

HX9193-XXGB-N系列

■ 产品简介

HX9193-XXGB-N系列是以CMOS工艺制造的高精度,低噪音,快速响应低压差线性稳压器。该系列的稳压器内置固定的参考电压,误差修正电路,限流电路,相位补偿电路以及低内阻的MOSFET,达到高纹波抑制,低输出噪音,快速响应低压差的性能。

HX9193-XXGB-N系列兼容体积比钽电容更小的陶瓷电容,而且不需使用 0.1 μF 的 By-pass 电容,更能节省空间,降低了成本。因具有高精度的输出稳定性,以及快速瞬态响应性能,从而能应付负载电流的波动,所以特别适合应用在手持设备及射频产品上。

通过控制芯片上的CE脚,可将输出关断,关断输出后的静态电流只有0.1uA(Typ值),从而大大降低了功耗。

■ 产品特点

- 高精度输出电压: ±2.5%;
- 可选择输出电压: 1.8V~5.0V;
- 极低的静态电流(Typ. =25 µ A);
- 极低的关断电流 (Typ. =0.1 µ A);
- 输入稳定性好: Typ. =0.2%/V;
- 帯载能力强: 当 Vin=4.3V 且 Vout=3.3V 时, Iout=300mA;
- 兼容陶瓷电容;
- 封装形式: SOT89-5、SOT23-5

■ 产品用途

- 智能手机/移动电话
- 数码相机/摄像机
- 电池供电设备

- 蓝牙及其他射频产品
- 便携式消费类设备

■ 封装形式和管脚定义功能

管脚序号 封装		管脚 定义	功能说明	
S0T23-5	S0T89-5	上 上 人		
1	4	VIN	输入端	
2	2	VSS	接地端	
3	3	CE	使能端	
4	1	NC	空	
5	5	VOUT	输出端	

注:HX9193-XXGB-N, HX9193-为产品代码, xxGB为伏数, 33表示3.3V。-N代表新版本。

■ 功能框图

■ 极限参数

项目	符号	说明		极限值	单位
电压	Vin	输	入电压	8	V
巴 瓜	Vout	输	出电压	Vss-0.3~Vin+0.3	V
电流	Iout	输	出电流	300	mA
功耗	PD	S0T23-5	最大允许功耗	200	mW
- 切札	PD	S0T89-5	取入几件切れ	300	IIIW
	T _{OPR}	エ	作温度	-20~+60	${\mathbb C}$
温度	T _{stg}	存	储温度	-40~+125	${\mathbb C}$
	T _{solder}	焊	接温度	260℃,10s	

注: 极限参数是指无论在任何条件下都不能超过的极限值。万一超过此极限值,将有可能造成产品 劣化等物理性损伤;同时在接近极限参数下,不能全部保证芯片可以正常工作。

■ 典型应用

■ 电学特性

HX9193-33GB-N V_{OUT}(T)=3.3V (Ci=Co=10uF, Ta=25℃ 除特别指定)

特性	符号	测试条件	最小值	典型值	最大值	单位
输出电压	Vout(E)	$I_{OUT}=1$ mA, $V_{IN}=5$ V, $V_{CE}=1.6$ V	V _{Ουτ(Τ)} *0 .975	3.300	V _{ΟUΤ(Τ)} * 1.025	V
最大输出电流	I _{OUT} (max)	V _{IN} =4.3V		300		mA
负载稳定度	∆ Vо∪т	$V_{IN}=V_{CE}=4.3V$, $1mA \le I_{OUT} \le 100mA$		20		mV
输入稳定度	ΔV _{OUT} /(ΔV _{IN} •V _{OUT})	$I_{OUT} = 10 \text{mA}, 4.3 \text{V} \leq V_{IN} \leq 7 \text{V}$		0.2		%/V
跌落压差	V_{drop1}	$V_{IN}=4.3V$, $I_{OUT}=10$ mA		35		mV
以俗丛左	V _{drop2}	$V_{IN}=4.3V$, $I_{OUT}=100$ mA		280		mV
静态电流	I_{SS1}	$V_{IN}=V_{CE}=5V$	_	25	_	μА
押心电机	I_{SS2}	$V_{IN}=5V$, $V_{CE}=V_{SS}$			0.5	μА
CE 松)由压	V _{CEH}		1.6		V _{IN}	V
CE 输入电压	V_{CEL}		0		0.5	V
CE 输入电流	I _{CE}	V _{CE} =0V to V _{IN}			0.5	μА
纹波抑制比	PSRR	$V_{IN}=V_{CE}=4.3V+1V_{p-pAC}$ $I_{OUT}=10mA$, $f=1kHz$		75		dB
输出电压 温度系数	ΔV _{ОUТ} /(Δ Та •V _{ОUТ})	$V_{IN}=V_{CE}=4.3V$, $I_{OUT}=3.3$ mA $0^{\circ}C \le Ta \le 60^{\circ}C$		±290		ppm/°C
输入电压	V _{IN}		1.8		7	V

注:

- 1、 Vour (T): 规定的输出电压。
- 2、Vouт (E): 有效输出电压。
- 3、 I_{OUT} (max): 缓慢增加输出电流,当输出电压 $\leq V_{OUT}$ (E)*95%时的电流值。
- $4 \cdot V_{drop} = V_{IN1} V_{OUT}$ (E)s

 V_{IN1} = 逐渐减小输入电压,当输出电压降为 V_{OUT} (E)1 的 98%时的输入电压。

 V_{OUT} (E)s = V_{OUT} (E)1*98%;

Vout (E)1=当 V_{IN}= V_{OUT}(T)+1V , I_{out}=某一数值时的输出电压值。

■ 封装信息

S0T23-5

Symbol	Dimensions In	Millimeters	Dimensions	In Inches
	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
Е	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(8	BSC)	0.037(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

S0T89-5

CVMPOI	MILLIMETERS		INCHES	
SYMBOL	MIN	MAX	MIN	MAX
A	1.400	1.600	0.055	0.063
b	0.320	0.520	0.013	0.020
b1	0.360	0.560	0.014	0.022
c	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.400.	1.800	0.055	0.071
E	2.300	2.600	0.091	0.102
E1	3.940	4.250	0.155	0.167
e	1.500	TYP.	0.060 TYP.	
e1	2.900	3.100	0.114	0.122
L	0.900	1.100	0.035	0.043