Crash Course Mathematics

Marco Repetto

August-September, 2018

Before starting ... Where do I find this slides?

Essentials of Set Theory

What is a set?

A set may be seen as a collection of elements. The following

$$S = \{a, b, c\}$$

is said to be a set. In particular we are talking about the set S with elements a b and c.

Be carfull

The order is not important meaninig that given two vectors:

$$A = \{1, 2, 3\}$$
 $B = \{1, 3, 2, 1\}$

$$A = B$$

Essentials of Set Theory II

Let's elaborate it a little more...

The notation we used previously is usefull with short sets but what about big sets and infinite sets? We need to use a different notation defining the property of the set:

$$B = \{(x, y) : px + qy \le m, x \ge 0, y \ge 0\}$$

Set Membership

$$x \in S$$
 $x \notin S$

$$A \subseteq B$$

Essentials of Set Theory III

Exercise

Try to state the properties of the **even** number set.

Essentials of Set Theory IV

Set operations

Notation	The set that consists of the elements that:
$A \cup B$	belong to at least one of the sets A and B
$A \cap B$	belong to both A and B
$A \setminus B$	belong to set A , but not to B
A ^c	do not belong to set A

Tips and tricks

For a small number of sets you can use Venn diagramms as a visual help!

Essentials of Set Theory V (Exercises)

1.1.5 Determine which of the following formulas are true. If any is false, find a counter example to demostrate this.

- \bigcirc $A \cap (B \cup C) \subseteq (A \cap B) \cup C$
- \bullet $A \cup (B \cap C) \setminus (A \cup B) \cap C$

1.1.6 Use the Venn diagrams to prove that:

- $(A \cap B)^c = A^c \cup B^c$

Some Aspects of Logic

Propositions

Are assertions that are either true or false.

Eg: all individuals who breathe are alive TRUE proposition

Eg: all individuals who breathe are healthy FALSE proposition

Implications

Implications are used to keep track of the logical chain reasoning.

Eg: $P \implies Q$ is read as if P then Q

Eg: $P \iff Q$ is read as P if and only if Q

Some Aspects of Logic II

Necessary and Sufficient Conditions

Taking the last example

$$P \implies Q$$

P is a **sufficient condition** for Q Q is a **necessary condition** for P

Living in Paris Living in France
$$\bigoplus_{\text{If then}} Q$$

Some Aspects of Logic III (Exercises)

1.2.2 Determine which of the following formulas are true. I any formula is false, find a counter a counter example to demonstrate this.

- $A \cup B = A \cup C \implies B = C$

Some Aspects of Logic IV (Exercises)

1.2.5 For each of the following proposition, state the negation as simply as possible.

- $\mathbf{0} \ \ x \ge andy \ge 0$
- ② All x satisfy $x \ge a$
- \odot Neither x nor y is less than 5
- For each $\epsilon \geq 0$, there exists a $\delta > 0$ such that B is satisfied
- No one can help liking cats
- Everyone loves somebody some of the time

Mathematical Proofs

Characteristics

Looking on what argued by Thomas Tymoczko, three are the main features of a mathemetical proof:

- Convincingness
- Surveyability
- Formalizability

Direct proof

We start with the premises P and work forward to Q

Indirect proof

We are going backwards supposing Q is false and proving the falseness of P

Mathematical induction

Direct and indirect proof are a both examples of deductive reasoning (we use the rules of logic to prove something). Inductive reasoning moves from a different assumption meaning that we can establish certain conclusions by observations.

Algebra

The Real Numbers

- Natural numbers: $\mathbb{N} = \{0, 1, 2, ...\}$
- Integers: $\mathbb{Z} = \mathbb{N} \cup \{..., -2, -1\}$
- Rational numbers: $\mathbb{Q} = \{x : x = \frac{a}{b}, a \in \mathbb{N}, b \in \mathbb{N}\}$
- ullet Irrational numbers: $\mathbb{I}=\mathbb{R}\ \mathbb{Q}$
- Real numbers: $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$

2.1.1 Explain why the infinite decimal expansion below is not a rational number

1.01001000100001...

Integer Powers

Definition

$$a^{n} = \underbrace{a \cdot a \dots a}_{n}$$

$$a^{-n} = \underbrace{\frac{1}{a} \cdot \frac{1}{a} \dots \frac{1}{a}}_{n}$$

And ...

$$a^0=1 \quad \forall a \neq 0$$

$$a^0 = undefined$$
 if $a = 0$

Integer Powers II

Properties

For any real number a, and any integer numbers r and s:

$$a^r \cdot a^s = a^{r+s}$$

$$(a^r)^s = a^{rs}$$

Integer Powers III

Rules of Algebra

Fractions

Fractional Power

Inequalities

Intervals and Absolute Values

Summation

Rules for Sums

Newton's Binomial Formula

Duble Summs

END OF CH 2