딥러닝 신경망 모형

[1] 딥러닝 신경망이란

- 1. 딥러닝 신경망은 인공지능의 한 분야로, 인공 신경망을 이용하여 데 이터를 학습하고 예측하는 기술이다.
- 2.이 신경망은 인간의 뇌 구조와 유사한 계층적인 모델로 구성되어 있으며, 여러 층의 노드(뉴런)들이 서로 연결되어 정보를 처리한다.

[2] 신경망의 기본 구조

1.입력층(Input Layer)

원시 데이터를 받아들인다.

데이터는 입력층의 각 노드로 전달되며, 각 노드는 하나의 입력 특징을 나타낸다.

2. 은닉층(Hidden Layers)

입력 데이터를 점차적으로 처리한다.

여러 개의 은닉층이 존재할 수 있으며, 각 은닉층은 이전 층의 출력을 받아 새로운 출력을 생성한다.

은닉층의 노드는 가중치(weight)와 편향(bias)을 가지며, 활성화 함수(activation function)를 통해 출력을 계산한다.

3. 출력층(Output Layer)

최종 결과를 출력 한다.

출력층의 형태는 해결하려는 문제의 유형에 따라 달라질 수 있다 (예: 회귀 문제에서는 연속적인 값, 분류 문제에서는 클래스 레이블).

[3] 활성화 함수(Activation Function)

- 활성화 함수는 각 노드의 출력을 결정하는 비선형 함수로, 신경망의 비선형성을 부여한다.
- 대표적인 활성화 함수로는 시그모이드(sigmoid), 탄젠트 하이퍼볼릭(tanh), 렐루(ReLU), 소프트맥스(softmax) 등이 있다.

[4] 학습 과정

- 전방 전달(Forward Propagation) 입력 데이터를 신경망의 각 층을 통해 전달하여 최종 출력을 계산한다.
- 오차 계산(Error Calculation) 출력층에서 실제값과 예측값 간의 오차를 계산한다. 대표적인 오차 함수로는 평균 제곱 오차(MSE), 교차 엔트로피 손실(Cross-Entropy Loss) 등이 있다.

$$z_1^{(h)} = a_0^{(in)} w_{0,1}^{(h)} + a_1^{(in)} w_{1,1}^{(h)} + \dots + a_m^{(in)} w_{m,1}^{(h)}$$
$$a_1^{(h)} = \phi \left(z_1^{(h)} \right)$$

• 역전파(Backpropagation)

오차를 기반으로 가중치와 편향을 조정하여 신경망을 학습시킨다. 오차가 각 층을 거슬러 올라가며 가중치의 기울기를 계산하고, 이를 통해 가중치를 업데이트한다.

[5] 딥러닝 신경망의 종류

• 컨볼루션 신경망(CNN)

주로 이미지 인식에 사용되며, 컨볼루션 층과 풀링 층을 통해 특징을 추출한다.

• 순환 신경망(RNN)

시계열 데이터 처리에 특화되어 있으며, 이전 시간 단계의 정보를 기억한다.

LSTM(Long Short-Term Memory)와 GRU(Gated Recurrent Unit) 같은 변형된 구조를 사용하여 긴 의존 관계를 처리한다.

[6] 딥러닝 신경망의 적용 분야

1. 이미지 인식

CNN을 이용하여 이미지 분류, 객체 검출, 얼굴 인식 등 다양한 응용 분야에 사용된다.

2. 음성 인식

음성 데이터를 텍스트로 변환하거나, 음성을 기반으로 명령을 인식하는 시스템에 적용된다.

3. 자연어 처리(NLP)

문서 분류, 기계 번역, 감정 분석 등 텍스트 데이터를 처리하는 데 사용된다.

4. 자율 주행

주변 환경을 인식하고, 주행 경로를 결정하는 데 딥러닝 신경망이 사용된다.

[7] 딥러닝의 발전

• 컴퓨팅 파워의 증가와 대량의 데이터 접근성 향상 덕분에 딥러닝 신경망의 발전이 가능하게 되었으며, 앞으로도 계속해서 발전할 가 능성이 높다.

Boston_train.csv 데이터 파일: 선형 회귀 모델

Boston Train										
	CRIM	ZN	INDUS	NOX						
1	2.3004	0.0	19.58	0.605						
2	13.3598	0.0	18.1	0.693						
3	0.12744	0.0	6.91	0.448						
4	0.15876	0.0	10.81	0.413						
5	0.03768	80.0	1.52	0.404						
6	0.03705	20.0	3.33	0.4429						

boston_train 파일로 텐서플로 모델 만들고 boston_test파일로 평가지표를 구해줘

이제 보스턴 주택 데이터셋을 사용하여 딥러닝 모델을 만들고, 평가 지표를 계산해보겠습니다. 주어 진 데이터셋을 사용하여 회귀 모델을 생성하겠습니다.

1. 데이터 준비 및 전처리

먼저 데이터셋을 텐서플로우에서 사용할 수 있도록 준비합니다.

ChatGPT 현재 버전에 서는 딥러닝 모델을 실 행 시키지 못하므로 구 글 코랩으로 소스를 복 사하여 실행시킨다

Breast Cancer.csv 데이터 파일: 2진 분류 모델

A	В	С	D E	F		G	Н	-		К	-0-1	М	N	0	Р	Q	R	S	í de la	U	V	W	Х	Y	Z	AA	AB	AC	AD
			nean areamean s																									-	
17.99	10.38	122.8	1001 0.11				0.1471		0.07871	1.095	0.9053	8.589							0.00619	25.38	17.33	184.6		0.1622		0.7119			
20.57	17.77	132.9	1326 0.084				0.07017		0.05667	0.5435	0.7339	3,398			0.01308	0.0186		0.01389		24.99	23.41	158.8	1956	0.1238	0.1866	0.2416	0.186		0.08902
19.69	21.25	130	1203 0.10			0.1974	0.1270		0.05999	0.7456	0.7869	4.585			0.04006				0.00457	23.57	25.53	152.5	1709	0.1444	0.4245	0.4504	0.243		0.08758
11.42	20.38	77.58	386.1 0.14			0.2414			0.09744	0.4956	1.156	3.445			0.07458					14.91	26.5	98.87	567.7	0.2098	0.8663	0.6869	0.2575	0.6638	0.173
20.29	14.34	135.1	1297 0.10			0.198	0.1043	0.1000	0.05883	0.7572	0.7813	5.438					0.01885			22.54	16.67	152.2	1575	0.1374	0.205	0.4	0.1625	((4.10-4.0)	0.07678
12.45	15.7	82.57	477.1 0.12	8 0	0.17	0.1578	0.08089	0.2087	0.07613	0.3345	0.8902	2.217	27.19	0.00751	0.03345	0.03672	0.01137	0.02165	0.00508	15.47	23.75	103.4	741.6	0.1791	0.5249	0.5355	0.1741	0.3985	0.1244
18.25	19.98	119.6	1040 0.094	3 0.1	109	0.1127	0.074		0.05742	0.4467	0.7732	3.18	53.91	0.00431	0.01382					22.88	27.66	153.2	1606	0.1442	0.2576	0.3784	0.1932	0.3063	0.08368
13.71	20.83	90.2	577.9 0.11	9 0.16	645 (0.09366	0.05985	0.2196	0.07451	0.5835	1.377	3.856	50.96	0.00881	0.03029	0.02488	0.01448	0.01486	0.00541	17.06	28.14	110.6	897	0.1654	0.3682	0.2678	0.1556	0.3196	0.1151
13	21.82	87.5	519.8 0.12	3 0.19	932	0.1859	0.09353	0.235	0.07389	0.3063	1.002	2,406	24.32	0.00573	0.03502	0.03553	0.01226	0.02143	0.00375	15.49	30.73	106.2	739.3	0.1703	0.5401	0.539	0.206	0.4378	0.1072
12.46	24.04	83.97	475.9 0.118	6 0.23	396	0.2273	0.08543	0.203	0.08243	0.2976	1.599	2.039	23.94	0.00715	0.07217	0.07743	0.01432	0.01789	0.01008	15.09	40.68	97.65	711.4	0.1853	1.058	1.105	0.221	0.4366	0.2075
16.02	23.24	102.7	797.8 0.082	0.066	669 (0.03299	0.03323	0.1528	0.05697	0.3795	1.187	2.466	40.51	0.00403	0.00927	0.01101	0.00759	0.0146	0.00304	19.19	33.88	123.8	1150	0.1181	0.1551	0.1459	0.09975	0.2948	0.08452
15.78	17.89	103.6	781 0.09	1 0.12	292 (0.09954	0.06606	0.1842	0.06082	0.5058	0.9849	3.564	54.16	0.00577	0.04061	0.02791	0.01282	0.02008	0.00414	20.42	27.28	136.5	1299	0.1396	0.5609	0.3965	0.181	0.3792	0.1048
19.17	24.8	132.4	1123 0.09	4 0.24	458	0.2065	0.1118	0.2397	0.078	0.9555	3.568	11.07	116.2	0.00314	0.08297	0.0889	0.0409	0.04484	0.01284	20.96	29.94	151.7	1332	0.1037	0.3903	0.3639	0.1767	0.3176	0.1023
15.85	23.95	103.7	782.7 0.084	0.10	002 (0.09938	0.05364	0.1847	0.05338	0.4033	1.078	2.903	36.58	0.00977	0.03126	0.05051	0.01992	0.02981	0.003	16.84	27.66	112	876.5	0.1131	0.1924	0.2322	0.1119	0.2809	0.06287
13.73	22.61	93.6	578.3 0.11	1 0.22	293	0.2128	0.08025	0.2069	0.07682	0.2121	1.169	2.061	19.21	0.00643	0.05936	0.05501	0.01628	0.01961	0.00809	15.03	32.01	108.8	697.7	0.1651	0.7725	0.6943	0.2208	0.3596	0.1431
14.54	27.54	96.73	658.8 0.11	9 0.15	595	0.1639	0.07364	0.2303	0.07077	0.37	1.033	2.879	32.55	0.00561	0.0424	0.04741	0.0109	0.01857	0.00547	17.46	37.13	124.1	943.2	0.1678	0.6577	0.7026	0.1712	0.4218	0.1341
14.68	20.13	94.74	684.5 0.098				0.05259		0.05922	0.4727	1.24	3.195			0.01162					19.07	30.88	123.4	1138	0.1464	0.1871	0.2914	0.1609	0.3029	0.08216
16.13	20.68	108.1	798.8 0.1	7 0.20	022	0.1722	0.1028	0.2164	0.07356	0.5692	1.073	3.854	54.18	0.00703	0.02501	0.03188	0.01297	0.01689	0.00414	20.96	31.48	136.8	1315	0.1789	0.4233	0.4784	0.2073	0.3706	0.1142
19.81	22.15	130	1260 0.098	0.10	027	0.1479	0.09498	0.1582	0.05395	0.7582	1.017	5.865	112.4	0.00649	0.01893	0.03391	0.01521	0.01356	0.002	27.32	30.88	186.8	2398	0.1512	0.315	0.5372	0.2388	0.2768	0.07615
13.54	14.36	87.46	566.3 0.097	9 0.08	129 (0.06664	0.04781	0.1885	0.05766	0.2699	0.7886	2.058	23.56	0.00846	0.0146	0.02387	0.01315	0.0198	0.0023	15.11	19.26	99.7	711.2	0.144	0.1773	0.239	0.1288	0.2977	0.07259
13.08	15.71	85.63	520 0.10	5 0	127 (0.04568	0.0311	0.1967	0.06811	0.1852	0.7477	1.383	14.67	0.0041	0.01898				0.00243	14.5	20.49	96.09	630.5	0.1312	0.2776		0.07283	0.3184	0.08183
9 504	12.44	60.34					0.02076		0.06905	0.2773	0.9768	1.909	15.7		0.01432					10.23	15.66	65.13	314.9	0.1324	0.1148	0.08867			0.07773
15.34	14.26	102.5	704.4 0.10				0.09756		0.07032	0.4388	0.7096	3.384			0.05328					18.07	19.08	125.1	980.9	0.139	0.5954	0.6305	0.2393		0.09946
21.16	23.04	137.2	1404 0.094				0.08632		0.05278	0.6917	1.127	4.303			0.01259					29.17	35.59	188	2615	0.1401	0.26		0.2009		0.07526
16.65	21.38	110	904.6 0.11						0.0633	0.8068	0.9017	5.455			0.01233					26.46	31.56	177	2215	0.1401	0.3578	0.4695	0.2005		0.09564
17.14	16.4	116	912.7 0.11			0.2229			0.07413	1.046	0.976	7.276			0.03799					22.25	21.4	152.4	1461	0.1545	0.3949	0.3853	0.255	0.4066	0.1059
14.58	21.53	97.41	644.8 0.10				0.08783		0.06924	0.2545	0.9832	2.11			0.03755				202.20	17.62	33.21	122.4	896.9	0.1525	0.6643	0.5539	0.2701	0.4264	0.1039
18.61	20.25	122.1	1094 0.09				0.08783		0.05699	0.8529	1.849	5.632			0.03033					21.31	27.26	139.9	1403	0.1323	0.0043	0.3339	0.149	0.2341	
												3.498									36.71	149.3		0.1338					
15.3	25.27	102.4	732.4 0.10				0.08751	0.1926	0.0654	0.439	1.012				0.03057					20.27	1.5.510.01		1269	0.10	0.611	0.6335	0.2024		0.09876
17.57	15.05	115	955.1 0.098				0.07953		0.06149	0.6003	0.8225	4.655			0.03033					20.01	19.52	134.9	1227	0.1255	0.2812		0.1456		0.07919
18.63	25.11	124.8	1088 0.10				0.1244		0.06197	0.8307	1.466	5.574			0.03374					23.15	34.01	160.5	1670	0.1491	0.4257	0.6133	0.1848	0.3444	
11.84	18.7	77.93	440.6 0.110				0.05182		0.07799	0.4825	1.03	3.475			0.03414					16.82	28.12	119.4	888.7	0.1637	0.5775	0.6956	0.1546	0.4761	0.1402
17.02	23.98	112.8	899.3 0.11				0.1203		0.06382	0.6009	1.398	3.999			0.03082		Acada III	8111111111	*******	20.88	32.09	136.1	1344	0.1634	0.3559	0.5588	0.1847		0.08482
19.27	26.47	127.9	1162 0.094				0.07593		0.06261	0.5558	0.6062	3.528			0.03318					24.15	30.9	161.4	1813	0.1509	0.659	0.6091	0.1785	0.3672	
16.13	17.88	107	807.2 0.1				0.07752		0.06515	0.334	0.6857	2.183			0.02868					20.21	27.26	132.7	1261	0.1446	0.5804	0.5274		0.427	0.1233
16.74	21.59	110.1	869.5 0.09				0.06018			0.4615	0.9197	3.008			0.02499					20.01	29.02	133.5	1229	0.1563	0.3835	0.5409	0.1813		0.08633
14.25	21.72	93.63	633 0.098				0.05598		0.06125	0.286	1.019	2.657			0.02995					15.89	30.36	116.2	799.6	0.1446	0.4238	0.5186	0.1447	0.3591	0.1014
13.03	18.42	82.61	523.8 0.089						0.05863	0.1839	2.342	1.17		0.00435			0.01164			13.3	22.81	84.46				0.04833		0.1987	
14.99	25.2	95.54	698.8 0.093	0.05	131 (0.02398	0.02899	0.1565	0.05504	1.214	2.188	8.077	106	0.00688	0.01094	0.01818	0.01917	0.00788	0.00175	14.99	25.2	95.54	698.8	0.09387	0.05131	0.02398	0.02899	0.1565	0.05504
13.48	20.82	88.4	559.2 0.10	6 0.12	255	0.1063	0.05439	0.172	0.06419	0.213	0.5914	1.545			0.02239				0.00319	15.53	26.02	107.3	740.4	0.161	0.4225	0.503	0.2258	0.2807	0.1071
13.44	21.58	86.18	563 0.081	2 0.060	031	0.0311	0.02031	0.1784	0.05587	0.2385	0.8265	1.572	20.53	0.00328	0.01102	0.0139	0.00688	0.0138	0.00129	15.93	30.25	102.5	787.9	0.1094	0.2043	0.2085	0.1112	0.2994	0.07146
10.95	21.35	71.9	371.1 0.12	7 0.12	218	0.1044	0.05669	0.1895	0.0687	0.2366	1.428	1.822	16.97	0.00806	0.01764	0.02595	0.01037	0.01357	0.00304	12.84	35.34	87.22	514	0.1909	0.2698	0.4023	0.1424	0.2964	0.09606
19.07	24.81	128.3	1104 0.090	0.2	219	0.2107	0.09961	0.231	0.06343	0.9811	1.666	8.83	104.9	0.00655	0.1006	0.09723	0.02638	0.05333	0.00765	24.09	33.17	177.4	1651	0.1247	0.7444	0.7242	0.2493	0.467	0.1038
13.28	20.28	87.32	545.2 0.10	1 0.14	436	0.09847	0.06158	0.1974	0.06782	0.3704	0.8249	2.427	31.33	0.00507	0.02147	0.02185	0.00956	0.01719	0.00332	17.38	28	113.1	907.2	0.153	0.3724	0.3664	0.1492	0.3739	0.1027
13.17	21.81	85.42	531.5 0.097	4 0.10	047 (0.08259	0.05252	0.1746	0.06177	0.1938	0.6123	1.334	14.49	0.00335	0.01384	0.01452	0.00685	0.01113	0.00172	16.23	29.89	105.5	740.7	0.1503	0.3904	0.3728	0.1607	0.3693	0.09618
18.65	17.6	123.7	1076 0.10	9 0.16	686	0.1974	0.1009	0.1907	0.06049	0.6289	0.6633	4.293	71.56	0.00629	0.03994	0.05554	0.01695	0.02428	0.00354	22.82	21.32	150.6	1567	0.1679	0.509	0.7345	0.2378	0.3799	0.09185
8.196	16.84	51.71	201.9 0.0	6 0.059	943 0	0.01588	0.00592	0.1769	0.06503	0.1563	0.9567	1.094	8.205	0.00897	0.01646	0.01588	0.00592	0.02574	0.00258	8.964	21.96	57.26	242.2	0.1297	0.1357	0.0688	0.02564	0.3105	0.07409
13.17	18.66	85.98	534.6 0.11			0.1226			0.06777	0.2871	0.8937	1.897			0.02336					15.67	27.95	102.8	759.4	0.1786	0.4166	0.5006	0.2088	0.39	
12.05	14.63	78.04	449.3 0.10							0.2636	0.7294	1.848			0.01427					13.76	20.7	89.88	582.6	0.1494	0.2156		0.06548	0.2747	
13.49	22.3	86.91	561 0.087						0.05718	0.2338	1.353	1.735			0.01382					15.15	31.82	99	698.8	0.1162	0.1711	0.2282	0.1282	0.2871	
11.76	21.6	74.72	427.9 0.086							0.4062	1.21	2.635			0.00976					12.98	25.72	82.98	516.5			0.05523		0.2433	
		6010000										1 449								14.67									
13.64	16.34	87.21	571.8 0.076	0.000	D3A (0,0185/	0.01723	0.1353	0.00903	U.18/2	0.9254	1.449	14.55	0,00448	0.01177	0.010/9	0.00796	0.01325	0.00255	14.07	23.19	96.08	000./	0.1089	0.1582	0.105	0.08586	0.2340	0.08025

텐서플로우를 사용한 딥러닝 모델 만들고 평가 지표를 알려줘.

- ⑤ 텐서플로를 사용하여 간단한 딥러닝 모델을 만들어 보겠습니다. 이 모델은 주어진 데이터셋을 사용하여 유방암의 양성(benign) 또는 악성(malignant)을 예측하는 분류 모델입니다.
 - 1. 데이터 준비 및 전처리
 - 2. 모델 생성
 - 3. 모델 학습
 - 4. 모델 평가
 - 이 과정을 통해 모델을 만들고 평가 지표를 확인해 보겠습니다.

1. 데이터 준비 및 전처리

먼저 데이터셋을 텐서플로에서 사용할 수 있도록 준비합니다.

```
python

import pandas as pd
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# 데이터 로드
file_path = '/mnt/data/Breast Cancer.csv'
data = pd.read_csv(file_path)
```

ChatGPT 현재 버전에서는 딥러닝 모델을 실행 시키지 못하므로 구글 코랩으로 소스를 복사하여 실행시킨다

iris.csv 데이터 파일: 다중 분류 모델

4	A	R	C	D	Ł
1	sepal leng	sepal widt	petal leng	petal widt	label
2	5.1	3.5	1.4	0.2	0
3	4.9	3	1.4	0.2	0
4	4.7	3.2	1.3	0.2	0
5	4.6	3.1	1.5	0.2	0
6	5	3.6	1.4	0.2	0
7	5.4	3.9	1.7	0.4	0
8	4.6	3.4	1.4	0.3	0
9	5	3.4	1.5	0.2	0
10	4.4	2.9	1.4	0.2	0
11	4.9	3.1	1.5	0.1	0
12	5.4	3.7	1.5	0.2	0
13	4.8	3.4	1.6	0.2	0
14	4.8	3	1.4	0.1	0
15	4.3	3	1.1	0.1	0
16	5.8	4	1.2	0.2	0
17	5.7	4.4	1.5	0.4	0
18	5.4	3.9	1.3	0.4	0
19	5.1	3.5	1.4	0.3	0
20	5.7	3.8	1.7	0.3	0

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	label
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
		***	***	***	
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2
150	rows × 5 colum	ıns			

텐서플로우를 사용한 딥러닝 모델 만들고 평가 지표를 알려줘.

아이리스(Iris) 데이터셋을 사용하여 딥러닝 모델을 만들고, 이를 평가해보겠습니다. 텐서플로우를 사용하여 모델을 생성, 학습, 평가하는 전 과정을 진행하겠습니다.

1. 데이터 준비 및 전처리

먼저 데이터셋을 텐서플로우에서 사용할 수 있도록 준비합니다.

```
import pandas as pd
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.utils import to_categorical

# 데이터 로드
file_path_iris = '/mnt/data/iris.csv'
data = pd.read_csv(file_path_iris)
```

ChatGPT 현재 버전에서는 딥러닝 모델을 실행 시키지 못하므로 구글 코랩으로 소스를 복사하여 실행시킨다

감사합니다