Midterm 1 W24

Maya Ziebarth 2024-02-06

Instructions

Answer the following questions and complete the exercises in RMarkdown. Please embed all of your code and push your final work to your repository. Your code must be organized, clean, and run free from errors. Remember, you must remove the # for any included code chunks to run. Be sure to add your name to the author header above.

Your code must knit in order to be considered. If you are stuck and cannot answer a question, then comment out your code and knit the document. You may use your notes, labs, and homework to help you complete this exam. Do not use any other resources- including AI assistance.

Don't forget to answer any questions that are asked in the prompt!

Be sure to push your completed midterm to your repository. This exam is worth 30 points.

Background

In the data folder, you will find data related to a study on wolf mortality collected by the National Park Service. You should start by reading the README_NPSwolfdata.pdf file. This will provide an abstract of the study and an explanation of variables.

The data are from: Cassidy, Kira et al. (2022). Gray wolf packs and human-caused wolf mortality. Dryad (https://doi.org/10.5061/dryad.mkkwh713f).

Load the libraries

```
library("tidyverse")
library("janitor")
```

Load the wolves data

In these data, the authors used NULL to represent missing values. I am correcting this for you below and using janitor to clean the column names.

```
wolves <- read.csv("data/NPS_wolfmortalitydata.csv", na = c("NULL")) %>% clean_name
s()
```

Questions

Problem 1. (1 point) Let's start with some data exploration. What are the variable (column) names?

```
names(wolves)
```

```
## [1] "park" "biolyr" "pack" "packcode" "packsize_aug"
## [6] "mort_yn" "mort_all" "mort_lead" "mort_nonlead" "reprody1"
## [11] "persisty1"
```

Problem 2. (1 point) Use the function of your choice to summarize the data and get an idea of its structure.

```
glimpse(wolves)
```

```
## Rows: 864
## Columns: 11
## $ park
                                                         <chr> "DENA", "DE
                                                         <int> 1996, 1991, 2017, 1996, 1992, 1994, 2007, 2007, 1995, 200...
## $ biolyr
                                                         <chr> "McKinley River1", "Birch Creek N", "Eagle Gorge", "East ...
## $ pack
## $ packcode
                                                         <int> 89, 58, 71, 72, 74, 77, 101, 108, 109, 53, 63, 66, 70, 72...
## $ packsize aug <dbl> 12, 5, 8, 13, 7, 6, 10, NA, 9, 8, 7, 11, 0, 19, 15, 12, 1...
## $ mort yn
                                                         ## $ mort all
                                                         <int> 4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
                                                         <int> 2, 2, 0, 0, 0, 0, 1, 2, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, ...
## $ mort lead
## $ mort_nonlead <int> 2, 0, 2, 2, 2, 2, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, ...
                                                         <int> 0, 0, NA, 1, NA, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1...
## $ reprody1
## $ persisty1
                                                         <int> 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, ...
```

```
str(wolves)
```

```
'data.frame':
                    864 obs. of 11 variables:
##
    $ park
                  : chr
                          "DENA" "DENA" "DENA" ...
                         1996 1991 2017 1996 1992 1994 2007 2007 1995 2003 ...
##
    $ biolyr
                  : int
                          "McKinley River1" "Birch Creek N" "Eagle Gorge" "East Fork"
    $ pack
##
                  : chr
. . .
                         89 58 71 72 74 77 101 108 109 53 ...
##
    $ packcode
                  : int
    $ packsize_aug: num
                         12 5 8 13 7 6 10 NA 9 8 ...
##
    $ mort yn
##
                  : int
                         1 1 1 1 1 1 1 1 1 1 ...
##
    $ mort all
                  : int
                         4 2 2 2 2 2 2 2 2 1 ...
    $ mort lead
                         2 2 0 0 0 0 1 2 1 1 ...
##
                  : int
##
   $ mort_nonlead: int
                         2 0 2 2 2 2 1 0 1 0 ...
##
    $ reprody1
                  : int
                         0 0 NA 1 NA 0 0 1 0 1 ...
    $ persisty1
                  : int
                         0 0 1 1 1 1 0 1 0 1 ...
##
```

Problem 3. (3 points) Which parks/ reserves are represented in the data? Don't just use the abstract, pull this information from the data.

```
wolves %>%
  group_by(park) %>%
  summarize(n_distinct=n())
```

```
## # A tibble: 5 × 2
##
     park n distinct
##
     <chr>
                 <int>
## 1 DENA
                   340
## 2 GNTP
                    77
## 3 VNP
                    48
## 4 YNP
                   248
## 5 YUCH
                   151
```

Problem 4. (4 points) Which park has the largest number of wolf packs?

```
wolves %>%
  select(park, packsize_aug) %>%
  group_by(park) %>%
  summarize(pack_total=sum(packsize_aug, na.rm=T)) %>%
  arrange(desc(pack_total))
```

```
## # A tibble: 5 × 2
##
     park pack_total
##
     <chr>
                <dbl>
## 1 YNP
                 2731
## 2 DENA
                2500
## 3 YUCH
                 1048
## 4 GNTP
                  781.
## 5 VNP
                   50
```

Problem 5. (4 points) Which park has the highest total number of human-caused mortalities mort_all?

```
wolves %>%
  select(park, mort_all) %>%
  group_by(park) %>%
  summarize(mort_all_total=sum(mort_all, na.rm=T)) %>%
  arrange(desc(mort_all_total))
```

```
## # A tibble: 5 × 2
     park mort all total
##
                     <int>
##
     <chr>
## 1 YUCH
                        136
## 2 YNP
                         72
## 3 DENA
                         64
## 4 GNTP
                         38
## 5 VNP
                         11
```

The wolves in Yellowstone National Park (https://www.nps.gov/yell/learn/nature/wolf-restoration.htm) are an incredible conservation success story. Let's focus our attention on this park.

Problem 6. (2 points) Create a new object "ynp" that only includes the data from Yellowstone National Park.

```
ynp <- filter(wolves, park=="YNP")</pre>
```

Problem 7. (3 points) Among the Yellowstone wolf packs, the Druid Peak Pack (https://www.pbs.org/wnet/nature/in-the-valley-of-the-wolves-the-druid-wolf-pack-story/209/) is one of most famous. What was the average pack size of this pack for the years represented in the data?

```
ynp %>%
  filter(pack=="druid") %>%
  group_by(biolyr) %>%
  summarize(mean_pack_druid=mean(packsize_aug)) %>%
  arrange(desc(mean_pack_druid))
```

```
## # A tibble: 15 × 2
##
       biolyr mean pack druid
##
        <int>
                          <dbl>
         2001
##
    1
                              37
    2
         2000
                              27
##
##
    3
         2008
                              21
         2003
##
    4
                              18
##
    5
         2007
                              18
    6
         2002
                              16
##
    7
         2006
##
                              15
##
    8
         2004
                              13
         2009
##
    9
                              12
                               9
## 10
         1999
## 11
         1998
                               8
## 12
         1996
                               5
## 13
         1997
                               5
## 14
         2005
                               5
                               0
## 15
         2010
```

Problem 8. (4 points) Pack dynamics can be hard to predict- even for strong packs like the Druid Peak pack. At which year did the Druid Peak pack have the largest pack size? What do you think happened in 2010?

```
ynp %>%
  filter(pack=="druid") %>%
  group_by(biolyr) %>%
  summarize(largest_pack_druid=max(packsize_aug)) %>%
  arrange(desc(largest_pack_druid))
```

```
## # A tibble: 15 × 2
##
      biolyr largest pack druid
##
        <int>
                              <dbl>
##
         2001
                                  37
    1
                                  27
    2
         2000
##
##
    3
         2008
                                  21
##
    4
         2003
                                  18
##
    5
         2007
                                  18
##
    6
         2002
                                  16
##
    7
         2006
                                  15
##
    8
         2004
                                  13
    9
##
         2009
                                  12
## 10
         1999
                                   9
## 11
         1998
                                   8
         1996
## 12
                                   5
## 13
                                   5
         1997
                                   5
## 14
         2005
## 15
         2010
                                   0
```

Problem 9. (5 points) Among the YNP wolf packs, which one has had the highest overall persistence persisty1 for the years represented in the data? Look this pack up online and tell me what is unique about its behavior- specifically, what prey animals does this pack specialize on?

```
ynp %>%
  mutate_if(is.character, factor) %>%
  count(pack, persisty1, sort = T)
```

```
##
                   pack persisty1
## 1
               mollies
                                  1 26
                                  1 20
##
   2
                 cougar
##
             yelldelta
                                  1 18
## 4
                  druid
                                  1 13
## 5
               leopold
                                  1 12
## 6
                  agate
                                  1 10
## 7
                                     9
                  8mile
                                  1
## 8
                 canyon
                                  1
                                     9
```

,,,,,	0		1	0
##	9	gibbon/mary	1	9
##	10	nezperce	1	9
##	11	junction	1	8
##	12	lamar	1	8
##	13	rose	1	8
##	14	swan	1	6
##	15	wapiti	1	6
##	16	blacktail	1	5
##	17	slough	1	5
##	18	geode/hell	1	4
##	19	quadrant	1	4
##	20	hayden	1	3
##	21	phantom	1	3
##	22	prospect	1	3
##	23	bechler	1	2
##	24	heart	1	2
##	25	lava	1	2
##	26	oxbow	1	2
##	27	snake	1	2
##	28	1118Fgroup	0	1
##	29	1155Mgroup	0	1
##	30	642Fgroup	0	1
##	31	682Mgroup	0	1
##	32	682Mgroup	1	1
##	33	694Fgroup	0	1
##	34	755Mgroup	0	1
##	35	963Fgroup	0	1
##	36	agate	0	1
##	37	biscuit	1	1
##	38	buffalofork	0	1
##	39	buffalofork	1	1
	40	canyon	0	1
##	41	carnelian	0	1
##	42	cinnabar	1	1
##	43	cottonwood	0	1
##	44	cottonwood	1	1
##	45	crevice	1	1
##	46	druid	0	1
##	47	druid	NA	1
##	48	everts	0	1
##	49	everts	1	1
##	50	gibbon/mary	0	1
##	51	grayling	0	1
##	52	grayling	1	1
##	53	hayden	0	1
##	54	lava	0	1
##	55	leopold	0	1

##	56	lonestar	0	1
##	57	nezperce	0	1
##	58	nezperce	NA	1
##	59	oxbow	0	1
##	60	prospect	0	1
##	61	specimen/silver	0	1
##	62	specimen/silver	1	1
##	63	thorofare	0	1
##	64	thorofare	1	1
##	65	thorofare	NA	1
##	66	tower	0	1
##	67	tower	1	1

The Mollie wolf pack hunts bison, which provide a lot of food for them and other scavengers. They regularly interact with bears because of their bison hunting which no other wolf pack does.

Problem 10. (3 points) Perform one analysis or exploration of your choice on the wolves data. Your answer needs to include at least two lines of code and not be a summary function.

```
wolves %>%
  select(park, biolyr, pack, mort_all) %>%
  filter(park=="DENA" & biolyr>=2000) %>%
  filter(pack!="East Fork") %>%
  arrange(desc(mort_all))
```

```
##
        park biolyr
                                   pack mort_all
## 1
        DENA
                2017
                           Eagle Gorge
                                                 2
##
                                                 2
        DENA
                2007
                                  Pinto
                                                 2
##
   3
       DENA
                2007
                                 Savage
                                                 1
##
   4
        DENA
                2003
                               100 Mile
##
   5
        DENA
                2003
                         Castle Rocks2
                                                 1
##
   6
        DENA
                2007
                                Chitsia
                                                 1
   7
        DENA
                2003
                                                 1
##
                          Death Valley
##
        DENA
                2007
                           Grant Creek
                                                 1
  8
##
        DENA
                2012
                           Grant Creek
                                                 1
##
   10
       DENA
               2013
                           Grant Creek
                                                 1
                                                 1
##
   11
        DENA
                2008
                            Hot Slough
## 12
       DENA
                2017
                       Iron Creek West
                                                 1
##
   13
       DENA
                2014
                           John Hansen
                                                 1
##
   14
       DENA
                2006
                      Kantishna River
                                                 1
                                                 1
   15
        DENA
                2007
##
                                McLeod2
   16
                2003
##
       DENA
                           Mt Margaret
                                                 1
                                                 1
##
   17
       DENA
                2008
                           Mt Margaret
##
   18
       DENA
                2009
                           Mt Margaret
                                                 1
## 19
       DENA
                2003
                           Muddy River
                                                 1
```

##	20	DENA	2016	Myrtle	1
##	21	DENA	2013	Nenana River	1
##	22	DENA	2017	Riley Creek	1
##	23	DENA	2007	Somber	1
##	24	DENA	2006	Starr Lake	1
##	25	DENA	2003	Straightaway	1
##	26	DENA	2009	Tonzona	1
##	27	DENA	2007	Hauke Creek	1
##	28	DENA	2000	Sanctuary	1
##	29	DENA	2000	100 Mile	0
##	30	DENA	2001	100 Mile	0
##	31	DENA	2002	100 Mile	0
##	32	DENA	2002	100 Mile	0
##	33	DENA	2004	Bearpaw	0
##		DENA	2005	Bearpaw	0
##	35	DENA	2005		0
##	36	DENA	2007	Bearpaw	0
##	37	DENA	2007	Bearpaw	0
##	38		2008	Bearpaw	
##		DENA DENA	2009	Bearpaw	0
				Bearpaw	
##	40	DENA	2011	Bearpaw	0
##	41	DENA	2012	Bearpaw	0
##		DENA	2013	Bearpaw	0
##	43	DENA	2014	Bearpaw	0
##		DENA	2015	Bearpaw	0
##	45	DENA	2016	Bearpaw	0
##	46	DENA	2017	Bearpaw	0
##	47	DENA	2000	Birch Hills	0
##	48	DENA	2008	Boot Lake	0
##	_	DENA	2009	Boot Lake	0
##	50	DENA	2001	Brooker	0
##		DENA	2002	Brooker	0
##		DENA	2004	Castle Rocks2	0
	53	DENA	2006	Castle Rocks3	0
##		DENA	2007	Castle Rocks3	0
##		DENA	2008	Castle Rocks3	0
##		DENA	2004	Chitsia	0
##		DENA	2005	Chitsia	0
##		DENA	2006	Chitsia	0
##		DENA	2008	Chitsia	0
##		DENA	2000	Death Valley	0
##		DENA	2001	Death Valley	0
##		DENA	2002	Death Valley	0
##		DENA	2016	Eagle Gorge	0
##		DENA	2000	Foraker	0
##		DENA	2001	Foraker	0
##	66	DENA	2002	Grant Creek	0

##	67	DENA	2003	Grant Creek	0
##	68	DENA	2004	Grant Creek	0
##	69	DENA	2005	Grant Creek	0
##	70	DENA	2006	Grant Creek	0
##	71	DENA	2008	Grant Creek	0
##	72	DENA	2009	Grant Creek	0
##	73	DENA	2010	Grant Creek	0
##	74	DENA	2011	Grant Creek	0
##	75	DENA	2014	Grant Creek	0
##	76	DENA	2015	Grant Creek	0
##	77	DENA	2016	Grant Creek	0
##	78	DENA	2017	Grant Creek	0
##	79	DENA	2008	Hauke Creek	0
##	80	DENA	2002	Herron	0
##	81	DENA	2003	Herron	0
##	82	DENA	2004	Herron	0
##	83	DENA	2007	Hot Slough	0
##	84	DENA	2009	Hot Slough	0
##	85	DENA	2010	Hot Slough	0
##	86	DENA	2011	Hot Slough	0
##	87	DENA	2012	Hot Slough	0
##	88	DENA	2013	Hot Slough	0
##	89	DENA	2014	Hot Slough	0
##	90	DENA	2015	Hot Slough	0
##	91	DENA	2010	Iron Creek	0
##	92	DENA	2011	Iron Creek	0
##	93	DENA	2013	Iron Creek East	0
##	94	DENA	2014	Iron Creek East	0
##	95	DENA	2013	Iron Creek West	0
##	96	DENA	2014	Iron Creek West	0
##	97	DENA	2015	Iron Creek West	0
##	98	DENA	2016	Iron Creek West	0
##	99	DENA	2013	John Hansen	0
##	100	DENA	2015	John Hansen	0
##	101	DENA	2016	John Hansen	0
##	102	DENA		John Hansen	0
##	103	DENA	2000	Kantishna River	0
##	104	DENA	2001	Kantishna River	0
##	105	DENA		Kantishna River	0
##	106	DENA	2003	Kantishna River	0
##	107	DENA	2004	Kantishna River	0
		DENA			0
				Kantishna River	0
				Kantishna River	0
				Kantishna River	0
		DENA			0
##	113	DENA	2004	McKinley River	0

##	114	DENA	2005	McKinley River	0
##	115	DENA	2006	McKinley River	0
##	116	DENA	2007	McKinley River	0
##	117	DENA	2000	McKinley Slough	0
##	118	DENA	2001	McKinley Slough	0
##	119	DENA	2002	McKinley Slough	0
##	120	DENA	2003	McKinley Slough	0
##	121	DENA	2004	McKinley Slough	0
	122	DENA	2005	McKinley Slough	0
		DENA	2006	McKinley Slough	0
##		DENA	2007	McKinley Slough	0
##	125	DENA	2009	McKinley Slough	0
##		DENA	2010	McKinley Slough	0
	127	DENA	2011	McKinley Slough	0
		DENA	2012	McKinley Slough	0
##	129		2013	McKinley Slough	0
##	130	DENA	2014	McKinley Slough	0
##		DENA	2015	McKinley Slough	0
	132	DENA	2016	McKinley Slough	0
		DENA	2009	Moose Creek	0
##	134		2010	Moose Creek	0
##	135	DENA	2000	Mt Margaret	0
##		DENA	2001	Mt Margaret	0
	137	DENA	2002	Mt Margaret	0
##		DENA	2004	Mt Margaret	0
##	139		2005	Mt Margaret	0
##	140	DENA	2006	Mt Margaret	0
##		DENA	2007	Mt Margaret	0
	142	DENA	2000	Muddy River	0
##		DENA	2001	Muddy River	0
##	144	DENA	2002	Muddy River	0
		DENA	2015	Myrtle	0
		DENA	2009	Nenana River	0
		DENA	2010	Nenana River	0
		DENA	2011	Nenana River	0
		DENA	2012	Nenana River	0
		DENA		Nenana River	0
		DENA	2000	North Fork	0
		DENA		North Fork	0
		DENA	2009	Otter Lake	0
		DENA	2006	Pinto	0
		DENA	2000	Pinto Creek	0
		DENA	2001	Pinto Creek	0
		DENA		Pinto Creek	0
		DENA	2014	Riley Creek	0
		DENA		Riley Creek	0
		DENA	2016	Riley Creek	0
" "	-00		_ 0 1 0	niioj orock	J

## 161	DENA	2018 F	Riley Creek West	0
## 162	DENA	2008	Savage	0
## 163	DENA	2008	Somber	0
## 164	DENA	2009	Somber	0
## 165	DENA	2010	Somber	0
## 166	DENA	2012	Somber	0
## 167	DENA	2013	Somber	0
## 168	DENA	2014	Somber	0
## 169	DENA	2015	Somber	0
## 170	DENA	2000	Stampede	0
## 171	DENA	2001	Stampede	0
## 172	DENA	2001	Starr Lake	0
## 173	DENA	2002	Starr Lake	0
## 174	DENA	2003	Starr Lake	0
## 175	DENA	2004	Starr Lake	0
## 176	DENA	2005	Starr Lake	0
## 177	DENA	2007	Starr Lake	0
## 178	DENA	2008	Starr Lake	0
## 179	DENA	2009	Starr Lake	0
## 180	DENA	2010	Starr Lake	0
## 181	DENA	2000	Straightaway	0
## 182	DENA	2001	Straightaway	0
## 183	DENA	2002	Straightaway	0
## 184	DENA	2004	Straightaway	0
## 185	DENA	2005	Turtle Hill	0
## 186	DENA	2006	Turtle Hill	0