Homework 3

Benjamin Noland

Note: I discussed some of these problems with Joseph Purtill and Don Walpola (both 654 students), but my write-up is my own work.

Problems from the book

Exercise 1.13

Let $x, y, z \in \mathcal{X}$.

- Reflexivity: Since $x = x, x \leftrightarrow x$ trivially.
- Symmetry: Suppose $x \leftrightarrow y$. If x = y, then $y \leftrightarrow x$ by reflexivity. If $x \to y$ and $y \to x$, then we see immediately that $y \leftrightarrow x$ as well.
- Transitivity: Suppose $x \leftrightarrow y$ and $y \leftrightarrow z$. If x = y or y = z, then $x \leftrightarrow z$ trivially. If $x \to y$ and $y \to x$, and $y \to z$ and $z \to y$, then we see that $x \to z$ and $z \to x$ by transitivity of \to . Hence $x \leftrightarrow z$.

Therefore \leftrightarrow is an equivalence relation on \mathcal{X} .

Exercise 1.14

Let P denote the transition matrix of the chain. Let C_1, \ldots, C_k denote the essential communicating classes of the chain, and let S be the set of stationary distributions for the chain. First, note that S is closed under convex combinations. To see this, let $\alpha_1, \ldots, \alpha_n$ be non-negative real numbers with $\alpha_1 + \cdots + \alpha_n = 1$, and let $\pi_1, \ldots, \pi_n \in S$. Then

$$\sum_{x \in \mathcal{X}} \sum_{i=1}^{n} \alpha_i \pi_i(x) = \sum_{i=1}^{n} \alpha_i \sum_{x \in \mathcal{X}} \pi_i(x) = \sum_{i=1}^{n} \alpha_i = 1$$

and

$$\sum_{x \in \mathcal{X}} \sum_{i=1}^{n} \alpha_i \pi_i(x) \ge 0 \quad \text{for any } x \in \mathcal{X},$$

and finally,

$$\sum_{i=1}^{n} \alpha_i(\pi_i P) = \sum_{i=1}^{n} \alpha_i \pi_i.$$

Hence $\sum_{i=1}^{n} \alpha_i \pi_i \in S$. Let $\pi_{C_i}, \ldots, \pi_{C_k}$ be the unique stationary distributions corresponding to C_1, \ldots, C_k (they exist and are unique since the restriction P_{C_i} is irreducible for any $1 \leq i \leq k$). For each $1 \leq i \leq k$, define

$$\pi'_{C_i}(x) = \begin{cases} \pi_{C_i}(x) & \text{if } x \in C_i \\ 0 & \text{if } x \notin C_i \end{cases} \text{ for each } x \in \mathcal{X}.$$
 (1)

Then it follows that π'_{C_i} is stationary for P for each $1 \leq i \leq k$, and hence $\pi'_{C_i} \in S$. Let S' denote the set of convex combinations of $\pi'_{C_1}, \ldots, \pi'_{C_k}$. Then $S' \subseteq S$ by the comments above. Moreover, note that since C_1, \ldots, C_k are disjoint, the definition (1) implies that $\pi'_{C_1}, \ldots, \pi'_{C_k}$ are linearly independent. Thus S' is a polytope whose vertices are $\pi'_{C_1}, \ldots, \pi'_{C_k}$.

To see that $S \subseteq S'$ as well, let $\pi \in S$. Let $1 \le i \le k$. Define

$$\pi_{C_i}''(x) = \begin{cases} \frac{\pi(x)}{k_i} & \text{if } x \in C_i \\ 0 & \text{if } x \notin C_i \end{cases} \text{ for each } x \in \mathcal{X},$$

where $k_i = \sum_{y \in C_i} \pi(y)$. Thus $\sum_{y \in \mathcal{X}} \pi''_{C_i}(x) = 1$, so that π''_{C_i} is a valid probability distribution. Moreover, since π is stationary for P it follows that π''_{C_i} is also stationary for P, and since the stationary for C_i is unique, it follows that $\pi''_{C_i} = \pi'_{C_i}$. Thus, for any $x \in \mathcal{X}$,

$$\pi(x) = \sum_{i=1}^{k} k_i \pi'_{C_i}(x),$$

and hence $\pi(x) = \sum_{i=1}^k k_i \pi'_{C_i}$. But also,

$$1 = \sum_{x \in \mathcal{X}} \pi(x) = \sum_{x \in \mathcal{X}} \sum_{i=1}^{k} k_i \pi'_{C_i}(x) = \sum_{i=1}^{k} k_i \sum_{x \in \mathcal{X}} \pi'_{C_i}(x) = \sum_{i=1}^{k} k_i.$$

Thus π is a convex combination of $\pi'_{C_1}, \ldots, \pi'_{C_k}$. Hence $\pi \in S'$, so that S = S'.

The Strong Markov Property

Exercise 1

$$I\{\tau < \infty\} = I\left\{\bigcup_{t=0}^{\infty} \{\tau = t\}\right\} = \sum_{t=0}^{\infty} I\{\tau = t\}$$

By exercise 1 and the Dominated Convergence Theorem,

$$E_{x}[I\{\tau < \infty\}f(X_{\tau}, \dots, X_{\tau+m})] = E_{x} \left[\sum_{t=0}^{\infty} I\{\tau = t\}f(X_{\tau}, \dots, X_{\tau+m}) \right] \\
= \sum_{t=0}^{\infty} E_{x}[I\{\tau = t\}f(X_{\tau}, \dots, X_{\tau+m})] \\
= \sum_{t=0}^{\infty} E_{x}\{E_{x}[f(X_{\tau}, \dots, X_{\tau+m})|\tau = t]I\{\tau = t\}\} \\
= \sum_{t=0}^{\infty} E_{x}\{E_{X_{\tau}}[f(X_{0}, \dots, X_{m})]I\{\tau = t\}\} \\
= E_{x} \left\{ \sum_{t=0}^{\infty} E_{X_{\tau}}[f(X_{0}, \dots, X_{m})]I\{\tau = t\} \right\} \\
= E_{x}[I\{\tau < \infty\}F(X_{\tau})].$$

Note that the Dominated Convergence Theorem justified switching sums and expectations in the above. As an example, note that if for each $n \ge 1$ we set

$$Y_n = \sum_{t=0}^n I\{\tau = t\} f(X_{\tau}, \dots, X_{\tau+m})$$

and

$$Y = \sum_{t=0}^{\infty} I\{\tau = t\} f(X_{\tau}, \dots, X_{\tau+m})$$

and Z=1, then since $E(|Z|)=1<\infty$ trivially, and $P\{|Y_n|\leq |Z|\}=1$, the Dominated Convergence Theorem implies that

$$E_{x} \left[\sum_{t=0}^{\infty} I\{\tau = t\} f(X_{\tau}, \dots, X_{\tau+m}) \right] = E_{x}(Y)$$

$$= \lim_{n \to \infty} E_{x}(Y_{n})$$

$$= \lim_{n \to \infty} E_{x} \left[\sum_{t=0}^{n} I\{\tau = t\} f(X_{\tau}, \dots, X_{\tau+m}) \right]$$

$$= \lim_{n \to \infty} \sum_{t=0}^{n} E_{x} [I\{\tau = t\} f(X_{\tau}, \dots, X_{\tau+m})]$$

$$= \sum_{t=0}^{\infty} E_{x} [I\{\tau = t\} f(X_{\tau}, \dots, X_{\tau+m})].$$

$$E_x[I\{\tau < \infty\}f(X_\tau, \dots, X_{\tau+m})] = E_x[I\{\tau < \infty\}F(X_\tau)]$$

$$= E_x[I\{\tau < \infty\}F(z)]$$

$$= F(z)E_x[I\{\tau < \infty\}]$$

$$= F(z)P_x\{\tau < \infty\}$$

Exercise 4

For any $(x_0, \ldots, x_m) \in \mathcal{X}^{m+1}$,

$$f(x_0, \dots, x_m) = \sum_{(y_0, \dots, y_m) \in \mathcal{X}^{m+1}} I\{x_0 = y_0, \dots, x_m = y_m\} f(y_0, \dots, y_m).$$

(The indicator functions in the sum are maps $\mathcal{X}^{m+1} \to \{0,1\}$). As for the generalization,

$$\begin{aligned} & \mathbf{E}_{x}[I\{\tau < \infty\}f(X_{\tau}, \dots, X_{\tau+m})] \\ &= \sum_{(y_{0}, \dots, y_{m}) \in \mathcal{X}^{m+1}} \mathbf{E}_{x}[I\{\tau < \infty\}I\{X_{\tau} = y_{0}, \dots, X_{\tau+m} = y_{m}\}f(y_{0}, \dots, y_{m})] \\ &= \sum_{(y_{0}, \dots, y_{m}) \in \mathcal{X}^{m+1}} f(y_{0}, \dots, y_{m})\mathbf{E}_{x}[I\{\tau < \infty\}I\{X_{\tau} = y_{0}, \dots, X_{\tau+m} = y_{m}\}] \\ &= \sum_{(y_{0}, \dots, y_{m}) \in \mathcal{X}^{m+1}} f(y_{0}, \dots, y_{m})\mathbf{E}_{x}\{I\{\tau < \infty\}\mathbf{E}_{X_{\tau}}[I\{X_{\tau} = y_{0}, \dots, X_{\tau+m} = y_{m}\}]\} \end{aligned}$$

by way of exercise 2.

(Note that we must have $C_m = \mathcal{X}^{m+1}$ for each $m \geq 0$ in order for this problem to make sense). We have the following:

$$\begin{split} & \mathbb{E}_{x}[g(X_{0},\ldots,X_{\tau})I\{\tau<\infty\}f(X_{\tau},\ldots,X_{\tau+m})] \\ & = \mathbb{E}_{x}\left\{\sum_{t=0}^{\infty}g(X_{0},\ldots,X_{\tau})I\{\tau=t\}f(X_{\tau},\ldots,X_{\tau+m})\right] \\ & = \mathbb{E}_{x}\left\{\mathbb{E}_{x}\left[\sum_{t=0}^{\infty}g(X_{0},\ldots,X_{\tau})I\{\tau=t\}f(X_{\tau},\ldots,X_{\tau+m})|\tau=t\right]I\{\tau=t\}\right\} \\ & = \mathbb{E}_{x}\left\{\mathbb{E}_{x}\left[\sum_{t=0}^{\infty}g(X_{0},\ldots,X_{t})f(X_{\tau},\ldots,X_{\tau+m})\right]I\{\tau=t\}\right\} \\ & = \mathbb{E}_{x}\left\{\mathbb{E}_{x}\left[\sum_{t=0}^{\infty}\sum_{(y_{0},\ldots,y_{t})\in\mathcal{X}^{t+1}}g(y_{0},\ldots,y_{t})I\{X_{0}=y_{0},\ldots,X_{t}=y_{t}\}f(X_{\tau},\ldots,X_{\tau+m})\right]I\{\tau=t\}\right\} \\ & = \sum_{t=0}^{\infty}\mathbb{E}_{x}\left\{\mathbb{E}_{x}\left[\sum_{(y_{0},\ldots,y_{t})\in\mathcal{X}^{t+1}}g(y_{0},\ldots,y_{t})I\{X_{0}=y_{0},\ldots,X_{t}=y_{t}\}f(X_{\tau},\ldots,X_{\tau+m})\right]I\{\tau=t\}\right\} \\ & = \sum_{t=0}^{\infty}\mathbb{E}_{x}\left\{g(X_{0},\ldots,X_{t})\mathbb{E}_{x}[f(X_{\tau},\ldots,X_{\tau+m})]I\{\tau=t\}\right\} \\ & = \sum_{t=0}^{\infty}\mathbb{E}_{x}\left\{g(X_{0},\ldots,X_{t})\mathbb{E}_{x}[f(X_{0},\ldots,X_{\tau+m})]I\{\tau=t\}\right\} \\ & = \sum_{t=0}^{\infty}\mathbb{E}_{x}\left\{g(X_{0},\ldots,X_{t})\mathbb{E}_{X_{\tau}}[f(X_{0},\ldots,X_{m})]I\{\tau=t\}\right\} \\ & = \mathbb{E}_{x}\left\{g(X_{0},\ldots,X_{\tau})\mathbb{E}_{X_{\tau}}[f(X_{0},\ldots,X_{m})]I\{\tau=t\}\right\} \\ & = \mathbb{E}_{x}\left\{g(X_{0},\ldots,X_{\tau})\mathbb{E}_{X_{\tau}}[f(X_{0},\ldots,X_{\tau})]I\{\tau=t\}\right\} \\ & = \mathbb{E}_{x}\left\{$$

Note that since the state space \mathcal{X} is finite, \mathcal{X}^{t+1} is finite for any $t \geq 0$, and so g is bounded in the expression above. Thus the Dominated Convergence Theorem justifies the switching of infinite sums and expectations.

The sequence (Y_t) satisfies the Markov property since for any states y_0, y_1, \ldots, y_t we have

$$P\{Y_t = y_t | Y_{t-1} = y_{t-1}, \dots, Y_0 = y_0\} = P\{X_{t+\tau} = y_t | X_{t-1+\tau} = y_{t-1}, \dots, X_{\tau} = y_0\}$$
$$= P\{X_{t+\tau} = y_t | X_{t-1+\tau} = y_{t-1}\}$$
$$= P\{Y_t = y_t | Y_{t-1} = y_{t-1}\}$$

because the original chain (X_t) satisfies the Markov property. Moreover, for any states x and y,

$$P\{Y_{t+1} = y | Y_t = x\} = P\{X_{t+\tau+1} = y | X_{t+\tau} = x\} = P(x, y).$$

Finally, for any state y, we immediately have $P\{Y_0 = y\} = P_x\{X_\tau = y\}$.

Exercise 7

I will proceed by induction on r. When r=1 the result holds trivially. Now let r>1 and assume that $E_x(\tau_x^r) = rE_x(\tau_x^1)$. We have:

$$\tau_x^{r+1} = \inf\{t > \tau_x^r : X_t = x\} = \inf\{t - \tau_x^r > 0 : X_t = x\} = \inf\{t' > 0 : X_{t' + \tau_x^r} = x\} = \tau_x^1 + \tau_x^r$$

and thus $E_x(\tau_x^{r+1}) = E_x(\tau_x^r) + E_x(\tau_x^1) = (r+1)E_x(\tau_x^1)$ by the inductive hypothesis. So the result follows by induction.

Since the chain is irreducible (we need this assumption to use Lemma 1.13), $E_x(\tau_x^+) < \infty$ by Lemma 1.13, and thus for any r > 0,

$$0 < \mathcal{E}_x(\tau_x^r) = r\mathcal{E}_x(\tau_x^1) = r\mathcal{E}_x(\tau_x^+) < \infty.$$

Thus, by the Markov inequality, for any t > 0,

$$P_x\{\tau_x^r < \infty\}^c = P_x\left\{\bigcap_{s=0}^{\infty} \{\tau_x^r \ge s\}\right\} \le P_x\{\tau_x^r \ge t\} \le \frac{E_x(\tau_x^r)}{t},$$

so that

$$P_x\{\tau_x^r < \infty\}^c \le \lim_{t \to \infty} \frac{E_x(\tau_x^r)}{t} = 0,$$

and hence $P_x\{\tau_x^r < \infty\} = 1$ upon taking the complement.

Let $f, g: \bigcup_{m=0}^{\infty} \to \{0, 1\}$. Then

$$\begin{split} & \mathbf{E}_{x}[g(X_{0},\ldots,X_{\tau_{x}^{1}})f(X_{\tau_{x}^{1}},\ldots,X_{\tau_{x}^{r}})] \\ & = \mathbf{P}_{x}\{g(X_{0},\ldots,X_{\tau_{x}^{1}}) = 1, f(X_{\tau_{x}^{1}},\ldots,X_{\tau_{x}^{r}}) = 1\} \\ & = \mathbf{P}_{x}\{f(X_{\tau_{x}^{1}},\ldots,X_{\tau_{x}^{r}}) = 1|g(X_{0},\ldots,X_{\tau_{x}^{1}}) = 1\}\mathbf{P}_{x}\{g(X_{0},\ldots,X_{\tau_{x}^{1}}) = 1\} \\ & = \mathbf{P}_{x}\{f(X_{\tau_{x}^{1}},\ldots,X_{\tau_{x}^{r}}) = 1\}\mathbf{P}_{x}\{g(X_{0},\ldots,X_{\tau_{x}^{1}}) = 1\} \\ & = \mathbf{E}_{x}[g(X_{0},\ldots,X_{\tau_{x}^{1}})]\mathbf{E}_{x}[f(X_{\tau_{x}^{1}},\ldots,X_{\tau_{x}^{r}})] \end{split}$$

by way of the Markov property. In addition,

$$\begin{aligned} \mathbf{E}_{x}[f(X_{\tau_{x}^{1}},\ldots,X_{\tau_{x}^{r}})] &= \mathbf{P}_{x}\{f(X_{\tau_{x}^{1}},\ldots,X_{\tau_{x}^{r}}) = 1\} \\ &= \sum_{t=0}^{\infty} \mathbf{P}_{x}\{f(X_{\tau_{x}^{1}},\ldots,X_{\tau_{x}^{r}}) = 1 | \tau_{x}^{1} = t\} \mathbf{P}_{x}\{\tau_{x}^{1} = t\} \\ &= \sum_{t=0}^{\infty} \mathbf{P}_{x}\{f(X_{0},\ldots,X_{\tau_{x}^{r-1}}) = 1\} \mathbf{P}_{x}\{\tau_{x}^{1} = t\} \\ &= \mathbf{P}_{x}\{f(X_{0},\ldots,X_{\tau_{x}^{r-1}}) = 1\} \mathbf{P}_{x}\{\tau_{x}^{1} < \infty\} \\ &= \mathbf{P}_{x}\{f(X_{0},\ldots,X_{\tau_{x}^{r-1}}) = 1\} = \mathbf{E}_{x}[f(X_{0},\ldots,X_{\tau_{x}^{r-1}})] \end{aligned}$$

due to the fact that $\tau_x^r = \tau_x^{r-1} + \tau_x^1$ for any r > 1, and $P\{\tau_x^1 < \infty\} = 1$. Therefore,

In particular,

$$E_x[g(X_0,\ldots,X_{\tau_x^1})f(X_{\tau_x^1},\ldots,X_{\tau_x^2})] = P_x\{g(X_0,\ldots,X_{\tau_x^1}) = 1, f(X_{\tau_x^1},\ldots,X_{\tau_x^2}) = 1\}$$

$$= P_x\{g(X_0,\ldots,X_{\tau_x^1}) = 1\}P_x\{f(X_{\tau_x^1},\ldots,X_{\tau_x^2}) = 1\},$$

so that the events $\{g(X_0,\ldots,X_{\tau_x^1})=1\}$ and $\{f(X_{\tau_x^1},\ldots,X_{\tau_x^2})=1\}$ are independent.

Exercise 8

Using the fact that $\tau_x^2 = \tau_x^1 + \tau_x^1$, we have for any $y \in \{0, 1\}$,

$$P_x\{h(X_{\tau_x^1},\ldots,X_{\tau_x^2})=y\}=P_x\{h(X_0,\ldots,X_{\tau_x^1})=y\},$$

and so $h(X_{\tau_x^1},\ldots,X_{\tau_x^2})$ and $h(X_0,\ldots,X_{\tau_x^1})$ are identically distributed. Moreover, it follows from exercise 7 that $h(X_{\tau_x^1},\ldots,X_{\tau_x^2})$ and $h(X_0,\ldots,X_{\tau_x^1})$ are independent. This is due to the fact that the events $\{h(X_{\tau_x^1},\ldots,X_{\tau_x^2})=x\}$ and $\{h(X_0,\ldots,X_{\tau_x^1})=y\}$ for any choice of $x,y\in\{0,1\}$ by the final result of exercise 7.

On Proposition 1.14(i)

Exercise 1

Generalization: Fix a state $z \in \mathcal{X}$, and define a function $\tilde{\pi}$ by

$$\tilde{\pi} = \sum_{t=0}^{\infty} P_z \{ X_t = y, \tau > t \}.$$

If $P_z\{\tau < \infty, X_\tau = z\} = 1$, then $\tilde{\pi}$ is stationary for the transition matrix P.

Proof: Since $P_z\{\tau < \infty, X_\tau = z\} = 1$, we have $P_z\{\tau = \tau_z^r\} = 1$ for some r > 0. Hence, by exercise 7 of the Strong Markov Property problem, $E_z(\tau) < \infty$, and hence

$$\infty > E_z(\tau) = E_z(\tau_z^r) = \sum_{t=0}^{\infty} P_z\{\tau > t\} \ge \sum_{t=0}^{\infty} P_z\{X_t = y, \tau > t\} = \tilde{\pi}(y) \ge 0,$$

so that $\tilde{\pi}(y)$ is finite for every $y \in \mathcal{X}$. To see that $\tilde{\pi}$ is stationary, let $y \in \mathcal{X}$. Then

$$\sum_{x \in \mathcal{X}} \tilde{\pi}(x) P(x, y) = \sum_{x \in \mathcal{X}} \sum_{t=0}^{\infty} P_z \{ X_t = y, \tau > t \} P(x, y). \tag{1}$$

Note that for any $x \in \mathcal{X}$,

$$P_z\{X_t = x, X_{t+1} = y, \tau \ge t+1\} = P_z\{X_t = x, \tau \ge t+1\} P\{X_{t+1} = y | X_t = x, \tau \ge t+1\}$$
$$= P_z\{X_t = x, \tau \ge t+1\} P(x, y),$$

since the Markov property implies that

$$P(x,y) = P\{X_{t+1} = y | X_t = x\} = P\{X_{t+1} = y | X_t = x, \tau \ge t+1\}$$

because the event $\{\tau \geq t+1\}$ depends solely upon X_0, \ldots, X_t . Therefore (1) becomes

$$\sum_{x \in \mathcal{X}} \tilde{\pi}(x) P(x, y) = \sum_{x \in \mathcal{X}} \sum_{t=0}^{\infty} P_z \{ X_t = y, \tau > t \} P(x, y)$$

$$= \sum_{x \in \mathcal{X}} \sum_{t=0}^{\infty} P_z \{ X_t = x, X_{t+1} = y, \tau \ge t + 1 \}$$

$$= \sum_{t=0}^{\infty} \sum_{x \in \mathcal{X}} P_z \{ X_t = x, X_{t+1} = y, \tau \ge t + 1 \}$$

$$= \sum_{t=0}^{\infty} P_z \{ X_{t+1} = y, \tau \ge t + 1 \}$$

$$= \sum_{t=1}^{\infty} P_z \{ X_t = y, \tau \ge t \}$$

$$= \tilde{\pi}(y) - P_z \{ X_0 = y, \tau > 0 \} + \sum_{t=1}^{\infty} P_z \{ X_t = y, \tau = t \}$$

$$= \tilde{\pi}(y) - P_z \{ X_0 = y, \tau > 0 \} + P_z \{ X_\tau = y \} - P_z \{ X_\tau = y, \tau = 0 \}$$

If y = z, then $P_z\{X_\tau = y\} = 1$, and since the events $\{X_0 = y, \tau > 0\}$ and $\{X_\tau = y, \tau = 0\}$ are disjoint, it follows that $P_z\{X_0 = y, \tau > 0\} = 1$ and $P_z\{X_\tau = y, \tau = 0\} = 0$, or $P_z\{X_0 = y, \tau > 0\} = 0$ and $P_z\{X_\tau = y, \tau = 0\} = 1$. Thus in this case

$$\sum_{x \in \mathcal{X}} \tilde{\pi}(x) P(x, y) = \tilde{\pi}(y).$$

In addition, if $y \neq z$, then $P_z\{X_0 = y, \tau > 0\} = P_z\{X_\tau = y\} = P_z\{X_\tau = y, \tau = 0\} = 0$, and we get the same result. Therefore $\tilde{\pi}$ is stationary for P.

Exercise 2

For any $t \geq 0$, define a map $p_t : \mathcal{X}^{t+1} \to \{0,1\}$ such that for any $(x_0,\ldots,x_t) \in \mathcal{X}^{t+1}$,

- $p_t(x_0, \ldots, x_t) = 1$ if $x_t = z$, $\mathcal{X} \subseteq \{x_1, \ldots, x_t\}$, and for every $0 \le t' < t$, $x_{t'} \ne z$ or $\mathcal{X} \nsubseteq \{x_1, \ldots, x_{t'}\}$;
- $p_t(x_0, \ldots, x_t) = 0$ otherwise.

Then the event $\{\tau = t\} = \{p_t(x_0, \dots, x_t) = 1\}$, so that τ is a stopping time.

Note that since the chain is irreducible, it is possible to order the states $x_0, \ldots, x_n \in \mathcal{X}$ of the chain to yield a path $z = x_0 \to x_1 \to x_2 \to \cdots \to x_n \to x_0 = z$ that passes through every state in the chain and returns to the starting state z. Thus we can write

$$0 < E_z(\tau) = E_{x_0}(\tau_{x_1}^+) + E_{x_1}(\tau_{x_2}^+) + \dots + E_{x_n}(\tau_{x_0}^+) < \infty$$

by way of Lemma 1.13. Therefore, the Markov inequality implies that for any t > 0,

$$P_z\{\tau < \infty\}^c = P_z\left\{\bigcap_{s=0}^{\infty} \{\tau \ge s\}\right\} \le P_z\{\tau \ge t\} \le \frac{E_z(\tau)}{t},$$

so that

$$P_z\{\tau < \infty\}^c \le \lim_{t \to \infty} \frac{E_z(\tau)}{t} = 0,$$

and therefore $P_z\{\tau < \infty\} = 1$ upon taking the complement. Thus

$$P_z\{\tau < \infty, X_\tau = z\} = P_z\{X_\tau = z\} = 1.$$