Methoden zur Feature Subset Selection für Unsupervised Learning - Überblick und neuer Ansatz

Diplomarbeit von Frank Steinmann

Inhalt

- **№ Feature Subset Selection wozu?**
- **Name 1** Probleme bei Unsupervised Learning
- **Allgemeine Strategien**
- **@ Beispiele verschiedener Ansätze**
- **Neuer Ansatz**
- ର Testergebnisse
- ର Schlussfolgerungen

Feature Subset Selection - wozu?

- ର Wir wollen Informationen aus den Daten herausholen
- **ℚ Warum nicht jede Information nutzen, die wir bekommen können?**
- Datensätze oft groß, je mehr Attribute, desto langsamer die Verarbeitung

Feature Subset Selection - wozu?

- Attribute können irrelevant sein und das Finden interessanter Informationen erschweren
- Deshalb: Möglichst viele Attribute herausnehmen und dabei möglichst wenig Information verlieren
- **20** Das Erkennen irrelevanter Attribute ist selbst schon ein Informationsgewinn

Probleme bei Unsupervised Learning

- **№ Beim Supervised Learning wissen wir, nach welchen Informationen wir suchen**
- **Attribute sollen die Klasse vorhersagen**
- **№ Beim Unsupervised Learning gibt es kein Klassenattribut**
- Wir versuchen Clusterings zu endecken, interessante Gruppierungen innerhalb der Daten

Probleme bei Unsupervised Learning

- Nir müssen Attribute identifizieren, die Informationen enthalten über ein Clustering, welches wir noch gar nicht kennen

Allgemeine Strategien

- **A Zwei Dinge sind für eine FSS entscheidend:**
 - Ein Suchalgorithmus, der den Lösungsraum der möglichen Attributmengen durchsucht
 - Eine Bewertungsfunktion, die Attributmengen bewertet

Allgemeine Strategien - Wrapper

- **№ Bewertung der Attributauswahl durch Bewertung des Clusterings**
- **Rewertungsfunktion misst, wie gut die Cluster separiert sind (Berechnung der Varianz innerhalb der Cluster und der Abstände der Cluster zueinander)**

Allgemeine Strategien - Filter

- Attributmengen werden direkt bewertet, keine Erzeugung von Clusterings
- **Nögliche Bewertungskriterien:**
 - Entropie: gut separierbare Cluster bei niedriger Entropie
 - Abhängigkeit: relevante Attribute sind abhängig vom unbekannten Clusterattribut => relevante Attribute sind voneinander abhängig

Allgemeine Strategien - Suche

- **A FSS ist ein Optimierungsproblem**
- Nielzahl von Algorithmen ist möglich, einsetzbar sowohl für Wrapper als auch für Filter

Beispiele verschiedener Ansätze - Wrapper: Dy & Brodley

- **Solution** Berechnet werden die Streuung der Instanzen innerhalb der Cluster sowie die Streuung der Clusterzentren
- Sequenzielle Vorwärtssuche zum Finden der besten Attributauswahl

Beispiele verschiedener Ansätze - Wrapper: Kim et al.

- © Gesucht wird nicht eine einizge Lösung, sondern eine Menge von pareto-optimalen Lösungen bzgl. mehrerer Zielfunktionen (= Bewertungsfunktionen)
- **№ Verwendung eines evolutionären Algorithmus**
- **№ Genom der Individuen enthält Info über ausgewählte Attribute und Clusteranzahl**

Beispiele verschiedener Ansätze - Wrapper: Kim et al.

- **A Individuen erhalten Energie von verschiedenen Energiequellen**
- ନ୍ଦ Zu jeder Bewertungsfunktion gibt es mehrere Energiequellen

Beispiele verschiedener Ansätze - Wrapper: Kim et al.

- **№ Individuen mit Energie < 0 werden entfernt**
- **OBESTERNO LE SE L**

Beispiele verschiedener Ansätze - Wrapper: Kim et al.

- **2 4 Bewertungsfunktionen**
 - 1. Basierend auf Abständen innerhalb der Cluster
 - 2. Basierend auf Abständen der Cluster zueinander
 - 3. Basierend auf der Clusteranzahl (weniger werden bevorzugt)
 - 4. Basierend auf der Dimension (kleinere Dimension wird bevorzugt)

Beispiele verschiedener Ansätze - Filter: Søndberg-Madsen et al.

- a Idee: Clusterzugehörigkeit wird durch unbekannte Wahrscheinlichkeitsverteilung definiert
- **Note:** Dekaring Zufallsvariablen $Y = (Y_1, ..., Y_n)$, die Attribute des Datensatzes

Beispiele verschiedener Ansätze - Filter: Søndberg-Madsen et al.

- **Q Überprüfung der Relevanz eines Attributs** durch Berechnung der Abhängigkeiten

Beispiele verschiedener Ansätze - Filter: Dash et al.

- **⊘** Berechnet wird die Entropie der Distanzen zwischen den Instanzen

Beispiele verschiedener Ansätze - Filter: Dash et al.

ର Als Suche wird eine sequenzielle Vorwärtssuche verwendet

Neuer Ansatz

- **№ Verwendung eines genetischen Algorithmus**
- ล Problem: Lange Laufzeit
- ରୁ Lösung: Ein paar einfache Modifikationen verkürzen die Laufzeit erheblich

Neuer Ansatz - Suchalgorithmus

ର Grundidee

- Im Genom jedes Individuums sind die ausgewählten Attribute und die Clusteranzahl kodiert
- In jeder Runde Erzeugung und Bewertung eines Clusterings für jedes Individuum
- Schlechteste Individuen werden entfernt, beste Individuen erzeugen Nachkommen

Neuer Ansatz - Suchalgorithmus

Nodifikation

- Clustering-Algorithmus muss nicht immer komplett durchlaufen
- In den ersten Runden "fertige" Clusterings nicht unbedingt notwendig
- Daher k-Means pro Runde nur 3 Iterationen berechnen lassen
- Ergebnis merken und als Startwert für die nächste Runde einsetzen

Neuer Ansatz - Suchalgorithmus

ର Konsequenzen

- wesentlich kürzere Laufzeit
- nach einigen Runden sind fertige Clusterings vorhanden
- am Anfang Bewertung unfertiger Clusterings, für Aussortierung schlechter Lösungen aber ausreichend

Neuer Ansatz -Bewertungsfunktion

- Bewertungsfunktion basiert auf Streuung innerhalb der Cluster
- Ansatz: $score = \frac{1}{n} \sum_{i=1}^{k} n_i \cdot s_i$

Neuer Ansatz -Bewertungsfunktion

Q Unabhängigkeit von der Clusteranzahl:

$$score = \frac{1}{n} \sqrt[din]{n} \sum_{i=1}^{k} \left(\frac{n_i}{\sqrt[din]{n_i}} \cdot s_i \right)$$

Dei Gleichverteilung nun gleiche Bewertung unabhängig von der Clustergröße und damit von der Clusteranzahl

Neuer Ansatz -Bewertungsfunktion

Nach Unabhängigkeit von der Dimension:

$$score = \frac{1}{n} \sqrt[dim]{n} \frac{1}{\sqrt{dim}} \sum_{i=1}^{k} \left(\frac{n_i}{\sqrt[dim]{n_i}} \cdot s_i \right)$$

 Die größeren Distanzen bei höherer Dimensionalität werden ausgeglichen

Testergebnisse

- **ର Vergleich zwischen**
 - SimpleGeneticFSS (der neue Ansatz, ohne die Modifikationen für kürzere Laufzeit)
 - FastGeneticFSS (der neue Ansatz)
 - KimFSS (der Wrapper von Kim et al.)
 - DashFSS (der Filter von Dash et al.)
- **№ getestet wird mit synthetischen und mit realen Daten**

Testergebnisse synthetische Daten

୍ଦ D_{klein}:

- 2 Attribute, die Cluster enthalten
- 6 irrelevante Attribute

ର୍ D_{groß}:

- 4 Attribute, die Cluster enthalten
- 30 irrelevante Attribute
- **∂** irrelevante Attribute gleich- bzw. normalverteilt

Testergebnisse synthetische Daten

Dklein	Ai	A r	PA _{k_gef}	PA _{k_korr}
Alle Attribute				0.6386
SimpleGeneticFSS	0.7	0.4667	0.8323	0.8561
FastGeneticFSS	0.6333	0.2667	0.8729	0.9053
KimFSS	0.7333	1.7333	0.5800	0.5706
DashFSS	1.5667	1.6667	-	0.5760

Testergebnisse synthetische Daten

Dgroß	Ai	Ar	PA _{k_gef}	PA _{k_korr}
Alle Attribute				0.7313
SimpleGeneticFSS	1.2	0.8667	0.8155	0.9013
FastGeneticFSS	1.7	1.1333	0.8271	0.8782
KimFSS	2.4667	3.3667	0.5709	0.6000
DashFSS	1.3667	3.5	-	0.5983

Testergebnisse - reale Daten

ર્ાiris:

- 4 Attribute
- 3 Klassen

ર wine:

- 13 Attribute
- 3 Klassen
- **A Klassenattribut beim Lernen ignoriert**

Testergebnisse - reale Daten

iris	ausgew.	PAk_gef	PA _{k_korr}
Alle Attribute	4		0.823
SimpleGeneticFSS	2.3	0.719	0.925
FastGeneticFSS	2.3	0.710	0.925
KimFSS	1	0.844	0.943
DashFSS	1	-	0.578

Testergebnisse - reale Daten

wine	ausgew.	PA _{k_gef}	PA _{k_korr}
Alle Attribute	13		0.920
SimpleGeneticFSS	5.2	0.653	0.891
FastGeneticFSS	5.2	0.642	0.871
KimFSS	1	0.609	0.657
DashFSS	4	-	0.776

Testergebnisse k-Means-Iterationen

- ନ୍ଦୁ D_{klein}
 - SimpleGeneticFSS: 18109 Iterationen
 - FastGeneticFSS: 3120 Iterationen
- ව D_{groß}
 - SimpleGeneticFSS: 34415 Iterationen
 - FastGeneticFSS: 6114 Iterationen

Schlussfolgerungen

- **№ Neuer Algorithmus schneidet besser ab als Vergleichsalgorithmen**
- Modifikationen brachten deutlichen Laufzeitgewinn ohne Einbußen bei der Qualität der Lösungen