Spanning Tree and Rapid Spanning Tree Protocol

Cisco Guide for Beginners

© Dan Mill Training

This is a generic cheat sheet and not for a specific use case.

What is Spanning Tree Protocol (STP)?

Spanning Tree Protocol (STP) is a network protocol that prevents loops in Layer 2 switched networks. When you have multiple paths between switches (for redundancy), STP automatically blocks some paths to prevent broadcast storms and ensure there's only one active path between any two network points.

Why Do We Need STP?

The Problem: Layer 2 Loops

- Switches flood unknown traffic out all ports
- In a loop, traffic circulates endlessly
- Causes broadcast storms and network crashes
- MAC address tables become unstable

The Solution: STP

- Automatically detects loops
- Blocks redundant paths
- Maintains network redundancy
- Activates backup paths when primary fails

How STP Works

STP Process Overview

- 1. **Elect Root Bridge** One switch becomes the central reference point
- 2. **Calculate Path Costs** Determine best path to root bridge
- 3. Select Root Ports Choose best port on each switch toward root
- 4. **Select Designated Ports** Choose forwarding port for each network segment
- 5. **Block Redundant Ports** Put remaining ports in blocking state

STP Port States

State	Duration	Description	Forwards Data	Learns MAC	
Disabled	N/A	Port administratively down	No	No	
Blocking	20 seconds	Receives BPDUs only	No	No	
Listening	15 seconds	Processes BPDUs, no data	No	No	
Learning	15 seconds	Builds MAC table	No	Yes	
Forwarding	N/A	Normal operation	Yes	Yes	

Total Convergence Time: 50 seconds (20 + 15 + 15)

STP Components

Bridge ID

Structure: Priority (2 bytes) + MAC Address (6 bytes)

Default Priority: 32768 (can be modified in increments of 4096)

Example: 32768.0012.3456.789A

Root Bridge Election

• Switch with **lowest Bridge ID** becomes Root Bridge

• Priority compared first, then MAC address

• Root Bridge is reference point for all path calculations

Port Costs

Default costs based on interface bandwidth:

Interface Speed	STP Cost	RSTP Cost
10 Mbps	100	2,000,000
100 Mbps	19	200,000
1 Gbps	4	20,000
10 Gbps	2	2,000

BPDU (Bridge Protocol Data Unit)

Configuration BPDU contains:

- Root Bridge ID
- Sender's Bridge ID
- Root Path Cost
- Port ID

Message Age, Max Age, Hello Time

Default Timers:

• Hello Time: 2 seconds

Forward Delay: 15 seconds

• Max Age: 20 seconds

STP Port Types

Root Port

- One per switch (except Root Bridge)
- Port with lowest cost path to Root Bridge
- Always in Forwarding state

Designated Port

- One per network segment
- Port that **forwards traffic** for that segment
- Located on switch closest to Root Bridge

Blocked Port

- Redundant ports blocked to prevent loops
- Receives BPDUs but doesn't forward data
- Backup path activated if primary fails

Rapid Spanning Tree Protocol (RSTP)

What is RSTP?

IEEE 802.1w - Enhanced version of STP providing:

- **Faster convergence** (seconds instead of 50 seconds)
- Backward compatibility with classic STP
- Improved port roles and states
- Better handling of topology changes

RSTP Improvements

- Proposal/Agreement mechanism for fast convergence
- **Edge ports** for end devices (immediate forwarding)

- Point-to-point link detection
- Alternative and backup port roles

RSTP Port States

RSTP Port States (Simplified)

RSTP State STP Equivalent		Description	
Discarding	Blocking/Listening Not forwarding, learning, or relaying		
Learning Learning		Building MAC table, not forwarding	
Forwarding Forwarding Normal operation		Normal operation	
◀	•	•	

No more Listening state in RSTP

RSTP Port Roles

Root Port

- Same as STP
- Best path to Root Bridge

Designated Port

- Same as STP
- Forwards traffic for network segment

Alternative Port

- Backup path to Root Bridge
- Different switch than current Root Port
- Quickly becomes Root Port if needed

Backup Port

- Backup Designated Port
- Same switch, different port
- Less common in modern networks

Edge Port

- Connected to end devices
- Immediately transitions to Forwarding
- Equivalent to PortFast in Cisco

RSTP Convergence

Fast Convergence Mechanisms

Proposal/Agreement

- 1. New switch connects to network
- 2. Sends Proposal on all ports
- 3. **Designated switch responds** with Agreement
- 4. **Immediate transition** to Forwarding (no timers)

Edge Port Recognition

- Automatically detects end device connections
- Immediate Forwarding state
- No BPDU exchange expected

Point-to-Point Links

- Full-duplex links between switches
- Enables fast convergence mechanisms
- Auto-detected or manually configured

Cisco STP Variants

Per-VLAN Spanning Tree (PVST+)

- Cisco proprietary
- Separate STP instance per VLAN
- Allows per-VLAN root bridges
- Load balancing across VLANs possible

Rapid Per-VLAN Spanning Tree (RPVST+)

- Cisco implementation of RSTP
- Per-VLAN rapid convergence
- Default on modern Cisco switches
- Backward compatible with PVST+

Multiple Spanning Tree (MST)

• IEEE 802.1s standard

- Maps multiple VLANs to single instance
- Reduces BPDU overhead
- Complex configuration

Basic Cisco STP Configuration

View STP Status

Switch# show spanning-tree brief Switch# show spanning-tree vlan 1

Configure Root Bridge

Switch(config)# spanning-tree vlan 1 root primary Switch(config)# spanning-tree vlan 1 root secondary

Manual Priority Configuration

Switch(config)# spanning-tree vlan 1 priority 4096

Configure Port Cost

Switch(config)# interface gigabit0/1 Switch(config-if)# spanning-tree cost 10

Enable PortFast (Edge Port)

Switch(config)# interface gigabit0/1 Switch(config-if)# spanning-tree portfast

Global PortFast for Access Ports

Switch(config)# spanning-tree portfast default

Enable RSTP (Rapid Spanning Tree)

Switch(config)# spanning-tree mode rapid-pvst

Verify RSTP is Enabled

Switch# show spanning-tree summary Switch# show spanning-tree mode

STP vs RSTP Comparison

STP (802.1D)	RSTP (802.1w)
30-50 seconds	1-6 seconds
5 states	3 states
3 roles	5 roles
Slow	Fast
N/A	Yes
Original	Enhanced
	30-50 seconds 5 states 3 roles Slow N/A

Common STP Issues and Solutions

Root Bridge Placement

Problem: Root Bridge in wrong location **Solution:**

- Manually configure root bridge in network core
- Use spanning-tree vlan X root primary

Convergence Time

Problem: Slow convergence with STP **Solution:**

- Upgrade to RSTP/RPVST+
- Configure PortFast on access ports
- Use UplinkFast/BackboneFast (legacy)

Topology Changes

Problem: Frequent topology change notifications **Solution:**

- Identify source of changes
- Configure PortFast on access ports
- Check for duplex mismatches

Loop Prevention

Problem: Temporary loops during convergence **Solution:**

Ensure proper STP configuration

- Use BPDU Guard on access ports
- Implement Root Guard on uplinks

STP Best Practices

Design Recommendations

- Place Root Bridge in network core/distribution layer
- Configure backup Root Bridge for redundancy
- Use consistent VLAN-to-instance mapping
- Document STP topology and port roles

Port Configuration

- Enable PortFast on all access ports
- Configure BPDU Guard on access ports
- Use Root Guard on distribution uplinks
- Set appropriate port costs if needed

Monitoring and Maintenance

- Regular topology verification with show commands
- Monitor for unexpected Root Bridge changes
- Check for blocked ports and verify redundancy
- Update documentation after network changes

Verification Commands

Basic STP Information

Switch# show spanning-tree summary Switch# show spanning-tree root Switch# show spanning-tree bridge

Port-Specific Information

Switch# show spanning-tree interface gigabit0/1 Switch# show spanning-tree interface gigabit0/1 detail

Troubleshooting Commands

Switch# show spanning-tree inconsistentports Switch# show spanning-tree blockedports Switch# debug spanning-tree events

Quick Reference

STP Port States Progression

Disabled → Blocking → Listening → Learning → Forwarding

RSTP Port States Progression

Discarding → Learning → Forwarding

Default STP Timers

• Hello Time: 2 seconds

• Forward Delay: 15 seconds

• Max Age: 20 seconds

Root Bridge Selection

1. Lowest Priority (default 32768)

2. **Lowest MAC Address** (if priority ties)

Port Role Selection

- 1. Lowest Root Path Cost
- 2. Lowest Sender Bridge ID
- 3. Lowest Sender Port ID

Remember: STP prevents loops but RSTP does it faster! Always configure the Root Bridge manually in the network core and use PortFast on access ports to improve convergence times.

This document is part of the Cisco networking training materials by Dan Mill Training.