Convex Optimization: Reading Notes 5

GKxx

May 11, 2022

1 Triangular factorizations

Definition 1.1 (LU factorization). Let $A \in \mathbb{C}^{n \times n}$. A presentation A = LU, in which $L \in \mathbb{C}^{n \times n}$ is lower triangular and $U \in \mathbb{C}^{n \times n}$ is upper triangular, is called an LU factorization of A.

Theorem 1.2 (Row inclusion). Let $A \in \mathbb{C}^{n \times n}$ be given. A has an LU factorization in which L is nonsingular if and only if A has the row inclusion property: For each $i = 1, \dots, n-1$, A $[\{i+1;1,\dots,i\}]$ is a linear combination of the rows of A $[\{1,\dots,i\}]$.

Here we use A [$\{i+1;1,\cdots,i\}$] to denote the vector $\begin{bmatrix} a_{(i+1)1} & a_{(i+1)2} & \cdots & a_{(i+1)i} \end{bmatrix}$, where $A=\begin{bmatrix} a_{ij} \end{bmatrix}_{i,j=1}^n$.

Remark 1.3 (Leading principal submatrix). For $A \in \mathbb{C}^{n \times n}$, the i-th leading principal submatrix of A, denoted A [$\{1, \dots, i\}$], is the submatrix obtained from A by deleting the last n - i + 1 rows and columns.

The proof of Theorem 1.2 is as follows.

Proof. Suppose $A = LU \in \mathbb{C}^{n \times n}$ is the LU factorization with L nonsingular. First we show that $A [\{n; 1, \dots, n-1\}]$ is the linear combination of the rows of $A [\{1, \dots, n-1\}]$. Partition A, L and U as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad L = \begin{bmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix}, \quad U = \begin{bmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix},$$

where $A_{11}, L_{11}, U_{11} \in \mathbb{C}^{(n-1)\times (n-1)}$. Since A = LU, we have $A_{21} = L_{21}U_{11} = L_{21}L_{11}^{-1}L_{11}U_{11}$, and $A_{11} = L_{11}U_{11}$. Therefore $A_{21} = \left(L_{21}L_{11}^{-1}\right)A_{11}$, which represents $A_{21} = A\left[\{n; 1, \cdots, n-1\}\right]$ as the linear combination of the rows of $A\left[\{1, \cdots, n-1\}\right]$. Moreover, since A = LU, for every $i = 1, \cdots, n$ we have

$$A[\{1, \dots, i\}] = L[\{1, \dots, i\}] U[\{1, \dots, i\}].$$

Applying what we have obtained to this LU factorization of every leading principal submatrix of A verifies the row inclusion property.

Conversely, if A has the row inclusion property, we can construct an LU factorization inductively with L nonsingular. The cases n = 1, 2 are easily verified. Now suppose $A_{11} = 1, 2$

 $L_{11}U_{11}$, where L_{11} is nonsingular and A_{11} , L_{11} , $U_{11} \in \mathbb{C}^{(n-1)\times(n-1)}$. The row inclusion property gives that the row vector A_{21} is a linear combination of the rows of A_{11} , so there exists $y \in \mathbb{C}^{n-1}$ such that

$$A_{21} = y^T A_{11} = y^T L_{11} U_{11}.$$

From $A_{21}=L_{21}U_{11}$, we get $L_{21}=y^TL_{11}$. From $A_{12}=L_{11}U_{12}$ and that L_{11} is nonsingular, we obtain $U_{12}=L_{11}^{-1}A_{12}$. Let $L_{22}=1$ and $U_{22}=A_{22}-L_{21}U_{12}$. In this way, we obtain an LU factorization of A, in which L is nonsingular, from the LU factorization of A_{11} .

Remark 1.4. Similarly we can define the column inclusion property. A has an LU factorization with nonsingular U if and only if the column inclusion property holds. This follows from considering the LU factorization of A^{T} .

Corollary 1.5. Suppose that $A \in \mathbb{C}^{n \times n}$ and rank A = k. If $A [\{1, \cdots, j\}]$ is nonsingular for all $j = 1, \cdots, k$, then A has an LU factorization. Furthermore, either factor may be chosen to be unit triangular; both L and U are nonsingular if and only if k = n.

Proof. For $A \in \mathbb{C}^{n \times n}$ with rank A = k such that $A[\{1, \cdots, j\}]$ is nonsingular for all $j = 1, \cdots, k$, we first verify that A has both the row inclusion and column inclusion properties. For $j = 1, \cdots, k$, since $A[\{1, \cdots, j\}]$ is nonsingular, the rows of $A[\{1, \cdots, j\}]$ are linearly independent, so they span \mathbb{C}^j and $A[\{j+1;1,\cdots,j\}]$ is certainly in it. For j > k, since rank A = k, the rows of $A[\{1, \cdots, j\}]$ must span \mathbb{C}^j , and $A[\{j+1;1,\cdots,j\}]$ is in it. This shows the row inclusion property, and similarly the column inclusion property also holds. From Theorem 1.2 and Remark 1.4 it follows that A has an LU factorization where either L or U may be nonsingular.

Suppose A = LU and L is nonsingular, which means that L has nonzero diagonal elements $\ell_{11}, \ell_{22}, \dots, \ell_{nn}$. Let $D = \operatorname{diag}(\ell_{11}, \dots, \ell_{nn})$ which is nonsingular, and let L = L'D so that L' is unit lower triangular. Note that U' = DU is still upper triangular, so we obtain a new LU factorization of A = L'U' in which the left factor is unit triangular. Similarly, the right factor could also be unit triangular.

For k=n, the matrix A is nonsingular, so the other factor must be nonsingular if either factor is nonsingular. Conversely, for both L and U nonsingular, A=LU is nonsingular, and therefore has full rank.

Corollary 1.6 (LDU factorization). Let $A = [a_{ij}] \in \mathbb{C}^{n \times n}$ be given. Suppose that the leading principal submatrix $A [\{1, \cdots, i\}]$ is nonsingular for all $i = 1, \cdots, n$. Then A = LDU, in which $L, D, U \in \mathbb{C}^{n \times n}$, L is unit lower triangular, U is unit upper triangular, $D = \operatorname{diag}(d_1, \cdots, d_n)$ is diagonal, $d_1 = a_{11}$, and

$$d_{\mathfrak{i}} = \frac{\det A \; [\{1,\cdots,\mathfrak{i}\}]}{\det A \; [\{1,\cdots,\mathfrak{i}-1\}]}.$$

The factors L, D and U are uniquely determined.

Proof. From Corollary 1.5, A must have an LU factorization A = L'U' where both L' and U' are nonsingular. It is easy to find unit triangular L and U such that $L' = LD_1$ and $D_2U = U'$,

where D_1 and D_2 are diagonal. Then A has an LDU factorization $A=LDU, D=D_1D_2$, and

$$\det A\left[\left\{1,\cdots,i\right\}\right] = \det D\left[\left\{1,\cdots,i\right\}\right] = \prod_{j=1}^{i} d_{j}, \quad i=1,\cdots,n.$$

So $d_1 = a_{11}$, and

$$d_i = \frac{\det A [\{1, \cdots, i\}]}{\det A [\{1, \cdots, i-1\}]}, \quad i = 2, \cdots, n.$$

The uniqueness of L and U could be proved inductively.

Lemma 1.7. Let $A \in \mathbb{C}^{n \times n}$ be nonsingular. Then there is a permutation matrix $P \in \mathbb{C}^{n \times n}$ such that $\det \left(\left(P^T A \right) [\{1, \cdots, j\}] \right) \neq 0$ for $j = 1, \cdots, n$.

Proof. Prove by induction on n. The cases n=1,2 are trivial. Suppose that such matrix exists for cases $1,2,\cdots,n-1$. For a nonsingular $A\in\mathbb{C}^{n\times n}$, we delete its last column, and the remaining n-1 columns are linearly independent and hence they contain n-1 linearly independent rows. Permute these rows to be the first n-1 rows, and then apply the induction hypothesis to the nonsingular $(n-1)\times(n-1)$ leading principal submatrix. This determines a desired permutation P, and P^TA is nonsingular.

Theorem 1.8 (PLU factorization). For each $A \in \mathbb{C}^{n \times n}$ there is a permutation matrix $P \in \mathbb{C}^{n \times n}$, a unit lower triangular $L \in \mathbb{C}^{n \times n}$ and an upper triangular $U \in \mathbb{C}^{n \times n}$ such that A = PLU.

Proof. It suffices to show that there exists a permutation matrix Q such that QA has the row inclusion property, and thus has an LU factorization QA = LU. Let $P = Q^T$ and we have A = PLU.

If A is nonsingular, the desired permutation matrix is guaranteed by Lemma 1.7. Suppose A is singular, with rank A = k < n. First we permute the rows of A so that the first k rows are linearly independent. This gives that $A[\{i+1;1,\cdots,i\}]$ is a linear combination of the rows of $A[\{1,\cdots,i\}]$ for $i=k,\cdots,n-1$. If $A[\{1,\cdots,k\}]$ is nonsingular, apply Lemma 1.7 again to $A[\{1,\cdots,k\}]$ so that the row inclusion property holds for $A[\{1,\cdots,k\}]$, and thus holds for A. If $A[\{1,\cdots,k\}]$ is singular, apply the same procedure recursively to $A[\{1,\cdots,k\}]$ until either the upper left block is 0, or it is nonsingular. Hence the desired permutation matrix exists.

Theorem 1.9 (LPU factorization). For every $A \in \mathbb{C}^{n \times n}$, there exists a permutation matrix $P \in \mathbb{C}^{n \times n}$, a unit lower triangular matrix $L \in \mathbb{C}^{n \times n}$ and an upper triangular matrix $U \in \mathbb{C}^{n \times n}$ such that A = LPU. Moreover, the factor P is uniquely determined if A is nonsingular.

Theorem 1.9 could be proved by induction. The proof is omitted here.

Theorem 1.10 (LPDU factorization). For each nonsingular $A \in \mathbb{C}^{n \times n}$, there is a unique permutation matrix P, a unique nonsingular diagonal matrix D, a unit lower triangular matrix L, and a unit upper triangular matrix U such that A = LPDU.

Proof. Theorem 1.9 guarantees the existence of a unique permutation matrix P, a unit lower triangular matrix L and a nonsingular upper triangular matrix L' such that L' = LPL'. Let L' = LPL' be diag L' = LPL' by the existence.

To show the uniqueness of D, we assume there exists another diagonal matrix D_1 , unit lower triangular L_1 and unit upper triangular U_1 such that $A = L_1PD_1U_1$. Since A = LPDU, we have $LPDU = L_1PD_1U_1$, and thus

$$P^{T}L_{1}^{-1}LPD = D_{1}U_{1}U^{-1}$$
.

Sicne the unit lower/upper triangular matrices form a multiplicative group, the main diagonal entries of $L_1^{-1}L$ and U_1U^{-1} are all ones. Since P is a permutation matrix, it is clear that the main diagonal entries of $P^T(L_1^{-1}L)P$ are also all ones. Hence $D=D_1$.

2 Cholesky factorization

Theorem 2.1 (Cholesky factorization). Let $A \in \mathbb{S}^n$ be given. A is positive definite if and only if there exists a lower triangular matrix L with positive diagonal elements such that $A = LL^T$. Such L is unique and is called the Cholesky factor of A.

Proof. \Leftarrow : Suppose $A = LL^T$ in which L is lower triangular with positive diagonal elements. It follows immediately that A is positive semidefinite. Since the diagonal elements of L are all positive, L and L^T are nonsingular, so $A = LL^T$ is nonsingular, and thus positive definite.

 \implies : We will show the existence of the Cholesky factor L by induction on n. The case n=1 is trivial. Suppose this is true up to n-1, and for $A \in \mathbb{S}^n$, write

$$A = \begin{bmatrix} \alpha & b^T \\ b & A' \end{bmatrix}, \quad A' \in \mathbb{R}^{(n-1)\times (n-1)}.$$

Decompose this in the form

$$A = \begin{bmatrix} 1 & 0 \\ \frac{1}{\alpha}b & I_{n-1} \end{bmatrix} \begin{bmatrix} \alpha & 0 \\ 0 & A' - \frac{bb^T}{\alpha} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{\alpha}b^T \\ 0 & I_{n-1} \end{bmatrix},$$

where $\Delta_A = A' - \frac{bb^T}{\alpha}$ is the *Schur complement* of A. Since A is positive definite, it follows that the Schur complement Δ_A is also positive definite. By induction hypothesis there exists a lower triangular matrix L_Δ with positive diagonal elements such that $\Delta_A = L_\Delta L_\Delta^T$. Therefore

$$\begin{split} A &= \begin{bmatrix} 1 & 0 \\ \frac{1}{\alpha}b & I_{n-1} \end{bmatrix} \begin{bmatrix} \alpha & 0 \\ 0 & L_{\Delta}L_{\Delta}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{\alpha}b^{\mathsf{T}} \\ 0 & I_{n-1} \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 \\ \frac{1}{\alpha}b & I_{n-1} \end{bmatrix} \begin{bmatrix} \sqrt{\alpha} & 0 \\ 0 & L_{\Delta} \end{bmatrix} \begin{bmatrix} \sqrt{\alpha} & 0 \\ 0 & L_{\Delta}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{\alpha}b^{\mathsf{T}} \\ 0 & I_{n-1} \end{bmatrix} \\ &= \begin{bmatrix} \sqrt{\alpha} & 0 \\ \frac{1}{\sqrt{\alpha}}b & L_{\Delta} \end{bmatrix} \begin{bmatrix} \sqrt{\alpha} & \frac{1}{\sqrt{\alpha}}b^{\mathsf{T}} \\ 0 & L_{\Delta}^{\mathsf{T}} \end{bmatrix} = LL^{\mathsf{T}}, \end{split}$$

where $L=\begin{bmatrix}\sqrt{\alpha} & 0 \\ \frac{1}{\sqrt{\alpha}}b & L_{\Delta}\end{bmatrix}$ is lower-triangular with positive diagonal elements. This shows the existence.

To prove the uniqueness, suppose $A = LL^T = KK^T$, where K is also a Cholesky factor of A. Then $K^{-1}L = K^T (L^T)^{-1}$. Since the nonsingular lower triangular matrices form a group, $K^{-1}L$ is lower triangular and $K^T (L^T)^{-1}$ is upper triangular. Therefore $K^{-1}L = D$ for some diagonal matrix D. For real matrices, take this into $A = LL^T = KK^T$ and we obtain $KDD^TK^T = KK^T$, which gives $DD^T = I$, so D = I. The uniqueness also holds for complex matrices, but the proof is omitted here.

Remark 2.2. From the proof above, we also obtain a Cholesky factorization algorithm. To find the Cholesky factor of $A \in \mathbb{S}^n_{++}$, we only need to compute $\Delta_A = A' - \frac{1}{\alpha}bb^T$, where

$$A = \begin{bmatrix} \alpha & b^T \\ b & A' \end{bmatrix},$$

which involves n^2 flops (for computing bb^T), and then recursively find the Cholesky factorization of $\Delta_A \in \mathbb{S}^{n-1}_{++}$. So the total number of flops is approximately

$$\sum_{n} n^2 = \frac{1}{3}n^3.$$

3 Matrix inversion lemma

There are many different versions of the matrix inversion lemma. The *Sherman-Morrison* formula gives that

$$(A + uv^{T})^{-1} = A^{-1} - \frac{A^{-1}uv^{T}A^{-1}}{1 + v^{T}A^{-1}u},$$

where A is invertible matrix, $u, v \in \mathbb{R}^n$, $1 + v^T A^{-1} u \neq 0$ and $A + uv^T$. The Sherman-Morrison-Woodbury formula deals with the case of two matrices and gives that

$$(D + VV^{T})^{-1} = D^{-1} - D^{-1}V (I + V^{T}D^{-1}V)^{-1} V^{T}D^{-1}.$$

However, the most generalized version is as follows.

Theorem 3.1. Suppose A, B, C, D are matrices, vectors or numbers, such that A + BCD exists. Suppose A, C, $C^{-1} + DA^{-1}B$ are invertible. Then A + BCD is invertible and

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B (C^{-1} + DA^{-1}B)^{-1} DA^{-1}.$$

The proof involves nothing but fundamental operations of matrices.

4 Condition number

The condition number associated with a linear equation Ax = b gives a bound on how inaccurate the solution x will be after approximation. Let e be the error in b. Assuming that A is a nonsingular matrix, the error in the solution $A^{-1}b$ is $A^{-1}e$. Then the ratio of the relative error in the solution to the relative error in b is.

$$\frac{||A^{-1}e||/||A^{-1}b||}{||e||/||b||} = \frac{||A^{-1}e||}{||e||} \cdot \frac{||b||}{||A^{-1}b||}.$$

The maximum value of the above when $e, b \neq 0$ is

$$\max_{e,b\neq 0} \frac{\left| \left| A^{-1}e \right| \right|}{\|e\|} \cdot \frac{\|b\|}{\|A^{-1}b\|} = \max_{e\neq 0} \frac{\left| \left| A^{-1}e \right| \right|}{\|e\|} \max_{b\neq 0} \frac{\|b\|}{\|A^{-1}b\|}$$
$$= \max_{e\neq 0} \frac{\left| \left| A^{-1}e \right| \right|}{\|e\|} \max_{x\neq 0} \frac{\|Ax\|}{\|x\|}$$
$$= \left| \left| \left| A^{-1} \right| \right| \|A\|,$$

where $\|\cdot\|$ is the matrix norm associated with the vector norm $\|\cdot\|$. If $\|\cdot\|$ is the Euclidean norm, then

$$\left|\left|\left|A^{-1}\right|\right|\right|\left|\left|A\right|\right| = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)}.$$

Definition 4.1 (Condition number of matrices). The condition number of a matrix A is defined as

$$\kappa(A) = egin{cases} rac{\sigma_{\max}(A)}{\sigma_{\min}(A)}, & A ext{ is nonsingular,} \\ \infty, & A ext{ is singular.} \end{cases}$$

Definition 4.2 (Width of convex sets). The width of a convex set $C \subseteq \mathbb{R}^n$ in the direction q, where $\|q\|_2 = 1$, is defined as

$$W(C, q) = \sup_{z \in C} q^{\mathsf{T}} z - \inf_{z \in C} q^{\mathsf{T}} z.$$

Definition 4.3 (Minimum and maximum width). The minimum width and maximum width of a convex set $C \subseteq \mathbb{R}^n$ are given by

$$W_{\min} = \inf_{\|q\|_2=1} W(C,q), \quad W_{\max} = \sup_{\|q\|_2=1} W(C,q).$$

Definition 4.4 (Condition number of convex sets). The condition number of a convex set $C \subseteq \mathbb{R}^n$ is defined as

$$\mathbf{cond}(C) = \frac{W_{\max}^2}{W_{\min}^2}.$$

Let $C_{\alpha} = \{x \mid f(x) \leqslant \alpha\}$ be the α -sublevel set. Suppose there exist constants m and M such that $mI \preceq \nabla^2 f(x) \preceq MI$. Then

$$p^* + \frac{M}{2} \|y - x^*\|_2^2 \ge f(y) \ge p^* + \frac{m}{2} \|y - x^*\|_2^2.$$

This shows that $B_{\mathrm{inner}}\subseteq C_{\alpha}\subseteq B_{\mathrm{upper}},$ where

$$B_{\mathrm{inner}} = \left\{ y \mid \left\| y - x^* \right\|_2 \leqslant \sqrt{2 \left(\alpha - p^* \right) / M} \right\},$$

$$B_{\mathrm{outer}} = \left\{ y \mid \left\| y - x^* \right\|_2 \leqslant \sqrt{2 \left(\alpha - p^* \right) / m} \right\}.$$

Therefore

$$\text{cond}\,(C_\alpha)\leqslant \frac{M}{m}.$$

From the Taylor's formula we can also see that

$$f(y) \approx p^* + \frac{1}{2} (y - x^*)^T \nabla^2 f(x^*) (y - x^*),$$

so for α close to p^* ,

$$C_{\alpha} \approx \left\{ y \mid (y - x^*)^T \nabla^2 f(x^*) (y - x^*) \leqslant 2(\alpha - p^*) \right\},$$

which is an ellipsoid with center χ^* . Therefore

$$\lim_{\alpha\to p^*} \text{cond}(C_\alpha) = \kappa\left(\nabla^2 f(x^*)\right)$$
 .