MORSE THEORY

(ref "Morse Theory by J.Milnor")

Morse Lemma Let p be a nondegenerated critical point of f on M, then there exists a chart such that $f=c-(x^1)^2-\ldots-(x^\lambda)^2+(x^{\lambda+1})^2+\cdots+(x^n)^2$, where λ is called the index of f at p. We obtain a fact that non-degenerated cirtical points are isolated.

Homotopy type in Term of Critical Values

$$\operatorname{Def}^*M^a=f^{-1}(-\infty,a]$$

Thm 1 Let f be a smooth real value function on M, and suppose $f^{-1}[a,b]$ is compact and contains no critical point. Then M^a is differeomorphic to M^b . Moreover M^a is a deformation retract of M^b .

Sketch of proof: choose a Riemann metric on M and then Let $f^{-1}[a,b] \subset \subset U, df \neq 0$ in U. Choose $\rho = 1/\langle \nabla f, \nabla f \rangle$ in $f^{-1}[a,b]$ and support lies in U. Let $X = \rho \nabla f$ there exists a one parameter group ϕ_t associate to X. Then we have $\frac{df \circ \phi_t}{dt} = \langle X, \nabla f \rangle = 1$. Now consider ϕ_{b-a} . It carries M^a diffeomorphically to M^b . And $r_t(p) = p$ if $f(p) \leq a$; $r_t(p) = \phi_{t(f(p)-a)}(p)$ else.

Thm 2 Let f be a smooth function on M, and let p be a nondegenerated critical point with index λ . Setting f(p)=c, and suppose that $f^{-1}[c-\epsilon,c+\epsilon]$ is compact and contains no cirtical point other than p, for some $\epsilon>0$. Then, for all sufficiently small ϵ , the set $M^{c+\epsilon}$ has the homotopy type of $M^{c-\epsilon}$ with e^{λ} attached.

sketch of proof: First choose a nghd of p mentioned in Morse Lemma and ϵ as required and

 $e^{\lambda}=\{(x^1)^2+\ldots+(x^{\lambda})^2<\epsilon,x^{\lambda+1}=\ldots=x^n=0\}, B(p,\sqrt{2\epsilon})\subset U$ in this Theorem. We claim that there exists a function F such that: 1, $F^{-1}[-\infty,c+\epsilon]=M^{c+\epsilon}$; 2,The cirtical point of F are the same as those of f; 3,The region $F^{c-\epsilon}$ is a deformation retract of $M^{c+\epsilon}$. Construction of $F=f-\mu((x^1)^2+\ldots+(x^{\lambda})^2+2(x^{\lambda+1})^2+\cdots+2(x^n)^2)$. Where $\mu(0)>\epsilon,\mu(r)=0$ (for $r\geq 2\epsilon$) $,-1<\mu'\leq 0$. Denote $F^{-1}(-\infty,c-\epsilon]$ as $M^{c-\epsilon}\cup H,H=\ldots$ Moreover we can prove that $M^{c-\epsilon}\cup e^{\lambda}$ is a deformation retract of $M^{c-\epsilon}\cup H$.

RMK: M^c is homotopic to $M^{c+\epsilon}$.

Thm 3 If f is a diifferentiable function on a manifold M with no critical points, and if M^a is compact, then M have a homotopy type of a CW-complex, with one cell of dimension λ for each critical point of index λ .

The Morse Inequalities

Def $R_{\lambda}(X,Y) = \lambda$ th Betti number of (X,Y)=rank over F of $H_{\lambda}(X,Y;F)$.

Lemma 4: R_{λ} is subadditive since we have the exact sequence:

$$ightarrow H_{\lambda}(Y,Z)
ightarrow H_{\lambda}(X,Z)
ightarrow H_{\lambda}(X,Y)
ightarrow$$

pf: Since dim is a additive function, we have $dim(ker) - R_{\lambda}(Y,Z) + R_{\lambda}(X,Z) - R_{\lambda}(X,Y) + dim(im) = 0.$

def 5 Euler characteristic $\chi(X,Y) = \sum (-1)^{\lambda} R_{\lambda}(X,Y)$

Lemma 6: χ is additive.

pf
$$\chi(X,Y)+\chi(Y,Z)=\sum_{\lambda}(-1)^{\lambda}[R_{\lambda}(X,Z)+dim(ker(\partial_{\lambda}))+dim(im(\partial_{\lambda+1}))]=\chi(X,Z)$$
 .

Thm 7 Let M be a compact manifold and f be a differentiable function on M with isolated, nondegenerated, critical points, and let $a_1 < \ldots < a_k$ be such that M^{a_i} contains exactly *i* cirtical points (W.L.O.G. we can choose *f* satisfying this condition by perturbation). Then

$$\begin{aligned} & \dim\!H_*(M^{a_i},M^{a_{i-1}}) = \dim\!H_*(M^{a_{-1}} \cup e^{\lambda_i},M^{a_{i-1}}) = \dim\!H_*(e^{\lambda_i},\partial e^{\lambda_i}) = \delta_{\lambda^*}. \\ & \text{Let } C_{\lambda} \text{ denote the number of critical point of index } \lambda. \text{ Then we conclude the} \\ & \text{weak morse inequalities } R_{\lambda}(M) \leq \sum_{i=1}^k R_{\lambda}(M^{a_i},M^{a_{i-1}}) = C_{\lambda}. \text{ And} \\ & \sum_{\lambda} (-1)^{\lambda} R_{\lambda}(M) = \chi(M) = \sum_{i=1}^k \chi(M^{a_i},M^{a_{i-1}}) = \sum_{\lambda} (-1)^{\lambda} \sum_{i=1}^k R_{\lambda}(M^{a_i},M^{a_{i-1}}) = \sum_{\lambda} (-1)^{\lambda} C_{\lambda} \end{aligned}$$

Thm 8 (the more subtle one) $S_\lambda(X,Y)$ is sub additive, where $S_\lambda(X,Y) = \sum_{i=0}^\lambda R_i(X,Y)(-1)^{\lambda-i}$. We obseve that $rank(\partial) = \sum_{i=0}^\lambda [R_i(X,Y) - R_i(X,Z) + R_i(Y,Z)](-1)^{\lambda-i}$ so we obtain $S_\lambda(Y,Z) - S_\lambda(X,Z) + S_\lambda(X,Y) \geq 0$. Applying this function on $\emptyset \subset M^{a_1} \subset \ldots \subset M^{a_k}$. And hence $S_\lambda(M) \leq \sum_{i=1}^k S_\lambda(M^{a_i},M^{a_{i-1}}) = \sum_{k=1}^\lambda C_k(-1)^{\lambda-k}$. Henceforth we know that $\sum_{k=1}^\lambda C_k(-1)^{\lambda-k} \geq \sum_{k=1}^\lambda R_k(M)(-1)^{\lambda-k}$.

Cor 9 Suppose that $C_{\lambda+1}=0$ then we know that $R_{\lambda+1}=0$, by the inequality above we obtain $\sum_{k=1}^{\lambda}C_k(-1)^{\lambda-k}=\sum_{k=1}^{\lambda}R_k(M)(-1)^{\lambda-k}$. Also suppose that $C_{\lambda-1}=0$ so we can deduce that $R_{\lambda}=C_{\lambda}$.

Cor 10 Let $M_t(f) = \sum_{p \text{ critical }} t^{\lambda_p} = \sum_{i=0}^n C_i t^i$ and $P_t(M,K) = \sum_i t^i dim(H_i(M,K))$. We know that $M_{-1} - P_{-1} = 0$ and hence $M_t - P_t = (1+t)R(t)$ we use power series of $\frac{1}{1+t}$ and the subtle morse inequality we know that the coefficients of R(t) are non-negative.

Thm 11 Let $\tilde{P}_t(M,K)=\sum_i t^i dim(H^i(M,K))$. $M_t-\tilde{P}_t=(1+t)\tilde{R}_t$, where \tilde{R}_t is a polynomial with non-negative coefficients.

pf: using the axioms for cohomology alike, we deduce that $H^*(M^{a_i},M^{a_{i-1}}) \cong H^*(M^{a_{i-1}} \cup e^{\lambda_i},M^{a_{i-1}}) \cong H^*(e^{\lambda_i},\partial e^{\lambda_i}) \cong 0 \text{ if } * \neq \lambda_i; K \text{ if } * = \lambda_i$. Define $\tilde{\chi},\tilde{R_{\lambda}}$ alike, by the same reasoning we obtain $M_t - \tilde{P_t} = (1+t)\tilde{R_t}$.