VE475 Homework 4

Liu Yihao 515370910207

Ex. 1 — Euler's totient

1. Suppose

$$\varphi(p^k) = p^{k-1}(p-1) = p^k - p^{k-1}$$

which means, there are p^{k-1} integers of $n \in [1, p^k]$ so that

$$\gcd(n, p^k) > 1$$

What's more, if an integer and p^k is not coprime, it can be divided by p since all of prime factors of p^k are p.

When k = 1, we know $\varphi(p) = p - 1$ since p is a prime.

When k = i, suppose $\varphi(p^i) = p^i - p^{i-1}$.

When k=i+1, we know that there are p^{i-1} integers in $[1,p^i]$ which are not coprime with p^i , so they are also not coprime with p^{i+1} . Then consider the integers $n \in [p^i+1,p^{i+1}]$ which are not coprime with p^{i+1} , we know that they all have a prime factor p, and $n/p \in [p^{i-1}+1,p^i]$, so there are $(p-1)p^{i-1}$ integers that satisfy this condition. In total, there are $p^{i-1}+(p-1)p^{i-1}=p^i$ integers which are not coprime with p^{i+1} , so $\varphi(p^{i+1})=p^{i+1}-p^i$.

According to the mathematical induction above, we can concluded that

$$\varphi(p^k) = p^{k-1}(p-1)$$

- 2. According to the Chinese Reminder Theorem, since m and n are coprime, there exists a ring isomorphism between Z/mnZ and $Z/mZ \times Z/nZ$, and here $\varphi(mn)$ is the order of Z/mnZ, $\varphi(m)$ is the order of Z/mZ and $\varphi(n)$ is the order of Z/nZ. Suppose MN is the set of counted integers in $\varphi(mn)$, M is that in $\varphi(M)$ and N is that in $\varphi(N)$, there is a bijection between MN and $M \times N$. So $\varphi(mn) = \varphi(m)\varphi(n)$.
- 3. Suppose

$$n = p_1^{k_1} p_2^{k_2} \cdots p_n^{k_n}$$

where p_1, p_2, \dots, p_n are primes and $k_1, k_2, \dots, k_n \ge 1$, it is obvious that $p_1^{k_1}, p_2^{k_2}, \dots, p_n^{k_n}$ are pairwise coprime, so

$$\begin{split} \varphi(n) &= \varphi(p_1^{k_1}) \varphi(p_n^{k_n}) \cdots \varphi(p_n^{k_n}) \\ &= p_1^{k_1 - 1} (p_1 - 1) p_2^{k_2 - 1} (p_2 - 1) \cdots p_n^{k_n - 1} (p_n - 1) \\ &= p_1^{k_1} \left(1 - \frac{1}{p_1} \right) p_2^{k_2} \left(1 - \frac{1}{p_2} \right) \cdots p_n^{k_n} \left(1 - \frac{1}{p_n} \right) \\ &= n \prod_{p \mid n} \left(1 - \frac{1}{p} \right) \end{split}$$

4.

$$\varphi(1000) = 1000 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right) = 400$$

According to Euler's Theorem, since 7 is coprime with 1000,

$$7^{400} \equiv 1 \mod 1000$$

$$7^{803} \equiv 7^3 \mod 1000$$

 $\equiv 343 \mod 1000$

Ex. 2 — AES

1. 128 bits of 1 is used as the key for round 1.

2.

$$K(5) = K(4) \oplus K(1)$$

3. We know for a 4 bit number X,

$$X \oplus 1111 = \overline{X}$$

We also know

$$K(0) = K(1) = K(2) = K(3) = 1111$$

So it's easy to find

$$K(10) = K(9) \oplus K(6)$$

$$= [K(8) \oplus K(5)] \oplus [K(5) \oplus K(2)]$$

$$= K(8) \oplus K(2)$$

$$= \overline{K(8)}$$

$$K(11) = K(10) \oplus K(7)$$

$$= [K(9) \oplus K(6)] \oplus [K(6) \oplus K(3)]$$

$$= K(9) \oplus K(3)$$

$$= \overline{K(9)}$$

Ex. 3 — Simple Questions

1. In ECB Mode, each block is encrypted separately with a function E and a key K, so the corruption of one block won't influence other blocks, only one block will be decrypted incorrectly. In CBC Mode, \setminus

2.

3. Since p = 29 is a prime, according to Theorem 2.17, we can test the prime factors of p - 1 = 28, which are 2 and 7.

First, when q=2,

$$2^{(p-1)/q} = 2^{28/2} = 2^{14} \equiv 28 \mod 29$$

Second, when q = 7,

$$2^{(p-1)/q} = 2^{28/7} = 2^4 \equiv 16 \mod 29$$

So

$$2^{(p-1)/d} \not\equiv 1 \bmod p$$

We can concluded that 2 is a generator of U(Z/29Z).

4. Since 1801 and 8191 are primes, it is a Legendre Symbol, and we can only directly calculate 1801^{4095} mod 8191 to solve it.

By applying modular exponentiation, we get the following table.

$$1801^{4095} \equiv 8190 \mod 8191$$

$$\left(\frac{1801}{8191}\right) = -1$$

5. First, if $\left(\frac{b^2-4ac}{p}\right)=0$, then $b^2-4ac=0$, so the equation only have one solution $x=-\frac{b}{2a}$, and it can always mod p, thus the number of solutions satisfies $1+\left(\frac{b^2-4ac}{p}\right)=1$.

Second, if $\left(\frac{b^2-4ac}{p}\right) \neq 0$, then $b^2-4ac \neq 0$, the equation have two solutions $x=-\frac{b\pm\sqrt{b^2-4ac}}{2a}$, which means

$$-\frac{b \pm \sqrt{b^2 - 4ac}}{2a} \equiv x \bmod p$$

$$\sqrt{b^2 - 4ac} \equiv \pm (2ax + b) \bmod p$$

Then the problem becomes whether $b^2 - 4ac$ is a square mod p.

If $\left(\frac{b^2-4ac}{p}\right)=1$, b^2-4ac is a square mod p, and we can get 2 solutions mod p.

Otherwise, $\left(\frac{b^2-4ac}{p}\right)=-1$, b^2-4ac is not a square mod p, and we can get no solution mod p.

In conclusion, the number of solutions mod p to the equation $ax^2 + bx + c$ is

$$1 + \left(\frac{b^2 - 4ac}{p}\right)$$

6. According to Euler's theorem,

$$n^{p-1} \equiv 1 \mod p$$
$$n^{q-1} \equiv 1 \mod q$$

Let
$$(p-1) = k(q-1)$$
,

$$(n^{q-1})^p = n^{p-1} \equiv 1 \bmod q$$

Since gcd(n, pq) = 1, according to Chinese Reminder Theorem, we get

$$n^{p-1} \equiv 1 \mod pq$$

7. If
$$\left(\frac{-3}{p}\right) = 1$$
,

$$1 \equiv (-3)^{(p-1)/2} \bmod p$$

$$1 \equiv 3k \mod p, k \in \mathbb{Z}$$

If $p \equiv 1 \mod 3$, and p is an odd prime, then $p \equiv 1 \mod 6$.

$$x \equiv (-3)^{(p-1)/2} \bmod p$$

$$x^2 \equiv 1 \mod p$$

And we know $(-3)^{(p-1)/2} = 3k, k \in \mathbb{Z}$, so

$$x \equiv 3k \mod p$$

8.

Ex. 4 — Prime vs. irreducible

Ex. 5 — Primitive root mod 65537

1. Since 65537 is a prime, we can calculate $3^{32768} \mod 65537$ and we can find that $3^{32768} \equiv -1 \mod 65537$ (The calculation is shown in part 2), so

$$\left(\frac{3}{65537}\right) = -1$$

2. By applying modular exponentiation, we get the following table.

$_{-}i$	d_i	power mod 65537
15	1	$1^2 \cdot 3 \equiv 3$
14	0	$3^2 \equiv 9$
13	0	$9^2 \equiv 81$
12	0	$81^2 \equiv 6561$
11	0	$6561^2 \equiv 54449$
10	0	$54449^2 \equiv 61869$
9	0	$61869^2 \equiv 19139$
8	0	$19139^2 \equiv 15028$
7	0	$15028^2 \equiv 282$
6	0	$282^2 \equiv 13987$
5	0	$13987^2 \equiv 8224$
4	0	$8224^2 \equiv 65529$
3	0	$65529^2 \equiv 64$
2	0	$64^2 \equiv 4096$
1	0	$4096^2 \equiv 65281$
0	0	$65281^2 \equiv 65536$

So

$$3^{32768} \equiv 65536 \mod 65537$$
$$3^{32768} \not\equiv -1 \mod 65537$$

3. According to Theorem 2.17, we can conclude that 3 is a primitive root mod 65537 because 2 is the only prime factor of 65536 and $3^{(65537-1)/2} \not\equiv 1 \mod 65537$.