

Roll No.

GLOBAL INSTITUTE OF TECHNOLOGY

B. Tech. I Semester First Midterm Exam 2022 1FY2-01/ Engineering Mathematics-I Common for All Sections 26-12-2022/ Monday

Time: 3 Hours

Maximum Marks: 70

Attempt all questions

Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly. No supplementary sheet shall be issued in any case.

Part A (Answer should be given up to 25 words only) All questions are compulsory

Define Beta & Gamma Function (CO2)

Evaluate the value of $\Gamma\left(-\frac{3}{2}\right)$ (CO1)

Prove that $\Gamma(n+1) = n \Gamma(n)$ (CO2)

8.4 Prove that B(m,n) = B(m+1,n) + B(m,n+1)(CO3)

What is Even and Odd Function, Give two example of Odd & Even Function(CO1)

Find the half range sine series for the function f(x) = x; 0 < x < 2 (CO2)

State Parseval's theorem (CO1)

What is the value of $\Gamma\left(\frac{1}{2}\right)$ (CO1)

What is Periodic function, Give an example of periodic function. (CO3)

Write the Duplication Forumla (CO2)

10x 2 = 20

Part B Analytical/Problem solving questions Attempt all questions (word Limit 100)

Find the volume of the solid generated by revolution of the curve $(a-x)y^2 = a^2x$, about its asymptotes. (CO1)

Find the surface generated by revolving the tractrix $x = acost + \frac{a}{2} \log tan^2 \frac{t}{2}$, y =a sint about its asymptotes. (CO1)

Q3. Evaluate $\int_0^a x^3 (2ax - x^2)^{3/2} dx$ (CO2)

Drive the relation between Beta and Gamma Function (CO3)

Find the half range cosine series for the function $f(x) = \begin{cases} kx, & 0 \le x \le \frac{l}{2} \\ k(l-x)\frac{l}{2} < x \le l \end{cases}$ (CO2)

Part C(Descriptive/Analytical/Problem Solving/Design Question) Attempt all questions

Prove that the surface area of the solid generated by revolution of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2}$

= 1, about the major axis is $2\pi ab \left[\sqrt{1 - e^2} + \frac{1}{e} (sin^{-1}e) \right]$, where $b^2 = (1 - e^2)$. (CO1)

Show that $\Gamma(m)\Gamma(m+\frac{1}{2}) = \frac{\sqrt{\pi}}{2^{2m-1}}\Gamma(2m); m \in \mathbb{Z}$ $\Gamma(CO2)$ $\Gamma(m)\Gamma(m+\frac{1}{2}) = \frac{\sqrt{\pi}}{2^{2m-1}}\Gamma(2m); m \in \mathbb{Z}$ $\Gamma(CO2)$ $\Gamma(m)\Gamma(m+\frac{1}{2}) = \frac{\sqrt{\pi}}{2^{2m-1}}\Gamma(2m); m \in \mathbb{Z}$ $\Gamma(m)\Gamma(m+\frac{1}{2}) = \frac{\sqrt{\pi}}{2^{2m-1}}\Gamma(2m); m \in \mathbb{Z}$

Find the Fourier series for the function $f(x) = x + x^2$; $-\pi < x < \pi$. Hence Show that

(i) $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots$ (ii) $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ (CO3) 3x 10 = 30

an = 3 ((-1), - 84(4),

2 axeasino - (1-sino) Por I-m

PLATE (uasing) (Qasing)