ESP32-S3-WROOM-2

技术规格书

2.4 GHz Wi-Fi (802.11 b/g/n) + Bluetooth[®] 5 (LE) 模组 内置 ESP32-S3R8V 芯片, Xtensa[®] 双核 32 位 LX7 处理器 Flash 最大可选 32 MB (Octal), PSRAM 大小为 8 MB (Octal) 33 个 GPIO,丰富的外设 板上 PCB 天线

ESP32-S3-WROOM-2

1 模组概述

说明:

点击链接或扫描二维码确保您使用的是最新版本的文档:

https://www.espressif.com/documentation/esp32-s3-wroom-2_datasheet_cn.pdf

1.1 特性

CPU 和片上存储器

- 内置 ESP32-S3R8V 芯片, Xtensa[®] 双核 32 位 LX7 微处理器(支持单精度浮点运算单元),支 持高达 240 MHz 的时钟频率
- 384 KB ROM
- 512 KB SRAM
- 16 KB RTC SRAM
- 8 MB PSRAM

Wi-Fi

- 802.11 b/g/n
- 802.11n 模式下数据速率高达 150 Mbps
- 帧聚合 (TX/RX A-MPDU, TX/RX A-MSDU)
- 0.4 μs 保护间隔
- 工作信道中心频率范围: 2412 ~ 2484 MHz

蓝牙

- 低功耗蓝牙 (Bluetooth LE): Bluetooth 5、Bluetooth mesh
- 速率支持 125 Kbps、500 Kbps、1 Mbps、2 Mbps
- 广播扩展 (Advertising Extensions)
- 多广播 (Multiple Advertisement Sets)
- 信道选择 (Channel Selection Algorithm #2)
- Wi-Fi 与蓝牙共存,共用同一个天线

外设

GPIO、SPI、LCD接口、Camera接口、UART、I2C、I2S、红外遥控、脉冲计数器、LED PWM、USB 1.1 OTG、USB Serial/JTAG 控制器、MCPWM、SDIO 主机接口、GDMA、TWAI® 控制器(兼容 ISO 11898-1)、ADC、触摸传感器、温度传感器、定时器和看门狗

模组集成元件

- 40 MHz 集成晶振
- 最大 32 MB Octal SPI flash

天线选型

板载 PCB 天线

工作条件

- 工作电压/供电电压: 3.0~3.6 V
- 工作环境温度: -40 ~ 65 °C

认证

- RF 认证: 见 ESP32-S3-WROOM-2 证书
- 环保认证: RoHS/REACH

测试

HTOL/HTSL/uHAST/TCT/ESD

1.2 描述

ESP32-S3-WROOM-2 是通用型 Wi-Fi + 低功耗蓝牙 MCU 模组,具有丰富的外设接口,强大的神经网络运算能力和信号处理能力,是专为人工智能和 AloT 市场打造的一款模组,适用于多种应用场景,例如唤醒词检测和语

音命令识别、人脸检测和识别、智能家居、智能家电、智能控制面板、智能扬声器等。

ESP32-S3-WROOM-2 采用 PCB 板载天线, 模组配置 ESP32-S3R8V 芯片, 可选 16/32 MB flash, 8 MB PSRAM。请注意, 针对 R8 系列模组 (内置 8 线 psram), 若开启 PSRAM ECC 功能, 模组最大环境温度可以提高到 85 °C, 但是 PSRAM 的可用容量将减少 1/16。

模组的订购信息如下表所示:

表 1: ESP32-S3-WROOM-2 系列型号对比

订购代码	Flash ¹	PSRAM	环境温度 ² (°C)	模组尺寸 ³ (mm)	
ESP32-S3-WROOM-2-N16R8V	16 MB (Octal SPI)	8 MB (Octal SPI)	−40 ~ 65	19 × 25 5 × 2 1	
ESP32-S3-WROOM-2-N32R8V	32 MB (Octal SPI)	8 MB (Octal SPI)	-40 ~ 65	- 18 × 25.5 × 3.1	

¹ 该模组使用封装在芯片中的 flash。

模组采用的是 ESP32-S3R8V 芯片。芯片搭载 Xtensa® 32 位 LX7 双核处理器 (支持单精度浮点运算单元),工作频率高达 240 MHz。CPU 电源可被关闭,利用低功耗协处理器监测外设的状态变化或某些模拟量是否超出阈值。

ESP32-S3R8V 集成了丰富的外设,包括模组接口: SPI、LCD 接口、Camera 接口、UART、I2C、I2S、红外遥控、脉冲计数器、LED PWM、USB Serial/JTAG 控制器、MCPWM、SDIO host、GDMA、TWAI[®] 控制器(兼容 ISO 11898-1)、ADC、触摸传感器、温度传感器、定时器和看门狗,和多达 45 个 GPIO。此外,ESP32-S3 还有一个全速 USB 1.1 On-The-Go (OTG) 接口用于 USB 通信。

说明:

*关于 ESP32-S3 的更多信息请参考 _《ESP32-S3 系列芯片技术规格书》。

1.3 应用

- 通用低功耗 IoT 传感器集线器
- 通用低功耗 IoT 数据记录器
- 摄像头视频流传输
- OTT 电视盒/机顶盒设备
- USB 设备
- 语音识别
- 图像识别
- Mesh 网络
- 家庭自动化

- 智慧楼宇
- 工业自动化
- 智慧农业
- 音频设备
- 健康/医疗/看护
- Wi-Fi 玩具
- 可穿戴电子产品
- 零售&餐饮

² 环境温度指乐鑫模组外部的推荐环境温度。

³ 更多关于模组尺寸的信息,请参考章节7.1 模组尺寸.

目录

1	模组概述	2
1.1 1.2	特性 描述	2
1.3	应用	3
2	功能框图	7
3	管脚定义	8
3.1	管脚布局	8
3.2	管脚定义	8
3.3	Strapping 管脚	10
4	电气特性	13
4.1	绝对最大额定值	13
4.2	建议工作条件	13
4.3	直流电气特性 (3.3 V, 25 °C)	13
4.4 4.5	功耗特性 Wi-Fi 射频	14 14
4.5	4.5.1 Wi-Fi 射频标准	14
	4.5.2 Wi-Fi 射频发射器 (TX) 规格	15
	4.5.3 Wi-Fi 射频接收器 (RX) 规格	16
4.6	低功耗蓝牙射频	17
	4.6.1 低功耗蓝牙射频发射器 (TX) 规格	17
	4.6.2 低功耗蓝牙射频接收器 (RX) 规格	19
5	模组原理图	22
6	外围设计原理图	23
7	模组尺寸和 PCB 封装图形	24
7.1	模组尺寸	24
7.2	推荐 PCB 封装图	25
8	产品处理	26
8.1	存储条件	26
8.2	ESD	26
8.3	回流焊温度曲线	26
8.4	超声波振动	27
9	相关文档和资源	28
修i	订历史	29

表格

1	ESP32-S3-WROOM-2 系列型号对比	3
2	管脚定义	8
3	JTAG 信号源选择	10
4	Strapping 管脚	11
5	VDD_SPI 电压值的默认配置	11
6	Strapping 管脚的建立时间和保持时间的参数说明	12
7	绝对最大额定值	13
8	建议工作条件	13
9	直流电气特性 (3.3 V, 25 °C)	13
10	射频功耗	14
11	不同功耗模式下的功耗	14
12	Wi-Fi 射频标准	14
13	频谱模板和 EVM 符合 802.11 标准时的发射功率	15
14	发射 EVM 测试	15
15	接收灵敏度	16
16	最大接收电平	16
17	接收邻道抑制	17
18	低功耗蓝牙频率	17
19	发射器特性 - 低功耗蓝牙 1 Mbps	17
20	发射器特性 - 低功耗蓝牙 2 Mbps	18
21	发射器特性 - 低功耗蓝牙 125 Kbps	18
22	发射器特性 - 低功耗蓝牙 500 Kbps	18
23	接收器特性 - 低功耗蓝牙 1 Mbps	19
24	接收器特性 - 低功耗蓝牙 2 Mbps	19
25	接收器特性 - 低功耗蓝牙 125 Kbps	20
26	接收器特性 - 低功耗蓝牙 500 Kbps	20

插图

1	ESP32-S3-WROOM-2 功能框图	7
2	管脚布局 (顶视图)	8
3	Strapping 管脚的建立时间和保持时间	12
4	ESP32-S3-WROOM-2 原理图	22
5	外围设计原理图	23
6	ESP32-S3-WROOM-2 模组尺寸	24
7	ESP32-S3-WROOM-2 推荐 PCB 封装图	25
8	回流焊温度曲线	26

2 功能框图

图 1: ESP32-S3-WROOM-2 功能框图

3 管脚定义

3.1 管脚布局

管脚布局图显示了模组上管脚的大致位置。按比例绘制的实际布局请参考图 7.1 模组尺寸。

图 2: 管脚布局 (顶视图)

3.2 管脚定义

模组共有41个管脚,具体描述参见表2。

管脚名称释义、管脚功能释义、以及外设管脚分配请参考 《ESP32-S3 系列芯片技术规格书》。

表 2: 管脚定义

名称	序号	类型 ¹	功能
GND	1	Р	接地
3V3	2	Р	供电

表 2 - 接上页

Fatt.	구·ㅂ	Me and 1	表 2 - 接上贝	
名称	序号	类型 ¹		
			高电平: 芯片使能;	
EN	3	I	低电平: 芯片关闭;	
10.4		1/0/7	注意不能让 EN 管脚浮空。	
104	4	I/O/T	RTC_GPIO4, GPIO4, TOUCH4, ADC1_CH3	
105	5	I/O/T	RTC_GPIO5, GPIO5, TOUCH5, ADC1_CH4	
106	6	I/O/T	RTC_GPIO6, GPIO6 , TOUCH6, ADC1_CH5	
107	7	I/O/T	RTC_GPIO7, GPIO7, TOUCH7, ADC1_CH6	
IO15	8	I/O/T	RTC_GPIO15, GPIO15, U0RTS, ADC2_CH4, XTAL_32K_P	
IO16	9	I/O/T	RTC_GPIO16, GPIO16, U0CTS, ADC2_CH5, XTAL_32K_N	
IO17	10	I/O/T	RTC_GPIO17, GPIO17, U1TXD, ADC2_CH6	
IO18	11	I/O/T	RTC_GPIO18, GPIO18 , U1RXD, ADC2_CH7, CLK_OUT3	
IO8	12	I/O/T	RTC_GPIO8, GPIO8, TOUCH8, ADC1_CH7, SUBSPICS1	
IO19	13	I/O/T	RTC_GPIO19, GPIO19, U1RTS, ADC2_CH8, CLK_OUT2, USB_D-	
1020	14	I/O/T	RTC_GPIO20, GPIO20, U1CTS, ADC2_CH9, CLK_OUT1, USB_D+	
IO3	15	I/O/T	RTC_GPIO3, GPIO3, TOUCH3, ADC1_CH2	
IO46	16	I/O/T	GPIO46	
109	17	I/O/T	RTC_GPIO9, GPIO9 , TOUCH9, ADC1_CH8, FSPIHD, SUBSPIHD	
1010	10	L/O/T	RTC_GPIO10, GPIO10, TOUCH10, ADC1_CH9, FSPICS0, FSPIIO4,	
IO10	18	I/O/T	SUBSPICS0	
1044	40	ио л	RTC_GPIO11, GPIO11 , TOUCH11, ADC2_CH0, FSPID, FSPIIO5,	
IO11	19	I/O/T	SUBSPID	
1010	00	L/O/T	RTC_GPIO12, GPIO12, TOUCH12, ADC2_CH1, FSPICLK, FSPIIO6,	
IO12	20	I/O/T	SUBSPICLK	
1010	0.1	L/O/T	RTC_GPIO13, GPIO13, TOUCH13, ADC2_CH2, FSPIQ, FSPIIO7,	
IO13	21	I/O/T	SUBSPIQ	
1014	00	L/O/T	RTC_GPIO14, GPIO14 , TOUCH14, ADC2_CH3, FSPIWP, FSPIDQS,	
IO14	22	I/O/T	SUBSPIWP	
IO21	23	I/O/T	RTC_GPIO21, GPIO21	
IO47	24	I/O/T	SPICLK_P_DIFF, GPIO47 ² , SUBSPICLK_P_DIFF	
IO48	25	I/O/T	SPICLK_N_DIFF,GPIO48? SUBSPICLK_N_DIFF	
IO45	26	I/O/T	GPIO45	
100	27	I/O/T	RTC_GPIO0, GPIO0	
NC	28	_	空管脚	
NC	29		空管脚	
NC	30	_	空管脚	
IO38	31	I/O/T	GPIO38, FSPIWP, SUBSPIWP	
1039	32	I/O/T	MTCK, GPIO39, CLK_OUT3, SUBSPICS1	
IO40	33	I/O/T	MTDO, GPIO40, CLK_OUT2	
IO41	34	I/O/T	MTDI, GPIO41, CLK_OUT1	
1042	35	I/O/T	MTMS, GPIO42	
RXD0	36	I/O/T	U0RXD, GPIO44, CLK_OUT2	
TXD0	37	I/O/T	UOTXD, GPIO43, CLK_OUT1	
			加工品	

表 2 - 接上页

名称	序号	类型 ¹	功能
102	38	I/O/T	RTC_GPIO2, GPIO2, TOUCH2, ADC1_CH1
IO1	39	I/O/T	RTC_GPIO1, GPIO1 , TOUCH1, ADC1_CH0
GND	40	Р	接地
EPAD	41	Р	接地

¹ P: 电源; I: 输入; O: 输出; T: 可设置为高阻。加粗字体为管脚的默认功能。

3.3 Strapping 管脚

说明:

以下内容摘自 <u>《ESP32-S3 系列芯片技术规格书》</u>的 Strapping 管脚章节。芯片的 Strapping 管脚与模组管脚的对应 关系,可参考章节 5 模组原理图。

ESP32-S3 共有 4 个 strapping 管脚:

- GPIO0
- GPIO45
- GPIO46
- GPIO3

软件可以读取寄存器 "GPIO_STRAPPING"中这几个管脚 strapping 的值。

在芯片的系统复位(上电复位、RTC 看门狗复位、欠压复位、模拟超级看门狗 (analog super watchdog) 复位、晶振时钟毛刺检测复位)过程中, strapping 管脚对自己管脚上的电平采样并存储到锁存器中, 锁存值为 "0" 或"1", 并一直保持到芯片掉电或关闭。

GPIO0, GPIO45, GPIO46 默认连接内部弱上拉/下拉。如果这些管脚没有外部连接或者连接的外部线路处于高阻抗状态,内部弱上拉/下拉将决定这几个管脚输入电平的默认值。

GPIO3 默认处于浮空状态。GPIO3 的 strapping 值可用来切换 CPU 内部 JTAG 信号来源, 如表 4 所示。在这种情况下, 该 strapping 值由外部线路来控制, 并且外部线路不能处于高阻抗状态。表 3 列出了 EFUSE_DIS_USB_JTAG、EFUSE_DIS_PAD_JTAG 和 EFUSE_STRAP_JTAG_SEL 的所有配置组合, 用以选择 JTAG 信号来源。

表 3: JTAG 信号源选择

EFUSE_STRAP_JTAG_SEL	EFUSE_DIS_USB_JTAG	EFUSE_DIS_PAD_JTAG	JTAG 信号源选择
1	0	0	见表 4
0	0	0	USB Serial/JTAG 控制器
无关项	0	1	USB Serial/JTAG 控制器
无关项	1	0	芯片上的 JTAG 管脚
无关项	1	1	N/A

为改变 strapping 的值,用户可以应用外部下拉/上拉电阻,或者应用主机 MCU 的 GPIO 控制 ESP32-S3 上电复位时的 strapping 管脚电平。

² 由于 ESP32-S3R8V 芯片的 VDD_SPI 电压已设置为 1.8 V, 所以, 不同于其他 GPIO, 在 VDD_SPI 电源域中的 GPIO47 和 GPIO48 的工作电压也为 1.8 V。

复位放开后, strapping 管脚和普通管脚功能相同。

Strapping 管脚配置的含义请参阅表 4。

表 4: Strapping 管脚

VDD_SPI 电压					
管脚	默认	3.3 V	1.8 V		
GPIO45	下拉	0	1		
		系统启动模式 1			
管脚	默认	SPI 启动模式	下载启动模式		
GPIO0	上拉	1	0		
GPIO46	下拉	无关项	0		
	系统启动过程中,控制 ROM Code 打印 ^{2 3}				
管脚	默认	正常打印	上电不打印		
GPIO46	下拉	详见第 4 条说明	详见第 4 条说明		
		JTAG 信号源选择			
管脚	默认	EFUSE_DIS_USB_JTAG = 0, EFUS	SE_DIS_PAD_JTAG = 0,		
EFUSE_STRAP_JTAG_SEL=1					
GPIO3	N/A	0: JTAG 信号来源于芯片上的 JTAG 管脚			
GI 100	14/7	1: JTAG 信号来源于 USB Seria	al/JTAG 控制器		

说明:

- 1. GPIO46 = 1 且 GPIO0 = 0 不可使用。
- 2. ROM Code 上电打印默认同时通过 UARTO (U0TXD 管脚) 和 USB Serial/JTAG 控制器打印。通过配置寄存器和 eFuse 可配置关闭 ROM Code 上电打印。详细信息请参考《ESP32-S3 技术参考手册》中的章节 芯片 Boot 控制。

VDD_SPI 电压由 GPIO45 的 strapping 值或 eFuse 中 EFUSE_VDD_SPI_TIEH 决定。当 EFUSE_VDD_SPI_FORCE 为 0 时,VDD_SPI 电压由 GPIO45 的 strapping 值决定;当 EFUSE_VDD_SPI_FORCE 为 1 时,VDD_SPI 电压由 eFuse 中 EFUSE_VDD_SPI_TIEH 决定。ESP32-S3R8V 芯片的 VDD_SPI 电压已经通过 eFuse VDD_SPI_TIEH 和 VDD_SPI_FORCE 设置为 1.8 V,不受 GPIO45 控制。关于默认配置的信息,请参阅下表:

表 5: VDD_SPI 电压值的默认配置

芯片型号	EFUSE_VDD_SPI_FORCE	EFUSE_VDD_SPI_TIEH	VDD_SPI 电压值
ESP32-S3	0	0	由 GPIO45 决定
ESP32-S3R2	1	1	强制为 3.3 V
ESP32-S3R8	1	1	强制为 3.3 V
ESP32-S3R8V	1	0	强制为 1.8 V
ESP32-S3FN8	1	1	强制为 3.3 V
ESP32-S3FH4R2	1	1	强制为 3.3 V

图 3 显示了 CHIP_PU 上电前和上电后 Strapping 管脚的建立时间和保持时间。各参数说明如表 6 所示。

图 3: Strapping 管脚的建立时间和保持时间

表 6: Strapping 管脚的建立时间和保持时间的参数说明

参数	说明	最小值 (ms)
t_{SU}	CHIP_PU 上电前的建立时间	0
t_{HD}	CHIP_PU 上电后的保持时间	3

4 电气特性

4.1 绝对最大额定值

超出绝对最大额定值可能导致器件永久性损坏。这只是强调的额定值,不涉及器件在这些或其它条件下超出本技术规格指标的功能性操作。长时间暴露在绝对最大额定条件下可能会影响模组的可靠性。

表 7: 绝对最大额定值

符号	参数	最小值	最大值	单位
VDD33	电源管脚电压	-0.3	3.6	V
T_{STORE}	存储温度	-40	105	°C

4.2 建议工作条件

表 8: 建议工作条件

符号	参数	最小值	典型值	最大值	单位
VDD33	电源管脚电压	3.0	3.3	3.6	V
I_{VDD}	外部电源的供电电流	0.5	_	_	Α
T_A	环境温度	-40	_	65	°C

4.3 直流电气特性 (3.3 V, 25 °C)

表 9: 直流电气特性 (3.3 V, 25 °C)

符号	参数	最小值	典型值	最大值	单位
C_{IN}	管脚电容		2		рF
V_{IH}	高电平输入电压	$0.75 \times VDD^1$		VDD ¹ + 0.3	V
V_{IL}	低电平输入电压	-0.3		$0.25 \times VDD^1$	V
$ I_{IH} $	高电平输入电流		_	50	nA
$ I_{IL} $	低电平输入电流	_	_	50	nA
V_{OH}^2	高电平输出电压	0.8 × VDD ¹		_	V
V_{OL}^2	低电平输出电压	_	_	$0.1 \times VDD^1$	V
I_{OH}	高电平拉电流 (VDD ¹ = 3.3 V, V_{OH} >= 2.64 V, PAD_DRIVER = 3)	_	40	_	mA
I_{OL}	低电平灌电流 (VDD ¹ = 3.3 V, V_{OL} = 0.495 V, PAD_DRIVER = 3)	_	28	_	mA
R_{PU}	内部弱上拉电阻	_	45	_	kΩ
R_{PD}	内部弱下拉电阻	_	45	_	kΩ
V_{IH_nRST}	芯片复位释放电压(EN 管脚应满足电压范围)	$0.75 \times VDD^1$	_	VDD1+ 0.3	V
V_{IL_nRST}	芯片复位电压(EN 管脚应满足电压范围)	-0.3		$0.25 \times VDD^1$	V

¹ VDD 是 I/O 的供电电源。

 $^{^{2}}$ V_{OH} 和 V_{OL} 为负载是高阻条件下的测量值。

4.4 功耗特性

因使用了先进的电源管理技术,模组可以在不同的功耗模式之间切换。关于不同功耗模式的描述,详见《ESP32-S3系列芯片技术规格书》的低功耗管理章节。

表 10: 射频功耗

工作模式	描述		峰值 (mA)
		802.11b, 1 Mbps, @20.5 dBm	355
	TX	802.11g, 54 Mbps, @18 dBm	297
A-15 (自居了16)	1	802.11n, HT20, MCS7, @17.5 dBm	286
Active (射频工作) RX		802.11n, HT40, MCS7, @17 dBm	285
		802.11b/g/n, HT20	95
		802.11n, HT40	97

¹ 以上功耗数据是基于 3.3 V 电源、25 °C 环境温度,在 RF 接口处完成的测试结果。所有发射数据均基于 100% 的占空比测得。

请注意,表 11 提供的数据仅适用于内置芯片型号为 ESP32-S3 的模组。

表 11: 不同功耗模式下的功耗

功耗模式	描述	典型值2	单位
Light-sleep	_	1	μΑ
Doop cloop	RTC 存储器处于工作状态,RTC 外设处于工作状态	8	μΑ
Deep-sleep	RTC 存储器处于工作状态,RTC 外设处于关闭状态	7	μΑ
Power off	CHIP_PU 管脚拉低,芯片处于关闭状态	1	μΑ

 $^{^1}$ 请参考 ESP32-S3 芯片的功耗值,并加上相应的 PSRAM 功耗: 8 MB Octal PSRAM (3.3 V) 为 140 μ A; 8 MB Octal PSRAM (1.8 V) 为 200 μ A; 2 MB Quad PSRAM 为 40 μ A。

4.5 Wi-Fi 射频

4.5.1 Wi-Fi 射频标准

表 12: Wi-Fi 射频标准

名称		描述
工作频率范围 1		2400 ~ 2483.5 MHz
Wi-Fi 协议		IEEE 802.11b/g/n
		11b: 1, 2, 5.5, 11 Mbps
粉根油葱	20 MHz	11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps
数据速率		11n: MCS0-7, 72.2 Mbps (Max)
	40 MHz	11n: MCS0-7, 150 Mbps (Max)
天线类型		PCB 天线

¹工作信道中心频率范围应符合国家或地区的规范标准。软件可以配置工作信道中心频率范围。

² 测量 RX 功耗数据时,外设处于关闭状态,CPU 处于空闲状态。

² 具体数值请以 《ESP32-S3 系列芯片技术规格书》 为准。

4.5.2 Wi-Fi 射频发射器 (TX) 规格

根据产品或认证的要求, 您可以配置发射器目标功率。默认功率详见表 13.

表 13: 频谱模板和 EVM 符合 802.11 标准时的发射功率

速率	最小值 (dBm)	典型值 (dBm)	最大值 (dBm)
802.11b, 1 Mbps	_	20.5	
802.11b, 11 Mbps	_	20.5	_
802.11g, 6 Mbps	_	20.0	
802.11g, 54 Mbps	_	18.0	_
802.11n, HT20, MCS 0	_	19.0	
802.11n, HT20, MCS 7	_	17.5	_
802.11n, HT40, MCS 0	_	18.5	_
802.11n, HT40, MCS 7	_	17.0	_

表 14: 发射 EVM 测试

速率	最小值 (dB)	典型值 (dB)	标准限值 (dB)
802.11b, 1 Mbps, @20.5 dBm	_	-24.5	-10
802.11b, 11 Mbps, @20.5 dBm	_	-24.5	-10
802.11g, 6 Mbps, @20 dBm	_	-23.0	-5
802.11g, 54 Mbps, @18 dBm	_	-29.5	-25
802.11n, HT20, MCS 0, @19 dBm	_	-24.0	-5
802.11n, HT20, MCS 7, @17.5 dBm	_	-30.5	-27
802.11n, HT40, MCS 0, @18.5 dBm	_	-25.0	-5
802.11n, HT40, MCS 7, @17 dBm	_	-30.0	-27

4.5.3 Wi-Fi 射频接收器 (RX) 规格

表 15: 接收灵敏度

速率	最小值	典型值	最大值
	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps		-98.2	_
802.11b, 2 Mbps	_	-95.6	
802.11b, 5.5 Mbps	_	-92.8	
802.11b, 11 Mbps	_	-88.5	
802.11g, 6 Mbps	_	-93.0	_
802.11g, 9 Mbps	_	-92.0	
802.11g, 12 Mbps	_	-90.8	
802.11g, 18 Mbps		-88.5	
802.11g, 24 Mbps		-85.5	_
802.11g, 36 Mbps	_	-82.2	
802.11g, 48 Mbps	_	-78.0	
802.11g, 54 Mbps	_	-76.2	_
802.11n, HT20, MCS 0	_	-93.0	_
802.11n, HT20, MCS 1		-90.6	
802.11n, HT20, MCS 2	_	-88.4	_
802.11n, HT20, MCS 3		-84.8	
802.11n, HT20, MCS 4	_	-81.6	_
802.11n, HT20, MCS 5	_	-77.4	_
802.11n, HT20, MCS 6	_	-75.6	_
802.11n, HT20, MCS 7	_	-74.2	_
802.11n, HT40, MCS 0	_	-90.0	_
802.11n, HT40, MCS 1	_	-87.5	_
802.11n, HT40, MCS 2	_	-85.0	_
802.11n, HT40, MCS 3	_	-82.0	_
802.11n, HT40, MCS 4		-78.5	_
802.11n, HT40, MCS 5	_	-74.4	_
802.11n, HT40, MCS 6	_	-72.5	_
802.11n, HT40, MCS 7	_	-71.2	

表 16: 最大接收电平

速率	最小值	典型值	最大值
还 学	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps	_	5	_
802.11b, 11 Mbps	_	5	_
802.11g, 6 Mbps	_	5	_
802.11g, 54 Mbps	_	0	
802.11n, HT20, MCS 0	_	5	_
802.11n, HT20, MCS 7	_	0	_

表 16 - 接上页

速率	最小值 (dBm)	典型值 (dBm)	最大值 (dBm)
802.11n, HT40, MCS 0	_	5	_
802.11n, HT40, MCS 7	_	0	_

表 17: 接收邻道抑制

速率	最小值 (dB)	典型值 (dB)	最大值 (dB)
802.11b, 1 Mbps	_	35	_
802.11b, 11 Mbps		35	
802.11g, 6 Mbps	_	31	_
802.11g, 54 Mbps	_	14	_
802.11n, HT20, MCS 0	_	31	_
802.11n, HT20, MCS 7	_	13	_
802.11n, HT40, MCS 0	_	19	_
802.11n, HT40, MCS 7	_	8	_

4.6 低功耗蓝牙射频

表 18: 低功耗蓝牙频率

参数		典型值 (MHz)	最大值 (MHz)
工作信道中心频率	2402	_	2480

4.6.1 低功耗蓝牙射频发射器 (TX) 规格

表 19: 发射器特性 - 低功耗蓝牙 1 Mbps

参数	描述	最小值	典型值	最大值	单位
射频发射功率	射频功率控制范围	-24.00	0	21.00	dBm
別侧及别切罕	增益控制步长	_	3.00	_	dB
	$ f_n _{n=0, 1, 2,k}$ 最大值		2.50	_	kHz
载波频率偏移和漂移	$ f_0 - f_n $ 最大值	_	2.00	_	kHz
料似则华洲炒州绿炒	$ f_{n-}f_{n-5} $ 最大值	_	1.40	21.00 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0	kHz
	$ f_1-f_0 $	_	1.00	_	kHz
	$\Delta f 1_{avg}$		249.00	_	kHz
 调制特性	$\Delta f2_{ ext{max}}$ 最小值	が功率控制范围 -24.00 在控制步长 -2.5 n=0, 1, 2,k 最大值 $-2.5-f_n 最大值 -2.0-f_{n-5} 最大值 -1.4-f_{0} -1.01_{avg} -249.01_{avg} -249.01_{avg} -198.01_{avg} -198.01$	198.00	_	kHz
9円 III11寸 I工	(至少 99.9% 的 Δ $f2_{\text{max}}$)		100.00		IXI IZ
	$\Delta~f2_{ m avg}/\Delta~f1_{ m avg}$	_	0.86		_
	±2 MHz 偏移	_	-37.00	_	dBm
带内杂散发射	±3 MHz 偏移	_	-42.00	_	dBm

表 19 - 接上页

参数	描述	最小值	典型值	最大值	单位
	> ± 3 MHz 偏移	_	-44.00	_	dBm

表 20: 发射器特性 - 低功耗蓝牙 2 Mbps

参数	描述	最小值	典型值	最大值	单位
射频发射功率	射频功率控制范围	-24.00	0	21.00	dBm
别则及别切罕	增益控制步长	_	3.00	_	dB
	$ f_n _{n=0, 1, 2,k}$ 最大值		2.50	_	kHz
载波频率偏移和漂移	$ f_0 - f_n $ 最大值	_	2.00	_	kHz
似似外华個的相保的	$ f_{n-}f_{n-5} $ 最大值	_	1.40	_	kHz
	$ f_1-f_0 $	_	1.00	_	kHz
	$\Delta f 1_{avg}$	_	499.00	_	kHz
调制特性	$\Delta f 2_{\sf max}$ 最小值 (至少 99.9% 的 $\Delta f 2_{\sf max}$)	_	416.00	_	kHz
	$\Delta f 2_{\rm avg}/\Delta f 1_{\rm avg}$	_	0.89		_
	±4 MHz 偏移	_	-42.00	_	dBm
带内杂散发射	±5 MHz 偏移	_	-44.00	_	dBm
	> ± 5 MHz 偏移	_	-47.00	_	dBm

表 21: 发射器特性 - 低功耗蓝牙 125 Kbps

参数	描述	最小值	典型值	最大值	单位
that the thirth ->>	射频功率控制范围	-24.00	0	21.00	dBm
射频发射功率	增益控制步长	_	3.00	_	dB
载波频率偏移和漂移	$ f_n _{n=0, 1, 2,k}$ 最大值		0.80		kHz
	$ f_0 - f_n $ 最大值	_	1.00	_	kHz
	$ f_n - f_{n-3} $		0.30		kHz
	$ f_0-f_3 $	_	1.00		kHz
	$\Delta f 1_{ ext{avg}}$		248.00		kHz
调制特性	$\Delta f1_{ ext{max}}$ 最小值		222.00		kHz
	(至少 99.9% 的 $\Delta f1_{\text{max}}$)		222.00		NI IZ
	±2 MHz 偏移		-37.00		dBm
带内杂散发射	±3 MHz 偏移	_	-42.00		dBm
	> ± 3 MHz 偏移	_	-44.00		dBm

表 22: 发射器特性 - 低功耗蓝牙 500 Kbps

参数	描述	最小值	典型值	最大值	单位
射频发射功率	射频功率控制范围	-24.00	0	21.00	dBm
别则及别切罕	增益控制步长	_	3.00	_	dB
	$ f_n _{n=0, 1, 2,k}$ 最大值	_	0.80		kHz
载波频率偏移和漂移	$ f_0 - f_n $ 最大值	_	1.00	_	kHz
蚁奴架严陋物相保物					加玉哥

表 22 - 接上页

参数	描述	最小值	典型值	最大值	单位
	$ f_n - f_{n-3} $	_	0.85	_	kHz
	$ f_0-f_3 $	_	0.34	_	kHz
	$\Delta f 2_{avg}$	_	213.00	_	kHz
调制特性	$\Delta f 2_{\text{max}}$ 最小值		196.00		kHz
	(至少 99.9% 的 Δ $f2_{\text{max}}$)	— 196.00		_	NI IZ
	±2 MHz 偏移	_	-37.00	_	dBm
带内杂散发射	±3 MHz 偏移	_	-42.00	_	dBm
	> ± 3 MHz 偏移		-44.00	_	dBm

4.6.2 低功耗蓝牙射频接收器 (RX) 规格

表 23: 接收器特性 - 低功耗蓝牙 1 Mbps

参数	描述	最小值	典型值	最大值	单位
灵敏度 @30.8% PER	_	_	-96.5	_	dBm
最大接收信号 @30.8% PER	_	_	8	_	dBm
共信道抑制比 C/I	F = F0 MHz	_	9	_	dB
	F = F0 + 1 MHz	_	-3	_	dB
	F = F0 – 1 MHz	_	-3	_	dB
	F = F0 + 2 MHz	_	-28	_	dB
	F = F0 – 2 MHz	_	-30	_	dB
邻道选择性抑制比 C/I	F = F0 + 3 MHz	_	-31	_	dB
	F = F0 – 3 MHz	_	-33	_	dB
	F > F0 + 3 MHz	_	-32	_	dB
	F > F0 – 3 MHz	_	-36	_	dB
镜像频率	_	_	-32	_	dB
勿 送降侮妬变工业	$F = F_{image} + 1 \text{ MHz}$	_	-39	_	dB
邻道镜像频率干扰	$F = F_{image} - 1 \text{ MHz}$	_	-31	_	dB
	30 MHz ~ 2000 MHz	_	-9	_	dBm
	2003 MHz ~ 2399 MHz	_	-18	_	dBm
带外阻塞	2484 MHz ~ 2997 MHz	_	-15	_	dBm
	3000 MHz ~ 12.75 GHz	_	-5	_	dBm
互调	_	_	-29	_	dBm

表 24: 接收器特性 - 低功耗蓝牙 2 Mbps

参数	描述	最小值	典型值	最大值	单位
灵敏度 @30.8% PER	_	_	-92.5	_	dBm
最大接收信号 @30.8% PER	_	_	3	_	dBm
共信道干扰 C/I	F = F0 MHz	_	10	_	dB
	F = F0 + 2 MHz	_	-8	_	dB
	F = F0 – 2 MHz		-5		dB

表 24 - 接上页

参数	描述	最小值	典型值	最大值	单位
	F = F0 + 4 MHz	_	-31	_	dB
	F = F0 – 4 MHz	_	-33	_	dB
	F = F0 + 6 MHz	_	-37	_	dB
	F = F0 – 6 MHz		-37	_	dB
	F > F0 + 6 MHz	_	-40	_	dB
	F > F0 - 6 MHz	_	-40	_	dB
镜像频率	_	_	-31	_	dB
邻道镜像频率干扰	$F = F_{image} + 2 MHz$	_	-37	_	dB
70.担税 家 炒 平 1 九	$F = F_{image} - 2 \text{ MHz}$	_	-8	_	dB
	30 MHz ~ 2000 MHz	_	-15	_	dBm
世 A 四 安	2003 MHz ~ 2399 MHz		-19	_	dBm
带外阻塞 	2484 MHz ~ 2997 MHz	_	-15	_	dBm
	3000 MHz ~ 12.75 GHz	_	-6	_	dBm
互调	_		-29		dBm

表 25: 接收器特性 - 低功耗蓝牙 125 Kbps

参数	描述	最小值	典型值	最大值	单位
灵敏度 @30.8% PER	_	_	-103.5		dBm
最大接收信号 @30.8% PER	_	_	8	_	dBm
共信道抑制比 C/I	F = F0 MHz	_	6	_	dB
	F = F0 + 1 MHz	_	-6		dB
	F = F0 – 1 MHz	_	-5	_	dB
	F = F0 + 2 MHz	_	-32	_	dB
 邻道选择性抑制比 C/I	F = F0 – 2 MHz		-39	_	dB
や但処理性が耐化の	F = F0 + 3 MHz	_	-35		dB
	F = F0 - 3 MHz		-45	_	dB
	F > F0 + 3 MHz	_	-35	_	dB
	F > F0 – 3 MHz		-48	_	dB
镜像频率	_	_	-35	_	dB
MV关序协称压力 T.4D	$F = F_{image} + 1 \text{ MHz}$	_	-49		dB
邻道镜像频率干扰 	$F = F_{image} - 1 \text{ MHz}$	_	-32	_	dB

表 26: 接收器特性 - 低功耗蓝牙 500 Kbps

参数	描述	最小值	典型值	最大值	单位
灵敏度 @30.8% PER	_	_	-100	_	dBm
最大接收信号 @30.8% PER	_	_	8	_	dBm
共信道抑制比 C/I	F = F0 MHz	_	4	_	dB
	F = F0 + 1 MHz	_	-5	_	dB
	F = F0 - 1 MHz	_	-5	_	dB
	F = F0 + 2 MHz		-28		dB

见下页

邻道选择性抑制比 C/I

表 26 - 接上页

参数	描述	最小值	典型值	最大值	单位
	F = F0 - 2 MHz	_	-36	_	dB
	F = F0 + 3 MHz	_	-36	_	dB
	F = F0 - 3 MHz		-38	_	dB
	F > F0 + 3 MHz		-37	_	dB
	F > F0 – 3 MHz	_	-41	_	dB
镜像频率	_	_	-37	_	dB
\(\rightarrow\righta	$F = F_{image} + 1 \text{ MHz}$	_	-44	_	dB
邻道镜像频率干扰	$F = F_{image} - 1 \text{ MHz}$	_	-28	_	dB

5 模组原理图

模组内部元件的电路图。

图 4: ESP32-S3-WROOM-2 原理图

外围设计原理图 6

模组与外围器件(如电源、天线、复位按钮、JTAG 接口、UART 接口等)连接的应用电路图。

图 5: 外围设计原理图

- EPAD 可以不焊接到底板,但是焊接到底板的 GND 可以获得更好的散热特性。如果您想将 EPAD 焊接到 底板, 请确保焊膏使用量正确。
- 为确保 ESP32-S3 芯片上电时的供电正常, EN 管脚处需要增加 RC 延迟电路。RC 通常建议为 R = $10 \text{ k}\Omega$, $C = 1 \mu F$,但具体数值仍需根据模组电源的上电时序和芯片的上电复位时序进行调整。ESP32-S3 芯片的 上电复位时序图可参考 《ESP32-S3 系列芯片技术规格书》的电源管理章节。

7.1 模组尺寸

图 6: ESP32-S3-WROOM-2 模组尺寸

说明:

有关卷带、载盘和产品标签的信息,请参阅_《乐鑫模组包装信息》。

7.2 推荐 PCB 封装图

图 7: ESP32-S3-WROOM-2 推荐 PCB 封装图

8.1 存储条件

密封在防潮袋 (MBB) 中的产品应储存在 < 40°C/90%RH 的非冷凝大气环境中。

模组的潮湿敏感度等级 MSL 为 3 级。

真空袋拆封后,在 25±5°C、60%RH下,必须在 168 小时内使用完毕,否则就需要烘烤后才能二次上线。

8.2 ESD

人体放电模式 (HBM): ±2000 V充电器件模式 (CDM): ±500 V

8.3 回流焊温度曲线

建议模组只过一次回流焊。

图 8: 回流焊温度曲线

8.4 超声波振动

请避免将乐鑫模组暴露于超声波焊接机或超声波清洗机等超声波设备的振动中。超声波设备的振动可能与模组 内部的晶振产生共振,导致晶振故障甚至失灵,**进而致使模组无法工作或性能退化**。

9 相关文档和资源

相关文档

- 《ESP32-S3 技术规格书》 提供 ESP32-S3 芯片的硬件技术规格。
- 《ESP32-S3 技术参考手册》 提供 ESP32-S3 芯片的存储器和外设的详细使用说明。
- 《ESP32-S3 硬件设计指南》 提供基于 ESP32-S3 芯片的产品设计规范。
- 证书

https://espressif.com/zh-hans/support/documents/certificates

• 文档更新和订阅通知

https://espressif.com/zh-hans/support/download/documents

开发者社区

- 《ESP32-S3 ESP-IDF 编程指南》 ESP-IDF 开发框架的文档中心。
- ESP-IDF 及 GitHub 上的其它开发框架

https://github.com/espressif

- ESP32 论坛 工程师对工程师 (E2E) 的社区,您可以在这里提出问题、解决问题、分享知识、探索观点。https://esp32.com/
- The ESP Journal 分享乐鑫工程师的最佳实践、技术文章和工作随笔。 https://blog.espressif.com/
- SDK 和演示、App、工具、AT 等下载资源 https://espressif.com/zh-hans/support/download/sdks-demos

产品

- ESP32-S3 系列芯片 ESP32-S3 全系列芯片。
 https://espressif.com/zh-hans/products/socs?id=ESP32-S3
- ESP32-S3 系列模组 ESP32-S3 全系列模组。

https://espressif.com/zh-hans/products/modules?id=ESP32-S3

- ESP32-S3 系列开发板 ESP32-S3 全系列开发板。
 - https://espressif.com/zh-hans/products/devkits?id=ESP32-S3
- ESP Product Selector(乐鑫产品选型工具) 通过筛选性能参数、进行产品对比快速定位您所需要的产品。 https://products.espressif.com/#/product-selector?language=zh

联系我们

• 商务问题、技术支持、电路原理图 & PCB 设计审阅、购买样品(线上商店)、成为供应商、意见与建议 https://espressif.com/zh-hans/contact-us/sales-questions

修订历史

日期	版本	发布说明
2022-08-01	v1.0	 添加模组认证和测试信息 更新表 1 及表 11 并添加注释 更新表 2 中的注释 更新表 19 中的射频功率控制范围 其他微小改动
2022-05-09	v0.7	更新管脚定义表格
2021-12-31	v0.6	全面更新,针对芯片版本 revision 1
2021-07-13	v0.1	预发布,针对芯片版本 revision 0

免责声明和版权公告

本文档中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

本文档可能引用了第三方的信息,所有引用的信息均为"按现状"提供,乐鑫不对信息的准确性、真实性做任何保证。

乐鑫不对本文档的内容做任何保证,包括内容的适销性、是否适用于特定用途,也不 提供任何其他乐鑫提案、规格书或样品在他处提到的任何保证。

乐鑫不对本文档是否侵犯第三方权利做任何保证,也不对使用本文档内信息导致的任何侵犯知识产权的行为负责。本文档在此未以禁止反言或其他方式授予任何知识产权 许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文档中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归 © 2022 乐鑫信息科技(上海)股份有限公司。保留所有权利。