Harmonická analýza – shrnutí

Fourierův rozvoj lze zapsat dvěma způsoby, které jsou rovnocenné.

$$F(t) = \sum_{n=0}^{\infty} a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)$$

$$F(t) = \sum_{n=0}^{\infty} A_n \cos (n\omega_0 t - \varphi_n)$$

Z jednoho tvaru můžeme vypočítat druhý

$$A_n = \sqrt{a_n^2 + b_n^2}$$
 $\varphi_n = arctg \frac{b_n}{a_n}$

a obráceně

$$a_n = A_n \cos \phi_n \ b_n = A_n \sin \phi_n$$

Metody harmonické analýzy

- Matematická metoda
- Numerická metoda
- Grafická metoda

Numerická metoda harmonické analýzy

U průběhů získaných měřením bývá obtížné převést je na analytickou funkci. V takovém případě je možné řešení provést numericky.

Při tomto způsobu nejprve rozdělíme periodu signálu 2π na konečný počet stejných dílků s velikostí $\Delta \alpha = 2\pi/c$ a v jejich koncových bodech určíme hodnoty funkce y_k . Tím vyjádříme spojitou funkcí konečným počtem hodnot, vzorků. Čím je větší počet dílků, tím je přesnější výsledek. Zároveň s tím se ale zvětšuje množství potřebných výpočtů.

Pro určení *n* harmonických musíme volit počet dílků $c \ge 2n + 2$.

Fourierův rozvoj (upravený, člen a₀ je zvlášť)

$$F(t)=~a_0+\sum_{n=1}^{\infty}a_n\cos(n\omega_0t)+~b_n\sin{(n\omega_0t)}~$$
 (poznámka: suma začíná od jedničky)

Vzorce pro výpočet koeficientů mají tvar:

$$a_n = \frac{2}{c} \sum_{k=1}^{c} y_k \cos\left(n\alpha_k\right)$$

$$b_n = \frac{2}{c} \sum_{k=1}^{c} y_k \sin\left(n\alpha_k\right)$$

Stejnosměrná složka bude:

$$a_0 = \frac{1}{c} \sum_{k=1}^{c} y_k$$

Příklad:

Určete Fourierův rozvoj daného průběhu po čtvrtou harmonickou (n = 0, 1, 2, 3, 4)

Zadané hodnoty: perioda signálu, funkční hodnoty yk

Postup:

Zvolíme c = 12

Pak je
$$\Delta \alpha = 2\pi/c = 2\pi/12 = \pi/6$$

$$\alpha_k = \mathbf{k} \cdot \Delta \alpha$$
 (tj. $\alpha_1 = \mathbf{1} \cdot \pi/6$; $\alpha_2 = \mathbf{2} \cdot \pi/6$; $\alpha_3 = \mathbf{3} \cdot \pi/6$; ...)

Výpočty koeficientů

$$a_0 = 1/12 \cdot (y_1 + y_2 + y_3 + ... y_{12})$$

$$a_1 = \frac{2}{12} \sum_{k=1}^{12} y_k \cos(1\alpha_k) = 2/12 \cdot (y_1 \cos(1 \cdot \alpha_1) + y_2 \cos(1 \cdot \alpha_2) + ... + y_{12} \cos(1 \cdot \alpha_{12})$$

nebo pro účely zápisu programu v cyklu lze upravit (rozepsání αk)

$$a_1 = 2/12 \cdot (y_1 \cos(1 \cdot 1 \Delta \alpha) + y_2 \cos(1 \cdot 2 \Delta \alpha) + ... + y_{12} \cos(1 \cdot 12 \Delta \alpha)$$

další koeficient

$$a_2 = 2/12 \cdot (y_1 \cos(2 \cdot \alpha_1) + y_2 \cos(2 \cdot \alpha_2) + ... + y_{12} \cos(2 \cdot \alpha_{12})$$

$$a_2 = 2/12 \cdot (y_1 \cos(2 \cdot 1 \Delta \alpha) + y_2 \cos(2 \cdot 2 \Delta \alpha) + ... + y_{12} \cos(2 \cdot 12 \Delta \alpha)$$

Podobně pro další koeficienty.

V programu jsou součty realizovány cyklem.

Zadané hodnoty

f = 50 Hz

y ₀ = 13	y ₁ = 25	y ₂ = 43	y ₃ = 56
y ₄ = 57	y ₅ = 28	y ₆ = 7	y ₇ = -14
y ₈ = -28	y ₉ = -29	y ₁₀ = -28	y ₁₁ = 3

Naprogramujte výpočet a₀, a₁, a₂, a₃, a₄, b₁, b₂, b₃, b₄

	a0	
button1	a1	b1
Duttorii	a2	b2
	a3	b3
	a4	b4