Deep Generative Models

University of Victoria - PHYS-555

Richard Feynman: "What I cannot create, I do not understand"

Generative modeling: "What I understand, I can create"

Statistical Generative Models

A statistical generative model is a **probability distribution** p(x)

- Data: samples (e.g., images of cats, spectra, particle tracks,...)
- **Prior knowledge:** parametric form (e.g., Gaussian?), loss function (e.g., maximum likelihood?), optimization algorithm, etc.

It is generative because sampling from p(x) generates new images

Supervised

Data: (x,y)

features labels

Learn mapping $\mathbf{x} \rightarrow \mathbf{y}$: $p(\mathbf{y}|\mathbf{x})$

Unsupervised

Data: x

no labels

Learn hidden structure: p(x)

Generative Model

A generative model is a probabilistic model $\mathbf{x} \sim p(\mathbf{x}; \theta)$ that can be used to simulate new data that is as closed from the true and unknown data distribution $p(\mathbf{x})$ but for which we have real samples.

Go beyond estimating $p(y|\mathbf{x})$ such as in discriminative models:

- Understand and imagine how the world evolves
- Recognize objects in the world and their factors of variations
- Establish concepts for reasoning and decision making

Generative vs. Discriminative

• Generative learns joint probability distribution: $p(\mathbf{x}, y)$

• Discriminative learns conditional probability distribution $p(y|\mathbf{x})$

Generative Models Taxonomy

Why caring about Generative Models in Physics?

Classic use

- \circ With maximum likelihood, we can obtain physical parameters for a hand designed $p(\mathbf{x};\theta)$
- We can learn a joint distribution with labels $p(\mathbf{x},\mathbf{y};\theta)$ and transform to $p(\mathbf{y}|\mathbf{x};\theta)$

Modern use

- Fast generation of computationally expensive tasks in complex, nonlinear physics aka emulator of simulators, surrogate modelling
- Interpolation between high dimensional distribution samples

In deep learning, 4 types of generative models are currently dominating