

DESIGN AND ANALYSIS OF ALGORITHMS

Transitive Closure (Warshall's Algorith

Reetinder Sidhu

Department of Computer Science and Engineering

DESIGN AND ANALYSIS OF ALGORITHMS

Transitive Closure (Warshall's Algorithm)

Reetinder Sidhu

Department of Computer Science and Engineering

UNIT 5: Limitations of Algorithmic Power and Coping with the Limitations

PES UNIVERSITY ONLINE

- Dynamic Programming
 - Computing a Binomial Coefficient
 - The Knapsack Problem
 - Memory Functions
 - Warshall's and Floyd's Algorithms
- Limitations of Algorithmic Power
 - Lower-Bound Arguments
 - Decision Trees
 - P, NP, and NP-Complete, NP-Hard Problems
- Coping with the Limitations
 - Backtracking
 - Branch-and-Bound. Architecture (microprocessor instruction set)

Concepts covered

- Transitive Closure (Warshall's Algorithm)
 - Motivation
 - Algorithm
 - Example

Transitive Closure

PES UNIVERSITY ONLINE

- Computes the transitive closure of a relation
- Alternatively: existence of all nontrivial paths in a digraph (directed graph)
- Example of transitive closure:

Transitive Closure

PES UNIVERSITY ONLINE

- Computes the transitive closure of a relation
- Alternatively: existence of all nontrivial paths in a digraph (directed graph)
- Example of transitive closure:

Transitive Closure

- Computes the transitive closure of a relation
- Alternatively: existence of all nontrivial paths in a digraph (directed graph)
- Example of transitive closure:

Transitive Closure

- Computes the transitive closure of a relation
- Alternatively: existence of all nontrivial paths in a digraph (directed graph)
- Example of transitive closure:

Transitive Closure

PES UNIVERSITY ONLINE

- Computes the transitive closure of a relation
- Alternatively: existence of all nontrivial paths in a digraph (directed graph)
- Example of transitive closure:

	1	2	3	4
1	$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$	0	1	70
1 2 3 4	1	0 1 0 1	1	0 1 0 1
3	0	0	0	0
4	1	1	1	1

Warshall's Algorithm

- Constructs transitive closure T as the last matrix in the sequence of $n \times n$ matrices $R^{(0)}, \ldots, R^{(k)}, \ldots, R^{(n)}$ where $R^{(k)}[i,j] = 1$ iff there is nontrivial path from i to j with only first k vertices allowed as intermediate vertices
 - $ightharpoonup R^{(0)} = A$ (adjacency matrix), $R^{(n)} = T$ (transitive closure)
- On the k^{th} iteration, the algorithm computes $R^{(k)}$

$$R^{(k)}[i,j] = \begin{cases} 1 & \text{if path from } i \text{ to } k \text{ and } k \text{ to } j, \text{i.e., } R^{(k-1)}[i,k] = R^{(k-1)}[k,j] = 1 \\ R^{(k-1)}[i,j] & \text{otherwise} \end{cases}$$

Warshall's Algorithm

- Constructs transitive closure T as the last matrix in the sequence of $n \times n$ matrices $R^{(0)}, \ldots, R^{(k)}, \ldots, R^{(n)}$ where $R^{(k)}[i,j] = 1$ iff there is nontrivial path from i to j with only first k vertices allowed as intermediate vertices
 - $ightharpoonup R^{(0)} = A$ (adjacency matrix), $R^{(n)} = T$ (transitive closure)
- On the k^{th} iteration, the algorithm computes $R^{(k)}$

$$R^{(k)}[i,j] = \begin{cases} 1 & \text{if path from } i \text{ to } k \text{ and } k \text{ to } j, \text{i.e., } R^{(k-1)}[i,k] = R^{(k-1)}[k,j] = 1 \\ R^{(k-1)}[i,j] & \text{otherwise} \end{cases}$$

$$R^{(k)}[i,j] = R^{(k-1)}[i,j]$$
 or $(R^{(k-1)}[i,k]$ and $R^{(k-1)}[k,j])$

Algorithm

Transitive Closure (Warshall's Algorithm)

```
1: procedure WARSHALL(()A[1 \dots n, 1 \dots n])
2:
        ▷ Input: The adjacency matrix A of a digraph with n vertices
        Dutput: The transitive closure of the digraph
3:
       R^{(0)} \leftarrow A
4:
5:
       for k \leftarrow 1 to n do
            for i \leftarrow 1 to n do
6:
                 for i \leftarrow 1 to n do
7:
                     R^{(k)}[i,j] \leftarrow R^{(k-1)}[i,j] or (R^{(k-1)}[i,k] and R^{(k-1)}[k,j]);
8:
        return R
9:
```


	1	2	3	4
1	-0	0	1	0-
2	1	0	1	1
3	0	0	0	0
4	_0	1	0	0

	1	2	3	4
1	L0	0	1	0-
2	1	0	1	1
3	0	0	0	0
4	Lo	1	0	0_
		$\overline{}$		

	1	2	3	4
1	Γ0	0	1	0
2	1	0	1	1
2	0	0	0	0
4	L 1	1	1	1_

	1	2	3	4
1	L0	0	1	0-
2	1	0	1	1
3	0	0	0	0
4	1	1	1	1.

	1	2	3	4
1	L0	0	1	0-
2	1	0	1	1
3	0	0	0	0
4	_1	1	1	1_

	1	2	3	4
1	-0	0	1	0-
2	1	0	1	1
3	0	0	0	0
4	_0	1	0	0]

	1	2	3	4
1	Γ0	0	1	0٦
2	1	0	1	1
3	0	0	0	0
4	1	1	1	1

	1	2	3	4
1	L0	0	1	0٦
2	1	0	1	1
3	0	0	0	0
4	1	1	1	1.

	1	2	3	4	
1	L0	0	1	07	
2	1	1	1	1	
3	0	0	0	0	
4	L1	1	1	1_	
	$\overline{}$			-	

Think About It

- Is Warshall's algorithm efficient for sparse graphs? Why / why not?
- Can Warshall's algorithm be used to determine if a graph is a DAG (Directed Acyclic Graph)? If so, how?