CS-458: Computer & Network Forensics

Winter 2021

Midterm Exam

Total Points: 100

Name: Colin Quinn

Instructions (Read them!):

- 1. The final is a take-home exam.
- 2. The final exam will be due on 2/20/2021 @ 11:00 PM.
- 3. The exam has a total of 8 questions. Total of 13 pages
- 4. Read each question carefully. Complete **all** problems.
- 5. The answers can be typed or handwritten. Your responses should be legible. They won't be graded if I can't read them.
- 6. Upload your answers to the blackboard dropbox in a single PDF file.
- 7. Show your work and **state your assumptions** clearly, if any; partial credit may be awarded. Assumptions must be valid.
- 8. If you do not understand the question, please clarify the question with the instructor.
- 9. If any student is caught cheating, he/she will be awarded zero, and action will be taken according to Kettering University Code of Student Conduct

Section	Points
NTFS Forensics	30
LINUX Forensics	35
FAT32 Forensics	30
FREE Points :-)	5
Total	100

NTFS Forensics

1. Refer to the Master boot record of a Hard Drive. Given that the sector size is 0x200 bytes.

[8 points]

Offset	I	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	ØD	0E	0F	ASCII
000000000	 	33	C0	 8E	D0	ВС	. 00	70	8E	C0	8E	D8	BE	00	7C	BF	 00	3
000000010		06	В9	00	02	FC	F3	3 A4	1 50	68	1 C	06	СВ	FB	В9	04	00	Ph
000000020		BD	BE	07	80	7E	00	00	7C	0B	0F	85	0E	01	83	C 5	10	~
000000030		E2	F1	CD	18	88	56	00	55	C 6	46	11	05	C 6	46	10	00	V.U.F F
			•		• •			•	воот	cc	DE	•		•	• (•	•	
000000180		20	6C	6F	61	64	69	6E	67	20	6F	70	65	72	61	74	69	loading operati
000000190		6E	67	20	73	79	73	74	65	6D	00	4D	69	73	73	69	6E	ng system.Missin
0000001A0		67	20	6F	70	65	72	61	74	69	6E	67	20	73	79	73	74	g operating syst
0000001B0		65	6D	00	00	00	63	7B	9A	1A	46	36	F9	00	00	80	20	em c{F6
0000001C0	-	21	00	07	DD	1E	3F	00	08	10	00	00	Α0	0F	00	00	DD	1
0000001D0		1F	3F	83	FE	E FF	FF	- 00	8A (0D	10	00	50	В0	03	00	00	.? P
0000001E0		00	00	00	00	00	00	00	00	00	00	00	00	00	00	80	EE	!
0000001D0		6F	7F	AB	FE	FF	FF	0F	99	9F	00	00	50	В0	03	55	AA	U.

Based on the record shown above fill in the following table.

Partition	Physical	Location	Active
Туре	in dec	in hex	Yes/No
NTFS, HPFS, exFat	1,050,624	Start sector = $0x100800$	Yes
Linux	269,330,432	Start sector = $0x100DA800$	No
Unused	0	Start sector = 0x00000000	No
Mac OSX boot	10,459,407	Start sector = 0x9F990F	Yes

Rough work available in the next page

Rough work if needed

Sector size = 0x200 = 512 bytes

Bytes per sector = 0xBE

Sectors per cluster = 0x7C

LCN of \$MFT: 0x550056568818CDF1E2

Answer derived from partition table breakdown on slide 4. Relative start sector is the little-endian form of the 4 bytes starting at 0x1C6, 0x1D6... I feel like there is more math to do for this but cannot find notes for it.

2. Refer to the NTFS boot record.

[7 points]

Offset		00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	ASCII
00000000		EB	52	90	4E	54	46	53	20	20	20	20	00	02	20	00	00	.R.NTFS
00000010		00	00	00	00	00	F8	00	00	3F	00	FF	00	80	00	00	00	
00000020		00	00	00	00	80	00	80	00	FF	E7	0F	00	00	00	00	00	
00000030		6A	2A	00	00	00	00	00	00	01	00	00	00	00	00	00	00	j*
00000040		F6	00	00	00	F4	00	00	00	5F	55	F4	8C	65	F4	8C	82	Ue
00000050		00	00	00	00	FA	33	C0	8E	D0	ВС	00	7C	FB	68	C0	07	3 .h
00000060		1F	1E	68	66	00	СВ	88	16	0E	00	66	81	3E	03	00	4E	hf f.>N
00000070		54	46	53	75	15	В4	41	ВВ	AA	55	CD	13	72	0C	81	FB	TFSuAUr
00000080		55	AA	75	06	F7	C1	01	00	75	03	E9	DD	00	1E	83	EC	U.uu
	•		•	• •	•		•	• •	. во	от с	ODE			•		•		
00001F0		00	00	00	00	00	00	8A	01	Α7	01	BF	01	00	00	55	AA	U.

Bytes per sector = 0x200 = 512 bytes

a) Number of sectors per cluster in decimal.

Sectors per cluster = 0x02 = 2 sectors.

b) Size of each cluster in bytes (in dec)

Cluster size = 0x02 * 0x200 = 0x400 = 1024 bytes

c) Physical location of \$MFT record (in hex).

LCN of MFT = 0x2A6A

Location of MFT = 0x2A6A * 0x400 = 0xA9A800

3. The following is the data attribute (**0x80**) of one of the user file record of the NTFS file system shown above. [**15 points**]

Offset		00	01	02	03	04	05	06	07	08	09	0A	0В	9C	ØD	0E	0F	I	ASCII
0A9B3110										80	00	00	00	48	00	00	00		
0A9B3120		01	00	00	00	00	00	01	00	00	00	00	00	00	00	00	00		
0A9B3130		8F	0D	00	00	00	00	00	00	40	00	00	00	00	00	00	00		
0A9B3140		00	00	64	03	00	00	00	00	00	D6	E3	89	2A	00	00	00		
0A9B3150		00	D6	E3	89	2A	00	00	00	32	90	0D	AC	0B	FF	32	00	1	•••••
0A9B3160	I	DD	AD	EF	BE	00	00	00	00	FF	FF	FF	FF	FF	00	00	00		

a) Determine if the file is a resident or a non-resident

Non-resident, the size on disk is greater than the file size and offset 0x0A9B3120 is set to 0x01.

- b) Provide the physical location of the data and the size of the data. The data is divided into chunks, identify the LCN portion and VCN portion and also provide the size of each chunk and provide the command to extract each portion. Show all the steps.
- i) LCN: 32 | 90 | 0D | AC | 0B | FF

Cluster runs: 0xAC0D90 First Cluster Location: 0xFF0B

Decimal: 65,291

Byte offset: 267,431,936

Cluster location = 0xFF0B000

ii) VCN

Assuming 0x00 means that we take the bytes available, in this case they are: DD AD EF BE This assumption could be wrong. I couldn't find any notes on this case as we use the first byte to determine the run length and offset.

VCN: 00 | DD | AD | EF | BE

Cluster Runs: 0xADDD

First cluster location: 0xBEEF

Decimal: 48,879

 $VCN ext{ offset} = 48,879 + 65,291 = 114,170$

Byte offset: 467,640,320

Cluster Location = 0x1BDFA000

empty space in the next page

LINUX Forensics

4. Given below is the long listing of a directory named "**foobar**". Refer to the output below and answer the questions: [15 Points]

student@autobot:~/foobar\$ ls -ila

```
total 16
296539 drwxrwxr-x
                   2 student student 4096 Feb 11 16:40 .
311299 drwxr-xr-x 27 student student 4096 Feb 11 16:35 ...
296538 -rw-rw-r-- 2 student student
                                        21 Feb 11 16:02 foo
296538 -rw-rw-r--
                   2 student student
                                        21 Feb 11 16:02 link1
                                         5 Feb 11 16:03 link2 -> link1
296541 lrwxrwxrwx
                   2 student student
296541 lrwxrwxrwx
                   2 student student
                                         5 Feb 11 16:03 link3 -> link1
                   1 student student
                                         5 Feb 11 16:35 link4 -> link3
296542 lrwxrwxrwx
296543 lrwxrwxrwx
                   1 student student
                                         3 Feb 11 16:39 link5 -> foo
                                         5 Feb 11 16:40 link6 -> link5
296566 lrwxrwxrwx
                   1 student student
296566 lrwxrwxrwx
                   2 student student
                                         5 Feb 11 16:40 link7 -> link5
```

a)	Identify all the hardlinks. You answer should be of the form ('a' is a hardlink to file 'b' (or) link 'c'; where a, b and c are the names of links/files) link1 is a hardlink to foo link3 is a hardlink to link1 link6 is a hardlink to link5 link7 is a hardlink to link5
b)	Identify all the symbolic links. You answer should be of the form ('a' is a symbolic link to file 'b' (or) link 'c'; where a, b and c are the names of links/files)
	link2 is a softlink to link1 link4 is a softlink to link3 link5 is a softlink to foo
	Softlinks are determined by having unique inode values.
c)	What happens when the file "foo" is renamed to "bar".
	Nothing should change. The only direct link to "foo" is the softlink link5. Though link6 and link7 are hardlinks to link5, the inode to link5 will not be impacted.
d)	What happens when "link1" is deleted
	If link1 is deleted, the link2, link3, and link4 will also lose their connection to "foo".

5. Given below is the command to check the number of inodes used and the number of inodes available. Assume there is a file called "temp.txt" present. Refer to the output below and answer the questions:[5 Points]

student@autobot:~\$ df -i /dev/sdb1

Filesystem Inodes IUsed IFree IUse% Mounted on udev 10000 9900 100 99% /dev

a) How many new hard links can be created to the file "temp.txt"

The limit to hardlinks is determined by the OS since they do not require a unique inode value

- b) How many new symbolic links can be created to the file "temp.txt" Assuming IFree is the amount of free inodes, there would be 100 possible symbolic links to temp.txt
- c) How many new copies of "temp.txt" can be created.
 Based on the same logic that a new file has a unique inode, there would be 100 possible copies of temp.txt
- **6.** The following is an output of an ext4 directory entry named "dir". Based on the contents of the directory, fill in the table. Include the "." and ".." in the table. [15 Points]

	00	0′	1 02	03	04 05	06	07	80	09 0A	0B	< organization
00000000	0C	00	00	00	0C 00	01	02	2E	0000	00	
0000000C	02	00	00	00	0C 00	02	02	2E	2E00	00	
00000018	0E	00	00	00	10 00	80	01	74	6573	74	test
00000024	66	69	6C	65	0F 00	00	00	0C	0004	02	file
00000030	74	65	6D	70	10 00	00	00	10	0005	07	temp
0000003C	6C	69	6E	6B	31 00	00	00	0E	0000	00	link1
00000048	10	00	05	01	6C 69	6E	6B	32	0000	00	link2
00000054	11	00	00	00	10 00	05	07	6C	696E	6B	link
00000060	33	00	00	00	12 00	00	00	9C	0305	07	3
0000006C	6C	69	6E	6B	34 00	00	00	00	0000	00	link4
00000078	00	00	00	00	00 00	00	00	00	0000	00	
00000084	00	00	00	00	00 00	00	00	00	0000	00	

Note: If a file is a link identify to which file is it linking to

offset	Inode	_number	Rec length	File type	- Linked to	File Name
(in hex)	(in hex)	(in dec)	(in dec)	Sym/hard /file/dir	LINKEG CO	FIIE Name
0x00	0xC	12	12	Directory	Not linked	dot
0x0C	0x2	2	12	Directory	Not linked	(dot dot)
0x18	0xE	14	16	Regular File	Not linked	testfile
0x28	0xF	15	12	Directory	Not linked	temp
0x34	0x10	16	16	Sym link		link1
0x44	0xE	14	16	Hard link	testfile	link2
0x54	0x11	17	16	Sym link		link3
0x64	0x12	18	924	Sym link		link4
				a limbo ana atta a		

I don't remember going over how to determine what symbolic links are attached to when given the hex dump.

FAT Forensics

7. Refer to the following FAT32 boot record and answer the following questions [7 Points]

Offset		00	01	02	03	04	05	06	07	08	09	0A	0B	9C	0D	0E	0F	Ī	ASCII
 	. -							:					. – – -						
00010000		ЕВ	58	90	4D	53	44	4F	53	35	2E	30	00	02	01	6E	10		.X.MSDOS5.0
00010010		02	00	00	00	00	F8	00	00	3F	00	10	00	80	00	00	00		?
00010020		00	E8	07	00	E5	03	00	00	00	00	00	00	02	00	00	00	.	
00010030		01	00	06	00	00	00	00	00	00	00	00	00	00	00	00	00	.	
00010040		80	00	29	85	В3	EA	10	4E	4F	20	4E	41	4D	45	20	20) NO NAME
00010050		20	20	46	41	54	33	32	20	20	20								FAT32

a) Number of sectors per cluster in decimal.

Located at 0x0001000D, is 0x01 which is 1 in decimal. There is 1 sector per cluster.

b) Size of each cluster in bytes (in dec)

0x200 = 512 bytes per cluster.

c) Identify the physical location of the Root directory. Show the steps

MBR = 0x00010000 Reserved region = 0x16E * 0x200 = 0x2DC00 Fat Region = 0x3E5 * 0x200 = 0x7CA00

Root location = 0x00010000 + 0x2DC00 + 0x7CA00 = 0xAB600

d) Identify the physical location of the first FAT table.

FAT table 1 = MBR + reserved region = 0x10000 + 0x2DC00 = 0x3DC00

8. Following is the **Root directory entry** information of a FAT32 file system.

Offset	00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII
00400000	46 41 54 33 32 20 20 20 20 20 20 08 00 00 00 FAT32
00400010	00 00 00 00 00 38 98 4D 52 00 00 00 00 00 8.MR
00400080	E5 4E 4F 4E 59 20 20 20 4A 5047 20 18 8E 3A 98 .NONY JPG
00400090	4D 52 4D 52 00 00 86 4E 3D 4E 06 00 69 28 00 00 MRMR N=Ni(
004000A0	41 74 00 65 00 73 00 74 00 2E 00 0F 00 E5 74 00 At.e.s.t t.
004000B0	78 00 74 00 2E 00 74 00 78 00 00 00 74 00 00 00 x.tt.x t
004000C0	54 45 53 54 54 58 7E 31 54 58 54 20 00 8E 3A 98 TESTTX~1TXT
004000D0	4D 52 4D 52 00 00 4B 8E 41 4E1B 00 1F 00 00 00 MRMRK.AN
004000E0	24 52 45 43 59 43 4C 45 42 49 4E 16 00 AF 3A 98 \$RECYCLEBIN:
004000F0	4D 52 4D 52 00 00 3B 98 4D 52 1C 00 00 00 00 MRMR;.MR
00400100	42 78 00 74 00 2E 00 74 00 78 00 0F 00 32 74 00 Bx.tt.x 2t.
00400110	00 00 FF F
00400120	01 6C 00 61 00 72 00 67 00 65 00 0F 00 32 5F 00 .l.a.r.g.e 2
00400130	5F 00 66 00 69 00 6C 00 65 00 00 00 2E 00 74 00 f.i.l.e t.
00400140	4C 41 52 47 45 5F 7E 31 54 58 54 20 00 02 EE A1 LARGE_~1TXT
00400150	4D 52 4D 52 00 00 E4 A1 4D 52 1E 00 00 C0 17 00 MRMRMR
00400160	E5 74 00 78 00 74 00 2E 00 74 00 0F 00 96 78 00 .t.x.tt x.
00400170	74 00 00 00 FF
00400180	E5 73 00 65 00 63 00 72 00 65 00 0F 00 96 74 00 .s.e.c.r.e t.
00400190	5F 00 5F 00 66 00 69 00 6C 00 00 00 65 00 2E 00 f.i.l e
004001A0	E5 45 43 52 45 54 7E 31 54 58 54 20 00 21 F8 A1 .ECRET~1TXT .!
004001B0	4D 52 4D 52 00 00 E4 A1 4D 52 FE 0B 00 C0 17 00 MRMR MR
004001C0	42 74 00 78 00 74 00 2E 00 74 00 0F 00 39 78 00 Bt.x.tt 9x.
004001D0	74 00 00 00 FF
004001E0	01 61 00 6E 00 6F 00 74 00 68 00 0F 00 39 65 00 .a.n.o.t.h 9e.
004001F0	72 00 5F 00 66 00 69 00 6C 00 00 00 65 00 2E 00 rf.i.l e

FAT TABLE 1

Offset		00	01	02	03	04	05	06	07	08	09	0A	0B	9C	0D	0E	0F	I	ASCII
0001BC00		F8	FF	FF	0F	FF	FF	FF	FF	DE	17	00	00	FF	FF	FF	0F		
0001BC10		FF	FF	FF	0F	FF	FF	FF	0F	07	00	00	00	0A	00	00	00	1	
0001BC20		11	00	00	00	FF	FF	FF	0F	0F	00	00	00	9 OC	00	00	00	1	
0001BC30	-	0E	00	00	00	13	00	90	00	0D	00	00	00	10	00	00	00	1	
0001BC40		08	00	00	00	0B	00	9 00	9 00	FF	FF	FF	0F	FF	FF	FF	0F		• • • • • • • • • • • • • • • • • • • •

a) The root directory is split into 2 cluster locations. The first cluster is at physical sector **0x40000**. With the help of the FAT table, identify the second physical location in hex. Given that the logical cluster location of root directory is 2.

[5 points]

FAT table 2 = MBR + reserved region + FAT table 1

Bytes per sector = 0xFF = 255 bytes

MBR = 0x400000

Reserved region = 0xFFF * 0xFF = 0xEF1

FAT table size = 0x0FFFFFFFF * 0xFF * 0xFF = 0xFE00FFF01FF

Table 2 = 0x400000 + 0xEF1 + 0xFE00FFF01FF = 0xFE0103F10F0

b) Identify the 2 deleted files and fill in the table

[8 points]

File Name	Type (txt/jpg/png)	Physical location (in hex)	Size of the file (in dec)
NONY.jpg	Jpg		
Bx.txt	Txt		

I know that deleted files have an inode that is 0. This means that the first 4 bytes of the file entry needs to be 0x00000000.

c) With the help of the FAT table, provide all the logical and physical cluster locations of the file whose starting cluster number (logical) is 6. Show all the steps. [10 points]

Note: This is a tricky question. If you get it correct, you get 5 additional points as bonus!

Not sure where to begin with this.