

Ricardo Manuel Ruiz Díaz

Índice

Introducción	4
Resultados obtenidos por cada Algoritmo	5
Greedy	5
Busqueda Aleatoria	6
Búsqueda Local	7
El Mejor	7
El Primer Mejor	8
El Mejor Aleatorizado	9
Enfriamiento Simulado	10
Búsqueda Tabú	
Tabla global de resultados por datasets	12
Resumen st70	12
Gráficas st70	
Resumen ch130	
Gráficas ch130	16
Resumen a280	18
Gráficas a280	19
Resumen p654	
Gráficas p654	
Resumen vm1084	
Gráficas vm1084	25
Resumen m1748	
Gráficas vm1748	28
Análisis de los resultados obtenidos	
Eficiencia temporal	30
Calidad y robustez	
Número de evaluaciones	
Mejor resultado individual obtenido	
Ajuste de Parámetros	
Ajuste del Enfriamiento Simulado	
Mejora ES con dataset st70	37
Mejora ES con dataset ch130	
Mejora ES con dataset a280	
Mejora ES con dataset p654	38
Mejora ES con dataset vm1084	
Mejora ES con dataset vm1784	38
Ajuste del Búsqueda Tabú	41
Mejora BT con dataset st70	
Mejora BT con dataset ch130	42
Mejora BT con dataset a280	42
Mejora BT con dataset p654	42
Mejora BT con dataset vm1084	
Majora RT con dataset vm1784	12

Índice de Tablas

Tabla 1. Tabla de Costes Greedy	5
Tabla 2. Tabla de Costes Búsqueda Aleatoria	6
Tabla 3. Tabla de Costes Búsqueda Local el Mejor	7
Tabla 4. Tabla de Costes Búsqueda Local el Primer Mejor	8
Tabla 5. Tabla de Costes Búsqueda Local el Mejor Aleatorizado	9
Tabla 6. Tabla de Costes Enfriamiento Simulado	10
Tabla 7. Tabla de Costes Búsqueda Tabú	11
Tabla 8. Resumen resultados para el dataset st70	12
Tabla 9. Resumen resultados para el dataset ch130	15
Tabla 10. Resumen resultados para el dataset a280	18
Tabla 11. Resumen resultados para el dataset p654	21
Tabla 12. Resumen resultados para el dataset vm1084	24
Tabla 13. Resumen resultados para el dataset vm1748	27
Tabla 14. Mejora ES con dataset st70	37
Tabla 15. Mejora ES con dataset ch130	37
Tabla 16. Mejora ES con dataset a280	38
Tabla 17. Mejora ES con dataset p654	38
Tabla 18. Mejora ES con dataset vm1084	38
Tabla 19. Mejora ES con dataset vm1784	38
Tabla 20. Mejora BT con dataset st70	41
Tabla 21. Mejora BT con dataset ch130	42
Tabla 22. Mejora BT con dataset a280	42
Tabla 23. Mejora BT con dataset p654	42
Tabla 24. Mejora BT con dataset vm1084	43
Tabla 25 Mejora BT con dataset vm1784	4 3

Índice de Gráficas

Ilustración 1. Coste Medio st70	13
Ilustración 2. Coste Mejor st70	13
Ilustración 3. Evaluaciones Media st70	14
Ilustración 4. Tiempo Medio st70	14
llustración 5. Coste Medio ch130	16
Ilustración 6. Coste Mejor ch130	16
Ilustración 7. Evaluaciones Media ch130	17
Ilustración 8. Tiempo Medio ch130	17
Ilustración 9. Coste Medio a280	19
Ilustración 10. Coste Mejor a280	19
Ilustración 11. Evaluaciones Media a280	20
Ilustración 12. Tiempo Medio a280	20
Ilustración 13. Coste Medio p654	22
Ilustración 14. Coste Mejor p654	22
Ilustración 15. Evaluaciones Media p654	23
Ilustración 16. Tiempo Medio p654	23
Ilustración 17. Coste Medio vm1084	25
Ilustración 18. Coste Mejor vm1084	25
Ilustración 19. Evaluaciones Media vm1084	26
Ilustración 20. Tiempo Medio vm1084	26
Ilustración 21. Coste Medio vm1748	28
Ilustración 22. Coste Mejor vm1748	28
Ilustración 23. Evaluaciones Media vm1748	29
Ilustración 24. Tiempo medio vm1748	29
Ilustración 25. Eficiencia temporal de los Algoritmos	30
Ilustración 26. Coste Medio Normalizado de los Algoritmos	32
Ilustración 27. Desviación Típica Normalizada de los Algoritmos	32
Ilustración 28 Número de evaluaciones Normalizadas de los Algoritmos	34
Ilustración 29. Coste Mejor Normalizado de los Algoritmos	36
Ilustración 30. Coste Medio Normalizado ES Mejorado	39
Ilustración 31. Desviación Típica Normalizada ES Mejorado	39
Ilustración 32. Coste Mejor Normalizado ES Mejorado	40
Ilustración 33. Coste Medio Normalizado BT Mejorado	44
Ilustración 34. Coste Mejor Normalizado BT Mejorado	45
Ilustración 35. Desviación Típica Normalizada BT Mejorado	44

Introducción

El objetivo de esta práctica es estudiar el funcionamiento de los siguientes algoritmos:

- Greedy
- Búsqueda Aleatoria
- Búsqueda Local
 - ✓ El Mejor
 - ✓ El Primer Mejor
 - ✓ El Mejor Aleatorizado
- Enfriamiento Simulado
- Búsqueda Tabú

Para ello, se implementará estos algoritmos para resolver el problema del *Viajante de Comercio*. Este problema que llamaremos a partir de ahora *TSP*, dada una serie de ciudades, consiste en encontrar el circuito de menor coste que parta de una ciudad concreta, pase por todas las demás una sola vez y retome a la ciudad de origen.

En nuestro caso, trabajaremos con 6 datasets del problema obtenidas de la biblioteca *TSPLIB* que serán las siguientes:

- St70 -> con un tamaño de 70 ciudades y un coste óptimo de 675.
- Ch130 -> con un tamaño de 130 ciudades y un coste óptimo de 6.110.
- A280 -> con un tamaño de 280 ciudades y un coste óptimo de 2.579.
- P654 -> con un tamaño de 654 ciudades y un coste óptimo de 34.643.
- Vm1084 -> con un tamaño de 1084 ciudades y un coste óptimo de 239.297.
- Vm1748 -> con un tamaño de 1748 ciudades.

Se estudiará cómo de buenas son las soluciones que ofrece cada algoritmo, cuántas veces se llama a la función de evaluación, que en nuestro caso es la función *calculaCoste*, el número de iteraciones que realiza y el tiempo que tarda en realizarlas.

Resultados obtenidos por cada Algoritmo

Greedy

	St70		St70 Ch130		A280		P654		Vm1084		Vm1748	
	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV
Ejecución 1	830	1	7.579	1	3.157	1	43.457	1	301.476	1	408.101	1
Media	830	1	7.579	1	3.157	1	43.457	1	301.476	1	408.101	1
Desviación Típica	0	0	0	0	0	0	0	0	0	0	0	0

Tabla 1. Tabla de Costes Greedy

Búsqueda Aleatoria

	St	t70	Ch1	130	A280		P654		Vm1084		Vm1748	
	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV
Semilla 0	2868	112.000	38.925	208.000	29.664	448.000	1.794.114	1.046.400	8.009.568	1.734.400	14.134.673	2.796.800
Semilla 1	2770	112.000	38.437	208.000	29.496	448.000	1.809.713	1.046.400	8.017.444	1.734.400	14.134.601	2.796.800
Semilla 2	2809	112.000	38.240	208.000	29.546	448.000	1.798.827	1.046.400	7.969.912	1.734.400	14.128.347	2.796.800
Semilla 3	2875	112.000	38.898	208.000	29.174	448.000	1.806.317	1.046.400	7.958.466	1.734.400	14.163.069	2.796.800
Semilla 4	2842	112.000	38.616	208.000	29.467	448.000	1.803.585	1.046.400	7.963.922	1.734.400	14.131.611	2.796.800
Semilla 5	2812	112.000	39.038	208.000	29.598	448.000	1.807.866	1.046.400	7.939.222	1.734.400	-	2.796.800
Semilla 6	2780	112.000	38.459	208.000	29.771	448.000	1.807.271	1.046.400	7.945.424	1.734.400	-	2.796.800
Semilla 7	2850	112.000	38.584	208.000	29.469	448.000	1.817.079	1.046.400	7.992.968	1.734.400	-	2.796.800
Semilla 8	2806	112.000	39.108	208.000	29.799	448.000	1.819.544	1.046.400	7.985.354	1.734.400	-	2.796.800
Semilla 9	2823	112.000	38.603	208.000	29.353	448.000	1.810.228	1.046.400	7.967.929	1.734.400	-	2.796.800
Media	2823,5	112.000	38.690,8	208.000	29.533,7	448.000	1.807.454,4	1.046.400	7.975.020,9	1.734.400	14.138.460,2	2.796.800
Desviación Típica	35,087	0	286,445	0	188,577	0	7.604,478	0	25.934,269	0	14.000,158	0

Tabla 2. Tabla de Costes Búsqueda Aleatoria

Búsqueda Local

Búsqueda Local el Mejor

	St	70	Ch:	Ch130 A280		30	P654		Vm1	084	Vm1748	
	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV
Semilla 0	1.189	112.000	23.938	208.000	26.991	448.000	1.947.268	1.046.400	8.483.753	1.734.400	14.684.089	2.796.800
Semilla 1	1.267	112.000	22.697	208.000	26.657	448.000	1.928.171	1.046.400	8.357.385	1.734.400	14.952.989	2.796.800
Semilla 2	1.144	112.000	23.819	208.000	28.456	448.000	1.926.013	1.046.400	8.491.845	1.734.400	15.106.312	2.796.800
Semilla 3	1.266	112.000	24.761	208.000	27.242	448.000	1.956.574	1.046.400	8.447.783	1.734.400	14.861.355	2.796.800
Semilla 4	1.270	112.000	23.218	208.000	26.300	448.000	1.903.639	1.046.400	8.365.862	1.734.400	14.962.200	2.796.800
Semilla 5	1.358	112.000	23.262	208.000	26.787	448.000	1.975.520	1.046.400	8.518.458	1.734.400	14.757.511	2.796.800
Semilla 6	1.204	112.000	23.738	208.000	26.619	448.000	1.887.608	1.046.400	8.539.773	1.734.400	14.822.860	2.796.800
Semilla 7	1.104	112.000	23.022	208.000	26.315	448.000	1.877.150	1.046.400	8.456.359	1.734.400	14.769.694	2.796.800
Semilla 8	1.161	112.000	23.752	208.000	25.229	448.000	1.972.958	1.046.400	8.280.363	1.734.400	14.609.878	2.796.800
Semilla 9	1.305	112.000	23.460	208.000	28.413	448.000	1.947.949	1.046.400	8.519.567	1.734.400	14.903.149	2.796.800
Media	1.226,8	112.000	23.566,7	208.000	26.900,9	448.000	1.932.285	1.046.400	8.446.114,8	1.734.400	14.843.003,7	2.796.800
Desviación Típica	79,275	0	574,499	0	970,726	0	34150,197	0	84.855,028	0	146.166,027	0

Tabla 3. Tabla de Costes Búsqueda Local el Mejor

Búsqueda Local el Primer Mejor

		St70	Ch1	130	A280		P6	54	Vm1	084	Vm1748	
	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV
Semilla 0	1.293	112.000	15.464	208.000	9.917	448.000	478.747	1.046.400	3.017.146	1.734.400	7.992.956	2.796.800
Semilla 1	1.148	61.412	16.271	208.000	9.321	448.000	507.788	1.046.400	3.455.899	1.734.400	7.776.885	2.796.800
Semilla 2	1.081	84.250	16.212	208.000	10.675	448.000	545.978	1.046.400	2.916.217	1.734.400	7.946.362	2.796.800
Semilla 3	1.058	81.856	15.758	208.000	9.065	448.000	455.930	1.046.400	3.733.810	1.734.400	7.950.083	2.796.800
Semilla 4	1.192	66.207	14.469	208.000	8.350	448.000	807.625	1.046.400	3.763.698	1.734.400	8.218.826	2.796.800
Semilla 5	1.026	86.453	14.916	208.000	9.248	448.000	753.523	1.046.400	3.910.507	1.734.400	7.865.409	2.796.800
Semilla 6	973	98.853	14.272	208.000	9.838	448.000	654.645	1.046.400	3.217.647	1.734.400	8.096.013	2.796.800
Semilla 7	1.075	84.283	13.875	208.000	8.408	448.000	474.710	1.046.400	3.200.086	1.734.400	8.042.342	2.796.800
Semilla 8	966	58.654	14.803	208.000	8.348	448.000	469.655	1.046.400	3.357.816	1.734.400	7.553.040	2.796.800
Semilla 9	1.069	67.221	13.875	208.000	8.480	448.000	481.185	1.046.400	4.391.955	1.734.400	8.005.377	2.796.800
Media	1.088,1	80.118,9	14.991,5	208.000	9.165	448.000	562.978,6	1.046.400	3.496.478,1	1.734.400	7.944.729,3	2.796.800
Desviación Típica	99,929	17.047,326	898,305	0	796,781	0	128.945,28 5	0	453.867,677	0	183.018,885	0

Tabla 4. Tabla de Costes Búsqueda Local el Primer Mejor

Búsqueda Local el Mejor Aleatorizado

	St7	0	Chí	130	A2	80	P6	54	Vn	n1084	Vm1748	
	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV
Semilla 0	1.383	4.095	17.350	10.465	8.609	76.440	413.659	480.363	1.634.774	1.531.692	3.030.078	2.796.800
Semilla 1	1.298	3.920	13.363	18.135	9.015	77.840	376.858	559.170	1.531.399	1.642.802	2.972.055	2.796.800
Semilla 2	1.273	4.515	13.358	15.535	9.346	75.320	411.435	683.757	1.581.377	1.589.144	3.014.399	2.796.800
Semilla 3	1.330	4.480	14.824	13.325	9.413	67.200	400.989	535.953	1.578.159	1.412.452	3.015.841	2.796.800
Semilla 4	1.440	3.325	13.759	14.885	8.900	64.120	345.298	646.479	1.702.386	1.455.270	3.139.447	2.796.800
Semilla 5	1.543	2.695	14.604	14.885	8.462	82.740	415.186	544.128	1.607.308	1.480.744	2.949.476	2.796.800
Semilla 6	1.628	2.135	14.349	18.330	10.170	48.860	399.931	501.291	1.600.985	1.734.400	3.120.978	2.796.800
Semilla 7	1.311	3.430	12.493	15.275	8.801	73.220	425.366	509.466	1.662.859	1.444.430	3.000.969	2.796.800
Semilla 8	1.390	4.165	13.312	17.680	8.500	63.140	368.881	693.894	1.460.801	1.597.274	2.845.352	2.796.800
Semilla 9	1.513	3.185	14.599	15.145	10.021	43.680	416.883	513.063	1.535.821	1.594.564	2.959.868	2.796.800
Media	1.410,9	3.594,5	14.201,1	15.392	9.123,7	67.256	397.448,6	566.756,4	1.589.586,9	1.548.277,2	3.004.846,3	2.796.800
Desviación Típica	118,019	783,15 4	1.331,786	2.365,301	604,681	12.726,7 79	25.622,36 7	78.628,49 3	69.632,907	101.384,171	84.373,737	0

Tabla 5. Tabla de Costes Búsqueda Local el Mejor Aleatorizado

Enfriamiento Simulado

	St	70	Ch:	Ch130 A280		280	P	654	Vm1	.084	Vm1748	
	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV
Semilla 0	1.263	112.000	10.025	208.000	6.577	448.000	301.305	1.046.400	1.244.556	1.734.400	2.451.541	2.796.800
Semilla 1	913	112.000	10.858	208.000	5.493	448.000	331.266	1.046.400	1.300.555	1.734.400	2.157.007	2.796.800
Semilla 2	1.081	112.000	9.945	208.000	6.438	448.000	332.744	1.046.400	1.376.859	1.734.400	2.295.151	2.796.800
Semilla 3	941	112.000	11.370	208.000	6.127	448.000	341.234	1.046.400	1.233.964	1.734.400	2.419.678	2.796.800
Semilla 4	1.041	112.000	11.998	208.000	5.755	448.000	324.331	1.046.400	1.290.710	1.734.400	2.271.689	2.796.800
Semilla 5	1.109	112.000	10.413	208.000	6.166	448.000	378.196	1.046.400	1.351.564	1.734.400	2.317.825	2.796.800
Semilla 6	1.016	112.000	11.770	208.000	5.594	448.000	329.041	1.046.400	1.257.896	1.734.400	2.373.466	2.796.800
Semilla 7	1.030	112.000	12.260	208.000	5.871	448.000	305.838	1.046.400	1.236.590	1.734.400	2.250.417	2.796.800
Semilla 8	900	112.000	9.567	208.000	6.032	448.000	305.848	1.046.400	1.308.672	1.734.400	2.199.872	2.796.800
Semilla 9	1.118	112.000	10.619	208.000	5.958	448.000	327.907	1.046.400	1.334.309	1.734.400	2.299.196	2.796.800
Media	1.041,2	112.000	10.882,5	208.000	6.001,1	448.000	327.771	1.046.400	1.293.567,5	1.734.400	2.303.584,2	2.796.800
Desviación Típica	109,771	0	931,091	0	344,768	0	22.202,27	0	50.243,484	0	92.274,215	0

Tabla 6. Tabla de Costes Enfriamiento Simulado

Búsqueda Tabú

	S	t70	Ch:	130	A280		P	654	Vm1	.084	Vm1748	
	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV
Semilla 0	931	112.000	12.432	208.000	3.204	448.000	108.089	1.046.400	1.938.944	1.734.400	3.369.023	2.796.800
Semilla 1	1.029	112.000	12.368	208.000	2.976	448.000	122.300	1.046.400	1.843.295	1.734.400	3.149.172	2.796.800
Semilla 2	1.018	112.000	12.475	208.000	3.026	448.000	108.059	1.046.400	1.770.743	1.734.400	3.407.101	2.796.800
Semilla 3	923	112.000	12.258	208.000	3.334	448.000	118.714	1.046.400	1.862.866	1.734.400	3.221.902	2.796.800
Semilla 4	1.035	112.000	11.951	208.000	3.223	448.000	111.457	1.046.400	1.755.767	1.734.400	3.405.218	2.796.800
Semilla 5	993	112.000	11.610	208.000	3.154	448.000	109.016	1.046.400	1.785.529	1.734.400	3.200.750	2.796.800
Semilla 6	1.001	112.000	11.925	208.000	3.726	448.000	114.339	1.046.400	1.889.042	1.734.400	3.302.593	2.796.800
Semilla 7	969	112.000	12.158	208.000	3.575	448.000	108.905	1.046.400	1.801.132	1.734.400	3.268.092	2.796.800
Semilla 8	945	112.000	12.328	208.000	3.436	448.000	108.388	1.046.400	1.910.291	1.734.400	3.417.383	2.796.800
Semilla 9	967	112.000	12.126	208.000	3.518	448.000	110.058	1.046.400	1.862.887	1.734.400	3.250.772	2.796.800
Media	981,1	112.000	12.163,1	208.000	3.317,2	448.000	111.932,5	1.046.400	1.842.049,6	1.734.400	3.299.200,6	2.796.800
Desviación Típica	40,322	0	270,13	0	244,456	0	4.977,913	0	61.932,684	0	96.162,588	0

Tabla 7. Tabla de Costes Búsqueda Tabú

Tabla global de resultados por datasets

Resumen st70

	Coste Medio	Mejor (675)	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Greedy	830	830	-	0	1	0,0039s
Búsqueda Aleatoria	2823,5	2770	1	35,087	112.000	12,52s
BL El Mejor	1.226,8	1.104	7	79,275	112.000	0,493s
BL El Primer Mejor	1.088,1	966	8	99,929	80.118,9	0,41s
BL El Mejor Aleatorizado	1.410,9	1.273	2	118,019	3.594,5	0,03s
Enfriamiento Simulado	1.041,2	900	8	109,771	112.000	1,08s
Búsqueda Tabú	981,1	923	3	40,322	112.000	1,22s

Tabla 8. Resumen resultados para el dataset st70

Gráficas st70

Ilustración 1. Coste Medio st70

Ilustración 2. Coste Mejor st70

Ilustración 3. Evaluaciones Media st70

Ilustración 4. Tiempo Medio st70

Resumen ch130

	Coste Medio	Mejor (6.110)	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Greedy	7.579	7.579	-	0	1	0,0069s
Búsqueda Aleatoria	38.690,8	38.240	2	286,445	208.000	41,36s
BL El Mejor	23.566,7	22.697	1	574,499	208.000	1,07s
BL El Primer Mejor	14.991,5	13.875	7	898,305	208.000	1,19s
BL El Mejor Aleatorizado	14.201,1	12.493	7	1.331,786	15.392	0,149 s
Enfriamiento Simulado	10.882,5	9.567	8	931,091	208.000	2,00s
Búsqueda Tabú	12.163,1	11.610	5	270,13	208.000	2,92s

Tabla 9. Resumen resultados para el dataset ch130

Gráficas ch130

Ilustración 5. Coste Medio ch130

Ilustración 6. Coste Mejor ch130

Ilustración 7. Evaluaciones Media ch130

Ilustración 8. Tiempo Medio ch130

Resumen a280

	Coste Medio	Mejor (2.579)	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Greedy	3.157	3.157	-	0	1	0,01s
Búsqueda Aleatoria	29.533,7	29.174	3	188,577	448.000	186,97s
BL El Mejor	26.900,9	25.229	8	970,726	448.000	2,475s
BL El Primer Mejor	9.165	8.348	8	796,781	448.000	2,653s
BL El Mejor Aleatorizado	9.123,7	8.462	5	604,681	67.256	0,598s
Enfriamiento Simulado	6.001,1	5.493	1	344,768	448.000	6,21s
Búsqueda Tabú	3.317,2	2.976	1	244,456	448.000	9,26s

Tabla 10. Resumen resultados para el dataset a280

Gráficas a280

Ilustración 9. Coste Medio a280

Ilustración 10. Coste Mejor a280

Ilustración 11. Evaluaciones Media a280

Ilustración 12. Tiempo Medio a280

Resumen p654

	Coste Medio	Mejor (34.643)	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Greedy	43.457	43.457	-	0	1	0,076s
Búsqueda Aleatoria	1.807.454,4	1.794.114	0	7.604,478	1.046.400	1123,51s
BL El Mejor	1.932.285	1.877.150	7	34.150,197	1.046.400	7,52s
BL El Primer Mejor	562.978,6	455.930	3	128.945,285	1.046.400	9,23s
BL El Mejor Aleatorizado	397.448,6	345.298	4	25.622,367	566.756,4	6,07s
Enfriamiento Simulado	327.771	301.305	0	22.202,27	1.046.400	17,50s
Búsqueda Tabú	111.932,5	108.059	2	4.977,913	1.046.400	42,24s

Tabla 11. Resumen resultados para el dataset p654

Gráficas p654

Ilustración 13. Coste Medio p654

Ilustración 14. Coste Mejor p654

Ilustración 15. Evaluaciones Media p654

Ilustración 16. Tiempo Medio p654

Resumen vm1084

	Coste Medio	Mejor (239.297)	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Greedy	301.476	301.476	-	0	1	0,26s
Búsqueda Aleatoria	7.975.020,9	7.939.222	5	25.934,269	1.734.400	4.920,7s
BL El Mejor	8.446.114,8	8.280.363	8	84.855,028	1.734.400	14,3s
BL El Primer Mejor	3.496.478,1	2.916.217	2	453.867,677	1.734.400	19,69s
BL El Mejor Aleatorizado	1.589.586,9	1.460.801	8	69.632,907	1.548.277,2	22,49s
Enfriamiento Simulado	1.293.567,5	1.233.964	3	50.243,484	1.734.400	32,37s
Búsqueda Tabú	1.842.049,6	1.755.767	4	61.932,684	1.734.400	110,75s

Tabla 12. Resumen resultados para el dataset vm1084

Gráficas vm1084

Ilustración 17. Coste Medio vm1084

Ilustración 18. Coste Mejor vm1084

Ilustración 19. Evaluaciones Media vm1084

Ilustración 20. Tiempo Medio vm1084

Resumen vm1748

	Coste Medio	Mejor	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Greedy	408.101	408.101	-	0	1	0,7s
Búsqueda Aleatoria	14.138.460,2	14.128.347	2	14.000,158	2.796.800	8.233,17s
BL El Mejor	14.843.003,7	14.609.878	8	146.166,027	2.796.800	27,24s
BL El Primer Mejor	7.944.729,3	7.553.040	8	183.018,885	2.796.800	38,6s
BL El Mejor Aleatorizado	3.004.846,3	2.845.352	8	84.373,737	2.796.800	48,65s
Enfriamiento Simulado	2.303.584,2	2.157.007	1	92.274,215	2.796.800	56,82s
Búsqueda Tabú	3.299.200,6	3.149.172	1	96.162,588	2.796.800	212s

Tabla 13. Resumen resultados para el dataset vm1748

Gráficas vm1748

Ilustración 21. Coste Medio vm1748

Ilustración 22. Coste Mejor vm1748

Ilustración 23. Evaluaciones Media vm1748

Ilustración 24. Tiempo medio vm1748

Análisis de los resultados obtenidos

Para realizar el análisis de los resultados obtenidos, vamos a realizar una comparación entre los algoritmos basándonos en la información obtenida de las tablas y de las gráficas.

La comparación de los algoritmos vamos a hacerla en base a los siguientes criterios:

- Eficiencia temporal: compararemos los algoritmos en relación del tiempo medio que tarda en arrojar una solución en función del tamaño del dataset.
- Calidad y robustez del algoritmo: en este aspecto nos basaremos en el resultado medio y la desviación típica.
- Número de evaluaciones, es decir, llamadas a la función de evaluación que en nuestro caso es *calculaCoste*().
- Mejor resultado individual obtenido, aquí revisaremos el mejor resultado obtenido de cada algoritmo.

Eficiencia temporal

La eficiencia de un algoritmo la basamos en el tiempo medio que tarda en dar una solución. Hemos creado una gráfica donde se puede ver el tiempo medio por cada algoritmo y por cada dataset.

Ilustración 25. Eficiencia temporal de los Algoritmos

En este caso se puede observar perfectamente que el orden de eficiencia es el siguiente:

- 1- Algoritmo Greedy
- 2- BL El Mejor
- 3- BL El Primer Mejor
- 4- BL El Mejor Aleatorizado
- 5- Enfriamiento Simulado
- 6- Búsqueda Tabú
- 7- Búsqueda Aleatoria

Era obvio que el Greedy iba a ser el mejor en este aspecto ya que este algoritmo no realiza un procedimiento iterativo de aproximación hacia una solución, simplemente en cada posición busca cuál es la ciudad más cercana sin volver a evaluar este camino nunca más.

En el caso de la búsqueda aleatoria, era de esperar que el tiempo iba a ser muchísimo mayor que el resto incluso se puede observar que los últimos datasets no se pueden ver en la gráfica, debido a que su función calculaCoste() no estaba optimizada debido a que en cada evaluación debía calcular completamente todo el coste de la solución. En las demás búsquedas, como sólo debíamos calcular el coste de un vecino es más eficiente y menos costos.

Si dejamos de evaluar el Algoritmo Greedy, las búsquedas locales son las más eficientes. Hay que aclarar que esto ocurre debido a que nuestros algoritmos están "capados" por un número de iteraciones, en un caso real sólo pararían si no encuentran un vecino mejor, es decir, no paran hasta llegar a un óptimo local, este aspecto lo estudiaremos en un apartado más adelante.

Entre los algoritmos de búsqueda local, observamos que el más eficiente es el de BL del Mejor ya que tienen mayor tendencia a estancarse en óptimos locales ya que en cada situación busca el menor vecino de todos.

Calidad y robustez

Para estudiar la calidad y robustez de los algoritmos, nos fijaremos en el coste medio y en la desviación típica

Ilustración 26. Coste Medio Normalizado de los Algoritmos

Ilustración 27. Desviación Típica Normalizada de los Algoritmos

Para que sea más representativo y podamos comparar todos los datasets se ha normalizado los valores entre 0 a 1 de la siguiente manera:

$$Valor = \frac{ValorActual - ValorMinimo}{ValorMaximo - ValorMinimo}$$

Gracias a esto, como hemos comentado antes hemos podido comparar el resultado de todos los algoritmos y todos los datasets en la misma escala.

Diremos que un algoritmo arroja una solución de calidad y robusta cuando esta solución tenga un cote medio bajo y además la desviación típica del coste también es baja.

Cuando observamos el algoritmo Greedy, observamos que siempre que se ejecuta devuelve la misma solución, por lo que el coste medio es el más bajo y la desviación típica es 0.

En el caso de la búsqueda aleatoria, podemos observar que nos devuelve los peores resultados en cuanto a coste medio de la solución, como era de esperar. No obstante podemos ver en la gráfica que es de los algoritmos que tiene menor desviación típica, esto ocurre porque es muy difícil que consiga dar con una solución buena y todas sus soluciones se mantiene dentro del mismo rango de malas soluciones donde no hay grandes diferencias.

En el caso de las búsquedas locales, podemos ver que la calidad de las soluciones va empeorando en función del tamaño del dataset, es decir, mientras vaya aumentando el tamaño del dataset, peor coste medio ira arrojando el algoritmo. Esto también se debe a que como los algoritmos están "capados" no terminan de llegar a una solución óptima o mejor en un tiempo razonable.

Dentro de estas búsquedas locales, el que obtiene mejor resultado medio es el de búsqueda local Aleatorizado, pero al tener una desviación típica tan alta no se puede considerar una solución de calidad.

En el Enfriamiento Simulado, al igual que en la búsqueda local Aleatorizado, podemos ver que el coste medio de los algoritmos es de los mejores, sólo por detrás del Greedy, pero vemos que la desviación típica no es constante y es grande, por lo que no se consideraría un resultado de calidad.

Por último observamos la búsqueda Tabú, en la cual da una solución de calidad y robustez al darnos unos resultamos medios bajos y constantes, aunque un poco peores que en el Enfriamiento Simulado, pero debido la desviación típica es mejor sin importar el tamaño del datasets.

Una vez observado los algoritmos, quedaría de la siguiente manera:

- 1- Algoritmo Greedy
- 2- Búsqueda Tabú
- 3- Enfriamiento Simulado
- 4- BL El Mejor Aleatorizado
- 5- BL El Primer Mejor
- 6- BL El Mejor
- 7- Búsqueda Aleatoria

Número de evaluaciones

En este apartado evaluaremos el número de evaluaciones, de tal manera que contamos las veces que se llama a la función de evaluación, en nuestro caso, calculaCoste().

Ilustración 28. . Número de evaluaciones Normalizadas de los Algoritmos

En este apartado también hemos normalizado de para poder tener todos los resultados de los datasets en la misma escala.

El orden de los mejores algoritmos en función de este aspecto sería:

- 1- Algoritmo Greedy
- 2- BL El Mejor Aleatorizado
- 3- BL El Primer Mejor
- 4- Búsqueda Aleatoria, BL El Mejor, Enfriamiento Simulado, Búsqueda Tabú

Podemos ver que el Greedy es el mejor ya que el algoritmo sólo realiza una evaluación en cada datasets que es cuando construye la solución que se va a devolver.

En el caso del BL El Mejor Aleatorizado, poder finalizar cuando en X iteraciones no encuentre a nadie, podemos ver que en datasets pequeños no realiza el máximo de iteraciones pero observamos que mientras va aumentando el tamaño del dataset, se va acercando al máximo de iteraciones.

Por último, en el caso del primer mejor ocurre algo parecido al Aleatorizado pero en menor escala debido a que puede salir si no mejora la solución, pero en datasets pequeños ocurre, en el momento que empieza a crecer es muy difícil que no encuentre nadie mejor por lo que llega al máximo.

Como se comentó anteriormente, el número de evaluaciones en el caso de la búsqueda local es engañoso ya que hemos controlado el límite máximo de iteraciones posibles, pero si dejáramos que el criterio de las búsquedas locales fuera el de convergencia, tanto el número de evaluaciones como la eficiencia sería de los peores algoritmos.

Mejor resultado individual obtenido

Por último, compararemos los algoritmos en función de los mejores resultados obtenidos. Esta gráfica también esta normalizada de 0-1 por el mismo motivo que en los apartados anteriores, para poder comparar los resultados en la misma escala.

Ilustración 29. Coste Mejor Normalizado de los Algoritmos

Ha dado la casualidad, que en todos los datasets si aplicamos el algoritmo Greedy partiendo desde la primera posición, este da las mejores soluciones en casi todos los datasets.

Cómo era de esperar, la búsqueda aleatoria es la que arroja los peores resultados de todos los algoritmos. Vemos que en todos los datasets, su mejor resultado es el peor de todos.

Cuando llegamos a las búsquedas locales, en el caso del mejor, aunque en datasets pequeños de resultados bastantes buenos, vemos que mientras aumenta el tamaño del datasets, el resultado empieza a empeorar, esto también puede ser debido el número de evaluaciones, que debería ser mayor para que nos dé una mejor solución. Lo mismo ocurre con el primer mejor.

En cambio, cuando observamos la búsqueda local del mejor aleatorizado, que para ser una búsqueda local, nos devuelve muy buenos resultados sin importar el tamaño del dataset, por lo que este algoritmo sería el mejor dentro de las búsquedas locales.

Cuando llegamos al enfriamiento simulado, observamos que los resultados son muy parecidos a los de la búsqueda tabú que son muy buenos e incluso en algunos casos mejorando al algoritmo Greedy. Pero hemos de mencionar que los parámetros utilizados en estos dos algoritmos son los parámetros por defecto en la práctica para que controlar el tiempo de estos algoritmos. En el siguiente apartado modificaremos estos algoritmos para ver si mejora o no los resultados.

Ajuste de Parámetros

Después de haber analizado todos los algoritmos y con la idea de hacer un estudio más completo, vamos a modificar algunos parámetros de los algoritmos de Enfriamiento Simulado y de Búsqueda Tabú, ya que estos tienen mucho margen de mejora.

Ajuste del Enfriamiento Simulado

En este algoritmo, tenemos varias posibilidades:

- Modificar μ ο Φ. Estos parámetros son utilizados para calcular la temperatura inicial. Si modificamos estos parámetros haremos que el algoritmo sea más permisivo con soluciones peores que la actual.
- Modificar L o número de vecinos. Si se incrementa el valor del número de vecinos, aumentamos la exploración y con ello conseguir llegar a un mínimo.

Las pruebas que vamos a realizar serían dos:

- 1- Mismo L pero incrementando μ y Φ de 0,3 a 0,6.
- 2- Incrementar L de 20 a 50 e incrementar μ y Φ de 0,3 a 0,6

Obteniendo los siguientes resultados separados por datasets:

Mejora ES con dataset st70

	Coste Medio	Mejor (675)	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Enfriamiento Simulado	1.041,2	900	8	109,771	112.000	1,08s
ES Mejora 1	948	887	1	51,955	112.000	0.91s
ES Mejora 2	868,4	785	6	46,171	280.000	2,387s

Tabla 14. Mejora ES con dataset st70

Mejora ES con dataset ch130

	Coste Medio	Mejor (6.110)	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Enfriamiento Simulado	10.882,5	9.567	8	931,091	208.000	2,00s
ES Mejora 1	9922,7	8.896	6	611,758	208.000	2,12s
ES Mejora 2	9492,8	9.194	2	288,656	520.000	5,53s

Tabla 15. Mejora ES con dataset ch130

Mejora ES con dataset a280

	Coste Medio	Mejor (2.579)	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Enfriamiento Simulado	6.001,1	5.493	1	344,768	448.000	6,21s
ES Mejora 1	6.020,9	5.711	7	163,189	448.000	4,60s
ES Mejora 2	5.595,8	5.200	3	249,541	1.120.000	12,04s

Tabla 16. Mejora ES con dataset a280

Mejora ES con dataset p654

	Coste Medio	Mejor (34.643)	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Enfriamiento Simulado	327.771	301.305	0	22.202,27	1.046.400	17,50s
ES Mejora 1	308.983,5	263.555	6	21.919,75	1.046.400	15,58s
ES Mejora 2	280.889	236.175	6	21.547,99	2.616.000	40,80s

Tabla 17. Mejora ES con dataset p654

Mejora ES con dataset vm1084

	Coste Medio	Mejor (239.297)	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Enfriamiento Simulado	1.293.567,5	1.233.964	3	50.243,484	1.734.400	32,37s
ES Mejora 1	1.241.259,6	1.177.058	0	42.105,569	1.734.400	29,29s
ES Mejora 2	1.078.739,6	1.017.962	7	44.801,72	4.336.000	75,74s

Tabla 18. Mejora ES con dataset vm1084

Mejora ES con dataset vm1784

	Coste Medio	Mejor	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Enfriamiento Simulado	2.303.584,2	2.157.007	1	92.274,215	2.796.800	56,82s
ES Mejora 1	2.226.744,6	2.122.169	0	67.242,248	2.796.800	48,32s
ES Mejora 2	1.958.859	1.823.355	1	81.504,814	6.992.000	160,71s

Tabla 19. Mejora ES con dataset vm1784

Ilustración 30. Coste Medio Normalizado ES Mejorado

Ilustración 31. Desviación Típica Normalizada ES Mejorado

Ilustración 32. Coste Mejor Normalizado ES Mejorado

Observando los resultados podemos observar aumentando la vecindad, es decir, explorando más se obtienen resultados mucho mejores, en nuestro caso, lo hemos realizado con valores fijos, pero la idea ideal sería ajustar ese parámetro en función del tamaño del dataset (n/2, n/4).

Al modificar los valores μ o Φ por lo general mejoramos los resultados ya que acepta valores peores para después intensificarlos que nos puede llevar a otro mínimo o no.

Ajuste del Búsqueda Tabú

En la búsqueda tabú tenemos los siguientes parámetros que podemos modificar:

- Número de iteraciones del algoritmo
- Número de reinicializaciones: este parámetro implica el número de veces que el algoritmo va a reinicializar la solución actual, esta nueva solución actual podría ser:
 - Una completamente aleatoria, lo cual implica diversificar por otra zona donde nunca hayamos explorado.
 - La mejor solución hasta el momento, que implicaría intensificar más dónde creemos que esta el mínimo.
 - Greedy de la memoria de frecuencias: esta solución también implicaría diversificar pero justamente en espacios donde nunca hayamos estado, la solución aleatoria puede dar el caso de que caiga en una zona ya explorada, pero este caso es justo irnos a la zona que menos se ha explorado.
- Por último, podemos modificar el número de vecinos que analizamos en cada solución.

Las mejoras que vamos a reinicializar son las siguientes:

- Incrementar el número de iteraciones de 40 a 60 manteniendo los demás valores por defecto.
- 2- Incrementar el número de reinicializaciones de 4 a 150 manteniendo los demás valores por defecto.
- 3- Incrementar el número de vecinos de 40 a 70 manteniendo los demás valores por defecto.
- 4- Ejecutar el algoritmo con los siguientes parámetros:

a. Número de iteraciones: 60b. Número de reinicios: 10c. Número de vecinos: 70

Mejora BT con dataset st70

	Coste Medio	Mejor (675)	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Búsqueda Tabú	981,1	923	3	40,322	112.000	1,22s
BT Mejora 1	963,9	907	4	39,085	168.000	1,74s
BT Mejora 2	1.079,4	982	5	105,35	112.000	1 s
BT Mejora 3	911,4	853	0	31,74	196.000	1,93s
BT Mejora 4	884,8	787	8	56,07	294.000	2,97s

Tabla 20. Mejora BT con dataset st70

Mejora BT con dataset ch130

	Coste Medio	Mejor (6.110)	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Búsqueda Tabú	12.163,1	11.610	5	270,13	208.000	2,92s
BT Mejora 1	11.406,5	10.814	0	345,87	312.000	3,88s
BT Mejora 2	12.726,4	12.232	2	248,70	208.000	2,32s
BT Mejora 3	10.155,9	9.417	5	628,44	364.000	4,19s
BT Mejora 4	10.268	9.259	0	525,16	546.000	6,09s

Tabla 21. Mejora BT con dataset ch130

Mejora BT con dataset a280

	Coste Medio	Mejor (2.579)	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Búsqueda Tabú	3.317,2	2.976	1	244,456	448.000	9,26s
BT Mejora 1	3.537,3	3.041	1	467,6	672.000	13,24s
BT Mejora 2	2.870,5	2.808	7	64,90	448.000	6,24s
BT Mejora 3	3.304,1	3.085	2	255,22	784.000	13,15s
BT Mejora 4	3.123,2	2.875	0	240,27	1.176.000	22,33s

Tabla 22. Mejora BT con dataset a280

Mejora BT con dataset p654

	Coste Medio	Mejor (34.643)	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Búsqueda Tabú	111.932,5	108.059	2	4.977,913	1.046.400	42,24s
BT Mejora 1	127.576,8	108.115	2	46,407	1.569.600	65,64s
BT Mejora 2	107.758,7	107.523	0	113,38	1.046.400	30,71s
BT Mejora 3	128.245,5	100.171	0	63.555,74	1.831.200	73,24s
BT Mejora 4	109.759,1	102.888	1	3.526,82	2.746.800	105,4s

Tabla 23. Mejora BT con dataset p654

Mejora BT con dataset vm1084

	Coste Medio	Mejor (239.297)	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Búsqueda Tabú	1.842.049,6	1.755.767	4	61.932,684	1.734.400	110,75s
BT Mejora 1	1.757.517,8	1.719.557	8	28.175,51	2.601.600	205,49s
BT Mejora 2	1.931.999,3	1.870.560	1	37.370,74	1.734.400	72,55s
BT Mejora 3	1.466.973,3	1.336.343	5	104.056,45	3.035.200	249,24s
BT Mejora 4	1.405.757,1	1.323.983	5	48.177,94	4.552.800	328,83s

Tabla 24. Mejora BT con dataset vm1084

Mejora BT con dataset vm1784

	Coste Medio	Mejor	Semilla	Desviación Típica	#EV Media	Tiempo Medio
Búsqueda Tabú	3.299.200,6	3.149.172	1	96.162,588	2.796.800	212s
BT Mejora 1	3.204.416,6	3.059.339	2	100.277,39	4.195.200	490,26s
BT Mejora 2	3.475.641,4	3.350.393	3	92.812,59	2.796.800	119,18s
BT Mejora 3	2.607.726,3	2.440.445	1	126.664,95	4.894.400	342,07s
BT Mejora 4	2.576.108,2	2.396.420	1	144.706,91	7.341.600	448,41s

Tabla 25. Mejora BT con dataset vm1784

Ilustración 34. Coste Medio Normalizado BT Mejorado

Ilustración 33. Desviación Típica Normalizada BT Mejorado

Ilustración 35. Coste Mejor Normalizado BT Mejorado

Una vez hemos experimentado variando los parámetros del algoritmo, podemos ver que modificando tanto el número de iteraciones o el número de reinicializaciones independientemente, es decir, sin modificar ningún parámetro más, los valores obtenidos son incluso peores que teniendo los valores por defecto.

En cambio, si vemos que sólo variamos el número de vecinos que evaluamos conseguimos un coste medio de más robusto ya que conseguimos un mejor resultado como media, aunque la desviación típica aumenta.

Por último, si aumentamos todos los parámetros obtenemos los mejores resultados y mejores resultados medios, aunque la desviación típica aumenta. La idea ideal sería aumentar los parámetros de manera proporcional al tamaño del dataset.