컴퓨터 네트워크

목 차

8.1 유선매체 (Guided Media)

8.2 무선매체 (Unguided Media)

8.3 전송경로의 불완전성

전송매체와 물리층

두 가지 형태로 분류 : <u>유도매체</u>, <u>비유도매체</u>

전송매체의 종류

트위스티드 케이블 (Twisted-Pair Cable)

- ✓ 물리적 구조
 - 두 개 이상의 꼬아진 구리도선으로 구성
 - 케이블 안의 특정 도선을 색깔 있는 플라스틱으로 피복 (접지선과 신호선)
- ✓ 전송특성
 - 두 선을 서로 꼬아서 서로 간섭에 대한 영향을 줄임
 - 각 쌍은 1인치 당 꼬인 횟수가 서로 다르도록 구성하여 전자 기적 간섭을 최소화 함

병렬상의 잡음 효과

꼬임선 상의 잡음 효과

- ✓ 종류
 - 외부의 전계, 자계 또는 다른 전송선에서 유도되는 전계, 자계로 부터 영향을 차단하기 위해 엷은 금속막의 유무
 - ▶ UTP(Unshielded Twisted-Pair 비차폐) 케이블; 많이 사용
 - > STP(Shielded Twisted-Pair 차폐) 케이블

- ✓ UTP 케이블 (Unshielded Twisted-Pair Cable)
 - 네 쌍 이상의 꼬인 선을 금속박막에 의한 차단 없이 최종외부 피복으로 감싼 구조

▶ 회선의 성능에 따라 Category 1~ 6등급으로 나눔(EIA)

등급	전송 속도	쓰이는 곳		
Category 1	낮은 전송 속도	일반 전화회선에 사용		
Category 2	4Mbps	음성통신 및 낮은 속도의 데이터 통신에 사용		
Category 3	10Mbps	Ethernet 10Base-T		
Category 4	16Mbps	Token-Ring 과 10Base-T 에 주로 사용됨		
Category 5	100Mbps	100Base-T와 10Base-T 같은 고속 회선에 사용됨		
Category 6	1Gbps	옥내 수평 배선망(350MHz), 100Base T, IEEE 802.3, IEEE 802.5, Gigabit Ethernet 등에 사용		

✓ 특성

- 유연하며 설치가 쉬움
- ▶ RJ-45 커넥터(같은 snap-in 플러그 형태)를 사용
- 가격이 싸고 사용하기 쉬움
- ▶ 최대전송거리 100m에 20~100 MHz 의 대역폭을 제공(Cat. 5 기준)

/TIA 568A	8			EIA/TIA 5	68B		
핀 번호	케이블	불의 색	기능	핀 번호	케이탈	클의 색	기능
1	흰색	녹색	Tx+		흰색	주황	Tx+
2	籌	색	Tx-	2	\$	활	Tx-
3	흰색	주활	Rx+	3	흰색	4	Rx+
4	Ī	랑	사용하지 않음	4	Ī	랑	사용하지 않음
5	흰색	파랑	사용하지 않음	5	흰색	파랑	사용하지 않음
6	柔	활	Rx-	6	¥	ᄲ	Bx-
7	흰색	갈색	사용하지 않음	7	흰색	갈색	사용하지 않음
8	길	색	사용하지 않음	8	길	색	사용하지 않음

- RJ : Registered Jack
- RJ-11: 6P4C (six position, four conductor),

차폐선(STP: Shielded Twisted-Pair) 케이블

✓ UTP와 같은 성능을 가짐 (고가, 잡음에 덜 민감)

- ✓ STP 케이블 (Shield Twisted-Pair Cable)
 - UTP 케이블의 외부 피복 내에 외부 전자 기 간섭으로부터 보호를 위해 각 쌍들마다 얇은 금속 박막으로 감싸고 이 막은 땅에 접지
 - ▶ UTP에 비해 비쌈
 - 금속 박막을 접지 시키기 위해 특별한 커 넥터를 사용하여 설치가 복잡
 - ▶ 보통 16 Mbps로 동작하며 100m 케이블 에서 155Mbps까지 동작가능(20 MHz ~ 300 MHz)
 - ▶ 백본의 최대 사용 길이는 100m
 - 금속 박막에 의해 외부로부터의 간섭을 거의 받지 않음

✓ UTP와 STP의 비교

비교항목	UTP(Cat. 5 기준)	STP	
케 <mark>이블 구조</mark>	금속 박막에 의한 차단 없 이 꼬인 선만으로 구성	꼬인 회선을 얇은 금속 박막 전도 층으로 둘러싸여 있다.	
최대 전송길이	100m	100m	
속도	10Mbps(최대 100Mbps)	16Mbps(최대 155Mbps)	
외부간섭	외부 전기적 간섭에 영향 을 많이 받는다.	금속 박막 전도 층의 차단으로 인 해 외부 전기적 간섭에 영향을 받 지 않는다.	
설치	설치가 쉽고 비용이 적게 든다.	취급이 어렵고 비용이 많이 든다.	
커넥터	RJ-45 사용	금속 박막을 접지 시키기 위해서 특별한 커넥터를 사용한다.	

동축 케이블 (Coaxial Cable)

- ✓ 외부와의 차폐성이 좋아서 간섭현상이 적음
- ✓ 전력손실이 적음
- ✓ 트위스티드페어에 비해 높은 주파수에서 빠른 데이터 전송이 가능
- ✓ BNC(Bayonet Neil-Concelman connector) 라는 원통형 커넥터 사용하여 노드연결
- ✓ 바다 밑이나 땅속에 묻어도 성능에 큰 지장이 없음
- ✓ 수백 Mbps의 고속전송도 가능

동축 케이블 표준(Coaxial Cable Standards)

- ✓ 무선국(RG, radio government)에서 분류
- ✓ 동축 케이블 카테고리

Category	Impedance	Use
RG-59	75 Ω	Cable TV
RG-58	50 Ω	Thin Ethernet
RG-11	50 Ω	Thick Ethernet

- ✓ Thin Ethernet(직경 0.25인치): 10 Base 2, 저가,
- ✓ Thick Ethernet(직경 0.5 인치): 10 Base 5, 잡음에 강함, 멀리 보낼수 있음, 설치가 어려움

동축 케이블 연결구

✓ BNC(Bayonet Neil-Concelman connector) 연결구

광 케이블 (Optical-fiber Cable)

- ✓ 가는 유리섬유나 프라스틱을 이용해 정보를 보냄
- ✓ 전기적인 간섭을 받지 않음
- ✓ 전송속도가 높고, 대역폭이 넓고 오류가 적음
- ✓ 빛의 형태로 신호를 전송
- ✓ RGB(Red · Green · Blue)의 3원색을 구현
 - > 1950년대 말 : 적색 LED
 - > 1960년대 후반 : 녹색 LED
 - > 1990년 중반 : 청색 LED

LED 광섬유

LED

광원장치

광탐지기

LED

Light emitting diode, 발광다이오드

LED의 장점

- ✓ 저에너지 고효율(90% 이상이 빛으로 나옴)
- ✓ 고속응답, 신호 혹은 전기 투입시 바로 빛을 발함
- ✓ LED는 가스를 넣을 필요가 없음
- ✓ Full Color 구현이 가능
- ✓ 소형 경량화
- ✓ 백열등의 1/6 전력소비, 8배의 수명

LED 단점

- ✓ 비싸다(영구적 수명)
- ✓ 강전에 약함

	LED	형광등	백열전구
전력 소모량	적다	중간	많다
수명	길다	중간 중간	짧다
밝기	뱕음	매우 밝음	보통
용도	집중조명 <mark></mark>	확산	조명

광케이블 구조

- ✓ 코어(core) : 높은 굴절률의 투명한 덮개로 빛이 통과하는 통로 역할
- ✓ 클래딩(cladding): 코어보다 낮은 굴절률의 투명한 덮개로 코어 외부를 싸고 있으며 빛을 반사
- ✓ 코팅(coating) : 코어와 클래딩을 보호하기 위해 합성수지로 만든 피 복을 이용해 외부를 감쌈

케이블의 구성

- ✔ 유리나 프라스틱 재료 사용
- ✓ 내부코어는 크기와 정밀도가 완전해야 하며 순도가 높아야 한다
- ✓ 외부자켓은 테프론 코팅, 프라스틱 코팅, 섬유질 프라스틱, 금속 성 망으로 되어있다.

빛의 특성

- ✓ 전자기적인 에너지 형태
- ✓ 진공상태에서 고속(300,000km/s)
- ✓ 밀도가 높은 매체를 통과할 때는 속도가 감소

굴절(Refraction)

a. From less dense to more dense medium

b. From more dense to less dense medium

광통신

- ✓ 굴절률이 큰 속유리(코어)와 굴절률이 작은 겉유리(클래딩)로 이루어진 광섬유를 통해 빛 신호를 주고받는 통신 방식
- ✓ 1970년 미국 코닝사가 전송 손실이 20dB/km(효율이 1%/Km)인 광섬유의 개발로 실용화
- √ 광통신의 송신 단말기에서는 전기 신호를 및 신호로 변환한 후 광 섬유를 통해 전송하고 수신 단말기에서는 및 신호를 다시 전기 신 호로 변환한다.
- ✓ 전기신호를 빛 신호로 변환하는 데는 레이저 다이오드나 발광 다이오드를 이용
- ✓ 및 신호를 전기 신호로 바꿀 때는 광전 다이오드 등의 광전소자를 이용

전파 방식(Propagation Model)

✔ 현재 기술은 광채널을 따라 빛의 전달을 위해 2개의 모델을 지원

단일 모드(Single Mode)

- ✓ 코어 안에서 단일모드 광섬유는 1개의 전파 모드만으로 정보를 전송하는 것
- ✓ 넓은 대역으로 정보를 전송할 수 있어 중장거리 트렁크 회선과 국제간의 통신선로로 이용되고 수 Gbps의 전송속도가 가능
- ✓ 코어의 직경은 약 8~10µm 정도로 작아서 접속이 어려움

다중모드

- ✓ 여러 개의 전파모드로 정보를 전송할 수 있는 선로로서 가장 널리 사용
- ✓ 전송속도는 약 100 Mbps 정도, 코어의 직경은 약 50µm 정도로 단일모드에 비해 큼
- ✓ 굴절률 분포에 따라 계단형(Step index)과 접속형(Gladed index)으로 구분

26

다중모드(Multimode) - 단계지수(Step index)

- ✓ 여러 개의 광원이 서로 다른 경로로 코어를 통해 다중 빔이 전달
- ✓ 다중모드 계단형 광섬유
- ✓ 코어부분의 굴절률 분포가 균일
- ✓ 코어 속을 전파하는 빛의 전파길이는 광섬유의 입사각에 따라 다르다.
 - ▶ 입사각이 큰 빛은 전반사의 횟수가 적기 때문에 전파 길이가 짧아진다.
 - 이 때문에 광섬유에 동시에 입사된 빛이라도 입사각이 큰 빛은 출력단에 신속히 도달하며, 입사각이 작은 빛은 늦게 도달

다중모드(Multimode) - 등급지수(graded-index)

- ✓ 다중모드 언덕형 광섬유 (GI: Graded Index)
- ✓ 코어부분의 굴절률이 중심에서부터 바깥쪽으로 가면서 점차로 낮아지는 Gaussian분포
- ✓ 코어의 굴절률이 중심에서 가장 크며 주변으로 나감에 따라 완만하게 적어짐
 - ▶ 빛의 속도는 굴절률에 반비례하기 때문에 코어의 중심 부근을 지나는 빛은 전파길이는 짧고 속도는 느리다.
 - 코어의 가장자리를 지나는 빛은 전파길이는 길고 속도는 빨라지게 된다.
- ✓ 광섬유에 동시에 입사된 빛은 입사각에 관계없이 출력단에 거의 동시에 도달

✓비교

1	구분	언덕(GI)형 다중모드	계단(SI)형 다중모드	단일모드(SM)
TU =	코어	석영	석영	석영
재료 클래딩		석영	석영	석영
직경	코어	50	50	9~10
(μm)	클래딩	125	125	125
전송	대역폭	수백 MHz~ 수 GHz/Km	수십 MHz/Km	10GHz/Km 이상
용도		LAN, 데이터 링크용	고속 장거리 LAN, 데 이터 링크용	대용량(100Mbps 이상), 장 거리(30Km 이상) 공중망용

케이블의 구성

- ✔ 유리나 프라스틱 재료 사용
- ✓ 내부코어는 크기와 정밀도가 완전해야 하며 순도가 높아야 한다
- ✓ 외부자켓은 테프론 코팅, 프라스틱 코팅, 섬유질 프라스틱, 금속 성 망으로 되어있다.

광 케이블의 광원

- ✓ LED(Light-Emitting Diode) : 짧은 거리, 저속전송(100Mbps)
- ✔ ILD(Injection Laser Diode) : 긴 거리, 고속 전송(Gbps), 복잡

광섬유 케이블 연결구

- ✓ 가입자 채널 연결구 : 케이블 TV
- ✓ 곧은 끝 연결구 : 케이블 네트워킹 장비
- ✓ MT-RJ : RJ45와 같은 크기

광 섬유 커넥터

- ✓ 케이블처럼 정밀해야 한다
- ✓ 많이 사용되는 커넥터는 원통형이며 암/수 커넥터로 되어있다

- ✓ 특징 및 장점
 - ▶ 넓은 대역폭(3.3GHz)을 제공하며 외부 간섭에 영향을 받지 않음
 - 태핑(tapping)이 어려워 네트워크 보안성이 큼
 - ▶ 아주 빠른 전송속도(데이터 전송의 경우 약 1Gbps)
 - 동축케이블 : 수백 Mbps, 트위스트페어 : 수 Mbps 정도
 - 매우 낮은 전송 에러율
 - 케이블의 크기가 상대적으로 작고 가벼움 : 설치와 지지에 필요 한 구조물을 최소화할 수 있음
 - 설치 시 고도의 기술이 요구됨
 - 전기가 아닌 빛의 펄스형태로 정보 전달

- ✓ 특징 및 장점
 - 광 송신기는 DTE에서 사용되는 정상적인 전기신호를 광 신호로 변환하고 광 수신기는 역으로 변환
 - 빛을 이용하기 때문에 정보가 중간에 손실되지 않음
 - 주위에 전기장이나 자기장을 발생하지 않기 때문 도청이 불가능
 - 낙뢰나 고압선에 의한 전기장의 영향을 받지 않으므로 잡음이 적음
 - 넓은 리피터 설치간격: 리피터 설치의 수가 적으므로 비용면에서 유리
 - 하나의 광섬유에 여러개의 빛을 보낼 수 있어 다량의 정보를 전송
- ✓ 광케이블의 단점
 - 설치/관리 어려움 단방향. 가격이 비싸다. 깨지기 쉽다.
 - ▶ 광섬유 접속이 어렵다. 전력 전송이 어렵다.
 - ▶ 분기 및 결합이 어렵다. 광소자가 필요하다. 큰 휨 강도에 약하다

유선 매체의 비교

구분	장점	단점
트위스티드 페어케이블	저렴하다. 비교적 안정적인 편이다. 광케이블에 비해 설치가 쉬운 편이다.	고속전송에 부적합하다. 높은 비율의 감쇄현상이 있다. 전자기적 간섭과 도청에 약하다.
동축 케이블	설치가 쉬운 편이다. 트위스티드페어 케이블보다는 큰 대역폭을 지원한다. 트위스티드페어 보다 최대전송 속도가 빠르다.	Category 3의 UTP 보다 비싸다. 설치 기술에 따라 관리, 재구성이 어렵다. 광 케이블에 비해 높은 감쇄를 보인다. 경우에 따라 전자기적 간섭과 도청에 민감하다.
광섬유 케이블	100Mbps에서 2Gbps를 넘는 높은 대역폭을 지원한다. 감쇄율이 낮다. 외부의 간섭이나 도청에 강하다.	구축비가 비싸다. 연결 시 매우 정밀한 작업을 요하며, 설 치가 복잡하다.