

LAB 5 ARCH-GARCH

Teaching Assistant Time Series Econometrics 2023

- Volatility Clustering
- ARCH-GARCH
- Tahapan ARCH-GARCH Table of contents
 - **ARCH Effect Test**
 - ARCH Model
 - GARCH Model
 - GARCH with ARMA Process
 - Model with ARCH-GARCH
 - Stationarity Test on Variance

Permasalahan Data Time Series

Data Time Series seringkali mempunyai kondisi yang tidak stasioner

Memiliki trend

Memiliki arah gerak baik positif maupun negatif

Varians tidak konstan

Data yang tidak stasioner akan membuat varians tidak konstan karena data yang nilainya sangat bervariasi

Memiliki rata-rata dan kovarians yang tidak

konstan

Data yang tidak stasioner akan memiliki rata-rata dan kovarians yang tidak konstan

FIGURE 3.1 Real GDP, Consumption, and Investment

Data memiliki trend Rata-rata tidak konstan Varians tidak konstan

Volatility Clustering

Residual dari persamaan tidak konstan

Adanya varians yang tidak konstan menyebabkan residual menjadi bervariasi

Terjadinya volatility clustering

Keadaan dimana sebagian waktu mempunyai tingkat residu yang berbeda dengan waktu lainnya

Data tidak stasioner dan terjadi heteroskedastisitas

Adanya volatility clustering merupakan ciri dan bukti bahwa terdapat masalah heteroskedastisitas dalam data

FIGURE 3.3 Percentage Change in the NYSE U.S. 100 (January 4, 2000–July 16, 2012)

Model univariat yang merupakan kelanjutan dari ARIMA untuk data yang mempunyai masalah heterokedastisitas

\$

Untuk menyelesaikan masalah

Model ARCH digunakan untuk menyelesaikan masalah heteroskedastisitas pada model ataukondisi dimana varians data tidak konstan.

Kelanjutan dari ARIMA dan OLS

Model ini diperlukan jika kalian ingin membuat masalah heterokedastisitas persamaan univariat dengan data yang mempunyai

Pengembangan ARCH-GARCH

- ARCH Model
- GARCH Model
- ARCH in Mean
- GARCH with ARMA Process
- Model with ARCH-GARCH
- EGARCH

Tahapan ARCH-GARCH

Tahapan untuk melakukan permodelan ARCH-GARCH

Uji Stasioneritas

Melakukan Regresi Mean Equation

ARCH Effect Test (Melihat Heterokedastisitas)

Melakukan Permodelan ARCH-GARCH

Melihat
Stasioneritas pada
Variance

4

ARCH Effect Test

01) Melakukan regresi dari residu ARIMA

Command:

- Model ARIMA terbaik
- predict uhat, resid

reg uhat02) Mengecek Heteroskedastisitas

Command: estatarchlm, lags(1/n)

Hipotesis:

- HO: Tidak memiliki ARCH Effect
- Ha: Memiliki ARCH Effect

Kriteria:

- p.value $< \alpha$ HO ditolak
- p.value > α HO tidakdapatditolak

Kesimpulan:

 Dengan tingkat signifikansi 1% / 5% / 10% dapat disimpulkan bahwa model (memiliki/tidak memiliki) ARCH effect pada periode ...

Modelling conditional variance yang berkaitan dengan error term kuadrat periode sebelumnya (AR Model)

$$Y_t = \beta_0 + \beta_p Y_{t-p} + e_t$$
 (Conditional Mean)

$$\sigma_t^2 = w + \alpha_1 e_{t-p}^2 + Vt$$
 (Conditional Variance)

ARCH Model

Dasar Persamaan ARCH

$$Y_t = \alpha + \beta_{1 t-1} + e_t$$

 $e_t = \alpha + \beta_{1 t-1} - Y_t$

Setelah kita kuadratkan error dari persamaan, lalu kita lakukan kembali persamaan AR terhadap error kuadrat

$$\sigma_t^2 = w + \alpha_1 e_{t-1}^2 + ... + \alpha_p e_{t-p}^2$$

GARCH Model

Modelling conditional variance yang berkaitan dengan error term kuadrat periode sebelumnya dan juga conditional variance periode sebelumnya (ARMA Model)

$$Y_t = \beta_0 + \beta_p Y_{t-p} + e_t$$
 (Conditional Mean)

$$\sigma_t^2 = w + \alpha_1 e_{t-p}^2 + \alpha_2 \sigma_{t-1}^2 + Vt$$
 (Conditional Variance)

GARCH with ARMA Process

Conditional variance sama seperti GARCH Model, Conditional Mean diregresi dengan proses ARMA dan memiliki efek seasonal.

$$Y_t = \beta_0 + \beta_p Y_{t-p} + \gamma_0 e_{t-1} + \gamma_1 e_{t-4} + e_t \quad \text{(Conditional Mean)}$$

$$\sigma_t^2 = w + \alpha_1 e_{t-p}^2 + \alpha_2 \sigma_{t-1}^2 + Vt$$
 (Conditional Variance)

Command untuk masing-masing model

ARCH:

arch varnamel I.varname, arch (p)

GARCH:

arch varname! I.varname, arch (p) garch (q)

ARCH-M:

arch varnamel I.varname, archm arch (p)

GARCH with ARMA Process:

arch varname, ar (p) ma (q) arch (p) garch (q)

EGARCH:

arch varname, ar (p) ma (q) earch (p) egarch (q)

Model with ARCH-GARCH

Contoh GARCH

GARCH:

arch d.consump ld.consump, arch (1) garch (1)

Conditional Mean (CM)

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + e_t$$

 $d. \widehat{consump_t} = 0.8754888 + 0.9227947d. consump_{t-1}$

Conditional Variance (CV)

$$\sigma_{t}^{2} = w + \alpha_{1}e_{t-1}^{2} + \alpha_{2}\sigma_{t-1}^{2} + V_{t}$$

$$\widehat{\sigma_{t}^{2}} = 1.149008 + 0.4187267e_{t-1}^{2} + 0.6899058\sigma_{t-1}^{2}$$

Stationarity test on variance

Hipotesis:

HO: non-stasioner

Ha: stasioner

Kriteria:

p.value $< \alpha$ HO ditolak

p.value > α HO tidak dapat ditolak

Kesimpulan:

Jadi, dengan tingkat signifikansi 1%/5%/10% dapat disimpulkan bahwa variansnya stasioner di tingkat level

Teaching Assistant Time Series Econometrics 2023

@econometrics.unpad