Devoir facultatif n° 5

Pour une partie X de \mathbb{R} , on appelle adh'erence de X (notée \bar{X}) l'ensemble des limites des suites à valeurs dans X qui convergent.

Une partie X de \mathbb{R} est dite ferm'ee si $\bar{X}=X,$ et est dite ouverte si son complémentaire dans \mathbb{R} est fermé.

- 1) Soit $a, b \in \mathbb{R}$ vérifiant a < b. Pour chacune des parties de \mathbb{R} suivantes, déterminer son adhérence, puis si elle est fermée et/ou ouverte.
 - **a)** [a, b]

c) [a,b]

e) 2

b)]*a, b*[

d) ℝ

 $\mathbf{f)} \ \left\{ \frac{1}{n} \ \middle| \ n \in \mathbb{N}^* \ \right\}$

- 2) Soit $A, B \subset \mathbb{R}$.
 - a) Montrer que l'on a toujours $A \subset \bar{A}$.
 - **b)** Dans le cas où $A \subset B$, comparer \bar{A} et \bar{B} .
 - c) De manière générale, comparer $\overline{A \cup B}$ et $\overline{A} \cup \overline{B}$.
 - d) De manière générale, comparer $\overline{A \cap B}$ et $\overline{A} \cap \overline{B}$.
 - e) Quelles règles peut-on énoncer sur l'intersection de *deux* fermés? Sur leur union?
 - f) Montrer qu'une intersection *quelconque* de fermés est un fermé. Est-ce vrai pour une union quelconque ?

On appelle valeur d'adhérence d'une suite $u \in \mathbb{R}^{\mathbb{N}}$ toute limite d'une suite convergente extraite de u.

- 3) Déterminer les valeurs d'adhérences des suites de termes généraux suivants.
 - a) $(-1)^n$
 - **b)** $(-1)^n n$
 - c) $\sin(n)$ (indication: montrer que $\mathbb{Z} + 2\pi\mathbb{Z}$ est un sous-groupe dense de \mathbb{R}).
- 4) Montrer qu'une suite réelle bornée admet au moins une valeur d'adhérence. Combien les suites convergentes ont-elles de valeurs d'adhérence?
- 5) Montrer qu'une suite bornée n'ayant qu'une seule valeur d'adhérence converge.
- 6) Montrer que l'ensemble des valeurs d'adhérence d'une suite réelle est une partie fermée de \mathbb{R} .

— FIN —