

Text Processing

Günther Specht Eva Zangerle

Summer Term 2019

Motivations

- Not all words are equally significant for representing the semantics of a document
 - Usually, noun words (or groups of noun words) are the most representative of a document content. (Gender aspect!)
- It is worthwhile to preprocess the text to determine the terms to be used as index terms
 - Subset of words selected to represent a document's content

Index Terms and Performance

- Goal: trade off of
 - Exhaustiveness: to assign a big number of terms to a document
 - Specificity: exclude generic terms, concentrate on specific terms
 - -Generic terms: low discriminative power, their frequency is high in all the documents (e.g., "and", "or", "of", etc.)
 - Specific terms: higher discriminative power, variable document frequency →
 their frequency denotes their document's representativeness

Analysis Process

- Document Parsing
- Lexical analysis: manage digits, hyphens, punctuation marks, letter cases
- Elimination of stopwords
- Matching with a thesaurus
- Determination of phrases (noun groups)
- Stemming (reduction of a word to its grammatical root)
- Selection and weighting of index terms (noun, adjectives, etc...)

Document Parsing

- What format is it in?
 - pdf/word/excel/html/zip?
 - What language is it in?
 - What character set is in use? (UTF-8, CP1252, ...)

• Problems:

- Documents being indexed can include docs from many different languages
- Sometimes a document or its components can contain multiple languages/formats (German email with a English pdf attachment.)

Document Parsing

 After query processing we return "documents" as answer sets,

but there are often interesting questions of grain size:

- What is a unit document?
 - A file?
 - An email? (Perhaps one of many in a single mbox file)
 - What about an email with 5 attachments?
 - A group of files (e.g., PPT or LaTeX split over HTML pages)

Lexical Analysis

- Process that transforms an input character stream (the original document's text) into a flow of words (tokens)
- GOAL: identification of words in the text
- Example
 - Input: "Friends, Romans and Countrymen"
 - Output: Tokens
 - Friends
 - -Romans
 - Countrymen
 - Each such token is now a candidate for an index entry
 - The general case is not so clear....

Tokenization

- Input: "Friends, Romans and Countrymen"
- Output: Tokens
 - Friends
 - Romans
 - Countrymen
- A token is an instance of a sequence of characters
- Each such token is now a candidate for an index entry, after further processing
 - Described below
- But what are valid tokens to emit?

Tokenization

- Issues in tokenization:
 - Finland's capital → Finland AND s? Finlands? Finland's?
 - Hewlett-Packard → Hewlett and Packard as two tokens?
 - **state-of-the-art**: break up hyphenated sequence.
 - -co-education
 - -lowercase, lower-case, lower case?
 - —It can be effective to get the user to put in possible hyphens
 - San Francisco: one token or two?
 - How do you decide it is one token?

Tokenization: Numbers

· 3/20/91

Mar. 12, 1991

20/3/91

- 55 B.C.
- B-52
- My PGP key is 324a3df234cb23e
- (800) 234-2333

Numbers

- Often have embedded spaces
- Older IR systems may not index numbers
 - But often very useful: think about things like looking up error codes/stacktraces on the web
 - (One answer is using n-grams: IIR ch. 3)
- Will often index "meta-data" separately
 - Creation date, format, etc.

Tokenization: Language Issues

- French
 - **L'ensemble** → one token or two?
 - -L?L'?Le?
 - -Want *l'ensemble* to match with *un ensemble*
 - Until at least 2003, it didn't on Google
 - Internationalization!
- German noun compounds are not segmented
 - Lebensversicherungsgesellschaftsangestellter
 - 'life insurance company employee'
 - German retrieval systems benefit greatly from a compound splitter module
 - Can give a 15% performance boost for German

Tokenization: Language Issues

- Chinese and Japanese have no spaces between words:
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - Not always guaranteed a unique tokenization
- Further complicated in Japanese, with multiple alphabets intermingled
 - Dates/amounts in multiple formats

End-user can express query entirely in hiragana!

Tokenization: Language Issues

- Arabic (or Hebrew) is basically written right to left, but with certain items like numbers written left to right
- Words are separated, but letter forms within a word form استقلت ال الخزائر في سنة 1962 بعد 132 عاما من الباحتلال الفرنسي.

$$\leftarrow \rightarrow \leftarrow \rightarrow$$
 \leftarrow start ('Algeria achieved its independence in 1962 after 132 years of French occupation.')

 With Unicode, the surface presentation is complex, but the stored form is straightforward

Stop Words

- With a stop list, you exclude from the dictionary entirely the commonest words. Intuition:
 - They have little semantic content: the, a, and, to, be
 - There are a lot of them: ~30% of postings for top 30 words
- But the trend is away from doing this:
 - Good compression techniques means the space for including stop words in a system is very small
 - Good query optimization techniques mean you pay little at query time for including stop words.
 - You need them for:
 - Phrase queries: "King of Denmark"
 - Various song titles, etc.: "Let it be", "To be or not to be"
 - "Relational" queries: "flights to London"

Normalization to Terms

- We may need to "normalize" words in indexed text as well as query words into the same form
 - We want to match *U.S.A.* and *USA*
- Result are terms: a term is a (normalized) word type, which is an entry in our IR system dictionary
- We most commonly implicitly define equivalence classes of terms by, e.g.,
 - deleting periods to form a term
 - *U.S.A.*, *USA*
 - deleting hyphens to form a term
 - anti-discriminatory, antidiscriminatory

Normalization: Other Languages

- Accents: e.g., French *résumé* vs. *resume*.
- Umlauts: e.g., German: *Tübingen* vs. *Tuebingen* Should be equivalent
- Most important criterion:
 - How are your users like to write their queries for these words?
- Even in languages that standardly have accents, users often may not type them
 - Often best to normalize to a de-accented term
 - Tuebingen, Tübingen, Tubingen → Tubingen

Normalization: Other Languages

- Normalization of things like date forms
 - 7月30日 vs. 7/30
 - Japanese use of kana vs. Chinese characters
- Tokenization and normalization may depend on the language and so is intertwined with language detection
- Crucial: Need to "normalize" indexed text as well as query terms identically

Case Folding

- Reduce all letters to lower case
 - Exception: upper case in mid-sentence?
 - −e.g., General Motors
 - Fed vs. fed
 - -SAIL vs. sail
 - Often best to lower case everything, since users will use lowercase regardless of 'correct' capitalization...
- Longstanding Google example: [fixed in 2011...]
 - Query C.A.T.
 - #1 result is for "cats" (well, Lolcats) not Caterpillar Inc.

Normalization to Terms

 An alternative to equivalence classing is to do asymmetric expansion of search queries

An example of where this may be useful

• Enter: window Search: window, windows

■ Enter: windows Search: Windows, windows

• Enter: **Windows** Search: **Windows**

Potentially more powerful, but less efficient

Thesauri and Soundexes

- Do we handle synonyms and homonyms?
 - E.g., by hand-constructed equivalence classes
 - -car = automobile color = colour
 - We can rewrite to form equivalence-class terms
 - When the document contains *automobile*, index it under *car-automobile* (and vice-versa)
 - Or we can expand a query
 - —When the query contains *automobile*, look under *car* as well
- What about spelling mistakes?
 - One approach is Soundex, which forms equivalence classes of words based on phonetic heuristics

Thesaurus

- A thesaurus is as a classification scheme composed of words and phrases whose organization aims at facilitating the expression of ideas in written text
 - Example entry from Roget's thesaurus: cowardly adjective
 - Ignobly lacking in courage.
 - Syns: chicken (slang) chicken-hearted, craven, dastardly, faint-hearted, gutless, lily-livered
- A thesaurus can be
 - Thematic: specific to the IR system's domain of application (most frequent case)
 - E.g.: Thesuarus of Engineering and Scientific Terms
 - Generic
- A thesaurus can be used to
 - **Help** user formulate queries
 - Modification of queries by the system
 - **Select** index terms

Thesauri

- Many kinds of thesauri have been developed for IR systems
 - Hierarchical: synonyms (RT \rightarrow related terms, UF \rightarrow use for), generalization (BT
 - \rightarrow broader term), specialization (NT \rightarrow narrower term)
 - Manually built and updated by domain experts
 - Clustered: cluster (or synset) of words having strong semantic relationship
 - Associative: graph of words, where nodes represents words and edges represents semantic similarity among words
 - Edges can be oriented or not, according to the symmetry of the similarity relationship
 - Edged can be weighted (fuzzy pseudo-thesauri)
 - Can be automatic generated from a collection of documents using a co-occurrence relationships

WordNet

WordNet Search - 3.1

Word to search for: dog

- WordNet home page - Glossary - Help

Display Options: (Select option to change) ▼ Change

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations

Display options for sense: (frequency) {offset} < lexical filename > [lexical file number] (gloss) "an example sentence"

Display options for word: word#sense number (sense key)

Noun

- (42){02086723} <noun.animal>[05] <u>S:</u> (n) dog#1 (dog%1:05:00::), <u>domestic dog#1</u> (domestic dog%1:05:00::), <u>Canis familiaris#1 (canis familiaris%1:05:00::</u>) (a member of the genus Canis (probably descended from the common wolf) that has been domesticated by man since prehistoric times; occurs in many breeds) "the dog barked all night"
 - <u>direct hyponym</u> / <u>full hyponym</u>
 - {01325095} <noun.animal>[05] <u>S:</u> (n) puppy#1 (puppy%1:05:00::) (a young dog)
 - {02087384} <noun.animal>[05] <u>S:</u> (n) pooch#1 (pooch%1:05:00::), doggie#1 (doggie%1:05:00::), doggy#1 (doggy%1:05:00::), barker#2 (barker%1:05:00::), bow-wow#2 (bow-wow%1:05:00::) (informal terms for dogs)

Search WordNet

- {02087513} <noun.animal>[05] <u>S:</u> (n) <u>cur#1 (cur%1:05:00::)</u>, <u>mongrel#2 (mongrel%1:05:00::)</u>, <u>mutt#1 (mutt%1:05:00::)</u> (an inferior dog or one of mixed breed)
- {02087924} <noun.animal>[05] <u>S:</u> (n) <u>lapdog#1 (lapdog%1:05:00::)</u> (a dog small and tame enough to be held in the lap)
- {02088026} <noun.animal>[05] <u>S: (n) toy dog#1 (toy_dog%1:05:00::)</u>, toy#5 (toy%1:05:00::) (any of several breeds of very small dogs kept purely as pets)

Lemmatization

- Reduce inflectional/variant forms to base form
- E.g.,
 - am, are, $is \rightarrow be$
 - car, cars, car's, cars' \rightarrow car
- the boy's cars are different colors → the boy car be different color
- Lemmatization implies doing "proper" reduction to dictionary headword form

Stemming

- Reduce terms to their "roots" before indexing
- "Stemming" suggests crude affix chopping
 - language dependent
 - e.g., automate(s), automatic, automation all reduced to automat.

for example compressed and compression are both accepted as equivalent to compress.

for exampl compress and compress ar both accept as equival to compress

Stemming Example

Sample text: Such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of expression that is more biologically transparent and accessible to interpretation

Lovins stemmer: such an analys can reve featur that ar not eas vis from th vari in th individu gen and can lead to a pictur of expres that is mor biolog transpar and acces to interpres

Porter stemmer: such an analysi can reveal featur that ar not easili visible from the variat in the individu gene and can lead to a pictur of express that is more biolog transpar and access to interpret

Paice stemmer: such an analys can rev feat that are not easy vis from the vary in the individ gen and can lead to a pict of express that is mor biolog transp and access to interpret

Stemming

- Many different algorithms:
 - Porter's algorithm
 - Commonest algorithm for stemming English
 - Porter, Martin F. 1980. An algorithm for suffix stripping. *Program 14:130–137.*
 - http://www.tartarus.org/~martin/PorterStemmer/
 - One-pass Lovins stemmer
 - -Lovins, Julie Beth. 1968. Development of a stemming algorithm. Translation and
 - Lancaster
 - http://www.comp.lancs.ac.uk/computing/research/stemming/
 - Paice, Chris D. 1990. Another stemmer. SIGIR Forum 24:56-61
 - http://snowball.tartarus.org/demo.php
 - Snowball Stemmer
- Full morphological analysis (lemmatization)
 - At most modest benefits for retrieval
- Stemming increases recall while harming precision

Porter's algorithm

- Most common algorithm for stemming English
 - Results suggest it's at least as good as other stemming options
- Conventions + 5 phases of reductions
 - Phases applied sequentially
 - Each phase consists of a set of commands
 - Sample convention: Of the rules in a compound command, select the one that applies to the longest suffix.

Typical rules in Porter

- $sses \rightarrow ss$
- ies \rightarrow i
- $ational \rightarrow ate$
- tional \rightarrow tion
- Weight of word sensitive rules
- (m>1) EMENT \rightarrow
 - $-replacement \rightarrow replac$
 - $-cement \rightarrow cement$

Language-Specificity

- The above methods embody transformations that are
 - Language-specific, and often
 - Application-specific
- These are "plug-in" addenda to the indexing process
- Both open source and commercial plug-ins are available for handling these

Does Stemming Help?

- English: very mixed results. Helps recall for some queries but harms precision on others
 - E.g., operative (dentistry) ⇒ oper
- Definitely useful for Spanish, German, Finnish, ...
 - 30% performance gains for Finnish!

Credits

- Slides partly adapted from
 - Eva Zangerle , DBIS Innsbruck (2014/15)
 - Stefano Ceri, Alessandro Bozzon, Marco Brambilla, Emanuele Della Valle, Piero Fraternali, Silvia Quarteroni: Web Information Retrieval
 - Günther Specht, DBIS Innsbruck (former lectures)