Artificial Intelligence, Blockchain, e Criptovalute nello Sviluppo Software

Lezione 6: Distributed Cognition, Extended Mind, and Systemic Thinking

Giancarlo Succi
Dipartimento di Informatica – Scienza e Ingegneria
Università di Bologna
g.succi@unibo.it

Structure of the lecture

- Extended Mind
- Communication Patterns
- Systemic Thinking
- Distributed Cognition
- ${\color{red} \bullet}$ Systemic Thinking

Boundaries of the Mind

- Where is our mind?
 - Are the hands part of our mind?

Reference: Robert MacDougall, "The Significance of the Human Hand in the Evolution of Mind," The American Journal of Psychology, 16(2):232 - 242, Apr., 1905

Picture taken from

https://www.yourtherapysource.com/blog1/2019/02/07/3-evidence-based-benefits-of-writing-by-hand/.

Extended Mind (1/2)

• Let us consider a simple problem: we are given shapes and we have to see if they fit holes:

Source of the content: Andy Clark and David Chalmers, "The extended mind," Analysis 58 (1): 7–19,

Picture taken from https://gurugamer.com/mobile-games/shapes-and-holes-a-new-mobile-puzzler-where-you-fit-things-into-other-things-1214.

Extended Mind (2/2)

- Let us consider three cases:
 - this is a computer game (as in the picture) and the person has to rotate the pieces by mind and determines the fitting;
 - this is a paper game and the person has pieces that s/he rotates manually to determine the fit;
 - let us assume that the person has an implanted device, say, special smart glasses, that perform the rotation and then s/he just does the fitting
- What is the level of cognition present in these cases?
 - Clark and Chalmers claim that it is the same.
- Therefore, what is the boundary of our mind?

Tools and Mind

- There are many tools even before computer that helped our cognitive tasks
 - abacus
 - paper and pen
 - sliding rule
 - o . . .
- Once we start using it, they become intrinsic part of our reasoning and computational process
- Think at how we do computations in column
 - papers and pen are essential components of our reasoning process
 - even when we do the computation in our mind we often simulate the presence of paper and pen
- Once more, what are the boundaries of our mind?

Impact

- We care about this for at least three reasons:
 - we understand that the request of tools may be not a caprice of a spoiled kid but an actual desire to organize the (extended) mind in the most effective way
 - when developing tools we need to think at how such tools can most effectively "extend" the mind of the users, and not simply being tools
 - when creating a (development) environment for us and for our people we must determine the best configuration
- Once more, what are the boundaries of our mind?

Active Externalism

- The claim of Clark and Chalmers is that the tool and the person couple together forming a unique mix
- The external tools are not just instruments for actions that are determined in an hypothesized internal mind
- Rather, they are a key active external component of our mind, hence we talk of:
 - Active Externalism
- Think at exoskeleton, for instance

Example: Exoskeleton

• A Hybrid Assistive Limb:

• "The external features here are just as causally relevant as typical internal features of the brain" Clark and Chalmers.

Picture taken from https://en.wikipedia.org/wiki/Powered_exoskeleton. Statement from Andy Clark and David Chalmers, "The extended mind," Analysis 58 (1): 7–19 , 1998.

Beliefs

- The mind is also the center of our beliefs
- Typically we think at beliefs as something completely internal to our mind
- Is it really so?
- Or think at how many interaction with an environment of tools and devices we would need to think if we would assume that:
 - processes are only inside the body and
 - everything is is something that is manipulated and "used"

Cognition and consciousness

- Cognition is not consciousness
- Remember of the emotional long term memory or even at the procedural long term memory
- And think at all the work, for instance of therapists of moving feelings at the consciousness level
- Discussing consciousness is beyond the purpose of this course

Picture taken from https://en.wikipedia.org/wiki/Consciousness where it is credited to Christof Koch (https://en.wikipedia.org/wiki/Christof_Koch).

Location of our beliefs (1/3)

- Let us consider these two cases (from the reference):
 - Inga wants to go to the MoMA and remembers that it is on 11 West 53 Street, Manhattan, and she goes there
 - She had a (previous) belief in her mind about the location and she uses it to direct her actions
 - Otto suffers from Alzheimer diseases, so he forgets what he learns and to overcome this he takes with him a tablet where marks down information
 - Also Otto wants to go to the MoMA, he looks it up in the tablet, finds that it is on 11 West 53 Street, Manhattan, and goes there
 - He had a (previous) belief about the location in his the tablet and he uses it to direct her actions
 - What is the difference?

Location of our beliefs (2/3)

- We could explain the reasoning process of Otto in terms of external tools, but it would be quite convoluted
- For Otto the tablet plays the same role as the *mind* for Inga
- For beliefs what matter is not where they are located but the role that they play
- After all, in what the beliefs of Otto and of Inga differ?
 - Their only difference is in the physical location
- There could be additional counterclaims of the differences on beliefs:
- The tablet of Otto could not be always with him for instance when he takes a shower
 - Inga beliefs could also be our her if she is drunk or excited

Location of our beliefs (3/3)

- Otto could be slower in gathering the information
 - What if Inga had a memory disorder that requires her a slow process to recall her beliefs?
- The process of Otto requires perception while the one of Inga only introspection
 - Are we sure that when we look up information on a table we are really exercising perception? If we consider the tablet as part of the mind, the process is still introspective
- There are no strong arguments against considering also the one of Otto as a belief, and thus that his minds extends to the tablet

Additional speculation on Otto

- The tablet is an integral part of the life of Otto
- Otto can access directly and without any problem the information there
- Otto accepts as true the information stored in the notebook automatically
- Otto has once validated such information, and since then such information is valid
 - What if someone leaks inside the table and put there wrong information?
 - Well, if someone by some subliminal manipulation forces in the mind some wrong information?

Source of the content, also copied verbatim: Andy Clark and David Chalmers, "The extended mind," Analysis 58 (1): 7-19, 1998

Can we extend this concept beyond?

- What about groups of people, where the knowledge is distributed?
- The key point is how much our belief is:
 - trust
 - reliance
 - availability
- indeed, the language pays a major role, but ...

Source of the content, also copied verbatim: Andy Clark and David Chalmers, "The extended mind," Analysis 58 (1): 7–19 , 1998

Communication means (1/3)

- Empirical studies with 38 IT professionals
- Analysis of the communication patterns

When the communication is considered positive

What is being used	by me	by others	by any
Vocalics	16%	16%	26%
Kinesics	21%	8%	24%
Chronemics	3%	5%	5%
Proxemics	0%	3%	3%
Oculesics	0%	0%	0%
Synchrony	3%	0%	3%

Source: Paolo Ciancarini, Mirko Farina, Sergey Masyagin, Giancarlo Succi, Sofiia Yermolaieva, and Nadezhda Zagvozkina. "Non verbal communication in software engineering - an empirical study." IEEE Access. 9.71942–71953. 2021

Communication means (2/3)

When the communication is considered negative

What is being used	by me	by others	by any
Vocalics	5%	8%	11%
Kinesics	11%	5%	11%
Chronemics	8%	8%	16%
Proxemics	0%	3%	3%
Oculesics	0%	3%	3%
Synchrony	5%	0%	5%

Source: Paolo Ciancarini, Mirko Farina, Sergey Masyagin, Giancarlo Succi, Sofiia Yermolaieva, and Nadezhda Zagvozkina. "Non verbal communication in software engineering - an empirical study." IEEE Access. 97.1942–71953, 2021

Communication means (3/3)

- When the communication is positive:
 - There is a larger incidence of vocalics and kinetics
 - When the communication is negative people think that time is wasted
- Chronemics play a major role in meetings:
 - When the communication is negative they are remarkably noted
 - When the communication is positive people feel them implicitly (coded in comments)

Source: Paolo Ciancarini, Mirko Farina, Sergey Masyagin, Giancarlo Succi, Sofiia Yermolaieva, and Nadezhda Zagvozkina. "Non verbal communication in software engineering - an empirical study." IEEE Access, 9:71942–71953, 2021

Systemic Thinking (1/2)

- Systemic thinking is an interdisciplinary field of research that
 - attempts to comprehend complex human (and non-human) structures
 - by explaining their mutual interconnections from a holistic standpoint
- It is an approach applied in many disciplines, including sociology, psychology, management, etc
- An idea inspired somehow by many Eastern philosophies
- There are elements also in Pythagorean theories, then going to Plato, Avicenna (Ibn Sina), . . .

Systemic Thinking (2/2)

- Systemic thinking draws from different disciplines (engineering, computer science, cognitive science, management, philosophy, psychology, biology, ...)
 - it attempts to provide a discipline-agnostic approach for dealing with complex problems
 - to understand the structure and properties of a given system in terms of the relationships among its components
- It was introduced in software engineering in 1971 by Weinberg ("The psychology of computer programming") and then forgotten or declassed under the term *peopleware*
- The agile proponents of the division between tame and wicked problems were apparently unaware of systemic thinking.

Systemic Thinking and Software Engineering

- Systemic thinking in software engineering views the software development process as a complex and dynamic system composed of multiple interconnected parts.
 - it emphasizes the interdependences of individuals, teams, and organizations, and
 - how each interdepencency influences and are influenced by one another
 - also identifying coherences and incoherences in representations and
 - (self-)contradicting thought
 - schismogenesis
- Can be divided into psychological and sociological systemic thinking

Sociological and Psychological Views

Picture from an earlier version of the paper: Mirco Farina, Giancarlo Succi, Ananga Thapaliya. "A Systemic Perspective on Software Engineering." Under review

Example of Systemic Analysis (1/2)

Written Process	Interviewee 1	Interviewee 2	
The Senior Architect defines a list of requirements through a direct interaction with the customer and writes them is natural language			
The Senior Architect presents the information to the Lead Analysts and some implementation scenarios; together they write the specifications of each task to perform in natural language.	The Lead Analyst analyzes the written documentation from the Senior Architect and produces the specifications of each task to perform in free text.	The Senior Architect writes the specifications of each task to perform and discusses them with the customer	
The Lead Analysts transfer specification back to the Senior Architect for the effort estimation.		This activity has not been mentioned	
The Senior Architect and the Lead Analysis analyze the current situation and determine in which release it is possible to include the task	Senior Architect, based on the current workload the urgency of the task and its expected duration determine in which release to put it.	The Senior Architect determine in which release to put each task to perform.	
This activity has not been mentioned	This activity has not been mentioned	The assignment of the task to a specific release is confirmed by the customer	
The Lead Analysts with the Senior Architect assigns the task to a Developer	The Senior Architect assigns the task to a Developer		
The Developer writes the code			
This activity has not been mentioned			
The Senior Architect verifies the code done by the Developer			
This activity has not been mentioned	The Senior Architect devotes approximately 25% of his time to the architectural changes	This activity has not been mentioned	

Picture from: Vladimir Ivanov, Manuel Mazzara, Witold Pedrycz, Alberto Sillitti, and Giancarlo Succi. "Assessing the Process of an Eastern European Software SME Using Systemic Analysis, GQM, and Reliability Growth Models: A Case Study." In Proceedings of the 38th International Conference on Software Engineering Companion (ICSE 2016), pages 251–259, Austin, Texas, May 2016. ACM

Example of Systemic Analysis (2/2)

Declared values and principles	Actual behavior	Type of inconsistency
The company has a flat structure. There	The company has hierarchical and	Misalignment
are no team leaders who distribute tasks.	functional-oriented structure	- mangiment
and no managers who control the order		
of the team's work		
There are several separate and motivated	Working environment do not support the	Misalignment
self-organizing teams focused on primary	formation of cross-functional teams; em-	_
business goals	ployees are selected into teams by the HR	
	department based on necessity, not their	
	preferences	
The decision-making facing business	Teams do not have any authority to	Schismogenesis. The more tasks assigned
problems is completely run by teams	make decisions on a product development	to the teams from above the less com-
	strategy; lack of control over their work	mitment to the product and sprint goals
	negatively affects teams' morale	which results in continuous divergence
	There is no mutual desire for collabora-	with agile culture Schismogenesis. Managers of the bank act
At least once every two weeks, each team together with the business decides what	tive work within agile philosophy, middle-	from the position of traditional project
needs to be worked on next	level management tends to the function-	management. The more directive discus-
needs to be worked on next	ally oriented model	sion, the more latent dissent exhibit de-
	any oriented model	velopers
The teams use three types of metrics	Business metrics are not detailed enough:	Schismogenesis. The measurement sys-
that are displayed on special information	product metrics are based on high-level	tem is not aligned with the teams, their
panels. They pay attention to product	increments and Time-to-market, team	goals and responsibilities, which leads to
metrics, system health metrics, and pro-	performance assessed by velocity. Teams	frustration. The more metrics are intro-
cess metrics (production metrics)	do not have control over a number of	duced, the less accurate they are collected
	assigned KPI	and the less transparent the development
		process becomes
In addition to INVEST, a number of	Most of them unaware of INVEST crite-	Misalignment
criteria were developed for the Definition	ria at all. A task can be assigned at any	
of Ready of User Story	moment throughout the sprint obviously	
	violating Definition of Ready	
Definition of Done defines a checklist of	Improper usage of Definition of Done and	Misalignment
what needs to be done in order for a task	omitting of this practice by some teams	
to be considered complete and ready for		
release		

Picture from: Merab Gogichaty, Vladimir Ivanov, Artem Kruglov, Witold Pedrycz, Aliya Samatova, Giancarlo Succi, Raphael Valeev, "A Systemic Approach to Evaluating the Organizational Agility in Large-Scale Companies," in IEEE Access, vol. 11, pp. 3307-3323, 2023

Empirical Analysis (1/2)

- Core question: How can the application of systemic thinking help us understand how software teams work and operate in their daily practice?
- Phase 1: Online questionnaire on to 50 software developers working in Russia, Nepal, and Luxembourg based on closed questions
 - Overall result: systemic thinking is deeply ingrained in the daily activities of software engineers

Empirical Analysis (2/2)

- Phase 2: Refinement of Phase 1 with physical interviews with 11 expert Russian programmers and managers based on open questions
 - Overall result: psychological and sociological systemic approaches should be considered in all software engineering practices and
 - an improved understanding of these systemic approaches would benefit all the roles in any team
- overall, the most commonly stated terms have to do with communication, teamwork, and social leadership.
 - i.e, software engineering is a social phenomenon that is heavily impacted by group dynamics and individual personalities — more on distributed cognition

Systemic Thinking and Agility (1/2)

- Another empirical study
- Questions:
 - Do software engineers have a high level of systemic thinking in general?
 - What is the level of systemic thinking in the different processes (traditional, agile, mix agile-traditional, ad-hoc)?
- Online questionnaire with 101 respondents worldwide
- Using the Systemic Thinking Scale to measure the level of systemic thinking (from 0 to 80)

Source: Paolo Ciancarini, Mirco Farina, Giancarlo Succi, Ananga Thapaliya. "Systemic thinking and software development processes." Under review

Systemic Thinking and Agility (2/2)

Process	Average	Stdev	Score
Agile	2.78	0.17	55.66
Mixed	2.75	0.29	54.95
Traditional	2.74	0.32	54.75
Ad hoc	2.49	0.29	49.89

- In terms of significance:
 - agile and mixed have a probability of mean STS not different from ad-hoc of 1.1%,
 - traditional show a probability of having its mean STS not different from ad-hoc of 7.1%
 - traditional and mixed are almost indistinguishable one another in terms of STS

Source: Paolo Ciancarini, Mirco Farina, Giancarlo Succi, Ananga Thapaliya. "Systemic thinking and

Questions?

End of lecture six.