Mathematical Statistics

DE-76044, Fall 2021

Engineering Building 207–10515, Tue/Thurs 10:30–11:45am

Instructor Chanseok Park (e-mail: CP<AT>PUSAN<DOT>AC<DOT>KR)

Office: Engineering Building 207–10527

Office Hours: 12:00–13:00pm (T/Th) or by appointment.

Textbook Probability and Statistical Inference by Hogg, Tanis, and Zimmerman.

Pearson, 9th edition (2014).

Web Page https://AppliedStat.GitHub.io/teaching

Software R Language (http://www.r-project.org).

Maple (http://www.maplesoft.com).

Prerequisite Undergraduate-level statistics course is required. (The expectation is that you have already been exposed to the basic probability and statistics).

• Attendance Policy: Class attendance is mandatory. If you miss a class for some reason, it is your responsibility to get notes, *etc.* from someone in the class. I will not repeat lectures during my office hours.

• Tardy Professor Policy: If the instructor has not arrived within 15 minutes of the scheduled class time, you may assume that class has been canceled.

• All drop/add procedures are your responsibility.

Description and Learning Objectives

Policy

- Mathematical Statistics will focus on the theories of statistics.
- First Topics (probability part) covered in this class include basic distribution theories and various probability distributions such as binomial, negative binomial, Poisson, exponential, normal, bivariate, etc.
- Second Topics (statistics part) covered in this class include point estimation, interval estimation, sampling, linear regression, and statistical hypothesis testing.
- We will also study various statistical applications widely used for engineering.
 The popular R statistical language or Rstudio will be handled in this class.

Upon successful completion of this course, a student will be able to:

- Understand basic concepts on probability theories.
- Obtain basics on discrete and continuous distributions.
- Obtain conditional distributions.
- Obtain bivariate distributions.
- Obtain various approximation technique.
- Understand basic concepts on statistics theories.
- Obtain point estimates.
- Obtain interval estimates.
- Understand basic sampling techniques.
- Obtain a simple linear regression estimate.
- Construct various statistical hypothesis testing.
- Learn how to program basic statistical programs using R language.

Grading

The final grade will be curved and calculated as follows:

 $\begin{array}{lll} \text{Homeworks:} & 5\% \\ \text{Attendance:} & 5\% \\ \text{Midterm} & 45\% \\ \text{Final:} & 45\% \end{array}$

ROUGH GRADING GUIDE:

• A+: $95 \sim 100$ A: $90 \sim 95$ • B+: $85 \sim 90$ - B: $80 \sim 85$ -• C+: $70 \sim 80$ - C: $60 \sim 70$ -• D+: $50 \sim 60$ - D: $40 \sim 50$ -

• F: below 40.

 Because of serious COVID-19 pandemic, the above policy can be changed without further notice.

Exams

MIDTERM: 2021-10-21 (Thur) at at 10:30am In class Final: 2021-12-09 (Thur) at at 10:30am

- The mid-term exam is a closed-book test, but the final is an open-textbook test.
 Note: for the final, only textbook is allowed. No handout or printout is allowed.
- The final exam will be comprehensive.
- During the exams, a basic calculator will be permitted but cannot be shared with others.
- Calculators in smart phones, tablet PC and laptops are prohibited.
- No early or late exams will be allowed without a written and legitimate excuse.

Homeworks

- The students can collaborate on their homework problems, but they should submit their homeworks separately.
- Late homeworks will **not** be accepted.
- Up to 1 \sim 2 problems, selected at random, will be graded in detail, on a scale of 0–5 each.
- To get full credit, you must show all work on the homework problems, which must be handed in in the same order as they are assigned.

Tentative Schedules

- 1 Reviews on Engineering probability theories.
- 2 Distributions with several random variables.
- 3 The central limit theorem.
- 4 Introduction to point estimation.
- 5 Descriptive statistics.
- 6 Order statistics.
- 7 MLE (Maximum Likelihood Estimation).
- 8 Simple regression model
- 9 Introduction to confidence interval.
- 10 Confidence interval for means.
- 11 Confidence interval for the difference of two means.
- 12 Confidence interval for proportions.
- 13 Introduction to statistical hypothesis test.
- 14 Statistical hypothesis test about one or two means.
- 15 Statistical hypothesis test about proportions.
- 16 Final Exam