Production Networks and Stock Returns: The Role of Vertical Creative Destruction

Michael Gofman, Gill Segal and Youchang Wu

The Review of Financial Studies, 2020.12

Lv Manni 2021. 4. 8

Contents

- Introduction
 - Background & Motivation
 - Literatures
 - Research Problem
 - Contribution
- Data & Measure
- Empirical Results
- Theoretical Model
 - Quantitative Results
- Robustness
- Alternative Explanations
- Conclusion

Backgrounds & Motivation

- Production takes place in a complex network comprised of long and intertwined supply chains. This multistage production process reflects the vertical organization of production.
- Little is known about this vertical dimension of production in connection to asset prices, especially at the firm-level.
- The strength of the supply effect is heterogeneous across layers.
- ➤ How do firms' exposures to macroeconomic risks vary with their upstreamness? What is the relation between firms' upstreamness and returns? Do supply chain characteristics affect firms' cost of capital?

Literatures

creative destruction
 creative destruction works horizontally: not all firms benefit equally from innovations

vertical creative destruction: suppliers innovations devalue customer firms

- production networks
 stock return predictability via supplier-customer links
 contemporaneous return across different layers
- production-based asset pricing
 examine asset pricing implications in two-sector economies
 account for a multilayer production process

Research Problem

- What is the relation between firms' upstreamness and their expected returns?
 - Firms farther away from consumers have higher risk premiums and higher exposure to aggregate productivity.
- How to explain these findings?
 - Using a general equilibrium model featuring a multilayer production process, we find positive productivity shocks to suppliers devalue customers' assets-in-place.
- Anything matters?
 - Vertical creative destruction varies with competition and firm characteristics.

Contribution

- Introduce vertical creative destruction suppliers' innovations devalue customer firms
- Empirically document two novel facts that highlight a monotonic relation between a firm's vertical position and their riskiness/return.
- Develop a general equilibrium model with multiple layers of production (supply chain) to explains a new form of creative destruction.

Outline

Mechanism / Idea: Vertical creative destruction

Data

- CRSP stock database (for stock returns)
- Compustat North America database (for accounting data)
- FactSet Revere relationships database (for information about suppliers, customers, and competitors)
- Sample period: April 2003 December 2012
- Exclude financial firms (GICS code 40), industrial conglomerates (GICS 201050), penny stocks (i.e., stocks with a price of less than \$1 in the previous month).
- Combine if the time gap between two consecutive relationships is not longer than 6 months.
- Last at least 6 months

Model Design: Vertical position measure

 Bottom layer produce final consumption goods. All others are direct/indirect suppliers to bottom firms.

Measure: the smallest number of supplier-customer links between itself and firms at the bottom layer

Monthly base

Step: Assign position 0 to all firms in the Consumer Discretionary (GICS code 25) and Consumer Staples sectors (GICS code 30), estimate vertical positions of the remaining firms in the sample.

Empirical Results: Layer returns and TMB

 Sort firms at the beginning of month t using vertical positions computed at the end of month t-2.

Vertical position and stock returns

	Value-weighted i	returns	Equal-weighted returns		
	Mean	SD	Mean	SD 7.30	
Layer 5	1.78	6.54	1.78		
Layer 4	1.41	6.23	1.11	7.11	
Layer 3	0.99	5.64	0.95	6.27	
Layer 2	0.87	4.93	0.92	6.31	
Layer 1	0.73	4.47	0.86	6.36	
Layer 0	0.73	3.97	0.70	6.56	
TMB (5-0)	1.05**	5.36	1.08**	4.54	
	(2.07)		(2.51)		

Empirical Results: Exposure to productivity shocks

Vertical position and exposures to aggregate productivity shocks

	TMB	Layer 0	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5
$A. R_{i,t}^e = cc$	$onst + \beta_1 \Delta Pr$	$od_t + error$					
Prod = B	LS labor prod	luctivity:					
β_{prod}	1.664	1.214	1.306	1.645	2.534	2.072	2.878
1	(1.61)	(1.36)	(1.29)	(1.30)	(1.70)	(1.28)	(2.65)
Prod = Se	olow residual.	:					
β_{prod}	1.332	1.245	1.193	1.409	1.491	1.414	2.578
	(1.87)	(2.37)	(2.14)	(2.32)	(2.80)	(2.08)	(3.54)
$B. \ R_{i,t}^e = cc$	$onst + \beta_1 \Delta Pr$	$od_t + \beta_2 \Delta Prod$	$l_t^2 + error$	$\beta_{prod} = 1$	$E[\frac{\partial R_i^e}{\partial \Delta Prod}]$:		
Prod = B	LS labor prod	luctivity:		prou	$\partial \Delta Prod^{3}$		
β_{prod}	3.254	1.530	2.006	2.882	4.308	4.175	4.784
F	(2.76)	(1.14)	(1.42)	(1.73)	(2.29)	(2.22)	(4.77)
Prod = Se	olow residual.	:					
β_{prod}	1.937	0.599	0.583	0.909	1.171	0.942	2.536
*	(2.32)	(1.07)	(0.86)	(1.02)	(1.17)	(0.95)	(2.45)

Firms in the top layers are more exposed to the aggregate productivity shock.

2021/4/8 Lv Manni 11

Production sector: N+1 layer (0: bottom layer)

Each layer is captured by a single representative firm (under perfect competition, homogeneity).

Layer j - Firm j:

hires labor nj,t with capital kj,t and productivity shock Zj,t

production:
$$Y_{j,t} = Z_{j,t} k_{j,t}^{\alpha} n_{j,t}^{1-\alpha}, \quad j \in \{0, 1, ..., N\}$$

capital:
$$k_{j,t+1} = (1 - \delta + i_{j,t})k_{j,t}$$

dividend:
$$d_{j,t} = P_{j,t} Y_{j,t} - W_t n_{j,t} - P_{j+1,t} \Phi(i_{j,t}) k_{j,t}$$

Firm chooses optimal investment and optimal hiring to

maximize its market value:

$$V_{j,t} = \max_{\{n_{j,s} k_{j,s+1}\}} E_t \sum_{s=t}^{\infty} M_{t,s} d_{j,s}$$

The household chooses the layer-specific labor supply and consumption to maximize its lifetime utility

$$\max_{C_{s},\{n_{j,s},\ \omega_{j,s+1}\}_{j\in\{1..N\}}} U_{t}, \quad s.t. \quad P_{0,t}C_{t} + \sum_{j=0}^{N} \omega_{j,t+1} V_{j,t}^{X} = W_{t} \sum_{j=0}^{N} n_{j,t} + \sum_{j=0}^{N} \omega_{j,t} V_{j,t}$$

$$U_{t} = \left[(1-\beta)C_{t}^{\frac{1-\gamma}{\theta}} + \beta (E_{t}U_{t+1}^{1-\gamma})^{\frac{1}{\theta}} \right]^{\frac{\theta}{1-\gamma}}$$

$$U_{t} = \left[(1 - \beta)C_{t}^{\frac{1 - \gamma}{\theta}} + \beta(E_{t}U_{t+1}^{1 - \gamma})^{\frac{1}{\theta}} \right]^{\frac{\theta}{1 - \gamma}}$$

Wage and output prices are set to clear all markets:

Labor market clearing:
$$\sum_{j=0}^{N} n_{j,t} = 1,$$

Differentiated capital goods market
$$\Phi(i_{j-1,t})k_{j-1,t} = Y_{j,t}$$
, clearing: $\forall j \in \{1,...,N\}$,

Consumption goods market clearing:
$$C_t = Y_{0,t}$$
,

Firm ownership market clearing:
$$\omega_{j,t} = 1, \forall j \in \{0,...,N\}$$

With a few simplifying assumptions, the equilibrium policies and prices are given by

$$k_{j,t} = \overline{n}_{j},$$

$$k_{j,t} = \left(\prod_{\ell=j+1}^{N} Z_{\ell,t}^{\alpha^{\ell-j-1}}\right) \overline{k}_{j},$$

$$I_{j,t} = \left(\prod_{\ell=j+1}^{N} Z_{\ell,t}^{\alpha^{\ell-j-1}}\right) \overline{I}_{j},$$

$$P_{j,t} = D_{t} \cdot S_{j,t}^{-1} \cdot \overline{P}_{j},$$

$$where \qquad D_{t} = \prod_{\ell=0}^{N} Z_{\ell,t}^{\alpha^{\ell}}, \qquad S_{j,t} = \prod_{\ell=j}^{N} Z_{\ell,t}^{\alpha^{\ell-j}},$$

DSGE Model - the mechanism

Properties:

- Log-valuation of assets-in-place of firms increases/decreases with productivity shocks of layers below/above it.
- 2. With perfect correlation between the productivity of different layers, the cumulative vertical creative destruction is monotonically increasing in j.
- 3. The difference between top and bottom productivity beta rises with chain length. The market price of risk for productivity is positive and increases with the chain length.
- 4. The expected returns are increasing with the vertical position.

Quantitative Results - Inspecting the mechanism

Theorem1
Model-implied productivity elasticities by vertical position

Layer j	$dlog(Q_j)/d\varepsilon_Z$	$dlog(P_{j+1})/d\varepsilon_Z$	$dlog(\Phi'(i_j))/d\varepsilon_Z$	$d(i_j)/d\varepsilon_Z\times 10$
4	0.058	0.016	0.042	0.128
3	0.052	0.014	0.039	0.126
2	0.045	0.012	0.034	0.122
1	0.036	0.009	0.028	0.107
0	0.025	0.005	0.021	0.081

Theorem2 Exposures of firms to layer-specific technology shocks

Layer index (j)	$\beta_{j,5}$	$\beta_{j,4}$	$\beta_{j,3}$	$\beta_{j,2}$	$\beta_{j,1}$	$\beta_{j,0}$	$\textstyle\sum_{k=0}^5\beta_{j,k}$
5	0.0485	0.0339	0.0420	0.0937	0.2562	1.7000	2.1743
4	-0.1242	0.1001	0.0788	0.1091	0.2599	1.7000	2.1237
3	-0.0172	-0.1102	0.1089	0.1217	0.2595	1.7000	2.0627
2	-0.0023	-0.0155	-0.1002	0.1420	0.2565	1.7000	1.9805
1	-0.0003	-0.0018	-0.0121	-0.0798	0.2474	1.7000	1.8533
0	-0.0000	-0.0003	-0.0014	-0.0069	-0.0298	1.7000	1.6616

Quantitative Results - Testing the Mechanism

Examine the impact of market power on the TMB spread and on the returns of bottom-layer firms

TMB spread and competition: Augmented model versus data

	High competition			Low competition			
	Model	Data		Model	Data		
A. Excess retur	ns by vertica	ıl position					
Layer 5	16.14	15.21	[10.10, 20.32]	16.26	11.10	[3.48, 18.72]	
Layer 4	12.85	10.18	[5.64, 14.72]	16.13	14.10	[8.37, 19.83]	
Layer 3	10.31	8.29	[4.36, 12.22]	14.86	6.44	[1.64, 11.25]	
Layer 2	7.96	5.28	[1.90, 8.66]	13.03	8.65	[3.54, 13.76]	
Layer 1	5.86	4.67	[1.28, 8.07]	10.80	6.18	[1.40, 10.95]	
Layer 0	3.98	5.25	[2.01, 8.48]	8.37	6.47	[2.08, 10.86]	
B. Spreads							
Spread (5-0)	12.15	9.97	[5.30, 14.64]	7.90	4.63	[-2.08, 11.34]	

Empirical Results - Testing the Mechanism

Examine the TMB spread in firms whose assets-in-place represent a larger fraction of their value.

TMB spreads in subsamples

		veighted Equal-v o-market split		veighted	Value-weighted Equal-w B. Depreciation split		eighted	
TMB <i>t</i> -stat	Low 8.18 (1.23)	High 11.87 (1.59)	Low 3.07 (0.68)	High 16.05*** (3.08)	Low 14.01* (1.92)	High 6.02 (1.27)	Low 10.68** (2.2)	High 9.08** (2.07)
C. Organization capital split				D. Invent				
TMB <i>t</i> -stat	Low 9.30** (2.34)	High -0.54 (-0.04)	Low 14.99*** (4.15)	High 2.44 (0.27)	Low 8.76 (1.28)	High 12.01** (1.99)	Low 5.47 (1.17)	High 13.33** (2.52)

Robustness

- Use input-output tables from the U.S. Bureau of Economic Analysis (BEA) to compute an inter-industry TMB spread from 1973 to 2017.
- Use the Compustat Segment database to construct a sample from 1985 to 2017, accounting for the strength of each supplier-customer relationship.
- Use different rebalancing or methodologies to compute vertical positions.

Alternative explanations for the TMB spread

- Network centrality
- Financial and operating leverage
- Profitability and asset growth
- Familiarity hypothesis

Book /market	ROA	Debt /asset	Cash /asset	Operating leverage	Asset growth	Bid-ask spread	Forecast dispersion	Institutional ownership	Network centrality
0.512	0.094	0.194	0.137	0.645	0.061	0.200	0.123	0.578	0.088
0.505	0.094	0.173	0.135	0.646	0.046	0.189	0.132	0.570	0.084
0.471	0.094	0.182	0.149	0.589	0.048	0.181	0.132	0.608	0.232
0.504	0.094	0.147	0.176	0.693	0.034	0.194	0.135	0.640	2.108
0.473	0.098	0.117	0.187	0.781	0.024	0.177	0.134	0.653	4.589
0.528	0.119	0.219	0.087	1.114	0.016	0.191	0.126	0.642	0.737
-0.015	-0.025***	-0.024	0.050***	-0.469***	0.044***	0.010	-0.004	-0.064***	-0.648***
(-0.45)	(-5.00)	(-1.60)	(2.83)	(-17.64)	(7.06)	(0.70)	(-0.83)	(-3.09)	(-16.54)

Conclusion

- Firms at higher vertical position have higher stock returns; and greater exposure to aggregate productivity.
- We provide a risk-based explanation (vertical creative destruction) of these new findings using a quantitative general equilibrium model.
- We document several novel facts that connect firms' position and competition environment to their risk.
 Vertical creative destruction can explain these facts quantitatively.