

Overview Feature & Concept Prototyping

Assessing viability of a cockpit empowering COVID-19 medical research using pillars of A.I. Essential features including information extraction, literature clustering, search & summarization are prototyped in Jupyter notebooks, with results provided.

Paper Ranking Metrics With Author Influence & Paper Citations

Several custom metrics enable paper importance weighting, formulated using paper author & citation counts/ratios, the PageRank algorithm applied to assembled network graphs of authors & papers. Such metrics can weight paper scores in search.

	hash_title	paper_id	title	journal	authors	s publish_year	publish_time	author_count	referenced_papers_count	paper_citation_count	paper_citation_count_norn	n paper_pagerank	author_pagerank_sun	author_citation_ratio_sun	n score_cn	n1 score_cm	2 score_cm3
69155	994a7643aa15553758a0b294580378ccb66d2f97 PM	MC7122603	Cardiovascular Activity	Drug Discovery and Evaluation	Vogel, Hans Gerhard	2008	2008	1	3418.0	0.0	0.000000	1.000000	0.000524	0.00000	1.0000	00 0.87131	2 0.591382
70139	'3aadaed0025eb62d9485ae9009e7b304f15a034 PM	MC7339753	Non-neoplastic diseases of the testis	Urologic Surgical Pathology	Nistal, Manuel; Paniagua, Ricardo	2020	2020-06-22	2	1621.0	0.0	0.000000	0.521681	0.001890	0.00000	0.5216	81 0.53555	4 1.000000
27876	ff35497603df24d07b6794f79b937b8e04055417 PM	MC7168572	Analysis of carbohydrates and glycoconjugates	Mass Spectrom Rev	Harvey, David J	. 2014	2014-05-26	1	1549.0	0.0	0.000000	0.497535	0.000330	0.00072	0.4975	35 0.45001	3 0.435206
2030	36a587842805886ddf7b6ca528a9a6838111a9a2 PM	MC7427299	Geographical and temporal distribution of SARS	Euro Surveill	Alm, Erik; Broberg, Eeva K; Connor, Thomas; Ho	. 2020	2020-08-13	586	12.0	1.0	0.00028	0.001556	1.000000	0.13338	0.4561	02 1.00000	0 0.871627
26962	4200b0950b4371fa219305c8162613bc7d042f15 PM	MC7173518	Microorganisms Responsible for Neonatal Diarrhea	Infectious Diseases of the Fetus and Newborn I	O'Ryan, Miguel L.; Nataro, James P.; Cleary, T	. 2010	2010-12-27	3	1291.0	0.0	0.000000	0.430953	0.003646	0.00004	7 0.4326	10 0.38815	8 0.335000
26963	4200b0950b4371fa219305c8162613bc7d042f15 PM	MC7173613	Microorganisms Responsible for Neonatal Diarrhea	Infectious Diseases of the Fetus and Newborn	O'Ryan, Miguel L.; Nataro, James P.; Cleary, T	. 2009	2009-05-19	3	1259.0	0.0	0.000000	0.430953	0.003646	0.00004	7 0.4326	10 0.38682	1 0.323587
26964	4200b0950b4371fa219305c8162613bc7d042f15 PM	MC7173613	Microorganisms Responsible for Neonatal Diarrhea	Infectious Diseases of the Fetus and Newborn I	O'Ryan, Miguel L.; Nataro, James P.; Cleary, T	. 2009	2009-05-19	3	1259.0	0.0	0.000000	0.430953	0.003646	0.00004	7 0.4326	10 0.38682	1 0.323587
26961	4200b0950b4371fa219305c8162613bc7d042f15 PM	MC7173518	Microorganisms Responsible for Neonatal Diarrhea	Infectious Diseases of the Fetus and Newborn	O'Ryan, Miguel L.; Nataro, James P.; Cleary, T	. 2010	2010-12-27	3	1291.0	0.0	0.000000	0.430953	0.003646	0.00004	7 0.4326	10 0.38815	8 0.335000
42264	12675ba5050c3d59787def31dffdeef30fbd3ff4 PN	MC7158344	Disorders of the Gastrointestinal System	Equine Internal Medicine	Sanchez, L. Chris	2017	2017-11-17	1	1401.0	0.0	0.000000	0.404194	0.000524	0.00018	7 0.4041	94 0.38251	5 0.498006
14967	9304e520b92a70f6ba4e57124589ceece9369c33 PM	MC7223859	2019 HRS/EHRA/APHRS/LAHRS expert consensus sta	J Interv Card Electrophysiol	Cronin, Edmond M.; Bogun, Frank M.; Maury, Phi	. 2020	2020-01-27	38	1145.0	0.0	0.000000	0.368848	0.058191	0.00091	4 0.3952	98 0.45725	7 0.931831

Distribution of several ranking approaches across corpus, can be used to fine-tune metrics

Subset of paper & author network, deeper colours indicate greater influence

Papers

Authors

Enriching CORD-19 Dataset ResearchGate Web Scraping

Sourcing useful additional article data from 3rd-party sources such as ResearchGate, which indicates each paper's research interest, citation count, recommendations & number of reads. Can be integrated into scoring metrics and filtering.

Web page data scraped and added to article metadata.

	title	doi	rg_stats_research_interest	rg_stats_citations	rg_stats_reads
Th	iopurine analogues inhibit papain-like prote	10.1016/j.bcp.2008.01.005	24.9	47.0	153.0
	SARS among Critical Care Nurses, Toronto	10.3201/eid1002.030838	115.1	224.0	571.0
5	hort fractionation radiotherapy for early pro	10.1007/s11547-020-01216-9	2.2	2.0	35.0
ln '	vivo and in vitro Models of Demyelinating D	10.1159/000149316	6.5	13.0	5.0
Т	ne role of high load herpes simplex virus in	10.1186/s13054-020-2815-9	0.5	0.0	6.0

Enriching CORD-19 Dataset Adding Clinical Trial Information

Sourcing useful clinical trial data including study type & design, trial phase, intervention, sponsor and outcome.

			study_type	study_design	intervention	sponsor	outcome	phase
id	,							
NCT04400682	https://ClinicalTrials.gov/show/NCT0440	00682	Interventional	Allocation: Randomized Intervention Model: Cro	Drug: FAVIRA 200 MG Film Tablet Drug: AVIGAN 2	Novelfarma Ilaç San. ve Tic. Ltd. Sti. Novagen	AUC0-tlast Favipiravir Cmax AUC0-inf of Favipi	Phase 1
NCT04502368	https://ClinicalTrials.gov/show/NCT0450	2368	Observational	${\it Observational\ Model:\ Case-Only Time\ Perspectiv}$	Procedure: Fiberoptic Bronchoscopy (FOB) Proce	Erasme University Hospital	Regional Compliance Variation Regional Resista	. NaN
NCT04339842	https://ClinicalTrials.gov/show/NCT0433	39842	Observational	$Observational\ Model:\ Case-Only Time\ Perspectiv$	Other: Assessment of Dietary Changes in Adults	Eliz Arter Cyprus Science University Eastern M	Changes in the Eating Habits of Adults during	. NaN
NCT04476719	https://ClinicalTrials.gov/show/NCT0447	6719	Interventional	$\label{location: Randomized Intervention Model: Cro} Allocation: Randomized [Intervention Model: Cro$	Drug: ATAFENOVIR 200 MG KAPSUL Drug: ARBIDOL 1	Atabay Kimya Sanayi Ticaret A.S. Novagenix Bio	Primary PK Endpoint Secondary PK Endpoint	t Phase 1
NCT04407000	https://ClinicalTrials.gov/show/NCT0440	7000	Interventional	$\label{location: Randomized Intervention Model: Cro} Allocation: Randomized Intervention Model: Cro$	Drug: Test: Favipiravir 200 mg (LOQULAR) Drug:	World Medicine ILAC SAN. ve TIC. A.S. Novageni	Primary PK End Points AUC0-tlast Primary PK En	Phase 1
NCT04417153	https://ClinicalTrials.gov/show/NCT0441	7153	Observational	Observational Model: Cohort Time Perspective:	Behavioral: Mindfulness Based Intervention	National University, Singapore Potential proje	Change in Subjective measures of Sleep quality	. NaN
NCT03871491	https://ClinicalTrials.gov/show/NCT0387	1491	Interventional	Allocation: Randomized Intervention Model: Par	Drug: Azithromycin Drug: Placebo	NICHD Global Network for Women's and Children'	Maternal: Incidence of maternal death or sepsi	Phase 3
NCT04386876	https://ClinicalTrials.gov/show/NCT0438	36876	Interventional	$\label{location: Randomized Intervention Model: Cro} Allocation: Randomized Intervention Model: Cro$	Drug: Lopinavir 200Mg/Ritonavir 50Mg FT Test D	World Medicine ILAC SAN. ve TIC. A.S. Novageni	Primary PK End Points	Phase 1
NCT04276987	https://ClinicalTrials.gov/show/NCT0427	6987	Interventional	Allocation: N/A Intervention Model: Single Gro	Biological: MSCs-derived exosomes	Ruijin Hospital Shanghai Public Health Clinica	Adverse reaction (AE) and severe adverse react	Phase 1
NCT03474965	https://ClinicalTrials.gov/show/NCT0347	4965	Interventional	Allocation: N/A Intervention Model: Single Gro	Drug: Crizanlizumab	Novartis Pharmaceuticals Novartis	PK (AUCd15) after 1st dose PD (AUCd15) after 1	Phase 2

Multiple trials per paper is managed.

	paper_id	trials	trial_url
646	PMC7252014	[NCT04317092, NCT04320615, NCT04306705, NCT043	[https://ClinicalTrials.gov/show/NCT04317092,
647	PMC7377794	[NCT04328285, NCT04328441]	[https://ClinicalTrials.gov/show/NCT04328285,
648	PMC7295303	[NCT04303507, NCT04308668]	[https://ClinicalTrials.gov/show/NCT04303507,
649	PMC7329292	[ChiCTR2000029765, NCT04320615, ChiCTR20000297	[http://www.chictr.org.cn/showproj.aspx?proj=4
650	PMC7425928	[NCT04347993, NCT04331808]	[https://ClinicalTrials.gov/show/NCT04347993,

Named Entity Recognition For Entity Classification

Used to classify text entities into categories. Useful in providing a summary overview of the article, clustering documents by entities, used as selectable facets in document filtering etc.

The examples below show the same article abstract processed through 2 different NER models.


```
Model 2
Periodicals, Inc.
```

Improved Topic Modelling For Document Categorisation & Clustering

Refined over previous feature presentation. For purposes of demo, example illustrates a 2-layer topic modelling design over 50K Cord-19 article abstracts. First, 3 main topic themes are generated, followed by 10 sub-topic themes. Each document is categorised with both a main & sub-theme topic. This provides a hierarchical topic model that can be drilled down. In reality, sub-themes could comprise hundreds of topics to facilitate exploration by topic filter & determining related articles during search result compilation. The inter-topic distance map, reducing topics to 2 dimensions using PCA, shows good cluster separation

(except 6 & 10,), one tool to help determine best number of topics in each layer.

7803 docs	Sub Topic 4 7047 docs	Sub Topic 2 6762 docs	Sub Topic 9 5156 docs	Sub Topic 8 4659 docs	Sub Topic 6 3978 docs	Sub Topic 1 3794 docs	Sub Topic 3 3781 docs	Sub Topic 5 3559 docs	Sub Topic 10 3059 docs
care	covid-19	public	protein	expression	solution	antibody	population	influenza child	blood
covid-19	sars-cov-2	country	sequence	activity	concentration	vaccine	transmission	detection	lung
hospital	mortality	social	rna	protein	data	mouse	species	pcr	therapy
pandemic	symptom	people	bind	immune	point	animal	outbreak	detect	tissue
medical	trial	global	gene	mouse	air	strain	infect	pneumonia	lesion
staff	sars	development	acid	gene	particle	serum	host	pathogen	common
contact	ace2	work	genome	receptor	structure	infect	animal	assay	pulmonary
healthcare	outcome	policy	structure	lfn [.]	average	antigen	epidemic	rsv	diagnosis
participant	lung	government	site	pathway	node	culture	sequence	bacterial	normal
work	therapy	community	domain	induce	performance	assay	bat		chronic

Search State-Of-The-Art

Implemented using deep bidirectional transformers for language understanding. Results ranked by score, with the question directly answered with the most relevant excerpt from the paper (highlighted red).

Unfortunately model training limited to only 5K articles due to local lab system GPU VRAM constraints. Better results expected with larger training set.

Tested with 3 transformer models pretrained on biomedical datasets.

Title Nasal delivery of Protollin-adjuvanted H5N1 vaccine induces enhanced systemic as well as mucosal immunity in mice

Therefore Protollin also enhanced crossclade protection with significant antigen dosesparing. Next we assessed whether the improved protection conferred by ollinadiuvanted H5N1 vaccine was due to enhanced antibody titers. Mice were immunized as described in Fig 1 and sera were collected at 3 weeks following primary immunization ek 3 and booster immunization week 7 to measured HI titers against a homologous AVN120304 virus as well as heterologous AIN0505 virus. Mice immunized with unadjuvanted H5N1

Paper ID PMC7115571

Title SARS coronavirus spike polypeptide DNA vaccine priming with recombinant spike polypeptide from Escherichia coli as booster induces high titer of neutralizing antibody aga inst SARS coronavirus

Score 82.86

Authors Woo. Patrick C.Y.; Lau, Susanna K.P.; Tsoi, Hoi-wah; Chen, Zhi-wei; Wong, Beatrice H.L.; Zhang, Linqi; Chan, Jim K.H.; Wong, Lei-po; He, Wei; Ma, Chi; Chan, Kwok-hung; Ho, David D.; Yuen, Kwok-yung

rucial in determining the type of immune response developed. Subsequent doses will booster the immune response generated by the first dose of vaccine. Of note is that the ral immune response developed in mice primed with spike polypeptide DNA vaccine and boosted with Speptide from E. coli was not particularly of the Th1 type as compared to tha developed in mice immunized with Speptide from E

Fitle Frontiers of transcutaneous vaccination systems: Novel technologies and devices for vaccine delivery

Authors Matsuo, Kazuhiko; Hirobe, Sachiko; Okada, Naoki; Nakagawa, Shinsaku

Answer Excerpt 001 following the first vaccination using the TCI formulation indicating that a single application of our TCI formulation could induce ns. We also administered a second vaccination to five subjects in whom neither antibody titer was significantly increased by the first vaccination. The IgG titers increased in part of subjects following the second vaccination suggesting that an additional application increases the efficacy of the TCI formulation. Antibody titers on day 365 after a lication of the TCI formulation were maintained at a higher level than those on day 0 in all subjects examined although antibody titers tended to be lower on day 365 than on

Paper ID PMC2443636

Title Mutation in murine coronavirus replication protein nsp4 alters assembly of double membrane vesicles

Rank 1

Score 82.96

Authors Clementz, Mark A.; Kanjanahaluethai, Amornrat; O'Brien, Timothy E.; Baker, Susan C.

Answer Excerpt However the mechanism by which this substitution in nsp4 causes the defect in RNA synthesis in Alb ts6 is not known. A schematic diagram of nsp4 topology indicate ing the position of the two asparagine residues modified by Nlinked glycosylation and an asparagine to threonine change predicted to be responsible for the temperature sensiti phenotype are depicted in Fig 1D. To determine if nsp4N176 nsp4N237 or nsp4N258 is important for nsp4 function we generated virus encoding each specific substitution. Each s ostitution was introduced into the MHVA59 genome using a reverse genetics approach pioneered by Yount et al. 2002 as described in the Materials and methods

Paper ID PMC7168560

Title Emergence and adaptive evolution of Nipah virus

Rank 2

Score 82.81

Authors Li, Kemang; Yan, Shiyu; Wang, Ningning; He, Wanting; Guan, Haifei; He, Chengxi; Wang, Zhixue; Lu, Meng; He, Wei; Ye, Rui; Veit, Michael; Su, Shuo

Answer Excerpt It is located very close to the fusion peptide the distance to I122 the Cterminal residue of the fusion peptide is only 5 Å Figure 4b. Furthermore residue 42 is also part of the strap region composed of βsheets which is implicated in interactions with the G protein. To analyse where these amino acids are located in the postfusion stru ture of F we labelled the analog residues in the F protein of Newcastle Disease virus. Upon activation the F protein undergoes largescale refolding mostly in DIII. The heptad epeat region A HRA extends into a long αhelix which forms a sixhelix bundle with the HRB region of the stalk

Paper ID PMC4125544

Title Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities

Rank 3

Score 82.08

Authors Mielech, Anna M.; Chen, Yafang; Mesecar, Andrew D.; Baker, Susan C.

Answer Excerpt The authors showed that PRRSV P2 can block Sendai virus induced IFNβ and inhibit NFκB by preventing IκBα degradation by its deubiqui

Summary

Main research cockpit concept is viable. Main features realised as working prototypes. Value of NLP processing complex, biomedical specific problem domain, free text dataset is demonstrated.

Clarity on NLP pipeline requirements via prototyping at granular level with Jupyter notebooks, will help Azure industrialisation.

Better understanding of compute resource requirements. For example, through prototyping main features of each NLP pipeline stage, steps which are more CPU bound (e.g. data cleansing) or GPU bound (e.g. transformer model training) have been identified. This supports infrastructure design of the pipeline & more appropriate/cost effective allocation of compute resources.

How to unambiguate authors? How do you separate one author John Doe from another author John Doe, so that each can be uniquely identified and associated with the correct citations and co-author network?

Main challenge has been demands on local lab compute resources. Data cleansing steps time to complete limited by CPU clock speed and IPC (instructions per cycle). Dataset size to be encoded by transformer models for search limited by available GPU VRAM. Justifies migration to cloud (and possibly upgrade of lab resources).

Next Steps Confident that prototyping has proven the main required features viable, next step is to design the required Azure infrastructure and migrate prototyping for a cloud-hosted minimum viable product with user interface.