Aprendizaje profundo

AUTOATENCIÓN Y ARQUITECTURA TRANSFORMER

Gibran Fuentes-Pineda Noviembre 2023

Autoatención (1)

 Cada salida y^[i] es simplemente la suma ponderada de todas las entradas (x^[1], x^[2],...,x^[T]) en la secuencia:

$$\mathbf{y}^{[i]} = \sum_{j=1}^{T} \alpha_{i,j} \cdot \mathbf{x}^{[j]}$$
, donde $\sum_{j=1}^{T} \alpha_{i,j} = 1$

- Cada valor de atención $\alpha_{i,j}$ se obtiene a partir de una función de la entrada $\mathbf{x}^{[j]}$ correspondiente a la salida $\mathbf{y}^{[i]}$ y cada entrada $\mathbf{x}^{[j]}$.
- · Una función comúnmente utilizada es

$$\alpha_{i,j} = softmax(\mathbf{x}^{[i]\top}\mathbf{x}^{[j]})$$

Autoatención (2)

Figura tomada de Zhang et al. Dive into Deep Learning, 2022

Autoatención (3)

Figura tomada de Zhang et al. Dive into Deep Learning, 2022

Arquitectura *Transformer*

Transformer: autoatención

• Se transforma linealmente cada entrada $\mathbf{x}^{[i]}$ a los vectores consulta $(\mathbf{q}^{[i]})$, llave $(\mathbf{k}^{[i]})$ y valor $(\mathbf{v}^{[i]})$

$$q^{[i]} = W_q x^{[i]}$$

$$k^{[i]} = W_k x^{[i]}$$

$$v^{[i]} = W_v x^{[i]}$$

Imagen tomada de http://www.peterbloem.nl/blog/transformers

· Cada salida $\mathbf{y}^{[i]}$ es la suma de cada valor $\mathbf{v}^{[i]}$ ponderado por su valor de atención $\alpha_{i,j}$, esto es, $\mathbf{y}^{[i]} = \sum_{j=1}^T \alpha_{i,j} \cdot \mathbf{v}^{[j]}$

Transformer: producto punto normalizado

• Considerando que $\mathbf{q}^{[i]}, \mathbf{k}^{[i]} \in \mathbb{R}^{d_k}$ y $\mathbf{v}^{[i]} \in \mathbb{R}^{d_v}$, la función de puntaje está dada por el producto punto normalizado

$$puntaje(\mathbf{x}^{[i]}, \mathbf{x}_j) = \frac{\mathbf{q}^{[i]} \mathbf{k}^{[i]}}{\sqrt{d_k}}$$

 \cdot Por lo tanto, cada valor de atención $lpha_{i,j}$ estaría dado por

$$\alpha_{i,j} = \operatorname{softmax}\left(\frac{\mathsf{q}^{[i]\top}\mathsf{k}^{[i]}}{\sqrt{d_k}}\right)$$

Transformer: autoatención multicabeza

- Se transforma cada entrada con h distintos \mathbf{W}_q , \mathbf{W}_k y \mathbf{W}_v (cabezas) y se calcula la autoatención para cada una
- La concatenación de todas salidas se multiplica por la matriz de pesos \mathbf{W}_o para producir la secuencia de salida

MultiHead(Q, K, V) =
$$[Y^1; ...; Y^h] \cdot W_o$$

Transformer: codificación posicional

- Para tomar en cuenta el orden en una secuencia, se codifica la posición de cada entrada.
- · Vaswani et al. proponen funciones sinusoidales¹

$$PE(pos, 2i) = sin \left[\frac{pos}{10000^{\left(\frac{2i}{d_{model}}\right)}} \right]$$

$$PE(pos, 2i + 1) = cos \left[\frac{pos}{10000^{\left(\frac{2i}{d_{model}}\right)}} \right]$$

donde pos es la posición en la secuencia, i la dimensión del vector (embedding) de entrada y d_{model} su tamaño.

¹También es posible aprender la codificación. Por ej. Gehring et al. *Convolutional Sequence to Sequence Learning*, arxiv:1705.03122, 2017.

Transformer: red hacia adelante por posición

 Las salidas de los bloques de autoatención se conectan a 2 capas densas, la primera con función de activación ReLU

$$\mathit{FFN}(\mathbf{X}^{(i)}) = \mathsf{máx}(0, \mathbf{x}_{j}^{(i)} \cdot \mathbf{W}^{\{1\}} + b^{\{1\}}) \cdot \mathbf{W}^{\{2\}} + b^{\{2\}}$$

- Esto se realiza de forma separada por cada entrada en la secuencia²
- Llamada red hacia adelante por posición o Position-wise Feed-Forward Networks

²Esto se puede ver como una convolución 1D con un filtro de tamaño 1.

Bloque tipo Transformer

- Generalmente compuestos de:
 - 1. Autoatención multicabeza
 - 2. Red hacia adelante por posición
- Con conexiones residuales y normalización por capa (Layer Normalization) en ambos

Arquitecturas Transformer: tarea de clasificación

Imagen tomada de Peter Bloem. Transformers from scratch, 2019.

Arquitecturas Transformer: tarea de generación

Imagen tomada de Peter Bloem. Transformers from scratch, 2019.

Transformer para generación: enmascaramiento

Imagen tomada de Peter Bloem. Transformers from scratch, 2019.