-trained classifier
 - ▶ Learn $q_f(x) \in [0, 1]$
 - Use inductive bias

- Familiarity approach
 - Pre-trained classifier
 - ▶ Learn $q_f(x) \in [0, 1]$
 - Use inductive bias

- Familiarity approach
 - Pre-trained classifier
 - ▶ Learn $q_f(x) \in [0, 1]$
 - Use inductive bias

- Familiarity approach
 - Pre-trained classifier
 - ▶ Learn $q_f(x) \in [0, 1]$
 - Use inductive bias

- Familiarity approach
 - Pre-trained classifier
 - ▶ Learn $q_f(x) \in [0, 1]$
 - Use inductive bias

- Familiarity approach
 - Pre-trained classifier
 - ▶ Learn $q_f(x) \in [0, 1]$
 - Use inductive bias

Results

- Empirical evaluation
 - 41 multiclass datasets
 - 20 times 5-fold cross-validation
 - Classification with confidence
 - Outlier detection

Cautious Classification is equivalent to Chow's rule [Chow, 1970]

Results

- Empirical evaluation
 - 41 multiclass datasets
 - 20 times 5-fold cross-validation
 - Classification with confidence
 - Significantly better than [Li et al., 2014] (Wilcoxon test p < 0.001)
 - Outlier detection

• Cautious Classification is equivalent to Chow's rule [Chow, 1970]

Results

- Empirical evaluation
 - 41 multiclass datasets
 - 20 times 5-fold cross-validation
 - Classification with confidence
 - Significantly better than [Li et al., 2014] (Wilcoxon test p < 0.001)
 - Outlier detection
 - Competitive results with two specialized methods [Tax and Duin, 2008]
- Cautious Classification is equivalent to Chow's rule [Chow, 1970]

Results

- Empirical evaluation
 - 41 multiclass datasets
 - 20 times 5-fold cross-validation
 - Classification with confidence
 - Significantly better than [Li et al., 2014] (Wilcoxon test p < 0.001)
 - Outlier detection
 - Competitive results with two specialized methods [Tax and Duin, 2008]
- Cautious Classification is equivalent to Chow's rule [Chow, 1970]

Method Evaluation & Results Conclusion

Conclusion

- General technique to perform:
 - Cautious classification
 - Outlier detection
 - Classification with confidence
- Comparable and better results than special purpose approaches
- Model agnostic

Method Evaluation & Results Conclusion

Conclusion

- General technique to perform:
 - Cautious classification
 - Outlier detection
 - Classification with confidence
- Comparable and better results than special purpose approaches
- Model agnostic

Method Evaluation & Results Conclusion

Conclusion

- General technique to perform:
 - Cautious classification
 - Outlier detection
 - Classification with confidence
- Comparable and better results than special purpose approaches
- Model agnostic

- Chow, C. (1970).
 - On optimum recognition error and reject tradeoff. *IEEE Transactions on Information Theory*, 16(1):41–46.
- Li, L., Hu, Q., Wu, X., and Yu, D. (2014). Exploration of classification confidence in ensemble learning. *Pattern Recognition*, 47(9):3120 3131.
- Tax, D. and Duin, R. (2008).

 Growing a multi-class classifier with a reject option.

 Pattern Recognition Letters, 29(10):1565–1570.

Background Check: A general technique to build more reliable and versatile classifiers

Miquel Perello-Nieto*1, Telmo M. Silva Filho*2, Meelis Kull¹ and Peter Flach¹

* Equal contribution
 ¹ Department of Computer Science, University of Bristol, UK
 ² Centro de Informatica, Universidade Federal de Pernambuco, Brazil

Email: ¹{Miquel.PerelloNieto, Meelis.Kull, Peter.Flach}@bristol.ac.uk, ²tmsf@cin.ufpe.br

December 13, 2016

