座位号	
学 号	

班级

姓 名

订

不

题

东北大学秦皇岛分校

课程名称: 计算机组成原理 试卷: (A)答案 考试形式: 闭卷

考试对象: 计算机科学与技术 15 级考试日期: 2017 年 12 月 19 日 试卷: 4 页

题号	_	 =	四	五.	六	七	八	总分
得分								

一、选择题(每空1分,共20分)

1、 假定基准程序 A 在某计算机上的运行时间为 100 秒, 其中 90 秒为 CPU 时间, 其余为 I/O 时间。若 CPU 速度提高 50%, I/O 速度不变,则运行基准程序 A 所花费的时间是(D)

A. 55 秒 B. 60 秒

C. 65 秒 D. 70 秒

2、存储程序并按(C)顺序执行,这是冯•诺依曼型计算机的工作原理。

A、计数器 B、循环 C、地址 D、值

3、规格化浮点数的尾数最高一位二进制数 (D)。

A. 一定为 1 B. 一定为 0 C. 任意 D. 不一定为 1

4、由 74181ALU 组成的运算器所以能提供高速运算,是因为它设置了(A)) 两个本位超前进位输出端

A, P, G B, D, T C, A, B

D, C, F

5、主存贮器和 CPU 之间增加 cache 的目的是(A)。

A 解决 CPU 和主存之间的速度匹配问题

B 扩大主存贮器容量

C 扩大 CPU 中通用寄存器的数量

D 既扩大主存贮器容量,又扩大 CPU 中通用寄存器的数量

6、DRAM 的刷新是以(B)为单位的

C、列 A、存储单元 B、行

D、存储字

7、下列几种存储器,(A)是易失性存储器

A, Cache

B, EPROM

C, Flash Memory D, CD-ROM

8、某计算机使用4体交叉编制存储器编址存储器,假定在存储器总线上出现的主存地址 (十进制) 序列为8005,8006,8007,8008,8001,8002,8003,8004,8000,则可能 发生访存冲突的地址对是(D)

A、8004 和 8008

B、8002和8007

C、8001和8008

D、8000和8004

9、在虚拟存储器中, 当程序正在执行时, 由(D) 完成地址映射

A、程序员

B、编译器

C、装入程序

D、操作系统

10、在 CPU 执行指令的过程中,指令的地址由(A)给出

A、程序计数器 PC

B、指令的地址码字段

C、操作系统

D、程序员

11、在指令格式中,采用扩展操作码设计方案的目的是(C)

A、减少指令字得长度 B、增加指令字的长度

C、保持指令字的长度不变而增加指令的数量

D、保持指令字的长度不变而增加寻址空间

12、指令的译码是对(B

)讲行译码

A、整条指今

B、指令的操作码字段

C、指令的地址码字段 D、指令的地址

13、指令周期是指(C)

A、CPU 从主存取出一条指令的时间 B、CPU 指令一条指令的时间

C、CPU 从主存取出一条指令加上执行这条指令的时间 D、时钟周期时间

14、相对于微程序控制器, 硬布线控制器的特点是(D)

A、指令执行速度慢,指令功能的修改和扩展容易

B、指令执行速度慢,指令功能的修改和扩展难

C、指令执行速度快,指令功能的修改和扩展容易

D、指令执行速度快,指令功能的修改和扩展容难

15、CRT 的分辨率为 1024×1024 像素, 像素的颜色数为 256 色, 则刷新存储器的容量是(D)

A. 256KB B. 2MB C. 512KB D. 1MB

16、如果浮点数用补码表示,则判断下列哪一项的运算结果是规格化数 (C)。

A 1.11000 B 0.01110 C 1.00010 D0.01010

17、在定点二进制运算其中,减法运算一般通过(D)来实现

A 原码运算的二进制减法器

B 补码运算的二进制减法器

C 补码运算的十进制加法器

D 补码运算的二进制加法器

18、某 DRAM 芯片, 其存储容量为 512K×8 位, 该芯片的地址线和数据线数目为 (D)。

A. 8, 512 B. 512, 8 C. 18, 8 D. 19, 8

19、变址寻址方式中,操作数有效地址等于(A)内容加上位移量

A. 变址寄存器 B. 堆栈指示器 C. 基址寄存器 D. 程序记数器

20、为了便于实现多级中断,保存现场信息最有效方法是用(D)

A. 通用寄存器 B. 外存 C. 存储器 D. 堆栈

座位号

学 号

班 级

订

线

姓名

装订线内

要答

不

D 题 得 分

二、简答题(3小题24分)

1、简述指令周期、机器周期、时钟周期的概念及三者之间的关系。(8分)答:(各2分)

指令周期: CPU 从内存取出一条指令并执行完这条指令所占用的总时间 机器周期 (CPU 周期): 完成一个基本操作所需要的时间称为机器周期。 时钟周期 (节拍、T 周期): 产生一个或多个操作控制信号的最基本的时间单位 三者关系: 一个指令周期由若干个机器周期组成,每个机器周期又由若干个时钟周期组成。

2、简述 CPU 访问(读、写) 主存的一般过程(本题 8 分)

答: (1) CPU 访问主存的读操作

地址→AR→AB, CPU 将地址信号送至地址总线

Read, CPU 发读命令

MEM→DB→DR, 读出信息经数据总线送至 CPU

必要时,当主存读操作结束时,通过"Ready"向 CPU 做出应答,表明数据读出完成。 (2) CPU 访问主存的写操作

地址→MAR→AB, CPU 将地址信号送至地址总线

数据→MDR→DB, CPU 将要写入的数据送至数据总线

Write, CPU 发写命令

存储器写入数据

必要时,存储器通过"Ready"向CPU做出应答,表明数据写入完成。

3、以输入数据过程为例,详细描述 DMA 的数据传送过程(流程图或文字描述均可)(8分)

输入数据过程:

- 1 从输入介质上读一个字→数据缓冲寄存器中
- 2 向DMAC发DMA请求
- 3 DMAC向CPU发HOLD请求
- 4 CPU响应DMAC请求,发HLDA信号,DMAC发DMA响应信号
- 5 DBR → MDR, MAC → 主存MAR, "写"
- 6 字计数器 1 → 字计数器, MAC+1 → MAC
- 7 判字计数器=0?

得 分

三、计算题(2小题,24分)

1. 已知十进制数 X=-5/256,Y=+59/1024,按照机器补码浮点数运算规则计算 X-Y,结果用二进制表示,浮点数格式如下:阶符取 2 位,阶码取 3 位,数符取 2 位,尾数取 9 位。(10 分)

解: (1) 浮点表示

X=11 011 11 011000000

Y=11 100 00 111011000

 $[-Y]=11\ 100\ 11\ 000101000$

(2) 对阶

ΔE=E[x]-E[-y]=11 011 - 11 100=11 011 + 00 100=11 111=-1<0, X 需要右移, 阶码加一 X=11 100 11 101100000 0

(3) 尾数相加

1	1	1	0	1	1	0	0	0	0	0	0
1	1	0	0	0	1	0	1	0	0	0	
1	0	1	1	0	0	0	1	0	0	0	0

- (4) 规格化, 负溢, 右规, 阶码加1, 11 101
- 11 01100010000
- (5)位数处理, 舍入, 11 011000100
- (6) 判溢,不溢出,结果为 11 101 11 011000100= (-0.1001111) *2⁻³
- **2、**(14 分)设 Cache 容量为 16KB,块大小为 512B,采用四路(组内有四块)组相联映像,且采用 LRU 替换算法。主存使用 20 位地址,且按字节编址,试求解下列问题:
- (1) 划分主存地址格式, 且需指明每部分的位数 (3分)
- (2) 划分 Cache 地址格式,且需指明每部分的位数(3分)
- (3) 写出该主存一Cache 系统的地址映像函数。(2分)
- (4)设某程序将使用的主存块字节地址流为"00000H、01100H、02101H、00010H、08810H, 05110H, 12345H,03030H",假设初始时 Cache 为空,填下图完成 CPU 访问完这 8 个主存地址后 Cache 的存储示意图,即将主存块号填在 Cache 存储体中相应位置,将标记及有效位填写在 Cache 目录表中相应位置(没有用到的 Cache 块不用填写)。(6 分)

座位号

学 号

班 级

_____ 订

姓 名

装订线内不

要

题

 存储体
 目录表

 A路
 B路
 C路
 D路

 A路
 B路
 C路
 D路

有效位 标记 有效位 标记 有效位 标记

解: (1) 主存地址:

主存字块(8位), Cache 组号(3位), 块内地址(9位)

(2) Cache 地址:

Cache 组号 (3位), 组内快号 (2位), 块内地址 (9位)

- (3) L= $(PMOD 2^7) *2^1+K; K=0, 1, 2, 3$
- (4) Cache 存储示意图如下:

存储体

目录表

得 分

四、综合题(2小题,32分)

1、(12 分) 某计算机字长 16 位, 主存地址空间大小 128kB, 按字编址, 采用单字长指令格式, 指令各段定义如下:

15 12 11 6 5 0

OP Ms Rs Md Rd

源操作数 目的操作数

转移指令采用相对寻址,相对偏移量用补码表示,寻址方式如下:

l	Ms/Md	寻址方式	助记符	含义
(000B	寄存器直接	Rn	操作数=(Rn)
(001B	寄存器间接	(Rn)	操作数=((Rn))
(010B	寄存器间接、自增	(Rn)+	操作数=((Rn)), (Rn)+1→Rn
(011B	相对	D(Rn)	操作数=(PC)+(Rn)

请回答下列问题:

- (1)该指令系统最多可有多少条指令?该计算机最多可以有多少个通用寄存器?存储器地址寄存器(MAR)和数据寄存器(MDR)至少各需多少位?(4分)
- (2) 转移指令的目标地址范围是多少? (2分)
- (3)若操作码 0010B 表示加法操作(助记符为 add),寄存器 R4 和 R5 的编号分别为 100B 和 101B, R4 的内容为 1234H, R5 的内容为 5678H, 地址 1234H 中的内容是 5678H, 5678H 的内容是 1234H,则汇编指令 "add (R4),(R5)+"(注意前面是源操作数)对应的机器码是什么?该指令执行后,哪些寄存器和存储单元内容发生改变?改变后的内容是? (6分)答:
- (1) 16 条指令, 8 个通用寄存器, MAR 至少 16 位, MDR 至少也是 16 位
- (2) 0000-FFFFH $(0-2^{16}-1)$
- (3) 0010 001 100 010 101B=2315H

R5 和 5678H 内容都会改变, R5 由 5678H 变成 5679H, 5678H 的内容变成 68ACH

- 2、已知单总线计算机结构如图所示,其中 M 为主存, XR 为变址寄存器, EAR 为有效地址寄存器, LATCH 为暂存器。假设指令地址已存在于 PC 之中,请给出 ADD X,D 指令周期信息流程和相应的控制信号。说明: (12 分)
- (1) ADD X, D 指令字中, X 为变址寄存器 XR, D 为形式地址
- (2) 寄存器的输入/输出均采用控制信号控制,如 PCi 表示 PC 的输入控制信号, MDRo 表示 MDR 的输出控制信号。
- (3) 凡是需要经过总线的传送,都需要注明,如(PC)→MAR,相应的控制信号为 PCo 和 MARi

座位号

学 号

班 级

订

线

装

姓 名

装订线内不

答

要

题

解:

微操作	有效控制信号		
(PC)→MAR	PCo, MARi		
$M(MAR) \rightarrow MDR$	MARo, R/W, MDRi, +1		
(PC)+1→PC			
(MDR)→IR	MDRo, IRi		
$(XR) + Ad(IR) \rightarrow EAR$	XRo, IRo, +, EARi		
(EAR) →MAR	EARo, MARi		
$M(MAR) \rightarrow MDR$	MARo, R/W, MDRi		
(MDR) →X	MDRo, Xi		
$(ACC) + (X) \rightarrow LATCH$	ACCo, Xo, Ki=+, LATCHi		
(LATCH) →ACC	LATCHo, ACCi		
	$(PC) \rightarrow MAR$ $M (MAR) \rightarrow MDR$ $(PC) + 1 \rightarrow PC$ $(MDR) \rightarrow IR$ $(XR) + Ad (IR) \rightarrow EAR$ $(EAR) \rightarrow MAR$ $M (MAR) \rightarrow MDR$ $(MDR) \rightarrow X$ $(ACC) + (X) \rightarrow LATCH$		

3、假设某计算机共 4 个设备中断源,优先级从高到低分别为 1、2、3、4。每级对应 1 个屏蔽码,表 7-3 列出了中断响应优先级与屏蔽级一致情况下的屏蔽码,表 7-4 列出了中断响应优先级与屏蔽级不一致情况下的屏蔽码。主程序执行过程中同时出现设备 2 和设备 3 的中断请求,在设备 2 执行阶段又出现了设备 4 的中断请求,当设备 4 的中断程序执行结束返回到主程序后,又重新出现设备 2 的中断请求,执行设备 2 的中断服务过程中又产生了设备 1 的中断请求。对于两种不同的屏蔽码,分别画出中断处理过程示意图。(8 分)

表 7-3 中断屏蔽码 1						表 7-4 中断屏蔽码 2					
中断级别	设	备屏	蔽码	1	中断级别	设备屏蔽码				说明	
一个 哟 1 多 次 办 1	1	2	3	4	中 例 级 加	1	2	3	4	DC 1973	
1级	1	1	1	1	1级	1	0	0	1		
2级	0	1	1	1	2级	1	1	0	1	0 为开放	
3级	0	0	1	1	3级	1	1	1	1	1 为屏蔽	
4级	0	0	0	1	4级	0	0	0	1		

解: 多重中断处理过程过程

屏蔽字: 1111、0111、0011、0001

响应顺序: $1\rightarrow 2\rightarrow 3\rightarrow 4$ 处理顺序: $1\rightarrow 2\rightarrow 3\rightarrow 4$

屏蔽字: 1001、1101、1111、0001 响应顺序: 1→2 →3 →4 处理顺序: 3→2 →1 →4

