or a pharmaceutically acceptable salt or hydrate thereof, wherein:

n is 0, 1, 2, 3 or 4;

X is absent, (C_1-C_3) alkyl, (C_1-C_3) alkenyl, or (C_1-C_3) alkynyl;

Y is C, N, P, Si or Ge;

 $R_1 \text{ is absent, -halo, -R, -OR, -SR, -NR}_2, \text{-ONR}_2, \text{-NO}_2, \text{-CN, -C(O)R, -C(S)R, -C(O)OR, -C(S)OR, -C(O)SR, -C(O)SR, -C(O)NR}_2, \text{-C(O)NR}_2, \text{-C(O)NR}_2, \text{-C(O)NR}_2, \text{-C(O)NR}_2, \text{-C(O)NR}_2, \text{-C(O)NR}_2, \text{-C(O)NR}_2, \text{-C(O)NR}_2, \text{-CH[C(O)NR}_2, \text{-CH[C(O)SR}_2, \text{-CH[C($

*Ar₁ is aryl, substituted aryl, heteroaryl other than imidazole, nitroimidazole and triazole, heteroarylium other than imidazolium, nitroimidazolium and triazolium, (C_5-C_8) cycloalkyl or (C_5-C_8) heterocycloalkyl;

Ar₂ is aryl or substituted aryl;

Ar₃ is aryl, substituted aryl, biaryl or heteroaryl other than imidazole, nitroimidazole and triazole; each R is independently selected from the group consisting of -H, (C₁-C₆) alkyl, substituted (C₁-C₆) alkyl, (C₁-C₆) alkenyl, substituted (C₁-C₆) alkenyl, substituted (C₁-C₆) alkynyl, and (C₁-C₆) alkoxy;

the aryl substituents are each independently selected from the group consisting of -halo, trihalomethyl, -R, -R', -OR', -SR', NR'₂, -NO₂, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR', -C(O)SR' and -C(S)SR';

the alkyl, alkenyl and alkynyl substituents are each independently selected from the group consisting of -halo, -R', -OR', -SR', NR'₂, -NO₂, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR', aryl, γ -butyrolactonyl, pyrrolidinyl and succinic anhydridyl; [and]

each R' is independently selected from the group consisting of -H, (C_1-C_6) alkyl, (C_1-C_6) alkenyl and (C_1-C_6) alkynyl, and

wherein thiophene is the only heterocyclic substituent.

6. (Amended) A method of treating an inflammatory disease, said method comprising the step of administering to a subject suffering from an inflammatory disease a therapeutically effective amount of a compound having the formula:

(I)

$$Ar_{1}$$
 X
 Ar_{3}
 Y
 CH_{2})_n- R_{1}
 Ar_{2}

AZ

or a pharmaceutically acceptable salt or hydrate thereof, wherein:

n is 0, 1, 2, 3 or 4;

X is absent, (C_1-C_3) alkyl, (C_1-C_3) alkenyl, or (C_1-C_3) alkynyl;

Y is C, N, P, Si or Ge;

 $R_1 \text{ is absent, -halo, -R, -OR, -SR, -NR}_2, \text{-ONR}_2, \text{-NO}_2, \text{-CN, -C(O)R, -C(S)R, -C(O)OR, -C(S)OR, -C(O)SR, -C(O)SR, -C(O)NR}_2, \text{-C(O)NR}_2, \text{-C(O)NR}_2, \text{-C(O)NR}_2, \text{-C(O)NR}_2, \text{-C(O)NR}_2, \text{-C(O)NR}_2, \text{-C(O)NR}_2, \text{-C(O)NR}_2, \text{-C(O)NR}_2, \text{-CH[C(O)R]}_2, \text{-CH[C(O)R]}_2, \text{-CH[C(O)SR]}_2, \text{-CH[C(O)SR]}_2,$

Ar₁ is aryl, substituted aryl, heteroaryl other than imidazole, nitroimidazole and triazole, heteroarylium other than imidazolium, nitroimidazolium and triazolium, (C_5-C_8) cycloalkyl or (C_5-C_8) heterocycloalkyl;

Ar₂ is aryl or substituted aryl;

Ar₃ is aryl, substituted aryl, biaryl or heteroaryl other than imidazole, nitroimidazole and triazole; each R is independently selected from the group consisting of -H, (C_1-C_6) alkyl, substituted (C_1-C_6) alkyl, (C_1-C_6) alkenyl, substituted (C_1-C_6) alkenyl, substituted (C_1-C_6) alkynyl, substituted (C_1-C_6) alkynyl, and (C_1-C_6) alkoxy;

the aryl substituents are each independently selected from the group consisting of -halo, trihalomethyl, -R, -R', -OR', -SR', NR'₂, -NO₂, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR', -C(O)SR' and -C(S)SR';

the alkyl, alkenyl and alkynyl substituents are each independently selected from the group consisting of -halo, -R', -OR', -SR', NR'₂, -NO₂, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR', aryl, γ -butyrolactonyl, pyrrolidinyl and succinic anhydridyl; [and]

each R' is independently selected from the group consisting of -H, (C_1-C_6) alkyl, (C_1-C_6) alkenyl and (C_1-C_6) alkynyl, and