Algebraic Geometry 2 Tutorial session 9

Lecturer: Rami Aizenbud TA: Shai Shechter

June 20, 2020

Morphisms of finite type; finite morphisms

Definition

A morphism $f: X \to Y$ is locally of finite type if there exists an open cover $Y = \bigcup_i V_i$ with $V_i = \operatorname{Spec}(B_i)$ affine, such that for any i, $f^{-1}(V_i) = \bigcup_j U_{i,j}$ with $U_{i,j} = \operatorname{Spec}(A_{i,j})$ where $A_{i,j}$ is f.g. over B_i .

Morphisms of finite type; finite morphisms

Definition

A morphism $f: X \to Y$ is locally of finite type if there exists an open cover $Y = \bigcup_i V_i$ with $V_i = \operatorname{Spec}(B_i)$ affine, such that for any i, $f^{-1}(V_i) = \bigcup_j U_{i,j}$ with $U_{i,j} = \operatorname{Spec}(A_{i,j})$ where $A_{i,j}$ is f.g. over B_i . f is said to be of finite type if for any i, the affine open cover $f^{-1}(V_i) = \bigcup_i U_{i,j}$ can be taken to be finite.

Morphisms of finite type; finite morphisms

Definition

A morphism $f: X \to Y$ is locally of finite type if there exists an open cover $Y = \bigcup_i V_i$ with $V_i = \operatorname{Spec}(B_i)$ affine, such that for any i, $f^{-1}(V_i) = \bigcup_j U_{i,j}$ with $U_{i,j} = \operatorname{Spec}(A_{i,j})$ where $A_{i,j}$ is f.g. over B_i . f is said to be of finite type if for any i, the affine open cover $f^{-1}(V_i) = \bigcup_i U_{i,j}$ can be taken to be finite.

Definition

A morphism $f: X \to Y$ is *finite* if there exists an affine open cover $Y = \bigcup_i V_i$, with $V_i = \operatorname{Spec}(B_i)$ such that $f^{-1}(V_i) = \operatorname{Spec}(A_i)$ is affine, with A_i a *finite module* over B_i .

1 Show that $f: X \to Y$ is of finite type if and only if it is locally of finite type and quasicompact (i.e. $f^{-1}(V)$ is qc for all open affine $V \subseteq Y$).

- Show that $f: X \to Y$ is of finite type if and only if it is locally of finite type and quasicompact (i.e. $f^{-1}(V)$ is qc for all open affine $V \subseteq Y$).
- ② Conclude that f is of finite type if and only if for any open $V = \operatorname{Spec}(B) \subseteq Y$ and any open $U = \operatorname{Spec}(A) \subseteq f^{-1}(V)$, A is a fg B-algebra.

- Show that $f: X \to Y$ is of finite type if and only if it is locally of finite type and quasicompact (i.e. $f^{-1}(V)$ is qc for all open affine $V \subseteq Y$).
- ② Conclude that f is of finite type if and only if for any open $V = \operatorname{Spec}(B) \subseteq Y$ and any open $U = \operatorname{Spec}(A) \subseteq f^{-1}(V)$, A is a fg B-algebra.

Proof.

One of the state of the sta

- Show that $f: X \to Y$ is of finite type if and only if it is locally of finite type and quasicompact (i.e. $f^{-1}(V)$ is qc for all open affine $V \subseteq Y$).
- ② Conclude that f is of finite type if and only if for any open $V = \operatorname{Spec}(B) \subseteq Y$ and any open $U = \operatorname{Spec}(A) \subseteq f^{-1}(V)$, A is a fg B-algebra.

Proof.

• loc fin type + qc implies finite type directly from definition. Also, finite type implies loc fin type, so we only need to show finite type \Rightarrow qc. Let $W \subseteq Y$ be open affine. Exercise: if $Y = \bigcup V_i$ and $f^{-1}(V_i) = \bigcup_{j=1}^{n(i)} U_{i,j}$ are open affine covers as in the definition, there exists i_1, \ldots, i_N such that

$$f^{-1}(V) = \bigcup_{\substack{k=1,\dots,N\\j=1,\dots,n(i_k)}} f^{-1}(V) \cap U_{i_k,j}.$$

Consequently, it suffices to prove

Lemma

Let $f: X = \operatorname{Spec}(A) \to Y = \operatorname{Spec}(B)$ with A a fg B-algebra, and $V \subseteq Y$ open (not necessarily affine). Then $f^{-1}(V)$ is qc.

Consequently, it suffices to prove

Lemma

Let $f: X = \operatorname{Spec}(A) \to Y = \operatorname{Spec}(B)$ with A a fg B-algebra, and $V \subseteq Y$ open (not necessarily affine). Then $f^{-1}(V)$ is qc.

Also, by definition, A is quotient of $B[x_1,\ldots,x_n]$, for some n, and therefore X is a closed subscheme of \mathbb{A}^n_B . Since the lemma is completely topological, it is enough to verify the lemma for the case $X=\mathbb{A}^n_B$ and f is induced from the inclusion $B\subseteq B[x_1,\ldots,x_n]$.

Consequently, it suffices to prove

Lemma

Let $f: X = \operatorname{Spec}(A) \to Y = \operatorname{Spec}(B)$ with A a fg B-algebra, and $V \subseteq Y$ open (not necessarily affine). Then $f^{-1}(V)$ is qc.

Also, by definition, A is quotient of $B[x_1,\ldots,x_n]$, for some n, and therefore X is a closed subscheme of \mathbb{A}^n_B . Since the lemma is completely topological, it is enough to verify the lemma for the case $X=\mathbb{A}^n_B$ and f is induced from the inclusion $B\subseteq B[x_1,\ldots,x_n]$. This is left as an exercise.

We will use the following lemma, which will be proved (more generally) in the home exercise:

Affine communication lemma

Let X be a scheme over $S = \operatorname{Spec}(R)$. Assume there exists an affine open cover $X = \bigcup_i U_i$ where $U_i = \operatorname{Spec}(A_i)$ with A_i fg R-algebras. Then, for any $V = \operatorname{Spec}(B) \subseteq X$ open affine, B is a fg R-algebra.

We will use the following lemma, which will be proved (more generally) in the home exercise:

Affine communication lemma

Let X be a scheme over $S = \operatorname{Spec}(R)$. Assume there exists an affine open cover $X = \bigcup_i U_i$ where $U_i = \operatorname{Spec}(A_i)$ with A_i fg R-algebras. Then, for any $V = \operatorname{Spec}(B) \subseteq X$ open affine, B is a fg R-algebra.

Let $f: X \to Y$ be of finite type and let $V \subseteq Y$ be open affine. $f^{-1}(V)$ is qc and covered by affine open schemes whose global sections are fg over $\Gamma(V, \mathcal{O}_Y)$. The result follows from the lemma.

Properties of morphisms of finite type

Exercise

Let $f: X \to Y$ be a morphism of schemes. Show the following:

- If f is a closed embedding then f is of finite type.
- ② If f is a quasi-compact (i.e. $f^{-1}(V)$ is q.c. for all open affine $V \subseteq Y$) an open embedding then f is of finite type.
- **3** If f and finite type and $g: Y \to Z$ is also finite type, then $g \circ f$ is also finite type.

• In the case where $X = \operatorname{Spec}(A)$ and $Y = \operatorname{Spec}(B)$ are affine, a closed embedding arises from a surjective ring homomorphism $B \to A$, in which case A is generated by one element over A.

In the case where $X = \operatorname{Spec}(A)$ and $Y = \operatorname{Spec}(B)$ are affine, a closed embedding arises from a surjective ring homomorphism $B \to A$, in which case A is generated by one element over A. In the general case, we have that $\mathcal{O}_Y \to f_*\mathcal{O}_X$ is surjective, and, by restricting to an affine cover of Y by small enough sets, this reduces to the first case.

- **1** In the case where $X = \operatorname{Spec}(A)$ and $Y = \operatorname{Spec}(B)$ are affine, a closed embedding arises from a surjective ring homomorphism $B \to A$, in which case A is generated by one element over A. In the general case, we have that $\mathcal{O}_Y \to f_*\mathcal{O}_X$ is surjective, and, by restricting to an affine cover of Y by small enough sets, this reduces to the first case.
- ② By the previous exercise, we only need to show that an open immersion is locally of finite type. Let $U = \text{Im}(f) \subseteq Y$ be open, and let $U = \bigcup U_i$ be a cover by open affine subsets.

- **1** In the case where $X = \operatorname{Spec}(A)$ and $Y = \operatorname{Spec}(B)$ are affine, a closed embedding arises from a surjective ring homomorphism $B \to A$, in which case A is generated by one element over A. In the general case, we have that $\mathcal{O}_Y \to f_*\mathcal{O}_X$ is surjective, and, by restricting to an affine cover of Y by small enough sets, this reduces to the first case.
- ② By the previous exercise, we only need to show that an open immersion is locally of finite type. Let $U = \operatorname{Im}(f) \subseteq Y$ be open, and let $U = \bigcup U_i$ be a cover by open affine subsets. By definition, f is an scheme isomorphism of X onto U, so $f_{U_i}^{\sharp}: \mathcal{O}_Y(U_i) \to f_*\mathcal{O}_X(U_i)$ is a ring isomorphism.

- **1** In the case where $X = \operatorname{Spec}(A)$ and $Y = \operatorname{Spec}(B)$ are affine, a closed embedding arises from a surjective ring homomorphism $B \to A$, in which case A is generated by one element over A. In the general case, we have that $\mathcal{O}_Y \to f_*\mathcal{O}_X$ is surjective, and, by restricting to an affine cover of Y by small enough sets, this reduces to the first case.
- ② By the previous exercise, we only need to show that an open immersion is locally of finite type. Let $U = \operatorname{Im}(f) \subseteq Y$ be open, and let $U = \bigcup U_i$ be a cover by open affine subsets. By definition, f is an scheme isomorphism of X onto U, so $f_{U_i}^{\sharp}: \mathcal{O}_Y(U_i) \to f_*\mathcal{O}_X(U_i)$ is a ring isomorphism.
- The composition of morphisms locally of finite type is locally of finite type, by the ACL.

- **1** In the case where $X = \operatorname{Spec}(A)$ and $Y = \operatorname{Spec}(B)$ are affine, a closed embedding arises from a surjective ring homomorphism $B \to A$, in which case A is generated by one element over A. In the general case, we have that $\mathcal{O}_Y \to f_*\mathcal{O}_X$ is surjective, and, by restricting to an affine cover of Y by small enough sets, this reduces to the first case.
- ② By the previous exercise, we only need to show that an open immersion is locally of finite type. Let $U = \operatorname{Im}(f) \subseteq Y$ be open, and let $U = \bigcup U_i$ be a cover by open affine subsets. By definition, f is an scheme isomorphism of X onto U, so $f_{U_i}^{\sharp}: \mathcal{O}_Y(U_i) \to f_*\mathcal{O}_X(U_i)$ is a ring isomorphism.
- The composition of morphisms locally of finite type is locally of finite type, by the ACL. The composition of qc morphisms is also qc.

Show that a finite morphism has finite fibers.

Solution.

Let $f: X \to Y$ be a finite morphism and $y \in Y$. By definition, the exists $y \in V = \operatorname{Spec}(B) \subseteq Y$ open affine such that $f^{-1}(V) = \operatorname{Spec}(A)$ with A a finite module over B. Since we only care about y, we may assume $X = \operatorname{Spec}(A)$ and $Y = \operatorname{Spec}(B)$ to begin with, and f is defined by a ring homomorphism $\varphi: B \to A$.

Show that a finite morphism has finite fibers.

Solution.

Let $f: X \to Y$ be a finite morphism and $y \in Y$. By definition, the exists $y \in V = \operatorname{Spec}(B) \subseteq Y$ open affine such that $f^{-1}(V) = \operatorname{Spec}(A)$ with A a finite module over B. Since we only care about y, we may assume $X = \operatorname{Spec}(A)$ and $Y = \operatorname{Spec}(B)$ to begin with, and f is defined by a ring homomorphism $\varphi: B \to A$. Let $\mathfrak p$ be the prime ideal of B corresponding to y. We want to describe the set

$$f^{-1}(y) = \{ \mathfrak{q} \in \operatorname{Spec}(A) : \varphi^{-1}(\mathfrak{q}) = \mathfrak{p} \}.$$

By moding out \mathfrak{p} from the target and the domain, we may consider $\bar{\varphi}: B/\mathfrak{p} \to A/\varphi(\mathfrak{p})A$, and ask which primes in $A/\varphi(\mathfrak{p})A$ are pulled back to zero in B/\mathfrak{p} .

By moding out $\mathfrak p$ from the target and the domain, we may consider $\bar{\varphi}: B/\mathfrak p \to A/\varphi(\mathfrak p)A$, and ask which primes in $A/\varphi(\mathfrak p)A$ are pulled back to zero in $B/\mathfrak p$. Note that $B/\mathfrak p$ is a domain and $\bar{\varphi}$ is a finite map.

By moding out $\mathfrak p$ from the target and the domain, we may consider $\bar{\varphi}: B/\mathfrak p \to A/\varphi(\mathfrak p)A$, and ask which primes in $A/\varphi(\mathfrak p)A$ are pulled back to zero in $B/\mathfrak p$. Note that $B/\mathfrak p$ is a domain and $\bar{\varphi}$ is a finite map.

As we do not care about the non-zero ideals of B/\mathfrak{p} , we can localize this ring at 0. Write $K=\operatorname{Frac}(B/\mathfrak{p})$. The map $\bar{\varphi}$ defines a finite map $K\to ((A/\varphi(\mathfrak{p})A)\otimes_B K$ and there is a bijection between prime ideals of $A/\varphi(\mathfrak{p})$ and prime ideals of $(A/\varphi(\mathfrak{p})A)\otimes K$. That is

$$f^{-1}(y) \simeq \operatorname{Spec}((A/\varphi(\mathfrak{p})A) \otimes_B K)$$

By moding out $\mathfrak p$ from the target and the domain, we may consider $\bar{\varphi}: B/\mathfrak p \to A/\varphi(\mathfrak p)A$, and ask which primes in $A/\varphi(\mathfrak p)A$ are pulled back to zero in $B/\mathfrak p$. Note that $B/\mathfrak p$ is a domain and $\bar{\varphi}$ is a finite map.

As we do not care about the non-zero ideals of B/\mathfrak{p} , we can localize this ring at 0. Write $K=\operatorname{Frac}(B/\mathfrak{p})$. The map $\bar{\varphi}$ defines a finite map $K\to ((A/\varphi(\mathfrak{p})A)\otimes_B K$ and there is a bijection between prime ideals of $A/\varphi(\mathfrak{p})$ and prime ideals of $(A/\varphi(\mathfrak{p})A)\otimes K$. That is

$$f^{-1}(y) \simeq \operatorname{Spec}((A/\varphi(\mathfrak{p})A) \otimes_B K)$$

Since the latter is a finite dimensional K-algebra, it has only finitely primes (a consequence of being artinian).

Dimension and codimension

Definition

Let X be a scheme. The dimension of X is the supremum of integers n such that there exist closed irreducible subsets

$$X_0 \subsetneq X_1 \subsetneq X_2 \subsetneq \ldots \subsetneq X_n \subseteq X$$
.

Dimension and codimension

Definition

Let X be a scheme. The dimension of X is the supremum of integers n such that there exist closed irreducible subsets

$$X_0 \subsetneq X_1 \subsetneq X_2 \subsetneq \ldots \subsetneq X_n \subseteq X$$
.

The codimension of a closed *irreducible* subset $Z \subseteq X$ is the supermum of integers n such that there exists a chain

$$Z = Z_0 \subsetneq Z_1 \subsetneq \ldots \subsetneq Z_n \subseteq X$$

of closed irreducible subsets of X.

Dimension and codimension

Definition

Let X be a scheme. The dimension of X is the supremum of integers n such that there exist closed irreducible subsets

$$X_0 \subsetneq X_1 \subsetneq X_2 \subsetneq \ldots \subsetneq X_n \subseteq X$$
.

The codimension of a closed *irreducible* subset $Z \subseteq X$ is the supermum of integers n such that there exists a chain

$$Z = Z_0 \subsetneq Z_1 \subsetneq \ldots \subsetneq Z_n \subseteq X$$

of closed irreducible subsets of X. For an arbitrary closed subset Y we define

$$\operatorname{codim}(Y,X) = \inf_{Z \subseteq Y \text{ irr}} \operatorname{codim}(Z,X)$$

Examples

- ① dim $\operatorname{Spec}(k) = 0$ and dim $\mathbb{A}_k^n = n$ for any field k;
- \bigcirc dim Spec(\mathbb{Z}) = 1;
- **3** More generally, if $X = \operatorname{Spec}(A)$ then $\dim(X) = \dim(A)$, where the RHS is the Krull dimesion, i.e the length of a maximal descending chain of prime ideals.
- For a noetherian ring A, $\dim(\operatorname{Spec}(A[x_1,\ldots,x_n])) = \dim(A) + n$.

Let X be an integral scheme of finite type over a field k.

- For any closed point $x \in X$, dim $X = \dim \mathcal{O}_{X,x}$
- ② Given a closed subset $Y \subseteq X$, show that $\dim(Y) + \operatorname{codim}(Y, X) = \dim(X)$.
- **3** Let $U \subseteq X$ be a non-empty open subset. Show that $\dim(U) = \dim(X)$.

Solution.

• In general, we have an bijective map $\operatorname{Spec}(\mathcal{O}_{X,x}) \to X$, with image within an affine open subset, which implies

$$\text{dim}(\mathcal{O}_{X,x}) = \text{dim}(\operatorname{Spec}(\mathcal{O}_{X,x})) \leq \text{dim}(X).$$

Solution.

1 In general, we have an bijective map $\operatorname{Spec}(\mathcal{O}_{X,x}) \to X$, with image within an affine open subset, which implies

$$\dim(\mathcal{O}_{X,x})=\dim(\operatorname{Spec}(\mathcal{O}_{X,x}))\leq\dim(X).$$

Conversely, assume first that $X = \operatorname{Spec}(A)$ for A a f.g. domain over k. Then $x = \mathfrak{m}$ is a maximal ideal and, by Theorem 1.8A in Hartshorne

$$\dim(X) = \dim(A) = \operatorname{ht}(\mathfrak{m}) + \dim(A/\mathfrak{m}) = \dim(\mathcal{O}_{X,\mathfrak{m}}) + 0.$$

Solution.

1 In general, we have an bijective map $\operatorname{Spec}(\mathcal{O}_{X,x}) \to X$, with image within an affine open subset, which implies

$$\dim(\mathcal{O}_{X,x})=\dim(\operatorname{Spec}(\mathcal{O}_{X,x}))\leq\dim(X).$$

Conversely, assume first that $X = \operatorname{Spec}(A)$ for A a f.g. domain over k. Then $x = \mathfrak{m}$ is a maximal ideal and, by Theorem 1.8A in Hartshorne

$$\dim(X) = \dim(A) = \operatorname{ht}(\mathfrak{m}) + \dim(A/\mathfrak{m}) = \dim(\mathcal{O}_{X,\mathfrak{m}}) + 0.$$

In the more general case, we have that $X = \bigcup_{i=1}^{n} X_i$, a finite union of spectra of f.g. domains over k. We have that

$$\dim(X) = \max \left\{ \dim X_i : i = 1, \dots, n \right\},\,$$

from which the claim follows.

② Assume first that Y is irreducible and $X = \operatorname{Spec}(A)$ for A f.g. domain over k. Then $Y = V(\mathfrak{p})$ for a prime \mathfrak{p} and, by definition $\operatorname{codim}(Y,X) = \operatorname{ht}(\mathfrak{p})$ and $\dim(Y) = \dim(A/\mathfrak{p})$. The result then follows, again, from Theorem 1.8A:

$$\dim(X) = \dim(A) = \operatorname{ht}(\mathfrak{p}) + \dim(A/\mathfrak{p}) = \operatorname{codim}(Y,X) + \dim(Y).$$

② Assume first that Y is irreducible and $X = \operatorname{Spec}(A)$ for A f.g. domain over k. Then $Y = V(\mathfrak{p})$ for a prime \mathfrak{p} and, by definition $\operatorname{codim}(Y,X) = \operatorname{ht}(\mathfrak{p})$ and $\dim(Y) = \dim(A/\mathfrak{p})$. The result then follows, again, from Theorem 1.8A:

$$\dim(X) = \dim(A) = \operatorname{ht}(\mathfrak{p}) + \dim(A/\mathfrak{p}) = \operatorname{codim}(Y,X) + \dim(Y).$$

If Y is reducible, then the result follows from the same equality applied to irreducible components.

Solution- contd.

② Assume first that Y is irreducible and $X = \operatorname{Spec}(A)$ for A f.g. domain over k. Then $Y = V(\mathfrak{p})$ for a prime \mathfrak{p} and, by definition $\operatorname{codim}(Y,X) = \operatorname{ht}(\mathfrak{p})$ and $\dim(Y) = \dim(A/\mathfrak{p})$. The result then follows, again, from Theorem 1.8A:

$$\dim(X) = \dim(A) = \operatorname{ht}(\mathfrak{p}) + \dim(A/\mathfrak{p}) = \operatorname{codim}(Y,X) + \dim(Y).$$

If Y is reducible, then the result follows from the same equality applied to irreducible components. For $X = \bigcup X_i$, apply the same argument as before.

Solution- contd.

② Assume first that Y is irreducible and $X = \operatorname{Spec}(A)$ for A f.g. domain over k. Then $Y = V(\mathfrak{p})$ for a prime \mathfrak{p} and, by definition $\operatorname{codim}(Y,X) = \operatorname{ht}(\mathfrak{p})$ and $\dim(Y) = \dim(A/\mathfrak{p})$. The result then follows, again, from Theorem 1.8A:

$$\dim(X) = \dim(A) = \operatorname{ht}(\mathfrak{p}) + \dim(A/\mathfrak{p}) = \operatorname{codim}(Y,X) + \dim(Y).$$

If Y is reducible, then the result follows from the same equality applied to irreducible components. For $X = \bigcup X_i$, apply the same argument as before.

3 To prove the last item, it suffices to see that any non-empty open subset contains a closed point. For the case $X = \operatorname{Spec}(A)$ and $U = D(f) \neq \emptyset$, this is equivalent to finding a maximal ideal not containing f. But if no such maximal exists, then f is in the Jacobson radical of A, which is zero.

Let $R = \mathbb{C}[\![x]\!]$ and $X = \operatorname{Spec}(R[t])$. Show that all statements in the previous exercise fail for X.

Let $R = \mathbb{C}[\![x]\!]$ and $X = \operatorname{Spec}(R[t])$. Show that all statements in the previous exercise fail for X.

Solution.

Note that dim(X) = dim(R) + 1 = 2, since R is a dvr.

Consider $\mathfrak{p}=(xt-1)$. Then $\mathfrak{p}\supseteq(x-1,t-1)$ is prime of height 1, hence

$$\dim(\mathcal{O}_{X,\mathfrak{p}}) = \dim(R[t]_{\mathfrak{p}}) = \operatorname{ht}(\mathfrak{p}) = 1 < \dim X.$$

Moreover, for $Y = V(\mathfrak{p})$ we have that $\operatorname{codim}(Y, X) = 1$. However,

$$\dim(Y) = \dim \operatorname{Spec}(\mathbb{C}[\![x]\!][t]/(xt-1)) = \dim \operatorname{Spec}(\mathbb{C}(\!(x)\!)) = 0,$$

since the latter is a field. So $\dim(Y) + \operatorname{codim}(Y, X) < \dim(X)$.

Let $R = \mathbb{C}[\![x]\!]$ and $X = \operatorname{Spec}(R[t])$. Show that all statements in the previous exercise fail for X.

Solution.

Note that dim(X) = dim(R) + 1 = 2, since R is a dvr.

Consider $\mathfrak{p}=(xt-1)$. Then $\mathfrak{p}\supseteq (x-1,t-1)$ is prime of height 1, hence

$$\dim(\mathcal{O}_{X,\mathfrak{p}}) = \dim(R[t]_{\mathfrak{p}}) = \operatorname{ht}(\mathfrak{p}) = 1 < \dim X.$$

Moreover, for $Y = V(\mathfrak{p})$ we have that $\operatorname{codim}(Y, X) = 1$. However,

$$\dim(Y) = \dim \operatorname{Spec}(\mathbb{C}[\![x]\!][t]/(xt-1)) = \dim \operatorname{Spec}(\mathbb{C}(\!(x)\!)) = 0,$$

since the latter is a field. So $\dim(Y) + \operatorname{codim}(Y, X) < \dim(X)$. Finally, the localization of R[t] by x is a polynomial ring over the field $\mathbb{C}((x))$, hence one-dimensional. So $\dim(D(x)) = 1 < \dim(X)$.

The fiber product

Let X, Y be schemes over a scheme S. The fiber product of X and Y over S is a scheme $X \times_S Y$ with maps to X and Y, such that for any scheme W with maps $W \to X, \ W \to Y$ whose compositions with the morphism to S coincide, $\exists !$ morphism $W \to X \times_S Y$ such that the following diagram commutes:

Theorem

The fiber product exists.

Fibers of morphisms

One application of the fiber product is to endow the fibers of a morphism with a natural structure of a scheme. Given a morphism $f: X \to Y$ and a set-theoretic point $y \in Y$, recall y is determined by the inclusion $\operatorname{Spec}(k_y) \to Y$, where $k_y = \mathcal{O}_{Y,y}/\mathfrak{m}_y$ is the residue field at $y \in Y$.

Fibers of morphisms

One application of the fiber product is to endow the fibers of a morphism with a natural structure of a scheme.

Given a morphism $f: X \to Y$ and a set-theoretic point $y \in Y$, recall y is determined by the inclusion $\operatorname{Spec}(k_y) \to Y$, where $k_y = \mathcal{O}_{Y,y}/\mathfrak{m}_y$ is the residue field at $y \in Y$.

Definition

The fiber X_y of X over y is the scheme given by the fiber product diagram:

$$X_y := \operatorname{Spec}(k_y) \times_Y X \longrightarrow X$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec}(k_y) \stackrel{f}{\longrightarrow} Y$$

Fibers of morphisms

One application of the fiber product is to endow the fibers of a morphism with a natural structure of a scheme.

Given a morphism $f: X \to Y$ and a set-theoretic point $y \in Y$, recall y is determined by the inclusion $\operatorname{Spec}(k_y) \to Y$, where $k_y = \mathcal{O}_{Y,y}/\mathfrak{m}_y$ is the residue field at $y \in Y$.

Definition

The fiber X_y of X over y is the scheme given by the fiber product diagram:

$$X_y := \operatorname{Spec}(k_y) \times_Y X \longrightarrow X$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec}(k_y) \stackrel{f}{\longrightarrow} Y$$

A similar notion exists for schematic points and geometric points.

Example (Fiber of a \mathbb{C} -point)

Let $X = \operatorname{Spec}(\mathbb{C})$, $Y = \operatorname{Spec}(\mathbb{R})$ and $\eta \in Y(\mathbb{C})$ the point corresponding to the inclusion $\mathbb{R} \to \mathbb{C}$. What is the fiber of η ?

Example (Fiber of a \mathbb{C} -point)

Let $X = \operatorname{Spec}(\mathbb{C})$, $Y = \operatorname{Spec}(\mathbb{R})$ and $\eta \in Y(\mathbb{C})$ the point corresponding to the inclusion $\mathbb{R} \to \mathbb{C}$. What is the fiber of η ?

$$Y_{\eta} = \operatorname{Spec}(\mathbb{C}) \times_{\operatorname{Spec}} (\mathbb{R}) \operatorname{Spec}(\mathbb{C}) = \operatorname{Spec}(\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}) = \operatorname{Spec}(\mathbb{C} \times \mathbb{C})$$

In particular, the topological space underlying the fiber over $\boldsymbol{\eta}$ has two points.

- **1** Let $f: X \to Y$ be a morphism of schemes. Show that $|X_y| \simeq f^{-1}(y)$ as a topological space, for any $y \in Y$.
- 2 Let $X = \operatorname{Spec}(k[s,t]/(s-t^2))$ and $Y = \operatorname{Spec}(k[s])$ be k-schemes with the morphism f associated to the map $s \mapsto s : k[s] \to k[s,t]$ and k a field. Compute the fibers of f.

• We may assume $Y = \operatorname{Spec}(B)$ is affine. Assume first that $X = \operatorname{Spec}(A)$ is affine as well and $f : \operatorname{Spec}(A) \to \operatorname{Spec}(B)$ is given by $f(\mathfrak{p}) = \varphi^{-1}(\mathfrak{p})$ for $\varphi : B \to A$.

• We may assume $Y = \operatorname{Spec}(B)$ is affine. Assume first that $X = \operatorname{Spec}(A)$ is affine as well and $f : \operatorname{Spec}(A) \to \operatorname{Spec}(B)$ is given by $f(\mathfrak{p}) = \varphi^{-1}(\mathfrak{p})$ for $\varphi : B \to A$. If $y = \mathfrak{q} \triangleleft B$, then

$$f^{-1}(y) = \{ \mathfrak{p} \in \operatorname{Spec}(A) : \varphi^{-1}(\mathfrak{p}) = \mathfrak{q} \}.$$

• We may assume $Y = \operatorname{Spec}(B)$ is affine. Assume first that $X = \operatorname{Spec}(A)$ is affine as well and $f : \operatorname{Spec}(A) \to \operatorname{Spec}(B)$ is given by $f(\mathfrak{p}) = \varphi^{-1}(\mathfrak{p})$ for $\varphi : B \to A$. If $y = \mathfrak{q} \triangleleft B$, then

$$f^{-1}(y) = \{ \mathfrak{p} \in \operatorname{Spec}(A) : \varphi^{-1}(\mathfrak{p}) = \mathfrak{q} \}.$$

By a previous exercise

$$f^{-1}(y) \stackrel{1-1}{\longleftrightarrow} \operatorname{Spec}((A/\varphi(\mathfrak{p})A) \otimes_B k_y \quad \text{for } k_y = \mathcal{O}_{Y,y}/\mathfrak{m}_y.$$

• We may assume $Y = \operatorname{Spec}(B)$ is affine. Assume first that $X = \operatorname{Spec}(A)$ is affine as well and $f : \operatorname{Spec}(A) \to \operatorname{Spec}(B)$ is given by $f(\mathfrak{p}) = \varphi^{-1}(\mathfrak{p})$ for $\varphi : B \to A$. If $y = \mathfrak{q} \triangleleft B$, then

$$f^{-1}(y) = \{ \mathfrak{p} \in \operatorname{Spec}(A) : \varphi^{-1}(\mathfrak{p}) = \mathfrak{q} \}.$$

By a previous exercise

$$f^{-1}(y) \stackrel{1-1}{\longleftrightarrow} \operatorname{Spec}((A/\varphi(\mathfrak{p})A) \otimes_B k_y \quad \text{for } k_y = \mathcal{O}_{Y,y}/\mathfrak{m}_y.$$

This bijection is order preserving, hence a homeomorphism.

• We may assume $Y = \operatorname{Spec}(B)$ is affine. Assume first that $X = \operatorname{Spec}(A)$ is affine as well and $f : \operatorname{Spec}(A) \to \operatorname{Spec}(B)$ is given by $f(\mathfrak{p}) = \varphi^{-1}(\mathfrak{p})$ for $\varphi : B \to A$. If $y = \mathfrak{q} \triangleleft B$, then

$$f^{-1}(y) = \{ \mathfrak{p} \in \operatorname{Spec}(A) : \varphi^{-1}(\mathfrak{p}) = \mathfrak{q} \}.$$

By a previous exercise

$$f^{-1}(y) \stackrel{1-1}{\longleftrightarrow} \operatorname{Spec}((A/\varphi(\mathfrak{p})A) \otimes_B k_y \quad \text{for } k_y = \mathcal{O}_{Y,y}/\mathfrak{m}_y.$$

This bijection is order preserving, hence a homeomorphism.

For X non-affine, we need to show that the fiber of f over y is obtained by gluing of the fibers of $f|_{U_i}$, where $X = \bigcup_i \operatorname{Spec}(U_i)$ is an affine cover. This will be shown in the home exercise.

Now $f: X = \operatorname{Spec}(k[s,t]/(s-t^2)) \to Y = \operatorname{Spec}(k[s])$ is associated to the map $s \mapsto s$. The prime ideals of k[s] are either $\mathfrak{p} = (s - \lambda)$ or $\mathfrak{p} = 0$ and the residue field of k[s] of \mathfrak{p} is k[s]/(p(s)) for $p \in k[s]$ irreducible in the first case, or k(s) over the generic point.

Now $f: X = \operatorname{Spec}(k[s,t]/(s-t^2)) \to Y = \operatorname{Spec}(k[s])$ is associated to the map $s \mapsto s$. The prime ideals of k[s] are either $\mathfrak{p} = (s-\lambda)$ or $\mathfrak{p} = 0$ and the residue field of k[s] of \mathfrak{p} is k[s]/(p(s)) for $p \in k[s]$ irreducible in the first case, or k(s) over the generic point. The corresponding fibers are:

Now $f: X = \operatorname{Spec}(k[s,t]/(s-t^2)) \to Y = \operatorname{Spec}(k[s])$ is associated to the map $s \mapsto s$. The prime ideals of k[s] are either $\mathfrak{p} = (s-\lambda)$ or $\mathfrak{p} = 0$ and the residue field of k[s] of \mathfrak{p} is k[s]/(p(s)) for $p \in k[s]$ irreducible in the first case, or k(s) over the generic point. The corresponding fibers are:

• If $p(s) \neq s$ then

$$X_y = \operatorname{Spec}(k[s,t](s-t^2) \otimes_{k[s]} k[s]/(p(s))) = \operatorname{Spec}(K[t]/(s^2-t))$$

where K is the splitting field of p. If s has a square root in K then $X_y \simeq \operatorname{Spec}(K[t]/(t-\sqrt{s})) \sqcup \operatorname{Spec}(K[t]/(t+\sqrt{s}))$ and hes two points. Otherwise, X_y is the spectrum of a field and has one point.

Now $f: X = \operatorname{Spec}(k[s,t]/(s-t^2)) \to Y = \operatorname{Spec}(k[s])$ is associated to the map $s \mapsto s$. The prime ideals of k[s] are either $\mathfrak{p} = (s-\lambda)$ or $\mathfrak{p} = 0$ and the residue field of k[s] of \mathfrak{p} is k[s]/(p(s)) for $p \in k[s]$ irreducible in the first case, or k(s) over the generic point. The corresponding fibers are:

• If $p(s) \neq s$ then

$$X_y = \operatorname{Spec}(k[s,t](s-t^2) \otimes_{k[s]} k[s]/(p(s))) = \operatorname{Spec}(K[t]/(s^2-t))$$

where K is the splitting field of p. If s has a square root in K then $X_y \simeq \operatorname{Spec}(K[t]/(t-\sqrt{s})) \sqcup \operatorname{Spec}(K[t]/(t+\sqrt{s}))$ and hes two points. Otherwise, X_y is the spectrum of a field and has one point.

② If p(s) = s then X_v is non-reduced and has one point.

$$X_y = \operatorname{Spec}(k[s,t]/(s-t^2) \otimes_{k[s]} k_{s=0}) = \operatorname{Spec}(k[t]/t^2).$$

Finally, if p = 0, then

$$X_y = \operatorname{Spec}(k[s,t]/(s-t^2) \otimes k(s)) \simeq \operatorname{Spec}(k[t] \otimes k(t^2))$$

= $\operatorname{Spec}(k(t))$.

Base change

Another useful application of fiber products is the ability to change the base of our scheme. Given a scheme X over a scheme S, and S' another S-scheme, we get a new scheme $X_{S'}$ over S' by setting $X_{S'} = X \times_S S'$. This defines a functor $\operatorname{\mathbf{\underline{Sch}}}_S \to \operatorname{\mathbf{\underline{Sch}}}_{S'}$.

Base change

Another useful application of fiber products is the ability to change the base of our scheme. Given a scheme X over a scheme S, and S' another S-scheme, we get a new scheme $X_{S'}$ over S' by setting $X_{S'} = X \times_S S'$. This defines a functor $\underline{\mathbf{Sch}}_S \to \underline{\mathbf{Sch}}_{S'}$.

Exercise (Home exercise)

Show that the following properties are stable under base change:

- lacktriangledown X o S is a closed embedding
- $2 X \rightarrow S$ is an open embedding
- $X \to S$ is of finite type

Separated and proper morphisms

General topogical facts

- A topological space X is Hausdorff iff the diagonal embedding $X \xrightarrow{\Delta} X \times X$ is closed, iff $\Delta(X)$ is closed.
- A Hausdorff topological space X is compact iff for any Hausdorff topological space Y, the projection map $X \times Y \to Y$ is closed.

Definition

A morphism $X \to S$ of schemes is said to be separated if the diagonal embedding $X \to X \times_S X$ is closed.

Example

If X and S are both affine then $X \to S$ is separated.

Let $X \to S$ be a separated morphism with S affine. Let U and V be open affine subsets of X. Show that $U \cap V$ is also affine.

Is this true if X is not separated?

Let $X \to S$ be a separated morphism with S affine. Let U and V be open affine subsets of X. Show that $U \cap V$ is also affine.

Is this true if X is not separated?

Proof.

Write $U = \operatorname{Spec}(A)$, $V = \operatorname{Spec}(B)$ and $S = \operatorname{Spec}(R)$.

• Step 1. $U \times_S V = \operatorname{Spec}(A \times_R B)$ is an open affine subscheme of $X \times_S X$, and $\Delta_S(X) \cap U \times_S V$ is a closed subscheme of it.

Let $X \to S$ be a separated morphism with S affine. Let U and V be open affine subsets of X. Show that $U \cap V$ is also affine.

Is this true if X is not separated?

Proof.

Write $U = \operatorname{Spec}(A)$, $V = \operatorname{Spec}(B)$ and $S = \operatorname{Spec}(R)$.

- Step 1. $U \times_S V = \operatorname{Spec}(A \times_R B)$ is an open affine subscheme of $X \times_S X$, and $\Delta_S(X) \cap U \times_S V$ is a closed subscheme of it.
- ② Step 2. Therefore, $\Delta_S(X) \cap U \times_S V$ is the spectrum of the quotient of $A \otimes_R B$ by some ideal. But $U \cap V \simeq U \times_S V \cap \Delta_S(X)$.

Let $X \to S$ be a separated morphism with S affine. Let U and V be open affine subsets of X. Show that $U \cap V$ is also affine.

Is this true if X is not separated?

Proof.

Write $U = \operatorname{Spec}(A)$, $V = \operatorname{Spec}(B)$ and $S = \operatorname{Spec}(R)$.

- Step 1. $U \times_S V = \operatorname{Spec}(A \times_R B)$ is an open affine subscheme of $X \times_S X$, and $\Delta_S(X) \cap U \times_S V$ is a closed subscheme of it.
- ② Step 2. Therefore, $\Delta_S(X) \cap U \times_S V$ is the spectrum of the quotient of $A \otimes_R B$ by some ideal. But $U \cap V \simeq U \times_S V \cap \Delta_S(X)$.

This fails for non-separated X; for example- if X is the affine line with doubled origin, and U and V are the two copies of \mathbb{A}^1 within it, then $U \cap V = D(0)$, which is not affine.

Questions?