The Many Dimensions of SDR Hardware

Plotting a Course for the Hardware Behind the Software

Sept 2017

John Orlando Epiq Solutions

Epiq Solutions in a Nutshell

How we help our customers

- Develop and deliver
 SDR transceiver building blocks
 that radically reduce our customer's
 SWaP and time to market
- Develop and deliver
 <u>turnkey wireless sensing solutions</u>
 to provide detailed insight into
 wireless networks and devices
 operating in areas of interest

Matchstiq

Trying to understand SDR specs is like...

Many-Dimensional Space of SDR

Many-Dimensional Space of SDR

Instantaneous Bandwidth Software APIs

Outline for Today

Five Key SDR Hardware Parameters:

- 1) Form Factor 4) Interface
- 2) RF Tuning Range 5) CPU Class
- 3) Data Converters
- What are the options available today?
- What you should be thinking about when developing a system?
- What is coming down the pike tomorrow?

Form Factor

Form Factor

Quadratiq

USRP X310

Maveriq

CUSTOM

Matchstiq \$10

LimeSDR

Sidekiq Family

GRCon 2017

Form Factor – Industry Trends

M.2 2280

RF Tuning Range

- RFIC based
 - Analog Devices AD9361: 70 MHz to 6 GHz
 - Analog Devices AD9371: 300 MHz to 6 GHz
 - Lime Micro LMS7002: 100 KHz to 3.8 GHz
- Discrete designs
 - Superheterodyne covering 2 MHz to 6 GHz
- Direct RF Sampling
 - DC to 2 GHz (with caveats)
- Block up/down converter + RFIC
 - Best of both worlds
 - 1 MHz to 6 GHz

Sidekiq X2

RF Tuning Range – Industry Trends

- RFIC based
 - DC to 6-12 GHz
- What about higher?
 - 28+ GHz for 5G
 - Hybrid block up/down converter + RFIC
- What about higher-er?
 - 60 GHz to 85 GHz
 - Hybrid block up/down converter + RFIC

Data Converters

- Current RFICs have integrated data converters
 - AD9361: Up to 61.44 Msps, 12-bit A/D, 12-bit D/A, parallel interface
 - LMS7002: Up to 61.44 Msps, 12-bit A/D, 12-bit D/A, parallel interface
 - AD9371: Up to 122.88 Msps, 16-bit A/D, 14-bit D/A, serial interface (JESD204b)
- Discrete A/D and D/A converters
 - 16-bit for IF sampling (up to 100s of Msps)
 - 12-bit for direct RF sampling (up to 4 Gsps)
 - JESD204b most common interface these days

ENOB!

Data Converters – Industry Trends

• RFICs

- 100s of Msps
- Topping out at 16-bits
- Serial interface (JESD204b)
- Fully integrated into FPGA
 - Xilinx RFSoC
 - FPGA fabric + multi-Gsps A/D and
 D/A converters in single chip
 - 2/4/8/16 channels
 - No JESD204b to worry about
 - Same challenges as any direct RF sampling solution

Interfaces

• PCle

- Fast (up to 16 Gbps per lane), low latency, scalable
- Optimized/efficient transport
- Typically an edge connector interface
- Focused on generic data transport

Ethernet

- Fast (10 Gbps), medium latency, scalable
- Bulky connectors + cables (SFP+)
- Focused on networking use-case

• USB 3.0/3.1

- Fast (5/10 Gbps), higher latency, difficult to scale
- Typically a cable interface
- Focused on consumer use-cases and peripherals(cameras, data storage, etc)

10 GbE

USB 3.0

Interfaces – Industry Trends

- PCIe all day long
 - Gen5 hits 32 Gbps per lane (2019)
- Thunderbolt 3
 - Cabled PCIe for the masses!
 - Baked into USB-C connector
 - Up to 40 Gbps (well, 32 Gbps for PCIe...4 lanes x 8 Gbps)
 - Daisy-chain multiple devices with single host
- Ethernet
 - 10 GbE over RJ45
 - Laptops need to catch up
 - 40G/100G

CPU Classes

- Key architectural questions for SDR usage
 - Core CPU processing capability (SIMD options?)
 - I/O options to move data in/out of the CPU
 - Memory architecture (cache, RAM, and non-volatile)
 - Lots of others, but these are the big ones

ARM

- Single/dual/quad/octo core solutions
- 1W 10W typical power consumption
- Ex: NXP (formerly Freescale) i.MX6 and i.MX7
- Ex: Xilinx Zynq and Zynq Ultrascale System on Chip
- Intel x86
 - Solutions from 1 to 24 cores
 - 4W to 70W+
 - Better support for GPU usage
 - Ex: Atom "Apollo Lake" (1-4 cores) family very power efficient with familiar x86 SIMD extensions

Dual-core ARM (Zynq)

Quad core ARM (i.MX6)

Quad core x86

12 core x86

CPU Classes – Industry Trends

- Companies continue to experiment with massive multi-core
 - Ex: Adapteva Epiphany CPU, Ceva DSP, others
 - Still no formidable traction
- Same old same old?
 - ARM and x86 will continue to lead the charge
 - 4-8 cores seems to be the sweet spot
 - AMD Ryzen Threadripper (8/12/16 core x86)
 - GPU additions continue to improve
 - Intel recently shuttered their really interesting low power integrated CPU module business (Joule, Galileo, Edison)

Summary

- SDR world offers more variables now than ever before
- Platform variables/options are numerous, making objective comparisons challenging
- This is just the tip of the iceberg, but it is a start...

Let's look at some concrete examples

Sidekiq M.2

- Form Factor: Standard M.2 3042 card
- 30mm x42mm x 4mm
- AD9361 RFIC + Xilinx Artix 7 FPGA (XC7A50T)
- RF Tuning Range: 70 MHz 6 GHz
- 2x2 MIMO capable transceiver
- <u>Data Converters:</u> Between 200 Ksps and 61.44 Msps
- Interface: Gen2 PCIe x1 interface to host
- External PPS and reference clock input options
- Typical power consumption: 2W (application dependent)
- Supported by libsidekiq API and gr-sidekiq

Sidekiq M.2 block diagram

Sidekiq Deployment Options

GRCon 2017

Sidekiq X2

- Form Factor: VITA 57.1 FMC card form factor
- 84mm x 69mm x 8.5mm
- Based on Analog Devices' AD9371 RFIC
- RF Tuning Range: 1 MHz to 6 GHz
- Multiple RF interfaces
 - Phase coherent Rx pair (common LO)
 - Third independently tunable Rx
 - Phase coherent Tx pair
- Data Converters: 16-bit A/D, 14-bit D/A
- Up to 100 MHz RF bandwidth per channe
- Integrated Rx pre-select filters
- 10 MHz + PPS input on front panel
- Power consumption: 4W 10W (application dependent)
- Supported by libsidekiq API and gr-sidekiq

Sidekiq X2 Block Diagram

Sidekiq X2 Deployment Options

- Sidekiq X2 Thunderbolt 3 Platform
 - Interface: FMC PCIe carrier card with Xilinx Kintex Ultrascale KCU060 FPGA
 - 726K LEs, 2760 DSP slices, 38 Mb BRAM
 - Thunderbolt3 Chassis for PCle carrier
 - PCIe Gen3 x4 interface to host laptop/NUC/desktop
 PC replaces 10 GbE
 - Low latency PCle
 - DMA directly to host system memory
 - 122.88 Msamples/sec * 4 bytes/sample * 3 Rx channels = ~1500 MB/sec (12 Gbits/sec)
- 3U VPX carrier card
 - Xilinx Zynq Ultrascale+ ZU9EG (quad-core ARM + FPGA)
 - 600K LEs, 2520 DSP slices, 32 Mb BRAM
 - 4 GB DDR4 RAM
 - Supports conduction and convection cooled options

Questions?

THANK YOU!

Maveriq

Epiq Solutions

www.epiqsolutions.com

Matchstiq Sx0

