

Computational Chemistry

HOW DO COMPUTERS KNOW CHEMISTRY?

Content

- Structure and function
- Mathematics in Chemistry
- Quantitative Structure Activity Relationship (QSAR)
- Components of QSAR
- ❖Types of QSAR
- Molecular Descriptors

Structure and function

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Proguanil

Cycloguanil

Mathematics in Chemistry

☐ Linear Algebra (Matrices)

Vectors Algebra

□Coordinate Geometry

Mathematics in Chemistry

- ☐ Calculus: Derivatives and Integrations
- Statistics

Quantitative Structure Activity Relationship

- ☐ The number of compounds required for synthesis in order to place 10 different groups in 4 positions of benzene ring is 10⁴.
- ☐ Solution: synthesize a small number of compounds and from their data derive rules to predict the biological activity of other compounds

Compounds + biological activity

activity

Components of QSAR

Data Structure in QSAR

X-variable Y-variable (activity data in QSAR)

Mathematics in QSAR

Chemometrics in QSAR

Steps in QSAR

Dimensionality in QSAR

- □1D-QSAR
- □2D-QSAR
- □3D-QSAR (Receptor-dependent and Receptor-independent)
- □4D-QSAR (Receptor-dependent and Receptor-independent)
- □5D-QSAR → Induced Fit effect
- □6D-QSAR → Solvation effects

Molecular Descriptors

Molecular Property	Corresponding Interaction	Parameters
Lipophilicity	hydrophobic interactions	log P, π, f, R _M , χ
Polarizability	van-der-Waals interactions	MR, parachor, MV
Electron density	ionic bonds, dipol-dipol interactions, hydrogen bonds, charge transfer interactions	σ, <i>R</i> , <i>F</i> , κ, quantum chemical indices
Topology	steric hindrance geometric fit	E _S , r _V , L, B, distances, volumes

Type of Molecular Descriptors

- □0D-descriptors (i.e. constitutional descriptors, count descriptors)
- □1D-descriptors (i.e. list of structural fragments, fingerprints)
- □2D-descriptors (i.e. graph invariants)
- □3D-descriptors (i.e. quantum-chemical descriptors, size, steric, surface and volume)
- □4D-descriptors (i. e. GRID or CoMFA methods, Volsurf)

What should a descriptor be like?

- ☐ Should have structural interpretation
- ☐ Should have good correlation with at least one property
- ☐ Should preferably discriminate among isomers
- ☐ Should be possible to apply to local structure
- Should possible to generalize to "higher" descriptors
- ☐ Should be simple

What should a descriptor be like?

- ☐ Should not be based on experimental properties
- ☐ Should not be trivially related to other descriptors
- ☐ Should be possible to construct efficiently
- ☐ Should use familiar structural concepts
- ☐ Should change gradually with gradual change in structures
- ☐ Should have the correct size dependence, if related to the molecule size