Supplementary Material: Proof Appendix

The results in the appendix follows the order in the text. Additional auxiliary lemmas and propositions in the appendix respect that order as well.

Section 4 Forgetting in CTL

Section 4.1 V-bisimulation

Lemma 5. Let $\mathcal{B}_0, \mathcal{B}_1, \ldots$ be the ones in the definition of section 4.1. Then, for each $i \geq 0$,

- (i) $\mathcal{B}_{i+1} \subseteq \mathcal{B}_i$;
- (ii) there is a (smallest) $k \geq 0$ such that $\mathcal{B}_{k+1} = \mathcal{B}_k$;
- (iii) \mathcal{B}_i is reflexive, symmetric and transitive.

Proof. (i) Base: it is clear for i = 0 by the above definition. Step: suppose it holds for i = n, i.e., $\mathcal{B}_{n+1} \subseteq \mathcal{B}_n$. $(s,s') \in \mathcal{B}_{n+2}$

 \Rightarrow (a) $(s,s') \in \mathcal{B}_0$, (b) for every $(s,s_1) \in R$, there is $(s',s_1')\in R'$ such that $(s_1,s_1')\in \mathcal{B}_{n+1}$, and (c) for every $(s', s'_1) \in R'$, there is $(s, s_1) \in R$ such that $(s_1, s'_1) \in \mathcal{B}_{n+1}$ \Rightarrow (a) $(s, s') \in \mathcal{B}_0$, (b) for every $(s, s_1) \in R$, there is $(s', s'_1) \in R'$ such that $(s_1, s'_1) \in \mathcal{B}_n$ by inductive assumption, and (c) for every $(s', s'_1) \in R'$, there is $(s, s_1) \in R$ such that $(s_1, s_1') \in \mathcal{B}_n$ by inductive assumption $\Rightarrow (s, s') \in \mathcal{B}_{n+1}$.

(ii) and (iii) are evident from (i) and the definition of \mathcal{B}_i .

Lemma 1 The relation \leftrightarrow_V is an equivalence relation.

Proof. It is clear from Lemma 5 (ii) such that there is a $k \ge 1$ 0 where $\mathcal{B}_k = \mathcal{B}_{k+1}$ which is \leftrightarrow_V , and it is reflexive, symmetric and transitive by (iii).

Proposition 1 Let $i \in \{1, 2\}, V_1, V_2 \subseteq \mathcal{A}, s_i'$ s be two states, π_i 's be two paths and $\mathcal{K}_i = (\mathcal{M}_i, s_i)$ (i = 1, 2, 3) be Kstructures such that $\mathcal{K}_1 \leftrightarrow_{V_1} \mathcal{K}_2$ and $\mathcal{K}_2 \leftrightarrow_{V_2} \mathcal{K}_3$. Then:

- (i) $s'_1 \leftrightarrow_{V_i} s'_2$ (i = 1, 2) implies $s'_1 \leftrightarrow_{V_1 \cup V_2} s'_2$;
- (ii) $\pi'_1 \leftrightarrow_{V_i} \pi'_2$ (i = 1, 2) implies $\pi'_1 \leftrightarrow_{V_1 \cup V_2} \pi'_2$;
- (iii) for each path π_{s_1} of \mathcal{M}_1 there is a path π_{s_2} of \mathcal{M}_2 such that $\pi_{s_1} \leftrightarrow_{V_1} \pi_{s_2}$, and vice versa;
- (iv) $\mathcal{K}_1 \leftrightarrow_{V_1 \cup V_2} \mathcal{K}_3$;
- (v) If $V_1 \subseteq V_2$ then $\mathcal{K}_1 \leftrightarrow_{V_2} \mathcal{K}_2$.

Proof. In order to distinguish the relations $\mathcal{B}_0, \mathcal{B}_1, \ldots$ for different set $V \subseteq \mathcal{A}$, by \mathcal{B}_i^V we mean the relation $\mathcal{B}_1, \mathcal{B}_2, \ldots$ for $V \subseteq \mathcal{A}$. Denote as $\mathcal{B}_0, \mathcal{B}_1, \ldots$ when the underlying set V is clear from the context. Moreover, for the ease of notation, we will refer to \leftrightarrow_V by \mathcal{B} (i.e., without subindex).

(i) Base: it is clear for n = 0.

Step: For n>0, supposing if $(\mathcal{K}_1,\mathcal{K}_2)\in\mathcal{B}_i^{V_1}$ and $(\mathcal{K}_1,\mathcal{K}_2)\in\mathcal{B}_i^{V_2}$ then $(\mathcal{K}_1,\mathcal{K}_2)\in\mathcal{B}_i^{V_1\cup V_2}$ for all $0\leq i\leq n$. We will show that if $(\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_{n+1}^{V_1}$ and $(\mathcal{K}_1, \mathcal{K}_2) \in$ $\mathcal{B}_{n+1}^{V_2} \text{ then } (\mathcal{K}_1,\mathcal{K}_2) \in \mathcal{B}_{n+1}^{V_1 \cup V_2}.$ (a) It is evident that $L_1(s_1) - (V_1 \cup V_2) = L_2(s_2) - (V_1 \cup V_2).$

- (b) We will show that for each $(s_1, s_1^1) \in R_1$ there is

a $(s_2,s_2^1)\in R_2$ such that $(s_1^1,s_2^1)\in \mathcal{B}_n^{V_1\cup V_2}$. There is $(\mathcal{K}_1^1,\mathcal{K}_2^1)\in \mathcal{B}_{n-1}^{V_1\cup V_2}$ due to $(\mathcal{K}_1,\mathcal{K}_2)\in \mathcal{B}_n^{V_1\cup V_2}$ by inductive assumption. Then we only need to prove for each $(s_1^1, s_1^2) \in R_1$ there is a $(s_2^1, s_2^2) \in R_2$ such that $(\mathcal{K}_1^2, \mathcal{K}_2^2) \in \mathcal{B}_{n-2}^{V_1 \cup V_2}$ and for each $(s_2^1, s_2^2) \in R_2$ there is a $(s_1^1, k_2^1) \in \mathcal{B}_{n-2}$ and for each $(s_2^1, s_2^2) \in \mathcal{B}_2$ there is a $(s_1^1, s_1^2) \in \mathcal{B}_1$ such that $(\mathcal{K}_1^2, \mathcal{K}_2^2) \in \mathcal{B}_{n-2}^{V_1 \cup V_2}$. Therefore, we only need to prove that for each $(s_1^n, s_1^{n+1}) \in \mathcal{R}_1$ there is a $(s_2^n, s_2^{n+1}) \in \mathcal{R}_2$ such that $(\mathcal{K}_1^{n+1}, \mathcal{K}_2^{n+1}) \in \mathcal{B}_0^{V_1 \cup V_2}$ and for each $(s_2^n, s_2^{n+1}) \in \mathcal{R}_2$ there is a $(s_1^n, s_1^{n+1}) \in \mathcal{R}_1$ such that $(\mathcal{K}_1^{n+1}, \mathcal{K}_2^{n+1}) \in \mathcal{B}_0^{V_1 \cup V_2}$. It is evident that $L_1(s_1^{n+1}) - (V_1 \cup \mathcal{K}_1^{n+1}, \mathcal{K}_2^{n+1}) = \mathcal{B}_0^{V_1 \cup V_2}$. $(V_2) = L_1(s_2^{n+1}) - (V_1 \cup V_2)$ due to $(\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_{n+1}^{V_1}$ and $(\mathcal{K}_1,\mathcal{K}_2)\in\mathcal{B}_{n+1}^{V_2}.$ Where $\mathcal{K}_i^j=(\mathcal{M}_i,s_i^j)$ with $i\in\{1,2\}$ and $0 < j \le n+1$.

- (c) It is similar with (b).
 - (ii) It is clear from (i).
- (iii) The following property show our result directly. Let $V \subseteq \mathcal{A}$ and $\mathcal{K}_i = (\mathcal{M}_i, s_i)$ (i = 1, 2) be K-structures. Then $(\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}$ if and only if
- (a) $L_1(s_1) V = L_2(s_2) V$,
- (b) for every $(s_1, s_1') \in R_1$, there is $(s_2, s_2') \in R_2$ such that $(\mathcal{K}_1',\mathcal{K}_2')\in\mathcal{B}$, and
- (c) for every $(s_2, s_2') \in R_2$, there is $(s_1, s_1') \in R_1$ such that $(\mathcal{K}'_1, \mathcal{K}'_2) \in \mathcal{B}$,

where $\mathcal{K}'_i = (\mathcal{M}_i, s'_i)$ with $i \in \{1, 2\}$.

We prove it from the following two aspects:

 (\Rightarrow) (a) It is evident that $L_1(s_1) - V = L_2(s_2) - V$; (b) $(\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B} \text{ iff } (\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_i \text{ for all } i \geq 0, \text{ then for each }$ $(s_1, s_1') \in R_1$, there is a $(s_2, s_2') \in R_2$ such that $(\mathcal{K}_1', \mathcal{K}_2') \in$ \mathcal{B}_{i-1} for all i>0 and then $\tilde{L}_1(s_1')-V=L_2(s_2')-V$. Therefore, $(\mathcal{K}_1', \mathcal{K}_2') \in \mathcal{B}$. (c) This is similar with (b).

- (\Leftarrow) Obviously, $L_1(s_1) V = L_2(s_2) V$ implies that $(s_1, s_2) \in \mathcal{B}_0$; (b) implies that for every $(s_1, s_1') \in R_1$, there is $(s_2, s_2') \in R_2$ such that $(\mathcal{K}_1', \mathcal{K}_2') \in \mathcal{B}_i$ for all $i \geq 0$; (c) implies that for every $(s_2, s_2') \in R_2$, there is $(s_1, s_1') \in R_1$ such that $(\mathcal{K}'_1, \mathcal{K}'_2) \in \mathcal{B}_i$ for all $i \geq 0$
- $\Rightarrow (\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_i \text{ for all } i \geq 0$
- $\Rightarrow (\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}.$
- (iv) Let $\mathcal{M}_i = (S_i, R_i, L_i, s_i)$ $(i = 1, 2, 3), s_1 \leftrightarrow_{V_1} s_2$ via a binary relation \mathcal{B} , and $s_2 \leftrightarrow_{V_2} s_3$ via a binary relation \mathcal{B}'' . Let $\mathcal{B}' = \{(w_1, w_3) | (w_1, w_2) \in \mathcal{B} \text{ and } (w_2, w_3) \in \mathcal{B}_2\}$. It's evident that $(s_1, s_3) \in \mathcal{B}'$. We prove \mathcal{B}' is a $V_1 \cup V_2$ bisimulation containing (s_1, s_3) from the (a), (b) and (c) of the previous step (iii) of X-bisimulation (where X is a set of atoms). For all $(w_1, w_3) \in \mathcal{B}'$:
- (a) there exists $w_2 \in S_2$ such that $(w_1, w_2) \in \mathcal{B}$ and $(w_2,w_3) \in \mathcal{B}''$, and for all $q \notin V_1$, $q \in L_1(w_1)$ iff $q \in L_2(w_2)$ by $w_1 \leftrightarrow_{V_1} w_2$ and for all $q' \notin V_2$, $q' \in L_2(w_2)$ iff $q' \in L_3(w_3)$ by $w_2 \leftrightarrow_{V_2} w_3$. Then we have for all $r \notin V_1 \cup V_2$, $r \in L_1(w_1)$ iff $r \in L_3(w_3)$.
- (b) if $(w_1, u_1) \in \mathcal{R}_1$, then there exists $u_2 \in S_2$ such that $(w_2, u_2) \in \mathcal{R}_2$ and $(u_1, u_2) \in \mathcal{B}$ (due to $(w_1, w_2) \in \mathcal{B}$ and $(w_2, w_3) \in \mathcal{B}''$ by the definition of \mathcal{B}'); and then there exists $u_3 \in S_3$ such that $(w_3, u_3) \in \mathcal{R}_3$ and $(u_2, u_3) \in \mathcal{B}''$, hence $(u_1, u_3) \in \mathcal{B}'$ by the definition of \mathcal{B}' .

(c) if $(w_3, u_3) \in \mathcal{R}_3$, then there exists $u_2 \in S_2$ such that $(w_2, u_2) \in \mathcal{R}_2$ and $(u_2, u_3) \in \mathcal{B}_2$; and then there exists $u_1 \in S_1$ such that $(w_1, u_1) \in \mathcal{R}_1$ and $(u_1, u_2) \in \mathcal{B}$, hence $(u_1, u_3) \in \mathcal{B}'$ by the definition of \mathcal{B}' .

(v) Let $\mathcal{K}_{i,j} = (\mathcal{M}_i, s_{i,j})$ and $(s_{i,k}, s_{i,k+1}) \in R_i$ mean that $s_{i,k+1}$ is the (k+2)-th node in the path $(s_i, s_{i,1}, s_{i,2}, \dots, s_{i,k+1}, \dots)$ (i = 1, 2). We will show that

 $\begin{array}{l} (\mathcal{K}_1,\mathcal{K}_2) \in \mathcal{B}_n^{V_2} \text{ for all } n \geq 0 \text{ inductively.} \\ \text{Base: } L_1(s_1) - V_1 = L_2(s_2) - V_1 \\ \Rightarrow \text{ for all } q \in \mathcal{A} - V_1 \text{ there is } q \in L_1(s_1) \text{ iff } q \in L_2(s_2) \end{array}$

 \Rightarrow for all $q \in A - V_2$ there is $q \in L_1(s_1)$ iff $q \in L_2(s_2)$ due to $V_1 \subseteq V_2$

 $\Rightarrow L_1(s_1) - V_2 = L_2(s_2) - V_2, \text{ i.e., } (\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_0^{V_2}.$ Step: Supposing that $(\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_i^{V_2}$ for all $0 \le i \le k$ (k > 0), we will show $(\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_{k+1}^{V_2}$.

- (a) It is evident that $L_1(s_1) V_2 = L_2(s_2) V_2$ by base.
- (b) For all $(s_1, s_{1,1}) \in R_1$, we will show that there is a $(s_2, s_{2,1}) \in R_2 \text{ s.t. } (\mathcal{K}_{1,1}, \mathcal{K}_{2,1}) \in \mathcal{B}_k^{V_2}. \ (\mathcal{K}_{1,1}, \mathcal{K}_{2,1}) \in$ $\mathcal{B}_{k-1}^{V_2}$ by inductive assumption, we need only to prove the following points:

(a) For all $(s_{1,k}, s_{1,k+1}) \in R_1$ there is a $(s_{2,k}, s_{2,k+1}) \in$ R_2 s.t. $(\mathcal{K}_{1,k+1},\mathcal{K}_{2,k+1})\in\mathcal{B}_0^{V_2}$ due to $(\mathcal{K}_{1,1},\mathcal{K}_{2,1})\in\mathcal{B}_0^{V_2}$ $\mathcal{B}_k^{V_1}$. It is easy to see that $L_1(s_{1,k+1})-V_1=L_1(s_{2,k+1})-V_1$, then there is $L_1(s_{1,k+1})-V_2=$ $L_1(s_{2,k+1}) - V_2$. Therefore, $(\mathcal{K}_{1,k+1}, \mathcal{K}_{2,k+1}) \in \mathcal{B}_0^{V_2}$. (b) For all $(s_{2,k}, s_{2,k+1}) \in R_1$ there is a $(s_{1,k}, s_{1,k+1}) \in$ R_1 s.t. $(\mathcal{K}_{1,k+1},\mathcal{K}_{2,k+1})\in\mathcal{B}_0^{V_2}$ due to $(\mathcal{K}_{1,1},\mathcal{K}_{2,1})\in\mathcal{B}_0^{V_2}$ $\mathcal{B}_k^{V_1}$. This can be proved as (a).

(c) For all $(s_2, s_{2,1}) \in R_1$, we will show that there is a $(s_1, s_{1,1}) \in R_2$ s.t. $(\mathcal{K}_{1,1}, \mathcal{K}_{2,1}) \in \mathcal{B}_k^{V_2}$. This can be proved as (ii).

Theorem1 Let $V \subseteq \mathcal{A}$, \mathcal{K}_i (i = 1, 2) be two K-structures such that $\mathcal{K}_1 \leftrightarrow_V \mathcal{K}_2$ and ϕ a formula with $IR(\phi, V)$. Then $\mathcal{K}_1 \models \phi$ if and only if $\mathcal{K}_2 \models \phi$.

Proof. This theorem can be proved by inducting on the formula ϕ and supposing $Var(\phi) \cap V = \emptyset$. Let $\mathcal{K}_1 = (\mathcal{M}, s)$ and $\mathcal{K}_2 = (\mathcal{M}', s')$.

Case $\phi = p$ where $p \in \mathcal{A} - V$:

 $(\mathcal{M}, s) \models \phi \text{ iff } p \in L(s) \text{ (by the definition of satisfiability)}$ $\Leftrightarrow p \in L'(s')$ $(s \leftrightarrow_V s')$

 $\Leftrightarrow (\mathcal{M}', s') \models \phi$

Case $\phi = \neg \psi$:

 $(\mathcal{M}, s) \models \phi \text{ iff } (\mathcal{M}, s) \not\models \psi$

 $\Leftrightarrow (\mathcal{M}', s') \not\models \psi$ (induction hypothesis)

 $\Leftrightarrow (\mathcal{M}', s') \models \phi$

Case $\phi = \psi_1 \vee \psi_2$:

 $(\mathcal{M},s) \models \phi$

 $\Leftrightarrow (\mathcal{M}, s) \models \psi_1 \text{ or } (\mathcal{M}, s) \models \psi_2$

 $\Leftrightarrow (\mathcal{M}', s') \models \psi_1 \text{ or } (\mathcal{M}', s') \models \psi_2 \text{ (induction hypothesis)}$

 $\Leftrightarrow (\mathcal{M}', s') \models \phi$ Case $\phi = EX\psi$:

 $\mathcal{M}, s \models \phi$

 \Leftrightarrow There is a path $\pi=(s,s_1,...)$ such that $\mathcal{M},s_1\models\psi$ \Leftrightarrow There is a path $\pi' = (s', s'_1, ...)$ such that $\pi \leftrightarrow_V \pi'$ $(s \leftrightarrow_V s', \text{Proposition 1})$

 $\Leftrightarrow s_1 \leftrightarrow_V s_1'$ $(\pi \leftrightarrow_V \pi')$ $\Leftrightarrow (\mathcal{M}', s_1') \models \psi$ (induction hypothesis)

 $\Leftrightarrow (\mathcal{M}', s') \models \phi$ Case $\phi = EG\psi$:

 $\mathcal{M}, s \models \phi$

 \Leftrightarrow There is a path $\pi = (s = s_0, s_1, ...)$ such that for each $i \geq 0$ there is $(\mathcal{M}, s_i) \models \psi$

 \Leftrightarrow There is a path $\pi' = (s' = s'_0, s'_1, ...)$ such that $\pi \leftrightarrow_V \pi'$ $(s \leftrightarrow_V s', \text{Proposition 1})$

 $\Leftrightarrow s_i \leftrightarrow_V s_i'$ for each $i \geq 0$ $(\pi \leftrightarrow_V \pi')$

 $\Leftrightarrow (\mathcal{M}', s_i') \models \psi \text{ for each } i \geq 0$ $\Leftrightarrow (\mathcal{M}', s_i') \models \phi$ (induction hypothesis)

Case $\phi = E[\psi_1 U \psi_2]$:

 $\mathcal{M}, s \models \phi$

 \Leftrightarrow There is a path $\pi = (s = s_0, s_1, ...)$ such that there is $i \geq 0$ such that $(\mathcal{M}, s_i) \models \psi_2$, and for all $0 \leq j < i$, $(\mathcal{M}, s_i) \models \psi_1$

 \Leftrightarrow There is a path $\pi' = (s = s'_0, s'_1, ...)$ such that $\pi \leftrightarrow_V \pi'$ $(s \leftrightarrow_V s', \text{Proposition 1})$

 $\Leftrightarrow (\mathcal{M}', s_i') \models \psi_2$, and for all $0 \leq j < i (\mathcal{M}', s_i') \models \psi_1$ (induction hypothesis)

 $\Leftrightarrow (\mathcal{M}', s') \models \phi$

Proposition 2 Let $V \subseteq \mathcal{A}$ and (\mathcal{M}_i, s_i) (i = 1, 2) be two K-structures. Then

 $(s_1, s_2) \in \mathcal{B}_n$ iff $\operatorname{Tr}_i(s_1) \leftrightarrow_V \operatorname{Tr}_i(s_2)$ for every $0 \leq j \leq n$.

Proof. We will prove this from two aspects:

 (\Rightarrow) If $(s_1, s_2) \in \mathcal{B}_n$, then $Tr_j(s_1) \leftrightarrow_V Tr_j(s_2)$ for all $0 \le j \le n$. $(s, s') \in \mathcal{B}_n$ implies both roots of $Tr_n(s_1)$ and $Tr_n(s_2)$ have the same atoms except those atoms in V. Besides, for any $s_{1,1}$ with $(s_1, s_{1,1}) \in R_1$, there is a $s_{2,1}$ with $(s_2,s_{2,1})\in R_2$ s.t. $(s_{1,1},s_{2,1})\in \mathcal{B}_{n-1}$ and vice versa. Then we have $Tr_1(s_1)\leftrightarrow_V Tr_1(s_2)$. Therefore, $Tr_n(s_1) \leftrightarrow_V Tr_n(s_2)$ by use such method recursively, and then $Tr_i(s_1) \leftrightarrow_V Tr_i(s_2)$ for all $0 \leq j \leq n$.

 (\Leftarrow) If $Tr_j(s_1) \leftrightarrow_V Tr_j(s_2)$ for all $0 \leq j \leq n$, then $(s_1, s_2) \in \mathcal{B}_n$. $Tr_0(s_1) \leftrightarrow_V Tr_0(s_2)$ implies $L(s_1) - V =$ $L'(s_2) - V$ and then $(s, s') \in \mathcal{B}_0$. $Tr_1(s_1) \leftrightarrow_V Tr_1(s_2)$ implies $L(s_1) - V = L'(s_2) - V$ and for every successors s of the root of one, it is possible to find a successor of the root of the other s' such that $(s, s') \in \mathcal{B}_0$. Therefore $(s_1, s_2) \in$ \mathcal{B}_1 , and then we will have $(s_1, s_2) \in \mathcal{B}_n$ by use such method recursively.

Proposition 3 Let $V \subseteq A$, M be an initial structure and $s, s' \in S$ such that $s \not\leftrightarrow_V s'$. There exists a least k such that $\operatorname{Tr}_k(s)$ and $\operatorname{Tr}_k(s')$ are not V-bisimilar.

Proof. If $s \nleftrightarrow_V s'$, then there exists a least constant c such that $(s_i, s_i) \notin \mathcal{B}_c$, and then there is a least constant m $(m \le c)$ such that $\operatorname{Tr}_m(s_i)$ and $\operatorname{Tr}_m(s_i)$ are not V-bisimilar by Proposition 2. Let k = m, the lemma is proved.

Section 4.2 Characterization of initial K-structure

Lemma2 Let $V \subseteq \mathcal{A}$, \mathcal{M} and \mathcal{M}' be two initial structures, $s \in S$, $s' \in S'$ and $n \geq 0$. If $\mathrm{Tr}_n(s) \leftrightarrow_{\overline{V}} \mathrm{Tr}_n(s')$, then $\mathcal{F}_V(\mathrm{Tr}_n(s)) \equiv \mathcal{F}_V(\mathrm{Tr}_n(s'))$.

Proof. This result can be proved by inducting on n.

Base. It is evident that for any $s_n \in S$ and $s'_n \in S'$, if $\operatorname{Tr}_0(s_n) \leftrightarrow_{\overline{V}} \operatorname{Tr}_0(s'_n)$ then $\mathcal{F}_V(\operatorname{Tr}_0(s_n)) \equiv \mathcal{F}_V(\operatorname{Tr}_0(s'_n))$ due to $L(s_n) - \overline{V} = L'(s'_n) - \overline{V}$ by the definition of the V-bisimulation.

Step. Supposing that for k=m $(0< m \leq n)$ there is if $\mathrm{Tr}_{n-k}(s_k) \leftrightarrow_{\overline{V}} \mathrm{Tr}_{n-k}(s_k')$ then $\mathcal{F}_V(\mathrm{Tr}_{n-k}(s_k)) \equiv \mathcal{F}_V(\mathrm{Tr}_{n-k}(s_k'))$, then we will show if $\mathrm{Tr}_{n-k+1}(s_{k-1}) \leftrightarrow_{\overline{V}} \mathrm{Tr}_{n-k+1}(s_{k-1}')$ then $\mathcal{F}_V(\mathrm{Tr}_{n-k+1}(s_{k-1})) \equiv \mathcal{F}_V(\mathrm{Tr}_{n-k+1}(s_{k-1}'))$. Obviously that:

$$\begin{split} \mathcal{F}_V(\operatorname{Tr}_{n-k+1}(s_{k-1})) &= \left(\bigwedge_{(s_{k-1},s_k)\in R}\operatorname{Ex}\mathcal{F}_V(\operatorname{Tr}_{n-k}(s_k))\right) \wedge \\ \operatorname{AX}\left(\bigvee_{(s_{k-1},s_k)\in R}\mathcal{F}_V(\operatorname{Tr}_{n-k}(s_k))\right) \wedge \mathcal{F}_V(\operatorname{Tr}_0(s_{k-1})) \\ \mathcal{F}_V(\operatorname{Tr}_{n-k+1}(s_{k-1}')) &= \left(\bigwedge_{(s_{k-1}',s_k')\in R}\operatorname{Ex}\mathcal{F}_V(\operatorname{Tr}_{n-k}(s_k'))\right) \wedge \\ \operatorname{AX}\left(\bigvee_{(s_{k-1}',s_k')\in R}\mathcal{F}_V(\operatorname{Tr}_{n-k}(s_k'))\right) \wedge \mathcal{F}_V(\operatorname{Tr}_0(s_{k-1}')) \\ \operatorname{by} \text{ the definition of characterizing formula of the computation tree.} \quad \text{Then we have for any} \\ (s_{k-1},s_k) &\in R \text{ there is } (s_{k-1}',s_k') \in R' \text{ such that } \\ \operatorname{Tr}_{n-k}(s_k) &\leftrightarrow_{\overline{V}} \operatorname{Tr}_{n-k}(s_k') \text{ by } \operatorname{Tr}_{n-k+1}(s_{k-1}) \leftrightarrow_{\overline{V}} \\ \operatorname{Tr}_{n-k+1}(s_{k-1}'). \text{ Besides, for any } (s_{k-1}',s_k') \in R' \text{ there is } \\ (s_{k-1},s_k) \in R \text{ such that } \operatorname{Tr}_{n-k}(s_k) \leftrightarrow_{\overline{V}} \operatorname{Tr}_{n-k}(s_k') \text{ by } \\ \operatorname{Tr}_{n-k+1}(s_{k-1}) \leftrightarrow_{\overline{V}} \operatorname{Tr}_{n-k+1}(s_{k-1}'). \text{ Therefore, we have } \\ \mathcal{F}_V(\operatorname{Tr}_{n-k+1}(s_{k-1})) \equiv \mathcal{F}_V(\operatorname{Tr}_{n-k+1}(s_{k-1}')) \text{ by induction hypothesis.} \\ \Box$$

Theorem 2 Let $V \subseteq \mathcal{A}$, $\mathcal{M} = (S, R, L, s_0)$ and $\mathcal{M}' = (S', R', L', s'_0)$ be two initial structures. Then,

- (i) $(\mathcal{M}', s_0') \models \mathcal{F}_V(\mathcal{M}, s_0)$ iff $(\mathcal{M}, s_0) \leftrightarrow_{\overline{V}} (\mathcal{M}', s_0')$;
- (ii) $s_0 \leftrightarrow_{\overline{V}} s_0'$ implies $\mathcal{F}_V(\mathcal{M}, s_0) \equiv \mathcal{F}_V(\mathcal{M}', s_0')$.

In order to prove Theorem 2, we prove the following two lemmas at first.

Lemma 6. Let $V \subseteq \mathcal{A}$, $\mathcal{M} = (S, R, L, s_0)$ and $\mathcal{M}' = (S', R', L', s'_0)$ be two initial structures, $s \in S$, $s' \in S'$ and $n \ge 0$.

- (i) $(\mathcal{M}, s) \models \mathcal{F}_V(Tr_n(s))$.
- (ii) If $(\mathcal{M}, s) \models \mathcal{F}_V(Tr_n(s'))$ then $Tr_n(s) \leftrightarrow_{\overline{V}} Tr_n(s')$.

Proof. (i) It is evident from the definition of $\mathcal{F}_V(\operatorname{Tr}_n(s))$. Base. It is evident that $(\mathcal{M},s) \models \mathcal{F}_V(\operatorname{Tr}_0(s))$. Step. For $k \geq 0$, supposing the result talked in (i) is correct in k-1, we will show that $(\mathcal{M},s) \models \mathcal{F}_V(\operatorname{Tr}_{k+1}(s))$, i.e.,:

$$(\mathcal{M},s) \models \left(\bigwedge_{(s,s') \in R} \mathsf{ex} T(s')\right) \land \mathsf{ax} \left(\bigvee_{(s,s') \in R} T(s')\right) \land \mathcal{F}_V(\mathsf{Tr}_0(s)).$$

Where $T(s') = \mathcal{F}_V(\operatorname{Tr}_k(s'))$. It is evident that $(\mathcal{M}, s) \models \mathcal{F}_V(\operatorname{Tr}_0(s))$ by Base. It is evident that for any $(s, s') \in R$, there is $(\mathcal{M}, s') \models \mathcal{F}_V(\operatorname{Tr}_k(s'))$ by inductive assumption. Then we have $(\mathcal{M}, s) \models \operatorname{EX}\mathcal{F}_V(\operatorname{Tr}_k(s'), \mathcal{F}_V(\mathcal{F}_k(s')))$

and then $(\mathcal{M},s) \models \left(\bigwedge_{(s,s') \in R} \operatorname{EX} \mathcal{F}_V(\operatorname{Tr}_k(s')) \right)$. Similarly, we have that for any $(s,s') \in R$, there is $(\mathcal{M},s') \models \bigvee_{(s,s'') \in R} \mathcal{F}_V(\operatorname{Tr}_k(s''))$. Therefore, $(\mathcal{M},s) \models \operatorname{AX} \left(\bigvee_{(s,s'') \in R} \mathcal{F}_V(\operatorname{Tr}_k(s'')) \right)$.

(ii) **Base**. If n=0, then $(\mathcal{M},s) \models \mathcal{F}_V(\operatorname{Tr}_0(s'))$ implies $L(s) - \overline{V} = L'(s') - \overline{V}$. Hence, $\operatorname{Tr}_0(s) \leftrightarrow_{\overline{V}} \operatorname{Tr}_0(s')$.

Step. Supposing n>0 and the result talked in (ii) is correct in n-1.

(a) It is easy to see that $L(s) - \overline{V} = L'(s') - \overline{V}$.

(b) We will show that for each $(s,s_1) \in R$, there is a $(s',s_1') \in R'$ such that $\mathrm{Tr}_{n-1}(s_1) \leftrightarrow_{\overline{V}} \mathrm{Tr}_{n-1}(s_1')$. Since $(\mathcal{M},s) \models \mathcal{F}_V(\mathrm{Tr}_n(s'))$, then $(\mathcal{M},s) \models \mathrm{AX}\left(\bigvee_{(s',s_1')\in R} \mathcal{F}_V(\mathrm{Tr}_{n-1}(s_1'))\right)$. Therefore, for each $(s,s_1)\in R$ there is a $(s',s_1')\in R'$ such that $(\mathcal{M},s_1)\models \mathcal{F}_V(\mathrm{Tr}_{n-1}(s_1'))$. Hence, $\mathrm{Tr}_{n-1}(s_1)\leftrightarrow_{\overline{V}} \mathrm{Tr}_{n-1}(s_1')$ by inductive hypothesis.

(c) We will show that for each $(s',s_1') \in R'$ there is a $(s,s_1) \in R$ such that $\mathrm{Tr}_{n-1}(s_1') \leftrightarrow_{\overline{V}} \mathrm{Tr}_{n-1}(s_1)$. Since $(\mathcal{M},s) \models \mathcal{F}_V(\mathrm{Tr}_n(s'))$, then $(\mathcal{M},s) \models \bigwedge_{(s',s_1') \in R'} \mathrm{Ex} \mathcal{F}_V(\mathrm{Tr}_{n-1}(s_1'))$. Therefore, for each $(s',s_1') \in R'$ there is a $(s,s_1) \in R$ such that $(\mathcal{M},s_1) \models \mathcal{F}_V(\mathrm{Tr}_{n-1}(s_1'))$. Hence, $\mathrm{Tr}_{n-1}(s_1) \leftrightarrow_{\overline{V}} \mathrm{Tr}_{n-1}(s_1')$ by inductive hypothesis. \square

A consequence of the previous lemma is:

Lemma 7. Let $V \subseteq A$, $M = (S, R, L, s_0)$ an initial structure, k = ch(M, V) and $s \in S$.

- (i) $(\mathcal{M}, s) \models \mathcal{F}_V(Tr_k(s))$, and
- (ii) for each $s' \in S$, $(\mathcal{M}, s) \leftrightarrow_{\overline{V}} (\mathcal{M}, s')$ if and only if $(\mathcal{M}, s') \models \mathcal{F}_V(Tr_k(s))$.

Proof. (i) It is evident from the (i) of Lemma 6.

(ii) Let $\phi = \mathcal{F}_V(\operatorname{Tr}_k(s))$, where k is the V-characteristic number of \mathcal{M} . $(\mathcal{M},s) \models \phi$ by the definition of \mathcal{F} , and then for all $s' \in S$, if $s \leftrightarrow_{\overline{V}} s'$ there is $(\mathcal{M},s') \models \phi$ by Theorem 1 due to $\operatorname{IR}(\phi, \mathcal{A} - V)$. Supposing $(\mathcal{M},s') \models \phi$, if $s \nleftrightarrow_{\overline{V}} s'$, then $\operatorname{Tr}_k(s) \nleftrightarrow_{\overline{V}} \operatorname{Tr}_k(s')$, and then $(\mathcal{M},s') \not\models \phi$ by Lemma 6, a contradiction.

Now we are in the position of proving Theorem 2.

Proof. (i) Let $\mathcal{F}_V(\mathcal{M}, s_0)$ be the characterizing formula of (\mathcal{M}, s_0) on V. It is evident that $IR(\mathcal{F}_V(\mathcal{M}, s_0), \overline{V})$. We will show that $(\mathcal{M}, s_0) \models \mathcal{F}_V(\mathcal{M}, s_0)$ at first.

It is evident that $(\mathcal{M},s_0) \models \mathcal{F}_V(\operatorname{Tr}_c(s_0))$ by Lemma 6. We must show that $(\mathcal{M},s_0) \models \bigwedge_{s \in S} G(\mathcal{M},s)$. Let $\mathcal{X} = \mathcal{F}_V(\operatorname{Tr}_c(s)) \to \left(\bigwedge_{(s,s_1) \in R} \operatorname{Ex} \mathcal{F}_V(\operatorname{Tr}_c(s_1))\right)$, we will show for all $s \in S$, $(\mathcal{M},s_0) \models G(\mathcal{M},s)$. Where $G(\mathcal{M},s) = \operatorname{Ag} \mathcal{X}$. There are two cases we should consider:

• If $(\mathcal{M}, s_0) \not\models \mathcal{F}_V(\operatorname{Tr}_c(s))$, it is evident that $(\mathcal{M}, s_0) \models \mathcal{X}$:

• If
$$(\mathcal{M}, s_0) \models \mathcal{F}_V(\operatorname{Tr}_c(s))$$
: $(\mathcal{M}, s_0) \models \mathcal{F}_V(\operatorname{Tr}_c(s))$ $\Rightarrow s_0 \leftrightarrow_{\overline{V}} s$ by the definition of characteristic number and Lemma 7. For each $(s, s_1) \in R$ there is: $(\mathcal{M}, s_1) \models \mathcal{F}_V(\operatorname{Tr}_c(s_1))$ $(s_1 \leftrightarrow_{\overline{V}} s_1)$ $\Rightarrow (\mathcal{M}, s) \models \bigwedge_{(s, s_1) \in R} \operatorname{EX} \mathcal{F}_V(\operatorname{Tr}_c(s_1))$ $\Rightarrow (\mathcal{M}, s_0) \models \bigwedge_{(s, s_1) \in R} \operatorname{EX} \mathcal{F}_V(\operatorname{Tr}_c(s_1))$ (by $\operatorname{IR}(\bigwedge_{(s, s_1) \in R} \operatorname{EX} \mathcal{F}_V(\operatorname{Tr}_c(s_1)), \overline{V}), s_0 \leftrightarrow_{\overline{V}} s$). For each (s, s_1) there is: $\mathcal{M}, s_1 \models \bigvee_{(s, s_2) \in R} \mathcal{F}_V(\operatorname{Tr}_c(s_2))$ $\Rightarrow (\mathcal{M}, s) \models \operatorname{AX} \left(\bigvee_{(s, s_2) \in R} \mathcal{F}_V(\operatorname{Tr}_c(s_2))\right)$ $\Rightarrow (\mathcal{M}, s_0) \models \operatorname{AX} \left(\bigvee_{(s, s_2) \in R} \mathcal{F}_V(\operatorname{Tr}_c(s_2))\right)$ (by $\operatorname{IR}(\operatorname{AX} \left(\bigvee_{(s, s_2) \in R} \mathcal{F}_V(\operatorname{Tr}_c(s_2))\right), \overline{V}), s_0 \leftrightarrow_{\overline{V}} s$)

For any other states s' which can reach from s_0 can be proved similarly, i.e., $(\mathcal{M}, s') \models \mathcal{X}$. Therefore, for all $s \in$ $S, (\mathcal{M}, s_0) \models G(\mathcal{M}, s), \text{ and then } (\mathcal{M}, s_0) \models \mathcal{F}_V(\mathcal{M}, s_0).$

 $\Rightarrow (\mathcal{M}, s_0) \models \mathcal{X}$.

We will prove this theorem from the following two as-

 (\Leftarrow) If $s_0 \leftrightarrow_{\overline{V}} s'_0$, then $(\mathcal{M}', s'_0) \models \mathcal{F}_V(M, s_0)$. Since $(\mathcal{M}, s_0) \models \mathcal{F}_V(\mathcal{M}, s_0)$ and $IR(\mathcal{F}_V(\mathcal{M}, s_0), \overline{V})$, hence $(\mathcal{M}', s_0') \models \mathcal{F}_V(M, s_0)$ by Theorem 1.

 (\Rightarrow) If $(\mathcal{M}', s_0') \models \mathcal{F}_V(M, s_0)$, then $s_0 \leftrightarrow_{\overline{V}} s_0'$. We will prove this by showing that for all $n \geq 0$, $Tr_n(s_0) \leftrightarrow_{\overline{V}}$ $Tr_n(s_0')$.

Base. It is evident that $Tr_0(s_0) \equiv Tr_0(s'_0)$.

Step. Supposing $\operatorname{Tr}_k(s_0) \leftrightarrow_{\overline{V}} \operatorname{Tr}_k(s_0')$ (k > 0), we will prove $\operatorname{Tr}_{k+1}(s_0) \leftrightarrow_{\overline{V}} \operatorname{Tr}_{k+1}(s_0')$. We should only show that $\operatorname{Tr}_1(s_k) \leftrightarrow_{\overline{V}} \operatorname{Tr}_1(s_k')$. Where $(s_0, s_1), (s_1, s_2), \ldots$, $(s_{k-1},s_k) \in R \text{ and } (s_0',s_1'),(s_1',s_2'),\dots,(s_{k-1}',s_k') \in R',$ i.e., s_{i+1} (s_{i+1}') is an immediate successor of s_i (s_i') for all $0 \le i \le k - 1$.

(a) It is evident that $L(s_k) - \overline{V} = L'(s'_k) - \overline{V}$ by inductive assumption.

Before talking about the other points, note the following fact that:

$$\begin{split} &(\mathcal{M}',s_0') \models \mathcal{F}_V(\mathcal{M},s_0) \\ \Rightarrow & \text{For all } s' \in S', \, (\mathcal{M}',s') \models \mathcal{F}_V(\text{Tr}_c(s)) \rightarrow \\ &\left(\bigwedge_{(s,s_1) \in R} \text{EX} \mathcal{F}_V(\text{Tr}_c(s_1)) \right) & \wedge \\ & \text{AX} \left(\bigvee_{(s,s_1) \in R} \mathcal{F}_V(\text{Tr}_c(s_1)) \right) & \text{for any } s \in S. \\ & \text{(fact)} \\ & \text{(I)} \quad (\mathcal{M}',s_0') \quad \models \quad \mathcal{F}_V(\text{Tr}_c(s_0)) & \rightarrow \\ & \left(\bigwedge_{(s_0,s_1) \in R} \text{EX} \mathcal{F}_V(\text{Tr}_c(s_1)) \right) & \text{(fact)} \\ & \text{AX} \left(\bigvee_{(s_0,s_1) \in R} \mathcal{F}_V(\text{Tr}_c(s_1)) \right) & \text{(fact)} \\ & \text{(II)} \quad (\mathcal{M}',s_0') \models \mathcal{F}_V(\text{Tr}_c(s_0)) & \text{(known)} \\ & \text{(III)} \quad (\mathcal{M}',s_0') \models \left(\bigwedge_{(s_0,s_1) \in R} \text{EX} \mathcal{F}_V(\text{Tr}_c(s_1)) \right) & \wedge \\ & \text{AX} \left(\bigvee_{(s_0,s_1) \in R} \mathcal{F}_V(\text{Tr}_c(s_1)) \right) & \text{((I),(II))} \end{split}$$

(b) We will show that for each $(s_k,s_{k+1})\in R$ there is a $(s'_k, s'_{k+1}) \in R'$ such that $L(s_{k+1}) - \overline{V} = L'(s'_{k+1}) - \overline{V}$.

$$\begin{array}{lll} \text{(1)} & (\mathcal{M}',s_0') \models \bigwedge_{(s_0,s_1) \in R} \operatorname{EX} \mathcal{F}_V(\operatorname{Tr}_c(s_1)) & (\operatorname{III}) \\ \text{(2)} & \operatorname{For all } (s_0,s_1) \in R, \text{ there exists } (s_0',s_1') \in R' \text{ s.t.} \\ & (\mathcal{M}',s_1') \models \mathcal{F}_V(\operatorname{Tr}_c(s_1)) & (2) \\ & (3) \operatorname{Tr}_c(s_1) \leftrightarrow_{\overline{V}} \operatorname{Tr}_c(s_1') & ((2),\operatorname{Lemma 6}) \\ & (4) L(s_1) - \overline{V} = L'(s_1') - \overline{V} & ((3),c \geq 0) \\ & (5) & (\mathcal{M}',s_1') \models \mathcal{F}_V(\operatorname{Tr}_c(s_1)) & \rightarrow \\ & \left(\bigwedge_{(s_1,s_2) \in R} \operatorname{EX} \mathcal{F}_V(\operatorname{Tr}_c(s_2))\right) & (\operatorname{fact}) \\ & (6) & (\mathcal{M}',s_1') \models \left(\bigwedge_{(s_1,s_2) \in R} \operatorname{EX} \mathcal{F}_V(\operatorname{Tr}_c(s_2))\right) & \wedge \\ & \operatorname{AX} \left(\bigvee_{(s_1,s_2) \in R} \mathcal{F}_V(\operatorname{Tr}_c(s_2))\right) & ((2),(5)) \\ & (7) \dots \\ & (8) & (\mathcal{M}',s_k') \models \left(\bigwedge_{(s_k,s_{k+1}) \in R} \operatorname{EX} \mathcal{F}_V(\operatorname{Tr}_c(s_{k+1}))\right) \wedge \\ & \operatorname{AX} \left(\bigvee_{(s_k,s_{k+1}) \in R} \mathcal{F}_V(\operatorname{Tr}_c(s_{k+1}))\right) & (\operatorname{similar with } (6)) \\ & (9) \operatorname{For all } (s_k,s_{k+1}) \in R, \text{ there exists } (s_k',s_{k+1}') \in R' \text{ s.t.} \\ & (\mathcal{M}',s_{k+1}') \models \mathcal{F}_V(\operatorname{Tr}_c(s_{k+1})) & (8) \\ & (10) \operatorname{Tr}_c(s_{k+1}) \leftrightarrow_{\overline{V}} \operatorname{Tr}_c(s_{k+1}') - \overline{V} & ((9),\operatorname{Lemma 6}) \\ & (11) L(s_{k+1}) - \overline{V} = L'(s_{k+1}') - \overline{V} & ((10),c \geq 0) \\ \end{array}$$

(c) We will show that for each $(s_k', s_{k+1}') \in R'$ there is a $(s_k, s_{k+1}) \in R$ such that $L(s_{k+1}) - \overline{V} = L'(s'_{k+1}) - \overline{V}$.

(1)
$$(\mathcal{M}', s_k') \models \operatorname{AX}\left(\bigvee_{(s_k, s_{k+1}) \in R} \mathcal{F}_V(\operatorname{Tr}_c(s_{k+1}))\right)$$
 (by (8) talked above)

$$\begin{array}{ll} \text{(2) For all } (s_k',s_{k+1}') \in R'\text{, there exists } (s_k,s_{k+1}) \in R \text{ s.t. } \\ (\mathcal{M}',s_{k+1}') \models \mathcal{F}_V(\operatorname{Tr}_c(s_{k+1}')) & \text{(1)} \\ \text{(3) } \operatorname{Tr}_c(s_{k+1}) \leftrightarrow_{\overline{V}} \operatorname{Tr}_c(s_{k+1}') & \text{((2), Lemma 6)} \\ \text{(4) } L(s_{k+1}) - \overline{V} = L'(s_{k+1}') - \overline{V} & \text{((3), $c \geq 0$)} \end{array}$$

4)
$$L(s_{k+1}) - \overline{V} = L'(s'_{k+1}) - \overline{V}$$
 ((3), $c \ge 0$)

(ii) This is following Lemma 2 and the definition of the characterizing formula of initial K-structure K on V.

Lemma 3 Let φ be a formula. We have

$$\varphi \equiv \bigvee_{(\mathcal{M}, s_0) \in Mod(\varphi)} \mathcal{F}_{\mathcal{A}}(\mathcal{M}, s_0). \tag{3}$$

Proof. Let (\mathcal{M}', s_0') be a model of φ . $(\mathcal{M}', s'_0) \models \bigvee_{(\mathcal{M}, s_0) \in Mod(\varphi)} \mathcal{F}_{\mathcal{A}}(\mathcal{M}, s_0)$ due to $(\mathcal{M}', s'_0) \models \mathcal{F}_{\mathcal{A}}(\mathcal{M}', s'_0)$. On the other hand, suppose that (\mathcal{M}', s'_0) is a model of $\bigvee_{(\mathcal{M}, s_0) \in Mod(\varphi)} \mathcal{F}_{\mathcal{A}}(\mathcal{M}, s_0)$. Then there is a $(\mathcal{M}, s_0) \in Mod(\varphi)$ such that $(\mathcal{M}', s_0') \models \mathcal{F}_{\mathcal{A}}(\mathcal{M}, s_0)$. And then $(\mathcal{M}, s_0) \leftrightarrow_{\emptyset} (\mathcal{M}', s_0')$ by Theorem 2. Therefore, (\mathcal{M}, s_0) is also a model of φ by Theorem 1.

Section 4.3 Semantic properties of forgetting in CTL

Theorem 3 Let φ be a CPL formula and $V \subseteq \mathcal{A}$, then

$$F_{CTL}(\varphi, V) \equiv Forget(\varphi, V).$$

Proof. On one hand, for each $(\mathcal{M}, s) \in Mod(F_{CTL}(\varphi, V))$ there exists a $(\mathcal{M}', s') \in Mod(\varphi)$ such that $s \leftrightarrow_V s'$. Thus, $(s,s') \in \mathcal{B}_0^V$. Hence, (\mathcal{M},s) is a model of $Forget(\varphi,V)$.

On the other hand, for each $(\mathcal{M},s) \in \mathit{Mod}(\mathit{Forget}(\varphi,V))$ with $\mathcal{M} = (S,R,L,s)$ there exists a $(\mathcal{M}',s') \in \mathit{Mod}(\varphi)$ such that $(s,s') \in \mathcal{B}_0^V$. Construct an initial K-structure (\mathcal{M}_1,s_1) such that $\mathcal{M}_1 = (S_1,R_1,L_1,s_1)$ with $S_1 = (S-\{s\}) \cup \{s_1\}, R_1$ is the same as R except replace s with s_1 , and L_1 is the same as L except $L_1(s_1) = L'(s')$, where L' is the label function of M'. It is clear that (\mathcal{M}_1,s_1) is a model of φ and $s_1 \leftrightarrow_V s$. Hence, (\mathcal{M},s) is a model of $F_{\text{CTL}}(\varphi,V)$.

Theorem 4 (Representation theorem) Let φ and φ' be CTL formulas and $V \subseteq \mathcal{A}$. The following statements are equivalent:

- (i) $\varphi' \equiv F_{CTL}(\varphi, V)$,
- (ii) $\varphi' \equiv \{ \phi \mid \varphi \models \phi \text{ and } IR(\phi, V) \},$
- (iii) Postulates (W), (PP), (NP) and (IR) hold if φ, φ' and V are as in (i) and (ii).

Proof. $(i) \Leftrightarrow (ii)$. To prove this, we will show that:

$$\begin{split} & \textit{Mod}(\mathbf{F}_{\mathsf{CTL}}(\varphi, V)) = \textit{Mod}(\{\phi | \varphi \models \phi, \mathsf{IR}(\phi, V)\}) \\ &= \textit{Mod}(\bigvee_{\mathcal{M}, s_0 \in \textit{Mod}(\varphi)} \mathcal{F}_{\mathcal{A} - V}(\mathcal{M}, s_0)). \end{split}$$

Firstly, suppose that (\mathcal{M}',s_0') is a model of $F_{CTL}(\varphi,V)$. Then there exists an initial K-structure (\mathcal{M},s_0) such that (\mathcal{M},s_0) is a model of φ and $(\mathcal{M},s_0)\leftrightarrow_V(\mathcal{M}',s_0')$. By Theorem 1, we have $(\mathcal{M}',s_0')\models\phi$ for all ϕ such that $\varphi\models\phi$ and $IR(\phi,V)$. Thus, (\mathcal{M}',s_0') is a model of $\{\phi|\varphi\models\phi,IR(\phi,V)\}$.

Secondly, suppose that (\mathcal{M}', s_0') is a models of $\{\phi | \varphi \models \phi, \operatorname{IR}(\phi, V)\}$. Thus, (\mathcal{M}', s_0') is $V_{(\mathcal{M}, s_0) \in \operatorname{Mod}(\varphi)} \mathcal{F}_{\mathcal{A} - V}(\mathcal{M}, s_0)$ due to $V_{(\mathcal{M}, s_0) \in \operatorname{Mod}(\varphi)} \mathcal{F}_{\mathcal{A} - V}(\mathcal{M}, s_0)$ is irrelevant to V and $\varphi \models V_{(\mathcal{M}, s_0) \in \operatorname{Mod}(\varphi)} \mathcal{F}_{\mathcal{A} - V}(\mathcal{M}, s_0)$ by Lemma 3.

Finally, suppose that (\mathcal{M}', s_0') is a model of $\bigvee_{\mathcal{M}, s_0 \in Mod(\varphi)} \mathcal{F}_{\mathcal{A}-V}(\mathcal{M}, s_0)$. Then there exists $(\mathcal{M}, s_0) \in Mod(\varphi)$ such that $(\mathcal{M}', s_0') \models \mathcal{F}_{\mathcal{A}-V}(\mathcal{M}, s_0)$. Hence, $(\mathcal{M}, s_0) \leftrightarrow_V (\mathcal{M}', s_0')$ by Theorem 2. Thus (\mathcal{M}', s_0') is also a model of $F_{\text{CTL}}(\varphi, V)$.

 $(ii) \Rightarrow (iii)$. For convenience, let $A = \{\phi | \varphi \models \phi \text{ and } \operatorname{IR}(\phi, V)\}$. First, it is easy to see that $\operatorname{IR}(A, V)$ since for any $\phi' \in A$ there is $\operatorname{IR}(\phi', V)$. Therefore, we have $\operatorname{IR}(\varphi', V)$. Second, $\varphi \models \phi'$ for any $\phi' \in A$, hence $\varphi \models \varphi'$. The (\mathbf{NP}) and (\mathbf{PP}) are obvious from A.

 $(iii) \Rightarrow (ii)$. Suppose that all postulates hold. By Positive Persistence, we have $\varphi' \models \{\phi | \varphi \models \phi, \operatorname{IR}(\phi, V)\}$. The $\{\phi \mid \varphi \models \phi, \operatorname{IR}(\phi, V)\} \models \varphi'$ can be obtained from (**W**) and (**IR**). Thus, φ' is equivalent to $\{\phi | \varphi \models \phi, \operatorname{IR}(\phi, V)\}$.

Lemma 4 Let φ and α be two CTL formulae and $q \in \overline{Var(\varphi) \cup Var(\alpha)}$. Then $F_{CTL}(\varphi \land (q \leftrightarrow \alpha), q) \equiv \varphi$.

Proof. Let $\varphi' = \varphi \land (q \leftrightarrow \alpha)$. For any model (\mathcal{M}, s) of $F_{CTL}(\varphi', q)$ there is an initial K-structure (\mathcal{M}', s') s.t. $(\mathcal{M}, s) \leftrightarrow_{\{q\}} (\mathcal{M}', s')$ and $(\mathcal{M}', s') \models \varphi'$. It's evident that $(\mathcal{M}', s') \models \varphi$, and then $(\mathcal{M}, s) \models \varphi$ since $IR(\varphi, \{q\})$ and $(\mathcal{M}, s) \leftrightarrow_{\{q\}} (\mathcal{M}', s')$ by Theorem 1.

Let $(\mathcal{M}, s) \in Mod(\varphi)$ with $\mathcal{M} = (S, R, L, s)$. We construct (\mathcal{M}', s) with $\mathcal{M}' = (S, R, L', s)$ as follows:

 $L': S \to \mathcal{A} \text{ and } \forall s^* \in S, L'(s^*) = L(s^*) \text{ if } (\mathcal{M}, s^*) \not\models \alpha,$ else $L'(s^*) = L(s^*) \cup \{q\},$

 $L'(s) = L(s) \cup \{q\} \ if \ (\mathcal{M}, s) \models \alpha, \ and \ L'(s) = L(s)$ otherwise.

It is clear that $(\mathcal{M}',s) \models \varphi$, $(\mathcal{M}',s) \models q \leftrightarrow \alpha$ and $(\mathcal{M}',s) \leftrightarrow_{\{q\}} (\mathcal{M},s)$. Therefore $(\mathcal{M}',s) \models \varphi \land (q \leftrightarrow \alpha)$, and then $(\mathcal{M},s) \models F_{\text{CTL}}(\varphi \land (q \leftrightarrow \alpha),q)$ by $(\mathcal{M}',s) \leftrightarrow_{\{q\}} (\mathcal{M},s)$.

Proposition 4 (Modularity) Given a formula $\varphi \in \text{CTL}$, V a set of atoms and p an atom such that $p \notin V$. Then,

$$F_{CTL}(\varphi, \{p\} \cup V) \equiv F_{CTL}(F_{CTL}(\varphi, p), V).$$

Proof. Let (\mathcal{M}_1, s_1) with $\mathcal{M}_1 = (S_1, R_1, L_1, s_1)$ be a model of $F_{CTL}(\varphi, \{p\} \cup V)$. By the definion, there exists a model (\mathcal{M}, s) with $\mathcal{M} = (S, R, L, s)$ of φ , such that $(\mathcal{M}_1, s_1) \leftrightarrow_{\{p\} \cup V} (\mathcal{M}, s)$. We construct an initial K-structure (\mathcal{M}_2, s_2) with $\mathcal{M}_2 = (S_2, R_2, L_2, s_2)$ as follows:

- (1) for s_2 : let s_2 be the state such that:
 - $p \in L_2(s_2)$ iff $p \in L_1(s_1)$,
 - for all $q \in V$, $q \in L_2(s_2)$ iff $q \in L(s)$,
 - for all other atoms $q', q' \in L_2(s_2)$ iff $q' \in L_1(s_1)$ iff $q' \in L(s)$.
- (2) for another:
 - (i) for all pairs $w \in S$ and $w_1 \in S_1$ such that $w \leftrightarrow_{\{p\} \cup V} w_1$, let $w_2 \in S_2$ and
 - $p \in L_2(w_2)$ iff $p \in L_1(w_1)$,
 - for all $q \in V$, $q \in L_2(w_2)$ iff $q \in L(w)$,
 - for all other atoms q', $q' \in L_2(w_2)$ iff $q' \in L_1(w_1)$ iff $q' \in L(w)$.
 - (ii) if $(w_1', w_1) \in R_1$, w_2 is constructed based on w_1 and $w_2' \in S_2$ is constructed based on w_1' , then $(w_2', w_2) \in R_2$.
- (3) delete duplicated states in S_2 and pairs in R_2 .

Then we have $(\mathcal{M},s) \leftrightarrow_{\{p\}} (\mathcal{M}_2,s_2)$ and $(\mathcal{M}_2,s_2) \leftrightarrow_V (\mathcal{M}_1,s_1)$. Thus, $(\mathcal{M}_2,s_2) \models \mathsf{F}_{\mathsf{CTL}}(\varphi,p)$. And therefore $(\mathcal{M}_1,s_1) \models \mathsf{F}_{\mathsf{CTL}}(\mathsf{F}_{\mathsf{CTL}}(\varphi,p),V)$.

On the other hand, suppose that (\mathcal{M}_1,s_1) is a model of $F_{\text{CTL}}(F_{\text{CTL}}(\varphi,p),V)$, then there exists an initial K-structure (\mathcal{M}_2,s_2) such that $(\mathcal{M}_2,s_2) \models F_{\text{CTL}}(\varphi,p)$ and $(\mathcal{M}_2,s_2) \leftrightarrow_V (\mathcal{M}_1,s_1)$, and there exists (\mathcal{M},s) such that $(\mathcal{M},s) \models \varphi$ and $(\mathcal{M},s) \leftrightarrow_{\{p\}} (\mathcal{M}_2,s_2)$. Therefore, $(\mathcal{M},s) \leftrightarrow_{\{p\}\cup V} (\mathcal{M}_1,s_1)$ by Proposition 1, and consequently, $(\mathcal{M}_1,s_1) \models F_{\text{CTL}}(\varphi,\{p\}\cup V)$.

Proposition 5 Let φ , φ_i , ψ_i (i=1,2) be formulas in CTL and $V \subseteq \mathcal{A}$. We have

- (i) $F_{CTL}(\varphi, V)$ is satisfiable iff φ is;
- (ii) If $\varphi_1 \equiv \varphi_2$, then $F_{CTL}(\varphi_1, V) \equiv F_{CTL}(\varphi_2, V)$;
- (iii) If $\varphi_1 \models \varphi_2$, then $F_{CTL}(\varphi_1, V) \models F_{CTL}(\varphi_2, V)$;
- (iv) $F_{\text{CTL}}(\psi_1 \vee \psi_2, V) \equiv F_{\text{CTL}}(\psi_1, V) \vee F_{\text{CTL}}(\psi_2, V);$

```
(v) F_{CTL}(\psi_1 \wedge \psi_2, V) \models F_{CTL}(\psi_1, V) \wedge F_{CTL}(\psi_2, V);
```

Proof. (i) (\Rightarrow) Supposing (\mathcal{M},s) is a model of $F_{\text{CTL}}(\varphi,V)$, then there is a model (\mathcal{M}',s') of φ s.t. $(\mathcal{M},s) \leftrightarrow_V (\mathcal{M}',s')$ by the definition of F_{CTL} .

 (\Leftarrow) Supposing (\mathcal{M},s) is a model of φ , then there is an initial K-structure (\mathcal{M}',s') s.t. $(\mathcal{M},s) \leftrightarrow_V (\mathcal{M}',s')$, and then $(\mathcal{M}',s') \models F_{\text{CTL}}(\varphi,V)$ by the definition of F_{CTL} .

The (ii) and (iii) can be proved similarly.

```
(iv) (a) For all (\mathcal{M}, s) \in Mod(\mathsf{F}_{\mathsf{CTL}}(\psi_1 \vee \psi_2, V)), there exists (\mathcal{M}', s') \in Mod(\psi_1 \vee \psi_2) s.t. (\mathcal{M}, s) \leftrightarrow_V (\mathcal{M}', s') and (\mathcal{M}', s') \models \psi_1 or (\mathcal{M}', s') \models \psi_2 \Rightarrow there exists (\mathcal{M}_1, s_1) \in Mod(\mathsf{F}_{\mathsf{CTL}}(\psi_1, V)) s.t. (\mathcal{M}', s') \leftrightarrow_V (\mathcal{M}_1, s_1) or there exists (\mathcal{M}_2, s_2) \in Mod(\mathsf{F}_{\mathsf{CTL}}(\psi_2, V)) s.t. (\mathcal{M}', s') \leftrightarrow_V (\mathcal{M}_2, s_2) \Rightarrow (\mathcal{M}, s) \models \mathsf{F}_{\mathsf{CTL}}(\psi_1, V) \vee \mathsf{F}_{\mathsf{CTL}}(\psi_2, V) by Theorem 1. (\Leftarrow) for all (\mathcal{M}, s) \in Mod(\mathsf{F}_{\mathsf{CTL}}(\psi_1, V) \vee \mathsf{F}_{\mathsf{CTL}}(\psi_2, V)) \Rightarrow there is an initial K-structure (\mathcal{M}, s) \models \mathsf{F}_{\mathsf{CTL}}(\psi_2, V) \Rightarrow there is an initial K-structure (\mathcal{M}_1, s_1) s.t. (\mathcal{M}, s) \leftrightarrow_V (\mathcal{M}_1, s_1) and (\mathcal{M}_1, s_1) \models \psi_1 or (\mathcal{M}_1, s_1) \models \psi_2 \Rightarrow (\mathcal{M}_1, s_1) \models \psi_1 \vee \psi_2 \Rightarrow there is an initial K-structure (\mathcal{M}_2, s_2) s.t. (\mathcal{M}_1, s_1) \leftrightarrow_V (\mathcal{M}_2, s_2) and (\mathcal{M}_2, s_2) \models \mathsf{F}_{\mathsf{CTL}}(\psi_1 \vee \psi_2, V)
```

Proposition 6 (Homogeneity) Let $V \subseteq \mathcal{A}$ and $\phi \in CTL$,

 $\Rightarrow (\mathcal{M}, s) \leftrightarrow_V (\mathcal{M}_2, s_2) \text{ and } (\mathcal{M}, s) \models F_{CTL}(\psi_1 \lor \psi_2, V).$

- (i) $F_{CTL}(AX\phi, V) \equiv AXF_{CTL}(\phi, V)$.
- (ii) $F_{CTL}(EX\phi, V) \equiv EXF_{CTL}(\phi, V)$.

The (v) can be proved as (iv).

- (iii) $F_{CTL}(AF\phi, V) \equiv AFF_{CTL}(\phi, V)$.
- (iv) $F_{CTL}(EF\phi, V) \equiv EFF_{CTL}(\phi, V)$.

Proof. Let $\mathcal{M}=(S,R,L,s_0)$ with initial state s_0 and $\mathcal{M}'=(S',R',L',s_0')$ with initial state s_0' , then we call \mathcal{M}',s_0' be a sub-structure of \mathcal{M},s_0 if:

- $S' \subseteq S$ and $S' = \{s' | s' \text{ is reachable from } s'_0\},$
- $R' = \{(s_1, s_2) | s_1, s_2 \in S' \text{ and } (s_1, s_2) \in R\},\$
- $L': S' \to 2^{\mathcal{A}}$ and for all $s_1 \in S'$ there is $L'(s_1) = L(s_1)$, and
- s'_0 is s_0 or a state reachable from s_0 .
- (i) In order to prove $F_{\text{CTL}}(\mathsf{AX}\phi,V) \equiv \mathsf{AX}(\mathsf{F}_{\text{CTL}}(\phi,V)),$ we only need to prove $Mod(\mathsf{F}_{\text{CTL}}(\mathsf{AX}\phi,V)) = Mod(\mathsf{AXF}_{\text{CTL}}(\phi,V))$:
- (\Rightarrow) For all $(\mathcal{M}',s') \in Mod(F_{CTL}(AX\phi,V))$ there exists an initial K-structure (\mathcal{M},s) s.t. $(\mathcal{M},s) \models AX\phi$ and $(\mathcal{M},s) \leftrightarrow_V (\mathcal{M}',s')$ \Rightarrow for any sub-structure (\mathcal{M}_1,s_1) of (\mathcal{M},s) there is $(\mathcal{M}_1,s_1) \models \phi$, where s_1 is a directed successor of s
- \Rightarrow there is an initial K-structure (\mathcal{M}_2, s_2) s.t. $(\mathcal{M}_2, s_2) \models F_{\text{CTL}}(\phi, V)$ and $(\mathcal{M}_2, s_2) \leftrightarrow_V (\mathcal{M}_1, s_1)$
- \Rightarrow it is easy to construct an initial K-structure (\mathcal{M}_3, s_3) by (\mathcal{M}_2, s_2) s.t. (\mathcal{M}_2, s_2) is a sub-structure of (\mathcal{M}_3, s_3) with s_2 is a direct successor of s_3 and $(\mathcal{M}_3, s_3) \leftrightarrow_V (\mathcal{M}, s)$
- \Rightarrow $(\mathcal{M}_3, s_3) \models \operatorname{AX}(\mathsf{F}_{\operatorname{CTL}}(\phi, V)) \text{ and } (\mathcal{M}_3, s_3) \leftrightarrow_V (\mathcal{M}', s')$
- $\Rightarrow (\mathcal{M}', s') \models AX(F_{CTL}(\phi, V)).$

- (\Leftarrow) For all $(\mathcal{M}_3, s_3) \in Mod(AX(F_{CTL}(\phi, V)))$, then for any sub-structure (\mathcal{M}_2, s_2) with s_2 is a directed successor of s_3 there is $(\mathcal{M}_2, s_2) \models F_{CTL}(\phi, V)$ \Rightarrow for any (\mathcal{M}_2, s_2) there is an initial K-structure (\mathcal{M}_1, s_1)
- \Rightarrow for any (\mathcal{M}_2, s_2) there is an initial K-structure (\mathcal{M}_1, s_1) s.t. $(\mathcal{M}_1, s_1) \models \phi$ and $(\mathcal{M}_1, s_1) \leftrightarrow_V (\mathcal{M}_2, s_2)$
- \Rightarrow it is easy to construct an initial K-structure (\mathcal{M}, s) by (\mathcal{M}_1, s_1) s.t. (\mathcal{M}_1, s_1) is a sub-structure of (\mathcal{M}, s) with s_1 is a direct successor of s and $(\mathcal{M}, s) \leftrightarrow_V (\mathcal{M}_3, s_3)$
- $\Rightarrow (\mathcal{M}, s) \models \mathsf{AX}\phi \text{ and then } (\mathcal{M}_3, s_3) \models \mathsf{F}_{\mathsf{CTL}}(\mathsf{AX}\phi, V).$
- (ii) In order to prove $F_{\text{CTL}}(\text{EX}\phi, V) \equiv \text{EXF}_{\text{CTL}}(\phi, V)$, we only need to prove $Mod\left(F_{\text{CTL}}(\text{EX}\phi, V)\right) = Mod(\text{EXF}_{\text{CTL}}(\phi, V))$:
- $(\Rightarrow) \text{ For all } (\mathcal{M}',s') \in \mathit{Mod}(\mathsf{F}_{\mathsf{CTL}}(\mathsf{EX}\phi,V)) \text{ there exists an initial K-structure } (\mathcal{M},s) \text{ s.t. } (\mathcal{M},s) \models \mathsf{EX}\phi \text{ and } (\mathcal{M},s) \leftrightarrow_V (\mathcal{M}',s')$
- \Rightarrow there is a sub-structure (\mathcal{M}_1, s_1) of (\mathcal{M}, s) s.t. $(\mathcal{M}_1, s_1) \models \phi$, where s_1 is a directed successor of s
- \Rightarrow there is an initial K-structure (\mathcal{M}_2, s_2) s.t. $(\mathcal{M}_2, s_2) \models F_{\text{CTL}}(\phi, V)$ and $(\mathcal{M}_2, s_2) \leftrightarrow_V (\mathcal{M}_1, s_1)$
- \Rightarrow it is easy to construct an initial K-structure (\mathcal{M}_3, s_3) by (\mathcal{M}_2, s_2) s.t. (\mathcal{M}_2, s_2) is a sub-structure of (\mathcal{M}_3, s_3) that s_2 is a direct successor of s_3 and $(\mathcal{M}_3, s_3) \leftrightarrow_V (\mathcal{M}, s)$
- $\Rightarrow (\mathcal{M}_3, s_3) \models \text{EX}(\mathsf{F}_{\text{CTL}}(\phi, V))$
- $\Rightarrow (\mathcal{M}', s') \models \text{EX}(\mathsf{F}_{\text{CTL}}(\phi, V)).$
- (\Leftarrow) For all $(\mathcal{M}_3, s_3) \in Mod(\text{EX}(\mathsf{F}_{\text{CTL}}(\phi, V)))$, there exists a sub-structure (\mathcal{M}_2, s_2) of (\mathcal{M}_3, s_3) s.t. $(\mathcal{M}_2, s_2) \models \mathsf{F}_{\text{CTL}}(\phi, V)$
- \Rightarrow there is an initial K-structure (\mathcal{M}_1, s_1) s.t. $(\mathcal{M}_1, s_1) \models \phi$ and $(\mathcal{M}_1, s_1) \leftrightarrow_V (\mathcal{M}_2, s_2)$
- \Rightarrow it is easy to construct an initial K-structure (\mathcal{M}, s) by (\mathcal{M}_1, s_1) s.t. (\mathcal{M}_1, s_1) is a sub-structure of (\mathcal{M}, s) that s_1 is a direct successor of s and $(\mathcal{M}, s) \leftrightarrow_V (\mathcal{M}_3, s_3)$
- $\Rightarrow (\mathcal{M}, s) \models \mathsf{EX}\phi \text{ and then } (\mathcal{M}_3, s_3) \models \mathsf{F}_{\mathsf{CTL}}(\mathsf{EX}\phi, V).$
 - (iii) and (iV) can be proved as (i) and (ii) respectively. \Box

Section 4.4 Complexity Results

Proposition7 (Model Checking on Forgetting) Given an initial K-structure (\mathcal{M}, s_0) , $V \subseteq \mathcal{A}$ and $\varphi \in \mathrm{CTL}_{\mathrm{AF}}$, deciding $(\mathcal{M}, s_0) \models^? \mathrm{F}_{\mathrm{CTL}}(\varphi, V)$ is NP-complete.

Proof. Membership: Assume that $(\mathcal{M}, s_0) \models F_{CTL}(\varphi, V)$, then there must be an initial K-structure (\mathcal{M}', s_0') such that (a) $(\mathcal{M}', s_0') \models \varphi$ and (b) $(\mathcal{M}, s_0) \leftrightarrow_V (\mathcal{M}', s_0')$. Recall that the condition (a) can be checked in polynomial time in the size of \mathcal{M}' and φ (Clarke, Grumberg, and Peled 2001). We can also show that it takes polynomial time to check the condition (b) in a similar manner to the proof of Corollary 7.45 in (Baier and Katoen 2008). Thus, this problem is in NP since guessing such an initial K-structure (\mathcal{M}', s_0') which is polynomial in the size of (\mathcal{M}, s_0) can be done in polynomial time. The hardness follows from the fact that the model checking for propositional variable forgetting is NP-hard (Zhang and Zhou 2008) (considering that propositional variable forgetting is a special case of forgetting by Theorem 3).

Theorem 6 (Entailment) Let φ and ψ be two ${\rm CTL_{AF}}$ formulas and V be a set of atoms. Then,

- (i) deciding $F_{CTL}(\varphi, V) \models^? \psi$ is co-NP-complete,
- (ii) deciding $\psi \models^? F_{CTL}(\varphi, V)$ is Π_2^P -complete,
- (iii) deciding $F_{CTL}(\varphi, V) \models^? F_{CTL}(\psi, V)$ is Π_2^P -complete.

Proof. (i) It is known that deciding whether φ is satisfiable is NP-Complete (Meier et al. 2009). The hardness follows by setting $F_{CTL}(\varphi, Var(\varphi)) \equiv \top$, i.e., deciding whether ψ is valid. Concerning membership, by Theorem 4, we have $F_{CTL}(\varphi, V) \models \psi \text{ iff } \varphi \models \psi \text{ and } IR(\psi, V).$ Clearly, in CTL_{AF} , deciding $\varphi \models \psi$ is in co-NP (Meier et al. 2009). We show that deciding whether $IR(\psi, V)$ is also in co-NP. W.l.o.g., we assume that ψ is satisfiable. Then ψ has a model in the polynomial size of ψ . We consider the complement of the problem: deciding whether ψ is *not* irrelevant to V (or relevant) i.e., $\neg IR(\psi, V)$. It is easy to see that $\neg IR(\psi, V)$ iff there exists a model (\mathcal{M}, s_0) of ψ and an initial K-structure (\mathcal{M}', s'_0) which has a polynomial size in the size of ψ such that $(\mathcal{M}, s_0) \leftrightarrow_V (\mathcal{M}', s_0')$ and $(\mathcal{M}', s_0') \not\models \psi$. So deciding $\neg IR(\psi, V)$ can be achieved in two steps: (1) guess two initial K-structures (\mathcal{M}, s_0) and (\mathcal{M}', s_0') which is of polynomial size in the size of ψ such that $(\mathcal{M}, s_0) \models \psi$ and $(\mathcal{M}', s_0') \not\models \psi$, and (2) check $(\mathcal{M}, s_0) \leftrightarrow_V (\mathcal{M}', s_0')$. Obviously, both (1) and (2) can be done in polynomial time.

- (ii) Membership: We consider the complement of the problem. We may guess an initial K-structure (\mathcal{M}, s_0) which has polynomial size in the size of ψ satisfying ψ and check whether $(\mathcal{M}, s_0) \not\models F_{CTL}(\varphi, V)$. By Proposition 7, we know that it is in Σ_2^P . So the original problem is in Π_2^P . Hardness: Let $\psi \equiv \top$. Then the problem is reduced to decide the validity of $F_{CTL}(\varphi, V)$. Since propositional forgetting is a special case (of forgetting in CTL) by Theorem 3, the hardness is directly followed from the proof of Proposition 24 in (Lang, Liberatore, and Marquis 2003).
- Assume that $F_{CTL}(\varphi, V)$ (iii) Membership: $F_{CTL}(\psi, V)$. Then, there exists an initial K-structure (\mathcal{M}, s) such that $(\mathcal{M}, s) \models F_{\text{CTL}}(\varphi, V)$ but $(\mathcal{M}, s) \not\models F_{\text{CTL}}(\psi, V)$, i.e., there is a (\mathcal{M}_1, s_1) with $(\mathcal{M}_1, s_1) \leftrightarrow_V (\mathcal{M}, s)$ such that $(\mathcal{M}_1, s_1) \models \varphi$ but for every (\mathcal{M}_2, s_2) with $(\mathcal{M}, s) \leftrightarrow_V (\widetilde{\mathcal{M}}_2, s_2)$ where $(\mathcal{M}_2, s_2) \not\models \psi$. Observe that such (\mathcal{M}, s) and (\mathcal{M}_1, s_1) (with the corresponding testing conditions) can be computed in polynomial time in the size of φ, ψ and V (since the tasks (a) and (b) in the proof of Proposition 7 can be performed in polynomial time). It is obvious that guessing such (\mathcal{M}, s) , (\mathcal{M}_1, s_1) in the polynomial size of φ with $(\mathcal{M}_1, s_1) \leftrightarrow_V (\mathcal{M}, s)$ and checking $(\mathcal{M}_1, s_1) \models \varphi$ are feasible while checking $(\mathcal{M}_2, s_2) \not\models \psi$ for every $(\mathcal{M}, s) \leftrightarrow_V (\mathcal{M}_2, s_2)$ can be done in polynomial time in the size of ψ , and \mathcal{M}_2 .

This shows that the problem is in Π_2^P .

Hardness: It follows from (ii) due to the fact that $F_{\text{CTL}}(\varphi, V) \models F_{\text{CTL}}(\psi, V)$ iff $\varphi \models F_{\text{CTL}}(\psi, V)$ by $\text{IR}(F_{\text{CTL}}(\psi, V), V)$.

Section 5 Necessary and Sufficient Conditions

Proposition 8 (dual) Let V, q, φ and ψ are like in Definition 5. The ψ is a SNC (WSC) of q on V under φ iff $\neg \psi$ is a WSC (SNC) of $\neg q$ on V under φ .

Proof. (i) Suppose ψ is the SNC of q. Then $\varphi \models q \to \psi$. Thus $\varphi \models \neg \psi \to \neg q$. So $\neg \psi$ is a SC of $\neg q$. Suppose ψ' is any other SC of $\neg q$: $\varphi \models \psi' \to \neg q$. Then $\varphi \models q \to \neg \psi'$, this means $\neg \psi'$ is a NC of q on V under φ . Thus $\varphi \models \psi \to \neg \psi'$ by the assumption. So $\varphi \models \psi' \to \neg \psi$. This proves that $\neg \psi$ is the WSC of $\neg q$. The proof of the other part of the proposition is similar.

(ii) The WSC case can be proved similarly with SNC case.

Proposition 9 Let Γ and α be two formulas, $V \subseteq Var(\alpha) \cup Var(\Gamma)$ and q be a new proposition not in Γ and α . Then, a formula φ of V is the SNC (WSC) of α on V under Γ iff it is the SNC (WSC) of q on V under $\Gamma' = \Gamma \cup \{q \leftrightarrow \alpha\}$.

Proof. We prove this for SNC. The case for WSC is similar. Let $SNC(\varphi, \alpha, V, \Gamma)$ denote that φ is the SNC of α on V under Γ , and $NC(\varphi, \alpha, V, \Gamma)$ denote that φ is the NC of α on V under Γ .

 $(\Rightarrow) \text{ We will show that if } SNC(\varphi,\alpha,V,\Gamma) \text{ holds, then } SNC(\varphi,q,V,\Gamma') \text{ will be true. According to } SNC(\varphi,\alpha,V,\Gamma) \text{ and } \alpha \equiv q \text{, we have } \Gamma' \models q \to \varphi \text{, which means } \varphi \text{ is a NC of } q \text{ on } V \text{ under } \Gamma' \text{. Suppose } \varphi' \text{ is any NC of } q \text{ on } V \text{ under } \Gamma', \text{ then } F_{\text{CTL}}(\Gamma',q) \models \alpha \to \varphi' \text{ due to } \alpha \equiv q, IR(\alpha \to \varphi',\{q\}) \text{ and } (\mathbf{PP}), \text{ i.e., } \Gamma \models \alpha \to \varphi' \text{ by Lemma 4, this means } NC(\varphi',\alpha,V,\Gamma). \text{ Therefore, } \Gamma \models \varphi \to \varphi' \text{ by the definition of SNC and } \Gamma' \models \varphi \to \varphi'. \text{ Hence, } SNC(\varphi,q,V,\Gamma') \text{ holds}$

 $(\Leftarrow) \text{ We will show that if } SNC(\varphi,q,V,\Gamma') \text{ holds, then } SNC(\varphi,\alpha,V,\Gamma) \text{ will be true. According to } SNC(\varphi,q,V,\Gamma'), \text{ it's not difficult to know that } F_{\text{CTL}}(\Gamma',\{q\}) \models \alpha \to \varphi \text{ due to } \alpha \equiv q, IR(\alpha \to \varphi,\{q\}) \text{ and } (\mathbf{PP}), \text{ i.e., } \Gamma \models \alpha \to \varphi \text{ by Lemma 4, this means } NC(\varphi,\alpha,V,\Gamma). \text{ Suppose } \varphi' \text{ is any NC of } \alpha \text{ on } V \text{ under } \Gamma. \text{ Then } \Gamma' \models q \to \varphi' \text{ since } \alpha \equiv q \text{ and } \Gamma' = \Gamma \cup \{q \equiv \alpha\}, \text{ which means } NC(\varphi',q,V,\Gamma'). \text{ According to } SNC(\varphi,q,V,\Gamma'), IR(\varphi \to \varphi',\{q\}) \text{ and } (\mathbf{PP}), \text{ we have } F_{\text{CTL}}(\Gamma',\{q\}) \models \varphi \to \varphi', \text{ and } \Gamma \models \varphi \to \varphi' \text{ by Lemma 4. Hence, } SNC(\varphi,\alpha,V,\Gamma) \text{ holds.}$

Theorem 8 Let φ be a formula, $V \subseteq Var(\varphi)$ and $q \in Var(\varphi) - V$.

- (i) $F_{CTL}(\varphi \wedge q, (Var(\varphi) \cup \{q\}) V)$ is a SNC of q on V under φ .
- (ii) $\neg F_{\text{CTL}}(\varphi \wedge \neg q, (\mathit{Var}(\varphi) \cup \{q\}) V)$ is a WSC of q on V under φ .

Proof. We will prove the SNC part, while it is not difficult to prove the WSC part according to Proposition 8. Let $\mathcal{F} = F_{\text{CTL}}(\varphi \wedge q, (Var(\varphi) \cup \{q\}) - V)$.

The "NC" part: It's easy to see that $\varphi \wedge q \models \mathcal{F}$ by (W). Hence, $\varphi \models q \to \mathcal{F}$, this means \mathcal{F} is a NC of q on V under

The "SNC" part: We will show that for all NC ψ' of q on V under φ (i.e $\varphi \models q \to \psi'$) there is $\varphi \models \mathcal{F} \to \psi'$. We know that if $\varphi \land q \models \psi'$ then $\mathcal{F} \models \psi'$ by (**PP**) due to $IR(\psi', (Var(\varphi) \cup \{q\}) - V)$. Therefore, we have $\varphi \land \mathcal{F} \models \psi'$ since ψ' is a NC of q on V under φ and then $\varphi \models \mathcal{F} \to \psi'$, i.e. \mathcal{F} is the SNC of q on V under φ .

Theorem 9 Let $\mathcal{K}=(\mathcal{M},s)$ be an initial K-structure with $\mathcal{M}=(S,R,L,s_0)$ on the set \mathcal{A} of atoms, $V\subseteq \mathcal{A}$ and $q\in V'=\mathcal{A}-V$. Then:

- (i) the SNC of q on V under K is $F_{CTL}(\mathcal{F}_{\mathcal{A}}(K) \wedge q, V')$.
- (ii) the WSC of q on V under \mathcal{K} is $\neg F_{\text{CTL}}(\mathcal{F}_{\mathcal{A}}(\mathcal{K}) \land \neg q, V')$.

Proof. (i) As we know that any initial K-structure K can be described as a characterizing formula $\mathcal{F}_{\mathcal{A}}(K)$, then the SNC of q on V under $\mathcal{F}_{\mathcal{A}}(K)$ is $F_{\text{CTL}}(\mathcal{F}_{\mathcal{A}}(K) \wedge q, \mathcal{A} - V)$.

(ii) This is proved by the dual property.

Section 6 An Algorithm Computing CTL Forgetting

Proposition10 Let φ be a CTL formula and $V \subseteq \mathcal{A}$ with $|\mathcal{S}| = m$, $|\mathcal{A}| = n$ and |V| = x. The space complexity is $O((n-x)m^{2(m+2)}2^{nm}*\log m)$ and the time complexity of Algorithm 1 is at least the same as the space.

Proof. Supposing each state or atom occupy $\log m$ (supposing $n \leq m$), then a state pair (s,s') occupy $2*\log m$ bits. For any $B \subseteq \mathcal{S}$ with $B \neq \emptyset$ and $s_0 \in B$, we can construct an initial K-structure (\mathcal{M},s_0) with $\mathcal{M}=(B,R,L,s_0)$, in which there is at most $\frac{|B|^2}{2}$ state pairs in R and |B|*n pairs (s,A) ($A \subseteq \mathcal{A}$) in L. Hence, the (\mathcal{M},s_0) occupy at most $(|B|+|B|^2+|B|*n)*\log m$ bits. Besides, for the set B of states we have |B| choices for the initial state, $|B|^{|B|}$ choices for the R and $(2^n)^{|B|}$ choices for the L. In the worst case, i.e., when |B|=m, we have $m*(m^m*2^{nm}*m)$ number of initial K-structures. Therefore, there is at most $m^{m+2}*2^{nm}$ number of initial K-structures, hence it will at most $(m^{m+2}*2^{nm})$ number of initial K-structures, hence it will at most $(m^{m+2}*2^{nm})$ number of $(m^{m+2}*2^{nm})$

Let k=n-x, for any initial K-structure $\mathcal{K}=(\mathcal{M},s_0)$ with $i\geq 1$ nodes and $\mathcal{M}=(B,R,L,s_0)$, in the worst case, i.e., when $ch(\mathcal{M},V)=i$, we will spend $N(i)=P_i(s_0)+i*(P_i(s)+i*P_i(s'))$ space to store the characterizing formula of \mathcal{K} on \overline{V} . Where $s',s\in B$ and $P_i(y)$ is the space spend to store $\mathcal{F}_{\overline{V}}(\mathrm{Tr}_i(y))$ with $y\in B$. (We suppose the formulas in EX and AX parts share the same memory.) In the following, we compute inductively the space needed to store the $\mathcal{F}_{\overline{V}}(\mathrm{Tr}_n(y))$ with $0\leq n\leq i$

(1)
$$n = 0$$
, $P_0(y) = k$
(2) $n = 1$, $P_1(y) = k + i * k = k + i * P_0(y)$
(3) $n = 2$, $P_2(y) = k + i * (k + i * k) = k + i * P_1(y)$
... $(i + 1) n = i$, $P_i(y) = k + i * P_{i-1}(y)$.

Therefore, we have

$$P_i(y) = k + i * k + i^2 * k \dots + i^i * k = \frac{i^i - 1}{i - 1} k, \text{ and}$$

$$N(i) = P_i(s_0) + i * (P_i(s) + i * P_i(s'))$$

$$= (i^2 + i + 1)P_i(y)$$

$$= (i^2 + i + 1)\frac{i^i - 1}{i - 1}k.$$

In the worst case, i.e., there is $m^{m+2} * 2^{nm}$ initial K-structures with m nodes, we will spent $(m^{m+2} * 2^{nm} * N(m)) * \log m$ bits to store the result of forgetting.

Therefore, the space complexity is $O((n-x)m^{2(m+2)}2^{nm}*\log m)$ and the time complexity is at least the same as the space.