

Estructuras de Datos

Grafos

- Los grafos son una estructura de datos que representa relaciones entre entidades
 - Los *Vértices* representan entidades
 - Los Enlaces representan alguna clase de relación

Ejemplo

• El grafo de la diapositiva anterior podría ser usando para modelar las carreteras entre ciudades:

Adyacencia

- Dos vértices son *adyacentes* uno al otro si están conectados por un enlace simple
- Por ejemplo:
 - I y G son adyacentes
 - A y C son adyacentes
 - I y F no son adyacentes
- Dos nodos adyacentes son considerados vecinos

Camino

• Un camino es una secuencia de enlaces

- Los caminos en este grafo incluyen a:
 - BAEJ, CAFG, HGFEJDCAB, HIJDCBAFE, etc.

Grafos Conectados

• Un grafo está conectado si hay al menos un camino de cada vértice a cada otro vértice

Grafo No conectado

• Un grafo no conectado consiste de varias componentes conectadas:

- Componentes conectados de este grafo son:
 - AB, y CD
- Trabajaremos con grafos conectados

Grafo Dirigido

- Un grafo donde los enlaces tienen direcciones
 - Por lo general, están designados por una flecha

- Un grafo donde cada enlace tiene un peso, el cual cuantifica la relación
 - Por ejemplo, puede asignar distancias entre las ciudades
 - O los costos de las aerolíneas
- Estos grafos pueden ser dirigidos o no dirigidos

Vértices: Implementación Java

- Representar un vértice como una clase Java con:
 - Un String
 - Un atributo booleano para comprobar si se ha visitado
- Para especificar los enlaces
 - hacer esto con una *matriz* de adyacencia o una *lista* de adyacencia.

Matriz de Adyacencia

- Una matriz de adyacencia de un grafo con n nodos, es de tamaño n x n
 - La posición (i, j) contiene un 1 si hay un enlace de conexión del nodo i al nodo j
 - cero en caso contrario
- Por ejemplo, aquí está un grafo y su matriz de

	A	В	С	D
A	0	1	1	1
В	1	0	0	1
C	1	0	0	0
D	1	1	0	0

¿Redundancia?

• Esto puede parecer un poco redundante:

	A	В	С	D
A	0	1	1	1
В	1	0	0	1
C	1	0	0	0
D	1	1	0	0

- ¿Por qué almacenar dos piezas de información para el mismo enlace?
 - es decir, (A, B) y (B, A)
- Desafortunadamente, no hay una manera fácil de evitar esto
 - Debido a que los enlaces no tienen una dirección
 - No hay concepto de "padres" e "hijos"

Lista de Adyacencia

- Una serie de listas enlazadas
 - Indexado por vértice, y proporciona una lista enlazada de los vecinos
- Este es el mismo gráfico, con su lista de adyacencia:

	Vertice	Lista que contiene Vertices Adyacentes
,	A	B>D
	В	A>D
	C	A
	D	A>B

Aplicación: Búsquedas

- Es una operación fundamental para un grafo:
 - A partir de un vértice en particular
 - Buscar todos los otros vértices que puede ser alcanzados siguiendo los caminos
- Ejemplo de aplicación
 - ¿Cuántas ciudades en la región del Bío-Bío se pueden alcanzar en tren desde Concepción?
- Dos enfoques
 - Búsqueda en Profundidad (DFS)
 - Búsqueda en Amplitud (BFS)

Búsqueda en Profundidad (DFS)

- Idea
 - Elija un punto de partida
 - Siga un camino hacia los vértices no visitados, siempre que sea posible hasta llegar a un camino sin salida
 - Al llegar a un camino sin salida, vuelva al punto anterior y siga con los vértices no visitados
 - Deténgase cuando cada camino sea sin salida

Búsqueda en Profundidad(DFS)

- Algoritmo
 - Escoja un vértice (llámelo A) como su punto de partida
 - Visite este vértice, y:
 - Empújelo (Push) en una pila de vértices visitados
 - Márquelo como visitado (para evitar que lo visitemos nuevamente después)
 - Visite cualquier vecino de A que no haya sido visitado
 - Repita el proceso
 - Cuando A no tenga más vecinos no visitados
 - Sáquelo (Pop) de la pila
 - Termine cuando la pila este vacía
- Nota: Llegamos tan lejos desde el punto de partida hasta llegar a un camino sin salida, y luego pop (se puede aplicar a laberintos)

Ejemplo

- Parta en A, y ejecute una búsqueda en profundidad en este grafo y muestre en cada paso el contenido de la pila
 - En cada paso, tenemos que hacer una visita o un pop

Búsqueda en Profundidad: Complejidad

- Sea |V| el número de vértices en un grafo
- Y sea |E| el número de enlaces
- En el peor caso, visitamos cada vértice y cada enlace:
 - Tiempo O(|V| + |E|)
- En una primera mirada, esto no luce mal
 - Pero recuerde que los grafos tienen ¡muchos enlaces!
 - Peor caso, cada vértice está conectado el resto:
 - $(n-1) + (n-2) + ... + 1 = O(n^2)$
 - Se torna muy caro si el grafo tiene muchos enlaces

Búsqueda en Amplitud (BFS)

- La misma aplicación que DFS; queremos encontrar todos los vértices que podamos conseguir a partir de un punto de partida, llamado A
- Sin embargo esta vez, en vez de ir tan lejos como sea posible hasta que nos encontramos con un camino sin salida, como es DFS
 - Visitaremos primero todos los vértices más cercanos
 - Una vez que hemos visitados todos los vértices más cercanos, nos alejaremos por un enlace a un vecino

Búsqueda en Amplitud (BFS)

- ¡Vamos a usar una cola en vez de un a pila!
- Algoritmo
 - Parta en un vértice, llámelo current
 - Si hay un vértice no visitado, márquelo, y insértelo en la cola
 - Si no hay:
 - Si la cola esta vacía, hemos terminado, sino:
 - Remueva un vértice de la cola y asigne a current ese vértice y repita el proceso

Ejemplo

- Parta en A, y ejecute búsqueda por amplitud en este grafo, y muestre el contenido de la cola en cada paso
 - En cada paso, haremos una visita o una eliminación

Búsqueda en Amplitud: Complejidad

- Sea |V| el número de vértices del grafo
- Y sea |E| el número de enlaces
- En el peor caso, visitaremos cada vértice y cada enlace:
 - Tiempo O(|V| + |E|)
 - Igual que DFS
- Nuevamente, si el grafo tiene muchos enlaces, nos acercaremos a un tiempo de ejecución cuadrático, que es el peor caso

Arboles de Expansión Minima¹ (MSTs)

- El comentario sobre si un grafo posee un gran número de vértices hace que nuestros valiosos algoritmos de búsqueda se retrasen:
- Sería bueno tener un grafo y reducir el número de enlaces al número mínimo requerido para abarcar todos los vértices:

¿Cual es el número de enlaces ahora?

23

¹Minimum Spanning Trees

Ya lo hemos hecho...

24

 Realmente, si ejecutamos DFS ya hemos computado el MST!

- Piense sobre esto: siga un mismo camino el mayor tiempo posible, y luego regresas (backtrack) (visite cada nodo a lo más una vez)
 - Tendrás que guardar los enlaces a medida que avances

Grafos Dirigidos

• Un grafo dirigido es un grafo donde los enlaces tienen direcciones, identificadas por flechas:

• Esto simplifica un poco a la matriz de adyacencia...

Matriz de Adyacencia

- La matriz de adyacencia para este grafo no contiene entradas redundantes
 - Porque cada enlace tiene un origen y un destino
 - Entonces la entrada (i, j) es 1 si hay un enlace que va desde i a j
 - 0 en caso contrario

	A	В	C
A	0	1	0
В	0	0	1
C	0	0	0

- Una vez mas, un grafo donde los enlaces tienen pesos, los cuales cuantifican la relación
- Estos grafos pueden ser dirigidos y no dirigidos

- La lista de adyacencia de un grafo ponderando contiene los pesos de los enlaces
 - En vez de 0 y 1
- Si no hay enlaces que conecten los vértices i y j, se usa un peso INFINITO (¡no 0!)
 - Porque '0' también puede ser un peso
 - También la mayoría de las aplicaciones de grafos ponderados son para encontrar árboles de mínima amplitud o el camino más corto
 - Recuerde también que si un grafo es no dirigido, la información redundante debe ser almacenada

	A	В	C	D	E	F
A	INF	INF	INF	INF	0.1	0.9
В	0.3	INF	0.3	0.4	INF	INF
C	INF	INF	INF	0.6	0.4	INF
D	INF	INF	INF	INF	1	INF
Е	0.55	INF	INF	INF	INF	0.45
F	INF	INF	INF	1	INF	INF

Algoritmo de Dijkstra

- Dado un grafo ponderado, encuentre el camino más corto (en termino de los pesos de sus enlaces) entre dos vértices del grafo
- Numerosas aplicaciones
 - El ticket de avión más barato entre dos ciudades
 - La distancia de manejo más corta en términos de consumo de litros de gasolina

Algoritmo de Dijkstra

• Deseamos encontrar el camino más corto entre B y F en el siguiente grafo:

- Idea: Mantenga una tabla de los caminos más cortos actuales desde B a todos los otros vértices (y las rutas que toman)
 - Cuando la termine, la tabla tendrá los caminos más cortos desde B a todos los otros vértices

Algoritmo de Dijkstra

• Este es nuestro grafo inicial:

A	С	D	E	F
INF	INF	INF	INF	INF

• Tome todos los enlaces que salen de B,

y ponga sus pesos en la tabla con el vértice fuente

A	С	D	E	F
0.3 (B)	0.3 (B)	0.4 (B)	INF	INF

 Escoja el enlace con el peso más pequeño y márquelo como el camino más corto de B (¿Como sabemos eso?)

A	С	D	E	F
0.3* (B)	0.3 (B)	0.4 (B)	INF	INF

• Ahora escoja uno de los enlaces con mínimo costo

y repita el proceso (explore vértices ady. y marque su peso total)

A	С	D	E	F
0.3* (B)	0.3 (B)	0.4 (B)	INF	INF

- En este caso, veamos A
 - Explore vértices adyacentes
 - Ingrese el peso total desde B a estos vértices
 - Si ese peso es menor que
 - la entrada actual en la tabla
 - Ignore los marcados (*)
- Aquí esta nuestra tabla:

A	С	D	E	F
0.3* (B)	0.3 (B)	0.4 (B)	0.4 (A)	1.2 (A)

- Ahora, A esta marcado y
- Vistamos su vecinos
 - Escoja la menor entrada en la tabla (en este caso C) y repita el proceso

A	С	D	E	F
0.3* (B)	0.3* (B)	0.4 (B)	0.4 (A)	1.2 (A)

- Visite los vecinos de C que no están marcados
 - Inserte su peso total
 - En la tabla, SI es
 - Menor que la entrada
 - actual

• En realidad, nada cambia en la tabla:

A	С	D	Е	F
0.3* (B)	0.3* (B)	0.4 (B)	0.4 (A)	1.2 (A)

- Visitemos D
 - Que solo contiene un enlace a E
 - 0.4+1 = 1.4, el cual
 - es más grande que 0.4

• Nuevamente, nada cambia en la tabla:

A	С	D	Е	F
0.3* (B)	0.3* (B)	0.4* (B)	0.4 (A)	1.2 (A)

- Visitemos E
 - Tiene dos enlaces salientes
 - Uno a A (marcado, ignore)
 - Uno a F, el cual cambia
 - La tabla a
 - 0.4 + 0.45 = 0.85
 - Que es menor que la
 - Entrada actual, 1.2

• La tabla cambia, encontramos un camino más corto a F:

A	С	D	E	F
0.3* (B)	0.3* (B)	0.4* (B)	0.4* (A)	0.85 (E)

- Solo un vértice queda
- Pero ya hemos terminado
 - El camino más corto puede ser
 - obtenido partiendo desde
 - la entrada destino y
 - trabaje hacia atrás
 - F <- E <- A <- B

- El camino más corto desde B a F es: B -> A -> E -> F
 - Peso total: 0.85

A	С	D	E	F
0.3* (B)	0.3* (B)	0.4* (B)	0.4* (A)	0.85* (E)

Ejemplo Propuesto

• Veamos este ejemplo:

