第三讲

线性规划对偶理论

	c_B	c_N	
\mathcal{X}_B	A_B	A_N	b

检验数

目标值相反数

	0	$\boldsymbol{c_N} - c_B^T A_B^{-1} A_N$	$-c_B^T A_B^{-1} b$
x_B	$I_{m \times m}$	$A_B^{-1}A_N$	$A_B^{-1}b$

对偶理论

$$max z = 4x_1 + 3x_2$$

$$s.t. 2x_1 + 3x_2 \le 24$$

$$5x_1 + 2x_2 \le 26$$

$$x_1, x_2 \ge 0$$

对偶理论

$$max z = 4x_1 + 3x_2$$

$$s.t. 2x_1 + 3x_2 \le 24$$

$$5x_1 + 2x_2 \le 26$$

$$x_1, x_2 \ge 0$$

$$min z = 24y_1 + 26y_2$$

$$s.t. 2y_1 + 5y_2 \ge 4$$

$$3y_1 + 2y_2 \ge 3$$

$$y_1, y_2 \ge 0$$

对偶理论

原始 (P)		对偶		
max	$c^T x$		(D) min	$y^T b$
s.t.	$a_i^T x \le b_i$	$i=1,\ldots,p$	s.t.	$y_i \ge 0$
	$a_i^T x \ge b_i$	$i = p + 1, \dots, l$		$y_i \le 0$
	$a_i^T x = b_i$	$i = l, \dots, m$		$y_i \leq 0$
	$x_j \ge 0$	$j=1,\ldots,q$	A	$A_{\underline{j}}^T y \ge c_j$
	$x_j \leq 0$	$j = q + 1, \dots, h$	A	$A_j^T y \le c_j$
	$x_j \leq 0$	$j = h, \dots, n$	A	$A_j^T y = c_j$

$$max c^{T}x min y^{T}b$$

$$(P) s.t. Ax \le b (D) s.t. y^{T}A \ge c^{T}$$

$$x \ge 0 y \ge 0$$

设(D)是(P)的对偶问题,那么(P)也是(D)的对偶。

$$max c^{T}x min y^{T}b$$

$$(P) s.t. Ax \le b (D) s.t. y^{T}A \ge c^{T}$$

$$x \ge 0 y \ge 0$$

> (弱对偶定理)

- 口若(P)和(D)均有有限可行解,(P)问题任一可行解的目标函数值总是不大于(D)问题的任一可行解的目标函数值
- 口设x和y分别是(P)和(D)的可行解,若二者的目标函数值相等,则它们分别是各自问题的最优解
- 口若(P)有无限最优解,则(D)不可行;若(D)有无限最优解,则(P)不可行

max c^Tx min y^Tb $(P) s.t. Ax \le b \qquad (D) s.t. y^TA \ge c^T$ $x \ge 0 \qquad y \ge 0$

➤ (强对偶定理)

若(P) (或(D)) 有有限最优解,则(D) (或(P)) 也有有限最优解,且目标函数值相等

$$max c^{T}x min y^{T}b$$

$$(P) s.t. Ax \le b (D) s.t. y^{T}A \ge c^{T}$$

$$x \ge 0 y \ge 0$$

➤ (强对偶定理)

若(P)(或(D))有有限最优解,则(D)(或(P))也有有限最优解,且目标函数值相等

> (互补松弛定理)

若 x^*, y^* 分别是(P), (D)的可行解,则

$$x^*, y^*$$
 最优
$$\begin{cases} (y^{*T}A - c^T)x^* = 0 \\ y^{*T}(Ax^* - b) = 0 \end{cases}$$