

Programação em Sistemas Computacionais

Primeiro Mini-teste na turma: LI31D, 2 de Maio de 2011

Nome:	Número:	Turma: LI31D	A

Considere, em todas as questões, a utilização de uma arquitectura little endian a 32 bits.

1. [7] Considere a função ex1(), em assembly IA32

```
.intel_syntax noprefix
   .text
   .globl ex1
                                                eax
                                                                       ecx
ex1:
              mov
              eax, [esp+8] ----
   sub
   jb
               ex1_L1
   inc
               eax
ex1_a_L1:
               cl, [esp+12] -
  mov
  movsx
              ecx, cl
   cmp
              ecx, 0
   jl
              ex1_L2
   inc
               eax
ex1_a_L2:
   ret
```

Preencha o quadro com as representações hexadecimais presentes nos registos EAX e ECX ao longo da execução da função ex1, para a seguinte invocação a partir de código em C:

```
ex1(0x80000000,1, (unsigned char)0xFE);
```

2. [7] Considere a função f() implementada em assembly IA32

f:		f_L2:		f_end:	
push	ebp	mov	[esp], edi	mov	eax, esi
mov	ebp, esp	mov	[esp+4], eax	mov	ebx, [ebp-12]
push	esi	call	[ebp+12]	mov	edi, [ebp-8]
xor	esi, esi	cmp	eax, 0	mov	esi, [ebp-4]
push	edi	jl	f_L1	leave	
mov	edi, [ebp+16]	add	esi, eax	ret	
push	ebx	f_L1:			
mov	ebx, [ebp+8]	inc	ebx		
mov	al, [ebx]	mov	al, [ebx]		
test	al, al	test	al, al		
jz	f_end	jnz	f_L2		

Escreva uma função equivalente a f() em C.

```
int f(const char * s, int (*action)(int, char), int v) {
```


Programação em Sistemas Computacionais

Primeiro Mini-teste na turma: **LI31D**, 2 de Maio de 2011

3. [6] Implemente a função int separate_signal(int[] *a, int n) que separa os inteiros negativos dos inteiros positivos presentes em a colocando os negativos nos índices menores e os positivos nos índices maiores. O parâmetro n indica quantos inteiros estão presentes em a. Não poderá utilizar as funções da biblioteca standard do C.

<pre>int separate_signal(int[]</pre>	*a, int n)	{
}		