Faculté des Sciences

Dept. Mathématiques

Prof. M. Benalili

Email: m benalili@yahoo.fr

Module de Géométrie Différentielle

L3

Série d'exercices sur le chapitre "Sous-variétés de Rn"

Exercice 1

Les ensembles suivants sont-ils des sous-variétés (si c'est le cas on précisera la dimension)

1-
$$S_1 = (x, y, z) \in \mathbb{R}^3 : z = x - 2(x^2 + y^2)$$

$$2\text{-}S_2 = \{(t, t^2) : t \in R\}$$

$$3-S_3 = \{(x, y, z) \in R^3 : x^2 + y^2 + z^2 = 1\}$$

$$4-S_4 = \{(x, y) \in R^2 : xy = 0\}$$

$$4-S_4 = \{(x, y) \in R^2 : xy = 0\}$$

5-
$$S_5 = \{(x, y) \in \mathbb{R}^2 : x > 0, y \ge 0\}$$

Exercice 2

Pour quelle valeur de $\alpha \in R$ l'ensemble $C = \{(x,y) \in R^2 : x^2 - y^2 = \alpha\}$ est une sous-variété de \mathbb{R}^2 .

Exercice3

Dire si les ensembles suivants sont des sous-variétés de \mathbb{R}^2

1-
$$S_1 = \{(t^2, t^3) : t > 0\}$$

1-
$$S_1 = \{(t^2, t^3) : t > 0\}$$

2- $S_2 = \{(t^2, t^3) : t \ge 0\}$

$$3-S_3 = \{(t^2, t^3) : t \in R\}$$

Exercice4

Soit M_1 une sous-varété de \mathbb{R}^n de dimension n_1 et M_2 une sous-variété de R^m de dimension n_2 . Montrer que $M_1 \times M_2$ est une sous-variété de R^{n+m} dont on précisera la dimension.

Exercice5

Dans $\mathbb{R}^n \times \mathbb{R}^p$, on considère la quadratique \mathbb{Q} d'équation

$$||x||^2 - ||y^2|| = 1$$

Montrer que c'est une sous-variété de dimension n + p - 1.