

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

PETRI NET BASED TRAJECTORY OPTIMIZATION

<u>Ákos Hajdu</u>, Róbert Német, Szilvia Varró-Gyapay, András Vörös

VOCAL 2014, Veszprém, Hungary, 16.12.2014.

European Union
European Social
Fund

INVESTING IN YOUR FUTURE

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development

- 1. Introduction
- 2. The CEGAR approach on Petri nets
- 3. Trajectory optimization using CEGAR
- 4. Evaluation
- 5. Conclusions

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

- 1. Introduction
- 2. The CEGAR approach on Petri nets
- 3. Trajectory optimization using CEGAR
- 4. Evaluation
- 5. Conclusions

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

Information systems are becoming more complex

Modeling and automatic analysis is important

Modeling: Petri Nets

- Widely used modeling formalism
 - Asynchronous, distributed, parallel, non-deterministic systems
- Behavior: possible states and transitions
- Optimization problems
 - Optimal trajectory from the initial state to a given goal state
 - Reachability analysis

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

Reachability analysis

- Checks, if a given state is reachable from the initial state
- m_1 ∈ R(PN, m_0) \rightarrow "Is m_1 reachable from m_0 in the Petri net PN?"
- Drawback: complexity

Complexity

- State space can be large or infinite
- Reachability is decidable, but at least EXPSPACE-hard
- No upper bound is known
- A possible solution is to use <u>abstraction</u>

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

Counter Example Guided Abstraction Refinement

- General approach
 - Can handle large or infinite state spaces
- Works on an abstraction of the original model
 - Less detailed state space
 - Finite, smaller representation
- Abstraction refinement is required
 - An action in the abstract model may not be realizable in the original model
 - Refine the abstraction using the information from the explored part of the state space
- H. Wimmel, K. Wolf
 - Applying CEGAR to the Petri Net State Equation (2011)

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

- 1. Introduction
- 2. The CEGAR approach on Petri nets
- 3. Trajectory optimization using CEGAR
- 4. Evaluation
- 5. Conclusions

CEGAR APPROACH ON PETRI NETS

Initial abstraction

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

CEGAR APPROACH ON PETRI NETS

Analysis of the abstract model

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

Solving the state equation for the firing count of transitions

$$m_0 + Cx = m_1$$

- Integer Linear Programming problem
- Necessary, but not sufficient criterion for reachability

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

Examining the solution

abstraction

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

Bounded exploration of the state space

Try to fire the transitions in some order

CEGAR APPROACH ON PETRI NETS

Abstraction refinement

- Exclude the counterexample without losing any realizable solution
- Constraints can be added to the state equation
 - The state equation may become infeasible
 - A new solution can be obtained
- Traversing the solution space instead of the state space

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

Semi-linear space

- Base solutions
- T-invariants
 - Solutions of the homogenous part Cy = 0
 - Possible cycles in the Petri Net

Two types of constraints

- Jump: switch between base solutions
- Increment: reach non-base solutions

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

- 1. Introduction
- 2. The CEGAR approach on Petri nets
- 3. Trajectory optimization using CEGAR
- 4. Evaluation
- 5. Conclusions

TRAJECTORY OPTIMIZATION

Extensions to the CEGAR approach

National Research Center for Development and Market Introduction of Advanced Information and Communication

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

Technologies

Our previous work

- Analyzing the algorithm
 - Correctness
 - Completeness
- Extending the set of decidable problems
- New optimizations

Current work

- Trajectory optimization using CEGAR
 - Assigning costs to transitions
 - New strategy for the solution space traversal

TRAJECTORY OPTIMIZATION

Assigning costs to transitions

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

Core of the CEGAR approach: state equation

- ILP problem
- ILP solver minimizes a function over the variables
- Variables are transitions in our case

Original algorithm

- Verification purpose → Is there a solution or not?
- Equal cost for each transition → shortest trajectories

Our new approach

- Optimization purpose → What is the optimal solution?
- Arbitrary cost for transitions
- ILP solver minimizes using the given cost

TRAJECTORY OPTIMIZATION

New solution space traversal strategy

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

- Traversing the solution space of the state equation
- Original algorithm
 - Verification purpose → Is there a solution or not?
 - Fast convergence → DFS
- Our new approach
 - Optimization purpose → What is the optimal solution?
 - Store the solutions in a sorted queue
 - Continue with the one with the lowest cost

PSEUDO CODE

```
Input:
          Reachability problem m_1 \in R(PN, m_0) and cost function z
Output: Trajectory σ or "Not reachable"
1.
      C ← incidence matrix of PN-
                                               Initial abstraction
2.
      Q \leftarrow \text{SolvelLP}(m_0, m_1, C, z, \emptyset)
                                                Analysis of the abstract model
3.
      while Q \neq \emptyset do
4.
         x \leftarrow solution from Q minimizing z \cdot x
                                                                     Rechable
         if x is realizable then stop and output \sigma for x
5.
                           Examine solution
6.
         else
             foreach jump and increment constraint c' do
7.
                  Q \leftarrow \text{SolvelLP}(m_0, m_1, C, z, \{\text{constraints of } x\} \cup \{c'\})
8.
             end foreach
9.
10.
         end else
                              Analysis of the abstract model
                                                                      Refine abstraction
11.
      end while
                                            Not reachable
12.
      Output "Not reachable"
```

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

- 1. Introduction
- 2. The CEGAR approach on Petri nets
- 3. Trajectory optimization using CEGAR
- 4. Evaluation
- 5. Conclusions

EVALUATION

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

Implementation

- PetriDotNet framework
 - Modeling and analysis of Petri nets
 - Supports add-ins

Measurements

- Traveling salesman problem
 - Graph traversal optimization
 - NP-complete

Number of nodes	Runtime (s)
4	0,04
6	0,14
8	0,66
9	0,90
10	1,95
11	9,49
12	24,57
13	1067,00

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

- 1. Introduction
- 2. The CEGAR approach on Petri nets
- 3. Trajectory optimization using CEGAR
- 4. Evaluation
- 5. Conclusions

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

New approach for the optimal trajectory problem

- Translation to the reachability of Petri nets
- Solving reachability using CEGAR
 - Handle transition costs
 - New strategy for solution space traversal
- Implementation and evaluation
- Possible future direction
 - Optimization of continuous systems

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

THANK YOU FOR YOUR ATTENTION! QUESTIONS?

hajduakos182@gmail.com; vori@mit.bme.hu https://inf.mit.bme.hu/en/research/tools/petridotnet

European Union European Social Fund

INVESTING IN YOUR FUTURE