MULTILEVEL ANALYSIS IN R WITH A BROKEN-LINE EXAMPLE

JAN DE LEEUW

ABSTRACT. Code in R is provided for multilevel slopes-as-outcomes analysis. The current implementation minimizes either the full negative log-likelihood or the restricted negative log-likelihood using the scoring method. We use a simple repeated measures example to illustrate the analysis.

1. Generalities

1.1. **Slopes-as-Outcomes Model.** We have m groups, and in each group we have an $n_j \times p$ matrix X_j of regressors and a vector y_j of n_j outcomes. The model we use, in the notation of De Leeuw and Meijer [2008]¹, is

(1a)
$$\underline{y}_{j} = X_{j}\underline{b}_{j} + \underline{\varepsilon}_{j},$$

$$(1b) \underline{b}_j = Z_j \gamma + \underline{\delta}_j,$$

where the Z_j are $p \times m$ matrices. The disturbances $(\underline{\varepsilon}_j, \underline{\delta}_j)$ are centered, uncorrelated over different j, and have

(1c)
$$\mathbf{E}\left(\begin{bmatrix}\underline{\varepsilon}_j\\\underline{\delta}_j\end{bmatrix}\begin{bmatrix}\underline{\varepsilon}_j'&\underline{\delta}_j'\end{bmatrix}\right) = \begin{bmatrix}\sigma^2I_j&0\\0&\Omega\end{bmatrix}.$$

Equation (1a) is the *first-level* regression model, Equation (1b) the *second level* regression model. Equation (1b) explains why we call the model *slopes-as-outcomes*. The vectors with random coefficients \underline{B}_j have p elements, while there are m fixed coefficients in γ . I_j is the identity matrix of order j and Ω is a symmetric positive semi-definite matrix of order p.

1

Date: August 12, 2008 — 14h 30min — Typeset in TIMES ROMAN.

¹We refer to De Leeuw and Meijer [2008] throughout, *not* because it is the first, the only, or the best reference, but because it brings together formulas and references is a single convenient place. And we use the same notation, both in the text and wherever feasible in the program.

We can also summarize equations (1) in a single regression model with correlated errors, by substituting (1b) into (1a). This gives

(2a)
$$\underline{y}_{j} = X_{j}Z_{j}\gamma + X_{j}\underline{\delta}_{j} + \underline{\varepsilon}_{j},$$

which implies

(2b)
$$\mathbf{E}(y_{i}) = X_{j}Z_{j}\gamma,$$

(2c)
$$\mathbf{V}(\underline{y}_j) = X_j \Omega X_j' + \sigma^2 I.$$

We parametrize Ω as a linear combination of G known matrices C_g of order p, i.e.

(3)
$$\Omega = \sum_{g=1}^{G} \xi_g C_g.$$

Thus the unknown parameters we have to estimate are γ , σ^2 , and ξ .

1.2. Initial Estimates of the Regression Coefficients. Least squares estimates of γ can be computed by minimizing

(4a)
$$\sigma_{OS}(\gamma) = \sum_{j=1}^{m} (y_j - X_j Z_j \gamma)'(y_j - X_j Z_j \gamma)$$

We can always write y_j in the form $y_j = X_j b_j + e_j$, where b_j is any least squares estimate, i.e. any b_j such that $X'_j(y_j - X_j b_j) = X'_j e_j = 0$. Note that the least squares estimate is unique if and only if X_j has rank p. This means that

(4b)
$$\sigma_{OS}(\gamma) = \sum_{j=1}^{m} (b_j - Z_j \gamma)' X'_j X_j (b_j - Z_j \gamma),$$

and we can compute the estimate of γ in two steps: first compute any least squares estimates b_j and then minimize (4b). This gives

$$\hat{\gamma}_{OS} = \left(\sum_{i=1}^{m} Z'_{j} X'_{j} X_{j} Z_{j}\right)^{-1} \sum_{i=1}^{m} Z'_{j} X'_{j} X_{j} b_{j}.$$

Because X_jb_j is the same for all least squares estimates, it does not matter which one we use. The least squares estimate always exists and is an unbiased estimate of γ .

In De Leeuw and Meijer [2008, p 24–26] estimate (4b) is referred to as the one-step estimate, for historical reasons. There is also a two-step estimate, given by

$$\hat{\gamma}_{TS} = \left(\sum_{j=1}^m Z_j' Z_j\right)^{-1} \sum_{j=1}^m Z_j' b_j.$$

Note that, in the singular case, $\hat{\gamma}_{TS}$ will depend on the choice of the least squares estimate b_j . Our program implements both options, but $\hat{\gamma}_{OS}$ is the default.

Clearly the optimum value of the least squares loss functions can also be used to provide an unbiased estimate of σ^2 [De Leeuw and Meijer, 2008, p. 28]. Because of planned generalizations, and because we want to deal with the possibility that $n_j = p$ for all j, we develop a more elaborate estimate in Subsection 1.5.

1.3. **Loss Function.** The loss function we minimize to get final parameter estimates in the current version of the program is, except for some irrelevant constants, the negative multinormal log-likelihood (FIML). For group j this is

(5a)
$$\mathscr{L}_{j}(\gamma, \sigma^{2}, \Omega) = \log \det(V_{j}) + (y_{j} - X_{j}Z_{j}\gamma)'V_{j}^{-1}(y_{j} - X_{j}Z_{j}\gamma),$$

where

$$(5b) V_i = X_i \Omega X_i' + \sigma^2 I.$$

This can be rewritten in the computationally more efficient form [De Leeuw and Meijer, 2008, p. 21]

(6a)
$$\mathcal{L}_{j} = (n_{j} - p)(\log \sigma^{2} - \frac{s_{j}^{2}}{\sigma^{2}}) + \log \det(W_{j}) + (b_{j} - Z_{j}\gamma)'W_{j}^{-1}(b_{j} - Z_{j}\gamma),$$

where

(6b)
$$W_j = \Omega + \sigma^2 (X_j' X_j)^{-1},$$

and where

(6c)
$$b_j = (X_i'X_i)^{-1}X_i'y_i,$$

(6d)
$$s_j^2 = \frac{1}{n_j - p} (y_j - X_j b_j)' (y_j - X_j b_j),$$

are the ordinary least squares regression coefficients and mean squared error. Of course the FIML loss over all groups is simply

$$\mathscr{L}_F(\gamma,\sigma^2,\Omega) = \sum_{j=1}^m \mathscr{L}_j(\gamma,\sigma^2,\Omega).$$

Alternatively, we can use the restricted or residual (REML) loss function. This is defined as

(7)
$$\mathscr{L}_{R}(\sigma^{2},\Omega) = \min_{\gamma} \mathscr{L}_{F}(\gamma,\sigma^{2},\Omega) + \log \det(\sum_{i=1}^{m} Z'_{j}W_{j}^{-1}Z_{j}).$$

1.4. **Reparametrization.** If Ω is positive semidefinite and $\sigma^2 > 0$ then it follows that V_j is non-singular. But W_j can still be singular if $X_j'X_j$ is singular, and the null-space of matrices Ω and $X_j'X_j$ have a non-trivial intersection.

It is not uncommon that the matrices X_j are singular, because there are too few observations in the corresponding group. In the case the formulas Subsection 1.3 do not apply any more, and we must to be more careful. Note that (6d) also does not apply when $p = n_j$, no matter if X_j is singular or non-singular.

We avoid the problem with singularity by reparametrizing the problem using the QR-decomposition $X_j = Q_j R_j$, where Q_j is $n_j \times r_j$ and satisfies $Q'_j Q_j = I$, while R_j is $r_j \times p$, and upper triangular. Here $r_j = \mathbf{rank}(X_j) \le \min(n_j, p)$. Then

(8a)
$$\underline{y}_{j} = \tilde{X}_{j}\underline{\tilde{b}}_{j} + \underline{\varepsilon}_{j},$$

(8b)
$$\underline{\tilde{b}}_{j} = \tilde{Z}_{j} \gamma + \underline{\tilde{\delta}}_{j},$$

with
$$\tilde{X}_j = Q_j$$
, $\underline{\tilde{b}}_j = R_j \underline{b}_j$, $\tilde{Z}_j = R_j Z_j$, and $\tilde{\delta}_j = R_j \underline{\delta}_j$. Thus

(8c)
$$\mathbf{E}\left(\begin{bmatrix}\underline{\varepsilon}_{j}\\\underline{\tilde{\delta}}_{j}\end{bmatrix}\begin{bmatrix}\underline{\varepsilon}'_{j} & \underline{\tilde{\delta}}'_{j}\end{bmatrix}\right) = \begin{bmatrix}\sigma^{2}I & 0\\0 & \tilde{\Omega}_{j}\end{bmatrix}.$$

with

$$ilde{\Omega}_j = R_j \Omega R_j' = \sum_{g=1}^G \xi_g R_j C_g R_j' = \sum_{g=1}^G \xi_g \tilde{C}_{jg}.$$

We can now apply our likelihood functions (and our algorithm) to this new reparametrized system (8). Note that the parameters are exactly the same as in the old parametrization, but the new first-level regressors are orthonormal, and there is a different Ω_j for each j.

1.5. Initial Estimate of the Variance Components. Define $\hat{\underline{b}}_j = \tilde{X}'_j \underline{y}_j$ and

$$\underline{H}_{i} = (\hat{\underline{b}}_{i} - \tilde{Z}_{i}\gamma)(\hat{\underline{b}}_{i} - \tilde{Z}_{i}\gamma)'$$

Then $b_j - Z_j \gamma = \underline{\tilde{\delta}}_j + \tilde{X}_j' \underline{\varepsilon}_j$ and

$$\mathbf{E}(\underline{H}_j) = \sum_{g=1}^G \xi_g \tilde{C}_{jg} + \sigma^2 I.$$

Of course γ is unknown, but we have the least squares estimate $\hat{\gamma}$, which is consistent under quite general conditions. This suggest to minimize the linear least

squares loss function

$$\sigma(\xi,\sigma^2) = \sum_{j=1}^m \operatorname{tr} (H_j - \sum_{g=1}^G \xi_g \tilde{C}_{jg} - \sigma^2 I)^2,$$

where

(9)
$$H_j = (b_j - \tilde{Z}_j \hat{\gamma})(b_j - \tilde{Z}_j \hat{\gamma})',$$
 and $b_j = \tilde{X}_j' y_j$.

1.6. **Algorithm.** Our algorithm uses the *method of scoring* to minimize the FIML or REML loss function. More precisely, we compute FIML estimates by minimizing $\mathcal{L}_F(\gamma, \sigma^2, \xi)$ and we compute REML estimates by minimizing $\mathcal{L}_R(\gamma, \sigma^2, \xi) = \mathcal{L}(\gamma, \sigma^2, \xi) + \log \det(\sum_{j=1}^m \tilde{Z}_j' \tilde{W}_j^{-1} \tilde{Z}_j)$.

Suppose θ is the current parameter vector with the m+G+1 elements (γ, σ^2, ξ) , $g(\theta)$ is the value of the partials, and $H(\theta)$ is the expected value of the matrix of second derivatives. The update formula for scoring is

$$\boldsymbol{\theta}^{(k+1)} = \boldsymbol{\theta}^{(k)} - H(\boldsymbol{\theta}^{(k)})^{-1} g(\boldsymbol{\theta}^{(k)})$$

Formulas for the necessary first derivatives and for the expected values of the second derivatives are in De Leeuw and Meijer [2008, p. 33-39]. We adapt them here to our context and simplify them slightly.

Matters can be simplified considerably, by observing that the expected values of the mixed second partials of γ and the variance components σ^2 and ξ are zero. Thus

$$\gamma^{(k+1)} = \gamma^{(k)} - \left[\frac{\partial^2 \mathcal{L}}{\partial \gamma \partial \gamma} \Big|_{\gamma = \gamma^{(k)}} \right]^{-1} \left. \frac{\partial \mathcal{L}}{\partial \gamma} \right|_{\gamma = \gamma^{(k)}}.$$

Since

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \gamma} \bigg|_{\gamma = \gamma^{(k)}} &= -2 \sum_{j=1}^m \tilde{Z}_j' \tilde{W}_j^{-1} (\tilde{b}_j - \tilde{Z}_j \gamma^{(k)}), \\ \frac{\partial^2 \mathcal{L}}{\partial \gamma \partial \gamma} \bigg|_{\gamma = \gamma^{(k)}} &= 2 \sum_{j=1}^m \tilde{Z}_j' \tilde{W}_j^{-1} \tilde{Z}_j, \end{split}$$

we see that, both for FIML and REML,

(10)
$$\gamma^{(k+1)} = \left[\sum_{j=1}^{m} \tilde{Z}'_{j} \tilde{W}_{j}^{-1} \tilde{Z}_{j} \right]^{-1} \sum_{j=1}^{m} \tilde{Z}'_{j} \tilde{W}_{j}^{-1} \tilde{b}_{j}.$$

Thus in each scoring iteration the update of $\gamma^{(k)}$ is the weighted least squares estimate of γ using the current variance components as weights. It does not depend on the current value of γ .

To update the variance components for FIML we have, using H_i from Equation (9),

$$\frac{\partial \mathcal{L}_F}{\partial \sigma^2} = -\sum_{j=1}^m \left\{ (n_j - r_j) \left(\log \sigma^2 - \frac{s_j^2}{(\sigma^2)^2} \right) - \mathbf{tr} \, \tilde{W}_j^{-1} (H_j - \tilde{W}_j) \tilde{W}_j^{-1} \right\},$$

$$\frac{\partial \mathcal{L}_F}{\partial \xi_g} = -\sum_{j=1}^m \mathbf{tr} \, \tilde{W}_j^{-1} (H_j - \tilde{W}_j) \tilde{W}_j^{-1} \tilde{C}_{jg},$$

and for the expected values of the second derivatives

$$\begin{split} \mathbf{E} \left[\frac{\partial^{2} \mathcal{L}_{F}}{\partial \sigma^{2} \partial \sigma^{2}} \right] &= \sum_{j=1}^{m} \left\{ \frac{n_{j} - r_{j}}{(\sigma^{2})^{2}} + \mathbf{tr} \, \tilde{W}_{j}^{-2} \right\}, \\ \mathbf{E} \left[\frac{\partial^{2} \mathcal{L}_{F}}{\partial \sigma^{2} \partial \xi_{g}} \right] &= \sum_{j=1}^{m} \tilde{W}_{j}^{-1} \tilde{C}_{jg} \tilde{W}_{j}^{-1}, \\ \mathbf{E} \left[\frac{\partial^{2} \mathcal{L}_{F}}{\partial \xi_{g} \partial \xi_{h}} \right] &= \sum_{j=1}^{m} \tilde{W}_{j}^{-1} \tilde{C}_{jg} \tilde{W}_{j}^{-1} \tilde{C}_{jh}. \end{split}$$

For REML we have

$$\begin{split} \frac{\partial \mathcal{L}_R}{\partial \sigma^2} &= \frac{\partial \mathcal{L}_F}{\partial \sigma^2} - \mathbf{tr} \, A \Lambda, \\ \frac{\partial \mathcal{L}_R}{\partial \xi_g} &= \frac{\partial \mathcal{L}_F}{\partial \xi_g} - \mathbf{tr} \, A \Psi_g, \end{split}$$

where

$$A = \left(\sum_{j=1}^m \tilde{Z}_j' \tilde{W}_j^{-1} \tilde{Z}_j\right)^{-1},$$

and

$$\Lambda = \sum_{j=1}^{m} \tilde{Z}_{j}' \tilde{W}_{j}^{-2} \tilde{Z}_{j},$$

$$\Psi_{g} = \sum_{j=1}^{m} \tilde{Z}_{j}' \tilde{W}_{j}^{-1} \tilde{C}_{jg} \tilde{W}_{j}^{-1} \tilde{Z}_{j}.$$

Also

$$\mathbf{E} \left[\frac{\partial^{2} \mathcal{L}_{R}}{\partial \sigma^{2} \partial \sigma^{2}} \right] = \mathbf{E} \left[\frac{\partial^{2} \mathcal{L}_{F}}{\partial \sigma^{2} \partial \sigma^{2}} \right] - \mathbf{tr} \Lambda A \Lambda A,$$

$$\mathbf{E} \left[\frac{\partial^{2} \mathcal{L}_{R}}{\partial \sigma^{2} \partial \xi_{g}} \right] = \mathbf{E} \left[\frac{\partial^{2} \mathcal{L}_{F}}{\partial \sigma^{2} \partial \xi_{g}} \right] - \mathbf{tr} \Lambda A \Psi_{g} A,$$

$$\mathbf{E} \left[\frac{\partial^{2} \mathcal{L}_{R}}{\partial \xi_{g} \partial \xi_{h}} \right] = \mathbf{E} \left[\frac{\partial^{2} \mathcal{L}_{F}}{\partial \xi_{g} \partial \xi_{h}} \right] - \mathbf{tr} \Psi_{g} A \Psi_{h} A,$$

1.7. **Post-processing.** If we have estimates of the parameters, we can use these to compute estimates of the regression coefficients and the predicted values, and we can use the expected values of the second derivatives associated with the scoring method to compute standard errors.

Other quantities that are often of interest are the best linear unbiased estimates of the random regression coefficients (the means of the conditional distribution of the regression coefficients given the data). These are [De Leeuw and Meijer, 2008, p. 26-28]

$$\hat{b}_j = \tilde{\Omega}_j \tilde{W}_j^{-1} b_j + (I - \tilde{\Omega}_j \tilde{W}_j^{-1}) \tilde{Z}_j \gamma,$$

i.e. they are a matrix weighted mean of the ordinary least squares regression coefficients b_j and the maximum likelihood estimates $\tilde{Z}_j \gamma$. The \hat{b}_j are also known as the *shrinkage estimates*.

1.8. **Current R Implementation.** The complete R code for the multilevel function is in Section A.1. In our implementation we use various data structures implemented as lists of lists. It would be better, in many respects, to use S3 or S4 objects, but that is on the agenda of future improvements. The first data structure is allData, which is a list of m lists. In list j we store X_j, Z_j and y_j , where the y_j may have missing data. allData is the input to the multilevel program.

The data are used to compute allMulti, which is another list of m lists. In these we store copies of X_j, Z_j and y_j , but cleaned up. Missing data are eliminated, together with the corresponding rows of the X_j . If the resulting X_j have zero columns, then these are elimated as well, together with the corresponding rows of the Z_j . In addition allMulti stores $X_j'X_j$, $(X_j'X_j)^{-1}$, $X_j'y_j$, b_j , $y_j - X_jb_j$, and s_j^2 . One possible improvement of the algorithm is to be a bit less generous with reserving storage for local data.

Two more lists are needed to start the iterations. omStruc is a list with the matrices C_g , while parStruc holds the current copies of the parameter estimates γ , σ^2 , and ξ . The program makeIniEst computes initial estimates of γ and σ^2 by either the one-step or the two-step ordinary least squares method discussed in Subsection 1.2. Initial consistent estimates of ξ are computed with the method similar in Subsection 1.5.

The program omMake makes Ω from the C_g . In a future version there will be a similar program sgMake, which will create $\Sigma = \mathbf{E}(\underline{\varepsilon}_j \underline{\varepsilon}_j')$ from a number of parameters θ , with options for example to handle auto-regressive error structures.

During the iterations auxiliary quantities such as the negative log-likelihood, the first derivatives, and the expected values of the second derivatives are stored in a list auxStruct. If the multilevel program is called with verbose=TRUE then intermediate function values and gradient norms for each iteration are printed out.

After convergence we fill another list of lists with post-processing results. allPost stores, for each group, the least squares estimate b_j , the maximum likelihood estimate $Z_j\gamma$, and the BLUP estimates \hat{b}_j of the regression coefficients. For each of these three different estimates of the regression coefficients we also compute the predicted values. There is enough information available to also easily compute the standard errors of all these parameter estimates, regression coefficients, and predicted values, because multilevel returns a list with parStruc, auxStruc, allPost, and allMulti.

The program makePredY is used for repeated measure data, in which groups are individuals, with measurements on a single variable at different time points. Once we have computed our estimates, we can plot the predicted values as a continuous curve, with continuous confidence bounds.

2. Example

In the study we are interested in here, conduction velocities of eleven specimens are measured in a ischemic and non-ischemic area. Measurements are made at times 0,5,7, and 10 minutes during ischemia, and at times 11,15, and 20 minutes during reperfusion. Thus there are 22 groups of seven correlated observations each.

We assume that the regression of the response on time decreases linearly during ischemia from baseline time t=0 to t=10, and then increases linearly during reperfusion time to t=20. In a non-ischemic area the measurements will be more or less constant over time. Thus in both ischemic and non-ischemic areas the regression function can be modeled as a continuous linear spline, or broken line, with a single knot at t=10. Three such possible regression lines are shown in Figure 1.

FIGURE 1.

The design matrix X_j at the seven time points is the same for all 22 groups.

$$X = \begin{bmatrix} -10 & 0 & 1 \\ -5 & 0 & 1 \\ -3 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 5 & 1 \\ 0 & 10 & 1 \end{bmatrix}$$

There will be one vector of three regression coefficients for the ischemic areas and another vector of three regression coefficients for the non-ischemic areas. In other

words

$$\underline{y}_{i} = \begin{cases} X\beta_{0} + \underline{\varepsilon}_{i} & \text{if } i \text{ is even,} \\ X\beta_{1} + \underline{\varepsilon}_{i} & \text{if } i \text{ is odd,} \end{cases}$$

where we suppose the even indices correspond with non-ischemic areas and the subsequent odd indices with ischemic areas in the same specimen. The $\underline{\varepsilon}_i$ are 22 vectors of random disturbances, which we assume to be independent with mean zero and dispersion $\sigma^2 I$). This model can be fitted simply by linear regression.

There are some reasons why we can perhaps do better. Subsequent measurements on the same specimen may be correlated. This can be modeled by using correlated disturbances, and one way to get correlated disturbances is by using a slopes-as-outcomes model. The model becomes

$$\underline{y}_i = X\underline{b}_i + \underline{\varepsilon}_i,$$

where

$$\underline{b}_{i} = \begin{cases} \beta_{0} + \underline{\delta}_{i} & \text{if } i \text{ is even,} \\ \beta_{1} + \underline{\delta}_{i} & \text{if } i \text{ is odd.} \end{cases}$$

We suppose, as before, that the $\underline{\varepsilon}_i$ are uncorrelated with mean zero and dispersion $\sigma^2 I$, while the $\underline{\delta}_i$ are uncorrelated with mean zero. The dispersion matrix of the $\underline{\delta}_i$, and thus of the random regression coefficients \underline{b}_i , is a 3 × 3 matrix Ω . Note that

$$\underline{y}_{i} = \begin{cases} X\beta_{0} + X\underline{\delta}_{i} + \underline{\varepsilon}_{i} & \text{if } i \text{ is even,} \\ X\beta_{1} + X\underline{\delta}_{i} + \underline{\varepsilon}_{i} & \text{if } i \text{ is odd,} \end{cases}$$

and thus the dispersion matrix of \underline{y}_i is $X\Omega X' + \sigma^2 I$. In the special case of a random intercept model, only element (3,3) of Ω is non-zero. In that case the dispersion matrix of \underline{y}_i is $\omega^2 E + \sigma^2 I$, where E is a matrix filled with ones. We call $\rho = \frac{\omega^2}{\omega^2 + \sigma^2}$ the *intraclass correlation*, and it gives us a measure of the interdependence of the residuals within a sample.

An additional complication in the experiment we analyze is that for some samples the time points with t > 10 minutes (the reperfusion times) are missing. This leads to the more general model

$$\underline{y}_i = X_i \underline{b}_i + \underline{\varepsilon}_i,$$

where X_i can be either the previous X with seven rows, or it can be

$$X_i = \begin{bmatrix} -10 & 0 & 1 \\ -5 & 0 & 1 \\ -3 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Note that in this last case the complete second column of X_i is zero, which means we are just fitting a straight line to the four time points during ischemia.

Several restrictions on the second-level regression coefficients could be of interest. The first is that β_0 and β_1 are identical, i.e. the regression in ischemic and non-ischemic areas is the same. There are also other hypothesis that may make some sense. The non-ischemic lines can be horizontal, which means that β_0 has its first two elements equal to zero. We could also assume, in addition, the ischemic lines decrease to zero at t=10, which means that the third element of β_1 is zero, and finally that reperfusion after 10 minutes gets back to base level, which means the first two elements of both β_0 and β_1 are equal. And then we can combine these various restrictions of β to define even more restrictive hypotheses. Since the number of observations is quite small, we generally want to keep the number of parameters small as well.

To formulate the model as a slopes-as-outcomes model, of which our simple broken line is a special case, we observe that the regression defining the random coefficients can be written as

$$\underline{b}_i = Z_i \gamma + \underline{\delta}_i,$$

where

$$\gamma = egin{bmatrix} eta_0 \ eta_i \end{bmatrix},$$

and

$$Z_i = \begin{cases} \begin{bmatrix} I & | & 0 \\ 0 & | & I \end{bmatrix} & \text{if } i \text{ is even,} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & | & I \end{bmatrix} & \text{if } i \text{ is odd.} \end{cases}$$

The broken line results are in Figure 2 for FIML and in Figure 3 for REML, using a simple random intercept model for Ω . The code to run the examples and generate the figures is in section A.3.

The FIML and REML solutions are virtually indistinguishable. It turns out that allowing for random slopes does not really make a difference (slope variances are estimated to be very small and negative). We plotted the broken-line estimates in

red for ischemic and in blue for non-ischemic areas, using the maximum likelihood estimates $X_jZ_j\gamma$. The green lines in the plot are plus or minus two standard deviations around the predictions. Data points for non-ischemic areas are in blue, data points for ischemic areas in red.

In Figure 4 we show the solution for the less restrictive case in which the two curve pieces can be quadratics. This improves the fit slightly, because the quadratic can get closer to the data points at t = 10 and allows for fact that the ischemic growth curve has two concave pieces. Figure 5 has the same quadratic solution, but now drawn as a continuous curve with continuous confidence bands.

We have also repeated the FIML analysis with the restrictions that the broken line for non-ischemic areas is horizontal, while the broken line for ischemic areas equals zero at t = 10. The solution is plotted in Figure 6. We see smaller confidence intervals, but especially for ischemic areas the restrictions do not fit the data very well.

Finally, in Figure 7, there are no functional restrictions on the form of the curve, which basically amounts to choosing the X_j to be square and non-singular. The model is, essentially,

$$\mathbf{E}(\underline{y}_i) = \begin{cases} \beta_0 & \text{if } i \text{ is even,} \\ \beta_1 & \text{if } i \text{ is odd,} \end{cases}$$

with

$$\mathbf{V}(\underline{y}_i) = \boldsymbol{\omega}^2 E + \boldsymbol{\sigma}^2 I.$$

Of course this should be modified slighty for imcomplete observations. This last solution seems to be most satisfactory for these data.

We compare the fit of the four models in Table 1.

	\mathscr{L}_F	# par	σ^2	ω^2	ho
restricted broken line	-1007.622	5	0.000200	0.000441	0.688
broken line	-1028.057	8	0.000184	0.000269	0.594
broken quadratic	-1070.592	12	0.000129	0.000278	0.683
no curve	-1095.919	16	0.000104	0.001976	0.950
TABLE 1.					

THE I

Increasing the number of parameters generally gives a significant improvement. Note that in all analyses, especially in the last one which imposes no functional form, the intraclass correlation ρ is very high, indicating a strong dependence in time.

REFERENCES

J. De Leeuw and E. Meijer. Introduction to Multilevel Analysis. In J. De Leeuw and E. Meijer, editors, *Handbook of Multilevel Analysis*, chapter 1, pages 1–75. Springer Verlag, 2008.

FIGURE 2.

FIGURE 3.

FIGURE 4.

FIGURE 5.

FIGURE 6.

FIGURE 7.

APPENDIX A. CODE

A.1. Multilevel Package.

```
2 #
3 #
        Copyright (C) 2008 Jan de Leeuw <deleeuw@stat.ucla.edu>
4 #
       UCLA Department of Statistics, Box 951554, Los Angeles, CA 90095-1554
5 #
   # This program is free software; you can redistribute it and/or modify
 7 # it under the terms of the GNU General Public License as published by
   # the Free Software Foundation; either version 2 of the License, or
 8
       (at your option) any later version.
10
11
       This program is distributed in the hope that it will be useful,
12
        but WITHOUT ANY WARRANTY; without even the implied warranty of
13
       MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
        GNU General Public License for more details.
15
       You should have received a copy of the GNU General Public License
16 #
17 #
       along with this program; if not, write to the Free Software
18
       Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
21 #
22 # version 0.1, 2008-08-02 Initial Release
23 # version 0.2, 2008-08-04 one-step and two-step initial estiates
24 # version 0.3, 2008-08-04 initial estimate xi
25 # version 1.0, 2008-08-04 added REML
   # version 1.1, 2008-08-04 allow singularities in Z_j
   # version 1.2, 2008-08-05 allow X_j to be of full rank
28 # version 2.0, 2008-08-06 rewrote everything using QR
29 # version 2.1, 2008-08-06 new initial VC estimate
30 # version 2.2, 2008-08-06 refactoring
31 # version 2.3, 2008-08-08 curve prediction
32 #
33
34 <u>library</u> (MASS)
35
36 multilevel<a href="mailto:sef-function"><u>sef-function</u></a> (allData, omStruc, full=TRUE, wlsini=1, itmax=100, epsg=1e-6, epsh=1
        e-6.verbose=TRUE){
   ngrp \leq -length (allData); omPar \leq -length (omStruc); rgPar \leq -ncol (allData[[1]]\frac{c}{2}z); itel
        <u><-</u>1
   allMulti<-makeAllMulti(allData)
39
   parStruc<-makeIniEst(allMulti,omStruc,wlsini)
40
   repeat {
41
        llik<-gsg<-hsgsg<-0
42
       ggm<-rep(0,rgPar); gxi<-rep(0,omPar)</pre>
43
       hgmgm<-matrix(0,rgPar,rgPar); hsgxi<-rep(0,omPar)</pre>
44
       hxixi<-matrix(0,omPar,omPar)</pre>
       auxStruc<-list(llik=llik,ggm=ggm,gsg=gsg,gxi=gxi,</pre>
45
46
            hqmqm=hqmqm, hsqsq=hsqsq, hsqxi=hsqxi, hxixi=hxixi)
47
        auxStruc<-addFIML(auxStruc, parStruc, omStruc, allMulti)</pre>
```

```
48
           if (!full) auxStruc<-addREML(auxStruc,parStruc,omStruc,allMulti)</pre>
49
           llik<-auxStruc$llik
50
           qqm<-auxStruc$qqm; qsq<-auxStruc$qsq; qxi<-auxStruc$qxi
51
           \label{localization} $\operatorname{hgmgm} \underline{<-} \operatorname{auxStruc} \underline{\$} \operatorname{hgmgm}; \ \operatorname{hsgsg} \underline{<-} \operatorname{auxStruc} \underline{\$} \operatorname{hsgsg} \\
52
           hsgxi \leq -auxStruc + hsgxi; hxixi \leq -auxStruc + hsgxi
53
          hvarco<-rbind(c(hsgsg,hsgxi),cbind(hsgxi,hxixi))</pre>
54
           cvarco<-drop (ginv(hvarco) %*%c(gsg,gxi))</pre>
55
           cregre<-drop (ginv (hgmgm) % * % ggm)</pre>
56
           apsv<-max(abs(cvarco)); apsr<-max(abs(cregre))</pre>
57
           apsg<-max(abs(ggm)); apsh<-max(abs(c(gsg,gxi)))</pre>
58
           if (verbose) cat("Iteration: ", formatC(itel, width=3, format="d"),
                " NLLik: ", formatC(llik,digits=8,width=12,format="f"),
59
60
                " RChge: ", formatC (apsr, digits=8, width=12, format="f"),
61
                " VChge: ", <a href="format">format</a> (apsv, digits=8, width=12, <a href="format">format</a>="f"),
                " RGrad: ", formatC(apsg, digits=8, width=12, format="f"),
62
63
                " VGrad: ", formatC(apsq, digits=8, width=12, format="f"),
64
                "\n")
65
          if (((apsg<epsg) && (apsh<epsh)) || (itel == itmax)) break()
66
           parStruc$gm<-parStruc$gm-cregre
67
           parStruc \underline{\$} sg \underline{\leftarrow} parStruc \underline{\$} sg - cvarco [1]
           parStruc$xi <- parStruc$xi-cvarco[-1]
           itel<-itel+1
70
           }
71
     allPost <-makeAllPost (allMulti,parStruc,omStruc,auxStruc)
     return (list (parStruc=parStruc, auxStruc=auxStruc, allPost=allPost, allMulti=allMulti)
73
74
75 makeAllMulti<-function(allData)
76 {
77 ngrp < -length (allData)
78 oneMulti\leq-list (x=0, y=0, z=0, n=0, p=0, e=0, b=0, r=0, s=0)
     allMulti_repList(oneMulti,ngrp)
80
     for (igrp in 1:ngrp) {
81
          x<-allData[[igrp]]$x
82
          y<-allData[[igrp]]$y
83
          z<-allData[[igrp]]$z
84
          ind<-which(!is.na(y))</pre>
85
          x \leq x[ind,]; qq \leq qr(x)
86
          k<-qq$rank; pv<-qq$pivot
87
          p<-allMulti[[igrp]]$p<-k
88
          x \leq allMulti[[igrp]] x \leq qr.Q(qq)[,1:k]
89
          r \leq allMulti[[igrp]] \leq r \leq qr.R(qq)[1:k,order(pv)]
90
          n \leq -allMulti[[igrp]] \leq n \leq -length (ind)
91
          y \leq allMulti[[igrp]] \frac{\$y}{-}y[ind]
92
          allMulti[[igrp]]\frac{$z < -r_{**}z}{}
93
          b\underline{<-}allMulti[[igrp]]\underline{\$}b\underline{<-}colSums}(y\underline{\star}x)
94
           e \leq -allMulti[[igrp]] \leq e \leq -y - drop(x + b)
95
           allMulti[[igrp]] \underline{\$} s \underline{\leftarrow} if \quad (n > p) \quad (\underline{sum}(e^2) \underline{/}(n-p)) \quad \underline{else} \quad 0
96
97
     return(allMulti)
98
     }
```

```
100 makeAllPost<-function(allMulti,parStruc,omStruc,auxStruc) {
101
     ngrp<-length(allMulti)
    onePost<-list(bls=0,bml=0,bps=0,yls=0,yml=0,yps=0,vml=0)
103 allPost<-repList(onePost,ngrp)</pre>
104
     for (igrp in 1:ngrp) {
105
          gm<-parStruc$gm
106
          xi<u><-</u>parStruc<u>$</u>xi
107
          sg<-parStruc$sg
108
          r<-allMulti[[igrp]]$r
109
          p<-allMulti[[igrp]] $p
110
          om<-omMake(omStruc,r,xi)
111
         w<-om+sg<u>*diag</u>(p)
112
         z<-allMulti[[igrp]]$z
113
         x<-allMulti[[igrp]]$x
114
          v<-om%*%ginv(w)
115
         cvar<-qinv((auxStruc$hqmqm)/2)
116
         bml<-allPost[[igrp]]$bml<-drop(z***gm)</pre>
117
         bls<-allPost[[igrp]] $bls<-allMulti[[igrp]] $b
118
          bps<-allPost[[igrp]] $bps<-drop(bml+v** (bls-bml))
119
          allPost[[igrp]] \frac{\$}{y} ls \frac{-drop}{x^* * bls}
120
          allPost[[igrp]] $yml <-drop (x % * % bml)
121
          122
          allPost[[igrp]]\Svml<-sqrt(diag(tcrossprod(x\S*\Sz, x\S*\Sz\S*\Scvar)))
123
124
     return (allPost)
125
126
127 makeIniEst<-function(allMulti,omStruc,wlsini=1) {
128 ngrp<-length(allMulti); rgPar<-ncol(allMulti[[1]]$z)
129 omPar<-length(omStruc)
130 c<-matrix(0,rgPar,rgPar)
131 d<-rep (0, rgPar)
132 sp<u><-</u>ss<u><-</u>0
133
     for (igrp in 1:ngrp) {
134
          z<-allMulti[[igrp]]$z
135
          x<-allMulti[[igrp]]$x
         b<-allMulti[[igrp]]$b
136
137
         n<-allMulti[[igrp]]$n
138
         p<-allMulti[[igrp]]$p
139
         s<-allMulti[[igrp]]$s
140
         r<u><-</u>allMulti[[igrp]]<u>$</u>r
141
          sp<-sp+(n-p)
142
         ss<-ss+(n-p) *s
          <u>if</u> (wlsini == 0) {
143
144
               c \leq -c + \underline{crossprod}(z)
145
               d<-d+drop(crossprod(z,b))</pre>
146
147
          else {
148
              h<-x**z
149
               c \leq -c + \underline{crossprod}(h)
150
               d\underline{<-}d+\underline{drop}\left(\underline{crossprod}\left(h,x\underline{\$*\$}b\right)\right)
151
152
```

```
153 gm<-drop(ginv(c) %*%d)
154 <u>if</u> (sp > 0) sg < -ss/sp <u>else</u> sg < -0
155 g<-rep(0,omPar); c<-matrix(0,omPar,omPar)
156 f \leq -rep(0, omPar); d \leq 0; m \leq 0
157
      for (igrp in 1:ngrp) {
158
           b<-allMulti[[igrp]]$b
159
            z \leq allMulti[[igrp]] \leq z
160
            r<-allMulti[[igrp]]$r
161
            e<-b-drop(z%*%gm)
162
           h<-outer(e,e)
            for (imPar in 1:omPar) {
163
164
                 tci<-r%**omStruc[[imPar]]%**t(r)
165
                 g[imPar] < g[imPar] + sum(h*tci)
166
                 f[imPar] <- f[imPar] + sum (diag (tci))
167
                 for (jmPar in 1:omPar)
168
                       tcj<-r%*%omStruc[[jmPar]]%*%t(r)
169
                       c[imPar, jmPar] <-c[imPar, jmPar] + sum (tci*tcj)
170
171
            d \leq -d + \underline{sum} (\underline{diag}(h))
172
            m \leq -m + nrow(r)
173
174
      cc<-rbind(c(m, f), cbind(f, c))
175 dd<-c(d,g)
176 ee < -drop (ginv(cc) * * dd)
177
      return (list (gm=gm, sg=ee[1], xi=ee[-1]))
178 }
179
180
     addFIML<-function(auxStruc,parStruc,omStruc,allMulti) {
181
     ngrp<-length(allMulti); omPar<-length(omStruc)</pre>
182 llik<-auxStruc$llik
183
     ggm<-auxStruc$ggm; gsg<-auxStruc$gsg; gxi<-auxStruc$gxi
184
      hgmgm<-auxStruc$hgmgm; hsgsg<-auxStruc$hsgsg
185
      hsgxi<-auxStruc$hsgxi; hxixi<-auxStruc$hxixi
186
      for (igrp in 1:ngrp) {
187
            b<-allMulti[[igrp]]$b
188
            z<-allMulti[[igrp]]$z
189
            s<-allMulti[[igrp]]$s
190
            n<-allMulti[[igrp]]$n
191
            p<u><-</u>allMulti[[igrp]]<mark>$</mark>p
192
            r<-allMulti[[igrp]]$r
193
            sg<u><-</u>parStruc<u>$</u>sg
194
            gm<-parStruc$gm
195
            xi<-parStruc$xi
196
            om<-omMake(omStruc,r,xi)
197
            w \leq -om + sg * diag(p)
198
            u \leq -ginv(w)
199
            o<u><−</u>u<u>%∗%</u>u
200
            e<-b-drop(z%*%gm)
201
            v<u><-drop</u>(u<u>%*%</u>e)
202
            \underline{\mathsf{t}} < -\mathsf{outer}(\mathsf{v}, \mathsf{v}) - \mathsf{u}
203
            \texttt{llik} \underline{\leftarrow} \texttt{llik} + \underline{\texttt{log}} (\texttt{det} (\texttt{w})) + \underline{\texttt{sum}} (\texttt{e} \underline{\star} \texttt{v})
204
            if (n > p) llik < -llik + (n-p) * (log (sg) + s/sg)
205
            \texttt{ggm}\underline{<-}\texttt{ggm}-2\underline{\star} \underline{\texttt{colSums}}\,(\,\underline{\texttt{z}}\underline{\star} \underline{\texttt{v}})
```

```
206
             gsg < -gsg - \underline{sum} (\underline{diag} (\underline{t}))
207
             \underline{if} (n > p) gsg < gsg - (n-p) \times (s-sg) / (sg^2)
208
            hgmgm<-hgmgm+2*crossprod(z,u***z)
209
            hsgsg<-hsgsg+sum(diag(o))
210
             if (n > p) hsgsg<-hsgsg+((n-p)/(sg^2))
211
            for (imPar in 1:omPar) {
212
                  omi < -r_{\frac{8}{2} + \frac{8}{2}} omStruc[[imPar]] \frac{8 + \frac{8}{2} t}{(r)}
213
                  hsgxi[imPar] <-hsgxi[imPar] + sum (omi *o)
214
                  gxi[imPar] <-gxi[imPar] -sum(omi*t)</pre>
215
                  for (jmPar in 1:omPar) {
216
                      omj < -r_{\frac{8}{4}} cmStruc[[jmPar]] \frac{8}{4} (r)
217
                       \label{eq:hxixi} \begin{aligned} \text{hxixi} & [\text{imPar, jmPar}] \leq -\text{hxixi} & [\text{imPar, jmPar}] + \underline{\text{sum}} & ((u_{**}^* \text{omi}_{**}^* u)_{**} \text{omj}) \end{aligned}
218
219
220
221 return (list (llik=llik, qqm=qqm, qsq=qsq, qxi=qxi, hqmqm=hqmqm, hsqsq=hsqsq, hsqxi=hsqxi,
              hxixi=hxixi))
222
223
224 addREML<-function(auxStruc,parStruc,omStruc,allMulti) {
225 ggm<-auxStruc$ggm
226 hgmgm<-auxStruc$hgmgm
227 a \leq ginv(hgmgm/2)
228 omPar<-length(omStruc); ngrp<-length(allMulti); rgPar<-length(parStruc\(\frac{5}{2}\)gm)
229 llik<-auxStruc$llik
230 llik < -llik - log (det (a))
231 lbd<-matrix(0,rgPar,rgPar); psi<-repList(lbd,omPar)
232 <u>for</u> (igrp in 1:ngrp) {
233
            xi<u><-</u>parStruc<u>$</u>xi
234
            sq<-parStruc$sq
235
            z<-allMulti[[igrp]]$z
236
            r<-allMulti[[igrp]]$r
237
            p<-allMulti[[igrp]]$p
238
            om<-omMake(omStruc,r,xi)
239
            w<-om+sg*diag(p)
240
            v \leq -solve(w,z)
241
            lbd<-lbd+<u>crossprod</u>(v)
242
            for (imPar in 1:omPar) {
243
                  omi < -r_{**}omStruc[[imPar]]_{**}t(r)
244
                  psi[[imPar]]<-psi[[imPar]]+crossprod(v,omi%*%v)</pre>
245
246
247 gsg<-auxStruc$gsg
248 gxi<-auxStruc$gxi
249 hsgsg<-auxStruc$hsgsg
250 hsgxi<-auxStruc$hsgxi
251
      hxixi<u><-</u>auxStruc<u>$</u>hxixi
252 gsg<-gsg-sum(a*lbd)
253 hsgsg < -hsgsg - \underline{sum} (lbd * (a * * blbd * * blbd * * a))
254 for (imPar in 1:omPar) {
255
            \texttt{gxi[imPar]} \underline{\leftarrow} \texttt{gxi[imPar]} - \underline{\texttt{sum}} (\texttt{a} \underline{\star} \texttt{psi[[imPar]]})
256
            \label{eq:hsgxi} \begin{split} \text{hsgxi[imPar]} & \underline{<-} \text{hsgxi[imPar]} - \underline{\text{sum}} \left( \text{lbd}_{\underline{\star}} \left( a_{\underline{\star}} \underbrace{* * \$} \text{psi[[imPar]]} \underline{\star} a \right) \right) \end{split}
257
           for (jmPar in 1:omPar)
```

```
258
              hxixi[imPar,jmPar]<-hxixi[imPar,jmPar]-sum(psi[[imPar]]*(a**psi[[jmPar]]
259
260
     return(list(llik=llik,ggm=ggm,gsg=gsg,gxi=gxi,hgmgm=hgmgm,hsgsg=hsgsg,hsgxi=hsgxi,
          hxixi=hxixi))
261
262
263 omMake<-function(omStruc,r,xi) {
264
       omPar<-length (omStruc)
265
        omDim<-nrow(r)
        om<-matrix(0,omDim,omDim)</pre>
266
       for (imPar in 1:omPar) om<-om+xi[imPar]*(r***omStruc[[imPar]]***t(r))</pre>
267
268
        return (om)
269 }
270
271 omStrucRI<-function(n) {
272 omStruc<-list(matrix(0,n,n))
273 omStruc[[1]][n,n]<-1
274 <u>return</u> (omStruc)
275 }
276
277 omStrucDG<-function(n) {
278 omStruc<-repList(matrix(0,n,n),n)
279 <u>for</u> (i in 1:n)
280
     omStruc[[i]][i,i]<-1
281 <u>return</u> (omStruc)
282 }
283
284 makePredY<-function(xx,igrp,data,outStruc) {
285 z<u><-data</u>[[igrp]]<u>$</u>z
286 cvar \leq ginv((outStruc[[2]] \frac{s}{2}hgmgm)/2)
287 gm<-outStruc[[1]]$gm
288 xxml < -drop (xx * * z * * gm)
289
     vxml<-sqrt (diag(tcrossprod(xx***z,xx***z***cvar)))</pre>
290 return(list(xxml,vxml))
291 }
292
293 repList < -function(x,n) {
294 z<u><-list</u>()
295 <u>for</u> (i in 1:n)
     z \leq -c(z, \underline{list}(x))
297 <u>return</u>(z)
298 }
```

A.2. Data Creation.

```
1  library(gdata)
2
3  matl <= read.xls("./REPEATED ANALYSIS DATA BASE .xls", sheet=1)
4  matl <= matl[3:35,2:8]
5  matl <= matl[-(3*(1:11)-2),]
6  rownames(matl) <= as.character(1:22)</pre>
```

```
7 mat1 \leq -cbind (as.vector(\underline{t}(matrix(1:11,11,2))), as.vector(\underline{matrix}(c(0,1),11,2)), mat1)
8 <u>names</u>(mat1) <-c("sample", "ischemia", "0", "5", "7", "10", "11", "15", "20")
9 mat1<-apply(as.matrix(mat1),2,as.numeric)</pre>
10
11 mat2<-read.xls("./REPEATED ANALYSIS DATA BASE .xls", sheet=2)
12 mat2<-mat2[3:35,2:8]
13 \max_{2 \le -\max_{1}} [-(3 \times (1:11) - 2),]
14 rownames (mat2) <-as.character(1:22)</pre>
15 mat2<-cbind (as.vector(t (matrix(1:11,11,2))), as.vector(matrix(c(0,1),11,2)), mat2)
16 names(mat2) <-c ("sample", "ischemia", "0", "5", "7", "10", "11", "15", "20")
17 mat2<-apply(as.matrix(mat2),2,as.numeric)</pre>
18
19 mat3<-read.xls("./REPEATED ANALYSIS DATA BASE .xls", sheet=3)
20 mat3<-mat3[3:35,2:8]
21 \max_{3 \le -\max_{1} 3 = -(3 + (1:11) - 2), 1}
22 rownames (mat3) <-as.character(1:22)</pre>
23 mat3 \leq cbind (as.vector(t(matrix(1:11,11,2))), as.vector(t(matrix(0:11,11,2))), mat3)
24 <u>names</u>(mat3)<-c("sample","ischemia","0","5","7","10","11","15","20")
25 mat3<-apply(as.matrix(mat3),2,as.numeric)
26
27 mat4<-read.xls("._REPEATED ANALYSIS DATA BASE .xls", sheet=4)
28 mat4<-mat4[3:35,2:8]
29 \max_{4 \le -\max_{1} 4 = -(3 + (1:11) - 2), 1}
30 rownames (mat 4) <-as.character(1:22)</pre>
31 mat4 \leq -cbind (as.vector(t(matrix(1:11,11,2))), as.vector(t(matrix(0:11,11,2))), mat4)
32 <u>names</u>(mat4) <-c("sample", "ischemia", "0", "5", "7", "10", "11", "15", "20")
33 mat4<-apply (as.matrix(mat4),2,as.numeric)
34
35 'f' <-
36 <u>structure</u>(c(-10, -5, -3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 10, 1,
37 1, 1, 1, 1, 1, 1), .Dim = c(7L, 3L))
38
39 'f2' <-
40 <u>structure</u>(c(-10, -5, -3, 0, 0, 0, 100, 25, 9, 0, 0, 0, 0,
   0, 0, 0, 0, 1, 5, 10, 0, 0, 0, 1, 25, 100, 1, 1, 1, 1, 1,
42 1, 1), .Dim = c(7L, 5L))
43
44 yy1<-matrix(0,99,3)
45 yy1[1:50,1]<-seq(0,10,length=50)-10
46 yy1[50:99,2]<-seq(10,20,length=50)-10
47 yy1[,3]<u><-</u>1
49 yy2<-cbind (yy1[,1],yy1[,1]^2,yy1[,2],yy1[,2]^2,yy1[,3])
50
51 tm<-c(0,5,7,10,11,15,20)
52
53 \quad xx \leq -seq(0,10, length = 50) - 10
54 zz<-seq(10,20, length=50)-10
55 yy<-matrix(0,99,3)
56 yy[1:49,1] <-xx[1:49]
57 yy[51:99,2]<-zz[2:50]
58 yy[,3]<u><−</u>1
```

```
60 repList < -function(x,n) {
61 z<u><-list</u>()
62 <u>for</u> (i in 1:n)
        z \leq -c(z, \underline{list}(x))
64 <u>return</u>(z)
65 }
66
67 makeMLData<-function(mat) {
68 ngrp<-nrow(mat)
oneData<-list(x=0, y=0, z=0)
70 allData_repList(oneData,ngrp)
71 for (igrp in 1:ngrp) {
72
       allData[[igrp]]<mark>$</mark>x<u><-</u>f
73
        allData[[igrp]] $y<-mat</pre>[igrp, 3:9]
        allData[[igrp]]$z<-if (igrp%82 == 1) <pre>cbind(diag(3),matrix(0,3,3)) else cbind(
                matrix(0,3,3),diag(3))
75
        }
76 return (allData)
77 }
78
79 makeML2Data<-function(mat) {</pre>
80 ngrp<-nrow(mat)
81 oneData<-list(x=0, y=0, z=0)
82 allData_repList(oneData,ngrp)
83 for (igrp in 1:ngrp) {
84
        allData[[igrp]]<mark>$</mark>x<<u>-</u>f2
85
        allData[[igrp]]\Sz<-if (igrp\S%2 == 1) cbind(diag(5), matrix(0,5,5)) else cbind(
                matrix(0,5,5),diag(5))
87
88 return(allData)
89 }
90
91 makeMLIData<-function(mat) {</pre>
92 set.seed(12345)
93 x<-matrix(rnorm(49),7,7)
94 x[,1]<-1
95 x \leq -qr.Q(qr(x))[,rev(1:7)]
96 ngrp<-nrow(mat)
97 oneData<-list(x=0,y=0,z=0)
98 allData<-repList(oneData,ngrp)
99 for (igrp in 1:ngrp) {
100
        allData[[igrp]]<mark>$</mark>x<-x
101
         allData[[igrp]] $y<-mat [igrp, 3:9]
102
          \texttt{allData[[igrp]]} \\ \underbrace{\$z \leftarrow if}_{} (igrp \\ \underbrace{\$z}_{} = 1) \\ \underbrace{\texttt{cbind}}_{} (\underbrace{\texttt{diag}}_{}(7), \underbrace{\texttt{matrix}}_{}(0, 7, 7)) \\ \underbrace{\texttt{else}}_{} \\ \underbrace{\texttt{cbind}}_{} (
                matrix(0,7,7),diag(7))
103
104
     return (allData)
105
    }
106
107
108 makeMLRData<-function(mat) {
109 ngrp<-nrow(mat)</pre>
```

```
110 oneData<-list(x=0,y=0,z=0)
111 allData<-repList(oneData,ngrp)</pre>
113
                                   allData[[igrp]]<u>$</u>x<-f
114
                                     allData[[igrp]]$y<-mat[igrp,3:9]</pre>
115
                                     <u>if</u> (igrp<u>%%</u>2 == 1) {
116
                                                    z \leq -cbind(diag(3), matrix(0,3,3))
117
                                                     z[-3,]<u><-</u>0
118
119
                                  <u>else</u> {
                                            z \leq -cbind(matrix(0,3,3), diag(3))
120
121
                                               z[3,]<u><−</u>0
122
                                                }
123
                                    allData[[igrp]]<u>$</u>z<-z
125 return(allData)
126
                 }
127
128
129 data1<-makeMLData(mat1)
130 data2<-makeMLIData(mat2)
131 data3<-makeMLIData(mat3)
132 data4<-makeMLIData(mat4)
133 data5<-makeML2Data(mat2)
134 data6<-makeMLRData(mat2)
135 data7<a href="makeMLRData">data7<a href="mak
136 data8<-makeML2Data(mat1)
137 data9<-makeMLIData(mat1)
```

A.3. Data Runs.

```
1 outStruc1_multilevel(data1,omStrucRI(3),full=TRUE,itmax=1000)
 2 outPost1<-outStruc1[[3]]</pre>
 3 pdf("cvolF.pdf")
 4 yml<-outPost1[[22]]$yml; vml<-outPost1[[22]]$vml
 5 plot(tm, yml, type="l", ylim=c(0,.20), xlab="time", ylab="conduction velocity", col="RED
            ",lwd=3,main="FIML")
  6 \quad \underline{\text{for}} \quad \text{(i in 1:7)} \quad \underline{\text{lines}} \\ \text{(c(tm[i],tm[i]),c(yml[i]-2*vml[i],yml[i]+2*vml[i]),} \\ \underline{\text{col}} \\ = \text{"GREEN"} \\ \text{} 
           ,lwd=3)
 7 yml<-outPost1[[21]]$yml; vml<-outPost1[[21]]$vml</pre>
 8 lines(tm,yml,col="BLUE",lwd=3)
 9 <u>for</u> (i in 1:7) <u>lines</u>(c(tm[i],tm[i]),c(yml[i]-2*vml[i],yml[i]+2*vml[i]),col="GREEN"
     \underline{\text{for}} (i in 1:22) \underline{\text{if}} (i\left\(\frac{8\left}{2}\) == 0) \underline{\text{points}} (tm, mat1[i, 3:9], \underline{\text{col}}="RED", pch=20) \underline{\text{else}}
          points(tm, mat1[i, 3:9], col="BLUE", pch=20)
11 dev.off()
12
13 outStruc7<-multilevel(data7,omStrucRI(3),full=TRUE,itmax=1000)
14 outPost7<-outStruc7[[3]]
15 pdf("cvolRR.pdf")
16 yml \leq -outPost7[[22]] \leq yml; vml \leq -outPost7[[22]] \leq vml
```

```
17 plot(tm,yml,type="1",ylim=c(0,.20),xlab="time",ylab="conduction velocity",col="RED
         ",lwd=3,main="FIML Restricted")
   for (i in 1:7) lines(c(tm[i],tm[i]),c(yml[i]-2*vml[i],yml[i]+2*vml[i]),col="GREEN"
         ,lwd=3)
19 yml \leq -outPost7[[21]] \leq yml; vml \leq -outPost7[[21]] \leq vml
   lines(tm, yml, col="BLUE", lwd=3)
   for (i in 1:7) lines(c(tm[i],tm[i]),c(yml[i]-2*vml[i],yml[i]+2*vml[i]),col="GREEN"
         ,1wd=3)
   for (i in 1:22) if (i%%2 == 0) points(tm, mat1[i, 3:9], col="RED", pch=20) else
         points (tm, mat1[i, 3:9], col="BLUE", pch=20)
23 dev.off()
24
25 outStruc8 <-multilevel(data8,omStrucRI(5),full=TRUE,itmax=1000)
26 outPost8<-outStruc8[[3]]
27 pdf("cvolR2.pdf")
28 yml<-outPost8[[22]]$yml; vml<-outPost8[[22]]$vml
29 plot(tm,yml,type="1",ylim=c(0,.20),xlab="time",ylab="conduction velocity",col="RED
         ",lwd=3,main="FIML Quadratic")
30
   for (i in 1:7) lines(c(tm[i],tm[i]),c(yml[i]-2*vml[i],yml[i]+2*vml[i]),col="GREEN"
         ,lwd=3)
   yml<-outPost8[[21]]$yml; vml<-outPost8[[21]]$vml</pre>
   lines(tm,yml,col="BLUE",lwd=3)
33 <u>for</u> (i in 1:7) <u>lines</u>(c(tm[i],tm[i]),c(yml[i]-2*vml[i],yml[i]+2*vml[i]),<u>col</u>="GREEN"
    for (i in 1:22) if (i%32 == 0) points (tm, mat1[i, 3:9], col="RED", pch=20) else
         points (tm, mat1[i, 3:9], col="BLUE", pch=20)
35
   dev.off()
37 outStruc9<-multilevel(data9,omStrucRI(7),full=TRUE,itmax=1000)
38 outPost9<-outStruc9[[31]
39 pdf("cvolU.pdf")
40 yml<-outPost9[[22]]<br/>
$\square\text{yml}; vml<-outPost9[[22]]<br/>
$\square\text{yml}$
41
   plot (tm,yml,type="1",ylim=c(0,.20),xlab="time",ylab="conduction velocity",col="RED
         ", lwd=3, main="FIML No Curve")
42 for (i in 1:7) lines (c(tm[i],tm[i]),c(yml[i]-2\pmvml[i],yml[i]+2\pmvml[i]),col="GREEN"
         ,lwd=3)
44 <u>lines</u>(tm,yml,<u>col</u>="BLUE",lwd=3)
45 for (i in 1:7) lines (c(tm[i],tm[i]),c(yml[i]-2*vml[i],yml[i]+2*vml[i]),col="GREEN"
   \underline{\text{for}} (i in 1:22) \underline{\text{if}} (i\frac{\%}{2} == 0) \underline{\text{points}} (tm, mat1[i, 3:9], \underline{\text{col}}="RED", pch=20) \underline{\text{else}}
         points(tm, mat1[i, 3:9], col="BLUE", pch=20)
47
   dev.off()
48
49 outStruc2<-multilevel(data2,omStrucRI(7),full=TRUE,itmax=1000)
50 outPost2<-outStruc2[[3]]
51
   pdf("APaF.pdf")
   yml<-outPost2[[2]]$yml; vml<-outPost2[[2]]$vml</pre>
53 plot(tm,yml,type="l",ylim=c(0,1.20),xlab="time",ylab="AP Amplitude",col="RED",lwd
         =3, main="FIML No Curve")
,lwd=3)
55 yml \leq -outPost2[[1]] \leq yml; vml \leq -outPost2[[1]] \leq vml
```

```
56 <u>lines</u>(tm,yml,<u>col</u>="BLUE",lwd=3)
57 for (i in 1:7) lines (c(tm[i],tm[i]), c(yml[i]-2*vml[i], yml[i]+2*vml[i]), col="GREEN"
    for (i in 1:22) if (i % 2 == 0) points (tm, mat2[i, 3:9], col = "RED", pch=20) else
58
         points(tm, mat2[i, 3:9], col="BLUE", pch=20)
59 dev.off()
60
61 outStruc3<-multilevel(data3,omStrucRI(7),full=TRUE,itmax=1000)
62 outPost3<-outStruc3[[3]]
63 pdf("APDF.pdf")
65 <u>plot</u>(tm,yml,type="1",ylim=c(0,110),xlab="time",ylab="APD",col="RED",lwd=3,main="
         FIML No Curve")
66 for (i in 1:7) lines (c(tm[i],tm[i]),c(yml[i]-2*vml[i],yml[i]+2*vml[i]),col="GREEN"
         ,lwd=3)
67 yml<-outPost3[[21]]$yml; vml<-outPost3[[21]]$vml
68 lines (tm, yml, col="BLUE", lwd=3)
 \frac{\text{for } (\text{i in 1:7}) \ \underline{\text{lines}} (\text{c(tm[i],tm[i]),c(yml[i]-2*vml[i],yml[i]+2*vml[i]),} \underline{\text{col}} = \text{"GREEN"} 
         ,lwd=3)
    for (i in 1:22) if (i % 2 == 0) points (tm, mat3[i, 3:9], col="RED", pch=20) else
         points (tm, mat3[i, 3:9], col="BLUE", pch=20)
    dev.off()
72
73 outStruc4<-multilevel(data4,omStrucRI(7),full=TRUE,itmax=1000)
74 outPost4<-outStruc4[[3]]
75 pdf("CatF.pdf")
76 yml<-outPost4[[2]]$yml; vml<-outPost4[[2]]$vml
77 plot(tm,yml,type="l",ylim=c(0,200),xlab="time",ylab="Ca transient",col="RED",lwd
         =3, main="FIML No Curve")
78 for (i in 1:7) lines (c(tm[i],tm[i]),c(yml[i]-2\pmvml[i],yml[i]+2\pmvml[i]),col="GREEN"
         ,lwd=3)
79 yml<-outPost4[[1]] $yml; vml<-outPost4[[1]] $vml
    lines (tm, yml, col="BLUE", lwd=3)
81 for (i in 1:7) lines (c(tm[i],tm[i]),c(yml[i]-2\pmvml[i],yml[i]+2\pmvml[i]),col="GREEN"
         ,lwd=3)
82 <u>for</u> (i in 1:22) <u>if</u> (i<u>%%</u>2 == 0) <u>points</u>(tm, mat4[i, 3:9], <u>col</u>="RED", pch=20) <u>else</u>
         points(tm, mat4[i, 3:9], col="BLUE", pch=20)
83 dev.off()
```

DEPARTMENT OF STATISTICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CA 90095-1554

E-mail address, Jan de Leeuw: deleeuw@stat.ucla.edu

URL, Jan de Leeuw: http://gifi.stat.ucla.edu