S.NO	AUTHOR	PUBLICATION	PROBLEMS	METHODS	OUTPUT
	and YEAR	and TITLE	and		
			IDENTIFICATION		
1.	AUTHOR:	Publication:	Communications	The evaluation	The project proposes a
	Anbarasi	International	between deaf-mute	of Deaf-mute	translational device for
	Rajamohan,	Journal of	and a normal	communication	deaf-mute people using
	Hemavathy R.,	Scientific	person have	interpreter was	glove technology. The
	Dhanalakshmi	Engineering and	always been a	carried out for	proposed technique has
	M.	Technology	challenging task.	ten beginners	enabled the placement of
	Year:2013	Title: Deaf-Mute	The project aims to	for letters	five flex sensor, 5 tactile
		Communication	facilitate people by	_A' _B' _C' _D' _	sensors and an
		Interpreter	means of a glove	F'_I'_L'_0'_M'_	accelerometer on to a glove.
			based deaf-mute	N' _T' _S' _W'.	The results demonstrate
			communication	Word formation	that sensor glove design
			interpreter system.	from letters is	with tactile sensor helps to
			The glove is	also performed	reduce the ambiguity among
			internally equipped	using an end	gestures and shows
			with five flex	signal. The hand	improved accuracy. Further
			sensors, tactile	glove is	the device will be an apt
			sensors and	mounted with	tool for deaf-mute
			accelerometer. For	five flex sensor,	community to learn
			each specific	an	gesture and words easily.
			gesture, the flex	accelerometer	The project can be
			sensor produces a	and tactile	enhanced to include two
			proportional	sensors. Table	or more accelerometer's to
			change in	1 shows the	capture the orientation of
			resistance and	Output voltage	hand movements once the
			accelerometer	across a	gesture is made. This will
			measures the	voltage divider	expand the capability to
			orientation of	network with	translate larger gestures.
			hand. The	constant	
			processing of	resistance of	
			these hand	22Kohms, the	
			gestures is in	digital value and	
			Arduino. The glove	the	
			includes two	corresponding	
			modes of	resistance for	
			operation –	different	
			training mode to	bending angles	
			benefit every user	of flex 2.5	
			and an operational	mounted in	
			mode. The	thumb and pinky	
			concatenation of	fingers.	
			letters to form		
			words is also done		
			in Arduino. In		

			addition, the system also includes a text to speech conversion (TTS) block which translates the matched gestures i.e. text to voice output.		
2.	Author: K.Sunitha, Anitha Saraswathi, Aarthi,Jayapriya, Lingam Sunny Year:2016	Publication: ripublication Title: Deaf Mute Communication Interpreter	Communication between the deaf and non-deaf has always been a very cumbersome task. This paper aims to cover the various prevailing methods of deaf-mute communication interpreter system. The two broad classification of the communication methodologies used by the deaf —mute people are Wearable Communication Device and Online Learning System.	The five sub-divided methods are SLIM module, TESSA, Wi-See Technology, SWI_PELE System and Web-Sign Technology. The working of the individual components used and the operation of the whole system for the communication purpose has been explained in detail in this paper.	Under Wearable communication method, there are Glove based system, Keypad method and Handicom Touchscreen. All the above mentioned three sub-divided methods make use of various sensors, accelerometer, a suitable microcontroller, a text to speech conversion module, a keypad and a touch-screen. The need for an external device to interpret the message between a deaf –mute and non-deafmute people can be overcome by the second method i.e online learning system. The Online Learning System has different methods under it, five of which are explained in this paper.
3.	Author: B.Jadhav, Nipun Munot, Madhura Hambarde, Jueli Ashtikar Year:2015	Publication: ripublication Title: Hand Gesture Recognition to Speech Conversion in Regional Language	Generally deaf- dumb people use sign language for communication, but they find difficulty in communicating with others who don't understand sign language. Due to which communications	This methodology provides a map for developing a Digital wireless glove which is fitted with Flex sensors and accelerometer. These sensors sense the gestures of a	This system includes a voice playback IC to give the real time speech output in regional language as well as a LCD module to display the text. The text display being in English, the voice output of this device will be in regional language (here Marathi). So this device acts as a communicator as well as a translator providing

			between deaf-mute and a normal person have always been a challenging task. We propose to develop a device which can convert the hand gestures of a deaf-mute person into speech.	person in the form of bend of fingers and tilt of the hand fist.	more flexibility in communication.
4.	Author: Alex Rupom Hasdak, Istiaq Al Nur, Adnan Al Neon, Hasan U. Zaman. Year:2018	Publication: IEEE Title: Deaf-Vibe: A Vibrotactile Communication Device Based on Morse Code for Deaf-Mute Individuals.	This paper proposes an alternate solution for easy communication by deaf and mute people. A device named Deaf-Vibe has been developed, which enables deaf and mute people to communicate rather easily with others using tactile senses and gestures.	In this method, the voice message is converted to text first and then to equivalent Morse code signals using a built-in Morse code conversion table. These signals drive vibration motors placed inside the fingers of a wearable glove.	A deaf person wearing the glove senses the vibration in his or her fingers and understands the message. This device can also be used by a mute person to send messages by bending fingers in the Morse code sequence. The flex sensors placed within the glove fingers sense the finger movement and generate equivalent electrical signals which are then converted to text using a text-to-voice synthesizer to be finally pronounced and heard as audible messages. The resulting device is a simple, low-cost efficient and wearable solution which can be used by deaf and mute people in their everyday lives as an effective communication tool.
5.	Author: Kedar Potdar, Gauri Nagavkar Year:2017	Publication: computer science Title: Real-time Communication System for the Deaf and Dumb	This project aims to aid the deafmute by creation of a new system that helps convert sign language to text and speech for easier	The system consists of a gesture recognizer hand-glove which converts gestures into electrical signals	This project forms a base infrastructure which can later be augmented with addition of different Sign Languages and integrating with other hearing impaired aid systems.

	communication	using flex	
	with audience.	sensors. These	
		electrical signals	
		are then	
		processed using	
		an Arduino	
		microcontroller	
		and a Python-	
		based backend	
		for text-to-	
		speech	
		conversion. The	
		glove includes	
		two modes of	
		operation -	
		phrase fetch	
		mode and letter	
		fetch mode. The	
		phrase fetch	
		mode speaks	
		out words at	
		once, while the	
		letter fetch	
		mode speaks	
		out individual	
		letters.	