2021 级《微积分》(A)(上)课程期末考试试题

(2022年1月3日, 用时120分钟)

专业班级			学号		姓名	
	题 号	_	<u> </u>	三	四	总 分
	分数					

阅卷人	
得 分	

一、选择题 (每题 4 分, 共 16 分)

- 1. 下列说法正确的是 (D)
 - A. 有界数列一定收敛;
 - B. 有限区间上的连续函数一定一致连续;
 - C. 函数 f 在 \mathbb{R} 上处处可导,它的导函数 f' 一定是连续的;
 - D. 有界数集一定存在上确界。
- 2. 下列哪个极限不存在 (B)
 - $A.\lim_{x\to 0} x \sin\frac{1}{x}$
 - $B.\lim_{x\to 0} D(x)$,其中 D(x) 是 Dirichlet 函数
 - $\mathrm{C.}\!\lim_{x\to 0}|\mathrm{sgn}(x)|$
 - D. $\lim_{n \to +\infty} (1 + \frac{1}{2^2} + \dots + \frac{1}{n^2})$
- 3. 当 $x \to 0$ 时,下面哪个函数不是与 y = x 等阶的无穷小 (D)
 - A. $\sin x$
 - B. $\arcsin x$

- C. $\ln(1+x)$
- D. $1 \cos x$
- 4. 函数 f(x) 定义在 \mathbb{R} 上,在 x_0 处可导而且 $f(x_0) > 0$ 。下列说法错误的是(A)
 - A. 函数 f(x) 在 x_0 处的微分是 $f'(x_0)$;
 - B. 函数 f(x) 在 x_0 处连续;
 - C. 存在 x_0 的一个邻域 $U(x_0)$,使得在该邻域内 f(x) > 0;
 - D. $\stackrel{\text{def}}{=} x \to x_0 \; \text{ff}, \; f(x) = f(x_0) + o(1).$

二、填空题 (每题 4 分, 共 20 分)

- 6. 函数 $\varphi(t)$, $\psi(t)$ 在 \mathbb{R} 上二阶可导,而且 $\varphi'(t) \neq 0$ 。由参数方程 $x = \varphi(t)$, $y = \psi(t)$ 确定了函数关系 y = y(x)。那么 $\frac{\mathrm{d}y}{\mathrm{d}x} = \underline{\psi'(t)/\varphi'(t)}$, $\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \underline{\psi''(t)\varphi'(t)-\psi'(t)\varphi''(t)}$ 。
- 7. 函数 $y = 2x^3 + 3x^2 12x + 18$ 在区间 [-3,3] 上的最大值是 <u>63</u>, 最小值是 <u>11</u>。
- 8. 函数 $y = \frac{x^4 + 8}{x^3 + 1}$ 图像的垂直渐近线是 $\underline{x = -1}$, 斜渐近线是 $\underline{y = x}$ 。
- 9. 函数 f(x) 在 \mathbb{R} 上的连续, $F(x) = \int_0^x f(x+t)dt$,那么 $F'(x) = \underline{2f(2x) f(x)}$ 。

阅卷人	
得 分	

三、计算与解答题 (每题 6 分, 共 36 分)

10. 求函数 $f(x) = \arctan x$ 的 10 阶带 Peano 型余项的 Maclaurin 展开。

解:由

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + x^8 + o(x^9), \quad \arctan'(x) = \frac{1}{1+x^2},$$

可知

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} + o(x^{10}).$$

注: 也可以直接求 $\arctan x$ 在 0 处前 10 阶导数。

11. 计算不定积分:

$$\int \frac{\mathrm{d}x}{\sin x}.$$

解:

$$\int \frac{\mathrm{d}x}{\sin x} = \int \frac{\sin x \mathrm{d}x}{\sin^2 x} = -\int \frac{\mathrm{d}\cos x}{1 - \cos^2 x}$$
$$= -\frac{1}{2} \int (\frac{1}{1 - \cos x} + \frac{1}{1 + \cos x}) \mathrm{d}\cos x$$
$$= \frac{1}{2} \ln \frac{1 - \cos x}{1 + \cos x} + C.$$

12. 计算 Euler 积分:

$$B(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx,$$

其中 m, n 都是正整数。

解: 当 n=1 时,

$$B(m,1) = \int_0^1 x^{m-1} dx = \frac{1}{m};$$

当 $n \ge 2$ 时,

$$B(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx = \int_0^1 (1-x)^{n-1} d\frac{x^m}{m}$$
$$= \frac{(1-x)^{n-1} x^m}{m} \Big|_0^1 - \int_0^1 \frac{x^m}{m} d(1-x)^{n-1} = \frac{n-1}{m} B(m+1, n-1).$$

因此

$$B(m,n) = \frac{(n-1)(n-2)\cdots 2\cdot 1}{m(m+1)\cdots (m+n-2)}B(m+n-1,1) = \frac{(n-1)!(m-1)!}{(m+n-1)!}.$$

13. 利用 Riemann 积分求下述极限值:

$$\lim_{n \to +\infty} \frac{1^p + 2^p + \dots + n^p}{n^{p+1}} \quad (p > 0).$$

解:

$$\lim_{n \to +\infty} \frac{1^p + 2^p + \dots + n^p}{n^{p+1}} = \lim_{n \to +\infty} \sum_{k=1}^n (\frac{k}{n})^p \cdot \frac{1}{n} = \int_0^1 x^p dx = \frac{1}{p+1}.$$

14. 计算将圆 $x^2 + (y - R)^2 \le r^2 (0 < r < R)$ 绕 x 轴旋转一周得到环体的体积 V 和表面积 S。

解:引入参数 θ ,圆周方程为

$$\begin{cases} x = r \cos \theta, \\ y = R + \sin \theta \end{cases} \quad t \in [0, 2\pi]$$

那么

$$V = \pi \int_0^{\pi} (R + r \sin \theta)^2 \cdot r \sin \theta d\theta - \pi \int_0^{\pi} (R - r \sin \theta)^2 \cdot r \sin \theta d\theta$$

$$= 4\pi R r^2 \int_0^{\pi} \sin^2 \theta d\theta = 2\pi^2 R r^2.$$

$$S = 2\pi \int_0^{\pi} \sqrt{[(r \cos \theta)']^2 + [(R + r \sin \theta)']^2} (R + r \sin \theta) d\theta +$$

$$2\pi \int_0^{\pi} \sqrt{[(r \cos \theta)']^2 + [(R - r \sin \theta)']^2} (R - r \sin \theta) d\theta$$

$$= 4\pi^2 R r.$$

15. 求解下述初值问题:

$$\begin{cases} y' + y = x, \\ y(0) = 0. \end{cases}$$

解: 齐次方程 y + y' = 0 的通解是 $y = Ce^{-x}$ 。 假设 $y = C(x)e^{-x}$ 是方程 y' + y = x 的解,代入得到

$$C'(x) = xe^x,$$

解出 $C(x) = (x-1)e^x + C_1$,因此非齐次方程 y' + y = x 的通解为

$$y = C_1 e^{-x} + x - 1,$$

代入初始条件,得到 $C_1 = 1$,所以初值问题的解是 $y = e^{-x} + x - 1$ 。

阅卷人	
得 分	

─ 四、证明题 (16-19 每题 7 分,附加题 10 分,共 38 分)

16. 函数 f(x) 在区间 [a,b] 上有一阶连续导数,在 (a,b) 上二阶可导。假设 $f(a) = f(b) = 0, M = \max_{a \le x \le b} f(x) > 0$ 。证明:存在 $\xi \in (a,b)$,使得

$$f''(\xi) \leqslant -\frac{8M}{(b-a)^2}.$$

证明: 由条件可知, f(x) 的最大值在区间内部取到, 不妨设最大值点是 x_0 。由 Fermat 定理, 可知 $f'(x_0) = 0$ 。考虑在 x_0 处的 Taylor 展开, 有

$$f(a) = f(x_0) + f'(x_0)(a - x_0) + \frac{f''(\eta_1)}{2}(a - x_0)^2;$$

$$f(b) = f(x_0) + f'(x_0)(b - x_0) + \frac{f''(\eta_2)}{2}(b - x_0)^2;$$

其中 η_1 介于 a, x_0 之间, η_2 介于 x_0, b 之间。因而

$$f''(\eta_1) = -\frac{2M}{(a-x_0)^2}, \quad f''(\eta_2) = -\frac{2M}{(b-x_0)^2}.$$

$$\stackrel{\underline{u}'}{\underline{u}} x_0 \leqslant \frac{a+b}{2} \text{ ff}, \quad f''(\eta_1) \leqslant -\frac{8M}{(b-a)^2};$$

$$\stackrel{\underline{u}'}{\underline{u}} x_0 \geqslant \frac{a+b}{2} \text{ ff}, \quad f''(\eta_2) \leqslant -\frac{8M}{(b-a)^2}.$$

17. 假设 $a, b \ge 0, p, q > 1, \frac{1}{p} + \frac{1}{q} = 1$, 证明 Young 不等式:

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}.$$

证明: 不妨设 a,b>0, 令 $A=a^p,B=b^q$, 原不等式等价于

$$A^{1/p}B^{1/q} \leqslant A/p + B/q,$$

由于函数 $y = \ln x$ 在 $(0, +\infty)$ 是凹函数, 所以

$$1/p \ln A + 1/q \ln B \le \ln(A/p + B/q),$$

由于 $y = \ln x$ 是单调递增函数,所以

$$A^{1/p}B^{1/q} \leqslant A/p + B/q.$$

18. 假设 $0 \le a < b$, 函数 f(x) 在 \mathbb{R} 上连续, 单调增加, 证明:

$$2\int_{a}^{b} x f(x) dx \ge b \int_{0}^{b} f(x) dx - a \int_{0}^{a} f(x) dx.$$

证明: 令 $F(x) = x \int_0^x f(t) dt$, 不等式右边可以写成

$$F(b) - F(a) = \int_a^b F'(x) dx = \int_a^b [xf(x) + \int_0^x f(t)dt] dx.$$

不等式左边减去右边等于

$$\int_{a}^{b} [xf(x) - \int_{0}^{x} f(t)dt]dx.$$

由于 f 单调递增,所以被积函数

$$xf(x) - \int_0^x f(t)dt = \int_0^x [f(x) - f(t)]dt \ge 0.$$

因而

$$\int_{a}^{b} [xf(x) - \int_{0}^{x} f(t)dt]dx \ge 0$$

原不等式得证。

19. 证明下述广义积分是条件收敛的:

$$\int_{1}^{+\infty} \frac{\cos x}{x} \mathrm{d}x$$

证明: 对于任意 A>1, $|\int_1^A \cos x \mathrm{d}x| \leq 2$, 同时当 $x\to +\infty$ 时, $\frac{1}{x}$ 单调递减趋于 0,由 Dirichlet 判别法可知广义积分 $\int_1^{+\infty} \frac{\cos x}{x} \mathrm{d}x$ 收敛。另一方面,

$$\int_{1}^{A} \frac{|\cos x|}{x} dx \ge \int_{1}^{A} \frac{\cos^{2} x}{x} dx = \frac{1}{2} \int_{1}^{A} \frac{dx}{x} + \frac{1}{2} \int_{1}^{A} \frac{\cos 2x}{x} dx.$$

当 $A \to +\infty$ 时,由 Dirichlet 判别法 $\int_1^A \frac{\cos 2x}{x} \mathrm{d}x$ 收敛;另一方面, $\int_1^A \frac{\mathrm{d}x}{x}$ 趋于 $+\infty$ 。 所以 $\int_1^A \frac{|\cos x|}{x} \mathrm{d}x$ 趋于 $+\infty$ 。 所以 $\int_1^{+\infty} \frac{|\cos x|}{x} \mathrm{d}x$ 发散;因而 $\int_1^{+\infty} \frac{\cos x}{x} \mathrm{d}x$ 条件收敛。

20. (附加颢)

- (a) 请陈述通过振幅给出的可积性判定准则;
- (b) 函数 f,g 在 [a,b] 上可积,证明:它们的乘积 $f \cdot g$ 也在 [a,b] 上可积。

证明: (1)f 是定义在区间 [a,b] 上的有界函数,那么 f 可积当且仅当对于任意 $\epsilon > 0$,存在区间 [a,b] 的一个分割 T: $a = x_0 < x_1 < \cdots < x_n = b$,使得

$$\sum_{i=1}^{n} \omega_i(f) \Delta x_i < \epsilon,$$

其中 $\omega_i(f)$ 是函数 f 在区间 $[x_{i-1},x_i]$ 上的振幅, $\Delta x_i=x_i-x_{i-1}$ 是区间 $[x_{i-1},x_i]$ 的长度。

(2) 由于 f,g 可积,不妨设在区间 [a,b] 上 $|f|,|g| \leq M$ 。

给定 $\epsilon > 0$, 存在 $\delta > 0$, 当分割 $T: a = x_0 < x_1 < \cdots < x_n = b$ 的模小于 δ 时, 有

$$\sum_{i=1}^{n} \omega_i(f) \Delta x_i < \frac{\epsilon}{2M}, \quad \sum_{i=1}^{n} \omega_i(g) \Delta x_i < \frac{\epsilon}{2M}$$

取定这样的一个分割,由

$$|(f \cdot g)(x) - (f \cdot g)(y)| \le |f(x) - f(y)| \cdot |g(x)| + |f(y)| \cdot |g(x) - g(y)|,$$

$$\omega_i(f \cdot g) \leqslant M\omega_i(f) + M\omega(g).$$

因此

$$\sum_{i=1}^{n} \omega_i(f \cdot g) \Delta x_i \leqslant M \sum_{i=1}^{n} \omega_i(f) \Delta x_i + M \sum_{i=1}^{n} \omega_i(g) \Delta x_i < \epsilon.$$

因而 $f \cdot g$ 也可积。