Регрессионные модели с переменными взаимодействия

9 апреля 2021

Как связаны переменные?

Следует различать:

- медиацию (mediation)
- модерацию (moderation: regression models with interaction terms)

Медиация: анализ опосредованного эффекта

Модерация: переменные взаимодействия

Спецификация модели:

 $y_i = b_0 + b_1 x_i + b_2 z_i + b_3 x_i z_i + \varepsilon_i$, где

 x_i – непрерывная переменная

 z_i — дамми-переменная (принимает значения либо 1, либо 0)

Спецификация модели:

 $y_i = b_0 + b_1 x_i + b_2 z_i + b_3 x_i z_i + \varepsilon_i$, где

 x_i – непрерывная переменная

 z_i — дамми-переменная (принимает значения либо 1, либо 0)

При разделении на подвыборки:

Спецификация модели:

$$y_i = b_0 + b_1 x_i + b_2 z_i + b_3 x_i z_i + \varepsilon_i$$
, где

 x_i — непрерывная переменная

 z_i – дамми-переменная (принимает значения либо 1, либо 0)

При разделении на подвыборки:

$$z_i = 0: y_i = b_0 + b_1 x_i + \varepsilon_i$$

Спецификация модели:

$$y_i = b_0 + b_1 x_i + b_2 z_i + b_3 x_i z_i + \varepsilon_i$$
, где

 x_i – непрерывная переменная

 z_i – дамми-переменная (принимает значения либо 1, либо 0)

При разделении на подвыборки:

- $z_i = 0$: $y_i = b_0 + b_1 x_i + \varepsilon_i$
- $z_i = 1$: $y_i = (b_0 + b_2) + (b_1 + b_3)x_i + \varepsilon_i$

Спецификация модели:

$$y_i = b_0 + b_1 x_i + b_2 z_i + b_3 x_i z_i + \varepsilon_i$$
, где

 x_i – непрерывная переменная

 z_i – дамми-переменная (принимает значения либо 1, либо 0)

При разделении на подвыборки:

- $z_i = 0$: $y_i = b_0 + b_1 x_i + \varepsilon_i$
- $z_i = 1$: $y_i = (b_0 + b_2) + (b_1 + b_3)x_i + \varepsilon_i$

Для интерпретации: предельный эффект

$$\frac{\partial y_i}{\partial x_i} =$$

Спецификация модели:

$$y_i = b_0 + b_1 x_i + b_2 z_i + b_3 x_i z_i + \varepsilon_i$$
, где

 x_i – непрерывная переменная

 z_i – дамми-переменная (принимает значения либо 1, либо 0)

При разделении на подвыборки:

- $z_i = 0$: $y_i = b_0 + b_1 x_i + \varepsilon_i$
- $z_i = 1$: $y_i = (b_0 + b_2) + (b_1 + b_3)x_i + \varepsilon_i$

Для интерпретации: предельный эффект

$$\frac{\partial y_i}{\partial x_i} = \hat{b_1} + \hat{b_3} z_i$$

Интерпретация оценок коэффициентов

Дамми-переменная как модератор:

 b_0 — среднее значение зависимой переменной при условии того, что все предикторы в модели равны 0.

 b_1 – при увеличении x_i на 1 в среднем зависимая переменная увеличивается на b_1 при условии, что $z_i=0$.

 b_2 – при переходе z_i от 0 к 1 в среднем зависимая переменная увеличивается на b_2 при условии, что $x_i=0$.

 b_3 — при переходе z_i от 0 к 1 в среднем взаимосвязь зависимой переменной и x_i увеличивается на b_3