#### Modelos Lineares Generalizados

Estimação por mínimos quadrados generalizados

#### Terezinha K. A. Ribeiro

terezinha.ribeiro@unb.br

Instituto de Ciências Exatas Departamento de Estatística Universidade de Brasília



#### Introdução

O modelo de regressão linear múltiplo normal considera que  $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$  com  $\boldsymbol{\varepsilon} \sim \mathrm{N}_n(0, \sigma^2 I_n)$  em que  $I_n$  é matriz identidade de ordem n, e r(X) = k+1.

Segue que  $\mathbf{Y} \sim N_n(X\boldsymbol{\beta}, \sigma^2 I_n)$ .

O que acontece se trocarmos a matriz  $I_n$  por uma matriz V positiva definida cujo formato é conhecido?

Considere o modelo linear  $Y = X\beta + \varepsilon$  com  $\varepsilon \sim N_n(0, \sigma^2 V)$  em que  $V \neq I_n$  é matriz positiva definida, e r(X) = k + 1.

Segue que  $\mathbf{Y} \sim N_n(X\boldsymbol{\beta}, \sigma^2 V)$ .

#### Note que

- se pelo menos dois elementos da diagonal principal de V são distintos, então o modelo linear é heteroscedástico;
- se V é uma matriz diagonal, então as respostas Y<sub>i</sub> e Y<sub>j</sub> são não correlacionadas (independentes);
- se V não é uma matriz diagonal, então as respostas Y<sub>i</sub> e Y<sub>j</sub> são correlacionadas (dependentes).



Como estamos supondo que V é uma matriz positiva definida, pela decomposição de Cholesky, existe uma matriz  $P_{n\times n}$  não singular tal que

$$V = PP^{\top}$$
.

Considere a transformação  $\mathbf{Z} = P^{-1} \mathbf{Y}$ . Veja que

$$E(Z) = P^{-1} E(Y) = P^{-1} X \beta,$$

$$Var(\mathbf{Z}) = P^{-1} Var(\mathbf{Y}) P^{-1^{\top}}$$

$$= P^{-1} \sigma^{2} V P^{-1^{\top}}$$

$$= \sigma^{2} (P^{-1} P) (P^{\top} P^{-1^{\top}})$$

$$= \sigma^{2} (P^{-1} P) (P^{\top} P^{\top^{-1}})$$

$$= \sigma^{2} I_{n}.$$

Como P é de posto completo (pois P é não singular), segue que

$$\mathbf{Z} = P^{-1} \mathbf{Y} \sim \mathrm{N}_n(P^{-1} X \boldsymbol{\beta}, \sigma^2 I_n).$$

Assim, o modelo linear transformado é dado por

$$\mathbf{Z} = Q\beta + \eta, \quad \eta \sim N_n(\mathbf{0}, \sigma^2 I_n),$$
 (1)

em que  $Q_{n\times(k+1)}=P^{-1}X$  é a matriz do modelo de posto completo pois  $r(Q)=r(P^{-1}X)=r(X)=k+1$ , e  $\eta=P^{-1}\varepsilon$  é o vetor de erros aleatórios.

O modelo linear definido em (1) é homoscedástico e satisfaz todas as condições da regressão linear múltipla normal.

Ainda, veja que os parâmetros de interesse  $\beta$  e  $\sigma^2$  do modelo linear original são os mesmos do modelo transformado.



Sendo assim, generalizaremos os resultados inferenciais obtidos sob a regressão linear normal.

Assim, o estimador de mínimos quadrados para  $\beta$  sob o modelo transformado (1) é

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{Q}^{\top} \boldsymbol{Q})^{-1} \boldsymbol{Q}^{\top} \boldsymbol{Z}.$$

Voltando, ao modelo linear original temos que o estimador para  $\boldsymbol{\beta}$  fica dado por

$$\widehat{\boldsymbol{\beta}}_{G} = [(P^{-1}X)^{\top}P^{-1}X]^{-1}(P^{-1}X)^{\top}P^{-1}\mathbf{Y}$$

$$= [X^{\top}(P^{-1})^{\top}P^{-1}X]^{-1}X^{\top}(P^{-1})^{\top}P^{-1}\mathbf{Y}.$$

De  $V = PP^{\top}$  tem-se que  $V^{-1} = P^{\top^{-1}}P^{-1} = P^{-1}^{\top}P^{-1}$ .



Assim, obtemos que

$$\hat{\beta}_G = (X^{\top} V^{-1} X)^{-1} X^{\top} V^{-1} Y.$$

Note que  $\widehat{\boldsymbol{\beta}}_{\boldsymbol{G}} \neq \widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{Y}$ .

Sob o modelo linear original  $\mathbf{Y}=X\boldsymbol{\beta}+\boldsymbol{\varepsilon}$  com  $\boldsymbol{\varepsilon}\sim N_n(0,\sigma^2V)$ , o estimador  $\widehat{\boldsymbol{\beta}}_G$  é chamado de estimador de mínimos quadrados generalizados de  $\boldsymbol{\beta}$ .

Sob o modelo linear transformado  $\pmb{Z} = Q\pmb{\beta} + \pmb{\eta}$  com  $\pmb{\eta} \sim N_n(0, \sigma^2 \emph{I}_n)$ , o estimador  $\widehat{\pmb{\beta}}_{\mathcal{G}}$  é usual estimador de mínimos quadrados de  $\pmb{\beta}$ .

A soma de quadrados dos desvios sob o modelo linear transformado é

$$S(\beta) = \sum_{i=1}^{n} \eta_i^2 = \boldsymbol{\eta}^{\top} \boldsymbol{\eta} = (\boldsymbol{Z} - Q\beta)^{\top} (\boldsymbol{Z} - Q\beta).$$

Voltando o modelo linear original, temos que

$$S_{G}(\beta) = (P^{-1}\mathbf{Y} - P^{-1}X\beta)^{\top}(P^{-1}\mathbf{Y} - P^{-1}X\beta)$$

$$= [P^{-1}(\mathbf{Y} - X\beta)]^{\top}[P^{-1}(\mathbf{Y} - X\beta)]$$

$$= (\mathbf{Y} - X\beta)^{\top}P^{-1}^{\top}P^{-1}(\mathbf{Y} - X\beta)$$

$$= (\mathbf{Y} - X\beta)^{\top}V^{-1}(\mathbf{Y} - X\beta)$$

$$= \varepsilon^{\top}V^{-1}\varepsilon.$$

Assim, sob o modelo linear original,  $S_G(\beta)$  é a soma de quadrados dos desvios generalizados.



O estimador de mínimos quadrados para  $\sigma^2$  sob o modelo linear transformado é

$$\widehat{\sigma}^2 = \frac{1}{n-k-1} \sum_{i=1}^n \widehat{\eta}_i^2 = \frac{1}{n-k-1} \widehat{\eta}^\top \widehat{\eta}.$$

em que  $\widehat{\eta} = P^{-1}\widehat{\varepsilon}$ .

Voltando ao modelo linear original, temos que

$$\widehat{\sigma}_{G}^{2} = \frac{1}{n-k-1} (P^{-1}\widehat{\varepsilon})^{\top} P^{-1} \widehat{\varepsilon}$$

$$= \frac{1}{n-k-1} \widehat{\varepsilon}^{\top} (P^{-1})^{\top} P^{-1} \widehat{\varepsilon}$$

$$= \frac{1}{n-k-1} \widehat{\varepsilon}^{\top} V^{-1} \widehat{\varepsilon}.$$

Assim,  $\hat{\sigma}_G^2$  é o estimador de mínimos quadrados generalizados para  $\sigma^2$  sob o modelo linear original.

# Caso 2: Propriedades de $\widehat{\beta}_G$

$$P_1$$
.  $\widehat{m{\beta}}_G = B m{Y} \ \text{com} \ B = (X^ op V^{-1} X)^{-1} X^ op V^{-1}$ . Assim,  $\widehat{m{\beta}}_G$  é linear em  $m{Y}$ .

 $P_2$ .  $\hat{\beta}_G$  é um estimador não viciado para  $\beta$ .

De fato, veja que

$$\begin{split} \mathsf{E}(\widehat{\boldsymbol{\beta}}_{G}) &= \mathsf{E}\left[(X^{\top}V^{-1}X)^{-1}X^{\top}V^{-1}\boldsymbol{Y}\right] \\ &= (X^{\top}V^{-1}X)^{-1}X^{\top}V^{-1}\,\mathsf{E}(\boldsymbol{Y}) \\ &= (X^{\top}V^{-1}X)^{-1}X^{\top}V^{-1}X\boldsymbol{\beta} \\ &= \boldsymbol{\beta}. \end{split}$$

## Caso 2: Propriedades de $\widehat{oldsymbol{eta}}_{\mathcal{G}}$

 $P_3$ . A variância de  $\hat{\beta}_G$  possui forma fechada:

$$\begin{split} \operatorname{Var}(\widehat{\boldsymbol{\beta}}_{G}) &= \operatorname{Var}\left[(X^{\top}V^{-1}X)^{-1}X^{\top}V^{-1}\boldsymbol{Y}\right] \\ &= (X^{\top}V^{-1}X)^{-1}X^{\top}V^{-1}\operatorname{Var}(\boldsymbol{Y})\left[(X^{\top}V^{-1}X)^{-1}X^{\top}V^{-1}\right]^{\top} \\ &= (X^{\top}V^{-1}X)^{-1}X^{\top}V^{-1}\ \sigma^{2}V\ V^{-1}^{\top}X(X^{\top}V^{-1}X)^{-1} \\ &= \sigma^{2}(X^{\top}V^{-1}X)^{-1}X^{\top}V^{-1}X(X^{\top}V^{-1}X)^{-1} \\ &= \sigma^{2}(X^{\top}V^{-1}X)^{-1}. \end{split}$$

Lembre-se que V é uma matriz simétrica.

$$P_4$$
.  $\hat{\boldsymbol{\beta}}_G \sim N_{k+1}(\boldsymbol{\beta}, \sigma^2(\boldsymbol{X}^\top \boldsymbol{V}^{-1} \boldsymbol{X})^{-1})$ .



# Caso 2: Propriedades de $\widehat{oldsymbol{eta}}_{\mathcal{G}}$

 $P_5$ . Cada componente de  $\widehat{m{\beta}}_G$  segue uma distribuição normal univariada. Mais especificamente, se  $\widehat{m{\beta}}_G^j$  é a (j+1)-ésima entrada de  $\widehat{m{\beta}}_G$ , segue que

$$\widehat{\beta}_{G}^{j} \sim N(\beta_{j}, \ \sigma^{2} \ b_{(j+1)(j+1)} \ ),$$

em que  $b_{(j+1)(j+1)}$  é o elemento (j+1,j+1) da matriz  $(X^\top V^{-1}X)^{-1}$ .

- $P_6$ .  $Cov(\hat{\beta}_G^j, \hat{\beta}_G^l) = \sigma^2 b_{(j+1)(l+1)}, com j, l = 0, 1, 2, ..., k$ .
  - Da propriedade  $P_4$ , para  $j \neq l$ , segue que  $\widehat{\beta}_G^j$  e  $\widehat{\beta}_G^l$  são independentes se  $b_{(j+1)(l+1)} = 0$ .
- $P_7$ . O estimador  $\widehat{eta}_G$  obtido por mínimos quadrados generalizados coincide com o estimador  $\widehat{eta}_{MV}$  obtido por máxima verossimilhança.



## Estimadores ótimos para funções de $\beta$ e $\sigma^2$

**Resultado.** o estimador  $\widehat{\boldsymbol{\beta}}$  é um estimador não viciado para  $\boldsymbol{\beta}$  sob o modelo  $\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ , com  $\boldsymbol{\varepsilon} \sim \mathrm{N}_n(\mathbf{0}, \sigma^2 \boldsymbol{V})$ .

Entretanto,  $\widehat{\beta}$  não é um estimador ótimo para  $\beta$  (não é função de uma estatística suficiente e completa para  $\beta$ ). Logo,  $\widehat{\beta}$  não é o ENVVUM de  $\beta$ .

**Resultado.** Sejam  $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ , com  $\boldsymbol{\varepsilon} \sim \mathrm{N}_n(\mathbf{0}, \sigma^2 V)$ , e  $t(\boldsymbol{\theta})$  uma função qualquer de  $\boldsymbol{\theta} = (\boldsymbol{\beta}^\top \ \sigma^2)^\top$ . Se  $q(\widehat{\boldsymbol{\theta}}_G)$ , com  $\widehat{\boldsymbol{\theta}}_G = (\widehat{\boldsymbol{\beta}}_G^\top \ \widehat{\boldsymbol{\sigma}}_G^2)^\top$ , é um estimador não viciado para  $t(\boldsymbol{\theta})$ , então  $q(\widehat{\boldsymbol{\theta}}_G)$  é o ENVVUM para  $t(\boldsymbol{\theta})$ .

## Estimadores ótimos para funções de $\beta$ e $\sigma^2$

Assim, temos os seguintes resultados:

- (i)  $\hat{\boldsymbol{\beta}}_{G} = (\boldsymbol{X}^{\top} \boldsymbol{V}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{V}^{-1} \boldsymbol{Y}$  é o ENVVUM para  $\boldsymbol{\beta}$ ;
- (ii)  $\hat{\beta}_{G}^{j}$  é o ENVVUM para  $\beta_{j}$  com j = 0, 1, ..., k;
- (iii)  $\boldsymbol{a}^{\top}\widehat{\boldsymbol{\beta}}_{G} = \boldsymbol{a}^{\top}(X^{\top}V^{-1}X)^{-1}X^{\top}V^{-1}\boldsymbol{Y}$  é o ENVVUM para  $\boldsymbol{a}^{\top}\boldsymbol{\beta}$  com  $\boldsymbol{a}^{\top} = (a_{0} \ a_{1} \ \dots \ a_{k}) \in \mathbb{R}^{k+1}$  um vetor de constantes;
- (iv)  $\widehat{\mathsf{E}(Y_i)} = \boldsymbol{X}_i^{\top} \widehat{\boldsymbol{\beta}}_G$  é o ENVVUM para  $\mathsf{E}(Y_i) = \boldsymbol{X}_i^{\top} \boldsymbol{\beta}$ .
- (v)  $\hat{\sigma}_G^2$  é o ENVVUM para  $\sigma^2$



#### Testes de hipóteses via TRV

Queremos testar  $H_0$ :  $C\beta = \mathbf{m}$  contra  $H_1$ :  $C\beta \neq \mathbf{m}$ , com  $C_{p\times(k+1)}$  de constantes tal que  $r(C) = p \leq k+1$  (posto completo),  $\mathbf{m}$  vetor de constantes  $p\times 1$ .

Sob o modelo linear transformado  $\mathbf{Z} = Q\beta + \eta \text{ com } \eta \sim N_n(0, \sigma^2 I_n),$  a estatística do TRV é

$$W_0 = \frac{(C\widehat{\beta} - \boldsymbol{m})^{\top} [C(Q^{\top}Q)^{-1}C^{\top}]^{-1} (C\widehat{\beta} - \boldsymbol{m})}{p\widehat{\sigma}^2}.$$

#### Testes de hipóteses via TRV

Sob o modelo linear original  $\mathbf{Y} = X\beta + \varepsilon$  com  $\varepsilon \sim N_n(0, \sigma^2 V)$ , a estatística do TRV é

$$\begin{split} W_0 &= \frac{(C\widehat{\beta}_G - \mathbf{m})^\top \{C[(P^{-1}X)^\top P^{-1}X]^{-1}C^\top\}^{-1}(C\widehat{\beta}_G - \mathbf{m})}{p\widehat{\sigma}_G^2} \\ &= \frac{(C\widehat{\beta}_G - \mathbf{m})^\top \{C[X^\top P^{-1}^\top P^{-1}X]^{-1}C^\top\}^{-1}(C\widehat{\beta}_G - \mathbf{m})}{p\widehat{\sigma}_G^2} \\ &= \frac{(C\widehat{\beta}_G - \mathbf{m})^\top \{C[X^\top V^{-1}X]^{-1}C^\top\}^{-1}(C\widehat{\beta}_G - \mathbf{m})}{p\widehat{\sigma}_G^2}. \end{split}$$

Rejeita-se  $H_0$ :  $C\beta = m$  ao nível de significância  $\alpha \cdot 100\%$  se  $W_0 \ge w_0$  com  $w_0$  obtido tal que

$$P(F_{p,n-k-1} \ge w_0) = \alpha.$$



#### Exemplo

Antes de definirmos as somas de quadrados, considere o exemplo a seguir.

Considere o modelo linear

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, 2, \dots, n$$

em que  $\varepsilon_i \stackrel{\text{ind}}{\sim} N(0, \sigma^2 w_i)$  com  $w_i > 0$ .

Daí, temos que  $\varepsilon \sim N_n(\mathbf{0}, \sigma^2 V)$  com  $V = \text{diag}\{w_1, w_2, \dots, w_n\}$ .

Pela decomposição de Cholesky, sabemos que  $V = PP^{\top}$ , e portanto,

$$P = V^{1/2} = \text{diag}\{\sqrt{w_1}, \sqrt{w_2}, \dots, \sqrt{w_n}\}.$$



#### Exemplo

Segue que

$$P^{-1} = V^{-1/2} = \operatorname{diag}\left\{\frac{1}{\sqrt{w_1}}, \frac{1}{\sqrt{w_2}}, \dots, \frac{1}{\sqrt{w_n}}\right\}.$$

Então, o modelo linear transformado é  $\mathbf{Z} = Q\beta + \eta$  com

$$\boldsymbol{Z} = \boldsymbol{P}^{-1} \boldsymbol{Y} = \begin{bmatrix} \frac{Y_1}{\sqrt{W_1}} \\ \frac{Y_2}{\sqrt{W_2}} \\ \vdots \\ \frac{Y_n}{\sqrt{W_n}} \end{bmatrix}, \quad \boldsymbol{Q} = \boldsymbol{P}^{-1} \boldsymbol{X} = \begin{bmatrix} \frac{1}{\sqrt{W_1}} & \frac{X_1}{\sqrt{W_1}} \\ \frac{1}{\sqrt{W_2}} & \frac{X_2}{\sqrt{W_2}} \\ \vdots & \vdots \\ \frac{1}{\sqrt{W_n}} & \frac{X_n}{\sqrt{W_n}} \end{bmatrix}, \quad \boldsymbol{\eta} = \boldsymbol{P}^{-1} \boldsymbol{\varepsilon} = \begin{bmatrix} \frac{\varepsilon_1}{\sqrt{W_1}} \\ \frac{\varepsilon_2}{\sqrt{W_2}} \\ \vdots \\ \frac{\varepsilon_n}{\sqrt{W_n}} \end{bmatrix}$$

#### Exemplo

Então, o modelo linear transformado é dado por

$$\frac{Y_i}{\sqrt{w_i}} = \beta_0 \frac{1}{\sqrt{w_i}} + \beta_1 \frac{x_i}{\sqrt{w_i}} + \frac{\varepsilon_i}{\sqrt{w_i}}, \quad i = 1, 2, \dots, n.$$

Este modelo linear não possui intercepto. Perceba que  $\beta_0$  é coeficiente da covariável  $1/\sqrt{w_i}$ .

Muitas vezes a transformação  $\mathbf{Z} = P^{-1} \mathbf{Y}$  resulta em um modelo linear sem intercepto, mesmo que o modelo linear original tenha intercepto.

Sendo assim, devemos ter o cuidado de identificar se o modelo linear transformado possui intercepto para que possamos definir as somas de quadrados do modelo linear original.



Se o modelo linear transformado possuir intercepto, usamos as somas de quadrados SQT, SQReg, e SQRes definidas, respectivamente, por

$$SQT = \sum_{i=1}^{n} (Z_i - \overline{Z})^2;$$

$$SQReg = \sum_{i=1}^{n} (\widehat{Z}_i - \overline{Z})^2;$$

SQRes = 
$$\sum_{i=1}^{n} \hat{\eta}_{i}^{2} = \sum_{i=1}^{n} (Z_{i} - \hat{Z}_{i})^{2}$$
.

Agora, usando resultado do modelo de regressão linear normal,

SQT = 
$$\sum_{i=1}^{n} (Z_i - \overline{Z})^2$$
  
=  $\mathbf{Z}^{\top} \left[ I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top} \right] \mathbf{Z}$   
=  $[P^{-1} \mathbf{Y}]^{\top} \left[ I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top} \right] P^{-1} \mathbf{Y}$   
=  $\mathbf{Y}^{\top} \left[ P^{-1} P^{-1} - \frac{1}{n} P^{-1} \mathbf{1}^{\top} \mathbf{1}^{\top} P^{-1} \right] \mathbf{Y}$   
=  $\mathbf{Y}^{\top} \left[ V^{-1} - \frac{1}{n} P^{-1} \mathbf{1}^{\top} \mathbf{1}^{\top} P^{-1} \right] \mathbf{Y}$ .

Ainda, temos que

$$\begin{aligned} \operatorname{SQReg} &= \sum_{i=1}^{n} (\widehat{Z}_{i} - \overline{Z})^{2} \\ &= \boldsymbol{Z}^{\top} \left[ Q(Q^{\top}Q)^{-1}Q^{\top} - \frac{1}{n}\mathbf{1}\mathbf{1}^{\top} \right] \boldsymbol{Z} \\ &= [P^{-1}\boldsymbol{Y}]^{\top} \left\{ P^{-1}X[(P^{-1}X)^{\top}P^{-1}X]^{-1}(P^{-1}X)^{\top} - \frac{1}{n}\mathbf{1}\mathbf{1}^{\top} \right\} P^{-1}\boldsymbol{Y} \\ &= \boldsymbol{Y}^{\top}P^{-1}^{\top} \left\{ P^{-1}X[X^{\top}P^{-1}^{\top}P^{-1}X]^{-1}X^{\top}P^{-1}^{\top} - \frac{1}{n}\mathbf{1}\mathbf{1}^{\top} \right\} P^{-1}\boldsymbol{Y} \\ &= \boldsymbol{Y}^{\top} \left\{ V^{-1}X[X^{\top}V^{-1}X]^{-1}X^{\top}V^{-1} - \frac{1}{n}P^{-1}^{\top}\mathbf{1}\mathbf{1}^{\top}P^{-1} \right\} \boldsymbol{Y}. \end{aligned}$$

Por fim,

$$SQRes = \sum_{i=1}^{n} \widehat{\eta}_{i}^{2}$$

$$= \mathbf{Z}^{\top} \left[ I_{n} - Q(Q^{\top}Q)^{-1}Q^{\top} \right] \mathbf{Z}$$

$$= \left[ P^{-1} \mathbf{Y} \right]^{\top} \left\{ I_{n} - P^{-1}X[X^{\top}P^{-1}^{\top}P^{-1}X]^{-1}X^{\top}P^{-1}^{\top} \right\} P^{-1} \mathbf{Y}$$

$$= \mathbf{Y}^{\top} \left\{ V^{-1} - V^{-1}X[X^{\top}V^{-1}X]^{-1}X^{\top}V^{-1} \right\} \mathbf{Y}.$$

Ainda, SQRes =  $(n - k - 1)\widehat{\sigma}_G^2$ .



Sob o modelo linear transformado, sabemos que

$$\frac{\text{SQRes}}{\sigma^2} \sim \chi^2_{n-k-1};$$

$$\frac{\text{SQReg}}{\sigma^2} \sim \chi_{k,\lambda}^2$$
,

com

$$\lambda = \frac{1}{2\sigma^2} \boldsymbol{\beta}^{*\top} \boldsymbol{Q}_1^{\top} \left[ \boldsymbol{I}_n - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top} \right] \boldsymbol{Q}_1 \boldsymbol{\beta}^*,$$

em que  $Q_1$  é obtida de  $Q = [\mathbf{1} \ Q_1]$ .

Sob  $H_0$ :  $\boldsymbol{\beta}^* = \mathbf{0}$ , temos que

$$\frac{\text{SQReg}}{\sigma^2} \sim \chi_k^2$$
.

A partir disto, pode-se montar a tabela de análise de variância.



Se o modelo linear transformado  ${\bf NAO}$  possuir intercepto, usamos as somas de quadrados  ${\rm SQT}_{nc}$ ,  ${\rm SQReg}_{nc}$ , e  ${\rm SQRes}$  definidas, respectivamente, por

$$SQT_{nc} = \sum_{i=1}^{n} Z_i^2;$$

$$SQReg_{nc} = \sum_{i=1}^{n} \widehat{Z}_{i}^{2};$$

SQRes = 
$$\sum_{i=1}^{n} \hat{\eta}_{i}^{2} = \sum_{i=1}^{n} (Z_{i} - \hat{Z}_{i})^{2}$$
.

Note que SQRes é definida da mesma forma.



Veja que

$$SQT_{nc} = \sum_{i=1}^{n} Z_i^2$$

$$= \mathbf{Z}^{\top} \mathbf{Z}$$

$$= [P^{-1} \mathbf{Y}]^{\top} P^{-1} \mathbf{Y}$$

$$= \mathbf{Y}^{\top} V^{-1} \mathbf{Y};$$

$$SQReg_{nc} = \sum_{i=1}^{n} \widehat{Z}_{i}^{2}$$

$$= \mathbf{Z}^{T} Q (Q^{T} Q)^{-1} Q^{T} \mathbf{Z}$$

$$= \mathbf{Y}^{T} V^{-1} X [X^{T} V^{-1} X]^{-1} X^{T} V^{-1} \mathbf{Y}.$$

Sob o modelo linear transformado, sabemos que

$$\frac{\text{SQRes}}{\sigma^2} \sim \chi^2_{n-k};$$

$$\frac{\mathrm{SQReg}_{nc}}{\sigma^2} \sim \chi^2_{k,\lambda},$$

com

$$\lambda = \frac{1}{2\sigma^2} \boldsymbol{\beta}^\top \boldsymbol{Q}^\top \boldsymbol{Q} \boldsymbol{\beta}.$$

Sob  $H_0$ :  $\beta = \mathbf{0}$ , temos que

$$\frac{\mathrm{SQReg}_{nc}}{\sigma^2} \sim \chi_k^2$$
.

A partir disto, pode-se montar a tabela de análise de variância.



No arquivo **supervisores.txt** estão apresentados dados referentes a 27 estabelecimentos industriais. Neste estudo, o objetivo é explicar o número de supervisores em função do número de trabalhadores destes estabelecimentos.

Inicialmente foi ajustado um modelo de regressão linear normal simples.



#### Gráfico dos resíduos studentizados versus valores ajustados



Em seguida, ajustou-se um modelo de regressão linear sob mínimos quadrados ponderados supondo que  $Var(Y) = \sigma^2 V$  com

$$V = \text{diag}\{x_1^2, x_2^2, \dots, x_n^2\}.$$

Dada a matriz V, obtemos que os pesos do procedimento de estimação por mínimos quadrados ponderados são dados por  $w_i = 1/x_i^2$ .

#### Gráfico dos resíduos studentizados versus valores ajustados

