AMATH 561 Autumn 2020 Problem Set 1

Due: Mon 10/12 at 11:00am

Note: Submit electronically to Canvas.

- 1. Describe the probability space for the following experiments: a) a biased coin is tossed three times; b) two balls are drawn without replacement from an urn which originally contained two blue and two red balls.
- **2.** (No translation-invariant random integer). Show that there is no probability measure P on the integers \mathbb{Z} with the discrete σ -algebra $2^{\mathbb{Z}}$ with the translation-invariance property P(E+n)=P(E) for every event $E\in 2^{\mathbb{Z}}$ and every integer n. E+n is obtained by adding n to every element of E.
- **3.** (No translation-invariant random real). Show that there is no probability measure P on the reals $\mathbb R$ with the Borel σ -algebra $\mathcal B(\mathbb R)$ with the translation-invariance property P(E+x)=P(E) for every event $E\in\mathcal B(\mathbb R)$ and every real x. Borel σ -algebra $\mathcal B(\mathbb R)$ is the σ -algebra generated by intervals $(a,b]\subset\mathbb R$.
- **4.** Let $\Omega = \mathbb{R}$, $\mathcal{F} =$ all subsets of \mathbb{R} so that A or A^c is countable. P(A) = 0 in the first case and P(A) = 1 in the second. Show that (Ω, \mathcal{F}, P) is a probability space.