Algorithms & Data Structures

Complexity & Running Time

Notations

Complexity

Р	Problems solvable in polynomial time.			
NP	Problems solvable in polynomial time via			
	"lucky" algorithm (Uses model of computation			
	which is no-deterministic).			
EXP	Problem solvable in exponential time.			
R	Problem solvable in finite time ("recursion").			

Running Time Estimation

0			
$T(n) = aT\left(\frac{n}{b}\right) + f(n)$			
$f(n) = O(n^{\log_b a - \varepsilon})$	$T(n) = O(n^{\log_b a})$		
$f(n) = \Theta(n^{\log_b a})$	$T(n) = \Theta(n^{\log_b a} \log n)$		
$f(n) = \Omega(n^{\log_b a + \varepsilon})$	$T(n) = \Theta(f(n))$		

Data Structures

Overview

Name	Description	
Array / Matrix	An array is a systematic arrangement of objects, usually in rows and columns	
Stack	LIFO (array based)	

Queue	FIFO (array/heap based)
Linked ListSinglyDoubleCircular	
Heap Max Min	A heap is a specialized tree-based data structure that satisfies the heap property. Used for creating priority queue.
Set	A set is an abstract data structure that can store certain values, without any particular order, and no repeated values. Can be constructed using hash and tree.
Disjoint-Set	A disjoint-set data structure is a data structure that keeps track of a set of elements partitioned into a number of disjoint (non-overlapping) subsets. Used in solving spanning tree problem.
Tree	
Hash Map	A hash map is a data structure used to implement an associative array, a structure that can map keys to values.
Graph	

Disjoint-Set

 $S = \{S_1, S_2, \dots, S_K\}$, where S_i is identified by representative x_i

Operations

Name	Description		
Make(x)	Create a new set S_x with		
	representative x		
Union (x, y)	Unites S_x and S_x where $x \in S_x$ and		
	$y \in S_y$. A new representative is		
	appointed for the created set.		
Find(x)	Returns representative of the set S_i		
	where $x \in S_i$		

Heap

Generic Properties		
$Root() \rightarrow 1$		
$Parent(i) \rightarrow i/2$		
$Left(i) \rightarrow 2i$		
$Right(i) \rightarrow 2i + 1$		
Max-Heap Properties		
$key[i] \ge \begin{cases} key[Left(i)] \\ key[Right(i)] \end{cases}$		

Tree

Binary-tree

AVL-tree

Red and Black-tree

Rotation (for AVL & RB trees)

B-tree

Model

Tree

Search	$O(log_{B+1}(N))$
Sort	$oldsymbol{o}\left(rac{N}{B}oldsymbol{log}_{M/B}\left(rac{N}{B} ight) ight)$
Permuting	$O\left(min\left\{N, \frac{N}{B}log_{M/B}\left(\frac{N}{B}\right)\right\}\right)$
Buffer Tree	
Dynamic version of	(1)
sort;	$O\left(rac{1}{B}oldsymbol{log}_{M/B}\left(rac{N}{B} ight) ight)$
Insert & Delete via	amortized
buffer;	ae.tized
Delay Batch Update	
Find Min	0 (0)

Insert and Delete operations are performed similar to binary search tree with split and shrink nodes if they are full. The efficient split and shrink can be performed via control of "load factor"

Cache Oblivious B-tree

Running Time	$O(log_B(N))$	Search, Insert &
		<u>Delete</u> operations;

Hash Tables

Definition	$h: U \rightarrow \{0,1,\ldots,m-1\}$
Load factor	$\alpha = n/m$

Function types		
division	h(k) = n mod m	
multiplication	$h(k) = [(ak) \bmod 2^w] \gg (w - r)$	
universal	$h(k) = [(ak + b) \bmod p] \bmod m$	
perfect	2-levels need to know all keys before	
	hashing;	

m	Hash table size	р	Large prime number
n	Number of keys	а	Constant
k	Key value	b	Constant
W	Word		

	0 (1)	Supports Insert &	
Dunning Time	amortized	Delete operations;	
Running Time	The "amortized" time is an average		
	time over all operations		

Graph

G=(V,E,W)	V - set of vertices	
	E - set of edges	
	W – set of weights	

	Edge	Graph
$e \in E$: $e = \{u, v\}$	unordered	Undirected
$e \in E$: $e = (u, v)$	ordered	Directed

Adjacency: $Adj[u] = \{v \in V | (u, v) \in E\}$

$Adj[a] = \{c\}$
$Adj[b] = \{a, c\}$
$Adj[c] = \{b\}$

Traversal

Tree

Depth-First Search

- Pre-order $(R \leftrightarrow \rightarrow)$: **4-2-**1-3-**6-**5-7 • In-order $(\leftarrow R \rightarrow)$: **1-2-**3-**4-**5-**6-**7
- Post-order(\longleftrightarrow R): 1-3-2-5-7-6-4

Breadth-First Search

Graph

Depth-First Search

Gives the SP from "s" to "v"

Running Time	O(2 E)	Undirected Graph
	$\boldsymbol{o}(E)$	Directed Graph

Breadth-First Search

Explores the whole graph:

- Find cycles;
- Topology sort

Uses exploration method;

Edges Classification	
TE – tree edge	BE – backward edge
FE – forward edge	CE – cross edge

Running Time	0 (2 E)	Undirected Graph
	O (E)	Directed Graph

Find	If (BE exists) then G has cycles;		
Topology Sort	Input	Directed Acyclic Graph (DAG) is a directed graph with no directed cycles (can't have negative cycles)	
ĭ	Run	DFS	
	Output	0 0 - 0 - 0 - 0 - 0	
	Comment	Good for scheduling problems	

Sort

Comparisor	1		
Insert/Bubble		$0(n^2)$	0(-2)
Quick			$O(n^2)$
Merge		O(nlog(n))	
Неар			O(nlog(n))
B-tree			
Non-Compa	riso	n	
Counting		0 (n+k)	0 (n+k)
	n -	number of elements;	
	<i>k</i> -ı	number of keys	
Radix		0 (d(n+k))	O(d(n+k))
	d-	number of digits	
	<i>n</i> - number of elements;		
	k-ı	oossible values;	
Bucket		0 (n+k)	$O(n^2)$
	n -	number of elements;	
	<i>k</i> -ı	number of buckets	

Algorithms

Shortest Path

Dijkstra	O(V log(V) + E)	[+] edges only
	Rate:	
	$O(V^2)$	
Bellmen-Ford	O (VE)	[+/-] edges
	Rate:	
	$O(V^3)$	

Operation Relax (u,v,w)

$s \rightarrow v$	The path from "s" to "v"
d[v]	The length of the current SP from "s" to "v"
$\delta(s,v)$	The length of a SP from "s" to "v"
$\pi[v]$	The predecessor of "v" in the SP from "s" to "v"

if $(d[v] > d[u] + w(u, v))$ {	Relax edge
d[v] = d[u] + w(u, v);	
$\pi[v] \leftarrow u;$	
}	

Note: $E = O(V^2)$

Dijkstra Algorithm (G,W,s)

$d[s] = 0; S \leftarrow \emptyset; Q \leftarrow V[G];$	<u>Greedy</u> !
while $(Q \neq \emptyset)$ {	Vertices in the priority
$u \leftarrow \mathbf{extract_min}(Q);$	"Q" need to be
$S \leftarrow S \cup \{u\};$	processed.
foreach $(v \in Adj[u])$ {	
relax (<i>u</i> , <i>v</i> , <i>w</i>);	When vertices
}	processed they are
}	moved in S.

Example of	Dijkstra	
{}	$\{A,B,C,D,E\}$	
{A}	$\{0, \infty, \infty, \infty, \infty\}$	(B)-2-
{A,C}	$\{-,\infty,\frac{3}{2},\infty,\infty\}$	0,10
{A,C,E}	{-,7, -,11, 5 }	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
{A,C,E,D}	{-,∞,-,-,14}	3 1
		C 2-2-(

Bellmen-Ford Algorithm (G,W,s)

Example of Bellmen-Ford		
$\{A, B, C, D, E\}$		
$\{0, \infty, \infty, \infty, \infty\}$		
$\{0,6,\infty,7,\infty\}$		

(Min/Max) Spanning Tree

Kruskal

Prim Complexity: O(Elog(V))Note: uses priority queue public G execute(G in) G out; PQ q <- E[in(some vertex)] while(!q.empty()){ e <- q.**poll()**; if (V[out(e.v)] == null) { out <- (e.u, e.v, e.weight); q <- E[in(e.v)] } return out; Example 8 (c) (d)14 11 (e) 10

Dynamic Programming

Solution

Knapsack example

