Clase 18 Introducción análisis multivariante Diplomado en Análisis de datos con R para la Acuicultura

Dr. José Gallardo Matus

Pontificia Universidad Católica de Valparaíso

11 June 2022

PLAN DE LA CLASE

1.- Introducción

- ¿ Qué son los análisis multivariantes?.
- Estudio de caso: Fauna béntica como indicador de calidad ambiental.
- Matrices de distancia.
- Análisis de cluster: jerárquico y no jerárquico.

2). Práctica con R y Rstudio cloud.

- Matriz de distancia: cálculo con R.
- Análisis de cluster.

INRRODUCCIÓN ANÁLISIS MULTIVARIANTE

¿Qué son los análisis multivariantes?

Conjunto diverso de métodos estadísticos que estudian y examinan el efecto simultáneo de múltiples variables.

а	b	С	d	е	Depth	Pollution	Temperature
0	2	9	14	2	72	4.8	3.5
26	4	13	11	0	75	2.8	2.5
0	10	9	8	0	59	5.4	2.7
0	0	15	3	0	64	8.2	2.9
13	5	3	10	7	61	3.9	3.1
31	21	13	16	5	94	2.6	3.5

TIPOS DE MÉTODOS MULTIVARIANTES

Fuente: Multivariate Statistic, 2014

MÉTODOS MULTIVARIANTES SEGÚN TIPO DE VARIABLE

Fuente: Multivariate Statistic, 2014

ESTUDIO CASO: BENTOS Y AMBIENTE

Fuente FOTO: Mesa Merelo. 2014

ESTUDIO CASO: DATOS MULTIVARIADOS

- Análisis del bentos.
- ➤ 21 variables respuesta (especies + biomasa) por tipo de cultivo y sitio.

	P	OLICUL	MONOCULTIVO		
Especies	Α	В	С	D	E
Nereis diversicolor (Po)	79	46	15	62	70
Syllides sp. (Po)	0	0	0	3	15
Polydma sp. (Po)	4	5	3	11	9
Streblospio srhubsolii (Po)	62	25	0	115	105
Alkmaria sp. (Po)	0	0	0	14	207
Capitella capitata (Po)	7	17	75	2	12

Fuente: Drake and Arias. 1997

ESTUDIO CASO: ANÁLISIS DE CLUSTER

► Análisis de cluster revela 2 grupos asociados al tipo de cultivo.

Fuente: De los Ríos-Escalante et al. 2013

ANÁLISIS DE CLUSTER

¿Qué son?: Herramientas de exploración que permiten agrupar y visualizar datos multivariados con base a su similitud (matriz de distancia).

Jerárquico: Los grupos se fusionan sucesivamente siguiendo una jerarquía de similitud (mayor a menor).

No jerárquico: Se forman grupos homogéneos sin establecer jerarquía entre ellos.

Fuente: Multivariate Statistic, 2014

VENTAJAS Y DESVENTAJAS

Tipo	Ventajas
Jerárquico	No requiere especificar grupos al inicio
No jerárquico	Útil cuando existen muchos elementos

Tipo	desventajas
Jerárquico	Difícil decidir que grupos son
	relevantes y cuales no.
Jerárquico	Difícil de interpretar cuando
	existen muchos elementos.
No jerárquico	El número de cluster que se
	define al inicio, podría no ser el
	adecuado.

ANALISIS JERÁRQUICO: MÉTODO

¿Qué hace el algoritmo estándar?

- 1. Agrupa dos elementos por su similitud (distancia).
- 2. Recalcula la matriz de distancia (muchas opciones).
- 3. Vuelve a punto 1.
- 4. Finaliza cuando todos los elementos han sido asignados a cluster.

¿Cómo recalculo la matriz?

- 1. Método de distancia máxima (vecino más lejano).
- 2. Método de distancia mínima (vecino más próximo).
- 3. Método UPGMA (unweighted Pair-group arithmetic averages).

MATRIZ DE DISTANCIA O SIMILARIDAD

¿Qué es y para que sirven?

- Las matrices de distancia o similaridad están en la base de todos los análisis multivariados de estructura.

Algunas consideraciones

- Las matrices de distancia se pueden elaborar tanto para variables cuantitativas continuas, como discretas.
 - Debido a que las variables pueden tener diferente escala o magnitud es necesario muchas veces transformar o estandarizar las variables antes de calcular las matrices de distancia.
 - Cuando una variable tiene muchos ceros también es conveniente transformarla.

TIPOS DE MATRICES DE DISTANCIA

► Euclideana: Para variables cuantitativas continuas. Con base en el teorema de pitágoras

$$c^{2} = a^{2} + b^{2}$$

$$a = \sqrt{c^{2} - b^{2}}$$

$$b = \sqrt{c^{2} - a^{2}}$$

$$c = \sqrt{c^{2} + b^{2}}$$

- ▶ No euclideana: Para variables cuantitativas discretas.
- a) Bray-Curtis (datos de conteo).
- b) Jacard (binarias).

EJEMPLO ESTUDIO DIVERSIDAD BENTOS

- ¿Cuán similares son las muestras entre si?
- ¿Qué muestras pertenecen a un mismo grupos (variable latente)?

SAMPLES	Species									
	sp1	sp2	sp3	sp4	sp5	sp6	sp7	sp8	sp9	sp10
A	1	1	1	0	1	0	0	1	1	1
В	1	1	0	1	1	0	0	0	0	1
С	0	1	1	0	1	0	0	1	0	0
D	0	0	0	1	0	1	0	0	0	0
E	1	1	1	0	1	0	1	1	1	0
F	0	1	0	1	1	0	0	0	0	1
G	0	1	1	0	1	1	0	1	1	0

Fuente: Multivariate Statistic, 2014

INDICE DE JACARD

Índice de Similitud de Jaccard se usa para expresar el grado en que dos muestras son semejantes por las especies presentes en ellas.

- ► Co-presencias (a)
- Co-ausencias (d)
- ► No coincidentes (b + c)

CALCULE INDICE DE JACARD

Jaccard index dissimilarity:

$$\frac{b+c}{a+b+c} = 1 - \frac{a}{a+b+c}$$

Sitio	sp1	sp2	sp3	sp4	sp5	sp6	sp7	sp8	sp9	sp10
Α	1	1	1	0	1	0	0	1	1	1
В	1	1	0	1	1	0	0	0	0	1
Sitio	sp1	sp2	sp3	sp4	sp5	sp6	sp7	sp8	sp9	sp10
Α	1	1	1	0	1	0	0	1	1	1
F	0	1	0	1	1	0	0	0	0	1
Sitio	sp1	sp2	sp3	sp4	sp5	sp6	sp7	sp8	sp9	sp10
В	1	1	0	1	1	0	0	0	0	1
F	0	1	0	1	1	0	0	0	0	1

MATRIZ DE SIMILARIDAD DE JACARD

SAMPLES	Α	В	С	D	E	F	G
Α	0.000	0.500	0.429	1.000	0.250	0.625	0.375
В	0.500	0.000	0.714	0.833	0.667	0.200	0.778
С	0.429	0.714	0.000	1.000	0.429	0.667	0.333
D	1.000	0.833	1.000	0.000	1.000	0.800	0.857
E	0.250	0.667	0.429	1.000	0.000	0.778	0.375
F	0.625	0.200	0.667	0.800	0.778	0.000	0.750
G	0.375	0.778	0.333	0.857	0.375	0.750	0.000

Construcción del primer nodo: Mayor similitud entre B y F

SAMPLES	Α	(B,F)	С	D	E	G
Α	0.000	0.625	0.429	1.000	0.250	0.375
(B,F)	0.625	0.000	0.714	0.833	0.778	0.778
С	0.429	0.714	0.000	1.000	0.429	0.333
D	1.000	0.833	1.000	0.000	1.000	0.857
E	0.250	0.778	0.429	1.000	0.000	0.375
G	0.375	0.778	0.333	0.857	0.375	0.000

- (B-F) -A
- (B-F)-C (B-F)-D
- (B-F) -E
- (B-F)-G

- (B-F) -A
- (B-F)-C
- (B-F) -D
- (B-F) -E
- (B-F)-G

- (B-F) -A
- (B-F)-C
- (B-F) -D
- (B-F) -E
- (B-F)-G

Construcción del segundo nodo: Mayor similitud entre A y E

SAMPLES	Α	(B,F)	С	D	Е	G
A	0.000	0.625	0.429	1.000	0.250	0.375
(B,F)	0.625	0.000	0.714	0.833	0.778	0.778
С	0.429	0.714	0.000	1.000	0.429	0.333
D	1.000	0.833	1.000	0.000	1.000	0.857
E	0.250	0.778	0.429	1.000	0.000	0.375
G	0.375	0.778	0.333	0.857	0.375	0.000
C D E	0.429 1.000 0.250	0.714 0.833 0.778	0.000 1.000 0.429	1.000 0.000 1.000	0.429 1.000 0.000	0.33 0.85 0.37

Samples	(A,E)	(B,F)	С	D	G
(A,E)	0.000	0.778	0.429	1.000	0.375
(B,F)	0.778	0.000	0.714	0.833	0.778
С	0.429	0.714	0.000	1.000	0.333
D	1.000	0.833	1.000	0.000	0.857
G	0.375	0.778	0.333	0.857	0.000

Construcción nueva matriz usando método de distancia máxima.

(A-E) - (B-F) (A-E) - C (A-E) - D (A-E) - G

Construcción del tercer nodo: Mayor similitud entre C y G

Construcción del cuarto nodo: Mayor similitud entre A-E y C-G

Construcción del quinto y sexto nodo: Mayor similitud entre A-E-C-G con B-F y entre estos con D.

INTERPRETACIÓN CLUSTER JERÁRQUICO

- Establecemos nivel de agrupamiento = 0.5.
- ▶ Bajo 0.5 hay mas similaridad (Co-presencias).
- ► Se observan 3 grupos o cluster.

RESUMEN DE LA CLASE

- ¿Qué son los análisis multivariantes?.
- Estudio de caso 1: Fauna béntica como indicador de calidad ambiental.
- ▶ Matrices de distancia (Variables discretas): Jacard.
- Análisis de cluster: jerárquico y no jerárquico.