Pre-Pràctica 1: Fortran i gnuplot (1).23-24

Objectius: Bucles, enters/reals, lectura de terminal, escriptura en fitxers, gràfica senzilla

— Les energies d'una particula dins d'una caixa unidimensional de parets infinites son,

$$E_k = k^2 \pi^2 \frac{\hbar^2}{2mL^2} = k^2 E_1 \qquad k = 1, 2, 3 \dots$$
 (0.1)

Considera, $E_1 = 3.72$ eV. Escriviu un programa, P1-23-24.f, que:

- 1) Llegeixi un número enter, k, entre 2 i 40, i feu que el programa escrigui en pantalla el valor corresponent E_k .
- 2) Feu que el programa calculi l'energia de Fermi per N=40,

$$E_{\text{Fermi}}^N = \sum_{k=1}^N E_k$$

i l'escrigui en pantalla.

- 3) A continuació feu que el programa escrigui en un fitxer $\mathbf{P1\text{-}23\text{-}24\text{-}res1.dat}$ una taula amb dues columnes amb N, E^N_{Fermi} amb $N=1,2\ldots,40$. Feu una gràfica, $\mathbf{P1\text{-}23\text{-}24\text{-}fig1.png}$, amb GNUplot representant el valor E^N_{Fermi} com a funció d'N, amb $N=1,2\ldots,40$
- 4) Feu una gràfica amb GNUplot i guardeu-la en un fitxer $\bf P1-23-24-fig2.png$ comparant el resultat numèric, $E^{2N}_{\rm Fermi}/E^N_{\rm Fermi}$ com a funció de $N=1,2,\ldots,20$, amb el comportament $8-6/N+6/N^2$.

Entregable: P1-23-24.f, P1-23-24-fig1.png, P1-23-24-res1.dat,P1-23-24-fig2.png