# PROBABILIDAD II

#### Grado en Matemáticas

# Tema 4 Momentos y desigualdades

#### Javier Cárcamo

# Departamento de Matemáticas Universidad Autónoma de Madrid

javier.carcamo@uam.es

Javier Cárcamo

Probabilidad II. Tema 4: Momentos y desigualdades

-

# Tema 4: Momentos y desigualdades

- Definiciones
- 2. Desigualdades de Markov y Chebyshev
- 3. Desigualdad de Jensen
- 4. Desigualdades de Hölder y Minkowski
- 5. Covarianza y correlación

Sea  $X: \Omega \longrightarrow \mathbb{R}$  una v.a.,  $\alpha > 0$  y  $a \in \mathbb{R}$ . Se llama:

- Momento absoluto de orden  $\alpha$ :  $E|X|^{\alpha}$ .
- Momento absoluto de orden  $\alpha$  alrededor de a:  $E|X a|^{\alpha}$ .
- Momento de orden  $n: \mathbb{E}X^n$ .
- Momento de orden n alrededor de a:  $E(X a)^n$ .

## Espacios $\mathcal{L}_{\alpha}$

$$\mathcal{L}_{\alpha} = \{X : \Omega \longrightarrow \mathbb{R} : E|X|^{\alpha} < \infty\}, \quad \alpha > 0.$$

Si  $X \in \mathcal{L}_1$ , la **varianza** de X es  $Var(X) = E(X - EX)^2$ .

**Lema:**  $a, b \in \mathbb{R}$ . Para todo  $\alpha > 0$ ,  $|a + b|^{\alpha} \le 2^{\alpha} (|a|^{\alpha} + |b|^{\alpha})$ .

**Proposición:** X v.a.,  $\alpha > 0$  y  $a \in \mathbb{R}$ .

$$\mathrm{E}|X|^{\alpha}<\infty$$
 si y solo si  $\mathrm{E}|X-a|^{\alpha}<\infty$ .

**Corolario:** Sea  $X \in \mathcal{L}_1$ .  $Var(X) < \infty$  si y solo si  $X \in \mathcal{L}_2$ . En tal caso,  $Var(X) = EX^2 - E^2X$ .

**Teorema:** Si  $0 < \alpha < \beta$ , entonces  $\mathcal{L}_{\beta} \subset \mathcal{L}_{\alpha}$ .

Javier Cárcamo

Probabilidad II. Tema 4: Momentos y desigualdades

2

# Desigualdades de Markov y Chebyshev

#### Teorema: Desigualdad de Markov

Sea X v.a. Para  $\epsilon > 0$ ,  $\alpha > 0$ , se tiene

$$P(|X| \ge \epsilon) \le \frac{E|X|^{\alpha}}{\epsilon^{\alpha}}.$$

## Corolario: Desigualdad de Chebyshev

Sea  $X \in \mathcal{L}_1$ . Para todo  $\epsilon > 0$ , se tiene

$$P(|X - EX| \ge \epsilon) \le \frac{Var(X)}{\epsilon^2}.$$

#### **Funciones convexas**

**Definición:** Sea I intervalo real. Una función  $f:I\longrightarrow \mathbb{R}$  se dice **convexa** si para todo  $u,v\in I$ , para todo  $\lambda\in [0,1]$ , se tiene que

$$f(\lambda u + (1 - \lambda)v) \le \lambda f(u) + (1 - \lambda)f(v).$$



**Ejemplos:**  $f(x) = e^x$ ;  $f(x) = |x|^{\alpha}$ ,  $\alpha \ge 1$ ; f(x) = 1/x (x > 0);  $f(x) = -\log(x)$  (x > 0); etc.

Javier Cárcamo

Probabilidad II. Tema 4: Momentos y desigualdades

5

# Desigualdad de Jensen

#### Propiedades de las funciones convexas

1) f convexa si y sólo si para todos  $u_1,\ldots,u_n\in I$ , para todos  $\lambda_1,\ldots,\lambda_n\geq {\rm con}\ \lambda_1+\cdots+\lambda_n=1$ , se tiene que

$$f(\lambda_1 u_1 + \cdots + \lambda_n u_n) \leq \lambda_1 f(u_1) + \cdots + \lambda_n f(u_n).$$

- 2 Sea  $f: I \longrightarrow \mathbb{R}$  derivable. f convexa si y sólo si f' es no decreciente.
- 3 Sea  $f: I \longrightarrow \mathbb{R}$  dos veces derivable. f convexa si y sólo si  $f'' \ge 0$ .
- 4 Si f convexa, entonces f es continua salvo quizá en  $\partial I$  (extremos del intervalo I).
- **6** Si f es convexa, para todo  $(u, f(u)) \in G_f$  tal que  $u \in I^\circ$  existe una recta que pasa por (u, f(u)) (recta soporte) tal que su gráfica está totalmente por debajo de f. Es decir,

$$\forall u \in I^{\circ}, \exists a \in \mathbb{R}$$
 :  $a(x-u) + f(u) \leq f(x), \forall x \in I.$ 

#### Teorema: Desigualdad de Jensen

Sea I intervalo real,  $X : \Omega \longrightarrow I$  v.a. y  $f : I \longrightarrow \mathbb{R}$  convexa. Si X,  $f(X) \in \mathcal{L}_1$ , entonces

$$f(EX) \leq Ef(X)$$
.

# **Ejemplos:**

- $f(x) = e^x$ .
- **2**  $f(x) = |x|^{\alpha} \ (\alpha \ge 1).$
- 3  $f(x) = 1/x (x \ge 0)$ .

**Nota:** Una función f es **cóncava** si -f es convexa. La desigualdad de Jensen para funciones cóncavas es  $f(EX) \ge Ef(X)$ .

## **Ejemplos:**

- $f(x) = -e^x$ .
- 2  $f(x) = |x|^{\alpha} (0 < \alpha \le 1).$
- 3  $f(x) = \log(x) (x > 0)$ .

Javier Cárcamo

Probabilidad II. Tema 4: Momentos y desigualdades

7

# Desigualdades de Hölder y Minkowski

**Lema:** Para todo  $a,b\in\mathbb{R}$  y p,q>1 con 1/p+1/q=1 (p y q conjugados), se tiene

$$|a\cdot b|\leq \frac{|a|^p}{p}+\frac{|b|^q}{q}.$$

# Teorema: Desigualdad de Hölder

p,q>1 con 1/p+1/q=1. Si  $X\in\mathcal{L}_p$  e  $Y\in\mathcal{L}_q$ , entonces

$$E|XY| < (E|X|^p)^{1/p} (E|Y|^q)^{1/q}.$$

En particular  $XY \in \mathcal{L}_1$ .

## Corolario: Desigualdad de Cauchy-Schwarz

Si  $X \in \mathcal{L}_2$  e  $Y \in \mathcal{L}_2$ , entonces

$$E|XY| \le (E|X|^2)^{1/2} (E|Y|^2)^{1/2}.$$

# Teorema: Desigualdad de Minkowski

Sea  $p \geq 1$ . Si  $X, Y \in \mathcal{L}_p$ , entonces  $X + Y \in \mathcal{L}_p$  y

$$(E|X + Y|^p)^{1/p} \le (E|X|^p)^{1/p} + (E|Y|^p)^{1/p}$$
.

**Nota (Espacios**  $L_p$ ): Para  $p \ge 1$ ,

 $\mathcal{L}_p = \{X: \Omega \longrightarrow \mathbb{R}: \mathrm{E}|X|^p < \infty\}$  es un espacio vectorial.  $\|X\|_p = (\mathrm{E}|X|^p)^{1/p} \,.$ 

- 1  $||X + Y||_p \le ||X||_p + ||Y||_p$  (Minkowski).
- **2**  $\|\lambda X\|_{p} = |\lambda| \|X\|_{p}$ .

Es decir,  $\| \bullet \|_p$  es una **seminorma**. No es norma ya que  $\| X \|_p = 0$  si y sólo si X = 0 c.s.

Si definimos la relación de equivalencia  $X \sim Y$  si y sólo si X = Y c.s., entonces  $\mathcal{L}_p/\sim = \mathcal{L}_p$  es un espacio normado.

Javier Cárcamo

Probabilidad II. Tema 4: Momentos y desigualdades

9

# Covarianza

**Definición:** Dada una variable  $X \in \mathcal{L}_2$ , se llama **desviación típica** de X a

$$\sigma_X = \sqrt{\operatorname{Var}(X)}.$$

**Definición:** Si  $X,Y\in\mathcal{L}_2$ , se llama **covarianza** de X,Y a

$$Cov(X, Y) = E[(X - EX)(Y - EY)].$$

Nota:

**1** Si  $X, Y \in \mathcal{L}_2$ , entonces existe Cov(X, Y) y

$$|\mathsf{Cov}(X,Y)| \leq \sigma_X \sigma_Y$$
.

2 Si  $X, Y \in \mathcal{L}_2$ , entonces

$$Cov(X, Y) = E(XY) - EXEY.$$

- 3 Cov(X, X) = Var(X) y Cov(Y, X) = Cov(X, Y).

**Definición:** Sean  $X, Y \in \mathcal{L}_2$ . Se dice que X e Y están **incorreladas** (o **incorrelacionadas**) si Cov(X, Y) = 0, es decir, si E(XY) = EXEY.

**Observación:** X, Y independientes  $\Rightarrow X$ , Y incorreladas. Sin embargo, X, Y incorreladas  $\Rightarrow X$ , Y independientes.

- 2 Varianza de una suma de v.a.: Si  $X_1, \ldots, X_n \in \mathcal{L}_2$ ,

$$\operatorname{Var}(X_1 + \dots + X_n) = \sum_{i=1}^n \operatorname{Var}(X_i) + 2 \sum_{1 \le i < j \le n} \operatorname{Cov}(X_i, X_j).$$

3 Si  $X_1, \ldots, X_n$  incorreladas dos a dos (en particular si son independientes), entonces

$$Var(X_1 + \cdots + X_n) = \sum_{i=1}^n Var(X_i).$$

Javier Cárcamo

Probabilidad II. Tema 4: Momentos y desigualdades

11

# Correlación

**Definición:** Dadas X, Y v.a. no degeneradas, el **coeficiente de correlación (lineal de Pearson)** se define mediante

$$\rho_{X,Y} = \frac{\mathsf{Cov}(\mathsf{X},\mathsf{Y})}{\sigma_X \sigma_Y}$$
 (es adimensional).

Nota:  $\rho_{X,Y} \in [-1,1]$ .

Observación: Análisis de los extremos

- **1**  $\rho_{X,Y} = 0 \iff X, Y \text{ incorreladas.}$
- 2  $\rho_{X,Y} = 1 \iff Y = aX + b \text{ c.s. con } a > 0, b \in \mathbb{R}.$
- 3  $\rho_{X,Y} = -1 \iff Y = aX + b \text{ c.s. con } a < 0, b \in \mathbb{R}.$