Teoría de la Computacion

Juan Pablo Sierra Useche

Universidad Del Rosario Escuela de Ingeniería, Ciencia y tecnología Matemáticas Aplicadas y Ciencias de la Computación

Índice general

1.	Automatas Finitos Deterministas y no Deterministas			
	1.1.	04.08.2020	\mid ¿Que es un Problema?	5
		1.1.1. Teor	rema	.5

ÍNDICE GENERAL

Capítulo 1

Automatas Finitos Deterministas y no Deterministas

04.08.2020 | ¿Que es un Problema?

Terminología

En Teoría de la Computación, un problema es una función de un conjunto \mathbb{A} en un conjunto \mathbb{B} . Se dice que $f: \mathbb{A} \to \{0,1\}$ es un problema de decisión.

Observación

Sea \mathbb{A} un conjunto y $\mathbb{B} \subseteq \mathbb{A}$. Resolver el problema de decir si x es un elemento de \mathbb{B} es equivalente a counstruir la función.

$$F_{\mathbb{B}}: \mathbb{A} \to \{0,1\}$$

1.1.1. Teorema

Sea $\mathbb A$ un conjunto. Se tiene que existe una función biyectiva $F:\varphi(\mathbb A)\to\{0,1\}^{\mathbb A}$ **Demostración**

• Sea $\mathbb{B} \subseteq \mathbb{A}$. Definitions $F(\mathbb{B}) = f_{\mathbb{B}}$

$$f_{\mathbb{B}}(x) = \begin{cases} 1 & si \ x \in \mathbb{B} \\ 0 & si \ x \notin \mathbb{B} \end{cases}$$

- Ahora resta demostrar que F es biyectiva:
 - 1) Sean $\mathbb{B}, \mathbb{C} \subseteq \mathbb{A}$ suponga que $f_{\mathbb{B}} = f_{\mathbb{C}}$. Observe que:

$$x \in \mathbb{B} \iff f_{\mathbb{R}}(x) = 1 = f_{\mathbb{C}}(x) \iff x \in \mathbb{C}$$

Lo que indica que $\mathbb{B}=\mathbb{C}$. Demostrando que la función es inyectiva.

2) Sea $f \in \{0,1\}^{\mathbb{A}}$ y existe $\mathbb{B} \subseteq \mathbb{A}$ teniendo en cuenta la primera parte de la demostración si $f_{\mathbb{B}}(x) = 1$ entonces $f_{\mathbb{B}^c}(x) = 0$ y como $\mathbb{B}^c \subseteq \mathbb{A}$ se puede concluir que para todo $f \in \{0,1\}^{\mathbb{A}}$ existe un conjunto \mathbb{I} tal que $f = f_{\mathbb{I}}$.

Por todo lo anterior ase acaba de demostrar la proposición.