Alcohol and Cannabis: Effects on Serotonin Levels

Group Name: JAM Group # 13

Justin Yee, justingyee@ucla.edu Anthony Tooley, tooleyanthony94@gmail.com Michelle Vang, vangcmichelle@gmail.com

Research Questions & Our Approach to Answering Them

- Is alcohol and cannabis usage an effective coping mechanism among college-aged individuals?
- Do these substances actually increase serotonin levels or do they generally worsen mental states?
- Or is it simply the idea that intaking these substances will make us feel better that is what influences our mental/emotional state?
- Are there any differences in the effects of alcohol and cannabis on serotonin levels compared to herbal tea?
- Can these substances actually help treat negative emotions if not abused and taken at a moderate rate?

- We used ANOVA to determine whether or not our results were statistically significant
- We also used residual plots to determine model validity

Design

Two-way basic factorial with one blocking factor, 18 total groups

• We chose this design because we felt that it was the best way to account for each individual treatment based on our blocking factor

Controlled vs. Uncontrolled Factors

- College-aged, 18-24 years old
- Healthy individuals
 - no diabetes, no asthma
- Gender
 - different serotonin levels
 - different alcohol and cannabis tolerance levels
- Every participant shown/given sad memories

- Prior history of substance use
- Mental/emotional state prior to sad memories task
- Genetics

Sample Size & Power

- Used Gpower to calculate a sample size of 197 for a two-way basic factorial design with one blocking factor
- Rounded to 198 individuals for a balanced design
- Power=0.8

Data Collection

- Collected a diverse sample of people from the largest city on the island, Macondo
 - o 99 females
 - o 99 males
- Used random assignment to place each participant into a treatment group
- Had each individual relive sad memories for one minute and then measured their serotonin levels shortly after

- Assign participants the task of drinking the number doses of alcohol, cannabis, or herbal tea depending on their randomly assigned treatment group
- Wait approximately 40 minutes for substances to settle
- Measured after serotonin levels

AOV Summary Output					
	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Substance	2	416.030303	208.015152	3.6375046	0.0281871
Dosage	2	342.757576	171.378788	2.9968544	0.0523358
Sex	1	2.671717	2.671717	0.0467196	0.8291074
Substance:Dosage	4	639.393939	159.848485	2.7952271	0.0274967
Residuals	188	10751.010101	57.186224	NA	NA

Looking at the diagnostic plots, we see that the assumptions of the Randomized Complete Blocking, Two-Way Effects Model are fairly well met. Looking at the p-values, the Substance Factor and Substance:Dosage Factor are the only statistically significant terms in the model.

The interaction plot conveys a clear trend between Alcohol and Cannabis across all Dosage levels, yet the results vary for the Control group (Herbal Tea) depending on the Dosage level

Substance Effects Model			
Alcohol		Cannabis	Control
-1.333		2.015	-0.682
Dosage Effects Model			
One_drink		Two_drinks	Three_drinks
0.152		1.53	-1.682
Sex Effects Model			
		Female	Male
		0.116	-0.116
Substance:Dosage Effects Model			
	One_drink	Two_drinks	Three_drinks
Alcohol	-1.364	2.303	-0.939
Cannabis	0.106	1.136	-1.242
Control	1.258	-3.439	2.182

Tukey HSD 95% Confidence Intervals				
	diff	lwr	upr	p adj
Cannabis-Alcohol	3.3484848	0.2385810	6.4583887	0.0314564
Control-Alcohol	0.6515152	-2.4583887	3.7614190	0.8738216
Control-Cannabis	-2.6969697	-5.8068735	0.4129342	0.1035834
2 drinks-1 drink	1.3787879	-1.7311160	4.4886917	0.5479859
3 drinks-1 drink	-1.8333333	-4.9432372	1.2765705	0.3467748
3 drinks-2 drinks	-3.2121212	-6.3220251	-0.1022174	0.0411506
Male-Female	-0.2323232	-2.3526165	1.8879701	0.8291074

Here, we see the results of the Effects Model (the Tau's) on the left, and the Tukey HSD 95% Confidence Intervals Above. The mean's of Cannabis and Alcohol are significantly different from each other.

Future Research Questions

Is Herbal Tea a true "placebo"?

 How do other substances besides alcohol and cannabis affect serotonin levels when in a depressed state?

• What other measurements can we use besides serotonin levels as a means to 'cope' with depression?