Costa Rica Country Insights

21 Feb 2025

Congratulations! This country has available data.

This page includes country-specific insights and more detailed analysis, including carbon stocks, emissions factors, and ecosystem wetland area for mangrove, marsh, and seagrass ecosystems. This report details information for the selected country, **Costa Rica**.

Please explore the rest of the dashboard for more exciting visualizations, map features, and data.

Resources referenced to calculate estimates for **Costa Rica** are listed below under 'References' at the bottom of this document.

Total Carbon Stock Estimates

Total Carbon stock estimates were calculated for each country and habitat At this time total Carbon stock estimates do not include seagrass

We estimate that **Costa Rica** contains between 11763763.48 to 8348628.09 metric tonnes of soil C to a depth of 1 m, with a mean estimate of 10056195.79 metric tonnes C.

country	territory	habitat	total_stocks	total_stocks_lower total	l_stocks_upper total_	_stocks_se
Costa	Costa	total	10056196	11763763	8348628	871208
Rica	Rica					

This total estimate includes total mangrove carbon stocks, from NA to NA metric tonnes of soil C to a depth of 1 m, with a mean estimate of 9652685.06

country	territory	habitat	total_stocks	total_stocks_lower	total_stocks_upper tota	l_stocks_se
Costa	Costa	mangrove	9652685	NA	NA	832619.6
Rica	Rica					

This total estimate also includes total tidal marsh carbon stocks, ranging from NA to NAmetric tonnes of soil C to a depth of 1 m, with a mean estimate of 403510.73

country	territory	habitat	$total_stocks$	total_stocks_lower_total_	_stocks_upper total_stocks_se
Costa Rica	Costa Rica	marsh	403510.7	NA	NA 56738.6

Seagrass carbon stocks were not included in the total value due to lack of a global, transparent, and independently assessed seagrass habitat map, however, best available areas and stocks for **Costa Rica** are explored in the following 'Wetland Areas and Activities' section.

Wetland Areas and Activities

We estimate mangrove area in Costa Rica to be 34063.942376899 to 1788.87242564676 hectares, with a mean estimate of 38794.3958213998 hectares according to Global Mangrove Watch Bunting et al. (2018).

We estimate tidal marsh area in **Costa Rica** to be 958.474135052955 to 1788.87242564676 hectares, with a mean estimate of hectares according to Worthington et al. (2024).

We estimate seagrass area to be **Costa Rica** to be a mean of 16 hectares, according to McKenzie et al. (2020), aggregating data from multiple sources.

McKenzie et al. (2020) classifies seagrass area estimates as either high or medium to low confidence. seagrass_area_high_confidence % of the estimated seagrass area of **Costa Rica** is considered high to medium confidence, while seagrass_area_low_confidence % of the estimated seagrass area is categorized as low confidence.

Calculated Stocks and Emissions Factors

This section of the report details whether data is available to estimate Tier I, Tier II, or Tier III value estimates for tidal marsh, mangrove, and seagrass ecosystems in **Costa Rica**.

If data for the selected country is available in the Coastal Carbon Atlas, we have applied a Tier II emission factor based on a simple average of country specific data queried from the Atlas.

Data from Costa Rica includes 179 soil profiles from 59watersheds. This data comes from 2 different habitat types.

If there is not yet any country specific information in the Coastal Carbon Atlas, we instead applied IPCC Tier I estimate. IPCC Tier I estimates for mangrove, marsh, and seagrass ecosystems are listed below. **SOURCE**

The table in this section also details whether the calculated Tier II value is significantly different from the estimated Tier I values. This is observed in the "Overlap" column.

Table 4: IPCC Tier I Value Estimates

Habitat	Mean	Lower_CI	Upper_CI
mangrove	386	351	424
marsh	255	254	297
seagrass	108	84	139

Table 5: Availiability of Tier I and Tier II Data

Country	Territory	Habitat	Tier	Overlap
Costa Rica	Costa Rica	mangrove	Tier II	Country-specific average is significantly less than Tier I
Costa	Costa	marsh	Tier I	NA
Rica Costa Rica	Rica Costa Rica	seagrass	Tier I	NA

Tier I Carbon Stocks

This table includes Tier I Carbon Stocks included for Costa Rica.

country	territory	habitat	stock_MgHa_mstanck	_MgHa_lowe s @lck_	_MgHa_upp	etii EH	carbon_pool
Costa Rica	Costa Rica	marsh	255	254	297	TierI	soil
Costa Rica	Costa Rica	seagrass	108	84	139	TierI	soil

Tier II Carbon Stocks

This table includes Tier II Carbon Stock estimates for **Costa Rica**. Estimates in this table were derived from data queried from the Coastal Carbon Atlas. SOURCE

country	territory	habitat tier	carbon	_postock_MgHa	_streekn_MgHa	st sc k_MgHa_up	speck <u>I</u> MgHa_lowerCI
Costa Rica	Costa Rica	mangroveTierI	soil	248.8165	11.91779	272.1749	225.458

Tier III Carbon Stocks

Tier III carbon stocks were estimated, when available, from remote sensing data from Maxwell et al 2021 and Sanderman et al 2018. The table below details whether estimated values are available for **Costa Rica**, and any overlap with associated Tier I or Tier II values.

If there are no Tier III estimates associated with the selected country, please refer to Tier I and Tier II tables.

countr y errito h yabitastock_Mgddak_nMgdduckloMgdddllllipg	petri <u>e</u> rfie <u>r o</u> verlaps_ti	erIIItierIII_	gt ti<u>er</u>tid r olverlap	os <u>titein</u> erI
Costa Costa mangris 6:2347265.3626 407.1068 greater Rica Rica than	Remote-sensing esimate overlaps country-specific average	less than	Remote- sensing esimate overlaps Tier I	Tier III

References

Bunting, Pete, Ake Rosenqvist, Richard M. Lucas, Lisa-Maria Rebelo, Lammert Hilarides, Nathan Thomas, Andy Hardy, Takuya Itoh, Masanobu Shimada, and C. Max Finlayson. 2018. "The Global Mangrove Watch—a New 2010 Global Baseline of Mangrove Extent." Remote Sensing 10 (10): 1669. https://doi.org/10.3390/rs10101669.

McKenzie, Len J, Lina M Nordlund, Benjamin L Jones, Leanne C Cullen-Unsworth, Chris Roelfsema, and Richard K F Unsworth. 2020. "The Global Distribution of Seagrass Meadows." *Environmental Research Letters* 15 (7): 074041. https://doi.org/10.1088/1748-9326/ab7d06.

Worthington, Thomas A., Mark Spalding, Emily Landis, Tania L. Maxwell, Alejandro Navarro, Lindsey S. Smart, and Nicholas J. Murray. 2024. "The Distribution of Global Tidal Marshes from Earth Observation Data." Global Ecology and Biogeography 33 (8). https://doi.org/10.1111/geb.13852.