05;06,09,12

Влияние сверхвысокочастотной обработки на электрофизические характеристики технически важных полупроводников и поверхностно-барьерных структур

© А.А. Беляев¹, А.Е. Беляев¹, И.Б. Ермолович¹, С.М. Комиренко¹, Р.В. Конакова¹, В.Г. Ляпин¹, В.В. Миленин¹, Е.А. Соловьев¹, М.В. Шевелев²

(Поступило в Редакцию 2 сентября 1997 г.)

Исследован эффект стимулированного сверхвысокочастотным электромагнитным излучением изменения электрофизических параметров узкозонных ($\mathrm{Cd}_x\mathrm{Hg}_{1-x}\mathrm{Te}$ с x=0.22-0.24) и широкозонных (арсенид галлия, фосфиды индия и галлия) полупроводниковых материалов и диодных структур с барьером Шоттки на их основе. Показано, что улучшение параметров материалов и приборных структур обусловлено геттерированием дефектов. Рассмотрены возможные механизмы взаимодействия СВЧ излучения с исследованными объектами.

Введение

Условия эксплуатации полупроводниковой элементной базы предусматривают определенный уровень ее устойчивости к различного рода лучевым воздействиям, в том числе к ионизирующей радиации и электромагнитному излучению [1]. Начиная с 50-х годов и до настоящего времени влиянию ионизирующей радиации на полупроводниковые материалы и приборы было посвящено огромное количество теоретических и экспериментальных работ. В противоположность этому воздействие электромагнитного излучения, особенно сверхвысокочастотного (СВЧ), освещено не так широко. В то же время известно, что СВЧ излучение, воздействуя на приборные структуры и готовые изделия (диоды, транзисторы, интегральные схемы), приводит в ряде случаев к их катастрофическим отказам [2]. С другой стороны, в последнее время появились сообщения, в которых указывается на стимулированные СВЧ излучением эффекты геттерирования дефектов и структурной релаксации в полупроводниковых материалах [3,4].

Целью данной работы является исследование влияния СВЧ излучения на электрофизические характеристики узкозонных ($\mathrm{Cd}_x\mathrm{Hg}_{1-x}\mathrm{Te}$) и широкозонных (арсенид галлия, фосфиды индия и галлия) массивных полупроводниковых материалов и поверхностно-барьерных структур на их основе.

Образцы и методы исследований

Объектами исследования были: 1) монокристаллические пластины $\mathrm{Cd}_x\mathrm{Hg}_{1-x}\mathrm{Te}~(x=0.21-0.24)$, арсенида галлия, фосфидов индия и галлия с концентрацией свободных электронов $\sim 10^{16}-2\cdot 10^{17}~\mathrm{cm}^{-3}$; 2) приборные структуры с барьером Шоттки, сформированные в вакууме 10^{-4} Ра конденсацией хрома на поверхностях (100)

арсенида галлия и фосфидов индия и галлия, а также конденсацией молибдена, вольфрама, пластины, алюминия, Au-Ti и нитрида титана на поверхности (100) арсенида галлия. Толщина слоя металла составляла 80-100 nm.

Образцы подвергались облучению в магнетроне в сантиметровом диапазоне длин волн (режим облучения в свободном пространстве) [5]. Время экспозиции изменялось в интервале $1-60 \, \mathrm{s}$ для различных образцов. Выходная мощность генератора составляла 5 kW. Интенсивность микроволнового воздействия варьировалась изменением расстояния между облучаемым объктом и выходом волновода либо изменением времени экспозиции при неизменном расстоянии до облучаемого объекта. До и после облучения на массивных образцах при температуре $T = 77 \, \mathrm{K}$ измерялись фотолюминесценция $(\Phi\Pi)$ в спектральном интервале $0.6-2.0\,\mathrm{eV}$ при возбуждении светом мощной лампы накаливания ПЖ-100 с $h\nu > 2.0\,\mathrm{eV}$, эффект Холла, время жизни неосновных носителей заряда $au_{p'}$. На поверхностно-барьерных структурах измерялись вольт-амперные (ВАХ) и вольтфарадные (ВФХ) характеристики, диффузионная длина неосновных носителей заряда $L_{p'}$. Оже-электронные спектры и профили распределения компонентов в контакте металл-полупроводник.

Результаты измерений и обсуждение

Как показывают проведенные эксперименты, результаты СВЧ облучения кристаллов $\mathrm{Cd}_x\mathrm{Hg}_{1-x}\mathrm{Te}$ сильно зависят от исходного состояния образцов. Так, наличие в исходном образце 1 (табл. 1) неоднородностей, способных приводить к аномалиям на температурной зависимости постоянной Холла $R_x(T)$ (рис. 1), после обработки проявляется в виде конверсии типа проводимости и резкого изменения времени жизни неосновных носителей заряда τ_p (рис. 2). В то же время для достаточно

4 49

 $^{^{1}}$ Институт физики полупроводников НАН Украины, 252650 Киев, Украина

² Институт электросварки им. Е.О. Патона НАН Украины, 252005 Киев, Украина

№ образца	Состав х	Вид обработки	n, cm^{-3}	$\mu_p, \mathrm{cm}^2/\mathrm{Vs}$	$ au_p, \mu$ s	E_t , eV	N_t , cm ⁻³
1	0.24	Исходный	$6.9 \cdot 10^{15}$	$2 \cdot 10^4$	0.61		
		СВЧ	$2.54 \cdot 10^{16}$	6.10^{3}	0.246		
2	0.21	Исходный	$5.12 \cdot 10^{14}$	$2 \cdot 10^5$	1.4	0.1	$1.1 \cdot 10^{14}$
		СВЧ	$4.9 \cdot 10^{14}$	$1.5 \cdot 10^5$	2.4	0.1	$3.6 \cdot 10^{13}$
3	0.22	Исходный	$4.82 \cdot 10^{14}$	$1.4 \cdot 10^5$	2.1	0.07	$6.25 \cdot 10^{13}$
		СВЧ	$4.6 \cdot 10^{14}$	$9.6 \cdot 10^4$	3.0	0.07	$2.5 \cdot 10^{13}$

Таблица 1. Влияние СВЧ облучения на электрофизические параметры (фактор идеальности, n, подвижность μ_p и время жизни τ_p неосновных носителей заряда, энергию залегания E_t и концентрацию N_t примесных центров) $\mathrm{Cd_xHg_{1-x}Te}$ при $T=77\,\mathrm{K}$

однородных образцов характер изменений качественно иной. СВЧ обработка таких образцов (образцы 2 и 3 в табл. 1) приводит к заметному увеличению τ_p . При этом наблюдаются слабое увеличение R_x в области примесной проводимости и некоторое уменьшение подвижности μ_p . Данные, полученные из температурных зависимостей τ_p в этом случае, свидетельствуют об уменьшении концентрации рекомбинационно-активных центров, имеющих энергетические уровни в верхней половине запрещенной зоны.

Для того чтобы представить себе возможный механизм влияния СВЧ обработки на дефектную структуру исследуемых кристаллов, обратимся к неоднородному разогреву образца за счет поглощения СВЧ энергии. Другими словами, мы полагаем, что основным механизмом диссипации энергии поглощенного СВЧ излучения является разогрев, стимулирующий перемещение дефектов на стоки. В качестве последних могут выступать дислокации, малоугловые границы, крупные кластеры точечных дефектов. Этот процесс обусловливает некоторое повышение τ_p и R_x (см. образцы 2 и 3 в табл. 1). С другой стороны, в изначально неоднородных образцах

(образец 1 в табл. 1), содержащих дополнительные каналы проводимости, СВЧ обработка приводит к усилению примесных атмосфер дефектов, ответственных за эти каналы. Они становятся достаточно мощными, чтобы резко изменить тип проводимости и время жизни неосновных носителей заряда.

Таким образом, описанные результаты указывают на существенную роль преобразований точечно-дефектной структуры кристаллов, которые могут стимулироваться нагревом при СВЧ облучении и диффузией рекомбинационно-активных точечных дефектов и примесей на стоки.

О значительном влиянии СВЧ облучения на спектр точечных дефектов в кристаллах свидетельствуют и данные по изучению спектров ФЛ арсенида галлия и фосфидов индия и галлия. Например, в исходных спектрах ФЛ арсенида галлия, легированного оловом (рис. 3), наблюдаются две перекрывающиеся полосы с максимумами при $h\nu_{\rm max}=1.15-1.20$ и 0.993-1.01 eV. В результате облучения длительностью t=6 s во всех исследованных образцах положение максимумов становится одинаковым (1.185 и 1.01 eV) при преимущественном усилении

Рис. 1. Температурная зависимость постоянной Холла образцов $Cd_{0.24}Hg_{0.76}Te: I$ — исходный, 2 — после CBЧ облучения в течение 5 s.

Рис. 2. Температурная зависимость времени жизни неосновных носителей заряда в образцах $Cd_{0.21}Hg_{0.79}Te$. (1,2 — то же, что и на рис. 1).

Тип структуры	Тип обработки	Высота барьера $\varphi_{\it B}, { m eV}$	Фактор идеальности <i>п</i>	Диффузионная длина неосновных носителей заряда $L_{p'}\mu{ m m}$
Cr-GaAs	Исходные	0.73 - 0.75	1.17 - 1.24	1.2 - 1.4
	СВЧ	0.76 - 0.77	1.08 - 1.09	1.5 - 1.7
Mo-GaAs	Исходные	0.68 - 0.69	1.16 - 1.23	2.3 - 2.8
	СВЧ	0.68 - 0.69	1.09 - 1.14	2.5 - 2.7
W-GaAs	Исходные	0.65 - 0.66	1.20 - 1.40	1.7 - 2.0
	СВЧ	0.69 - 0.70	1.09 - 1.12	2.1 - 2.2
Pt-GaAs	Исходные	0.88 - 0.95	1.12 - 1.37	2.1 - 2.2
	СВЧ	0.88 - 0.89	1.18 - 1.24	2.1 - 2.2
Al-GaAs	Исходные	0.55 - 0.58	1.68 - 2.20	1.6 - 1.9
	СВЧ	0.57 - 0.58	1.30 - 1.40	2.0
Au-Ti-GaAs	Исходные	0.70 - 0.76	1.3 - 1.4	1.7 - 1.8
	СВЧ	0.70 - 0.76	1.32 - 1.33	1.85 - 1.92
TiN-GaAs	Исходные	0.70 - 0.75	1.24 - 1.35	1.60 - 1.75
	СВЧ	0.70 - 0.75	1.08 - 1.10	1.80 - 1.82
Cr-InP	Исходные	0.67 - 0.69	1.50 - 1.80	1.52 - 1.60
	СВЧ	0.63 - 0.65	1.20 - 1.40	1.70 - 1.75
Ga-GaP	Исходные	1.63-1.67	1.50 - 1.72	0.53
	СВЧ	1.85 - 1.88	1.32 - 1.40	0.87

Таблица 2. Влияние сверхвысокочастотного электомагнитного облучения на электрофизические параметры диодов Шоттки

полосы 1.185 eV. Полосы сужаются, что свидетельствует о структурно-примесном упорядочении приповерхностного слоя арсенида галлия. При $t \geq 60\,\mathrm{s}$ наблюдается уменьшение интенсивности обеих полос и их уширение, свидетельствующие об усилении деградационных процессов в арсениде галлия. Аналогичные изменения полос 1.410, 1.150 и 0.820 eV при воздействии СВЧ излучения

в течение $1-40\,\mathrm{s}$ наблюдаются и в монокристаллах фосфида индия (100) (рис. 4).

В более дефектных кристаллах арсенида галлия, в исходном состоянии легированных теллуром, наблюдалась одиночная полоса с $h\nu_{\rm max}=1.20\,{\rm eV}$. Она практически не изменялась при облучении в течение $1{-}60\,{\rm s}$. Слабо изменялась в результате СВЧ облучения при тех же

Рис. 3. Спектры фотолюминесценции образцов n-GaAs: Sn: a — исходный; b, c — после СВЧ облучения в течение 6 (62) s.

Рис. 4. Спектры фотолюминесценции образцов в n-InP (111): a — исходный, b-d — после СВЧ облучения в течение 10, 30, 40 s.

Рис. 5. Вольт-амперные и вольт-фарадные характеристики диода Шоттки на основе TiN—GaAs: a,b — прямая (обратная) ветвь BAX; c — ВФХ; d — зависимость $1/C^2$ от V; I — исходная, 2 — после СВЧ облучения в течение 2 s.

экспозициях и структура локальных центров в монокристаллах фосфида галлия.

В табл. 2 приведены результаты воздействия СВЧ излучения в течение 1-2 s на электрофизические параметры поверхностно-барьерных диодов Шоттки. Из табл. 2 видно, что в результате СВЧ облучения произошло заметное изменение свойств межфазных границ и приповерхностных слоев полупроводника, сопровождающееся изменением основных параметров барьера, а именно увеличилась высота барьера φ_B , уменьшился фактор идеальности n, возросла диффузионная длина неосновных носителей заряда L_p . Последнее свидетельствует о стимулированных СВЧ излучением процессах геттерирования в приповерхностных слоях арсенида галлия и фосфидов индия и галлия.

На рис. 5, а приведены типичные ВАХ поверхностнобарьерного диода. Видно, что после СВЧ облучения в течение 2 s протяженность экспоненциального участка прямой ветви ВАХ возросла на порядок, высота барьера φ_B практически не изменилась, фактор идеальности n уменьшился. На обратной ветви ВАХ (рис. 5, b) значительно уменьшилась величина обратного тока I_R . При этом, как видно из ВФХ (рис. 5, c, d), ее наклон практически не изменился. Это свидетельствует о том, что концентрация легирующей примеси в результате воздействия СВЧ излучения той же, что и в исходном материале.

Наблюдаемые изменения параметров диодных структур являются следствием структурно-химической перестройки межфазных границ в контакте металл-полупроводник, стимулированных СВЧ излучением. Для выяснения особенностей межфазных взаимодействий были проанализированы оже-профили компонентов металл-полупроводник на примере контактов, образованных платиной, титаном и алюминием с арсенидом галлия. Оказалось, что для каждого из рассматриваемых контактов можно выделить свои, не присущие другим контактам особенности. Так, для контакта Pt—GaAs межфазные

взаимодействия описываются реакцией

$$Pt + GaAs \rightarrow PtAs_2 + (PtGaAs),$$

а для контакта Al-GaAs характерной является реакция замешения

$$yAl + GaAs \rightarrow (y - x)Al + Al_xGa_{1-x}As + xGa$$

хотя для протекания таких реакций нужны сравнительно высокие температуры, не достижимые в нашем эксперименте, равно как и времена, большие 1 s. В структурах Au—Ti—GaAs преимущественным оказалось вызванное СВЧ излучением перемешивание компонентов контакта при наличии после СВЧ обработки значительной доли оксидной фазы титана. Указанные взаимодействия, по-видимому, обусловливают переход от сильно деструктированных гетерогенных границ раздела металл—полупроводник к более однородным. Это способствует наблюдаемым изменениям параметров приборных структур.

Рассмотрим другие вероятные механизмы, обусловливающие обнаруженные изменения свойств контактов металл-полупроводник.

- 1. Термический, связанный с разогревом за счет поглощения СВЧ энергии [6]. Анализ профилей распределения компонентов структур в контактах до и после СВЧ облучения и их сравнение с результатами послойного анализа термичеки отожженных контактов свидетельствуют о слабом влиянии этого фактора.
- 2. Электростатический, связанный с реальной величиной падения напряжения на барьере [6]. Даже в отсутствие критических электрических полей, определяющих механизмы лавинного и туннельного пробоя, этот механизм может оказывать существенное влияние на диффузионные перераспределения компонентов контакта, как это было показано в [6]. Интенсивная интердиффузия между металлом и арсенидом галлия начинается на уровне поглощаемой мощности, составляющем примерно 2/3 критического значения мощности пробоя. Однако, согласно оценкам, сделанным в [6], этот фактор при использованном режиме облучения не играет существенной роли.
- 3. Электродинамический, связанный с отклонением электронной подсистемы полупроводника от термодинамического равновесия за счет возникновения горячих носителей заряда в приповерхностном слое полупроводника и обусловленного этим изменения примеснодефектного состава этого слоя [7]. Близость электрофизических параметров поверхностно-барьерных структур, подвергнутых воздействиям СВЧ излучения и γ -квантов 60 Со (где заданный механизм является определяющим), указывает на его доминирующую роль в процессах структурно-примесной перестройки дефектов при микроволновых воздействиях [8].
- 4. Возникновение нестационарных градиентов упругих напряжений, вызванных практически мгновенным разогревом неупорядоченных областей полупроводника, возникающих в процессе формирования контактной

структуры. В этом случае профили распределения компонентов контактной пары до и после облучения могут практически не измениться. В то же время, учитывая возможность реализации коллективных взаимодействий в полях упругих напряжений, можно значительно понизить барьер для анигиляции дефектов или перестройки комплексов дефектов [9,10].

Заключение

Изучено влияние СВЧ излучения сантиметрового диапазона длин волн на электрофизические свойства массивных полупроводниковых материалов $\mathrm{Cd}_x\mathrm{Hg}_{1-x}\mathrm{Te}$ (x=0.22-0.24), арсенида галлия и фосфидов индия и галлия, а также приборных структур с барьером Шоттки на основе арсенида галлия и фосфидов индия и галлия. Показана возможность улучшения параметров материалов и диодных структур за счет стимулированного СВЧ излучением геттерирования дефектов, а именно увеличения времени жизни неосновных носителей заряда, уменьшения обратного тока, уменьшения разброса параметров барьера Шоттки (высоты барьера и фактора идеальности).

Для окончательного вывода о процессах, протекающих в полупроводниках и приборных структурах на их основе при СВЧ воздействиях, требуются дальнейшие исследования. В то же время обнаруженные нами изменения в материалах и на границах фаз позволяют надеяться на возможность использования таких воздействий для технологических целей.

Список литературы

- [1] Мырова Л.О., Чепиженко А.З. Обеспечение стойкости аппаратуры связи к ионизирующим и электромагнитным излучениям. М.: Радио и связь, 1988. 296 с.
- [2] *Блудов С.Б., Гадецкий Н.П., Кравцов К.А.* и др. // Физика плазмы. 1994. Т. 20. № 7. С. 712–717.
- [3] Абдурахимов Д.Е., Верещагин В.Л., Калинушкин В.П. и др. // Краткие сообщения по физике. 1991. № 6. С. 27–29.
- [4] Kryshtab T.G., Lytvin P.M., Masin M.A., Prokopenko I.V. // Metal Phys. and Adv. Technol. 1997. Vol. 19. N 3. P. 71–77.
- [5] *Миленин В.В., Конакова Р.В., Статов В.А.* и др. // Письма в ЖТФ. 1994. Т. 20. № 4. С. 32–34.
- [6] *Антипин В.В., Головицын В.А., Громов Д.В.* и др. // Зарубежная радиоэлектроника. 1995. № 1. С. 37–53.
- [7] Синищук И.К., Чайка Г.Е., Шишияну Ф.С. // ФТП. 1985.Т. 19. Вып. 4. С. 674–677.
- [8] Borkovskaya O.Ya., Dmitruk N.L., Konakova R.V. et al. // Submicron Devices (Proc. NATO Adv. Study Inst.) / Ed. A.-P. Jauho, E.V. Buzaneva. Dordrecht: Kluwer Acad. Publ., 1996. P. 386–389.
- [9] Скупов В.Д., Тетельбаум Д.И. // ФТП. 1987. Т. 21. Вып. 8. С. 1495–1496.
- [10] Беляев А.Е., Беляев А.А., Венгер Е.Ф. и др. // VI Междунар. Крымская конф. "СВЧ техника и телекоммуникационные технологии". Севастополь: Вебер, 1967. С. 71–89.