Movie Recommendation with MLlib - Collaborative Filtering

FATEMA NAGORI 19635

TABLE OF CONTENT

Introduction

Design

Implementation

Test

Enhancement Ideas

Conclusion

References

INTRODUCTION

Recommender System

Generate meaningful recommendation to a collection of users for item or product that might interest them.

Where can RS be found?

- Movie recommendation (Netflix)
- Related product recommendation (Amazon)
- Web page ranking (Google)
- Social recommendation (Facebook)
- News content recommendation (Yahoo)
- Priority inbox & spam filtering (Google)
- Online dating (OK Cupid)
- Computational Advertising (Yahoo)

Taxonomy of Recommender System

Collaborative filtering (CF)

Content based filtering (CBF)

Knowledge based filtering(KBF)

Hybrid

Content Based Filtering

CREATES PROFILE FOR USER/MOVIE

REQUIRES GATHERING EXTERNAL DATA

DENSE DATA

DOMAIN BOUNDED

NO COLD START PROBLEM

Content based

Knowledge based

Hybrid

COLLABORATIVE FILTERING

Collaborative filtering is a system that predicts user behavior based on historical user data. From this, we can understand that this is used as a recommendation system.

For example, Amazon recommends products or gives discounts based on historical user data or YouTube recommends videos based on your history.

COLLABORATIVE FILTERING

Relies on past user behaviour

- 1. Implicit Feedback
- 2. Explicit Feedback

Requires no gathering of external data

- 1. Sparse data
- 2. Domain free
- 3. Cold start problem

DESIGN

User-based Recommendation System

Rating Matrix A (users x items)

	Item 0	Item 1	Item 2	Item 3
User 0	5.00	5.00	2.00	
User 1	2.00		3.00	5.00
User 2		5.00		3.00
User 3	3.00			5.00

Note:

- User-based Recommendation System (local copy)
 - · It is user-based

Note:

sim(u, v) is the similarity (formula) of user u and user v

Issue

- Scalability of the user profiles.
 - The algorithm cannot be scaled to handle large data set
- Sparseness of the user profiles.
 - The data in the Rating Matrix (users x items) is sparse.

ALS WR approach

- It makes lambda, λ, less dependent on the scale of the dataset.
 - So we can apply the best parameter learned from a sampled subset to the full dataset and expect similar performance.
- o How
 - Scale the regularization parameter lambda, λ, in solving each least squares problem by
 - the number of ratings the user generated in updating user factors, or
 - the number of ratings the product received in updating product factors

DESIGN

Matrix Factorization-based Recommendation System

Alternating Least Square With Regularization (ALS-WR)

ALS-WR is for factorizing original rating matrix R(U x I) into 2 matrix U(U x F), and M(I x F) so that cost function is minimized.

- o R: Rating
- o U: User
- o I: Item
- o F: Feature

Low-Rank Matrix Factorization:

Iterate:

$$f[i] = \arg \min_{w \in \mathbb{R}^d} \sum_{j \in Nbrs(i)} (r_{ij} - w^T f[j])^2 + \lambda ||w||_2^2$$

Input: Rating Matrix A (users x items)

User Feature Matrix U (users x features)

	Item 0	Item 1	Item 2	Item 3
User 0	5.00	5.00	2.00	
User 1	2.00	**	3.00	5.00
User 2		5.00	**	3.00
User 3	3.00		111	5.00

	Feature 0	Feature 1	Feature 2
User 0	1.12	1.49	0.48
User 1	1.31	-0.52	0.59
User 2	1.13	0.67	-0.52
User 3	1.39	0.05	0.45

Item Feature Matrix M (items x features)

Output: Prediction Matrix A k (users x items)

	Feature 0	Feature 1	Feature 2
Item 0	1.81	1.62	0.74
Item 1	2.66	1.71	-1.08
Item 2	1.73	-0.23	0.78
Item 3	3.16	-0.24	0.90

$$A_k = UM'$$

	Item 0	Item 1	Item 2	Item 3
User 0	4.78	4.98	1.97	3.61
User 1	1.98	1.97	2.85	4.81
User 2	2.75	4.71	1.40	2.94
User 3	2.94	3.32	2.13	4.56

Implementation-Collaborative Filtering with ALS+PySpark+GCP

SET UP PySpark on GCP

- Enable the Google Cloud Compute Engine API
- Create, Configure and Launch a Google Cloud Dataproc cluster
- Connecting to the Master Node using Secure Shell (ssh)

Implementation-Collaborative Filtering with ALS+PySpark+GCP

Steps To RUN the .py file at GCP

- Prepare Data:upload movies.csv and ratings.csv files at GCP
- Create a directory (folder) to store the data: hdfs dfs -mkdir hdfs:///mydata
- Copy the date to HDFS:
- hdfs dfs -put movies.csv hdfs:///mydata
- hdfs dfs -put ratings.csv hdfs:///mydata
- Prepare the program: vi fnn..py
- Modify the path of movies.csv and ratings.csv in program
- movies=hdfs:///mydata/movies.csv
- ratings=hdfs:///mydata/ratings.csv
- Running the program with Pyspark: spark-submit fnn.py

TEST-Collaborative Filtering with ALS+PySpark+GCP

TEST-Collaborative Filtering with ALS+PySpark+GCP

Check the best model parameters

Let us check, which parameters out of the 16 parameters fed into the

crossvalidator, resulted in the best model.

```
Only showing top 20 rows

Num models to be tested: 16

CrossValidator_e062007b629f

<class 'pyspark.ml.recommendation.ALSModel'>
**Best Model**

Rank: 50

MaxIter: 10

RegParam: 0.15
0.8685666272031624
```

TEST-Collaborative Filtering with ALS+PySpark+GCP

RESULT: Recommendations based on our search

```
676181
           100|5.1201425|Strictly Sexual (...|Comedy|Drama|Romance|
   33791
           1001 5.0647431 On the Beach (1959)!
                                                           Drama!
   427301
           100| 5.042285| Glory Road (2006)|
                                                           Drama!
  336491
           100| 5.021657| Saving Face (2004)|Comedy|Drama|Romance|
  1175311
           10014.92677451
                            Watermark (2014) |
                                                     Documentary
           10014.9267745|Woman Under the I...
   70711
                                                           Drama!
           100|4.9267745|De platte jungle ...|
  1842451
                                                     Documentary|
  260731
           100|4.9267745|Human Condition I...|
                                                     Drama | War |
  1791351
           100|4.9267745|Blue Planet II (2...|
                                                     Documentary
           100|4.9267745|Zeitgeist: Moving...|
                                              Documentary
  842731
|movieId|userId|rating| title| genres|
                       Top Gun (1986) | Action|Romance|
   11011
    19581
                  5.0|Terms of Endearme...|
                                              Comedy | Drama |
           1001
                  5.0|Christmas Vacatio...|
    24231
           1001
                                                       Comedy I
    40411
           1001
                  5.0|Officer and a Gen...|
                                               Drama | Romance |
                  5.0|Sweet Home Alabam...| Comedy|Romance|
    56201
           1001
                          Maverick (1994) | Adventure | Comedy | . . . |
    3681
           1001
                  4.5|Father of the Bri...|
    9341
           1001
                                                       Comedy
                  4.5|Sleepless in Seat...|Comedy|Drama|Romance|
    5391
           1001
                            Casino (1995) | Crime|Drama|
     161
           1001
                  4.51
    5531
           1001
                  4.51
                          Tombstone (1993) | Action | Drama | Western |
22/11/17 04:11:10 INFO org.sparkproject.jettv.server.AbstractConnector: Stopp
.1) ) (0.0.0.0:0)
fnagori@cluster-f049-m:~S
```

Enhancement Ideas

Two types of algorithms for collaborative filtering have been researched:

memory-based CF and model-based CF.

Memory-based approaches identify the similarity between two users by comparing their ratings on a set of items and have suffered from two fundamental problems: sparsity and scalability.

the model- based approaches have been proposed to alleviate these problems, but these approaches tend to limit the range of users.

The collaborative filtering recommendation method combining memory-based CF and model-based CF can provide better recommendation than traditional collaborative filtering.

Conclusion

Collaborative Filtering does not need features about the items or users to be known. Collaborative filtering recommender systems can help recommenders not specializing in a user's profile. No domain knowledge is necessary in the case of collaborative filtering. It also has a great starting point and involves serendipity. Thus It is the best technique for recommendations.

References

Movie Recommendation with MLlib - Collaborative Filtering

COLAB

USE GCP

GCP common task

Write and run Spark Scala jobs on Dataproc

Spark Tutorial

#