1. Use the methods of this course to describe all the ways in which 200 coins with a total value of 300¢ can be chosen from among pennies, nickels, and dimes.

Let x_1 , x_2 , and x_3 be the number of pennies, nickels and dimes, respectively. We have $x_1 + x_2 + x_3 = 200$ as the equation for the total number of coins and $x_1 + 5x_2 + 10x_3 = 300$ as <u>as</u> the equation for their total value. The matrix equation

is
$$A\vec{x} = \vec{b}$$
 where $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 5 & 10 \end{bmatrix}$, $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 200 \\ 300 \end{bmatrix}$. Row-reduction yields

$$[A \mid \vec{b}] = \begin{bmatrix} 1 & 1 & 1 \mid 200 \\ 1 & 5 & 10 \mid 300 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \mid 200 \\ 0 & 4 & 9 \mid 100 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \mid 200 \\ 0 & 1 & \frac{9}{4} \mid 25 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \mid 200 \\ 0 & 1 & \frac{9}{4} \mid 25 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & -\frac{5}{4} & | & 175 \\ 0 & 1 & \frac{9}{4} & | & 25 \end{bmatrix} = [A \mid \vec{b}]_{rref}.$$
 From the Solution Algorithm, $\vec{x} = \begin{bmatrix} 175 \\ 25 \\ 0 \end{bmatrix} + \alpha \begin{bmatrix} -\frac{5}{4} \\ \frac{9}{4} \\ -1 \end{bmatrix}$

for any $\alpha \in \mathbf{R}$. Since the number of each coin must be a nonnegative integer, we

replace α by -4k where k is a nonnegative integer. Then, $\vec{x} = \begin{bmatrix} 1/5 + 5k \\ 25 - 9k \\ 4k \end{bmatrix}$.

Now
$$x_2 \ge 0$$
, and so $0 \le k \le 2$, from which we find $\vec{x} = \begin{bmatrix} 175 \\ 25 \\ 0 \end{bmatrix}, \begin{bmatrix} 180 \\ 16 \\ 4 \end{bmatrix}$, or $\begin{bmatrix} 185 \\ 7 \\ 8 \end{bmatrix}$.

2. a. What is A_{rref} if A is a matrix for a rotation in \mathbb{R}^3 by some angle about a line through the origin?

The column vectors of a rotation matrix are the images of the three standard basis vectors in \mathbb{R}^3 under the rotation. Since rotations do not change the angles nor the lengths of vectors, the column vectors of A must be mutually orthogonal unit vectors. So, the column vectors of A are non-coplanar and nonzero. So, the column vectors are linearly independent. Put another way, A is invertible and so,

$$A_{rref} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

b. What is A_{rref} if A is the matrix for projection onto a line through the origin in \mathbb{R}^3 not coincident with any of the coordinate axes?

The column vectors of A are projections of the standard basis vectors onto the given line. So, the column vectors of A must be non-zero vectors that are

collinear and, therefore, proportional to each other. $A_{rref} = \begin{bmatrix} 1 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ where a, b

are nonzero reals.

c. A is an $m \times n$ matrix and B is an $n \times p$ matrix. If the column vectors of AB are linearly independent, prove that the column vectors of B must also be linearly independent.

We know that if the column vectors of B are linearly dependent, the column vectors of AB must also be linearly dependent. Therefore, if the column vectors of AB are linearly independent, the column vectors of B must also be linearly independent. This statement is merely the contra-positive of the first.

Alternatively, note that the column vectors of any $r \times s$ matrix C are linearly independent if and only if when $\vec{x} \in \mathbf{R}^s$, $C\vec{x} = \vec{0}$ always implies that $\vec{x} = \vec{0}$. So, suppose that $B\vec{x} = \vec{0}$ for $x \in \mathbf{R}^p$. Then, $A(B\vec{x}) = A\vec{0} = (AB)\vec{x} = \vec{0}$. Since the column vectors of AB are assumed to be linearly independent, it follows that $\vec{x} = \vec{0}$ and we have shown that the column vectors of B are linearly independent.

- 3. Suppose that $[\vec{a}_1 \mid \vec{a}_2 \mid \vec{a}_3 \mid \vec{a}_4 \mid \vec{b}]_{rref} = \begin{bmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.
 - a. Find all the linear combinations of the vectors $\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4$ that sum to \vec{b} . Let the coefficients of the linear combinations be the corresponding

components of \vec{x} . Then, $[\vec{a}_1 | \vec{a}_2 | \vec{a}_3 | \vec{a}_4] \vec{x} = \vec{b}$ and, from the results above, using

the Solution Algorithm, we have $\vec{x} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} + \alpha \begin{bmatrix} 2 \\ 1 \\ -1 \\ 0 \end{bmatrix}$ for any $\alpha \in \mathbf{R}$.

b. Are there vectors \vec{c} in \mathbb{R}^4 so $[\vec{a}_1 \mid \vec{a}_2 \mid \vec{a}_3 \mid \vec{a}_4]\vec{x} = \vec{c}$ has no solution? Why?

Yes. There is a
$$\vec{c}$$
 in \mathbb{R}^4 so that $[\vec{a}_1 | \vec{a}_2 | \vec{a}_3 | \vec{a}_4 | \vec{c}]_{rref} = \begin{bmatrix} 1 & 0 & 2 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$.

This implies that there are no solutions to $[\vec{a}_1 | \vec{a}_2 | \vec{a}_3 | \vec{a}_4]\vec{x} = \vec{c}$. This \vec{c} is

obtained by applying to \hat{e}_4 , in reverse order, the inverses of the same elementary row operations that reduce A to A_{rref} .

c. Find all vectors \vec{x} in \mathbf{R}^4 so that $[\vec{a}_1 | \vec{a}_2 | \vec{a}_3 | \vec{a}_4]\vec{x} = \vec{0}$.

From part a, if we replace \vec{b} by the zero vector, $\vec{x} = \alpha \begin{vmatrix} 2 \\ 1 \\ -1 \end{vmatrix}$ for any $\alpha \in \mathbf{R}$.

d. If \vec{d} is one solution of $[\vec{a}_1 | \vec{a}_2 | \vec{a}_3 | \vec{a}_4]\vec{x} = \hat{e}_4$, find all other solutions.

$$\vec{x} = \vec{d} + \alpha \begin{bmatrix} 2 \\ 1 \\ -1 \\ 0 \end{bmatrix} \text{ for any } \alpha \in \mathbf{R}$$

4. L is a line in \mathbb{R}^2 through the origin at an angle θ to the 1-axis. P is the matrix for projection onto L and F is the matrix for reflection across L.

a. Using the following diagram, show that $F \vec{x} = P \vec{x} - (I - P) \vec{x}$ for any vector \vec{x} in the plane.

b. Determine \hat{u} , the unit vector parallel to L.

c. From part b, determine
$$P$$
 in terms of θ .
$$P = \begin{bmatrix} u_1 u_1 & u_1 u_2 \\ u_2 u_1 & u_2 u_2 \end{bmatrix} = \begin{bmatrix} \cos \theta \cos \theta & \cos \theta \sin \theta \\ \sin \theta \cos \theta & \sin \theta \sin \theta \end{bmatrix}$$

d. From parts a and b, compute F in terms of θ and simplify . Since $F \vec{x} = (2P - I)\vec{x}$ for all \vec{x} , F = 2P - I. So,

$$F = 2P - I = \begin{bmatrix} 2\cos^2\theta - 1 & 2\sin\theta\cos\theta \\ 2\sin\theta\cos\theta & 2\sin^2\theta - 1 \end{bmatrix} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}.$$

5. a. Solve
$$A(B+X)^{-1} = B^{-1}$$
 for X if $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix}$

We take the inverse of both sides of $A(B+X)^{-1} = B^{-1}$ to obtain

$$(A(B+X)^{-1})^{-1} = (B+X)A^{-1} = (B^{-1})^{-1} = B$$
. So, $(B+X)A^{-1} = B$. Now, multiply

both sides of this equation on the right by A to obtain B + X = BA and so,

$$X = BA - B = B(A - I) = \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} -6 & 0 \\ 6 & 4 \end{bmatrix}.$$

b. Determine the matrix A if $A \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $A \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$.

The two equations may be combined into one:: $A\begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix}$ and so,

because the matrix multiplying A is clearly invertible, we multiply this equation on the right by the inverse of this matrix.

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix} \cdot \frac{1}{5} \begin{bmatrix} 1 & -3 \\ 1 & 2 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 3 & 1 \\ 6 & 7 \end{bmatrix}.$$