Module C

- Section C.1
- Section C.2 Section C.3
- Section C.4

- Section C.8 Section C.9

Module C: Constant coefficient linear ODEs

Module C

Section C.1 Section C.2

Section C.3

Section C.4

Section C.8

Section C.9

How can we solve and apply linear constant coefficient **ODEs?**

At the end of this module, students will be able to...

- C1. Constant coefficient first order. ...find the general solution to a first order constant coefficient ODE.
- **C2. Modeling motion in viscous fluids.** ...model the motion of a falling object with linear drag
- **C3.** Homogeneous constant coefficient second order. ...find the general solution to a homogeneous second order constant coefficient ODE.
- C4. IVPs. ...solve initial value problems for constant coefficient ODEs
- **C5. Non-homogenous constant coefficient second order.** ...find the general solution to a non-homogeneous second order constant coefficient ODE
- **C6. Modeling oscillators.** ...model (free or forced, damped or undamped) mechanical oscillators with a second order ODE

Module C

Section C.1 Section C.2 Section C.3 Section C.4 Section C.5 Section C.6 Section C.7 Section C.8

Readiness Assurance Outcomes

Before beginning this module, each student should be able to...

- Describe Newton's laws in terms of differential equations.
- Find all roots of a quadratic polynomial.
- Use Euler's theorem to relate sin(t), cos(t), and e^t .
- Use Euler's theorem to simplify complex exponentials.
- Use substitution to compute indefinite integrals.
- Use integration by parts to compute indefinite integrals.
- Solve systems of two linear equations in two variables.

Section C.9

The following resources will help you prepare for this module.

- Describe Newtons laws in terms of differential equations. https://youtu.be/cioi4lRrAzw
- Find all roots of a quadratic polynomial. https://youtu.be/2ZzuZvz33X0 https://youtu.be/TV5kDqiJ10s
- Use Eulers theorem to relate sin(t), cos(t), and e^t and to simplify complex exponentials. https://youtu.be/F_OyfvmOUoU https://youtu.be/sn3orkHWqUQ
- Use substitution to compute indefinite integrals. https://youtu.be/b76wePnIBdU
- Use integration by parts to compute indefinite integrals. https://youtu.be/bZ8YAHDTFJ8
- Solve systems of two linear equations in two variables. https://youtu.be/Y6JsEja15Vk

Section C.1 Section C.2

Section C.9

Module C Section 1

Section C.1

Section C.2

Section C.3

Section C.4

Section C.8

Section C.9

Activity C.1.1 (\sim 5 min) Why don't clouds fall out of the sky?

- (a) They are lighter than air
- (b) Wind keeps them from falling
- (c) Electrostatic charge
- (d) They do fall, just very slowly

Section C.1 Section C.2

Section C.3 Section C.4

Section C.8 Section C.9 Activity C.1.2 (\sim 5 min)

List all of the forces acting on a tiny droplet of water falling from the sky.

IVIatn 23

Module C Section C.1

Section C. Section C.

Section C.5 Section C.6 Section C.7

Section C

Activity C.1.3 (\sim 5 min)

Tiny droplets of water obey **Stoke's law**, which says that air resistance is proportional to (the magnitude of) velocity.

- Let *v* be the velocity of a droplet of water (positive for upward, negative for downward).
- Let g > 0 be the magnitude of acceleration due to gravity and b > 0 be another positive constant.

Apply Newton's second law (force = mass \times acceleration) to determine which of the following **ordinary differential equations (ODEs)** models the velocity of a falling droplet of water.

- (a) v'=g-v
- (b) v' = g + v
- (c) mv' = -mg bv
- (d) mv' = -mg + bv

Observation C.1.4

The modeling equation

$$mv' = -mg - bv$$

may be obtained by splitting the total force into gravity and air resistance:

$$F = F_g + F_r$$

Then F = ma = mv' and $F_g = m(-g) = -mg$ are the result of Newton's second law, and $F_r = -bv$ holds because it should be (a) in the opposite direction of velocity and (b) a constant multiple of velocity.

Note that this equation may be rearranged as follows to group v and its derivative v' together on the left-hand side:

$$v' + \left(\frac{b}{m}\right)v = -g$$

Definition C.1.5

A first order constant coefficient differential equation can be written in the form

$$y'+by=f(x),$$

or equivalently,

$$\frac{dy}{dx} + by = f(x).$$

We will use both notations interchangeably.

Here, **first order** refers to the fact that the highest derivative we see is the first derivative of *y*.

Module

Section C.1 Section C.2

Section C.:

Section C.4

Section C.

Section C.

Section C.9

Observation C.1.6

Consider the differential equation y' = y.

A useful way to visualize a first order differential equation is by a slope field

Each arrow represents the slope of a solution trajectory through that point.

Section C.1 Section C.2 Section C.3 Section C.4

Section C.8 Section C.9

Activity C.1.7 (\sim 5 min)

Consider the differential equation y' = y with slope field below.

Section C.1

Section C.2

Section C.3

Section C.4

Section C.8 Section C.9 Activity C.1.7 (\sim 5 min)

Consider the differential equation y' = y with slope field below.

Part 1: Draw a trajectory through the point (0,1).

Section C.1

Section C.2

Section C.9

Activity C.1.7 (\sim 5 min)

Consider the differential equation y' = y with slope field below.

Part 1: Draw a trajectory through the point (0,1).

Part 2: Draw a trajectory through the point (-1, -1).

Section C.1 Section C.2

Section C.3

Section C.4

Section C.8 Section C.9 Activity C.1.8 (\sim 15 min)

Consider the differential equation y' = y.

Module C

Math 238

Module C

Section C.1 Section C.2 Section C.3

Section C.3

Section C.5

Section C.

Section C.8 Section C.9 Activity C.1.8 (\sim 15 min)

Consider the differential equation y' = y.

Part 1: Find a solution to y' = y.

Aodule C.

Section C.1 Section C.2

Section C.3 Section C.4

Section C.4

Section C. Section C.

Section C.8 Section C.9 Activity C.1.8 (\sim 15 min)

Consider the differential equation y' = y.

Part 1: Find a solution to y' = y.

Part 2: Modify this solution to write an expression describing **all** solutions to y' = y.

Definition C.1.9

A differential equation will have many solutions. Each individual solution is said to be a particular solution, while the general solution encompasses all of these by using parameters such as C, k, c_0, c_1 and so on. For example:

- The general solution to the differential equation y' = 2x 3 is $y = x^2 - 3x + C$ (as done in Calculus courses).
- The general solution for y' = y is $y = ke^x$ (as done in the previous activity).

Module C

Section C.1 Section C.2 Section C.3

Section C.4

Section C.5

Section C.7 Section C.8 Section C.9 Activity C.1.10 (\sim 15 min)

Adapt the general solution $y=ke^x$ for y'=y to find general solutions for the following differential equations.

Aodule C

Section C.1 Section C.2 Section C.3 Section C.4 Section C.5 Section C.6 Section C.7 Section C.8

Section C.9

Activity C.1.10 (\sim 15 min)

Adapt the general solution $y = ke^x$ for y' = y to find general solutions for the following differential equations.

Part 1: Solve
$$y' = 2y$$
.

Aodule C

Section C.1 Section C.2 Section C.3 Section C.4 Section C.5 Section C.6 Section C.7 Section C.8

Section C.9

Activity C.1.10 (\sim 15 min)

Adapt the general solution $y = ke^x$ for y' = y to find general solutions for the following differential equations.

Part 1: Solve y' = 2y.

Part 2: Solve y' = y + 2.

Module

Section C.1

Section C.2

Section C.3

Section C.4

Section C.

Section C.

Section C.7 Section C.8

Section C.9

C.3

Find the solution for y' = y + 2 directly.

Activity C.1.11 (\sim 15 min)

Simple idea: Since $y_0 = e^x$ was a particular solution of y' = y, we guess that a particular solution for y' = y + 2 is of the form $y_p = ve^x$ for some **function** v(x).

Section C.9

Activity C.1.11 (\sim 15 min)

Find the solution for y' = y + 2 directly.

Simple idea: Since $y_0 = e^x$ was a particular solution of y' = y, we guess that a particular solution for y' = y + 2 is of the form $y_p = ve^x$ for some **function** v(x).

Part 1: Use the Product Rule to find $y'_p = \frac{d}{dx}[ve^x]$.

Section C.9

Activity C.1.11 (\sim 15 min)

Find the solution for y' = y + 2 directly.

Simple idea: Since $y_0 = e^x$ was a particular solution of y' = y, we guess that a particular solution for y' = y + 2 is of the form $y_p = ve^x$ for some **function** v(x).

Part 1: Use the Product Rule to find $y'_p = \frac{d}{dx}[ve^x]$.

Part 2: Substitute y_p and y'_p into the equation y' = y + 2.

Activity C.1.11 (\sim 15 min)

Find the solution for y' = y + 2 directly.

Simple idea: Since $y_0 = e^x$ was a particular solution of y' = y, we guess that a particular solution for y' = y + 2 is of the form $y_p = ve^x$ for some **function** v(x).

- Part 1: Use the Product Rule to find $y'_p = \frac{d}{dx}[ve^x]$.
- Part 2: Substitute y_p and y'_p into the equation y' = y + 2.
- Part 3: Solve for v', and integrate to find v.

- Section C.1

Activity C.1.11 (\sim 15 min)

Find the solution for y' = y + 2 directly.

Simple idea: Since $y_0 = e^x$ was a particular solution of y' = y, we guess that a particular solution for y' = y + 2 is of the form $y_p = ve^x$ for some **function** v(x).

- Part 1: Use the Product Rule to find $y'_p = \frac{d}{dx}[ve^x]$.
- Part 2: Substitute y_p and y'_p into the equation y' = y + 2.
- Part 3: Solve for v', and integrate to find v.
- Part 4: Find y_p .

Observation C.1.12

The technique outlined in the previous activity is called **variation of parameters**. If y_0 is a particular solution of the **homogeneous** equation, assume that a particular solution of the **non-homogeneous** equation has the form $y_p = vy_0$, and then determine what v must be.

Example:

$$y' + 3y = 0$$
 homogeneous $y' + 3y = x$ non-homogeneous

Note that each term of the homogeneous equation includes y or it derivatives.

Solve y' = x - 3y by first solving its corresponding homogeneous equation and using variation of parameters:

$$y' + 3y = 0$$

$$y' + 3y = x$$

homogeneous

non-homogeneous

Solve y' = x - 3y by first solving its corresponding homogeneous equation and using variation of parameters:

$$y' + 3y = 0$$

$$y' + 3y = x$$

homogeneous

non-homogeneous

Part 1: Modify e^x to find the general solution y_h for the homogeneous equation.

Solve y' = x - 3y by first solving its corresponding homogeneous equation and using variation of parameters:

$$y' + 3y = 0$$

$$y' + 3y = x$$

homogeneous

non-homogeneous

Part 1: Modify e^x to find the general solution y_h for the homogeneous equation. Part 2: Choose a particular solution y_0 for the homogeneous equation, and assume $y_p = vy_0$ is a particular solution of the non-homogeneous equation for some **function** v. Substitute y_p into non-homogeneous equation and simplify.

Solve y' = x - 3y by first solving its corresponding homogeneous equation and using variation of parameters:

$$y' + 3y = 0$$

$$y' + 3y = x$$

homogeneous

non-homogeneous

Part 1: Modify e^x to find the general solution y_h for the homogeneous equation.

Part 2: Choose a particular solution y_0 for the homogeneous equation, and assume $y_p = vy_0$ is a particular solution of the non-homogeneous equation for some

function v. Substitute y_p into non-homogeneous equation and simplify.

Part 3: Determine v_p , and then determine y_p .

Observation C.1.14

Since $y_h = ke^{-3x}$ was the general solution of y' + 3y = 0, and $y_p = \frac{x}{3} - \frac{1}{0}$ is a particular solution of y' + 3v = x.

$$y = y_h + y_p = (ke^{-3x}) + (\frac{x}{3} - \frac{1}{9})$$

is a solution to y' + 3y = x:

$$\frac{d}{dx}[y_h + y_p] + 3(y_h + y_p) = (y_h' + 3y_h) + (y_p' + 3y_p) = 0 + x = x$$

nodule v

- Section C.1
- Section C.2 Section C.3
- Section C.4
- Section C.5
- Section C.
- Section C.
- Section C.9

Fact C.1.15

Let a be a constant real number. Every constant coefficient first order ODE

$$y' + ay = f(x)$$

has the general solution

$$y = y_h + y_p$$

where y_h is the general solution to the homogeneous equation y' + ay = 0 and y_p is a particular solution to y' + ay = f(t).

Section C.1 Section C.2

Section C.3

Activity C.1.16 (\sim 15 min)

Find the general solution to y' = 2y + x + 1 using variation of parameters:

- Write the homogeneous equation and find its general solution y_h .
- Use a particular solution y_0 for the homogeneous equation to find a particular solution $y_p = vy_0$ for the original equation.
- Then $y = y_h + y_p$ gives the general solution to the equation.

Section C.1 Section C.2

Section C 2

Section C.s

Section C.4

Section C.6

Section C.

Section C.7

Section C.9

Module C Section 2

Section C.2

Section C.9

Observation C.2.1

Recall that we can model the velocity of a water droplet in a cloud by

$$mv' = -mg - bv$$

where negative numbers represent downward motion, m > 0 is the mass of the droplet, g > 0 is the magnitude of acceleration due to gravity, and b > 0 is the proportion of wind resistance to speed.

Section C.1 Section C.2 Section C.3 Section C.4 Section C.5 Section C.6 Section C.7 Section C.7

Section C.9

Activity C.2.2 (\sim 20 min)

A water droplet with a radius of $10\,\mu\mathrm{m}$ has a mass of about $4\times10^{-15}\,\mathrm{kg}$. It is determined in a laboratory that for a droplet this size, the constant b has a value of $3\times10^{-3}\,\mathrm{kg/s}$, and it is known that g is approximately $9.8\,\mathrm{m/s^2}$.

Complete the following tasks to study the motion of this droplet.

Module C Section C.1 Section C.2 Section C.3 Section C.4 Section C.5 Section C.6 Section C.7 Section C.7

Activity C.2.2 (\sim 20 min)

A water droplet with a radius of $10\,\mu\mathrm{m}$ has a mass of about $4\times10^{-15}\,\mathrm{kg}$. It is determined in a laboratory that for a droplet this size, the constant b has a value of $3\times10^{-3}\,\mathrm{kg/s}$, and it is known that g is approximately $9.8\,\mathrm{m/s^2}$.

Complete the following tasks to study the motion of this droplet.

Part 1: Rewrite mv' = -mg - bv in the form of v' + av = ? for some value of a.

Module C
Section C.1
Section C.2
Section C.3
Section C.4
Section C.5
Section C.6
Section C.7
Section C.7

Activity C.2.2 (\sim 20 min)

A water droplet with a radius of $10\,\mu\mathrm{m}$ has a mass of about $4\times10^{-15}\,\mathrm{kg}$. It is determined in a laboratory that for a droplet this size, the constant b has a value of $3\times10^{-3}\,\mathrm{kg/s}$, and it is known that g is approximately $9.8\,\mathrm{m/s^2}$.

Complete the following tasks to study the motion of this droplet.

Part 1: Rewrite mv' = -mg - bv in the form of v' + av = ? for some value of a. Part 2: Find the general solution of this ODE in terms of a and g. (Let $v_p = wv_0$ when using variation of parameters to avoid confusion.)

Activity C.2.2 (\sim 20 min)

A water droplet with a radius of $10\,\mu\mathrm{m}$ has a mass of about $4\times10^{-15}\,\mathrm{kg}$. It is determined in a laboratory that for a droplet this size, the constant b has a value of $3\times10^{-3}\,\mathrm{kg/s}$, and it is known that g is approximately $9.8\,\mathrm{m/s^2}$.

Complete the following tasks to study the motion of this droplet.

- Part 1: Rewrite mv' = -mg bv in the form of v' + av = ? for some value of a.
- Part 2: Find the general solution of this ODE in terms of a and g. (Let $v_p = wv_0$ when using variation of parameters to avoid confusion.)
- Part 3: Due to wind resistence, eventually the droplet will effectively stop accelerating upon reaching a certain velocity. What is this **terminal velocity** of the droplet in terms of a and g?

Activity C.2.2 (\sim 20 min)

A water droplet with a radius of $10\,\mu\mathrm{m}$ has a mass of about $4\times10^{-15}\,\mathrm{kg}$. It is determined in a laboratory that for a droplet this size, the constant b has a value of $3\times10^{-3}\,\mathrm{kg/s}$, and it is known that g is approximately $9.8\,\mathrm{m/s^2}$.

Complete the following tasks to study the motion of this droplet.

- Part 1: Rewrite mv' = -mg bv in the form of v' + av = ? for some value of a.
- Part 2: Find the general solution of this ODE in terms of a and g. (Let $v_p = wv_0$ when using variation of parameters to avoid confusion.)
- Part 3: Due to wind resistence, eventually the droplet will effectively stop accelerating upon reaching a certain velocity. What is this **terminal velocity** of the droplet in terms of a and g?
- Part 4: If the droplet starts from rest (v = 0 when t = 0), what is its velocity after 0.01 s? Use a calculator to compute the answer in m/s.

Definition C.2.3

The last part of the previous activity is an example of an **Initial Value Problem** (IVP); we were given the initial value of the velocity in addition to our differential equation.

$$v' + (b/m)v = -g$$
 $v(0) = 0$

Physical scenarios often produce IVPs with a unique solution.

Section C.1

Section C.2

Section C.3

Section C.6

Section C.9

Module C Section 3

Aodule C
Section C.1
Section C.2
Section C.3

Section C.4

Section C.8 Section C.9

Observation C.3.1

What happens when your tire hits a pothole?

https://prof.clontz.org/assets/img/good-bad-shocks.gif

Section C.1

Section C.3

Activity C.3.2 (\sim 5 min)

Hooke's law says that the force exerted by the spring is proportional to the distance the spring is stretched from its natural length, given by a spring coefficient k > 0.

Let y measure the displacement of the mass from the spring's natural length. Write a differential equation modeling the displacement of the $m \log m$ assuming that the only force acting on the mass comes from the spring.

Section C.1

Section C.2 Section C.3 Section C.4

Section C.8 Section C.9

Observation C.3.3

Module C Sinco t

Since the spring acts on the mass in the opposite direction of displacement, we may model the mass-spring system with

$$my'' = -ky$$
.

Section C.2 Section C.3

Section C.4

Section C.8

Section C.9

Activity C.3.4 (\sim 15 min)

Consider the mass-spring equation my'' = -ky where m = k = 1:

$$y''=-y.$$

Section C.2 Section C.3

Section C.4

Section C.8 Section C.9

Activity C.3.4 (\sim 15 min)

Consider the mass-spring equation my'' = -ky where m = k = 1:

$$y''=-y.$$

Part 1: Find a solution.

Section C.9

Activity C.3.4 (\sim 15 min)

Consider the mass-spring equation my'' = -ky where m = k = 1:

$$y''=-y.$$

Part 1: Find a solution.

Part 2: Find the general solution.

Activity C.3.4 (\sim 15 min)

Consider the mass-spring equation my'' = -ky where m = k = 1:

$$y''=-y.$$

- Part 1: Find a solution.
- Part 2: Find the general solution.
- Part 3: Describe the long term behavior of the mass-spring system.

Section C.1 Section C.2 Section C.3 Section C.4 Section C.5 Section C.6

Activity C.3.5 (\sim 5 min)

The general solution $y = c_1 \cos(t) + c_2 \sin(t)$ models infinitely oscillating behavior, but in applications this does not occur.

Thus, a damper (a.k.a. dashpot) is often considered, which provides a force proportional to velocity, given by the coefficient b > 0. For example, friction may act as a damper to a mass-spring system.

Write a differential equation modeling the displacement of a mass in a **damped** mass-spring system.

Observation C.3.6

The damped mass-spring system can be modelled by

$$my'' = -by' - ky.$$

Here m is the mass, k is the spring constant, and b is the damping constant. We can rearrange this as

$$y'' + By' + Ky = 0$$

where $B = \frac{b}{m}$ and $K = \frac{k}{m}$.

This is a homogeneous second order constant coefficient differential equation. Here, **homogeneous** refers to the 0 on the right hand side of the equation.

Section C.8 Section C.9

Activity C.3.7 (\sim 15 min)

Consider the second order constant coefficient equation

$$y'' = y$$
.

Section C.7 Section C.8

Section C.9

Activity C.3.7 (\sim 15 min)

Consider the second order constant coefficient equation

$$y'' = y$$
.

Part 1: Find a solution.

Section C.9

Activity C.3.7 (\sim 15 min)

Consider the second order constant coefficient equation

$$y'' = y$$
.

Part 1: Find a solution.

Part 2: Find the general solution.

Consider the second order constant coefficient equation

$$y'' = y$$
.

- Part 1: Find a solution.
- Part 2: Find the general solution.
- Part 3: Describe the long term behavior of the solutions.

Observation C.3.8

It is sometimes useful to think in terms of **differential operators**.

• We will use D to represent a derivative. So for any function y,

$$D(y) = \frac{\partial y}{\partial x} = y'.$$

- D² will denote the second derivative operator (i.e. differentiate twice, or apply D twice).
- We will use I for the identity operator, so I(y) = y. (It can be thought of as $I = D^0$, take the derivative zero times.)

In this language, the differential equation y' + 3y = 0 can be rewritten as D(y) + 3I(y) = 0, or more simply (D + 3I)(y) = 0.

Thus, the question of solving the homogeneous differential equation is the question of finding the **kernel** of the differential operator D + 3I: all the functions y that the transformation D + 3I turns into the zero function.

Find a differential operator whose kernel is the solution set of the ODE y' = 4y.

- a) D 4I
- b) D + 4I
- c) $D^2 4I$
- d) $D^2 + 4D$

The kernel of the differential operator D-4I whose kernel is the general solution of the ODE y'=4y. What is its general solution?

- a) $y = ke^{-4x}$
- b) $y = ke^{4x}$
- c) y = 4x + k
- d) y = 4

- Section C.1
- Section C.2
- Section C.3

- Section C.9

What are ODE and general solution given by the kernel of the differential operator D-aI for a real number a?

- a) y' ay = 0 and $y = ke^{ax}$.
- b) y' + ay = 0 and $y = ke^{-ax}$.
- c) y' a = 0 and y = ax + k.
- d) y'' + a = 0 and $y = -\frac{a}{2}x^2 + kx + I$.

Nodule C

Section C.1 Section C.2

Section C.3

Section C.3 Section C.4

Section C.4

Section C.

Section C.

Section C.8 Section C.9

Observation C.3.12

The kernel of the differential operator D-aI is given by the general solution $y=ke^{ax}$.

Module C Consider the ODE

$$y'' + 5y' + 6y = 0.$$

Section C.8 Section C.9

Section C.2 Section C.3 Section C.4

Section C.8

Section C.9

Activity C.3.13 (\sim 15 min)

Consider the ODE

$$y'' + 5y' + 6y = 0.$$

Part 1: Use I, D, D^2 to write a differential operator whose kernel is the solution set of the above ODE.

Consider the ODE

$$y'' + 5y' + 6y = 0.$$

Part 1: Use I, D, D^2 to write a differential operator whose kernel is the solution set of the above ODE.

Part 2: Factor this differential operator as a composition of two simpler operators, as you would a polynomial. (This works because the order of applying the transformations D and I doesn't matter).

Consider the ODE

$$y'' + 5y' + 6y = 0.$$

Part 1: Use I, D, D^2 to write a differential operator whose kernel is the solution set of the above ODE.

Part 2: Factor this differential operator as a composition of two simpler operators, as you would a polynomial. (This works because the order of applying the transformations D and I doesn't matter).

Part 3: Find the general solution for each factor, and then combine to find the general solution to the overall ODE.

Consider the ODE

$$y'' + 5y' + 6y = 0.$$

Part 1: Use I, D, D^2 to write a differential operator whose kernel is the solution set of the above ODE.

Part 2: Factor this differential operator as a composition of two simpler operators, as you would a polynomial. (This works because the order of applying the transformations D and I doesn't matter).

Part 3: Find the general solution for each factor, and then combine to find the general solution to the overall ODE.

Part 4: Check that your general solution is valid by computing y', y'' and plugging into y'' + 5y' + 6y = 0.

Section C.2

Section C.3

Section C.4

Section C.8

Section C.9

Observation C.3.14

The kernel of (D + 3I)(D + 2I) is given by $y = k_1e^{-3t} + k_2e^{-2t}$.

In general for $\alpha \neq \beta$, the kernel of $(D - \alpha I)(D - \beta I)$ is given by $y = k_1 e^{at} + k_2 e^{bt}$.

Section C.8 Section C.9

Solve the ODE

Activity C.3.15 (
$$\sim$$
10 min)

$$2y'' + 7y' + 6y = 0.$$

Module C Section C.1 Section C.2 Section C.3 Section C.4 Section C.5

Section C.4 Section C.5 Section C.6 Section C.7

Section C.7 Section C.8 Section C.9 Activity C.3.16 (\sim 15 min)

Recall that the general solution to y'' + y = 0 is given by $y = c_1 \sin(x) + c_2 \cos(x)$. Show how to find this solution using the differential operator $D^2 + 1$.

Section C.1 Section C.2

Section C.3

Section C.4

Section C.

Section C.6

Section C.7 Section C.8

Section C.9

ection C.

Activity C.3.17 (\sim 15 min)

Consider the ODE

$$y'' + 2y' + 5y = 0$$

.

Section C.1 Section C.2

Section C.4

Section C.6

Section C.8 Section C.9 Activity C.3.17 (\sim 15 min)

Consider the ODE

$$y'' + 2y' + 5y = 0$$

.

Part 1: Find its general solution using complex numbers.

Section C.1

Section C.2 Section C.3

Section C.4

Section C

Section C.7 Section C.8

Section C.9

Activity C.3.17 (∼15 min)

Consider the ODE

$$y'' + 2y' + 5y = 0$$

.

Part 1: Find its general solution using complex numbers.

Part 2: Describe the general solution only involving real numbers.

Activity C.3.18 (\sim 5 min)

Which of these are solutions to the following ODE?

$$y'' - 4y' + 4y = 0$$

- a) $y = e^{2t}$, where $y' = 2e^{2t}$ and $y'' = 4e^{2t}$
- b) $y = te^{2t}$, where $y' = e^{2t} + 2te^{2t}$ and $y'' = 4e^{2t} + 4e^{2t}$
- c) $v = e^{2t} + te^{2t}$, where $v' = 3e^{2t} + 2te^{2t}$ and $v'' = 8e^{2t} + 4e^{2t}$
- d) All of the above

Section C.1 Section C.2 Section C.3 Section C.4 Section C.5 Section C.6

Section C.9

Observation C.3.19

To solve y'' - 4y' + 4y = 0, we need to find the kernel of $(D-2I)(D-2I) = (D-2I)^2$.

- The kernel of D-2I is given by ke^{2x} .
- But if $(D-2I)(y) = e^{2t}$, then $(D-2I)(D-2I)(y) = (D-2I)(e^{2t}) = 0$ also.
- That means the kernel of $(D-2I)^2$ is given by both (D-2I)(y)=0 and $(D-2I)(y)=e^{2t}$.

Module C

Section C.1 Section C.2

Section C.2

Section C.3 Section C.4

Section C.5

Section C.6

Section C.7 Section C.8

Section C.9

Activity C.3.20 (\sim 15 min) Solve $(D - 2I)(y) = e^{2x}$.

Observation C.3.21

Since (D-2I)(y)=0 solves to ke^{2t} and $(D-2I)(y)=e^{2t}$ solves to kte^{2t} , we have shown that the general solution of

$$y'' - 4y' + 4y = 0$$

is

$$y=c_0e^{2t}+c_1te^{2t}.$$

Activity C.3.22 (\sim 10 min)

Consider the homogeneous second order constant coefficient ODE

$$ay'' + by' + cy = 0.$$

If r is a number such that $ar^2 + br + c = 0$, what can you conclude?

- (a) e^{rt} is a solution.
- (b) e^{-rt} is a solution.
- (c) te^{rt} is a solution.
- (d) There are no solutions.

Activity C.3.23 (\sim 5 min)

Consider the homogeneous second order constant coefficient ODE

$$ay'' + by' + cy = 0.$$

When does the general solution have the form $c_0e^{rt} + c_1te^{rt}$?

- (a) When the polynomial $ax^2 + bx + c$ has two distinct real roots.
- (b) When the polynomial $ax^2 + bx + c$ has a repeated real root.
- (c) When the polynomial $ax^2 + bx + c$ has two distinct non-real roots.
- (d) When the polynomial $ax^2 + bx + c$ has a repeated non-real root.

Observation C.3.24

Consider the homogeneous second order constant coefficient ODE

$$ay'' + by' + cy = 0$$

given by the differential operator $aD^2 + bD + cI$. Let r be a (possibly non-real) solution to $ax^2 + bx + c = 0$:

- e^{rt} is a particular solution of the ODE.
- If r is a double root, te^{rt} is also a particular solution.
- if $r = \alpha + \beta i$ is not real, Euler's formula allows us to express the real-valued solutions in terms of $sin(\beta t)$ and $cos(\beta t)$.

Due to the usefulness of its solutions, $ax^2 + bx + c = 0$ is called the **auxiliary** equation for this ODE.

Module C

Section C.1

Section C.2

Section C.3

Section C.4

Section C.6

Section C.

Section C.7

Section C.9

Module C
Section C.1
Section C.2
Section C.3

Section C.3 Section C.4

Section C.5 Section C.7 Section C.8

Section C.8 Section C.9

Remark C.4.1

While first or second-order constant-coefficient ODEs usually solve to general solutions such as $y=c_1e^t+c_2e^{-2t}$, the values of the parameters c_1,c_2 may be determined when given additional information.

Section C.1 Section C.2

Section C.3

Section C.4

Section C.8 Section C.9 Activity C.4.2 (\sim 10 min)

Solve the IVP

$$y' + 3y = 0,$$
 $y(0) = 2.$

Section C.1 Section C.2

Section C.3

Section C.4

Section C.8

Section C.9

Activity C.4.3 (\sim 15 min)

Solve
$$y'' - 6y' + 9y = 0$$
 where $y(0) = 2$ and $y(1) = \frac{3}{e^3}$.

Module C Section C.1 Section C.2

Section C.3 Section C.4

Section C.5 Section C.6

Section C.5 Section C.7 Section C.8

Section C.9

Activity C.4.4 (\sim 15 min)

Solve
$$y'' - 6y' + 8y = 0$$
 where $y(0) = 1$ and $y'(0) = -2$.

Section C.1

Section C.2

Section C.5 Section C.6

Section C.9

Observation C.5.1

Consider the homogeneous second order constant coefficient ODE

$$ay'' + by' + cy = 0.$$

- If r is a root of $ax^2 + bx + c = 0$, then e^{rt} is a solution of the ODE.
- If r is a double root (that is, $ax^2 + bx + c = (x r)^2$), te^{rt} is also a solution.
- If r = a + bi is not real, Euler's formula allows us to express e^{at+bit} in terms of e^{at} , $\sin(bt)$, and $\cos(bt)$ to get a real-valued general solution.

Section C.8 Section C.9

Activity C.5.2 (\sim 15 min)

Consider the following scenario: a mass of 4 ${\rm kg}$ suspended from a damped spring with spring constant $k=2~{\rm kg/s^2}$ and damping constant $b=6~{\rm kg/s}$. As previously discussed, this is modeled by the ODE

$$my'' = -by' - ky.$$

Section C.9

Activity C.5.2 (\sim 15 min)

Consider the following scenario: a mass of 4 ${\rm kg}$ suspended from a damped spring with spring constant $k=2~{\rm kg/s^2}$ and damping constant $b=6~{\rm kg/s}$. As previously discussed, this is modeled by the ODE

$$my'' = -by' - ky.$$

Part 1: Find the general solution for the ODE in terms of m, b, k.

Activity C.5.2 (\sim 15 min)

Consider the following scenario: a mass of 4 ${\rm kg}$ suspended from a damped spring with spring constant $k=2~{\rm kg/s^2}$ and damping constant $b=6~{\rm kg/s}$. As previously discussed, this is modeled by the ODE

$$my'' = -by' - ky.$$

Part 1: Find the general solution for the ODE in terms of m, b, k.

Part 2: The mass is pulled down 0.3 m from its natural length and released from rest. Use the initial conditions y(0) = ? and y'(0) = ? to find the particular solution modeling this scenario.

Module C Section C.1

Section C.2 Section C.3 Section C.4

Section C.5 Section C.7

Section C.8 Section C.9 **Activity C.5.3** (\sim 5 min)

A 1 kg mass is suspended from a spring with spring constant $k=9 \text{ kg/s}^2$. No damping is applied, but an external electromagnetic force of $F(t)=\sin(t)$ is applied. Which of these ODEs models this scenario?

- a) $my'' + ky + \sin(t) = 0$
- b) $my'' + ky = \sin(t)$
- c) $my'' + by' = \sin(t)$
- d) $my'' + by' + \sin(t) = 0$

Observation C.5.4

Because my'' is the total force acting on the object, -by' - ky is the force acting on the object by the spring, and an additional external force of F(t) is applied, we get my'' = -by' - ky + F(t) which rearranges to

$$my'' + ky = \sin(t)$$

when b = 0 (no damping) and $F(t) = \sin(t)$.

This is an example of a **nonhomogeneous** second-order constant coefficient equation of the form

$$ay'' + by' + cy = F(t)$$

since the $F(t) = \sin(t)$ term is not a multiple of y or its derivatives. As with first-order examples, these may be solved with variation of parameters.

Section C.1 Section C.2 Section C.3 Section C.4 Section C.5

Section C.8 Section C.9

Activity C.5.5 (\sim 15 min)

Suppose y_1 and y_2 are two independent particular solutions of ay'' + by' + cy = 0.

By variation of paraameters, we'll assume we can find a particular solution $y_p = v_1y_1 + v_2y_2$ for the ODE using the currently unknown functions v_1, v_2 .

Module C Section C.1 Section C.2 Section C.3 Section C.4

Section C.4 Section C.5 Section C.6 Section C.7 Section C.8

Section C.9

Activity C.5.5 (\sim 15 min)

Suppose y_1 and y_2 are two independent particular solutions of ay'' + by' + cy = 0.

By variation of paraameters, we'll assume we can find a particular solution $y_p = v_1y_1 + v_2y_2$ for the ODE using the currently unknown functions v_1, v_2 .

Part 1: Use the product rule (on v_1y_1 and v_2y_2) to compute y'_p .

Module C Section C.1

Section C.2 Section C.3

Section C.

Section C.5 Section C.7

Section C. Section C. Activity C.5.5 (\sim 15 min)

Suppose y_1 and y_2 are two independent particular solutions of ay'' + by' + cy = 0.

By variation of paraameters, we'll assume we can find a particular solution $y_p = v_1y_1 + v_2y_2$ for the ODE using the currently unknown functions v_1, v_2 .

Part 1: Use the product rule (on v_1y_1 and v_2y_2) to compute y'_p . Part 2: Since we get to choose what v_1, v_2 are, let's only look for examples where $v'_1y_1 + v'_2y_2 = 0$ to simplify calculations. Assuming this, compute y''_p .

Section C.1

Section C.5

Activity C.5.5 (\sim 15 min)

Suppose y_1 and y_2 are two independent particular solutions of ay'' + by' + cy = 0.

By variation of paraameters, we'll assume we can find a particular solution $y_p = v_1 y_1 + v_2 y_2$ for the ODE using the currently unknown functions v_1, v_2 .

Part 1: Use the product rule (on v_1y_1 and v_2y_2) to compute y'_p . Part 2: Since we get to choose what v_1, v_2 are, let's only look for examples where $v'_1y_1 + v'_2y_2 = 0$ to simplify calculations. Assuming this, compute y''_p . Part 3: Simplify the ODE $ay''_p + by'_p + cy_p = f(x)$, keeping in mind that $ay''_1 + by'_1 + cy_1 = 0$ and $ay''_2 + by'_2 + cy_2 = 0$.

Observation C.5.6

If we can find functions v_1 and v_2 that solve the system of equations

$$y_1v_1' + y_2v_2' = 0$$

$$y_1'v_1' + y_2'v_2' = \frac{1}{a}f(t)$$

then $y_p = y_1v_1 + y_2v_2$ is a particular solution for ay'' + by' + cy = f(x).

Section C.1 Section C.2 Section C.3 Section C.4

Section C.5 Section C.6 Section C.7 Section C.8 Section C.9

Activity C.5.7 (\sim 20 min)

Consider the nonhomogeneous ODE

$$y'' + 9y = \sin(t)$$

of the form
$$ay'' + by' + cy = f(t)$$
 for $a = 1, b = 0, c = 9, f(t) = \sin(t)$.

Section C.1 Section C.2 Section C.3 Section C.4

Section C.5

Section C.8 Section C.9

Activity C.5.7 (\sim 20 min)

Consider the nonhomogeneous ODE

$$y'' + 9y = \sin(t)$$

of the form
$$ay'' + by' + cy = f(t)$$
 for $a = 1, b = 0, c = 9, f(t) = \sin(t)$.

Part 1: Find $y_h = k_1y_1 + k_2y_2$, where y_1, y_2 are independent real-valued particular solutions of $y_h'' + 9y_h = 0$.

Section C.1 Section C.2

Section C.5

Section C.9

Consider the nonhomogeneous ODE

$$y'' + 9y = \sin(t)$$

of the form
$$ay'' + by' + cy = f(t)$$
 for $a = 1, b = 0, c = 9, f(t) = \sin(t)$.

Part 1: Find $y_h = k_1 y_1 + k_2 y_2$, where y_1, y_2 are independent real-valued particular solutions of $y_h'' + 9y_h = 0$.

Part 2: Substitute $a, f(t), y_1, y_2, y'_1, y'_2$ into

$$y_1v_1' + y_2v_2' = 0$$

$$y_1'v_1' + y_2'v_2' = \frac{1}{a}f(t)$$

Section C.1

Section C.5

Activity C.5.7 (\sim 20 min)

Consider the nonhomogeneous ODE

$$y'' + 9y = \sin(t)$$

of the form
$$ay'' + by' + cy = f(t)$$
 for $a = 1, b = 0, c = 9, f(t) = \sin(t)$.

Part 1: Find $y_h = k_1 y_1 + k_2 y_2$, where y_1, y_2 are independent real-valued particular solutions of $y_h'' + 9y_h = 0$.

Part 2: Substitute $a, f(t), y_1, y_2, y'_1, y'_2$ into

$$y_1v_1' + y_2v_2' = 0$$

$$y_1'v_1' + y_2'v_2' = \frac{1}{a}f(t)$$

Part 3: Find v_1 , v_2 by solving that system, and using $\int \sin(t) \cos(3t) dt = \frac{1}{8} \cos(t) \cos(3t) + \frac{3}{8} \sin(t) \sin(3t) + C$ and $\int \sin(t) \sin(3t) dt = -\frac{1}{8} \cos(t) \sin(3t) + \frac{3}{8} \sin(t) \cos(3t) + C$.

Section C.1

Section C.5

$$y'' + 9y = \sin(t)$$

of the form
$$ay'' + by' + cy = f(t)$$
 for $a = 1, b = 0, c = 9, f(t) = \sin(t)$.

Part 1: Find $y_h = k_1 y_1 + k_2 y_2$, where y_1, y_2 are independent real-valued particular solutions of $y_h'' + 9y_h = 0$.

Part 2: Substitute $a, f(t), y_1, y_2, y'_1, y'_2$ into

$$y_1v_1' + y_2v_2' = 0$$

$$y_1'v_1' + y_2'v_2' = \frac{1}{a}f(t)$$

Part 3: Find v_1 , v_2 by solving that system, and using $\int \sin(t)\cos(3t)dt = \frac{1}{8}\cos(t)\cos(3t) + \frac{3}{8}\sin(t)\sin(3t) + C \text{ and } \int \sin(t)\sin(3t)dt = -\frac{1}{8}\cos(t)\sin(3t) + \frac{3}{8}\sin(t)\cos(3t) + C.$ Part 4: Use $y_p = y_1v_1 + y_2v_2$ to write the general solution $y = y_h + y_p$ of the original nonhomogeneous ODE.

Section C.1 Section C.2

Section C.3 Section C.4

Section C.5

Section C.8

Section C.9

Activity C.5.8 (\sim 10 min)

Consider the nonhomogeneous ODE $y'' + 9y = \sin(3t)$.

Section C.9

Activity C.5.8 (\sim 10 min)

Consider the nonhomogeneous ODE $y'' + 9y = \sin(3t)$.

Part 1: Find v_1 and v_2 by solving

$$y_1v_1' + y_2v_2' = 0$$

$$y_1'v_1' + y_2'v_2' = \frac{1}{a}f(t)$$

for particular solutions y_1, y_2 of $y_h'' + 9y_h = 0$.

Section C.9

Activity C.5.8 (\sim 10 min)

Consider the nonhomogeneous ODE $y'' + 9y = \sin(3t)$.

Part 1: Find v_1 and v_2 by solving

$$y_1v_1' + y_2v_2' = 0$$

$$y_1'v_1' + y_2'v_2' = \frac{1}{a}f(t)$$

for particular solutions y_1, y_2 of $y_h'' + 9y_h = 0$.

Part 2: Write the general solution of the original nonhomogeneous ODE.

Section C 1

Section C.1

Section C.:

Section C.4

Section C.5

Section C.0

Section C.9

Module C

Math 238

Module C

Section C.1

Section C.2

Section C.

Section C.

Section C

Section C.7

Section C.

Section C.9

Module C

Section C.1

Section C.2

Section C.3

Section C.4

Section C.6

Section C.

Section C.7 Section C.8

Section C.9

Module C

Math 238

Module C

Section C.1

Section C.1

Section C.3

Section C.

Section C.5

Section C.6

Section C.7

Section C.8

Section C.9

Module C Section 9

Section C.1 Section C.2 Section C.3 Section C.4 Section C.5 Section C.6 Section C.7 Section C.7

Section C.9

Activity C.9.1 (\sim 10 min)

A 1 kg mass is suspended from a spring with spring constant $k=9~{\rm kg/s^2}$. An external force is applied by an electromagnet and is modeled by the function $F(t)=\sin(t)$. Write an ODE modeling the displacement of the spring.

Observation C.9.2

In the previous activity, we encountered a **nonhomogeneous** second order constant coefficient ODE, i.e. of the form

$$ay'' + by' + cy = f(x)$$

where a, b, c are constants, and f(x) is a function.

We will again use variation of parameters to find a particular solution.

Section C.1 Section C.2

Section C.4

Section C.9

Section C.3

Section C.8

Activity C.9.3 (\sim 15 min)

Suppose y_1 and y_2 are two independent particular solutions of $\mathcal{L}(y) = 0$, where $\mathcal{L} = aD^2 + bD + cI$.

Our goal is to find a particular solution of $\mathcal{L}(y) = f(x)$ of the form $y_p = v_1 y_1 + v_2 y_2$ for some TBD functions v_1, v_2 .

Section C.1 Section C.2 Section C.3

Section C.9

Activity C.9.3 (\sim 15 min)

Suppose y_1 and y_2 are two independent particular solutions of $\mathcal{L}(y) = 0$, where $\mathcal{L} = aD^2 + bD + cL$

Our goal is to find a particular solution of $\mathcal{L}(y) = f(x)$ of the form $y_p = v_1 y_1 + v_2 y_2$ for some TBD functions v_1, v_2 .

Part 1: Use the product rule (twice) to compute y'_n .

Module C

Section C.1 Section C.2

Section C.

Section C.

Section C.

Section C.

Section C.9

Section

Activity C.9.3 (\sim 15 min)

Suppose y_1 and y_2 are two independent particular solutions of $\mathcal{L}(y)=0$, where $\mathcal{L}=aD^2+bD+cI$.

Our goal is to find a particular solution of $\mathcal{L}(y) = f(x)$ of the form $y_p = v_1 y_1 + v_2 y_2$ for some TBD functions v_1, v_2 .

Part 1: Use the product rule (twice) to compute y'_{p} .

Part 2: To simplify calculations, we will assume $v_1'y_1 + v_2'y_2 = 0$. Assuming this, compute y_p'' .

Section C.1

Section C.9

Activity C.9.3 (\sim 15 min)

Suppose y_1 and y_2 are two independent particular solutions of $\mathcal{L}(y) = 0$, where $\mathcal{L} = aD^2 + bD + cL$

Our goal is to find a particular solution of $\mathcal{L}(y) = f(x)$ of the form $y_p = v_1 y_1 + v_2 y_2$ for some TBD functions v_1, v_2 .

Part 1: Use the product rule (twice) to compute y'_n .

Part 2: To simplify calculations, we will assume $v_1'y_1 + v_2'y_2 = 0$. Assuming this, compute y_n'' .

Part 3: Compute $\mathcal{L}(y_p)$; simplify the ODE $\mathcal{L}(y_p) = f(x)$.

Observation C.9.4

If we can find v_1 and v_2 that satisfy

$$y_1v_1' + y_2v_2' = 0$$

$$y_1v_1' + y_2v_2' = 0$$
$$y_1'v_1' + y_2'v_2' = \frac{f}{a}$$

then we have a solution. So we just need to solve this system of equations for v'_1 and v_2' .

Section C.1

Section C.2

Section C.3

Section C.4

Section C.8

Section C.9

Activity C.9.5 (\sim 15 min)

Consider the nonhomogeneous ODE $y'' + 9y = \sin(t)$.

Module C

Section C.1 Section C.2

Section C.3 Section C.4

Section C.6 Section C.7

Section C.7 Section C.8

Section C.9

Activity C.9.5 (\sim 15 min)

Consider the nonhomogeneous ODE $y'' + 9y = \sin(t)$.

Part 1: Find y_1 and y_2 , two independent solutions of y'' + 9y = 0.

Section C.1 Section C.2 Section C.3 Section C.4 Section C.5

Section C.8

Section C.9

Activity C.9.5 (\sim 15 min)

Consider the nonhomogeneous ODE $y'' + 9y = \sin(t)$.

Part 1: Find y_1 and y_2 , two independent solutions of y'' + 9y = 0.

Part 2: Find v_1 and v_2 by solving

$$\cos(3t)v'_1 + \sin(3t)v'_2 = 0$$

$$-3\sin(3t)v'_1 + 3\cos(3t)v'_2 = \sin(t)$$

Section C.9

Activity C.9.5 (\sim 15 min)

Consider the nonhomogeneous ODE $y'' + 9y = \sin(t)$.

Part 1: Find y_1 and y_2 , two independent solutions of y'' + 9y = 0.

Part 2: Find v_1 and v_2 by solving

$$\cos(3t)v'_1 + \sin(3t)v'_2 = 0$$
$$-3\sin(3t)v'_1 + 3\cos(3t)v'_2 = \sin(t)$$

Part 3: Write the general solution of the original nonhomogeneous ODE.

Module

Section C.1

Section C.1 Section C.2

Section C.3 Section C.4

Section C.5

Section C.7

Section C.8

Section C.9

Activity C.9.6 (\sim 10 min)

Consider the nonhomogeneous ODE $y'' + 9y = \sin(3t)$.

Section C.1 Section C.2

Section C.3 Section C.4 Section C.8

Section C.9

Activity C.9.6 (\sim 10 min)

Consider the nonhomogeneous ODE $y'' + 9y = \sin(3t)$.

Part 1: Find v_1 and v_2 by solving

$$\cos(3t)v_1' + \sin(3t)v_2' = 0$$

$$-3\sin(3t)v_1' + 3\cos(3t)v_2' = \sin(3t)$$

Activity C.9.6 (\sim 10 min)

Consider the nonhomogeneous ODE $y'' + 9y = \sin(3t)$.

Part 1: Find v_1 and v_2 by solving

$$\cos(3t)v_1' + \sin(3t)v_2' = 0$$
$$-3\sin(3t)v_1' + 3\cos(3t)v_2' = \sin(3t)$$

Part 2: Write the general solution of the original nonhomogeneous ODE.