Table des matières

I Automatique	2
II Éléments finis	2
III Béziers-Splines	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3 4 4 4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 4 5
3 Approximation de surfaces	5
IV Optimisation linéaire	5
V Processus de Markov	6
VI Statistiques	7
1 Série chronologique	7
2 Modèle Linéaire Gaussien	8
3 ANOVA 1	8
4 MLG multiple	8
5 ANOVA 2	8

Première partie

Automatique

- 1. Définition linéaire, invariant.
- 2. Définition accessible, ensemble d'accessibilité, contrôlable, complètement contrôlable.
- 3. Solution de l'équation $\dot{x}(t) = Ax(t) + Bu(t)$
- 4. Définition transformée de Laplace. Transformée de f'. Transformée de cos, sin et exponentielle.
- 5. Fonction de transfert
- 6. Effet d'un changement de base
- 7. Définition observable, observateur
- 8. Définition stabilité, point d'équilibre
- 9. Lemme : expression de l'exponentielle de At
- 10. Théorème de Kalman sur la controlabilité
- 11. Propriété sur la controlabilité
- 12. Définition complètement observable
- 13. Théorème de Kalman sur l'observabilité
- 14. Observateur de Luenberger
- 15. Critère des valeurs propres : matrice définie par bloc, matrice de transfert
- 16. Stabilité avec valeur propre
- 17. Lemme de Lyapounov
- 18. Trouver l'entrée pour stabiliser asymptotiquement S à l'origine
- 19. Système non linéaire : définition du linéarisé, de ε
- 20. Définition de pseudo-linéaire
- 21. Définition de point d'équilibre critique
- 22. Théorème de Hartman
- 23. Définition système affine
- 24. Définition du crochet, de $\Delta(z)$
- 25. Condition nécessaire pour qu'un système affine soit contrôlable à partir de $z \in \mathbb{R}^n$
- 26. Ensemble d'accessibilité depuis z
- 27. Proposition avec la condition du rang
- 28. Théorème sur E compact avec un système affine
- 29. Si aucune fonction F, que dire pour la comtrôlabilité?
- 30. Condition nécessaire et suffisante pour la contrôlabilité complète d'un système affine complet.
- 31. Définition d'une fonction d'énergie de S
- 32. Définition d'une fonction propre
- 33. Définition système conservatif ou dissipatif
- 34. Commande feedback qui stabilise un système
- 35. Théorème sur la stabilisation assyptotique d'un système affine conservatif
- 36. Définition découplé

Deuxième partie

Éléments finis

1. Intégration par parties

- 2. Formule de Stokes
- 3. Formule d'Ostrogradsky
- 4. Première et deuxième identité de Green
- 5. Conditions de Dirichlet
- 6. Théorème de Lax-Milgram \sim Démonstration...
- 7. Choix de V_h , dimension?
- 8. Fonctions de base, problème discrétisé
- 9. Matrice de rigidité
- 10. R est définie positive
- 11. Espace de Hilbert (TOUT définir)
- 12. Définition de $\mathcal{D}(\Omega)$ et de $\mathcal{D}'(\Omega)$. Quid que Ω ?
- 13. Pseudo-topologie sur $\mathcal{D}(\Omega)$ et sur $\mathcal{D}'(\Omega)$
- 14. Dérivation des distributions. Continuité?
- 15. Définition de ∂^{α}
- 16. Définition de $L^p(\Omega)$. Produit scalaire et norme sur $L^2(\Omega)$.
- 17. Lien entre $\mathcal{D}(\Omega)$ et $L^2(\Omega)$.
- 18. Densité de $\mathcal{D}(\Omega)$.
- 19. Injection canonique
- 20. Lien entre la convergence dans $L^2(\Omega)$ et celle dans $\mathcal{D}'(\Omega)$
- 21. Définition de $H^1(\Omega)$ et $H^1(\Omega)$
- 22. Produit scalaire et norme sur $H^1(\Omega)$
- 23. $H^1(\Omega)$: 3 propriétés. Il est complet
- 24. Propriété de Rellich. Application compacte
- 25. $H_0^1(\Omega)$: Propriété.
- 26. Formule de Poincaré
- 27. Semi norme sur $H_0^1(\Omega)$ et lien avec $\| \bullet \|_{H^1(\Omega)}$
- 28. Définition de γ_0
- 29. Définition de $W^{m,p}(\Omega)$. Norme sur cet espace.
- 30. Fonctions μ -Holderienne
- 31. Condition d'injection canonique entre $H^m(\Omega)$ et $\mathcal{C}^s(\Omega)$
- 32. Norme sur un dual
- 33. Théorème de projection
- 34. Théorème de représentation de Riesz-Fréchet
- 35. Théorème de Stanpaccia
- 36. Lemme de Céa
- 37. Qu'est-ce qu'un élément fini?
- 38. Définition d'unisolvance. Comment la démontrer?

Troisième partie

Béziers-Splines

1 Approximation de courbes dans \mathbb{R}

1.1 Courbes paramétrées

1. Régularité, p-régulier

- 2. Arc admet un veteur limite tangeant
- 3. Suivant p et q pairs et impairs
- 4. Branches infinies dans le cas des courbes planes
- 5. Revoir réduction d'intervalle
- 6. Longueur de l'arc
- 7. Arcs équivlents
- 8. Courbes gauche: tangente, plan normal, plan osculateur, normale principale
- 9. Paramétrisation normale, abscisse curviligne
- 10. Exemple de paramètre admissible
- 11. Courbure algébrique, rayon de courbure, centre de courbure, cercle osculateur, développée
- 12. Formules de Frénet
- 13. Trouver un plan tangeant

1.2 Splines

- 14. Définition de la suite τ , r, $\mathcal{P}^{k,\tau,r}$
- 15. Dimension et base de $\mathcal{P}^{k,\tau,r}$
- 16. Particularité des fonctions splines, dimension de l'espace des fonctions splines
- 17. Conditions (C) pour splines cubiques
- 18. Unicité?
- 19. Problème de minimisation vérifié par une fonction spline cubique

1.3 B-Splines

- 20. Définition de nœuds, multiplicité k
- 21. Définition de $w_{ij}(x)$
- 22. Relation de récurrence pour les $B_{i,k}$
- 23. Quelle multiplicité pour avoir $B_{i,k}$ nul?
- 24. 6 propriétés des $B_{i,k}$
- 25. Formule de dérivée à droite
- 26. Définition de $\mathcal{P}^{k,\tau}$
- 27. Lien entre n, m et k. Condition pour une base.

1.4 Algorithme

- 28. Définition de S
- 29. Algorithme de De Casteljan dévaluation en un point
- 30. Algorithme des dérivées
- 31. Algorithme d'insertion d'un nœud

2 Approximation de courbes dans \mathbb{R}^s

2.1 Courbes B-Splines

- 32. Définition des polynômes de Bernstein, expression explicite
- 33. 5 propositions
- 34. Définition d'une courbe B-Spline, point de contrôle, polygone
- 35. 3 propriétés des courbes B-Spline

2.2 Algorithmes

- 36. Algorithme d'évaluation. Cas d'une courbe de Bézier.
- 37. Algorithme de calcul de dérivées.
- 38. Raccord entre deux courbes

3 Approximation de surfaces

- 39. Espace de Sobolev + norme
- 40. Injections canoniques, convergence faible
- 41. Injection canonique dans le cas des espaces de Sobolev
- 42. Injections compacts
- 43. Théorème de Stanpacchia
- 44. Théorème de Necas

Quatrième partie

Optimisation linéaire

- 1. Définition infimum, minimum
- 2. Définition coercive
- 3. Deux exemples fonctions coercives
- 4. Exemple de J coercive
- 5. Condition pour que J atteigne son minimum
- 6. Rapport frontière et minimum
- 7. Définition dérivée directionnelle, Gâteaux-différentiable, gradient
- 8. Définition de Fréchet-différentiable
- 9. Fréchet \Rightarrow Gâteaux
- 10. Définition espace convexe, épigraphe.
- 11. Équivalence fonction convexe
- 12. Définition strictement convexe, α -convexe.
- 13. Équivalence à f convexe
- 14. Équivalence à α -convexe
- 15. Condition d'optimalité dans un ouvert
- 16. Condition nécessaire puis condition suffisante pour un minimum
- 17. Théorème de Kuhn et Tucker
- 18. Contraintes qualifiées
- 19. Théorème dans le cas des contraintes qualifiées
- 20. Condition nécessaire de qualification
- 21. Lemme : équivalence à un minimum
- 22. Équivalent à minimum avec λ
- 23. Point selle
- 24. Propriété des points selles : système vérifié
- 25. Lemme : inégalité sup et inf
- 26. Problème dual
- 27. Problème d'optimisation linéaire, passage du problème sous forme canonique à la forme standard

- 28. Ensemble des solutions réalisables, sommets
- 29. Définition de Γ , A_{γ} et \mathcal{B} , composantes de/hors base.
- 30. Définition de x_X , x_N , B, N. Redéfinition de Ax.
- 31. Définition d'une solution de base associé à la base γ
- 32. Définition d'une solution de base réalisable, base réalisable. Solution non dégénéré.
- 33. Les sommets de X_{ad} sont exactement les solutions de base réalisable
- 34. S'il existe une solution optimale de (P_L) alors il existe une solution optimale de base réalisable
- 35. Lemme sur $c^T x$ et vecteur des prix marginaux
- 36. Lien vecteur des prix marginaux et solution optimale
- 37. Définition de E_{γ} et de S_{γ,j^*}
- 38. Si S_{γ,j^*} non vide?
- 39. Redéfinition de δ , comme quoi il appartient à B
- 40. Critère de Dantzig
- 41. Définition des vraibles entrantes et sortantes selon le critère naturel et le critère de Bland
- 42. Problème de première ou deuxième espèce
- 43. Comment construire une base réalisable dans le cas d'un problème de première espèce
- 44. Bien connaître les problèmes de deuxième espèce
- 45. Définition du problème dual (et comment on y arrive)
- 46. Inégalité entre primal et dual
- 47. Corollaire
- 48. Équivalence des solutions
- 49. Définition de base primale ou duale réalisable.

Cinquième partie

Processus de Markov

- 1. Définition de processus
- 2. Propriété de Markov, homogénéité
- 3. Mesure de probabilité, $f: E \to \mathbb{C}$: représentation vectorielle
- 4. Matrice stochastique
- 5. Relations de Kolmogorov
- 6. Définition "i conduit à j", conduit) un préordre. Notation.
- 7. i et j communiquent, relation d'équivalence, notation.
- 8. Définition transitive, finale, ergodiques.
- 9. Existence de classes finales dans le cas fini
- 10. Forme canonique matrice de transition, puissance n
- 11. Si E fini, alors le processus finira presque surement dans une des classes finales
- 12. A quoi correspond $(I-Q)^{-1}$?
- 13. **B=NR**?
- 14. Ensemble des entiers avec un chemin
- 15. Propriété fondamentale
- 16. $\mathbf{PGCD}(N_{ii})$
- 17. Période d'une classe, classe apériodique.
- 18. Forme de N_{ii} et de N_{ij}

- 19. Définition de $i \sim j$
- 20. Nombre de sous-classes cycliques
- 21. Chaîne régulière
- 22. Équilvalence à chaîne régulière
- 23. Théorème fondamental des chaînes régulières
- 24. Théorème ergodique
- 25. Générateur infinitésimal
- 26. Propriété des a_i^i
- 27. Théorème Backward et Forward
- 28. Définition d'absorbant, équivalence avec le générateur infinitésimal
- 29. Définition des instants de transition
- 30. Théorème fondamental
- 31. Chaîne discrète associée, classification, écriture du générateur infinitésimal
- 32. Limite $e^{t\chi}$?
- 33. Temps moyen passé par j sachant qu'on est parti de i, transitoires
- 34. Autre moyen de l'avoir
- 35. Probabilité de finir dans une classe finale donnée
- 36. Équivalence à $i \rightsquigarrow j$
- 37. Chaîne régulière en temps continu. Équivalence
- 38. Définition de loi de probabilité invariante. Équivalence avec générateur infinitésimal.
- 39. Théorème fondamental pour les chaînes régulières
- 40. Théorème ergodique en temps continu
- 41. Processus d'entrée-Sortie : définition de S et T
- 42. Lois de S et de T
- 43. Loi de l'instant de première transition
- 44. Savoir retrouver le générateur infinitésimal
- 45. Processus de Poisson, processus de comptage
- 46. Hypothèses des processus de comptage
- 47. Théorème sur la loi de ces processus
- 48. Théorème sur la loi des processus de Poisson
- 49. Loi de la durée entre deux arrivées
- 50. Truc sur un espace mesurable

Sixième partie

Statistiques

1 Série chronologique

- 1. Définition suite chronologique
- 2. Deux modèles de décomposition : quelle combinaison? Dans quels cas va-t-on choisir l'un ou l'autre?
- 3. Moindres carrés : expression de a et b.
- 4. Mise en place de la méthode des deux points
- 5. Expression de r
- 6. Moindre carré polynomial : expression de θ^{MC}
- 7. Formule des moyennes mobiles
- 8. Définition MMC
- 9. Étape dans la décomposition d'une série chronologique

2 Modèle Linéaire Gaussien

- 10. Loi du chi2 : espérance et variance
- 11. Loi de Student, de Fisher, carré d'une Student
- 12. Définition MLG
- 13. Définition des estimateurs A, B et σ^2 . Lois de chacun.
- 14. d_r^2 ?
- 15. Statistiques pour avoir les intervalles de confiance pour α , β et σ^2
- 16. IC de chacun d'entre eux
- 17. Test significatif du lien linéaire : Stat et zone de rejet
- 18. Test d'un modèle linéaire spécifique
- 19. IC pour $\mathbb{E}(Y_0)$ et pour une observation Y_0
- 20. Test du caractère significatif de la liaison linéaire par comparaison de modèle
- 21. ANOVA 1 : Gueule des données et du modèle
- 22. Definition dimension
- 23. Définition de M_1 et M_p
- 24. Estimation des paramètres dans chacun des modèles
- 25. Statistique de test
- 26. Définition contraste
- 27. Statistique de test pour les contrastes
- 28. Estimateur des μ_i et des σ_i^2
- 29. IC pour μ_i

3 ANOVA 1

- 30. Facteur, niveau
- 31. Modèle de l'ANOVA 1 : modèle avec μ_i et avec les α_i (sans oublier les hypothèses)
- 32. Dimension du modèle
- 33. Approche comparaison de modèle : deux hypothèses testées. 5 étapes d'estimation dans modèle complet ou non
- 34. Statistique de test, sa loi sous H_0
- 35. Définition d'un contraste.
- 36. Pour un contraste donné : hypothèses de test, statistique de test et loi
- 37. Estimations des paramètres μ_i : intervalle de confiance
- 38. Comment pourrait-on contruire un IC pour les α_i ?

4 MLG multiple

- 39. Variance d'un vecteur aléatoire. Propriétés de l'espérance et de la variance.
- 40. Écriture vectorielle du MLG multiple
- 41. Estimateur de θ . Loi de T, d'une fonction de S^2
- 42. Construction d'un intervalle de confiance pour les θ_k .
- 43. Lien entre loi de Student et combinaison linéaire de composantes de θ
- 44. Revoir construction d'un IC pour une valeur inconnue y_0

5 ANOVA 2

- 45. Plan complet équilibré => Orthogonal
- 46. Modèle final d'ANOVA 2. Contrainte d'identifiabilité