Wersja: A Numer indeksu:
Logika dla informatyków
Sprawdzian nr 2, 1 grudnia 2011 Rozwiązania wszystkich zadań powinny zmieścić się w odpowiednich prostokątach lub na odwrocie tej kartki.
Zadanie 1 (4 punkty). Niech $R = \{\langle m, m+2 \rangle \mid m \in \mathbb{N} \}$. W prostokąt poniżej wpisz taką formułę φ , że $\{\langle m, n \rangle \mid \varphi\}$ jest przechodnim domknięciem relacji R .
Zadanie 2 (4 punkty). W prostokąt poniżej wpisz dowód tautologii $\exists x \varphi \Rightarrow \exists x (\varphi \lor \psi)$ w systemie naturalnej dedukcji.
Zadanie 3 (4 punkty). Jeśli inkluzia $ (A_4 \cap B_2) \subset (A_4 \cap B_4) $ zachodzi dla dowolnych
Zadanie 3 (4 punkty). Jeśli inkluzja $\bigcup_{t,s\in T} (A_t\cap B_s) \subseteq \bigcup_{t\in T} (A_t\cap B_t)$ zachodzi dla dowolnych indeksowanych rodzin zbiorów $\{A_t\}_{t\in T}$ i $\{B_t\}_{t\in T}$, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

Zadanie 4 (4 punkty). Udowodnij, że dla dowolnych zbiorów A i B zachodzi równość $\mathcal{P}(A\cap B)=\mathcal{P}(A)\cap\mathcal{P}(B).$

Zadanie 5 (4 punkty). Rozważmy relację binarną $R\subseteq A\times A$. Definiujemy $R^1=R$ oraz $R^{n+1}=R^nR$ dla wszystkich $n\ge 1$.

Udowodnij, że dla wszystkich liczb naturalnych $i, j \ge 1$ zachodzi równość $R^i R^j = R^{i+j}$. Wskazówka: indukcja względem j.

Wersja: C Numer indeksu:
Logika dla informatyków Sprawdzian nr 2, 1 grudnia 2011
Rozwiązania wszystkich zadań powinny zmieścić się w odpowiednich prostokątach lub na odwrocie tej kartki.
Zadanie 1 (4 punkty). Niech $R = \{\langle m, m+m \rangle \mid m \in \mathbb{N} \}$. W prostokąt poniżej wpisz taką formułę φ , że $\{\langle m, n \rangle \mid \varphi\}$ jest przechodnim domknięciem relacji R .
Zadanie 2 (4 punkty). W prostokąt poniżej wpisz dowód tautologii $\exists x (\varphi \land \psi) \Rightarrow \exists x \varphi$ w systemie naturalnej dedukcji.
Zadanie 3 (4 punkty). Jeśli inkluzja $\bigcap_{t \in T} (A_t \cup B_t) \subseteq \bigcap_{t \in T} A_t \cup \bigcap_{t \in T} B_t$ zachodzi dla dowolnych indeksowanych rodzin zbiorów $\{A_t\}_{t \in T}$ i $\{B_t\}_{t \in T}$, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

Zadanie 4 (4 punkty). Udowodnij, że dla dowolnych zbiorów A i B zachodzi inkluzja $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$. Czy dla wszystkich zbiorów A, B zachodzi także inkluzja odwrotna?

Zadanie 5 (4 punkty). Rozważmy relację binarną $R\subseteq A\times A$. Definiujemy $R^1=R$ oraz $R^{n+1}=R^nR$ dla wszystkich $n\ge 1$.

Udowodnij, że dla każdej liczby naturalnej $n \geq 1$ zachodzi równość $R^n R = R R^n.$