DSA5101: Finding Similar Items

LX Zhang

Department of Mathematics

National University of Singapore

Motivation

- Customers who purchased similar products
 - -- Online shopping
 - -- Amazon
- Identify nearly duplicated webpages
 - -- Plagiarisms
 - -- Mirrors that have almost the same content but differ in information about the host
- Images with similar patterns
- How to model similarity of two webpages/text document?
- How to deal with big data?
 - -- Extract all similar pairs of objects from a large collection
 - -- (online version) Is this object similar to something seen before?

Similarity Models

Jaccard Similarity and Distance

-- Given two sets of abstract elements S_1 , S_2 ;

$$J(S_1, S_2) = |S_1 \cap S_2| / |S_1 \cup S_2|.$$

$$D(S_1, S_2) = 1 - \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|} = \frac{|S_1 \Delta S_2|}{|S_1 \cup S_2|}$$

3 in intersection
8 in union
Jaccard similarity = 3/8
Jaccard distance = 5/8

Document Similarity and Distance

- -- DNA sequences
- -- Text documents
- -- Webpages

iTehnticate

Abstract

Background: Galled trees are studied as a recombination model in theoretical population genetics. This class of phylogenetic networks has been generalized to tree-child networks and other network classes by relaxing a structural condition imposed on galled trees. Although these networks are simple, their topological structures have yet to be fully undestood.

Results: It is well-known that all phylogenetic trees on n taxa can be generated by the insertion of the n-th taxa to ach edge of all the phylogenetic trees on n-1 taxa. We prove that all tree-child (resp. normal) networks with k reticulate nodes on n taxa can be uniquely generated via three operations from all the tree-child (resp. normal) networks with k-1 or k reticulate nodes on n-1 taxa. Applying this result to counting rooted phylogenetic networks, we show that there are exactly $\frac{(2n)!}{2!!(n-1)!} - 2^{n-1} n!$ binary phylogenetic networks with one reticulate node on n taxal

Conclusions: The work makes two contributions to understand normal networks. One is a generalization of an enumeration procedure for phylogenetic trees into one for normal networks. Another is simple formulas for counting normal networks and phylogenetic Internet

Keywords: Tree-child networks, n www.ncbi.nlm.nih.gov

Background

fore, <italic>a</italic>_{<italic>n</italic>, 1} is actually the number of RPNs with one reticulate Phylogenetic networks have been u known that all phylogenetic trees on <italic>n</ti>

fitalic> taxa can be generated by the insertion of the tical and horizontal genetic tran <italic>n</italic>-th taxa in each edge of all the phylogenetic trees on the first genomics and population genetics it <talic>nntalic>s#x02212;1 faxa. The main result of this work is a generalization of this fact into TCNs. This leads to a simple procedure for enumerating both normal networks and TCNs, the C-code for which

Full Source View

acyclic digraph in which all the sink nodes are of inde- variants of NNI have been proposed for RPNs [10-16].

Part 1: Similarity Models

• Document Similarity and Distance

- -- Shingling: Convert documents to the sets of words
- -- Document (D) = A string (or sequence) of letters
- -- A k-shingle (or k-mer) for D is any substring of length k in D
- -- Thus, D is mapped to the set of k-shingles appearing in D.
- -- Similarity/distance for two documents can be defined as the Jaccard similarity/distance of the sets of *k*-shingles.

Example

- D = abcdabd
- -- The set of 2-shingles for D is {ab, bc, cd, da, bd}.
- -- The set of 4-shingle for D is {abcd, bcda, cdab, dabd}

Edit Distance

- -- Document = A string of letters
- -- The distance between two strings x and y is the smallest number of insertions/deletions and substitutions of single characters that will convert x to y.
- -- It is a generalization of Hamming distance
- -- Used widely in DNA sequences

kitten \rightarrow sittin \rightarrow sitting

Distance function on high-dimensional vector spaces

- -- Two vectors $\mathbf{x} = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$
- -- L_k -distance:

$$d_k(\mathbf{x}, \mathbf{y}) = \sqrt[k]{\sum |x_i - y_i|^k}$$

- -- L₁-distance is also called Manhattan distance
- -- L₂-distance is the Euclidean distance

• Tringle Inequality

- -- Many metric functions used in data science don't satisfy triangle inequality
- -- Triangle inequality is important for theoretical study.
- -- (Question) Prove the Jaccard distance on sets satisfies the triangle inequality

Part 2 Find Similar Documents

Step 1. Shingling: from Documents to String Sets

```
D = {Shingling: New Curly Hair Style }
     Set of 5-shingles S(D)={Shing, hingl, ingli, ..., Style}
Variations:
     Set of 3-words
     Multiset (bag) of 3-shingles: {Shi, hin, ing, ngl, gli, lin, ing, ...}
Shingle Size
     Pick a proper k;
     -- k = 5 for short documents e.g. emails
     -- k = 10 for long documents e.g. research articles
```

Step 2. Min-Hashing

Representation of documents as integer k-shingles is not enough

- -- Assume 1,000,000 documents and 1,000,000 comparisons/sec
- -- Pairwise comparisons would take 5 days

Min-hashing approach

- -- Convert large shingles to short signatures, while preserving similarity
- -- Compare signatures of shingles for similarity detection
- -- Signatures: short integer vectors that represent the string sets and reflect their similarity
- -- Used by AltaVista for detection of nearly-duplicate webpages

- Min-hashing is a Random process (sampling approach)
 - -- Sacrifice accuracy: Possible to have false positives (FP) and false negatives (FN)
 - -- But fast!
 - -- Use a minhash function h to keep both FP and FF low, i.e., If sim(D1, D2) is high, then h(D1) = h(D2) with high probability If sim(D1, D2) is low, then h(D1) != h(D2) with high probability

Key Issue

-- How to define such a hashing function

FP errors: two documents with low similarity have the same value FN errors: two documents with high similarity have distinct values.

Encode shingle sets as bit vectors

- Treat a collection of shingle sets as their characteristic matrix
 - -- k-shingle universal set {a, b, c, d, e} (here encode k-shingles into letters)
 - -- the rows correspond to k-shingles of the universal set
 - -- The columns correspond to the documents
 - -- 1 is in the entry (i, j) if the i-th k-shingle is in the j-th document.

k-single	S_1	S_2	S_3	S_4
\overline{a}	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

Computing Jaccard-based Similarity

D1=
$$\{a, c, f, g\}$$

D2= $\{b, c, e, g\}$

k-Shingle	D1	D2
а	1	0
b	0	1
С	1	1
d	0	0
е	0	1
f	1	0
g	1	1

```
J_{00} = # rows where both elements are 0

J_{11} = # rows where both elements are 1

J_{01} = # rows where (A=0 but B=1) or (A=1 but B=0)

SIM(D1,D2) = \frac{J_{11}}{J_{01} + J_{11}} = \frac{2}{6}
```

- D1 is represented as v(D1)=1010011
- D2 becomes v(D2)=0110101
- Use the bitwise AND on v(D1) and v(D2) for J_{11}
- Use the bitwise OR to compute $J_{01} + J_{11}$

Min-hashing Algorithm

- 1. Start with the characteristic matrix of the shingle sets
- 2. Randomly permute the matrix rows
- 3. Min-hash value of any document is the index of the first row (in the permuted order) with a "1" in the corresponding column

	D1	D2			D1	D2
а	1	0	,	е	0	1
b	0	1		d	0	0
С	1	1		b	0	1
d	0	0		С	1	1
е	0	1		f	1	0
f	1	0		а	1	0
g	1	1		g	1	1

h(D1)	=4
h(D2)	=1

Min-hashing algorithm maps a document to a small integer!

Theorem Probability that the minhashing alg. outputs the same value for documents C & D equals their Jaccard-based similarity, i.e. Pr[mh(C) = mh(D)] = sim(C, D)

- Row permutation is equivalent to k-shingle permutation.
- Assume there are:
 - x red k-shingles (that appear in both C and D)
 - y blue k-shingles (that appear only in one document)
 - z black k-shingles (that don't appear in both C and D)
- $mh(C) \le z + 1 \text{ or } mh(D) \le 1 + z$

For any j
$$(1 \le j \le 1 + z)$$
,
Pr[mh(C)=mh(D)=j]

- = Pr[the first j-1 selected k-shingles are black and the j-th one is red]
- = Pr[the first non-black k-shingle appears at the j-th selection]
 - × Pr[the j-th k-shingle is red | the j-th k-shingle is the first non-black one]
- = Pr[the first non-black k-shingle appears at the j-th selection] $\times \frac{x}{x+y}$

Pr[E1 & E2]=Pr[E1] Pr[E2 | E1]

k-shingle	С	D	
	0	0	
	0	0	
	0	0	
	1	1	j=4
	:	:	
	1	0	
	0	1	

$$Pr[mh(C)=mh(D)]$$

$$= \sum_{1 \le j \le z+1} Pr[mh(C)=mh(D)=j]$$

$$= \frac{x}{x+y} \sum_{1 \le j \le z+1} Pr[the first non-green k-shingle appears at the j-th selection] = \frac{x}{x+y}$$

False positive/negative errors

• **Idea of MinHash**: Use a function to partition efficiently the document into disjoint clusters so that similar documents are likely found in the same cluster.

Issues

- -- False positive (FP) errors: map the documents with low similarity into a cluster
- -- False negative (FN) errors: Distribute the documents with high similarity into different clusters
- -- Solution for FN: Apply MinHash multiple (k) times to obtain a Minhash vector, called MinHash signatures; Document similarity is estimated using these MinHash signatures.

	D1	D2	D3	D4
а	1	0	1	0
b	0	1	0	1
С	1	1	0	1
d	0	0	0	1
е	0	1	0	1
f	1	0	1	0
g	1	1	1	0

D2

0

Apply P1

а

b

0

0

Three Permutation	ıs
-------------------	----

P1 4376125

P2 4213675

P3 1376254

) 3	D4
0	1
0	1
1	0
1	0
1	0
0	1
0	1

	D1	D2	D3	D4
d	0	0	0	1
b	0	1	0	1
a	1	0	1	0
С	1	1	0	1
f	1	0	1	0
g	1	1	1	0
е	0	1	0	1
	b a c f	d 0 b 0 a 1 c 1 f 1 g 1	d 0 0 0 b 0 1 a 1 0 c 1 1 f 1 0 g 1 1	d 0 0 0 b 0 1 0 a 1 0 1 c 1 1 0 f 1 0 1 g 1 1 1

Signatures

	D1	D2	D3	D4
P1	2	2	3	1
P2	3	2	3	1
Р3	1	2	1	2

		D1	D2	D3	D4
	a	1	0	1	0
	С	0	1	0	1
P3	g	1	0	1	0
Apply P3	f	1	1	0	1
Ap	b	1	0	1	0
	e	1	1	1	0
	d	0	1	0	1

	D1	D2	D3	D4
а	1	0	1	0
b	0	1	0	1
С	1	1	0	1
d	0	0	0	1
е	0	1	0	1
f	1	0	1	0
g	1	1	1	0

Signatures

	D1	D2	D3	D4
P1	2	2	3	1
P2	3	2	3	1
Р3	1	2	1	2

Original (New) Similarity

D1 D2 D3 D4

D1
$$\frac{1}{3} \left(\frac{1}{3}\right) \frac{3}{4} \left(\frac{2}{3}\right) \frac{1}{7} \left(\frac{0}{3}\right)$$

D2 $\frac{1}{6} \left(\frac{2}{3}\right) \frac{3}{6} \left(\frac{1}{3}\right)$

D3 $\frac{0}{7} \left(\frac{2}{3}\right)$

- Pr [D1 and D2 have the same minhash value] = [Jaccard-based similarity sim(D1, D2)]
- The expected portion of rows in which the signatures of D1 and D2 have the same value is their similarity.
- Issues: take too much time if the signatures are derived from 200 random permutations.

Efficient simulation of Min-Hash Signatures

- 1. Use a random hash functions h that maps rows to as many many buckets (i.e., values) as rows.
- 2. Update the minimum hash values SIG(D, h) for each D as follows:
 - -- Initialization: set SIG(D, h) to ∞ for h
 - -- for r=1, 2, ..., R:

if entry(r, D)=1, reset SIG(D, h) to min(h(r), SIG(D, h))

Use random hashing To replace minhashing function

Row	S_1	S_2	S_3	S_4	Hash function h_1	Hash function h_2
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Initialization step:

	S_1	S_2	S_3	S_4
h_1	∞	∞	∞	∞

Row 0

$$Entry(0, S_1) = Entry(0, S_4) = 1$$

$$SIG(S_1, h_1) = Min(h_1(0), \infty) = 1;$$

$$SIG(S_4, h_1) = Min(h_1(0), \infty) = 1;$$

$$\frac{||S_1||S_2||S_3||S_4}{|h_1||1||\infty||\infty||1}$$

Row 1

$$Entry(1, S_3) = 1$$

 $SIG(S_3, h_1) = Min(h_1(1), \infty)=2;$
 $\frac{||S_1||S_2||S_3||S_4}{|h_1||1||\infty||2||1}$

Exercise: Estimate the signature values for hash function h(x)=2x+4 (mod 5) for S1 to S4.

Row 2

$$Entry(2, S_2) = Entry(2, S_4) = 1$$

 $SIG(S_2, h_1) = Min(h_1(2), \infty) = 3$
 $SIG(S_4, h_1) = Min(h_1(2), 1) = 1$

	now	_			D_4	"1
	0	1	0	0	1	1
	1	0	0	1	0	2
_	2	0	1	0	1	3
3;	3	1	0	1	1	4
L;	4	0	0 1 0 0	1	0	0
-,	'	'			' '	1

 $Row \parallel S_1 \parallel S_2 \parallel S_3 \parallel S_4 \parallel h_1$

Row 3

Row 4

$$Entry(4, S_3) = 1$$

 $SIG(S_3, h_1) = Min(h_1(4), 2)=0;$

Step 3: Locality-Sensitive Hashing for Documents

• Short signatures output from Step 2 preserve document similarity well.

	D1	D2	D3	D4		D999999	D1000000
h_1	3	4	3	4	•••	3	2
h_2	4	1	1	1		4	2
h_3	2	1	2	1	•••	3	3
:	:	:	:	:		:	:
h_{247}	3	3	5	2	•••	1	4
h_{248}	3	2	1	2	•••	1	4

Naïve Idea

• To reduce time complexity, we apply hashing function again

	D1	D2	D3	D4	 D999999	D1000000
h_1	3	4	3	4	 3	2
h_2	1	1	1	1	 4	2
h_3	2	1	2	1	 3	3
:	:	:	÷	:	:	:
h_{249}	4	3	5	3	 1	4
h_{250}	3	2	3	2	 3	4
					?	

• **High FN errors!** two signatures with a few different components can be mapped into distinct buckets

• To reduce FN errors, we divide signature into bands; map two documents into the same bucket if they have the same value in one of the bands.

	D1	D2	D3	D4	 D999999	D1000000	
h_1	3	4	3	4	 3	2	Donal 1
h_2	1	1	1	1	 4	2	Band 1
h_3	2	1	2	1	 3	3	
:	:	:	:	:	:	:	
h ₂₃₈	4	2	4	4	 1	4	
h ₂₃₉	4	3	5	5	 1	4	Band 80
h_{240}	3	2	3	3	 3	4	

Partition *M* into *b* Bands

- Divide the signature matrix M into b bands of r rows
- For each band, hash the portion of each column to a hash table with k buckets. Make *k* as large as possible such that different sub-signatures are likely mapped into distinct buckets.
- Candidate column pairs are those that are hashed to the the same bucket for ≥ 1 band
- Pick b and r to catch many similar pairs, but few non-similar pairs

Theorem Suppose the signatures are divided into b bands of r row each. For any two documents with the Jaccard similarity s,

Pr[their signatures agree in all the rows in at least one band]= $1 - (1 - s^r)^b$

Proof.

- 1. The probability that two signatures agree in all rows of one particular band is s^r .
- 2. The probability that two signatures disagree in at least one row of a particular band is $1-s^r$.
- 3. The probability that two signatures disagree in every band is $(1 s^r)^b$.
- 4. The probability that two signatures agree in at least one band, and therefore become a candidate pair, is $1 (1 s^r)^b$.

1.0 r=5 0.8 b=50 0.6 0.4 0.6 0.8 1.0

For fix r, b. P(s)<<s if s<0.4; P(s)>> s if s>0.6

The steepness of the S-curve reflects how effectively we can avoid false positives and false negatives for large r and b.

Summary of Finding Similar Documents

Balance trade-off between specificity and sensitivity

Select proper r and b to divide signatures into b bands of r components each, and only measure the similarity of a pair of signatures if they are identical in at least one band.

To reduce false positives, increase r; To reduce false negative, increase b.

Part 3 The Theory of Locality-Sensitive Functions

For similar document detection, we use magic min-hash functions, which have the following properties:

- 1. Min-hash functions must make close pairs be candidate pairs more likely than distant pairs.
- 2. Min-hash functions must be statistically independent.
- 3. Min-hash must be efficient, in two ways:
 - -- Must be able to identify candidate pairs in time much less than the time it takes to look at all pairs.
 - -- Must be combinable to build functions that are better at avoiding FN/FP errors, and the combined functions must also take time that is much less than the number of pairs.

The family of minhash functions are a $(d_1, d_2, 1 - d_1, 1 - d_2)$ -sensitive family for any d_1 and d_2 such that $0 \le d_1 < d_2 \le 1$.

Locality-Sensitive Functions

Let d_1 and d_2 be two distance values according to a distance measure d, such that $d_1 < d_2$.

A family F of functions is said to be (d_1, d_2, p_1, p_2) -sensitive if for every f in F:

-- If
$$d(x, y) \le d_1$$
, then $\Pr[f(x) = f(y)] \ge p_1, p_1 > 0$.

-- If
$$d(x, y) \ge d_2$$
, then $\Pr[f(x) = f(y)] \le p_2$, $p_2 > 0$.

Theorem There are (d_1, d_2, p_1, p_2) -sensitive function families for the Euclidean distance

Summary

- Jaccard Similarity
- Shingling
- Min-hashing/Min-hash Signatures
- Locality-Sensitive Hashing for Signatures
- Distance Measures
- Locality-Sensitive Hashing families for distance measures