PME 3230

Análise Dimensional, Semelhança e Modelos

Alberto Hernandez Neto

Aplicação da análise dimensional:

- Desenvolvimento de equações
- Conversão entre diferentes sistemas de unidades
- Avaliação das variáveis relevantes em um determinado problema teórico ou experimental
- Desenvolvimento de protótipos
- Aplicação não restrita à Mecânica dos Fluidos

Exemplo: Determinação da força de arrasto (F_a) no escoamento ao redor de uma esfera lisa em um líquido

Parâmetros importantes:

D = Diâmetro da esfera

V = velocidade de escoamento

 μ = viscosidade dinâmica do fluido

ρ = massa específica do fluido

F_a = força de arrasto

$$F_a = f(D, V, \mu, \rho)$$

Como determinar *f*?

1º solução: Variação de cada parâmetro, mantendo os demais constantes

Procedimento:

- Bancada experimental montada para medição de F_a
- Variação de cada parâmetro para 10 valores diferentes
- Número total de experimentos: 10⁴
- Tempo de cada experimento: 5 minutos
- Tempo total de experimentos: 5x10⁴ minutos ≈ 830 horas ≈ 35 dias corridos

- Custo alto
- Relação entre os parâmetros

2ª solução: Aplicação da Análise Dimensional

D = Diâmetro da esfera

V = velocidade de escoamento

 μ = viscosidade dinâmica do fluido

ρ = massa específica do fluido

F_a = força de arrasto

Força de arrasto adimensional
$$\longrightarrow \frac{F_a}{\rho V^2 D^2} = f\left(\frac{\rho V D}{\mu}\right)$$
Número de Reynolds (adimensional)

Enunciado: Dada uma relação entre n parâmetros da forma

$$g(q_1; q_2;....; q_n) = 0,$$

então os n parâmetros podem ser agrupados em n - m razões independentes adimensionais, ou parâmetros \prod , que podem ser expressos em forma funcional por:

$$G(\prod_{1}; \prod_{2};; \prod_{n}) = 0$$
, ou

$$\prod_{1}=G1(\prod_{2};\prod_{3};....;\prod_{n-m})=0$$

O número m é usualmente (mas nem sempre) igual ao número mínimo r de dimensões independentes necessárias para especificar as dimensões de todos os parâmetros q_1 ; q_2 ;....; q_n .

A forma de G ou G1 não é prevista pelo teorema → determinação experimental

Este teorema é baseado no conceito de homogeneidade dimensional

Determinação dos grupos ∏:

- 1. Liste os parâmetros envolvidos (n)
- 2. Selecione um conjunto de dimensões fundamentais (primárias) MLt ou FLt (r)
- 3. Liste as dimensões dos parâmetros em termos das dimensões primárias (matriz dimensional)
- 4. Selecione da lista um número *m* de parâmetros, chamados de repetentes, que, em conjunto, incluam todas as dimensões primárias. Não selecione o parâmetro dependente.
- 5. Estabeleça equações dimensionais combinando os parâmetros repetentes com cada um dos remanescentes (*n-m*) equações
- 6. Verifique se cada grupo obtido é adimensional

Aplicando o teorema ao problema do escoamento da esfera:

1.
$$F_a, D, V, \mu, \rho \rightarrow n = 5$$

2. Usando M, L e t $\rightarrow r=3$

3.
$$F_a \doteq \frac{ML}{t^2}$$
 $D \doteq L$ $V \doteq \frac{L}{t}$ $\mu \doteq \frac{M}{Lt}$ $\rho \doteq \frac{M}{L^3}$

$$D \doteq L$$

$$V \doteq \frac{L}{t}$$

$$\mu \doteq \frac{M}{Lt}$$

$$\rho \doteq \frac{M}{L^3}$$

Matriz dimensional:

	F _a	D	V	ρ	μ
M	1	0	0	1	1
L	1	1	1	-3	-1
t	-2	0	-1	0	-1

- 4. Usando D, V e ρ
- n-m equações \rightarrow 5-3=2

$$\Pi_{1} = F_{a}D^{a}V^{b}\rho^{c} = (MLt^{-2})(L)^{a}(Lt^{-1})^{b}(ML^{-3})^{c} = M^{0}L^{0}t^{0}$$

$$[M]: 1+c=0 \Rightarrow c=-1$$

$$[L]: 1 + a + b - 3c = 0$$

$$[t]$$
: $-2-b=0 \Rightarrow b=-2$

Logo:
$$1+a-2-3(-1)=0 \Rightarrow a=-2$$

$$\Pi_1 = \frac{F_a}{\rho V^2 D^2}$$

$$\Pi_{2} = \mu D^{a} V^{b} \rho^{c} = (M L^{-1} t^{-1}) (L)^{a} (L t^{-1})^{b} (M L^{-3})^{c} = M^{0} L^{0} t^{0}$$

$$[M]: 1+c=0 \Rightarrow c=-1$$

$$[L]: -1 + a + b - 3c = 0$$

$$[t]$$
: $-1-b=0 \Rightarrow b=-1$

Logo:
$$-1 + a + (-1) - 3(-1) = 0 \Rightarrow a = -1$$

$$\Pi_2 = \frac{\mu}{\rho VD}$$

6. Usando F, L e t (M=FL⁻¹t²)

$$\Pi_{1} = \frac{F_{a}}{\rho V^{2} D^{2}} = \frac{F}{\left(F L^{-4} t^{2}\right) \left(L t^{-1}\right)^{2} \left(L\right)^{2}} = F^{0} L^{0} t^{0}$$

$$\Pi_{2} = \frac{\mu}{\rho VD} = \frac{FL^{-2}t}{\left(FL^{-4}t^{2}\right)\left(Lt^{-1}\right)\left(L\right)} = F^{0}L^{0}t^{0} \qquad \checkmark$$

$$\frac{F_a}{\rho V^2 D^2} = \phi_1 \left(\frac{\mu}{\rho V D} \right)$$

Qualquer potência ou produto de adimensionais também é adimensional

$$\Pi_2' = \Pi_2^{-1} = \frac{\rho VD}{\mu}$$

$$\frac{F_a}{\rho V^2 D^2} = \phi_1 \left(\frac{\rho V D}{\mu} \right)$$

Sendo que \$1 \'\epsilon\$ determinado experimentalmente

Obter grupos adimensionais \prod necessários para a determinação experimental da ascensão capilar h que ocorre quando um tubo de diâmetro D é inserido em um líquido de densidade ρ e tensão superficial σ .

$$\Delta h = f\left(D, \sigma, \rho\right)$$

Aplicando o teorema:

1.
$$\Delta h, D, \sigma, \rho \rightarrow n = 4$$

2. Usando M, L e t
$$\rightarrow r=3$$

3.
$$\Delta h \doteq L$$
 $D \doteq L$ $\sigma \doteq \frac{M}{t^2}$ $\rho \doteq \frac{M}{L^3}$

Matriz dimensional:

	Δ h	D	σ	ρ
М	0	0	1	1
L	1	1	0	-3
t	0	0	-2	0

- 4. Usando D e ρ
- 5. n-m equações \rightarrow 4-2=2

$$\Pi_1 = \Delta h D^a \rho^b = (L)(L)^a (ML^{-3})^b = M^0 L^0 t^0$$

$$[M]: b = 0$$

$$[L]: 1+a-3b=0 \Rightarrow a=-1$$

Portanto:

$$\Pi_1 = \frac{\Delta h}{D}$$

Quando *m<r*, uma das equações será Linearmente Dependente

Introduzindo um novo parâmetro: gravidade g

$$\Delta h = f(D, \sigma, \rho, g)$$

Aplicando o teorema:

1.
$$\Delta h, D, \sigma, \rho, g \rightarrow n = 5$$

2. Usando M, L e t $\rightarrow r=3$

3.
$$\Delta h \doteq L$$
 $D \doteq L$ $\sigma \doteq \frac{M}{t^2}$ $\rho \doteq \frac{M}{L^3}$ $g \doteq \frac{L}{t^2}$

Matriz dimensional:

	Δ h	D	g	ρ	σ
М	0	0	0	1	1
L	1	1	1	-3	0
t	0	0	-2	0	-2

m=3

- 4. Usando D, g e $\rho \rightarrow r=3$
- 5. n-m equações \rightarrow 5-2=3

$$\Pi_{1} = \rho^{a} D^{b} g^{c} \Delta h = \left(M L^{-3} \right)^{a} \left(L \right)^{b} \left(L t^{-2} \right)^{c} \left(L \right) = M^{0} L^{0} t^{0}$$

$$[M]: a = 0$$

$$[t]: -2c = 0 \Rightarrow c = 0$$

$$[L]: -3a+b+c+1=0 \Rightarrow -3(0)+b+0+1=0 \Rightarrow b=-1$$

$$\Pi_1 = \frac{\Delta h}{D}$$

$$\Pi_{2} = \rho^{a} D^{b} g^{c} \sigma = \left(M L^{-3}\right)^{a} \left(L\right)^{b} \left(L t^{-2}\right)^{c} \left(M t^{-2}\right) = M^{0} L^{0} t^{0}$$

$$[M]: a+1=0 \Rightarrow a=-1$$

$$[t]$$
: $-2c-2=0 \Rightarrow c=-1$

$$[L]: -3a+b+c=0 \Rightarrow -3(-1)+b+0-1=0 \Rightarrow b=-2$$

Logo:

$$\Pi_2 = \frac{\sigma}{\rho g D^2}$$

Portanto:

$$\frac{\Delta h}{D} = \phi \left(\frac{\sigma}{\rho g D^2} \right)$$

 $\frac{\Delta h}{D} = \phi \left(\frac{\sigma}{\sigma \sigma D^2} \right)$ Fluido estático, tempo não afeta o fenômeno

6. Usando F, L e t ($M=FL^{-1}t^2$)

$$\Pi_1 = \frac{\Delta h}{D} = \frac{L}{L} = F^0 L^0 t^0 \qquad \checkmark$$

$$\Pi_{2} = \frac{\sigma}{\rho g D^{2}} = \frac{\left(FL^{-1}\right)}{\left(FL^{-4}t^{2}\right)\left(Lt^{-2}\right)\left(L\right)^{2}} = F^{0}L^{0}t^{0} \qquad \checkmark$$

$$\frac{\Delta h}{D} = \phi_1 \left(\frac{\sigma}{\rho g D^2} \right)$$

Escoamento permanente incompressível viscoso através de um tubo retilíneo horizontal

Aplicando o teorema:

1.
$$\Delta p, \rho, \overline{V}, D, \ell, \mu, \varepsilon \rightarrow n = 7$$

2. Usando M, L e t $\rightarrow r=3$

3.
$$\Delta p \doteq \frac{M}{Lt^2}$$
 $\rho \doteq \frac{M}{L^3}$ $\overline{V} \doteq \frac{L}{t}$ $D \doteq L$ $\ell \doteq L$ $\mu \doteq \frac{M}{Lt}$ $\varepsilon \doteq L$

Matriz dimensional:

	Δ p	ρ	$ar{V}$	D	l	μ	ε
M	1	1	0	0	0	1	0
L	-1	-3	1	1	1	-1	1
t	-2	0	-1	0	0	-1	0

m=3

- 4. Usando ρ , \overline{V} e D
- 5. n-m equações \rightarrow 7-3=4

$$\Pi_{1} = \Delta p \rho^{a} \overline{V}^{b} D^{c} = (ML^{-1}t^{-2})(ML^{-3})^{a} (Lt^{-1})^{b} (L)^{c} = M^{0}L^{0}t^{0}$$

$$[M]: 1+a=0 \Rightarrow a=-1$$

$$[t]$$
: $-2-b=0 \Rightarrow b=-2$

$$[L]: -1-3a-b+c=0 \Rightarrow -1-3(-1)-2+c=0 \Rightarrow c=0$$

$$\Pi_1 = \frac{\Delta p}{\rho \bar{V}^2}$$

$$\Pi_{2} = \ell \rho^{a} \overline{V}^{b} D^{c} = (L) (M L^{-3})^{a} (L t^{-1})^{b} (L)^{c} = M^{0} L^{0} t^{0}$$

$$[M]: a = 0$$

$$[t]:-b=0$$

$$[L]: 1-3a+b+c=0 \Rightarrow 1-3(0)+0+c=0 \Rightarrow c=-1$$

$$\Pi_2 = \frac{\ell}{D}$$

$$\Pi_{3} = \mu \rho^{a} \overline{V}^{b} D^{c} = (ML^{-1}t^{-1})(ML^{-3})^{a} (Lt^{-1})^{b} (L)^{c} = M^{0}L^{0}t^{0}$$

$$[M]: 1+a=0 \Rightarrow a=-1$$

$$[t]$$
: $-1-b=0 \Rightarrow b=-1$

$$[L]: -1-3a+b+c=0 \Rightarrow -1-3(-1)-1+c=0 \Rightarrow c=-1$$

$$\Pi_3 = \frac{\mu}{\rho \bar{V}D}$$

$$\Pi_{4} = \varepsilon \rho^{a} \overline{V}^{b} D^{c} = (L) (ML^{-3})^{a} (Lt^{-1})^{b} (L)^{c} = M^{0} L^{0} t^{0}$$

$$[M]: a = 0$$

$$[t]: -b = 0 \Rightarrow b = 0$$

$$[L]: 1 - 3a + b + c = 0 \Rightarrow 1 - 3(0) + 0 + c = 0 \Rightarrow c = -1$$

Portanto:
$$\Pi_4 = \frac{\mathcal{E}}{D}$$

Logo:
$$\frac{\Delta p}{\rho \overline{V}^2} = \phi \left(\frac{\ell}{D}, \frac{\mu}{\rho \overline{V}D}, \frac{\varepsilon}{D} \right)$$

Grupos adimensionais importantes

$$Re = \frac{\rho VL}{\mu} = \frac{Forças de inércia}{Forças viscosas}$$

$$Eu = \frac{\Delta p}{\frac{1}{2}\rho V^2} = \frac{\text{Forças de pressão}}{\text{Forças de inércia}}$$

$$Fr = \frac{V}{\sqrt{gL}} = \frac{\text{Forças de inércia}}{\text{Forças gravitacionais}}$$

$$We = \frac{\rho V^2 L}{\sigma} = \frac{\text{Forças de inércia}}{\text{Forças de tensão superficial}}$$

$$Ma = \frac{V}{c} = \frac{\text{Forças de inércia}}{\text{Forças de compressibilidade}}$$

$$St = \frac{\omega L}{V} = \frac{\text{Forças de aceleração local}}{\text{Forças de aceleração convectiva}}$$

Correlação de dados experimentais

a) 1 parâmetro ∏:

 \prod_1 = C \rightarrow Análise Dimensional fornece a forma específica da relação.

Exemplo: partícula esférica se movendo em fluido ultra-viscoso:

$$F_a = f(d, V, \mu) \Rightarrow \prod_1 = \frac{F_a}{\mu V d} \Rightarrow F_a = C \mu V d$$

Correlação de dados experimentais

a) 2 parâmetros ∏: gráfico xy → Coeficiente de arrasto de uma esfera lisa

Correlação de dados experimentais

a) 3 parâmetros ∏: curvas de nível → Diagrama de Moody

Modelos e semelhança

Modelos:

Representação de um sistema físico (protótipo) que pode ser utilizado para predizer o comportamento de alguma característica do sistema. Podem ser matemáticos, computacionais, físicos, . . .

Semelhança:

Característica que faz com que os dados obtidos em testes com modelos possam ser transpostos por escala e predizer características do protótipo.

- a) Geométrica: dimensões (razão de escala linear, ângulos e direções do escoamento preservados)
- b) Cinemática: velocidades no escoamento (partículas homólogas atingem pontos homólogos em tempos homólogos)
- c) Dinâmica: forças aplicadas. Grupos adimensionais têm que ter o mesmo valor no modelo e no protótipo.

Dinâmica → Cinemática → Geométrica

Modelos e semelhança

Escalas

Razão entre o valor de uma grandeza no modelo e o valor da mesma grandeza no protótipo.

Comprimento:
$$\lambda_L = \frac{L_m}{L_p}$$
 Velocidade: $\lambda_V = \frac{V_m}{V_p}$

Massa específica:
$$\lambda_{\rho} = \frac{\rho_{m}}{\rho_{p}}$$
 $\frac{V_{m}L_{m}}{\nu_{m}} = \frac{V_{p}L_{p}}{\nu_{p}} \Rightarrow \lambda_{V} = \frac{\lambda_{V}}{\lambda_{L}}$

Exemplo: números de Reynolds iguais

$$\operatorname{Re}_{m} = \operatorname{Re}_{p} \Rightarrow \frac{\rho_{m} V_{m} L_{m}}{\mu_{m}} = \frac{\rho_{p} V_{p} L_{p}}{\mu_{p}} \Rightarrow \frac{\rho_{m}}{\rho_{p}} \frac{V_{m}}{V_{p}} \frac{L_{m}}{L_{p}} \frac{\mu_{p}}{\mu_{m}} = 1 \Rightarrow \lambda_{\rho} \lambda_{V} \lambda_{L} \frac{1}{\lambda_{\mu}} = 1$$

Um experimento para predizer a força de arrasto em um sonar de submarino é realizado com um modelo em escala 1:5 em água a 20 C. Quando a velocidade do escoamento no modelo é de $V_m = 60$ km/h, mede-se uma força $F_{am} = 30$ N. Sabendo que o protótipo navegará em águas a 24 C, qual será a velocidade do protótipo V_p para que haja semelhança completa? Neste caso, qual será a força de arrasto correspondente F_{ap} ?

$$\frac{F_a}{\rho V^2 L^2} = \phi \left(\frac{\rho V L}{\mu} \right)$$

$$\operatorname{Re}_{m} = \operatorname{Re}_{p} \Rightarrow \frac{\mu_{m} V_{m} L_{m}}{\mu_{m}} = \frac{\mu_{p} V_{p} L_{p}}{\mu_{p}}$$

$$\rho(20^{\circ}C) \approx \rho(4^{\circ}C) = 1000 \, kg/m^{3}$$

$$\mu(20^{\circ}C) = 10^{-3} \, kg/(m.s)$$

$$V_p = V_m \frac{L_m}{L_n} \frac{\mu_p}{\mu_m} = 60x \frac{1}{5} x \frac{1,58x 10^{-3}}{1,00x 10^{-3}} = 19 \, \text{km/h}$$

$$\mu(4^{\circ}C) = 1,58x10^{-3} kg/(m.s)$$

$$C_{a,m} = C_{a,p} \Rightarrow \frac{F_{a,m}}{R_n V_m^2 L_m^2} = \frac{F_{a,p}}{R_n V_p^2 L_p^2}$$

$$F_{a,p} = F_{a,m} \left(\frac{V_p^2}{V_m^2} \right) \left(\frac{L_p^2}{L_m^2} \right) = 30x \left(\frac{19}{60} \right)^2 \left(\frac{5}{1} \right)^2 = 75,2N$$

Um hélice de 6m de diâmetro desloca um barco com $V = 7,5 \, m/s$, girando a 120 rpm. Para um modelo geometricamente semelhante, escala 1:10, usado para medir a força axial F, determine qual a velocidade e rotação do modelo, V_m e n_m , para que haja semelhança completa. Nessa condição, qual a escala das forças?

Dado: $F = f(\rho, V, D, n; g)$.

Aplicando o teorema:

- 1. $F, \rho, V, D, n, g \rightarrow n = 6$
- 2. Usando M, L e t $\rightarrow r=3$

3.
$$F \doteq \frac{ML}{t^2}$$
 $\rho \doteq \frac{M}{L^3}$ $V \doteq \frac{L}{t}$ $D \doteq L$ $n \doteq \frac{1}{t}$ $g \doteq \frac{L}{t^2}$

Matriz dimensional:

	F	ρ	V	D	n	g
M	1	1	0	0	0	1
L	1	-3	1	1	0	1
t	-2	0	-1	0	-1	-2

$$m=3$$

- 4. Usando ρ , V e D
- 5. n-m equações \rightarrow 6-3=3

$$\Pi_{1} = F \rho^{a} V^{b} D^{c} = \left(M L^{-1} t^{-2} \right) \left(M L^{-3} \right)^{a} \left(L t^{-1} \right)^{b} \left(L \right)^{c} = M^{0} L^{0} t^{0}$$

$$[M]: 1+a=0 \Rightarrow a=-1$$

$$[t]$$
: $-2-b=0 \Rightarrow b=-2$

$$[L]: 1-3a+b+c=0 \Rightarrow 1-3(-1)-2+c=0 \Rightarrow c=-2$$

$$\Pi_1 = \frac{F}{\rho V^2 D^2}$$

$$\Pi_2 = n\rho^a V^b D^c = (t^{-1}) (ML^{-3})^a (Lt^{-1})^b (L)^c = M^0 L^0 t^0$$

$$[M]: a = 0$$

$$[t]$$
: $-1-b=0 \Rightarrow b=-1$

$$[L]: -3a+b+c=0 \Rightarrow -3(0)-1+c=0 \Rightarrow c=1$$

$$\Pi_2 = \frac{nD}{V}$$

$$\Pi_3 = g \rho^a V^b D^c = (Lt^{-2}) (ML^{-3})^a (Lt^{-1})^b (L)^c = M^0 L^0 t^0$$

$$[M]: a = 0$$

$$[t]$$
: $-2-b=0 \Rightarrow b=-2$

$$[L]: 1-3a+b+c=0 \Rightarrow 1-3(0)-2+c=0 \Rightarrow c=1$$

$$\Pi_3 = \frac{gD}{V^2}$$

$$\Pi_3 = g \rho^a V^b D^c = \left(Lt^{-2}\right) \left(ML^{-3}\right)^a \left(Lt^{-1}\right)^b \left(L\right)^c = M^0 L^0 t^0$$

$$[M]: a = 0$$

$$[t]: -2 - b - 0 \rightarrow b - -2$$

$$[t]$$
: $-2-b=0 \Rightarrow b=-2$

$$[L]: 1-3a+b+c=0 \Rightarrow 1-3(0)-2+c=0 \Rightarrow c=1$$

$$\Pi_3 = \frac{gD}{V^2}$$

$$\frac{F}{\rho V^2 D^2} = \phi \left(\frac{nD}{V}, \frac{gD}{V^2} \right)$$

Igualando os adimensionais para semelhança completa:

$$\frac{n_m D_m}{V_m} = \frac{n_p D_p}{V_p} \Longrightarrow \lambda_n = \frac{\lambda_V}{\lambda_D}$$

$$\frac{gD_m}{V_m^2} = \frac{gD_p}{V_p^2} \Longrightarrow \lambda_V = \sqrt{\lambda_D}$$

$$\lambda_D = \frac{1}{10} \Longrightarrow \lambda_V = \sqrt{\frac{1}{10}}$$

$$\lambda_n = \frac{\sqrt{\lambda_D}}{\lambda_D} = \lambda_D^{-1/2} = \sqrt{10}$$

$$V_m = \lambda_V V_p = \sqrt{\frac{1}{10}} x7, 5 = 2,37 \, m/s$$
 $n_m = \lambda_n n_p = \sqrt{10} x120 = 379 rpm$

$$n_m = \lambda_n n_p = \sqrt{10}x120 = 379rpm$$

$$\frac{F_m}{\rho_m V_m^2 D_m^2} = \frac{F_p}{\rho_p V_p^2 D_p^2} \Rightarrow \lambda_F = \lambda_V^2 \lambda_D^2 = (\lambda_D^{1/2})^2 \lambda_D^2 = \lambda_D^3 = \frac{1}{1000}$$

A semelhança dinâmica pode requerer a duplicação de diversos adimensionais, o que pode não ser possível na prática.

Exemplo 1: Escoamentos com superfície livre

- Gravidade (Fr) e tensão superficial (We) podem ser importantes para a formação de ondas.
- Casos típicos: navios, rios e lagos.

Arrasto em navio

Duas origens: resistência de onda (g), forças viscosas (μ)

$$C_A = f(Fr, Re)$$

Igualando os adimensionais do modelo e do protótipo:

$$Fr_m = Fr_p \Rightarrow \frac{V_m}{\sqrt{gL_m}} = \frac{V_p}{\sqrt{gL_p}} \Rightarrow \lambda_V = \lambda_L^{1/2}$$
 (1)

$$\operatorname{Re}_{m} = \operatorname{Re}_{p} \Rightarrow \frac{V_{m}L_{m}}{\upsilon_{m}} = \frac{V_{p}L_{p}}{\upsilon_{p}} \Rightarrow \lambda_{\upsilon} = \lambda_{V}\lambda_{L}$$
 (2)

Substituindo (1) em (2): $\lambda_{\nu} = \lambda_{L}^{1/2} \lambda_{L} = \lambda_{L}^{3/2}$

Considerando:
$$\lambda_L \approx \frac{1}{100} \Rightarrow \lambda_v = \frac{1}{1000}$$

Não existe líquido com $\upsilon = 0.001 \upsilon_{\text{água}}$

Solução:

• Utilizar a hipótese: $C_A(Fr, Re) = C_{Ao}(Fr) + C_{Av}(Re)$

Procedimento:

- 1. Realiza-se o experimento com semelhança de número de Froude com o protótipo
- 2. Mede-se o arrasto total no modelo
- Calcula-se o arrasto viscoso no modelo com relação derivada da teoria da camada limite
- 4. Subtrai-se o arrasto viscoso calculado do arrasto total medido para obter o arrasto de onda no modelo
- 5. Transpõe-se por escala o arrasto de onda para o protótipo, pois:

$$Fr_p = Fr_m$$

- 6. Calcula-se o arrasto viscoso no protótipo com relação derivada da teoria da camada limite
- 7. Somam-se os arrastos viscoso e de onda no protótipo para se obter o arrasto total

Exemplo: rios e lagos

Pequena profundidade do modelo faz com que a tensão superficial torne-se importante no experimento. A solução normalmente adotada é utilizar duas escalas de comprimento diferentes, uma para o plano horizontal e outra para a direção vertical.

- Internos ou externos, sem superfície livre
- Dominam forças de inércia e viscosas (Re é importante)
- Compressibilidade do fluido também é importante se Ma>0,3

Exercício 5

Um modelo de automóvel em escala 1:5 será usado para estimar a força de arrasto no protótipo andando a 90 km/h. Qual deve ser a velocidade do modelo, V_m ? Qual será a escala de forças,

$$\lambda_F = F_{A,m}/F_{A,p}$$
 , nesta condição?

$$C_A = f(Re)$$
 $\therefore Re_m = Re_p \Rightarrow \lambda_V = \frac{\lambda_v}{\lambda_L}$

Se usarmos o mesmo fluido (ar):
$$\upsilon_m = \upsilon_p \Rightarrow \lambda_V = \frac{1}{\lambda_L}$$

$$\therefore V_m = 5V_p = 450 \, km/h$$

Nas condições normais de temperatura e pressão, Ma=0,3 significa V=360 km/h, portanto os efeitos de compressibilidade são importantes

Solução: para corpos aerodinâmicos (sem separação da camada limite) ou para corpos onde a separação é fixa, C_A não varia muito com Re para Re muito alto

Para automóveis, o comprimento característico normalmente utilizado é o comprimento do automóvel, que para carros de passeio varia entre 3,8m e 4,3 m. Vamos considerar que o comprimento do protótipo seja de Lp=4m. Logo:

Re_p =
$$\frac{V_p L_p}{v_p} = \frac{(90/3,6)x4}{1,5x10^{-5}} = 6,7x10^6$$

Re está na faixa onde a camada limite é turbulenta \rightarrow C_A não varia mais com Re

Se V_m =90 km/h \rightarrow Re=1,3x10⁶ \rightarrow C_A não varia mais com Re e pode-se usar $V_m \rightarrow$ C_{A,m}=C_{A,p}

$$C_{A,m} = C_{A,p} \Rightarrow \frac{F_{A,m}}{R_m V_m^2 L_m^2} = \frac{F_{A,p}}{R_p V_p^2 L_p^2}$$
 $\lambda_F = \frac{F_{A,m}}{F_{A,p}} = \frac{L_m^2}{L_p^2} = \frac{1}{25} = 0,04$

Caso $C_A = f(Re, Ma)$ (compressibilidade afeta o fenômeno):

$$\operatorname{Re}_{m} = \operatorname{Re}_{p} \Longrightarrow \lambda_{V} = \frac{\lambda_{v}}{\lambda_{L}}$$

$$Ma_m = Ma_p \Rightarrow \frac{V_m}{c_m} = \frac{V_p}{c_p} \Rightarrow \lambda_V = \lambda_c$$

Utilizando o mesmo fluido e em condições de temperatura e pressão semelhantes → impossível igualar Re e Ma

Solução: impor semelhança em Ma, pois Re é alto e suficiente para que C_A não dependa de Re

