Relatório

Heloisa Benedet Mendes GRR: 20221248

Bacharelado em Ciência da Computação Universidade Federal do Paraná - UFPR Curitiba, Brasil

heloisamendes@ufpr.br

Resumo – Este relatório detalha o processo de montagem de um circuito multiplicador de 5 bits, a partir de portas NOR, tendo como objetivo obter 10 bits.

Index Terms – portas, portas lógicas, circuito, circuito integrado, subcircuito, bit, bits

I. INTRODUÇÃO

Este trabalho requisitava a criação de um circuito multiplicador de dois valores A e B, ambos com k bits, que tivesse como resultado 2k bits, usando apenas um tipo de porta lógica. O circuito apresentado lidará com valores de 5 bits e irá gerar uma resposta de 10 bits, de acordo com as especificações, utilizando-se exclusivamente de portas NOR. Criado a partir da ferramenta Digital, o projeto possui circuitos integrados que facilitam o processo de criação e visualização.

II. ENTENDIMENTO

Primeiramente, deve-se entender como realizar uma multiplicação de números binários. Essa é uma operação bastante simples composta inicialmente pela multiplicação padrão de cada bit, seguida pela soma estruturada dos resultados. Essa é, em resumo, a função do circuito multiplicador.

Depois, é preciso descobrir qual porta lógica pode ser utilizada em cada passo desse processo, para então construir cada uma delas com a porta NOR.

III. CONSTRUÇÃO

O primeiro circuito integrado [1] utilizado – nomeado como mult5 - é composto inteiramente de portas ANDs, os exemplos da aula 11 [2] foram utilizados para a sua montagem, e tratam da multiplicação dos bits: cada um deles recebe um bit de A e o multiplica por todos os 5 bits de B. O esquema apresentado na tabela a seguir exemplifica o processo:

				B4	В3	B2	B1	B0
			X	A4	A3	A2	A1	A0
				0.4	0.3	0.2	0.1	0.0
			1.4	1.3	1.2	1.1	1.0	+
		24	23	22	21	20	+	+
	34	33	32	31	30	+	+	+
44	43	42	41	40	+	+	+	+

É importante perceber, antes de realizar a soma dos resultados, que a multiplicação de A0 por B0 não necessita de soma alguma. Esta é, portanto, a primeira saída obtida, nomeada a0, uma vez que é o bit de menor significância do número final.

Outro subcircuito utilizado – fullhalf45 – realiza a soma das duas primeiras linhas de resultados. Constituído de HALFADDERs e FULLADDERs, formados usando como base a aula 12 [3], tendo modificadas apenas as portas utilizadas, seu funcionamento está esquematizado na tabela a seguir

				04	03	02	01	00
			14	13	12	11	10	a0
		cout	s3	s2	s1	s0	a1	+
		24	23	22	21	20	+	+
	34	33	32	31	30	+	+	+
44	43	42	41	40	+	+	+	+

De forma análoga, o circuito integrado fullhalf55 realiza a soma do resultado obtido (s4, s3, s2, s1, s0) e da próxima linha, gerando, assim, um novo resultado que, por sua vez, é somado à próxima linha. O processo é repetido, no exemplo, 3 vezes, ou seja, até que todas as linhas sejam somadas.

É também de interesse que somas desnecessárias sejam evitadas, por isso, utilizando-se do mesmo raciocínio anterior, é possível encontrar a1 como o resultado s0 do fullhalf45, assim como a2 e a3 são gerado de forma direta após o primeiro e segundo uso, respectivamente, do fullhalf55. Consequentemente, quando todas as linhas são

somadas (após a terceira repetição do fullhalf55), obtém-se os bits restantes: a4, a5, a6, a7, a8 e a9. São gerados, portanto, 10 bits através do circuito apresentado, cumprindo os requisitos do trabalho.

IV. MONTAGENS

Tendo uma única porta lógica sido utilizada, suas respectivas criações serão especificadas nesta seção, valendo-se das propriedades de simplificação de expressões [4].

 AND: requere 3 portas NOR e usa como base 2 variáveis fornecidas (A e B, no exemplo), o circuito irá realizar a seguinte operação

• OR: exige 2 NORs, e segue a operação abaixo a partir de 2 variáveis

$$\begin{array}{ll} \sim (\sim (X+Y)+\sim (X+Y)) \\ \sim (\sim X.\sim Y+\sim X.\sim Y) & \text{De Morgan} \\ (X+Y).(X+Y) & \text{De Morgan} \\ X+Y & \text{idempotência} \end{array}$$

 XOR: utiliza 1 AND e 2 NORs, também usando 2 variáveis, e realiza a operação a seguir

```
\begin{array}{lll} \sim\!\!(X.Y+\sim\!\!(X+Y)) & \text{De Morgan} \\ \sim\!\!(X.Y+\sim\!\!X.\sim\!\!Y) & \text{De Morgan} \\ (\sim\!\!X+\sim\!\!Y) \cdot (X+Y) & \text{De Morgan} \\ \sim\!\!X.X+\sim\!\!X.Y+\sim\!\!Y.X+\sim\!\!Y.Y & \text{distributividade} \\ 0+\sim\!\!X.Y+X.\sim\!\!Y+0 & \text{complemento} \\ \sim\!\!X.Y+X.\sim\!\!Y & \text{elemento neutro} \end{array}
```

- HALFADDER: realiza a soma de 2 variáveis (A e B) e, por possuir 2 saídas (saída padrão e carry out), realiza 2 operações. A saída padrão é gerada através de um XOR, já o carry out, é calculado por um AND, ambos anteriormente detalhados.
- FULLADDER: opera a soma de 3 variáveis (Z, W e um possível carry in, normalmente gerado por um HALFADDER anterior) e também possui 2 saídas: saída padrão e carry out. A saída padrão é obtida por meio de 2 XORs, com a operação [5]

 \sim Z. \sim W.Cin + \sim Z.W. \sim Cin + Z. \sim W. \sim Cin + Z.W.Cin distributividade Z(\sim W. \sim Cin + W.Cin) + \sim Z(\sim W.Cin + W. \sim Cin) xor e xnor Z(\sim (W*Cin)) + \sim Z(W*Cin) G = W * Cin substituição

Z*G
substituição
Z * W * Cin
O carry out é gerado por 3 ANDs e 2 Ors,
com a operação
~Z.W.Cin + Z.~W.Cin + Z.W.~Cin + Z.W.Cin
~Z.W.Cin + Z.~W.Cin + Z.W.~Cin + Z.W.Cin +
Z.W.Cin
idempotência
W.Cin(Z+~Z) + Z.Cin(W+~W) + Z.W(Cin + ~Cin)
distributividade
W.Cin.1 + Z.Cin.1 + Z.W.1
w.Cin + Z.Cin + Z.W.1
elemento neutro

 $Z.\sim G + \sim Z.G$

xor

V. CONCLUSÃO

Este é um dos projetos possíveis para a criação de um circuito multiplicador de bits, o relatório apresenta todo o processo de concepção deste trabalho. O projeto realiza a multiplicação de duas variáveis de 5 bits A e B, bit por bit (A0B0, A0B1, ..., A4B3, A4B4), e soma os resultados obtidos, gerando, por fim, um valor de 10 bits (a9, a8, ..., a1, a0), através de diversas portas lógicas construídas a partir de um único tipo, NOR, utilizando-se de circuitos integrados montados com o fim de facilitação do processo.

VI. REFERÊNCIAS

[1] entendimento de como criar circuitos integrados pelo manual de utilização do Digital, disponível em: https://github.com/hneemann/Digital/releases/tag/v0.29

[2] aula 11 – Portas Lógicas, disponível em: https://ufprvirtual.ufpr.br/pluginfile.php/1650228/modresource/content/0/Aula%2011%20-%20Portas%20L%C3%B3gicas.pdf

[3] [5] maiores detalhes da operação do FullAdder são encontradas na aula 12- Adders, disponível em: https://ufprvirtual.ufpr.br/pluginfile.php/1654177/mod-resource/content/0/Aula%2012%20-%20Adders.pdf

[4] aulas 8a — Derivando Expressões, 8b — IntroSimplificações, e 9 — Simplificando Expressões pt2, disponíveis em:

https://ufprvirtual.ufpr.br/pluginfile.php/1646093/mod_resource/content/0/Aula%208a%20-%20Derivando%20Express%C3%B5es.pdf
https://ufprvirtual.ufpr.br/pluginfile.php/1644096/mod_resource/content/0/Aula%208b%20-%20IntroSimplifica%C3%A7%C3%B5es.pdf
https://ufprvirtual.ufpr.br/pluginfile.php/1646418/mod_resource/content/0/Aula%209%20-%20Simplificando%20Parte%202.pdf