Метрични зависимости между отсечки в правоъгълен триъгълник. Питагорова теорема

Л. В. Йовков

НПМГ "Акад. Л. Чакалов"

Абстракт

Подобността е едно от най-важните понятия в геометрията изобщо. С нейна помощ се получават редица връзки между отсечки в триъгълника, наречени метрични зависимости. В настоящата тема ние ще разгледаме основните метрични зависимости за правоъгълния триъгълник.

Нека $\triangle ABC$ е правоъгълен триъгълник ($\angle C=90^\circ$) с катети BC=a и AC=b, хипотенуза AB=c и височина към нея $CH=h_c$ (вж. фигура 1). Отсечките AH и BH ще наричаме проекции на катетите върху хипотенузата и ще означаваме така: $BH=a_1$, $AH=b_1$.

Да разгледаме ΔAHC и ΔCHB . Очевидно те са подобни по първи признак. От пропорциите

Фигура 1: Правотголен тритголник

$$\frac{AH}{CH} = \frac{HC}{HB} = \frac{AC}{CB}$$

получаваме $CH^2 = AH.HB$, т. е.

$$h_c^2 = a_1 b_1. (1)$$

Тази връзка е метрична зависимост между височината към хипотенузата и проекциите на катетите върху хипотенузата.

По-нататък: понеже $\Delta CHB \sim \Delta ACB$, то

$$\frac{CH}{AC} = \frac{HB}{CB} = \frac{CB}{AB} \Rightarrow BC^2 = BH.AB.$$

Вземайки предвид традиционните означения, достигаме до формулата

$$a^2 = a_1 c, (2)$$

която представлява метрична зависимост между катета a, неговата проекция a_1 върху хипотенузата и тази хипотенуза c. Съвършено аналогично се доказва, че

$$b^2 = b_1 c, (3)$$

Събираме почленно (2) и (3):

$$a^{2} + b^{2} = a_{1}c + b_{1}c = (a_{1} + b_{1})c = c.c = c^{2},$$

т. е. в правоъгълния триъгълник е изпълнено

$$a^2 + b^2 = c^2. (4)$$

Тази формула е една от най-древните и важни зависимости в геометрията изобщо. Нарича се **Питагорова теорема** и към днешна дата са известни повече от 50 нейни доказателства. Всяка наредена тройка числа (a;b;c), за които са изпълнени условията $a \le b < c$ и $a^2 + b^2 = c^2$, се нарича *Питагорова тройка числа*. Например Питагорови тройки образуват числата (3;4;5), (5;12;13), (6;8;10) и т. н.

Както ще бъде показано по-нататък, метричните зависимости (1) — (4) съществено се използват за намиране на неизвестни елементи не само на правоъгълен триъгълник, но също така на равнобедрен триъгълник, равнобедрен трапец, правоъгълен трапец и успоредник. Процесът, при който по дадени елементи на конкретна геометрична фигура чрез използване на съответните зависимости пресмятаме останалите ѝ елементи, се нарича решаване на фигурата. Да разгледаме някои примери.

Пример 1 ([3], *cmp.* 90, зад. 22.1) За правоъгълния ΔABC ($\angle C = 90^{\circ}$) е построена височината CH ($H \in AB$). Ако AH = 36 и BH = 64, то намерете дължината на AC.

Решение. Нека да използваме означенията от фигура 1. В конкретния случай $a_1=64$ и $b_1=36$. От (1) веднага пресмятаме $h_c=48$. С помощта на Питагоровата теорема (4), приложена за ΔAHC (или с метричната зависимост (3)) получаваме $b^2=36.100$. Следователно b=60. \square

Пример 2 ([3], cmp. 90, зад. 22.2) За правоъгълния ΔABC ($\angle C=90^\circ$) е построена височината CH ($H\in AB$). Известно е, че CH=2 и AH=1. Намерете дължината на отсечката HB.

Решение. В случая $h_c = 2$ и $b_1 = 1$. По формулата (1) имаме

$$a_1 = \frac{h_c^2}{b_1} \Rightarrow a_1 = 4$$
. \square

Пример 3 ([3], *cmp.* 91, aad. 22.9) В правоъгълен триъгълник с катети a и b, хипотенуза c, височина към хипотенузата h_c , ортогонални проекции на катетите върху хипотенузата a_1 и b_1 и лице S намерете пет от тях, ако са известни две:

a)
$$a = 3, b = 4;$$
 6) $b = 3, c = 8;$ B) $a = 5, S = 10;$ $r) $a = 6, h_c = 3.$$

Решение, **а).** За да решим триъгълника, използваме следния ход на работа.

1. Пресмятане на хипотенузата c

Чрез Питагорова теорема веднага намираме c=5.

2. Пресмятане на проекциите a_1 и b_1

От формулите за проекциите на катетите (2) и (3) имаме

$$a_1 = \frac{a^2}{c} = \frac{9}{5}, b_1 = \frac{b^2}{c} = \frac{16}{5}.$$

3. Пресмятане на височината h_c

Прилагаме метричната зависимост (1) и получаваме $h_c = \frac{12}{5}$.

4. Пресмятане на лицето S

C обичайната формула за лице $S=\frac{ch_c}{2}$ изчисляваме S=6. \square

- б) Решението извършете самостоятелно!
- **в)** Ще използваме отново гореописаната последователност в хода на работа.
 - 1. Пресмятане на катета b

От формулата $S = \frac{ab}{2}$ получаваме $b = \frac{2S}{a} = 4$.

2. Пресмятане на хипотенузата c

След прилагане на Питагорова теорема имаме

$$c^2 = a^2 + b^2 \Rightarrow c^2 = 5^2 + 4^2 = 41 \Rightarrow c = \sqrt{41}.$$

3. Пресмятане на проекциите a_1 и b_1

Заместваме числените стойности във формулите за проекциите и лесно намираме дължините на търсените отсечки:

$$a_1 = \frac{a^2}{c} = \frac{25}{\sqrt{41}}, b_1 = \frac{b^2}{c} = \frac{16}{\sqrt{41}}.$$

4. Пресмятане на височината към хипотенузата h_c

Имаме
$$h_c^2 = a_1 b_1 = \frac{25.16}{41}$$
. Следователно $h_c = \frac{20}{\sqrt{41}}$. \square

г) Решението извършете самостоятелно!

Пример 4 ([1], *стр. 231, зад. 5*) Даден е ромб ABCD с височина DH ($H \in AB$). На отсечката AD е взета точка K така, че $HK \bot AD$, AK = 5 и KD = 15. Намерете мярката на $\angle BAD$.

Решение. В правоъгълния ΔADH отсечката HK е височина към хипотенузата, а отсечките AK и DK — проекции на катетите върху хипотенузата (вж. фигура 2). От метричните зависимости имаме $HK^2 = AK.DK = 3.25$. Тогава $HK = 5\sqrt{3}$. С помощта на Питагорова теорема в правоъгълния ΔAHK пресмятаме AH = 10. Сега, понеже в този триъгълник отсечката AK е катет, равен на половината от хипотенузата AH, установяваме, че $\angle AHK = 30^\circ$. Слета AK

Фигура 2:

дователно търсеният ъгъл е $\angle KAH = 60^{\circ}$. \square

Пример 5 * ([1], cmp. 235, зад. 8) Периметърът на правоъгълния ΔABC с прав ъгъл при върха C е 72. Разликата между дължината на медианата CM и на височината CH е 7. Намерете хипотенузата и лицето на ΔABC .

Решение. Понеже даденият триъгълник не е равнобедрен, е в сила неравенството CM > CH. Тогава от условието е изпълнено CM - CH = 7.

Медианата m_c към хипотенузата е равна на половината от хипотенузата, а височината h_c към хипотенузата има дължина $\frac{ab}{c}$. Последователно имаме:

$$m_c - h_c = 7 \Leftrightarrow \frac{c}{2} - \frac{ab}{c} = 7 \Leftrightarrow \frac{c^2 - 2ab}{2c} = 7.$$

Оттук получаваме

$$c^2 - 2ab = 14c. (5)$$

Освен това по условие за периметъра имаме

$$a+b+c=72, (6)$$

а от Питагоровата теорема получаваме, че

$$a^2 + b^2 = c^2. (7)$$

Уравненията (5) - (7) водят до следната нелинейна система уравнения:

$$\begin{vmatrix} c^{2} - 2ab = 14c \\ a^{2} + b^{2} = c^{2} \\ a + b + c = 72. \end{vmatrix}$$

Изразяваме дължината на хипотенузата от третото уравнение, след което заместваме в първите две. Достигаме до нелинейна система от втора степен с две неизвестни:

$$\begin{bmatrix} [72 - (a+b)]^2 - 2ab = 14[72 - (a+b)] \\ a^2 + b^2 = [72 - (a+b)]^2. \end{bmatrix}$$

Поради тъждеството $a^2+b^2=(a+b)^2-2ab$ след субституцията a+b=x и ab=y получаваме по-простата система

Нейното единствено решение е наредената двойка (x; y) = (40; 288). Следователно a + b = 40 и ab = 288.

Накрая пресмятаме c=72-(a+b)=32 и $S=\frac{ab}{2}=144,$ с което задачата е решена. \square

Пример 6 ([2], *cmp.* 57, *sad.* 11.58) В правоъгълен триъгълник е вписана окръжност. Допирната ѝ точка дели хипотенузата на отсечки с дължини 5 и 12. Да се намерят катетите.

Решение. Нека P, Q, R са допирните точки на вписаната окръжност съответно със страните AB, BC, AC. Нека AP = 5 и BP = 12. Да означим CQ = CR =x > 0. След прилагане на Питагорова теорема за ΔABC достигаме до рационалното уравнение $x^2 + 17x - 60 = 0$, чието единствено положително решение е x = 3.

Така намираме AC=8 и BC=15. \square

Пример 7 ([1], *стр. 237*, $3a\partial$. 10) Дадена е окръжност k(O; r). Точка A е такава, че AO = 13. Построени са допирателните AT и AD към окръжността. Ако AT = 3r, то намерете периметъра на четириъгълника ATOD.

Решението извършете самостоятелно!

Пример 8 ([2], cmp. 55, sad. 11.34) Вън от квадрата ABCD е взета точка O. Да се намери лицето на квадрата, ако OA = OB = 5 и DO = $\sqrt{13}$.

Решение. Точка O е равноотдалечена от краищата на отсечката AB, следователно лежи върху нейната симетрала. Нека $s_{AB} \cap AB = H$ и $s_{AB} \cap CD = N$ (вж. фигура 4). Да означим страната на квадрата с 2x. Тогава ще е изпълнено, че AH = HB = DN = NC = x и NH=2x. От правоъгълния ΔDON с помощта на Питагорова теорема получаваме $NO = \sqrt{13 - x^2}$. За да открием лицето на квадрата, е достатъчно да пресметнем стойността на x^2 . Нея ще намерим от Питагорова теорема за ΔBOH . Имаме:

$$OH^{2} + HB^{2} = OB^{2} \Rightarrow (2x + \sqrt{13 - x^{2}})^{2} + x^{2} = 5^{2}$$
$$\Rightarrow 4x^{2} + 4x\sqrt{13 - x^{2}} + 13 - x^{2} + x^{2} = 25$$
$$\Rightarrow 4x^{2} + 4x\sqrt{13 - x^{2}} = 12 \Rightarrow x^{2} + x\sqrt{13 - x^{2}} = 3.$$

Фигура 4:

Записваме полученото ирационално уравнение във вида $x\sqrt{13-x^2}=3-x^2$. Поне-

же x е дължина на отсечка, то x>0. Освен това, за да има смисъл така полученото ирационално уравнение, е необходимо дясната му страна да е положителна, т. е. трябва да е изпълнено неравенството $3-x^2>0$. Оттук получаваме $0< x^2<3$. След повдигане на ирационалното уравнение в квадрат достигаме до следното уравнение следствие:

$$x^2(13 - x^2) = (3 - x^2)^2.$$

Очевидно след разкриване на скобите то ще бъде биквадратно. Затова полагаме $x^2=y\in(0;3)$. Съответното квадратно относно y уравнение е $2y^2-19y+9=0$ с решения $y_1=9$ и $y_2=\frac{1}{2}$. Само коренът y_2 е в интервала (0;3). Тогава $S_{ABCD}=4x^2=4y_2=2$. \square

Пример 9 ([2], стр. 60, зад. 11.93) Окръжност се допира до две съседни страни на квадрат и дели всяка от другите две страни на две отсечки с дължини 2 и 23. Да се намери радиусът на окръжността.

Решение.

Нека даденият квадрат е ABCD. Нека окръжността да се допира до страните CD и AD съответно в точките P и Q, а да пресича страните AB и BC съответно в точките M и N (вж. фигура 5). Да означим с O центъра на окръжността и с r — нейния радиус. Очевидно страната на квадрата е с дължина 25. Тъй като четириъгълникът OPDQ е квадрат (правоъгълник с две равни съседни страни), то имаме OP = DQ = r и AQ = 25 - r.

Построяваме $MH\bot OQ,\,H\in OQ.$ От правоъгълния ΔHOM

Фигура 5:

след прилагане на Питагорова теорема получаваме уравнението

$$(r-2)^2 + (25-r)^2 = r^2, 2 < r < 25.$$

Неговите корени са числата $r_1=17$ и $r_2=37$, от които само първият е в интервала (2; 25). Следователно търсеният радиус е r=17. \square

Пример 10 ([2], cmp. 57, зад. 11.62) Основата на равнобедрен триъгълник е $4\sqrt{2}$, а медианата към бедрото му е 5. Да се намерят лицето и бедрото му.

Решение. Нека даденият триъгълник е ABC с основа $AB=4\sqrt{2}$ и медиана AM=5. Да построим височините CH и AT и да въведем означенията $MT=x,\,BT=y$ (вж. фигура 6). Тогава BC=AC=2(x+y). От триъгълниците AMT и ABT последователно получаваме:

$$\begin{vmatrix} AT^2 + x^2 = 5^2 \\ AT^2 + y^2 = (4\sqrt{2})^2 \Rightarrow 25 - x^2 = 32 - y^2 \Rightarrow y^2 - x^2 = 7.$$
 (8)

Сега $\Delta ABT \sim \Delta CBH$ по първи признак. Написвайки пропорциите, имаме

$$\frac{AB}{CB} = \frac{BT}{BH} = \frac{AT}{CH} \Rightarrow \frac{4\sqrt{2}}{2(x+y)} = \frac{y}{2\sqrt{2}},$$

откъдето достигаме до връзката

$$xy + y^2 = 8. (9)$$

Уравненията (8) и (9) водят до системата

$$\begin{vmatrix} y^2 + xy = 8 \\ y^2 - x^2 = 7. \end{vmatrix}$$

Фигура 6:

Решаваме я по някой от разгледаните досега начини (например с първоначално събиране и последващо заместване) и пресмятаме нейното единствено положително решение: $(x; y) = \left(\frac{1}{3}; \frac{8}{3}\right)$.

За бедрото на триъгълника намираме AC = BC = 6. Лицето на триъгълника е

$$S_{\Delta ABC} = \frac{BC.AT}{2} = \frac{2(x+y)\sqrt{25-x^2}}{2} = 4\sqrt{14}. \ \Box$$

ЗАДАЧИ ЗА САМОСТОЯТЕЛНА РАБОТА

Задача 1 ([1], стр. 228, зад. 7) Даден е правоъгълен ΔABC с хипотенуза AB. Ако височината към хипотенузата е $h_c=18$ и проекцията на BC върху хипотенузата е $a_1=12$, то намерете дължините на проекцията b_1 , хипотенузата c и катетите a и b.

Ott.
$$b_1 = 27, c = 39, a = 6\sqrt{13}, b = 9\sqrt{13}$$

Задача 2 ([1], стр. 228, зад. 9) Даден е правоъгълен ΔABC с хипотенуза AB. Височината CH към хипотенузата я дели на отсечки BH:AH=2:3. Ако CH=6, то намерете дължините на отсечките AH, BH, AB, AC и BC.

OTT.
$$AH = 3\sqrt{6}$$
, $BC = 2\sqrt{6}$, $AB = 5\sqrt{6}$, $AC = 3\sqrt{10}$, $BH = \sqrt{66}$

Задача 3 ([3], стр. 90, зад. 22.4) Даде е правоъгълен ΔABC , за който $\angle C=90^\circ$, $\angle A=60^\circ$ и височината $CD=2\sqrt{3}$. Намерете дължината на хипотенузата.

Отг. c = 8

Задача 4 ([3], стр. 91, зад. 22.7) Намерете третата страна на правоъгълен триъгълник, за който:

- a) a = 2, b = 3; 6) $a = 2, c = 2\sqrt{5};$
- **B)** b = 5, c = 13; **r)** a = 12, b = 5.

Отг. a) $\sqrt{13}$; б) 4; в) 12; г) 13

Задача 5 ([3], стр. 91, зад. 21.12) В правоъгълен ΔABC имаме, че $a_1=4$ и $b_1=8$. Да се намерят a,b,c,h_c и $S_{\Delta ABC}$.

Ott.
$$c = 12, a = 4\sqrt{3}, b = 4\sqrt{6}, h = 4\sqrt{21}, S = 24\sqrt{2}$$

Задача 6 ([3], стр. 91, зад. 22.13) Намерете височините на правоъгълен триъгълник с катети 12 и 16.

Отг. 12; 16; 9, 6

Задача 7 ([3], стр. 91, зад. 22.14) Намерете медианите на равнобедрен правоъгълен триъгълник с катет 8.

OTF. $m_c = 4\sqrt{2}, m_a = m_b = 4\sqrt{5}$

Задача 8 ([3], стр. 91, зад. 22.15) Даден е правоъгълен трапец NBCM с основи NB и CM (NB>CM) и перпендикулярно бедро NM. Върху голямата основа NB е взета точка A, такава, че $\angle ACB = 90^\circ$. През върха C е построена височината CH на трапеца. Ако четириъгълникът NHCM е квадрат с лице 16 и AN=1, то намерете дължината на отсечката BH.

Отг. $\frac{16}{3}$

Задача 9 ([3], стр. 91, зад. 22.16) За правоъгълен ΔABC с височина CH е известно, че $AH=5, BC=2\sqrt{6}$. Намерете дължината на HB.

Отг. 3

Задача 10 ([3], стр. 92, зад. 22.18) Допирната точка M на вписаната в правоъгълен ΔABC окръжност разделя катета BC на части с дължини MB=3 и CM=2. Намерете дължината на хипотенузата.

Отг. 13

Задача 11 ([3], стр. 92, зад. 22.19) В правоъгълен ΔABC с хипотенуза AB са построени височината CH и медианата CM. Ако HM=3 и $\angle HCM=30^\circ$, то намерете лицето на ΔABC .

Отг. $18\sqrt{3}$

Задача 12 ([2], стр. 55, зад. 11.23) Даден е ΔABC , в който AB=3, височината $CD=\sqrt{3}$ и AD=BC. Да се намери AC.

OTF. $\sqrt{7}$

Задача 13 * ([2], стр. 60, зад. 11.100) Катетите на правоъгълен триъгълник са 15 и 20. Да се намери разстоянието от центъра на вписаната окръжност до височината към хипотенузата.

Отг. 1

Задача 14 * ([2], стр. 60, зад. 11.102) В правоъгълен ΔABC с катети AC=3 и BC=4 е построена височината CD. Да се намери разстоянието между центровете на окръжностите, вписани в ΔACD и ΔBCD .

OTF. $\sqrt{2}$

Задача 15 * ([2], стр. 61, зад. 11.105) Даден е правоъгълен ΔABC с катети a и b. Хипотенузата му AB служи за страна на квадрат. Да се намери разстоянието между центъра на квадрата и върха C.

Упътване. Да се проучи самостоятелно **теоремата на Птолемей** за вписан четириъгълник и да се използва в конкретната задача.

OTF.
$$\frac{a+b}{\sqrt{2}}$$

Задача 16 * ([2], стр. 61, зад. 11.109) В правоъгълния ΔABC е построена ъглополовящата BD, а през точка D — права, перпендикулярна на BD, която разделя хипотенузата AB на отсечки AM=5 и BM=40. Да се намерят катетите.

Отг. 27; 36

Литература

- [1] **И. Тонов, Ир. Шаркова, М. Христова, Д. Капралова, В. Златилов.** "*Математика за 9. клас"*. Издателство "Регалия 6". София, 2018
- [2] К. Коларов, Хр. Пачев. "Сборник от задачи по геометрия за VIII-XII клас". Издателство "Интеграл". Добрич, 2000
- [3] **П. Рангелова** "Сборник по математика за 9. клас". Издателство "Коала прес". Пловдив, 2018