D-加群代数の Picard-Vessiot 理論に おける Liouville 拡大

2009年1月30日,第2回つくば代数学ワークショップ 天野勝利 (筑波大学数理物質科学研究科)

概略

- 1. Liouville 拡大とは? (ordinary differential case)
- 2. D-加群代数の PV 理論 (要点のみ)
- 3. 今回のポイント
- 4. アルチン単純 *D*-加群代数の Liouville 拡大

1. Liouville 拡大とは?

古典 Galois 理論でいうところの「冪根拡大」にあたる.

1.1. 定義

$$(K,\partial)$$
 が微分体: $\Leftrightarrow egin{cases} K: 体, \ \partial: K
ightarrow K \ additive, \ \partial(ab) = \partial(a)b + a\partial(b) \ & ext{for} \ \ ^orall a, b \in K. \end{cases}$

 $K^{\partial}:=\{a\in K\mid \partial(a)=0\}$ 定数体 (constants) 簡単のため 1 章では K^{∂} は標数 0 の代数閉体と仮定する.

L/K: 微分体の拡大が $\underline{ ext{Liouville 拡大}}$ とは, $L^{\partial}=K^{\partial}$ かつ中間微分体の列 $K=L_0\subset L_1\subset\cdots\subset L_r=L$ があって各 L_i/L_{i-1} $(i=1,\ldots,r)$ が次のいずれかの形をしていることをいう:

(a) 有限次代数拡大,

(b)
$$L_i = L_{i-1}(x), \ \partial(x) = {}^\exists a \in L_{i-1} \ (x = \int a),$$

(c)
$$L_i = L_{i-1}(x), \ \partial(x)x^{-1} = {}^\exists a \in L_{i-1} \ (x = e^{\int a}).$$

1.2. 可解性定理

<u>命題.</u> L/K を PV 拡大, G(L/K) をその微分 Galois 群, $G(L/K)^{\circ}$ をその identity component とすると,

- (a) $L^{G(L/K)^\circ}$ は L の中における K の代数閉包. とくに, L/K が有限次代数拡大 $\Leftrightarrow G(L/K)$ が (離散) 有限群.
 - (b) $L = K(x), \ \partial(x) \in K \Leftrightarrow G(L/K) = \mathbb{G}_{\mathrm{a}}.$
 - (c) $L = K(x), \ \partial(x)x^{-1} \in K \Leftrightarrow G(L/K) \hookrightarrow \mathbb{G}_{\mathrm{m}}.$

定理. L/K を PV 拡大, G(L/K) をその微分 Galois 群とすると, 次は同値:

- (i) L/K が Liouville 拡大.
- (ii) ある Liouville 拡大 $ilde{L}/K$ が存在して $L\subset ilde{L}$.
- (iii) G(L/K) $^{\circ}$ が可解代数群.
- (iv) G(L/K)° が三角化可能代数群.
- (v) ある閉部分群の normal chain

$$G(L/K)^{\circ} = G_1 \rhd G_2 \rhd \cdots \rhd G_r = \{1\}$$

があって、各 G_i/G_{i-1} $(i=2,\ldots,r)$ は \mathbb{G}_{a} または \mathbb{G}_{m} .

(iii) ⇔ (iv) は Lie-Kolchin の三角化可能定理

2. D-加群代数の PV 理論

- ・微分 PV 理論を,差分 PV 理論や正標数の場合を含むように統一・拡張した.
 - ・D はある余可換な Hopf 代数.

2.1. Hopf 代数とは?

k を体とし、以下すべて k 上で考える.

 $A: ext{ algebra} ext{ } extstyle ext{ } ext{ algebra map } extstyle ext{ } ext{ } A ext{ } ext{$

(1) 次が可換:

$$egin{array}{cccc} A & \stackrel{\Delta}{\longrightarrow} & A \otimes A \ & \downarrow_{\mathrm{id} \otimes \Delta} & & \downarrow_{\mathrm{id} \otimes \Delta} \ A \otimes A & \stackrel{\Delta \otimes \mathrm{id}}{\longrightarrow} & A \otimes A \otimes A \end{array}$$

(2) 次も可換:

$$A \downarrow_{\Delta} \sim \downarrow_{\Delta} \sim k \otimes A \overset{arepsilon \otimes arepsilon}{\longleftrightarrow} A \otimes k \otimes A \overset{ ext{id} \otimes arepsilon}{\longleftrightarrow} A \otimes k$$

(3) $a\in A$ に対して $\Delta(a)=\sum a_1\otimes a_2$ と書くとき、 $\sum S(a_1)a_2=\sum a_1S(a_2)=arepsilon(a)$ ($^{orall}a\in A$).

例. (affine group scheme の座標環)

A が可換 Hopf 代数 のとき、 $\mathbb{G}=\operatorname{Spec} A$ として、 Δ 、arepsilon,S に対応する scheme morphism

$$\Delta^*: \mathbb{G} imes \mathbb{G} o \mathbb{G}, \;\; arepsilon^*: \{1\} o \mathbb{G}, \;\; S^*: \mathbb{G} o \mathbb{G}$$

を考えて可換図式を書き換えてみると、これらがそれぞれ群の積、単位元、逆元を与える morphism として群の公理を満たしていることがわかる. affine group scheme と可換Hopf 代数とは同等な概念である.

例. (余可換な Hopf 代数の代表例)

Hopf 代数 A が, $\sum a_1 \otimes a_2 = \sum a_2 \otimes a_1$ ($\forall a \in A$) を満たすとき,余可換という. (A が可換かつ余可換なら Spec A は abelian group scheme となる.)

- (1) G を任意の群, A=kG (群環) とし, Δ, ε, S を $g \in G$ に対して $\Delta(g)=g\otimes g, \, \varepsilon(g)=1, \, S(g)=g^{-1}$ となるように定めると, A は余可換な Hopf 代数になる. (特に $G=\mathbb{Z}$ のとき, A は定数係数の差分作用素環と同一視できる.)
- (2) $\mathfrak g$ を任意の Lie 環, $A=U(\mathfrak g)$ とし, Δ, ε, S を $h\in \mathfrak g$ に対して $\Delta(h)=1\otimes h+h\otimes 1,\ \varepsilon(h)=0,$ S(h)=-h となるように定めると, A は余可換な Hopf 代数になる.

2.2. 作用素の環

D: 余可換な Hopf algebra

V を D-加群とするとき,

$$V^D := \{v \in V \mid dv = arepsilon(d)v \; (^orall d \in D)\}$$

を V の constants と呼ぶ.

例.
$$(1) \operatorname{ch}(k) = 0, D = k[\partial]$$

$$\Delta(\partial)=\partial\otimes 1+1\otimes\partial,\, arepsilon(\partial)=0,\, S(\partial)=-\partial$$

このとき, A が可換 D-加群代数 $\Leftrightarrow A$ は微分代数.

実際, A が D-加群代数なら,

$$\partial(ab)=(\partial a)b+a(\partial b)\quad (a,b\in A).$$

(2)
$$D = k[\tau, \tau^{-1}]$$

$$\Delta(au) = au \otimes au, \, arepsilon(au) = 1, \, S(au) = au^{-1}$$

このとき, A が可換 D-加群代数 $\Leftrightarrow A$ は差分代数.

$$egin{align} (3) \ D &= igoplus_{n \geq 0} k \partial^{(n)}, \ \partial^{(n)} \partial^{(m)} &= \left(egin{array}{c} n+m \ n \end{array}
ight) \partial^{(n+m)}, \ \Delta(\partial^{(n)}) &= \sum_{i+j=n} \partial^{(i)} \otimes \partial^{(j)}, \ arepsilon(\partial^{(n)}) &= \left\{egin{array}{c} 1 \ (n=0) \ 0 \ (n>0), \end{array}
ight.$$

$$\Delta(\partial^{(n)}) = \sum_{i+j=n} \partial^{(i)} \otimes \partial^{(j)}, \ arepsilon(\partial^{(n)}) = \left\{egin{array}{ll} 1 & (n=0) \ 0 & (n>0), \end{array}
ight.$$

$$S(\partial^{(n)}) = (-1)^n \partial^{(n)}$$

A を可換 D-加群代数とすると, $\{\partial^{(n)}\}$ は A に higher derivation として作用

仮定.

(i) $D \mid \exists \text{ pointed } (\Rightarrow D = D^1 \# kG).$

ここで, $\left\{egin{array}{ll} D^1 & ext{if 1 を含む D on irreducible component,} \ G=G(D): ext{ grouplike elements からなる群}
ight.$

 $g \in D$ $\not\! D$ groupline : $\Leftrightarrow \Delta(g) = g \otimes g, \, \varepsilon(g) = 1.$

(ii) D^1 \sharp Birkhoff-Witt bialgebra (higher derivation を一般化したようなもの) になっている.

k が標数 0 の代数閉体ならばこれらは常に成立する.

2.3. アルチン単純 (AS) *D*-加群代数

以下,D-加群代数はすべて可換代数とする.

定義. K: D-加群代数のとき,

- ・K が単純 $:\Leftrightarrow K$ に non-trivial な D-stable ideal が存在しない $(\Leftrightarrow K$ が $_{K\#D}\mathcal{M}$ の simple object).
- ・K がアルチン単純 $(AS):\Leftrightarrow K$ がアルチン環かつ単純.

命題. K が AS D-加群代数のとき,

- (1) K^D は体.
- (2) $K=\prod_{g\in G/G_1}K_g$ (体の直積),各 K_g はすべて体同型. ここで,G=G(D) は D の grouplike element 全体からなる群で, G_1 は,K の素 ideal P を一つ fix したときに $G_1=\{g\in G|gP=P\}$ により定まる G の部分群. このとき $[G:G_1]<\infty$.

2.4. PV 拡大と Galois 対応

定義. (1) L/K: AS D-加群代数の拡大が PV 拡大とは,

(i)
$$L^D = K^D$$
,

(ii) $L \supset ∃A$: 部分 D-加群代数

s.t.
$$\left\{egin{array}{l} A\supset K,\ L
ight| A extcolor{def} A extcolor{def}$$

 $(A\otimes A$ の D-加群構造は $d(a\otimes b)=\sum d_1a\otimes d_2b$ により入れる.)

L/K が PV 拡大のとき、上記の A は L/K に対して一意的に定まる。 (van der Put-Singer の用語ではこの A は "Picard-Vessiot ring" にあたる。)

従来の意味での PV 拡大は、こちらの意味では finitely generated (後述) な PV 拡大と同値な概念となる. 無限 個の PV 拡大たちの inductive limit をとっても上記の定義を満たすので、例えば universal PV 拡大なども我々の意味では PV 拡大の範疇に含まれる.

定理. (Galois 対応)

 $L/K: \mathrm{PV}$ 拡大 のとき, $H = (A \otimes_K A)^D$ が K^D 上の可換 Hopf 代数の構造をもち,

 $\{$ 中間 AS D-加群代数 $\} \stackrel{1:1}{\leftrightarrow} \{H \supset I \text{ Hopf ideal}\}$ ($\stackrel{1:1}{\leftrightarrow} \{\text{Spec } H \text{ O closed subgroup scheme}\}$)

 $\mathbb{G}(L/K):=\operatorname{Spec} H$ を PV group scheme と呼ぶ. group functor として, $\mathbb{G}(L/K)\simeq\operatorname{\underline{Aut}}_D(A/K)$

 $\operatorname{\underline{Aut}}_D(A/K): T \mapsto \operatorname{Aut}_D(T \otimes_{K^D} A/T \otimes_{K^D} K)$

(T: 可換 K^D -algebra).

特に、 $\mathbb{G}(L/K)(K^D) = \mathrm{Aut}_D(A/K) = \mathrm{Aut}_D(L/K)$.

L/K \hbar finitely generated

- $\Leftrightarrow A$ が有限生成 K-algebra
- $\Leftrightarrow H$ が有限生成 K^D -algebra
- $\Leftrightarrow \mathbb{G}(L/K)$ $\not\!\! \text{t}^{\prime}$ algebraic.

3. 今回のポイント

対象を AS D-加群代数の拡大にする.

Liouville 拡大の定義において、条件 (b), (c) はわりと素直に拡張できる.

(a) がやや問題だが、「有限次代数拡大」を「環の (finite) separable 拡大」にすればOK

代数群でなく affine group scheme を使う.

正標数の PV 理論では non-reduced な group scheme も Galois 群として出てくる ($\mathbb{G}(L/K)=\alpha_p$ となる PV 拡大などが実際にある) ので、代数群の枠組では不完全.

ところが、Lie-Kolchin の三角化可能定理が affine group scheme では一般には成立しないという問題がある (可解性定理で書いた (iii)(iv)(v) が同値にならない).

(v) に相当する条件を満たすものを "Liouville group scheme" と呼ぶことにして, 可解性や三角化可能性と比較してどれくらい強いのかを調べた.

結論としては, connected algebraic affine group scheme に関して

$$\{\Xi$$
角化可能 $\} \subsetneq \{Liouville\} \subset \{ \neg m \}$

という関係で、代数閉体上ならば $\{Liouville\} = \{ 可解 \}$ となる $(-般には \neq)$.

<u>例.</u> anisotropic torus は可解だが Liouville でない(ただし, base field を代数閉体に拡張すれば対角化可能になって Liouville).

例えば $\sin x$, $\cos x$ は $\mathbb R$ 上では Liouville でないが, 定数体を $\mathbb C$ に拡張すれば Liouville になる,・・・という 立場.

 $ar{ extit{M.}} \; k = ar{\mathbb{F}}_2 \; ext{とし}, \; SL_2 \; ext{ o} \; ext{closed subgroup scheme} \; \mathbb{G} \;$ を, 可換 k-algebra T に対して

$$\mathbb{G}(T) = \left\{ \left(egin{array}{ccc} x_{11} & x_{12} \ x_{21} & x_{22} \end{array}
ight) \in SL_2(T) & x_{11}^2 = 1, \; x_{22}^2 = 1, \ x_{12}^2 = 0, \; x_{21}^2 = 0 \end{array}
ight\}$$

として定めると、 G は connected Liouville だが三角化可能でない.

4. AS D-加群代数の Liouville 拡大

4.1. (a)(b)(c) に相当する拡大

定義. L/K を AS D-加群代数の拡大とする.

- (a) L/K が finite etale : $\Leftrightarrow L$ が separable K-代数.
- (c) $x \in L$ が K \bot exponential $\Leftrightarrow x \in L^{\times} \text{ かつ } (dx)x^{-1} \in K \ (^{\forall}d \in D).$

L/K を AS D-加群代数の拡大とするとき, $x_1, \ldots, x_n \in L$ に対し, K と x_1, \ldots, x_n を含む最小の部分 AS D-加群代数 in L を $K\langle x_1, \ldots, x_n \rangle$ と書く. 特に, 有限個の x_1, \ldots, x_n によって $L = K\langle x_1, \ldots, x_n \rangle$ と書けるとき, L/K は finitely generated であるという.

命題. L/K が finitely generated PV 拡大のとき,

(a) $\mathbb{G}(L/K)$ ° に対応する中間 AS D-加群代数は L の (finite) separable K-subalgebra のうち最大のものと一致する. 特に,

L/K \not finite etale $\Leftrightarrow \mathbb{G}(L/K)$ \not finite etale.

- (c) $L = K\langle x \rangle, \ x \not \sqsubseteq K \perp \text{exponential}$ $\Leftrightarrow \mathbb{G}(L/K) \hookrightarrow \mathbb{G}_{\mathrm{m}}.$

定義. L/K を finitely generated な AS D-加群代数の拡大とする. L/K が Liouville 拡大 とは, $L^D=K^D$ かつ中間 AS D-加群代数の列 $K=L_0\subset L_1\subset\cdots\subset L_r=L$ があって各 L_i/L_{i-1} $(i=1,\ldots,r)$ が次のいずれかの形をしていることをいう:

- (a) finite etale,
- (b) $L_i = L_{i-1}\langle x \rangle$, $x \not \sqcup L_{i-1} \perp$ primitive,
- (c) $L_i = L_{i-1}\langle x \rangle$, $x \not \sqsubseteq L_{i-1} \perp$ exponential.

4.2. Liouville group schemes

定義. © を algebraic affine group scheme とする. ある closed subgroup schemes の normal chain

$$\mathbb{G} = \mathbb{G}_0 \rhd \mathbb{G}_1 \rhd \cdots \rhd \mathbb{G}_r = \{1\}$$

があって、各 G_i/G_{i-1} $(i=1,\ldots,r)$ が

- · finite etale,
- \mathbb{G}_{a} \mathcal{O} closed subgroup scheme,
- ・ \mathbb{G}_{m} の closed subgroup scheme, のいずれかであるとき、 \mathbb{G} は Liouville であるという.

命題. G を algebraic affine group scheme とする.

- (1) \mathbb{G} \mathfrak{N} Liouville $\Leftrightarrow \mathbb{G}^{\circ}$ \mathfrak{N} Liouville.
- (2) \mathbb{G} が connected Liouville $\Rightarrow \mathbb{G}$ は可解.
- (3) 代数閉体上では、 \mathbb{G} が Liouville $\Leftrightarrow \mathbb{G}^{\circ}$ が可解.

4.3. 可解性定理

定理. L/K を AS D-加群代数の PV 拡大とすると, 次は同値:

- (i) L/K が Liouville 拡大.
- (ii) ある Liouville 拡大 $ilde{L}/K$ が存在して $L\subset ilde{L}$.
- (iii) $\mathbb{G}(L/K)$ \mathcal{N} Liouville.

もし K^D が代数閉体ならば、上記はさらに次とも同値:

(iv) $\mathbb{G}(L/K)^{\circ}$ が可解.