МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Машинное обучение»

Тема: Частотный анализ

Студент гр. 6307	 Ходос А.А.
Преподаватель	Жангиров Т.Р

Санкт-Петербург

Цель работы

Ознакомиться с методами частотного анализа из библиотеки MLxtend.

Ход работы

1. Загрузка данных

Был загружен датасет, данные в котором представляют информацию о том, какой покупатель что и когда покупал. Сформируем датасет подходящий для частотного анализа, слив все товары одного чека в список.

2. Подготовка данных

Закодируем данные в виде матрицы с помощью TransactionEncoder. Получим датафрейм, в котором значение в строке і, столбце ј означает, была ли сделана покупка в чеке с іd і товара с именованием ј. Далее приведена часть датафрейма:

	all- purpose alun foil	iinum bagels	beef	butter	cerea	ls	chees	es
0	True True Fals	e True	True	False	False	False	True	
1	False True Fals	e False	False	True	True	False	False	
2	False False True	e False	False	True	True	False	True	
3	True False Fals	e False	False	True	False	False	False	•
4	True False Fals	e False	False	False	False	False	True	•••
•••		•••	•••	•••	•••			

3. Ассоциативный анализ с использованием алгоритма Apriori

Применим алгоритм apriori к подготовленному датафрейму с минимальным уровнем поддержки 0.3.

Получим все комбинации товаров, которые встречаются в 30 процентах покупок подготовленного датафрейма. Результаты представлены далее:

	support	itemsets	length
0	0.374890	(all- purpose)	1
1	0.384548	(aluminum foil)	1

2	0.385426	(bagels)	1
3	0.374890	(beef)	1
4	0.367867	(butter)	1
5	0.395961	(cereals)	1
•••	•••		
<i>38</i>	0.310799	(aluminum foil, vegetables)	2
<i>39</i>	0.300263	(vegetables, bagels)	2
40	0.310799	(vegetables, cereals)	2
41	0.309043	(vegetables, cheeses)	2
42	0.308165	(dinner rolls, vegetables)	2

... ...

Применим алгоритм apriori с тем же уровнем поддержки, но ограничив максимальный размер набора единицей. Результаты представлены далее:

	support	itemsets
0	0.374890	(all- purpose)
1	0.384548	(aluminum foil,
2	0.385426	(bagels)
3	0.374890	(beef)
4	0.367867	(butter)
5	0.395961	(cereals)
	•••	•••

Далее, применив алгоритм apriori, выведем только те наборы, которые имеют размер 2. Количество полученных наборов равно 14. Результаты представлены далее:

	support	itemsets	length
38	0.310799	(aluminum foil, vegetables)	2
<i>39</i>	0.300263	(vegetables, bagels)	2
40	0.310799	(vegetables, cereals)	2
41	0.309043	(vegetables, cheeses)	2
42	0.308165	(dinner rolls, vegetables)	2

... ...

Построим график зависимости количества полученных наборов от уровня поддержки. Отметим на графике значения уровней поддержки, при которых перестают генерироваться наборы размеров 1,2,3 и т.д. Результаты представлены на рисунке 1.

Рисунок 1 - График зависимости количества полученных наборов от уровня поддержки

Построим датасет, состоящих только из тех элементов, которые попадают в наборы размером 1 при уровне поддержки 0.38. Полученный датасет закодируем в виде матрицы и проведем ассоциативный анализ при минимальном уровне поддержки 0.3. Таким образом, новый набор данных будет являться подмножеством старого, исключив наборы включающие продукты, которые встречаются в менее 38 процентах покупок.

	support	itemsets	length
0	0.384548	(aluminum foil)	1
1	0.385426	(bagels)	1
2	0.395961	(cereals)	1
3	0.390694	(cheeses)	1
•••	•••		
24	0.331870	(poultry, vegetables)	2
25	0.305531	(vegetables, soda)	2
26	0.315189	(vegetables, waffles)	2
<i>27</i>	0.319579	(vegetables, yogurt)	2

Проведем ассоциативный анализ при уровне поддержки 0.15 для нового датасета. Все наборы, размер которых больше 1 и в котором есть 'yogurt' или 'waffles', представлены далее:

	support	itemsets	leng	th y or w
27	0.169447	(aluminum foil, waffles)	2	True
28	0.177349	(aluminum foil, yogurt)	2	True
40	0.159789	(bagels, waffles)	2	True
41	0.162423	(yogurt, bagels)	2	True
52	0.160667	(cereals, waffles)	2	True
•••	•••		•••	•••
119	0.152766	(aluminum foil, yogurt, vegetables)	3	True
128	0.157155	(vegetables, yogurt, eggs)	3	True
130	0.157155	(vegetables, lunch meat, waffles)	3	True
131	0.152766	(poultry, yogurt, vegetables)	3	True

Далее построим датасет из тех элементов, которые не попали в датасет в п. 6. Полученный датасет закодируем в виде матрицы и проведем ассоциативный анализ при минимальном уровне поддержки 0.3. Результаты представлены далее:

	support	itemsets	length
0	0.374890	(all- purpose)	1
1	0.374890	(beef)	1
2	0.367867	(butter)	1
3	0.379280	(coffee/tea)	1
•••			•••
<i>20</i>	0.360843	(sugar)	1
21	0.378402	(toilet paper)	1
<i>22</i>	0.369622	(tortillas)	1

Написав правила вывода, получим все наборы, содержащие хотя бы два элемента, начинающихся с 's', и все наборы, для которых уровень поддержки изменяется от 0.1 до 0.25. Результаты представлены далее:

	support	itemsets	two_s
675	0.137840	(sandwich loaves, sandwich bags)	True
676	0.146620	(shampoo, sandwich bags)	True

677	0.158911	(sandwich bags, soap)	True
678	0.162423	(sandwich bags, soda)	True
679	0.147498	(sandwich bags, spaghetti sauc	ce) True
•••	•••		
	support	itemsets	in_supp_range
38	0.157155	(aluminum foil, all- purpose)	True
39	0.150132	(all- purpose, bagels)	True
40	0.144864	(all- purpose, beef)	True
41	0.147498	(all- purpose, butter)	True
42	0.151010	(all-purpose, cereals)	True

Вывод

Получены навыки работы с методами частотного анализа из библиотеки MLxtend. Изучен алгоритм поиска ассоциативных правил аргіогі, который перебирает все правила, генерирующиеся на основе входящих в транзакции наборов, удовлетворяющих заданному уровню поддержки.