STA 674 Practice Problems #3

- 1. Suppose that $X_1, ..., X_n \stackrel{iid}{\sim} N(\theta, \theta), \theta > 0$.
- **a.** Show that $T = \frac{1}{n} \sum_{i=1}^{n} X_i^2$ is a complete sufficient statistics for the family of distributions indexed by θ . What is the expectation of T?
- **b.** There is some function of θ , say $\tau(\theta)$, for which the UMVUE is "obvious." Identify $\tau(\theta)$.
- **c.** What is the limiting distribution of T?
- **d.** Find a consistent estimator of θ .
- **e.** Is the variance of the asymptotic distribution of the estimator in part **d.** equal to the CRLB? Please explain.
- **2.** Suppose that $X_1, ..., X_n \stackrel{iid}{\sim} f(x|\theta) = \frac{1}{1-\theta} I_{(\theta,1)}(x)$, where $0 < \theta < 1$.
- **a.** What is the distribution of $X_{(1)}$?
- **b.** Does an UMVUE of θ exist? If so, justify and find it.
- **c.** For Uniform(0,1) prior, find the Posterior Bayes Estimator of θ .
- **d.** In testing $H_0: \theta \leq 1/2$ versus $H_1: \theta > 1/2$, the following test was used: Reject H_0 if and only if $X_{(1)} > c$. Find c so that the test has size α and then find the power function of the test.
- **3.** Using a random sample of size n from a normal distribution with unknown mean μ and unknown variance σ^2 , derive the LRT procedure of size α for the test $H_0: \sigma^2 \leq \sigma_0^2$ versus $H_1: \sigma^2 > \sigma_0^2$.
- **4.** For a random sample of size n from a normal distribution with mean μ known, derive an equal-tailed $100(1-\alpha)\%$ confidence interval estimator of σ^2 using the pivotal quantity $\sum_{i=1}^{n} (X_i \mu)^2 / \sigma^2$. Compare the length of this interval with the length of the equal-tailed $100(1-\alpha)\%$ confidence interval estimator of σ^2 using the pivotal quantity $\sum_{i=1}^{n} (X_i \overline{X})^2 / \sigma^2$.