Groups

Adam Kelly

Michaelmas 2020

This set of notes is a work-in-progress account of the course 'Groups', originally lectured by Dr. Ana Khukhro in Michaelmas 2020 at Cambridge. These notes are not a transcription of the lectures, but they do roughly follow what was lectured (in content and in structure).

These notes are my own view of what was taught, and should be somewhat of a superset of what was taught. I frequently provide different explanations, proofs, examples, and so on in areas where I feel they are helpful. Because of this, this work is likely to contain errors, which you may assume are my own. If you spot any or have any other feedback, I can be contacted at ak2316@cam.ac.uk.

During the creation of this document, I consulted a number of other books and resources. All of these are listed in the bibliography.

Contents

1	Groups
	1.1 Definition of a Group
	1.2 Elementary Properties of Groups
	1.3 Examples of Groups
	1.4 Subgroups

§1 Groups

'Groups' is a course which introduces you to the subject of *Abstract Algebra*. Indeed, while groups are one of the simplest and most basic of all the algebraic structures¹, they are immensely useful and appear in almost every area of mathematics.

§1.1 Definition of a Group

We will begin our study of the subject by defining formally what a group is.

Definition 1.1 (Group)

A group is a set G with a binary operation a* which satisfies the axioms:

- *Identity*. There is an element $e \in G$ such that g * e = e * g = g for every $g \in G$.
- Inverses. For every element $g \in G$, there is an element $g^{-1} \in G$ such that $g * g^{-1} = g^{-1} * g = e$.
- Associativity. The operation * is associative.

We typically refer to a group as defined above by (G,*), which explicitly states that * is the group operation. When the operation being used is clear, we can refer to the group by just G. We will also be omitting the group's operation symbol quite often, for example writing gh = g * h.

In a later section, we will look at some non-trivial examples of groups.

§1.2 Elementary Properties of Groups

With the notion of a group now defined, we can now consider some basic facts that follow directly from the definition of a group. We will first address whether it is possible for a group to have multiple identity elements, or for an element to have multiple inverses (no).

Proposition 1.2 (Uniqueness of the Identity and Inverse)

Let (G, *) be a group. Then there is a unique identity element, and for every $g \in G$, g^{-1} is unique.

Proof. To prove that the identity element is unique, let e and e' be identity elements of G. Then e * e' = e and e * e' = e' by definition, giving e = e'.

To prove that the inverses are unique, suppose that for some $g, h, k \in G$ we have g * h = g * k = e. Then $g^{-1} * g * h = g^{-1} * g * k$, implying h = k. The case of h * g = k * g = e follows analogously.

The next useful fact is the *cancellation law*, whose proof bears a large resemblance to the proof that inverses are unique.

^aSome texts include an additional *closure* axiom, but this is implied by * being a binary operation on G.

¹Apart from 'magmas' I suppose, but they don't tend to be a particularly useful notion.

Proposition 1.3 (Cancellation Law)

If (G,*) is a group, and $a,b,c \in G$, then a*b=a*c and b*a=c*a both imply b=c.

Proof. Taking
$$a*b = a*c$$
 and left-multiplying by a^{-1} we have $a^{-1}*a*b = a^{-1}*a*c$, that is, $b = c$. The other case follows analogously.

The last proposition we will prove in this section gives us a useful result about computing inverses.

Proposition 1.4 (Computing Inverses)

Let (G,*) be a group, and let $g,h\in G$. Then the following hold:

- (i) $(g * h)^{-1} = h^{-1} * g^{-1}$.
- (ii) $(g^{-1})^{-1} = g$.

Proof.

- (i) We have $(g*h)*(h^{-1}*g^{-1}) = g*(h*h^{-1})*g^{-1} = g*g^{-1} = e$, so $(g*h)^{-1} = h^{-1}*g^{-1}$.
- (ii) Similarly, $g^{-1} * g = e$, so $(g^{-1})^{-1} = g$.

§1.3 Examples of Groups

It's probably of some use to have concrete examples of groups in your head, so you can get a feel for what they are. In this section we will present some non-trivial examples of groups (and some examples of non-groups).

It should be recognized that commutativity is *not* a group axiom, and the majority of groups are not commutative. We do have a name for groups where the binary operation is commutative though.

Definition 1.5 (Abelian Groups)

We say a group (G, *) is **abelian** if * is commutative, that is, if for any $g, h \in G$, g * h = h * g.

In this section, we will consider examples of both abelian and non-abelian groups². In the first few cases, the reasons why they are a group are stated. For the others, you should consider how they satisfy the group axioms yourself.

Example 1.6 (The Trivial Group)

The **trivial group** is a group whose only element is the identity, $\{e\}$.

²If you are not familiar with some of the concepts used, such as matrices or modular arithmetic, feel free to ignore those examples.

Example 1.7 (Additive Group of Integers)

 $(\mathbb{Z},+)$ is an group. We have

- The identity element $0 \in \mathbb{Z}$, as a + 0 = 0 + a = a for any $a \in \mathbb{Z}$
- The inverse of $a \in \mathbb{Z}$ being -a, as a + (-a) = (-a) + a = 0.
- The operation + is associative and commutative.

We also have the additive group of rationals $(\mathbb{Q}, +)$, of reals $(\mathbb{R}, +)$, and of complex numbers $(\mathbb{C}, +)$ for the same reasons.

Example 1.8 (Addition Modulo n)

Let $n \in \mathbb{N}$, and let $\mathbb{Z}/n\mathbb{Z} = \{0, 1, \dots, n-1\}$ denote the set of residues modulo n. Then $(\mathbb{Z}/n\mathbb{Z}, +)$ is a group (where addition is done modulo n). We have

- The identity element is $0 \pmod{n}$, as $a + 0 \equiv 0 + a \equiv a \pmod{n}$.
- The inverse of $a \in \mathbb{Z}/n\mathbb{Z}$ is -a, as $a + (-a) \equiv 0 \pmod{n}$.
- \bullet Addition modulo n is associative.

Example 1.9 (Non-zero Rationals)

Let \mathbb{Q}^{\times} denote the set of non-zero rationals. Then $(\mathbb{Q}^{\times}, \times)$ is a group.

Similarly, we also have the groups $(\mathbb{R}^{\times}, \times)$ and $(\mathbb{C}^{\times}, \times)$.

Example 1.10 (Multiplication Modulo p)

Let p be a prime, and let $(\mathbb{Z}/p\mathbb{Z})^{\times}$ denote the set of non-zero residues modulo p. Then $((\mathbb{Z}/p\mathbb{Z})^{\times}, \times)$ is a group (where multiplication is done modulo p).

Example 1.11 (General Linear Group)

Let $GL_n(\mathbb{R})$ be the set of $n \times n$ matrices with non-zero determinant. Then $(GL_n(\mathbb{R}), \times)$ is the **general linear group**^a.

Example 1.12 (Special Linear Group)

Let $\mathrm{SL}_n(\mathbb{R})$ be the set of $n \times n$ matrices with determinant 1. Then $(\mathrm{SL}_n(\mathbb{R}), \times)$ is the special linear group.

§1.4 Subgroups

Given any mathematical structure, it can be useful to know about it's *substructure*. In the case of a group (G, *), one might ask the question is there some subset $H \subseteq G$ that still acts like a group? This motivates the introduction of *subgroups*.

^aUsing matrix multiplication

Definition 1.13 (Subgroups)

Let (G,*) be a group. A subset $H \subseteq G$ is a **subgroup** of G if (H,*) is also a group.

Remark (Checking Subgroups). To check whether H is a subgroup of G, can just check that the following hold:

- Closure. * is closed in H.
- Identity. $e \in H$.
- Inverses. For $h \in H$, we also have $h^{-1} \in H$.