5.3 Consider the following model that relates the percentage of a household's budget spent on alcohol WALC to total expenditure TOTEXP, age of the household head AGE, and the number of children in the household NK.

$$WALC = \beta_1 + \beta_2 \ln(TOTEXP) + \beta_3 NK + \beta_4 AGE + e$$

This model was estimated using 1200 observations from London. An incomplete version of this output

TABLE 5.6 Output for Exercise 5.3

Dependent Variable: WALC Included observations: 1200				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	1.4515	2.2019		0.5099
ln(TOTEXP)	2.7648		5.7103	0.0000
NK		0.3695	-3.9376	0.0001
AGE	-0.1503	0.0235	-6.4019	0.0000
R-squared	Mean dependent var			6.19434
S.E. of regression		S.D. dependent var		6.39547
Sum squared resid	46221.62			

- a. Fill in the following blank spaces that appear in this table
 - i. The t-statistic for b_1 .
 - ii. The standard error for b_2 .
 - iii. The estimate b_1 .
- Interpret each of the estimates b₂, b₃, and b₄.
 Compute a 95% interval estimate for β₄. What does this interval tell you?
- Are each of the coefficient estimates significant at a 5% level? Why?
- Test the hypothesis that the addition of an extra child decreases the mean budget share of alcohol by 2 percentage points against the alternative that the decrease is not equal to 2 percentage points. Use a 5% significance level.

BY 林書帆 Tim Lin 512717014

a. (i)
$$t = \frac{coefficient}{Std.Error} = \frac{1.4515}{2.2019} \approx 0.659$$

(ii) Standard error=
$$\frac{coefficient}{t} = \frac{2.7648}{5.7103} \approx 0.4842$$

(iii) The estimate
$$b_3 = t \times SE = -3.9376 \times 0.3695 \approx -1.45494$$

(iv)
$$R^2=1 - \frac{SSE}{SST} = 1 - \frac{46221.62}{49041.5418} \approx 0.05750068$$

$$SST=(N-1)(S_y)^2=1199\times6.39547^2=49041.5418$$

(v)
$$\sigma^{=}\sqrt{\frac{SSR}{n-k}} = \sqrt{\frac{46221.62}{1200-4}} \approx 6.2166$$

 $k=3$

b. b2=2.7648: If the household's total spending goes up by 1%, the alcohol budget share goes up by about 2.76 percentage points.

b3=0.3695: Each extra child in the family increases the alcohol budget share by about 0.37 percentage points.

b4=-0.1503: If the head of the household gets one year older, the alcohol budget share goes down by about 0.15 percentage points.

c.
$$b4\pm1.96\times SE=-0.1503\pm1.96\times0.0235=-0.1503\pm0.0461$$

 $\Rightarrow [-0.1964, -0.1042]$