

# ECMINICAL STREET STREE

구형석 권영진 이노아 임동휘 임현우



#### **Checking Feedback**

#### 시중 제품과의 차별점?



- 제품별로 몇 백 만원 수준
- 시스템 구축까지 하려면 최대 700만원

정확하게 어떤 모델을 쓰는지, 얼마만큼의 정확성을 가지는지는 공개 X

#### **Checking Feedback**

시중 제품과의 차별점?

개인 노트북과 웹 캠만으로도 구동 가능하다

해당 제품을 더 다양한 주체들이 사용 가능하도록 할 수 있다 Ex. 일회성 행사를 개최할 때, 예산이 부족한 경우

시중 제품들과 목표하고 있는 것이 다르다

#### **Checking Feedback**

인터넷상 레퍼런스들? <u>새로운 모델 개발 목표? No</u>

**Project for Studying** 

- 4200장의 자체 데이터셋 구축
- 중간 발표 이후, 다양한 실험 환경과 모델 시도
- 3 label mask detector(Detecting correct, incorrect, no mask)

1. Detecting Correct, Incorrect, No Mask

최초 시도, 필요한 이유?

현직 초등학교 보건교사, "초등학생 마스크 교육에 사용하고 싶다"

<u> 자율주행 로봇 + Mask Detector, "마스크 착용 필수 시설에 도입"</u>

2. 4200장의 correct, incorrect, no mask 자체 데이터셋 구축

<u>목표: 딥러닝 이미지 관련 프로젝트의 처음부터 끝까지 경험</u>

데이터셋 제작 -> 모델 학습 -> 시연 -> 모델 개선 -> 서버에 올리는 것까지

- 1. 99% Accuracy Model
- 2. Employing to image, video, and real-time video
- 3. Training Image classification & Object Detection model
- 4. Web Application Development

#### **Transfer Learning**

#### <u>Transfer-Learning</u> by using <u>pre-trained MobilenetV2</u>

Weight: Trained by "Imagenet"
Number of Output label = 1000(existed) => 3(correctly, incorrectly, no mask)



## 01

#### **Transfer Learning - MobilnetV2**

| Input                                    | Conv Layer                         | FC Layer      | Accuracy                                                                  |
|------------------------------------------|------------------------------------|---------------|---------------------------------------------------------------------------|
| 4,200 images<br>(correct, incorrect, no) | Pre-trained weight<br>(Freeze)     | Newly Defined | precision recall cor_mask 0.99 0.98 incor_mask 0.98 0.99 nomask 0.99 1.00 |
|                                          | Pre-trained weight<br>(Not-Freeze) | Newly Defined | precision recall cor_mask 0.99 1.00 incor_mask 1.00 1.00 nomask 0.99 0.99 |
|                                          | Not-trained weight<br>(Not-Freeze) | Newly Defined | <u>Not-trained</u>                                                        |

Total Parameters: 2,422,339 / Model Size: 11MB

# 01

#### Transfer Learning - InceptionV3

| Input                                    | Conv Layer                         | FC Layer      | Accuracy                                                                  |
|------------------------------------------|------------------------------------|---------------|---------------------------------------------------------------------------|
| 4,200 images<br>(correct, incorrect, no) | Pre-trained weight<br>(Freeze)     | Newly Defined | precision recall cor_mask 0.98 0.97 incor_mask 0.97 0.97 nomask 0.99 0.99 |
|                                          | Pre-trained weight<br>(Not-Freeze) | Newly Defined | precision recall cor_mask 1.00 1.00 incor_mask 0.97 1.00 nomask 1.00 0.97 |
|                                          | Not-trained weight<br>(Not-Freeze) | Newly Defined | precision recall cor_mask 1.00 0.91 incor_mask 0.91 1.00 nomask 1.00 1.00 |

Total Parameters: 22,065,443 / Model Size: 89MB

#### Compressing the model - tensorflow lite

Tensorflow Lite: a lightweight library for deploying models on mobile and embedded devices

The TensorFlow Lite converter converts TensorFlow models into an efficient form

#### How it works



Pick a model

Pick a new model or retrain an existing one.



Convert

Convert a TensorFlow model into a compressed flat buffer with the TensorFlow Lite Converter.



Deploy

Take the compressed .tflite file and load it into a mobile or embedded device.



Optimize

Quantize by converting 32-bit floats to more efficient 8-bit integers or run on GPU.

InceptionV3 model (89MB) => InceptionV3 tf lite model (86MB)...?

#### Web Application Development



#### Web Application Development



실시간 마스크 탐지가 작동중입니다



#### Web Application Development



#### **Object Detection**

Object Detection model

: Region of proposal + Image Classification

Image Classification model

2-stage: RCNN, Fast RCNN, Faster RCNN

1-stage: SSD, Yolo



CAT



CAT, DOG, DUCK

Image Segmentation model



CAT, DOG, DUCK

### **Object Detection - Yolo**



#### **Object Detection - Yolo**





#### **Object Detection - Labelling**

#### **Labellmg**



Class, Xmin, Xmax, Ymax, Ymin =  $[15\ 0.417969\ 0.483398\ 0.679688\ 0.667969]$ 

## **Object Detection - Result**

| Input                                   | Method                             | Accuracy                                                                                               |
|-----------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------|
| 1500 images<br>(correct, incorrect, no) | Pre-trained weight<br>(Not-Freeze) | <pre>detections_count = 540, unique_truth_count = 301 class_id = 0, name = cor_mask, ap = 98.58%</pre> |



#### 제출 파일

Mask\_classifier.ipynb

: mobilenetv2, inceptionv3 훈련

Yolov3\_implementation.ipynb

: yolov3 훈련

Try.py

: 비디오 혹은 실시간에서 시연

ApplicationDevelopment folder: 서버 관련 코드

Mask\_Generator folder: 데이터셋 제작 관련 코드

Models folder: mobilenetv2, facet detector, yolov3 모델

# 감사합니다

# Appendix

#### **Object Detection - Yolov3**

