HANDOUT FOR

Past questions

© UCLES 2015 -2020

1 (a) Complete the truth table for the following logic circuit:

		1	Workspace	
Α	В	С		Х
0	0	0		
0	0	1		
0	1	0		
0	_1	1		
1	0	0		
1	0	1		
1	1	50	ORAJ	
1	1	1		

(b) Draw a logic circuit which corresponds to the following logic statement:

X = 1 if ((A is **NOT** 1 **OR** B is 1) **AND** C is 1) **OR** (B is **NOT** 1 **AND** C is 1)

(c) Write a logic statement which corresponds to the following logic circuit:

2 A gas fire has a safety circuit made up of logic gates. It generates an alarm (X = 1) in response to certain conditions.

Input	Description	Binary value	Conditions
G	doe procediro	1	gas pressure is correct
9	gas pressure	0	gas pressure is too high
С	carbon monoxide level	1	carbon monoxide level is correct
	carbon monoxide level	0	carbon monoxide level is too high
	gas look detection	1	no gas leak is detected
	gas leak detection	0	gas leak is detected

The output X = 1 is generated under the following conditions:

gas pressure is correct AND carbon monoxide level is too high

OR

carbon monoxide level is correct AND gas leak is detected

(a) Draw a logic circuit for this safety system.

(b) Complete the truth table for the safety system.

G	С	L	Workspace	v
G	C			Х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

(c) Complete the truth table for the XOR gate:

3 A computer-controlled machine produces plastic sheets. The thickness of each sheet must be within a certain tolerance. The sheets are kept below 50 °C as they move over rollers at 10 metres per second.

Three parameters need to be monitored all the time.

Parameter	Description	Binary value	Conditions
D	sheet thickness	1	thickness of sheet in tolerance
	SHEEL UHORHESS	0	thickness of sheet out of tolerance
S	roller speed	1	roller speed = 10 metres/second
3	roller speed	0	roller speed <> 10 metres/second
T	tomporatura	1	temperature < 50 °C
'	temperature	0	temperature >= 50 °C

An alarm, X, will sound if:

thickness is in tolerance AND (roller speed <> 10 metres/second OR temperature >= 50 °C)

OR

roller speed = 10 metres/second AND temperature >= 50 °C

(a) Draw a logic circuit to represent the above monitoring system.

(b) Complete the truth table for the monitoring system.

D	S	Т	Working Space	Х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

4 (a)

Complete the truth table for this logic circuit.

Α	В	С	Working space	х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0	OORAJ	
1	1	1		

(b) Draw a logic circuit corresponding to the following logic statement:

X = 1 if ((A is 1 OR B is 1) AND (A is 1 AND B is 1)) OR (C is NOT 1)

(c) Re-draw the following logic circuit using NAND gates only.

Logic circuit re-drawn:

5 (a) Complete the truth table for the NOR gate.

Α	В	Output (X)
0	0	
0	1	
1	0	
1	1	

[1]

(b) Write a logic statement that corresponds with the following logic circuit.

6 For this logic statement:

$$X = 1$$
 if ((A is 1 AND B is 1) OR (B is 1 AND C is NOT 1))

(a) Draw the logic circuit.

(b) Complete the truth table for the given logic statement.

Α	В	С	Working space	х
0	0	0		
0	0	1	$S \cap O \cap P \wedge I$	
0	1	0	3 0 0 K A J	
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

7 Consider the logic statement:

X = 1 if ((A is NOT 1 OR B is 1) NOR C is 1) NAND ((A is 1 AND C is 1) NOR B is 1)

(a) Draw a logic circuit to represent the given logic statement.

(b) Complete the truth table for the given logic statement.

A	В	С	Working space	Х
0	0	0		
0	0	1	URAJ	
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

8 Consider the logic statement:

X = 1 if ((A is 1 AND B is NOT 1) NAND C is 1) XOR ((A is 1 AND C is 1) OR B is 1)

(a) Draw a logic circuit to represent the given logic statement.

(b) Complete the truth table for the given logic statement.

Α	В	С	Working space	Х
0	0	0		
0	0	1	SOORAJ	
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

9 A logic circuit is shown below.

(a) Complete the truth table for the given logic circuit.

Α	В	С	Working space	х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0	VICIO	
1	1	1		

(b) Draw a logic circuit corresponding to this logic statement:

X = 1 if (A is NOT 1) OR ((B is 1 OR C is 1) AND (B is NOT 1 OR A is NOT 1))

0 Rajesh creates a logic circuit.	
He uses three different logic gates in his circuit. Each logic gate has a maximum of two	
inputs. He describes the logic of each gate.	
a. "The only time the output will be 1 is when both inputs	
are 1." State the single logic gate	
Draw the single logic gate:	
	[2]
(b) "The only time the output will be 1 is when both inputs are 0."	
State the single logic gate	
Draw the sin <mark>gle logi</mark> c gate:	
	[2]
(c) "The only time the output will be 0 is when both inputs are 1."	
State the single logic gate	

Draw the single logic gate:

[2]

11 Consider the logic statement:

X = 1 if ((A is 1 NOR C is 1) AND (B is NOT 1 NOR C is 1)) OR (A is 1 AND B is 1)

(a) Draw a logic circuit to match the given logic statement. Each logic gate used must have a maximum of **two** inputs. Do **not** attempt to simplify the logic statement.

(b) Complete the truth table for the given logic statement.

А	В	С	Working space	х
0	0	0		
0	0	1		
0	1	0	SOOKAJ	
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

12 Consider the given logic circuit:

(a) Redraw the logic circuit using only 4 logic gates. Each logic gate used must have a maximum of two inputs.

(b) Complete the truth table for the **given** logic circuit.

Α	В	С	Working space	х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

(c)	Describe the	purpose	of a logic gate i	n a logic	circuit.		
							[0]

13 Consider the logic statement:

X = (((A NAND B) OR (B XOR C)) AND NOT C)

(a) Draw a logic circuit to match the given logic statement.

All logic gates must have a maximum of **two** inputs. Do **not** attempt to simplify the logic statement.

(b) Complete the truth table to represent the given logic statement.

Α	В	С	Working space	X
0	0	0	SUUKAJ	
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		·

14 (a) Identify the name and draw the single logic gate that can replace the given logic circuits.

(i)

Name of gate:

Drawing of gate:

(ii)

Name of gate:

Drawing of gate:

[2]

(b) Complete the truth table for the given logic statement:

X = (((A OR C) AND (NOT A AND NOT C)) XOR B)

Α	В	С	Working space	X
0	0	0		
0	0	1	SOOBAL	
0	1	0	3 0 0 K A J	
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

15 Consider the given logic statement:

$$X = (((A XOR B) AND C) OR NOT C)$$

(a) Draw a logic circuit to match the given logic statement.

All logic gates must have a maximum of **two** inputs. Do **not** attempt to simplify the logic statement.

(b) Complete the truth table for the given logic statement.

Α	В	С	Working space	х
0	0	0	SUUKAJ	
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		