บทที่ 1 บทนำ

การใช้สไลด์ :

เนื้อหาในสไลด์เหล่านี้ถูกแปลมาจากสไลด์ต้นฉบับประกอบหนังสือของผู้แต่งชื่อ Kurose และ Ross

ผู้แปลอนุญาตให้ทุกท่านสามารถใช้สไลด์ทั้งหมดได้ ดังนั้นท่านสามารถดูภาพเคลื่อนไหว สามารถเพิ่ม ,แก้ไข และ ลบสไลด์ (นับรวมข้อความนี้) และเนื้อหาของสไลด์เพื่อให้เหมาะกับความต้องการของท่าน

สำหรับการแลกเปลี่ยน เราต้องการสิ่งต่อไปนี้เท่านั้น :

- ถ้าท่านใช้สไลด์เหล่านี้ (เป็นตัวอย่าง, ในห้องเรียน) อย่าลืมกล่าวถึงที่มาของสไลด์ (หลังจากนี้ เราต้องการให้ทุกคนอุดหนุนและใช้หนังสือของผู้แต่งด้านข้าง)
- ถ้าคุณโพสต์สไลด์ใด ๆ ในเวป, อย่าลืมกล่าวถึงว่า คุณแก้ไขจากสไลด์ต้นฉบับของเรา และ ระบุ ถึงลิขสิทธิ์ของเราด้วย

ขอขอบคุณและขอให้สนุก! ณัฐนนท์ ลีลาตระกูล ผู้เรียบเรียง

สงวนลิขสิทธิ์ 2013
 เนื้อหาทั้งหมดเป็นลิขสิทธิ์ของคณะวิทยาการสารสนเทศ

KUROSE ROSS

Computer Networking: A
Top Down Approach 6th
edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

บทที่ 1: บทน้ำ

เป้าหมายของเรา:

- รู้เกี่ยวกับเครือข่ายเบื้องต้น และ คุ้นชิน กับคำศัพท์
- รายละเอียดต่าง ๆ จะอธิบายในภายหลัง
- วิธีการ:
 - ใช้ Internet เป็นตัวอย่าง

ภาพรวม:

- Internet คืออะไร
- Protocol คืออะไร
 network edge; hosts, access net, physical media
 network core: packet/circuit switching, Internet
 structure
- ประสิทธิภาพ : loss, delay, throughput
- ความปลอดภัย
- protocol layers, service models
- ประวัติศาสตร์

บทที่ 1: แผนการสอน

1.1 Internet คืออะไร

- 1.2 network edge end systems (เครื่องปลายทาง), access networks (เครื่อข่าย สำหรับการเข้าถึง), links (สิ่งเชื่อมต่อ)
- 1.3 network core packet switching, circuit switching, โครงสร้างเครื่อข่าย
- 1.4 delay (ความล่าช้า), loss (ข้อมูลสูญหาย), throughput (อัตราปริมาณงานที่ได้)
- 1.5 ชั้น protocol, service models (โมเดลการให้บริการ)
- 1.6 networks ภายใต้การโจมตี: ความปลอดภัย
- 1.7 ประวัติศาสตร์

Internet คืออะไร: มุมมองในแง่ส่วนประกอบของ Internet

server

wireless laptop

smartphone

• มีการเชื่อมต่อกับคอมพิวเตอร์นับล้าน:

■ hosts = เครื่องปลายทาง ที่มี โปรแกรมทำงานอยู่

wired links

- communication links (สิ่งเชื่อมโยงการสื่อสาร)
 - ใยแก้ว, ทองแดง, คลื่นวิทยุ, ดาวเทียม
 - อัตราการส่ง : bandwidth

• Packet switches: ส่งเป็นเพ็คเกจ (ก้อน ของข้อมูล)

routers และ switches

mobile network

เครื่องใช้อินเทอร์เน็ต

กรอบรูป IP http://www.ceiva.com/

ตู้เย็นอินเตอร์เน็ต

เครื่องปิ้งขนมปังที่ใช้งานเว็บ + พยากรณ์สภาพอากาศ

Tweet-a-watt: ตรวจสอบการใช้พลังงาน

Slingbox: watch, รีโมตเคเบิลทีวีด้วยการควบคุมระยะไกล

โทรศัพท์อินเตอร์เน็ต

Internet คืออะไร: มุมมองในแง่ส่วนประกอบของ Internet

- Internet: "เครือข่ายของเครือข่ายเชื่อมกันทั่วโลก"
 - ผู้ให้บริการอินเทอร์เน็ตเชื่อมต่อระหว่างกัน
- protocols ควบคุมการ รับ-ส่ง ข้อความ
 - ຫ.ຍ., TCP, IP, HTTP, Skype, 802.11
- มาตรฐานของ Internet
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

Internet คืออะไร: มุมมองด้านการให้บริการ

- โครงสร้างพื้นฐานสำหรับการให้บริการ แอพพลิเคชั่น
 - Web, VoIP, email, games, ecommerce, social nets, ...
- เตรียมวิธีการเขียนโปรแกรมสำหรับ apps
 ที่ต้องการใช้ Internet
 - เชื่อมให้แอพพลิเคชั่นส่งและรับข้อมูลผ่าน
 Internet
 - ให้บริการทางเลือกเสมือนกับระบบไปรษณีย์

โปรโตคอล คืออะไร

human protocols:

- "กี่โมงแล้ว"
- "ฉันมีคำถาม"
- เป็นการแนะนำตัว
- ... ข้อความในรูปแบบเฉพาะถูกส่งไป
- ... มีการตอบกลับในรูปแบบเฉพาะเมื่อ ได้รับข้อความหรือเหตุการณ์อื่นๆ

network protocols:

- เป็นอุปกรณ์สื่อสารกันแทนที่จะเป็นคน
- การติดต่อสื่อสารทั้งหมดใน Internet ถูก ควบคุมโดย Protocal

protocols กำหนด รูปแบบ, ลำดับของ ข้อมูลที่ถูกรับ-ส่งระหว่างอุปกรณ์ใน เครือข่าย, และ กำหนดสิ่งที่อุปกรณ์ต้องทำ เมื่อต้องส่งหรือได้รับข้อมูล

โปรโตคอลคืออะไร

Human protocol และ Computer network protocol:

Q: มี human protocols แบบอื่นอีกไหม

บทที่ 1: แผนการสอน

- 1.1 Internet คืออะไร
- 1.2 network edge

end systems (เครื่องปลายทาง), access networks (เครือข่ายสำหรับการ เข้าถึง). links (สิ่งเชื่อมต่อ)

1.3 network core

packet switching, circuit switching, โครงสร้างเครื่อข่าย

- 1.4 delay (ความล่าช้า), loss (ข้อมูลสูญหาย), throughput (อัตราปริมาณงานที่ได้)
- 1.5 ชั้น protocol, service models (โมเดลการให้บริการ)
- 1.6 networks ภายใต้การโจมตี: ความปลอดภัย
- 1.7 ประวัติศาสตร์

โครงสร้างเน็ตเวิร์คประกอบไปด้วย:

network edge:

- hosts: คือ เครื่องไคลเอนต์หรือเครื่องเซิร์ฟเวอร์
- เซิร์ฟเวอร์ส่วนใหญ่ตั้งอยู่ในดาต้าเซ็นเตอร์

• เครือข่ายสำหรับการเข้าถึง, สื่อทางกายภาพ:

แบบใช้สาย, แบบไร้สาย

network core:

เราท์เตอร์หลาย ๆ ตัวมาเชื่อมต่อกัน เครือข่ายของเครือข่าย (network of networks)

เครื่อข่ายสำหรับการเข้าถึง และ สื่อทางกายภาพ

Q: ทำอย่างไรถึงจะทำให้เครื่องปลายทาง (End system) เชื่อมต่อ edge router ?

- เครือข่ายการเข้าถึงตามที่อยู่อาศัย (Residential Access NW)
- เครือข่ายการเข้าถึงตามโรงเรียนหรือหน่วยงาน (school, company)
- เครือข่ายการเข้าถึงแบบไร้สาย (Wireless Access, mobile access networks)

ให้นึกสิ่งเหล่านี้อยู่ตลอด:

- แบนด์วิทธ์ (Bandwidth) ของเครือข่ายสำหรับการเข้าถึง มีหน่วย บิทต่อวินาที (bit per second) เป็นเท่าไร
- ต้องใช้เครือข่ายร่วมกันหรือใช้ส่วนตัว

Access net: Digital Subscriber Line (DSL)

ผู้ใช้บริการเชื่อมต่อผ่านสายโทรศัพท์บ้าน โดยมีการแบ่งช่วงความถี่ของ การใช้งานของ การสื่อสารข้อมูลและ เสียง แยกจากกัน - ช่องสัญญาณก็จะเชื่อมต่อสัญญาณไปยังฝั่ง ผู้ให้บริการเพื่อต่อออกไปยัง ISP และ เครือข่ายโทรศัพท์

- ใช้โครงสร้างพื้นฐานที่มีอยู่บนเครือข่ายโทรศัพท์ในการเชื่อมต่อสัญญาณกับฝั่งผู้ให้บริการ ข้อมูลส่งผ่านสายโทรศัพท์ไปยังอินเตอร์เน็ต
 เสียงถูกส่งผ่านสายโทรศัพท์ไปยังเครือข่ายโทรศัพท์
- ช่องสัญญาณการส่งข้อมูล (upstream) จะได้ถึง < 2.5 Mbps (โดยปกติ < 1 Mbps)
- ช่องสัญญาณการรับข้อมูล (downstream) จะได้ถึง < 24 Mbps (โดยปกติ < 10 Mbps)

Access net: cable network

frequency division multiplexing: ช่องทางที่แตกต่างกันถูกส่งในคลื่นความถี่ที่แตกต่างกัน

Access net: cable network

HFC: hybrid fiber coax

ไม่สมมาตร: อัตราการรับข้อมูลสูงสุดถึง 30 เมกกะบิตต่อวินาที, อัตราการส่งข้อมูลสูงสุดได้ถึง
2 เมกกะบิตต่อวินาที

เครือข่ายของเคเบิ้ล, fiber จะเชื่อม บ้านเข้ากับ router ของ ISP
 ผู้ใช้บริการใช้เครือข่ายร่วมกัน เพื่อส่งข้อมูลไปยัง cable headend
 ซึ่งแตกต่างจาก DSL ที่การเชื่อมต่อไปยัง office ส่วนกลางเป็นแบบจอง

Access net: เครื่อข่ายในบ้าน

การเชื่อมต่อเครื่อข่ายระดับองค์กร (Ethernet)

- Ethernet ปกติถูกใช้ในหลายๆบริษัท, มหาวิทยาลัย, ฯลฯ
- อัตราการส่งสัญญาณ10 Mbps, 100Mbps, 1Gbps, 10Gbps
- ปัจจุบัน, end systems ส่วนใหญ่จะเชื่อมต่อเข้า Ethernet switch

เครือข่ายการเชื่อมต่อแบบไร้สาย

- เครือข่ายไร้สาย(ที่ถูกใช้ร่วมกัน)ช่วยเชื่อมต่อเครื่องปลายทางกับ router
 - ผ่านทาง สถานีฐาน (base station) ที่เรียกกันว่า "access point"

wireless LANs:

- ภายในอาคาร (100 ฟุต)
- อัตตราการส่งสัญญาณ 802.11b/g (WiFi): 11, 54 Mbps

wide-area wireless access

- ให้บริการโดยบริษัทโทรศัพท์, มีรัศมี 10's กิโลเมตร
- ระหว่าง 1 และ 10 Mbps
- 3G, 4G: LTE

Base Station

 $credit: commons.wikimedia.org/wiki/File: GSM_base_station_2.JPG$

Host: ส่ง packets ของข้อมูล

หน้าที่การส่งของ host :

- •เอาข้อความของ application
- •แบ่งออกเป็นชิ้นเล็ก, ที่เรียกว่า *packets* ที่มี ความยาว *L* bits
- •ส่ง packet เข้าสู่เครือข่าย ที่ม<mark>ีอัตราการส่ง R</mark>
- •อัตราการส่งของ link, บางครั้งก็เรียกว่า

ความจุของ link หรือ แบนด์วิทช์ของ link

ความล่าช้าในการถ่าย เวลาที่ต้องใช้ในการส่ง L-bit
$$L$$
 (bits) [อนpacket] = packet ผ่าน link = R (bits/sec)

สื่อทางกายภาพ

- bit: การส่งสัญญาณจากเครื่องส่งข้อมูลไปยังเครื่องรับข้อมูลโดย จะส่งค่าเป็นตัวเลข 0 กับ 1
- physical link (ลิงค์ทางกายภาพ): สิ่งที่เชื่อมต่อระหว่าง เครื่องส่งและเครื่องรับข้อมูล
- มีเดียที่ถูกนำ:
 - ช่น fiber optic,สายทองแดง,coax โดยจะถูกนำไปในทางที่ ทิศใดก็ได้ตามสาย
- มีเดียที่ไม่ได้ถูกนำ:
 - เป็นการกระจายสัญญาณไปทั่ว เช่น สัญญาณวิทยุ

twisted pair (TP) สายเกลียวคู่

- เป็นการใช้สายทองแดงหุ้มฉนวนพันเป็นเกลี่ยว ทั้ง 2 สาย
 - Category 5: 100 Mbps,1 Gpbs Ethernet
 - Category 6: 10Gbps

Unshielded twisted pair (UTP)

credit: www.wisegeek.com

ภายในสาย Cat 5

credit: http://www.shke.com.cn/js/upfiles/files/bigpic/CAT5%20UTP.JPG

Physical media: สาย coax, สาย fiber

coaxial cable:

- ตัวนำสัญญาณภายในสุดจะเป็นแกน ทองแดงทำหน้าที่นำสัญญาณจาก อุปกรณ์ต้นทางไปยังปลายทาง
- bidirectional
 - รองรับการส่งข้อมูลแบบสองทิศทางทั้งส่งไปและส่งกลับได้ ในเวลาเดียวกัน
- broadband
 - การสื่อสารข้อมูลที่ตัวกลางในการส่งผ่านสัญญาณได้พร้อมๆ กันโดยใช้วิธีแบ่งช่องความถื่ออกจากกัน
 - HFC (Hybrid Fiber Coaxial Network) เป็นโครงข่ายที่ ผสมผสานระหว่าง Optical Fiber Cable และ Coaxial Cable

fiber optic cable:

- สายใยแก้วจับจังหวะการกระพริบแสง แต่ละครั้งแทน 1
 bit
- ทำงานด้วยความเร็วสูง:
 การส่งข้อมูลระหว่างสองจุดด้วยความเร็วสูง
 (ตัวอย่างเช่น,อัตราการถ่ายโอนข้อมูล 10's-100's
 Gpbs)
- อัตราความผิดพลาดต่ำ:
 - ต้องวางอุปกรณ์ย้ำสัญญาณ (repeater) เป็นระยะ ๆ
 - ปลอดภัยจากสัญญาณคลื่นแม่เหล็กไฟฟ้ารบกวน

Co-axial

credit: http://images.maplin.co.uk/full/xs51.jpg

Physical media: คลื่นวิทยุ

- สัญญาณถูกส่งไปในคลื่นแม่เหล็กไฟฟ้า
- ไม่มีสายเชื่อมต่อทางกายภาพ
- สื่อสารได้แบบแบบสองทิศทาง
- อาจมีผลกระทบจากสิ่งแวดล้อม:
 - มีสัญญาณสะท้อน
 - มีการสิ่งกีดขวาง
 - เกิดสัญญาณรบกวน

ประเภทการเชื่อมโยงแบบคลื่นวิทยุ:

- microwave บนพื้นโลก
 - e.g. ช่องส่งมีความจุถึง 45 Mbps
- เครือข่ายท้องถิ่น LAN (e.g., WiFi)
 11Mbps, 54 Mbps
- เครือข่ายขนาดกว้างมาก wide-area (e.g., cellular)
 - 3G cellular: ~ few Mbps
- ผ่านดาวเทียม
 - ช่องส่งมีความจุตั้งแต่ Kbps to 45Mbps channel (หรือ ช่องส่งขนาดเล็กหลายๆช่อง)
 - มี delay จากปลายทางถึงปลายทาง 270 msec

บทที่ 1: แผนการสอน

- 1.1 Internet คืออะไร
- 1.2 network edge

end systems (เครื่องปลายทาง), access networks (เครือข่ายสำหรับการ เข้าถึง), links (สิ่งเชื่อมต่อ)

1.3 network core (แกนของ Network)

packet switching, circuit switching, โครงสร้างเครือข่าย

- 1.4 delay (ความล่าช้า), loss (ข้อมูลสูญหาย), throughput (อัตราปริมาณงานที่ได้)
- 1.5 ชั้น protocol, service models (โมเดลการให้บริการ)
- 1.6 networks ภายใต้การโจมตี: ความปลอดภัย
- 1.7 ประวัติศาสตร์

The network core

- อยู่ที่แกนของเครือข่าย
- Router เชื่อมต่อกันเป็นตาข่าย
- packet-switching: hosts แบ่งข้อมูลเป็น ก้อนๆ ที่เรียกว่า packets
 - โดยหน้าที่หลักๆของ Core ก็คือการ ส่งผ่านข้อมูลจากอีก router หนึ่งไปยังอีก router หนึ่งผ่านลิงค์ต่าง ๆ จากต้นทางไป ยังปลายทาง
 - แต่ละ packet ถูกส่งที่ความเร็วสูงสุดที่แต่ ละลิงค์จะส่งได้ (Best Effort)

รูปร่างของ Switches และ Routers

credit: http://www.fcs.com/images/products/networking/switches.jpg

ทำไมเรียกว่า Switch

credit: http://aimblog.uoregon.edu/files/2013/10/shutterstock_92434231-2j4azz2.jpg

Packet-switching: store-and-forward

- ใช้เวลา L/R วินาที ในการส่งข้อมูล (ดันออก) L-bit packet ผ่านไปยังลิงค์ที่มีความเร็ว R bps
- store and forward: packet ทั้งหมดต้องมาถึง router ก่อนจะถูกส่งไปยัง link ถัดไป
- ความล่าช้าจากปลายทางหนึ่งไปยังอีกปลายทางหนึ่ง (end-end delay) = 2L/R (สมมติ ความล่าช้าในการ เดินทางของสัญญาณ (propagation delay) เป็น 0)

ตัวอย่างแบบหนึ่ง hop:

- L = 7.5 Mbits
- R = 1.5 Mbps
- ความล่าช้าจากการถ่ายโอนข้อมูลต่อ หนึ่ง hop (transmission delay) =
 5 sec

จะพูดถึงความล่าช้ามากกว่าเร็ว ๆ นี้ ...

Packet Switching: queueing delay, loss

ความล่าช้าจากการต่อคิวและการสูญหายของข้อมูล

- ในกรณีที่ อัตราการรับข้อมูล (จำนวน bits) สูงเกินกว่าอัตราการถ่ายโอนข้อมูล (transmission rate) เป็นระยะเวลาหนึ่ง:
 - จะเริ่มมี packets ต่อคิวยาวขึ้น ๆ เพื่อรอที่จะถูกส่งออกไป
 - packets จะเริ่มถูกทิ้งไป (dropped (lost)) ในกรณีที่คิว (หรือ memory) เต็ม

2 หน้าที่หลักของ network-core

routing (หาเส้นทาง): หาเส้นทางระหว่างต้น ทาง-ปลายทางที่ packets จะเดินทางไป forwarding (ส่งผ่าน Packet): เคลื่อน packets จาก input ของ router ไปยัง output ของ router ที่ถูกต้องเหมาะสม

core อีกชนิดหนึ่ง: circuit switching

ทรัพยากรจากปลายทางไปยังอีกปลายทางถูกจองหรือ จัดสรรไว้สำหรับ "การเชื่อมต่อ" ระหว่างต้นทาง และปลายทาง:

- จากแผนภาพ, แต่ละ link นั้นประกอบไปด้วย 4 circuits.
 - การเชื่อมต่อใช้สายวงจรที่ 2 จาก link ด้านบน และ สาย วงจรที่ 1 จาก link ทางขวา
- dedicated resources: ไม่มีการใช้ทรัพยากรร่วมกันใน
 เวลาเดียวกัน
 - มีประสิทธิภาพเหมือนจองสายวงจร (สามารถรับประกัน คุณภาพได้)
- สายวงจรที่ถูกจอง (circuit segment) จะไม่ได้ถูกใช้ งานถ้าไม่มีข้อมูลส่ง *(ไม่มีการแบ่งปันทรัพยากร)*
- โดยปกติ จะใช้ในระบบโทรศัพท์บ้าน

Circuit switching: FDM versus TDM

Packet switching versus circuit switching

packet switching รองรับจำนวนผู้ใช้ network มากกว่า!

ตัวอย่าง:

- 1 Mb/s link
- each user:
 - 100 kb/s when "active"
 - active 10% of time

- 📍 รองรับผู้ใช้ 10 คน
- packet switching:
 - รองรับผู้ใช้ได้ 35 คน เนื่องจาก ความน่าจะ เป็นที่ ผู้ใช้ 10 คนจะ active พร้อมกันน้อยมาก (< .0004) *

^{*} Check out the online interactive exercises for more examples

Packet switching versus circuit switching

packet switching เป็นผู้ชนะแบบ slam dunk หรือปล่าว

- ดีสำหรับข้อมูลที่มาไม่สม่ำเสมอมาก ๆ
 - เพราะมีการใช้ทรัพยากรร่วมกัน
 - ง่ายกว่า ไม่ต้อง setup ความเชื่อมต่อ
- เป็นไปได้ที่จะมีความคับคั่งมากเกินไป: packet มาถึงช้า และสูญหาย
 - 📮 จำเป็นต้องมี protocols สำหรับการถ่ายโอนข้อมูลที่เชื่อถือได้, หรือการควบคุมความแออัด
- Q: จะทำให้ Packet Switching เป็นเหมือน Circuit Switching ได้อย่างไร?
 - มีการประกันแบนด์วิดช์สำหรับ app ที่มีช้อมูลเสียงและวีดีโอ
 - ยังคงเป็นปัญหาที่รอคนแก้ไขต่อไป (อ่านบทที่ 7)

Q: ลองคิดหาตัวอย่างรอบ ๆ ตัวเพื่อเปรียบเทียบการจองทรัพยากรล่วงหน้า (circuit switching) กับ การใช้ทรัพยากรตาม ต้องการเมื่อมีให้ใช้ (packet-switching)?

- เครื่องปลายทางเชื่อมต่อกับ Internet ผ่าน access ISPs (ผู้ให้บริการอินเทอร์เน็ต)
 -ผู้ให้บริการระดับ ท้องถิ่น, บริษัท และ มหาวิทยาลัย
- ในขณะเดียวกัน ผู้ให้บริการอินเทอร์เน็ตก็เชื่อมต่อเข้าด้วยกัน
 - ทำให้ hosts สามารถส่ง packets ไปถึงคนอื่น ๆ ที่อยู่ห่างไกลได้
- สิ่งที่เป็นอยู่คือ เครือข่ายของเครือข่ายที่ซับซ้อน
 - -วิวัฒนาการถูกขับเคลื่อนโดย สภาพเศรษฐกิจ และ นโยบายระดับชาติ
- เรามาอธิบายโครงสร้างปัจจุบันของอินเทอร์เน็ตทีละขั้นตอนกัน

คำถาม: กำหนดให้มี access ISPs มีจำนวน 1,000,000 แห่ง, จะเชื่อมต่อ ISP ทั้งหมดเข้ากันได้ อย่างไร?

ทางเลือก: ควรที่จะเชื่อมต่อแต่ละ ISP กับ ISP อื่นทุก ISP หรือปล่าว

ทางเลือก: เชื่อมต่อแต่ละ ISP กับ global transit ISP? ISP ที่เป็นลูกค้า และ ISP ผู้ให้บริการจะมี ข้อตกลงธุรกิจระหว่างกัน

ถ้าผู้ให้บริการอินเทอร์เน็ตข้ามโลกหนึ่งเจ้าสามารถทำกำไรได้ ก็จะเริ่มมีคู่แข่ง

ถ้าผู้ให้บริการอินเทอร์เน็ตข้ามโลกหนึ่งเจ้าสามารถทำกำไรได้ ก็จะเริ่มมีคู่แข่ง การเชื่อมต่อกับ global ISP ด้วยกันก็สามารถทำได้

... และ networks ส่วนภูมิภาค ก็เกิดขึ้นได้จากการเชื่อมต่อเข้าไปกับ nets ของ ISPS

... และ content provider networks (เช่น, Google, Microsoft, Akamai) สามารถมีและจัดการ เครือข่ายของตัวเองได้, สามารถให้บริการ, และส่งข้อมูลให้ใกล้กับผู้ใช้ได้

- ที่ตรงกลาง (ส่วน core): มีเครือข่ายขนาดใหญ่เชื่อมต่อกันจำนวนไม่มาก
 - "tier-1" ผู้ให้บริการอินเทอร์เน็ตเชิงพาณิชย์ (e.g., Level 3, Sprint, AT&T, NTT), ครอบคลุม ระดับชาติและข้ามชาติ
 - content provider network (e.g, Google): เครือข่ายส่วนตัวที่เชื่อมต่อกับ data centers
 ของตัวเองเข้ากับ Internet, ผ่านทาง tier-1, regional ISPs

ผู้ให้บริการอินเตอร์เน็ตชั้นที่ 1: e.g., Sprint

บทที่ 1: แผนการสอน

- 1.1 Internet คืออะไร
- 1.2 network edge

end systems (เครื่องปลายทาง), access networks (เครือข่ายสำหรับการ เข้าถึง), links (สิ่งเชื่อมต่อ)

1.3 network core

packet switching, circuit switching, โครงสร้างเครื่อข่าย

- 1.4 delay (ความล่าช้า), loss (ข้อมูลสูญหาย), throughput (อัตราปริมาณงานที่ได้)
- 1.5 ชั้น protocol, service models (โมเดลการให้บริการ)
- 1.6 networks ภายใต้การโจมตี: ความปลอดภัย
- 1.7 ประวัติศาสตร์

การสูญหายและความล่าซ้าเกิดขึ้นได้อย่างไร?

คิว packets ที่ buffers ใน router

- จำนวนข้อมูลของ packet ที่มาถึงสูงกว่าความสามารถในการส่งข้อมูลออกไป
- packets จะต้องต่อคิว, รอเพื่อที่จะถูกส่งออกไป

packets ที่ถูกส่งมาถึงจะโดนทิ้งไป (เกิดการสูญหาย) ถ้าไม่มี buffers ว่าง หลงเหลืออยู่

Four sources of packet delay

d_{proc} : nodal processing

- ตรวจสอบ bit ที่ errors
- หา output link
- ปกติจะใช้เวลาน้อยกว่า 1 msec

d_{queue}: queueing delay

- เวลาที่รอให้ output link ส่งข้อมูล
- ขึ้นอยู่กับ ความคับคั่งของ router

Four sources of packet delay

 d_{trans} : transmission delay (ล่าซ้าจากการถ่าย โอนข้อมูล):

- L: ความยาวของ packet (bits)
- R: bandwidth ของอุปกรณ์ (bps)

•
$$d_{trans} = L/R$$

d_{prop}: propagation delay: (ล่าช้าจากการ เดินทาง)

- d: ระยะทางของ physical link
- s: ความเร็วของการส่งข้อมูล มีค่ามาตรฐานประมาณ (2x10⁸ m/sec)

$$d_{prop} = d/s$$

^{*} Check out the Java applet for an interpretation of the control o

เปรียบเหมือนขบวนรถยนต์

- Propagation: รถยนต์ขับเคลื่อนด้วยความเร็ว 100 กม./ชม.
- Transmit: จุดจ่ายค่าบริการใช้เวลา 12 วินาทีสำหรับ การบริการ (บริการ 1 คน เสมืนเวลาส่ง1 บิท)
- รถยนต์ ~ บิท; ขบวน ~ packet
- คำถาม: ใช้เวลานานเท่าไร ขบวนรถยนต์ทั้งหมดจะ เคลื่อนที่ถึงจุดจ่ายค่าบริการที่ 2?

เวลาที่ขบวนรถยนต์ 10 คันจะผ่านจุด
 จ่ายค่าบริการไปสู่ hightway = 12*10
 = 120 วินาที

100 km

- เวลาของรถยนต์คันสุดท้ายจากจุดจ่าย ค่าบริการที่ 1 ไปสู่จุดจ่ายค่าบริการที่ 2 : 100km/(100 กม./ชม.)= 1 hr
- คำตอบ : 62 นาที

เปรียบเหมือนขบวนรถยนต์ (เพิ่มเติม)

- สมมติว่ารถยนต์ใช้ความเร็วที่ 1000 กม.ต่อชม.
- และสมมติจุดจ่ายค่าบริการใช้เวลา 1 นาที สำหรับบริการรถยนต์ 1 คัน
- คำถาม: จะมีรถยนต์มาถึงจุดจ่ายค่าบริการที่ 2 ก่อนที่จุดจ่ายค่าบริการที่ 1 จะบริการรถยนต์ทึ้ง หมดหรือไม่ ?
 - A: มี! ภายใน 7 นาทีรถยนต์คันที่ 1 จะมาถึงจุดจ่ายค่าบริการที่ 2 และเหลือรถยนต์อีก 3 คันที่ จุดจ่ายค่าบริการที่ 1

ความล่าช้าจากการรอในคิว (อีกครั้งนึง)

ช่วงเวลาที่เสียไปโดยเริ่มนับตั้งแต่เวลาที่แพ๊กเก็ตนั้นๆ มาถึงคิว จนกระทั่งแพ๊กเก็ตนั้นถูกส่งออกไป

ซึ่งก็คือ ช่วงเวลาที่แพ๊กเก็ตต้องรออยู่ในคิวให้มีการส่งแพ๊กเก็ต ทั้งหมดที่ยังค่าอยู่ก่อนหน้านี้ออกไปให้หมดเสียก่อน

- R: link bandwidth (bps) ความจุของ link
- L: packet length (bits) ขนาดของแพ๊กเก็ต
- a: average packet arrival rate ค่าเฉลี่ยการมาของแพ๊กเก็ต

- La/R ~ 0: ค่าเฉลี่ยนเวลาใช้ในการรอคิวน้อย
- La/R -> 1: ค่าเฉลี่ยเวลาใช้ในการรอคิวมาก
- La/R > 1: มีปริมาณข้อมูลที่มาถึงคิวเป็นจำนวนมากเกินกว่าที่จะให้บริการได้
 ค่าเฉลี่ยเวลาใช้ในการรอคิวเป็นอนันต์

* Check out the Java applet for an interactive animation on queuing and loss

La/R -> 1 บทนำ **1-53**

ความล่าช้าและเส้นทางที่เกิดขึ้นจริงใน Internet

- ความล่าช้าและเส้นทางที่เกิดขึ้นจริงใน Internet เป็นอย่างไร
- traceroute program: โปรแกรมช่วยวัดความล่าช้าจากตลอดเส้นทางจากต้นทางไปยัง router ต่าง ๆ ตลอดทางใน Internet จนไปถึงปลายทาง
- สำหรับทุก ๆ router i:
 - ส่ง packet 3 packet ที่จะเดินทางไปยังเร้าเตอร์บนเส้นทางที่จะไปยังปลายทาง
 - router i จะส่งข้อมูลตอบกลับไปยังผู้ส่ง
 - ผู้ส่งจะวัดช่วงเวลาระหว่างการส่งและการตอบกลับ

ความล่าช้าและเส้นทางที่เกิดขึ้นจริงใน Internet

traceroute: gaia.cs.umass.edu to www.eurecom.fr

```
ค่าความล่าช้า 3 ค่าจาก
                                                               gaia.cs.umass.edu ไป cs-gw.cs.umass.edu
1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms
2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms 3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms 4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms 5 jn1-so7-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms
6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms
                                                                                                         เส้นเชื่อมข้าม
7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms
8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms 4 9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms 10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms
                                                                                                         มหาสมุทร
11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms
12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms
13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms
14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms 15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms 16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms
                              * แปลว่าไม่มีการตอบสนอง (probe สูญหาย หรือ router ไม่ตอบ)
19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms
```

^{*} Do some traceroutes from exotic countries at www.traceroute.org

Packet Loss: การสูญหายของข้อมูล

- คิว (หรือ buffer) ที่ความจุจำกัด
- packet เดินทางมาถึงคิวที่เต็มจะโดน router ทิ้งไปเพราะมีมี buffer เก็บ
- packet ที่หายไปอาจถูกส่งใหม่โดยเครื่องต้นทาง หรือ อาจไม่ถูกส่ง ใหม่ก็ได้

^{*} Check out the Java applet for an interactive animation on queuing and loss

Throughput: อัตราปริมาณงานที่ได้

- throughput: อัตรา (bits/หน่วยเวลา) ที่จำนวนบิตจะถูกส่งระหว่างผู้ส่งและ ผู้รับ
 - **ทันทีทันใด** (instanteous): อัตราความเร็ว ณ ขณะนั้น
 - **เ**ลลี่ย: อัตราความเร็วเฉลี่ยในช่วงเวลาที่ยาวขึ้น

Throughput: อัตราปริมาณงานที่ได้ (เพิ่มเติม)

• $R_s < R_c$ What is average end-end throughput?

 $R_s > R_c$ What is average end-end throughput?

bottleneck link

link on end-end path that constrains end-end throughput

Throughput: ใน Internet

• throughput ต่อหนึ่งการเชื่อมต่อจาก ปลายทางหนึ่งไปยังอีกปลายทางหนึ่ง มีค่า $\text{ inin(R}_{c}, \, \text{R}_{s}, \, \text{R/10})$

• ในทางปฏิบัติ : R_c หรือ R_s มักจะเป็น คอขวด

การเชื่อมต่อทั้ง 10 จะใช้ link ที่เป็นคอขวด (R bits/sec) ร่วมกันอย่างเท่าเทียม

บทที่ 1: แผนการสอน

- 1.1 Internet คืออะไร
- 1.2 network edge

end systems (เครื่องปลายทาง), access networks (เครือข่ายสำหรับการ เข้าถึง), links (สิ่งเชื่อมต่อ)

1.3 network core

packet switching, circuit switching, โครงสร้างเครื่อข่าย

- 1.4 delay (ความล่าช้า), loss (ข้อมูลสูญหาย), throughput (อัตราปริมาณงานที่ได้)
- 1.5 ชั้น protocol, service models (โมเดลการให้บริการ)
- 1.6 networks ภายใต้การโจมตี: ความปลอดภัย
- 1.7 ประวัติศาสตร์

ชั้นของ Protocol

เครือข่ายมีความซับซ้อนเพราะประกอบไปด้วยหลาย ๆ ส่วน!

- hosts หรือ เครื่องคอมพิวเตอร์ปลายทาง
- routers หรือ อุปกรณ์ในการค้นหาเส้นทาง
- การเชื่อมโยงของสื่อต่างๆ
- applications หรือโปรแกรม
- protocols หรือ ข้อกำหนดที่ใช้เป็นมาตรฐานสำหรับการ สื่อสารระหว่างคอมพิวเตอร์
- hardware, software

<u>คำถาม:</u>

จากที่ได้เรียนมา มีอุปกรณ์หลาย ๆ อย่างใน เครือข่าย แล้วเราจะมีความหวังในการจัดการ โครงสร้างขั้นตอนการทำงานเครือข่ายให้เป็น ระเบียบหรือไม่

โครงสร้างการทำงานของการเดินทางโดยเครื่องบิน

ticket (purchase) ticket (complain)

baggage (check) baggage (claim)

gates (load) gates (unload)

runway takeoff runway landing

airplane routing airplane routing

airplane routing

ชุดของขั้นตอนต่าง ๆ ในการเดินทาง

ลำดับชั้นการทำงานของการเดินทางโดยเครื่องบิน

layers: แต่ละชั้นการทำงานจะให้บริการ ๆ หนึ่ง

- โดยเป็นการกระทำภายในแต่ละ Protocol (Protocol อื่นไม่ต้องรู้)
- โดยอาศัยบริการของชั้นที่อยู่ด้านล่างของมัน

ทำไมต้องแบ่งการทำงานเป็นชั้น layers?

เพื่อรับมือกับระบบที่ซับซ้อน:

- โครงสร้างที่ชัดเจนช่วยให้ระบุส่วนประกอบต่าง ๆ และความสัมพันธ์ของระบบ ที่ซับซ้อน
 - ■เป็น Model ของแต่ละชั้นการทำงานที่ใช้อ้างอิงเพื่อให้ผู้ออกแบบปรึกษากัน
- การทำให้เป็น module ช่วยทำให้การบำรุงรักษา และ ปรับปรุงระบบเป็นเรื่อง ง่ายขึ้น
 - การเปลี่ยนแปลงการทำงานของการบริการในแต่ละชั้นเป็นไปในลักษณะโปร่งใส (ส่วน อื่น ๆ ที่ไม่เกี่ยวข้องจะไม่รู้สึกถึงความเปลี่ยนแปลง)
 - ■เช่น การเปลี่ยนแปลงของกระบวนการที่ Gate ของสนามบินจะไม่กระทบส่วนอื่น ๆ ของระบบ

Internet Protocol Stack

- application: รองรับ app ด้านเครื่อข่าย
 - FTP, SMTP, HTTP
- transport: การถ่ายโดยข้อมูลระหว่าง process
 - ■TCP, UDP
- network: การหาเส้นทางส่งข้อมูลจากต้นทาง ไปปลายทาง
 - ■IP, routing protocols
- link: การส่งข้อมูลระหว่างอุปกรณ์ที่อยู่ติดกัน
 - Ethernet, 802.111 (WiFi), PPP
- physical: ส่ง bits "ไปบนสาย"

model อ้างอิง ของ ISO/OSI

- presentation: ช่วยให้ app ตีความหมายของ ข้อมูล, เช่น การเข้ารหัส การบีบอัด ข้อตกลงที่รู้ กันเฉพาะเครื่อง
- session: การทำให้เป็นจังหวะหรือเวลาเดียวกัน, การทำจุดตรวจสอบ, การกู้คืนข้อมูล
- Internet stack ไม่มี layer ข้างต้นนี้!
 - •บริการเหล่านี้ (ถ้าถูกต้องการ) จะต้องถูกนำไปทำใช้ ชั้น application

บทที่ 1: แผนการสอน

- 1.1 Internet คืออะไร
- 1.2 network edge

end systems (เครื่องปลายทาง), access networks (เครือข่ายสำหรับการ เข้าถึง), links (สิ่งเชื่อมต่อ)

1.3 network core

packet switching, circuit switching, โครงสร้างเครื่อข่าย

- 1.4 delay (ความล่าช้า), loss (ข้อมูลสูญหาย), throughput (อัตราปริมาณงานที่ได้)
- 1.5 ชั้น protocol, service models (โมเดลการให้บริการ)
- 1.6 networks ภายใต้การโจมตี: ความปลอดภัย
- 1.7 ประวัติศาสตร์

ความปลอดภัยของเครื่อข่าย

- ด้านการรักษาความปลอดภัยเครื่อข่าย:
 - วิธีการที่ผู้ร้ายสามารถโจมตีเครือข่ายคอมพิวเตอร์
 - วิธีที่เราจะสามารถปกป้องเครือข่ายจากการโจมตี
 - วิธีการออกแบบสถาปัตยกรรมที่มีภูมิคุ้มกันต่อการโจมตี
- เริ่มแรกอินเทอร์เน็ตไม่ได้ถูกออกแบบมาให้มีความปลอดภัย (มากเท่าที่ควร)
 - original vision: "กลุ่มของผู้ใช้ไว้วางใจซึ่งกันและกันที่เชื่อมต่อกับ เครือข่ายที่แทบจะไม่มีอะไรป้องกัน" 😊
 - ตอนนี้เหมือนนักออกแบบ Internet protocol จะเหมือนเล่นเกมไล่จับกับ attacker (ตามไม่ทันซะที)
 - เพราะต้องพิจารณาความปลอดภัยในทุก ๆ ชั้น!

ผู้ร้าย: ใส่ malware เข้าไปในเครื่องผ่านเครือข่าย

- มัลแวร์สามารถไปอยู่ในเครื่องได้จาก :
 - *ไวรัส :* ติด virus เพราะมันทำสำเนาตัวเอง โดย รับ/เปิด หรือสั่งสิ่งต่างๆ ทำงาน (เช่น ไฟล์แนบในอีเมล์)
 - *เวิร์ม:* ติด worm เพราะมันทำสำเนาตัวเองได้ เข้ามาที่เครื่องได้แม้ผู้ใช้จะไม่ได้ download หรือเปิด file ด้วยตัวเอง (สั่งให้ตัวเองทำงานได้)
- สปายแวร์ สามารถบันทึกการกดแป้นพิมพ์, เว็บที่เคยเข้าไปดู, ส่งข้อมูลไปเก็บรวม ไว้ที่เครื่องของผู้ร้าย
- เครื่องที่ติดเชื้อสามารถกลายเป็น botnet, ใช้สำหรับสแปม, โจมตีแบบ DDoS

ผู้ร้าย: โจมตี server และ เครื่อข่าย

การปฏิเสธการบริการ(DoS): ผู้โจมตีทำให้ระบบ (เซิฟเวอร์,แบนด์วิธ) ใช้งานไม่ได้หรือมีไม่พอ โดยส่งข้อมูลปลอมจำนวนมากให้กินทรัพยากรสูง มาก

- 1. เลือกเป้าหมาย
- 2. เจาะไปที่โฮสต์รอบ ๆ เป้าหมาย
- 3. ส่งแพคเก็จไปที่เป้าหมายผ่านโฮสที่โดนเจาะ

ผู้ร้ายดักจับ packet มาอ่านได้

"การดักจับแพคเก็จมาอ่าน" :

- เกิดในสื่อแบบกระจาย (เช่น อีเธอร์เนต สื่อไร้สาย ที่ใช้ร่วมกัน)
- การ์ดส่วนที่เชื่อมเครื่องกับเครือข่าย (ที่ถูกตั้งค่า mode ให้เป็น promicuous) จะอ่านและ บันทึกแพ็คเกตทั้งหมดที่ผ่านไปมา (รวมไปถึงรหัสผ่าน!)

ซอฟ์ตแวร์ขื่อ wireshark ใช้สำหรับการดักจับแพ็คเกจ (download ฟรี)

ผู้ร้ายสามารถปลอมที่อยู่ (ชื่อ) ของเครื่องได้

IP spoofing: send packet with false source address

... มีเนื้อหาเพิ่มเติมในเรื่องความปลอดภัย (ในบทที่ 8)

บทที่ 1: แผนการสอน

- 1.1 Internet คืออะไร
- 1.2 network edge

end systems (เครื่องปลายทาง), access networks (เครือข่ายสำหรับการ เข้าถึง), links (สิ่งเชื่อมต่อ)

1.3 network core

packet switching, circuit switching, โครงสร้างเครื่อข่าย

- 1.4 delay (ความล่าช้า), loss (ข้อมูลสูญหาย), throughput (อัตราปริมาณงานที่ได้)
- 1.5 ชั้น protocol, service models (โมเดลการให้บริการ)
- 1.6 networks ภายใต้การโจมตี: ความปลอดภัย
- 1.7 ประวัติศาสตร์

1961-1972: หลักการ packet-switching ในยุคแรกๆ

- 1961: Kleinrock ทฤษฎีแถวคอย แสดง ให้เห็นถึงประสิทธิผลของ packetswitching
- 1964: Baran packet-switching ใน เครือข่ายของทหาร
- 1967: ARPAnet ก่อตั้งโดย Advanced
 Research Projects Agency
- 1969: การทำงานโหนดแรกที่ ARPAnet node

- 1972:
 - ARPAnet แพร่ตัวอย่างสู่สาธรณะชน
 - NCP (Network Control Protocol) โปรโตคอล
 โฮสต์ติดต่อกับโฮสต์ตัวแรก
 - โปรแกรมอีเมล์โปรแกรมแรก
 - ARPAnet มี 15 โหนด

THE ARPA NETWORK

1972-1980: การเชื่อมต่อระหว่างเครือข่าย, new and proprietary nets

- 1970: เครื่อข่ายดาวเทียม ALOHAnet ในฮาวาย
- 1974: Cerf and Kahn สถาปัตยกรรมเครื่อข่าย ที่เชื่อมต่อกัน
- 1976: Ethernet at Xerox PARC
- late70's: proprietary architectures: DECnet, SNA, XNA
- late 70's: switching ที่จำกัดความยาวของ packet (ก่อนที่จะมาเป็น ATM)
- 1979: ARPAnet มี 200 โหนด

Cerf and Kahn's หลักการเชื่อมต่อระหว่าง เครือข่าย:

- minimalism (นิยมการทำงานที่น้อย ที่สุด), autonomy (จัดการตนเองได้)
 ไม่มีความจำเป็นในการเปลี่ยนแปลง ภายในเครือข่ายเพื่อที่จะเชื่อมต่อไปยัง ภายนอก
- โมเดลการให้บริการแบบพยายามที่สุด (best effort service model)
- router ไม่ต้องเก็บสถานะของการ เชื่อมต่อ (stateless routers)
- กระจายการควบคุมออกไป

กำหนดสถาปัตยกรรมปัจจุบันของอินเตอร์เนต

1980-1990: โปรโตคอลใหม่ๆ ,เครือข่ายมีความแพร่หลาย

- 1983: การใช้งานของ TCP/IP
- 1982: นิยามโปรโตคอล smtp e-mail
- 1983: กำหนด DNS ใช้แปลงจากชื่อเป็น ไอพีแอดเดรส
- 1985: นิยามโปรโตคอล ftp
- 1988: ใช้ TCP ควบคุมความคับคั่ง

- เครือข่ายระดับชาติใหม่ ๆ: Csnet, BITnet, NSFnet, Minitel
- 100,000 โฮสต์เชื่อมต่อไปยังเครือข่าย ต่าง ๆ

1990, 2000's: ในเชิงพาณิชย์, เว็บ, โปรแกรมประยุกต์ใหม่ๆ

- ต้นๆยุค 1990: ARPAnet ยกเลิกการใช้งาน
- 1991: NSF จำกัดการใช้งาน NSFnet ใน เชิงพาณิชย์ (ยกเลิกการใช้งานในปี 1995)
- ต้นๆยุค 1990: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - ปลายยุค 1990: เว็บเชิงพาณิชย์

ปลายๆยุค 1990 - 2000 :

- apps เจ๋ง ๆ มากขึ้น: instant messaging, แชร์ไฟล์แบบ P2P
- ความปลอดภัยทางเครือข่ายในระดับต้น ๆ
- ประมาณ 50 ล้านโฮสต์,
 100 ล้านผู้ใช้งาน
- การเชื่อมต่อเครือข่ายหลักทำงานที่ระดับ Gbps

2005-ปัจจุบัน

- ประมาณ 750 ล้านโฮสต์
 - โทรศัพท์มือถือและแท็บเลต
- การใช้งานเชิงรุกในการเข้าถึงบรอดแบนด์
- การเพิ่มขึ้นของการเชื่อมต่อเครือข่ายไร้สายความเร็วสูง
- การเกิดขึ้นของเครือข่ายสังคมออนไลน์:
 - Facebook: จะมีผู้ใช้ 1 พันล้านคนในเร็วๆนี้
- ผู้ให้บริการต่าง ๆ (Google, Microsoft) สร้างเครือข่ายของตนเอง
 - Bypass Internet, บริการ "ค้นหาแบบทันที", อีเมล์ และอื่นๆ
- การพาณิชย์ทางอิเลกทรอนิคส์, มหาวิทยาลัยต่าง ๆ, องค์กรต่าง ๆ เปิดให้บริการในกลุ่ม เมฆ "cloud" (ยกตัวอย่าง เช่น Amazon EC2)

สรุปบทที่ 1

ครอบคลุมเนื้อหามากมาย !

- ภาพรวมทางอินเทอร์เน็ต
- โปรโตคอลคืออะไร?
- ส่วนขอบ, ส่วนแกนของเครือข่าย, ส่วน การเข้าถึงเครือข่าย
 - packet-switching VS circuit-switching
 - โครงสร้างอินเตอร์เนต
- ประสิทธิภาพ: การสูญเสีย, ความล่าช้า, อัตราการส่งผ่าน
- ชั้นต่าง ๆ, รูปแบบการบริการ
- ความปลอดภัย
- ความเป็นมา

สิ่งที่คุณได้:

- เนื้อหา, ภาพรวม, ความรู้สึกถึงเรื่อง
 เครือข่าย
- รายละเอียดแบบเจาะลึกจะตามมา!

Credit ผู้แปล

1	56910040	MS.VANNAK SOTH
2	56920001	นางสาวเจฬุรีย์ ล้ำเลิศ
3	56920003	นายธนศักดิ์ วุฒิวโรภาส
4	56920004	นายนพปฎล เฉยศิริ
5	56920005	นายปรเมศวร์ รัตนผล
6	56920006	พันตรีพรภิรมย์ มั่นฤกษ์
7	56920007	นายวันปิยะ รัตตะมณี
8	56920336	นายฉัตรชัย เสกประเสริฐ
9	56920337	นายธนพนธ์ เดชจิระกุล
10	56920338	นายธนินทร์ เมธิโยธิน
11	56920339	นายพงษ์พัช ไพรัช
12	56920340	นางสาวพรพรรณ ขวัญกิจบรรจง
13	56920341	นายพัสกร ปัญญวรากิจ
14	56920343	นางโพธิรัตน์ หิรัญรุ่ง
15	56920344	นายรักชาติ เหมะสิขัณฑกะ
16	56920345	นายสมบูรณ์ เฉลิมรัตนาพร
17	56920346	นายสุชาติ กุนสง
18	56920347	นายเอกพล อ่อนปาน