Topološke grupe

Avtor: Benjamin Benčina

Mentor: Marko Kandić

Fakulteta za matematiko in fiziko

2. september 2019

VSEBINA

- ➤ definicija topološke grupe
- > primeri
- > s čim sem se ukvarjal
- > metrizabilnost in višji separacijski aksiomi

Definicija topološke grupe

DEFINICIJA: Topološka grupa je grupa (G, *) s topologijo τ , glede na katero sta strukturni preslikavi zvezni.

Strukturni preslikavi:

- ightharpoonup Množenje: $\mu: G \times G \to G$, $(x,y) \mapsto xy$.
- ightharpoonup Invertiranje: $\iota: G \to G$, $x \mapsto x^{-1}$.

PRIMERI

PRIMER: Grupa \mathbb{R}^n je topološka grupa za vsak $n \in \mathbb{N}$.

<u>PRIMER:</u> Naj bo G poljubna neskončna grupa in naj bo τ topologija končnih komplementov na G. Topološki prostor (G, τ) ni topološka grupa za nobeno operacijo.

TEME

- ➤ osnovne lastnost
- > kvocientni prostori topoloških grup
- > trije izreki o topoloških izomorfizmih
- ➤ metrizabilnost
- > višji separacijski aksiomi

OKOLICE

<u>Trditev:</u> Za topološko grupo G in bazo \mathcal{U} odprtih okolic enote e veljajo naslednje trditve:

- (1) za vsako $U \in \mathcal{U}$ obstaja taka $V \in \mathcal{U}$, da je $V^2 \subset U$,
- (2) za vsako $U \in \mathcal{U}$ obstaja taka $V \in \mathcal{U}$, da je $V^{-1} \subset U$,
- (3) za vsako $U \in \mathcal{U}$ in vsak $x \in U$ obstaja taka $V \in \mathcal{U}$, da je $xV \subset U$,
- (4) za vsako $U \in \mathcal{U}$ in vsak $x \in U$ obstaja taka $V \in \mathcal{U}$, da je $xVx^1 \subset U$.

OKOLICE

IZREK: Naj bo G grupa in $\mathcal U$ družina podmnožic grupe G, za katero veljajo lastnosti (1)-(4). Naj bodo poljubni končni preseki množic iz $\mathcal U$ neprazni. Tedaj je družina $\{xU;\ x\in G,\ U\in \mathcal U\}$ odprta podbaza za neko topologijo na G. S to topologijo je G topološka grupa. Družina $\{Ux;\ x\in G,\ U\in \mathcal U\}$ je podbaza za isto topologijo. Če velja še, da za vsaki množici $U,V\in \mathcal U$ obstaja taka množica $W\in \mathcal U$, da je $W\subset U\cap V$, potem sta družini $\{xU;\ x\in G,\ U\in \mathcal U\}$ in $\{Ux;\ x\in G,\ U\in \mathcal U\}$ tudi bazi za to topologijo.

Kvocientni prostori topoloških grup

- > kvocientna topologija
- > lastnosti kvocientnega prostora topoloških grup
- kvocientna topološka grupa

Izreki o topoloških izomorfizmih

- > topološki izomorfizem
- > trije izreki o izomorfizmih
- > dodatne topološke predpostavke na preslikave in podgrupe

IZREK O PSEVDOMETRIKI

<u>IZREK:</u> Naj bo $\{U_k\}_{k=1}^{\infty}$ družina simetričnih okolic enote e topološke grupe G z lastnostjo $U_{k+1}^2 \subset U_k$ za vsak $k \in \mathbb{N}$. Potem obstaja taka levoinvariantna psevdometrika σ , da velja:

- $ightharpoonup \sigma$ je enakomerno zvezna na levi uniformni strukturi na $G \times G$,
- $ightharpoonup \sigma(x,y) = 0 \iff y^{-1}x \in \bigcap_{k=1}^{\infty} U_k$,
- $> \sigma(x,y) \le 2^{-k+2}$, če je $y^{-1}x \in U_k$,
- > $2^{-k} \le \sigma(x, y)$, če $y^{-1}x \notin U_k$.

Če poleg tega velja še, da $xU_kx^{-1}=U_k$ za vse $x\in G$ in $k\in\mathbb{N}$, je σ tudi desnoinvariantna in velja:

$$> \sigma(x^{-1}, y^{-1}) = \sigma(x, y)$$
 za vsaka $x, y \in G$.

Metrizabilnost

IZREK: Naj bo G topološka grupa, ki zadošča separacijskemu aksiomu T_0 . Tedaj je G metrizabilen topološki prostor natanko tedaj, ko obstaja števna baza odprtih okolic enote.

Povsem regularnost

DEFINICIJA: Topološki prostor X zadošča separacijskemu aksiomu $T_{3\frac{1}{2}}$, če za vsako zaprto množico $F\subset X$ in točko $a\in X\setminus F$ obstaja zvezna funkcija $\psi:X\to [0,1]$, da je $\psi(a)=1$ in $\psi|_F=0$.

Topološki prostor je povsem regularen, če zadošča separacijskima aksiomoma T_1 in $T_{3\frac{1}{2}}$.

IZREK: Vsaka topološka grupa G, ki zadošča separacijskemu aksiomu T_0 , je povsem regularen topološki prostor.

PARAKOMPAKTNOST

DEFINICIJA:

Naj bo X topološki prostor. Družina podmnožic $\mathcal V$ je pofinitev družine podmnožic $\mathcal U$, če za vsako množico $V \in \mathcal V$ obstaja takšna množica $U \in \mathcal U$, da je $V \subset U$.

Topološki prostor X je parakompakten, če ima vsako njegovo odprto pokritje kakšno pofinitev, ki je lokalno končno odprto pokritje prostora X.

<u>IZREK:</u> Vsak parakompakten Hausdorffov topološki prostor je normalen.

Normalnost

IZREK: Vsaka lokalno kompaktna topološka grupa G, ki zadošča separacijskemu aksiomu T_0 , je parakompakten topološki prostor.

Posledica: Vsaka lokalno kompaktna topološka grupa, ki zadošča separacijskemu aksiomu T_0 , je normalna.

Hvala za vašo pozornost!