Using user-defined objects in the Esri Projection Engine

Document version: 12.6.0

Date: 2020-04-13

Table of Contents

Introduction3
PE object and record types4
PE database types6
Code-ranges7
Database filenames10
Defining the databases to load11
Record format syntax rules14
Record formats for data tables16
GEOGCS – geographic coordinate reference systems16
PROJCS – projected coordinate reference systems18
VERTCS – vertical coordinate reference systems20
HVCOORDSYS - horizontal/vertical coordinate reference systems 22
DATUM – horizontal datums24
VDATUM – vertical datums25
GEOGTRAN - geographic transformations26
VERTTRAN – vertical transformations29
ANGUNIT – angular units of measure32
LINUNIT – linear units of measure34
AREAUNIT – area units of measure36
SCALEUNIT – scale units of measure38
PRIMEM – prime meridians40
SPHEROID - spheroids (ellipsoids)41
EXTENT - extents (areas-of-use)43
Record formats for non-data tables45
CODECHANGE – code-changes45
DEPRECATED – deprecations47

SYNONYM - synonyms	48
CODERANGE – code-ranges	50
DISPNAME – display names	52
DESCRIPTION - descriptions	53
DEFSTRING – macro definitions	54
AREAINFO – coordinate-system dialog entries	55
AREACODE – areacodes	57
VERSION - versions	58
EXCEPTION - gtlist/vtlist exceptions	59
GCSVCS - GCS-VCS equivalences	61
Appendix A: Selected macros and well-known IDs	62
Linear units	62
Angular units	63
Map projections	64
Projection Parameters	66
Vertical coordinate system parameters	67
Geographic transformation methods	67
Geographic transformation parameters	67
Vertical transformation methods	68
Vertical transformation parameters	68
Appendix B: Projections and their expected parameters	69
Appendix C: Transformations and their expected parameters	80
Appendix D: Differences in earlier database versions	83
METADATA – coordinate system and transformation metadata	84
AREAINFO – coordinate-system dialog entries	86
Appendix E: Setting an environment variable	87
Appendix F: Error reporting	88

Introduction

All predefined factory data in the Projection Engine (PE) is kept in various databases. The database mechanism used is configurable by a user and a user may provide his own database(s) which can replace, augment, and/or override existing databases.

The function of these databases is not to create a PE object, but to return a record that contains data and/or other factory codes used to produce a PE object. Many PE objects contain sub-objects, and thus the actual creation of such a PE object will necessitate the database lookup of multiple database records, one for each sub-object (and sub-objects can contain their own sub-objects).

An object may also contain metadata information that is not considered when comparing objects. This may consist of areas-of-interest, descriptions, versions, status, locale-specific names, etc.

The factory codes contained in a database record may contain factory codes that can be found in a totally different database. This is especially true when looking up entries in a user-supplied database, which will typically refer to objects in a previously loaded database.

By default, the "builtin" database is loaded first, and then any user-specified databases are loaded. When a lookup is done for a particular factory code, the order of search is from the last-loaded database down to the first-loaded database. Thus, each database that is loaded can override any previously loaded database. Databases can also be localized.

A database does not need to have all PE object types contained in it. In fact, typically a user-provided database will have only a few object-types in it, and will just use the "builtin" database for all other definitions (such as units, prime meridians, spheroids, etc.).

Note that internal PE objects (methods and parameters), although they are referenced by factory codes, are not kept in any database, but are created directly by the PE core routines. As such, a user cannot create his own predefined versions of these objects, but he can apply his own metadata, such as version, status, and code-changes to existing entries.

IMPORTANT - This document contains the PE database specifications for ArcGIS versions 10.4 and later. See <u>Appendix D</u> for the differences between the current PE database implementation and previous versions.

PE object and record types

The following is a list of object-types that may appear in a database:

Object type geogcs projcs vertcs hvcoordsys	Abbreviation gcs pcs vcs hvc	Description Geographic coordinate reference systems Projected coordinate reference systems Vertical coordinate reference systems Compound (horizontal and/or vertical) coordinate reference systems
datum	dat	Horizontal datums
vdatum	vdt	Vertical datums
geogtran	gtf	Geographic transformations
verttran	vtf	Vertical transformations
angunit	ang	Angular units of measure
linunit	lin	Linear units of measure
areaunit	are	Area units of measure
scaleunit	scl	Scale units of measure
primem	pri	Prime meridians
spheroid	sph	Spheroids (ellipsoids)
·	•	
extent	ext	Areas of interest
htmethod	htm	Horizontal transformation methods
method	mth	Geographic transformation methods
vtmethod	vtm	Vertical transformation methods
projection	prj	Projection methods
		Parameters
parameter	par	raidilletels

The following is a list of record-types used:

Record type	<u>Abbreviation</u>	<u>Description</u>
data	dat	Object data
codechange	chg	Code (WKID) changes
deprecated	dep	Deprecated codes
synonym	syn	Name synonyms
coderange	rng	Code ranges
dispname	dsp	Display name (Unicode)
description	dsc	Description (Unicode)
defstring	def	macro definitions
areainfo	inf	Coordinate-system dialog entries (Unicode)
areacode	aco	Area codes

version	ver	Version info
exception	exc	gtlist/vtlist exceptions
gcsvcs	gve	GCS-VCS equivalences

Not all record-types are defined for each object-type. The following is a table showing all valid record-types for each object-type:

obj	dat	chg	dep	syn	rng	dsp	dsc	def	<u>inf</u>	aco	ver	exc	gve
gcs	X	X	X	X	X	X	X	X	X	X	X		X
pcs	X	X	X	X	X	X	X	X	X	X	X		
VCS	X	X	X	X	X	X	X	X	X	X	X		X
hvc	X	X	X	Х	X	X	X	X		X	X		
dat	X	X	X	X	X	X	X	X			X		
vdt	X	X	X	X	X	X	X	X			X		
gtf	X	X	X	X	X	X	X	X		X	X	X	
vtf	X	X	X	Х	X	X	X	X		X	X	X	
ang	X	X	X	X	X	X	X	X			X		
lin	X	X	X	X	X	X	X	X			X		
scl	X	X	X	X	X	X	X	X			X		
are	X	X	X	X	X	X	X	X			X		
pri	X	X	X	X	X	X	X	X			X		
sph	X	X	X	X	X	X	X	X			X		
ext	X					X							
htm		X	X	X	X	X	X	X			X		
mth		X	X	X	X	X	X	X			X		
vtm		X	X	X	X	X	X	X			X		
par		X	X	X	X	X	X	X			X		
prj		X	X	X	X	X	X	X			X		

PE database types

The term "database" here means a particular storage mechanism for the various tables described above. The following are the database types supported internally by the PE:

builtin This database consists of all tables stored in static arrays that are

linked in the library, and thus is always available.

objedit This database consists of a directory with a separate CSV (comma-

separated-value) file for each table containing user-defined entries.

xmledit This database consists of a directory with a separate XML file for

each table containing user-defined entries.

The "builtin" database contains all the above tables (except for display-name). A user-provided database need not contain all tables, only those that have user-defined entries. Normally, a user will have his database(s) loaded after the builtin database, so only additions and/or overrides need to be provided. Each database loaded takes priority over any previously-loaded database.

There is also the ability to use a user-written database by dynamically loading at runtime a DLL that implements a defined API, although that is not described in this document.

Code-ranges

The purpose of these databases is to associate a factory-code or Well-Known-ID (WKID) with the data for it. The WKIDs for each object-type fall into defined code-ranges. Originally, each code-range was unique, but then EPSG (IOGP Geodesy subcommittee) started assigning WKIDs for different object-types in overlapping code-ranges. Esridefined code-ranges are still unique. User-defined code-ranges may overlap, but not within an object-type. WKIDs for a particular object-type are only recognized if they fall in a defined code-range for that object.

There are three authorities for predefined code-ranges, as follows:

EPSG	These are EPSG-assigned codes. They are all in the range of 1024 to 32767.
Esri	These are Esri-assigned codes. Entries are in the range of 33000 to 199999.
CUSTOM	These are user-defined entries. Entries are in the range of 200000 to 299999.

Here is a table of predefined code-ranges for each object-type:

<u>Object</u>	First	<u>Last</u>	<u>Authority</u>
angunit	1024	1100	EPSG
angunit	9100	9199	EPSG
angunit	109100	109199	Esri
angunit	209100	209199	CUSTOM
areaunit	109400	109499	Esri
areaunit	209400	209499	CUSTOM
datum	1024	32767	EPSG
datum	106000	106999	Esri
datum	206000	206999	CUSTOM
geogcs	1024	32767	EPSG
geogcs	37000	37999	Esri
geogcs	104000	104999	Esri
geogcs	204000	204999	CUSTOM

geogtran 1024 32767 EI	PSG
8 8	sri
8 8	USTOM
htmethod 119600 119699 Es	sri
hvcoordsys 1024 32767 EI	PSG
hvcoordsys 107400 107599 Es	sri
hvcoordsys 207400 207599 C	USTOM
linunit 1024 1100 EF	PSG
linunit 9000 9099 EF	PSG
linunit 9300 9399 EF	PSG
linunit 109000 109099 Es	sri
linunit 209000 209099 C	USTOM
method 9600 9699 EI	PSG
method 109600 109699 Es	sri
parameter 100000 100099 Es	sri
projcs 1024 32767 EF	PSG
projcs 53000 54999 Es	sri
projcs 65000 65199 Es	sri
projcs 102000 103999 Es	sri
projcs 202000 203999 CI	USTOM
primem 8900 8999 EF	PSG
primem 108900 108999 Es	sri
primem 208900 208999 C	USTOM
projection 43000 43499 Es	sri
spheroid 1024 32767 EF	PSG
spheroid 107000 107399 Es	sri
spheroid 107600 107999 Es	sri
spheroid 207000 207399 CI	USTOM
spheroid 207600 207999 C	USTOM
scaleunit 1024 1100 El	PSG
scaleunit 9200 9299 El	PSG
scaleunit 109200 109299 Es	sri
scaleunit 209200 209299 C	USTOM

vertcs	1024	32767	EPSG
vertcs	105600	105799	Esri
vertcs	115600	115799	Esri
vertcs	205600	205799	CUSTOM
vdatum	1024	32767	EPSG
vdatum	105100	105299	Esri
vdatum	205100	205299	CUSTOM
verttran	1024	32767	EPSG
verttran	110000	110099	Esri
verttran	210000	210099	CUSTOM
vtmethod	129600	129999	Esri
extent	1024	32767	EPSG
extent	180000	180999	Esri
extent	280000	280999	CUSTOM

A user may define his own custom code-range, as long as it doesn't overlap with any of the predefined code-ranges. By using user-defined WKIDs that are either in the CUSTOM range or in your own custom-defined code-ranges, you ensure that the code you are using will not override an existing code.

Database filenames

The "objedit" and "xmledit" databases consist of directories containing various text files containing user-defined table entries. The names for these files have the following syntax:

<object-type> <record-type>[<language>].<extension>

Where:

object-type Either the name or the abbreviation of an object-type.

For example, "geogcs" ("gcs") or "geogtran" ("gtf").

record-type Either the name or the abbreviation of a record-type.

For example, "data" ("dat") or "areainfo" ("inf").

For backwards compatibility, in an objedit database if the record-type is "data", the record-type part of the name

may be omitted.

language An optional language designation. This is for localization.

For example, "de" for German or "ja" for Japanese.

extension "txt" for objedit files.

"xml" for xmledit files.

For backwards compatibility, in an objedit database if the

record-type is "data", the extension may be omitted.

Examples:

ang_data.txt	objedit	ANGUNIT data definitions
linunit_chg.xml	xmledit	LINUNIT code-change definitions
geogcs_inf_ja.xml	xmledit	Japanese GEOGCS areainfo table
geogtran.txt	objedit	GEOGTRAN data (legacy filename format

geogtran.txt objedit GEOGTRAN data (legacy filename format) projcs objedit PROJCS data (legacy filename format)

In a particular database, not all files need to be present, only those files that have user definitions. Any other files in the directory whose names do not match the above syntax are simply ignored.

Defining the databases to load

The databases to be loaded are specified by the PEDATABASE environment variable. This variable is always queried by the PE independently of any program using the PE. Thus, ArcGIS for Desktop, ArcGIS Pro, and ArcGIS Server will all respond to the presence of this variable. See Appendix E for details on how to set an operating system environment variable.

The PEDATABASE variable specifies a "database-environment" string. The format of this string is:

module [@name] [(options)] [;...]

where:

module The database-type to load (builtin, objedit, xmledit, etc.). A special

value of "-" means to clear all loaded databases. Specifying "-" at the beginning of the definition-string tells the PE to not load the builtin

database.

name The name passed to the database. It is ignored for the builtin database.

For the objedit and xmledit databases, it names the directory in which to find the files. This name may be a local path or a network share.

options An optional comma-separated list of various options, as listed below.

Note that you normally don't include the "builtin" database in the list of databases to load. By default, it is loaded first and then any specified databases are loaded after it. Any request to load a database that is already loaded results in a no-op.

Options:

loaddata Load all tables into memory if possible. This is always done for

objedit and xmledit databases, since you don't want to search text

files for a code every time you do a lookup.

loadlazy Load data as used and cache for further use. (Not applicable for

objedit and xmledit databases.)

useoldver Report the version information of a code-changed entry using the

original version. The default is to report the version of the

changed-code.

language=aaa Specify language to load.

objtypes=aaa Specify object-types to include or exclude (+-).

Default is to load all object-types that are present.

rectypes=aaa Specify record-types to include or exclude (+-).

Default is to load all record-types that are present.

status=aaa Specify status to apply to all data records. Choices are:

code user

discontinued

dead

authname=aaa Specify default authority to apply to all data records.

authver=aaa Specify default version to apply to all data records.

useropts=aaa Specify user-options to use. These options are database-specific.

objedit databases:

objname Include object-type name when writing

records.

macro Use macros instead of codes if possible

when writing.

ml | multiline Write multiple lines for data.

nosynauths Exclude synonym records that contain

authority names.

xmledit databases:

macro Use macros instead of codes if possible

when writing.

ml | multiline Write multiple lines for data.

nosynauths Exclude synonym records that contain

authority names.

Example 1

Load an objedit database after loading the builtin database:

objedit@c:\databases\pe

Example 2

Load an objedit database after loading the builtin database, specifying a default authority of "Tin Man Oil" and a version of "12.6":

objedit@c:\databases\pe(authname=Tin Man Oil,authver=12.6)

© 2010–2020 Esri

Example 3

Load Japanese XML areainfo tables but don't load the builtin areainfo tables:
-;builtin(rectypes=-inf);xmledit@c:\databases\pe(language=ja)

The leading "-" tells the PE to not load the entire builtin database (which contains all tables, including the areainfo tables). Then we explicitly load the builtin database but without the areainfo tables, which we want to replace. Then we load our database with the replacement tables.

The reason for doing this is that the areainfo tables are different, in that they are only used by loading the entire table at one time. Thus, the user-provided tables would simply add to the builtin tables rather than overriding them, which would result in duplicate entries.

Note that we could have loaded the user database prior to the builtin database, but then any macros in the user database that referenced builtin macros would not have been recognized.

Example 4

Load only the geogtran and projcs data entries from an objedit database: objedit@c:\databases\pe(objtypes=gtf+pcs,rectypes=dat)

PEOBJEDITHOME environment variable

An alternate (legacy) way of specifying the location of the objedit database directory is to set the value of the environment variable PEOBJEDITHOME to the absolute path of the directory. This is still supported, but its use is deprecated. The preferred way is to use the PEDATABASE variable. If both the PEOBJEDITHOME and PEDATABASE variables are present, the PEOBJEDITHOME variable is ignored.

```
Specifying the following:

PEOBJEDITHOME="<directory-name>"
is the same as specifying:

PEDATABASE="objedit@<directory-name>"
```

Record format syntax rules

Objedit text rules:

- 1. Whitespace outside of quotes is ignored.
- 2. Anything following a # is considered a comment.
- 3. After removing comments and extraneous whitespace, if a line is empty it is ignored.
- 4. A line may be continued onto another line by adding a backslash (\) at the end of it.
- 5. Text strings are usually enclosed in quotes, but the quotes are only necessary if the text has special characters (e.g. whitespace or a comma).

```
For example, a linunit entry may be 209001, "Egyptian Cubit", 0.447 or 209001, Egyptian_Cubit, 0.447
```

6. Each line may be optionally prefixed with the object-type.

```
For example, a linunit entry may be 209001, "Egyptian Cubit", 0.447 or LINUNIT, 209001, "Egyptian Cubit", 0.447 The object-type name is case-insensitive.
```

Xmledit text rules:

1. The XML file must be a valid XML file, meaning that all data entries must be contained in a document. The document-name is ignored. Here is a skeleton that is recommended be followed:

```
<?xml version="1.0" encoding="UTF-8"?>
<PE>
    ...
</PE>
```

- 2. Keywords and object-types are all case-insensitive.
- 3. Comments (<!-- ... -->) are ignored.

Both objedit and xmledit:

- 1. Any number should be displayed in "en_US" format (i.e. a decimal point character is always used as the decimal separator character). This makes the data files more portable, since they may be used in any locale.
- 2. Any WKID may be described by its numeric code (e.g. 4326) or by its macro (e.g. PE_GCS_WGS_1984). Note that macros are case-insensitive. Using macros makes the data files more readable. Macros may be user-defined. See the include file pedefs.h for the list of all predefined macros.

3. The following are limits on string lengths: a. Object names

a.	Object names	79 ASCII characters
b.	Authority names	79 ASCII characters
c.	Version strings	23 ASCII characters
d.	UNIT display-names, plural-nam	nes, abbreviations
		79 Unicode characters
e.	AREAINFO area-names	79 Unicode characters
f.	AREAINFO category names	255 Unicode characters
g.	DESCRIPTION strings	255 Unicode characters
h.	DISPNAME names	79 Unicode characters

Record formats for data tables

The format of the data files is different for each object-type. Note that in the descriptions and examples below, extra whitespace and newlines are added for clarity.

GEOGCS – geographic coordinate reference systems

Contents:

- Geogcs-code
- Name
- Datum-code
- Primem-code
- Angunit-code

Objedit syntax:

```
[GEOGCS,] geogcs-code, "name", datum-code, primem-code, angunit-code
```

Examples:

```
<GEOGCS

code="geogcs-code"

name="name"

datum="datum-code"

primem="primem-code"

angunit="angunit-code"

/>
```

```
<GEOGCS
code="3819"
name="GCS_HD1909"
datum="1024"
primem="8901"
angunit="9102"
/>

<GEOGCS
code="PE_GCS_HD1909"
name="GCS_HD1909"
datum="PE_D_HUNGARIAN_DATUM_1909"
primem="PE_PM_GREENWICH"
angunit="PE_U_DEGREE"
/>
```

PROJCS – projected coordinate reference systems

Contents:

- Projcs-code
- Name
- Geogcs-code
- Projection-code
- Linunit-code
- Parameter ...
 - o Parameter-code
 - Value

Note that parameters may be specified in any order.

Objedit syntax:

```
[PROJCS,] projcs-code, "name", geogcs-code, projection-code, linunit-code [, parameter-code, value] ...
```

```
2000, "Anguilla_1957_British_West_Indies_Grid", \
      4600, 43006, 9001, \
      100001, 400000.0, \
      100002, 0.0, \
      100010, -62.0, \
      100003, 0.9995, \
      100021, 0.0
PE PCS ANGUILLA 1957 BRITISH W INDIES, \
      "Anguilla_1957_British_West_Indies_Grid", \
      PE GCS ANGUILLA 1957, \
      PE PRJ TRANSVERSE MERCATOR, \
      PE U METER, \
      PE_PAR_FALSE_EASTING, 400000.0, \
      PE PAR FALSE NORTHING, 0.0, \
      PE_PAR_CENTRAL_MERIDIAN, -62.0, \
      PE PAR SCALE FACTOR, 0.9995, \
      PE PAR LATITUDE OF ORIGIN, 0.0
```

```
<PROJCS
            code="projcs-code"
            name="name"
            geogcs="geogcs-code"
            projection="projection-code"
            linunit="linunit-code"
            >
            <PARAMETER code="parameter-code" value="value" />
      </PROJCS>
Examples:
      <PROJCS
            code="2000"
            name="Anguilla 1957 British West Indies Grid"
            geogcs="4600"
            projection="43006"
            linunit="9001"
            <PARAMETER code="100001" value="400000.0"/>
            <PARAMETER code="100002" value="0.0"/>
            <PARAMETER code="100010" value="-62.0"/>
            <PARAMETER code="100003" value="0.9995"/>
            <PARAMETER code="100021" value="0.0"/>
      </PROJCS>
      <PROJCS
            code="PE PCS ANGUILLA 1957 BRITISH W INDIES"
            name="Anguilla 1957 British West Indies Grid"
            geogcs="PE GCS ANGUILLA 1957"
            projection="PE_PRJ_TRANSVERSE_MERCATOR"
            linunit="PE U METER"
            <PARAMETER code="PE PAR FALSE EASTING" value="400000.0"/>
            <PARAMETER code="PE_PAR_FALSE_NORTHING" value="0.0"/>
            <PARAMETER code="PE PAR CENTRAL MERIDIAN" value="-62.0"/>
            <PARAMETER code="PE_PAR_SCALE_FACTOR" value="0.9995"/>
            <PARAMETER code="PE_PAR_LATITUDE_OF_ORIGIN" value="0.0"/>
      </PROJCS>
```

VERTCS – vertical coordinate reference systems

Contents:

- Vertcs-code
- Name
- HVdatum-code (Datum-code or VDatum-code)
- Linunit-code
- Parameter ...
 - o Parameter-code
 - Value

Note that parameters may be specified in any order.

Objedit syntax:

```
[VERTCS,] vertcs-code, "name", hvdatum-code, linunit-code [, parameter-code, value] ...
```

Examples:

```
<VERTCS

code="vertcs-code"

name="name"

hvdatum="hvdatum-code"

linunit="linunit-code"

>

<PARAMETER code="parameter-code" value="value" />
...

</VERTCS>
```

```
<VERTCS
      code="3855"
      name="EGM2008_Geoid"
      hvdatum="1027"
      linunit="9001"
      <PARAMETER code="100006" value="0.0"/>
      <PARAMETER code="100007" value="1.0"/>
</VERTCS>
<VERTCS
      code="PE_VCS_EGM2008_GEOID"
      name="EGM2008_Geoid"
      hvdatum="PE_VERTD_EGM2008_GEOID"
      linunit="PE U METER"
      <PARAMETER code="PE_PAR_VERTICAL_SHIFT" value="0.0"/>
      <PARAMETER code="PE_PAR_DIRECTION" value="1.0"/>
</VERTCS>
```

HVCOORDSYS – horizontal/vertical coordinate reference systems

Contents:

- hvcoordsys-code
- Name
- Coordsys-code (geogcs-code or projcs-code) or 0
- Vertcs-code or 0

Objedit syntax:

```
[HVCOORDSYS,] coordsys-code, "name", coordsys-code, vertcs-code
```

Examples:

```
<HVCOORDSYS

code="hvcoordsys-code"

name="name"

coordsys="coordsys-code"

vertcs="vertcs-code"
/>
```

DATUM – horizontal datums

Contents:

- datum-code
- Name
- Spheroid-code

Objedit syntax:

```
[DATUM,] datum-code-code, "name", spheroid-code
```

Examples:

Xmledit syntax:

```
<DATUM

code="datum-code"

name="name"

spheroid="spheroid-code"
/>
```

```
<DATUM
code="1024"
name="D_Hungarian_Datum_1909"
spheroid="7004"

/>

<DATUM
code="PE_D_HUNGARIAN_DATUM_1909"
name="D_Hungarian_Datum_1909"
spheroid="PE_S_BESSEL_1841"
/>
```

VDATUM – vertical datums

Contents:

- vdatum-code
- Name

Objedit syntax:

```
[VDATUM,] datum-code-code, "name"
```

Examples:

```
1027, "EGM2008_Geoid"

PE_VERTD_EGM2008_GEOID, "EGM2008_Geoid"
```

Xmledit syntax:

```
<VDATUM
code="vdatum-code"
name="name"
/>
```

```
<VDATUM
code="1027"
name="EGM2008_Geoid"
/>

<VDATUM
code="PE_VERTD_EGM2008_GEOID"
name="EGM2008_Geoid"
/>
```

GEOGTRAN – geographic transformations

Contents:

- Geogtran-code
- Name
- Geogcs1-code
- Geogcs2-code
- Method-code
- Parameter ... (optional)
 - o Parameter-code
 - Value or dataset-name

Note that parameters may be specified in any order

Objedit syntax:

```
[GEOGTRAN,] geogtran-code, "name",
geogcs1-code-code, geogcs2-code, method-code
[, parameter-code, value] ...
```

```
1024, "MGI To ETRS 1989 4", 4312, 4258, 9607, \
      100040, 601.705, \
      100041, 84.263, \
      100042, 485.227, \
      100043, -4.7354, \
      100044, -1.3145, \
      100045, -5.393, \
      100046, -2.3887
PE GT MGI TO ETRS 1989 4, \
      "MGI To ETRS 1989 4",\
      PE GCS MGI, \
      PE GCS ETRS 1989, \
      PE MTH COORDINATE FRAME, \
      PE_PAR_X_AXIS_TRANSLATION, 601.705, \
      PE PAR Y AXIS TRANSLATION, 84.263, \
      PE PAR Z AXIS TRANSLATION, 485.227, \
      PE PAR X_AXIS_ROTATION, -4.7354, \
      PE PAR Y AXIS ROTATION, -1.3145, \
      PE PAR Z AXIS ROTATION, -5.393, \
      PE PAR SCALE DIFFERENCE, -2.3887
```

```
PE GT RGNC 1991 93 TO NEA74 NOUMEA 4 NTV2, \
            "RGNC_1991-93_To_NEA74_Noumea 4 NTv2", \
            PE GCS RGNC 1991 93,\
            PE GCS NEA74 NOUMEA, \
            PE MTH NTV2,\
            PE_PAR_NAME_DATASET, "Dataset_france/RGNC1991_NEA74Noumea"
      PE GT MAKASSAR JAKARTA TO MAKASSAR, \
            "Makassar Jakarta To Makassar", \
            PE GCS MAKASSAR JAKARTA, \
            PE GCS MAKASSAR, \
            PE MTH LONGITUDE ROTATION
Xmledit syntax:
      <GEOGTRAN
            code="geogtran-code"
            name="name"
            geogcs1="geogcs1-code"
            geogcs2="geogcs2-code"
            method="method-code"
            <PARAMETER code="parameter-code" value="value" />
      </GEOGTRAN>
Examples:
      <GEOGTRAN
            code="1024"
            name="MGI To ETRS 1989 4"
            geogcs1="4312"
            geogcs2="4258"
            method="9607"
            <PARAMETER code="100040" value="601.705"/>
            <PARAMETER code="100041" value="84.263"/>
            <PARAMETER code="100042" value="485.227"/>
            <PARAMETER code="100043" value="-4.7354"/>
            <PARAMETER code="100044" value="-1.3145"/>
            <PARAMETER code="100045" value="-5.393"/>
            <PARAMETER code="100046" value="-2.3887"/>
      </GEOGTRAN>
```

```
<GEOGTRAN
      code="PE GT MGI TO ETRS 1989 4"
      name="MGI To ETRS 1989 4"
      geogcs1="PE GCS MGI"
      geogcs2="PE GCS ETRS 1989"
      method="PE MTH COORDINATE FRAME"
      <PARAMETER code="PE_PAR_X_AXIS_TRANSLATION"
                  value="601.705"/>
      <PARAMETER code="PE PAR Y AXIS TRANSLATION"
                  value="84.263"/>
      <PARAMETER code="PE PAR Z AXIS TRANSLATION"
                  value="485.227"/>
      <PARAMETER code="PE PAR X AXIS ROTATION" value="-4.7354"/>
      <PARAMETER code="PE_PAR_Y_AXIS_ROTATION" value="-1.3145"/>
      <PARAMETER code="PE PAR Z AXIS ROTATION" value="-5.393"/>
      <PARAMETER code="PE_PAR_SCALE_DIFFERENCE" value="2.3887"/>
</GEOGTRAN>
<GEOGTRAN
      code="PE_GT_RGNC_1991_93_TO_NEA74_NOUMEA 4 NTV2"
      name="RGNC 1991-93 To NEA74 Noumea 4 NTv2"
      geogcs1="PE GCS RGNC 1991 93"
      geogcs2="PE GCS NEA74 NOUMEA"
      method="PE_MTH_NTV2"
      <PARAMETER code="PE PAR NAME DATASET"
                  value="Dataset france/RGNC1991 NEA74Noumea"/>
</GEOGTRAN>
<GEOGTRAN
      code="PE GT MAKASSAR JAKARTA TO MAKASSAR"
      name="Makassar Jakarta To Makassar"
      geogcs1="PE GCS MAKASSAR JAKARTA"
      geogcs2="PE GCS MAKASSAR"
      method="PE MTH LONGITUDE ROTATION"
/>
```

VERTTRAN – vertical transformations

Contents:

- Verttran-code
- Name
- Coordsys-code (geogcs-code or projcs-code) or 0
- Vertcs1-code
- Vertcs2-code
- VTMethod-code
- Parameter ... (optional)
 - o Parameter-code
 - Value or dataset-name

Note that parameters may be specified in any order.

Objedit syntax:

```
[VERTTRAN,] verttran-code, "name",
coordsys-code,
vertcs1-code-code, vertcs2-code, vtmethod-code
[, parameter-code, value] ...
```

```
4441, "NZVD2009 To One Tree Point 1", 0, 4440, 5767, 129616, \
      100060, 0.06
PE VT NZVD2009 TO ONE TREE POINT 1, \
      "NZVD2009 To One Tree Point 1", \
      0, \
      PE VCS NZVD2009, \
      PE_VCS_ONE_TREE_POINT, \
      PE VTMTH VERTICAL OFFSET, \
      PE PAR VERTICAL OFFSET, 0.06
PE VT NGVD29 TO NAVD88 NAD27 1 WEST, \
      "NGVD29_To_NAVD88_NAD27_1_West", \
      PE GCS NAD 1927,\
      PE VCS NGVD 1929,\
      PE VCS NAVD 1988,\
      PE VTMTH VERTCON, \
      PE PAR NAME DATASET, "Dataset vertconw.94"
```

```
<VERTTRAN
            code="verttran-code"
            name="name"
            coordsys="coordsys-code"
            vertcs1="vertcs1-code"
            vertcs2="vertcs2-code"
            method="method-code"
            <PARAMETER code="parameter-code" value="value" />
      </VERTTRAN>
Examples:
      <VERTTRAN
            code="4441"
            name="NZVD2009 To One Tree Point 1"
            vertcs1="4440"
            vertcs2="5767"
            vtmethod="129616"
            <PARAMETER code="100060" value="0.06"/>
      </VERTTRAN>
      <VERTTRAN
            code="PE_VT_NZVD2009_TO_ONE_TREE_POINT 1"
            name="NZVD2009 To One Tree Point 1"
            vertcs1="PE_VCS_NZVD2009"
            vertcs2="PE VCS ONE TREE POINT"
            vtmethod="PE_VTMTH_VERTICAL_OFFSET"
            <PARAMETER code="PE_PAR_VERTICAL_OFFSET" value="0.06"/>
      </VERTTRAN>
```

ANGUNIT – angular units of measure

Contents:

- Angunit-code
- Name
- Conversion factor (radians per unit)
- Optional section (UTF8-encoded)
 - o Display name
 - o Plural name
 - Abbreviation

Objedit syntax:

```
[ANGUNIT,] angunit-code, "name", conversion-factor [, "display", "plural", "abbr"]
```

Examples:

```
<ANGUNIT

code="angunit-code"

name="name"

factor="conversion-factor"

[ display="display-name" ]

[ plural="plural-name" ]

[ abbr="abbreviation" ]
```

```
<ANGUNIT code="9101" name="Radian" factor="1.0" />

<ANGUNIT

code="PE_U_DEGREE"

name="Degree"

factor="0.0174532925199433"

display="Degree"

plural="Degrees"

abbr="deg"

/>
```

LINUNIT - linear units of measure

Contents:

- Linunit-code
- Name
- Conversion factor (meters per unit)
- Optional section (UTF8-encoded)
 - Display name
 - o Plural name
 - Abbreviation
 - Areaunit reference code or 0

Objedit syntax:

```
[LINUNIT,] linunit-code, "name", conversion-factor [, "display", "plural", "abbr", areaunit-reference]
```

Examples:

```
<LINUNIT

code="linunit-code"

name="name"

factor="conversion-factor"

[ display="display-name" ]

[ plural="plural-name" ]

[ abbr="abbreviation" ]

[ refcode="areaunit-reference" ]
```

```
<LINUNIT code="9001" name="Meter" factor="1.0" />

<LINUNIT

code="PE_U_CENTIMETER"

name="Centimeter"

factor="0.01"

display="Centimeter"

plural="Centimeters"

abbr="cm"

refcode="PE_AU_SQUARE_CENTIMETER"
/>
```

AREAUNIT – area units of measure

Contents:

- Areaunit-code
- Name
- Conversion factor (square-meters per unit)
- Optional section (UTF8-encoded)
 - Display name
 - o Plural name
 - Abbreviation
 - Linunit reference code or 0

Objedit syntax:

```
[AREAUNIT,] areaunit-code, "name", conversion-factor [, "display", "plural", "abbr", linunit-reference]
```

Examples:

```
<AREAUNIT
     code="areaunit-code"
     name="name"
     factor="conversion-factor"
     [ display="display-name" ]
     [ plural="plural-name" ]
     [ abbr="abbreviation" ]
     [ refcode="linunit-reference" ]</pre>
```

```
<AREAUNIT code="109404" name="Square_Meter" factor="1.0" />
<AREAUNIT code="PE_AU_SQUARE_FOOT_US"</pre>
      name="Square_Foot_US"
      factor="0.09290341161327487"
      display="Square US Survey Foot"
      plural="Square US Survey Feet"
      abbr="sq ftUS"
      refcode="PE U FOOT US"
/>
<AREAUNIT code="PE_AU_ACRE_US" name="Acre_US"</pre>
      factor="4046.87260987425"
      display="US Acre"
       plural="US Acres"
      abbr="acUS"
      refcode="0"
/>
```

SCALEUNIT – scale units of measure

Contents:

- Scaleunit-code
- Name
- Conversion factor (to UNITY)
- Optional section (UTF8-encoded)
 - o Display name
 - o Plural name
 - Abbreviation

Objedit syntax:

```
[SCALEUNIT,] scaleunit-code, "name", conversion-factor [, "display", "plural", "abbr"]
```

Examples:

```
9202, "Parts_Per_Million", 0.000001

PE_SU_PPM, "Parts_Per_Million", 0.000001
```

```
<SCALEUNIT

code="scaleunit-code"

name="name"

factor="conversion-factor"

[ display="display-name" ]

[ plural="plural-name" ]

[ abbr="abbreviation" ]
```

```
<SCALEUNIT
code="9202"
name="Parts_Per_Million"
factor="0.000001"

/>

<SCALEUNIT
code="PE_SU_PPM"
name="Parts_Per_Million"
factor="0.000001"

/>
```

PRIMEM – prime meridians

Contents:

- primem-code
- Name
- Longitude (degrees +east/-west from IRM/Greenwich) Value must be in the range -180 to +180.

Objedit syntax:

```
[PRIMEM,] primem-code, "name", longitude
```

Examples:

```
8901, "Greenwich", 0.0
PE_PM_GREENWICH, "Greenwich", 0.0
PE_PM_PARIS, "Paris", 2.337229166666667
```

Xmledit syntax:

```
<PRIMEM
code="primem-code"
name="name"
longitude="longitude"
/>
```

SPHEROID – spheroids (ellipsoids)

Contents:

- spheroid-code
- Name
- Semi-major axis (in meters)
- Inverse flattening Value must be 0 (if a sphere) or greater than 1.

Objedit syntax:

```
[SPHEROID,] spheroid-code, "name", semi-major-axis, inv-flattening
```

Examples:

```
1024, "CGCS2000", 6378137.0, 298.257222101

PE_S_CGCS2000, "CGCS2000", 6378137.0, 298.257222101

PE_S_SPHERE, "Sphere", 6371000.0, 0.0
```

Xmledit syntax:

```
<SPHEROID

code="spheroid-code"

name="name"

axis="semi-major-axis"

flattening="inverse-flattening"
/>
```

EXTENT – extents (areas-of-use)

An EXTENT defines an area-of-interest by specifying the lower-left and upper-right latitude/longitude corners of a bounding box enclosing the area. These values are in degrees with an assumed prime meridian of Greenwich. The area-code is not a WKID; there is a separate table (the <u>area-code table</u>) that associates WKIDs and area-codes. Latitude values range from -90 to +90 degrees. Longitude values range from -180 to +180 degrees. Note that an extent may span the dateline, so the left longitude may be greater than the right longitude.

Most of the latitude/longitude values in both the Esri and EPSG datasets have a precision at most of .01 degrees. This corresponds to a distance (at the equator) of over 1KM, which is much greater than any datum shift. Thus, datum shifts are ignored for these values. In other words, the latitude/longitude values are considered valid in any geographic coordinate system.

NOTE: The order of latitude/longitude values in this record is different from the values in the legacy (pre-version 10.4) METADATA record. See Appendix D for details.

Contents:

- Area-code
- Area-name
- South-latitude (slat)
- North-latitude (nlat)
- Left-longitude (llon)
- Right-longitude (rlon)

Objedit syntax:

[EXTENT,] area-code, "name", slat, nlat, llon, rlon

Examples:

1024, "Afghanistan", 29.4, 38.48, 60.5, 74.92

```
<EXTENT
             areacode="area-code"
             name="area-name"
             slat="south-latitude"
             nlat="north-latitude"
             llon="left-longitude"
             rlon="right-longitude"
      />
Examples:
      <EXTENT
             areacode="1024"
             name="Afghanistan"
             slat="29.4"
             nlat="38.48"
             llon="60.5"
             rlon="74.92"
      />
```

Record formats for non-data tables

The records for non-data types all have the same syntax for each object-type. Note that in the descriptions and examples below, extra whitespace and newlines are added for clarity.

CODECHANGE – code-changes

A CODECHANGE record describes a new code that should be used instead of a given code when doing any subsequent lookups. Code-changes do not "chain"; you cannot have a record showing "A \rightarrow B" and another showing "B \rightarrow C" and expect A to change to C. In such a case, the former record should be changed to "A \rightarrow C".

Code changes can occur due to the following:

- There is a change in authority. For instance, Esri adds a projected CRS using an Esri-range WKID. Later, the same projected CRS is added to the EPSG geodetic registry with an EPSG-range WKID. In this case, the Esri WKID is marked as a code change to the EPSG WKID.
- There is a substantial error in an EPSG entry. In this case, EPSG will mark the
 entry as deprecated, and replace it with a corrected entry. The corrected entry
 will have a new EPSG WKID, and the old WKID is marked as a code change to the
 new WKID.
- Esri implemented an EPSG entry incorrectly. If it is mathematically wrong, the wrong entry is copied to an Esri-range WKID and has its name changed. The EPSG entry is corrected.

Contents:

- old-code
- new-code

Objedit syntax:

[OBJECT-TYPE,] old-code, new-code

```
DATUM, 106001, PE_D_WGS_1966
PROJCS, 102100, 3857
102100, PE PCS WGS 1984 WEB MERCATOR AUXSPHERE
```

```
<OBJECT-TYPE
            old code="old-code"
            new_code="new-code"
     />
Examples:
      <DATUM
            old_code="106001"
            new_code="PE_D_WGS_1966"
     />
      <PROJCS
            old_code="102100"
            new_code="3857"
     />
      <PROJCS
            old_code="102100"
            new_code="PE_PCS_WGS_1984_WEB_MERCATOR_AUXSPHERE"
      />
```

DEPRECATED – deprecations

A DEPRECATED record describes a non-normal status associated with a WKID. A status of "discontinued" means the use of that WKID is deprecated and there is probably a better WKID to use. A status of "dead" means that WKID should not be used at all and is only kept for backward compatibility. Note that "dead" WKIDs have no macro (DEFSTRING entry) associated with them.

A status of "code-change" will override any entry in this table. For example, GEOGTRAN 8260 is a code-change to 1328, and 1328 is discontinued. Thus, 8260 will have a status of "code-change" and 1328 will have a status of "discontinued".

Contents:

- code
- status ("discontinued" or "dead")

Objedit syntax:

```
[OBJECT-TYPE,] code, "status"

Examples:

GEOGTRAN, 1086, dead
PE GT SAMBOJA TO WGS 1984, discontinued
```

Xmledit syntax:

```
<OBJECT-TYPE
code="code"
status="status"
/>
```

```
<GEOGTRAN
code="1086"
status="dead"
/>

<GEOGTRAN
code="PE_GT_SAMBOJA_TO_WGS_1984"
status="discontinued"
/>
```

SYNONYM – synonyms

SYNONYM records are used in two different ways:

- The PE factory can look up a database record by name as well as by WKID. If a name-lookup is done, first a check is made to see if the name is actually a synonym, and, if so, the actual, or canonical, name is used to do the lookup.
- When processing WKT strings, all names are checked to see if they are a synonym. If the name is a synonym, the canonical name is stored in the object so comparisons will work properly. If a new WKT is produced from such an object, the original synonym is written out.

The "mistake" field indicates that there was a mistake in the original name. In such a case, the synonym-name is not written back out in a WKT string. If "mistake" is not specified, it is assumed to be false.

A record may also have an authority associated with it. A null or empty authority means that this synonym should always be checked. If an authority is specified, then that synonym will only be checked if you are processing a WKT string using that authority.

Contents:

- synonym-name
- actual-name
- [mistake T[RUE] or F[ALSE]]
- [authority]

Objedit syntax:

```
[OBJECT-TYPE,] "syn-name", "act-name" [, mistake [, "authority"]]
```

```
GEOGCS, "AGD66", "Australian_1966", F, "EPSG"

"GCS K0 1949", "GCS Kerguelen Island 1949", TRUE
```

```
<OBJECT-TYPE
            syn_name="synonym-name"
            act_name="actual-name"
            [ mistake="T[RUE]|F[ALSE]" ]
            [ authority="authority" ]
      />
Examples:
      <GEOGCS
            syn_name="AGD66"
            act_name="Australian_1966"
            mistake="FALSE"
            authority="EPSG"
      />
      <GEOGCS
            syn_name="GCS_K0_1949"
            act_name="GCS_Kerguelen_Island_1949"
            mistake="TRUE"
      />
```

CODERANGE – code-ranges

A CODERANGE entry describes a range of valid WKIDs for a given object-type. The "authority" field names the source for this range, and there may be an optional version associated with it. Code-ranges for a particular object-type may not overlap. User-defined code-ranges are processed as additions only to the list of code-ranges. A user entry may not override or overlap an already defined entry. See the section on Code-ranges for more details.

Contents:

- First-code
- Last-code
- Authority
- [Version]

Objedit syntax:

```
[OBJECT-TYPE,] first-code, last-code, "authority" [, "version"]
```

Examples:

```
PROJCS, 50000, 52999, "SHELL"

PROJCS, 302000, 302999, "Tin Man Oil", "12.6"
```

Xmledit syntax:

```
<OBJECT-TYPE
    min_code="first-code"
    max_code="last-code"
    authority="authority"
    [ version="version" ]
/>
```

```
<PROJCS
min_code="50000"
max_code="52999"
authority="SHELL"
/>
```

```
<PROJCS
min_code="302000"
max_code="302999"
authority="Tin Man Oil"
version="12.6"
/>
```

DISPNAME – display names

All objects have a name (which may be empty). This name is always an ASCII name, and it is used when comparing objects. An object may also have a display name, which may be a Unicode name. This display-name is defined in a DISPNAME record.

A display-name table is typically used when localizing database entries. A DISPNAME record doesn't change the object the WKID refers to, it simply adds a display-name to the object. The display-name is ignored when comparing objects.

Contents:

- code
- UTF-8-encoded display name

Objedit syntax:

```
[OBJECT-TYPE,] code, disp-name
```

Examples:

```
PROJCS, PE_PCS_TOKYO_JAPAN_9, "平面直角座標系 第 9 系"
```

Xmledit syntax:

```
<OBJECT-TYPE

code="code"

name="display-name"
/>
```

```
<PROJCS
code="PE_PCS_TOKYO_JAPAN_9"
name="平面直角座標系 第 9 系"
/>
```

DESCRIPTION – descriptions

The DESCRIPTION table provides an extended description for an object in addition to its normal name. This description may be localized.

Contents:

- code
- UTF8-encoded description

Objedit syntax:

```
[OBJECT-TYPE,] code, description
```

Examples:

```
GEOGCS, 3819, "Hungarian Datum 1909" PE_GCS_HD1909, "Hungarian Datum 1909"
```

Xmledit syntax:

```
<OBJECT-TYPE
code="code"
desc="description"
/>
```

```
<GEOGCS
code="3819"
desc="Hungarian Datum 1909"
/>

<GEOGCS
code="PE_GCS_HD1909"
desc="Hungarian Datum 1909"
/>
```

DEFSTRING – macro definitions

The DEFSTRING table provides users with the ability to define their own macros for a particular code. This macro can then be used in the various other tables instead of the numeric value. This makes for more readable data files.

It is recommended that user-defined macros begin with a different prefix than "PE_", as that makes it easy to recognize whether a macro is a PE-defined one or a user-defined one. For example, the Tin Man Oil Company might use TMO_WELL_20 rather than PE_WELL_20 or just WELL_20.

Contents:

- code
- macro-name

Objedit syntax:

```
[OBJECT-TYPE,] code, macro-name
```

Examples:

```
GEOGCS, 3819, PE_GCS_HD1909
PROJCS, 202001, TMO WELL 20
```

Xmledit syntax:

```
<OBJECT-TYPE
code="code"
macro="macro-name"
/>
```

```
<GEOGCS
code="3819"
macro=" PE_GCS_HD1909"
/>

<PROJCS
code="202001"
macro=" TMO_WELL_20"
/>
```

AREAINFO – coordinate-system dialog entries

The AREAINFO tables describe the entries used to create the "Coordinate Systems" dialog in ArcGIS for Desktop and ArcGIS Pro. These tables take the place of the *.prj files in the "Coordinate Systems" folder in pre-10.0 versions of ArcMap. As such, the "category" corresponds to the folder-tree the file is in, and the "area-name" corresponds to the filename. Both of these fields are localizable. Multiple records may reference the same WKID.

Unlike all other tables in the database, which are considered indexed by WKID, these tables have no order associated with them. The intent is to show these records in some logical (usually sorted by category/area-name) order, but since the names may be localized, we have no way of knowing how to sort them.

Thus, these tables are simply read in and presented to the user in the same order they appear in the tables. Thus, any user-defined entries will appear ahead of any "builtin" entries. When localizing, the practice is to localize the entire table rather than just selected entries; otherwise you will see duplicate entries appear in the list. In this case, you would load the user-defined table and turn off the loading of the builtin areainfo table. See Example 3 in the section Defining the databases to load for an example of doing this.

The "category" field may contain sub-categories, separated by a slash (/). There is a max of eight sub-categories.

NOTE: The order of category/area-name values in this record is different from the values in the legacy (pre-version 10.4) AREAINFO record. See <u>Appendix D</u> for details.

Contents:

- code
- UTF8-encoded category
- UTF8-encoded area-name

Objedit syntax:

```
[OBJECT-TYPE,] code, category, area-name
```

```
GEOGCS, PE_GCS_ABIDJAN_1987, \
"Geographic Coordinate Systems/Africa", \
"Abidjan 1987"
```

AREACODE – areacodes

The AREACODE tables associate a WKID with an area-code. Many WKIDs may reference the same area-code. The "accuracy" field is only used for transformations (GEOGTRAN and VERTTRAN). They should be omitted in coordinate system tables, although they are ignored if present. If an accuracy is not specified for a transformation, a value of PE ACCURACY NONE (999.0) is used.

Contents:

- WKID
- area-code
- [accuracy in meters (GEOGTRAN or VERTTRAN only)]

Objedit syntax:

```
[OBJECT-TYPE,] WKID, area-code [, accuracy]
```

Examples:

```
GEOGTRAN, PE_GT_MGI_TO_ETRS_1989_4, 1543, 1.0
PE_PCS_ANGUILLA_1957_BRITISH_W_INDIES, 3214
```

Xmledit syntax:

```
<OBJECT-TYPE

code="WKID"

areacode="area-code"

[ accuracy="accuracy" ]
/>
```

```
<GEOGTRAN

code="PE_GT_MGI_TO_ETRS_1989_4"

areacode="1543"

accuracy="1.0"

/>

<PROJCS

code="PE_PCS_ANGUILLA_1957_BRITISH_W_INDIES"

areacode="3214"

/>
```

VERSION – versions

The VERSION tables provide the ability to specify particular authority/versions for each WKID. When a lookup of a WKID is made, the authority and version for that WKID is determined by the following steps:

- 1. Use the information in a VERSION entry for that WKID if there is one.
- 2. Use the default AUTHORITY and VERSION defined for a database, if specified.
- 3. Use the AUTHORITY and VERSION information in the CODERANGE entry for that WKID, if non-empty.
- 4. Use "CUSTOM" as the authority and NULL for the version.

Note: Currently, ArcGIS for Desktop and ArcGIS Pro displays only any authority name (not the version).

Contents:

- code
- authority
- [version]

Objedit syntax:

```
[OBJECT-TYPE,] code, authority [, version]
```

Examples:

```
GEOGCS, PE_GCS_HD1909, "EPSG", "6.17.1"
```

Xmledit syntax:

```
<OBJECT-TYPE
code="code"
authority="authority"
[ version="version" ]
/>
```

```
<GEOGCS
code="PE_GCS_HD1909"
authority="EPSG"
version="6.17.1"
/>
```

EXCEPTION – gtlist/vtlist exceptions

The EXCEPTION tables provide the ability to specify particular transformations (geographic or vertical) for a given set of coordinate systems. This will override the automatic choosing of a default transformation. This table is only used if the user did not specify an extent for his data whan doing a transformation lookup.

Contents:

- code1 (GCS or VCS code)
- code2 (GCS or VCS code)
- 1st grid-based transformation code (GTF or VTF)
- 1st grid-based direction (0 = forward, 1 = inverse)
- 2nd grid-based transformation code if needed (GTF or VTF or 0)
- 2nd grid-based direction (0 = forward, 1 = inverse)
- [1st non-grid-based transformation code (GTF or VTF)]
- [1st non-grid-based direction (0 = forward, 1 = inverse)]
- [2nd non-grid-based transformationcode if needed (GTF or VTF or 0)]
- [2nd non-grid-based direction (0 = forward, 1 = inverse)]

If the non-grid-based entries are not present, they are assumed to be the same as the grid-based entries.

Objedit syntax:

```
[OBJECT-TYPE,] code1, code2,
grid-code1, grid-dir1, grid-code2, grid-dir2,
non-grid-code1, non-grid-dir1, non-grid-code2, non-grid-dir2
```

```
<OBJECT-TYPE
             code1="code1"
             code2="code2"
             grid-code1="grid_code1"
             grid-dir1="grid-dir1"
             grid-code2="grid-code2"
             grid-dir2="grid-dir2"
             [ nong-code1="non-grid_code1" ]
             [ nong-dir1="non-grid-dir1" ]
             [nong-code2="non-grid-code2"]
             [ nong-dir2="non-grid-dir2" ]
      />
Examples:
      <GEOGTRAN
             code1="PE GCS AGD 1966"
             code2="PE_GCS_GDA_1994"
             grid-code1="PE_GT_AGD_1966_TO_GDA_1994_11_NTV2"
             grid-dir1="1803"
             grid-code2="0"
             grid-dir2="0"
             nong-code1="PE_GT_AGD_1966_TO_GDA_1994_12"
             nong-dir1="15979"
             nong-code2="0"
             nong-dir2="0"
      />
```

GCSVCS – GCS-VCS equivalences

The GCSVCS table is used to correlate GCS and VCS codes.

Contents:

- gcs_code
- vcs_code

Objedit syntax:

```
[OBJECT-TYPE,] gcs_code, vcs_code
```

Examples:

Xmledit syntax:

```
<OBJECT-TYPE
gcs_code="gcs-code"
vcs_code="vcs-code" />
```

```
<GEOGTRAN
code1="PE_GCS_AGD_1966"
code2="PE_GCS_GDA_1994"
/>
```

Appendix A: Selected macros and well-known IDs

Linear units

Name	Macro	WKID
150 kilometer length	PE_U_KM150	109031
50 kilometer length	PE_U_KM50	109030
British Foot (1936)	PE_U_FOOT_BRITISH_1936	9095
Centimeter	PE_U_CENTIMETER	109006
Chain (Benoit 1895 A)	PE_U_CHAIN_BENOIT_A	9052
Chain (Benoit 1895 B)	PE_U_CHAIN_BENOIT_B	9062
Chain (Clarke)	PE_U_CHAIN_CLARKE	9038
Chain (Sears 1922 Truncated)	PE_U_CHAIN_SEARS_1922_TRUNC	9301
Chain (Sears)	PE_U_CHAIN_SEARS	9042
Clarke's foot	PE_U_FOOT_CLARKE	9005
Decimeter	PE_U_DECIMETER	109005
Desktop Publishing Point (1/72 of an international inch)	PE_U_DTP_POINT	109016
Fathom	PE_U_FATHOM	9014
Foot (1865)	PE_U_FOOT_1865	9070
Foot (Benoit 1895 A)	PE_U_FOOT_BENOIT_A	9051
Foot (Benoit 1895 B)	PE_U_FOOT_BENOIT_B	9061
Foot (Sears 1922 Truncated)	PE_U_FOOT_SEARS_1922_TRUNC	9300
German legal meter	PE_U_METER_GERMAN	9031
Gold Coast Foot	PE_U_FOOT_GOLD_COAST	9094
Indian foot (1937)	PE_U_FOOT_INDIAN_1937	9081
Indian foot (1962)	PE_U_FOOT_INDIAN_1962	9082
Indian foot (1975)	PE_U_FOOT_INDIAN_1975	9083
Indian geodetic foot	PE_U_FOOT_INDIAN	9080
Indian yard	PE_U_YARD_INDIAN	9084
Indian yard (1937)	PE_U_YARD_INDIAN_1937	9085
Indian yard (1962)	PE_U_YARD_INDIAN_1962	9086
Indian yard (1975)	PE_U_YARD_INDIAN_1975	9087
International Chain	PE_U_CHAIN	9097
International foot	PE_U_FOOT	9002
International inch	PE_U_INCH	109008
International Link	PE_U_LINK	9098
International meter	PE_U_METER	9001
International nautical mile	PE_U_NAUTICAL_MILE	9030
International rod	PE_U_ROD	109010
International Yard	PE_U_YARD	9096
Kilometer	PE_U_KILOMETER	9036

Link (Benoit 1895 A)	PE_U_LINK_BENOIT_A	9053
Link (Benoit 1895 B)	PE_U_LINK_BENOIT_B	9063
Link (Clarke's ratio)	PE_U_LINK_CLARKE	9039
Link (Sears 1922 Truncated)	PE_U_LINK_SEARS_1922_TRUNC	9302
Link (Sears)	PE_U_LINK_SEARS	9043
Micrometer	PE_U_MICROMETER	109017
Millimeter	PE_U_MILLIMETER	109007
Nanometer	PE_U_NANOMETER	109018
Sears' foot	PE_U_FOOT_SEARS	9041
Smoot, Height of Oliver Smoot, used to measure the Harvard Bridge	PE_U_SMOOT	109014
Statute mile	PE_U_MILE_STATUTE	9093
UK nautical mile (pre-1970)	PE_U_NAUTICAL_MILE_UK	109013
US nautical mile (pre-1954)	PE_U_NAUTICAL_MILE_US	109012
US survey chain	PE_U_CHAIN_US	9033
US survey foot	PE_U_FOOT_US	9003
US survey inch	PE_U_INCH_US	109009
US survey link	PE_U_LINK_US	9034
US survey mile	PE_U_MILE_US	9035
US survey rod	PE_U_ROD_US	109011
US survey yard	PE_U_YARD_US	109002
Vara, old Spanish unit of distance used in Texas (33 1/3 inches)	PE_U_VARA_US	109015
Yard (Benoit 1895 A)	PE_U_YARD_BENOIT_A	9050
Yard (Benoit 1895 B)	PE_U_YARD_BENOIT_B	9060
Yard (Clarke)	PE_U_YARD_CLARKE	9037
Yard (Sears 1922 Truncated)	PE_U_YARD_SEARS_1922_TRUNC	9099
Yard (Sears)	PE_U_YARD_SEARS	9040

Angular units

Name	Macro	WKID
Arc-minute	PE_U_MINUTE	9103
Arc-second	PE_U_SECOND	9104
Centesimal minute (1/100th Gon (Grad))	PE_U_MINUTE_CENTESIMAL	9112
Centesimal second (1/10000th Gon (Grad))	PE_U_SECOND_CENTESIMAL	9113
Degree	PE_U_DEGREE	9102
Gon (angle subtended by 1/400 circle)	PE_U_GON	9106
Grad (angle subtended by 1/400 circle)	PE_U_GRAD	9105
Microradian (1e-6 radian)	PE_U_MICRORADIAN	9109
Mil (angle subtended by 1/6400 circle)	PE_U_MIL_6400	9114

Milliarcsecond (1/1000 Arc-second)	PE_U_MILLIARCSECOND	1031
Radian	PE_U_RADIAN	9101

Map projections

Name	Macro	WKID
Aitoff	PE_PRJ_AITOFF	43043
Albers	PE_PRJ_ALBERS	43007
Azimuthal Equidistant	PE_PRJ_AZIMUTHAL_EQUIDISTANT	43032
Bartholomew Times	PE_PRJ_TIMES	43048
Behrmann	PE_PRJ_BEHRMANN	43017
Berghaus Star	PE_PRJ_BERGHAUS_STAR	43060
Bonne	PE_PRJ_BONNE	43024
Compact_Miller	PE_PRJ_COMPACT_MILLER	43080
Cassini	PE_PRJ_CASSINI	43028
Craster Parabolic	PE_PRJ_CRASTER_PARABOLIC	43046
Cylindrical Equal Area	PE_PRJ_CYLINDRICAL_EQAREA	43034
Double Stereographic	PE_PRJ_DOUBLE_STEREOGRAPHIC	43038
Eckert Greifendorff	PE_PRJ_GREIFENDORFF	43073
Eckert I	PE_PRJ_ECKERT_I	43015
Eckert II	PE_PRJ_ECKERT_II	43014
Eckert III	PE_PRJ_ECKERT_III	43013
Eckert IV	PE_PRJ_ECKERT_IV	43012
Eckert V	PE_PRJ_ECKERT_V	43011
Eckert VI	PE_PRJ_ECKERT_VI	43010
Equidistant Conic	PE_PRJ_EQUIDISTANT_CONIC	43027
Equidistant Cylindrical	PE_PRJ_EQUIDISTANT_CYLINDRICAL	43002
Equidistant Cylindrical Ellipsoidal	PE_PRJ_EQUIDISTANT_CYLINDRICAL_ELLIPSOIDAL	43061
Flat Polar Quartic	PE_PRJ_FLAT_POLAR_QUARTIC	43045
Fuller	PE_PRJ_FULLER	43052
Gall Stereographic	PE_PRJ_GALL_STEREOGRAPHIC	43016
Gauss-Krüger	PE_PRJ_GAUSS_KRUGER	43005
Gnomonic	PE_PRJ_GNOMONIC	43047
Gnomonic Ellipsoidal	PE_PRJ_GNOMONIC_ELLIPSOIDAL	43065
Goode Homolosine	PE_PRJ_GOODE_HOMOLOSINE	43059
Hammer Aitoff	PE_PRJ_HAMMER_AITOFF	43044
Hammer Ellipsoidal	PE_PRJ_HAMMER_ELLIPSOIDAL	43071
Hotine 2 Point Center	PE_PRJ_HOTINE_TWO_POINT_CENTER	43035
Hotine 2 Point Natural Origin	PE_PRJ_HOTINE_TWO_POINT_NATORIGIN	43025

Hotine Azimuth Center	PE_PRJ_HOTINE_AZIMUTH_CENTER	43037
Hotine Azimuth Natural Origin	PE_PRJ_HOTINE_AZIMUTH_NATORIGIN	43036
IGAC Plano Cartesiano	PE_PRJ_IGAC_PLANO_CARTESIANO	43064
Krovak Oblique Lambert Conformal Conic	PE_PRJ_KROVAK	43039
Laborde Oblique Mercator	PE_PRJ_LABORDE	43063
Lambert Azimuthal Equal Area	PE_PRJ_LAMBERT_AZIMUTHAL_EQAREA	43033
Lambert Conformal Conic	PE_PRJ_LAMBERT_CONFORMAL_CONIC	43020
Local	PE_PRJ_LOCAL	43058
Loximuthal	PE_PRJ_LOXIMUTHAL	43023
Mercator	PE_PRJ_MERCATOR	43004
Mercator Variant A	PE_PRJ_MERCATOR_VARIANT_A	43069
Mercator Variant C	PE_PRJ_MERCATOR_VARIANT_C	43070
Miller Cylindrical	PE_PRJ_MILLER_CYLINDRICAL	43003
Mollweide	PE_PRJ_MOLLWEIDE	43009
Natural_Earth	PE_PRJ_NATURAL_EARTH	43077
Natural_Earth_II	PE_PRJ_NATURAL_EARTH_II	43078
New Zealand Map Grid	PE_PRJ_NEW_ZEALAND_MAP_GRID	43040
Ney Modified Conic	PE_PRJ_NEY	43062
Orthographic	PE_PRJ_ORTHOGRAPHIC	43041
Patterson	PE_PRJ_PATTERSON	43079
Plate Carrée	PE_PRJ_PLATE_CARREE	43001
Polar Stereographic Variant A	PE_PRJ_POLAR_STEREOGRAPHIC_VARIANT_A	43066
Polar Stereographic Variant B	PE_PRJ_POLAR_STEREOGRAPHIC_VARIANT_B	43067
Polar Stereographic Variant C	PE_PRJ_POLAR_STEREOGRAPHIC_VARIANT_C	43068
Polyconic	PE_PRJ_POLYCONIC	43021
Quartic Authalic	PE_PRJ_QUARTIC_AUTHALIC	43022
Quartic Authalic Ellipsoidal	PE_PRJ_QUARTIC_AUTHALIC_ELLIPSOIDAL	43072
Rectified Skew Orthomorphic - Center	PE_PRJ_RSO_CENTER	43054
Rectified Skew Orthomorphic - Natural Origin	PE_PRJ_RSO_NATORIGIN	43053
Robinson	PE_PRJ_ROBINSON	43030
Robinson from Arc/INFO Workstation	PE_PRJ_ROBINSON_AI	43057
Sinusoidal	PE_PRJ_SINUSOIDAL	43008
Stereographic	PE_PRJ_STEREOGRAPHIC	43026
Stereographic - North Pole	PE_PRJ_STEREOGRAPHIC_NORTH_POLE	43050

Stereographic - South Pole	PE_PRJ_STEREOGRAPHIC_SOUTH_POLE	43051
Transverse Mercator (Complex)	PE_PRJ_TRANSVERSE_MERCATOR_COMPLEX	43056
Transverse Mercator	PE_PRJ_TRANSVERSE_MERCATOR	43006
Transverse Mercator NGA 2014	PE_PRJ_TRANSVERSE_MERCATOR_NGA_2014	43081
Two-Point Equidistant	PE_PRJ_TWO_POINT_EQUIDISTANT	43031
Van der Grinten I	PE_PRJ_VAN_DER_GRINTEN_I	43029
Vertical Near-Side Perspective	PE_PRJ_VERTICAL_NEAR_SIDE_PERSPECTIVE	43049
Wagner_IV	PE_PRJ_WAGNER_IV	43074
Wagner_V	PE_PRJ_WAGNER_V	43075
Wagner_VII	PE_PRJ_WAGNER_VII	43076
Winkel I	PE_PRJ_WINKEL_I	43018
Winkel II	PE_PRJ_WINKEL_II	43019
Winkel Tripel	PE_PRJ_WINKEL_TRIPEL	43042
World on a Cube	PE_PRJ_CUBE	43055
		•
	Auxiliary Spheres	
Name	Macro	WKID
Azimuthal Equidistant (Auxiliary Sphere)	PE_PRJ_AZIMUTHAL_EQUIDISTANT_AUXS	43132
Eckert IV (Auxiliary Sphere)	PE_PRJ_ECKERT_IV_AUXS	43112
Eckert VI (Auxiliary Sphere)	PE_PRJ_ECKERT_VI_AUXS	43110
Equidistant Cylindrical (Auxiliary Sphere)	PE_PRJ_EQUIDISTANT_CYLINDRICAL_AUXS	43102
Gnomonic (Auxiliary Sphere)	PE_PRJ_GNOMONIC_AUXS	43147
Lambert Azimuthal Equal Area (Auxiliary Sphere)	PE_PRJ_LAMBERT_AZIMUTHAL_EQAREA_AUXS	43133
Mercator (Auxiliary Sphere)	PE_PRJ_MERCATOR_AUXS	43104
Miller Cylindrical (Auxiliary Sphere)	PE_PRJ_MILLER_CYLINDRICAL_AUXS	43103
Mollweide (Auxiliary Sphere)	PE_PRJ_MOLLWEIDE_AUXS	43109
Orthographic (Auxiliary Sphere)	PE_PRJ_ORTHOGRAPHIC_AUXS	43141
Stereographic (Auxiliary	DE DD1 CTEDEOCDADUIC AUVC	43126
Sphere)	PE_PRJ_STEREOGRAPHIC_AUXS	43120

Projection Parameters

Name	Macro	WKID
X0	PE_PAR_FALSE_EASTING	100001

Y0	PE PAR FALSE NORTHING	100002
KO	PE PAR SCALE FACTOR	100003
ALPHA	PE_PAR_AZIMUTH	100004
HEIGHT	PE_PAR_HEIGHT	100005
LAM0	PE_PAR_CENTRAL_MERIDIAN	100010
LAM0	PE_PAR_LONGITUDE_OF_ORIGIN	100011
LAMC	PE_PAR_LONGITUDE_OF_CENTER	100012
LAM1	PE_PAR_LONGITUDE_OF_1ST	100013
LAM2	PE_PAR_LONGITUDE_OF_2ND	100014
PHI0	PE_PAR_CENTRAL_PARALLEL	100020
PHI0	PE_PAR_LATITUDE_OF_ORIGIN	100021
PHIC	PE_PAR_LATITUDE_OF_CENTER	100022
PHI1	PE_PAR_LATITUDE_OF_1ST	100023
PHI2	PE_PAR_LATITUDE_OF_2ND	100024
PHI1	PE_PAR_STANDARD_PARALLEL_1	100025
PHI2	PE_PAR_STANDARD_PARALLEL_2	100026
PHI1	PE_PAR_PSEUDO_STANDARD_PARALLEL_1	100027
AUXS	PE_PAR_AUXILIARY_SPHERE_TYPE	100035
OPTION	PE_PAR_OPTION	100036
XS	PE_PAR_X_SCALE	100037
YS	PE_PAR_Y_SCALE	100038
XYR	PE_PAR_XY_PLANE_ROTATION	100039

Vertical coordinate system parameters

Name	Macro	WKID
Z0	PE_PAR_VERTICAL_SHIFT	100006
DIR (Height +, Depth -)	PE_PAR_DIRECTION	100007

Geographic transformation methods

Name	Macro	WKID
NULL transformation	PE_MTH_NULL	109600
Units change only	PE_MTH_UNIT_CHANGE	109601
Longitude Rotation	PE_MTH_LONGITUDE_ROTATION	9601
Geocentric Translation (3-	PE_MTH_GEOCENTRIC_TRANSLATION	9603
parameter)		
GEOCON	PE_MTH_GEOCON	109614
Molodensky	PE_MTH_MOLODENSKY	9604
Abridged Molodensky	PE_MTH_MOLODENSKY_ABRIDGED	9605
Position Vector (7-parameter)	PE_MTH_POSITION_VECTOR	9606
Coordinate Frame (7-	PE_MTH_COORDINATE_FRAME	9607
parameter)		
Bursa-Wolf	PE_MTH_BURSA_WOLF	109607
NADCON	PE_MTH_NADCON	9613
NTv2	PE_MTH_NTV2	9615
Geographic 2D Offset	PE_MTH_GEOGRAPHIC_2D_OFFSET	9619
HARN (HPGN)	PE_MTH_HARN	109613
Molodensky-Badekas	PE_MTH_MOLODENSKY_BADEKAS	9636

Geographic transformation parameters

Name	Macro	WKID
DX	PE_PAR_X_AXIS_TRANSLATION	100040
DY	PE_PAR_Y_AXIS_TRANSLATION	100041
DZ	PE_PAR_Z_AXIS_TRANSLATION	100042
RX	PE_PAR_X_AXIS_ROTATION	100043
RY	PE_PAR_Y_AXIS_ROTATION	100044
RZ	PE_PAR_Z_AXIS_ROTATION	100045
DS	PE_PAR_SCALE_DIFFERENCE	100046
ND	PE_PAR_NAME_DATASET	100047
XCR	PE_PAR_X_COORD_OF_ROTATION_ORIGIN	100048
YCR	PE_PAR_Y_COORD_OF_ROTATION_ORIGIN	100049
ZCR	PE_PAR_Z_COORD_OF_ROTATION_ORIGIN	100050
DLON	PE_PAR_LONGITUDE_OFFSET	100051
DLAT	PE_PAR_LATITUDE_OFFSET	100052

Vertical transformation methods

Name	Macro	WKID
VERTCON	PE_VTMTH_VERTCON	129658
GEOID99, GEOID03, and	PE_VTMTH_GEOID	129665
GEOID06		
EGM96 bilinear	PE_VTMTH_EGM96	129661
interpolation		
EGM96 natural spline	PE_VTMTH_EGM96_NS	129761
interpolation		
EGM84 bilinear	PE_VTMTH_EGM84	129861
interpolation		
EGM84 natural spline	PE_VTMTH_EGM84_NS	129961
interpolation		
Vertical Offset	PE_VTMTH_VERTICAL_OFFSET	129616
Vertical Offset and Slope	PE_VTMTH_VERTICAL_OFFSET_SLOPE	129657
Generic vertical transform	PE_VTMTH_VTGRIDFILE	129600
grid file		

Vertical transformation parameters

Name	Macro	WKID
VO	PE_PAR_VERTICAL_OFFSET	100060
PHI0	PE_PAR_LATITUDE_OF_EVALUATION	100061
LAM0	PE_PAR_LONGITUDE_OF_EVALUATION	100062
INCN	PE_PAR_INCLINATION_NORTH	100063
INCE	PE_PAR_INCLINATION_EAST	100064
INTERP	PE_PAR_INTERPOLATION_TYPE	100065

Appendix B: Projections and their expected parameters

Projection Name		
Parameter WKID	Parameter Macro	Parameter Name
	Aitoff	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
	Albers	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
100025	PE_PAR_STANDARD_PARALLEL_1	Standard_Parallel_1
100026	PE_PAR_STANDARD_PARALLEL_2	Standard_Parallel_2
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude_Of_Origin
	Aspect_Adaptive_Cylii	ndrical
100001	PE_PAR_FALSE_EASTING	False Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_meridian
100070	PE_PAR_ASPECT_RATIO	Aspect_Ratio
	Azimuthal_Equidist	ant
100001	PE PAR FALSE EASTING	False_Easting
100002	PE PAR FALSE NORTHING	False_Northing
100010	PE PAR CENTRAL MERIDIAN	Central_Meridian
100021	PE PAR LATITUDE OF ORIGIN	Latitude_Of_Origin
	Azimuthal_Equidistant_Auxi	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE PAR CENTRAL MERIDIAN	Central Meridian
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude_Of_Origin
100035	PE PAR AUXILIARY SPHERE TYPE	Auxiliary_Sphere_Type
	Behrmann	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE PAR FALSE NORTHING	False Northing
100010	PE PAR CENTRAL MERIDIAN	Central Meridian
	Berghaus_Star	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude_Of_Origin
100039	PE_PAR_XY_PLANE_ROTATION	XY_Plane_Rotation
	Bonne	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
100025	PE_PAR_STANDARD_PARALLEL_1	Standard_Parallel_1
-	Cassini	<u> </u>
100001	PE PAR FALSE EASTING	False_Easting
100002	PE PAR FALSE NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian

Projection Name			
Parameter WKID	Parameter Macro	Parameter Name	
100003	PE_PAR_SCALE_FACTOR	Scale_Factor	
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude_Of_Origin	
	Compact_Miller		
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
	Craster_Parabolic		
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
	Cube		
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
100036	PE_PAR_OPTION	Option	
	Cylindrical_Equal_Area		
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
100025	PE_PAR_STANDARD_PARALLEL_1	Standard_Parallel_1	
	Double_Stereographic		
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
100003	PE_PAR_SCALE_FACTOR	Scale_Factor	
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude_Of_Origin	
	Eckert_Greifendorff		
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude_Of_Origin	
	Eckert_I		
100001	PE PAR FALSE EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
	Eckert_II		
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE PAR CENTRAL MERIDIAN	Central Meridian	
	Eckert_III	<u> </u>	
100001	PE PAR FALSE EASTING	False_Easting	
100002	PE PAR FALSE NORTHING	False Northing	
100010	PE PAR CENTRAL MERIDIAN	Central_Meridian	
	Eckert IV		
100001	PE PAR FALSE EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
Eckert_IV_Auxiliary_Sphere			
100001	PE_PAR_FALSE_EASTING	False_Easting	
100001	PE_PAR_FALSE_NORTHING	False_Northing	
-00002	L_ / / LOE_NORTHING	_ raise_itoraining	

Projection Name			
Parameter WKID	Parameter Macro	Parameter Name	
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
100035	PE_PAR_AUXILIARY_SPHERE_TYPE	Auxiliary_Sphere_Type	
	Eckert_V	<u></u>	
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
	Eckert_VI	T =	
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
	Eckert_VI_Auxiliary_Sphe		
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
100035	PE_PAR_AUXILIARY_SPHERE_TYPE	Auxiliary_Sphere_Type	
100001	Equidistant_Conic	Te.	
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
100025	PE_PAR_STANDARD_PARALLEL_1	Standard_Parallel_1	
100026	PE_PAR_STANDARD_PARALLEL_2	Standard_Parallel_2	
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude_Of_Origin	
100001	Equidistant_Cylindrical	Ledon English	
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
100025	PE_PAR_STANDARD_PARALLEL_1 Equidistant_Cylindrical_Auxiliary	Standard_Parallel_1	
100001	PE PAR FALSE EASTING	False_Easting	
100001	PE_PAR_FALSE_EASTING PE_PAR_FALSE_NORTHING	False_Easting False_Northing	
100002	PE_PAR_FALSE_NORTHING PE_PAR_CENTRAL MERIDIAN	Central Meridian	
100010	PE_PAR_CENTRAL_MERIDIAN PE_PAR_CENTRAL_MERIDIAN PE_PAR_CENTRAL_MERIDIAN	Standard Parallel 1	
100025	PE_PAR_AUXILIARY_SPHERE_TYPE	Auxiliary_Sphere_Type	
100033	Equidistant_Cylindrical_Ellips		
100001	PE_PAR_FALSE_EASTING	False_Easting	
100001	PE_PAR_FALSE_NORTHING	False_Northing	
100002	PE PAR CENTRAL MERIDIAN	Central_Meridian	
100010	PE PAR STANDARD PARALLEL 1	Standard_Parallel_1	
100025	Flat_Polar_Quartic		
100001	PE_PAR_FALSE_EASTING	False_Easting	
100001	PE PAR FALSE NORTHING	False_Northing	
100002	PE PAR CENTRAL MERIDIAN	Central Meridian	
100010	Fuller		
100001	PE_PAR_FALSE_EASTING	False_Easting	
100001	PE_PAR_FALSE_NORTHING	False_Northing	
100036	PE PAR OPTION	Option	
100000	Gall_Stereographic		
100001	PE_PAR_FALSE_EASTING	False_Easting	
100001	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
100010	. =,OEITIIVIE_!!EIMD#/#	_ contrai_r fortaidff	

	Projection Name		
Parameter WKID	Parameter Macro	Parameter Name	
	Gauss_Kruger		
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
100003	PE_PAR_SCALE_FACTOR	Scale_Factor	
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude_Of_Origin	
	Geostationary Satellit	e	
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100005	PE_PAR_HEIGHT	Height	
100012	PE_PAR_LONGITUDE_OF_CENTER	Longitude_Of_Center	
100036	PE PAR OPTION	Option	
	Gnomonic		
100001	PE PAR FALSE EASTING	False_Easting	
100002	PE PAR FALSE NORTHING	False_Northing	
100012	PE PAR LONGITUDE OF CENTER	Longitude_Of_Center	
100022	PE PAR LATITUDE OF CENTER	Latitude Of Center	
	Gnonomic_Ellipsoida		
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE PAR FALSE NORTHING	False_Northing	
100012	PE PAR LONGITUDE OF CENTER	Longitude_Of_Center	
100022	PE PAR LATITUDE OF CENTER	Latitude_Of_Center	
	Gnomonic_Auxiliary_Spl		
100001	PE PAR FALSE EASTING	False_Easting	
100002	PE PAR FALSE NORTHING	False_Northing	
100012	PE_PAR_LONGITUDE_OF_CENTER	Longitude_Of_Center	
100022	PE PAR LATITUDE OF CENTER	Latitude_Of_Center	
100035	PE PAR AUXILIARY SPHERE TYPE	Auxiliary_Sphere_Type	
100000	Goode_Homolosine	/ taxtilar y_spriere ype	
100001	PE PAR FALSE EASTING	False_Easting	
100002	PE PAR FALSE NORTHING	False_Northing	
100010	PE PAR CENTRAL MERIDIAN	Central Meridian	
100036	PE PAR OPTION	Option	
	Hammer_Aitoff	O C C C C C C C C C	
100001	PE PAR FALSE EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE PAR CENTRAL MERIDIAN	Central Meridian	
	Hammer_Ellipsoidal		
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE PAR FALSE NORTHING	False_Northing	
100010	PE PAR CENTRAL MERIDIAN	Central_Meridian	
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude_Of_Origin	
	Hotine_Oblique_Mercator_Azim		
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100003	PE_PAR_SCALE_FACTOR	Scale_Factor	
100003	PE_PAR_AZIMUTH	Azimuth	
100012	PE_PAR_LONGITUDE_OF_CENTER	Longitude_Of_Center	
100012	PE_PAR_LATITUDE_OF_CENTER	Latitude_Of_Center	
100022	Hotine_Oblique_Mercator_Azimuth_		
noune_obnque_ricicatoi_Azimutii_Naturai_origin			

	Projection Name	
Parameter	Parameter Macro	Parameter Name
WKID	r drameter ridere	i didilictor ramo
100001	PE PAR FALSE EASTING	False_Easting
100002	PE PAR FALSE NORTHING	False_Northing
100003	PE PAR SCALE FACTOR	Scale Factor
100004	PE PAR AZIMUTH	Azimuth
100012	PE_PAR_LONGITUDE_OF_CENTER	Longitude_Of_Center
100022	PE PAR LATITUDE OF CENTER	Latitude Of Center
	Hotine_Oblique_Mercator_Two_Po	oint_Center
100001	PE PAR FALSE EASTING	False_Easting
100002	PE PAR FALSE NORTHING	False_Northing
100023	PE_PAR_LATITUDE_OF_1ST	Latitude_Of_1st_Point
100024	PE_PAR_LATITUDE_OF_2ND	Latitude Of 2nd Point
100003	PE_PAR_SCALE_FACTOR	Scale Factor
100013	PE_PAR_LONGITUDE_OF_1ST	Longitude_Of_1st_Point
100014	PE_PAR_LONGITUDE_OF_2ND	Longitude_Of_2nd_Point
100022	PE_PAR_LATITUDE_OF_CENTER	Latitude_Of_Center
100022	Hotine_Oblique_Mercator_Two_Point_	
100001	PE PAR FALSE EASTING	False_Easting
100002	PE PAR FALSE NORTHING	False_Northing
100023	PE PAR LATITUDE OF 1ST	Latitude_Of_1st_Point
100024	PE_PAR_LATITUDE_OF_2ND	Latitude_Of_2nd_Point
100003	PE_PAR_SCALE_FACTOR	Scale Factor
100013	PE_PAR_LONGITUDE_OF_1ST	Longitude_Of_1st_Point
100014	PE_PAR_LONGITUDE_OF_2ND	Longitude_Of_2nd_Point
100022	PE_PAR_LATITUDE_OF_CENTER	Latitude_Of_Center
100022	IGAC_Plano_Cartesiano	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE PAR FALSE NORTHING	False_Northing
100003	PE_PAR_SCALE_FACTOR	Scale_Factor
100012	PE_PAR_LONGITUDE_OF_CENTER	Longitude_Of_Center
100022	PE_PAR_LATITUDE_OF_CENTER	Latitude_Of_Center
100005	PE PAR HEIGHT	Height
10000	Krovak	The system
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100027	PE PAR PSEUDO STANDARD PARALLEL 1	Pseudo_Standard_Parallel_1
100003	PE_PAR_SCALE_FACTOR	Scale_Factor
100004	PE PAR AZIMUTH	Azimuth
100012	PE_PAR_LONGITUDE_OF_CENTER	Longitude_Of_Center
100022	PE_PAR_LATITUDE_OF_CENTER	Latitude_Of_Center
100037	PE_PAR_X_SCALE	X_Scale
100037	PE_PAR_Y_SCALE	Y_Scale
100039	PE PAR XY PLANE ROTATION	XY_Plane_Rotation
Laborde_Oblique_Mercator		
100001	PE PAR FALSE EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100003	PE_PAR_SCALE_FACTOR	Scale_Factor
100003	PE_PAR_AZIMUTH	Azimuth
100004	PE_PAR_LONGITUDE_OF_CENTER	Longitude_Of_Center
100012	PE_PAR_LATITUDE_OF_CENTER	Latitude_Of_Center
100022	Lambert_Azimuthal_Equal_	
Lambert_Azimuthai_Equal_Alea		

Projection Name			
Parameter WKID	Parameter Macro	Parameter Name	
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude_Of_Origin	
	Lambert_Azimuthal_Equal_Area_Au	xiliary_Sphere	
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude_Of_Origin	
100035	PE_PAR_AUXILIARY_SPHERE_TYPE	Auxiliary_Sphere_Type	
	Lambert_Conformal_Cor		
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
100025	PE_PAR_STANDARD_PARALLEL_1	Standard_Parallel_1	
100026	PE_PAR_STANDARD_PARALLEL_2	Standard Parallel 2	
100003	PE PAR SCALE FACTOR	Scale_Factor	
100021	PE PAR LATITUDE OF ORIGIN	Latitude_Of_Origin	
	Local		
100001	PE_PAR_FALSE_EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100003	PE_PAR_SCALE_FACTOR	Scale_Factor	
100004	PE PAR AZIMUTH	Azimuth	
100012	PE_PAR_LONGITUDE_OF_CENTER	Longitude_Of_Center	
100022	PE_PAR_LATITUDE_OF_CENTER	Latitude_Of_Center	
	Loximuthal		
100001	PE PAR FALSE EASTING	False_Easting	
100002	PE PAR FALSE NORTHING	False_Northing	
100010	PE PAR CENTRAL MERIDIAN	Central Meridian	
100020	PE PAR CENTRAL PARALLEL	Central Parallel	
	Mercator		
100001	PE PAR FALSE EASTING	False_Easting	
100002	PE PAR FALSE NORTHING	False_Northing	
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
100025	PE PAR STANDARD PARALLEL 1	Standard Parallel 1	
100025	Mercator_Auxiliary_Sphe		
100001	PE PAR FALSE EASTING	False_Easting	
100002	PE_PAR_FALSE_NORTHING	False_Northing	
100010	PE PAR CENTRAL MERIDIAN	Central Meridian	
100025	PE_PAR_STANDARD_PARALLEL_1	Standard_Parallel_1	
100025	PE PAR AUXILIARY SPHERE TYPE	Auxiliary Sphere Type	
100000	Mercator_Variant_A		
100001	PE_PAR_FALSE_EASTING	False_Easting	
100001	PE PAR FALSE NORTHING	False_Northing	
100002	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian	
100010	PE PAR SCALE FACTOR	Scale Factor	
10000	Mercator_Variant_C		
100001	PE_PAR_FALSE_EASTING	False_Easting	
100001	PE_PAR_FALSE_LASTING PE_PAR_FALSE_NORTHING	False_Northing	
100002	PE PAR CENTRAL MERIDIAN	Central Meridian	
TOOOTO	I I F I VV CENTUAL INFUTAIN	Certual_Mertulati	

Projection Name		
Parameter WKID	Parameter Macro	Parameter Name
100025	PE_PAR_STANDARD_PARALLEL_1	Standard_Parallel_1
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude_Of_Origin
	Miller_Cylindrical	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
	Miller_Cylindrical_Auxiliary_	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
100035	PE_PAR_AUXILIARY_SPHERE_TYPE	Auxiliary_Sphere_Type
	Mollweide	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
	Mollweide_Auxiliary_Sph	ere
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
100035	PE_PAR_AUXILIARY_SPHERE_TYPE	Auxiliary_Sphere_Type
	Natural_Earth	
100001	PE PAR FALSE EASTING	False_Easting
100002	PE PAR FALSE NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Merdian
	Natural_Earth_II	<u> </u>
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE PAR FALSE NORTHING	False_Northing
100010	PE PAR CENTRAL MERIDIAN	Central Meridian
	New_Zealand_Map_Gri	
100001	PE PAR FALSE EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100011	PE PAR LONGITUDE OF ORIGIN	Longitude_Of_Origin
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude Of Origin
100021	Ney_Modified_Conic	
100001	PE PAR FALSE EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE PAR CENTRAL MERIDIAN	Central Meridian
100015	PE_PAR_STANDARD_PARALLEL_1	Standard_Parallel_1
100026	PE_PAR_STANDARD_PARALLEL_2	Standard Parallel 2
100020	PE_PAR_SCALE_FACTOR	Scale_Factor
100003	PE PAR LATITUDE OF ORIGIN	Latitude_Of_Origin
100021	Orthographic	
100001	PE_PAR_FALSE_EASTING	False_Easting
100001	PE_PAR_FALSE_NORTHING	False Northing
100002	PE_PAR_LONGITUDE_OF_CENTER	Longitude_Of_Center
100012	PE_PAR_LONGITODE_OF_CENTER	Latitude_Of_Center
100022	Orthographic_Auxiliary_Sp	
100001	PE_PAR_FALSE_EASTING	False_Easting
100001		
	PE_PAR_FALSE_NORTHING	False_Northing
100012	PE_PAR_LONGITUDE_OF_CENTER	Longitude_Of_Center

Projection Name		
Parameter WKID	Parameter Macro	Parameter Name
100022	PE_PAR_LATITUDE_OF_CENTER	Latitude_Of_Center
100035	PE_PAR_AUXILIARY_SPHERE_TYPE	Auxiliary_Sphere_Type
	Patterson	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
	Plate_Carree	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
	Polar_Stereographic_Variar	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100011	PE_PAR_LONGITUDE_OF_ORIGIN	Longitude_Of_Origin
100003	PE_PAR_SCALE_FACTOR	Scale_Factor
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude_Of_Origin
	Polar_Stereographic_Variar	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100011	PE_PAR_LONGITUDE_OF_ORIGIN	Longitude_Of_Origin
100025	PE_PAR_STANDARD_PARALLEL_1	Standard_Parallel_1
	Polar_Stereographic_Variar	nt_C
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100011	PE_PAR_LONGITUDE_OF_ORIGIN	Longitude_Of_Origin
100025	PE_PAR_STANDARD_PARALLEL_1	Standard_Parallel_1
	Polyconic	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude_Of_Origin
	Quartic_Authalic	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
	Quartic_Authalic_Ellipsoid	al
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude_Of_Origin
	Rectified_Skew_Orthomorphic_	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100003	PE_PAR_SCALE_FACTOR	Scale_Factor
100004	PE_PAR_AZIMUTH	Azimuth
100012	PE_PAR_LONGITUDE_OF_CENTER	Longitude_Of_Center
100022	PE_PAR_LATITUDE_OF_CENTER	Latitude_Of_Center
100039	PE_PAR_XY_PLANE_ROTATION	XY_Plane_Rotation
Rectified_Skew_Orthomorphic_Natural_Origin		
100001 PE_PAR_FALSE_EASTING False_Easting		

	Projection Name	
Parameter WKID	Parameter Macro	Parameter Name
100002	PE_PAR_FALSE_NORTHING	False_Northing
100003	PE_PAR_SCALE_FACTOR	Scale_Factor
100004	PE_PAR_AZIMUTH	Azimuth
100012	PE_PAR_LONGITUDE_OF_CENTER	Longitude_Of_Center
100022	PE_PAR_LATITUDE_OF_CENTER	Latitude_Of_Center
100039	PE_PAR_XY_PLANE_ROTATION	XY_Plane_Rotation
	Robinson	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
	Robinson_ARC_INFO	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
	Sinusoidal	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
	Stereographic	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
100003	PE_PAR_SCALE_FACTOR	Scale_Factor
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude_Of_Origin
	Stereographic_Auxiliary_Sp	here
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
100003	PE_PAR_SCALE_FACTOR	Scale_Factor
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude_Of_Origin
100035	PE_PAR_AUXILIARY_SPHERE_TYPE	Auxiliary_Sphere_Type
	Stereographic_North_Po	le
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
100025	PE_PAR_STANDARD_PARALLEL_1	Standard_Parallel_1
	Stereographic_South_Po	le
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
100025	PE_PAR_STANDARD_PARALLEL_1	Standard_Parallel_1
	Times	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
	Transverse_Cylindrical_Equa	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100003	PE_PAR_SCALE_FACTOR	Scale_Factor
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian

Projection Name		
Parameter WKID	Parameter Macro	Parameter Name
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude_Of_Origin
	Transverse_Mercator	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
100003	PE_PAR_SCALE_FACTOR	Scale_Factor
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude_Of_Origin
	Transverse_Mercator_NGA_2	2014
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
100003	PE PAR SCALE FACTOR	Scale Factor
100021	PE PAR LATITUDE OF ORIGIN	Latitude_Of_Origin
	Transverse_Mercator_Comp	
100001	PE PAR FALSE EASTING	False_Easting
100002	PE PAR FALSE NORTHING	False_Northing
100010	PE PAR CENTRAL MERIDIAN	Central Meridian
100013	PE PAR SCALE FACTOR	Scale Factor
100003	PE PAR LATITUDE OF ORIGIN	Latitude_Of_Origin
100021	Two Point Equidistant	Latitude_Oi_Oiigiii
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100023	PE_PAR_LATITUDE_OF_1ST	Latitude_Of_1st_Point
100024	PE_PAR_LATITUDE_OF_2ND	Latitude_Of_2nd_Point
100013	PE_PAR_LONGITUDE_OF_1ST	Longitude_Of_1st_Point
100014	PE_PAR_LONGITUDE_OF_2ND	Longitude_Of_2nd_Point
100001	Van_der_Grinten_I	le. e
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
	Van_der_Grinten_I_Auxiliary_	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
100035	PE_PAR_AUXILIARY_SPHERE_TYPE	Auxiliary_Sphere_Type
	Vertical_Near_Side_Perspec	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100012	PE_PAR_LONGITUDE_OF_CENTER	Longitude_Of_Center
100022	PE_PAR_LATITUDE_OF_CENTER	Latitude_Of_Center
100005	PE_PAR_HEIGHT	Height
	Wagner_IV	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
1000021	PE PAR LATITUDE OF ORIGIN	Latitude_Of_Origin
	Wagner_V	1
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100002	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
100010	L - F - LVIV - OF IA LIVVE - LIFTYIDIVIA	_ central_nentralan

Projection Name		
Parameter WKID	Parameter Macro	Parameter Name
	Wagner_VII	·
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
100021	PE_PAR_LATITUDE_OF_ORIGIN	Latitude_Of_Origin
	Winkel_I	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
100025	PE_PAR_STANDARD_PARALLEL_1	Standard_Parallel_1
	Winkel_II	
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
100025	PE_PAR_STANDARD_PARALLEL_1	Standard_Parallel_1
Winkel_Tripel		
100001	PE_PAR_FALSE_EASTING	False_Easting
100002	PE_PAR_FALSE_NORTHING	False_Northing
100010	PE_PAR_CENTRAL_MERIDIAN	Central_Meridian
100025	PE_PAR_STANDARD_PARALLEL_1	Standard_Parallel_1

Optional parameters

In general, all the parameters for a given projection must be supplied, but some parameters are optional. They are:

WKID	Parameter Macro	<u>Default Value</u>
100001	PE_PAR_FALSE_EASTING	0.0
100002	PE_PAR_FALSE_NORTHING	0.0
100003	PE_PAR_SCALE_FACTOR	1.0
100035	PE_PAR_AUXILIARY_SPHERE_TYPE	0 (use semi-major-radius)

Appendix C: Transformations and their expected parameters

The Longitude_Rotation, Null, and Unit_Change methods have no parameters. File-based methods have a "Dataset Name" parameter. The base name (no extension) of the file plus a partial path is included as part of the parameter's name.

Geographic Transformation Method		
Parameter WKID	Parameter Macro	Parameter Name
	Bursa_Wolf	·
100040	PE_PAR_X_AXIS_TRANSLATION	X_Axis_Translation
100041	PE_PAR_Y_AXIS_TRANSLATION	Y_Axis_Translation
100042	PE_PAR_Z_AXIS_TRANSLATION	Z_Axis_Translation
100043	PE_PAR_X_AXIS_ROTATION	X_Axis_Rotation
100044	PE_PAR_Y_AXIS_ROTATION	Y_Axis_Rotation
100045	PE_PAR_Z_AXIS_ROTATION	Z_Axis_Rotation
100046	PE_PAR_SCALE_DIFFERENCE	Scale_Difference
	Coordinate_Frame	9 ,
100040	PE_PAR_X_AXIS_TRANSLATION	X_Axis_Translation
100041	PE_PAR_Y_AXIS_TRANSLATION	Y_Axis_Translation
100042	PE_PAR_Z_AXIS_TRANSLATION	Z_Axis_Translation
100043	PE_PAR_X_AXIS_ROTATION	X_Axis_Rotation
100044	PE_PAR_Y_AXIS_ROTATION	Y_Axis_Rotation
100045	PE_PAR_Z_AXIS_ROTATION	Z_Axis_Rotation
100046	PE_PAR_SCALE_DIFFERENCE	Scale_Difference
	Geocentric_Translat	ion
100040	PE_PAR_X_AXIS_TRANSLATION	X_Axis_Translation
100041	PE_PAR_Y_AXIS_TRANSLATION	Y_Axis_Translation
100042	PE_PAR_Z_AXIS_TRANSLATION	Z_Axis_Translation
	GEOCON	
100047	PE_PAR_NAME_DATASET	Dataset_ <base file="" name=""/>
	Geographic_2D_Offs	
100051	PE_PAR_LONGITUDE_OFFSET	Longitude_Offset
100052	PE_PAR_LATITUDE_OFFSET	Latitude_Offset
	HARN	
100047	PE_PAR_NAME_DATASET	Dataset_ <base file="" name=""/>
	Longitude_Rotatio	n
	Molodensky	
100040	PE_PAR_X_AXIS_TRANSLATION	X_Axis_Translation
100041	PE_PAR_Y_AXIS_TRANSLATION	Y_Axis_Translation
100042	PE_PAR_Z_AXIS_TRANSLATION	Z_Axis_Translation
Molodensky_Abridged		
100040	PE_PAR_X_AXIS_TRANSLATION	X_Axis_Translation
100041	PE_PAR_Y_AXIS_TRANSLATION	Y_Axis_Translation
100042	PE_PAR_Z_AXIS_TRANSLATION	Z_Axis_Translation
100015	Molodensky_Badek	
100040	PE_PAR_X_AXIS_TRANSLATION	X_Axis_Translation
100041	PE_PAR_Y_AXIS_TRANSLATION	Y_Axis_Translation
100042	PE_PAR_Z_AXIS_TRANSLATION	Z_Axis_Translation
100043	PE_PAR_X_AXIS_ROTATION	X_Axis_Rotation

Geographic Transformation Method			
Parameter	Parameter Macro	Parameter Name	
WKID			
100044	PE_PAR_Y_AXIS_ROTATION	Y_Axis_Rotation	
100045	PE_PAR_Z_AXIS_ROTATION	Z_Axis_Rotation	
100046	PE_PAR_SCALE_DIFFERENCE	Scale_Difference	
100048	PE_PAR_X_COORD_OF_ROTATION_ORIGIN	X_Coordinate_of_Rotation_Origin	
100049	PE_PAR_Y_COORD_OF_ROTATION_ORIGIN	Y_Coordinate_of_Rotation_Origin	
100050	PE_PAR_Z_COORD_OF_ROTATION_ORIGIN	Z_Coordinate_of_Rotation_Origin	
	NADCON		
100047	PE_PAR_NAME_DATASET	Dataset_ <base file="" name=""/>	
	NTv2		
100047	PE_PAR_NAME_DATASET	Dataset_ <base file="" name=""/>	
	Null		
	Position_Vector		
100040	PE_PAR_X_AXIS_TRANSLATION	X_Axis_Translation	
100041	PE_PAR_Y_AXIS_TRANSLATION	Y_Axis_Translation	
100042	PE_PAR_Z_AXIS_TRANSLATION	Z_Axis_Translation	
100043	PE_PAR_X_AXIS_ROTATION	X_Axis_Rotation	
100044	PE_PAR_Y_AXIS_ROTATION	Y_Axis_Rotation	
100045	PE_PAR_Z_AXIS_ROTATION	Z_Axis_Rotation	
100046	PE_PAR_SCALE_DIFFERENCE	Scale_Difference	
Unit_Change			

Vertical Transformation Method			
Parameter WKID	Parameter Macro	Parameter Name	
	EGM84		
100047	PE_PAR_NAME_DATASET	Dataset_ <base file="" name=""/>	
	EGM84_Natural_Spline		
100047	PE_PAR_NAME_DATASET	Dataset_< base file name>	
	EGM96		
100047	PE_PAR_NAME_DATASET	Dataset_ <base file="" name=""/>	
	EGM96_Natural_Spline		
100047	PE_PAR_NAME_DATASET	Dataset_ <base file="" name=""/>	
	GEOID		
100047	PE_PAR_NAME_DATASET	Dataset_ <base file="" name=""/>	
	VERTCON		
100047	PE_PAR_NAME_DATASET	Dataset_ <base file="" name=""/>	
	Vertical_Offset		
100060	PE_PAR_VERTICAL_OFFSET	Vertical_Offset	
	Vertical_Offset_and_Slop	e	
100060	PE_PAR_VERTICAL_OFFSET	Vertical_Offset	
100062	PE_PAR_LONGITUDE_OF_EVALUATION	Longitude_Of_Evaluation	
100061	PE_PAR_LATITUDE_OF_EVALUATION	Latitude_Of_Evaluation	
100063	PE_PAR_INCLINATION_NORTH	Inclination_North	
100064	PE_PAR_INCLINATION_EAST	Inclination_East	
VTGridFile			
100065	PE_PAR_INTERPOLATION_TYPE	Interpolation_Type	
100047	PE_PAR_NAME_DATASET	Dataset_ <base file="" name=""/>	

Appendix D: Differences in earlier database versions

The following is a history of the changes in the PE database mechanism:

- ArcGIS versions up through 9.2:
 - o The only database available was the OBJEDIT database.
 - The location of the OBJEDIT directory was specified by the environment variable PEOBJEDITHOME.
 - The only files used were data files. The filename was simply "<object-type>" (e.g, "projcs").
 - Although this capability was available, it was considered something to use only in an "emergency", since the implementation slowed up all factory lookups by a factor of 4 to 10, depending on how many data files were present.

ArcGIS version 9.3:

- All OBJEDIT data files were read in at initialization time and tokenized.
 This speeded up OBJEDIT lookup considerably.
- The data files could have the optional extension ".txt" (e.g. "projcs.txt").
 This made Notepad users happy, since Notepad automatically adds that extension to a filename.

ArcGIS version 10.0:

- The PE switched all factory lookup mechanisms to using "database interfaces", of which OBJEDIT was one implementation.
- The PEDATABASE environment variable was implemented to specify database-interface definitions.
- The names of OBJEDIT files could use an object-type abbreviation as well as the object-type-name. For example, you could use either "projcs.txt" or "pcs.txt".
- The tables available were the following:

Data Data definitions
 Defstring User-defined macros
 Dispname Localized name

■ Metadata Area-name, extent, etc.

Description Description (may be localized)

Areainfo PRJ-file replacement

The old "units.txt" file was broken up into "angunit.txt" and "linunit.txt". There is no backward capability to read old units files.

ArcGIS version 10.1:

 Added the concept of record types. The following record types were defined:

■ Data dat object data

(syntax object-dependent)

Codechange chg code-change entries

(syntax same for all objects)

Deprecated dep WKID status entries

(syntax same for all objects)

Synonym syn synonym entries

(syntax same for all objects)

- Added the ability to write out an OBJEDIT database (previously it was read-only, and could only be created by hand using a text editor).
- Filenames changed from "<objtype>.txt" to "<objtype>_<rectype>.txt".
 For backwards compatibility, the "_dat" part may be omitted for data records.
- ArcGIS version 10.3:
 - Added the ability for specify record types wanted, via the "rectypes=" option.
 - Changed the "tables=" option to "objtypes=".
- ArcGIS version 10.4:
 - Added the following record-types:

Coderange code-range entries

Dispname localizable display-names
 Description localizable descriptions
 Defstring user-defined macros

Areainfo coordinate system dialog entries

Areacode WKID-areacode entries

Version Version entries

Exception GTLIST/VTLIST exception entries

- Split the metadata data table into object-specific areacode tables and an extent table.
- Split the areainfo table into object-specific areainfo tables.
- o Added the XMLEDIT database mechanism.
- ArcGIS version 10.5:
 - Added the following record-types:
 - Gcsvcs GCS-VCS equivalences

METADATA – coordinate system and transformation metadata

The METADATA data record contains both areacode and extent information, and also object-type and WKID. Currently, this information is split up between an extent entry and an object-specific areacode tables, which eliminates duplicating extent information.

This is a legacy record format used prior to version 10.4 and should not be used for new databases.

Note: The latitude/longitude values here are specified in a different order than in an extent entry and the primem and factor fields were deleted, as we now assume values are in degrees from Greenwich.

Contents:

- Object-code
- Object-type
- Name
- Left-longitude (llon)
- South-latitude (slat)
- Right-longitude (rlon)
- North-latitude (nlat)
- Prime meridian
 - This is usually 0 (Greenwich)
- Angunit factor (lat/lon units to radians)
 For values in degrees this is PI/180 (0.0174532925199433)
- Accuracy (in meters)
 This is 0 for coordinate system entries
- Areacode or 0

Objedit syntax:

```
[METADATA,] object-code, object-type, llon, slat, rlon, nlat, primem, angunt-factor, accuracy, areacode
```

Examples:

AREAINFO – coordinate-system dialog entries

The AREAINFO entry here has one extra field specifying the object-type, since areainfo entries for all coordinate system types are in one data table.

This is a legacy record format used prior to version 10.4 and should not be used for new databases.

Note: The area-name and category fields are in a different order than in the <u>current</u> <u>areainfo</u> entries.

Contents:

- Object-code
- Object-type
- UTF8-encoded area-name
- UTF8-encoded category

Objedit syntax:

Appendix E: Setting an environment variable

The following describes how to set an environment variable with a value. In these examples we will set the environment variable PEDATABASE with the value <database definition string>.

In Unix:

```
(C shell)
setenv PEDATABASE "<database definition string>"

(Korn/Bash shell)
export PEDATABASE="<database definition string>"

(Bourne shell)
PEDATABASE="<database definition string>" export PEDATABASE
```

In Windows:

If working at a command prompt:

set PEDATABASE=<database definition string> (No quotes!)

Otherwise, you need to set a user or system environment variable, as follows:

On Windows XP, go to Start button > Settings > Control Panel > System > Advanced tab and click the Environment Variables button. Under User variables, click the New button. The variable name is PEDATABASE and the variable value is the database definition string (without any quotes).

On Windows 7, go to Start/Windows button > Control Panel > System and Security > System > Advanced system settings > Advanced tab and click the Environment Variables button. Under User variables, click the New button. The variable name is PEDATABASE and the variable value is the database definition string (without any quotes).

Appendix F: Error reporting

The object-creation mechanism can output warning and/or error messages to a user-specified log.

The syntax of these messages is:

PE: date time: source [level] message

For example:

The automatic logging of messages is turned on by setting the environment variable PELOGFILE. If this environment variable is not found, no automatic logging will be done. See <u>Appendix E</u> for details on how to set an operating system environment variable.

The values for PELOGFILE are:

<pathname> The absolute pathname of a logfile to append messages to.

- Output messages to stderr, if it is defined.
 (Note that GUI programs like ArcMap have no stderr defined.)
- ! Output messages to:

Unix /dev/console

Windows OutputDebugStream()

Note: When looking up a WKID for a given object type (e.g.: GEOGCS 4326), it is considered an error if the WKID is out of range for that object type, but it is not an error if the WKID is simply not found.