

ORGANOMETALLICS

Metal-Ligand Cooperation as Key in Formation of Dearomatized Ni^{II}-H Pincer Complexes and in Their Reactivity toward CO and CO₂

Dror Oren,[†] Yael Diskin-Posner,[‡] Liat Avram,[‡] Moran Feller,*^{,†} and David Milstein*^{,†}

[†]Department of Organic Chemistry and [‡]Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100,

Supporting Information

ABSTRACT: The unique synthesis and reactivity of [(RPNP*)NiH] complexes (1a,b), based on metal-ligand cooperation (MLC), are presented (RPNP* = deprotonated PNP ligand, R = Pr, Bu). Unexpectedly, the dearomatized complexes 1a,b were obtained by reduction of the dicationic complexes [(RPNP)Ni(MeCN)](BF₄)₂ with sodium amalgam or by reaction of the free ligand with Ni⁰(COD)₂. Complex 1b reacts with CO via MLC, to give a rare case of a distortedoctahedral PNP-based pincer complex, the Ni(0) complex 3b. Complexes 1a,b also react with CO2 via MLC to form a rare example of η^1 binding of CO₂ to nickel, complexes 4a,b. An unusual CO₂ cleavage process by complex 4b, involving C-O and C-P cleavage and

C-C bond formation, led to the Ni-CO complex 3b and to the new complex $[(P^iPr_2NC_2O_2)Ni(P(O)^iPr_2)]$ (5b). All complexes have been fully characterized by NMR and X-ray crystallography.

ate-transition-metal complexes of electron-donating and bulky "pincer" ligands have found important applications in synthesis, bond activation, and catalysis. 1-6 The lutidinebased pincer ligands (Scheme 1) are highly electron donating ligands with a relatively low trans influence of the pyridinic nitrogen and benzylic "arms" amenable to deprotonation.

Scheme 1. H-X Bond Activation by Aromatization/ Dearomatization MLC Reactivity

In recent years our group has developed a novel mode of metal-ligand cooperation (MLC), involving aromatization/ dearomatization of lutidine-based pincer complexes (Scheme 1). $^{7-12}$ This mode of reactivity enabled the activation of various substrates such as alcohols, $^{13-17}$ amines, $^{18-21}$ nitriles, 22,23 boranes, 24 dihydrogen, $^{25-27}$ and dioxygen, 28 as well as activation of C_{sp2} – H^{29} and C_{sp3} – H^{30} bonds, and it is a key step in the design of several environmentally benign catalytic

Due to the importance of CO2 as a potential C1 building block, 31,32 we have explored the reactivity of dearomatized pincer complexes toward CO2. It was found that MLC is also involved in the activation of CO₂ by dearomatized lutidine-based complexes of Fe, ³³ Ru, ^{34,35} Re, ³⁶ Ni, ³⁷ and Ir, ³⁸ reversibly forming a new C-C bond between the ligand backbone and

CO₂. Recently, we reported the reductive cleavage of CO₂ by dearomatized (*Bu-PNP)Ir-H and (*Bu-PNP)Rh-H complexes via MLC (PNP = 2,6-bis(di-tert-butylphosphinomethyl)pyridine),^{38,39} leading to the design of a cycle of photocarbonylation of benzene.³⁹

Herein we report a rare case of Ni(η^1 -CO₂- κ C) complexes, obtained by direct coordination of free CO2 to lutidine-based Ni-hydride complexes [(R-PNP*)NiH] (R-PNP* = dearomatized PNP ligand, R = ^tBu, ⁱPr) involving metal-ligand cooperation.

CO₂ coordination to Ni complexes is well known, 40 and Ni complexes serve as efficient catalysts in CO2 activation and utilization as a C1 building block, 31,41 mainly in CO₂ hydrogenation $^{42-45}$ and carboxylation. $^{46-56}$ The first structurally characterized metal-CO₂ complex was $(PCy_3)_2Ni(\eta^2$ -CO₂), reported by Aresta et al. in 1975 (Scheme 2).⁵⁷ Since then, several similar $Ni(\eta^2-CO_2)$ complexes have been reported, 58,59 including a unique five-coordinated $\mathrm{Ni}(\eta^2\text{-}\mathrm{CO}_2)$ complex.⁶⁰ A unique coordination mode of μ - η^2 , η^2 -CO₂ in a dinuclear Ni complex was reported by Sadighi and coworkers, ⁶¹ and a rare case of Ni^{III} $(\eta^1 - (CO_2)^{\bullet} - \kappa O)$ was reported by Chiou, Liaw, and co-workers. 62 Recently a rare case of $Ni^{II}(\eta^1-CO_2-\kappa C)$ was reported by Lee⁶³ (Scheme 2).

The dearomatized complex [(tBu-PNP*)NiH] (1a, Scheme 3), reported by van der Vlugt et al., was obtained by reaction of LiAlH₄ with the dearomatized complex [(^tBu-PNP*)NiCl].⁶⁴ Surprisingly, we obtained the Ni(II) complex 1a by attempting to reduce the dicationic Ni(II) complex [(*Bu-PNP)Ni-

Received: March 18, 2018 Published: May 9, 2018

Organometallics Article

Scheme 2. Mononuclear Ni CO, Complexes

Scheme 3. Synthesis of Complexes 1a,b

 $(MeCN)](BF_4)_2^{64}$ with sodium amalgam (Scheme 3). Single crystals of complex **1a** were obtained by slow evaporation of its benzene solution. The unreported X-ray structure of **1a** is shown in Figure 1. The new complex [(i Pr-PNP)Ni(MeCN)]-

Figure 1. Single-crystal X-ray structures with thermal ellipsoids shown at the 50% probability level of complex **1a** (left) and complex **1b** (right). Hydrogen atoms, except Ni–H and side arm protons, are omitted for clarity. See the Supporting Information for a full description of the structures.

 $(\mathrm{BF_4})_2$ was also prepared, and upon similar treatment with sodium amalgam the corresponding dearomatized hydrido complex 1b was obtained (Scheme 3). Crystals suitable for X-ray diffraction of 1b (Figure 1) were obtained by evaporation of its pentane solution. The X-ray structures of 1a,b reveal the expected square-planar geometry.

Complex 1b exhibits in the 1H NMR spectrum a hydride signal at -18.13 ppm ($^2J_{\rm PH}=65$ Hz), and the $^{31}P\{^1H\}$ NMR spectrum exhibits an AB pattern centered at 54.72 ppm ($^2J_{\rm PP}=225.1$ Hz), similar to the spectra reported for 1a. 64

We believe that the reduction of complexes 2a,b leads initially to Ni(0) intermediates forced into a square-planar geometry by the relatively rigid PNP pincer ligand. As a d^{10} ML₄ complex, Ni(0) complexes prefer to adopt a tetrahedral geometry, and Ni(0) square-planar complexes are as yet

unknown. Only one d^{10} square-planar complex is known, a Pt(0) complex.⁶⁵ The postulated unstable Ni(0) intermediates rearrange by metal—ligand cooperation, in which proton transfer from the benzylic position of the pincer ligand to the metal center takes place, yielding the Ni(II) dearomatized hydride complexes 1a,b. In support of this mechanism, reaction of the Ni 0 (COD) $_2$ complex with the R-PNP ligands (R = t Bu, i Pr) resulted in the dearomatized complexes 1a,b exclusively (Scheme 3).

In order to explore the possibility of reverting the metal-ligand cooperative proton transfer from the arm to the metal center, thus gaining a Ni(0) complex, complexes 1a,b were reacted with CO. Upon treatment of complex 1a with 1 equiv of CO no reaction was observed, likely as a result of steric congestion imposed by the bulky ^tBu-PNP ligand. However, upon addition of 1 equiv of CO to the ⁱPr-PNP complex 1b, a rapid color change occurred, yielding the unusual neutral pincer Ni(0) carbonyl complex 3b (Scheme 4). Complex 3b exhibits a

Scheme 4. Formation of the Ni(0) Complex 3b and Its Single-Crystal X-ray Structure with Thermal Ellipsoids Shown at the 50% Probability Level^a

"Hydrogen atoms are omitted for clarity. See the Supporting Information for a full structural description.

singlet peak at 68.36 ppm in the ³¹P{¹H} NMR, indicating a metal-ligand cooperative transfer of a proton from the metal back to the unsaturated arm, yielding a symmetric complex. The carbonyl ligand gives rise to a triplet peak at 204.02 ppm in the ¹³C{¹H} NMR spectrum, at a slightly higher field in comparison to that of the recently reported nickel monocarbonyl anionic complex {Na(12-C-4)₂}{(acriPNP)Ni(CO)}. Slow evaporation of the benzene solution resulted in formation of single crystals suitable for X-ray diffraction (Scheme 4), and these adopt a distorted-tetrahedral geometry. The P-Ni-CO angle is the only characteristic tetrahedral angle (111.3(2)°), while the N-Ni-P and the N-Ni-CO angles are 85.0(1) and 125.8(2)°, respectively. The Ni-CO and C-O bond distances are 1.862(6) and 1.030(6) Å, respectively, and the CO IR band appears at 1888 cm⁻¹ in benzene solution. In comparison, the recently reported monocarbonyl Ni(0) anionic complex [Na(12-C-4)2][(acriPNP)Ni(CO)], which also adopts a distorted-tetrahedral geometry due to the rigid PNP ligand, exhibits Ni-CO and C-O bond lengths of 1.77(1) and 1.18(1) Å, respectively, and an IR CO band appears at 1828 cm⁻¹, indicating a higher degree of π back-donation from the low-valent nickel center in comparison with 3b.66

The dearomatized hydride complexes ${\bf 1a,b}$ react with ${\rm CO_2}$ to give the aromatized complexes ${\bf 4a,b}$ with a rare η^1 coordination mode of carbon dioxide (Scheme 5). While complex ${\bf 1b}$ reacts readily with ${\rm CO_2}$ at ambient temperature with only 0.5 bar of ${\rm CO_2}$, forming complex ${\bf 4b}$ in 82% yield (according to ${\rm ^{31}P}$

Organometallics Article Article

Scheme 5. Synthesis of Complexes 4a,b

$$\begin{array}{c|c}
 & PR_2 \\
 & N-Ni-H \\
 & PR_2
\end{array}$$

$$\begin{array}{c|c}
 & PR_2 \\
 & PR_2
\end{array}$$

4a: R = ^tBu, 8 bar CO₂, 72 hrs, 80 °C.

4b: R = ⁱPr. 0.5 bar CO₂.8 hrs. room temperature.

NMR) after 8 h, the conversion of 1a to 4a requires the more forcing conditions of 8 bar, 80 °C, and 72 h, yielding 60% of the product.

Whereas the η^2 -CO₂ coordination mode is common, the η^1 -CO₂ coordination mode is rare. It was reported for [Rh-(diars)₂Cl(CO₂)],⁶⁷ [Ru(bpy)₂(CO)(CO₂)]·3H₂O,^{68,69} [Ir-(dmpe)₂Cl(CO₂)],⁷⁰ and [Co(salen)K(η^1 -CO₂)(THF)].^{71,72} The only Ni- η^1 -CO₂ complex is the recently reported anionic complex [Na(12-C-4)₂][(PNP)Ni- η^1 -CO₂] (PNP = N[2-PⁱPr₂-4-Me-C₆H₃]₂),⁶³ which was obtained by a reduction of the carboxylate complex [(PNP)NiCOONa] and not by direct CO₂ coordination, unlike complexes 4a,b.

Crystals suitable for X-ray diffraction of 4a,b (Figure 2) were obtained from the crude reaction mixture in a pressure flask

Figure 2. Single-crystal X-ray structures, with thermal ellipsoids shown at the 50% probability level, of complexes **4a** (left) and **4b** (right). Hydrogen atoms and cocrystallized solvents are omitted for clarity. See the Supporting Information for a full description of the structures.

under a CO2 atmosphere. Both complexes exhibit a distortedsquare-planar geometry with P-Ni-P angles of 171.39(3) and 173.4(1)° and N-Ni-C angles of 179.0(1) and 178.6(2)° for complexes 4a,b, respectively. The CO₂ plane is almost perpendicular to the pincer ligand plane. The Ni-CO₂ bond lengths in complexes 4a,b are 1.950(3) and 1.912(4) Å, respectively, which are in the range of reported η^1 -CO₂ complexes and longer by 0.11-0.044 Å than those reported for $Ni-\eta^2$ -CO₂. 57,59 The two C-O bond lengths are similar (1.244(3), 1.254(3) Å in 4a and 1.240(5), 1.250(5) Å in 4b), unlike the C–O bonds in reported Ni- η^2 -CO₂ complexes, in which the difference in length is 0.06 Å. ^{59,60} In addition, the large and similar distances between the oxygen atoms and the metal center (2.737(2), 2.721(1)) Å in 4a and 2.749(3),2.637(3) Å in 4b) also indicate an η^1 -CO₂ coordination mode, as the Ni–O bond lengths in η^2 -CO₂ complexes are shorter by 0.8-0.5 Å. 57,59 The bond lengths of the CO₂ ligand in complexes 4a,b are similar to the reported bonds of the complex $[Na(12-C-4)_2][(PNP)Ni-\eta^1-CO_2]^{.63}$ In addition, the Ni-CO₂ bond length in complex 4a is longer by 0.04 Å in comparison with 4b. This elongation is probably due to the more sterically demanding ^tBu-PNP ligand in comparison to

the ⁱPr analogue. Aresta et al., in his seminal work on $(PR_3)_2Ni(\eta^2\text{-}CO_2)$ complexes $(R=(C_6H_{11}), Et, Bu^n)$, also observed that steric hindrance has a great influence on the Ni–CO₂ bond strength. ⁵⁸ We have previously reported that the steric difference between the ^tBu-PNP and ⁱPr analogues can lead to large differences in reactivity. ⁷³ The lower steric hindrance of the ⁱPr-PNP can result in a higher degree of π back-donation from the Ni center to the CO₂ ligand, ⁶³ which shortens the Ni–CO₂ bond length. This is in line with the differences in reaction conditions for the synthesis of complexes 4a,b and the differences in reactivity of complexes 1a,b toward CO. According to NMR studies, whereas complex 1b reacts with substoichiometric amounts of CO₂ at room temperature to gradually form complex 4b (Figure 3), complex 1a requires

Figure 3. $^{31}P\{^{1}H\}$ NMR (121.4 MHz) spectra representing gradual injection of about 0.2 equiv of CO_2 into a toluene solution of complex 1b in an NMR tube equipped with a septum cap. Similar conditions with complex 1a yielded no detectable conversion.

at least 5 bar of CO_2 to achieve detectable conversion. In addition, while the formation of **4b** under these conditions requires several minutes, detectable formation of **4a** requires at least 12 h.

Complexes **4a,b** exhibit symmetric ^1H and ^{13}C NMR spectral patterns of the ligand backbone and a singlet signal in the $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum at 47.65 (**4a**) and 35.46 ppm (**4b**), as expected for aromatic square-planar complexes. The CO₂ ligand gives rise to broad peaks at 174.74 and 173.25 ppm, respectively, in the $^{13}\text{C}\{^1\text{H}\}$ NMR spectra, which are at a higher field in comparison to the reported chemical shifts of the CO₂ ligands in the complexes $[\text{Ru}(\text{bpy})_2(\text{CO})(\text{CO}_2)]\cdot 3\text{H}_2\text{O}^{68,69}$ (203.9 ppm) and $[\text{Na}(12\text{-C-4})_2][(\text{PNP})\text{Ni-}\eta^1\text{-CO}_2]^{63}$ (197.25 ppm). The reported Ni $-\eta^2\text{-CO}_2$ complexes give rise to a signal at 164 ppm. 59,60

Although complex **4b** is stable at room temperature, when a THF solution of **4b** is heated to 80 °C under 5 bar of CO_2 , an unexpected reaction was observed. According to the $^{31}P\{^{1}H\}$ NMR spectrum, full conversion to two products took place, giving rise to a singlet signal at 68.3 ppm, assigned as complex **3b**, and a pair of doublets at 64.3 and 102.9 ppm ($^{2}J_{PP}=90$ Hz), assigned as complex **5b** (Scheme 6). Complexes **3b** and **5b** were obtained from complex **4b** also at ambient temperature under 5 bar of CO_2 , although at lower conversion. Complex **4a** demonstrated no such reactivity, despite the use of more forcing conditions of 10 bar of CO_2 at 353 K for 7 days.

Complex 3b was extracted from the reaction mixture with pentane, and the two products, 3b and 5b, were isolated and fully characterized. Crystals suitable for X-ray diffraction of $[(P^{iPr2}NC_2O_2)Ni(P(O)^iPr_2)]$ (5b, Figure 4) were obtained by layering of pentane over a dichloromethane solution. Complex

Organometallics Article

Scheme 6. CO₂ Cleavage by Complex 4b, Involving C=O and C-P Cleavage and C-C Bond Formation

Figure 4. Single-crystal X-ray structures with thermal ellipsoids shown at the 50% probability level of complex **5b**. Hydrogen atoms are omitted for clarity. See the Supporting Information for a full description of the structure.

5b exhibits a distorted-square-planar geometry with P(1)-Ni-O(1) angle of $167.04(6)^{\circ}$ and N-Ni-P(2) angle of $170.51(6)^{\circ}$. The C=O(2) and C-O(1) bond lengths are 1.229(3) and 1.296(3) Å, respectively, both longer than the free CO₂ bond length by 0.07-0.14 Å, and the C(7)-C(100) bond length is in the range of a single C-C bond, 1.519(4) Å. The NMR data of **5b** fit well with its X-ray structure, and two distinguishable CH₂ signals of the benzylic positions, in which only one is coupled to a phosphorus atom, were observed in the 1H and $^{13}C\{^1H\}$ NMR.

Apparently, two molecules of CO₂ are involved, one leading to C-P cleavage followed by C-C bond formation, generating a carboxylato ligand, while the second molecule oxidizes the ⁱPr₂P fragment to the ⁱPr₂P=O ligand. The resulting CO is then trapped by another molecule of the starting complex to form the carbonyl complex 3b. Similar reactivity was reported recently for the Ir(I) complex [Ir(depe)(dbuP)] (depe = 1,2bis(diethylphosphino)ethane, dbuP = 1,8-diazabicyclo[5.4.0]undec-7-ene).⁷⁴ The Ir(I) complex reacts with two CO₂ molecules to give the Ir(III) carbonyl phosphoryl complex [Ir(depe)(CO)(Ph₂PO)(dbuCO₂)], with a carboxylate incorporation into the dbuP ligand. In both complexes, the reported Ir complex and complex 4b, four new bonds were formed, M-C, M-O, C-C, and P-O, and two bonds were cleaved, C=O and P-C. P-C bond cleavage has attracted much attention in the past⁷⁵ and also more in recent studies.^{76,77} Complexes bearing phosphoryl ligands $(R_2P=O)^-$ are not common; examples were reported for Au, ⁷⁸ Ru, ⁷⁹ Ir, ⁸⁰ and Pd. ^{81,82} Ni and Ru bis(phosphinite) pincer complexes were reported to decompose to phosphoryl complexes due to P-O bond cleavage under basic or wet conditions. 83,84

In summary, unexpected synthetic and reactivity pathways involving metal-ligand cooperation (MLC) of the (PNP*)-Ni^{II}-H pincer complexes 1a,b are presented. While complex 1a does not react with CO, the less bulky complex 1b reacts with CO via MLC to give a rare case of a distorted-tetrahedral [(iPrPNP)Ni(CO)] pincer complex. Notably, complexes 1a,b react with CO₂ via MLC to form rare examples of η ¹ binding of

 CO_2 to nickel, complexes **4a,b**. Upon heating under a CO_2 atmosphere, the CO_2 complex **4b** undergoes an unexpected CO_2 cleavage as well as P–C cleavage, followed by C–C bond formation by carboxylation of the PNP ligand, leading to the formation of the Ni^{II}PO complex **5b** and the Ni⁰CO complex **3b**. Further studies are aimed at understanding of the MLC mechanisms of these unusual transformations.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.organomet.8b00160.

Experimental procedures and IR and NMR spectra of complexes 1a,b-5a,b (PDF)

Accession Codes

CCDC 1831348–1831353 contain the supplementary crystal-lographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

*E-mail for M.F.: moran.feller@weizmann.ac.il.
*E-mail for D.M.: david.milstein@weizmann.ac.il.

ORCID (

David Milstein: 0000-0002-2320-0262

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by the European Research Council (ERC AdG 692775). D.M. holds the Israel Matz Professorial Chair of Organic Chemistry.

REFERENCES

- (1) Maser, L.; Vondung, L.; Langer, R. Polyhedron 2018, 143, 28-42.
- (2) Albrecht, M.; Lindner, M. M. Dalton Trans. 2011, 40, 8733-8744.
- (3) Albrecht, M.; van Koten, G. Angew. Chem., Int. Ed. 2001, 40, 3750-3781.
- (4) van der Boom, M. E.; Milstein, D. Chem. Rev. 2003, 103, 1759–1792.
- (5) van Koten, G. J. Organomet. Chem. 2017, 845, 4-18.
- (6) Morales-Morales, D.; Jensen, C. M. The Chemistry of Pincer Compounds, 1st ed.; Elsevier: Oxford, U.K., 2007.
- (7) Khusnutdinova, J. R.; Milstein, D. Angew. Chem., Int. Ed. 2015, 54, 12236–12273.
- (8) Milstein, D. Philos. Trans. R. Soc., A 2015, 373, 20140189.
- (9) Zell, T.; Milstein, D. Acc. Chem. Res. 2015, 48, 1979-1994.
- (10) Gunanathan, C.; Milstein, D. Acc. Chem. Res. 2011, 44, 588-602.
- (11) Gunanathan, C.; Milstein, D. Top. Organomet. Chem. 2011, 37, 55–84.
- (12) Milstein, D. Top. Catal. 2010, 53, 915-923.
- (13) Montag, M.; Zhang, J.; Milstein, D. J. Am. Chem. Soc. 2012, 134, 10325–10328.
- (14) Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 2005, 127, 10840–10841.
- (15) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 317, 790-792.

Organometallics Article

(16) Fogler, E.; Garg, J. A.; Hu, P.; Leitus, G.; Shimon, L. J. W.; Milstein, D. Chem. - Eur. J. 2014, 20, 15727–15731.

- (17) Hu, P.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. ACS Catal. 2014, 4, 2649–2652.
- (18) Gunanathan, C.; Gnanaprakasam, B.; Iron, M. A.; Shimon, L. J. W.; Milstein, D. *J. Am. Chem. Soc.* **2010**, *132*, 14763–14765.
- (19) Balaraman, E.; Gnanaprakasam, B.; Shimon, L. J. W.; Milstein, D. J. Am. Chem. Soc. **2010**, 132, 16756–16758.
- (20) Feller, M.; Diskin-Posner, Y.; Shimon, L. J. W.; Ben-Ari, E.; Milstein, D. Organometallics 2012, 31, 4083-4101.
- (21) Bauer, J. O.; Leitus, G.; Ben-David, Y.; Milstein, D. ACS Catal. **2016**, *6*, 8415–8419.
- (22) Vogt, M.; Nerush, A.; Iron, M. A.; Leitus, G.; Diskin-Posner, Y.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. *J. Am. Chem. Soc.* **2013**, 135, 17004–17018.
- (23) Nerush, A.; Vogt, M.; Gellrich, U.; Leitus, G.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 2016, 138, 6985–6997.
- (24) Anaby, A.; Butschke, B.; Ben-David, Y.; Shimon, L. J. W.; Leitus, G.; Feller, M.; Milstein, D. Organometallics 2014, 33, 3716–3726.
- (25) Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2006, 45, 1113–1115.
- (26) Schwartsburd, L.; Iron, M. A.; Konstantinovski, L.; Ben-Ari, E.; Milstein, D. Organometallics **2011**, *30*, 2721–2729.
- (27) Langer, R.; Leitus, G.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 2120–2124.
- (28) Feller, M.; Ben-Ari, E.; Diskin-Posner, Y.; Carmieli, R.; Weiner, L.; Milstein, D. *J. Am. Chem. Soc.* **2015**, *137*, 4634–4637.
- (29) Ben-Ari, E.; Leitus, G.; Shimon, L. J. W.; Milstein, D. J. Am. Chem. Soc. 2006, 128, 15390–15391.
- (30) Schwartsburd, L.; Iron, M. A.; Konstantinovski, L.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Milstein, D. *Organometallics* **2010**, 29, 3817–3827.
- (31) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933.
- (32) Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazabal, G. O.; Perez-Ramirez, J. Energy Environ. Sci. 2013, 6, 3112–3135.
- (33) Rivada-Wheelaghan, O.; Dauth, A.; Leitus, G.; Diskin-Posner, Y.; Milstein, D. *Inorg. Chem.* **2015**, *54*, 4526–4538.
- (34) Vogt, M.; Gargir, M.; Iron, M. A.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. Chem. Eur. J. 2012, 18, 9194–9197.
- (35) Huff, C. A.; Kampf, J. W.; Sanford, M. S. Organometallics 2012, 31, 4643-4645.
- (36) Vogt, M.; Nerush, A.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. Chem. Sci. **2014**, *5*, 2043–2051.
- (37) Vogt, M.; Rivada-Wheelaghan, O.; Iron, M. A.; Leitus, G.; Diskin-Posner, Y.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. *Organometallics* **2013**, *32*, 300–308.
- (38) Feller, M.; Gellrich, U.; Anaby, A.; Diskin-Posner, Y.; Milstein, D. J. Am. Chem. Soc. **2016**, 138, 6445–6454.
- (39) Anaby, A.; Feller, M.; Ben-David, Y.; Leitus, G.; Diskin-Posner, Y.; Shimon, L. J. W.; Milstein, D. J. Am. Chem. Soc. **2016**, 138, 9941–9950.
- (40) Paparo, A.; Okuda, J. Coord. Chem. Rev. 2017, 334, 136-149.
- (41) Guo, C.-X.; Yu, B.; Ma, R.; He, L.-N. Curr. Green Chem. 2015, 2, 14–25.
- (42) Burgess, S. A.; Kendall, A. J.; Tyler, D. R.; Linehan, J. C.; Appel, A. M. ACS Catal. **2017**, *7*, 3089–3096.
- (43) Inoue, Y.; Izumida, H.; Sasaki, Y.; Hashimoto, H. Chem. Lett. 1976, 5, 863–864.
- (44) Chakraborty, S.; Patel, Y. J.; Krause, J. A.; Guan, H. Polyhedron **2012**, 32, 30–34.
- (45) Chakraborty, S.; Zhang, J.; Patel, Y. J.; Krause, J. A.; Guan, H. Inorg. Chem. 2013, 52, 37–47.
- (46) Cao, T.; Ma, S. Org. Chem. Front. 2016, 3, 1711-1715.
- (47) Diccianni, J. B.; Heitmann, T.; Diao, T. J. Org. Chem. 2017, 82, 6895–6903.
- (48) Cao, T.; Yang, Z.; Ma, S. ACS Catal. 2017, 7, 4504-4508.
- (49) Cao, T.; Ma, S. Org. Lett. 2016, 18, 1510-1513.

(50) Makida, Y.; Marelli, E.; Slawin, A. M. Z.; Nolan, S. P. Chem. Commun. 2014, 50, 8010–8013.

- (51) Correa, A.; León, T.; Martin, R. J. Am. Chem. Soc. 2014, 136, 1062-1069.
- (52) Juliá-Hernández, F.; Gaydou, M.; Serrano, E.; van Gemmeren, M.; Martin, R. *Top. Curr. Chem.* **2016**, 374, 1–38.
- (53) Zhang, Y.; Riduan, S. N. Angew. Chem., Int. Ed. 2011, 50, 6210-6212.
- (54) Correa, A.; Martín, R. Angew. Chem., Int. Ed. 2009, 48, 6201–6204.
- (55) Ochiai, H.; Jang, M.; Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2008, 10, 2681–2683.
- (56) Mori, M. Eur. J. Org. Chem. 2007, 2007, 4981-4993.
- (57) Aresta, M.; Nobile, C. F.; Albano, V. G.; Forni, E.; Manassero, M. J. Chem. Soc., Chem. Commun. 1975, 0, 636–637.
- (58) Aresta, M.; Nobile, C. F. J. Chem. Soc., Dalton Trans. 1977, 7, 708–711
- (59) Anderson, J. S.; Iluc, V. M.; Hillhouse, G. L. Inorg. Chem. 2010, 49, 10203–10207.
- (60) Kim, Y.-E.; Kim, J.; Lee, Y. Chem. Commun. 2014, 50, 11458–11461.
- (61) Lee, C. H.; Laitar, D. S.; Mueller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2007, 129, 13802–13803.
- (62) Chiou, T.-W.; Tseng, Y.-M.; Lu, T.-T.; Weng, T.-C.; Sokaras, D.; Ho, W.-C.; Kuo, T.-S.; Jang, L.-Y.; Lee, J.-F.; Liaw, W.-F. *Chem. Sci.* **2016**, *7*, 3640–3644.
- (63) Yoo, C.; Lee, Y. Chem. Sci. 2017, 8, 600-605.
- (64) van der Vlugt, J. I.; Lutz, M.; Pidko, E. A.; Vogt, D.; Spek, A. L. Dalton Trans. 2009, 6, 1016–1023.
- (65) Takeuchi, K.; Taguchi, H.-o.; Tanigawa, I.; Tsujimoto, S.; Matsuo, T.; Tanaka, H.; Yoshizawa, K.; Ozawa, F. *Angew. Chem., Int. Ed.* **2016**, *55*, 15347–15350.
- (66) Sahoo, D.; Yoo, C.; Lee, Y. J. Am. Chem. Soc. 2018, 140, 2179–2185.
- (67) Calabrese, J. C.; Herskovitz, T.; Kinney, J. B. J. Am. Chem. Soc. 1983, 105, 5914–5915.
- (68) Tanaka, H.; Nagao, H.; Peng, S. M.; Tanaka, K. Organometallics 1992, 11, 1450-1451.
- (69) Tanaka, H.; Tzeng, B. C.; Nagao, H.; Peng, S. M.; Tanaka, K. Inorg. Chem. 1993, 32, 1508-1512.
- (70) Herskovitz, T. J. Am. Chem. Soc. 1977, 99, 2391–2392.
- (71) Fachinetti, G.; Floriani, C.; Zanazzi, P. F. J. Am. Chem. Soc. 1978, 100, 7405-7407.
- (72) Gambarotta, S.; Arena, F.; Floriani, C.; Zanazzi, P. F. *J. Am. Chem. Soc.* **1982**, *104*, 5082–5092.
- (73) Feller, M.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Milstein, D. J. Am. Chem. Soc. 2013, 135, 11040–11047.
- (74) Langer, J.; Hamza, A.; Pápai, I. Angew. Chem., Int. Ed. 2018, 57, 2455–2458.
- (75) Garrou, P. E. Chem. Rev. 1985, 85, 171-185.
- (76) Cao, J.; Huang, X.; Wu, L. Chem. Commun. 2013, 49, 7747–7749
- (77) Zhou, Y.; Gan, Z.; Su, B.; Li, J.; Duan, Z.; Mathey, F. Org. Lett. 2015, 17, 5722-5724.
- (78) Hollatz, C.; Schier, A.; Schmidbaur, H. Chem. Ber. 1997, 130, 1333–1338.
- (79) Sylvain, R.; Vendier, L.; Bijani, C.; Santoro, A.; Puntoriero, F.; Campagna, S.; Sutra, P.; Igau, A. New J. Chem. 2013, 37, 3543–3548.
- (80) Weismann, J.; Scharf, L. T.; Gessner, V. H. Organometallics 2016, 35, 2507–2515.
- (81) Li, P.; Li, Q.-S.; Xu, F.-B.; Song, H.-B.; Zhang, Z.-Z. Acta Crystallogr., Sect. E: Struct. Rep. Online 2006, 62, m1825—m1826.
- (82) Kanada, J.; Tanaka, M. Adv. Synth. Catal. 2011, 353, 890–896.
- (83) Zhang, J.; Medley, C. M.; Krause, J. A.; Guan, H. Organometallics 2010, 29, 6393-6401.
- (84) Salem, H.; Shimon, L. J. W.; Diskin-Posner, Y.; Leitus, G.; Ben-David, Y.; Milstein, D. *Organometallics* **2009**, 28, 4791–4806.