1 Ceva, Menalaus, Duality

1.1 Ceva

Problem 1.1.1. Let ABC be a triangle and let P be a point in its interior. Let X_1, Y_1, Z_1 be the intersections of AP, BP, CP, with BC, CA, AB. Let X_2, Y_2, Z_2 , be the reflections of the points X_1, Y_1, Z_1 about the midpoints of BC, CA, AB. Prove that the lines AX_2, BY_2, CZ_2 are concurrent.

Solution. This is trivial by Ceva because $\frac{CA_1}{A_1B} = \frac{BA_2}{A_2C}$.

Problem 1.1.2. Let ABC be a triangle and let P be a point in its interior. Let X_1, Y_1, Z_1 be the intersections of AP, BP, CP, with BC, CA, AB. Let the circumcircle of $X_1Y_1Z_1$ intersect segments BC, CA, AB again at X_3, Y_3, Z_3 . Prove that AX_3, BY_3, CZ_3 are concurrent.

Solution. This is trivial by Power of a Point and Ceva.

Problem 1.1.3. Let ABC be a triangle and let P be a point in its interior. Let X_1, Y_1, Z_1 be the intersections of AP, BP, CP, with BC, CA, AB. Let X_2, Y_2, Z_2 , be the reflections of the points X_1, Y_1, Z_1 about the angle bisectors of $\angle CAB, \angle ABC, \angle BCA$. Prove that the lines AX_2, BY_2, CZ_2 are concurrent.

Solution. This is trivial by Trig Ceva in a method similar to Problem 1.

Jacobi's Theorem. Let ABC be a triangle and let X, Y, Z be points in its plane such that $\angle ZAB = \angle YAC, \angle ZBA = \angle XBC$, and $\angle XCB = \angle YCA$. Then the lines AX, BY, CZ are concurrent.

Proof. Hooray for the creation of the Law of Sines. For the sake of clarity, let $\angle ZAB = \angle YAC = \alpha$, $\angle ZBA = \angle XBC = \beta$, $\angle XCB = \angle YCA = \gamma$. We know that

$$\frac{AZ}{\sin \angle ACZ} = \frac{CZ}{\sin \angle ZAC}.$$

Rearranging, we obtain

$$\sin \angle ACZ = \frac{AZ\sin\left(\angle CAB + \alpha\right)}{CW}.$$

Similarly, $\sin \angle ZCB = \frac{BZ\sin\left(\angle ABC + \beta\right)}{CZ}$. Thus

$$\frac{\sin \angle ACZ}{\sin \angle ZCB} = \frac{AZ\sin\left(\angle CAB + \alpha\right)}{BZ\sin\left(\angle ABC + \beta\right)}.$$

We now apply Law of Sines again on $\triangle ABZ$ to compute $\frac{AZ}{BZ} = \frac{\sin \beta}{\sin \alpha}$. Hence

$$\frac{\sin \angle ACZ}{\sin \angle ZCB} = \frac{\sin (\beta) \sin (\angle CAB + \alpha)}{\sin (\alpha) \sin (\angle ABC + \beta)}.$$

We are now done by Trig Ceva.

Proof 2. Use the fact that AX, BX, CX concur at X. The rest of the proof is left as an exercise to the reader.

Problem 1.1.4. Let ABC be a triangle with incentre I. Let the tangency points of the incircle with BC, CA, AB be D, E, F, respectively. Let X, Y, Z be points on lines ID, IE, IF, respectively, such that IX = IY = IZ and X, Y, Z either all lie towards the interior of ABC or towards the exterior. Prove that the lines AX, BY, CZ are concurrent.

Solution. XD = ZF and BD = BF so $\triangle BXD \cong \triangle BZF$ or $\angle BXD = \angle BZF$. We get similar relations for the other two pairs of angles so we are done by Jacobi.

Ceva for Convex Quadrilaterals. If ABCD is a convex quadrilateral, then

$$\frac{\sin \angle DAC}{\sin \angle CAB} \cdot \frac{\sin \angle ABD}{\sin \angle DBC} \cdot \frac{\sin \angle BCA}{\sin \angle ACD} \cdot \frac{\sin \angle CDB}{\sin \angle BDA} = 1.$$

Proof. Let the diagonals AC and BD intersect at P. We have the relations

$$\begin{split} \frac{DP}{PB} &= \frac{DA}{AB} \cdot \frac{\sin \angle DAC}{\sin \angle CAB}, \\ \frac{BP}{PD} &= \frac{BC}{CD} \cdot \frac{\sin \angle BCA}{\sin \angle ACD}, \\ \frac{AP}{PC} &= \frac{AB}{BC} \cdot \frac{\sin \angle ABD}{\sin \angle DBC}, \\ \frac{CP}{PA} &= \frac{CD}{DA} \cdot \frac{\sin \angle CDB}{\sin \angle BDA} \end{split}$$

so we are done.

Problem 1.1.5. Let ABCD be a convex quadrilateral with $\angle BAC = 30^{\circ}$, $\angle CAD = 20^{\circ}$, $\angle ABD = 50^{\circ}$, and $\angle DBC = 30^{\circ}$. If the diagonals intersect at P, prove that PC = PD.

Solution. Let $\angle DCP = \alpha$ and $\angle CDP = \beta$. By applying Ceva for Quads, we obtain

$$\frac{\sin\beta}{\sin\alpha} \cdot \frac{\sin20^{\circ} \cdot \sin50^{\circ} \cdot \sin70^{\circ}}{\sin30^{\circ} \cdot \sin30^{\circ} \cdot \sin80^{\circ}} = 1.$$

But $\sin 20^{\circ} \cdot \sin 50^{\circ} \cdot \sin 70^{\circ} = \sin 30^{\circ} \cdot \sin 30^{\circ} \cdot \sin 80^{\circ}$ (just apply product to sum) so $\sin \alpha = \sin \beta$. It is easily computable that $\angle CPD = 100^{\circ}$ so $\alpha, \beta \leq 90^{\circ}$. This implies that $\alpha = \beta$ so PC = PD.

Problem 1.1.6. Let ABCD be a convex quadrilateral with $\angle DAC = \angle BDC = 36^{\circ}$, $\angle CBD = 18^{\circ}$, and $\angle BAC = 72^{\circ}$. The diagonals intersect at P. Compute $\angle APD$.

Solution. Clearly $\angle BCD = 126^{\circ}$. We obtain three crucial equalities:

$$\angle BCD + \frac{1}{2} \angle BAD = 180^{\circ},$$

 $\angle DAC = 2 \angle DBC,$
 $\angle BAC = 2 \angle BDC$

This implies that the circle centered at A with radius AB passes through C and D. It follows that $\angle ACB = 54^{\circ}$ and $\angle APD = \angle BPC = 180^{\circ} - \angle PCB - \angle PBC = 108^{\circ}$.

Solution 2. Consider the regular 10-gon $A_1A_2...A_{10}$. Let $A_1=D$, $A_3=A$, $A_5=B$, and $A_5A_{10}\cap A_1A_7=C$. We have now constructed ABCD and this immediately implies that AB=AC=AD.

1.2 Menalaus

Problem 1.2.1. Let ABC be a triangle and P be a point in its plane. Let A_1, B_1, C_1 be the intersections of AP, BP, CP with BC, CA, AB, respectively. Consider Let $X = A_1B_1 \cap AB$, $Y = B_1C_1 \cap BC$, $Z = C_1A_1 \cap CA$. Prove that X, Y, Z are collinear.

Solution. This is trivial by Desargues' Theorem.

Problem 1.2.2 (The Lemoine line). Let ABC be a triangle and let A_1 be the intersection point of the tangent at A to the circumcircle of ABC with line BC. Similarly, define B_1 and C_1 . Prove that A_1, B_1, C_1 are collinear.

Solution. This is trivial by Pascal on hexagon AABBCC.

Problem 1.2.3 (USAMO 2012 #5). Let ABC be a triangle and let P be a point in its interior. Let γ be a line passing through P. Let A', B', C' be the points where the reflections of lines PA, PB, PC with respect to γ intersect lines BC, CA, AB, respectively. Prove that A', B', C' are collinear.

Solution. We want that

$$\frac{BA'}{A'C} \cdot \frac{CB'}{B'A} \cdot \frac{AC'}{C'B} = 1.$$

We can rewrite this as a ratio of areas

$$\frac{[BPA']}{[A'PC]} \cdot \frac{[CPB']}{[B'PA]} \cdot \frac{[ACP']}{[C'PB]} = 1.$$

We can relate this to a ratio of sines because $[ABC] = \frac{1}{2} (AB) (BC) \sin \angle C$.

$$\frac{\sin \angle BPA'}{\sin \angle A'PC} \cdot \frac{\sin \angle CPB'}{\sin \angle B'PA} \cdot \frac{\sin \angle APC'}{\sin \angle C'PB} = 1.$$

Next, notice that $\angle BPA' = \angle B'PA$ or $\angle BPA' = 180^{\circ} - \angle B'PA$, depending on the configuration of the points. The same holds true for the other two pairs of angles, so we're done.

Menelaus' Theorem for Regular *n*-gons. (one way only, though) Let p be a line that intersects the sides A_iA_{i+1} of the n-gon $A_1A_2...A_n$ at the points M_i for all $1 \le i \le n$. Then

$$\prod_{i=1}^{n} \frac{A_i M_i}{M_i A_{i+1}} = 1.$$

Proof. Consider a parallel projection of the points A_i and M_i in the direction of p to a line q. Call the projections of A_i A'_i . Clearly all the M_i will project to a single point M. We then have

$$\prod_{i=1}^{n} \frac{A_i M_i}{M_i A_{i+1}} = \prod_{i=1}^{n} \frac{A_i' M}{M A_{i+1}} = 1.$$

Note: There is a proof that uses induction. However, I am too lazy so that proof is left as an exercise to the reader.

Problem 1.2.4 (Van Aubel's Theorem). Let ABC be a triangle and P be a point in its interior. Let the lines AP, BP, CP meet the sides BC, CA, AB at A', B', C', respectively. Prove that

$$\frac{AP}{PA'} = \frac{AC'}{C'B} + \frac{AB'}{B'C}$$

Solution. We quickly obtain the relations

$$\frac{AP}{PA'} = \frac{AB}{BD} \cdot \frac{\sin \angle ABP}{\sin \angle PBA'}$$

and

$$\frac{AB'}{B'C} = \frac{AB}{BC} \cdot \frac{\sin \angle ABB'}{\sin \angle B'BC'}$$

which implies

$$\frac{AB'}{B'C} = \frac{BB'}{BC} \cdot \frac{AP}{PD}.$$

Likewise

$$\frac{AC'}{C'B} = \frac{B'C}{BC} \cdot \frac{AP}{PD}$$

and the result follows.

1.3 Duality

Desargues' Theorem. Two triangles ABC and A'B'C' are perspective from a point if and only if they are perspective from a line.

Proof. First, we prove the "only if" part. Let P be the center of perspectivity. Let X, Y, Z be $BC \cap B'C', CA \cap C'A', AB \cap A'B'$, respectively. We apply Menelaus on $\triangle PBC$ with points X, B', C' to obtain

$$\frac{PB'}{B'B} \cdot \frac{BX}{XC} \cdot \frac{CC'}{C'P} = 1.$$
 Similarly
$$\frac{PA'}{A'A} \cdot \frac{AY}{YC} \cdot \frac{CC'}{C'P} = 1$$
 and
$$\frac{PB'}{B'B} \cdot \frac{BZ}{ZA} \cdot \frac{AA'}{A'P} = 1.$$

Then,

$$\frac{\frac{PB'}{B'B} \cdot \frac{BX}{XC} \cdot \frac{CC'}{C'P}}{\left(\frac{PA'}{A'A} \cdot \frac{AY}{YC} \cdot \frac{CC'}{C'P}\right) \left(\frac{PB'}{B'B} \cdot \frac{BZ}{ZA} \cdot \frac{AA'}{A'P}\right)} = \frac{AZ}{ZB} \cdot \frac{BX}{XC} \cdot \frac{CY}{YA} = 1.$$

Notice that Desargues' Theorem is self dual, which automatically implies that the converse is true. Anyways, here is a proof using the "only if" part of the theorem.

Let $P = BB' \cap CC'$. Consider the two triangles BB'Z and CC'Y. Notice how these two triangles are persective from X. This implies that $BB' \cap CC'$, $B'Z \cap C'Y$, $ZB \cap YC$ are collinear. This implies P, A, A' are collinear so $\triangle ABC$ and $\triangle A'B'C'$ are perspective from a point.

Pascal's Theorem. Let ABCDEF be a hexagon inscribed in a conic. Then $AB \cap DE$, $BC \cap EF$, $CD \cap FA$ are collinear.

Proof. It is sufficient to prove the theorem for when ABCDEF is inscribed in a circle because there exists a projectivity that will take it to all other conics.

Lemma. Let ω_1 and ω_2 be two circles intersecting at M and N and let AB be a chord of ω_1 . Let AM and BN meet ω_2 at points C and D, respectively. Then $AB \parallel CD$.

Proof. We use directed angles mod π . We have $\angle CAB = 180^{\circ} - \angle MNB = \angle MND = 180^{\circ} - \angle ACD$ so $AB \parallel CD$.

Let ω_1 be the circumcircle of ABCDEF, $P = AB \cap DE$, $Q = BC \cap EF$, $R = CD \cap FA$, and ω_2 be the circumcircle of BEQ. Let X be the second intersection of AB with ω_2 and let Y be the second intersection of DE with ω_2 . By the lemma, we have $AR \parallel AE \parallel XQ$, $DR \parallel DC \parallel YQ$, and $AD \parallel XY$. This implies that there is a homothety between triangles RAD and QXY. Hence, AX, DY, RQ concur at P which proves the collinearity of P, Q, R.

Problem 1.3.1. Let ABC be a triangle and let B_1, C_1 be points on the sides CA, AB, respectively. Let Γ be the incircle of ABC and let E, F be the tangency points of Γ with the sides CA, AB, respectively. Furthermore, draw the tangents from B_1 and C_1 to gamma which are different from the sides of ABC and take the tangency points with Γ to be Y and Z, respectively. Prove that the lines B_1C_1, EF, YZ are concurrent.

Solution. Let $P = EF \cap YZ$, $Q = EZ \cap FY$, $R = EY \cap FZ$. By Brokard's theorem, we have that PQR is self-polar. R lies on the polar EY of B_1 , so B_1 lies on the polar of R (La Hire's Theorem). Similarly, C_1 lines on the polar of R, so P, Q, B_1, C_1 are collinear, as desired.

Solution 2. Using the same notation as above, use Pascal on EFFYZZ to obtain that P,Q,C_1 are collinear. Pascal on FEEZYY yields P,Q,B_1 are collinear, so we are done.

1.4 Problems

Problem 1.4.1. Let ABCD be a trapezoid with $AD \parallel BC$. Let $P = AB \cap CD$ and $Q = AC \cap BD$. Let M, N be the midpoints of AD, BC, respectively. Prove that M, N, P, Q are collinear.

Solution. M and N are the two homothetic centers that take AD to BC.

Problem 1.4.2. Let D be the foot of the altutide from A of triangle ABC and let M, N be points on sides CA, AB such that the lines BM and CN intersect on AD. Prove that AD is the angle bisector of $\angle MDN$.

Solution. Apply Ratio Lemma. We obtain $\frac{AM}{MC} \cdot \frac{CD}{DB} \cdot \frac{BN}{NA} = \frac{\sin \angle ADM}{\sin \angle ADN} \cdot \frac{\sin \angle NDB}{\sin \angle MDC} = 1$. This is equivalent to $\sin \angle ADM \cos \angle ADN = \sin \angle ADN \cos \angle ADM$, or $\sin (\angle ADM - \angle ADN) = 0$. We also have $\angle ADM$, $\angle ADN < \pi$, so this implies that $\angle ADM = \angle ADN$, as desired.

Problem 1.4.3. Prove the converse of the previous problem.

Solution. It follows by reversing the steps of the previous proof.

Problem 1.4.4. Let ABC be a triangle and let A_1, B_1, C_1 be points on lines BC, CA, AB, respectively. Denote by G_A, G_B, G_C the centroids of triangles $AB_1C_1, BC_1A_1, CA_1B_1$, respectively. Prove that the lines AG_A, BG_B, CG_C are concurrent if and only if lines AA_1, BB_1, CC_1 are concurrent.

Solution. By the Ratio Lemma, we have

$$\left(\frac{AB_1}{AC_1} \cdot \frac{BC_1}{BA_1} \cdot \frac{CA_1}{CB_1}\right) \left(\frac{\sin \angle B_1 AG_A}{\sin \angle G_A AC_1} \cdot \frac{\sin \angle C_1 BG_B}{\sin \angle G_B BA_1} \cdot \frac{\sin \angle A_1 CG_C}{\sin \angle G_C CB_1}\right) = 1$$

so
$$\frac{AB_1}{AC_1} \cdot \frac{BC_1}{BA_1} \cdot \frac{CA_1}{CB_1} = \frac{AC_1}{C_1B} \cdot \frac{BA_1}{A_1C} \cdot \frac{CB_1}{B_1A} = 1$$
 if and only if $\frac{\sin \angle B_1AG_A}{\sin \angle G_AAC_1} \cdot \frac{\sin \angle C_1BG_B}{\sin \angle G_BBA_1} \cdot \frac{\sin \angle A_1CG_C}{\sin \angle G_CCB_1} = 1$.

Problem 1.4.5. Let ABC be a triangle and let D, E, F be any three points on the lines BC, CA, AB, respectively so that lines AD, BE, CF are concurrent. Let the line parallel to AB through E intersect line DF at Q and let the line parallel through D intersect line EF at T. Then, lines CF, DE, and QT are concurrent.

Solution. Let $FC \cap DT = X$ and $EF \cap BC = Y$. If XD = XT, we are done by Ceva on triangle FDT because $\frac{FQ}{QD} = \frac{FE}{ET}$. However, we know that (B,C;D,Y) = -1 so the pencil $F(B,C;D,Y) = F(\infty,X,D,T) = -1$ so X is the midpoint of D and T.

Problem 1.4.6. Let ABC be a triangle with $\angle A = \frac{\pi}{2}$, and let D be a point lying on the side AC. Denote by E the reflection of A over line BD, and by F the intersection point of CE with the perpendicular from D to BC. Prove that AF, DE, BC are concurrent.