Week 1: Course overview and introduction to statistical learning

Slava Mikhaylov

POLS3003 Data Science and Big Data Analytics

Week 1 Outline

Statistics

Course outline and logistics

Statistical learning

"Its machine learning allows the computer to become smarter as it tries to answer questions and to learn as it gets them right or wrong." David Ferrucci (PI on Watson DeepQA at IBM Research).

Meet the people who can coax treasure out of messy, unstructured data. by Thomas H. Davenport and D.J. Patil

ya Harvard Kultura Andrea debikar sara

"I keep saying the sexy job in the next ten years will be statisticians. People think I'm joking, but who would've guessed that computer engineers would've been the sexy job of the 1990s?" Hal Varian (Chief Economist at Google, 2009).

Statistical Learning Problems

- Identify the risk factors for prostate cancer.
- Predict whether someone will have a heart attack on the basis of demographic, diet and clinical measurements.
- Customize an email spam detection system.
- ▶ Identify the numbers in a handwritten post code.
- Classify a tissue sample into one of several cancer classes, based on a gene expression profile.
- Establish the relationship between salary and demographic variables in population survey data.
- Classify the pixels in a satellite photo of Earth's surface by agricultural usage.

The Supervised Learning Problem

Starting point:

- ▶ Outcome measurement *Y* (also called dependent variable, response, target).
- Vector of p predictor measurements X (also called inputs, regressors, covariates, features, independent variables).
- ▶ In the regression problem, *Y* is quantitative (e.g price, blood pressure).
- ▶ In the classification problem, Y takes values in a finite, unordered set (survived/died, digit 0-9, cancer class of tissue sample).
- ▶ We have training data $(x_1, y_1), ..., (x_N, y_N)$. These are observations (examples, instances) of these measurements.

Objectives

On the basis of the training data we would like to:

- Accurately predict unseen test cases.
- Understand which inputs affect the outcome, and how.
- Assess the quality of our predictions and inferences.

Philosophy

- ▶ It is important to understand the ideas behind the various techniques, in order to know how and when to use them.
- ▶ One has to understand the simpler methods first, in order to grasp the more sophisticated ones.
- It is important to accurately assess the performance of a method, to know how well or how badly it is working (simpler methods often perform as well as fancier ones!).
- This is an exciting research area, having important applications in science, industry and policy.
- Statistical learning is a fundamental ingredient in the training of a modern data scientist.

Unsupervised learning

- ► No outcome variable, just a set of predictors (features) measured on a set of samples.
- objective is more fuzzy find groups of samples that behave similarly, find features that behave similarly, find linear combinations of features with the most variation.
- difficult to know how well your are doing.
- different from supervised learning, but can be useful as a pre-processing step for supervised learning.

The Netflix prize

- competition started in October 2006. Training data is ratings for 18,000 movies by 400,000 Netflix customers, each rating between 1 and 5.
- training data is very sparse about 98% missing.
- objective is to predict the rating for a set of 1 million customer-movie pairs that are missing in the training data.
- Netflix's original algorithm achieved a root MSE of 0.953. The first team to achieve a 10% improvement wins one million dollars.
- is this a supervised or unsupervised problem?

Netflix Prize

Home

Rules

Leaderboard

Update

Download

Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 ▼ leaders.

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time
Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos				
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries!	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace	0.8612	9.59	2009-07-24 17:18:43

BellKor's Pragmatic Chaos wins, beating The Ensemble by a narrow margin.

Statistical Learning versus Machine Learning

- ▶ Machine learning arose as a subfield of Artificial Intelligence.
- Statistical learning arose as a subfield of Statistics.
- There is much overlap both fields focus on supervised and unsupervised problems:
 - Machine learning has a greater emphasis on large scale applications and prediction accuracy.
 - Statistical learning emphasizes models and their interpretability, and precision and uncertainty.
- ▶ But the distinction has become more and more blurred, and there is a great deal of "cross-fertilization".
- Machine learning has the upper hand in Marketing!

Course Texts

- The course will cover most of the material in this Springer book (ISLR) published in 2013. Each chapter ends with an R lab, in which examples are developed. An electronic version of this book is available for free from the authors' websites.
- Some of the figures and lecture material are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
- This Springer book (ESL) is more mathematically advanced than ISLR; the second edition was published in 2009. It covers a broader range of topics. A free electronic version of the book is available from the authors' websites.

Statistical learning and this course

Statistical learning

- Statistical learning refers to a vast set of tools for understanding data.
- ► For a quantitative response *Y* and a set of predictors *X*:

$$Y = f(X) + \epsilon$$

- ▶ Here, f represents the systematic information that X provides about Y.
- Statistical learning refers to a set of approaches for estimating f.
- ▶ Most of the term we'll spend talking about different ways to estimate f and how to evaluate whether we've done a good job with it.

Where does this course fit in?

- Supervised versus unsupervised learning.
- Regression versus classification.
- No single best method. We'll spend a lot of time choosing the most appropriate tool for a given dataset using different measures of the quality of fit. E.g. MSE

$$MSE_{training} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

$$MSE_{test} = Ave(\hat{f}(x_0) - y_0)^2$$

Why should we bother with f?

- 1. Prediction: $\hat{Y} = \hat{f}(X)$, where \hat{f} is a black box.
- 2. Inference: How Y is changing as a function of X.
- Depending on whether the ultimate goal is prediction, inference or a mix of both, we may deploy different methods for estimating f.
- ▶ Also depending on the ultimate goal you may or may not care about evaluating the causal relationship between *Y* and *X*.

What is Statistical Learning?

- ► Shown are Sales vs TV, Radio and Newspaper, with a blue linear-regression line fit separately to each.
- We can predict Sales using a model

 $Sales \approx f(TV, Radio, Newspaper)$

Notation

- ▶ Here Sales is a response or target that we wish to predict. We generically refer to the response as Y.
- ▶ TV is a feature, or input, or predictor, we name it X_1 .
- Likewise name Radio as X_2 , and so on.
- We can refer to the input vector collectively as

$$X=(X_1,X_2,X_3)$$

Now we write our model as

$$Y = f(X) + \epsilon$$

where ϵ captures measurement errors and other discrepancies.

What is f(X) good for?

- ▶ With a good f we can make predictions of Y at new points X = x.
- We can understand which components of $X = (X_1, X_2, \dots, X_p)$ are important in explaining Y, and which are irrelevant. For example, Seniority and Years of Education have a big impact on Income, but Marital Status typically does not.
- ▶ Depending on the complexity of f, we may be able to understand how each component X_i of X affects Y.

- ▶ Is there an ideal f(X)? In particular, what is a good value for f(X) at any selected value of X, say X = 4?
- ▶ There can be many Y values at X = 4. A good value is

$$f(4) = E(Y|X=4)$$

- ▶ E(Y|X=4) means expected value (average) of Y given X=4.
- ▶ This ideal f(x) = E(Y|X = x) is called the regression function.

The regression function f(x)

- ▶ Is also defined for vector X; e.g. $f(x) = f(x_1, x_2, x_3) = E(Y|X_1 = x_1, X_2 = x_2, X_3 = x_3)$
- Is the ideal or optimal predictor of Y with regard to mean-squared prediction error: f(x) = E(Y|X=x) is the function that minimizes $E[(Y-g(X))^2|X=x]$ over all functions g at all points X=x.
- $\epsilon = Y f(x)$ is the irreducible error i.e. even if we knew f(x), we would still make errors in prediction, since at each X = x there is typically a distribution of possible Y values.
- ▶ For any estimate $\hat{f}(x)$ of f(x), we have

$$E[(Y - \hat{f}(X))^{2} | X = x] = \underbrace{[f(x) - \hat{f}(x)]^{2}}_{Reducible} + \underbrace{Var(\epsilon)}_{Irreducible}$$

How to estimate *f*

- ▶ Typically we have few if any data points with X = 4 exactly.
- ▶ So we cannot compute E(Y|X=x)!
- Relax the definition and let

$$\hat{f}(x) = Ave(Y|X \in N(x))$$

where N(x) is some neighborhood of x.

- Nearest neighbor averaging can be pretty good for small p − i.e. $p \le 4$ and large-ish N.
- ▶ We will discuss smoother versions, such as kernel and spline smoothing later in the course.
- ▶ Nearest neighbor methods can be lousy when p is large. Reason: the curse of dimensionality. Nearest neighbors tend
- to be far away in high dimensions. \triangleright We need to get a reasonable fraction of the N values of y_i to
 - average to bring the variance down e.g. 10%. ▶ A 10% neighborhood in high dimensions need no longer be local, so we lose the spirit of estimating E(Y|X=x) by local averaging.

Parametric and structured models

The linear model is an important example of a parametric model:

$$f_L(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots \beta_p X_p.$$

- ▶ A linear model is specified in terms of p+1 parameters $\beta_0, \beta_1, \beta_2, \dots \beta_p$.
- We estimate the parameters by fitting the model to training data.
- Although it is almost never correct, a linear model often serves as a good and interpretable approximation to the unknown true function f(X).

Simulated example

Red points are simulated values for income from the model

$$income = f(education, seniority) + \epsilon$$

f is the blue surface.

Linear regression model fit to the simulated data.

$$\hat{f}_L(education, seniority) = \hat{eta}_0 + \hat{eta}_1 \times education + \hat{eta}_2 \times seniority$$

- More flexible regression model $\hat{f}_S(education, seniority)$ fit to the simulated data.
- ► Here we use a technique called a thin-plate spline to fit a flexible surface.
- ▶ We control the roughness of the fit (in week 7).

- Even more flexible spline regression model $\hat{f}_S(education, seniority)$ fit to the simulated data.
- ▶ Here the fitted model makes no errors on the training data!
- Also known as overfitting.

Some trade-offs

- Prediction accuracy versus interpretability.
 - ▶ Linear models are easy to interpret; thin-plate splines are not.
- Good fit versus over-fit or under-fit.
 - How do we know when the fit is just right?
- Parsimony versus black-box.
 - We often prefer a simpler model involving fewer variables over a black-box predictor involving them all.

Assessing Model Accuracy

- Suppose we fit a model $\hat{f}(x)$ to some training data $Tr = \{x_i, y_i\}_{1}^{N}$, and we wish to see how well it performs.
- We could compute the average squared prediction error over Tr:

$$MSE_{Tr} = Ave_{i \in Tr}[y_i - \hat{f}(x_i)]^2$$

This may be biased toward more overfit models.

▶ Instead we should, if possible, compute it using fresh test data $Te = \{x_i, y_i\}_1^M$:

$$MSE_{Te} = Ave_{i \in Te}[y_i - \hat{f}(x_i)]^2$$

Data simulated from f, shown in black. Three estimates of f are shown: the linear regression line (orange curve), and two smoothing spline.

- Black curve is truth.
- ▶ Red curve on right is *MSE*_{Te}, grey curve is *MSE*_{Tr}.
- Orange, blue and green curves/squares correspond to fits of different flexibility.

- ▶ The setup as before, using a different true *f* that is much closer to linear. In this setting, linear regression provides a very good fit to the data.
- Here the truth is smoother, so the smoother fit and linear model do really well.

- ▶ Setup as above, using a different *f* that is far from linear.
- ▶ In this setting, linear regression provides a very poor fit to the data.
- ► Here the truth is wiggly and the noise is low, so the more flexible fits do the best.

Bias-Variance Trade-off

- Suppose we have fit a model f(x) to some training data Tr, and let (x_0, y_0) be a test observation drawn from the population.
- If the true model is $Y = f(X) + \epsilon$ (with f(X) = E(Y|X = X)), then

$$E(y_0 - \hat{f}(x_0)) = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon).$$

- ▶ The expectation averages over the variability of y_0 as well as the variability in Tr. Note that $\operatorname{Bias}(\hat{f}(x_0)) = E[\hat{f}(x_0)] f(x_0)$.
- ▶ Typically as the flexibility of \hat{f} increases, its variance increases, and its bias decreases.
- So choosing the flexibility based on average test error amounts to a bias-variance trade-off.

Bias-variance trade-off for the three examples

Classification Problems

Here the response variable Y is qualitative – e.g. email is one of $\mathcal{C}=(spam,ham)$ (ham=goodemail), digit class is one of $\mathcal{C}=\{0,1,\ldots,9\}$. Our goals are to:

- ▶ Build a classifier C(X) that assigns a class label from C to a future unlabeled observation X.
- Assess the uncertainty in each classification
- ▶ Understand the roles of the different predictors among $X = (X_1, X_2, ..., X_p)$.

▶ Is there an ideal C(X)? Suppose the K elements in C are numbered 1, 2, ..., K. Let

$$p_k(x) = Pr(Y = k | X = x), k = 1, 2, \dots, K.$$

► These are the conditional class probabilities at x. Then the Bayes optimal classifier at x is

$$C(x) = j \text{ if } p_i(x) = \max\{p_1(x), p_2(x), \dots, p_K(x)\}\$$

- Nearest-neighbor averaging can be used as before.
- Nearest-neighbor averaging can be used as before

Also breaks down as dimension grows.

▶ However, the impact on $\hat{C}(x)$ is less than on $\hat{p}_k(x)$, k = 1, ..., K.

Classification: some details

▶ Typically we measure the performance of $\hat{C}(x)$ using the misclassification error rate:

$$Err_{Te} = Ave_{i \in Te} \mathcal{I}[y_i \neq \hat{\mathcal{C}}(x_i)]$$

- ▶ The Bayes classifier (using the true $p_k(x)$) has smallest error (in the population).
- ▶ Support-vector machines build structured models for C(x).
- We will also build structured models for representing the $p_k(x)$. For example, logistic regression, generalized additive models.

Example: K-nearest neighbors in two dimensions

 X_1

 X_1

KNN: K=1 KNN: K=100

