S5

Materia	Diseño de algoritmos
■ Fecha	@August 17, 2023

Análisis de complejidad

T(n)

Operacione selementales

n = Datos

t α T(n) Peor caso

Ejemplo

- b → elemento a buscar
- A → conjunto en el que vamos a buscar
- N → tamaño del conjunto

Medidas asintóticas

Una medida asintótica se trata de encontrar una función que describa el comportamiento de los tiempos de ejecución

$$\leftarrow lpha x^2 \qquad lpha < 1$$
 $lpha x^2 \leq x^2$

Medidas

 $O, \omega, heta$

Cota superior O

Dado un conjunto f(n) decimos que está acotada superiormente por g(n) Sí $\exists \quad k>0$ para $n\geq n_0$ tal que

$$f(n) \le kg(n), \quad n \ge n_0$$

Decimos que f(n) es $O(g(n)), \qquad f(n)\epsilon O(g(n))$

Ejemplo:

$$f(n) = 25n^2 + 10n + 8, \qquad g(n) = n^2$$

$$f(n)\epsilon O(g(n))$$
 o $g(n)\epsilon O(f(n))$? $k=?$

$$n\epsilon N=$$
 {1, ..., infinito}

verificamos que 1 \leq n, esto solo sucede si $n_0=3$, tal que

•
$$8 \le n^2$$
 $n_0 = 3$

•
$$8 \le 8n^2$$
 $n_0 = 1$

Por cada termino de cada ecuación sacamos las cotas

$$f(n) = 25n^2 + 10n + 8, \qquad g(n) = n^2$$

$$g(f(n)) = (25n^2)^2 + (10n)^2 + 8$$

1. Cota de
$$n^2 o 8 \le n^2, \qquad n_0 = 3$$

2. Cota de
$$8n^2 \rightarrow 8 \leq 8n^2$$
, $n_0 = 1$

3. Cota de
$$10n o 10 \le 10n, \quad n_0 = 1$$
 $10n \le 10n^2, \qquad $$n_0$$

$$f(n) \leq 25n^2 + 10n^2 + 8n, \qquad n_0 = 1 \ f(n) \leq 43n^2$$

Cota inferior Ω

Dado un conjunto de funciones f(n) Se dice que esta acotada inferiormente a g(n) Sí $\exists \qquad k \geq g(n)$ para $n \geq n_0$

Regla de dualidad

$$f(n)\epsilon \quad O(g(n)) \rightarrow g(n)\epsilon \quad \Omega(f(n))$$

$$f(n) \leq 43n^2 oup f(n)\epsilon \quad O(n^2) \qquad \qquad n \geq n_0 = 1$$
 $oup f(n) >= kn^2$

Cual es la k que permitiria que eso suceda

$$egin{aligned} f(n) &= 25n^2 + 10n + 8 & g(n) &= n^2 \ &\leq 43n^2 \ &25n^2 + 10n \leq 25n^2 + 10n + 8 = f(n) \ f(n) &\geq 25n^2 + 10n \geq 25n^2 \end{aligned}$$

$$f(n) \geq 25n^2$$
 $k=25$ $n=?$ $25n^2+10n+8=25n^2$

Se cumple la cota siempre y cuando n=?

Cota asintótica θ

Dado f(n) un conjunto de funciones, decimos que tiene orden heta si existe $k_1,k_2>0$ para $n\geq$ n_0 tal que

$$k_1g(n) \leq f(n) \leq k_2g(n)$$

$$f(n)\epsilon heta(g(n))k_1=25$$

$$k_2=43$$

$$f(n)\epsilon O(g(n))$$
 $k=43$

$$f(n)\epsilon O(g(n)) \qquad k=43 \ f(n)\epsilon \Omega(g(n)) \qquad k=25$$

Propiedades O

- Autocontenido: $f(n)\epsilon O(f(n))$
- Subconjunto: Sí $f(n)\epsilon O(g(n))$ entonces: O(f(n)) < O(g(n))
- Identidad: decimos que $O(f(n)) = O(g(n)) \text{ Si solo si} \\ f(n)\epsilon = (g(n)) \text{ y } g(n)\epsilon = (f(n)) \\ \neq > f(n) = g(n)$
- Transitividad:

Si
$$a\leq b,\quad b\leq c,\quad a\leq c \ f(n)\epsilon O(g(n))$$
 y $g(n)\epsilon O(h(n))\Rightarrow f(n)\epsilon O(h(n))$

• Menor:

Si
$$f(n)\epsilon O(g(n))$$
 y $f(n)\epsilon O(h(n)) \Rightarrow f(n) < O(min(g(n),h(n))$

• Suma:

Si
$$f_1(n)\epsilon O(g(n)), \qquad f_2(n)\epsilon O(h(n)) =>$$
\$\$f_1(n) + f_2(n) \epsilon O(max(g(n), h(n))\$\$ Propiedades Ω

Propiedades θ