

Credit Card Dataset

Income	Limit	Rating	Cards	Age	Balance
14.89	1 3606	283	2	34	333
106.02	5 6645	483	3	82	903
104.59	3 7075	514	4	71	580
148.92	4 9504	681	3	36	964
55.88	2 4897	357	2	68	331
80.1	8 8047	569	4	77	1151
20.99	6 3388	259	2	37	203
71.40	8 7114	512	2	87	872
15.12	5 3300	266	5	66	279
71.06	1 6819	491	3	41	1350
63.09	5 8117	589	4	30	1407

Task

Income (hundred thousand dollar)	Balance (thousand dollar) y
0.550798	5.651202
0.708148	7.321263
0.290905	5.167304
0.510828	5.609367
0.892947	9.406379
0.896293	9.379439
0.125585	2.734997
0.207243	4.876649
0.051467	3.584138
0.44081	5.437239

Training data

Task

Income (hundred thousand dollar)	Balance (thousand dollar)
0.550798	5.651202
0.708148	7.321263
0.290905	5.167304
0.510828	5.609367
0.892947	9.406379
0.896293	9.379439
0.125585	2.734997
0.207243	4.876649
0.051467	3.584138
0.44081	5.437239

Training data

Income (x)	Balance (y)
(hundred thousand dollar)	(thousand dollar)
(da d dada da da da j	()
0.96703	9.675083
0.547232	6.293266
0.972684	9.730614
0.714816	7.474346
0.697729	7.342933
0.216089	4.619033
0.976274	9.765597
0.00623	4.012784
0.252982	4.762698
0.434792	5.626166
0.779383	7.989045
0.197685	4.552625
0.862993	8.705537
0.983401	9.835217
0.163842	4.43522
0.597334	6.622444
0.008986	4.01882
0.386571	5.37153
0.04416	4.096522
0.956653	9.574695

Testing Data

IT 582 Foundation of Machine Learning

Task

Income (hundred	Balance
thousand dollar)	(thousand dollar)
$x_1 = 0.550798$	y ₁ = 5.651202
x ₂ =0.708148	$y_2 = 7.321263$
$x_3 = 0.290905$	$y_3 = 5.167304$
x ₄ =0.510828	y ₄ = 5.609367
$x_5 = 0.892947$	$y_5 = 9.406379$
$x_6 = 0.896293$	$y_6 = 9.379439$
x ₇ =0.125585	y ₇ = 2.734997
x ₈ =0.207243	y ₈ = 4.876649
$x_9 = 0.051467$	$y_9 = 3.584138$
x ₁₀ =0.44081	y ₁₀ = 5.437239

Random Relation

Random Relation

Regression model Assumptions

(x_i,y_i) are iid (identically and independently distributed) random variables.

• $E(\epsilon_i) = 0$

$$y_i = E(y_i | x) + E_i$$

$$\uparrow$$

$$f(x)$$

$$y_i = E(y_i|x) + E_i$$

$$\uparrow$$

$$f(x) E(E_i) = 0$$

Income (hundred thousand dollar)	Balance (thousand dollar)
$x_1 = 0.550798$	$y_1 = 5.651202$
x ₂ =0.708148	$y_2 = 7.321263$
$x_3 = 0.290905$	$y_3 = 5.167304$
x ₄ =0.510828	$y_4 = 5.609367$
$x_5 = 0.892947$	y ₅ = 9.406379
$x_6 = 0.896293$	$y_6 = 9.379439$
$x_7 = 0.125585$	y ₇ = 2.734997
x ₈ =0.207243	y ₈ = 4.876649
$x_9 = 0.051467$	y ₉ = 3.584138
x ₁₀ =0.44081	y ₁₀ = 5.437239

Income (hundred	Balance
thousand dollar)	(thousand dollar)
x ₁ = 0.550798	y ₁ = 5.651202
x ₂ =0.708148	y ₂ = 7.321263
$x_3 = 0.290905$	y ₃ = 5.167304
$x_4 = 0.510828$	$y_4 = 5.609367$
$x_5 = 0.892947$	y ₅ = 9.406379
$x_6 = 0.896293$	$y_6 = 9.379439$
x ₇ =0.125585	y ₇ = 2.734997
x ₈ =0.207243	y ₈ = 4.876649
$x_9 = 0.051467$	$y_9 = 3.584138$
x ₁₀ =0.44081	y ₁₀ = 5.437239

	_
Income (hundred	Balance
thousand dollar)	(thousand dollar)
x ₁ = 0.550798	y ₁ = 5.651202
x ₂ =0.708148	y ₂ = 7.321263
$x_3 = 0.290905$	y ₃ = 5.167304
x ₄ =0.510828	y ₄ = 5.609367
x ₅ =0.892947	y ₅ = 9.406379
$x_6 = 0.896293$	$y_6 = 9.379439$
$x_7 = 0.125585$	y ₇ = 2.734997
$x_8 = 0.207243$	y ₈ = 4.876649
$x_9 = 0.051467$	$y_9 = 3.584138$
x ₁₀ =0.44081	$y_{10} = 5.437239$

Error (thousand dollar)
$$(y_1-(\beta_0+\beta_1x_1))^2$$

$$(y_2-(\beta_0+\beta_1x_2))^2$$

$$(y_3-(\beta_0+\beta_1x_3))^2$$

$$(y_4-(\beta_0+\beta_1x_4))^2$$

$$(y_5-(\beta_0+\beta_1x_5))^2$$

$$(y_6-(\beta_0+\beta_1x_5))^2$$

$$(y_7-(\beta_0+\beta_1x_7))^2$$

$$(y_8-(\beta_0+\beta_1x_8))^2$$

$$(y_9-(\beta_0+\beta_1x_9))^2$$

$$(y_{10}-(\beta_0+\beta_1x_{10}))^2$$

Balance

 $f(x) = \beta_0 + \beta_1 x$

0.8

$$\frac{1}{10} \sum_{i=1}^{10} (y_i - (\beta_0 + \beta_1 x_i))^2$$

$$i=10$$
The property of the

For given Training Set $T = \{ (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) \}$, we need to solve

$$Min_{(\beta_1,\beta_0)}$$
 $J(\beta_1,\beta_0) = \sum_{i=1}^{n} (yi - (\beta_0 + \beta_1 x_i))^2$

$$M_{in}$$
 $X^T X$

For given Training Set $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, we need to solve

$$\chi = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} \qquad Min_{(\beta_1,\beta_0)} \qquad J(\beta_1,\beta_0) = \qquad \sum_{i=1}^n (yi - (\beta_0 + \beta_1 x_i))^2$$

$$Min_{(\beta_1,\beta_0)}$$
 $J(\beta_1,\beta_0) = \sum_{i=1}^{n} (yi - (\beta_0 + \beta_1 x_i))^2$

$$f = x_1^2 + x_2^2 + \cdots + x_n^2 = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \\ x_4 & 1 \\ x_5 & 1 \\ x_6 & 1 \\ x_7 & 1 \end{bmatrix} \qquad Y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \\ y_n \end{bmatrix}$$

$$\frac{\partial f}{\partial P} = \begin{bmatrix} 2x_1 \\ 2x_1 \\ 3x_1 \\ x_1 \end{bmatrix} \qquad Y = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \\ x_5 & 1 \\ x_7 & 1 \end{bmatrix}$$

$$Y = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \\ x_5 & 1 \\ x_7 & 1 \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 & 1 \\ y_2 & y_3 \\ y_4 & y_5 \\ y_6 & y_7 \\ y_7 & y_8 \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \\ x_7 & 1 \end{bmatrix} \qquad Y = \begin{bmatrix} x_1 & 1 \\ y_2 & y_3 \\ y_4 & y_5 \\ y_6 & y_7 \\ y_7 & y_8 \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \\ x_7 & 1 \end{bmatrix} \qquad Y = \begin{bmatrix} x_1 & 1 \\ y_2 & y_3 \\ y_4 & y_5 \\ y_6 & y_7 \\ y_7 & y_8 \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \\ x_7 & 1 \end{bmatrix} \qquad Y = \begin{bmatrix} x_1 & 1 \\ y_2 & y_3 \\ y_4 & y_5 \\ y_6 & y_7 \\ y_7 & y_8 \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \\ x_7 & 1 \end{bmatrix} \qquad Y = \begin{bmatrix} x_1 & 1 \\ y_2 & y_3 \\ y_4 & y_5 \\ y_7 & y_8 \\ y_7 & y_8 \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_7 & 1 \end{bmatrix} \qquad Y = \begin{bmatrix} x_1 & 1 \\ y_2 & y_3 \\ y_4 & y_5 \\ y_7 & y_8 \\ y_7 & y_8 \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_7 & 1 \end{bmatrix} \qquad Y = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_7 & 1 \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_7 & 1 \end{bmatrix} \qquad Y = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_7 & 1 \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 & 1 \\ x_7 & 1 \\ x_7 & 1 \end{bmatrix} \qquad X = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_7 & 1 \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 & 1 \\ x_7 & 1 \\ x_7 & 1 \end{bmatrix} \qquad X = \begin{bmatrix} x_1 & 1 \\ x_7 & 1 \\ x_7 & 1 \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 & 1 \\ x_7 & 1 \\ x_7 & 1 \end{bmatrix} \qquad X = \begin{bmatrix} x_1 & 1 \\ x_7 & 1 \\ x_7 & 1 \end{bmatrix}$$

IT 582 Foundation of Machine Learning

$$Min_{(\beta_1,\beta_0)} J(\beta_1,\beta_0) = \sum_{i=1}^{n} (yi-(\beta_0 + \beta_1 x_i))^2$$

$$\mathbf{u} = \begin{bmatrix} \beta_1 \\ \beta_0 \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \\ x_4 & 1 \\ x_5 & 1 \\ x_6 & 1 \\ x_7 & 1 \end{bmatrix} Y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{bmatrix}$$

The Least Square problem reduces to

$$Min_{(u)}$$
 $J(u) = (Y - Au)^T (Y - Au)$

$$Ax = \begin{array}{c} \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{1n}x_n \\ \hline \alpha_{21}x_1 + \alpha_{22}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_2 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_1 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_1 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_1 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \alpha_{12}x_1 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{11}x_1 + \dots + \alpha_{2n}x_n \\ \hline \alpha_{12}x_1 + \dots + \alpha_{2n}x_$$

IT 582 Foundation of Machine Learning

For given Training Set $T = \{ (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) \}$, we need to solve

$$Min_{(\beta_1,\beta_0)}$$
 $J(\beta_1,\beta_0) = \sum_{i=1}^{n} (yi - (\beta_0 + \beta_1 x_i))^2$ (1)

The Least Square problem reduces to

$$Min_{(u)}$$
 $J(u) = (Y - Au)^T (Y - Au)$

$$\nabla u J(u) = A^T (Y - Au)$$

2-AT& (Y-AY) = 0

 $-2\Delta^{T}(Y-\Delta Y)=0$

 $\Delta^{T}(\gamma - \Delta Y) = 0$ $\Delta^{T}(\gamma - \Delta Y) = 0$ $\Delta^{T}(\gamma - \Delta Y)$

(Δ^TΑ)^Δ(Α^TΔ) = (Α^TΔ)^Δ(Α^TΔ)

For given Training Set $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, we need to solve

$$Min_{(\beta_1,\beta_0)} J(\beta_1,\beta_0) = \sum_{i=1}^n (yi-(\beta_0 + \beta_1 x_i))^2$$
(1)

The Least Square problem reduces to

$$Min_{(u)}$$
 $J(u) = (Y - Au)^T (Y - Au)$

Setting the gradient for J(u) = 0

$$\nabla u J(u) = 0$$

$$A^{T}(Y - Au) = 0$$

$$u = \begin{bmatrix} \beta_1 \\ \beta_0 \end{bmatrix} = (A^T A)^{-1} A^T Y$$
| Machine Learning

Best Fitting Line

IT 582 Foundation of Machine Learning

f(x) = 2.6 + 6.9 x

Best Fitting Line

Training Error:-

$$\frac{1}{10}\sum_{i=1}^{10} (yi - (\beta_0 + \beta_1 x_i))^2 = 0.3537$$

Training RMSE =

$$\sqrt{\frac{1}{10}\sum_{i=1}^{10} (\text{yi-}(\beta_0 + \beta_1 x_i))^2}$$

= 0.5947

Best Fitting Line

$$f(x) = 2.6 + 6.9 x$$

Income (x) (thousand dollar)	Balance (y) (thousand dollar)	Estimated f(x) (thousand dollar)
0.96703	9.675083	9.41205399
0.547232	6.293266	6.47467789
0.972684	9.730614	9.45161938
0.714816	7.474346	7.64728226
0.697729	7.342933	7.5277212
0.216089	4.619033	4.15763074
0.976274	9.765597	9.47673972
0.00623	4.012784	2.68921946
0.252982	4.762698	4.41577473
0.434792	5.626166	5.68791617
0.779383	7.989045	8.09906511
0.197685	4.552625	4.02885271
0.862993	8.705537	8.6840969
0.983401	9.835217	9.52660279
0.163842	4.43522	3.79205019
0.597334	6.622444	6.8252457
0.008986	4.01882	2.70850244
0.386571	5.37153	
0.04416	4.096522	2.95461902
0.956653	9.574695	9.33944573

Income (x) (thousand dollar)	Balance (y) (thousand dollar)	Estimated f(x) (thousand dollar)
0.96703	9.675083	9.41205399
0.547232	6.293266	6.47467789
0.972684	9.730614	9.45161938
0.714816	7.474346	7.64728226
0.697729	7.342933	7.5277212
0.216089	4.619033	4.15763074
0.976274	9.765597	9.47673972
0.00623	4.012784	2.68921946
0.252982	4.762698	4.41577473
0.434792	5.626166	5.68791617
0.779383	7.989045	8.09906511
0.197685	4.552625	4.02885271
0.862993	8.705537	8.6840969
0.983401	9.835217	9.52660279
0.163842	4.43522	3.79205019
0.597334	6.622444	6.8252457
0.008986	4.01882	2.70850244
0.386571	5.37153	5.35051307
0.04416	4.096522	2.95461902
0.956653	9.574695	9.33944573

Test
$$RMSE = \sqrt{\frac{1}{k} \sum_{i=1}^{k} (yi - f(xi))^2} = 0.9426$$

Training $RMSE =$	
$\sqrt{\frac{1}{n}\sum_{i=1}^{k}(yi-f(xi))^2} =$	0.5947

Testing
$$RMSE = \sqrt{\frac{1}{k} \sum_{i=1}^{k} (yi - f(xi))^2} = 0.9426$$
 IT 582 Foundation of Machine Learning

Income (x) (thousand dollar)	Balance (y) (thousand dollar)	Estimated f(x) (thousand dollar)
0.96703	9.675083	9.41205399
0.547232	6.293266	6.47467789
0.972684	9.730614	9.45161938
0.714816	7.474346	7.64728226
0.697729	7.342933	7.5277212
0.216089	4.619033	4.15763074
0.976274	9.765597	9.47673972
0.00623	4.012784	2.68921946
0.252982	4.762698	4.41577473
0.434792	5.626166	5.68791617
0.779383	7.989045	8.09906511
0.197685	4.552625	4.02885271
0.862993	8.705537	8.6840969
0.983401	9.835217	9.52660279
0.163842	4.43522	3.79205019
0.597334	6.622444	6.8252457
0.008986	4.01882	2.70850244
0.386571	5.37153	5.35051307
0.04416	4.096522	2.95461902
0.956653	9.574695	9.33944573

Evaluation Criteria

Testing set is $\{(x_1,y_1),(x_2,y_2),...,(x_k,y_k)\}$, y_i is estimated by $f(x_i)$, \bar{y} is the mean of y_i and f_x is the mean of $f(x_i)$

- Sum of Squared Error (SSE) = $\sum_{i=1}^{k} (yi f(x_i))^2$
- Root Mean Square of Error $(RMSE) = \sqrt{\frac{1}{k} \sum_{i=1}^{k} (yi f(xi))^2}$
- Mean Absolute of Error (MAE) = $\frac{1}{k}\sum_{i=1}^{k} |y_i f(x_i)|$
- Mean Absolute of Error (MAPE) = $\frac{1}{k}\sum_{i=1}^{k}|y_i-f(x_i)/y_i| \times 100$ Normalized Mean Square of Error (NMSE) = $\frac{\sum_{i=1}^{k}(y_i-f(x_i))^2}{\sum_{i=1}^{k}(y_i-\bar{y})^2}$