Задача А. Остовное дерево (1 балл)

Имя входного файла: spantree.in Имя выходного файла: spantree.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Даны точки на плоскости, являющиеся вершинами полного графа. Вес ребра равен расстоянию между точками, соответствующими концам этого ребра. Требуется в этом графе найти остовное дерево минимального веса.

Формат входного файла

Первая строка входного файла содержит натуральное число n — количество вершин графа $(1 \le n \le 5000)$. Каждая из следующих n строк содержит два целых числа x_i, y_i — координаты i-й вершины $(-10\,000 \le x_i, y_i \le 10\,000)$. Никакие две точки не совпадают.

Формат выходного файла

Первая строка выходного файла должна содержать одно вещественное число — вес минимального остовного дерева.

spantree.in	spantree.out
3	2
0 0	
1 0	
0 1	

Задача В. Остовное дерево 2 (1 балл)

Имя входного файла: spantree2.in Имя выходного файла: spantree2.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Требуется найти в связном графе остовное дерево минимального веса.

Формат входного файла

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и ребер графа соответственно. Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается тремя натуральными числами b_i, e_i и w_i — номера концов ребра и его вес соответственно ($1 \le b_i, e_i \le n, 0 \le w_i \le 100\,000$). $n \le 20\,000, m \le 100\,000$.

Граф является связным.

Формат выходного файла

Первая строка выходного файла должна содержать одно натуральное число — вес минимального остовного дерева.

spantree2.in	spantree2.out
4 4	7
1 2 1	
2 3 2	
3 4 5	
4 1 4	

Задача С. Плотное остовное дерево (1 балл)

Имя входного файла: mindiff.in Имя выходного файла: mindiff.out Ограничение по времени: 4 секунды Ограничение по памяти: 64 мегабайта

Требуется найти в связном графе остовное дерево, в котором разница между весом максимального и минимального ребра минимальна.

Формат входного файла

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и ребер графа соответственно. Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается тремя натуральными числами b_i , e_i и w_i — номера концов ребра и его вес соответственно ($1 \le b_i$, $e_i \le n$, $0 \le |w_i| \le 10^9$). $n \le 1000$, $m \le 10\,000$.

Формат выходного файла

Если остовное дерево существует, выведите в первой строке выходного файла YES, а во второй строке одно целое число — минимальную разность между весом максимального и минимального ребра в остовном дереве.

В противном случае в единственной строке выведите NO.

mindiff.in	mindiff.out
4 5	YES
1 2 1	0
1 3 2	
1 4 1	
3 2 2	
3 4 2	

Задача D. Эйлеров путь (1 балл)

Имя входного файла: euler.in
Имя выходного файла: euler.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Дан неориентированный связный граф, не более трех вершин имеет нечетную степень. Требуется определить, существует ли в нем путь, проходящий по всем ребрам.

Формат входного файла

Первая строка входного файла содержит натуральное число n — количество вершин графа ($1 \le n \le 1\,000$). Далее следуют n строк, задающих ребра. В i-ой из этих строк находится число m_i — количество ребер, инцидентных вершине i. Далее следуют m_i натуральных чисел — номера вершин, в которые идет j-ое ребро из i-ой вершины.

Граф может содержать кратные ребра, но не содержит петель.

Формат выходного файла

Если решение существует, то в первую строку выходного файла выведите одно число k — количество ребер в искомом маршруте, а во вторую k+1 число — номера вершин в порядке их посещения.

Если решений нет, выведите в выходной файл одно число -1.

Если решений несколько, выведите любое.

euler.in	euler.out
4	5
2 2 2	1 2 3 4 2 1
4 1 4 3 1	
2 2 4	
2 3 2	

Задача Е. Алгоритм двух китайцев (3 балла)

Имя входного файла: chinese.in Имя выходного файла: chinese.out Ограничение по времени: 4 секунды Ограничение по памяти: 256 мегабайт

Дан ориентированный взвешенный граф. Покрывающим деревом с корнем в вершине u назовем множество ребер, таких что из вершины u достижима любая другая вершина v, притом единственным образом. Весом дерева назовем сумму весов его ребер.

Требуется определить, существует ли в данном графе покрыващее дерево с корнем в вершине с номером 1. В случае существование требуется определить его минимальный вес.

Формат входного файла

В первой строке входного файла два числа: n и m ($2 \le n \le 1000, 1 \le m \le 10000$), где n — количество вершин графа, а m — количество ребер.

Следующие m строк содержат описание ребер. Каждое ребро задается стартовой вершиной, конечной вершиной и весом ребра. Вес каждого ребра — целое число, не превосходящее по модулю 10^9 .

Формат выходного файла

Если покрывающее дерево существует, выведите в первой строке выходного файла YES, а во второй строке целое число — его минимальный вес. В противном случае в единственной строке выведите NO.

chinese.in	chinese.out
2 1	NO
2 1 10	
4 5	YES
1 2 2	6
1 3 3	
1 4 3	
2 3 2	
2 4 2	