Loi de composition interne

- *Exercice 1* On définit une loi de composition interne \star sur \mathbb{R} par $\forall (a,b) \in \mathbb{R}^2$, $a \star b = \ln(e^a + e^b)$. Quelles en sont les propriétés ? Possède-t-elle un élément neutre ? Y a-t-il des éléments réguliers ?
- **Exercice 2** Soit E = [0,1]. On définit une loi \star sur E par : $\forall x, y \in E, x \star y = x + y xy$.
 - a) Montrer que * est une loi de composition interne commutative et associative.
 - b) Montrer que * possède un neutre.
 - c) Quels sont les éléments symétrisables ? réguliers ?
- *Exercice 3* Soit \star une loi de composition interne sur E.

Pour $A, B \in \mathcal{P}(E)$ on pose $A \star B = \{a \star b / a \in A, b \in B\}$.

Etudier les propriétés de \star sur E (commutativité, associativité, existence d'un neutre) conservées par \star sur $\mathcal{P}(E)$. La loi \star est-elle distributive sur l'union, sur l'intersection ?

Exercise 4 Soit E un ensemble et $f: E \to E$.

Montrer que f est un élément régulier de (E^E, \circ) ssi f est bijective.

- Exercice 5 Soit a un élément d'un monoïde (E,\star) .

 Montrer que a est symétrisable ssi l'application $f:E\to E$ définie par $f(x)=a\star x$ est bijective.
- **Exercice 6** Soit (E,\star) un monoïde. Un élément x de E est dit idempotent si et seulement si $x\star x=x$.
 - a) Montrer que si x et y sont idempotents et commutent, alors $x \star y$ est idempotent.
 - b) Montrer que si x est idempotent et inversible, alors x^{-1} est idempotent.
- **Exercice 7** Soit E et F deux ensembles et $\varphi: E \to F$ une application bijective.

On suppose E muni d'une loi de composition interne \star et on définit une loi \top sur F par :

 $\forall x, y \in F, x \top y = \varphi(\varphi^{-1}(x) \star \varphi^{-1}(y)).$

- a) Montrer que si ★ est commutative (resp. associative) alors ⊤ l'est aussi.
- b) Montrer que si $\,\star\,$ possède un neutre $\,e\,$ alors $\,\top\,$ possède aussi un neutre à préciser.
- *Exercice* 8 Soit \star une loi de composition interne associative sur E.

On suppose qu'il existe $a \in E$ tel que l'application $f: E \to E$ définie par $f(x) = a \star x \star a$ soit surjective et on note b un antécédent de a par f.

- a) Montrer que $e = a \star b$ et $e' = b \star a$ sont neutres resp. à gauche et à droite puis que e = e'.
- b) Montrer que a est symétrisable et f bijective.
- Exercice 9 Soit \star une loi de composition interne associative sur un ensemble fini E et x un élément régulier de E. Montrer que E possède un neutre.
- **Exercice 10** Soit (E, \star) un monoïde avec E ensemble fini. Montrer que tout élément régulier de E est inversible.
- $\pmb{Exercice\ 11}$ Soit A une partie d'un ensemble E . On appelle fonction caractéristique de la partie A dans E ,

 $\text{l'application } \chi_{\scriptscriptstyle A}: E \to \mathbb{R} \ \text{ définie par}: \ \chi_{\scriptscriptstyle A}(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{sinon} \end{cases}.$

De quels ensembles les fonctions suivantes sont-elles les fonctions caractéristiques ?

a) $\min(\chi_A, \chi_B)$

b) $\max(\chi_A, \chi_B)$

c) $\chi_A \cdot \chi_B$

d) $1-\chi_A$

- e) $\chi_A + \chi_B \chi_A \cdot \chi_B$
- f) $\chi_A + \chi_B 2\chi_A \cdot \chi_B$.

Groupes

- **Exercice 12** Soit (G, \star) un groupe tel que : $\forall x \in G, x^2 = e$. Montrer que G est commutatif.
- **Exercice 13** Soit (E,\star) un monoïde de neutre e. On suppose que $\forall x \in E, x^{\star 2} = e$. Montrer que (E,\star) est un groupe abélien.
- Exercice 14 Soit (E, \star) un monoïde avec E ensemble fini. On suppose que tous les éléments de E sont réguliers. Montrer que E est un groupe.
- Exercice 15 Soit (G, \star) un groupe à n éléments.

 Justifier que sa table de composition est un carré latin c'est à dire que tout élément de G figure une fois et une seule dans chaque ligne et dans chaque colonne.
- *Exercice 16* Soit $G = \mathbb{R}^* \times \mathbb{R}$ et \star la loi de composition interne définie sur G par : $(x,y)\star(x',y')=(xx',xy'+y)$.
 - a) Montrer que (G, \star) est un groupe non commutatif.
 - b) Montrer que $\mathbb{R}^{+*} \times \mathbb{R}$ est un sous-groupe de (G, \star) .
- **Exercice 17** Sur $G=\left]-1,1\right[$ on définit une loi \star par $\forall x,y\in G, x\star y=\frac{x+y}{1+xy}$. Montrer que (G,\star) est un groupe abélien.
- Exercice 18 Addition des vitesses en théorie de la relativité : Soit c > 0 (c correspond à la vitesse-ou célérité-de la lumière) et I =]-c, c[.
 - a) Montrer que $\forall (x,y) \in I^2$, $x \star y = \frac{x+y}{1+\frac{xy}{a^2}} \in I$
 - b) Montrer que la loi * munit I d'une structure de groupe abélien. Cette loi * correspond à l'addition des vitesses portées par un même axe en théorie de la relativité.

Sous-groupe

- **Exercice 19** Soit $\omega \in \mathbb{C}$ et $H = \{a + \omega b / a, b \in \mathbb{Z}\}$. Montrer que H est un sous groupe de $(\mathbb{C}, +)$.
- **Exercice 20** Soit $a \in \mathbb{C}^*$ et $H = \{a^n / n \in \mathbb{Z}\}$. Montrer que H est un sous groupe de (\mathbb{C}^*, \times) .
- **Exercice 21** Soit a un élément d'un ensemble E. On forme $H = \{f \in \mathfrak{S}(E) \mid f(a) = a\}$. Montrer que H est un sous-groupe de $(\mathfrak{S}(E), \circ)$
- $\textbf{\textit{Exercice 22}} \quad \text{Soit } (G, \times) \text{ un groupe, } H \text{ un sous groupe de } (G, \times) \text{ et } a \in G \text{ .}$
 - a) Montrer que $aHa^{-1}=\left\{axa^{-1}/x\in H\right\}$ est un sous groupe de (G,\times) .
 - b) A quelle condition simple $\,aH=\left\{ax/x\in H\right\}\,$ est un sous groupe de $\,(G,\times)\,$?

Exercice 23 Soit (G, \star) un groupe.

On appelle centre de G la partie C de G définie par : $C = \{x \in G \mid \forall y \in G, x \star y = y \star x\}$. Montrer que C est un sous-groupe de (G, \star) .

 $\textit{Exercice 24} \quad \text{Soit} \ f_{a,b}: \mathbb{C} \to \mathbb{C} \ \text{ définie par } f_{a,b}(z) = az + b \ \text{ avec } \ a \in \mathbb{C}^*, b \in \mathbb{C} \ .$

Montrer que $\left(\left\{f_{a,b} \,/\, a \in \mathbb{C}^*, b \in \mathbb{C}\right\}, \circ\right)$ est un groupe.

Exercice 25 On considère les applications de $E = \mathbb{R} \setminus \{0,1\}$ dans lui-même définies par :

$$i(x) = x, f(x) = 1 - x, g(x) = \frac{1}{x}, h(x) = \frac{x}{x-1}, k(x) = \frac{x-1}{x}, \ell(x) = \frac{1}{1-x}$$

- a) Démontrer que ce sont des permutations de ${\cal E}$.
- b) Construire la table donnant la composée de deux éléments quelconques de l'ensemble $G = \{i, f, g, h, k, l\}$.
- c) Montrer que G muni de la composition des applications est un groupe non commutatif.
- **Exercice 26** Soit H et K deux sous-groupes d'un groupe (G,\star) tels que $H \cup K$ en soit aussi un sous-groupe. Montrer que $H \subset K$ ou $K \subset H$.
- *Exercice* 27 Soit (G, \star) un groupe et A une partie finie non vide de G stable pour \star .
 - a) Soit $x \in A$ et $\varphi : \mathbb{N} \to G$ l'application définie par $\varphi(n) = x^n$.

Montrer que φ n'est pas injective.

- b) En déduire que $x^{-1} \in A$ puis que A est un sous-groupe de (G, \star) .
- *Exercice 28* Pour $a \in \mathbb{N}$, on note $a\mathbb{Z} = \{ak \mid k \in \mathbb{Z}\}$.
 - a) Montrer que $a\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z},+)$.

On se propose de montrer que, réciproquement, tout sous groupe de \mathbb{Z} est de cette forme.

b) Vérifier que le groupe $\{0\}$ est de la forme voulue.

Soit H un sous-groupe de $(\mathbb{Z},+)$ non réduit à $\{0\}$.

- c) Montrer que $H^+ = \{h \in H \mid h > 0\}$ possède un plus petit élément. On note $a = \min H^+$.
- d) Etablir que $a\mathbb{Z} \subset H$.
- e) En étudiant le reste de la division euclidienne d'un élément de H par a montrer que $H \subset a\mathbb{Z}$.
- f) Conclure que pour tout sous-groupe H de $\mathbb Z$, il existe un unique $a\in\mathbb N$ tel que $H=a\mathbb Z$.

Morphisme de groupes

Exercice 29 Soit $n \in \mathbb{N}^*$ et $f : \mathbb{R}^* \to \mathbb{R}^*$ définie par $f(x) = x^n$.

Montrer que f est un endomorphisme du groupe (\mathbb{R}^*,\times) . En déterminer image et noyau.

- *Exercice 30* Justifier que $\exp: \mathbb{C} \to \mathbb{C}^*$ est un morphisme du groupe $(\mathbb{C},+)$ vers (\mathbb{C}^*,\times) . En déterminer image et noyau.
- *Exercice 31* Soit G un groupe noté multiplicativement.

Pour $a \in G$, on note τ_a l'application de G vers G définie par $\tau_a(x) = axa^{-1}$.

- a) Montrer que τ_a est un endomorphisme du groupe (G,\times) .
- b) Vérifier que $\forall a, b \in G$, $\tau_a \circ \tau_b = \tau_{ab}$
- c) Montrer que τ_a est bijective et déterminer son application réciproque.
- d) En déduire que $\mathcal{T} = \{ \tau_a \mid a \in G \}$ muni du produit de composition est un groupe.

- **Exercice 32** Soit (G, \star) , (G', \top) deux groupes et $f: G \to G'$ un morphisme de groupes.
 - a) Montrer que pour tout sous-groupe H de G, f(H) est un sous-groupe de (G', \top) .
 - b) Montrer que pour tout sous-groupe H' de G', $f^{-1}(H')$ est un sous-groupe de (G,\star) .
- *Exercice* 33 On note Aut(G) l'ensemble des automorphismes d'un groupe (G, \star) . Montrer que $\operatorname{Aut}(G)$ est un sous-groupe de $(\mathfrak{S}(G), \circ)$.
- **Exercice 34** Soit (G, \star) un groupe et $a \in G$.

On définit une loi de composition interne \top sur G par $x \top y = x \star a \star y$.

- a) Montrer que (G, \top) est un groupe.
- b) Soit H un sous groupe de (G, \star) et $K = \text{sym}(a) \star H = \{\text{sym}(a) \star x / x \in H\}$.

Montrer que K est un sous groupe de (G, \top) .

c) Montrer que $f: x \mapsto x \star \text{sym}(a)$ est un isomorphisme de (G, \star) vers (G, \top) .

Etude du groupe symétrique

- **Exercice 35** Soit n un entier supérieur à 2, $(i, j) \in \{1, 2, ..., n\}^2$ tel que $i \neq j$ et $\sigma \in \mathfrak{S}_n$. Montrer que σ et $\tau = (i \ j)$ commutent si et seulement si $\{i, j\}$ est stable par σ .
- **Exercice 36** Dans \mathfrak{S}_n avec $n \geq 2$, on considère une permutation σ et un p-cycle : $c = (a_1 \ a_2 \ \dots \ a_n)$. Observer que la permutation $\sigma \circ c \circ \sigma^{-1}$ est un p-cycle qu'on précisera.
- Exercice 37 Déterminer la signature de :

a)
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 4 & 8 & 7 & 6 & 2 & 1 \end{pmatrix}$$
 b) $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 2 & 7 & 4 & 8 & 5 & 6 \end{pmatrix}$.

Exercice 38 Soit $n \in \mathbb{N}^*$. Déterminer la signature de la permutation suivante :

a)
$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ n & n-1 & \cdots & 2 & 1 \end{pmatrix}$$

a)
$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ n & n-1 & \cdots & 2 & 1 \end{pmatrix}$$
.
b) $\sigma = \begin{pmatrix} 1 & 2 & 3 & \cdots & n & n+1 & n+2 & \cdots & 2n-1 & 2n \\ 1 & 3 & 5 & \cdots & 2n-1 & 2 & 4 & \cdots & 2n-2 & 2n \end{pmatrix}$.

- **Exercice 39** Soit $n \ge 2$ et τ une transposition de \mathfrak{S}_n .
 - a) Montrer que l'application $\sigma \mapsto \tau \circ \sigma$ est une bijection de \mathfrak{S}_n vers \mathfrak{S}_n .
 - b) En déduire le cardinal de l'ensemble \mathfrak{A}_n formé des permutations paires de \mathfrak{S}_n .
- **Exercice 40** Dans (\mathfrak{S}_n, \circ) on considère $\tau = (1 \ 2)$ et $\sigma = (1 \ 2 \ \dots \ n)$.
 - a. Calculer $\sigma^k \circ \tau \circ \sigma^{-k}$ pour $0 \le k \le n-1$.
 - b. En déduire que toute élément de \mathfrak{S}_n peut s'écrire comme un produit de σ et de τ .
- *Exercice 41* Soit $n \ge 5$.

Montrer que si $(a \ b \ c)$ et $(a' \ b' \ c')$ sont deux cycles d'ordre 3 de \mathfrak{S}_n , alors il existe une permutation σ , paire, telle que $\sigma \circ (a \ b \ c) \circ \sigma^{-1} = (a' \ b' \ c')$.

Exercice 42 Soit $n \ge 2$ et c la permutation circulaire $c = (1 \ 2 \ ... \ n-1 \ n)$. Déterminer toutes les permutations σ de \mathfrak{S}_n qui commutent avec c.

Anneaux

Exercice 43 On définit sur \mathbb{Z}^2 deux lois de compositions internes notées + et \star par :

$$(a,b)+(c,d) = (a+c,b+d)$$
 et $(a,b)*(c,d) = (ac,ad+bc)$.

- a) Montrer que $(\mathbb{Z}^2, +, \star)$ est un anneau commutatif.
- b) Montrer que $A = \{(a,0)/a \in \mathbb{Z}\}$ est un sous-anneau de $(\mathbb{Z}^2,+,\star)$.
- *Exercice 44* Montrer qu'un anneau $(A, +, \times)$ n'a pas de diviseurs de zéro ssi tous ses éléments non nuls sont réguliers
- **Exercice 45** Soit x et y deux éléments d'un anneau $(A, +, \times)$.
 - a) Montrer que si x est nilpotent et que x et y commutent, alors xy est nilpotent.
 - b) Montrer que si x et y sont nilpotents et commutent, alors x+y est nilpotent.
 - c) Montrer que si xy est nilpotent, alors yx l'est aussi.
 - d) Montrer que si x est nilpotent alors 1-x est inversible. Préciser $(1-x)^{-1}$.
- **Exercice 46** Anneau de Boole (1815-1864)

On considère $(A, +, \times)$ un anneau de Boole c'est à dire un anneau non nul tel que tout élément est idempotent pour la $2^{\text{ème}}$ loi ce qui signifie : $\forall x \in A, \ x^2 = x$.

a) Montrer que $\forall (x,y) \in A^2$, $xy + yx = 0_A$ et en déduire que $\forall x \in A$, $x + x = 0_A$.

En déduire que l'anneau A est commutatif.

- b) Montrer que la relation binaire définie sur A par $x \leq y \Leftrightarrow yx = x$ est une relation d'ordre.
- c) Montrer que $\forall (x,y) \in A^2$, $xy(x+y) = 0_A$.

En déduire qu'un anneau de Boole intègre ne peut avoir que deux éléments.

Exercice 47 Soit a,b deux éléments d'un anneau $(A,+,\times)$ tels que ab soit inversible et b non diviseur de 0. Montrer que a et b sont inversibles.

Sous-anneau

Exercice 48 Soit $d \in \mathbb{N}$, on note $\mathbb{Z}\left[\sqrt{d}\right] = \left\{a + b\sqrt{d} \mid (a,b) \in \mathbb{Z}^2\right\}$.

Montrer que $\mathbb{Z}\big[\sqrt{d}\,\big]$ est un sous-anneau de $(\mathbb{R},+,\times)$.

Exercice 49 On note $\mathcal{D} = \left\{ \frac{n}{10^k} | n \in \mathbb{Z}, k \in \mathbb{N} \right\}$ Tensemble des nombres décimaux.

Montrer que \mathcal{D} est un sous-anneau de $(\mathbb{Q}, +, \times)$.

Exercice 50 Anneau des entiers de Gauss (1777-1855)

On note $\mathbb{Z}[i] = \{a + ib \mid (a,b) \in \mathbb{Z}^2 \}$.

- a) Montrer que $\mathbb{Z}[i]$, est un anneau commutatif pour l'addition et la multiplication des complexes.
- b) Déterminer les éléments inversibles à l'intérieur de $\mathbb{Z}[i]$.
- **Exercice 51** Soit $A = \left\{ \frac{m}{n} / m \in \mathbb{Z}, n \in \mathbb{N}^*, \text{ impair} \right\}$.
 - a) Montrer que A est un sous anneau de $(\mathbb{Q}, +, \times)$.
 - b) Quels en sont les éléments inversibles ?

Exercice 52 Soit
$$A = \left\{ \frac{m}{2^n} / m \in \mathbb{Z} \text{ et } n \in \mathbb{N} \right\}$$
.

- a) Montrer que A est un sous anneau de $(\mathbb{Q}, +, \times)$.
- b) Quels en sont les éléments inversibles ?
- **Exercice 53** Soit $d \in \mathbb{N}$. On note $A_d = \{(x,y) \in \mathbb{Z}^2 \mid x = y \mid [d] \}$ (avec $A_0 = \mathbb{Z}^2$).
 - a) Montrer que A_d est un sous anneau $(\mathbb{Z}^2,+,\times)$.
 - b) Inversement, soit A un sous anneau de $(\mathbb{Z}^2, +, \times)$.

Montrer que $H = \{x \in \mathbb{Z}/(x,0) \in A\}$ est un sous groupe de $(\mathbb{Z},+)$.

c) En déduire qu'il existe $d \in \mathbb{N}$ tel que $H = d\mathbb{Z}$ et $A = A_d$.

Corps

- *Exercice 54* Pour $a,b\in\mathbb{R}$, on pose $a\top b=a+b-1$ et $a\star b=ab-a-b+2$. Montrer que (\mathbb{R},\top,\star) est un corps.
- Exercice 56 Soit A un anneau commutatif fini non nul. Montrer que A ne possède pas de diviseurs de zéro ssi A est un corps.
- *Exercice 57* Soit F un sous corps de $(\mathbb{Q}, +, \times)$. Montrer que $F = \mathbb{Q}$.

david Delaunay http://mpsiddl.free.fr