PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-102112

(43) Date of publication of application: 18.04.1995

(51)Int.Cl.

C08K 7/06 C08L101/00 H01B 1/24

(21)Application number: 05-226041

(71)Applicant: HYPERION CATALYSIS INTERNATL

INC

(22)Date of filing:

10.09.1993

(72)Inventor: IKEDA HIROHARU

(54) THERMOPLASTIC ELASTOMER COMPOSITION AND RESIN COMPOSITION

(57)Abstract:

PURPOSE: To obtain a thermoplastic elastomer composition containing carbonaceous fibrils and being excellent in conductivity, antistatic properties, surface smoothness, appearance, gloss and mechanical strength.

CONSTITUTION: The composition is obtained by mixing 99.5–50 pts.wt. thermoplastic elastomer or resin and 0.5–50 pts.wt. carbonaceous fibril material mainly comprising agglomerates which are composed of fine fibrous carbonaceous fibrils of an outside diameter of 3.5–75 nm, entangled among one another, and have a mean particle diameter of 0.1–50 μ m.

(19) 日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-102112

(43)公開日 平成7年(1995)4月18日

(51) Int.Cl.6

識別記号

 \mathbf{F} I

技術表示箇所

C08K 7/06

KCJ

庁内整理番号

C08L 101/00

H01B 1/24

Z

審査請求 未請求 請求項の数2 OL (全 8 頁)

(21)出願番号

特願平5-226041

(22)出籍日

平成5年(1993)9月10日

(71)出願人 593169485

ハイビリオン カタリシス インターナシ

ョナル インコーポレイテッド

アメリカ合衆国 マサチューセッツ州, ケ

ンプリッジ, スミス ブレース 38

(72)発明者 池田 弘治

東京都町田市成瀬台4-13-6

(74)代理人 弁理士 浅村 皓 (外3名)

(54) 【発明の名称】 熱可塑性エラストマー組成物および樹脂組成物

(57)【要約】

【目的】 導電性、表面外観、機械的強度に優れた炭素 フィブリル含有熱可塑性エラストマー組成物の提供。

【構成】 外径3.5~75nmの微細糸状の炭素フィ ブリルが互いに絡み合った、平均粒径0.1~50μm の凝集体から主としてなる炭素フィブリル材料0.5~ 50重量部、および熱可塑性エラストマーまたは樹脂9 9.5~50重量部とを混合してなる組成物。

【効果】 炭素フィブリル材料がより均質に分散し、導 電性、制電性に優れ、さらにはその表面の平滑性、外 観、光沢、機械的強度においても優れる。

【特許請求の範囲】

【請求項1】 直径3.5~75nmの微細糸状の炭素 フィブリルが互いに絡み合った、平均粒径0.1~50 μ m の凝集体から主としてなる炭素フィブリル材料 0. 5~50重量部、および熱可塑性エラストマー99.5 ~50重量部とを混合してなる熱可塑性エラストマー組 成物。

1

【請求項2】 直径3.5~75mmの微細糸状の炭素 フィブリルが互いに絡み合った、平均粒径0.1~50 μmの凝集体から主としてなる炭素フィブリル材料0. 5~50重量部、および樹脂99.5~50重量部とを 混合してなる樹脂組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、導電性、表面外観、機 械的強度に優れた熱可塑性エラストマー組成物および樹 脂組成物に関する。

[0002]

【従来の技術】近年のエレクトロニクス技術の急速な発 展により、情報処理装置や、電子事務機器が急速に普及 している。この様な電子機器の急速な普及に伴い、電子 部品から発生するノイズが周辺機器に影響を与える電磁 波障害や、静電気による誤作動等のトラブルが増大し、 大きな問題となっている。とれらの問題の解決のため に、この分野では導電性や制電制に優れた材料が要求さ れている。

【0003】従来より、導電性の乏しい高分子材料にお いては、導電性フィラー等を配合する事により、導電性 機能を付与させた導電性高分子材料が広く利用されてい る。導電性フィラーとしては、金属繊維及び金属粉末、 カーボンブラック、炭素繊維などが一般に用いられてい るが、金属繊維及び金属粉末を導電性フィラーとして用 いた場合、優れた導電性付与効果を示すものの、耐蝕性 に劣り、また機械的強度が得にくいという欠点があっ

【0004】カーボンブラックを導電性フィラーとして 用いる場合には、一般のカーボンブラックに比べて少量 の添加で高い導電性が得られるケッチェンブラック、バ ルカンXC72、アセチレンブラック等の特殊な導電性 カーボンブラックが一般に用いられている。だたし、こ れら特殊な導電性カーボンブラックは、熱可塑性エラス トマーや樹脂への分散が困難である。カーボンブラック の分散性が樹脂組成物の導電性に大きく影響するため、*

 $0.5 = \overset{\text{dm}}{\Sigma}$ Vd $\sharp \hbar t \downarrow 0.5 = \overset{\text{dmax}}{\Sigma}$ Vd

*安定した導電性を得るには特殊な配合技術、混合技術が 必要とされるという問題を有している。また、高温等に おける抵抗温度係数が大きいことも問題である。

【0005】炭素繊維を導電性フィラーとして使用する 場合、一般の補強用炭素繊維では、所望の強度、弾性率 を持たせることができるが、導電性を付与するには高充 填を必要とするため、元の熱可塑性エラストマーや樹脂 本来の物性を低下させてしまう。また、複雑な形状の成 形品を得ようとする場合、導電性フィラーの片寄りが生 じ、導電性にバラツキが発生するという問題があり、十 分満足しうるものではない。炭素繊維では、繊維径が細 い方が同量の繊維を添加した場合に母材樹脂と繊維との 間の接触面積が大きくなるため導電性付与効果に優れる ことが期待される。

【0006】との微細形状を持つ炭素繊維として、特開 昭62-500943号公報において、優れた導電性を 有する極細炭素フィブリルが得られることが示されてい る。しかしながら、樹脂と混合した場合、樹脂への分散 性に劣り、成形品表面外観が著しく損なわれるという問 題があり、十分満足できるまでに至っていない。

[0007]

【課題を解決するための手段】本発明者らは、特定の炭 素フィブリルを特定量、熱可塑性エラストマーまたは樹 脂に配合するととにより、小量で著しい導電性付与効果 ならびに制電制付与効果が得られることを見い出し、組 成物の表面平滑性、外観、光沢に優れることをも見い出 した。

【0008】すなわち、本発明の要旨は、直径3.5~ 75 nmの微細糸状の炭素フィブリルが互いに絡み合っ 30 た、平均粒径0.1~50μmの凝集体から主としてな る炭素フィブリル材料0.5~50重量部、および熱可 塑性エラストマーまたは樹脂99.5~50重量部とを 混合してなる組成物にある。

【0009】本発明の説明において用いる平均粒径dm ならびに90%径 d.。の語句は、次のように定義される ものである。

【0010】粒径をdとし、その粒径における体積分率 Vdを確率変数とする分布を粒度分布Dとよぶ。この粒 度分布Dにおいて最小の粒径をdmin、最大の粒径を 40 dmaxとするとき、平均粒径dmは次の数式1を満足 するものである。

【数1】

さらに、「90%径」 duは、次の数式2を満足するものである。

【0011】本発明で使用する炭素フィブリル材料は、外径 $3.5\sim75$ nm、好ましくは $3.5\sim40$ nmの微細糸状の炭素フィブリルが互いに絡み合った平均粒径 $0.1\sim50$ μ mの凝集体からなる。凝集体の平均粒径は、好ましくは $0.2\sim30$ μ mであり、さらに好ましくは $0.5\sim20$ μ mである。

【0012】本発明における凝集体の粒径分布は、次の通りである。すなわち、先に定義した90%径は、通常 100μ m以下、好ましくは 80μ m以下、さらに好ましくは 50μ m以下である。また、2090%径が、平 10 均粒径の7.5倍以下でもある。

【0013】本発明において用いる炭素フィブリルの凝集体において、その粒径が50μmを超えるものが多量に存在すると、熱可塑性エラストマーまたは樹脂組成物を製造するための混練工程において、熱可塑性エラストマーまたは樹脂組成物中の炭素フィブリル材料が分散不良となり、機械的強度が低下したり、成形品表面に粒子が突出して、表面の平滑性外観が損なわれる。また、最長径が50μm以下の凝集体であっても、平均粒径が50μm以上であると、同様に、特に表面外観上良好な結果は得られない。また、平均粒径が0.1μm未満のものは、製造が難しい。

【0014】炭素フィブリル材料中の凝集体の割合は、 好ましくは30%以上、さらに好ましくは50%以上で ある。

【0015】炭素フィブリル凝集体を構成する炭素フィブリルは、アスペクト比が通常5以上、好ましくは100以上、おきに好ましくは1000以上の糸状であり、かつ、通常、その芯部が中空であるチューブ状ものである。

【0016】さらに、との炭素フィブリルは、フィブリル軸に平行な複数の黒鉛質層を有し、好ましくは連続的な熱炭素被覆を持たないものである。との熱炭素被覆で覆われた表面積の割合は、通常50%以下、好ましくは25%以下、さらに好ましくは5%以下である。

【0017】炭素フィブリルはその表面を変性したものも使用できる。例えば、酸化などの化学反応や、エポキシ樹脂などのポリマーによるコーティングなどの手段により変性することができる。

【0018】本発明の組成物中における炭素フィブリル 材料の割合は、0.5~50重量%、好ましくは1~3 0重量%、特に好ましくは2~20重量%である。0. 1%重量未満では炭素フィブリル材料による効果が表れない。50重量%を越えると組成物の加工性が著しく悪くなり、組成物の加硫物の硬度が大きくなりすぎる欠点が生じる。

[0019]本発明で使用する炭素フィブリルは、例えば、特許出願公表平2-503334号公報にその製造方法が記載されているが、具体例を次に記す。

【0020】垂直式管状反応器において、自重または不 50 のが炭素フィブリル自体である。

4

活性ガスなどのガス噴射により金属含有触媒粒子を炭素含有ガス流に導入するととによって炭素フィブリルを製造する。反応温度は550~1200℃である。触媒粒子は、前駆的化合物、例えばフェロセンの分解によって反応器中で形成されてよい。反応器には、触媒粒子を受けとる石英ウールの内部ブラグと反応器の温度をモニターする熱電対とを備えた石英管を備える。さらに、触媒、反応ガス及びアルゴンといったパージガスを夫々導入する入口ボート及び反応器のガス抜き用出口ボートを備える。

[0021]適当な炭素含有ガスは、飽和炭化水素類、例えばメタン、エタン、プロバン、ブタン、ヘキサン及びシクロヘキサン、不飽和炭化水素類、例えばエチレン、プロピレン、ベンゼン及びトルエン、酸素含有炭化水素類、例えばアセトン、メタノール及びテトラヒドロフラン、並びに一酸化炭素である。好ましいガスは、エチレン及びプロバンである。好ましくは水素ガスを添加する。典型的には、炭素含有ガス対水素ガスの比は、

1:20~20:1の範囲である。好ましい触媒は、蒸 着アルミナに付着させた鉄、モリブデンー鉄、クローム -鉄、セリウム-鉄、及びマンガンー鉄粒子である。

【0022】フィブリルを成長させるために、反応管を

550~1200℃に加熱し、同時に例えばアルゴンでパージする。反応管が所定温度に達すると、水素流及び炭素含有ガス流の導入を開始する。1インチの長さの反応管について、約100ミリリットル/分の水素流量及び約200ミリリットル/分の炭素含有ガス流量が適当である。反応管を上記流量の反応ガスで5分間以上パージした後、触媒を石英ウールブラグに落とす。次に反応30 ガスを反応器内全体において、触媒と(典型的には0.5~1時間)反応させる。反応時間が終了すると、反応ガス流を停止し、炭素非含有ガス、例えばアルゴンをパージして反応器を室温まで冷却し、反応管からフィブリルを回収する。フィブリルの収率は触媒の鉄含量の30

【0023】本発明で用いる炭素フィブリル材料は、前記のようにして製造した炭素フィブリルをそのまま、あるいは多くの場合、粉砕して所定のサイズに調製して得る。粉砕の手段としては、例えば、気流式粉砕機(ジェットミル)または、衝撃式粉砕機がある。これらの粉砕機は、連続運転が可能であり、ボールミル、振動ミルなどと比較して単位時間あたりの処理量も大きいため、粉砕コストを低く抑えることができる。さらに、分級機構を粉砕機内に設けたり、サイクロンなどの分級機をライン中に設けることにより粒度分布の狭い均一な炭素フィブリル凝集体を得ることができるので好ましい。

倍以上である。

【0024】図Iに、本発明で用いる炭素フィブリル材料の一例を示す。黒い影となっている部分が上述のようにして得た炭素フィブリル凝集体であり、線状に見えるのが炭素フィブリル自体である。

【0025】本発明において、導電性、制電性に優れた熱可塑性エラストマーを得る場合、用いることができる熱可塑性エラストマーとしては、スチレンーブタジエンースチレン(SBS)エラストマー、スチレンーイソプレンースチレン(SIS)エラストマーなどのスチレン系エラストマー及び、これらの水添加物、塩化ビニル系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、1,2ーポリブタジエン、1,4ートランスポリブタジエンなどのブタジエン系エラストマー、1,4ートランスポリイ 10ソプレン系エラストマー、金属カルボキシレートーポリエチレン、エチレン一酢酸ビニル共重合体、エチレンーエチルアクリレート共重合体、塩素化ポリエチレンなどのエチレン系エラストマー、フッ素系熱可塑性エラストマーなどを挙げることができる。

【0026】また、本発明で用いられる合成樹脂として は、熱可塑性樹脂及び熱硬化性樹脂のいずれをも使用す ることができる。熱可塑性樹脂としては、例えばアクリ ロニトリルーブタジエンースチレン樹脂(ABS樹 脂)、アクリロニトリルーエチレン/プロピレンースチ レン樹脂(AES樹脂)、メタクリル酸メチルーブタジ エンースチレン樹脂(MBS樹脂)、アクリロニトリル -ブタジエンーメタクリル酸メチル-スチレン樹脂(A BMS樹脂)、アクリロニトリルーn-ブチルアクリレ ート-スチレン樹脂(AAS樹脂)、ゴム変性ポリスチ レン(ハイインパクトポリスチレン)、ポリエチレン樹 脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合樹 脂、ポリスチレン樹脂、ポリメチルメタクリレート樹 脂、ポリ塩化ビニル樹脂、酢酸セルロース樹脂、ポリア ミド樹脂、ポリエステル樹脂、ポリアクリロニトリル樹 脂、ポリカーボネート樹脂、ポリフェニレンオキサイド 樹脂、ポリケトン樹脂、ポリスルホン樹脂、ポリフェニ レンスルフィド樹脂、フッ素樹脂、ケイ素樹脂、ポリイ ミド樹脂、ポリベンズイミダゾール樹脂、ポリアミド樹 脂等が挙げられる。

【0027】また、熱硬化性樹脂としては、フェノール 樹脂、ユリア樹脂、メラミン樹脂、キシレン樹脂、ジア リルフタレート樹脂、エボキシ樹脂、アニリン樹脂、フ ラン樹脂、ポリウレタン樹脂等が挙げられる。

【0028】本発明の組成物を製造するには、公知の方 40 法例えば樹脂のペレット状物又はパウダー状物と所定量 の炭素フィブリル材料とをドライブレンドあるいはウェットブレンドした後、ロール式のニーダーに供給し加熱 下に混練したり、またはこれらを押出機に投入し、ロープ状に押出したものをペレット状にカットする等の方法、あるいは樹脂等の溶液や分散体と炭素フィブリル材料を液状媒体中でブレンドする方法などを用いることができる。また、ウェットマスターバッチ法での混合も可能である。熱硬化性樹脂の場合には、その前駆体に炭素フィブリル材料を混入してもよく、各種樹脂に適した公 50

6

知の方法を用いることができる。さらに所望の形に成形する方法としては、例えば成形機を用いて押出成形、射出成形、プレス成形等、いかなる方法を用いても良い。【0029】また本発明の組成物は、発泡剤を用いることにより発泡させ発泡体とすることができ、導電性および/または漆黒性を有する熱可塑性エラストマー発泡体および樹脂発泡体を得ることができる。かかる発泡体には前記種々の樹脂やエラストマーが使用できるが、中でもポリエチレン、ポリブロビレン、ポリ塩化ビニル、ポリスチレン、ポリブタジエン、ポリウレタン、エチレンー酢酸ビニル共重合体などの熱可塑性樹脂や熱可塑性エラストマーを好ましい重合体としてあげることができる。発泡剤としては、各種の樹脂用発泡剤の他、有機溶剤、ブタンなどのガス類が使用できる。

【0030】とのような発泡体は公知の方法を用いて製造することができる。例えば、熱可塑性樹脂を用いる場合には、押出機にて樹脂と所定量の炭素フィブリル材料とを溶融混合し、これにブタン等のガスを圧入混合したのち、押出機出口にて発泡させる方法などがある。この場合、炭素フィブリル材料と熱可塑性エラストマーまたは樹脂とをあらかじめ押出機等で混合し、一旦マスターバッチを製造した後、改めて発泡させることも可能である。また、ガスのかわりに、化学発泡剤も使用できる。本発明にてウレタンフォームを製造する場合には、主剤または硬化剤、発泡剤を混合する際に炭素フィブリル材料を加えてもよいが、あらかじめ主剤、または硬化剤中にブレンダーを用いて炭素フィブリル材料を加えてもよいが、あらかじめ主剤、または硬化剤中にブレンダーを用いて炭素フィブリル材料を分散させておくと、より効果的である。

【0031】また、本発明の組成物においては、必要に応じてゴム用添加剤や樹脂用添加剤を使用できる。たとえば、他の炭素フィブリル、カーボンブラック、シリカ、ケイ藻土、粉砕石英、タルク、クレー、マイカ、ケイ酸カルシウム、ケイ酸マグネシウム、ガラス粉末、炭酸カルシウム、硫酸バリウム、炭酸亜鉛、酸化チタン、アルミナ、ガラス繊維、他のカーボン繊維、有機繊維などの充填剤、軟化剤、可塑剤、加工助剤、滑剤、老化防止剤、紫外線吸収剤、架橋剤など公知の添加剤を添加することもできる。

[0032]

【実施例】本発明を実施例によってさらに具体的に説明 するが、いかなる意味においても、実施例によって特許 請求の範囲に記載された発明が限定されるものではな い

【0033】なお、原料として使用する炭素フィブリル 材料の凝集体の径は、炭素フィブリルを、界面活性剤を 添加した水中にて超音波ホモジナイザーを用いて分散さ せ、その炭素フィブリル分散液をレーザー回折散乱式粒 度分布計を用いて分析し、測定した。

【 0 0 3 4 】 〔実施例 1 、 2 、比較例 1 〕 平均直径 1 3 n m の炭素フィブリルが絡み合ってなる表 1 記載の平均

粒径をもつ凝集体よりなる炭素フィブリル材料各150 gを、エチレン酢酸ビニル共重合樹脂(日本ユニカー製 No. 3145) 1kg及びステアリン酸(花王) 1 0gと供に、バンバリーミキサー、ついでロールを用い て混練し、シートにした。シートカッタを用いてペレッ ト化した後、単軸押出機を用いて、100℃にて断面2 8mm×2mmのベルト状に押し出し、試験片を得た。*

*30cmを切出し、10cmおきに3ヶ所10mm×1 Ommの正方形をえがき、その中に含まれる50μm以 上の突起物の数を光学顕微鏡(10倍)を用いて計数 し、 3γ 所の平均から $1 cm^2$ 中に含まれる 50μ m以 上の突起物の数を求めた。

【表1】

	実施例1		実施例 2		比較例 1	
	平均粒径	90%径	平均粒径	90%径	平均粒径	90%径
凝集 体 の 粒 径 (μm)	7. 4	34	0.8	2. 1	8. 0	240
炭素フィブリル 充塡量 (%)	15		15		15	
1 cm 中の 5 0 μm 以上の突起物の数	0		0		20	

【0035】表1に示す通り、平均粒径80μm、90 %径240 µmの比較例1では、50 µm以上の突起物 が観察されるが、実施例1、2では観察されず、表面の 平滑性に優れていた。

炭素フィブリル材料(A)

炭素フィブリル材料(B)

【0037】炭素フィブリル材料(A)、(B)、又は ケッチェンブラックEC DJ-500 (ライオン・ア 30 mm、幅12.7mm、厚み6.35mmの試験片を得 クゾ社販売)を表2および表3に示す処方でドライブレ ンドした後、押出機に投入し、押出温度230~240 ℃で押出しペレット状にしたものを、同様な温度で射出 成形を行ない、体積固有抵抗及び成形品表面外観測定用 として、長さ80mm、幅55mm、厚み2mmの試験

※【0036】〔実施例3~6、比較例2~6〕樹脂とし てABS樹脂(日本合成ゴム株式会社製 JSR AB S35)を使用した。炭素フィブリル材料としては、次 のものを使用した。

平均粒径 $3 \mu m$ 90%径 $I 1 \mu m$ 平均粒径 $80 \mu m$ 90%径 $240 \mu m$

片を得た。また、衝撃強度測定用として、長さ63.5

【0038】得られた試験片について衝撃強度、体積固 有抵抗、成形品表面外観、また、ペレットを用いて流動 性をそれぞれ測定した。結果を表2および表3に示す。 【表2】

-	_	
- 1		

		実 施	例	
	3	4	5	6
配合処分(重量部)				
ABS	99	95	90	80
炭素フィブリル材料(A)	1	5	10	20
" (B)	_	_	_	-
ケッチェンブラックEC	-	_	_	
評 価 結 果				
がト・フローレート (g/10min)	40	27	10	5
(220°C、10kg)				
アイゾット衝撃強度	10	7	4	2
(kg · cm/cm)				
(1/4″ノッチ付)				
体 積 固 有 抵 抗	1×107	2 ×10 ²	7	1
(Ω · cm)	以上			
表 面 外 観	良好	良好	良好	良好

【表3】

		比	較	例	
	2	3	4	5	6
配 合 処 分(重量部)					
ABS	45	95	90	95	90
炭素フィブリル材料 (A)	55		_	_	_
" (B)	_	_	_	5	10
ケッチェンブラックEC	_	5	10	THEORY	_
評 価 結 果					
メルト・フローレート (g ∕10min)	流れず	25	6	3	流れず
(220°C、10kg)					
アイゾット衝撃強度	1	2	1	2	1
(kg·cm∕cm)					
(1/4″ ノッチ付)					
体 積 固 有 抵 抗	0.05	5×104	3 ×10 ²	3×10³	1×10^2
(Ω • cm)·					
表 面 外 観	劣る	良好	やや劣る	劣る	劣る

【0039】実施例3~6に示すように、本発明の炭素 フィブリル材料(A)を所定量含有する組成物は、比較 例3、4に示す導電性カーボンブラックであるケッチェ

【0040】また、得られた組成物の成形品の外観も良 好であり、かつ、機械的強度、加工性を低下させる傾向 も少ないことがわかる。

【0041】比較例2は、炭素フィブリル材料(A)を 大量に配合した場合であるが、高い導電性は得られる が、加工性に劣り、成形が困難となる。成形品が得られ たとしても、表面外観が大幅に劣る。

【0042】比較例5、6は、炭素フィブリル材料

ついて、炭素フィブリル材料(A)を用いたものより劣 る。

[0043]

【発明の効果】上述のように、本発明の熱可塑性エラス トマー組成物ならびに樹脂組成物は、組成物中に含まれ ンブラックECに比べ、優れた導電性を示すことがわか 30 る炭素フィブリル材料をより均質に分散させることがで き、導電性、制電性に優れている。

> 【0044】また、本発明の組成物は、その表面の平滑 性、外観、光沢、さらには機械的強度においても優れて いる。

> 【0045】従って、本発明の組成物は、エレクトロニ クス、情報処理装置、電子事務機器等の分野で広く応用 できるものである。

【図面の簡単な説明】

【図1】図1は繊維の形状であり、本発明のゴム組成物 (B) を用いた場合であるが、導電性、外観、成形性に 40 の製造に用いられる炭素フィブリル材料のTEM(Tr ansmission Electron Micro scope)像の一例である。

[図1]

