### Biostatistics Week XI

Ege Ülgen, MD, PhD

15 December 2022



#### Regression Analysis

- The variable to be predicted is called the dependent variable
  - Also called the response variable
- The value of this variable depends on the value of the independent variable(s)
  - Also called the explanatory or predictor variable(s)

```
Dependent variable = f( Independent variable , Independent variable , ... , Independent variable
```

### R demo for linear regression



#### Logistic Regression

- Logistic regression is a specialized form of regression used when the dependent variable is binary outcome
  - Having a binary outcome (dependent variable) violates the assumption of linearity in linear regression

#### Logistic Regression

- The goal of logistic regression is to find the best fitting model to describe the relationship between the binary outcome and a set of independent variables
  - e.g., predicting whether the treatment will be successful or not, the presence/absence of a disease, etc.

#### Logistic Regression

 Logistic regression generates the coefficients of the following formula to predict a logit transformation of the probability of presence of the outcome:

$$logit(P(Y = 1)) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

where P(Y = 1) indicates the probability that the outcome is 1 (where the binary outcome variable is encoded as 0 and 1)

logit is in fact the log of odds:

$$logit(p) = ln\left(\frac{p}{1-p}\right)$$



#### Logistic Regression – Example

- Identification of risk factors for metastasis with prostate cancer
- n = 52 patients
- y = metastasis status (0 = none, 1 = metastasis)
- x = phosphatase, X-ray result (binary), tumor size

#### Metastasis – Logistic Regression Model

|                  | Estimate | Std. Error | z value | Pr(> z ) | OR   |
|------------------|----------|------------|---------|----------|------|
| (Intercept)      | -0.5418  | 0.8298     | -0.65   | 0.5138   |      |
| $\log_2(phosph)$ | 2.3645   | 1.0267     | 2.30    | 0.0213   | 10.6 |
| X-ray            | 1.9704   | 0.8207     | 2.40    | 0.0163   | 7.2  |
| Size             | 1.6175   | 0.7534     | 2.15    | 0.0318   | 5.0  |

#### Interpretation

|                 | Estimate | Std. Error | z value | Pr(> z ) | OR   |
|-----------------|----------|------------|---------|----------|------|
| (Intercept)     | -0.5418  | 0.8298     | -0.65   | 0.5138   |      |
| $log_2(phosph)$ | 2.3645   | 1.0267     | 2.30    | 0.0213   | 10.6 |
| X-ray           | 1.9704   | 0.8207     | 2.40    | 0.0163   | 7.2  |
| Size            | 1.6175   | 0.7534     | 2.15    | 0.0318   | 5.0  |

• With 95% confidence, it could be said that a patient with  $log_2(phosphatase) = 0$ , negative X-ray result, size = 0 was equally-likely in terms of having nodal metastases (p = 0.5138)

- With 95% confidence, it could be said that  $log_2(phosphatase)$  and having nodal metastases are associated (p = 0.0213)
  - A one unit increase in  $log_2$  (phosphatase) was associated with approximately 963.87% increase in the odds of having nodal metastases
  - $(\exp(2.3645) 1) * 100 = 963.87$

| Interpretation | (cont.) |
|----------------|---------|
|----------------|---------|

|                 | Estimate | Std. Error | z value | Pr(> z ) | OR   |
|-----------------|----------|------------|---------|----------|------|
| (Intercept)     | -0.5418  | 0.8298     | -0.65   | 0.5138   |      |
| $log_2(phosph)$ | 2.3645   | 1.0267     | 2.30    | 0.0213   | 10.6 |
| X-ray           | 1.9704   | 0.8207     | 2.40    | 0.0163   | 7.2  |
| Size            | 1.6175   | 0.7534     | 2.15    | 0.0318   | 5.0  |

- With 95% confidence, it could be said that a positive X-ray result and having nodal metastases are associated (p = 0.0163)
  - Presence of positive X-ray result was associated with approximately 617.35% increase in the odds of having nodal metastases
  - $(\exp(1.9704) 1) * 100 = 617.35$
- With 95% confidence, it could be said that Size and having nodal metastases are associated (p = 0.0318)
  - Presence of a one unit increase in Size was associated with approximately 404.05% increase in the odds of having nodal metastases
  - $(\exp(1.6175) 1) * 100 = 404.05$

#### Poisson Regression

- Linear regression was for continuous outcome, whereas logistic regression for binary outcome
- For count outcome, Poisson regression can be used

#### Poisson Regression - Example

- For 59 epilepsy patients the following data were collected:
  - treatment: the treatment group, a factor with levels placebo and Progabide
  - base: the number of seizures collected during 8-week period before the trial started
  - age: the age of the patient
  - seizure rate: the number of seizures occurred during the 2-week period after the trial was started

• First 10 patients:

| treatment | base | age | seizure.rate | subject |
|-----------|------|-----|--------------|---------|
| placebo   | 11   | 31  | 5            | 1       |
| placebo   | 11   | 30  | 3            | 2       |
| placebo   | 6    | 25  | 2            | 3       |
| placebo   | 8    | 36  | 4            | 4       |
| placebo   | 66   | 22  | 7            | 5       |
| placebo   | 27   | 29  | 5            | 6       |
| placebo   | 12   | 31  | 6            | 7       |
| placebo   | 52   | 42  | 40           | 8       |
| placebo   | 23   | 37  | 5            | 9       |
| placebo   | 10   | 28  | 14           | 10      |

• A Poisson regression with treatment group, previous seizures and age are related to the mean number of of seizure for patient i,  $\lambda_i$ , is given by:

$$log(\lambda_i) = \beta_0 + \beta_1 * I(treatment = Progabide) + \beta_2 * (base - 6) + \beta_3 (age - 18)$$

$$log(\lambda_i) = \beta_0 + \beta_1 * I(treatment = Progabide) + \beta_2 * (base - 6) + \beta_3 (age - 18)$$

|                      | <b>Estimate</b> | Std. Error | z value | p       |
|----------------------|-----------------|------------|---------|---------|
| (Intercept)          | 0.75            | 0.14       | 5.33    | < 0.001 |
| treament = Progabide | -0.12           | 0.09       | -1.28   | 0.20    |
| base                 | 0.03            | 0.00       | 26.37   | < 0.001 |
| age                  | 0.05            | 0.01       | 5.95    | < 0.001 |

|                      | Estimate | Std. Error | z value | p       |
|----------------------|----------|------------|---------|---------|
| (Intercept)          | 0.75     | 0.14       | 5.33    | < 0.001 |
| treament = Progabide | -0.12    | 0.09       | -1.28   | 0.20    |
| base                 | 0.03     | 0.00       | 26.37   | < 0.001 |
| age                  | 0.05     | 0.01       | 5.95    | < 0.001 |

- A patient in placebo group, with 6 previous seizures, and aged 18 had approximately 2 seizures on average in the first two weeks after the trial was started
  - exp(0.75)
- With 95% confidence, it could be said that there was no difference between placebo and progabide (p-value = 0.199)
  - Negative estimate for  $\beta_1$  indicates lowered mean number of seizures for progabide, but the difference from placebo was not significant

|                      | Estimate | Std. Error | z value | p       |
|----------------------|----------|------------|---------|---------|
| (Intercept)          | 0.75     | 0.14       | 5.33    | < 0.001 |
| treament = Progabide | -0.12    | 0.09       | -1.28   | 0.20    |
| base                 | 0.03     | 0.00       | 26.37   | < 0.001 |
| age                  | 0.05     | 0.01       | 5.95    | < 0.001 |

- With 95% confidence, it could be said that previous number of seizures occurred in the 8-week interval prior to the study start and mean seizure rate was significantly associated (p-value < 0.001)</li>
- One unit increase in previous seizure is associated with approximately 2.6% increase in the mean number of seizures in the first two weeks of the trial
  - $(\exp(0.03) 1) * 100$

|                      | Estimate | Std. Error | z value | p       |
|----------------------|----------|------------|---------|---------|
| (Intercept)          | 0.75     | 0.14       | 5.33    | < 0.001 |
| treament = Progabide | -0.12    | 0.09       | -1.28   | 0.20    |
| base                 | 0.03     | 0.00       | 26.37   | < 0.001 |
| age                  | 0.05     | 0.01       | 5.95    | < 0.001 |

- With 95% confidence, it could be said that age sand mean seizure rate was significantly associated (p-value < 0.001)
- One unit increase in age is associated with approximately 4.8% increase in the mean number of seizures in the first two weeks of the trial
  - $(\exp(0.05) 1) * 100$

### **Brief Summary**

| Dependent Variable | Regression Model    |
|--------------------|---------------------|
| Continuous         | Linear Regression   |
| Binary             | Logistic Regression |
| Count              | Poisson Regression  |