طراحی پایگاه داده رابطه ای

تركيب شماها

- فرض کنید دو رابطه instructor و department را در یک رابطه inst_dept ترکیب کنیم.
 - ◄ در نتیجه احتمال تکرار اطلاعات وجود دارد.

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

تعیین شماهای کوچکتر

- فرض کنید رابطه inst_dept را داریم. چگونه میتوانیم تشخیص دهیم که میتوان این رابطه را به دو رابطه instructor و department شکست؟
- لا یک قانون: اگر این شما را داشته باشیم ,dept_name, building) (dept_name) آنگاه dept_name می تواند کلید کاندیدا باشد.
 - ط به عنوان وابستگی تابعی نشان داده می شود:

 building, budget
 - در inst_dept به دلیل این که dept_name کلید کاندیدا نیست، بنابر این ساختمان و بودجه یک گروه ممکن است تکرار شود.
 - بنابراین لازم است که رابطه inst_dept شکسته شود.

میشه شکستن رابطه مفید نیست. فرض کنید رابطه کارمند *employee(ID, name, street, city, salary)* را به دو رابطه بشکنیم:

employee1 (ID, name)
employee2 (name, street, city, salary)

﴿ نشان می دهیم که چگونه اطلاعات را از دست می دهیم، به این معنی که نمیتوانیم مجددا رابطه اصلی employee را به دست آوریم.

تجزیه با ازدست دادن اطلاعات A Lossy Decomposition

ID	name	street	city	salary
: 57766 57766 98776 98776	Kim Kim Kim Kim	Main North Main North	Perryridge Hampton Perryridge Hampton	75000 67000 75000 67000

مثالی از تجزیه بدون از دست دادن اطلاعات

Lossless join decomposition

$$R = (A, B, C)$$

 $R_1 = (A, B)$ $R_2 = (B, C)$

A	В	C	
α	1 2	A B	
r			

$$\begin{array}{|c|c|}
\hline
A & B \\
\hline
\alpha & 1 \\
\beta & 2 \\
\hline
\Pi_{A,B}(I)
\end{array}$$

В	С	
1 2	A B	
$\Pi_{B,C}(r)$		

$$\prod_{A} (r) \bowtie \prod_{B} (r)$$

Α	В	С
$egin{pmatrix} lpha \ eta \end{bmatrix}$	1 2	A B

شكل نرمال اول First Normal Form

- دامنه، اتمیک (atomic) است اگر عناصر آن واحدهای مجزایی
 باشند.
 - مثال دامنه های غیراتمیک:
 - مجموعه نامها، خصیصه های ترکیبی.
 - شماره های شناسایی مثل CS101 که میتواند به بخشهایش شکسته شود.
 - ل یک شمای رابطه ای R در شکل نرمال اول است اگر دامنه همه خصیصه های R اتمیک باشد.
- مقادیر غیراتمیک باعث پیچیدگی ذخیره سازی اطلاعات می شوند
 و باعث افزایش احتمال اطلاعات تکراری می شوند.
 - مثال: مجموعه حسابها برای هر مشتری ذخیره شود و مجموعه صاحبان حساب برای هر حساب ذخیره شود.
 - فرض میکنیم همه رابطه ها در شمل نرمال اول باشند.

هدف: تعیین یک تئوری برای مورد زیر:

- ◄ تصمیم گیری که آیا رابطه R به شکل «خوبی» طراحی شده؟
 - اگر رابطه R در شکل خوبی نباشد، آن را به مجموعه ای از $R_1, R_2, ..., R_n$ میشکنیم به طوری که:
 - هر رابطه در شکل خوبی باشد.
 - تجزیه به صورت lossless-join باشد.
 - این تئوری براساس مفاهیم زیر است:
 - وابستگی تابعی functional dependencies
 - وابستگی چند مقداری multivalued dependencies

وابستگی های تابعی

- ﴿ محدودیت بر مجموعه روابط منطقی
- لازم است که مقدار مجموعه معینی از خصیصه ها به طور یکتا مقدار مجموعه دیگری از خصیصه ها را تعیین کند.
 - ﴿ وابستگی تابعی، تعمیمی از تعریف کلید است.

وابستگی های تابعی (ادامه)

م فرض کنید ۲ شمای رابطه باشد ا

 $\alpha \subseteq R$ and $\beta \subseteq R$

وابستگی تابعی $\alpha \to \beta$ آرد r(R) برقرار است اگر و تنها اگر برای هر رابطه α اگر در دو رکورد t_1 مقدار خصیصه های α برابر باشد، مقدار خصیصه های β نیز در آنها برابر باشد.

 $t_1[\alpha] = t_2[\alpha] \Rightarrow t_1[\beta] = t_2[\beta]$

را آبا نمونه r زیر درنظر بگیرید: r(A,B)

در این رابطه B oup A oup برقرار نیست ولی B oup B oup برقرار است.

مثال

$\rightarrow A \rightarrow C$

Α	В	С	D
a_1	b_1	c_1	d_1
a_1	b_2	c_1	d_2
a_2	b_2	C2	d_2
a_2	b_3	c_2	d_3
a_3	b_3	c_2	d_4

وابستگی های تابعی (ادامه)

- K o R یک سوپرکلید برای شمای R است اگر و تنها اگر K o R
 - است اگر و تنها اگر: K
 ightharpoonup
 - $_{\circ}$ $K \rightarrow R$, $_{\circ}$
 - را نداشته باشیم. lpha
 ightharpoonup R را نداشته باشیم. $lpha
 ightharpoonup \alpha \subset K$
 - شمای زیر را درنظر بگیرید:

inst_dept (<u>ID,</u> name, salary<u>, dept_name,</u> building, budget). این و ابستگیهای تابعی بر قر ار ند:

dept_name→ building ₃ ID → building

اما رابطه زیر برقرار نیست:

dept_name → salary

وابستگی های تابعی (ادامه)

- ﴿ وابستگی تابعی، بدیهی است اگر در همه نمونه های رابطه برقرار باشد.
- Example:
 - *ID*, $name \rightarrow ID$
 - name → name
 - $eta\subseteq lpha$ در حالت کلی lpha oeta بدیهی است اگر lpha

- ه مكن است برقرار نباشد Room_number→ capacity
- building, room number→ capacity

building	room_number	capacity
Packard	101	500
Painter	514	10
Taylor	3128	70
Watson	100	30
Watson	120	50

بستار مجموعه وابستگیهای تابعی

- اگر مجموعه و ابستگیهای تابعی F و جود داشته باشند، و ابستگیهای نیز و جود دارند که توسط F بر قرار است. $A \to C$ مثال: از $A \to C$ و میتوانیم نتیجه بگیریم: $A \to C$
 - ◄ مجموعه همه و ابستگیهای تابعی که توسط F برقرار میشوند،
 بستار F گفته می شود.
 - F از Superset را با F نشان می دهیم که یک ابتار F انسان می دهیم که یک

شکل نرمال Boyce-Codd

یک شمای رابطه ای R با توجه به مجموعه و ابستگیهای تابعی F در BCNF است اگر برای همه و ابستگیها در F^+ به شکل lpha
ightarrow eta
ightarrow lpha
ightharpoonup R and $eta \subseteq R$ and $eta \subseteq \alpha
ightarrow eta$ به شکل $eta \rightarrow \beta$ که $eta = \alpha$ محداقل یکی از روابط زیر برقرار باشند:

- $(eta\subseteqlpha)$ بدیهی باشد lpha
 ightarroweta
 - یک سوپرکلید برای R باشد. α

مثال: شمای زیر در BCNF نیست:

instr_dept (ID, name, salary, dept_name, building, budget)

زيرا dept_name برقرار است ولي dept_name سوپر كليد نيست.

تجزیه شما به شکل BCNF

و و ابستگی غیر بدیهی $\alpha \to \beta$ را داریم که R و و ابستگی غیر بدیهی BCNF باعث نقض BCNF شده است.

R را به شکل زیر تجزیه میکنیم:

- (α U β)
- $(R (\beta \alpha))$

- در مثال
- instr_dept (ID, name, salary, dept_name, building, budget)
- $\alpha = dept_name$
- β = building, budget

inst_dept با روابط زیر جایگزین می شود.

- $(\alpha \cup \beta) = (dept_name, building, budget)$
- $(R (\beta \alpha)) = (ID, name, salary, dept_name)$

شکل نرمال سوم Third Normal Form

- $\alpha \to \beta$ در شکل نرمال سوم (3NF) است اگر برای همه β در β حداقل یکی از روابط زیر برقرار باشند:
 - $(eta \in lpha)$ بدیهی باشد lpha
 ightarrow eta
 - برای R سوپرکاید باشد. α •
 - هر خصیصه A در β α در یکی از کلیدهای کاندیدای A و جود داشته باشد.
 - ◄ اگر رابطه در BCNF باشد در 3NF هم هست.

اهداف ترمال سازی

- ﴿ فرض کنید R یک شمای رابطه با مجموعه وابستگی های تابعی F باشد.
 - ر ابطه R در شکل خوبی است؟ ۲ آیا شمای رابطه
- اگر شمای رابطه R در شکل خوبی نباشد، به مجموعه شماهای $\{R_1, R_2, ..., R_n\}$
 - هر شما در شکل خوبی باشد.
 - تجزیه lossless–join decomposition باشد.
 - ترجیخا تجزیه باید وابستگیها را حفظ کند.

بررسی BCNF

- « شماهایی هستند که در BCNF هستند ولی به اندازه کافی نرمال
 نیستند.
 - این رابطه را درنظر بگیرید:

inst_info (ID, child_name, phone)

• که استاد ممکن است چند فرزند و چند شماره تلفن داشته باشد.

ID	child_name	phone
99999 99999 99999	David David William Willian	512-555-1234 512-555-4321 512-555-1234 512-555-4321

inst_info

بررسی BCNF (ادامه)

- ◄ همه وابستگیها بدیهی هستند و رابطه در BCNF است.
- أنومالي درج: اگر شماره 3443−992−981 را به 99999
 اضافه کنيم بايد دو رکورد اضافه کنيم:

(99999, David, 981-992-3443)

(99999, William, 981-992-3443)

ID	child_name	phone
99999 99999 99999	David David William Willian	512-555-1234 512-555-4321 512-555-1234 512-555-4321

inst_info

بررسی BCNF (ادامه)

﴿ بنابراین بهتر است رابطه به صورت زیر شکسته شود:

inst_child

ID	child_name
99999 99999 99999	David David William Willian

inst_phone

ID	phone
99999 99999 99999	512-555-1234 512-555-4321 512-555-1234 512-555-4321

بنابراین شکلهای نرمال بالاتری لازم است.

مجموعه وابستگیهای تابعی

بستار F که با F نشان میدهیم را با بکارگیری قوانین زیر می توان به دست آورد:

اصول آرمسترانگ Armstrong's Axioms

- if $\beta \subseteq \alpha$, then $\alpha \to \beta$ (انعکاسی)
- if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$ (افزونگی)
- \circ if $\alpha \to \beta$, and $\beta \to \gamma$, then $\alpha \to \gamma$ (نعدی)
 - ﴿ خواص این قوانین:
 - درستی: وابستگیهایی را تولید میکنند که واقعا برقرارند.
 - كامل بودن: همه وابستگيهايي را كه برقرارند توليد مي كنند.

$$R = (A, B, C, G, H, I)$$

$$F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H\}$$

• برخی اعضا +F

 \circ $A \rightarrow H$

 $A \rightarrow B$ and $B \rightarrow H$ با تعدی از

 \circ $AG \rightarrow I$

CG
ightarrow / با افزودن G به G
ightarrow Aو تعدی از A
ightarrow C

- \circ CG \rightarrow HI
- با افزودن CG o H و به دست آوردن CG o CG o CGو افزودن CG o CG o CG و به دست آوردن CG o CG o CG و به دست آوردن CG o CG o CG

بستار وابستگیهای تابعی (ادامه)

﴿ قوانين ديگر:

- (اجتماع) $\alpha \to \beta \gamma$ آنگاه $\alpha \to \gamma$ و $\alpha \to \beta$ (اجتماع) ه
- و اگر lpha o eta آنگاه lpha o eta و lpha o eta برقرارند.(تجزیه) lpha
- اگر $eta o lpha o \delta$ برقرار باشند، آنگاه lpha o eta o lpha شبه تعدی)