

Include in patent order

Home

Edit Search

Return to Patent List

MicroPatent® Worldwide PatSearch: Record 1 of 1

[no drawing available]

Family Lookup

JP11181370 PROTECTIVE FILM FOR RESIN SHEET OF LIQUID CRYSTAL DISPLAY HITACHI CHEM CO LTD

Inventor(s): ;OGIWARA HIDEKAZU ;SHIMANE MICHIHIRO ;TAKAHASHI HIROAKI Application No. 09357118, Filed 19971225, Published 19990706

Abstract:

PROBLEM TO BE SOLVED: To provide a pressure-sensitive adhesive film for surface protection which maintains its antistaining properties and good peeling strength for a long term, inhibits the static electricity on peeling, and does not adversely affect the quality.

SOLUTION: This pressure-sensitive adhesive film is prepd. by forming an antistatic primer layer in a thickness of 0.01-10 μ m on the surface of a plastic film substrate having a thickness of 30-100 $\,\mu$ m and forming a pressure-sensitive adhesive layer in a thickness of $0.1-50~\mu$ m on the primer layer.

Int'l Class: C09J00702 G02F0011333

MicroPatent Reference Number: 000522713

COPYRIGHT: (C) 1999 JPO

PatentWeb Home

Edit Search

1.851 2.del 3.hie Return to

Patent List

For further information, please contact: Technical Support | Billing | Sales | General Information (19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-181370

(43)公開日 平成11年(1999)7月6日

(51) Int.Cl.⁶ C09J 識別記号

 \mathbf{F} I

C09J

7/02

Z

G02F 1/1333

7/02

G02F 1/1333

審査請求 未請求 請求項の数4 OL (全 4 頁)

(21)出願番号

特願平9-357118

(71)出願人 000004455

日立化成工業株式会社

(22)出願日

平成9年(1997)12月25日

東京都新宿区西新宿2丁目1番1号

(72)発明者 荻原 英一

茨城県下館市大字五所宮1150番地 日立化

成工業株式会社五所宮工場内

(72)発明者 嶋根 道弘

茨城県下館市大字五所宮1150番地 日立化

成工業株式会社五所宮工場内

(72)発明者 高橋 宏明

茨城県下館市大字五所宮1150番地 日立化

成工業株式会社五所宮工場内

(74)代理人 弁理士 若林 邦彦

(54) 【発明の名称】 液晶ディスプレーの樹脂シート用保護フィルム

(57) 【要約】

【課題】長期間にわたっての汚染性、良好な剥離力を維 持し且つ剥離時に静電気を抑制し、品質面に悪影響を及 ぼすことのない表面保護用粘着フィルムを提供するこ と。

【解決手段】厚さ30~100 µ mのプラスチックフィ ルム基材の表面に、厚みが 0. 01~10μ mの帯電防 止性を有する下塗剤を塗布し、更にその上に0.1~5 0μmの粘着剤層を設けてなる。

1

【特許請求の範囲】

【請求項1】プラスチックフィルム基材層、帯電防止性 を有する下塗剤層及び粘着剤層からなる液晶ディスプレ ーの樹脂シート用保護フィルム。

【請求項2】プラスチックフィルム基材が厚さ30~1 0 0 μ mのブロックコポリマー型ポリプロピレンフィル ム又はポリエステルフィルムであり、粘着剤厚みが 0. 1~50μmのA-B-A型(Aはスチレン重合体ブロ ックを示しBはブタジエン系重合体ブロックを示す) ブ ロック共重合体系粘着剤である請求項1記載の液晶ディ 10 スプレーの樹脂シート用保護フィルム。

【請求項3】プラスチックフィルム基材の線膨張係数が 5×10⁻⁵ 以下で、引っ張り弾性率が70Kg/mm² 以上である請求項1又は2に記載の液晶ディスプレー の樹脂シート用保護フィルム。

【請求項4】下塗剤がカルボニル基及び4級アンモニウ ム塩基を有するアクリル系帯電防止剤である請求項1、 2又は3に記載の液晶ディスプレーの樹脂シート用保護 フィルム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、液晶ディスプレー に用いられる樹脂シート(プリズムシート、偏光板拡散 シート等)の表面保護フィルムに関する。

[0002]

【従来の技術】液晶ディスプレー分野の樹脂シートに使 用されている表面保護フィルムは、剥離時に発生する静 電気により帯電し、チリや小さなゴミが付着する欠点を 有している。そこで従来より帯電防止法としては、帯電 防止剤のフィルム樹脂への混錬やフィルム外表面側への 30 が挙げられる。特に、A-B-A(Aはスチレン重合体 塗布または粘着剤へ添加して塗布する方法が代表的方法 として知られている。しかしながら、何れの方法とも被 着体への貼付後の経時変化で保護フィルムが浮き上が り、その部分でクモリを生じる問題があった。また、混 練する方法では充分な帯電防止性能が得られず、塗布す る方法でも同様に帯電防止性能が得られなっかたり、異 質の化合物である帯電防止剤が直接貼り付ける被着体と 接するため、クモリ、糊残り等の汚染を引き起こす問題 があった。

[0003]

【発明が解決しようとする課題】本発明はかかる状況に 鑑みなされたもので、長期間にわたっての汚染性、良好 な剥離力を維持し且つ剥離時に静電気を抑制し、品質面 に悪影響を及ぼすことのない表面保護用粘着フィルムを 提供することを目的とする。

[0004]

【課題を解決するための手段】かかる目的は、本発明に よれば、プラスチックフィルム基材層、帯電防止性を有 する下塗剤層及び粘着剤層からなる表面保護フィルムに

より達成される。すなわち本発明は、プラスチックフィ ルム基材層、帯電防止性を有する下塗剤層及び粘着剤層 からなる液晶ディスプレーの樹脂シート用保護フィルム に関する。

[0005]

【発明の実施の形態】本発明の粘着フィルムに用いられ るプラスチックフィルム基材としては、一般に用いられ ているポリエチレン、ポリプロピレン及びポリオレフィ ン系エラストマー、エチレン酢酸ビニル共重合体及びポ リエチレンとポリプロピレンの混合物、ポリエステル、 ポリ塩化ビニル、ポリカーボネートセロハン、アセテー ト、各種フッ素フィルム、ポリイミド等が挙げられる。 このうち、本発明に特に適した基材フィルムとしては、 高弾性率で低線膨張率のブロックコポリマー型ポリプロ ピレンやポリエステルで、厚みが30~100μm、線 膨張係数が5×10⁻⁵以下、弾性率が70kg/mm² 以上の弾性率のものが望ましい。また、必要に応じて、 プラスチックフィルム基材には一般に使用される酸化防 止剤、滑剤、老化防止剤、着色剤等の添加剤を含んでも 20 よい。更に、本発明のプラスチックフィルム基材には、 必要に応じて、プラスチックフィルム基材と粘着剤の密 着力を得るために、コロナ処理、プラズマ処理といった 表面処理を行っても構わない。また、粘着フィルムの巻 戻し性を調整する等の目的のために、粘着フィルム背面 に背面処理剤の塗布を行っても構わない。

【0006】本発明の粘着フィルムに用いる粘着剤とし ては、一般的にはアクリル系粘着剤、天然ゴム系粘着 剤、エチレン-酢酸ビニル共重合体 (EVA) 系粘着 剤、シリコーン系粘着剤等や、これらの混合物系粘着剤 ブロックを示しBはブタジエン系重合体ブロックを示 す) で示されるブロック共重合体系粘着剤、特に、スチ レンーエチレンーブチレンースチレン共重合系粘着剤 (構造A-B-C-A) は、低速域では粘着力が高く、 経時後の浮き、剥がれに対する防止性が高く好ましい。 粘着剤の厚みは $0.1\sim50\mu$ mが望ましく、好ましく は $0.1\sim20\mu$ mである。 0.1μ m未満では必要な 初期粘着力が得られず、50μm超では経時後の剥離性 が悪化する。

【0007】帯電防止性を有する下塗剤としては、カル 40 ボキシル基及び4級アンモニウム塩基を有するアクリル 系架橋性下塗剤を0.05~1.0 (g/m²) 塗布す るのが好ましい。アクリル系架橋性下塗剤とは、下記に 示すようにアクリル系重合対中に-COOH基及び4級 アンモニウム塩を含有する単量体を共重合したものであ

[0008]

【化1】

m, nは1以上の整数

【0009】各単量体の具体例としては、末端に-CO OH基をもつ単量体としてアクリル酸 (メタを含む)、 クロイルオキシエチルコハク酸、フタル酸、ヘキサヒド 10 はない。 ロフタル酸(メタを含む)等が挙げられる。4級アンモ ニウム塩を含有する単量体としては、ジメチルアミノエ チルアクリレート4級化物が挙げられる。また、架橋性 を付与するため、多官能イソシアネート系架橋剤と反応 するヒドロキシル基、多官能メラミン系架橋剤と反応す るカルボニル基、多官能メラミン系架橋剤と反応するエ ポキシ基、また、ビニル基等の官能基を導入できる。特 に、ヒドロキシル基と多官能イソシアネート系架橋剤と の組み合わせが好ましい。ヒドロキシル基を導入するた めの単量体としては、2ヒドロキシエチル(メタ)アク 20 塗布乾燥して粘着フィルムを得た。 リレート、3ヒドロキシプロピル (メタ) アクリレート がある。また、エポキシ基を導入するための単量体とし ては、グリシジルメタアクリレートが挙げられる。ま た、ビニル基としては、前述のエポキシ基等の官能基と 反応する2ヒドロキシエチルアクリレートのようなモノ マを付加させることのより導入できる。

【0010】アクリル系架橋性下塗剤中の各単量体の組 成比は、広い範囲で変えうる。この中で、4級アンモニ ウム塩基のもつ単量体は、該共重合体の全重量に対して -COOH基をもつ単量体は全重合体に対して3~13 mol%が好ましい。その他の構成単量体は63.5~ 79.5mol%の範囲で共重合体が構成される。4級 アンモニウム塩基をもつ単量体は15mol%以下では 静電誘導効果が小さく、逆に40mol%を超えると単 量体の親水性が高くなり過ぎる。また、ヒドロキシル基 をもつ単量体は全単量体に対し0.5~1.5mol% が好ましい。また、架橋はアクリル系重合体ポリマー中 に導入した水酸基やカルボニル基等と多官能イソシアネ ートもしくは、多官能メラミンと反応させて行う。

[0011]

【実施例】以下、本発明を実施例に基づき説明する。 尚、本発明はこれら実施例によっ何ら限定されるもので

(実施例1) 基材フィルムとして、厚さ40μmのポリ プロピレンフィルムをコロナ処理し支持体とする。下塗 剤として静電誘導体(コニシ製ボンディップPA-10 0) をメタノール溶液(固形分1%) を基材フィルムに ギャップ100μmのバーコータで塗布乾燥した。SE BS系粘着剤(シェル化学製G-1657)100重量 部に対し粘着付与剤(ヤスハラケミカル製アルコンPー 125) 30重量部を加えて粘着組成物とする。この粘 着剤組成物を下塗剤塗布面に5μmの厚さになるように

(実施例2) 粘着剤中に水溶性樹脂 (第一工業製薬製パ オゲンEP-15) 10重量部を添加した以外は実施例 1と同じ。

(実施例3) 基材フィルムを25μmのポリエステルフ ィルム (ダイヤホイル製) とした以外は実施例1と同

(比較例1) 下塗剤としてカチオン系界面活性剤 (日本 油脂製エレガン264WAX)とし、粘着剤をアクリル 系粘着剤(日本カーバイト工業製R-194に多価イソ 15~40mol%の範囲での構成が好ましく、末端に 30 シアネート化合物コロネートL2部を添加)にした以外 は実施例1と同じ。

> (比較例2)下塗剤として水溶性樹脂 (第一工業製薬製 パオゲンEP-15)とした以外は実施例1と同じ。

> (比較例3) 基材フィルムを60μmのポリエチレンフ ィルム(コロナ処理品)とした以外は実施例1と同じ。 実施例及び比較例の表面保護フィルムについて粘着力、 剥離後の糊残り及び剥離帯電量を調べ、その結果を表1 に示した。

[0012]

40 【表1】 5

	実施例 1	実施例 2	実施例3	比較例1	比較例2	比較例3
プラスチック基材フィルム	‡* 97* a }* vy	¥° 1/7° ¤ ₹° 1/7	à" Y127th	‡"『ブロ ピレン	ま*りプロ ピレフ	\$* 914by
表面処理(コロナ処理)	無し	無し	無し	有り	無し	無し
下途剤	静電誘導 剤	静電誘導 剤	的包括等 利	がソ系界 面活性剤	水溶性對 脂	掛電誘導 剤
粘着賴	ステレツエチレツ ア・ナレンステレツ 系粘着剤	スチレンプ・チレン スチレン 系 粘着 剤	スチャツエチレン プ・チャツスチレン 系枯着剤		ゴレンエデレフ フ [®] fレンスデレン 系粘着剤	ステレンエテレソ プ・テレソステレン 系粘着剤

		初期粘着力)	1 0	11	11	1 2	10	11
粘着力	1	50℃-1日	gf/25mm	11	1 4	1 2	1 5	12	≭ 7
语電 発生量	歩戻し時	65°C-1⊞	kv	11	1 6	14	2 3	1 2	₩ 5
		引剥し歯		0	0	0	5. 6	7. 8	0
		ロール自体		0	0	0	11. 2	11.4	0
	ļ	刺離スル	{	0	0	0	16.1	14. 7	0
		フィルム貼付時		0	0	0	1. 2	1. 8	0
		プリズム個		2. 7	2. 3	1. 9	6.6	7. 6	3. 5
		フィルム側		0	0	0	8. 1	6. 8	0.3
表面固有	粘刺面		Ω	4.0×10°	4. L×10 ⁸	3.8×10	1. 3×10 ¹¹	5. 3×10 ^{3 s}	4.5×10*
抵抗	育			2.5×1012	2 6×10*2	2. 2×10'2	2.8×101*	1.9×10**	28×10'z

注) 記号説明 ※: 浮きを示す

【0013】 (測定方法)

〔粘着力〕プリズムシート表面に圧力6Kg/cm²、 速度2m/分の条件で圧着し、23℃±2℃の室内に3 0分放置後、剥離角度180度、速度2m/分で引き剥 30 【発明の効果】表1に示す結果から明らかなように、本 がした際のピール値。

〔帯電発生量〕春日電機製静電気測定器を用い、フィル ムを巻戻した際ならびにプリズムシートから剥がした際 の静電気発生最大量を測定した。

〔表面固有抵抗〕武田理研製表面抵抗器を用い、フィル ム表面の固有抵抗を測定した。

[0014]

発明によれば粘着力の経時変化が少なく、また帯電防止 性に優れた表面保護用粘着フィルムを提供することが可 能になった。