1 Question 1

Removing an edge adds a connected component. After removing randmly two edges there is therefore 3 connected components.

2 Question 2

Let's give a counterexample. We consider two graphs G_1 and G_2 .

 G_1 is a cycle graph og size 5 $c_1 \leftrightarrow c_2 \leftrightarrow c_3 \leftrightarrow c_4 \leftrightarrow c_5$.

 G_2 is made of two connected components : a closed triplet (three nodes three edges) $t_1 \leftrightarrow t_2 \leftrightarrow t_3 \leftrightarrow t_1$ and a couple (two nodes one edge) $d_1 \leftrightarrow d_2$.

The degree distribution is in both case 22211.

Suppose G_1 and G_2 are isomorphic and let f be the bijective mapping. Since d_1 and d_2 are the only nodes to have same degree than c_1 , we must have $f(c_1) \in \{d_1, d_2\}$.

Then since $c_1 \leftrightarrow c_2$ we must have $f(c_1) \leftrightarrow f(c_2)$ and $f(c_2) \in \{d_1, d_2\}$.

Repeating the last argument we have that $f(c_3) \in \{d_1, d_2\}$ and therefore f is not a bijection. This is absurd.

3 Question 3

A complete graph of n nodes has $\frac{n(n-1)}{2}$ edges. This means that G is a complete graph with one edge missing. A complete graph has $\binom{n}{3}$ closed triplets, therefore G has $\binom{n}{3}-(n-2)$ closed triplets as a missing edge removes n-2 triangles. The number of open triplets stays $\binom{n}{3}$ even with a missing edge so the clustering coefficient is $1-\frac{n-2}{\binom{n}{3}}=1-\frac{6}{n(n-1)}$

4 Question 4

According to proposition 2 page 4 of article [1], the multiplicity k of the eigenvalue 0 of L equals the number of connected components A1, ..., Ak in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A1}, ..., \mathbb{1}_{Ak}$ of those components.

5 Question 5

The K-means algorithm is stochastic. It starts with a random set of data points as initial centroids. Since spectral clustering uses K-means, it is stochastic too.

6 Question 6

a) $m=8,\ l_1=4,\ l_2=3,\ d_1=9,\ d_2=7$ therefore the modularity is $\frac{4}{8}-(\frac{9}{16})^2+\frac{3}{8}-(\frac{7}{16})^2\simeq 0,3672$

b) $m=8,\ l_1=1,\ l_2=2,\ l_3=1,\ d_1=4,\ d_2=8,\ d_3=4$ therefore the modularity is $\frac{1}{8}-(\frac{4}{16})^2+\frac{2}{8}-(\frac{8}{16})^2+\frac{1}{8}-(\frac{4}{16})^2=0,125$

7 Question 7

$$\phi(P_4)=(4,3,2,1)$$
 and $\phi(K_4)=(6,0,0,0)$ therefore $k(P_4,P_4)=16+9+4+1=30,\ k(P_4,K_4)=24,\ k(K_4,K_4)=36$

References

[1] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416, 2007.