建北京理工大学

数码相机性能评测课程实验报告

实验三 色彩还原性测试

姓 名:廖汉龙

学 号: 1120151880

学 院: 计算机学院

班 级: 07111507

邮 箱: <u>liamliaohl@gmail.com</u>

2018年4月29日 星期日

实验报告链接:

 $\frac{https://github.com/HanlongLiao/Course/tree/master/\%E6\%95\%B0\%E7\%A0\%81\%E7\%9B\%B8\%}{E6\%9C\%BA\%E8\%AF\%84\%E6\%B5\%8B}$

目录

一、	实验目的:	.3
	实验要求:	
	实验环境	
	3.1 试验设备与环境	
	3.2 照片选取	
	实验过程	
	实验结果与总结	

一、实验目的:

- 1、了解数码相机色彩还原性测试标板
- 2、掌握数码相机色彩还原性测试方法
- 3、了解 Imatest 色彩还原性测试结果的含义

二、实验要求:

- 1、使用数码相机拍摄 24 色标准色卡 (轻微脱焦拍摄)
- 2、使用 Imatest 软件的 Colorcheck 模块测量数码相机色彩还原性
- 3、了解 Imatest 色彩还原性测试结果的含义
- 4、**独立完成实验报告**,需明确相机型号、基本设置、并包含所拍摄图案以及处理结果和相 应说明

三、实验环境

3.1 试验设备与环境

镜头型号	华为 honor 后置镜头	
模式	简易拍摄	
光源	室内光源	
像素	1200万/1200万	
对焦系统	Dual PD 全像双核对焦	
模式	连拍全景模式	
光圈	f/1.9 超大光圏 f/2.0 大	
	光圈	
镜头	6 片定制镜头 5 片定制镜头	

3.2 照片选取

从所拍的照片中随机选择三张 24 色标准色卡图片进行实验测试

图-1

图-2

图-3

四、实验过程

使用 Imatest 软件的 Colorcheck 模块测量相机的色彩还原性 在输入测试的图片后,出现的测量界面如下:

图-4

我们需要从中选取所需的信息,根据实验的要求,我们大概读取了图-4 中第三个窗口的测量值,由图表的数据可知,该相机的色彩饱和度是 126.6%,色差(此处参考 deltAC corr)的最大偏移量为 16.4 平均值为 7.92,整体色彩偏移控制得还不错,色彩还原也比较准确。

下面是各项数据的准确读取:

图-5

以图中的第一个窗口为例:相机的色彩饱和度需要观察图中的 Maen camera chrome 一项,其值为 126.6%。色差一项需要参考图中的 chroma corr 一项,平均值为 7.92,最大值为 16.4 ,整体色差偏移控制的较好,色彩还原准确。三张图片的数据如下:

测量项		图-1	图-2	图-3
Mean camera chroma		126.6%	121.9%	116.1%
Chroma	mean	7.92	8.42	8.69
corr	max	16.4	18.1	19.2

表-1

如图-6 中对应的第一张测试图片显示的结果所示, 在每个方格中的最外层 区域 Zone1 原本的色块,里边两层 Zone2 和 Zone3 是标明的理想值。在 Zone 1 和 Zone 2 之间,主要是用来比较曝光的误差。 Zone 3 代表色彩的理想值,比较,Zone 1 及 Zone 3 可以知道在色彩上的偏移情况。以图-1 测试样本为例,如图-6 测试结果,比较图中个方格的区域 zone1 和 zone2, 发现亮度接近索命该相机曝光误差小。比较下图中个方格的区域 zone1 和 zone3,发现色差pain 差较小,说明该相机的色彩控制较好。

图-6

图-7

[고]-1							
图片		图-1	图-2	图-3			
测量值色阶							
Middle	R	11.08%	9.72%	11.42%			
gray	G	11.06%	9.65%	11.37%			
	В	11.29%	9.99%	11.51%			
	Y	11.08%	9.69%	11.39%			
Avg. noise	R	11.39%	10.44%	10.76%			
	G	11.25%	10.27%	10.60%			
	В	11.04%	9.98%	10.29%			
	Y	11.27%	9.28%	10.61%			

表-2

不同色阶的噪声对于不同的应用场景有着不同的影响,例如, R 色阶对于人像摄影有着较大影响,而 G 色阶和 B 色阶对于风景摄影有着较大影响,由于该镜头是普通手机镜头,所以在各个色阶上的噪声处理表现都很一般,对于人像摄影和风景摄影都显得有些捉襟见肘。

五、实验结果与总结

结合之前的实验一和实验二, 和其他同学的 Nikon 单反相机的对比,手机镜头和 Nikon 单反在空间频率响应和视觉分辨率方面虽然有些差距,但总体上还是处于同一个数量级。但在色彩还原性方面,手机镜头和 Nikon 单反展现出现了本质上的差距,所以手机镜头虽然在分辨率方面表现还不错,但在色彩还原性等方面与专业单反相机还是存在较大差距。