Relatório IC

Fernanda	Buzza	Alves	Barros
de		$d\epsilon$?

INTRODUÇÃO

Problemas de dados faltantes em pesquisa são recorrentes em bancos de dados. Para a solução desses problemas existem vários métodos que podem ser utilizados. Entretanto, todos os métodos possuem uma questão principal: como inferir os valores não observados?

Para a resposta dessa pergunta, temos que o ideal seria ter os dados, porém na falta deles temos que utilizar o método que melhor se ajusta a distribuição dos dados.

Nessa pesquisa utilizaremos o método proposto por Rubin (1987), Van Buuren e Groothuis-Oudshoorn (2011), que é conhecido como Imputação Múltipla.

METODOLOGIA

A Imputação Múltipla consiste em gerar valores (m vezes) para os dados faltantes, ela cria uma matriz com todas as M imputações. Para gerar essas imputações existem alguns métodos, como por exemplo *Predictive Mean Matching (pmm)* e *Unconditional Mean Imputation (mean)*, que serão os métodos utilizados nesse estudo.

Predictive Mean Matching (pmm)

Unconditional Mean Imputation (mean)

RESULTADOS

Banco de dados

Para realizar a imputação dos dados utilizamos o banco de dados US Term Life insurance do pacote CASdatasets disponível no software R. As imputações e os resultados foram obtidos utilizando esse mesmo software estatístico. O banco de dados possui 18 variáveis com 500 observações, como pode ser visto abaixo.

```
500 obs. of 18 variables:
##
   'data.frame':
##
   $ Gender
                     : int 1 1 1 1 1 1 0 1 1 1 ...
##
   $ Age
                     : int 30 50 39 43 61 34 75 29 35 70 ...
##
   $ MarStat
                            1 1 1 1 1 2 0 1 2 1 ...
                     : int
                            16 9 16 17 15 11 8 16 4 17 ...
##
   $ Education
                     : int
   $ Ethnicity
##
                     : int
                            3 3 1 1 1 2 1 1 3 1 ...
##
   $ SmarStat
                            2 1 2 1 2 1 0 2 1 2 ...
##
   $ Sgender
                     : int
                            2 2 2 2 2 2 0 2 2 2 ...
##
   $ Sage
                            27 47 38 35 59 31 0 31 45 74 ...
   $ Seducation
                            16 8 16 14 12 14 0 17 9 16 ...
                     : int
   $ NumHH
                            3 3 5 4 2 4 1 3 2 2 ...
   $ Income
                            43000 12000 120000 40000 25000 28000 2500 100000 20000 101000 ...
##
                     : int
   $ TotIncome
                            43000 0 90000 40000 1020000 0 0 84000 0 6510000 ...
```

```
## $ Charity : int 0 0 500 0 500 0 0 0 0 284000 ...
## $ Face : int 20000 130000 1500000 50000 0 220000 0 600000 0 0 ...
## $ FaceCVLifePol : int 0 0 0 75000 7000000 0 14000 0 0 2350000 ...
## $ CashCVLifePol : int 0 0 0 0 300000 0 5000 0 0 0 ...
## $ BorrowCVLifePol: int 0 0 0 0 5 5 0 5 0 0 5 ...
## $ NetValue : int 0 0 0 0 0 0 0 0 ...
```

Porém selecionamos as seguintes variáveis: Gênero (gênero do entrevistado); Idade (idade do entrevistado); Estado Civil (estado civil do entrevistado); Escolaridade (número de anos de escolaridade do entrevistado); Etnia (etnia); Renda (renda anual da família).

O banco de dados não possui dados faltantes, portanto para avaliar a Renda (variável de interesse) foi necessário gerar os dados faltantes. Sendo assim utilizamos uma distribuição binomial com probabilidade de sucesso de 0.2 para a criar dos dados faltantes na variável Renda, fixando a semente em set.seed(0).

Primeiras observações do banco de dados original:

##		Gender	Age	${\tt MarStat}$	${\tt Education}$	${\tt Ethnicity}$	Income
##	1	1	30	1	16	3	43000
##	2	1	50	1	9	3	12000
##	3	1	39	1	16	1	120000
##	4	1	43	1	17	1	40000
##	5	1	61	1	15	1	25000
##	6	1	34	2	11	2	28000

Primeiras observações do banco de dados com dados faltantes na variável Renda:

##		Gender	Age	MarStat	Education	Ethnicity	Income
##	1	1	30	1	16	3	NA
##	2	1	50	1	9	3	12000
##	3	1	39	1	16	1	120000
##	4	1	43	1	17	1	40000
##	5	1	61	1	15	1	NA
##	6	1	34	2	11	2	28000

Análise Descritiva - TABELAS

```
source("02-analise_descritiva.R")
```

```
## Margins computed over dimensions
## in the following order:
## 1:
## 2:
## Margins computed over dimensions
## in the following order:
## 1:
## 2:
## Margins computed over dimensions
## in the following order:
## 1:
## 2:
## Margins computed over dimensions
## in the following order:
## 1:
## 2:
```

```
## Margins computed over dimensions
## in the following order:
## 1:
## 2:
tabela1
##
## Homem Mulher
                    sum
##
      413
              87
                    500
tabela2
##
##
           Casado Morando Juntos
                                          Outros
                                                             sum
##
              333
                                             136
                                                             500
                               31
tabela3
##
##
       Branco Hispânico
                               Negro
                                         Outros
                                                       sum
##
          365
                      40
                                 70
                                             25
                                                       500
tabela4
##
##
     2
                         7
                                  9 10 11 12 13 14 15 16 17 sum
         3
                 5
                     6
                             8
                                    7 15 101 31 68 16 130 102 500
##
     3
                     2
                         3
                             5
                                  6
tabela5
##
       Min.
             1st Qu.
                       Median
                                   Mean 3rd Qu.
                                                     Max.
##
        260
               28000
                        54000
                                 321022
                                          106000 75000000
tabela6
##
##
                    Homem Mulher sum
##
     Casado
                      330
                                3 333
##
     Morando Juntos
                       30
                                1 31
##
     Outros
                       53
                               83 136
##
                      413
                               87 500
     sum
tabela7
##
##
         Homem Mulher sum
##
     2
             3
                    0
                        3
##
     3
             4
                        5
                    1
##
     4
             3
                    0
                        3
##
     5
             1
                    2
                        3
             2
##
     6
                        2
     7
             3
##
                    0
                        3
##
     8
             2
                    3
                        5
##
     9
             5
                    1
                        6
##
     10
             6
                        7
                    1
                    2 15
##
            13
     11
##
     12
            85
                   16 101
            19
                   12 31
##
     13
##
                   12 68
     14
            56
```

##

15

11

5 16

```
##
    16
          108
                 22 130
##
    17
          92
                 10 102
                 87 500
##
    sum
          413
tabela8
##
##
              Homem Mulher sum
##
                312
                        53 365
    {\tt Branco}
    Hispânico
##
                 35
                        5 40
                        26 70
##
    Negro
                 44
                 22
                        3 25
##
    Outros
##
    sum
                413
                        87 500
tabela9
##
##
               Casado Morando Juntos Outros sum
##
    Branco
                 262
                                15
                                       88 365
##
    Hispânico
                  26
                                 7
                                       7 40
##
    Negro
                  26
                                 8
                                       36 70
                                       5 25
##
    Outros
                  19
                                 1
                                      136 500
##
                 333
                                31
    sum
tabela10
##
##
                2
                    3
                               6
                                   7
                                           9 10 11
                                                    12 13 14 15 16
                        4
                            5
                                       8
                                           2
                                             5 10
##
    Branco
                2
                   1
                        1
                               0
                                       2
                                                     64
                                                        21 55 11 104
##
    Hispânico
                1
                   4
                        2
                            2
                              2
                                   2
                                      1
                                          3 0
                                                  2 14
                                                         1
                                                             3
                                                                 0
                                                                    2
                              0
##
    Negro
                0
                    0
                        0
                           1
                                   1
                                      2
                                          1 2
                                                  3
                                                     20
                                                         7
                                                             8
                                                                 3 18
##
    Outros
                0
                    0
                        0
                          0 0 0 0 0
                                                  0
                                                     3
                                                         2
                                                             2
                                                                 2
                                                                     6
                           3
                              2
                                      5
                                          6 7 15 101 31 68 16 130
##
    sum
                3
                                   3
##
##
               17 sum
##
    Branco
               87 365
##
    Hispânico
               1 40
##
                4 70
    Negro
```

##

##

Outros

sum

10 25 102 500

Análise Descritiva - GRÁFICOS DO GGPLOT2

Análise Descritiva - GRÁFICOS

Distribuição do Gênero

Distribuição do Estado Civil

Distribuição da Etnia

Histograma da Idade

Histograma dos Anos de Escolaridade

Anos de Escolaridade

Distribuição dos Anos de Escolaridade

Histograma da Log(Renda)

Boxplot do GÃanero e da Log(Renda)

Boxplot dos Anos de Escolaridade e a Log(Renda)

Boxplot do Estado Civil e a Log(Renda)

Boxplot da Etnia e a Log(Renda)

Boxplot do GÃanero e a Idade

Boxplot do Estado Civil e a Idade

Boxplot dos Anos de Escolaridade e a Idade

Boxplot da Etnia e a Idade

Analisaremos as relações entre as variáveis selecionadas do banco de dados original. O principal objetivo é verificar os possíveis questionamentos sobre a Renda a partir das outras variáveis. Temos interesse em responder as seguintes perguntas:

- Como está distribuída a variável Renda.
- Qual é a relação entre a Renda e o Gênero.
- Com maiores anos de escolaridade há aumento da renda.
- O estado civil tem influência na renda.
- Avaliar a relação entre a etnia e a renda.

Primeiramente iremos analisar algumas das principais informações das variáveis, como: mínimo, máximo, média, mediana e quantis. Assim obtemos a tabela abaixo:

Para a variável Idade temos:

Assim para a pesquisa a idade máxima é 85 anos e a idade mínima é 20 anos. A média é 47,16 anos e a mediana 47 anos. O primeiro quantil é de 37 anos e o terceiro é de 58 anos.

Analisando a variável Anos de Escolaridade temos:

O mínimo de anos de escolaridade é 2 anos e o máximo é 17 anos. A mediana e a média são 14 anos e 14,06 anos, respectivamente. E o primeiro quantil é 12 anos e o terceiro quantil é 16 anos.

Analisando a variável Renda obtemos:

Essa variável possui como renda mínima 260 dólares e renda máxima 75.000.000 dólares. A mediana e a média são 54.000 dólares e 321.022 doláres, respectivamente. E o primeiro e terceiro quantis são 28.000 dólares e 106.000 dólares.

Por fim, avaliando as variáveis Estado Civil, Gênero e Etnia temos:

Sendo assim a pesquisa possui 87 respondentes do sexo feminino e 413 respondentes do sexo masculino.

Distribuição da Renda

Pelo histograma podemos avaliar a distribuição da variável Renda, a partir dos dados retirados do banco de dados original. Observamos uma maior concentração de valores entre o Log(Renda) de 10 a 12. Nas caldas podemos perceber reduções de valores da renda familiar.

Renda e Gênero

Ao plotarmos os boxplots da Log(Renda) e o Gênero vemos a relação entre os valores da renda dos homens comparados com os das mulheres. Nesse caso os homens possuem maiores valores de renda do que as mulheres.

Renda e Anos de Escolaridade

Ao analisar o efeito na quantidade de Anos de Escolaridade e a Renda, percebemos um crescimento na quantidade ganha de renda de acordo com os anos de escolaridade. Observamos que com a inclusão da reta pontilhada em vermelho, que representa a média da variável Log(Renda), a possibilidade de determinar os anos de escolaridade que estão acima da média de valores ganhos de renda. Entre os anos de escolaridade de 2 a 8 anos não percebemos uma relação crescente, sendo que há uma queda em 4, 5 e 8 anos de escolaridade, que pode ser devido a quantidade de entrevistados desses grupos representados no banco de dados; o que pode ser verificado na tabela abaixo:

Renda e Estado Civil

Para analisar a relação entre o Estado Civil e a Log(Renda) percebemos que as pessoas casadas possuem uma renda maior, quando comparado com os outros grupos apresentados pelo banco de dados.

Renda e Etnia

Para avaliar a relação entre a Etnia e a Log(Renda) observamos maiores valores de renda para o grupo white e o others, sendo que os grupos black e hispanic apresentam similaridades nos valores de renda.

Renda, Idade e Gênero

Imputação

Para realizar a imputação utilizamos o pacote *Multivariate Imputation With Chained Equations (MICE)*. A função que realiza a imputação chama-se mice, e nesse estudo realizamos a imputação 5 vezes (m=5) tanto para o método da pmm e da mean da função para comparar os resultados.

Abaixo temos o output da função de imputação com as principais informações.

CONCLUSÃO

REFERÊNCIAS BIBLIOGRÁFICAS

Rubin (1987)

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3), 1-67. linked phrase

Morris TP, White IR, Royston P (2015). Tuning multiple imputation by predictive mean matching and local residual draws. BMC Med Res Methodol. ;14:75.

Frees, E.W. (2011). Regression Modeling with Actuarial and Financial Applications, Cambridge University Press.