

Sistemas Digitais (SD)

Circuitos combinatórios: descodificadores, codificadores, multiplexers e demultiplexers

Aula Anterior

Na aula anterior:

- Noção de circuito combinatório;
- Tempo de propagação num circuito;
- Dispositivos lógicos especiais:
 - Buffer de três estados (*tri-state*);
 - Portas de passagem (transmission gates).

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
17/Fev a 21/Fev	Introdução	Sistemas de Numeração	
24/Fev a 28/Fev	CARNAVAL	Álgebra de Boole	P0
02/Mar a 06/Mar	Elementos de Tecnologia	Funções Lógicas	VHDL
9/Mar a 13/Mar	Minimização de Funções	Minimização de Funções	LO
16/Mar a 20/Mar	Def. Circuito Combinatório; Análise Temporal	Circuitos Combinatórios	P1
23/Mar a 27/Mar	Circuitos Combinatórios	Circuitos Combinatórios	L1
30/Mar a 03/Abr	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	P2
06/Abr a 10/Abr	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA
13/Abr a 17/Abr	Caracterização Temporal	Registos	L2
20/Abr a 24/Abr	Contadores	Circuitos Sequenciais Síncronos	P3
27/Abr a 01/Mai	Síntese de Circuitos Sequenciais Síncronos	Síntese de Circuitos Sequenciais Síncronos	L3
04/Mai a 08/Mai	Exercícios Tes	Memórias ste 1	P4
11/Mai a 15/Mai	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Microprograma	L4
18/Mai a 22/Mai	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	P5
25/Mai a 29/Mai	P6	P6	L5

Sumário

Tema da aula de hoje:

- ► Circuitos combinatórios típicos:
 - Descodificadores
 - Codificadores
 - Multiplexers
 - Demultiplexers

Bibliografia:

- M. Mano, C. Kime: Secções 3.7 a 3.9
- G. Arroz, J. Monteiro, A. Oliveira: Secções 4.2 a 4.5

Descodificador (em inglês, Decoder)

▶ O descodificador binário é um circuito combinatório que permite, perante uma combinação de entradas, activar uma e só uma saída.

I1	Ι0	O0	O1	O2	O3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

DESCODIFICADOR 2:4

No símbolo do componente, o índice dos sinais de entrada/saída permite identificar claramente as saídas e o "peso" de cada um dos sinais de entrada.

Descodificador com entrada de activação (Enable):

▶ A entrada de ENABLE permite, quando activa (neste caso, a "1"), que o descodificador funcione normalmente. Quando não activa, inibe o seu funcionamento fazendo com que todas as saídas fiquem inactivas (neste caso, todas a "0").

EN	I1	I0	O0	O1	O2	O3
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0

DESCODIFICADOR 2:4

Descodificador: estrutura interna

- ▶ A figura representa a estrutura interna de um descodificador binário de 2 entradas.
- ▶ Cada saída representa uma das combinações possíveis das entradas

I1	IO			O2	
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	0 0 1	0
1	1	0	0	0	1

Descodificador com saídas activas a zero

No símbolo do componente, o ∆ na saída indica que esta é activa a "0", i.e., a saída seleccionada tem um "0" e as outras têm um "1". (funciona como se tivesse um inversor na saída)

I1	10	O0	O1	O2	O3
0	0	0	1		1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

Descodificadores: exemplos de componentes

DESCODIFICADOR 3:8

DUAL DECODER 2:4

Nos 3 exemplos os sinais de saída são activos a zero.

No 138 o Enable é um AND de 3 entradas, 2 delas negadas. No 139 o Enable é activo a zero. No 155 o Enable é um AND de 2 entradas, 1 delas negada.

DUAL DECODER 2:4

Codificador

Codificador (em inglês, encoder):

▶ O codificador binário é um circuito combinatório que indica qual das entradas possíveis é que está activa (neste caso, a "1").

I3	I2	I1	I0	O1	O0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

- ▶ Nesta versão simples, o codificador só considera 4 das 16 combinações possíveis de entrada.
- O circuito não distingue a situação de todas as entradas estarem a "0".
- O circuito não distingue as situações em que estão a "1" mais do que uma entrada.

Codificador

Codificador de prioridade:

► As entradas deste codificador têm uma ordem de prioridades: em caso de mais de uma entrada activa (a "1") é considerada a de maior prioridade.

I3	I2	I1	I0	O1	O0	V
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

- ► A entrada I3 é a de maior prioridade, seguida da I2, da I1, e a I0 é a de menor prioridade.
- ► A saída V suplementar indica se existe pelo menos uma entrada activa (a "1").

Multiplexer:

➤ O multiplexer é um circuito combinatório que permite, através da especificação dos sinais de selecção, encaminhar uma das N entradas de dados para a saída.

Exemplo: multiplexer 4:1

S 1	S0	О
0	0	D0
0	1	D1
1	0	D2
1	1	D3

As entradas de selecção determinam a entrada de dados cujo valor é colocado na saída.

Multiplexer: estrutura interna

S 1	S0	О
0	0	D0
0	1	D1
1	0	D2
1	1	D3

$$O = D_0.\overline{S_1}.\overline{S_0} + D_1.\overline{S_1}.S_0 + D_2.S_1.\overline{S_0} + D_3.S_1.S_0$$

Multiplexer: estrutura interna alternativa

S1	S0	О
0	0	D0
0	1	D1
1	0	D2
1	1	D3

Multiplexer: simbologia

MULTIPLEXER 4:1 simples

MULTIPLEXER 4:1 com enable

EN	S 1	S0	О
1	0	0	D0
1	0	1	D1
1	1	0	D2
1	1	1	D3
0	X	X	0

Multiplexer: saída tri-state

Multiplexers: exemplos de componentes

Nos 3 exemplos os sinais de Enable são activos a zero (a activação do funcionamento normal do componente acontece quando EN=0).

O 74151 tem uma saída suplementar que é a negação da outra.

Demultiplexer

Demultiplexer:

▶ O demultiplexer é um circuito combinatório que permite, através da especificação dos sinais de selecção, encaminhar a entrada para uma das N saídas.

Exemplo: Demultiplexer 1:4

S 1	S0	O0	O1	O2	O3
0	0	IN	0	0	0
0	1	0	IN	0	0
1	0	0	0	IN	0
1	1	0	0	0	IN

Demultiplexer

Demultiplexer: estrutura interna

DEMULTIPLEXER 1:4

S1	S0	O0	O1	O2	O3
0	0	IN	0	0	0
0	1	0	IN	0	0
1	0	0	0	IN	0
1	1	0	0	0	IN

$$O_0 = IN.\overline{S_1}.\overline{S_0}$$
 $O_1 = IN.\overline{S_1}.S_0$

$$O_1 = IN.\overline{S_1}.S_0$$

$$O_2 = IN.S_1.\overline{S_0}$$

$$O_3 = IN.S_1.S_0$$

$$O_3 = IN.S_1.S_0$$

Demultiplexer vs Descodificador

Demultiplexeres e Descodificadores:

▶ Um descodificador com *enable* é equivalente a um demultiplexer, sendo as entradas de dados do primeiro as entradas de selecção do segundo e a entrada de *enable* do primeiro a entrada de dados do segundo.

Nota: os 2 símbolos abaixo referem a mesma funcionalidade do circuito.

Descodificadores: aplicações (f. combinatórias)

▶ Realização de funções combinatórias de 3 variáveis com decoders 3:8

$$f1(X,Y,Z) = \sum m(1,5,7)$$

$$f2(X,Y,Z) = \sum m(0,3,4)$$

Descodificadores: aplicações (f. combinatórias)

► Realização de funções combinatórias de 3 variáveis com decoders 3:8 com saídas activas a 0.

$$f1(X,Y,Z) = \sum m(1,5,7)$$

$$f2(X,Y,Z) = \sum m(0,3,4)$$

- Multiplexers: aplicações (f. combinatórias)
 - Exemplo de realização de funções combinatórias de 2 variáveis com MUX 4:1

$$F = \overline{A} + A\overline{B}$$

A	В	F
0	0	1
0	1	1
1	0	1
1	1	0

Multiplexers: aplicações (f. combinatórias)

Exemplo de realização de funções combinatórias de 3 variáveis com MUX 4:1

$$F = \overline{A} \overline{B} + \overline{A} C + AB\overline{C}$$

A	В	С	F	
0	0	0	1	- ·
0	0	1	1	F = 1
0	1	0	0	
0	1	1	1	F = C
1	0	0	0	T
1	0	1	0	F = 0
1	1	0	1	$F = \overline{C}$
1	1	1	0	r = C

- Descodificadores: aplicações (descodificação)
 - ► Exemplo de realização de um DECODER 3:8 tendo por base 2 DECODERs 2:4

- Multiplexers: aplicações (multiplexagem)
 - Exemplo de realização de um MUX 8:1 tendo por base 2 MUXs 4:1

- Multiplexers: aplicações (multiplexagem)
 - ► Exemplo de realização de um MUX 16:1 tendo por base 4 MUXs 4:1

- Multiplexers: aplicações (multiplexagem)
 - ► Exemplo de realização de um MUX 16:1 tendo por base 4 MUXs 4:1 tri-state

Próxima Aula

Próxima Aula

Tema da Próxima Aula:

- ► Circuitos combinatórios típicos:
 - Somadores / Subtractores
 - Comparadores

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Nuno Roma
- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás