

HỌC VIỆN KỸ THUẬT MẬT MÃ

THỰC HÀNH LẬP TRÌNH HỢP NGỮ TRÊN 8086

NỘI DUNG 4

NHẬP XUẤT SỐ DẠNG BIN-HEX-DEC

MỤC TIÊU

- Nhập từ bàn phím số ở dạng nhị phân, thập lục phân và thập phân
- In lên màn hình các số ở dạng nhị phân, thập lục phân và thập phân

KIẾN THỰC CẦN CHUẨN BỊ

- Kết quả của các bài thực hành trước
- Các lệnh xử lý chuỗi.

Chương trình sử dụng hàm 2, ngắt 21h để in ký tự B ra màn hình được viết như sau. Hãy soạn thảo lưu lại thành tập tin nguồn có tên là BAI_2A.ASM.

inchuoi MACRO chuoi

MOV AH, 9h

LEA DX, chuoi

INT 21h

ENDM

DSEG SEGMENT

msg1 DB "Hay nhap so nhi phan 8 bit: \$"

msg2 DB "So nhi phan da nhap la: \$"

xdong DB 10, 13, '\$'

sobin DB?; lưu trữ số nhị phân nhận được

DSEG ENDS

CSEG SEGMENT

ASSUME CS:CSEG, DS:DSEG

begin: MOV AX, DSEG

MOV DS, AX

inchuoi msg1

CALL bin_in

MOV sobin, BL

inchuoi xdong

inchuoi msg2

MOV BL, sobin

CALL bin_out

MOV AH, 01

INT 21h

MOV AH, 4Ch; thoat khỏi chương

trình

INT 21h


```
bin_in PROC
```

MOV BL, 0; Xóa BL

MOV CX, 8; nhập đủ 8 bit thì dừng

nhap:MOV AH, 01h; Hàm nhập ký tự

INT 21h

CMP AL, 0Dh; nếu là phím Enter thì thôi nhập

JZ exit; không phải Enter thì đổi sang bit

SHL BL, 1; Dịch trái BL 1 bit

SUB AL, 30h; Ký số - 30h = số

ADD BL, AL; Chuyển bit từ AL sang BL lưu trữ

LOOP nhap

exit:RET

bin in ENDP


```
bin_out PROC
```

MOV CX, 8; Xuất 8 bit trong BL ra M.Hình

xuat:MOV DL, 0

SHL BL, 1; CF chứa MSB, xuất ra màn hình

RCL DL, 1; đưa CF vào LSB của DL

ADD DL, 30h; Số + 30h = Ký số

MOV AH, 02h; In ra màn hình

INT 21h

LOOP xuat

RET

bin_out ENDP

CSEG ENDS

END begin

- Soạn thảo, Biên dịch và cho chạy file BAI_6A.ASM để kiểm tra kết quả.
- Sửa chương trình trên thành BAI_6A1.ASM sao cho có thể nhập và xuất số nhị phân 16 bit.
- Viết lại chương trình trên để nhập 1 ký tự từ bàn phím, sau đó in ra màn hình mã ASCII của ký tự nhận được ở dạng nhị phân.

Chương trình sau đây cho phép nhập 1 ký tự từ bàn phím, sau đó in ra màn hình mã ASCII của ký tự nhận được ở dạng thập lục phân (cơ số 16)

- Soạn thảo, Biên dịch và cho chạy file BAI_6B.ASM để kiểm tra kết quả.
- Viết lại chương trình trên để nhập 2 số thập lục phân 8 bit A và B, sau đó in ra màn hình kết A + B ở dạng thập lục phân.

inchuoi MACRO chuoi

MOV AH, 9h

LEA DX, chuoi

INT 21h

ENDM

DSEG SEGMENT

msg1 DB "Hay nhap 1 ky tu: \$"

msg2 DB "Ma ASCII o dang Hex: \$"

xdong DB 10, 13, '\$'

kytu DB?

DSEG ENDS

CSEG SEGMENT

ASSUME CS:CSEG, DS:DSEG

begin: MOV AX, DSEG

MOV DS, AX

inchuoi msg1

MOV AH, 01h

INT 21h

MOV kytu, AL; cất ký tự nhận được

inchuoi xdong

inchuoi msg2

MOV BH, kytu; Ký tự cần in

CALL hex_out

MOV AH, 02 ; in ra ký tự h sau số Hex

MOV DL, 'h'

INT 21h

MOV AH, 01

INT 21h

MOV AH, 4Ch; thoat khỏi chương trình

INT 21h

hex_out PROC

MOV CX, 4

xuat:PUSH CX

MOV CL, 4

MOV DL, BH

SHR DL, CL

CMP DL, 09h

JA kytu

ADD DL, 30h; Đổi thành ký số '0'-'9'

JMP inra

kytu: ADD DL, 37h; Đổi thành ký tự 'A-'F'

inra:MOV AH, 02h; In ra màn hình ký tự đã đổi

INT 21h

SHL BX, CL; Quay trái BX 4 bit

POP CX

LOOP xuat

RET

hex_out ENDP

CSEG ENDS

END begin

4.3. Nhập xuất số thập phân nguyên dương

- Chương trình sau đây cho phép nhập 1 ký tự từ bàn phím, sau đó in ra màn hình mã ASCII của ký tự nhận được ở dạng thập phân.
- Soạn thảo, Biên dịch và cho chạy file BAI_6C.ASM để kiểm tra kết quả.
- Đọc thủ tục DEC_OUT để tìm hiểu giải thuật xuất giá trị trong AX ra màn hình ở dạng thập phân. Từ đó đưa ra giải thuật nhập số thập phân từ bàn phím.
- Viết lại chương trình trên để nhập 2 số thập phân A và B có 2 chữ số, sau đó in ra màn hình kết quả A + B ở dạng thập phân.
- Nhập xuất số thập phân ÂM như thế nào?

4.3. Nhập xuất số thập phân nguyên dương

inchuoi MACRO chuoi

MOV AH, 9h

LEA DX, chuoi

INT 21h

ENDM

DSEG SEGMENT

msg1 DB "Hay nhap 1 ky tu: \$"

msg2 DB "Ma ASCII o dang Dec: \$"

xdong DB 10, 13, '\$'

kytu DB?

DSEG ENDS

CSEG SEGMENT

ASSUME CS:CSEG, DS:DSEG

begin: MOV AX, DSEG

MOV DS, AX

inchuoi msg1

MOV AH, 01h

INT 21h

MOV kytu, AL; cất ký tự nhận được

inchuoi xdong

inchuoi msg2

XOR AX, AX

MOV AL, kytu ; Ký tự cần in

CALL dec_out

MOV AH, 01

INT 21h

MOV AH, 4Ch; thoat khỏi chương trình

INT 21h

dec_out PROC

XOR CX,CX; CX đếm số chữ số thập phân

MOV BX,10

chia10: XOR DX,DX

DIV BX; DX:AX÷BX => AX: Thương, DX: số dư

PUSH DX; Cất số dư vào stack

INC CX

CMPAX, 0

JNZ chia10; nếu AX>0 thì chia tiếp cho 10

inra: MOV AH,2; in ra màn hình POP DX; lấy chữ số thập phân

ADD DL,30h; đổi thành ký số

INT 21h LOOP inra

LOOP IIIra

RET

dec_out ENDP

CSEG ENDS

END begin

4.4. Bài tập

1. Viết chương trình nhập 2 số nhị phân 16 bit A và B. Sau đó in ra màn hình các kết quả ở dạng nhị phân: A + B, A – B, A and B, A or B.

Ví dụ: Nhập số nhị phân A: 10101010

Nhập số nhị phân B: 01010101

A + B = 1111111111 A - B = 01010101

A and B = 000000000 A or B = 1111111111

2. Viết chương trình nhập 1 ký tự từ bàn phím, sau đó in ra màn hình mã ASCII của ký tự nhận được ở dạng thập lục phân, thập phân và nhị phân.

Ví dụ: Nhập 1 ký tự: A

Mã ASCII dạng Hex: 41h

Mã ASCII dạng Dec: 65

Mã ASCII dạng Bin: 01000001b

4.4. Bài tập

- 3. Viết lại chương trình bài 1 nhưng 2 số A và B được nhập theo dạng thập lục
- phân. Các kết quả được in ra màn hình ở dạng nhị phân.
- 4. Viết lại chương trình bài 1 nhưng 2 số A và B được nhập theo dạng thập phân.
- In các kết quả ở dạng thập phân: A + B, A B.
- 5. Viết chương trình tính giai thừa n! Với n là số nguyên dương nhập từ bàn phím. In kết quả ra màn hình ở dạng thập phân. Cho biết, khả năng của 8086 tính được n lớn nhất là bao nhiêu?