

Evolutionary Hypergraph Partitioning

Presentation · December 12, 2017 **Robin Andre**

Institute of Theoretical Informatics ·

Hypergraph Partitioning

Hypergraph Partitioning

A k partition of a hypergraph is $H = V_1 \cup V_2 \cup ... \cup V_k$

A partition is balanced if $\forall 1 \le i \le k : c(V_i) \le (1 + \epsilon) \lceil \frac{c(V)}{k} \rceil$

Hypergraph Partitioning

Hypergraph Partitioning

A k partition of a hypergraph is $H = V_1 \cup V_2 \cup ... \cup V_k$

A partition is balanced if $\forall 1 \le i \le k : c(V_i) \le (1 + \epsilon) \lceil \frac{c(V)}{k} \rceil$

$$k = 2$$
; $cut = 2$; $(\lambda - 1) = 2$

Hypergraph Partitioning

Hypergraph Partitioning

A k partition of a hypergraph is $H = V_1 \cup V_2 \cup ... \cup V_k$

A partition is balanced if $\forall 1 \le i \le k : c(V_i) \le (1 + \epsilon) \lceil \frac{c(V)}{k} \rceil$

$$k = 4$$
; $cut = 3$; $(\lambda - 1) = 5$

Motivation

- Hypergraph partitioning is NP-hard
- Many applications benefit from the best possible solution
- Evolutionary Algorithms are generating high quality solutions

VLSI Design

Scientific Computing

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

- \blacksquare H is reduced to a smaller problem H_C
- n-level coarsening
- $lacktriangleq H_C$ should be sufficiently small

- \blacksquare H is reduced to a smaller problem H_C
- n-level coarsening
- $lacktriangleq H_C$ should be sufficiently small

- \blacksquare H is reduced to a smaller problem H_C
- n-level coarsening
- $lacktriangleq H_C$ should be sufficiently small

Initial Partitioning:

■ An algorithm generates an Initial k partition for H_C

Choose individuals for recombination

Choose individuals for recombination

- Choose individuals for recombination
- Generate offspring O

- Choose individuals for recombination
- Generate offspring O
- Perform mutations M

$$\bigcirc \quad \bigcirc \quad \Rightarrow \quad \bigcirc$$

- Choose individuals for recombination
- Generate offspring O
- Perform mutations M
- Select survivors

$$\bigcirc \quad \bigcirc \quad \Rightarrow \quad \bigcirc$$

Population P

- KaHyPar generates multiple partitions
- dynamic allocation $\delta = 15\%$
- balances time/hypergraph size

Population P

3.1s
$$time = 100s$$

- ~ 5 iterations

- KaHyPar generates multiple partitions
- dynamic allocation $\delta = 15\%$
- balances time/hypergraph size

3.1s $time = 100s \sim 5$ iterations

- KaHyPar generates multiple partitions
- dynamic allocation $\delta = 15\%$
- balances time/hypergraph size

3.1s
$$time = 100s \sim 5$$
 iterations

- KaHyPar generates multiple partitions
- **dynamic allocation** $\delta = 15\%$
- balances time/hypergraph size

3.1s
$$time = 100s \sim 5$$
 iterations

- KaHyPar generates multiple partitions
- dynamic allocation $\delta = 15\%$
- balances time/hypergraph size

high quality solutions

Select 2 random individuals

- Select 2 random individuals
- Compare their fitness

- Select 2 random individuals
- Compare their fitness
- Choose the better individual

- \blacksquare contractions must respect $P_1 \& P_2$
- does not change solution quality

- contractions must respect $P_1 \& P_2$
- does not change solution quality

Invalid Contraction

- \blacksquare contractions must respect $P_1 \& P_2$
- does not change solution quality

- \blacksquare contractions must respect $P_1 \& P_2$
- does not change solution quality

Initial Partitioning:

- Use the better parent partition (P_1)
- Maintains solution quality

- We inspect the $\sqrt{|P|}$ best individuals of P
- Each hyperedge *e* has a counter based on how often *e* is in a cut

- Frequent edges are most likely cut edges in good solutions
- Contracting frequent edges may be detrimental to solution quality
- Additionally it may limit other contractions

- Frequent edges are most likely cut edges in good solutions
- Contracting frequent edges may be detrimental to solution quality
- Additionally it may limit other contractions

- Frequent edges are most likely cut edges in good solutions
- Contracting frequent edges may be detrimental to solution quality
- Additionally it may limit other contractions

- Frequent edges are most likely cut edges in good solutions
- Contracting frequent edges may be detrimental to solution quality
- Additionally it may limit other contractions

V-Cycle (+ New Initial Partitioning)

- Contractions must respect P
- Does not change solution quality

V-Cycle (+ New Initial Partitioning)

Initial Partitioning:

- V-Cycle can generate a new initial partitioning
- Or keep the current partition (maintains solution quality)

V-Cycle (+ New Initial Partitioning)

Experimental Setup

- $k = \{2, 4, 8, 16, 32, 64, 128\}; \epsilon = 0.03$
- 90 hypergraphs (Sparse Matrices, SAT instances, Routability & Circuits)
- Comparison against repeated KaHyPar-CA & KaHyPar-CA-V

- The run time is normalized $t_n = \frac{time}{t_1}$; $t_1 := duration of first iteration.$
 - Allows comparing differently sized hypergraphs
 - Algorithmic components can be analyzed on run time

Results

Results

Results

Table of Improvements

	$K_E + C_1 + C_2$		$K_E + C_1 + M_1 + M_2$	
k	K _N -CA-V	K_N -CA	K _N -CA-V	K_N -CA
all <i>k</i>	1.7%	2.7%	2.2%	3.2%
2	-0.2%	0.4%	0.2%	0.8%
4	-0.2%	0.3%	0.9%	1.3%
8	0.7%	1.6%	1.9%	2.7%
16	1.9%	2.8%	2.6%	3.5%
32	2.9%	3.9%	3.2%	4.2%
64	3.2%	4.7%	3.4%	4.8%
128	3.3%	5.0%	3.3%	5.0%

Conclusion

Conclusion

- High integration of evolutionary aspects in the multilevel approach

Future Work

- Added parallelization for faster partitioning
- Different approach for generating the initial population
- Time cost analysis for evolutionary operators