ECN 6578A, Économétrie des marchés financiers, Hiver 2020

Cours 8 et 9

William McCausland

2021-03-21

Le facteur d'actualisation dans un monde sans risque

- Supposons un monde sans risque, avec taux d'intérêt R_t.
- La valeur à t d'un dollar un an plus tard est de

$$M_{t+1} = \frac{1}{1 + R_{t+1}}.$$

- ightharpoonup On appelle M_{t+1} le facteur d'actualisation.
- ▶ Il actualise (donne une valeur à t à) un paiement à t+1.
- L'absence d'arbitrage entraîne, pour chaque actif i,

$$P_{it} = P_{i,t+1} M_{t+1}.$$

En termes équivalents,

$$\frac{P_{i,t+1}}{P_{it}}M_{t+1} = (1 + R_{i,t+1})M_{t+1} = 1.$$

Le facteur d'actualisation stochastique (FAS)

▶ Le FAS M_t vérifie pour tout actif (ou portefeuille) i:

$$P_{it} = E_t[P_{i,t+1}M_{t+1}], \quad E_t[(1+R_{i,t+1})M_{t+1}] = 1.$$

- Notez bien que M_t ne dépend pas de i.
- ▶ Version inconditionnelle (prendre l'espérance des deux côtés) :

$$E[(1+R_{i,t+1})M_{t+1}]=1.$$

ightharpoonup Du point de vue de la période t-1:

$$E[(1+R_{it})M_t]=1.$$

Avec cov[X, Y] = E[XY] - E[X]E[Y], on obtient

$$1 = \cos[R_{it}, M_t] + E[1 + R_{it}]E[M_t]$$

$$E[1 + R_{it}] = \frac{1}{E[M_t]} (1 - \text{cov}[R_{it}, M_t]). \tag{1}$$

Le rendement zéro-bêta

- Un actif à rendement R_{ot} est un actif zéro-bêta inconditionnel si $cov[R_{ot}, M_t] = 0$.
- Pour un tel actif,

$$E[1+R_{ot}]=\frac{1}{E[M_t]},$$

et on obtient (soustraire cette équation de (1))

$$E[R_{it} - R_{ot}] = -E[1 + R_{ot}] cov[R_{it}, M_t].$$

► Remarquez qu'un actif sans risque est toujours un actif zéro-bêta inconditionnel. (Une constante est non-corrélée avec n'importe quelle v.a.)

Deux approches à la dérivation du FAS

- ▶ absence de l'arbitrage (hypothèse moins forte) et
- maximisation de l'utilité (plus forte).

Absense d'arbitrage et le FAS

- Voici un milieu très simple :
 - Il y a deux périodes.
 - L'état du monde est aléatoire dans la deuxième période.
 - ▶ II y a S états du monde possible : 1, ..., S.
 - Chaque état s a une probabilités π_s d'être réalisé.
 - ► Il y a N actifs, chacun avec un paiement dans le deuxième période qui dépend de s.
 - Actif i a un prix q_i en période 1.
 - Actif i paie X_{si} si l'état s se produit.
 - \blacktriangleright π , X et q sont primitifs.
- ightharpoonup Un arbitrage est un portefeuille ω tel que
 - $ightharpoonup \omega^{\top} q \leq 0$ (on ne paie rien dans la première période)
 - $X\omega \ge 0$ (on ne peut pas perdre dans la deuxième), et
 - $X\omega \neq 0$ (on gagne dans au moins un état du monde).

Prix et rendements

► Vecteur q donne les prix à période 1 :

$$egin{aligned} q &= egin{bmatrix} q_1 \ dots \ q_N \end{bmatrix}. \end{aligned}$$

► Matrice X donne les paiements des actif :

$$X_{S\times N} = \begin{bmatrix} X_{11} & \cdots & X_{1N} \\ \vdots & \ddots & \vdots \\ X_{S1} & \cdots & X_{SN} \end{bmatrix}.$$

Matrix G donne le rendement brut de l'actif i en état s $(G_{si} = X_{si}/q_i)$:

$$G_{S\times N} = \begin{bmatrix} G_{11} & \cdots & G_{1N} \\ \vdots & \ddots & \vdots \\ G_{G1} & \cdots & G_{GN} \end{bmatrix}.$$

Prix d'états

- L'idée : le prix de l'état s est le prix dans la première période d'un actif qui paie 1 si l'état se produit, 0 autrement.
- **D**éfinition : vecteur p ($S \times 1$) est un vecteur des prix d'états si

$$X'p=q$$

ou, ce qui est équivalent, pour chaque actif i,

$$q_i = \sum_{s=1}^S X_{si} p_s.$$

▶ Si on divise chaque rangée i de X'p = q par q_i , on obtient

$$G'p = \iota$$
.

Ligne i de cette équation vectorielle, i = 1, ..., N:

$$1 = \sum_{s=1}^{S} G_{si} p_{s} = \sum_{s=1}^{S} (1 + R_{i}) p_{s}.$$

Implications de l'absence d'arbitrage

- Possible en principle : aucun vecteur p, un p, plusieurs p (une question d'algèbre linéaire)
- Résultat très important : pas d'arbitrage ssi il existe un vecteur p positif des prix d'états.
- ▶ Si, en plus, rang(X) = S, le marché est dit complet et le vecteur p est unique.
- On peut définir une variable aléatoire M, qui s'avère être le FAS : dans chaque état s, $M_s = p_s/\pi_s$.
- L'absence d'arbitrage implique qu'il existe un p positif t.q. $G'p = \iota$.
- ▶ Donc, M > 0 et

$$1 = \sum_{s=1}^{S} p_s(1 + R_{si}) = \sum_{s=1}^{S} \pi_s M_s(1 + R_{si}) = E[(1 + R_i)M].$$

Le résultat se généralise (plusieurs périodes, temps continu).

Maximisation d'utilité espérée intertemporelle

Voici une fonction d'utilité sur les chemins aléatoires $\{C_{\tau}\}_{\tau=t}^{\infty}$ de la consommation :

$$V = E_t \left[\sum_{j=0}^{\infty} \delta^j U(C_{t+j}) \right].$$

- V est additivement séparable en temps,
- ▶ *V* est additivement séparable en état (utilité espérée)
- Le taux de préférence de temps (δ) est constant.
- ► La maximisation de *V* sous des contraints (richesse, actifs disponibles) donne plusieurs conditions de première ordre, dont

$$U'(C_t) = \delta E_t[(1 + R_{i,t+1})U'(C_{t+1})],$$

où $R_{i,t+1}$ est le rendement de l'actif i à t+1.

C'est une équation dite d'Euler.

Maximisation d'utilité et le FAS

▶ Le FAS est le taux marginal inter-temporel de substitution:

$$M_{t+1} = \delta U'(C_{t+1})/U'(C_t),$$

qui est toujours positif.

Intuition pour

$$E[R_{it} - R_{ot}] = -E[1 + R_{ot}] cov[R_{it}, M_t]$$
:

- Si $cov[R_{it}, M_t] > 0$, i a une valeur relativement élevée quand la consommation future est plus valorisée (i.e. quand $U'(C_{t+1})$ est élevé).
- En équilibre, son prix est plus élevé (par rapport a un actif j où $cov[R_{it}M_t] < 0$) et son rendement moyen est moins élevé.
- L'investisseur supporte ce rendement moyen moins élevé car l'actif paie quand la consommation est plus valorisée.

Le modèle CCAPM

L'équation

$$1 = E_t[(1 + R_{i,t+1})M_{t+1}],$$

avec

$$M_{t+1} = \delta \frac{U'(C_{t+1})}{U'(C_t)},$$

où C_t est la consommation agrégée est le modèle CCAPM (C pour consommation).

La fonction d'utilité isoélastique

La fonction d'utilité isoélastique est

$$U(C_t) = \frac{C_t^{1-\gamma}-1}{1-\gamma}, \quad \gamma > 0.$$

- $\blacktriangleright \lim_{\gamma \to 1} U(C_t) = \log C_t$
- ▶ Dans le contexte où les agents maximisent l'espérance de $U(C_t)$ isoélastique, l'aversion relative pour le risque est constante et égale à γ :

$$-C_t \frac{U''(C_t)}{U'(C_t)} = \gamma$$

▶ Dans un modèle inter-temporel séparable dans le temps avec l'utilité isoélastique à chaque période, l'élasticité de substitution inter-temporelle est constante, et égale à $\psi = \gamma^{-1}$.

Un problème à deux périodes sans incertitude

► Supposez qu'il y a un rendement *R* sans risque.

$$\max_{C_t, C_{t+1}} U(C_t) + \delta U(C_{t+1})$$
 tel que $C_t + \frac{1}{1+R}C_{t+1} = m$

► Conditions nécessaires pour un max:

$$\delta C_{t+1}^{-\gamma} - rac{1}{1+R} C_t^{-\gamma} = 0 \quad ext{(proportions)}$$
 $C_t + rac{1}{1+R} C_{t+1} = m \quad ext{(niveaux)}$ $\left(rac{C_{t+1}}{C_t}
ight)^{-\gamma} = rac{1}{\delta(1+R)}$ $rac{C_{t+1}}{C_t} = [\delta(1+R)]^{1/\gamma}$ $\Delta c_{t+1} = c_{t+1} - c_t \equiv \log rac{C_{t+1}}{C_t} = rac{1}{\gamma} \log \delta + rac{1}{\gamma} \log(1+R)$

Remarques sur le problème à deux périodes

- \triangleright log $\frac{C_{t+1}}{C_t}$ est la log-croissance de la consommation,
- $\frac{1}{\gamma}$ est l'élasticité de substitution inter-temporelle, $r = \log(1+R)$ est le log taux d'intérêt,
- Invariance de l'échelle: C_{t+1}/C_t ne dépend pas de m: $\{C_t\}$ pour un riche est un multiple de celui d'un pauvre.
- Le lien entre le risque et la substitution n'est pas flexible.
- $ightharpoonup C_t$ agrégée: si tout le monde a une utilité isoélastique avec le même γ et δ , C agrégée est celle d'un consommateur avec cette utilité ayant la richesse agrégée.
- Une rationalisation du consommateur représentatif.

Tester le CCAPM

► Le CCAPM avec l'utilité isoélastique devient

$$1 = E_t \left[(1 + R_{i,t+1}) \delta \left(\frac{C_{t+1}}{C_t} \right)^{-\gamma} \right]$$
 (2)

Pour tester le CCAPM, on peut estimer γ et tester cette restriction sous une hypothèse supplémentaire : $(1 + R_{it}, C_t)$ est log-normal et homoscédastique.

La loi log-normale

Définition :

$$X \sim LN(\mu, \sigma^2) \Leftrightarrow \log X \sim N(\mu, \sigma^2)$$

► Moments :

$$\log E[X] = E[\log X] + \frac{1}{2} \text{var}[\log X] = \mu + \sigma^2/2,$$

$$E[X] = e^{\mu + \sigma^2/2}.$$

CCAPM avec log-normalité

L'équation (2) en logarithmes :

$$0 = \log E_t \left[(1 + R_{i,t+1}) \delta \left(\frac{C_{t+1}}{C_t} \right)^{-\gamma} \right].$$

Sous l'hypothèse supplémentaire de log-normalité,

$$0 = E_t[r_{i,t+1}] + \log \delta - \gamma E_t[\Delta c_{t+1}] + \frac{1}{2}(\sigma_i^2 + \gamma^2 \sigma_c^2 - 2\gamma \sigma_{ic})$$

- $ightharpoonup \sigma_i^2$ est la variance de $r_{i,t+1}$,
- $ightharpoonup \sigma_c^2$ est la variance de Δc_{t+1} ,
- $ightharpoonup \sigma_{ic}$ est la covariance entre $r_{i,t+1}$ et Δc_{t+1}
- Les variances conditionnelles égalent aux variances inconditionnelles par l'homoscédasticité.

Ajouter un actif sans risque

▶ S'il existe un actif f sans risque, $\sigma_f^2 = \sigma_{fc} = 0$, et

$$r_{f,t+1} = -\log \delta - \frac{\gamma^2 \sigma_c^2}{2} + \gamma E_t[\Delta c_{t+1}]$$

Pour un actif arbitraire i,

$$E_t[r_{i,t+1} - r_{f,t+1}] = \gamma \sigma_{ic} - \sigma_i^2 / 2$$

Version en rendements simples:

$$\log(E_t[(1+R_{i,t+1})/(1+R_{f,t+1})]) = \gamma \sigma_{ic}$$

La constance de cette prime de risque est une implication malheureuse de l'homoscédasticité, pas cohérente avec les données.

Le casse-tête de la prime des actions (The Equity Premium Puzzle)

- ► Soit *i* l'indice S&P500
- ▶ Prenez l'effet de commerce (commercial paper) comme proxy pour f.
- ▶ Pendant 1889-1994, la moyenne de l'échantillon du R_i est de 6%.
- ► Celle du rendement log en excès est de 4%.
- $ightharpoonup C_{t+1}/C_t$ est très lisse ($\sigma_c = 0.033$),
- ▶ Sa covariance avec R_i est très faible ($\sigma_{ic} = 0.0027$).
- ► Le coefficient de risque nécessaire pour expliquer ces faits est de 19, qui est peu crédible, selon les études micro.

Le mystère du taux sans risque

▶ Version inconditionnelle de l'expression pour $E_t[r_{f,t+1}]$:

$$E[r_{ft}] = -\log \delta + \gamma g - \frac{\gamma^2 \sigma_c^2}{2}$$

où
$$g = E[\Delta c_{t+1}]$$
.

- Les moyennes historiques sont:
 - \triangleright $E[r_{ft}]: 1.8\%$
 - ▶ g: 1.8%
 - σ_c^2 : 3.3%
- Mais $\gamma = 19$ implique $\delta = 1.12 > 1$.
- Intuition : une grande aversion pour le risque implique un très faible volonté à substituer. Avec $C_{t+1}/C_t > 1$, on a une forte désire à emprunter, qui n'est pas cohérent avec un taux d'intérêt bas et un $\delta < 1$.

Les préférences Epstein-Zin

- ▶ Tentative à élucidé le casse-tête de la prime de risque avec des préférences qui brisent le lien entre γ (aversion pour le risque) et ψ (élasticité de substitution inter-temporelle), tout en maintenant l'invariance à l'échelle.
- La définition de l'utilité EZ est récursive:

$$U_{t} = \left\{ (1 - \delta) C_{t}^{(1 - \gamma)/\theta} + \delta (E_{t}[U_{t+1}^{1 - \gamma}])^{1/\theta} \right\}^{\theta/(1 - \gamma)}$$

οù

$$\theta = \frac{1 - \gamma}{1 - \psi^{-1}}.$$

Utilité isoélastique comme cas spécial

Pour $\theta = 1$.

$$U_{t}^{1-\gamma} = (1-\delta)C_{t}^{1-\gamma} + \delta E_{t}[U_{t+1}^{1-\gamma}]$$

$$= (1-\delta)C_{t}^{1-\gamma} + \delta(1-\delta)E_{t}C_{t+1}^{1-\gamma} + \delta^{2}E_{t}[U_{t+2}^{1-\gamma}]$$

$$= (1-\delta)E_{t}\left[\sum_{\tau=0}^{\infty} \delta^{\tau}C_{t+\tau}^{1-\gamma}\right].$$

Équation d'Euler pour les préférences E-Z

Pour le contraint budgétaire suivant :

$$W_{t+1} = (1 + R_{m,t+1})(W_t - C_t),$$

où W_t est la richesse de l'agent représentatif, y compris le capital humain, et $R_{m,t+1}$ est le rendement du marché, EZ montrent que l'équation d'Euler est

$$1 = E_t \left[\left\{ \delta \left(\frac{C_{t+1}}{C_t} \right)^{-1/\psi} \right\}^{\theta} \left\{ \frac{1}{(1 + R_{m,t+1})} \right\}^{1-\theta} (1 + R_{i,t+1}) \right].$$

- Notez l'invariance de l'échelle : une équation pour le ratio C_{t+1}/C_t .
- ► Soit X_{t+1} l'intérieur de l'espérance.

CCAPM avec E-Z et log-normalité

► Avec la log-normalité et l'homoscédasticité, on obtient

$$0 = E_t[\log X_{t+1}] + \frac{1}{2} \text{var}_t[\log X_{t+1}],$$

οù

$$\log X_{t+1} = \theta \log \delta - \frac{\theta}{\eta} \Delta c_{t+1} - (1-\theta) r_{m,t+1} + r_{i,t+1}.$$

Avec les cas spéciaux $r_i = r_m$ et $r_i = r_f$ et le cas général $r_i = r_i$, on obtient

$$r_{f,t+1} = -\log \delta + \frac{\theta - 1}{2}\sigma_m^2 - \frac{\theta}{2\psi^2}\sigma_c^2 + \frac{1}{\psi}E_t[\Delta c_{t+1}]$$

$$E_t[r_{i,t+1}] - r_{f,t+1} = \left[\theta \frac{\sigma_{ic}}{\psi} + (1 - \theta)\sigma_{im}\right] - \frac{\sigma_i^2}{2}$$

La prime de risque est une somme pondérée de la covariance de r_i avec Δc_{t+1} et sa covariance avec r_m . Exercice: montrez que $\theta=1$ donne le CCAPM avec utilité isoélastique et que $\theta=0$ donne approximativement le CAPM.

Utilité non-séparable

Une autre tentative à élucidé le casse-tête de la prime de risque implique l'utilité non-séparable, tout en maintenant l'invariance à l'échelle:

$$U_t = \sum_{j=0}^{\infty} \delta^j \frac{(C_{t+j}/X_{t+j})^{1-\gamma} - 1}{1-\gamma},$$

οù

- ▶ Habitude interne: $X_t = C_{t-1}^{\kappa}$ où C_t est la consommation individuelle, ou
- ▶ Habitude externe: $X_t = \bar{C}_{t-1}^{\kappa}$ où C_t est la consommation agrégée.

Habitude interne

Avec l'habitude interne, la décision C_t a un effet sur X_{t+1} , ce dont le consommateur tient compte :

$$\frac{\partial U_t}{\partial C_t} = \frac{\partial}{\partial C_t} \left[\frac{(C_t/C_{t-1}^{\kappa})^{1-\gamma} - 1}{1-\gamma} + \delta \frac{(C_{t+1}/C_t^{\kappa})^{1-\gamma} - 1}{1-\gamma} \right]
= \left(\frac{C_t}{C_{t-1}^{\kappa}} \right)^{-\gamma} \cdot \frac{1}{C_{t-1}^{\kappa}} + \delta \left(\frac{C_{t+1}}{C_t^{\kappa}} \right)^{-\gamma} \cdot (-\kappa) \cdot C_t^{-\kappa-1} \cdot C_{t+1}
= C_t^{-\gamma} C_{t-1}^{\kappa(\gamma-1)} - \delta \kappa C_t^{\kappa(\gamma-1)} C_{t+1}^{-\gamma} (C_{t+1}/C_t)$$

Cette utilité marginale dépend de C_{t+1} , qui est aléatoire, et t. L'équation d'Euler est donc

$$E_t \left[\frac{\partial U_t}{\partial C_t} \right] = \delta E_t \left[(1 + R_{t+1}) \frac{\partial U_{t+1}}{\partial C_{t+1}} \right].$$

Habitude externe

Avec l'habitude externe, la décision C_t d'un individuel n'a aucun effet sur X_t , mais en équilibre, tout le monde prend la même décision :

aucun effet sur
$$X_t$$
, mais en equilibre, tout le monde prend la même décision :
$$\frac{\partial U_t}{\partial C_t} = \frac{\partial}{\partial C_t} \left[\frac{(C_t/X_t)^{1-\gamma} - 1}{1-\gamma} \right]_{X_t = C_t^\kappa} = \left(\frac{C_t}{X_t} \right)^{-\gamma} \cdot \frac{1}{X_t} = C_t^{-\gamma} C_{t-1}^{\kappa(\gamma-1)}$$

 $E_t[r_{i,t+1} - r_{f,t+1}] + \sigma_i^2/2 = \gamma \sigma_{ic}$

$$r_{t,t+1} = -\log \delta - \gamma^2 \sigma_c^2 / 2 + \gamma E_t [\Delta c_{t+1}] - \kappa (\gamma - 1) \Delta C_t$$

- La prime de risque ne change pas.
- Encore seulement une γ très grande peut expliquer les données.
 Mais une telle aversion pour le risque est plus cohérente avec un rendement sans risque plus bas.

Motivation pour la GMM

- GMM, c'est la Méthode de Moments Généralisée
- ▶ La log-normalité de $(C_{t+1}, R_{i,t+1})$ est une hypothèse très forte.
- ▶ L'approche GMM n'exige, comme modèle, qu'une condition de moment inconditionnel comme $E[(1 + R_{it})M_t] = 1$.
- ► Rappelons que dans le modèle CCAPM

$$M_{t+1} = \delta \frac{U'(C_{t+1})}{U'(C_t)},$$

et dans le cas spécial d'utilité isoélastique,

$$M_{t+1} = \delta \left(\frac{C_{t+1}}{C_t} \right)^{-\gamma},$$

donc la fonction de moment $(1+R_{it})M_t$ à l'intérieur de l'espérance est une fonction et des données et des paramètres inconnus.

Moments conditionels et inconditionels

La version conditionnelle de la condition de moment:

$$E_t[(1+R_{i,t+1})M_{t+1}]=1.$$

La version inconditionelle de la condition de moment:

$$E[(1+R_{i,t+1})M_{t+1}]=1.$$

- ▶ Problème : la version inconditionnelle est beaucoup moins forte
 - moins d'information pertinente pour estimer les paramètres
 - moins d'implications falsifiable, dans un contexte de test
- Solution : si la version conditionnelle tient et un instrument Z_t est observé à chaque période t,

$$E[(1 + R_{i,t+1})M_{t+1}Z_t] = E[E_t[(1 + R_{i,t+1})M_{t+1}Z_t]]$$

$$= E[Z_tE_t[(1 + R_{i,t+1})M_{t+1}]]$$

$$= E[Z_t]$$

Alors la condition $E[((1 + R_{i,t+1})M_{t+1} - 1)Z_t] = 0$ est une autre condition de moment inconditionnelle.

Éléments de la GMM

- Une séries de vecteurs aléatoires : w_t ($J \times 1$ à chaque période t, observé en T périodes)
- ▶ Vecteur de paramètres : θ_0 ($P \times 1$)
- ▶ Fonction de moment : $g(w_t, \theta_0)$ ($Q \times 1$)
- ▶ Condition de moment de la population : $E[g(w_t, \theta_0)] = 0$

Exemple CCAPM 1 : w_t

Vecteur de variables aléatoires :

$$w_t = (C_t, C_{t+1}, R_{t+1}, Z_t)$$

- C_t est la consommation agrégée (1×1) .
- $ightharpoonup R_{t+1}$ est un vecteur $N \times 1$ de rendements nets.
- $ightharpoonup Z_t$ est un vecteur $K \times 1$ de variables exogènes, ou instruments, connu à t.
- Par exemple,

$$Z_t = (1, C_t/C_{t-1}, C_{t-1}/C_{t-2}, R_t, R_{t-1}).$$

Exemple CCAPM 2 : θ_0

Vecteur de paramètres :

$$\theta_0 = (\delta_0, \gamma_0)$$

 $lackbrack \delta_0$ et γ_0 sont des "vraies' valeurs des paramètres d'utilité isoélastique :

$$V = E\left[\sum_{\tau=0}^{\infty} \delta_0^{\tau} \frac{C_{\tau}^{1-\gamma_0}}{1-\gamma_0}\right]$$

Exemple CCAPM 3 : $g(w_t, \theta_0)$

► Fonction de moment :

$$g(w_t, \theta_0) = [(1 + R_{t+1})\delta_0(C_{t+1}/C_t)^{-\gamma_0} - \iota] \otimes Z_t$$

- \triangleright ι est un vecteur $N \times 1$ de 1.
- ▶ ⊗ est l'opération de produit Kronecker.
- ▶ [...] est $N \times 1$, Z_t est $K \times 1$ donc le produit Kronecker est $NK \times 1$.
- ▶ Un élément de $g(w_t, \theta_0)$ pour chaque combinaison d'actif et d'instrument.

Exemple CCAPM 4 : Condition de moment de la population

Condition de moment de la population :

$$E[g(w_t,\theta_0)]=0.$$

ightharpoonup Selon le modèle, pour chaque instrument k et chaque actif i,

$$E[((1 + R_{i,t+1})\delta_0(C_{t+1}/C_t)^{-\gamma_0} - 1) \cdot Z_{kt}]$$

$$= E[E_t[((1 + R_{i,t+1})\delta_0(C_{t+1}/C_t)^{-\gamma_0} - 1) \cdot Z_{kt}]]$$

$$= E[E_t[((1 + R_{i,t+1})\delta_0(C_{t+1}/C_t)^{-\gamma_0} - 1)]Z_{kt}]$$

$$= E[0 \cdot Z_{kt}] = 0$$

Donc les conditions de moment sont entraînées par la théorie.

Identification et suridentification

- ▶ Dans cet exemple, $Q = N \times K$ (dimension de g) et P = 2 (dimension de θ_0)
- Si Q ≥ P et les instruments sont valides, le système est identifié.
- Si Q > P, le système est sur-identifié.

La condition de moment de l'échantillon

Correspondant à $E[g(w_t, \theta_0)]$, la condition de moment de la population, il y a une condition de moment de l'échantillon :

$$g_{\mathcal{T}}(w,\theta) \equiv \frac{1}{T} \sum_{t=1}^{T} g(w_t,\theta)$$

- $\blacktriangleright w \equiv (w_1,\ldots,w_T).$
- ▶ Comme $g(w_t, \theta)$, $g_T(w, \theta)$ est $Q \times 1$.
- Intuition pour GMM :
 - Si le modèle est vrai, il devrait y avoir une valeur du paramètre θ pour laquelle $g_T(w, \theta)$ est près de zéro.
 - On estime θ avec la valeur pour laquelle $g_T(w, \theta)$ est le plus près à zéro.
 - $g_T(w,\theta)$ étant vecteur, il faut choisir un distance à zéro.
 - On peut évaluer le modèle par la proximité de $g_T(w, \theta)$ à zéro.

L'estimation GMM

L'estimation GMM (méthode de moments généralisée) est la valeur $\hat{\theta}_{GMM}$ qui minimise

$$Q_T(\theta) = g_T(w, \theta)' W_T g_T(w, \theta), \tag{3}$$

où W_T est une matrice $Q \times Q$ définie positive.

- $V_T = I_Q$ (matrice d'identité) donne la somme des carrées.
- Une condition nécessaire pour une solution $\hat{\theta} = \arg \min_{\theta} Q_T(\theta)$ est

$$2G_T(\theta)'W_Tg_T(w,\theta) = 0, (4)$$

οù

$$G_T(w,\theta) = \frac{1}{T} \sum_{t=1}^T \frac{\partial g_T(w_t,\theta)}{\partial \theta'}.$$

On peut minimiser Q_T dans (3) ou résoudre (4).

Le choix de W_T , la matrice de pondération

La théorie de GMM dit que la W_T optimale est

$$W_T = S^{-1}$$
,

οù

$$S = \text{avar}[T^{1/2}g_T(w, \theta_0)].$$

- Notez que S dépend de θ_0 , qui est inconnu.
- \blacktriangleright Même l'estimation de θ dépend de W_T .
- Cette situation mène à une approche itérative.

Estimation de θ à plusieurs étapes

- ightharpoonup Commencez avec $W_T = I_Q$.
- Plus robuste mais un peu plus difficile : commencez avec une matrice diagonale avec les précisions de l'échantillon des éléments de $g_T(w,\theta)$.
- Pour calculer ce dernier, on peut choisir des valeurs raisonnables de θ ($\delta = 0.99$ et $\gamma = 3.0$, par exemple).
- ltérez sur les étapes suivantes :
 - ► Calculer $\hat{\theta}$ par minimisation ou la solution de (4).
 - Calculer

$$\hat{S}(w,\hat{\theta}) = \frac{1}{T} \sum_{t=1}^{T} g(w_t,\hat{\theta}) g(w_t,\hat{\theta})'$$

- ▶ Arrêtez quand (par exemple) max $|\hat{\theta}^K \hat{\theta}^{K-1}| < \epsilon$.
- ▶ Pour $\gamma \approx 3$, $\delta \approx 1$, $\epsilon = 10^{-4}$ est raisonnable.

Propriétés Asymptotiques

- ▶ Si $g(w_t, \theta)$ est stationnaire et ergodique et W_T est définie positive,
 - $\hat{ heta} o heta_0$ en probabilité et
 - $T^{1/2}(\hat{\theta} \theta_0)$ converge en loi à $N(0, (G'S^{-1}G)^{-1})$.
- Avec la matrice 2×2 de covariance asymptotique $(G'S^{-1}G)^{-1}$, reportez les écarts types (racines carrées des éléments diagonaux)