SDS 387, Fall 2024 Homework 1

Due September 17, by midnight on Canvas.

1. Let $\{x_n\}$ be a sequence of numbers. Describe the mathematical statements: $x_n = \Omega(1)$, $x_n = \omega(1)$ and $x_n = \Theta(1)$.

 $x_n = \Omega(1)$ is equivalent to the statement that $\inf_n |x_n| \geq C$ for some C > 0. $x_n = \omega(1)$ is equivalent to the statement that, for any M > 0 (arbitrarily large) there exists a $N \in \mathbb{N}$ (which depends on M) such that $|x_n| \geq M$ for all $n \geq N$. $x_n = \Theta(1)$ is equivalent to the statement that there exists a $C \geq 1$ such that $\frac{1}{C} \leq |x_n| \leq C$.

2. Limit superior and limit inferior.

- (a) Let $\{A_n\}$ be a sequence of events (an event is a collection of outcomes). Argue that an outcome belongs to $\limsup_n A_n$ if and only if it belongs to infinitely many events A_n 's and that it belongs to $\liminf_n A_n$ if and only if there exists an integer N such that the outcome belongs to all the events A_n with $n \geq N$. Conclude that $\liminf_n A_n \subseteq \limsup_n A_n$.
 - Recalling the definition $\limsup_n A_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$, if a point x belongs to $\limsup_n A_n$ then, for every n, it belongs to the set $\bigcup_{m=n}^{\infty} A_m$. Equivalently, for every n, there exists a $k \geq n$ such that $x \in A_k$. That is x belongs to infinitely many events A_n 's. Similarly, since $\liminf_n A_n = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m$, if x belongs to $\liminf_n A_n$, there exists a N such that x belongs to each A_m with $m \geq N$.
- (b) Consider the same setting above. De Morgan's Laws state that $(\bigcup_n A)^c = \bigcap_n A_n^c$ and $(\bigcap_n A)^c = \bigcup_n A_n^c$, where A^c is the complement of the set A. Use De Morgan's law to show that $(\liminf_n A_n)^c = \limsup_n A_n^c$. This follows directly from DeMorgan's Law.
- (c) Let A_n be (-1/n, 1] if n is odd and (-1, 1/n] if n is even. Find $\limsup_n A_n$ and $\liminf_n A_n$.

Note that for any $k \in \mathbb{N}$, $A_k \cup A_{k+1} = (-1,1]$. Hence $\bigcup_{k=n}^{\infty} A_k = (-1,1]$ for all $n \in \mathbb{N}$, and hence

$$\lim_{n} \sup_{n} A_{n} = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k} = \bigcap_{n=1}^{\infty} (-1, 1] = (-1, 1].$$

Also, note that for any $m \in \mathbb{N}$, $\bigcap_{k=m}^{\infty} A_{2k-1} = [0,1]$ and $\bigcap_{k=m}^{\infty} A_{2k} = (-1,0]$. Hence $\bigcap_{k=n}^{\infty} A_k = \{0\}$ for any $n \in \mathbb{N}$, and hence

$$\liminf_{n} A_{n} = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k} = \bigcup_{n=1}^{\infty} \{0\} = \{0\}.$$

1

(d) **Bonus Problem**. Let A_n the interior of the ball in \mathbb{R}^2 with unit radius and center $\left(\frac{(-1)^n}{n},0\right)$. Find $\limsup_n A_n$ and $\liminf_n A_n$.

Let $D := \{x \in \mathbb{R}^2 : ||x||_2 < 1\}$ and $B := \{x = (x_1, x_2) \in \mathbb{R}^2 : ||x||_2 = 1, x_1 \neq 0\}$. We will show that $\liminf_n A_n = D$ and $\limsup_n A_n = D \cup B$.

For $\liminf_n A_n$, note that $x \in \liminf_n A_n$ if and only if $x \in A_n$ for all but finite n. Suppose $x \in D$. Then $||x||_2 < 1$, so choose N large enough so that $\frac{1}{N} < 1 - ||x||_2$. Then for all $n \geq N$,

$$\left\| x - \left(\frac{(-1)^n}{n}, 0 \right) \right\|_2 \le \left\| x \right\|_2 + \left\| \left(\frac{(-1)^n}{n}, 0 \right) \right\|_2$$
$$= \left\| x \right\|_2 + \frac{1}{n} \le \left\| x \right\|_2 + \frac{1}{N} < 1.$$

Then $x \in A_n$ for all $n \geq N$, and hence $x \in \liminf_n A_n$, which implies $D \subset \liminf_n A_n$. Now, suppose $x \notin D$ and $x_1 \geq 0$. Then for all odd n,

$$\left\| x - \left(\frac{(-1)^n}{n}, 0 \right) \right\|_2 = \left\| \left(x_1 - \frac{1}{n}, x_2 \right) \right\|_2 > \left\| (x_1, x_2) \right\|_2 \ge 1,$$

Hence $x \notin A_n$ for all odd n, and hence $x \notin \liminf_n A_n$. Similarly, when $x \notin D$ and $x_1 \leq 0$, then $x \notin A_n$ for all even n, and hence $x \notin \liminf_n A_n$. These imply $\liminf_n A_n \subset D$, and hence

$$\liminf_{n} A_n = D.$$

For $\limsup_n A_n$, note that $x \in \limsup_n A_n$ if and only if $x \in A_n$ for infinitely many n. Suppose $x \in D \cup B$. We have already shown that $D = \liminf_n A_n \subset \limsup_n A_n$, and hence if $x \in D$ then $x \in \limsup_n A_n$. Now, suppose $x \in B$ and $x_1 > 0$. Then $||x||_1 = 1$. Choose N large enough so that $\frac{1}{N} < |x_1|$. Then for all even n with $n \geq N$, $|x_1 - \frac{1}{n}| \leq |x_1|$, and hence

$$\left\| x - \left(\frac{(-1)^n}{n}, 0 \right) \right\|_2 = \left\| \left(x_1 - \frac{1}{n}, x_2 \right) \right\|_2$$

$$< \left\| (x_1, x_2) \right\|_2 = 1.$$

Hence $x \in A_n$ for all even n with $n \ge N$, and hence $x \in \limsup_n A_n$. Similarly, when $x \in B$ and $x_1 < 0$, $x \in A_n$ for all odd n with $n \ge N$, and hence $x \in \limsup_n A_n$. These imply that $D \cup B \subset \limsup_n A_n$. Now, suppose $x \notin D \cup B$. Then $\|x\|_2 > 1$ or $x = (0, \pm 1)$. When $\|x\|_2 > 1$, choose N large enough so that $\frac{1}{N} < 1 - \|x\|_2$. Then for all $n \ge N$,

$$\left\| x - \left(\frac{(-1)^n}{n}, 0 \right) \right\|_2 \ge \left\| x \right\|_2 - \left\| \left(\frac{(-1)^n}{n}, 0 \right) \right\|_2$$

$$= \left\| x \right\|_2 - \frac{1}{n} \ge \left\| x \right\|_2 - \frac{1}{N} > 1.$$

Then $x \notin A_n$ for all n with $n \geq N$, and hence $x \notin \limsup_n A_n$. Also, when $x = (0, \pm 1)$, then for all n,

$$\left\|x - \left(\frac{(-1)^n}{n}, 0\right)\right\|_2 = \left\|\left(-\frac{(-1)^n}{n}, \pm 1\right)\right\|_2 = \sqrt{1 + \frac{1}{n^2}} > 1,$$

Then $x \notin A_n$ for all n, and hence $x \notin \limsup_n A_n$. These show $\limsup_n A_n \subset D \cup B$, and hence

$$\limsup_{n} A_n = D \cup B.$$

- 3. Let X_1, X_2, \ldots be a sequence of 0-1 Bernoulli random variables such $X_n \sim \text{Bernoulli}(1/n^2)$. Let $X = \sum_{n=1}^{\infty} X_n$. What is $\mathbb{P}(X < \infty)$?

 Use Borel Cantelli's first Lemma. Define the events $A_n = \{X_n = 1\}, \ n = 1, 2, \ldots$. Then, $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \sum_{n=1}^{\infty} 1/n^2 = \frac{\pi^2}{6} < \infty$. So $\mathbb{P}(\limsup A_n) = 0$. Now, $\limsup A_n = \mathbb{P}(X = \infty)$.
- 4. Ferguson, problem 5, page 12. $X_n \stackrel{p}{\to} 0$ for all values of α . By Borel-Cantelli's Second Lemma, if $\alpha \geq 1$ then, for any $\epsilon > 0$ $|X_n| > \epsilon$ infinitely often with probability 1, by independence and because $\sum_n \frac{1}{n} \sim \log n \to \infty$. On the other hand, when $\alpha < 1$, Borel-Cantelli's First Lemma will imply that the probability that $|X_n| > \epsilon$ infinitely often is equal to 0 for any ϵ . Therefore, $X_n \stackrel{w.p. 1}{\to} 0$ if and only if $\alpha < 1$. Finally, by direct calculation

$$\mathbb{E}[|X_n|^p] = \frac{n^{\alpha p}}{n} \to 0$$

if and only if $\alpha p < 1$.

5. Prova Markov's inequality: if X is a non-negative random variable, then for any $\epsilon > 0$

$$\mathbb{P}(X \ge \epsilon) \le \frac{\mathbb{E}[X]}{\epsilon}.$$

Markov's inequality is almost always a loose upper bound, but there are rare cases when it is sharp. Find an example in which it holds exactly. Hint: take X to be the indicator function of a set and select the right ϵ .

Prove the PaleyZygmund inequality, a reverse Markov inequality of sort: if X is a non-negative random variable with two or more moments, then, for any $\alpha \in (0,1)$,

$$\mathbb{P}(X \ge \alpha \mathbb{E}[X]) \ge (1 - \alpha)^2 \frac{\mathbb{E}[^2 X]}{\mathbb{E}[X^2]}.$$

We can write

$$X = X\mathbb{1}\left\{X < \theta \mathbb{E}[X]\right\} + X\mathbb{1}\left\{X \ge \theta \mathbb{E}[X]\right\}$$

$$\stackrel{(i)}{\le} \theta \mathbb{E}[X] + \sqrt{\mathbb{E}[X^2]\mathbb{P}(X \ge \theta E[X])},$$

where in (i) we have used Cauchy-Schwartz inequality to bound the second term. So,

$$\mathbb{E}[X](1-\theta) \le \sqrt{\mathbb{E}[X^2]\mathbb{P}(X \ge \theta E[X])}.$$

The result follow from taking the square.

6. Let X_1, \ldots, X_n i.i.d. univariate random variables with common distribution function F_X . Given $\alpha \in (0,1)$, use the DKW inequality given in class to construct a $1-\alpha$ confidence band for F_X , a pair of random functions (random because dependent on X_1, \ldots, X_n), say $\hat{F}_{\alpha}^{\text{lower}}$ and $\hat{F}_{\alpha}^{\text{upper}}$, such that

$$\mathbb{P}\left(\hat{F}_{\alpha}^{\text{lower}}(x) \leq F_X(x) \leq \hat{F}_{\alpha}^{\text{upper}}(x), \forall x \in \mathbb{R}\right) \geq 1 - \alpha.$$

The DKW inequality states that

$$\mathbb{P}\left(\sup_{x}|F_X(x)-\hat{F}_n(x)|>\epsilon\right)\leq 2\exp\{-2n\epsilon^2\},\quad\forall\epsilon>0.$$

Set the right hand side of the above inequality to α and solve for ϵ to conclude that

$$\hat{F}_{\alpha}^{\text{lower}}(x) = \min \left\{ 0, \hat{F}_{n}(x) - \sqrt{\frac{\log 2/\alpha}{2n}} \right\}, \quad x \in \mathbb{R}$$

and

$$\hat{F}_{\alpha}^{\text{upper}}(x) = \max \left\{ 1, \hat{F}_{n}(x) + \sqrt{\frac{\log 2/\alpha}{2n}} \right\}, \quad x \in \mathbb{R}.$$

- 7. **Joint and marginal convergence.** Below, $\{X_n\}$ is a sequence of random vectors in \mathbb{R}^d and X another random vector in \mathbb{R}^d .
 - (a) Show that $X_n \xrightarrow{p} X$ if and only if $X_n(j) \xrightarrow{p} X(j)$ for all j = 1, ..., d. Note: the same is true about convergence with probability one.

By definition, $X_n \stackrel{p}{\to} X$ if and only if, for each $\epsilon > 0$,

$$\mathbb{P}(\|X_n - X\| \ge \epsilon) \to 0,$$

or, equivalently,

$$\mathbb{P}(\|X_n - X\| < \epsilon) \to 1,$$

which implies, since $\max_j |X_n(j) - X(j)| \leq ||X_n - X||$, that $\mathbb{P}(\max_j |X_n(j) - X(j)| < \epsilon) \to 1$. In turn, this implies that, for any $j, X_n(j) \stackrel{p}{\to} X(j)$. Conversely, if, for any $\epsilon > 0$, $\mathbb{P}(|X_n(j) - X(j)| \geq \epsilon) \to 0$ for all j, then $\mathbb{P}(|X_n - X|| \geq d\epsilon) \leq \sum_{j=1}^d \mathbb{P}(|X_n(j) - X(j)| \geq \epsilon) \to 0$. Since ϵ is arbitrary, $X_n \stackrel{p}{\to} X$.

(b) Show that if $X_n \stackrel{d}{\to} X$, then $X_n(j) \stackrel{d}{\to} X(j)$ for all $j = 1, \ldots, d$. There is more than one way to prove this. One could use the definition of convergence in distribution and a limiting argument. A shorter way is to use characteristic functions. Let ϕ_{X_n} , ϕ_{X} , $\phi_{X_n(j)}$, $\phi_{X(j)}$ be the characteristics functions of X_n , X, $X_n(j)$ and X(j) respectively. Then, if $X_n \stackrel{d}{\to} X$, $\phi_{X_n}(t) \to \phi_X(t)$ for all $t \in \mathbb{R}^d$. In particular, this is true for the vector $t_x = (t_1, \ldots, t_d)$ such that $t_i = 0$ if $i \neq j$ and $t_j = x$ if i = j, where x is any real number. As a result, we get that, for any $x \in \mathbb{R}$,

$$\phi_{X_n(j)}(x) = \phi_{X_n}(t_x) \to \phi_X(t_x) = \phi_{X(j)}(x)$$

(c) In class, we looked at this example in d=2. Set $U\sim \mathrm{Uniform}(0,1)$ and let $X_n=U$ for all n and

$$Y_n = \left\{ \begin{array}{ll} U & n \text{ odd,} \\ 1 - U & n \text{ even.} \end{array} \right.$$

Then, $X_n \stackrel{d}{\to} U$ and $X_n \stackrel{d}{\to} U$. In class, I claimed that

$$\left[\begin{array}{c}X_n\\Y_n\end{array}\right]$$

does not converge in distribution (in fact, in any meaningful sense). Prove the claim.

One way to prove the claim is to show that the random vector $\begin{bmatrix} X_n \\ Y_n \end{bmatrix}$ take values on the line segment on the plane joining (0,0) to (1,1) for all odd n and on the line segment joining (1,0) to (0,1) for all odd n. A simpler way is to use the Cramer-Wald device: the characteristic function of the vector evaluated at the point $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is equal to e^i when n is even and to the characteristic function of 2U at 1 when n is odd. As a result, it does not converge.

8. Show that the c.d.f. of a random variable can have at most countably many points of discontinuity.

For every point of discontinuity, say x, of the c.d.f. F, the interval (F(x-), F(x)) is not empty, by definition. Take any rational number in this interval. Thus, for every point of discontinuity of F, we can find a distinct rational. Since the set of rationals is countable, the set of discontinuity points of F can be put in a one-to-one correspondence with a subset of the set of rational numbers, which is countable.

9. For each n, let X_n a random variable uniformly distributed on $\left\{\frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\right\}$. Show that X_n converges on distribution to $U \sim \text{Uniform}(0,1)$. Let A be the set of all rational numbers in [0,1]. Then $\mathbb{P}(X_n \in A) = 1$ for all n but $\mathbb{P}(X \in A) = 0$. Show that this does not violate condition (v) of the Portmanteau theorem, as stated in the lecture notes.

 X_n converges on distribution to $U \sim \text{Uniform}(0,1)$ because the c.d.f of X_n is

$$\mathbb{F}_{X_n}(x) = \begin{cases} 0 & x < 0 \\ \frac{\lfloor nx \rfloor}{n} & x \in [0, 1] \\ 1 & x > 1 \end{cases} \to F_U(x) = \begin{cases} 0 & x < 0 \\ x & x \in [0, 1] \\ 1 & x > 1 \end{cases}$$

for all $x \in \mathbb{R}$. In this example, condition (v) of the Portmanteau theorem is not violated because A is dense in [0,1], so $\partial A = [0,1] \setminus \mathbb{Q}$. Therefore, since $\mathbb{P}(U \in \mathbb{Q}) = 0$,

$$\mathbb{P}(U \in \partial A) = \mathbb{P}(U \in [0, 1] \setminus \mathbb{Q}) = \mathbb{P}(U \in [0, 1]) = 1 \neq 0.$$