DSLs of Mathematics: limit of functions

Patrik Jansson

Functional Programming, Chalmers University of Technology

2023-08-30

Math book quote: The limit of a function

We say that f(x) approaches the limit L as x approaches a, and we write

$$\lim_{x\to a} f(x) = L,$$

if the following condition is satisfied:

for every number $\varepsilon > 0$ there exists a number $\delta > 0$, possibly depending on ε , such that if $0 < |x - a| < \delta$, then x belongs to the domain of f and

$$|f(x) - L| < \varepsilon$$

- Adams & Essex, Calculus - A Complete Course

$$\lim_{x\to a} f(x) = L,$$

if

$$\forall \varepsilon > 0$$

$$\exists \delta > 0$$

such that if

$$0<|x-a|<\delta,$$

then

$$x \in Dom f \wedge |f(x) - L| < \varepsilon$$

First attempt at translation:

lim a
$$f$$
 $L = \forall \epsilon > 0$. $\exists \delta > 0$. $P \epsilon \delta$
where $P \epsilon \delta = (0 < |x - a| < \delta) \Rightarrow$
 $(x \in Dom f \land |f x - L| < \epsilon)$

First attempt at translation:

lim a f
$$L = \forall \ \epsilon > 0$$
. $\exists \ \delta > 0$. $P \ \epsilon \ \delta$
where $P \ \epsilon \ \delta = (0 < |x - a| < \delta) \Rightarrow$
 $(x \in Dom \ f \ \land |f \ x - L| < \epsilon)$

Scope check:

• a, f, L bound in the def. of lim.

First attempt at translation:

lim a
$$f$$
 $L = \forall \epsilon > 0$. $\exists \delta > 0$. $P \epsilon \delta$
where $P \epsilon \delta = (0 < |x - a| < \delta) \Rightarrow$
 $(x \in Dom f \land |f x - L| < \epsilon)$

Scope check:

- a, f, L bound in the def. of lim.
- Forall binds ϵ , exists binds δ (and then again in $P \epsilon \delta$).

First attempt at translation:

lim a
$$f$$
 $L = \forall \epsilon > 0$. $\exists \delta > 0$. $P \epsilon \delta$
where $P \epsilon \delta = (0 < |x - a| < \delta) \Rightarrow$
 $(x \in Dom f \land |f x - L| < \epsilon)$

Scope check:

- a, f, L bound in the def. of lim.
- Forall binds ϵ , exists binds δ (and then again in $P \epsilon \delta$).
- Anything missing?

Finally (after adding a binding for x):

$$\begin{array}{l} \textit{lim a f L} = \forall \; \epsilon > 0. \;\; \exists \; \delta > 0. \;\; P \; \epsilon \; \delta \\ \\ \textit{where } P \; \epsilon \; \delta = \quad \forall \; x. \;\; Q \; \epsilon \; \delta \; x \\ \\ Q \; \epsilon \; \delta \; x = \left(0 < |x - a| < \delta\right) \Rightarrow \\ \left(x \in \textit{Dom } f \; \land \; |f \; x - L| < \epsilon\right) \end{array}$$

Finally (after adding a binding for x):

lim a f L =
$$\forall \epsilon > 0$$
. $\exists \delta > 0$. $P \epsilon \delta$
where $P \epsilon \delta = \forall x$. $Q \epsilon \delta x$
 $Q \epsilon \delta x = (0 < |x - a| < \delta) \Rightarrow$
 $(x \in Dom f \land |f x - L| < \epsilon)$

Lesson learned: be careful with scope and binding (of x in this case).

• Typing: let $X \subseteq \mathbb{R}$; $Y \subseteq \mathbb{R}$; a: X; L: Y; and $f: X \to Y$ Version "limProp" $\underbrace{lim}: X \to (X \to Y) \to Y \to Prop$ Version "limMaybe" $\underbrace{lim}: X \to (X \to Y) \to Maybe\ Y$ Version "limSloppy" $\underbrace{lim}: X \to (X \to Y) \to Y$

- Typing: let $X \subseteq \mathbb{R}$; $Y \subseteq \mathbb{R}$; a: X; L: Y; and $f: X \to Y$ Version "limProp" $\underbrace{lim}: X \to (X \to Y) \to Y \to Prop$ Version "limMaybe" $\underbrace{lim}: X \to (X \to Y) \to Maybe\ Y$ Version "limSloppy" $\underbrace{lim}: X \to (X \to Y) \to Y$
- <u>lim</u> can be used as a partial function <u>lim</u>, or *lim*:

```
\forall a, f, L<sub>1</sub>, L<sub>2</sub>. (\underline{lim} a f L<sub>1</sub> \land \underline{lim} a f L<sub>2</sub>) \Rightarrow L<sub>1</sub> == L<sub>2</sub>
\forall a, f, L. (\underline{lim} a f L) \Rightarrow (\underline{lim} a f = Just L) \land (lim a f = L)
```

- Typing: let $X \subseteq \mathbb{R}$; $Y \subseteq \mathbb{R}$; a: X; L: Y; and $f: X \to Y$ Version "limProp" $\underbrace{lim}: X \to (X \to Y) \to Y \to Prop$ Version "limMaybe" $\underbrace{lim}: X \to (X \to Y) \to Maybe\ Y$ Version "limSloppy" $\underbrace{lim}: X \to (X \to Y) \to Y$
- <u>lim</u> can be used as a partial function <u>lim</u>, or lim:

$$\forall a, f, L_1, L_2.$$
 (\underline{lim} a $f L_1 \land \underline{lim}$ a $f L_2$) $\Rightarrow L_1 = L_2$
 $\forall a, f, L.$ (\underline{lim} a $f L$) \Rightarrow (\underline{lim} a $f = Just L$) \land (lim a $f = L$)

• lim is linear:

$$\lim a (f \oplus g) = \lim a f + \lim a g$$

 $\lim a (c \triangleleft f) = c * (\lim a f)$

- Typing: let $X \subseteq \mathbb{R}$; $Y \subseteq \mathbb{R}$; a: X; L: Y; and $f: X \to Y$ Version "limProp" $\underbrace{lim}: X \to (X \to Y) \to Y \to Prop$ Version "limMaybe" $\underbrace{lim}: X \to (X \to Y) \to Maybe\ Y$ Version "limSloppy" $\underbrace{lim}: X \to (X \to Y) \to Y$
- <u>lim</u> can be used as a partial function <u>lim</u>, or lim:

$$\forall$$
 a, f, L₁, L₂. ($\underline{\underline{lim}}$ a f L₁ \land $\underline{\underline{lim}}$ a f L₂) \Rightarrow L₁ == L₂ \forall a, f, L. ($\underline{\underline{lim}}$ a f L) \Rightarrow ($\underline{\underline{lim}}$ a f = Just L) \land (\underline{lim} a f = L)

• lim is linear:

$$\lim a (f \oplus g) = \lim a f + \lim a g$$

 $\lim a (c \triangleleft f) = c * (\lim a f)$

• What is $(\oplus): (X \to Y) \to (X \to Y) \to (X \to Y)$?

- Typing: let $X \subseteq \mathbb{R}$; $Y \subseteq \mathbb{R}$; a: X; L: Y; and $f: X \to Y$ Version "limProp" $\underbrace{lim}: X \to (X \to Y) \to Y \to Prop$ Version "limMaybe" $\underbrace{lim}: X \to (X \to Y) \to Maybe\ Y$ Version "limSloppy" $\underbrace{lim}: X \to (X \to Y) \to Y$
- <u>lim</u> can be used as a partial function <u>lim</u>, or *lim*:

$$\forall a, f, L_1, L_2.$$
 (\underline{lim} a $f L_1 \land \underline{lim}$ a $f L_2$) $\Rightarrow L_1 = L_2$
 $\forall a, f, L.$ (\underline{lim} a $f L$) \Rightarrow (\underline{lim} a $f = Just L$) \land (lim a $f = L$)

• lim is linear:

$$\lim a (f \oplus g) = \lim a f + \lim a g$$

 $\lim a (c \triangleleft f) = c * (\lim a f)$

• What is (\oplus) : $(X \to Y) \to (X \to Y) \to (X \to Y)$? $f \oplus g = \lambda x \to f \ x + g \ x$

Example 2: derivative

The **derivative** of a function f is another function f' defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

at all points x for which the limit exists (i.e., is a finite real number). If f'(x) exists, we say that f is **differentiable** at x.

We can write

$$D\ f\ x = \lim 0\ g$$
 where $g\ h = \frac{f\ (x+h)-f\ x}{h};$ $g::\ H \to Y;$ type $H = \mathbb{R}^{\neq 0}$

Example 2: derivative

The **derivative** of a function f is another function f' defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

at all points x for which the limit exists (i.e., is a finite real number). If f'(x) exists, we say that f is **differentiable** at x.

We can write

$$D\ f\ x = \lim 0\ g$$
 where $g\ h = \frac{f\ (x+h)-f\ x}{h};$ $g::\ H \to Y;$ type $H = \mathbb{R}^{\neq 0}$

D f x =
$$\lim 0 (\varphi x)$$
 where $\varphi x h = \frac{f(x+h)-fx}{h}$; $\varphi :: X \to (H \to Y)$

Example 2: derivative

The **derivative** of a function f is another function f' defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

at all points x for which the limit exists (i.e., is a finite real number). If f'(x) exists, we say that f is **differentiable** at x.

We can write

$$D\ f\ x = \lim 0\ g$$
 where $g\ h = \frac{f\ (x+h)-f\ x}{h};$ $g::\ H \to Y;$ type $H = \mathbb{R}^{\neq 0}$

D f x =
$$\lim_{h \to \infty} 0 (\varphi x)$$
 where $\varphi x h = \frac{f(x+h)-fx}{h}$; $\varphi :: X \to (H \to Y)$

$$D f = \lim_{h \to \infty} 0 \circ \psi f \text{ where } \psi f \times h = \frac{f(x+h)-f \times}{h}; \qquad \int_{\lim_{h \to \infty} 0}^{X} \psi f$$

$$Y \stackrel{\text{lim } 0}{\longleftarrow} (H \to Y)$$

Derivatives, cont.

Examples:

$$D: (\mathbb{R} \to \mathbb{R}) \to (\mathbb{R} \to \mathbb{R})$$

 $sq x = x^2$
 $double x = 2 * x$
 $c_2 x = 2$
 $sq' = D sq = D (\lambda x \to x^2) = D (^2) = (2*) = double$
 $sq'' = D sq' = D double = c_2 = const 2$

Note: we cannot *implement D* (of this type) in Haskell.

Given only $f : \mathbb{R} \to \mathbb{R}$ as a "black box" we cannot compute the actual derivative $f' : \mathbb{R} \to \mathbb{R}$. We need the "source code" of f to apply rules from calculus.