MECT | Network Awareness Techniques

QUIC DDoS Attack mitigation

Malicious actor detection

By Jodionísio Muachifi (97147) and Rúben Castelhano (97688)

<u>Teacher:</u>

Paulo Jorge Salvador Serra Ferreira

QUIC Overview

- Modern transport protocol developed by Google
 - Development began at Google in 2012 aiming to overcome some limitations of TCP
 - Publicly announced and open-sourced by Google in 2015
 - The Internet Engineering Task Force (IETF) took an interest in QUIC and decided to work on standardizing it
 - In 2018 the IETF published the first drafts of the protocol
 - In 2019 QUIC became the transport protocol for HTTP/3
 - Officially standardized in August 2021 as RFC 9000 0
- Main advantages over TCP (QUIC+HTTP/3 vs TCP+TLS+HTTP/2)
 - Faster handshakes
 - Improved congestion feedback
 - Multiplexing without head-of-line blocking
 - Built-in security 0
 - Connection migration support
 - Optional unreliable or partially reliable delivery

The problem - 1

- DDoS attacks present serious problems for businesses:
 - Lost revenue
 - Decreased customer trust and reputation loss
 - Service unavailability is not permissible in certain fields (finance, health, military, etc.)
 - A pure brute-force defence is extremely expensive
 - Blocking access to the service is essentially letting the attacker win, since service unavailability is still achieved

 The average amount of downtime following a DDoS attack is 54 minutes and the average cost for each minute of downtime is \$22,000¹

The problem - 2

- Mitigating a traditional TCP DDoS attack is hard
 - Packet analysis is of limited use since payloads are encrypted
 - Crucially, the TCP header is left unencrypted
- Mitigating a QUIC based DDoS attack is harder
 - Encryption extends beyond just the payload; the majority of protocol fields are also secured

Our focus

- A proper DDoS mitigation solution is complex and based on several levels of detection and prevention:
 - Stateless firewalls blocking known bad actors
 - Load-balancers
 - Resource and network monitoring
 - Distinguish between regular and malicious users <--- this will be our focus

 We will monitor the network traffic patterns of known good actors to understand how they use a service to distinguish them from several levels of attackers

Data sources and real-world scenario

- We plan to build a simple, mostly reading based website (with some images/video content as well) and serve it in HTTP/3 via NGINX
- Capture packets using Wireshark

Enterprise

Test scenarios

- Basic Bot
 - Does not attempt to mask its behaviour
 - Spams requests indiscriminately
- Intermediate Bot
 - Badly attempts to mask its behaviour
 - Random intervals with a fixed distribution and variance
- Advanced Bot
 - Attempts to mask its behaviour
 - Imitates regular user behaviour and human timings

Data processing

- Collect raw packet data with a sampling period of 0.01 seconds
- Filter data to allow only QUIC packets between the clients and the web server
- Aggregate data by client (source IP address)
- Detect anomalous user behaviour

Observation process:

- Multiple sliding windows
 - 30 seconds and 3 minutes long
 - sliding every 5 seconds

Extracted features

- Number of download/upload packets
 - o mean, median, variance, stdev
 - o min, max
 - o 99th, 98th, 95th, 1st, 2nd, 5th percentiles
 - covariance (between download and upload)
- Download/upload packet size
 - o mean, median, variance, stdev
 - o min, max
 - o 99th, 98th, 95th, 1st, 2nd, 5th percentiles
 - o covariance (between download and upload)
- Periods of silence
 - o mean, median, variance, stdev
 - o min, max
 - o 99th, 98th, 95th, 1st, 2nd, 5th percentiles

Thank you for your attention! Any questions?

References

- https://peering.google.com/#/learn-more/quic
- https://blog.cloudflare.com/the-road-to-quic/
- https://www.nginx.com/blog/primer-quic-networking-encryption-in-nginx/
- https://nsfocusglobal.com/wp-content/uploads/2017/01/Distributed Denial of Service Attacks
 An Economic Perspective Whitepaper.pdf