MegaL Traceabiltiy Recovery

https://github.com/maxmeffert/megal-tr

Formal Foundations
Meeting 2016-03-17

University of Koblenz-Landau

Maximilian Meffert

Prelude

Prelude

"Signum \in significat est. Ita $a \in b$ legitur a est quoddam b"

"The Symbol \in means is. Thus $a \in b$ is read $\underline{a} \ \underline{i} \ \underline{s} \ \underline{a} \ \underline{b}$ "

(Giuseppe Peano: Arithmetices principia nova methodo exposita, 1889, S. X)

Prelude

Entity-Type

A domain model is a collection of (axiomatic) statements over entity-types and entities.


```
Foo < Entity
```

Bar < Entity

•••

Extends a KB with entities found in Manifestations.

Fragmentation is done by several plugins, specifically tailored to a domain.

Can we provide singular plugins for recovery?

Unambiguous Definitions?

A partOf B $:\leftrightarrow$???

A conformsTo B $:\leftrightarrow$???

A correspondsTo B $:\leftrightarrow$???

A representationOf B : \leftrightarrow ???

First Order Logic

Logic Symbols

Quantifier symbol: \forall , \exists

Logic Operator symbols: $\neg, \land, \lor, \leftrightarrow, \rightarrow$

Description Operator symbol: 1

Variable symbols: a,b,c,...,x,y,z (lower case)

Equality/Identity symbol: =

Parentheses symbols: ()[]

Non-logic Symbols

Predicate symbols: A,B,C,...,X,Y,Z (upper case)

Terms

Any variable is a term.

Formulars

asdf

Mereology

The study of wholes and their constituent parts

Mereology

Logic

Philosophy

Mathematics

Mereology

An axiomatic system with focus on the *parthood* (partOf) predicate:

Pxy

"x is part of y"

Ground Mereology

(Reflexive)
P x x

(Antisymmetric) $P \times y \wedge P \times y \times y \rightarrow x = y$

(Transitive) $P \times y \wedge P y Z \rightarrow P \times Z$

Mereotopology

An axiomatic extension of a Mereology with predicates Φ other than parthood

And statements like

$$P x y \rightarrow \Phi x y$$

$$\Phi x y \rightarrow P x y$$

$$P x y \leftrightarrow \Phi x y$$

Formalization #1

Formalization #1 : Example

Foo < Entity

Foo ⊂ Entity

Bar < Entity

Bar ⊂ Entity

partOf < Foo * Bar</pre>

 $\forall (x,y) \in Foo \times Bar (Pxy)$

foo: Foo

foo ∈ Foo

bar : Bar

bar ∈ Bar

foo partOf bar

P foo bar

foo = mfoo

R mfoo foo

bar = mbar

R mbar bar

Trace Recovery Rule

$$\Phi x y \wedge R a x \wedge R b y \rightarrow \Phi a b$$

Recovers the predicate Φ between two manifestations a and b.

(Assume: $\Phi \neq R$)

Formalization #1

Problem: Types are <u>not</u> handled properly!

Typed Predicate Logic

References

(1) asdf