

IBM Training

Course Quick View with Full TOC

Algorithms for Intelligent Systems and Robotics

Course code AIR01 ERC 1.0

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide.

The following are trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide:

Approach® HACMP™ Insight®

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

VMware is a registered trademark or trademark of VMware, Inc. or its subsidiaries in the United States and/or other jurisdictions.

Other product and service names might be trademarks of IBM or other companies.

December 2019 edition

The information contained in this document has not been submitted to any formal IBM test and is distributed on an "as is" basis without any warranty either express or implied. The use of this information or the implementation of any of these techniques is a customer responsibility and depends on the customer's ability to evaluate and integrate them into the customer's operational environment. While each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will result elsewhere. Customers attempting to adapt these techniques to their own environments do so at their own risk.

Contents

Trademarks	ix
Course description	xi
Unit 1. System Modeling	1-1
Unit objectives	
Introduction (1 of 2)	
Introduction $(2 \text{ of } 2)$	
Biological and cognitive paradigms for robot design (1 of 8)	
Biological and cognitive paradigms for robot design (2 of 8)	
Biological and cognitive paradigms for robot design (3 of 8)	
Biological and cognitive paradigms for robot design (4 of 8)	
Biological and cognitive paradigms for robot design (5 of 8)	
Biological and cognitive paradigms for robot design (6 of 8)	
Biological and cognitive paradigms for robot design (7 of 8)	1-19
Biological and cognitive paradigms for robot design (8 of 8)	1-21
Declarative-Procedural-Reflexive hierarchy for decision making and control	1-22
Articulated robots (1 of 2)	
Articulated robots (2 of 2)	1-26
Joint-Link (Denavit-Hartenberg) transformations (1 of 4)	1 -2 8
Joint-Link (Denavit-Hartenberg) transformations (2 of 4)	1 -2 9
Joint-Link (Denavit-Hartenberg) transformations (3 of 4)	
Joint-Link (Denavit-Hartenberg) transformations (4 of 4)	
Mobile ground robots	
Uninhabited ground robots (1 of 2)	
Uninhabited ground robots (2 of 2)	
Intelligent agents (1 of 4)	
Intelligent agents (2 of 4)	
Intelligent agents (3 of 4)	
Intelligent agents (4 of 4)	
Open-loop and closed-loop systems (1 of 4)	
Open-loop and closed-loop systems (2 of 4)	
Open-loop and closed-loop systems (3 of 4)	
Open-loop and closed-loop systems (4 of 4)	
Checkpoint (1 of 2)	
Checkpoint (2 of 2)	
Question bank	
Unit summary	1-52
Unit 2. Artificial intelligence for robotics engineering	
Unit objectives	
Artificial intelligence	
Well-known definitions for Al	
Birth of Al	
Basic terminologies	
Applications of Al	
The AI problems and techniques	
Real world problems	2-13

State space search	
Explicit vs. Implicit state space	
State space search notations	
Search problem and problem space	
Representation of search problems	
State space search example	
Pegs and disks problem (1 of 4)	.2-23
Pegs and disks problem (2 of 4)	.2-24
Pegs and disks problem (3 of 4)	.2-25
Pegs and disks problem (4 of 4)	.2-26
8 queen's problem	.2-27
N queens problem formulation (1 of 3)	.2-28
N queens problem formulation (2 of 3)	
N queens problem formulation (3 of 3)	.2-30
8 puzzle problem	.2-31
State space search example: Tic-tac-toe problem	.2-32
Production systems (1 of 2)	
Production systems (2 of 2)	
Commutative production system	
Problem characteristics	
Search paradigm	
Classification of search algorithms	
General terminologies (1 of 3)	
General terminologies (2 of 3)	
General terminologies (3 of 3)	
Uninformed search algorithms	
Breadth first search	
BFS illustration (1 of 3)	
BFS illustration (2 of 3)	
BFS illustration (3 of 3)	
Depth first search	
DFS illustrations (1 of 3)	
DFS illustrations (2 of 3)	
DFS illustrations (3 of 3)	
Depth Limited Search (DLS)	
Depth first iterative deepening searchand bi-directional search	
Comparing the uninformed search algorithms	
Informed search algorithms	
Heuristic search techniques	
Generate-and-test	
Hill climbing	
Algorithm for simple hill climbing	
Best first search	
Knowledge representation (1 of 2)	
Knowledge representation (2 of 2)	2-76
Knowledge representation languages	
Framework for knowledgerepresentation	
Knowledge representation schemes	
Properties and schemes for knowledge representation	
Relational based knowledge representation scheme	
Inheritable knowledge representation scheme	

iv

Inforantial knowledge representation scheme	2 00
Inferential knowledge representation scheme	
Declarative/procedural knowledge	
Planning (1 of 2)	
Planning (2 of 2)	
Representation of states, goals and actions	
Goal stack planning (1 of 2)	
Goal stack planning (2 of 2)	
Checkpoint (1 of 2)	
Checkpoint (2 of 2)	
Question bank	
Unit summary	
,	
Unit 3. Components of an Intelligent Robotic System	
Unit objectives	
Introduction to robotics	
Types of robots	
Classification of robots	
Components of robot (1 of 4)	
Components of robot (2 of 4)	
Components of robot (3 of 4)	
Components of robot (4 of 4)	
Manipulation arms	
Merits and demerits of robot types with different geo	
Wrists	
Robot kinematics (1 of 3)	
Robot kinematics (2 of 3)	
Robot kinematics (3 of 3)	
Homogenous transformation modelling convention (
Homogenous transformation modelling convention (2	2 of 2)
Example of forward kinematics (1 of 4)	
Example of forward kinematics (2 of 4)	
Example of forward kinematics (3 of 4)	
Example of forward kinematics (4 of 4)	
Inverse kinematics (1 of 6)	
Inverse kinematics (2 of 6)	
Inverse kinematics (3 of 6)	
Inverse kinematics (4 of 6)	
Inverse kinematics (5 of 6)	
Inverse kinematics (6 of 6)	
Algebraic solution approach: Example (1 of 6)	
Algebraic solution approach: Example (2 of 6)	
Algebraic solution approach: Example (3 of 6)	
Algebraic solution approach: Example (4 of 6)	
Algebraic solution approach: Example (4 of 6)	
Algebraic solution approach: Example (6 of 6)	
Advanced robotics (1 of 5)	
Advanced robotics (2 of 5)	
Advanced robotics (3 of 5)	
Advanced robotics (4 of 5)	
Advanced robotics (5 of 5)	
Machine intelligence: Architectures, controllers and a	applications

Architectures for intelligent control (1 of 2)	3-45
Architectures for intelligent control (2 of 2)	3-46
Machine learning	3-47
Machine learning: Rule-based control (1 of 3)	
Machine learning: Rule-based control (2 of 3)	3-49
Machine learning: Rule-based control (3 of 3)	
Machine learning: Machine learned control	
Machine learning: Reinforcement learning	
Advanced control systems for robotic arms	
Kinematic and dynamic control	
Intelligent gripping systems	3-57
Overview of the Salford theories (1 of 2)	
Overview of the Salford theories (2 of 2)	
Need and provision of fingertip sensor system	
Computer software package implementation (1 of 2)	
Computer software package implementation (2 of 2)	
Force feedback control in robots and its application to decommissioning	
Force feedback strategies	
Introduction to mobile robots	
Environment capturing with common sensors	
CCD cameras (1 of 2)	
CCD cameras (2 of 2)	
CCD Vs. CMOS	
Sonar sensors (1 of 2)	
Sonar sensors (2 of 2)	
Optoelectronic sensors	
Sensor integration	
Qualitative approaches (1 of 2)	
Qualitative approaches (2 of 2)	
Quantitative approaches	
·	
Kalman filter	
Phases of a machine vision system (1 of 2)	
Phases of a machine vision system (1 of 2)	3-93
Tool condition monitoring systems	
Neural networks for tool condition monitoring systems	
Basic understanding of neural networks	
Representational power of perceptrons	
Architecture of neural networks	
Single-layer feed-forward architecture	
Multiple-layer feed-forward architecture	
Recurrent or feedback architecture	
Mesh architecture	
The perceptron training rule	
Gradient descent and the delta rule	
Gradient descent algorithm	
Stochastic approximation to gradient descent (1 of 2)	
Stochastic approximation to gradient descent (2 of 2)	
Multilayer networks and back-propagation algorithm	
The back-propagation algorithm	

Multiple principal componentfuzzy neural networks	
Fuzzy classification and uncertainties in tool condition monitoring	
Checkpoint (1 of 2)	
Checkpoint (2 of 2)	3-124
Question bank	3-125
Unit summary	
•	
Unit 4. Robot Operating System (ROS)	
Unit objectives	
Real and simulated robots	
Robot Operating System (ROS)	
ROS basics and architecture	4-6
The File system level	
Files and folders in a sample package of ROS	4-10
ROS packages	
ROSbash	
package.xml	4-13
ROS messages	
ROS services	
The computational graph level (1 of 2)	
The computational graph level (2 of 2)	
The community level	
Debugging and visualization (1 of 4)	
Debugging and visualization (2 of 4)	
Debugging and visualization (3 of 4)	
Debugging and visualization (4 of 4)	
Using sensors and actuators (1 of 3)	
Using sensors and actuators (1 of 3)	
Using sensors and actuators (2 of 3)	
3D modeling and simulation (1 of 2)	
3D modeling and simulation (1 of 2)	
Computer vision	
·	
Checkpoint (1 of 2)	
Checkpoint (2 of 2)	
Question bank	
Unit summary	4-41
Unit E. Navigation, SI AM and Speech Beaugnition and Synthesis)	E 4
Unit 5. Navigation, SLAM and Speech Recognition and Synthesis)	
Navigation (1 of 3)	
Navigation (3 of 3)	
Simultaneous localization and mapping	
Setting up rviz for navigation stack	
Adaptive Monte Carlo Localization	
Avoiding obstacles	
Speech recognition and synthesis	
Checkpoint (1 of 2)	
Checkpoint (2 of 2)	
Question bank	
Unit summary	5 - 20

Trademarks

The reader should recognize that the following terms, which appear in the content of this training document, are official trademarks of IBM or other companies:

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide.

The following are trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide:

Approach® HACMP™ Insight®

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

Java[™] and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

VMware is a registered trademark or trademark of VMware, Inc. or its subsidiaries in the United States and/or other jurisdictions.

Other product and service names might be trademarks of IBM or other companies.

Course description

Algorithms for Intelligent Systems and Robotics

Purpose

This course is designed to explain the concepts of system modeling and principles of control systems. The course embeds the concept of artificial intelligence in robotics. The course gives the concepts of various components of intelligent robotic system. The introduces the concept of Robotic Operating System (ROS), navigation, speech recognition and synthesis.

Audience

B.Tech in computer science engineering.

Prerequisites

Basic programming skills, basic knowledge on artificial intelligence.

Objectives

After completing this course, you should be able to:

- · Gain knowledge on the process of system design
- · Gain an insight into the AI problems and techniques
- Learn about the kinematic and dynamic control concept with a focus on intelligent gripping systems
- Understand the operating system concepts for robotics
- · Understand the concept of Speech Recognition and Synthesis and implement it

References

- Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig, c 1995 Prentice-Hall, Inc.
- An Introduction to Robotics, Dr. Bob Williams, williar4@ohio.edu, Mechanical Engineering, Ohio University, EE/ME 4290/5290 Mechanics and Control of Robotic Manipulators, © 2019 Dr. Bob Productions
- Toward Intelligent Flight Control by Robert F. Stengel, Fellow, IEEE Transactions on Systems, Man and Cybernetics Vol 23, No 6, Nov/Dec 1993
- Designing the mind of a social robot by Nicole Lazzeri, Daniele Mazzei, Lorenzo Cominelli, Antonio Cisternino and Danilo Emilio De Rossi, Appl. Sci. 2018, 8, 302; doi:10.3390/app8020302
- https://robots.ieee.org/learn/types-of-robots/
- https://docs.fetchrobotics.com/gazebo.html
- https://www.pirobot.org/blog/001https://robots.ieee.org/learn/types-of-robots/
- https://docs.fetchrobotics.com/gazebo.html
- https://www.pirobot.org/blog/0014/)4/)

Unit 1. System Modeling

What this unit is about

This unit aims at gaining knowledge on system modeling and how it has evolved over the years. This unit dwells upon how various Al concepts are being used for developing systems, which mimic biological processes and cognitive processes for achieving desired goals.

What you should be able to do

After completing this unit, you should be able to:

- · Understand the concept of system modeling
- · Gain knowledge on the process of system design
- Understand the goals and principles of intelligent systems
- · Gain an insight into various types of robots as systems

How you will check your progress

· Checkpoint

References

Unit 2. Artificial intelligence for robotics engineering

What this unit is about

This unit helps to provide an understanding on the basics of artificial intelligence (AI). This unit helps to gain knowledge on the AI problems and techniques. The concept of state space search and production systems is also presented here. This unit provide an understanding on heuristic search techniques and knowledge representation.

What you should be able to do

After completing this unit, you should be able to:

- · Gain knowledge on the basics of Artificial Intelligence (AI)
- · Gain an insight into the AI problems and techniques
- · Learn about the state space search and production systems
- Understand the concept of problem characteristics and search paradigm
- · Learn about heuristic search techniques and knowledge representation

How you will check your progress

· Checkpoints

References

Unit 3. Components of an Intelligent Robotic System

What this unit is about

This unit helps to gain knowledge on the basic concepts of robotics and its components. The role of machine learning in modern day robotics industry are discussed and hence the details on how machine learning concept is embedded in robotics is presented. This unit helps to gain an insight into the design and development of robotic components. This unit helps to learn about environment capturing sensors like CCD cameras and also helps to gain knowledge on the integration of these sensors with real time robotic system. The generic model of machine vision system along with functional components is also presented here. This unit provides an understanding on the role of neural networks for tool condition monitoring systems.

What you should be able to do

After completing this unit, you should be able to:

- · Gain knowledge on the basic concepts of robotics and its components
- Gain an insight into the role of machine learning in modern day robotics industry
- · Learn about the kinematic and dynamic control concept with a focus on intelligent gripping systems
- · Gain an insight into the design and development of robotic components
- Learn about environment capturing sensors like CCD cameras
- · Gain knowledge on the integration of sensors with real time robotic system
- Learn about the fuzzy classification and uncertainties in tool condition monitoring system

How you will check your progress

Checkpoints

References

Unit 4. Robot Operating System (ROS)

What this unit is about

This unit covers the concept of Robot Operating System (ROS). This unit also covers debugging and visualization under ROS. 3D modeling and simulation using ROS and some concepts will be discussed. The last section deals with computer vision applications.

What you should be able to do

After completing this unit, you should be able to:

- · Understand the operating system concepts for robotics
- Gain knowledge on debugging and visualization
- Understand the concept of 3D modeling and simulation
- · Gain an insight into computer vision applications for robotics

How you will check your progress

· Checkpoint

References

Unit 5. Navigation, SLAM and Speech Recognition and Synthesis

What this unit is about

This unit covers robot navigation. Simultaneous localization and mapping (SLAM) is another problem during developing a fully functional mobile robot, which will also be covered in this unit. This unit will also cover the concept of Speech recognition and synthesis. Some insight into how ROS could be used for such application development will also be briefly discussed.

What you should be able to do

After completing this unit, you should be able to:

- Understand the Simultaneous Localization And Mapping problem (SLAM)
- · Gain knowledge on developing solution for the SLAM problem and implement it
- · Understand the concept of speech recognition and synthesis and implement it
- · Gain an insight into how ROS could be used for such application development

How you will check your progress

Checkpoint

References

IBW.