

Action Trading for Self-Interested Multi-Agent Reinforcement Learning in an Escape Room Setting

Arnold Unterauer

Reinforcement Learning

Source: Richard S. Sutton and Andrew G. Barto Reinforcement Learning: An Introduction

Motivation

Multi Agent Systems:

agents maximize their own reward selfish bahaviour no cooperation between agents unused potential

Solution:

Cooperative Game Theory enable cooperation between agents motivate agents to cooperate

Related Work - Action Markets

agents trade reward for the following action
agents are able to trade with extended action space
cooperating agents outperformed selfish ones

Source: Kyrill Schmid, Lenz Belzner, Thomas Gabor, and Thomy Phan Action Markets in Deep Multi-Agent Reinforcement Learning

Related Work – Learning to Incentivize Other Learning Agents

(b) Agent A1 is penalized at every step if A2 does not pull the lever.

(c) A1 get +10 and terminates the episode by going to the door if A2 pulls the lever.

agents have to escape from a room by opening the door

the lever for the door can only be pulled by one agent, which results in a penality

the other agent is punished for every step inside the room

- → agent will not pull the lever, everyone is trapped
- → cooperation is needed to overcome this hurdle

Source: Jiachen Yang, Ang Li, Mehrdad Farajtabar, Peter Sunehag, Edward Hughes and Hongyuan Zha Learning to Incentivize Other Learning Agents

Environments

Smart Factory:

Complete tasks by processing machines fast

Escape Room:

Leave the room by cooperating to pull the lever

Environment – Smart Factory

Environment – Escape Room

Environment – Escape Room

Environment – Escape Room

agent 1	ent 0 exit	don't exit
pull	-1 / 10	-1 / -1
don't pull	0 / -1	0 / -1

Expected rewards:

agent 1	pull: -1	don't pull: 0
agent 0	exit: 4.5	don't exit: -1

Environment – Escape Room

agent 1	pull: -1	don't pull: 0
agent 0	exit: 4.5	don't exit: -1

Environment – Escape Room

agent 1 pull: -1 + C don't pull: 0
agent 0 exit: 4.5 don't exit: -1

Action Trading

agent makes an offer to other agent
other agent can perform the offer action
by executing the agent gets compensated

Compensation

$$Compensation = M_c * \frac{Q_{max} - Q_{offer}}{\gamma}$$

Valuation Networks: pretrained non-cooperating agent networks

Policy Networks: learning agents

Target Networks: learning agents

Fixed Value: fixed compensation amount

Experiments

Deep Q-Network

128 64 32

action

Decaying ε -greedy: over 6000 epsiodes to ε_{min} = 0.01

10 runs: 6000 episodes with γ = 0.95

Fixed Compensation: 2

Mark up: $M_c = 1.1$

Experiments

Smart Factory:

- random selected priorities

	high priority	low priority
step in factory	-0.5	-0.02
complete task	1	1

Escape Room:

- fixed wall direction
- random generated wall direction

	agent 0	agent 1
step in room	-1	0
pull lever	0	-1
exit room	10	0

MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Experiments – Smart Factory

Smart Factory Training

Experiments – Smart Factory

Smart Factory Training Close-up

Experiments – Escape Room

Escape Room fixed wall direction

Experiments – Escape Room

Escape Room random wall direction

Experiments – Escape Room

Escape Room comparison

Experiments – Escape Room

Escape Room fixed wall agent 1

Experiments – Comparison

Smart Factory vs Escape Room

Conclusion

Agents with action trading outperform non-trading agents across the board

Policy and Target networks performance depends strongly on learning success

Valuation networks have the worst results as they are based on noncooperative agents

Fixed compensation achieves consistently good results, but requires manual adjustment.

Conditioning of all trading compensations

Thank you for your attention