Alg	orithm 1. Grouping Mix-MPM
1	Input: Patient and doctor embeddings learned from consultation dialogue, online medical
	knowledge and offline hospital visit trace.
	$E = \{e_{mod, ent} mod \in \{dialogue, online, offline\}, ent \in \{patient, doctor, hospital, disease\}\}$
2	Output: Fused representation $v_{mix} \in R^d$.
3	procedure Grouping Mix-MPM(E)
4	Divide embeddings E into a group of paired embeddings (x_i, x_j) , i $\neq j$
5	for each pair (x_i, x_j) do
6	$v_{i,j} = MPM(x_i, x_j, c, d)$
7	Compute the attentive factors by formula $f(v_{i,j}) = leaky_ReLU(v_{i,j} \cdot W_{pair})$ where
	$W_{pair} \in R^{d \times 1}$ is a projection matrix.
8	Normalize the attentive factors by formula $\alpha_{i,j} = \frac{exp(f(v_{i,j}))}{\sum_{(x_i,x_j)\in G} exp(f(v_{i,j}))}$
9	Weighted fusion $v_{mix} = \sum_{(x_i, x_j) \in G} \alpha_{i,j} v_{i,j}$
10	Return v_{mix}
11	procedure $MPM(x_i, x_j, c, d)$
12	for $k \leftarrow i, j$ do
13	if h_k , s_k not initialized then
14	Generate random but fixed $h_k \in \mathbb{R}^c$ and $s_k \in \{+1, -1\}^c$ where $h_k(i)$ is
	uniformly drawn from $\{1d\}$, s_k is uniformly drawn from $\{-1, +1\}$.
15	$x_{k}^{'} = \psi(x_{k}, h_{k}, s_{k}, c)$
16	Generate random but fixed $W_k \in \mathbb{R}^{d \times c}$, where each entry is -1 or +1 with equal
	probability.
17	$x_{RM} = \frac{1}{\sqrt{d}}(W_i x_i) \odot (W_j x_j)$
18	$\phi_{RM} = sign(x_{RM})\sqrt{ x_{RM} }$
19	$x_{TS} = FFT^{-1} \left(FFT(x_i') \odot FFT(x_j') \right)$
20	$\phi_{TS} = sign(x_{TS})\sqrt{ x_{TS} }$
21	$v_{i,j} = \phi_{RM} + \phi_{TS}$
22	return $v_{i,j}$
23	procedure $\psi(v, h, s, c)$
24	$y = [0, \ldots, 0]$
25	for $i \leftarrow 1, \ldots, c$ do
26	$y[h[i]] = y[h[i]] + s[i] \cdot v[i]$
27	return y

Note: the embedding size of input c=176, the output embedding size d=12000