## In [1]:

```
import numpy as np
import matplotlib.pyplot as plt
import astropy.io.fits as fits
import astropy.wcs as WCS
from astropy.table import Table
from astropy import units as u
```

```
In [ ]:
```

# The reference of the Example data

'Example\_C18O.fits' is the  $C^{18}O$  (J=1-0) emission line of the Milky Way Imaging Scroll Painting (MWISP) within  $11.7^{\circ} \le l \le 13.4^{\circ}$ ,  $0.22^{\circ} \le b \le 1.05^{\circ}$  and 5 km s<sup>-1</sup>  $\le v \le$  35 km s<sup>-1</sup>.

MWISP project is a multi-line survey in  $^{12}CO/^{13}CO/C^{18}O$  along the northern galactic plane with PMO-13.7m telescope.

## In [2]:

```
path_Example_C180 = 'Example_C180.fits'
example_data_C180 = fits.getdata(path_Example_C180)
plt.title('Example C180 Data')
plt.imshow(example_data_C180.sum(0))
plt.show()
```



```
In [ ]:
```

# Installation and Usage of FacetClumps

```
In [3]:
```

```
# pip install FacetClumps==0.0.6
import FacetClumps
from FacetClumps.Detect_Files import Detect as DF_FacetClumps
```

In [ ]:

# **Detection Paremeters**

# Input of FacetClumps (2D and 3D)

RMS: The RMS of the data.

Threshold: The minimum intensity used to truncate the signals.

Default Value: 2\*RMS

Recommended value: ['mean','otsu',n\*RMS]

SWindow: The scale of window function.

Default Value: 3

Recommended value: [3,5,7]

KBins: The coefficient used to calculate the number of bins for the eigenvalue.

Default Value: 35

Recommended value: [10,...,60]

FwhmBeam: The FWHM of the instrument beam, in pixels.

Default Value: 2

**VeloRes**: The velocity resolution of the instrument, in channels.

Default Value: 2

**SRecursionLBV**: The minimum area of a region in the spatial direction and the minimum length of a region in the velocity channels when a recursion terminates. Clumps also need to satisfy the conditions. [SRecursionLB,SRecursionV] for 3D, [SRecursionLB] for 2D.

Default Value: [16,5]

file\_name: File name.

**mask\_name**: mask name, used to store region information. The index (starts with the number one) of each clump corresponds to the same number in the mask.

outcat\_name: Used to store clump table in pixel coordinate system.

outcat\_wcs\_name: Used to store clump table in WCS coordinate system.

```
In [ ]:
```

# **Output information**

files: Regional information and clump tables saved according to the customized file name.

did\_tables: Detected information dictionary, whose keys is [mask, outcat\_table, outcat\_wcs\_table]

mask: Regional infromation.

outcat\_table: Clump table of pixel coordinate system.

outcat\_wcs\_table: Clump table of WCS coordinate system.

```
In [ ]:
```

```
In [4]:
```

```
#Get the RMS from the header
header = fits.getheader(path_Example_C180)
RMS = header['RMS']
print('RMS:', RMS)
```

RMS: 0.196804

```
In [ ]:
```

```
In [5]:
```

Number: 249.0

```
#2D, PP Space
RMS = 0.23
Threshold = 2 * RMS # ['mean', 'otsu', n*RMS]
SWindow = 3 \# [3, 5, 7]
KBins = 35 \# [10, ..., 60]
FwhmBeam = 2
VeloRes = 2
SRecursionLBV = [16, 5] # [(2+FwhmBeam)**2, 3+VeloRes]
parameters = [RMS, Threshold, SWindow, KBins, FwhmBeam, VeloRes, SRecursionLBV]
SRecursionLB = SRecursionLBV[0]
did_FacetClumps = FacetClumps.FacetClumps_2D_Funs.Detect_FacetClumps(RMS, Threshold, SWindow, KBi
regions_data = did_FacetClumps['regions_data']
clump number = regions data.max()
print('Number:', clump_number)
## Decect the file.
# file_name = '
# mask_name = 'mask.fits'
# outcat name = 'outcat.csv'
# outcat wcs name = 'outcat wcs.csv'
# did_tables_FacetClumps = DF_FacetClumps(file_name, parameters, mask_name, outcat_name, outcat_wcs_n
100% | 5/5 [00:01<00:00,
                                             3.32it/s
100% 1/1 \[ \lambda \) 1/1 \[ \lambda \) 00:02<00:00.
                                             2.04s/it]
100% | 1/1 [00:02<00:00, 2.72s/it]
```

```
In [6]:
```

```
#3D, PPV Space

RMS = 0.23

Threshold = 2 * RMS # ['mean', 'otsu', n*RMS]

SWindow = 3 # [3,5,7]

KBins = 35 # [10,...,60]

FwhmBeam = 2

VeloRes = 2

SRecursionLBV = [16, 5] # [(2+FwhmBeam)**2,3+VeloRes]

parameters = [RMS, Threshold, SWindow, KBins, FwhmBeam, VeloRes, SRecursionLBV]

file_name = path_Example_C180

mask_name = 'mask.fits'
outcat_name = 'outcat.csv'
outcat_name = 'outcat.csv'
outcat_wcs_name = 'outcat_wcs.csv'
did_tables_FacetClumps = DF_FacetClumps(file_name, parameters, mask_name, outcat_name, outcat_wcs_name)
```

```
100% | 112/112 [00:10<00:00, 11.07it/s]
100% | 33/33 [00:08<00:00, 3.95it/s]
100% | 33/33 [00:01<00:00, 30.84it/s]
```

Number: 173 Time: 32.56

WARNING: FITSFixedWarning: VELREF = 0.000000000000E+00 /

invalid keyvalue. [astropy.wcs.wcs]

## In [ ]:

#### In [7]:

```
# Obtain the reginal information, clump table of pixel coordinate system and WCS coordinate syste
regions_data = fits.getdata('mask.fits')
outcat_table = Table.read('outcat.csv')
outcat_wcs_table = Table.read('outcat_wcs.csv')

# Obtain the reginal information, clump table of pixel coordinate system and WCS coordinate syste
regions_data = did_tables_FacetClumps['mask']
outcat_table = did_tables_FacetClumps['outcat_table']
outcat_wcs_table = did_tables_FacetClumps['outcat_wcs_table']
```

In [8]:

```
print('Outcat_Pix_Table:\n', outcat_table)
```

| Outcat_Pix_Table: |       |          |      |          |         |               |                    |        |       |      |  |
|-------------------|-------|----------|------|----------|---------|---------------|--------------------|--------|-------|------|--|
| ID                | Peak1 | Peak2    | Peak | B Cen1   | Cen2    | . Size3 Pea   | ık Sum             | Volume | Angle | Edge |  |
|                   | pix   | pix      | pix  | pix      | pix     | pix           |                    | pix    | deg   |      |  |
| 1                 | 197   | <br>17   | 13   | 196 746  | 16. 921 | 1. 289 1. 453 | 3 47. 274          | 79     | 27    | 1    |  |
| 2                 | 63    | 38       | 75   |          | 38. 000 |               |                    | 1375   | 86    | 0    |  |
| 3                 | 72    | 38       | 76   | 69. 770  |         |               |                    | 836    | 50    | 0    |  |
| 4                 | 67    | 36<br>47 | 71   |          | 46. 229 |               |                    | 634    | -43   | 0    |  |
| 5                 |       |          |      |          |         |               |                    |        |       | 0    |  |
|                   | 58    | 39       | 80   |          | 31. 927 |               |                    | 701    | 76    |      |  |
| 6                 | 54    | 31       | 73   |          | 30. 156 |               |                    | 109    | 51    | 0    |  |
| 7                 | 79    | 45       | 76   |          | 45. 148 |               |                    | 310    | -59   | 0    |  |
| 8                 | 73    | 42       | 78   |          | 42.473  |               |                    | 332    | 39    | 0    |  |
| 9                 | 71    | 16       | 76   | 70. 998  | 16.500  | 3. 925 3. 731 | 1120.997           | 1123   | -87   | 0    |  |
| 10                | 67    | 14       | 84   | 66. 496  | 14.942  | 3. 553 3. 491 | 1674. 092          | 1842   | -81   | 0    |  |
|                   |       |          |      |          |         |               |                    |        |       |      |  |
| 164               | 129   | 4        | 161  | 127. 789 | 5.428   | 2. 788 1. 667 | 328. 107           | 466    | -27   | 1    |  |
| 165               | 153   | 65       | 153  | 153. 235 | 65.098  | 1.790 1.119   | 33.691             | 65     | 23    | 0    |  |
| 166               | 155   | 61       | 156  | 154.944  | 61.894  | 2. 116 1. 211 | 60. 173            | 104    | -84   | 0    |  |
| 167               | 157   | 52       | 162  | 157. 721 | 52.327  | 2. 702 2. 236 | 5 202 <b>.</b> 361 | 266    | -22   | 0    |  |
| 168               | 19    | 40       | 157  | 18. 126  | 39.821  | 1. 993 1. 783 | 58. 176            | 85     | 87    | 0    |  |
| 169               | 176   | 44       | 165  | 175. 784 | 43.557  | 2.867 1.822   | 2 161.366          | 244    | 44    | 0    |  |
| 170               | 173   | 39       | 166  | 173. 289 | 39.704  | 1. 970 1. 399 | 55. 353            | 90     | 61    | 0    |  |
| 171               | 168   | 36       | 164  | 168. 727 | 35. 927 |               |                    | 150    | 49    | 0    |  |
| 172               | 96    | 7        | 174  | 94.673   | 6. 547  |               |                    | 204    | 34    | 1    |  |
| 173               | 91    | 5        | 177  | 91.000   | 4. 000  |               |                    | 274    | 33    | 1    |  |
|                   |       | 73 row   | S    |          |         |               |                    | _ · ·  |       | _    |  |

```
In [9]:
```

```
print('Outcat_WCS_Table:\n',outcat_wcs_table)
```

```
Outcat WCS Table:
  ID Peak1 Peak2 Peak3
                           Cen1
                                   Cen2 ... Size3
                                                     Peak
                                                             Sum
                                                                    Volume Angle Edge
                                                          K km / s
     deg
             deg km/s
                          deg
                                  deg ... km / s
                                                     K
                                                                    pix
                                                                            deg
  1 11.733 0.350 7.359 11.735 0.349 ...
                                             0.215 1.453
                                                             7.879
                                                                        79
                                                                              27
                                                                                     1
  2 12.850 0.525 17.693 12.854 0.525 ...
                                             0.731 2.923
                                                           216.460
                                                                      1375
                                                                              86
                                                                                     0
  3 12.775 0.525 17.860 12.794 0.526 ...
                                             0.525 2.506
                                                           129.875
                                                                       836
                                                                              50
                                                                                     ()
                                                            89.281
  4 12.817 0.600 17.027 12.821 0.594 ...
                                             0.460 2.214
                                                                       634
                                                                             -43
                                                                                     0
  5 12.892 0.533 18.527 12.906 0.474 ...
                                             0.399 2.607
                                                            85.002
                                                                       701
                                                                              76
                                                                                     0
  6 12.925 0.467 17.360 12.921 0.460 ...
                                             0. 255 1. 359
                                                            11.490
                                                                       109
                                                                              51
                                                                                     0
                                             0.406 1.886
  7 12.717 0.583 17.860 12.712 0.585 ...
                                                            31.989
                                                                       310
                                                                             -59
                                                                                     0
  8 12.767 0.558 18.193 12.775 0.562 ...
                                             0.446 1.528
                                                            35.893
                                                                       332
                                                                              39
                                                                                     0
  9 12.783 0.342 17.860 12.783 0.346 ...
                                             0.654 3.731
                                                           186.842
                                                                      1123
                                                                             -87
                                                                                     0
 10 12.817 0.325 19.193 12.821 0.333 ...
                                             0.592 3.491
                                                           279.028
                                                                             -81
                                                                                     0
                                                                      1842
             . . .
                     . . .
                             . . .
                                               . . .
                                                     . . .
                                                                       . . .
                                   . . . . . .
                                                               . . .
                                                                             . . .
164 12.300 0.242 32.027 12.310 0.254 ...
                                             0.465 1.667
                                                                             -27
                                                            54.687
                                                                       466
                                                                                     1
165 12.100 0.750 30.694 12.098 0.751 ...
                                             0.298 1.119
                                                             5.615
                                                                        65
                                                                              23
                                                                                     0
166 12.083 0.717 31.194 12.084 0.724 ...
                                                                             -84
                                             0.353 1.211
                                                            10.029
                                                                       104
                                                                                     0
167 12.067 0.642 32.194 12.061 0.644 ...
                                                            33.728
                                                                             -22
                                             0.450 2.236
                                                                       266
                                                                                     0
168 13.217 0.542 31.361 13.224 0.540 ...
                                             0.332 1.783
                                                             9.696
                                                                        85
                                                                              87
                                                                                     0
169 11.908 0.575 32.694 11.910 0.571 ...
                                             0.478 1.822
                                                            26.896
                                                                       244
                                                                              44
                                                                                     0
170 11.933 0.533 32.861 11.931 0.539 ...
                                             0.328 1.399
                                                             9.226
                                                                        90
                                                                              61
                                                                                     0
171 11.975 0.508 32.527 11.969 0.508 ...
                                             0.372 2.172
                                                            16.922
                                                                       150
                                                                              49
                                                                                     0
172 12.575 0.267 34.194 12.586 0.263 ...
                                                                       204
                                                                              34
                                                                                     1
                                             0.406 1.716
                                                            24.524
173 12.617 0.250 34.694 12.617 0.242 ...
                                             0.623 1.580
                                                            30.766
                                                                       274
                                                                              33
                                                                                     1
Length = 173 \text{ rows}
```

```
In [ ]:
```

### **Detection Plots**

```
In [10]:
```

```
# Obtain the required information from output tables.
clump_centers = np.c_[outcat_table['Cen1'], outcat_table['Cen2'], outcat_table['Cen3']]
clump_angles = outcat_table['Angle']
clump_edges = outcat_table['Edge']
```

```
In [ ]:
```

### In [11]:

```
origin_data = example_data_C180
fig, (ax0, ax1, ax2) = plt. subplots (1, 3, figsize = (12, 8))
for i in range(np.int(regions_data.max())):
    # Show the clumps which do not touch the edges.
    if clump_edges[i] == 0:
        center_x = clump_centers[i][0]-1
        center_y = clump_centers[i][1]-1
        ax0. plot(center_x, center_y, 'r+')
#Obtain the region and angle of a clump.
index = 1
clump_region_i_coords = np. where (regions_data == index+1)
clump_region_lable = np. zeros_like(origin_data)
clump_region_lable[clump_region_i_coords] = 1
ax2. text(2, origin_data. shape[1]-10, r' $\theta={}\degree$'. format(np. around(clump_angles[index], 0))
ax2. plot(clump_centers[index][0]-1, clump_centers[index][1]-1, 'r+')
ax0. imshow(origin_data.sum(0))
ax1. imshow(regions_data.sum(0))
ax2. imshow(clump_region_lable.sum(0))
ax0. set_title('Core Image', fontsize=12, color='b')
ax1.set_title('Label Image', fontsize=12, color='r')
ax2. set_title('A clump lable', fontsize=12, color='g')
for ax in [ax0, ax1, ax2]:
    ax.invert_yaxis()
fig. tight_layout()
plt. xticks([]), plt. yticks([])
plt.show()
```



### In [13]:

```
data cube = fits.getdata(path Example C180)
data_header = fits.getheader(path_Example_C180)
wcs = WCS.WCS(data_header)
fig = plt. figure (figsize=(18, 7))
ax = fig. add_subplot(111, projection=wcs. celestial)
plt.rcParams['xtick.direction'] = 'in'
plt.rcParams['ytick.direction'] = 'in'
plt.rcParams['xtick.color'] = 'red'
font2 = {'family' : 'Times New Roman',
'weight' : 'normal',
'size' : 15,
plt.xlabel("Galactic Longitude", font2)
plt.ylabel("Galactic Latitude", font2)
for i in range(len(clump_centers)):
    center_x = clump_centers[i][0]-1
    center_y = clump_centers[i][1]-1
    ax.plot(center_x, center_y, 'r*', markersize = 4)
lon = ax. coords[0]
lat = ax. coords[1]
lon. set_major_formatter("d. d")
lat. set_major_formatter("d. d")
lon.set_ticks(spacing=12 * u.arcmin)
gci = plt.imshow(data_cube.sum(axis=0)*0.166)#, cmap='gray'
cbar = plt.colorbar(gci, pad=0)
cbar.set_label('K km/s')
# plt. xticks([]), plt. yticks([])
# plt.savefig('Example_0.pdf', format='pdf', dpi=1000)
plt. show()
```



| In | [ ] | : |  |  |  |  |   |
|----|-----|---|--|--|--|--|---|
|    |     |   |  |  |  |  |   |
|    |     |   |  |  |  |  | _ |