CPSC 6185: Final Project

KHUSHI JANI KORIE MACDOUGALL

VENKAT RAMANA REDDY KUPPI REDDY

Project Overview and Goals

Goal

 To classify and predict treatment attribute (whether the individual sought mental health treatment) based on the construction of a decision tree and comparison against clusters of the original dataset

Al Technique(s)

- o Decision tree
 - Target feature: treatment
- o K-means clustering
- Dataset: Mental Health in Tech Survey | EDA
 - https://www.kaggle.com/code/chaitanya99/mentalhealth-in-tech-survey-eda/input
 - o 27 features reflecting attitudes towards mental health and frequency of mental health disorders
 - o 1259 rows, 27 columns
- Domain: Mental health in tech field

Feature Selection by Intuition

- Age Respondent age
- Gender Respondent gender
- Self-Employed Are you self-employed?
- Family History Do you have a family history of mental illness?
- Remote Work Do you work remotely (outside of an office) at least 50% of the time?
- Tech Company Is your employer primarily a tech company/organization?
- Benefits Does your employer provide mental health benefits?
- Care Options Do you know the options for mental health care your employer provides?
- Seek Help Does your employer provide resources to learn more about mental health issues and how to seek help?
- Observed Consequences Have you heard of or observed negative consequences for coworkers with mental health conditions in your workplace?
- <u>Treatment</u> Have you sought treatment for a mental health condition?

Dataset Cleaning and Preparation

- 4 features had missing values that were replaced to avoid dropping any records and losing data.
 - o state, self_employed, and work_interfere were filled with "Unknown"
 - o comments was filled with empty strings
- Columns with inconsistent values/formatting were standardized to ensure uniformity and improve interpretability
 - Age had some negative/unrealistic values, so values were limited to be 18-120 otherwise NaN to avoid skewing the data.
 - Gender had an array of open response values, so responses were mapped to their category: Female,
 Male, or Other to allow meaningful analysis.
 - o Remaining features already used standardized categorical values, so no changes were made.

Encoding the Dataset

- Decision trees split based on numeric thresholds, so categorical inputs were converted to numerical form.
- One-hot encoding was applied to nominal categorical features (gender, country, state, self_employed, etc), which allows models to treat each category as a separate binary feature.
- Ordinal categorical features (work_interfere, no_employees, and leave) were mapped to numeric values.
- **comments** was converted to a binary column indicating if a comment was provided.

Scaling the Dataset

- K-means clustering uses Euclidean distance to measure distance between data points, which can be skewed if features are on different scales.
- Z-score standardization was used to scale features to have a mean of 0 and a standard deviation of 1 to ensure all features contribute equally to the clustering.

Oversampling Data

- Our original dataset was already balanced, with nearly equal numbers of records labeled as treatment=no and treatment=yes.
- After data cleaning and standardizing feature values, several features had excessive records with "Unknown" values.
- For the decision tree model, records with "Unknown" values were removed and **treatment**=no records were oversampled to maintain balance and improve model performance.

• Used sklearn to build decision trees

Decision Tree Model

- Trained the tree on the oversampled, hot-encoded data
- Fine-tuned model via GridSearchCV
 - o Evaluated combinations of parameters through cross-validation
 - Max_depth limits tree depth
 - Min_samples_split minimum samples to split a node
 - Criterion gini and entropy
 - o Selected the best model based on accuracy scoring metric
 - o The GridSearchCV may be overfitting the model on the full dataset because accuracy decreased

Dataset	Accuracy Before	Max_depth	Min_samples_split	Criterion	Accuracy After
Intuitive Selection	0.8	10	2	entropy	0.8
Full	0.897	10	2	entropy	0.795

K-Means Clustering

- Used sklearn for clusters on hot-encoded, stratified data including 'Unknown' values
- Defined the function dunn_index to evaluate clustering quality for different values of k (2-10)
- Tracked 3 metrics for optimum k:
 - o Inertia measures how internally coherent the clusters are (lower = tighter clusters)
 - Silhoutte score measures how well each point fits in its cluster (closer to +1 = distinct clusters)
 - Dunn Index measures cluster compactness and separation (higher = far apart and compact)

Intuitive Selection: k = 3 & 10

Full: k = 2 & 10

Decision Tree Results

- Evaluation Metrics
 - Accuracy the proportion of correctly classified instances among all instances
 - Overall effectiveness
 - Precision the proportion of true positive predictions out of all positive predictions
 - Understanding the likelihood of a false positive
 - Recall the proportion of true positive predictions out of all positive instances
 - Understanding the likelihood of false negatives
 - F1-Score single measure of performance based on both precision and recall equally

Prediction	Dataset	Accuracy	Precision	Recall	F1-Score
No	Intuitive Selection	0.80	0.77	0.85	0.81
	Full	0.897	0.90	0.90	0.90
Yes	Intuitive Selection	0.80	0.83	0.75	0.79
	Full	0.897	0.89	0.89	0.89

Confusion Matrix

Intuitive Selection

Actual Positive 5

Actual Negative 5

Actual Negative 5

The Full dataset performed better

Full

	Predicted Positive	Predicted Negative	
Actual Positive	18	2	
Actual Negative	2	17	

Intuitive Selection

Yes

No

Full Dataset

- Reflects selective dataset in that gender is also a strong predictor
 - o Female Yes
- Data may be too noisy with uncertain answers like 'Maybe' and 'Don't Know' that don't define a clear path
- Working in the state of Ohio is an unusual, yet strong predictor
 - o Yes -> Yes
 - o Interesting topic to explore further what about working in Ohio helps people seek treatment?

Full

K-Means Clustering Results

•	Performed	poorly	overall '

- Treatment categories did not form clear and separated clusters
- May be because of too noisy data and Euclidean distance is less compatible with categorical variables
- Smaller, oversampled dataset with no missing values performed just as poorly

Dataset	Silhouette	Dunn Index
Intuitive Selection	0.14	0.184
Full	0.043	0.092

Intuitive Selection

Overall Insights

- Decision Tree was a much better model and clearly defined features that could predict whether someone sought treatment or not
 - Main splits on workplace support/resources and attitude/tolerance towards mental health issues
 - Defines a clear generational and gender divide result that is consistent with current studies by the CDC¹
 - Gives more legitimacy to other findings
 - Unusual finding on working in Ohio
 - Intuitive selection excluded one of the most predictive features – work interference
 - Employees with more independence and control over their environment more likely to seek help
- Could perform better if more features were included and noisier features with 'Maybe' or uncertain answers were excluded
- Could try using k-modes instead because it is more suitable for categorical variables²

¹Terlizzi EP, Norris T. Mental health treatment among adults: United States, 2020. NCHS Data Brief, no 419. Hyattsville, MD: National Center for Health Statistics. 2021. DOI: https://dx.doi.org/10.15620/cdc:110593.

