20-08-2024

Project proposal

- Submit a one page <u>project proposal</u>- deadline 27-08-2024
- Presentation 5 mins prepare 5 slides
 - Title slide project title, group name, name
 - What?
 - Why?
 - ► How?
 - Timeline and work division

Project proposal

- Some pointers:
 - Bengali speech-to-text (RKMVERI data ?)
 - Image based plant disease detection
- Any one interested in web/Apps development ?

Weights/Parameters updates

- Learning rate based on parameter's value
 - How about use of gradient?
- AdaGrad (Duchi et al., 2011)

$$A_i = A_i + \left(\frac{\partial L}{\partial w_i}\right)^2; \forall i$$

$$w_i = w_i - \frac{\alpha}{\sqrt{A_i}} \left(\frac{\partial L}{\partial w_i}\right); \forall i$$

- Can you see any problem?
 - Do we need ancient history?
- RMSprop (Hinton class slide, 2012)

$$A_i = \rho A_i + (1 - \rho) \left(\frac{\partial L}{\partial w_i}\right)^2; \rho \in (0, 1); \forall i$$

$$w_i = w_i - \frac{\alpha}{\sqrt{A_i}} \left(\frac{\partial L}{\partial w_i}\right); \forall i$$

 ullet Adadelta (Zeiler, 2012): replace lpha in RMSprop

$$A_i = A_i + \left(\frac{\partial L}{\partial w_i}\right)^2; \forall i$$

$$w_i = w_i - \sqrt{\frac{\delta_i}{A_i}} \left(\frac{\partial L}{\partial w_i}\right); \forall i$$

Can you see any problem?

Adaptive Moment Estimation (Adam- King & Ba, 2025)

$$m_i = \rho_1 m_i + (1 - \rho_1) \left(\frac{\partial L}{\partial w_i}\right); \ \rho_1 \in (0, 1); \forall i$$

$$v_i = \rho_2 v_i + (1 - \rho_2) \left(\frac{\partial L}{\partial w_i}\right)^2 ; \ \rho_2 \in (0, 1) ; \forall i$$

$$\bar{m}_i = \frac{m_i}{1 - \rho_1^t}; \forall i$$

$$\bar{v}_i = \frac{v_i}{1 - \rho_2^t}; \forall i$$

$$w_i = w_i - \alpha \frac{\bar{m}_i}{\sqrt{\bar{v}_i + \epsilon}}; \forall i$$

Adaptive Moment Estimation (Adam- Kingma & Ba, 2025)

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

```
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
   m_0 \leftarrow 0 (Initialize 1<sup>st</sup> moment vector)
   v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
   t \leftarrow 0 (Initialize timestep)
   while \theta_t not converged do
      t \leftarrow t + 1
      g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
      m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate)
      v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
      \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
      \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
      \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
   end while
   return \theta_t (Resulting parameters)
```


Convolutional neural network

LeNet-5

Error Rate (%)

5%

4%

3%

• LeNet-5: 1998

#parameters: 61,706

AlexNet

Breakthrough in ML, 2012

► Error: 16.4

* #parameters: 60,000,000

Source: Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS, 2012

• VggNet: 2015

► Error: 7.3%

#parameters: 140,000,000

VggNet

			•						
ConvNet Configuration									
A	A-LRN	В	C	D	Е				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
input (224 × 224 RGB image)									
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
maxpool									
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
maxpool									
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
maxpool									
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
maxpool									
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
maxpool									
FC-4096									
FC-4096									
FC-1000									
soft-max									

Source: Karen Simonyan: & Andrew Zisserman, ICLR, 2015

ResNet

• ResNet: 2015

► Error: 3.6%

* #parameters: 58,161,162

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer		
conv1	112×112	7×7, 64, stride 2						
		3×3 max pool, stride 2						
conv2_x	56×56	$\left[\begin{array}{c}3\times3, 64\\3\times3, 64\end{array}\right]\times2$	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\begin{bmatrix} 3\times3, 128 \\ 3\times3, 128 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$		
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\begin{bmatrix} 3\times3, 256 \\ 3\times3, 256 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$		
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$		
	1×1	average pool, 1000-d fc, softmax						
FLOPs		1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^{9}	11.3×10 ⁹		

Source: Hei et al., Deep Residual Learning for Image Recognition, CVPR 2016

Results on ImageNet dataset

Why convolution?

Image surce: Andrej slide, https://www.ibm.com/topics/convolutional-neural-networks

Convolution operation

