MECHTRON 2MD3

Data Structures and Algorithms for Mechatronics Winter 2022

15 Algorithms Analysis

Department of Computing and Software

Instructor:

Omid Isfahanialamdari

February 17, 2022

Again! summing the n elements of an integer array A:

0, 2

- recursively
 - summing first half
 - summing second half
 - adding the two
- Analysis of the algorithm:
 - We assume n is a power of 2
 - BinarySum(A, 0, n)
 - BinarySum(A, 0, 8)
 - n is halved at each recursive call

```
Algorithm BinarySum(A, i, n):

Input: An array A and integers i and n

Output: The sum of the n integers in A starting at index i

if n = 1 then

return A[i]

return BinarySum(A, i, \lceil n/2 \rceil) + BinarySum(A, i + \lceil n/2 \rceil, \lceil n/2 \rceil)
```


- Analysis of the algorithm:
 - We assume n is a power of 2
 - BinarySum(A, 0, n)
 - BinarySum(A, 0, 8)
 - n is halved at each recursive call

```
Algorithm BinarySum(A, i, n):

Input: An array A and integers i and n

Output: The sum of the n integers in A starting at index i

if n = 1 then

return A[i]

return BinarySum(A, i, \lceil n/2 \rceil) + BinarySum(A, i + \lceil n/2 \rceil, \lceil n/2 \rceil)
```

The depth of the recursion, that is, the maximum number of function instances that are active at the same time, is 1 + log₂ n

- Analysis of the algorithm:
 - We assume n is a power of 2
- Memory consumption (Space complexity)
 - The depth of the recursion, that is, the maximum number of function instances that are active at the same time, is 1 + log₂ n
 - Remember that this depth was n for LinearSum

- Analysis of the algorithm:
 - We assume n is a power of 2
- Runtime (Time complexity)
 - There are 2n-1 boxes (calls) in BinarySum
 - There are n boxes (calls) in LinearSum
- Assume each calls is visited in a constant time

Comparing Algorithms

- Algorithm: An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.
- There are different solutions for a problem
- We need to identify. which solution is better than the other.
- Better in the sense of:
 - Running time
 - Memory space required
 - structure of programs (readability, simplicity, design)

Running Time

- Most algorithms transform input objects into output objects.
 - We need to think about input
 - Insertion sort: array of size n
 - recursive factorial: n
- The running time of an algorithm typically grows with the input size.
 - best cases
 - average cases
 - worst cases
- We focus on the worst-case running time.
 - Easier to analyze
 - Crucial to applications such as games, embedded systems
- Average-case running time is often difficult to determine.
 - o Why?

Average vs. Worst Case

The average case running time is harder to analyze because you need to know

the probability distribution of the input.

- knowing the worst-case time is important in many applications
 - real-time systems
 - nuclear reactor
 - air traffic control

Experimental Approach

- Implement your algorithm
- Run the program with inputs of varying size and composition
- Use a wall clock to get an accurate measure of the actual running time
- Plot the results

Experimental Approach - Limitations

- It is necessary to implement your algorithm, which may be difficult and often timeconsuming
 - Sometimes you just ideate!
- Results may not be indicative of the running time on other inputs not included in the experiment.
 - Your input may not be inclusive enough of all possible inputs
- Competing algorithms!
 - In order to compare your algorithm with a competing algorithm, the same hardware and software environments must be used
 - Your competitor may have ran on a high-end machine to which you don't have access
 - You need to implement it!
 - Or buy the same machine

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
 - The algorithm receives a worth of data
 - Performs a few operations on the data
- Characterizes running time as a function of the input
 - Size of input: array of length n
 - input: n for factorial
- Considers all possible inputs
- Allows us to evaluate the relative efficiency of any two algorithms independent of the hardware/software environment
- For each algorithm, we will end up with a function f(n) that characterizes the running time of the algorithm as a function of the input size n

- Primitive operation corresponds to a low-level instruction with an execution time that is constant
 - Basic computations performed by an algorithm
 - Identifiable in pseudocode
 - Largely independent of the programming language
 - Exact definition is not important
- We define a set of primitive operations such as the following:
 - Assigning a value to a variable
 - Calling a function
 - Performing an arithmetic operation
 - Comparing two numbers
 - Indexing into an array
 - Following an object reference
 - Returning from a function

```
Algorithm arrayMax(A, n):
```

Input: An array A storing $n \ge 1$ integers.

Output: The maximum element in A.

$$currMax \leftarrow A[0]$$

for $i \leftarrow 1$ to $n-1$ do

if $currMax < A[i]$ then

 $currMax \leftarrow A[i]$

return $currMax$

- We define a set of primitive operations such as the following:
 - Assigning a value to a variable
 - Calling a function
 - Performing an arithmetic operation
 - Comparing two numbers
 - Indexing into an array
 - Following an object reference
 - Returning from a function

```
Algorithm arrayMax(A, n):
```

Input: An array A storing $n \ge 1$ integers. **Output:** The maximum element in A.

 $currMax \leftarrow A[0]$ for $i \leftarrow 1$ to n-1 do

if currMax < A[i] then $currMax \leftarrow A[i]$ return currMax

- We define a set of primitive operations such as the following:
 - Assigning a value to a variable
 - Calling a function
 - Performing an arithmetic operation
 - Comparing two numbers
 - Indexing into an array
 - Following an object reference
 - Returning from a function

```
Algorithm arrayMax(A, n):

Input: An array A storing n \ge 1 integers.

Output: The maximum element in A.

currMax \leftarrow A[0] <----- 2 operations

for i \leftarrow 1 to n-1 do

if currMax < A[i] then

currMax \leftarrow A[i]

return currMax
```

- 1. accessing A[0] (indexing in array)
- 2. assigning A[0] to currMax

- We define a set of primitive operations such as the following:
 - Assigning a value to a variable
 - Calling a function
 - Performing an arithmetic operation
 - Comparing two numbers
 - Indexing into an array
 - Following an object reference
 - Returning from a function

```
Algorithm arrayMax(A, n):

Input: An array A storing n \ge 1 integers.

Output: The maximum element in A.

currMax \leftarrow A[0] <----- 2 operations

for i \leftarrow 1 to n-1 do

if currMax < A[i] then

currMax \leftarrow A[i]

return currMax
```

The for loop repeats **n** times, why? Each time it has **2** operations, why?

- We define a set of primitive operations such as the following:
 - Assigning a value to a variable
 - Calling a function
 - Performing an arithmetic operation
 - Comparing two numbers
 - Indexing into an array
 - Following an object reference
 - Returning from a function

```
Algorithm arrayMax(A, n):

Input: An array A storing n \ge 1 integers.

Output: The maximum element in A.

currMax \leftarrow A[0] <------ 2 operations

for i \leftarrow 1 to n-1 do

if currMax < A[i] then

currMax \leftarrow A[i]

return currMax
```

The for loop repeats **n** times, why?
Each time it has **2** operations, why?
each time it involves an **assignment** and a **comparison**

- We define a set of primitive operations such as the following:
 - Assigning a value to a variable
 - Calling a function
 - Performing an arithmetic operation
 - Comparing two numbers
 - Indexing into an array
 - Following an object reference
 - Returning from a function

```
Algorithm arrayMax(A, n):

Input: An array A storing n \ge 1 integers.

Output: The maximum element in A.

currMax \leftarrow A[0] <----- 2 operations

for i \leftarrow 1 to n-1 do

if currMax < A[i] then

currMax \leftarrow A[i]

return currMax
```

The for loop will repeat **n** times, why?

We account for the last increment to \mathbf{n} in which the for loop identifies it should exit before entering next iteration for example: $\mathbf{n} = 4$ for \mathbf{i} from $\mathbf{1}$ to $\mathbf{3} \Rightarrow$ in the last iteration \mathbf{i} becomes $\mathbf{4}$ and will be compared to $\mathbf{3}$

- We define a set of primitive operations such as the following:
 - Assigning a value to a variable
 - Calling a function
 - Performing an arithmetic operation
 - Comparing two numbers
 - Indexing into an array
 - Following an object reference
 - Returning from a function

```
Algorithm arrayMax(A, n):

Input: An array A storing n \ge 1 integers.

Output: The maximum element in A.

currMax \leftarrow A[0] <----- 2 operations

for i \leftarrow 1 to n-1 do <---- 2n operations

if currMax < A[i] then

currMax \leftarrow A[i]

return currMax
```

The for loop will repeat **n** times, why?

We account for the last increment to \mathbf{n} in which the for loop identifies it should exit before entering next iteration for example: $\mathbf{n} = 4$ for \mathbf{i} from $\mathbf{1}$ to $\mathbf{3} \Rightarrow$ in the last iteration \mathbf{i} becomes $\mathbf{4}$ and will be compared to $\mathbf{3}$

- We define a set of primitive operations such as the following:
 - Assigning a value to a variable
 - Calling a function
 - Performing an arithmetic operation
 - Comparing two numbers
 - Indexing into an array
 - Following an object reference
 - Returning from a function

```
Algorithm arrayMax(A, n):

Input: An array A storing n \ge 1 integers.

Output: The maximum element in A.

currMax \leftarrow A[0] <----- 2 operations

for i \leftarrow 1 to n-1 do <---- 2n operations

if currMax < A[i] then

i+currMax \leftarrow A[i] <--- 2(n-1) operations

return currMax
```

The body of for loop will repeat **n-1** times

The increment of *i* is performed at the end of each iteration

- We define a set of primitive operations such as the following:
 - Assigning a value to a variable
 - Calling a function
 - Performing an arithmetic operation
 - Comparing two numbers
 - Indexing into an array
 - Following an object reference
 - Returning from a function

```
Algorithm arrayMax(A, n):

Input: An array A storing n \ge 1 integers.

Output: The maximum element in A.

currMax \leftarrow A[0] <----- 2 operations

for i \leftarrow 1 to n-1 do <---- 2n operations

if currMax < A[i] then

i+currMax \leftarrow A[i] <-- 2(n-1) operations

return currMax < --1 operation
```

We will have a total of 8n - 2 operations n is the input size!

Estimating Runtime

- Algorithm arrayMax executes 8n 2 primitive operations in total
- Suppose:
 - a = Time taken by the fastest primitive operation
 - b = Time taken by the slowest primitive operation

```
Algorithm arrayMax(A, n):

Input: An array A storing n \ge 1 integers.

Output: The maximum element in A.

currMax \leftarrow A[0]

for i \leftarrow 1 to n-1 do

if currMax < A[i] then

currMax \leftarrow A[i]

return currMax
```

- The running time of arrayMax is bounded by two linear functions
 - \circ **a**(8n 2) <= **T(n)** <= **b**(8n 2)
- Changing the hardware / software environment
 - Affects T(n) by a constant factor, but does not alter the growth rate of T(n)
- The linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax

Questions?