

PCS-2039 Modelagem e Simulação de Sistemas Computacionais

Graça Bressan gbressan@larc.usp.br

Conceitos Básicos de Redes de Petri

Rede de Petri

- Modelo formal (abstração) de um sistema de eventos discretos.
- Captura todas as informações necessárias para representar a seqüência de eventos que ocorrem num sistema, as condições em que esses eventos ocorrem, e as mudanças de estado causadas pelos eventos.

Definição

- Uma rede de Petri (atemporal) é uma quádrupla ordenada R = (P, T, I, O) onde:
 - P = {p₁, p₂,..., p_m} é um conjunto finito de m > 0 lugares;
 - T = $\{t_1, t_2,..., t_n\}$ é um conjunto finito de n > 0 transições;
 - I: T → ℘(P) é a função de entrada, que identifica todos os lugares de entrada de uma transição,
 - O: T → ℘(P) é a função de saída, que identifica todos os lugares de saída de uma transição.
 - $P \cap T = \emptyset$.

Marcação

- Uma marcação de uma rede de Petri R = (P, T, I, O) é uma função M: P → N.
 O valor M(p) é chamado número de marcas (ou tokens) no lugar p.
- Uma rede de Petri marcada é um par ordenado RM = (R, M) onde R é uma rede de Petri e M uma marcação.

 $I(t_1) = \emptyset$

© Copyright LARC 2008 LARC/PCS/EPUSP PCS-2039 - 10

 p_9

$$I(t_4) = \{p_4, p_9\}$$

$$I(t_5) = \{p_5, p_6, p_8\}$$

Exemplo 1 $M(p_1) = M(p_4) = M(p_5) = M(p_6) = 0$

 $M(p_2) = M(p_3) = M(p_7) =$

$$M(p_8) = M(p_9) = 1$$

PCS-2039 - 15 © Copyright LARC 2008 LARC/PCS/EPUSP

Multiplicidade

- A multiplicidade de um lugar p_i como entrada da transição t_j é o número de ocorrências de p_i no multiconjunto I(t_j), denotada #(p_i, I(t_i)).
- No exemplo, $\#(p_1, I(t_2)) = 2$.

Nos demais casos, #(p_i, I(t_i)) = 1.

Habilitação

 Uma transição t_j em uma rede de Petri marcada está habilitada ⇔ ∀ p_i ∈ I(t_j): M(p_i) ≥

$$I(t_1) = \emptyset \Rightarrow$$
 $\nexists p_i \in I(t_1)$:
 $M(p_i) < \#(p_i, I(t_1))$
 $\Rightarrow t_1 \text{ habilitada}$

$$I(t_3) = \{p_2, p_7\}$$

 $\forall p_i \in I(t_3): M(p_i) \ge$
 $\#(p_i, I(t_3)).$
 $\Rightarrow t_3 \text{ habilitada}$

Disparo

- Uma transição t_j numa rede de Petri com marcação M só pode disparar se estiver habilitada.
- O disparo de uma transição habilitada resulta em uma nova marcação M' definida por:

$$M'(p) = M(p) - \#(p, I(t_j)) + \#(p, O(t_j)), \forall p \in P.$$

 Em outras palavras, tokens em número adequado são consumidos das entradas e depositados nas saídas de t_i.

Estados e Transições

- O estado de uma rede de Petri é definido por sua marcação atual M.
- A mudança de estado causado pelo disparo de uma transição é definida pela função "próximo estado" δ: N × T → N, onde N é o conjunto de todas as marcações possíveis.
- O valor $\delta(M, t_j)$ só está definido se t_j está habilitada. Neste caso, $\delta(M, t_i) = M'$.

Execução de uma Rede de Petri

- A execução de uma rede de Petri a partir de uma marcação inicial M₀ é a seqüência de marcações (M₀, M₁, M₂, ...) obtida através do disparo das transições (t_{j0}, t_{j1}, t_{j2}, ...) com os valores definidos pela função δ.
- Lembrar que a transição t₁ está sempre habilitada!

Alcançabilidade

- O conjunto de alcançabilidade A = (R, M) de uma rede de Petri R = (P, T, I, O) com marcação M é o menor conjunto de marcações definido por:
 - $M \in A = (R, M)$.
 - Se M' \in A(R, M) e M" = δ (M', t_j) para alguma $t_j \in$ T, então M" \in A(R, M).
- Este conjunto pode ser infinito: tokens podem ser consumidos, mas também podem ser criados!

Transitividade da Alcançabilidade

- Dada uma rede de Petri R = (P, T, I, O) com marcação M, diz-se que a marcação M' é imediatamente alcançável a partir de M se existe uma transição t_i ∈ T: δ(M, t_i) = M'.
- Dada uma rede de Petri R = (P, T, I, O) com marcação M, diz-se que a marcação M' é alcançável a partir de M se M' ∈ A(R, M).

Árvore de Alcançabilidade

- A árvore de alcança- $M_0 = (2, 0, 0, 0)$ bilidade de uma rede de Petri é construída tendo a marcação inicial M_o raiz como acrescentando todas as marcações alcançáveis a partir de M₀ pelo disparo das transições habilitadas.

PCS-2039 - 24 © Copyright LARC 2008 LARC/PCS/EPUSP

Ex4: Árvore de Alcançabilidade

Exemplo 2 : Semáforos

Ex3:Produtor e Consumidor

- As funções I e O são substituídas pelas matrizes E e S, ambas de tamanho n x m:
 - $E[j, i] = \#(p_i, I(t_i));$
 - S[j, i] = $\#(p_i, O(t_j))$; para i = 1...m e j = 1...n.
- A rede de Petri é então definida por R = (P,T,E,S).
- Define-se também a matriz de incidência como C[j, i] = S[j, i] – E[j, i], para i = 1...m e j = 1...n.

$$E = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -2 & 0 & -1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 & 1 & 0 & 1 \end{bmatrix}$$

 Uma marcação M é representada por um vetor de m componentes, onde cada elemento corresponde ao número de marcas num determinado lugar:

```
M = [0 1 1 0 0 0 1 1 1]
```

 Uma transição t_j é representada por um vetor e_j de n colunas no qual o j-ésimo componente é igual a 1 e os demais são iguais a zero:

 $e_j = [0 \ 0 \ 0 \ ... \ 1 \ ... \ 0]$ vetor que representa uma transição. $\uparrow j$ -ésima coluna

- A transição t_j está habilitada na marcação M se M ≥ e_iE.
- Considera-se que M' ≤ M" se M'[i] ≤ M"[i] para todo i = 1...m.
- A função próximo estado é dada por:
 - $\delta (M, t_j) = M + e_j S e_j E$, ou simplesmente
 - $\delta (M, t_j) = M + e_j C;$

 Dada uma seqüência de disparos de transições s = t_{j1}, t_{j2}, ..., t_{jk}, define-se o valor de δ(M, s) como:

$$\delta(M, s) = \delta(M, t_{j1} t_{j2}...t_{jk}) =$$

$$M+(e_{j1}+e_{j2}+...+e_{jk})C = M + f_sC$$

O vetor f_s = e_{j1} + e_{j2} + ... + e_{jk} é denominado vetor de contagem de disparos: o j-ésimo componente de f_s indica quantas vezes a transição t_i foi disparada.

Propriedades

- Segurança
- Limitação
- Conservação
- Vivacidade
- Impasses (Deadlocks)

Segurança

- Um lugar p_i ∈ P de uma rede de Petri R
 = (P, T, I, O) com marcação inicial M é
 K-seguro se, para todo M' ∈ A(R, M),
 M'[p_i] ≤ K.
- Um lugar p_i ∈ P de uma rede de Petri R
 = (P, T, I, O) com marcação M é seguro
 se, para todo M' ∈ A(R, M), M'[p_i] ≤ 1.
- Uma rede de Petri é segura se todos os seus lugares forem seguros.

Limitação

- Um lugar é limitado se é K-seguro para algum K.
- Uma rede de Petri é limitada se todos os seus lugares são limitados.
- Uma rede de Petri é viavelmente implementável em hardware ou software se for segura e limitada.

Conservação

- Uma rede de Petri R = (P, T, I, O) e com marcação inicial M é conservativa se, ∀ M' ∈ A(R, M) e ∀ p_i ∈ P, Σ M[p_i] = Σ M'[p_i].
- Em outras palavras, o número total de marcas (tokens) na rede de Petri permanece constante em todas as marcações alcançáveis a partir da marcação inicial.
- Caso contrário, trata-se de uma rede não conservativa.

Vivacidade

- Dada uma rede de Petri R = (P, T, I, O) e uma marcação M:
 - Uma transição t_j ∈ T está *viva em nível 0*, ou *morta*, se nunca pode ser disparada, isto é, não existe M' tal que M ∈ A(R, M) e t_i está habilitada em M'.
 - 2. Uma transição t_j está *viva em nível 1*, ou *viva*, se é potencialmente disparável, isto é, se existe M' ∈ A(R, M) tal que t_j está habilitada em M'.

Vivacidade

- Dada uma rede de Petri R = (P, T, I, O) e uma marcação M:
 - 3. A transição t_j está *viva em nível* 2 se $\forall v \geq 0$ existe uma seqüência de transições $s = t_{j1} t_{j2} ... t_{jk}$ tal que $\delta(M, s)$ é definida e $f_s(t_j) \geq v$, isto é, t_j é disparada no mínimo v vezes.
 - 4. A transição t_j está *viva em nível 3* se existe uma seqüência infinita s de disparos de transições tal que δ (M, s) está definida e t_j aparece com freqüência infinita em s.

Impasses (Deadlocks)

- Dada uma rede de Petri R = (P, T, I, O), uma marcação M' e um subconjunto T' ⊆ T, a rede R está em *impasse* na marcação M' em relação às transições de T', se ∀ t_j ∈ T', t_j está morta.
- Se T' = T então a situação da rede é de impasse total e nenhuma transição poderá ser disparada.
- Uma rede de Petri R é *livre de impasses* se,
 ∀ M' ∈ A(R, M), existe uma transição t_i viva.

Análise de Redes de Petri

- A análise de uma rede de Petri constitui-se da determinação de dois itens:
 - Árvore de alcançabilidade;
 - Conjuntos invariantes.

Condição de Alcançabilidade

 Se R = (P, T, E, S) é uma rede de Petri e M_k sua marcação atual, o disparo para atingir a marcação M_{k+1} é representado pela equação:

$$M_{k+1} = M_k + e_i C$$
 (onde $C = S - E$)

 O disparo da seqüência de transições s = t_{j1}, t_{j2}, ..., t_{jk} a partir da marcação M resulta na marcação

$$M' = M + (e_{j1} + e_{j2} + ... + e_{jk}) C = M + f_sC.$$

• Esta equação pode ser escrita na forma do sistema linear $\Delta M = M' - M = f_s C$ ou $C^T f_s^T = \Delta M^T$.

Condição de Alcançabilidade

- A solução do sistema linear C^Tf_s^T = ΔM^T indica quantas vezes cada transição deve ser disparada para transformar M em M'.
- A existência de uma solução desta equação é condição necessária mas insuficiente para que a marcação M' seja alcançável a partir de M!

Ex5: Contra-Exemplo

$$\Delta \mathbf{M}^T = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \mathbf{C}^T = \begin{bmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \Rightarrow \mathbf{f}_s^T = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad \begin{array}{l} \text{Mas M'} \quad n\tilde{a}o & \acute{\mathbf{e}} \\ \text{alcançável, pois} \\ nenhuma \\ \text{transição pode} \\ \text{ser disparada a} \end{array}$$

Mas M' não é ser disparada a partir de M.

- Dada uma rede de Petri R = (P, T, E, S), chama-se invariante de R um vetor z com m elementos binários (i.e. uma seleção de lugares da rede) que satisfaz o sistema de equações Cz = 0.
- O conjunto invariante Z é definido como:

$$Z = \{p_j \mid z[j] = 1, j = 1...m\}$$

A partir da definição ∆M = f_sC, concluise que, ∀ M e M' ∈ A(R, M),

 $\Delta Mz = f_sCz = 0 \Rightarrow Mz = M'z$ (independentemente de f_s), significando que a soma das marcas nos lugares pertencentes ao invariante Z é constante, $\forall M \in A(R, M)$.

- Seja p o posto da matriz C (número de linhas não nulas após o escalonamento). Se p = m, isto é, coincide com o número de lugares da rede, então a única solução do sistema Cz = 0 é o vetor nulo, indicando que não existe nenhum conjunto invariante em R.
- Se p < m, existe um conjunto de (m p) soluções linearmente independentes.

- Se um lugar p_j pertence a um invariante Z então o número de marcas em p_j será limitado (pois é uma fração de um valor constante).
- Se existe um conjunto de invariantes envolvendo todos os lugares da rede, o número de marcas na rede inteira permanece constante, igual a

 $\Sigma_{j=1...m}$ M[j].

Fim do módulo Conceitos Básicos de Redes de Petri