Matrizes Vetores e Geometria Analítica - Lista 2 Prof. Dr Helton Hideraldo Bíscaro

- 1. Seja $\{u, v, w\}$ um conjunto L.I. de um espaço vetorial V. Prove que o conjunto $\{u + v 3w, u + 3v w, v + w\}$ é L.D.;
- 2. Suponha que $\{v_1,\ldots,v_n\}$ é um conjunto L.I. de um espaço vetorial. Mostrar que $\{a_1v_1,\ldots,a_nv_n\}$ também é L.I., desde que os $a_{i's}$ sejam todos não nulos:
- 3. Considere o conjunto $\{a_1v_1,\ldots,a_nv_n\}$ do exercício anterior. O que acontece se um dos $a_{i's}$ for zero? Justifique.
- 4. Determine quais dos seguintes conjuntos são bases de \mathbb{R}^3 :
 - (a) $\{(1,1,1),(1,0,1),(1,1,0)\};$
 - (b) $\{(1,1,1),(1,0,1),(1,2,1)\};$
 - (c) $\{(3,0,0),(1,1,0),(2,2,2),(1,3,5)\};$
 - (d) $\{(1,1,1),(2,2,0)\}.$
- 5. Considere $\{u_1, u_2, u_3\}$ uma base de um espaço vetorial V. Prove que o conjunto $\{v_1, v_2, v_3\}$, onde $v_i = u_1 + u_i$, também é uma base de V.
- 6. Mostre que se $B = \{v_1, \dots, v_n\}$ é uma base de um espaço vetorial V, a equação :

$$c_1v_1 + \ldots + c_kv_k = c_{k+1}v_{k+1} + \ldots + c_nv_n$$

só pode ser verdadeira quando todos os $c_{i's} = 0$.

7. Mostre que, considerando uma base $B = \{v_1, \ldots, v_n\}$ de um espaço V, cada combinação linear é única, isto é, cada vetor $u \in V$ pode ser escrito de maneira única como combinação linear dos vetores de B.