Assignment 3

Data Visualization and Pre-processing

Description:-

Predicting the age of abalone from physical measurements. The age of abalone is determined

Building a Regression Model

Double-click (or enter) to edit

→ 1. Perform Below Visualizations.

Univariate Analysis

1. Summary Statistics

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm

file_data = pd.read_csv('C:/KavinKumar/abalone.csv')
file_data
```

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Visc wei
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0

▼ Add a Age column in a dataset

file_data['Age']=''
file_data.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395

file_data['Age']=file_data['Rings']+1.5
file_data.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395

▼ Drop the Rings Column

file_data = file_data.drop(columns=['Rings'],axis=1)

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera wei
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1
3	М	0.440	0.365	0.125	0.5160	0.2155	0.
4	- 1	0.330	0.255	0.080	0.2050	0.0895	0.0
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.0
4177 r	ows × (9 columns					
file_data['Heigh	t'].mean	()				
0.139	516399	3296614					
file_data['Heigh	t'].medi	an()				
0.14							

▼ 2. Frequency Table

file_data['Height'].std()

0.04182705660725703

file_data['Sex'].value_counts()

Μ 1528 1342 Ι F 1307

Name: Sex, dtype: int64

→ 3. Create Charts

```
file_data.boxplot(column=['Length'], grid=False)
```


file_data.hist(column='Length', grid=False, edgecolor='black')

sns.kdeplot(file_data['Length'])

	[] L, 2 cells hidden
•	10. Split the data into training and testing
	[] L, 7 cells hidden
•	11. Build the Model
	[] L, 3 cells hidden
•	12.Train the Model
	[] L, 1 cell hidden
•	13.Test the Model
	[] L, 1 cell hidden
•	14. Measure the performance using Metrics
	[] L, 1 cell hidden

• 9. Scale the independent variables

• ×