Machine Learning

Lecture # 2
Data Normalization, KNN

SPLITTING OF TRAINING AND TEST DATA

Dividing Up Data

- We need independent data sets to train, set parameters, and test performance
- Thus we will often divide a data set into three
 - Training set
 - Parameter selection set
 - Test set
- These must be independent
- Data set 2 is not always necessary

Dataset

Inputs	Labels
--------	--------

15	95	1
33	90	1
78	70	0
70	45	0
80	18	0
35	65	1
45	70	1
31	61	1
50	63	1
98	80	0
73	81	0
50	18	0

• Can be 70:30 or any other

Estimating the Generalisation Error

- We have a dilemma if we have limited data
 - We want to use as much data as possible for training
 - We need lots of data for estimating the generalisation error
- Obtaining a good estimate of generalisation performance is important for selecting the best parameter values

- We can solve our dilemma by repeating the training many times on different partitioning
- This is known as K-fold cross validation

$$\boxed{D_1 \ D_2 \ D_3 \ D_4 \ D_5 \ D_6 \ D_7 \ D_8 \ D_9 \ D_{10} D_{11} D_{12} D_{13} D_{14} D_{15} D_{16} D_{17} D_{18} D_{19} D_{20} }$$

$$D = \{D_i\}_{i=1}^P \quad D_i = (x_i, y_i)$$

$$E_g = 5.1$$

$$E_g = 3.7$$

$$E_g = 4.6$$

$$E_g =$$
 4.6

$$E_g =$$
 3.3

$$\boxed{D_1 \ D_2 \ D_3 \ D_4 \ D_5 \ D_6 \ D_7 \ D_8 \ D_9 \ D_{10} D_{11} D_{12} D_{13} D_{14} D_{15} D_{16} D_{17} D_{18} D_{19} D_{20} }$$

$$E_g = 5.8$$

$$E_g = 1.8$$

$$E_g = 4.8$$

$$E_g = 3.6$$

$$E_g = 7.4$$

$$E_g = 0.99$$

 $E_g =$ 4.5

$$E_g = 5.4$$

$$E_g =$$
 6.2

$$E_g = 2.7$$

$$\begin{bmatrix} D_1 & D_2 & D_3 & D_4 & D_5 & D_6 & D_7 & D_8 & D_9 & D_{10} & D_{11} & D_{12} & D_{13} & D_{14} & D_{15} & D_{16} & D_{17} & D_{18} & D_{19} & D_{20} \end{bmatrix}$$

$$\langle E_g \rangle = \frac{5.8 \ + \ 1.8 \ + \ 4.8 \ + \ 3.6 \ + \ 7.4 \ + \ 0.99 \ + \ 4.5 \ + \ 5.4 \ + \ 6.2 \ + \ 2.7}{10} \ = 4.3$$

Test

Test

$$\langle E_q \rangle = 3.9$$

Leave-one-out cross-validation is extreme case

Price of Cross Validation

- Cross-validation is computationally expensive (K-fold cross-validation requires K times as much work)
- There are attempts at estimating generalisation error more cheaply (boot-strapping) methods, but these are not very accurate (https://www.mastersindatascience.org/learning/machine-learning-algorithms/bootstrapping/)
- Cross-validation is only necessary when you have little data

Generalization

- While classes can be specified by training samples with known labels, the goal of a recognition system is to recognize novel inputs
- When a recognition system is over-fitted to training samples, it may give bad performance for typical inputs

OverFitting

PERFORMANCE MEASUREMENTS

R.O.C. Analysis

False positives – i.e. falsely predicting an event False negatives – i.e. missing an incoming event

Similarly, we have "true positives" and "true negatives"

Accuracy Measures

Accuracy

$$- = (TP+TN)/(P+N)$$

Sensitivity or true positive rate (TPR)

$$- = TP/(TP+FN) = TP/P$$

Specificity or TNR

$$- = TN/(FP+TN) = TN/N$$

Positive Predictive value (Precision) (PPV)

$$- = Tp/(Tp+Fp)$$

Recall

$$- = Tp/(Tp+Fn)$$

ROC Curve

Choosing the threshold

- Where should we set the threshold
- We could choose the equal error rate point where the errors in positive set equals the errors in the negative set
- Want to see all the options
- The receiver operating characteristic (ROC) curve is a standard way to test this

Threshold

Test Result

Some definitions ...

Test Result

without the disease with the disease

Test Result

without the disease with the disease

Test Result

without the disease with the disease

True Positives (TP) = 93.3%

False Positives (FP)= 30.9%

False Positives (FP)= 30.9%

True Negatives (TN) = 69.1%

False Positives (FP)= 30.9%

True Negatives (TN) = 69.1%

False Negatives (FN) = 6.68%

False Positives (FP)= 30.9%

True Negatives (TN) = 69.1%

False Negatives (FN) = 6.68%

TPR (sensitivity) = $\frac{TP}{P} = \frac{TP}{TP + FN} = 0.933$

False Positives (FP)= 30.9%

True Negatives (TN) = 69.1%

False Negatives (FN) = 6.68%

TPR (sensitivity) =
$$\frac{TP}{P} = \frac{TP}{TP + FN} = 0.933$$

FPR (1-specificity) = $\frac{FP}{N} = \frac{FP}{FP + TN} = 0.309$

False Positives (FP)= 30.9%

True Negatives (TN) = 69.1%

False Negatives (FN) = 6.68%

TPR (sensitivity) =
$$\frac{TP}{P} = \frac{TP}{TP + FN} = 0.933$$

FPR (1-specificity) =
$$\frac{FP}{N} = \frac{FP}{FP + TN} = 0.309$$

False Positives (FP)= 84.1%

True Negatives (TN) = 15.9%

False Negatives (FN) = 0.135%

TPR (sensitivity) =
$$\frac{TP}{P} = \frac{TP}{TP + FN} = 0.999$$

FPR (1-specificity) =
$$\frac{FP}{N} = \frac{FP}{FP+TN} = 0.841$$

False Positives (FP)= 69.1%

True Negatives (TN) = 30.9%

False Negatives (FN) = 0.621%

TPR (sensitivity) =
$$\frac{TP}{P} = \frac{TP}{TP + FN} = 0.994$$

FPR (1-specificity) =
$$\frac{FP}{N} = \frac{FP}{FP + TN} = 0.691$$

False Positives (FP)= 50%

True Negatives (TN) = 50%

False Negatives (FN) = 2.28%

TPR (sensitivity) =
$$\frac{TP}{P} = \frac{TP}{TP + FN} = 0.977$$

FPR (1-specificity) =
$$\frac{FP}{N} = \frac{FP}{FP+TN} = 0.5$$

False Positives (FP)= 30.9%

True Negatives (TN) = 69.1%

False Negatives (FN) = 6.68%

TPR (sensitivity) =
$$\frac{TP}{P} = \frac{TP}{TP + FN} = 0.933$$

FPR (1-specificity) =
$$\frac{FP}{N} = \frac{FP}{FP + TN} = 0.309$$

True Positives (TP) = 84.1%

False Positives (FP)= 15.9%

True Negatives (TN) = 84.1%

False Negatives (FN) = 15.9%

TPR (sensitivity) =
$$\frac{TP}{P} = \frac{TP}{TP + FN} = 0.841$$

FPR (1-specificity) = $\frac{FP}{N} = \frac{FP}{FP + TN} = 0.159$

False Positives (FP)= 6.68%

True Negatives (TN) = 93.3%

False Negatives (FN) = 30.9%

TPR (sensitivity) =
$$\frac{TP}{P} = \frac{TP}{TP + FN} = 0.691$$

FPR (1-specificity) =
$$\frac{FP}{N} = \frac{FP}{FP + TN} = 0.0668$$

True Positives (TP) = 50%

False Positives (FP)= 2.28%

True Negatives (TN) = 97.7%

False Negatives (FN) = 50%

TPR (sensitivity) =
$$\frac{TP}{P} = \frac{TP}{TP + FN} = 0.5$$

FPR (1-specificity) =
$$\frac{FP}{N} = \frac{FP}{FP + TN} = 0.0228$$

True Positives (TP) =
$$30.9\%$$

False Positives (FP)=
$$0.621\%$$

True Negatives (TN) =
$$99.4\%$$

False Negatives (FN) =
$$69.1\%$$

TPR (sensitivity) =
$$\frac{TP}{P} = \frac{TP}{TP + FN} = 0.309$$

FPR (1-specificity) =
$$\frac{FP}{N} = \frac{FP}{FP + TN} = 0.00621$$

True Positives (TP) =
$$15.9\%$$

False Positives (FP)= 0.135%

True Negatives (TN) = 99.9%

False Negatives (FN) = 84.1%

TPR (sensitivity) =
$$\frac{TP}{P} = \frac{TP}{TP + FN} = 0.159$$

FPR (1-specificity) =
$$\frac{FP}{N} = \frac{FP}{FP + TN} = 0.00135$$

True Positives (TP) =
$$6.68\%$$

True Negatives (TN) =
$$100\%$$

False Negatives (FN) =
$$93.3\%$$

TPR (sensitivity) =
$$\frac{TP}{P} = \frac{TP}{TP + FN} = 0.0668$$

FPR (1-specificity) =
$$\frac{FP}{N} = \frac{FP}{FP + TN} = 0.000233$$

True Positives (TP) = 2.28%

False Positives (FP)= 0.00317%

True Negatives (TN) = 100%

False Negatives (FN) = 97.7%

TPR (sensitivity) = $\frac{TP}{P} = \frac{TP}{TP+FN} = 0.0228$ FPR (1-specificity) = $\frac{FP}{N} = \frac{FP}{FP+TN} = 3.17\text{e-}05$

AUC for ROC curves

Data Normalization

Between 0 to 1
 ((x-min(x))/(max(x)-min(x)))

Between -1 to 1
 ((x-min(x))/(max(x)-min(x)))*2-1

Data Normalization

$$x_{ki} \to \frac{x_{ki} - \mu_i}{\sigma_i},$$

$$\mu_i = \frac{1}{P} \sum_{k=1}^{P} x_{ki},$$

$$\mu_i = \frac{1}{P} \sum_{k=1}^{P} x_{ki}, \qquad \sigma_i = \sqrt{\frac{1}{P-1} \sum_{k=1}^{P} (x_{ki} - \mu_i)^2}$$

Classification Example

Can we LEARN to recognise a rugby player?

What are the "features" of a rugby player?

Rugby players = short + heavy?

Ballet dancers = tall + skinny?

Rugby players "cluster" separately in the space.

K Nearest Neighbors

Nearest Neighbour Rule

Consider a two class problem where each sample consists of two measurements (*x*,*y*).

For a given query point q, assign the class of the nearest neighbour.

k = 1

Compute the *k* nearest neighbours and assign the class by majority vote.

k = 3

1. Measure distance to all points

- 1. Measure distance to all points
- 2. Find closest "k" points

← (here k=3, but it could be more)

- 1. Measure distance to all points
- 2. Find closest "k" points
- 3. Assign majority class

← (here k=3, but it could be more)

"Euclidean distance"

$$d = \sqrt{(w - w_1)^2 + (h - h_1)^2}$$

for each testing point

measure distance to every training point find the k closest points

identify the most common class among those k predict that class

end

- Advantage: Surprisingly good classifier!
- Disadvantage: Have to store the entire training set in memory

Euclidean distance still works in 3-d, 4-d, 5-d, etc....

$$d = \sqrt{(x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2}$$

x = Height y = Weight z = Shoe size

Choosing the wrong features makes it difficult, too many and it's computationally intensive.

Nearest Neighbour Rule

Consider a two class problem where each sample consists of two measurements (*x*,*y*).

For a given query point q, assign the class of the nearest neighbour.

k = 1

Compute the *k* nearest neighbours and assign the class by majority vote.

k = 3

Nearest Neighbor Classifier

If the nearest instance to the previously unseen instance is a Katydid class is Katydid else

class is **Grasshopper**

☒ Katydids

Grasshoppers

The nearest neighbor algorithm is sensitive to outliers...

The solution is to...

We can generalize the nearest neighbor algorithm to the K- nearest neighbor (KNN) algorithm.

We measure the distance to the nearest K instances, and let them vote. K is typically chosen to be an odd number.

 Example: Classify whether a customer will respond to a survey question using a 3-Nearest Neighbor classifier

Customer	Age	Income	No. credit cards	Response
John	35	35K	3	No
Rachel	22	50K	2	Yes
Hannah	63	200K	1	No
Tom	59	170K	1	No
Nellie	25	40K	4	Yes
David	37	50K	2	?

Example : 3-Nearest Neighbors

Example : 3-Nearest Neighbors

Three nearest ones to David are: No, Yes, Yes

Example : 3-Nearest Neighbors

Three nearest ones to David are: No, Yes, Yes

Example: For the example we saw earlier, pick the best K from the set {1, 2,
 3} to build a K-NN classifier

Customer	Age	Income	No. credit cards	Response
John	35	35K	3	No
Rachel	22	50K	2	Yes
Hannah	63	200K	1	No
Tom	59	170K	1	No
Nellie	25	40K	4	Yes
David	37	50K	2	?

Acknowledgements

- Introduction to Machine Learning, Alphaydin
- Statistical Pattern Recognition: A Review A.K Jain et al., PAMI (22) 2000
- Pattern Recognition and Analysis Course A.K. Jain, MSU
- Pattern Classification" by Duda et al., John Wiley & Sons.

Thank you