LINEAR ALGEBRA AND CALCULUS

I B.TECH - I SEMESTER									
Course Code	Category	Hours/Week		Credits	Maximum Marks				
A6BS01	BSC	L	Т	Р	С	CIE	SEE	Total	
		3	1	-	4	40	60	100	
Contact Classes: 44	Tutorial Classes: 08	Practical Classes: Nil			es: Nil	Total Classes: 52			

COURSE OBJECTIVES

The course will enable the students to:

- 1. Concept of Rank of a matrix, Consistency and solving system of linear equations.
- 2. Concept of Eigen values, Eigen vectors and diagonalization of the matrix.
- 3. The concept of differential equations and solve them using appropriate methods.
- 4. Evaluate multiple integrals and improper integrals.
- 5. The partial derivatives of several variable functions.

COURSE OUTCOMES

Upon successful completion of this course, student will be able to:

- 1. Solve the system of linear equations using rank of the matrices.
- 2. Find the Eigen values and Eigen vectors of a matrix.
- 3. Identify the different types of differential equations and solve those using appropriate methods.
- 4. Evaluate the improper integrals using beta and gamma functions.
- 5. Find the Maxima and Minima of several variable functions.

UNIT - I MATRICES AND THEIR APPLICATIONS CLASSES: 08

Real matrices: Symmetric-skew-symmetric and orthogonal matrices —Complex matrices: Hermitian, Skew — Hermitian and Unitary matrices —Elementary row and column transformations —Elementary matrix-Finding rank of a matrix by reducing to Echelon form and Normal form-Finding the inverse of a matrix using elementary row/column transformations (Gauss-Jordan method)-Consistency of system of linear equations (homogeneous and non-homogeneous) using the rank of a matrix —Solving m n and n n linear system of equations by Gauss Elimination, Gauss siedel Method

UNIT - II EIGEN VALUES, EIGEN VECTORS CLASSES: 08

Eigen values and Eigen vectors and its properties (without proof), Cayley-Hamilton theorem (Statement and verification)-Finding inverse and powers of a matrix by Cayley-Hamilton theorem, Diagonalization of matrices. Quadratic forms and Nature of the Quadratic Forms, Reduction of Quadratic form to Canonical forms by Orthogonal Transformation.

UNIT - III ORDINARY DIFFERENTIA	AL EQUATIONS AND THEIR APPLICATIONS	CLASSES: 10
---------------------------------	-------------------------------------	-------------

Introduction- Exact and reducible to Exact differential equations-Newton's Law of cooling-Law of Growth and Decay. Linear differential equations of second and higher order with constant coefficients - Non-Homogeneous term of the type $Q(x) = e^{ax}$, Sin ax, Cosax, $e^{ax}v(x)$, $x^nv(x)$ - Method of variation of parameters L-C-R Circuits.

UNIT - IV

MULTIPLE INTEGRALS, BETA AND GAMMA FUNCTIONS

CLASSES: 10

Double and triple integrals (Cartesian and polar), Change of order of integration in double integrals, Change of variables (Cartesian to polar) in double integrals. Finding the area and volume of a region using double and triple integral.

Beta-Gamma Functions and their Properties-Relation between them- Evaluation of improper integrals using Gamma and Beta functions.

UNIT-V

CALCULUS OF SEVERAL VARIABLES

CLASSES: 08

Limit, Continuity - Partial derivative- Partial derivatives of higher order -Total derivative - Chain rule, Jacobians-functional dependence & independence. Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method (with constraints).

TEXT BOOKS

- 1. Ervin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. B.S.Grewal, Higher Engineering Mathematics, Khanna publishers, 36th Edition, 2010.

REFERENCE BOOKS

- 1. G.B.Thomas, Calculus and Analytical Geometry, 9th Edition, Pearson Reprint 2006.
- 2. N.P Bali and Manish Goyal, A Text of Engineering Mathematics, Laxmi publications, 2008.
- 3. E.L.Ince, Ordinary differential Equations, Dover publications, 1958.

WEB REFERENCES

- 1. https://www.efunda.com/math/math home/math.cfm
- 2. https://www.ocw.mit.edu/resources/#Mathematics
- 3. https://www.sosmath.com/
- 4. https://www.mathworld.wolfram.com/

E-TEXT BOOKS

1. https://www.e-booksdirectory.com/details.php?ebook=10166

MOOCS COURSE

- 1. https://swayam.gov.in/
- 2. https://onlinecourses.nptel.ac.in/

