Discrete Optimization

Linear Programming: Part III

Goals of the Lecture

- Linear programming
 - -the Simplex algorithm

BFS and the Naive Algorithm

- 1. An optimal solution is located at a vertex.
- 2. A vertex is a Basic Feasible Solution (BFS).
- Naive algorithm
 - generate all basic feasible solutions
 - select m basic basic variables and perform Gaussian elimination
 - test whether it is feasible
 - -select the BFS with the best cost
- How many basic solutions?

$$\frac{n!}{m!(n-m)!}$$

Outline of the Simplex Algorithm

Goal: You want to solve a linear program

- 1. An optimal solution is located at a vertex.
- 2. A vertex is a Basic Feasible Solution (BFS).
- 3. You can move from one BFS to a neighboring BFS
- 4. You can detect whether a BFS is optimal
- 5. From any BFS, you can move to a BFS with a better cost

Outline of the Simplex Algorithm

Goal: You want to solve a linear program

- 1. An optimal solution is located at a vertex.
- 2. A vertex is a Basic Feasible Solution (BFS).
- 3. You can move from one BFS to a neighboring BFS
- 4. You can detect whether a BFS is optimal
- 5. From any BFS, you can move to a BFS with a better cost

The Simplex Algorithm

- Local search algorithm
 - -move from BFS to BFS
 - -guaranteed to find the global optimum
 - because of convexity

The Simplex Algorithm

- Local search algorithm
 - -move from BFS to BFS
 - -guaranteed to find the global optimum
 - because of convexity
- ► Key idea: how to move fro BFS to BFS.

- How to move to another BFS
 - select a non-basic variable with a negative coefficient: entering variable
 - introduce this variable in the basis by removing a basic variable: *leaving variable*
 - perform Gaussian elimination
- Local move: swap a basic and a non-basic variables

Not a BFS: I cannot select the leaving variable arbitrarily!

- ► How to choose the leaving variable?
- we must maintain feasibility

$$l = \underset{i:a_{ie} < 0}{\operatorname{arg-min}} \frac{b_i}{-a_{ie}}$$

guarantee the feasibility because a_ie < 0

The Local Move

- Moving from BFS to BFS
 - -select the entering variable xe
 - non-basic variable with negative coefficients in the right-hand side
 - select the leaving variable x₁ to maintain feasibility

$$l = \underset{i:a_{ie} < 0}{\operatorname{arg-min}} \frac{b_i}{-a_{ie}}$$

- -apply Gaussian elimination
 - eliminate x_e from the right-hand side
- This operation is called pivoting in linear programming
 - -pivot(e,l)

Outline of the Simplex Algorithm

Goal: You want to solve a linear program

- 1. An optimal solution is located at a vertex.
- 2. A vertex is a Basic Feasible Solution (BFS).
- 3. You can move from one BFS to a neighboring BFS
- 4. You can detect whether a BFS is optimal
- 5. From any BFS, you can move to a BFS with a better cost

Outline of the Simplex Algorithm

Goal: You want to solve a linear program

- 1. An optimal solution is located at a vertex.
- 2. A vertex is a Basic Feasible Solution (BFS).
- 3. You can move from one BFS to a neighboring BFS
- 4. You can detect whether a BFS is optimal
- 5. From any BFS, you can move to a BFS with a better cost

The Simplex Algorithm

A BFS is optimal if its objective function, after having eliminated all the basic variables, is of the form

$$c_0 + c_1 x_1 + \ldots + c_n x_n$$

with

$$c_i \ge 0 \ (1 \le i \le n).$$

min
$$x_1 + x_2 + x_3 + x_4 + x_5$$
 subject to
$$3x_1 + 2x_2 + x_3 = 1$$
$$5x_1 + x_2 + x_3 + x_4 = 3$$
$$2x_1 + 5x_2 + x_3 + x_5 = 4$$

First, find a BFS and eliminate the basic variable from the objective function

 $x_5 = 3 + x_1 - 3x_2$

```
min 6 - 3x_1 - 3x_2 subject to x_3 = 1 - 3x_1 - 2x_2 x_4 = 2 - 2x_1 + x_2 x_5 = 3 + x_1 - 3x_2
```

min
$$6 - 3x_1 - 3x_2$$
 subject to $x_3 = 1 - 3x_1 - 2x_2$ $x_4 = 2 - 2x_1 + x_2$ $x_5 = 3 + x_1 - 3x_2$

min $6 - 3x_1 - 3x_2$ subject to $x_3 = 1 - 3x_1 - 2x_2$ $x_4 = 2 - 2x_1 + x_2$ $x_5 = 3 + x_1 - 3x_2$

min
$$6 - 3x_1 - 3x_2$$
 subject to
$$x_3 = 1 - 3x_1 - 2x_2$$

$$x_4 = 2 - 2x_1 + x_2$$

$$x_5 = 3 + x_1 - 3x_2$$
min subject to
$$x_2 = \frac{1}{2} - \frac{3}{2}x_1 + \frac{3}{2}x_3$$

$$x_4 = \frac{5}{2} - \frac{7}{2}x_1 - \frac{1}{2}x_3$$

$$x_5 = \frac{3}{2} + \frac{11}{2}x_1 + \frac{3}{2}x_3$$

Outline of the Simplex Algorithm

Goal: You want to solve a linear program

- 1. An optimal solution is located at a vertex.
- 2. A vertex is a Basic Feasible Solution (BFS).
- 3. You can move from one BFS to a neighboring BFS
- 4. You can detect whether a BFS is optimal
- 5. From any BFS, you can move to a BFS with a better cost

Outline of the Simplex Algorithm

Goal: You want to solve a linear program

- 1. An optimal solution is located at a vertex.
- 2. A vertex is a Basic Feasible Solution (BFS).
- 3. You can move from one BFS to a neighboring BFS
- 4. You can detect whether a BFS is optimal
- 5. From any BFS, you can move to a BFS with a better cost

Look Ma, My Local Move is Improving

- Assume that, in the BFS,
 - $-b_1>0, ..., b_m>0$
 - there exists an entering variable e with ce < 0
 - -there exists a leaving variable I
- then the move pivot(e,l) is improving

The Simplex Algorithm

while $\exists 1 \leq i \leq n : c_i < 0$ do choose e such that $c_e < 0$; $l = \underset{i:a_{ie} < 0}{\operatorname{arg-min}} \frac{b_i}{-a_{ie}};$ pivot(e,l);

The Simplex Algorithm

```
while \exists 1 \leq i \leq n : c_i < 0 do choose e such that c_e < 0; l = \underset{i:a_{ie} < 0}{\operatorname{arg-min}} \frac{b_i}{-a_{ie}}; pivot(e,l);
```

- Assume that during the execution
 - -b₁, ..., b_m are always strictly positive
 - the objective function is bounded by below
- then the simplex algorithm terminates with an optimal solution

Selecting the leaving variable

$$l = \underset{i:a_{ie} < 0}{\operatorname{arg-min}} \frac{b_i}{-a_{ie}}$$

min
$$6 - 3x_1 - 3x_2$$
 subject to $x_3 = 1 + 3x_1 - 2x_2$ $x_4 = 2 + 2x_1 + x_2$ $x_5 = 3 + x_1 - 3x_2$

► There are no leaving variables

Selecting the leaving variable

$$l = \underset{i:a_{ie} < 0}{\operatorname{arg-min}} \frac{b_i}{-a_{ie}}$$

► There are no leaving variables

What is the basic solution?

$$\{x_1 = 0; x_2 = 0; x_3 = 1; x_4 = 2; x_5 = 3\}$$

- ► What happens if I increase the value of x₁
 - the solution remains feasible
 - the value of the objective can decrease arbitrarily

► What if some b_i becomes zero?

min
$$5 - 3x_1 - 3x_2$$
 subject to $x_3 = 0 - 3x_1 - 2x_2$ $x_4 = 2 - 2x_1 + x_2$ $x_5 = 3 + x_1 - 3x_2$

What is the leaving variable?

Outline of the Simplex Algorithm

- 1. An optimal solution is located at a vertex.
- 2. A vertex is a Basic Feasible Solution (BFS).
- 3. You can move from one BFS to a neighboring BFS
- 4. You can detect whether a BFS is optimal
- 5. From any BFS, you can move to a BFS with a better cost

We need to find a new way to guarantee termination

Termination of the Simplex Algorithm

Many approaches

- -Bland rule
 - select always the first entering variable lexicographically
- Lexicographic pivoting rule
 - break ties when selecting the leaving variable by using a lexicographic rule

$$l = \underset{i:a_{ie} < 0}{\operatorname{arg-lex-min}} \frac{b_i}{-a_{ie}}$$

- Perturbation methods

min
$$x_1 + x_2 + x_3 + x_4 + x_5$$
 subject to
$$3x_1 + 2x_2 + x_3 = 1$$
$$5x_1 + x_2 + x_3 + x_4 = 3$$
$$2x_1 + 5x_2 + x_3 + x_5 = 4$$

► How do I find my first BFS?

► How do I find my first BFS?

min
$$c_1x_1 + \ldots + c_nx_n$$
 subject to
$$a_{11}x_1 + \ldots + a_{1n}x_n = b_1$$

$$\ldots$$

$$a_{m1}x_1 + \ldots + a_{mn}x_n = b_m$$

► Introduce artificial variables

Introduce artificial variables

- ► I have an easy BFS
- But to another problem

► Introduce artificial variables

min
$$c_1x_1 + \ldots + c_nx_n$$
 subject to
$$a_{11}x_1 + \ldots + a_{1n}x_n + y_1 = b_1$$

$$\ldots$$

$$a_{i1}x_1 + \ldots + a_{in}x_n + y_i = b_i$$

$$\ldots$$

$$a_{m1}x_1 + \ldots + a_{mn}x_n + y_m = b_m$$

► I have an easy BFS

But to another problem

► Introduce artificial variables

► I have an easy BFS

But to another problem

Two-Phase Method

- ► First find a BFS
 - if there is one
- ► Then find an optimal BFS

Two-Phase Method

► First find a BFS

- ► Feasible if the objective value reaches 0
 - all the yi are thus zeros
 - I have a BFS without the yi
 - really? always?

Until Next Time