Life Cycle Plan (LCP)

We Are Trojans (WAT) Network

Team01

Team members	Roles	
Eirik Skogstad	Project Manager, Life Cycle Planner	
Min Li	Feasibility Analyst, Operational Concept Engineer	
Pittawat Pamornchaisirikij	NDI/NCS Acquirer & Evaluator, Tester	
Punyawee Pakdiying	System Architect, Feasibility Analyst	
Saloni Priya	Requirements Engineer, UML Modeler	
Ameer Elkordy	IIV&V, Quality Focal Point	
Suleyman Erten	Operational Concept Engineer, Requirements Engineer	
Kamonphop Srisopha	Prototyper, UML Modeler	

11/30/14

Version History

Date	Author	Version	Changes made	Rationale
09/28/14	ES	1.0	Created document from template, updated team roles and section 3.3 skills.	For VCP package submission.
10/11/14	ES	1.5	Updated sections 1-5.	For draft FCP package submission.
10/19/14	ES	2.0	Updated some sections according to feedback from FCR ARB:	For FCP package submission.
			- Updated artifacts to be delivered before DCR ARB.	
			- Updated team member roles during development phase.	
11/30/14	ES	2.5	Updated iteration plan, team member roles, new effort estimation.	For draft DCP submission.

Version Date: 10/19/14

Table of Contents

Life Cycl	e Plan (LCP)	••••••
	History	
	Contents	
	Tables	
Table of I	Figures	V
1.	Introduction	1
	D. Cal. LCD	
1.1	Purpose of the LCP	
1.2	Status of the LCP	1
1.3	Assumptions	1
2.	Milestones and Products	2
2.1	Overall Strategy	2
2.1	Overall Strategy	
2.2	Project Deliverables	3
3.	Responsibilities	7
2.1	Duning an air a stall a ladau'r man an air ilitia	_
3.1	Project-specific stakeholder's responsibilities	······································
3.2	Responsibilities by Phase	
3.3	Skills	9
4.	Approach	1.0
4.	Approach	14
4.1	Monitoring and Control	12
4.2	Methods, Tools and Facilities	12
_		
5.	Resources	
	on Plann	
	apabilities to be implemented	
6.1.2 C	apabilities to be tested	20
6.1.3 C	apabilities not to be tested	21
6.1.4 C	CD Preparation Plans	21
6.2 Ite	ration Assessment	21
6.2.1 C	apabilities Implemented, Tested, and Results	21
6.2.2 C	ore Capabilities Drive-Through Results	22

Life Cycle Plan (LCP)	Version 2.5
6.3 Adherence to Plan	22

Table of Tables

Table 1: Artifact deliverables in Exploration Phase	
Table 2: Artifact deliverables in Valuation Phase	
Table 3: Artifact deliverables in Foundations Phase	4
Table 4: Artifact deliverable in Development Phase	
Table 5: Stakeholder's Responsibilities in each phase	
Table 6: Modules	
Table 7: COCOMOII Scale Driver	
Table 8: COCOMOII Cost Drivers for WAT point system	15
Table 9: COCOMOII Cost Drivers for Forum Module	
Table 10: COCOMOII Cost Drivers for Profile Module	
Table 11: COCOMOII Cost Drivers for WAT Store Module	
Table 12: COCOMOII Cost Drivers for Notification Module	
Table 13: Construction iteration capabilities to be implemented	
Table 14: Construction iteration capabilities to be tested	
Table 15: Canabilities implemented, tested, and results	

Table of Figures

No table of figures entries found.

1. Introduction

1.1 Purpose of the LCP

The LCP serves as a basis for controlling and monitoring the project's progress. It identifies available people, skills and resources in order to make the best use of these in the project's life cycle. It also gives proof to key stakeholders that the major life cycle issues is known and thought trough in advance.

1.2 Status of the LCP

The LCP is currently at the draft DCP version number 2.5. In this version, sections 1 to 5 have been updated and section 6.1 is completed. Effort estimates are updated and the iteration plan is completed.

1.3 Assumptions

- The duration of the project is 24 weeks, which are 12 weeks in fall 2014 and 12 weeks in spring 2015.
- All team members listed on the title page will work on the project during the fall semester and the spring semester.

2. Milestones and Products

2.1 Overall Strategy

The We Are Trojans (WAT) Network is following the architected agile process, as a big part of the project involves modification of existing software to create the online forum core capability.

Exploration phase

Duration: 9/10/14-9/29/14

Concept: Identify operational concept, system and software requirements and

architecture, and life-cycle plan.

Deliverables: Client Interaction Report, Valuation Commitment Package

Milestone: Valuation Commitment Review

Strategy: One Incremental Commitment Cycle, Risk assessment analysis, Win-Win

Negotiation Sessions.

Valuation phase

Duration: 9/30/14-10/15/14

Concept: Identify Objectives, Constraints and Priorities, Develop operation concept, Explore alternatives, Provide project feasibility evidence, Prototyping, Assess and plans to mitigate risks, Plan and manage project, Perform win-win negotiation, Define quality and configuration policy.

Deliverables: Draft Foundations Commitment Package

Milestone: Foundations Commitment Review

Strategy: One Incremental Commitment Cycle, Risk assessment analysis, Win-Win

Negotiation Sessions, Planning Poker.

Foundations phase

Duration: 10/16/14-12/12/14

Concept: Assess Project Status, Plan and Manage Project, Manage Project Quality,

Prototyping, Develop Software Architecture.

Deliverables: Foundations Commitment Package, Draft Development Commitment

Package, Development Commitment Package. **Milestone:** Development Commitment Review

Strategy: One Incremental Commitment Cycle, Risk assessment analysis.

Re-baselined Foundations phase

Duration: 1/12/15-2/13/15

Concept: Re-baseline Project Status, Prepare for Development Phase, Plan for Testing,

Version Date: 10/19/14

Plan and Manage Project.

Deliverables: Re-baselined Development Commitment Package **Milestone:** Re-baselined Development Commitment Review

Strategy: One Incremental Commitment Cycle, Risk assessment analysis.

Development phase – Construction

Duration: 1/26/15-3/20/15

Concept: Construction Iteration, build and test all modules.

Deliverables: Operation Commitment Package **Milestone:** Operation Commitment Review

Strategy: Two development cycles.

2.2 Project Deliverables

2.2.1 Exploration Phase

Table 1: Artifact deliverables in Exploration Phase

Artifact	Due date	Format	Medium
Client Interaction Report	9/19/2014	.doc, .pdf	Soft copy
Program Model &	9/21/2014	.doc, .pdf	Soft copy
Business Process Model			
Valuation Commitment	9/29/2014	.doc, .pdf	Soft copy
Package			
Operational Concept			
Description (OCD)			
Early Section			
• Life Cycle Plan (LCP)			
Early Section			
 Feasibility Evidence 			
Description (FED)			
Early Section			
Project Effort	Every Monday	Text	Bugzilla
Project Plan	Every other	.mpp	Soft copy
	Wednesday		
Progress Report	Every other	.xls	Soft copy
	Wednesday		

2.2.2 Valuation Phase

Table 2: Artifact deliverables in Valuation Phase

Artifact	Due date	Format	Medium
Prototype Presentation	10/3/2014	.pdf	Soft copy
Draft Foundations	10/13/14	.doc, .pdf	Soft copy
Commitment Package			
 Operational Concept 			
Description (OCD) All			

sections • Life Cycle Plan (LCP) Sections 1-5 • Feasibility Evidence Description (FED) Sections 1-5 • Prototype Description (PRO) All sections • System and Software Architecture Description (SSAD) Sections 1 & 2			
Project Effort	Every Monday	Text	Bugzilla
Project Plan	Every other Wednesday	.mpp	Soft copy
Progress Report	Every other Wednesday	.xls	Soft copy

2.2.3 Foundations Phase

Table 3: Artifact deliverables in Foundations Phase

Artifact	Due date	Format	Medium
Foundations	10/20/14	.doc, .pdf	Soft copy
Commitment Package			
Operational Concept			
Description (OCD) All			
sections			
• Life Cycle Plan (LCP)			
Sections 1-5			
 Feasibility Evidence 			
Description (FED)			
Sections 1-5			
 Prototype Description 			
(PRO) All sections			
 System and Software 			
Architecture			
Description (SSAD)			
Sections 1 & 2			
Client Feedback Form			
Draft Development	12/01/14		
Commitment Package			
Development	12/08/14		
Commitment Package			
Project Effort	Every Monday	Text	Bugzilla

Project Plan	Every other Wednesday	.mpp	Soft copy
Progress Report	Every other	.xls	Soft copy
	Wednesday		

2.2.4 Rebaselined Foundations Phase

Table 4: Artifact deliverable in Rebaselined Foundations Phase

Artifact	Due date	Format	Medium
Rebaselined	9/02/15	.doc, .pdf	Soft copy
Development			
Commitment Package			
Project Effort	Every Monday	Text	Bugzilla
Project Plan	Every other	.mpp	Soft copy
	Wednesday		
Progress Report	Every other	.xls	Soft copy
_	Wednesday		

3. Responsibilities

3.1 Project-specific stakeholder's responsibilities

3.2 Responsibilities by Phase

Table 5: Stakeholder's Responsibilities in each phase

	Primary / Secondary Responsibility					
Team Member /	Exploration	Valuation	Foundations	Development-	Development	
Role	•			Construction	- Transition	
				Iteration	Iteration	
	Primary	Primary	Primary	Primary	Primary	
Einile Classes a	Responsibility	Responsibility	Responsibility	Responsibility	Responsibility	
Eirik Skogstad	Create and	Create and	Create and	Create and follow	Create and	
	follow up action	follow up action	follow up action	up action items.	follow up action	
Project Manager,	items.	items.	items.	Record project	items.	
Life-cycle planner	Record project	Record project	Record project	progress.	Record project	
	progress.	progress.	progress.	Fragress	progress.	
				Secondary		
	Secondary	Secondary	Secondary	Responsibility	Secondary	
	Responsibility	Responsibility	Responsibility	Assess	Responsibility	
	Detail Project	Identify	Provide Process	development	Assess	
	Plan.	milestones ad	Feasibility	iteration.	development	
	Identify	products.	Evidence.	Develop Transition	iteration.	
	responsibilities	Estimate project	Develop Iteration	Plan.	Develop Support	
	and skills.	effort and	Plan.		Plan.	
		schedule.				
	Primary	Primary	Primary	Primary	Primary	
Min Li	Responsibility	Responsibility	Responsibility	Responsibility	Responsibility	
	Gather risks.	Provide evidence	Assess	Build software	Build software	
Feasibility Analyst,	Assess and plan	of feasibility of	Feasibility			
Operational Concept	to mitigate risks.	architecture.	Evidence.	Secondary	Secondary	
Engineer		Analyze	Provide	Responsibility	Responsibility	
	Secondary	Business Case.	conclusion and	Testing	Testing	
	Responsibility		recommendation			
	Responsibility 3					
	Responsibility 4					
	Primary	Primary	Primary	Primary	Primary	
Punyawee	Responsibility	Responsibility	Responsibility	Responsibility	Responsibility	
Pakdiying	Gather risks.	Define high-level	Define platform-	Assess system	Assess system architecture.	
	Assess and plan	architecture. Document	dependent architecture.	architecture. Build software.	Build software.	
System Architect,	to mitigate risks.	architecture	Document	Duild software.	Dulia software.	
Feasibility Analyst		feasibility.	architecture			
	Secondary	icasionity.	feasibility.	Secondary	Secondary	
	Responsibility		icasionity.	Responsibility	Responsibility	

Pittawat Pamornchaisirikij NDI Acquirer & Evaluator, Tester	Primary Responsibility Gather risks. Assess and plan to mitigate risks. Secondary Responsibility Explore NDI alternatives.	Responsibility Explore NDI alternatives. Primary Responsibility Explore NDI alternatives. Assess and evaluate NDI components. Secondary Responsibility Explore NDI alternatives.	Secondary Responsibility Explore NDI alternatives. Primary Responsibility Acquire NDI components. Assess and evaluate NDI components. Secondary Responsibility Explore NDI alternatives.	Identify risks and feasibility coming up during development period Primary Responsibility Develop testing strategies. Test Software. Secondary Responsibility analyze NDI assessment result, provide level of service feasibility	Identify risks and feasibility coming up for transition Primary Responsibility Develop testing strategies. Test Software. Secondary Responsibility analyze NDI assessment result, provide level of service feasibility Primary
Saloni Priya Requirements Engineer, UML Modeler	Primary Responsibility Gather win- conditions from stakeholders. Capture win- conditions in win-win session. Secondary Responsibility Perform feasibility evidence for the requirements	Primary Responsibility Document most significant requirements. Prioritize the requirements. Secondary Responsibility Develop the respective UML diagrams	Primary Responsibility Document detailed requirements. Secondary Responsibility Familiarize with the NDI/NCS and COTS	Primary Responsibility Update requirements. Build software. Secondary Responsibility Check whether requirements or being developed as per the negotiations	Responsibility Build software. Secondary Responsibility Perform Feasibility evidence
Kamonphop Srisopha Prototyper, UML Modeler	Primary Responsibility Assess Prototype and Components, Develop Prototype Secondary Responsibility Model a UML component of the system, Analyze the proposed system	Primary Responsibility Develop prototype. Get prototype feedback. Secondary ResponsibilityM odel a UML component of the system, Analyze the proposed system, modified existing UML	Primary Responsibility Tailor components. Secondary Responsibility Model a UML component of the system, Analyze the proposed system,modified existing UML	Primary Responsibility Build software. Secondary Responsibility Model a UML component of the system, Analyze the proposed system, modified existing UML	Primary Responsibility Build software. Secondary Responsibility Model a UML component of the system, Analyze the proposed system, modified existing UML
Suleyman Erten Operational Concept Engineer,	Primary Responsibility Identify shared vision.	Primary Responsibility Develop new operational concept.	Primary Responsibility Assess operational concept.	Primary Responsibility Identify organizational and operational	Primary Responsibility Verified whether the developed project is

Requirements Engineer	Secondary Responsibility Negotiate win- win conditions with the client	Secondary Responsibility Fill in Bugzilla tickets associated to OCD	Secondary Responsibility Perform Feasibility Analysis	transformation. Build software. Secondary Responsibility Analyze the possible changing in requirements	satisfied operational concepts. Build software. Secondary Responsibility Analyze the possible changing in requirements
Ameer Elkordy IIV&V, Quality Focal Point	Primary Responsibility Verify and validate work products. Secondary Responsibility	Primary Responsibility Verify and validate work products. Construct traceability matrix. Secondary Responsibility Nag team on using Bugzilla more consistently.	Primary Responsibility Verify and validate work products. Assess quality management strategy. Identify configuration management strategy. Secondary Responsibility Nag team on using Bugzilla more consistently.	Primary Responsibility Verify and validate work products. Secondary Responsibility Nag team on using Bugzilla more consistently. Test software bugs.	Primary Responsibility Verify and validate work products. Secondary Responsibility
Matthew Wong Client		Review prototype and give feedback. Clarify doubts.	Review prototype and give feedback. Clarify doubts.		
Linda Suen Client		Review prototype and give feedback. Clarify doubts.	Review prototype and give feedback. Clarify doubts.		

3.3 Skills

Team members	Role	Skills
Eirik Skogstad	Project Manager, Life Cycle	Current skills:
	Planner	Software Project
		Management, C++, Java,
		HTML, PHP, MySQL,
		JavaScript, XML,
		Winbook

		Required skills: MS Project, Life-Cycle tools, Git
Min Li	Feasibility Analyst, Operational Concept Engineer	Current skills: HTML, CSS, PHP, JavaScript, JSP, JQuery, Strut 2.0, Spring 2.0, Ibatis, Java, C++, API application, JSON, XML
		Required skills: Analytical skills, web development, UML modeling
Pittawat Pamornchaisirikij	NDI/NCS Acquirer & Evaluator, Tester	Current Skills: C, C++, HTML, PHP, JavaScript, CSS, socket programming, device driver programming in Linux, Joomla CMS, Drupal CMS, Thai language, English language
		Required Skills: Experience in web development domain
Punyawee Pakdiying	System Architect, Feasibility Analyst	Current Skills: Linux/Unix Command line (beginner level), Java, PHP, MySQL, SQL, HTML, JavaScript, CSS, Joomla, Drupal
		Required Skills: High level Linux/Unix Command line, DBMS, Middleware, Analytical skills, and NDI/NCS used in the project
Saloni Priya	Requirements Engineer, UML Modeler	Current Skills: General purpose modelling language, ArgoUML, Creately for UML, MySQL,PHP,CSS, HTML, rustic JavaScript, C#
		Required Skills: Winbook, Visual Paradigm,

		Communication skills for effective negotiation, Knowledge Contributor, Analytical skills, NDI/NCS/COTS experience and knowledge about web server hosting.
Ameer Elkordy	IIV&V, Quality Focal Point	Current skills: Database, Analytics, General Scripting Rusted skills:
		Required skills: Organization, Tracking, Winbook, Loud Voice, and Process & Deliverable Knowledge
Suleyman Erten	Operational Concept Engineer, Requirements Engineer	Current Skills: HTML, JavaScript, Java Required Skills: Goal Decomposition, Use Case Scenarios, UML Modelling, Winbook, Knowledge Contributor
Kamonphop Srisopha	Prototyper, UML Modeler	Current Skills: HTML, Java, PHP, MySQL, Rust, C++ Required Skills: Winbook, Advanced UNIX/ Linux Command line, R (statistical programming), NDI/ NCS/COTS integration knowledge

4. Approach

4.1 Monitoring and Control

The project is monitored with a bi-weekly progress report and project plan. The progress report includes a progress description with total time spent on the project. It also includes the top project risks, number of SLOC, COTS software and defects/concerns.

4.1.1 Closed Loop Feedback Control

Draft documents/sketches/diagrams are shared on Google Drive where team members can quickly review and update them. Feedback for a specific artifact is given to the artifact leader either person-to-person or in team meetings.

4.1.2 Reviews

- Team meetings; we have a group meeting every day after CS577a class to debrief and review what we have accomplished, what we should do and what are some difficulties we are facing.
- Win-win negotiation; the negotiation helps us and the client to be on the same page and share the same understanding.
- IIV&V evaluations; Our Den team members make sure that the document looks good and check if time is logged on Bugzilla and provide feedback about the bug/artifact on the ticket for the owner to correct.
- TA feedback; the comments from all TAs are also useful.

4.2 Methods, Tools and Facilities

Tools	Usage	Provider
Github	Provide a version control system to store our team website files.	Github
Google drive	Contain all documents created by our team so that we can	Google
	collaborate	
Visual	Provide a tool to create various UML diagrams used in the	Visual
paradigm	project	paradigm
Balsamiq	The tool was used to develop the user interface prototype	Balsamiq
Microsoft	The office was used to create docs, presentation and XML files.	Microsoft
office		
Facebook	Provide a group feature to collaborate and make an appointment	Facebook
(Group/Chat)	among team members and client	
Join.me	The tool was used to share screen with DEN student	LogMeIn, Inc.
Skype	Video and/or Voice Chat	Microsoft

Bootstrap	to decorate our team website Open source		
Bugzilla	Provide a tool to create tasks, track task's statuses, and identify	USC	
	effort used in each task		
Winbook	Provide a tool to facilitate the team to identify the project's	USC	
	goals, win conditions of all stakeholders and prioritize them		

5. Resources

Estimated CSCI577a Effort: 8 team members working 10 hrs./week for 12 weeks Estimated CSCI577b Effort: 8 team members working 10 hrs./week for 12 weeks

Estimated total effort: 10 hours per week * 6 months = 60 PM

Programming languages: PHP, HTML/CSS, SQL, JavaScript

Budget: assume that this project has no budget for development efforts. There might be a cost for hosting a server and acquire a domain name.

Table 6: Modules

No	Module	Description SLOC (estimation)		REVL (estimation)
1	Point System	The point system that will provide users incentives to participate in the We Are Trojans network		15%
2	Forum Module	This module provides the students a 3,0 blatform to interact with each other		7%
3	Profile Module	The system that allow users to add and modify their information 800 1		10%
4	Store Module	The store used to redeem WAT points. First iteration will be limited to gift cards.		5%
5	Notification Module	The system that notify users with changes, such as liking, disliking, and a special campaign	800	5%

Table 7: COCOMOII Scale Driver

Scale Driver	Value	Rationale
PREC	High	Many examples exist with features similar to this project
		(i.e. Stackoverflow.com, Facebook)
FLEX	High	Project has a very high flexible set of requirements but the
		limited schedule pull down FLEX from very high to high.
RESL	Nominal	The project has thoroughness with architectural definition,
		but the system has a high tendency of risks.

TEAM	High	Client's limited schedule availability could pose
		complexities
PMAT	Nominal	Relatively new team with limited experience working
		together under stressful deadlines

Table 8: COCOMOII Cost Drivers for WAT point system

Cost Driver	Value	Rationale
RELY	Nominal	All other modules rely on this module. However, it is not
		risk to human life.
DATA	Low	We do not have much test data.
CPLX	Nominal	The analysis relating to the "WAT" Point system requires
		some numerical analysis that is prone to precision
		problems needed to be handled.
RUSE	Nominal	This WAT point module is developed specifically for this
		project. So it is only reusable across project (nominal)
DOCU	Nominal	The documentation was developed for each phase of
		development.
TIME	Nominal	The system is expected to use less than 50% of the
		available execution time.
STOR	Nominal	It will take up at most 20% use of available storage.
PVOL	Nominal	In this project, we do not update the change frequently.
ACAP	High	The team cohesively works on gathering requirements and
		high level design of the system.
PCAP	High	Most of our team members are capable. We have mix
		skills from 90th percentile to 55 percentile so we are
		going to estimate in between = 75 percentile.
PCON	Very	There is no personnel turnover.
	High	
APEX	Nominal	The team is not fully familiar with the COTS/NDI that
		will be used in developing the system.
PLEX	Nominal	In the team, there are mixes of people familiar and
		unfamiliar with the platforms
LTEX	High	Every member of the team has used the language that will
		be used in development of this system.
TOOL	Nominal	Basic life-cycle tools, moderately integrated.
SITE	High	The clients and the DEN students are not present at the
		same site, but connection is achieved using Skype.
SCED	Nominal	The schedule is fixed for 12 weeks.

Table 9: COCOMOII Cost Drivers for Forum Module

Cost Driver	Value	Rationale
RELY	Nominal	This module is crucial for the system, but a failure would
		only result in moderate losses.
DATA	Nominal	In forum functionality, we may have some amount of data
		like images and texts for testing.
CPLX	Nominal	Development of this module will mostly involve
		modification of an existing COTS forum.
RUSE	Low	Forum will be tailored for this specific project, no reuse.
DOCU	Nominal	The documentation was developed for each phase of
		development.
TIME	Nominal	The system is expected to use less than 50% of the
		available execution time.
STOR	Very	It will take up at < 80% use of avaliable storage
	High	
PVOL	Nominal	In this project, we do not update the change frequently.
ACAP	High	The team cohesively works on gathering requirements and
		high level design of the system.
PCAP	High	Most of our team members are capable. We have mix
		skills from 90th percentile to 55 percentile so we are
		going to estimate in between = 75 percentile.
PCON	Very	There is no personnel turnover.
	High	
APEX	Nominal	The team is not fully familiar with the COTS/NDI that
		will be used in developing the system.
PLEX	Nominal	In the team, there are mixes of people familiar and
		unfamilar with the platforms
LTEX	High	Every member of the team has used the language that will
		be used in development of this system.
TOOL	Nominal	Basic life-cycle tools, modertaly integrated.
SITE	High	The clients and the DEN students are not present at the
9,677	.	same site, but connection is achieved using Skype.
SCED	Nominal	The schedule is fixed for 12 weeks.

Table 10: COCOMOII Cost Drivers for Profile Module

Cost Driver	Value	Rationale	
RELY	Nominal	moderate, easily recoverable losses	
DATA	Low	The amount of test data will be relatively low compared to	
		SLOC.	

CPLX	Low	Straightforward nesting of structured. Simple GUI builder, straightforward database structure.	
RUSE	Nominal	Reusable across project.	
DOCU	Nominal	The documentation was developed for each phase of	
		development.	
TIME	Nominal	The system is expected to use less than 50% of the	
		available execution time.	
STOR	Nominal	It will take up at most 20% use of avaliable storage	
PVOL	Nominal	In this project, we do not update the change frequently.	
ACAP	High	The team cohesively works on gathering requirements and	
		high level design of the system.	
PCAP	High	Most of our team members are capable. We have mix	
		skills from 90th percentile to 55 percentile so we are	
		going to estimate in between = 75 percentile.	
PCON	Very	There is no personnel turnover.	
	High		
APEX	Nominal	The team is not fully familiar with the COTS/NDI that	
		will be used in developing the system.	
PLEX	Nominal	In the team, there are mixes of people familiar and	
I TOTAL	·	unfamilar with the platforms	
LTEX	High	Every member of the team has used the language that will	
TOOL	NI	be used in development of this system.	
TOOL	Nominal	Basic life-cycle tools, modertaly integrated.	
SITE	High	The clients and the DEN students are not present at the	
GGED	NT 1	same site, but connection is achieved using Skype.	
SCED	Nominal	The schedule is fixed for 12 weeks.	

Table 11: COCOMOII Cost Drivers for WAT Store Module

Cost Driver	Value	Rationale	
RELY	Low	It does not affect the system too much	
DATA	Low	We do not have much test data.	
CPLX	Low	Straightforward nesting of structured. Simple GUI	
		builder, straightforward database structure.	
RUSE	Nominal	Reusable across project.	
DOCU	Nominal	The documentation was developed for each phase of	
		development.	
TIME	Nominal	The system is expected to use less than 50% of the	
		available execution time.	
STOR	Nominal	It will take up at most 40% use of avaliable storage	

PVOL	Nominal	In this project, we do not update the change frequently.	
ACAP	High	The team cohesively works on gathering requirements and high level design of the system.	
PCAP	High	Most of our team members are capable. We have mix skills from 90th percentile to 55 percentile so we are going to estimate in between = 75 percentile.	
PCON	Very High	There is no personnel turnover.	
APEX	Nominal	The team is not fully familiar with the COTS/NDI that will be used in developing the system.	
PLEX	Nominal	In the team, there are mixes of people familiar and unfamiliar with the platforms	
LTEX	High	Every member of the team has used the language that will be used in development of this system.	
TOOL	Nominal	Basic life-cycle tools, modertaly integrated.	
SITE	High	The clients and the DEN students are not present at the same site, but connection is achieved using Skype.	
SCED	Nominal	The schedule is fixed for 12 weeks.	

Table 12: COCOMOII Cost Drivers for Notification Module

Cost Driver	Value	Rationale			
RELY	Low	No other module relies on this. Failure will only cause			
		slight inconvenience.			
DATA	Low	We do not have much test data.			
CPLX	Nominal	Mostly simple nesting. Some intermodule control.			
RUSE	Nominal	Reuse across project.			
DOCU	Nominal	The documentation was developed for each phase of			
		development.			
TIME	Nominal	The system is expected to use less than 50% of the			
		available execution time.			
STOR	Nominal	It will take up at most 20% use of avaliable storage			
PVOL	Nominal	In this project, we do not update the change frequently.			
ACAP	High	The team cohesively works on gathering requirements and			
		high level design of the system.			
PCAP	High	Most of our team members are capable. We have mix			
		skills from 90th percentile to 55 percentile so we are			
		going to estimate in between = 75 percentile.			
PCON	Very	There is no personnel turnover.			
	High				

APEX	Nominal	The team is not fully familiar with the COTS/NDI that			
		will be used in developing the system.			
PLEX	Nominal	In the team, there are mixes of people familiar and			
		unfamilar with the platforms			
LTEX	High	Every member of the team has used the language that will			
		be used in development of this system.			
TOOL	Nominal	Basic life-cycle tools, modertaly integrated.			
SITE	High	The clients and the DEN students are not present at the			
		same site, but connection is achieved using Skype.			
SCED	Nominal	The schedule is fixed for 12 weeks.			

Total number of week = 24 weeks (2 semesters).

One person can work 10 hours per week.

According to COINCOMO II;

The COCOMO II estimation effort calculated from the 5 modules gives an effort of **11.07** PM

13.59 PM * 152 hrs/PM = 2065.68 hr to do the work 10 hrs/week/person * 24 weeks = 240 hr/person 2065.68 hrs / 240 hrs / person = 8.6 person

We have 8 team members, so according to the pessimistic estimate we will be able to finish the project within the time constraint if we work a little extra.

6. Iteration Plan

6.1 Plan

<< Provide a high-level overview of the content of the given iteration. Indicate which Life cycle milestones will be addressed. >>

6.1.1 Capabilities to be implemented

<< For the milestone identified above, identify the capabilities that will be implemented in the upcoming iteration. Identify the features, requirements or use—cases that are being developed (implemented, tested, etc.) for this iteration. Each component should be accounted for in at least one iteration. All requirements should be implemented and tested (or re-negotiated) by the completion of all the iterations. Be mindful of implementation dependencies. Document complex dependencies and communicate them to the appropriate development staff. >>

ID **Capability Description Priority** Iteration 1 OC-1 Q&A Forum High 2 OC-2 WAT Point System High 3 OC-3 Notification System High 4 OC-4 Profile Medium 1 5 OC-5 Leaderboard Medium 2 OC-6 Redemption Medium 2 6 7 OC-7 **Event System** Low 2

Table 13: Construction iteration capabilities to be implemented

6.1.2 Capabilities to be tested

<< For the milestone identified above, identify the capabilities that will be tested in the upcoming iteration.

Identify the software features and combinations of software features to be tested this iteration. This may also include non-functional requirements or extra-functional requirements, such as performance, portability, and so forth.

Additionally you may need to test every requirement listed in the WinWin Agreements DC package, non-requirement component features such as COTS capabilities and quality, API functionality, etc. >>

Table 14: Construction iteration capabilities to be tested

ID	Capability	Description	Priority	Iteration
1	OC-1	Q&A Forum	High	1

2	OC-2	WAT Point System	High	1
3	OC-3	Notification System	High	1
4	OC-4	Profile	Medium	1
5	OC-5	Leaderboard	Medium	2
6	OC-6	Redemption	Medium	2
7	OC-7	Event System	Low	2

6.1.3 Capabilities not to be tested

<< Identify notable features, and significant combinations of features, which will not be tested this iteration and why (e.g. a given feature uses a feature which will be implemented in following iteration). >>

6.1.4 CCD Preparation Plans

<< Identify the clients and other users who will be involved in the Core Capability Drivethrough, the usage scenarios that it will support, and the specific CCD preparation plans and milestones. These may include

- user context-setting
- site preparation dry runs,
- feedback forms, and
- CCD risk management plans. >>

6.2 Iteration Assessment

6.2.1 Capabilities Implemented, Tested, and Results

<< Describes, in brief, the capabilities that were implemented and the test results. The capabilities implemented and tested do not necessarily need to match the ones listed in section 6.1 because some capabilities may have been pushed to the next iteration. >>

Table 15: Capabilities implemented, tested, and results

ID	Capability	Test Case	Test Results	If fail, why?
< ID >	< Capability >	<tc-xx></tc-xx>	Pass/Fail	< comments >
•••				

6.2.2 Core Capabilities Drive-Through Results

<< Briefly summarize the feedback you received from your client(s). You need to be specific enough to cover the critical capabilities or scenarios that were discussed, demoed, or shown. Your descriptions MUST, but not limited to, cover the following areas:

- Positive feedbacks
- Improvements needed/suggested
- Changes to-be considered (Reprioritized capabilities, requirements, GUI, etc.)
- Risks (New risks introduced, risks mitigated, etc.)

Note: Make sure to be specific to the capabilities shown/demonstrated/driven-through. Simply stating that the clients liked the capabilities is not sufficient. >>

6.3 Adherence to Plan

<< Describe how well the iteration ran according to plan. Was it on budget and on time? Is there any uncertainty in the Software Development Status? Provide some insight to avoid mistakes for future iterations. >>