```
In []: import numpy as np
import pandas as pd

In []: length = 99.11/1000 #in mm
width = 11.40/1000 #in mm
thick = 5.31/1000 #in mm
area = width*thick
```

Aluminium

```
OLS Regression Results
   Dep. Variable:
                                           R-squared:
                                                          0.531
                                 У
                               OLS
          Model:
                                      Adj. R-squared:
                                                          0.526
        Method:
                      Least Squares
                                                          111.0
                                           F-statistic:
            Date: Mon, 10 Oct 2022 Prob (F-statistic): 8.44e-18
           Time:
                           23:05:30
                                      Log-Likelihood:
                                                        -1899.7
No. Observations:
                               100
                                                 AIC:
                                                          3803.
    Df Residuals:
                                98
                                                 BIC:
                                                          3809.
       Df Model:
                                 1
 Covariance Type:
                         nonrobust
            coef
                    std err
                                  t P>|t|
                                              [0.025
                                                        0.975]
  x1 6.817e+09 6.47e+08
                           10.534 0.000 5.53e+09
                                                       8.1e+09
         8.2e+07 8.51e+06
                             9.634 0.000 6.51e+07
                                                     9.89e+07
const
      Omnibus: 73.023
                          Durbin-Watson:
                                              0.221
Prob(Omnibus):
                 0.000
                        Jarque-Bera (JB):
                                           411.789
         Skew: -2.428
                                Prob(JB): 3.81e-90
```

Notes:

Kurtosis: 11.674

Out[]:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

149.

Cond. No.

```
from sklearn.linear model import LinearRegression
In [ ]:
        regressor = LinearRegression()
        regressor.fit(arr, y)
In [ ]:
Out[]:
        ▼ LinearRegression
        LinearRegression()
        print("young's modulus = "+str(regressor.coef_[0]*1e-9)+"GPa")
In [ ]:
        young's modulus = 6.817209409795241GPa
In [ ]:
        regressor
Out[]:
        ▼ LinearRegression
        LinearRegression()
```

plot

```
In [ ]: ypredict = regressor.predict(arr)

In [ ]: import matplotlib.pyplot as plt
   plt.scatter(X,y)
   plt.plot(X,ypredict)
   plt.xticks()
   plt.yticks()
   plt.show()
```


Mild Steel

```
In [ ]: regressor1 = LinearRegression()
In [ ]: from sklearn.linear_model import LinearRegression
    regressor11 = LinearRegression()

In [ ]: regressor1.fit(arr1, y1)
    ypredict1=regressor1.predict(arr1)

In [ ]: regressor11.fit(arr11, y11)
    ypredict11=regressor11.predict(arr11)

In [ ]: print("young's modulus = "+str(regressor1.coef_[0]*1e-9)+"GPa")
    young's modulus = 20.3699933358117GPa

In [ ]: print("young's modulus = "+str(regressor11.coef_[0]*1e-9)+"GPa")
    young's modulus = 119.00873836841923GPa
```

plot

```
In [ ]: plt.scatter(X1,y1)
    plt.plot(X1,ypredict1)
    plt.xticks()
    plt.yticks()
    plt.show()
```



```
In [ ]: import matplotlib.pyplot as plt
plt.scatter(X11,y11)
```

```
plt.plot(X11,ypredict11)
plt.xticks()
plt.yticks()
plt.show()
```



```
In [ ]: model11 = sm.OLS(y11, arr11).fit()
    model11.summary()

    c:\Program Files\Python310\lib\site-packages\scipy\stats\_stats_py.py:1769: UserWarni
    ng: kurtosistest only valid for n>=20 ... continuing anyway, n=10
```

warnings.warn("kurtosistest only valid for n>=20 ... continuing "

Out[]:

OLS Regression Results

Dep. Variable		y y			R-squared:			0.997
Model		: OLS			Adj. R-squared:			0.997
Method		: Least Squares			F-statistic:			2881.
	Date:		: Mon, 10 Oct 2022			(F-stat	1.61e-11	
Time		: 23:05:32			Log-Likelihood:			-164.81
No. Observations		: :		10			AIC:	333.6
Df Residuals		: :		8			BIC:	334.2
Df Model		l:		1				
Cova	riance Type	nonrobust						
	coe	ef s	std err	1	t P>	t	[0.02	5 0.975]
x1	1.19e+1	1 2.2	2e+09	53.673	3 0.0	00 1.	14e+1	1 1.24e+11
const	-1.759e+0)8 6.7	5e+06	-26.061	0.0	00 -1.	91e+0	8 -1.6e+08
	Omnibus:	2.328	Dur	bin-Wat	tson:	0.4	121	
Prob(Omnibus):		0.312 Jarque-Bera			(JB): 0.915		15	
Prob(0	Omnibus):	0.312	Jarqu	ıe-Bera	(JD):	0.5	713	
Prob(0	Omnibus): Skew:	0.312	-	ie-Bera Prob			533	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.8e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In []: