Revisão de Probabilidade e Estatística

Aula 2 - Parte 1

Aishameriane Schmidt

PPGECO/UFSC

Fevereiro de 2018.

Programa

Aula 2

- 1. Variáveis aleatórias de onde vem, onde vivem e como enxergar elas como funções?
- 2. Função massa, função densidade e função densidade acumulada
- 3. Esperança, variância e covariância
- 4. Distribuições tabeladas
- 5. Função geradora de momentos

Até aqui...

O que vimos

- Conjuntos, operações com conjuntos.
- ► Eventos.
- Definições de probabilidade.
- Axiomas de Kolmogorov e implicações.
- Probabilidade condicional e independência.

Até o momento trabalhamos apenas com probabilidades relacionadas a um espaço de probabilidade, $(\Omega, \gamma, \mathbb{P}(\cdot))$, em que:

- Ω ou espaço amostral, é o conjunto de todos os possíveis resultados de um determinado experimento,
- γ é o conjunto de todas coleções de eventos de Ω ,
- $\mathbb{P}(\cdot)$ é uma função de probabilidade, que tem como domínio γ e contradomínio o intervalo [0, 1].

Em algumas situações, lidar diretamente com o espaço amostral pode ser muito trabalhoso. Por exemplo, seja o lançamento de uma moeda. Sabemos que $\Omega = \{C, K\}$, onde C representa "cara" e K representa "coroa" e, no caso de uma moeda honesta, $\mathbb{P}(C) = \mathbb{P}(K)$.

Em algumas situações, lidar diretamente com o espaço amostral pode ser muito trabalhoso. Por exemplo, seja o lançamento de uma moeda. Sabemos que $\Omega = \{C, K\}$, onde C representa "cara" e K representa "coroa" e, no caso de uma moeda honesta, $\mathbb{P}(C) = \mathbb{P}(K)$.

O que acontece se quisermos saber qual a probabilidade de saírem 5 caras em 7 lançamentos da moeda?

 $\Omega = \{CCCCCCC, CCCCCCK, CCCCCKC, \ldots\}$

Em algumas situações, lidar diretamente com o espaço amostral pode ser muito trabalhoso. Por exemplo, seja o lançamento de uma moeda. Sabemos que $\Omega = \{C, K\}$, onde C representa "cara" e K representa "coroa" e, no caso de uma moeda honesta, $\mathbb{P}(C) = \mathbb{P}(K)$.

O que acontece se quisermos saber qual a probabilidade de saírem 5 caras em 7 lançamentos da moeda?

$$\Omega = \{CCCCCCC, CCCCCCK, CCCCCKC, \ldots\}$$

Poderíamos criar um código onde C = 1 e K = 0, de forma que estaríamos interessados em $\mathbb{P}(5)$.

Juju

Suponha que você tem uma moeda chamada Juju e que ela é uma moeda honesta, isto é, a probabilidade de sair cara é igual à probabilidade de sair coroa. Em notação matemática,

 $\mathbb{P}(\{\text{lançar Juju resultou em cara}\}) = \mathbb{P}(\{\text{lançar Juju resultou em coroa}\}) = \frac{1}{2}$

Juju

Suponha que você tem uma moeda chamada Juju e que ela é uma moeda honesta, isto é, a probabilidade de sair cara é igual à probabilidade de sair coroa. Em notação matemática,

$$\mathbb{P}(\{\text{lançar Juju resultou em cara}\}) = \mathbb{P}(\{\text{lançar Juju resultou em coroa}\}) = \frac{1}{2}$$

Observe que Ω , o espaço amostral do experimento *lançar a Juju*, é dado por $\Omega = \{(cara), (coroa)\}.$

Juju

Suponha que você tem uma moeda chamada Juju e que ela é uma moeda honesta, isto é, a probabilidade de sair cara é igual à probabilidade de sair coroa. Em notação matemática,

$$\mathbb{P}(\{\text{lançar Juju resultou em cara}\}) = \mathbb{P}(\{\text{lançar Juju resultou em coroa}\}) = \frac{1}{2}$$

Observe que Ω , o espaço amostral do experimento lançar a Juju, é dado por $\Omega = \{(cara), (coroa)\}.$

Agora, vamos criar uma função que será definida por:

$$f(Juju) = \begin{cases} 0 & \text{se o lançamento de Juju deu cara,} \\ 1 & \text{se o lançamento de Juju deu coroa.} \end{cases}$$
 (1)

Juju (cont.)

Vamos chamar essa função de X (ao invés de f). Observe que:

$$\mathbb{P}(X = 1) = \mathbb{P}(\{\text{lançar Juju resultou em coroa}\}) = \frac{1}{2}$$

E ainda:

$$\mathbb{P}(X=0) = \mathbb{P}(\{\text{lançar Juju resultou em cara}\}) = \frac{1}{2}$$

Juju (cont.)

Vamos chamar essa função de X (ao invés de f). Observe que:

$$\mathbb{P}(X = 1) = \mathbb{P}(\{\text{lançar Juju resultou em coroa}\}) = \frac{1}{2}$$

E ainda:

$$\mathbb{P}(X=0) = \mathbb{P}(\{\text{lançar Juju resultou em cara}\}) = \frac{1}{2}$$

► A probabilidade de que *X* assuma valor 1 é a mesma probabilidade de sair coroa quando lançamos a Juju e a probabilidade de *X* ser igual a 0 é a probabilidade de sair cara no lançamento da Juju.

Juju (cont.)

Vamos chamar essa função de X (ao invés de f). Observe que:

$$\mathbb{P}(X = 1) = \mathbb{P}(\{\text{lançar Juju resultou em coroa}\}) = \frac{1}{2}$$

E ainda:

$$\mathbb{P}(X=0) = \mathbb{P}(\{\text{lançar Juju resultou em cara}\}) = \frac{1}{2}$$

- ► A probabilidade de que *X* assuma valor 1 é a mesma probabilidade de sair coroa quando lançamos a Juju e a probabilidade de *X* ser igual a 0 é a probabilidade de sair cara no lançamento da Juju.
- Como X é uma função que "pega" um elemento de Ω e está associando um número real, então X preenche os requisitos para ser chamada de *variável aleatória*.

Definição

Informalmente, variável aleatória (v.a.) é uma função que associa elementos do espaço amostral Ω ao conjunto dos números reais, \mathbb{R} .

Definição

Informalmente, variável aleatória (v.a.) é uma função que associa elementos do espaço amostral Ω ao conjunto dos números reais, \mathbb{R} . Formalmente, temos:

Definição

(Variável Aleatória)

Para um dado espaço de probabilidade $(\Omega, \gamma, P(\cdot))$ uma variável aleatória, denotada por X ou $X(\cdot)$, é uma função com domínio em Ω e contradomínio em \mathbb{R} .

Temos Ω como sendo o conjunto de todos resultados possíveis de um experimento (conjunto de todos eventos) e $X(\cdot)$ é uma função que associa cada elemento $\omega \in \Omega$ a um número real.

Observação: Em nenhum momento utilizamos a função $\mathbb{P}(\cdot)$!

Definição

Definição

Definição

Imagem de uma v.a. A imagem de uma v.a. representa a transformação do espaço amostral original para um espaço amostral com valores reais. Formalmente, a imagem de uma v.a. é definida por:

$$R(X) = \{ x \in \mathbb{R} : x = X(w), w \in \Omega \}$$

O espaço de probabilidade induzido por uma v.a.

► Precisaremos de um novo espaço de probabilidade para associar probabilidades a subconjuntos do novo espaço amostral real definido pela imagem da v.a.

- Precisaremos de um novo espaço de probabilidade para associar probabilidades a subconjuntos do novo espaço amostral real definido pela imagem da v.a.
- ▶ O espaço $(\Omega, \gamma, \mathbb{P}(\cdot))$ nos permite determinar uma probabilidade para eventos em Ω , porém não sabemos a probabilidade de que um resultado da v.a. X fique no subconjunto $A \subset R(X)$.

- ► Precisaremos de um novo espaço de probabilidade para associar probabilidades a subconjuntos do novo espaço amostral real definido pela imagem da v.a.
- ▶ O espaço $(\Omega, \gamma, \mathbb{P}(\cdot))$ nos permite determinar uma probabilidade para eventos em Ω , porém não sabemos a probabilidade de que um resultado da v.a. X fique no subconjunto $A \subset R(X)$.
- ► Como X é um mapa de Ω para a reta real, é possível definir o evento B em Ω tal que o evento B ocorre se e somente se $A \subset R(X)$ ocorre.

- ► Precisaremos de um novo espaço de probabilidade para associar probabilidades a subconjuntos do novo espaço amostral real definido pela imagem da v.a.
- ▶ O espaço $(\Omega, \gamma, \mathbb{P}(\cdot))$ nos permite determinar uma probabilidade para eventos em Ω , porém não sabemos a probabilidade de que um resultado da v.a. X fique no subconjunto $A \subset R(X)$.
- ► Como X é um mapa de Ω para a reta real, é possível definir o evento B em Ω tal que o evento B ocorre se e somente se $A \subset R(X)$ ocorre.
- ▶ Uma vez que os eventos A e B ocorrem simultaneamente, a probabilidade deles deve ser a mesma, ou seja, $\mathbb{P}_X(A) \equiv \mathbb{P}(B)$, onde $\mathbb{P}_X(\cdot)$ denota a medida de probabilidade que atribui a resultados de X suas probabilidades.

- ▶ Precisaremos de um novo espaço de probabilidade para associar probabilidades a subconjuntos do novo espaço amostral real definido pela imagem da v.a.
- ▶ O espaço $(\Omega, \gamma, \mathbb{P}(\cdot))$ nos permite determinar uma probabilidade para eventos em Ω , porém não sabemos a probabilidade de que um resultado da v.a. X fique no subconjunto $A \subset R(X)$.
- ► Como X é um mapa de Ω para a reta real, é possível definir o evento B em Ω tal que o evento B ocorre se e somente se $A \subset R(X)$ ocorre.
- ▶ Uma vez que os eventos A e B ocorrem simultaneamente, a probabilidade deles deve ser a mesma, ou seja, $\mathbb{P}_X(A) \equiv \mathbb{P}(B)$, onde $\mathbb{P}_X(\cdot)$ denota a medida de probabilidade que atribui a resultados de X suas probabilidades.
 - Se dois eventos ocorrem sempre simultaneamente, eles são ditos equivalentes e ocorrem em espaços de probabilidades distintos, pois se ocorressem no mesmo espaço, eles seriam o mesmo evento. Logo,

$$\mathbb{P}_X(A) \equiv \mathbb{P}(B)$$
 para $B = \{w : X(w) \in A, w \in \Omega\}$

O espaço de probabilidade induzido por uma v.a.

Probabilidades definidas para eventos em Ω são transferidas para eventos em R(X) através da relação funcional que define uma v.a., $x_i = X(w_i)$.

Então, sabendo que o domínio de $\mathbb{P}(\cdot)$ é γ (espaço de eventos), qual é o domínio de $\mathbb{P}_X(\cdot)$?

O espaço de probabilidade induzido por uma v.a.

Probabilidades definidas para eventos em Ω são transferidas para eventos em R(X) através da relação funcional que define uma v.a., $x_i = X(w_i)$.

Então, sabendo que o domínio de $\mathbb{P}(\cdot)$ é γ (espaço de eventos), qual é o domínio de $\mathbb{P}_X(\cdot)$? Podemos dizer informalmente que γ_X é o espaço de eventos do espaço de probabilidade associado à variável aleatória X e é dado por todos os subconjuntos da imagem de X, R(X).

Função acumulada

Definição

(Função distribuição acumulada de uma v.a.)

Seja X uma v.a.. A função distribuição acumulada de X, denotada por $F_X(\cdot)$, é definida como a função com domínio em $\mathbb R$ e contradomínio no intervalo fechado [0,1] que satisfaz

$$F_X(x) = \mathbb{P}(X \in (-\infty, x]) = \mathbb{P}(X \leq x) = \mathbb{P}[\{\omega : X(\omega) \leq x\}]$$

para todo número real x.

Função acumulada

► A função acumulada de *X* é a função que calcula as probabilidades de *X* assumir valores menores ou iguais a um valor específico *x*;

- ► A função acumulada de *X* é a função que calcula as probabilidades de *X* assumir valores menores ou iguais a um valor específico *x*;
 - ▶ Para tanto, ela avalia os valores ω do espaço amostral tais que $X(\omega)$ é menor ou igual que x.

- ► A função acumulada de *X* é a função que calcula as probabilidades de *X* assumir valores menores ou iguais a um valor específico *x*;
 - ▶ Para tanto, ela avalia os valores ω do espaço amostral tais que $X(\omega)$ é menor ou igual que x.
- Essa função é importante pois ela define de forma única uma variável aleatória.

- ► A função acumulada de *X* é a função que calcula as probabilidades de *X* assumir valores menores ou iguais a um valor específico *x*;
 - ▶ Para tanto, ela avalia os valores ω do espaço amostral tais que $X(\omega)$ é menor ou igual que x.
- Essa função é importante pois ela define de forma única uma variável aleatória.
- Note também que mesmo que X só assuma valores em um subconjunto dos reais, a função de distribuição é bem definida em toda a reta.

- ► A função acumulada de X é a função que calcula as probabilidades de X assumir valores menores ou iguais a um valor específico x:
 - ▶ Para tanto, ela avalia os valores ω do espaço amostral tais que $X(\omega)$ é menor ou igual que x.
- Essa função é importante pois ela define de forma única uma variável aleatória.
- Note também que mesmo que X só assuma valores em um subconjunto dos reais, a função de distribuição é bem definida em toda a reta.
- ► Quando não houver a possibilidade de confusão, a notação será apenas F ao invés de F_X.

Função acumulada

Teorema

(Propriedades da função distribuição acumulada $F_X(\cdot)$)

As seguintes propriedades precisam ser atendidas para que possamos considerar uma função como sendo a função distribuição acumulada. Este teorema não será demonstrado, mas uma parte da prova pode ser encontrada em [Mood and Graybill, 1963] ou em [Magalhães, 2011].

i.
$$F_X(-\infty) \equiv \lim_{x \to -\infty} F_X(x) = 0$$
 e $F_X(+\infty) \equiv \lim_{x \to +\infty} F_X(x) = 1$;

- ii. $F_X(\cdot)$ é uma função monótona não-decrescente; isto é, $F_X(a) < F_X(b)$ para a < b;
- **iii.** $F_X(\cdot)$ é contínua à direita; isto é,

$$\lim_{h\to 0^+} F_X(x+h) = F_X(x)$$

Variáveis aleatórias discretas

Definição

Variável aleatória discreta

Uma variável aleatória é dita *discreta* se a sua imagem consiste de um número contável de elementos, isto é, sua imagem pode ser colocada em correspondência com um subconjunto (próprio ou não) de \mathbb{N} .

Variáveis aleatórias discretas

Definição

Variável aleatória discreta

Uma variável aleatória é dita *discreta* se a sua imagem consiste de um número contável de elementos, isto é, sua imagem pode ser colocada em correspondência com um subconjunto (próprio ou não) de \mathbb{N} .

Em outras palavras, uma v.a. é dita discreta se ela assume um número finito ou enumerável de valores.

Variáveis aleatórias discretas

Definição

(Função massa de probabilidade de uma v.a. discreta)

Se X é uma v.a. discreta (X assume valores em um subconjunto de \mathbb{N}) que assume valores distintos $x_1, x_2, x_3, \cdots, x_n, \cdots$ então a função densidade de X, denotada $f_X(\cdot)$ é definida por:

$$f_X(x) = \begin{cases} \mathbb{P}(X = x_i) & \text{se } x = x_i, \ i = 1, 2, 3, \dots, n, \dots \\ 0 & \text{caso contrário.} \end{cases}$$
 (2)

Variáveis aleatórias discretas

Definição

(Função massa de probabilidade de uma v.a. discreta)

Se X é uma v.a. discreta (X assume valores em um subconjunto de \mathbb{N}) que assume valores distintos $x_1, x_2, x_3, \cdots, x_n, \cdots$ então a função densidade de X, denotada $f_X(\cdot)$ é definida por:

$$f_X(x) = \begin{cases} \mathbb{P}(X = x_i) & \text{se } x = x_i, \ i = 1, 2, 3, \dots, n, \dots \\ 0 & \text{caso contrário.} \end{cases}$$
 (2)

Outros nomes comumente dados à f_X(x) são: função massa de probabilidade, função de frequência discreta e função de probabilidade.

Variáveis aleatórias discretas

Definição

(Função massa de probabilidade de uma v.a. discreta)

Se X é uma v.a. discreta (X assume valores em um subconjunto de \mathbb{N}) que assume valores distintos $x_1, x_2, x_3, \cdots, x_n, \cdots$ então a função densidade de X, denotada $f_X(\cdot)$ é definida por:

$$f_X(x) = \begin{cases} \mathbb{P}(X = x_i) & \text{se } x = x_i, \ i = 1, 2, 3, \dots, n, \dots \\ 0 & \text{caso contrário.} \end{cases}$$
 (2)

- Outros nomes comumente dados à f_X(x) são: função massa de probabilidade, função de frequência discreta e função de probabilidade.
- A notação $p_X(x)$ também é usada para diferenciar quando se trata de uma variável aleatória discreta e usualmente usa-se a notação $f_X(x)$ para as contínuas.

Variáveis aleatórias discretas

Lema

Se X é uma v.a. discreta e $\mathcal{X} \subset \mathbb{R}$ é o conjunto de valores que ela pode assumir, então

$$\sum_{X \in X} p_X^{(X)} = 1$$

Variáveis aleatórias discretas

Definição

f.d.a. de uma v.a. discreta (Retirado de [Mittelhammer, 2013]) A função distribuição acumulada de uma variável aleatória X, se X for discreta, é dada por

$$F_X(x) = \sum_{X \le x, \ f(x) > 0} f(x), \ x \in (-\infty, +\infty)$$

Variáveis aleatórias discretas

Definição

Função Indicadora

Considere um evento $A \in \Omega$. A função indicadora de A é a variável aleatória definida por:

$$\begin{split} \mathbb{I}_A: \Omega &\to \mathbb{R} \\ \mathbb{I}_A(\omega) &= \left\{ \begin{array}{ll} 1, & \text{se } \omega \in A \\ 0, & \text{caso contrário.} \end{array} \right. \end{split}$$

Variáveis aleatórias discretas

Definição

Função Indicadora

Considere um evento $A \in \Omega$. A função indicadora de A é a variável aleatória definida por:

$$\mathbb{I}_A:\Omega \to \mathbb{R}$$

$$\mathbb{I}_A(\omega) = \left\{ egin{array}{ll} 1, & ext{se } \omega \in A \\ 0, & ext{caso contrário.} \end{array} \right.$$

Exemplo:

Para o evento de uma lâmpada durar mais de 10 segundos, podemos criar a função indicadora que assume valor 0 se a lâmpada queimar em 10 segundos ou menos e assume valor 1 caso ela dure mais que 10 segundos.

Definição

Independência de v.a.'s discretas

Sejam X_1,\ldots,X_n v.a.'s discretas. dizemos que X_1,\ldots,X_n são independentes se $\forall x_1,\ldots,x_n\in\mathbb{R}$

$$\mathbb{P}(X_1 = X_1, X_2 = X_2, \dots, X_n = X_n) \prod_{i=1}^n \mathbb{P}(X_i = X_i)$$

Definição

Independência de v.a.'s discretas

Sejam X_1, \ldots, X_n v.a.'s discretas. dizemos que X_1, \ldots, X_n são independentes se $\forall x_1, \ldots, x_n \in \mathbb{R}$

$$\mathbb{P}(X_1 = X_1, X_2 = X_2, \dots, X_n = X_n) \prod_{i=1}^n \mathbb{P}(X_i = X_i)$$

Observação:

▶ $\mathbb{P}(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$ denota a interseção, isto é,

$$\mathbb{P}(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) \equiv \mathbb{P}(\cap_{i=1}^n X_i = x_i) = \mathbb{P}(\cap_{i=1}^n \{\omega : X_i(\omega) = x_i\})$$

Independência de v.a.'s

Exercício:

Sejam X e Y duas v.a.'s independentes. Será que $Z = e^{x}$ e $W = e^{Y}$ são independentes?

Esperança

Definição

Seja X uma variável aleatória discreta com função massa de probabilidade denotada por p_X e que assume valores $x \in \chi$. O valor esperado ou esperança matemática ou média de X é definida por:

$$\mathbb{E}[X] = \sum_{X \in Y} x_i p_X(x_i) \tag{3}$$

Esperança

Definição

O k-ésimo momento da variável aleatória X é dado pela esperança de X elevada à potência k, isto é, $\mathbb{E}[X^k]$ (desde que essa quantidade esteja bem definida), para $k \in \{1, 2, \cdots\}$. Se a esperança de X for um número finito μ , isto é, se $\mathbb{E}[X] = \mu < \infty$, então definimos $\mathbb{E}[(X - \mu)^k]$ como o k-ésimo momento central de X, desde que essa quantidade esteja bem definida.

Variância

Definição

Seja X uma variável aleatória com média finita denotada por μ . Sua variância é dada pelo momento central de ordem 2 de X:

$$Var[X] = \mathbb{E}[(X - \mu)^2]$$
 (4)

Covariância

Definição

Sejam X e Y duas variáveis aleatórias definidas no mesmo espaço de probabilidade. A *covariância* entre elas será dada por:

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$
 (5)

v.a.'s contínuas

Definição

Variável aleatória contínuas (Retirado de [James, 2010])

A variável aleatória X é dita contínua se existe uma função $f(x) \ge 0$ tal que:

$$F_X(x) = \int_{-\infty}^{x} f(t)dt, \quad \forall \ x \in \mathbb{R}$$

As variáveis aleatórias contínuas são tais que a função densidade em um ponto é igual a zero.

v.a.'s contínuas

Definição

Def alternativa [Stern and Izbicki, 2016] Seja X uma variável aleatória contínua. Denotamos a função de densidade de probabilidade de X por $f_X : \mathbb{R} \to \mathbb{R}$. Ela satisfaz as seguintes propriedades:

- **1.** $f_X(x) \ge 0$.
- **2.** $\int_{-\infty}^{\infty} f_X(x) dx = 1$.
- **3.** $\int_a^b f_X(x) dx = \mathbb{P}(a \le X \le b).$

v.a.'s contínuas

Definição

Def alternativa [Stern and Izbicki, 2016] Seja X uma variável aleatória contínua. Denotamos a função de densidade de probabilidade de X por $f_X : \mathbb{R} \to \mathbb{R}$. Ela satisfaz as seguintes propriedades:

- **1.** $f_X(x) \geq 0$.
- **2.** $\int_{-\infty}^{\infty} f_X(x) dx = 1$.
- **3.** $\int_a^b f_X(x) dx = \mathbb{P}(a \le X \le b).$

Como propriedade, temos que as probabilidades de uma variável aleatória contínua são as integrais sob a curva $f(\cdot)$ em determinados intervalos.

v.a.'s contínuas

Definição

f.d.a. de uma v.a. contínua (Retirado de [Mittelhammer, 2013])

A função distribuição acumulada de uma variável aleatória X, se X for contínua, é dada por

$$F_X(x) = \int_{-\infty}^{x} f(x) dx, \ x \in (-\infty, +\infty)$$

Lema

Seja X uma variável aleatória contínua com a função de distribuição acumulada F_X . Para $b \ge a$, $F_X(b) - F_X(a) = \mathbb{P}(a \le X \le b)$.

v.a.'s contínuas

Teorema

Sejam f(x) e F(x) as f.d.p. e f.d.a. de uma variável aleatória contínua X. A função densidade de X pode ser definida como

$$f(x) = \frac{d}{dx}[F(x)]$$

em todo ponto onde f(x) é contínua e será igual a zero em todos outros pontos.

Referências I

James, B. R. (2010).

Probabilidade: um curso em nivel intermediario. IMPA

Magalhães, M. N. (2011).

Probabilidade e variáveis aleatórias.

Mittelhammer, R. (2013).

Mathematical statistics for economics and business.

Mood, A. M. and Graybill, F. A. (1963). *Introduction to the theory of statistics.*

Stern, R. and Izbicki, R. (2016).

Introducao à Teoria das Probabilidades e Processos Aleatorios.

UFSCAR.