MAY 0 4 2000

I Preby certify that this correspondence is being deposited with 1 and 2000 U.S. Postal Spring with sufficient postage as First Class Mail, in an envelope addressed to 2000 Post Issue, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 2313-1450, on the date shown below.

Dated: May 2, 2005

Signature: August 2006

09/869.414 (OSC)FW

Docket No.: 29915/6280MUS

(PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Letters Patent of: Mark E. Gurney et al.

Patent No.: 6,790,610

Issued: September 14, 2004

For: ALZHEIMER'S DISEASE, SECRETASE, APP

SUBSTRATES THEREFOR, AND USES

THEREFOR

Certificate MAY 1 1 2005

of Correction

REQUEST FOR CERTIFICATE OF CORRECTION PURSUANT TO 37 CFR 1.323

MS Post Issue Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Patentees respectfully request a Certificate of Correction to be issued for the above-identified U.S. Patent correcting the patent as noted in the attached "Certificate of Correction" form PTO/SB/144. Duplicate copies of the form are attached hereto.

At column 9, lines 63-64 please delete "according to claim 14 or a vector according to claim 15 or 16" and insert -- of the invention or a vector of the invention-immediately following "polynucleotide". This correction is intended to omit references to particular claims and to add general language to make these statements clear and concise. This correction was approved by the Certificate of Correction Branch of the United States Patent and Trademark Office in parent application serial no. 09/416,901, now U.S. Patent No. 6,699,671. This correction does not add new matter to the patent.

05/05/2005 AKELECH2 00000036 6790610

01 FC:1811

100.00 OP

Patent No.: 6,790,610 Docket No.: 29915/6280MUS

Errors in the patent can be verified by reference to the application as follows:

Appln. Page #	Appln. Line #	Column # Cover page Section (54)	<u>Line #</u> 1	Error By PTO
Terminal disclaimer 3/21/04	·	Cover page Section (*)		РТО
PTO/Form/892		Cover page 2 Column 1	5 .	PTO
1	1	1	1	PTO
2	20	2	3	PTO
5	14	3	56	Applicant
6	9	4	24	Applicant
7	16 .	5	10	Applicant
8	14	5	49	Applicant
			20	
9	17	6	28	Applicant
12	12	8	6	PTO
Amendment Dated 05/27/03	Page 2	8	16	Applicant
13	4	8	37	Applicant
13	24	8	64	Applicant
13	28	9	3	Applicant
14	22	9	38	Applicant
14	24	9	40	Applicant
15	1	9	51	Applicant
15	21	10	12	Applicant
17	24	11	37	Applicant

Patent No.: 6,790,610

Appln. Page #	Appln. Line # 5	Column #	<u>Line #</u> 53	Error By Applicant
24	23	16	11	Applicant
25	19	16	48	PTO
26	2	16	65	PTO
26	29	17	37	PTO
28	17	18	38	Applicant
Amendment Dated 5/27/03	page 3, line 9	21	12,	PTO
39	9	25	12	Applicant
47	21	30	28	PTO
49	5	31	20	Applicant
51	8	32	42	Applicant
52	2	33	8	Applicant
53	10	33	60	PTO
53	12	33	63	Applicant
53	15	33	66	PTO
56	18	35	59	PTO
59	17	36	63	Applicant
64	8	39	17	PTO
64	9	39	18	PTO
64	13	39	24	PTO
64	13	39	26	PTO
64	14	39	26	PTO
66	24	40	51	Applicant

Docket No.: 29915/6280MUS

Patent No.: 6,790,610

Appln. Page # 67	Appln. Line # 5	<u>Column #</u> 40	<u>Line #</u> 67	Error By PTO
67	6	40	67	PTO
67	10	41	5	PTO
67	19	41	17	Applicant
73	23	44	50	PTO
75	8	45	37	PTO
75	12	45	43	PTO
75	27	45	65	Applicant
77	15	46	65	Applicant
79	9	48	1	PTO
76	16	48	11	PTO
81	6	49	16	PTO
Amendment Dated 1/5/04	Sequence Listing pages 1-63	Sequence listing Columns 49-164		PTO
Examiner's Amendment Claim 155, lines 3-4		163 claim 1	43-44	PTO
Examiner's Amendment Claim 155, lines 8-10		163 claim 1	51-54	PTO
Examiner's Amendment Claim 162, line 1		164 claim 6	45	PTO
Examiner's Amendment Claim 164, line 1		164 claim 8	50	PTO
Examiner's Amendment Claim 166, line 1		164 claim 10	56	PTO

At least one of the errors were found in the application as filed by applicant. Our check in the amount of \$100.00 covering the fee set forth in 37 CFR 1.20(a) is enclosed.

Patent No.: 6,790,610 Docket No.: 29915/6280MUS

The errors now sought to be corrected are inadvertent typographical errors the correction of which does not involve new matter or require reexamination.

Transmitted herewith is a proposed Certificate of Correction effecting such amendment. Patentee respectfully solicits the granting of the requested Certificate of Correction.

The Director is hereby authorized to charge any deficiency in the fees filed, asserted to be filed or which should have been filed herewith (or with any paper hereafter filed in this application by this firm) to our Deposit Account No. 13-2855, under Order No. 29915/6280MUS. A duplicate copy of this paper is enclosed.

Dated: May 2, 2005

Respectfully submitted,

Jeanne M. Brashear

Registration No.: 56,301

MARSHALL, GERSTEIN & BORUN LLP

233 S. Wacker Drive, Suite 6300

Sears Tower

Chicago, Illinois 60606-6357

(312) 474-6300

Agent for Applicant

Approved for use through 04/30/2007. OMB 0651-0033

U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO.

6,790,610

DATED

September 14, 2004

INVENTOR(S)

Mark E. Gurney et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Cover Sheet:

At Section 54, column 1, please delete "Disease, Secretase" and insert -- Disease Secretase--

At Section (*), column 1, please insert -- This patent is subject to a terminal disclaimer ---.

On page 2, column 1, line 5, please delete "th" and insert --the--.

In the Specification:

At Column 1, line 1, please delete "Disease, Secretase" and insert -- Disease Secretase--.

At Column 2, line 3, please delete "a-site" and insert --α site--.

At Column 3, line 56, please insert -- of-- before "those".

At Column 4, line 24, please delete "lease" and insert -- least --.

At Column 5, line 10, please insert --to-- before "any".

At Column 5, line 49, please insert --of-- before "those".

At Column 6, line 28, please delete "lease" and insert -- least--.

At Column 8, line 6, please insert --iii) select the cells which produce the critical peptide.-after "APP."

At Column 8, line 16, please insert --(SEQ ID NO: 74)-- after "P2".

At Column 8, line 37, please delete "has" and insert --as--.

At Column 8, line 64, please delete "Measurment" and insert -- Measurement--

At Column 9, line 3, please delete "reporter-protein" and insert --reporter protein--.

At Column 9, line 38, please delete "construct" and insert --constructed--.

At Column 9, line 40, please delete "streches" and insert --stretches--.

At Column 9, line 51, please delete "recombinant" and insert --recombinant--.

At Column 10, line 12, please delete "hyrdrophobic" and insert --hydrophobic--.

MAILING ADDRESS OF SENDER:

Jeanne M. Brashear MARSHALL, GERSTEIN & BORUN LLP 233 S. Wacker Drive, Suite 6300 Sears Tower Chicago, Illinois 60606-6357

PATENT NO. 6,790,610

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO.

6.790.610

DATED

September 14, 2004

INVENTOR(S)

Mark E. Gurney et al.

It is certified that errors appear in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification, (cont'd):

At Column 11, line 37, please delete "oassays" and insert --bioassays--.

At Column 11, line 53, please delete "on" and insert -- one --.

At Column 16, line 11, please delete "Fig. 11" and insert -- Fig. 12--.

At Column 16, line 48, please delete "I)" and insert --ID--.

At Column 16, line 65, please delete "Glutarnine" and insert -- Glutamine--.

At Column 17, line 37, please delete "α-secretase" and insert -- β-secretase--.

At Column 18, line 38, please delete "possible" and insert --possibly--.

At Column 21, line 12, please delete "6" and insert --6,--

At Column 25, line 12, please delete "embyonic" and --embryonic--.

At column 30, line 28, please delete "Hu-ASPI" and insert -- Hu-asp1--.

At column 31, line 20, please delete "sequence" and insert --sequenced--.

At column 32, line 42, please insert --to-- before "contain".

At column 33, line 8, please delete "manufacture" and insert --manufacturer--.

At column 33, line 60, please delete "Phospho1mager" and insert -- PhosphorImager--.

At column 33, line 63, please delete "is" and insert --in--.

At column 33, line 66, please delete "CDNA" and insert --cDNA--.

At column 35, line 59, please delete "AP" and insert -- Aβ--.

At column 36, line 63, please delete "prorietary" and insert --proprietary--.

At column 39, line 17, please delete "AP" and insert -- Aβ--.

At column 39, line 18, please delete "AP" and insert --Aβ--.

At column 39, line 24, please delete "AP" and insert --Aβ--.

At column 39, line 26, please delete "P42" and insert --β42--.

At column 39, line 26, please delete "y-secretase" and insert --γ-secretase--. At column 40, line 51, please delete "Ab" and insert --Aβ--.

At column 40, line 67, please delete "βP40" and insert --Aβ40--. At column 40, line 67, please delete "βP42" and insert --Aβ42--. At column 41, line 5, please delete "βP42" and insert --Aβ42--.

At column 41, line 17, please delete "Ab." and insert --Aβ.--.

At column 44, line 50, please delete "internediate" and insert --intermediate--.

At column 45, line 37, please delete "20" and insert --20--.

MAILING ADDRESS OF SENDER:

Jeanne M. Brashear MARSHALL, GERSTEIN & BORUN LLP 233 S. Wacker Drive, Suite 6300 **Sears Tower** Chicago, Illinois 60606-6357

PATENT NO. 6,790,610

Approved for use through 07/31/2006. OMB 0651-0031
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO.

6,790,610

DATED

hereto.

September 14, 2004

INVENTOR(S)

Mark E. Gurney et al.

It is certified that errors appear in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification, (cont'd):

At column 45, line 43, please delete "101 M" and insert --101µM--.

At column 45, line 65, please delete "Hu-ASp2(b)" and insert --Hu-Asp2(b)--.

At column 46, line 65, please delete "prepared" and insert --prepare--.

At column 48, line 1, please delete "(1/250)" and insert --(1/2500)--.

At column 48, line 11, please delete "KI" and insert -- K1--.

At column 49, line 16, please delete "Swedigh" and insert -- Swedish--.

In the Sequence Listing:

Please delete the sequence listing as published and replace with the paper copy attached

In the Claims:

In claim 1, at column 163, lines 43-44, please delete "FIG. 3 (SEQ ID NO: 4)," and insert --FIG. 4, (SEQ ID NO: 3),--.

In claim 1, at column 163, lines 51-54, please delete ", and wherein the polypeptide exhibits aspartyl protease activity involved in processing APP into amyloid beta." and insert --.--.

> In claim 6, at column 164, line 45, please delete "A host" and insert -- An isolated host--. In claim 8, at column 164, line 50, please delete "derived from" and insert -- that is---In claim 10, at column 164, line 56, please delete "A host" and insert -- An isolated host--.

MAILING ADDRESS OF SENDER:

Sharon M. Sintich MARSHALL, GERSTEIN & BORUN LLP 233 S. Wacker Drive, Suite 6300 Sears Tower Chicago, Illinois 60606-6357

PATENT NO. 6,790,610

Docket No.: 29915/6280MUS

(PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Letters Patent of: Mark E. Gurney et al.

Patent No.: 6,790,610

Issued: September 14, 2004

For: ALZHEIMER'S DISEASE, SECRETASE, APP

SUBSTRATES THEREFOR, AND USES

THEREFOR

REQUEST FOR CERTIFICATE OF CORRECTION PURSUANT TO 37 CFR 1.323

MS Post Issue Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Patentees respectfully request a Certificate of Correction to be issued for the above-identified U.S. Patent correcting the patent as noted in the attached "Certificate of Correction" form PTO/SB/144. Duplicate copies of the form are attached hereto.

At column 9, lines 63-64 please delete "according to claim 14 or a vector according to claim 15 or 16" and insert --of the invention or a vector of the invention--immediately following "polynucleotide". This correction is intended to omit references to particular claims and to add general language to make these statements clear and concise. This correction was approved by the Certificate of Correction Branch of the United States Patent and Trademark Office in parent application serial no. 09/416,901, now U.S. Patent No. 6,699,671. This correction does not add new matter to the patent.

Patent No.: 6,790,610 Docket No.: 29915/6280MUS

Errors in the patent can be verified by reference to the application as follows:

Appln. Page #	Appln. Line #	Column # Cover page Section (54)	<u>Line #</u> 1	Error By PTO
Terminal disclaimer 3/21/04		Cover page Section (*)		PTO
PTO/Form/892		Cover page 2 Column 1	5 .	PTO
1	1	1	1	PTO
2	20	2	3	PTO
5	14	3	56	Applicant
6	9	4	24	Applicant
7	16	5	10	Applicant
8	14	5	49	Applicant
•				
9	17	6	28	Applicant
12	12	8	6	PTO
Amendment Dated 05/27/03	Page 2	8	16	Applicant
13	4	8	37	Applicant
13	24	8	64	Applicant
13	28	9	3	Applicant
14	22	9	38	Applicant
14	24	9	40	Applicant
15	1	9	51	Applicant
15	21	10	12	Applicant
17	24	11	37	Applicant
		•		

Appln. Page #	Appln. Line #	Column #	<u>Line #</u> 53	Error By Applicant
24	23	16	11	Applicant
25	19	16	48	PTO
26	2	16	65	PTO
26	29	17	37	PTO
28	17	18	38	Applicant
Amendment Dated 5/27/03	page 3, line 9	21	12	PTO
39	9	25	12	Applicant
47	21	30	28	PTO
49	5	31	20	Applicant
51	8	32	42	Applicant
52	2	33	8	Applicant
53	10	33	60	PTO
53	12	33	63	Applicant
53	15	33	66	PTO
56	18	35	59	PTO
59	17	36	63	Applicant
64	8	39	17	PTO
64	9	39	18	PTO
64	13	39	24	PTO
64	13	39	26	PTO
64	14	39	26	PTO
66	24	40	51	Applicant

Patent No.: 6,790,610

Appln. Page # 67	Appln. Line # 5	<u>Column #</u> 40	<u>Line #</u> 67	Error By PTO
67	6	40	67	PTO -
67	10	41	5	PTO
67	19	41	17	Applicant
73	23	44	50	PTO
75	8	45	37	PTO
75	12	45	43	PTO
75	27	45	65	Applicant
77	15	46	65	Applicant
79	9	48	1	PTO
76	16	48	11	PTO
81	6	49	16	PTO
Amendment Dated 1/5/04	Sequence Listing pages 1-63	Sequence listing Columns 49-164		PTO
Examiner's Amendment Claim 155, lines 3-4		163 claim 1	43-44	PTO
Examiner's Amendment Claim 155, lines 8-10		163 claim 1	51-54	PTO
Examiner's Amendment Claim 162, line 1		164 claim 6	45	PTO
Examiner's Amendment Claim 164, line 1		164 claim 8	50	PTO
Examiner's Amendment Claim 166, line 1		164 claim 10	56	PTO

At least one of the errors were found in the application as filed by applicant. Our check in the amount of \$100.00 covering the fee set forth in 37 CFR 1.20(a) is enclosed.

Patent No.: 6,790,610 Docket No.: 29915/6280MUS

The errors now sought to be corrected are inadvertent typographical errors the correction of which does not involve new matter or require reexamination.

Transmitted herewith is a proposed Certificate of Correction effecting such amendment. Patentee respectfully solicits the granting of the requested Certificate of Correction.

The Director is hereby authorized to charge any deficiency in the fees filed, asserted to be filed or which should have been filed herewith (or with any paper hereafter filed in this application by this firm) to our Deposit Account No. 13-2855, under Order No. 29915/6280MUS. A duplicate copy of this paper is enclosed.

Dated: May 2, 2005

Respectfully submitted,

Jeanne M. Brashear

Registration No.: 56,301

MARSHALL, GERSTEIN & BORUN LLP

233 S. Wacker Drive, Suite 6300

Sears Tower

Chicago, Illinois 60606-6357

(312) 474-6300

Agent for Applicant

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO.

6,790,610

DATED

September 14, 2004

INVENTOR(S)

Mark E. Gurney et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Cover Sheet:

At Section 54, column 1, please delete "Disease, Secretase" and insert -- Disease

Secretase--

At Section (*), column 1, please insert -- This patent is subject to a terminal disclaimer ---.

On page 2, column 1, line 5, please delete "th" and insert --the--.

In the Specification:

At Column 1, line 1, please delete "Disease, Secretase" and insert -- Disease Secretase--

At Column 2, line 3, please delete "a-site" and insert --α site---

At Column 3, line 56, please insert --of-- before "those".

At Column 4, line 24, please delete "lease" and insert --least--.

At Column 5, line 10, please insert --to-- before "any".

At Column 5, line 49, please insert -- of-- before "those".

At Column 6, line 28, please delete "lease" and insert --least--.

At Column 8, line 6, please insert --iii) select the cells which produce the critical peptide.--after "APP,".

At Column 8, line 16, please insert -- (SEQ ID NO: 74)-- after "P2".

At Column 8, line 37, please delete "has" and insert --as--.

At Column 8, line 64, please delete "Measurment" and insert -- Measurement--

At Column 9, line 3, please delete "reporter-protein" and insert --reporter protein--.

At Column 9, line 38, please delete "construct" and insert --constructed--.

At Column 9, line 40, please delete "streches" and insert --stretches--.

At Column 9, line 51, please delete "recombinant" and insert --recombinant--.

At Column 10, line 12, please delete "hyrdrophobic" and insert --hydrophobic--.

MAILING ADDRESS OF SENDER:

Jeanne M. Brashear MARSHALL, GERSTEIN & BORUN LLP 233 S. Wacker Drive, Suite 6300 Sears Tower Chicago, Illinois 60606-6357 PATENT NO. 6,790,610

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO.

6,790,610

DATED

September 14, 2004

INVENTOR(S)

Mark E. Gurney et al.

It is certified that errors appear in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification, (cont'd):

At Column 11, line 37, please delete "oassays" and insert --bioassays--.

At Column 11, line 53, please delete "on" and insert -- one --.

At Column 16, line 11, please delete "Fig. 11" and insert -- Fig. 12--.

At Column 16, line 48, please delete "I)" and insert --ID--.
At Column 16, line 65, please delete "Glutarnine" and insert --Glutarnine--.

At Column 17, line 37, please delete " α -secretase" and insert -- β -secretase--.

At Column 18, line 38, please delete "possible" and insert --possibly--.

At Column 21, line 12, please delete "6" and insert --6,--.

At Column 25, line 12, please delete "embyonic" and --embryonic--.

At column 30, line 28, please delete "Hu-ASPI" and insert --Hu-asp1--.

At column 31, line 20, please delete "sequence" and insert --sequenced--.

At column 32, line 42, please insert --to-- before "contain".

At column 33, line 8, please delete "manufacture" and insert --manufacturer--.

At column 33, line 60, please delete "Phospho1mager" and insert -- PhosphorImager--.

At column 33, line 63, please delete "is" and insert --in--.

At column 33, line 66, please delete "CDNA" and insert --cDNA--.

At column 35, line 59, please delete "AP" and insert --Aβ--.

At column 36, line 63, please delete "prorietary" and insert --proprietary--.

At column 39, line 17, please delete "AP" and insert --Aβ--.

At column 39, line 18, please delete "AP" and insert -- Aβ--.

At column 39, line 24, please delete "AP" and insert -- Aβ--.

At column 39, line 26, please delete "P42" and insert --β42--.

At column 39, line 26, please delete "y-secretase" and insert --y-secretase--.

At column 40, line 51, please delete "Ab" and insert --Aβ--.

At column 40, line 51, please delete "βP40" and insert --Aβ40--. At column 40, line 67, please delete "βP42" and insert --Aβ42--. At column 41, line 5, please delete "βP42" and insert --Aβ42--. At column 41, line 17, please delete "Ab." and insert --Aβ.--.

At column 44, line 50, please delete "internediate" and insert --intermediate--.

At column 45, line 37, please delete "20" and insert --20--.

PATENT NO. 6,790,610

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO.

6,790,610

DATED

September 14, 2004

INVENTOR(S)

Mark E. Gurney et al.

It is certified that errors appear in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification, (cont'd):

At column 45, line 43, please delete "101 M" and insert --101µM--.

At column 45, line 65, please delete "Hu-ASp2(b)" and insert --Hu-Asp2(b)--.

At column 46, line 65, please delete "prepared" and insert --prepare--.

At column 48, line 1, please delete "(1/250)" and insert --(1/2500)--.

At column 48, line 11, please delete "KI" and insert -- K1--.

At column 49, line 16, please delete "Swedigh" and insert -- Swedish--.

In the Sequence Listing:

Please delete the sequence listing as published and replace with the paper copy attached

hereto.

In the Claims:

In claim 1, at column 163, lines 43-44, please delete "FIG. 3 (SEQ ID NO: 4)," and insert --FIG. 4, (SEQ ID NO: 3),--.

In claim 1, at column 163, lines 51-54, please delete ", and wherein the polypeptide exhibits aspartyl protease activity involved in processing APP into amyloid beta." and insert -----

In claim 6, at column 164, line 45, please delete "A host" and insert --An isolated host--. In claim 8, at column 164, line 50, please delete "derived from" and insert -- that is--. In claim 10, at column 164, line 56, please delete "A host" and insert --An isolated host--.

MAILING ADDRESS OF SENDER:

Sharon M. Sintich MARSHALL, GERSTEIN & BORUN LLP 233 S. Wacker Drive, Suite 6300 Sears Tower Chicago, Illinois 60606-6357 PATENT NO. 6,790,610

SEQUENCE LISTING

```
<110> Gurney et al.
<120> ALZHEIMER'S DISEASE SECRETASE, APP SUBSTRATES THEREFOR, AND USES
      THEREFOR
<130> 28341/6280M
<140> US 09/869,414
<141> 2001-06-27
<150> US 09/416,901
<151> 1999-10-13
<150> US 60/155,493
<151> 1999-09-23
<150> US 09/404,133
<151> 1999-09-23
<150> PCT/US99/20881
<151> 1999-09-23
<150> 60/101,594
<151> 1998-09-24
<160> 74
<170> PatentIn Ver. 2.0
<210> 1
<211> 1804
<212> DNA
<213> Homo sapiens
atgggegeac tggcccgggc gctgctgctg cctctgctgg cccagtggct cctgcgcgcc 60
geoeggage tggeeceege geeetteaeg etgeecetee gggtggeege ggeeaegaae 120
cgcgtagttg cgcccaccc gggacccggg acccctgccg agcgccacgc cgacggcttg 180
gegetegeec tggageetge cetggegtee eeegegggeg eegeeaactt ettggeeatg 240
gtagacaacc tgcaggggga ctctggccgc ggctactacc tggagatgct gatcgggacc 300
cccccgcaga agctacagat tctcgttgac actggaagca gtaactttgc cgtggcagga 360
accocgcact cctacataga cacgtacttt gacacagaga ggtctagcac ataccgctcc 420
aagggetttg aegteaeagt gaagtaeaea caaggaaget ggaegggett egttggggaa 480
gacctegtea ceateceeaa aggetteaat acttetttte ttgteaacat tgeeactatt 540
tttgaatcag agaatttett tttgeetggg attaaatgga atggaatact tggeetaget 600
tatgccacac ttgccaagcc atcaagttct ctggagacct tcttcgactc cctggtgaca 660
caagcaaaca tccccaacgt tttctccatg cagatgtgtg gagccggctt gcccgttgct 720
ggalctggga ccaacggagg tagtcttgtc ttgggtggaa ttgaaccaag tttgtataaa 780
ggagacatct ggtatacccc tattaaggaa gagtggtact accagataga aattctgaaa 840
ttggaaattg gaggccaaag ccttaatctg gactgcagag agtataacgc agacaaggcc 900
atcgtggaca gtggcaccac gctgctgcgc ctgccccaga aggtgtttga tgcggtggtg 960
gaagetgtgg ceegegeate tetgatteea gaattetetg atggtttetg gaetgggtee 1020
cagetggegt getggaegaa tteggaaaca eettggtett aetteeetaa aateteeate 1080
tacctgagag atgagaactc cagcaggtca ttccgtatca caatcctgcc tcagctttac 1140
attcaqccca tgatqqqqqc cqqcctgaat tatgaatgtt accgattcqq catttcccca 1200
tccacaaatg cgctggtgat cggtgccacg gtgatggagg gcttctacgt catcttcgac 1260
agagcccaga agagggtggg cttcgcagcg agcccctgtg cagaaattgc aggtgctgca 1320
gtgtctgaaa tttccgggcc tttctcaaca gaggatgtag ccagcaactg tgtccccgct 1380
cagtetttga gegageeeat tttgtggatt gtgteetatg egeteatgag egtetgtgga 1440
```

gccatcetee ttgtettaat egteetgetg etgetgeegt teeggtgtea gegtegeece 1500

cgtgaccctg aggtcgtcaa tgatgagtcc tctctggtca gacatcgctg gaaatgaata 1560

gccaggcctg acctcaagca accatgaact cagctattaa gaaaatcaca tttccagggc 1620 ageageeggg ategatggtg gegetttete etgtgeecae eegtetteaa tetetgttet 1680 gctcccagat gccttctaga ttcactgtct tttgattctt gattttcaag ctttcaaatc 1740 <210> 2 <211> 518 <212> PRT <213> Homo sapiens <400> 2 Met Gly Ala Leu Ala Arg Ala Leu Leu Pro Leu Leu Ala Gln Trp 10 Leu Leu Arg Ala Ala Pro Glu Leu Ala Pro Ala Pro Phe Thr Leu Pro Leu Arg Val Ala Ala Ala Thr Asn Arg Val Val Ala Pro Thr Pro Gly Pro Gly Thr Pro Ala Glu Arg His Ala Asp Gly Leu Ala Leu Ala Leu Glu Pro Ala Leu Ala Ser Pro Ala Gly Ala Ala Asn Phe Leu Ala Met Val Asp Asn Leu Gln Gly Asp Ser Gly Arg Gly Tyr Tyr Leu Glu Met Leu Ile Gly Thr Pro Pro Gln Lys Leu Gln Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Ala Gly Thr Pro His Ser Tyr Ile Asp Thr 120 Tyr Phe Asp Thr Glu Arg Ser Ser Thr Tyr Arg Ser Lys Gly Phe Asp 135 Val Thr Val Lys Tyr Thr Gln Gly Ser Trp Thr Gly Phe Val Gly Glu Asp Leu Val Thr Ile Pro Lys Gly Phe Asn Thr Ser Phe Leu Val Asn Ile Ala Thr Ile Phe Glu Ser Glu Asn Phe Phe Leu Pro Gly Ile Lys 180 185 Trp Asn Gly Ile Leu Gly Leu Ala Tyr Ala Thr Leu Ala Lys Pro Ser 200 205 Ser Ser Leu Glu Thr Phe Phe Asp Ser Leu Val Thr Gln Ala Asn Ile Pro Asn Val Phe Ser Met Gln Met Cys Gly Ala Gly Leu Pro Val Ala 230 Gly Ser Gly Thr Asn Gly Gly Ser Leu Val Leu Gly Gly Ile Glu Pro 245

Ser Leu Tyr Lys Gly Asp Ile Trp Tyr Thr Pro Ile Lys Glu Glu Trp 260 265 270

Tyr Tyr Gln Ile Glu Ile Leu Lys Leu Glu Ile Gly Gly Gln Ser Leu 275 280 285

Asn Leu Asp Cys Arg Glu Tyr Asn Ala Asp Lys Ala Ile Val Asp Ser 290 295 300

Gly Thr Thr Leu Leu Arg Leu Pro Gln Lys Val Phe Asp Ala Val 305 310 315 320

Glu Ala Val Ala Arg Ala Ser Leu Ile Pro Glu Phe Ser Asp Gly Phe 325 330 335

Trp Thr Gly Ser Gln Leu Ala Cys Trp Thr Asn Ser Glu Thr Pro Trp 340 345 350

Ser Tyr Phe Pro Lys Ile Ser Ile Tyr Leu Arg Asp Glu Asn Ser Ser 355 360 365

Arg Ser Phe Arg Ile Thr Ile Leu Pro Gln Leu Tyr Ile Gln Pro Met 370 380

Met Gly Ala Gly Leu Asn Tyr Glu Cys Tyr Arg Phe Gly Ile Ser Pro 385 390 395 400

Ser Thr Asn Ala Leu Val Ile Gly Ala Thr Val Met Glu Gly Phe Tyr 405 410 415

Val Ile Phe Asp Arg Ala Gln Lys Arg Val Gly Phe Ala Ala Ser Pro 420 425 430

Cys Ala Glu Ile Ala Gly Ala Ala Val Ser Glu Ile Ser Gly Pro Phe 435 440 445

Ser Thr Glu Asp Val Ala Ser Asn Cys Val Pro Ala Gln Ser Leu Ser 450 455 460

Glu Pro Ile Leu Trp Ile Val Ser Tyr Ala Leu Met Ser Val Cys Gly 465 470 475 480

Ala Ile Leu Leu Val Leu Ile Val Leu Leu Leu Pro Phe Arg Cys 485 490 495

Gln Arg Arg Pro Arg Asp Pro Glu Val Val Asn Asp Glu Ser Ser Leu
500 505 510

Val Arg His Arg Trp Lys 515

<210> 3

<211> 2070

<212> DNA

<213> Homo sapiens

<400> 3

atggcccaag ccctgccctg gctcctgctg tggatggcg cgggagtgct gcctgcccac

ggcacccage aeggcateeg getgeeeetg egcageggee tggggggege eeceetgggg

60

120

180 240 gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 300 gtgggcagcc ccccgcagac gctcaacatc ctggtggata caggcagcag taactttgca 360 gtgggtgctg cccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 420 taccgggacc tccggaaggg tgtgtatgtg ccctacaccc agggcaagtg ggaaggggag ctgggcaccg acctggtaag catcccccat ggccccaacg tcactgtgcg tgccaacatt 480 gctgccatca ctgaatcaga caagttcttc atcaacggct ccaactggga aggcatcctg 540 gggctggcct atgctgagat tgccaggcct gacgactccc tggagccttt ctttgactct 600 ctggtaaagc agaccaacgt tcccaacctc ttctccctgc agctttgtgg tgctggcttc 660 720 cccctcaacc agtctgaagt gctggcctct gtcggaggga gcatgatcat tggaggtatc gaccactege tgtacacagg cagtetetgg tatacaceca teeggeggga gtggtattat 780 840 gaggtcatca ttgtgcgggt ggagatcaat ggacaggatc tgaaaatgga ctgcaaggag 900 tacaactatg acaagagcat tgtggacagt ggcaccacca accttcgttt gcccaagaaa 960 gtgtttgaag ctgcagtcaa atccatcaag gcagcctcct ccacggagaa gttccctgat ggtttctggc taggagagca gctggtgtgc tggcaagcag gcaccacccc ttggaacatt 1020 ttcccagtca tctcactcta cctaatgggt gaggttacca accagtcctt ccgcatcacc 1080 atcetteege ageaatacet geggeeagtg gaagatgtgg ceaegteeca agacgaetgt 1140 1.200 tacaagtttg ccatctcaca gtcatccacg ggcactgtta tgggagctgt tatcatggag ggcttctacg ttgtctttga tcgggcccga aaacgaattg gctttgctgt cagcgcttgc 1260 catgtgcacg atgagttcag gacggcagcg gtggaaggcc cttttgtcac cttggacatg 1320 gaagactgtg gctacaacat tccacagaca gatgagtcaa ccctcatgac catagcctat 1380 gtcatggctg ccatctgcgc cctcttcatg ctgccactct gcctcatggt gtgtcagtgg 1440 egetgeetee getgeetgeg eeageageat gatgaetttg etgatgaeat etecetgetg 1500 1560 aagtgaggag gcccatgggc agaagataga gattcccctg gaccacacct ccgtggttca ctttggtcac aagtaggaga cacagatggc acctgtggcc agagcacctc aggaccctcc 1620 ccacccacca aatgcctctg ccttgatgga gaaggaaaag gctggcaagg tgggttccag 1680 1740 ggactgtacc tgtaggaaac agaaaagaga agaaagaagc actctgctgg cgggaatact 1800 cttggtcacc tcaaatttaa gtcgggaaat tctgctgctt gaaacttcag ccctgaacct 1860 1920 gtactggcat cacacgcagg ttaccttggc gtgtgtccct gtggtaccct ggcagagaag 1980 agaccaagct tgtttccctg ctggccaaag tcagtaggag aggatgcaca gtttgctatt tgctttagag acagggactg tataaacaag cctaacattg gtgcaaagat tgcctcttga 2040

- <210> 4
- <211> 501
- <212> PRT
- <213> Homo sapiens
- <400> 4
- Met Ala Gln Ala Leu Pro Trp Leu Leu Trp Met Gly Ala Gly Val 1 5 10 15
- Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser 20 25 30
- Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp 35 40 45
- Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
 50 55 60
- Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr 65 70 75 80
- Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser 85 90 95
- Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr 100 105 110
- Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val 115 120 125
- Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp 130 135 140
- Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile 145 150 155 160
- Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
 165 170 175
- Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp 180 185 190
- Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro 195 200 205
- Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln

210 215 220

Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile 230 235 Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala 375 Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala 405 Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu 420 Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro 435 Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala 460

```
Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp
                   470
                                       475
Arg Cys Leu Arg Cys Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp
                                   490
Ile Ser Leu Leu Lys
           500
<210> 5
<211> 1977
<212> DNA
<213> Homo sapiens
<400> 5
atggcccaag ccctgccctg gctcctgctg tggatggcg cgggagtgct gcctgcccac 60
ggcacceage aeggcateeg getgeeeetg/egeageggee tggggggege eeeeetgggg 120
gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240
gtgggcagcc ccccgcagac gctcaacatc ctggtggata caggcagcag taactttgca 300°
gtgggtgctg cccccaccc cttcctgcat cgctactacc agaggcaget gtccagcaca 360
taccgggacc tccggaaggg tgtgtatgtg ccctacaccc agggcaagtg ggaaggggag 420
ctgggcaccg acctggtaag catcccccat ggccccaacg tcactgtgcg tgccaacatt 480
gctgccatca ctgaatcaga caagttcttc atcaacggct ccaactggga aggcatcctg 540
gggctggcct atgctgagat tgccaggctt tgtggtgctg gcttccccct caaccagtct 600
gaagtgctgg cctctgtcgg agggagcatg atcattggag gtatcgacca ctcgctgtac 660
acaggcagtc tetggtatac acceateegg egggagtggt attatgaggt gateattgtg 720 😶
cgggtggaga tcaatggaca ggatctgaaa atggactgca aggagtacaa ctatgacaag 780
agcattgtgg acagtggcac caccaacctt cgtttgccca agaaagtgtt tgaagctgca 840
gtcaaatcca tcaaggcagc ctcctccacg gagaagttcc ctgatggttt ctggctagga 900
gagcagctgg tgtgctggca agcaggcacc accccttgga acattttccc agtcatctca 960
ctctacctaa tgggtgaggt taccaaccag tccttccgca tcaccatcct tccgcagcaa 1020
tacctgcggc cagtggaaga tgtggccacg tcccaagacg actgttacaa gtttgccatc 1080 1
tcacagtcat ccacgggcac tgttatggga gctgttatca tggagggctt ctacgttgtc 1140
tttgateggg ceegaaaaeg aattggettt getgteageg ettgeeatgt geaegatgag 1200.
ttcaggacgg cagcggtgga aggccctttt gtcaccttgg acatggaaga ctgtggctac 1260
aacattccac agacagatga gtcaaccctc atgaccatag cctatgtcat ggctgccatc 1320 🖰
tgcgccctct tcatgctgcc actctgcctc atggtgtgtc agtggcgctg cctccgctgc 1380
ctgcgccagc agcatgatga ctttgctgat gacatctccc tgctgaagtg aggaggccca 1440
tgggcagaag atagagattc ccctggacca cacctccgtg gttcactttg gtcacaagta 1500.
ggagacacag atggcacctg tggccagagc acctcaggac cctccccacc caccaaatgc 1560
ctctgccttg atggagaagg aaaaggctgg caaggtgggt tccagggact gtacctgtag 1620
gaaacagaaa agagaagaaa gaagcactct gctggcggga atactcttgg tcacctcaaa 1680
tttaagtegg gaaattetge tgettgaaac tteageeetg aacetttgte caccatteet 1740
ttaaattctc caacccaaag tattcttctt ttcttagttt cagaagtact ggcatcacac 1800
gcaggttacc ttggcgtgtg tccctgtggt accctggcag agaagagacc aagcttgttt 1860
ccctgctggc caaagtcagt aggagaggat gcacagtttg ctatttgctt tagagacagg 1920
gactgtataa acaagcctaa cattggtgca aagattgcct cttgaaaaaaa aaaaaaa
<210> 6
<211> 476
<212> PRT
<213> Homo sapiens
<400> 6
Met Ala Gln Ala Leu Pro Trp Leu Leu Trp Met Gly Ala Gly Val
```

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser

20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val 120 Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp 135 Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile 155 Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp 1.70 Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Leu Cys Gly 185 Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly 200 Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu 215 Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu 260 265 Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser 315 310 Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln 345

```
Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val
        355
                            360
Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala
                        375
                                            380
Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu
                                        395
Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu
                                    410
Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser Thr Leu Met Thr
            420
                                425
Ile Ala Tyr Val Met Ala Ala Ile Cys Ala Leu Phe Met Leu Pro Leu
Cys Leu Met Val Cys Gln Trp Arg Cys Leu Arg Cys Leu Arg Gln Gln
His Asp Asp Phe Ala Asp Asp Ile Ser Leu Leu Lys
                    470
<210> 7
<211> 2043
<212> DNA
<213> Mus musculus
<400> 7
atggccccag cgctgcactg gctcctgcta tgggtgggct cgggaatgct gcctgcccag 60
ggaacccatc teggeateeg getgeeeett egeageggee tggeagggee acccetggge 120
ctgaggctgc cccgggagac tgacgaggaa tcggaggagc ctggccggag aggcagcttt 180
gtggagatgg tggacaacct gaggggaaag tccggccagg gctactatgt ggagatgacc 240
gtaggcagcc ccccacagac gctcaacatc ctggtggaca cgggcagtag taactttgca 300
gtgggggctg ccccacaccc tttcctgcat cgctactacc agaggcagct gtccagcaca 360
tatcgagacc tccgaaaggg tgtgtatgtg ccctacaccc agggcaagtg ggagggggaa 420
ctgggcaccg acctggtgag catccctcat ggccccaacg tcactgtgcg tgccaacatt 480
gctgccatca ctgaatcgga caagttcttc atcaatggtt ccaactggga gggcatccta 540
gggctggcct atgctgagat tgccaggccc gacgactctt tggagccctt ctttgactcc 600
ctggtgaagc agacccacat teccaacate tttteeetge agetetgtgg egetggette 660-
cccctcaacc agaccgaggc actggcctcg gtgggaggga gcatgatcat tggtggtatc 720
gaccactege tatacaeggg cagtetetgg tacacaecea teeggeggga gtggtattat 780
gaagtgatca ttgtacgtgt ggaaatcaat ggtcaagatc tcaagatgga ctgcaaggag 840
tacaactacg acaagagcat tgtggacagt gggaccacca accttcgctt gcccaagaaa 900
gtatttgaag ctgccgtcaa gtccatcaag gcagcctcct cgacggagaa gttcccggat 960
ggettttgge taggggagea getggtgtge tggeaageag geaegaceee ttggaacatt 1020
ttcccagtca tttcacttta cctcatgggt gaagtcacca atcagtcctt ccgcatcacc 1080
atcetteete ageaataeet aeggeeggtg gaggaegtgg ecaegteeea agaegaetgt 1140
tacaagttcg ctgtctcaca gtcatccacg ggcactgtta tgggagccgt catcatggaa 1200
ggtttctatg tcgtcttcga tcgagcccga aagcgaattg gctttgctgt cagcgcttgc 1260
catgtgcacg atgagttcag gacggcgca gtggaaggtc cgtttgttac ggcagacatg 1320
gaagactgtg gctacaacat tccccagaca gatgagtcaa cacttatgac catagcctat 1380
gtcatggcgg ccatctgcgc cctcttcatg ttgccactct gcctcatggt atgtcagtgg 1440
cgctgcctgc gttgcctgcg ccaccagcac gatgactttg ctgatgacat ctccctgctc 1500
```

aagtaaggag getegtggge agatgatgga gaegeeeetg gaecacatet gggtggttee 1560 etttggteae atgagttgga getatggatg gtacetgtgg ceagageaee teaggaeeet 1620 eaceaacetg ceaatgette tggegtgaea gaacagagaa ateaggeaag etggattaea 1680 gggettgeae etgtaggaea eaggagaggg aaggaageag egttetggtg geaggaatat 1740 eettaggeae eacaaacetg agttggaaat tettgetgett gaagetteag eeetgaeeet 1800 etgeeeagea teetttagag teteeaacet aaagtattet ttatgteett eeagaagtae 1860

tggcgtcata ctcaggctac ccggcatgtg tccctgtggt accctggcag agaaagggcc 1920

aatctcattc cctgctggcc aaagtcagca gaagaaggtg aagtttgcca gttgctttag 1980 tgatagggac tgcagactca agcctacact ggtacaaaga ctgcgtcttg agataaacaa 2040 <210> 8 <211> 501 <212> PRT <213> Mus musculus <400> 8 Met Ala Pro Ala Leu His Trp Leu Leu Trp Val Gly Ser Gly Met Leu Pro Ala Gln Gly Thr His Leu Gly Ile Arg Leu Pro Leu Arg Ser Gly Leu Ala Gly Pro Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp 40 Glu Glu Ser Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr 105 Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp 135 Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile 155 150 Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp 185 Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Ile Pro 195 Asn Ile Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln 215 Thr Glu Ala Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile 230 235 240 Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln

Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val

275 280 285

Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala 295 Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp 315 310 Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val 345 Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala 375 Val Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu 390 395 Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu 425 Gly Pro Phe Val Thr Ala Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro 440 Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala 455 Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp 475 Arg Cys Leu Arg Cys Leu Arg His Gln His Asp Asp Phe Ala Asp Asp 485 490 Ile Ser Leu Leu Lys 500

<210> 9 <211> 2088 <212> DNA <213> Homo sapiens

<400> 9
atgctgccg gtttggcact gctcctgctg gccgcctgga cggctcgggc gctggaggta 60
cccactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180
acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300
ggccgcaagc agtgcaagac ccatccccac tttgtgattc cctaccgctg cttagttggt 360
gagtttgtaa gtgatgcct tctcgttcct gacaagtgca aattcttaca ccaggagagg 420
atggatgtt gcgaaactca tctcactgg cacaccgtcg ccaaagagac atgcagtgag 480
aagagtacca acttgcatga ctacggcatg ttgctgcct gcggaattga caagttccga 540
ggggtagagt ttgtgtgttg cccactggct gaagaaagtg acaatgtgga ttctgctgat 600
gcggaggaggg atgactcgga tgtctggtgg ggcggagcag acacagacta tgcagatggg 660

agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720

2088

gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780

```
ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca 840
gagtetgtgg aagaggtggt tegagtteet acaacagcag ceagtacece tgatgeegtt 900
gacaagtate tegagacace tggggatgag aatgaacatg eccattteca gaaagecaaa 960
gagaggettg aggecaagea cegagagaga atgteecagg teatgagaga atgggaagag 1020
gcagaacgtc aagcaaagaa cttgcctaaa gctgataaga aggcagttat ccagcatttc 1080
caggagaaag tggaatcttt ggaacaggaa gcagccaacg agagacagca gctggtggag 1140
acacacatgg ccagagtgga agccatgctc aatgaccgcc gccgcctggc cctggagaac 1200
tacatcaccg ctctgcaggc tgttcctcct cggcctcgtc acgtgttcaa tatgctaaag 1260
aagtatgtcc gcgcagaaca gaaggacaga cagcacaccc taaagcattt cgagcatgtg 1320
cgcatggtgg atcccaagaa agccgctcag atccggtccc aggttatgac acacctccgt 1380
gtgatttatg agcgcatgaa tcagtctctc tccctgctct acaacgtgcc tgcagtggcc 1440
gaggagattc aggatgaagt tgatgagctg cttcagaaag agcaaaacta ttcagatgac 1500
gtcttggcca acatgattag tgaaccaagg atcagttacg gaaacgatgc tctcatgcca 1560
tctttgaccg aaacgaaaac caccgtggag ctccttcccg tgaatggaga gttcagcctg 1620
gacgatetee ageegtggea ttettttggg getgaetetg tgeeageeaa cacagaaaac 1680
gaagttgage etgttgatge eegecetget geegacegag gaetgaeeae tegaceaggt 1740
tctgggttga caaatatcaa gacggaggag atctctgaag tgaagatgga tgcagaattc 1800
cgacatgact caggatatga agttcatcat caaaaattgg tgttctttgc agaagatgtg 1860
ggttcaaaca aaggtgcaat cattggactc atggtgggcg gtgttgtcat agcgacagtg 1920
atogtoatca cottggtgat gotgaagaag aaacagtaca catccattca tcatggtgtg 1980
gtggaggttg acgccgctgt caccccagag gagcgccacc tgtccaagat gcagcagaac 2040
ggctacgaaa atccaaccta caagttcttt gagcagatgc agaactag
<210> 10
<211> 695
<212> PRT
<213> Homo sapiens
Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
                                     10
Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
                                                125
Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
    130
                        135
Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
                    150
                                        155
Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
                165
                                    170
                                                        175
```

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu 185 180 Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val 200 Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu Glu Ala Asp Asp Glu Asp Glu Asp Gly Asp Glu Val Glu Glu 245 Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile 265 Ala: Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val: Val Arg . 280 285 Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu 295 Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg 325 330 Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala 375 .370 Arg Val Glu Ala Met Leu Asn Asp Arg Arg Leu Ala Leu Glu Asn 395 Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala 440 Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu 450 455

Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn

475

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser 505 500 Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr 525 520 Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn 555 Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr 565 Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser 580 585 Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val 600 His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu Val Met Leu Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg 665 His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met Gln Asn 690 695 <210> 11 <211> 2088 <212> DNA <213> Homo sapiens <400> 11 atgctgcccg gtttggcact gctcctgctg gccgcctgga cggctcgggc gctggaggta 60 cccactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120 ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180 acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240 cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300 ggccgcaagc agtgcaagac ccatccccac tttgtgattc cctaccgctg cttagttggt 360 gagtttgtaa gtgatgccct tetegtteet gacaagtgca aattettaca ecaggagagg 420 atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagtgag 480 aagagtacca acttgcatga ctacggcatg ttgctgccct gcggaattga caagttccga 540 ggggtagagt tigtgtgtig cocactggct gaagaaagtg acaatgigga tictgctgat 600 geggaggagg atgaetegga tgtetggtgg ggeggageag acacagaeta tgeagatggg 660 agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720 gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780 ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca 840 gagtctgtgg aagaggtggt tcgagttcct acaacagcag ccagtacccc tgatgccgtt 900

```
gacaagtatc tcgagacacc tggggatgag aatgaacatg cccatttcca gaaagccaaa 960
gagaggettg aggecaagea eegagagaga atgteeeagg teatgagaga atgggaagag 1020
gcagaacgtc aagcaaagaa cttgcctaaa gctgataaga aggcagttat ccagcatttc 1080
caggagaaag tggaatcttt ggaacaggaa gcagccaacg agagacagca gctggtggag 1140
acacacatgg ccagagtgga agccatgctc aatgaccgcc gccgcctggc cctggagaac 1200
tacatcaccg ctctgcaggc tgttcctcct cggcctcgtc acgtgttcaa tatgctaaag 1260
aagtatgtcc gcgcagaaca gaaggacaga cagcacaccc taaagcattt cgagcatgtg 1320
cqcatqqtqq atcccaaqaa agccqctcaq atccgqtccc aggttatgac acacctccgt 1380
gtgatttatg agegeatgaa teagtetete teeetgetet acaaegtgee tgeagtggee 1440
gaggagattc aggatgaagt tgatgagctg cttcagaaag agcaaaacta ttcagatgac 1500 🔗
gtcttggcca acatgattag tgaaccaagg atcagttacg gaaacgatgc tctcatgcca 1560
tetttgaceg aaacgaaaac cacegtggag eteetteeeg tgaatggaga gttcageetg 1620
gacgatetee ageegtggea ttettttggg getgaetetg tgecageeaa cacagaaaac 1680
gaagttgagc ctgttgatgc ccgccctgct gccgaccgag gactgaccac tcgaccaggt 1740
tctgggttga caaatatcaa gacggaggag atctctgaag tgaatctgga tgcagaattc 1800
cgacatgact caggatatga agttcatcat caaaaattgg tgttctttgc agaagatgtg 1860
ggttcaaaca aaggtgcaat cattggactc atggtgggcg gtgttgtcat agcgacagtg 1920
ategteatea cettggtgat getgaagaag aaacagtaca catecattea teatggtgtg 1980
gtggaggttg acgccgctgt caccccagag gagcgccacc tgtccaagat gcagcagaac 2040
ggctacgaaa atccaaccta caagttcttt gagcagatgc agaactag
<210> 12
<211> 695
<212> PRT
<213> Homo sapiens
<400> 12
MetiLeu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
                                     10
Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
            100
                                105
                                                    110
Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
                            120
Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
   .130
                        135
Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
                                        155
                    150
Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
                165
Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
            180
                                185
                                                    190
```

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val 195 200 205

Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys 210 215 220

Val Val Glu Val Ala Glu Glu Glu Glu Val Ala Glu Val Glu Glu 225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Glu Asp Gly Asp Glu Val Glu Glu 245. 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile 260 265 270

Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu 290 295 300

Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys 305 310 315 320

Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg 325 330 335

Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp 340 345 350

Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu 355 360 365

Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala 370 375 380

Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn 385 390 395 400

Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe
405 410 415

Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His
420 425 430

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala 435 440 445

Ala Glm Ile Arg Ser Glm Val Met Thr His Leu Arg Val Ile Tyr Glu
450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala 465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn 485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser 500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr

525 515 520

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln 535 Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn 550 555 Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser 585 Glu Val Asn Leu Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys 615 Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val 630 635 Ile Val Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile . His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg 665 His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys 680 685 Phe Phe Glu Gln Met Gln Asn 690

<210> 13 <211> 2088 <212> DNA <213> Homo sapiens

<400> 13

atgctgcccg gtttggcact gctcctgctg gccgcctgga cggctcgggc gctggaggta 60 cccactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120 ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180 acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240 cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300 ggccgcaagc agtgcaagac ccatccccac tttgtgattc cctaccgctg cttagttggt 360 gagtttgtaa gtgatgccct tctcgttcct gacaagtgca aattcttaca ccaggagagg 420 atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagtgag 480 aagagtacca acttgcatga ctacggcatg ttgctgccct gcggaattga caagttccga 540 ggggtagagt ttgtgtgttg cccactggct gaagaaagtg acaatgtgga ttctgctgat 600 geggaggagg atgaetegga tgtetggtgg ggeggageag acaeagaeta tgeagatggg 660 agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720 gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780 ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca 840 gagtctgtgg aagaggtggt tcgagttcct acaacagcag ccagtacccc tgatgccgtt 900 gacaagtate tegagacace tggggatgag aatgaacatg eccattteca gaaagecaaa 960 gagaggettg aggecaagea cegagagaga atgteecagg teatgagaga atgggaagag 1020 gcagaacgtc aagcaaagaa cttgcctaaa gctgataaga aggcagttat ccagcatttc 1080 caggagaaag tggaatcttt ggaacaggaa gcagccaacg agagacagca gctggtggag 1140 acacacatgg ccagagtgga agccatgctc aatgaccgcc gccgcctggc cctggagaac 1200 tacatcaccg ctctgcaggc tgttcctcct cggcctcgtc acgtgttcaa tatgctaaag 1260

```
aagtatgtcc gcgcagaaca gaaggacaga cagcacaccc taaagcattt cgagcatgtg 1320
cgcatggtgg atcccaagaa agccgctcag atccggtccc aggttatgac acacctccgt 1380
gtgatttatg agegeatgaa teagtetete teeetgetet acaaegtgee tgeagtggee 1440
gaggagattc aggatgaagt tgatgagctg cttcagaaag agcaaaacta ttcagatgac 1500
gtcttggcca acatgattag tgaaccaagg atcagttacg gaaacgatgc tctcatgcca 1560
tetttgaceg aaacgaaaac cacegtggag eteetteeeg tgaatggaga gtteageetg 1620
gacgatetee agecgtggea ttettttggg getgactetg tgecagecaa cacagaaaac 1680
gaagttgagc ctgttgatgc ccgccctgct gccgaccgag gactgaccac tcgaccaggt 1740
tctgggttga caaatatcaa gacggaggag atctctgaag tgaagatgga tgcagaattc 1800
cgacatgact caggatatga agttcatcat caaaaattgg tgttctttgc agaagatgtg 1860
ggttcaaaca aaggtgcaat cattggactc atggtgggcg gtgttgtcat agcgacagtg 1920
atcttcatca ccttggtgat gctgaagaag aaacagtaca catccattca tcatggtgtg 1980
gtggaggttg acgccgctgt caccccagag gagcgccacc tgtccaagat gcagcagaac 2040
ggctacgaaa atccaaccta caagttcttt gagcagatgc agaactag
<210> 14
<211> 695
<212> PRT
<213> Homo sapiens
Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
                                     10
Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
                                         75
Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
                                105
Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
                            120
Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
                        135
Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
                                                            160
Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
                                    170
Asp Lys Phe Arg Gly Val. Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
                                185
Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
                            200
Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
    210
                        215
```

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu 235 230 Glu Ala Asp Asp Glu Asp Glu Asp Glu Asp Glu Val Glu Glu Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile 265 Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg 280 285 Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu 295 Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys 310 Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg 330 Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp 345 Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala 375 380 Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn 390 395 Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe 405 410 Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His 425 Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu 455 460 Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala 475 Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser 505 Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln 530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn 550 555 Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr 565 570 Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser 585 Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val 600 His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys 615 Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val Ile Phe Ile Thr Leu Val Met Leu Lys Lys Gln Tyr Thr Ser Ile 650 His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg 660 665 His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys 680 Phe Phe Glu Gln Met Gln Asn -690 695 <210> 15 <211> 2094 <212> DNA <213> Homo sapiens atgetgeeeg gtttggeact geteetgetg geegeetgga eggeteggge getggaggta 60 cccactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120 ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180 acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240 cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300 ggccgcaagc agtgcaagac ccatccccac tttgtgattc cctaccgctg cttagttggt 360 gagtttgtaa gtgatgccct tctcgttcct gacaagtgca aattcttaca ccaggagagg 420 atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagtgag 480 aagagtacca acttgcatga ctacggcatg ttgctgccct gcggaattga caagttccga 540 ggggtagagt ttgtgtgttg cccactggct gaagaaagtg acaatgtgga ttctgctgat 600 gcggaggagg atgactcgga tgtctggtgg ggcggagcag acacagacta tgcagatggg 660 agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720 gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780

ccctacgaag aagccacaa gagaaccacc agcattgcca ccaccacac Caccaccaca 840 gagtctgtgg aagaggggt tcgagttcct acaacagcag ccagtacccc tgatgccgtt 900 gacaagtatc tcgagacacc tggggatgag aatgaacatg cccatttcca gaaagccaaa 960 gagaggcttg aggccaagca ccgagagaga atgtcccagg tcatgagaga atgggaagag 1020 gcagaacgtc aagcaaagaa cttgcctaaa gctgataaga aggcagttat ccagcatttc 1080 caggagaaag tggaatcttt ggaacaggaa gcagccaacg agagacagca gctggtggag 1140 acaccacatgg ccagagtgga agccatgctc aatgaccgcc gccgcctggc cctggagaac 1200 tacatcaccg ctctgcaggc tgttcctcct cggcctcgtc acgtgttcaa tatgctaaag 1260 aagtatgtcc gcgcagaaca agccgctcag acgcacaccc taaagcattt cgagcatgtg 1320 cgcatggtgg atcccaagaa agccgctcag atccggtccc aggttatgac acacctccgt 1380 gtgatttatg agcgcatgaa tcagtctct tccctgctct acaacgtgcc tgcagtggcc 1440 gaggagattc aggatgaagt tgatgagctg cttcagaaag agcaaaacta ttcagatgac 1500

```
gtcttggcca acatgattag tgaaccaagg atcagttacg gaaacgatgc tctcatgcca 1560
tetttgaceg aaacgaaaac cacegtggag etcetteeeg tgaatggaga gtteageetg 1620
gacgatetee agecgtggea ttettttggg getgaetetg tgecagecaa cacagaaaac 1680
gaagttgage etgttgatge eegecetget geegaeegag gaetgaeeae tegaeeaggt 1740
tctgggttga caaatatcaa gacggaggag atctctgaag tgaagatgga tgcagaattc 1800
cgacatgact caggatatga agttcatcat caaaaattgg tgttctttgc agaagatgtg 1860
ggttcaaaca aaggtgcaat cattggactc atggtgggcg gtgttgtcat agcgacagtg 1920
atcqtcatca ccttqqtqat qctqaaqaaq aaacaqtaca catccattca tcatqqtqtq 1980
gtggaggttg acgccgctgt caccccagag gagcgccacc tgtccaagat gcagcagaac 2040
ggctacgaaa atccaaccta caagttcttt gagcagatgc agaacaagaa gtag
<210> 16
<211> 697
<212> PRT
<213> Homo sapiens
Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
                                 25
Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
                          . 120
Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
                       135
Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
               165
Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
                                185
Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
       195
                                                205
Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
```

Glu Ala Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu 245 Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg 275 Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu 295 Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys 315 Glu; Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg 325 330 Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp 345 Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala 375 Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn 390 395 Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His 425 Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala 435 440 Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu 455 Arg:Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala 475 Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser 505 Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr 515 520 Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln 535 Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn 555

```
Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr
                565
Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
                                585
Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val
His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val
                                        635
Ile Val Ile Thr Leu Val Met Leu Lys Lys Gln Tyr Thr Ser Ile
                645
His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
                                665
His: Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
Phe Phe Glu Gln Met Gln Asn Lys Lys
<21.0> 17
<211> 2094
<212> DNA
<213> Homo sapiens
<400> 17
atgetgeeeg gtttggeaet geteetgetg geegeetgga eggeteggge getggaggta 60
cccactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180
acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300
ggccgcaagc agtgcaagac ccatccccac tttgtgattc cctaccgctg cttagttggt 360
gagtttgtaa gtgatgccct tctcgttcct gacaagtgca aattcttaca ccaggagagg 420
atggatgttt gcgaaactca tetteactgg cacacegteg ccaaagagae atgeagtgag 480
aagagtacca acttgcatga ctacggcatg ttgctgccct gcggaattga caagttccga 540
ggggtagagt ttgtgtgttg cccactggct gaagaaagtg acaatgtgga ttctgctgat 600
gcggaggagg atgactcgga tgtctggtgg ggcggagcag acacagacta tgcagatggg 660
agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720
gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780
ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca 840
gagtetgtgg aagaggtggt tegagtteet acaacagcag ecagtacece tgatgeegtt 900
gacaagtate tegagacace tggggatgag aatgaacatg eccattteca gaaageeaaa 960
gagaggettg aggecaagea eegagagaga atgteeeagg teatgagaga atgggaagag 1020
gcagaacgtc aagcaaagaa cttgcctaaa gctgataaga aggcagttat ccagcatttc 1080
caggagaaag tggaatcttt ggaacaggaa gcagccaacg agagacagca gctggtggag 1140°
acacacatgg ccagagtgga agccatgctc aatgaccgcc gccgcctggc cctggagaac 1200
```

tacatcaccg ctctgcagge tgttcctct eggectegte aegtgtteaa tatgetaaag 1260 aagtatgtee gegeagaaca gaaggacaga eageacacce taaagcattt egageatgtg 1320 egeatggtgg atcccaagaa ageegeteag atceggteee aggttatgae acaceteegt 1380 gtgatttatg agegeatgaa teagtetete teeetgetet acaaegtgee tgeagtggee 1440 gaggagatte aggatgaagt tgatgagetg etteagaaag ageaaaacta tteagatgae 1500 gtettggeea acatgattag tgaaccaagg atcagttaeg gaaaegatge teteatgeea 1560 tetttgaeeg aaaegaaac caeegtggag eteetteeeg tgaatggaga gtteageetg 1620

```
gacgatetee ageegtggea ttettttggg getgaetetg tgeeageeaa cacagaaaac 1680
gaagttgagc ctgttgatgc ccgccctgct gccgaccgag gactgaccac tcgaccaggt 1740
tctgggttga caaatatcaa gacggaggag atctctgaag tgaatctgga tgcagaattc 1800
cgacatgact caggatatga agttcatcat caaaaattgg tgttctttgc agaagatgtg 1860
ggttcaaaca aaggtgcaat cattggactc atggtgggcg gtgttgtcat agcgacagtg 1920
atcgtcatca ccttggtgat gctgaagaag aaacagtaca catccattca tcatggtgtg 1980
gtggaggttg acgccgctgt caccccagag gagcgccacc tgtccaagat gcagcagaac 2040
ggctacgaaa atccaaccta caagttcttt gagcagatgc agaacaagaa gtag
<210> 18
<211> 697
<212> PRT
<213> Homo sapiens
<400> 18
Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
                                 25
Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
                             40
Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
                                105
Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
                                                125
Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
                        135
Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
                    150
                                        155
Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
                165
                                    170
                                                        175
Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
                                185
Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
        195
                            200
Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
                        215
Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
                    230
                                        235
Glu Ala Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
                245
                                    250
                                                        255
```

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile 265 Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg 280 Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu 295 . Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg 325 330 Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp 345 Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met Leu Asn Asp Arg Arg Leu Ala Leu Glu Asn 395 Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe 405 410 Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala 435 Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu 455 460 Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr 520 Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln 530 535 Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr

570

```
Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
                                585
Glu Val Asn Leu Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val
                            600
                                                605
His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
                        615
Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val
Ile Val Ile Thr Leu Val Met Leu Lys Lys Gln Tyr Thr Ser Ile
                                    650
His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
                            680
Phe Phe Glu Gln Met Gln Asn Lys Lys
    690
                        695°
<210> 19
<211> 2094
<212> DNA
<213> Homo sapiens
<400> 19
atgetgeeeg gtttggeact geteetgetg geegeetgga eggeteggge getggaggta 60
cccactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180
acctgcattg ataccaagga aggcatcetg cagtattgcc aagaagteta ccetgaactg 240
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300
ggccgcaagc agtgcaagac ccatccccac tttgtgattc cctaccgctg cttagttggt 360
gagtttgtaa gtgatgccct tctcgttcct gacaagtgca aattcttaca ccaggagagg 420
atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagtgag 480
aagagtacca acttgcatga ctacggcatg ttgctgccct gcggaattga caagttccga 540
ggggtagagt ttgtgtgttg cccactggct gaagaaagtg acaatgtgga ttctgctgat 600
gcggaggagg atgactcgga tgtctggtgg ggcggagcag acacagacta tgcagatggg 660
agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720
gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780
ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca 840
gagtetgtgg aagaggtggt tegagtteet acaacagcag ceagtacece tgatgeegtt 900
gacaagtatc tcgagacacc tggggatgag aatgaacatg cccatttcca gaaagccaaa 960
gagaggettg aggecaagea eegagagaga atgteecagg teatgagaga atgggaagag 1020
gcagaacgtc aagcaaagaa cttgcctaaa gctgataaga aggcagttat ccagcatttc 1080
caggagaaag tggaatcttt ggaacaggaa gcagccaacg agagacagca gctggtggag 1140
acacacatgg ccagagtgga agccatgctc aatgaccgcc gccgcctggc cctggagaac 1200
tacatcaccg ctctgcaggc tgttcctcct cggcctcgtc acgtgttcaa tatgctaaag 1260
aagtatgtcc gcgcagaaca gaaggacaga cagcacaccc taaagcattt cgagcatgtg 1320
```

cgcatggtgg atcccaagaa agccgctcag atccggtccc aggttatgac acacctccgt 1380 gtgatttatg agcgcatgaa tcagtctctc tccctgctct acaacgtgcc tgcagtggcc 1440 gaggagatto aggatgaagt tgatgagotg ottoagaaag agcaaaacta ttoagatgao 1500. gtcttggcca acatgattag tgaaccaagg atcagttacg gaaacgatgc tctcatgcca 1560 tetttgaceg aaacgaaaac cacegtggag eteetteeeg tgaatggaga gtteageetg 1620 gacgatetee ageegtggea ttettttggg getgaetetg tgeeageeaa cacagaaaac 1680 gaagttgage etgttgatge eegecetget geegacegag gaetgaceae tegaceaggt 1740 tctgggttga caaatatcaa gacggaggag atctctgaag tgaagatgga tgcagaattc 1800 cgacatgact caggatatga agttcatcat caaaaattgg tgttctttgc agaagatgtg 1860. ggttcaaaca aaggtgcaat cattggactc atggtgggcg gtgttgtcat agcgacagtg 1920

atcttcatca ccttggtgat gctgaagaag aaacagtaca catccattca tcatggtgtg 1980 gtggaggttg acgccgctgt caccccagag gagcgccacc tgtccaagat gcagcagaac 2040 ggctacgaaa atccaaccta caagttcttt gagcagatgc agaacaagaa gtag 2094

<210> 20

<211> 697

<212> PRT

<213> Homo sapiens

<400> 20

Met Leu Pro Gly Leu Ala Leu Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro 20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp 50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu 65 . 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn 85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu 115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys 130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu 145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile 165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu 180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val 195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys 210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu 225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Glu Asp Gly Asp Glu Val Glu Glu 245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile 260 265 270 Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg 280 Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu 295 Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp 345 Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn 390 Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe 410 Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His 425 Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu 455 Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala 470 Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser 505 Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr 520 Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln 535 540 Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn 555 Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser

Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val

```
600
                                                605
        595
His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
                        615
Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val
                                        635
                    630
Ile Phe Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile
His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
                            680
Phe Phe Glu Gln Met Gln Asn Lys Lys
                        695
<21.0> 21
<211> 1341
<212> DNA
<213> Homo sapiens
<400> 21
atggctagca tgactggtgg acagcaaatg ggtcgcggat ccacccagca cggcatccgg 60
etgeceetge geageggeet ggggggegee eeeetgggge tgeggetgee eegggagaee 120
gacgaagagc ccgaggagcc cggccggagg ggcagctttg tggagatggt ggacaacctg 180
aggggcaagt cggggcaggg ctactacgtg gagatgaccg tgggcagccc cccgcagacg 240
ctcaacatcc tggtggatac aggcagcagt aactttgcag tgggtgctgc ccccaaccc 300
ttcctgcatc gctactacca gaggcagctg tccagcacat accgggacct ccggaagggt 360
gtgtatgtgc cctacaccca gggcaagtgg gaaggggagc tgggcaccga cctggtaagc 420
atcocccatg gccccaacgt cactgtgcgt gccaacattg ctgccatcac;tgaatcagac 480
aagttettea teaacggete caactgggaa ggcateetgg ggetggeeta tgetgagatt 540
gccaggcctg acgactccct ggagcctttc tttgactctc tggtaaagca gacccacgtt 600
cccaacetet tetecetgea cetttgtggt-getggettee cccteaacea gtetgaagtg 660
ctggcctctg tcggaggag catgatcatt ggaggtatcg accactcgct gtacacaggc 720
agtetetggt atacacceat eeggegggag tggtattatg aggteateat tgtgegggtg 780
gagatcaatg gacaggatct gaaaatggac tgcaaggagt acaactatga caagagcatt 840
gtggacagtg gcaccaccaa cettegtttg cecaagaaag tgtttgaage tgcagtcaaa 900
tccatcaagg cagcctcctc cacggagaag ttccctgatg gtttctggct aggagagcag 960
ctggtgtgct ggcaagcagg caccaccct tggaacattt tcccagtcat ctcactctac 1020
ctaatgggtg aggttaccaa ccagtccttc cgcatcacca tccttccgca gcaatacctg 1080
cggccagtgg aagatgtggc cacgtcccaa gacgactgtt acaagtttgc catctcacag 1140
tcatccacgg gcactgttat gggagctgtt atcatggagg gcttctacgt tgtctttgat 1200
cgggcccgaa aacgaattgg ctttgctgtc agcgcttgcc atgtgcacga tgagttcagg 1260
acggcagcgg tggaaggccc ttttgtcacc ttggacatgg aagactgtgg ctacaacatt 1320
ccacagacag atgagtcatg a
<210> 22
<211> 446
<212> PRT
<213> Homo sapiens
<400> 22
Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Gly Ser Thr Gln
```

His Gly Ile Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly Ala Pro Leu

20 25 30

Gly Leu Arg Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser 55 Gly Gln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly 135 Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp 155 Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala 170 Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp 185 Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu His Leu 200 Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val 215 Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys 260 265 Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu 280 Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala 295 Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln 310 315 Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val 325 Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile

```
Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr
                            360
Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly
                                            380
Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp
                                        395
Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His
Asp Glu Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp
                                425
Met Glu Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser
<210> 23
<211> 1380
<212> DNA
<213> Homo sapiens
atggctagca tgactggtgg acagcaaatg ggtcgcggat cgatgactat ctctgactct 60
ccgcgtgaac aggacggatc cacccagcac ggcatccggc tgcccctgcg cagcggcctg 120
ggggggccc ccctggggct gcgctgccc cgggagaccg acgaagagcc cgaggagccc 180
ggccggaggg gcagctttgt ggagatggtg gacaacctga ggggcaagtc ggggcagggc 240
tactacgtgg agatgaccgt gggcagcccc ccgcagacgc tcaacatcct ggtggataca 300
ggcagcagta actitigcagt gggtgctgcc ccccacccct tectgcateg ctactaccag 360
aggcagetgt ccagcacata ccgggacete cggaagggtg tgtatgtgcc ctacacccag 420
ggcaagtggg aaggggagct gggcaccgac ctggtaagca tcccccatgg ccccaacgtc 480
actgtgcgtg ccaacattgc tgccatcact gaatcagaca agttcttcat caacggctcc 540
aactgggaag gcatcctggg gctggcctat gctgagattg ccaggcctga cgactccctg 600
gageetttet ttgaetetet ggtaaageag acceaegtte ceaacetett etecetgeae 660
ctttgtggtg ctggcttccc cctcaaccag tctgaagtgc tggcctctgt cggagggagc 720'
atgateattg gaggtatega ceaetegetg tacacaggea gtetetggta tacacecate 780
cggcgggagt ggtattatga ggtcatcatt gtgcgggtgg agatcaatgg acaggatctg 840
aaaatggact gcaaggagta caactatgac aagagcattg tggacagtgg caccaccaac 900
cttcgtttgc ccaagaaagt gtttgaagct gcagtcaaat ccatcaaggc agcctcctcc 960
acggagaagt teeetgatgg tttetggeta ggagageage tggtgtgetg geaageagge 1020
accaccectt ggaacatttt cecagteate teactetace taatgggtga ggttaccaae 1080
cagtcettee geateaceat cetteegeag caatacetge ggecagtgga agatgtggee 1140 '
acgtcccaag acgactgtta caagtttgcc atctcacagt catccacggg cactgttatg 1200
ggagctgtta tcatggaggg cttctacgtt gtctttgatc gggcccgaaa acgaattggc 1260
tttgctgtca gcgcttgcca tgtgcacgat gagttcagga cggcagcggt ggaaggccct 1320
tttgtcacct tggacatgga agactgtggc tacaacattc cacagacaga tgagtcatga 1380 ·
<210> 24
<211> 459
<212> PRT
<213> Homo sapiens
Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Gly Ser Met Thr
  1
Ile Ser Asp Ser Pro Arg Glu Gln Asp Gly Ser Thr Gln His Gly Ile
```

Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg

		35					40					45			
Leu	Pro 50	Arg	Glu	Thr	Asp	Glu 55	Glu	Pro	Glu	Glu	Pro 60	Gly	Arg	Arg	Gly
Ser 65	Phe	Val	Glu	Met	Val .70	Asp	Asn	Leu	Arg	Gly 75	Lys	Ser	Gly	Gln	Gl ₃
Tyr	Tyr	Val	Glu	Met 85	Thr	Val	Gly	Ser	Pro 90	Pro	Gln	Thr	Leu	Asn 95	Ile
Leu	Val	Asp	Thr 100	Gly	Ser	Ser	Asn	Phe 105	Ala	Val	Gly	Ala	Ala 110	Pro	His
Pro	Phe	Leu 115	His	Arg	Tyr	Tyr	Gln 120	Arg	Gln	Leu	Ser	Ser 125	Thr	Tyr	Arg
Asp	Leu 130	Arg	Lys	Gly	Val	Tyr 135	Val	Pro	Tyr	Thr	Gln 140	Gly	Lys	Trp	Glı
Gly 145	Glu	Leu	Gly	Thr	Asp 150	Leu	Val	Ser	Ile	Pro 155	His [.]	Gly	Pro	Asn	Va]
Thr	Val	Arg	Ala	Asn 165	Ile	Ala	Ala	Ile	Thr 170	Glu	Ser	Asp	Lys :	Phe 175	Phe
Ile	Asn	Gly	Ser 180	Asn	Trp	Glu	Gly	Ile 185	Leu	Gly	Leu	Ala	Tyr 190	Ala	Glı
Ile	Ala	Arg 195	Pro	Asp	Asp	Ser	Leu 200	Glu	Pro	Phe	Phe	Asp 205	Ser	Leu	Va]
Lys	Gln 210	Thr	His	Val	Pro	Asn 215		Phe	Ser	Leu	His 220	Leu	Сув	Gly	Ala
Gly 225	Phe	Pro	Leu	Asn	Gln 230	Ser	Glu	Val	Leu	Ala 235	Ser	Val	Gly	Gly	Se1 240

Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg 260 265 270

Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn 275 280 285

Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp

Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro 290 295 300

Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser 305 310 315 320

Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys 325 330 335

Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu 340 345 350

Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu 355 360 365

```
Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp
                       375
Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met
                                       395
Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg
Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe
                               425
Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp
                           440
Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser
<210> 25
<211> 1302
<212> DNA
<213> Homo sapiens
<400> 25
atgactcage atggtatteg tetgecactg egtageggte tgggtggtgc tecactgggt 60
gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 180
gtgggcagcc ccccgcagac gctcaacatc ctggtggata caggcagcag taactttgca 240
gtgggtgctg cccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 300
taccgggacc tccggaaggg tgtgtatgtg ccctacaccc agggcaagtg ggaaggggag 360
ctgggcaccg acctggtaag catcccccat ggccccaacg tcactgtgcg tgccaacatt 420
gctgccatca ctgaatcaga caagttcttc atcaacggct ccaactggga aggcatcctg 480
gggctggcct atgctgagat tgccaggcct gacgactccc tggagccttt ctttgactct 540
etggtaaage agacccaegt teecaaeete tteteeetge acetttgtgg tgetggette 600
cccctcaacc agtctgaagt gctggcctct gtcggaggga gcatgatcat tggaggtatc 660
gaccactege tgtacacagg cagtetetgg tatacaceca teeggeggga gtggtattat 720
gaggtcatca ttgtgcgggt ggagatcaat ggacaggatc tgaaaatgga ctgcaaggag 780
tacaactatg acaagagcat tgtggacagt ggcaccacca accttcgttt gcccaagaaa 840
gtgtttgaag etgeagteaa ateeateaag geageeteet eeaeggagaa gtteeetgat 900
ggtttctggc taggagagca gctggtgtgc tggcaagcag gcaccacccc ttggaacatt 960
ttcccagtca tctcactcta cctaatgggt gaggttacca accagtcctt ccgcatcacc 1020
atcetteege ageaatacet geggeeagtg gaagatgtgg ceaegteeea agaegaetgt 1080
tacaagtttg ccatctcaca gtcatccacg ggcactgtta tgggagctgt tatcatggag 1140
ggettetaeg ttgtetttga tegggeeega aaaegaattg getttgetgt eagegettge 1200
catgtgcacg atgagttcag gacggcagcg gtggaaggcc cttttgtcac cttggacatg 1260
gaagactgtg gctacaacat tccacagaca gatgagtcat ga
                                                                 1302
<210> 26
<211> 433
<212> PRT
<213> Homo sapiens
<400> 26
Met Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly
                                    10
Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu
Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg
```

Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile 120 Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu 150 155 Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro 165 170 Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser 185 Leu His Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu 200 Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu 215 Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr 230 235 Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met 250 Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr 265 Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser 280 Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu 295 Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp 345 Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val

```
Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys
                    390
His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val
Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu
            420
Ser
<210> 27
<211> 1278
<212> DNA
<213> Homo sapiens
<400> 27
atggctagca tgactggtgg acagcaaatg ggtcgcggat cgatgactat ctctgactct 60
ccgctggact ctggtatcga aaccgacgga tcctttgtgg agatggtgga caacctgagg 120
ggcaagtegg ggcagggeta ctaegtggag atgaeegtgg geageeeece geagaegete 180
aacatcetgg tggatacagg cagcagtaac tttgcagtgg gtgctgcccc ccaccecttc 240
ctgcatcgct actaccagag gcagctgtcc agcacatacc gggacctccg gaagggtgtg 300
tatgtgccct acacccaggg caagtgggaa ggggagctgg gcaccgacct ggtaagcatc 360
ccccatggcc ccaacgtcac tgtgcgtgcc aacattgctg ccatcactga atcagacaag 420
ttetteatea aeggeteeaa etgggaagge ateetgggge tggeetatge tgagattgee 480
aggeetgaeg acteeetgga geetttettt gaetetetgg taaageagae eeaegtteee 540
aacctettet eeetgeacet ttgtggtget ggetteeece teaaccagte tgaagtgetg 600
gcctctgtcg gagggagcat gatcattgga ggtatcgacc actcgctgta cacaggcagt 660
ctctggtata cacccatccg gcgggagtgg tattatgagg tcatcattgt gcgggtggag 720
atcaatggac aggatctgaa aatggactgc aaggagtaca actatgacaa gagcattgtg 780
gacagtggca ccaccaacct tcgtttgccc aagaaagtgt ttgaagctgc agtcaaatcc 840
atcaaggcag cetectecae ggagaagtte eetgatggtt tetggetagg agageagetg 900
gtgtgctggc aagcaggcac caccccttgg aacattttcc cagtcatctc actctaccta 960
atgggtgagg ttaccaacca gtccttccgc atcaccatcc ttccgcagca atacctgcgg 1020
ccagtggaag atgtggccac gtcccaagac gactgttaca agtttgccat ctcacagtca 1080
tccacgggca ctgttatggg agctgttatc atggagggct tctacgttgt ctttgatcgg 1140
gcccgaaaac gaattggctt tgctgtcagc gcttgccatg tgcacgatga gttcaggacg 1200
gcagcggtgg aaggcccttt tgtcaccttg gacatggaag actgtggcta caacattcca 1260
cagacagatg agtcatga
                                                                   1278
<210> 28
<211> 425
<212> PRT
<213> Homo sapiens
Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Gly Ser Met Thr
Ile Ser Asp Ser Pro Leu Asp Ser Gly Ile Glu Thr Asp Gly Ser Phe
             20
                                 25
Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr
Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val
Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe
Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu
                                     90
```

Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu
100 105 110

Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val 115 120 125

Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn 130 135 140

Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala 145 150 155 160

Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln
165 170 175

Thr His Val Pro Asn Leu Phe Ser Leu His Leu Cys Gly Ala Gly Phe 180 185 190

Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile 195 200 205

Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr 210 215 220

Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu 225 230 235 240

Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp 245 250 255

Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys 260 265 270

Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu 275 280 285

Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln 290 295 300

Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu 305 310 315 320

Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln 325 335

Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys 340 345 350

Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala 355 360 365

Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg 370 380

Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr 385 390 395 400

Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly 405 410 415

Tyr Asn Ile Pro Gln Thr Asp Glu Ser 420 425

```
<210> 29
<211> 1362
<212> DNA
<213> Homo sapiens
<400> 29
atggcccaag ccctgccctg gctcctgctg tggatgggcg cgggagtgct gcctgcccac 60
ggcacccage aeggcateeg getgeeeetg egcageggee tggggggege ceceetgggg 120
gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240
gtgggcagcc ccccgcagac gctcaacatc ctggtggata caggcagcag taactttgca 300
gtgggtgctg cccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 360
taccgggacc tccggaaggg tgtgtatgtg ccctacaccc agggcaagtg ggaaggggag 420
ctgggcaccg acctggtaag catcccccat ggccccaacg tcactgtgcg tgccaacatt 480
gctgccatca ctgaatcaga caagttcttc atcaacggct ccaactggga aggcatcctg 540
gggctggcct atgctgagat tgccaggcct gacgactccc tggagccttt ctttgactct 600
ctggtaaagc agacccacgt tcccaacctc ttctccctgc acctttgtgg tgctggcttc 660
cccctcaacc agtctgaagt gctggcctct gtcggaggga gcatgatcat tggaggtatc 720
gaccactcgc tgtacacagg cagtctctgg tatacaccca tccggcggga gtggtattat 780
gaggtcatca ttgtgcgggt ggagatcaat ggacaggatc tgaaaatgga ctgcaaggag 840
tacaactatg acaagagcat tgtggacagt ggcaccacca accttcgttt gcccaagaaa 900
gtgtttgaag ctgcagtcaa atccatcaag gcagcctcct ccacggagaa gttccctgat 960
ggtttctggc taggagagca gctggtgtgc tggcaagcag gcaccacccc ttggaacatt 1020
ttcccagtca tctcactcta cctaatgggt gaggttacca accagtcctt ccgcatcacc 1080
atcetteege ageaatacet geggeeagtg gaagatgtgg ceaegteeca agaegaetgt 1140
tacaagtttg ccatctcaca gtcatccacg ggcactgtta tgggagctgt tatcatggag 1200
ggcttctacg ttgtctttga tcgggcccga aaacgaattg gctttgctgt cagcgcttgc 1260
catgtgcacg atgagttcag gacggcagcg gtggaaggcc cttttgtcac cttggacatg 1320
gaagactgtg gctacaacat tccacagaca gatgagtcat ga
<210> 30
<211> 453
<212> PRT
<213> Homo sapiens
<400> 30
Met Ala Gln Ala Leu Pro Trp Leu Leu Trp Met Gly Ala Gly Val
Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
Glu Glu Pro Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
                               105
Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
```

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile 150 155 Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp 165 170 Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln 210 215 220 Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile 230 Asp. His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg 250 Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val 280 Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala 295 Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr . 330 Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val 345 Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala 375 Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala 410 Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu 420 425 Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser

450

<210> 31

```
<211> 1380
<212> DNA
<213> Homo sapiens
<400> 31
atggcccaag ccctgccctg gctcctgctg tggatgggcg cgggagtgct gcctgcccac 60
ggcacccage acggcatecg getgeceetg egeageggee tggggggege ecceetgggg 120
gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240
gtgggcagcc ccccgcagac gctcaacatc ctggtggata caggcagcag taactttgca 300
gtgggtgctg cccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 360
taccgggacc tccggaaggg tgtgtatgtg ccctacaccc agggcaagtg ggaaggggag 420
ctgggcaccg acctggtaag catccccat ggccccaacg tcactgtgcg tgccaacatt 480
gctgccatca ctgaatcaga caagttette atcaacgget ccaactggga aggcatcetg 540
gggctggcct atgctgagat tgccaggcct gacgactccc tggagccttt ctttgactct 600
ctggtaaagc agacccacgt tcccaacctc ttctccctgc acctttgtgg tgctggcttc 660
cccctcaacc agtctgaagt gctggcctct gtcggaggga gcatgatcat tggaggtatc 720
gaccactege tgtacacagg cagtetetgg tatacaceca teeggeggga gtggtattat 780
gaggtcatca ttgtgcgggt ggagatcaat ggacaggatc tgaaaatgga ctgcaaggag 840
tacaactatg acaagagcat tgtggacagt ggcaccacca acettegttt gcccaagaaa 900
gtgtttgaag ctgcagtcaa atccatcaag gcagcctcct ccacggagaa gttccctgat 960
ggtttctggc taggagagca gctggtgtgc tggcaagcag gcaccacccc ttggaacatt 1020
ttcccagtca tctcactcta cctaatgggt gaggttacca accagtcctt ccgcatcacc 1080
atcetteege ageaatacet. geggeeagtg gaagatgtgg ceaegteeca agaegaetgt 1140
tacaagtttg ccatctcaca gtcatccacg ggcactgtta tgggagctgt tatcatggag 1200
ggcttctacg ttgtctttga tcgggcccga aaacgaattg gctttgctgt cagcgcttgc 1260
catgtgcacg atgagttcag gacggcagcg gtggaaggcc cttttgtcac cttggacatg 1320
gaagactgtg gctacaacat tccacagaca gatgagtcac agcagcagca gcagcagtga 1380
<210> 32
<211> 459
<212> PRT
<213> Homo sapiens
<400> 32
Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
                        55
                                            60
Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
           100
                               105
Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
```

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile 150 155 Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp 170 Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp 185 Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln 215 Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile 230 235 Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val 280 Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala 295 Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr 325 Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val 345 Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala 375 Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala 410 Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu 420 425 Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser His His His His His 455

```
<210> 33
 <211> 25
 <212> PRT
 <213> Homo sapiens
 <400> 33
 Ser Glu Gln Gln Arg Arg Pro Arg Asp Pro Glu Val Val Asn Asp Glu
Ser Ser Leu Val Arg His Arg Trp Lys
              20
 <210> 34
 <211> 19
 <212> PRT
<213> Homo sapiens
 <400> 34
 Ser Glu Gln Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp Ile Ser
Leu Leu Lys
<210> 35
<211> 29
<212> DNA
 <213> Homo sapiens
<400> 35
gtggatccac ccagcacggc atccggctg
                                                                     29
<210> 36
<211> 36
 <212> DNA
<213> Homo sapiens
<400> 36
gaaagctttc atgactcatc tgtctgtgga atgttg
                                                                     36
<210> 37
 <211> 39
 <212> DNA
<213> Homo sapiens
<400> 37
gatcgatgac tatctctgac tctccgcgtg aacaggacg
                                                                     39
<210> 38
<211> 39
 <212> DNA
<213> Homo sapiens
<400> 38
                                                                     39
gatccgtcct gttcacgcgg agagtcagag atagtcatc
<210> 39
<211> 77
<212> DNA
 <213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Hu-Asp2
eggeateegg etgeecetge gtageggtet gggtggtget ceaetgggte tgegtetgee 60
ccgggagacc gacgaag
<210> 40
<211> 77
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Hu-Asp2
cttcgtcggt ctcccggggc agacgcagac ccagtggagc accacccaga ccgctacgca 60
ggggcagccg gatgccg
<210> 41
<211> 51
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Caspase 8
      Cleavage Site
gatcgatgac tatctctgac tctccgctgg actctggtat cgaaaccgac g
                                                                    51
<210> 42
<211> 51
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Caspase 8
      Cleavage Site
<400> 42
gatccgtcgg tttcgatacc agagtccagc ggagagtcag agatagtcat c
                                                                    51
<210> 43
<211> 32
<212> DNA
<213> Homo sapiens
aaggatcctt tgtggagatg gtggacaacc tg
                                                                    32
<210> 44
<211> 36
<212> DNA
<213> Homo sapiens
gaaagctttc atgactcatc tgtctgtgga atgttg
                                                                    36
<210> 45
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: 6-His tag
<400> 45
                                                                    24
gatcgcatca tcaccatcac catg
<210> 46
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: 6-His tag
<400> 46
gatccatggt gatggtgatg atgc
                                                                    24
<210> 47
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
<400> 47
                                                                    22
gactgaccac tcgaccaggt tc
<210> 48
<211> 51
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
                                                                    51
cgaattaaat tccagcacac tggctacttc ttgttctgca tctcaaagaa c
<210> 49
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
<400> 49
cgaattaaat tccagcacac tggcta
                                                                    26
<210> 50
<211> 1287
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Hu-Asp2(b)
<400> 50
atggcccaag ccctgccctg gctcctgctg tggatggcg cgggagtgct gcctgcccac 60
ggcacccage acggcatecg getgeceetg cgcageggee tgggggggege ccccetgggg 120
ctgeggetge ccegggagae cgacgaagag ccegaggage ccggceggag gggcagettt 180
```

```
gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240
gtgggcagcc ccccgcagac gctcaacatc ctggtggata caggcagcag taactttgca 300
gtgggtgetg ecceeacce ettectgeat egetactace agaggeaget gtecageaca 360
taccgggacc tccggaaggg tgtgtatgtg ccctacaccc agggcaagtg ggaaggggag 420
ctgggcaccg acctggtaag catcccccat ggccccaacg tcactgtgcg tgccaacatt 480
gctgccatca ctgaatcaga caagttcttc atcaacggct ccaactggga aggcatcctg 540
gggctggcct atgctgagat tgccaggctt tgtggtgctg gcttccccct caaccagtct 600
gaagtgetgg cetetgtegg agggageatg atcattggag gtategacea etegetgtae 660
acaggcagtc tctggtatac acccatccgg cgggagtggt attatgaggt catcattgtg 720
cgggtggaga tcaatggaca ggatctgaaa atggactgca aggagtacaa ctatgacaag 780
agcattgtgg acagtggcac caccaacctt cgtttgccca agaaagtgtt tgaagctgca 840
gtcaaatcca tcaaggcagc ctcctccacg gagaagttcc ctgatggttt ctggctagga 900
gagcagetgg tgtgetggea ageaggeace acceettgga acatttteee agteatetea 960
ctctacctaa tgggtgaggt taccaaccag tccttccgca tcaccatcct tccgcagcaa 1020
tacctgcggc cagtggaaga tgtggccacg tcccaagacg actgttacaa gtttgccatc 1080
tcacagtcat ccacgggcac tgttatggga gctgttatca tggagggctt ctacgttgtc 1140
tttgatcggg cccgaaaacg aattggcttt gctgtcagcg cttgccatgt gcacgatgag 1200
ttcaggacgg cagcggtgga aggccctttt gtcaccttgg acatggaaga ctgtggctac 1260
aacattccac agacagatga gtcatga
<210> 51
<211> 428
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Hu-Asp2(b)
      delta TM
<400> 51
Met Ala Gln Ala Leu Pro Trp Leu Leu Trp Met Gly Ala Gly Val
Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
                 85
Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
                                105
Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
        115
Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
                        135
                                            140
Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
                                    170
```

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Leu Cys Gly 185 Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu 215 Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val 230 Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr 245 250 Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser 280 Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val 295 Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser 315 Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile 330 Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln 345 Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val 360 Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala 375 Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu 395 Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser 420 425 <210> 52 <211> 1305

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Hu-Asp2(b) delta TM

<400> 52

atggeccaag ecetgecetg geteetgetg tggatgggeg egggagtget geetgeecae 60 ggeacecage aeggeateeg getgeecetg egeageggee tggggggege eeeeetgggg 120 etgeggetge eeegggagae egacgaagag eeegaggage eeggeeggag gggeagettt 180 gtggagatgg tggacaacet gaggggcaag teggggcagg getactaegt ggagatgace 240

```
gtgggcagcc ccccgcagac gctcaacatc ctggtggata caggcagcag taactttgca 300
gtgggtgctg cccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 360
taccgggacc tccggaaggg tgtgtatgtg ccctacaccc agggcaagtg ggaaggggag 420
ctgggcaccg acctggtaag catcccccat ggccccaacg tcactgtgcg tgccaacatt 480
getgecatea etgaateaga caagttette ateaaegget eeaaetggga aggeateetg 540
gggctggcct atgctgagat tgccaggctt tgtggtgctg gcttccccct caaccagtct 600
gaagtgetgg cetetgtegg agggageatg ateattggag gtategacea etegetgtae 660
acaggcagtc tctggtatac acccatccgg cgggagtggt attatgaggt catcattgtg 720
cgggtggaga tcaatggaca ggatctgaaa atggactgca aggagtacaa ctatgacaag 780
agcattgtgg acagtggcac caccaacctt cgtttgccca agaaagtgtt tgaagctgca 840
gtcaaatcca tcaaggcagc ctcctccacg gagaagttcc ctgatggttt ctggctagga 900
gagcagctgg tgtgctggca agcaggcacc accccttgga acattttccc agtcatctca 960
ctctacctaa tgggtgaggt taccaaccag tccttccgca tcaccatcct tccgcagcaa 1020
tacctgcggc cagtggaaga tgtggccacg tcccaagacg actgttacaa gtttgccatc 1080
tcacagtcat ccacgggcac tgttatggga gctgttatca tggagggctt ctacgttgtc 1140
tttgatcggg cccgaaaacg aattggcttt gctgtcagcg cttgccatgt gcacgatgag 1200
ttcaggacgg cagcggtgga aggccctttt gtcaccttgg acatggaaga ctgtggctac 1260
aacattccac agacagatga gtcacagcag cagcagcagc agtga
<210> 53
<211> 434
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Hu-Asp2(b)
     delta TM
<400> 53
Met Ala Gln Ala Leu Pro Trp Leu Leu Trp Met Gly Ala Gly Val
Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
       115
                            120
Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
                        135
Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
```

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Leu Cys Gly
180 185 190

Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly 195 200 205

Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu 210 215 220

Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val 225 230 235 240

Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr 245 250 255

Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu 260 265 270

Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser 275 280 285

Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val 290 295 300

Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser 305 310 315 320

Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile 325 330 335

Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln 340 345 350

Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val 355 360 365

Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala 370 380

Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu 385 390 395 400

Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu 405 410 415

Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser His His His 420 425 430

His His

<210> 54

<211> 2310

<212> DNA

<213> Homo sapiens

<400> 54

atgctgcccg gtttggcact gctcctgctg gccgcctgga cggctcgggc gctggaggta 60 cccactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120 ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180

```
acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300
ggccgcaage agtgcaagac ccatccccac tttgtgattc cctaccgctg cttagttggt 360
gagtttgtaa gtgatgccct tctcgttcct gacaagtgca aattcttaca ccaggagagg 420
atggatgttt gegaaactca tetteaetgg cacacegteg ceaaagagae atgeagtgag 480
aagagtacca acttgcatga ctacggcatg ttgctgccct gcggaattga caagttccga 540
ggggtagagt ttgtgtgttg cccactggct gaagaaagtg acaatgtgga ttctgctgat 600
gcggaggagg atgactcgga tgtctggtgg ggcggagcag acacagacta tgcagatggg 660
agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720
gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780
ccctacgaag aagccacaag gagaaccacc agcattgcca ccaccaccac caccaccaca 840
gagtctgtgg aagaggtggt tcgagaggtg tgctctgaac aagccgagac ggggccgtgc 900
cgagcaatga tetecegetg gtaetttgat gtgaetgaag ggaagtgtge eccattett 960
tacggcggat gtggcggcaa ccggaacaac tttgacacag aagagtactg catggccgtg 1020
tgtggcagcg ccatgtccca aagtttactc aagactaccc aggaacctct tggccgagat 1080
cctgttaaac ttcctacaac agcagccagt acccctgatg ccgttgacaa gtatctcgag 1140
acacctqqqq atqaqaatqa acatqcccat ttccaqaaaq ccaaaqagag gcttgagqcc 1200
aagcaccgag agagaatgtc ccaggtcatg agagaatggg aagaggcaga acgtcaagca 1260
aagaacttgc ctaaagctga taagaaggca gttatccagc atttccagga gaaagtggaa 1320
tetttggaac aggaagcage caacgagaga cagcagetgg tggagacaca catggecaga 1380
gtggaagcca tgctcaatga ccgccgccgc ctggccctgg agaactacat caccgctctg 1440
caggetgtte etecteggee tegteacgtg tteaatatge taaagaagta tgteegegea 1500
gaacagaagg acagacagca caccctaaag catttcgagc atgtgcgcat ggtggatccc 1560
aagaaagccg ctcagatccg gtcccaggtt atgacacacc tccgtgtgat ttatgagcgc 1620
atgaatcagt ctctctccct gctctacaac gtgcctgcag tggccgagga gattcaggat 1680
gaagttgatg agctgcttca gaaagagcaa aactattcag atgacgtctt ggccaacatg 1740
attagtgaac caaggatcag ttacggaaac gatgctctca tgccatcttt gaccgaaacg 1800
aaaaccaccg tggagctcct tcccgtgaat ggagagttca gcctggacga tctccagccg 1860
tggcattett ttggggetga etetgtgeea gecaacacag aaaacgaagt tgageetgtt 1920
gatgcccgcc ctgctgccga ccgaggactg accactcgac caggttctgg gttgacaaat 1980
atcaagacgg aggagatete tgaagtgaag atggatgeag aatteegaca tgaeteagga 2040
tatgaagttc atcatcaaaa attggtgttc tttgcagaag atgtgggttc aaacaaaggt 2100
gcaatcattg gactcatggt gggcggtgtt gtcatagcga cagtgatcgt catcaccttg 2160
gtgatgctga agaagaaaca gtacacatcc attcatcatg gtgtggtgga ggttgacgcc 2220
gctgtcaccc cagaggagcg ccacctgtcc aagatgcagc agaacggcta cgaaaatcca 2280
acctacaagt tctttgagca gatgcagaac
<210> 55
<211> 770
<212> PRT
<213> Homo sapiens
<400> 55
Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
                                     10 .
Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
                                     90
Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
```

105

100

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu 120 Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys 135 Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu 185 Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys 215 Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu 230 235 Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg 280 285 Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile 295 . 300 Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe 310 315 Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr 330 Cys Met Ala Val Cys Gly Ser Ala Met Ser Gln Ser Leu Leu Lys Thr 345 Thr Gln Glu Pro Leu Ala Arg Asp Pro Val Lys Leu Pro Thr Thr Ala 360 Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp 375 Glu Asn Glu His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala 410 405 Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn 440

Glu Arg Gln Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met 455 Leu Asn Asp Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu 470 475 Gln Ala Val Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe 505 Glu His Val Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser 520 Gln Val Met Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser 535 540 Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp 550 555 Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala 585 Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr Val Glu Leu Leu Pro 595 600 605 Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe 615 Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val 630 Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser 645 650 Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp 665 Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly 695 Leu Met Val Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val 730 Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met 745 Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met 760

Gln Asn 770

```
<210> 56
<211> 2253
<212> DNA
<213> Homo sapiens
<400> 56
atgctgcccg gtttggcact gctcctgctg gccgcctgga cggctcgggc gctggaggta 60
cccactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180
acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240
caqatcacca atgtqqtaqa aqccaaccaa ccaqtgacca tccaqaactg gtgcaagcgg 300
ggccgcaagc agtgcaagac ccatccccac tttgtgattc cctaccgctg cttagttggt 360
gagtitgtaa gigatgeeet tetegtteet gacaagtgea aattettaca ecaggagagg 420
atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagtgag 480
aagagtacca acttgcatga ctacggcatg ttgctgccct gcggaattga caagttccga 540-
ggggtagagt ttgtgtgttg cccactggct gaagaaagtg acaatgtgga ttctgctgat 600
gcggaggagg atgactcgga tgtctggtgg ggcggagcag acacagacta tgcagatggg 660
agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720
gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780.
ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca 840
gagtetgtgg aagaggtggt tegagaggtg tgetetgaae aageegagae ggggeegtge 900
cgagcaatga tctcccgctg gtactttgat gtgactgaag ggaagtgtgc cccattcttt 960
tacggcggat gtggcggcaa ccggaacaac tttgacacag aagagtactg catggccgtg 1020
tgtggcagcg ccattcctac aacagcagcc agtacccctg atgccgttga caagtatctc 1080
gagacacctg gggatgagaa tgaacatgcc catttccaga aagccaaaga gaggcttgag 1140
gccaagcacc gagagagaat gtcccaggtc atgagagaat gggaagaggc agaacgtcaa 1200
gcaaagaact tgcctaaagc tgataagaag gcagttatcc agcatttcca ggagaaagtg 1260
gaatetttgg aacaggaage agecaaegag agacagcage tggtggagae acacatggee 1320
agagtggaag ccatgctcaa tgaccgccgc cgcctggccc tggagaacta catcaccgct 1380
ctgcaggctg ttcctcctcg gcctcgtcac gtgttcaata tgctaaagaa gtatgtccgc 1440
gcagaacaga aggacagaca gcacacccta aagcatttcg agcatgtgcg catggtggat 1500
cccaagaaag ccgctcagat ccggtcccag gttatgacac acctccgtgt gatttatgag 1560
cgcatgaate agtetetete cetgetetae aacgtgeetg cagtggeega ggagatteag 1620
gatgaagttg atgagctgct tcagaaagag caaaactatt cagatgacgt cttggccaac 1680
atgattagtg aaccaaggat cagttacgga aacgatgctc tcatgccatc tttgaccgaa 1740
acgaaaacca ccgtggagct ccttcccgtg aatggagagt tcagcctgga cgatctccag 1800-
ccgtggcatt cttttggggc tgactctgtg ccagccaaca cagaaaacga agttgagcct 1860
gttgatgccc gccctgctgc cgaccgagga ctgaccactc gaccaggttc tgggttgaca 1920
aatatcaaga cggaggagat ctctgaagtg aagatggatg cagaattccg acatgactca 1980
ggatatgaag ttcatcatca aaaattggtg ttctttgcag aagatgtggg ttcaaacaaa 2040
ggtgcaatca ttggactcat ggtgggcggt gttgtcatag cgacagtgat cgtcatcacc 2100
ttggtgatgc tgaagaagaa acagtacaca tccattcatc atggtgtggt ggaggttgac 2160
geogetytea eeccayayya gegeeaeety tecaayatye ageayaacyy etaeyaaaat 2220
ccaacctaca agttctttga gcagatgcag aac
                                                                  2253
<210> 57
<211> 751
<212> PRT
<213> Homo sapiens
<400> 57
Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
```

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu 120 125 Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys 135 Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu 155 Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile 170 Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu 185 Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val 195 200 205 Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys 215 Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu 230 235 Glu Ala Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu ~ 250 Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile 265 Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile 295 Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr Cys Met Ala Val Cys Gly Ser Ala Ile Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala Lys His Arg

375

370

Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala Glu Arg Gln 390 395 Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile Gln His Phe 405 Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn Glu Arg Gln 425 Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met Leu Asn Asp Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu Gln Ala Val 455 Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser Gln Val Met 505 Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser Leu Ser Leu 520 . Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala Leu Met Pro 570 Ser Leu Thr Glu Thr Lys Thr Thr Val Glu Leu Leu Pro Val Asn Gly 585 Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe Gly Ala Asp 600 Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val Asp Ala Arg 615 Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu Thr 630 635 Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly Leu Met Val 680 Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu Val Met Leu 695 Lys Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val Glu Val Asp 715

```
Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met Gln Gln Asn
Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met Gln Asn
                                745
<210> 58
<211> 2316
<212> DNA
<213> Homo sapiens
<400> 58
atgctgcccg gtttggcact gctcctgctg gccgcctgga cggctcgggc gctggaggta 60
cccactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180
acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300
ggccgcaagc agtgcaagac ccatccccac tttgtgattc cctaccgctg cttagttggt 360
gagtttgtaa gtgatgccct tctcgttcct gacaagtgca aattcttaca ccaggagagg 420
atggatgttt gegaaactca tetteaetgg cacacegteg ecaaagagae atgeagtgag 480
aagagtacca acttgcatga ctacggcatg ttgctgccct gcggaattga caagttccga 540
ggggtagagt ttgtgtgttg cccactggct gaagaaagtg acaatgtgga ttctgctgat 600
geggaggagg atgaetegga tgtetggtgg ggeggageag acaeagaeta tgeagatggg 660
agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720
gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780
ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca 840
gagtetgtgg aagaggtggt tegagaggtg tgetetgaae aageegagae ggggeegtge 900
cgagcaatga tetecegetg gtactttgat gtgactgaag ggaagtgtge eccattettt 960
tacggcggat gtggcggcaa ccggaacaac tttgacacag aagagtactg catggccgtg 1020
tgtggcagcg ccatgtccca aagtttactc aagactaccc aggaacctct tggccgagat 1080
cctgttaaac ttcctacaac agcagccagt acccctgatg ccgttgacaa gtatctcgag 1140
acacctgggg atgagaatga acatgcccat ttccagaaag ccaaagagag gcttgaggcc 1200
aagcaccgag agagaatgtc ccaggtcatg agagaatggg aagaggcaga acgtcaagca 1260
aagaacttgc ctaaagctga taagaaggca gttatccagc atttccagga gaaagtggaa 1320
tctttggaac aggaagcagc caacgagaga cagcagctgg tggagacaca catggccaga 1380
gtggaagcca tgctcaatga ccgccgccgc ctggccctgg agaactacat caccgctctg 1440
caggetgtte etecteggee tegteaegtg tteaatatge taaagaagta tgteegegea 1500 -
gaacagaagg acagacagca caccctaaag catttcgagc atgtgcgcat ggtggatccc 1560
aagaaagccg ctcagatccg gtcccaggtt atgacacacc tccgtgtgat ttatgagcgc 1620
atgaatcagt ctctctccct gctctacaac gtgcctgcag tggccgagga gattcaggat 1680
gaagttgatg agetgettea gaaagageaa aactatteag atgaegtett ggeeaacatg 1740-
attagtgaac caaggatcag ttacggaaac gatgctctca tgccatcttt gaccgaaacg 1800
aaaaccaccg tggagctcct tcccgtgaat ggagagttca gcctggacga tctccagccg 1860
tggcattett ttggggetga etetgtgeea geeaacaeag aaaaegaagt tgageetgtt 1920
gatgcccgcc ctgctgccga ccgaggactg accactcgac caggttctgg gttgacaaat 1980
atcaagacgg aggagatete tgaagtgaag atggatgeag aatteegaca tgaeteagga 2040
tatgaagttc atcatcaaaa attggtgttc tttgcagaag atgtgggttc aaacaaaggt 2100
gcaatcattg gactcatggt gggcggtgtt gtcatagcga cagtgatcgt catcaccttg 2160
gtgatgctga agaagaaaca gtacacatcc attcatcatg gtgtggtgga ggttgacgcc 2220
gctgtcaccc cagaggagcg ccacctgtcc aagatgcagc agaacggcta cgaaaatcca 2280
acctacaagt tctttgagca gatgcagaac aagaag
<210> 59
<211> 772
<212> PRT
<213> Homo sapiens
<400> 59
Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
```

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro

20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys 135 Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu 180 185 Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val 200 Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu 235 Glu Ala Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile 265 Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg 280 Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile 290 295 Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr 330 Cys Met Ala Val Cys Gly Ser Ala Met Ser Gln Ser Leu Leu Lys Thr

Thr Gln Glu Pro Leu Ala Arg Asp Pro Val Lys Leu Pro Thr Thr Ala 360 Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp 375 Glu Asn Glu His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met Leu Asn Asp Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu 475 Gln Ala Val Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys 490 Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe 500 505 Glu His Val Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser 535 Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp 550 555 Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr Val Glu Leu Leu Pro 600 Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe 615 Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser 645 Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp 665 Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu 675 680

```
- 57 -
Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly
Leu Met Val Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu
                    710
                                        715
Val Met Leu Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val
Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met
Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met
Gln Asn Lys Lys
    770
<210> 60
<211> 2259
<212> DNA
<213> Homo sapiens
<400> 60
atgetgeeeg gtttggeaet geteetgetg geegeetgga eggeteggge getggaggta 60
cccactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180
acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240
cagateacea atgtggtaga agecaaceaa ecagtgacea tecagaactg gtgcaagegg 300
ggccgcaagc agtgcaagac ccatccccac tttgtgattc cctaccgctg cttagttggt 360
gagtttgtaa gtgatgccct tctcgttcct gacaagtgca aattcttaca ccaggagagg 420
atggatgttt gcgaaactca tetteactgg cacaccgtcg ccaaagagac atgcagtgag 480
aagagtacca acttgcatga ctacggcatg ttgctgccct gcggaattga caagttccga 540
ggggtagagt ttgtgtgttg cccactggct gaagaaagtg acaatgtgga ttctgctgat 600
geggaggagg atgaetegga tgtetggtgg ggeggageag acaeagaeta tgeagatggg 660
agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720
gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780
ccctacgaag aagccacaag gagaaccacc agcattgcca ccaccaccac caccaccaca 840
gagtetgtgg aagaggtggt tegagaggtg tgetetgaae aageegagae ggggeegtge 900
cgagcaatga tetecegetg gtaetttgat gtgaetgaag ggaagtgtge eccattettt 960
tacggcggat gtggcggcaa ccggaacaac tttgacacag aagagtactg catggccgtg 1020
tgtggcagcg ccattcctac aacagcagcc agtacccctg atgccgttga caagtatctc 1080
gagacacctg gggatgagaa tgaacatgcc catttccaga aagccaaaga gaggcttgag 1140
gccaagcacc gagagagaat gtcccaggtc atgagagaat gggaagaggc agaacgtcaa 1200
gcaaagaact tgcctaaagc tgataagaag gcagttatcc agcatttcca ggagaaagtg 1260
gaatctttgg aacaggaagc agccaacgag agacagcagc tggtggagac acacatggcc 1320
agagtggaag ccatgctcaa tgaccgccgc cgcctggccc tggagaacta catcaccgct 1380
ctgcaggctg ttcctcctcg gcctcgtcac gtgttcaata tgctaaagaa gtatgtccgc 1440
gcagaacaga aggacagaca gcacacccta aagcatttcg agcatgtgcg catggtggat 1500
```

cccaagaaag ccgctcagat ccggtcccag gttatgacac acctccgtgt gatttatgag 1560 cgcatgaatc agtctctcc cctgctctac aacgtgcctg cagtggccga ggagattcag 1620 gatgaagttg atgagctgct tcagaaagag caaaactatt cagatgacgt cttggccaac 1680 atgattagtg aaccaaggat cagttacgga aacgatgctc tcatgccatc tttgaccgaa 1740 acgaaaacca ccgtggagct ccttcccgtg aatggagagt tcagcctgga cgatctccag 1800 ccgtggcatt cttttggggc tgactctgtg ccagccaaca cagaaaacga agttgagct 1860 gttgatgcc gccctgctgc cgaccgagga ctgaccactc gaccaggttc tgggttgaca 1920 aatatcaaga cggaggagat ctctgaagtg aagatggatg cagaattccg acatgactca 1980 ggatatgaag ttcatcatca aaaattggtg ttctttgcag aagatgtggg ttcaaacaaa 2040 ggtgcaatca ttggactcat ggtgggcggt gttgtcatag cgacagtgat cgtcatcacc 2100 ttggtgatgc tgaagaagaa acagtacaca tccattcatc atggtgtggt ggaggttgac 2160

gccgctgtca ccccagagga gcgccacctg tccaagatgc agcagaacgg ctacgaaaat 2220 ccaacctaca agttctttga gcagatgcag aacaagaag 2259

<210> 61

<211> 753

<212> PRT

<213> Homo sapiens

<400> 61

Met Leu Pro Gly Leu Ala Leu Leu Leu Leu Ala Ala Trp Thr Ala Arg

1 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro 20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln 35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp 50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu 65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn 85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu 115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys 130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu 145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile 165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu 180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val 195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys 210 215 220

Val Val Glu Val Ala Glu Glu Glu Glu Val Ala Glu Val Glu Glu 225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Glu Asp Gly Asp Glu Val Glu Glu 245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg

Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile 295 Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr Cys Met Ala Val Cys Gly Ser Ala Ile Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp Glu Asn Glu 360 His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala Glu Arg Gln 390 395 Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile Gln His Phe 405 Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn Glu Arg Gln 425 Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu Gln Ala Val 455 Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys Tyr Val Arg 470 475 Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe Glu His Val 485 495 Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser Gln Val Met 505 Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp Glu Val Asp 530 535 Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr Val Glu Leu Leu Pro Val Asn Gly 585 Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val Asp Ala Arg 610 615 620

Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu Thr 625 630 635 Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp Ala Glu Phe 650 Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu Val Phe Phe 665 Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu Val Met Leu 695 700 Lys Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met Gln Gln Asn 725 730 Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met Gln Asn Lys 745 Lys <210> 62 <211> 8 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic Peptide <400> 62 Leu Glu Val Leu Phe Gln Gly Pro 5 <210> 63 <211> 10 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic Peptide Ser Glu Val Asn Leu Asp Ala Glu Phe Arg <210> 64 <211> 10 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic Peptide

```
<400> 64
Ser Glu Val Lys Met Asp Ala Glu Phe Arg
<210> 65
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic Peptide
Arg Arg Gly Gly Val Val Ile Ala Thr Val Ile Val Gly Glu Arg
<210> 66
<211> 4
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic Peptide
<400> 66
Asn Leu Asp Ala
  1
<210> 67
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic Peptide
<400> 67
Glu Val Lys Met Asp Ala Glu Phe
<210> 68
<211> 5
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic Peptide
<400> 68
Gly Arg Arg Gly Ser
                  5
<210> 69
<211> 6
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Synthetic Peptide
<400> 69
Thr Gln His Gly Ile Arg
  1
<210> 70
<211'> 6
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic Peptide
<400> 70
Glu Thr Asp Glu Glu Pro
<210> 71
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic Peptide
Met Cys Ala Glu Val Lys Met Asp Ala Glu Phe Lys Asp Asn Pro
<210> 72
<211> 5
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic Peptide
<400> 72
Asp Ala Glu Phe Arg
<210> 73
<211> 5
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic Peptide
<400> 73
Ser Glu Val Asn Leu
<210> 74
<211> 4
```

```
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic Peptide
<220>
<221> misc_feature
<222> (1)
<223> Xaa = Lys or Asn
<220>
<221> misc_feature
<222> (2)
<223> Xaa = Met or Leu
<220>
<221> misc_feature
<222> (3)
<223> Xaa = Asp
<220>
<221> misc_feature
<222> (4)
<223> Xaa = Asp
<400> 74
Xaa Xaa Xaa Xaa
```

1