Taller 1

Andres Felipe Beltran Rodriguez

10/23/2021

1. Con la variable gastos semanales de los empleados en una empresa construya:

round(k,0)

a. una distribución de frecuencias, de frecuencias relativas, acumuladas, y relativas acumuladas.

[1] 7

Para resolver este punto debemos ingresar los datos a R:

$$7 \approx 7.491994 = 1 + 3.332 \cdot log(90) \tag{3}$$

library(readxl)
tarea1 <- read_excel("./tarea1.xlsx")
gastos <- tarea1\$gastos</pre>

Para este conjunto de datos podemos utilizar 7 intervalos. Para saber el tamaño del intervalo, podemos dividir el rango en el número de intervalos:

Para definir la cantidad de intervalos en los cuales separar los datos, podemos utilizar la ecuación de sturges (Sturges 1926)

$$longitud del intervalo = \frac{max(gastos) - min(gastos)}{7}$$
(4)

$$k = 1 + 3.332 \cdot log(n) \tag{1}$$

LongInt <- (max(gastos)-min(gastos))/7
(1) LongInt</pre>

- n = tamaño de muestra, número de observaciones
- ## [1] 15565.86

• k = número de intervalos

La longitud del intervalo es $13620.12 \approx 13620$.

podemos revisar el tamaño de muestra con la función length() de R:

length(gastos)

[1] 15566

[1] 90

Podemos entonces construir la tabla de valores minimos y máximos para este intervalo:

Para esta muestra de 90 individuos:

Primero calculamos los límites inferiores de los 16 intervalos, Teniendo encuenta que ya tenemos el primero, min(gastos), tenemos que calcular los 15 restantes.

$$k = 1 + 3.332 \cdot log(90) \tag{2}$$

k <- 1 + (3.322 * log10(90)) k

[1] 7.491994

Para calcular los límites superiores, basta con sumar la longitud del intervalo - 1, ya que uno de los valores del intervalo ya está (el límite inferior):

```
maxs <- mins + LongInt-1

TDF <- data.frame(
    min = mins,
    max = maxs
)

TDF</pre>
```

```
## min max
## 1 40000 55565
## 2 55566 71131
## 3 71132 86697
## 4 86698 102263
## 5 102264 117829
## 6 117830 133395
## 7 133396 148961
```

Ahora podemos iterar a lo largo de las filas de la tabla de frecuencias TDF buscando cuantos elementos de gastos estan dentro de cada intervalo definido por cada fila.

```
for(i in 1: nrow(TDF)){
   TDF$fi[i] <- length(
     which(
   TDF$min[i] <= gastos & gastos <= TDF$max[i]
     )
   )
}
TDF</pre>
```

```
## min max fi
## 1 40000 55565 10
## 2 55566 71131 18
## 3 71132 86697 16
## 4 86698 102263 15
## 5 102264 117829 9
## 6 117830 133395 12
## 7 133396 148961 10
```

Una vez tenemos la frecuencia absoluta, podemos calcular la frecuencia relativa dividiendo por el numero de observaciones:

```
TDF$fr <- round(TDF$fi/length(gastos),2)
TDF</pre>
```

```
max fi
        min
## 1
      40000
             55565 10 0.11
## 2
      55566
             71131 18 0.20
## 3
      71132
             86697 16 0.18
      86698 102263 15 0.17
## 5 102264 117829
                   9 0.10
## 6 117830 133395 12 0.13
## 7 133396 148961 10 0.11
```

Una vez tenemos las frecuencias absolutas y relativas, podemos calcular las acumuladas de la siguiente manera:

• Primero para la frecuencia absoluta acumulada (F_i) :

```
for(i in 1:nrow(TDF)){
   TDF$Fi[i] <- sum(TDF$fi[1:i])
}</pre>
```

• También para la frecuencia relativa acumulada (F_r) :

```
for(i in 1:nrow(TDF)){
  TDF$Fr[i] <- sum(TDF$fr[1:i])
}</pre>
```

Una vez hemos calculado todas las frecuencias, podemos imprimir la tabla final:

knitr::kable(TDF2,"simple")

min.	max.	f_i	$f_{\rm r}$	F_{i}	$\overline{\mathrm{F_{r}}}$
40000	55565	10	0.11	10	0.11
55566	71131	18	0.20	28	0.31
71132	86697	16	0.18	44	0.49
86698	102263	15	0.17	59	0.66
102264	117829	9	0.10	68	0.76
117830	133395	12	0.13	80	0.89
133396	148961	10	0.11	90	1.00

Para observar los resultados de la tabla de frecuencias, podemos hacer un histograma del porcentaje de frecuencia relativa en funcion de los intervalos:

```
library(ggplot2)
intervalos <- factor(paste(TDF$min,'-',TDF$max))
ggplot(TDF,
aes(x = intervalos,
y = fr*100,
fill=intervalos,
label = round(fr*100,2)
)
) +
geom_bar(stat="identity") +
xlab("intervalo") +
ylab('% frecuencia relativa')+
geom_label(aes(fill = intervalos),
colour = "white",
fontface = "italic") +
theme(axis.text.x = element_blank())</pre>
```


Referencias

• Sturges, H. A. (1926). The choice of a class interval. Journal of the american statistical association, 21(153), 65-66.