

T2.2 | Tools for data visualization

In bioinformatics

Marta Coronado Zamora 2 October 2024

Keep in touch

Theory lessons

Marta Coronado Zamora	Jose F. Sánchez
marta.coronado@prof.esci.upf.edu	jose.sanchez@prof.esci.upf.edu
y @geneticament	@JFSanchezBioinf
Institut Botànic de Barcelona (CSIC-CMCNB)	Germans Trias i Pujol Research Institute (IGTP)

Practical lessons

Session content

- Biological data
- General statistical graphics used in bioinformatics
- Specialized libraries and software
 - Static
 - Interactive
- Solve doubts

Get started!

Tools for data visualization in bioinformatics

Biological data

- Quantitative and qualitative data: scatterplots, barplots, boxplots, heatplots, ...
- Molecular sequences: alignments, motifs, genome browsers, ...
- Species relationships: trees, networks
- Molecular pathways and interactions: cell diagrams, networks, ...
- Molecular structures: 3D molecular viewers, ...
- Anatomical structures: anatograms, ...
- ...

Exercise | Go to the latest research biology articles from Nature Communications journal and describe the types of visualizations used. How far can you enlarge the previous list?

Answer:

General statistical graphics

Biological example

Gene expression data from GTEx project:

```
data ← read.table(file = "https://raw.githubusercontent.com/marta-coronado/data/refs/heads/main/expression
                    header = TRUE, sep ="\t".
                    stringsAsFactors = FALSE)
data[1:4,1:4]
##
                gene id gene name tissue median expression
                           TSPAN6 Brain
## 1 ENSG00000000003.10
                                                    5.8635
## 2 ENSG00000000003.10
                           TSPAN6 Liver
                                                   30.7800
                                                    2.5905
## 3 ENSG00000000003.10
                           TSPAN6 Muscle
## 4 ENSG00000000003.10
                           TSPAN6 Testis
                                                   97.0900
```

Biological example

The data data frame contains the expression of 52302 genes in 8 tissues.

table(data\$gene_type, data\$tissue)

##									
##		Adipose	Brain	Liver	Lung	Lymphocytes	Muscle	Stomach	Testis
##	antisense	4999	4999	4999	4999	4999	4999	4999	4999
##	lincRNA	7033	7033	7033	7033	7033	7033	7033	7033
##	miRNA	2838	2838	2838	2838	2838	2838	2838	2838
##	misc_RNA	2010	2010	2010	2010	2010	2010	2010	2010
##	<pre>protein_coding</pre>	19820	19820	19820	19820	19820	19820	19820	19820
##	pseudogene	13705	13705	13705	13705	13705	13705	13705	13705
##	rRNA	520	520	520	520	520	520	520	520
##	snoRNA	1408	1408	1408	1408	1408	1408	1408	1408
##	snRNA	1892	1892	1892	1892	1892	1892	1892	1892

Biological example

Exercise | Use ggplot2 to answer the following questions:

- Which type of gene is more expressed on average?
- Answer:
- Which tissue has more expressed genes?
- Answer:
- Where is HLA-B gene expressed the most? Is its expression low, high or average compared to other genes?
- Answer:
- Where are located the genes highly expressed in brain (median_expression >20,000)?
- Answer:

Specialised libraries and software

- Integrated software suites
- Javascript
 - BioJS
- R libraries
 - Specialised repositories bioconductor
 - ggplot2 extensions
 - htmlwidgets, some using BioJS libraries

Exercise | Which ggplot2 extensions and htmlwidgets are designed to cover specific needs of biological data?

Answer:

Static visualizations: ggplot2 extensions

Phylogenetic trees: ggtree

Anatomical structures: gganatogram

Sequence logos: ggseqlogo

Gene structures: gggenes y gggenomes

```
library(gggenes)
ggplot(example_genes, aes(xmin = start, xmax = e
  geom_feature(
    data = example_features,
    aes(x = position, y = molecule, forward = fe
    ) +
  geom_feature_label(
    data = example_features,
    aes(x = position, y = molecule, label = name
    ) +
  geom_gene_arrow() +
  geom_blank(data = example_dummies) +
  facet_wrap(~ molecule, scales = "free", ncol = scale_fill_brewer(palette = "Set3") +
  theme_genes()
```


Show intersections: UpSetR

```
library(UpSetR)

mutations 
    read.csv( system.file("extdata", "mutations.csv", package = "UpSetR"), header=T, sep = ",")

upset(mutations, sets = c("PTEN", "TP53", "EGFR", "PIK3R1", "RB1"), sets.bar.color = "#56B4E9",
    order.by = "freq", empty.intersections = "on")
```


Interactive visualizations

Multiple alignment: msaR

```
library(msaR)
seqfile ← system.file("sequences","AHBA.aln", package="msaR")
msaR(seqfile)
```

```
Import Sorting Filter Selection Vis.elements Color scheme Extras Export Help
```

Label																										
Hygrocin_AHBA																										
Macbecin_AHBA		A T	G -	 -	 	 	-	 -	 -	 -	 -	 	 	 	 	-	 -	 -	 -	 -	 -	 -		- 1	A G	С
Ansatrienin_AHE	3,	G T (G -	 -	 	 	-	 -	 -	 -	 -	 	 	 	 	-	 -	 -	 -	 	 -	 -	C A	C (CT	G
Ansamitocin_AH																										
Divergolide_AHE																										
Rubradirin_AHB																										
Napthomycin_Al-	1	A T	G -	 -	 	 	-	 -	 -	 -	 -	 	 	 	 		 -	 -	 -	 -	 -	 -		-		-
Neoansalactam_ Ansalactam AHI	A C	A T	G -	 -	 	 	-	 -	 -	 -	 -	 	 	 	 		 -	 -	 -	 -	 -	 -		-		-
Ansalactam_AHI	3			 -	 	 	-	 -	 -	 -	 -	 	 	 	 	-	 -	 -	 -	 -	 -	 -		-		-
Arifamycini Chaxamycin AH		A T	G -	 -	 	 	-	 -	 -	 -	 -	 	 	 	 		 -	 -	 -	 -	 -	 -	- 14	5-/	-2n	-
Chaxamycin_AH	E	A T	G -	 -	 	 	-	 -	 -	 -	 -	 	 	 	 	-	 -	 -	 -	 -	 -	 -	- '-	- '		-

Protein structure

Example using NGL: a web application for molecular visualization: display molecules like proteins and DNA/RNA with a variety of representations.

Genome browsers

Examples by González lab at Institute of Evolutionary Biology: DrosOmics

Coronado-Zamora M, Salces-Ortiz J, González J. 2023. DrosOmics: A Browser to Explore -omics Variation Across High-Quality Reference Genomes From Natural Populations of *Drosophila melanogaster*. Mol Biol Evol 40:msad075.

Shiny applications

Example by my group at UAB: PopHumanVar

Colomer-Vilaplana A, Murga-Moreno J, Canalda-Baltrons A, Inserte C, Soto D, Coronado-Zamora M, Barbadilla A, Casillas S. PopHumanVar: an interactive application for the functional characterization and prioritization of adaptive genomic variants in humans. Nucleic Acids Res. 2022;50(D1):D1069-D1076.

Wrap-up

- Most basic exploratory and communication graphs in Bioinformatics can be achieved with general-purpose statistical graphics tools
- The complexity and characteristics of some biological data requires specialized tools
 - If static requirements, ggplot2 extensions may help
 - If interactive requirements, htmlwidgets may help
 - Check tools used in similar studies

Upload T2.2_slides.Rmd with the completed exercises (text included) to aul@-ESCI