SOLUTIONS DE L'INTERROGATION

 $7\ {\rm novembre}\ 2017$

[durée : 2 heures]

Exercice 1 (Espaces euclidiens)

a) (Question de cours) Démontrer le résultat suivant vu en cours :

Soient \mathcal{A} et \mathcal{B} deux sous-espaces affines d'un espace affine euclidien \mathcal{E} dont la distance est notée d.

Montrer que si $M \in \mathcal{A}$ et $N \in \mathcal{B}$ vérifient $\overrightarrow{MN} \perp (\overrightarrow{\mathcal{A}} \oplus \overrightarrow{\mathcal{B}})$, alors $d(\mathcal{A}, \mathcal{B}) = d(M, N)$.

b) Parmi les trois sous-ensembles de \mathbb{R}^3 suivants

$$\mathcal{A} = \{ (x, y, z) \in \mathbb{R}^3 \mid (x - y)(y - z) = 0 \},$$

$$\mathcal{B} = \{ (x, y, z) \in \mathbb{R}^3 \mid (x - y)^2 = 0 \},$$

$$\mathcal{C} = \{ (1 + t, 2 + t, 3) \in \mathbb{R}^3 \mid t \in \mathbb{R} \},$$

déterminer (en justifiant) lesquels sont des sous-espaces affines.

- c) Trouver un repère cartésien pour chacun des sous-espaces affines de la question précédente.
- d) Déterminer la distance entre les deux sous espaces affines de la question b).

Solution:

a) Soient $M \in \mathcal{A}$ et $N \in \mathcal{B}$ qui vérifient $\overrightarrow{MN} \perp \left(\overrightarrow{\mathcal{A}} \oplus \overrightarrow{\mathcal{B}}\right)$. Soient $K \in \mathcal{A}, L \in \mathcal{B}$, alors en appliquant le théorème de Pythagore on a $\|\overrightarrow{KL}\|^2 = \|\overrightarrow{KM} + \overrightarrow{MN} + \overrightarrow{NL}\|^2 = \|\overrightarrow{MN}\|^2 + \|\overrightarrow{KM} + \overrightarrow{NL}\|^2 \ge \|\overrightarrow{MN}\|^2$, car $\overrightarrow{MN} \perp (\overrightarrow{KM} + \overrightarrow{NL})$ vu que $\overrightarrow{KM} + \overrightarrow{NL} \in \left(\overrightarrow{\mathcal{A}} \oplus \overrightarrow{\mathcal{B}}\right)$. Ainsi $d(K, L) \ge d(M, N)$ et donc $d(\mathcal{A}, \mathcal{B}) = \inf_{K \in \mathcal{A}, L \in \mathcal{B}} d(K, L) \ge d(M, N)$. Nous avons aussi $d(\mathcal{A}, \mathcal{B}) = \inf_{K \in \mathcal{A}, L \in \mathcal{B}} d(K, L) \le d(M, N)$ car $M \in \mathcal{A}$ et $N \in \mathcal{B}$. Ainsi on trouve $d(\mathcal{A}, \mathcal{B}) = d(M, N)$.

- b) \mathcal{A} n'est pas un sous-espace affine car $(1,1,0) \in \mathcal{A}$ et $(0,1,1) \in \mathcal{A}$, mais leur isobarycentre $\frac{1}{2}(1,1,0) + \frac{1}{2}(1,1,0) = (\frac{1}{2},1,\frac{1}{2}) \notin \mathcal{A}$. \mathcal{B} est un sous-espace linéaire car $\mathcal{B} = \{(x,y,z) \in \mathbb{R}^3 \mid x-y=0\}$ vu que $x-y=0 \Leftrightarrow (x-y)^2 = 0$ et ainsi $\mathcal{B} = \operatorname{Ker} \varphi$, où $\varphi \in \mathcal{L}(\mathbb{R}^3,\mathbb{R})$ est l'application linéaire définie par $\varphi(x,y,z) = x-y$. Ainsi \mathcal{B} est un sous-espace affine avec $\overrightarrow{\mathcal{B}} = \mathcal{B}$. $\mathcal{C} = \{(1,2,3) + t(1,1,0) \in \mathbb{R}^3 \mid t \in \mathbb{R}\} = (1,2,3) + \langle (1,1,0) \rangle$ est la droite affine de direction $\overrightarrow{\mathcal{C}} = \langle (1,1,0) \rangle$ qui passe par le point (1,2,3).
- c) D'après le théorème du rang pour l'application $\vec{\varphi}$, définie dans la question précédente, nous avons dim $\vec{\mathcal{B}}=3-1=2$. Les vecteurs $\vec{v}_1=(1,1,0)\in\vec{\mathcal{B}}$ et $\vec{v}_2=(0,0,1)\in\vec{\mathcal{B}}$ forment une famille libre, donc une base de $\vec{\mathcal{B}}$. Ainsi $\{O,\vec{v}_1,\vec{v}_2\}=\{(0,0,0),(1,1,0),(0,0,1)\}$ est un repère cartésien de $\mathcal{B}=\vec{\mathcal{B}}$. Comme $\vec{v}_1=(1,1,0)$ est une base de $\vec{\mathcal{C}}$ et $\Omega=(1,2,3)$ est un point de \mathcal{C} , on trouve que $\{\Omega,\vec{v}_1\}=\{(1,2,3),(1,1,0)\}$ est un repère cartésien de \mathcal{C} .
- d) Pour déterminer $d(\mathcal{B},\mathcal{C})$ on cherche $M=(0,0,0)+s(1,1,0)+t(0,0,1)\in\mathcal{B}$ et $N=(1,2,3)+u(1,1,0)\in\mathcal{C}$ tels que $\overrightarrow{MN}\perp(\overrightarrow{\mathcal{B}}\oplus\overrightarrow{\mathcal{C}})$. Ainsi comme $\overrightarrow{\mathcal{B}}\oplus\overrightarrow{\mathcal{C}}=\langle\overrightarrow{v}_1,\overrightarrow{v}_2\rangle$ et $\overrightarrow{MN}=(1+u-s,2+u-s,3-t)$ on cherche s,t et u tels que $\langle(1+u-s,2+u-s,3-t)|(1,1,0)\rangle=0$ et $\langle(1+u-s,2+u-s,3-t)|(0,0,1)\rangle=0$. En résolvant le système on trouve $u-s=-\frac{3}{2}$ et t=3. Ainsi $\|\overrightarrow{MN}\|=\|(-\frac{1}{2},\frac{1}{2},0)\|=\frac{1}{\sqrt{2}}$ et donc $d(\mathcal{B},\mathcal{C})=\frac{1}{\sqrt{2}}$.

Exercice 2 (Transformations affines)

On considère l'espace vectoriel $\mathbb{R}_2[X]$ des polynômes de degré au plus 2 à coefficients réels.

a) Soit $\phi(P)(X) = X^2 \left(P(\frac{1}{X}) + 1\right)$ pour $P \in \mathbb{R}_2[X]$. Montrer que ϕ est un automorphisme affine de $\mathbb{R}_2[X]$.

Étant donnés $\Omega \in \mathbb{R}_2[X]$ et $\lambda \in \mathbb{R}$ on note $h_{\Omega,\lambda}$ l'homothétie de centre Ω et de rapport λ .

- **b)** Calculer $h_{X,2}(X^2 + 1)$.
- c) Justifier que la composée $h_{X,2} \circ h_{X^2,\frac{1}{3}}$ est une homothétie. Puis déterminer ses paramètres (son centre et son rapport).
- d) Est-ce que $h_{X,2} \circ h_{X^2,\frac{1}{2}}$ est une homothétie? Justifier votre réponse.
- e) Justifier que $h_{X,2}$ est un automorphisme affine et déterminer son inverse.

Solution:

a) Soit $P(X) = a + bX + cX^2$, on trouve $\phi(P)(X) = X^2 \left(a + b \frac{1}{X} + c \frac{1}{X^2} + 1 \right) = c + bX + (a + 1)X^2$. Pour voir que ϕ est une application affine il suffit de remarquer que $\phi(0 + P) = \phi(0) + \overrightarrow{\phi}(P)$ où $\phi(0) = X^2$ et $\overrightarrow{\phi}$ est l'application linéaire qui permute a et c, c-à-d. $\overrightarrow{\phi}(a + bX + cX^2) = c + bX + aX^2$. Et maintenant pour conclure il suffit d'utiliser que ϕ

est un automorphisme affine si et seulement si $\overrightarrow{\phi}$ est un automorphisme linéaire, ce qui est le cas car $\overrightarrow{\phi} \circ \overrightarrow{\phi} = \operatorname{Id}$.

- **b)** Nous avons $h_{\Omega,\lambda}(P) = (1-\lambda)\Omega + \lambda P$. Ainsi $h_{X,2}(X^2+1) = (1-2)X + 2(X^2+1) = 2-X+2X^2$.
- c) Pour $P \in \mathbb{R}_2[X]$ on a $h_{X,2} \circ h_{X^2,\frac{1}{3}}(P) = h_{X,2}\left(\frac{2}{3}X^2 + \frac{1}{3}P\right) = -X + 2\left(\frac{2}{3}X^2 + \frac{1}{3}P\right) = \frac{1}{3}\left(4X^2 3X\right) + \frac{2}{3}P$. Donc $h_{X,2} \circ h_{X^2,\frac{1}{3}} = h_{4X^2 3X,\frac{2}{3}}$ est l'homothétie de centre $4X^2 3X$ est de rapport $\frac{2}{3}$.
- d) Pour $P \in \mathbb{R}_2[X]$ on a $h_{X,2} \circ h_{X^2,\frac{1}{2}}(P) = h_{X,2}\left(\frac{1}{2}X^2 + \frac{1}{2}P\right) = -X + 2\left(\frac{1}{2}X^2 + \frac{1}{2}P\right) = (X^2 X) + P$. Ainsi $h_{X,2} \circ h_{X^2,\frac{1}{2}}$ n'est pas une homothétie, mais la translation par le vecteur (polynôme) $X^2 X$.
- e) Comme toute homothétie de rapport non nul, $h_{X,2}$ est un automorphisme affine dont l'inverse est l'homothétie du même centre et du rapport inverse, c.-à-d. $h_{X,\frac{1}{\alpha}}$.

Exercice 3 (Géométrie du plan et barycentres)

Soient A, B et C trois points fixes d'un plan affine euclidien. On se propose dans cet exercice de déterminer l'ensemble S des points M qui vérifient

$$\|\overrightarrow{MA} - 2\overrightarrow{MB} + \overrightarrow{MC}\| = \|\overrightarrow{MA} - 4\overrightarrow{MB} + \overrightarrow{MC}\|.$$

- a) Montrer que $B \in \mathcal{S}$.
- b) Montrer que $\overrightarrow{MA} 2\overrightarrow{MB} + \overrightarrow{MC}$ ne dépend pas du choix du point M.
- c) Soit G le barycentre de (A, 1), (B, -4) et (C, 1). Montrer sur un dessin la position de G par rapport à A, B et C (pris en position générale 1).
- d) Exprimer $\overrightarrow{MA} 4\overrightarrow{MB} + \overrightarrow{MC}$ en fonction de \overrightarrow{GM} .
- e) En déduire que \mathcal{S} est un cercle dont on précisera le centre et qu'on représentera sur un dessin.

Solution:

- a) $\|\overrightarrow{BA} 2\overrightarrow{BB} + \overrightarrow{BC}\| = \|\overrightarrow{BA} + \overrightarrow{BC}\| = \|\overrightarrow{BA} 4\overrightarrow{BB} + \overrightarrow{BC}\| \text{ car } \overrightarrow{BB} = \overrightarrow{0}. \text{ Donc } B \in \mathcal{S}.$
- b) Soit $M' \in \mathcal{S}$, on a $\overrightarrow{M'A} 2\overrightarrow{M'B} + \overrightarrow{M'C} = (\overrightarrow{M'M} + \overrightarrow{MA}) 2(\overrightarrow{M'M} + \overrightarrow{MB}) + (\overrightarrow{M'M} + \overrightarrow{MC}) = (1 2 + 1)\overrightarrow{M'M} + \overrightarrow{MA} 2\overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{MA} 2\overrightarrow{MB} + \overrightarrow{MC}$. Ainsi le vecteur $\overrightarrow{MA} 2\overrightarrow{MB} + \overrightarrow{MC}$ ne dépend pas du choix du point M.
- c) Soit $F = \frac{1}{2}A + \frac{1}{2}C$ l'isobarycentre de A et C, qui est aussi le milieu du segment [A, C]. Ainsi nous avons $G = -\frac{1}{2}A + 2B - \frac{1}{2}C = 2B - F$, et donc $B = \frac{1}{2}F + \frac{1}{2}G$ est le milieu du segment [F, G].

^{1.} C.-à-d. de sorte que le triangle ABC soit non dégénéré.

- d) D'après la définition de G nous avons $\overrightarrow{GA} 4\overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$ et donc $\overrightarrow{MA} 4\overrightarrow{MB} + \overrightarrow{MC} = (\overrightarrow{MG} + \overrightarrow{GA}) 4(\overrightarrow{MG} + \overrightarrow{GB}) + (\overrightarrow{MG} + \overrightarrow{GC}) = (1 4 + 1)\overrightarrow{MG} + (\overrightarrow{GA} 4\overrightarrow{GB} + \overrightarrow{GC}) = 2\overrightarrow{GM}$.
- e) D'après b) le nombre $\|\overrightarrow{MA} 2\overrightarrow{MB} + \overrightarrow{MC}\|$ est indépendant de M, notons le $K = \|\overrightarrow{BA} + \overrightarrow{BC}\|$ (on a pris M = B). Et comme d'après d) nous avons $\|\overrightarrow{MA} 4\overrightarrow{MB} + \overrightarrow{MC}\| = 2\|\overrightarrow{GM}\|$, on trouve que S est l'ensemble des points M qui vérifient $2\|\overrightarrow{GM}\| = K$, autrement dit c'est le cercle de centre G et de rayon $\frac{K}{2}$, qui d'après a) passe par B.

