Ressource R404 Réseaux cellulaires – Partie 1

IUT Béziers, dépt. R&T © 2014 - 2023 http://www.borelly.net/Christophe.BORELLY@umontpellier.fr

Contenus de la ressource

- Réseaux d'opérateurs pour mobiles.
- Connaître l'architecture des réseaux mobiles actuels (2G-5G, xG), notions de cœur de réseau.
- Connaître les débits et les services offerts par les réseaux.
- Connaître les bases de la couche radio et les procédures d'accès au réseau.
- Connaître les critères d'évaluation de la qualité de service dans un réseau cellulaire (couverture/cartographie, choix des protocoles, services, ...).

Cours 3+1 (1h15), TD 4 (1h15), TP 3 (2h45)

Les différentes technologies

- **1G**: Radiocom 2000 analogique
- 2G: GSM (Global System for Mobile) 9,05 kbps
- 2.5G: GPRS (Global Packet Radio Service) 171,2 kbps
- 2.75G: EDGE (Enhanced Data Rate for GSM Evolution) 384 kbps
- 3G: UMTS (Universal Mobile Telecommunications System) 1,9 Mbps
- 3.5G (3G+): HSPA (High Speed Packet Access) 14,4 Mbps
- **3.75G** (3G++, H+): **HSPA+** (High Speed Packet Access +) 21 Mbps
- 3.75G (H+ Dual Carrier) : DC-HSPA+ (Dual-Cell HSPA +) 42 Mbps
- **3.9G** (4G): **LTE** (Long Term Evolution) 300 Mbps
- 4G : LTE-Advanced 1 Gbps
- 4.5G/4.9G : LTE-A Pro 3 Gbps
- 5G: NR (New Radio) jusqu'à 100 fois plus rapide que la 4G?

Réseaux cellulaires

- Les réseaux radios sans fil permettent à un utilisateur de se déplacer tout en gardant l'accès aux services proposés par l'opérateur.
- On installe donc des antennes fixes aux endroits « stratégiques » du territoire.
- Chaque antenne définie une ou plusieurs cellules (zone où l'on peut recevoir le signal d'une antenne donnée sur une fréquence donnée).

Zone de couverture

 La totalité des cellules d'un opérateur forme ce que l'on appelle la zone de couverture.

Propagation des ondes radio

- Un onde électromagnétique peut subir plusieurs altérations sur son trajet :
 - Diffractions, réflexions, diffusions (évanouissements rapides).
 - Trajets multiples (en milieu urbain peu de trajets directs).
 - Obstacles (pouvant être mobiles) donnant des effets de masque (shadowing - évanouissements lents).
- Le signal reçu est la somme de toutes ces ondes :

Puissance reçue

- Dans le vide, on a en décibel (10.Log10(P)) :
 - Pr = Pe + Ge + Gr Pertes
- Atténuation en espace libre (Free Space Loss) :
 - A_{FSL} (dB) = 32,45 + 20.log10(d_{Km}) + 20.log10(f_{MHz})
- Dans le cas général, on a :
 - $Pr = Pe + Ge + Gr [A_{FSL} + A_{shadow} + A_{fading} + ...]$

Ellipsoïdes de Fresnel

- UIT-R P.526-5
- Permet d'évaluer l'atténuation apportée par un obstacle.
- La règle expérimentale conseille d'avoir une zone dégagée sur 60% de la valeur du rayon du premier ellipsoïde (R>0,6.R1) pour ne pas avoir de pertes.

$$R_n = \sqrt{\frac{n \cdot \lambda \cdot d_1 \cdot d_2}{d_1 + d_2}} \Rightarrow R_{n(m)} \approx 547,533 \cdot \sqrt{\frac{n \cdot d_{1(Km)} \cdot d_{2(Km)}}{F_{Mhz} \cdot \left(d_{1(Km)} + d_{2(Km)}\right)}}$$

Interférences IIS

- Interférences Inter-Symboles (temporel)
- Un symbole (1 ou plusieurs bits) est codé en général sur un Intervalle de Temps (IT).
- Lorsqu'une partie des symboles « voisins » se retrouvent dans l'IT d'un symbole donné (délais, réflexions,...), cela perturbe le décodage.

Interférences ICC

- Interférences Co-Canal
- Interférences dues à une même fréquence utilisée par des équipements différents et proches spatialement

Interférences ICA

- Interférences des Canaux Adjacents
- Utilisation de fréquences voisines engendrant des interférences au niveau du spectre.

Les antennes

- Regroupement des équipements fixes du réseau radio
- Antennes de plusieurs cellules (e.g. 3 cellules)
- Interconnexion avec les autres équipements du réseau par Liaisons Spécialisées ou Faisceaux Hertziens
- 2G : BTS (Base Transceiver Station)
- 3G: nodeB
- 4G: eNodeB (Evolved Node B)
- 5G: gNB (next generation Node B)

Exemples

Antenne 2G-3G-4G

Diagrammes de rayonnement d'une antenne YAGI

Réseaux d'antennes 5G Full Dimension MIMO

Evolution des supports radio

Techniques de duplexage

- Séparation du sens montant (UL) et descendant (DL)
- FDD: Frequency Division Duplexing
- TDD: Time Division Duplexing

Techniques d'accès multiple

- Accès au réseau par plusieurs utilisateurs de façon simultanée.
- TDMA: Time Division Multiple Access
- FDMA: Frequency Division Multiple Access
- CDMA: Code Division Multiple Access
- OFDMA: Orthogonal Frequency Division Multiple Access

CDMA

- Découpage d'un bit en n « chips » implique un étalement du spectre d'un facteur n.
- Moins de sensibilités aux interférences
- Le décodage se fait par multiplication et sommation
- Suivant les codes utilisés, le système doit être synchrone ou non.
- Exemple codes orthogonaux:
 - ++++, +-+-, ++--, +--+

(-)

CDMA (2 utilisateurs)

Références

- http://www.3gpp.org
- https://www.anfr.fr (Présentation générale de la 5G- 2019)
- https://www.sharetechnote.com/
- Massive MIMO Systems for 5G Communications 2021 (https://doi.org/10.1007/s11277-021-08550-9)