1995 Electrical Engineering Qualifying Examination Questions John Gill Signal

Consider the following electrical circuit.

1. What is the voltage drop across the resistor?

ANSWER: V = IR

2. Suppose that the resistor is a random variable \tilde{R} with uniformly distributed in the range $R \pm \Delta R$. What is the expected value of the voltage drop?

Answer: $E[V] = E[I\tilde{R}] = IE[\tilde{R}] = IR$

3. Suppose that the current source is also a random variable \tilde{I} . What is the expected value of the voltage drop.

EXPECTED QUESTIONS: Are \tilde{I} and \tilde{R} independent? What is the joint probability distribution of \tilde{I} and \tilde{R} .

ANSWER: If \tilde{I} and \tilde{R} are independent, then $E[V] = E[\tilde{I}\tilde{R}] = E[\tilde{I}]E[\tilde{R}] = IR$, where $I = E[\tilde{I}]$.

4. What is a weaker condition than independence that guarantees that $E[\tilde{I}\tilde{R}] = IR$?

ANSWER: Uncorrelated.

5. Suppose that two random resistors \tilde{R}_1 and \tilde{R}_2 are connected in series. What is the average resistance?

ANSWER: $E[\tilde{R}_1 + \tilde{R}_2] = E[\tilde{R}_1 + \tilde{R}_2] = 2R$

6. What if the resistors values are not statistically independent?

ANSWER: The expected value of a sum is always the sum of the expected values.

7. Suppose that two random resistors \tilde{R}_1 and \tilde{R}_2 are connected in parallel. What is the average resistance?

EXPECTED QUESTION: What is the joint probability distribution of \tilde{R}_1 and \tilde{R}_2 ? Suppose the resistors are independent.