$1^{\underline{a}}$ Prova - MTM1018 - T 14 10 de Maio de 2018

É proibido usar calculadora ou similares. Respostas sem justificativas, que não usem os métodos indicados ou que não incluam os cálculos necessários não serão consideradas. A^t denota sempre a transposta da matriz A. Salvo menção em contrário, A, X e B denotam respectivamente a matrizes $m \times n$, $n \times 1$ e $m \times 1$; de coeficientes, de incógnitas e de termos independentes de um sistema linear AX = B, como usual.

1.	
2.	
3.	
4.	
\sum	

Questão 1. (5pts)

- (a) Defina, como visto em aula, o que significa dizer que $S = \{V_1, \dots, V_k\}$, um subconjunto de k vetores de \mathbb{R}^n , é um conjunto linearmente independente (LI).
- (b) Dê um exemplo de conjunto $\{V_1, V_2, V_3\}$ de vetores em \mathbb{R}^n (escolha um n para funcionar) que seja LD, mas $\{V_1, V_2\}$, $\{V_1, V_3\}$, $\{V_2, V_3\}$ sejam cada um LI; Agora dê outro exemplo de conjunto $\{V_1, V_2, V_3\}$ LD, mas que V_3 não seja combinação linear de V_1 e V_2 ;
- (c) Considere os vetores $V_1 = (1, 2, 3, 0)$, $V_2 = (-2, -5, -8, 1)$, $V_3 = (2, 4, 6, 0)$ e $V_4 = (1, 1, 1, 1)$. Verifique se os vetores $W_1 = (1, -2, -5, 4)$ e $W_2 = (2, -1, -3, 4)$ são combinação linear de V_1, V_2, V_3 e V_4 . Detalhe o escalonamento que usar (Sugestão: os dois podem ser verificados simultaneamente);
- (d) Observando sua solução no item (c), $\{V_1, V_2, V_3, V_4\}$ é LI? Se V_4 puder ser escrito como combinação linear dos demais, escreva uma combinação linear de V_1, V_2 e V_3 que resulta em V_4 ;
- (e) Encontre uma base e a dimensão do subespaço de \mathbb{R}^4 (escreva um texto justificando a sua solução) $\mathbb{W} = \{(a-2b+2c+d, 2a-5b+4c+d, 3a-8b+6c+d, b+d) \in \mathbb{R}^4; a,b,c,d \in \mathbb{R}\}$

Questão 2. (2pts) Considere a matriz $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

- (a) (0pts) Calcule $A = BB^t + B^tB$.
 - (b) Considere a matriz A obtida no item anterior. Determine todos os valores reais λ , tais que existe $X = \begin{bmatrix} x \\ y \end{bmatrix} \neq \overline{0}$ que satisfaz

$$AX = \lambda X$$
;

(c) (detalhe os conjuntos solução mas não detalhar os escalonamentos aqui) Para cada um dos valores de λ encontrados no item anterior, determinar todos $X = \begin{bmatrix} x \\ y \end{bmatrix}$ tais que

$$AX = \lambda X$$
.

 $\mathbf{Quest\~{ao}\ 3.}\ (\mathit{2pts})\ \mathrm{Responda\ VERDADEIRO\ ou\ FALSO,\ com\ uma\ breve\ \mathbf{justificativa}\ ou\ \mathbf{contraexemplo}:$

- i-() Se A é matriz $n \times n$ e D é uma matriz diagonal $n \times n$ (as entradas fora da diagonal de D são 0), então DA = AD;
- ii-() O cálculo do determinante $\begin{vmatrix} 1 & 2 & 1 & 5 & 1 \\ 0 & 1 & 2 & 7 & 1 \\ 1 & 3 & 3 & 9 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 2 & -4 & 1 & 11 & 1 \end{vmatrix} \, \mathrm{d}\acute{\mathrm{a}} \, -3.$
- iii-() Pode-se fazer operações elementares nas linhas da matriz $\begin{bmatrix} 1 & 1 & -1 & :1 & 0 & 0 \\ -1 & 1 & 1 & :0 & 1 & 0 \\ 1 & 0 & 2 & :0 & 0 & 1 \end{bmatrix}$ até chegar na matriz $\begin{bmatrix} 1 & 0 & 0 : & 1/3 & -1/3 & 1/3 \\ 0 & 1 & 0 : & 1/2 & 1/2 & 0 \\ 0 & 0 & 1 : & -1/6 & 1/6 & 1/6 \end{bmatrix}.$
- iv-() Um conjunto de dois vetores do \mathbb{R}^2 que é conjunto LI gera o $\mathbb{R}^2;$

Questão 4. (1pt) Mostre que se um sistema linear com coeficientes reais AX = B possui duas soluções distintas X_0 e X_1 , então o sistema linear AX = B possui infinitas soluções. (Sugestão: Tente encontrar uma "reta de soluções")