Discrete Structures

Daksh Maahor

September 2025

Contents

1	\mathbf{Intr}	roduction: Propositions	4
	1.1	Propositions	4
	1.2	Combining Propositions	4
	1.3	Truth Tables!	4
		1.3.1 Important logical equivalences	5
		1.3.2 Operator Precedence	5
	1.4	Negation, Converse and Contrapositive	6
	1.5	Quantifiers	7
2	$\operatorname{Th}\epsilon$	eorems and Proofs	8
	2.1	Examples of some proofs	8
	2.2	Mathematical Induction as an Axiom	13
	2.3	The Well Ordering Principle	13
	2.4	Induction as a theorem : WOP implies Induction	14
3	Bas	sic Structures: Sets and Functions	18
	3.1	Sets	18
	3.2	Some properties of sets	18
	3.3	Functions	19
		3.3.1 Functions on finite sets	19

		3.3.2	Some important theorems: True for both finite
			and infinite sets
	3.4	Infinit	te Sets
		3.4.1	Definition of Infinite Set
		3.4.2	Important Takeaways
	3.5	Some	Important Bijections on Infinite Sets 21
		3.5.1	Bijection from $\mathbb{Z} \to \mathbb{N}$
		3.5.2	Bijection from $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$
		3.5.3	Bijection from $\mathbb{N} \to \mathbb{N} \times \mathbb{N}$
		3.5.4	Bijection from $\mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$
		3.5.5	Bijection from $\mathbb{N} \to \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
		3.5.6	Proving the inexistence of a bijection
		3.5.7	Proving the existence of a bijection
		3.5.8	Cartesian product of countable sets 25
		3.5.9	Are Rationals countable??
	3.6	Canto	r's Theorem and Cantor's Continuum Hypothesis 26
	3.7	Relati	ons
		3.7.1	Partitions of a set
		3.7.2	Relation generated by partitions
		3.7.3	Equivalence Classes
		3.7.4	Defining new Objects through equivalence rela-
			tions
4	Bas	sic Stru	ictures: Posets 30
	4.1	Anti-S	Symmetry
	4.2		d Orders
	4.3	Partia	ally Ordered Sets: Posets
		4.3.1	Graphical Representation of a Poset
	4.4	Chain	s and Anti-Chains
		4.4.1	Chains
		4.4.2	
	4.5	Topol	ogical Sort

	4.6	4.5.1 Minimal Element	33 36 37 37
5		ic Structures: Lattices Lattice	38 38
6	Cou	Inting and Combinatorics The Product Principle	39 39
	6.2	The Sum Principle	39 40

1 Introduction: Propositions

1.1 Propositions

A proposition is a statement which is either true or false (but not both).

Ex:-"It is raining in Mumbai today!!!" is a proposition, most probably true:(

Ex:-x + 3 = 8 is not a proposition, as it cannot be determined to be true or false without fixing a value for x.

Similarly, since we use variables x, y, z, \ldots for numbers, we will use p, q, r, \ldots for propositions.

1.2 Combining Propositions

The propositions can be combined using Boolean operators such as \neg , \land , \lor , \rightarrow , \longleftrightarrow , etc.

p: It is raining

 $\neg p$: It is not raining

q: I will go to class

 $p \wedge \neg q$: It is raining and I will not go to class

 $\neg p \rightarrow q$: If it is not raining then I will go to class

1.3 Truth Tables!

A Truth Table is a table that lists all the possible combinations of inputs and their corresponding outputs. For example:

p	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

p	q	$p \lor q$
0	0	0
0	1	$\mid 1 \mid$
1	0	1
1	1	1

Table 1: Truth table for $p \wedge q$ Table 2: Truth table for $p \vee q$

p	q	$p \bigoplus q$
0	0	0
0	1	1
1	0	1
1	1	0

Table 3: Truth table for $p \bigoplus q$

Important logical equivalences 1.3.1

Logical equivalence means that the truth tables of two statements are identical. Some important logical equivalences are:

- $p \to q$ is equivalent to $\neg p \lor q$
- $p \longleftrightarrow q$ is equivalent to $(p \to q) \land (q \to p)$

Operator Precedence 1.3.2

The Operator Precedence of the Logical Operators follows the given order:

$$\neg$$
 then \land then \lor then \rightarrow then \longleftrightarrow

Eg: Construct the truth table for $(p \lor \neg q) \to (p \land q)$

p	q	$\neg q$	$p \vee \neg q$	$p \wedge q$	$(p \vee \neg q) \to (p \wedge q)$
0	0	1	1	0	0
0	1	0	0	0	1
1	0	1	1	0	0
1	1	0	1	1	1

Table 4: Truth table for $(p \lor \neg q) \to (p \land q)$

1.4 Negation, Converse and Contrapositive

Take the following propositions:

p: It will rain today

q: The match will be canceled

 $p \to q$: If it will rain today then the match will be canceled

The negation of an implication is given as:

$$\neg(p \to q) \equiv \neg(\neg p \lor q) \equiv p \land \neg q$$

For the above statements:

 $\neg(p \rightarrow q)$: It will rain today and the match will not be canceled

The converse of an implication is given as:

Converse of
$$(p \to q)$$
 is $(q \to p)$

For the above statements:

 $q \rightarrow p$: If the match will be canceled then it will rain today

The contrapositive of an implication is given as:

Contrapositive of
$$(p \to q)$$
 is $(\neg q \to \neg p)$

For the above statements:

 $\neg q \rightarrow \neg p$: If the match won't be canceled then it won't rain today.

 $p \to q \equiv \neg q \to \neg p$, that is an implication is logically equivalent to its contrapositive.

1.5 Quantifiers

Quantifiers are additional statements that provide context-specific information, such as the domain of discourse. Some common quantifiers are the following.

- $\forall n$ stands for all values of n in the given domain
- $\exists n$ stands for there exists a value of n in the given domain
- \in is "the element of" symbol

The negation of \forall is \exists and vice versa.

Ex: The negation of $\forall x \ P(x)$ is $\exists x \ \neg P(x)$

Ex: The negation of $\forall x \ (x^2 \ge x)$ is $\exists x \ (x^2 < x)$

2 Theorems and Proofs

A theorem is a proposition that can be proved or disproved. At the basic level, there are two basic methods of proving theorems, Induction and Contradiction.

2.1 Examples of some proofs

Theorem 1. For all $x \in \mathbb{N}$, x is even $\longleftrightarrow x + x^2 - x^3$ is even.

Proof. The proof proceeds in two directions.

• Forward direction : $\forall x \in \mathbb{N}, x \text{ is even } \rightarrow x + x^2 - x^3 \text{ is even.}$

Let $x \in \mathbb{N}$ and x be even.

So,
$$\exists k \in \mathbb{N}, x = 2k$$
.

Then,
$$x + x^2 - x^3 = 2k + (2k)^2 - (2k)^3 = 2k + 4k^2 - 8k^3 = 2(k + 2k^2 - 4k^3) = 2m$$

where,
$$m = k + 2k^2 - 4k^3$$
, thus $m \in \mathbb{Z}$, ie, $2 \mid x + x^2 - x^3$.

So,
$$x + x^2 - x^3$$
 is even.

• Reverse direction: $\forall x \in \mathbb{N}, x + x^2 - x^3 \text{ is even} \to x \text{ is even}.$

It is easier to prove the contrapositive,

$$\forall x \in \mathbb{N}, x \text{ is odd} \to x + x^2 - x^3 \text{ is odd.}$$

Let $x \in \mathbb{N}$ and x be odd.

So,
$$\exists k \in \mathbb{N}, x = 2k + 1$$
.

Then
$$x + x^2 - x^3 = (2k+1) + (2k+1)^2 - (2k+1)^3 = (2k+1) + (4k^2 + 4k + 1) - (8k^3 + 12k^2 + 6k + 1) = (-8k^3 - 8k^2 + 1) = 2m + 1$$
 where $m = -4k^3 - 4k^2$, thus $m \in \mathbb{Z}$, i.e. $x + x^2 - x^3$ is odd.

So,
$$x + x^2 - x^3$$
 is odd.

Hence, Proved.

Theorem 2. There are infinitely many primes.

Proof. Suppose that there are finitely many primes, say, $p_1 < p_2 < p_3 < \cdots < p_n$. We call the set of those primes \$\\$.

Now, let $k = (p_1 p_2 p_3 \dots p_n) + 1$.

Then, k when divided by any p_r returns a remainder of 1. So k is not divisible by any of the p_r 's.

Also, k > 1 and $k > p_n$, so k must not be prime. So, by the fundamental theorem of arithmetic, k can be written as a product of primes.

Now take any prime p in that product. Since p divides k, therefore $p \neq p_i$ for any $i \in \{1, 2, ..., n\}$.

So p is a prime that is not in S. But this contradicts our assumption that S is the set of all primes.

This means that our assumption was wrong, and thus, there are infinitely many primes. \Box

Theorem 3. $\sqrt{2}$ is irrational.

Proof. Let us assume, for the sake of contradiction, that $\sqrt{2}$ is rational.

That is,

$$\sqrt{2} = \frac{p}{q}$$

for some

$$p, q \in \mathbb{N}, q \neq 0$$

where p and q are co-prime.

Then,

$$2 = \frac{p^2}{q^2}$$
$$p^2 = 2q^2$$

Thus p^2 is divisible by 2. Since 2 is prime, this implies that p is divisible by 2. So,

$$\exists k \in \mathbb{N}, p = 2k$$

$$(2k)^2 = 2q^2$$
$$4k^2 = 2q^2$$
$$q^2 = 2k^2$$

Thus q^2 is divisible by 2. Since 2 is prime, this implies that q is divisible by 2.

Thus, both p and q are divisible by 2. This contradicts the statement that p and q are co-prime. So, our assumption that $\sqrt{2}$ is rational is false.

So,
$$\sqrt{2}$$
 is irrational.

Theorem 4. There exist irrational numbers x and y, such that x^y is rational.

Proof. We have already proved that $\sqrt{2}$ is irrational.

Let $x = y = \sqrt{2}$, consider $z = x^y$.

- If z is rational, then we have found a pair of irrational (x, y) such that x^y is rational.
- If z is irrational, then let x = z and $y = \sqrt{2}$. Then, $x^y = ((\sqrt{2})^{\sqrt{2}})^{\sqrt{2}} = (\sqrt{2})^2 = 2$, which is rational, then we have found a pair of irrational (x, y) such that x^y is rational.

The above proof is a non-constructive proof. It establishes that a mathematical object exists without providing a method to construct or identify it. Such proof techniques are quite powerful.

Theorem 5. 21 divides $4^{n+1} + 5^{2n-1}$ whenever $n \in \mathbb{Z}^+$.

Proof. • Base Case: For n = 1

$$4^{n+1} + 5^{2n-1} = 4^2 + 5^1 = 16 + 5 = 21 = 21 \times 1$$

Thus, 21 divides $4^{n+1} + 5^{2n-1}$ for n = 1

• Induction Hypothesis: Let for $n = k, k \ge 1$, we have

21 divides
$$4^{k+1} + 5^{2k-1}$$

So,

$$4^{k+1} + 5^{2k-1} = 21m$$
 for some $m \in \mathbb{Z}$

• Induction Step: For n = k + 1

$$4^{n+1} + 5^{2n-1} = 4^{(k+1)+1} + 5^{2(k+1)-1}$$

$$4^{k+2} + 5^{2k+1} = 4(4^{k+1}) + 25(5^{2k-1})$$

$$4^{k+2} + 5^{2k+1} = 4(21m - 5^{2k-1}) + 25(5^{2k-1})$$

$$4^{k+2} + 5^{2k+1} = 4(21m) + 21(5^{2k-1})$$

$$4^{k+2} + 5^{2k+1} = 21(4m + 5^{2k-1}) = 21p$$

for

$$p = 4m + 5^{2k-1}$$

Thus, by induction, we have 21 divides $4^{n+1} + 5^{2n-1} \ \forall n \in \mathbb{Z}^+$

The above proof technique is another powerful tool known as mathematical induction.

2.2 Mathematical Induction as an Axiom

We can define the induction axiom as follows.

Let P(n) be a property of non-negative integers. If

- P(i) is true (Base case)
- $\forall k \geq i, P(k) \rightarrow P(k+1)$

Then, P(n) holds $\forall n \in \mathbb{Z}^+, n \geq i$

Induction axiom can then be used to prove an important theorem in computer science known as the Well Ordering Principle.

2.3 The Well Ordering Principle

Every non-empty set of non-negative integers has a smallest element.

Proof.

- Base Case: For a set of 1 non-negative integer, the integer itself is obviously the smallest element.
- Induction Hypothesis: For any set of k non-negative integers, let there exist a smallest element.
- Induction Step: Consider any set of k + 1 non-negative integers, say S_0 . Let $n_0 \in S_0$. Now consider the set $S_1 = S_0 \{n_0\}$. S_1 is a set of k non-negative integers, thus S_1 has a smallest element, say n_1 .

Now, if $n_1 < n_0$, then n_1 will be the smallest element of the set

 S_0 . Else n_0 will be the smallest element of S_0 . In either case, S_0 will have a smallest element.

Thus, $\forall n \in \mathbb{Z}^+$, any finite set of n non-negative integers will have a smallest element.

For an infinite set of non negative integers \mathbb{X} , take for any n, $\mathbb{X}_n = \mathbb{X} \cap \{0, \dots, n\}$. Now since \mathbb{X} is not ϕ and $\bigcup_{i=0}^{\infty} \mathbb{X}_i = \mathbb{X}$, there exists $n \in \mathbb{N}$ such that $\mathbb{X}_n \neq \phi$.

Then by above proof, $\exists x \in \mathbb{X}_n, \forall u \in \mathbb{X}_n, x \leq u$. Also if $u \in \mathbb{X} - \mathbb{X}_n$, we have $u \notin \{0, \ldots, n\}$ and thus, $x \leq n < u$ so $x \leq u \ \forall \ u \in \mathbb{X}$

2.4 Induction as a theorem : WOP implies Induction

Theorem 6. Let P(n) be a property of non-negative integers. If

- P(i) is true (Base case)
- $\forall k \ge i, P(k) \to P(k+1)$

Then, P(n) holds $\forall n \in \mathbb{Z}^+, n \geq i$

Proof. We will use contradiction. Let us assume induction is not true. This means that,

- P(i) is true (Base case)
- $\forall k \ge i, P(k) \to P(k+1)$

But, $\exists n \in \mathbb{Z}^+, n \geq i$, such that P(n) is not true.

Then consider $\mathbb{S} = \{i \in \mathbb{N} | P(i) \text{ is not true} \}$

Since S is non-empty, by WOP it must have a smallest element. Let that element be n_0 . So, $P(n_0)$ is not true. This implies that P(i) is true $\forall i < n_0$. Thus $P(n_0 - 1)$ is true. Using our induction step, $P(n_0 - 1) \rightarrow P(n_0)$, so $P(n_0)$ is true. This is a contradiction, and thus our assumption must be wrong.

Thus,
$$\forall n \in \mathbb{Z}^+, n \geq i, P(n)$$
 is true.

Theorem 7. Any integer > 1 can be written as a product of prime numbers.

Proof. Proof by Contradiction.

Let us assume there exist

 $\mathbb{S} = \{ n \in \mathbb{Z}^+, n > 1 \mid n \text{ cannot be written as a product of primes} \}$

Since S is non empty, there exists a smallest element in S. Call it n_0 .

First n_0 can't be prime, as then it can be written as a product of primes as $n_0 = n_0$.

So, n_0 can be written as

$$n_0 = a \times b$$
, where $1 < a, b < n$

Since a and b are smaller than n, they can be written as a product of one or more primes.

$$a = p_1 p_2 p_3 \dots p_k$$
 and $b = q_1 q_2 q_3 \dots q_m$ for $k, m \ge 1$

But then $n_0 = p_1 p_2 p_3 \dots p_k . q_1 q_2 q_3 \dots q_m$ which is a contradiction.

Thus, any integer > 1 can be written as a product of prime numbers.

Theorem 8. Any integer > 1 can be written as a "unique" product of one or more primes.

Proof. Let us assume that there exists an integer > 1 that cannot be written as a "unique" product of one or more primes.

Let us call the set of all such integers S. Clearly, $\mathbb{S} \neq \phi$

By WOP, there exists a smallest element in \$, say s.

Then,
$$s = p_1 \dots p_n = q_1 \dots q_m$$

where each $p_i \neq q_i \ \forall i \in \{1, 2, \dots, n\}$ and $j \in \{1, 2, \dots, m\}$

Without loss of generality, assume $p_1 < q_1$. Then, $s = p_1 \times P = q_1 \times Q$ for some P > Q.

Then, $s - p_1Q = p_1(P - Q) = (q_1 - p_1)Q < s$, which implies that $(q_1 - p_1) < s$ and Q < s.

So $(q_1 - p_1)$ and Q must have a unique prime factorization, and thus p_1 must occur in it.

If p_1 occurs in the factorization of Q, then $p_1 = q_j$ violates our hypothesis.

If p_1 occurs in the factorization of $q_1 - p_1$, then p_1 must divide q_1 which contradicts the fact that both p_1 and q_1 are prime.

Hence, we have a contradiction, which means that our original claim

was false. Thus, any integer > 1 can be written as a unique product of one or more primes.

Theorem 9. For any $m, n \in \mathbb{N}$, $m \neq 0$,, there exists a quotient q and remainder r $(q, r \in \mathbb{N})$, such that

$$n = q \times m + r, \quad 0 \le r < m$$

Proof. Fix any m > 0, we use strong induction on n.

- Base case : for $n = \{0, \dots, m-1\}$ we have $n = 0 \times m + n$. Thus Base case follows.
- Induction Step : We will prove for all $k \geq m$

Hypothesis : Let $\forall n \in \mathbb{N}, \ n \leq k, \ \exists q, r \in \mathbb{N}$ such that $n = q \times m + r, \ 0 \leq r < m$

Then consider $0 \le k - m + 1 \le k$, thus we can use the induction hypothesis on k - m + 1.

$$k - m + 1 = q' \times m + r', \ 0 < r' < m$$

Now select $q^* = q' + 1$ and $r^* = r'$, then

$$k+1 = q^* \times m + r^*, \ 0 \leq r^* < m$$

Thus, by induction, for any $m, n \in \mathbb{N}, m \neq 0$, there exists a quotient q and remainder r $(q, r \in \mathbb{N})$, such that

$$n = q \times m + r, \quad 0 \le r < m$$

3 Basic Structures: Sets and Functions

3.1 Sets

A set is an unordered collection of objects. The objects of a set are called its elements.

Formally, let P be a property. Then, any collection of objects that satisfy P is a set, i.e., $\mathbb{S} = \{x \mid P(x)\}$

3.2 Some properties of sets

- $\mathbb{A} \subseteq \mathbb{B} \longleftrightarrow \forall x \in \mathbb{A}, (x \in \mathbb{B})$
- $\bullet \ \mathbb{A} \times \mathbb{B} = \{(a, b) \mid a \in \mathbb{A} \land b \in \mathbb{B}\}\$
- $\bullet \ \mathbb{A} \cup \mathbb{B} = \{ x \mid x \in \mathbb{A} \lor x \in \mathbb{B} \}$
- $A \cap B = \{x \mid x \in A \land x \in B\}$
- Empty set is denoted by ϕ
- Power set of $\mathbb{A} = \mathcal{P}(\mathbb{A}) = \{X \mid X \subseteq \mathbb{A}\}$
- If U is the universal set, then $\mathbb{A}^C = U \mathbb{A} = \{x \mid x \in U \land x \notin \mathbb{A}\}$

3.3 Functions

Let \mathbb{A} and \mathbb{B} be two sets. A function f from \mathbb{A} to \mathbb{B} is an assignment of exactly one element of \mathbb{B} to each element of \mathbb{A} .

 $f: \mathbb{A} \to \mathbb{B}$ is a subset R of $\mathbb{A} \times \mathbb{B}$ such that

- 1. $\forall a \in \mathbb{A}, \exists b \in \mathbb{B} \text{ such that } (a, b) \in R$
- 2. If $(a, b) \in R$ and $(a, c) \in R$ then b = c

If $f: \mathbb{A} \to \mathbb{B}$ is a bijective function, then we can define its inverse $f^{-1}: \mathbb{B} \to \mathbb{A}$, defined as $f^{-1}(b) = a \longleftrightarrow f(a) = b$

If f is a bijection, then $f^{-1}(f(x)) = f(f^{-1}(x)) = x$, i.e. $f \circ f^{-1}(x) = f^{-1} \circ f(x) = x$

3.3.1 Functions on finite sets

If A and B are two finite sets such that $f : A \to B$ is a function from A to B then,

- f is injective $\rightarrow |\mathbb{A}| \leq |\mathbb{B}|$
- f is surjective $\to |\mathbb{A}| \ge |\mathbb{B}|$
- f is bijective $\rightarrow |\mathbb{A}| = |\mathbb{B}|$

3.3.2 Some important theorems: True for both finite and infinite sets

- $(\exists \ \mathbf{bij} \ \text{from} \ \mathbb{A} \to \mathbb{B} \land \exists \ \mathbf{bij} \ \text{from} \ \mathbb{B} \to C) \to (\exists \ \mathbf{bij} \ \text{from} \ \mathbb{A} \to C)$
- $(\exists \ \mathbf{bij} \ \mathrm{from} \ \mathbb{A} \to \mathbb{B}) \to (\exists \ \mathbf{bij} \ \mathrm{from} \ \mathbb{B} \to \mathbb{A})$

Theorem 10 (Schroder-Bernstein Theorem).

$$(\exists inj \ from \ \mathbb{A} \to \mathbb{B} \land \exists inj \ from \ \mathbb{B} \to \mathbb{A}) \to (\exists bij \ from \ \mathbb{A} \to \mathbb{B})$$

$$(\exists surj \ from \ \mathbb{A} \to \mathbb{B} \land \exists surj \ from \ \mathbb{B} \to \mathbb{A}) \to (\exists bij \ from \ \mathbb{A} \to \mathbb{B})$$

3.4 Infinite Sets

3.4.1 Definition of Infinite Set

Theorem 11. Let \mathbb{A} be a set, and $b \notin \mathbb{A}$. \mathbb{A} is infinite $\longleftrightarrow \exists bij$ from $\mathbb{A} \to \mathbb{A} \cup \{b\}$

Proof. If A is infinite, then $A \neq \phi$, so let $a_0 \in A$. Define $f(a_0) = b$.

Now $A - \{a_0\}$ is infinite, so $A - \{a_0\} \neq \phi$, so let $a_1 \in A - \{a_0\}$. Define $f(a_1) = a_0$.

 $\forall i \in \mathbb{N}, i \geq 1, \ \mathbb{A} - \{a_0, \dots, a_{i-1}\}\$ is infinite and hence non-empty. Then, define $f(a_i) = a_{i-1}$.

Collecting all such a_i 's, we get $\mathbb{A}' = \{a_i \in \mathbb{A} \mid i \in \mathbb{N}\}, \ \mathbb{A}' \subseteq \mathbb{A}$.

Now, if $\forall a \in \mathbb{A}, a \notin \mathbb{A}'$, we define f(a) = a, then f will become a bijection.

3.4.2 Important Takeaways

- Even if A, \mathbb{B} are infinite, $A \subseteq \mathbb{B}$, there can be a bijection from $A \to \mathbb{B}$. That is, A and B will have the same "cardinality".
- From any set A, there is a surjection from $A \to \mathbb{N}$ (Most Important).
- Finite unions of countable sets are countable.
- To show that an infinite set \$\S\$ is countable, it is enough to show that:
 - either $\exists inj \text{ from } \mathbb{S} \to \mathbb{N}$
 - or $\exists \mathbf{surj} \text{ from } \mathbb{N} \to \mathbb{S}$

3.5 Some Important Bijections on Infinite Sets

3.5.1 Bijection from $\mathbb{Z} \to \mathbb{N}$

$$f(x) = \begin{cases} -2x & x \le 0\\ 2x - 1 & x > 0 \end{cases}$$

3.5.2 Bijection from $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$

$$f(a,b) = \frac{(a+b)(a+b+1)}{2} + b$$

3.5.3 Bijection from $\mathbb{N} \to \mathbb{N} \times \mathbb{N}$

$$f(x) = (a, b)$$

where

$$x = 2^a(2b+1) - 1$$

3.5.4 Bijection from $\mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$

$$f(a,b,c) = \frac{\left(\frac{(a+b)(a+b+1)}{2} + b + c\right)\left(\frac{(a+b)(a+b+1)}{2} + b + c + 1\right)}{2} + c$$

3.5.5 Bijection from $\mathbb{N} \to \mathbb{N} \times \mathbb{N} \times \mathbb{N}$

$$f(x) = (a, b, c)$$

where

$$x = 2^{(2^{a}(2b+1)-1)}(2c+1) - 1$$

3.5.6 Proving the inexistence of a bijection

Theorem 12. There does not exist any bijection from $\mathbb{R} \to \mathbb{N}$

Proof. For the sake of contradiction, let us say that there exists a bijection, namely $f: \mathbb{R} \to \mathbb{N}$. This means that we can enumerate all the real numbers in a table side by side of natural numbers. ie,

$$\forall y \in \mathbb{R} \ \exists x \in \mathbb{N}, f(x) = y$$

Let a_i denote the digit at $10^{-(i+1)}$ th place in f(i), $i \in \mathbb{N}$. Define b_i as

$$b_i = \begin{cases} a_i + 1 & a_i < 9 \\ 0 & a_i = 9 \end{cases}$$

and then define a real number p as

$$p = \sum_{i=0}^{\infty} b_i \times 10^{-(i+1)}$$

Then,
$$p - f(i) \neq 0$$
, ie, $p \neq f(i) \ \forall i \in \mathbb{N}$

But this contradicts our original claim that f is a bijection. Thus, our assumption must be wrong, and so, there does not exist any bijection from $\mathbb{R} \to \mathbb{N}$

Similarly we can prove the inexistence of bijection from $\mathcal{P}(\mathbb{N}) \to \mathbb{N}$.

3.5.7 Proving the existence of a bijection

Theorem 13. There exists a bijection from $\mathbb{R} \to \mathcal{P}(\mathbb{N})$.

Proof. First we show there exists a bijection from $\mathbb{R} \to (0, 1)$.

Consider the function:

$$f(x) = \frac{1}{2} + \frac{1}{\pi} \tan^{-1}(x)$$

This function is continuous, strictly increasing and maps \mathbb{R} to (0, 1). Thus, this function is a bijection.

Next we construct a bijection from $(0, 1) \to (0, 1) \cup \mathbb{N}$ as:

$$g(x) = \begin{cases} n-1 & x = \frac{1}{n+1}; \ n \in \mathbb{N}, \ n \ge 1 \\ \frac{(k-1)n+1}{kn+1} & x = \frac{kn+1}{(k+1)n+1}; \ k, \ n \in \mathbb{N}, \ n \ge 1, \ k \ge 1 \\ x & \text{otherwise} \end{cases}$$

This function basically creates partitions of rationals into sets of all such $\frac{p}{q}$ whose q - p = c is constant. Then it maps the smallest element of each partition to c-1, and then progressively maps the next element to the current element. For irrationals, it maps the number to itself.

Proving that the function is well defined and indeed a bijection is left as an exercise to the reader :)

Next we create a bijection from $(0, 1) \cup \mathbb{N} \to \mathcal{P}(\mathbb{N})$

Define a function $h:(0, 1) \cup \mathbb{N} \to \mathcal{P}(\mathbb{N})$ as:

- $h(0) = \phi, h(1) = \mathbb{N}$
- For $n \in \mathbb{N}$, n > 1, construct a set \mathbb{S}_n as:

$$\mathbb{S}_n = \{k \mid (k+1)^{th} \text{ bit from the right of n in base 2 is 1.} \}$$

Eg: For 37, base 2 representation is $(100101)_2$, and thus the set $S_{37} = \{0, 2, 5\}$

• For $x \in (0, 1)$, we use the non terminating binary representation of x. Every number in (0, 1) can be represented in binary as $0.b_0b_1b_2...$ where $b_i \in \{0, 1\}$. We then construct the set as:

$$\mathbb{S}_x = \{k \mid b_k = 1\}$$

Note: If the binary representation has only finite significant digits, we will enforce it to have infinite. Eg: $(0.65625)_{10} = 0.10101 = 0.101001111111111...$ Thus, $S_{0.65625} = \{0, 2, 5, 6, 7, ...\}$

Finally,

$$h(x) = \begin{cases} \phi & x = 0 \\ \mathbb{N} & x = 1 \\ \mathbb{S}_n & x = n, \ n \in \mathbb{N}, n \ge 2 \\ \mathbb{S}_x & x \in (0, 1) \end{cases}$$

Then the required bijection from $\mathbb{R} \to \mathcal{P}(\mathbb{N})$ will be given as $\mathcal{H}(x) = h(g(f(x))) : \mathbb{R} \to \mathcal{P}(\mathbb{N})$

3.5.8 Cartesian product of countable sets

Theorem 14. Cartesian product of countable sets is countable.

Proof. Let A and B be countably infinite. Then define a bijection $f: A \times B \to \mathbb{N}$ as

$$f(a_i, b_j) = (\sum_{k=1}^{i+j} k) + j$$

3.5.9 Are Rationals countable??

Theorem 15. There exists a bijection from $\mathbb{Q} \to \mathbb{N}$

Proof. First, we will show that there exists an injection from $\mathbb{Q} \to \mathbb{N}$.

Let the rational number be given as $s \times \frac{p}{q}$ where $p, q \in \mathbb{N}$ and are co-prime, $q \neq 0$ and s = -1 or 1 depending on the sign of the rational number.

Consider the mapping,

$$f(s \times \frac{p}{q}) = 2^p 3^q 5^{s+1}$$

The fundamental theorem of arithmetic guarantees that the above mapping is injective. So, there exists an injection from $\mathbb{Q} \to \mathbb{N}$.

Also, since Q is infinite, we also know that there exists an injection from $\mathbb{N} \to \mathbb{Q}$. Thus by Schroder-Bernstein Theorem, there exists a bijection from $\mathbb{Q} \to \mathbb{N}$.

Thus, rationals are countable.

3.6 Cantor's Theorem and Cantor's Continuum Hypothesis

Theorem 16 (Cantor's Theorem). There exists no bijection from $\mathbb{N} \to \mathcal{P}(\mathbb{N})$. Since there exists a surjection from $\mathcal{P}(\mathbb{N}) \to \mathbb{N}$, the cardinality of $\mathcal{P}(\mathbb{N})$ is strictly greater than that of \mathbb{N} .

Cantor's continuum hypothesis states that there exists no set whose cardinality is strictly between \mathbb{N} and $\mathcal{P}(\mathbb{N})$.

3.7 Relations

A Relation R from $A \to \mathbb{B}$ is a subset of $A \times \mathbb{B}$. If $(a, b) \in R$, then we can write it as a R b. All functions are relations but not all relations are functions.

3.7.1 Partitions of a set

A partition of a set \mathbb{S} is a set $\mathbb{P} \subset \mathcal{P}(\mathbb{S})$ such that:

- $\mathbb{S}' \in \mathbb{P} \to \mathbb{S}' \neq \phi$
- $\bigcup_{\mathbb{S}' \in \mathbb{P}} \mathbb{S}' = \mathbb{S}$, ie, the union of the elements of a partition covers the entire set.
- If S_1 , $S_2 \in \mathbb{P}$, then $S_1 \cap S_2 = \phi$, ie, the sets are disjoint.

If we define a partition on a set and then define a relation such that all elements in a partition are related to each other, we get a special type of relation.

3.7.2 Relation generated by partitions

Relations generated by partitions follow some special properties:

- Reflexivity: $\forall a \in \mathbb{A}, (a, a) \in \mathbb{R}$
- Symmetry: $\forall a, b \in \mathbb{A}, (a, b) \in R \to (b, a) \in R$
- Transitivity: $\forall a, b, c \in \mathbb{A}, (a, b) \in R \land (b, c) \in R \rightarrow (a, c) \in R$

A relation satisfying the above conditions is called an equivalence relation. Thus, from a partition we get an equivalence relation.

3.7.3 Equivalence Classes

Let R be an equivalence relation on set S, and let $a \in S$. The equivalence class of a, denoted as [a] is defined as,

$$[a] = \{b \in \mathbb{S} \mid (a, b) \in R\}$$

Theorem 17.

$$aRb \longleftrightarrow [a] = [b] \longleftrightarrow [a] \cap [b] \neq \phi$$

Theorem 18. If R is an equivalence relation on \mathbb{S} , then the equivalence classes of R form a partition of \mathbb{S} . In contrast, given a partition P of a set \mathbb{S} , there exists an equivalence relation R whose equivalence classes are exactly the sets of P.

The proof of above theorem is quite simple and hence, left as an exercise to the reader.

3.7.4 Defining new Objects through equivalence relations

• Consider $R = \{((a, b), (c, d) \mid (a, b), (c, d) \in \mathbb{Z} \times \mathbb{Z}/\{0\}, (ad = bc)\}$

Then the equivalence classes of R define rational numbers. Eg: $(2, 4) \in [(1, 2)]$ is equivalent to saying $\frac{2}{4} = \frac{1}{2}$

Similarly, equivalence classes of $R = \{((a, b), (c, d) | (a, b), (c, d) \in \mathbb{N} \times \mathbb{N}, (a + d = b + c)\}$ define integers.

• Consider the relation $R([0,1]) = \{aRb \mid a,b \in [0,1], a = b \text{ or } (a,b) = (0,1) \text{ or } (1,0)\}$

If we imagine the interval [0,1] as a thread of length 1, then the above relation describes a loop where we have glued the ends of the thread.

• Consider the relation

$$R([0,1] \times [0,1]) = \{(a,b)R(c,d) \mid (a,b) = (c,d) \text{ or } b = d, c = 0, a = 1 \text{ or } b = d, a = 0, c = 1\}$$

Imagining $[0,1] \times [0,1]$ as a square of side 1, the above relation describes joining the two vertical sides of the square together to form a cylinder.

• Similarly we can describe a torus through relations. Give it a try!

Spoiler:

Consider the relation

$$R([0,1] \times [0,1]) = \{(a,b)R(c,d) \mid (a,b) = (c,d) \text{ or } b = d, c = 0, a = 1 \text{ or } b = d, a = 0, c = 1 \text{ or } a = c, b = 0, d = 1 \text{ or } a = c, d = 0, b = 1 \text{ or } a, b, c, d \in \{0,1\}\}$$

4 Basic Structures: Posets

4.1 Anti-Symmetry

Consider the relation $R = \{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$. This relation is reflexive and transitive but not symmetric. In fact, it is "Anti-Symmetric".

A relation R on a set \mathbb{S} is called anti-symmetric if $\forall a, b \in \mathbb{S}$, $(aRb \land bRa) \rightarrow a = b$.

Examples of anti-symmetric relations are:

- $R(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z}, a \leq b\}$
- $R(\mathcal{P}(\mathbb{S})) = \{(\mathbb{A}, \mathbb{B}) \mid \mathbb{A}, \mathbb{B} \in \mathcal{P}(\mathbb{S}), \mathbb{A} \subseteq \mathbb{B}\}$

4.2 Partial Orders

A Partial Order is a relation which is reflexive, transitive and anti-symmetric. Partial orders are denoted by $a \leq b$ instead of aRb.

There can be a case where some elements in a partial order may not be comparable by the operator defined by the order. That is why it is called a partial order.

A Total Order is then a Partial Order \leq on a set \$ in which every pair of elements is comparable.

In the above two examples, the first one is a total order while the second one is not (can you see why?).

4.3 Partially Ordered Sets: Posets

A set \mathbb{S} together with a partial order \leq defined on it, is called a partially ordered set, or a poset, denoted as (\mathbb{S}, \leq) .

Examples of Posets : (\mathbb{Z}, \leq) , (\mathbb{Z}^+, \mid) , $(\mathcal{P}(\mathbb{S}), \subseteq)$ etc.

4.3.1 Graphical Representation of a Poset

Posets can be represented graphically as shown:

Graph of the Poset $(\mathcal{P}(\{1,2,3\}),\subseteq)$

The above directed tree becomes a bit messy for bigger posets. Thus we draw what is called a "Hasse Diagram" to keep things neat.

In a Hasse diagram, the edges showing reflexivity and transitivity are omitted. We show only those $x \leq y$ where there exists no z such that $x \leq z \leq y$. The reflexive-transitive closure of the Hasse diagram gives back the original graph of the poset.

4.4 Chains and Anti-Chains

4.4.1 Chains

Let $(\$, \preceq)$ be a poset. Then a subset $\mathbb{A} \subseteq \$$ is called a chain if

$$\forall a, b \in \mathbb{A}, a \prec b \lor b \prec a$$

That is, all pair of elements must be related to each other through the partial order. In other words, a chain is a totally ordered subset of some partial order.

4.4.2 Anti-Chains

Let (\mathbb{S}, \preceq) be a poset. Then a subset $\mathbb{A} \subseteq \mathbb{S}$ is called an anti-chain if

$$\forall a, b \in \mathbb{A}, a \neq b, \neg(a \leq b) \land \neg(b \leq a)$$

That is, none of the elements in an anti-chain are related to each other through the partial order.

Example : In poset $(\{1,2,3\},\subseteq)$, the set $\{\phi,\{1\},\{1,2\},\{1,2,3\}\}$ is a chain while the set $\{\{1,2\},\{2,3\},\{1,3\}\}$ is an antichain.

4.5 Topological Sort

A Topological Sort or Linearization of a poset $(\$, \preceq)$ is a totally ordered set $(\$, \preceq_t)$ with a total order \preceq_t defined on it such that $x \preceq y \to x \preceq_t y$.

4.5.1 Minimal Element

An element x in a poset is called a minimal element if there is no element $\nexists y \in \mathbb{S}, y \prec x$.

Theorem 19. Every finite non-empty poset has a set of minimal elements.

Proof. We will prove this theorem using induction.

• Base case : Consider a poset of 1 element, $(S_1 = \{a_1\}, \preceq)$

Here a_1 is the minimal element $\nexists b \in \mathbb{S}_1, \ b \prec a_1$.

Thus, the base case is satisfied.

- Induction hypothesis: Let any poset of k elements, $(\$_k = \{a_1, \ldots, a_k\}, \preceq), k \ge 1 \text{ have a set of minimal elements.}$
- Induction step : Consider any poset of k+1 elements, $(\mathbb{S}_{k+1} = \{a_1, \dots, a_k, a_{k+1}\}, \preceq)$

Now consider the poset obtained by removing the element a_{k+1} from this poset, ie, $(\mathbb{S}'_{k+1} = \mathbb{S}_{k+1} - \{a_{k+1}\} = \{a_1, \dots, a_k\}, \preceq)$

By our induction hypothesis, there exists a set of minimal elements in \mathbb{S}'_{k+1} , let that be $\mathbb{X} = \{l_1, \ldots, l_n\}$, ie, $\forall b \in \mathbb{S}'_{k+1} \; \exists l_i \in \mathbb{X}, l_i \leq b$.

Now, there are the following cases:

- 1. $\exists l_i \in \mathbb{X}, \ l_i \leq a_{k+1}$, in which case, that l_i will still be a minimal element.
- 2. Either a_i and a_{k+1} are incomparable in the poset $\$_{k+1}$. In that case a_i would still be a minimal element as both $a_{k+1} \leq a_i$ and $a_i \leq a_{k+1}$ are false, and thus $\nexists b \in \$_{k+1}, b \prec a_i$.
- 3. $a_i \leq a_{k+1}$ in which case a_i would still be a minimal element as $\nexists b \in \mathbb{S}_{k+1}, b \prec a_i$.
- 4. $a_{k+1} \leq a_i$ in which case a_{k+1} would become a minimal element as, by transitivity, $a_{k+1} \leq a_i \rightarrow \forall b \in \mathbb{S}_{k+1}$, $(a_i \leq b \rightarrow a_{k+1} \leq b)$, and thus $\not\equiv b \in \mathbb{S}_{k+1}$, $b \prec a_{k+1}$.

Thus, if a poset of size k has a minimal element, then a poset of size k+1 also has a minimal element.

Thus, by induction, we conclude that every finite non-empty poset has

a minimal element.

The above lemma can then be used to prove another important theorem.

Theorem 20. Every finite non-empty poset has a topological sort.

Proof. Let there be a finite non-empty poset $(\$, \preceq)$ of n elements. We give an inductive algorithm to construct a topological sort:

- Start with the minimal element of \$, say x_1 . This is a chain consistent with \preceq .
- Suppose that we have already constructed a chain of k elements $(1 \le k < n)$ consistent with \preceq , $x_1 \preceq_t \ldots \preceq_t x_k$.
- Consider the poset $S' = S \{a_1, \ldots, a_k\}$. Let us say its minimal element is x_{k+1} .
- Then $x_1 \leq_t \ldots \leq_t x_k \leq_t x_{k+1}$ is a chain of k+1 elements consistent with \leq . If not, then $\exists i \in \{1, \ldots, k\}, x_{k+1} \leq x_i$, but $x_i \leq_t x_{k+1}$, but then it violates the minimality of x_i at the i^{th} step.
- Thus, after n steps we get a chain of n elements $x_1 \leq_t \ldots \leq_t x_n$ consistent with our partial order \leq .

Using this algorithm, we can generate a topological sort of any finite non-empty poset, and hence there must exist a topological sort on every finite non-empty poset.

4.5.2 Parallel Task Scheduling

For any non-empty and finite poset, there is a legal parallel schedule that runs in t steps, where t is the size of the longest chain.

This result is infact the consequence of the following theorem:

Theorem 21. For a non-empty, finite poset (\mathbb{S}, \preceq) with size of longest chain = t, we can partition \mathbb{S} into t subsets $\mathbb{S}_1, \ldots, \mathbb{S}_t$ such that $\forall i \in \{1, \ldots, t\}, \ \forall a \in \mathbb{S}_i, \ b \prec a \rightarrow b \in \mathbb{S}_1 \cup \cdots \cup \mathbb{S}_{i-1}$

Proof. Place each $a \in \mathbb{S}$ in \mathbb{S}_i where i is the length of the longest chain that ends at a.

Now suppose $\exists i, a \in S_i, b \prec a \text{ but } b \notin \mathbb{S}_1 \cup \cdots \cup \mathbb{S}_{i-1}$.

By the definition of S_i , \exists a chain of size at least i that ends at b.

But then $b \prec a$ implies that we can extend that chain to another chain of size i+1 ending at a.

But that contradicts the fact that $a \in \mathbb{S}_i$

Thus
$$\forall a \in \mathbb{S}_i, \ b \prec a \to b \in \mathbb{S}_1 \cup \cdots \cup \mathbb{S}_{i-1}$$

Using this theorem, we can then schedule all tasks in S_i at time i (since all previous tasks were done earlier!). So, each S_i is an anti-chain.

Since each S_i is an anti-chain, the above theorem was restated in a different way as Mirsky's Theorem.

Theorem 22 (Mirsky's Theorem). If the largest chain in a poset $(\$, \preceq)$ is of size t, then \$ can be partitioned into t anti-chains.

Theorem 23 (Dilworth's Lemma). $\forall t > 0$ any poset with n elements must have either a chain of size greater than t or an anti chain with at least $\lceil \frac{n}{t} \rceil$ elements.

4.6 Minimal and maximal elements

Let $(\$, \preceq)$ be a poset.

An element a of S is a minimal element of the poset if $\forall b \in S, b \leq a \rightarrow b = a$.

An element a of $\mathbb S$ is a maximal element of the poset if $\forall b \in \mathbb S, a \leq b \to a = b$.

An element a of S is the least element of the poset if $\forall b \in S, a \leq b$.

An element a of S is the greatest element of the poset if $\forall b \in S, b \leq a$.

4.6.1 Upper Bounds and Lower Bounds

Let (S, \preceq) be a partially ordered set, and $A \subseteq S$.

An element $u \in \mathbb{S}$ is called an upper bound for \mathbb{A} if $\forall a \in \mathbb{A}, a \leq u$.

An element $l \in \mathbb{S}$ is called a lower bound for \mathbb{A} if $\forall a \in \mathbb{A}, l \leq a$.

An element $u \in \mathbb{S}$ is called a least upper bound for \mathbb{A} if it is an upper bound and for all upper bounds u', $u \leq u'$.

An element $l \in \mathbb{S}$ is called a greatest lower bound for \mathbb{A} if it is a lower bound and for all lower bounds l', $l' \leq l$.

5 Basic Structures: Lattices

5.1 Lattice

A lattice is a poset in which every pair of elements has both a least upper bound and a greatest lower bound.

 $\forall x, y \in \mathbb{S} \exists l, u \in \mathbb{S}$, such that l is the glb and u is the lub of $\{x, y\}$

Eg:- The partial order $(\mathcal{P}(\$), \subseteq)$ is a lattice, while the partial order $(\{2, 4, 5, 10, 12, 20, 25\}, |)$ is not a lattice, as there is no least upper bound for 10 and 25.

Applications of Lattices:

- Models of information flow
- Finite lattices have a strong link with boolean algebra
- Applications in computer science and mathematics include the formal semantics of programming languages and program verification.

6 Counting and Combinatorics

6.1 The Product Principle

If there are n_1 ways of doing one thing and n_2 ways of doing another, then there are n_1n_2 ways of doing both.

Eg: How many functions are there from a set of size n to itself?

Consider a set A of n elements, $A = \{a_1, \ldots, a_n\}$. Consider a function $f : A \to A$. Now, for each $f(a_i)$, we have n choices in the co-domain. Thus, the total number of such functions is $n \times \cdots \times n$ n-times, or n^n .

6.2 The Sum Principle

If something can be done in n_1 or n_2 ways such that none of the n_1 ways is the same as any of the n_2 ways, then the total number of ways to do that thing is $n_1 + n_2$.

Eg: How many subsets does a set A having n elements have?

Sol: We can either choose no elements from \mathbb{A} , or choose 1 element from \mathbb{A} , ..., or choose n elements from \mathbb{A} .

Therefore, the total number of subsets $= \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n} = 2^n$

The number denoted as $\binom{n}{k}$ denote the total number of subsets of size k, of a given set of size n.

To find the value of $\binom{n}{k}$, let us count the total number of ordered subsets of size k.

The first element can be chosen in n ways, next one in n-1 ways and

so on.

Thus, total number of ways $= n \times \cdots \times (n - k + 1) = \frac{n!}{(n-k)!}$

Also, total number of ways = number of ways to make an unordered set \times number of ways to order it = $\binom{n}{k} \times k!$

On equating,

$$\binom{n}{k} \times k! = \frac{n!}{(n-k)!}$$
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

This method is also known as principle of double counting.

6.3 The Principle of Double Counting

The principle of double counting is a method used to prove that two expressions are equal by showing that they both count the same set of objects in two different ways.

Some Examples:

$$\bullet \ \sum_{k=0}^{n} \binom{n}{k} = 2^n$$

Consider a set of n elements. Let us count the number of subsets of this set. The number of subsets with k elements is given by $\binom{n}{k}$, hence, total number of subsets $=\sum_{k=0}^{n} \binom{n}{k}$. Now for any subset, it will either have a given element or it won't have, ie, we

have 2 choices for each element in the set. Thus total number of subsets $= 2 \times \cdots \times 2$ $(n \text{ times}) = 2^n$.

Thus,
$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

$$\bullet \ \binom{n}{k} = \binom{n}{n-k}$$

Consider a set of n elements. The number of ways to select k elements from the given set would be $\binom{n}{k}$. But selecting k objects from a set of n objects is same as rejecting n-k objects from the same set of n objects. Thus the number of ways is also $\binom{n}{n-k}$.

Thus,
$$\binom{n}{k} = \binom{n}{n-k}$$

$$\bullet \ k\binom{n}{k} = n\binom{n-1}{k-1}$$

Consider a group of n people, and we want to create a team of k people from them with a team leader. We can either first select k people in $\binom{n}{k}$ ways, and then select a leader from them in k ways making the total number of ways $= k \binom{n}{k}$. Or we can first select the team leader from the n people in n ways, and then from the remaining n-1 people, we can select the remaining k-1 members of the team in $\binom{n-1}{k-1}$ ways, making the total number of ways $= n \binom{n-1}{k-1}$.

Thus,
$$k\binom{n}{k} = n\binom{n-1}{k-1}$$

$$\bullet \ \binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

Consider a set of n+1 elements. Let a be an element of the set. Consider the number of ways to select k items from the set, clearly it is $\binom{n+1}{k}$. Now, either those k items include a, then

the number of ways to select the remaining k-1 items from the remaining n items would be $\binom{n}{k-1}$. Or those k items do not include a, in which case we will have to select all the k items from the remaining n items making the number of cases $= \binom{n}{k}$. Thus total number of ways to select those k items $= \binom{n}{k} + \binom{n}{k-1}$.

Thus,
$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$