CS 60-231

Solution to Assignment #2

Fall 2017

```
2.1.(1) Evaluate (\exists x)((\forall y) \sim Q(y, x) \land (P(x) \Rightarrow (\exists z)(Q(z, x) \land Q(z, z)))).
Solution:
          Let x = 1, we obtain (\forall y) \sim Q(y, 1) \land (P(1) \Rightarrow (\exists z)(Q(z, 1) \land Q(z, z)))
              In (P(1) \Rightarrow (\exists z)(Q(z,1) \land Q(z,z))), since P(1) \equiv T, we must evaluate (\exists z)(Q(z,1) \land Q(z,z)).
                    Let z = 1. We obtain Q(1,1) \wedge Q(1,1) \equiv F \wedge F \equiv F,
                    Let z=2. We obtain Q(2,1) \wedge Q(2,2) \equiv F \wedge T \equiv F,
                    Therefore, (\exists z)(Q(z,1) \land Q(z,z)) is evaluated to false
                    which implies that (P(1) \Rightarrow (\exists z)(Q(z,1) \land Q(z,z))) is evaluated to false.
             Hence, (\forall y) \sim Q(y,1) \land (P(1) \Rightarrow (\exists z)(Q(z,1) \land Q(z,z))) is evaluated to false.
          Let x = 2, we obtain (\forall y) \sim Q(y, 2) \land (P(2) \Rightarrow (\exists z)(Q(z, 2) \land Q(z, z))).
              In (\forall y) \sim Q(y, 2), let y = 1, we obtain \sim Q(1, 2) \equiv \sim T \equiv F
                     which implies that (\forall y) \sim Q(y, 2) is evaluated to false.
             Hence, (\forall y) \sim Q(y,2) \land (P(2) \Rightarrow (\exists z)(Q(z,2) \land Q(z,z))) is evaluated to false.
          We thus have (\exists x)((\forall y) \sim Q(y,x) \land (P(x) \Rightarrow (\exists z)(Q(z,x) \land Q(z,z)))) is evaluated to false.
2.2.(e): Prove Prove \vdash (\forall x)(\alpha(x) \Rightarrow \beta) \Leftrightarrow ((\exists x)\alpha(x) \Rightarrow \beta) where x is not free in \beta.
Solution: (Bidirectional Proof)
              ⇒) (Direct proof)
                        (\forall x)(\alpha(x) \Rightarrow \beta)
                                                        hypothesis
                        (\forall x)(\sim \alpha(x) \vee \beta)
                                                           1. E18
                        (\forall x) \sim \alpha(x) \vee \beta
                                                        2, FE3 (\beta contains no free occurrence of x)
                        \sim (\exists x)\alpha(x) \vee \beta
                                                         3, FE8
                 5. (\exists x)\alpha(x) \Rightarrow \beta
                                                       4, E18
              ←) The above proof in reversed order.
2.2.(g): Prove \vdash (\forall x)(\alpha(x) \lor \beta(x)) \Rightarrow (\forall x)\alpha(x) \lor (\exists x)\beta(x)...
Solution: (Proof by contradiction)
                        (\forall x)(\alpha(x) \vee \beta(x)) \wedge \sim ((\forall x)\alpha(x) \vee (\exists x)\beta(x))
                                                                                                       hypothesis
                        (\forall x)(\alpha(x) \vee \beta(x))
                                                            1, I2
                        \sim ((\forall x)\alpha(x) \vee (\exists x)\beta(x)) \wedge (\forall x)(\alpha(x) \vee \beta(x))
                                                                                                  1.E9
                       \sim ((\forall x)\alpha(x) \vee (\exists x)\beta(x))
                                                                       3,I2
                      \sim (\forall x)\alpha(x) \wedge \sim (\exists x)\beta(x)
                                                                        4,E17
                        \sim (\forall x)\alpha(x)
                       \sim (\exists x)\beta(x) \wedge \sim (\forall x)\alpha(x)
                                                                        5,E9
                 7.
                      \sim (\exists x)\beta(x)
                                                          7.I2
                        (\exists x) \sim \alpha(x)
                                                           6,FE7
                 10. (\forall x) \sim \beta(x)
                                                           8,FE8
                                                   9,EI, k is a constant
                 11. \sim \alpha(k)
                 12. \sim \beta(k)
                                                   10.UI
                 13. \sim \alpha(k) \wedge \sim \beta(k)
                                                                11,12, I6
                 14. \sim (\alpha(k) \vee \beta(k))
                                                                      13, E17
                 15. (\alpha(k) \vee \beta(k))
                                                     2,UI
                  16. (\alpha(k) \vee \beta(k)) \wedge \sim (\alpha(k) \vee \beta(k))
                                                                                14,15, I6
```

```
17. false 16,E1 ■
```

2.3 (a).

Solution:

- 1. $(\exists x)(\forall y)(P(x) \land (Q(y) \Rightarrow R(x,y)))$ from Γ
- 2. $(\forall x)(\forall y)((P(x) \land S(y)) \Rightarrow \sim R(x,y))$ from Γ
- 3. $(\forall y)(P(k) \land (Q(y) \Rightarrow R(k,y)))$ 1, EI, k is a constant
- 4. $P(k) \wedge (Q(y) \Rightarrow R(k, y))$ 3, UI
- 5. $(\forall y)((P(k) \land S(y)) \Rightarrow \sim R(k,y))$ 2, UI
- 6. $(P(k) \land S(y)) \Rightarrow \sim R(k,y)$ 5, UI
- 7. P(k) 4, I2
- 8. $(Q(y) \Rightarrow R(k,y)) \land P(k)$ 4, E9
- 9. $Q(y) \Rightarrow R(k,y)$ 8,12
- 10. $\sim R(k, y) \Rightarrow \sim Q(y)$ 9, E19
- 11. $(P(k) \land S(y)) \Rightarrow \sim Q(y)$ 6,10, I5
- 12. $\sim (P(k) \wedge S(y)) \vee \sim Q(y)$ 11, E18
- 13. $(\sim P(k) \lor \sim S(y)) \lor \sim Q(y)$ 12, E16
- 14. $\sim P(k) \vee (\sim S(y) \vee \sim Q(y))$ 13, E12
- 15. $P(k) \Rightarrow (\sim S(y) \lor \sim Q(y))$ 14, E18
- 16. $(\sim S(y) \lor \sim Q(y))$ 7,15, I3
- 17. $(\sim Q(y) \lor \sim S(y))$ 16, E10
- 18. $(Q(y) \Rightarrow \sim S(y))$ 17, E18
- 19. $(\forall x)(Q(x) \Rightarrow \sim S(x))$ 18, Gen

2.3 (d).

Solution:

- 1. $(\exists x)(P(x) \land (\forall y)((R(y) \land S(x,y)) \Rightarrow Z(x,y)))$ from Γ
- 2. $(\forall x)(P(x) \Rightarrow (\exists y)(R(y) \land \sim U(x,y) \land T(x,y)))$ from Γ
- 3. $(\forall x)(\forall y)((P(x) \land R(y) \land T(x,y)) \Rightarrow S(x,y))$ from Γ
- 4. $P(k) \wedge (\forall y)((R(y) \wedge S(k,y)) \Rightarrow Z(k,y))$ 1, EI, k is a new constant
- 5. P(k) 4, I2
- 6. $(\forall y)((R(y) \land S(k,y)) \Rightarrow Z(k,y)) \land P(k)$ 4,E9
- 7. $(\forall y)((R(y) \land S(k,y)) \Rightarrow Z(k,y))$ 6, I2
- 8. $P(k) \Rightarrow (\exists y)(R(y) \land \sim U(k,y) \land T(k,y))$ 2, UI
- 9. $(\exists y)(R(y) \land \sim U(k,y) \land T(k,y))$ 5,8, I3
- 10. $((R(c) \land \sim U(k,c)) \land T(k,c))$ 9, EI, c is a new constant
- 11. $(R(c) \land S(k,c)) \Rightarrow Z(k,c)$ 7, UI
- 12. $(\forall y)((P(k) \land R(y) \land T(k,y)) \Rightarrow S(k,y))$ 3,UI
- 13. $((P(k) \land R(c)) \land T(k,c)) \Rightarrow S(k,c)$ 12, UI
- 14. $(\sim U(k,c) \land R(c)) \land T(k,c)$ 10, E9
- 15. $\sim U(k,c) \wedge (R(c) \wedge T(k,c))$ 14, E11
- 16. $(R(c) \wedge T(k,c)) \wedge \sim U(k,c)$ 15, E9
- 17. $R(c) \wedge T(k,c)$ 16, I2
- 18. $P(k) \wedge (R(c) \wedge T(k,c))$ 5,17, I6
- 19. $(P(k) \land R(c)) \land T(k,c)$ 18,E11
- 20. S(k,c) 19,13, I3
- 21. R(c) 17, I2
- 22. $R(c) \wedge S(k,c)$ 21,20, I6
- 23. Z(k,c) 22,11, I3
- 24. $P(k) \wedge R(c)$ 19, I2
- 25. $(P(k) \wedge R(c)) \wedge Z(k,c)$ 24,23, I6
- 26. $\sim U(k,c)$ 15, I2
- 27. $P(k) \wedge R(c) \wedge Z(k,c) \wedge \sim U(k,c)$ 25,26, I6

```
28. (\exists y)(P(k) \land R(y) \land Z(k,y) \land \sim U(k,y)) 27, EQ
29. (\exists x)(\exists y)(P(x) \land R(y) \land Z(x,y) \land \sim U(x,y)) 28, EQ
```

2.4 (h). Let U be the set of all animals. .

K(x): x kicks;

E(x): x is excitable;

D(x): x is a donkey;

B(x): x is a buffalo;

H(x): x has horns;

T(x): x can toss one over a gate;

S(x): x is easy to swallow.

- P1: $(\forall x)(\sim K(x) \Rightarrow \sim E(x))$
- P2: $(\forall x)(D(x) \Rightarrow \sim H(x))$
- P3: $(\forall x)(B(x) \Rightarrow T(x))$
- P4: $\sim (\exists x)(K(x) \land S(x))$
- P5: $\sim (\exists x) (\sim H(x) \land T(x))$
- P6: $(\forall x)(\sim B(x) \Leftrightarrow E(x))$
- C: $(\forall x)(D(x) \Rightarrow \sim S(x))$

(Direct Proof)

- 1. $(\forall x)(\sim K(x) \Rightarrow \sim E(x))$ from Γ
- 2. $(\forall x)(D(x) \Rightarrow \sim H(x))$ from Γ
- 3. $(\forall x)(B(x) \Rightarrow T(x))$ from Γ
- 4. $\sim (\exists x)(K(x) \land S(x))$ from Γ
- 5. $\sim (\exists x)(\sim H(x) \land T(x))$ from Γ
- 6. $(\forall x)(\sim B(x) \Leftrightarrow E(x))$ from Γ
- 7. $(\forall x) \sim (K(x) \wedge S(x))$ 4, FE8
- 8. $\sim (K(x) \wedge S(x))$ 7, UI
- 9. $(\sim K(x) \lor \sim S(x))$ 8, E16
- 10. $K(x) \Rightarrow \sim S(x)$ 9, E18
- 11. $(\forall x) \sim (\sim H(x) \wedge T(x))$ 5, FE8
- 12. $\sim (\sim H(x) \land T(x))$ 11, UI
- 13. $\sim H(x) \lor \sim T(x)$ 12, E16
- 14. $\sim H(x) \Rightarrow \sim T(x)$ 13, E18
- 15. $(D(x) \Rightarrow \sim H(x))$ 2, UI
- 16. $(D(x) \Rightarrow \sim T(x))$ 15,14, I5
- 17. $(B(x) \Rightarrow T(x))$ 3, UI
- 18. $(\sim T(x) \Rightarrow \sim B(x))$ 17, E19
- 19. $(D(x) \Rightarrow \sim B(x))$ 16,18, I5
- 20. $(\sim B(x) \Leftrightarrow E(x))$ 6, UI
- 21. $(\sim B(x) \Rightarrow E(x)) \land (E(x) \Rightarrow \sim B(x))$ 20, E20
- 22. $(\sim B(x) \Rightarrow E(x))$ 21, I2
- 23. $(D(x) \Rightarrow E(x))$ 19,22, I5
- 24. $(\sim K(x) \Rightarrow \sim E(x))$ 1, UI
- 25. $(E(x) \Rightarrow K(x))$ 24, E19
- 26. $(D(x) \Rightarrow K(x))$ 23,25, I5
- 27. $(D(x) \Rightarrow \sim S(x))$ 26,10, I5
- 28. $(\forall x)(D(x) \Rightarrow \sim S(x))$ 27, Gen