

150V N-Channel Enhancement Mode Power MOSFET

Description

WMO690N15HG2 uses Wayon's 2nd generation power trench MOSFET technology that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance. This device is well suited for high efficiency fast switching applications.

Features

- V_{DS} = 150V, I_{D} =20A $R_{DS(on)}$ < 65m Ω @ V_{GS} = 10V
- Green Device Available
- Low Gate Charge
- 100% EAS Guaranteed

Applications

- Synchronous Rectification
- LED Backlighting
- Motor Control

Absolute Maximum Ratings (Tc = 25°C, unless otherwise noted)

Parameter		Symbol	Value	Unit	
Drain-Source Voltage		V _{DS}	150	V	
Gate-Source Voltage		V _{GS}	±20	V	
Continuous Drain Current	T _C =25°C	I _D	20	A	
Continuous Diam Cullent	T _C =100°C	- "0	12.6		
Pulsed Drain Current ⁴		Іом	80	А	
Single Pulse Avalanche Energy ³		EAS	20	mJ	
Total Power Dissipation	T _C =25°C	P _D	56.8	W	
Operating Junction and Storage Temperature Range		TJ, TSTG	-55 to 150	°C	

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance from Junction-to-Ambient ¹	R _{0JA}	52	°C/W
Thermal Resistance from Junction-to-Case	R _{θJC}	2.2	°C/W

Electrical Characteristics (Tc = 25°C, unless otherwise noted)

Parameter		Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Static Characteristics							
Drain-Source Breakdown Volta	age	V _{(BR)DSS}	V _{GS} = 0V, I _D = 250µA	150	-	-	V
Gate-body Leakage current		Igss	V _{DS} = 0V, V _{GS} = ±20V	-	-	±100	nA
Zero Gate Voltage Drain	T _J =25°C		V 450V V 6V	-	-	1	
Current	T _J =100°C	IDSS	V _{DS} =150V, V _{GS} = 0V	-	-	100	μA
Gate-Threshold Voltage	<u> </u>	V _{GS(th)}	$V_{DS}=V_{GS},\ I_D=250\mu A$	2	3	4	V
Drain-Source on-Resistance ²		R _{DS(on)}	V _{GS} = 10V, I _D = 10A	-	51	65	mΩ
Forward Transconductance ²		G fs	V _{DS} = 5V, I _D = 10A	-	19	-	S
Dynamic Characteristics				•	•		
Input Capacitance		Ciss		-	655	-	pF
Output Capacitance		Coss	V _{DS} = 75V, V _{GS} =0V, f =1MHz	-	45.5	-	
Reverse Transfer Capacitance		C _{rss}		-	2.7	-	
Switching Characteristics	i			•	•		•
Gate Resistance		R _g	$V_{GS} = 0V$, $V_{DS} = 0V$, $f = 1MHz$	-	2	-	Ω
Total Gate Charge		Qg		-	7.8	-	nC
Gate-Source Charge		Q _{gs}	V _{GS} = 10V, V _{DS} = 75V, I _D =10A	-	2.1	-	
Gate-Drain Charge		Q_{gd}		-	0.6	-	
Turn-on Delay Time		t _{d(on)}		-	7.5	-	ns
Rise Time		t _r	V _{GS} =10V, V _{DS} =75V,	-	3.8	-	
Turn-off Delay Time		t _{d(off)}	$R_G = 10\Omega$, $I_D = 10A$	-	10.5	-	
Fall Time		t _f		-	2.6	-	
Drain-Source Body Diode Characteristics							
Diode Forward Voltage ²		V _{SD}	Is = 10A, V _{GS} = 0V	-	-	1.2	V
Continuous Source Current ^{1,5}		Is	Vg=VD=0V , Force Current	-	-	20	А
Body Diode Reverse Recovery	/ Time	t _{rr}	1 404 11/1/ 1000/	-	46	-	ns
Body Diode Reverse Recovery	/ Charge	Qrr	l _F = 10A, dl/dt=100A/μs	-	50	-	nC

Notes:

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.4mH, I_{AS} =10A
- 4. Repetitive rating, pulse width limited by junction temperature $T_{\text{J}}(\text{MAX})\text{=}150^{\circ}\text{C}$
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

Test Circuit

Figure A. Gate Charge Test Circuit & Waveforms

Figure B. Switching Test Circuit & Waveforms

Figure C. Unclamped Inductive Switching Circuit & Waveforms

Mechanical Dimensions for TO-252

COMMON DIMENSIONS

CVMDOL	MM		
SYMBOL	MIN	MAX	
А	6.40	6.80 5.50	
В	5.13		
С	0.88	1.28	
D	5.90	6.22	
Е	0.68	1.10	
F	0.68	0.91	
G	2.291	REF	
Н	2.90REF		
I	0.85	1.17	
J	0.51REF		
K	2.10	2.50	
L	0.40	1.00	

Ordering Information

Part Package		Marking	Packing method	
WMO690N15HG2	TO-252	WMO690N15HG2	Tape and Reel	

Marking Information

WMO690N15HG2= Device code
WWXX XXX= Date code

Contact Information

No.1001, Shiwan(7) Road, Pudong District, Shanghai, P.R.China.201207 Tel: 86-21-50310888 Fax: 86-21-50757680 Email: market@way-on.com

WAYON website: http://www.way-on.com

For additional information, please contact your local Sales Representative.

WRYDN ® is registered trademarks of Wayon Corporation.

Disclaimer

WAYON reserves the right to make changes without further notice to any Products herein to improve reliability, function, or design. The Products are not designed for use in hostile environments, including, without limitation, aircraft, nuclear power generation, medical appliances, and devices or systems in which malfunction of any Product can reasonably be expected to result in a personal injury. The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. WAYON does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Products or technical information described in this document.