H ¹ 4K hcp 3.75 6.12		the s		ven a	re at re	oom	tempe	rature	res of the for the ganic Cr	most	com	mon										He ⁴ : hcp 3.57 5.83
Li 78K bcc 3.491	Be hcp 2.27 3.59	-												(Control of	B rhom	b.	C diamond 3.567	N 20 cubic 5.66 (N ₂)	COM COM	40 COM ()	F	Ne 4 fcc 4.46
Na 5K bcc 4.225	Mg hcp 3.21 5.21	Crystal structure. a lattice parameter, in A c lattice parameter, in A															Si diamond 5.430	P	S com	plex	CI complex (CI ₂)	Ar 4K fcc 5.31
K 5K bcc 5.225	Ca fcc 5.58	Sc hcp 3.31 5.27	Ti hcp 2.95 4.68	V bcc 3.0		cc .88	Mn cubic comple	Fe bc 2.8	c hc	р 51	Ni fcc 3.52	fcc 3.6		Zn hcp 2.66 4.95	Ga	lex	Ge diamond 5.658	As rhomb.	Se hex chai	5.0	Br complex (Br ₂)	Kr 41 fcc 5.64
Rb 5K bcc 5.585	Sr fcc 6.08	Y hcp 3.65 5.73	Zr hcp 3.23 5.15	Nb bcc 3.3	b	lo cc .15	Tc hcp 2.74 4.40	Ru hcp 2.7 4.2	p fcc		Pd fcc 3.89	Ag fcc 4.0	H.	Cd hcp 2.98 5.62	In tetr. 3.25 4.95	5	Sn (α) diamond 6.49	Sb rhomb.	Te hex. chair	-	complex (I ₂)	Xe 44 fcc 6.13
Cs 5K bcc 6.045	Ba bcc 5.02	La hex. 3.77 ABAC	Hf hcp 3.19 5.05	Ta bcc 3.3	b	cc .16	Re hcp 2.76 4.46	0s hcj 2.7 4.3	p fcc 74 3.8		Pt fcc 3.92	fcc 4.0		Hg rhomb.	TI hcp 3.46 5.52	5	Pb fcc 4.95	Bi rhomb.	Po sc 3.3		At —	Rn —
Fr	Ra —	Ac fcc 5.31	f	cc 5.16	Pr hex. 3.67 ABAC	Ne he 3.0	x.	m -	Sm complex	Eu bcc 4.58	h 3	i d cp .63	Tb hcp 3.60 5.70	ho 3.	р 59	Ho hcp 3.58 5.62		p h	Tm ncp 3.54 5.56	Yb fcc 5.4	· hc	p 50
			f	h cc i.08	Pa tetr. 3.92 3.24	CON		Np omplex	Pu complex	Am hex. 3.64 ABA		m -	Bk —	CI		Es —	Fn	1	Md	No —	Lr	

Li 158. 1.63 37.7	Be 320. 3.32 76.5	Table 1 Cohesive energies Energy required to form separated neutral atoms in their ground electronic state from the solid at 0 K at 1 atm. The data were supplied by Prof. Leo Brewer.														C 711. 7.37 170.	N 47 4.1		O 251. 2.60 60.03	F 81.0 0.84 19.37	Ne 1.92 0.020 7 0.46
Na 107. 1.113 25.67	Mg 145. 1.51 34.7	←				kJ/mol eV/atom kcal/mol					→ →						P 33 3. 7 79		\$ 275. 2.85 65.75	CI 135. 1.40 32.2	Ar 7.74 0.080 1.85
K 90.1 0.934 21.54	Ca 178. 1.84 42.5	Sc 376 3.90 89.9	376 468, 512, 3 3.90 4.85 5.31 4		Cr 395. 4.10. 94.5	15. 282. 10. 2.92		3. 28	3. 424. 8 4.39		ĭ 28. 44 02.4	Cu 336. 3.49 80.4	1	n 30 .35 1.04	Ga 271. 2.81 64.8	Ge 372. 3.85 88.8	2.5	5.3 96	Se 237 2.46 56.7	Br 118. 1.22 28.18	Kr 11.2 0.110 3 2.68
Rb 82.2 0.852 19.64	Sr 166. 1.72 39.7	Y 422. 4.37 100.8	Zr 603. 6,25 144.2	Nb 730. 7.57 174.5	Mo 658 6.82 157.2	Tc 661 6.85 158	6.	0.	Rh 554. 5.75 132.5	3.	d 76. .89 9.8	Ag 284. 2.95 68.0	1	td 12. .16 6.73	In 243. 2.52 58.1	Sn 303. 3.14 72.4	2.	5. 75	Te 211 2.19 50.34	1 107. 1.11 25.62	Xe 15.9 0.16 2 3.80
Cs 77.6 0.804 18.54	Ba 183. 1.90 43.7	La 431. 4,47 103.1	Hf 621. 6.44 148.4	Ta 782. 8.10 186.9	W 859. 8.90 205.2	Re 775 8.03 185	8.	18. 17	670. 6.94 160.	5.	t 64. 84 34.7	Au 368. 3.81 87.9	6 0	1g 5. .67 5.5	TI 182. 1.88 43.4	Pb 196. 2.03 46.7		0. 18	Po 144. 1.50 34.5	At	Rn 19.5 0.20 4.66
Fr	Ra 160. 1.66 38.2	Ac 410. 4.25 98.		7. 35 32 3.	57. 3 70 3	28. .40 8.5	Pm	Sm 20 2.1 49	6. 1	79. 1.86 12.8	40 4. 95	10.	Tb 391. 4.05 93.4	Dy 29 3.0 70	4. 3	02.	Er 317. 3.29 75.8		33. 1. 42 1	54. 4 .60 4	28. .43 02.2
			6.	n Pa 98. 20 2.9	5	36. .55 28.	Np 456 4.73 109.	94 3.6 83	7. 2 60 2	Am 264. 2.73 83.	Cr 38 3.9	35 99	Bk	Cf	E	s	Fm	M	d N	o L	r

H (a) 0.002 500		After l	K. Gse	chneid m F. B	lner, Jr irch, ir	., Sol	tempe lid State	eratu e Ph of ph	ysics 16	, 27	5-42	26 (I	1964) eolog	; se	veral Soci-									He (d 0.00 1168
Li 0.116 8.62	Be 1.003 0.997	consul	ted ware e	hen v estimat kets r	alues a tes. Le efer to	re ne tters the	eded for in parestempera	nthe		urpe r to	oses. the o	Val	lues : tal fo	in pa	aren-	B 1.7 0.5		C (d) 4.43 0.226		12	0	F		Ne (d 0.010 100
Na 0.068 14.7	Mg 0.354 2.82	[a] = 77 K; [b] = 273 K; [c] = 1 K; [d] = 4 K; [e] = 81 K. Al Si P (b) Bulk modulus in units 10^{12} dyn/cm² or 10^{11} N/m² 0.722 0.988 0.30 Compressibility in units 10^{-12} cm²/dyn or 10^{-11} m²/N 1.385 1.012 3.29														304	S (r) 0.178 5.62	CI		Ar (a) 0.013 79				
K 0.032 31.	Ca 0.152 6.58	Sc 0.435 2.30	Ti 1.05 0.95		619 1 618 0	.901	Mn 0.596 1.68				Ni 1.86 0.538		Cu 1.37 0.73	7	Zn 0.598 1.67		(ы) 669	Ge 0.772	As 0.3 2.5	394	Se 0.091 11.0	Br		Kr [a] 0.018 56
Rb 0.031 32.	Sr 0.116 8.62	γ 0.366 2.73	Zr 0.83		702 2	lo .725 .366	Tc (2.97) (0.34)		208 2.	704		808	Ag 1.00	07	Cd 0.467 2.14	In 0.4 2.4	111	Sn (g 1.11 0.90	0.3	383	Te 0.230 4.35	ľ		γХе
Cs 0.020 50.	Ba 0.103 9.97	La 0.243 4.12	Hf 1.09 0.92		00 3	.232	Re 3.72 0.269		lr 18) 3.5 24) 0.2		Pt 2.7 0.3		Au 1.73 0.57	32	Hg (c) 0.382 2.60		159	Pb 0.430 2.33	Bi 0.3 3.1	15	Po (0.26 (3.8)	At		Rn
Fr (0.020) (50.)	Ra (0.132 (7.6)	Ac (0.25) (4.)		Ce (y) 0.239 4.18	Pr 0.306 3.27	No 0.3	327 (0	.35)	Sm 0.294 3.40	Eu 0.1 6.8	147	Gd 0.3	883	Tb 0.39 2.51	99 0	y .384 .60	Ho 0.3 2.5	97 0	r .411 .43	Tm 0.3 2.5	397 0	b .133 .52	Lu 0.4 2.4	111
			0	Γh 0.543 1.84	Pa (0.76 (1.3)	U 0.5		p .68) .5)	Pu 0.54 1.9	An	n	Cm	1	Bk	C	i	Es	F	m	Mo	1 1	lo	Lr	