8. Internal Forced Convection

8.1. General Procedure

- 1. Find fluid properties from Appendix 1 at bulk mean temperature $T_b = (T_i + T_e)/2$
 - ρ , μ , k, c_p , Pr, ν
- 2. Determine mean velocity V_{avg}
- 3. Determine the type of flow (laminar or turbulent)
 - Laminar: Re < 2300
 - Turbulent: Re > 4000
- 4. Determine the Nusselt number, Nu, using the appropriate correlation
 - Check if $l_{h,\text{laminar}}$ and $l_{t,\text{laminar}}$ is less than L. If so, use Table 1
 - Else, use empirical correlations
- 5. Determine the heat transfer coefficient h using Nu, k, and A_s

8.2. Variable Definitions

- Nu: Nusselt number
- Re: Reynolds number
- Pr: Prandtl number
- μ : Dynamic viscosity
- ν : Kinematic viscosity
- k: Thermal conductivity
- h: Convection heat transfer coefficient
- D_h : Hydraulic diameter
- A_s : Surface area
- A_c : Cross-sectional area
- V_{avg} : Average velocity
- T_b : Bulk mean temperature
- T_i : Inlet temperature
- T_e : Exit temperature
- \dot{m} : Mass flow rate
- \dot{q} : Heat flux
- $\Delta T_{\rm lm}$: Log mean temperature difference

8.3. Formulas

8.3.1. General Formulas

$$\begin{split} \dot{m} &= \rho V_{\text{avg}} A_c \\ \text{Re} &= \frac{\rho V_{\text{avg}} D_h}{\mu} = \frac{V_{\text{avg}} D_h}{\nu} \\ D_h &= \frac{4A_c}{\text{Perimeter}} = D|_{\text{circular}} = a|_{\text{square}} \\ &= \frac{2ab}{a+b} \bigg|_{\text{rectangular}} = \frac{4ab}{a+b} \bigg|_{\text{channel}} \\ \text{Nu} &= \frac{hD_h}{k} \\ A_s &= \pi D L|_{\text{circular}} = 4ab|_{\text{rectangular}} \\ A_c &= \pi \frac{D^2}{4}|_{\text{circular}} = ab|_{\text{rectangular}} \\ l_{h,\text{laminar}} &= 0.05 \text{Re} D_h \\ l_{t,\text{laminar}} &= 0.05 \text{Re} \text{Pr} D_h = \text{Pr} l_{h,\text{laminar}} \\ l_{h,\text{turbulent}} &\approx l_{t,\text{turbulent}} = 10 D_h \end{split}$$

8.3.2. Constant \dot{q}

$$T_e = T_i + \frac{\dot{q}}{\dot{m}c_p}$$
$$\dot{q} = h(T_s - T_b)$$

8.3.3. Constant T_s

$$T_e = T_s - (T_s - T_i) \exp\left(-\frac{hA_s}{\dot{m}c_p}\right)$$

$$T_s = \frac{T_e - T_i \exp\left(-\frac{\dot{m}C_p}{hA_s}\right)}{1 - \exp\left(-\frac{\dot{m}C_p}{hA_s}\right)}$$

$$\dot{Q} = hA_s \Delta T_{lm}$$

$$T_{lm} = \frac{T_i - T_e}{\ln[(T_s - T_e)/(T_s - T_i)]}$$

8.3.4. Correlations for Nu

For fully developed laminar flow, use Table 1.

For entry region in a circular tube where $T_s = \text{constant}$, use:

(Edwards et al., 1979) Nu =
$$3.66 + \frac{0.0658(D/L)\text{RePr}}{1 + 0.04[(D/L)\text{RePr}]^{2/3}}$$

For entry region in a circular tube where the difference between T_s and T_b is large, use:

(Sieder and Tate, 1936) Nu =
$$1.86 \left(\frac{\text{RePr}D}{L}\right)^{1/3} \left(\frac{\mu_b}{\mu_s}\right)^{0.14}$$

 $0.6 < \text{Pr} < 5, \quad 0.0044 < \frac{\mu_b}{\mu_s} < 9.75$

All properties for Sieder and Tate should be evaluated at T_b except μ_s which should be evaluated at T_s .

For entry region between two isothermal parallel plates, use:

(Edwards et al., 1979) Nu = 7.54 +
$$\frac{0.03(D_h/L) {\rm RePr}}{1+0.016[(D_h/L) {\rm RePr}]^{2/3}}$$
 Re ≤ 2800

For turbulent flow in a circular tube, use:

(Dittus-Boelter, 1930) Nu =
$$0.023 \mathrm{Re}^{0.8} \mathrm{Pr}^n$$

 $n = 0.4$ (Heating), $n = 0.3$ (Cooling)

Table 1: Nusselt number and friction factor for fully developed laminar flow in tubes of various cross sections $(D_h = 4A_c/P, Re = V_{avg}D_h/\nu, \text{ and Nu} = hD_h/k)$ (Table 8-1 in textbook)

		N		
Tube Geometry	a/b or θ°	$T_s = \text{constant}$	$\dot{q}_s = {\rm constant}$	f
a: 1		4.36	3.66	64/Re
Circle				
D				
	a/b			
Rectangle	$\frac{a/b}{1}$	2.98	3.61	$56.92/\mathrm{Re}$
	$\frac{2}{3}$	3.39	4.12	$62.20/{ m Re}$
	3	3.96	4.79	68.36/Re
$b\uparrow$	4	4.44	5.33	$72.92/{ m Re}$
	6	5.14	6.05	$78.80/{ m Re}$
← a →	8	5.60	6.49	$82.32/{ m Re}$
	∞	7.54	8.24	$96.00/\mathrm{Re}$
	a/b			
Ellipse	1	3.66	4.36	$64.00/{ m Re}$
b	2	3.74	4.56	$67.28/{ m Re}$
	4	3.79	4.88	$72.96/{ m Re}$
	8	3.72	5.09	$76.60/{ m Re}$
	16	3.65	5.18	$78.16/{ m Re}$
	$\underline{\theta^{\circ}}$			
Isosceles triangle	10	1.61	2.45	$50.80/{ m Re}$
	30	2.26	2.91	$52.28/\mathrm{Re}$
	60	2.47	3.11	$53.32/\mathrm{Re}$
θ	90	2.34	2.98	$52.60/\mathrm{Re}$
	120	2.00	2.68	$50.96/\mathrm{Re}$

9. Natural Convection

9.1. General Procedure

9.1.1. Over Surfaces

- 1. Find Rayleigh number, Ra_L , using fluid properties at film temperature $T_f = (T_s + T_\infty)/2$
- 2. Use the appropriate correlation in Table 2 to find the Nusselt number, Nu
- 3. Determine the heat transfer coefficient h using Nu, k, and L_c

9.1.2. In Enclosures

- 1. Find Rayleigh number, Ra_L , using fluid properties at average temperature $T_{avg} = (T_1 + T_2)/2$ where T_1 and T_2 are the temperatures of the hot and cold surfaces respectively.
- 2. Use the appropriate correlation to find the Nusselt number, Nu
- 3. Determine the heat transfer coefficient h using Nu, k, and L_c

9.2. Variable Definitions

- Ra_L : Rayleigh number
- Gr_L : Grashof number
- T_s : Surface temperature
- T_{∞} : Ambient temperature
- T_f : Film temperature
- L_c : Characteristic length
- β : Coefficient of volume expansion
- ν : Kinematic viscosity
- α : Thermal diffusivity
- q: Gravitational acceleration

9.3. Formulas

$$\begin{aligned} \mathrm{Ra}_L &= \mathrm{Gr}_L \mathrm{Pr} = \frac{g \beta (T_s - T_\infty) L_c^3}{\nu^2} \mathrm{Pr} \\ \beta &= \frac{1}{T}, \quad \text{for ideal gases} \\ h &= \frac{k \mathrm{Nu}}{L_c} \end{aligned}$$

See Table 2 for L_c and Nu.

9.3.1. Over Surfaces

For convection

$$\dot{Q} = hA_s(T_s - T_\infty)$$

Use Table 2 to find Nu.

9.3.2. In Rectangular Enclosures

For convection in rectilinear enclosures,

$$\dot{Q} = hA_s(T_1 - T_2)$$

where T_1 and T_2 are the temperatures of the hot and cold surfaces respectively.

In horizontal rectangular enclosures ($L_c = L$, where L is the gap between plates),

$$Nu = 1 + 1.44 \left[1 - \left(\frac{1708}{Ra_L} \right) \right]^+ + \left[\frac{Ra_L}{18} - 1 \right]^+$$

$$Ra_L < 10^8 \text{ (gases)}, \quad Ra_L < 10^5 \text{ (liquids)}$$

For large aspect ratios $(H/L \ge 12)$, this equation (Hollands et al., 1976) correlates experimental data extremely well for tilt angles up to 70° . []⁺ indicates that if the quantity in the bracket is negative, it should be set equal to zero.

$$Nu_{L} = 1 + 1.44 \left[1 - \left(\frac{1708}{Ra_{L}\cos\theta} \right) \right]^{+} + \left[\frac{Ra_{L}\cos\theta}{18} - 1 \right]^{+}$$

$$Ra_{L} < 10^{8} \text{ (gases)}, \quad Ra_{L} < 10^{5} \text{ (liquids)},$$

$$0 < \theta < 70^{\circ}, \quad \frac{H}{L} \ge 12$$

In vertical rectangular enclosures ($L_c = L$, where L is the gap between plates),

$$Nu_L = 0.18 \left(\frac{Pr}{0.2 + Pr} Ra_L \right)^{0.29}$$
$$\frac{Pr}{0.2 + Pr} > 10^3, \ 1 < \frac{H}{L} < 2$$

or

$$\begin{split} \mathrm{Nu}_L &= 0.22 \left(\frac{\mathrm{Pr}}{0.2 + \mathrm{Pr}} \mathrm{Ra}_L \right)^{0.28} \left(\frac{H}{L} \right)^{-0.25} \\ \mathrm{Ra}_L &< 10^{10}, \ 2 < \frac{H}{L} < 10 \end{split}$$

 $^{\mathrm{or}}$

$$\begin{aligned} \mathrm{Nu}_L &= 0.42 \left(\frac{\mathrm{Pr}}{0.2 + \mathrm{Pr}} \mathrm{Ra}_L \right)^{0.25} \mathrm{Pr}^{0.012} \left(\frac{H}{L} \right)^{-0.3} \\ 1 &< \mathrm{Pr} < 2 \times 10^4, \ 10^4 < \mathrm{Ra}_L < 10^7, \ 10 < \frac{H}{L} < 40 \end{aligned}$$

9.3.3. In Concentric Horizontal Cylinders

In concentric horizontal cylinders $(L_c = (D_o - D_i)/2$, where D_o and D_i are the outer and inner diameters respectively),

$$\dot{Q}_{\text{cylinder}} = \frac{2\pi k \text{Nu}}{\ln(D_o/D_i)} (T_i - T_o)$$

where T_i and T_o are the temperatures of the inner and outer surfaces respectively.

$$Nu = \max \left\{ 1, \ 0.386 \left(\frac{Pr}{0.861 + Pr} \right)^{0.25} (F_{cyl}Ra_L)^{0.25} \right\}$$

9.3.4. Combined Natural and Forced Convection

For combined natural and forced convection,

$$\mathrm{Nu_{Overall}} = \left(\mathrm{Nu}_{\mathrm{Forced}}^{n} \pm \mathrm{Nu}_{\mathrm{Natural}}^{n}\right)^{1/n}$$

where the plus sign is for assisting flows and the minus sign is for opposing flows. n=3.5 for horizontal plates and n=4 for cylinders and spheres. Else use n=3.

Table 2: Empirical correlations for the average Nusselt number for natural convection over surfaces (Table 9-1 in textbook)

Empirical correlations for the average Nusselt number for natural convection over surfaces					
Geometry	$\begin{array}{c} \text{Characteristic} \\ \text{Length} L_c \end{array}$	Range of Ra	Nu		
Vertical plate $ \begin{array}{c} & & \\ & & \\ L & \\ & & \\ \end{array} $	L	10 ⁴ –10 ⁹ 10 ⁹ –10 ¹³ Entire range	$\begin{aligned} \text{Nu} &= 0.59 \text{ Ra}_L^{1/4} \\ \text{Nu} &= 0.1 \text{ Ra}_L^{1/3} \\ \text{Nu} &= \left\{ 0.825 + \frac{0.387 \text{ Ra}_L^{1/6}}{[1 + (0.492/\text{Pr})^{9/16}]^{8/27}} \right\}^2 \\ &\text{(complex but more accurate)} \end{aligned}$	(9–19) (9–20) (9–21)	
Inclined plate $\frac{\theta}{L}$	L		Use vertical plate equations for the upper surface of a cold plate and the lower surface of a hot plate $ \text{Replace } g \text{ with } g \cos\theta \text{ for } 0 < \theta < 60^\circ $		
Horizontal plate (surface area A and perimeter p) (a) Upper surface of a hot plate (or lower surface of a cold plate) Hot surface T_s (b) Lower surface of a hot plate (or	A_s/p	10 ⁴ –10 ⁷ 10 ⁷ –10 ¹¹	(a) Nu = $0.54 \text{ Ra}_L^{1/4}$ (a) Nu = $0.15 \text{ Ra}_L^{1/3}$	(9–22) (9–23)	
upper surface of a cold plate) Hot surface		105-1011	(b) Nu = $0.27 \operatorname{Ra}_{L}^{1/4}$	(9–24)	
Vertical cylinder $ \begin{array}{c} T_s \\ L \\ \downarrow \end{array} $	L		A vertical cylinder can be treated as a vertical plate when $D \ge \frac{35L}{\operatorname{Gr}_L^{1/4}}$		
Horizontal cylinder T_s	D	$Ra_D \le 10^{12}$	Nu = $\left\{ 0.6 + \frac{0.387 \text{Ra}_D^{1/6}}{[1 + (0.559/\text{Pr})^{9/16}]^{8/27}} \right\}^2$	(9–25)	
Sphere	D	$Ra_D \le 10^{11}$ (Pr ≥ 0.7)	Nu = 2 + $\frac{0.589 \text{ Ra}_D^{1/4}}{[1 + (0.469/\text{Pr})^{9/16}]^{4/9}}$	(9–26)	

11. Heat Exchangers

11.1. General Procedure

11.1.1. Log Mean Temperature Difference Method

- 1. See if \dot{Q} is given or can be obtained by energy balance $\dot{Q} = \dot{m}c_p(T_{\text{out},h} T_{\text{in},h}) = \dot{m}c_p(T_{\text{in},c} T_{\text{out},c})$
- 2. Find the log mean temperature difference, $\Delta T_{\rm lm}$
- 3. Find the heat transfer coefficient, U. For multipass shell-and-tube heat exchangers, use $A_s = NA_{s,i}$ where N is the number of passes and $A_{s,i}$ is the surface area of one pass.

11.1.2. ε -NTU Method

- 1. Find NTU using the given heat exchanger type and c
- 2. Find ε using the given heat exchanger type and NTU
- 3. Find \dot{Q} using ε and $\dot{Q}_{\rm max}$

4.

11.2. Variable Definitions

- \dot{Q} : Heat transfer rate
- $\dot{Q}_{\rm max}$: Maximum heat transfer rate
- $T_{\text{in},h}$: Hot inlet temperature
- $T_{\text{out},h}$: Hot outlet temperature
- $T_{\text{in},c}$: Cold inlet temperature
- T_{out.c}: Cold outlet temperature
- ullet U: Overall heat transfer coefficient
- $\Delta T_{\rm lm}$: Log mean temperature difference
- F: Correction factor
- ε : Effectiveness
- $\dot{Q}_{\rm max}$: Maximum heat transfer rate
- C_c : Cold heat capacity rate
- C_h : Hot heat capacity rate
- C: Heat capacity rate ratio
- NTU: Number of transfer units

11.3. Formulas

11.3.1. Log Mean Temperature Difference Method

For a heat exchanger,

$$\dot{Q} = \dot{Q}_c = -\dot{Q}_h$$

Overall heat transfer coefficient,

$$\frac{1}{UA_s} = \frac{1}{U_i A_{s,i}} = \frac{1}{U_o A_{s,o}} = R = \frac{1}{h_i A_{s,i}} + R_{\text{wall}} + \frac{1}{h_o A_{s,o}}$$

Log mean temperature difference,

$$\Delta T_{\rm lm} = \frac{\Delta T_1 - \Delta T_2}{\ln(\Delta T_1/\Delta T_2)}$$

$$\Delta T_1 = T_{\rm in,h} - T_{\rm out,c}$$

$$\Delta T_2 = T_{\rm out,h} - T_{\rm in,c}$$

$$\dot{Q} = U A_s \Delta T_{\rm lm}$$

Correction factor,

$$\Delta T_{\rm lm} = F \Delta T_{\rm lm, CF}$$

where $\Delta T_{\text{lm, CF}}$ is the log mean temperature difference for counterflow and F is the correction factor which can be found in Figure 1.

11.3.2. ε -NTU Method

$$\begin{split} C_{\min} &= \min(\dot{m}_c c_{p,c}, \dot{m}_h c_{p,h}) \\ \dot{Q}_{\max} &= C_{\min}(T_{\mathrm{in},h} - T_{\mathrm{in},c}) \\ \dot{Q} &= C_c(T_{\mathrm{out},c} - T_{\mathrm{in},c}) = C_h(T_{\mathrm{in},h} - T_{\mathrm{out},h}) \\ \epsilon &= \frac{\dot{Q}}{\dot{Q}_{\max}} \end{split}$$

if $C_c = C_{\min}$,

$$\epsilon = \frac{\dot{Q}}{\dot{Q}_{\text{max}}} = \frac{T_{\text{out},c} - T_{\text{in},c}}{T_{\text{in},h} - T_{\text{in},c}}$$

if $C_h = C_{\min}$,

$$\epsilon = \frac{\dot{Q}}{\dot{Q}_{\text{max}}} = \frac{T_{\text{in},h} - T_{\text{out},h}}{T_{\text{in},h} - T_{\text{in},c}}$$

NTU is defined as,

$$\begin{split} \text{NTU} &= \frac{UA_s}{C_{\min}} = \frac{UA_s}{\dot{m}c_{p,\min}} \\ c &= \frac{C_{\min}}{C_{\max}} \end{split}$$

The effectiveness, ε , can be found using Table 3.

Figure 1: Correction factor F charts for common shell-and-tube and crossflow heat exchangers.

Table 3: Effectiveness relations for heat exchangers: NTU = UA_s/C_{\min} and $c = C_{\min}/C_{\max} = (\dot{m}c_p)_{\min}/(\dot{m}c_p)_{\max}$

TABLE 11-4

Effectiveness relations for heat exchangers: NTU = UA_s/C_{min} and $c = C_{min}/C_{max} = (\dot{m}c_p)_{min}/(\dot{m}c_p)_{max}$

Heat Exchanger Type		Effectiveness Relation		
1	Double pipe: Parallel-flow	$\varepsilon = \frac{1 - \exp\left[-\text{NTU}(1+c)\right]}{1+c}$		
	Counterflow	$\varepsilon = \frac{1 - \exp\left[-NTU(1 - c)\right]}{1 - c \exp\left[-NTU(1 - c)\right]} \text{ (for } c < 1)$		
2	Shell-and-tube: One-shell pass 2, 4, tube passes	$\varepsilon = \frac{\text{NTU}}{1 + \text{NTU}} (\text{for } c = 1)$ $\varepsilon_1 = 2 \left\{ 1 + c + \sqrt{1 + c^2} \frac{1 + \exp\left[-\text{NTU}_1 \sqrt{1 + c^2}\right]}{1 - \exp\left[-\text{NTU}_1 \sqrt{1 + c^2}\right]} \right\}^{-1}$		
	<i>n</i> -shell passes 2 <i>n</i> , 4 <i>n</i> , tube passes	$\varepsilon = \left[\left(\frac{1 - \varepsilon_1 c}{1 - \varepsilon_1} \right)^n - 1 \right] \left[\left(\frac{1 - \varepsilon_1 c}{1 - \varepsilon_1} \right)^n - c \right]^{-1}$		
3	Crossflow (single-pass) Both fluids unmixed	$\varepsilon = 1 - \exp\left\{\frac{\text{NTU}^{0.22}}{c} \left[\exp(-c\text{NTU}^{0.78}) - 1\right]\right\}$		
	C_{\max} mixed, C_{\min} unmixed C_{\min} mixed, C_{\max} unmixed	$\varepsilon = \frac{1}{c} (1 - \exp\{-c[1 - \exp(-NTU)]\})$ $\varepsilon = 1 - \exp\{-\frac{1}{c}[1 - \exp(-c NTU)]\}$		
4	All heat exchangers with $c = 0$	$\varepsilon = 1 - \exp(-NTU)$		

12. Thermal Radiation Fundamentals

12.1. General Procedure

Most questions will ask for irradiation given some geometry and temperatures.

- 1. Determine absorptivity α , reflectivity ρ , and transmissivity τ using the geometry and material properties. Note that if two of these are known, the third can be found using $\alpha + \rho + \tau = 1$.
- 2. Use solid angle ω , irradiation G, and intensity I to find whatever is asked for

12.2. Variable Definitions

- ω : Solid angle
- G: Irradiation
- *I*: Intensity
- J: Radiosity
- \dot{Q} : Heat transfer rate
- α : Absorptivity
- ρ : Reflectivity
- τ : Transmissivity
- ϵ : Emissivity
- σ : Stefan-Boltzmann constant

12.3. Formulas

For $A \ll r^2$ (small area, far away from surface),

$$\begin{aligned} \omega_{2-1} &:= \frac{A_2 \cos \theta_2}{r^2} \\ J_1 &:= \pi I_{1,e+r} = E_b + G_{\text{ref}} = \epsilon \sigma T_1^4 + \rho G_1 \\ \dot{Q}_{1-2} &:= I_1 (A_1 \cos \theta_1) \omega_{2-1} \\ G_2 &:= \frac{\dot{Q}_{1-2}}{A_2} \end{aligned}$$

Combining the above equations into G_2 ,

$$G_2 = \frac{(\epsilon \sigma T_1^4 + \rho G_1) A_1 \cos \theta_1 \cos \theta_2}{\pi r^2}$$

For $\theta_1 = \theta_2 = \rho = 0$ and $\epsilon = 1$ for a blackbody,

$$G_2 = \frac{\sigma T_1^4 A_1}{\pi r^2}$$

$$\implies T_1 = \left(\frac{G_2 \pi r^2}{\sigma A_1}\right)^{1/4}$$

13. Thermal Radiation Heat Transfer

13.1. General Procedure

Most questions will ask for irradiation given some geometry and temperatures.

- 1. Determine view factors F_{ij} from inspection using the geometry. Check for special cases such as:
 - $F_{ii} = 0$ when the surface i is planar or convex
 - $F_{ij} = 1$ when the surface i is a concave and fully encloses surface j
- 2. Check Figures section for view factors that cannot be obtained from inspection
- 3. Use the reciprocity relation and summation rule to find the remaining view factors

Solvability condition: Given N surfaces, there are N^2 view factors. N(N-1)/2 view factors must be given by inspection, problem statement, or tables. The rest can be determined using reciprocity and summation.

13.2. Variable Definitions

- F_{ij} : View factor, the fraction of radiation leaving surface i that strikes surface j
- ω : Solid angle
- G: Irradiation, the rate of radiant energy incident on a surface per unit area
- *I*: Intensity
- *J*: Radiosity, the total rate of radiant energy leaving a surface per unit area
- E_b : Black body emissive power
- \dot{Q} : Heat transfer rate
- α: Absorptivity
- ρ: Reflectivity
- τ : Transmissivity
- ϵ : Emissivity
- σ : Stefan-Boltzmann constant

13.3. Formulas

Reciprocity relation:

$$A_{1,s}F_{12} = A_{2,s}F_{21}$$

Summation rule:

$$\sum_{i=1}^{n} F_{ij} = 1$$

Crossed-strings method:

Figure 2: Determination of the view factor F_{12} by the application of the crossed-strings method.

$$F_{12} = \frac{(L_5 + L_6) - (L_3 + L_4)}{2L_1}$$

On a black body, net radiation heat transfer is

$$E_{bi} = \sigma T_i^4$$

$$\dot{Q}_{12} = A_{1,s}F_{12}\sigma(T_1^4 - T_2^4) = A_{2,s}F_{21}\sigma(T_1^4 - T_2^4)$$

On a grey body ($\epsilon_i = \alpha_i$, $\tau = 0$, $\alpha_i + \rho_i = 1$), net radiation heat transfer is

$$J_i = \pi I_i = \epsilon_i \sigma T_i^4 + \rho_i G_i$$

$$\dot{Q}_{12} = \frac{A_{i,s}\epsilon_i}{1 - \epsilon_i} (E_{bi} - J_i)$$

For radiation in two-surface enclosures, net radiation heat transfer is

$$\dot{Q}_{12} = \dot{Q}_1 = -\dot{Q}_2$$

$$\dot{Q}_{12} = \frac{\sigma(T_1^4 - T_2^4)}{\frac{1 - \epsilon_1}{\epsilon_1 A_{1,s}} + \frac{1}{A_{2,s} F_{12}} + \frac{1 - \epsilon_2}{\epsilon_2 A_{2,s}}}$$
$$= \frac{E_{b1} - E_{b2}}{R_1 + R_{12} + R_2}$$

For some familiar geometries, the above equation simplifies, which is given in Table 4.

Figures

Figure 3: View factor between two aligned parallel rectangles of equal size

Figure 4: View factor between two perpendicular rectangles with a common edge

Figure 5: View factor between two coaxial parallel disks

Figure 6: View factors for two concentric cylinders of finite length: (a) outer cylinder to inner cylinder; (b) outer cylinder to itself.

Table 4: Radiation heat transfer relations for some familiar two-surface arrangements

TABLE 13-3

Radiation heat transfer relations for some familiar two-surface arrangements

Small object in a large cavity

$$\frac{A_1}{A_2} \approx 0$$

$$F_{12} = 1$$

$$\dot{Q}_{12} = A_1 \sigma \varepsilon_1 (T_1^4 - T_2^4)$$

(13-37)

Infinitely large parallel plates

$$A_1, T_1, \varepsilon_1$$

$$A_1 = A_2 = A_1$$

$$F_{12} = 1$$

$$\dot{Q}_{12} = \frac{A\sigma(T_1^4 - T_2^4)}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}$$

(13-38)

Infinitely long concentric cylinders

$$\frac{A_1}{A_2} = \frac{r_1}{r_2}$$

$$F_{12} = 1$$

$$\dot{Q}_{12} = \frac{A_1 \sigma (T_1^4 - T_2^4)}{\frac{1}{\varepsilon_1} + \frac{1 - \varepsilon_2}{\varepsilon_2} \left(\frac{r_1}{r_2}\right)}$$

(13-39)

Concentric spheres

$$\frac{A_1}{A_2} = \left(\frac{r_1}{r_2}\right)^2$$

$$F_{12} = 1$$

$$\begin{split} \frac{A_1}{A_2} &= \left(\frac{r_1}{r_2}\right)^2 \\ F_{12} &= 1 \\ \dot{Q}_{12} &= \frac{A_1 \sigma (T_1^4 - T_2^4)}{\frac{1}{\varepsilon_1} + \frac{1 - \varepsilon_2}{\varepsilon_2} \left(\frac{r_1}{r_2}\right)^2} \end{split}$$

(13-40)