

REGRESSION

Linear Regression

Dr. Ramesh Anbanandam

DEPARTMENT of Management Studies

Simple Linear Regression

- Simple Linear Regression Model
- Least Squares Method
- Coefficient of Determination
- Model Assumptions
- Testing for Significance
- Using the Estimated Regression Equation for Estimation and Prediction

Empirical Models

- Many problems in engineering and science involve exploring the relationships between two or more variables
- Regression analysis is a statistical technique that is very useful for these types of problems
- This model can also be used for process optimization, such as finding the level of temperature that maximizes yield, or for process control purposes

Empirical Models Example

- As an illustration, consider the data in the table.
- In this table y is the purity of oxygen produced in a chemical distillation process, and x is the percentage of hydrocarbons that are present in the main condenser of the distillation unit.

Hydrocarbon level (X)	Purity (Y)
0.99	90.01
1.02	89.05
1.15	91.43
1.29	93.74
1.46	96.73
1.36	94.45
0.87	87.59
1.23	91.77
1.55	99.42
1.4	93.65

Using python for plotting the data

```
data = pd.read_excel('C:/Users/Somi/Desktop/reg2.xlsx')
In [19]: x= data['Hydrocarbon level']
          y = data['02']
          plt.figure()
          sns.regplot(x,y,fit reg= True)
          plt.scatter(np.mean(x), np.mean(y), color = "green")
Out[19]: <matplotlib.collections.PathCollection at 0x21ada0ab1d0>
             100
              98
              96
              94
              92
              90
              88
                                      1.2
                                                        1.5
                   0.9
                          1.0
                                1.1
                                                  1.4
                                 Hydrocarbon level
```


Simple Linear Regression Model

- The equation that describes how y is related to x and an error term is called the regression model.
- The simple linear regression model is:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

where:

 β_0 and β_1 are called parameters of the model, ε is a random variable called the error term.

The simple linear regression equation is:

$$E(y) = \beta_0 + \beta_1 x$$

- Graph of the regression equation is a straight line.
- β_0 is the y intercept of the regression line.
- $\beta 1$ is the slope of the regression line.
- E(y) is the expected value of y for a given x value.

Positive Linear Relationship

Negative Linear Relationship

No Relationship

Estimated Simple Linear Regression Equation

■ The estimated simple linear regression equation

$$\hat{y} = b_0 + b_1 x$$

- The graph is called the estimated regression line.
 - b_0 is the y intercept of the line.
 - b_1 is the slope of the line.
 - \hat{y} is the estimated value of y for a given x value.

Least Squares Method

Least Squares Criterion

$$\min \sum (y_i - \hat{y}_i)^2$$

where:

 $y_i = \underline{\text{observed}}$ value of the dependent variable for the *i*th observation

 $y_i = \underline{\text{estimated}}$ value of the dependent variable for the *i*th observation

Estimation Process

Squared Error (SE) =
$$(y_1 - (mx_1 + b))^2 + (y_2 - (mx_2 + b))^2 +(y_n - (mx_n + b))^2$$

= $y_1^2 - 2y_1(mx_1 + b) + (mx_1 + b)^2$
 $+y_2^2 - 2y_2(mx_2 + b) + (mx_2 + b)^2$
+....
 $+y_n^2 - 2y_n(mx_n + b) + (mx_n + b)^2$
= $y_1^2 - 2x_1y_1m - 2y_1b + m^2x_1^2 + 2mx_1b + b^2$
 $+y_2^2 - 2x_2y_2m - 2y_2b + m^2x_2^2 + 2mx_2b + b^2$
+.....
 $+y_n^2 - 2x_ny_nm - 2y_nb + m^2x_n^2 + 2mx_nb + b^2$

$$= (y_1^2 + y_2^2 + ... + y_n^2)$$

$$-2m (x_1y_1 + x_2y_2 + ... + x_ny_n)$$

$$-2b(y_1+y_2+....+y_n)$$

$$+m^2(x_1^2+x_2^2+...+x_n^2)$$

$$+2mb(x_1+x_2+...+x_n)$$

$$+(b^2+b^2+...+b^2)$$

$$= n \overline{y^2} - 2mn \ \overline{x} \ \overline{y} - 2bn \overline{y} + m^2 n \ \overline{x^2} + 2mbn \overline{x} + nb^2$$

$$SE=n \overline{y^{2}}-2mn \overline{x} \overline{y}-2bn \overline{y}+m^{2}n \overline{x^{2}}+2mbn \overline{x}+nb^{2}$$

$$\frac{\partial(SE)}{\partial m}=-2n \overline{x} \overline{y}+2m\overline{n} \overline{x^{2}}+2bn \overline{x}=0$$

$$\frac{\partial(SE)}{\partial m}=2n \overline{y}+2m\overline{n} \overline{y}+2n \overline{y}=0$$

$$\frac{\partial(SE)}{\partial m} = -2n\overline{xy} + 2m\overline{nx^2} + 2bn\overline{x} = 0$$
$$= -\overline{xy} + m\overline{x^2} + b\overline{x} = 0$$

$$m\overline{x^{2}} + b\overline{x} = \overline{x} \overline{y}$$

$$m\overline{\frac{\overline{x^{2}}}{x}} + b = \overline{x} \overline{y}$$
one point $(\overline{x}, \overline{x})$

SE=
$$n \overline{y}^2 - 2mn \overline{x} \overline{y} - 2bn \overline{y} + m^2 n \overline{x}^2 + 2mbn \overline{x} + nb^2$$

$$\frac{\partial (SE)}{\partial b} = -2n \overline{y} + 2mn \overline{x} + 2nb = 0$$

$$= -\overline{y} + m \overline{x} + b = 0$$

$$\overline{y} = m \overline{x} + b$$
another point $(\overline{x}, \overline{y})$

Least Squares Method

Slope for the Estimated Regression Equation

$$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

