Matt White - Class 6 project

Quarto

Quarto enables you to weave together content and executable code into a finished document. To learn more about Quarto see https://quarto.org.

Running Code

When you click the **Render** button a document will be generated that includes both content and the output of embedded code. You can embed code like this:

```
1 + 1
```

[1] 2

You can add options to executable code like this

[1] 4

The echo: false option disables the printing of code (only output is displayed).

My first function!

```
add <- function(x, y) {
   x + y
}
add(x = 13, y = 71)</pre>
```

[1] 84

```
add(13, 71)

[1] 84

add(5, 54)
```

[1] 59

```
add(c(100,1,100),1)
```

[1] 101 2 101

Make a function "generate_DNA()" that makes a random nucleotide sequence of any length.

```
#generate_DNA <- function( ) { }

generate_DNA <- function(length) {
  bases <- c("A", "C", "G", "T")
  sequence <- sample(bases, size = length, replace = T)
  return(sequence)
}

generate_DNA(20)</pre>
```

```
[1] "G" "T" "G" "A" "A" "C" "G" "G" "T" "T" "A" "C" "C" "T" "C" "C" "G" "G" [20] "T"
```

The emblem :: will give us just one element from the bio3d package

```
bio3d::aa.table
```

```
aa3 aa1
              mass
                         formula
                                                           name
ALA ALA A 71.078
                      C3 H5 N O1
                                                        Alanine
ARG ARG R 157.194 C6 H13 N4 O1
                                                       Arginine
ASN ASN N 114.103
                   C4 H6 N2 O2
                                                     Asparagine
ASP ASP D 114.079
                      C4 H4 N O3
                                                  Aspartic Acid
CYS CYS C 103.143 C3 H5 N O1 S
                                                        Cystein
```

	GLN	Q	117.126	C4 H9 N2 O2	Glutamine
GLU	GLU	Ε	128.106	C5 H6 N O3	Glutamic Acid
GLY	GLY	G	57.051	C2 H3 N O1	Glycine
HIS	HIS	Η	137.139	C6 H7 N3 O1	Histidine
ILE	ILE	Ι	113.158	C6 H11 N O1	Isoleucine
LEU	LEU	L	113.158	C6 H11 N O1	Leucine
LYS	LYS	K	129.180	C6 H13 N2 O1	Lysine
MET	MET	M	131.196	C5 H9 N O1 S	Methionine
PHE	PHE	F	147.174	C9 H9 N O1	Phenylalanine
PRO	PRO	P	97.115	C5 H7 N O1	Proline
SER	SER	S	87.077	C3 H5 N O2	Serine
THR	THR	T	101.104	C4 H7 N O2	Threonine
TRP	TRP	W	186.210	C11 H10 N2 O1	Tryptophan
TYR	TYR	Y	163.173	C9 H9 N O2	Tyrosine
VAL	VAL	V	99.131	C5 H9 N O1	Valine
ABA	ABA	X	85.104	C4 H7 N1 O1	alpha-aminobutyric acid
ASH	ASH	D	115.087	C4 H5 N O3	Aspartic acid Neutral
CIR	CIR	R	157.170	C6 H11 N3 O2	citrulline
\mathtt{CME}	CME	C	179.260	C5 H9 N O2 S2	s,s-(2-hydroxyethyl)thiocysteine
\mathtt{CMT}	CMT	C	115.154	C4 H5 N O1 S	o-methylcysteine
CSD	CSD	C	134.134	C3 H4 N O3 S	s-cysteinesulfinic acid
CS0	CSO	C	119.142	C3 H5 N O2 S	s-hydroxycysteine
CSW	CSW	C	135.142	C3 H5 N O3 S	cysteine-s-dioxide
CSX	CSX	C	119.142	C3 H5 N O2 S	s-oxy cysteine
\mathtt{CYM}	CYM	C	102.135	C3 H4 N O1 S	Cystein Negative
CYX	CYX	С	102.135	C3 H4 N O1 S	Cystein SSbond
DDE	DDE	Н	280.346	C13 H22 N5 O2	diphthamide
GLH	GLH	Ε	129.114	C5 H7 N O3	Glutatmic acid Neutral
HID	HID	Н	137.139	C6 H7 N3 O1	Histidine
HIE	HIE	Н	137.139	C6 H7 N3 O1	Histidine
HIP	HIP	Н	138.147	C6 H8 N3 O1	Histidine Positive
HSD	HSD	Н	137.139	C6 H7 N3 O1	Histidine
HSE	HSE	Η	137.139	C6 H7 N3 O1	Histidine
HSP	HSP	Н	138.147	C6 H8 N3 O1	Histidine Positive
IAS	IAS	D	115.087	C4 H5 N O3	beta-aspartyl
KCX	KCX	K	172.182	C7 H12 N2 O3	lysine nz-carboxylic acid
LYN	LYN	K	129.180	C6 H13 N2 O1	Lysine Neutral
MHO	MHO	M	147.195	C5 H9 N O2 S	s-oxymethionine
MLY	MLY	K	156.225	C8 H16 N2 O1	n-dimethyl-lysine
MSE	MSE	M	178.091	C5 H9 N O1 SE	selenomethionine
OCS	OCS	С	151.141	C3 H5 N O4 S	cysteinesulfonic acid
PFF	PFF	F	165.164	C9 H8 F N O1	4-fluoro-l-phenylalanine
PTR	PTR			C9 H10 N O5 P	o-phosphotyrosine

```
        SEP SEP
        S 167.057
        C3 H6 N 05 P
        phosphoserine

        TPO TPO
        T 181.084
        C4 H8 N 05 P
        phosphothreonine
```

```
#Only want to access aa1 column
bio3d::aa.table$aa1
```

```
[1] "A" "R" "N" "D" "C" "Q" "E" "G" "H" "I" "L" "K" "M" "F" "P" "S" "T" "W" "Y" [20] "V" "X" "D" "R" "C" "C" "C" "C" "C" "C" "C" "C" "H" "E" "H" "H" "H" "H" "H" "H" [39] "H" "D" "K" "K" "M" "K" "M" "C" "F" "Y" "S" "T"
```

```
#get one entry per amino acid
unique(bio3d::aa.table$aa1)[1:20]
```

```
[1] "A" "R" "N" "D" "C" "Q" "E" "G" "H" "I" "L" "K" "M" "F" "P" "S" "T" "W" "Y" [20] "V"
```

Now write a function that generates protein sequence of any length

```
generate_protein <- function(length) {
  amino_acids <- unique(bio3d::aa.table$aa1)[1:20]
  sequence <- sample(amino_acids, size = length, replace = T)
  return(sequence)
}
generate_protein(20)</pre>
```

```
[1] "W" "W" "P" "K" "Q" "M" "V" "M" "N" "A" "R" "Q" "T" "G" "C" "A" "I" "Y" "P" [20] "A"
```

Generate a set of random protein sequences of incremental length 6 to 13

Could do generate_protein(6), generate_protein(7), etc..

Or we can use a different useful function, apply() or sapply()

```
sapply(6:12, generate_protein)
```

```
[[1]]
[1] "M" "D" "W" "S" "P" "A"

[[2]]
[1] "L" "A" "F" "H" "M" "M" "G"

[[3]]
[1] "C" "K" "H" "V" "Q" "K" "N" "N"

[[4]]
[1] "N" "M" "G" "F" "F" "S" "G" "Y" "R"

[[5]]
[1] "W" "M" "S" "Y" "G" "K" "A" "G" "H" "V"

[[6]]
[1] "W" "W" "C" "G" "L" "L" "S" "E" "C" "H" "I"

[[7]]
[1] "T" "D" "H" "T" "E" "L" "L" "T" "Y" "N" "E" "W"
```

Get this function to paste with no spaces, in format we could put into blast

```
generate_protein <- function(length) {
   amino_acids <- unique(bio3d::aa.table$aa1)[1:20]
   sequence <- sample(amino_acids, size = length, replace = T)
   sequence <- paste(sequence, collapse = "")
   #paste with the specification of "" for collapse will provide our sequence with no spaces return(sequence)
   #good practice to tell what our code is returning
}
answer <- sapply(6:12, generate_protein) #apply our function over lengths of 6 to 12 amino a answer</pre>
```

```
[1] "AETKVK" "WPDDEMS" "LFAEKELF" "RFVPYWNTP" "YMMQPYRIDW"
[6] "SWTDGFYMNKT" "PGIMLHHIVQTT"
```

Format the values as fasta

```
cat(paste(">id.", 6:12, "\n", answer, sep = ""), sep = "\n")
```

>id.6

AETKVK

>id.7

WPDDEMS

>id.8

LFAEKELF

>id.9

RFVPYWNTP

>id.10

YMMQPYRIDW

>id.11

SWTDGFYMNKT

>id.12

PGIMLHHIVQTT

#"\n" is a return carriage, gives us a new line