概统第三次习题课材料

习题 1 设随机变量 X 满足 (0,1) 上的均匀分布, 试求以下 Y 的密度函数:

- 1) $Y = -2 \ln X$;
- 2) Y = 3X + 1;
- 3) $Y = e^{X}$;
- 4) $Y = |\ln X|$.

习题 2 设随机变量 $X \sim Exp(\lambda)$, 对 k = 1, 2, 3, 4, 求 $\mu_k = \mathbb{E}[X^k]$ 与 $v_k = \mathbb{E}[(X - \mathbb{E}[X])^k]$, 进一步求此分布的变异系数、偏度系数和峰度系数.

习题 3 设随机变量 X 的概率密度函数 p(x) 关于直线 x=c 对称,且 $\mathbb{E}[X]$ 存在,试证:

- 1) 此对称点 c 既是均值又是中位数, 即 $\mathbb{E}[X] = x_{0.5}$.
- 2) 若 c = 0, 则 $x_p = -x_{1-p}$.

习题 4 试证随机变量 X 的偏度系数与峰度系数对位移和改变比例尺是不变的,即对任意的实数 $a,b(b \neq 0)$, Y = a + bX 与 X 有相同的偏度系数与峰度系数。

习题 5 设二维随机变量 (X,Y) 的联合密度函数为

$$p(x,y) = \begin{cases} k, & 0 < x^2 < y < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

- 1) 试求常数 k.
- 2) Rightarrow P(X > 0.5) Rightarrow P(Y < 0.5).

习题 6 设二维随机变量 (X,Y) 的联合密度函数为

$$p(x,y) = \begin{cases} e^y, & 0 < x < y \\ 0, & \text{otherwise} \end{cases}$$

试求 $P(X + Y \le 1)$.

习题 7 设二维随机变量 (X,Y) 的联合分布函数为 F(x,y), 试用 F(x,y) 表示以下概率:

- 1) $P(a < X \le b, c < Y \le d)$;
- 2) $P(a \le X < b, c \le Y \le d)$;
- 3) $P(a \le X < b, Y < c)$;
- 4) P(X = a, Y > b);
- 5) $P(X < -\infty, Y < \infty)$.

习题 8 设二维随机变量 (X,Y) 服从区域 $D=\{(x,y): a\leq x\leq b, c\leq y\leq d\}$ 上的均匀分布,试证 X 与 Y 相互独立。

习题 9 设二维随机变量 (X,Y) 的联合密度函数为 p(x,y), 证明: X 与 Y 相互独立的充分必要条件是 p(x,y) 可分离变量,即 p(x,y) = h(x)g(y). 又问,h(x) 和 g(y) 与 X 和 Y 的边际密度函数有什么关系?