

Layout Handbook ISIPP50G 2.3.0

Changes

Version	Change	
X.Y.Z	See changelog document	
1.0.1	Bug fixes release	
1.0.0	Initial release	

Contents

I Document information			4
	1.1	Purpose	4
	1.2	Scope	
	1.3	Responsibility	4
2	Dat	a preparation overview	5
3	Lay	out data exchange format	5
4	Lay	out guidelines	6
5	CA	D and mask layers	6
	5.1	Nomenclature	6
	5.2	CAD layers	6
	5.3	Remarks	8
	5.4	Mask generation formulas	9
6	Dra	awing guidelines	9
	6. I	Layers use	9
	6.2	Layout templates	14
	6.3	Using Library Cells	15
7	Lay	er rules	15
	7.1	Rules check tool	15
	7.2	DRC deck usage	15
	7.3	Rules: warnings and errors	16
	7.4	Rules list	16
	7.5	Density rules	26
	7.6	Other advices, not encoded in the DRC deck	27

I Document information

I.I Purpose

The purpose of this document is to describe the layout rules to be followed when designing into imec silicon photonics ISIPP50G technology. The imec silicon photonics platform consists of predefined fixed process modules. This Layout Handbook documents the ISIPP50G technology only. For customized processes, contact imec directly.

1.2 Scope

The layout rules presented here have to be followed when doing a full custom design in the imec ISIPP50G technology. The rules are applicable for every design submitted to imec.

1.3 Responsibility

Every customer submitting a design in the imec ISIPP50G technology has to follow the rules as stated in this document. It is their responsibility to check whether or not these rules have been used, prior to submitting a design. The rules have to be followed for every design. Any deviation from the design rules gives imec the right to refuse the design for processing. Imec cannot provide any guarantee that the circuit will have the functionality it was designed for.

CONFIDENTIAL 4 / 27

2 Data preparation overview

After a design file has been submitted to imec for fabrication it enters a mask data preparation flow before the reticules can be manufactured. A simplified view of flow is:

- 1. Verification of conformance of incoming design:
 - GDSII file structure.
 - o DRC free layout.
 - o PDK cells.
- 2. The cells from the PDK library present in the design are force replaced by their golden version.
- 3. All the designs belonging to the same masks set are assembled together with the optical and electrical process control module (PCM). The result then goes through tiling (optical and metal layers) and perforation (metal layers).
- 4. Boolean operations are then performed on the design data.
- 5. The frame around the design data is assembled with the structures needed for processing. They are alignment marks and, for in-line measurements: overlay control structures, dimension control (CD) structures and thickness measurement structures.
- 6. Design data and frame are assembled.
- 7. Mask level rule checks (MRC) are performed to verify the masks can be manufactured and the masks set is compatible with a safe processing (no cross-contamination etc).
- 8. The masks set is signed-off and tape out to the masks shop.

3 Layout data exchange format

The file format for layout submission is Calma GDSII. This format is supported by all major design automation software tools and is the de facto data standard.

The following restrictions apply:

- Library and structure names must start by a letter (a to z, A to Z) and then be composed of letters (a to z, A to Z), numbers (0 to 9) or underscore "_". They must not include dot `.`, slash `/`, backslash `\`, equal sign `=`, asterisk `*`, percent `%`, `#`, `@`, `!`, parenthesis `()` etc.
- The hierarchy of the submitted design must not exceed 28 levels.
- Shapes that self-intersect are not allowed.
- Shapes with zero data (no vertices) are not allowed.
- GDSII Elements must be limited to the following types:
 - o BOUNDARY (filled, closed polygon),
 - o PATH (open line with a certain centerline and width),
 - o SREF (singular reference to a structure, also called instance),
 - AREF (array reference to a structure).
- Rotated SREF or AREF (instances) are only allowed under 90° angles (0, 90, 180, 270). Any other rotation angle is not allowed.
- Shapes with acute angles <85° are not allowed on any layer/datatype, except on DOC.
- Do not use magnification with magnification factor different from 1.

• The database unit of the GDSII file must be set to 1 nm (1E-9) while the user unit should be set to 1 um (1E-6). Files with a different grid will be converted. The resulting grid snapping can lead to unintended variations of the structure and design rule violations.

4 Layout guidelines

- For every layer, the design grid to be used is indicated later in this document if different from I nm. This design grid can be equal to or larger than the grid of the GDSII file but the designers are required to stick to the specified design grid for each layer.
- Avoid the coincidence of edges on different layers.
- While GDSII PATH elements are supported, GDSII BOUNDARY elements are preferred to avoid unpredictable grid snapping for photonics front-end layers.
- Text labels and logos to be included in the design data should be defined as polygons (BOUNDARY) on layer LOGOTXT, not as GDSII LABELS will be ignored by imec.
- No data should introduce layout rule violation. If layout rule violations cannot be avoided, the designer shall always notify imec prior to the design submission, the cell name of the structure not complying and the layout rule which is violated. It is imec's decision whether or not to accept the design for fabrication.
- The current PDK library is not DRC free. Imec will waive any error in the PDK library automatically.

5 CAD and mask layers

5.1 Nomenclature

CAD layers are the layers a designer draws on. Each layer has unique name (mnemonic) and a unique pair of GDSII layer and GDSII datatype.

Mask layers are the actual masks as used in the fabrication process. The mask layer data is derived from the CAD layers and other information using Boolean operations.

5.2 CAD layers

mnemonic	purpose	for designer	description	gdsii layer	gdsii data type
WG_COR	drawing	yes	Fully etched Si body: waveguide core	37	4
WG_CLD	drawing	yes	Fully etched Si body: waveguide cladding	37	5
WG_TRE	drawing	yes	Fully etched Si body: trenches	37	6
WG_HOL	drawing	yes	Fully etched Si body: regular hole lattice	37	2

FC_COR	drawing	VOS	70nm etched Si body: waveguide	35	4
PC_COR	drawing	yes	core	33	7
FC_CLD	drawing	yes	70nm etched Si body: waveguide cladding	35	5
FC_TRE	drawing	yes	70nm etched Si body: trenches	35	6
FC_HOL	drawing	yes	70nm etched Si body: regular hole lattice	35	2
SKT_COR	drawing	yes	160nm etched Si body: waveguide core	43	4
SKT_CLD	drawing	yes	160nm etched Si body: waveguide cladding	43	5
SKT_TRE	drawing	yes	160nm etched Si body: trenches	43	6
SKT_HOL	drawing	yes	160nm etched Si body: regular hole lattice	43	2
NBODY	drawing	yes	N-type Body implant	25	0
PBODY	drawing	yes	P-type Body implant	26	0
FCW_COR	drawing	yes	Poly silicon (islands and lines)	31	6
FCW_TRE	drawing	yes	Etched poly, must be on FCW_INV	31	4
FCW_INV	drawing	yes	Poly area with FCW_TRE	31	5
NI	drawing	yes	N-type implant - dose I	2	0
PI	drawing	yes	P-type implant - dose I	3	0
N2	drawing	yes	N-type implant - dose 2	6	0
P2	drawing	yes	P-type implant - dose 2	7	0
NPLUS	drawing	yes	N-type contact implant	4	0
PPLUS	drawing	yes	P-type contact implant	5	0
SAL	drawing	yes	Local Silicide	8	0
PCON	drawing	yes	Tungsten Contact Plugs	10	0
MH_DRW	drawing	yes	Metal heater	14	6
MI_DRW	drawing	yes	Metal I (Cu damascene): drawing	П	I
MI_NOFILL	drawing	yes	Metal I (Cu damascene): dummy fill exclusion zone	11	9
MI_PERF	drawing	yes	Metal I (Cu damascene): perforation	11	11
MI_NOPERF	drawing	yes	Metal I (Cu damascene): perforation exclusion zone	11	12
VIA12	drawing	yes	MI to M2 Via	12	0
M2_DRW	drawing	yes	Metal 2 (Cu damascene): drawing	13	I
M2_NOFILL	drawing	yes	Metal 2 (Cu damascene): dummy fill exclusion zone	13	9
M2_PERF	drawing	yes	Metal 2 (Cu damascene): perforation	13	11
M2_NOPERF	drawing	yes	Metal 2 (Cu damascene): perforation exclusion zone	13	12
PASSI	drawing	yes	Windows in passivation nitride	16	0
METPASS	drawing	yes	AlCu bond pads	18	0
EXPO	drawing	yes	BEOL etch for waveguide exposure	83	0
LPASS	drawing	yes	BEOL etch for grating couplers and edge couplers	91	0

PASS2	drawing	yes	Open passivation on bond pads	17	0
TRENCH	drawing	yes	Deep Trench	88	0
OPT_DUM	drawing	yes	Placement of dummy cells in optical layers (WG, FC, SKT, FCW)	101	0
LOGOTXT	drawing	yes	Text and logo on WG, MI and M2	100	0
NOMET	drawing	yes	No metal	102	0
NOFILL	drawing	yes	No dummy of any sort	1158	0
VERTBX	documentation	yes	Vertical port indication	1000	0
DICING	drawing	yes	Dicing street	1111	0
DOC	documentation	yes	Other documentation information	1152	0
IP	documentation	no	IP box	129	0
LABEL	text	internal	Device label	1002	0
PIN	marking	internal	PIN recognition layer	1003	0
PAYLOAD_DRW	marking	yes	Outline of design block	1110	I

5.3 Remarks

5.3.1 Text labels and logos

Text labels and logos which should be visible on the chip need to be drawn in the LOGOTXT layer. This layer needs to adhere to design rules. The LOGOTXT layer will automatically be placed on the WG layer and on the metal layers M1 and M2.

Text should NOT be put on the regular drawing layers (WG COR, MI DRW, etc).

When possible, a tile free zone will automatically be added around LOGOTXT for better legibility.

5.3.2 Dummy tiling

For uniform processing of some layers (for example WG, FC, SKT, FCW, MI, M2) the features density should be as uniform as possible. Therefore dummy structures are added to compensate the features density variations across the design area of the full mask. A designer can influence the tiling process in the following way:

- Provide hints where tiles for optical layers (WG, FC, SKT, FCW) should be added by drawing squares in OPT_DUM with a side width of exactly 2.800 µm and sides parallel to grid axis. Notice that they are only hint and only for local usage. Hints further than 2 dummies away from design will be automatically ignored.
- Use MI_NOFILL or M2_NOFILL to define areas where no metal dummy should be added on MI or M2 respectively.
- Use NOFILL where no dummy (optical or M1 or M2) should be added.

SOI area that must not be covered by optical dummies but where metal dummies are acceptable (ex: slab waveguide) should be defined with a WG_COR, FC_COR or SKT_COR layer plus the associated CLD layer.

CONFIDENTIAL 8 / 27

5.3.3 Perforation

On the metal layers M1 and M2, large area with width >10 µm will be automatically perforated by small dielectric area to control the local density as required by the CMP process. A designer can use M1_NOPERF or M2_NOPERF to give hints where perforation should be avoided. Use them very sparingly as it can adversely influence processing.

5.4 Mask generation formulas

To help understand how CAD layers should be used, some Boolean formulas used to generate the mask data are given on Table I below. The tone of the mask is either Dark Field (DF) or Light Field (LF). Since only positive resist is used in the process flow, for DF masks the polygons define a clear area on the mask and therefore an area that will be etch away on the wafer. For LF masks the polygon define an opaque area on the mask that will *not* be etched on the wafer.

Mask	Boolean formula	Mask tone
WG	(WG_CLD not WG_COR) or WG_TRE or WG_HOL or LOGOTXT	DF
FC	(FC_CLD not FC_COR) or FC_TRE or FC_HOL	DF
SKT	(SKT_CLD not SKT_COR) or SKT_TRE or SKT_HOL	DF
FCW	(FCW_INV not FCW_TRE) or FCW_COR	LF
MID	(MI_DRW not MI_PERF) or LOGOTXT	DF
M2D	(M2_DRW not M2_PERF) or LOGOTXT	DF

Table 1: Mask Boolean formula for design data.

6 Drawing guidelines

6.1 Layers use

The figures below clarify the relation between mask layers and process modules:

- SOI patterning (WG, FC, SKT): Figure 1, Figure 2, Figure 3 and Figure 4.
- Poly-Si patterning (FCW): Figure 5 and Figure 6.
- SOI doping (NBODY, PBODY, NI, PI, N2, P2, NPLUS, PPLUS): Figure 7, Figure 8 and Figure 9.
- Contacting (SAL, PCON): Figure 10.

Figure 1: SOI patterning - WG cross-section and mask layers

All waveguide lines (WG_COR) have to be drawn on a cladding (WG_CLD) area. Other trenches filled with cladding material should be drawn on WG_TRE. These can be drawn on top of WG_COR lines to draw a grating in a waveguide. Similarly, one can draw holes inside a waveguide by drawing WG_HOL on WG_COR. WG_HOL is for drawing photonic crystals and allows to draw smaller holes or thinner hole separations than normal WG patterning but with no warranty of being printed properly. WG_HOL must be drawn on WG_COR and not overlap with trenches WG_TRE. It is *strongly* recommended to draw WG_COR where a slab is expected and not default to the implicit behavior of the technology (DF mask + positive resist).

The same applies for FC_ and SKT_ layers on Figure 2 and Figure 4.

Figure 2: SOI patterning, FC cross-section and mask layers.

CONFIDENTIAL 10 / 27

6.1 Layers use

Figure 3: SOI patterning: combination of WG and FC cross-section and mask layers.

Figure 4: SOI patterning, SKT cross-section and mask layers.

11/27

Figure 5: Poly patterning: FCW cross-section and mask layers.

Figure 6: Poly patterning: FCW cross-section and mask layers.

6.1 Layers use

Figure 7: SOI doping: NBODY and PBODY implants for low-resistance paths, cross-section and mask layers.

Figure 8: SOI doping: Cross-section and mask layers for NI and PI, implants for modulator junctions. N2 and P2 implants (high doping) should be used in a similar fashion.

Figure 9: SOI doping: Cross-section and mask layers for NPLUS and PPLUS, implants for contacting.

inec

13 / 27

Figure 10: Cross-section and mask layers for silicide (SAL) and contacts (PCON) contact modules.

Figure 11: (top) Layout example of PCON, MH_DRW and M1_DRW (bottom) Corresponding cross section.

6.2 Layout templates

A user layout should be done on top of one of the template provided in the library. See the library handbook for details on how to use it in conjunction with edge couplers.

CONFIDENTIAL 14 / 27

6.3 Using Library Cells

The devices from the library are provided as fixed GDSII cells. After a design has been accepted, the design will be automatically inspected. All cells recognized as belonging to imec's devices library will be force-replaced by the reference cells ('golden cells') to ensure the correct version is used. The tool recognize that a cell belong to the library based on the following criteria:

- The name of the cell.
- The presence of 3 labels (GDSII text) in the LABEL layer: cell name, imec name and PDK version.

To ensure cells are correctly recognized, all criteria (name of the cell and labels) are checked. It is therefore an error when:

- A cell has been renamed.
- Any of the labels is missing or has been modified.

Notice also that library cells contain sub-cells whose name is constructed as <device_name>_<integer>. For example the cell M12CTE_FC_5000_25400 contains one sub-cell, M12CTE_FC_5000_25400_1.

Users must not modify library cells in any way. You cannot:

- Modify the origin.
- Modify the content (shapes, subcells, layers etc).
- Rename the cell or its subcells.
- Alter the labels.
- Flatten the hierarchy.
- Etc.

7 Layer rules

7.1 Rules check tool

The DRC deck included in the PDK is written for Calibre from Mentor Graphics. It has been tested with Calibre 2015.4_16.11. Older versions are known to be incompatible.

7.2 DRC deck usage

An example driver file, isipp50g_batch.cal is provided. It can be used without modification to run DRC jobs. For that set the following environment variables:

Environment variable	Meaning
\$layout_path	Path to the GDSII layout to verify
\$results	Path to write the result database (ASCII format) to
\$summary_report	Path to write the summary report to

\$ISIPP_DRC_INCLUDE_DIR	Path to the directory containing the DRC deck files.
	Default to "."

7.3 Rules: warnings and errors

There are 2 categories of rules:

- Rules with a 'WARNING' prefix in the mnemonic are warnings. They are to provide information to the designer and should be followed when possible. If a designer choose to ignore a warning, she does so at her own risk.
- All the other rules were written to catch errors. If you have a good reason, you may
 ask imec for a waiver for a specific error flagged by a rule. A waiver will be refused if
 it deemed necessary for processing. The layout submitted for fabrication MUST be
 error free or with all errors waived.

7.4 Rules list

7.4.1 WG rules

Mnemonic	Description
WG.W.130	Minimum WG width=0.130 micron
WARNING.WG.W.150	WG width < 0.150 and >= 0.130 allowed but out of
	process window
WG.S.130	Minimum WG spacing=0.130 micron
WARNING.WG.S.150	WG spacing < 0.150 and >= 0.130 allowed but out of
	process window
WG.SHARPANGLE	Angle < 85 degrees
WARNING.WG.SMALLNOTC	Small notch (<=50nm) on WG
Н	
WG_COR.I.WG_CLD	WG_COR outside WG_CLD

7.4.2 WG_HOL rules

Mnemonic	Description
WARNING.WG_HOL.S.I	WG_HOL spacing between 0.20um and 0.120um is allowed but will not print accurately. Use at your own risks.
WARNING.WG_HOL.S.2	The distance between WG_HOL and the rest of the WG etch pattern is between 0.20um and 0.120um. This is allowed but will not print accurately. Use at your own risks.
WARNING.WG_HOL.W.I	WG_HOL width between 0.20um and 0.120um is allowed but will not print accurately. Use at your own risks.
WARNING.WG_HOL.MinArea	WG_HOL between area between 0.0314 um**2 and 0.0113 um**2 is allowed but will not print accurately. Use at your own risks.
WG_HOL.S.I	Absolute minimum WG_HOL spacing is 0.120um
WG_HOL.S.2	Absolute minimum distance between WG_HOL and the rest of the WG etch pattern is 0.120um.
WG_HOL.W.I	Absolute minimum WG_HOL width is 0.120um

WG_HOL.MinArea	Absolute minimum area of WG_HOL region is
	0.0113 um**2
WG_HOL.CONCAV	Illegal concave WG_HOL shape
WG_HOL.I.WG_COR	WG holes must be defined on WG_COR
WG_HOL.IO.WG_TRE	Illegal overlap between WG holes and trenches
WG_HOL.IO.WG_CLD	No overlap between WG holes and cladding outside
	of WG_COR

7.4.3 FC rules

Mnemonic	Description
FC.W.180	Minimum FC width=0.180 micron
FC.S.180	Minimum FC spacing=0.180 micron
FC.SHARPANGLE	Angle < 85 degrees
WARNING.FC.SMALLNOTCH	Small notch (<=50nm) on FC
FC_COR.I.FC_CLD	FC COR outside FC CLD

7.4.4 FC_HOL rules

Mnemonic	Description
WARNING.FC_HOL.S.I	FC_HOL spacing between 0.20um and 0.120um is
	allowed but will not print accurately. Use at your
	own risks.
WARNING.FC_HOL.S.2	The distance between FC_HOL and the rest of the
	FC etch pattern is between 0.20um and 0.120um.
	This is allowed but will not print accurately. Use at
	your own risks.
WARNING.FC_HOL.W.I	FC_HOL width between 0.20um and 0.120um is
	allowed but will not print accurately. Use at your
	own risks.
WARNING.FC_HOL.MinArea	FC_HOL between area between 0.0314 um**2 and
	0.0113 um**2 is allowed but will not print accurately.
	Use at your own risks.
FC_HOL.S.I	Absolute minimum FC_HOL spacing is 0.120um
FC_HOL.S.2	Absolute minimum distance between FC_HOL and
	the rest of the FC etch pattern is 0.120um.
FC_HOL.W.I	Absolute minimum FC_HOL width is 0.120um
FC_HOL.MinArea	Absolute minimum area of FC_HOL region is 0.0113
	um**2
FC_HOL.CONCAV	Illegal concave FC_HOL shape
FC_HOL.IO.FC_TRE	Illegal overlap between FC holes and trenches
FC_HOL.IO.FC_CLD	No overlap between FC holes and cladding

7.4.5 SKT rules

Mnemonic	Description
SKT.W.180	Minimum SKT width=0.180 micron
SKT.S.180	Minimum SKT spacing=0.180 micron
SKT.SHARPANGLE	Angle < 85 degrees
WARNING.SKT.SMALLNOTC	Small notch (<=50nm) on SKT
Н	
SKT_COR.I.SKT_CLD	SKT COR outside SKT CLD

7.4.6 SKT_HOL

Mnemonic	Description
WARNING.SKT_HOL.S.I	SKT_HOL spacing between 0.20um and 0.120um is
	allowed but will not print accurately. Use at your
	own risks.
WARNING.SKT_HOL.S.2	The distance between SKT_HOL and the rest of the
	SKT etch pattern is between 0.20um and 0.120um.
	This is allowed but will not print accurately. Use at
	your own risks.
WARNING.SKT_HOL.W.I	SKT_HOL width between 0.20um and 0.120um is
	allowed but will not print accurately. Use at your
	own risks.
WARNING.SKT_HOL.MinArea	SKT_HOL between area between 0.0314 um**2 and
	0.0113 um**2 is allowed but will not print accurately.
	Use at your own risks.
SKT_HOL.S.I	Absolute minimum SKT_HOL spacing is 0.120um
SKT_HOL.S.2	Absolute minimum distance between SKT_HOL and
	the rest of the SKT etch pattern is 0.120um.
SKT_HOL.W.I	Absolute minimum SKT_HOL width is 0.120um
SKT_HOL.MinArea	Absolute minimum area of SKT_HOL region is
	0.0113 um**2
SKT_HOL.CONCAV	Illegal concave SKT_HOL shape
SKT_HOL.I.SKT_COR	SKT holes must be defined on SKT_COR
SKT_HOL.IO.SKT_TRE	Illegal overlap between SKT holes and trenches
SKT_HOL.IO.SKT_CLD	No overlap between SKT holes and cladding

7.4.7 NBODY and PBODY rules

Mnemonic	Description
NBODY.W.300	Minimum NBODY width=0.300 micron
NBODY.S.300	Minimum NBODY spacing=0.300 micron
NBODY.SHARPANGLE	Angle < 85 degrees
NBODY.MinArea	Minimum area of NBODY region is 0.25 sq um
PBODY.W.300	Minimum PBODY width=0.300 micron
PBODY.S.300	Minimum PBODY spacing=0.300 micron
PBODY.SHARPANGLE	Angle < 85 degrees
PBODY.MinArea	Minimum area of PBODY region is 0.25 sq um

7.4.8 FCW rules

Mnemonic	Description
FCW.W.170	Minimum FCW width=0.170 micron
FCW.S.170	Minimum FCW spacing=0.170 micron
FCW.SHARPANGLE	Angle < 85 degrees
FCW_COR.IO.FCW_INV	Illegal overlap between FCW_COR and FCW_INV
FCW_TRE.O.FCW_INV	FCW_TRE must overlay FCW_INV

7.4.9 NI and PI rules

Mnemonic	Description
N1.W.300	Minimum N1 width=0.300 micron
N1.S.300	Minimum N1 spacing=0.300 micron
NI.SHARPANGLE	Angle < 85 degrees
N1.MinArea	Minimum area of N1 region is 0.25 sq um
NI.IO.FCW	Illegal overlap between N1 and FCW layers
PI.W.300	Minimum PI width=0.300 micron
P1.S.300	Minimum P1 spacing=0.300 micron
PI.SHARPANGLE	Angle < 85 degrees
P1.MinArea	Minimum area of P1 region is 0.25 sq um
PI.IO.FCW	Illegal overlap between PI and FCW layers

7.4.10 N2 and P2 rules

Mnemonic	Description
N2.W.300	Minimum N2 width=0.300 micron
N2.S.300	Minimum N2 spacing=0.300 micron
N2.SHARPANGLE	Angle < 85 degrees
N2.MinArea	Minimum area of N2 region is 0.25 sq um
N2.IO.FCW	Illegal overlap between N2 and FCW layers
P2.W.300	Minimum P2 width=0.300 micron
P2.S.300	Minimum P2 spacing=0.300 micron
P2.SHARPANGLE	Angle < 85 degrees
P2.MinArea	Minimum area of P2 region is 0.25 sq um
P2.IO.FCW	Illegal overlap between P2 and FCW layers

7.4.11 NPLUS and PPLUS rules

Mnemonic	Description
NPLUS.W.300	Minimum NPLUS width=0.300 micron
NPLUS.S.300	Minimum NPLUS spacing=0.300 micron
NPLUS.SHARPANGLE	Angle < 85 degrees
NPLUS.MinArea	Minimum area of NPLUS region is 0.25 sq um
WARNING.NPLUS.S.FC_COR	NPLUS and FC_COR distance <= I um : potential for
	higher loss device
WARNING.NPLUS.S.SKT_COR	NPLUS and SKT_COR distance < 0.75um : potential
	for higher loss device
WARNING.NPLUS.overlap.WG	Overlap between NPLUS and WG etch layers
_ETCH	
WARNING.NPLUS.overlap.FC_	Overlap between NPLUS and FC etch layers
ETCH	
WARNING.NPLUS.overlap.SKT	Overlap between NPLUS and SKT etch layers
_ETCH	
NPLUS.IO.FCW	Illegal overlap between NPLUS and FCW layers
PPLUS.W.300	Minimum PPLUS width=0.300 micron
PPLUS.S.300	Minimum PPLUS spacing=0.300 micron

PPLUS.SHARPANGLE	Angle < 85 degrees
PPLUS.MinArea	Minimum area of PPLUS region is 0.25 sq um
WARNING.PPLUS.S.FC_COR	PPLUS and FC_COR distance <= Ium : potential for
	higher loss device
WARNING.PPLUS.S.SKT_COR	PPLUS and SKT_COR distance < 0.75um : potential
	for higher loss device
WARNING.PPLUS.overlap.WG _ETCH	Overlap between PPLUS and WG etch layers
WARNING.PPLUS.overlap.FC_ ETCH	Overlap between PPLUS and FC etch layers
WARNING.PPLUS.overlap.SKT _ETCH	Overlap between PPLUS and SKT etch layers
PPLUS.IO.FCW	Illegal overlap between PPLUS and FCW layers

7.4.12 SAL rules

Mnemonic	Description
SAL.W.600	Minimum SAL width=0.600 micron
SAL.S.600	Minimum SAL spacing=0.600 micron
SAL.SHARPANGLE	Angle < 85 degrees
SAL.MinArea	Minimum area of SAL region is 0.36 sq um
SAL.IO.WG_CLD	Illegal overlap between SAL and WG_CLD (when not on FCW or WG_COR)
SAL.IO.WG_TRE	Illegal overlap between SAL and WG_TRE (when not on FCW)
SAL.IO.WG_HOL	Illegal overlap between SAL and WG_HOL (when not FCW)
SAL.IO.FC_CLD	Illegal overlap between SAL and FC_CLD (when not on FCW or FC_COR)
SAL.IO.FC_TRE	Illegal overlap between SAL and FC_TRE (when not on FCW)
SAL.IO.FC_HOL	Illegal overlap between SAL and FC_HOL (when not FC_HOL)
SAL.IO.SKT_CLD	Illegal overlap between SAL and SKT_CLD (when not on FCW or SKT_COR)
SAL.IO.SKT_TRE	Illegal overlap between SAL and SKT_TRE (when not on FCW)
SAL.IO.SKT_HOL	Illegal overlap between SAL and SKT_HOL (when not SKT_HOL)
WARNING.SAL.S.FC_COR	Salicide and FC_COR distance <= I um : potential for higher loss device
WARNING.SAL.S.SKT_COR	Salicide and SKT_COR distance < 0.75um : potential for higher loss device
SAL.S.ETCH	Spacing between SAL and SOI etch must be >= 0.100 um
WARNING.SAL.O.IMP	Silicide should overlap with NPLUS or PPLUS
NPLUS.E.SAL	NPLUS enclose SAL with 0.075 um margin
SAL.EXT.NPLUS	NPLUS must enclose SAL
NPLUS.SAL.COINCIDENTEDGES	NPLUS and SAL coincident edges are not allowed
PPLUS.E.SAL	PPLUS enclose SAL with 0.075 um margin

CONFIDENTIAL 20 / 27

SAL.EXT.PPLUS	PPLUS must enclose SAL
PPLUS.SAL.COINCIDENTEDGES	PPLUS and SAL coincident edges are not allowed
FCW.E.SAL	FCW enclose SAL with 0.100 um margin

7.4.13 PCON rules

Mnemonic	Description
PCON.S.I_I	Minimum PCON spacing=0.35um
PCON.Area	Area of PCON region is 0.048012 +-0.0006 sq um
PCON.VERTEX	Number of vertices for PCON < 20
PCON.CONCAV	Illegal concave contact shape
PCON.IO.WG_CLD	Illegal overlap between PCON and WG_CLD (when not on WG_COR)
PCON.IO.WG_TRE	Illegal overlap between PCON and WG_TRE (when not on FCW)
PCON.IO.WGHOL	Illegal overlap between PCON and WG_HOL (when not on FCW)
PCON.IO.FC_CLD	Illegal overlap between PCON and FC_CLD (when not on FC_COR or FCW)
PCON.IO.FC_TRE	Illegal overlap between PCON and FC_TRE (when not on FCW)
PCON.IO.FC_HOL	Illegal overlap between PCON and FC_HOL (when not on FCW)
PCON.IO.SKT_CLD	Illegal overlap between PCON and SKT_CLD (when not on FC COR or FCW)
PCON.IO.SKT_TRE	Illegal overlap between PCON and SKT_TRE (when not on FCW)
PCON.IO.SKT_HOL	Illegal overlap between PCON and SKT_HOL (when not on FCW)
PCON.I.SAL	PCON not allowed outside of SAL
SAL.E.PCON	Minimum enclosure of PCON by salicide of 0.150 um

7.4.14 MH rules

Mnemonic	Description
MH_DRW.W.I	Minimum MH_DRW width is 0.3 um
MH_DRW.W.2	Maximum MH_DRW width is 1um
MH_DRW.S.300	Minimum MH_DRW spacing=0.300 micron

7.4.15 MI rules

Mnemonic	Description
M1.W.300	Minimum MI width=0.300 micron
MI.maxW.50um	Maximum M1 width=50.0um
MI.S.I	Minimum M1 spacing = 0.300 um for spacing <= 1.7
	um

M1.S.2	Minimum M1 spacing = 0.5um for 1.7 < M1 width < 5
	um
M1.S.3	Minimum M1 spacing = 1.1 um for 5 um $\leq M1$ width
	and < 10 um
MI.S.4	Minimum M1 spacing = 2.0 um for 10 um <= M1
	width
MI.SHARPANGLE	Angle < 85 degrees
PCON.I.MI	PCON not allowed outside of MI
MI.E.PCON	Minimum enclosure of PCON by M1 of 0.080 um
WARNING.MH.O.MI	MH_DRW should be connected to MI

7.4.16 VIA12 rules

Mnemonic	Description
VIA12.outdim	Vias are squares with a 0.600 um side
VIA I 2.spacing	Minimum space between two vias is 0.600 um
VIA12.I.MI	VIA12 must be inside MI
MI.E.VIA12	MI must enclose VIA12 with a minimum margin of
	0.14 um

7.4.17 M2 rules

Mnemonic	Description
M2.W.900	Minimum M2 width=0.900 micron
M2.maxW.50um	Maximum M2 width=50.0um
M2.S.I	Minimum M2 spacing = 0.900 um
M2.SHARPANGLE	Angle < 85 degrees
VIA12.I.M2	M2 must lie over VIA12
M2.E.VIA12	M2 must enclose VIA12 with a minimum margin of
	0.14 um

7.4.18 PASSI rules

Mnemonic	Description
PASSI.W.I	Minimum PASS1 width = 5.0um
PASSI.S.I	Minimum PASS1 spacing = 5.0um
PASSI.O.M2	PASS1 must lie over M2_DRW
M2.E.PASSI	Minimum enclosure of PASS1 by M2_DRW is 2.5 um
PASSI.O.M2	M2 must be solid under PASS1 with a 2.5um margin

7.4.19 METPASS rules

Mnemonic	Description

CONFIDENTIAL 22 / 27

METPASS.W.I	Minimum METPASS width = 11.0um
METPASS.S.I	Minimum METPASS spacing = 20.0um
METPASS.O.PASSI	PASSI must be covered by METPASS
METPASS.O.PASS2	PASS2 must be covered by METPASS
METPASS.E.PASSI	Minimum enclosure of PASS1 by METPASS is 2.5 um

7.4.20 EXPO rules

Mnemonic	Description
EXPO.W.2	Minimum EXPO width = 2.0 micron
EXPO.S.2	Minimum EXPO spacing = 2.0 micron
EXPO.SHARPANGLE	Angle < 85 degrees
EXPO.I.FCW	EXPO must be on top of poly (FCW)
FCW.E.EXPO	Minimum enclosure of EXPO by FCW of 0.2 um
EXPO.IO.SAL	Illegal overlap EXPO and SAL, margin 5um
EXPO.IO.PCON	Illegal overlap EXPO and PCON, margin 5um
EXPO.IO.MH	Illegal overlap EXPO and MH_DRW, margin 5um
EXPO.IO.MI	Illegal overlap EXPO and M1, margin 5um
EXPO.IO.VIA12	Illegal overlap EXPO and VIA12, margin 5um
EXPO.IO.M2	Illegal overlap EXPO and M2, margin 5um
EXPO.IO.METPASS	Illegal overlap EXPO and METPASS, margin 30um

7.4.21 LPASS rules

Mnemonic	Description
LPASS.W.5	Minimum LPASS width = 5.0 micron
LPASS.S.5	Minimum LPASS spacing = 5.0 micron
LPASS.SHARPANGLE	Angle < 85 degrees
LPASS.IO.SAL	Illegal overlap LPASS and SAL, margin 5um
LPASS.IO.PCON	Illegal overlap LPASS and PCON, margin 5um
LPASS.IO.MH	Illegal overlap LPASS and MH_DRW, margin 5um
LPASS.IO.MI	Illegal overlap LPASS and M1, margin 5um
LPASS.IO.VIA12	Illegal overlap LPASS and VIA12, margin 5um
LPASS.IO.M2	Illegal overlap LPASS and M2, margin 5um
LPASS.IO.METPASS	Illegal overlap LPASS and METPASS, margin 30um
LPASS.IO.EXPO	Illegal overlap LPASS and EXPO, margin 20um

7.4.22 PASS2 rules

Mnemonic	Description
PASS2.W.I	Minimum PASS2 width = 5.0um
PASS2.S.I	Minimum PASS2 spacing = 5.0um
PASS2.O.PASSI	PASS2 must lie over PASS1
PASS2.NOHOLE	PASS2 should not have any hole
METPASS.E.PASS2	Minimum enclosure of PASS2 by METPASS is 2.5 um

PASS2.IO.LPASS	No overlap allowed between PASS2 and LPASS, with
	a 5um margin
PASS2.IO.EXPO	No overlap allowed between PASS2 and EXPO, with
	a 5um margin

7.4.23 TRENCH rules

Mnemonic	Description
TRENCH.O.EXPO	TRENCH must be inside EXPO
TRENCH.EXPO.WI	EXPO W1 must be >= 150um
TRENCH.EXPO.W2	EXPO area around trench has a minimal external
	distance of 25um
TRENCH.EXPO.W3	EXPO area around trench has a minimal internal
	distance of 30um
TRENCH.W4	WG_COR to TRENCH must be >= 3um
TRENCH.EXPO.W5	Minimum enclosure of TRENCH by EXPO is 15.0 um
TRENCH.W.150	TRENCH is made of rectangles of 150um width and
	>= 330 um long
TRENCH.EXPO.W7	Minimum distance between 2 EXPO polygons
	enclosing a trench is 100um
TRENCH.E.EXPO.2	Only one TRENCH enclosed per EXPO polygon
TRENCH.IO.SOI	No overlap allowed between Si (body and poly)
	patterning and TRENCH with a margin of lum
WG_CLD.E.TRENCH	Minimum enclosure of TRENCH by WG_CLD is
	lum

7.4.24 OPT_DUM

Mnemonic	Description
OPT_DUM.outdim	Optical layers dummy place holders are squares with a 2.800 um side
OPT_DUM.spacing	Minimum space between two dummy place holders is exactly 0.200um or >= 0.400um
OPT_DUM.IO.WG	No overlap between OPT_DUM and WG, margin 0.2um
OPT_DUM.IO.FC	No overlap between OPT_DUM and FC, margin 0.2um
OPT_DUM.IO.SKT	No overlap between OPT_DUM and SKT, margin 0.2um
OPT_DUM.IO.FCW	No overlap between OPT_DUM and FCW, margin 0.2um
OPT_DUM.IO.SAL	No overlap between OPT_DUM and SAL, margin 0.2um
OPT_DUM.IO.PCON	No overlap between OPT_DUM and PCON, margin 0.2um
OPT_DUM.IO.EXPO	No overlap between OPT_DUM and EXPO, margin 0.5um

OPT_DUM.IO.LPASS	No overlap between OPT_DUM and LPASS, margin 2um
OPT_DUM.IO.TRENCH	No overlap between OPT_DUM and TRENCH, margin 0.5um

7.4.25 LOGOTXT rules

Mnemonic	Description	
LOGOTXT.IO.WG	Illegal overlap between LOGOTXT and WG_ layers	
LOGOTXT.IO.FC	Illegal overlap between LOGOTXT and FC_ layers	
LOGOTXT.IO.SKT	Illegal overlap between LOGOTXT and SKT_ layers	
LOGOTXT.IO.FCW	Illegal overlap between LOGOTXT and FCW_ layers	
LOGOTXT.IO.MH	Illegal overlap between LOGOTXT and MH_DRW	
LOGOTXT.S.MH	LOGOTXT minimum spacing to MH_DRW is 0.5 um	
LOGOTXT.IO.MI	Illegal overlap between LOGOTXT and (MI_DRW	
	not MI_PERF) layers	
LOGOTXT.S.MI	LOGOTXT minimum spacing to M1 is 0.5 um	
LOGOTXT.IO.M2	Illegal overlap between LOGOTXT and (M2_DRW	
	not M2_PERF) layers	
LOGOTXT.S.M2	LOGOTXT minimum spacing to M2 is 0.5 um	
LOGOTXT.IO.METPASS	Illegal overlap between LOGOTXT and METPASS	
	layers	
LOGOTXT.IO.EXPO	Illegal overlap LOGOTXT and EXPO	
LOGOTXT.IO.LPASS	Illegal overlap LPASS and LOGOTXT	

7.4.26 NOMET rules

Mnemonic	Description
NOMET.IO.PCON	PCON not allowed in NOMET
NOMET.IO.MH	MH_DRW not allowed in NOMET
NOMET.IO.MI	MI not allowed in NOMET
NOMET.IO.VIA12	VIA12 not allowed in NOMET
NOMET.IO.M2	M2 not allowed in NOMET
NOMET.IO.METPASS	METPASS not allowed in NOMET

7.4.27 NOFILL rules

Mnemonic	Description
NOFILL.IO.OPT_DUM	OPT_DUM not allowed in NOFILL

7.4.28 DICING rules

Mnemonic	Description	

WARNING.DICING.IO.SOI	SOI pattern in DICING line
DICING.IO.METALS	Illegal overlap between DICING and metals pattern
	layers

7.4.29 IP rules

Mnemonic	Description
IP.IO.WG	No overlap between IP and WG
IP.IO.FC	No overlap between IP and FC
IP.IO.SKT	No overlap between IP and SKT
IP.IO.FCW	No overlap between IP and FCW
IP.IO.OPT_DUM	No overlap between IP and OPT_DUM, margin
	0.2um

7.4.30 PAYLOAD rules

Mnemonic	Description
data.in.PAYLOAD	All the data must be drawn inside PAYLOAD_DRW

7.5 Density rules

For process control reasons, the density of structures needs to adhere to the rules outlined below. This is after dummy filling (see 5.3.2). Both the dummy filling and density check will be done by imec, not by the user. However, the user needs to ensure that no structures are intrinsically violating these rules, for instance large continues areas of SOI drawn on the WG layer.

Please note that today no rule is implemented in the deck for checking the density on the layout. Users should take care to respect the density rules themselves.

Layer	Rule	Value
WG.DENSITY.GLOBAL	Average density on full mask (density of fully etched	36-44%
	areas)	
WG.DENSITY.LOCAL	Average density within any 500umx500um window, with	10-70%
	250um overlap step size (density of fully etched areas)	
FCW.DENSITY.GLOBAL	Average density on full mask	15-25%
FCW.DENSITY.LOCAL	Average density within any 500umx500um window, with	10-40%
	250um overlap step size	
MI.DENSITY.GLOBAL	Average density on full mask	>15%
MI.DENSITY.LOCAL	Average density within any 50umx50um window, with	15-85%
	10um overlap step size	
M2.DENSITY.GLOBAL	Average density on full mask	>15%
M2.DENSITY.LOCAL	Average density within any 50umx50um window, with	15-85%
	10um overlap step size	

Table 2: Density rules.

- 7.6 Other advices, not encoded in the DRC deck
- 7.6.1 Contacts layout

When adding contacts to a device we recommend to use 2 sets of 2 rows of contacts separated by > 3.75um. Increasing the number of rows or decreasing the distance is likely to cause leakage current.

