Vibrações Mecânicas Aula08 – Vibração Livre Amortecida

Ramiro Brito Willmersdorf ramiro@willmersdorf.net

Departamento de Engenharia Mecânica Universidade Federal de Pernambuco

2018.2

Equação de Movimento

Supondo a força de amortecimento proporcional à viscosidade,

$$F=-c\dot{x},$$

e a equação de movimento é

$$m\ddot{x} = -c\dot{x} - \kappa x$$

OL

$$m\ddot{x} + c\dot{x} + \kappa x = 0.$$

Equação de Movimento

Supondo a força de amortecimento proporcional à viscosidade,

$$F=-c\dot{x},$$

e a equação de movimento é

$$m\ddot{x} = -c\dot{x} - \kappa x$$

ou

$$m\ddot{x} + c\dot{x} + \kappa x = 0.$$

Solução

Supondo a solução $x(t)=Ce^{st}$, a equação característica é

$$ms^2 + cs + k = 0,$$

cujas raízes são

$$s_{1,2} = \frac{-c \pm \sqrt{c^2 - 4mk}}{2m} = -\frac{c}{2m} \pm \sqrt{\left(\frac{c}{2m}\right)^2 - \frac{\kappa}{m}}.$$

As soluções são então

$$x_1(t) = C_1 e^{s_1 t}, \qquad x_2(t) = C_2 e^{s_2 t}$$

Solução

Supondo a solução $x(t)=\mathit{Ce}^{\mathit{st}}$, a equação característica é

$$ms^2 + cs + k = 0,$$

cujas raízes são

$$s_{1,2} = \frac{-c \pm \sqrt{c^2 - 4mk}}{2m} = -\frac{c}{2m} \pm \sqrt{\left(\frac{c}{2m}\right)^2 - \frac{\kappa}{m}}.$$

As soluções são então

$$x_1(t) = C_1 e^{s_1 t}, \qquad x_2(t) = C_2 e^{s_2 t}.$$

A solução geral é $x(t) = x_1(t) + x_2(t)$, ou

$$x(t) = C_1 e^{\left(-\frac{c}{2m} + \sqrt{\left(\frac{c}{2m}\right)^2 - \frac{\kappa}{m}}\right)t} + C_2 e^{\left(-\frac{c}{2m} - \sqrt{\left(\frac{c}{2m}\right)^2 - \frac{\kappa}{m}}\right)t}.$$

As constantes C_1 e C_2 devem ser calculadas a partir das condições iniciais.

Amortecimento Crítico

O amortecimento crítico é o valor para o qual o radical é nulo:

$$\left(\frac{c_c}{2m}\right)^2 - \frac{\kappa}{m} = 0$$

ou

$$c_c = 2m\sqrt{\frac{\kappa}{m}} = 2\sqrt{\kappa m}$$

ou ainda

$$c_c = 2m\omega_n$$
.

Razão de Amortecimento

Uma medida adimensional conveniente do amortecimento é a razão de amortecimento

$$\zeta = \frac{c}{c_c}$$
.

Podemos escrever

$$\frac{c}{2m} = \frac{c}{c_c} \frac{c_c}{2m} = \zeta \omega_n,$$

e as raízes como

$$s_{1,2} = \left(-\zeta \pm \sqrt{\zeta^2 - 1}\right)\omega_n.$$

A solução geral é então

$$x(t) = C_1 e^{\left(-\zeta + \sqrt{\zeta^2 - 1}\right)\omega_n t} + C_2 e^{\left(-\zeta - \sqrt{\zeta^2 - 1}\right)\omega_n t}$$

A equação de movimento é

$$m\ddot{x} + c\dot{x} + \kappa x = 0.$$

Dividindo tudo por m, obtemos

$$\ddot{x} + \frac{c}{m}\dot{x} + \frac{\kappa}{m}x = 0.$$

Claramente,

$$\frac{k}{m} = \omega_n^2$$
 e $\frac{c}{m} = \frac{c_c \zeta}{m} = \frac{2m\omega_n \zeta}{m} = 2\zeta\omega_n$

e a equação de movimento pode ser reescrita então como

$$\ddot{x} + 2\zeta\omega_n\dot{x} + \omega_n^2x = 0$$

A equação de movimento é

$$m\ddot{x} + c\dot{x} + \kappa x = 0.$$

Dividindo tudo por m, obtemos

$$\ddot{x} + \frac{c}{m}\dot{x} + \frac{\kappa}{m}x = 0.$$

Claramente,

$$\frac{k}{m} = \omega_n^2$$
 e $\frac{c}{m} = \frac{c_c \zeta}{m} = \frac{2m\omega_n \zeta}{m} = 2\zeta\omega_n$

e a equação de movimento pode ser reescrita então como

$$\ddot{x} + 2\zeta\omega_n\dot{x} + \omega_n^2x = 0$$

Forma alternativa

A equação de movimento é

$$m\ddot{x} + c\dot{x} + \kappa x = 0.$$

Dividindo tudo por m, obtemos

$$\ddot{x} + \frac{c}{m}\dot{x} + \frac{\kappa}{m}x = 0.$$

Claramente,

$$\frac{k}{m} = \omega_n^2$$
 e $\frac{c}{m} = \frac{c_c \zeta}{m} = \frac{2m\omega_n \zeta}{m} = 2\zeta\omega_n$

e a equação de movimento pode ser reescrita então como

$$\ddot{x} + 2\zeta\omega_n\dot{x} + \omega_n^2x = 0.$$

Comportamento das Soluções

A natureza das soluções depende do valor dos radicais e portanto do amortecimento.

Para $\zeta = 0$, o sistema não é amortecido.

Para $\zeta > 0$, existem três possibildades:

 $\zeta < 1$ sistemas sub amortecidos;

 $\zeta = 1$ sistemas criticamente amortecidos;

 $\zeta > 1$ sistemas superamortecidos;

Amortecimento Subcrítico, $\zeta < 1$

Neste caso

$$\zeta < 1$$
 ou $c < c_c$ ou $\frac{c}{2m} < \sqrt{\frac{\kappa}{m}},$

isto implica que $\zeta^2 - 1 < 0$, e

$$s_1 = \left(-\zeta + i\sqrt{1-\zeta^2}\right)\omega_n, \qquad s_2 = \left(-\zeta - i\sqrt{1-\zeta^2}\right)\omega_n.$$

A solução geral torna-se

$$x(t) = C_1 e^{\left(-\zeta + i\sqrt{1-\zeta^2}\right)\omega_n t} + C_2 e^{\left(-\zeta - i\sqrt{1-\zeta^2}\right)\omega_n t}$$

ou, equivalentemente

$$x(t) = e^{-\zeta \omega_n t} \left\{ C_1 e^{\left(i\sqrt{1-\zeta^2}\right)\omega_n t} + C_2 e^{\left(-i\sqrt{1-\zeta^2}\right)\omega_n t} \right\}$$

Amortecimento Subcrítico, $\zeta < 1$

Neste caso

$$\zeta < 1$$
 ou $c < c_c$ ou $\frac{c}{2m} < \sqrt{\frac{\kappa}{m}},$

isto implica que $\zeta^2 - 1 < 0$, e

$$s_1 = \left(-\zeta + i\sqrt{1-\zeta^2}\right)\omega_n, \qquad s_2 = \left(-\zeta - i\sqrt{1-\zeta^2}\right)\omega_n.$$

A solução geral torna-se

$$x(t) = C_1 e^{\left(-\zeta + i\sqrt{1-\zeta^2}\right)\omega_n t} + C_2 e^{\left(-\zeta - i\sqrt{1-\zeta^2}\right)\omega_n t}$$

ou, equivalentemente,

$$x(t) = e^{-\zeta \omega_n t} \left\{ C_1 e^{\left(i\sqrt{1-\zeta^2}\right)\omega_n t} + C_2 e^{\left(-i\sqrt{1-\zeta^2}\right)\omega_n t} \right\}$$

Passando para a forma trigonométrica

$$x(t)=e^{-\zeta\omega_n t}\left\{\left(C_1+C_2
ight)\cos\sqrt{1-\zeta^2}\omega_n t+
ight. \ \left.\left(C_1-C_2
ight)i\sin\sqrt{1-\zeta^2}\omega_n t
ight\}$$

ou, é claro,

$$x(t) = e^{-\zeta \omega_n t} \left\{ C_1' \cos \sqrt{1 - \zeta^2} \omega_n t + C_2' \sin \sqrt{1 - \zeta^2} \omega_n t \right\}$$

e finalmente,

$$x(t) = X_0 e^{-\zeta \omega_n t} \sin\left(\sqrt{1 - \zeta^2} \omega_n t + \phi_0\right)$$

 \in

$$x(t) = Xe^{-\zeta\omega_n t} \cos\left(\sqrt{1-\zeta^2}\omega_n t - \phi\right)$$

Passando para a forma trigonométrica

$$x(t) = e^{-\zeta \omega_n t} \left\{ (C_1 + C_2) \cos \sqrt{1 - \zeta^2} \omega_n t + \left(C_1 - C_2 \right) i \sin \sqrt{1 - \zeta^2} \omega_n t \right\}$$

ou, é claro,

$$x(t) = e^{-\zeta \omega_n t} \left\{ C_1' \cos \sqrt{1 - \zeta^2} \omega_n t + C_2' \sin \sqrt{1 - \zeta^2} \omega_n t \right\}$$

e finalmente,

$$X(t) = X_0 e^{-\zeta \omega_n t} \sin\left(\sqrt{1-\zeta^2}\omega_n t + \phi_0\right)$$

 \in

$$x(t) = Xe^{-\zeta\omega_n t} \cos\left(\sqrt{1-\zeta^2}\omega_n t - \phi\right)$$

Passando para a forma trigonométrica

$$x(t) = e^{-\zeta \omega_n t} \left\{ (C_1 + C_2) \cos \sqrt{1 - \zeta^2} \omega_n t + \left(C_1 - C_2 \right) i \sin \sqrt{1 - \zeta^2} \omega_n t \right\}$$

ou, é claro,

$$x(t) = e^{-\zeta \omega_n t} \left\{ C_1' \cos \sqrt{1 - \zeta^2} \omega_n t + C_2' \sin \sqrt{1 - \zeta^2} \omega_n t \right\}$$

e finalmente,

$$x(t) = X_0 e^{-\zeta \omega_n t} \sin\left(\sqrt{1-\zeta^2}\omega_n t + \phi_0\right)$$

е

$$x(t) = Xe^{-\zeta\omega_n t}\cos\left(\sqrt{1-\zeta^2}\omega_n t - \phi\right)$$

As constantes (C_1', C_2') , (X, ϕ) e (X_0, ϕ_0) , devem ser determinadas a partir das condições iniciais.

Fazendo $x(0) = x_0 e \dot{x}(0) = \dot{x}_0$, temos

$$C_1' = x_0,$$
 $C_2' = \frac{\dot{x}_0 + \zeta \omega_n x_0}{\sqrt{1 - \zeta^2} \omega_n}$

e a solução geral é

$$x(t) = e^{-\zeta \omega_n t} \left\{ x_0 \cos \sqrt{1 - \zeta^2} \omega_n t + \frac{\dot{x}_0 + \zeta \omega_n x_0}{\sqrt{1 - \zeta^2} \omega_n} \sin \sqrt{1 - \zeta^2} \omega_n t \right\}$$

As constantes (C_1', C_2') , (X, ϕ) e (X_0, ϕ_0) , devem ser determinadas a partir das condições iniciais.

Fazendo $x(0) = x_0$ e $\dot{x}(0) = \dot{x}_0$, temos

$$C'_1 = x_0,$$
 $C'_2 = \frac{\dot{x}_0 + \zeta \omega_n x_0}{\sqrt{1 - \zeta^2} \omega_n}$

e a solução geral e

$$x(t) = e^{-\zeta \omega_n t} \left\{ x_0 \cos \sqrt{1 - \zeta^2} \omega_n t + \frac{\dot{x}_0 + \zeta \omega_n x_0}{\sqrt{1 - \zeta^2} \omega_n} \sin \sqrt{1 - \zeta^2} \omega_n t \right\}$$

As constantes (C'_1, C'_2) , (X, ϕ) e (X_0, ϕ_0) , devem ser determinadas a partir das condições iniciais.

Fazendo $x(0) = x_0 e \dot{x}(0) = \dot{x}_0$, temos

$$C'_1 = x_0,$$
 $C'_2 = \frac{x_0 + \zeta \omega_n x_0}{\sqrt{1 - \zeta^2 \omega_n}}$

e a solução geral é

$$x(t) = e^{-\zeta \omega_n t} \left\{ x_0 \cos \sqrt{1 - \zeta^2} \omega_n t + \frac{\dot{x}_0 + \zeta \omega_n x_0}{\sqrt{1 - \zeta^2} \omega_n} \sin \sqrt{1 - \zeta^2} \omega_n t \right\}$$

Conforme feito anteriormente,

$$\begin{split} X &= X_0 = \sqrt{C_1' + C_2'} = \frac{\sqrt{x_0^2 \omega_n^2 + \dot{x}_0^2 + 2x_0 \dot{x}_0 \zeta \omega_n}}{\sqrt{1 - \zeta^2} \omega_n} \\ \phi_0 &= \arctan\left(\frac{C_1'}{C_2'}\right) = \arctan\left(\frac{x_0 \omega_n \sqrt{1 - \zeta^2}}{\dot{x}_0 + \zeta \omega_n x_0}\right) \\ \phi &= \arctan\left(\frac{C_2'}{C_1'}\right) = \arctan\left(\frac{\dot{x}_0 + \zeta \omega_n x_0}{x_0 \omega_n \sqrt{1 - \zeta^2}}\right) \end{split}$$

Visualização

A resposta é uma função harmônica com frequência $\omega_d=\sqrt{1-\zeta^2}\omega_n$, com a amplitude decaindo exponencialmente devido ao termo $e^{-\zeta\omega_n t}$.

 ω_d é a frequência de vibração amortecida.

Frequência Amortecida

O comportamento da frequência amortecida em função de ζ é mostrado ao lado.

$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$

como só há vibração para $\zeta < 1$, é caso de maior interesse para engenharia.

Amortecimento crítico, $\zeta = 1$

Neste caso as raízes são iguais

$$s_1 = s_2 = \left(-\zeta \pm \sqrt{\zeta^2 - 1}\right)\omega_n = -\omega_n.$$

Lembrando que a solução geral é da forma

$$x(t) = C_1 e^{s_1 t} + C_2 e^{s_2 t},$$

mas, para raízes repetidas da equação característica, a solução geral

$$x(t) = (C_1 + C_2 t)e^{st}$$

portanto, para sistemas criticamente amortecidos

$$x(t) = (C_1 + C_2 t)e^{-\omega_n t}$$

Amortecimento crítico, $\zeta = 1$

Neste caso as raízes são iguais

$$s_1 = s_2 = \left(-\zeta \pm \sqrt{\zeta^2 - 1}\right)\omega_n = -\omega_n.$$

$$x(t) = C_1 e^{s_1 t} + C_2 e^{s_2 t},$$

$$x(t) = (C_1 + C_2 t)e^{st}$$

$$x(t) = (C_1 + C_2 t)e^{-\omega_n t}$$

Amortecimento crítico, $\zeta=1$

Neste caso as raízes são iguais

$$s_1 = s_2 = \left(-\zeta \pm \sqrt{\zeta^2 - 1}\right)\omega_n = -\omega_n.$$

Lembrando que a solução geral é da forma

$$x(t) = C_1 e^{s_1 t} + C_2 e^{s_2 t},$$

mas, para raízes repetidas da equação característica, a solução geral

$$x(t)=(C_1+C_2t)e^{st},$$

portanto, para sistemas criticamente amortecidos

$$x(t) = (C_1 + C_2 t)e^{-\omega_n t}.$$

Usando
$$x(0) = x_0$$
 e $\dot{x}(0) = \dot{x}_0$, obtemos

$$C_1 = x_0, \qquad C_2 = \dot{x}_0 + \omega_n x_0.$$

A solução é então

$$x(t) = (x_0 + (\dot{x}_0 + \omega_n x_0) t) e^{-\omega_n t},$$

que claramente não é periódica!

Usando
$$x(0) = x_0$$
 e $\dot{x}(0) = \dot{x}_0$, obtemos

$$C_1 = x_0, \qquad C_2 = \dot{x}_0 + \omega_n x_0.$$

A solução é então

$$x(t) = (x_0 + (\dot{x}_0 + \omega_n x_0) t) e^{-\omega_n t},$$

que claramente não é periódica!

Amortecimento Supercrítico, $\zeta > 1$

Neste caso, $\sqrt{\zeta^2 - 1} > 0$, e as raízes são reais e distintas,

$$\begin{split} s_1 &= \left(-\zeta + \sqrt{\zeta^2 - 1}\right) \omega_n < 0 \\ s_2 &= \left(-\zeta - \sqrt{\zeta^2 - 1}\right) \omega_n < 0, \end{split}$$

com $s_2 \ll s_1$. A solução geral é,

$$x(t) = C_1 e^{\left(-\zeta + \sqrt{\zeta^2 - 1}\right)\omega_n t} + C_2 e^{\left(-\zeta - \sqrt{\zeta^2 - 1}\right)\omega_n t}$$

Usando
$$x(0) = x_0$$
 e $\dot{x}(0) = \dot{x}_0$, obtemos

$$C_1 = \frac{x_0 \omega_n \left(\zeta + \sqrt{\zeta^2 - 1}\right) + \dot{x}_0}{2\omega_n \sqrt{\zeta^2 - 1}}$$

$$C_2 = \frac{-x_0 \omega_n \left(\zeta + \sqrt{\zeta^2 - 1}\right) - \dot{x}_0}{2\omega_n \sqrt{\zeta^2 - 1}}$$

O movimento é claramente aperiódico, e como as duas raízes são negativas, as soluções tendem para 0.

Visualização

Plano de Fase

- Um sistema criticamente amortecido tem o menor amortecimento necessário para movimento aperiódico;
- A massa retorna ao repouso no menor tempo possível;

