1. Choose the equation of the function graphed below.

A.
$$f(x) = -\sqrt[3]{x+6} - 6$$

B.
$$f(x) = -\sqrt[3]{x-6} - 6$$

C.
$$f(x) = \sqrt[3]{x-6} - 6$$

D.
$$f(x) = \sqrt[3]{x+6} - 6$$

- E. None of the above
- 2. Choose the graph of the equation below.

$$f(x) = \sqrt[3]{x - 12} + 6$$

A.

7 >6 5 10 12 14

С.

D.

E. None of the above.

3. Choose the graph of the equation below.

$$f(x) = \sqrt[3]{x - 6} + 5$$

A.

С.

D.

В.

E. None of the above.

4. What is the domain of the function below?

$$f(x) = \sqrt[4]{-8x - 5}$$

A. $(-\infty, a]$, where $a \in [-3.8, -1.2]$

B. $(-\infty, \infty)$

- C. $[a, \infty)$, where $a \in [-1.07, -0.3]$
- D. $[a, \infty)$, where $a \in [-2.42, -1.37]$
- E. $(-\infty, a]$, where $a \in [-1.1, -0.4]$
- 5. Choose the equation of the function graphed below.

- A. $f(x) = -\sqrt[3]{x 12} + 3$
- B. $f(x) = \sqrt[3]{x+12} + 3$
- C. $f(x) = -\sqrt[3]{x+12} + 3$
- D. $f(x) = \sqrt[3]{x 12} + 3$
- E. None of the above
- 6. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{-14x^2 - 54} - \sqrt{-75x} = 0$$

- A. $x_1 \in [-2.1, -0.1]$ and $x_2 \in [-7.5, -2.5]$
- B. $x_1 \in [-0.5, 1.9]$ and $x_2 \in [3.5, 7.5]$
- C. $x \in [-0.5, 1.9]$
- D. All solutions lead to invalid or complex values in the equation.

E.
$$x \in [1.8, 8.8]$$

7. What is the domain of the function below?

$$f(x) = \sqrt[3]{-5x - 7}$$

- A. The domain is $[a, \infty)$, where $a \in [-1.05, -0.1]$
- B. The domain is $[a, \infty)$, where $a \in [-2.22, -1]$
- C. The domain is $(-\infty, a]$, where $a \in [-1.33, 1.27]$
- D. $(-\infty, \infty)$
- E. The domain is $(-\infty, a]$, where $a \in [-1.43, -1.06]$
- 8. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{-6x - 7} - \sqrt{-4x + 7} = 0$$

- A. $x_1 \in [-7, -5]$ and $x_2 \in [-6.17, -0.17]$
- B. All solutions lead to invalid or complex values in the equation.
- C. $x_1 \in [-1.17, -0.17]$ and $x_2 \in [-0.25, 6.75]$
- D. $x \in [-7, -5]$
- E. $x \in [-0, 5]$
- 9. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{-5x-4} - \sqrt{6x-4} = 0$$

- A. $x_1 \in [-0.91, -0.73]$ and $x_2 \in [0.32, 1.53]$
- B. $x \in [-0.78, -0.65]$
- C. $x \in [-0.03, 0.05]$

- D. All solutions lead to invalid or complex values in the equation.
- E. $x_1 \in [-0.91, -0.73]$ and $x_2 \in [-0.28, 0.2]$
- 10. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{54x^2 - 28} - \sqrt{-39x} = 0$$

- A. $x \in [-6.17, -0.17]$
- B. $x_1 \in [0.44, 1.44]$ and $x_2 \in [0.84, 1.26]$
- C. $x \in [0.44, 1.44]$
- D. All solutions lead to invalid or complex values in the equation.
- E. $x_1 \in [-6.17, -0.17]$ and $x_2 \in [0.1, 0.54]$