Lecture 0: Course Overview

Seyed-Hosein Attarzadeh-Niaki

Embedded Real-Time Systems

1

Teacher

- Seyed-Hosein Attarzadeh-Niaki
 - PhD in Electronic and Computer Systems (KTH, 2014)
- Research interests
 - System-Level Modeling and Design of Intelligent Embedded and Cyber-Physical Systems
 - Design-Space Exploration Problems
- Contact
 - Course-related: Courseware
 - Other stuff: h_attarzadeh@sbu.ac.ir

Embedded Real-Time Systems

Positioning

- Programming Languages
 - _ (
- Operating Systems
 - Processes and threads
 - Scheduling
- · Computer Architecture
 - Computer Organization
 - Instruction set
 - Memory hierarchy
- Microprocessors
 - Memory and IO peripherals
 - System programming and Assembly

Computer Architecture

Microprocessors & Assembly

Operating Systems

Digital Systems

Design

HW/SW Codesign

Embedded Real-Time Systems

3

Course Requirements

- Pass the exams
- · Complete the exercises in time
 - Analytical
 - Computer-based
 - Usually one week after they are announced
- Perform and present the course project
- Active participation in lectures and tutorials
 - Quizzes and online questions
 - Tutorial attendance

Embedded Real-Time Systems

Exams and Grading

- · The mid-term exam
 - Exact time will be announced
 - Topics: modeling, design
 - ≈ 5 points
- The final exam
 - Topics: all the topics
 - ≈ 7 points
- Exercises
 - ≈ 6 points (0 or 1 for each exercise)
- Course Project
 - 2 points (with possible bonus points)
- Active participation
 - ±2 points

Embedded Real-Time Systems

_

Group Work

- Many activities in this course are performed in a group
 - Two students
 - Exercises and the course project
- You also present your work as a team;
 - but may be evaluated individually
- Pick a friend with whom you are comfortable to collaborate

However, you should still be able to do everything individually.

Embedded Real-Time Systems

Course Material

No single book covers all the material in this topic

- Lee, Edward Ashford, and Sanjit Arunkumar Seshia. Introduction to embedded systems: A cyber-physical systems approach. Second Edition, MIT Press, 2017. (V2.2) Main book
- Marwedel, Peter. Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems, and the Internet of Things. Vol. 4. Springer, 2021.
- Wolf, Marilyn. Computers as Components: Principles of Embedded Computing System Design. Vol 4. Elsevier, 2016.

Practical sources

- Pan, Tianhong, and Yi Zhu. Designing Embedded Systems with Arduino. Springer, 2018.
- Mathworks documentations

Embedded Real-Time Systems

7

Covered Topics

Introduction to embedded real-time systems

- Properties of embedded realtime systems
- Embedded software design

Model-based design

- Sequential models of computation (MoCs) and FSMs
- Concurrent MoCs: synchronous and asynchronous composition
- Modeling physical dynamics

Embedded platforms and system design

- Embedded processors and memories
- IO ports and devices
- Sensors and actuators
- A/D and D/A converters

Real-time OS and software

Realtime scheduling

Implementation and mapping to target platform

- Code generation
- Optimization

Complimentary topics

- QualitySafety
- Security

Embedded Real-Time Systems

How Do We Conduct The Course?

- It is a senior undergraduate-level course
- Main concepts are discussed in the lectures
 - Not the boring details
- Students read the specified material to understand the remaining details
- Exercises and project will (hopefully) help to deepen your understanding of the subject

Read the material, do not record/listen to lecturer's voice!

Embedded Real-Time Systems

9

Tools Used in the Course

MATLAB

Simulink

Platform IO

TINKERCAD

Proteus

Embedded Real-Time Systems