Исследование устойчивости графовых нейронных сетей

Грустный кефир Илья Быков, Дмитрий Долбня, Анна Чистякова, Константин Щепин

Введение

- Некоторые данные удобно представлять в виде графов
- Для их эффективного анализа были придуманы графовые нейронные сети
- Задачи: классификация вершин, классификация графов, предсказание связей между вершинами
- Факторы, влияющие на стабильность вычисления: рандомная инициализация, особенности методов вычислений, типы данных и т. д

Принцип работы GNN

Forward propagation

- Message passing

$$m_v^{t+1} = \sum_{w \in N(v)} M_t(h_v^t, h_w^t, e_{vw})$$

- N(v) соседи вершины v;
- h_{x}^{t} состояние вершины v;
- e_{vw} состояние ребра между v и w;
- Node-state updating

$$h_v^{t+1} = U_t(h_v^t, m_v^{t+1})$$

Визуализация принципа работы GraphSAGE

from neighbors

using aggregated information

Постановка задачи

Цель: исследовать зависимость устойчивости оператора GraphSAGE от изменения типа данных параметров нейронной сети

Задачи:

- Разработка метода исследования устойчивости
- Проведение экспериментов с различными типами данных

Постановка эксперимента

- Генерация датасета
 200 графов с количеством вершин от 20 до 70
- Обучение моделей
 По 50 моделей для каждого типа данных
- Оценка стабильности

$$\sum_{\substack{i,j \in \{1,n\}, i \neq j \ v \in N}} rac{||\mathbf{Z}_i(v) - \mathbf{Z}_j(v)||_1}{RC_n^2}$$
 $G = (N, E), |N| = R, \mathbf{Z} = \{\mathbf{Z}_1, ..., \mathbf{Z}_n\}$

Обучение моделей

- Гиперпараметры

hidden_channels = 64 out_channels = 10

Количество эпох — 50

Количество слоев — 1, 2, 3

- Оптимизатор Adam
 Шаг обучения 0.001
- Loss-функция

$$J_{\mathcal{G}}(\mathbf{z}_u) = -\log(\sigma(\mathbf{z}_u^T \mathbf{z}_v)) - Q \cdot \mathbb{E}_{v_n \sim P_n(v)} \log(\sigma(-\mathbf{z}_u^T \mathbf{z}_{v_n}))$$

Результаты

n_layers dtype	1	2	3
bfloat16	0.2012	0.1011	0.0513
float32	0.7191	0.2288	0.2075
float64	0.6990	0.2196	0.2055

Выводы

- Разработан метод исследования устойчивости оператора GraphSAGE
- Проведены эксперименты с тремя различными типами данных с изменением количества слоев нейронной сети

Основные ссылки

- https://github.com/Anya497/GNNStability код
- https://arxiv.org/pdf/1706.02216.pdf описание GraphSAGE
- https://pytorch-geometric.readthedocs.io/en/latest/index.html документация
 Pytorch Geometric
- https://arxiv.org/pdf/1901.00596.pdf обзор на разновидности графовых нейронных сетей