Practical 4

Aim: Write a program to perform following operation

- Load the data from file
- Find out null and missing value
- Handle missing Value using different approach Plot the data using scatter plot, histogram, box plot

[n [2]:	<pre>import pandas as pd</pre>							
n [3]:	<pre>data = pd.read_csv('Salaries.csv') data</pre>							
out[3]:		ld	EmployeeName	JobTitle	BasePay	OvertimePay	OtherPay	В
	0	1	NATHANIEL FORD	GENERAL MANAGER- METROPOLITAN TRANSIT AUTHORITY	167411.18	0.00	400184.25	
	1	2	GARY JIMENEZ	CAPTAIN III (POLICE DEPARTMENT)	155966.02	245131.88	137811.38	
	2	3	ALBERT PARDINI	CAPTAIN III (POLICE DEPARTMENT)	212739.13	106088.18	16452.60	
	3	4	CHRISTOPHER CHONG		77916.00	56120.71	198306.90	Na Na
		148652		ot provided N	ot provided	NaN	NaN	Na
	4	5 148653	PATRICK 148634RDNER	DEPARTMEዚፒ _u Joe Lopez (FIRĘ _c DEPARTMENT)	ins <mark>eR44,Q1.6</mark> 0 Cabin Ranch	9737.00 0.00	182234.59 0.00	-618.
	•••	14865.4 ı	rows × 13 colu <u>m</u>	ns				
	148649	148650	Roy I Tillery	Custodian	0.00	0.00	0.00	•

1. Display Top 10 Rows of The Dataset

In [5]	data.head(10)	
		GENERAL
0+.[-1.		MANAGER-

Out[5]:

ua	ca. III	eau(10)						
0	1	NATHANIEL FORD	GENERAL MANAGER- METROPOLITAN TRANSIT AUTHORITY	167411.18	0.00	400184.25	NaN	5
1	2	GARY JIMENEZ	CAPTAIN III (POLICE DEPARTMENT)	155966.02	245131.88	137811.38	NaN	5
2	3	ALBERT PARDINI	CAPTAIN III (POLICE DEPARTMENT)	212739.13	106088.18	16452.60	NaN	3
3	4	CHRISTOPHER CHOING	WIRE ROPE CABLE IVIAIINTEINAINCE MECHANIC	77916.00	56120.71	198306.90	NaN	3
4	5	PATRICK GARDNER	DEPUTY CHIEF OF DEPARTMENT, (FIRE DEPARTMENT)	134401.60	9737.00	182234.59	NaN	3
5	6	DAVID SULLIVAN	ASSISTANT DEPUTY CHIEF II	118602.00	8601.00	189082.74	NaN	3
6	7	ALSON LEE	BATTALION CHIEF, (FIRE DEPARTMENT)	92492.01	89062.90	134426.14	NaN	3
7	8	DAVID KUSHNER	DEPUTY DIRECTOR OF INVESTMENTS	256576.96	0.00	51322.50	NaN	3
8	9	MICHAEL MORRIS	BATTALION CHIEF, (FIRE DEPARTMENT)	176932.64	86362.68	40132.23	NaN	3
9	10	JOANNE HAYES- WHITE	CHIEF OF DEPARTMENT, (FIRE DEPARTMENT)	285262.00	0.00	17115.73	NaN	3
4								•

2. Check Last 10 Rows of The Dataset

In [7]: data.tail(10)

	ld	EmployeeName	JobTitle	BasePay	OvertimePay	OtherPay	Ве
148644	148645	Randy D Winn	Stationary Eng, Sewage Plant	0.0	0.0	0.00	
148645	148646	Carolyn A Wilson	Human Services Technician	0.0	0.0	0.00	
148646	148647	Not provided	Not provided	NaN	NaN	NaN	
148647	148648	Joann Anderson	Communications Dispatcher 2	0.0	0.0	0.00	
148648	148649	Leon Walker	Custodian	0.0	0.0	0.00	
148649	148650	Roy I Tillery	Custodian	0.0	0.0	0.00	
148650	148651	Not provided	Not provided	NaN	NaN	NaN	
148651	148652	Not provided	Not provided	NaN	NaN	NaN	
148652	148653	Not provided	Not provided	NaN	NaN	NaN	
148653	148654	Joe Lopez	Counselor, Log Cabin Ranch	0.0	0.0	-618.13	
4							•

3. Find Shape of Our Dataset (Number of Rows And Number of Columns)

In [9]: data.shape

Out[7]:

Out[9]: (148654, 13)

4. Getting Information About Our Dataset Like Total Number Rows,

Total Number of Columns, Datatypes of Each Column And Memory Requirement

In [11]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 148654 entries, 0 to 148653
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype	
0	Id	148654 non-null	int64	
1	EmployeeName	148654 non-null	object	
2	JobTitle	148654 non-null	object	
3	BasePay	148045 non-null	float64	
4	OvertimePay	148650 non-null	float64	
5	OtherPay	148650 non-null	float64	
6	Benefits	112491 non-null	float64	
7	TotalPay	148654 non-null	float64	
8	TotalPayBenefits	148654 non-null	float64	
9	Year	148654 non-null	int64	
10	Notes	0 non-null	float64	
11	Agency	148654 non-null	object	
12	Status	0 non-null	float64	
d+	os. £los+(4/0) ind	LC4(2) object(2)		

dtypes: float64(8), int64(2), object(3)

memory usage: 14.7+ MB

5. Check Null Values In The Dataset

```
In [13]: data.isna().sum()
                                  0
Out[13]: Id
         EmployeeName
                                  0
         JobTitle
                                  0
         BasePay
                                609
         OvertimePay
                                  4
         OtherPay
         Benefits
                            36163
         TotalPay
                                 0
         TotalPayBenefits
                                 0
         Year
                                  0
         Notes
                            148654
         Agency
                             148654
         Status
         dtype: int64
```

6. Drop ID, Notes, Agency and Status Columns

```
In [15]: data=data.drop(["Id", "Notes", "Agency", "Status"], axis=1)
In [16]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 148654 entries, 0 to 148653

Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	EmployeeName	148654 non-null	object
1	JobTitle	148654 non-null	object
2	BasePay	148045 non-null	float64
3	OvertimePay	148650 non-null	float64
4	OtherPay	148650 non-null	float64
5	Benefits	112491 non-null	float64
6	TotalPay	148654 non-null	float64
7	TotalPayBenefits	148654 non-null	float64
8	Year	148654 non-null	int64

dtypes: float64(6), int64(1), object(2)

memory usage: 10.2+ MB

7. Get Overall Statistics About The Dataframe

Out[18]:

In [18]: data.describe()

	BasePay	OvertimePay	OtherPay	Benefits	TotalPay	Tot
count	148045.000000	148650.000000	148650.000000	112491.000000	148654.000000	1
mean	66325.448840	5066.059886	3648.767297	25007.893151	74768.321972	
std	42764.635495	11454.380559	8056.601866	15402.215858	50517.005274	
min	-166.010000	-0.010000	-7058.590000	-33.890000	-618.130000	
25%	33588.200000	0.000000	0.000000	11535.395000	36168.995000	
50%	65007.450000	0.000000	811.270000	28628.620000	71426.610000	
75%	94691.050000	4658.175000	4236.065000	35566.855000	105839.135000	1
max	319275.010000	245131.880000	400184.250000	96570.660000	567595.430000	5
 						•

8. Find Occurrence of The Employee Names (Top 5)

```
In [20]: top_5_employee_names = data['EmployeeName'].value_counts().head(5)
print(top_5_employee_names)
```

EmployeeName

Kevin Lee 13
Richard Lee 11
Steven Lee 11
William Wong 11
Stanley Lee 9

Name: count, dtype: int64

9. Find The Number of Unique Job Titles

```
In [22]: group=data.groupby(["JobTitle"]).count()
In [23]: group.shape[0]
Out[23]: 2159
```

10. Total Number of Job Titles Contain Captain

```
In [25]: total_captain_titles = data[data['JobTitle'].str.contains('Captain', case=False)
    total_count = total_captain_titles.shape[0]

print(f'Total Number of Job Titles Containing "Captain": {total_count}')
```

Total Number of Job Titles Containing "Captain": 552

11. Display All the Employee Names From Fire Department

```
In [27]: fire_employees = data[data['JobTitle'].str.contains('FIRE DEPARTMENT', case=Fals
    for name in fire_employees:
        print(name)
```

PATRICK GARDNER ALSON LEE MICHAEL MORRIS JOANNE HAYES-WHITE ARTHUR KENNEY DAVID FRANKLIN MARTY ROSS VICTOR WYRSCH RAYMOND GUZMAN MONICA FIELDS JOSE VELO BRENDAN WARD MICHAEL THOMPSON THOMAS ABBOTT THOMAS SIRAGUSA BRYAN RUBENSTEIN KEN YEE KIRK RICHARDSON KENNETH SMITH CHARLES CRANE

12. Find Minimum, Maximum and Average BasePay

```
In [29]: data["BasePay"].min()
Out[29]: -166.01
In [30]: data["BasePay"].max()
Out[30]: 319275.01
In [31]: data["BasePay"].mean()
Out[31]: 66325.4488404877
```

13. Replace 'Not Provided' in EmployeeName' Column to NaN

```
In [33]: import numpy as np
data['EmployeeName'] = data['EmployeeName'].replace('Not Provided', np.nan)
```

14. Drop The Rows Having 5 Missing Values

```
In [35]: data_cleaned = data.dropna(thresh=len(data.columns) - 5)
In [36]: print(data_cleaned.head())

EmployeeName JobTitle \
```

```
0 NATHANIEL FORD GENERAL MANAGER-METROPOLITAN TRANSIT AUTHORITY
1 GARY JIMENEZ CAPTAIN III (POLICE DEPARTMENT)
2 ALBERT PARDINI CAPTAIN III (POLICE DEPARTMENT)
3 CHRISTOPHER CHONG WIRE ROPE CABLE MAINTENANCE MECHANIC
4 PATRICK GARDNER DEPUTY CHIEF OF DEPARTMENT, (FIRE DEPARTMENT)
```

	BasePay	OvertimePay	OtherPay	Benefits	TotalPay	TotalPayBenefits	\
0	167411.18	0.00	400184.25	NaN	567595.43	567595.43	
1	155966.02	245131.88	137811.38	NaN	538909.28	538909.28	
2	212739.13	106088.18	16452.60	NaN	335279.91	335279.91	
3	77916.00	56120.71	198306.90	NaN	332343.61	332343.61	
4	134401.60	9737.00	182234.59	NaN	326373.19	326373.19	

Year

0 2011

1 2011

2 2011

3 2011

4 2011

15. Find Job Title of ALBERT PARDINI

16. Display Name of The Person Having The Highest BasePay

17. Find Average BasePay of All Employee Per Year

```
In [46]: average= data.groupby('Year')['TotalPay'].mean()
    print(average)

Year
    2011    71744.103871
    2012    74113.262265
    2013    77611.443142
    2014    75463.918140
    Name: TotalPay, dtype: float64
```

18. Find Average BasePay of All Employee Per JobTitle

```
average = data.groupby('JobTitle')['TotalPay'].mean()
In [48]:
          print(average)
        JobTitle
        ACCOUNT CLERK
                                                            44035.664337
                                                            47429.268000
        ACCOUNTANT
        ACCOUNTANT INTERN
                                                            29031.742917
        ACPO, JuvP, Juv Prob (SFERS)
                                                            62290.780000
        ACUPUNCTURIST
                                                            67594.400000
        X-RAY LABORATORY AIDE
                                                            52705.880385
        X-Ray Laboratory Aide
                                                            50823.942700
        YOUTH COMMISSION ADVISOR, BOARD OF SUPERVISORS
                                                            53632.870000
        Youth Comm Advisor
                                                            41414.307500
        ZOO CURATOR
                                                            66686.560000
        Name: TotalPay, Length: 2159, dtype: float64
```

19. Find Average BasePay of Employee Having Job Title ACCOUNTANT

```
In [50]: accountant_data = data[data['JobTitle'] == 'ACCOUNTANT']
    average = accountant_data['TotalPay'].mean()
    print("Average BasePay for ACCOUNTANT:", average)
```

Average BasePay for ACCOUNTANT: 47429.268

```
20. Find Top 5 Most Common Jobs
In [52]: top_5_jobs = data['JobTitle'].value_counts().head(5)
         print("Top 5 Most Common Job Titles:")
         print(top_5_jobs)
        Top 5 Most Common Job Titles:
        JobTitle
        Transit Operator
                                        7036
        Special Nurse
                                        4389
        Registered Nurse
                             3736 Public Svc
        Aide-Public Works
                                        2518
        Police Officer 3
                                        2421
        Name: count, dtype: int64
In [54]: import matplotlib.pyplot as plt
         import seaborn as sns
         plt.figure(figsize=(7, 5))
         sns.scatterplot(x='BasePay', y='TotalPay', data=data)
         plt.title('Scatter Plot of BasePay vs TotalPay')
         plt.show()
 500000
 400000
 300000
 200000
 100000
```

12202040501038

50000

100000

MEET DADHANIYA

200000

250000

300000

150000

BasePay

```
In [56]: plt.figure(figsize=(7, 5))
    sns.histplot(data['TotalPay'], bins=20, kde=True)
    plt.title('Histogram of TotalPay')
    plt.show()
```



```
In [58]: plt.figure(figsize=(7, 5))
    sns.boxplot(x='TotalPay', data=data)
    plt.title('Box Plot of TotalPay')
    plt.show()
```

TotalPay

