

JUNE 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9701/02

CHEMISTRY
Theory 1 (Structured Questions)

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9701	2

- 1 (a) Atoms which have the same number of protons (or same element) but [1] different numbers of neutrons (1)
 - **(b) (i)** ^{35}Cl (1)

(ii)
$$H^{37}Cl$$
 (1)

(c) H Cl line at 36 has rel. abundance of 90 $\frac{1}{38}$ (1)

These show
$$^{35}Cl$$
 and ^{37}Cl in ratio 3:1 (1) [or use of 35 and 37]

(d) Mean of the two isotopes
$$\frac{3 \times 35 + 1 \times 37}{4} = 35.5$$
 (1) [1]

[Total: 6]

- 2 (a) (i) That the volume of the gas molecules is negligible compared to the volume of gas (1)
 - (ii) That there are no intermolecular forces
 OR collisions of the molecules are perfectly elastic
 Particles are in constant motion, losing no energy on collision (1) any two [2]

(b)
$$6.02 \times 10^{23}$$
 (1) [1]

(c) (i) r = 0.192 nm (1) Assume most candidates will work in dm³ $v = 4 \times 3.14 \times (1.92 \times 10^{-9})^3 = 2.96 \times 10^{-26} \text{ dm}^3 (2.96 \times 10^{-29} \text{ m}^3) (1)$

(ii)
$$2.96 \times 10^{-26} \times \underline{6.02 \times 10}^{23} (1) = 1.78 \times 10^{-2} \text{ dm}^3 (1.78 \times 10^{-5} \text{ m}^3) (1)$$

(iii) 24 dm³ (0.024 m³) (1)

(iv)
$$\frac{1.78 \times 10^{-2} \times 10^{2}}{24} = 0.074\%$$
 (1)

- (v) Some statement which connects with (a) (i) above (1) max [5]
- hot metals will react with oxygen in air (or nitrogen)
 - to form oxides/will burn out/to a powder
 - argon will not react
 - at high temperatures O_2 and N_2 in air will react to give NO_x NOT expansion of gases on heating any two [2]

[Total: 10]

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9701	2

3 (a)
$$N_2 + 3H_2 = 2NH_3$$
 (1) exothermic (1) [2]

(c) Too high a temp and equilibrium favours LHS, less ammonia at equilibrium (1)

Too low a temp, rate too slow/not enough molecules have E_{act} (1) [2]

(d) (i)
$$K_p = \frac{PNH_3^2}{PN_2 \times PH_2^3}$$
 (1)

(ii)
$$K_p = \frac{37.2^2}{44.8 \times 105.6^3}$$
 (1)
= 2.62 x 10⁻⁵ atm⁻² (1) calculation and units [3]

(e) Excess (hence uncontrolled) nitrates leach out of fields into streams, seas (1)

Bacteria or algae grow fast/use oxygen/clog up water (1)

Balance destroyed/fish unable to live (1)

Balance destroyed/fish unable to live (1)

Process called eutrification (1)

any 3

[Total: 13]

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9701	2

- (c) (i) Na_2O MgO Al_2O_3 P_2O_5 (or P_4O_{10} or P_2O_3) SO_2 or SO_3 (1)
 - (ii) $Na_2O + H_2O \rightarrow 2NaOH$ (1)

(iii)
$$2NaOH + SO_2 \rightarrow Na_2SO_3 + H_2O$$
 (1) or $NaHSO_3$
 OR $2NaOH + SO_3 \rightarrow Na_2SO_4 + H_2O$ (1) $NaHSO_4$ [3]

[Total: 9]

(c) (i) Not biodegradable/does not decompose/unreactive
 Not affected by enzymes
 Not attacked by aqueous or polar reagents found in tissues
 Insoluble/does not absorb water/cotton absorbs water
 NOT is stronger than cotton
 [equivalent worthy points; they may overlap - but allow - max 2]

[2]

Page 4	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9701	2

Alkanes react with oxygen (combustion) Not possible in muscle (1) also react with halogens/in U.V. light muscle is internal and no halogens (1) [ecf for alkene answers in (b)]

[Total: 6]

(1)

[2]

[2]

6 (a)
$$\frac{66.7}{12} \frac{11.1}{1} \frac{22.2}{16}$$

$$= 5.5 = 11.1 = 1.3875$$
Divide by 1.3875
$$C_4H_8O \quad (1) \qquad 48 + 8 + 16 = 72 \quad \text{hence } C_4H_8O$$

(b) (i) orange ppt (1) red to yellow/crystals or solid

 C_4H_8O (1)

- (ii) ketone (1)
- CH₃CH₂COCH₃ or butanone (1) (iii) [3]
- (c) (i) NaBH₄ allow NaAlH₄ (Li Al H₄) (1) H₂/Ni or Pt
 - (ii) secondary alcohol (1)
 - (iii) CH₃CH₂CHOHCH₃ (1) [Allow ecf marks if (b) (iii) is butanal] [3]

[Total: 8]

7 (a) (i) e.g.
$$CH_{3}CO_{2}C_{3}H_{7} \quad CH_{3}CO_{2}CH(CH_{3})_{2} \quad CH_{3}CH_{2}CO_{2}C_{2}H_{5} \quad H-CO_{2}C_{4}H_{9}$$

$$C_{3}H_{7}CO_{2}CH_{3} \quad + \text{ branches} \qquad \qquad \text{any three} \qquad \textbf{[3]}$$

(ii)
$$RCO_2R' + NaOH \rightarrow RCO_2Na$$
 (1) + R'OH (1) $\rightarrow RCO_2H + R'OH$ (1) only [2]

- (b) (i) * volatile, or liquids (1) immiscible, with water (1) smell (1) [2] and (ii) any two
- (c) solvents, perfumes, flavourings, lotions, olive or palm oils (i) any two
- and (ii) To make soap, to make Terylene [2] NOT polyesters

[Maximum Total: 8]