07b - Regularization & Sparsity

Bayesian Statistics Spring 2022-2023

Josep Fortiana

Matemàtiques - Informàtica UB

Monday, April 24, 2023

07b - Reg. & Sparsity

Regularization: Bias-variance tradeoff

Ridge regression & The LASSO

Bayesian Ridge regression

The Bayesian LASSO

Horseshoe and shrinkage priors

07b - Reg. & Sparsity

Regularization: Bias-variance tradeoff

Ridge regression & The LASSO

Bayesian Ridge regression

The Bayesian LASSO

Horseshoe and shrinkage priors

Bias-variance tradeoff

A general principle when several models can describe the same data.

If the model is enlarged (more parameters, more complexity) to fit better the observed data (*less bias*), then it becomes unstable (*more variance*).

A model with large variance will be a worse fit to different data sets from the same population; predicions will be unreliable.

Example: polynomial regression

```
Data: Pairs (y_i, x_i), y_i: response, x_i: predictors.
```

Least squares adjustment:

- Linear regression y = a + bx. Dim 2.
- Quadratic regression $y = a + b_1 x + b_2 x^2$. Dim 3.

Polynomial, deg. $ky = a + b_1x + b_2x^2 + \cdots + b_kx^k$. Dim k+1.

Larger degree, more instability.

Linear regression

US population 1790 – 1990. Prediction for 2050 Quadratic

Degree = 3

Degree = 4

Degree = 5

Degree = 6

07b - Reg. & Sparsity

Regularization: Bias-variance tradeoff

Ridge regression & The LASSO

Bayesian Ridge regression

The Bayesian LASSO

Horseshoe and shrinkage priors

A linear model, with independent observations with equal variance (Gauss-Markov condition),

$$y = X \cdot \beta + \epsilon$$

where:

$$y = \left(\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array}\right)$$

is a random vector with *n* observations of a *response variable*.

The model matrix
$$\mathbf{X} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$

contains the constant, known values, of the p predictors.

The vector:
$$\boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$
 contains the *random errors*.

J. Fortiana (Mat-Inf UB) 07b - Reg. & Sparsity 2023-04-24 14/52

The $p \times 1$ vector of parameters,

$$oldsymbol{eta} = \left(egin{array}{c} eta_1 \ dots \ eta_p \end{array}
ight)$$
 ,

contains the regression coefficients.

Setting
$$E(y) = X \cdot \beta$$
, the ϵ_i are i.i.d. $\sim (0, \sigma^2)$.

The classical (OLS, Ordinary Least Squares) estimator $\hat{\beta}$ of β is a solution of the optimization problem, of minimizing:

$$F(\boldsymbol{\beta}) = \|\boldsymbol{y} - \boldsymbol{X} \cdot \boldsymbol{\beta}\|^2.$$

When p < n and rank(X) = p, there exists a unique solution:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}' \cdot \boldsymbol{X})^{-1} \cdot \boldsymbol{X}' \cdot \boldsymbol{y}.$$

In this case, the fitted values vector is:

$$\hat{\mathbf{y}} = \mathbf{X} \cdot \hat{\boldsymbol{\beta}} = \mathbf{H} \cdot \mathbf{y},$$

and the residuals vector:

$$\tilde{\mathbf{y}} = \mathbf{y} - \hat{\mathbf{y}}$$

where H, the *hat matrix*, is the orthogonal projector on the linear subspace $\langle X \rangle \subset \mathbb{R}^n$, is given by:

$$H = X \cdot (X' \cdot X)^{-1} \cdot X'.$$

Even when there is not a unique solution, and:

$$Q = X' \cdot X$$

is singular, the subspace $\langle X \rangle \subset \mathbb{R}^n$ is well defined and so is H, its uniquely defined orthogonal projector.

If $Var(y) = \sigma^2 I$ (Gauss-Markov condition), then:

$$Var(\hat{y}) = \sigma^2 H$$

as *H* is an idempotent matrix.

When $Q = X' \cdot X$ is nonsingular,

$$\operatorname{Var}(\hat{\boldsymbol{\beta}}) = \sigma^2 \, \boldsymbol{Q}^{-1}$$

What happens when Q is close to being singular?

More generally, when the *condition number* of Q (or X) is too large?

Ridge regression

Ridge regression is a method of finding an intently biased estimator $\hat{\beta}_{\lambda}$ of β , having a smaller variance, i.e., a more stable estimator.

Solution of the minimization problem:

$$F_{\lambda}(\boldsymbol{\beta}) = \|\boldsymbol{y} - \boldsymbol{X} \cdot \boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|^2,$$

where $\lambda > 0$ is the regularization parameter, to be chosen.

This is a penalized least squares problem,

a Tikhonov regularization of an ill-posed problem.

Ridge regression

After computations:

$$\hat{\boldsymbol{\beta}}_{\lambda} = (\boldsymbol{X}' \cdot \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \cdot \boldsymbol{X}' \cdot \boldsymbol{y}.$$

Choosing a sufficiently large λ , we can get a non-singular:

$$Q_{\lambda} = X' \cdot X + \lambda I$$

so that the variance of $\hat{\boldsymbol{\beta}}_{\lambda}$ is acceptable, at the cost of adding bias.

The Ridge hat-matrix

$$\hat{\mathbf{y}} = \mathbf{X} \cdot \hat{\boldsymbol{\beta}}_{\lambda} = \mathbf{X} \cdot (\mathbf{X}' \cdot \mathbf{X} + \lambda \mathbf{I})^{-1} \cdot \mathbf{X}' \cdot \mathbf{y} = \mathbf{H}_{\lambda} \cdot \mathbf{y}.$$

By analogy with the OLS model,

$$H_{\lambda} = X \cdot (X' \cdot X + \lambda I)^{-1} \cdot X'$$
 is called the *Ridge* hat-matrix.

It is *not* an idempotent matrix (i.e., not an orthogonal projector). Anyhow,

$$\mathsf{df}(\lambda) = \mathsf{tr}(H_{\lambda}),$$

is the equivalent number of degrees of freedom of the model.

The LASSO

LASSO is the acronym of *Least Absolute Shrinkage and Selection Operator.*

Statisticians are not above word playing - A close antecedent of this method, by Leo Breiman (1995), is called "garrote".

Like ridge regression Lasso gives an <u>intently biased</u> estimator $\hat{\beta}_{\lambda}$ of β , having a smaller variance, i.e., a more stable estimator.

Optimization

We want to minimize the sum of squares:

$$\|\mathbf{y}-\mathbf{X}\cdot\boldsymbol{\beta}\|^2$$
,

subject to a constraint on the l^1 norm of the regression coefficients, instead of the l^2 norm in ridge regression:

$$\|\boldsymbol{\beta}\|=t$$
,

for some fixed t > 0.

Lagrange multiplier optimization

As in the ridge case, this is equivalent to solving the *penalized minimization* problem:

$$F_{\lambda}(\boldsymbol{\beta}) = \|\mathbf{y} - \mathbf{X} \cdot \boldsymbol{\beta}\|^{2} + \lambda \|\boldsymbol{\beta}\|, \qquad (\star)$$

 $\lambda > 0$ is the regularization parameter, to be chosen.

J. Fortiana (Mat-Inf UB) 07b - Reg. & Sparsity 2023-04-24 25 / 52

Unintended (?) consequences

Substituting l^1 for l^2 in the constraint might seem a purely formal generalization.

Nothing further from the truth.

The Lasso has a *variable selection* functionality, which did not appear at all in ridge regression.

Sparsity: Shrink redundant parameters to zero

Usual shrinkage feature:

When the regularization parameter λ increases, the norm $\|\boldsymbol{\beta}\|$ of the regression coefficients decreases.

New here:

Some β_j , corresponding to irrelevant predictor variables, actually shrink to 0, yielding an optimal predictor subset.

When does this Lasso variable selection work?

Precisely when it is most useful:

► Large number of predictors (big data)

► *Sparsity,* just a fraction of them are good predictors.

Why does this Lasso variable selection work?

Contours of $|y-X\cdot\beta|^2$ and neighbourhood with the L^1 norm

With the L^1 norm neighbourhoods of zero in the β space have extremal points on the axes (one coordinate is zero).

Why does this Lasso variable selection work?

Contours of $|y - X \cdot \beta|^2$ and neighbourhood with the L^2 norm

With the L^2 norm neighbourhoods of zero in the β space are circular. The optimal point will have a small value in a given coordinate, not zero.

J. Fortiana (Mat-Inf UB) 07b - Reg. & Sparsity 2023-04-24 30 / 52

When does the Lasso fail?

Gabriel Vasconcelos - R-bloggers - June 14, 2017.

J. Fortiana (Mat-Inf UB) 07b - Reg. & Sparsity 2023-04-24 31 / 52

Generalizations

Elastic net (*GLMnet*). Minimize:

$$\| \boldsymbol{y} - \boldsymbol{X} \cdot \boldsymbol{\beta} \|^2 + \lambda \left[(1 - \alpha) ||\boldsymbol{\beta}||_2^2 / 2 + \alpha ||\boldsymbol{\beta}||_1 \right], \ \alpha \in (0, 1).$$

Bridge regression. Minimize:

$$\|\boldsymbol{y} - \boldsymbol{X} \cdot \boldsymbol{\beta}\|^2 + \lambda \sum_{i=1}^{p} |\beta_i|^{\gamma}, \quad \gamma > 0.$$

07b - Reg. & Sparsity

Regularization: Bias-variance tradeoff

Ridge regression & The LASSO

Bayesian Ridge regression

The Bayesian LASSO

Horseshoe and shrinkage priors

Model

Normal linear (Gauss-Markov) model,

$$y = \mu + \epsilon = X \cdot \beta + \epsilon$$
,

$$X : n \times (p+1)$$
, with a first column of ones;

$$m{eta}:(p+1) imes 1; \quad \pmb{y}, \pmb{\epsilon}, \pmb{\mu}=\pmb{X}\cdot \pmb{\beta}, \text{ are } n imes 1.$$

$$(y \mid \boldsymbol{\beta}, \sigma^2) \sim \text{Normal}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \qquad \boldsymbol{\Sigma} = \sigma^2 \boldsymbol{I}_n.$$

Likelihood

A multivariate Gaussian pdf:

$$f(\mathbf{y} \mid \boldsymbol{\beta}, \sigma^2) = \left(\frac{1}{2 \pi \sigma^2}\right)^{n/2} \cdot \exp\left\{-\frac{1}{2 \sigma^2} \left(\mathbf{y} - \mathbf{X} \cdot \boldsymbol{\beta}\right)' \cdot \left(\mathbf{y} - \mathbf{X} \cdot \boldsymbol{\beta}\right)\right\}.$$

J. Fortiana (Mat-Inf UB) 07b - Reg. & Sparsity 2023-04-24 35 / 52

The Normal-IG conjugate prior family

$$h(oldsymbol{eta},\sigma^2) \;=\; h(oldsymbol{eta}\,|\,\sigma^2)\cdot h(\sigma^2)$$
 Joint prior pdf: $(oldsymbol{eta}\,|\,\sigma^2) \;\sim\; extsf{Normal}(oldsymbol{b},\sigma^2\,oldsymbol{B}), \ \sigma^2 \qquad \sim\; extsf{IG}(lpha,eta), \quad lpha,eta>0.$

 $B: p \times p$ symmetric, positive definite, $b: p \times 1$.

Usually
$$B = (1/\lambda) I$$
 and $b = 0$,

Joint $(\boldsymbol{y}, \boldsymbol{\beta}, \sigma^2)$ pdf

Taking $-2 \log$, the exponent is proportional to:

$$\frac{1}{\sigma^2} \| \boldsymbol{y} - \boldsymbol{X} \cdot \boldsymbol{\beta} \|^2 - \lambda \| \boldsymbol{\beta} \|^2 - 2 \log h(\sigma^2 | \boldsymbol{y}).$$

Given σ^2 , the target function in the ridge optimization.

The posterior pdf is proportional to this function.

The MAP estimator is just the Ridge solution.

J. Fortiana (Mat-Inf UB) 07b - Reg. & Sparsity 2023-04-24 37 / 52

Joint posterior pdf

$$h(\boldsymbol{\beta}, \sigma^2 | \mathbf{y}) = h(\boldsymbol{\beta} | \sigma^2, \mathbf{y}) \cdot h(\sigma^2 | \mathbf{y})$$

where:

$$(oldsymbol{eta} \mid \sigma^2, y) \sim \mathsf{Normal}(\widetilde{oldsymbol{b}}, \sigma^2 \, \widetilde{oldsymbol{B}}),$$
 $(\sigma^2 \mid y) \sim \mathsf{IG}(\widetilde{lpha}, \widetilde{oldsymbol{eta}}).$

 $\widetilde{m{b}},\widetilde{m{eta}},\widetilde{lpha},\widetilde{eta}$ are the updated parameters.

Formulas for updating parameters

$$\widetilde{b} = (B^{-1} + X' \cdot X)^{-1} \cdot (B^{-1} \cdot b + X' \cdot y),$$

$$\widetilde{B} = (B^{-1} + X' \cdot X)^{-1},$$

$$\widetilde{\alpha} = \alpha + \frac{n}{2},$$

$$\widetilde{\beta} = \beta + \frac{1}{2} \left[b' \cdot B^{-1} \cdot b + y' \cdot y - \widetilde{b}' \cdot \widetilde{B}^{-1} \cdot \widetilde{b} \right].$$

Recovering the classical Ridge regression

In particular, when the prior parameters are:

$$b = 0$$

$$\boldsymbol{B} = (1/\lambda) \boldsymbol{I}, \quad \lambda > 0,$$

Updating for $b = \mathbf{0}$, $B = (1/\lambda) I$, $\lambda > 0$

$$\widetilde{b} = (\lambda I + X' \cdot X)^{-1} \cdot (X' \cdot y),$$

$$\widetilde{B} = (\lambda I + X' \cdot X)^{-1},$$

$$\widetilde{\alpha} = \alpha + \frac{n}{2},$$

$$\widetilde{\beta} = \beta + \frac{1}{2} [y' \cdot y - y' \cdot X \cdot (\lambda I + X' \cdot X)^{-1} \cdot X \cdot y].$$

Bayesian Ridge regression

The *Ridge regression* coefficients are the posterior expected values.

 λ can be interpreted as the size of virtual prior sample with mean **0** (redefine $1/\lambda \to \sigma^2/\lambda$), thus shrinking the posterior pdf of the regression coefficients towards **0**.

07b - Reg. & Sparsity

Regularization: Bias-variance tradeoff

Ridge regression & The LASSO

Bayesian Ridge regression

The Bayesian LASSO

Horseshoe and shrinkage priors

Sticking to the success story

Can we repeat this reasoning with the Lasso?

Replace the Gaussian prior for each β_j with a Laplace (double exponential) pdf:

$$f(eta_j) = rac{1}{2\,\sigma}\,\exp\left(-rac{|eta_j - \mu|}{\sigma}
ight)$$
 ,

with
$$\mu = 0$$
, $\sigma = 1/\lambda$ (or, better, σ^2/λ).

J. Fortiana (Mat-Inf UB) 07b - Reg. & Sparsity 2023-04-24 44 / 52

Joint $(\boldsymbol{y}, \boldsymbol{\beta}, \sigma^2)$ pdf

Taking $-2 \log$, the exponent has a first summand

$$\propto \frac{1}{\sigma^2} \| \mathbf{y} - \mathbf{X} \cdot \boldsymbol{\beta} \|^2$$
, the sum of residual squares,

and a second one \propto the l^1 norm of $\boldsymbol{\beta}$, $\lambda \sum_{j=1}^p |\beta_j|$.

Given σ^2 , the target in the Lasso optimization.

J. Fortiana (Mat-Inf UB) 07b - Reg. & Sparsity 2023-04-24 45 / 52

Why condition on σ^2 ?

Conditioning on σ^2 is important because it guarantees a unimodal full posterior. For σ^2 prior we can choose:

$$\sigma^2 \sim \mathsf{IG}(a,b)$$
,

or the limit improper noninformative pdf,

$$h(\sigma^2) = \frac{1}{\sigma^2}.$$

07b - Reg. & Sparsity

Regularization: Bias-variance tradeoff

Ridge regression & The LASSO

Bayesian Ridge regression

The Bayesian LASSO

Horseshoe and shrinkage priors

Comparing Lasso and Ridge priors

The Scale Mixture of Normals (SMN) trick

The | · | function is non differentiable.

This is trouble for simulation.

Following Park and Casella (2008), the identity:

$$\frac{a}{2}e^{-a|z|} = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi s}} e^{-z^{2}/(2s)} \cdot \frac{a^{2}}{2} \cdot e^{-a^{2}s/2} ds.$$

shows the Laplace pdf is an SMN.

The SMN allows a Bayesian description

$$z \sim \mathsf{DExp}(0, a)$$
 is equivalent to:

$$z \sim \text{Normal}(0, s)$$
, and

$$s \sim \operatorname{Exp}\left(\frac{a^2}{2}\right)$$
,

(thus an MCMC sampling is possible)

Possible generalizations

Try to obtain priors with a sharper peak.

Substitute other mixing pdf's for the Exp().

E.g. Half-Cauchy(0,) \Rightarrow The horseshoe.

The horseshoe prior

