Spatial Diffusion in SIR type Models: Simulation for Covid-19 Data

Matteo Bracco

April 10, 2025

Introduction

Introduction

Skills

Bio-mathematics and Bio-statistics, Dynamical Systems, Complex Systems, Neural Networks, MonteCarlo Simulations, Assurance and Financial Mathematic

Modeling

LaTeX, Git, manim (python graphic tool.

English language, level C1

The SIR model

Total Population: N = S(t) + I(t) + R(t)

● Infected (I) ● Susceptibles (S) ● Removed (R)

Figure: Numeric Simulation of the SIR model

Model Equations

$$\begin{cases} \dot{S} = -\frac{\beta}{N}S(t)I(t) \\ \dot{I} = -\frac{\beta}{N}S(t)I(t) - \gamma I(t) \\ \dot{R} = \gamma I(t) \end{cases}$$

- \checkmark β is the infection rate I
- $\gamma \propto T^{-1}$ where T is the average time of recovery from the illness.

An Hidden Assumption

Perfect Mixing

S and I are uniformly distributed in space at all times

Figure: In the initial phases of an epidemic diffusion, the infected population I is not uniformly spread across space

Lattice Gas Cellular Automata (LGCA)

Particles and Cells

Particles moving on a lattice can interact only inside the same cell [Schneckenreither et al.]

Particles Laws of Motion

At each time step n particles move to a neighboor cell Uniqueness

At most one particle can reach a fixed neighboor cell

Randomnes

The exit configuration is randomly selected

Epidemic Laws described

Evolution Rules

- Each particle of state I of a specific cell, infects a particle of state S of the same cell with probability β_{LG}
- lacktriangle With rate γ particles pass from state I to state R

Epidemic Laws inside a cell

Let I(c) be the number of infected in cell c and let $q_n(p)$ be the state of particle $p \in c$ at time step n, then

$$\begin{cases} \phi_c = \mathbb{P}(q_{n+1}(p) = S | q_n(p) = S) = (1 - \beta_{LG})^{I(c)} \\ \psi_c = \mathbb{P}(q_{n+1}(p) = I | q_n(p) = S) = 1 - \phi_c \\ \mathbb{P}(q_{n+1}(p) = I | q_n(p) = I) = 1 - \beta_{LG} \\ \mathbb{P}(q_{n+1}(p) = R | q_n(p) = I) = \beta_{LG} \end{cases}$$

Covid-19 in Kodiak Island, Alaska

An overlook of data and estimated parameters

Covid-19 in Kodiak Island, Alaska

How to estimate β from new confirmed cases

Covid-19 in Kodiak Island, Alaska

SIR and LGCA Simulation Results

Modified LGCA algorithm

Modified LGCA Simulations

Modified LGCA Simulations

Modified LGCA Simulations

Final Observations

Issues

Parameters and Initial Values Estimation, Dataset Choice, Small Number of Simulations.

Open Questions

Link between parameters (e.g lattice dimension) and qualitative behaviour of Modified LGCA, Stability of the solutions and dependence on distributions and laws of motion

Conclusions

Modified LGCA seems to provide promising results into using lattice based structures to model spatial diffusion in epidemic peaks, specially for small populated areas

Bibliography

Günter Schneckenreither, Nikolas Popper, Günther Zauner, and Felix Breitenecker.

Modelling sir-type epidemics by odes, pdes, difference equations and cellular automata—a comparative study.

Simulation Modelling Practice and Theory, 16(8):1014–1023, 2008.

Junling Ma.

Estimating epidemic exponential growth rate and basic reproduction number.

Infectious Disease Modelling, 5:129-141, 2020.

