

UL LLC 333 Pfingsten Rd. Northbrook, IL 60062

www.ul.com/emc (847) 272-8800

Job Number: 1001499549

Project Number: 12CA21441

File Number: MC17070

Date: April 23, 2012

Model: CMAP Pro

Electromagnetic Compatibility Test Report

For

Med-Tek LLC

Copyright © 2012 UL LLC

UL LLC authorizes the above-named company to reproduce this Report provided it is reproduced in its entirety.

Job Number: 1001499549 File Number: MC17070 Page 2 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Test Report Details

Tests Performed By: UL LLC

333 Pfingsten Rd. Northbrook, IL 60062

Tests Performed For: Med-Tek LLC

2665 South Bayshore Dr.

Suite 502

Coconut Grove, FL 33133

Applicant Contact: Martin Rodriquez
Phone: (866) 930-2627

E-mail: mrodriguez@med-tek.com

Test Report Date: April 23, 2012

Product Type: Medical with transmitter

Product standards FCC Part 15.27(d)

Model Number: CMAP Pro

Sample Serial Number: Prototype

EUT Category: Medical with transmitter

Testing Start Date: April 13, 2012

Date Testing Complete: April 16, 2012

Overall Results: Compliant

UL LLC reports apply only to the specific samples tested under stated test conditions. All samples tested were in good operating condition throughout the entire test program. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. UL LLC shall have no liability for any deductions, inferences or generalizations drawn by the client or others from UL LLC issued reports. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

This report may contain test results that are not covered by the NVLAP or A2LA accreditation. The scope of accreditation is limited to the specific tests that are listed on the NVLAP and/or A2LA websites referenced at the end of this report.

File Number: MC17070 3 of 49 Page

Job Number: **CMAP Pro** Model Number: Client Name: Med-Tek LLC

1001499549

Report Directory

1.0	G E N E R A L - Product Description	4
1.1	Equipment Description	4
1.2	Equipment Marking Plate	4
1. 1.	Device Configuration During Test .3.1 Equipment Used During Test: .3.2 Input/Output Ports: .3.3 EUT Internal Operating Frequencies: .3.4 Power Interface:	5 5 6
1.4	EUT Configurations	7
1.5	EUT Operation Modes	7
1.6	Rational for EUT Configuration	7
2.0	Summary	8
2.1	Deviations from standard test methods	8
2.2	Device Modifications Necessary for Compliance	8
2.3	Reference Standards	9
2.4	Results Summary	9
3.0	Calibration of Equipment Used for Measurement	10
4.0	EMISSIONS TEST RESULTS	10
4.1	Test Conditions and Results – RADIATED EMISSIONS	11
4.2	Test Conditions and Results – BAND EDGE COMPLIANCE	29
5.0	IMMUNITY TEST RESULTS	47
Append	dix A	48
Accr	reditations and Authorizations	48

Job Number: 1001499549 File Number: MC17070 Page 4 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Report Revision History

Revision Date	Description	Revised By	Revision Reviewed By
None			

1.0 GENERAL-Product Description

1.1 Equipment Description

Medical Equipment containing a 802.11bg modular transmitter. The purpose of this report is to check the Radiated Spurious Emissions due to the modular being placed in a new host. Only Radiated and Bandedge Emissions were performed per the manufacturer request.

1.2 Equipment Marking Plate

Job Number: 1001499549 File Number: MC17070 Page 5 of 49

CMAP Pro Model Number: Client Name: Med-Tek LLC

1.3 **Device Configuration During Test**

1.3.1 **Equipment Used During Test:**

Use	Product Type	Manufacturer	Model	Comments
EUT	Main Unit	MTU	POD	None
AE	Patient grip	MTU	FCE	None
AE	Patient Motion	MTU	ROM	None
AE	Patient sEMG	MTU	EMG	None
Note: EUT - Equipment Under Test, AE - Auxiliary/Associated Equipment, or SIM - Simulator (Not Subjected to Test)				

1.3.2 **Input/Output Ports:**

Port #	Name	Type*	Cable Max. >3m (Y/N)	Cable Shielded (Y/N)	Comments
0	Enclosure	N/E	_	_	None
1	Mains	AC	N	N	Connects to AC/DC adapter
2	EMG	IO	N	Y	None
3	FCE	Ю	N	Y	None
4	MT1/ROM	Ю	N	Y	None

Note:

= AC Power Port DC = DC Power Port N/E = Non-Electrical

AC I/O = Signal Input or Output Port (Not Involved in Process Control)
= Telecommunication Ports

Job Number: 1001499549 File Number: MC17070 Page 6 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

1.3.3 EUT Internal Operating Frequencies:

Frequency (MHz)	Description
12	Wifi
12	Microcontroller/CPLD
2400	Wifi transmission

1.3.4 Power Interface:

Mode # /Rated	Voltage (V)	Current (A)	Power (W)	Frequency (DC/AC-Hz)	Phases (#)	Comments
1	Battery Operated	-	-			None

.

Job Number: 1001499549 File Number: MC17070 Page 7 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

1.4 EUT Configurations

	Mode #	Description
1 EUT was configured with all cables connected		EUT was configured with all cables connected

1.5 EUT Operation Modes

Mode #	Description
1	EUT was set to 11b 1Mbps, 11g 6Mbps. Hi, Mid, Low channel

1.6 Rational for EUT Configuration

Mode #	Description
1	The selected EUT configuration was chosen to maximize emissions

Job Number: 1001499549 File Number: MC17070 Page 8 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

2.0 Summary

The tests listed in the Summary of Testing section of this report have been performed and the results recorded by UL LLC in accordance with the procedures stated in each test requirement and specification. The applicant determined the list of tests performed were applicable to the Equipment Under Test. As a result, the subject product has been verified to comply or not comply as noted in the Summary of Testing with each test specification. The test results relate only to the items tested.

2.1	Deviations from standard test methods				
	None				
2.2	Device Modifications Necessary for Compliance				
	None				

Job Number: 1001499549 File Number: MC17070 Page 9 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

2.3 Reference Standards

Standard Number	Standard Number Standard Name	
FCC Part 15.247(d)	Code of Federal Regulations, Part 15, Radio Frequency Devices	2010

2.4 Results Summary

This product is considered Class B

Requirement – Test	Result (Compliant / Non- Compliant)*
Radiated Emissions	Compliant
Bandedge	Compliant

Test Engineer:

Reviewer:

Michael Ferrer (Ext.41312) Senior Project Engineer International EMC Services Conformity Assessment Services Bartlomiej Mucha(Ext.41216) Staff Engineer International EMC Services Conformity Assessment Services

Any information and documentation involving UL Mark services are provided on behalf of UL LLC (UL) or any authorized licensee of UL.

Job Number: 1001499549 File Number: MC17070 Page 10 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

3.0 Calibration of Equipment Used for Measurement

All test equipment and test accessories are calibrated on a regular basis. The maximum time between calibrations is one year or the manufacturers' recommendation, whichever is less.

All test equipment calibrations are traceable to the National Institute of Standards and Technology (NIST); therefore, all test data recorded in this report is traceable to NIST.

4.0 EMISSIONS TEST RESULTS

The emissions tests were performed according to following regulations:								
United States								
Code of Federal Regulations Title 47	Part 15.247(d)							

Unless specified otherwise in the individual Methods, the tests shall be conducted under the following ambient conditions. Confirmation of these conditions shall be verified at the time the test is conducted.

Ambient	oient 22.5 ± 2.5		Relative 45 ± 15		950 ± 150
Temperature, °C	22.5 ± 2.5	Humidity, %	45 ± 15	Pressure, mBar	950 ± 150

Sample Calculations

Radiated Field Strength and Conducted Emissions data contained within this report is calculated on the following basis:

Field Strength (dBuV/m) = Meter Reading (dBuV) + AF (dB/m) - Gain (dB) + Cable Loss (dB) Conducted Voltage (dBuV) = Meter Reading (dBuV) + Cable Loss (dB) + LISN IL (dB) Conducted Current (dBuA) = Meter Reading (dBuV) + Cable Loss (dB) - Transducer Factor (dBohms)

Job Number: 1001499549 File Number: MC17070 Page 11 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

4.1 Test Conditions and Results - RADIATED EMISSIONS

ı	est
С	Description

T--4

Measurements were made in a 10 meter semi-anechoic chamber that complies to CISPR 16/ANSI C63.4. Preliminary (peak) measurements were performed at an antenna to EUT separation distance of 10 and 3 meter. The EUT was rotated 360° about its azimuth with the receive antenna located at various heights in both horizontal and vertical polarities. Final measurements (quasi-peak or average as noted) were then performed by rotating the EUT 360° and adjusting the receive antenna height from 1 to 4-meters. All frequencies were investigated in both horizontal and vertical antenna polarity, where applicable.

Basic Standard	FCC Part 15.247(d)				
UL LPG	80-EM-S0029				
	Frequency range	Measurement Point			
Fully configured sample scanned over the following frequency range	30MHz – 1GHz	(10 meter measurement distance)			
Fully configured sample scanned over the following frequency range	1GHz – 25GHz	(3 meter measurement distance)			

Limits - Class B

	Limit (dBµV/m)					
Frequency (MHz)	Quasi-Peak	Average				
30 - 88	40	NA				
88 - 216	43.5	NA				
216 - 960	46	NA				
960 - 1000	54	NA				
Above 960 (FCC)	NA	54 (at 3-meter)				

Supplementary information: Preliminary testing shows Y axis was the worst case configuration. Plots for 30-1000, Limit shown will be QP limit. During Preliminary scan any peaks found within 6dB will be measured using QP detector. Only very close Emissions were repeated for HI and Low channel, otherwise 11bg CH 6 will contain all QP measurements.

Job Number: 1001499549 File Number: MC17070 Page 12 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Table 1 Radiated Emissions EUT Configuration Settings

Power Interface Mode #	EUT Configurations Mode #	EUT Operation Mode #		
1	1	1		
Supplementary information: None				

Table 2 Radiated Emissions Test Equipment

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESU	EMC4323	Dec 28 2011	Dec 31 2012
Bicon Antenna	Chase	VBA6106A	EMC4078	20120117	20130131
Log-P Antenna	Chase	UPA6109	EMC4313	20110929	20120629
Spectrum Analyzer	Rhode & Schwarz	FSEK	EMC4182	20111227	20121231
Antenna Array	UL	BOMS	EMC4276	20111227	20121231

Figure 1 Test setup for Radiated Emissions

Job Number: 1001499549 File Number: MC17070 Page 13 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Job Number: 1001499549 File Number: MC17070 Page 14 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Figure 2 Radiated Emissions Graph

Job Number: 1001499549 File Number: MC17070 Page 15 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Med-Tek CMAP 11b CH1 Y axis 1Mbps Batt Red:Horizontal Green:Vertical

Test Frequency	Meter Reading	Detector	Antenna Factor	Gain/Loss Factor	10m to 3m [dB]	dB[uVolts/meter]	CFR 47 Part 15 Class B 3m	Margin	Height [cm]	Polarity	
142.2289	45.72	PK	14.4	-29.4	10.5	41.22	43.5	-2.28	400	Horz	
137.8111	47.74	PK	14.2	-29.4	10.5	43.04	43.5	-0.46	99	Vert	
323.9174	54.66	PK	13.6	-32.7	10.5	46.06	46	0.06	299	Horz	
347.9014	52.58	PK	14.7	-32.4	10.5	45.38	46	-0.62	299	Horz	
347.9014	51.3	PK	14.7	-32.4	10.5	44.1	46	-1.9	99	Vert	
\$25.50 \$45.60 \$4	55 75 75 Meter Reading	을 <mark>공</mark> Detector	9. Shitenna Factor	2. 2. Gain/Loss Factor	10.46 10.46 10.46	7 7 8 5 9 4 dB[uVolts/meter]	B B CFR 47 Part 15 Class B 3m	6.0- 8.0- 8.0- 8.0- 8.0- 8.0- 9.0- 9.0- 9.0- 9.0- 9.0- 9.0- 9.0- 9	6 Azimuth [Degs]	282 212 213 214	ZioH ZioH Polarity
347.9904	53.22	QP	14.7	-32.4	10.46	45.98	46	-0.02	116	217	Horz

PK - Peak detector

QP - Quasi-Peak detector

Job Number: 1001499549 File Number: MC17070 Page 16 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Figure 3 Radiated Emissions Graph

Job Number: 1001499549 File Number: MC17070 Page 17 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Med-Tek
CMAP
11b CH6 Y axis 1Mbps
Batt
Red:Horizontal Green:Vertical

142.5687 Test Frequency	99 99 Meter Reading 34 Detector	5. 5. Antenna Factor	o 6 6 7 6 6 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1	10m to 3m [dB]	41. 41.7 dB[uVolts/meter]	ප දු CFR 47 Part 15 Class B 3m	Margin	& G Height [cm] T	Zo Polarity	
137.2164	48.06 PK	14.2	-29.4	10.5	43.36	43.5	-0.14	99 V	/ert	
323.9174	54.48 PK	13.6	-32.7	10.5	45.88	46	-0.12	299 F	lorz	
347.9014	52.65 PK	14.7	-32.4	10.5	45.45	46	-0.55	299 F	lorz	
251.9654	52.85 PK	11.9	-33.1	10.5	42.15	46	-3.85	99 V	/ert	
347.9014	51.14 PK	14.7	-32.4	10.5	43.94	46	-2.06	99 V	/ert	
Test Frequency	Meter Reading Detector	Antenna Factor	Gain/Loss Factor	10m to 3m [dB]	dB[uVolts/meter]	CFR 47 Part 15 Class B 3m	Margin	Azimuth [Degs]	Height [cm]	Polarity
140.7869	44.65 QP	14.3	-29.4	10.5	40.05	43.5	-3.45	270	397 F	lorz
136.9326	46.67 QP	14.2	-29.4	10.5	41.97	43.5	-1.53	99	100 V	/ert
347.9888	52.66 QP	14.7	-32.4	10.5	45.46	46	-0.54	103	216 H	lorz
323.992	54.43 QP	13.6	-32.7	10.5	45.83	46	-0.17	106		
	34.43 QI							253 100 Vert		
347.9888	50.29 QP	14.7	-32.4	10.5	43.09	46	-2.91	253	100 V	ert/

PK - Peak detector

QP - Quasi-Peak detector

Job Number: 1001499549 File Number: MC17070 Page 18 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Figure 4 Radiated Emissions Graph

Job Number: 1001499549 File Number: MC17070 Page 19 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Med-Tek
CMAP
11b CH11 Y axis
1Mbps
Batt
Red:Horizontal Green:Vertical

Test Frequency	Meter Reading	Detector	Antenna Factor	Gain/Loss Factor	10m to 3m [dB]	dB[uVolts/meter]	CFR 47 Part 15 Class B 3m	Margin	Height [cm]	Polarity	
143.4183	46.33	PK	14.4	-29.4	10.5	41.83	43.5	-1.67	400	Horz	
140.7846	47.84	PK	14.3	-29.4	10.5	43.24	43.5	-0.26	99	Vert	
323.9174	54.45	PK	13.6	-32.7	10.5	45.85	46	-0.15	299	Horz	
347.9014	52.59	PK	14.7	-32.4	10.5	45.39	46	-0.61	299	Horz	
347.9014	51.39	PK	14.7	-32.4	10.5	44.19	46	-1.81	99	Vert	
323.9888 Test Frequency	5 45 8 Meter Reading	, 공 Detector	13.5 9. Antenna Factor	b c Gain/Loss Factor	99 10m to 3m [dB]	7 5 7 6 dB[uVolts/meter]	S & CFR 47 Part 15 Class B 3m	90.0- 90.0- 90.0-	1 C Azimuth [Degs]	274 274 Height [cm]	z zo Polarity
347.9888	53	QP	14.7	-32.4	10.46	45.76	46	-0.24	115	218	Horz

PK - Peak detector

QP - Quasi-Peak detector

Job Number: 1001499549 File Number: MC17070 Page 20 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Figure 5 Radiated Emissions Graph

Job Number: 1001499549 File Number: MC17070 Page 21 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Med-Tek CMAP 11g CH6 Y axis 6Mbps Batt Red:Horizontal Green:Vertical

145.7971 135.942 145.8821 323.9174 347.9014 203.9973 347.9014	98 84 84 84 84 84 84 84 84 84 84 84 84 84	уч уч уч уч уч уч уч уч уч уч уч уч уч у	2.41 2.42 4.5 13.6 14.7 10.9 14.7	-29.4 -29.4 -29.4 -32.7 -32.4 -33.4 -32.4	10.5 10.5 10.5 10.5 10.5 10.5	41.03 42.73 45.96 44.95 39.95 43.54	9 5 5 5 CFR 47 Part 15 Class B 3m	.iga be W -2.47 0.5 -0.77 -0.04 -1.05 -3.55 -2.46	99 300 300 99 99	Horz Vert Horz Horz Vert Vert	
147.4844 136.9376 146.659 347.9984 323.9888 203.9936 347.992	43.84 46.77 45.07 52.52 54.16 51.21 50.43	ද ද ද ද ද ද Detector	2.41 2.42 4.5 14.5 13.6 10.9 14.7	-29.4 -29.4 -32.4 -32.7 -33.4 -32.4	10.5 10.5 10.5 10.5 10.5 10.5	39.44 42.07 40.67 45.56 45.56 39.21 43.23	9 5 5 5 CFR 47 Part 15 Class B 3m	-4.06 -1.43 -2.83 -0.68 -0.44 -4.29 -2.77	762 763 764 765 766 766 766 766 766 766 766 766 766	[cm] 400 102 105 249 297 101 100	Advised to the second s

PK - Peak detector

QP - Quasi-Peak detector

Job Number: 1001499549 File Number: MC17070 Page 22 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Figure 6 Radiated Emissions Graph

See Table 3 for any emissions found within 6dB of the limit

Job Number: 1001499549 File Number: MC17070 Page 23 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Figure 7 Radiated Emissions Graph

See Table 3 for any emissions found within 6dB of the limit

Job Number: 1001499549 File Number: MC17070 Page 24 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Figure 8 Radiated Emissions Graph

See Table 3 for any emissions found within 6dB of the limit

Job Number: 1001499549 File Number: MC17070 Page 25 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Figure 9 Radiated Emissions Graph

See Table 3 for any emissions found within 6dB of the limit

Job Number: 1001499549 File Number: MC17070 Page 26 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Figure 10 Radiated Emissions Graph

See Table 3 for any emissions found within 6dB of the limit

Job Number: 1001499549 File Number: MC17070 Page 27 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Figure 11 Radiated Emissions Graph

Job Number: 1001499549 File Number: MC17070 Page 28 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Table 3 Radiated Emissions Data Points

Med-Tek CMAP

Batt

Red: Peak Green: AV

Test Frequency	Meter Reading	Detector	Antenna Factor	BOMS Factor [dB]	m/VwBb	CFR 47 Part 15 Class B 3m	Margin	Azimuth [Degs]	Height [cm]	Polarity
CH11 11b										
4924.0371	74.53	PK	27.8	-51.83	50.5	74	-23.5	146	107	Vert
4924.0571	72	LnAv	27.8	-51.83	47.97	54	-6.03	146	107	Vert
CH11 11g										
4921.8036	75.86	PK	27.8	-51.88	51.78	74	-22.22	125	109	Vert
4924.1283	59	LnAv	27.8	-51.83	34.97	54	-19.03	125	109	Vert
CH6 11g										
4872.511	74.46	PK	27.7	-51.18	50.98	74	-23.02	115	119	Vert
4875.978	55.38	LnAv	27.7	-51.17	31.91	54	-22.09	115	119	Vert

PK - Peak detector

Av - Average detector

Job Number: 1001499549 File Number: MC17070 Page 29 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

4.2 Test Conditions and Results – BAND EDGE COMPLIANCE

ı	est	
С	Descri	ption

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section15.205(c)).

13.203(a) (300 000101113.203(b)).								
Basic Standard	47 CFR Part 15.247(d)							
	RSS-210, A8.	5						
	Frequency range	Measurement Point						
Fully configured sample scanned over the following frequency range	2400MHz – 2483.5MHz	Radiated						
	Limits							
Measurement Type								
Radiated	Radiated only required if emissions are in the restricted band							
Supplementary information: None								

Table 4 Band Edge Compliance EUT Configuration Settings

Power Interface Mode #	EUT Configurations Mode #	EUT Operation Mode #							
1	1	1							
Supplementary information: None									

Table 5 Band Edge Compliance Test Equipment

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due Date
Spectrum Analyzer	Rhode & Schwarz	FSEK	EMC4182	20111227	20121231
Antenna Array	UL	BOMS	EMC4276	20111227	20121231

Job Number: 1001499549 File Number: MC17070 Page 30 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Test setup for Band Edge Compliance

Job Number: 1001499549 File Number: MC17070 Page 31 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Figure 12 Radiated Emissions Band Edge Compliance Graph

Job Number: 1001499549 File Number: MC17070 Page 32 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Med-Tek CMAP 11b CH1 Y axis 1Mbps

Batt

Red: Peak Green: AV

Peak 2370 - 2430MHz

Test Frequency	Meter Reading	Detector	Antenna Factor	BOMS Factor [dB]	dBuV/m	BandEdge PK Limit	Margin	BandEdge AV Limit	Margin	Height [cm]	Polarity
2411.982	62.12	PK	21.8	3.89	87.81	-	-	-	-	100	Horz
2401.351	27.54	PK	21.8	4.28	53.62	-	-	-	-	100	Horz
2397.508	28.71	PK	21.8	4.37	54.88	74	-19.12	-	-	100	Horz
2386.517	26.7	PK	21.8	4.42	52.92	74	-21.08	-	-	150	Horz
2411.622	58.75	ΑV	21.8	3.9	84.45	-	-	-	-	99	Horz
2400.39	15.62	ΑV	21.8	4.3	41.72	-	-	-	-	99	Horz
2397.267	17.03	ΑV	21.8	4.38	43.21	-	-	54	-10.79	99	Horz
2385.676	15.4	ΑV	21.8	4.41	41.61	-	-	54	-12.39	99	Horz

PK - Peak detector

Av - Average detector

Job Number: 1001499549 File Number: MC17070 Page 33 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Job Number: 1001499549 File Number: MC17070 Page 34 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Med-Tek CMAP

11b CH1 Y axis 1Mbps

Batt

Red: Peak Green: AV

Peak 2370 - 2430MHz

Test Frequency	Meter Reading	Detector	Antenna Factor	BOMS Factor [dB]	dBuV/m	BandEdge PK Limit	Margin	BandEdge AV Limit	Margin	Height [cm]	Polarity
2412.042	76.33	PK	21.8	3.89	102.02	-	-	-	-	99	Vert
2397.267	33.89	PK	21.8	4.38	60.07	-	-	-	-	99	Vert
2382.613	27.08	PK	21.8	4.35	53.23	74	-20.77	-	-	150	Vert
2411.622	72.57	ΑV	21.8	3.9	98.27	-	-	-	-	101	Vert
2397.928	26.64	ΑV	21.8	4.36	52.8	-	-	-	-	101	Vert
2383.333	16.55	ΑV	21.8	4.37	42.72	-	-	54	-11.28	101	Vert

PK - Peak detector

Av - Average detector

Job Number: 1001499549 File Number: MC17070 Page 35 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Job Number: 1001499549 File Number: MC17070 Page 36 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Med-Tek CMAP

11b CH11 Y axis 1Mbps

Batt

Red: Peak Green: AV

Peak 2370 - 2430MHz

Test Frequency	Meter Reading	Detector	Antenna Factor	BOMS Factor [dB]	dBuV/m	BandEdge PK Limit	Margin	BandEdge AV Limi	Margin	Height [cm]	Polarity
2462.929	64.6	PK	22	4.08	90.68	-	-	-	-	100	Horz
2484.311	27.51	PK	22.1	3.77	53.38	74	-20.62	-	-	100	Horz
2462.929	60.04	ΑV	22	4.08	86.12	-	-	-	-	99	Horz
2484.311	15.17	ΑV	22.1	3.77	41.04	_	_	54	-12.96	99	Horz

PK - Peak detector Av - Average detector Job Number: 1001499549 File Number: MC17070 Page 37 of 49

Job Number: 1001499549 File Number: MC17070 Page 38 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Med-Tek CMAP

11b CH11 Y axis 1Mbps

Batt

Red: Peak Green: AV

Peak 2370 - 2430MHz

Test Frequency	Meter Reading	Detector	Antenna Factor	BOMS Factor [dB]	dBuV/m	BandEdge PK Limit	Margin	BandEdge AV Limit	Margin	Height [cm]	Polarity
2462.989	77.73	PK	22	4.08	103.81	-	-	-	-	102	Vert
2484.551	27.66	PK	22.1	3.77	53.53	74	-20.47	-	-	102	Vert
2462.779	73.39	ΑV	22	4.08	99.47	-	-	-	-	101	Vert
2484.521	16.26	ΑV	22.1	3.77	42.13	-	_	54	-11.87	101	Vert

PK - Peak detector Av - Average detector Job Number: 1001499549 File Number: MC17070 Page 39 of 49

Figure 13 Radiated Emissions Band Edge Compliance Graph

Job Number: 1001499549 File Number: MC17070 Page 40 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Med-Tek CMAP

11g CH1 Y axis 6Mbps

Batt

Red: Peak Green: AV

Peak 2370 - 2430MHz

Test Frequency	Meter Reading	Detector	Antenna Factor	BOMS Factor [dB]	dBuV/m	BandEdge PK Limit	Margin	BandEdge AV Limit	Margin	Height [cm]	Polarity
2410.36	61.81	PK	21.8	3.95	87.56	-	-	-	-	99	Horz
2399.55	36.78	PK	21.8	4.32	62.9	-	-	-	-	99	Horz
2388.919	27.64	PK	21.8	4.46	53.9	74	-20.1	-	-	150	Horz
2411.021	52.95	ΑV	21.8	3.93	78.68	-	-	-	-	99	Horz
2399.429	18.3	ΑV	21.8	4.33	44.43	-	-	-	-	99	Horz
2389.159	15.53	ΑV	21.8	4.47	41.8	-	-	54	-12.2	99	Horz

PK - Peak detector

Av - Average detector

Job Number: 1001499549 File Number: MC17070 Page 41 of 49

Job Number: 1001499549 File Number: MC17070 Page 42 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Med-Tek CMAP

11g CH1 Y axis 6Mbps

Batt

Red: Peak Green: AV

Peak 2370 - 2430MHz

Test Frequency	Meter Reading	Detector	Antenna Factor	BOMS Factor [dB]	dBuV/m	BandEdge PK Limit	Margin	BandEdge AV Limit	Margin	Height [cm]	Polarity
2411.261	75.52	PK	21.8	3.92	101.24	-	-	-	-	101	Vert
2399.73	50.01	PK	21.8	4.32	76.13	-	-	-	-	101	Vert
2389.459	33.76	PK	21.8	4.47	60.03	74	-13.97	-	-	101	Vert
2411.441	66.18	ΑV	21.8	3.91	91.89	-	-	-	-	100	Vert
2399.79	27.25	ΑV	21.8	4.32	53.37	-	-	-	-	100	Vert
2389.459	18.34	ΑV	21.8	4.47	44.61	-	-	54	-9.39	100	Vert

PK - Peak detector

Av - Average detector

Job Number: 1001499549 File Number: MC17070 Page 43 of 49

Job Number: 1001499549 File Number: MC17070 Page 44 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Med-Tek CMAP

11g CH11 Y axis 6Mbps

Batt

Red: Peak Green: AV

Peak 2370 - 2430MHz

Test Frequency	Meter Reading	Detector	Antenna Factor	BOMS Factor [dB]	dBuV/m	BandEdge PK Limit	Margin	BandEdge AV Limi	Margin	Height [cm]	Polarity
2462.209	62.09	PK	22	4.1	88.19	-	-	-	-	99	Horz
2484.311	27.38	PK	22.1	3.77	53.25	74	-20.75	-	-	99	Horz
2462.869	53.58	ΑV	22	4.08	79.66	-	-	-	-	99	Horz
2484.311	15.33	ΑV	22.1	3.77	41.2	-	-	54	-12.8	99	Horz

PK - Peak detector Av - Average detector Job Number: 1001499549 File Number: MC17070 Page 45 of 49

Job Number: 1001499549 File Number: MC17070 Page 46 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Med-Tek CMAP

11g CH11 Y axis 6Mbps

Batt

Red: Peak Green: AV

Peak 2370 - 2430MHz

Test Frequency	Meter Reading	Detector	Antenna Factor	BOMS Factor [dB]	dBuV/m	BandEdge PK Limit	Margin	BandEdge AV Limit	Margin	Height [cm]	Polarity
2463.29	76.57	PK	22	4.07	102.64	-	-	-	-	101	Vert
2483.77	34.22	PK	22.1	3.77	60.09	74	-13.91	-	-	101	Vert
2463.59	66.82	ΑV	22	4.06	92.88	-	-	-	-	101	Vert
2483.89	18.59	ΑV	22.1	3.77	44.46	-	_	54	-9.54	101	Vert

PK - Peak detector Av - Average detector Job Number: 1001499549 File Number: MC17070 Page 47 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

5.0 IMMUNITY TEST RESULTS

The immunity tests were not performed nor were required per the standard.

Job Number: 1001499549 File Number: MC17070 Page 48 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

Appendix A

Accreditations and Authorizations

NVLAP Lab code: 100414-0

NVLAP: The National Institute of Standards and Technology (NIST) administers the National Voluntary Laboratory Accreditation Program (NVLAP). NVLAP is comprised of laboratory accreditation programs (LAPs) which are established on the basis of requests and demonstrated need. Each LAP includes specific calibration and/or test standards and related methods and protocols assembled to satisfy the unique needs for accreditation in a field of testing or calibration. NVLAP accredits public and private laboratories based on evaluation of their technical qualifications and competence to carry out specific calibrations or tests. Accreditation criteria are established in accordance with the U.S. Code of Federal Regulations (CFR, Title 15, Part 285), NVLAP Procedures and General Requirements, and encompass the requirements of ISO/IEC 17025. For a full scope listing see http://ts.nist.gov/standards/scopes/1004140.htm

FCC: Details of the measurement facilities used for these tests have been filed with the Federal Communications Commission's Laboratory in Columbia, Maryland (Ref. No. 91044).

Industry of Canada: Accredited by Industry Canada for performance of radiated measurements. Our test site complies with RSP 100, Issue 7, Section 3.3. File #: IC 2180

VCCI: Accepted as an Associate Member to the VCCI. The measurement facilities detailed in this test report have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. Registration Nos.: Radiated Emissions R-621, Conducted Emissions C-642.

Job Number: 1001499549 File Number: MC17070 Page 49 of 49

Model Number: CMAP Pro Client Name: Med-Tek LLC

ICASA: ICASA (Independent Communications Authority of South Africa) has appointed UL as a Designated Test Laboratory to test Telecommunications equipment for type approval in compliance with CISPR 22 to assist in fulfilling its mandate under section 54(1) of the Telecommunications Act, 1996 (Act 103 of 1996).

NIST/CAB: Validated by the European Commission as a U.S. Conformity Assessment Body (CAB) of the U.S.-EU Mutual Recognition Agreement (MRA) for the Electromagnetic Compatibility - Council Directive 2004/108/EC, Annex III (2-3). Also validated for the Telecommunication Equipment-Council Directive 99/5/EC, Annex III and IV, Identification Number: 0983.

NIST/CAB: Provisioned to act as a U.S. Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the Asia Pacific Economic Cooperation (APEC) MRA between the American Institute in Taiwan (AIT) and the United States. Our laboratory is considered qualified to test equipment subject to the applicable EMC regulations of the Chinese Taipei Bureau of Standards, Metrology and Inspection (BSMI) which require testing to CNS 13438 (CISPR 22).

NIST/CAB: Recognized by the Infocomm Development Authority of Singapore (IDA) under the Asia Pacific Economic Cooperation Mutual Recognition Agreement (APEC MRA). Our laboratory is provisionally designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC MRA. Our scope of designation includes IDA TS EMC (CISPR 22), IEC 61000-4-2, -4-3, -4-4, -4-5, and -4-6