

Global R&D Networks

14 R&D Centers and 7 Al Centers worldwide

Global R&D Centers

America

Europe/CIS/Middle East

Southwest/Southeast Asia

China

Japan

Global AI Centers

Samsung Research Russia

Media Processing

Applied Intelligence

Deep System

Optics

Business Development

Samsung Al Center - Moscow

Telepresence

AI Core Platform

User Data Analytics

One-shot Learning

Applied Intelligence Team

One-shot Learning

Fast face detection and face recognition technology based on machine learning classification algorithms

TOP 5 Use-cases

- 1. Payments
- 2. Access and security
- 3. Criminal identification
- 4. Advertising
- 5. Healthcare

Advantages:

- + Compact 16Mb Footprint
- + Accurate 98% Recognition Rate

Samsung AI Center Moscow employees use One-shot Learning for conference rooms reservation

Frame Rate Up-Conversion

Media Processing Team

https://www.researchgate.net/publication/325741084_Real-time_3DRS_motion_estimation_for_frame-rate_conversior

SRR SOLUTION INCREASES CAMERA FRAMERATE X2

Super SlowMotion

Frame Rate Up-Conversion on Mobile

Real-time SW algorithm (CPU + GPU) for smoother playback used in Super Slow Motion camera regime and Motion Photo video player

<u>Advantages</u>

- + World first SW FRC on mobile
- + Supported video formats up to FHD+ (2224x1080)
- + Real-time conversion 15 → 30 FPS (frames per second), offline 480 → 960 FPS
- + Overall power consumption < 500mA

The algorithm is implemented in flagship models up to Samsung Galaxy S10/S10+ and Note 10/10+

Human Pose Estimation

Vision, Learning & Telepresence Lab

saic-violet.github.io/learnable-triangulatior arxiv.org/abs/1905.05754 youtu.be/z3f3aPSuhqq

Demo

Learnable Triangulation

A new approach for human pose localization in 3D from multiple images Model #1 – algebraic (spoiler: no 3D human pose prior ⊗)

weights estimated from the input images

Nth camera

TOP Use cases

- 1. Motion Capture for movies/games production
- 2. Human-Computer interface
- 3. Telepresence
- 4. Surveillance

Learnable Triangulation

A new approach for human pose localization in 3D from multiple images Model #2 – volumetric (based on volume unprojection)

Refinement via 3D convolutions → Final 3D joint heatmaps

Advantages:

- + Surpassed previous SOTA ~2.5 times on Human3.6M dataset
- + Our method is able to produce accurate and smooth 3D poses without any markers

Neural Point-Based Graphics

Vision, Learning & Telepresence Lab

<u>arxiv.org/abs/1905.05754</u> dmitryulyanov.github.io/neural_point_based_graphics youtu.be/7s3BYGok7wU</u>

Demo

Neural Point-Based Graphics

New point-based approach for modeling complex scenes from different viewpoints

Stage 1: Training

TOP Use cases

- 1. E-marketing
- 2. Real estate
- 3. Street view
- 4. VR
- 5. Telepresence

Advantages:

- + No competitors
- + RGB video: HD30k on 1080ti

Neural Point-Based Graphics

New point-based approach for modeling complex scenes from different viewpoints

Stage 2: Test (based on photogrammetry)

Neural Point-Based Graphics

New point-based approach for modeling complex scenes from different viewpoints

Source point cloud

Learned descriptors

NN output

Thank you!

k.salamatova@partner.samsung.com