INTEGRAL MODEL OF PEL TYPE

YLIN9

1. Prelim on rational PEL data

Let (B,*,V,H,h) be a \mathbb{Q} -PEL datum. That is, B is semisimple finite dimensional \mathbb{R} algebra, * a positive involution on B, V an \mathbb{R} vector space and B module, H a non-degenerate skew Hermitian on V. That is, H is non-degenerate \mathbb{Q} valued alternating form on V compatible with B action. $h: \mathbb{C} \to \operatorname{End}_B(V)$ is an \mathbb{Q} algebra homomorphism such that $h(\bar{z})$ is the adjoint of h(z) under H. Then we can attach a triple (C,*,h) such that:

Definition 1.1. Let (C, *, h) be a triple such that

- (1) C is a semisimple finite dimensional \mathbb{Q} algebra. Here, $C = \operatorname{End}_{B}(V)$.
- (2) * is a involution on C. Here, * is the adjoint map under H on C.
- (3) $h: \mathbb{C} \to C_{\mathbb{R}}$ is \mathbb{R} algebra homomorphism such that $h(z)^* = h(\bar{z})$. h is the same as above
- (4) $\iota(x) = h(i)^{-1}x^*h(i)$ is a positive involution on C.

We can attach an algebraic group over \mathbb{R} , $(\mathcal{G}, \mathcal{G}_1)$ such that:

$$\mathcal{G}(R) = \{ x \in C \otimes_{\mathbb{Q}} R \mid xx^* \in R^{\times} \}$$

$$\mathcal{G}_1(R) = \{ x \in C \otimes_{\mathbb{Q}} R \mid xx^* = 1 \}$$

Then h restricted to \mathbb{C}^{\times} can be regarded as a homomorphism of \mathbb{R} algebraic group

$$h: \mathbb{S} \to \mathcal{G}_{\mathbb{R}}$$

Recall that (B, *, V, H, h) is called:

- Type (A): If $(C, \iota)_{\mathbb{C}} \cong M_n(\mathbb{C}) \times M_n(\mathbb{C}), (x, y)^* = (y^t, x^t) \iff \mathcal{G}_1/\mathbb{C} \text{ has Dynkin diagram } A_{n-1};$
- Type (C): If $(C, \iota)_{\mathbb{C}} \cong M_{2n}(\mathbb{C}), x^* = \bar{x}^t \iff \mathcal{G}_1/\mathbb{C}$ has Dynkin diagram C_n ;
- Type(D): If $(C, \iota)_{\mathbb{C}} \cong M_{2n}(\mathbb{C}), x^* = J\bar{x}^t J^{-1}, \iff \mathcal{G}_1/\mathbb{C} \text{ has Dynkin diagram } D_n; \text{ Here } J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$

Lemma 1.2. Given (C, *, h), the pair (\mathcal{G}, h) is a Shimura datum. The corresponding Hermitian symmetric domain $X_{\infty} = \mathcal{G}(\mathbb{R}) \cdot h$.

The \mathbb{Q} PEL datum define an scheme over E = E(G, X), which we denote as $\mathrm{Sh}(B)/E$.

Date: Feb 2024.

2 YLIN9

2. Integral model of good reduction of a prime

Let $\operatorname{Sh}(B)/E$ be the PEL type Shimura variety attched to the \mathbb{Q} -PEL data (B,*,V,H,h). Fix a prime p, and let v be a place in E above V. We want extends $\operatorname{Sh}(B)/E$ an **integral model**, defined over $\mathcal{O}_{E,(p)}$. The idea is the fix a lattice in B that gives an integral version for (B,*,V,H,h).

Specifically, we suppose that B is a finite dimensional simple \mathbb{Q} algebra that is unramifed over p. Let F be the center of B. That is, $B_{\mathbb{Q}_p}$ is a product of matrix algebra over unramified extension of \mathbb{Q}_p , and F_p is a product of these unramified extensions. In addition to (B, *, V, H, h), we choose the following **integral PEL data**:

- \mathcal{O}_B is a $\mathbb{Z}_{(p)}$ order in B such that $\mathcal{O}_{B,p}$ is a maximal order in $B_{\mathbb{Q}_p}$. In addition \mathcal{O}_B should be preserved under *.
- Let Λ_0 be a lattice in $V_{\mathbb{Q}_p}$ that is self-dual under Ψ and preserved by \mathcal{O}_B .
- Let \mathcal{K}_p be a compact open of $\mathcal{G}(\mathbb{A}_f^p)$.

We use $\mathcal{D} = (\mathcal{O}_B, *, \Lambda_0, \Psi, h)$ to denote the integral PEL data.

Lemma 2.1. As $B_{\mathbb{C}}$ module $V_{\mathbb{C}} \cong V_1 \oplus V_2$, where V_1 is the $B \otimes \mathbb{C}$ module where $1 \otimes z$ acts as $\cdot z$. Here the reflex field E(G,h) is exatly the same as the field of definition of isomorphism class of complex representation V_1 of B. Choose a basis u_1, \dots, u_t of \mathcal{O}_B over $\mathbb{Z}_{(p)}$. Define the degree n homogenous polynomial:

$$f(x_1, \dots, x_n) := \det(x_1 u_1 + \dots x_n u_n; V_1)$$

Then coefficient of f lies in $\mathcal{O}_{E,(p)}$

Proof. Since E is the field of definition of V_1 as a B representation, coefficient of f is in E. But u_1, \dots, u_i preserves Λ_0 , so have entries in $\mathcal{O}_E \otimes \mathbb{Z}_{(p)}$.

Definition 2.2. Given \mathcal{D} and \mathcal{K}_p , we defined the moduli problem $S_{\mathcal{K}^p}$ over $\mathcal{O}_E \otimes \mathbb{Z}_{(p)}$ as the contravariant functor (LNS means locally notherian scheme)

$$M_{\mathcal{K}^p}: LNS/(\mathcal{O}_E \otimes_{\mathbb{Z}} \mathbb{Z}_{(p)}) \to quadruples$$

 $S \to (A, \lambda, i, \eta_{\mathcal{K}})$

Such that:

- $A \rightarrow S$ an abelian scheme;
- $\lambda: A \to A^{\vee}$ a polarization of degree in $\mathbb{Z}_{(p)}^{\times}$.
- $i: \mathcal{O}_B \to \operatorname{End}(A) \otimes_{\mathbb{Z}} \mathbb{Z}_{(p)}$ a * homomorphism, for * the involution on \mathcal{O}_B and the Rosati involution on $\operatorname{End}(A)$. That is, $\phi^* = \lambda^{\vee} \circ \phi^{\vee} \circ \lambda$.
- $\eta_{\mathcal{K}^p}$ be a \mathcal{K}^p level structure. More precisely, we choose $s \in S$ a geometric point and consider A_s the corresponding abelian variety. The Tate module of A_s , $T_{\mathbb{A}_f}(A_s) = \prod_{l \neq p} T_l(A_s) \cong H_1(A_s, \mathbb{A}_f^p)$. A level structure of type \mathcal{K}^p is a \mathcal{K}^p orbit $\bar{\eta}$, where $\eta : V_{\mathbb{A}_f^p} \to H_1(A_s, \mathbb{A}_f^p)$ is fixed by $\pi_1(S, s)$ and is a isomorphism of skew-Hermitian B-module.

Recall: Let (M, H_1) and (N, H_2) be Hermitian B modules over R. An isomorphism of Hermitian B module is an R homomorphism $\eta: M \to N$ such that $H_2(\eta x, \eta y) = rH_1(x, y)$, $r \in R^{\times}$. In our case, $R = \mathbb{A}_f^p$ and $(V_{\mathbb{A}_f^p}, H)$ is a Hermitian B module, $(H_1(A_s, \mathbb{A}_f^p), e_{\lambda})$ is a Hermitian B module with e_{λ} taking value in $\mathbb{A}_f^p(1)$. Hence $\eta: V_{\mathbb{A}_f^p} \to H_1(A_s, \mathbb{A}_f^p)$ is an isomorphism of B module that sends H to a \mathbb{A}_f^p multiple of e_{λ} . The

 $\mathcal{G}(\mathbb{A}_f^p)$ acts on η by $\eta \to \eta \circ g$, and the action is simply transitive. This is partitioned into several \mathcal{K}^p orbit, and the level structure is to choose such a orbit. In addition, $\pi_1(S,s)$ acts on $H_1(A_s,\mathbb{A}_f^p)$ hence acts on $\bar{\eta}$ on the left. We have $\bar{\eta}$ to be fixed by $\pi_1(S,s)$ so that $\eta_{\mathcal{K}^p}$ does not depend on the geometric point s.

• We require $(A, \lambda, i, \bar{\eta})$ satisfying the **determinant condition** on $Lie(A) = \pi_* \Omega_{A/S}^{\vee}$. Lie(A) is locally free \mathcal{O}_S module where \mathcal{O}_B acts. and let $\alpha_1, \ldots, \alpha_t$ generator of \mathcal{O}_B over \mathcal{O}_S . Let $g(X_1, \ldots, X_t) = \det(\alpha_1 X_1 + \cdots + \alpha_t X_t \mid Lie(A))$, coefficient in \mathcal{O}_S . Then the determinant condition says that

$$g(X_1,\ldots,X_t)=f(x_1,\ldots,x_t)$$

This is equivalent to $Lie(A) \cong V$ as B modules.

Two quadriple $(A, \lambda, i, \bar{\eta})$ and $(A', \lambda', i', \bar{\eta}')$ are isomorphic if there exists an isogeny of degree in $\mathbb{Z}_{(p)}^{\times}$ that sends $A \to A'$, carries $\bar{\eta} \to \bar{\eta}', \lambda \to \mathbb{Z}_p^{\times} \lambda'$ and is compatible with action of \mathcal{O}_B .

 $S_{\mathcal{K}^p}$ can be understood as replacing the \mathbb{Q} isogeny class (can invert any number in \mathbb{Z}) by $\mathbb{Z}_{(p)}$ isogeny class (can not inver p).

Proposition 2.3 ($S_{\mathcal{K}^p}$ has good reduction). For \mathcal{K}^p sufficiently small, the moduli problem $S_{\mathcal{K}^p}$ is representable by a **smooth**, **quasi-projective** scheme over $\mathcal{O}_{E,(p)}$. This $S_{\mathcal{K}^p}$ is called the integral canonical model of Sh(B) with good reduction at any prime v above p.

Remark 2.4. The smoothness is generally proven using the criteria for formal smoothness. A scheme X is formally smooth over S if $\operatorname{Hom}_S(T,X) \to \operatorname{Hom}_S(T',X)$ is surjective, where T' is a first order thickening of T. That is, T is a closed subscheme in T' defined by \mathcal{I} such that $\mathcal{I}^2 = 0$.

3. Complex points of $S_{\mathcal{K}^p}(\mathbb{C})$

Lemma 3.1. Isomorphism class of skew-Hermitian B modules V' such that $V' \cong V$ as a \mathbb{Q} vector space is classified by $H^1(\mathbb{Q},\mathcal{G})$,

Lemma 3.2. For each place v of \mathbb{Q} , the skew-Hermitian $B_{\mathbb{Q}_v}$ modules $H_{\mathbb{Q}_v} = H_1(A, \mathbb{Q}_v)$ and $V_{\mathbb{Q}_v}$ are isomorphic.

Corollary 3.2.1. The isomorphism class of Hermitian B module $H_1(A, \mathbb{Q})$ parameterized by $S_{\mathcal{K}^p}(\mathbb{C})$ is classified by $\ker^1(\mathbb{Q}, \mathcal{G})$

Proof. The isomorphism class of Hermitian B module $V' = H_1(A, \mathbb{Q})$ are exactly the ones classified by $H^1(\mathbb{Q}, \mathcal{G})$ whose image in $H^1(\mathbb{Q}_v, \mathcal{G})$ become trivial. Hence, it is classified by the kernel of

$$H^1(\mathbb{Q},\mathcal{G}) \to \prod_{v \le \infty} H^1(\mathbb{Q}_v,\mathcal{G})$$

Proposition 3.3 (connected component of $S_{\mathcal{K}^p}(\mathbb{C})$ is indexed by $|\ker^1(\mathbb{Q},\mathcal{G})|$). Suppose $|\ker^1(\mathbb{Q},\mathcal{G})| = m$. We let V^1, \ldots, V^m be the representatives. Fix the local isomorphism $\varphi_{i,v}: V_v^i \cong V_{\mathbb{Q}_v}$. Without lost of generality, let (V^1, H^1) representing the identity element. That is, $(V^1, H^1) \cong (V, H)$ as Hermitian B module. Let G^i be $\operatorname{Aut}(V^i, H^i)$. The local isomorphism $\varphi_{i,v}$ induces isomorphisms $G^i_{\mathbb{Q}_v} \to \mathcal{G}_{\mathbb{Q}_v}$ for

4 YLIN9

all v. Then $S_{\mathcal{K}^p}(\mathbb{C}) = \bigsqcup_{i=1}^m S^i_{\mathcal{K}^p}(\mathbb{C})$, where $S^i_{\mathcal{K}^p}(\mathbb{C})$ classifies $(A, \lambda, i, \bar{\eta})$ such that $H = H_1(A, \mathbb{Q})$ is isomorphic to V^i as a skew-Hermitian B modules.

Proposition 3.4. Let K_p be the stabilizer of Λ_0 in $\mathcal{G}(\mathbb{Q}_p)$. Let $K = K_p K^p \subseteq \mathcal{G}(\mathbb{A}_f)$. Then we have

$$S^1_{\mathcal{K}^p}(\mathbb{C}) \cong \mathcal{G}(\mathbb{Q}) \backslash ((\mathcal{G}(\mathbb{A}_f)/\mathcal{K}) \times X_{\infty})$$

Proof. Consider a point $(A, \lambda, i, \bar{\eta})$ of $S^1_{\mathcal{K}^p}(\mathbb{C})$. Fix an isomorphism $\varphi: H \to V$.

- $\bar{\eta}$ gives an element $\mathcal{G}(\mathbb{A}_f^p)/\mathcal{K}^p$, denoted as $g_{\bar{\eta}}$
- Under the isomorphism $\varphi_{\mathbb{R}}$, the complex structure on $H_{\mathbb{R}}$ becomes a complex structure on $V_{\mathbb{R}}$ and that induce a homomorphism $h': \mathbb{C} \to C_{\mathbb{R}}$, h' differs from h by conjugation of $\mathcal{G}(\mathbb{R})$. Hence $h' \in X_{\infty}$.
- Using the fact that $\mathcal{G}(\mathbb{Q}_p)$ acts transitively on the set of self-dual lattice of $V_{\mathbb{Q}_p}$, we know that there exists $g \in \mathcal{G}(\mathbb{Q}_p)$ such that $g \cdot \varphi_{\mathbb{Q}_p}(\Lambda') = \Lambda_0$. g is unique up to \mathcal{K}_p , so $g \in \mathcal{K}_p$.

Hence from $(A, \lambda, i, \bar{\eta})$, we obtain $([g_{\bar{\eta}} \times g] \times h') \in (\mathcal{G}(\mathbb{A}_f)/\mathcal{K}) \times X_{\infty}$. The group $\mathcal{G}(\mathbb{A}) = \mathcal{G}(\mathbb{A}_f) \times \mathcal{G}(\mathbb{R})$ acts on $(\mathcal{G}(\mathbb{A}_f)/\mathcal{K}) \times X_{\infty}$ and so is $\mathcal{G}(\mathbb{Q})$. Finally, notice that the choice of φ is unique up to an element in $\mathcal{G}(\mathbb{Q})$. Hence the element is well-definied up to $\mathcal{G}(\mathbb{Q})$ orbit. So we obtain an element in $\mathcal{G}(\mathbb{Q}) \setminus ((\mathcal{G}(\mathbb{A}_f)/\mathcal{K}) \times X_{\infty}$. Hence we have the isomorphism:

$$S^1_{\mathcal{K}^p}(\mathbb{C}) \cong \mathcal{G}(\mathbb{Q}) \backslash ((\mathcal{G}(\mathbb{A}_f)/\mathcal{K}) \times X_{\infty})$$

Similarly, $S^i_{\mathcal{K}^p}(\mathbb{C}) \cong \mathcal{G}^i(\mathbb{Q}) \setminus ((\mathcal{G}(\mathbb{A}_f)/\mathcal{K}) \times X_\infty)$

Lemma 3.5. These components $S^i_{\kappa_p}(\mathbb{C})$ are all isomorphic to each other.

Proof. (Skip the proof in the talk) We define an automorphism of $S_{\mathcal{K}^p}$, φ , by sending

$$\varphi: (A, \lambda, i, \bar{\eta}) \to (A, \lambda \circ i(\alpha), i, \bar{\beta}\eta)$$

Here α represents the element $z_i \in \ker^1(\mathbb{Q}, Z)$, and $\beta = (\beta_v) \in \prod_v H^1(\mathbb{Q}, Z)$ whose component in F_l is β_l for every $l \nmid p$. This automorphism sends $S^i_{\mathcal{K}^p} \to S^1_{\mathcal{K}^p}$. Indeed, let $z_i \in \ker(\mathbb{Q}, Z)$ corresponding to the i th component, or the element in $\ker(\mathbb{Q}, \mathcal{G})$ determined by the skew-Hermitian B module V^i . The the above defined isomorphism sends $S^1_{\mathcal{K}_p}$ to $S^i_{\mathcal{K}_p}$.

4. EXAMPLES OF INTEGRAL MODELS WITH GOOD REDUCTION

Example 4.1 (Integral model of Siegel modular variety). The Siegel modular variety \mathcal{A}_g has an integral model over $\mathbb{Z}(p)$ that is smooth (and proper??). Here I treat \mathcal{A}_g as a special case of PEL type Shimura variety. Indeed, we can take $B=\mathbb{Q}$ and * to be the identity, $i:B\to \operatorname{End}(V)$ to be trivial. Let $V=\mathbb{Q}^{2g}$, Ψ be the standard symplectic form, $h:\mathbb{C}^\times\to\mathcal{G}_\mathbb{R}$ that maps z to J. Then (B,*,i,V,h) gives rise to $(\mathcal{G}(\Psi),X(\Psi))$ in the same recipe.

Fix a prime p. Let $\mathbb{Z}_{(p)}$ be the localization. We make a choice of the integral datum. Let $\Lambda_0 \subseteq \mathbb{Q}_p^{2g}$ be \mathbb{Z}_p^{2g} , then Ψ is a perfect pairing on Λ_0 . Let $\mathcal{K}_p \subseteq \mathcal{G}(\Psi)(\mathbb{Q}_p)$ be the stailizer of Λ_0 , so it can be taken as $\mathcal{G}(\mathbb{Z}_p)$. For all N relatively prime to p, we let $\mathcal{K}(N) \subseteq \mathcal{G}(\mathbb{A}_p^p)$ be the principle level N subgroup. That is,

$$\mathcal{K}(N) = \{ g \in \mathcal{G}(\hat{\mathbb{Z}}^p) : g \equiv 1 \mod N\mathcal{G}(\mathbb{Z}_l) \}$$

Given (Λ, Ψ, h) and $\mathcal{K}(N)$ such that N is sufficiently large, we define the moduli problem $S_{\mathcal{K}(N)}: LNS/\mathbb{Z}_{(p)} \to (A, \lambda, \eta)$ such that

- A abelian scheme over $\mathbb{Z}_{(p)}$
- $\lambda: A \to \mathbb{A}^t$ is a polarization of degree $\mathbb{Z}_{(p)}^{\times}$
- $\bar{\eta}: V_{\mathbb{A}_f^p} \to H^1(A_s, \mathbb{A}_f^p)$ is an level $\mathcal{K}(N)$ structure.

Alternatively, $\bar{\eta}: \Lambda_0/N\Lambda_0 \to A_s[N]$ is a principal level N structure. In other words, it is a $\mathcal{K}(N)$ orbit of symplectic isomorphism

$$\eta: L \otimes_{\mathbb{Z}} \hat{\mathbb{Z}}^p \to T^p(A_s)$$

Then by the previous section, $S_{\mathcal{K}(N)}$ is smooth and quasi-projective, with generic fibre be the Siegel modular variety. Therefore, $S_{\mathcal{K}(N)}$ is an integral model.

Example 4.2. (integral model of unitary Shimura variety of signature (2,1)) Let E/\mathbb{Q} be a totally imaginary extension. Let p be a prime unramified in E and let v be a place of E above p. We fix an isomorphism $E \otimes_{\mathbb{Q}} (\mathbb{R})$. We consider the following PEL datum:

- B = E with * the unique non-trivial element in the Galois group. Let $\mathcal{O}_B = \mathcal{O}_E$ be the ring of integer

• $V = E^3, \Lambda = \mathcal{O}_E^3$. Defined the *E*-valued skew Hermitian form $H : \Lambda \times \Lambda \to 2\pi_i \mathbb{Z}$ defined by the matrix $M_H = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$. Define the alternating

form $\Psi: V \times V \to 2\pi i \mathbb{Z}$ be taking $\bar{\Psi}(x,y) = \bar{\operatorname{tr}}_{\mathcal{O}_E/\mathbb{Z}}(\alpha H(x,y))$, where α satisfies:

- $-\alpha \in \mathcal{O}_E$ and $p \nmid \alpha$.
- $-\alpha^* = -\alpha$

and $i: E \to \text{End}(V)$ the scalar matrix.

• $h: \mathbb{C}^{\times} \to M_3(\mathbb{C})$

$$h(z) = \begin{bmatrix} z & 0 & 0 \\ 0 & z & 0 \\ 0 & 0 & \bar{z} \end{bmatrix}$$

Then $(\mathcal{O}, *, i, \Lambda_0, h)$ is an integral PEL datum. The associated moduli problem $S_{\mathcal{K}^p}$ for $\mathcal{K}^p \subseteq \mathcal{G}(\hat{\mathbb{Z}}^p)$ sufficiently small is representable by a smooth and quasi-projective scheme over $\mathcal{O}_{E,(p)}$.

Example 4.3 (integral model that has bad reduction). Let (r,s) be a pair such that |r-s| > 1. Say we can take (r,s) = (3,1). Define the same thing as example 4.2, exact that this time we choose a prime p ramified in E and let v be the unique place above p. Then the corresponding moduli problem $S_{\mathcal{K}^p}$ is no longer smooth over $\mathcal{O}_{E,(p)}$. The generic fibre is still $Sh(\mu_5, f)(B)/E$, and it has dimension rs since this is the dimension of corresponding Hermitian symmetric domain. Let $S_{\mathcal{K}^p,\mathbb{F}_p}$ be the special fibre of $S_{\mathcal{K}^p}$ over \mathbb{F}_p

Lemma 4.4. $S_{\mathcal{K}^p,\mathbb{F}_p}$ has dimension $> \frac{n^2-1}{4}$.

Proof. Let F be the base field of V and E be the reflex field, so $E \subseteq F$, $E_v \subseteq F_v$. Let $S'_{\mathcal{K}_{\mathcal{P}}}$ be the moduli functor over $\mathcal{O}_{F_{v}}$ whose S valued point has the same definition of $S_{\mathcal{K}^p}$ except that we remove the determinantal condition. We have a closed immersion

$$S_{\mathcal{K}^p} \times_{\mathcal{O}_{E,v}} \mathcal{O}_{F,v} \to S'_{\mathcal{K}^p}$$

6 YLIN9

Moreover, if S is over $\operatorname{Spec}_{\mathbb{F}_p} = \operatorname{Spec}_{\mathcal{O}_{F,v}/m_v}$, Then

$$i: \det(T_0 \cdot 1 + T_1 \cdot u \mid H_1(A, \mathbb{Q}))$$

Now, notice that $1, \pi$ are generator of $\mathcal{O}_F \otimes_{\mathbb{Z}} \mathbb{Z}_{(p)} \cong \mathcal{O}_F/\pi^2$. Its generator over $\mathbb{Z}_{(p)}$ can be taken as $1, \pi$, where π is the uniformizer of v. Then the coefficient of $\det(T_0 \cdot 1 + T_1 \cdot \pi \mid H_1(A, \mathbb{Q}))$ is in $m_v \subseteq \mathcal{O}_{F_v}$. Therefore, the determinant condition becomes redundant over $\operatorname{Spec}(\mathbb{F}_p)$ and so i is an isomorphism.

But then, for any other pairs of indices (r', s') such that (r' + s') = n, we can again define $S_{\mathcal{K},p}^{r',s'}$, and we have the relation

$$S_{\mathcal{K}^p}/\mathbb{F}_p \cong S'_{\mathcal{K}^p}/\mathbb{F}_p \cong S^{r',s'}_{\mathcal{K}^p}/\mathbb{F}_p$$

Also, since $S_{\mathcal{K}^p}^{r,s}$ has a $\operatorname{Spec}(\mathcal{O}_N)$ valued point for N some extension of K_v , the dimension of special fibre is \geq dimension of generic fibre. Since $S_{\mathcal{K}^p}^{r',s'}$ has generic fibre of dimension r's', we can conclude that the dimension of special fibre of $S_{\mathcal{K}^p}$ is at least $\max\{r's' \mid r'+s'=n\}$, which is $\frac{n^2-1}{4}$. In particular, the moduli problem is not smooth (Does not have good reduction) if we remove the assumption that p is unramified in K.

Remark 4.5. Notice that if p is unramified in \mathcal{O}_K , we are not going to run into the same issue. Indeed, suppose p splits into v_1, v_2 in \mathcal{O}_K , then $\mathcal{O}_K \otimes_{\mathbb{Z}} \mathbb{Z}_{(p)} \cong \mathcal{O}_{K,v_1} \oplus \mathcal{O}_{K,v_2}$, and one can just take u_1, u_2 such that u_i is not zero in the residue field $\cong \mathbb{F}_p$. Same as u_2 . Then the polynomial will remain separable after reduction mod p. If p inert, the basis can be taken as 1, u, where the residue class of u generates \mathbb{F}_{p^2} over \mathbb{F}_p .

References