

business. people. technology.

RUBEN

A Rule Engine Benchmarking Framework

RuleML Webinar – 30.11.2022

<u>Kevin Angele</u>, Jürgen Angele, Umutcan Simsek, and Dieter Fensel

Outline

- 1. Motivation
- 2. RUBEN
- 3. Test Cases
- 4. Evaluation
- 5. Conclusion and Future Work

1. Motivation

1. Motivation

Why a rule benchmarking framework?

Open source

not maintained anymore

last report 2011

test cases

integration of new rule engines

set of bash scripts

1. Motivation

Why a rule benchmarking framework?

relatively new

meta-model translated for rule-engines meta-model required

Bobek, S., & Misiak, P. (2017, June). **Framework for benchmarking rule-based inference engines.**

In International Conference on Artificial Intelligence and Soft Computing (pp. 399-410). Springer, Cham.

fully automated

only generated test cases supported

bash script for rule-engine

General

- **Ru**le Engine **Ben**chmarking Framework
- Simple interface for rule engines
- Benchmark execution without scripts
- Results in various formats
 - o CSV
 - o JSON
- Test cases from OpenRuleBench
- Yearly evaluation
- Aim to encourage the community for contribution

Components

Configuration

Property	Description		
name	Configuration name		
engines	Engines to be used for the evaluation.		
testCases	Test cases to be included in the evaluation.		
testDataPath	Path to the folder containing the required test data.		

General Configuration

Configuration

Property	Description
name	Name of the reasoning engine.
classpath	Refers to the implementation of the rule engine.
settings (optional)	Additional settings (key-values) for the rule engine.

Property	Description			
name	Configuration name			
engines	Engines to be used for the evaluation.			
testCases	Test cases to be included in the evaluation.			
testDataPath	Path to the folder containing the required test data.			

General Configuration

Configuration

Property	Description	
name	Configuration name	
engines	Engines to be used for the evaluation.	
testCases	Test cases to be included in the evaluation.	
testDataPath	Path to the folder containing the required test data.	

General Configuration

Property	Description
name	Name of the reasoning engine.
classpath	Refers to the implementation of the rule engine.
settings (optional)	Additional settings (key-values) for the rule engine.

Property	Description
testCategory	Category the test belongs to.
testCaseIdentifier	Unique identifier for the given test case.
testName	Name for tests within a given test category.

Test Case Configuration

Rule Engine Interface

Method	Description
cleanUp()	Clean up after the evaluation of a test case.
executeQuery()	Executes a single query.
materialize()	Starts the materialization or reruns it.
prepare(testDataPath, testCase)	Load relevant data and rules.
shutDown()	Stop all processes initiated by the rule engine. Should delete all temporary data.

3. Test Cases

3. Test Cases

Liang, S., Fodor, P., Wan, H., & Kifer, M. (2009, April). OpenRuleBench: An analysis of the performance of rule engines. In *Proceedings of the 18th international conference on World wide web* (pp. 601-610).

- Large Join Tests
 - Join1
 - o Join2
 - LUBM-derived tests
 - Mondial
 - o DBLP

- Datalog Recursion
 - Transitive closure
 - Same-generation siblings problem
 - WordNet
 - Wine Ontology

- Default negation
 - Predicate-stratified negation

Engines

Apache Jena

a Java-based framework including two rule engines (bottom-up and top-down)

(Drools)

a bottom-up engine based on the Rete algorithm

RDFox

is implemented in C++ providing modules for Java and Python and supports materialisation-based parallel datalog reasoning

Stardog

is implemented in Java providing extensive reasoning capabilities, including datalog evaluation

VLog

is implemented in C++ and provides an efficient Datalog engine for large knowledge graphs supporting RDF, OWL, and SPARQL

Results – Without Materialization

Table 5Large joins, join1, no query bindings (time in seconds)

query	a(X,Y)	b1(X,Y)	b2(X,Y)	
Size	50000	50000	50000	
Drools	error	error	error	
Jena	timeout	104.9	2.7	
Stardog exception		37.2	1.4	

Table 6Datalog recursion, same generation, no query bindings (time in seconds)

size	6000			24000
Cyclic data	no			yes
Drools	error	error	error	error
Jena	53.8	61	189.1	239.1

Results - Without Materialization

Table 7Datalog recursion, transitive closure, no query bindings (time in seconds)

size	50000	50000	500000	500000
Cyclic data	no	yes no		yes
Drools	error	rror error		error
Jena	8.9 28.6		76.7	346.5
Stardog	10	27.8	66.6	262.5

Results – With Materialization

	F3.	•				
	eliminar'	Large Joins	Datalog Recursion	Datalog Recursion	Datalog Recursion	Datalog Recursion
25	O Y	Join 1	Same Generation	Same Generation	Transitive Closure	Transitive Closure
		50000	24000	24000	500000	500000
			No cyc	Сус	No cyc	Сус
	RDFox	140	7.3	8.6	6.7	29
	VLog	394.7	25.5	28.8	16.8	62.1

Materialization time in seconds

Drools

Help us fixing the Drools test cases:

https://github.com/kev-ang/RUBEN

5. Conclusion and Future Work

5. Conclusion and Future Work

- Rule Engine Benchmarking Framework (RUBEN)
 - Java
 - Simple interface
 - OpenRuleBench test cases
 - Subset of the OpenRuleBench rule engines
- Finalize materialization support
- Common rule format in addition

5. Conclusion and Future Work

- We plan a yearly evaluation!
- We encourage you to help us in extending the set of
 - o rule engines
 - o test cases

Thank you!

Kevin Angele kevin.angele@sti2.at https://sti2.at

kevin.angele@onlim.com https://onlim.com

Jürgen Angele juergen.angele@adesso.de https://adesso.de

Umutcan Simsek umutcan.simsek@sti2.at https://sti2.at

Dieter Fensel dieter.fensel@sti2.at https://sti2.at

www.sti2.at www.uibk.ac.at