EEC133 Pre-Lab 2: Loop Antennas

Tao Wang

November 9, 2024

Contents

Pre-Lab

Part 1: Loop Antenna Design

Questions:

1.
$$r = 0.0064$$
m. $\lambda = \frac{c}{f} = 0.12$ m. $r \le \frac{\lambda}{6\pi} \approx 0.00637$ m.

2.

Radiation Resistance:
$$320\pi^6 \left(\frac{0.00637}{0.12}\right)^4 = 2.44\Omega$$

Directivity: 1.5

Half-power beamwidth: $\frac{\pi}{2}$

Far Field Requirement: $r >> \frac{0.12}{2\pi} = 0.019$ m

Figure 1:

3.

Part 2: More Noise Calculations

Questions:

- 1. R_{in} and R_{out} are typically 50 Ω to avoid wave reflection in R_{in} by matching the characteristics impedance in the input and output transmission line. R_{out}
- 2. Noise = $9.1*10^{-10} \frac{V}{\sqrt{Hz}}$

This unit means that the noise voltage is $9.1*10^{-10}$ volts per unit of the frequency bandwidth.

3. $R_{in} = 0.489\Omega$, so $\tau = 0.019$. The small transmission coefficient implies that very little power will be transmitted to the amplifier, so the signal amplification will be poor.