TÉCNICAS DE MINERÍA DE DATOS

Regresión Lineal

1851448 Muñoz Barrientos Regina 1941592 Lagos Martínez José Alejandro 1849202 Domínguez Victorino Cesar Oswaldo 1793775 Rodríguez Guerrero Luisa Victoria

Equipo 1 Grupo 002

REGRESIÓN LINEAL SIMPLE

$$r = \sqrt{1 - \frac{\sum (Y - \hat{Y})^2}{\sum (Y - \bar{Y})^2}}$$

$$SSE = \sum_{i=1}^{n} (Y - \hat{Y})^2$$

Variación de Y alrededor de la recta.

$$SST = \sum_{X} (Y - \bar{Y})^2$$

Variación de Y alrededor de la media

$$y = \beta 0 + \beta 1x + \epsilon$$

LA FÓRMULA DE MINIMOS CUADRADOS QUEDA:

$$S(\beta_0, \beta_1) = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

SE DERIVA:

$$\frac{\partial S}{\partial \beta_0} = -2 \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

$$\frac{\partial S}{\partial \beta_1} = -2 \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) x_i = 0$$

REGRESIÓN LINEAL SIMPLE

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - \frac{(\sum_{i=1}^{n} x_{i})(\sum_{i=1}^{n} y_{i})}{n}}{\sum_{i=1}^{n} x_{i}^{2} - \frac{(\sum_{i=1}^{n} x_{i})^{2}}{n}}$$

En la ecuación general de la recta de regresión, B1 es la pendiente y B0 el valor de la variable dependiente Y para la que X = 0.

REGRESIÓN LINEAL MÚLTIPLE

Un modelo de regresión donde interviene más de una variable regresora, se llama modelo de regresión múltiple, el cual maneja la siguiente ecuación:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$$

LA FÓRMULA DE MÍNIMOS CUADRADOS QUEDA:

$$S(\beta_0, \beta_1, ..., \beta_k) = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - \beta_0 - \sum_{j=1}^k \beta_j x_{ij})^2$$

SE DERIVA:

$$\frac{\delta s}{\delta \beta_0} = -2 \sum_{i=1}^n \left(y_1 - \widehat{\beta_0} - \sum_{j=1}^k \widehat{\beta_1} x_{ij} \right) = 0$$

$$\frac{\delta s}{\delta \beta_i} = -2 \sum_{i=1}^n \left(y_1 - \widehat{\beta_0} - \sum_{j=1}^k \widehat{\beta_1} x_{ij} \right) x_{ij} = 0$$

ECUACIÓN DE MÍNIMOS CUADRADOS:

$$n\widehat{\beta_{0}} + \widehat{\beta_{1}} \sum_{i=1}^{n} x_{i1} + \widehat{\beta_{2}} \sum_{i=1}^{n} x_{i2} + \dots + \widehat{\beta_{k}} \sum_{i=1}^{n} x_{ik} = \sum_{i=1}^{n} y_{i}$$

$$\widehat{\beta_{0}} \sum_{i=1}^{n} x_{i1} + \widehat{\beta_{1}} \sum_{i=1}^{n} x_{i1}^{2} + \widehat{\beta_{2}} \sum_{i=1}^{n} x_{i1} x_{i2} + \dots + \widehat{\beta_{k}} \sum_{i=1}^{n} x_{i1} x_{ik} = \sum_{i=1}^{n} x_{i1} y_{i}$$

$$\vdots$$

$$\widehat{\beta_0} \sum_{i=1}^n x_{ik} + \widehat{\beta_1} \sum_{i=1}^n x_{ik} x_{i1} + \widehat{\beta_2} \sum_{i=1}^n x_{ik} x_{i2} + \dots + \widehat{\beta_k} \sum_{i=1}^n x_{ik}^2 = \sum_{i=1}^n x_{ik} y_i$$

ECUACIÓN MATRICIAL DEL MODELO:

$$y = x\beta + \varepsilon$$

LOS VALORES ESTÁN DADOS POR:

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \times = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{12} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix} \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \end{bmatrix} e = \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$

ECUACIÓN DE MÍNIMOS CUADRADOS:

ESTIMADOR DE MÍNIMOS CUADRADOS:

$$x'x\hat{\beta} = x'y$$

$$\hat{\beta} = (x'x)^{-1}x'y$$

MULTICOLINEALIDAD

La multicolinealidad es la relación de dependencia lineal fuerte entre más de dos variables explicativas en una regresión múltiple.

¿COMO MEDIRLA?

Obtenemos el factor de inflación de varianza para el j-ésimo coeficiente de la regresión.

$$VIF_j = \frac{1}{1 - R_i^2}$$

Los factores VIF > 10 presentan problemas de multicolinealidad.

99

PRUEBA DE SIGNIFICANCIA

HO: B1 = 0, la regresión no es significativa

H1: B1 = ! 0, la regresión es significativa

Si la regresión es significativa entonces el modelo si se ajusta al comportamiento de los datos.

FISH MARKET DATASET

Predecir el peso de los peces de la especie "Perch".

IMPORTAR LIBRERIAS Y DATOS

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt # Visualización
import seaborn as sns #Visualización
from statsmodels.stats.anova import anova_lm
from statsmodels.formula.api import ols
df = pd.read_csv("Fish.csv")
```

DATASET


```
print(df.head())
print(df.shape)
```

	Species	Weight	Length1	Length2	Length3	Height	Width	
0	Bream	242.0	23.2	25.4	30.0	11.5200	4.0200	
1	Bream	290.0	24.0	26.3	31.2	12.4800	4.3056	
2	Bream	340.0	23.9	26.5	31.1	12.3778	4.6961	
3	Bream	363.0	26.3	29.0	33.5	12.7300	4.4555	
4	Bream	430.0	26.5	29.0	34.0	12.4440	5.1340	
(159, 7)								

BÚSQUEDA DE DATOS NULOS

df.isnull().sum()

```
Species 0
Weight 0
Length1 0
Length2 0
Length3 0
Height 0
Width 0
dtype: int64
```


EXTRACCIÓN DE DATOS "PERCH"


```
perch=df[df['Species']=='Perch']
perch=perch.drop("Species",axis=1)
perch=perch.reset_index()
perch=perch.drop("index",axis=1)
```


CORRELOGRAMA

```
corr = perch.corr(method='pearson')
sns.heatmap(corr, xticklabels = corr.columns.values, yticklabels=corr.columns.values)
<matplotlib.axes._subplots.AxesSubplot at 0x7fcd6edb2950>
                                                          - 1.00
   index -
                                                          - 0.99
  Weight :
                                                          - 0.98
                                                          - 0.97
 Length1
                                                           - 0.96
 Length2
                                                           - 0.95
 Length3
                                                           - 0.94
  Height -
                                                           -0.93
                                                           - 0.92
   Width
                                    Length3
                                           Height
           index
                              Length2
                 Weight
                       Length1
                                                 Width
```

DISPERSIÓN WEIGHT VS OTRAS VARIABLES


```
from sklearn.feature_selection import RFE
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm
from statsmodels.stats.outliers_influence import variance_inflation_factor
# Fit the model
y = perch["Weight"]
x1 = perch["Length1"]
x2 = perch["Length2"]
x3 = perch["Length3"]
x4 = perch["Height"]
x5 = perch["Width"]
d = \{ x1": x1, x2": x2, x3": x3, x4": x4, x5": x5 \}
X=pd.DataFrame(d)
def build_model(X,y):
    X = sm.add_constant(X) #Adding the constant
    lm = sm.OLS(y,X).fit() # fitting the model
    print(lm.summary()) # model summary
    return X
def checkVIF(X):
    vif = pd.DataFrame()
    vif['Features'] = X.columns
    vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
    vif['VIF'] = round(vif['VIF'], 2)
    vif = vif.sort_values(by = "VIF", ascending = False)
    return(vif)
```


DECLARACIÓN DE VARIABLES Y DEFINICIONES

MODELO

[141] model1=build_model(X,y)

OLS Regression Results

Dep. Variable: Model: Method:	Weight OLS Least Squares	R-squared: Adj. R-squared: F-statistic:	0.943 0.937 165.2
Date:	Wed, 08 Sep 2021	Prob (F-statistic):	7.60e-30
Time:	19:48:50	Log-Likelinood:	-326.45
No. Observations:	56	AIC:	664.9
Df Residuals:	50	BIC:	677.0
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const x1 x2 x3 x4 x5	-556.5865 -3.1302 -38.5019 42.9174 65.6555 64.9023	60.663 57.880 88.552 60.088 29.998 36.765	-9.175 -0.054 -0.435 0.714 2.189 1.765	0.000 0.957 0.666 0.478 0.033 0.084	-678.431 -119.386 -216.364 -77.773 5.402 -8.943	-434.741 113.126 139.361 163.608 125.909 138.748
Omnibus: Prob(Omni Skew: Kurtosis	,	1.4		,	: :	0.500 29.351 4.23e-07 495.

Ecuación del modelo:

$$\hat{y} = -556.58 - 3.13x_1 - 38.5x_2$$
$$+42.91x_3 + 65.65x_4 + 64.9x_5$$

	Variables	VIF
0	const	27.16
1	x1	1780.08
2	x2	4626.41
3	х3	2376.77
4	x4	54.04
5	x5	30.86

VIF

Como todos los VIFs son altos, hay problemas de multicolinealidad.

REGRESIÓN SIMPLE

```
d1 = {"x4":x4}
X_1=pd.DataFrame(d1)
mod2=build_model(X_1,y)
                            OLS Regression Results
Dep. Variable:
                               Weight
                                        R-squared:
                                                                           0.938
Model:
                                        Adj. R-squared:
                                                                          0.937
                        Least Squares F-statistic:
Method:
                                                                          815.2
                     Wed, 08 Sep 2021 Prob (F-statistic):
                                                                       2.92e-34
Date:
Time:
                              20:18:55
                                        Log-Likelihood:
                                                                        -328.82
No. Observations:
                                        AIC:
                                                                           661.6
Df Residuals:
                                        BIC:
                                                                           665.7
Df Model:
Covariance Type:
                            nonrobust
                         std err
                 coef
                                                  P>|t|
                                                              [0.025
                                                                          0.975]
            -537.3275
                          34.260
                                     -15.684
                                                  0.000
                                                           -606.015
                                                                        -468.640
const
                                                  0.000
             116.9654
                           4.096
                                                            108,752
                                                                         125,178
                                        Durbin-Watson:
Omnibus:
                               11.275
                                                                           0.678
Prob(Omnibus):
                                0.004
                                        Jarque-Bera (JB):
                                                                         11.319
                                        Prob(JB):
                                0.954
Skew:
                                                                         0.00349
Kurtosis:
                                 4.099
                                         Cond. No.
                                                                            24.8
```


Ecuación del modelo:

$$\hat{y} = -537.32 + 116.96x_4$$

GRÁFICA DEL MODELO

```
plt.plot(x4, y, 'o')
m, b = np.polyfit(x4, y, 1)
plt.plot(x4, m*x4 + b)
```

[<matplotlib.lines.Line2D at 0x7fcd656fc410>]

REGRESIÓN POLINOMIAL


```
[153] x4_2=perch["Height"]**2
    d2 = {"x4":x4, "x4_2":x4_2}
    X_2=pd.DataFrame(d2)
    mod3=build_model(X_2,y)
```

mods=bdiid_modei(X_2)y/										
	OLS Regression Results									
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:		OLS Least Squares Wed, 08 Sep 2021		R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:):	0.981 0.981 1395. 1.47e-46 -295.11 596.2 602.3			
========	coef	std err	=====	t	P> t	[0.025	0.975]			
const x4 x4_2	92.4902 -54.1540 10.2295	59.731 15.557 0.920	1.! -3.4 11.:		0.127 0.001 0.000	-85.357 8.384	212.295 -22.952 12.075			
Omnibus: Prob(Omnibu Skew: Kurtosis:	ıs):	0. -0.	001 : 510		•		1.563 34.089 3.96e-08 815.			

Ecuación del modelo:

$$\hat{y} = 92.49 - 54.15x_4 + 10.22x_4^2$$

REGRESIÓN POLINOMIAL


```
[153] x4_2=perch["Height"]**2
    d2 = {"x4":x4, "x4_2":x4_2}
    X_2=pd.DataFrame(d2)
    mod3=build_model(X_2,y)
```

	/								
OLS Regression Results									
Dep. Variable:			_		R-squared: Adj. R-squared:				
Date: Wed, Time:			021 :28	Prob (Log-Li	F-statistic kelihood:):	1395. 1.47e-46 -295.11		
No. Observations: Df Residuals: Df Model:			56 53 2	AIC: BIC:			596.2 602.3		
Covariance Type:		nonrob	ust						
=======	coef	std err	=====	t	P> t	[0.025	0.975]		
const x4 x4_2	92.4902 -54.1540 10.2295	59.731 15.557 0.920	-3.		0.127 0.001 0.000				
Omnibus: Prob(Omnibus): Skew: Kurtosis:		0.0 -0.!			,	=======	1.563 34.089 3.96e-08 815.		

Ecuación del modelo:

$$\hat{y} = 92.49 - 54.15x_4 + 10.22x_4^2$$

GRÁFICA DEL MODELO

```
plt.plot(x4, y, 'o')
a,b,c = np.polyfit(x4, y, 2)
plt.plot(x4, a*x4*x4 +b*x4 + c)
```

[<matplotlib.lines.Line2D at 0x7fcd657d4a90>]

CÓMO HACER UNA ESTIMACIÓN

Haciendo uso de la ecuación del modelo, se sustituye la x.

Estimar el precio de una percha con altura de 9.5 cm

```
\hat{y} = 92.49 - 54.15x_4 + 10.22x_4^2
\hat{y} = 92.49 - 54.15(9.5) + 10.22(9.5)^2
\hat{y} = 501.2379 g
X_2 = \text{sm.add\_constant}(X_2)
y_pred = \text{sm.OLS}(y, X_2).\text{fit}().\text{predict}([1, 9.5, 9.5**2])
y_pred
array([501.23791418])
```

PREGUNTAS

- ¿EN LA REGRESIÓN LINEAL SIMPLE, QUÉ DETERMINA EL COEFICIENTE B1?
- ¿QUÉ NOMBRE SE LE ASIGNA A LA(S) VARIABLE(S)
 INDEPENDIENTE(S) (X'S) EN LOS MODELOS DE REGRESIÓN?
- ¿CUÁNTOS COEFICIENTES B HAY EN UN MODELO DE REGRESIÓN CON TRES VARIABLES PREDICTORAS?
- ¿QUÉ SIGNIFICA UN VIF ALTO?
- ¿ES LA RELACIÓN DE DEPENDENCIA LINEAL FUERTE ENTRE MÁS DE DOS VARIABLES EN REGRESIÓN MULTIPLE?

RESPUESTAS

- DETERMINA LA PENDIENTEDE LA RECTA EN EL MODELO
- VARIABLE(S) PREDICTORA(S)
- CUATRO, BO, B1, B2 Y B3
- SIGNIFICA QUE UNA DE LAS VARIABLES REGRESORAS ESTÁ RELACIONADA LINEALMENTE CON LAS DEMÁS
- MULTICOLINEALIDAD

BIBLIOGRAFÍA

- Apuntes Métodos Estadísticos con MET. Alejandra Cerda. Sem Febrero-Junio 2021
- Goyal, S. (2019). Car Price Prediction (Linear Regression RFE). Obtenido de Kaggle: https://www.kaggle.com/goyalshalini93/car-price-prediction-linear-regression-rfe
- How to plot a linear regression line on a scatter plot in Python. (s.f.). Obtenido de Kite: https://www.kite.com/python/answers/how-to-plot-a-linear-regression-line-on-a-scatter-plot-in-python
- pandas.DataFrame.reset_index. (s.f.). Obtenido de pandas: https://pandas.pydata.org/pandasdocs/dev/reference/api/pandas.DataFrame.reset_index.html
- Pyae, A. (2019, junio 13). *Fish Market*. Retrieved from Kaggle: https://www.kaggle.com/aungpyaeap/fish-market

