(7) Introdução ao Aprendizado por Reforço Redes Neurais e Arquiteturas Profundas

Moacir A. Ponti CeMEAI/ICMC, Universidade de São Paulo MBA em Ciência de Dados

www.icmc.usp.br/~moacir — moacir@icmc.usp.br

São Carlos-SP/Brasil - 2020

Agenda

Introdução Aplicações

Componentes do Aprendizado por Reforço Agente e ambiente Política e valor

Value Learning

Policy Learning

Agenda

Introdução Aplicações

Componentes do Aprendizado por Reforço Agente e ambiente Política e valor

Value Learning

Policy Learning

Paradigmas de aprendizado de máquina

Supervisionado

Dados:

 $(x,y) \in X, Y \text{ com}$ anotações Y

Objetivo: aprender relação entre X e Y $f: X \rightarrow Y$

Exemplo:

isso é um caju

Não-supervisionado

Dados: $(x) \in X$

Objetivo:
particionar X
por similaridade ou
estrutura dos dados

Exemplo:

esses dois exemplos são semelhantes

Por reforço

Dados: $(s, a) \in S, A$

Objetivo:

Maximizar recompensa futura ao longo de passos

Exemplo:

coma isso pois te manterá vivo

Agente

7

Otimizar com objetivo de: tomar boas decisões ou aprender boas estratégias

Consequências atrasadas: decisões atuais podem impactar a longo prazo

Aprender tomando decisões e falhando por meio de recompensas, sem saber se outra ação seria melhor ou não

Generalização: uma política mapeia experiências passadas em uma ação

Aplicações: jogos

DeepMind: "Playing Atari" and "AlphaGo"

Aplicações: robótica móvel

 $\verb|https://www.youtube.com/watch?v=fv-oFPAqSZ4|\\$

Aplicações: infraestrutura

Aplicações: trading

Agenda

Introdução Aplicações

Componentes do Aprendizado por Reforço Agente e ambiente Política e valor

Value Learning

Policy Learning

Agenda

Introdução

Aplicações

Componentes do Aprendizado por Reforço Agente e ambiente

Política e valor

Value Learning

Policy Learning

Agente e Ambiente

- ► Ação a_t
- ightharpoonup Recompensa r_t
- ▶ Observação o_t

Ações sequenciais

Objetivo: selecionar ações para maximizar a recompensa total futura

Ações podem ter consequências de longo prazo

- ► Atraso no retorno/feedback
- ► Pode ser preciso sacrificar recompensa imediata para ganhar mais a longo prazo

Recompensa

 $ightharpoonup r_t$ é um valor (sinal) que indica a recompensa no tempo t

Definição: hipótese da recompensa

Todos os objetivos podem ser descritos pela maximização da expectativa da recompensa acumulada

Recompensa: exemplos

Manobrar um drone

- Positivo: seguir trajetória desejada
- Negativo: desviar trajetória ou cair

Jogar arcade contra o computador

- ► Positivo: ganhar pontos
- ► Negativo: perder vida

Gerenciar operações de compra e venda na bolsa

- ► Positivo: operação resultou em lucro
- ► Negativo: operação resultou em prejuízo

Aprendizado por reforço e mecanismo de recompensas

Recompensa total é calculada pela soma de recompensas futuras

$$R_t = \sum_{i=t}^{\infty} r_i$$

Aprendizado por reforço e mecanismo de recompensas

Recompensa total descontada: soma de recompensas *futuras* ponderadas

$$R_t = \sum_{i=t}^{\infty} \gamma^i r_i = \gamma^t r_t + \gamma^{t+1} r_{t+1} + \dots + \gamma^{t+n} r_{t+n} + \dots$$

 $\gamma \in [0,1]$ dá menos peso a recompensas a longo prazo

Estado do Ambiente/Environment

Representação interna/privada do ambiente $s_t^{(e)}$

- dados usados pelo ambiente para selecionar a próxima observação e recompensa
- comumente não visível pelo agente, que tem acesso apenas à observação/recompensa

Estado do Agente

Representação interna do agente $s_t^{(a)}$

- ▶ dados utilizados para selecionar a próxima ação
- geralmente modelamos $s_t^{(a)} = f(h_t)$

Histórico e Estados

Histórico é uma sequência: $h_t = a_1, o_1, r_1, \dots, a_t, o_t, r_t$

- ► Agente: seleciona ações
- Ambiente: seleciona observações e recompensas

Estado

Informação usada para determinar o próximo passo, formalmente estado é uma função do histórico:

$$s_t = f(h_t)$$

Estado de Markov

Estado que carrega toda a informação útil do histórico

Estado de Markov

Estado s_t para o qual temos a propriedade:

$$P[S_{t+1}|S_t] = P[S_{t+1}|S_1, \dots S_t]$$

- ➤ O estado é uma estatística suficiente do histórico (estados anteriores são "descartáveis")
- ► *h_t* (histórico) é um estado de Markov

Exemplos de estados do agente

Considerando o estado do agente:

- últimas 3 observações em sequência...
- ▶ frequência de luz, alarme e apertar botão...
- sequência completa de observações...

Completude da observação

Observação completa

► Agente observa o estado do ambiente diretamente

$$o_t = s_t^{(a)} = s_t^{(e)}$$

► Markov Decision Process (MDP)

Completude da observação

Observação parcial

- ► Agente observa o estado do ambiente indiretamente
- ▶ Deve construir sua própria representação, exemplos:
 - ▶ histórico completo: $s_t^{(a)} = h_t$
 - probabilidades do estado do ambiente $s_t^{(a)} = (P[s_t^{(e)} = s^{(1)}], \dots, P[s_t^{(e)} = s^{(n)}])$
 - unidade recorrente $s_t^{(a)} = s_{t-1}^{(a)} W_s + o_t W_o$
- ► Partially Observed Markov Decision Process (POMDP)

Exemplos: mountaincar

- Observação: posição e velocidade
- Ações: mover para esquerda, mover para direita, não acelerar
- ▶ Recompensa: +1 para posição da bandeira, -1 para outras posições
- Estado terminal: posição da bandeira

Exemplos: 21 / Blackjack

- Observação: soma das cartas do jogador, apenas uma carta da banca virada para cima
- Ações: pedir carta, parar
- Recompensa: valor positivo para vitória, valor negativo para derrota
- Estado terminal: jogador para ou estoura 21

Agenda

Introdução

Aplicações

Componentes do Aprendizado por Reforço

Agente e ambiente

Política e valor

Value Learning

Policy Learning

Política / Policy

- ▶ Define o comportamento do agente
- ► Mapa do estado para a ação
 - ▶ Determinístico: $a = \pi(s)$
 - Probabilístico/estocástico: $a = \pi(a|s) = P[a|s]$

Exploration vs Exploitation

- Exploration: buscar mais informação sobre o ambiente
- Exploitation: fazer uso da informação conhecida para maximizar recompensa

Modelo

- Descreve uma forma de prever o que acontecerá com o ambiente
- ► Transições: \mathcal{P} prediz o próximo estado $\mathcal{P}_{ss'}^a = P[s'|s,a]$
- ▶ Recompensa: \mathcal{R} prediz a próxima recompensa $\mathcal{R} = E[r|s, a]$

Função valor / objetivo

- ► Predição da recompensa futura
- ► Avalia a "qualidade" do estado s

$$v_{\pi}(s) = E_{\pi}[r_t + \gamma_1 r_{t+1} + \gamma_2 r_{t+2} + \cdots | s_t = s]$$

"discounted future reward": quanto mais futuro, menor sua importância

Função Q

$$R_t = \sum_{i=t}^{\infty} \gamma^i r_i = \gamma^t r_t + \gamma^{t+1} r_{t+1} + \dots + \gamma^{t+n} r_{t+n} + \dots$$
$$Q(s_t, a_t) = E[R_t | s_t, a_t]$$

A recompensa futura total esperada que um agente no estado \boldsymbol{s} pode receber ao executar ação \boldsymbol{a}

Labirinto

► Recompensas: -1 por tempo

Ações: direções

► Estado: localização do agente

Labirinto: função valor

ightharpoonup número que representa $v_{\pi}(s)$ de cada estado possível

Labirinto: política

ightharpoonup setas representam políticas $\pi(s)$ para cada estado s, i.e. direções para cada posição

Labirinto: modelo

- layout em grid que representa o modelo de transição
- números representam a recompensa imediata a partir de cada estado s

Função Q

$$Q(s_t, a_t) = E[R_t | s_t, a_t]$$

Assuma que a função Q está disponível:

- ▶ agente precisa de uma **política** (policy) $\pi(s)$ para inferir a melhor ação possível no estado s
- estratégia básica?
 - ► ação que maximiza Q:

$$\pi(s) = \argmax_{a} Q(s,a)$$

► Mas como calcular *Q*?

Algoritmos para aprendizado por reforço

Value Learning

- ightharpoonup Obter Q(s, a)
- $\pi(s) = \arg\max_a Q(s,a)$

- ▶ Obter $\pi(s)$
- ▶ Amostrar $a \sim \pi(s)$

Algoritmos para aprendizado por reforço

Value Learning

- ightharpoonup Encontrar Q(s, a)
- $\pi(s) = \arg\max_{a} Q(s, a)$
- "avaliar o futuro, dada uma política atual"

- ▶ Encontrar $\pi(s)$
- ▶ Amostrar $a \sim \pi(s)$
- "otimizar o futuro, encontrando a melhor política"

Agenda

Introdução Aplicações

Componentes do Aprendizado por Reforço Agente e ambiente Política e valor

Value Learning

Value learning: Breakout Atari

▶ Qual par (s, a) possui maior valor?

Q-Learning

- Executa por muitos "episódios" até encontrar um estado terminal
- ▶ Ao final teremos a predição do valor para 1 ação avaliada/escolhida por estado

Q-Learning

 Ao final teremos a predição do valor para cada ação avaliada por estado

$$Q(s,a;\Theta)\approx Q^*(s,a)$$

O alvo/target é

$$r + \gamma \max_{a'} Q(s', a')$$

- ightharpoonup recompensa atual r
- lacktriangle a recompensa ao executar a melhor ação a' em cada estado sucessor s
 ightarrow s'

Alvo (exige atingir o estado terminal):

$$r + \gamma \max_{a'} Q(s', a')$$

Predição:

Função de custo/perda

$$\mathcal{L} = E[||r + \gamma \max_{a'} Q(s', a') - Q(s, a)||^2]$$

Deep Q-Networks

Limitações

Complexidade

- ► Implementa espaços de ação discretos nativamente
- ► Contínuos são possíveis mas menos naturais nessa abordagem

Flexibilidade

- Política determinística maximizando recompensa via função Q
- Não aprende política estocástica

Agenda

Introdução Aplicações

Componentes do Aprendizado por Reforço Agente e ambiente Política e valor

Value Learning

Algoritmos para aprendizado por reforço

Value Learning

- ightharpoonup Encontrar Q(s, a)
- $\pi(s) = \arg\max_a Q(s, a)$
- ▶ "avaliar o futuro, dada uma política atual"

- ▶ Encontrar $\pi(s)$
- Amostrar $a \sim \pi(s)$
- "otimizar o futuro, encontrando a melhor política"

- ightharpoonup Otimizar diretamente a política $\pi(s)$
- Probabilidades de obter o maior valor
- ightharpoonup Ainda que a_1 seja mais provável há chances de obter a_2

Policy learning: espaço de ações discreto

Em qual direção movimentar?

Policy learning: espaço de ações contínuo

Quão rápido se movimentar?

Algoritmo de treinamento

- Inicializar agente
- Executar política até estado terminal
- Armazenar: estados, ações e recompensas
- Reduzir probabilidade de ações com baixo r
- Aumentar probabilidade de ações com alto r

Algoritmo de treinamento

- Inicializar agente
- Executar política até estado terminal
- Armazenar: estados, ações e recompensas
- Reduzir probabilidade de ações com baixo r
- Aumentar probabilidade de ações com alto r

Algoritmo de treinamento

- Inicializar agente
- Executar política até estado terminal
- Armazenar: estados, ações e recompensas
- Reduzir probabilidade de ações com baixo r
- Aumentar probabilidade de ações com alto r

Algoritmo de treinamento

- Inicializar agente
- Executar política até estado terminal
- Armazenar: estados, ações e recompensas
- Reduzir probabilidade de ações com baixo r
- ► Aumentar probabilidade de ações com alto *r*

Algoritmo de treinamento

- Inicializar agente
- Executar política até estado terminal
- Armazenar: estados, ações e recompensas
- Reduzir probabilidade de ações com baixo r
- Aumentar probabilidade de ações com alto r

Algoritmo de treinamento

- Inicializar agente
- Executar política até estado terminal
- Armazenar: estados, ações e recompensas
- Reduzir probabilidade de ações com baixo r
- Aumentar probabilidade de ações com alto r

Algoritmo de treinamento

- Inicializar agente
- Executar política até estado terminal
- Armazenar: estados, ações e recompensas
- Reduzir probabilidade de ações com baixo r
- Aumentar probabilidade de ações com alto r

Algoritmo de treinamento

- Inicializar agente
- Executar política até estado terminal
- Armazenar: estados, ações e recompensas
- Reduzir probabilidade de ações com baixo r
- Aumentar probabilidade de ações com alto r

Algoritmo de treinamento

- Inicializar agente
- Executar política até estado terminal
- Armazenar: estados, ações e recompensas
- Reduzir probabilidade de ações com baixo r
- Aumentar probabilidade de ações com alto r

Função de perda/custo

 $-\log P(a_t|s_t)R_t$

► Probabilidades x recompensas

Considerações finais

- Paradigma que pode ser usado em cenários de agentes atuando em ambientes
- ► Algoritmos gerais: Q-learning x Policy gradients
- Algoritmo Actor Critic: também vale a pena procurar
- Aplicações: robótica, carros autônomos, outros
- Desafio 1: modelar problemas num paradigma menos convencional
- Desafio 2: implementar e colocar em produção sistemas reais

References

- R. Sutton; A. Barto. Reinforcement Learning: an introduction http://incompleteideas.net/book/RLbook2020.pdf
- ▶ D. Silver. Introduction to Reinforcement Learning https://deepmind.com/learning-resources/ -introduction-reinforcement-learning-david-silver
- ► A. Karpathy. Deep Reinforcement Learning: Pong from Pixels. http://karpathy.github.io/2016/05/31/rl/
- MIT 6.S191. Introduction to Deep Learning. http://introtodeeplearning.com/