Surface wave supporting structures in the terahertz and optical frequency domains

Hasan Tahir Abbas

Supervised by: Dr. Robert D. Nevels

Department of Electrical & Computer Engineering

ELECTRICAL & COMPUTER ENGINEERING

TEXAS A&M UNIVERSITY

Thursday 8th June, 2017

Hasan Tahir Abbas Summer 2017

1 / 18

Outline

- Plasmonics Overview
- Background
- Theory and Methods
 - Sommerfeld Integral analysis
 - Dispersion relation
 - Surface Integral equation
- Results
- Conclusions

Plasmonics Overview

- Interaction of electromagnetic (EM) waves with free electrons 1THz
- Subwavelength localization of EM fields
- Plasma frequency
 - Metals Optical frequency
 - Semiconductors Terahertz
- Low efficiency

Figure: Communication Technologies at various frequencies

Plasmonics Overview

- Metal-dielectric interface
- Surface plasmon polaritons (SPPs)

$$\operatorname{Re}\left[\varepsilon_{\mathsf{metal}}(\omega)\right] < 0$$

Plasma frequency

- Metals Optical frequency
- Semiconductors -Terahertz
- Low efficiency

Surface Plasmons interface

- Surface plasmon polaritons (SPPs)
- Slow surface waves
 - Wavelength
 - Semiconductors Terahertz
- Low efficiency
- Metal-dielectric interface
- Slow surface waves
- Subwavelength Control of electromagnetic waves
- Focusing beyond the

Figure: Subwavelength Transmission through a Silver slit

Optical Nanoantennas

- Convert Localized near-field to efficient far-field radiation
- Low Q-factor
- Extremely small size
- High Purcell Factor

$$P = \frac{Q}{V}$$

Directive radiation

Figure: Optical resonant cavities for electric field enhancement

Optical Nanoantennas (contd.)

- Scaled-down microwave designs
 - Directivity: Yagi-Uda antenna
 - Broadband: Bowtie antenna

Optical Nanoantennas

Metal-dielectric Interface

$$k_{sp} = \frac{\omega}{c} \sqrt{\frac{\varepsilon_1 \varepsilon_2(\omega)}{\varepsilon_1 + \varepsilon_2(\omega)}}$$

 Accurate material description using Drude-critical points

$$\varepsilon_2(\omega) = \varepsilon_\infty - \frac{\omega_d^2}{\omega^2 + j\gamma\omega} + \sum_{i=1}^N G_i(\omega)$$

$$G_i(\omega) = C_i \left[rac{e^{j\phi_i}}{\omega_i - \omega - \mathrm{j}\Gamma_i} + rac{e^{-\mathrm{j}\phi_i}}{\omega_i + \omega + \mathrm{j}\Gamma_i}
ight]$$

Two-dimensional Electon Gas (2DEG)

- Semiconductor
 Heterostructure Interface
- High concentration of free electrons
- Two-dimensional Surface waves
- Formation of Quantum Well Two-dimensional confinement of electrons

Figure: Typical GaAs/AlGaAs HEMT

Hasan Tahir Abbas Background Summer 2017 9 / 18

2DEG (contd.)

- Plasma waves in 2DEG
- Dyakonov-Shur instability
 - Voltage bias at source and drain terminals
 - Plasma resonance
 - Emission of terahertz radiation
 - External radiation detection
- Electronic Flute
- Tunable resonance with gate voltage
- Shallow water waves
 - Surface waves

$$\lambda = \frac{c}{f}$$

$$\implies 300 \mu \text{m}$$

Theory

2DFG formation

- Interface of two slightly different semiconductors/insulators
- High electron concentration $(\sim 10^{12} 10^{14} cm^{-2})$
- Triangular quantum well
 Entrapment of electrons in transverse direction
 Free lateral movement

Figure: Band diagram of a GaAs/AlGaAs heterostructure

 E_c - Conduction band edge

 E_f - Fermi level

Hasan Tahir Abbas Summer 2017 11 / 18

Basics

- Structured Illumination
 - Periodic sine pattern
- Moiré Fringes
 - Frequency modulation of two patterns
 - Resulting low-frequency signal
- Linear scheme
 - Low light intensity

Setup

Working Principle

Illumination signal

$$I(\mathbf{r}) = 1 + \cos(\mathbf{k}_{\rho} \cdot \mathbf{r} + \phi)$$

Observed Image (Spatial domain)

$$M(\mathbf{r}) = [F(\mathbf{r}) \cdot I(\mathbf{r})] \otimes H(\mathbf{r})$$

Fourier transformed Image

$$\begin{split} \tilde{M}(\mathbf{k}) &= \left[\tilde{F}(\mathbf{k}) \otimes \tilde{I}(\mathbf{k}) \right] \cdot \tilde{H}(\mathbf{k}) \\ &= \frac{1}{2} \left[2\tilde{F}(\mathbf{k}) + \tilde{F}(\mathbf{k} - \mathbf{k}_{\rho}) \mathrm{e}^{-\mathrm{j}\phi} + \tilde{F}(\mathbf{k} + \mathbf{k}_{\rho}) \mathrm{e}^{\mathrm{j}\phi} \right] \cdot \tilde{H}(\mathbf{k}) \end{split}$$

Image Reconstruction

Image Reconstruction

16 / 18

Results

Figure: (a) Sample distribution. Simulation of the reconstructed sample image at: (b) $\operatorname{Re} k_{\rho} = 39.5$ (c) $\operatorname{Re} k_{\rho} = 80$

Summary

Two-dimensional plasmonic devices

- Subwavelength wave phenomena at optical and terahertz frequencies
- Realization of terahertz sources and sensors
- 2D nature of waves permits subwavelength confinement
- Plasmonic activity
- Nanoscale imaging using terahertz plasma waves

Acknowledgements

Sponsorship

The Fulbright Program

Thank you!

Questions?