Cvičení 11

- **Úloha 1.** Náš algoritmus na hledání průsečíků úseček od zadaných úseček očekával následující čtyři pravidla "obecné polohy". Vymyslete, jak algoritmus upravit, aby je očekávat nemusel.
 - 1. Zádné tři úsečky nesdílí společný bod.
 - 2. Průnikem každých dvou úseček je nejvýš jeden bod (zde domyslete, co bychom vlastně mohli chtít vypisovat, pokud pravidlo neplatí).
 - 3. Krajní bod žádné úsečky neleží na jiné úsečce.
 - 4. Neexistují vodorovné úsečky.
- **Úloha 2.** Ukažte příklad n úseček v "obecné poloze" (podle předchozí definice), které mají $\Theta(n^2)$ průsečíků.
- **Úloha 3.** Navrhněte algoritmus, který nalezne nejdelší vodorovnou úsečku ležící uvnitř daného (ne nutně konvexního) mnohoúhelníku.
- * Úloha 4. Je dána množina bodů v rovině. Vybudujte datovou strukturu, která pro zadaný obdélník rychle spočítá, kolik bodů v něm leží (strany obdélníku budou rovnoběžné s osami).

Úloha 5. Obecnější Voroného diagram.

Voroného diagram množiny bodů M je rovinný graf (kde povolujeme hrany nekonečné délky), jehož každá stěna obsahuje právě body ležící blíže k některému bodu v M, než ke všem ostatním.

Jak by to dopadlo, kdyby prvky M nebyly pouze body, ale mohly by to být i úsečky? Dokažte, že v takovém případě diagram opět tvoří rovinné nakreslení grafu, ovšem jeho hrany nemusí být pouze úsečky a (polo)přímky. Jak ještě můžou hrany vypadat?

Úloha 6. Barevné body.

V rovině je dána množina červených a množina zelených bodů. Sestrojte přímku, která obě množiny oddělí. Na jedné její straně tedy budou ležet všechny červené body, zatímco na druhé všechny zelené. Navrhněte algoritmus, který takovou přímku nalezne.

Úloha 7. Představme si, že máme *blackbox* (podproceduru), která pro zadanou množinu bodů v rovině najde body na jejím konvexním obalu a vydá je seřazené podle pořadí, v jakém se na hranici konvexního obalu nacházejí.

Ukažte, že s pomocí takové podprocedury můžeme třídit obecná čísla (a takový algoritmus na hledání konvexní obálky tak nejspíš nepůjde udělat v lepším čase než $\mathcal{O}(n\log n)$)

Úloha 8. (*z minulého cvičení*) Dokažte, že každou booleovskou formuli lze přeložit na booleovský obvod jehož hloubka je logaritmická v délce formule.