We define a *modified* Fibonacci sequence using the following definition:

Given terms t_i and t_{i+1} where $i \in (1, \infty)$, term t_{i+2} is computed using the following relation:

$$t_{i+2} = t_i + (t_{i+1})^2$$

For example, if t1 = 0 and t2 = 1,

- $t3 = 0 + 1^2 = 1$
- $t4 = 1 + 1^2 = 2$
- $t5 = 1 + 2^2 = 5$
- and so on.

Given three integers, t1, t2, and n, compute and print the n^{th} term of a modified Fibonacci sequence.

Function Description

Complete the *fibonacciModified* function in the editor below. It must return the n^{th} number in the sequence.

fibonacciModified has the following parameter(s):

- t1: an integer
- t2: an integer
- n: an integer

Note: The value of t_n may far exceed the range of a 64-bit integer. Many submission languages have libraries that can handle such large results but, for those that don't (e.g., C++), you will need to compensate for the size of the result.

Input Format

A single line of three space-separated integers describing the respective values of t1, t2, and n.

Constraints

- $0 \le t1, t2 \le 2$
- $3 \le n \le 20$ t_n may far exceed the range of a **64**-bit integer.

Output Format

Print a single integer denoting the value of term t_n in the modified Fibonacci sequence where the first two terms are t1 and t2.

Sample Input

0 1 5

Sample Output

Explanation

The first two terms of the sequence are t1=0 and t2=1, which gives us a modified Fibonacci sequence of $\{0,1,1,2,5,27,\ldots\}$. Because n=5, we return the 5^{th} term.