NAG 5-818 IN-65-092 111654 Q.10

Classification: Geophysics

ISOTROPIC PROBABILITY MEASURES IN INFINITE DIMENSIONAL SPACES

(Inverse Problems/Prior Information/Stochastic Inversion)

George Backus

Institute of Geophysics & Planetary Physics, A-025

University of California, San Diego

La Jolla, CA 92093

N88-13936

(NASA-CR-181555) ISOTROPIC PROBABILITY MEASURES IN INFINITE DIMENSIONAL SPACES: INVERSE PROBLEMS/PRIOR INFORMATION/STOCHASTIC INVERSION (California Univ.) 10 p Avail: NTIS HC

Unclas G3/65 0111654 Abstract. Every isotropic probability measure on the space R^{∞} of real sequences $\mathbf{x}=(x_1,x_2,...)$ is a convex combination of the measure concentrated at $\mathbf{0}$ and a member of $I_0(R^{\infty})$, the set of all isotropic probability measures p_{∞} on R^{∞} with $p_{\infty}(\{0\})=0$. Each $p_{\infty}\in I_0(R^{\infty})$ is completely determined by any one of its finite-dimensional marginal distributions p_n . Each p_n has a density function f_n with $dp_n(x_1,...,x_n)=dx_1\cdots dx_nf_n(x_1^2+\cdots+x_n^2)$. Each f_n is completely monotone in $0<\xi<\infty$ (hence analytic in the right complex ξ half-plane), and

$$\pi^{n/2}\Gamma(n/2)^{-1}\int_{0}^{\infty}d\xi\,\xi^{n/2-1}f_{n}(\xi)=1.$$

Every f which satisfies these two conditions is f_n for a unique $p_\infty \in I_0(\mathbb{R}^\infty)$. Hence the equation

$$\pi \int_{\xi}^{\infty} d\zeta f_2(\zeta) = \int_{0}^{\infty} d\mu(t) e^{-t\xi}$$

defines a bijection between $I_0(R^\infty)$ and the set of all probability measures μ on $0 \le t < \infty$. If $p_\infty \in I_0(R^\infty)$ then $p_\infty(\{\mathbf{x}: \sum_{i=1}^\infty x_i^2 < \infty\}) = 0$, so p_∞ is not a "softened" or "fuzzy" version of the inequality $\sum_{i=1}^\infty x_i^2 \le 1$. If the prior information in a linear inverse problem consists of this inequality and nothing else, stochastic inversion and Bayesian inference are both unsuitable inversion techniques.

Introduction. Let R be the real numbers, R^n the linear space of all real n-tuples, and R^∞ the linear space of all infinite real sequences $\mathbf{x} = (x_1, x_2, ...)$. Let $P_n : R^\infty \to R^n$ be the projection operator with $P_n(\mathbf{x}) = (x_1, ..., x_n)$. Let P_∞ be a probability measure on the smallest σ -ring of subsets of R^∞ which includes all of the cylinder sets $P_n^{-1}(B_n)$, where B_n is an arbitrary Borel subset of R^n . Let P_n be the marginal distribution of P_∞ on R^n , so $P_n(B_n) = P_\infty(P_n^{-1}(B_n))$ for each P_n . A measure on P_n is "isotropic" if it is invariant under all orthogonal transformations of P_n . The measure P_∞ will be called isotropic if all its marginal distributions P_n are isotropic. The set of all isotropic probability distributions on P_n will be written P_n . The present note describes all members of P_n . The result calls into question both stochastic inversion and Bayesian inference, as currently used in many geophysical inverse problems.

Necessary Conditions for Isotropy. Let $0=(0,0,\cdots)$ and let p^0_∞ be the member of $I(R^\infty)$ such that $p^0_\infty(\{0\})=1$. If $p^0_\infty\in I(R^\infty)$ and $\alpha,\beta\geq 0$ and $\alpha+\beta=1$, then $\alpha p^0_\infty+\beta p^0_\infty\in I(R^\infty)$. Conversely, if $p^0_\infty\in I(R^\infty)$ and $p^0_\infty(\{0\})=\beta$, then $p^0_\infty=(1-\beta)\tilde{p}^0_\infty+\beta p^0_\infty$ where $\tilde{p}^0_\infty\in I(R^\infty)$ and $\tilde{p}^0_\infty(\{0\})=0$. Therefore it is necessary to study only those $p^0_\infty\in I(R^\infty)$ for which $p^0_\infty(\{0\})=0$. They constitute the subset $I^0_0(R^\infty)$ of $I(R^\infty)$.

If $p_{\infty} \in I_0(R^{\infty})$, for every ξ in $0 \le \xi < \infty$ define

$$F_n(\xi) = p_{\infty}(\{\mathbf{x}: x_1^2 + \dots + x_n^2 > \xi\}).$$
 [1]

Then F_n is right semi-continuous, and

$$F_n(0) = 1 ag{2a}$$

$$F_n(\infty) = \lim_{\xi \to \infty} F_n(\xi) = 0.$$
 [2b]

Also, if $n \le N$ and $\alpha \le A$, then

$$0 \le F_n(A) \le F_n(\alpha) \le F_N(\alpha) \le 1. \tag{2c}$$

Properties sufficient to characterize the members of $I_0(R^{\infty})$ are given in

Theorem 1: Suppose $p_{\infty} \in I_0(R^{\infty})$ and F_n given by [1]. Then for each integer $n \ge 1$, $F_n(\xi)$ is analytic in the open right half plane of complex ξ . There is a function $f_n(\xi)$, also analytic there, such that for every Borel subset B_n of R^n

$$p_n(B_n) = \int_{B_n} dx_1 \cdots dx_n f_n(x_1^2 + \cdots + x_n^2).$$
 [3a]

In particular, if $0 \le \alpha < \infty$ then

$$F_n(\alpha) = \pi^{n/2} \Gamma(n/2)^{-1} \int_{\alpha}^{\infty} d\xi \, \xi^{n/2-1} f_n(\xi) \,. \tag{3b}$$

The f_n are related by

$$f_n(\xi) = \int_{\xi}^{\infty} d\eta (\eta - \xi)^{-1/2} f_{n+1}(\eta)$$
 [3c]

$$f_{n+1}(\xi) = -\pi^{-1}\partial_{\xi} \int_{\xi}^{\infty} d\eta (\eta - \xi)^{-1/2} f_n(\eta)$$
 [3d]

$$f_n(\xi) = \pi \int_{\xi}^{\infty} d\eta \, f_{n+2}(\eta)$$
 [3e]

$$f_{n+2}(\xi) = -\pi^{-1}\partial_{\xi}f_n(\xi)$$
 [3f]

For every β in $0 \le \beta < \infty$

$$\lim_{n \to \infty} F_n(\beta) = 1. \tag{3g}$$

PROOF: Let S(n-1) denote the unit sphere in \mathbb{R}^n , and let |S(n-1)| be its (n-1)-dimensional Euclidean content, $2\pi^{n/2}\Gamma(n/2)^{-1}$. Let $|S(n-1)|\phi_n(w)$ be the content of the part of S(n-1) where $x_n^2 \le 1 - w$. Then

$$\phi_{n+1}(w) = 1 - |S(n-1)| |S(n)|^{-1} \int_{0}^{w} d\zeta \, \zeta^{n/2} (1-\zeta)^{-\frac{1}{2}}.$$

Since p_n is the marginal distribution on R^n of p_{n+1} on R^{n+1} ,

$$F_{n}(\xi) = -\int_{\xi}^{\infty} dF_{n+1}(\eta)\phi_{n+1}(\xi/\eta), \qquad [4a]$$

the right side being a Stieltjes integral. For any β and B satisfying $\xi < \beta < B$, $\partial_{\eta} \phi_{n+1}(\xi m)$ is continuous in $\beta \le \eta \le B$, so integration by parts (1) permits the conclusion

$$\int_{\beta}^{B} dF_{n+1}(\eta)\phi_{n+1}(\xi \eta) + \int_{\beta}^{B} d\eta F_{n+1}(\eta)\partial_{\eta}\phi_{n+1}(\xi \eta)$$

$$= F_{n+1}(B)\phi_{n+1}(\xi/B) - F_{n+1}(\beta)\phi_{n+1}(\xi/\beta).$$

Here let $\beta \to \xi +$ and $B \to \infty$. The integrated parts tend to zero, so the Lebesque bounded convergence theorem permits [4a] to be rewritten

$$\xi^{-n/2}F_n(\xi) = |S(n-1)| |S(n)|^{-1} \int_{\xi}^{\infty} d\eta \, \eta^{-(n+1)/2}F_{n+1}(\eta)(\eta-\xi)^{-1/2}.$$

Iterating this formula once, reversing orders of integration, and invoking the identity

$$\int_{\xi}^{\zeta} d\eta (\zeta - \eta)^{-1/2} (\eta - \xi)^{-1/2} = \pi$$

leads to

$$\xi^{-n/2}F_n(\xi) = (n/2) \int_{\xi}^{\infty} d\zeta \, \zeta^{-(n+2)/2} F_{n+2}(\zeta) \,. \tag{4b}$$

By induction on n, it follows that $F_n(\xi)$ is infinitely differentiable in $0 < \xi < \infty$. If we define

$$f_n(\xi) = -\pi^{-n/2} \Gamma(n/2) \xi^{1-n/2} \partial_{\xi} F_n(\xi), \qquad [5a]$$

then f_n is also infinitely differentiable in $0 < \xi < \infty$ and [2b] yields [3b]. Then [3a] follows by straightforward integration theory. Then the definition of marginal distributions implies

$$f_n(x_1^2 + \cdots + x_n^2) = \int_{-\infty}^{\infty} dx_{n+1} f_{n+1}(x_1^2 + \cdots + x_{n+1}^2), \qquad [5b]$$

which is [3c] with $\xi = x_1^2 + \cdots + x_n^2$, $\eta = x_1^2 + \cdots + x_{n+1}^2$. Also,

$$f_n(x_1^2 + \dots + x_n^2) = \int_{-\infty}^{\infty} dx_{n+1} \int_{-\infty}^{\infty} dx_{n+2} f_{n+2}(x_1^2 + \dots + x_{n+2}^2), \qquad [5c]$$

which is [3e]. Then [3f] follows from [3e], and [3d] follows from [3f] and [3c] with n replaced by n-1. To prove analyticity, note that if q is an integer ≥ 0 and if $0 < \alpha < \beta$, then by Taylor's theorem with remainder

$$F_{2}(\alpha) - F_{2}(\beta) = \sum_{i=1}^{q} \frac{(\beta - \alpha)^{i}}{i!} (-\partial_{\xi})^{i} F_{2}(\beta) + \frac{1}{q!} \int_{\alpha}^{\beta} d\xi (\xi - \alpha)^{q} (-\partial_{\xi})^{q+1} F_{2}(\xi).$$
 [6a]

But $(-\partial_{\xi})^{i} F_{2} = \pi^{i} f_{2i}$, so by [3b]

$$\frac{1}{q!} \int_{\alpha}^{\beta} d\xi \, \xi^{q} \, (-\partial_{\xi})^{q+1} F_{2}(\xi) = F_{2q+2}(\alpha) - F_{2q+2}(\beta) \,. \tag{6b}$$

Hence, the Lebesque bounded convergence theorem implies that as $\alpha \to 0$ the integral in [6a] converges to $1 - F_{2q+2}(\beta)$. Therefore

$$F_{2q+2}(\beta) - F_2(\beta) = \sum_{i=1}^{q} \frac{\beta^i}{i!} (-\partial_{\xi})^i F_2(\beta).$$
 [6c]

All terms in the sum [6c] are nonnegative, and $F_{2q+2}(\beta) \le 1$, so the series

$$\sum_{i=1}^{\infty} \frac{(-\beta)^i}{i!} F_2^{(i)}(\beta) \tag{6d}$$

converges absolutely (here $F_2^{(i)} = \partial_{\xi}^i F_2$). Therefore, the power series for $F_2(\xi)$ at $\xi = \beta$ converges absolutely for all complex ξ in the closed disk $|\xi - \beta| \le \beta$. Since β is arbitrary, $F_2(\xi)$ is analytic for all complex ξ with positive real part. By [5a], so is $f_2(\xi)$ and then by [3c,d] so is $f_n(\xi)$ for every $n \ge 1$. Hence so is $F_n(\xi)$ for every $n \ge 1$. Furthermore, since [6d] converges, Abel's theorem (2) implies that

$$F_{2}(0) - F_{2}(\beta) = \sum_{i=1}^{\infty} \frac{\beta^{i}}{i!} (-\partial_{\xi})^{i} F_{2}(\beta).$$
 [6e]

Together, [6e], [6c] and [2a] imply [3g].

COROLLARY 1: If one of the marginal distributions p_n is known, p_{∞} is completely determined.

COROLLARY 2: Let $H(\alpha)$ be the set of \mathbf{x} in R^{∞} with $\sum_{i=1}^{\infty} x_i^2 < \alpha$. Then $p_{\infty}(H(\infty)) = 0$. This follows immediately from [3g] and the fact that $H(\infty)$ is the monotone limit of the sets $H(\alpha)$ (3).

Sufficient Conditions for Isotropy. Let M(n) be the set of infinitely differentiable real-valued functions f on the open half-line $0 < \xi < \infty$ such that

$$\pi^{n/2}\Gamma(n/2)^{-1} \int_{0}^{\infty} d\xi \, \xi^{n/2-1} f(\xi) = 1$$
 [7a]

and also for every integer $q \ge 0$ and every ξ in $0 < \xi < \infty$

$$(-\partial_{\xi})^q f(\xi) \ge 0. \tag{7b}$$

Note that if $p_{\infty} \in I_0(\mathbb{R}^{\infty})$ and f_n comes from p_{∞} via [3a] then $f_n \in M(n)$. The converse is also true, and to prove it we need

LEMMA 1: Suppose $n \ge 1$ and $f \in M(n)$. Then

$$\lim_{\xi \to \infty} \xi^{n/2} f(\xi) = 0$$
 [8a]

$$\lim_{\xi \to 0} \xi^{\pi/2} f(\xi) = 0$$
 [8b]

$$f(\xi) = \int_{\xi}^{\infty} d\eta \left[-\partial_{\eta} f(\eta) \right]$$
 [8c]

$$(n/2) \int_{0}^{\infty} d\xi \, \xi^{n/2-1} f(\xi) = \int_{0}^{\infty} d\xi \, \xi^{n/2} [-\partial_{\xi} f(\xi)]$$
 [8d]

$$-\pi^{-1}\partial_{\varepsilon}f\in M(n+2).$$
 [8e]

PROOF: Let m = n/2 - 1 and let $0 < \alpha < A < \infty$. Integration by parts gives

$$(m+1)\int_{\alpha}^{A}d\xi\,\xi^{m}f\,(\xi) = A^{m+1}f(A) - \alpha^{m+1}f(\alpha) + \int_{\alpha}^{A}d\xi\,\xi^{m+1}[-\partial_{\xi}f\,(\xi)].$$
 [9a]

Fix α . The integral on the right in [9a] increases as $A \to \infty$ and yet is bounded, so it has a limit. Therefore $\lim_{A \to \infty} A^{m+1} f(A)$ exists. By [7a] it cannot be positive, so we have [8a], and hence [8c], and also

$$(m+1)\int_{\alpha}^{\infty} d\xi \, \xi^m f(\xi) = -\alpha^{m+1} f(\alpha) + \int_{\alpha}^{\infty} d\xi \, \xi^{m+1} [-\partial_{\xi} f(\xi)].$$
 [9b]

As α decreases to 0, the integral on the right in [9b] lincreases, and that on the left has a finite limit, so $\alpha^{m+1}f(\alpha)$ approaches either $+\infty$ or a nonnegative limit. Then [7a] requires [8b], and [9b] converges to [8d]. Then [8e] follows from [8d] and [7b].

Now we can prove

THEOREM 2: Suppose n is a nonnegative integer and $f \in M(n)$. Then there is a $p_{\infty} \in I_0(\mathbb{R}^{\infty})$ whose marginal distribution p_n on \mathbb{R}^n is given by [3a] with $f_n = f$.

PROOF: For every integer $q \ge 0$, define $f_{n+2q}(\xi) = \pi^{-q}(-\partial_{\xi})^q f(\xi)$. If N-n is a nonnegative even integer, induction on [8c] implies

$$f_N(x_1^2 + \dots + x_N^2) = \int_{-\infty}^{\infty} dx_{N+1} \int_{-\infty}^{\infty} dx_{N+2} f_{N+2}(x_1^2 + \dots + x_{N+2}^2).$$
 [10a]

If N-n is a nonnegative odd integer, define f_N from f_{N+1} via [3c]. Then

$$f_N(x_1^2 + \cdots + x_N^2) = \int_{-\infty}^{\infty} dx_{N+1} f_{N+1}(x_1^2 + \cdots + x_{N+1}^2).$$
 [10b]

That [10b] also holds when N-n is nonnegative and even follows from [10a]. Therefore [10b] holds for all $N \ge n$. Use it inductively to define f_N for $1 \le N < n$. For N = n, [7a] implies

$$\int_{R^N} dx_1 \cdots dx_N f_N(x_1^2 + \cdots + x_N^2) = 1, \qquad [10c]$$

and then [10b] implies [10c] for all $N \ge 1$. Thus the probability distributions p_N on R^N given by f_N via [3a] satisfy the Kolmogorov consistency condition. Then the existence of p_∞ follows from Kolmogorov's Fundamental Theorem (4).

COROLLARY 1: If $f \in M(n)$, $f(\xi)$ is analytic in the open right half-plane of complex ξ .

COROLLARY 2: The equation $F_2(\xi) = \int_0^\infty d\mu(t)e^{-\xi t}$ furnishes a bijection between the members of $I_0(R^\infty)$ and the probability measures μ on $0 \le t < \infty$.

PROOF: Demanding that $f_2 \in M$ (2) is equivalent to demanding that $F_2(\xi)$ be completely monotonic on $0 \le \xi < \infty$ (5).

Examples and Applications. Setting $f_2(\xi) = \pi^{-1}e^{-\xi}$ gives $f_n(\xi) = \pi^{-n/2}e^{-\xi}$. This p_{∞} is the gaussian with independent $x_1, x_2, ...$, each having mean 0 and variance 1. Setting $f_2(\xi) = \pi^{-1}v[\xi^{\nu-1} - (1+\xi)^{\nu-1}]$ with $0 < \nu < 1$ gives a p_{∞} for which $\lim_{\xi \to 0} f_n(\xi) = \infty$ if $n \le 2$ and also if n = 1 and $1/2 \le \nu < 1$. Thus the densities $f_n(\xi)$ need not remain finite as $\xi \to 0$.

The geophysical application is to inverse theory. An infinite dimensional linear space X of earth models \mathbf{x} is given, along with a finite number of linear functionals, $g_j: X \to R$,

j=1,...,D+1. An observer measures D data $y_i=g_i(\mathbf{x}_E)+\varepsilon_i$ for i=1,...,D. Here \mathbf{x}_E is the correct earth model and ε_i is the error in observing y_i . The observer wants to predict the value of $z=g_{D+1}(\mathbf{x}_E)$. Since dim $X=\infty$, the problem is hopeless unless g_{D+1} is a linear combination of $g_1,...,g_D$, or unless the observer has some prior information about \mathbf{x}_E not included among the data (6,7). One common sort of prior information is a quadratic bound on \mathbf{x}_E , a quadratic form Q on X such that \mathbf{x}_E is known to satisfy

$$Q(\mathbf{x}_E, \mathbf{x}_E) \le 1. \tag{11}$$

Often [11] is a bound on energy content or dissipation rate (8). In stochastic inversion and Bayesian inference, such a bound is often "softened" to a prior personal probability distribution p_{∞} on X (8–10). In practice, X is truncated to an R^n , and p_n is used in the inversion.

To see why this process is questionable, complete X to a Hilbert space with the inner product $\mathbf{x} \cdot \mathbf{x}' = Q(\mathbf{x}, \mathbf{x}')$. Let $\hat{\mathbf{x}}_1, \hat{\mathbf{x}}_2, \cdots$ be an orthonormal basis for X, and write $\mathbf{x} = \sum_{i=1}^{\infty} x_i \hat{\mathbf{x}}_i$. Then X becomes the subset $H(\infty)$ of R^{∞} defined in corollary 2 to theorem 1. The prior information [11] can now be written

$$\sum_{i=1}^{\infty} x_i^2 \le 1. {12}$$

If the observer wants to soften [12] to a probability distribution p_{∞} , without introducing new information not implied by [12], then clearly he should take $p_{\infty} \in I(R^{\infty})$. He is unlikely to assign nonzero probability to 0, so $p_{\infty} \in I_0(R^{\infty})$. But then $p_{\infty}(X) = 0$ by corollary 2 to theorem 1. Any prior personal probability distribution obtained by softening [12] without adding new information must deny [12] with probability 1.

Acknowledgments. The author is grateful for partial support from NSF grant EAR 85-21543 and NASA grant NAG 5-818.

References

- 1. Riesz, F. & Nagy, B. (1955) Functional Analysis (Ungar, New York), p. 118.
- 2. Bieberbach, L. (1945) Lehrbuch der Funktionentheorie I (Chelsea, New York), p. 28.
- 3. Halmos, P. (1950) Measure Theory (Van Nostrand, New York), p. 38.
- 4. Kolmogorov, A. N. (1956) Foundations of the Theory of Probability (Chelsea, New York), p. 29.
- Widder, D. (1946) The Laplace Transform (Princeton University Press, Princeton, N.J.), pp. 145 & 160.
- 6. Franklin, J. (1970) J. Math. Anal. Appl. 31, 682–716.
- 7. Backus, G. (1970) Proc. Natl. Acad. Sci. USA 67, 282-289.
- 8. Backus, G. (1987) Geophsy. J. R. Astr. Soc. 91, in press.
- 9. Jackson, D. (1979) Geophys. J. R. Astr. Soc. 57, 137–158.
- 10. Gubbins, D. (1983) Geophys. J. R. Astr. Soc. 73, 641-652.