Química orgánica

CUESTIÓNS

Formulación/Nomenclatura

a) Escribe as fórmulas semidesenvolvidas dos seguintes compostos:

a.1) etanol

a.2) *cis*–3-hexeno

a.3) 4,4-dimetil-1-hexino

a.4) 3-pentanona

(P.A.U. set. 16)

Solución:

a.1) Etanol: CH₃-CH₂OH

H C = C $CH_3 - CH_2$ $CH_2 - CH_3$ CH_3 $CH_3 - CH_2 - C = CH$ a.2) cis-3-Hexeno (cis-hex-3-eno):

a.3) 4,4-Dimetil-1-hexino (4,4-dimetilhex-1-ino):

CH₃-CH₂-CO-CH₂-CH₃ a.4) 3-Pentanona (pentan-3-ona):

a) Formula ou nomea, segundo corresponda, os seguintes compostos: 2.

a.1) CH₃-O-CH₃

a.2) ácido 2-cloropropanoico

a.3) cloruro de estaño(IV)

a.4) propanona

a.5) $Cu(BrO_3)_2$

b) Escribe as fórmulas semidesenvolvidas dos seguintes compostos:

b.1) butanona

b.2) trietilamina

b.3) ácido pentanoico

b.4) 1-butino

b.5) metanoato de propilo

(P.A.U. xuño 16)

Solución:

a.1) CH₃-O-CH₃: dimetiléter

 CH_3 -CH-Ca.2) Ácido 2-cloropropanoico:

a.3) Cloruro de estaño (IV):

SnCl₄ CH₃-C-CH₃ a.4) Propanona:

a.5) $Cu(BrO_3)_2$: bromato de cobre(II)

Solución:

b.1) Butanona:

b.2) Trietilamina:

 $\begin{array}{c} O \\ CH_3-CH_2-\overset{\parallel}{C}-CH_3 \\ CH_2-CH_3 \\ CH_2-CH_3 \\ \end{array}$ $\begin{array}{c} CH_2-CH_3 \\ CH_2-CH_3 \\ \end{array}$ $\begin{array}{c} O \\ CH_3-CH_2-CH_2-\hat{C} \end{array}$ b.3) Ácido pentanoico:

b.4) 1-Butino (but-1-ino): CH₃-CH₂-C≡CH

b.5) Metanoato de propilo:
$$H = C''$$
 $O = CH_2 - CH_2 - CH$

a) Formula os seguintes compostos: 3.

a.1) hidruro de litio a.2) dietilamina a.3) metilbutanona a.4) permanganato de potasio

b) Nomea os seguintes compostos:

b.1) CH₃-CH₂-CH₂-CHO b.2) CH₂=CH-CH(CH₃)-CH₃ b.4) K₂CO₃ b.3) C₆H₅OH (P.A.U. set. 15)

Solución:

a.1) Hidruro de litio: LiH

a.2) Dietilamina: CH₃-NH-CH₃ $CH_3 - \underset{\parallel}{C} - \underset{\mid}{C} - CH_3$ a.3) Metilbutanona: Ö CH₃

a.4) Permanganato de potasio: KMnO₄ b.1) CH₃-CH₂-CH₂-CHO: butanal

b.2) $CH_2=CH-CH(CH_3)-CH_3$: 3-metilbut-1-eno

b.3) C₆H₅OH: fenol

b.4) K₂CO₃: carbonato de potasio

4. b) Escribe a fórmula desenvolvida de:

> b.1) dimetiléter b.2) propanoato de isopropilo b.3) 2-metil-2-penteno b.4) propanona (P.A.U. xuño 15)

Solución:

b.1) Dimetiléter:
$$H - \overset{\square}{C} - O - \overset{\square}{C} - \overset{\square}{H} + \overset{\square}{H}$$

b.2) Propanoato de isopropilo: $H = \begin{bmatrix} H & H & H = C - H \\ -C - C - C - C - C - H \\ H & H & O & H = C - H \end{bmatrix}$

b.4) Propanona:
$$\begin{array}{cccc}
 & H & H \\
 & H - C - C - C - H \\
 & H & H & H
\end{array}$$

- Formula:
 - a) 2,4-Pentanodiona.
 - b) 4-Cloro-3-metil-5-hexenal.
 - c) Ácido 2-propenoico.
 - d) 4-Amino-2-butanona.
 - e) 3-Metil-1-butino.

Solución:

a) 2,4-Pentanodiona (pentano-2,4-diona):

b) 4-Cloro-3-metil-5-hexenal (4-cloro-3-metilhex-5-enal):

c) Ácido 2-propenoico (ácido prop-2-enoico):

d) 4-Amino-2-butanona (4-aminobutan-2-ona):

e) 3-Metil-1-butino (3-metilbut-1-ino):

CH₃-CO-CH₂-CO-CH₃

CH₂=CH-CClH-CH-CH₂-CHO

ĊН₃

CH₂=CH-COOH

NH₂-CH₂-CH₂-CO-CH₃

CH₃-CH-C≡CH

 CH_3

6 Nomea:

a) CH_3 CH $_3$ CH $_3$ CH $_3$ CH $_3$

 $CH_3-CO-\dot{C}=CH_2$

c) CH₃-CHOH-CH₂OH

d) CH₂=CH-CH₂-CH₂-COOH

(P.A.U. set. 04)

Solución:

a) CH_3 – C – CHOH – CH_3 : 3,3-dimetilbutan-2-ol CH_3

b) $CH_3 - CO - C = CH_2$:

3-metilbut-3-en-2-ona

c) CH₃-CHOH-CH₂OH:

propano-1,2-diol

d) CH₂=CH-CH₂-CH₂-COOH: ácido pent-4-enoico

<u>Isomería</u>

b) Escribe a fórmula do 3-hexeno e analiza a posibilidade de que presente isomería xeométrica. 1. Razoa a resposta.

(P.A.U. xuño 15, xuño 11)

Solución:

Un composto terá isomería xeométrica (cis-trans), se ten polo menos un dobre enlace no que os grupos unidos a cada carbono do dobre enlace sexan distintos.

O 3-hexeno (hex-3-eno), CH₃-CH₂-CH=CH-CH₂-CH₃, ten un dobre enlace entre os carbonos 3 e 4, e cada un deles está unido a dous grupos distintos: hidróxeno (-H) e etilo (-CH2-CH3). Existen dous isómeros xeométricos, que se poden chamar cis e trans ou Z e E.

$$CH_3-CH_2$$
 H $C=C$ H CH_2-CH_3 (E) -Hex-3-eno

H C = C $CH_3 - CH_2$ $CH_2 - CH_3$ (Z)- Hex-3-eno

trans-Hex-3-eno

cis-Hex-3-eno

a) Formula: 2.

a.1) benceno

a.2) etanoato de metilo.

a.3) 2-butanol

Nomea:

a.4) CH₃-CH₂-CH₂-CHO

a.5) CH₃-O-CH₃.

b) Razoa o tipo de isomería que presenta o composto ácido 2-hidroxipropanoico, de fórmula química: CH₃-CH(OH)-COOH. Sinala e indica o nome dos grupos funcionais que presenta.

(P.A.U. xuño 14)

Solución:

a.1) Benceno: (C_6H_6)

a.2) Etanoato de metilo: CH₃-COO-CH₃ a.3) 2-Butanol (butan-2-ol): CH₃-CHOH-CH₂-CH₃

a.4) CH₃-CH₂-CH₂-CHO: butanal

a.5) CH₃-O-CH₃: dimetiléter (ou metoximetano).

b) O ácido 2-hidroxipropanoico, $CH_3 - C_{-COOH}$, ten isomería óptica porque ten un carbono asimétrico.

O carbono 2 está unido a catro grupos distintos: hidróxeno (-H), carboxilo (-COOH), hidroxilo (-OH) e metilo (-CH₃).

- 3. a) Formula os seguintes compostos:
 - a.1) 1-cloro-2-buteno a.2) ácido 2-pentenodioico a.3) butanoato de etilo a.4) etanamida
 - b) Cales deles presentan isomería cis-trans? Razoa a resposta.

(P.A.U. set. 13)

Solución:

a.1) 1-cloro-2-buteno (1-clorobut-2-eno): CH₂Cl-CH=CH-CH₃
a.2) Ácido 2-pentenodioico (ácido pent-2-enodioico): HOOC-CH₂-CH=CH-COOH
a.3) Butanoato de etilo: CH₃-CH₂-COO-CH₂-CH₃
a.4) Etanamida: CH₃-CONH₂

b) Un composto terá isomería xeométrica (*cis-trans*), se ten polo menos un dobre enlace no que os grupos unidos a cada carbono do dobre enlace sexan distintos.

Só os dous primeiros teñen dobre enlace e cada carbono está unido a dous grupos distintos.

No 1-cloro-2-buteno: o primeiro carbono está unido a un hidróxeno (-H) e un grupo clorometilo (-CH₂Cl) o segundo carbono está unido a un hidróxeno (-H) e un grupo metilo (-CH₃)

Existen dous isómeros xeométricos, que se poden chamar cis e trans ou Z e E.

No ácido pent-2-enodioico: o primeiro carbono está unido a un hidróxeno (-H) e un grupo (-CH₂COOH) o segundo carbono está unido a un hidróxeno (-H) e un grupo carboxilo (-COOH)

Existen dous isómeros xeométricos, que se poden chamar cis e trans ou Z e E .

4. Dados os compostos:

a.1) CH₃CH₂COOCH₃ a.2) CH₃OCH₃ a.3) CHBr=CHBr

- a) Noméaos e identifique a función que presenta cada un.
- b) Razoa se presentan isomería cis-trans.

(P.A.U. xuño 13)

Solución:

		Nome	Función	Isomería <i>cis-trans</i> .
a.1)	CH ₃ -CH ₂ -COO-CH ₃	propanoato de metilo	éster	no
a.2)	CH ₃ -O-CH ₃	dimetiléter	éter	no
a.3	CHBr=CHBr	1,2-dibromoeteno	derivado haloxenado dun alqueno	si

b) Un composto terá isomería xeométrica (*cis-trans*), se ten polo menos un dobre enlace no que os grupos unidos a cada carbono do dobre enlace sexan distintos.

Só o 1,2-dibromoeteno ten dobre enlace e cada carbono está unido a dous grupos distintos: hidróxeno (-H) e bromo (-Br). Existen dous isómeros xeométricos, que se poden chamar cis e trans ou Z e E .

- 5. a) Escribe as fórmulas desenvolvidas e indica o tipo de isomería que presentan entre si: a.1) etilmetiléter a.2) 1-propanol
 - b) Indica se o seguinte composto haloxenado CH₃-CHBr-CH₂-CHOH-CH₂-CH₃ ten isomería óptica. Razoa a resposta en función dos carbonos asimétricos que poida presentar.

(P.A.U. set. 11)

Solución:

Presentan isomería de función: mesma fórmula molecular (C₃H₈O) e funcións diferentes.

- b) A isomería óptica preséntana os compostos que teñen algún carbono asimétrico.
- O 5-bromohexan-3-ol ten dous carbonos asimétricos, sinalados cun asterisco, unidos a catro grupos distintos cada un deles

Carbono 3, unido a: hidróxeno (-H), etilo (-CH₂-CH₃), hidroxilo (-OH) e 2-bromopropilo (-CH₂-CHBr-CH₃). Carbono 5, unido a: hidróxeno (-H), 2-hidroxibutilo (-CH₂-CHOH-CH₂-CH₃), bromo (-Br) e metilo (-CH₃) Por tanto este composto terá 2² = 4 isómeros ópticos.

- 6. a) Formula e nomea, segundo corresponda, os seguintes compostos: a.1) 2-metilpropanal a.2) dimetiléter a.3) CH₃-NH-CH₂-CH₃ a.4) CH₃-CHOH-CH₂OH
 - b) Xustifica se algún deles presenta isomería óptica, sinalando o carbono asimétrico.

(P.A.U. set. 10)

Solución:

a.1) 2-Metilpropanal: $\begin{array}{c} O \\ CH_3-CH-C \\ CH_3 \end{array}$

a.2) Dimetiléter: CH_3 -O- CH_3 a.3) CH_3 -NH- CH_2 - CH_3 : etilmetilamina a.4) CH_3 -CHOH- CH_2 OH: 1,2-propanodiol

b) O propano-1,2-diol, CH₂OH – C – CH₃, ten isomería óptica porque o carbono 2 é asimétrico. Está unido a H catro grupos distintos: hidróxeno (-H), hidroximetilo (-CH₂OH), hidroxilo (-OH) e metilo (-CH₃).

- 7. a) Formula os seguintes compostos: a.1) 4-Penten-2-ol. a.2) 3-Pentanona.
 - b) Razoa se presentan algún tipo de isomería entre eles e de que tipo.

(P.A.U. xuño 10)

Solución:

a.1) 4-Penten-2-ol (pent-4-en-2-ol) CH₂=CH-CH₂-CHOH-CH₃ Función alcol insaturado.

a.2) 3-Pentanona (pentan-3-ona) CH₃-CH₂-CO-CH₂-CH₃ Función cetona.

b) Presentan isomería de función: mesma fórmula molecular (C₅H₁₀O) e funcións diferentes.

- 8. Dadas as seguintes moléculas orgánicas: a.1) 2-butanol, a.2) etanoato de metilo e a.3) 2-buteno.
 - a) Escribe as súas fórmulas desenvolvidas e indica un isómero de función para o 2-butanol.
 - b) Xustifica se algunha delas pode presentar isomería xeométrica e/ou isomería óptica. Razoa as respostas.

(P.A.U. xuño 09)

Solución:

do butan-2-ol.

OH b) O butan-2-ol, $CH_3 - C - CH_2 - CH_3$, ten isomería óptica porque o carbono 2 é asimétrico.

Está unido a catro grupos distintos: hidróxeno (-H), metilo (-C H_3), hidroxilo (-OH) e etilo (-C H_2 -C H_3). Ten dous isómeros ópticos que son imaxes no espello, chamados enantiómeros.

O but-2-eno ten isomería xeométrica porque cada un dos carbonos do dobre enlace están unidos a grupos diferentes (hidróxeno e metilo). Os seus isómeros poden chamarse cis e trans ou Z e E.

H H
$$CH_3$$
 $C = C$
 CH_3 CH_3 CH_3 CH_3 H

 cis -But-2-eno

 (Z) -But-2-eno

 (E) -But-2-eno

- 9. a) Das seguintes fórmulas moleculares, indica a que pode corresponder a un éster, a unha amida, a unha cetona e a un éter: C_3H_8O $C_3H_6O_2$ C_2H_5ON C_4H_8O
 - b) Indica os átomos de carbono asimétricos que ten o 2-aminobutano. Razoa as respostas.

(P.A.U. set. 08)

Solución:

a) Un éster é unha función que contén o grupo acilo (-COO-), e ten por tanto dous osíxenos. Só podería ser o $C_3H_6O_2$. Un exemplo sería: CH_3 -COO- CH_3 etanoato de metilo.

Unha amida contén o grupo carboxamido (-CONH₂), contén un osíxeno e un nitróxeno. Só podería ser o C₂H₅ON. Un exemplo sería: CH₃-CONH₂ etanamida.

Unha cetona contén un grupo carbonilo (-CO-), no que o osíxeno está unido ao carbono por un dobre enlace, polo que ten dous hidróxenos menos que un composto saturado. Para un composto con n C e só O como heteroátomo, o número de hidróxenos que corresponde a un composto lineal saturado sería 2 n + 2. Por cada enlace extra (dobre ou cada un dun triplo) habería dous hidróxenos menos. O C_3H_8O ten o número de hidróxenos dun composto saturado, polo que non pode ser unha cetona, pero si o C_4H_8O , que sería:

 $CH_3-CO-CH_2-CH_3$: butanona.

Un éter contén dúas cadeas unidas a un osíxeno e é saturado. O C₃H₃O pode ser o:

CH₃-O-CH₂-CH₃; etilmetiléter.

b) A fórmula do 2-aminobutano (1-metilpropilamina) é: $CH_3 - C - CH_2 - CH_3$.

Ten isomería óptica porque o carbono 2 é asimétrico. Está unido a catro grupos distintos: hidróxeno (-H), etilo $(-CH_2-CH_3)$, amino $(-NH_2)$ e metilo $(-CH_3)$.

- 10. Nomea os seguintes compostos orgánicos, indica os grupos funcionais e sinala cales son os carbonos asimétricos se os houbese.
 - a) CH₃-CH₂-CONH₂
 - b) CH₃-CHOH-CH₂-CH₃

(P.A.U. xuño 08)

Solución:

		Nome	Función	Grupo funcional	Carbono asimétrico
a)	CH ₃ -CH ₂ -CONH ₂	propanamida	amida	carboxamido (-CONH ₂)	ningún
b)	CH₃-CHOH-CH₂-CH₃	butan-2-ol	alcohol	hidroxilo (-OH)	2

O butan-2-ol ten o carbono 2 asimétrico: $CH_3 - \stackrel{\bar{I}}{C} - CH_2 - CH_3$

Está unido a catro grupos distintos: hidróxeno (-H), etilo (-CH₂-CH₃), hidroxilo (-OH), e metilo (-CH₃). Ten dous isómeros ópticos.

11. a) Nomea os seguintes compostos:

a.1) CH₂OH-CH₂-CH₂OH a.2) BaCO₃

b) Formula as moléculas seguintes sinalando os posibles átomos de carbono asimétricos:

b.1) ácido 2-propenoico

b.2) 2,3-butanodiol

Razoa as respostas.

(P.A.U. set. 06)

Solución:

a.1) CH₂OH-CH₂-CH₂OH: propano-1,3-diol

a.2) BaCO₃: carbonato de bario

b.1) Ácido 2-propenoico (ácido prop-2-enoico): CH₂=CH-COOH

b.2) 2,3-butanodiol (butano-2,3-diol): CH₃-CHOH-CHOH-CH₃

OH OH

Cada carbono marcado cun * é asimétrico: CH₃-C*-C*-CH₃

Cada un deles está unido a catro grupos distintos: hidroxilo (-OH), metilo (-CH₃), hidróxeno (-H) e 1-hidroxietilo (-CHOH-CH₃).

12. Escribe e nomea dous isómeros estruturais do 1-buteno.

(P.A.U. xuño 06)

Solución:

1-Buteno (but-1-eno): CH₃-CH₂-CH=CH₂

Isómeros:

CH₃-CH=CH-CH₃: but-2-eno

> CH₃ 2-metilprop-1-eno

 $CH_3-CH=CH_2$

13. a) Formula e nomea un isómero de función de:

a.1) 1-butano a.2) 2-pentanona

b) Cal dos seguintes compostos é opticamente activo? Razóao.

CH₃-CH₂-CHCl-CH₂-CH₃ CH₃-CHBr-CHCl-COOH

(P.A.U. xuño 05)

Solución:

	Nome	IUPAC 1993 Fórmula Isómero de fun		ión	
				Fórmula	Nome
a.1)	1-butanol	butan-1-ol	CH ₃ -CH ₂ -CH ₂ -CH ₂ OH	CH ₃ -CH ₂ -O-CH ₂ -CH ₃	dietiléter
a.2)	2-pentanona	pentan-2-ona	CH ₂ -CH ₂ -CH ₂ -CO-CH ₂	CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH _O	pentanal

Br Cl b) O ácido 3-bromo-2-clorobutanoico: CH₃-C*-C*-COOH é opticamente activo porque ten dous carbo-H H

nos (2 e 3) asimétricos unidos, cada un deles, a catro grupos distintos.

Carbono 2 unido a: hidróxeno (-H), carboxilo (-COOH), cloro (-Cl) e 1-bromoetilo (-CHBr-CH₃).

Carbono 3 unido a: hidróxeno (-H), carboxiclorometilo (-CHCl-COOH), bromo (-Br) e metilo (-CH $_3$). Ten $2^2 = 4$ isómeros ópticos.

Actualizado: 17/07/24

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Sumario

	QU	ÍMICA	ORG	ÁNICA
--	----	-------	------------	-------

C	UESTIONS	
	Formulación/Nomenclatura	1
	Isomería	•

Índice de probas P.A.U.

2004	
2. (set.)	
2005	
1. (xuño)	
2. (set.)	
2006	
1. (xuño)	
2. (set.)	
2008	
1. (xuño)	
2. (set.)	
2009	
1. (xuño)	
2010	
1. (xuño)	
2. (set.)	
2011	
1. (xuño)	
2. (set.)	
2013	
1. (xuño)	
2. (set.)	
2014	
1. (xuño)	
2015	
1. (xuño)	
2. (set.)	
2016	
1. (xuño)	
2. (set.)	