Python

Java

Théorie des langages de programmation Le projet (III)

TOT OIL

C++

Alain Chillès – 祁冲

ParisTech Shanghai Jiao Tong 上海交大—巴黎高科卓越工程师学院

9 novembre 2020 - 2020年11月9日 - 庚子九月廿四

APL

Fortran

Plan

ı y unun

Java

Prolog

Forth

Projet

Que faut-il faire pour interpréter?

Pascal

APL

Fortran

Interprète – mode simple

- Interaction avec l'environnement, on connaît tout (table des symboles, piles, machine virtuelle, etc.)
- pas de définition de nouvelles fonctions, uniquement les fonctions de base;
- il faut séparer les informations !

Exemple

La fonction +

 Prend deux entiers sur la pile de données, les additionne et met le résultat sur la pile de données.

Répartition des informations

- Prolog
- Dans la table des symboles, on doit mettre :
 - Le nom;
 - l'adresse où est le code ;
- Dans la machine virtuelle, on doit mettre
 - Le code ;
 - et... ?

Pascal

APL T

Objets de base : seront définis en langage C

- Les objets qui seront sur la pile de données : les entiers, les adresses des chaînes de caractères (où seront rangées les chaînes de caractères ?);
- les fonctions de base : dup, drop, swap, ., count, type, =, *, +, -, etc.
 - les structures de contrôles seront réservées à la compilation...

Problème des chaînes de caractères

Java

Le rangement usuel en Forth(et donc en L_{AC}) est la longueur, suivie des codes ascii des caractères la composant.

Exemple

La chaîne "Alain" sera rangée sous la forme :

5 | 65 | 108 | 97 | 105 | 110

En langage C, elle sera rangée sous la forme :

65 | 108 | 97 | 105 | 110 | 0

Mots de base

- dup(n n n): duplique le sommet de la pile de données.
- drop(n): supprime le sommet de la pile de données.
- swap (n1 n2 n2 n1): échange les deux éléments sur le haut de la pile de données.
- (e) : imprime l'entier qui est sur le sommet de la pile de données et le supprime.
- count (ad ad' e) : prend l'adresse de chaîne en haut de la pile, et la remplace par l'adresse du début de la chaîne sans la longueur et met la longueur sur le sommet.
- type (ad e): imprime e caractères dont les codes sont à partir de ad.
- $\mathbf{e} = (\mathbf{e} \mathbf{1} \ \mathbf{e} \mathbf{2} \mathbf{b})$: teste si $\mathbf{e}_1 = \mathbf{e}_2$ et empile un booléen.

7

Choix simples

- Sur la pile des données, il n'y aura que des entiers (qui pourront être lus comme des entiers, des adresses de chaînes, des booléens, etc.)
- Sur la pile de retour, il n'y aura que des entiers.
- Dans la table des symboles et la machine virtuelle, il n'y aura que des entiers (pour simplifier la lecture et l'écriture).

Exemple de rangement : la fonction +

Dans la table des symboles

Numéro	0	1	2	3
LACL WALVE	0	1	43	0
Signification		1	+	С

Où l=1 est la longueur du nom, 43 est le code de + et c l'endroit où trouver dans la machine virtuelle le code de +. (c se nomme le Cfa de + – Code Field Address).

Dans la machine virtuelle

Numéro	0	1
VM	0	0

Où le premier 0 signale que c'est une fonction de base (codée en C) et le deuxième 0 son numéro parmi les fonctions de base.

Exemple de rangement : la fonction swap

Dans la table des symboles

Numéro	4	5	6	7	8	9	10
LAC	1	4	115	119	97	112	2
Signification	а	1	S	W	а	р	С

Où a=1 désigne l'adresse dans la table des symboles où commence le nom de la fonction précédemment définie (ici +), et c=2 désigne le Cfa de swap.

Dans la machine virtuelle

Numéro	0	1	2	3
VM	0	0	0	1

Interprète sans définition de fonctions

On veut interpréter ma phrase suivante :

Comment faire?

Analyse lexicale : on obtient 6 lexèmes :

- Analyse syntaxique : il n'y en a pas !
- Analyse sémantique (se fait ici en même temps que l'exécution, lexème par lexème).
 - "2" existe et correspond au nombre 2 (de même, 3 et 4), 2 est empilé (de même 3 et 4);
 - "+" existe et correspond à la fonction 0 du processeur, on exécute la fonction 0 du processeur, etc.

Installation des fonctions de base

On peut concevoir une fonction en langage C qui permet de remplir correctement la table des symboles LAC et la machine virtuelle VM. Notons la declare base

```
Source C

1 void declare_base(char nom []);
```

La fonction + peut alors être déclarée par :

```
Source C 1 265 C26

1 declare_base("+");
```

Comment définir une fonction du processeur ?

```
Source C
  // Définition du processeur
  typedef void (*base)(void); // Type de la

→ fonction de base

   base processeur[50]; // Taille à préciser
Source C
1 // Supposons la fonction plus bien définie
2 // On la place dans le processeur
 processeur[0] = +
Source C
```

- 1 // Utilisation de la fonction du processeur
- processeur[0]();

Comment trouver si une fonction est déjà définie ?

Si la table des symboles est définie par :

		/	~	_							
Numero	0	\mathbb{O}	2	3	4	5	6	7	8	9	10
LAC	0	1	43	0	1	4	115	119	97	112	2
Signification		1	+	С	a	1	s	w	a	p	c

Cherchons la fonction +.

- On commence à la dernière adresse définie (ici 5, début de la fonction swap);
- on cherche si c'est + (1 43)... non? on prend la valeur de la case 4 = 5 1, c'est 1 (début de la fonction +), est-ce +? Oui! Son Nfa vaut donc 1, et on calcule son Cfa qui vaut 0 -case 3, obtenu en comptant à partir du Nfa, en tenant compte de la longueur du nom.

Cherchons la fonction 1. Le même procédé, nous fait passer par l'adresse 5, puis 1. On arrive en 0 (LAC[0]). La fonction n'est donc pas définie!

Comment exécuter ?

- "2" n'est pas une fonction, c'est un entier : on l'empile sur la pile de données (de même avec 3 et 4);
- "+" est une fonction ;
- on trouve le Cfa de +, c'est 0. On va à l'adresse VM[0], on y trouve 0, c'est donc une fonction de base, son numéro est en VM[1], c'est 0. On exécute processeur[0];
- "*" n'est pas définie, on génère une erreur et on vide les piles de données et de retour...
- on définit * et ., et on recommence... Cela doit marcher!

Exécution de L_{AC} C Prolog L_{AC} - Exemple d'exécution Forth

1 2 3 4 + * . -> 14 ok

2 2 3 4 * - 5 6 + * . -> -110 ol

Pascal

APL

Fortran

16