B. Wind Motion

1. Macroscopic Motions

SINCING MILE FROM BOTH Polar Easterlies

CHISTOS HIGH PRESSURE Prevailing Westerlies

- AIL FLUIS NORTH & CHIST

- WESTERLIES (COLLOUS) Tradewinds

- AIL TIME SOLTH & WEST.

Tradewinds

- PULL ENSTERLIES

OF POLAL ENSTRUCTS

E WESTERLIES

Prevailing Westerlies

Polar Easterlies

B. Wind Motion

2. Microscopic Motions

B. Wind Motion

2. Microscopic Motions

B. Wind Motion

3. Time Variation

WINDS VALLY WITH THE FOR MANY ROBERTS

SHOWT- TENLIN VARIATIONS
THEBUDILE & OTHER UNSTEADINESS

CANSOS WIND VALIABLES WITH THE SCALES FROM SELENDS TO what

DIVLAME VALIATIONS

VALIATIONS DUE TO HOTTING OF ATMUSTATUS & COND/SOFT

DUALITY DAY & COOLING AT NIGHT

- B. Wind Motion
 - 3. Time Variation

SCASCION VARININIS

SILVIFICIAT CHANGES

ONL COMSC OF YOUL

ME COMMON

FRAT CASE VALUES

> 1400 Meintours
CLIMATE

- B. Wind Motion
 - 4. Mechanics

CONSIDER 4 FULLS ALTIMO ON
A FLUID

PRESSULE FOLLES

COLIOLIS FULLE (ARISES FROM
EARTH'S ROMATION)

NORTH THUS (DUE TO LANGE SUME

As Coriolis
Force Changes
Direction

As it Starts to Move

 F_{p}

At Rest

 F_{p}

Geostrophic Wind

FRICTIME FINCES

Plussur Fines

$$\frac{F_{\rho}}{m} = -\frac{1}{\rho} \frac{\partial \rho}{\partial n}$$

4. Mechanics

$$0 = \frac{F_p}{M} - \frac{F_c}{M}$$

B. Wind Motion

4. Mechanics

INDIAN FULES

$$0 = -\frac{1}{9} \frac{\partial p}{\partial n} - f ug$$

LOWEST PART UT THE ATMOSPHERE, FRICTUME DENTLY NO-SLID > Wind Resource - 12

ME/ESE 4470 - Wind & Tidal Power