Exercices sur les systèmes linéaires et la méthode du pivot

Exercice 1 Trouver l'intersection des deux droites de \mathbb{R}^2 d'équations -2x+y=3 et x-y=-4. Confirmer expérimentalement votre résultat en traçant les deux droites sur un graphique.

Exercice 2 Les droites de \mathbb{R}^2 d'équations 4x - 3y = 5, x + 6y = 35 et -2x + 4y = 10 sont-elles concourantes?

Exercice 3 Résoudre dans \mathbb{R}^3 les systèmes suivants :

1.

$$\begin{cases} x +2y -z = 1 \\ 2x +y -z = 5 \\ x -z = 5 \end{cases}$$

2.

$$\begin{cases} x +2y -2z = 2\\ 2x +4y -3z = 5\\ 5x +10y -8z = 12 \end{cases}$$

Exercice 4 Quelles parties de \mathbb{R}^3 sont définies par les systèmes d'équations linéaires suivants?

1.

$$\begin{cases} x & -4y & -3z = -7 \\ -3x & +12y & +9z = 22 \end{cases}$$

2.

$$\begin{cases} x & -4y & -3z = -7 \\ -3x & +12y & +9z = 21 \end{cases}$$

Exercice 5 Déterminer et représenter graphiquement les parties de \mathbb{R}^3 représentées par les trois systèmes linéaires suivants :

1.

$$\left\{ \begin{array}{cccc} x & +y & +z & = & 1 \end{array} \right.$$

2.

$$\begin{cases} x + y + z = 1 \\ x - y = 2 \end{cases}$$

3.

$$\begin{cases} x + y + z = 1 \\ x - y = 2 \\ y - z = 3 \end{cases}$$

Exercice 6 Résoudre dans \mathbb{R}^4 les systèmes suivants :

1.
$$\begin{cases} 2x + y -2z +3t = 2\\ 3x +2y -z +2t = 4\\ 3x +3y +3z -3t = 6 \end{cases} \text{ et } \begin{cases} 2x + y -2z +3t = 2\\ 3x +2y -z +2t = 4\\ 3x +3y +3z -3t = 7 \end{cases}$$

2.
$$\begin{cases} x +2y -2z +3t = 2\\ 2x +4y -3z +4t = 5\\ 5x +10y -8z +11t = 12 \end{cases}$$

Exercice 7 Résoudre dans \mathbb{R}^5 le système

$$\begin{cases} x +2y -2z +3t -w = 2\\ 2t -w = 24\\ -5x -10y +8z +t -2w = 12\\ 2x +4y -3z -3t +2w = -19 \end{cases}$$