Contents

1 네트워크 개요

- 1. 네트워크 기초 및 용어
- 2. 네트워크 주소
- 3. 네트워크 분류
- 4. 네트워크 아키텍쳐
- 5. 프로토콜

2 네트워크 심화

1. 전송매체, 연결방식, 보안

3 인터넷

1. 인터넷 개요, OSI 7 계층모델, 계층 구조 (TCP/IP)

1.2 네트워크 분류

1. 전송 매체에 따른 분류

- A. 유선 네트워크 (Wired Network) UTP, 동축 및 광 케이블
- B. 무선 네트워크 (Wireless Network) 라디오 파형 / 적외선 신호

2. 전송 방식에 따른 분류

- A. 회선 교환 망 (Circuit Switched Network)
- B. 패킷 교환 망 (Packet Switched Network)
- c. 셀 교환 망 (Cell Switched Network)

1.2 네트워크 분류

1. 위상(Topology)에 따른 분류

- A. 버스형 (Bus Topology)
- B. 스타형 (Star Topology)
- c. 링형 (Ring Topology)
- D. 허브형 (Hub/Tree Topology)

2. 규모에 따른 분류

- A. LAN (Local Area Network)
- B. MAN (Metropolitan Area Network)
- c. WAN (Wide Area Network)

1. 클라이언트와 서버

- A. 서버(Server)
 - 항상 동작 (포트 Listening)
 - 고정 IP 사용
 - 확장성을 위한 서버 확대

- B. 클라이언트(Client)
 - 서버와 통신
 - 원할 때 서버와 연결
 - 동적 IP 사용 가능
 - 클라이언트 사이의 직접 통신 불가

FTP 서버 텔넷 클라이언트

FTP 클라이언트

텔넷 서버

클라이언트와 서버

1. 클라이언트와 서버: FTP 서버 및 클라이언트 예

A. 서버에 연결해서 파일을 다운로드 및 업로드 테스트

P2P(Peer-to-Peer)

- A. 항상 동작하는 서버 없음
- B. 호스트간 직접 통신 가능
- c. 피어들은 원할 때 연결 설정
- D. IP 변경 가능

2. P2P 구현방식

- A. 서버 도움 방식
- B. 클라이언트 상호간 직접 연결

3. eDonkey / torrent 등

1. 서버 / 클라이언트 모델

- A. 장점? 고정된 IP 주소 데이터 검색 용이
- B. 단점? 서버 부담 높음 (안정성 / 속도 등)

2. P2P 모델

- A. 장점? 데이터의 분산 속도 향상
- B. 단점? 데이터 검색 어려움

1.4 프로토콜

1. 통신회선을 이용하여 컴퓨터와 컴퓨터, 컴퓨터와 단말기 끼리 데이터를 주고 받을 경우의 상호약속

발신자 수신자 2. 프로토콜 예) 1 전원을 켜서, 대기 상태로 만든다. 수신자의 전화번호를 누른다. ③ 벨이 울린다. 연결 설정 4 〈통화〉 버튼을 누른다. ⑤ 상대방과 대화한다. ⑤ 상대방과 대화한다. 연결 상태 (i) 아무나 〈종료〉 버튼을 누른다. ⑥ 아무나 〈종료〉 버튼을 누른다. 연결 해제 전화 연결을 위한 규칙

1.4 프로토콜

1. 프로토콜(Protocol) a human protocol and a computer network protocol:

2.1 전송매체 - 물리적 매체 (Physical media)

1. 보호 매체

A. 신호가 보호된 매체를 통해 전송됨: 구리선, 광섬유 등

2. 비보호 매체

A. 신호가 자유롭게 전파됨 : 전파 등

3. <u>트위스트 페어 (Twisted Pair) - UTP</u>

- A. 두 개의 절연된 구리선을 통하여 전송
- B. Category 3: traditional phone wires, 10 Mbps Ethernet
- c. Category 5: 100Mbps Ethernet

2.1 전송매체 - 물리적 매체 (Physical media)

1. 동축선 (Coaxial cable)

A. 외부 도체와 내부 도체가 구리선을 보호

2. 광섬유 (Fiber optic cable)

- A. 중심에 굴절률이 높은 유리와 외부에 굴절률이 낮은 유리를 사용하여 중심 유리를 통과한 빛의 전반사를 이용한 광학적 섬유
- B. 고속 전송이 가능하며 전기 잡음에 강인하여 오류가 적음

2.1 전송매체 - 비보호 매체

1. 무선 네트워크 (Wireless Network)

A. 전파 등 무선 방식으로 엑세스포인트(AP)를 통하여 시스템이 라우터에 연결하는 방법의 네트워크

2. Wireless LANs

- A. IEEE 802.11b/g
- в. WiFi (Wireless Fidelity)
- c. 전송속도 최대 54 Mbps
- D. 전송거리 초기 10m 현재 ~200m 증가

mobile hosts

2.2 네트워크 규모 - LAN

1. 근거리통신망 (LAN, Local Area Network)

300미터 이하의 통신 회선으로 연결된 시스템의 집합으로 회사나 대학 규모의 네트워크

2. 이더넷(Ethernet):

- A. 대표적인 버스 구조 방식의 근거리 통신망
- B. 10Mbps, 100Mbps, 1Gbps, 10Gbps Ethernet
- c. 현재는 버스 구조가 아닌 이더넷 스위치에 연결

2.2 네트워크 규모 - MAN / WAN

1. MAN (Metropolitan Area Network)

- A. LAN을 고속 백본(Backbone)으로 묶은 형태로 LAN 수 준의 높은 데이터 전송률 제공
- B. 도시 또는 큰 캠퍼스를 네트워크로 연결하는데 사용

2. WAN (Wide Area Network)

- A. 지리적으로 흩어진 통신망을 의미함
- B. LAN의 경우 건물, 학교, 연구소, 공장처럼 일정한 구역을 의미하는데 반하여, WAN은 지방과 지방, 국가와 국가, 대륙과 대륙 등 지리적으로 떨어진 거리를 연결

2.3 네트워크 전송방식: 회선 교환 vs 패킷 교환

1. Circuit Switching (회선 교환)

- A. End-end resources reserved for "call"
- B. dedicated resources: no sharing
- c. 장점? 신뢰성 및 속도
- D. 단점? 효율성

2.3 네트워크 전송방식: 회선 교환 vs 패킷 교환

1. Packet Switching (패킷 교환)

- A. each end-end data stream divided into packets
- B. user A, B packets *share* network resources
- c. Each packet contains user data plus control info (routing)
- D. 장점?효율성
- E. 단점? 신뢰성, 속도

2.3 네트워크 전송방식: 회선 교환 vs 패킷 교환

1. 점대점 방식

- A. 종류: 스타형, 링형, 완전형, 불규칙형
- B. 연결 수가 증가하면 성능적인 면은 유리하지만 비용이 증가됨

점대점 방식

1. 점대점 방식: 스타형

- A. 중앙의 중계 호스트 주위로 여러 호스트를 1:1 연결
- B. 중앙 호스트의 성능과 신뢰성이 중요
- c. 트리형: 스타형을 다단계로 확장

1. 브로드캐스팅(Broadcasting) 방식

- A. 네트워크에 연결된 모든 호스트에게 데이터를 전달하는 방식
- B. 주로 LAN 환경에서 사용
- c. 버스형과 링형이 존재

1. 브로드캐스팅 방식

- A. 버스형
 - 공유 버스에 모든 호스트를 연결
 - 둘 이상의 호스트가 데이터를 전송하면 충돌 발생
 - 충돌 문제의 해결 방법
 - ❖ 사전 예방: 전송 시간대를 다르게 하는 방법과 토큰 제어 방식이 가능
 - ❖ 사후 해결: 충돌을 감지하는 기능이 필요 (예: 이더넷)

B. 링형

- 호스트를 순환 구조로 연결
- 송신호스트가 전송한 데이터는 링을 한 바퀴 순환 후 송신호스트에 되돌아옴
- 중간의 호스트 중에서 수신 호스트로 지정된 호스트만 데이터를 내부에 저장
- 데이터를 전송하기 위해서는 토큰 확보가 필수

2.5 네트워크 연결

1. 인터네트워킹

A. 네트워크의 연결

2.5 네트워크 연결

1. 인터넷의 구조: 네트워크들의 네트워크

2.5 네트워크 연결

1. 사용자가 전송한 패킷은 다양한 네트워크를 통과하여 전송

1. 게이트웨이 (Gateway)

A. 인터네트워킹 기능을 수행하는 시스템한 네트워크에서 다른 네트워크로 들어가는 입구 역할하는 장치

2. 관련 용어

- A. 리피터: 네트워크의 확장에 이용 (신호 증폭, 물리계층)
- B. **브리지:** 호환성 있는 두 개의 네트워크를 연결 (물리, 데이터링크 계층)
- c. 스위치: 호환성 있는 여러 개의 네트워크를 연결 (물리, 데이터링크 계층)
- D. 라우터: 호환되지 않는 네트워크들을 연결하여 인터네트워크 구성 (물리, 데이터링크, 네트워크 계층)

1. 서비스 거부 공격 (Denial of service, DOS)

- A. 공격자가 가짜의 트래픽을 발생시켜서 서버와 네트워크 상의 자원을 압도함으로서 정상적인 사용자가 서비스를 이용하지 못하도록 하는 형태의 공격
- B. DDOS (Distributed Denial of Service)

1. 패킷 스니핑 (Packet sniffing)

A. 공격자가 네트워크 상의 메시지를 수동적으로 기록한 후에 분석

1. IP 스푸핑 (IP Spoofing)

A. 공격자가 잘못된 거짓소스 주소를 갖는 패킷을 전송

1. Record-and-Playback 공격

A. 공격자가 민감한 정보를 저장해두었다가 차후에 사용하는 방법

3. 인터넷 - 네트워크 계층 구조

1. 계층적 모듈 구조

- A. 모듈화
 - 크고 복잡한 시스템을 기능별로 여러 개 작고 단순한 모듈로 독립화
 - 모듈 사이의 적절한 인터페이스가 필요

3. 인터넷 - 네트워크 계층 구조

1. 계층적 모듈 구조

- A. 계층 구조
 - 상위 모듈이 하위 모듈에게 서비스를 요청
 - 하위 모듈은 서비스를 실행하고 그 결과를 상위 모듈에 통보

3. 인터넷 - 네트워크 계층 구조

1. 계층적 모듈 구조: 장점

- A. 전체 시스템을 이해하기 쉽고, 설계 및 구현이 용이
- B. 모듈간 표준 인터페이스가 단순하면 모듈 독립성을 향상 시스템 구조를 단순화시키는 장점이 됨
- c. 대칭 구조에서는 동일 계층 사이의 인터페이스인 프로토콜을 단순화시킬 수 있음
- D. 특정 모듈의 외부 인터페이스가 변하지 않으면 내부 기능 변화가 전체 시스템 동작에 영향을 미치지 않음

3. 인터넷 - 네트워크 프로토콜

- 1. 프로토콜 설계시 고려사항
 - A. 주소 표현, 오류 제어, 흐름 제어, 데이터 전달 방식

2. 주소 표현

- A. 주소는 네트워크 상의 시스템을 구분
- B. 활용도를 높이기 위하여 구조적 정보 포함 (국가, 지역 등)
- c. 1:1이 아닌 다자간 통신을 지원
 - 브로드캐스팅 (Broadcasting): 모든 호스트에 데이터 전달
 - 멀티캐스팅 (Multicasting): 특정 호스트에게 데이터 전달

3. 오류 제어

- A. 데이터 변형오류: 데이터가 깨져서 수신자에게 도착
- B. 데이터 분실오류: 데이터가 수신자에게 도착하지 못함

3. 인터넷 - 네트워크 프로토콜

1. 흐름 제어(Flow control)

- A. 수신자 처리능력에 비해 너무 빨리 데이터를 전송하지 않도록 제어
- B. 수신 버퍼가 부족하면 수신자는 데이터를 분실 처리함

2. 데이터 전달 방식(Data transfer)

- A. 단방향: 데이터를 한쪽 방향으로만 전송
- B. 전이중: 데이터를 양쪽에서 동시에 전송
- c. 반이중: 양방향으로 전송할 수 있지만,

특정 시점에서는 한쪽 방향으로만 전송

3. 인터넷 - OSI 참조 모델

1. OSI 7 계층모델

(Open Systems Interconnection 7 Layer-model)

OSI 7계층 모델의 동작

3. 인터넷 - OSI 참조 모델

1. 중계 기능

3. 인터넷 - OSI 참조 모델

1. 물리 계층(Physical Layer)

A. 데이터 전송 속도, 클록 동기화 방법, 물리적 연결 형태 등

2. 데이터링크 계층(Datalink Layer) - MAC 주소

- A. 물리 계층의 물리적 전송 오류 문제를 해결
- B. 프레임(Frame)

3. 네트워크 계층(Network Layer) - IP 주소

- A. 데이터의 전송 경로를 결정
- B. 호스트 구분을 위한 주소 개념 필요
- c. 패킷(Packet)

3. 인터넷 - OSI 참조 모델

- 1. 전송 계층(Transfer Layer) 포트 번호
 - A. 송수신 프로세스 사이의 단대단 통신 기능을 지원
 - B. 프로세스 구분을 위한 주소 개념 필요
- 2. 세션 계층(Session Layer)
 - A. 송수신자 사이에 상위적 연결 개념인 세션을 지원
- 3. 표현 계층(Presentation Layer)
 - A. 데이터의 의미와 표현 방법을 처리 (암호화/압축 기능도 처리)
- 4. 응용 계층(Application Layer)
 - A. 대표적인 인터넷 서비스: HTTP, FTP, Telnet, 전자 메일

3. 인터넷 - TCP/IP 모델

1. 5 계층으로 구성

3. 인터넷 - TCP/IP 모델

3. 인터넷 - TCP/IP 모델

1. 구현 환경

- A. 시스템 공간(계층 1 ~ 4): 운영체제에서 동작
- B. 사용자 공간(계층 5 ~ 7): 사용자 프로그램으로 동작

3. 인터넷: TCP 프로토콜

1. TCP (Transmission control protocol)

- A. 연결형 서비스를 지원
- B. 전이중 방식의 양방향 가상 회선을 제공
- c. 신뢰성 있는 데이터 전송을 보장
- D. 흐름 제어
 - 수신자의 처리량을 초과하여 전송하지 않음
- E. 혼잡 제어
 - 네트워크 라우터 처리량을 초과하여 전송하지 않음
- F. 오류 제어
 - 데이터 변형, 데이터 분실 오류를 재전송 기능으로 복구

3. 인터넷: TCP 프로토콜

1. TCP (Transmission control protocol)

- A. 송수신 포트 번호
- B. 순서 번호
- c. 응답 번호
- D. 체크썸
 - 헤더와 데이터에 대한 오류 검출

2. 캡슐화

3. 인터넷: UDP 프로토콜

1. UDP (User datagram protocol)

- A. 비연결형 서비스를 제공
- B. 헤더와 전송 데이터에 대한 체크섬 기능을 제공
- c. Best Effort 전달 방식을 지원

0 1	15 31
Source Port	Destination Port
Length	Checksum

3. 인터넷: 포트 번호 (TCP / UDP)

1. 포트 번호

- A. TCP, UDP 프로토콜이 상위 계층에 제공하는 주소 표현 방식
- B. TCP, UDP가 독립적으로 관리하는 고유의 포트 번호

세니스	포트 번호
FTP(데이터 채널)	20
FTP(제어 채널)	21
Telnet(텔넷)	23
SMTP	25
DNS	53
HTTP	80
rlogin	513
rsh	514
portmap	111

c. [unix] /etc/services 파일 참고

2.4 인터넷: IP 프로토콜

1. IP (Internet Protocol)

- A. 비연결형 서비스를 제공
- B. 패킷을 분할/병합하는 기능을 수행
- c. 헤더 체크섬(checksum)만 제공
- D. Best Effort 방식의 전송 기능

2. IP 헤더

- A. Time To Live(TTL)
 - 패킷 생존 시간
 - 라우터를 거칠 때마다
 1씩 감소, 0이 되면 제거

2.4 인터넷: IP 프로토콜 (네트워크 계층)

- 1. 송수신 호스트 사이의 패킷 전달 경로를 선택
- 2. 네트워크 계층 주요기능: 라우팅, 패킷의 분할과 병합

3. 라우팅

A. 송수신 호스트 사이의 패킷 전달 경로를 선택하는 과정

4. 패킷의 분할과 병합

- A. 상위 계층에서 내려온 데이터는 하위 계층인 링크 계층의 프레임 구조에 정의된 형식으로 캡슐화 되어야 함
- B. 송신 호스트는 전송 전에 적절한 크기로 데이터를 분할
- c. 수신 호스트는 분할되어 수신한 데이터를 다시 병합

2.4 인터넷: IP 프로토콜 (네트워크 계층)

- 1. 비연결형
- 2. 패킷의 전달 순서
 - A. 패킷이 서로 다른 경로로 전송되므로 도착 순서가 일정하지 않음
 - B. 상위 계층에서 순서를 재조정해야 함

3. 패킷 분실 가능성

- A. 패킷의 100% 도착을 보장하지 않음
- B. 상위 계층에서 패킷 분실 오류를 복구해야 함