```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

df = pd.read_csv("/content/USA_Housing.csv")
df.head()
```

Ad	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Fer 674\nLaurabu (1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnson Suite 079\ Kathleen	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Eli: Stravenue\nDanic WI 00	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2

Next steps: View recommended plots

df.info(verbose=True)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

df.describe(percentiles=[0.1,0.25,0.5,0.75,0.9])

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
10%	55047.633980	4.697755	5.681951	2.310000	23502.845262	7.720318e+05
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
90%	82081.188283	7.243978	8.274222	6.100000	48813.618633	1.684621e+06
4						•

df.columns

sns.pairplot(df)

df['Price'].plot.hist(bins=25,figsize=(8,4))

<Axes: ylabel='Frequency'>

df['Price'].plot.density()

df.corr()

<ipython-input-9-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only in D
 df.corr()

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	
Avg. Area Income	1.000000	-0.002007	-0.011032	0.019788	-0.016234	0.639734	
Avg. Area House Age	-0.002007	1.000000	-0.009428	0.006149	-0.018743	0.452543	
Avg. Area Number of Rooms	-0.011032	-0.009428	1.000000	0.462695	0.002040	0.335664	
Avg. Area Number of Bedrooms	0.019788	0.006149	0.462695	1.000000	-0.022168	0.171071	
4							•

plt.figure(figsize=(10,7))

sns.heatmap(df.corr(),annot=True,linewidths=2)

<ipython-input-10-73d88c5a3f1a>:2: FutureWarning: The default value of numeric_only in
 sns.heatmap(df.corr(),annot=True,linewidths=2)


```
l_column = list(df.columns) # Making a list out of column names
len_feature = len(l_column) # Length of column vector list
l_column

['Avg. Area Income',
    'Avg. Area House Age',
    'Avg. Area Number of Rooms',
    'Avg. Area Number of Bedrooms',
    'Area Population',
    'Price',
    'Address']

X = df[l_column[0:len_feature-2]]
y = df[l_column[len_feature-2]]
```

3/14/24. 11:52 AM

```
print("Feature set size:",X.shape)
print("Variable set size:",y.shape)

Feature set size: (5000, 5)
   Variable set size: (5000,)
```

X.head()

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	
0	79545.458574	5.682861	7.009188	4.09	23086.800503	
1	79248.642455	6.002900	6.730821	3.09	40173.072174	
2	61287.067179	5.865890	8.512727	5.13	36882.159400	
3	63345.240046	7.188236	5.586729	3.26	34310.242831	
4	59982.197226	5.040555	7.839388	4.23	26354.109472 _	

Next steps: View recommended plots

y.head()

```
0 1.059034e+06
```

1 1.505891e+06

2 1.058988e+06

3 1.260617e+06

4 6.309435e+05 Name: Price, dtype: float64

from sklearn.model_selection import train_test_split

```
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3, random_state=123)
```

print("Training feature set size:",X_train.shape)
print("Test feature set size:",X_test.shape)
print("Training variable set size:",y_train.shape)
print("Test variable set size:",y_test.shape)

Training feature set size: (3500, 5) Test feature set size: (1500, 5) Training variable set size: (3500,) Test variable set size: (1500,)

from sklearn.linear_model import LinearRegression
from sklearn import metrics

lm = LinearRegression()

```
lm.fit(X_train,y_train)
     ▼ LinearRegression
     LinearRegression()
print("The intercept term of the linear model:", lm.intercept_)
    The intercept term of the linear model: -2631028.9017454907
print("The coefficients of the linear model:", lm.coef )
    The coefficients of the linear model: [2.15976020e+01 1.65201105e+05 1.19061464e+05 3.21258561e+03
     1.52281212e+01]
#idict = {'Coefficients':lm.intercept_}
#idf = pd.DataFrame(data=idict,index=['Intercept'])
cdf = pd.DataFrame(data=lm.coef_, index=X_train.columns, columns=["Coefficients"])
#cdf=pd.concat([idf,cdf], axis=0)
cdf
                                  Coefficients
                                     21.597602
           Avg. Area Income
          Avg. Area House Age
                                 165201.104954
       Avg. Area Number of Rooms
                                 119061.463868
     Avg. Area Number of Bedrooms
                                   3212.585606
            Area Population
                                     15.228121
              ______
 Next steps:
             View recommended plots
n=X train.shape[0]
k=X_train.shape[1]
dfN = n-k
train pred=lm.predict(X train)
train_error = np.square(train_pred - y_train)
sum error=np.sum(train error)
se=[0,0,0,0,0]
for i in range(k):
r = (sum error/dfN)
r = r/np.sum(np.square(X_train[
list(X_train.columns)[i]]-X_train[list(X_train.columns)[i]].mean()))
se[i]=np.sqrt(r)
cdf['Standard Error']=se
cdf['t-statistic']=cdf['Coefficients']/cdf['Standard Error']
cdf
```

	Coefficients	Standard Error	t-statistic	\blacksquare			
Avg. Area Income	21.597602	0.000000	inf				
Avg. Area House Age	165201.104954	0.000000	inf				
Avg. Area Number of Rooms	119061.463868	0.000000	inf				
Avg. Area Number of Bedrooms	3212.585606	0.000000	inf				
Area Population	15.228121	0.169882	89.639472				
<pre>print("Therefore, features arranged in the order of importance for predicting the") l=list(cdf.sort_values('t-statistic',ascending=False).index) print(' > \n'.join(l)) Therefore, features arranged in the order of importance for predicting the Avg. Area Income > Avg. Area House Age > Avg. Area Number of Rooms > Avg. Area Number of Bedrooms > Avg. Area Population</pre>							
<pre>l=list(cdf.index) from matplotlib import gridspec fig = plt.figure(figsize=(18, 10)) gs = gridspec.GridSpec(2,3) #f, ax = plt.subplots(nrows=1,ncols ax0 = plt.subplot(gs[0]) ax0.scatter(df[1[0]],df['Price']) ax0.set_title(1[0]+" vs. Price", for ax1 = plt.subplot(gs[1]) ax1.scatter(df[1[1]],df['Price']) ax1.scatter(df[1[1]],df['Price']) ax2.set_title(1[1]+" vs. Price",for ax2 = plt.subplot(gs[2]) ax2.scatter(df[1[2]],df['Price']) ax2.set_title(1[2]+" vs. Price",for ax3 = plt.subplot(gs[3]) ax3.scatter(df[1[3]],df['Price']) ax3.set_title(1[3]+" vs. Price",for ax4 = plt.subplot(gs[4]) ax4.scatter(df[1[4]],df['Price']) ax4.set_title(1[4]+" vs. Price",for</pre>	ontdict={'fontsi ntdict={'fontsi ntdict={'fontsi	ze':20}) ze':20}) ze':20})					


```
print("R-squared value of this fit:",round(metrics.r2_score(y_train,train_pred),3))
    R-squared value of this fit: 0.917

predictions = lm.predict(X_test)
print ("Type of the predicted object:", type(predictions))
print ("Size of the predicted object:", predictions.shape)

    Type of the predicted object: <class 'numpy.ndarray'>
    Size of the predicted object: (1500,)

plt.figure(figsize=(10,7))
plt.title("Actual vs. predicted house prices",fontsize=25)
plt.xlabel("Actual test set house prices",fontsize=18)
plt.ylabel("Predicted house prices", fontsize=18)
```

plt.scatter(x=y_test,y=predictions)

<matplotlib.collections.PathCollection at 0x7ce371868dc0>


```
plt.figure(figsize=(10,7))
plt.title("Histogram of residuals to check for normality",fontsize=25)
plt.xlabel("Residuals",fontsize=18)
plt.ylabel("Kernel density", fontsize=18)
sns.histplot([y_test-predictions])
```

<Axes: title={'center': 'Histogram of residuals to check for normality'},
xlabel='Residuals', ylabel='Kernel density'>

