class05: use visual markdown editor

Ebony Michelle Argaez (PID: A59026556)

Specifying dataset w/ ggplot()

```
#installed ggplot2 package in terminal 'install.packages("ggplot2")'
library(ggplot2)

#defining data set
ggplot(cars)
```

Specifying aesthetic mappings with aes()

```
ggplot(cars) + # + adds layers to plot
  aes(x=speed, y=dist) #maps variables from dataset
```


Specifying a geom layer w/ geom_point()

```
ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point() #actually plots points
```


To use ggplot I need to define the following: 1. Data 2. Aesthetics 3. geoms

```
ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point() + #actually plots points
  geom_smooth()
```

 $\ensuremath{\text{`geom_smooth()`}}\ using method = 'loess' and formula = 'y ~ x'$


```
ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point() + #actually plots points
  geom_smooth(method="lm", se=FALSE) #adds straight line w/out std. error
```

[`]geom_smooth()` using formula = 'y ~ x'

`geom_smooth()` using formula = 'y ~ x'

Speed and Stopping Distances of Cars

adding more plot aesthetics through aes()

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2 State
A4GNT -3.6808610 -3.4401355 unchanging
AAAS 4.5479580 4.3864126 unchanging
AASDH 3.7190695 3.4787276 unchanging
AATF 5.0784720 5.0151916 unchanging
AATK 0.4711421 0.5598642 unchanging
AB015752.4 -3.6808610 -3.5921390 unchanging
```

```
nrow(genes) #numb. of rows
```

[1] 5196

```
colnames(genes) # column names
                 "Condition1" "Condition2" "State"
[1] "Gene"
  ncol(genes) #numb. columns
[1] 4
  table(genes$State)
     down unchanging
                             up
       72
                 4997
                             127
  round(table(genes$State)/nrow(genes)*100, 2)
     down unchanging
                              up
               96.17
     1.39
                            2.44
  #graphing genes, condition1 v condition2
  ggplot(genes)+
    aes(x=Condition1, y= Condition2)+
    geom_point()
```



```
p= ggplot(genes)+
  aes(x=Condition1, y= Condition2, col= State)+
  geom_point()
p
```


#changing colors of plot points
p + scale_colour_manual(values= c("blue", "gray", "red"))

Gene Expression Changes Upon Drug Treatment

Going Further

```
#installed gapminder package in terminal 'install.packages("gapminder")'
library(gapminder)

#instalation of dplyr 'install.packages("dplyr")'
library(dplyr)
```

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

```
filter, lag
```

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

```
#filtering yr 2007
gapminder_2007 = gapminder %>% filter(year==2007)

#plotting gapminder_2007
ggplot(gapminder_2007)+
  aes(x= gdpPercap, y= lifeExp)+
  geom_point()
```



```
#changing plot point transparency
ggplot(gapminder_2007)+
  aes(x= gdpPercap, y= lifeExp)+
  geom_point(alpha=0.5)
```


adding more variables to aes()

```
#accounting for other variables: color based on continent, population by size of point
ggplot(gapminder_2007)+
   aes(x= gdpPercap, y= lifeExp, color= continent, size=pop)+
   geom_point(alpha=0.5)
```



```
#plot when we color the points by the numeric variable population, not accounting for loca
ggplot(gapminder_2007) +
   aes(x = gdpPercap, y = lifeExp, color = pop) +
   geom_point(alpha=0.8)
```


adjusting point size

```
ggplot(gapminder_2007) +
aes(x = gdpPercap, y = lifeExp, size = pop) +
geom_point(alpha=0.5)
```


#the point sizes are not proportional to population amount, not representative

Bar Charts

```
gapminder_top5 <- gapminder %>%
  filter(year==2007) %>%
  arrange(desc(pop)) %>%
  top_n(5, pop)

gapminder_top5
```

```
# A tibble: 5 x 6
  country
                           year lifeExp
                                                 pop gdpPercap
                continent
  <fct>
                <fct>
                           <int>
                                   <dbl>
                                                         <dbl>
                                               <int>
1 China
                            2007
                                                         4959.
                Asia
                                    73.0 1318683096
2 India
                Asia
                            2007
                                    64.7 1110396331
                                                         2452.
3 United States Americas
                            2007
                                    78.2 301139947
                                                        42952.
4 Indonesia
                Asia
                            2007
                                    70.6 223547000
                                                         3541.
5 Brazil
                            2007
                                    72.4 190010647
                Americas
                                                         9066.
```

```
ggplot(gapminder_top5) +
  geom_col(aes(x = country, y = pop))
```



```
ggplot(gapminder_top5) +
geom_col(aes(x = country, y = pop, fill = lifeExp))
```



```
#plot pop size by country
ggplot(gapminder_top5) +
  aes(x=country, y=pop, fill=gdpPercap) +
  geom_col()
```



```
#change order of bars
ggplot(gapminder_top5) +
  aes(x=reorder(country, -pop), y=pop, fill=gdpPercap) +
  geom_col()
```



```
#fill by country
ggplot(gapminder_top5) +
  aes(x=reorder(country, -pop), y=pop, fill=country) +
  geom_col(col="gray30") +
  guides(fill="none")
```


flipping bar charts

```
head(USArrests)
```

	Murder	Assault	UrbanPop	Rape
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7

```
USArrests$State <- rownames(USArrests)
ggplot(USArrests) +
  aes(x=reorder(State,Murder), y=Murder) +
  geom_col() +
  coord_flip()</pre>
```


Installed: install.packages("gifski") and install.packages("gganimate")

```
library(gapminder)
library(gganimate)

#creating plot of gapminder data
ggplot(gapminder, aes(gdpPercap, lifeExp, size = pop, colour = country)) +
    geom_point(alpha = 0.7, show.legend = FALSE) +
    scale_colour_manual(values = country_colors) +
    scale_size(range = c(2, 12)) +
    scale_x_log10() +
    # Facet by continent
    facet_wrap(~continent) +
    # gganimate part starts here
    labs(title = 'Year: {frame_time}', x = 'GDP per capita', y = 'life expectancy') +
    transition_time(year) +
    shadow_wake(wake_length = 0.1, alpha = FALSE)
```

combining plots

```
#setting up sample plots
p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))
p3 <- ggplot(mtcars) + geom_smooth(aes(disp, qsec))
p4 <- ggplot(mtcars) + geom_bar(aes(carb))

#using patchwork to combine all plots
(p1 | p2 | p3) / p4</pre>
```

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

