Examen partiel du 10 mars 2021

Durée : 2h. Documents, calculatrices et smartphones interdits. Le barème est donné à titre indicatif. Il est susceptible d'être un peu modifié.

Exercice 1 (6 points). Pour tout entier $n \ge 1$, on note g_n la fonction définie sur $[0, +\infty[$ par

$$g_n(x) = n \ln \left(1 + \frac{x}{n}\right).$$

- 1) Montrer que la suite de fonctions $(g_n)_{n\geq 1}$ converge simplement sur $[0,+\infty[$ vers une fonction g qu'on précisera.
- 2) a) Montrer que pour tout $t \in [0, +\infty[$, on a $0 \le t \ln(1+t) \le \frac{t^2}{2}$.
- b) En déduire que la suite de fonctions $(g_n)_{n\geq 1}$ converge uniformément sur [0,a] pour tout réel a>0.
- 3) Montrer que la suite $(g_n)_{n\geq 1}$ ne converge pas uniformément sur $[0,+\infty[$.

Exercice 2 (6 points). Pour tout $n \ge 1$ entier, on note u_n la fonction définie sur $[0, +\infty[$ par

$$u_n(x) = (-1)^{n-1} \frac{1}{\ln(1+nx)}.$$

1) Montrer que la série de fonctions $\sum_{n>1} u_n$ converge simplement sur $]0,+\infty[$.

On note désormais S la somme de la série de fonctions $\sum_{n\geq 1} u_n$.

- 2) Soit a un réel > 0.
 - a) Montrer que $\sum_{n\geq 1} u_n$ ne converge pas normalement sur $[a,+\infty[$.
 - b) Montrer que, par contre, $\sum_{n>1} u_n$ converge uniformément sur $[a, +\infty[$.
 - c) Montrer que S est continue sur $]0, +\infty[$.

Exercice 3 (9 points). Pour tout $n \ge 1$ entier, on note u_n la fonction définie sur $[0, +\infty[$ par :

$$u_n(x) = \frac{x}{n(1+nx^2)}.$$

1) Montrer que la série de fonctions $\sum_{n\geq 1} u_n$ converge simplement sur $[0,+\infty[$.

On note désormais S la somme de la série de fonctions $\sum_{n\geq 1} u_n$.

- 2) Montrer que S(1) = 1.
- 3) a) Etudier les variations de la fonction u_n sur $[0, +\infty[$.
 - b) Montrer que $\sum_{n\geq 1} u_n$ converge normalement sur $[0,+\infty[$.
 - c) Montrer que S est continue sur $[0, +\infty[$.
- 4) a) Montrer que la série de fonctions $\sum_{n\geq 1} u'_n$ converge normalement sur tout segment $[a,b] \subset]0,+\infty[$ (avec a < b).
 - b) En déduire que S est dérivable sur $]0, +\infty[$.
- 5) a) Soit p un entier quelconque ≥ 1 . Montrer que $\frac{S(x)}{x} \geq \sum_{n=1}^{p} \frac{1}{n(1+nx^2)}$ pour tout x > 0. En déduire que

$$\frac{S\left(\frac{1}{\sqrt{p}}\right)}{\frac{1}{\sqrt{p}}} \ge \sum_{n=1}^{p} \frac{1}{2n}.$$

b) Montrer alors que S n'est pas dérivable (à droite) en 0.