PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-302696

(43)Date of publication of application: 13.11.1998

(51)Int.CI.

H01J 37/153 G03F 7/20 G21K 5/04 H01J 37/141 H01J 37/305 H01L 21/027

(21)Application number : 09-105790

(71)Applicant: NIKON CORP

(22)Date of filing:

23.04.1997

(72)Inventor: NAKASUJI MAMORU

SHIMIZU HIROYASU

(54) ELECTRON BEAM PROJECTION LENS

(57)Abstract:

PROBLEM TO BE SOLVED: To prevent the deterioration of the natural aberration characteristic of a projection lens by controlling a magnetic field on a mask and/or a sample surface to reduce the imaging aberration, and forming a crossover in a point where the electron beam incident on a first projection lens internally divides the distance between the mask and the sample in a prescribed ratio.

SOLUTION: A magnetic field on a mask and/or a sample surface is controlled by a projection lens system for contracting and transferring the pattern of the mask to the sample surface in 1/N by use of two stages of projection lenses, or a first lens 3 and a second lens 4 to reduce the imaging aberration. A crossover is formed in a point where the distance between the mask and the sample is internally divided in N:1 by the electron beam incident on the first lens 3. Even when the main plane of the projection lens is moved by an additional magnetic field, for example, the magnetic field by the third lens 1 and the fourth lens 7, the crossover is formed in a prescribed position on the basis of the moving quantity, whereby the aberration can be reduced.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-302696

(43)公開日 平成10年(1998)11月13日

			··								
(51) Int.Cl. ⁶		識別記号		FΙ							
H01J	37/153			H0	1 J	37/153			Z		
G03F	7/20	504		G 0 :	3 F	7/20		5 (1 4		
G 2 1 K	5/04			G 2	1 K	5/04			M		
H01J	37/141			H0	1 J	37/141			Z		
	37/305					37/305			В		
			審査請求	未請求	請求	項の数10	OL	全	6 頁)	最終頁に	続く
(21)出願番号		特願平9-105790		(71)出願/		000004	112				
						株式会	社二コ	ン			
(22)出顧日		平成9年(1997)4月23日		東京都千代田区丸の内3丁目2番3号							
				(72)	発明者	1 中筋	護				
						東京都	千代田	区丸の	內内3丁	目2番3号	株
						式会社	ニコン	内			
				(72)	発明者	香 清水	弘泰				
						東京都	千代田	区丸の	0内3丁	目2番3号	株
						式会社	ニコン	内			

(54) 【発明の名称】 電子線投影レンズ

(57)【要約】

【課題】 収差が少ない電子線の投影レンズを用い、 更に試料と/又はマスク面上の磁場を制御する事によ り、より収差の少ないレンズ系を得ようとすると、レン ズの満たすべき磁場条件が変化し、収差が増してしま う。本発明は、試料やマスク面上の磁場を制御する事に よりレンズの磁場条件が変化しても、収差が少なく、よ り良い特性が得られる電子線投影レンズ系を提供する事 にある。

【解決手段】 所定の位置にクロスオーバを形成するよ うに、マスクを発散光で照射する。また、軸外の副視野 の像を作る場合にはマスクや試料に電子線の主光線が垂 直に入射するようにし、更に複数の偏向器を設け、これ らを最適に動作させ、収差を低減した。

【特許請求の範囲】

【請求項1】 マスクのパターンを2段の投影レンズーー第1の投影レンズと第2の投影レンズーーを用いて試料面に1/Nに縮小転写する投影レンズ系であって、マスク及び/又は試料面での磁場を制御することにより結像収差を低減し、且つ、第1の投影レンズに入射する電子線が上記マスクと試料間をN:1に内分する点でクロスオーバを形成するようにすることを特徴とする電子線投影レンズ。

【請求項2】 第3のレンズをマスクの前段に配して第1の投影レンズと同一方向の軸上磁場を発生させ、第4のレンズを試料面の後段に配して第2の投影レンズと同一方向且つ第1、第3のレンズとは逆方向の軸上磁場分布を発生させ、これによりマスク又は試料面での磁場を制御することを特徴とする請求項1記載の電子線投影レンズ

【請求項3】 請求項2において、第4のレンズの代わりに、強磁性体の板を設けたことを特徴とする電子線投影レンズ。

【請求項4】 請求項1乃至3の電子線投影レンズであって、ひとつの視野を複数の副視野に分割し、各副視野毎に光学系の補正を行いながら転写を行うための電子線投影レンズにおいて、光軸から離れた副視野を転写するために2段の少なくともX偏向器をマスクの後段に設けてマスクから垂直方向に射出された主光線がクロスオーバを通るよう補正し、且つ、2段の少なくともX偏向器を試料の前段に設けて上記クロスオーバを通ってきた主光線が試料に垂直入射するよう補正を行うことを特徴とする電子線投影レンズ。

【請求項5】 請求項4において、複数個の偏向器をマスクとクロスオーバ間に設け、更に複数個の偏向器をクロスオーバと試料間に設け、主光線がマスクから光軸に平行に出射された副視野の像が試料面で最小の収差となるよう、上記それぞれ複数個の偏向器の配置、偏向強度あるいは回転方向の偏向角を最適化することを特徴とする電子線投影レンズ。

【請求項6】 請求項1乃至5において、クロスオーバーを中心とした後段のレンズのN倍の相似形は前段のレンズとクロスオーバーを中心として点対称になっている事を特徴とする電子線投影レンズ

【請求項7】 請求項1乃至6において、マスクを発散性の電子線で照射することを特徴とする電子線投影レンズ。

【請求項8】 請求項7において、マスクの前段に2段の少なくともX偏向器を設けて主光線をマスクに垂直に入射するようにした事を特徴とする電子線投影レンズ。

【請求項9】 マスクのパターンを2段の投影レンズー 一第1の投影レンズと第2の投影レンズーーを用いて試 料面に1/Nに縮小転写する投影レンズ系であって、前 記2段のレンズは対称磁気ダブレット条件を満足する対 称磁気ダブッレット型レンズであり、マスク及び/又は 試料面での磁場を制御することにより結像収差を低減す る電子線投影レンズにおいて、試料面を所定の位置より 離すことで収差を低減する電子線投影レンズ。

【請求項10】 請求項9において、光軸外の副視野像の試料上での垂直入射条件外れを補正するため、クロスオーバから試料までの間に2段の少なくともX偏向器を備える電子線投影レンズ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は光ステッパーで形成できないような微細な線幅を持つ高密度パターンを高スループットで形成するリソグラフィ装置に使われる電子光学系に関するものである。特には、マスクと試料を投影光学系の磁場内に浸漬する事により高性能結像特性、ひいては高スループット特性を得ようとする電子線光学系に関する物である。

【0002】尚、本明細書においては、電子光学系の要素部品の位置関係の記述として、電子線源(例えば電子銃)に近い方を前段、試料(例えばウェハ)に近い方を後段という表現を用いている。また、これらを具体的に表す為に Z 座標軸をレンズの機械的な中心軸にとり、 Z = 0 の原点を試料面とし、電子線源方向を正の値にとった。更に、後述の主視野方向をX軸に、これに垂直な方向をY軸とした。

[0003]

【従来の技術】従来のこの種の高精細パターンを高スループットをもって形成する技術としては、対称磁気ダブレット方式のレンズ(例えば、M.B.Heritage "Electron-projection microfabrication system" J.Vac.Sci.Techol. Vol.12, No.6; 1975 P.1135)、PREVAIL方式(H.C. Pfeiffer "Projection exposure with Variable Axis Immersion Lenses: A High-Throughput Electron Beam Approach to "Suboptical" Lithography", Jpn., J. Appl. Phys. Vol. 34, Pt.1, No.12B 1995; P.66 85-6662)等のレンズが公知である。

【0004】対称磁気ダブレット方式では、マスクと試料(一般的にはウェハー)の間に対をなす、特定条件(対称磁気ダブレット条件として後述する)を満足する2つのレンズー前段のレンズと後段のレンズーが配備され、系のクロスオーバは縮小率1/Nにより定められる位置に形成され、前段のレンズの主面はマスクとクロスオーバの中点に、後段のレンズの主面はクロスオーバと試料の中点に置かれている。この様に設計された対称磁気ダブレット方式のレンズでは、光軸上の収差はかなり広い像面視野にわたって小さくなっている。

【0005】一方PREVAIL方式であるが、この方式での考え方は以下の通りである。メモリの1チップ全体を許容収差内で投影する事は電子光学結像系では非現実的であるため、マスクのパターンを結像系の許容収差

範囲の大きさのフィールドに分割し(これを副視野とす る)、この副視野の像をつなぎ合わせて全体像とするも のである。そして、つなぎ合わせに関しては、副視野の 選択が電子線の主として 1 方向への偏向にて可能な領域 (これを主視野とする) は偏向器によりスキャニング し、主視野間のつなぎ合わせをマクス、ウェハーの機械 的なスキャニングにより行うものである。従ってより良 い装置特性を得る為には、出来るだけ広い副視野、出来 るだけ広い主視野を有する投影光学系が要求される。こ の要求に対し、文献Aでは主視野を広くするする為に、 言い換えれば光軸より離れた軸外の結像特性を改善する ために、軸外の結像に関与する磁場が近軸磁場条件を満 足するように補助的な磁場を発生させる偏向器を設けて いる。即ち、特定条件を満たす補助的な磁場を加える事 により収差の少ない'光軸'を本来の光軸(レンズの機 械的な中心軸)より軸外にシフトさせ、軸外の収差特性 を光軸上と同じ程度の収差になるようにしている。更 に、マスクと試料の双方とも磁場内にイマージョン(浸 漬) する事により近軸結像特性の改善を図っている。こ の電子光学系の実現例が文献AのFig.4 に記されてお り、AXIS SHIFTING YOKEがこの補助的な偏向器である。 【0006】尚、本願発明でいう対称磁気ダブレット条 件(以下、SMD条件と略記する)とは、

- ① 前段のレンズの主平面はマスクとクロスオーバーの中点にあり、後段のレンズの主平面は試料とクロスオーバーの中点にある。
- ② クロスオーバーを中心とした後段のレンズのN倍の相似形は前段のレンズとクロスオーバーを中心として点対称になる。
- ③ 結像場励磁条件として、互いに A T 数の絶対値が等しく、電流の向きが互いに逆である、をいう。

【0007】また、主視野、副視野という用語を記載を行っているが、この概念に関しては例えば、本発明人の出願になる特願平07-338372を参照、ただし、座標系は若干異なっている。

[0008]

【発明が解決しようとする課題】しかし、上記対称磁気 ダブレット方式のレンズにPREVAIL方式-即ちレンズの光軸シフト操作及びマスクと試料の磁場へのイマージョンーを適用すると以下の様な問題がある事が判った。PREVAIL方式のレンズの軸上磁場分布Bzの Z依存性軸上磁場分布を図1の右側に曲線30でもって 0になっているのに対して、収差を低減の為にマスクになっているのに対して、収差を低減の為にマスク位置2及び試料位置5では0でない有限の値ーー前段のレンズのマスク側あるいは後段のレンズの試料側ではレンズのマスク側あるいは後段のレンズの試料側ではレンズのマスク側あるいは後段のレンズの試料側ではレンズの中ではに続10及び11で示したように、SM D条件満足する主平面8及び9より、マスク側及び試料側にずれる。このずれた主面の2軸上の値HuとHd

は、Bzを所定のクロスオーバの点からHuまで積分し た値とHuからマスクまで積分した値が同じになるよう にする事によりHuが、またBzを試料からHdまで稽 分した値とHdから所定のクロスオーバの点まで積分し た値とが同じになるようにする事によりHdが求められ る。そのズレはあまり大きくないとは言え、副視野の中 心が光軸上にある場合、マスクから光軸に平行に射出さ れた電子線はクロスオーバ12を通らず、従って、所定 のSMD条件を満たさず、収差も大きいことがわかっ た。次に光軸から離れた位置にある副視野を転写する場 合、主視野が10mm×0.5mmになると、主視野の 端での入射角が5mrad以上になり、試料面が上下し た時のパターン誤差が無視できなくなってくる。即ち、 ランディング角が試料に対して垂直ではなく、試料面の 高さのズレにより像の面内の位置が変化する、と言った 問題である。

【0009】本発明はこのような従来の問題点に鑑みてなされたもので、マスク面や試料面での磁場を制御する事により収差を低減しようとする時、本来の投影レンズの収差特性が劣化する事を防止する方法——即ち、例えば上述のように、レンズ主面がクロスオーバとマスク面あるいは試料面との中間に位置しなくなるような場合の収差及びランディング角を最適にする方法——を提供することを目的とする。

[0010]

【課題を解決する為の手段】上記問題点の解決の為に本発明では、以下に述べる手段を用いた。第1の手段として、マスクのパターンを2段の投影レンズーー第1の投影レンズと第2の投影レンズーーを用いて試料面に1/Nに縮小転写する投影レンズ系であって、マスク及び/又は試料面での磁場を制御することにより結像収差を低減し、且つ第1の投影レンズに入射する電子線が上記マスクと試料間をN:1に内分する点でクロスオーバを形成するようにするようにした。

【0011】第2の手段として、第1の手段において、第3のレンズをマスクの前段に配して第1の投影レンズと同一方向の軸上磁場を発生させ、第4のレンズを試料面の後段に配して第2の投影レンズと同一方向で、且つ第1、第3のレンズとは逆方向の軸上磁場分布を発生させ、これによりマスク又は試料面での磁場を制御するようにした。

【0012】第3の手段として、第2の手段において、第4のレンズの代わりに、強磁性体の板を設けるようにした。第4の手段として、第1の手段乃至第3の手段において、ひとつの視野を複数の副視野に分割し、各副視野毎に光学系の補正を行いながら転写を行うための電子線投影レンズにおいて、光軸から離れた副視野を転写するために2段の少なくともX偏向器をマスクの後段に設け、マスクから垂直方向に射出された主光線がクロスオーバを通るよう補正し、且つ、2段の少なくともX偏向

器を試料の前段に設けて上記クロスオーバを通ってきた 主光線が試料に垂直入射するよう補正を行うこととし た。

【0013】第5の手段として、第4の手段において、 複数個の偏向器をマスクとクロスオーバ間に設け、更に 複数個の偏向器をクロスオーバと試料間に設け、主光線 がマスクから光軸に平行に出射された副視野の像が試料 面で最小の収差となるよう、上記それぞれ複数個の偏向 器の配置、偏向強度あるいは回転方向の偏向角を最適化 した。

【0014】第6の手段として、第1乃至第5の手段において、クロスオーバーを中心とした後段のレンズのN倍の相似形は前段のレンズとクロスオーバーを中心として点対称になっている事を特徴とする電子線投影レンズ第7の手段として、第1の手段乃至第6の手段において、マスクを発散性の電子線で照射するようにした。

【0015】第8の手段として、第7の手段において、マスクの前段に2段の少なくともX偏向器を設けて主光線をマスクに垂直に入射するようにした事を特徴とする電子線投影レンズ。第9の手段として、マスクのパターンを2段の投影レンズーー第1の投影レンズと第2の投影レンズニーを用いて試料面に1/Nに縮小転写する投影レンズ系であって、前記2段のレンズは対称磁気ダブレット条件を満足する対称磁気ダブッレット型レンズであり、マスク及び/又は試料面での磁場を制御することにより結像収差を低減しする電子線投影レンズにおいて、試料面を所定の位置より離すことで収差を低減するようにした。

【0016】第10の手段として、第9の手段において、光軸外の副視野像の試料上での垂直入射条件外れを補正するため、クロスオーバから試料までの間に2段の少なくともX偏向器を備えるようにした。

[0017]

【発明実施の形態】本願発明は付加的な磁場ーー例えば、第3のレンズ1と第4のレンズ7による磁場ーーにより投影レンズの主平面が移動しても、その移動量をもとに所定の位置にクロスオーバを形成させる事により収差を低減出来ること、また、ランディング角についても偏向器によりクロスオーバ点を所定の位置に保ったまま試料に主光線が垂直に入射するように出来る事を見いだした事に基づいている。図1は縮小率が1/2の場合

(N=2) についての実施例の光学系の断面図を示したものである。前述したように、右側は軸上磁場分布 B z の Z 依存性を示している。 B z はクロスオーバ 1 2 の位置では 0 になっているのに対して、マスク位置 2 及び試料位置 5 では 0 でない有限の値を持っている。従ってレンズの主面は点線 1 0 及び 1 1 で示したように、 5 M D 条件での主面 8 及び 9 より、マスク側及び試料側にずれる。 今、転写すべき副視野の中心が光軸上にある場合を考える。もし、電子線がマスクから光軸に平行に射出さ

れると、電子線は所定のクロスオーバ12を通らず、SMD条件を満たさず、収差も大きいが、しかし、副視野を照明する条件を、平行ビームではなく、わずかに発散性ビームにすることによって、クロスオーバ12を通すようにでき、かつ収差も小さくできた。この場合の副視野の端での試料への入射角度は0.5mrad以下となった(副視野寸法が試料上で0.5mm角の場合)。

【0018】次に光軸から離れた位置にある副視野を転写する場合について述べる。この場合もやはり平行ビームではなく、発散性ビームでマスクを照射するとクロスオーバ位置でクロスオーバを形成し、収差は小さいことがわかった。しかし主視野を10mm×0.5mmとすると、主視野の端での入射角が5mrad以上になり、試料面が上下した時のパターン誤差が無視できない。そこで、このランディング条件を改善するために、発散性ビームをレンズ1で作り、偏向器13、14で主光線が光軸に平行になるよう偏向し、偏向器15、16でクロスオーバを通るよう偏向する。さらに、クロスオーバを通ってきた主光線が試料5に垂直に入射するよう偏向器17、18で偏向した。従って試料への入射角は光軸上の副視野の場合と同程度に小さくできた。

【0019】また、偏向器15、16に加えて19及び17、18に加えて20の複数個の偏向器に対して、その位置又は偏向強度比、又は偏向方向を最適化することによって試料面での収差を最小にすることもできた。更に、主面のずれに対して、試料の位置を2軸方向に調節すると収差が低減される事を見出し、試料台の調整機構を設けた。

[0020]

【実施例】図1は上述の本発明の解決手段の要素部品をまとめて書いたものである。これと図2をもとに、以下に動作を説明する。マスク2ー試料5の間を600mmにした場合、レンズ主面の点線の位置10、11とSMD条件を満たす実線の位置8、9との差はマスク側レンズと試料側レンズでそれぞれ10mm及び5mmであった。但し縮小率は1/2とした。従って、本来Z=400とZ=100の点に主平面、Z=200の点にクロスオーバが配されるはずであるが、Z=410、Z=95に主平面がずれる。この場合の結像条件を図示したものを図2に示す。

【0021】レンズ30焦点距離はf = 190mmであり、レンズ40焦点距離はf = 95mmである。クロスオーバを通ってきたビームの結像点は

1/105+1/b=1/95

1/b = 1/95 - 1/105

b = 997.5

- A - = !!!

mm

0.5 mm角の副視野端での入射角は

0. $25\sqrt{2}/997$. 5=0. 35mrad

であり、 $\pm 5 \mu$ mの試料面の上下変動は ± 1 . 75 nmの位置誤差しか生じない。一方、20 mmの主視野端で

の入射角は

10/997.5=10.03mrad となり、 $\pm 5\mu$ mの試料面の上下変動で ± 50 n mの位 置誤差を生じる。

【0022】入射ビームについては次式が成立する。 1/a+1/210=1/190 $\therefore a=1995$ mm すなわち、Z=1995+410=2405mmの位置 にクロスオーバがあり、そこから発散してくる電子線で マスクを照射すればよい事がわかる。上述の説明では、 簡単のため薄いレンズの公式を用いて説明したが、実際 には計算機シミュレーションによって収差が最小になる aの値、bの値を求める。以上は第1、第2、第7の解 決手段を用いた例である。尚、第3の解決手段を用いる ときは図1の第2のレンズ7に替えて、強磁性体の板6 をもちいる。又、レンズ系は SMD条件を満足するもの を使用している。解決手段6を用いた例である。次に、 光軸から離れた副視野を転写する時は偏向器13、14 によってマスク2に主光線が垂直に入射するように(図 2の主光線21の22の部分) ビームを曲げ、マスクか ら光軸に平行に射出されたビームを偏向器 15、16に よって、 Z=2405mmから来た方向へ合わせる。試 料面近傍でも偏向器17、18によって主光線が垂直に 入射するように (図2の主光線21の23の部分) 調整 する。ここで偏向器を2段にするのは、角度を変更して もマスクや試料面でビーム位置変動を無くすためであ る。 当然 θ 方向にも同様の情況になっているので、 偏向 器 $13\sim18$ はx、yを持ち、 θ 方向もクロスオーバを 通る条件とマスク、試料面での垂直入射条件を満足させ ている。第4、第8、第10の解決手段を用いた例であ る。また、これらに加えて、偏向器19をマスクとクロ スオーバ間に、偏向器20を試料とクロスオーバに設け て、偏向器15、16、19、及び偏向器20、17、 18の位置又は強さ又は回転方向を計算機シミュレーシ ョンにより最適化して光軸から離れた副視野の像の収差 を最小になるようにした。第5の解決手段を用いた例で ある。

【0023】更に、SMD条件を満足するレンズ系を用いて、且つ試料面とマスク面を磁場内に置き、試料位置

を種々変化させて収差をシュミレーション計算した結果、試料面をガウス面より 30μ クロスオーバ側へ移動させた時に最小の収差が得られた。第9の手段を用いた例である。

[0024]

【発明の効果】 以上説明したように、本発明を用いれば、収差の少ない電子線の投影レンズ系を用い、更に試料及び/又はマスク面の磁場を附加、制御して低収差性を増す時にも附加した磁場の影響によりもとのレンズの特性が収差的に低下するのを防ぎ良好な転写特性を有する電子線投影レンズ系が得られる。

【図面の簡単な説明】

【図1】本発明の実施例の電子線投影レンズの断面図 (中央)と軸上磁場分布(右側)。

【図2】本発明の実施例の電子線投影レンズの結像図。 【主要部分の符号の説明】

1 ・・・ 第3のレンズ	2	• • •									
マスク											
3 ・・・ 第1のレンズ	4										
第2のレンズ											
5 ・・・ 試料	6										
強磁性体の板											
7 ・・・ 第4のレンズ	8										
所定の主平面											
9 ・・・ 所定の主平面	1 0	• • •									
ずれた主平面											
11 ・・・ ずれた主平面	1 2										
所定のクロスオーバ											

13、14、15、16 ・・・ 偏向器・

17、18 ・・・ 偏向器

19、20 ・・・ 偏向器

21 ・・・ 光軸から離れた位置にある副視野の主光線の軌道

22 ・・・ 21をマスク面で垂直入射条件を満たすよう偏向した軌道

23 ・・・ 21を試料面上で垂直入射条件を満たすようにした軌道。

30 ・・・ 軸上磁場分布

【図1】

【図2】

フロントページの続き

(51) Int. Cl. 6

識別記号

HO1L 21/027

FΙ

H O 1 L 21/30 5 4 1 B