2-2 The Efficiency of Algorithms

Hengfeng Wei

hfwei@nju.edu.cn

March 05, 2020

The Analysis of Algorithms

Donald E. Knuth (1938 \sim)

Donald E. Knuth (1974)

Donald E. Knuth (1974)

"For his major contributions to the analysis of algorithms and the design of programming languages, and in particular for his contributions to the "art of computer programming" through his well-known books in a continuous series by this title."

"People who analyze algorithms have double happiness.

"People who analyze algorithms have double happiness.

First of all they experience the sheer beauty of elegant mathematical patterns that surround elegant computational procedures.

Fibonacci numbers in the analysis of Euclid's GCD algorithm

"People who analyze algorithms have double happiness.

First of all they experience the sheer beauty of elegant mathematical patterns that surround elegant computational procedures.

Fibonacci numbers in the analysis of Euclid's GCD algorithm H_n in the analysis of FIND-MAX @ Stanford Lecture by Knuth

"People who analyze algorithms have double happiness.

First of all they experience the sheer beauty of elegant mathematical patterns that surround elegant computational procedures.

"People who analyze algorithms have double happiness.

First of all they experience the sheer beauty of elegant mathematical patterns that surround elegant computational procedures.

Then they receive a practical payoff when their theories make it possible to get other jobs done more quickly and more economically."

How Fast is It?

How Fast is It?

Time (and Space) Complexity of Algorithms

How Fast is It?

Time (and Space) Complexity of Algorithms

O Ω Θ

o ω

We only care about the extra space caused by the algorithm.

We only care about the extra space caused by the algorithm.

The space for inputs is not part of space complexity of algorithms.

We only care about the extra space caused by the algorithm.

The space for inputs is not part of space complexity of algorithms.

INSERTION-SORT(A, n) : O(1) (constant)

Is it the Fastest?

Is it the Fastest?

Complexity of Problems

Is it the Fastest?

Complexity of Problems

This is much harder and is not our focus today.

Whenever you design an algorithm,

Whenever you encounter a "hardcore" of the problem,

Whenever you encounter a "hardcore" of the problem, you obtain a lower bound for all possible algorithms.

Whenever you encounter a "hardcore" of the problem, you obtain a lower bound for all possible algorithms.

Often, there is an "algorithmic gap" between them.

Whenever you encounter a "hardcore" of the problem, you obtain a lower bound for all possible algorithms.

Often, there is an "algorithmic gap" between them. When the gap is gone, you get the optimal algorithm.

Whenever you encounter a "hardcore" of the problem, you obtain a lower bound for all possible algorithms.

Often, there is an "algorithmic gap" between them. When the gap is gone, you get the optimal algorithm.

 $\operatorname{sorting}(A, n) : \Theta(n \log n) = O(n \log n) \cap \Omega(n \log n)$

Q: How fast is your algorithm?

Q: How fast is your algorithm?

A: It runs 3.1415926 seconds.

Disadvantages:

Disadvantages:

▶ On different machines

Disadvantages:

- ▶ On different machines
- ► At different time

Disadvantages:

- ▶ On different machines
- ► At different time
- ▶ On different inputs

Disadvantages:

- ▶ On different machines
- ► At different time
- ▶ On different inputs

Disadvantages:

- ▶ On different machines
- ► At different time
- ▶ On different inputs

No Standards.

We need a uniform model of computation.

We need a uniform model of computation.

The RAM (Random Access Machine) Model of Computation

The RAM (Random Access Machine) Model of Computation

- ► Each memory access takes constant time.
- ► Each "primitive" operation takes constant time.
- ► Compound operations should be decomposed.

The RAM (Random Access Machine) Model of Computation

- ► Each memory access takes constant time.
- ► Each "primitive" operation takes constant time.
- ► Compound operations should be decomposed.

Counting up the number of time units.

Disadvantages:

- ▶ On different machines
- ► At different time
- ▶ On different inputs

Disadvantages:

- ▶ On different machines
- ► At different time
- ► On different inputs

Counting up the number of time units as a function of the input size in typical cases.

Insertion-Sort (A)		cost	times
1	for $j = 2$ to A.length	c_1	n
2	key = A[j]	c_2	n - 1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 j - 1]$.	0	n - 1
4	i = j - 1	c_4	n - 1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	c_8	n-1

INSERTION-SORT (A)
$$cost$$
 times

1 **for** $j = 2$ **to** $A.length$ c_1 n

2 $key = A[j]$ c_2 $n-1$

3 **//** Insert $A[j]$ into the sorted sequence $A[1..j-1]$. 0 $n-1$

4 $i = j-1$ c_4 $n-1$

5 **while** $i > 0$ and $A[i] > key$ c_5 $\sum_{j=2}^{n} t_j$ c_6 $A[i+1] = A[i]$ c_6 $\sum_{j=2}^{n} (t_j-1)$

7 $i = i-1$ c_7 $\sum_{j=2}^{n} (t_j-1)$

8 $A[i+1] = key$ c_8 $n-1$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1)$$

$$+ c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

... as a function of the input size ...

INSERTION-SORT (A)
$$cost$$
 times

1 **for** $j = 2$ **to** $A.length$ c_1 n

2 $key = A[j]$ c_2 $n-1$

3 // Insert $A[j]$ into the sorted sequence $A[1..j-1]$. 0 $n-1$

4 $i = j-1$ c_4 $n-1$

5 **while** $i > 0$ and $A[i] > key$ c_5 $\sum_{j=2}^{n} t_j$ c_6 $A[i+1] = A[i]$ c_6 $\sum_{j=2}^{n} (t_j-1)$

7 $i = i-1$ c_7 $\sum_{j=2}^{n} (t_j-1)$

8 $A[i+1] = key$ c_8 $n-1$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1)$$

$$+ c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

INSERTION-SORT (A)
$$cost$$
 times

1 **for** $j = 2$ **to** $A.length$ c_1 n

2 $key = A[j]$ c_2 $n-1$

3 // Insert $A[j]$ into the sorted sequence $A[1..j-1]$. 0 $n-1$

4 $i = j-1$ c_4 $n-1$

5 **while** $i > 0$ and $A[i] > key$ c_5 $\sum_{j=2}^{n} t_j$ c_6 $A[i+1] = A[i]$ c_6 $\sum_{j=2}^{n} (t_j-1)$

7 $i = i-1$ c_7 $\sum_{j=2}^{n} (t_j-1)$

8 $A[i+1] = key$ c_8 $n-1$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1)$$

$$+ c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

T(n): Depends on which input of size n

Problem P Algorithm A

Problem P Algorithm A

Problem P Algorithm A

$$W(n) = \max_{x \in \mathcal{X}_n} T(x)$$

Problem P Algorithm A

$$W(n) = \max_{x \in \mathcal{X}_n} T(x)$$

$$B(n) = \min_{x \in \mathcal{X}_n} T(x)$$

Problem P Algorithm A

$$W(n) = \max_{x \in \mathcal{X}_n} T(x)$$

$$B(n) = \min_{x \in \mathcal{X}_n} T(x)$$

$$A(n) = \left| \sum_{x \in \mathcal{X}_n} T(x) \cdot P(x) \right|$$

Problem P Algorithm A

$$W(n) = \max_{x \in \mathcal{X}_n} T(x)$$

$$B(n) = \min_{x \in \mathcal{X}_n} T(x)$$

$$A(n) = \left[\sum_{x \in \mathcal{X}_n} T(x) \cdot P(x)\right] = \mathbb{E}[T]$$

Problem P Algorithm A

$$W(n) = \max_{x \in \mathcal{X}_n} T(x)$$

$$B(n) = \min_{x \in \mathcal{X}_n} T(x)$$

$$A(n) = \left[\sum_{x \in \mathcal{X}_n} T(x) \cdot P(x)\right] = \mathbb{E}[T] = \left[\sum_{t \in T(\mathcal{X}_n)} t \cdot P(T = t)\right]$$

INSERTION-SORT (A)		cost	times
1	for $j = 2$ to A.length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 j-1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	c_8	n-1

$$B(n) = (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

INSERTION-SORT (A)
$$cost$$
 times

1 **for** $j = 2$ **to** $A.length$ c_1 n

2 $key = A[j]$ c_2 $n-1$

3 // Insert $A[j]$ into the sorted sequence $A[1..j-1]$. 0 $n-1$

4 $i = j-1$ c_4 $n-1$

5 **while** $i > 0$ and $A[i] > key$ c_5 $\sum_{j=2}^{n} t_j$

6 $A[i+1] = A[i]$ c_6 $\sum_{j=2}^{n} (t_j-1)$

7 $i = i-1$ c_7 $\sum_{j=2}^{n} (t_j-1)$

8 $A[i+1] = key$ c_8 $n-1$

$$B(n) = (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

$$W(n) = \frac{c_5 + c_6 + c_7}{2} n^2 + (c_1 + c_2 + c_4 + c_8 - \frac{c_5 + c_6 + c_7}{2}) n - (c_2 + c_4 + c_5 + c_8)$$

INSERTION-SORT (A)
$$cost$$
 times

1 **for** $j = 2$ **to** $A.length$ c_1 n

2 $key = A[j]$ c_2 $n-1$

3 // Insert $A[j]$ into the sorted sequence $A[1...j-1]$. 0 $n-1$

4 $i = j-1$ c_4 $n-1$

5 **while** $i > 0$ and $A[i] > key$ c_5 $\sum_{j=2}^{n} t_j$

6 $A[i+1] = A[i]$ c_6 $\sum_{j=2}^{n} (t_j-1)$

7 $i = i-1$ c_7 $\sum_{j=2}^{n} (t_j-1)$

8 $A[i+1] = key$ c_8 $n-1$

$$B(n) = (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

$$W(n) = \frac{c_5 + c_6 + c_7}{2} n^2 + (c_1 + c_2 + c_4 + c_8 - \frac{c_5 + c_6 + c_7}{2}) n - (c_2 + c_4 + c_5 + c_8)$$

$$A(n) =$$

INSERTION-SORT (A)
$$cost$$
 times

1 **for** $j = 2$ **to** $A.length$ c_1 n

2 $key = A[j]$ c_2 $n-1$

3 // Insert $A[j]$ into the sorted sequence $A[1..j-1]$. 0 $n-1$

4 $i = j-1$ c_4 $n-1$

5 **while** $i > 0$ and $A[i] > key$ c_5 $\sum_{j=2}^{n} t_j$

6 $A[i+1] = A[i]$ c_6 $\sum_{j=2}^{n} (t_j-1)$

7 $i = i-1$ c_7 $\sum_{j=2}^{n} (t_j-1)$

8 $A[i+1] = key$ c_8 $n-1$

$$B(n) = (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

$$W(n) = \frac{c_5 + c_6 + c_7}{2}n^2 + (c_1 + c_2 + c_4 + c_8 - \frac{c_5 + c_6 + c_7}{2})n - (c_2 + c_4 + c_5 + c_8)$$

$$A(n) = 2.25n^2 + 7.75n - 3H_n - 6$$
 $(H_n = \sum_{k=1}^n \frac{1}{k} \approx \ln n)$

listen carefully.

listen carefully.

$$W(n) = \frac{c_5 + c_6 + c_7}{2} n^2 + (c_1 + c_2 + c_4 + c_8 - \frac{c_5 + c_6 + c_7}{2}) n - (c_2 + c_4 + c_5 + c_8)$$

SIGACT News 18 Apr.

Apr.-June 1976

BIG OMICRON AND BIG OMEGA AND BIG THETA

Donald E. Knuth Computer Science Department Stanford University Stanford, California 94305

Reference:

"Big Omicron and Big Omega and Big Theta", Donald E. Knuth, 1976.

SIGACT News

18

Apr.-June 1976

BIG OMICRON AND BIG OMEGA AND BIG THETA

Donald E. Knuth Computer Science Department Stanford University Stanford, California 94305

Reference:

"Big Omicron and Big Omega and Big Theta", Donald E. Knuth, 1976.

Asymptotics

$$W(n) = \frac{c_5 + c_6 + c_7}{2}n^2 + (c_1 + c_2 + c_4 + c_8 - \frac{c_5 + c_6 + c_7}{2})n - (c_2 + c_4 + c_5 + c_8)$$

$$W(n) = \frac{c_5 + c_6 + c_7}{2}n^2 + (c_1 + c_2 + c_4 + c_8 - \frac{c_5 + c_6 + c_7}{2})n - (c_2 + c_4 + c_5 + c_8)$$

$$W(n) = O(n^2)$$

$$W(n) = \frac{c_5 + c_6 + c_7}{2}n^2 + (c_1 + c_2 + c_4 + c_8 - \frac{c_5 + c_6 + c_7}{2})n - (c_2 + c_4 + c_5 + c_8)$$

$$W(n) = O(n^2)$$

"Order at most n^2 "

$$W(n) = \frac{c_5 + c_6 + c_7}{2}n^2 + (c_1 + c_2 + c_4 + c_8 - \frac{c_5 + c_6 + c_7}{2})n - (c_2 + c_4 + c_5 + c_8)$$

$$W(n) = O(n^2)$$

"Order at most n^2 "

"W(n) is a function whose order of magnitude is upper-bounded by a constant times n^2 , for all large n."

$$|f(n) = O(g(n))|$$

$$f(n) = O(g(n))$$

"f(n) is a function whose order of magnitude is upper-bounded by a constant times g(n), for all large n."

$$f(n) = O(g(n))$$

"f(n) is a function whose order of magnitude is upper-bounded by a constant times g(n), for all large n."

$$f(n) = O(g(n))$$

"f(n) is a function whose order of magnitude is upper-bounded by a constant times g(n), for all large n."

$$O(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \right\}$$

←□ → ←□ → ← □ → ← □ → へ○ ←

$$f(n) = O(g(n))$$

$$O(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \right\}$$

$$f(n) = O(g(n))$$

$$O(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \right\}$$

$$f(n) = O(g(n))$$

$$O(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \right\}$$

It is a tradition to write f(n) = O(g(n)) instead of $f(n) \in O(g(n))$.

$$42n^2 + 2020n = O(n^2)$$

$$42n^2 + 2020n = O(n^2) = O(n^3)$$

$$42n^2 + 2020n = O(n^2) = O(n^3)$$

$$42n^2 + 2020n \in O(n^2) \subseteq O(n^3)$$

$$O(f(n)) + O(g(n)) \triangleq$$

$$O\big(f(n)\big) + O\big(g(n)\big) \triangleq \Big\{h + l \mid h \in O\big(f(n)\big), l \in O\big(g(n)\big)\Big\}$$

$$O\big(f(n)\big) + O\big(g(n)\big) \triangleq \Big\{h + l \mid h \in O\big(f(n)\big), l \in O\big(g(n)\big)\Big\}$$

$$O\big(f(n)\big)O\big(g(n)\big) \triangleq \Big\{ hl \mid h \in O\big(f(n)\big), l \in O\big(g(n)\big) \Big\}$$

$$O\big(f(n)\big) + O\big(g(n)\big) \triangleq \Big\{h + l \mid h \in O\big(f(n)\big), l \in O\big(g(n)\big)\Big\}$$

$$O(f(n))O(g(n)) \triangleq \{hl \mid h \in O(f(n)), l \in O(g(n))\}$$

$$O(f(n)) - O(g(n)) \triangleq$$

$$O(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \geq n_0 : 0 \leq f(n) \leq cg(n) \right\}$$

$$O(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \right\}$$

$$42n = O(0.50n^2)$$

$$O(g(n)) = \left\{f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \geq n_0 : 0 \leq f(n) \leq cg(n)\right\}$$

$$42n = O(0.50n^2) 42n^2 = O(0.50n^2)$$

$$O(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \right\}$$

$$42n = O(0.50n^2) \qquad 42n^2 = O(0.50n^2)$$

Q: What does O(1) mean?

$$O(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \right\}$$
$$42n = O(0.50n^2) \qquad 42n^2 = O(0.50n^2)$$

Q: What does O(1) mean?

A: It means constants.

$$\Omega(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le cg(n) \le f(n) \right\}$$

$$\Omega(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le cg(n) \le f(n) \right\}$$
$$0.50n^2 = \Omega(42n)$$

$$\Omega(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \geq n_0 : 0 \leq cg(n) \leq f(n) \right\}$$

$$0.50n^2 = \Omega(42n) \qquad 0.50n^2 = \Omega(42n^2)$$

$$\Omega(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le cg(n) \le f(n) \right\}$$
$$0.50n^2 = \Omega(42n) \qquad 0.50n^2 = \Omega(42n^2)$$

$$\Theta(g(n)) = \left\{ f(n) \mid \exists c_1 > 0, \exists c_2 > 0, \exists n_0 > 0, \forall n \ge n_0 : \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \right\}$$

$$\Omega(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le cg(n) \le f(n) \right\}$$
$$0.50n^2 = \Omega(42n) \qquad 0.50n^2 = \Omega(42n^2)$$

$$\Theta(g(n)) = \left\{ f(n) \mid \exists c_1 > 0, \exists c_2 > 0, \exists n_0 > 0, \forall n \ge n_0 : \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \right\}$$

$$0.50n^2 = \Theta(42n^2)$$

$$o(g(n)) = \{ f(n) \mid \forall c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) < cg(n) \}$$

$$o(g(n)) = \left\{ f(n) \mid \forall c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) < cg(n) \right\}$$

$$42n = o(0.50n^2)$$

$$o(g(n)) = \{ f(n) \mid \forall c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) < cg(n) \}$$

$$42n = o(0.50n^2)$$

$$\omega(g(n)) = \left\{ f(n) \mid \forall c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le cg(n) < f(n) \right\}$$

$$o(g(n)) = \{ f(n) \mid \forall c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) < cg(n) \}$$

$$42n = o(0.50n^2)$$

$$\omega(g(n)) = \left\{ f(n) \mid \forall c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le cg(n) < f(n) \right\}$$

$$0.50n^2 = \omega(42n)$$

 $O \Omega \Theta$

$$O \quad \Omega \quad \Theta$$
 $O \quad \omega \quad \theta$

$$f(n) \sim g(n) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$$

$$O \quad \Omega \quad \Theta$$
 $O \quad \omega \quad \theta$

$$f(n) \sim g(n) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$$

$$42n^2 + 2020n \sim 42n^2 + 2019n$$

$$f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \land f(n) = \Omega(g(n))$$

$$f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$$

$$f(n) = o(g(n)) \iff g(n) = \omega(f(n))$$

$$O\big(f(n)\big) + O\big(g(n)\big) = O\big(f(n) + g(n)\big)$$

$$O(f(n)) + O(g(n)) = O(f(n) + g(n))$$

$$O(f(n))O(g(n)) = O(f(n)g(n))$$

Q : How to compare functions in terms of $O/\Omega/\Theta$?

Q: How to compare functions in terms of $O/\Omega/\Theta$?

$$O(1) = O(\log \log n) = O(\log n) = O((\log n)^c)$$

$$= O(n^{\epsilon}) = O(n^c)$$

$$= O(n^c \log n) = O(n^{\log n}) = O(c^n) = O(n^n)$$

$$(0 < \epsilon < 1 < c)$$

Stirling Formula (by James Stirling):

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Stirling Formula (by James Stirling):

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

$$\log(n!) = \Theta(n \log n)$$

Stirling Formula (by James Stirling):

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

$$\log(n!) = \Theta(n \log n)$$

$$H_n = \sum_{k=1}^n \frac{1}{k} = \Theta(\log n)$$

$$A[0, \dots n-1] \qquad 1 \le l \le n$$

$$A[0, \dots n-1] \qquad 1 \le l \le n$$

ROTATE(A, n, l): Rotate A left by l places

$$A[0, \dots n-1] \qquad 1 \le l \le n$$

ROTATE(A, n, l): Rotate A left by l places

$$A[0, \dots n-1] \qquad 1 \le l \le n$$

ROTATE(A, n, l): Rotate A left by l places

Critical Operation: copy

- 1: $\mathbf{procedure} \ \mathtt{ROTATE}(A,n,l)$
- 2: **for** i = 1 ... l **do**
- 3: ROTATE-BY-ONE(A, n)

- 1: **procedure** ROTATE(A, n, l)
- 2: **for** i = 1 ... l **do**
- 3: ROTATE-BY-ONE(A, n)

 \overline{v}

- 1: **procedure** ROTATE(A, n, l)
- 2: **for** i = 1 ... l **do**
- 3: ROTATE-BY-ONE(A, n)

v

Algorithm	Time	Space
-----------	------	-------

1: $\mathbf{procedure} \ \mathtt{ROTATE}(A,n,l)$

- 2: **for** i = 1 ... l **do**
- 3: ROTATE-BY-ONE(A, n)

v

Algorithm	Time	Space
rotate-one-by-one	$nl = O(n^2)$	O(1)

- 2: copy A[0...l-1] into v
- 3: move $A[l \dots n-1]$ left l places
- 4: copy v to $A[l \dots n-1]$

- 2: copy A[0...l-1] into v
- 3: move $A[l \dots n-1]$ left l places
- 4: copy v to $A[l \dots n-1]$

0 1 2

- 2: copy A[0...l-1] into v
- 3: move $A[l \dots n-1]$ left l places
- 4: copy v to $A[l \dots n-1]$

Algorithm Time Space

- 2: copy $A[0 \dots l-1]$ into v
- 3: move $A[l \dots n-1]$ left l places
- 4: copy v to $A[l \dots n-1]$

Algorithm	Time	Space
rotate-copy	O(n)	l = O(n)

$$n=5, \quad l=3$$

$$0 \ 1 \ 2 \ 3 \ 4$$

$$n = 5, \quad l = 3$$

$$n=5, \quad l=3$$

$$0 \ 1 \ 2 \ 3 \ 4$$

$$n = 9, \quad l = 6$$

$$(0,3,6)$$
 $(1,4,7)$ $(2,5,8)$

Permutations as Product of Disjoint Cycles

Permutations as Product of Disjoint Cycles

Permutations as Product of Disjoint Cycles

Algorithm	Time	Space
rotate-cyclic	O(n)	O(1)

$$B \cdot A = (A^R \cdot B^R)^R$$

$$B \cdot A = (A^R \cdot B^R)^R$$

Algorithm	Time	Space
rotate-reverse	O(n)	O(1)

Algorithm	Time	Space
rotate-one-by-one	$O(n^2)$	O(1)
rotate-copy	O(n)	O(n)
rotate-cyclic	O(n)	O(1)
rotate-reverse	O(n)	O(1)

Ο Ω Θ

Chapter 9: Asymptotics

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn