产品操作手册

关节型电爪

DH 系列

CAN-2.0 版本

本文档为 DH 系列产品的操作手册,适用机型如下:

适用型号	最大夹持力	全行程
DH-3	65 N	106 mm(平行) 122 mm(对心)

Tel/Fax: 0755-82734836

修订履历

日期	版本	修改内容
20211011	V1.0	初版, 撰写硬件接线及指令相关说明
20211130	V1. 1	删除与操作无关部分资料,重新排版

目录

1	DH-3	夹爪概述	5
	1.1	指示灯定义	5
2		·	
	2.1	连接方式	6
	2.2	航空插头 Pin 脚定义	7
3	通讯占	ラ控制	8
	3.1	通讯总览	8
	3.2	通讯协议转换器	9
		3.2.1 工作模式选择	.10
		3.2.2 参数配置模式	.10
		3.2.3 USB 模式	. 11
		3.2.4 TCP 客户端模式	11
		3.2.5 TCP 服务器端模式	. 12
		3.2.6 RS485 模式	.13
		3.2.7 RS485 Modbus-RTU 模式	. 14
		3.2.8 CAN2.0A 模式	. 16
		3.2.9 升级模式	.17
	3.3	调试软件的安装与使用	18
		3.3.1 总览	.18
		3.3.2 软件安装	.18
		3.3.3 用户界面	.21
		3.3.4 夹爪连接	.22
		3.3.4.1 组成及简介	22
		3.3.4.2 连接模式及端口设置	23
		3.3.4.3 通讯控制及状态显示	24
		3.3.5 夹爪控制	.26
		3.3.6 参数设置区	.27
		3.3.6.1 组成及简介	27
		3.3.7 夹爪设置教程	28
		3.3.7.1 夹爪 ID 设置	. 28
		3.3.7.2 夹爪 CAN 波特率设置	.28
		3.3.7.3 通讯协议转换器参数配置	. 28
	3.4	控制逻辑	.31
		3.4.1 命令报文格式	.31
		3.4.2 命令总览	.32
		3.4.3 命令详解	.33
		3.4.3.1 初始化(Initialization)命令	.33
		3.4.3.2 夹持力/外撑力(Force)命令	. 34
		3.4.3.3 位置 (Position) 命令	. 35
		3.4.3.4 角度(Angle)命令	.35
		3.4.3.5 夹爪夹持状态反馈(Feedback)命令	.36
		3.4.3.6 查询固件版本号(Version)命令	.36

	3.4.3.7 CAN ID 命令	37
	3.4.3.8 CAN 波特率 命令	38
4	1 常见问题解决方法	39
	4.1 夹爪指示灯含义	39
	4.2 常见问题解答	
5	5 维护	41
	5.1 日常清洁	41
	5.2 指尖更换	42
	5.3 定期检查、护理	43

1 DH-3 夹爪概述

大寰机器人 DH-3 电动夹爪拥有两个自适应平行机械关节手指(后指代关节手指),每个关节手指由多个连杆机构和一个弹簧组成。关节手指可以与一个物体进行多达 5 个接触点的接触。关节手指采用欠驱动控制方式驱动,使得电机比关节的总数要少。这种设计简化了抓取的控制方式,使关节手指可以自动适应它们所抓取的物体形状。

力位可控:夹爪可以对夹爪的夹持位置、夹持力值进行编程调节,夹爪运行过程中,运行速度与夹持力有关,夹持力越大,运行速度越快。

多种通讯方式: 夹爪本体采用标准的 **CAN2.0** 通讯协议进行控制。其他如 USB、RS485、Ethernet 等通讯接口可通过标配的协议转换器进行转接。

夹持判断: 夹持过程中采用力控和位控相结合的方式。

夹持反馈: 夹爪的状态可以通过编程进行读取,也可以根据夹爪本体的指示灯进行判断。 **指尖可定制:** 可根据实时情况对指尖的进行替换,适用于精密加工、零件组装等领域。

DH 系列夹爪可与市面上主流的机器人和工控机相连,内置驱动,可在以下场景使用但不限于:

夹爪应用场景

- ✔ 机床上下料;
- ✓ 工件抓取与搬运;
- ✔ 包装抓取;
- ✓ 实验室移液;
- ✔ 新零售行业;
- ✓ 教学科研:
- **√** ...

1.1 指示灯定义

夹爪可对夹爪的状态实时进行反馈。除了可用指令进行读取,也可以在指示灯的颜色上进行判断:

指示灯颜色说明

- 未初始化状态: 红灯闪烁, 其他灯不亮。
- ·初始化完成状态: 蓝灯常亮,表示进入可操作的状态。
- •接收到命令状态:红灯快速闪烁一次(由于此时蓝灯常亮,因此夹爪指示灯会呈现偏紫色的状态)。
 - •夹住物体状态:绿灯常亮,其他灯不亮。
 - •物体掉落状态:绿灯闪烁。

2 电气安装

2.1 连接方式

DH-3 两指自适应夹爪,采用 CAN 总线通讯方式进行通讯,它支持 CAN2. 0A 版本。对于不支持 CAN 总线的环境,我们在产品清单(如表 3.1 所示)提供了通讯协议转换器,用于将其他通讯接口(USB、RS485、Ethernet)转换到 CAN2. 0A,从而支持不同的通讯协议与控制器(PC/PLC/机器人)连接。如果系统本身支持 CAN 总线,您也可以直接将夹爪连接到系统,而不需要使用通讯协议转换器。

夹爪电气连接说明

- 使用我司提供的航插线缆连接夹爪与通讯协议转换器。
- 将电缆弯曲的一端插入夹具端;将电缆的直端插入转换器。
- Ethernet、RS485、USB、IO、CAN 以及电源的接口已经分别在通讯协议转换器侧板上标出,用户可根据需求将相应端口与控制器相连。

您可参照电气连接示意图对夹爪进行通信连接(如图 2.1 所示)

图 2.1 电气连接示意图

我们以 Ethernet 连接为例,对通讯连接转换器进行连接,如图 2.2 所示。

图 2.2 Ethernet 连接说明图

Ethernet 连接说明

- 将电源电缆的黑色线缆连接至电源 0V 电源端。
- · 将电源电缆的红色线缆连接至电源 24V 电源端。
- 将以太网线连接通讯协议转换器与机器人控制器/上位机接口。

2.2 航空插头 Pin 脚定义

CAN2.0A 连接:

航空插头用于 CAN 2.0A,4 Pin(标准配置)连接,其引脚定义如图 2.3 所示,具体引脚文字说明如表 2.1 所示。

图 2.3 CAN2. 0A 引脚定义 表 2.1 CAN2. 0A 引脚文字说明表

针脚编号	功能说明
1	CAN_L
2	GND 电源负极
3	CAN_H
4	24V 电源正极

3 通讯与控制

3.1 通讯总览

夹爪本体标配的通讯接口为CAN总线接口,引脚定义请参照 <u>2.2 航空插头Pin 脚定义</u>,为了拓展夹爪的通讯接口,为其配备了一个通用于夹爪的通讯协议转换器,进而将几种常用通讯接口转换为夹爪本体的CAN总线接口协议。

夹爪的通讯结构如图 3.1 所示(以标准选项 CAN 总线为示例, RS485 操作类似):

图 3.1 夹爪通讯总览图

控制夹爪主要有三种连接方案,如下所示。

夹爪连接方案说明

- 方案①: 夹爪通过航插线与通讯转换器相连,通讯转换器将 TCP/IP, RS485, Modbus, EtherCAT(可选)等协议转换成 CAN 协议与控制器相连。
- 方案②:通讯转换器作为 CAN 协议的中转站,此时夹爪和控制器直接通过 CAN 协议通讯。此时通讯协议转换器只作为连接使用,不起到协议转换作用。
- •方案③: 控制器可通过航插线与夹爪自带的接口连接,采用 RS485 总线标准(可选 4Pin 和 8Pin)/CAN2. 0A。在此模式下可以不经通讯协议转换器直接连接。

夹爪基本通讯逻辑说明

- 成功接收反馈: 为了确认用户的命令是否发送成功,夹爪会在成功接收命令后, 反馈相同的数据。在开发过程中,通过判断发送数据和接收数据是否一致,可以确 定数据传输的正确性。
- •初始化成功自动反馈: 夹爪初始化成功后,是否返回反馈数据可以通过指令进行控制。夹爪出厂时默认初始化成功自动返回反馈数据,即默认初始化成功时自动反馈。
- •初始化命令可被打断:初始化过程中可被初始化命令打断,即初始化过程中再次发送初始化,将打断上一次初始化过程并再次开始新一次的初始化过程。建议用户通过查询初始化成功标志,来避免在正常情况下频繁发送初始化命令。
- •位置命令可被打断: 当发送一个位置移动命令后,在夹爪运动过程中又发送了另一个位置移动命令,那么夹爪将会打断当前位置移动命令,执行新的位置移动命令。 建议用户通过查询位置状态标志,判断夹爪运动结束后再发送新的命令。
- •保证设置的成功性:在设置 CAN ID, CAN 波特率的命令时,由于存在较长的等待时间,不会在接收到命令立即返回,而是在完成设置并写入存储后反馈。您需要在设置后等待反馈 5S 左右,若 5S 后未接收到返回指令,可以检查下接线连接并重新进行设置。
- **命令间隔**: 为保证夹爪运行的安全性,建议命令与命令之间的发送间隔在 50ms 以上。
- **掉落检测**: 夹爪重复性精度高,但是当物体直径小于 5mm 时,不能保证可以正确识别掉落状态。

详细了解 DH-3 夹爪的通信步骤,请查阅下面的几个章节。如何使用通讯协议转换器,请查阅下一章节 <u>3.2 通讯协议转换器</u>。如何使用调试软件,请查阅 <u>3.3 调试软件的安装与</u>使用。

3.2 通讯协议转换器

通讯协议转换器(CTS-B1.0)可完成 DH-3 夹爪的通讯转换的需求,以此达到在不同的通讯协议下控制夹爪的需求。通讯协议转换器(CTS-B1.0)可以将其他通讯协议(USB、TCP/IP、RS485等)转换到 CAN2.0A,从而支持使用不同的通讯协议控制器(PC/PLC/机器人)连接。

在使用通讯协议转换器前,您需要了解如何设置不同的工作模式。在此章节中,您将学习到在硬件上如何设置不同的工作方式。

3.2.1 工作模式选择

通讯协议转换器(CTS-B1.0)的工作模式主要通过拨码开关进行选择设置。通讯协议转换器(CTS-B1.0)具有一个四位拨码开关,如图 3.2 所示。开关序号排序从左依次为 12 3 4 位。

开关向上作为"ON"状态,标识为1;开关向下作为"OFF"状态,标识为0。

图 3.2 拨码开关示意图

如模式序号为1时,从左(即1位)开始,开关状态依此为1000。

拨码开关状态对应的工作模式如表 3.1 所示。

	10.1	双門月入小心心	
开关状态(模式序号)	工作模式	开关状态(模式序号)	工作模式
0 0 0 0 (0)	参数配置模式	0 0 1 0 (4)	RS485 模式
1 0 0 0 (1)	USB 模式	1 0 1 0 (5)	RS485 的 MODBUS 模式
0 1 0 0 (2)	TCP 客户端模式	1 1 0 0 (3)	TCP 服务器模式
1 1 1 0 (7)	CAN2. 0A 模式	1 1 1 1 (8)	升级模式

表 3.1 拨码开关状态表

警告

- •用户在修改了拨码开关工作模式后,需要在不接 USB 线的情况下,重启通讯协议转换器(CTS-B1.0)才能生效。
- •用户在使用夹爪时,需要先将线连接完成后,再启动通讯协议转换器(CTS-B1.0) 电源。(通讯协议转换器(CTS-B1.0)在启动过程中会自行查找电爪)。
 - 各模式有自己的默认参数,根据默认参数即可快速使用。

3.2.2 参数配置模式

当您把拨码开关设置为 0000时,通讯协议转换器为参数配置模式,如表 3.2 所示。

表 3.2 参数配置模式

开关状态(模式序号)	工作模式
0 0 0 0 (0)	参数配置模式

在该模式下,您可通过电脑上位机软件对通讯协议转换器的模式参数进行设置,如修改通讯协议转换器 TCP 服务器的 IP 地址等。在 U 盘里提供电脑调试软件,具体请查阅 3.3 调试软件的安装与使用。

若需要将通讯协议转换器设置为参数配置模式,则按以下步骤来操作(在该模式下需要

的部件:夹爪, USB线, 电源线, 通讯协议转换器):

- 1. 在电脑上安装上位机 USB 驱动程序, 当您安装成功时, Windows 系统设备管理器下 COM 分类下将显示 "STMicroelectronics Virtual COM Port" 开头的 COM 设备。
- 2. 通讯协议转换器通过电源线连接上 24V 电源。
- 3. 确保通讯协议转换器电源开关关闭,且 USB 线未连接。
- 4. 将通讯协议转换器红色拨码开关设置为0000(四个拨码开关全部向下)。
- 5. 开启通讯协议转换器电源,并通过 USB 线连接通讯协议转换器和电脑即可。

若未成功, 请检查是否操作正确。

当您成功进入设置模式后,即可通过电脑上位机软件进行参数的配置,具体配置过程可参照 后文 3.3 调试软件的安装与使用。

3.2.3 USB 模式

当您把拨码开关设置为 1000时,通讯协议转换器为 USB 模式,如表 3.3 所示。

表 3.3 USB 模式

开关状态(模式序号)	工作模式
1 0 0 0 (1)	USB 模式

在该模式下,可通过 USB 方式控制夹爪。

若需要将通讯协议转换器设置为 USB 模式,则按以下步骤来操作(在该模式下需要的部件: USB 线,航插线,DC 电源线,夹爪,通讯协议转换器):

- 1. 在电脑上安装上位机 USB 驱动程序,当您安装成功时,Windows 系统设备管理器下 COM 分类下将显示"STMicroelectronics Virtual COM Port"开头的 COM 设备。
- 2. 通讯协议转换器与夹爪通过航插线相连,通讯协议转换器通过电源线连接上 24V 电源。
- 3. 确保通讯协议转换器电源开关关闭,且 USB 线未连接。
- 4. 将通讯协议转换器红色拨码开关设置为1000(拨码开关1向上234向下)。
- 5. 开启通讯协议转换器电源,通过 USB 线连接通讯协议转换器和控制设备即可。
- 6. 若未成功,请检查是否操作正确。

当您成功进入 USB 模式后,即可通过上位机软件或其他控制设备进行设置。USB 模式在应用层被虚拟为串口设备,因此可以通过操作串口的方式来操作 USB 模式下的通讯协议转换器。关于如何在 USB 模式下控制夹爪,可以查阅 3.3 调试软件的安装与使用。

3.2.4 TCP 客户端模式

当您把拨码开关设置为 0100时,通讯协议转换器为 TCP 客户端模式,如表 3.4 所示。

表 3.4 TCP 客户端模式

开关状态(模式序号)	工作模式
0 1 0 0 (2)	TCP 客户端模式

该模式下,通讯协议转换器作为 TCP 客户端,可通过 TCP/IP 协议控制夹爪。如表 3.5 所示。

表 3.5 TCP 客户端默认参数

TCP 客户端默认参数	
默认通讯协议转换器 IP	192. 168. 1. 30
默认通讯协议转换器网关	192. 168. 1. 1
默认远程服务器 IP	192. 168. 1. 60
默认远程服务器端口	8888

若需要将通讯协议转换器设置为 TCP 客户端,则按以下步骤来操作(在该模式下需要的部件:网线,航插线,DC 电源线,夹爪,通讯协议转换器):

- 1. 通讯协议转换器与夹爪通过航插线相连,通讯协议转换器通过电源线连接上 24V 电源,控制器 (PC/PLC/机器人)通过网线连接通讯协议转换器。
- 2. 确保通讯协议转换器电源开关关闭。
- 3. 将通讯协议转换器红色拨码开关设置为0100(拨码开关2向上134向下);
- 4. 开启通讯协议转换器电源。

若未成功, 请检查是否操作正确。

当您成功设置,通讯协议转换器的网口等将亮起或闪烁,并且夹爪指示灯开始红灯闪烁。成功进入 TCP 客户端模式后,通讯协议转换器将开始尝试与远程服务器建立连接,当成功连接上远程服务,则远程服务器即可向夹爪发送指令进行控制,可以查阅 3.3 调试软件的安装与使用。

TCP 客户端模式使用建议说明

- 确保服务器正常开启。
- •可使用电脑的 ping 指令,进行连接测试。
- 若电脑作为网络服务器, 建议检查是否防火墙允许服务器应用联网。
- 若通讯协议转换器与电脑直连,请设置电脑有线网络 Ipv4 地址为静态 IP,并确保与夹爪处于同一网段:

例如: IP: 192.168.1.60 子网掩码: 255.255.255.0

若电脑 IP 非 192. 168. 1. 60,请参考下文 3. 3. 4 夹爪连接。

• 若夹爪通过路由器或交换机连接电脑等控制设备,请确认夹爪的 IP 地址与路由器的网段匹配,若不匹配请参考下文 *3. 3. 4 夹爪连接*。

3.2.5 TCP 服务器端模式

当您把拨码开关设置为 1100时,通讯协议转换器为 TCP 服务器端模式,如表 3.6 所示。

表 3.6 TCP 服务器端模式

开关状态(模式序号)	工作模式
1 1 0 0 (3)	TCP 服务器模式

该模式下,通讯协议转换器作为 TCP 服务器,可通过 TCP/IP 协议控制夹爪,如表 3.7 所示。

表 3.7 TCP 服务器端默认参数

TCP 服务器端默认参数	
默认通讯协议转换器 IP	192. 168. 1. 29

默认通讯协议转换器网关	192. 168. 1. 1
默认监听端口	8888

若需要将通讯协议转换器设置为 TCP 服务器,则按以下步骤来操作(在该模式下需要的部件:网线,航插线,DC 电源线,夹爪,通讯协议转换器):

- 1. 通讯协议转换器与夹爪通过航插线相连,通讯协议转换器通过电源线连接上 24V 电源,控制器 (PC/PLC/机器人)通过网线连接通讯协议转换器。
- 2. 确保通讯协议转换器电源开关关闭。
- 3. 将通讯协议转换器红色拨码开关设置为 1100 (拨码开关 1 2 向上 3 4 向下)。
- 4. 开启通讯协议转换器电源。

若未成功,请检查是否操作正确。

当您成功设置,通讯协议转换器的网口等将亮起或闪烁,并且夹爪指示灯开始红灯闪烁。成功进入 TCP 服务器模式后,通讯协议转换器将开始监听端口,等待客户端的接入。 当有 TCP 客户端成功连接接入后,TCP 客户端将即可向夹爪发送指令进行控制,可以查阅 3.3 调试软件的安装与使用。

TCP 服务器端模式使用建议说明

- •可使用电脑的 ping 指令,进行连接测试。
- 若通讯协议转换器与电脑直连,请设置电脑有线网络 Ipv4 地址为静态 IP,并确保与夹爪处于同一网段:例如: IP: 192. 168. 1. 60 子网掩码: 255. 255. 255. 0。
- •若夹爪通过路由器或交换机连接电脑等控制设备,请确认夹爪的 IP 地址与路由器的网段匹配,若不匹配请参考下文 *3.3.4 夹爪连接*。

3.2.6 RS485 模式

当您把拨码开关设置为 0010时,通讯协议转换器为 RS485模式,如表 3.8 所示。

表 3.8 RS485 模式

开关状态(模式序号)	工作模式	
0 0 1 0 (4)	RS485 模式	

该模式下,可使用 RS485 协议通过通讯协议转换器控制夹爪。

RS485 模式默认参数

• 115200 波特率, 无校验, 1 停止位。

若需要将通讯协议转换器设置为 RS485 模式,则按以下步骤来操作(在该模式下需要的部件:夹爪,航插线,DC 电源线,通讯协议转换器,RS485 转 USB 线(未在配件中, 需选配)):

- 1. 通讯协议转换器与夹爪通过航插线相连,通讯协议转换器通过电源线连接上 24V 电源,控制器(PC/PLC/机器人)通过 485 总线连接通讯协议转换器(485-A 连 485-A,485-B 连 485-B)。
- 2. 确保通讯协议转换器电源开关关闭, 目 USB 线未连接。
- 3. 将通讯协议转换器红色拨码开关设置为0010(拨码开关3向上124向下)。
- 4. 开启通讯协议转换器电源,夹爪指示灯开始红灯闪烁。然后将 USB 的另一端与控制器相

连。

若未成功,请检查是否操作正确。

若您成功设置 RS485 模式,可通过 RS485 总线发送命令控制夹爪,具体控制指令可以参考前文 3.4 控制逻辑。

RS485 模式使用建议说明

- 确认波特率为115200, 无校验位, 1位停止位。
- 可通过 USB 转 485 模块,通过电脑串口上位机对夹爪进行测试。

3.2.7 RS485 Modbus-RTU 模式

当您把拨码开关设置为 1010时,通讯协议转换器为 RS485 Modbus-RTU 模式,如表 3.8 所示。

表 3.8 RS485 模式

开关状态(模式序号)	工作模式	
1 0 1 0 (4)	RS485 Modbus-RTU 模式	

该模式下,可使用 RS485 接口通过 RS485 Modbus-RTU 协议控制夹爪。

RS485 模式默认参数

• 115200 波特率, 无校验, 1 停止位。

Modbus-RTU 协议为标准协议。具体控制指令由地址码(1 个字节),功能码 (1 个字节),起始地址 (2 个字节),数据 (2 个字节),校验码 (2 个字节)五个部分组成。我们以初始化指令 01 06 08 02 00 00 2A 6A 为例,如表 3.9 所示。

表 3.9 命令格式

地址码	功能码	寄存器地址	寄存器数据	CRC 校验码
01	06	0802	00 00	2A 6A

地址码: 表示夹爪的 ID 号。可在设备 ID 中进行修改,默认是 1。01 代表夹爪的 modbus ID 为 01。

功能码: 描述对夹爪的读写操作,是对夹爪读取数据,还是写入数据到夹爪,常见功能码有03(读取保持寄存器)、06(写入保持寄存器)。初始化指令功能码为06代表准备写入。

夹爪本体为 CAN 总线协议,只能针对单个寄存器进行读写。故只支持 06 和 03 单寄存器读写指令。

寄存器地址: 夹爪功能对应地址。初始化指令地址为 0x0802。

寄存器数据:写入数据到具体的寄存器地址,从而实现控制读取数据。初始化指令为写入 00 代表进行初始化。

CRC 校验码: 保证终端设备不去响应那些在传输过程中发生改变的数据,保证系统的安全性和效率。CRC 校验采用 16 位的循环亢余方法,根据前面数据进行转换,可知初始化指令的 CRC 校验码为 2A 6A。

转换后的寄存器地址对应**自定协议的地址功能寄存器值和子功能寄存器值**,如下所示表 3.10 Mondbus-RTU 对应地址

功能	地址	说明	写入	读取	
初始化夹爪	0x0802	重新标定夹 爪和回零位	写入 0: 初始化夹爪	1:初始化完成 0:初始化未完成	
夹持力	0x0502	夹爪夹持力	20-100,百分比	读取当前设定夹持力	
外撑力	0x0503	夹爪外撑力	20-100, 百分比	读取当前设定外撑力	
位置	0x0602	运动到指定 位置	0-100,百分比	读取当前实时位置	
夹持状态反 馈	0x0F01	反馈当前夹 爪的夹持状 态	不能写入	2: 到达位置; 3: 夹住物体;	
掉落检测开 关	0x1501	打开或关闭 掉落检测	写入1: 掉落后持续返回 写入0: 关闭掉落持续返回	0: 掉落检测开关为关 1: 掉落检测开关为开	
掉落检测	由于是数据转换,发生掉落后会持续返回 01 06 02 00 00 B8 88 新的位置指令会刷新掉落检测状态				

下面是写入指令和读取示例:

发送: 01 06 08 02 00 00 2A 6A (进行初始化)

返回: 01 06 08 02 00 00 2A 6A

发送: 01 06 05 02 00 14 28 C9 (设置夹持力 20%)

返回: 01 06 05 02 00 14 28 C9

发送: 01 06 05 03 00 64 78 ED (设置外撑力 100%)

返回: 01 06 05 03 00 64 78 ED

发送: 01 06 06 02 00 64 29 69 (设置位置 100%)

返回: 01 06 06 02 00 64 29 69

发送: 01 03 06 02 00 01 25 42 (读取实时位置)

返回: 01 03 02 00 2F F9 98 (返回位置 2F,实时位置为 47%)

发送: 01 06 06 02 00 00 28 82 (设置位置 0%, 闭合位置)

返回: 01 06 06 02 00 00 28 82

发送: 01 03 0F 01 00 01 D6 DE (读取夹持状态反馈) 返回: 01 03 02 00 02 39 85 (返回 02 ,代表到达位置) 返回: 01 03 02 00 03 F8 45 (返回 03 ,代表夹到物体)

发送: 01 06 15 01 00 00 DC 06 (关闭掉落持续反馈)

返回: 01 06 15 01 00 00 DC 06 (发生掉落不返回掉落反馈指令)

发生掉落

持续返回: 01 06 02 00 00 B8 88

的部件:夹爪, 航插线, DC 电源线, 通讯协议转换器, RS485 转 USB 线(未在配件中, 需选配)):

- 5. 通讯协议转换器与夹爪通过航插线相连,通讯协议转换器通过电源线连接上 24V 电源,控制器(PC/PLC/机器人)通过 485 总线连接通讯协议转换器(485-A 连 485-A,485-B 连 485-B)。
- 6. 确保通讯协议转换器电源开关关闭,且 USB 线未连接。
- 7. 将通讯协议转换器红色拨码开关设置为0010(拨码开关3向上124向下)。
- 8. 开启通讯协议转换器电源,夹爪指示灯开始红灯闪烁。然后将 USB 的另一端与控制器相连。

若未成功, 请检查是否操作正确。

若您成功设置 RS485 模式,可通过 RS485 总线发送命令控制夹爪,具体控制指令可以参考前文 3.4 控制逻辑。

RS485 模式使用建议说明

- 确认波特率为115200, 无校验位, 1位停止位。
- •可通过 USB 转 485 模块,通过电脑串口上位机对夹爪进行测试。

3.2.8 CAN2.0A 模式

当您把拨码开关设置为 1110时,通讯协议转换器为 CAN2.0A 模式,如表 3.13 所示。

表 3.13 CAN2.0A 模式

开关状态(模式序号)	工作模式	
1 1 1 0 (7)	CAN2.0A 模式	

在 CAN2.0A 模式较为特殊,由于夹爪本体为 CAN 接口,因此通讯协议转换器不执行转换程序,只作接口转接,即命令直接发送给夹爪本体。

夹爪 CAN 接口和通讯协议转换器 CAN 接口都接有 120 欧电阻, CAN 总线终端电阻可提高抗干扰能力,确保总线快速进入隐性状态,二者构成了一个完整的 CAN 网络。当您需要外接一个 CAN 主站来控制夹爪时,由于线路上已有两个终端电阻,因此这个额外的设备不应该配终端电阻,我们可以在通讯协议转换器上将这个 120 欧电阻去掉。因此使用 CAN 模式时请确保 CAN 总线终端电阻匹配。120 欧电阻位置如图 3.5 红圈所示。

图 3.5 120 欧电阻位置

CAN2.0A 模式默认参数

- CAN ID: 1
- CAN 波特率: 500Kbps

若需要将通讯协议转换器设置为 CAN2.0 模式,则按以下步骤来操作(在该模式下需要的部件: 航插线,电源线,夹爪本体,通讯协议转换器):

- 1. 通讯协议转换器与夹爪通过航插线相连,通讯协议转换器通过电源线连接上 24V 电源,控制器(PC/PLC/机器人)通过 CAN 总线连接到通讯协议转换器(CAN H 接 CAN H , CAN L 接 CAN L)。
- 2. 确保通讯协议转换器电源开关关闭。
- 3. 将通讯协议转换器红色拨码开关设置为 1110 (拨码开关 123 向上 4 向下)。
- 4. 开启通讯协议转换器电源。

若未成功, 请检查是否操作正确。

若成功进入 CAN 模式后,即可通过 CAN 接口对夹爪进行控制,具体命令可参考 <u>3.4.3</u> 命令详解。

CAN 模式使用建议

- 确保命令为标准帧, ID 正确, 波特率匹配。
- 确保 CAN 总线终端电阻匹配,必要时去掉通讯协议转换器上 CAN 接口上的 120 欧电阻。

3.2.9 升级模式

当您把拨码开关设置为 1111 时,通讯协议转换器为升级模式,如表 3.14 所示。

表 3.14 RS485 模式

开关状态(模式序号)	工作模式
1 1 1 1	升级模式

该模式用于升级盒子固件程序。使用 USB 线连接 PC 与盒子,上位机选择对应要升级的 bin 文件进行固件升级。

若需要将通讯协议转换器设置为 USB 模式,则按以下步骤来操作(在该模式下需要的部件: USB 线,航插线,DC 电源线,夹爪,通讯协议转换器):

- 7. 在电脑上安装上位机 USB 驱动程序, 当您安装成功时, Windows 系统设备管理器下 COM 分类下将显示"STMicroelectronics Virtual COM Port"开头的 COM 设备。
- 8. 通讯协议转换器与夹爪通过航插线相连,通讯协议转换器通过电源线连接上 24V 电源。
- 9. 确保通讯协议转换器电源开关关闭,且 USB 线未连接。
- 10. 将通讯协议转换器红色拨码开关设置为1111(拨码开关1向上234向下)。
- 11. 开启通讯协议转换器电源,通过 USB 线连接通讯协议转换器和控制设备即可。

若未成功,请检查是否操作正确。

当您成功进入 USB 模式后,即可通过上位机软件或其他控制设备进行设置。USB 模式在应用层被虚拟为串口设备,因此可以通过操作串口的方式来操作 USB 模式下的通讯协议转换器。关于如何在 USB 模式下控制夹爪,可以查阅 3.3 调试软件的安装与使用。

注意

- ·升级模式适用于序列号为 AGxxxxCN 版本及以后版本的通讯协议转换器。
- 判断转换器是否支持升级: 将拨码拨到 1 1 1 1 ,通讯协议转换器三个指示灯会同时亮灯即支持升级,若拨到 1 1 1 1 中间指示灯不亮则不支持升级。
 - 升级文件需我们提供: 正常情况不会

3.3 调试软件的安装与使用

3.3.1 总览

调试软件其目的是简化测试 DH-3 夹爪流程,同时为了简化设置 DH-3 夹爪流程和配套通讯协议转换器参数。

本文介绍的软件界面中,连接(connect)实际为连接通讯协议转换器,发送的所有指令均为发送给通讯协议转换器,协议转换器将其解析转化为 CAN 通讯,通过航插线传送给 DH-3 夹爪,进而实现夹爪的控制。而设置通讯盒的指令仅被协议转换器接收解析,不发送给夹爪(通讯协议及通讯拓扑结构参见 *3.4 控制逻辑*)。

3.3.2 软件安装

本调试软件无需安装,可直接运行,但建议先安装 USB 驱动,便于后续的使用。 安装 USB 驱动:

打开随包装附带的资料 U 盘,在 "USB 驱动安装"文件夹下存在以下文件(部分使用 Ghost 安装的 Win7 系统缺失部分系统文件,可能无法使用该驱动),如图 3.6 所示:

VCP_V1.5.0_Setup_W7_W10_x64_64bits.exe

VCP_V1.5.0_Setup_W7_W10_x86_32bits.exe

VCP V1.5.0 Setup W8 x64 64bits.exe

WCP V1.5.0 Setup W8 x86 32bits.exe
图 3.6 U 盘文件夹

命名解释

• W7: Windows 7;

• W8: Windows 8;

• W10: Winows 10;

64bits: 64 位系统;

• 32bits: 32 位系统;

软件安装步骤:

1. 根据脑系统版本及系统位数选择合适的驱动版本进行安装,点击 Next,如图 3.7 所示。

图 3.7 驱动安装

2. 填写注册信息,点击 Next,如图 3.8 所示。

图 3.8 填写注册信息

3. 目录选择(推荐使用默认配置),点击 Next,如图 3.9 所示。

图 3.9 选择目录

4 弹出设备驱动程序安装串口,点击下一步,如图 3.10 所示。

图 3.10 串口驱动安装

5. 成功安装后,将会出现以下界面,点击完成即可,如图 3.11 所示。

图 3.11 完成安装

6. 检查驱动是否正常,将通讯协议转换器设置为 USB 模式,通过 USB 线连接电脑,查看电脑设备管理器是否出现以下设备(通讯协议转换器设置为 USB 模式的步骤,请参考 3. 2. 3USB 模式)

3.3.3 用户界面

当您安装成功后,打开软件您可以看到如下界面,如图 3.12 所示。界面主要由三个部分构成,左边为夹爪控制区,右上为通讯控制区,右下为参数设置区。

图 3.12 用户界面图

软件功能说明

- 夹爪控制区:该区域为简易的夹爪控制和状态显示以及指令收发,该区域是方便用户进行夹爪的上手使用,验证功能,测试夹爪等。
- 通讯控制区:根据通讯协议转换器的模式,选择对应的连接模式,进行连接,以及初始化夹爪的操作。
- •参数设置区:该区域为便于用户设置夹爪参数,以及设置通讯协议转换器参数区域。

3.3.4 夹爪连接

3.3.4.1 组成及简介

如图 3.13 所示,为通讯控制区的界面布局,从上到下,从左往右的组成为:

连接模式 (Connection mode) 选择。

端口(Port)设置。

连接状态(Status)显示。

连接(Connect)按钮。

初始化夹爪 (Initialize) 按钮。

断开连接(Disconnect) 按钮。

图 3.13 通讯控制区

通讯控制区说明

- •连接模式(Connection mode)选择:一共有 USB, TCP Client (电脑做 TCP 客户端), TCP Server (电脑做 TCP 服务端) 三种模式可以下拉选择。具体可查阅下节_3.3.4.2 连接模式及端口设置。
- •端口(Port)设置:设置对应模式下端口设置,如 USB 模式下的虚拟串口端口号,TCP Client模式下的远端 IP 及端口,TCP Server模式下的本机监听端口。
- •参数设置区:该区域为便于用户设置夹爪参数,以及设置通讯协议转换器参数区域。
- **连接状态(Status)显示:** 该位置将显示当前的连接状态,便于确定当前状态,具体内容见下文相关小节。
- 连接(Connect)按钮: 该按钮为在当前设置的连接模式下,连接当前设置的端□。
- •初始化夹爪(Initialize)按钮:该按钮在成功连接电爪后可被点击,用于初始化夹爪。
 - · 断开连接(Disconnect)按钮: 该按钮为断开当前连接。

3.3.4.2 连接模式及端口设置

根据您的通讯盒当前的通讯接口模式,选择对应的连接模式及设置相应端口,如图 4.14 所示。以下是各模式下的设置。如何设置通讯协议转换器工作模式,请参考前文 <u>3.2.1 工作</u>模式选择。

USB 模式: 当通讯协议转换器需要设置为 USB 模式,请选择 USB 模式。在选择 USB 模式或开启软件前,确认通讯协议转换器及夹爪已经连好并上电,那么下方的端口栏将会自动识别并显示目标端口号。本软件将会在开启软件或切换到 USB 连接模式时主动识别 USB 端口,若开启软件时未识别到端口,也可直接点击连接(Connect)按钮,本软件将再次自动识别并连接。判断连接状态请参见 3.3.4.3 通讯控制及状态显示。

图 3.14 USB 连接模式

注意

·若无法连接,确认是否安装好 USB 驱动,以及夹爪连接及供电是否正常。

TCP Client 模式:此时电脑作为 TCP 客户端,通讯协议转换器应设置为 TCP Server (服务器)模式,根据您设置的通讯盒 IP 及端口号,修改下图的目标 IP 及端口,如图 4.15 所示。通讯盒做 TCP 服务端时,出厂默认 IP 为 192.168.1.29,监听端口为 8888。

图 3.15 TCP Client 模式

TCP Server 模式: 此时电脑作为 TCP 服务器,通讯盒应设置为 TCP Client 模式,根据您设置的通讯盒的 IP 及其连接的远端端口情况,如图 4.16 所示。修改下方的监听端口号,通讯盒做 TCP 客户端时,出厂默认 IP:192.168.1.30,远端 IP 及端口:192.168.1.60:8888。

图 3.16 TCP Server 模式

注意

• 若无法连接,请确认电脑 IP 是否为通讯盒连接的远端 IP,同时是否关闭有线网防火墙或允许本软件通过防火墙。

3.3.4.3 通讯控制及状态显示

通讯控制区内有三个按钮分别为:

通讯连接(Connect)按钮。

夹爪初始化 (Initialize) 按钮。

通讯连接断开 (Disconnect) 按钮。

三个按钮存在如下三种状态(按钮为灰色按下状态时无法点击),如图 3.17 所示:

图 3.17 通讯控制按钮状态

状态说明:在不同连接情况下,按钮将会显示不同状态。一共三种状态,如图 4.17 所示。

状态一: 为默认状态(未连接状态),此时只有连接(Connect)按钮可被点击,通过

上节选择并设置好连接后可点击连接按钮进行连接。

状态二: 当成功连接上夹爪后,初始化(Initialize)按钮和断开连接(Disconnect)按钮将被激活,而连接(Connect)按钮将被关闭。此时可以进行夹爪初始化,或断开连接操作。

状态三:当成功连接上夹爪后,在初始化过程中,初始化(Initialize)按钮将无法按下,等待初始化完成后才会被激活。或在单独连接通讯盒的设置模式时,不可控制夹爪,此时初始化(Initialize)按钮也会被关闭。

状态显示: 在不同连接情况下,状态(Status)将会显示对应状态,便于确认连接状态。一 共四种状态。

第一种状态: 未连接(Disconnected...) 状态,如图 3.18(a) 所示。该状态为:未连接到通讯协议转换器时显示的状态。

Status: Disconnected...

图 3.18(a) 未连接状态

第二种状态: 连接但未激活(Inactivated)状态,如图 3.18(b) 所示。该状态为软件成功连接通讯协议转换器的状态。

Status: Inactived...

图 3.18(b) 连接但未激活状态

第三种状态:连接并激活(Activated)状态,如图 3.18(c)所示。该状态为点击初始化(Initialize)按钮,夹爪成功执行初始化后显示的状态。

Status: Activated

图 3.18(c) 连接并激活状态

第四种状态: 已启动并等待客户端(Waiting for Client)状态,如图 3. 18(d) 所示。该状态为选择 TCP Server 连接模式时特有状态,此时电脑做 TCP Server,点击**连接(Connect)**按钮,将会启动 TCP 服务器,此时等待通讯协议转换器 TCP 客户端的接入。

Status: Waiting for Client

图 3.18(d) TCP Server 等待状态

3.3.5 夹爪控制

夹爪控制区用于方便地控制夹爪,进行测试或实验使用,同时可以了解指令的收发情况。 具体组成如图 3.19 所示,从上至下主要由四个部分构成:

- 1. 位置 (Position) 控制部分: Position。
- 2. 力值(Force)控制部分: Force。
- 3. 角度值(Angle)控制部分: Rotation。
- 4. 状态显示部分:Object detected。
- 5. 指令收发显示部分: Blank box。

图 3.19 夹爪控制部分图

位置(Position)控制部分:由闭合按钮,闭合微调按钮,位置显示栏,张开微调按钮,张 开按钮组成。

状态显示部分:用于显示是否检测到夹取到物体。夹取到物体时将会亮起绿灯。

指令收发显示部分:用于显示点击某按钮时发送的指令,以及电爪或通讯盒返回的确认指令。 行首显示 "Send" 时为发送给通讯盒的指令,行尾也会显示该条指令的作用 行首显示 "Receive" 时为本软件接收到的来自通讯协议转换器的数据。

3.3.6 参数设置区

3.3.6.1 组成及简介

参数设置区较为复杂,主要是便于用户设置夹爪及通讯协议转换器的相关参数。分为**左侧夹爪(Gripper)参数设置区,右侧通讯协议转换器(Communication Box)参数设置区**,如图 3. 20 所示。

图 3.20 参数设置区

夹爪 (Gripper) 参数设置区:

显示夹爪固件版本号,设置初始化完成是否主动反馈,设置夹爪 ID 号,CAN 波特率。

通讯协议转换器(Communication Box)参数设置区:

显示/设置通讯盒做 TCP Server 时的参数,显示/设置通讯盒做 TCP Client 时的参数。

3.3.7 夹爪设置教程

3.3.7.1 夹爪 ID 设置

夹爪与通讯协议转换器直接采用 CAN2. 0A 协议进行通讯。针对 CAN 总线使用多个夹爪情况,我们提供夹爪 CAN ID 号的设置,具体可查阅 3. 4. 3. 8 CAN ID 命令。

CAN ID 值范围为 1-254(16 进制), 左侧设置好 ID 号后, 点击<u>设置 ID (Gripper ID)</u> 按钮即可发送指令, 如图 3. 25 所示。

图 3.25 设置 CAN ID 图

确保接收到返回指令后,重启夹爪即可生效,夹爪成功执行指令后,反馈的指令如下图 3.26 所示:

Send: FFFEFDFC011201010002000000FB--(Set CANID 2) Receive: FFFEFDFC011201010002000000FB

图 3.26 夹爪 ID 成功设置反馈

3.3.7.2 夹爪 CAN 波特率设置

夹爪与通讯协议转换器直接采用 CAN2. 0A 协议进行通讯。针对 CAN 总线波特率不同的情况,我们提供夹爪 CAN 波特率号的设置,具体可查阅 3. 4. 3. 9 CAN 波特率命令。

左侧下拉选择好波特率后,点击**设置 (Set CAN BaudRate)** 按钮发送指令。确保接收到返回指令,如图 3. 27 所示。然后重启夹爪生效。

Send: FFFEFDFC011401010002000000FB--(Set BaudRate 2)
Receive: FFFEFDFC011401010002000000FB

图 3.27 波特率设置成功反馈

3.3.7.3 通讯协议转换器参数配置

在设置通讯协议转换器参数时,通讯协议协议转换器需处于参数配置模式(如何将通讯协议转换器设置为参数配置模式请参考前文 <u>3.2.2 参数配置模式</u>)。参数配置模式采用 USB 通讯进行通信。在其它通讯模式下无法进行通信协议转换器的参数配置操作。

注意

•处在设置模式的通讯协议转换器为独立运行状态,无法进行夹爪控制指令的转换,即处于无法控制夹爪状态。

当您设置通讯协议转换器为参数配置模式后,本软件将自动获取通讯协议转换器内保存的设置,并实时显示在本软件上面,如图 3.30 所示。

图 3.30 参数配置图

您可以根据实际使用情况进行设置,但无论如何设置,请保证夹爪与控制设备应处于同一网段。

由于子网掩码默认为 255. 255. 255. 0, 因此保证设置的 IP 前三段必须保持一致。如: 通讯盒 IP 为 192. 168. 1. 1 时,控制设备的 IP 应该在 192. 168. 1. 2-192. 168. 1. 255 之间,即保证前三段相同,同时保证设备 IP 在该网段上唯一。

注意

•USB 线同样会对通讯盒进行供电,因此重启通讯盒时,应保证 USB 线也被拔出。

在参数配置模式下,您可对通讯协议转换器进行相关配置,具体配置可参考 <u>3.2.2 参数</u> **配置模式。**下面仅进行简单配置说明。

1. **通讯协议转换器作为 TCP Server 服务器端:** 此时控制设备(如: 电脑)作为 TCP 客户端,需要设置相关区域参数(子网掩码(Netmask)默认 255. 255. 255. 0),如图 3. 31 所示。

图 3.31 服务器端设置

相关区域参数说明如下:

IP Address (IP 地址): 通讯协议转换器静态 IP 地址,如上图设置为 192. 168. 1. 29,连接路由器时注意保证与路由器处于同一网段。

Gateway(网关): 协议转换器的网关,使用网线直连控制设备,设置默认最后一段为1即可,连接路由器时应设置为路由器地址,一般也为1

Port(端口): 通讯协议转换器监听的端口号, 客户端由该端口接入。

2. 通讯协议转换器作为 TCP Client 客户端: 此时控制设备(PC/PLC/机器人)作为 TCP 服务端,需要设置相关区域参数(子网掩码(Netmask)默认 255.255.255.0),如图 3.32 所示。

图 3.32 客户端设置

相关区域参数说明如下:

IP Address (IP 地址): 通讯协议转换器的静态 IP 地址,如上图设置为 192.168.1.30,连接路由器时注意保证与路由器处于同一网段。

Gateway(网关): 协议转换器的网关,使用网线直连控制设备,设置默认最后一段为1即可;连接路由器时应设置为路由器地址,一般也为1。

Remote IP(远端 IP):服务器所在的IP,例如连接电脑时,设置为电脑的IP即可,同样需要保证服务器所在IP地址与通讯盒IP处于同一网段。

Remote Port(远端端口): 服务器所监听的端口。

3.4 控制逻辑

夹爪在控制过程中,遵循时间和运动先后顺序进行控制,具体控制逻辑图请参照图 3.33 所示。

图 3.33 控制逻辑图

当夹爪进行到上图的夹爪运动时,会有4种状态的出现:

- 1. 运动状态: 即夹爪处于正在运动的状态。
- 2. 到位状态: 夹爪停止运动, 且夹爪未检测到夹住物体。
- 3. 夹住状态: 夹爪停止运动, 且夹爪检测到夹住物体。
- **4. 掉落状态:** 在夹爪处于夹住状态时,如果工件滑落,手指为满足预设夹持力,手指会继续闭合夹紧,默认设置下,当行程变动超过 5mm,则视为掉落状态。

注: 您可发送位置查询指令对夹爪的状态进行查询。

3.4.1 命令报文格式

控制器 (PC/PLC/机器人) 发送至通讯协议转换器通讯接口 (CAN 与 I/O 接口除外) 的 命令均采用如下格式进行,共 14 个字节。如表 3.16 所示。

数据段 (8字节) 夹爪 帧头 帧尾 功能 子功能 ID 读/写 保留 数据 寄存器值 寄存器值 4 字节 1 字节 1字节 1字节 1 字节 1 字节 1 字节 4 字节 (0xFFFEFDFC) (0x00)(0xFB)

表 3.16 命令报文数据说明

命令报文由**帧头、ID、数据段、帧尾**这四个部分构成。其中帧头与帧尾为固定字节内容。如初始化命令: FF FE FD FC 01 08 02 01 00 00 00 00 FB 。

4 字节帧头:报文以 0xFFFEFDFC 开始,这是识别命令报文字段的开始部分。

夹爪 ID: 报文中的夹爪 ID 为夹爪实际的 CAN ID (出厂默认为 1,下文的示例指令中的 ID,均为默认 ID=1),数值范围为 0-255,如何修改 CAN ID,请查阅 3.3.7.2 夹爪 ID 设置。

数据段: 实际控制命令数据段由这 8 个字节的数据段组成,同时该数据段也是经通讯协议转换器解包转换后 CAN 通讯时的数据段,在使用 CAN 接口作为通讯接口时,控制命令报文即为这 8 个字节数据段,不存在帧头帧尾。具体数据段内容如下:

- 1. 功能寄存器值:用于标识该条命令的主功能,具体主功能可以查阅 3.4.3 命令详解。
- 2. **子功能寄存器值**:用于标识在主功能下划分的子功能,具体子功能可以查阅 <u>3.4.3</u> **命令详解**。
- 3. 读/写: 仅允许 0x00 和 0x01, 其中 0x00 表示该条命令为读命令, 0x01 表示该命令为写命令。
 - 4. 保留: 该字节无作用,为保留字节,默认填入 0x00。
- 5. **数据**: 为 4 字节 32 位有符号整型,数据范围为 0x000000000 0xFFFFFFFF,采用 **小端(little endian)模式**,如 1 = 01 00 00 00 , -1 = FF FF FF FF。(在读操作时,数据段的 4 字节数据无作用,不影响结果)
 - 6. **帧尾**:报文以 0xFB 结束,这是识别命令报文字段的结束部分。

注意

•下文的所有表格中的**读/写字节**为 0x00/0x01 时表示该功能具备读和写的权限。 读/写字节为 0x00 时表示该功能仅允许读,为 0x01 时表示仅允许写入。

3.4.2 命令总览

具体命令报文指令,如表 3.17 所示。

表 3.17 命令总览表

功能	功能 寄存器值	子功能 寄存 器 值	功能备注
初始化	0x08	0x01-0x02	初始化相关命令
夹持力	0x05	0x02	设置/读取 夹持力
位置	0x06	0x02	设置/读取 夹持位置
角度	0x07	0x02	设置/读取 夹持角度
反馈状态	0x0F	0x01-0x02	读取当前夹持状态
CAN ID	0x12	0x01	设置/读取 夹爪 CAN ID
读取固件版本号	0x13	0x01	读取当前电爪固件版本
CAN 波特率	0x14	0x01	设置/读取 CAN 波特率

3.4.3 命令详解

3.4.3.1 初始化(Initialization)命令

该命令为夹爪初始化相关命令,以功能寄存器值 0x08 标识。命令由两个子功能模块组成。具体初始化命令报文组成如表 3.18 所示。

表 3.18 初始化命令报文

1	功能 寄存器值	子功能 寄存器值	读/写	保留	数据	功能
	0x08	0x01	0x00/0x01	0x00	整型(Integer)	读取/设置 初始化命令执行完 毕时,是否主动反馈初始化状态
	UXUO	0x02	0x00/0x01	UXUU	整型(Integer)	读取初始化状态/执行初始化

当子功能模块值为 0x02 时,则该条命令用作**读取初始化状态/执行初始化**。

当初始化命令发送后,通讯协议转换器会先得到命令成功反馈的指令(返回到和发送一样的命令),而后夹爪将进行初始化过程。

在初始化命令完成后,如您设置了主动反馈,通讯协议转换器则会主动反馈初始化是否 执行成功的命令,否则将不会主动反馈。

执行初始化 (写操作):

发送: FF FE FD FC 01 08 02 01 00 00 00 00 00 FB

返回: FF FE FD FC 01 08 02 01 00 00 00 00 00 FB

若您设置了主动反馈:

返回: FF FE FD FC 01 08 02 00 00 01 00 00 00 FB 若没有设置主动反馈,则不返回数据。

读取是否初始化完成:

发送: FF FE FD FC 01 08 02 00 00 00 00 00 00 FB

返回: FF FE FD FC 01 08 02 00 00 01 00 00 00 FB (初始化完成)

或

返回: FF FE FD FC 01 08 02 00 00 00 00 00 FB (初始化未完成)

当子功能模块值为 0x01 时,则该条命令用作**读取/设置初始化命令执行完毕时,是否 主动反馈初始化状态**。

例:设置初始化执行完毕后,主动反馈初始化状态(写操作):

发送: FF FE FD FC 01 08 01 01 00 A5 00 00 00 FB

返回: FF FE FD FC 01 08 01 01 00 A5 00 00 00 FB

读取是否主动反馈(读操作):

发送: FF FE FD FC 01 08 01 00 00 00 00 00 00 FB

返回: FF FE FD FC 01 08 01 00 00 A5 00 00 00 FB (是主动反馈)

戓

返回: FF FE FD FC 01 08 01 00 00 00 00 00 FB (不主动反馈)

3.4.3.2 夹持力/外撑力(Force)命令

该命令为夹持力/外撑力(Force)相关命令,以功能寄存器值 0x05 标识。单位为百分比。具体夹持力/外撑力报文组成如表 3.19 所示。

表 3.19 夹持力/外撑力命令报文

功能	子功能	读/写	保留	数据	功能
寄存器值	寄存器值)	休田	数1 店	切肥
	0x02				读取/设置 夹持力
0x05	0x03	0x00/0x01	0x00	整型(Integer)	读取/设置 外撑力
	0x04				同时读取/设置夹持/ 外撑力

夹持力数值范围为 20-100 (%) ,对应数据为 14~00~00~00~-~64~00~00~00 。以设置并读取 30% 夹持力为例:

设置 30% 夹持力 (写操作):

发送: FF FE FD FC 01 05 02 01 00 1E 00 00 00 FB

返回: FF FE FD FC 01 05 02 01 00 1E 00 00 00 FB

读取当前 夹持力(读操作):

发送: FF FE FD FC 01 05 02 00 00 00 00 00 00 FB

返回: FF FE FD FC 01 05 02 00 00 1E 00 00 00 FB

设置 30% 外撑力 (写操作):

发送: FF FE FD FC 01 05 03 01 00 1E 00 00 00 FB

返回: FF FE FD FC 01 05 03 01 00 1E 00 00 00 FB

读取当前 外撑力(读操作):

发送: FF FE FD FC 01 05 03 00 00 00 00 00 00 FB

返回: FF FE FD FC 01 05 03 00 00 1E 00 00 00 FB

同时设置 30% 张开力外撑力 (写操作):

发送: FF FE FD FC 01 05 04 01 00 1E 00 00 00 FB

返回: FF FE FD FC 01 05 04 01 00 1E 00 00 00 FB

3.4.3.3 位置 (Position) 命令

该命令为位置(Position)相关命令,以功能寄存器值 0x06 标识。单位为百分比。具体位置命令报文组成如表 3.20 所示。

表 3.20 位置命令报文

功能 寄存器值	子功能 寄存器值	读/写	保留	数据	功能
0x06	0x02	0x00/0x01	0x00	整型(Integer)	读取/设置 夹持位置

位置数值范围为 0-100 (%) , 对应数据为 00 00 00 00 - 64 00 00 00。以设置并读取 60% 夹持位置为例:

设置 60% 夹持位置 (写操作):

发送: FF FE FD FC 01 06 02 01 00 3C 00 00 00 FB 返回: FF FE FD FC 01 06 02 01 00 3C 00 00 00 FB

读取当前夹持位置(读操作):

发送: FF FE FD FC 01 06 02 00 00 00 00 00 00 FB 返回: FF FE FD FC 01 06 02 00 00 3C 00 00 00 FB

3.4.3.4 角度 (Angle) 命令

该命令为角度(Angle)相关命令,以功能寄存器值 0x07 标识。单位为百分比。具体位置命令报文组成如表 3.20 所示。

表 3.20 位置命令报文

功能 寄存器值	子功能 寄存器值	读/写	保留	数据	功能
0x07	0x02	0x00/0x01	0x00	整型(Integer)	读取/设置 夹持位置

角度数值范围为 0-100 (%) , 对应数据为 00 00 00 00 - 64 00 00 00 。以设置并读取 60% 夹持位置为例:

设置 60%角度(写操作):

发送: FF FE FD FC 01 07 02 01 00 3C 00 00 00 FB 返回: FF FE FD FC 01 07 02 01 00 3C 00 00 00 FB

读取当前角度(读操作):

发送: FF FE FD FC 01 07 02 00 00 00 00 00 00 FB 返回: FF FE FD FC 01 07 02 00 00 3C 00 00 00 FB

3.4.3.5 夹爪夹持状态反馈(Feedback)命令

该命令为夹爪夹持状态反馈(Feedback)相关命令 ,以功能寄存器值 0x0F 标识。夹爪相关反馈状态如表 3.21 所示。

表 3.21 反馈状态列表

功能 寄存器值	子功能 寄存器值	读/写	保留	数据	功能
0x0F	0x01	0x00	0x00	整型(Integer)	读取当前夹持状态

反馈状态说明

命令报文中的数据段的不同数据,代表夹爪的不同状态,具体状态如下。命令报文格式可查询 *3.4.1 命令报文格式*。

- 00 00 00 00 : 夹爪处于正在运动状态。
- 02 00 00 00 : 夹爪停止运动,且夹爪未检测到夹到物体。
- •03 00 00 00: 夹爪停止运动,且夹爪检测到夹到物体。

注:如果夹爪已经停止运动,且没有到达设定的目标位置,那么此时认为夹爪已经夹住物体(反馈为:0300000)。

具体读取操作反馈状态报文如下:

读取当前状态(读操作):

或

或

发送: FF FE FD FC 01 0F 01 00 00 00 00 00 00 FB 返回/默认: FF FE FD FC 01 0F 01 00 00 00 00 00 00 FB

到目标位置: FF FE FD FC 01 0F 01 00 00 02 00 00 00 FB

夹住物体: FF FE FD FC 01 0F 01 00 00 03 00 00 00 FB

3.4.3.6 查询固件版本号(Version)命令

该命令为固件版本号(Version)相关命令,以功能寄存器值 0x13 标识,控制器(PC/PLC/机器人)仅可进行读操作。夹爪固件版本号参考如表 3.23 所示。

表 3.23 固件版本号报文组成

功能 寄存器值	子功能 寄存器值	读/写	保留	数据	功能
0x13	0x01	0x00	0x00	0x00000000	读取当前电爪固件版本

该操作用于读取夹爪型号与内部固件版本。命令报文中的数据段有4个字节,第一个字 节代表固件小版本号,第二个字节代表固件主版本号,第三个字节代表夹爪型号,第四个字

节代表该型号夹爪的第几个硬件迭代版。如: 00 01 02 01 (小端模式,反向阅读)即为 第 1 版 2 型夹爪 固件版本 V1.0,例:

读取固件版本(读操作):

发送: FF FE FD FC 01 13 01 00 00 00 00 00 00 FB 返回: FF FE FD FC 01 13 01 00 00 00 01 02 01 FB

3.4.3.7 CAN ID 命令

该命令为 CAN ID 相关命令,以功能寄存器值 0x10 标识。设置 CAN ID 完毕后需断电重启夹爪生效。其数值范围为 1-255 ,即 01 00 00 00 - FF 00 00 00 。具体 I/0 模式命令报文组成如表 3.25 所示。

 功能 寄存器值
 子功能 寄存器值
 读/写 读/写
 保留 保留
 数据 整型 (Integer)
 功能

表 3.25 CAN ID 报文组成

注意

• 为避免用户在设置 CAN ID 后忘记 ID, 进而无法控制夹爪的情况。我们保留了 0号 ID 作为读取及设置入口(0号 ID 仅能完成 ID 操作,无法使用其他功能)。

例(以设置并读取 夹爪 CAN ID = 2 为例):

设置 CAN ID 为 2 (写操作):

发送: FF FE FD FC 01 12 01 01 00 02 00 00 00 FB (当 ID=1 时 , 设置 ID =2)

返回: FF FE FD FC 01 12 01 01 00 02 00 00 00 FB

或

发送: FF FE FD FC 00 12 01 01 00 02 00 00 FB (使用 ID=0 , 设置 ID =2)

返回: FF FE FD FC 00 12 01 01 00 02 00 00 00 FB

读取当前 CAN ID (读操作):

发送: FF FE FD FC 02 12 01 00 00 00 00 00 FB (当 ID=2 时 , 读取当前 ID)

返回: FF FE FD FC 02 12 01 00 00 02 00 00 00 FB

或

发送: FF FE FD FC 00 12 01 00 00 00 00 00 FB (当 ID=0 时 , 读取当前 ID)

返回: FF FE FD FC 00 12 01 00 00 02 00 00 00 FB

3.4.3.8 CAN 波特率 命令

该命令为**读取/设置**夹爪的 CAN 波特率相关命令(05000201 及以后版本可用)。具体 波特率报文组成如表 3.26 所示。设置 CAN 波特率完毕后需断电重启夹爪生效,其数值范围为 0-5,即 00 00 00 00 - 05 00 00 00,具体对应波特率如表 3.27 所示。

表 3.26 波特率报文组成

功能 寄存器		子功能 寄存器值	读/写	保留	数据	功能
0x1	4	0x01	0x00/0x01	0x00	整型(Integer)	读取/设置 夹爪 CAN 波特 率

表 3.27 数值与波特率对照表

数值	波特率
0	500Kbps
1	400Kbps
2	250Kbps
3	200Kbps
4	125Kbps
5	100Kbps

例(以设置并读取 夹爪 CAN bps = 250K 为例):

设置 CAN bps 为 250K (写操作):

发送: FF FE FD FC 01 14 01 01 00 02 00 00 00 FB

返回: FF FE FD FC 01 14 01 01 00 02 00 00 00 FB

读取当前 CAN bps (返回 2 代表 250K) (读操作):

发送: FF FE FD FC 02 14 01 00 00 00 00 00 00 FB 返回: FF FE FD FC 01 14 01 00 00 02 00 00 00 FB

4 常见问题解决方法

4.1 夹爪指示灯含义

夹爪指示灯为红、绿、蓝三色指示灯,根据夹爪不同状态指示灯有不同的含义。

说明

- ·未初始化状态: 红灯闪烁, 其他灯不亮。
- •初始化完成状态: 蓝灯常亮, 表示进入可操作的状态。
- •接收到命令状态:红灯快速闪烁一次(由于此时蓝灯常亮,因此夹爪指示灯会呈现偏紫色的状态)。
 - 夹住物体状态:绿灯常亮,其他灯不亮。
 - •物体掉落状态:绿灯闪烁。

4.2 常见问题解答

- Q1: 夹爪断电后重新上电,无法正常使用?
- A1: 夹爪断电后再上电, 都需要执行一次初始化命令重新连接才能正常使用。
- Q2: 使用通讯转换盒时,无法正常通讯?
- A2: 在通讯协议转换器上有一个红色的拨码开关,如图 4.1 所示。通过设置不同的拨码来选通不同的通讯模式,切换模式后需要**完全断电重启(包括拔掉 USB 线),**拨码模式对应如表 4.1 所示。

图 4.1 拨码开关表 4.1 拨码对应表

开关状态(模式序号)	工作模式	开关状态(模式序号)	工作模式
0 0 0 0 (0)	参数配置模式	0 0 1 0 (4)	RS485 模式
1 0 0 0 (1)	USB 模式	1 0 1 0 (5)	RS485MODBUS 模式
0 1 0 0 (2)	TCP 客户端模式	1 1 0 0 (3)	TCP 服务器模式
1 1 1 0 (7)	CAN2. 0A 模式	1 1 1 1 (F)	升级模式

O3: USB 驱动安装失败?

A3: 一种原因是文件损坏导致,重新拷贝安装或联系我们发新文件再次安装;另一种原因是部分使用 GHOST 安装的 WIN7 系统缺少部分系统,联系我们发送补丁包进行安装。

Q4: USB 驱动安装成功,但无法识别 USB 设备?

A4: 首先确保通讯协议转换器拨码正确(0000 与 1000 拨码下才能识别到 USB 设备), 然后确定是完全断电通讯协议转换器电源(先拔掉 USB 线, 重启通讯协议转换器开关, 再插 USB 线)。

在参数配置模式下,可能出现进行上述操作都无法识别 USB 设备的情况,可以尝试拔掉所有接线(包括夹爪的航插线),然后只接 USB 线。或者更换 USB 接口或电脑。

Q5: USB 连接下无法连接夹爪?

A5: 确保所有接线完好,确保拨码正确,确保通讯协议转换器电源开关为打开状态。 确认能识别到设备(Windows 下通过查看设备管理器的 COM 设备,linux 下查看/dev/ttyACM 设备),可以尝试完全断电重启转接盒。

Q6: 网络连接下无法连接夹爪?

A6: 首先查看通讯协议转换器网卡灯是否亮起,若不亮则检测网线是否连接好。可能会出现与少量设备连接出现网络无法连接的问题,您可通过添加一个交换机解决问题。

请确保夹爪与控制设备 IP 地址处于同一网段,即 IP 地址前三段相同,同时在同一网络上的设备间 IP 没有相互冲突,若有 ping 工具可以尝试 ping 夹爪 IP 检测网络。

通讯协议转换器做服务器模式时,需注意检查控制设备要连接的服务器 IP 及地址是否正确。

Q7: 连接正常状态下,无法控制夹爪?

A7:由于有多个部件,因此需要从每个部件进行排查,能连接的情况下,一般问题可能出现在航插线,通讯协议转换器,夹爪本体这三个方面。

首先确定夹爪上的指示灯是否亮起。若没亮,确认通讯协议转换器电源开关打开或航插 线连接良好,若依然不亮,建议使用万用表检查航插线是否损坏。若亮起,尝试重启夹爪通 讯协议转换器,再次尝试。

若上述操作依然无法控制夹爪,可以尝试以下步骤进行排查:

将网线, USB 线拔掉, 通讯协议转换器拨码设置为 I/O 模式 (0110), 确保夹爪航插线与通讯协议转换器连接好, 通讯协议转换器连接好 24V 电源, 打开通讯协议转换器电源, 若夹爪指示灯亮起, 但夹爪无任何反应, 建议联系我们做进一步的排查, 可能需要维修通讯协议转换器或夹爪。

5 维护

5.1 日常清洁

日常清洁频率如表 5.1 所示。

表 5.1 日常清洁

建议最佳清洁频率	需要的工具	需要的零件
每周一次(若使用环境比较	1、卡簧钳	无
脏,每天一次)	2、干毛巾或纸巾	

注: 手爪表面不防水, 只需用干毛巾或纸巾清洁。

注意

- 在对手爪进行任何操作之前,请先关闭机器人和夹持电源。
- 清洁人员必须佩戴静电手环等静电措施,以免损坏电子元件。

清洗步骤如下所示,如图 5.1 所示:

- 1. 用卡簧钳把 Φ 6 挡圈 (位于连杆手指的每个关节两端) 卸下。
- 2. 将 φ 6 轴取下。
- 3. 用干毛巾或纸巾清理手爪表面的杂物、污物和灰尘; 用干毛巾或纸巾清理 \ 6 轴。
- 4. 在 ϕ 6 轴上涂上润滑脂。
- 5. 将 Φ 6 轴重新装回,用卡簧钳将 Φ 6 挡圈装上。

图 5.1 DH-3 夹爪图

5.2 指尖更换

指尖更换频率如表 5.2 所示。

表 5.2 指尖更换

	** ******	
检查频率	需要的工具	需要的零件
夹持 1,000,000 次或指尖	M3 内六角螺丝刀	一对(2个)大寰两指自适
损坏严重时		应机器人指尖(带胶皮)

注: 联系大寰机器人技术支持更换指尖部件

注意

• 在对手爪进行任何操作之前,请先关闭机器人和夹持电源。

指尖更换更换步骤如下所示,如图 5.2 所示:

- 1. 使用 M3 内六角螺丝刀卸下指尖螺丝, 拆卸磨损的指尖。
- 2. 清洁手指件并彻底擦干。
- 3. 取出指尖上 ϕ 3x6 mm 定位销。
- 4. 将 φ 3x6 mm 定位销插入新的指尖。
- 5. 将新的指尖装上手爪,并用螺丝固定。
- 6. 另一个指尖重复以上操作进行更换。

图 5.2 DH-3 夹爪图

5.3 定期检查、护理

定期检查、检测频率如表 5.3 所示。

表 5.3 定期检查

检查频率	需要的工具	需要的零件
每月一次	1. M3 内六角螺丝刀	无 (除非有损坏需更换)
	2. M4 内六角螺丝刀	
	3. 卡簧钳	

注意

- 在对手爪进行任何操作之前,请先关闭机器人和夹持电源。
- 清洁人员必须佩戴静电手环等静电措施,以免损坏电子元件。

检查手爪步骤如下所示:

- 1. 手指的运动必须对称和流畅:通过手指打开来测试行程,手指必须自己回到初始的起始位置;检查运行过程中手爪是否会有卡顿、抖动。
 - 2. 手指胶皮磨损不得影响夹持,若磨损严重,影响手爪运行,请更换指垫。
 - 3. 检查是否有碰撞损伤,如果有损坏,请联系大寰机器人技术支持。
 - 4. 检查手爪底部是否有磨损,若磨损严重且影响手爪工作,请联系大寰机器人技术支持。
 - 5. 检查所有螺丝是否有生锈或损坏,若有请更换。