INFORMATIKAI ALAPISMERETEK

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

- A megoldásokra kizárólag a javítási útmutatóban leírt pontszámok adhatók.
- A pontszámok minden esetben egész számok!
- Ha a vizsgázó nem a feladatban meghatározottak szerint válaszol, akkor a válasz nem fogadható el!
 - Pl.: H betű helyett nem válaszolhat N betűvel
- Ha a feladat egyetlen válasz (pl. egyetlen betűjel) megadását kéri, és a vizsgázó több különböző választ (pl. több különböző betűjelet) ad meg, akkor a feladatra 0 pontot kell adni!
- Ha egy kérdésre a leírás szerint csak egyetlen válasz adható, akkor az erre adható pontszám nem osztható, tehát pl. egy 2 pontos kérdés esetében vagy 0, vagy 2 pont adható!
- Egyéb esetekben a javítási útmutató részletesen leírja, hogy milyen módon adható részpontszám!
- Ha valamely feladatban a vizsgázó javított a megoldásán, de a javítása nem egyértelmű, akkor a válasz nem fogadható el, a feladatrészre 0 pontot kell adni! Egyértelmű javítás esetén a kijavított megoldást kell értékelni!
- Ha a vizsgázó valamely kérdésre egy általánostól eltérő rendszer használata miatt nem a várt válasz adja, de a válasza és az indoklása elfogadható, akkor a kérdésre adható pontszámot meg kell adni.

		I. Tesztfeladat megoldása
1.	d	1920*1080*4/1024=8100 kB
2.	c	Az a tulajdonság, hogy egy monitort az állványán akár 90 fokkal is el tudunk forgatni
3.	a, b	
		A pont jár, ha legalább az egyik helyes választ bejelölte.
4.	c	Az eljárást, amikor a merevlemezt több különálló területre osztjuk, formázásnak hívjuk
5.	c	A verembe beírt utolsó értéket tudjuk utoljára kiolvasni
6.	b	9600/(1START+8ADAT+1STOP)=960
7.	d	3A+4F+52= 00 DB
		3A 0011 1010 4F 0100 1111 52 0101 0010 1101 1011
		Vagy decimálisan: 58+79+82=219 = 13*16+11, azaz hexadecimálisan DB. A felső bájt nulla.
8.	I, I,	I, H. 0 vagy 1 helyes válasz: 0 pont, 2 vagy 3 helyes válasz: 1 pont,
		4 helyes válasz: 2 pont
9.	d	Az Ethernet hálózatokban a keretek hibamentes továbbítását a nyugtázás
		biztosítja
10.		a) B1:1 B2: 6 B3: 7 b) =SZUM(B2:B5,\$E\$1) c) =SZUM(C1:C4) d) =SZUM(D2:D50)/DARAB(D2:D50), vagy =ÁTLAG(D2:D50)
		0 vagy 1 helyes válasz: 0 pont, 2 vagy 3 helyes válasz: 1 pont,
		4 helyes válasz: 2 pont

A kérdésekre adható maximális pontszám csak helyes válasz esetén jár. Pontszámot megbontani csak az előírt esetben lehet.

II. Számítógépes feladat és számítógéppel végzett interaktív gyakorlat

A jelű feladatsor

Szövegszerkesztési, táblázatkezelési, prezentációkészítési ismeretek

1. A feladat 25 pont

Az alábbi táblázat egy szakmai vizsgán résztvevők eredményeit tartalmazza:

Sor-	Név	Részpontszámok		Öneren nant	Részer	edmény	16
szám		Bmélet	Gyakorlat	- Összes pont -	Bmélet	Gyakorlat	Vizsgaeredmény
1.	KissJózsef	65	16	81	+	-	Nem felelt meg
2.	Erdei György	75	95	170	+	+	Megfelelt
3.	Cseh Lajos	60	21	81	+	-	Nem felelt meg
4.	Miklós József	88	30	118	+	-	Részvizsgát ismételhei
5.	Kilián Zakariás	15	44	59	-	-	Nem felelt meg
6.	Lajtai Emmi	30	90	120	-	+	Részvizsgát ismételhei
7.	Zak János	83	15	98	+	-	Nem felelt meg
8.	Kispéter Katalin	91	71	162	+	+	Megfelelt
9.	Hajós Aladár	89	20	109	+	-	Részvizsgát ismételhei
10.	Antal Ivett	57	75	132	+	+	Megfelelt
11.	Lelkes Izabella	62	43	105	+	-	Részvizsgát ismételhei
12.	Udvaros Dávid	5	72	77	-	+	Nem felelt meg
13.	Kisteleki Pál	4	31	35	-	-	Nem felelt meg
14.	Faragó Ilona	62	34	96	+	-	Nem felelt meg
15.	Molnár Ferenc	64	17	81	+	-	Nem felelt meg
16.	Ujlaki Andrea	56	57	113	+	-	Részvizsgát ismételhe
17.	Boros Pál	65	94	159	+	+	Megfelelt
18.	Éles Lajos	94	84	178	+	+	Megfelelt
19.	Magyar Anikó	3	84	87	-	+	Nem felelt meg
20.	Lakatos János	44	35	79	+	-	Nem felelt meg
Maxir	mális pont	100	100	200			
Minimális %		40%	60%	50%			
Minin	nális pont	40	60	100			

- A vizsga elméleti és gyakorlati részből áll, mindkét részvizsgán maximum 100 pontot lehet elérni.
- Elméletből minimum 40%-os, gyakorlatból minimum 60%-os eredmény szükséges ahhoz, hogy a részvizsga eredményes legyen.
- A vizsga eredménye 3 féle lehet:
 - Megfelelt ha a vizsgázó mindkét részvizsgája eredményes és összesített pontszáma eléri a megszerezhető pontok 50%-át.
 - Nem felelt meg ha a vizsgázó összesített pontszáma kisebb a megszerezhető pontok 50%-ánál.

- Részvizsgát ismételhet ha a vizsgázó egyik részvizsgája eredményes és összesített pontszáma eléri a megszerezhető pontok 50%-át.
- A vizsgázók teljesítményét ezekkel a számokkal mérjük, de a táblázatot később más értékekkel is szeretnénk használni.
- a) Hozza létre a táblázatot táblázatkezelő program segítségével! (2 pont)
- Importálja a táblázat alapadatait a vizsga.csv szöveges állományból, amely az adatokat pontosvesszővel határolva tartalmazza!
- A táblázatot tartalmazó állomány neve *Vizsga* legyen, amely egyetlen munkalapot tartalmazzon, *Eredmények* néven!
- Írja be a táblázatba a mintán látható, de a fájlban nem szereplő, *nem számítható* adatokat!
- A táblázat bal felső sarka a munkalap A1 cellája legyen!
- Ahol szükséges, alakítson ki összevont cellákat!
- b) Határozza meg másolható képletekkel a számítható adatokat:

(6 pont)

- az Összes pont oszlop számértékeit;
- a Minimális pont sor számértékeit;
- a *Részeredmény* oszlopainak + és jeleit;
 - (+ jel szerepeljen eredményes, jel szerepeljen eredménytelen vizsga esetén)
- a Vizsgaeredmény oszlop Megfelelt, Nem felelt meg, Részvizsgát ismételhet szövegeit!
- Összetett számítások esetében alkalmazhat segédcellákat is a részeredmények meghatározásához.
- c) Formázza meg a táblázatot a fenti minta és az alábbi leírás szerint! (5 pont)
- Minden sor magassága 20 pont legyen!
- Az oszlopok szélessége a mintához hasonló legyen!
- A táblázatban Arial, vagy ennek hiányában tetszőleges talpatlan betűtípust alkalmazzon, a mintának megfelelően! A betűméret 10 és 8 pontos legyen!
- Alkalmazzon a mintának megfelelő szegélyezést, igazítást és % formátumot!
- Alkalmazzon feltételes formátumot a *Részpontszámok* oszlopaiban, és az *Összes pont* oszlopban!
 - Azok a pontszámok, amelyek elérik a szükséges minimumot, félkövér betűvel, a minimum alatti pontszámok dőlt betűvel jelenjenek meg!
- Alkalmazzon feltételes formátumot a *Vizsgaeredmény* oszlopban is!
 - A *Megfelelt* szöveg fekete, félkövér, a *Nem felelt meg* szöveg piros, félkövér, a *Részvizsgát ismételhet* szöveg zöld, félkövér, dőlt betűvel jelenjen meg!
- d) Készítse el a következő oldalon található mintának megfelelő oszlopdiagramot a sikeresen vizsgázók pontszámai alapján! (5 pont)
- A diagramot objektumként szúrja be az *Eredmények* munkalapon!
- Írja be a mintán látható diagramcímet, félkövér betűvel!
- A jelmagyarázat a mintán látható szövegeket tartalmazza és a diagram alatt legyen!
- A kategóriatengelyen a nevek a mintának megfelelő igazítással szerepeljenek, és ne legyen osztásjel!
- A diagram háttere legyen fehér, ne legyen szegélye, és ne legyenek rácsvonalai!
- Az értéktengelyen állítsa be a mintának megfelelő léptéket és osztásjelet!
- Az oszlopok részben fedjék le egymást, színük legyen az alapértelmezettől eltérő, az összesített pontszám értéke jelenjen meg az oszlop fölött!

e) Készítsen az alábbi mintának megfelelően körlevelet, amelyben szerepeljen az összes vizsgázó számára elkészített vizsgaértesítés! (7 pont)

Tárgy: Értesítés a szakmai vizsga eredményéről

Tisztelt Kiss József!

Értesítem, hogy vizsgán a következő eredményeket érte el:

Elmélet	Gyakorlat	Összes pont	Vizsgaeredmény
Sikeres	Sikertelen	81	Nem felelt meg

Üdvözlettel:

Kiss Pálné titkárságvezető

Budapest, 2012. június 27.

- Először készítsen a *vizsga* állomány felhasználásával egy *adatforras.csv* nevű, pontosvesszővel határolt szöveges állományt, amely csak a körlevélhez szükséges adatokat tartalmazza, és lehetővé teszi annak kényelmes létrehozását! A létrehozott állományban a + jeleket cserélje a *Sikeres*, a jeleket pedig a *Sikertelen* szavakra!
 (Ha a *vizsga* állományból nem tudja megoldani az adatok exportálását, akkor használhatja az *adatforras2.csv* nevű állományt!)
- Készítsen formalevelet, *formalevel* néven, amely a fenti mintának megfelelő szöveget tartalmazza!
- Kapcsolja hozzá adatforrásként az *adatforras.csv* (vagy *adatforras2.csv*) állományt, és szúrja be a megfelelő adatmező hivatkozásokat!
 - Mérete A5-ös, tájolása fekvő legyen, 10-es és 12-es betűméretet alkalmazzon!
 - A tagoláshoz 24-es és 12-es térközt alkalmazzon, ahol szükséges, alkalmazzon tabulátorokat!
 - A táblázatot a mintának megfelelően formázza meg!

Egyesítse a formalevelet az adatforrással, és az így létrejött állományt mentse *levelek* néven!

Mintamegoldás:

A feladat megoldása megtalálható a *vizsga.xls*, *adatforras.csv*, *formalevel.doc*, *levelek.doc* állományokban.

<u>Értékelés:</u> a) A táblázat létrehozása, adatok beírása	2 pont
tartalmaz; a táblázat bal felső sarka a munkalap A1 cellája; az összevont cellák kialakításra kerültek	1pont
a mintán látható, a fájlban nem szereplő, nem számítható adatokat b) A számítható adatok meghatározása	
 Az Összes pont oszlop számértékei: E3 = SZUM (C3:D3), majd másolás lefelé 	1 pont
 A Minimális pont sor számértékei: C26 = C24*C25, majd másolás jobbra A Részeredmények oszlopainak + és – jelei: 	1 pont
 F3 =HA (C3>=C\$26; "+"; "-"), majd másolás jobbra, és lefelé A Viszgaeredmény oszlop szövegei 	•
Egy lehetséges megoldás segédcellákkal: J3 = DARABTELI (F3:G3;"+"), majd másolás lefelé (1 pont) H3 = HA (E3 <e\$26; "megfelelt")),<="" "nem="" (j3='1;"Részvizsgát' felelt="" ha="" ismételhet";="" meg";="" td=""><td></td></e\$26;>	
majd másolás lefelé (2 pont)	
c) Formázás	
- A sorok magassága, az oszlopok szélessége megfelelő	
- 10 és 8 pontos, Arial betű, a mintának megfelelően, % formátum	
 A mintának megfelelő szegélyezés és igazítás. Helyes feltételes formázás a <i>Részpontszámok</i> és <i>Összes pont</i> 	
oszlopokban	
- Helyes feltételes formázás a <i>Vizsgaeredmény</i> oszlopban	
d) Oszlopdiagram	5 pont
 A diagram létezik, objektumként beszúrva az Eredmények 	1 4
munkalapon, a diagramcím a mintának megfelelő	1 pont
 A jelmagyarázat a mintán látható szövegeket tartalmazza 	1 ,
és a diagram alatt látható	1 pont
A kategóriatengelyen a nevek a mintának megfelelő igazítással	
szerepelnek, nincs osztásjel; az értéktengelyen megfelelő	14
a lépték és az osztásjel	
- A diagram háttere fehér, nincs szegélye, nincsenek rácsvonalai	1 pont
Az oszlopok részben lefedik egymást, színük az alapértelmezettől Az oszlopok részben lefedik egymást, színük az alapértelmezettől	1 nont
eltérő, az összesített pontszám megjelenik az oszlop fölött	
e) Körlevél	/ pont
 Az adatforrás nevű, tabulátorral határolt szöveges állomány létrehozása, csak a körlevélhez szükséges adatokkal 	1 pont

_	A + jelek Sikeres, a – jelek a Sikertelen szavakra cserélve	. 1 pont
_	A <i>formalevel</i> állomány létrehozása, A5-ös méret, fekvő tájolás,	
	10-es és 12-es betűméretet alkalmaz	. 1 pont
-	A levél tartalmazza a mintán látható szöveget, az adatforrás csatolva,	
	a szöveg kiegészítve az adatmező hivatkozásokkal	. 1 pont
-	Tagolás 24-es és 12-es térközökkel a mintának megfelelően,	
	tabulátorok alkalmazása	. 1 pont
_	A táblázat a mintának megfelelő formájú	. 1 pont
-	Van levelek állomány, amely tartalmazza az egyesítés eredményét	. 1 pont

Algoritmus kódolása

2. A feladat 13 pont

Feladatkitűzés:

Az alábbi algoritmus a visszalépéses keresés módszerével előállítja az 1 és N közé eső egész számok összes lehetséges sorrendjét (permutációját).

Kódolja az algoritmust a választott programozási nyelven!

Beadandó a feladatot megoldó program forráskódja. A feladat megoldásaként teljes, fordítható és futtatható kódot kell készíteni!

```
Konstans Max=20
Változó X[0..Max-1]:egész elemű tömb
         N:eqész
Eljárás Kiir (N:egész)
  Ciklus I:=0-tól N-1-iq
     Ki: X[I]
  Ciklus vége
Eljárás vége
Függvény Rosszeset (I:egész): logikai
  Ciklus amíg (J<I) és (X[J]<>(X[I])
    J := J + 1
  Ciklus vége
  Rosszeset:=(J<I)
Függvény vége
Függvény VanJoeset (I, N:egész):logikai
  Ciklus
    X[I] := X[I] + 1
  Amíq (X[I] <= N) és Rosszeset(I)
  VanJoeset:= (X[I]<=N)</pre>
Eljárás vége
Eljárás Permutal (N:egész)
  Ciklus J:=0-tól N-1-ig
    X[J] := 0
  Ciklus vége
  I:=0
  Ciklus amíg (I>=0)
    Ciklus amíg (I>=0) és (I<=N-1)
       Ha VanJoeset(I,N)
         akkor
           I := I + 1
         különben
           X[i] := 0
           I := I - 1
       Elágazás vége
    Ciklus vége
    Ha (I>N-1)
       akkor
         Kiir(N)
         I := N-1
    Elágazás vége
  Ciklus vége
Eljárás vége
Program:
  Be: N
  Permutal(N)
Program vége.
```

Mintamegoldás: az algoritmus C# nyelven kódolva

```
using System;
using System.Collections.Generic;
using System.Linq;
using System. Text;
namespace Permutációk
    class Permutalas
        private const int max = 20;
        private int[] x = new int[max];
        private void kiir(int n)
            for (int i = 0; i < n; i++)
               Console.Write(x[i] + " ");
            Console.WriteLine();
        private bool rosszeset(int i)
            int j = 0;
            while ((j < i) \&\& (x[j] != x[i]))
            { j++ }
            return (j < i);
        private bool vanjoeset(int i,int n)
            do
            { x[i]++; }
            while ((x[i] \le n) \&\& rosszeset(i));
            return (x[i] <= n);
        public void permutal(int n)
            for (int j = 0; j < n; j++)
                x[j] = 0;
            int i = 0;
            while (i >= 0)
                while ((i >= 0) \&\& (i <= n - 1))
                     if (vanjoeset(i, n))
                         i++;
                     else
                         x[i--] = 0;
                if (i > n - 1)
                     kiir(n);
                     i = n - 1;
            }
        }
    }
```

```
class Program
{
    static void Main(string[] args)
    {
        Permutalas p = new Permutalas();
        Console.Write("N=");
        int n = int.Parse(Console.ReadLine());
        Console.WriteLine("Permutációk:");
        p.permutal(n);
        Console.ReadLine();
    }
}
```

Értékelés:

a) A program szerkezete, változók deklarálása	3 pont
 A programkód szintaktikailag hibátlan, lefordítható, eljárásokra tagolt, 	_
minden eljárás meghívásra, tevékenységük végrehajtásra került 1 pon	t
 A globális változók és konstans helyes deklarálása	t
 Az algoritmusnak megfelelő lokális változók helyes deklarálása 1 pon 	t
b) Kiir eljárás kódolása	1 pont
c) Rosszeset függvény kódolása	
 Fejléc, paraméter, értékvisszaadás helyes kódolása	t
- Ciklus helyes kódolása	t
d) VanJoeset függvény kódolása	
 Fejléc, paraméter, értékvisszaadás helyes kódolása	
- Ciklus helyes kódolása	
e) Permutal eljárás kódolása, meghívása	
 Fejléc, paraméter, meghívás helyes kódolása	_
 Tömb nullázása	t
 Külső és belső ciklus feltétele jó, megfelelően egymásba ágyazva 1 pon 	t
 Belső ciklusban lévő elágazás helyes kódolása	t
Belső ciklus utáni elágazás helves kódolása	t

Szöveges fájlban adott input adatsoron dolgozó program elkészítése

3.A feladat 22 pont

Feladatkitűzés:

Egy amőba játékprogram a félbehagyott játékok állását szöveges állományokba menti. Írjon programot, amely ezen szöveges állományok feldolgozása alapján választ ad néhány egyszerű kérdésre a mentett állásokkal kapcsolatban!

A megoldás teszteléséhez mellékeltük az *allas1.txt*, UTF-8 kódolású szöveges állományt, amely a specifikációnak megfelelő formában tartalmaz egy játékállást!

A játék szabálya

- Az amőba kétszemélyes játék, egy négyzethálós játékterületen játsszák.
- Az egyik játékos jele kör, a másiké kereszt.
- A játékosok felváltva helyezik el a saját jelüket a játékterület valamelyik, még nem foglalt négyzetében.
- Az nyeri a játékot, akinek először sikerül vízszintesen, függőlegesen, vagy valamelyik átló irányában öt darabot egymás mellé helyezni a saját jeléből.
- A játékterület ebben a megvalósításban 10 sorból és 10 oszlopból áll, azaz 100 db négyzetet tartalmaz.

A játékállás mentésének módja

- A szöveges állomány első sora kétféle **betűt** tartalmazhat: *O*-t (nem nulla!), vagy *X*-et.
 O esetén a kör jelű játékos, *X* esetén pedig a kereszt jelű játékos kezdte a játékot.
- Ha az első sor O-t tartalmaz, akkor a fájlban később valamelyik sorban X is szerepel, és viszont.
- A játékosok jelét kódoló betűk után az adott játékos lépéseit tartalmazó sorok következnek.
- Minden ilyen sor két egész számot tartalmaz, egy szóközzel elválasztva, az első a sor, a második pedig az oszlop sorszámát jelenti.
- Feltételezzük, hogy a szöveges állomány biztosan ilyen szerkezetű, és a tárolt számok mindegyike 1 és 10 közé esik.
- Feltételezzük azt is, hogy a játékosok lépésszáma reális, például nincs olyan, hogy az egyik játékos ötöt lép, amíg a másik hetet.
- Feltételezzük továbbá, hogy az állás olyan, hogy egyik játékos sem nyert még!

Példa:

0

2 4

3 5

X 3 7

4 5

Ez a fájl egy gyorsan félbeszakadt játékot tartalmaz, melyet a kör jelű játékos kezdett, mindkét játékos két-két jelet helyezett el, és a kör jelű játékos először a 2. sor 4. négyzetébe tette a jelét.

Készítsen programot, amely megvalósítja a következő feladatokat!

- a) A program olvassa be egy, az előbbi szabályoknak megfelelő szöveges állomány tartalmát és tárolja el a játékállást egy célszerűen megválasztott adatszerkezet segítségével, a későbbi feldolgozás céljából!
 - A fájl nevét a felhasználó adja meg, semmilyen I/O ellenőrzést nem kell végezni! (6 pont)

- b) Az amőbaprogram még nem tökéletes, ezért néha előfordul, hogy az állást úgy menti el, mintha ugyanarra a mezőre többször is léptek volna!
 - Ellenőrizze, hogy a beolvasott játékállás tartalmaz-e ilyen jellegű hibát!
 - Ha igen, írja ki az első, ilyen szempontból hibás lépést! (3 pont)
- c) Hibátlan állás esetén jelenítse meg a képernyőn a játékállást úgy, ahogy azt a játékosok látják! (4 pont)
 - Elegendő, ha egyszerű karakteres megjelenítést alkalmaz, pl. X és O karakterekkel.
 - Az áttekinthetőség érdekében az üres mezőket is jelölje, pl. egy-egy pont karakterrel.
 - A négyzethálót, sorszámokat nem kell megjeleníteni!

Példa az egyszerű megjelenítésre az allas 1.txt fájl alapján

- d) Írja ki, hogy ki kezdte a játékot, és hogy melyik játékos következik! (3 pont)
- e) Készítsen összesítő táblázatot az alábbi minta szerint arról, hogy a soron következő játékosnak vízszintes irányban milyen hosszúságú sorozatai vannak, ezek hol kezdődnek el, és hol végződnek! (A minta az *allas1.txt* fájl alapján készült.) (6 pont)

Sor	Kezdete	Vége	Hossz
2.	4	4	1
3.	5	6	2
4.	4	4	1
5.	3	3	1
7.	7	8	2
8.	7	7	1
9.	3	5	3

Állapítsa meg, hogy vízszintes irányban hány jelből áll a leghosszabb sorozata a soron következő játékosnak!

Beadandó a feladatot megoldó program forráskódja. A feladat megoldásaként teljes, fordítható és futtatható kódot kell készíteni.

Mintamegoldás: egy lehetséges megoldás C# nyelven kódolva

```
using System;
using System.Collections.Generic;
using System.Linq;
using System. Text;
using System.IO;
namespace ConsoleApplication1
    class amoba
        private const int n=10;
        private const int kor=0;
        private const int kereszt=1;
        private const int ures=2;
        private int[,] tabla=new int[n,n];
        private int kordb=0;
        private int keresztdb = 0;
        private int akt, kov;
        private int kezd = -1;
        private bool hiba = false;
        private void betolt() // a.,b., feladat
            Console.Write("=> Adja meg a file nevét: ");
            string fnev = Console.ReadLine();
            StreamReader f = File.OpenText(fnev);
            for (int i = 0; i < n; i++)
                for (int j = 0; j < n; j++)
                    tabla[i,j] = ures;
            }
            while (!(f.EndOfStream)&&!hiba)
                string s = f.ReadLine();
                if ((s == "O") | (s == "X"))
                    akt = (s == "O" ? kor : kereszt);
                    if (kezd==-1) kezd = akt;
                else
                    if (akt == kor)
                        kordb++;
                     }
                    else
                     {
                        keresztdb++;
                    string[] reszek=s.Split(' ');
                    int sor=int.Parse(reszek[0])-1;
                    int oszlop=int.Parse(reszek[1])-1;
                    if (tabla[sor, oszlop] == ures)
```

```
tabla[sor, oszlop] = akt;
            else
                hiba = true;
                Console.WriteLine("\n=> Az állás hibás,
                      az első hibás lépés: "+s);
            }
        }
    }
}
private void kiir() // c., feladat
    string s = "\n=> A játék állása:\n\n";
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            s += (tabla[i, j] == kor ? "O" :
                (tabla[i, j] == kereszt ? "X" : "."));
        s += "\n";
    Console.WriteLine(s);
}
private void kovetkezik() // d. feladat
    if (kordb == keresztdb)
        kov = kezd;
    else
        if (kezd == kor)
            kov = kereszt;
        else
            kov = kor;
    Console.WriteLine("=> A játékot kezdte: " + (kezd == kor ? "O"
                                                          : "X"));
    Console.WriteLine("
                         Következik
                                          : "+(kov==kor?"0":"X"));
}
private void vsorozatok() // e., f., feladat
    Console.WriteLine("\n=> Vizszintes sorozatok\n");
    Console. WriteLine (String. Format (\{0,5\}\{1,12\}\{2,10\}\{3,10\},
                            "Sor", "Kezdete", "Vége", "Hossz"));
    int i = -1;
    int max = 0;
    while(i<n-1)
        i++;
        int j=-1;
        int db = 0;
        int kezdet=0, veg=0;
```

```
while (j < n-1)
                     j++;
                     if (tabla[i, j] == kov)
                         db++;
                         if (db == 1) kezdet = j;
                     else
                         if (db > 0)
                         {
                            veg = j - 1;
                            Console.WriteLine(
                                     String.Format(\{0,5\}\{1,9\}\{2,12\}\{3,10\},
                                            (i+1)+".", kezdet + 1, veg+1, db));
                             if (db > max) max = db;
                             db = 0;
                         }
                     }
                 }
            Console.WriteLine("\n=> A leghosszabb vízszintes sorozat
                                            hossza: "+max);
        }
        public void feladatok()
            betolt();
            if (!hiba)
                kiir();
            kovetkezik();
            vsorozatok();
            Console.ReadLine();
        }
    }
    class Program
        static void Main(string[] args)
            amoba a = new amoba();
            a.feladatok();
    }
}
```

Értékelés:

a)	A szöveges állomány beolvasása, tárolás		6 pont
_	A program bekéri a szöveges állomány nevét és megnyitja azt	1 pont	
_	A program végigolvassa a szöveges állományt	1 pont	
_	A programban definiálásra kerül olyan adatszerkezet, amelyben		
	az állás eltárolható	1 pont	
_	A program értelmezi, hogy az egyes lépéseket melyik játékos tette		
	meg	1 pont	
_	A program értelmezi, hogy az egyes lépések melyik sorban és melyik	_	
	oszlopban történtek		
_	Minden lépés eltárolásra kerül (melyik játékos, hova lépett)	1 pont	
b)	Az állás ellenőrzése		3 pont
_	A program ellenőrzi és észleli, ha már elfoglalt mezőre történt újabb		
	lépés	1 pont	
_	A hiba észlelése esetén kiírja a rossz lépést	1 pont	
_	A program további részét ebben az esetben nem hajtja végre	1 pont	
c)	Az állás megjelenítése		4 pont
_	10x10-es, jól áttekinthető megjelenítés	1 pont	
_	Csak X és O jelek, valamint üres mezőket jelölő karakterek		
	szerepelnek		
_	Az eltárolt állás pontosan jelenik meg	2 pont	
d)	Ki kezdett, ki következik		3 pont
_	Helyesen írja ki, hogy ki kezdte a játékot		
_	Helyesen írja ki, hogy ki következik (azonos lépésszám esetén)	l pont	
_	Helyesen írja ki, hogy ki következik (különböző lépésszám esetén)		
e)	Összesítő táblázat a vízszintes sorozatokról		6 pont
_	A következő játékos azon sorait vizsgálta, ahol volt jele	1 pont	
_	Legalább egy sorban helyesen határozta meg legalább egy sorozat		
	kezdetét, végét és hosszát	1 pont	
_	Minden sorban helyesen határozta meg legalább egy sorozat		
	kezdetét, végét és hosszát		
_	Helyesen kezelte, ha egy sorban több sorozat volt		
_	Az eredményt a mintának megfelelő formában jelenítette meg		
_	A leghosszabb sorozat hosszát kiválasztotta, és kiírta a képernyőre	1 pont	

Egy adatbázis létrehozása, feltöltése, lekérdezések

4.A feladat 25 pont

Feladatkitűzés:

A **piac** nevű adatbázis egy piacon a 2009-es év nyári hónapjaiban történt vásárlások adatait tartalmazza.

Az adatbázis táblái közül hármat UTF-8 kódolású, pontosvesszővel határolt szöveges állományokban megadtunk. Ezek első sorában az adott tábla mezőnevei, a többi sorban az adatrekordok találhatók. A negyedik adattáblát a következőkben leírtak szerint létre kell hoznia!

Az adatbázis elsősorban feladatkitűzési céllal készült, így nem modellezi tökéletesen a való életben felmerülő összes lehetséges helyzetet.

Az adatbázis az alábbi táblákat és relációkat tartalmazza:

```
vevok (
             : Egész szám -> vasarlasok.vevo
: Szöveg
vevoazon
nev
)
zoldsegesek(
zoldsegesazon : Egész szám -> vasarlasok.zoldseges
nev
              : Szöveg
)
vasarlasok(
<u>vasarlasazon</u> : Egész szám
datum
              : Dátum/Idő
vevo
              : Eqész szám
                              -> vevok.vevoazon
             : Egész szám
: Valós szám
                              -> zoldsegek.zoldsegazon
aru
mennyiseg
zoldseges
             : Egész szám -> zoldsegesek.zoldsegesazon
```

Az adatbázisban nem szerepel, de létrehozandó a következő adattábla:

```
zoldsegek(
  zoldsegazon : Egész szám -> vasarlasok.aru
nev : Szöveg
egysegar : Egész szám
)
```

A kettőspont után az adatmező típusát adtuk meg, a "->" karakterek után pedig a más táblákkal való kapcsolatot.

Az elsődleges kulcsot aláhúzás jelöli.

A **vevok** adattábla tartalmazza a piacon vásárló emberek egyedi azonosítóját és nevét. A táblában szerepelhet több, ugyanolyan nevű ember is.

A **zoldsegesek** adattábla tartalmazza a piacon áruló zöldségesek egyedi azonosítóját és nevét. A táblában szerepelhet több, ugyanolyan nevű zöldséges is.

A **zoldsegek** adattábla tartalmazza a piacon kapható zöldség- és gyümölcsfélék egyedi azonosítóját, nevét és egységárát (Ft/kg).

A **vasarlasok** adattábla tartalmazza a 2009-es év nyári hónapjaiban történt vásárlások valamennyi fontos adatát: a vásárlás egyedi azonosítóját, dátumát, a vevő kódját, a vásárolt áru (zöldség-gyümölcs) kódját és mennyiségét (kg), valamint a zöldséges kódját, akinél a vásárlás történt. Ha egy vásárló egyidejűleg több különböző árut is vásárolt, akkor ezek az adattáblába külön-külön kerültek be.

- a) Hozzon létre *piac* néven üres adatbázist! Az adatbázisba importálja a táblákat, alakítsa ki a megfelelő mezőket és elsőleges kulcsokat, majd hozza létre a táblák közötti relációkat! (2 pont)
- b) Hozza létre az adatbázisban a **zoldsegek** adattáblát! (3 pont)
 - Állítsa be a zoldsegazon mezőt elsődleges kulcsként!
 - Töltse fel az adattáblát az alábbi adatokkal!

zoldsegazon	Nev	egysegar
1	alma	260
2	bab	240
3	banán	310
4	borsó	250
5	brokkoli	320
6	burgonya	160
7	cékla	210
8	citrom	420
9	cukkini	290
10	eper	350
11	gomba	390
12	hagyma	220
13	körte	310
14	narancs	280
15	őszibarack	360
16	paprika	410
17	paradicsom	370
18	retek	180
19	sárgabarack	280
20	sárgarépa	190
21	szilva	390
22	szőlő	420

- c) Készítsen lekérdezést, amely megadja, hogy június hónapban mely napon, melyik vevő, mit és milyen mennyiségben vásárolt és az egyes tételekért mennyit fizetett! (6 pont)
 - A lista legyen elsősorban a vásárlás napja, másodsorban a vevő neve szerint rendezve, mindkét szempont szerint növekvően!
 - A vevok.nev mező vevo néven, a zoldsegek.nev mező aru néven, a számított mező pedig ar néven jelenjen meg a listában!
 - A lekérdezést *1Kimitvett* néven mentse!
- d) Készítsen lekérdezést, amely megadja, hogy melyik az a zöldséges, aki a legnagyobb mennyiséget adta el almából a nyár folyamán! (7 pont)
 - A lekérdezés a zöldséges neve mellett adja meg az eladott alma mennyiségét is!
 - A lekérdezést **2Legtobbalma** néven mentse!
- e) Készítsen lekérdezést, amely törli azokat a vevőket a **vevok** táblából, akik a nyár folyamán egyáltalán nem vásároltak! (7pont)
 - A lekérdezés teszteléséhez készítsen másolatot a vevok adattábláról vevok2 néven, és azon futtassa a lekérdezést! Hiba esetén készítsen újra másolatot a tábláról!
 - A lekérdezést *3Nemvasarlo* néven mentse!

Megoldás, értékelés:

a)	 A piac nevű adatbázis létrehozása, táblák importálása, kapcsolatok kialakítása 2 p Táblák helyes importálása, elsődleges kulcsok pontos beállítása	ont
b)	A zoldsegek tábla létrehozása, feltöltése adatokkal	ont
c)	1Kimitvett lekérdezés 6 p - A lekérdezés a megadott néven mentve, lista a megadott mezőket tartalmazza¹ 1 pont - Helyes a számított mező² 1 pont - A mezők a megadott neveken jelennek meg a listában³ 1 pont - A dátumra vonatkozó szűrőfeltétel helyes⁴ 1 pont - A táblák közötti kapcsolat helyes⁵ 1 pont - Helyes a rendezés mindkét szempont szerint⁴ 1 pont	ont
	Egy lehetséges megoldás MS-SQL-ben: SELECT Vasarlasok.datum ¹ , vevok.nev ¹ as vevo ³ , zoldsegek.nev ¹ as Vasarlasok.mennyiseg ¹ , Round(Vasarlasok.mennyiseg*Zoldsegek.egysegar) ² AS ar ³ FROM Vasarlasok, vevok, zoldsegek ¹ WHERE ((Vasarlasok.datum Like "*.06.?*") ⁴ AND (Vasarlasok.vevo=vevok.vevoazon) ⁵ AND (zoldsegek.zoldsegazon=Vasarlasok.aru)) ⁵ ORDER BY Vasarlasok.datum, vevok.nev ⁶ ;	aru³,

```
- A lekérdezés a megadott néven mentve, a lista a megadott mezőket
   tartalmazza<sup>1</sup> 1 pont

    A táblák közötti kapcsolat helyes<sup>4</sup>

 - Csúcsérték meghatározása<sup>7</sup> 1 pont
   Az utolsó két pont akkor is jár, ha a legnagyobb mennyiséget
   a megfelelő függvénnyel határozta meg.
 Egy lehetséges megoldás MS-SQL-ben:
 SELECT TOP 1 Zoldsegesek.nev , Sum (Vasarlasok.mennyiseg) as
 eladottmennviseq
 FROM Vasarlasok, Zoldsegesek, Zoldsegek
 WHERE ((Zoldsegesek.zoldsegesazon=vasarlasok.zoldseges) 4 AND
  (Zoldsegek.zoldsegazon=vasarlasok.aru) AND
  (Zoldsegek.nev="alma"))<sup>5</sup>
 GROUP BY Zoldsegesek.zoldsegesazon, Zoldsegesek.nev<sup>2</sup>
 ORDER BY Sum (Vasarlasok.mennyiseg) DESC; 6

    Segédlekérdezéssel előállítja azon vevők kódjait, akik vásároltak<sup>1</sup>....... 1 pont

    Létrehozta a vevok2 táblát<sup>4</sup>
    1 pont

 Egy lehetséges megoldás MS-SQL-ben:
 DELETE<sup>3</sup> *
 FROM vevok24
 WHERE ^{5} vevok2.vevoazon Not \operatorname{In}^{6}(\operatorname{SELECT}\ \operatorname{Vasarlasok.vevo}^{1}
 FROM Vasarlasok
 GROUP BY Vasarlasok.vevo<sup>2</sup>;
 );
```

A megoldásban szerepeltetett felső indexek az előbbiekben felsorolt részfeladatokat jelölik, nem részei az SQL lekérdezésnek!

Papíron megoldandó feladatok

B jelű feladatsor

Áramköri számítások egyenáramú áramkörökben

1. B feladat

Maximális pontszám:17 pont

Feladatok:

- a) Határozza meg a generátor által leadott (U_{AB} = 0 esetén) teljesítményt? 8 pont
- b) Határozza meg azt, hogy mekkora áramot mérhetne egy ideális árammérő az A és B pontok között! 9 pont

1.B feladat megoldása

Maximális pontszám:17 pont

a) Ha A és B pont között rövidzár van, akkor a generátor felől az eredő ellenállás:

$$Re=Rg+[R_{40}+(R_{60} \times R_{10})] \times R_{30}$$

Re=60Ω+[40Ω+(60Ω×10Ω)]×30Ω=60Ω+(48,5Ω×30Ω)=
$$\frac{78,5}{\Omega}$$

4 pont

A generátor árama:

2 pont

$$I_{gr} = \frac{Ug}{Re} = \frac{10V}{78,5\Omega} = \frac{127,3\text{mA}}{127,3\text{mA}}$$

2 pont

$$P=Ug \cdot Igr=10V \cdot 127, 3 \text{ mA} = 1273 \text{ mW}$$

b) Az áramerősség: a 30 ohmos és a 10 ohmos ellenállásokon folyó áramok összege.

$$I_{30} = I_{gr} \cdot (40+60\times10)/(40+60\times10+30) = 127,3 \text{ mA} \cdot \frac{48,5}{78,5} = \underline{78,7 \text{ mA}}$$
 2 pont

$$I_{40}=I_{gr}-I_{30}=127,3 \text{ mA} -78,7 \text{ mA} = \underline{48,6 \text{ mA}}$$
 2 pont

$$I_{10}$$
 áramosztással: $I_{40} \cdot 60/70 = 41.6 \text{ mA}$ 2 pont

$$I_{AB}=I_{30}+I_{10}=78,7mA+41,6mA=\underline{120,3 \text{ mA}}$$
 3 pont

Két- és négypólusok meghatározása

2. B feladat

Maximális pontszám:17 pont

Számítsa ki a Thevenin-tétel alkalmazásával az áramkör R_x ellenállásának az áramát!

2.B feladat megoldása

Maximális pontszám:17 pont

a) a. Rx felől nézve, az eredő ellenállás: 5 pont
$$R_b = (R_1 x R_2) + (R_3 x R_4) = (1k\Omega x 15 k\Omega) + (15k\Omega x 15k\Omega) = 8.435k\Omega$$

b) Rx felől nézve a Thevenin helyettesítő generátor feszültsége (U_h): **6 pont**
$$U_h = U \frac{R2}{R2 + R1} - U \frac{R3}{R3 + R4} = \frac{12V \cdot 15k\Omega}{15k\Omega + 1k\Omega} - \frac{12V \cdot 15k\Omega}{15k\Omega + 15k\Omega} = 11.25V - 6V = \underline{\textbf{5.25V}}$$

c) az Rx ellenállás árama:

$$I_{x} = \frac{Uh}{Rb + Rx} = \frac{\mathbf{0.62 mA}}{\mathbf{6 pont}}$$

Analóg áramkörök működésének elemzése, jellemzőik számítása

3. B feladat

Maximális pontszám:26 pont

- a) Ismertesse a kapcsolási rajzon látható áramkör legfontosabb tulajdonságait! (4 pont) (Az áramkör neve, visszacsatolásának típusa, bemeneti ellenállása, alsó határfrekvenciája)
- b) Határozza meg az R_2 ellenállás értékét ha az erősítővel 200 szoros feszültségerősítést szeretnénk elérni és az R_1 értéke 1 k Ω ! (6pont)
- c) Mekkora a kapcsolás erősítése dB-ben? (8 pont)
- d) Határozza meg a kis torzítással erősíthető legnagyobb szinuszos bemeneti feszültség effektív értékét (U_{bemax}) ha a maximális kimeneti feszültség csúcsértéke U_{kics} =12V lehet. (8 pont)

3. B feladat megoldása

26 pont

a) Az áramkör legfontosabb tulajdanságai

4 pont

- nem invertáló műveleti erősítős kapcsolás
 negatív-, soros-, feszültségvisszacsatolt erősítő
 bemeneti ellenállása végtelen
 1 pont
 pont
- bemeneti ellenállása végtelenDC erősítő, ezért alsó határfrekvenciája 0Hz

1 pont

6 pont

b) R₂ méretezése

 $A_u=200 = 1 + \frac{R2}{R1}$ ebből $R_2 = \underline{199 \text{ k}\Omega}$

R₂-re adott helyes képlet megadása
 R₂ helyes kiszámítása
 3 pont
 3 pont

c) A_u dB-ben 8 pont

$$A_u=200, A_u(dB)=20 \cdot log \frac{Uki}{Ube} = 20 \cdot log 200 = \underline{46 dB}$$

- A helyes összefüggés megadása
 A helyes eredmény kiszámítása
 4 pont
 4 pont
- d) U_{bemax-eff.} meghatározása

8 pont

$$U_{bemax-csúcs} = \frac{Ukics}{Au} = \frac{12V}{200} = 60mV$$

$$U_{\text{bemax-eff.}} = \frac{\text{Ube max-csúcs}}{\sqrt{2}} = \frac{60 \text{ mV}}{1,41} = \underline{42,55 \text{ mV}}$$

A helyes összefüggés megadása
 A helyes eredmény kiszámítása
 4 pont
 4 pont

Logikai algebra alkalmazása

4.B feladat

Maximális pontszám:25 pont

Adott egy logikai kapukból álló, 4 bemenetű áramkör:

(Változók súlyozása: A: 2⁰ ,B: 2¹ ,C:2², D: 2³)

- a. Írja fel a logikai áramkör kimeneti függvényét algebrai alakban! (4 pont)
- b. Adja meg a kapcsolás igazságtáblázatát és írja fel a függvényt mintermek kapcsolataként, valamint diszjunktív sorszámos alakban! (9 pont)
- c. Karnough-tábla segítségével végezze el a függvény grafikus egyszerűsítését! (6 pont)
- d. Valósítsa meg az egyszerűsített függvényt NOT, AND és OR kapukkal! (6 pont)

Logikai algebra alkalmazása

4.B feladat megoldása

Maximális pontszám:25 pont

a) Algebrai alak felírása $F^4=F_1\cdot\overline{F_2}+\overline{F_1}\cdot F_2$

$$F_1 = \overline{A \cdot \overline{B}}$$
, $F_2 = \overline{A + B + C}$

$$F^4 = \overline{A \cdot B} \cdot (A + C + D) + A \cdot \overline{B} \cdot \overline{A + B + C}$$

4 pont

b) A kapcsolás igazságtáblázata, a diszjunktív függvény mintermes és sorszámosos alakja

9 pont

A kapcsolás igazságtáblázata:

3 pont

D	C	В	A	F ⁴
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Mintermes alak:

 $F^4 = \overrightarrow{D \cdot C} \cdot B \cdot A + \overrightarrow{D \cdot C} \cdot B \cdot \overrightarrow{A} + \overrightarrow{D \cdot C} \cdot B \cdot \overrightarrow{A} + \overrightarrow{D \cdot C} \cdot B \cdot A + \overrightarrow{D \cdot C} \cdot \overrightarrow{B} \cdot \overrightarrow{A} + \overrightarrow{D \cdot$

+D·C·B·A+D·C·B·A

Helyesen adja meg a mintermeket

3 pont

Sorszámos alak:

$$F^4 = \sum (3,4,6,7,8,10,11,12,14,15)$$

Helyesen adja meg a sorszámos alakot

3 pont

c) Karnaugh-tábla felrajzolása, a függvény grafikus egyszerűsítése

6 pont

ВA	00	01	11	10	
DC\					
00			/1		
01 _	\leftarrow	\	1	$\langle 1 \rangle$	
11	1	~	1	(1	
10	1	<u> </u>	\bigcirc	$^{\prime}$	_

 $F^4 = \cdot B \cdot A + \cdot C \cdot \overline{A} + D \cdot \overline{A}$

Logikailag helyes, de nem a legegyszerűbb alak megadása esetén 2 pont levonás.

d) Az egyszerűsített függvénymegvalósítása NOT, AND és OR kapukkal

Az áramkör hibátlan felrajzolása

6 pont

Logikailag helyes, de a szükségesnél több kaput tartalmazó megoldás esetén maximálisan 4 pont adható.

A feladatok értékelésének általános szabályai

A megoldási útmutatótól eltérő, de szakmailag jó megoldásokat is el kell fogadni a feltüntetett pontszámokkal.

A feladatra (részfeladatra) adható maximális pontszámot csak akkor kaphatja meg a tanuló, ha a képletbe az adatokat szakszerűen behelyettesíti, és így számítja ki a végeredményt.

Az adatok normál alakban való használatát indokolt esetben kell megkövetelni.

A végeredmény csak akkor fogadható el teljes pontszámmal, ha az eredmény számértéke és mértékegysége is kifogástalan.

A részkérdésekre adható legkisebb pontszám 1 pont, tört pontszám nem adható.

Összefüggő részkérdések esetén, ha hibás valamelyik részfeladat eredménye, akkor a hibás eredmény következő részfeladatban (részfeladatokban) való felhasználása esetén a kifogástalan megoldásokra a feltüntetett pontokat kell adni.

Pontlevonást eredményez, ha:

- a továbbvitt részeredmény szakmailag egyértelműen lehetetlen, illetve extrém,
- a felhasznált részeredmény csökkenti az utána következő részfeladat(ok) megoldásának bonyolultságát.

Pontozólap

I. Tesztfeladat megoldása

1. feladat	1 pont	
2. feladat	1 pont	
3. feladat	1 pont	
4. feladat	1 pont	
5. feladat	1 pont	
6. feladat	2 pont	
7. feladat	2 pont	
8. feladat	2 pont	
9. feladat	2 pont	
10. feladat	2 pont	
Összesen:	15 pont	

II. Számítógépes feladat és számítógéppel végzett interaktív gyakorlat/papíron megoldandó feladat

A jelű feladatsor

1.A feladat

Összesen:	25 pont	
Körlevél	7 pont	
Oszlopdiagram	5 pont	
Formázás	5 pont	
A számítható adatok meghatározása	6 pont	
A táblázat létrehozása, adatok beírása	2 pont	

2.A feladat

A program szerkezete, változók deklarálása	3 pont	
Kiir eljárás kódolása	1 pont	
Rosszeset függvény kódolása	2 pont	
VanJoeset függvény kódolása	2 pont	
Permutal eljárás kódolása, meghívása	5 pont	
Összesen:	13 pont	

3.A feladat

Összesen:	22 pont
Összesítő táblázat a vízszintes sorozatokról	6 pont
Ki kezdett, ki következik	3 pont
Az állás megjelenítése	4 pont
Az állás ellenőrzése	3 pont
A szöveges állomány beolvasása, tárolás	6 pont

4.A feladat

Táblák importálása, kapcsolatok kialakítása	2 pont
A zoldsegek tábla létrehozása, feltöltése adatokkal	3 pont
1Kimitvett lekérdezés	6 pont
2Legtobbalma lekérdezés	7 pont
3Nemvasarlo lekérdezés	7 pont
Összesen:	25 pont

B jelű feladatsor

1.B feladat

a. generátor által leadott teljesítményb. A és B pontok között mérhető áram	8 pont 9 pont	
Összesen:	17 pont	

2.B feladat

a. Rx felől nézve az eredő ellenállás	5 pont	
b. Rx nélkül a feszültség	6 pont	
c. Rx ellenállás árama	6 pont	
Összesen:	17 pont	

3.B feladat

O.D Tenual	
a. Az áramkör legfontosabb tulajdanságai	4 pont
b. R ₂ méretezése	6 pont
c. A _u dB-ben	8 pont
d. U _{bemax-eff.} meghatározása	8 pont
Összesen:	26 pont

4.B feladat

a. Algebrai alak felírása	4 pont	
b. A kapcsolás igazságtáblázata, a diszjunktív függvény mintermes és sorszámosos alakja	9 pont	
c. Karnaugh-tábla felrajzolása, a függvény grafikus egyszerűsítése	6 pont	
d. Az egyszerűsített függvénymegvalósítása NOT, AND és OR kapukkal	6 pont	
Összesen:	25 pont	