	Tuesday, October 10	0, 2017 7:29 AI	M				
					1/4		
	NENG 685 HW 1			Due Oct.	Fall 2017 11, 2017		
	Name: Rober	t Torzil	11:				
	On homework:	70.2					
	If you work with a you worked on tog	anyone else, document		em Points Scor	re		
	Show your work.		2	30			
	Always clearly lab and a legend if approximately	el plots (axis labels, a plicable).	a title,	15			
		be done "by hand" (i. program such as MAT		30			
	Python, or Wolfre specified. You ma	am Alpha) unless other ay use a numerical pro-	erwise Total	: 95			
	to check your work If you use a numer	k. rical program to solve	a pro-				
		associated code, input					
I	Oo not write in the tabl	e to the right.					
	WOTHER DIF	h Kevin Choe Amy Hoyl	500K				
		· , ·					

		11	^	<u>ل</u>	1.		. (
			V	∼ *	+ ~	ih.	ez																										
)	Sم	-m·	C	a	st e	2																	
	2			a	++	- س	ch	e l	/																								
			T.	he)	۵٢	g.,	e e	54		0/	, ,	اِ پ _ا ِ ک	-fe	۲ ر	e h	ce		end	ie.	7	را	0	لويم	Ŧ	he	e	nds	.				
				a	+		8.	B	0/0																								
		-	TJ					J	ا . د			- 1	ر ،	(-11		۱)		1	- 11				,							
			16	.2		دے ر		10	1 61		UZ	- (\	F, e	<i>کے</i> ۔		as	,124	-	Fh	e	ںو	1, 14		۸.	tu,	nc t	، و ۱۰	7					
			ω	h - la	۷	W	e	e	× /) e	cte	٢	ľ	T+1	L	C	سر	ry	e ,	ļ	-6	h	=U <	_	Λ	eas	14	,	nde	-n+	ادم	١	
			76	ωρ	hs	ì	vg.	آد ما	les		th	e	h	eυ	ڪ	ie]	C	u u	ر د	nof	-	Lsf	= f	ere	nf	е	חטר	ړه د	4		5CC		
			H	ا بَ لَحُ لُهُ	+;01	na l	14	ł	لم:ج	>	Ma	Jc.	h	دو: ر	ا ں	کے ۔	- 60 -		لے م	ve		to	h	6W	20	50 Y	re E	t	he				
				3	56	ρL		7		or		the		tai	H	4	L	ar	7	601	ΛΛ	ing		5	. 6	, 5							

385 HW 1 - Page 3 of 4 Due Oct. 11, 2017

- (15 points) Using the interpolant P₃(x) derived in question [];
 (a) (3 points) Write the general expression for the error term, err(x) = |f(x) P₃(x)
 - $f(x) = \sin(\frac{\pi}{2}x) + \frac{x^2}{4}$,
 - use information about the function to bound the error expression
 - (c) (8 points) Use the values x₀ = 0, x₁ = 2, x₂ = 3, and x₃ = 4 to get the upper bound of err(z) over this interval. That is, insert the points into the expression from part B̄, find an expression for x that maximizes error, and then find the x that give the maximum. Present one final number. You may use a mathematical psckage to assist von in solving for x.

a) err (x) = |f(x) - P3(x) | From siven Thin the Form thres

 $err(x) = e = \frac{f(n+1)(\frac{x}{2})}{(n+1)!} \frac{n}{(x-x)}$

b) (1) solve the exit(x) using the given $f(x) = \sin\left(\frac{\pi x}{2}\right) + \frac{x^2}{y}$ then bind

the error

We know n=3 for this problem From Ps(x)

 $e = \frac{f^{(n+1)}(\frac{x}{2})}{(n+1)!} \xrightarrow{\frac{n}{1-\alpha}} (x-x_1) \Rightarrow \frac{f^{\frac{1}{2}}(\frac{x}{2})}{y!} (x-x_2)(x-x_3)$

 $\frac{1}{4!} = \frac{1}{4!} \frac{1}{4!} \left[Sin\left(\frac{x}{2}x\right) + \frac{x^2}{4} \right]$

 $= \frac{1}{24} \left[\left(\frac{\pi}{2} \right)^4 \sin \left(\frac{\pi}{2} \times \right) \right]$

 $\widehat{U} = \frac{\pi^4}{384} \sin\left(\frac{\pi}{2}x\right)$

 $\sin cz \frac{d^{5}}{dx^{3}} \frac{x^{7}}{4} = 0$ $\frac{d^{4}}{dx^{4}} \left(Sm_{1}x \right) = A^{4} \sin(Ax)$

 $e = \frac{\pi^{4}}{384} S_{m} \left(\frac{\pi}{2} \chi\right) \left[(\chi - \chi_{o})(\chi - \chi_{1}) (\chi - \chi_{2}) (\chi - \chi_{3}) \right]$

Note error 3 bound with respect to -AX & E & & AX

Since Sin $\left(\frac{T_{\lambda}}{2}X\right) = \begin{cases} 0 & X = even, vlote \\ 1 & X = odd, vlote \end{cases}$

2 We bind error

 $-\frac{\mathcal{T}^{\mathcal{U}}}{384}\operatorname{Sm}\left(\frac{\pi}{2}X\right)\left[\left(X-X_{\bullet}\right)\left(X$

What X is bound -A < X < A Where A = 11, ±3, ±5, ± a Thus (2) is reduced to $-\frac{\pi}{384}(X-X_{6})(X-X_{1})(X-X_{2})(X-X_{3}) \stackrel{\angle}{=} e \stackrel{\angle}{=} \frac{\pi^{4}}{394}(X-X_{6})(X-X_{1})(X-X_{2})(X-X_{3})$ C 3.ven X=[0,2,3,4] Find X that gives emax
Find X that gives maximum From b) We Know that Emax Uill occur For Some X in 3 to 3.7 | Since H Will collapse the Function to 0 and the other Eata points are smaller in terms of absolve VULUUS Using the non-reducel max since symetry $e \leq \frac{\pi^4}{384} \operatorname{Sim}\left(\frac{\pi}{2}\right) \left[(x)(x-2)(x-3)(x-4) \right]$ Solution From code (attached) Cmax ≈ 0.238839 Pythin's compa, son could not go Far enough. When the below X value was Solution From Wolfram Alpha uses directly we Showel a larger emax ~ 0.2388 39 number 4 decimals at after the wilthen x = 3,45321 Values hore

	3															
	Tuesda	ay, Octo	ber 10,	2017	7:2	6 AM										
3. (15	points)	We have	the follo													
					[1, 2, 3, 4]											
(a)	(10 poir	nta) Hain	or basilt	- ' '	[1, 4, 10			tions in	tarnalat	te this da	140					
(a)	using	nts) Osn	ig vann	in Fyth	ion or N			أما	, ĉ	tvt						
	• Lag	cewise lingrange po	olynomia			•	Locat	ek in	50	po as	اعد					
	Create		t for each							a fine me						
	you will		restrict	the rang	ge to the					Include t						
(b)	(5 point	ts) Briefl	ly discus	s the dif	fferences	betwee	n the r	esulting i	interpol	lations.						
b)																
b) _	The	Piec	e 075	e L	. inear	- In	ter p	olatio	1	5.mply	CONN	e d's				
	S-	tra; gh	→ l :	nes	beth	seer	, th	e g	ven	point	5					
	S.	o 1+5	N 0 +	L a	ue; y	, 90	لم م	درادر	ì	oesi	n't e	xtrap	olate			
					·	J						•				
	The	Lag	Fam 4a	. I	ates 6	. /. L:		took	6	2011	-					
			3.		11017	0121		7-0 (bette on						
		سالا.		s e	xtr a	ادم ـ	ation	1 15	Fra	>M						
	G	'	\ +	v a	_ +	У		\sim	/							
	The	SP]-n.e	ofac	rpola	tion	G		nic	e c	رورو					
		الد														
		Xtic P	<u>.</u>			_										
		lot as														
				_						the						
			_	en	Poli	∿ ∤	jr	,+ 6	etra p	olate!						
	'	Fucth	er.													

	4															
	Tuesday	, Octob	er 10,	2017	7:28 AI	VI										
					y a numeric l in the folk			t problen	n with va	arious						
				(Grid Spacin		Error (E)									
					5.00000e- 2.50000e-	02 3.3	036126e-0 333834e-0	2								
					1.25000e- 6.25000e-	03 4.	375409e-0 177237e-0	3								
					3.12500e- 1.56250e-	03 2.8	103962e-0 824698e-0	4								
					7.81250e- 3.90625e-	- 1	185644e-0 813937e-0									
	For tl	nis nume	rical m	ethod,	the error sh	ould be o	f the form	1								
						$E = kh^p$										
					oblem as a	linear sys	tem $\mathbf{A}\vec{x}$ =	\vec{b} , where	$e x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\binom{\ln(k)}{p}$ is	s the					
		vector of 5 points			ormal equat	ions for t	his over-c	determine	ed system	m: write	e the					
	1	natrices	in $\mathbf{A}\vec{x}$	$= \vec{b} \text{ form}$	n, where yo the progran	u include	formulas	/ values	for each	entry.						
	t	o obtain	a least	t square	s estimate t	o the par	ameters k	k and p .		-						
	(e) (7 points) Make	e a log-l	parameters og and a lir	-lin plot	that disp	lays both	the inp	out data						
					Comment on tplotlib.pyp				two app	roximati	ions.					
	BONUS (5 points): subi	mit vou	r code by p	roviding	read/clon	e access	to an or	nline ver	rsion					
	control re	pository	where	your co	ode is stored arn about i	l (e.g. gi	thub or b	itbucket)). If you	don't k	now					
	http://s	oftware	-carpe	entry.o	rg/lessons le to do this	html Fo	or Windov	vs, you w								
	a : '	V/	ſ-	- K	hp	wr.70	e thi	s a	-s a	lin	eus	Funu	4100			
~)	 31		L	۰۰۰ - اد					. ~							
		_ A	\ <u>\</u>	= <u>P</u>	4	λ	x = (In (K	()		Ŀ	آن د	- Funct	الرمال		
5	oreland				4			P)			of	h			
					pt to			(
		1,	~ (E	= =	Inkh	P)										
		۱.,	15	\ <u>-</u>	In (x \ +	In (h	P								
		Y	([ر _ ر						
				=	- In (K) 1	1 1	n (h) =	AX						
		<i>a</i>														
		1.	(=)	= P	1, (1	7	1 1 1	(K)							
		[]	~ (<i>L</i>	, ,		17) (1	,, ,	171								
)				

	Salu		the	0-5,000)	e a + 1							
			messce						and	5,	של בי	W 6 10 - 1	
			× + ao			,							1
			n(h) + In									In E:	
	gven												
		<u> </u>	٤ [Y: - (0	L,X;	tao)] 2						
4			i = 1 50 L2:00					~ F	- UK 4	- 3:	ven	linear	Fredren
			= <u>N</u>									- Sxy S	
			1	Sxx - ((S _*)	2				h (Z ^{XX}	-(Sx)	ī
	where											-	
	n	= te	eims a	Ltz Po	ints	n			10				
	S	× =	Σ' X:	S_{γ}	. = 2	γ _i	S,	c y =	ا انتاء	Xz	/ i	Sxx =	5(Xi)2
			20		C								
	Usin	us a	In (K)	iam	C								
	0	(_o =	1, (K)	$\Rightarrow e$,	= K							
		/ 0	Q Cule I	,									
			.9941										
	0	-1 =	$P \approx$	2.03	97								
									_				
	/)		C		1		,		sec		Proo	Sam	output
0)	VS,	2	Curi	re Fi	+				tor	e	Xac	+ Va	lues
	V	~	11,4	70 (1						
			1.5										
		~	1.5	1 4 6									

e) The log-log plot is essentially straight with a slight crook in its latter half indicating our data is governed by the Power Law The standard linear-linear plut is 1:11e an exponential Function Lawn With piecewise interpolation