Assignment 2

Deadline: Year 1 - Sunday, 20th of June, 23:59, Year 2 - Sunday, 13th of June, 23:59 Upload your solutions as a zip archive at: https://tinyurl.com/AML-2021-ASSIGNMENT2

1. (2 points) Consider $\mathcal{H} = \mathcal{H}_1 \cup \mathcal{H}_2$, where

$$\mathcal{H}_{1} = \{h_{\theta_{1}} : \mathbb{R} \to \{0,1\}, h_{\theta_{1}}(x) = \mathbf{1}_{[x \ge \theta_{1}]}(x) = \mathbf{1}_{[\theta_{1},+\infty)}(x), \theta_{1} \in \mathbb{R}\} \text{ and } \mathcal{H}_{2} = \{h_{\theta_{2}} : \mathbb{R} \to \{0,1\}, h_{\theta_{2}}(x) = \mathbf{1}_{[x < \theta_{2}]}(x) = \mathbf{1}_{(-\infty,\theta_{2})}(x), \theta_{2} \in \mathbb{R}\}$$

- a. Give an efficient ERM algorithm for learning \mathcal{H} and compute its complexity for the realizable case. (0.5 points)
- **b.** Give an efficient ERM algorithm for learning \mathcal{H} and compute its complexity for the agnostic case. (0.5 points)
- c. Compute the shattering coefficient $\tau_H(m)$ of the growth function for $m \ge 0$ for hypothesis class \mathcal{H} . (0.5 points)
- **d.** Compare your result with the general upper bound for the growth functions and show that $\tau_H(m)$ obtained at previous point c is not equal to the upper bound. (0.25 points)
- e. Does there exist a hypothesis class \mathcal{H} for which $\tau_H(m)$ is equal to the general upper bound (over \mathbb{R} or another domain \mathcal{X})? If your answer is yes please provide an example, if your answer is no please provide a justification. (0.25 points)
- 2. **(1.5 points)** Consider a modified version of the AdaBoost algorithm that runs for exactly three rounds as follows:
 - the first two rounds run exactly as in AdaBoost (at round 1 we obtain distribution $\mathbf{D}^{(1)}$, weak classifier h_1 with error ε_1 , at round 2 we obtain distribution $\mathbf{D}^{(2)}$, weak classifier h_2 with error ε_2).
 - in the third round we compute for each i = 1, 2, ..., m:

$$D^{(3)}(i) = \begin{cases} \frac{D^{(1)}(i)}{Z}, & \text{if } h_1(x_i) \neq h_2(x_i) \\ 0, & \text{otherwise} \end{cases}$$

where Z is a normalization factor such that $\mathbf{D}^{(3)}$ is a probability distribution.

- obtain weak classifier h_3 with error ε_3 .
- output the final classifier $h_{final}(x) = sign(h_1(x) + h_2(x) + h_3(x))$.

Assume that at each round t = 1, 2, 3 the weak learner returns a weak classifier h_t for which the error ε_t satisfies $\varepsilon_t \le 1/2 - \gamma_t$, $\gamma_t > 0$.

- a. What is the probability that the classifier h₁ (selected at round 1) will be selected again at round 2? Justify your answer. (0.50 points)
- b. Consider $\gamma = \min\{\gamma_1, \gamma_2, \gamma_3\}$. Show that the training error of the final classifier h_{final} is at most $\frac{1}{2} \frac{3}{2}\gamma + 2\gamma^3$ and show that this is strictly smaller than $\frac{1}{2} \gamma$. (1 **point)**

- 3. **(1.5 points)** Let Σ be a finite alphabet and let $X = \Sigma^m$ be a sample space of all strings of length m over Σ . Let \mathcal{H} be a hypothesis space over X, where $\mathcal{H} = \{h_w : \Sigma^m \to \{0,1\}, w \in \Sigma^*, 0 < |w| \le m, s.t. h_w(x) = 1 \text{ if } w \text{ is a substring of } x\}.$
 - **a.** Give an upper bound (any upper bound that you can come up) of the VC-dimension of \mathcal{H} in terms of $|\Sigma|$ and m. (0.25 points)
 - **b.** Give an efficient algorithm for finding a hypothesis h_w consistent with a training set in the realizable case. What is the complexity of your algorithm? (1.25 points)

Example: let $\Sigma = \{a, b, c\}$, m = 4 and the training set $S = \{(aabc, 1), (baca, 0), (bcac, 0), (abba, 1)\}$. The output of the algorithm should be h_{ab} .

Ex-officio: 0.5 points