模糊分析在足球队排名中的应用的 C 程序

洪 歧 熊启才 郭 晴 (汉中师范学院数学与计算机科学系 陕西汉中 723000)

【摘 要】 针对 93 个全国大学生数学建模竞赛 B 题及文献 ,运用 Turbo C 语言程序设计,讨论了足球队比赛的排名问题, 给出了其程序设计,使原来复杂的计算过程变得更为简洁,使其应用范围进一步拓宽。

【关键词】 模糊分析 C程序设计 应用

【中图分类号】 TP311 【文献标识码】 A 【文章编号】 1005 -765(2001)02 -0089 -06

一 问题的分析

足球队排名次的问题是 93 年全国大学生数学建模竞赛 B 题 .题中给出了我国 12 支足球队在 1988 —1989 年全国足球甲级联赛中的成绩。

	T_1	T_2	T ₃	T ₄	T ₅	T ₆	T ₇	T ₈	T ₉	T ₁₀	T ₁₁	T ₁₂
T_1		1:0 1:0 0:2	2:1 2:3 2:3	2:0 2:0 1:0	2:0	1:0	2:2 0:3	1:1 0:1	2:0 3:0	1:1 1:1		
T ₂	0:1 0:1 2:0		0:0 0:0 0:1	2:0 0:0 0:0		1:0	2:2	2:1 0:1	2:0	0:2		1:1
T ₃	1:2 3:2 3:2	0:0 0:0 1:0		1:0 2:0 0:1	1:0	3:0	1:0	1:2	1:0	1:2		
T ₄	0:2 0:2 0:1	0:2 0:0 0:0	0:1 0:2 1:0		2:3	0:1	2:2 0:6	1:1 1:2	0:0 0:1	0:0 0:1		
T ₅	0:2		0:1	3:2		1:2				1:1	2:1 1:2	1:1 0:1
T ₆	0:1	0:1	0:3	1:0	2:1						2:1 1:2	
T ₇	2:2 3:0	2:2	0:1	2:2 6:0				2:1 1:0 2:1	2:0 2:0 1:0	2:0 2:1 2:0	2:0	2:0
T ₈	1:1 1:0	1 :2 1 :0	2:1	1:1 2:1			1:2 0:1 1:2		0:1 0:1 2:0	1:1	2:0	
T ₉	0:2 0:3	0:2	0:1	0:0 1:0			0:2 0:2 0:1	1:0 1:0 0:2		1:1 2:0 2:0	2:1	1:0
T ₁₀	1:1 1:1	2:0	2:1	0:0 1:0	1:1		0:2 0:2 1:2	1:1	1:1 0:2 0:2		2:1	2:0
T ₁₁					1:2 2:1		0:2	0:2	1:2	1:2		1:1 1:1 0:1
T ₁₂		1:1			1:1 1:0		0:2		0:1	0:2	1:1 1:1 1:0	

表一 参赛各队成绩表

* 收稿日期: 2001 - 04 - 02

作者简介: 洪 歧,男,1962年生,浙江东阳人,理学硕士,汉中师院数学与计算机科学系讲师,主要从事计算机科学研

熊启才,男,1956年生,江苏常熟人,汉中师院数学与计算机科学系副教授,理学硕士,主要从事组合数学、运 筹学研究,完成科研项目50余项。

从成绩表中可以看出,该表的数据量大,队与队之间的比赛场数相差较大。因此,要直接根据成绩表来排出它们的名次是比较困难的,但我们通过每个队在它所参加的比赛中胜,负以及平的场数可以大概地了解每个队的实力。

表二 参赛各队胜,负以及平的场数分布表

	T_1	T_2	T ₃	T_4	T ₅	T ₆	T ₇	T ₈	T ₉	T ₁₀	T ₁₁	T ₁₂
胜场	10	5	9	1	2	2	13	6	7	5	1	2
负场	5	5	4	12	5	3	1	6	8	5	6	3
平场	4	6	2	6	2	0	3	3	2	6	2	4
总场	19	16	15	19	9	5	17	15	17	16	9	9

为进一步了解各队的实力,通过成绩表,我们可以知道各队在比赛中的平均每场进球数,失球数和进失球差数。

表三 参赛各队平均每场进,失球数分布表

	T_1	T_2	T ₃	T ₄	T ₅	T_6	T ₇	T ₈	T ₉	T ₁₀	T ₁₁	T ₁₂
进球	1.368	0.75	1.333	0.368	1	0.6	2.059	1.067	0.647	1.0	0.778	0.667
失球	0.947	0.625	0.8	1.421	1.444	1.2	0.588	0.933	1.0	1.125	1.556	1.0
差数	0.421	0.125	0.533	- 1.053	- 0.444	- 0.6	1.471	0.134	- 0.353	- 0.125	- 0.778	- 0.333

通过表一和表二,我们可以认为 T_7 是最好的, T_4 是最差的, T_5 , T_6 , T_{10} , T_{11} , T_{12} 等队的成绩靠后, T_1 , T_2 , T_3 , T_9 , T_8 等队的水平居中,但它们之间的差距都不太大,仅根据上述两表来确定其名次,则其合理程序显然值得怀疑。

为使排名更合理,应考虑 Ti 与其余各队的比赛成绩,比赛场数,充分利用 12 组数据。想法是:先制定一规则,为各队定义一组特征数据,同时计算各队之间的水平相似程序(即模糊相似程序),利用模糊分析法,确定各队的名次。

二 模型假设

考虑实际情况和假设问题的方便,做如下假设:

- 1 如果 Ti 与 Tj 没有比赛 ,则 r_{ii} = 0 ;
- 2 每场比赛对于排名同等重要,每个进失球对排名也同等重要;
- 3 在确定各队的特征数据时,仅计算进失球的差数,则第 i 队的特征数据记为 $r_i = (r_{i1}, r_{i2}, r_{i3}, r_{i4}, r_{i5}, r_{i6}, r_{i7}, r_{i8}, r_{i9}, r_{i10}, r_{i11}, r_{i12})$;
- 4 Ti 与 Tj 赛一场时 $,r_{ij} = (Ti 成绩 Tj 成绩)^*1.0;$ 赛二场时 $,r_{ij} = (Ti 成绩 Tj 成绩)^*1.2/2;$ 赛三场时 $,r_{ij} = (Ti 成绩 Tj 成绩)^*1.4/3;$
 - 5 Ti 与 Tj 自身的特征数据为 r_{ii} 0;
 - 6 Ti 与 Tj 之间的模糊相似程序用绝对值减数法来确定 $X_{ij} = 1 c^* \sum_{k=1}^{12} |r_{ik} r_{jk}|$,且 C = 0.038。

三 建模

在模型假设下,根据成绩表中的数据,可计算出各队的特征数据如下:假设论域为 $T = \{T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9, T_{10}, T_{11}, T_{12}\}$ 于是有:

$$r_1 = (0 \quad 0 \quad -0.466 \quad 2.334 \quad 2 \quad 1 \quad -1.8 \quad -0.6 \quad 3 \quad 0 \quad 0 \quad 0)$$

 $r_2 = (0 \quad 0 \quad -0.466 \quad 0.934 \quad 0 \quad 1 \quad 0 \quad 0 \quad 2 \quad -2 \quad 0 \quad 0)$

```
r_3 = (0.466 \quad 0.466 \quad 0 \quad 0.934 \quad 1 \quad 3 \quad 1 - 1 \quad 1 \quad -1 \quad 0 \quad 0)
r_4 = (-2.334 - 0.934 - 0.934 0 - 1 - 1 - 3.6 - 0.6 - 0.6 - 0.6 0 0)
r_5 = (-2 \ 0 \ -1 \ 1 \ 0 \ -1 \ 0 \ 0 \ 0 \ 0 \ -0.6)
r_6 = (-1 - 1 - 3 - 1 - 1 - 0 0 0 0 0 0 0)
\mathbf{r}_7 = (1.8 \ 0 \ -1 \ 3.6 \ 0 \ 0 \ 0 \ 1.4 \ 2.334 \ 2.334 \ 2 \ 2)
r_8 = (0.6 \ 0 \ 1 \ 0.6 \ 0 \ 0 \ -1.4 \ 0 \ 0 \ 0 \ 2 \ 0)
r_9 = (-3 - 2 - 1 \ 0.6 \ 0 \ 0 - 2.334 \ 0 \ 0 \ 1.866 \ 1 \ 1)
\mathbf{r}_{10} = (0 \ 2 \ 1 \ 0.6 \ 0 \ 0 \ -2.334 \ 0 \ -1.866 \ 0 \ 1 \ 2)
\mathbf{r}_{11} = (0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad -2 \quad -2 \quad -1 \quad -1 \quad 0 \quad -0.466)
\mathbf{r}_{12} = (0 \quad 0 \quad 0 \quad 0 \quad 0.6 \quad 0 \quad -2 \quad 0 \quad -1 \quad -2 \quad 0.466 \quad 0)
利用绝对值减数法,可以计算出 Ti 与 Ti 的模糊相似程序 Xii,于是有模糊相似矩阵 Xii
    1 \quad 0.666 \quad 0.544 \quad 0.351 \quad 0.473 \quad 0.496 \quad 0.339 \quad 0.514 \quad 0.306 \quad 0.346 \quad 0.511 \quad 0.526
               1 0.681 0.397 0.65 0.597 0.389 0.59
                                                                   0.351 0.392 0.587 0.678
                     1 0.275 0.483 0.506 0.182 0.493
                                                                   0.184
                                                                           0.296
                                                                                    0.531
                                                                                           0.516
                             1 0.645 0.511 0.004 0.453 0.569 0.372
                                                                                   0.602 0.572
                                       1 0.749 0.313 0.62 0.574 0.422
                                                                                    0.577 0.577
                                               1 0.26 0.567 0.521 0.369 0.488 0.549
                                                       1 0.405 0.303 0.237 0.129 0.179
                                                               1 0.529 0.681 0.648 0.669
                                                                         1 0.478 0.42 0.471
                                                                                1 0.572 0.623
                                                                                         1 0.828
                                                                                                 1
```

五 程序设计

```
int m;
float a [400]
void gq( )
  {
    int i, j, k, d, n, b, c;
    for (i = 0; i < m; i + +)
         for (j = i + 1; j < m; j + +)
            loop1:printf( \( \) n %d 队与 %d 队比赛场数: ,i + 1 ,j + 1);
                   scamf ( \ \%d , &d);
                   if (d \ 0)
                     {
                        printf( \( \) n 比赛场数不对! \ n ),
                        goto loopl;
                     }
                   if (d = 0)
                        a[i^*m+i]=0
                   else
```

```
n = 0;
                        for (k = 0; k < d; k + +)
                             printf( \ n 第 %d 场成绩: ,k + 1);
                             scanf ( \%d: \%d , &b , &c);
                             n = n + b - c;
                           }
                        a[i * m + j] = n * (0.8 + 0.2 * d) / d;
                    }
         for (i = 0; i < m; i + +);
             a[i * m + i] = 0;
         for (i = 0; i < m; i + +);
           for (j = 0; j < i; j + +);
                a[i * m + j] = a[j * m + i];
         printf( \ n 特征数据为:\ n);
         for (i = 0; i < m; i + +)
           for (j = 0; j < m; j + +)
             printf(^{\circ}%5.3f ,a[i * m + j])
           printf( \\ n );
    }
main (
  {
    float b,c,x[400];
    int i ,j ,k ,t;
    loop:printf(*参加比赛的足球队数目:\n);
         scang( \%d , &m);
         if (m < 0)
           {
             printf( N n 不可能! \ n );
             goto loop;
    loop2:printf( 1. 直接输入比赛成绩; \ n );
           printf(<sup>2</sup>). 直接输入特征数据; \ n 选择: ");
           scanf( \%d , &t);
           if (t ! = 1 \& \& t ! = 2)
                printf( \ n 你错了! \ n);
                goto loop2;
             }
           if (t = 1)
```

```
gp();
       else
            for (i = 0; i < m; i + +)
               printf( 球队 %d 的 %d 个特征数据:\ n ,i+1,m);
               for (j = 0; j < m; j + +)
                  scanf(\%f, \&a[i*m+j]);
               printf( \\ n );
             }
for (i = 0; i < m; i + +)
     for (j = i; j < m; j + +)
          {
            c = 0;
            for (k = 0; k < m; k + +)
               {
                  b = a[i * m + k] - a[j * m + k];
                  if (b < 0)
                       b = - b;
                  c = c + b;
             x[i * m + j] = 1 - 0.038 * c;
for (i = 0; i < m; i + +)
     {
       for (k = 0; k < i; k + +)
            printf ("
                       );
       for (j = i; j < m; j + +)
             if (i = j)
                 printf(^{\circ}%2.0f ,x[i * m + j]);
                    printf(^{\circ}% - 5.3f ,x[i *m+j]);
       printf(^{^{\lozenge}}\setminus n);
     }
}
```

五 打印结果

```
1 0.666 0.544 0.351 0.473 0.496 0.339 0.514 0.306 .0346 0.511 0.526

1 0.681 0.397 0.65 0.597 0.389 0.59 0.351 0.392 0.587 0.678

1 0.275 0.483 0.506 0.182 0.493 0.184 0.296 0.531 0.516

1 0.645 0.511 0.004 0.453 0.569 0.372 0.602 0.573

1 0.749 0.313 0.62 0.574 0.422 0.577 0.577

1 0.26 0.567 0.521 0.369 0.488 0.549

1 0.405 0.303 0.237 0.129 0.179

1 0.529 0.681 0.648 0.699

1 0.478 0.42 0.471

1 0.572 0.623

1 0.828
```

六 存在问题

经过仔细思考和查阅大量书籍,我们发现原文存在一些问题。

- 原文表一数据有错误。
 例:胜的场数总和不等于负的场数总和;平场的场数的总和为奇数。
- 2 原文表二数据有错误。

例:T1 平均每场进球数应为 1.421,而不是 1.412;平均每场失球数为 0.947,而不是 0.941。

- 3 原文章在模型假设中未考虑两队比赛场数大干 3 时的加权因子。
- 4 原文中所给出的特征数据中 r₄ 明显不正确,应为: (2.334 0.934 0.934 0 1 1 3.6 0.6 0.6 0.6 0 0)。
 - 5 原文计算出的模糊相似矩阵 X 中 X23应为 0.681。

参考文献

- 【1】 曾文艺,崔宝珍:模糊聚类分析在足球队排名中的应用,数学的实践与认识,1999.29.2:179 - 183,
- 【2】 谭浩强:C语言设计,清华大学出版社,1994,北京;
- 【3】 蔡大用:关于球队排名次问题的几点评注,《数学的实践与认识》,1994.2:95 - 96.

The C program on Fuzzy Analysis for Application in the football team ordering

Hong Qi Xiong Qicai Guo Qing

(Department of Maths & Computer Science. Hanzhong Teachers 'College, Shanxi, 723000)

【Adstract】 As for Mathematical modelling problem B on the 93' students of China and paper^[1] discuss the problem ordering on football team game. By Turbo. C give the program and develop applicate range.

Key words Fuzzy analysis; C program; Application.