GSERM 2023Regression for Publishing

June 23, 2023

Sample Selection In Theory

- Challenge: Inference to a Population from a Non-Random Sample
- Widespread Problem...
 - Heckman's wage equations...
 - Self-selection (e.g., into groups)
 - Surveys: "Screening" questions (<u>sometimes</u>...)
- Parallels in Missing Data, Causal/Counterfactual Inference

Sample Selection Basics

Consider latent Y^*s :

$$Y_{1i}^* = \mathbf{X}_i \boldsymbol{\beta} + u_{1i}$$

 $Y_{2i}^* = \mathbf{Z}_i \gamma + u_{2i}$

Observe:

$$Y_{1i} = \begin{cases} Y_{1i}^* \text{ if } Y_{2i}^* > 0\\ \text{missing if } Y_{2i}^* \leq 0 \end{cases}$$

- Y_{2i}^* unobserved (except for sign);
- X_i observed iff Y_{1i} is observed;
- **Z**_i observed in every case.

Sample Selection Basics

When do we observe Y_1 ?

$$\begin{aligned} \Pr(\mathbf{Y}_{2i}^* \leq 0 | \mathbf{X}, \mathbf{Z}) &= \Pr(u_{2i} \leq -\mathbf{Z}_i \gamma) \\ &= 1 - \Pr(u_{2i} \geq -\mathbf{Z}_i \gamma) \\ &= 1 - \Pr(-u_{2i} \leq \mathbf{Z}_i \gamma) \\ &= 1 - \int_{-\infty}^{\mathbf{Z}_i \gamma} f(u_2) du_2 \\ &= 1 - F_{u_2}(\mathbf{Z}_i \gamma) \end{aligned}$$

Define:

$$D_i = \begin{cases} 1 & \text{if } Y_{1i} \text{ is observed.} \\ 0 & \text{otherwise.} \end{cases}$$

Then

$$\Pr(D_i = 1) = F_{u_2}(\mathbf{Z}_i \gamma).$$

An Assumption

Assume:

$$\{u_1,u_2\}\sim\mathcal{BVN}(0,0,\sigma_1^2,1,\sigma_{12})$$

Means

$$Pr(D_i = 1 | \mathbf{Z}_i, \mathbf{X}_i) = \Phi(\mathbf{Z}_i \gamma).$$

Define:

$$\rho=\operatorname{corr}(u_1,u_2).$$

Selection Bias

What we get:

$$\mathsf{E}(\mathsf{Y}_{1i}|\mathsf{X}_i,\mathsf{Z}_i,D_i=1)=\mathsf{X}_i\boldsymbol{\beta}+\rho\sigma_1\left\lfloor\frac{\phi(\mathsf{Z}_i\boldsymbol{\gamma})}{\Phi(\mathsf{Z}_i\boldsymbol{\gamma})}\right\rfloor$$

Without conditioning on Z:

$$\mathsf{E}(Y_{1i}|\mathbf{X}_i,D_i=1) = \mathbf{X}_i\boldsymbol{\beta} + \mathsf{E}\left\{\rho\sigma_1\left[\frac{\phi(\mathbf{Z}_i\boldsymbol{\gamma})}{\Phi(\mathbf{Z}_i\boldsymbol{\gamma})}\right]\bigg|\mathbf{X}_i\right\}$$

Truncation Bias

Sample Selection Bias

Selection Bias: Substantive Effects

- Specification Error (unless $\rho = 0$)
- Indeterminate bias in $\hat{\beta}$
- Including **Z**_i will not generally* remove the bias:

"With quasi-experimental data derived from nonrandomized assignments, controlling for additional variables in a regression may worsen the estimate of the treatment effect, even when the additional variables improve the specification." – Achen (1986, p. 27)

• Bias remains even if inference is limited to the "selected" group. [This point is made nicely in Berk (1983)...]

^{*} Unless sample selection is completely deterministic (i.e., determined perfectly by X, Z) (Heckman & Robb 1985).

E(Y) Under Selection

Conditional Density:

$$h(Y|\mathbf{X},\mathbf{Z},\boldsymbol{\beta},\gamma,\sigma_1,\rho) = \frac{\phi\left(\frac{Y_{1i}-\mathbf{X}_{i}\boldsymbol{\beta}}{\sigma_1}\right)}{\sigma_1\Phi(\mathbf{Z}_{i}\gamma)} \cdot \Phi\left[\frac{\frac{\rho(Y_{1i}-\mathbf{X}_{i}\boldsymbol{\beta})}{\sigma_1} + \mathbf{Z}_{i}\gamma}{\sqrt{1-\rho^2}}\right]$$

Note: $\rho = 0$ yields

$$h(Y|\mathbf{X}, \mathbf{Z}, \boldsymbol{\beta}, \gamma, \sigma_1, \rho = 0) = \frac{\phi\left(\frac{Y_{1i} - \mathbf{X}_i \boldsymbol{\beta}}{\sigma_1}\right)}{\sigma_1 \Phi(\mathbf{Z}_i \gamma)} \cdot \Phi\left[\frac{0 + \mathbf{Z}_i \gamma}{1}\right]$$
$$= \frac{\phi\left(\frac{Y_{1i} - \mathbf{X}_i \boldsymbol{\beta}}{\sigma_1}\right)}{\sigma_1}.$$

Likelihood Under Selection

Under sample selection, the full likelihood is:

$$\begin{split} \ln L(\boldsymbol{\beta}, \gamma, \sigma_1, \rho | Y_1) &= \sum_{i=1}^N (1 - D_i) \ln[1 - \Phi(\mathbf{Z}_i \gamma)] \\ &+ \sum_{i=1}^N D_i \ln[\Phi(\mathbf{Z}_i \gamma)] \\ &+ \sum_{i=1}^N D_i \ln\left\{\frac{\phi\left(\frac{Y_{1i} - \mathbf{X}_i \boldsymbol{\beta}}{\sigma_1}\right)}{\sigma_1 \Phi(\mathbf{Z}_i \gamma)} \cdot \Phi\left[\frac{\frac{\rho(Y_{1i} - \mathbf{X}_i \boldsymbol{\beta})}{\sigma_1} + \mathbf{Z}_i \gamma}{\sqrt{1 - \rho^2}}\right]\right\} \end{split}$$

Model Fitting

Estimation can be via:

- MLE (above)
- Or, reconsider:

$$\mathsf{E}(Y_{1i}|\mathbf{X}_i,\mathbf{Z}_i,D_i=1)=\mathbf{X}_i\boldsymbol{\beta}+\rho\sigma_1\left[\frac{\phi(\mathbf{Z}_i\gamma)}{\Phi(\mathbf{Z}_i\gamma)}\right]$$

- Note that $\Phi(\mathbf{Z}_i \gamma) = \Pr(D_i = 1)$
- Suggests a two-step approach...

Heckman's Two-Step Estimator

1. Estimate $\hat{\gamma}$ from

$$Pr(D_i = 1) = \Phi(\mathbf{Z}_i \gamma)$$

and calculate the estimated inverse Mills' ratio:

$$\hat{\lambda}_i = rac{\phi(\mathbf{Z}_i \hat{\gamma})}{\Phi(\mathbf{Z}_i \hat{\gamma})}$$

2. Estimate β , $\theta (\equiv \rho \sigma_1)$ as:

$$Y_{1i} = \mathbf{X}_i \boldsymbol{\beta} + \theta \hat{\lambda}_i + u_{1i}$$

What exactly is an "inverse Mills' ratio," anyway?

A Few Things...

In the two-step approach:

- Since $\sigma_1 > 0$, $\hat{\theta} = 0 \implies \rho = 0$
- Two-step approach:
 - Is "LIML" ...
 - Consistent for $\hat{\beta}$, but
 - Inconsistent estimating $\widehat{\mathbf{V}(\beta)}$; so
 - Standard errors require correction (e.g., bootstrap)
 - Can yield $\hat{\rho} \notin [-1,1]$ (because $\hat{\rho} = \hat{\theta}/\hat{\sigma}_1$)
 - Sensitive to prediction of D_i (better prediction = better precision)

Identification, etc.

For any estimation approach:

- If $\mathbf{X} = \mathbf{Z}$, then β, γ, ρ (formally) identified by nonlinearity of $\Phi(\cdot)$
- (Much) better: ≥ one covariate in **Z** not in **X**
- But...
 - Factors causing Y₁ also (often) cause D
 - → X, Z highly correlated
 - ...just makes things worse (Stolzenberg and Relles 1997)

Some Practical Things

- In practice, few people use two-step anymore,
- Model is *always* sensitive to joint normality of $\{u_i, u_2\}$,
- It is also very sensitive to model specification...
- Key issue: endogeneity of selection...

Simulated Example I: Cov(X, Z) = 0

```
> set.seed(7222009)
> N <- 1000
                     # N of observations
> # Bivariate normal us, correlated at r=0.7
> us <- rmvnorm(N,c(0,0),matrix(c(1,0.7,0.7,1),2,2))
> Z <- runif(N) # Sel. variable</pre>
> Sel<- Z + us[,1]>0 # Selection eq.
> X <- runif(N) # X
> Y <- X + us[,2] # B0=0, B1=1
> Yob<- ifelse(Sel==TRUE,Y,NA) # Selected Y
>
> # OLSs:
>
> NoSel<-lm(Y~X) # all data</pre>
> WithSel<-lm(Yob~X) # sample-selected data</pre>
```

Simulation I (continued)

Simulation I (continued)

```
> # Two-Step:
>
> probit<-glm(Sel~Z,family=binomial(link="probit"))
> IMR<-((1/sqrt(2*pi))*exp(-((probit$linear.predictors)^2/2))) /
+ pnorm(probit$linear.predictors)
>
> OLS2step<-lm(Yob~X+IMR)
>
> # FIML:
> FIML<-selection(Sel~Z,Y~X,method="ml")</pre>
```

Simulation I (continued)

	OLS-All	OLS-Selected	Two-Stage	FIML
X (true OLS = 1)	1.000***	0.947***	0.948***	0.939***
,	(0.106)	(0.114)	(0.114)	(0.112)
IMR			0.428*	
			(0.223)	
${\sf Constant\ (true=0)}$	-0.011	0.360***	0.152	-0.007
	(0.062)	(0.068)	(0.128)	(0.092)
Observations	1,000	691	691	1,000
R^2	0.083	0.091	0.096	
Adjusted R ²	0.082	0.089	0.093	
Log Likelihood				-1,479.000
ρ				0.742*** (0.088)
Note:			*p<0.1; **p<0.05; ***p<0.01	

21 / 80

Simulated Example II: Cov(X, Z) > 0

```
> set.seed(9021970)
> N <- 1000
                     # N of observations
>
> # Bivariate normal us & Xs, correlated at r=0.7 / 0.8
> us <- rmvnorm(N,c(0,0), matrix(c(1,0.7,0.7,1),2,2))
> Xs <- rmvnorm(N,c(0,0),matrix(c(1,0.8,0.8,1),2,2))
> Z <- Xs[,1]
> X <- Xs[,2]
> Sel<- Z + us[,1]>0 # Selection eq.
> Y < - X + us[,2] # B0=0, B1=1
> Yob<- ifelse(Sel==TRUE,Y,NA) # Selected Y
>
> # OLSs:
>
> NoSel2<-lm(Y~X) # all data</pre>
> WithSel2<-lm(Yob~X) # sample-selected data
```

Simulation II (continued)

Simulation II (continued)

	OLS-All	OLS-Selected	Two-Stage	FIML
X (true OLS = 1)	0.991***	0.853***	1.020***	1.010***
,	(0.029)	(0.046)	(0.061)	(0.056)
IMR			0.533***	
			(0.133)	
${\sf Constant\ (true}=0)$	-0.005	0.412***	0.041	0.045
	(0.030)	(0.046)	(0.103)	(880.0)
Observations	1,000	511	511	1,000
R^2	0.533	0.403	0.421	
Adjusted R ²	0.532	0.401	0.419	
Log Likelihood				-1,146.000
ρ				0.560*** (0.097)
Note:			*p<0.1; **	p<0.05; ***p<0.01

Extensions: "Probit-Probit"

- Selection + binary second stage $(Y_i \in \{0,1\})$ (a/k/a "Heckit").
- Assume errors are bivariate standard Normal [so, $\{u_1, u_2 \sim \mathcal{BVN}(0, 0, 1, 1, \rho) \equiv \Phi_2(\cdot)\}$
- Log-Likelihood:

$$\begin{array}{lll} \ln L(\boldsymbol{\beta}, \boldsymbol{\gamma}, \sigma_1, \boldsymbol{\rho} | Y_1) & = & \displaystyle \sum_{Y_{1i}=1, D_i=1} \ln [\Phi_2(\mathbf{X}_i \boldsymbol{\beta}, \mathbf{Z}_i \boldsymbol{\gamma}, \boldsymbol{\rho})] \\ & + \displaystyle \sum_{Y_{1i}=0, D_i=1} \ln [\Phi_2(-\mathbf{X}_i \boldsymbol{\beta}, \mathbf{Z}_i \boldsymbol{\gamma}, -\boldsymbol{\rho})] \\ & + \displaystyle \sum_{D_i=0} \ln \Phi(-\mathbf{Z}_i \boldsymbol{\gamma}) \end{array}$$

More Extensions

- Different outcome stages:
 - Poisson (Greene 1995; Cameron & Trivedi 2013, Ch. 10)
 - Durations (Boehmke et al. 2006)
 - Count/binary/ordinal (Mirand and Rabe-Hesketh 2005)
- Selection stage is ordered (Chiburis & Lokshin 2007)
- Multiple-stage models (not much... work in finance + Signorino and others)
- Semi- and non-parametric variants (e.g., Liu and Yu (2019) on monotone control functions)

Sample Selection: Software

- R (selection and heckit in sampleSelection; robust estimation via ssmrob)
 - Binary selection
 - Continuous/binary outcomes
 - Also tobit, etc. models
- Stata
 - heckman (binary-continuous model)
 - heckprob (binary-binary model)
 - heckoprobit (ordinal Y)
 - heckpoisson (Poisson)
 - dursel (binary-duration model)
 - xtheckman (selection models for panel data)
 - Also Bayesian versions, using the bayes: prefix

References

Articles by Heckman (1974, 1976, 1979).

Breen, Richard. 1996. Regression Models for Censored, Sample Selected, or Truncated Data. Thousand Oaks, CA: Sage.

Stolzenberg, Ross M. and Daniel A. Relles. 1997. "Tools for Intuition about Sample Selection Bias and Its Correction." <u>American Sociological Review</u> 62:494-507.

Vella, Francis. 1998. "Estimating Models with Sample Selection Bias: A Survey." The Journal of Human Resources 33:127-169.

Winship, Christopher and Robert D. Mare. 1992. "Models for Sample Selection Bias." <u>Annual Review of Sociology</u> 18:327-350.

Potential Outcomes and Counterfactual Inference

Causation

The goal: Making causal inferences from observational data.

- Establish and measure the *causal* relationship between variables in a non-experimental setting.
- The fundamental problem of causal inference:

It is impossible to observe the causal effect of a treatment / predictor on a single unit.

- Specific challenges:
 - · Confounding
 - · Selection bias
 - · Heterogenous treatment effects

Causation and Counterfactuals

Causal statements imply counterfactual reasoning.

- "If the cause(s) had been different, the outcome(s) would be different, too."
- Conditioning, probabilistic and causal:

Probabilistic conditioning	Causal conditioning		
Pr(Y X=x)	Pr[Y do(X=x)]		
Factual	Counterfactual		
Select a sub-population	Generate a new population		
Predicts passive observation	Predicts active manipulation		
Calculate from full DAG*	Calculate from surgically-altered DAG*		
Always identifiable when X and Y	Not always identifiable even when		
are observable	X and Y are observable		

^{*}See below. Source: Swiped from Shalizi, "Advanced Data Analysis from an Elementary Point of View", Table 23.1.

- Causality (typically) implies / requires:
 - · Temporal ordering
 - · Mechanism
 - · Correlation

The Counterfactual Paradigm

Notation

- *N* observations indexed by $i, i \in \{1, 2, ... N\}$
- Outcome variable Y
- Interest: the effect on Y of a treatment variable W:
 - · $W_i = 1 \leftrightarrow \text{observation } i \text{ is "treated"}$
 - · $W_i = 0 \leftrightarrow \text{observation } i \text{ is "control"}$

Potential Outcomes

- Y_{0i} = the value of Y_i if $W_i = 0$
- Y_{1i} = the value of Y_i if $W_i = 1$
- $\delta_i = (Y_{1i} Y_{0i}) = \text{the } \underline{\text{treatment effect}} \text{ of } W$

Treatment Effects

The average treatment effect (ATE) is just:

$$\begin{split} \mathsf{ATE} &\equiv \bar{\delta} &= \mathsf{E}(Y_{1i} - Y_{0i}) \\ &= &\frac{1}{N} \sum_{i=1}^N Y_{1i} - Y_{0i}. \end{split}$$

BUT we observe only Y_i :

$$Y_i = \begin{cases} Y_{0i} \text{ if } W_i = 0, \\ Y_{1i} \text{ if } W_i = 1. \end{cases}$$

or (equivalently)

$$Y_i = W_i Y_{1i} + (1 - W_i) Y_{0i}.$$

Estimating Treatment Effects

Key to estimating treatment effects: Assignment mechanism for W.

Neyman/Rubin/Holland: Treat inability to observed Y_{0i} / Y_{1i} as a missing data problem.

So let's talk about missing data...

Missing Data Review

Notation:

$$\mathbf{X}_{i} \cup \{\mathbf{W}_{i}, \mathbf{Z}_{i}\}$$

W_i have some missing values, **Z**_i are "complete"

$$R_{ik} = \begin{cases} 1 & \text{if } W_{ik} \text{ is missing,} \\ 0 & \text{otherwise.} \end{cases}$$

$$\pi_{ik} = \Pr(R_{ik} = 1)$$

Missing Data (continued)

Rubin's flavors of missingness:

• Missing completely at random ("MCAR") (= "ignorable"):

$$\textbf{R} \perp \{\textbf{Z}, \textbf{W}\}$$

Missing at random ("MAR") (conditionally "ignorable"):

$$R \perp W|Z$$

Anything else is "informatively" (or "non-ignorably") missing.

...Back To Treatment Effects

Key to estimating treatment effects: Assignment mechanism for W.

Neyman/Rubin/Holland: Treat inability to observed Y_{0i} / Y_{1i} as a missing data problem.

• If the "missingness" due to the value of W_i is orthogonal to the values of Y, then it is ignorable. Formally:

$$\Pr(W_i|\mathbf{X}_i, Y_{0i}, Y_{1i}) = \Pr(W_i|\mathbf{X}_i)$$

- If that "missingness" is non-orthogonal, then it is not ignorable, and can lead to bias in estimation
- Non-ignorable assignment of W requires understanding the mechanism by which that assignment occurs

Treatment Effects Under Randomization of W

If W_i is assigned randomly, then:

$$Pr(W_i) \perp Y_{0i}, Y_{1i}$$

and so:

$$Pr(W_i|Y_{0i}, Y_{1i}) = Pr(W_i) \forall Y_{0i}, Y_{1i}.$$

This means that the "missing" data on Y_0/Y_1 are <u>ignorable</u> (here, in the special case where the \mathbf{X}_i on which W_i depends is null). This in turn means that:

$$f(Y_{0i}|W_i=0)=f(Y_{0i}|W_i=1)=f(Y_i|W_i=0)=f(Y_i|W_i=1)$$

and

$$f(Y_{1i}|W_i=0) = f(Y_{1i}|W_i=1) = f(Y_i|W_i=0) = f(Y_i|W_i=1)$$

Randomized W (continued)

Implication: Y_{0i} and Y_{1i} are (not identical but) exchangeable...

This in turn means that:

$$E(Y_{0i}|W_i) = E(Y_{1i}|W_i)$$

and so

$$\widehat{\mathsf{ATE}} = \mathsf{E}(Y_i|W_i = 1) - \mathsf{E}(Y_i|W_i = 0) = \bar{Y}_{W=1} - \bar{Y}_{W=0}.$$

will be an unbiased estimate of the ATE.

Observational Data: W Depends on X

Formally,

$$Y_{0i}$$
, $Y_{1i} \perp W_i | \mathbf{X}_i$.

Here,

- X are known confounders that (stochastically) determine the value of W_i.
- Conditioning on **X** is necessary to achieve exchangeability.

So long as W is entirely due to X, we can condition:

$$f(Y_{1i}|\mathbf{X}_i, W_i = 1) = f(Y_{1i}|\mathbf{X}_i, W_i = 0) = f(Y_i|\mathbf{X}_i, W_i)$$

and similarly for Y_{0i} .

W Depends on X (continued)

Estimands:

• the average treatment effect for the treated (ATT):

$$ATT = E(Y_{1i}|W_i = 1) - E(Y_{0i}|W_i = 1).$$

• the average treatment effect for the controls (ATC):

$$ATC = E(Y_{1i}|W_i = 0) - E(Y_{0i}|W_i = 0).$$

Corresponding estimates:

$$\widehat{\mathsf{ATT}} = \mathsf{E}\{[\mathsf{E}(Y_i|\mathbf{X}_i,W_i=1) - \mathsf{E}(Y_i|\mathbf{X}_i,W_i=0)]|W_i=1\}.$$

and

$$\widehat{\mathsf{ATC}} = \mathsf{E}\{[\mathsf{E}(Y_i|\mathbf{X}_i,W_i=1) - \mathsf{E}(Y_i|\mathbf{X}_i,W_i=0)]|W_i=0\}.$$

Note that in both cases the expectation of the whole term is conditioned on W_i .

Confounding

Confounding occurs when one or more observed or unobserved factors \mathbf{X} affect the causal relationship between W and Y.

Formally, confounding requires that:

- $Cov(X, W) \neq 0$ (the confounder is associated with the "treatment")
- $Cov(X, Y) \neq 0$ (the confounder is associated with the outcome)
- **X** does not "lie on the path" between W and Z (that is, **X** is not affected by either W or Y).

Digression: DAGs

<u>Directed acyclic graphs</u> (DAGs) are a tool for visualizing and interpreting structural/causal phenomena.

- DAGs comprise:
 - · Nodes (typically, variables / phenomena) and
 - · Edges (or lines; typically, relationships/causal paths).
- Directed means each edge is unidirectional.
- Acyclical means exactly what it suggests: If a graph has a "feedback loop," it is not a DAG.
- Read more at the Wikipedia page, or at this useful page.

Know your DAG

Figure: A DAG

Figure: Not a DAG

DAGs and Confounding

$$W \longrightarrow Y \longleftarrow X$$

Figure: No Confounding

Figure: Confounding

Confounding Bias: Some Toy Examples

Example One: Cov(W, Y) = 0 (ATE=2)

			·	. ,	,	,
i	Wi	Y_{0i}	Y_{1i}	$Y_{1i} - Y_{01}$	Yi	$(\bar{Y} W=1)-(\bar{Y} W=0)$
1	0	8	(10)	(2)	8	-
2	0	10	(12)	(2)	10	-
3	0	12	(14)	(2)	12	-
4	1	(8)	10	(2)	10	-
5	1	(10)	12	(2)	12	-
6	1	(12)	14	(2)	14	-
Mean _{obs}	-	10	12	-	11	2
Mean _{all}	-	(10)	(12)	(2)	-	-

$$t = -1.22, p = 0.14$$

Confounding Bias: Some Toy Examples

Example Two: Cov(W, Y) > 0 (ATE=2)

			•	. ,	<u>, </u>	,
i	W _i	Y_{0i}	Y_{1i}	$Y_{1i} - Y_{01}$	Yi	$(\bar{Y} W=1)-(\bar{Y} W=0)$
1	0	8	(10)	(2)	8	-
2	0	8	(10)	(2)	8	-
3	0	10	(12)	(2)	10	-
4	1	(10)	12	(2)	12	-
5	1	(12)	14	(2)	14	-
6	1	(12)	14	(2)	14	-
Mean _{obs}	-	8.67	13.33	-	11	4.67
Mean _{all}	-	(10)	(12)	(2)	-	-

$$t = -4.95, \ p < 0.001$$

Confounding Bias: Some Toy Examples

Example Three: Cov(W, Y) < 0 (ATE=2)

				, ,	/	,
i	Wi	Y_{0i}	Y_{1i}	$Y_{1i} - Y_{01}$	Yi	$(\bar{Y} W=1)-(\bar{Y} W=0)$
1	0	12	(14)	(2)	12	-
2	0	12	(14)	(2)	12	-
3	0	10	(12)	(2)	10	-
4	1	(10)	12	(2)	12	-
5	1	(8)	10	(2)	10	-
6	1	(8)	10	(2)	10	-
Meanobs	-	11.33	10.67	-	11	-0.67
Mean _{all}	-	(10)	(12)	(2)	-	-

$$t = 0.71, p = 0.74$$

What We're On About

Figure: Potential Confounding

Here:

- *Y* is the outcome of interest,
- W is the primary predictor / covariate ("treatment") of interest,
- T_i is the "treatment indicator" for observation i,
- We're interested in estimating τ , the "treatment effect" of W on Y,
- X are observed confounders,
- **U** are unobserved confounders.

Things We Can Do

Randomize

```
(or...)
```

- Instrumental Variables Approaches
- Selection on Observables:
 - · Regression / Weighting
 - Matching (propensity scores, multivariate/minimum-distance, genetic, etc.)
- Regression Discontinuity Designs ("RDD")
- Differences-In-Differences ("DiD")*
- Synthetic Controls*
- Others...

^{*} We'll discuss these approaches in a couple weeks, as models for panel/time-series cross-sectional data.

Under Randomization

Figure: = no confounding!

Note:

- Randomized assignment of W "balances" covariate values both observed and unobserved – on average...
- That is, under randomization of W:

$$\mathsf{E}(\mathbf{X}_i,\mathbf{U}_i\,|\,W_i=0)=\mathsf{E}(\mathbf{X}_i,\mathbf{U}_i\,|\,W_i=1)$$

or, more demandingly,

$$E[f(X, U) | W_i = 0] = E[f(X, U) | W_i = 1]$$

• Can yield imbalance by random chance...

Covariate Balance / Imbalance

Covariate Imbalance Under Randomization

Why seek balance when randomizing?

- More accurate estimates of treatment effects
- Higher statistical power

Possible Approaches:

- 1. Force balance by design:
 - Stratification / blocking
 - Matching / paired randomization (see below)
 - Rerandomization approaches (e.g., Morgan and Rubin 2012)
- 2. Post-randomization analysis:
 - Pre- vs. post-treatment Y values / "gain scores"
 - (Post-treatment) stratification by X
 - (Pre-treatment) covariate adjustment via weighting / regression

Nonrandom Assignment of W_i

Valid causal inference requires Y_{0i} , $Y_{1i} \perp W_i | \mathbf{X}_i, \mathbf{U}_i$

• That is, treatment assignment W_i is conditionally ignorable

"What if I have unmeasured confounders?"

- In general, that's a bad thing.
- ullet One approach: obtain *bounds* on possible values of au
 - · Assume you have one or more unmeasured confounders
 - · Undertake one of the methods described below to get $\hat{\tau}$
 - · Calculate the range of values for $\hat{\tau}$ that could occur, depending on the degree and direction of confounding bias
 - · Or ask: How strong would the effect of the **U**s have to be to make $\hat{\tau} \rightarrow 0$?
- Some useful cites:
 - · Rosenbaum and Rubin (1983)
 - · Rosenbaum (2002)
 - · DiPrete and Gangl (2004)
 - · Liu et al. (2013)
 - Ding and VanderWeele (2016)

Digression: Instrumental Variables

Figure: Instrumental Variables

As in the more general regression case where we have $Cov(\mathbf{X}, u) \neq 0$, instrumental variables \underline{can} be used to address confounding in causal analyses.

Instrumental Variables (continued)

Considerations:

- Requires:
 - 1. $Cov(\mathbf{Z}, W) \neq 0$
 - 2. **Z** has no independent effect on Y, except through W ("exclusion restriction")
 - 3. **Z** is exogenous [i.e., $Cov(\mathbf{Z}, \mathbf{U}) = 0$]
- Most useful when treatment compliance is uncertain / driven by unmeasured factors ("intent to treat" analyses)
- Mostly, they're not that useful at all...
 - · Bound et al. (1995): Weak instruments are worse than endogeneity bias
 - · Young (2021): Inferences in published IV work (in economics) are wrong
 - · Shalizi (2020, chapters 20-21): Gathers all the issues together...
- Other useful references:
 - · Imbens et al. (1996) (the overly-cited one)
 - · Hernan and Robins (2006) (making sense of things)
 - · Lousdal (2018) (a good intuitive introduction)

Nonrandom Assignment of W_i (continued)

Som

- Causal inference with observational data typically requires that $\mathbf{U} = \varnothing ...$
- This typically requires a <u>strong</u> theoretical motivation in order to assume that the observed X exhausts the list of possible confounders.
- Even if this assumption is reasonable, there are two (related) important concerns:
 - · Lack of covariate balance (as above)
 - · Lack of overlap among observations with $W_i = 0$ vs. $W_i = 1$
 - · The latter is related to *positivity*, the requirement that each observation's probability of receiving (or not receiving) the treatment is greater than zero

Overlap

Overlap and Balance

In general:

- Ensuring overlap allows us to make counterfactual statements from observational data
 - · Requires that we have comparable $W_i = 0$ and $W_i = 1$ units
 - It's necessary no overlap means any counterfactual statements are based on assumption
 - Think of this as an aspect of model identification (Crump et al. 2009)
 - · Most often handled via matching
- Ensuring covariate balance corrects potential bias in $\hat{\tau}$ due to (observed) confounding
 - This can be done a number of different ways: stratification, weighting, regression...
 - \cdot Key: Adjusting for (observable) differences across groups defined by values of W
- In general, we usually address overlap first, then balance...

Matching

 $\underline{\mathsf{Matching}}$ is a way of dealing with one or both of covariate overlap and $\overline{\mathsf{(im)}}\mathsf{balance}.$

The process, generally:

- Choose the X on which the observations will be matched, and the matching procedure;
- 2. Match the observations with $W_i = 0$ and $W_i = 1$;
- 3. Check for balance in X_i ; and
- 4. Estimate $\hat{\tau}$ using the matched pairs.

Variants / considerations:

- 1:1 vs. 1:k matching
- "Greedy" vs. "Optimal" matching (see Gu and Rosenbaum 1993)
- Distances, calipers, and "common support"
- Post-matching: Balance checking...

Flavors of Matching

- Simplest: Exact Matching
 - · For each of the n observations i with W=1, find a corresponding observation j with W=0 that has identical values of ${\bf X}$
 - · Calculate $\hat{\tau} = \frac{1}{n} \sum (Y_i Y_j)$
 - · Generally not practical, especially for high-dimensional X
 - · Variants: "coarsened" exact matching (e.g., lacus et al. 2011)
- Multivariate Matching
 - Match each observation i which has W=1 with a corresponding observation j with W=0, and whose values on \mathbf{X}_j are the most similar to \mathbf{X}_i
 - One example: Mahalanobis distance matching, based on the distance:

$$d_M(\mathbf{X}_i,\mathbf{X}_j) = \sqrt{(\mathbf{X}_i - \mathbf{X}_j)'\mathbf{S}^{-1}(\mathbf{X}_i - \mathbf{X}_j)}.$$

Flavors of Matching (continued)

- Propensity Score Matching
 - · Match observation i which has W = 1 with observation j having W = 0 based on the closeness of their propensity score
 - The <u>propensity score</u> is, $Pr(W_i = 1|X_i)$, typically calculated as the predicted value of T_i (the treatment indicator) from a logistic (or other) regression of T on X.
 - The assumptions about matching [that Y is orthogonal to W|X and that $\Pr(W_i = 1|X_i) \in (0,1)$] mean that $Y \perp W|\Pr(T|X)$.
 - · In practice: read this...
- Other variants: Genetic matching (Diamond and Sekhon 2013), etc. 1

¹Shalizi (2016) notes that "(A)pproximate matching is implicitly doing nonparametric regression by a nearest-neighbor method," and that "(M)aybe it is easier to get doctors and economists to swallow "matching" than "nonparametric nearest neighbor regression"; this is not much of a reason to present the subject as though nonparametric smoothing did not exist, or had nothing to teach us about causal inference."

Matching Software

Interestingly, quite a few of the good matching programs written for R have been written by political scientists...

- the Match package (does propensity score, *M*-distance, and genetic matching, plus balance checking and other diagnostics)
- the MatchIt package (for pre-analysis matching; also has nice options for checking balance)
- the optmatch package (suite for 1:1 and 1:k matching via propensity scores, M-distance, and optimum balancing)
- matching (in the arm package)

Regression Discontinuity Designs

"RDD":

- Treatment changes abruptly [usually at some threshold(s)] according to the value(s) of some measured, continuous, pre-treatment variable(s)
 - · This is known as the "assignment" or "forcing variable(s)," sometimes denoted A
 - · Formally:

$$T_i = \begin{cases} 0 \text{ if } A_i \le c \\ 1 \text{ if } A_i > c \end{cases}$$

- Intuition: Observations near but on either side of the threshold(s) are highly comparable, and can be used to (locally) identify τ
- This is because variation in T_i near the threshold is effectively random (a "local randomized experiment")
- E.g. Carpenter and Dobkin (2011) (on the relationship between the legal drinking age and public health outcomes like accidental deaths)

RDD (continued)

Pluses:

- · Can be estimated straightforwardly, as: $Y_i = \beta_0 + \beta_1 A_i + \tau T_i + \gamma A_i T_i + \epsilon_i$
- Generally requires fewer assumptions than IV or DiD (and those assumptions are easier to observe and test)

Minuses:

- · Provides only an estimate of a <u>local</u> treatment effect
- Fails if (say) subjects can manipulate A in the vicinity of c
- Lee and Lemieux (2010) is an excellent (if fanboi-ish) review
- R packages: rddtools, rdd, rdrobust, rdpower, rdmulti

Software Matters

- R
- · Packages for matching are listed above (Matching, MatchIt, etc.)
- · Similarly for RDD (rddtools, rdd, etc.)
- · IV regression: ivreg (in AER), tsls (in sem), others
- See generally the Econometrics and SocialSciences CRAN Task Views
- Stata also has a large suite of routines for attempting causal inference with observational data
- And there's a pretty good NumPy/SciPy-dependent package for Python, called (creatively) Causalinference

Example: Sports and Grades in High School

Question: Does participation in high school varsity sports help or hinder academic achievement (i.e., grades)?

Data: "High School And Beyond" survey (1983 wave) (N = 1375)

Variables:

- grades: As=4, As & Bs=3.5, etc.
- sports: 1 if participated in varsity sports, 0 otherwise
- fincome: Family income (7-point scale)
- ses: Socioeconomic Status: 1=low, 2-middle, 3=high
- workage: Age at which started working
- hmwktime: Time spent on homework (7-point scale)*
- female: 1 = female student, 0 = male student
- academic: 1 if the student is on an academic track, 0 else
- remedial: 1 if the student took ≥ 1 remedial course
- advanced: 1 if the student took >1 advanced course

^{*} Likely post-treatment, so we'll omit in the examples below.

Summary Statistics

> summary(sports)

, ,			
grades	sports	fincome	ses
Min. :0.0	Min. :0.00	Min. :1.0	Min. :1.00
1st Qu.:2.5	1st Qu.:0.00	1st Qu.:3.0	1st Qu.:1.00
Median :3.0	Median :0.00	Median:5.0	Median :2.00
Mean :2.9	Mean :0.37	Mean :4.4	Mean :1.96
3rd Qu.:3.5	3rd Qu.:1.00	3rd Qu.:6.0	3rd Qu.:2.00
Max. :4.0	Max. :1.00	Max. :7.0	Max. :3.00
workage	hmwktime	female	academic
	Min. :1.0		Min. :0.00
1st Qu.:13.0	1st Qu.:4.0	1st Qu.:0.00	1st Qu.:0.00
Median :15.0	Median:4.0	Median :1.00	Median:0.00
Mean :14.6	Mean :4.5	Mean :0.52	Mean :0.41
3rd Qu.:16.0	3rd Qu.:6.0	3rd Qu.:1.00	3rd Qu.:1.00
Max. :21.0	Max. :7.0	Max. :1.00	Max. :1.00
remedial	advanced		
Min. :0.00	Min. :0.00		
1st Qu.:0.00	1st Qu.:0.00		
Median:0.00	Median:0.00		
Mean :0.36	Mean :0.37		
3rd Qu.:1.00	3rd Qu.:1.00		
Max. :1.00	Max. :1.00		

Correlation Plot

	grades	sports	fincome	ses	workage	hmwktime	female	academic	remedial	advanced	- 1
grades	1.00					0.30		0.31	-0.22	0.36	
sports		1.00	0.09				-0.26		0.00	0.06	- 0.
fincome	0.11	0.09	1.00	0.67	-0.06	0.10	-0.08	0.19	-0.10	0.15	- 0.
ses	0.16	0.11	0.67	1.00	-0.09	0.16	-0.05	0.30	-0.14	0.20	0.
workage	-0.05	-0.09	-0.06	-0.09	1.00	0.04	0.20	-0.03	-0.01	-0.06	- 0.:
hmwktime	0.30	0.08	0.10	0.16	0.04	1.00	0.13	0.32	-0.15	0.22	- 0
female	0.16	-0.26	-0.08	-0.05	0.20	0.13	1.00	-0.04	-0.06	-0.02	-0
academic	0.31	0.13	0.19	0.30	-0.03	0.32	-0.04	1.00	-0.20	0.29	-0
remedial	-0.22	0.00	-0.10	-0.14	-0.01	-0.15	-0.06	-0.20	1.00	-0.10	-0
advanced	0.36	0.06	0.15	0.20	-0.06	0.22	-0.02	0.29	-0.10	1.00	0

Simple *t*-test & Regression

```
> with(sports, t.test(grades~sports))
Welch Two Sample t-test
data: grades by sports
t = -2, df = 1064, p-value = 0.02
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0 183 -0 014
sample estimates:
mean in group 0 mean in group 1
           2.9
                         3.0
> summary(lm(Model,data=sports))
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
                     0.13397 20.24 < 2e-16 ***
(Intercept) 2.71145
sports
           0.10119
                    0.03969 2.55 0.011 *
           0.00435 0.01378 0.32 0.753
fincome
          0.02216 0.03487 0.64 0.525
ses
workage -0.01879 0.00794 -2.37 0.018 *
         0.30062 0.03881 7.75 1.8e-14 ***
female
academic 0.29063
                    0.04099 7.09 2.1e-12 ***
remedial -0.23215
                    0.03919 -5.92 4.0e-09 ***
advanced 0.44435
                    0.04004 11.10 < 2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.68 on 1366 degrees of freedom
Multiple R-squared: 0.231, Adjusted R-squared: 0.226
F-statistic: 51.2 on 8 and 1366 DF, p-value: <2e-16
```

Balance Tests (Pre-Matching)

These are P-values associated with t-tests (for binary predictors) or Kolmogorov-Smirnov tests (for continuous predictors) for balance between sports = 0 and sports = 1.

Exact Matching

```
> M.exact <- matchit(sports~fincome+ses+workage+female+academic+
                     remedial+advanced, data=sports, method="exact")
+
> M.exact.
Call:
matchit(formula = sports ~ fincome + ses + workage + female +
   academic + remedial + advanced, data = sports, method = "exact")
Exact Subclasses: 166
Sample sizes:
         Control Treated
A11
             864
                      511
Matched
           287 239
Unmatched 577 272
> # Output matched data:
> sports.exact <- match.data(M.exact,group="all")</pre>
> dim(sports.exact)
[1] 526 12
```

Exact Matching: Balance

These are P-values associated with t-tests (for binary predictors) or Kolmogorov-Smirnov tests (for continuous predictors) for balance between sports = 0 and sports = 1. Black dots are pre-matching; green triangles are after exact matching.

Propensity Score Matching

```
> PSfit <- glm(sports~fincome+ses+workage+female+academic+remedial+
                  advanced,data=sports,family=binomial(link="logit"))
 # Generate scores & check common support:
> PS.df <- data.frame(PS = predict(PSfit,type="response"),
                        sports = PSfit$model$sports)
                           Non-Athletes
                                                       Athletes
                                              5.0
                Density
                                           Density
                   2
```

0.2 0.4 0.6 0.8

Propensity Score

0.0

0.6 0.8

Propensity Score

Propensity Score Matching

```
> M.prop<-matchit(sports~fincome+ses+workage+female+academic+
                       remedial+advanced,data=sports,
                       method="nearest")
> summary(M.prop)
Percent Balance Improvement:
         Mean Diff. eQQ Med eQQ Mean eQQ Max
distance
                 80
                          83
                                   80
                                           63
fincome
                                   30
                 29
                           0
                 34
                                   35
ses
                           0
workage
                 71
                           0
                                   68
                                           25
female
                 96
                           0
                                   96
academic
                 41
                                   41
remedial
                -88
                                 -100
                           0
advanced
                 19
                           0
                                   19
                                            0
```

Sample sizes:

	Control	Treated
All	864	511
Matched	511	511
${\tt Unmatched}$	353	0
Discarded	0	0

Propensity Score Matching: Balance

These are P-values associated with t-tests (for binary predictors) or Kolmogorov-Smirnov tests (for continuous predictors) for balance between $\mathtt{sports} = 0$ and $\mathtt{sports} = 1$. Black dots are pre-matching; green triangles are after exact matching; red squares are after propensity score matching.

Differences in Means

```
> with(sports, t.test(grades~sports))$statistic # No matching
     t
-2.286
> with(sports.exact, t.test(grades~sports))$statistic # Exact
-1.395
> with(sports.prop, t.test(grades~sports,paired=TRUE))$statistic # PS
-2.98
> with(sports.genetic, t.test(grades~sports))$statistic # Genetic
    t
-1.367
```

Regression Results

	No Matching	Exact	Propensity Score	Genetic
(Intercept)	2.71*	3.05*	2.84*	2.75*
. ,	(0.13)	(0.23)	(0.16)	(0.17)
sports	0.10*´	0.12*´	0.09*´	`0.08
•	(0.04)	(0.06)	(0.04)	(0.05)
fincome	0.00	0.05	-0.00	0.01
	(0.01)	(0.03)	(0.02)	(0.02)
ses	0.02	-0.14	0.05	0.03
	(0.03)	(0.07)	(0.04)	(0.05)
workage	-0.02^{*}	-0.03^{*}	-0.03^*	-0.02*
	(0.01)	(0.01)	(0.01)	(0.01)
female	0.30*	0.34*	0.31*	0.29*
	(0.04)	(0.06)	(0.05)	(0.05)
academic	0.29*	0.24*	0.31*	0.31*
	(0.04)	(0.08)	(0.05)	(0.05)
remedial	-0.23 [*]	-0.28 [*]	-0.28 [*]	-0.21^*
	(0.04)	(0.06)	(0.05)	(0.05)
advanced	0.44*	0.51*	0.43*	0.40*
	(0.04)	(0.08)	(0.05)	(0.05)
R ²	0.23	0.29	0.26	0.22
Adj. R ²	0.23	0.28	0.25	0.21
N	1375	526	1022	939
*p < 0.05				

Table:

Some Questions...

- What if anything can the general robustness of our results tell us about the relationship between varsity athletics and grades?
- What can they tell us about our model?
- What mechanism(s) / circumstances might allow us to investigate the relationship between varsity athletic participation and grades using an RDD?
- What circumstances if any might allow us to investigate this relationship using instrumental variables?
- What sort(s) of experiments natural or otherwise might allow us to investigate this same relationship?

Resources

- Good references:
 - · Freedman (2012)*
 - · Shalizi (someday)*
 - · Morgan and Winship (2014)
 - · Pearl et al. (2016)
 - · Peters et al. (2017)
- Courses / syllabi (a sampling):
 - · Eggers (2019)
 - · Frey (2019)
 - Hidalgo (2020)
 - · Imai (2021)
 - · Simpson (2019)
 - · Xu (2018)
 - · Yamamoto (2018)
- Other useful things:
 - · The Causal Inference Book
 - · Some useful notes

^{*} Especially good.