第四章 铁碳合金相图

引言

- ■钢铁是现代工业中应用最广泛的金属材料。
- ■钢铁材料属于铁碳合金。碳**素钢、工程铸铁是铁碳合金;低** 合金钢、合金钢等实际上是有意加入合金元素的铁碳合金。
- ■在铁碳合金中,铁与碳可以形成Fe₃C、Fe₂C、FeC等一系列 化合物,随着碳的质量分数增加,合金的性能逐渐变脆,当碳 的质量分数大于5%之后,合金将失去使用价值。所以,在铁 碳合金中,一般只研究碳质量分数5%左右的合金。

(1) 铁(Fe)

铁是元素周期表上第 26 号元素,原子量为 55.85,属于过渡族元素。铁在 20℃时的密度为 7.87g/cm³。

在常压下于 1538℃熔化, 2738℃气化。 纯铁熔点为 1538℃,在1394℃和912℃温度 下发生两次同素异晶转变并在 770℃以下具有磁性,为铁磁物 质、770℃以上磁性消失。

温度 范围 (°C)	晶体符号	晶体结构
1538- 1394	δ - Fe	体心立方 (BCC)
1394 - 912	γ -Fe	面心立方 (FCC)
912- 770	α-Fe	体心立方 (BCC)
770 以下	α-Fe	体心立方 (BCC)

(2) 碳(C)

碳的原子序数为 6,原子量为 12.01,原子半径 0.077nm,20℃时的密度为 2.25g/cm3。自然界中,碳以石墨和金刚石两种形态存在。

(3) 铁碳合金的基本相

铁碳合金的相结构主要有固溶体和金属化合物两类。属于固溶体相的有铁素体和奥氏体,属于金属化合物相的主要为渗碳体。

相	符号	描述
液相(Liquid)	L	-
δ-铁素体Ferrite	δ (F)	C在δ-Fe中的间隙固溶体
奥氏体Austenite	γ (Α)	C在γ-Fe中的间隙固溶体
α-铁素体 Ferrite	α (F)	C 在α-Fe中的间隙固溶体 (室温,软,塑性好)
渗碳体	Fe ₃ C	Fe 和C形成的金属化合物 硬,脆

◆ 铁素体(Ferrite)—C在α-Fe中的间隙固溶体

912℃以下时,纯铁为具有体心立方晶格的 α -Fe,碳溶于 α -Fe中形成的间隙固溶体称为铁素体,用符号"F"表示。

由于 α -Fe具有体心立方晶格,晶格间隙很小,所以溶碳能力很小,在727℃时溶碳最多(ω c =0.0218%),室温下几乎约为零(ω c =0.0008%)。

铁素体的强度、 硬度不高,塑性和韧 性好。

显微组织与纯 铁相同,呈明亮的多 边形晶粒组织。

◆ 奥氏体 (Austenite) -C在γ-Fe中的间隙固溶体

- C溶于γ-Fe中的间隙固溶体称为 奥氏体,符号A
- 奥氏体的晶体结构为面心立方晶格
- 奥氏体是存在于727°C~1493°C 下的高温组织,
- γ-Fe的溶碳能力较强,在727℃时碳的溶解度为ωc=0.77%,随着温度的升高,溶解度增大,到1148℃时达到最大(ωc=2.11%),固溶强化效果较明显。

) 铁原子 ● 碳原子

◆ 渗碳体 (Cemenite)

- 渗碳体的分子式为Fe₃C,它是一种具有复杂晶格的间隙化合物。可用符号 Cem 表示,是铁碳合金中重要的基本相。
- 参碳体在钢和铸铁中与其他相共存时呈片状、球状、网状或板状。
- 参碳体是碳钢中主要强化相,硬度高,塑性和韧性几乎为0。

共析渗碳体Fe₃C_{共析}

铁碳相图Phase diagram of Fe-C

铁碳合金相图是研究 铁碳合金的重要工具。 它是研究铁碳合金的化 它是研究铁碳合金的化 学成分、组织和性能之 间关系的理论基础。

2. Fe-Fe₃C 相图分析

下图是 $Fe-Fe_3C$ 相图,图中各特征点的符号是国际通用的,不能随意更换。便于理解,将左上角($\delta-Fe$)包晶反应部分省略

特性点

特性点

特性点	温度/C	$w_c \times 100$	含 义 ^O
A	1538	0	纯铁熔点
В	1495	0.53	包晶转变时的液相成分
C	1148	4.30	共晶点。共晶转变反应式:L _C 1148℃ A _E + Fe ₃ C
D	1227	6.69	Fe₃C熔点
E	1148	2.11	碳在 γ-Fe 中的最大溶解度, 也是碳钢与白口铸铁的分界点(奥氏体的最高含碳量)
F	1148	6.69	共晶滲碳体成分点
G	912	0	α-Fe →→ γ-Fe 同素异构转变点(A₃)
Н	1495	0.09	碳在 8-Fe 中最大溶解度
J	1495	0.17	包晶点成分。包晶反应式: $L_B + \delta_H \longrightarrow A_j$
K	727	6.69	共析渗碳体成分点
N	1394	0	γ-Fe → δ-Fe 同素异构转变点(A₄)
P	727	0.0218	碳在 α-Fe 中的最大溶解度
S	727	0.77	共析点。共析转变反应式:As ──F _p +Fe ₃ C
Q	600 室温	$ \begin{array}{c} \sim 0.0057 \\ \sim 0.0008 \end{array} $	600℃时碳在 α-Fe 中的溶解度

①表中各特性点含义,均指合金在缓慢冷却或加热的相变。

特性线和相区

液相线 (liquidus): 相图上的液相线是 ACD

固相线(solidus):相图上的固相线是AECF,

相图中有四个单相区分别是:

ACD 以上-液相区(L) AESG-奥氏体区(A) GPQ-铁素体区(F) DFK以右-渗碳体区 (Fe₃C 或 Cem)

两相区:

ACE——液相十奥氏体区(L+A)

DCF——液相十渗碳体区(L+Fe₃C)

GSP——铁素体十奥氏体区(A+F)

ECFKS——奥氏体+渗碳体(A+Fe₃C)

QPSKL——铁素体+渗碳体(F+Fe3C)

两个水平线:

ECF——共晶转变线

PSK——共析转变线

注意:

珠光体转变(共析反应产物)

$$\gamma_s \to F \text{+} Fe_3 C$$

机械混合物,珠光体P

珠光体是一种组织,不是一种新相。

珠光体为铁素体和渗碳体的机械混合物。性能介于铁素体和渗碳体之间。

• 注意:

莱氏体 (共晶反应产物)

$L \rightarrow \gamma + Fe_3C$ 机械混合物,珠光体P

莱氏体是一种组织,不是一种新相。

莱氏体为奥氏体和渗碳体的机械混合物。(高温组织)

温度降低,Ld → P+Fe3C, 即Ld'低温莱氏体 莱氏体中因为含有大量渗碳体,因此,是一种硬脆的组织,延伸率几乎为0。

关键温度线转变介绍

- ◆AC线 为液体向奥氏体转变的开始线。ωc<4.3%铁碳合金在此线之上为均匀液相,冷却至该线时,液体中开始结晶出固相奥氏体,即: L→A
 - ◆ CD线 为液体向渗碳体转的 的开始线。ωc>4.3%~6.69% 间的铁碳合金在此线之上为均匀液相,冷却至该线时,液体中开始结晶出渗碳体,称为一次渗碳体,用 "Fe₃C₁"表示。

即: L→Fe₃C₁。

关键温度线转变介绍

◆AE线 为液体向奥氏体 τ° ← 转变的终了线。 ωc < 2.11%的液体合金冷至此 线,全部转变为单相奥氏 体组织。

◆ ES线 碳在奥氏体中的固溶度曲线。此温度常称为Acm线。低于此温度,奥氏体中将析出渗碳体,称为二次渗碳体(Fe3CⅡ)

◆ GS线 又称A3线,是ωc <0.77%的铁碳合金 固态冷却时,奥氏体向铁素体转变的开始线。随着温度的下降,转变出的铁素体量不断增多,剩余奥氏体的碳质量分数不断降低。(每增加 0.1%C, A₃温度约降低24℃)

◆ PQ线

是碳在铁素体中的溶解度曲线。

- ✓ 727℃时铁素体溶碳量最大为0.0218%。
- ✔ 随着温度的降低,溶碳量不断减小,当温度降至室

温时,溶碳量降至0.0008%。

✓ ωc > 0.0218%的铁碳合金,从727℃降至室温时,均会由铁素体析出渗碳体,称为三次渗碳体,用"Fe3C III"表示。

小结-相区

四个单相图区:

液相区(L) 奥氏体相区(A)

铁素体相区(F) 渗碳体相区(指DFK线)

两条三相共存线:

共晶线ECF, L、A和Fe3C三相共存

共析线PSK, A、F和Fe3C三相共存。

五个两相区:

L+A、L+Fe₃C₁
A+F、A+Fe₃C、F+Fe₃C

Fe - Fe₃C 相图

小结-三反应

两个反应

共晶反应

$$L(4.3 \text{ wt\% } C) \xrightarrow{1147^{\circ}C} \gamma (2.1 \text{ wt\% } C) + Fe_3C (6.67 \text{ wt\% } C)$$

共析反应

$$\gamma (0.77 \text{ wt\% } C) \xrightarrow{727^{\circ}C} \alpha (0.02 \text{ wt\% } C) + Fe_3 C (6.67 \text{ wt\% } C)$$

