# X1830 IoT Application Processor

**Data Sheet** 

Release Date: Mar. 5, 2019



**X1830 IoT Application Processor** 

**Data Sheet** 

Copyright © 2005-2019 Ingenic Semiconductor Co. Ltd. All rights reserved.

Disclaimer

This documentation is provided for use with Ingenic products. No license to Ingenic property rights is granted. Ingenic assumes no liability, provides no warranty either expressed or implied relating to the

usage, or intellectual property right infringement except as provided for by Ingenic Terms and

Conditions of Sale.

Ingenic products are not designed for and should not be used in any medical or life sustaining or

supporting equipment.

All information in this document should be treated as preliminary. Ingenic may make changes to this

document without notice. Anyone relying on this documentation should contact Ingenic for the current

documentation and errata.

Ingenic Semiconductor Co., Ltd.

Ingenic Headquarters, Zhongguancun Software Park,

Dongbeiwang West Road, Haidian District, Beijing, China,

Tel: 86-10-56345000

Fax: 86-10-56345001

Http://www.ingenic.com



## **CONTENTS**

| 1 | O١  | /erv | iew                                          | 1  |
|---|-----|------|----------------------------------------------|----|
|   | 1.1 | Blo  | ck Diagram                                   | 1  |
|   | 1.2 |      | itures                                       |    |
|   | 1.2 |      | CPU                                          |    |
|   | 1.2 | .2   | VPU                                          | 3  |
|   | 1.2 | .3   | ISP                                          |    |
|   | 1.2 | .4   | Image post processor(IPU)                    | 3  |
|   | 1.2 | .5   | Display (LCD)                                |    |
|   | 1.2 | .6   | Video input                                  |    |
|   | 1.2 | .7   | Audio                                        |    |
|   | 1.2 | .8   | Memory Interface                             |    |
|   | 1.2 | .9   | System Functions                             | 5  |
|   | 1.2 | .10  | Peripherals                                  | 6  |
|   | 1.2 | .11  | Bootrom                                      | 9  |
|   | 1.3 | Cha  | aracteristic                                 | 9  |
| 2 | Da  | oko  | nging and Dingut Information                 | 10 |
| _ | Гс  |      | aging and Pinout Information                 |    |
|   | 2.1 |      | erview                                       |    |
|   | 2.2 |      | der Process                                  |    |
|   | 2.3 |      | sture Sensitivity Level                      |    |
|   | 2.4 |      | 330 Package                                  |    |
|   | 2.5 | Pin  | Description [1][2]                           |    |
|   | 2.5 |      | DVP/I2C0                                     |    |
|   | 2.5 | .2   | SFC                                          |    |
|   | 2.5 | .3   | Static Memory/MSC0/GMAC/PWMx/UARTx/I2C1/JTAG |    |
|   | 2.5 | .4   | MSC1/PWMx/SSIx/I2S/DMIC/CAMERA/I2C2          |    |
|   | 2.5 | .5   | LCD/SSI1                                     |    |
|   | 2.5 | .6   | GPIO                                         |    |
|   | 2.5 |      | System                                       |    |
|   | 2.5 |      | Digital IO/core power/ground                 |    |
|   | 2.5 |      | DDR power/ground                             |    |
|   | 2.5 |      | Analog - DDR                                 |    |
|   | 2.5 |      | Analog - USB                                 |    |
|   | 2.5 |      | Analog - SARADC                              |    |
|   | 2.5 | _    | Analog - CODEC                               |    |
|   | 2.5 |      | Analog - MIPI-CSI                            |    |
|   | 2.5 | .15  | Analog - EFUSE                               |    |
|   | 2.5 | .16  | Analog - CLOCK/PLL                           |    |
|   | 2.5 | .17  | Analog - RTC                                 | 22 |
| 3 | Fle | ectr | ical Specifications                          | 24 |
| _ | —:  |      |                                              |    |

#### **CONTENTS**



| 3.1 | Ab                                   | 24                     |    |  |  |  |  |  |
|-----|--------------------------------------|------------------------|----|--|--|--|--|--|
| 3.2 | 3.2 Recommended operating conditions |                        |    |  |  |  |  |  |
| 3.3 | Au                                   | dio codec              | 26 |  |  |  |  |  |
| 3.3 | 3.1                                  | Microphone input       | 26 |  |  |  |  |  |
| 3.3 | 3.2                                  | ALC                    | 27 |  |  |  |  |  |
| 3.3 | 3.3                                  | Headphone output       | 27 |  |  |  |  |  |
| 3.3 | 3.4                                  | Microphone bias        | 27 |  |  |  |  |  |
| 3.4 | Po                                   | wer On, Reset and BOOT | 27 |  |  |  |  |  |
| 3.4 | 4.1                                  | Power-On Timing        | 27 |  |  |  |  |  |
| 3.4 | 4.2                                  | Reset procedure        | 29 |  |  |  |  |  |
| 3.4 | 4.3                                  | BOOT                   | 30 |  |  |  |  |  |



## 1 Overview

X1830 is a IoT application processor targeting for smart multimedia devices like smart speaker, security survey, video talking, video analysis and so on. This SoC introduces a kind of innovative architecture to fulfill both high performance computing and high quality image and video encoding requirements.

The CPU (Central Processing Unit) core, equipped with 32kB instruction and 32kB data L1 cache, and 128kB L2 cache, operating at 1.5GHz, and full feature MMU function performs OS related tasks. At the heart of the CPU core is XBurst® processor engine. XBurst® is an industry leading microprocessor core which delivers superior high performance and best-in-class low power consumption. A hardware floating-point unit which compatible with IEEE754 is also included. The MXU2.0(SIMD128) instruction set has been implemented by XBurst® engine, and is one part of the CPU.

With the powerful CPU, X1830 supports various computer vision applications, such as face detection, human detection, gesture recognition, and etc. Also people can develop new computer vision application using the MXU2.0 to accelerate it.

The VPU (Video Processing Unit) core is powered with another XBurst® processor engine. Together with the on chip video accelerating engine and post processing unit, X1830 delivers high video performance. The maximum resolution of 1560x1600 in the format of H.264 are supported in encoding. up to 50Mbit/s, 1080P@80fps.

The ISP (Image signal processor) core supports excellent image process with the image from raw sensors. It supports DVP MIPI CSI-2 and LVDS interface. With the functions, such as 3A, 2D and 3D denoise, WDR/HDR, lens shading, it can supply maximum resolution 2688x2048 resolution image for view or encoding to store or transfer.

For more quickly and easily to use X1830, 1024Mbit DDR2 is integrated.

On-chip modules such as audio CODEC, multi-channel SAR-ADC controller and camera interface offer designers a economical suite of peripherals for video application. WLAN, Bluetooth and expansion options are supported through high-speed SPI and MMC/SD/SDIO host controllers. Other peripherals such as USB OTG, UART and SPI as well as general system resources provide enough computing and connectivity capability for many applications.

#### 1.1 Block Diagram





Figure 1-1 X1830 Diagram

### 1.2 Features

## 1.2.1 CPU

- XBurst®-1 core
  - XBurst® RISC instruction set
  - XBurst<sup>®</sup> SIMD128 instruction set
  - XBurst<sup>®</sup> FPU instruction set supporting both single and double floating point format which are IEEE754 compatible
  - XBurst® 9-stage pipeline micro-architecture, the operating frequency is 1.5GHz
- MMU
  - 32-entry joint-TLB
  - 8-entry Instruction TLB
  - 8-entry data TLB
- L1 Cache
  - 32KB instruction cache
  - 32KB data cache
- Hardware debug support
- 16KB tight coupled memory
- L2 Cache
  - 128KB unified cache



#### 1.2.2 VPU

- Support H264 Encoder(I、P slices)
- Support H264 baseline main high profile encoding up to 50Mbit/s, 1080P@80fps
- Support H264 maximum size up to 1560x1600 resolution
- Only support JZ-bitstream Decoder
- JPEG compressing/decompressing up to 70Mega-pixels per second (baseline)

#### 1.2.3 ISP

- Output support two channel: FR is 2688x2048 @20fps, DS1 is 1080p @60fps
- The Module support Max input resolution 2688x2048 @20fps, 1080p @60fps,720p @120fps
- Input image up to 12bit RAW or Up to 24bit RGB. Both RGB and YCbCr are supported from sensor
- Up to 2 output channel. Image crop and downscaler
- 2-D and 3-D noise reduction filter lead to high levels of noise reduction with minimal effect on edges and textures
- Single frame and multi frame WDR/HDR provide high dynamic range in both still and video capture modes
- Advanced demosaic, color processing, lens shading, defog, glare, static/dynamic defect pixel and other modules provide high image quality
- 3A supported
- Flash timer

## 1.2.4 Image post processor(IPU)

- DMA mode for data transaction, Input format:
  - Input data format: ARGB,RGB,NV12/NV21
  - Output data format: ARGB,RGB,NV12/NV21,HSV
- Color conversion feature: input and output format can be chosen freely from input and output data format.
- Minimum input image size (pixel): 4x4
- Maximum input image size (pixel): 2592x2048
- Minimum output image size (pixel): 4x4
- Maximum output image size (pixel): 2592x2048
- Background channel OSD function:
  - Support 4 layers OSD
  - Support whole background picture into OSD process and partial picture into OSD process
  - Support 12 port-duff OSD modes
  - Support 5 input format in background channel: ARGB8888, ARGB1555, RGB888, NV12,
     NV21. RGB can be in following sequence: RGB, RBG, BRG, BGR, GRB, GBR.
     Specifically, RGB888 format data occupy 4 bytes when stored in memory, RGB occupy three bytes, and the forth byte can be any value.



 Output picture format must be the same with the input picture format of separated background channel.

#### 1.2.5 Display (LCD)

- Layer feature
  - Support 2 layer DMA channel
  - Support input format: RGB8888/888/565/555,NV12/NV21
  - Support frame size 4x4~800x800
  - Support global alpha
- Composition feature
  - Support 2 layer Alpha Blending
  - Support frame size 4x4~800x800
- Display feature
  - Support TFT(RGB666)
  - Support SLCD
  - Support 640x480@60hz

#### 1.2.6 Video input

- Support 8/10/12 bit RGB Bayer input
- Support maximum: 2688x2048 @20fps, 1080p @60fps,720p @120fps
- Support single-sensor input
- Support DVP/BT1120
- Support MIPI CSI2 2-lane
- Support LVDS IEEE Std1596.3-1996

#### 1.2.7 **Audio**

- Integrated Audio codec.
  - 24 bits DAC with 93dB SNR
  - 24 bits ADC with 92dB SNR
  - Support signal-ended and differential microphone input and line input
  - Automatic Level Control (ALC) for smooth audio recording
  - Pure logic process: no need for mixed signal layers and less mask cost
  - Programmable input and output analog gains
  - Digital interpolation and decimation filter integrated
  - Sampling rate 8K/12K/16K/24K/32/44.1K/48K/96K

#### 1.2.8 Memory Interface

- Integrated 1024Mbits DDR2
- Static memory interface



- Support 6 external chip selection CS6~1#. Each bank can be configured separately
- The size and base address of static memory banks are programmable
- Direct interface to 8-bit bus width external memory interface devices or external static memory to each bank. Read/Write strobe setup time and hold time periods can be programmed and inserted in an access cycle to enable connection to low-speed memory
- Wait insertion by WAIT pin
- Automatic wait cycle insertion to prevent data bus collisions in case of consecutive memory accesses to different banks, or a read access followed by a write access to the same bank

#### 1.2.9 System Functions

- · Clock generation and power management
  - On-chip 12/24/48MHZ oscillator circuit
  - External 32.768KHZ input
  - One four-chip phase-locked loops (PLL) with programmable multiplier
  - CCLK, HHCLK, H2CLK, PCLK, H0CLK, DDR\_CLK, VPU\_CLK frequency can be changed separately for software by setting registers
  - SSI clock supports 50M clock
  - MSC clock supports 100M clock
  - Functional-unit clock gating
  - Shut down power supply for P0, ISP, VPU, IPU, LCD, LDC
  - Timer and counter unit with PWM output and/or input edge counter
    - Provide eight separate channels, six of them have input signal transition edge counter
    - 16-bit A counter and 16-bit B counter with auto-reload function every channel
    - Support interrupt generation when the A counter underflows
    - Three clock sources: RTCLK (real time clock), EXCLK (external clock input), PCLK (APB Bus clock) selected with 1, 4, 16, 64, 256 and 1024 clock dividing selected
    - Every channel has PWM output

#### OS timer

- 64-bit counter and 32-bit compare register
- Support interrupt generation when the counter matches the compare register
- Two clock sources: RTCLK (real time clock), HCLK (system bus clock) selected with 1, 4,
   16, 64, 256 and 1024 clock dividing selected
- Interrupt controller
  - Total 64 interrupt sources
  - Each interrupt source can be independently enabled
  - Priority mechanism to indicate highest priority interrupt
  - All the registers are accessed by CPU
  - Unmasked interrupts can wake up the chip in sleep mode
  - Another set of source, mask and pending registers to serve for PDMA
- Watchdog timer
  - Generates WDT reset



- A 16-bit Data register and a 16-bit counter
- Counter clock uses the input clock selected by software
- PCLK, EXTAL and RTCCLK can be used as the clock for counter
- The division ratio of the clock can be set to 1, 4, 16, 64, 256 and 1024 by software
- Direct memory access controllers
  - Support up to 32 independent DMA channels
  - Descriptor or No-Descriptor Transfer mode compatible with previous JZ SoC
  - Transfer data units: 1-byte, 2-byte, 4-byte, 16-byte, 32-byte, 64-byte, 128-byte
  - Transfer number of data unit: 1 ~ 2<sup>24</sup> 1
  - Independent source and destination port width: 8-bit, 16-bit, 32-bit
  - Fixed three priorities of channel groups: 0~3, highest; 4~11: mid; 12~31: lowest
  - An extra INTC IRQ can be bound to one programmable DMA channel
- SAR A/D Controller
  - 3 Channels
  - Resolution: 10-bit
  - Integral nonlinearity: ±1 LSB
  - Differential nonlinearity: ±0.5 LSB
  - Resolution/speed: up to 2MSPS
  - Max Frequency: 24MHz
  - Low power dissipation: 1.5mW(worst)
  - Support multi-touch detect
  - Support write control command by software
  - Single-end and Differential Conversion Mode
  - Support external touch screen controller
  - Pin Description
- RTC (Real Time Clock)
  - Need external 32768Hz oscillator for 32k clock generation
  - 32-bits second counter
  - Programmable and adjustable counter to generate accurate 1 Hz clock
  - Alarm interrupt, 1Hz interrupt
  - Stand alone power supply, work in hibernating mode
  - Power down controller
  - Alarm wakeup
  - External pin wakeup with up to 2s glitch filter
- OTP Slave Interface
  - Total 1024 bits. Lower 192bits are read only, other higher bits are read-able and write-able

#### 1.2.10 Peripherals

- General-Purpose I/O ports
  - Each port can be configured as an input, an output or an alternate function port
  - Each port can be configured as an interrupt source of low/high level or rising/falling edge



- triggering. Every interrupt source can be masked independently
- Each port has an internal pull-up or pull-down resistor connected. The pull-up/down resistor can be disabled
- GPIO output 4 interrupts, each interrupt corresponds to the group, to INTC
- SMB Controller
  - Two-wire SMB serial interface consists of a serial data line (SDA) and a serial clock (SCL)
  - Two speeds
    - Standard mode (100 Kb/s)
    - Fast mode (400 Kb/s)
  - Device clock is identical with pclk
  - Programmable SCL generator
  - Master or slave SMB operation
  - 7-bit addressing/10-bit addressing
  - 16-level transmit and receive FIFOs
  - Interrupt operation
  - The number of devices that you can connect to the same SMB-bus is limited only by the maximum bus capacitance of 400pF
  - APB interface
  - 3 independent SMB channels (SMB0, SMB1, SMB2)
- One High Speed Synchronous serial interfaces (SFC)
  - 3 protocols support: National's Microwire, TI's SSP, and Motorola's SPI
  - transmit-only or receive-only operation
  - MSB first for command and data transfer, and LSB first for address transfer
  - 64 entries x 32 bits wide data FIFO
  - one device select
  - Configurable sampling point for reception
  - Configurable timing parameters: tSLCH, tCHSH and tSHSL
  - Configurable flash address wide are supported
  - 7 transfer formats: Standard SPI, Dual-Output/Dual-Input SPI, Quad-Output/Quad-Input SPI, Dual-I/O SPI, Quad-I/O SPI, Full Dual-I/O SPI, Full Quad-I/O SPI
  - two data transfer mode: slave mode and DMA mode
  - Configurable 6 phases for software flow
- Two Normal Speed Synchronous serial interfaces (SSI0, SSI1)
  - 3 protocols support: National's Microwire, TI's SSP, and Motorola's SPI
  - Full-duplex or transmit-only or receive-only operation
  - Programmable transfer order: MSB first or LSB first
  - 128 entries deep x 32 bits wide transmit and receive data FIFOs
  - Configurable normal transfer mode or Interval transfer mode
  - Programmable clock phase and polarity for Motorola's SSI format
  - Two slave select signal (SSI\_CE\_ / SSI\_CE2\_) supporting up to 2 slave devices
  - Back-to-back character transmission/reception mode
  - Loop back mode for testing



- Two UARTs (UART0, UART1)
  - Full-duplex operation
  - 5-, 6-, 7- or 8-bit characters with optional no parity or even or odd parity and with 1, 1½,
     or 2 stop bits
  - 64x8 bit transmit FIFO and 64x11bit receive FIFO
  - Independently controlled transmit, receive (data ready or timeout), line status interrupts
  - Internal diagnostic capability Loopback control and break, parity, overrun and framing-error is provided
  - Separate DMA requests for transmit and receive data services in FIFO mode
  - Supports modem flow control by software or hardware
  - Slow infrared asynchronous interface that conforms to IrDA specification
- Two MMC/SD/SDIO controllers (MSC0, MSC1)
  - Fully compatible with the MMC System Specification version 4.2
  - Support SD Specification 3.0
  - Support SD I/O Specification 1.0 with 1 command channel and 4 data channels
  - Consumer Electronics Advanced Transport Architecture (CE-ATA version 1.1)
  - Maximum data rate is 50MBps
  - Support MMC data width 1bit ,4bit and 8bit
  - Built-in programmable frequency divider for MMC/SD bus
  - Built-in Special Descriptor DMA
  - Maskable hardware interrupt for SDIO interrupt, internal status and FIFO status
  - 128 x 32 built-in data FIFO
  - Multi-SD function support including multiple I/O and combined I/O and memory
  - IRQ supported enable card to interrupt MMC/SD controller
  - Single or multi block access to the card including erase operation
  - Stream access to the MMC card
  - Supports SDIO read wait, interrupt detection during 1-bit or 4-bit access
  - Supports CE-ATA digital protocol commands
  - Support Command Completion Signal and interrupt to CPU
  - Command Completion Signal disable feature
  - The maximum block length is 4096bytes
- USB 2.0 OTG interface
  - Complies with the USB 2.0 standard for high-speed (480 Mbps) functions and with the
     On-The-Go supplement to the USB 2.0 specification
  - Operates either as the function controller of a high- /full-speed USB peripheral or as the host/peripheral in point-to-point or multi-point communications with other USB functions
  - Supports Session Request Protocol (SRP) and Host Negotiation Protocol (HNP)
  - UTMI+ Level 3 Transceiver Interface
  - Soft connect/disconnect
  - 16 Endpoints:
  - Dedicate FIFO
  - Supports control, interrupt, ISO and bulk transfer
- Digital True Random Number Generator (DTRNG)



- Pure digital logic circuits
- True random number
- Interrupt mode and no interrupt mode

## **1.2.11 Bootrom**

16kB Boot ROM memory

## 1.3 Characteristic

| Item                 | Characteristic                      |
|----------------------|-------------------------------------|
| Process Technology   | 28nm CMOS low power                 |
| Power supply voltage | General purpose I/O: 1.5~3.6V       |
|                      | DDR I/O for DDR2: 1.8V ± 0.1V       |
|                      | RTC I/O: 1.5V~3.6V                  |
|                      | EFUSE programming: 1.5V ± 10%       |
|                      | Analog power supply 1: 1.8V ± 10%   |
|                      | Analog power supply 2: 3.3V ± 10%   |
|                      | Core supply: 1.3V ± 0.1V            |
| Package              | BGA223 11mm x 11mm x 1.22mm, 0.65mm |
|                      | pitch                               |
| Operating frequency  | 1.5 GHz                             |



## 2 Packaging and Pinout Information

#### 2.1 Overview

X1830 processor is offered in 223-pin BGA package, which is  $11mm \times 11mm \times 1.22mm$  outline,  $17 \times 17$  matrix ball grid array and 0.65mm ball pitch, show in Figure 2-1. The X1830 pin to ball assignment is show in Figure 2-2. The detailed pin description is listed in Table 2-1 ~ Table 2-18.

#### 2.2 Solder Process

X1830 package is lead-free. It's reflow profile follows the IPC/JEDEC lead-free reflow profile as contained in J-STD-020C.

## 2.3 Moisture Sensitivity Level

X1830 package moisture sensitivity is level 3.

#### 2.4 X1830 Package



Figure 2-1 X1830 package outline drawing





Figure 2-2 X1830 pin to ball assignment

## 2.5 Pin Description [1][2]

#### 2.5.1 DVP/I2C0

Table 2-1 DVP/I2C0 Pins(12)

| Pin Names      | Ю       | Loc | IO Cell Char. | Pin Description                                    | Power   |
|----------------|---------|-----|---------------|----------------------------------------------------|---------|
| DVP_D6<br>PA06 | I<br>IO | T13 |               | DVP_D6:DVP data bit 6<br>PA06: GPIO group A bit 06 | VDDIO_D |



| Pin Names         | Ю        | Loc | IO Cell Char.        | Pin Description                                                  | Power   |
|-------------------|----------|-----|----------------------|------------------------------------------------------------------|---------|
| DVP_D7<br>PA07    | I<br>IO  | U15 | 8mA                  | DVP_D7:DVP data bit 7<br>PA07: GPIO group A bit 07               | VDDIO_D |
| DVP_D8<br>PA08    | I<br>IO  | T14 | 8mA                  | DVP_D8:DVP data bit 8<br>PA08: GPIO group A bit 08               | VDDIO_D |
| DVP_D9<br>PA09    | I<br>10  | R13 | 8mA                  | DVP_D9:DVP data bit 9<br>PA09: GPIO group A bit 09               | VDDIO_D |
| DVP_D10<br>PA10   | I<br>10  | U16 | 8mA                  | DVP_D10:DVP data bit 10<br>PA10: GPIO group A bit 10             | VDDIO_D |
| DVP_D11<br>PA11   | I<br>IO  | T15 | 8mA<br>Pullup-rst    | DVP_D11:DVP data bit 11<br>PA11: GPIO group A bit 11             | VDDIO_D |
| SMB0_SDA<br>PA12  | 10<br>10 | R9  | 8mA<br>Pullup-rst    | SMB0_SDA: I2C 0 serial data<br>PA12: GPIO group A bit 12         | VDDIO_D |
| SMB0_SCK<br>PA13  | 10<br>10 | U9  | 8mA<br>Pullup-rst    | SMB0_SCK: I2C 0 serial clock<br>PA13: GPIO group A bit 13        | VDDIO_D |
| DVP_PCLK<br>PA14  | I<br>10  | T12 | 8mA                  | DVP_PCLK: camera sensor clock input<br>PA14: GPIO group A bit 14 | VDDIO_D |
| DVP_MCLK<br>PA15  | 0<br>10  | U13 | 8mA<br>Slew-rate-rst | DVP_MCLK: DVP clock output<br>PA15: GPIO group A bit 15          | VDDIO_D |
| DVP_HSYNC<br>PA16 | I<br>IO  | U12 | 8mA                  | DVP_HSYNC: DVP horizontal sync<br>PA16: GPIO group A bit 16      | VDDIO_D |
| DVP_VSYNC<br>PA17 | I<br>10  | R11 | 8mA                  | DVP_VSYNC: DVP vertical sync<br>PA17: GPIO group A bit 17        | VDDIO_D |

### NOTES:

1. DVP data bit0~5 reused with MIPI CSI.

## 2.5.2 SFC

Table 2-2 SFC Pins(6)

| Pin Names       | Ю        | Loc | IO Cell Char.     | Pin Description                                                           | Power |
|-----------------|----------|-----|-------------------|---------------------------------------------------------------------------|-------|
| SFC_DT<br>PA23  | 10<br>10 | R8  | 8mA<br>Pullup-rst | SFC_DT: high speed ssi transmit data<br>PA23: GPIO group A bit 23         | VDDIO |
| SFC_DR<br>PA24  | 10<br>10 | U7  | 8mA<br>Pullup-rst | SFC_DR: high speed ssi receive data<br>PA24: GPIO group A bit 24          | VDDIO |
| SFC_GPC<br>PA25 | 10<br>10 | Т9  | 8mA<br>Pullup-rst | SFC_GPC: high speed ssi general-purpose control PA25: GPIO group A bit 25 | VDDIO |
| SFC_CE1<br>PA26 | 10<br>10 | T7  | 8mA<br>Pullup-rst | SFC_CE1: high speed ssi chip 1 select<br>PA26: GPIO group A bit 26        | VDDIO |
| SFC_CLK<br>PA27 | 10<br>10 | Т8  | 8mA<br>Pullup-rst | SFC_CLK: high speed ssi clock<br>PA27: GPIO group A bit 27                | VDDIO |
| SFC_CE0<br>PA28 | 10<br>10 | R7  | 8mA<br>Pullup-rst | SFC_CE0: high speed ssi chip 0 select PA28: GPIO group A bit 28           | VDDIO |

## 2.5.3 Static Memory/MSC0/GMAC/PWMx/UARTx/I2C1/JTAG

Table 2-3 Static Memory/MSC0/GMAC/PWMx/UARTx/I2C1/JTAG (26)



| Pin Names                   | Ю              | Loc | IO Cell Char.       | Pin Description                                                                                           | Power |
|-----------------------------|----------------|-----|---------------------|-----------------------------------------------------------------------------------------------------------|-------|
| MSC0_D0<br>SD0<br>PB00      | 10<br>10<br>10 | E15 | 8mA                 | MSC0_D0: MSC (MMC/SD) 0 data bit 0<br>SD0: Static memory data bus bit 0<br>PB00: GPIO group B bit 00      | VDDIO |
| MSC0_D1<br>SD1<br>PB01      | 10<br>10<br>10 | E16 | 8mA                 | MSC0_D1: MSC (MMC/SD) 0 data bit 1<br>SD1: Static memory data bus bit 1<br>PB01: GPIO group B bit 01      | VDDIO |
| MSC0_D2<br>SD2<br>PB02      | 10<br>10<br>10 | C16 | 8mA                 | MSC0_D2: MSC (MMC/SD) 0 data bit 2<br>SD2: Static memory data bus bit 2<br>PB02: GPIO group B bit 02      | VDDIO |
| MSC0_D3<br>SD3<br>PB03      | 10<br>10<br>10 | C17 | 8mA                 | MSC0_D3: MSC (MMC/SD) 0 data bit 3<br>SD3: Static memory data bus bit 3<br>PB03: GPIO group B bit 03      | VDDIO |
| MSC0_CLK<br>SD4<br>PB04     | 0<br>10<br>10  | D16 | 8mA                 | MSC0_CLK: MSC (MMC/SD) 0 clock output SD4: Static memory data bus bit 4 PB04: GPIO group B bit 04         | VDDIO |
| MSC0_CMD<br>SD5<br>PB05     | 10<br>10<br>10 | D15 | 8mA                 | MSC0_CMD: MSC (MMC/SD) 0 command<br>SD5: Static memory data bus bit 5<br>PB05: GPIO group B bit 05        | VDDIO |
| GMAC_TXCLK<br>SD6<br>PB06   | 1<br>10<br>10  | R5  | 8mA                 | GMAC_TXCLK: gmac transmitting clock<br>SD6: Static memory data bus bit 6<br>PB06: GPIO group B bit 06     | VDDIO |
| GMAC_PHY_CLK<br>SD7<br>PB07 | 0<br>10<br>10  | T5  | 8mA                 | GMAC_PHY_CLK: gmac phy clock<br>SD7: Static memory data bus bit 7<br>PB07: GPIO group B bit 07            | VDDIO |
| GMAC_TXEN<br>PB08           | 0<br>10        | U6  | 8mA                 | GMAC_TXEN: gmac transmitting enable PB08: GPIO group B bit 08                                             | VDDIO |
| GMAC_RXDV<br>PB09           | I<br>IO        | U3  | 8mA                 | GMAC_RXDV: gmac receive data valid PB09: GPIO group B bit 09.                                             | VDDIO |
| GMAC_MDCK<br>PB10           | 0<br>10        | Т3  | 8mA<br>Pulldown-rst | GMAC_MDCK: gmac manage data clock PB10: GPIO group B bit 10.                                              | VDDIO |
| GMAC_MDIO<br>PB11           | 10<br>10       | U2  | 8mA<br>Pullup-rst   | GMAC_MDIO: gmac MDIO which is clocked<br>by MDC<br>PB11: GPIO group B bit 11.                             | VDDIO |
| GMAC_TXD0<br>SA0<br>PB13    | 0<br>0<br>10   | U5  | 8mA                 | GMAC_TXD0: gmac transmit data bit 0<br>SA0: Static memory address bus bit 0<br>PB13: GPIO group B bit 13. | VDDIO |
| GMAC_TXD1<br>SA1<br>PB14    | 0<br>0<br>10   | Т6  | 8mA                 | GMAC_TXD1: gmac transmit data bit 1<br>SA1: Static memory address bus bit 1<br>PB14: GPIO group B bit 14. | VDDIO |
| GMAC_RXD0<br>SA2<br>PB15    | 1<br>0<br>10   | R4  | 8mA                 | GMAC_RXD0: gmac receive data bit 0<br>SA2: Static memory address bus bit 2<br>PB15: GPIO group B bit 15.  | VDDIO |
| GMAC_RXD1<br>PB16           | I<br>IO        | T4  | 8mA                 | GMAC_RXD1: gmac receive data bit 1<br>PB16: GPIO group B bit 16.                                          | VDDIO |
| PWM0<br>PB17                | 0<br>10        | A5  | 8mA<br>Pulldown-rst | PWM0: PWM channel 0 output signal PB17: GPIO group B bit 17.                                              | VDDIO |
| PWM1<br>CLK32K_OUT<br>PB18  | 0<br>0<br>10   | A6  | 8mA<br>Pulldown-rst | PWM1: PWM channel 1 output signal CLK32K_OUT: 32.768K clock output PB18: GPIO group B bit 18.             | VDDIO |



| Pin Names                       | Ю                    | Loc | IO Cell Char.     | Pin Description                                                                                                          | Power |
|---------------------------------|----------------------|-----|-------------------|--------------------------------------------------------------------------------------------------------------------------|-------|
| UARTO_RXD<br>TDI<br>PB19        | I<br>I<br>IO         | A17 | 8mA<br>Pullup-rst | UART0_RXD: UART 0 receive data<br>TDI: JTAG data input<br>PB19: GPIO group B bit 19                                      | VDDIO |
| UARTO_CTS<br>PB20               | I<br>IO              | B16 | 8mA               | UART0_CTS: UART 0 Clear-to-Send<br>handshaking signal<br>PB20: GPIO group B bit 20                                       | VDDIO |
| UART0_RTS<br>PB21               | 0 10                 | A16 | 8mA               | UART0_RTS: UART 0 Request-to-Send handshaking signal PB21: GPIO group B bit 21                                           | VDDIO |
| UART0_TXD<br>TDO<br>PB22        | 0<br>0<br>10         | B15 | 8mA               | UART0_TXD: UART 0 transmit data<br>TDO: JTAG data output<br>PB22: GPIO group B bit 22                                    | VDDIO |
| UART1_TXD<br>TCK<br>PB23        | 0<br> <br> <br> <br> | A15 | 8mA               | UART1_TXD: UART 1 transmit data<br>TCK: JTAG clock input<br>PB23: GPIO group B bit 23                                    | VDDIO |
| UART1_RXD<br>TMS<br>CS1<br>PB24 | <br>                 | C14 | 8mA<br>Pullup-rst | UART1_RXD: UART 1 receive data<br>TMS: JTAG mode select<br>CS1: Static memory chip 1 select<br>PB24: GPIO group B bit 24 | VDDIO |
| SMB1_SDA<br>CS2<br>PB25         | 10<br>0<br>10        | B17 | 8mA<br>Pullup-rst | SMB1_SDA: I2C 1 serial data<br>CS2: Static memory chip 2 select<br>PB25: GPIO group B bit 25                             | VDDIO |
| SMB1_SCK<br>RD<br>PB26          | 10<br>0<br>10        | C15 | 8mA<br>Pullup-rst | SMB1_SCK: I2C 1 serial clock<br>RD: Static memory read<br>PB26: GPIO group B bit 26                                      | VDDIO |

## 2.5.4 MSC1/PWMx/SSIx/I2S/DMIC/CAMERA/I2C2

Table 2-4 MSC1/PWMx/SSIx/I2S/DMIC/CAMERA/I2C2 Pins (26)

| Pin Names                                       | Ю        | Loc | IO Cell Char.                      | Pin Description                                                                                                                                  | Power |
|-------------------------------------------------|----------|-----|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| MSC1_CLK<br>PC02                                | 00       | B2  | 8mA                                | MSC1_CLK: MSC (MMC/SD) 1 clock output PC02: GPIO group C bit 02                                                                                  | VDDIO |
| MSC1_CMD<br>PC03                                | 00       | B1  | 8mA                                | MSC1_CMD: MSC (MMC/SD) 1 command PC03: GPIO group C bit 03                                                                                       | VDDIO |
| MSC1_D0<br>PC04                                 | 10 10    | A1  | 8mA                                | MSC1_D0: MSC (MMC/SD) 1 data bit 0<br>PC04: GPIO group C bit 04                                                                                  | VDDIO |
| MSC1_D1<br>PC05                                 | 00       | C3  | 8mA                                | MSC1_D1: MSC (MMC/SD) 1 data bit 1<br>PC05: GPIO group C bit 05                                                                                  | VDDIO |
| MSC1_D2<br>PC06                                 | 10<br>10 | C1  | 8mA                                | MSC1_D2: MSC (MMC/SD) 1 data bit 2<br>PC06: GPIO group C bit 06                                                                                  | VDDIO |
| MSC1_D3<br>PC07                                 | 10<br>10 | C2  | 8mA                                | MSC1_D3: MSC (MMC/SD) 1 data bit 3<br>PC07: GPIO group C bit 07                                                                                  | VDDIO |
| PWM2<br>FLASH_STORB<br>E_IN<br>DMIC_CLK<br>PC08 | 0- 00    | В6  | 8mA<br>Pulldown-rst<br>Schmitt-rst | PWM2: PWM channel 2 output signal FLASH_STORBE_IN: camera flash store input DMIC_CLK: digital microphone clock output PC08: GPIO group C bit 08. | VDDIO |



| Pin Names                                | Ю                    | Loc | IO Cell Char.                      | Pin Description                                                                                                                                   | Power |
|------------------------------------------|----------------------|-----|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| PWM3<br>FLASH_OUT<br>PC09                | 0<br>0<br>10         | A7  | 8mA<br>Pulldown-rst<br>Schmitt-rst | PWM3: PWM channel 3 output signal FLASH_OUT: camera flash out signal PC09: GPIO group C bit 09.                                                   | VDDIO |
| SSI0_DR<br>PWM0<br>PC11                  | 1<br>0<br>10         | B10 | 8mA                                | SSI0_DR: normal speed ssi 0 receive data<br>PWM0: PWM channel 0 output signal<br>PC11: GPIO group C bit 11.                                       | VDDIO |
| SSI0_DT<br>PWM1<br>PC12                  | 0<br>0<br>10         | C10 | 8mA                                | SSI0_DT: normal speed ssi 0 transmit data<br>PWM1: PWM channel 1 output signal<br>PC12: GPIO group C bit 12.                                      | VDDIO |
| SSI0_GPC<br>PWM2<br>PC13                 | 0 0 0                | A11 | 8mA                                | SSI0_GPC: normal speed ssi 0 general-purpose control PWM2: PWM channel 2 output signal PC13: GPIO group C bit 13.                                 | VDDIO |
| SSI0_CE1<br>PWM3<br>PC14                 | 0<br>0<br>10         | A9  | 8mA                                | SSI0_CE1: normal speed ssi 0 chip 1 select PWM3: PWM channel 3 output signal PC14: GPIO group C bit 14.                                           | VDDIO |
| SSI0_CLK<br>PWM4<br>PC15                 | 0<br>0<br>10         | B11 | 8mA                                | SSI0_CLK: normal speed ssi 0 clock<br>PWM4: PWM channel 4 output signal<br>PC15: GPIO group C bit 15.                                             | VDDIO |
| SSI0_CE0<br>PWM5<br>PC16                 | 0 0 0                | C11 | 8mA<br>Pullup-rst                  | SSI0_CE0: normal speed ssi 0 chip 0 select PWM5: PWM channel 5 output signal PC16: GPIO group C bit 16.                                           | VDDIO |
| DRV_VBUS<br>PWM6<br>PC17                 | 0<br>0<br>10         | E3  | 8mA                                | DRV_VBUS:USB-5V control signal PWM6: PWM channel 6 output signal PC17: GPIO group C bit 17.                                                       | VDDIO |
| I2S_DAC_LRCK<br>PWM7<br>PC18             | 10<br>0<br>10        | A2  | 8mA<br>Schmitt-rst                 | I2S_DAC_LRCK: I2S DAC left/right clock<br>PWM7: PWM channel 7 output signal<br>PC18: GPIO group C bit 18.                                         | VDDIO |
| I2S_SDTO<br>SSI1_DT<br>PC19              | 000                  | В3  | 8mA<br>Schmitt-rst                 | I2S_SDTO: I2S serial data output signal SSI1_DT: normal speed ssi 1 transmit data PC19: GPIO group C bit 19.                                      | VDDIO |
| I2S_SDTI<br>SSI1_DR<br>PC20              | O                    | A3  | 8mA                                | I2S_SDTI:I2S serial data input signal SSI1_DR: normal speed ssi 1 receive data PC20: GPIO group C bit 20.                                         | VDDIO |
| I2S_ADC_LRCK<br>SSI1_GPC<br>PC21         | 0 0 0                | B4  | 8mA                                | I2S_ADC_LRCK: I2S ADC left/right clock<br>SSI1_GPC: normal speed ssi 1 general-purpose<br>control<br>PC21: GPIO group C bit 21.                   | VDDIO |
| I2S_ADC_BCLK<br>SSI1_CE1<br>PC22         | 10<br>0<br>10        | C4  | 8mA                                | I2S_ADC_BCLK: I2S ADC bit clock<br>SSI1_CE1: normal speed ssi 1 chip 1 select<br>PC22: GPIO group C bit 22.                                       | VDDIO |
| I2S_MCLK<br>SSI1_CLK<br>PC23             | 0<br>0<br>10         | C5  | 8mA                                | I2S_MCLK: I2S system clock<br>SSI1_CLK: normal speed ssi 1 clock<br>PC23: GPIO group C bit 23.                                                    | VDDIO |
| I2S_DAC_BCLK<br>SSI1_CE0<br>WAIT<br>PC24 | 10<br>0<br>1<br>10   | B5  | 8mA<br>Pullup-rst<br>Schmitt-rst   | I2S_DAC_BCLK: I2S DAC bit clock SSI1_CE0: normal speed ssi 1 chip 0 select WAIT: Slow static memory/device wait signal PC24: GPIO group C bit 24. | VDDIO |
| PWM4<br>DMIC_DAT0<br>PC25                | 0<br> <br> <br> <br> | В7  | 8mA<br>Pulldown-rst                | PWM4: PWM channel 4 output signal DMIC_DAT0: digital microphone data bit 0 PC25: GPIO group C bit 25.                                             | VDDIO |



| Pin Names                 | Ю                    | Loc | IO Cell Char.       | Pin Description                                                                                       | Power |
|---------------------------|----------------------|-----|---------------------|-------------------------------------------------------------------------------------------------------|-------|
| PWM5<br>DMIC_DAT1<br>PC26 | 0<br> <br> <br> <br> | C7  | 8mA<br>Pulldown-rst | PWM5: PWM channel 5 output signal DMIC_DAT1: digital microphone data bit 1 PC26: GPIO group C bit 26. | VDDIO |
| PWM6<br>SMB2_SDA<br>PC27  | 0<br>10<br>10        | В8  |                     | PWM6: PWM channel 6 output signal SMB2_SDA: I2C 2 serial data PC27: GPIO group C bit 27.              | VDDIO |
| PWM7<br>SMB2_SCK<br>PC28  | 0<br>10<br>10        | C8  | 8mA<br>Pulldown-rst | PWM7: PWM channel 7 output signal SMB2_SCK: I2C 2 serial clock PC28: GPIO group C bit 28.             | VDDIO |

## 2.5.5 LCD/SSI1

Table 2-5 LCD/SSI1 Pins (22)

| Pin Names                             | Ю                | Loc | IO Cell Char.     | Pin Description                                                                                                                                    | Power |
|---------------------------------------|------------------|-----|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| TFT_D2<br>SLCD_D0<br>SSI1_DT<br>PD02  | 0000             | N15 | 8mA               | TFT_D2: TFT data output bit 2SLCD_D0: smart lcd data output bit 0 SSI1_DT: normal speed ssi 1 transmit data PD02: GPIO group D bit 02.             | VDDIO |
| TFT_D3<br>SLCD_D1<br>SSI1_DR<br>PD03  | 0 0 1 10         | P16 | 8mA               | TFT_D3: TFT data output bit 3 SLCD_D1: smart lcd data output bit 1 SSI1_DR: normal speed ssi 1 receive data PD03: GPIO group D bit 03.             | VDDIO |
| TFT_D4<br>SLCD_D2<br>SSI1_GPC<br>PD04 | 0 0 0 0          | N16 | 8mA               | TFT_D4: TFT data output bit 4 SLCD_D2: smart lcd data output bit 2 SSI1_GPC: normal speed ssi 1 general-purpose control PD04: GPIO group D bit 04. | VDDIO |
| TFT_D5<br>SLCD_D3<br>SSI1_CE1<br>PD05 | 0000             | N17 | 8mA               | TFT_D5: TFT data output bit 5 SLCD_D3: smart lcd data output bit 3 SSI1_CE1: normal speed ssi 1 chip 1 select PD05: GPIO group D bit 05.           | VDDIO |
| TFT_D6<br>SLCD_D4<br>SSI1_CLK<br>PD06 | 0 0 0 0          | M16 | 8mA               | TFT_D6: TFT data output bit 6 SLCD_D4: smart lcd data output bit 4 SSI1_CLK: normal speed ssi 1 clock PD06: GPIO group D bit 06.                   | VDDIO |
| TFT_D7<br>SLCD_D5<br>SSI1_CE0<br>PD07 | 0<br>0<br>0<br>0 | M17 | 8mA<br>Pullup-rst | TFT_D7: TFT data output bit 7 SLCD_D5: smart lcd data output bit 5 SSI1_CE0: normal speed ssi 1 chip 0 select PD07: GPIO group D bit 07.           | VDDIO |
| LCD_PCLK<br>PD08                      | 0<br>10          | L16 | 8mA               | LCD_PCLK: lcdc pixel clock output PD08: GPIO group D bit 08.                                                                                       | VDDIO |
| TFT_DE<br>SLCD_WR<br>PD09             | 0<br>0<br>10     | K16 | 8mA               | TFT_DE: TFT data enable signal SLCD_WR: smart lcd write data control signal PD09: GPIO group D bit 09.                                             | VDDIO |
| TFT_D10<br>SLCD_D6<br>PD12            | 0<br>0<br>10     | J17 | 8mA               | TFT_D10: TFT data output bit 10 SLCD_D6: smart lcd data output bit 6 PD12: GPIO group D bit 12.                                                    | VDDIO |
| TFT_D11<br>SLCD_D7                    | 0<br>0           | J16 | 8mA               | TFT_D11: TFT data output bit 11 SLCD_D7: smart lcd data output bit 7                                                                               | VDDIO |



| Pin Names                    | Ю                    | Loc | IO Cell Char.     | Pin Description                                                                                         | Power |
|------------------------------|----------------------|-----|-------------------|---------------------------------------------------------------------------------------------------------|-------|
| PD13                         | Ю                    |     |                   | PD13: GPIO group D bit 13.                                                                              |       |
| TFT_D12<br>SLCD_D8<br>PD14   | 0<br>0<br>IO         | K15 | 8mA               | TFT_D12: TFT data output bit 12<br>SLCD_D8: smart lcd data output bit 8<br>PD14: GPIO group D bit 14.   | VDDIO |
| TFT_D13<br>SLCD_D9<br>PD15   | 0<br>0<br>IO         | G17 | 8mA               | TFT_D13: TFT data output bit 13 SLCD_D9: smart lcd data output bit 9 PD15: GPIO group D bit 15.         | VDDIO |
| TFT_D14<br>SLCD_D10<br>PD16  | 0<br>0<br>10         | H16 | 8mA               | TFT_D14: TFT data output bit 14 SLCD_D10: smart lcd data output bit 10 PD16: GPIO group D bit 16.       | VDDIO |
| TFT_D15<br>SLCD_D11<br>PD17  | 0<br>0<br>10         | J15 | 8mA               | TFT_D15: TFT data output bit 15 SLCD_D11: smart lcd data output bit 11 PD17: GPIO group D bit 17.       | VDDIO |
| TFT_VSYNC<br>SLCD_CS<br>PD18 | 0 0 0                | L17 | 8mA<br>Pullup-rst | TFT_VSYNC:TFT column sync<br>SLCD_CS: smart lcd chip select signal<br>PD18: GPIO group D bit 18.        | VDDIO |
| TFT_HSYNC<br>SLCD_TE<br>PD19 | 0<br> <br> <br> <br> | L15 | 8mA               | TFT_HSYNC:TFT horizontal sync SLCD_TE: smart lcd crack control signal PD19: GPIO group D bit 19.        | VDDIO |
| TFT_D18<br>SLCD_D12<br>PD22  | 0<br>0<br>10         | F17 | 8mA               | TFT_D18: TFT data output bit 18 SLCD_D12: smart lcd data output bit 12 PD22: GPIO group D bit 22.       | VDDIO |
| TFT_D19<br>SLCD_D13<br>PD23  | 0<br>0<br>10         | G16 | 8mA               | TFT_D19: TFT data output bit 19<br>SLCD_D13: smart lcd data output bit 13<br>PD23: GPIO group D bit 23. | VDDIO |
| TFT_D20<br>SLCD_D14<br>PD24  | 0<br>0<br>10         | E17 | 8mA               | TFT_D20: TFT data output bit 20<br>SLCD_D14: smart lcd data output bit 14<br>PD24: GPIO group D bit 24. | VDDIO |
| TFT_D21<br>SLCD_D15<br>PD25  | 0<br>0<br>10         | F16 | 8mA               | TFT_D21: TFT data output bit 21 SLCD_D15: smart lcd data output bit 15 PD25: GPIO group D bit 25.       | VDDIO |
| TFT_D22<br>SLCD_RDY<br>PD26  | 0<br>0<br>10         | H15 | 8mA               | TFT_D22: TFT data output bit 22<br>SLCD_RDY: smart lcd work status signal<br>PD26: GPIO group D bit 26. | VDDIO |
| TFT_D23<br>SLCD_DC<br>PD27   | 0<br>0<br>IO         | G15 | 8mA               | TFT_D23: TFT data output bit 23 SLCD_DC: smart lcd cmd/data identify signal PD27: GPIO group D bit 27.  | VDDIO |

## 2.5.6 GPIO

Table 2-6 GPIO Pins (9)

| Pin<br>Names | Ю | Loc | IO Cell Char.      | Pin Description           | Power   |
|--------------|---|-----|--------------------|---------------------------|---------|
| PA18         | Ю | T10 | 8mA                | PA18: GPIO group A bit 18 | VDDIO_D |
| PA19         | Ю | U11 | 8mA<br>Schmitt-rst | PA19: GPIO group A bit 19 | VDDIO_D |
| PA20         | Ю | T11 | 8mA                | PA20: GPIO group A bit 20 | VDDIO_D |



| Pin<br>Names | Ю | Loc | IO Cell Char.                    | Pin Description           | Power   |
|--------------|---|-----|----------------------------------|---------------------------|---------|
|              |   |     | Schmitt-rst                      |                           |         |
| PA22         | Ю | R10 | 8mA<br>Pullup-rst<br>Schmitt-rst | PA22: GPIO group A bit 22 | VDDIO_D |
| PB27         | Ю | A13 | 8mA<br>Schmitt-rst               | PB27: GPIO group B bit 27 | VDDIO   |
| PB28         | Ю | B13 | 8mA<br>Schmitt-rst               | PA28: GPIO group B bit 28 | VDDIO   |
| PB29         | Ю | C13 | 8mA<br>Schmitt-rst               | PB29: GPIO group B bit 29 | VDDIO   |
| PB30         | Ю | B12 | 8mA<br>Schmitt-rst               | PB30: GPIO group B bit 30 | VDDIO   |
| PB31         | Ю | A12 | 8mA<br>Pulldown-rst              | PB31: GPIO group B bit 31 | VDDIO   |

## 2.5.7 **System**

Table 2-7 System Control Pins(6)

| Pin Names  | Ю | Loc | IO Cell Char.                | Pin Description                                      | Power         |
|------------|---|-----|------------------------------|------------------------------------------------------|---------------|
| TRST       | I | B14 | 8mA<br>Schmitt<br>Pull-down  | TRST: JTAG reset                                     | VDDIO         |
| RST_OUT    | 0 | G3  | 8mA<br>Pull-up               | RST_OUT: watchdog reset signal output                | VDDIO         |
| PWRON      | 0 | G1  | 8mA                          | PWRON: Power on/off control of main power            | RTC_VD<br>DIO |
| WKUP_PA30* | I | J1  | 8mA<br>Schmitt               | WKUP: Wakeup signal after main power down            | RTC_VD<br>DIO |
| PPRST_     | I | J2  | 8mA<br>Schmitt               | PPRST_: RTC power on reset and RESET-KEY reset input | RTC_VD<br>DIO |
| TEST_TE    | Ī | L5  | 8mA<br>Schmitt,<br>Pull-down | TEST_TE: Manufacture test enable, program readable   | RTC_VD<br>DIO |

Table 2-8 Boot Select Pins(2)

| Pin Names           | Ю      | Loc | IO Cell Char. | Pin Description                                                             | Power |
|---------------------|--------|-----|---------------|-----------------------------------------------------------------------------|-------|
| PC00<br>(BOOT_SEL0) | 10<br> | D2  |               | PC00: GPIO group C bit 00 It is taken as BOOT select bit 0 by Boot ROM code | VDDIO |
| PC01<br>(BOOT_SEL1) | 0 –    | D3  |               | PC01: GPIO group C bit 01 It is taken as BOOT select bit 1 by Boot ROM code | VDDIO |



## 2.5.8 Digital IO/core power/ground

Table 2-9 IO/Core power supplies for FBGA (37)

| Pin Names | Ю | Loc                                                                | IO Cell Char. | Pin Description                                    | Power |
|-----------|---|--------------------------------------------------------------------|---------------|----------------------------------------------------|-------|
| VDDIO_D   | Р | N11,N12                                                            | -             | VDDIO_D: IO digital power for power domain 0, 1.8V | -     |
| VDDIO     | Р | N7,N8,N9,N10                                                       | -             | VDDIO: IO digital power for power domain 1, 3.3V   | -     |
| VSS       | Р | J7,J8,J10,J11,J12<br>,J13,K7,K8,K9,K1<br>0,K11,K12,K13,L<br>8,L11  |               | VSS: IO digital ground, include two power domain   | -     |
| VDD       | Р | J6,K6,L6,L7,L9,L<br>10,L12,L13,M6,M<br>7,M8,M9,M10,M1<br>1,M12,M13 | -             | VDD: 1.0V, CORE digital power                      | -     |

## 2.5.9 DDR power/ground

Table 2-10 DDR power/ground supplies Pins (35)

| Pin Names    | Ю | Loc                             | IO Cell<br>Char. | Pin Description                                | Power |
|--------------|---|---------------------------------|------------------|------------------------------------------------|-------|
| VREF         | Р | E5                              | -                | VREF: DDR reference voltage, (VREF = VDDMEM/2) | -     |
| VDDMEM       | Р | E6,E7,E8,E10,E11,<br>E12,F5     | -                | VDDMEM: DDR IO supply(1.8V for DDR2)           | -     |
| VSSMEM       | Р | G5,G6,G7,G8,G9,<br>G10,G11,G12  | _                | VSSMEM: DDR IO ground                          | -     |
| DDRVDD       | Р | F6,F7,F8,F9,F10,F<br>11,F12,F13 | -                | DDRVDD: DDR PHY 1.8V supply                    | -     |
| DDRVSS       | Р | H6,H7,H8,H9,H10,<br>H11,H12,H13 | _                | DDRVSS: DDR PHY ground                         | -     |
| DDRPLL_AVD10 | Р | В9                              | -                | DDRPLL_AVD10: DDR PLL 1.0V supply              | -     |
| DDRPLL_AVD18 | Р | E9                              | -                | DDRPLL_AVD18: DDR PLL 1.8V supply              | -     |
| DDR_AVS      | Р | C9                              | -                | DDR_AVS: DDR PLL analog ground                 | -     |

## 2.5.10 Analog - DDR

Table 2-11 DDR Analog Pins (1)

| Pin Names | Ю   | Loc | IO Cell Char. | Pin Description                                                                         | Power  |
|-----------|-----|-----|---------------|-----------------------------------------------------------------------------------------|--------|
| DDR_ZQ    | AIO | G13 |               | DDR_ZQ: DDR2 External reference which is connected to a 240 $\Omega$ resister to DDRVSS | VDDMEM |



## 2.5.11 Analog - USB

## Table 2-12 USB 2.0 OTG (8)

| Pin Names | Ю   | Loc | IO Cell Char. | Pin Description                                                                                                                                                                                                                                                                                                                                                                                                                   | Power         |
|-----------|-----|-----|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| USB0PP    | AIO | M2  | -             | USB0PP: USB data plus                                                                                                                                                                                                                                                                                                                                                                                                             | USB_AV<br>D33 |
| USB0PN    | AIO | N1  | -             | USB0PN: USB data minus                                                                                                                                                                                                                                                                                                                                                                                                            | USB_AV<br>D33 |
| VBUS      | AIO | P3  | -             | VBUS: The VBUS power supply can be used for a combination of functions. In the case of an un-powered device, it is used to supply current for driving the device, including the USB PHY. In the case of powered devices, it is also used for signaling to detect which device is connected. No charge pumps inside PHY, so no supplying capability by default. The PHY supports the VBUS divided to 3/5(default) off chip or not. | USB_AV<br>D33 |
| USB0ID    | Al  | N3  | -             | USB0ID: Used to identify the device attached to the PHY. The state of the pin is one if:high impedance(>1M $\Omega$ ) or low impedance(<10 $\Omega$ to ground).                                                                                                                                                                                                                                                                   | USB_AV<br>D18 |
| USB_AVD33 | P   | M1  | -             | USB_AVD33: This is the analog supply that is used to support 3.3V signaling. This supply has both integrated IO pads and associated ESD. The expectation is that this supply is unique to the USB PHY. The PHY provides two pins for this power supply, but they can often be bonded out to a single package pin if the parasitic are low enough to support the current draw.                                                     | -             |
| USB_AVD18 | Р   | N2  | -             | USB_AVD18: This is the analog supply that is used to support 1.8V signaling. This supply has both integrated IO pads.                                                                                                                                                                                                                                                                                                             | -             |
| USB_AVD10 | P   | P2  | -             | USB_AVD10: This is the analog supply that is used to support 1.0V circuits within the PHY. This supply has both integrated IO pads and associated ESD. As this includes power supplied to the PLL and HS driver, the supply needs to be fairly quiet. The PHY provides two pins for this power supply, but they can often be bonded out to a single pin if the parasitic are low enough to support the current draw.              | -             |
| USB_AVS   | Р   | N5  | -             | USB_AVS: This is the analog ground. This ground has both integrated IO pads and associated ESD. It is potentially sinking all the current accumulated for the PHY. The PHY provides two pins for this ground, but they can often be bonded out to a single pin if the ground lift can be kept less than 10mV.                                                                                                                     | -             |



## 2.5.12 Analog - SARADC

Table 2-13 SARADC Pins (6)

| Ю  | Loc                 | IO Cell Char.                 | Pin Description                          | Power                                                                                                                                                                                                                                              |
|----|---------------------|-------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ΑI | K3                  | -                             | AUX0: SARADC channel 0 input             | SADC_AVD                                                                                                                                                                                                                                           |
| ΑI | L3                  | -                             | AUX1: SARADC channel 1 input             | SADC_AVD                                                                                                                                                                                                                                           |
| ΑI | K2                  | -                             | AUX2: SARADC channel 2 input             | SADC_AVD                                                                                                                                                                                                                                           |
| Р  | L2                  | -                             | SADC_AVD: SARADC analog power, 1.8 V     | -                                                                                                                                                                                                                                                  |
| Р  | M5                  | -                             | SADC_AVS: SARADC analog ground           | -                                                                                                                                                                                                                                                  |
| Р  | L1                  | -                             | SADC_VREF: Voltage reference input, 0.5* | -                                                                                                                                                                                                                                                  |
|    | AI<br>AI<br>AI<br>P | AI K3 AI L3 AI K2 P L2 P M5 P | AI K3 - AI L3 - AI K2 - P L2 - P M5 -    | Al K3 - AUX0: SARADC channel 0 input  Al L3 - AUX1: SARADC channel 1 input  Al K2 - AUX2: SARADC channel 2 input  P L2 - SADC_AVD: SARADC analog power, 1.8 V  P M5 - SADC_AVS: SARADC analog ground  P - SADC_VREF: Voltage reference input, 0.5* |

## 2.5.13 Analog - CODEC

Table 2-14 CODEC Pins (7)

| Pin Names | Ю  | Loc | IO Cell Char. | Pin Description                     | Power     |
|-----------|----|-----|---------------|-------------------------------------|-----------|
| MICP      | Al | R2  | -             | MICP: differential microphone input | CODEC_AVD |
| MICN      | AI | R1  | -             | MICN: differential microphone input | CODEC_AVD |
| VCM       | АО | T1  | -             | VCM: Reference voltage output       | CODEC_AVD |
| MICBIAS   | АО | R3  | -             | MICBIAS: Microphone bias output     | CODEC_AVD |
| HPOUT     | АО | U1  | -             | HPOUT: headphone output             | CODEC_AVD |
| CODEC_AVD | Р  | T2  | -             | CODEC_AVD:1.8V analog supply        | -         |
| CODEC_AVS | Р  | N6  | -             | CODEC_AVS: analog ground            | -         |

## 2.5.14 Analog - MIPI-CSI

Table 2-15 MIPI CSI(9)

| Pin Names                             | Ю   | Loc | IO Cell Char. | Pin Description                                                                       | Power                   |
|---------------------------------------|-----|-----|---------------|---------------------------------------------------------------------------------------|-------------------------|
| RX_DATAN0<br>(DVP_D0 <sup>[1]</sup> ) | AIO | T16 | -             | RX_DATAN0(DVP_D0): Data lane 0 serial signal, reused with DVP data bit 0 input signal | CSI_AVDx <sup>[2]</sup> |
| RX_DATAP0<br>(DVP_D1)                 | AIO | U17 | -             | RX_DATAP0(DVP_D1): Data lane 0 serial signal, reused with DVP data bit 1 input signal | CSI_AVDx                |
| RX_DATAN1<br>(DVP_D2)                 | AIO | R17 | -             | RX_DATAN1(DVP_D2): Data lane 1 serial signal, reused with DVP data bit 2 input signal | CSI_AVDx                |
| RX_DATAP1<br>(DVP_D3)                 | AIO | P15 | -             | RX_DATAP1(DVP_D3): Data lane 1 serial signal, reused with DVP data bit 3 input signal | CSI_AVDx                |
| RX_CLKN<br>(DVP_D4)                   | AIO | T17 | -             | RX_CLKN(DVP_D4): Clock lane serial signal, reused with DVP data bit 4 input signal    | CSI_AVDx                |
| RX_CLKP<br>(DVP_D5)                   | AIO | R16 | -             | RX_CLKP(DVP_D5): Clock lane serial signal, reused with DVP data bit 5 input signal    | CSI_AVDx                |
| CSI_AVD10                             | Р   | R14 | -             | CSI_AVD10: PHY analog power, 1.0V                                                     | -                       |
| CSI_AVD18                             | Р   | R15 | -             | CSI_AVD18: PHY analog power, 1.8V                                                     | -                       |



| Pin Names | Ю | Loc | IO Cell Char. | Pin Description            | Power |
|-----------|---|-----|---------------|----------------------------|-------|
| CSI_AVS   | Р | N13 | -             | CSI_AVS: PHY analog ground | -     |

#### **NOTES:**

- 1. DVP signals can input form this Pad when change the configure in controller
- 2. CSI AVDx: means MIPI-CSI IO Pad interface support two power supply(TTL and CMOS)

## 2.5.15 Analog - EFUSE

Table 2-16 EFUSE Pins for Two EFUSE (1)

| Pin Names | Ю | Loc | IO Cell Char. | Pin Description                            | Power |
|-----------|---|-----|---------------|--------------------------------------------|-------|
| AVDEFUSE  | Р | K5  |               | AVDEFUSE: EFUSE programming power, 0V/1.5V | -     |

### 2.5.16 Analog - CLOCK/PLL

Table 2-17 CLOCK/PLL Pins (6)

| Pin Names | Ю  | Loc | IO Cell Char. | Pin Description                            | Power |
|-----------|----|-----|---------------|--------------------------------------------|-------|
| EXCLK_XI  | AI | F2  | Oscillator,   | scillator, external 24MHz clock input      |       |
| EXCLK_XO  | AO | F1  | OSC on/off    | EXCLK_XO: external oscillator clock output | VDD   |
| PLL0_VDDA | Р  | E2  | -             | PLL0_VDDA: PLL analog power, 1.8V          | -     |
| PLL0_VSSA | Р  | H5  | -             | PLL0_VSSA: PLL analog ground               | -     |
| PLL1_VDDA | Р  | E1  | -             | PLL1_VDDA: PLL analog power, 1.8V          | -     |
| PLL1_VSSA | Р  | J5  | -             | PLL1_VSSA: PLL analog ground               | -     |

#### 2.5.17 Analog - RTC

Table 2-18 RTC Pins (4)

| Pin Names | Ю  | Loc | IO Cell Char. | Cell Char. Pin Description      |           |
|-----------|----|-----|---------------|---------------------------------|-----------|
| osc32_XI  | Al | НЗ  |               | osc32_XI: 32.768KHz clock input | RTC_VDDIO |
| osc32_XO  | AO | H2  | Oscillator    | osc32_XO: Reserved              | RTC_VDDIO |
| RTC_VDD   | Р  | G2  | -             | RTC_VDD: 1.0V power for RTC     | -         |
| RTC_VDDIO | Р  | J3  | -             | RTC_VDDIO: 3.3V power for RTC   | -         |

#### NOTES:

All GPIO are programmable with multi-voltage (1.8V, 2.5V, 2.8V. 3.0V, 3.3V) general purpose, bi-directional I/O buffer with a selectable LVCMOS input or LVCMOS Schmitt trigger input and programmable pull-up / pull-down. In the full-drive mode, this buffer can operate in excess of 100MHz frequency with 15pF external load and 125 MHz with 10pF load, but actual frequency is load and system dependent. A maximum of 200 MHz can be achieved under small capacitive loads.



- 2 The meaning of phases in IO cell characteristics are:
  - 8/16mA: The IO cell's output driving strength is about 8/16mA.
  - Pull-up: The IO cell contains a pull-up resistor and fixed pull up.
  - Pull-down: The IO cell contains a pull-down resistor and fixed pull down.
  - Pullup-rst: The IO cell during reset and after the pull up function is enabled.
  - Pulldown-rst: The IO cell during reset and after the pull down function is enabled.
  - Schmitt: The IO cell is Schmitt trigger input and fixed.
  - Schmitt-rst: The IO cell during reset and after the Schmitt trigger input function is enabled.
  - Slew-rate-rst: The IO cell during reset and after the slew-rate function select fast mode.
- 3 \*: This pin has GPIO function as group A bit 30, but only input/interrupt function.



## **3 Electrical Specifications**

## 3.1 Absolute Maximum Ratings

The absolute maximum ratings for the processors are listed in Table 3-1. Do not exceed these parameters or the part may be damaged permanently. Operation at absolute maximum ratings is not guaranteed.

**Table 3-1 Absolute Maximum Ratings** 

| Parameter                                                      | Min  | Max   | Unit |
|----------------------------------------------------------------|------|-------|------|
| Storage Temperature                                            | -65  | 150   | °C   |
| Operation Temperature                                          | -40  | 125   | °C   |
| VDDMEM power supplies voltage                                  | -0.1 | 1.98  | V    |
| DDRVDD power supplies voltage                                  | -0.1 | 1.65  | V    |
| DDRPLL_AVD18 power supplies voltage                            | -0.1 | 1.98  | V    |
| DDRPLL_AVD10 power supplies voltage                            | -0.1 | 1.1   | V    |
| VDDIO power supplies voltage                                   | -0.5 | 3.63  | V    |
| VDDIO_D power supplies voltage                                 | -0.5 | 3.63  | V    |
| VDD power supplies voltage                                     | -0.2 | 1.1   | V    |
| PLL0_VDDA power supplies voltage                               | -0.1 | 1.98  | V    |
| PLL1_VDDA power supplies voltage                               | -0.1 | 1.98  | V    |
| AVDEFUSE power supplies voltage                                | -0.1 | 1.65  | V    |
| RTC_VDD power supplies voltage                                 | -0.5 | 1.155 | V    |
| RTC_VDDIO power supplies voltage                               | -0.5 | 3.63  | V    |
| USB_AVD33 power supplies voltage                               | -0.1 | 3.63  | V    |
| USB_AVD18 power supplies voltage                               | -0.1 | 1.98  | V    |
| USB_AVD10 power supplies voltage                               | -0.1 | 1.1   | V    |
| SADC_AVD power supplies voltage                                | -0.1 | 1.98  | V    |
| CODEC_AVD power supplies voltage                               | -0.1 | 1.98  | V    |
| CSI_AVD10 power supplies voltage                               | -0.1 | 1.1   | V    |
| CSI_AVD18 power supplies voltage                               | -0.1 | 1.98  | V    |
| Maximum ESD stress voltage, Human Body Model; Any pin to any   |      |       |      |
| supply pin, either polarity, or Any pin to all non-supply pins | -    | 2000  | V    |
| together, either polarity. Three stresses maximum.             |      |       |      |

## 3.2 Recommended operating conditions

Table 3-2 Recommended operating conditions for power supplies

| Symbol                                  | Description | Min  | Typical | Max  | Unit |
|-----------------------------------------|-------------|------|---------|------|------|
| VDDMEM VDDMEM voltage for SSTL18 (DDR2) |             | 1.62 | 1.8     | 1.98 | V    |



| DDRVDD       | DDR PHY power supplies voltage       | 1.35 | 1.5 | 1.65  | V |
|--------------|--------------------------------------|------|-----|-------|---|
| DDRPLL_AVD18 | DDR PLL power supplies voltage       | 1.62 | 1.8 | 1.98  | V |
| DDRPLL_AVD10 | DDR PLL power supplies voltage       | 0.9  | 1.0 | 1.1   | V |
| VDDIO        | GPIO power domain 1 supplies voltage | 1.5  | 3.3 | 3.63  | V |
| VDDIO_D      | GPIO power domain 2 supplies voltage | 1.62 | 1.8 | 1.98  | V |
| VDD          | VDD core supplies voltage            | 0.9  | 1.0 | 1.1   | V |
| PLL0_AVD     | VPLL and MPLL analog voltage         | 1.62 | 1.8 | 1.98  | V |
| PLL1_AVD     | APLL and EPLL analog voltage         | 1.62 | 1.8 | 1.98  | V |
| AVDEFUSE     | EFUSE program supplies voltage       | 1.35 | 1.5 | 1.65  | V |
| RTC_VDD      | RTC core supplies voltage            | 0.72 | 1.0 | 1.155 | V |
| RTC_VDDIO    | RTC IO supplies voltage              | 1.35 | 3.3 | 3.63  | V |
| USB_AVD33    | USB PHY VCCA3P3 analog voltage       | 3.0  | 3.3 | 3.6   | V |
| USB_AVD18    | USB PHY VCC18 analog voltage         | 1.62 | 1.8 | 1.98  | V |
| USB_AVD10    | USB PHY VCCCORE1P0 voltage           | 0.9  | 1.0 | 1.1   | V |
| SADC_AVD     | SAR-ADC analog voltage               | 1.62 | 1.8 | 1.98  | V |
| CODEC_AVD    | CODEC analog voltage                 | 1.62 | 1.8 | 1.98  | V |
| CSI_AVD10    | MIPI PHY 1.0V analog voltage         | 0.9  | 1.0 | 1.1   | V |
| CSI_AVD18    | MIPI PHY 1.8V analog voltage         | 1.62 | 1.8 | 1.98  | V |
|              |                                      |      |     |       |   |

Table 3-3 Recommended operating conditions for VDDIO/VDDIO\_D/RTC\_VDDIO supplied pins

| Symbol            | Parameter                                   | Min   | Typical | Max   | Unit |
|-------------------|---------------------------------------------|-------|---------|-------|------|
| V <sub>IH18</sub> | Input high voltage for 1.8V I/O application | *0.65 | -       | +0.3  | V    |
| V <sub>IL18</sub> | Input low voltage for 1.8V I/O application  | -0.3  | -       | *0.35 | V    |
| V <sub>IH25</sub> | Input high voltage for 2.5V I/O application | 1.7   | -       | +0.3  | V    |
| V <sub>IL25</sub> | Input low voltage for 2.5V I/O application  | -0.3  | -       | 0.7   | V    |
| V <sub>IH33</sub> | Input high voltage for 3.3V I/O application | 2     | -       | +0.3  | V    |
| V <sub>IL33</sub> | Input low voltage for 3.3V I/O application  | -0.3  | -       | 0.8   | V    |

Table 3-4 Recommended operating conditions for others

| Symbol         | Description         | Min | Typical | Max  | Unit |
|----------------|---------------------|-----|---------|------|------|
| T <sub>A</sub> | Ambient temperature | -40 | 25      | +125 | °C   |



#### 3.3 Audio codec

#### 3.3.1 Microphone input



There are two microphone input channels, MICP and MICN. They can be configured as differential inputs by the microphone PGA(MIC).

The signal of microphone output should be input to AUDIO CODEC through DC-blocking capacitor, as shown in following figure. The capacitance and input resistance form a high pass filter. For example, when the gain of the MIC module is 20dB, the input resistance is  $45K\Omega$  and 0.1uF DC-blocking capacitor is used, the lower cut-off frequency is:

$$f = \frac{1}{2\pi RC} = \frac{1}{2\pi \times 45 \times 10^3 \times 0.1 \times 10^{-6}} = 35.4 Hz$$

The capacitance of the DC-blocking capacitor should be determined by the minimum input impedance and application requirements.



If the output of microphone is single-ended, the AUDIO ADC input should be connected as following figure.



Microphone PGA has four gains to amplify the input signal, that is, 0dB, 20dB, 30dB and 40dB.



#### 3.3.2 ALC

Automatic Level Control (ALC) function is included to adjust the signal level, which is input into ADC. ALC will measure the signal magnitude and compare it to defined threshold. Then it will adjust the ALC controlled PAG (ALC) gain according to the comparison result.

The programmable gain range of ALC controlled PAG is from -18dB to +28.5dB. The tuning step is 1.5dB.

#### 3.3.3 Headphone output

Audio codec DAC output can drive  $16\,\Omega$  or  $32\,\Omega$  headphone load through DC-blocking capacitor.

In the configuration using DC-blocking capacitor, shown in following figure, the headphone ground is connected to the real ground. The capacitance and the load resistance determine the lower cut-off frequency. For instance, if 16  $\Omega$  headphone and 100uF DC-blocking capacitor are used, the lower cut-off frequency is

$$f = \frac{1}{2\pi RC} = \frac{1}{2\pi \times 16 \times 100 \times 10^{-6}} = 99.5Hz$$

The DC-blocking capacitor can be increased to lower the cut-off frequency for better bass response.



The headphone driver chooses DAC output as input. It has a gain rang from -39dB to +6dB with a tuning step of 1.5dB.

#### 3.3.4 Microphone bias

Microphone bias output is used to bias external microphones. The bias voltage can varies from 0.8\*CODEC\_AVD to 0.975\* CODEC\_AVD with a step of 0.025\* CODEC\_AVD.

## 3.4 Power On, Reset and BOOT

#### 3.4.1 Power-On Timing

The external voltage regulator and other power-on devices must provide the X1830 processor with a specific sequence of power and resets to ensure proper operation. Figure 3-1 shows this sequence and Table 3-5 gives the timing parameters. Following are the name of the power.



VDDRTC: RTC\_VDDIO, RTC\_VDD

AVDAUD: CODEC\_AVD

• VDD10: all 1.0V power supplies, include VDD

VDD: all other digital IO, include DDR power supplies: VDDMEM, VDDIO, VDDIO\_D

AVD: all other analog power supplies: SADC\_AVDD, USB\_AVD33, USB\_AVD18,

USB\_AVD10, PLL0\_AVD, PLL1\_AVD, CSI\_AVD18, CSI\_AVD10

**Table 3-5 Power-On Timing Parameters** 

| Symbol                | Parameter                                                                 | Min                | Max | Unit              |
|-----------------------|---------------------------------------------------------------------------|--------------------|-----|-------------------|
| t <sub>R_VDDRTC</sub> | VDDRTC rise time <sup>[1]</sup>                                           |                    | 5   | ms                |
| t <sub>R_VDD</sub>    | VDD rise time <sup>[1]</sup>                                              | 0                  | 5   | ms                |
| t <sub>D_VDD</sub>    | Delay between VDDRTC arriving 50% (or 90%) to VDD33 arriving 50% (or 90%) |                    | _   | ms                |
| t <sub>R_VDD10</sub>  | VDD10 rise time <sup>[1]</sup>                                            |                    | 5   | ms                |
| t <sub>D_VDD10</sub>  | Delay between VDD arriving 50% (or 90%) to VDD10 arriving 50% (or 90%)    | -1                 | 1   | ms                |
| t <sub>R_AVDAUD</sub> | AVDAUD rise time <sup>[1]</sup>                                           |                    | 5   | ms                |
| t <sub>D_AVDAUD</sub> | Delay between VDD10 arriving 50% (or 90%) to AVDAUD arriving 50% (or 90%) | 0.01               | 1   | ms                |
| t <sub>R_AVD</sub>    | AVD rise time <sup>[1]</sup>                                              |                    | 5   | ms                |
| t <sub>D_AVDA</sub>   | Delay between VDD arriving 50% to AVD arriving 50%                        | -1                 | 1   | ms                |
| t <sub>D_PPRST_</sub> | Delay between VDDAUD stable and PPRST_ deasserted                         | TBD <sup>[3]</sup> | _   | ms <sup>[2]</sup> |

#### **NOTES:**

- The power rise time is defined as 10% to 90%.
- The PPRST\_ must be kept at least 100us. After PPRST\_ is deasserted, the corresponding chip reset will be extended at least 40ms.





Figure 3-1 Power-On Timing Diagram

#### 3.4.2 Reset procedure

There are 3 reset sources: 1 PPRST\_ pin reset; 2 WDT timeout reset; and 3 hibernating reset when exiting hibernating mode. After reset, program start from boot.

- PPRST pin reset.
  - This reset is trigged when PPRST\_ pin is put to logic 0. It happens in power on RTC power and RESET-KEY pressed to reset the chip from unknown dead state. The reset end time is about 1M EXCLK cycles after rising edge of PPRST\_.
- WDT reset.
  - This reset happens in case of WDT timeout. The reset keeps for about a few RTCLK cycles.
- Hibernating reset.
  - This reset happens in case of wakeup the main power from power down. The reset keeps for about 1ms  $\sim$  125ms programable, plus 1M EXCLK cycles, start after WKUP\_ signal is recognized.

After reset, all GPIO shared pins are put to GPIO input function and most of their internal pull-up/down resistor are set to on, see "2.5Pin Description [1][2]" for details. The PWRON is output 1. The oscillators



are on. The USB 2.0 OTG PHY and USB 1.1 PHY, the audio CODEC DAC/ADC, the SAR-ADCs is put in suspend mode.

#### 3.4.3 BOOT

The boot sequence of the X1830 is controlled by boot\_sel[1:0]. The configuration is shown as follow:

Table 3-6 Boot Configuration of X1830

| boot_sel[1:0] | Boot method                                 |
|---------------|---------------------------------------------|
| 00            | MMC/SD boot @ MSC0 (MMC/SD use GPIO Port B. |
| 00            | MSC1 use GPIO Port C)                       |
| 01            | SFC boot @ CS4 (SPI boot)                   |
| 10            | NOR boot @ CS2 (just for FPGA testing)      |
| 11            | USB boot @ USB 2.0 device, EXTCLK=24MHz     |

The boot procedure is showed in the following flow chart:

As shown in Figure 3-2 boot sequence Block Diagram, after reset, the boot program on the internal boot ROM executes as follows:

- 1 Disable all interrupts and read boot sel[1:0] to determine the boot method.
- There 26KB backup reading failed, the 26KB backup at 128th, 256 th, ..., and finally 1024th page will be tried in consecutive order.
- 3 If it is boot from MMC/SD card at MSC0, its function pins MSC0\_D0, MSC0\_CLK, MSC0\_CMD are initialized, the boot program loads the 26KB code from MMC/SD card to cache and jump to it. Only one data bus which is MSC0\_D0 is used.
- 4 If it is boot from USB, a block of code will be received through USB cable connected with host PC and be stored in cache. Then branch to this area in cache.
- 5 If it is boot from SPI nor/nand at SFC, its function pins SFC\_CLK,SFC\_CE, SFC\_DR,SFC\_DT, SFC\_WP,SFC\_HOLD are initialized,the boot program loads the 12kB code from SPI NAND/NOR flash to cache and jump to it.
- 6 If it is boot from NOR Flash, the boot program jump to nor and run directory.

When SFC boot start failure, the program in bootrom will go into MSC0 boot, If it is boot from MMC/SD card at MSC0, its function pins MSC0\_D0, MSC0\_CLK, MSC0\_CMD are initialized, the boot program loads the 26KB code from MMC/SD card to cache and jump to it. Only one data bus which is MSC1\_D0 is used.

When MSC0 boot start failure, the program in bootrom will go into MSC1 boot, If it is boot from MMC/SD card at MSC1, its function pins MSC1\_D0, MSC1\_CLK, MSC1\_CMD are initialized, the boot program loads the 26KB code from MMC/SD card to cache and jump to it. Only one data bus which is MSC1\_D0 is used.If MSC1 boot start failure, jump to USB boot.





Figure 3-2 Boot sequence diagram of X1830