データの取り扱い

データフレームとファイル

(Press? for help, n and p for next and previous slide)

村田昇

2019.10.04

データフレーム

データ構造

- Rに用意されている基本的なデータ構造
 - ベクトル (vector): 1次元配列
 - 行列 (matrix): 2次元配列
 - 配列 (array): 多次元配列
 - データフレーム (data frame): 表 (2次元配列)
- 特殊なもの
 - リスト (list): オブジェクトの集合

データフレーム

- 複数の個体について、いくつかの属性を集計した表
 - 長さの等しい列ベクトルをまとめたもの
 - 各列のデータ型はバラバラでも良い
- 例: ある小学校の1年生の身長・体重・性別・血液型 のデータ
- 実データは表形式であることが多いため最も一般的 な形式

データフレームの作成

- 同じ長さのベクトルを並べる
- データフレームを結合する
- マトリクスを変換する(全て数字の場合)

```
(x <- data.frame(one=c(1,2,3),two=c("AB","CD","EF")))
x[1,2] # 1行2列の要素を選択
x[c(TRUE,FALSE,TRUE),] # 1,3行を選択
x$two # 列"two"を選択
x["two"] # 列名"two"を選択
x[-c(1,3),] # 1,3行を除外

(y <- data.frame(three=c("x","y","z"),four=c(0.9,0.5,-0.3)))
(z <- cbind(x,y))
```

• 02-frame.ra を確認してみよう

math phys chem bio

演習

• 次の表に対応するデータフレームを作成しなさい

	math	phys	chem	bio
Α	90	25	65	70
В	80	50	100	50
С	70	75	70	30
D	60	100	40	80
E	50	80	75	100

ファイルの操作

ファイルを用いたデータの読み書き

- 解析においてはデータファイルの操作が必要:
 - 整理したデータを保存する
 - 収集されたデータを読み込む
- Rで利用可能なデータファイル:
 - CSV形式(comma separated values): テキストファイル
 - RData形式: Rの内部表現を用いたバイナリーファイル
 - (パッケージを用いればEXCELなどを扱うことも可能)

作業ディレクトリの確認と変更

- 作業ディレクトリとファイルに関する注意:
 - Rの処理は特定のフォルダ(**作業ディレクトリ**)内で実行される
 - ファイルは作業ディレクトリにあるものとして扱われる
 - 作業ディレクトリ以外のファイルを扱う場合はパスを含めて 指定する必要がある
- 作業ディレクトリに関する操作:
 - 確認の仕方
 - 。 コンソールの上部の表示
 - 関数 getwd()
 - 変更の仕方
 - "Session">"Set Working Directory">"Choose Directory..."
 - 関数 setwd()

CSV形式の操作(テキスト)

• 関数 write.csv(): CSVファイルの書き出し

```
write.csv(x, file="mydata.csv")
## x: 書き出すデータフレーム
## file: 書き出すファイルの名前 (作業ディレクトリ下, またはパスを指定)
```

• 関数 read.csv(): CSVファイルの読み込み

```
x <- read.csv(file="mydata.csv", header=TRUE, row.names=1)
## x: 読み込む変数
## file: 書き出すファイルの名前 (作業ディレクトリ下, またはパスを指定)
## header: 1行目を列名として使うか否か
## row.names: 行名の指定 (行名を含む列番号/列名または行名のベクトル)
```

• 他の細かいオプションはヘルプを参照

RData形式の操作(バイナリ)

• 関数 save(): RDataファイルの書き出し

```
save(..., file="mydata")
## ...: 保存するオブジェクト名 (複数指定可, データフレーム以外も可)
## file: 書き出すファイルの名前 (作業ディレクトリ下, またはパスを指定)
```

• 関数 load(): RDataファイルの読み込む

```
load(file="mydata")
## file: 読み込むファイルの名前 (作業ディレクトリ下, またはパスを指定)
```

• 複数のデータフレームを同時に扱うことができる

• 02-file.ra を確認してみよう

- 前の演習で作成したデータフレームを適当なファイルに書き出しなさい
- 書き出したファイルから別の変数に読み込みなさい

データフレームの操作

部分集合の取得

- 要素を選択
 - 添字の番号を指定する(マイナスは除外)
 - 論理値(TRUE/FALSE)で指定する
 - 要素の名前で指定する

```
(x <- data.frame(one=c(1,2,3),two=c("AB","CD","EF")))
x[1,2] # 1行2列の要素を選択
x[-c(1,3),] # 1,3行を除外
x[c(TRUE,FALSE,TRUE),] # 1,3行を選択
x[,"two"] # 列名"two"を選択
```

• 関数 subset(): 条件を指定して行と列を選択

```
subset(x,subset,select,drop=FALSE)
## x: データフレーム
## subset: 行に関する条件
## select: 列に関する条件(未指定の場合は全ての列)
## drop: 結果が1行または1列となる場合にベクトルとして返すか否か
```

• 02-choose.ra を確認してみよう

- datasets::mtcars から以下の条件を満たすデータを取り出しなさい
 - オートマチック車のデータ
 - 4気筒(cyl)車の燃費(mgp)と排気量(disp)のデータ
 - 馬力(hp)が110(馬力)以上で重さ(wt)が3(1000lbs)以下のデータ

統計量の計算

- 関数 sum(): 総和を計算する
- 関数 mean(): 平均
- 関数 max(): 最大値
- 関数 min(): 最小値
- これ以外にも沢山あるので調べてみよ

行・列ごとの操作

関数 apply(): 列または行ごとに計算を行う

apply(X, MARGIN, FUN) ## X: データフレーム ## MARGIN: 行(1)か列(2)かを指定 ## FUN: 求めたい統計量を計算するための関数

• 関数 aggregate(): 各行をいくつかのグループに まとめて計算を行う

```
aggregate(x, by, FUN) ## x: データフレーム
```

by: 各行が属するグループを指定するベクトルのリスト

FUN: 求めたい統計量を計算するための関数

● 02-operate.ra を確認してみよう

- datasets::mtcars のデータを以下の条件で整理 しなさい
 - 気筒数(cyl)ごとに排気量(disp)の平均値, 最大値, 最小値
 - ギア数(gear)ごとの燃費(mpg)の平均値, 最大値, 最小値
 - 気筒数(cyl)とギア数(gear)ごとの燃費(mpg)の平均値