Cluj Napoca Temperature Prediction

Stăncioiu Laurențiu Intelligent Modelling

What did we try to achieve?

Data colection

- Hourly data from January 1st 2008 up until May 1st 2023.
- 13 years of training data, 2 years of validation data.

	January	February	March	April	May	June	July	August	September	October	November	December
2008	-1.92	1.5	5.44	10.01	14.67	18.79	18.93	19.75	13.48	9.83	3.71	1.09
2009	-2.07	-0.82	3.56	12.51	15.39	18.13	20.46	20.12	16.62	9.5	5.92	-0.13
2010	-2.72	1.01	4.28	10.14	14.96	18.61	20.36	20.33	13.81	6.62	6.7	-2.09
2011	-3.31	-2.7	4.72	10.47	14.71	18.63	19.62	20.14	17.28	7.63	0.02	1.07
2012	-2.99	-7.15	4.07	11.21	15.42	19.89	23.2	21.42	17.59	10.31	4.58	-2.42
2013	-2.13	2.0	3.01	11.43	16.16	18.96	20.33	21.38	13.49	9.73	6.73	-2.06
2014	0.34	3.12	8.26	11.51	15.1	18.22	20.44	19.74	16.12	10.51	4.62	1.34
2015	-0.55	0.26	5.46	9.18	15.54	19.13	21.81	21.92	17.19	9.46	5.74	1.51
2016	-2.51	5.14	6.09	12.48	14.22	19.96	20.56	19.38	16.55	8.52	2.84	-2.77
2017	-6.52	1.73	8.32	9.46	15.56	20.24	20.8	22.19	15.55	9.84	4.96	1.49
2018	0.24	-0.17	3.32	14.94	18.16	19.35	20.28	21.98	16.3	12.03	5.37	-0.25
2019	-1.77	1.72	6.92	11.6	14.09	21.36	20.35	21.97	16.57	10.6	8.8	0.69
2020	-2.66	2.31	5.96	9.76	13.35	19.09	19.86	21.24	17.3	11.21	3.36	3.25
2021	-0.39	1.46	3.15	7.88	13.8	19.38	21.99	19.04	14.15	7.72	3.94	1.26
2022	-1.44	1.66	3.2	8.44	15.34	20.15	21.88	21.67	14.07	10.3	5.61	1.93
2023	3.08	0.53	5.64	8.05	12.75	-	-	-	-	-	-	-

Fig. 1. Average temperatures by month from January 2008 to May 2023

Data Analysis

- 29 features from which we selected 15
- Temperature set as the target
- After doing a Correlation Matrix dropped all Temperature related features.

Fig. 2. Correlation matrix of selected features

Model Selection

Selected the transformer architecture Autoformer and a Long-Short Term Memory (LSTM) as the comparison models.

Wanted to see which model has a better short-term temperature prediction.

After deciding the hyperparameters of the model, trained and made comparisons for a 24 hours prediction length and a 12 hours prediction length.

The metrics used were Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE).

Fig. 4. Long-Short Term Memory block architecture

LSTM results

Fig. 5. Single Step Prediction for LSTM 120 hours of training 12 hours of prediction

- Here are presented the results for a prediction of 12 hours taking into consideration 120 hours of past data for training.
- RMSE = 2.39, MAE = 1.85

Fig. 6. Actual vs. Predicted temperatures for test data from april 2021 until May 2023

LSTM results

Fig. 7. Single Step Prediction for LSTM 96 hours of training 24 hours of prediction

- Here are presented the results for a prediction of 24 hours taking into consideration 96 hours of past data for training.
- RMSE = 3.01, MAE = 2.39

Fig. 8. Actual vs. Predicted temperatures for test data from april 2021 until May 2023

Autoformer

Here are presented the results for a prediction of 12 hours taking into consideration 120 hours of past data for training.

RMSE = 2.75, MAE = 2.08

Fig. 9. Multi Step 12 hour Prediction of Autoformer for 120 hours of training.

Autoformer

Here are presented the results for a prediction of 24 hours taking into consideration 96 hours of past data for training.

RMSE = 3.25, MAE = 2.23

Fig. 10. Multi Step 24 hours Prediction for 96 hours of training data.

SWOT Analysis

Strengths

- We used two of the best models available LSTM and Autoformer
- We had thorough data analysis before feeding the data into the models.
- We used metrics which are explainable for the feature we wanted to predict.
- · We obtained results which can be usable in the real world.
- We verified the No Free Lunch theorem

Opportunities

- · We could decrease training times by using cloud GPU.
- More recent transformer architectures which are said to be better at predictions.
- Training the current model more and tweaking some hyperparameters might lead to better results.

Weaknesses

- Only the LSTM model was given a proper hyperparameter tuning. The Autoformer lasted too long in order to try different approaches.
- We did not try simpler models, which might be better at predicting short-term dependencies (ARIMA).
- We only did the predictions on temperatures, instead of having a multi-variate model.

Threats

- Both models didn't do well at predicting extreme temperatures. This could present a lot of not so good consequences if we deploy the model.
- High level of abstraction when it comes to explaining a prediction
- Computationally expensive especially for the transformer model.

Bibliography

- "Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting" (NeurIPS 2021), https://arxiv.org/abs/2106.13008
- Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.
- https://github.com/LaurentiuStancioiu/Weather_project/