

#### In [1]:

```
## importing libaries
import sys
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from matplotlib import style
import pandas as pd
from pandas import Series
import seaborn as sns
from scipy.stats import binom
from scipy.stats import poisson
import scipy.stats as stats
import statsmodels.formula.api as smf
from sklearn import metrics
import plotly.express as px
```

#### In [3]:

```
# for Ingoring Warnings
import warnings
warnings.filterwarnings('always')
warnings.filterwarnings('ignore')
```

## **Reading The Data**

#### In [4]:

```
df = pd.read_csv(r"C:\Users\TA\Desktop\TA\datasets\zomato.csv")
```

#### In [5]:

df.head() ### for displaying first 5 rows

#### Out[5]:

|   | Restaurant<br>ID | Restaurant<br>Name           | Country<br>Code | City                | Address                                                           | Locality                                               | Locality<br>Verbose                                           | Longit  |
|---|------------------|------------------------------|-----------------|---------------------|-------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|---------|
| 0 | 6317637          | Le Petit<br>Souffle          | 162             | Makati City         | Third<br>Floor,<br>Century<br>City Mall,<br>Kalayaan<br>Avenu     | Century City<br>Mall,<br>Poblacion,<br>Makati City     | Century City<br>Mall,<br>Poblacion,<br>Makati City,<br>Mak    | 121.027 |
| 1 | 6304287          | Izakaya<br>Kikufuji          | 162             | Makati City         | Little<br>Tokyo,<br>2277<br>Chino<br>Roces<br>Avenue,<br>Legaspi  | Little Tokyo,<br>Legaspi<br>Village,<br>Makati City    | Little Tokyo,<br>Legaspi<br>Village,<br>Makati City,<br>Ma    | 121.014 |
| 2 | 6300002          | Heat -<br>Edsa<br>Shangri-La | 162             | Mandaluyong<br>City | Edsa<br>Shangri-<br>La, 1<br>Garden<br>Way,<br>Ortigas,<br>Mandal | Edsa<br>Shangri-La,<br>Ortigas,<br>Mandaluyong<br>City | Edsa<br>Shangri-La,<br>Ortigas,<br>Mandaluyong<br>City, Ma    | 121.05€ |
| 3 | 6318506          | Ooma                         | 162             | Mandaluyong<br>City | Third<br>Floor,<br>Mega<br>Fashion<br>Hall, SM<br>Megamall,<br>O  | SM<br>Megamall,<br>Ortigas,<br>Mandaluyong<br>City     | SM<br>Megamall,<br>Ortigas,<br>Mandaluyong<br>City,<br>Mandal | 121.05€ |
| 4 | 6314302          | Sambo<br>Kojin               | 162             | Mandaluyong<br>City | Third<br>Floor,<br>Mega<br>Atrium,<br>SM<br>Megamall,<br>Ortigas  | SM<br>Megamall,<br>Ortigas,<br>Mandaluyong<br>City     | SM<br>Megamall,<br>Ortigas,<br>Mandaluyong<br>City,<br>Mandal | 121.057 |

5 rows × 21 columns

#### In [6]:

4

df.columns ### Displaying Columns

#### Out[6]:

#### **Get Info of Data**

#### In [7]:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9551 entries, 0 to 9550
Data columns (total 21 columns):

| #    | Column                 | Non-Null Count | Dtype   |
|------|------------------------|----------------|---------|
|      |                        |                |         |
| 0    | Restaurant ID          | 9551 non-null  | int64   |
| 1    | Restaurant Name        | 9551 non-null  | object  |
| 2    | Country Code           | 9551 non-null  | int64   |
| 3    | City                   | 9551 non-null  | object  |
| 4    | Address                | 9551 non-null  | object  |
| 5    | Locality               | 9551 non-null  | object  |
| 6    | Locality Verbose       | 9551 non-null  | object  |
| 7    | Longitude              | 9551 non-null  | float64 |
| 8    | Latitude               | 9551 non-null  | float64 |
| 9    | Cuisines               | 9542 non-null  | object  |
| 10   | Average Cost for two   | 9551 non-null  | int64   |
| 11   | Currency               | 9551 non-null  | object  |
| 12   | Has Table booking      | 9551 non-null  | object  |
| 13   | Has Online delivery    | 9551 non-null  | object  |
| 14   | Is delivering now      | 9551 non-null  | object  |
| 15   | Switch to order menu   | 9551 non-null  | object  |
| 16   | Price range            | 9551 non-null  | int64   |
| 17   | Aggregate rating       | 9551 non-null  | float64 |
| 18   | Rating color           | 9551 non-null  | object  |
| 19   | Rating text            | 9551 non-null  | object  |
| 20   | Votes                  | 9551 non-null  | int64   |
| dtyp | es: float64(3), int64( | 5), object(13) |         |

dtypes: float64(3), int64(5), object(13)

memory usage: 1.5+ MB

#### In [8]:

df.describe() ## describing given data

#### Out[8]:

|       | Restaurant<br>ID | Country<br>Code | Longitude   | Latitude    | Average Cost for two | Price range | Ag   |
|-------|------------------|-----------------|-------------|-------------|----------------------|-------------|------|
| count | 9.551000e+03     | 9551.000000     | 9551.000000 | 9551.000000 | 9551.000000          | 9551.000000 | 9551 |
| mean  | 9.051128e+06     | 18.365616       | 64.126574   | 25.854381   | 1199.210763          | 1.804837    | 2    |
| std   | 8.791521e+06     | 56.750546       | 41.467058   | 11.007935   | 16121.183073         | 0.905609    | 1    |
| min   | 5.300000e+01     | 1.000000        | -157.948486 | -41.330428  | 0.000000             | 1.000000    | 0    |
| 25%   | 3.019625e+05     | 1.000000        | 77.081343   | 28.478713   | 250.000000           | 1.000000    | 2    |
| 50%   | 6.004089e+06     | 1.000000        | 77.191964   | 28.570469   | 400.000000           | 2.000000    | 3    |
| 75%   | 1.835229e+07     | 1.000000        | 77.282006   | 28.642758   | 700.000000           | 2.000000    | 3    |
| max   | 1.850065e+07     | 216.000000      | 174.832089  | 55.976980   | 800000.000000        | 4.000000    | 4    |
| 4     |                  |                 |             |             |                      |             | •    |

Basic statistic details of the dataset is shown using the describe() function-ONLY NUMERICAL VARIABLES displayed

#### **EXPLORATORY DATA ANALYSIS**

#### In [9]:

```
## MISSING VALUES
```

#### In [10]:

```
# 1. FINDING MISSING VALUES USING FUNCTIONS
df.isnull().sum() ## Checking null Values/finding missing values in our dataset
```

#### Out[10]:

Restaurant ID 0 Restaurant Name 0 Country Code a City Address а Locality 0 Locality Verbose 0 Longitude 0 Latitude 0 Cuisines 9 Average Cost for two 0 Currency 0 Has Table booking Has Online delivery 0 Is delivering now Switch to order menu 0 Price range Aggregate rating 0 Rating color 0 Rating text 0 0 Votes dtype: int64

Displays all the null values in every column- 'Cuisines' column has 9 missing values hence, feature engineering has to be performed on that column

#### In [11]:

```
#2. FINDING MISSING VALUES USING QUERY
for columns in df.columns:
   if df[columns].isnull().sum() > 0:
        print(columns)
```

Cuisines

#### In [12]:

```
#finding missing values using a simple query
[features for features in df.columns if df[features].isnull().sum() >0]
```

#### Out[12]:

['Cuisines']

#### **MERGING 2 FILES**

#### In [13]:

#loading excel file using the pd.read\_excel function from PANDAS

#### In [14]:

```
df_country = pd.read_excel(r"C:\Users\TA\Desktop\TA\datasets\Country-Code z.xlsx")
df_country.head()
```

#### Out[14]:

|   | Country Code | Country   |
|---|--------------|-----------|
| 0 | 1            | India     |
| 1 | 14           | Australia |
| 2 | 30           | Brazil    |
| 3 | 37           | Canada    |
| 4 | 94           | Indonesia |

Our csv file has 2 columns-'Country Code' and 'Country - As you can recall, we have the 'Country Code' column in our CSV file, so let us combine this excel file and our dataset(csv file) using the pandas merge function on this column

#### In [15]:

```
#merge function to merge both CSV and XSL files
#displaying our final dataset

final_df = pd.merge(df, df_country, on = "Country Code", how = "left")
final_df.head()
```

#### Out[15]:

|   | Restaurant<br>ID | Restaurant<br>Name           | Country<br>Code | City                | Address                                                           | Locality                                               | Locality<br>Verbose                                           | Longit  |
|---|------------------|------------------------------|-----------------|---------------------|-------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|---------|
| 0 | 6317637          | Le Petit<br>Souffle          | 162             | Makati City         | Third<br>Floor,<br>Century<br>City Mall,<br>Kalayaan<br>Avenu     | Century City<br>Mall,<br>Poblacion,<br>Makati City     | Century City<br>Mall,<br>Poblacion,<br>Makati City,<br>Mak    | 121.027 |
| 1 | 6304287          | Izakaya<br>Kikufuji          | 162             | Makati City         | Little<br>Tokyo,<br>2277<br>Chino<br>Roces<br>Avenue,<br>Legaspi  | Little Tokyo,<br>Legaspi<br>Village,<br>Makati City    | Little Tokyo,<br>Legaspi<br>Village,<br>Makati City,<br>Ma    | 121.014 |
| 2 | 6300002          | Heat -<br>Edsa<br>Shangri-La | 162             | Mandaluyong<br>City | Edsa<br>Shangri-<br>La, 1<br>Garden<br>Way,<br>Ortigas,<br>Mandal | Edsa<br>Shangri-La,<br>Ortigas,<br>Mandaluyong<br>City | Edsa<br>Shangri-La,<br>Ortigas,<br>Mandaluyong<br>City, Ma    | 121.05€ |
| 3 | 6318506          | Ooma                         | 162             | Mandaluyong<br>City | Third<br>Floor,<br>Mega<br>Fashion<br>Hall, SM<br>Megamall,<br>O  | SM<br>Megamall,<br>Ortigas,<br>Mandaluyong<br>City     | SM<br>Megamall,<br>Ortigas,<br>Mandaluyong<br>City,<br>Mandal | 121.05€ |
| 4 | 6314302          | Sambo<br>Kojin               | 162             | Mandaluyong<br>City | Third<br>Floor,<br>Mega<br>Atrium,<br>SM<br>Megamall,<br>Ortigas  | SM<br>Megamall,<br>Ortigas,<br>Mandaluyong<br>City     | SM<br>Megamall,<br>Ortigas,<br>Mandaluyong<br>City,<br>Mandal | 121.057 |

5 rows × 22 columns

Our final dataset has the 'Country' column added at the end of our new dataset(which is the additional column) that has been added from excel to our dataset. Creating the final dataset

In [ ]:

#### **DISPLAYING THE DATATYPES OF FINAL DATASET**

#### In [16]:

#checking data types of our final dataset

final\_df.dtypes

#### Out[16]:

| Restaurant ID        | int64   |
|----------------------|---------|
| Restaurant Name      | object  |
| Country Code         | int64   |
| City                 | object  |
| Address              | object  |
| Locality             | object  |
| Locality Verbose     | object  |
| Longitude            | float64 |
| Latitude             | float64 |
| Cuisines             | object  |
| Average Cost for two | int64   |
| Currency             | object  |
| Has Table booking    | object  |
| Has Online delivery  | object  |
| Is delivering now    | object  |
| Switch to order menu | object  |
| Price range          | int64   |
| Aggregate rating     | float64 |
| Rating color         | object  |
| Rating text          | object  |
| Votes                | int64   |
| Country              | object  |
| dtype: object        |         |

### **FEATURE SELECTION**

Our final dataset has many features, let us a pick a few features & draw insights from our dataset

In [ ]:

1. TOP 3 CONTRIES WITH MAXIMUM NUMBER OF ORDERS

#### In [17]:

```
country_name = final_df.Country.value_counts().index
country_name
```

#### Out[17]:

#### In [18]:

```
country_value = final_df.Country.value_counts().values
country_value
```

#### Out[18]:

```
array([8652, 434, 80, 60, 60, 60, 40, 34, 24, 22, 21, 20, 20, 20, 4], dtype=int64)
```

INFERENCE --> From this we can summarize that the maximum number of transactions happen in India

#### In [ ]:

#### In [19]:

```
## PIE CHART VISUALIZATION

import plotly.graph_objects as go

labels = country_name
values = country_value

fig = go.Figure(data=[go.Pie(labels=labels[:5], values=values[:5])])
fig.show()
```



INFERENCE --> The top 3 countries with maximum number of orders are India (with maximum), USA and then UK.

# 2. COUNTRY WITH MOST RATINGS

#### In [20]:

#displaying the ratings related columns in a dataframe format
final\_df.groupby(['Aggregate rating','Rating color','Rating text']).size().reset\_index()
Out[20]:

|    | Aggregate rating | Rating color | Rating text | 0    |
|----|------------------|--------------|-------------|------|
| 0  | 0.0              | White        | Not rated   | 2148 |
| 1  | 1.8              | Red          | Poor        | 1    |
| 2  | 1.9              | Red          | Poor        | 2    |
| 3  | 2.0              | Red          | Poor        | 7    |
| 4  | 2.1              | Red          | Poor        | 15   |
| 5  | 2.2              | Red          | Poor        | 27   |
| 6  | 2.3              | Red          | Poor        | 47   |
| 7  | 2.4              | Red          | Poor        | 87   |
| 8  | 2.5              | Orange       | Average     | 110  |
| 9  | 2.6              | Orange       | Average     | 191  |
| 10 | 2.7              | Orange       | Average     | 250  |
| 11 | 2.8              | Orange       | Average     | 315  |
| 12 | 2.9              | Orange       | Average     | 381  |
| 13 | 3.0              | Orange       | Average     | 468  |
| 14 | 3.1              | Orange       | Average     | 519  |
| 15 | 3.2              | Orange       | Average     | 522  |
| 16 | 3.3              | Orange       | Average     | 483  |
| 17 | 3.4              | Orange       | Average     | 498  |
| 18 | 3.5              | Yellow       | Good        | 480  |
| 19 | 3.6              | Yellow       | Good        | 458  |
| 20 | 3.7              | Yellow       | Good        | 427  |
| 21 | 3.8              | Yellow       | Good        | 400  |
| 22 | 3.9              | Yellow       | Good        | 335  |
| 23 | 4.0              | Green        | Very Good   | 266  |
| 24 | 4.1              | Green        | Very Good   | 274  |
| 25 | 4.2              | Green        | Very Good   | 221  |
| 26 | 4.3              | Green        | Very Good   | 174  |
| 27 | 4.4              | Green        | Very Good   | 144  |
| 28 | 4.5              | Dark Green   | Excellent   | 95   |
| 29 | 4.6              | Dark Green   | Excellent   | 78   |
| 30 | 4.7              | Dark Green   | Excellent   | 42   |
| 31 | 4.8              | Dark Green   | Excellent   | 25   |
| 32 | 4.9              | Dark Green   | Excellent   | 61   |

# INFERENCE -> 1)Rating color is WHITE when it is NOT RATED 2)Rating color is RED when it is POOR 3)Rating color is ORANGE when it is AVERAGE 4)Rating color is YELLOW when it is GOOD 5)Rating color is GREEN when it is VERY GOOD 6)Rating color is DARK GREEN when it is EXCELLENT

#### In [21]:

```
#renaming the 0 column to rating count for readability (storing it as a dataset)

ratings = final_df.groupby(['Aggregate rating','Rating color','Rating text']).size().reset_
ratings
```

#### Out[21]:

|    | [].              |              |             |              |
|----|------------------|--------------|-------------|--------------|
|    | Aggregate rating | Rating color | Rating text | Rating Count |
| 0  | 0.0              | White        | Not rated   | 2148         |
| 1  | 1.8              | Red          | Poor        | 1            |
| 2  | 1.9              | Red          | Poor        | 2            |
| 3  | 2.0              | Red          | Poor        | 7            |
| 4  | 2.1              | Red          | Poor        | 15           |
| 5  | 2.2              | Red          | Poor        | 27           |
| 6  | 2.3              | Red          | Poor        | 47           |
| 7  | 2.4              | Red          | Poor        | 87           |
| 8  | 2.5              | Orange       | Average     | 110          |
| 9  | 2.6              | Orange       | Average     | 191          |
| 10 | 2.7              | Orange       | Average     | 250          |
| 11 | 2.8              | Orange       | Average     | 315          |
| 12 | 2.9              | Orange       | Average     | 381          |
| 13 | 3.0              | Orange       | Average     | 468          |
| 14 | 3.1              | Orange       | Average     | 519          |
| 15 | 3.2              | Orange       | Average     | 522          |
| 16 | 3.3              | Orange       | Average     | 483          |
| 17 | 3.4              | Orange       | Average     | 498          |
| 18 | 3.5              | Yellow       | Good        | 480          |
| 19 | 3.6              | Yellow       | Good        | 458          |
| 20 | 3.7              | Yellow       | Good        | 427          |
| 21 | 3.8              | Yellow       | Good        | 400          |
| 22 | 3.9              | Yellow       | Good        | 335          |
| 23 | 4.0              | Green        | Very Good   | 266          |
| 24 | 4.1              | Green        | Very Good   | 274          |
| 25 | 4.2              | Green        | Very Good   | 221          |
| 26 | 4.3              | Green        | Very Good   | 174          |
| 27 | 4.4              | Green        | Very Good   | 144          |
| 28 | 4.5              | Dark Green   | Excellent   | 95           |
| 29 | 4.6              | Dark Green   | Excellent   | 78           |
| 30 | 4.7              | Dark Green   | Excellent   | 42           |
| 31 | 4.8              | Dark Green   | Excellent   | 25           |
| ٠. | 7.0              | Zaik Oloon   | _AGGIIGITE  | 20           |

|    | Aggregate rating | Rating color | Rating text | Rating Count |
|----|------------------|--------------|-------------|--------------|
| 32 | 4.9              | Dark Green   | Excellent   | 61           |



#### In [22]:

#displaying first five records in the ratings dataset
ratings.head()

#### Out[22]:

|   | Aggregate rating | Rating color | Rating text | Rating Count |
|---|------------------|--------------|-------------|--------------|
| 0 | 0.0              | White        | Not rated   | 2148         |
| 1 | 1.8              | Red          | Poor        | 1            |
| 2 | 1.9              | Red          | Poor        | 2            |
| 3 | 2.0              | Red          | Poor        | 7            |
| 4 | 2.1              | Red          | Poor        | 15           |

#### **BAR CHART VISUALIZATION**

#### In [23]:

```
#bar plot visualization

plt.rcParams['figure.figsize'] = (12,6)
sns.barplot(x='Aggregate rating',y='Rating Count',data=ratings)
plt.title('User Ratings')
```

#### Out[23]:

Text(0.5, 1.0, 'User Ratings')



#### In [24]:

```
fig = px.histogram(final_df, "Rating color")
fig.show()
```



#### In [25]:

#countplot to count the total rating based on color
sns.countplot(x='Rating color',data=ratings,palette=['blue','red','orange','yellow','green'
Out[25]:

<AxesSubplot:xlabel='Rating color', ylabel='count'>



#### In [26]:



Displaying the user rating count in a bar plot. But this would be better if the ratings are displayed in the same color as that of the rating color. Let us replot with each rating's own color

#### In [27]:

```
#observing the same bar plot in the rating colors

plt.rcParams['figure.figsize'] = (12,7)
sns.barplot(x='Aggregate rating',y='Rating Count',hue = 'Rating color',data=ratings)
plt.title('User Ratings')
```

#### Out[27]:

Text(0.5, 1.0, 'User Ratings')



Colors are right but have been mapped wrong. Hence have to map them to the right ratings

#### In [28]:

```
#observing the same bar plot in the rating colors

plt.rcParams['figure.figsize'] = (12,8)
sns.barplot(x='Aggregate rating',y='Rating Count',hue = 'Rating color',data=ratings,palette
plt.title('User Ratings')
```

#### Out[28]:

#### Text(0.5, 1.0, 'User Ratings')



```
Perfect color mapping is done

INFERENCE- Count of the not rated ones are the highest(white-BLUE for visibility)

1)Ratings between 4.5 to 4.9 is Excellent (Dark Green)
2)Ratings between 4.0 to 4.4 is Very Good (Green)
3)Ratings between 3.5 to 3.9 is Good (Yellow)
4)Ratings between 2.5 to 3.4 is Average (Orange)
5)Ratings between 1.8 to 2.4 is Poor (Red)
```

#### In [ ]:

#### 4. COUNTRIES WITH ZERO RATINGS

#### In [29]:

```
#finding the names of the countries that has given zero rating
final_df.loc[final_df["Aggregate rating"] == 0].groupby("Country").size().reset_index().ren
    0:"Not Rated"
}).sort_values(by = "Not Rated")
```

#### Out[29]:

|   | Country        | Not Rated |
|---|----------------|-----------|
| 2 | United Kingdom | 1         |
| 3 | United States  | 3         |
| 0 | Brazil         | 5         |
| 1 | India          | 2139      |

#### In [ ]:

INFERENCE--> Out of 2148 records , there are 2139 zero ratings which is from India(being the maximum)

5. CURRENCY USED IN EACH COUNTRY

```
In [30]:
```

```
#finding which currency is used in which country
final_df[["Currency", "Country"]].groupby("Country").first()
```

#### Out[30]:

| Currency | • |
|----------|---|
|----------|---|

| Country              |                        |
|----------------------|------------------------|
| Australia            | Dollar(\$)             |
| Brazil               | Brazilian Real(R\$)    |
| Canada               | Dollar(\$)             |
| India                | Indian Rupees(Rs.)     |
| Indonesia            | Indonesian Rupiah(IDR) |
| New Zealand          | NewZealand(\$)         |
| Phillipines          | Botswana Pula(P)       |
| Qatar                | Qatari Rial(QR)        |
| Singapore            | Dollar(\$)             |
| South Africa         | Rand(R)                |
| Sri Lanka            | Sri Lankan Rupee(LKR)  |
| Turkey               | Turkish Lira(TL)       |
| UAE                  | Emirati Diram(AED)     |
| United Kingdom       | Pounds(Σ)              |
| <b>United States</b> | Dollar(\$)             |

#### In [ ]:

#### 6. COUNTRIES THAT DO NOT HAVE ONLINE DELIVERY OPTION

```
In [31]:
```

```
#finding the countries that have online delivery
final_df[["Has Online delivery", "Country"]].groupby(["Has Online delivery", "Country"]).si
Out[31]:
```

|    | Has Online delivery | Country        | 0    |
|----|---------------------|----------------|------|
| 0  | No                  | Australia      | 24   |
| 1  | No                  | Brazil         | 60   |
| 2  | No                  | Canada         | 4    |
| 3  | No                  | India          | 6229 |
| 4  | No                  | Indonesia      | 21   |
| 5  | No                  | New Zealand    | 40   |
| 6  | No                  | Phillipines    | 22   |
| 7  | No                  | Qatar          | 20   |
| 8  | No                  | Singapore      | 20   |
| 9  | No                  | South Africa   | 60   |
| 10 | No                  | Sri Lanka      | 20   |
| 11 | No                  | Turkey         | 34   |
| 12 | No                  | UAE            | 32   |
| 13 | No                  | United Kingdom | 80   |
| 14 | No                  | United States  | 434  |
| 15 | Yes                 | India          | 2423 |
| 16 | Yes                 | UAE            | 28   |

#### In [32]:

```
final_df.loc[final_df["Has Online delivery"]=="Yes", "Country"].unique()
```

#### Out[32]:

array(['UAE', 'India'], dtype=object)

INFERENCE --> Online deliveries are available in both India and UAE

#### In [ ]:

#### 7. CITY DISTRIBUTION OF TOP 5 CITIES

#### In [33]:

```
city_name = final_df.City.value_counts().index
city_value = final_df.City.value_counts().values
```

#### In [34]:

```
#pie chart for cities distribution - displaying the top 5 cities
import plotly.graph_objects as go
labels = country_name
values = country_value
fig = go.Figure(data=[go.Pie(labels=city_name[:5], values=city_value[:5])])
fig.show()
```



#### INFERENCE - Maximum transactions happen in New Delhi of India

#### In [ ]:

#### 8. TOP 10 CUISINES

#### In [ ]:

#### In [35]:

#### final\_df.Cuisines.value\_counts()[:10]

#### Out[35]:

| North Indian                   | 936 |
|--------------------------------|-----|
| North Indian, Chinese          | 511 |
| Chinese                        | 354 |
| Fast Food                      | 354 |
| North Indian, Mughlai          | 334 |
| Cafe                           | 299 |
| Bakery                         | 218 |
| North Indian, Mughlai, Chinese | 197 |
| Bakery, Desserts               | 170 |
| Street Food                    | 149 |

Name: Cuisines, dtype: int64

#### In [36]:

```
#pie chart to display the top 10 cuisines
cuisine_val = final_df.Cuisines.value_counts()
                                                             #values
cuisine label = final df.Cuisines.value counts().index
                                                             #LabeLs
plt.pie(x = cuisine_val[:10],labels = cuisine_label[:10],autopct='%1.2f\"')
Out[36]:
([<matplotlib.patches.Wedge at 0x23fd907a0d0>,
  <matplotlib.patches.Wedge at 0x23fd907a7f0>,
  <matplotlib.patches.Wedge at 0x23fd907af10>,
  <matplotlib.patches.Wedge at 0x23fd9096670>,
  <matplotlib.patches.Wedge at 0x23fd9096d90>,
  <matplotlib.patches.Wedge at 0x23fd909f4f0>,
  <matplotlib.patches.Wedge at 0x23fd909fc10>,
  <matplotlib.patches.Wedge at 0x23fd8c78370>,
  <matplotlib.patches.Wedge at 0x23fd8c78a90>,
  <matplotlib.patches.Wedge at 0x23fd8c871f0>],
 [Text(0.7383739846958008, 0.8153550507137645, 'North Indian'),
  Text(-0.5794679314239953, 0.9349956772366362, 'North Indian, Chinese'),
 Text(-1.067309479615702, 0.26617752482593154, 'Chinese'),
 Text(-1.0185984499802057, -0.4152796620326146, 'Fast Food'),
  Text(-0.5935788454809928, -0.9261015895664211, 'North Indian, Mughlai'),
  Text(-0.005887079599915552, -1.0999842463843672, 'Cafe'),
 Text(0.4842062514572988, -0.9876964645323336, 'Bakery'),
  Text(0.808736477166136, -0.7456174022251013, 'North Indian, Mughlai, Chine
se'),
  Text(1.0055375294202338, -0.44597564611473206, 'Bakery, Desserts'),
  Text(1.090298995560443, -0.14576728123927227, 'Street Food')],
 [Text(0.4027494461977095, 0.4447391185711442, '26.58%'),
  Text(-0.316073417140361, 0.5099976421290743, '14.51%'),
  Text(-0.5821688070631101, 0.14518774081414446, '10.05%'),
  Text(-0.5555991545346576, -0.22651617929051704, '10.05%'),
  Text(-0.32377027935326874, -0.5051463215816842, '9.48%'),
 Text(-0.003211134327226664, -0.5999914071187457, '8.49%'),
 Text(0.26411250079489024, -0.5387435261085456, '6.19%'),
  Text(0.441128987545165, -0.40670040121369155, '5.59%'),
  Text(0.5484750160474001, -0.24325944333530836, '4.83%'),
  Text(0.5947085430329688, -0.07950942613051214, '4.23%')])
```



Most ordered cuisine is North Indian

| -   |  |
|-----|--|
| ın  |  |
| TII |  |
|     |  |

#### **Problems**

- 1)You are in the team incharge of developing the interface for the food app. you are tasked with creating something that enables #user to choose the category of the food. you have no idea what categories to use while designing the app. how can this dataset #help you solve this issue?
- 2)You are hearing rumors that people in India passionately dislike the restaurants offered in the app. find out whether this #rumor has any substance to it.
- 3)You are one of the developer working in the food app company. you decide to quit and follow your dreams of opening a restaurant. using this data how will you go about increasing your chances of succeding in this highly competitive business?

#### In [ ]:

we know that cuisines column has 9 values missing. as the number is not significant we can deal with it later.

#### Step:

- 1)Missing Values
- 2)Explore about the numerical variables
- 3)explore about categorical variables
- 4) Finding relationship between features.

#### In [ ]:

Number of unique cuisines offered? soln: we can use the cusinies column and extract all unique values from it using a simple python script

#### In [ ]:

#### In [37]:

```
#pie chart to display the top 10 cuisines

cuisine_val = final_df.Cuisines.value_counts()  #values
cuisine_label = final_df.Cuisines.value_counts().index  #labels

plt.pie(x = cuisine_val[:10],labels = cuisine_label[:10],autopct='%1.2f%%')
plt.show()
```



```
In [38]:
df['Cuisines'].unique
Out[38]:
<bound method Series.unique of 0</pre>
                                               French, Japanese, Desserts
                                  Japanese
        Seafood, Asian, Filipino, Indian
2
3
                          Japanese, Sushi
4
                         Japanese, Korean
9546
                                   Turkish
         World Cuisine, Patisserie, Cafe
9547
                   Italian, World Cuisine
9548
                          Restaurant Cafe
9549
9550
                                      Cafe
Name: Cuisines, Length: 9551, dtype: object>
In [39]:
from pprint import pprint
```

```
In [40]:
```

```
cuisines_total = df['Cuisines']
texts = []
hash_map = set()
cuisines_total.dropna(inplace=True)
for i in cuisines_total:
    for j in str(i).split(', '):
        if j not in hash_map:
            texts.append(j.lower())
            hash map.add(j)
pprint(texts)
['french',
 'japanese',
 'desserts',
 'seafood',
 'asian',
 'filipino',
 'indian',
 'sushi',
 'korean',
 'chinese',
 'european',
 'mexican',
 'american',
 'ice cream',
 'cafe',
 'italian',
 'pizza',
 'bakery',
 'mediterranean',
```

#### Conclusion

North Indian Dish is most Ordered Cuisine.

| In [ ]:  |  |  |  |
|----------|--|--|--|
|          |  |  |  |
| т. Г. 1. |  |  |  |
| In [ ]:  |  |  |  |
|          |  |  |  |

# let's see how ratings are distributed?

if people are passionately disliking the restaurants on the app there is a good chance they will leave a negative rating, therefore let's see how well the restaurants are faring based on ratings.

First we need to filter out ratings outside of India and separate the columns representing ratings. The country code of India is given to be 1.

#### In [41]:

```
ratings1 = final_df.groupby(['Aggregate rating','Rating color','Rating text']).size().reset
ratings1
```

#### Out[41]:

|    | Aggregate rating | Rating color   | Rating text | Rating Count |
|----|------------------|----------------|-------------|--------------|
| 0  | 0.0              | White          | Not rated   | 2148         |
| 1  | 1.8              | Red            | Poor        | 1            |
| 2  | 1.9              | Red            | Poor        | 2            |
| 3  | 2.0              | Red            | Poor        | 7            |
| 4  | 2.1              | Red            | Poor        | 15           |
| 5  | 2.2              | Red            | Poor        | 27           |
| 6  | 2.3              | Red            | Poor        | 47           |
| 7  | 2.4              | Red            | Poor        | 87           |
| 8  | 2.5              | Orange         | Average     | 110          |
| 9  | 2.6              | Orange         | Average     | 191          |
| 10 | 2.7              | Orange         | Average     | 250          |
| 11 | 2.8              | Orange         | Average     | 315          |
| 12 | 2.9              | Orange         | Average     | 381          |
| 13 | 3.0              | Orange         | Average     | 468          |
| 14 | 3.1              | Orange         | Average     | 519          |
| 15 | 3.2              | Orange Average |             | 522          |
| 16 | 3.3              | Orange         | Average     | 483          |
| 17 | 3.4              | Orange         | Average     | 498          |
| 18 | 3.5              | Yellow         | Good        | 480          |
| 19 | 3.6              | Yellow         | Good        | 458          |
| 20 | 3.7              | Yellow         | Good        | 427          |
| 21 | 3.8              | Yellow         | Good        | 400          |
| 22 | 3.9              | Yellow         | Good        | 335          |
| 23 | 4.0              | Green          | Very Good   | 266          |
| 24 | 4.1              | Green          | Very Good   | 274          |
| 25 | 4.2              | Green          | Very Good   | 221          |
| 26 | 4.3              | Green          | Very Good   | 174          |
| 27 | 4.4              | Green          | Very Good   | 144          |
| 28 | 4.5              | Dark Green     | Excellent   | 95           |
| 29 | 4.6              | Dark Green     | Excellent   | 78           |
| 30 | 4.7              | Dark Green     | Excellent   | 42           |
| 31 | 4.8              | Dark Green     | Excellent   | 25           |
| 32 | 4.9              | Dark Green     | Excellent   | 61           |

#### In [42]:

from numpy import median

#### In [43]:

```
plt.figure(figsize=(15,5))
sns.barplot(x=ratings1['Aggregate rating'],y=ratings1['Rating Count'],hue=ratings1['Rating
plt.title('Rating Text')
plt.plot()
```

#### Out[43]:

[]



#### In [ ]:

#### In [44]:

# Let's calculate the mean and standard deviation of the data in order to explain it better

#### In [45]:

```
meanrat = ratings1['Aggregate rating'].mean()
stdrat = ratings1['Aggregate rating'].std()
print("Mean rating : ",meanrat, stdrat)
```

Mean rating: 3.24848484848485 1.092051169852291

the mean rating is around 3.24 Points and standard deviation is 1.09 Points.

#### In [ ]:

#### In [46]:

```
# Pie ploting the data

temp = ratings1[['Rating text', 'Rating Count']].groupby(['Rating text']).sum()
temp.drop('Not rated', axis=0, inplace=True)
```

#### In [47]:

```
plt.figure(figsize=(12,8))
plt.pie(temp['Rating Count'], labels = ['Average', 'Excellent', 'Good', 'Poor', 'Very Good'
plt.show()
```



#### In [48]:



#### In [49]:

```
# importing Libaries
import pylab as pl
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
```

#### In [50]:

```
X1=df[['Aggregate rating']]
Y1=df[['Votes']]
```

#### In [51]:

```
kmeans=KMeans(n_clusters=3)
kmeansoutput=kmeans.fit(Y1)

print(kmeansoutput)
pl.figure('3 Cluster K-Means')
pl.scatter(X1, Y1, c=kmeansoutput.labels_)
#pl.scatter(pca_c[:, 0], pca_d[:, 0], c=kmeansoutput.labels_)
pl.xlabel('Aggregate rating')
pl.ylabel('Votes')
pl.title('3 Cluster K-Means')
pl.show()
```

#### KMeans(n\_clusters=3)



# Conclusion

1)The range of ratings for categories are as follows.

```
A] 1.8 - 2.4: poor
B] 2.5 - 3.4: Average
C] 3.5 - 3.9: Good
D] 4.0 - 4.4: Very Good
E] 4.4 - 4.9: Excellent
```

2)The mean rating is 3.24 and 95% of the values lie between 2.15 and 4.34.

Due to low number of poor ratings on restaurants it can be concluded that the rumor is unsubstantiated.

```
In [ ]:
```

# Finding the relationship between different variables and Ratings.

we can use Data Analysis to check what features are useful to implement in a business to get maximum ratings.

let's start by converting some values into 1 and 0.

```
In [52]:
```

```
tt = {'Yes': 1, 'No': 0}
col = ['Has Table booking', 'Has Online delivery', 'Is delivering now', 'Switch to order me
for c in col:
    df.replace({c:tt}, inplace=True)
```

```
In [53]:
```

```
sumlist = df[col].sum()
sumlist
```

#### Out[53]:

```
Has Table booking 1158
Has Online delivery 2451
Is delivering now 34
Switch to order menu 0
dtype: int64
```

Because Switch to order menu is empty we can just drop it.

```
In [54]:
```

```
sumlist.drop(['Switch to order menu'], inplace=True)
```

#### In [55]:

df.drop('Switch to order menu', axis = 1, inplace=True)
df.head()

#### Out[55]:

|   | Restaurant<br>ID | Restaurant<br>Name           | Country<br>Code | City                | Address                                                           | Locality                                               | Locality<br>Verbose                                           | Longit      |
|---|------------------|------------------------------|-----------------|---------------------|-------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|-------------|
| 0 | 6317637          | Le Petit<br>Souffle          | 162             | Makati City         | Third<br>Floor,<br>Century<br>City Mall,<br>Kalayaan<br>Avenu     | Century City<br>Mall,<br>Poblacion,<br>Makati City     | Century City<br>Mall,<br>Poblacion,<br>Makati City,<br>Mak    | 121.027     |
| 1 | 6304287          | Izakaya<br>Kikufuji          | 162             | Makati City         | Little<br>Tokyo,<br>2277<br>Chino<br>Roces<br>Avenue,<br>Legaspi  | Little Tokyo,<br>Legaspi<br>Village,<br>Makati City    | Little Tokyo,<br>Legaspi<br>Village,<br>Makati City,<br>Ma    | 121.014     |
| 2 | 6300002          | Heat -<br>Edsa<br>Shangri-La | 162             | Mandaluyong<br>City | Edsa<br>Shangri-<br>La, 1<br>Garden<br>Way,<br>Ortigas,<br>Mandal | Edsa<br>Shangri-La,<br>Ortigas,<br>Mandaluyong<br>City | Edsa<br>Shangri-La,<br>Ortigas,<br>Mandaluyong<br>City, Ma    | 121.056     |
| 3 | 6318506          | Ooma                         | 162             | Mandaluyong<br>City | Third<br>Floor,<br>Mega<br>Fashion<br>Hall, SM<br>Megamall,<br>O  | SM<br>Megamall,<br>Ortigas,<br>Mandaluyong<br>City     | SM<br>Megamall,<br>Ortigas,<br>Mandaluyong<br>City,<br>Mandal | 121.05€     |
| 4 | 6314302          | Sambo<br>Kojin               | 162             | Mandaluyong<br>City | Third<br>Floor,<br>Mega<br>Atrium,<br>SM<br>Megamall,<br>Ortigas  | SM<br>Megamall,<br>Ortigas,<br>Mandaluyong<br>City     | SM<br>Megamall,<br>Ortigas,<br>Mandaluyong<br>City,<br>Mandal | 121.057     |
| 4 |                  |                              |                 |                     |                                                                   |                                                        |                                                               | <b>&gt;</b> |

#### In [56]:

```
dfrel = df[['Average Cost for two', 'Has Table booking', 'Has Online delivery', 'Is deliver
dfrel
```

#### Out[56]:

|      | Average Cost for two | Has Table<br>booking | Has Online<br>delivery | Is delivering now | Price<br>range | Aggregate rating | Votes |
|------|----------------------|----------------------|------------------------|-------------------|----------------|------------------|-------|
| 0    | 1100                 | 1                    | 0                      | 0                 | 3              | 4.8              | 314   |
| 1    | 1200                 | 1                    | 0                      | 0                 | 3              | 4.5              | 591   |
| 2    | 4000                 | 1                    | 0                      | 0                 | 4              | 4.4              | 270   |
| 3    | 1500                 | 0                    | 0                      | 0                 | 4              | 4.9              | 365   |
| 4    | 1500                 | 1                    | 0                      | 0                 | 4              | 4.8              | 229   |
|      |                      |                      |                        |                   |                |                  |       |
| 9546 | 80                   | 0                    | 0                      | 0                 | 3              | 4.1              | 788   |
| 9547 | 105                  | 0                    | 0                      | 0                 | 3              | 4.2              | 1034  |
| 9548 | 170                  | 0                    | 0                      | 0                 | 4              | 3.7              | 661   |
| 9549 | 120                  | 0                    | 0                      | 0                 | 4              | 4.0              | 901   |
| 9550 | 55                   | 0                    | 0                      | 0                 | 2              | 4.0              | 591   |

9551 rows × 7 columns

Now let's visualize what features are offered.

#### In [57]:

```
# pie plot to see distribution
plt.pie(sumlist, labels=['Table Booking', 'Has Online delivery', 'Is delivering now'],autop
plt.show()
```



#### In [58]:

```
dfwozeros = df[df['Aggregate rating'] != 0]
```

let's see if Online Delivery Affects rating.

#### In [59]:

```
sns.boxplot(x=col[0], y='Aggregate rating', data=dfwozeros)
```

#### Out[59]:

<AxesSubplot:xlabel='Has Table booking', ylabel='Aggregate rating'>



#### In [60]:

sns.boxplot(x=col[1], y='Aggregate rating', data=dfwozeros)

#### Out[60]:

<AxesSubplot:xlabel='Has Online delivery', ylabel='Aggregate rating'>



#### In [61]:

sns.boxenplot(x=col[1], y='Aggregate rating', data=dfwozeros)
# Boxenplot is used for better visualisation for data distribution

#### Out[61]:

<AxesSubplot:xlabel='Has Online delivery', ylabel='Aggregate rating'>



#### In [62]:

sns.boxplot(x=col[2], y='Aggregate rating', data=dfwozeros)

#### Out[62]:

<AxesSubplot:xlabel='Is delivering now', ylabel='Aggregate rating'>



#### In [63]:

sns.boxenplot(x=col[2], y='Aggregate rating', data=dfwozeros)

#### Out[63]:

<AxesSubplot:xlabel='Is delivering now', ylabel='Aggregate rating'>



## Conclusion

- 1) we can observe that online booking is a common features in restaurants
- 2) we can observe that these features don't provide any appreciable difference to the aggregate ratings.
- 3) Implementing these feature doesn't provide a appreciable difference to the rating of the restaurants but online booking is still a good idea to implement

#### In [ ]:

## Let's compare with Price range.

#### Concentration of Price Range.

#### In [64]:

```
sumlist = dfwozeros['Price range'].value_counts()
sumlist
```

#### Out[64]:

2744
 2711
 1373

575

Name: Price range, dtype: int64

#### In [65]:

4

```
# pie plot for seeing distribution
plt.pie(sumlist, labels=[1, 2, 3, 4], autopct='%1.2f')
plt.show()
```



#### In [66]:

sns.boxplot(x='Price range', y='Aggregate rating', data=dfwozeros)

#### Out[66]:

<AxesSubplot:xlabel='Price range', ylabel='Aggregate rating'>



#### In [67]:

```
sns.boxenplot(x='Price range', y='Aggregate rating', data=dfwozeros)
## it show better distribution and outlier than box plot
```

#### Out[67]:

<AxesSubplot:xlabel='Price range', ylabel='Aggregate rating'>



#### In [68]:

```
X2=df[['Price range']]
Y2=df[['Votes']]
```

#### In [69]:

```
kmeans=KMeans(n_clusters=3)
kmeansoutput=kmeans.fit(Y2)

print(kmeansoutput)
pl.figure('3 Cluster K-Means')
pl.scatter(X2, Y2, c=kmeansoutput.labels_)
#pl.scatter(pca_c[:, 0], pca_d[:, 0], c=kmeansoutput.labels_)
pl.xlabel('Price_range')
pl.ylabel('Votes')
pl.title('3 Cluster K-Means')
pl.show()
```

#### KMeans(n\_clusters=3)



#### In [70]:

```
X3=df[['Price range']]
Y3=df[['Aggregate rating']]
```

#### In [71]:

```
kmeans=KMeans(n_clusters=3)
kmeansoutput=kmeans.fit(Y3)
print(kmeansoutput)
pl.figure('3 Cluster K-Means')
pl.scatter(X3, Y3, c=kmeansoutput.labels_)
#pl.scatter(pca_c[:, 0], pca_d[:, 0], c=kmeansoutput.labels_)
pl.xlabel('Price_range')
pl.ylabel('Aggregate rating')
pl.title('3 Cluster K-Means')
pl.show()
```

KMeans(n\_clusters=3)



### Conclusion

Price Rating 4 get's the highest average rating and there is an increase in ratings with an increase in Price range.

```
In [ ]:
```

## **One Country Analysis**

As We know from above India has Most Order data.

so Let do Some Exploration on that

```
In [ ]:
```

#### In [72]:

```
# Creating One Country data set
one_selected_country_dataset = final_df[final_df['Country Code']==1]
one_selected_country_dataset.head()
```

Out[72]:

|      | Restaurant<br>ID | Restaurant<br>Name                                | Country<br>Code | City | Address                                                             | Locality       | Locality<br>Verbose     | Longitude | Latitude  |
|------|------------------|---------------------------------------------------|-----------------|------|---------------------------------------------------------------------|----------------|-------------------------|-----------|-----------|
| 624  | 3400025          | Jahanpanah                                        | 1               | Agra | E 23,<br>Shopping<br>Arcade,<br>Sadar<br>Bazaar,<br>Agra<br>Cant    | Agra<br>Cantt  | Agra<br>Cantt,<br>Agra  | 78.011544 | 27.161661 |
| 625  | 3400341          | Rangrezz<br>Restaurant                            | 1               | Agra | E-20,<br>Shopping<br>Arcade,<br>Sadar<br>Bazaar,<br>Agra<br>Cant    | Agra<br>Cantt  | Agra<br>Cantt,<br>Agra  | 0.000000  | 0.000000  |
| 626  | 3400005          | Time2Eat -<br>Mama<br>Chicken                     | 1               | Agra | Main<br>Market,<br>Sadar<br>Bazaar,<br>Agra<br>Cantt,<br>Agra       | Agra<br>Cantt  | Agra<br>Cantt,<br>Agra  | 78.011608 | 27.160832 |
| 627  | 3400021          | Chokho<br>Jeeman<br>Marwari<br>Jain<br>Bhojanalya | 1               | Agra | 1/48,<br>Delhi<br>Gate,<br>Station<br>Road,<br>Raja<br>Mandi,<br>Ci | Civil<br>Lines | Civil<br>Lines,<br>Agra | 77.998092 | 27.195928 |
| 628  | 3400017          | Pinch Of<br>Spice                                 | 1               | Agra | 23/453,<br>Opposite<br>Sanjay<br>Cinema,<br>Wazipura<br>Road,       | Civil<br>Lines | Civil<br>Lines,<br>Agra | 78.007553 | 27.201725 |
| 5 00 |                  |                                                   |                 |      |                                                                     |                |                         |           |           |

5 rows × 22 columns

#### In [73]:

```
# Order count Locality vise
one_selected_country_dataset['Locality'].value_counts()
```

#### Out[73]:

Connaught Place 122 Rajouri Garden 99 Shahdara 87 Defence Colony 86 Malviya Nagar 85 Mansingh Road 1 12th Square Building, Banjara Hills 1 Gachibowli 1 Holiday Inn Express & Suites 1 Waltair Uplands Name: Locality, Length: 784, dtype: int64

#### In [74]:

```
one_selected_country_dataset['Average Cost for two'].value_counts()
```

#### Out[74]:

Name: Average Cost for two, Length: 79, dtype: int64

#### In [75]:

```
## For finding Most Expensive Locality
one_selected_country_dataset['Average Cost for two'] = one_selected_country_dataset['Average
locality_list = list(one_selected_country_dataset['Locality'].unique())
average_cost_of_2_by_locality=[]
for locality in locality_list:
    x = one_selected_country_dataset[one_selected_country_dataset['Locality']==locality]
   avg_cost = sum(x['Average Cost for two'])/len(x)
   average_cost_of_2_by_locality.append(avg_cost)
data = pd.DataFrame({'locality':locality_list,'Avg_food_cost_of_two':average_cost_of_2_by_l
new_index = (data['Avg_food_cost_of_two'].sort_values(ascending=False)).index.values
sorted_data = data.reindex(new_index)
plt.figure(figsize=(15,10))
sns.barplot(x=sorted_data['locality'][:15],y=sorted_data['Avg_food_cost_of_two'][:15])
plt.xticks(rotation=90)
plt.xlabel("locality")
plt.ylabel("Food Cost of 2 people")
plt.title("country's most 15 expensive Locality's according Food of two(data by Zomato)")
plt.show()
```



#### In [76]:

```
one_selected_country_dataset["City"].value_counts().plot(kind = 'bar')
plt.show()
```



## Conclusion

- 1) Most of the Order are from New Delhi City in India
- 2) Most Expensive Locality are also in New Delhi City

#### In [ ]:

```
In [77]:
```

```
df1 = one_selected_country_dataset
```

```
In [ ]:
```

## **Effect of Average Cost on rating**

```
In [78]:
```

```
X4=df1[['Average Cost for two']]
Y4=df1[['Aggregate rating']]
```

#### In [79]:

```
kmeans=KMeans(n_clusters=3)
kmeansoutput=kmeans.fit(Y4)

print(kmeansoutput)
plt.rcParams['figure.figsize'] = (12,6)
plt.figure('3 Cluster K-Means')
plt.scatter(X4, Y4, c=kmeansoutput.labels_)
#plt.scatter(pca_c[:, 0], pca_d[:, 0], c=kmeansoutput.labels_)
plt.xlabel('Average_Cost_for_two')
plt.ylabel('Aggregate_rating')
plt.title('3 Cluster K-Means')
plt.show()
```

KMeans(n\_clusters=3)



#### In [80]:

```
X5=df1[['Average Cost for two']]
Y5=df1[['Votes']]
```

#### In [81]:

```
kmeans=KMeans(n_clusters=4)

kmeansoutput=kmeans.fit(X5)

print(kmeansoutput)
plt.figure('3 Cluster K-Means')
plt.scatter(X5, Y5, c=kmeansoutput.labels_)

#pl.scatter(pca_c[:, 0], pca_d[:, 0], c=kmeansoutput.labels_)
plt.xlabel('Average_Cost_for_two')
plt.ylabel('Votes')
plt.title('3 Cluster K-Means')
plt.show()
```

#### KMeans(n\_clusters=4)



## Conclusion

- 1) The average does affect the rating but indirectly, as people prefer budget-frie ndly places.
- 2) As price increases, orders are fewer and votes are fewer, but the rating is higher.
- 3) So we can assume that price is thus affecting the rating.

# In [ ]: In [ ]:

#### **Recommandation And Map Plotting.**

#### First Change the data for processing

#### In [107]:

```
## Drop Unneccessery Columns
zomato=one_selected_country_dataset.drop(['Country Code','Currency','Address', 'Votes'],axi
```

#### In [108]:

```
#Removing the Duplicates
zomato.duplicated().sum()
zomato.drop_duplicates(inplace=True)
```

#### In [109]:

```
#Remove the NaN values from the dataset
zomato.isnull().sum()
zomato.dropna(how='any',inplace=True)
```

#### In [110]:

```
#Changing the column names
zomato = zomato.rename(columns={'Average Cost for two':'cost'})
```

#### In [111]:

```
zomato['Restaurant'] =zomato['Restaurant Name']
zomato.head()
```

#### Out[111]:

|     | Restaurant<br>ID | Restaurant<br>Name                                | City | Locality       | Locality<br>Verbose     | Longitude | Latitude  | Cuisines                                | cost   |
|-----|------------------|---------------------------------------------------|------|----------------|-------------------------|-----------|-----------|-----------------------------------------|--------|
| 624 | 3400025          | Jahanpanah                                        | Agra | Agra<br>Cantt  | Agra<br>Cantt,<br>Agra  | 78.011544 | 27.161661 | North<br>Indian,<br>Mughlai             | 850.0  |
| 625 | 3400341          | Rangrezz<br>Restaurant                            | Agra | Agra<br>Cantt  | Agra<br>Cantt,<br>Agra  | 0.000000  | 0.000000  | North<br>Indian,<br>Mughlai             | 700.0  |
| 626 | 3400005          | Time2Eat -<br>Mama<br>Chicken                     | Agra | Agra<br>Cantt  | Agra<br>Cantt,<br>Agra  | 78.011608 | 27.160832 | North<br>Indian                         | 500.0  |
| 627 | 3400021          | Chokho<br>Jeeman<br>Marwari<br>Jain<br>Bhojanalya | Agra | Civil<br>Lines | Civil<br>Lines,<br>Agra | 77.998092 | 27.195928 | Rajasthani                              | 400.0  |
| 628 | 3400017          | Pinch Of<br>Spice                                 | Agra | Civil<br>Lines | Civil<br>Lines,<br>Agra | 78.007553 | 27.201725 | North<br>Indian,<br>Chinese,<br>Mughlai | 1000.0 |
| 4   |                  |                                                   |      |                |                         |           |           |                                         | •      |

#### In [112]:

```
#Some Transformations
zomato['cost'] = zomato['cost'].astype(str) #Changing the cost to string
zomato['cost'] = zomato['cost'].apply(lambda x: x.replace(',','.')) #Using Lambda function
zomato['cost'] = zomato['cost'].astype(float)
```

#### In [113]:

```
zomato['Aggregate rating'] = zomato['Aggregate rating'].astype('float')
```

#### In [114]:

```
# Adjust the column names
zomato['Restaurant Name'] = zomato['Restaurant Name'].apply(lambda x:x.title())
zomato['Has Online delivery'].replace(('Yes','No'),(True, False),inplace=True)
zomato['Has Table booking'].replace(('Yes','No'),(True, False),inplace=True)
```

#### In [115]:

```
## Computing Mean Rating
restaurants = list(zomato['Restaurant Name'].unique())
zomato['Mean Rating'] = 0
```

As there are many restaurant without rated so we are giving mean rating to those.

#### In [116]:

```
for i in range(len(restaurants)):
   zomato['Mean Rating'][zomato['Restaurant Name'] == restaurants[i]] = zomato['Aggregate
```

#### In [117]:

```
from sklearn.preprocessing import MinMaxScaler
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
```

#### In [118]:

```
scaler = MinMaxScaler(feature_range = (1,5))
zomato[['Mean Rating']] = scaler.fit_transform(zomato[['Mean Rating']]).round(2)
```

#### In [119]:

```
zomato[['Rating text', 'Cuisines']].sample(5)
```

#### Out[119]:

|      | Rating text | Cuisines              |  |  |
|------|-------------|-----------------------|--|--|
| 3825 | Very Good   | Thai, Chinese         |  |  |
| 5462 | Good        | Desserts              |  |  |
| 8274 | Not rated   | Chinese, Fast Food    |  |  |
| 4828 | Average     | Chinese, North Indian |  |  |
| 3928 | Average     | Bakery, Desserts      |  |  |

#### In [120]:

```
# RESTAURANT NAMES:
restaurant_names = list(zomato['Restaurant Name'].unique())
def get_top_words(column, top_nu_of_words, nu_of_word):
    vec = CountVectorizer(ngram_range= nu_of_word, stop_words='english')
    bag_of_words = vec.fit_transform(column)
    sum_words = bag_of_words.sum(axis=0)
    words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
    words_freq =sorted(words_freq, key = lambda x: x[1], reverse=True)
    return words_freq[:top_nu_of_words]
```

#### In [121]:

```
# Randomly sample 60% of your dataframe
df_percent = zomato.sample(frac=0.5)
```

#### In [ ]:

#### In [122]:

```
## Install neccessery libaries
```

#### In [123]:

```
#pip install geopy
#pip install folium
```

#### In [124]:

```
# Import Libaries
```

#### In [125]:

```
import re
from nltk.corpus import stopwords
import pylab as pl
#To geolocate a query to an address and coordinates:
from geopy.geocoders import ArcGIS
import folium
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.metrics.pairwise import linear_kernel
```

#### In [126]:

```
df_percent.set_index('Restaurant Name', inplace=True)
indices = pd.Series(df_percent.index)

# Creating tf-idf matrix to Performs the TF-IDF transformation from a provided matrix of co
#TFIDF works by proportionally increasing the number of times a word appears in the documen
#but is counterbalanced by the number of documents in which it is present.

tfidf = TfidfVectorizer(analyzer='word', ngram_range=(1, 2), min_df=0, stop_words='english'
tfidf_matrix = tfidf.fit_transform(df_percent['Rating text'])

cosine_similarities = linear_kernel(tfidf_matrix, tfidf_matrix)
```

## Function For Recommandation and Plotting recommanded Restaurant on Map.

```
In [127]:
```

```
#geloc = ArcGIS()
#locat = geloc.geocode('Pune')
```

#### In [128]:

```
zm list = []
df_new=[]
hotels = folium.Map(location=[20.5937,78.9629],zoom_start=5)
gemaps = folium.FeatureGroup(name='Restaurants')
def recommend(name,city, cosine_similarities = cosine_similarities):
   # Create a list to put top restaurants
   recommend_restaurant = []
   # Find the index of the hotel entered
   idx = indices[indices == name].index[0]
   # Find the restaurants with a similar cosine-sim value and order them from bigges numbe
   score_series = pd.Series(cosine_similarities[idx]).sort_values(ascending=False)
   # Extract top restaurant indexes with a similar cosine-sim value
   top_indexes = list(score_series.iloc[0:200].index)
   # Names of the top restaurants
   for each in top_indexes:
        recommend_restaurant.append(list(df_percent.index)[each])
   # Creating the new data set to show similar restaurants
   df_new = pd.DataFrame(columns=['Restaurant','City','Cuisines', 'Mean Rating','Longitude
   # Create the top similar restaurants with some of their columns
   for each in recommend restaurant:
        df_new = df_new.append(pd.DataFrame(df_percent[['Restaurant','City','Cuisines','Mea
                                                         'Rating text', 'cost' ]][df_percent.
   # Drop the same named restaurants and sort only the top 10 by the highest rating
   df_new = df_new.drop_duplicates(subset=['Restaurant','City','Cuisines','Mean Rating','L
                                             'Rating text', 'cost'], keep=False)
   df new = df new[df new['City']==city]
   df_new = df_new.sort_values(by='Mean Rating', ascending=False).head(10)
   print('TOP %s RESTAURANTS LIKE %s WITH SIMILAR REVIEWS: ' % (str(len(df_new)), name))
   #create a list based on recommation hotels for showing on map
   zm_list=df_new[['Restaurant','City',
                     'Latitude', 'Longitude', 'Cuisines',
                    'Mean Rating','Rating text','cost']].values.tolist()
   # in for loop pass the created list for map
   for i in zm_list:
        if i[1]==city:
            #calling map marker for marking location on map
            #for showing restaurant on map pass its map co-ordinates into the Location
            gemaps.add_child(folium.Marker(location=[i[2],i[3]],
            #use tooltip to popup or show details realated to marker
                                            tooltip = ' < h5 > < b > ' + str(i[0]) + " < / b > < / h5 > < br/>" + s
                                                    '<br/>Rating: <b>'+str(i[5])+'/5</b><br/
                                                    '<br/>Cost for 2: '+str(i[7]),
            #icon use to show pointing the restaurant on map
                                            icon=folium.Icon(color='green')))
   #hotels.add_child(gemaps)
   return df new
#recommend('Jahanpanah','New Delhi') Example for applying Function
```

```
#df_new
#hotels.add_child(gemaps) For Displaying Map
#hotels.save('map.html') For Saving Map
```

#### In [129]:

```
def City():
    print("Which Type of Hotels You Like")
    city = input('Enter Your City Name : ')
    # store restaurant name and city name
    zc=zomato[['Restaurant Name','City']][zomato['City']==city]
    print(zc.head(30))
    hotel_name = input("Check list and Enter Type Of Hotels You Like : ")

    recommend(hotel_name,city)
    #hotels.add_child(gemaps)
    return hotel_name,city
```

#### In [130]:

```
# calling city function
City()
# Disaplay map
hotels.add_child(gemaps)
```

```
Which Type of Hotels You Like
Enter Your City Name : New Delhi
                 Restaurant Name
                                       City
2560
                      Food Cloud New Delhi
                       Burger.In New Delhi
2561
2562
                 Days Of The Raj
                                  New Delhi
                  Dilli Ka Dhaba
                                  New Delhi
2563
2564
                       Govardhan New Delhi
                  Mezbaan Grills
                                  New Delhi
2565
                      Say Cheese New Delhi
2566
2567
                          Southy New Delhi
2568
                         Monosoz New Delhi
2569
                           Waves
                                  New Delhi
                    Delhi Darbar
                                  New Delhi
2570
                         Chateau New Delhi
2571
                    Nariyal Cafe
                                  New Delhi
2572
                                  New Delhi
            Rustom'S Parsi Bhonu
2573
2574
                        Barshala New Delhi
2575
                      Chawla'Sœ New Delhi
                  Domino'S Pizza New Delhi
2576
                        Sultanat New Delhi
2577
2578
                    Bella Italia New Delhi
2579
                 Clever Fox Cafe New Delhi
2580
                    365 Naturals
                                  New Delhi
                            Tpot New Delhi
2581
2582
        4 On 44 Restaurant & Bar
                                  New Delhi
                                  New Delhi
2583
                         Rambhog
2584
      Selfie Lounge Restro & Bar
                                  New Delhi
2585
                             Btw
                                  New Delhi
                                  New Delhi
2586
                   Chilli Pepper
                       Pizza Hut New Delhi
2587
                     Puri Bakers New Delhi
2588
2589
            Jaiveer Naan & Chaap New Delhi
```

Check list and Enter Type Of Hotels You Like : Govardhan TOP 10 RESTAURANTS LIKE Govardhan WITH SIMILAR REVIEWS:

#### Out[130]:



New Delhi
Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL
(http://www.openstreetmap.org/copyright).

#### Conclusion

- 1) In this way, we recommended the restaurant based on the liking of the customer and which city they are.
- 2) Recommended restaurants can be viewed on the map.

## **Thank You**

| In [ ]: |  |  |  |
|---------|--|--|--|
|         |  |  |  |