Math 188 Notes (Professor: Steven Sam)

Isabelle Mills

October 1, 2024

Lecture 1 Notes: 9/27/2024

Linear Recurrence Relations:

A sequence $(a_n)_{n\geq 0}$ satisfies a linear recurrence relation of order d if there exists c_1, \ldots, c_d with $c_d \neq 0$ such that for all $n \geq d$:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_d a_{n-d}$$
(For $0 \le n < d$, we usually explicitely specify a_n .)

To start this course, we're gonna discuss finding explicit (non-recursive) solutions.

Firstly, if d=1, then this problem is easy. We can just plug in previous elements repeatedly to get that:

$$a_n = c_1 a_{n-1} = c_1^2 a_{n-2} = \dots = c_1^n a_0$$

If d=2, then plugging in previous elements doesn't help us really anymore. So how do we solve this problem now?

Theorem: Consider the <u>characteristic polynomial</u> $t^2-c_1t-c_2$ and let r_1,r_2 be the roots of that polynomial. If $r_1 \neq r_2$, then there exists α_1, α_2 such that $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ for all $n \geq 0$.

To solve for α_1 and α_2 , plug in different values of n into our equation. Since $r_1 \neq r_2$, we know the below linear system has a unique solution:

$$a_0 = \alpha_1 + \alpha_2$$
$$a_1 = \alpha_1 r_1 + \alpha_2 r_2$$

Now backing up, why does the above method work?

Approach 1: (Vector Spaces)

The set of sequences $(a_n)_{n\geq 0}$ form a vector space. Furthermore given any constants c_1 and c_2 , we know that the set of sequences satisfying $a_n=c_1a_{n-1}+c_2a_{n-2}$ for all $n \geq 2$ is a subspace.

Proof:

Suppose
$$(a_n)$$
 and (b_n) both satisfy that $a_n=c_1a_{n-1}+c_2a_{n-2}$ and $b_n=c_1b_{n-1}+c_2b_{n-2}$. Then given any constants γ and δ , we have that: $(\gamma a_n+\delta b_n)=c_1(\gamma a_{n-1}+\delta b_{n-1})+c_2(\gamma a_{n-2}+\delta b_{n-2})$

Hence, all linear combinations of any two sequences satisfying our linear recurrence relation also satisfies our linear recurrence relation.

Now what our above theorem is stating is that the sequences (r_1^n) and (r_2^n) span the subspace of solutions to our linear recurrence relation.

To see this, first note that
$$(r_1^n)$$
 and (r_2^n) satisfy our recurrence relation. If $n\geq 2$, then $r_i^n-c_1r_i^{n-1}-c_2r_i^{n-2}=r_i^{n-2}(r_i^2-c_1r_i-c_2)=r_i^{n-2}(0)$. Hence, we know that $r_i^n=c_1r_i^{n-1}+c_2r_i^{n-2}$ for all $n\geq 2$.

Also, since we assumed $r_1 \neq r_2$, we know that (r_1^n) is linearly independent to (r_2^n) . And finally, as mentioned before, we can solve a linear system of equations to find coffecients for a linear combination of (r_1^n) and (r_2^n) equal to any other sequence satisfying our recurrence relation.

Approach 2: (Formal Power Series)

Define the power series $A(x)=\sum_{n\geq 0}^{\bullet}a_nx^n$. We call A(x) a generating function of the sequence (a_n) .

(We'll treat the formal power series more rigorously later...)

Now note that:

$$A(x) = a_0 + a_1 x + \sum_{n \ge 2} a_n x^n$$

$$= a_0 + a_1 x + \sum_{n \ge 2} (c_1 a_{n-1} + c_2 a_{n-2}) x^n$$

$$= a_0 + a_1 x + c_1 \sum_{n \ge 2} a_{n-1} x^n + c_2 \sum_{n \ge 2} a_{n-2} x^n$$

$$= a_0 + a_1 x + c_1 (A(x) - a_0) x + c_2 (A(x)) x^2$$

Isolating A(x), we get the equation: $A(x) = \frac{a_0 + a_1x - a_0c_1x}{1 - c_1x - c_2x^2}$.

Next, let's do fraction decomposition on our equation for A(x).

Issue: We defined r_1 and r_2 as the roots of $t^2-c_1t-c_2=(t-r_1)(t-r_2)$.

Trick: Plug in
$$t=\frac{1}{x}$$
. That way, we have that:
$$x^{-2}-c_1x^{-1}-c_2=(x^{-1}-r_1)(x^{-1}-r_2).$$

After that, multiply both sides of our equation by x^2 to get that:

$$1 - c_1 x - c_2 x^2 = (1 - r_1 x)(1 - r_2 x)$$

Since we're assuming $r_1 \neq r_2$, we know that for some constants α_1 and α_2 , we have that:

$$A(x) = \frac{\alpha_1}{1 - r_1 x} + \frac{\alpha_2}{1 - r_2 x}$$

(If $r_1=r_2$, then this step is where things will go differently.)

Now finally, we can rewrite $\frac{\alpha_1}{1-r_1x}$ as the geometric series $\alpha_1 \sum_{n\geq 0} (r_1x)^n$. Doing likewise with $\frac{\alpha_2}{1-r_2x}$, we get that:

$$A(x) = \sum_{n \ge 0} a_n x^n = \alpha_1 \sum_{n \ge 0} (r_1 x)^n + \alpha_2 \sum_{n \ge 0} (r_2 x)^n = \sum_{n \ge 0} (\alpha_1 r_1^n + \alpha_2 r_2^n) x^n$$

Hence, we have for each n that $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$.

Lecture 2: 9/30/2024

Approach 3: (Matrices)

If $a_n=c_1a_{n-1}+c_2a_{n-2}$, then we can say that: $\begin{bmatrix}c_1&c_2\\1&0\end{bmatrix}\begin{bmatrix}a_{n-1}\\a_{n-2}\end{bmatrix}=\begin{bmatrix}a_n\\a_{n-1}\end{bmatrix}$

Letting
$$m{C}=egin{bmatrix} c_1 & c_2 \\ 1 & 0 \end{bmatrix}$$
 , we thus know that: $m{C}^n \begin{bmatrix} a_1 \\ a_0 \end{bmatrix} = \begin{bmatrix} a_{n+1} \\ a_n \end{bmatrix}$

Notably, the characteristic polynomial of C is $t^2-c_1t-c_2$. So the eigenvalues of C are r_1 and r_2 . Because we assumed r_1 and r_2 are distinct, we know C is diagonalizable. Hence there exists an invertible matrix B such that:

$$\boldsymbol{B} \begin{bmatrix} r_1 & 0 \\ 0 & r_2 \end{bmatrix} \boldsymbol{B}^{-1} = \boldsymbol{C}$$

Now set $\begin{bmatrix} x \\ y \end{bmatrix} = {m B}^{-1} \begin{bmatrix} a_1 \\ a_0 \end{bmatrix}$. Then we can see that:

$$\begin{bmatrix} a_{n+1} \\ a_n \end{bmatrix} = \boldsymbol{C}^n \begin{bmatrix} a_1 \\ a_0 \end{bmatrix} = \boldsymbol{B} \boldsymbol{D}^n \begin{bmatrix} x \\ y \end{bmatrix} = \boldsymbol{B} \begin{bmatrix} r_1^n x \\ r_2^n y \end{bmatrix} = \begin{bmatrix} b_{1,1} r_1^n x + b_{1,2} r_2^n y \\ b_{2,1} r_1^n x + b_{2,2} r_2^n y \end{bmatrix}$$

Setting $\alpha_1=b_{2,1}x$ and $\alpha_2=b_{2,2}y$, we have thus found constants α_1 and α_2 such that $a_n=\alpha_1r_1^n+\alpha_2r_2^n$.

Now some further questions to ask about recurrence relations are:

- 1. What if $r_1 = r_2$?
- 2. What if $d \geq 3$?
- 3. What if the recurrence relation is non-homogeneous or non-linear?

To start, let's answer question 1.

Theorem: Suppose r_1 and r_2 are the roots of $t^2-c_1t-c_2$ with $r_1=r_2$. Then there exists α_1,α_2 such that $a_n=\alpha_1r_1^n+\alpha_2nr_1^n$ for all $n\geq 0$.

As was true when $r_1 \neq r_2$, you can solve for α_1 and α_2 by plugging in different values of n into the equation in order to get a linear system of equations.

To explain why this is, let's revisit two of our previous approaches.

The Formal Power Series Approach Revisited:

Before, we were able to show that $A(x)=\frac{a_0+(a_1-a_0c_1)x}{(1-r_1x)(1-r_2x)}$ without assuming anything about r_1 and r_2 .

But when we assume $r_1=r_2$, we then get a different partial fraction decomposition for A(x). Specifically, we have that there exists constants β_1,β_2 such that:

$$A(x) = \frac{\beta_1}{1 - r_1 x} + \frac{\beta_2}{(1 - r_1 x)^2}$$

Now we'll go into more rigor later. But for now, accept that:

$$\frac{1}{(1-y)^2} = \frac{d}{dy} \left(\frac{1}{1-y} \right) = \frac{d}{dy} \left(\sum_{n \ge 0} y^n \right) = \sum_{n \ge 1} n y^{n-1} = \sum_{n \ge 0} (n+1) y^n$$

From the perspective of real analysis, this should make sense because derivatives of power series behave nicely when the power series converges.

Hence, we can write
$$A(x) = \sum_{n \geq 0} a_n x^n = (\beta_1 + \beta_2) \sum_{n \geq 0} r_1^n x^n + \beta_2 \sum_{n \geq 0} n r_1^n x^n$$
.

Or in other words, setting $\alpha_1=\beta_1+\beta_2$ and $\alpha_2=\beta_2$, we have that: $a_n=\alpha_1r_1^n+\alpha_2nr_1^n$

The Matrix Approach Revisited:

Homework 1:

(1) Find a closed formula for the following recurrence relation:

$$a_0 = 1, \ a_1 = 0, \ a_2 = 2,$$

 $a_n = 5a_{n-1} - 8a_{n-2} + 4a_{n-3} \text{ for } n \ge 3$