Springer-Lehrbuch

Johannes Buchmann

Einführung in die Kryptographie

6., überarbeitete Auflage

Johannes Buchmann FB Informatik Technische Universität Darmstadt Darmstadt, Deutschland

ISSN 0937-7433 Springer-Lehrbuch ISBN 978-3-642-39774-5 DOI 10.1007/978-3-642-39775-2

ISBN 978-3-642-39775-2 (eBook)

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Spektrum

© Springer-Verlag Berlin Heidelberg 1999, 2000, 2003, 2007, 2010, 2016

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen.

Planung: Annika Denkert

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier.

Springer-Verlag GmbH Berlin Heidelberg ist Teil der Fachverlagsgruppe Springer Science+Business Media

(www.springer.com)

Vorwort zur sechsten Auflage

In der sechsten Auflage meiner Einführung in die Kryptographie habe ich die Darstellung der mathematischen Modelle, die die Sicherheit kryptographischer Verfahren beschreiben, deutlich erweitert. Ich behandele jetzt die elementare Wahrscheinlichkeitstheorie im ersten Kapitel um dort schwierige Berechnungsprobleme, die Grundlage kryptographischer Sicherheit, definieren zu können. Modelle für die Sicherheit symmetrischer Verschlüsselungsverfahren finden sich in Kapitel 4. Neben der Theorie perfekter Geheimhaltung wird dort auch semantische Sicherheit und Chosen-Plaintext-Sicherheit und Ciphertext-Sicherheit vorgestellt. Auch die Kapitel 8 "Public-Key-Verschlüsselung" und 12 "Digitale Signaturen" wurden entsprechend erweitert. Auch die Fehler, auf die mich Leserinnen und Leser hingewiesen haben, habe ich beseitigt. Ich bedanke mich herzlich für die Aufmerksamkeit.

Darmstadt, im Dezember 2015

Vorwort zur fünften Auflage

In der fünften Auflage meiner Einführung in die Kryptographie habe ich die Beweise für die Sicherheit des Lamport-Diffie-Einmalsignaturverfahren und des Merkle-Signaturverfahren erweitert und einen Abschnitt über algebraische Angriffe auf Blockchiffren neu aufgenommen. Es handelt sich dabei um eine Angriffstechnik, die neue Anforderungen an die Konstruktion von kryptographischen Verfahren stellt. Immer wieder erhalte ich Emails von Lesern, die mich auf Fehler hinweisen und Verbesserungsvorschläge machen. Dafür bin ich sehr dankbar und habe versucht, die Anregungen zu berücksichtigen.

Darmstadt, im Oktober 2009

Vorwort zur vierten Auflage

In der vierten Auflage meiner Einführung in die Kryptographie habe ich auch diesmal den Stand der Forschung im Bereich Faktorisieren und Berechnung diskreter Logarithmen aktualisiert. Neu aufgenommen wurde das Merkle-Signaturverfahren. Dieses Verfahren wurde etwa zeitgleich mit dem RSA-Signaturverfahren erfunden. Nachdem Peter Shor gezeigt hat, dass Quantencomputer das Faktorisierungsproblem und die in der Kryptographie relevanten Diskrete-Logarithmen-Probleme in Polynomzeit lösen können, hat das Merkle-Verfahren neue Relevanz bekommen. Es stellt nämlich eine Alternative zu den heute verwendeten Signaturverfahren dar, die alle unsicher würden, wenn genügend große Quantencomputer gebaut werden können. Außerdem habe ich die Fehler, die mir seit Erscheinen der dritten Auflage bekannt geworden sind, korrigiert. Für die vielen Hinweise, die ich von Lesern erhalten habe, bedanke ich mich sehr.

Darmstadt, im Dezember 2007

Vorwort zur dritten Auflage

In die dritte Auflage meiner Einführung in die Kryptographie habe ich Aktualisierungen und einige neue Inhalte aufgenommen. Aktualisiert wurde die Diskussion der Sicherheit von Verschlüsselungs- und Signaturverfahren und der Stand der Forschung im Bereich Faktorisieren und Berechnung diskreter Logarithmen. Neu aufgenommen wurde die Beschreibung des Advanced Encryption Standard (AES), des Secure Hash Algorithmus (SHA-1) und des Secret-Sharing-Verfahrens von Shamir. Außerdem habe ich die Fehler, die mir seit Erscheinen der zweiten Auflage bekannt geworden sind, korrigiert. Für die vielen Hinweise, die ich von Lesern erhalten habe, bedanke ich mich sehr.

Darmstadt, im Mai 2003

Vorwort zur zweiten Auflage

In die zweite Auflage meiner Einführung in die Kryptographie habe ich eine Reihe neuer Übungsaufgaben aufgenommen. Außerdem habe ich die Fehler, die mir seit Erscheinen der ersten Auflage bekannt geworden sind, korrigiert und einige Stellen aktualisiert. Für die vielen Hinweise, die ich von Lesern erhalten habe, bedanke ich mich sehr.

Darmstadt, im Dezember 2000

Vorwort

Kryptographie ist als Schlüsseltechnik für die Absicherung weltweiter Computernetze von zentraler Bedeutung. Moderne kryptographische Techniken werden dazu benutzt, Daten geheimzuhalten, Nachrichten elektronisch zu signieren, den Zugang zu Rechnernetzen zu kontrollieren, elektronische Geldgeschäfte abzusichern, Urheberrechte zu schützen usw. Angesichts dieser vielen zentralen Anwendungen ist es nötig, dass die Anwender einschätzen können, ob die benutzten kryptographischen Methoden effizient und sicher genug sind. Dazu müssen sie nicht nur wissen, wie die kryptographischen Verfahren funktionieren, sondern sie müssen auch deren mathematische Grundlagen verstehen.

Ich wende mich in diesem Buch an Leser, die moderne kryptographische Techniken und ihre mathematischen Fundamente kennenlernen wollen, aber nicht über die entsprechenden mathematischen Spezialkenntnisse verfügen. Mein Ziel ist es, in die Basistechniken der modernen Kryptographie einzuführen. Ich setze dabei zwar mathematische Vorbildung voraus, führe aber in die Grundlagen von linearer Algebra, Algebra, Zahlentheorie und Wahrscheinlichkeitstheorie ein, soweit diese Gebiete für die behandelten kryptographischen Verfahren relevant sind.

Das Buch ist aus einer Vorlesung entstanden, die ich seit 1996 in jedem Sommersemester an der Technischen Universität Darmstadt für Studenten der Informatik und Mathematik gehalten habe. Ich danke den Hörern dieser Vorlesung und den Mitarbeitern, die die Übungen betreut haben, für ihr Interesse und Engagement. Ich danke allen, die das Manuskript kritisch gelesen und verbessert haben. Besonders bedanke ich mich bei Harald Baier, Gabi Barking, Manuel Breuning, Safuat Hamdy, Birgit Henhapl, Andreas Kottig, Markus Maurer, Andreas Meyer, Stefan Neis, Sachar Paulus, Thomas Pfahler, Marita Skrobic, Tobias Straub, Edlyn Teske, Patrick Theobald und Ralf-Philipp Weinmann. Ich danke auch dem Springer-Verlag, besonders Martin Peters, Agnes Herrmann und Claudia Kehl, für die Unterstützung bei der Abfassung und Veröffentlichung dieses Buches.

Darmstadt, im Juli 1999

Inhaltsverzeichnis

1	Gru	ndlagen		1
	1.1	Ganze	Zahlen	1
		1.1.1	Grundbegriffe und Eigenschaften	1
		1.1.2	Vollständige Induktion	3
		1.1.3	Konvention	4
		1.1.4	Teilbarkeit	4
		1.1.5	Darstellung ganzer Zahlen	5
		1.1.6	Größter gemeinsamer Teiler	7
		1.1.7	Zerlegung in Primzahlen	10
	1.2	Wahrsc	cheinlichkeit	12
		1.2.1	Grundbegriffe	12
		1.2.2	Bedingte Wahrscheinlichkeit	14
	1.3	Zufalls	variablen	15
		1.3.1	Geburtstagsparadox	16
	1.4	Algorit	hmen	17
		1.4.1	Grundbegriffe	17
		1.4.2	Zustandsbehaftete Algorithmen	18
		1.4.3	Probabilitistische Algorithmen	18
		1.4.4	Asymptotische Notation	19
		1.4.5	Laufzeit von deterministischen Algorithmen	20
		1.4.6	Laufzeit von probabilistischen Algorithmen	22
		1.4.7	Durchschnittliche Laufzeit	22
	1.5	Berech	nungsprobleme	22
	1.6	Algorit	hmen für ganze Zahlen	24
		1.6.1	Addition, Multiplikation und Division mit Rest	24
		1.6.2	Euklidischer Algorithmus	26
		1.6.3	Erweiterter euklidischer Algorithmus	29
		1.6.4	Analyse des erweiterten euklidischen Algorithmus	31
	1.7	Übunge	en	34

XX Inhaltsverzeichnis

2	Kong	gruenzen und Restklassenringe	37
	2.1	Kongruenzen	37
	2.2	Halbgruppen	39
	2.3	Gruppen	41
	2.4	Restklassenringe	42
	2.5	Körper	43
	2.6	Division im Restklassenring	43
	2.7	Rechenzeit für die Operationen im Restklassenring	44
	2.8	Prime Restklassengruppen	45
	2.9	Ordnung von Gruppenelementen	47
	2.10	Untergruppen	48
	2.11	Der kleine Satz von Fermat	50
	2.12	Schnelle Exponentiation	50
	2.13	Schnelle Auswertung von Potenzprodukten	52
	2.14	Berechnung von Elementordnungen	53
	2.15	Der Chinesische Restsatz	55
	2.16	Zerlegung des Restklassenrings	57
	2.17	Bestimmung der Eulerschen φ -Funktion	58
	2.18	Polynome	59
	2.19	Polynome über Körpern	61
	2.20	Konstruktion endlicher Körper	63
	2.21	Struktur der Einheitengruppe endlicher Körper	66
	2.22	Struktur der primen Restklassengruppe nach einer Primzahl	67
	2.23	Quadratische Reste	68
	2.24	Übungen	69
3	Verso	chlüsselung	73
	3.1	Symmetrische Verschlüsselungsverfahren	73
	3.2	Verschiebungschiffre	75
	3.3	Asymmetrische Verschlüsselungsverfahren	76
	3.4	Sicherheit von Verschlüsselungsverfahren	77
		3.4.1 Angriffsziele	77
		3.4.2 Angriffstypen	78
	3.5	Alphabete und Wörter	82
	3.6	Permutationen	
	3.7	Blockchiffren	85
	3.8	Permutationschiffren	85
	3.9	Mehrfachverschlüsselung	86
	3.10	Verschlüsselungsmodi	87
		3.10.1 ECB-Mode	87
		3.10.2 CBC-Mode	90
		3.10.3 CFB-Mode	94
		3.10.4 OFB-Mode	96

Inhaltsverzeichnis XXI

	3.11	CTR-Mode
	3.12	Stromchiffren
	3.13	Typen von Stromchiffren
	3.14	Rückgekoppelte Schieberegister
	3.15	Die affine Chiffre
	3.16	Matrizen und lineare Abbildungen
		3.16.1 Matrizen über Ringen
		3.16.2 Produkt von Matrizen mit Vektoren 105
		3.16.3 Summe und Produkt von Matrizen
		3.16.4 Der Matrizenring
		3.16.5 Determinante
		3.16.6 Inverse von Matrizen
		3.16.7 Affin lineare Funktionen
	3.17	Affin lineare Blockchiffren
	3.18	Vigenère, Hill- und Permutationschiffre
	3.19	Kryptoanalyse affin linearer Blockchiffren
	3.20	Sichere Blockchiffren
		3.20.1 Konfusion und Diffusion
		3.20.2 Time-Memory Trade-Off
		3.20.3 Differentielle Kryptoanalyse
		3.20.4 Algebraische Kryptoanalyse
	3.21	Übungen
4	Siche	erheitsmodelle
•	4.1	Perfekte Geheimhaltung
	4.2	Das Vernam-One-Time-Pad
	4.3	Semantische Sicherheit
	4.4	Chosen-Plaintext-Sicherheit
	4.5	Chosen-Ciphertext-Sicherheit
	4.6	Übungen
5	Der I	DES-Algorithmus
	5.1	Feistel-Chiffren
	5.2	Der DES-Algorithmus
		5.2.1 Klartext- und Schlüsselraum
		5.2.2 Die initiale Permutation
		5.2.3 Die interne Blockchiffre
		5.2.4 Die S-Boxen
		5.2.5 Die Rundenschlüssel
		5.2.6 Entschlüsselung
	5.3	Ein Beispiel für DES

XXII Inhaltsverzeichnis

	5.4	Sicherheit des DES
	5.5	Übungen
6		AES-Algorithmus
	6.1	Bezeichnungen
	6.2	Cipher
		6.2.1 Identifikation der Bytes mit Elementen von $GF(2^8)$ 147
		6.2.2 SubBytes
		6.2.3 ShiftRows
		6.2.4 MixColumns
		6.2.5 AddRoundKey
	6.3	KeyExpansion
	6.4	Ein Beispiel
	6.5	InvCipher 152
	6.6	Übungen
7	Prin	nzahlerzeugung
	7.1	Probedivision
	7.2	Der Fermat-Test
	7.3	Carmichael-Zahlen
	7.4	Der Miller-Rabin-Test
	7.5	Zufällige Wahl von Primzahlen
	7.6	Übungen
8	Publ	ic-Key Verschlüsselung
•	8.1	Idee
	8.2	Definition
		8.2.1 Sicherheit
	8.3	Das RSA-Verfahren
		8.3.1 Schlüsselerzeugung
		8.3.2 Verschlüsselung
		8.3.3 Entschlüsselung
		8.3.4 Sicherheit des privaten Schlüssels 172
		8.3.5 Auswahl von <i>p</i> und <i>q</i>
		8.3.6 Auswahl von <i>e</i>
		8.3.7 Auswahl von <i>d</i>
		8.3.8 Performanz
		8.3.9 Multiplikativität
		8.3.10 Sichere Verwendung
		8.3.11 Verallgemeinerung
	8.4	Das Rabin-Verschlüsselungsverfahren
		8.4.1 Schlüsselerzeugung
		8.4.2 Verschlüsselung

Inhaltsverzeichnis XXIII

		8.4.3	Entschlüsselung
		8.4.4	Effizienz
		8.4.5	Sicherheit
		8.4.6	Ein Chosen-Ciphertext-Angriff
		8.4.7	Sichere Verwendung
	8.5	Sicherhe	eitsmodelle
		8.5.1	Chosen-Plaintext-Sicherheit
		8.5.2	Chosen-Ciphertext-Sicherheit
		8.5.3	Sicherheitsbeweise
	8.6	Diffie-H	ellman-Schlüsselaustausch
		8.6.1	Diskrete Logarithmen
		8.6.2	Schlüsselaustausch
		8.6.3	Das Diffie-Hellman-Problem
		8.6.4	Auswahl von <i>p</i>
		8.6.5	Man-In-The-Middle-Angriff
		8.6.6	Andere Gruppen
	8.7	Das ElG	amal-Verschlüsselungsverfahren
		8.7.1	Schlüsselerzeugung
		8.7.2	Verschlüsselung
		8.7.3	Entschlüsselung
		8.7.4	Effizienz
		8.7.5	ElGamal und Diffie-Hellman
		8.7.6	Parameterwahl
		8.7.7	Chosen-Plaintext-Sicherheit
		8.7.8	Chosen-Ciphertext-Sicherheit
		8.7.9	Homomorphie
		8.7.10	Verallgemeinerung
	8.8	Übungeı	1
9	Fakt	orisierung	205
	9.1		vison
	9.2		1-Methode
	9.3		dratische Sieb
	7.5		Das Prinzip
			Bestimmung von x und y
			Auswahl geeigneter Kongruenzen
			Das Sieb
	9.4		des Quadratischen Siebs
	9.5	•	z anderer Faktorisierungsverfahren
	9.6		1
	٧.0	Counge	

XXIV Inhaltsverzeichnis

10	Diskr	rete Logarithmen			
	10.1	Das DL-Problem			
	10.2	Enumeration			
	10.3	Shanks Babystep-Giantstep-Algorithmus			
	10.4	Der Pollard-ρ-Algorithmus			
	10.5	Der Pohlig-Hellman-Algorithmus			
		10.5.1 Reduktion auf Primzahlpotenzordnung			
		10.5.2 Reduktion auf Primzahlordnung			
		10.5.3 Gesamtalgorithmus und Analyse			
	10.6	Index-Calculus			
		10.6.1 Idee			
		10.6.2 Diskrete Logarithmen der Faktorbasiselemente			
		10.6.3 Individuelle Logarithmen			
		10.6.4 Analyse			
	10.7	Andere Algorithmen			
	10.8	Verallgemeinerung des Index-Calculus-Verfahrens			
	10.9	Übungen			
11	Hash	ashfunktionen und MACS			
	11.1	Hashfunktionen und Kompressionsfunktionen			
	11.2	Geburtstagsangriff			
	11.3	Kompressionsfunktionen aus Verschlüsselungsfunktionen 237			
	11.4	Hashfunktionen aus Kompressionsfunktionen			
	11.5	SHA-3			
	11.6	Eine arithmetische Kompressionsfunktion			
	11.7	Message Authentication Codes			
	11.8	Übungen			
12	Digita	ale Signaturen			
	12.1	Idee			
	12.2	Definition			
	12.3	Das Lamport-Diffie-Einmal-Signaturverfahren			
		12.3.1 Schlüsselerzeugung			
		12.3.2 Signatur			
		12.3.3 Verifikation			
	12.4	Sicherheit			
		12.4.1 Angriffsziele			
		12.4.2 Angriffstypen			
	12.5	RSA-Signaturen			
		12.5.1 Schlüsselerzeugung			
		12.5.2 Signatur			
		12.5.3 Verifikation			

Inhaltsverzeichnis XXV

		12.5.4	Angriffe	53
		12.5.5	Signatur von Nachrichten mit Redundanz 25	54
		12.5.6	Signatur mit Hashwert	55
		12.5.7	Wahl von p und q	56
		12.5.8	Sichere Verwendung	56
	12.6	Signatur	ren aus Public-Key-Verfahren	56
	12.7	ElGama	ıl-Signatur	57
		12.7.1	Schlüsselerzeugung	57
		12.7.2	Signatur	57
		12.7.3	Verifikation	58
		12.7.4	Die Wahl von <i>p</i>	58
		12.7.5	Die Wahl von k	59
		12.7.6	Existentielle Fälschungen	59
		12.7.7	Performanz	50
		12.7.8	Sichere Verwendung	51
		12.7.9	Verallgemeinerung	51
	12.8	Der Dig	rital Signature Algorithm (DSA)	51
		12.8.1	Schlüsselerzeugung	52
		12.8.2	Signatur	52
		12.8.3	Verifikation	53
		12.8.4	Performanz	53
		12.8.5	Sicherheit	53
	12.9	Das Me	rkle-Signaturverfahren	54
		12.9.1	Initialisierung	55
		12.9.2	Schlüsselerzeugung	55
		12.9.3	Signatur	56
		12.9.4	Verifikation	57
		12.9.5	Verbesserungen	58
	12.10	Sicherho	eitsmodelle	59
		12.10.1	Grundlagen	59
		12.10.2	RSA 27	12
		12.10.3	ElGamal	13
		12.10.4	Lamport-Diffie-Einmal-Signatur	13
		12.10.5	Merkle-Verfahren	15
	12.11	Übunge	n	17
13	Ander	re Grupp	pen	19
	13.1	Endlich	e Körper	19
	13.2	Elliptisc	che Kurven	30
		13.2.1	Definition	30
		13.2.2	Gruppenstruktur	31

XXVI Inhaltsverzeichnis

		13.2.3 Kryptographisch sichere Kurven 282
		13.2.4 Vorteile von EC-Kryptographie
	13.3	Quadratische Formen
	13.4	Übungen
14	Ident	ifikation
	14.1	Anwendungen
	14.2	Passwörter
	14.3	Einmal-Passwörter
	14.4	Challenge-Response-Identifikation
		14.4.1 Verwendung von Public-Key-Kryptographie 287
		14.4.2 Zero-Knowledge-Beweise
	14.5	Übungen
15	Secre	et Sharing
	15.1	Prinzip
	15.2	Das Shamir-Secret-Sharing-Protokoll
		15.2.1 Initialisierung
		15.2.2 Verteilung der Geheimnisteile
		15.2.3 Rekonstruktion des Geheimnisses 295
		15.2.4 Sicherheit
	15.3	Übungen
16	Publi	c-Key-Infrastrukturen
	16.1	Persönliche Sicherheitsumgebung
		16.1.1 Bedeutung
		16.1.2 Implementierung
		16.1.3 Darstellungsproblem
	16.2	Zertifizierungsstellen
		16.2.1 Registrierung
		16.2.2 Schlüsselerzeugung
		16.2.3 Zertifizierung
		16.2.4 Archivierung
		16.2.5 Personalisierung der PSE
		16.2.6 Verzeichnisdienst
		16.2.7 Schlüssel-Update
		16.2.8 Widerruf von Zertifikaten
		16.2.9 Zugriff auf ungültige Schlüssel
	16.3	Zertifikatsketten
17	Lösu	ngen der Übungsaufgaben
Litei	ratur .	
Sach	verzeic	hnis 325