INTRODUCTION TO MACHINE LEARNING

Data Mining vs Machine Learning

- Data Mining is a cross-disciplinary field that focuses on discovering properties of data sets.
- Different approaches to discovering properties of datasets.
 - Correlation analysis
 - Visualization techniques
 - Machine learning

Machine Learning is one of the approaches for Data mining

What is Machine Learning?

- "Learning is any process by which a system improves performance from experience."
 - Herbert Simon
- "Machine learning is programming computers to optimize a performance criterion using example data or past experience.' Alpaydin, 2004
- Machine learning is about:
 - Learning general models from a data of particular examples.
 - Build a model that is a good and useful approximation to the data.

What is Machine Learning?

- The essence of machine learning can be pinned down to three main parts:
 - We have the **dataset**.
 - A pattern must exist in the dataset.
 - We cannot pin down the pattern existing in the dataset mathematically.
- Learning isn't always useful:
 - There is no need to "learn" to calculate payroll
- Learning is used when:
 - Human expertise does not exist (navigating on Mars)
 - Humans are unable to explain their expertise (speech recognition)
 - Solution changes in time (routing on a computer network)
 - There is Huge amounts of data

Learning vs Programming

Traditional Programming

Machine Learning

The learning problem

- Given a **set of examples** (the training set)
- Find a **function** that performs a given task
- with respect to a **performance metric**
- Example :
 - Given a Dataset of emails, some with human-given labels (spam or legitimate)
 - Find a function that categorize email messages as spam or legitimate.
 - Using the Percentage of email messages correctly classified as a metric.

ML main components

- Model representation (hypothesis space):
 - Structure of the functional form of the knowledge to be extracted (Trees, partition, graph,...)
- Search method (learning algorithm):
 - Strategy used to explore the search space and find the optimal or "good" model (backpropagation, local search, divide-and-conquer, greedy search, ...)
- Objectif function (cost function):
 - Measure the quality of the model (Gini, Entropy, RMSE, logloss, ...)

Types of learning

Supervised learning

• Given: training data + desired outputs (labels)

Unsupervised learning

Given: training data (without desired outputs)

Semi-supervised learning

• Given: training data + a few desired outputs

Reinforcement learning

Rewards from sequence of actions

Supervised Learning

Unsupervised Learning

Learning

Task Driven (Classification/Regression)

Types of Machine Learning

Machine Learning

Data Driven (Clustering)

Reinforcement

Learning from mistakes (Playing Games)

Supervised learning

• Learn a function from labeled data

Reinforcement Learning

- Given a sequence of states and actions with (delayed) rewards, output a policy
 - Policy is a mapping from states to actions that tells you what to do in a given state

Unsupervised Learning

Unsupervised Learning

- Learn from unlabeled data.
- A model is fit to observations

Semi-supervised Learning

- Semi-supervised learning is partially supervised and partially unsupervised
- Only a small portion of data is labeled

Types of learning

SUPERVISED LEARNING vs SEMI-SUPERVISED LEARNING vs UNSUPERVISED LEARNING

Designing a learning problem

- 1. Choose the training experience
- 2. Choose the target function (what to learn) and how to represent it (e.g. Linear, Tree,...)
- 3. Choose a learning algorithm
- 4. Evaluate the entire system

For rest of this course, we will focus on supervised learning

Supervised Learning: Classification

Text Categorization

Spam detection

Classification assigns data items to target categories or classes

Classification vs regression

Regression

Regression is the task of predicting a continuous quantity

Classification is the task of predicting a discrete class label

Classification

Example of application

- Fraudulent credit card transactions detection
- Approach:
 - Data used: credit card transactions and information of account holders
 - When does a customer buy, the products he buy and how often he pays on time...
 - Data labeling: label past transactions as "fraud" or "fair" (the class attribute)
 - Modeling: analyze the data to learn a model for the class of the transactions
 - Usage: use the learned model to detect fraud on credit card transactions

Classification

Classification uses an algorithm (classifier):

• To <u>automatically predict</u> the label or class for any <u>new</u> data point

On the basis of a set of labeled data

Classification is a <u>supervised learning</u> method

The quality of classification is evaluated through common metrics.

Precipitation

Humidity

Classification methods

Approaches to learn classifiers:

- Linear classifiers: Logistic Regression, Bayesian classifier
- Support Vector Machines (SVM)
- Decision trees
- Random Forest
- K-Nearest Neighbor
- Neural networks

• ...

The Classification problem

The problem of classification is defined as:

• Given: A set of training data

 $(x_1, y_1), ... (x_n, y_n)$ where x_i in \mathbb{R}^n and y_i is the class label

• Find: A classification function

 $f: \mathbb{R}^n \to \{c_1, \dots, c_k\}$ which classifies well additional samples $\{x_k\}$

k is the number of classes

Classification- A two-step process

Precipitation

Step 1: Building the classification model

- Each data point is associated to a class label
- Data used for model construction is known as the training set
- The model is represented as classification rules, decision trees or mathematical formula

Train and test paradigm!

Classification- A two-step process

Precipitation

Step 2: Using the classifier for classification

- Testing the classifier on test data to estimate the accuracy of classification.
- If the accuracy is acceptable, the classifier can be used to classify new unlabeled data

Train and test paradigm!

Classifier building

Learning phase

The classification algorithm analyzes the training data to learn the classification function

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

Classifier usage

Types of classification

Binary vs multiclass classification

Types of classification

Multiclass vs multilabel classification To one sample, multiple labels may be assigned Classes are Multi-Class Multi-Label mutually exclusive Samples Samples C = 3→ A sample can be assigned to one label only Labels Labels [011] [111] [110] [100] [010] [001]

Types of classification

Multioutput-multiclass classification

- Simultaneously outputs a set of labels
- A label is output for each property and each label is one of the possible classes of the corresponding property.

The goal is to predict for a given image two properties: the **category** (jeans, dress, shirt, ...) + **color** (Black, blue, ...)

Classifier evaluation

Goals of evaluation

- Measure the classifier performance
- Evaluate the ability of a classifier to generalize what it was learned from training on the new unseen instances
- Choose the most appropriate learning scheme for a specific problem

Holdout method

• Split data into 2 independent sets, one third for testing and the rest for training

- Repeated holdout method: a variation of holdout
 - Multiple iterations of holdout, the overall accuracy is the average the accuracies obtained at each iteration

k-fold cross-validation

- Randomly split data into k disjoint subsets (folds) of approximately equal size
- Use k-1 subsets as training data and one subset as testing data
- Repeat k times

Stratified k-fold cross-validation

- Stratification ensures that each class is equally represented across each fold
- Useful for imbalanced datasets

Another variation:

 Repeated stratified cross validation

Leave one out

- A particular form of k-fold crossvalidation
- Number of folds = number of training samples
- Mainly used for small datasets

Classification outputs

• Class output: Algorithms like SVM and KNN create a class output. For instance, in a binary classification problem, the outputs will be either o or 1.

• **Probability output**: Algorithms like Logistic Regression, Random Forest, Gradient Boosting, Adaboost etc. give probability outputs. Probability outputs can be converted to class output by creating a threshold probability.

Measures of performance

Confusion matrix

- A summary of prediction results
- Given k classes, an entry, $CM_{i,j}$ in a confusion matrix indicates the number of tuples in class i that were labeled by the classifier as class j

Measures of performance

- Sample S is
 - **Positive** if predicted as spam
 - True Positive if it is actually spam (correct)
 - False Positive if is actually not spam (error)
 - **Negative** if predicted as not spam
 - True Negative if it is actually not spam (correct)
 - False Negative if it is actually a spam (error)

Measures of performance

Accuracy: % of samples that are correctly classified

$$Accuracy = \frac{\# \ of \ correct \ predictions}{Total \ predictions} = \ \frac{TP + TN}{n}$$

• Classification error: % of samples that are incorrectly classified (1- accuracy)

$$Classification\ error = \frac{\#\ of\ incorrect\ predictions}{Total\ predictions} = \ \frac{FP + FN}{n}$$

- **Precision**: a measure of *exactness*
 - Number of items correctly identified as positive out of total items identified as positive
- Precision = P(Positive sample | sample is classified as positive)

$$Precision = \frac{TP}{TP + FP}$$

- **Recall**: a measure of *completeness*
 - Number of items correctly identified as positive out of total actual positives
- Recall = P(correctly classified | positive sample)

$$Recall = \frac{TP}{TP + FN}$$

Recall / Precision

- Classifier with better precision and recall is a better model
- Inverse relationship
 As FP decrease, FN increase (recall decreases) and vice versa
- **High recall, low precision**: Most of the positive examples are correctly recognized (low FN) but there are a lot of false positives.
- Low recall, high precision: We miss a lot of positive examples (high FN) but those we predict as positive are indeed positive (low FP).

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

F1 score

- F1 score relies on both recall and precision
 - The mean harmonic of recall and precision
 - Will always be nearer to the smaller value.

$$F1 = 2 \frac{recall * precision}{recall + precision}$$

$$egin{aligned} & oldsymbol{Precision} = rac{TP}{TP + FP} \ & oldsymbol{Recall} = rac{TP}{TP + FN} \end{aligned}$$

- Logarithmic loss
 - To be used with probability outputs
 - Log Loss takes into account the uncertainty of prediction based on how much it varies from the actual label.
 - It gives a more nuanced view into the performance of the model.

(a) log-loss formulae for binary classification

(a) log-loss formulae for multi-class classification

Receiver Operating Characteristic (ROC) curve

• True Positive Rate, recall or sensitivity

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN}$$

• True Negative Rate or specificity

$$TNR = \frac{TN}{N} = \frac{TN}{TN + FP}$$

Receiver Operating Characteristic (ROC) curve

- Performance measured by AUC: area under curve
- Represent the model's ability to discriminate between positives and negatives
- Higher the AUC, better the model is at predicting positives as positives and negatives as negatives.

Comparing metrics

	samples	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	Actual class	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Model 1	Predicted probability	0.1	0.1	0.1	0.1	0.1	0.1	0.6	0.6	0.5	0.5	0.9	0.9	0.9	0.9	0.9	0.9
	Predicted class (threshold=0.5)	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Predicted class (threshold=0.7)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Model 2	Predicted probability	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.7	0.7	0.8	0.8	0.8
	Predicted class (threshold=0.5)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Predicted class (threshold=0.7)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Model 2 performs better than Model 1

Compring metrics

Model 1 (threshold=0.5)	Predicted positives	Predicted negatives			
Actual positives	8	0			
Actual negatives	2	6			

Model 1 (threshold=0.7)	Predicted positives	Predicted negatives
Actual positives	6	2
Actual negatives	0	8

- 14 correct predictions from a total of 16
- 2 incorrect predictions
- Accuracy = 0.875
- Precision = 0.8
- Recall = 1
- F1 = 0.88

- 14 correct predictions from a total of 16
- 2 incorrect predictions
- Accuracy = 0.875
- Precision = 1
- Recall = 0.75
- F1 = 0.86

Compring metrics

Model 2 (threshold=0.5)	Predicted positives	Predicted negatives
Actual positives	8	0
Actual negatives	8	0

•	8	correct	predictions	from	a	total	of	16
---	---	---------	-------------	------	---	-------	----	----

- 8 incorrect prediction
- Accuracy = 0.5
- Precision = 0.5
- Recall = 1
- F1 = 0.66

Model 2 (threshold=0.7)	Predicted positives	Predicted negatives			
Actual positives	8	0			
Actual negatives	0	8			

- 16 correct predictions from a total of 16
- 0 incorrect prediction
- Accuracy = 1
- Precision = 1
- Recall = 1
- F1 = 1

Compring metrics

	F1 (threshold=0.5)	F1 (threshold=0.7)	ROC-AUC	Log-Loss	
Model 1	0.88	o.86	0.94	0.28 ←	Is better in predicting class probabilities
Model 2	o.66	1	1	0.60	p. o o o.c.me.eo
	·		•	Very b	ig difference from actual labels

- Log-Loss is useful to compare models in terms of probabilistic outcome
- F1 score and ROC-AUC are useful if we care only about final class predictions.
 - F1 score is sensitive to threshold and should be tuned first before comparing the models
 - AUC score can be used if we don't want to tune threshold.

Comparing metrics

Example

Predicted class

POSITIVE (cancer = yes) NEGATIVE (cancer = no)

210

Total

Actual	class
--------	-------

90

300

NEGATIVE (cancer = no)

140 9560 9700

Total

230

9770

10000

Accuracy = 96,5%

Precision = 39,13%

Recall = 30%

F1-score = 33,96%

Accuracy is a misleading metric

Class distrib	oution
3%	
97%	

The class imbalance problem !!

Imbalanced classification

A classification problem where the distribution of examples across the classes is not equal

Slight imbalance: distribution uneven by a small amount

Severe imbalance: distribution uneven by a large amount

Ex: Anomaly detection, fraud detection, outlier detection, ...

Imbalanced classification

- Causes of class imbalance
 - A property of the problem domain (some events are naturally of low occurrence)
 - Biased sampling
 - Measurement errors
- The learning process of most classification algorithms is often biased toward the majority class examples, so that minority ones are not well modeled into the final system.
- Approaches to deal with class imbalance
 - Sampling based (oversampling/undersampling)
 - Cost based (redefine cost function such as to penalize FN more that FP)

S.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Actual (Imbalanced)	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
Predicted (Model 1)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.9	0.9
Predicted (Model 2)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.9	0.9	0.9	0.9

Model 1	Predicted positives	Predicted negatives			
Actual positives	2	1			
Actual negatives	0	13			

Model 2	Predicted positives	Predicted negatives			
Actual positives	3	0			
Actual negatives	1	12			

We care more about the positive class so Model 2 is better that Model 1

S.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Actual (Imbalanced)	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
Predicted (Model 1)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.9	0.9
Predicted (Model 2)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.9	0.9	0.9	0.9

	F1 (threshold=0.5)	ROC-AUC	Log-Loss
Model 1	0.8	0.83	0.24
Model 2	0.86	0.96	0.24

Log-Loss does not differentiate between the two models. Treats both errors equally

Log-Loss is not a good metric if classes are imbalanced

S.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Actual (Imbalanced – few positive)	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
Predicted (Model 1)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.9	0.9
Predicted (Model 2)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.9	0.9	0.9	0.9
Actual (Imbalanced – few negative)	0	0	0	1	1	1	1	1	1	1	1	1	1.	1	1	1
Predicted (Model 3)	0.1	0.1	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
Predicted (Model 4)	0.1	0.1	0.1	0.1	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9

ROC-AUC is a good metric for imbalance classification if you care about the minority class F1 gives more importance to the positive class

- Model 1 performs very much better at detecting the positive class (predicts 90% out of 300)
- Model 2 is a very bad predictor

	F1	ROC-AUC				
Model 1	0.80	0.94				
Model 2	0.07	0.51				

ROC-AUC does not reflect the bad performance of Model 2

F1 is the appropriate metric if you care about the positive class

Confusion matrix: case multiclass classification

		Predict	ed Class
		Positive	Negative
Actual	Positive	TP	FN
Class	Negative	FP	TN

		Predicted Class							
		C_1	C_2	•••	C_N				
SS	C_1	C _{1,1}	FP	:	$C_{1,N}$				
Actual Class	C ₂	FN	TP		FN				
ctn	:			:					
Y	C_N	$C_{N,1}$	FP		$C_{N,N}$				

- One class is defined as positive and the others as negative.
- The performance measures are computed in exactly the same way.
- Recall and precision and F1 are computed for each class

Confusion matrix: case of multiclass classification

- Overall performance of the classifier is calculated using the weighted averages
- Macro average: Equal weight is given to all classes
- Weighted average: classes are given different weights
- Micro average: Equal weight is given to samples regardless of their class

Confusion matrix: case of multiclass classification

0.308	0.667	0.421	6
0 667			
0.00/	0.200	0.308	10
0.667	0.667	0.667	9
		0.480	25
0.547	0.511	0.465	25
0.581	0.480	0.464	25
	0.547	0.6670.6670.5470.511	0.667 0.667 0.480 0.547 0.511 0.465

label	tp	fp	fn	precision	recall
c_1	3	2	7	0,6	0,3
c_2	1	7	9	0,12	0,1
total	4	9	16		
Macro-avereged				0,36	0,2
Micro-avereged				0,31	0,2

$$\begin{aligned} Macro_{precision} &= \frac{1}{2} \times (\frac{3}{3+2} + \frac{1}{1+7}) = 0,36\\ Micro_{precision} &= \frac{4}{4+9} = 0,31 \end{aligned}$$

Regression metrics

- Regression models have continuous output. So, we need a metric based on calculating some sort of distance between predicted and ground truth.
- The performance of a Regression model is reported as errors in the prediction.
- In order to evaluate Regression models, we can use the following metrics:
 - Mean Absolute Error (MAE),
 - Mean Squared Error (MSE),
 - Root Mean Squared Error (RMSE),
 - R² (R-Squared).

Model performance

Accuracy is not EVERYTHING

- Other evaluation criteria
 - Speed: refers to the computation costs involved in generating and using the model
 - **Robustness**: refers to the ability of the model to make correct predictions given noisy data or data with missing values
 - Scalability: refers to the ability to construct the model efficiently given large amount of data
 - Interpretability: refers to the level of understanding and insight that is provided by the model