

Recipes for learning f(X): Ordinary Linear Models (OLS) or "Least Squares"

$$Y = f(X) + \epsilon$$

Ordinary Linear Models

$$f(X) = \beta_1 \cdot x_1 + \beta_2 \cdot x_2 + \dots + \beta_3 \cdot x_3$$

OLS: Only allows linear combinations of Xs

What is Linear Regression?

Regression: statistical process of estimating relationship between an outcome and and one or more predictors or independent variables

Linear Regression: restricting relationship between predictors and outcome to be linear

Linear Regression Equation

$$y_i = \beta_0 + \beta_1 x_{Advertising} + \epsilon_i$$

Red line "explains" the data the best.

Predictions from Linear Regression

"Hat", e.g. $\widehat{\beta_0}$, means we've estimated this relationship from data.

Residuals: Measure Difference Between F(x) and Y

$$y_i = \beta_0 + \beta_1 x_{Advertising} + \epsilon_i$$

Errors:
$$\epsilon_i = y_i - \hat{y}_i$$

Error:
$$\hat{\epsilon}_i = 10 - 50 = -40$$

Errors are the difference between what we predict (\hat{y}_i) and the actual values (y_i) .

How Are Linear Regression Coefficients Chosen?

Least Squares Minimizes the **sum of squared residuals**

Visually, the slope (β_1) minimizes the difference between the points and the yellow line (red lines)

Model Formulas in R

- Formulas in R start with the dependent variable on the left hand side (LHS)
- Followed by "~" tilde
- Then all dependent variables separated by plus signs

```
>
>
>
>
hwy ~ year + displ + cyl
hwy ~ year + displ + cyl
```

- The above translates to a regression equation of:
- $hwy = \beta_0 + \beta_1 \cdot year + \beta_2 \cdot displ + \beta_3 \cdot cyl$

Estimating Linear Models Using Im()

- Estimate a linear model using the 'lm()' function in R
- We must pass the dataset on which to estimate our model
- Then we store the regression model as 'mod1' (or whatever name you like
- Summary() outputs a summary of the estimated model

```
# estimate a linear model with displacement, and
# cycl on the RHS, and hwy as the
# development variable (LHS)
# Use the 'mpg' dataframe to estimate the model
# and store the regression equation as 'mod1'
mod1 <- lm(hwy ~ displ + cyl,</pre>
           data = mpg
# print out a summary of the linear model
summary(mod1)
# or just view the whole "list" object of
 the model results
str(mod1)
```

Viewing Regression Output Using "Summary"

Coefficient

standard errors

Estimated

Coefficients or

"betas"

Independent

(X) variables

```
summary(mod1)
Call:
lm(formula = hwy \sim displ + cyl, data = mpg)
Residuals:
   Min 1Q Median
                            3Q
                                   Max
-7.5098 -2.1953 -0.2049 1.9023 14.9223
Coefficients:
            Estimate Std. Error t value
                                                   Pr(>|t|)
(Intercep
            38.2162
                        1.0481 36.461 < 0.00000000000000000 ***
displ
            -1.9599
                        0.5194 -3.773
                                                   0.000205
                                                   0.001323 **
cyl
             -1.3537
                        0.4164 - 3.251
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 3.759 on 231 degrees of freedom
Multiple R-squared: 0.6049, Adjusted R-squared: 0.6014
F-statistic: 176.8 on 2 and 231 DF, p-value: < 0.00000000000000022
```

Coefficient

T-Statistic

P-values for

coefficients

 R^2 , or "coefficient of determination"

(model fit)

Making "Pretty" Version of Regression Output Table

```
# install.packages('sjPlot')
library('sjPlot')
# output a prettier table of results
# looks very nice in RMarkdown!
tab_model(mod1)

# output a plot of regression coefficients
plot_model(mod1)

# output a table of nice coefficients
tidy(mod1)
```

```
A tibble: 3 x 5
              estimate std.error statistic p.value
  term
                 <db1>
                           <dbl>
                                     <dbl>
  <chr>
                                              <db1>
 (Intercept)
                           1.05
                                     36.5 8.57e-98
                 38.2
2 displ
                 -1.96
                          0.519
                                    -3.77 2.05e-
                           0.416
                                     -3.25 1.32e- 3
3 cyl
```

	hwy		
Predictors	Estimates	CI	p
(Intercept)	38.22	36.15 – 40.28	<0.001
displ	-1.96	-2.98 – -0.94	<0.001
cyl	-1.35	-2.17 – -0.53	0.001
Observations	234		
R2 / R2 adjusted	0.605 / 0.601		

hwy

Linear Model to Predict Bank Access

```
> bank_mod <- lm(any_bank_account ~ educ_head_of_hh + log_numHHmem + log_numChildren,
           data = LFS_2019,
           weight = Weight)
> summary(bank_mod)
Call:
lm(formula = any_bank_account ~ educ_head_of_hh + log_numHHmem +
   log_numChildren, data = LFS_2019, weights = Weight)
Weighted Residuals:
  Min
         10 Median
                     30
                          Max
-8.963 -3.058 1.403 2.250 6.095
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
              (Intercept)
log_numHHmem
              0.026172 0.037225 0.703 0.482
log_numChildren -0.036650  0.027518 -1.332
                                         0.183
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 3.086 on 2167 degrees of freedom
Multiple R-squared: 0.05203, Adjusted R-squared: 0.05072
F-statistic: 39.64 on 3 and 2167 DF, p-value: < 2.2e-16
```

```
#-----# Exercises
#-----
```

- # 1. Estimate a linear model predicting any_bank_account as a function of

 # urban, tenureTypeOwn, floorMatPoor, toiletPoor, elecGrid, bedrooms, aircon

 # cellphones, computers, and numHHmem. Store this as bank_mod2
- # 2. Estimate a linear model predicting borrowed_any as a function of the # same variables listed. Store this as borrowed_mod
- # 3. Run the summary command over both models

What Is Model Interpretability?

Model interpretability:

- "the degree to which a human can understand the cause of a decision" (Miller, 2017)
- The higher the interpretability, the easier it is for someone to comprehend why a decision has been made

Of Course We Care About Both!

Why Do We Care About Model Interpretability?

Strengthen Trust and Transparency

 People trust things they can understand, and don't trust things they don't (5G)

2. Explain decisions

 An interpretable model allows humans to understand the proposed decision, and diagnose and analyzed the solution

3. Regulatory Requirements

 Certain regulatory schemes (GDPR, Anti-Discrimination) require transparency.

4. Improve the models

Interpretability ensures the model is right or wrong for the right reasons. Interpretability offers new feature engineering and helps debugging.

Interpreting Linear Model Coefficients

- β_1 mathematically explains how y changes when we increase x_1 by one unit
- Suppose we change x_1 by one unit of x_1 . By how much does y change?
- Well, it changes by exactly $oldsymbol{eta}_1$

$$y = \beta_0 + \boldsymbol{\beta_1} \cdot x_1 + \dots + \beta_3 \cdot x_3$$

$$?=\beta_0 + \beta_1 \cdot (x_1 + 1) + \dots + \beta_3 \cdot x_3$$

$$y + \beta_1 = \beta_0 + \beta_1 \cdot (x_1 + 1) + \dots + \beta_3 \cdot x_3$$

Interpreting Linear Coefficients In Words

- Communicating effect of coefficient
 Increasing displacement by one liter
 (communicate units!) decreases
 highway mile per gallon (y variable)
 by 1.96 miles per gallon holding
 fixed everything else
 - X-variable
 - X-variable units
 - Direction (pos/neg)
 - Y-variable (outcome)
 - Estimated coefficient (magnitude)
 - Y-units

```
summary(mod1)
Call:
lm(formula = hwy \sim displ + cyl, data = mpa)
Residuals:
    Min
             10 Median
                            3Q
                                    Max
-7.5098 -2.1953 -0.2049 1.9023 14.9223
Coefficients:
            Estimate Std. Error t value
                                                   Pr(>ltl)
                        1.0481 36.461 < 0.000000000000000000
(Intercept) 38.2162
                        0.5194 - 3.773
             -1.9599
displ
                        0.4164 -3.251
                                                   0.001323 **
cyl
             -1.3537
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.759 on 231 degrees of freedom
Multiple R-squared: 0.6049,
                               Adjusted R-squared: 0.6014
F-statistic: 176.8 on 2 and 231 DF, p-value: < 0.00000000000000022
```

DO NOT JUST SAY WHEN X GOES UP Y GOES UP OR DOWN THIS IS OBVIOUS AND YOU WILL GET FIRED