

CS 4104 APPLIED MACHINE LEARNING

Dr. Hashim Yasin

National University of Computer and Emerging Sciences,

Faisalabad, Pakistan.

CONVOLUTIONAL NEURAL NETWORK

- Neural Networks that use convolution in place of general matrix multiplication in at least one layer
- There are three types of layers in the convolutional network,
 - Convolution layer (Conv)
 - Pooling layer (Pool)
 - Fully connected layer (FC)

 $n \times n$ image,

 $f \times f$ filter

padding p,

stride s

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

×

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

 $\lfloor z \rfloor = floor(z)$

If the fraction is not an integer, then we will get floor of the result.

CNN ... STEPS

$$x_{i,j} = \max_{|k| < au, |l| < au} y_{i-k,j-l}$$
 pooling mean or subsample also used stage

$$y_{i,j} = f(a_{i,j})$$
 e.g. $f(a) = [a]_+$ stage $f(a) = \operatorname{sigmoid}(a)$

$$a_{i,j} = \sum_{k,l} w_{k,l} z_{i-k,j-l}$$
 convolutional stage only parameters

$$z_{i,j}$$
 input image

Dr. Hashim Yasin

Rectified Linear Unit (ReLU)

Feature Maps

Feature Maps After Contrast Normalization

Convolutional filters are trained in a supervised manner by back-propagating classification error

CNN ... Example

WHY CONVOLUTIONS

CNN ... Example

Construct the CNN with the following specifications,

- \square The RGB image of size 32×32 is given as input
- □ Layer 1-Conv1: There are 6 filters of size 5×5 , stride = 1 and no padding,
- □ Layer 1-Pool1: There are 6 filters of size 2×2 , stride = 2 and no padding,
- □ Layer 2-Conv2: There are 16 filters of size 5×5 , stride = 1 and no padding,
- □ Layer 2-Pool2: There are 16 filters of size 2×2 , stride = 2 and no padding,
- Layer 3-FC3: There are 120 neurons in FC3.
- Layer 4-FC4: There are 84 neurons in FC4.
- Output Layer: with 10 classes.

CNN ... Example 3

16

Layer 1-Conv1: There are 6 filters of size 5×5 , stride = 1 and no padding,

$$\frac{n+2p-f}{s}+1 = \frac{32+0-5}{1}+1=28$$

28 x 28 x 6

Why Convolution?

$$\frac{n+2p-f}{s}+1 = \frac{32+0-5}{1}+1=28$$

28 x 28 x 6

□ Consider the same example,

1

Layer 1-Conv1: There are 6 filters of size 5×5 , stride = 1 and no padding,

No. of Parameters

<u>CNN</u>

Filter: $5 \times 5 \times 3 = 75$ $(5 \times 5 \times 3 + 1) \times 6 = 456$

Why Convolution?

- \Box The number of parameters: $(5 \times 5 \times 3 + 1) \times 6 = 456$
- This is based on the following equation,

$$(f^{[l]} \times f^{[l]} \times n_c^{[l-1]} + 1) \times n_c^{[l]}$$

- □ Where,
- $(f^{[l]} \times f^{[l]})$ is filter height and width
- $n_c^{\lfloor l-1 \rfloor}$ is the number of channels in the previous layer
- $oxed{\square}$ $n_c^{[l]}$ is the number of channels in the current layer
- "1" is the bias term.

Why Convolution?

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

	1	0	-1		
*	I	0	- 1		
	1	0	-1		
	3 x 3				

- 5	-4	0	8			
-10	-2	2	3			
0	-2	-4	-7			
-3	-2	-3	-16			
4 x 4						

- 6 x 6
- Parameter sharing: A feature detector (such as a vertical edge detector) that's useful in one part of the image is probably useful in another part of the image.
- □ **Sparsity of connections:** In each layer, each output value depends only on a small number of inputs.

Putting all together

Training set: $(x^{(1)}, y^{(1)}) \dots (x^{(m)}, y^{(m)})$.

Cost:
$$J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

 Use gradient descent to optimize parameters to reduce J

CLASSIC NETWORKS

Classic Networks

Some Classic Networks:

- □ LeNet-5
- AlexNet
- VGG
- ResNet

LENET-5

60K parameters

The size of n_H and n_W are decreasing.

The size of n_c is increasing.

For Linearity, they used sigmod/tanh and used after the pooling layer (Not recommended in modern age)

[LeCun et al., 1998. Gradient-based learning applied to document recognition]

Dr. Hashim Yasin

LeNet-5

- \square Filters are of size 5 \times 5, stride 1
- \square Pooling is 2 \times 2, with stride 2

[LeCun et al., 1998. Gradient-based learning applied to document recognition]

ALEXNET

AlexNet

60M parameters
For Linearity, they used ReLU

AlexNet

[Krizhevsky et al., 2012. ImageNet classification with deep convolutional neural networks]

VGG: VISUAL GEOMETRY GROUP

VGG-16

 $CONV = 3 \times 3$ filter, s = 1, same

30 $MAX-POOL = 2 \times 2$, s = 2224×224×64 112×112 ×64 → $112\times112\times128 \longrightarrow 56\times56\times128$ [CONV 64] **POOL** [CONV 128] POOL $\times 2$ $\times 2$ $224 \times 224 \times 3$ $14 \times 14 \times 512$ $\rightarrow 28 \times 28 \times 256$ $28 \times 28 \times 512$ $56 \times 56 \times 256$ [CONV 256] **POOL** [CONV 512] **POOL** $\times 3$ $\times 3$ $14 \times 14 \times 512$ -Softmax $7 \times 7 \times 512$ FC [CONV 512] **POOL** $\overline{4096}$ 4096 1000 $\times 3$

~138M parameters

Dr. Hashim Yasin

Applied Machine Learning (CS4104)

ImageNet Challenge

Acknowledgements

Stuart J. Russell and Peter Norvig, Tom M. Mitchell, Jiwon Jeong, Floydhub, Andrej Karpathy