Universidad Tecnológica Nacional - Facultad Regional Mar del Plata

<u>Carrera: Técnico Universitario en Programación</u> <u>Trabajo Práctico de revisión: Lógica Proposicional</u>

A 11. 1		
Anallidas	, Nlambaac	
ADE.11100 \	/ INOMIDIES.	

- 1) Indicar cuales de las siguientes oraciones son proposiciones y justificar en caso de falsedad. Las afirmativas clasificar en simples o compuestas y representarlas en forma simbólica
 - a) La música está demasiado alta
 - b) El enunciado del problema no está claro
 - c) Debe lavarse las manos en forma regular
 - d) O estudio para el parcial o voy a entrenar.
 - e) Mañana corto el pasto y arreglo el jardín
 - f) ¿Lloverá mañana?
 - q) X + 4 = -10
 - h) No se cae el vaso al piso o se rompe.
- 2) a) Indicar cuales de las siguientes afirmaciones es verdadera:
 - a.1) Una proposición es un enunciado que puede adoptar solo dos posibilidades: verdadero o falsa.
 - a.2) Una pregunta o expresión exclamativa también puede considerarse proposición.
 - a.3) El conectivo de la "y" significa que suceden algunas de las acciones o proposiciones.
 - a.4) Una proposición compuesta está formada por la unión de proposiciones simples mediante conectivos lógicos.
 - a.5) La expresión $-(p \lor q) = -p \land -q$ es falsa.
 - a.6) La expresión $-(q \wedge p) = -q \wedge -p$ es verdadera.
 - a.7) el orden de prioridad de los conectivos es: Negación disyunción incluyente conjunción disyunción excluyente.
 - 3) Dada la proposición compuesta $[p \lor (-q \land p)] \lor -q$
 - a) construir la tabla de verdad correspondiente.
 - b) Construir el circuito lógico correspondiente.
 - 4) Enunciar las leyes de De Morgan y demostrar su equivalencia mediante tabla de verdad.
 - 5) Construir la tabla de verdad correspondiente a las siguientes proposiciones compuestas y clasificar en Tautologías, contradicción o contingencia.
 - a) $(-p \lor q) \land -q$
 - b) $-(-r \vee q) \wedge r$
 - c) $r \vee p \vee q \wedge -r$
 - d) $q \vee (-q \vee p) \wedge -s$