Метод замороженного спина для поиска электрического дипольного момента дейтрона в накопительном кольце

Соискатель: А. Е. Аксентьев

Руководитель: д-р. физ.-мат. наук, проф. Ю. В. Сеничев Консультант: канд. физ-мат. наук, доц. С. М. Полозов

Национальный Исследовательский Ядерный Университет "МИФИ" (НИЯУ МИФИ)

Москва, 2020

Актуальность

Цель исследования

Разработка метода поиска электрического дипольного момента частицы в накопительном кольце, позволяющего достичь точность $10^{-29}e\cdot$ см.

Задачи исследования

- Разработать метод измерения электрического дипольного момента дейтрона на основе измерений частоты прецессии спина в накопительном кольце.
- Проанализировать требования к магнитооптической структуре кольца-накопителя, ориентированного на поиск электрического дипольного момента дейтрона.
- Исследовать спин-декогеренцию пучка дейтронов в окрестности состояния "замороженного" спина и разработать метод её подавления.

- Исследовать влияние различного рода несовершенств элементов кольца на спин-орбитальную динамику.
- Выполнить математическое моделирование процесса калибровки нормализованной частоты прецессии спина (спин-тюн) при смене полярности ведущего поля.
- Изучить статистические свойства меотда измерения электрического дипольного момента.

Научная новизна

- Предложен метод измерения электрического дипольного момента дейтрона, основанный исключительно на измерении частоты прецессии спина в накопительном кольце с ограничением по точности, оцениваемым на уровне 10⁻²⁹ e⋅cм.
- Изучена спин-орбитальная динамика дейтронного пучка в окрестности состояния "замороженного спина" в накопительном кольце, предназначенном для поиска электрического дипольного момента.

- Предложен метод калибровки средней по пучку нормированной частоты прецессии спина, позволяющий уменьшить вклад систематических ошибок.
- Введено определение эффективного значения фактора Лоренца, необходимое для определения зависимости частоты прецессии спина частицы от её координат в фазовом пространстве.
- Сделаны статистические оценки предельной чувствительности измерения ЭДМ предложенным методом в накопительном кольце.

Практическая значимость

Разработанный метод представляет интерес с точки зрения планирования экспериментов по поиску ЭДМ на различных ускорителях, в том числе на ускорительном комплексе NICA ОИЯИ (Дубна).

Апробация

- Во время исследований по оптимизации времени когерентности спина при помощи секступольных полей на ускорительном комплексе COSY (Исследовательский центр "Юлих").
- Результаты работы вошли в подготавливаемый коллаборацией СРЕDM для CERN отчёта, под названием "Feasibility study for an EDM Storage Ring."
- Основные результаты работы докладывались на международных концеренциях IPAC'17, IPAC'19, LaPlas III–V, а также конференциях коллаборации JEDI, и семинарах IKP-2 Forschungszentrum Jülich.

Кольцо с замороженным спином

Уравнение Томаса-БМТ

$$\frac{\mathrm{d} s}{\mathrm{d} t} = s imes \left(\underbrace{a_0 \cdot B + a_1 \cdot E imes eta}_{oldsymbol{\Omega^{mdm}}} + \underbrace{b_0 \cdot E + b_1 \cdot eta imes B}_{oldsymbol{\Omega^{edm}}}
ight)$$

Замороженный спин

$$\Omega_{(y)}^{mdm} = 0$$

Схема ускорителя

Схема ускорителя

- Чисто магнитное кольцо
- + Источник поляризованных H^{-}/D^{-}
- + Циклотрон JULIC
- + Кольцо COSY 184 м
- + Внутренняя/внешняя мишени
- + Два вида охлаждения

Код COSY Infinity

- Разработка М. Берца и К. Макино (Michigan State University).
- Основан на дифференциальной алгебре; позволяет вычислять трансфер-матрицы элементов до (потенциально) любого порядка разложения ряда Тэйлора.
- Трекинговый код, учитывающий спиновую динамику.

Спин-трекинг в COSY Infinity

$$\begin{cases} \boldsymbol{z}_n &= \mathcal{M}(\boldsymbol{z}_{n-1}), \\ \boldsymbol{S}_n &= \hat{A}(\boldsymbol{z}_{n-1}) \cdot \boldsymbol{S}_{n-1} \end{cases}$$

Эффект бетатронных колебаний

Почему это важно?

ЭДМ-статистика

$$\hat{\omega}_{\it edm}=rac{1}{2}(\hat{\omega}_{\it x}^++\hat{\omega}_{\it x}^-)$$
, где $\omega_{\it x}^\pm=\omega_{\it edm}\pm\omega_{\it mdm}$

Частота оценивается путём фитирования

$$f(t) = a \cdot \sin(\omega_{\mathsf{x}} \cdot t + \delta) \mapsto \hat{\omega}_{\mathsf{x}}$$
, где $(a, \omega, \delta) = \mathrm{const}$

Решение Т-БМТ уравнения даёт

$$a=\sqrt{ar{n}_{\scriptscriptstyle X}^2+(ar{n}_{\scriptscriptstyle Y}\cdotar{n}_{\scriptscriptstyle Z})^2}$$
, где $ar{n}=g(m{E},m{B})$

Выводы

- Осцилляции амплитуды сигнала пренебрежимо малы.
- ullet Коэффициент корреляции $\sigma[\hat{a},\hat{\omega}] < 10\%$.
- **э** Эффект поддаётся контролю (при использовании частотного метода).

Калибровка МДМ-сигнала

Почему это важно?

ЭДМ-статистика

$$\hat{\omega}_{edm} = \frac{1}{2} (\hat{\omega}_{x}^{+} + \hat{\omega}_{x}^{-})$$

$$= \omega_{edm} + \underbrace{\frac{1}{\sqrt{2}} \sigma_{\hat{\omega}}}_{stat} + \underbrace{(\omega_{mdm}^{+} - \omega_{mdm}^{-})}_{syst}$$

Утверждение

$$\left[\omega_{y}^{mdm+}-\omega_{y}^{mdm-}\rightarrow0\right]\Rightarrow\left[\omega_{x}^{mdm+}-\omega_{x}^{mdm-}\rightarrow0\right]$$

Калибровка МДМ-сигнала

Результаты симуляции

Подавление спин-декогеренции

Идеальная структура

Подавление спин-декогеренции

Идеальная структура

Подавление спин-декогеренции

Идеальная структура

Исследования на COSY

Спин-декогеренция

Исследования на COSY

Спин-декогеренция

Исследования на COSY

Спин-декогеренция

Результаты работы

- Разработан метод измерения электрического дипольного момента дейтрона, основанный исключительно на измерении частоты прецессии спина частицы при движении в накопительном кольце.
- Предложен принцип построения магнитооптической структуры кольца-накопителя, ориентированного на поиск электрического дипольного момента дейтрона.

- Получены результаты исследования спин-декогеренции пучка дейтронов в окрестности состояния "замороженного спина," а также метод подавления спин-декогеренции, основанный на использовании нелинейных элементов оптической структуры накопителя.
- Исследовано влияние различного рода несовершенств элементов накопительного кольца на спин-орбитальную динамику пучка.

- Проведено численное моделирование метода калибровки нормализованной частоты прецессии спина при смене полярности ведущего поля накопительного кольца.
- Исследованы систематические ошибки в различных предложениях по проведению эксперимента по поиску электрического дипольного момента.
- Проведена оценка статистических свойств предложенного метода измерения ЭДМ в накопительном кольце.

Положения выносимые на защиту

- Метод измерения электрического дипольного момента дейтрона, основанный исключительно на измерении частоты прецессии спина при движении пучка в накопительном синхротроне.
- Принцип построения магнитооптической структуры накопительного кольца, ориентированного на поиск электрического дипольного момента дейтрона.
- Результаты исследования спин-декогеренции пучка дейтронов в окрестности состояния "замороженного" спина и метод её подавления с помощью нелинейных магнитных элементов.

- Результаты исследования влияния различного рода несовершенств элементов накопительного кольца на спин-орбитальную динамику пучка.
- Метод калибровки нормализованной частоты прецессии спина при попеременной смене полярности ведущего поля и его численная модель.
- Результаты исследования систематических ошибок в различных предложениях по проведению эксперимента по поиску электрического дипольного момента и их сравнения с разработанным методом.
- Результаты исследования статистических свойств разработанного метода измерения ЭДМ в накопительном кольце.

Спасибо за внимание!