Assignment 1

Problem 1

Solve the following linear system using Numpy and round the answer to 2 decimals:

```
3a + 7b + 5c = 1

2 + 2b + 3c = 8

5a + 6c = 4
```

```
In [5]:
```

```
import numpy as np
a = np.array([[3, 7, 5], [0, 2, 3], [5, 0, 6]])
b = np.array([1, 6, 4])
x = np.linalg.solve(a, b)
np.around(x, decimals=2)
```

```
Out[5]:
array([-2.15, -0.69, 2.46])
```

0.43194502 0.29122914]

Problem 2

Find the 4th largest value in the following array:

```
In [10]:
```

```
import numpy as np

np.random.seed(42)
array = np.random.rand(20)
print(array)

[0.37454012 0.95071431 0.73199394 0.59865848 0.15601864 0.15599452
0.05808361 0.86617615 0.60111501 0.70807258 0.02058449 0.96990985
0.83244264 0.21233911 0.18182497 0.18340451 0.30424224 0.52475643
```

Hint: look for functions to sort arrays in Numpy documentation!

```
In [13]:
```

```
array.sort()
#print(array)
print ('The 4th largest value in the array is ' + str(array[-4]))
```

The 4th largest value in the array is 0.8324426408004217

Problem 3

Manipulate the Pandas dataframe following the instructions.

```
In [1]:
import pandas as pd
```

Read a csv file which is called assignment.csv.

```
Tn [2].
```

ii [2].

View the first 5 rows in this dataframe.

In [3]:

assignment.head(5)

Out[3]:

	Order ID	Order Type	Source	Destination	Begin Time	End Time
0	A5007D	retrieval	M0086	M3111	2017/10/22 00:20	2017/10/22 01:44
1	A5101D	reshuffle	M0026	M0045	2017/10/28 23:35	2017/10/29 00:12
2	A5101D	retrieval	M0045	M3111	2017/10/29 00:17	2017/10/29 02:47
3	A5101D	storage	M7312	M0026	2017/10/28 05:46	2017/10/28 06:01
4	A5152D	retrieval	M0396	M3111	2017/10/22 00:21	2017/10/22 01:46

assignment = pd.read_csv(r"assignment.csv", sep=',')

Sort the full dataframe by Order Type.

In [4]:

assignment.sort_values(by=['Order Type'])

Out[4]:

	Order ID	Order Type	Source	Destination	Begin Time	End Time
1	A5101D	reshuffle	M0026	M0045	2017/10/28 23:35	2017/10/29 00:12
14	A5559D	reshuffle	P0286	P0336	2017/10/31 06:55	2017/10/31 06:57
0	A5007D	retrieval	M0086	M3111	2017/10/22 00:20	2017/10/22 01:44
15	A5559D	retrieval	P0336	P7213	2017/10/31 07:34	2017/10/31 08:23
11	A5499D	retrieval	P0976	R7212	2017/10/24 07:33	2017/10/24 08:00
10	A5499D	retrieval	N0076	P0055	2017/10/24 04:32	2017/10/24 05:15
18	A5656D	retrieval	P0036	Q1111	2017/10/24 02:32	2017/10/24 04:24
19	A5656D	retrieval	Q0317	R7212	2017/10/24 07:34	2017/10/24 08:13
5	A5384D	retrieval	G0126	G7213	2017/10/29 00:19	2017/10/29 02:27
4	A5152D	retrieval	M0396	M3111	2017/10/22 00:21	2017/10/22 01:46
2	A5101D	retrieval	M0045	M3111	2017/10/29 00:17	2017/10/29 02:47
7	A5440D	retrieval	N0947	N7712	2017/10/31 15:15	2017/10/31 15:44
8	A5440D	storage	P1312	N0946	2017/10/31	2017/10/31

		-			U4:00	บอ:ชบ
6	Order ID A5384D	Order Type storage	Source G7412	Destination G0126	Begin Time 2017/10/28	2617/10/28 08:11
					06.02	00.11
12	A5499D	storage	P0075	P0976	2017/10/24 06:26	2017/10/24 06:46
13	A5499D	storage	P3212	N0076	2017/10/24 01:49	2017/10/24 03:26
3	A5101D	storage	M7312	M0026	2017/10/28 05:46	2017/10/28 06:01
16	A5559D	storage	P0055	P0286	2017/10/31 05:09	2017/10/31 05:29
17	A5559D	transfer	P3422	Q1112	2017/10/31 03:36	2017/10/31 04:12
9	A5440D	transfer	P7312	P0065	2017/10/31 02:23	2017/10/31 02:41

Select all rows whose Order Type is storage.

```
In [5]:
```

```
assignment.loc[assignment["Order Type"] == 'storage']
```

Out[5]:

	Order ID	Order Type	Source	Destination	Begin Time	End Time
3	A5101D	storage	M7312	M0026	2017/10/28 05:46	2017/10/28 06:01
6	A5384D	storage	G7412	G0126	2017/10/28 08:02	2017/10/28 08:11
8	A5440D	storage	P1312	N0946	2017/10/31 04:56	2017/10/31 05:30
12	A5499D	storage	P0075	P0976	2017/10/24 06:26	2017/10/24 06:46
13	A5499D	storage	P3212	N0076	2017/10/24 01:49	2017/10/24 03:26
16	A5559D	storage	P0055	P0286	2017/10/31 05:09	2017/10/31 05:29

Transform Begin Time and End Time to date format.

```
In [6]:
```

```
assignment['Begin Time'] = pd.to_datetime(assignment['Begin Time'] )
```

In [7]:

```
assignment['End Time'] = pd.to datetime(assignment['End Time'])
```

Group the dataframe by <code>Order ID</code> and <code>Order Type</code> , and count the size.

```
In [8]:
```

```
assignment.groupby(['Order ID'] and ['Order Type']).count()
```

Out[8]:

Order ID Source Destination Begin Time End Time

Order Type

reshuffle	Order IB	Source	Destination 2	Begin Time	End Time
retrjeval	10	10	10	10	10
Type storage	6	6	6	6	6
transfer	2	2	2	2	2

Use Processing Time = End Time - Begin Time, add a new column called Process Time.

```
In [9]:
```

```
assignment['Processing Time'] = assignment['End Time'] - assignment['Begin Time']
```

Compute the mean and median of Process Time.

```
In [10]:
```

```
print ('The mean of Process Time is ' + str(assignment['Processing Time'].mean()))
print ('The median of Process Time is ' + str(assignment['Processing Time'].median()))
```

The mean of Process Time is 0 days 00:51:42 The median of Process Time is 0 days 00:36:30

Problem 4

Use Matplotlib to draw a basic line plot.

- use np.arange(0.0, 1.0, 0.01) as x-values
- use x ** n for n=1, 2, 3, 4 as 4 group y-values
- · plot four lines together in one graph with legend

In [11]:

```
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
# Draw the line plot
x = np.arange(0.0, 1.0, 0.01)
y1 = x**1
y2 = x**2
y3 = x**3
y4 = x**4
plt.plot(x, y1, label = "line 1")
plt.plot(x, y2, label = "line 2")
plt.plot(x, y3, label = "line 3")
plt.plot(x, y4, label = "line 4")
plt.xlabel('x - axis')
plt.ylabel('y - axis')
plt.legend()
plt.show()
```


0.0 0.2 0.4 0.6 0.8 1.0 x - axis

Problem 5

Suppose your data is np.random.randn(1000, 3) where the numpy seed is 19680801 (np.random.seed(19680801))

You need to provide the histogram with 10 bins based on your data.

Let's color them via 'red', 'tan', 'lime'.

Also set your graph title as bars with legend.

In [12]:

```
np.random.seed(19680801)

n_bins = 10
x = np.random.randn(1000, 3)
colors = ['red', 'tan', 'lime']

# Draw the bar chart
plt.hist(x, n_bins, density=True, histtype='bar', color=colors, label=colors)
plt.legend(prop={'size': 10})
plt.show()
```

