

TOF MODULE HARDWARE SPECIFICATION

Model No. FLT_K100_T0F

Prepared by David Qiu on behalf of FRUITION CO., LTD.

Last revision: January 10th, 2020

Full revision history and latest data sheets are available at https://github.com/diracs-delta/fruition-specs/tree/master/FLT_K100_TOF .

Contents

	Product Overview				
	1.1	Brief Description	9		
	1.2	产品特性	3		
	1.3	应用	3		
	1.4	Figures	4		
	1.5	Detailed Specifications	Ę		
	1.6	串扰校准	6		
2	串扰	· 校准	8		

1 Product Overview

1.1 Brief Description

距离测量传感器, 单元测量距离: 2.5至10cm

Figure 1.1: 产品框图

产品描述 FLT_K100_TOF 是高性能距离测量传感器(TOF)模块,该产品由以下两个芯片组成,单光子雪崩二极管(SPAD),(红外光电二极管通过红外光带通滤波器) 此模块传感器采用TDC电路系统,覆盖玻璃的串扰特性很好,传感器自动执行串扰校准,当附着了诸如指纹和污渍时,串扰特性很好,测量精度高,稳定. 该模块传感器具有较强的抗光线干扰能力,物体的反射率、环境温度和工作时间的变化对距离检测影响不大等优点.

1.2 产品特性

- 测距传感器采用PSD、红外LED、信号处理电路
- 短周期测量(16.5ms)、距离测量范围2.5 10cm
- 体积小(21.0 × 7.6 × 1mm)
- 数字I2C输出型

1.3 应用

• 扫地机器人

- 工业机器人
- 无人车

1.4 Figures

Figure 1.2: 产品框图

Figure 1.3: 模组尺寸(单位: MM)

1.5 Detailed Specifications

Table 1.1: 接口定义

PIN 1	GND	_	PIN 3	SCL	CLOCK
PIN 2	SDA	DATA BUS	PIN 4	3.3V	_

Figure 1.4: 接口定义

Table 1.2: 工作条件

参数	符号	条件	额定值	单位
工作电压	VDD	_	3.3 ± 0.15	V
工作温度	TA	_	-20 - 70	$^{\circ}\mathrm{C}$

Table 1.3: 绝对最大额定值

参数	符号	条件	额定值	单位
供电电压	VDD	_	0 - 3.8	V
静电防护	ESD	$_{\mathrm{HBM}}$	2	kV
储存温度	TSTG	-	-40 - +125	$^{\circ}\mathrm{C}$

1.6 串扰校准

该传感器采用TDC方法,在IC内部生成直方图,并计算出与直方图的距离值。图1.5 显示了没有盖板玻璃时的直方图,只创建检测到的对象的直方图。图1.6 显示了安装盖板玻璃时的直方图。将在检测到的对象旁边创建覆盖玻璃的直方图。在这种情况下,盖板玻璃与被检测对象的直方图重叠,传感器无法计算出正确的距离值。因此,有必要对客户工厂的每个终端进行串扰校准。

Figure 1.5: Histogram without cover glass.

Figure 1.6: Histogram with cover glass.

Figure 1.7: Distance response curve before and after crosstalk calibration.

2 串扰校准

为了提高设计或可靠性,保留在任何时候对本文件所描述的规格、特性、数据、材料、结构和其他内容进行更改的权利。在本模块应用设计时,请注意以下各点。对于不符合有关规格表规定的条件,和绝对最高额定值或未满足工作条件的设备不当使用所造成的损害,福临通不承担任何责任。本产品适用于一般电子设备设计,例如:个人计算机-办公自动化设备-电信设备[终端]-测试和测量设备-工业控制-视听设备-消费电子设备