SURF-Face: Face Recognition Under Viewpoint Consistency Constraints RWITHAA

Philippe Dreuw, Pascal Steingrube, Harald Hanselmann and Hermann Ney

Human Language Technology and Pattern Recognition, RWTH Aachen University, Aachen, Germany

Introduction

- ► Most face recognition approaches are sensitive to registration errors
 - rely on a very good initial alignment and illumination
- ► We propose/analyze:
 - grid-based and dense extraction of local features
 - ▶ block-based matching accounting for different viewpoints and registration errors

Feature Extraction

- ► Interest point based feature extraction
- SIFT or SURF interest point detector
- ▶ leads to a very sparse description
- ► Grid-based feature extraction
- > overlaid regular grid
- ▶ leads to a dense description

- ► Most" "face recognition approaches are sensitive to registration errors
 - rely on a very good initial alignment and illumination
- ► We propose/analyze:
 - grid-based and dense extraction of local features
 - ▶ block-based matching accounting for different viewpoints and registration errors

Feature Extraction

Grid

- ► Interest point based feature extraction
 - SIFT or SURF interest point detector
- ▶ leads to a very sparse description
- ► Grid-based feature extraction
 - > overlaid regular grid

Feature Description

invariant

invariant

necessary

▶ leads to a dense description

Scale Invariant Feature Transform (SIFT)

Speeded Up Robust Features (SURF)

U-SURF-64, U-SURF-128

Feature Description

- Scale Invariant Feature Transform (SIFT)
- ▶ 128-dimensional descriptor, histogram of gradients, scale invariant
- Speeded Up Robust Features (SURF)
- ▶ 64-dimensional descriptor, histogram of gradients, scale invariant
- ► face recognition: invariance w.r.t. rotation is often not necessary
 - ▶ rotation dependent upright-versions U-SIFT, U-SURF-64, U-SURF-128

Feature Matching

- Recognition by Matching
- nearest neighbor matching strategy
- descriptor vectors extracted at keypoints in a test image X are compared to all descriptor vectors extracted at keypoints from the reference images

 $Y_n, n = 1, \dots, N$ by the Euclidean distance

▶ decision rule:

$$X \to r(X) = \arg \max_{c} \left\{ \max_{n} \left\{ \sum_{x_i \in X} \delta(x_i, Y_{n,c}) \right\} \right\}$$

- \triangleright additionally, a ratio constraint is applied in $\delta(x_i, Y_{n,c})$
- Viewpoint Matching Constraints
- ▶ maximum matching: unconstrained
- grid-based matching: absolute box constraints
- grid-based best matching: absolute box constraints, overlapping

Matching Examples for the AR-Face and CMU-PIE

► Matching results for the AR-Face (left) and the CMU-PIE

maximum matching show false classification examples

upright descriptor versions reduce the number of false

grid matchings show correct classification examples

Matching Examples for the AR-Face and CMU-PIE Database

Grid-Best | Maximum | Grid

Postprocessing

Database

Feature | Maximum | Grid

database (right)

matches

- ▶ RANSAC-based outlier removal
- ▶ RANSAC-based system combination

Feature Matching

- Recognition by Matching
 - nearest neighbor matching strategy
 - b descriptor vectors extracted at keypoints in a test image X are compared to all descriptor vectors extracted at keypoints from the reference images

▶ 128-dimensional descriptor, histogram of gradients, scale

▶ 64-dimensional descriptor, histogram of gradients, scale

► face recognition: invariance w.r.t. rotation is often not

▶ rotation dependent upright-versions U-SIFT,

 $Y_n, n = 1, \dots, N$ by the Euclidean distance

▶ decision rule:

$$X \to r(X) = \arg \max_{c} \left\{ \max_{n} \left\{ \sum_{x_i \in X} \delta(x_i, Y_{n,c}) \right\} \right\}$$

- \triangleright additionally, a ratio constraint is applied in $\delta(x_i, Y_{n,c})$
- Viewpoint Matching Constraints
- ▶ maximum matching: unconstrained
- prid-based matching: absolute box constraints
- ▶ grid-based best matching: absolute box constraints, overlapping
- Postprocessing

Grid-Best Feature

- ▶ RANSAC-based outlier removal
- ▶ RANSAC-based system combination

Matching Examples for the AR-Face and CMU-PIE Database

- ► Matching results for the AR-Face (left) and the CMU-PIE database (right)
- maximum matching show false classification examples
- grid matchings show correct classification examples
- ▶ upright descriptor versions reduce the number of false matches

Databases

- ► AR-Face
 - variations in illumination
- many different facial expressions
- ► CMU-PIE
- variations in illumination (frontal images from the illumination subset)

Results: Manually Aligned Faces

► AR-Face: 110 classes, 770 train, 770 test

Descriptor	Extraction	# Features	Error Rates [%]		
			Maximum	Grid	Grid-B
SURF-64	IPs	$64 \times 5.6 \text{ (avg.)}$	80.64	84.15	84
SIFT	IPs	128×633.78	1.03	95.84	95
		(avg.)			
SURF-64	64x64-2 grid	64×1024	0.90	0.51	0
SURF-128	64x64-2 grid	128×1024	0.90	0.51	0
SIFT	64x64-2 grid	128×1024	11.03	0.90	0
U-SURF-64	64x64-2 grid	64×1024	0.90	1.03	0
U-SURF-128	64x64-2 grid	128×1024	1.55	1.29	1.
U-SIFT	64x64-2 grid	128×1024	0.25	0.25	0.

► CMU-PIE: 68 classes, 68 train ("one-shot" training), 1360 test

Extraction	# Features	Error Rates [%]		
		Maximum	Grid	Grid-B
IPs	$64 \times 6.80 \text{ (avg.)}$	93.95	95.21	95
IPs	128×723.17	43.47	99.33	99.
	(avg.)			
64x64-2 grid	64×1024	13.41	4.12	7.
64x64-2 grid	128×1024	12.45	3.68	3.
64x64-2 grid	128×1024	27.92	7.00	9.
64x64-2 grid	64×1024	3.83	0.51	0.
64x64-2 grid	128×1024	5.67	0.95	0.
64x64-2 grid	128×1024	16.28	1.40	6.
	IPs IPs 64x64-2 grid 64x64-2 grid 64x64-2 grid 64x64-2 grid 64x64-2 grid 64x64-2 grid	IPs $64 \times 6.80 \text{ (avg.)}$ IPs $128 \times 723.17 \text{ (avg.)}$ $64 \times 64-2 \text{ grid}$ 64×1024 $64 \times 64-2 \text{ grid}$ 128×1024 $64 \times 64-2 \text{ grid}$ 128×1024 $64 \times 64-2 \text{ grid}$ 64×1024	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Results: Unaligned Faces

► Automatically aligned by Viola &

Jones				
Descriptor	Error Rates [%]			
	AR-Face	CMU-PIE		
SURF-64	5.97	15.32		
SURF-128	5.71	11.42		
SIFT	5.45	8.32		
U-SURF-64	5.32	5.52		
U-SURF-128	5.71	4.86		
U-SIFT	4.15	8.99		

Manually aligned

Results: Partially Occluded Faces

► AR-Face: 110 classes, 110 train ("one-shot" training), 550 test

Descriptor Error Rates [%]						
	AR1scarf	AR1sun	ARneutral	AR2scarf	AR2sun	
SURF-64	2.72	30.00	0.00	4.54	47.27	
SURF-128	1.81	23.63	0.00	3.63	40.90	
SIFT	1.81	24.54	0.00	2.72	44.54	
U-SURF-64	4.54	23.63	0.00	4.54	47.27	
U-SURF-128	1.81	20.00	0.00	3.63	41.81	
U-SIFT	1.81	20.90	0.00	1.81	38.18	1
U-SURF-128+R	1.81	19.09	0.00	3.63	43.63	
U-SIFT+R	2.72	14.54	0.00	0.90	35.45	
U-SURF-128+U-SIFT+F	0.90	16.36	0.00	2.72	32.72	1

Conclusions

- ► Grid-based local feature extraction instead of interest points
- ► Local descriptors:
- upright descriptor versions achieved better results
- ▶ SURF-128 better than SURF-64
- System robustness: manually aligned/unaligned/partially occluded faces
 - SURF more robust to illumination
 - ▶ SIFT more robust to changes in viewing conditions
- ► RANSAC-based system combination and outlier removal

Created with LaTeX beamerposter http://www-i6.informatik.rwth-aachen.de/~dreuw/latexbeamerposter.php

<surname>@cs.rwth-aachen.de