Reinforcement Learning

Machine Learning & Data Mining

Prof. Alexander Ihler

Notes

- Due
 - HW5 due Friday
 - Kaggle uploads close Sunday
 - Reports due Tuesday
- Discussion Thursday & Lecture Friday
 - Review for Final
- Bonus points
 - Peformance on Kaggle final standings (by decile)
 - Course evaluation (closes Sunday) 1 point final grade

Planning

- Markov Decision Processes
 - Known states, actions, transitions, rewards
 - Find optimal policy
- What about learning?
 - Ex: know states, actions; not transitions or rewards?

Multi-armed bandits

- Very simple reinforcement learning problem
 - Several slot machines ("one-armed bandits"); we have T=1000 plays
 - "Payoff" of each slot is unknown
 - "Bernoulli Bandit": fixed \$ value, unknown probability of winning
 - Which should we play, to maximize our reward?
- This is a multi-armed bandit problem:
 - Want to play only the best machine
 - But each play gives only noisy info!
- Trivial MDP: one state, several actions
 - Unknown reward r(s,a); no transitions
- Explore vs. exploit tradeoff
 - How can we balance actions to learn system vs actions to exploit known quantities?

Image from Microsoft Research

- Greedy actions
 - Always take the action we currently think is best

Ex: Bernoulli Bandit

- Strategy: greedy
 - Always play currently estimated best slot


```
Play:
    Red => 0
    Green => 1
    ( Blue => 0 )
```

Now choose green forever?

Explore vs Exploit tradeoff!

We are "exploiting" a resource we think is good (green has won at least once)
But we are not taking any actions to "explore" the potential rewards of other actions!

- Greedy actions
 - Always take the action we currently think is best
- Greedy + random exploration
 - Interleave some simple exploration into greedy actions

Ex: Bernoulli Bandit

- Strategy: epsilon greedy
 - Play greedily, except with small probability epsilon, play randomly
 - Simplified "batch" version: play K randomly, then T-K greedily

T=1000

⇒ Greedy = always play Green Suboptimal policy!

K=600:

$$\hat{\theta}_R = 0.49$$
 $\hat{\theta}_G = 0.43$ $\hat{\theta}_B = 0.22$

$$\hat{\theta}_G = 0.43$$

$$\hat{\theta}_B = 0.22$$

 \Rightarrow Greedy = play Red Better final policy But, too long playing randomly!

- Greedy actions
 - Always take the action we currently think is best
- Greedy + random exploration
 - Interleave some simple exploration into greedy actions
- Optimism under uncertainty
 - Balance observed rewards with number of observations
 - Ex: Upper confidence bound (UCB) methods

Ex: Bernoulli Bandit

- Strategy: Upper Confidence Bound (UCB)
 - Play best policy, estimated optimistically

Estimated reward from experience

Confidence given n_t attempts in t steps

$$r_R = 0$$
 $r_G = 1$ $r_B = 0$
 $u_R = 0$ $u_G = 0$ $u_B = 0$
Play Green => 0

$$r_R = 0$$
 $r_G = 0.5$ $r_B = 0$
 $u_R = 1$ $u_G = 0.5$ $u_B = 1$
Play Red => 1

•••

- Greedy actions
 - Always take the action we currently think is best
- Greedy + random exploration
 - Interleave some simple exploration into greedy actions
- Optimism under uncertainty
 - Balance observed rewards with number of observations
 - Ex: Upper confidence bound (UCB) methods
- Sampling methods
 - Intuition: choose actions according to probability of being best

Contextual Bandit problems

- Observe "context" features x
- Model p(reward | action, x)

- Ex: Online advertising
 - Observe user features, website content, etc.
 - Action = select ad to show to user
 - Payoff = clicks; purchases, etc.
 - Explore vs Exploit
 - show ads that have done well in the past, or try something new?

Monte Carlo Tree Search

- Key technique for many game search algorithms (e.g., AlphaGo)
- At each level of the tree, keep track of
 - Number of times we've explored a path
 - Number of times we won on that path
- Follow winning (from max/min perspective) strategies more often, but also explore others that are not well-explored
- "UCT" algorithm = UCB applied to trees

Back to MDPs

- One approach
 - Estimate rewards r(s); transitions p(s' | s,a)
 - Use dynamic programming to evaluate (estimated) J*(s)
 - Take actions according to explore / exploit tradeoff
- Alternate approach
 - Can we estimate the optimal policy / its value directly?
 - Q-learning: powerful technique for MDPs

Q-learning

- Define Q*(s,a) = expected discounted future reward, given start in state s, take action a, proceed optimally afterwards
- Can define recursively (as J* in MDP lecture):

$$Q^*(s,a) = r_a + \sum_{s'} p(s'|s,a) \max_{a'} Q^*(s',a')$$

- Similar to Bellman Eq'n for J*, but specifies first action a
- Optimal policy $\pi(s) = \arg \max_{a} Q^{*}(s, a)$
- Can we estimate Q* directly?

Q-learning

- Initialize Q(s,a)
- Each step:
 - In state s, take some action a, observe r, s'
 - Update

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(r_s + \gamma \max_{a'} Q(s',a'))$$
 (learning rate) Assuming Q is correct a s', this is the value of Q(s,a)

- Under model assumptions, this converges to Q*
 - Need decreasing learning rate schedule;
 - Take all actions infinitely often; ...
- Can use online, or revisit past experience
 - Store "experience" (s,a,r,s') & revisit during training

Deep-Q learning

- Use deep neural network architectures for Q(s,a)
- Ex: Atari game playing (DeepMind)
 - Input: pixel images of current state
 - Output: joystick actions

Conclusions

- Reinforcement learning
 - Learn policy (state -> action) based on indirect feedback
 - Fundamental explore / exploit tradeoff
- Multi-armed bandit problems
 - Reward only
 - Various strategies (greedy, optimistic, ...)
- Q-learning
 - Directly estimate the value of the optimal policy