Cours N°C3: Transformations chimiques s'effectuant dans les deux sens

Introduction : Afin d'obtenir un bon rendement, le pH d'une terre agricole doit être adapté à la culture choisie.

- Comment peut-on ajuster le pH d'un sol?

I.	Réactions	acido-	basique	s (Ra	ppel):
•	Iteactions	acido	ousique	D (ILU	ppci	•

1-Définitions

- Une base selon Bronsted, est une espèce chimique capable de......pendant une transformation

- Un couple acide / base (noté AH / A) est constitué d'un acide AH et de sa base conjuguée A qui sont

généralement liés par la demi-équation : $AH \longrightarrow A^- + H^+$. Pour le couple $BH^+/B : BH^+ \longrightarrow B + H^+$

Application 1 : Compléter le tableau suivant :

Application 1. Completel le tableau survant.								
Couple acide / base	Acide	Base	Demi-équation acido-basique					
	CH₃COOH							
NH ₄ +/ NH ₃								
			$HNO_3 \longrightarrow NO_3 + H^+$					
H ₂ O / HO								
			$H_3O^+ \rightarrow H_2O + H^+$					

Remarque :

- -L'eau se comporte comme un acide dans le couple H_2O/HO^- et comme une base dans le couple H_3O^{+}/H_2O , on l'appelle <u>ampholyte</u> (ou amphotère).
- -Généralement, le proton H^+ n'est pas perdu par l'acide sauf s'il y a une base capable d'acquérir ce proton H^+ et vice versa.

2- Réaction acido – basique

Une **réaction acido – basique** fait intervenir deux couples $acide/base : A_1H/A_1^-$ et A_2H/A_2^- .

Pour établir l'équation de la réaction, on suit les étapes suivantes :

On écrit les demi-équations acido-basiques toujours en commençant par les espèces chimiques réactives :

Exemple : Si l'acide A_1H réagit avec la base A_2^- :	

La combinaison de ces deux demi-équations donne l'équation de la réaction :

App	•	7 ·	\sim
Λ nn	nca	$\mathbf{T} \mathbf{O} \mathbf{D}$	

1. Ecrire l'équation de la réaction acido-basiques	entre l'acide éthanoïque CH ₃ COOH et l'ammoniac NH ₃ :

2. Citer les couples	qui réagissent	dans cette	réaction a	acido-basiques :	HNO ₃ +	$H_2O \rightarrow$	NO_3	+ H ₃ O ⁴

II. Le pH d'une 1. Définition du p La solution aqueuse l'eau (appelée solvant Pour des solutions aqueus	H d'une est un mé t).	solution Elange home	aqueus ogène ob	tenue par l		•				ans
$[H_3 O^+]$: la concentration en ions oxonium exprimée en $mol.L^-$.										
Le pH est une grande concentration en ions oxonium en e			ement, on	peut remo	onter, à par	tir du pH d'	une soluti	on aqueuse	à la]
Le pH d'une solution	on aqueus	e est borné	entre 0 et	14.						J
[H₃O+] ←	1	10-2	10-4	10-6	10-8	10-10	10-12	10-14	 ь рН	
L	0	2	4	6	8	10	12	14		ノ
1. Déterminer la valeur de pH des solutions suivantes : $[H_3O^+]_1 = 1, 2.10^{-3} \ mol.L^{-1}$ $[H_3O^+]_2 = 1,00.10^{-3} \ mmol.L^{-1}$ $[H_3O^+]_3 = 0,080 \ mol.m^{-3}$ 2. Déterminer la concentration en ions oxonium $[H_3O^+]$ dans les solutions suivantes : $pH_1 = 5.02$; $pH_2 = 8.3$ 2. Mesure du pH d'une solution aqueuse : On peut simplement avoir une indication de la valeur du pH en utilisant un papier pH qui prend une couleur plus ou moins rougeâtre selon l'acidité de la solution. Pour être plus précis, on utilise un pH -mètre. Celui-ci est un millivoltmètre relié à deux électrodes (ou une combinée) : une électrode de verre et une électrode de référence. Le millivoltmètre mesure la différence de potentiel entre les deux électrodes.										
Remarque : Incertit										••••
										••••
										•••••
		•••••	•••••			•••••			•••••	

III. Les transformations totales et limitées : 1. Les transformations totales : Activité 1 : On verse, dans un bécher, un volume $V=100 \ mL$ de solution d'acide chlorhydrique $(H_3O^+_{(aq)} + Cl^{(aq)})$ de concentration $C=3,5.10^{-2}mol.L^{-1}$, puis on immerge l'électrode de pH - mètre dans cette solution et on trouve que : $pH=1,45$. 1. Écrire l'équation de réaction acido-basique entre le chlorure d'hydrogène et l'eau. On donne : $HCl_{(g)}/Cl^{(aq)}$; $H_3O^+_{(qq)}/H_2O_{(l)}$									
2. Calculer la quant	ité de matière i	nitiale du chloru	re d'hydrogène.						
3. Complétez le table	eau d'avanceme	ent suivant.	•••••	•••••					
Equation de la	réaction								
Etat du système	avancement		Quar	ntité de matière (r	nol)				
Etat initial	x = 0								
Etat intermédiaire	x								
Etat final	x_{max}								
5. Déterminer la concentration finale en ions oxonium $[H_3O^+]_f$, et déduire la valeur de l'avancement final x_f . 6. Comparer x_{max} avec x_f . Que peut-on conclure ?									
Conclusion :									

2. Les transformations limitées :											
Activité 2: Dans un bécher, on introduit un volume $V_0 = 500 \ mL$ d'eau distillée et on ajoute $V = 1 \ mL$ d'acide éthanoïque											
Dans un bécher, on introduit un volume $V_0 = 500 \ mL$ d'eau distillée et on ajoute $V = 1 \ mL$ d'acide éthanoïque CH_3COOH . Puis on immerge l'électrode de pH - mètre dans cette solution et on trouve que : $pH = 3,10$.											
1. Écrire l'équation de réaction acido-basique entre l'acide éthanoïque et l'eau. On donne : $_{(aq)}$ / $CH_3COO^{(eq)}$; $H_3O^+_{(aq)}/H_2O_{(1)}$											
2. Calculer la quantit	té de matière ini	tiale d'acide éth	nanoïque.								
	· · · · · · · · · · · · · · · · · · ·										
3. Complétez le table	3. Complétez le tableau d'avancement suivant.										
Equation de la	Equation de la réaction										
Etat du système	avancement		Qua	nti	té de matière (n	nol)					
Etat initial	x = 0										
Etat intermédiaire	х										
Etat final	x_{max}										
4. Déterminer l'avan	cement maxima	l x _{max.}	'								
5. Déterminer la cond	centration final	en ions oxoniun	n $[H_3O^+]_{\mathrm{f}}$, et dé	du	ire la valeur de l	l'avancement fin	al x_f .				
				• • • •							
	••••••	•••••		• • • •			••••••				
				• • • •							
6. Comparer x _{max.} ave	ec . Que peut-o	n conclure ?									
				• • • •							
	•••••	•••••		• • • •	•••••						
<u>Conclusion :</u>											
				• • •							
	•••••			• • • •	•••••						
3. Le taux d'avanc	ement final d'	une réaction o	chimique;								
Le taux d'avancem	ent final $ au$ d'ur	ne réaction chin	nique est égal a	u c	quotient de l'ava	ncement final	par				
l'avancement final	de cette re	éaction :									
au est une grandeur	sans unité et 0	$< au \le 1$ et peut	être exprimée	en	pourcentage.						
- Si $\tau = 1 = 100\%$	la transfo	rmation est									
- Si $0 < \tau < 1$	la transfe	ormation est									
Pour la réaction de l'	'acide éthanoïque	e avec l'eau (acti	ivité 2), on a :								
	1	`	# T								

4. Sens de l'évolution d'une transformation chimique : Activité 3:

On verse dans les deux béchers le même volume de solution d'acide éthanoïque de concentration C=1,0.10-2 mol.L-1. Une mesure du pH dans chaque bécher donne pH=3,4.

On ajoute dans **le bécher** (1) d'acide éthanoïque pur, le pH devient $pH_1 = 2,91$.

- Dans le bécher (2), des cristaux d'éthanoate de sodium, le pH devient $pH_2 = 4,21$

Écrire l'équation de la réaction acido-basique qui se fait pendant la préparation de la solution (S).

.....

Observation

Dans le bécher (1).: Le pH (il passe de à) :Ce qui signifie que la réaction s'effectue dans le sens de des ions selon l'équation :

Dans le bécher (2) : Le pH (il passe de à ...) :Ce qui signifie que la réaction précédente s'effectue dans le sens des ions selon l'équation :

Conclusion

.....

En générale

Au cours de chaque transformation chimique limitée (:non totale), une réaction se produite dans les deux sens (le sens direct et le sens indirect ou sens inverse). On l'exprime par l'équation de la réaction suivante :....

5. L'état d'équilibre d'un système chimique :

Interprétation microscopique :

On considère le système chimique suivant :

A l'état initial le système contient les espèces chimiques A et B, la réaction se produit dans le sens (1) avec la vitesse v_1 .

- Les quantités des espèces A et B ainsi que les chocs entre elles diminuent donc diminution de v₁.
- Les espèces C et D apparaissent et la réaction se produit dans le sens (2) avec la vitesse v_2 , leurs quantités ainsi que les chocs entre elles augmentent donc augmentation de vitesse v_2 .

Lorsque les deux vitesses v_1 et v_2 s'égalisent: le système n'évolue plus. C'est **l'état d'équilibre dynamique**.

Au niveau macroscopique le système ne semble pas évoluer