學號:r07921001 系級:電機所二 姓名:李尚倫

1. 請從 Network Pruning/Quantization/Knowledge Distillation/Low Rank Approximation 選擇兩個方法(並詳述),將同一個大 model 壓縮至同等數量級,並討論其 accuracy 的變化。(2%)

這題中用到的大 Model 的結構如下圖,是一個自己接的簡單的 CNN model (以下稱 Big model): 6 layer CNN + 1 layer FC model train from scratch 100 ep using Adam

```
TeacherNet(
  (cnn): Sequential(
    (0): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (5): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (6): ReLU()
    (7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (8): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (9): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (10): ReLU()
    (11): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (12): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (14): ReLU()
    (15): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (16): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (17): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (18): ReLU()
    (19): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (20): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (21): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (22): ReLU()
    (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    )
    (fc): Sequential(
    (0): Linear(in_features=4096, out_features=11, bias=True)
    )
}
```

而我們使用以下兩種方法來壓縮此 Model 至同一個數量級,結果如下表:

Method	Validation	File size (B)	Model's parameters
	Accuracy		
Big model	0.7988	6,477,626	1,615,627
Knowledge	0.7901	1,047,430	256,779
Distillation with Low			
Rank Approximation			
Directly Quantization	0.7913	1,623,152	1,615,627

Knowledge Distillation with Low Rank Approximation 的方法是使用 Low Rank Approximation 的方式去設計一個輕量的 Student model 用 Knowledge Distillation 的方式來學 Teacher model (即為 Big model), Low rank 的 Student model 的設計如下: Student model: (inputs=256x256x3, output=11)

一般的 Convolution Layer weight 數量很大,僅在第一層使用(通常第一層都需要是一般的 conv),而 D&P 的 DW(Depthwise Convolution Layer)則是各 channel 的 feature map 各過自己的 filter 處理後,再用 PW(Pointwise Convolution Layer)把所有 channel 的 feature map 的單個 pixel 資訊合在一起。如下圖是 Student_model 的單個 layer 展開:

如此 D&P 的做法可以大量減少參數,做出一個輕量化的 model,圖示如下圖,且 accuracy 比單純只是參數少的 CNN 來的更高(詳見第四題討論):

而輕量化的 student model 通常會搭配 teacher model 一起訓練會比 train from scratch 的效果好(詳見第二題討論),因此搭配 Knowledge Distillation 的方法,讓 student model 在訓練時不只和原本 data 的 label 算 loss 也和 teacher model 的 output 算 loss:

Loss =
$$\alpha T^2 \times \text{KLDivLoss}\left(\frac{\text{Teacher's Logits}}{T} \mid\mid \frac{\text{Student's Logits}}{T}\right) + (1 - \alpha)\text{CrossEntropy}(\text{Student's Logits, Data's Label})$$

上式為設計的 Loss,用 Adam optimizer lr=0.001 並 training 100ep 後的結果,參照上面的 table 顯示,結果和 Big model 接近,無論檔案大小或參數上的壓縮效果都不錯。

而 Directly Quantization 則是直接壓縮 Big model 的大小,把原本的訓練好的 Float32 的參數,32bit 改降存成 8bit,使用的是 numpy.unit8,轉換的方式是根據上下界做 normalize 後 map 到 0~255 的區間,公式如下:

$$W' = round(\frac{W - \min(W)}{\max(W) - \min(W)} \times (2^8 - 1))$$

儲存上下界與轉換完的 unit8 weight,並存成.pkl 檔,檔案的大小可以縮小四倍左右,並保有不錯的 accuracy,藉此可以觀察出 weight 的 resolution 其實並沒有很高,只需要 0~255 搭配上下界就可以很趨近了,但相較於前者的方式,這個方式僅降低檔案大小,並沒有減少模型實際的參數量,因此計算速度不會增快。

由上面的比較可知,兩者各有優缺點,所以最後 kaggle 上的結果我們使用兩者混合的方式,可以既減少參數增加 predict 的速度,也可以大量減少檔案大小。先用 Low Rank Approximation 的方式重新設計了一個 Student model 比原本助教提供的更多層,並調整 model 結構,然後再用 Knowledge Distillation 以助教提供的 ResNet18 ImageNet pretrained & fine-tune 當作 Teacher net 來訓練,以 0.002 的 learning rate 搭配 Adam optimizer,訓練 200 個 epoch,得到還不錯的 accuracy,然後再下調 learning rate 到 0.001 訓練 3 個 epoch,accuracy 仍有上升,繼續下調 learning rate 到 0.0005,訓練 2 個 epoch,就到極限了(後續還有再降低 learning rate 或訓練多一點 epoch 並沒有獲得更好的效果),得到第一段的 compressed model (.bin model)。此階段的 model 仍有 918038 Bytes 還不到門檻,再使用 Quantization 把參數從 32bit 的資料型態用前面提到的方式採存成 8bit,一口氣把大小降到 236937 Bytes,為第二階段 compressed model (.pkl model),在 Kaggle 的 accuracy 有 0.8494 超過 strong baseline,並有在條件的大小內。

Student model deeper: (inputs=256x256x3, output=11)

實驗的 Table 如下,最後 submit 為 student model deeper 203ep:

Model / epoch	.bin	.pkl	.pkl	model	.pkl
	acc	acc	acc	parameters	file size (B)
	on val	on val	on kaggle		
student_custom_small	0.8137	0.8087	0.8344	256779	268471
(助教提供的小 model)					
student_model/202ep	0.8207	0.8155	0.8332	256779	268471
student_model_deeper/200ep	0.8283	0.8277	0.8446	224011	236937
student_model_deeper/203ep	0.8388	0.8362	0.8494	224011	236937
student_model_deeper/205ep	0.8429	0.8376	0.8470	224011	236937

以下三題只需要選擇兩者即可,分數取最高的兩個。

- 2. [Knowledge Distillation] 請嘗試比較以下 validation accuracy (兩個 Teacher Net 由助教提供) 以及 student 的總參數量以及架構,並嘗試解釋為甚麼有這樣的結果。你 Student Net 的參數量必須要小於 Teacher Net 的參數量。(2%)
- x. Teacher net architecture and # of parameters: torchvision's ResNet18, with 11,182,155 parameters. y. Student net architecture and # of parameters: 使用第一題的 Student model, with 256,779 parameters.
- a. Teacher net (ResNet18) from scratch: 80.12%
- b. Teacher net (ResNet18) ImageNet pretrained & fine-tune: 88.51%
- c. Your student net from scratch: 79.94%d. Your student net KD from (a.): 79.80%e. Your student net KD from (b.): 82.13%

Role (model) training method	Validation accuracy	Model size (B)	Parameters	Filename
a. Teacher net (ResNet18) from scratch	0.8012	44,788,712	11,182,155	teacher_resnet18_from_scratch.bin
b. Teacher net (ResNet18) ImageNet pretrained & fine-tune	0.8851	44,788,712	11,182,155	teacher_resnet18.bin
student_custom_small	0.8137	1047430	256779	student_custom_small.bin
c. Student net (Student_model) from scratch	0.7994	1047574	256779	student_model_from_scratch.bin
d. Student net (Student_model) KD from a	0.7980	1047574	256779	student_model_from_scrateacher.bin
e. Student net (Student_model) KD from b	0.8213	1047574	256779	student_model_200ep.bin

使用第一題描述的 KD 方式分別以兩種不同的 teacher model weight 的去訓練第一題的 student model, 並和 train from scratch 做比較,其中都 train 200 個 epoch,都使用 Adam optimizer with lr=0.001。由結果可以看出,很明顯的雖然對 student model train from scratch 的效果還可以,但還是有 teacher model 做 KD 的準確性更高,而且還必須是好的 teacher model 效果才會比較好。原因就如同老師上課所講的,第一,當 data 不

是很乾淨的時候,對一般的 model 來說他是個 noise,只會干擾學習。透過去學習其他大 model 預測的 logits 會比較好,能朝已知對的方向收斂。第二,可以給予 label 和 label 之間的關連,teacher model 有每個分類的 score,而不是像 ground truth 的 one hot encoding,這可以引導小 model 去學習,讓學習的效果更好。例如在數字辨識數字 8 可能就和 6,9,0 有關係。因此有 teacher model 會比 train from scratch 好,而 teacher model 本身的分類效果(accuracy)也必須要好,才能夠正確引導 student model 往好的方向收斂,所以 KD from b 會比 KD from a 好。

3. [Network Pruning] 請使用兩種以上的 pruning rate 畫出 X 軸為參數量, Y 軸為 validation accuracy 的折線圖。你的圖上應該會有兩條以上的折線。(2%) (Skip) (refer to hw slide)

如果我們用兩種rate去prune (每次都prune掉5%和10%), 其參數量和Accuracy的圖可能 就會長的像下圖。這題就是請 你們畫出這張圖。

被 prune 掉的 neuron 越多,雖然 model 的大小變小了運算速度也會比較快,但 accuracy 也會有顯著的下降,因為被 prune 過的 model 並不能完全代表原本的 model,且刪掉 neuron 的依據是按重要性,刪越多(rate 越大)越有可能刪到重要的,因此當一直迭代下去越剪枝越多(rate*rate*rate...),pruned model 和原 model 的失真就越大。

- 4. [Low Rank Approx / Model Architecture] 請嘗試比較以下 validation accuracy,並且模型大小須接近 1 MB。(2%)
- a. 原始 CNN model (用一般的 Convolution Layer)

- b. 將 CNN model 的 Convolution Layer 換成參數量接近的 Depthwise & Pointwise (參見第一題的 Student model)
- c. 將 CNN model 的 Convolution Layer 換成參數量接近的 Group Convolution Layer (Group 數量自訂,但不要設為 1 或 in_filters)

而下方 table 則是上面三個 model train from scratch 100ep with Adam lr=0.001 的結果

	Validation acc	Model size (B)	Paramters	Model structure
Standard Convolution Layer	0.7615	1120786	277611	見 4.a.
Depthwise & Pointwise Convolution Layer	0.7834	1047430	224011	見 4.b.
Group Convolution Layer	0.7429	958468	236571	見 4.c.

一般的 convolution layer 都是在講 group=1 的時候,即一個 filter 的大小就是 kernal_size* kernal_size*input channel 數,參數量多。而 group=input channel 的時候,一個 filter 的大小是 kernal_size* kernal_size*1,如果搭配 output channel 數 = input channel 數的話,即是第一題提到的 Depthwise 的 convolution,搭配 Pointwise 使用的話,要達到相同效果的 convolution 相較一般法參數量可以減少很多。group=2 的意思則介於兩者之間,一個 filter 的大小是 kernal_size* kernal_size* input channel 數/2,參數量介於兩者之間,和原本的一般法之間比較沒有直接的等效關係。

而上邊表格紀錄了,所設計的三種不樣的 convolution model 的 performance,其中 D&P 的方法表現得最好,因為在一樣參數量(model size)的情況下,他所等效(代表) 的 model 實際上是要用更多參數量才能在一般 convolution model 上實作的,而至於 group convolution model 的表現原本預期是應該介於一般與 D&P 之間的,估計是因為 model 的接法上並沒有考慮太多的設計,沒有像 D&P 的方法在 Depthwise 後搭配一個 剛好的 Pointwise,做出一個可以合理解釋的 model,所以 performance 沒有特別好。

圖源:

Conv Layer

```
conv2d (standard)
(in=in, out=out, k=3, s=1, p=1, group=1)

BatchNorm2d(in)

ReLU6

Maxpool2d(k=2, s=2, p=0)
```

D&P Conv Layer

```
conv2d (Depthwise)
(in=in, out=in, k=3, s=1, p=1, group=in)

BatchNorm2d(in)

ReLU6

conv2d (Pointwise)
(in=in, out=out, k=1, s=1, p=0, group=1)

Maxpool2d(k=2, s=2, p=0)
```

Group Conv Layer

```
conv2d (Depthwise)
(in=in, out=in, k=3, s=1, p=1, group=2)

BatchNorm2d(in)

ReLU6

conv2d (Pointwise)
(in=in, out=out, k=1, s=1, p=0, group=1)

Maxpool2d(k=2, s=2, p=0)
```