Обзор стратегий маршрутизации и маршрутизаторов

Лекция №6. Сеть в UNIX

Полякова Юлия Александровна

Содержание

Αı	ктуальность	5
П	рактическая значимость	6
П	роблема	7
Ц	ель работы	8
Ги	потеза	9
38	адачи	10
1	Маршрутизация. Таблицы маршрутизации	11
2	Стратегии маршрутизации	13
3	Команды конфигурации маршрутизации	16
4	Маршрутизаторы	18
Ві	ывод	20
Cı	писок литературы	21

Список иллюстраций

1 1	Tof HILLIA MODILIDAMIA		1 2	,
⊥.⊥	таолицы маршрутизации	[12	ı

Список таблиц

2.1	Сравнительная таблица стратегий маршрутизации	•	•	•	 •		1
4.1	Сравнительная таблица типов маршрутизаторов						1

Актуальность

Полезно узнать о маршрутизации и маршрутизаторах в Unix системах, в будущем это поможет лучше работать с сетями и понимать их устройство.

Практическая значимость

Исследование даст определенные навыки работы с маршрутизацией, которые можно применить на практике.

Проблема

Данное исследование поможет студентам получить основную информацию о стратегиях маршрутизации и маршрутизаторов (если говорить о проблеме отсутствия информации об этом у студентов).

Цель работы

Сделать обзор на стратегии маршрутизации и маршрутизаторы.

Гипотеза

Анализ ключевых особенностей реализации маршрутизации в Unix-системах позволит выявить наиболее эффективные подходы и инструменты управления маршрутом данных, обеспечивающие надежность, масштабируемость и безопасность сетей.

Задачи

- 1. Дать определение маршрутизации. Описать структуру таблиц маршрутизации в Unix-системах.
- 2. Сделать обзор и сравнение стратегий маршрутизации.
- 3. Изучить команды конфигурации маршрутизации.
- 4. Дать определение маршрутизатора. Сравнить рализации маршрутизаторов.
- 5. Подвести итог исследования.

1 Маршрутизация. Таблицы маршрутизации

Маршрутизация — процесс определения оптимального маршрута данных в сетях связи. В сети Интернет передача всей информации осуществляется в виде небольших блоков данных — пакетов. Пакет состоит из стартовых битов, заголовка, прицепа и полезной нагрузки — каждый такой блок с данными передается по определенному маршруту, который, в свою очередь, определяется маршрутизатором. Сетевой маршрут «прокладывается» на основании информации, получаемой из таблиц маршрутизации согласно протоколам маршрутизации и инструкциям сетевого администратора.

Таблицы маршрутизации содержат параметры, необходимые для корректной идентификации и чтения сетевого маршрута. В них содержатся следующие разделы (более подробно см. в [1]):

- Destination (Target). IP-адрес сети назначения это конечный пункт назначения для пакетов данных.
- Netmask (Genmask). Маска сети.
- Gateway. IP-адрес шлюза.
- Interface. Адрес сетевого интерфейса.
- Metric. Этот параметр определяет приоритет маршрута.

Управление маршрутизацией для ОС Linux осуществляется тремя командами (рис. 1.1) (более подробно см. в [2]):

- route позволяет посмотреть таблицу маршрутизации, функционирующую на данный момент;
- netstat выводит более подробные сведения, включая IP-адрес цели, шлюза, отправителя, а также показывает используемый протокол передачи данных и сетевой интерфейс;
- ip этот инструмент используется для глубокой настройки сетевых интерфейсов.

```
kova1@yapolyakova1:~$ route -n
Kernel IP routing table
Destination
                   Gateway
10.0.2.2
                                                            Flags Metric Ref
                                                                                     Use Iface
                                        Genmask
0.0.0.0
                                        0.0.0.0
                                                            UG
                                                                    100
                                                                            0
                                                                                        0 enp0s3
10.0.2.0
                   0.0.0.0
                                        255.255.255.0
                                                                    100
                                                                                        0 enp0s3
   polyakova1@yapolyakova1:~$ netstat -rn
Kernel IP routing table
                   Gateway
10.0.2.2
                                                            Flags
                                                                      MSS Window irtt Iface
Destination
                                        Genmask
                                       0.0.0.0
0.0.0.0
                                                                        0 0
0 0
                                                            UG
                                                                                         0 enp0s3
10.0.2.0
                                       255.255.255.0
                                                                                         0 enp0s3
                   0.0.0.0
yapolyakova1@yapolyakova1:~$ ip route show default via 10.0.2.2 dev enp0s3 proto dhcp src 10.0.2.15 metric 100 10.0.2.0/24 dev enp0s3 proto kernel scope link src 10.0.2.15 metric 100
   polyakova1@yapolyakova1:~$
```

Рис. 1.1: Таблицы маршрутизации

2 Стратегии маршрутизации

Существуют различные стратегии маршрутизации в системах UNIX (более подробно см. в [3]):

- Прямая маршрутизация. Применяется, когда узел назначения подключён к той же физической сети, что и источник. Источник может отправить IP-датаграмму с помощью физического сетевого кадра без участия маршрутизатора.
- Косвенная маршрутизация. Используется, когда номера сетей источника и назначения не совпадают. В этом случае пакет должен быть перенаправлен на узел, который знает, как достичь назначения (маршрутизатор).
- Статические маршруты. Это постоянные записи в таблице маршрутов. После того как такой маршрут добавлен в таблицу, удалить его можно только вручную.
- Динамические маршруты. Добавляются или удаляются из таблицы маршрутов различными процессами, например in.routed или in.rdisc. Используются специальные протоколы маршрутизации, например, RIP (Routing Information Protocol), OSPF (Open Shortest Path First) и BGP (Border Gateway Protocol).
- Policy-routing. Позволяет маршрутизировать пакеты на основании ряда гибких правил. Применяется в случае наличия нескольких сетевых интерфейсов и необходимости отправлять определённые пакеты на определённый интерфейс. (более подробно см. в [4])

Приведем сравнительную таблицу 2.1

Таблица 2.1: Сравнительная таблица стратегий маршрутизации

Страте-

гия

марш-

рутиза-

ции	Описание	Преимущества	Недостатки
Прямая	Пакеты	Простота реализации.	Отсутствие адаптации
	отправляются	Подходящий выбор для	к изменению сети.
	строго по	маленьких сетей.	
	заданному		
	маршруту		
Косвен-	Выбор маршрута	Возможность	Увеличение
ная	осуществляется	автоматического выбора	сложности
	динамически	пути. Для	инфраструктуры сети.
		масштабируемых	
		решений.	
Стати-	Фиксированные	Простота настройки.	Необходимость
ческая	маршруты	Высокое быстродействие.	ручной
	задаются	Стабильность,	перенастройки при
	вручную	предсказуемость.	изменениях в сети.
			Низкая адаптивность.
Дина-	Обновление	Автоматическое	Более высокая
миче-	маршрутов	обнаружение лучших	нагрузка на
ская	автоматическое,	путей. Легко	процессор. Сложность
	зависит от	адаптируется к	настройки.
	протоколов	изменениям сети.	
		Надежность.	

гия

марш-

рутиза-

ции	Описание	Преимущества	Недостатки
Policy	Управление	Полный контроль и	Большее потребление
routing	трафиком на	гибкость политики.	ресурсов. Трудоемкое
	основе	Возможности	конфигурирование.
	специальных	фильтрации и	
	правил и	приоритезации.	
	критериев		

3 Команды конфигурации маршрутизации

Изучим команды для конфигурации маршрутизации (более подробно см. в [5]):

• Проверить текущие маршруты можно командой netstat –r или ip route show Первая команда показывает список всех активных маршрутов, вторая — более подробный вывод с информацией о шлюзах и интерфейсах. Можно добавить фильтры, например, для определения маршрута только для локальной сети:

ip route show match 192.168.1.0/24

• Чтобы добавить новый маршрут в систему, используем команду:

sudo ip route add <целевая подсеть> via <адрес шлюза>

Например, чтобы добавить маршрут к адресу 192.168.1.0/24 через шлюз 10.0.0.1:

sudo ip route add 192.168.1.0/24 via 10.0.0.1

• Удалить существующий маршрут можно следующим образом:

sudo ip route del <целевая подсеть>

Пример удаления маршрута:

sudo ip route del 192.168.1.0/24

• Также можно настроить маршрутизацию через конфигурационные файлы. Часто постоянные маршруты сохраняются в файлах /etc/network/interfaces (Debian/Ubuntu) или /etc/sysconfig/network-scripts/ifcfg-* (Red Hat/Fedora). Например, добавляя постоянный маршрут в Debian-based дистрибутивах, внесите запись типа:

up ip route add 192.168.1.0/24 via 10.0.0.1 dev eth0 down ip route del 192.168.1.0/24 via 10.0.0.1 dev eth0

4 Маршрутизаторы

Маршрутизатор — это устройство или программное обеспечение, предназначенное для направления потоков данных (пакетов) между различными сегментами компьютерной сети, он выбирает оптимальный путь следования на основе таблиц маршрутизации и алгоритмов принятия решения. Основная задача маршрутизатора заключается в передаче пакетов между локальными и глобальными сетями, поддерживая целостность и безопасность передаваемых данных. Можно выделить несколько типов маршрутизаторов. Их сравнение приведено в таблице ниже 4.1

Таблица 4.1: Сравнительная таблица типов маршрутизаторов

Тип				
марш-				
рути-		Производи-		Масштаби-
затора	Реализация	тельность	Стоимость	руемость
Аппа-	Специализированное	Очень	Высокая	Средняя,
рат-	физическое устройство с	высокая		требует
ный	собственным ПО			замены
				аппаратуры

Тип				
марш-				
рути-		Производи-		Масштаби-
затора	Реализация	тельность	Стоимость	руемость
Про-	Встроенный механизм	Средняя-	Низкая, но	Высокая, до-
грамм-	OC Linux/Unix (напр.,	низкая	высокие	бавлением
ный	IPTables, Quagga) или	(ограничена	затраты на	новых
	устанавливаемое ПО	мощностью	поддержку	серверов
		хоста)		
Вирту-	Внутри виртуальной	Средняя	Средняя-	Высокая,
аль-	среды (VMware, KVM,	(зависит от	низкая,	быстрое раз-
ный	Docker)	XOCT-	вимоноже	вертывание
		машины)	благодаря	и удаление
			облаку	

Вывод

Были проанализированы стратегии маршрутизации и маршрутизаторов. Исследование подтверждает значимость правильного выбора и настройки стратегий маршрутизации в Unix-системах для достижения максимальной производительности и стабильной работы сетевой инфраструктуры. Выбор стратегии и маршрутизатора зависит от цели и ситуации пользователя.

Список литературы

- 1. HostZealot. Что такое маршрутизация: построение таблиц маршрутизации в Linux. HostZealot, 2022. 1 с.
- 2. HEAD see github.com/Debian/debiman. debiman. Справочные страницы команд Unix-систем и их синтаксиса. debian, 2025. 1 с.
- 3. softpanorama. Linux Routing. softpanorama, 2019. 1 c.
- 4. peter23. Роутинг и policy-routing в Linux при помощи iproute2. Хабр, 2010. 1 c.
- 5. merion. Шпаргалка по сетевым командам Linux. merion, 2024. 1 с.