

Algorithmen II Vorlesung am 07.11.2013

Minimale Schnitte in Graphen

Schnitte minimalen Gewichts: MinCut

Problem - MINCUT

Problem: MINCUT

Gegeben sei ein Graph G = (V, E) mit Kantengewichtsfunktion $c \colon E \longrightarrow \mathbb{R}_0^+$. Finde einen *nichttrivialen Schnitt* ($S, V \setminus S$) *minimalen Gewichts* in G, d.h. finde $S \subseteq V$ mit $\emptyset \neq S \neq V$, sodass

$$c(S, V \setminus S) := \sum_{\substack{\{u, v\} \in S, \\ v \in V \setminus S}} c(\{u, v\})$$

minimal wird. (S, $V \setminus S$) wird minimaler Schnitt genannt.

Problem - MINCUT

Problem: MINCUT

Gegeben sei ein Graph G = (V, E) mit Kantengewichtsfunktion $c \colon E \longrightarrow \mathbb{R}_0^+$. Finde einen *nichttrivialen Schnitt* ($S, V \setminus S$) *minimalen Gewichts* in G, d.h. finde $S \subseteq V$ mit $\emptyset \neq S \neq V$, sodass

$$c(S, V \setminus S) := \sum_{\substack{\{u, v\} \in E, \\ u \in S, \\ v \in V \setminus S}} c(\{u, v\})$$

minimal wird. (S, $V \setminus S$) wird minimaler Schnitt genannt.

 $C(S, V \setminus S) = 4$

Schnittberechnung mittels Flussalgorithmus

Bemerkung: Dualität zu maximalem Fluss

(Bemerkung 3.1)

Zu gegebenen $s, t \in V$ kann ein minimaler s-t-Schnitt mit einem Flussalgorithmus (z.B. Ford & Fulkerson, Goldberg & Tarjan) berechnet werden.

- Das Minimum über alle Paare $s, t \in V$ liefert einen global minimalen Schnitt. $\to \binom{|V|}{2} \in \Theta(|V|^2)$ Flussberechnungen.
- Da im minimalen Schnitt jeder Knoten von irgendeinem anderen getrennt wird, kann man stattdessen $s \in V$ auch festhalten und $t \in V \setminus \{s\}$ wähle. $\rightarrow |V| 1$ Flussberechnungen.

Heute: Effizientere Berechnung eines minimalen Schnittes ohne Flussalgorithmus.

Stark verbundene Knoten

Definition: Am stärksten verbundene Knoten

(Definition 3.2)

Zu $S \subseteq V$ und $v \in V \setminus S$ sei

$$c(S, v) = \sum_{\substack{\{u, v\} \in S}} c(\{u, v\}).$$

Den Knoten $v \in V \setminus S$, für den c(S, v) maximal wird, nennen wir auch den *am* stärksten mit S verbundenen Knoten.

$$c(S,3) = 3 + 2 = 5$$

$$c(S, 4) = 2$$

$$c(S, 8) = 3$$

⇒ Knoten 3 ist am stärksten mit S verbunden.

Verschmelzen zweier Knoten

Definition: Verschmelzen zweier Knoten

(Definition 3.3)

Seien $s, t \in V$. Dann können s und t wie folgt verschmolzen werden.

- **s** und *t* werden durch einen neuen Knoten $x_{s,t}$ ersetzt.
- Alle Kanten die vorher zu s oder t inzident waren sind jetzt zu $x_{s,t}$ inzident (abgesehen von $\{s,t\}$, falls s und t adjazent waren).
- Mehrfachkanten werden aufgelöst indem Kantengewichte addiert werden.

Algorithmus von Stoer & Wagner – Überblick

Der Algorithmus von Stoer & Wagner besteht |V| - 1 Phasen.

- In jeder Phase *i* wird ein Schnitt in einem Graphen $G_i = (V_i, E_i)$ berechnet, der Schnitt der Phase *i*.
- lacktriangle G_i entsteht aus G_{i-1} durch Verschmelzen "geeigneter Knoten", wobei $G_1 = G$.
- Ergebnis des Algorithmus ist der minimale Schnitt aller Schnitte der einzelnen Phasen i (für $1 \le i \le |V| 1$).

Ablauf einer Phase i

- Starte mit $S_i = \{a\}$, wobei a ein beliebiger Startknoten in G_i ist.
- Füge iterativ den am stärksten zu S_i verbundenen Knoten zu S_i hinzu.
- Seien s und t die als vorletztes bzw. als letztes zu S_i hinzugefügten Knoten.
- Der Schnitt der Phase i ist $(V_i \setminus \{t\}, \{t\})$.
- lacksquare G_{i+1} entsteht aus G_i durch Verschmelzen von s und t.

Phase 1

$$G_1 = G$$

$$S_1 = \{2\}$$

(beliebig gewählter Startknoten)

Phase 1

$$G_1 = G$$

$$S_1 = \{2\}$$

(beliebig gewählter Startknoten)

 $S_1 = \{2, 3\}$ (3 am stärksten zu $\{2\}$ verbunden)

Phase 1

$$G_1 = G$$

 $S_1 = \{2\}$ (beliebig gewählter Startknoten)

 $S_1 = \{2, 3\}$ (3 am stärksten zu $\{2\}$ verbunden)

 $S_1 = \{2, 3, 4\}$ (4 am stärksten zu $\{2, 3\}$ verbunden)

Phase 1

$$G_1 = G$$

 $S_1 = \{2\}$ (beliebig gewählter Startknoten)

$$S_1 = \{2, 3\}$$
 (3 am stärksten zu $\{2\}$ verbunden)

 $S_1 = \{2, 3, 4\}$ (4 am stärksten zu $\{2, 3\}$ verbunden)

$$S_1 = \{2, 3, 4, 7\}$$

$$G_1 = G$$
 $S_1 = \{2\}$ (beliebig gewählter Startknoten)
 $S_1 = \{2,3\}$ (3 am stärksten zu $\{2\}$ verbunden)
 $S_1 = \{2,3,4\}$ (4 am stärksten zu $\{2,3\}$ verbunden)
 $S_1 = \{2,3,4,7\}$

$$G_1 = G$$
 $S_1 = \{2\}$ (beliebig gewählter Startknoten)
 $S_1 = \{2,3\}$ (3 am stärksten zu $\{2\}$ verbunden)
 $S_1 = \{2,3,4\}$ (4 am stärksten zu $\{2,3\}$ verbunden)
 $S_1 = \{2,3,4,7\}$

$$S_1 = \{2, 3, 4, 7, 8, 6\}$$

$$G_1 = G$$
 $S_1 = \{2\}$ (beliebig gewählter Startknoten)
 $S_1 = \{2,3\}$ (3 am stärksten zu $\{2\}$ verbunden)
 $S_1 = \{2,3,4\}$ (4 am stärksten zu $\{2,3\}$ verbunden)

$$S_1 = \{2, 3, 4, 7\}$$

$$S_1 = \{2, 3, 4, 7, 8\}$$

$$S_1 = \{2, 3, 4, 7, 8, 6\}$$

$$S_1 = \{2, 3, 4, 7, 8, 6, 5\}$$

Phase 1

$$G_1 = G$$

 $S_1 = \{2\}$ (beliebig gewählter Startknoten)

$$S_1 = \{2, 3\}$$

 $S_1 = \{2, 3\}$ (3 am stärksten zu $\{2\}$ verbunden)

 $S_1 = \{2, 3, 4\}$ (4 am stärksten zu $\{2, 3\}$ verbunden)

$$S_1 = \{2, 3, 4, 7\}$$

$$S_1 = \{2, 3, 4, 7, 8\}$$

$$S_1 = \{2, 3, 4, 7, 8, 6\}$$

$$S_1 = \{2, 3, 4, 7, 8, 6, 5\}$$

$$S_1 = \{2, 3, 4, 7, 8, 6, 5, 1\}$$

Schnitt der Phase: $\{V_1 \setminus \{1\}, \{1\}\}$

→ Gewicht 5

Phase 1

$$G_1 = G$$

 $S_1 = \{2\}$ (beliebig gewählter Startknoten)

$$S_1 = \{2, 3\}$$

 $S_1 = \{2, 3\}$ (3 am stärksten zu $\{2\}$ verbunden)

 $S_1 = \{2, 3, 4\}$ (4 am stärksten zu $\{2, 3\}$ verbunden)

$$S_1 = \{2, 3, 4, 7\}$$

$$S_1 = \{2, 3, 4, 7, 8\}$$

$$S_1 = \{2, 3, 4, 7, 8, 6\}$$

$$S_1 = \{2, 3, 4, 7, 8, 6, 5\}$$

$$S_1 = \{2, 3, 4, 7, 8, 6, 5, 1\}$$

Schnitt der Phase: $\{V_1 \setminus \{1\}, \{1\}\}$ → Gewicht 5

Verschmelzen von s und t ergibt G₂

Phase 2

 $G_2 = G_1$ mit 1 und 5 verschmolzen

 $S_2 = \{2\}$ (beliebig gewählter Startknoten)

Phase 2

$$G_2 = G_1$$
 mit 1 und 5 verschmolzen

$$S_2 = \{2\}$$
 (be) $S_2 = \{2, \{1, 5\}\}$

 $S_2 = \{2\}$ (beliebig gewählter Startknoten)

$$G_2 = G_1$$
 mit 1 und 5 verschmolzen

$$S_2 = \{2\}$$
 (beliebig gewählter Startknoten)
 $S_2 = \{2, \{1, 5\}\}$
 $S_2 = \{2, \{1, 5\}, 6\}$

$$G_2 = G_1$$
 mit 1 und 5 verschmolzen

$$S_2 = \{2\}$$
 (beliebig gewählter Startknoten)

$$S_2 = \{2, \{1, 5\}\}$$

$$S_2 = \{2, \{1, 5\}, 6\}$$

$$S_2 = \{2, \{1, 5\}, 6, 3\}$$

$$G_2 = G_1$$
 mit 1 und 5 verschmolzen

$$S_2 = \{2\}$$
 (beliebig gewählter Startknoten)

$$S_2 = \{2, \{1, 5\}\}$$

$$S_2 = \{2, \{1, 5\}, 6\}$$

$$S_2 = \{2, \{1, 5\}, 6, 3\}$$

$$S_2 = \{2, \{1, 5\}, 6, 3, 4\}$$

$$G_2 = G_1$$
 mit 1 und 5 verschmolzen

$$S_2 = \{2\}$$
 (beliebig gewählter Startknoten)

$$S_2 = \{2, \{1, 5\}\}$$

$$S_2 = \{2, \{1, 5\}, 6\}$$

$$S_2 = \{2, \{1, 5\}, 6, 3\}$$

$$S_2 = \{2, \{1, 5\}, 6, 3, 4\}$$

$$S_2 = \{2, \{1, 5\}, 6, 3, 4, 7\}$$

Phase 2

$$G_2 = G_1$$
 mit 1 und 5 verschmolzen

$$S_2 = \{2\}$$

 $S_2 = \{2\}$ (beliebig gewählter Startknoten)

$$S_2 = \{2, \{1, 5\}\}$$

$$S_2 = \{2, \{1, 5\}, 6\}$$

$$S_2 = \{2, \{1, 5\}, 6, 3\}$$

$$S_2 = \{2, \{1, 5\}, 6, 3, 4\}$$

$$S_2 = \{2, \{1, 5\}, 6, 3, 4, 7\}$$

$$S_2 = \{2, \{1, 5\}, 6, 3, 4, 7, 8\}$$

Schnitt der Phase: $\{V_2 \setminus \{8\}, \{8\}\}$ \rightarrow Gewicht 5

Verschmelzen von s und t ergibt G₃


```
Phase 1 Schnitt der Phase: \{V_1 \setminus \{1\}, \{1\}\}\} \to \text{Gewicht 5}
Phase 2 Schnitt der Phase: \{V_2 \setminus \{8\}, \{8\}\}\} \to \text{Gewicht 5}
Phase 3 Schnitt der Phase: \{V_3 \setminus \{\{7,8\}\}\}, \{\{7,8\}\}\}\} \to \text{Gewicht 7}
Phase 4 Schnitt der Phase: \{V_4 \setminus \{\{4,7,8\}\}, \{\{4,7,8\}\}\}\} \to \text{Gewicht 7}
Phase 5 Schnitt der Phase: \{V_5 \setminus \{\{3,4,7,8\}\}, \{\{3,4,7,8\}\}\} \to \text{Gewicht 4}
Phase 6 Schnitt der Phase: \{V_6 \setminus \{\{1,5\}\}, \{\{1,5\}\}\} \to \text{Gewicht 7}
Phase 7 Schnitt der Phase: \{V_7 \setminus \{2\}, \{2\}\} \to \text{Gewicht 9}
```

Der Schnitt aus Phase 5 ist minimal unter den Schnitten der einzelnen Phasen.

⇒ Der Algorithmus von Stoer & Wagner gibt diesen Schnitt aus.

(Beweis, dass der so bestimmte Schnitt immer ein minimaler Schnitt ist folgt später.)

MINSCHNITTPHASE(G_i , c, a)

$$S \leftarrow \{a\}$$

$$t \leftarrow a$$

while $S \neq V_i$ do

$$v \leftarrow \mathsf{Knoten} \ \mathsf{aus} \ V_i \setminus S \ \mathsf{sodass} \ c(S, v) \ \mathsf{maximal} \qquad O(\log |V| + \deg(v))$$
 $S \leftarrow S \cup \{v\}$
 $s \leftarrow t$
 $t \leftarrow v$

Speichere $(V_i \setminus \{t\}, \{t\})$ als SCHNITT-DER-PHASE Konstruiere aus G_i Graph G_{i+1} durch Verschmelzen von s und t

Benutze einen FIBONACCI-HEAP um c(S, u) für alle $u \in V_i \setminus S$ zu speichern.

Maximum v entfernen: $O(\log |V|)$ Nachbarn von v updaten: $O(\deg(v))$

MINSCHNITTPHASE (G_i, c, a)

$$S \leftarrow \{a\}$$

$$t \leftarrow a$$

while $S \neq V_i$ do $O(|V| \log |V| + |E|)$ $v \leftarrow \text{Knoten aus } V_i \setminus S \text{ sodass } c(S, v) \text{ maximal } O(\log |V| + \deg(v))$ $S \leftarrow S \cup \{v\}$ $s \leftarrow t$ $t \leftarrow v$

Speichere $(V_i \setminus \{t\}, \{t\})$ als SCHNITT-DER-PHASE Konstruiere aus G_i Graph G_{i+1} durch Verschmelzen von s und t

Benutze einen FIBONACCI-HEAP um c(S, u) für alle $u \in V_i \setminus S$ zu speichern. Maximum v entfernen: $O(\log |V|)$

Nachbarn von v updaten: $O(\deg(v))$

Jeder Knoten wird nur einmal zu S hinzugefügt.

$$\sum_{v\in V} \deg(v) = 2|E| \in O(|E|)$$

Benutze einen FIBONACCI-HEAP um c(S, u) für alle $u \in V_i \setminus S$ zu speichern.

Maximum v entfernen: $O(\log |V|)$

Nachbarn von v updaten: $O(\deg(v))$

Jeder Knoten wird nur einmal zu S hinzugefügt.

$$\sum_{v\in V} \deg(v) = 2|E| \in O(|E|)$$

MINSCHNITTPHASE(G_i , c, a)

$$O(|V|\log|V|+|E|)$$

M	IN-S	SCHNITT(<i>G</i> , <i>c</i> , <i>a</i>)	$O(V ^2 \log V + V E)$
	G_1	\leftarrow G	<i>O</i> (1)
	for $i = 1$ to $ V - 1$ do		$O(V ^2 \log V + V E)$
		MINSCHNITTPHASE(G_i , c , a)	$O(V \log V + E)$
		if Schnitt-der-Phase ist kleiner als Min-Sch speichere Schnitt-der-Phase als Min-Sc	()(1)
Gib MIN-SCHNITT aus.		<i>O</i> (1)	

Lemma: Laufzeit des Algorithmus von Stoer & Wagner

Der Algorithmus von Stoer & Wagner hat eine Laufzeit von $O(|V|^2 \log |V| + |V||E|)$.

Zum Vergleich: Der Flussalgorithmus von Goldberg & Tarjan hat eine Laufzeit von $O(|V||E|\log(|V|^2/|E|))$

Definition: *s-t-***Schnitt**

Ein Schnitt (S, $V \setminus S$) heißt s-t-Schnitt, falls $s \in S$ und $t \in V \setminus S$ für s, $t \in V$, $s \neq t$. Ein s-t-Schnitt trennt Knoten u und v, wenn $u \in S$ und $v \in V \setminus S$.

Lemma: SCHNITT-DER-PHASE ist minimaler s-t-Schnitt

(Lemma 3.5)

Sei $(S, V \setminus S)$ der Schnitt-der-Phase in einem Graphen G = (V, E) mit Kostenfunktion $c: E \longrightarrow \mathbb{R}_0^+$ und Startknoten $a \in V$. Seien s und t der vorletzte bzw. letzte betrachtete Knoten. Dann ist $(S, V \setminus S)$ minimal unter allen s-t-Schnitten.

Definition: *s*-*t*-**Schnitt**

Ein Schnitt (S, $V \setminus S$) heißt s-t-Schnitt, falls $s \in S$ und $t \in V \setminus S$ für s, $t \in V$, $s \neq t$. Ein s-t-Schnitt trennt Knoten u und v, wenn $u \in S$ und $v \in V \setminus S$.

Lemma: Schnitt-der-Phase ist minimaler *s-t-***Schnitt**

(Lemma 3.5)

Sei $(S, V \setminus S)$ der Schnitt-der-Phase in einem Graphen G = (V, E) mit Kostenfunktion $c: E \longrightarrow \mathbb{R}_0^+$ und Startknoten $a \in V$. Seien s und t der vorletzte bzw. letzte betrachtete Knoten. Dann ist $(S, V \setminus S)$ minimal unter allen s-t-Schnitten.

Beweis: Zeige: Für jeden *s-t*-Schnitt (S', $V \setminus S'$) gilt: $c(S, V \setminus S) \leq c(S', V \setminus S')$

Beweis: Zeige: Für jeden *s-t*-Schnitt (S', $V \setminus S'$) gilt: $c(S, V \setminus S) \leq c(S', V \setminus S')$

Definition: aktive Knoten

MINSCHNITTPHASE betrachtet die Knoten aus V gemäß einer linearen Ordnung, die mit a beginnt und mit s und t endet. Ein Knoten $v \in V$ heißt aktiv (bzgl. S'), wenn $\{S', V \setminus S'\}$ den Knoten v von seinem Vorgänger trennt.

Beweis: Zeige: Für jeden s-t-Schnitt (S', $V \setminus S'$) gilt: $c(S, V \setminus S) \leq c(S', V \setminus S')$

Definition: aktive Knoten

MINSCHNITTPHASE betrachtet die Knoten aus V gemäß einer linearen Ordnung, die mit a beginnt und mit s und t endet. Ein Knoten $v \in V$ heißt aktiv (bzgl. S'), wenn $\{S', V \setminus S'\}$ den Knoten V von seinem Vorgänger trennt.

Definition: Für $v \in V \setminus \{a\}$ sei S_v Menge der Knoten vor v. Sei weiter $V_v = S_v \cup \{v\}$ sowie $S_v' = S' \cap V_v$.

Betrachte Einschränkung von G auf V_{ν} für aktiven Knoten ν . Zeige: $c(S_V, \{v\}) \leq c(S'_V, V_V \setminus S'_V)$

(zeigt genau das gewünschte für v = t)

Zeige induktiv über aktive Knoten (entsprechend Einfügereihenfolge):

Zeige induktiv über aktive Knoten (entsprechend Einfügereihenfolge):

Induktionsanfang: Sei *v* erster aktiver Knoten.

keine aktiven Knoten (⇒ kein Knoten wird vom Vorgänger getrennt)

Zeige induktiv über aktive Knoten (entsprechend Einfügereihenfolge):

Induktionsschritt: Behauptung gilt für *v*; sei *u* nächster aktiver Knoten.

Schätze zunächst $c(S_u, \{u\})$ ab:

$$c(S_{u}, \{u\}) = c(S_{v}, \{u\}) + c(S_{u} \setminus S_{v}, \{u\})$$

$$\leq c(S_{v}, \{v\}) + c(S_{u} \setminus S_{v}, \{u\})$$

v ist mindestens so stark mit S_v verbunden wie u (sonst wäre die Reihenfolge anders)

Zeige induktiv über aktive Knoten (entsprechend Einfügereihenfolge):

Induktionsschritt: Behauptung gilt für *v*; sei *u* nächster aktiver Knoten.

Schätze zunächst $c(S_u, \{u\})$ ab:

Schätze dann $c(S'_u, V_u \setminus S'_u)$ ab:

$$c(S_u, \{u\}) = c(S_v, \{u\}) + c(S_u \setminus S_v, \{u\})$$

 $\leq c(S_v, \{v\}) + c(S_u \setminus S_v, \{u\})$

$$c(S'_{V}, V_{V} \setminus S'_{V}) + c(S_{U} \setminus S_{V}, \{u\}) \leq c(S'_{U}, V_{U} \setminus S'_{U})$$

v ist mindestens so stark mit S_v verbunden wie u (sonst wäre die Reihenfolge anders)

Zeige induktiv über aktive Knoten (entsprechend Einfügereihenfolge):

Induktionsschritt: Behauptung gilt für *v*; sei *u* nächster aktiver Knoten.

Schätze zunächst $c(S_u, \{u\})$ ab:

Schätze dann $c(S'_u, V_u \setminus S'_u)$ ab:

$$c(S_u, \{u\}) = c(S_v, \{u\}) + c(S_u \setminus S_v, \{u\})$$

 $\leq c(S_v, \{v\}) + c(S_u \setminus S_v, \{u\})$

 $\leq c(S'_{V}, V_{V} \setminus S'_{V}) + c(S_{U} \setminus S_{V}, \{u\}) \leq c(S'_{U}, V_{U} \setminus S'_{U})$

nach Induktionsvoraussetzung

v ist mindestens so stark mit S_v verbunden wie u (sonst wäre die Reihenfolge anders)

Satz: Korrektheit des Algorithmus von Stoer & Wagner

(Satz 3.6)

Der minimale Schnitt von allen Ergebnissen der |V|-1 Ausführungen von MIN-SCHNITTPHASE ist ein minimaler, nichttrivialer Schnitt in G=(V,E) mit $|V|\geq 2$.

Satz: Korrektheit des Algorithmus von Stoer & Wagner

(Satz 3.6)

Der minimale Schnitt von allen Ergebnissen der |V|-1 Ausführungen von MIN-SCHNITTPHASE ist ein minimaler, nichttrivialer Schnitt in G=(V,E) mit $|V|\geq 2$.

Beweis: Induktion über |V|.

Induktionsanfang: |V| = 2 ist trivial.

Induktionsschritt: $|V| \ge 3$

Betrachte Phase 1 mit vorletztem bzw. letztem Knoten s und t.

Fall 1: *G* hat einen nichttrivialen minimalen Schnitt, der *s* von *t* trennt.

⇒ Schnitt der ersten Phase ist ein nichttrivialer minimaler Schnitt.

Fall 2: *G* hat keinen nichttrivialen minimalen Schnitt, der *s* von *t* trennt.

- \Rightarrow In jedem nichttrivialen minimalen Schnitt liegen s und t auf der gleichen Seite.
- \Rightarrow Verschmilzt man s und t, so induziert ein minimaler Schnitt im resultierenden Graph G' einen in minimalen Schnitt in G.
- \Rightarrow Laut Induktionsvoraussetzung liefert der Algorithmus einen minimalen Schnitt für G'.