

Universidad Nacional de Ingeniería Escuela Profesional de Matemática Ciclo 2021-1

[Análisis Convexo - CM3E2] [Prof: Jonathan Munguia]

UNI, 14 de mayo de 2021

Práctica Calificada 2

1. Sea $C \subset \mathbb{R}^n$ convexo. Probar que $\operatorname{aff}(C) = \operatorname{aff}(\operatorname{ri}(C))$.

[5ptos]

Solución:

a) Suponiendo que C no se reduce a un punto. Por el Teorema 1 de la cuarta sesión, existen $\{x_0, x_1, \cdots, x_p\} \subset C$ afinamente independientes con p máximo tal que

$$\operatorname{aff}(C) = \operatorname{aff}\{x_0, x_1, \cdots, x_p\}.$$

b) Ahora consideremos el conjunto

$$T := \left\{ \sum_{i=0}^{p} t_i x_i : \left\{ t_i \right\}_{i=0}^{p} \subset (0,1), \sum_{i=0}^{p} t_i = 1 \right\}$$
$$= x_0 + \left\{ \sum_{i=0}^{p} t_i (x_i - x_0) : \left\{ t_i \right\}_{i=1}^{p} \subset (0,1), \sum_{i=1}^{p} t_i < 1 \right\}.$$

El cual es un subconjunto del aff(C).

c) Sea la bola unitaria $B=\{t\in\mathbb{R}^p:\|t\|_s<1\}$, donde $\|.\|_s$ denota la norma de la suma. Entonces, se tiene que

$$(0,1)^p \cap B = \left\{ t = (t_1, \dots, t_p) \in \mathbb{R}_{++}^p : \sum_{i=1}^p t_i < 1 \right\}.$$

Es un subconjunto abierto de \mathbb{R}^p .

d) Sea la aplicación afín $f: \mathbb{R}^p \to \text{aff}(C)$ definida como

$$f(t_1, \dots, t_p) = x_0 + \sum_{i=1}^p t_i(x_i - x_0).$$

Claramente es inyectiva porque los vectores $\{x_1 - x_0, \dots, x_p - x_0\}$ son linealmente independientes. Además como la dim(aff(C)) = p, entonces f es continua biyectiva.

- e) Se observa que $T = f((0,1)^p \cap B)$, el cual es subconjunto abierto relativo al aff(C), pues $(0,1)^p \cap B$ es abierto y f es continua biyectiva por lo que lleva abiertos en abiertos.
- f) Como $\{x_0, x_1, \dots, x_p\} \subset T \subset C$ entonces $\inf\{x_0, x_1, \dots, x_p\} \subset \inf(T) \subset \inf(C)$, lo que implica que $\inf(T) = \inf(C)$. Además por la parte e), se tiene que $T \subset \operatorname{ri}(C) \subset C$, luego

$$\operatorname{aff}(C) = \operatorname{aff}(T) \subset \operatorname{aff}(\operatorname{ri}(C)) \subset \operatorname{aff}(C).$$

Por tanto aff(ri(C)) = aff(C).

Solución:

- a) Los subespacios en espacios de dimensión infinita en general no son cerrados. Sin embargo los subespacios de \mathbb{R}^n si son cerrados. Probar!
- b) Sea $\operatorname{aff}(S) x$ para $x \in S$ un subespacio vectorial (cerrado), luego la traslación lleva cerrados en cerrados, por tanto $\operatorname{aff}(S)$ es un subconjunto cerrado de \mathbb{R}^n .
- c) Como $S \subset \overline{S}$ entonces $\operatorname{aff}(S) \subset \operatorname{aff}(\overline{S})$.
- d) Como $S \subset \text{aff}(S)$ entonces por b) se tiene

$$\overline{S} \subset \overline{\mathrm{aff}(S)} = \mathrm{aff}(S) \Longrightarrow \mathrm{aff}(\overline{S}) \subset \mathrm{aff}(S).$$

- e) Se concluye de c) y d).
- 3. Sean C_1, C_2 subconjuntos convexos de \mathbb{R}^n . Probar que

$$\overline{C_1} = \overline{C_2} \iff \operatorname{ri}(C_1) = \operatorname{ri}(C_2).$$
 [5ptos]

Solución:

a) Dado el hecho que: Si C es convexo entonces

$$\operatorname{ri}(C) = \operatorname{ri}(\overline{C}) \quad \wedge \quad \overline{\operatorname{ri}(C)} = \overline{C}.$$

b) \Longrightarrow) Por la primera igualdad de a), se tiene

$$\operatorname{ri}(C_1) = \operatorname{ri}(\overline{C}_1) = \operatorname{ri}(\overline{C}_2) = \operatorname{ri}(C_2).$$

c) \leftarrow Por la segunda igualdad de a), se tiene que

$$\overline{C}_1 = \overline{\operatorname{ri}(C_1)} = \overline{\operatorname{ri}(C_2)} = \overline{C}_2.$$

4. Considere el politopo $P = co(x_1, \dots, x_p)$. Mostrar que si x es un punto extremo de P, entonces $x \in \{x_1, \dots, x_p\}$. ¿Es cada x_j necesariamente un punto extremo? [5ptos]

Solución:

<u>Punto extremo</u>: $x \in C$ es un punto extremo si y solo si $x = t x_1 + (1-t)x_2$, $t \in (0,1)$ y $x_1, x_2 \in C$ implica que $x = x_1 = x_2$.

Sea $x \in P$ punto extremo, entonces $x = \sum_{j=1}^{p} \lambda_j x_j$ con $\sum_{j=1}^{p} \lambda_j = 1$. Supongamos que existe $\lambda_j \in (0,1)$, por ejemplo λ_1 . Sino fuera así entonces $\lambda_j \in \{0,1\}$ para todo j con lo cual x coincidiría con alguno de los x_j (con lo cual quedaría probado). Por tanto, suponiendo $1 > \lambda_1 > 0$, se obtiene que

$$x = \lambda_1 x_1 + (1 - \lambda_1) \sum_{j=2}^{p} \frac{\lambda_j}{1 - \lambda_1} x_j.$$

Como $x_1 \in P$ y $\sum_{j=2}^p \frac{\lambda_j}{1-\lambda_1} x_j \in P$ (por ser una combinación convexa) y x punto extremo se tiene que $x=x_1$.

Cada x_j no necesita ser punto extremo: pues podríamos añadir simplemente un x_k como una combinación convexa de los previos x_j con $\lambda_j \in (0,1)$, dicho punto claramente no sería un punto extremo de P. En otras palabras el conjunto $\{x_1, \cdots, x_p\}$ podría ser afinamente dependiente.