

Angewandte Ökonometrie 2

Sommersemester 2017

Timur Sudak A01277687

Empirisches Projekt

Aufgabe

Zuerst wählen wir die Variablen für unser Regressionsmodell. Wir logarithmieren unsere abhängige Variable Zigarettenkonsum pro Kopf, um dann die Koeffizienten des Regressionsmodells als Elastizität interpretieren zu können. Als unabhängige Variablen nehmen wir verfügbares Einkommen pro Kopf und den Preis pro Zigarettenpackung. Wir inkludieren Pop und Pop16 in unserem Modell nicht, weil das Einkommen und der Konsum schon pro Kopf angegeben sind. Es gibt auch keinen Grund, die Bevölkerungsanzahl im Modell hinzuzufügen, weil die Pro-Kopf-Nachfrage nicht von der Größe der Population abhängt.

Die Regression sieht aus wie folgt:

 $In_cons = \beta_0 + \beta_1 * In_income + \beta_2 * In_price + \epsilon_{it}, \epsilon_{it} = \mu_i + e_{it}$

Wir wissen, dass der Preis durch Angebot und Nachfrage bestimmt ist. In unserem Modell haben wir den Preis, der durch die abhängige Variable Zigarettenkonsum bestimmt ist. Das heißt, dass unser Preis endogen ist, weil der Zigarettenkonsum den estat endogenous Preis beeinflusst.

Tests of endogeneity

Aber jetzt prüfen wir die Endogenität Ho: variables are exogenous statistisch. Wir führen einen Hausman-Test durch. Wir verwerfen H₀ bei dem Test, was heißt, dass der Preis endogen ist, deshalb müssen wir

Robust score chi2(1) = 13.611 (p = 0.0002) Robust regression F(1,1376) = 14.4743 (p = 0.0001)

hausman fe re

	Coefficients					
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))		
	fe	re	Difference	S.E.		
ln_price	5396432	543814	.0041709	.0135497		
ln_income	.3947206	.3982387	0035181	.0114055		

b = consistent under Ho and Ha; obtained from xtivreg B = inconsistent under Ha, efficient under Ho; obtained from xtivreg

Ho: difference in coefficients not systematic Test:

> $chi2(2) = (b-B)'[(V_b-V_B)^(-1)](b-B)$ Prob>chi2 = 0.9534

die Variable instrumentieren. Wir wollen jetzt eine Instrument Variable finden, die mit dem Zigarettenkonsum unkorreliert und mit dem Preis hochkorreliert ist. Die einzige Variable, die solche Eigenschaften hat, ist der Konsumentenpreisindex.

Als nächstes machen wir den Hausman-Test und

testen die Annahme strikter Exogenität. Mit dem Test finden wir heraus, um welches Setting es sich bei unserem Modell handelt: Feste Effekte oder Zufällige Effekte. Der Hausman-Test zeigt uns, ob die Schätzer stark voneinander abweichen. Wir haben herausgefunden, dass die Schätzer nicht so stark voneinander abweichen und deshalb wird die Nullhypothese nicht verworfen. Das heißt, dass der GLS-Schätzer konsistent und effizient in unserem Modell ist. Der Between-Schätzer wäre ineffizient, weil er die Information von der Within Variation ignoriert. Deshalb nehmen wir GLS Schätzer, weil er sowohl Within als auch Between Variation berücksichtigt.

Jetzt wollen wir mit LM-Test(Breusch-Pagan Test) · xttest0 testen, ob die Varianz von individuenspezifischen
Effekte σ^2_μ gleich Null ist. In unserem Modell verwerfen wir H_0 , es heißt, dass σ^2_μ bei uns ungleich Null ist.

Breusch and Pagan Lagrangian multiplier test for random effects

ln cons[state,t] = Xb + u[state] + e[state,t]

Dann schätzen wir μ . In unserem Modell ist der Erwartungswert von μ_i gleich Null. Die Varianz ist gleich σ^2_{μ} . Und wir haben mit dem LM-Test herausgefunden, dass σ^2_{μ} ungleich Null ist. Wir lesen aus dem Graphen

heraus, dass μ_i um dem Erwartungswert null streuen. Jetzt ist es schon offensichtlich, dass der Gepoolte-Schätzer für dieses Modell nicht geeignet ist, weil unsere μ_i verschieden sind. Es heißt, dass die Einstellung zum Rauchen in verschiedenen Städte unterschiedlich ist.

Weiter haben wir herausgestellt, dass die Fehlerterme e_{it} autokorreliert sind. Deshalb fügen wir zu unserer Regression VCE(Cluster) hinzu. Wir nehmen diese Option, um die Korrelation innerhalb der Gruppen zuzulassen. Die Fehlerterme dürfen innerhalb der Staaten

korrelieren.

2.Aufgabe

Um zu bestimmen, ob Zeit-spezifische Effekte vorliegen fügen wir jetzt die Zeit Variable in unsere Regression für jedes einzelne Jahr hinzu und führen den Test auf Signifikanz durch. Wir finden heraus, dass alle zeitspezifischen Variablen hoch signifikant sind. Aus dem Modell kann man einen Zeittrend ablesen, den man so interpretieren kann, dass der

				Wald chi	2 (30) =	400262.21
orr(u_i, X)	= 0 (ass	sumed)		Prob > cl	ni2 =	0.0000
		(Std.	Err. ad	usted for	47 clusters	in state)
		Robust				
ln_cons	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
ln_price	0783108	.2848546	-0.27	0.783	6366155	. 4799939
ln_income	. 665086	.1221851	5.44	0.000	.4256076	.9045644
year						
64	0675382	.0057031	-11.84	0.000	0787161	0563603
65	0998833	.0085574	-11.67	0.000	1166555	0831111
66	1429481	.0106987	-13.36	0.000	1639173	121979
67	171212	.0099014	-17.29	0.000	1906185	1518055
68	2228521	.013708	-16.26	0.000	2497192	195985
69	2733651	.0168791	-16.20	0.000	3064475	2402827
70	3395247	.030178	-11.25	0.000	3986725	280377
71	3566209	.0384553	-9.27	0.000	4319918	2812499
72	3732122	.04	-9.33	0.000	4516107	2948138
73	441278	.0325966	-13.54	0.000	5051662	3773897
74	4610683	.0328343	-14.04	0.000	5254223	3967142
75	4975944	.0414461	-12.01	0.000	5788272	4163615
76	5203479	.0518857	-10.03	0.000	622042	4186537
77	5769307	.0514756	-11.21	0.000	677821	4760404
78	6395291	.0680279	-9.40	0.000	7728614	5061969
79	716958	.068361	-10.49	0.000	8509431	582973
80	7641709	.0740549	-10.32	0.000	9093158	6190259
81	8238161	.0756944	-10.88	0.000	9721745	6754578
82	8668707	.0978023	-8.86	0.000	-1.05856	6751817
83	9293883	.1337252	-6.95	0.000	-1.191485	6672917
84	-1.018353	.159866	-6.37	0.000	-1.331684	7050213
85	-1.059314	.1717224	-6.17	0.000	-1.395884	7227445
86	-1.106868	.1846366	-5.99	0.000	-1.468749	7449865
87	-1.162111	.1966527	-5.91	0.000	-1.547543	7766787
88	-1.236186	.2108703	-5.86	0.000	-1.649484	8228874
89	-1.308352	.2278362	-5.74	0.000	-1.754903	8618013
90	-1.390891	.2491501	-5.58	0.000	-1.879216	9025652
91	-1.431058	.2609047	-5.48	0.000	-1.942422	9196946
92	-1.479733	.2887072	-5.13	0.000	-2.045589	9138771

Zigarettenkonsum mit der Zeit abnimmt. Wir sehen auch, dass alle zeitspezifischen Variablen zusammen ungleich null sind. Aber es stellt sich heraus, dass die Preisvariable in diesem

Modell insignifikant ist. Die wahrscheinlichste Ursache ist, dass die Variation vom Zigarettenkonsum von einzelnen Jahren sehr Prob > chi2 =

chi2(29) = 5303.720.0000

gut aufgefangen wird. Sie erklären die Variation vom Zigarettenkonsum so gut, dass der Preis insignifikant wird. Der Preis hat einen sehr kleinen Koeffizienten. Das heißt, dass der Zigarettenkonsum sich sehr schwach bei der Preissteigung verändert, was nicht unseren

. xtivreg ln_cons ln_income (ln_price=ln_CPI) year, re vce(cluster state)						
32SLS random-effects IV regression Number of					of obs =	1,380
Group variable: state			Number	of groups =	46	
R-sq:			Obs per group:			
within = 0.5991				min =	30	
between = 0.1861				avg =		
overall = 0.3078				max =	30	
				Wald ob	12(3) =	509.46
corr(u i, X)	= 0 (255	numed)			chi2 =	0.0000
JULI (u_I, A)	- 0 (433	Junieu)		FIOD >	CIII2 -	0.0000
		(Std.	Err. ad	justed fo	r 47 clusters	in state)
		Robust				
ln_cons	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
ln price	4104533	.1723985	-2.38	0.017	7483481	0725584
ln_income	.7453917	.0709191	10.51	0.000	.6063929	.8843905
year	0351542	.0154741	-2.27	0.023	0654828	0048256
_cons	2.690722	.2178741	12.35	0.000	2.263697	3.117748
	.17875971					
sigma_u sigma e	.08251608					
rho		(fraction	of waria	oce due t	0 11 11	
1110	.02434932	(114561011)	or varian	ice due t	u_1,	
Instrumented: Instruments:	ln_price ln_income y	/ear ln_CPI				

Erwartungen entspricht. Deshalb probieren wir die Zeit-Spezifische Variablen als gemeinsame Variable für alle Jahre zusammen in unserem Modell hinzufügen. Wir kriegen dann eine signifikante Preisvariable. Unsere zeitspezifische Variable ist ebenfalls signifikant.

estimates table RE FD FE POOL, b(%9.4f) se stats(N)

3. Aufgabe.

Durch die Tabelle wird offensichtlich, dass unsere Schätzer sich voneinander stark unterscheiden. Man kann schlussfolgern, dass der FD und Pooled-Schätzer stark verzerrt sind. Der Fixed-Effekt Schätzer hat eine kleinere Verzerrung als der Random-Effekt Schätzer.

RE	FD	FE	POOL
-0.4105		-0.4316	-2.1482
0.1724		0.1695	1.1173
0.7454		0.7429	0.5431
0.0709		0.0693	0.0471
-0.0352		-0.0336	0.0924
0.0155		0.0151	0.0703
	-1.7521		
	0.8580		
	0.0862		
	0.1487		
	(omitted)		
			1.6208
0.2179	0.0648	0.2153	1.1353
1380	1334	1380	1380
	-0.4105 0.1724 0.7454 0.0709 -0.0352	-0.4105 0.1724 0.7454 0.0709 -0.0352 0.0155 -1.7521 0.8580 0.0862 0.1487 (omitted) 2.6907 0.0976 0.2179 0.0648	-0.4105 -0.4316 0.1724 0.1695 0.7454 0.7429 0.0709 0.0693 -0.0352 -0.0336 0.0155 -1.7521 0.8580 0.0862 0.1487 (omitted) 2.6907 0.0976 2.6777 0.2179 0.0648 0.2153

Der Between-Schätzer eliminiert die Variablen, die über die

Individuen hinweg konstant sind. Da wir aber als Instrumentvariable den Konsumentenpreisindex (konstant in allen Staaten) genommen haben, ist der Between-Schätzer irrelevant für unser Modell.

Der RE-Schätzer ist der relevante Schätzer für unser Modell. Die statistische Validität von RE-Schätzer haben wir schon in der Aufgabe 1 gezeigt. Die geschätzte Preiselastizität beträgt -0.41. Das heißt, wenn der Preis um 1 Einheit steigt, dann fällt der Zigarettenkonsum um 0.41 Prozent. Der Wert für die Schätzung, den wir gerechnet haben, unterscheidet sich nicht so stark von den Werten, die in anderen Studien in gleichem Zeitraum gerechnet sind. Zum Beispiel in Baltagi 1(1987) beträgt die Preiselastizität für die Periode zwischen 1956-64 -0.556 und für 1965-71 -0.433. So kann man die ökonomische und statistische Validität unseres Schätzers begründen.

¹ Baltagi B. H., Goel R. K. Quasi-experimental price elasticities of cigarette demand and the bootlegging effect // American Journal of Agricultural Economics. – 1987. – p. 750-754.