Sai Siddarth Nichenametla

716-256-5699 | saisidda@buffalo.edu | linkedin.com/in/saisidda/ | Portfolio | Github

EDUCATION

University at Buffalo- The State University of New York, Buffalo, NY, August 2022 – December 2023

• Master of Science in Engineering Science (Robotics)

Jawaharlal Nehru Technological University-Hyderabad, Telangana, India, August 2017 - July 2021

Bachelor of Technology in Mechanical Engineering

SKILLS & TOOLS

Programming: Python, MATLAB – Workspace, Simulink, CUDA, TensorFlow, Keras, Pytorch, OpenCV, Linux, Robotic Operating System (ROS), RoboDK, Nvidia IsaacSim, Pybullet, Structure from Motion (SFM), AWS, SQL, CoppeliaSim (V-rep), Gazebo, BeamNG, Pygame, Pygaze, MediaPipe, Sklearns, Pandas, Numpy, Matplotlib, Seaborn, G-Code, RoboDK **Automation & Hardware skills:** PLC, Pneumatics, Allen Bradley, VBuilder, Cognex Vision Sensors, Fanuc & UR Robot Programming, Tobii Pro Nano, Creality 3D Printer, Nvidia Jetson Nano, L298N Motor Controller, DC Motors, Linear Solenoids, Linear actuators

CAD: AutoCAD, Catia V5, SolidWorks-CSWP, ProE, Creo, Ansys, Autodesk Sketchbook, NX CAD, Autodesk Fusion 360, 3D Printing and Scanning

Technical Skills: Microsoft Office

WORK EXPERIENCE

Mechanical Engineer-Robotics, SQ4D, Calverton, NY: October 2024 – Present

- Designed and developed automated systems to optimize 3D printing house construction, including a soil excavator for site preparation and a rebar dropper with adjustable sizing and G-code-based control, utilizing Autodesk Fusion 360 for modeling and prototyping.
- Leveraged RoboDK, Rhino Grasshopper, and Python to create customized G-code generation tools, simulate construction environments, and develop efficient path planning strategies tailored for the construction 3D printer.
- Designed detailed 2D house plan geometries, including infill patterns, in Autodesk Fusion 360, imported into RoboDK, and integrated Python scripts to automate G-code generation with precise extrusion parameters and orientation adjustments.
- Led the testing and validation of critical components and automated systems for the construction 3D printer, ensuring reliable operation and delivering high-quality output in real-world scenarios.
- Conducted comprehensive 3D printing trials to evaluate system performance, resolve design challenges, and enhance the overall efficiency of construction 3D printing processes.
- Developed Python scripts to generate G-code modifications for obstacle avoidance and non-extrusion motions, preventing collisions with extruded filament and ensuring seamless operation during printing.

Research Assistant, HILS Lab, University at Buffalo-SUNY, Buffalo, NY: January 2024 - October 2024

- Focusing on autonomous vehicles-driverless trucks, developed a fail-safe system enabling virtual teleop control through steering controllers, using **BeamNG** and **Tobii pro nano** eye tracker with **Python** for realistic environment simulation.
- Designed and implemented a **deep learning neural network** for identifying traffic signs, and or entities, utilizing media-pipeline alongside **CUDA**, **Pytorch**, **Keras**, and **OpenCV** APIs for comprehensive image recognition.
- Deployed a **UR5 robot** integrated with a Programmable Logic Controller (**PLC**) to oversee a conveyor belt system, employing **Cognex** vision and laser sensors for innovative industrial automation applications.
- Spearheaded development of a cutting-edge application in **industrial automation**, focusing on packaging, segregation, and dynamic pick-and-place, showcasing my expertise in robotics and industrial automation technologies.

Manufacturing Automation Engineer, Xylem, Buffalo, NY: September 2023 – December 2023

- Spearheaded design and implementation of an automated production line for manufacturing of compact coolers utilizing **Fanuc Robots** and Fanuc m710ic/45 robots for simulation purposes using python.
- Integrated **welding**, **testing**, **painting**, and **curing** processes significantly enhanced productivity, assembling, and operating machinery, reducing manufacturing time to **45 minutes**, and **reduced** manual labor requirements by **85%**.
- Engineered sophisticated motion planning algorithm with an automatic tool switching feature, significantly
 improving operational safety, and reducing machinery collision risks which led to safer, and more efficient production
 workflows.
- Directed integration of conveyor belt systems and hardware with PLC programming, achieving seamless automation and synchronized operations across production line that significantly optimized efficiency and minimized downtime.

Assistant Systems Engineer, Tata Consultancy Services, Hyderabad, Telangana, India: July 2021 – July 2022

• Contributed to smart **warehousing automation** project by integrating cage detection modules, obstacle avoidance systems, and leading to optimized autonomous vehicle routing and a **30%** improvement in order fulfillment speed.

- Designed and deployed robotic picking systems using Fanuc Robots, vision sensors, and Allen Bradley RS
 Logix5000, which adapted to varying warehouse conditions and contributed to a 40% reduction in manual labor.
- Served as an SAP Fiori Security Consultant, implemented a real-time inventory management system using SAP Fiori and SAP S/4 HANA, reducing stock discrepancies in the ERP systems by 25%.
- Enhanced security protocols within SAP Fiori, ensuring data integrity and compliance with industry standards.

Engineer- Intern, Uniscient Engineering Private Limited, Hyderabad, Telangana, India: May 2019 – July 2019

- Specialized in designing a range of heat exchangers tailored to specific customer requirements using **Catia V5** and **SolidWorks**, ensuring precise and functional product development from initial concept to final design.
- Conducted comprehensive Computational Fluid Dynamics (**CFD**) simulations and thermal analyses using **Ansys**, incorporating Finite Element Analysis (**FEA**) to evaluate and optimize **heat exchanger** performance under various operational conditions.
- Finalized and prepared detailed product drafts and documentation in **AutoCAD**, ensuring accuracy and adherence to engineering standards, facilitating a smooth transition from design to manufacturing.

ENGINEERING PROJECTS

Advanced Vision System for Traffic Recognition for Autonomous Navigation, 2024: Python, OpenCV, CNN, TensorFlow, Keras, ROS, Linux

- Engineered a ROS-integrated computer vision system within Real Robot in simulated environment, enabling detailed insights into navigation and object recognition through detection of various road elements and pedestrians.
- Achieved remarkable classification accuracy (98.83% training, 96.05% validation) on traffic sign recognition by
 developing and fine-tuning a CNN model with a meticulously labeled image dataset, focusing on critical signs like
 speed limits and pedestrian crossings.
- Streamlined image processing pipeline by establishing a ROS node for real-time image capture via TurtleBot's
 camera, coupled with a Python script for precise traffic sign prediction, further refining model efficacy through
 hyperparameter adjustments and performance tracking to reach a 96.04% success rate.

Intelligent Radar based Autonomous Navigation for TurtleBot, 2024: Python, ROS, Linux, Neural Network, CUDA, Pytorch

- Designed and deployed a **neural network**-based control system for a TurtleBot equipped with a **trio of radars**, achieving **autonomous navigation** within circuit environments with a remarkable accuracy rate of **98.9**%.
- Utilized radars for precise obstacle detection and distance measurement, enabling robots to dynamically adjust their path in real-time, ensuring efficient and uninterrupted circuit navigation.
- Implemented strategic logic within control system to optimize robot's movements based on environmental feedback, significantly reducing collision risk, and enhancing pathfinding efficiency across multiple circuits.

Collision Avoidance and Path Planning, 2023: MATLAB, CoppeliaSim (V-rep)

- Adapted autonomous vehicle collision avoidance concepts to engineer trajectory algorithms for a Powerball robot
 manipulator, enabling it to navigate around both static and dynamic obstacles using Probabilistic Road Maps (PRM)
 and Temporal Probabilistic Road Maps (T-PRM) with A* search.
- Developed three path planning algorithms: RRT, A* search, and Dijkstra's algorithm for static obstacle avoidance and compared m with dynamic cases, concluding that A* search demonstrates most potential when combined with T-PRM
- Enhanced obstacle prediction accuracy by incorporating a vision system and Kalman filter into system, achieving a 79% success rate in dynamic obstacle avoidance scenarios.

Stereo Visual Odometry, 2023: Python, Robotic Operating Systems (ROS), Linux, OpenCV, Structure from Motion

- Engineered a Stereo Camera framework to achieve advanced **visual odometry** for precise **3D pose** retrieval, focusing exclusively on odometry dataset. This project was developed from scratch using computer vision techniques, **OpenCV**, and **NumPv**.
- Performed visual odometry entirely using computer vision techniques to accurately estimate trajectory of **stereo camera setup**. This approach enabled precise **tracking** of vehicle movement through complex environments without relying on **sensor fusion** methods.
- Utilized advanced camera calibration and feature extraction methods to enhance accuracy and reliability of odometry calculations utilizing RANSAC, achieving a significant improvement in performance and providing a robust foundation for autonomous vehicle navigation systems.

Markov Localization and Path Following for Autonomous Navigation, 2023: MATLAB, Python, Linux, ROS

- Devised a **Markov** localization within a **SLAM** suite using **MATLAB** in 2023, significantly enhancing robot state estimation by integrating **sensor** data with **motion** models. Validated through extensive simulations, demonstrating robustness and dependability.
- Incorporated PID and Pure Pursuit control techniques into a Linux-based ROS framework to improve autonomous navigation, focusing on advanced path tracing and motion planning.
- Applied combined localization and control system to a **F1tenth autonomous race car**, showcasing **adaptability** and achieving an exceptional error margin of **0.2 meters**, illustrating precision in robotic path following.