Design, Development, and Deployment of ISO 23247 Standardized Digital Twin on Machines

MASTERS THESIS PROJECT

Presented By: Ashutosh Pathak

Guided By: Dr. Makarand S Kulkarni

OUTLINE

ISO 23247 Reference Architecture

Literature Review

Azure Digital Twin

- It serves as the cloud solution for IoT devices and querying on the platform can be performed using SQL
- It provides a real-time execution environment and twin graph functionality for visualization

AWS IoT Twin Maker

- AWS IoT service enables the creation of operational digital twin models for both physical and digital systems
- These models are then connected to the corresponding devices using IoT technology, enabling the collection of data for analysis, visualization, and the implementation of various functionalities

Siemens Digital Twins

- **Simcenter:** Simcenter provides advanced simulation capabilities, such as finite element analysis (FEA), computational fluid dynamics (CFD), and multi-body dynamics (MBD)
- **Mindsphere:** Mindsphere is Siemens' cloud-based IoT platform that integrates with digital twins. It collects real-time data from physical assets and systems, which is then used to update and enhance the digital twin models
- **Tecnomatix:** It focuses on digital manufacturing, production planning, and optimization

Digital Twin 1.0

Digital Twin 2.0

Platform Overview

Twin Registration

Twin Connection

Digital Twin 2.0

Flow of Querying Services

Objectives

Establishing concept for ISO 23247 standardized Digital Twin based on earlier versions of Twin

Establishing an Architecture for physical installation of standardized Digital Twin

Developing a user interface for the initialization of the Server and other Agents to facilitate the deployment of the Twin

Establishing framework for development, installation, initialization and deletion of downloadable custom function through User Interface

Developing Application and Service Sub-system Entity with active and passive functions for Machine and Tool Condition monitoring, report generation and alarm generation

Minimum Viable Digital Twin

Digital Twin Standard Modules

- Asset Description
- Monitoring
- Communication
- Visualization
- DT Management

Digital Twin Role

- Respond
- Display
- Alarms
- Recommendations

Architecture

Platform(User Interface)

Digital Dashboard Querying Service Platform Services Analytics Services Notifier Service

LEARN AND ACT

Client Server Interaction Protocol(HTTP) using FIPA-ACL Communication and **DJANGO Channels**

Digital Twin Core Entity

Machine Twin Agent (Asset Description, Digital Modelling of data, Presentation, Synchronization) Operation & Management Agent (Inventory Management, Order Status, Maintenance Details) Application and Service Agent (Condition Monitoring, Report generation, Alarms and Recommendations)

MODEL

Client Server Interaction Protocol(HTTP) using FIPA-ACL Communication

Data Collection and Device Control Entity (Data Collect Only) HMI2

COLLECT

HMI1

HMI3 HMI4

OPC-UA, HTTP(Ethernet)

Observable Manufacturing Elements (OMEs)

Machine 1

Machine 2

Machine 3

Machine 4

OBSERVE

Digital Twin 3.0 Schematic

Custom Downloadable Functions

Active Function Architecture

Machine and Tool Condition Monitoring

Random Forest ML model deployed in function which has been pretrained on experimental data Tool Worn Real time **Tool Condition** sensor and Binary Machine Monitoring Classification Data Tool UnWorn From Twin Agent Display on Web Platform based on Request Machine Condition

Extract

Extract Vibration and Temperature Data from Machine Communication Folder of Twin Agent Transform

Monitoring

- Develop a statistical hypothesis for amplitude of vibrations for recent data and historical data with two sample t-test
- Split Data between most recent 20 percent and 80 percent
- Update the p-value of t-statistic and temperature in function database

Display machine condition report on Web based Platform on request through passive function

Load

Passive Function Architecture

Passive Functions

Machine Report Tool Report

Passive Functions

Machine Based Alarms

Tool Based Alarms

User Interface

User Interface

Schematic for Establishing Connection

Process Flow

Conclusion

Digital Twin Roles:

- Digital twin developed respond to the query generated from user interface
- Digital twin displays the data collected on a digital dashboard on platform graphically
- We have integrated alarms also in our twin
- Twin also shows recommendations

Conclusion

Digital Twin Modules:

- Asset Description in our digital twin has been incorporated as we display twin data which describes twin id, name, machine limits, etc.
- Digital Twin 3.0 also supports real time monitoring as data collected is displayed on platform simultaneously
- FIPA-ACL based communication protocols has been utilized which enables interaction and transfer of data
- Data collected in digital twin is presented in a graphical and dynamic boxes
- Digital Twin management is also incorporated by providing install and delete functionalities in UI

References:

- ISO 23247, Digital Twin Framework for Manufacturing
- Dazhong Wu et al., A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests, Journal of Manufacturing Science and Engineering, JULY 2017, Vol. 139 / 071018-1
- Rui Zhao et al., Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks, MDPI, Sensors 2017, 17, 273; doi:10.3390/s17020273
- BAOTONG CHEN1 et al., Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges, SPECIAL SECTION ON KEY TECHNOLOGIES FOR SMART FACTORY OF INDUSTRY 4.0 IEEE Access
- Sungho Park et al., Prediction of the CNC Tool Wear Using the Machine Learning Technique, International Conference on Computational Science and Computational Intelligence (CSCI), IEEE
- Greg Cline, Industry 4.0 and Industrial IoT in Manufacturing: A Sneak Peek, Aberdeen Group

