In accordance with our invention, for two mixture-type probability distribution functions (PDF's), G. H.

10
$$G(x) = \sum_{i=1}^{N} \mu_i g_i(x),$$
 $H(x) = \sum_{k=1}^{K} \gamma_k h_k(x),$

where G is a mixture of N component PDF's $g_i(x)$, H is a mixture of K component PDF's h_k (x), μ_i and γ_k are corresponding weights that satisfy

15
$$\sum_{i=1}^{N} \mu_i = 1$$
 and $\sum_{k=1}^{K} \gamma_k = 1$;

we define their distance, D_M(G, H), as

$$D_{M}(G, H) = \min_{w = [\omega_{ik}]} \sum_{i=1}^{N} \sum_{k=1}^{K} \omega_{ik} d(g_{i}, h_{k})$$

where $d(g_i,\,h_k)$ is the element distance between component PDF's g_i and h_k and w satisfie

$$\omega_{ik} \geq 0, \ 1 \leq i \leq N, \ 1 \leq k \leq K;$$

and

$$\sum_{k=1}^K \omega_{ik} = \mu_i,\, 1 \leq i \leq N,\, \sum_{i=1}^N \omega_{ik} = \gamma_k,\, 1 \leq k \leq K.$$

The application of this definition of distance to various sets of real world data is demonstrated.