

Modelos volumétricos e fator de forma para plantios jovens de Mogno Africano (*Khaya grandifoliola* C. DC.) Volumetric models and form factor for young African mahogany plantations (*Khaya grandifoliola* C. DC.)

Talvane Coelho¹; Pedro Henrique Gaspar Oliveira¹; Lucas Gabriel Souza Santos²; Juliana Fonseca Cardoso²; Maria Luiza de Azevedo²; Renato Vinicius de Oliveira Castro¹

¹Departamento de Ciências Florestais, Universidade Federal de São João del-Rei (UFSJ), Sete Lagoas/MG, Coelhotalvane@gmail.com; Oliveirapedrugas1@gmail.com; renatocastro@ufsj.edu.br.

²Programa de Pós-Graduação em Ciência Florestal, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina/MG, lucas-gabriel.santos@ufvjm.edu.br; juliana.cardoso@ufvjm.edu.br.

marialuiza.azevedo@ufvjm.edu.br.

INTRODUÇÃO

O Mogno Africano (Khaya grandifoliola C. DC.) é uma madeira nobre valorizada globalmente para móveis, madeira serrada e folheados (Ferraz Filho et al., 2021). O manejo de plantações de alto valor agregado requer o conhecimento do volume de madeira produzida.

Modelos volumétricos e fatores de forma auxiliam nas decisões de manejo (Gomes, 2017). Fatores de forma comparam o volume real da árvore com um cilindro, sendo úteis em áreas pequenas e homogêneas, mas menos precisos que modelos volumétricos, que são equações ajustadas por regressão com menor erro de estimativa (Gomes, 2017). Devido à sua relativa novidade no Brasil, o Mogno Africano (Ribeiro; Ferraz Filho; Scolforo, 2017) carece de informações. Este trabalho objetivou determinar o fator de forma médio e ajustar modelos volumétricos para plantios jovens de mogno.

MATERIAL E MÉTODOS

Área de estudo

A área de estudo está situada na Fazenda das Pedras, localizada na zona rural do distrito de Angueretá, no município de Curvelo-MG. Região caracterizada como tropical savânico com estação seca no inverno.

Figura 1: Área do povoamento de Mogno Africano (*Khaya grandifoliola* C. DC.,) na Fazenda das Pedras, Curvelo-MG.

Coleta dos dados

Foi avaliado um povoamento de 20 ha de Mogno Africano (Khaya grandifoliola C. DC.), plantado em 2014, com espaçamento de 5 m x 5 m. Realizou-se cubagem em pé em 36 árvores, usando dendrômetro Criterion RD 1000 para diâmetros em diversas alturas (0,10 m, 0,70 m, 1,30 m, 2,00 m e, a partir daí, a cada metro até 8 cm ou bifurcação, considerada altura comercial). As alturas totais foram estimadas com hipsômetro Vertex IV. O volume total da árvore foi quantificado pelo método de Smalian (Campos e Leite, 2017).

Em que: f = Fator de forma a 1,30 metro de altura; f_m = Fator de forma comercial a 1,30 metro de altura, utilizando altura total; f_{mm} = Fator de forma comercial a 1,30 metro de altura, utilizando altura comercial; v = Volume de uma árvore individual com casca (m^3); v_m = Volume comercial de uma árvore individual (m^3); H = altura total (m); H = altura comercial (m); H = altura total (m); H = altura comercial (m); H = altura total (m); H = altura total (m); H = altura comercial (m); H = altura total (m); H

Tabela 1 - Modelos de volumetria analisados para estimação do volume total e comercial

Nº Autor

	Modelo	Autoi
1	$log(v_i) = \beta_0 + \beta_1 log(D_i) + \beta_2 log(H_i) + log(\epsilon_i)$	Schumacher e Hall
2	$log(v_{m_i}) = \beta_0 + \beta_1 log(D_i) + \beta_2 log(H_i) + log(\varepsilon_i)$	Schumacher e Hall
3	$log(v_{m_i}) = \beta_0 + \beta_1 log(D_i) + \beta_2 log(h_{m_i}) + log(\varepsilon_i)$	Schumacher e Hall
4	$log(v_i) = \beta_0 + \beta_1 log(D_i) + log(\epsilon_i)$	Husch
5	$log(v_{m_i}) = \beta_0 + \beta_1 log(D_i) + log(\varepsilon_i)$	Husch

Em que: v = Volume de uma árvore individual com casca (m³); vm = Volume comercial de uma árvore individual (m³); H = altura total (m); hm = altura comercial (m); D = Diâmetro com casca a 1,30 metro de altura (cm); k = parâmetros do modelo; e ε = erro aleatório.

Análise de dados

Avaliamos a precisão das equações ajustadas e a seleção do melhor modelo com base nos critérios estatísticos: coeficiente de determinação (R²), erro médio (EM%) e erro médio absoluto (EMA%), e gráfico de resíduos.

RESULTADOS E DISCUSSÃO

Figura 2: Relação entre o fator de forma e diâmetro com casca medido a 1,30 metro de altura para volume total (FF), volume comercial utilizando altura comercial (FFHC).

Tabela 2 – Estatísticas de qualidade das equações de volumetria utilizadas na estimação do volume total e comercial.

Egypoños	Coeficientes			R ²	EM%	EMA%			
Equações	β0	β1	β2	K-	EIVI 70	EIVIA 70			
Volume total									
Schumacher e Hall (<i>H</i>)	-10,25	2,21	0,76	0,98	-0,40	5,57			
Husch	-8,89	2,51	-	0,95	-0,85	8,57			
Fator de forma (<i>H</i>)	-	-	-	0,98	-1,11	7,20			
Volume comercial									
Schumacher e Hall (H)	-10,33	2,24	0,76	0,98	-0,43	5,84			
Schumacher e Hall (hm)	-8,71	1,76	0,80	0,99	-0,28	4,57			
Husch	-8,96	2,53	-	0,95	-0,88	8,69			
Fator de forma (H)	-	-	-	0,98	-1,24	7,59			
Fator de forma (hm)	-	-	-	0,98	-2,72	13,25			

Em que: H = modelos que utilizaram altura total para estimar; e hm= modelos que utilizaram altura comercial para estima

Figura 3: Distribuição de resíduos das equações de volume, para as árvores de um povoamento de Mogno Africano (Khaya grandifoliola) em Curvelo, Minas Gerais. As figuras A, B, C, D e E representam os modelos 1, 2, 3, 4 e 5, respectivamente, enquanto F, G e H correspondem às equações 1, 2 e 3.

CONCLUSÃO

O estudo possibilitou a determinação de um fator de forma (entre 0,43 e 0,61) e o ajuste de modelos volumétricos para estimativa de volume de Mogno Africano (Khaya grandifoliola) em plantios jovens em Minas Gerais. A equação de Schumacher e Hall, especialmente quando utilizada com a altura comercial, demonstrou ser a mais eficiente para a estimativa de volume total e comercial. De forma geral, os modelos e fatores avaliados apresentaram um leve viés de superestimação, mas com boa precisão.

REFERÊNCIAS

CAMPOS, J. C. C.; LEITE, H. G. Mensuração florestal: perguntas e respostas. 5° edição, atualizada e ampliada. Viçosa, Editora: UFV, 2017, p. 636. FERRAZ FILHO, A. C.; RIBEIRO, A.; BOUKA, G. U. D.; FRANK JÚNIOR, M.; TERRA, G. African Mahogany Plantation Highlights in Brazil. Floresta e Ambiente, v. 28, n. 3, p. e20200081, 2021.

GOMES, J. P. Equações de volume e biomassa para plantios de *Acacia mangium* Willd. em área de savana, em Roraima. 2017. Dissertação (Mestrado em Ciências Florestais) – Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus. 87p.
RIBEIRO, A.; FERRAZ FILHO, A. C.; SCOLFORO, J. R. S. O cultivo do mogno africano (*Khaya* spp.) e o crescimento da atividade no Brasil. **Floresta e Ambiente**, v. 24, p. e00076814, 2017.

SILVA, R.; BARREIRA, S. Desenvolvimento de *Khaya grandifoliola* C. DC. sob diferentes espaçamentos de plantio. **Agrarian Academy**, v. 10, n. 19, p. 91–98, 2023.
SILVA, G. F.; de OLIVEIRA, O. M.; de MENDONÇA, A. R.; FRAGA FILHO, C. V. Acurácia do método de pressler e fator de forma na estimação do volume de árvores de *Tectona grandis* L. f. **Brazilian Journal of Biometrics**, v. 35, n. 2, p. 213-225, 2017.

VERA, D. E.; LAURA, V. A.; FERREIRA, A. D.; COUTO, A. M. Crescimento e forma do eucalipto em função da densidade de plantio. Ciência

AGRADECIMENTOS

Florestal, v. 32, n. 1, p. 504–522, 2022.

