Project 2: Coin change problem

dr Szymon Murawski

Task 1: Coin change for canonical coin systems

- 1. Using greedy approach write an algorithm, that for a given input integer X returns a string of how many coins of specific value should be returned.
- 2. Pseudocode for this algorithm was given during lecture, use it!
- 3. Assume that we have at our disposal set of coins with values: $C = \langle 1, 2, 5, 10, 20, 50, 100 \rangle$
- 4. For each input algorithm should return the optimal number of coins
- 5. Example test cases:
 - If x is not a positive integer, throw exception Input should be a positive integer
 - For x = 0, return empty string
 - For x = 3, return $1 \times 2, 1 \times 1$
 - For x = 47, return 2×20 , 1×5 , 1×2

Task 2: Greedy algorithm for general case

- 1. Expand previous algorithm, allowing it to also take as input set of coins C
- 2. For each input set of coins C and change to be made x algorithm should return string of how that change should be made
- 3. Example test cases:
 - (a) If x is not a positive integer, throw exception Input should be a positive integer
 - (b) If any coin c_x is not a positive integer, throw exception Coin should be positive integer
 - (c) If there are coins c_i, c_j such that $c_i = c_j$, throw exception Coins should have unique values
 - (d) If $1 \notin C$, throw exception One coin must have value of 1
 - (e) For $C = \langle 1, 3, 4 \rangle$, x = 6, return $1 \times 4, 2 \times 1$
 - (f) For C = (1, 3, 6, 8), x = 12, return $1 \times 8, 1 \times 3, 1 \times 1$

Task 3: Coin change for general case

Previous algorithm will produce sub-optimal results for non-canonical coin systems. For example given coins 1,3,4 and input x=6 greedy approach would produce $1 \times 4, 2 \times 1$, while the optimal answer is 2×3 . Optimal answer in general case can be found using dynamic programming

1. Using dynamic programming write an algorithm, that for a given set of coins $C = \langle c_1, c_2, c_3, \dots, c_n \rangle$ and positive integer X returns a string of how many coins of specific value should be returned.

- 2. Pseudocode for this algorithm was given during lecture, use it!
- 3. Set of coins C should be taken as an input of a program.
- 4. For each input algorithm should return the optimal number of coins.
- 5. Example test cases:
 - If x is not a positive integer, throw exception Input should be a positive integer
 - If any coin c_x is not a positive integer, throw exception Coin should be positive integer
 - If there are coins c_i, c_j such that $c_i = c_j$, throw exception Coins should have unique values
 - If $1 \notin C$, throw exception One coin must have value of 1
 - For $C = \langle 1, 3, 4 \rangle$, x = 6, return 2×3
 - For $C = \langle 1, 3, 6, 8 \rangle$, x = 12, return 2×6

Task 4: Analysis

Now that we have two algorithms we can check how they perform for different number of coins and different value of change to be made.

- 1. Run your programs for increasing number of coins in set C and measure the time it takes for both greedy and dynamic algorithm to complete the task
- 2. Run your program for increasing value of change to be made x and measure the time it takes for both greedy and dynamic algorithm to complete the task
- 3. Plot your results and write short report on your findings how do those two algorithms behave when you increase size of coins array of change to be made?