Bazele programării l Metode de proiectare a algoritmilor

Programarea structurată

Un **program structurat** este format din unități funcționale bine conturate, ierarhizate conform naturii problemei, cu o structură bine precizată, atât la nivelul instrucțiunilor, cât și al datelor, obținută printr-un proces de rafinare treptată.

Principiile de bază ale programării structurate:

proiectarea descendentă (de sus în jos);

orice algoritm se poate construi folosind doar patru tipuri de structuri de control;

domeniile de vizibilitate ale variabilelor și structurilor de date trebuie să fie limitate.

Avantajele programării structurate

- structurarea determină o definiţie exactă a funcţiilor fiecărui modul;
- scrierea programului şi punerea lui la punct se face mai simplu şi mai rapid;
- modificarea şi extinderea programului se poate face uşor, prin modificarea anumitor module şi adăugarea unor module noi;
- fiecare modul se poate scrie în limbajul de programare cel mai avantajos în raport cu funcţia sa.

Proiectarea algoritmilor prin metoda "de sus în jos"

- 1. Divizarea problemei iniţiale în subprobleme mai simple.
- 2. Subproblemele complicate se divid iarăși în subprobleme mai simple.
- 3. Procesul de divizare a subproblemelor se termină atunci când în rezultatul ultimei proceduri s-au obţinut subprobleme simple.
- 4. Soluția problemei inițiale se obține prin reuniunea soluțiilor subproblemelor.

Procesul de divizare a problemelor complicate în subprobleme mai puţin complicate se numeşte **detaliere**.

Descompunerea problemei în subprobleme

introducerea datelor inițiale; calcularea datelor-rezultat; afişarea rezultatelor.

Problema casierului

Denumirea problemei

Problema casierului.

Descrierea problemei

Se imită lucrul casierului. De la tastatură se introduce costul cumpărăturii și suma de bani primită de la cumpărător. Casierul calculează restul, care trebuie să-l returneze cumpărătorului. Restul trebuie să fie format dintr-un număr minim de bancnote.

Introducerea datelor inițiale

Se introduc 2 numere întregi (costul cumpărăturii și suma plătită), fiecare din rând nou.

Afișarea rezultatelor

Se afișează restul calculat și numărul de bancnote de fiecare fel care vor fi returnate cumpărătorului.

Problema casierului

Erori

- dacă nu au fost introduse ambele numere, programul va aștepta următoarea introducere;
- dacă au fost introduse mai mult de două numere, atunci celelalte numere se ignorează;
- dacă în rând au fost introduse mai multe numere, atunci programul afișează un mesaj de eroare și se termină.

Exemplu

Costul cumpărăturii 117 Suma plătită 200 Rest 83 Bancnote a câte 500 0 Bancnote a câte 200 0 Bancnote a câte 100 0 Bancnote a câte 50 1
Bancnote a câte 20 1
Bancnote a câte 10 1
Bancnote a câte 5 0
Bancnote a câte 1 3

Introducerea datelor iniţiale

- 1.1. Introducerea costului cumpărăturii;
- 1.2. Introducerea sumei plătite.

Calcularea rezultatelor

- **2.1.** calcularea restului;
- 2.2. calcularea numărului de bancnote a câte 500 lei;
- 2.3. calcularea numărului de bancnote a câte 200 lei;
- 2.4. calcularea numărului de bancnote a câte 100 lei;
- 2.5. calcularea numărului de bancnote a câte 50 lei;
- 2.6. calcularea numărului de bancnote a câte 20 lei;
- 2.7. calcularea numărului de bancnote a câte 10 lei;
- 2.8. calcularea numărului de bancnote a câte 5 lei;
- 2.9. calcularea numărului de bancnote a câte 1 leu.

Afişarea rezultatelor

- **3.1.** afişarea restului;
- 3.2. afișarea numărului de bancnote a câte 500 lei;
- 3.3. afișarea numărului de bancnote a câte 200 lei;
- 3.4. afișarea numărului de bancnote a câte 100 lei;
- 3.5. afișarea numărului de bancnote a câte 50 lei;
- 3.6. afișarea numărului de bancnote a câte 20 lei;
- 3.7. afișarea numărului de bancnote a câte 10 lei;
- 3.8. afișarea numărului de bancnote a câte 5 lei;
- 3.9. afișarea numărului de bancnote a câte 1 leu.

Detalierea subproblemei 1.1. Introducerea costului cumpărăturii.

Declararea variabilei:

Cost_cump: Natural

Algoritmul de rezolvare a subproblemei 1.1.

WriteString('Costul cumpărăturii?')

ReadNat(Cost_cump)

WriteIn

Detalierea subproblemei 1.2. Introducerea sumei plătite.

Declararea variabilei:

Suma_platita: Natural

Algoritmul de rezolvare a subproblemei 1.2.

WriteString('Suma plătită?')

ReadNat(Suma_platita)

Writeln

Detalierea subproblemei 2. Calcularea rezultatelor

Declararea variabilelor:

Rest: Natural

B500: Natural

B200: Natural

B100: Natural

B50: Natural

B50: Natural

B20: Natural

B10: Natural

B5: Natural

B1: Natural

Detalierea subproblemei 2. Calcularea rezultatelor

Calcularea restului:

Rest := Suma_platita - Cost_cump

Calcularea numărul bancnotelor a câte 500 lei

B500 := Rest div 500

Calcularea numărul bancnotelor a câte 200 lei

 $X := Rest \ mod \ 500$ $B200 := X \ div \ 200$

Calcularea numărul bancnotelor a câte 100 lei

 $X := X \mod 200$ B100 := X div 100

Calcularea numărul bancnotelor a câte 50 lei

 $X := X \mod 100$ $B50 := X \operatorname{div} 50$

Detalierea subproblemei 2. Calcularea rezultatelor

Calcularea numărul bancnotelor a câte 20 lei

 $X := X \mod 50$ B20 := X div 20

Calcularea numărul bancnotelor a câte 10 lei

 $X := X \mod 20$ B10 := X div 10

Calcularea numărul bancnotelor a câte 5 lei

 $X := X \mod 10$ $B5 := X \operatorname{div} 5$

Calcularea numărul bancnotelor a câte 1 leu

 $B1 := X \mod 5$

Detalierea subproblemei 3.

Afişarea rezultatelor

Afișarea restului

```
WriteString('Rest=')
WriteNat(Rest)
WriteIn
```

Afișarea bancnotelor

```
WriteString('Bancnote a câte 500 lei ')
WriteNat(B500)
WriteIn
*
WriteString('Bancnote a câte 200 lei ')
WriteNat(B200)
WriteIn
*
WriteString('Bancnote a câte 100 lei ')
WriteNat(B100)
WriteIn
```

Modelul descrierii algoritmului în pseudocod

```
Algoritm <nume>
Var
lista variabilelor utilizate>
Begin
<operaţii>
End
```

Algoritmul Casier

Var

Cost_cump: Natural

Suma_platita: Natural

Rest: Nnatural

B500: Natural

B200: Natural

B100: Natural

B50: Natural

B50: Natural

B20: Natural

B10: Natural

B5 : Natural

B1: Natural

X: Natural

Lista variabilelor

Begin

WriteString('Costul cumpărăturii?')

ReadNat(Cost_cump)

Writeln

WriteString('Suma plătită?')

ReadNat(Suma_platita)

Writeln

Subproblema 1

Rest:=Suma_platita – Cost_cump

B500:= Rest div 500

X:= Rest mod 500

B200:=X div 200

 $X:=X \mod 200$

Subproblema 2

B100:=X div 100

 $X:=X \mod 100$

B50:=X div 50

 $X:=X \mod 50$

B20:=X div 20

 $X:=X \mod 20$

B10:=X div 10

 $X:=X \mod 10$

B5:=X div 5

B1:=X mod 5

Subproblema 2

WriteString('Rest=')

WriteNat(Rest)

Writeln

WriteString('Bancnote de 500 lei ')

WriteNat(B500)

Writeln

WriteString('Bancnote de 200 lei ')

WriteNat(B200)

Writeln

WriteString('Bancnote de 100 lei ')

WriteNat(B100)

Writeln

Subproblema 3

```
WriteString('Bancnote de 50 lei ')
WriteNat(B50)
Writeln
WriteString('Bancnote de 20 lei ')
WriteNat(B20)
Writeln
WriteString('Bancnote de 10 lei ')
Writenat(B10)
Writeln
WriteString('Bancnote de 5 lei ')
Writenat(B5)
Writeln
WriteString('Bancnote de 1 leu ')
Writenat(B1)
Writeln
```

Subproblema 3

End

Sarcini pentru lucrul independent

- 1. Să se determine aria unui cerc în funcție de diametrul său.
- 2. Elaborați algoritmul care citește de la tastatură un număr natural, format din 4 cifre și determină suma primelor 2 cifre a acestui număr și suma ultimelor două cifre ale acestui număr.
- 3. Elaborați algoritmul care transformă viteza, exprimată în km/oră în m/s.