Chimica

prof. Angelo Agostino

Inorganica

Inorganica

Ossidi di non-metalli (ossidi acidi o anidridi):

Si usa sempre la parola *ossido* seguita dal nome del non-metallo.

La quantità di ossigeno rispetto al non-metallo è indicata tramite prefissi greci, come mono-, di-, tri-, ecc.

Se il non-metallo può assumere più stati di ossidazione, si usano i prefissi per indicare quante molecole di ossigeno sono legate all'elemento.

Ossidi di metalli (ossidi basici):

Si usa la parola *ossido* seguita dal nome del metallo.

Se il metallo può avere più stati di ossidazione, si specifica il numero di ossidazione tra parentesi in numeri romani.

Idruri:

La nomenclatura prevede l'uso della parola *idruro* seguita dal nome del metallo o non-metallo.

Idracidi:

La loro nomenclatura segue la regola secondo cui il nome dell'anione derivante dal non-metallo viene trasformato in un suffisso *-idrico*.

Fuori dalla soluzione acquosa, questi composti vengono invece chiamati *idrogeno* + *nome del non-metallo*.

Ossiacidi:

Si parte dal nome del non-metallo legato all'ossigeno e all'idrogeno.

A seconda del numero di ossidazione dell'elemento centrale, il suffisso del nome dell'ossiacido cambia.

ipo - - oso

- oso

- ico

per - - ico

La parola *acido* viene posta prima del nome dell'elemento e dei suffissi/prefissi.

Idrossidi:

seguono una convenzione basata sulla combinazione del termine idrossido + nome del metallo

Inorganica

La nomenclatura dei **sali** in chimica segue delle regole specifiche basate sulla composizione del sale, che deriva dalla reazione tra un acido e una base (o ossido) e si divide in sali binari e sali ternari.

Sali binari:

I sali binari sono composti da due elementi: un metallo e un non-metallo.

Il nome del sale deriva dal non-metallo con l'aggiunta del suffisso -uro, seguito dal nome del metallo. Se il metallo può avere più stati di ossidazione, si indica il numero di ossidazione del metallo con numeri romani.

non-metallo -uro + metallo

Sali ternari (ossosali):

I sali ternari derivano dagli ossiacidi e sono composti da tre elementi: un metallo, un non-metallo e l'ossigeno.

La loro nomenclatura segue il nome dell'ossiacido di partenza, modificando i suffissi e prefissi in funzione dello stato di ossidazione dell'anione derivato dall'ossiacido.

Il suffisso –ato quando l'anione deriva da un acido che ha il suffisso -ico.

Il suffisso -ito quando l'anione deriva da un acido con suffisso -oso.

Prefisso **per-** se l'anione deriva da un acido con numero di ossidazione elevato.

Prefisso **ipo**- se l'anione deriva da un acido con numero di ossidazione basso.

(prefisso-) non-metallo + metallo -suffisso

Organica

Classe funzionale	Formula generale	Nome del gruppo funzionale (IUPAC)	Esempio	UNIVE
Alcano	R–CH₃	alcano	CH ₄	metano DI TO
Alchene	R-CH=CH-R	alchene	CH ₂ =CH ₂	etene
Alchino	R-C≡C-R	alchino	CH≡CH	etino
Aromatico	Anello C ₆ H ₆	arene	C_6H_6	benzene
Alogenuro alchilico	R-X (X = Cl, Br, I, F)	alogenuro	CH₃Cl	clorometano
Alcol	R-OH	-olo	CH₃CH₂OH	etanolo
Fenolo	Ar–OH	<pre>–olo (fenolico)</pre>	C ₆ H ₅ OH	fenolo
Etere	R-O-R'	etere	CH₃-O-CH₃	etere dimetilico
Aldeide	R-CHO	–ale	CH₃CHO	etanale
Chetone	R-CO-R'	–one	CH₃COCH₃	propanone
Acido carbossilico	R-COOH	acido –oico	CH₃COOH	acido etanoico (acetico)
Esteri	R-COO-R'	−ato di −ile	CH₃COOCH₃	acetato di metile
Anidride	R-CO-O-CO-R'	anidride –ica	(CH₃CO)₂O	anidride acetica
Cloruro acilico	R-COCI	cloruro di –ile	CH₃COCl	cloruro di acetile

Angelo Agostino

Organica

Classe funzionale	Formula generale	Nome del gruppo funzionale (IUPAC)	Esempio	UNIVERSITÀ DI TORINO
Amide	R–CONH₂	–ammide	CH₃CONH₂	acetamide
Ammina primaria	R-NH ₂	ammina	CH ₃ NH ₂	metilammina
Nitrile	R–C≡N	-nitrile	CH₃CN	acetonitrile
Tiolo	R–SH	–tiolo	CH₃CH₂SH	etantiolo
Tioetere	R-S-R'	tioetere	CH₃–S–CH₃	tioetere dimetilico
Composto ciclico (saturo)	(CH₂)_n (n ≥ 3)	cicloalcano	cicloesano	cicloesano
Composto ciclico (insaturo)	anello con =	cicloalchene/arene	cicloesene, benzene	cicloesene, benzene
Radicale alchilico	R●	radicale	CH₃•	radicale metile
Radicale arilico	Ar∙	radicale	C ₆ H ₅ •	radicale fenile

o tripli C≡C legami; 1-3-butadiene

cicli alifatici

$$H_CH$$
 C
 H_2C
 CH_2

$$H_2C-CH_2$$

 H_2C-CH_2

$$H_{2}C$$
 $H_{2}C$
 $H_{2}C$
 $H_{2}C$

$$H_2C-CH_2$$
 H_2C
 CH_2
 H_2C-CH_2

Ciclopropano

Ciclobutano

Ciclopentano

Cicloesano

cicli alifatici

Conformazione a barca

isomeri

Carbonio e idrogeno 3° Carbonio e idrogeno 1°

2,2,5-trimetilesano

cicli aromatici

*orto-*diclorobenzene 1,2-disostituito

Metilbenzene o toluene

meta-xilene 1,3-disostituito

Etilbenzene

para-clorobenzaldeide 1,4-disostituito

cicli aromatici condensati

Naftalene

Antracene

Benzo[a]pirene

Fenantrene

acidi grassi

saponificazione

alluminio

Estrazione dell'allumina (Al₂O₃) dalla bauxite

Processo Bayer

La bauxite è un minerale che contiene principalmente ossidi idrati di alluminio

- gibbsiti → Al(OH)3
- boemiti e diaspri → AlO(OH)

$$AI(OH)_3 + NaOH \longrightarrow Na[AI(OH)_4]$$

dissoluzione in soda caustica

raffreddando e neutralizzando, l'alluminato si decompone:

$$Na[Al(OH)4] \longrightarrow Al(OH)_3 \downarrow + NaOH$$

bauxite

l'idrossido di alluminio così ottenuto viene calcinato ad alta temperatura per ottenere allumina anidra:

$$2AI(OH)_3 \longrightarrow AI_2O_3 + 3H_2O$$

alluminio

Produzione di alluminio metallico dall'allumina

Processo Hall–Héroult

L'allumina viene disciolta in criolite fusa (Na₃AlF₆) e sottoposta a elettrolisi.

fusione a 1012°C

catodo
$$Al^{3+} + 3e^{-} \longrightarrow Al \text{ (liquido)}$$

anodo $2O^{2-}+C \longrightarrow CO_2 + 4e^{-}$

$$2Al_2O_3 + 3C \longrightarrow 4Al + 3CO_2$$

blue pigments

lapislazzuli

Lazurite

Minerale Formula chimica

 $(Na,Ca)_8(AlSiO_4)_6(S,SO_4,Cl)_2$

Calcite CaCO₃

Pirite FeS₂

Diopside CaMgSi₂O₆

Colore

Blu intenso

Bianco

Riflessi dorati (inclusioni)

Incolore o verde pallido

lapislazzuli

smaltino - Co

Sistematica smaltino - Co **UNIVERSITÀ DI TORINO** Oh Td λ_{max} =573 nm λ_{max} =613 nm λ_{max} =655 nm λ_{max} =737 nm λ_{max} =761 nm Td Oh

500

600

700

800

900

1000

1100

Ione metallico libero

cobalto

 $[{\rm Ar}]~3d^7~4s^2$

Campo cristallino ottaedrico

Il baricentro resta inalterato

 $[{
m Ar}]~3d^7$

