Prof. Dr. Leandro Alves Neves

Bacharelado em Ciência da Computação

Processamento Digital de Imagens

Aula 03

^E Sumário

Realce de Imagens

- Brilho e Contraste
- Histrograma e Histograma Normalizado

Transformações de Contraste

- Lineares
- Não Lineares
 - Correção GAMA
- Equalização de Histograma

Objetivos:

- Melhorar ou acentuar aparência de características
- Quando Aplicar:
 - Degradação da qualidade da imagem, em função:
 - Introdução de ruído
 - Perda de contraste
 - Borramento
 - Distorção provocada por equipamento de aquisição

Contraste e Histograma

Histograma

Frequência de cada intensidade presente na imagem

```
Cálculo do histograma de uma imagem

// atribuir valor zero a todos os elementos do vetor

para i = 0 até Lmax faça

H[i] \( \) 0

// calcular distribuição dos níveis de cinza para cada pixel

// da imagem

para x = 0 até M - 1 faça

para y = 0 até N - 1 faça

H[f(x,y)] \( \tau \) H[f(x,y)] + 1

Algoritmo 4.1: Cálculo do histograma de uma imagem.
```


Histograma não tem informação posicional de pixel na Imagem

Histograma

Permite avaliar o contraste de uma imagem

Histograma: Exemplos

Histograma: Exemplos

PDI

Realce de Imagens

Transformações de Contraste

- Melhorar a qualidade
 - Critérios subjetivos: inspeção via sistema visual humano
- \square Aplicado sobre o intervalo de contraste (I_c):
 - $I_c = L_{max} L_{min}$, em que L é um nível de cinza na imagem

É possível se existe um intervalo de intensidades

Transformações de Contraste

- Uma função T de níveis de cinza pode ser descrita como: g=T(f)
 - f representa níveis de cinza em uma imagem dada como entrada
 - g representa níveis de cinza após processo de transformação

T(f): Alargamento de contraste

- Transformações de Contraste: Lineares
- Cada ponto na Imagem de Entrada gera um ponto na Imagem de Saída

Imagem de Entrada

Imagem de Saída

 $g \max - g \min$

 $f \max - f \min$

- Representação: $g = c \cdot f + b$, em que:
 - c escala de níveis de cinza da imagem, por exemplo: c = -c
 - b ajuste de brilho

Transformações de Contraste: Lineares

Negativo

T[f(x, y)] = g(x, y) = w - f(x, y),w é a intesidade máxima presente na imagem

- Transformações de Contraste: Lineares
 - Negativo

Transformações de Contraste: Lineares

Alargamento de Contraste

$$g(x,y) = \begin{cases} k_1 \cdot f(x,y) \Rightarrow & 0 \le f(x,y) < f_1(x,y) \\ k_2 \cdot f(x,y) \Rightarrow & f_1(x,y) \le f(x,y) \le f_2(x,y) \\ k_3 \cdot f(x,y) \Rightarrow & f_2(x,y) < f(x,y) \le W \end{cases}$$

Transformações de Contraste: Lineares

Binarização (Thresholding)

- **Assumindo:**
 - $K_1 = 0;$
 - f1(x,y) = f2(x,y)

$$K_{3}$$
 $f(x,y)=W$

- Transformações de Contraste: Lineares
- Binarização (Thresholding)

- Transformações de Contraste: Lineares
- Combinações: Alargamento + Binarização (Thresholding)

- Transformações de Contraste: Não Lineares
- Realçar detalhes específicos na imagem
- □ Transformações Lineares versus Não lineares $g = c \cdot f + b$
 - Linear: c é um parâmetro fixo;
 - Não Linear: **c** é um parâmetro que expressa

Logaritmo
Raiz quadrada
Exponencial
Quadrado

- Transformações de Contraste: Não Lineares
- Transformação pelo Logaritmo
 - Cada valor de pixel é substituído pelo seu logaritmo.
 - - k = 10 ou natural;
 - c, fator de ajuste para respeitar o intervalo válido [0, 255].
 - Por exemplo: fmax representa a maior intensidade, então c pode assumir: $c = \frac{255}{1 + (1 + c)}$

Realce maior nos pixels de baixa intensidade

- Transformações de Contraste: Não Lineares
- Transformação pelo Exponencial
 - Cada valor de pixel é substituído pelo seu exponencial

$$g = c(e^f)$$

- \blacksquare e > 1, apropriados para melhora de imagens fotográficas;
- \Box porém, e pode ser variável e reescrita: $g = c[(1+\alpha)^f 1]$
 - $(1+\alpha)$, é a base α
 - c fator de escala para que a saída seja uma faixa apropriada.
 - -1 é adicionado para evitar o deslocamento em função de c, caso com f=0.
- Realce maior nos pixels de alta intensidade
- Efeito oposto ao da transformação pelo logaritmo

- Transformações de Contraste: Não Lineares
- Transformação pelo Exponencial
 - Cada valor de pixel é substituído pelo seu exponencial

$$g = c[(1+\alpha)^f - 1]$$

Realce maior nos pixels de alta intensidade

Efeito oposto ao da transformação pelo logaritmo

- Transformações de Contraste: Não Lineares
- Transformação pelo Quadrado
 - Cada valor de pixel é substituído pelo seu quadrado

□ Realce maior nos pixels de média e alta intensidades

PDI

Realce de Imagens

- Transformações de Contraste: Não Lineares
- Transformação pela Raiz Quadrada
 - Cada valor de pixel é substituído pela sua raiz quadrada

$$g = c\sqrt{f}$$

Realce maior nos pixels de média e baixa intensidades

Transformações de Contraste

Exemplos

PDI

Realce de Imagens

- Transformações de Contraste: Não Lineares
 - Exemplos

Logaritmo

Raiz Quadrada

Exponencial

Quadrado

Transformações de Potência: Correção GAMA

Dada por :

$$g = c(f + \varepsilon)^{\gamma}$$

- \Box c e γ :constantes positivas
- ε: compensação quando entradafor zero

Todas as classes de transformações em função de γ

Transformações de Potência: Correção GAMA

Transformações de Potência: Correção GAMA

a b c d

FIGURE 3.8 (a) Magnetic resonance (MR) image of a fractured human spine. (b)-(d) Results of applying the transformation in Eq. (3.2-3) with c = 1 and $\gamma = 0.6, 0.4, \text{ and}$ 0.3, respectively. (Original image for this example courtesy of Dr. David R. Pickens, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Čenter.)

Transformações c = 1 and $\gamma = 3.0, 4$. de Potência: Correção GAMA

a b c d

FIGURE 3.9

(a) Aerial image. (b)-(d) Results of applying the transformation in Eq. (3.2-3) with $\gamma = 3.0, 4.0, \text{ and}$ 5.0, respectively. (Original image for this example courtesy of NASA.)

- Escolha de Transformações: Empírico
- Porém, existe uma categoria de métodos

Equalização de Histograma

Imagem original $f \Longrightarrow$ transformada $\Longrightarrow g \Longrightarrow$ distribuição mais uniforme

Níveis de cinza devem ter, aproximadamente, a mesma frequência

- Mapeamento de cada nível de cinza
- □ Função de Distribuição Acumulada (FDA) □ na frequência de um nível

Histograma Normalizado (1ª Etapa)

- □ Distribuição discreta de probabilidade: $p_i(f) = \frac{H(i)}{t}$,
 - H(i) é número de ocorrências do nível de cinza i
 - t é o total de pixels na imagem
- Medidas estatísticas dos níveis de cinza:
 - valores mínimo e máximo
 - valor médio
 - variância
 - desvio padrão

PDI

Realce de Imagens

- Equalização de Histograma (2ª Etapa)
- Considere uma imagem composta por M × N pixels
 - □ Níveis de cinza k = 0, 1, . . . , L − 1
 - □ Equalizar um histograma ➡ via FDA:

$$g_k = T(f_k) = \sum_{i=0}^k p_f(f_i) = \sum_{i=0}^k \frac{n_i}{n}$$
 $k = 0, 1, ..., L-1$

- n_i, número de ocorrências do nível de cinza i
- $p_f(f_i)$, é a probabilidade do i-ésimo nível de cinza
- FDA normaliza os níveis de cinza da imagem no intervalo $0 \le f_k \le 1$

Equalização de Histograma

Exemplo: Equalização de histograma de uma imagem (f)

Níveis de Cinza (k)	Frequência (<i>n_k</i>)	
0	1314	
1	3837	Número de pixels
2	5820	6000
3	4110	4500
4	2374	3000
5	921	1500
6	629	0 1 2 3 4 5 6 7 Níveis de cinza
7	516	

Equalização de Histograma

1^a. Etapa: Definir a probabilidade p_f com que cada nível de cinza k aparece na imagem f

p _f (k)	Frequência (<i>n_k</i>)
$p_f(0)$	1314/19521≈ 0,067
$p_f(1)$	3837/19521≈ 0,197
$p_f(2)$	5820/19521≈ 0,298
$p_f(3)$	4110/19521≈ 0,211
$p_f(4)$	2374/19521≈ 0,122
$p_f(5)$	921/19521≈ 0,047
$p_f(6)$	629/19521≈ 0,032
$p_f(7)$	516/19521≈ 0,026

Equalização de Histograma

2a. Etapa: Calcular a FDA
$$g_k = T(f_k) = \sum_{i=0}^k p_f(f_i) = \sum_{i=0}^k \frac{n_i}{n}$$
 $k = 0, 1, ..., L-1$

g_{k}	Frequência (<i>n_k</i>) - Acumulado
<i>g</i> (0)	0,067
<i>g</i> (1)	0,264
<i>g</i> (2)	0,562
<i>g</i> (3)	0,773
<i>g</i> (4)	0,895
<i>g</i> (5)	0,942
<i>g</i> (6)	0,974
<i>g</i> (7)	1

Equalização de Histograma

ullet 3a. Etapa: cada valor g_k é substituído pelo nível mais próximo

$g_k^* L_{max}$	Frequência (<i>n_k</i>) Acumulado	Níveis de Cinza (<i>k</i>) - Equalizados
<i>g</i> (0) * 7	0,067	0.469 ≈ 0
<i>g</i> (1) * 7	0,264	1,848 ≈ 2
g(2) * 7	0,562	3,934 ≈ 4
<i>g</i> (3) * 7	0,773	5,411 ≈ 5
g(4) * 7	0,895	6,265 ≈ 6
<i>g</i> (5) * 7	0,942	6,594 ≈ 7
<i>g</i> (6) * 7	0,974	6,818 ≈ 7
<i>g</i> (7) * 7	1	≈ 7

Equalização de Histograma

Resultado

Níveis de Cinza (<i>k</i>) - Original	Frequência (n _k)	Níveis de Cinza (<i>k</i>) - Equalizados
0	1314	0
1	3837	2
2	5820	4
3	4110	5
4	2374	6
5	921	7
6	629	7
7	516	7

Equalização de Histograma

Equalização de histograma

Os níveis de cinza para a imagem original f e para a imagem equalizada g são representados por f_k e g_k , respectivamente, com $0 \le k \le L-1$

```
calcular o histograma da imagem a ser transformada normalizar o histograma, tal que 0 \le f_k \le 1 para k = 0 até L - 1 faça // calcular função distribuição acumulada de probabilidade g_k \leftarrow \sum_{i=0}^k p_f(f_i) // arredondar valor para nível de cinza mais próximo g_k \leftarrow \text{round}(g_k \times L_{max}) s agrupar valores f_k para formar g_k
```

PDI

Realce de Imagens

Equalização de Histograma

Original

(c)

Equalizada

Equalização de Histograma

 Número de pixels

 0
 50
 100
 150
 200
 250
 Níveis de cinza

Entrada

Saída - Equalizada

PDI

Realce de Imagens

- Equalização de Histograma
 - - Exemplo:
 - Imagens com Grande concentração de pixels em poucos níveis de cinza

Aula 3: partes 1 e 2

1. Considere o histograma da tabela abaixo, ilustrado graficamente na figura à direita, e realize a equalização a partir da função de distribuição acumulada. Plotar o histograma equalizado.

Tabela 1 - Histograma original

Nível de cinza (r_k)	n_k	$p_r(r_k)$
0	1120	0,068
1/7	3214	0,196
2/7	4850	0,296
3/7	3425	0,209
4/7	1995	0,122
5/7	784	0,048
6/7	541	0,033
1	455	0,028
Total	16384	1

- 2. Considere uma imagem digital representada por uma matriz 5 x 5, conforme indicada abaixo. O pixel central é um ponto de referência. Forneça o valor resultante do pixel central caso a imagem seja processada:
- a) pelo algoritmo de filtragem mediana com uma janela 3 x 3.
- b) pelo algoritmo da média utilizando janela 5 x 5.
- c) pela média dos k vizinhos mais próximos, utilizando janela 5 x 5, sendo k = 9.

121	20	198	84	4
87	188	189	99	8
88	115	134	49	19
16	18	187	98	9
12	103	15	176	38

3. Considere uma imagem representada por uma matriz 7 x 7, indicada abaixo, em que cada elemento corresponde ao nível de cinza do pixel. A taxa de quantização desta imagem foi definida como de 8 bits. Considere o pixel central como o pixel de referência e forneça o valor deste ponto central após processamento com:

0	3	221	220	198	84	4
3	23	187	188	189	99	8
9	9	188	115	134	49	9
0	5	176	18	187	98	9
15	15	123	103	165	76	9
14	12	156	188	188	98	9
9	8	190	190	190	90	0

- a) algoritmo de filtragem mediana utilizando uma janela 3 x 3;
- b) algoritmo da filtragem pela mediana com uma janela em forma de cruz, isto é considerando no cálculo da mediana apenas os pixels de coordenadas: (x, y) (pixel de referência), (x-1, y), (x+1, y), (x, y-1) e (x, y+1);
- c) algoritmo da média utilizando janela 7 x 7.

- d) algoritmo adaptativo que funciona da seguinte maneira: primeiramente aplica-se um filtro da mediana em uma janela 3 x 3 ao redor do pixel de referência, calculando-se MED. Depois disto, aplica-se um filtro da média utilizando uma janela 5 x 5, levando em consideração apenas os pixels em que as intensidades estejam na faixa entre MED C e MED + C, inclusive os extremos. Assumir que C = 22.
- 4. Considere a imagem a seguir, representada por uma matriz 7×7 , em que cada elemento indica um nível de cinza normalizado, sendo 0 = preto, 1 = branco.

0	3/7	2/7	2/7	1/7	1/7	4/7
3/7	2/7	1/7	1/7	1/7	1/7	4/7
2/7	0	1	1/7	3/7	0	0
0	5/7	1/7	0	6/7	0	1/7
1/7	1/7	1/7	3/7	6/7	6/7	5/7
1/7	1/7	1/7	1/7	5/7	6/7	4/7
0	1	0	0	0	0	4/7

Pede-se:

- a) Calcular as probabilidades de cada nível de cinza e plotar o histograma.
- b) Na imagem original predominam pixels claros ou escuros?
- c) Equalizar o histograma e reescrever a imagem com os novos valores de intensidades.

- 5. Considere a imagem a seguir, representada por uma matriz 5x5. Pede-se:
- a) Obter o negativo da imagem, aplicando a transformação T(r) = 255 r. Reescrever a matriz.
- b) Aplicar uma função de alargamento de contraste, conforme função apresentada no slide 23. Os pontos para f₁ e f₂ devem ser escolhidos a partir do histograma, priorizando os maiores vales. Os valores de k₁, k₂ e k₃ são 0,5, 1 e 1,25, respectivamente. Reescrever a matriz.
- c) Aplicar uma função de binarização, conforme função apresentada no slide 24. Escolha o melhor ponto de corte a partir do histograma, priorizando o maior vale. Reescrever a matriz.
- d) Apresente a matriz e o histograma após realizar as combinações das técnicas indicadas nos itens
 (b) e (e).

121	20	198	84	4
87	188	189	99	8
88	115	134	49	19
16	18	187	98	9
12	103	15	176	38

6. Construa um programa para receber cada imagem indicada a seguir e, sem seguida, apresentar os resultados após o processo de equalização de histograma. O programa deve apresentar também os histogramas das imagens, com e sem a equalização.

7. Considere as imagens a seguir e construa um programa para aplicar:

- a) Filtro Passa-Baixa: suavização da imagem (*Smoothing*), com janelas de 3x3, 5x5 e 7x7;
- b) Filtro Passa-Alta; Detector de Altas Frequências; Filtro de Aguçamento (*Sharpening*) Realce de características. Considerar as versões normalizadas e não normalizadas. Considere, para estes, as máscaras,

$$h_2 = \begin{array}{|c|c|c|c|c|c|} \hline -1 & -1 & -1 \\ \hline -1 & 8 & -1 \\ \hline -1 & -1 & -1 \\ \hline \end{array}$$

8. Utilize o programa desenvolvido na aula 2, exercício 13, capaz de adicionar ruídos em uma imagem dada como entrada. Aplique sobre cada imagem indicada a seguir os ruídos aditivos: sal e pimenta; uniforme e gaussiano. As distribuições devem ser fornecidas pelo usuário. Aplique os filtros apresentados abaixo e indique os que permitiram minimizar os efeitos provocados pelos ruídos, sem

- a) Suavização da imagem (*Smoothing*), com janelas de 3x3, 5x5 e 7x7;
- b) Filtro Passa-Alta com as máscaras,

	0	-1	0
$h_1 =$	-1	4	-1
	0	-1	0

ho —	-1	-1	-1
$h_2 =$	-1	8	-1
	-1	-1	-1

c) Mediana 3x3 e 5x5.

Referências

Pedrini, H., Schwartz, W. R. Análise de Imagens Digitais: Princípios Algoritmos e Aplicações. São Paulo: Thomson Learning, 2008.

González, R. C., Woods, R. E. Processamento de Imagens Digitais. São Paulo: Edgard Blücher Itda, 2000.

Marques Filho, O., Vieira Neto, H. Processamento Digital de Imagens, Rio de Janeiro: Brasport, 1999

