Numbers are free creations of the human mind; they serve as a means of apprehending more easily and more sharply the difference of things - Richard Dedekind

1 Review Topics

Suprema and infima, extreme value theorem, intermediate value theorem, monotone functions

2 Exercises

- 2.1 For each set, compute the supremum or infimum, or argue it does not exist.
 - $\sup \{x \in \mathbb{R} \mid x^2 < 7\}$ in \mathbb{R} . $\{x \in \mathbb{R} \mid x^2 < 7\} = (-\sqrt{7}, \sqrt{7})$. Thus, the supremum is $\sqrt{7}$.
 - $\inf \{x \in \mathbb{Q} \mid x^2 < 7\}$ in \mathbb{Q} .

The infimum does not exist. Denote $A = \{x \in \mathbb{Q} \mid x^2 < 7\}$. Assume, to the contrary, that there exists $a = \inf A$. Consider that for all $x \in A$, $x > -\sqrt{7}$. If $a < -\sqrt{7}$, then notice that there exists $q \in (a, -\sqrt{7}) \cap \mathbb{Q}$, so that q > a, x > q for all $x \in A$, so that q is a lower bound greater than a, a contradiction. Similarly, consider $a > -\sqrt{7}$. Then, there exists $q \in (-\sqrt{7}, a) \cap \mathbb{Q}$, so that $q \in A$, but q < a, so a is not a lower bound, a contradiction. Since $a \neq -\sqrt{7} \notin \mathbb{Q}$, we are done.

- $\sup \left\{2 \frac{1}{n} \mid n \in \mathbb{N}\right\}$ in \mathbb{R} . The supremum of the set is 2; x < 2 for all x in the set, and for all $\epsilon > 0$, there exists n such that $2 - \frac{1}{n} > 2 - \epsilon$, thus any other upper bound will be larger.
- 2.2 Prove that for a set $A \subset \mathbb{R}$, bounded above, that an upper bound α of A is the supremum of A if and only if for every $\beta < \alpha$, there exists $a \in A$ such that $\beta < a < \alpha$.
- \Rightarrow) Let $\alpha = \sup A$. Consider $\beta < \alpha$. If $a \leq \beta$ for all $a \in A$, then β is an upper bound smaller than α , a contradiction. Thus, there must be some $a \in (\beta, \alpha]$.
- \Leftarrow). α is an upper bound for A. Consider another upper bound $\beta < \alpha$. But, there exists $a \in (\beta, \alpha]$, and thus β cannot be an upper bound for A.
- 2.3 Can we apply the Extreme Value Theorem to the function x^2 on (0, 1)?

No. (0, 1) is an open set. To see why this creates a problem assume that there exists $x \in (0, 1)$ such that for any other $y \in (0, 1)$, $x^2 < y^2$. But, consider $0 < \epsilon < x$. This element must exists, as since (0, 1) is open, we can contain a ball centered at x entirely in (0, 1). Since $\epsilon^2 < x^2$, we are done.

2.4 Prove that the image of an interval $I \subset \mathbb{R}$ under a continuous function $f: \mathbb{R} \to \mathbb{R}$ is also an interval.

Let us assume f is not the constant function, that is we can find $a, b \in f(I)$ with a < b, f(x) = a, f(y) = b. Let $c \in (a, b)$. If x < y, then since f is continuous on [x, y], by the IVT there exists $z \in (x, y)$ such that f(z) = c. Thus, $c \in f(I)$, and therefore $(a, b) \subset f(I)$.

2.5 Let f be strictly monotone and continuous on (a, b). Show that f^{-1} exists and is strictly monotone on f((a, b)).

To show f^{-1} exists, we need that if f(x) = f(y), then x = y. Assume f(x) = f(y) but $x \neq y$. WLOG assume x < y. But this implies f(x) < f(y) by strict monotonicity. Thus, f^{-1} exists. Consider $w, u \in f(a, b)$, with w < u. We just showed that there exists unique x, y such that f(x) = w, and f(y) = u. Consider then if $x \geq y$, then by strict monotonicity, we would have that $w \geq u$, and therefore it must be that x < y.

2.6 Let $f:[0,1] \to [0,1]$ be a continuous function. Then there exists $x \in [0,1]$ such that f(x) = x.

Let us define g(x) = f(x) - x. Since f is continuous, and -x is continuous, g is continuous. Note that $g(0) = f(0) \ge 0$, and $g(1) = f(1) - 1 \le 0$. Thus, by the IVT there exists $y \in [0, 1]$ such that g(y) = 0, or f(y) = y.

2.7 Let $f:[0,1] \to \mathbb{R}$ be defined by $f(x) = x\mathbb{1}_{\mathbb{Q}}(x) + (1-x)\mathbb{1}_{[0,1]\setminus\mathbb{Q}}(x)$. Show that f is 1-to-1, f([0,1]) = [0,1], but f is not monotone on any interval in [0,1].

To see that f is 1-to-1, observe that if f(x) = f(y), $x \neq y$, it must be the case that only one of x, y is rational. WLOG assume that this is x. Then it must be that x = 1 - y, a contradiction, since 1 - y cannot be rational. Now, consider that for any $x \in [0, 1]$, if x is rational, then f(x) = x, and if x is irrational, then f(1 - x) = x. Therefore, f([0, 1]) = [0, 1]. Now, consider an interval $(a, b) \in [0, 1]$. Note that for q < p, both rational, we have a monotonically increasing function, but for x < y, both irrational, we have a monotonically decreasing function. In any interval, we can find a rational pair that is increasing, and an irrational pair that is decreasing, thus the function cannot be monotone.