WINE QUALITY

Team: Samuel Metton, Alibero Instan, AJ Domingo, Jananee Arjunan, Mia Tsivitse, William Julius

MACHINE LEARNING MODEL®

APPENDIX

01.	Project Scope	02.	Data ETL	03.	Data EDA	
04.	Data Pre-Processing	05.	Data Model Implementation	06.	Data Model Ontimization	

01. Project Scope

In this project, we explored data from wine reviews and supplemented our dataset with additional aggregated weather and elevation data. Using machine learning, our goal was to create a model that could predict the final rating of the wine as an indicator of its quality ('classic' or 'good').

- 90-100 Points Classic: a great wine of superior character and style
- 80-89 Points Good: a solid, well-made wine

Initial Data Source: Wine Reviews Dataset (Kaggle)

DATA - VARIETY - COUNTRY - WINE - REVIEWS - PRICE - WINERY NAME - ELEVA VINE - REVIEWS - PRICE - WINERY NAME - WEATHER DATA - VARIETY - COUNTR COUNTRY - WINE - REVIEWS - PRICE - WINERY NAME - WEATHER DATA - VARIET

DATA ETL

02. Data ETL

We narrowed our dataset to only wines produced in the United States (dropped data points with insufficient location information)

We supplemented the data with API calls:

- Google Places API queried the Winery name and Region for latitude and longitude.
- 2. **Visual Crossing's History Summary API** queried the coordinates and returned summary weather data from 2022.
- 3. **Open Meteo API** queried the coordinates and returned data points for elevation.

02. Data ETL

```
for index.row in new data.iterrows():
        zeroResultCount=0
        name = row["Location1"]
        params = { "key": g key,
                   "input":name.
                  "inputtype": "textquery",
                 "fields": "geometry"}
        url = "https://maps.googleapis.com/maps/api/place/findplacefromtext/json?"
         print(url+"::"+params['input'])
10
        try:
            response = requests.get(url,params=params).json()
12
13
            if(response['status']== "ZERO RESULTS"):
14
                    zeroResultCount+=1
                    name = row["Location2"]
16
                    params = { "kev": g kev.
17
                   "input":name.
                  "inputtype": "textquery".
18
19
                 "fields": "geometry"}
20
            response = requests.get(url.params=params).ison()
            new data.loc[index,"Latitude"] = response["candidates"][0]["geometry"]["location"]["lat"]
21
22
            new data.loc[index,"Longitude"] = response["candidates"][0]["geometry"]["location"]["lng"]
23
        except(KeyError, IndexError, JSONDecodeError):
24
            print(f"{index} {name} not found. Skipping...")
25
        except requests.ConnectionError:
26
            print("ConnectionError...")
27
        except requests.Timeout:
28
            print("Request Timeout...")
29 print(zeroResultCount)
21 Cocobon winery California Other not found, Skipping...
48 Clark-Clauden winery Napa not found. Skipping...
```

```
123 Bridlewood winery Central Coast not found. Skipping...
291 Patton Valley winery Willamette Valley not found, Skipping...
369 Expression 44° winery Willamette Valley not found. Skipping...
```

```
for index, row in data.iterrows():
           lat = row["Latitude"]
           lng = row["Longitude"]
           base_url ="https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/weatherdata/historysummary?aggregaters.com/VisualCrossingWebServices/rest/services/weatherdata/historysummary?aggregaters.com/VisualCrossingWebServices/rest/services/weatherdata/historysummary?aggregaters.com/VisualCrossingWebServices/rest/services/weatherdata/historysummary?aggregaters.com/VisualCrossingWebServices/rest/services/weatherdata/historysummary?aggregaters.com/VisualCrossingWebServices/rest/services/weatherdata/historysummary?aggregaters.com/VisualCrossingWebServices/rest/services/weatherdata/historysummary?aggregaters.com/VisualCrossingWebServices/rest/services/weatherdata/historysummary?aggregaters.com/VisualCrossingWebServices/rest/services/weatherdata/historysummary?aggregaters.com/VisualCrossingWebServices/rest/services/weatherdata/historysummary?aggregaters.com/VisualCrossingWebServices/rest/services/weatherdata/historysummary?aggregaters.com/VisualCrossingWebServices/rest/services/weatherdata/historysummary?aggregaters.com/VisualCrossingWebServices/rest/services/weatherdata/historysummary?aggregaters.com/VisualCrossingWebServices/rest/services/weatherdata/historysummary?aggregaters.com/VisualCrossingWebServices/rest/services/weatherdata/historysummary?aggregaters/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/services/rest/ser
           query = (f"&locations={lat}, {lng}&key={weather_api_key}")
            url = base url+query
                print(url)
               # Use try and except to skip the missing data
                         print(index)
                         response = requests.get(url).json()
                         data.loc[index,"Min_temp"]=response['location']['values'][0]['mint']
                         data.loc[index, "Max_temp"]=response['location']['values'][0]['maxt']
                        data.loc[index,"Precip"]=response['location']['values'][0]['precip']
data.loc[index,"Humidity"]=response['location']['values'][0]['humidity']
                         data.loc[index,"Heat Index"]=response['location']['values'][0]['heatindex']
            except (KeyError, IndexError, JSONDecodeError):
                        print("Data not found... skipping.")
            except requests.Timeout:
                        print("Request Timeout...")
            except requests.ConnectionError:
                         print("ConnectionError...")
```

```
for index,row in location_data.iterrows():
   lat = row["Latitude"]
   lng = row["Longitude"]
   base url ="https://api.open-meteo.com/v1/elevation"
   query = (f"?latitude={lat}&longitude={lng}")
   url = base url+query
   # print(url)
   # Use try and except to skip the missing data
   try:
       print(index)
       response = requests.get(url).json()
       location data.loc[index."Elevation"]=response['elevation'][0]
   except (KeyError, IndexError, JSONDecodeError):
       print("Data not found... skipping.")
   except requests. Timeout:
       print("Request Timeout...")
   except requests.ConnectionError:
       print("ConnectionError...")
```


California

03. Data EDA

Oregon

Tableau Notebook #1

Tableau Notebook #2

Tableau Notebook #3

New York

DATA PRE-PROCESSING

Sentiment Analysis

• We utilized **SentimentAnalyzer** from **Natural Language Toolkit (NLTK)** to create numerical data around the sentiment of the wine description.

```
import seaborn as sns
import numpy as np
a = sns.violinplot(data=NLP_data, x="sentiment", y="points")
a.set_title("Sentiment vs Point Distribution", fontsize=19)
a.set_ylabel("Points ", fontsize=17)
a.set_xlabel("Sentiment Label", fontsize=17)
```

Text(0.5, 0, 'Sentiment Label')

	description	points	polarity_score	review_neu	review_neg	review_pos	sentiment
1	Overripe and Porty, with raisin, prune and cho	81	0.4417	0.829	0.000	0.171	Positive
2	Strong aromas of blueberry paste, cracked pepp	92	0.8658	0.805	0.000	0.195	Positive
3	A vegetal note drags down the enjoyment. On th	84	0.0644	0.710	0.129	0.162	Positive
4	Larry Stanton patiently waits to release the w	93	0.5434	0.865	0.039	0.096	Positive
5	High alcohol gives the wine heat, especially i	85	0.6423	0.895	0.000	0.105	Positive

Loading Data

Using sqlalchemy, the final dataset was loaded into an Amazon Web Services RDS Postgres
 SQL database for ease of use in extracting the data while working in a cloud environment for the modeling steps.

Final Steps

- Dropped unnecessary columns: "wine_id", "country", "winery_name", "description", "designation", "taster_name", "taster_twitter_handle", "title".
- Created bins for the prices
- Created bins for the points into 2 target values:
 - o 0 for below 90 points
 - o 1 for above 90 points
- Binned some varieties into "other" in order to contain outliers
- Used pd.dummies to create dummies for our categorical/non-numerical features
- Split the data into testing and training data
- Scaled the data


```
# Choose a cutoff value and create a list of varieties to be replaced
 cutoff = 1500
variety types to replace = list(variety values[variety values <= cutoff].index)
# Replace in dataframe
for variety in variety types to replace:
   data['variety'] = data['variety'].replace(variety, "Other")
# Check to make sure binning was successful
data['variety'].value counts()
Other
                             11644
Pinot Noir
                              8868
Cabernet Sauvignon
                              6811
Chardonnay
                              6241
Syrah
                              2978
Red Blend
                              2548
Zinfandel
                              2515
Merlot
                              2137
Sauvignon Blanc
                              1891
Bordeaux-style Red Blend
                              1664
Riesling
                              1550
Name: variety, dtype: int64
```

```
data["point_range"].value_counts()

1  28236
0  20611
Name: point_range, dtype: int64
```

```
#create bins for price ranges
def price to range(price):
  if (price < 20):
    return 0
  elif (price >20) and (price <= 45):
    return 1
  if (price >45) and (price <= 80):
    return 2
  if (price >80) and (price <= 100):
    return 3
  if (price >140) and (price <= 300):
    return 4
  else:
    return 5
data["price"] = data["price"].apply(price to range)
data = data.rename(columns={"price": "price range"})
data.head()
```


TensorFlow Neural Network

- Input features: 247 (length of our X_train after getting dummies)
- 2 hidden layers
 - 400 nodes layer 1
 - o 200 nodes layer 2
- Relu-activation function for the hidden layers
- Trained over 100 epochs

```
input features = len(X train[0])
hidden layer1 = 400
hidden layer2= 100
nn = tf.keras.models.Sequential()
# First hidden layer
nn.add(tf.keras.layers.Dense(units=hidden layerl, activation="relu", input dim=input features))
# Second hidden layer
nn.add(tf.keras.layers.Dense(units=hidden layer2, activation="relu"))
nn.add(tf.keras.layers.Dense(units=1, activation="sigmoid"))
# Check the structure of the model
nn.summary()
Model: "sequential"
                             Output Shape
 dense (Dense)
                              (None, 400)
                                                        98400
 dense 1 (Dense)
                              (None, 100)
                                                        40100
 dense 2 (Dense)
                              (None, 1)
Total params: 138,601
Trainable params: 138,601
Non-trainable params: 0
```

- Achieved a 71% testing accuracy after training the model
- Our model was overfitting (Training: ~83%, Test: ~71%)

```
[ ] # # Evaluate the model using the test data
   model_loss, model_accuracy = nn.evaluate(X_test_scaled,y_test,verbose=2)
   print(f"Loss: {model_loss}, Accuracy: {model_accuracy}")

382/382 - 1s - loss: 0.9691 - accuracy: 0.7091 - 963ms/epoch - 3ms/step
   Loss: 0.9690999984741211, Accuracy: 0.7091385722160339
```


Random Forest Classifier

Testing Accuracy of 77%, but was overfitting (99% training)

```
[35] from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import accuracy_score

# create and fit the model
    clf = RandomForestClassifier(random_state=42, n_estimators=100).fit(X_train_scaled, y_train)
    # Evaluate the model
    y_predict = clf.predict(X_test_scaled)
    score = accuracy_score(y_test,y_predict)
    score

    0.7661316737635113

Print(f'Training Score: {clf.score(X_train_scaled, y_train)}')
    print(f'Testing Score: {clf.score(X_test_scaled, y_test)}')

Training Score: 0.9941585915108503
    Testing Score: 0.7661316737635113
```


Classification Report and Confusion Matrix

We compared the predicted values from the model against the actual values.

```
[17] from sklearn.metrics import confusion matrix, classification report
[18] y true = y test
     y pred = clf.predict(X test scaled)
     confusion matrix(y true, y pred)
     array([[3628, 1538],
            [1318, 5728]])
     target names=["classic", "good"]
     print(classification_report(y_true, y_pred,target_names=target_names))
                   precision
                                recall f1-score
          classic
                        0.73
                                  0.70
                                            0.72
                                                       5166
             good
                        0.79
                                  0.81
                                            0.80
                                                       7046
                                            0.77
         accuracy
                        0.76
                                  0.76
                                            0.76
        macro avg
     weighted avg
                        0.77
                                  0.77
                                            0.77
```


DATA MODEL OPTIMIZATION

06. Data Model Optimization

MinMaxScalar

```
[28] # create minmaxscaler instance
min_max_scaler = MinMaxScaler()

x_minmax = min_max_scaler.fit(X_train)

x_mm_train = x_minmax.transform(X_train)

x_mm_test = x_minmax.transform(X_test)

# # Evaluate the model using the test data
model_loss, model_accuracy = nn.evaluate(x_mm_test,y_test,verbose=2)
print(f"Loss: {model_loss}, Accuracy: {model_accuracy}")

382/382 - 1s - loss: 0.6923 - accuracy: 0.5287 - 998ms/epoch - 3ms/step
Loss: 0.6922512650489807, Accuracy: 0.5286603569984436
```

PCA

```
from sklearn.decomposition import PCA
pca = PCA(n_components=0.99)
pca_data = pca.fit_transform(X_dummies)
pca_data_df=pd.DataFrame(pca_data)
pca_data_df
```

```
# # Evaluate the model using the test data
model_loss, model_accuracy = nn.evaluate(X_test_scaled,y_test,verbose=2)
print(f"Loss: {model_loss}, Accuracy: {model_accuracy}")

382/382 - 1s - loss: 0.6613 - accuracy: 0.5824 - 533ms/epoch - 1ms/step
Loss: 0.6612696647644043, Accuracy: 0.5823779702186584
```

06. Data Model Optimization

SelectFromModel Feature Selection

Feature importance used to look for best features using SelectFromModel (Top 20 Features)

```
from matplotlib import pyplot as plt
 import numpy as no
features = sorted(zip(feature names, clf.feature importances), key = lambda x: x[1])
cols = [f[0] for f in features]
width = [f[1] for f in features]
fig, ax = plt.subplots()
fig.set size inches(10,200)
plt.margins(y=0.001)
 ax.barh(y=cols, width=width)
plt.show()
   Epoch 50/50
   361 # # Evaluate the model using the test data
   model loss, model accuracy = nn.evaluate(X test scaled,y test,verbose=2)
   print(f"Loss: {model_loss}, Accuracy: {model_accuracy}")
   382/382 - 1s - loss: 0.5369 - accuracy: 0.7195 - 755ms/epoch - 2ms/step
   Loss: 0.5369265675544739, Accuracy: 0.719538152217865
```


06. Data Model Optimization

KearsTuner

```
[100] # # Evaluate the model using the test data
    model loss, model accuracy = nn.evaluate(X test scaled,y test,verbose=2)
    print(f"Loss: {model loss}, Accuracy: {model accuracy}")
     382/382 - 1s - loss: 0.5526 - accuracy: 0.7204 - 657ms/epoch - 2ms/step
    Loss: 0.5525580048561096, Accuracy: 0.7204388976097107
 [26] model_loss, model_accuracy = best_model.evaluate(X_test_scaled,y_test,verbose=2)
     print(f"Loss: {model loss}, Accuracy: {model accuracy}")
     382/382 - 1s - loss: 0.5520 - accuracy: 0.7284 - 836ms/epoch - 2ms/step
     Loss: 0.5519906878471375, Accuracy: 0.7283819317817688
  best_hyper = tuner.get_best_hyperparameters(1)[0]
     best_hyper.values
  ┌→ {'activation': 'relu',
       'first units': 221.
       'num lavers': 1.
       'units_0': 81,
       'units 1': 81,
       'units 2': 121,
       'tuner/epochs': 15,
       'tuner/initial_epoch': 5,
       'tuner/bracket': 1,
       'tuner/round': 1,
       'tuner/trial_id': '0023'}
```

	Final Result	Hyperparameters		
TF Neural Network Model	71%	247 Input Features 2 Hidden Layers Layer 1 = 400 Nodes Layer 2 = 200 Nodes Relu Activation Function 100 epochs		
Random Forest Classifier	77%	(random_state=42, n_estimators=100)		
PCA and NN model	58%	(n_components=0.99) Input Features = 3 Model: "sequential_1" Layer 1 = 10 Nodes / activation="relu" Layer 3 = 1 Node / activation="sigmoid"		
SelectFromModel Feature Selection	72%	Input Features = 85 Layer 1 = 120 Nodes / activation="relu" Layer 3 activation="sigmoid" Model: "sequential_1"		
KerasTuner	73%	400/20 Max/Step Ratio 'activation': 'relu', 'first_units': 221 'num_layers': 1 'units_0': 81 'units_1': 81, 'units_2': 121, 'tuner/epochs': 15 'tuner/initial_epoch': 5, 'tuner/bracket': 1, 'tuner/round': 1 'tuner/trial_id': '0023'		

CONCLUSION

Final Insights:

- There were a total of **48.8K** wines analyzed in our dataset. Overall, **68%** were from California, **16%** from Washington, **10%** from Oregon, and **6%** from New York.
- The highest count of wines rated as 'Classic' were found in California (**14K**) as well as in the region of Napa Valley (**2.1K**), when compared to other states and regions.
- Every wine in our dataset that was >\$300 in price was rated as 'Classic'. In comparison, only **11%** of the **10.2K** wines in the >\$20 price range were rated as 'Classic'.
- There was a moderate correlation between price and the review score (points) at **0.45** (Pearson Correlation).
- We believe our dataset could be improved in the future by increasing our total sample size from additional states and countries. Expanding our dataset could have further improved model accuracy.
- In the future, this data could also be used for investments/marketing purposes, such as recommending the best wineries based on ideal weather conditions.

QUESTIONS?

