MATB43: Introduction to Analysis Lecture Notes

Joshua Concon

University of Toronto Scarborough – Winter 2018

Pre-reqs are MATA37. Instructor is John Scherk. If you find any problems in these notes, feel free to contact me at conconjoshua@gmail.com.

Contents

1			2	
	1.1	Countability	2	
	1.2	Real Numbers	5	
	1.3	Algebraic Numbers		
		Bounds		
2	Mo	nday, January 8, 2017	8	
	2.1	Sequences - Review	8	
3	Fric	lay, January 12, 2017	0	
	3.1	Monotone Sequences	.0	
	3.2	Subsequences	. 1	
4	Monday, January 15, 2017			
	4.1	Cauchy	5	
	4.2	Series	.5	
		4.2.1 Convergence Tests	7	

1 Friday, January 5, 2018

1.1 Countability

Countability is all about the cardinality of sets

Definition 1.1. For sets X, Y, they have the same cardinality if there exists a bijection between them $(f: X \mapsto Y \text{ has an inverse as well})$. Equality of cardinality of 2 sets is written as card(X) = card(Y)

Example 1.2. $card(\{1, 2, 3, 4, 5\}) = card(\{a, b, c, d, e\})$

Example 1.3. $card(\mathbb{N}) = card(2\mathbb{N})$

This example is correct because $f: \mathbb{N} \mapsto 2\mathbb{N}, f(n) = 2n$ is a bijection.

Example 1.4. $card(\{\text{set of odd numbers}\}) = card(\mathbb{N})$

This example is correct because $g : \mathbb{N} \mapsto \{\text{set of odd numbers}\}\$ $g(n) = 2n + 1, n \in \mathbb{N}$

Definition 1.5. X is **finite** if for some $n \in \mathbb{N}$ there exists a bijection where $A = \{1, 2, ..., n\}$ $f: A \mapsto X$. So essentially card(A) = card(X)

Intuitively, we can label the elements of X as $X = \{x_1, x_2, ..., x_n\}$

Definition 1.6. X is **inifinite** if X is not finite.

Examples of this include: $\mathbb{N}, 2\mathbb{N}, \mathbb{Q}, \mathbb{R}$

However, not all infinite sets have the same cardinality.

Definition 1.7. X is **countable** if card(X) = card(A) where $A \subseteq \mathbb{N}$

Again intuitively, we can label the elements of X as $X = \{x_1, x_2, ..., x_n, ...\}$ (using elements of \mathbb{N})

Example 1.8. $2\mathbb{N}$

Example 1.9. The set of odd numbers

Example 1.10. \mathbb{Z}

Theorem 1.11. In general, if $Z = X \cup Y$ and Y, X are both countable then Z is countable as well

Proof. label elements of $X = \{x_1, x_2, ..., x_n, ...\}$ label elements of $Y = \{y_1, y_2, ..., y_n, ...\}$ define $h : \mathbb{N} \mapsto \mathbb{Z}$ as, for $n \in \mathbb{N}$:

$$h(2n-1) = x_n$$
$$h(2n) = y_n$$

Then h is a bijection, therefore Z is also countable

Example 1.12. $\mathbb{N} \times \mathbb{N}$

This example is countable as we can label its elements in the following pattern.

$$(1,1) \mapsto 1$$
$$(2,1) \mapsto 2$$
$$(1,2) \mapsto 3$$
$$(1,3) \mapsto 4$$
$$(2,2) \mapsto 5$$
$$(3,1) \mapsto 6$$
$$(4,1) \mapsto 7$$

And so on, in this pattern. Intuitively, if you list out all the pairs of $\mathbb{N} \times \mathbb{N}$ like a matrix, this would create a sort of zig zag pattern.

Proposition 1.13. Suppose X is countable and $Y \subset X$, then Y is either finite (which also means that it is countable) or just countable

```
Proof. write X = \{x_1, x_2, ..., x_n, ...\} let j_1 be the smallest index such that x_{j_1} \in Y let j_2 be the smallest index such that x_{j_2} \in Y, j_2 > j_1 let j_3 be the smallest index such that x_{j_3} \in Y, j_3 > j_2 ... and so on.
```

Now either:

This process terminates, which means that $Y = \{x_{j_1}, ..., x_{j_n}\}$ for some

 $j_1, ..., j_n$ which Y is finite.

or:

Y is countable, since
$$Y = \{x_{j_1}, x_{j_2}, ..., x_{j_n}, ...\}$$

Proposition 1.14. \mathbb{Q} is countable

Proof. Note that $\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$ so we must check that \mathbb{Q}^+ is countable, note that

$$\mathbb{Q}^+ = \{ \frac{m}{n} | m, n \in \mathbb{N}, n \neq 0 \}$$

Since it is a pairing of two natural numbers (m, n), this is a subset of $\mathbb{N} \times \mathbb{N}$, which means that \mathbb{Q}^+ is countable, we can say that same thing for \mathbb{Q}^- as well, note that it is

$$\mathbb{Q}^+ = \{ \frac{-m}{n} | m, n \in \mathbb{N}, n \neq 0 \}$$

and since \mathbb{Q}^+ and \mathbb{Q}^- are both countable and $\{0\}$ is a set of cardinality 1, therefore \mathbb{Q} is countable

Theorem 1.15. Let $S = \{s = (s_1, s_2, ...) | s_j = 0 \text{ or } 1 \forall j \}$ (note here that s is a sequence). Then S is not countable

Proof. For proof by contradiction, suppose S is countable. We can then label the elements of S as $S^1, S^2, ..., S^n, ... \in S$.

So an example of this would be:

$$S^{1} = (s_{1}^{1}, s_{2}^{1}, s_{3}^{1}, ..., s_{n}^{1}, ...)$$

$$S^{2} = (s_{1}^{2}, s_{2}^{2}, s_{3}^{2}, ..., s_{n}^{2}, ...)$$

$$...$$

$$S^{m} = (s_{1}^{m}, s_{2}^{m}, s_{3}^{m}, ..., s_{n}^{m}, ...)$$

And we will define a $t \in S$ as follows, let $t = (t_1, t_2, ..., t_m, ...)$

$$t_1 = \begin{cases} 0, & \text{if } S_1^1 = 1\\ 1, & \text{if } S_1^1 = 0 \end{cases}$$

1 FRIDAY, JANUARY 5, 2018

$$t_2 = \begin{cases} 0, & \text{if } S_2^2 = 1\\ 1, & \text{if } S_2^2 = 0\\ & \dots \end{cases}$$

$$t_m = \begin{cases} 0, & \text{if } S_m^m = 1\\ 1, & \text{if } S_m^m = 0 \end{cases}$$

Therefore $t \neq S^m, \forall m$. Therefore this is a contradiction as t was not in the listed elements of S, therefore S is not countable.

Corollary 1.16. \mathbb{R} is not countable

Proof. Regard \mathbb{R} as a set of infinite decimal fractions.

Identify $s \in S$ with the decimal number $0.s_1s_2...s_n...$ so S can be regarded as a subset of \mathbb{R} . If \mathbb{R} were countable, then S would be countable, therefore \mathbb{R} must not be countable.

1.2 Real Numbers

Examples of real numbers that are not rational include: π, e (which are algebraic numbers), $\sqrt{2}, \sqrt{3}, \frac{\sqrt{5}+1}{2}$ (which are roots of polynomial equations with integer coefficients.)

1.3 Algebraic Numbers

The set of Algebraic Numbers is a set $\overline{\mathbb{Q}}$ such that

$$\overline{\mathbb{Q}} = \{x \in \mathbb{R} | x^n + a_{n-1}x^{n-1} + \dots + a_0 = 0 \text{ for some } a_0, \dots, a_{n-1} \in \mathbb{Z} \}$$

Note that $\mathbb{Q} \subset \overline{\mathbb{Q}}$, and in fact, $\overline{\mathbb{Q}}$ is countable.

if $x \in (\mathbb{R} \setminus \overline{\mathbb{Q}})$ then. x is transcendental.

1.4 Bounds

Definition 1.17. $X \subset \mathbb{R}, X$ is **bounded above** if $\exists a \in \mathbb{R}$ such that $a \ge x, \forall x \in X$

Definition 1.18. $X \subset \mathbb{R}, X$ is **bounded below** if $\exists a \in \mathbb{R}$ such that $a \leq x, \forall x \in X$

Example 1.19. $X = \{x \in \mathbb{R} | x^2 \le 2\}$ is bounded above by $\frac{3}{2}$ since $(\frac{3}{2})^2 \ge 2$

Definition 1.20. a is the **least upper bound** of X if a is an upper bound of X and if b < a, then there exists $x \in X$ such that x > b.

We write a = lub(X) or a = sup(X) if a is the least upper bound of X

Definition 1.21. a is the **greatest lower bound** of X if a is an lower bound of X and if b > a, then there exists $x \in X$ such that x < b.

Example 1.22. if $X = \{x | x^2 \le 2\}$, then $sup(X) = \sqrt{2} \notin \mathbb{Q}$

Property 1.23. if $X \subset \mathbb{R}$ is bounded above then there exists $a \in \mathbb{R}$, a least upper bound of X

Theorem 1.24. given $a, b \in \mathbb{R}$ a, b > 0 $\exists n \in \mathbb{N}$ such that na > b (This is known as the **archemedian property**)

Proof. Suppose that $\forall n \in \mathbb{N}$, $na \leq b$ implies that b is an upper bound for $X = \{na | n \in \mathbb{N}\}.$

Since X is bounded above, let $c = \sup(X)$, this implies that c - a is not an upper bound for X, which further implies that there exists an $a \in \mathbb{N}$ such that na > c - a, and that

$$na > c - a$$

$$na + a > c$$

$$(n+1)a > c$$

$$c < (n+1)a \in X$$

This is impossible since we've previously stated that c is the upper bound. Therefore X is not bounded above.

Theorem 1.25. given $c, d \in \mathbb{R}$, there exists $q = \frac{m}{n} \in \mathbb{Q}$ such that c < q < d

Proof. We want $c < \frac{m}{n} < d$ iff nc < m < nd.

let $\epsilon = d - c > 0$

pick $n \in \mathbb{N}$ such that $\frac{1}{n} < \epsilon$

pick m, such that m > nc

(since we also need m < nd, choose m to be as small as possible such that $m-1 \le nc < m$)

$$\frac{m-1 \le nc \le m}{n-1} = \frac{m-1}{n} \le c \le \frac{m}{n}$$

or

$$\frac{m}{n} \le c + \frac{1}{n} < c + \epsilon = d$$

So now we have $c < \frac{m}{n} < d$ as desired.

2 Monday, January 8, 2017

2.1 Sequences - Review

This section will be just review of MATA37 and will be concerning sequences of the real numbers $\{a_n\}$.

Example 2.1. $\{\frac{1}{n}\}=1,\frac{1}{2},\frac{1}{3},...,$

Example 2.2. $\left\{\frac{(-1)^n}{n}\right\} = -1, \frac{1}{2}, \frac{-1}{3}, \dots$, This sequence oscillates back and forth.

Example 2.3. $\{(-1)^n\} = -1, 1, -1, 1, ...$, This sequence oscillates back and forth aswell.

Example 2.4. $\{x_1, x_2, ...\}$ where this sequence enumerates \mathbb{Q} . This sequence 'bounces around wildy'.

Definition 2.5. $x \in \mathbb{R}$ is the **limit of a sequence** $\{x_n\}$ (so that in converges to this number)

 $\lim_{n\to\infty} x_n = a$, if given some tolerance $\epsilon > 0$.

There exists N, such that $n \geq N$ will lie in the interval $a - \epsilon, a + \epsilon$, aka $|x_n - a| < \epsilon$.

Example 2.6. $\lim_{n\to\infty}\frac{1}{n}=0$

Example 2.7. $\lim_{n\to\infty} \frac{(-1)^n}{n} = 0$

Example 2.8. example 2.4 and 2.3 both have no limit

Proposition 2.9. If a sequence $\{x_n\}$ has a limit, then this limit is unique, and the sequence is bounded.

Proposition 2.10. Supposed that $\{x_n\}, \{y_n\} \subset \mathbb{R}$ are convergent sequences, so that $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$ then:

- 1. $\{x_n + y_n\}$ converges and $\lim_{n\to\infty} (x_n + y_n) = a + b$
- 2. $\{x_ny_n\}$ converges and $\lim_{n\to\infty}(x_ny_n)=ab$
- 3. if $y_n \neq 0, \forall n$, and $b \neq 0$ then $\left\{\frac{x_n}{y_n}\right\}$ converges and $\lim_{n \to \infty} \left(\frac{x_n}{y_n}\right) = \frac{a}{b}$

Definition 2.11. A sequence is **monotone** if it is either increasing, or decreasing.

Proposition 2.12. A bounded monotone sequence converges.

Proof. Suppose that $\{x_n\}$ is a bounded increasing (monotone) sequence, such that

$$x_1 \le x_2 \le x_3 \le \dots$$

And there exists $A \in \mathbb{R}$ such that $x_n \leq A, \forall n$ Therefore, there exists a least upper bound $a \leq A$.

<u>claim:</u> $x_n \to a \text{ as } n \to \infty$

take $\epsilon > 0$, since a is the least upper bound of $\{x_n\}$, there exists N such that $a - \epsilon < x_N \le a$. But $\{x_n\}$ is increasing. Therefore $\forall n \ge N, a - \epsilon < x_N \le x_n \le a$. This implies that $\lim_{n \to \infty} x_n = a$

3 Friday, January 12, 2017

3.1Monotone Sequences

i.e. Sequences which are increasing or decreasing

Proposition 3.1. A bounded monotone sequence converges.

Proof. For an increasing sequence $\{x_n\}$, $\lim_{n\to\infty} x_n = \sup(\{x_n\})$, suppose $\{x_n\}$ is decreasing and bounded below, then $\{-x_n\}$ is increasing and bounded above. This implies that $\lim_{n\to\infty} -x_n$ and $\lim_{n\to\infty} x_n$ both exist, and

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} -x_n$$

So now we're going to prove that Every sequence has a monotone subsequence along with other propositions on bounded monotone sequences. This will allow us to prove the Bolzano-Weierstrass Theorem, which states that every bounded sequence has a convergent subsequence, and this will help us prove the Cauchy property for sequences.

Example 3.2. Lets look at the following sequence:

$$x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \log n, n \ge 1$$

So we want to show that this converges, we'll show that if we show that $\{x_n\}$ is decreasing and is bounded below by 0.

The limit $(\lim_{n\to\infty} x_n)$ is actually a mysterious number that we don't know too much about.

Recall: that $log n = \int_1^n \frac{dt}{t}$ So if we consider the space under the graph of $\frac{1}{t}$ from n to n+1, we get the following inequality

$$\frac{1}{n+1} < log(n+1) - logn < \frac{1}{n}$$

Which implies that

$$\frac{1}{n+1} - \log(n+1) + \log n < 0$$

Now consider the following for an arbitrary n

$$x_{n+1} = x_n + (\frac{1}{n+1} + logn - log(n+1))$$

but since $\frac{1}{n+1} - \log(n+1) + \log n < 0$, this would mean that $x_{n+1} < x_n$, so this sequence is decreasing.

Now consider the following inequality derived from the recall block:

$$\sum_{n=1}^{m} (log(n+1) - logn) < \sum_{n=1}^{m} \frac{1}{n}$$

The left side of this inequality telescopes, giving us

$$log(m) < log(m+1) < 1 + \frac{1}{2} + \dots + \frac{1}{m}$$

And since the left most side is greater than the right most side, that means that $x_m > 0, \forall m$.

3.2 Subsequences

Definition 3.3. Let $\{x_i\}$ be a sequence of the real numbers, pick a finite set of indices $j_1 < j_2 < ... < j_n <$

A Subsequence of $\{x_i\}$ is $\{x_{j_1}, x_{j_2}, ..., x_{j_n}, ...\}$

Example 3.4. Considering the sequence $\{x_n\} = \{1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{n}, ...\}$

- 1. $\{\frac{1}{2n}\}$ is a subsequence of $\{x_n\}$.
- 2. $\{\frac{1}{2^n}\}$ is a subsequence of $\{x_n\}$.
- 3. $\{(-1)^n\}$ is also a subsequence of $\{x_n\}$, note that it does not converge, but has convergent subsequences of $\{(-1)^{2n}\}$ and $\{(-1)^{2n+1}\}$

Definition 3.5. Call a term x_m dominant if $x_n \leq x_m, \forall n \geq m$

Proposition 3.6. Every real number sequence has a monotone subsequence

Proof. There are 2 cases:

Case 1: infinitely many dominant terms

let $\{x_{j_1}, x_{j_2}, ..., x_{j_n}, ...\}$ be the sequence of dominant terms. By definition, $x_{j_1} \ge x_{j_2} \ge ... \ge x_{j_n} \ge ...$

so $\{x_{j_n}\}$ is a decreasing sequence, which is monotone.

Case 2: only finitely many dominant terms

Pick an index j, so that x_{j_1} is the first term beyond all dominant terms in the sequence $(\exists i, i < j_1, x_i)$ is the last dominant term).

Since x_{j_1} is not dominant, then $\exists j_2 > j_1$ where $x_{j_2} > x_{j_1}$ Since x_{j_2} is not dominant, then $\exists j_3 > j_2$ where $x_{j_3} > x_{j_2}$

. . .

and so on

By induction, we construct an increasing subsequence $\{x_{j_m}\}$ of $\{x_n\}$.

By these 2 cases, every real number has a monotone sequence.

Theorem 3.7. (Bolzano-Weierstrass Theorem) every bounded sequence has a convergent subsequence

Proof. Given a bounded sequence $\{x_n\}$ of the real numbers, there exists a monotone subsequence $\{x_{j_n}\}$.

The monotone subsequence $\{x_{j_n}\}$ is also bounded since $\{x_n\}$ is bounded. This implies that $\lim_{n\to\infty} x_{j_n}$ exists.

Definition 3.8. Cauchy Property: intuitively, in a convergent sequence, the terms get closer and closer as $n \to \infty$. More precisely: $\{x_n\}$ is a real number sequence, given $\epsilon > 0$, $\exists N$ such that for m, n > N, $|x_m - x_n| < \epsilon$.

Proposition 3.9. Suppose that $\{x_n\}$ converges to a, then $\{x_n\}$ satisfies the Cauchy property.

Proof. given $\epsilon > 0$, then $\exists N$ such that $\forall n > N, |x_n - a| < \frac{\epsilon}{2}$, so if m > N then $|x_m - a| < \frac{\epsilon}{2}$ as well.

This implies that

$$|x_m - x_n| = |x_m - a + a - x_n| \le |x_m - a| + |x_n - a| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

3 FRIDAY, JANUARY 12, 2017

So now we want to show that if a sequence satisfies the Cauchy property, then it converges. We'll do this by first showing that a bounded sequence with the Cauchy property implies that sequence has a convergent subsequence. The second and final step is to show that the limit of a convergent subsequence is the limit of the original sequence.

Proposition 3.10. If $\{x_n\}$ satisfies the Cauchy property, then it's bounded.

Proof. By definition, there exists N so that for $m, n > N, |x_m - x_n| < 1$ in particular, $\forall n > N, |x_n - x_{N+1}| < 1$, which gives us:

$$-1 < x_n - x_{N+1} < 1$$
$$x_{N+1} - 1 < x_n < x_{N+1} + 1$$

Note: x_{N+1} is fixed (a constant)

Let $A = min\{x_1, ..., x_N, x_{N+1} - 1\}$ Let $B = max\{x_1, ..., x_N, x_{N+1} - 1\}$

This implies that for all $n, A \leq x_n \leq B$, therefore Bounded.

Proposition 3.11. A sequence with the Cauchy property is convergent.

Proof. Let $\{x_n\}$ be a sequence with the Cauchy property. Since $\{x_n\}$ is bounded, by the Bolzano–Weiestrass Theorem, there exists a convergent subsequence $\{x_{j_m}\}$. Now let:

$$a = \lim_{m \to \infty} x_{j_m}$$

given $\epsilon, \exists M$ so that for all $m > M, |x_{j_m} - a| < \frac{\epsilon}{2}$.

Note that $j_m \geq m$

The Cauchy propert implies that $\exists N$ so that for all $m, n > N, |x_m - x_n| < \epsilon$.

We'll pick P = max(N, M), then for m, n > P we have:

$$|x_n - a| = |x_n + x_{j_m} - x_{j_m} - a|$$

$$= |x_n - x_{j_m}| + |x_{j_m} - a|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

Example 3.12.

 $x_n = \sum_{k=1}^n \frac{1}{k^2}$

Verify the Cauchy property.

Take $m > n, x_m - x_n = \sum_{k=n+1}^m \frac{1}{k^2}$. Now $\frac{1}{k} < \frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}$. This implies that

$$\implies \sum_{k-n+1}^{m} \frac{1}{k^2} < \sum_{k-n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k}\right)$$

$$\stackrel{\text{telescoping}}{\Longrightarrow} \sum_{k-n+1}^{m} \frac{1}{k^2} < \frac{1}{m} - \frac{1}{n} < \frac{1}{m}$$

$$\implies (x_m - x_n) < \frac{1}{m}$$

This implies that x_n is convergent, in fact

$$\lim_{n \to \infty} x_n = \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$

4 Monday, January 15, 2017

4.1 Cauchy

Remark. Let $\{x_n\}$ be a sequence of real numbers. Given $\epsilon > 0$, there exists N such that for $m, n > N, |x_m - x_n| < \epsilon$. If $\{x_n\}$ converges then $\{x_n\}$ satisfies the cauchy property.

The converse also holds. So if $\{x_n\}$ satisfies the cauchy property, then it converges. But why? It holds because:

- 1. $\{x_n\}$ must be bounded
- 2. Therefore it has a convergent subsequence $\{x_{j_m}\}$, assume $\{x_{j_m}\}$ converges to a.
- 3. Then $\{x_n\}$ converges to a as $n \to \infty$

4.2 Series

This section will be focused on

Definition 4.1.

$$\sum_{n=0}^{\infty} a_n$$

which is an **infinite sum** of real numbers

Definition 4.2. The following is a partial sum:

$$S_n = \sum_{k=0}^n a_k$$

Definition 4.3. The series $\sum_{n=0}^{\infty} a_n$ converges if $\lim_{n\to\infty} S_n$ exists. If $\lim_{n\to\infty} S_n = a$, then we write $a = \sum_{n=0}^{\infty} a_n$ as the **Sum of the series**. However, if $\lim_{n\to\infty} S_n$ does not exist, then the series diverges.

Example 4.4. The geometric series $\sum_{n=0}^{\infty} a^n$ converges if |a| < 1 and diverges otherwise. If the series does converge, it converges to:

$$\sum_{n=0}^{\infty} a^n = \frac{1}{1-n}$$

Property 4.5. If $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ both converge, then

$$\sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n = \sum_{n=0}^{\infty} (a_n + b_n)$$

converges as well.

Property 4.6. $\forall c$, if $\sum_{n=0}^{\infty} a_n$ converges, then

$$c\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} c(a_n)$$

Also converges

Definition 4.7. The Cauchy Criterion states that $\sum_{n=0}^{\infty} a_n$ converges iff $\forall \epsilon > 0, \exists N \text{ such that } m > n > N$

$$|S_m - S_n| = |\sum_{k=n+1}^m a_k| < \epsilon$$

Example 4.8. Apply Cauchy Criterion to $\sum_{n=0}^{\infty} \frac{1}{n^2}$ and $\sum_{n=0}^{\infty} \frac{1}{n(n+1)}$

To prove they converge, we first need the following proposition:

Proposition 4.9. Suppose $\sum_{n=0}^{\infty} a_n$ converges, then $a_n \to 0$ as $n \to \infty$

Proof. (Using the Cauchy Criterion)

Given $\epsilon > 0$, there exists N such that for m > n > N, $|\sum_{k=n+1}^{m} a_k| < \epsilon$, take m = n + 1, this implies that $|a_{n+1}| < \epsilon$ for all n > N, this then implies that $a_n \to 0$

Proposition 4.10. Suppose $a_n \geq 0$ then $\sum_{n=0}^{\infty} a_n$ converges iff $\{S_n\}$ is bounded above.

Proof. Since $a_n \geq 0, \forall n$, then $\{S_n\}$ is increasing. Therefore $\lim_{N\to\infty} S_N$ exists iff $\{S_n\}$ is bounded above.

Example 4.11.

$$\sum_{n=0}^{\infty} \frac{1}{n}, S_N = 1 + \dots + \frac{1}{N} > log(N), log(N) \to \infty \text{ as } n \to \infty$$

4.2.1 Convergence Tests

Definition 4.12. The Integral Test: let f be a function defined for $x \geq 1$ and is integrable. Let $a_n = f(n), \forall n \in \mathbb{N}$ then $sum_{n=0}^{\infty} a_n$ converges iff

$$\int_{1}^{\infty} f(x)dx = \lim_{y \to \infty} \int_{1}^{y} f(x)dx$$

exists

Example 4.13. Consider $f(x) = x^a, a \in \mathbb{R}, a \neq -1$

$$\int_{1}^{y} x^{a} dx = \frac{x^{a+1}}{a+1} \Big|_{1}^{y} = \frac{x^{y+1}}{y+1} - \frac{1}{a+1}$$

So now we know that $\int_1^y x^a dx$ exists iff a < -1, so equivalently:

$$\sum_{a=1}^{\infty} \frac{1}{n^a} \text{ converges iff } a > 1$$