Rapport TP LATEX

GUAN Jingyuan nf92p002

Le 10 avril 2018

Table des matières

1	Début								
	1.1	Les caractères spéciaux	2						
	1.2	Les images	2						
2	Travail réalisé								
	2.1	Références aux formules	4						
	2.2	Exemples de graphes	4						
	2.3	The original mode	5						

Table des figures

1.1	Un logo fedora core	4
1.2	Un logo fedora core avec un angle de 20^o	٤
2.1	A gauche la clique $K5$, à droite $K3$ 3 un graphe biparti complet	4

Liste des tableaux

1.1	Table des caractèrers spéciaux		٠	٠			•		•	2
2.1	Characteristics of the Yeditepe datasets									(

Résumé

Voilà mon premier rapport de NF92. J'ai presque fini le rapport pendant 3 semaines. J'ai réalisé les fabriquation de tableaux et l'insertion d'images. Dans le chapitre 1, j'ai mis un tableau dans le section 1.1 et 2 images dans le section 1.2. Il y a plusieurs équations mathématiques dans le chapitre 2, surtout la section 2.1 et la section 2.3.

Chapitre 1

Début

1.1 Les caractères spéciaux

Caractères spéciaux	commandes
\$	\\$
&	\&
%	\%
#	\#
{	\{
}	\}
_	_
IAT _E X	\LaTeX

Table 1.1 – Table des caractèrers spéciaux

Regardez la table , j'ai utilisé $\$ pour exprimer \, et j'ai exprimé les codes entre $\$ avec \verb et tapé les codes entre $\$ l'ai nommé le tableau par "table1".

1.2 Les images

FIGURE 1.1 – Un logo fedora core

FIGURE 1.2 – Un logo fedora core avec un angle de 20^o

Pour que la figure 1.2 ait un angle, j'ai écrit "angle=20". J'ai ajouté le package[float] pour placer la figure 1.2 au dessus de la page.

Chapitre 2

Travail réalisé

2.1 Références aux formules

Le déterminant d'une matrice 3×3 est :

$$|A| = \left| \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right| = a \times \left| \begin{array}{ccc} e & f \\ h & i \end{array} \right| - b \times \left| \begin{array}{ccc} d & f \\ g & i \end{array} \right| + c \times \left| \begin{array}{ccc} d & e \\ g & h \end{array} \right|$$

Soit:

$$\Delta(A) = aei + bfg + cdh - ceg - bdi - afh \tag{2.1}$$

Si $\Delta(A)=|A|=\det(A)=0$, calculé avec l'équation 2.1, alors il n'y a pas une unique solution au système matriciel.

Ce qui n'a strictement rien à voir avec le travail présenté dans les articles [1,3]. [1]

2.2 Exemples de graphes

FIGURE 2.1 – A gauche la clique K5, à droite K3 3 un graphe biparti complet

Considérons la Figure (2.1): cinq couleurs son necessaires pour colorier le graphe K5, tandis que deux suffisent pour $K3_3$. Cependant un graphe est planaire s'il ne contient parmi ses mineurs aucun des graphes de la Figure (2.1).

2.3 The original mode

We address the examination timetabling problem proposed in the second International Timetabling Competition (ITC2007). The reader should refer to [1] for a detailed overview of examination timetabling.

We present in the sequel the original model proposed by [2]. As stated by the authors, the aim was to give a clear model. We invite the reader to refer to the original paper for comprehensive details.

In [2], the authors introduced the conflict graph $G(E, A_C)$, where E is the set of exams and an edge $[i,j] \in AC$ if there is at least one student enrolled in exams i and j. An edge [i,j] is weighted by w_{ij}^C , the number of students taking the two exams. The core problem is to find a graph coloring. Note that [3] derived a hyper-heuristic based on graph coloring constructive ordering heuristics to select exams to be scheduled. P, R and S denote the sets of periods, rooms and students respectively. For the sake of compactness, the objective function and the hard constraints of the model have been rewritten as:

Minimize:

$$C^{2D} (2.2)$$

Subject to

$$\forall i \in E \quad \sum_{p \in P} \sum_{r \in R} X_{ipr}^{PR} \le 1 \tag{2.3}$$

$$\forall p \in P \quad \forall r \in R \quad \sum_{i \in E} s_i^E X_{ipr}^{PR} \le s_r^R \tag{2.4}$$

$$\forall i \in E \quad \forall p \in P \quad \sum_{j \in N(i)} X_{jp}^P + a_{ip} X_{ip}^P \le a_{ip}$$
 (2.5)

$$C^{2D} = w^{2D} \sum_{[i,j] \in A_C} w_{ij}^C C_{ij}^{2D}$$
 (2.6)

$$\begin{cases}
\forall [i,j] \in A_C & \forall p, q \in P \quad with \quad |p-q| = 1 \\
with & y_{pq} = 1 \quad X_{ip}^P + X_{jq}^P \le 1 + C_{ij}^{2D}
\end{cases}$$
(2.7)

Equations (2.3) ensure that all the exams are allocated once to a unique period and a unique room. The room capacities are always respected using Equations (2.4) in which s_i^E and s_r^R denote the number of students sitting exam i and the seating capacity of room r respectively.

Equations (2.5) enforce the conflict constraints : at any period, any student will be sitting at most one exam.

The boolean variables used to count the number of **Two In a Day** penalties are C_{ij}^{2D} , $C_{ij}^{2D} = 1$ if f two exams are allocated in the same day but not back to back. The integer variable C^{2D} is used to compute the objective function (see Equation (2.2)).

The **Two In a Day** term C^{2D} is set by Equations (2.6) and (2.7), in which the boolean parameter $y_{pq} = 1$ iff periods p and q are on the same day.

Table 2.1 – Characteristics of the Yeditepe datasets

	n^E	n^S	n^P	n^R	w_{A_C}	$n_{w_{A_C}}$	$t_{\alpha_{ip}}$
yue20011	126	569	18	2	14	78	1
yue 20012	141	581	18	2	17	8	0
yue20023	38	224	6	1	6	4	1

The characteristics of the Yeditepe datasets used for our tests are displayed in Table 2.1.

Bibliographie

- [1] Edmund K. Burke, Kirk Jackson, Jeffrey H. Kingston, and Rupert Weare. Automated university timetabling: The state of the art. *The computer journal*, 40(9):565–571, 1997.
- [2] Barry McCollum, Paul McMullan, Andrew Parkes, Edmund K. Burke, and Rong Qu. A New Model for Automated Examination Timetabling. *Annals of Operations Research*, 194:291–315, 2012.
- [3] Nasser R Sabar, Masri Ayob, Rong Qu, and Graham Kendall. A Graph Coloring Constructive Hyper-Heuristic for Examination Timetabling Problems. *Applied Intelligence*, 37(1):1–11, 2012.