

工科数学试卷汇总

高数、线代、概率、复变

作者: sikouhjw、xajzh

组织: 临时组织起来的重排小组

时间: May 12, 2019

版本: 1.00

确实,时 间和空间 是有限的。确实,我们总会有 分开的时候。但是正因为这样, 我们才会努力学习,我们才会 努力前进。我们的信仰是 享受数学。因为"数 学穿越时空"。

 \Diamond

目 录

1	声明			1					
2	高等数学试卷汇总								
	2.1	高数 (-	(一) 期中	. 2					
		2.1.1	2018-2019A7	. 2					
		2.1.2	2018-2019A7 答案	. 3					
	2.2	高数 (-	(一) 期终	. 6					
		2.2.1	2018-2019A15	. 6					
		2.2.2	2018-2019A15 答案	. 6					
	2.3	高数 (2	(二) 期中	. 6					
		2.3.1	2017-2018	. 6					
		2.3.2	2017-2018 答案	. 6					
		2.3.3	2018-2019B10	. 6					
	2.4	高数 ((二) 期终	. 6					
		2.4.1	2014-2015	. 6					
		2.4.2	2017-2018A	. 6					
		2.4.3	2017-2018A 答案	. 6					
		2.4.4	2017-2018B	. 6					
		2.4.5	2017-2018B 答案	. 6					
	2.5	额外的	的练习	. 6					
3	线性	代数试		7					
4	概率	统计试	. 花卷汇总	8					
5	复变函数试卷汇总								
	5.1	2018-2	2019A	. 9					
	5.2	2018-2	2019A 答案	. 10					

第1章 声明

本汇总不得用于商业用途,最新版下载地址: Github,不保证题目、答案的正确性,如有错误可通过 QQ 群 1 或者邮箱 2 联系我们

¹⁹⁹¹⁸³²²²⁶

 $^{^{2}489765924@}qq.com$

第2章 高等数学试卷汇总

2.1 高数 (一) 期中

2.1.1 2018-2019A7

一、选择题

		_					
1	微分方程($(v')^3 +$	31/v"	$+ x^4 v'''$	$= \sin x$	的阶数是()

- (D)3

(A) I (B) 4 (C) 2 (D) 3

2. 设
$$f(x,y) = x - y - \sqrt{x^2 + y^2}$$
, 则 $f_x(3,4) = ($ (D) $\frac{3}{5}$ (D) $\frac{1}{5}$

3. 微分方程 $y' = \frac{y}{x}$ 的一个特解是 ()

(A) $y = 2x$ (B) $e^y = x$ (C) $y = x^2$ (D) $y = \ln x$

4. 若 $z = \ln \sqrt{1 + x^2 + y^2}$, 则 $dz|_{(1,1)} = ($)

(A) $\frac{dx + dy}{3}$ (B) $\frac{dx + dy}{2}$ (C) $\frac{dx + dy}{1}$ (D) $3(dx + dy)$

3. 微分方程
$$y' = \frac{y}{x}$$
 的一个特解是()

4. 若
$$z = \ln \sqrt{1 + x^2 + y^2}$$
,则 $dz|_{(1,1)} = ($

5. 设直线
$$L: \begin{cases} x+3y+2z+1=0 \\ 2x-y-10z+3=0 \end{cases}$$
 , 平面 $\eta: 4x-2y+z-2=0$, 则 ()

- (A) *L* 在 η 上

- (B) L 平行于 η (C) L 垂直于 η (D) L 与 η 斜交

6. 方程
$$y' + 3xy = 6x^2y$$
 是()

(A) 二阶微分方程

- (B) 非线性微分方程
- (C) 一阶线性非齐次微分方程
- (D) 可分离变量的微分方程

7. 曲面
$$\frac{x^2}{9} - \frac{y^2}{4} + \frac{z^2}{4} = 1$$
 与平面 $x = y$ 的交线是 ()

- (A) 两条直线
- (B) 双曲线
- (C) 椭圆
- (D) 抛物线

8. 设
$$z = e^{x^2y}$$
,则 $\frac{\partial^2 z}{\partial x \partial y} = ($)

(B) e^{x^2y}

(A) $2y (1 + x^3) e^{x^2 y}$ (C) $2x (1 + x^2 y) e^{x^2 y}$

(D) $2xe^{x^2y}$

- (A) $\vec{a} \times (\vec{b} \vec{c}) = \vec{a} \times \vec{b} \vec{a} \times \vec{c}$
- (B) 若 $\vec{a} \times \vec{b} = \vec{a} \times \vec{c} \perp \vec{a} \neq \vec{0}$, 则 $\vec{b} = \vec{c}$

(C) $\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$

(D) 若 $|\vec{a}| = 1$, $|\vec{b}| = 1$, 则 $|\vec{a} \times \vec{b}| = 1$

二、填空题

- 1. 平面过点 (2,0,0), (0,1,0), (0,0,0.5), 则该平面的方程是
- 2. $\forall y_1 \neq y'' + p(x)y' + q(x)y = f(x)$ 的解, $y_2 \neq y'' + p(x)y' + q(x)y = f(x)$ 的解, $y_1 + y_2 \neq y'' + p(x)y' + q(x)y = f(x)$ 是_____方程的解

2.1 高数 (一) 期中 -3/12-

- 3. 设 $z = y \arctan x$, 则 $\operatorname{grad} z|_{(1,2)} =$ _____
- 4. 过点 P(0,2,4) 且与两平面 x + 2z = 1 和 y 2z = 2 平行的直线方程是

- 7. 已知平面 η_1 : $A_1x + B_1y + C_1z + D_1 = 0$ 与平面 η_2 : $A_2x + B_2y + C_2z + D_2 = 0$, 则 $\eta_1 \perp \eta_2$ 的充要条件是
- 8. 微分方程 y'' + 2y' + 5y = 0 的通解为 y =
- 9. 设 $z = e^{xy} + \cos\left(x^2 + y\right)$, 则 $\frac{\partial z}{\partial y} =$

三、大题

- 1. 求方程 $\frac{dz}{dx} = -z + 4x$ 的通解
- 2. 求曲线 $2z + 1 = \ln(xy) + e^z$ 在点 $M_0(1, 1, 0)$ 处的切平面和法线方程
- 3. 设由方程组 $\begin{cases} x+y+z=0\\ x^2+y^2+z^2=1 \end{cases}$ 确定了隐函数 x=x(z),y=y(z), 求 $\frac{\mathrm{d}x}{\mathrm{d}z},\frac{\mathrm{d}y}{\mathrm{d}z}$
- 5. 设 $z = x^2y + \sin x + \varphi(xy + 1)$, 且 $\varphi(u)$ 具有一阶连续导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

2.1.2 2018-2019A7 答案

一、选择题

1. 微分方程 $(y')^3 + 3\sqrt{y''} + x^4y''' = \sin x$ 的阶数是 (D)

(A) 1 (B) 4 (C) 2 (D) 3

2. 设 $f(x,y) = x - y - \sqrt{x^2 + y^2}$,则 $f_x(3,4) = (B)$ (A) $\frac{3}{5}$ (B) $\frac{2}{5}$ (C) $-\frac{2}{5}$ (D) $\frac{1}{5}$ 3. 微分方程 $y' = \frac{y}{x}$ 的一个特解是 (A) (A) y = 2x (B) $e^y = x$ (C) $y = x^2$ (D) $y = \ln x$ 4. 若 $z = \ln \sqrt{1 + x^2 + y^2}$,则 $dz|_{(1,1)} = (A)$ (A) $\frac{dx + dy}{3}$ (B) $\frac{dx + dy}{2}$ (C) $\frac{dx + dy}{1}$ (D) 3(dx + dy)5. 设直线 $L: \begin{cases} x + 3y + 2z + 1 = 0 \\ 2x - y - 10z + 3 = 0 \end{cases}$, 平面 $\eta: 4x - 2y + z - 2 = 0$,则 (C)

- (A) L 在 η 上 (B) L 平行于 η (C) L 垂直于 η (D) L 与 η 斜交

- 6. 方程 $y' + 3xy = 6x^2y$ 是(D)
 - (A) 二阶微分方程

- (B) 非线性微分方程
- (C) 一阶线性非齐次微分方程
- (D) 可分离变量的微分方程
- 7. 曲面 $\frac{x^2}{9} \frac{y^2}{4} + \frac{z^2}{4} = 1$ 与平面 x = y 的交线是(B)

2.1 高数 (一) 期中 -4/12-

(A) 两条直线

(B) 双曲线

(C) 椭圆

(D) 抛物线

8. 设 $z = e^{x^2y}$,则 $\frac{\partial^2 z}{\partial x \partial y} = (C)$

$$(A) 2y \left(1 + x^3\right) e^{x^2 y}$$

(B) e^{x^2y}

(C)
$$2x(1+x^2y)e^{x^2y}$$

(D) $2xe^{x^2y}$

9. 下列结论正确的是(A)

(A)
$$\vec{a} \times (\vec{b} - \vec{c}) = \vec{a} \times \vec{b} - \vec{a} \times \vec{c}$$

(B) 若 $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ 且 $\vec{a} \neq \vec{0}$, 则 $\vec{b} = \vec{c}$

(C)
$$\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$$

(D) 若 $|\vec{a}| = 1$, $|\vec{b}| = 1$, 则 $|\vec{a} \times \vec{b}| = 1$

二、填空题

1. 平面过点 (2,0,0), (0,1,0), (0,0,0.5), 则该平面的方程是 $\frac{x}{2} + y + 2z = 1$

2. $\forall y_1 \neq y'' + p(x)y' + q(x)y = f(x)$ 的解, $y_2 \neq y'' + p(x)y' + q(x)y = f(x)$ 的解, $y_1 + y_2 \neq y'' + p(x)y' + q(x)y = f(x)$ 是 y'' + p(x)y' + q(x)y = 2f(x) 方程的解

3. $\mbox{if } z = y \arctan x$, $\mbox{if } \mbox{grad } z|_{(1,2)} = \mbox{d} x + \frac{\pi}{4} \, dy$

4. 过点 P(0,2,4) 且与两平面 x+2z = 1 和 y-2z = 2 平行的直线方程是 $\frac{x}{-2} = \frac{y-2}{2} = \frac{z-4}{1}$

5. 设 $f(x, y) = \arcsin \frac{y}{x}$, 则 $f_y(1, 0) = \underline{1}$ 6. $y = e^x$ 是微分方程 y'' + py' + 6y = 0 的一个特解, 则 $p = \underline{-7}$

7. 已知平面 η_1 : $A_1x + B_1y + C_1z + D_1 = 0$ 与平面 η_2 : $A_2x + B_2y + C_2z + D_2 = 0$, 则 $\eta_1 \perp \eta_2$ 的充要条件是 $A_1A_2 + B_1B_2 + C_1C_2 = 0$

8. 微分方程 y'' + 2y' + 5y = 0 的通解为 $y = C_1 e^{-x} \sin(2x) + C_2 e^{-x} \cos(2x)$

9. $\forall z = e^{xy} + \cos\left(x^2 + y\right), \text{ } \exists \frac{\partial z}{\partial y} = xe^{xy} - \sin\left(x^2 + y\right)$

三、大题

1. 求方程 $\frac{dz}{dx} = -z + 4x$ 的通解 解 运用一阶线性非齐次微分方程公式,得

$$z = e^{-\int dx} \left(\int 4x e^{\int dx} dx + C \right) = e^{-x} \left(\int 4x e^x dx + C \right)$$
$$= e^{-x} \left(4(x-1)e^x + C \right) = 4(x-1) + Ce^{-x}$$

2. 求曲线 $2z + 1 = \ln(xy) + e^z$ 在点 $M_0(1, 1, 0)$ 处的切平面和法线方程

3. 设由方程组 $\begin{cases} x+y+z=0\\ x^2+y^2+z^2=1 \end{cases}$ 确定了隐函数 x=x(z), y=y(z), 求 $\frac{\mathrm{d}x}{\mathrm{d}z}, \frac{\mathrm{d}y}{\mathrm{d}z}$

解 对方程组
$$\begin{cases} x + y + z = 0 \\ x^2 + y^2 + z^2 = 1 \end{cases}$$
 两式求微分, 得

$$\begin{cases} dx + dy + dz = 0 \\ 2x dx + 2y dy + 2z dz = 0 \end{cases}$$

解得

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}z} = -\frac{x+2z}{2x+z} \\ \frac{\mathrm{d}y}{\mathrm{d}z} = -\frac{y+2x}{2y+z} \end{cases}$$

4. 求方程 $y'' + 6y' + 13y = e^t$ 的通解

解 方程 $y''+6y'+13y=e^t$ 对应的齐次方程 y''+6y'+13y=0 的特征方程为 $r^2+6r+13=0$,解得 $r=-3\pm 2i$,那么齐次方程的通解为 $C_1e^{-3t}\sin(2t)+C_2e^{-3t}\cos(2t)$ 设特解为 ae^t ,代入方程 $y''+6y'+13y=e^t$ 后解得 $a=\frac{1}{20}$

综上, 方程 $y'' + 6y' + 13y = e^t$ 的通解为 $C_1e^{-3t}\sin(2t) + C_2e^{-3t}\cos(2t) + \frac{e^x}{20}$

5. 设
$$z = x^2y + \sin x + \varphi(xy+1)$$
, 且 $\varphi(u)$ 具有一阶连续导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 解 $\frac{\partial z}{\partial x} = 2xy + \cos x + y\varphi'(xy+1)$, $\frac{\partial z}{\partial y} = x^2 + x\varphi'(xy+1)$

2.2 高数 (一) 期终 -6/12-

- 2.2 高数 (一) 期终
- 2.2.1 2018-2019A15
- 2.2.2 2018-2019A15 答案
- 2.3 高数 (二) 期中
- 2.3.1 2017-2018
- 2.3.2 2017-2018 答案
- 2.3.3 2018-2019B10
- 2.4 高数 (二) 期终
- 2.4.1 2014-2015
- 2.4.2 2017-2018A
- 2.4.3 2017-2018A 答案
- 2.4.4 2017-2018B
- 2.4.5 2017-2018B 答案
- 2.5 额外的练习

第3章 线性代数试卷汇总

第4章 概率统计试卷汇总

第5章 复变函数试卷汇总

5.1 2018-2019A

一、选择题 (每小题 3 分, 共 15 分)

1.
$$\frac{(\sqrt{3} - i)^4}{(1 - i)^8} = ($$

$$(A) - \frac{1}{2} + \frac{\sqrt{3}}{2}i$$

(C)
$$\frac{1}{8}\left(-1+\sqrt{3}\mathrm{i}\right)$$

- (A) 处处不可导
- (C) 处处解析
- 3. 下列等式正确的是()

(A) Ln i =
$$\left(2k\pi - \frac{\pi}{2}\right)$$
 i, ln i = $\frac{\pi}{2}$ i

(A) Ln i =
$$\left(2k\pi - \frac{\pi}{2}\right)$$
 i, ln i = $\frac{\pi}{2}$ i
(C) Ln i = $\left(2k\pi + \frac{\pi}{2}\right)$ i, ln i = $\frac{\pi}{2}$ i

4.
$$z = 0$$
 是函数 $\frac{1 - \cos z}{z - \sin z}$ 的 ()

- (A) 本性奇点 (B) 可去奇点
- (C) 二级极点

(B) $-\frac{1}{9}\left(1+\sqrt{3}i\right)$

(D) 仅在 (0,0) 点可导

(D) $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$

- (D) 一级极点
- 5. 设 C 为 z = (1 i)t, t 从 1 到 0 的一段, 则 $\int_C \overline{z} dz = ($)
 - (A) 1
- (B) 1
- (C) -i
- (D) i

(B) 仅在 $6x^2 = 9y^2$ 上可导, 处处不解析

(B) Ln i = $\left(2k\pi + \frac{\pi}{2}\right)$ i, ln i = $-\frac{\pi}{2}$ i (D) Ln i = $\left(2k\pi - \frac{\pi}{2}\right)$ i, ln i = $-\frac{\pi}{2}$ i

二、填空题 (每小题 3 分, 共 15 分)

- 1. 若 z + |z| = 2 + i,则 z =2. 若 C 为正向圆周 $|z| = \frac{1}{2}$,则 $\oint_C \frac{1}{z 2} dz =$
- 3. 若 $z = 2 \pi i$, 则 $e^z =$
- 4. 若 $f(z) = \cos z^2$,则 f(z)在 z = 0 处泰勒展开式中 z^4 项的系数 $a_4 =$
- 5. 函数 $f(t) = \sin t$ 的拉普拉斯变换 F(s) =

三、计算题 (70分)

- 1. 设 u(x,y) = x 2xy 且 f(0) = 0, 求解析函数 f(z) = u + iv. (10分)
- 2. 计算积分 $\oint_C \frac{2e^x}{z^5} dz$ 的值, 其中 C 为正向圆周 |z| = 1. (7分)
- 3. 计算积分 $\oint_C \frac{3z+5}{z^2-z} dz$ 的值, 其中 C 为正向圆周 $|z| = \frac{1}{2}$. (7分)
 4. 求函数 $\frac{1-\cos z}{z^3}$ 在有限奇点处的留数. (7分)
- 5. 求函数 $\frac{2z^2+1}{z^2+2z}$ 在有限奇点处的留数. (7分)

- 6. 将 $f(z) = \frac{z}{(z-2)(z-6)}$ 在 2 < |z| < 6 内展开为洛朗级数. (10 分)
- 7. 若函数 $f(z) = ay^3 + bx^2y + i(x^3 + cxy^2)$ 是复平面上的解析函数,求 a, b, c 的值. (12 分)
- 8. 利用拉普拉斯变换解常微分方程初值问题: $\begin{cases} x''(t) + 6x'(t) + 9x(t) = e^{-3t} \\ x(0) = 0, x'(0) = 0 \end{cases}$. (10 分)

5.2 2018-2019A 答案

一、选择题 (每小题 3 分, 共 15 分)

1.
$$\frac{(\sqrt{3}-i)^4}{(1-i)^8} = (D)$$

$$(A) - \frac{1}{2} + \frac{\sqrt{3}}{2}i$$

$$(B) - \frac{1}{8} \left(1 + \sqrt{3}i \right)$$

(C)
$$\frac{1}{8}\left(-1+\sqrt{3}\mathrm{i}\right)$$

(D)
$$-\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

- 2. 设 $f(z) = 2x^3 + 3y^3i$, 则 f(z) (B)
 - (A) 处处不可导

(B) 仅在 $6x^2 = 9y^2$ 上可导, 处处不解析

(C) 处处解析

(D) 仅在 (0,0) 点可导

3. 下列等式正确的是(C)

(A) Ln i =
$$\left(2k\pi - \frac{\pi}{2}\right)$$
 i, ln i = $\frac{\pi}{2}$ i
(C) Ln i = $\left(2k\pi + \frac{\pi}{2}\right)$ i, ln i = $\frac{\pi}{2}$ i

i,
$$\ln i = \frac{\pi}{2}i$$
 (B) $\operatorname{Ln} i = \left(2k\pi + \frac{\pi}{2}\right)i$, $\ln i = -\frac{\pi}{2}i$
i, $\ln i = \frac{\pi}{2}i$ (D) $\operatorname{Ln} i = \left(2k\pi - \frac{\pi}{2}\right)i$, $\ln i = -\frac{\pi}{2}i$

- 4. z = 0 是函数 $\frac{1 \cos z}{z \sin z}$ 的 (D)
 - (A) 本性奇点 (B) 可去奇点
- (C) 二级极点
- (D) 一级极点
- 5. 设 C 为 z = (1 i)t, t 从 1 到 0 的一段, 则 $\int_{C} \overline{z} dz = (A)$
 - (A) 1
- (B) 1
- (C) -i
- (D) i

二、填空题 (每小题 3 分, 共 15 分)

- 2. 若 C 为正向圆周 $|z| = \frac{1}{2}$,则 $\oint_C \frac{1}{z-2} dz = 0$
- 3. 若 $z = 2 \pi i$, 则 $e^z = _{-e^2}$
- 4. 若 $f(z) = \cos z^2$, 则 f(z) 在 z = 0 处泰勒展开式中 z^4 项的系数 $a_4 = -\frac{1}{2}$
- 5. 函数 $f(t) = \sin t$ 的拉普拉斯变换 $F(s) = \frac{1}{s^2 + 1}$

三、计算题 (70 分)

1. 设 u(x, y) = x - 2xy 且 f(0) = 0, 求解析函数 f(z) = u + iv. (10分)

解解析函数的 u, v 必定满足 C. - R. 方程, 即

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

2. 计算积分 $\oint_C \frac{2e^x}{z^5} dz$ 的值, 其中 C 为正向圆周 |z| = 1. (7分)

解 根据高阶导数公式 $f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$, 那么

$$\oint_C \frac{2e^z}{(z-0)^5} dz = \frac{2\pi i}{4!} (2e^z)^{(4)} \Big|_{z=0} = \frac{\pi i}{6}$$

3. 计算积分 $\oint_C \frac{3z+5}{z^2-z} dz$ 的值, 其中 C 为正向圆周 $|z| = \frac{1}{2}$. (7分)

解

$$\oint_{C} \frac{3z+5}{z^{2}-z} dz = 2\pi i \operatorname{Res}_{z=0} \frac{3z+5}{z(z-1)} = 2\pi i \left. \frac{3z+5}{z-1} \right|_{z=0} = -10\pi i$$

4. 求函数 $\frac{1-\cos z}{z^3}$ 在有限奇点处的留数. (7分)

解 对 $\cos z$ 进行洛朗展开, $\cos z = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$, 那么 $1 - \cos z = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^{2n}}{(2n)!}$ 那么 $\frac{1 - \cos z}{z^3} = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^{2n-3}}{(2n)!}$, 根据洛朗系数公式, $\underset{z=0}{\text{Res}} \frac{1 - \cos z}{z^3} = c_{-1} = \frac{1}{2}$

5. 求函数 $\frac{2z^2+1}{z^2+2z}$ 在有限奇点处的留数. (7分)

解

$$\operatorname{Res}_{z=0} \frac{2z^2+1}{z^2+2z} = \left. \frac{2z^2+1}{z+2} \right|_{z=0} = \frac{1}{2}, \operatorname{Res}_{z=-2} \frac{2z^2+1}{z^2+2z} = \left. \frac{2z^2+1}{z} \right|_{z=-2} = -\frac{9}{2}$$

6. 将 $f(z) = \frac{z}{(z-2)(z-6)}$ 在 2 < |z| < 6 内展开为洛朗级数. (10 分)解

$$f(z) = \frac{z}{4} \left(\frac{1}{z - 6} - \frac{1}{z - 2} \right) = \frac{z}{4} \left(-\frac{1}{6} \frac{1}{1 - z/6} - \frac{1}{z} \frac{1}{1 - 2/z} \right)$$
$$= \frac{z}{4} \left(-\frac{1}{6} \sum_{n=0}^{\infty} (z/6)^n - \frac{1}{z} \sum_{n=0}^{\infty} (2/z)^n \right)$$
$$= -\frac{1}{4} \left(\sum_{n=0}^{\infty} (z/6)^{n+1} + \sum_{n=0}^{\infty} (2/z)^n \right)$$

7. 若函数 $f(z) = ay^3 + bx^2y + i(x^3 + cxy^2)$ 是复平面上的解析函数,求 a, b, c 的值. (12 分)

8. 利用拉普拉斯变换解常微分方程初值问题:
$$\begin{cases} x''(t) + 6x'(t) + 9x(t) = \mathrm{e}^{-3t} \\ x(0) = 0, x'(0) = 0 \end{cases}$$
 . (10 分)