Cryptanalysis of Block Ciphers with Overdefined Systems of Equations

Halil İbrahim Kaplan

TDBY / Kripto Analiz Laboratuvarı

halil.kaplan@tubitak.gov.tr

2021

Overview

- 1. Introduction
- 2. Overdefined Equations on the Rijndael S-box
- 3. The XSL Attack
- 4. T method
- 5. Attack results on AES

By definition, an XSL-cipher is a composition of N_r similar rounds:

- X The first round starts with a XOR with the session key K_i-1 .
- S Then we apply a layer of B bijective S-boxes in parallel, each on s bits,
- L Then we apply a linear diffusion layer,
- X Then we XOR with another session key K_i .

Then if $i = N_r$ we finish, otherwise we increment i and go back to step S

Step:
$$X$$
 S L X ... S L X Values: Z_0 X_1 Y_1 Z_1 X_2 ... X_{N_r} Y_{N_r} Z_{N_r} Z_{N_r+1}

```
Let,
```

r = # of equations.
s = # of variables in equation.
t = # of monomials.
d = degree of equations.

In general,

$$t \approx \binom{s}{d}$$

If ,
$$t << {s \choose d}$$
 Then

Equations are called **sparse(rare)**

```
Let,
```

r = # of equations.
s = # of variables in equation.
t = # of monomials.
d = degree of equations.

When,

 $r \gg s$

system is **overdefined.**

When

of equations
$$\approx$$
 # of monomials

we may eliminate most of the terms by linear elimination, and obtain simpler equations that are sparse and maybe even linear.

AES S-box consist of 2 transformations:

1.

$$g: GF(2^8) \longrightarrow GF(2^8)$$
 $x \longrightarrow \frac{1}{x}$ (0 mapped on itself)

2.

$$f: GF(2^8) \longrightarrow GF(2^8)$$

$$\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_7 \\ \mathbf{x}_6 \\ \mathbf{x}_5 \\ \mathbf{x}_4 \\ \mathbf{x}_3 \\ \mathbf{x}_2 \\ \mathbf{x}_1 \\ \mathbf{x}_0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

$$S$$
-box = f o g

Let

$$y = g(x)$$

$$z = S\text{-box}(x) = f(y) = f(g(x))$$

Then

$$x*y=1$$
 when $x \neq 0$

$$\mathbf{x} * \mathbf{y} = 1 \iff [(\sum_{i=0}^{7} x_i * t^i)(\sum_{j=0}^{7} y_j * t^j)]_{m(t)} = \sum_{k=1}^{7} 0 * t^k + 1$$

We can rearrange equation

$$\sum_{i=0}^{7} \sum_{j=0}^{7} [(x_i * t^i)(y_j * t^j)]_{m(t)} = \sum_{k=1}^{7} 0 * t^k + 1$$

where
$$m(t) = t^8 + t^4 + t^3 + t + 1$$

If we make the multiplication, we will get

$$\begin{split} x\otimes y &= x_7y_7 \bullet t^{14} + (x_7y_6 + x_6y_7) \bullet t_{13} + (x_7y_5 + x_6y_6 + x_5y_7) \bullet t_{12} + \\ (x_7y_4 + x_6y_5 + x_5y_6 + x_4y_7) \bullet t^{11} + (x_7y_3 + x_6y_4 + x_5y_5 + x_4y_6 + x_3y_7) \\ &\bullet t^{10} + (x_7y_2 + x_6y_3 + x_5y_4 + x_4y_5 + x_3y_6 + x_2y_7) \bullet t^9 + \\ (x_7y_1 + x_6y_2 + x_5y_3 + x_4y_4 + x_3y_5 + x_2y_6 + x_1y_7) \bullet t^8 + \\ (x_7y_0 + x_6y_1 + x_5y_2 + x_4y_3 + x_3y_4 + x_2y_5 + x_1y_6 + x_0y_7) \bullet t^7 + \\ (x_6y_0 + x_5y_1 + x_4y_2 + x_3y_3 + x_2y_4 + x_1y_5 + x_0y_6) \\ &\bullet t^6 + (x_5y_0 + x_4y_1 + x_3y_2 + x_2y_3 + x_1y_4 + x_0y_5) \bullet t^5 + \\ (x_4y_0 + x_3y_1 + x_2y_2 + x_1y_3 + x_0y_4) \bullet t^4 + (x_3y_0 + x_2y_1 + x_1y_2 + x_0y_3) \\ &\bullet t^3 + (x_2y_0 + x_1y_1 + x_0y_2) \bullet t^2 + (x_1y_0 + x_0y_1) \bullet t + x_0y_0 \end{split}$$

then we apply modulo $m(t) = t^8 + t^4 + t^3 + t + 1$

$$x_{7}y_{7} * t^{14} = x_{7}y_{7} * t^{8} * t^{6}$$

$$\downarrow^{t^{4}+t^{3}+t+1}$$

$$= x_{7}y_{7} * (t^{4}+t^{3}+t+1) * t^{6}$$

$$= x_{7}y_{7} * t^{10}+x_{7}y_{7} * t^{9}+x_{7}y_{7} * t^{7}+x_{7}y_{7} * t^{6}$$

$$(x_{7}y_{6} + x_{6}y_{7}) * t^{13} = (x_{7}y_{6} + x_{6}y_{7}) * t^{8} * t^{5}$$

$$\downarrow^{t^{4}+t^{3}+t+1}$$

$$= (x_{7}y_{6} + x_{6}y_{7}) * (t^{4}+t^{3}+t+1) * t^{5}$$

$$= (x_{7}y_{6} + x_{6}y_{7}) * t^{9}+(x_{7}y_{6} + x_{6}y_{7}) * t^{8}$$

$$+(x_{7}y_{6} + x_{6}y_{7}) * t^{7}+(x_{7}y_{6} + x_{6}y_{7}) * t^{5}$$

•

$$c_7 = x_7 y_0 + x_6 y_1 + x_5 y_2 + x_4 y_3 + x_3 y_4 + x_2 y_5 + x_1 y_6 + x_0 y_7 \\ + x_7 y_7 + x_7 y_5 + x_6 y_6 + x_5 y_7 + x_7 y_4 + x_6 y_5 + x_5 y_6 + x_4 y_7 \\ c_6 = x_6 y_0 + x_5 y_1 + x_4 y_2 + x_3 y_3 + x_2 y_4 + x_1 y_5 + x_0 y_6 + x_7 y_6 \\ + x_6 y_7 + x_7 y_4 + x_6 y_5 + x_5 y_6 + x_4 y_7 + x_7 y_3 + x_6 y_4 + x_5 y_5 + x_4 y_6 + x_3 y_7 \\ c_5 = x_5 y_0 + x_4 y_1 + x_3 y_2 + x_2 y_3 + x_1 y_4 + x_0 y_5 + x_7 y_5 + x_6 y_6 \\ + x_5 y_7 + x_7 y_3 + x_6 y_4 + x_5 y_5 + x_4 y_6 + x_3 y_7 + x_7 y_2 + x_6 y_3 \\ + x_5 y_4 + x_4 y_5 + x_3 y_6 + x_2 y_7 \\ c_4 = x_4 y_0 + x_3 y_1 + x_2 y_2 + x_1 y_3 + x_0 y_4 + x_7 y_4 + x_6 y_5 + x_5 y_6 + x_4 y_7 + x_7 y_2 + x_6 y_3 + x_5 y_4 + x_4 y_5 + x_3 y_6 + x_2 y_7 + x_7 y_7 + x_7 y_1 + x_6 y_2 + x_5 y_3 + x_4 y_4 + x_3 y_5 + x_2 y_6 + x_1 y_7 \\ c_3 = x_3 y_0 + x_2 y_1 + x_1 y_2 + x_0 y_3 + x_7 y_4 + x_6 y_5 + x_5 y_6 + x_4 y_7 + x_7 y_3 + x_6 y_4 + x_5 y_5 + x_4 y_6 + x_3 y_7 + x_7 y_7 + x_7 y_1 + x_6 y_2 + x_5 y_3 + x_4 y_4 + x_3 y_5 + x_2 y_6 + x_1 y_7 + x_7 y_5 + x_6 y_6 + x_5 y_7 \\ c_2 = x_2 y_0 + x_1 y_1 + x_0 y_2 + x_7 y_3 + x_6 y_4 + x_5 y_5 + x_4 y_6 + x_3 y_7 + x_7 y_5 + x_6 y_6 + x_5 y_7 \\ c_1 = x_1 y_0 + x_0 y_1 + x_7 y_2 + x_6 y_3 + x_5 y_4 + x_4 y_5 + x_3 y_6 + x_2 y_7 + x_7 y_6 + x_6 y_7 + x_7 y_5 + x_7 y_5 + x_6 y_6 + x_5 y_7 \\ c_0 = x_0 y_0 + x_7 y_1 + x_6 y_2 + x_5 y_3 + x_4 y_4 + x_3 y_5 + x_2 y_6 + x_1 y_7 + x_7 y_5 + x_6 y_6 + x_5 y_7 \\ c_0 = x_0 y_0 + x_7 y_1 + x_6 y_2 + x_5 y_3 + x_4 y_4 + x_3 y_5 + x_2 y_6 + x_1 y_7 + x_7 y_5 + x_6 y_6 + x_5 y_7 \\ c_0 = x_0 y_0 + x_7 y_1 + x_6 y_2 + x_5 y_3 + x_4 y_4 + x_3 y_5 + x_2 y_6 + x_1 y_7 + x_7 y_5 + x_6 y_6 + x_5 y_7 \\ c_0 = x_0 y_0 + x_7 y_1 + x_6 y_2 + x_5 y_3 + x_4 y_4 + x_3 y_5 + x_2 y_6 + x_1 y_7 + x_7 y_5 + x_6 y_6 + x_5 y_7 \\ c_0 = x_0 y_0 + x_7 y_1 + x_6 y_2 + x_5 y_3 + x_4 y_4 + x_3 y_5 + x_2 y_6 + x_1 y_7 + x_7 y_5 + x_6 y_6 + x_5 y_7 \\ c_1 = x_1 y_0 + x_0 y_1 + x_7 y_1 + x_6 y_2 + x_5 y_3 + x_4 y_4 + x_3 y_5 + x_2 y_6 + x_1 y_7 + x_7 y_5 + x_6 y_6 + x_5 y_7 \\ c_2 = x_0 y_0 + x_7 y_1 + x_$$

$$z = A * y + 63 \qquad \Longrightarrow \qquad y = A^{-1} * z + 05$$

Where:

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \\ A^{-1} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

We can get:

$$y_7 = Z_6 + Z_4 + Z_1$$

$$y_6 = Z_5 + Z_3 + Z_0$$

$$y_5 = Z_7 + Z_4 + Z_2$$

$$y_4 = Z_6 + Z_3 + Z_1$$

$$y_3 = Z_5 + Z_2 + Z_0$$

$$y_2 = Z_7 + Z_4 + Z_1 + 1$$

$$y_1 = Z_6 + Z_3 + Z_0$$

$$y_0 = Z_7 + Z_5 + Z_2 + 1$$

```
0 = z_0x_4 + z_0x_5 + z_0x_1 + x_0z_6 + x_0z_4 + x_0z_1 + x_2z_7 + x_2z_4 + x_2z_2 + x_3z_6 + x_3z_3 + x_3z_1 + x_0z_1 + x_0z_2 + x_0z_1 + x_0z_1 + x_0z_2 + x_0z_1 + x_0z_2 + x_0z_1                                                                                                                                                                                                                                                                                                                                                      x_4z_6 + x_4z_5 + x_4z_4 + x_4z_2 + x_4z_1 + x_5z_6 + x_5z_7 + x_5z_5 + x_5z_3 + x_6z_6 + x_6z_7 + x_6z_5 + x_6z_7 + x_6z_8 + x
                                                                                                                                                                                                                                                                                                                                                     x_6z_4 + x_6z_2 + x_7z_5 + x_7z_3 + x_1z_5 + x_1z_3 + x_5 + x_7
                                                                                                                                                                                                                                                                 0 = z_0x_0 + z_0x_3 + z_0x_4 + x_0z_5 + x_0z_3 + x_2z_6 + x_2z_3 + x_2z_1 + x_3z_6 + x_3z_5 + x_3z_4 + x_3z_2 + x_3z_6 + x_3z_5 + x_3z_6                                                                                                                                                                                                                                                                                                                                                      x_3z_1 + x_4z_6 + x_4z_7 + x_4z_5 + x_4z_3 + x_5z_6 + x_5z_7 + x_5z_5 + x_5z_4 + x_5z_2 + x_6z_5 + x_6z_3 + x_5z_6 + x_5z_7 + x_5z_8 + x
                                                                                                                                                                                                                                                                                                                                                     x_7z_6 + x_7z_2 + x_7z_1 + x_1z_7 + x_1z_4 + x_1z_2 + x_4 + x_6
                                                                                                                                                                                                                                                                       0 = z_0x_2 + z_0x_3 + z_0x_7 + x_0z_7 + x_0z_4 + x_0z_2 + x_2z_6 + x_2z_5 + x_2z_4 + x_2z_2 + x_2z_1 + x_3z_6 + x_5                                                                                                                                                                                                                                                                                                                                                      x_3z_7 + x_3z_5 + x_3z_3 + x_4z_6 + x_4z_7 + x_4z_5 + x_4z_4 + x_4z_2 + x_5z_5 + x_5z_3 + x_6z_6 + x_6z_2 + x_5z_5 + x
                                                                                                                                                                                                                                                                                                                                                     x_6z_1 + x_7z_5 + x_7z_1 + x_1z_6 + x_1z_3 + x_1z_1 + x_3 + x_5 + x_7
                                                                                                                                                                                                                                                                    0 = z_0x_2 + z_0x_6 + z_0x_7 + z_0x_1 + x_0z_6 + x_0z_3 + x_0z_1 + x_2z_6 + x_2z_7 + x_2z_5 + x_2z_3 + x_3z_6 + x_0z_1 + x_0z_1 + x_0z_2 + x_0z_1 + x_0z_1 + x_0z_2 + x_0z_1 + x_0z_1 + x_0z_2 + x_0z_1 + x_0z_1 + x_0z_1 + x_0z_2 + x_0z_1                                                                                                                                                                                                                                                                                                                                                      x_3z_7 + x_3z_5 + x_3z_4 + x_3z_2 + x_4z_5 + x_4z_5 + x_5z_6 + x_5z_2 + x_5z_1 + x_6z_5 + x_6z_1 + x_7z_6 + x_5z_1 + x_6z_1 + x_7z_6 + x_5z_1 + x_6z_1 + x_7z_6 + x_5z_1 + x_6z_1 + x_5z_2 + x_5z_1 + x_6z_1 + x_7z_6 + x
                                               P=1
                                                                                                                                                                                                                                                                                                                                                     x_7z_7 + x_7z_1 + x_1z_6 + x_1z_5 + x_1z_4 + x_1z_2 + x_1z_1 + x_2 + x_4 + x_6 + x_7
                                                                                                                                                                                                                                                                 0 = z_0x_0 + z_0x_4 + z_0x_6 + z_0x_7 + x_0z_5 + x_0z_2 + x_2z_6 + x_2z_5 + x_3z_6 + x_3z_5 + x_3z_1 + x_4z_5 + x_5x_5                                                                                                                                                                                                                                                                                                                                                      x_4z_4 + x_5z_6 + x_5z_7 + x_5z_3 + x_5z_1 + x_6z_5 + x_6z_4 + x_6z_2 + x_6z_1 + x_7z_6 + x_7z_7 + x_7z_3 + x_7z_7 + x
                                                                                                                                                                                                                                                                                                                                                     x_1z_6 + x_1z_7 + x_3 + x_6 + x_1
                                                                                                                                                                                                                                                                    0 = z_0x_3 + z_0x_4 + z_0x_6 + z_0x_1 + x_0z_7 + x_0z_4 + x_0z_1 + x_2z_6 + x_2z_7 + x_2z_5 + x_2z_4 + x_2z_2 + x_0z_1 + x_0z_1 + x_0z_2 + x_0z_1 + x_0z_2 + x_0z_1 + x_0z_2 + x_0z_1 + x_0z_1 + x_0z_2 + x_0z_1 + x_0z_2 + x_0z_1 + x_0z_2 + x_0z_1 + x_0z_1 + x_0z_2 + x_0z_1                                                                                                                                                                                                                                                                                                                                                      x_2z_1 + x_3z_6 + x_3z_5 + x_3z_4 + x_3z_3 + x_3z_1 + x_4z_7 + x_4z_5 + x_4z_4 + x_4z_3 + x_4z_2 + x_5z_6 + x
                                                                                                                                                                                                                                                                                                                                                     x_5z_7 + x_5z_4 + x_5z_3 + x_5z_2 + x_5z_1 + x_6z_5 + x_6z_4 + x_6z_3 + x_6z_2 + x_7z_7 + x_7z_4 + x_7z_3 + x_6z_1 + x_6z_2 + x_7z_7 + x_7z_4 + x_7z_3 + x_6z_1 + x_6z_2 + x_7z_7 + x_7z_4 + x_7z_5 + x_6z_1 + x_6z_1 + x_6z_2 + x_7z_7 + x
                                                                                                                                                                                                                                                                                                                                                     x_7z_2 + x_7z_1 + x_1z_6 + x_1z_3 + x_0 + x_2 + x_7
                                                                                                                                                                                                                                                                    0 = z_0x_0 + z_0x_2 + z_0x_3 + z_0x_5 + z_0x_7 + x_0z_6 + x_0z_3 + x_2z_6 + x_2z_5 + x_2z_4 + x_2z_3 + x_2z_1 + x_0z_1 + x_0z_2 + x_0z_1 + x_0z_2 + x_0z_2 + x_0z_3 + x_0z_1 + x_0z_2 + x_0z_1 + x_0z_2 + x_0z_2 + x_0z_1 + x_0z_2 + x_0z_2 + x_0z_1 + x_0z_2                                                                                                                                                                                                                                                                                                                                                      x_3z_7 + x_3z_5 + x_3z_4 + x_3z_3 + x_3z_2 + x_4z_6 + x_4z_7 + x_4z_4 + x_4z_3 + x_4z_2 + x_4z_1 + x_5z_5 + x
                                                                                                                                                                                                                                                                                                                                                  x_5z_4 + x_5z_3 + x_5z_2 + x_6z_7 + x_6z_4 + x_6z_3 + x_6z_2 + x_6z_1 + x_7z_4 + x_7z_3 + x_7z_2 + x_1z_6 + x_7z_4 + x_7z_5 + x_1z_6 + x
                                                                                                                                                                                                                                                                                                                                                     x_1z_7 + x_1z_5 + x_1z_4 + x_1z_2 + x_1z_1 + x_6 + x_7 + x_1
                                                                                                                                                                                                                                                           1 = x_0 + x_6 + z_0x_2 + z_0x_5 + z_0x_6 + x_0z_7 + x_0z_5 + x_0z_2 + x_2z_5 + x_2z_3 + x_3z_7 + x_3z_4 + x_3z_2 + x_3z_5 + x_5 P = \frac{255}{}
                                                                                                                                                                                                                                                                                                                                                     x_4z_6 + x_4z_3 + x_4z_1 + x_5z_6 + x_5z_5 + x_5z_4 + x_5z_2 + x_5z_1 + x_6z_6 + x_6z_7 + x_6z_5 + x_6z_3 + x_6z_6 + x_6z_7 + x_6z_8 + x
                                                                                                                                                                                                                                                                                                                                                     x_7z_6 + x_7z_7 + x_7z_5 + x_7z_4 + x_7z_2 + x_1z_6 + x_1z_4 + x_1z_1
```

It is symmetric wrt. the exchange of x and y.

$$x^{128} = y^{128} * x$$

So we have : $y^{128} = x^{128} * y$

We have 16 more equations with same technique from:

$$x^{128} = y^{128} * x$$

$$y^{128} = x^{128} * y$$

- $0 = x_3 + x_5 + x_6 + x_1 + x_2 z_2 + x_5 z_7 + x_7 z_4 + x_7 z_1 + x_7 z_3 + x_0 z_1 + x_6 z_5 + x_6 z_3 + x_7 z_7 + x_4 z_6 + x_4 z_1 + x_4 z_5 + x_4 z_0 + x_4 z_2 + x_1 z_5 + x_1 z_3 + x_5 z_5 + x_5 z_3 + x_5 z_0 + x_3 z_1 + x_3 z_3 + x_6 z_6 + x_3 z_4 + x_2 z_3 + x_2 z_6 + x_4 z_7 + x_0 z_5 + x_0 z_3 + x_1 z_4 + x_1 z_7 + x_6 z_1 + x_3 z_0 + x_4 z_3 + x_0 z_7 + x_1 z_6 + x_2 z_5$
- $0 = x_3 + x_6 + x_1 + x_2z_4 + x_5z_1 + x_7z_1 + x_5z_6 + x_0z_6 + x_0z_4 + x_6z_3 + x_6z_4 + x_6z_7 + x_7z_7 + x_7z_5 + x_7z_2 + x_4z_5 + x_4z_0 + x_1z_5 + x_1z_3 + x_5z_5 + x_5z_3 + x_3z_1 + x_3z_3 + x_3z_6 + x_2z_1 + x_2z_3 + x_4z_7 + x_0z_5 + x_0z_3 + x_1z_2 + x_6z_1 + x_3z_5 + x_3z_0 + x_3z_2 + x_4z_3 + x_0z_7 + x_3z_7 + x_1z_6 + x_2z_0$
- $0 = x_3 + x_4 + x_5 + x_1 + x_2 z_2 + x_2 z_7 + x_5 z_1 + x_5 z_4 + x_5 z_7 + x_7 z_6 + x_7 z_4 + x_7 z_1 + x_0 z_6 + x_6 z_5 + x_6 z_2 + x_6 z_7 + x_7 z_7 + x_4 z_6 + x_4 z_1 + x_4 z_5 + x_1 z_3 + x_1 z_0 + x_5 z_3 + x_3 z_3 + x_2 z_1 + x_2 z_3 + x_2 z_6 + x_0 z_5 + x_0 z_3 + x_1 z_4 + x_6 z_1 + x_3 z_5 + x_3 z_0 + x_4 z_3 + x_0 z_2 + x_3 z_7 + x_1 z_1 + x_2 z_5 + x_2 z_0$
- $0 = x_3 + x_4 + x_1 + x_2z_7 + x_5z_1 + x_5z_7 + x_7z_4 + x_0z_4 + x_0z_1 + x_6z_4 + x_6z_7 + x_7z_7 + x_7z_5 + x_7z_2 + x_4z_4 + x_4z_1 + x_1z_5 + x_1z_3 + x_1z_0 + x_5z_5 + x_3z_1 + x_3z_3 + x_3z_6 + x_6z_6 + x_5z_2 + x_2z_3 + x_4z_7 + x_0z_3 + x_0z_0 + x_1z_2 + x_1z_7 + x_6z_1 + x_3z_5 + x_4z_3 + x_1z_1 + x_1z_6 + x_2z_5 + x_2z_0$
- $0 = x_2 + x_6 + x_7 + x_1 + x_2 z_2 + x_5 z_1 + x_5 z_4 + x_7 z_4 + x_7 z_1 + x_5 z_6 + x_7 z_3 + x_0 z_6 + x_6 z_3 + x_6 z_2 + x_6 z_4 + x_6 z_7 + x_7 z_7 + x_7 z_2 + x_4 z_6 + x_4 z_0 + x_1 z_0 + x_5 z_5 + x_5 z_3 + x_5 z_0 + x_6 z_6 + x_2 z_1 + x_0 z_0 + x_1 z_4 + x_6 z_1 + x_3 z_0 + x_4 z_3 + x_0 z_2 + x_3 z_7 + x_1 z_6$
- $0 = x_2 + x_3 + x_4 + x_5 + x_1 + x_2 z_2 + x_2 z_7 + x_5 z_1 + x_5 z_4 + x_7 z_6 + x_7 z_1 + x_5 z_6 + x_0 z_6 + x_0 z_4 + x_0 z_1 + x_6 z_5 + x_6 z_2 + x_6 z_4 + x_6 z_7 + x_7 z_2 + x_4 z_4 + x_4 z_2 + x_1 z_5 + x_1 z_3 + x_5 z_5 + x_5 z_0 + x_3 z_1 + x_3 z_6 + x_6 z_6 + x_5 z_2 + x_3 z_4 + x_2 z_3 + x_2 z_6 + x_4 z_7 + x_0 z_5 + x_0 z_3 + x_0 z_0 + x_1 z_2 + x_1 z_4 + x_1 z_7 + x_0 z_7 + x_1 z_1 + x_1 z_6 + x_2 z_5 + x_2 z_0$
- $0 = x_0 + x_2 + x_3 + x_7 + x_2z_4 + x_5z_4 + x_5z_7 + x_7z_6 + x_7z_1 + x_5z_6 + x_0z_6 + x_0z_4 + x_0z_1 + x_6z_2 + x_7z_7 + x_4z_6 + x_4z_4 + x_4z_1 + x_4z_5 + x_4z_0 + x_4z_2 + x_1z_5 + x_1z_3 + x_1z_0 + x_5z_5 + x_6z_6 + x_5z_2 + x_3z_4 + x_2z_1 + x_2z_6 + x_7z_0 + x_0z_5 + x_0z_3 + x_1z_2 + x_1z_7 + x_6z_1 + x_3z_2 + x_0z_2 + x_0z_7 + x_3z_7 + x_1z_6$
- $0 = x_3 + x_5 + x_2 z_4 + x_2 z_7 + x_5 z_1 + x_5 z_7 + x_7 z_6 + x_7 z_1 + x_5 z_6 + x_7 z_3 + x_0 z_6 + x_0 z_1 + x_6 z_5 + x_6 z_3 + x_6 z_0 + x_6 z_7 + x_7 z_5 + x_4 z_4 + x_4 z_1 + x_4 z_0 + x_1 z_5 + x_1 z_3 + x_5 z_5 + x_5 z_3 + x_5 z_0 + x_3 z_3 + x_3 z_6 + x_5 z_2 + x_2 z_3 + x_2 z_6 + x_0 z_0 + x_1 z_7 + x_3 z_5 + x_3 z_2 + x_4 z_3 + x_0 z_2 + x_1 z_1 + x_2 z_5$

- $0 = x_5 + x_7 + z_7 + z_5 + z_3 + z_1 + x_5 z_1 + x_5 z_4 + x_7 z_3 + x_0 z_6 + x_0 z_4 + x_0 z_1 + x_6 z_3 + x_7 z_2 + x_4 z_4 + x_4 z_2 + x_1 z_5 + x_1 z_0 + x_5 z_3 + x_6 z_6 + x_3 z_4 + x_2 z_3 + x_4 z_7 + x_7 z_0 + x_6 z_1 + x_3 z_7 + x_2 z_5 + x_2 z_0$
- $0 = x_3 + x_5 + x_7 + z_6 + z_7 + z_5 + z_4 + z_3 + x_2z_2 + x_2z_4 + x_2z_7 + x_7z_1 + x_6z_5 + x_6z_0 + x_6z_2 + x_6z_4 + x_7z_7 + x_7z_2 + x_4z_6 + x_4z_1 + x_5z_3 + x_5z_0 + x_3z_1 + x_3z_3 + x_6z_6 + x_5z_2 + x_3z_4 + x_0z_5 + x_0z_3 + x_0z_0 + x_1z_4 + x_1z_7 + x_6z_1 + x_4z_3$
- $0 = x_3 + x_5 + x_6 + x_7 + x_1 + z_6 + z_5 + z_3 + z_2 + x_5 z_1 + x_5 z_7 + x_7 z_6 + x_7 z_1 + x_0 z_4 + x_6 z_5 + x_6 z_3 + x_6 z_0 + x_6 z_7 + x_4 z_6 + x_4 z_4 + x_4 z_1 + x_4 z_5 + x_4 z_0 + x_4 z_2 + x_1 z_3 + x_3 z_3 + x_6 z_6 + x_5 z_2 + x_2 z_1 + x_2 z_3 + x_2 z_6 + x_7 z_0 + x_1 z_4 + x_3 z_0 + x_3 z_2 + x_0 z_2 + x_0 z_7 + x_1 z_1$
- $0 = x_3 + x_4 + x_5 + x_1 + z_4 + z_3 + z_1 + z_0 + x_2 z_2 + x_2 z_4 + x_5 z_1 + x_5 z_6 + x_0 z_6 + x_0 z_1 + x_6 z_5 + x_6 z_2 + x_6 z_4 + x_6 z_7 + x_7 z_7 + x_7 z_5 + x_4 z_6 + x_4 z_5 + x_4 z_0 + x_1 z_3 + x_1 z_0 + x_5 z_0 + x_3 z_1 + x_6 z_6 + x_2 z_1 + x_2 z_6 + x_4 z_7 + x_7 z_0 + x_0 z_3 + x_1 z_2 + x_3 z_2 + x_4 z_3 + x_3 z_7 + x_2 z_5 + x_2 z_0$
- $0 = x_2 + x_3 + x_5 + x_6 + x_1 + z_6 + z_2 + z_0 + x_2 z_7 + x_5 z_1 + x_5 z_4 + x_5 z_7 + x_7 z_6 + x_7 z_4 + x_7 z_3 + x_6 z_5 + x_7 z_7 + x_7 z_2 + x_4 z_6 + x_4 z_5 + x_1 z_5 + x_1 z_0 + x_5 z_5 + x_5 z_3 + x_5 z_0 + x_3 z_1 + x_3 z_6 + x_6 z_6 + x_3 z_4 + x_2 z_6 + x_7 z_0 + x_0 z_5 + x_0 z_0 + x_1 z_2 + x_1 z_7 + x_6 z_1 + x_3 z_0 + x_0 z_2 + x_3 z_7 + x_1 z_1$
- $0 = x_0 + x_3 + x_4 + x_5 + x_1 + z_6 + z_7 + z_5 + z_4 + z_3 + z_1 + z_0 + x_5 z_1 + x_5 z_7 + x_7 z_4 + x_5 z_6 + x_0 z_4 + x_0 z_1 + x_6 z_5 + x_6 z_3 + x_6 z_0 + x_6 z_4 + x_7 z_7 + x_7 z_5 + x_4 z_6 + x_4 z_4 + x_4 z_1 + x_4 z_5 + x_4 z_2 + x_1 z_5 + x_5 z_0 + x_3 z_1 + x_3 z_3 + x_6 z_6 + x_5 z_2 + x_2 z_3 + x_2 z_6 + x_4 z_7 + x_7 z_0 + x_1 z_4 + x_1 z_7 + x_6 z_1 + x_3 z_5 + x_3 z_0 + x_0 z_7 + x_1 z_1 + x_1 z_6 + x_2 z_0$
- $0 = x_2 + x_3 + x_7 + x_1 + z_6 + z_7 + z_5 + z_4 + z_3 + z_2 + z_1 + 1 + x_2 z_2 + x_2 z_4 + x_2 z_7 + x_5 z_4 + x_5 z_7 + x_7 z_1 + x_7 z_3 + x_0 z_6 + x_6 z_5 + x_6 z_3 + x_6 z_0 + x_6 z_2 + x_6 z_4 + x_6 z_7 + x_7 z_7 + x_4 z_6 + x_4 z_4 + x_4 z_1 + x_4 z_5 + x_4 z_0 + x_1 z_5 + x_1 z_3 + x_1 z_0 + x_5 z_5 + x_5 z_0 + x_3 z_1 + x_3 z_6 + x_2 z_1 + x_2 z_6 + x_0 z_3 + x_0 z_0 + x_3 z_0 + x_3 z_2 + x_4 z_3 + x_3 z_7 + x_1 z_1 + x_2 z_5$
- $0 = x_0 + x_7 + x_1 + z_6 + z_2 + z_1 + z_0 + 1 + x_2 z_4 + x_5 z_4 + x_5 z_7 + x_7 z_4 + x_7 z_1 + x_7 z_3 + x_6 z_2 + x_6 z_4 + x_6 z_7 + x_4 z_5 + x_4 z_0 + x_1 z_5 + x_2 z_1 + x_2 z_6 + x_0 z_5 + x_1 z_2 + x_1 z_7 + x_3 z_5 + x_3 z_0 + x_4 z_3 + x_0 z_2 + x_0 z_7 + x_1 z_1 + x_1 z_6$

For each S-box in cipher,

we will write a set of quadratic equations that will completely define the secret key of the cipher

We will extend # of equations using XSL and T method.

Equations defines key of the cipher

XSL

$$Eq_1 \ Eq_2 \ . \ . \ Eq_{r+m}$$

T method

$$Eq_1$$
 Eq_2
 \vdots
 Eq_{r+m+n}

Linearisation

Gaussian elimination

2 ROUND BABY XSL

DIFFUSION

2 ROUND BABY XSL

ROUND
$$\uparrow$$
 \Longrightarrow # of monomials \uparrow # of variables

2 ROUND BABY XSL

- 2 ROUND UNKNOWS: K^1 , K^2 , K^3 , y
- 3 ROUND UNKNOWS: K^1 , K^2 , K^3 , K^4 , y, t

Choose P s.t
$$\frac{R}{T} > 1$$

Let
$$P = 4$$
 and $S = 9$

We will get:

$$Eq_1 * a_1 * b_1 * c_1$$

 $Eq_1 * a_1 * b_1 * c_2$

$$Eq_2*a_1*b_1*c_1$$

$$Eq_r * a_r * b_r * c_r$$

of equations = $r * t^{P-1}$

Let
$$P = 4$$
 and $S = 9$

We will do for all possible P-1 passive S-box

of equations = $r * t^{P-1} \binom{S-1}{P-1}$

Let
$$P = 4$$
 and $S = 9$

$$R \approx r * S * t^{P-1} * \binom{S-1}{P-1}$$
of eq. # of S-boxes # of monomials

Too much linear dependencies

Let P = 2

Multiply each equation with (t-r) monomials and r equations.

$$\begin{array}{c} Eq_1' \\ Eq_2' \\ = & \\ \vdots \\ Eq_r' \end{array} \qquad \begin{array}{c} Eq_1 \\ Eq_2 \\ \end{array} \qquad \begin{array}{c} \text{Monomials} = T_1 \text{ , } T_2 \text{ , ... } T_{t-r} \text{ ... } T_t \\ \\ Eq_r \end{array}$$

Instead of

$$T_1 * Eq'_1$$
, $T_2 * Eq'_1$..., $T_t * Eq'_1$

Write:

$$T_1 * Eq'_1$$
, $T_2 * Eq'_1$..., $T_{t-r} * Eq'_1$

and complete with

$$Eq_1 * Eq_1'$$
, $Eq_2 * Eq_1'$..., $Eq_r * Eq_1'$

Let
$$P = 2$$

Multiply each equation with (t-r) monomials and r equations.

PROBLEM = $Eq_1 * Eq'_1$ occurs twice.

We restrict to multiplying an "active" equation only by one of the monomials $T_1...T_{t-r}$ for some "passive" S-box of our system, and on the other hand we also add the equations containing products of several "active" S-boxes.

Choose i S-boxes out of S Sboxes Multiply active S-box equations.

From remaining S-boxes, choose P-i passive S-boxes

Multiply t-r monomial of P-i passive S-boxes For P=2:

$$R \approx {S \choose 1} * r * {S-1 \choose P-1} * (t-r)^{p-1} + {S \choose 2} r^2$$

For P=3:

$$R \approx \binom{S}{1} * r * \binom{S-1}{P-1} * (t-r)^{p-1} + \binom{S}{2} r^2 * \binom{S-2}{P-2} * (t-r)^{p-2} + \binom{S}{3} r^3$$

"It seems that there are no other obvious linear dependencies"

The equations on the Diffusion Layers

We have N_r+1 known plaintexts.

For every known plaintexts

Eliminate key variables and write equations of the form:

$$X_{i\ j} \oplus \sum \alpha_j Y_{i-1\ j} = X'_{i\ j} \oplus \sum \alpha_j Y'_{i-1\ j} = X''_{i\ j} \oplus \sum \alpha_j Y''_{i-1\ j} = \dots$$

We have
$$N_r * (N_r + 1) * (sB)$$
 such equations.

of # of Variables in each S-box of cipher round

The equations on the Diffusion Layers

Multiply these equations by products of terms for some (P-1) S-boxes.

$$X_{i\ j} \oplus \sum \alpha_j Y_{i-1\ j} = X'_{i\ j} \oplus \sum \alpha_j Y'_{i-1\ j} = X''_{i\ j} \oplus \sum \alpha_j Y''_{i-1\ j} = \dots$$

of new equations:

$$R' \approx N_r * (N_r + 1) * (sB) * t^{P-1} * {S \choose P-1}$$

We expect that :
$$\frac{R + R'}{T} > 1$$
of equations after XSL

IF NOT:

T = # of terms.

T' = # of terms can be multiply by x_i and still belong to the set of T.

Assume we have system of 8 equations and 5 variables x_1, x_2, x_3, x_4, x_5 T' wrt. x_1 T'' wrt. x_2

Then,

$$T = \{1, x_1, x_2, x_3, x_4, x_5, x_1x_2, x_1x_3, x_1x_4, x_1x_5, x_2x_3, x_2x_4, x_2x_5, x_3x_4, x_3x_5, x_4x_5\} = 16$$

$$T' = \{1, x_1, x_2, x_3, x_4, x_5, x_1x_2, x_1x_3, x_1x_4, x_1x_5\} = 10$$

$$T'' = \{1, x_1, x_2, x_3, x_4, x_5, x_1x_2, x_2x_3, x_2x_4, x_2x_5\} = 10$$

The equations from Gaussian elimination with respect to T' will be:

$$x_2x_3 = x_1x_4 + x_5 + x_3$$

$$x_2x_4 = x_1x_5 + x_4 + 1$$

$$x_2x_5 = x_1x_4 + x_1x_5 + x_1 + x_3 + x_4$$

$$x_3x_4 = x_1 + x_2 + x_3 + x_4$$

$$x_3x_5 = x_1x_4 + x_2 + 1$$

$$x_4x_5 = x_1x_5 + x_1 + x_2 + x_3$$
Contains only terms in T'

$$0 = x_1x_3 + x_1x_5 + x_1 + x_2 + x_3 + x_4$$

$$1 = x_1x_2 + x_1 + x_2 + x_3 + x_4 + x_5$$

The equations from Gaussian elimination with respect to T'' will be:

$$x_3x_4 = x_1 + x_2 + x_3 + x_4$$

$$x_3x_5 = x_2x_4 + x_2x_5 + x_1 + x_2 + x_3$$

$$x_4x_5 = x_2x_4 + x_1 + x_2 + x_3 + x_4 + 1$$

$$x_1x_3 = x_2x_4 + x_1 + x_2 + x_3 + 1$$

$$x_1x_4 = x_2x_4 + x_2x_5 + x_1 + x_3 + 1$$

$$x_1x_5 = x_2x_4 + x_4 + 1$$
Contains only terms in T''

$$1 = x_1x_2 + x_1 + x_2 + x_3 + x_4 + x_5$$

$$1 = x_2x_3 + x_2x_4 + x_2x_5 + x_1 + x_5$$

$$0 = x_1x_3 + x_1x_5 + x_1 + x_2 + x_3 + x_4$$
$$1 = x_1x_2 + x_1 + x_2 + x_3 + x_4 + x_5$$

Multiply them with x_1 :

Terms of the new eq. will be still in T.

$$0 = x_1 x_2 + x_1 x_4 + x_1 x_5 + x_1$$

$$0 = x_1x_3 + x_1x_4 + x_1x_5$$

We have 10 linearly independent equation.

$$0 = x_1x_2 + x_1x_4 + x_1x_5 + x_1$$

$$0 = x_1 x_3 + x_1 x_4 + x_1 x_5$$

Write these 2 equations wrt. equations in T'':

$$1 = x_2x_4 + x_2x_5 + x_2 + x_4$$

$$0 = x_1 x_2 + x_2 x_5 + x_3 + x_4$$

Add these equations to the equations contains only terms in T'':

$$1 = x_2x_4 + x_2x_5 + x_2 + x_4$$

$$0 = x_1x_2 + x_2x_5 + x_3 + x_4$$

$$1 = x_1x_2 + x_1 + x_2 + x_3 + x_4 + x_5$$

$$1 = x_2x_3 + x_2x_4 + x_2x_5 + x_1 + x_5$$

$$1 = x_2x_4 + x_2x_5 + x_2 + x_4$$

$$0 = x_1 x_2 + x_2 x_5 + x_3 + x_4$$

$$1 = x_1 x_2 + x_1 + x_2 + x_3 + x_4 + x_5$$

$$1 = x_2x_3 + x_2x_4 + x_2x_5 + x_1 + x_5$$

Multiply them with x_2 :

$$0 = x_2 x_5$$

$$0 = x_1 x_2 + x_2 x_3 + x_2 x_4 + x_2 x_5$$

$$0 = x_2x_3 + x_2x_4 + x_2x_5$$

$$0 = x_2x_3 + x_1x_2 + x_2x_4 + x_2$$

$$0 = x_2 x_5$$

$$0 = x_1 x_2 + x_2 x_3 + x_2 x_4 + x_2 x_5$$

$$0 = x_2x_3 + x_2x_4 + x_2x_5$$

$$0 = x_2x_3 + x_1x_2 + x_2x_4 + x_2$$

We have 13 equations linearly independent equation, we drop last equation it is not linearly independent.

Write these 3 equations wrt. equations in T'

We will get:

$$1 = x_1 + x_5$$

$$1 = x_1x_2 + x_1 + x_5$$

$$0 = x_1x_4 + x_1x_5 + x_1 + x_3 + x_4$$

Multiply them with x_1 :

$$0 = x_1 x_5$$

$$0 = x_1x_2 + x_1x_5$$

$$0 = x_1x_3 + x_1x_5 + x_1$$

Unfortunately, all the new equations we get are linearly dependent with the old equations.

We stay with only 13 equations.

Example which T method fails

7 linearly independent equation with 5 variables.

$$x_{1}x_{2} + x_{1}x_{4} + x_{2}x_{3} + x_{2}x_{5} + x_{4}x_{5} + x_{1} + x_{3} + x_{4} + x_{5} + 1 = 0$$

$$x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{5} + x_{3}x_{5} + x_{4}x_{5} + x_{4} + 1 = 0$$

$$x_{2}x_{3} + x_{3}x_{5} + x_{3}x_{4} + x_{2} + x_{3} + x_{4} + x_{5} + 1 = 0$$

$$x_{1}x_{5} + x_{1}x_{3} + x_{3}x_{4} + x_{4}x_{5} + x_{5} = 0$$

$$x_{1}x_{5} + x_{1}x_{3} + x_{2}x_{4} + x_{2} + x_{3} = 0$$

$$x_{1}x_{3} + x_{2}x_{4} + x_{3}x_{5} + x_{1} + x_{2} + x_{5} + 1 = 0$$

$$x_{2}x_{5} + x_{2}x_{3} + x_{4}x_{5} + x_{2} + x_{3} + x_{5} = 0$$

Example which T method fails

Represent system wrt. x_1 :

$$x_{2}x_{3} = x_{1}x_{3} + x_{1}x_{4} + x_{1}x_{5} + 1$$

$$x_{2}x_{4} = x_{1}x_{3} + x_{1}x_{5} + x_{2} + x_{3}$$

$$x_{2}x_{5} = x_{1}x_{3} + x_{1} + x_{3} + x_{4}$$

$$x_{3}x_{4} = x_{1}x_{3} + x_{1}x_{4} + x_{1} + x_{2} + x_{4} + 1$$

$$x_{3}x_{5} = x_{1}x_{5} + x_{1} + x_{3} + x_{5} + 1$$

$$x_{4}x_{5} = x_{1}x_{4} + x_{1}x_{5} + x_{1} + x_{2} + x_{4} + x_{5} + 1$$

$$1 = x_{1}x_{2} + x_{1}x_{4} + x_{1} + x_{2} + x_{4}.$$

Contains only terms in T'

Example which T method fails

Multiply the last equation by x_1 we have:

$$x_1 * (1 + x_1x_2 + x_1x_4 + x_1 + x_2 + x_4) = 0$$

No new equation.

Same is valid for all variables For x_2 :

$$x_{1}x_{3} = x_{2}x_{5} + x_{1} + x_{3} + x_{4}$$

$$x_{1}x_{4} = x_{2}x_{3} + x_{2}x_{4} + x_{2} + x_{3} + 1$$

$$x_{1}x_{5} = x_{2}x_{4} + x_{2}x_{5} + x_{1} + x_{2} + x_{4}$$

$$x_{3}x_{4} = x_{2}x_{3} + x_{2}x_{4} + x_{2}x_{5}$$

$$x_{3}x_{5} = x_{2}x_{4} + x_{2}x_{5} + x_{2} + x_{3} + x_{4} + x_{5} + 1$$

$$x_{4}x_{5} = x_{2}x_{3} + x_{2}x_{5} + x_{2} + x_{3} + x_{5}$$

$$0 = x_{1}x_{2} + x_{2}x_{3} + x_{2}x_{4} + x_{1} + x_{3} + x_{4}.$$

Contains only terms in T'

Multiply the last equation by x_2 we have:

$$x_2 \cdot (x_1x_2 + x_2x_3 + x_2x_4 + x_1 + x_3 + x_4) = 0.$$

No new equation.

T METHOD WORKING CONDITIONS

If,

Free
$$\approx \%$$
 99.4 $T(\# of monomials)$

Then

T method expected to increase # of equations.

OR

We have Free $\geq T - T' + C$ for some C

If,

$$x_i(C) > C$$
 for any of x_i

Then

T method expected to increase # of equations.

T METHOD WORKING CONDITIONS

We have Free $\geq T - T' + C$ for some C

If,

$$x_i(C) > C$$
 for any of x_i

Then

T method expected to increase # of equations.

EX 1

Free =8

$$T = 16$$

$$T' = 10$$

For
$$C = 1$$
, eq. Satisfied

$$x_1(C) = 2$$

Satisfies the condition

EX 2

Free =7

$$T = 16$$

$$T' = 10$$

For C = 1, eq. Satisfied

$$x_1(C) = 1$$

Does not satisfies the condition

Attack results on AES

AES-128: The smallest P where R + R' > T is P = 7. The parameters are $R = 4.95 \times 10^{25}$, $R' = 4.85 \times 10^{24}$, $T = 5.41 \times 10^{25}$. We have (R + R')/T = 1.004 and the complexity of XSL attack is $T^{2.376} \approx 2^{203}$.

AES-192: The smallest P where R + R' > T is P = 7. The parameters are $R = 8.65 \times 10^{27}$, $R' = 8.50 \times 10^{26}$, $T = 9.46 \times 10^{27}$. We have (R + R')/T = 1.004 and the complexity of XSL attack is $T^{2.376} \approx 2^{221}$.

AES-256: The smallest P where R + R' > T is P = 7. The parameters are $R = 3.15 \times 10^{28}$, $R' = 3.02 \times 10^{27}$, $T = 3.45 \times 10^{28}$. We have (R + R')/T = 1.002 and the complexity of XSL attack is $T^{2.376} \approx 2^{225}$.

Attack results on AES

S-box				Bs		H_k
s	r	t	B	[bits]	$ N_r $	[bits]
3	14	22	4	12	1	12
3	14	22	4	12	2	12
3	14	22	4	12	3	12
3	14	22	4	12	4	12
3	14	22	4	12	5	12
3	14	22	4	12	6	12
3	14	22	4	12	7	12
3	14	22	4	12	8	12
3	14	22	4	12	9	12
3	14	22	4	12	10	12
3	14	22	4	12	11	12
3	14	22	4	12	12	12

								The results	
$ \Lambda $	S	R	R'	T	T'	Free	$\frac{Free}{T}$	$\frac{Free}{T-T'}$	
1	5	3192	952	3751	912	3693	0.9845	1.3008	
1	9	13104	2384	14545	1920	14184	0.9752	1.1235	
1	13	29736	4584	32395	2928	31470	0.9714	1.0680	
1	17	53088	7552	57301	3936	55556	0.9695	1.0411	
1	21	83160	11288	89263	4944	86442	0.9684	1.0252	
1	25	119952	15792	128281	5952	124128	0.9676	1.0147	
1	29	163464	21064	174355	6960	168614	0.9670	1.0073	
1	33	213696	27104	227485	7968	219900	0.9667	1.0017	
1	37	270648	33912	287671	8976	277986	0.9663	0.9975	
1	41	334320	41488	354913	9984	342872	0.9661	0.9940	
1	45	404712	49832	429211	10992	414558	0.9659	0.9912	
1	49	481824	58944	510565	12000	493044	0.9657	0.9889	

 $Free \\ \hline R + R' \\ 0.89 \\ 0.91 \\ 0.91 \\ 0.91$

Attack results on AES

AES-128: The smallest P where R + R' > T is P = 7. The parameters are $R = 4.95 \times 10^{25}$, $R' = 4.85 \times 10^{24}$, $T = 5.41 \times 10^{25}$. We have (R + R')/T = 1.004 and the complexity of XSL attack is $T^{2.376} \approx 2^{203}$.

$$\frac{Free}{T} = (4.95 \times 10^{25} + 4.85 \times 10^{24}) \times \frac{0.9}{5.41 \times 10^{25}} \approx 0.904$$

"XSL is not an attack, it is a dream"

Vincent Rijmen, AES designer

"XSL may be a dream. It may also be a very bad dream and turn into a nightmare"

Nicolas T. Courtois, Founder of XSL

References

- 1. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Systems of Equations. Cryptology ePrint Archive, Report 2002/044 (2002)
- Cid C., Leurent G. (2005) An Analysis of the XSL Algorithm. In: Roy B. (eds)
 Advances in Cryptology ASIACRYPT 2005. ASIACRYPT 2005. Lecture Notes
 in Computer Science, vol 3788. Springer, Berlin, Heidelberg.
 https://doi.org/10.1007/11593447_18
- 3. Cui, Jie & Zhong, Hong & Wang, Jiankai & Shi, Run-hua. (2014). Generation and Optimization of Rijndael S-box Equation System. Information Technology Journal. 13. 2482-2488. 10.3923/itj.2014.2482.2488.

4. Lim, C., & Khoo, K. (2007). An Analysis of XSL Applied to BES. FSE.