Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

Cognome.	nome	e	matricola:	
Cognonic,	1101110	\mathbf{c}	madi icoia.	_

 \square la funzione f è iniettiva.

 \Box $f \circ g(x) = 2x(x+1)$ per ogni $x \in \mathbb{R}$.

 \square g è iniettiva e f è l'inversa di g. \square Esiste $x \in \mathbb{R}$ tale che g(x) = (5, 10).

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

	(1 0 1)	
(a)	Sia P la proposizione $A \wedge B \to C$. Allora	2 punti
	\square Se i è un'interpretazone tale che $i(C)=0$ allora necessariamente $i(A)=i(B)=0$.	
	\square P è conseguenza logica di A \rightarrow C.	
	□ P è una tautologia.	
	□ P è una contraddizione.	
(b)	Siano B e C insiemi tali che $C \subseteq B$. Allora possiamo concludere con certezza che	2 punti
	\square B e C non possono essere disgiunti.	
	$\Box (B \cup C) \setminus (B \setminus C) = C.$	
	\square se $ B \leq C $ allora $ B = C $.	
	\Box se $ B = C $ allora $B \setminus C = \emptyset$.	
(c)	Sia R una relazione binaria su un insieme non vuoto A .	2 punti
	\square Se R è riflessiva, allora non può essere anche irriflessiva.	
	$\hfill\Box$ Se R è una relazione di equivalenza, allora è anche un preordine.	
	$\hfill\Box$ Se R è un ordine e S è un'altra relazione binaria su A tale che $R\subseteq S,$ allora S è	
	riflessiva.	
	\square Se R è antisimmetrica, allora non può essere anche simmetrica.	
(d)	Consideriamo le funzioni $f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto 2x^2 + y$	2 punti
	$e g: \mathbb{R} \to \mathbb{R}^2, x \mapsto (x, 2x).$ Allora	

(e)	Quali delle seguenti sono formule che formalizzano correttamente	2 punti
	" x è un numero primo" utilizzando il linguaggio $\cdot, 1$ e relativamente alla struttura	
	$\langle \mathbb{N}, \cdot, 1 angle$	
	$ \exists x \neg (x=1) \lor \forall y \forall z (y \cdot z = x \to y = 1 \lor z = 1) $	
(f)	Siano $\varphi(x)$ e $\psi(x,y)$ formule del prim'ordine e σ un enunciato.	2 punti
	\square Se \mathcal{A} è una struttura tale che $\mathcal{A} \models \neg \exists x \varphi(x)$, allora $\mathcal{A} \models \forall x (\varphi(x) \to \sigma)$.	
	$\Box \neg \exists x \neg \varphi(x) \models \forall x \varphi(x)$	
	\square Se \mathcal{B} è una struttura tale che $\mathcal{B} \models \exists y \varphi(y)$, allora $\mathcal{B} \models \exists y (\neg \sigma \lor \varphi(y))$.	
(g)	Sia $L = \{P, f, g, a\}$ un linguaggio del prim'ordine con P simbolo di relazione	2 punti
	binario, f simbolo di funzione unario, g simbolo di funzione binario e a	
	simbolo di costante. Quali dei seguenti sono L-termini?	
	$\Box g(f(f(g(a,a),a)),a)$	
	$\Box f(g(g(a,f(a)),g(f(a),a)))$	
	$\square P(a, f(a))$	
	$\Box g(g(f(a), f(a)), g(f(a), f(a)))$	

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L=\{P,R,a\}$ con P ed R simboli di relazione binaria e a simbolo di costante. Consideriamo la L-struttura $\mathcal{A}=\langle\mathbb{Z},\geq,|,3\rangle$, dove | è l'usuale relazione di divisibilità.

Sia ϕ la formula

$$(P(x,y) \wedge R(a,y))$$

 $e \psi$ la formula

$$(P(x,y) \to R(a,y))$$

- 1. Determinare se:
 - $A \models \varphi[x/-1000, y/-2000],$
 - $A \models \varphi[x/-1000, y/-3000],$
 - $A \models \exists y \ \varphi[x/-1000, y/-999].$
- 2. Determinare se $\mathcal{A} \models \forall x \exists y \varphi[x/0, y/0]$.
- 3. Determinare se:
 - $\mathcal{A} \models \psi[x/-1000, y/-2000],$
 - $\mathcal{A} \models \psi[x/-1000, y/-3000],$
 - $A \models \forall y \psi[x/-1000, y/-998].$
- 4. Determinare se $\mathcal{A} \models \exists x \forall y \psi[x/-1, y/3]$.
- 5. Determinare se $\forall x \exists y \varphi \models \exists x \forall y \psi$.

Giustificare le proprie risposte.

Cognome, nome e matricola:	Versione

Esercizio 3 9 punti

Sia A un insieme non vuoto e $f\colon A\to A$ una funzione. Formalizzare relativamente alla struttura $\langle A,f\rangle$ mediante il linguaggio $L=\{f\}$ con un simbolo di funzione unario le seguenti affermazioni:

- 1. f è suriettiva
- 2. se f è suriettiva, allora f è iniettiva
- 3. $f \circ f$ è biettiva
- 4. ogni elemento ha almeno due preimmagini distinte.