MODELING OF THE SUBSIDENCE RISK IN METROPOLITAN FRANCE

Final presentation
Alice TOURRET
Master Statistics & Econometrics

INTRODUCTION

Natural disasters and the insurance sector

- Occurrence and severity
- Increase uncertainty in the insurance sector

Subsidence

- Second most important natural disaster in term of loss
- Consequence of drought
- Unique characteristics

Standard reserving methods

Model the subsidence risk in France and provide an estimate of the ultimate loss for the years of occurrence of our interest

OUTLINE

- I. What is subsidence?
- II. Modeling the subsidence risk
- III. Results

1.

WHAT IS SUBSIDENCE?

SUBSIDENCE: THE DEFINITION

Subsidence is defined as the **displacement of the ground surface** due to withdrawal-shrinkage of the soil [4].

Consequences on constructions:

- Cracks in walls or ground
- Weakening of the foundations
- Collapse

Causes:

- Clay composition of the soil
- Nature of the building
- dry and hot weather

DROUGHTS: THE CONTEXT (2016-2020)

The period 2015-2020: severe for drought

Depending on the occurrence:

- Different areas affected
- Different months of occurrence
- Different severity, especially for 2018

Year of	2016	2017	2018	2019
occurrence	2010	2017	2010	2017
Number of municipalities	986	2 122	4 060	2 905

Distribution of the municipalities declared in a natural disaster state - Drought

SUBSIDENCE: A PARTICULAR NATURAL DISASTER

On average, for subsidence:

- **Duration of the event:** 50 days vs 5 days for other disasters
- **Report period :** 18 months VS 50 days for other disasters

Year of occurence

ALLIANZ'S CLAIM DATA, TRIANGLE & CHAIN LADDER

What is Reserving? Estimate the ultimate cost of the different P&C risks.

Year of development

																rec	ס וג	i de	veu	opn	еп
decl		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	2001	140	65	9	6	7	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0
	2002	114	688	766	159	26	3	28	2	3	0	1	1	0	0	0	0	0	0	0	
	2003	1052	2857	3618	1986	216	74	11	5	8	1	2	0	0	0	1	0	0	1		
	2004	404	48	10	3	43	9	6	0	0	0	0	0	0	0	0	0	0			
	2005	226	68	10	1403	43	17	9	3	1	1	1	1	0	0	0	3				
	2006	85	9	332	26	3	3	5	1	0	0	0	0	0	0	0					
	2007	31	399	85	20	14	1	1	0	1	0	0	1	0	0						
	2008	218	136	55	12	4	0	0	0	1	0	0	0	0							
	2009	89	21	743	24	2	3	0	0	0	2	0	0								
	2010	37	115	43	3	5	0	0	0	0	0	2									
	2011	99	3315	546	50	11	5	3	2	2	0										
	2012	345	726	114	12	8	3	3	2	0											
	2013	78	37	7	2	0	2	0	0												
	2014	21	39	23	5	0	0	0													
	2015	58	270	166	23	4	0														
	2016	115	2063	350	30	7															
	2017	260	2981	496	55																
	2018	480	5232	371																	
	2019	664	2796																		
	2020	535																			

 Year of development 4: triangle quite stable

Unsual shocks!

- CatNat process
- Chain Ladder asumptions and results

Triangle - Uncumulated number of subsidence claims

2.

MODELING THE SUBSIDENCE RISK

CONTEXT OF THE MODEL

GOAL

Predicting the number of claims at year of development 4 with external climatic data already available at the end of the first year of development

Characteristics:

- Training and optimization of the model on occurrences 2016-2017
- Modeling at the department level
- GLM and XGBoost

DATA SOURCES & DATA AGGREGATION

5 different data sources

Housing insurance contract portfolio

Allianz's claim data

Daily climatic

data from the

ECA&D

Soil composition data

from the French Bureau of Geological and Mining Research

Monthly climatic
index (SWI) from
Météo France

- Aggregation at the department level
- 88 descriptive variables

FITTING THE MODEL

"Best" model:

test-minimal RMSE

BUT:

- Relatively small sample
- Relatively few information
- unbalanced dataset

Easy to overfit!

Resampling and hyper parameter optimization (grid-search)

3.
RESULTS

XGBOOST: VARIABLE SELECTION AND IMPORTANCE

Mean gain of selected features of the tuned XGboost model

11 variables are selected:

- Claim variables
- Monthly max and average temperature
- Soil data

No precipitation data!

XGBOOST: OVERALL PREDICTIONS BY OCCURENCE

Recorded and predicted number of claims by year of occurence

- Scale of severity
- Early estimate for 2020
- 2016,2017: model a bit optimistic

XGBOOST: NUMBER OF CLAIMS BY DEPARTMENT AND OCCURENCE

Code of the department

- 2019
- 2018: South of France predicted as highly affected by drought

- Atypical year
- Temperature patterns
- Model & precipitations

ULTIMATE LOSS

Ultimate loss computation:

- Ultimate number of claims: tail coefficient
- Average cost by claim

2018: 285 million predicted ultimate loss

An optimistic model/Not trained for atypical years

Ultimate loss estimate by year of occurence

MODEL- CONCLUSION

The subsidence model can give:

- Reasonable first estimates of the overall number of claims by occurrence
- Fast results: by the end of the first year of development

But:

- Difficulties predicting atypical years
- A bit optimistic

MODEL - EXTENSION

Better results for the model updated with claim data at year of development 2

- Expand the training database
- Try implementing Canat process data
 - Catnat process criteria change rapidly