

# Discrete Mathematics MH1812

Topic 3.2 - Predicate Logic II Dr. Gary Greaves

SINGAPORE



### What's in store...





### By the end of this lesson, you should be able to...

- Express the negation of a quantified statement.
- Find the truth value of a quantified statement.
- Manipulate quantified conditional statements.





### Negation of Quantification: Truth vs. False

| Statement               | When True                                         | When False                                  |
|-------------------------|---------------------------------------------------|---------------------------------------------|
| $\forall x \in D, P(x)$ | P(x) is true for every $x$ in $D$ .               | There is one $x$ for which $P(x)$ is false. |
| $\exists x \in D, P(x)$ | There is one $x$ in $D$ for which $P(x)$ is true. | P(x) is false for every $x$ in $D$ .        |

Assume that *D* consists of  $x_1$ ,  $x_2$ , ...,  $x_n$ 

$$\forall x \in D, P(x) \equiv P(x_1) \land P(x_2) \land \dots \land P(x_n)$$

$$\exists x \in D, P(x) \equiv P(x_1) \lor P(x_2) \lor ... \lor P(x_n)$$

### **Negation of Quantification: Example 1**

"Not all SCSE students study hard."

"There is at least one SCSE student who does not study hard."

 $\neg (\forall x \in D, P(x))$ 

 $\exists x \in D, \neg P(x)$ 

D = {SCSE students}

P(x) = "x studies hard"

Negation of a universal quantification becomes an existential quantification.

### **Negation of Quantification: Example 2**

"It is not the case that some students in this class are from NUS."

"All students in this class are not from NUS."

 $\neg (\exists x \in D, P(x))$ 

 $\forall x \in D, \neg P(x)$ 

D = {Students}

P(x) ="x is from NUS"

Negation of an existential quantification becomes an universal quantification.

### **Negation of Quantification: Example 3**

$$\neg (\forall x \in D, P(x) \land Q(x))$$

$$\equiv \exists x \in D, \neg (P(x) \land Q(x))$$
Negation

**Negation of Quantification** 

 $\equiv \exists x \in D, (\neg P(x) \lor \neg Q(x))$ 

De Morgan

- Not all students in this class are using Facebook and (also) Google+.
  - There is some (at least one) student in this class who is not using Facebook or not using Google+ (or may be using neither).





### **Determining Truth Values: Three Methods**

### **Systematic Approaches**

#### Method of:

- Exhaustion
- Case
- Logical derivation



### **Determining Truth Values: Method of Exhaustion**

**Let**  $D = \{5,6,7,8,9\}$ 

Is  $\exists x \in D$ ,  $x^2 = x$  true or false?

| X | $\chi^2$            | $x^2 = x$ |
|---|---------------------|-----------|
| 5 | $5^2 = 25$          | False     |
| 6 | $6^2 = 36$          | False     |
| 7 | $7^2 = 49$          | False     |
| 8 | $8^2 = 64$          | False     |
| 9 | 9 <sup>2</sup> = 81 | False     |

#### Limitation?

 Domain may be too large to try out all options, e.g., all integers.

### **Determining Truth Values: Method of Case**

# Positive Example to Prove Existential Quantification

Let  $\mathbb{Z}$  denote all integers.

Is  $\exists x \in \mathbb{Z}$ ,  $x^2 = x$  true or false?

Take x = 0 or 1 and we have it.

True!

## Counterexample to Disprove Universal Quantification

Let  $\mathbb{R}$  denote all reals.

Is  $\forall x \in \mathbb{R}$ ,  $x^2 > x$  true or false?

Take x = 0.3 as a counterexample.

False!

### **Determining Truth Values: Method of Case**

### **Positive Example**

It is **not** a proof of universal quantification.

### **Negative Example**

It is **not** disproof of existential quantification.

Note that it may be hard to find suitable "cases" even if such cases do exist!



### **Determining Truth Values: Method of Logical Derivation**

Consider an (arbitrary) domain *X* with *n* members.

Is 
$$\exists x \in X$$
,  $(P(x) \lor Q(x)) \equiv (\exists x \in X, P(x)) \lor (\exists x \in X, Q(x))$ ?

$$\exists x \in X, (P(x) \lor Q(x))$$

$$\equiv [P(x_1) \lor Q(x_1)] \lor \dots \lor [P(x_n) \lor Q(x_n)]$$

$$\equiv [P(x_1) \lor ... \lor P(x_n)] \lor [Q(x_1) \lor ... \lor Q(x_n)]$$

$$\equiv (\exists x \in X, P(x)) \lor (\exists x \in X, Q(x))$$



### **Conditional Quantification: Example 1**

For any real number x, if x > 1 then  $x^2 > 1$  (i.e., any real number greater than 1 has a square larger than 1).

- Let P(x) denote "x > 1".
- Let Q(x) denote " $x^2 > 1$ ".
- Recall:  $\mathbb{R}$  is the collection of all real numbers.

In Symbolic Form:  $\forall x \in \mathbb{R}$ ,  $(P(x) \to Q(x))$ 

### **Conditional Quantification: Example 2**

Many statements can be restated as conditional statements. Consider the statement "lions are fierce animals".

- Let A denote the collection of all animals.
- Let P(x) denote "x is a lion".
- Let Q(x) denote "x is fierce".
- The statement can be rephrased as: "If an animal *x* is a lion then *x* is fierce".

In Symbolic Form:  $\forall x \in A$ ,  $(P(x) \rightarrow Q(x))$ 

### **Conditional Quantification: Definitions**

Given a conditional quantification such as...

$$\forall x \in A \ (P(x) \to Q(x))$$

Then, we define...

| Contrapositive | $\forall x \in A, \neg Q(x) \rightarrow \neg P(x)$ |
|----------------|----------------------------------------------------|
| Converse       | $\forall x \in A, Q(x) \rightarrow P(x)$           |
| Inverse        | $\forall x \in A, \neg P(x) \rightarrow \neg Q(x)$ |

Note: a conditional proposition is logically equivalent to its contrapositive.

### **Conditional Quantification: Negation**

What is 
$$\neg (\forall x \in X, P(x) \rightarrow Q(x))$$
?

$$\neg (\forall x \in X, P(x) \rightarrow Q(x))$$

$$\equiv \exists x \in X, \neg (P(x) \rightarrow Q(x))$$

$$\equiv \exists x \in X, \neg (\neg P(x) \lor Q(x))$$

$$\equiv \exists x \in X, P(x) \land \neg Q(x)$$

**Negation of Quantified Statements** 

**Conversion of Conditionals** 

De Morgan



### Let's recap...

- Negation of quantification
- Determining truth value of a quantification:
  - Methods for proving quantified statements
- Conditional quantification

