

Fusion V5 (Sample QC)

Bioinformatics Development

Sandy

2025.03.24

Available tools for RNA-Seq

Ref:

https://zenodo.org/records/8323208

[Getting started with RNAseq: Transforming raw reads into biological insights]

Interval count approaches

Sorted.bam for

- HTSeq (sort by name if -r name is specified)
- FeatureCounts (sort by coordinates)

- Tools for RNAseq gene count analysis
 - HTSeq (not sensitive to duplication FLAG => lack of duplicate handling)
 - htseq-count -f bam -r name -s no -t exon -i gene_id aligned_reads.bam ref.gtf > genes_htseq.count
 - htseq-count -f bam -r name -s no -t exon -i gene_id --minaqual 10 aligned_reads.bam ref.gtf > genes_htseq.count
 - FeatureCounts (duplication FLAG sensitive)
 - featureCounts -T 8 -p --countReadPairs -s 0 -t exon -g gene_id -Q 10 -a ref.gtf -o genes_featureCounts.count aligned_reads.bam
 - featureCounts -T 8 -p --countReadPairs -s 0 -t exon -g gene_id -Q 10 --primary -a ref.gtf -o genes_featureCounts.count aligned_reads.bam
- Tools for DNA probe coverage analysis
 - bedtools coverage (not FLAG sensitive) [Yu-Feng's issue: ABIE-976]
 - bedtools coverage -a probe.bed -b <aligned.bam (processed.bam)> -d
 # -d report the depth at each position in each feature (defined in -a)
 - samtools depth (duplication FLAG sensitive) [Yu-Feng's issue: ABIE-976]
 - samtools depth -b probe.bed <aligned.bam (processed.bam)>

Ref. issues:

https://actg.atlassian.net/browse/ABIE-976

Probe regions vs Target gene expression

Ref. files:

- 9 target gene expression generated by Chien-Hung
- /mnt/RD_Develop/sandyteng/workdir/bed_intersect/Twist_kit/Covered_Regions_RNA_Fusions_4X_TE-98493102_GRCh38.bed

Probe regions vs Gene expression (Twist test data)

Twist RNA Panel Evaluation : Target Transcript Coverage

HTSeq-count

 Default options for feature count (gene count)

- -t exon
 (default feature type => 3rd column in
 GTF file)
- -i gene_id (default id attribute => feature ID)
- -m union (default read overlapping handling)
- --nonunique none
 (default mode for reads aligned to more than one feature in the "-m" option)

Ref. link

Htseq-count docs

Arriba's GTF file

MET

Ref. file:

 /mnt/RD_Develop/sandyteng/FusionCaptureTools/ref db arriba/RefSeq hg38.gtf

-t exon (feature type) -i gene id (feature id)

RefSeg exon 116759391 116759490 gene id "MET" transcript id "NM 000245"; exon number "10"; exon id "NM 000245.10"; gene name "MET"; RefSeg exon 116763050 116763268 gene id "MET"; transcript id "NM 000245"; exon number "11"; exon id "NM 000245.11"; gene name "MET"; RefSeg exon 116769645 116769791 gene id "MET"; transcript id "NM 000245"; exon number "12"; exon id "NM 000245.12"; gene name "MET"; RefSeq exon 116771498 116771654 gene_id "MET"; transcript_id "NM_000245"; exon_number "13"; exon_id "NM_000245.13"; gene_name "MET"; 116771989 gene id "MET"; transcript id "NM 000245"; exon number "14"; exon id "NM 000245.14"; gene name "MET"; RefSeg exon 116771849 RefSeg exon 116774881 gene id "MET"; transcript id "NM 000245"; exon number "15"; exon id "NM 000245.15"; gene name "MET"; 116775111 RefSeg exon 116777389 116777469 gene id "MET"; transcript id "NM 000245"; exon number "16"; exon id "NM 000245.16"; gene name "MET"; RefSeg exon 116778776 116778957 gene id "MET"; transcript id "NM 000245"; exon number "17"; exon id "NM 000245.17"; gene name "MET"; gene id "MET"; transcript id "NM 000245"; exon number "18"; exon id "NM 000245.18"; gene name "MET"; RefSeg exon 116781988 116782097 RefSeq exon 116783304 116783469 gene_id "MET"; transcript_id "NM_000245"; exon_number "19"; exon_id "NM_000245.19"; gene_name "MET"; RefSeg exon 116672196 116672577 gene id "MET"; transcript id "NM 000245"; exon number "1"; exon id "NM 000245.1"; gene name "MET"; RefSeg exon 116795655 116795791 gene id "MET"; transcript id "NM 000245"; exon number "20"; exon id "NM 000245.20"; gene name "MET" RefSeg exon 116795887 116798377 gene id "MET"; transcript id "NM 000245"; exon number "21"; exon id "NM 000245.21"; gene name "MET"; RefSeq exon 116699071 116700284 gene_id "MET"; transcript_id "NM_000245"; exon_number "2"; exon_id "NM_000245.2"; gene_name "MET"; gene_id "MET"; transcript_id "NM_000245"; exon_number "3"; exon_id "NM_000245.3"; gene_name "MET"; RefSeg exon 116731668 116731859 RefSeg exon 116739950 116740084 gene id "MET"; transcript id "NM 000245"; exon number "4"; exon id "NM 000245.4"; gene name "MET"; RefSeg exon 116740852 116741025 gene id "MET"; transcript id "NM 000245"; exon number "5"; exon id "NM 000245.5"; gene name "MET"; RefSeg exon 116755355 116755515 gene id "MET"; transcript id "NM 000245"; exon number "6"; exon id "NM 000245.6"; gene name "MET"; RefSeg exon 116757437 116757539 gene id "MET"; transcript id "NM 000245"; exon number "7"; exon id "NM 000245.7"; gene name "MET"; RefSeg exon 116757638 116757774 gene id "MET"; transcript id "NM 000245"; exon number "8"; exon id "NM 000245.8"; gene name "MET"; RefSeg exon 116758459 116758620 gene id "MET"; transcript id "NM 000245"; exon number "9"; exon id "NM 000245.9"; gene name "MET"; RefSeg exon 116759337 116759490 gene id "MET"; transcript id "NM 001127500"; exon number "10"; exon id "NM 001127500.10"; gene name "MET"; RefSeg exon 116763050 116763268 gene id "MET"; transcript id "NM 001127500"; exon number "11"; exon id "NM 001127500.11"; gene name "MET"; RefSeg exon 116769645 116769791 gene id "MET"; transcript id "NM 001127500"; exon number "12"; exon id "NM 001127500.12"; gene name "MET"; RefSeq exon 116771498 116771654 gene_id "MET"; transcript_id "NM_001127500"; exon_number "13"; exon_id "NM_001127500.13"; gene_name "MET"; 116771989 gene id "MET"; transcript id "NM 001127500"; exon number "14"; exon id "NM 001127500.14"; gene name "MET"; RefSeg exon 116771849 RefSeg exon 116774881 116775111 gene id "MET"; transcript id "NM 001127500"; exon number "15"; exon id "NM 001127500.15"; gene name "MET"; RefSeq exon 116777389 116777469 gene id "MET"; transcript id "NM 001127500"; exon number "16"; exon id "NM 001127500.16"; gene name "MET"; RefSeg exon 116778776 116778957 gene id "MET"; transcript id "NM 001127500"; exon number "17"; exon id "NM 001127500.17"; gene name "MET"; gene_id "MET"; transcript_id "NM_001127500"; exon_number "18"; exon_id "NM_001127500.18"; gene_name "MET"; RefSeg exon 116781988 116782097 116783469 gene id "MET"; transcript id "NM 001127500"; exon number "19"; exon id "NM 001127500.19"; gene name "MET"; RefSeg exon 116783304 RefSeg exon 116672196 116672577 gene id "MET"; transcript id "NM 001127500"; exon number "1"; exon id "NM 001127500.1"; gene name "MET"; RefSeg exon 116795655 116795791 gene id "MET"; transcript id "NM 001127500"; exon number "20"; exon id "NM 001127500.20"; gene name "MET"; RefSeg exon 116795887 116798377 gene id "MET"; transcript id "NM 001127500"; exon number "21"; exon id "NM 001127500.21"; gene name "MET"; RefSeg exon 116699071 116700284 gene id "MET"; transcript id "NM 001127500"; exon number "2"; exon id "NM 001127500.2"; gene name "MET"; RefSeg exon 116731668 116731859 gene id "MET"; transcript id "NM 001127500"; exon number "3"; exon id "NM 001127500.3"; gene name "MET"; RefSeg exon 116739950 116740084 gene id "MET"; transcript id "NM 001127500"; exon number "4"; exon id "NM 001127500.4"; gene name "MET"; RefSeg exon 116740852 116741025 gene id "MET"; transcript id "NM 001127500"; exon number "5"; exon id "NM 001127500.5"; gene name "MET"; RefSeg exon 116755355 116755515 gene id "MET"; transcript id "NM 001127500"; exon number "6"; exon id "NM 001127500.6"; gene name "MET"; RefSeq exon 116757437 116757539 gene_id "MET"; transcript_id "NM_001127500"; exon_number "7"; exon_id "NM_001127500.7"; gene_name "MET"; 116757774 gene id "MET"; transcript id "NM 001127500"; exon number "8"; exon id "NM 001127500.8"; gene name "MET" RefSeg exon 116757638 RefSeg exon 116758459 116758620 gene id "MET"; transcript id "NM 001127500"; exon number "9"; exon id "NM 001127500.9"; gene name "MET".

FeatureCounts

• Ignore duplicates (--ignoreDup)

· · · · · · · · · · · · · · · · · · ·	 	
ignoreDup	If specified, reads that were marked as duplicates will be ig-	
(ignoreDup)	nored. Bit Ox400 in FLAG field of SAM/BAM file is used	
	for identifying duplicate reads. In paired end data, the enti	
	read pair will be ignored if at least one end is found to be a	
	duplicate read.	

Appendix: FeatureCounts (bitwise FLAG/tag sensitive arguments)

- FLAG sensitive feature count calculation
- FLAGs
 - --ignoreDup (Bit Ox400 in FLAG field)
 - --primary (Primary and secondary alignments are identified using bit 0x100 in the Flag field)
 - --fraction (fractional count for 'NH' tag)
 - -M (countMultiMappingReads) ('NH' tag)
 - B < int > (nBestLocations) (Specify the maximal number of equally-best mapping locations to be reported for a read. 1 by default.)
 ('NH' tag)

FeatureCounts

FeatureCounts (algorithm)

Steps:

- Overlap of reads with features
- Multiple overlaps
- Chromosome hashing
- Genome bins and feature blocks

FeatureCounts

FeatureCounts (algorithm)

Genomic bins & Feature blocks

- Same number of consecutive features are grouped into a block
- The number of features in a block is nearly equal to the number of blocks in a bin
 - => # of blocks in a bin = sqrt(# of features in a bin)

featureCounts: an efficient general purpose program for assigning sequence reads to genomic features

 $\bullet \\ \ /mnt/RD_Develop/sandyteng/workdir/bed_intersect/Probe_sampleQC.NextSeq/output/genes_featureCounts.count.s$

FeatureCounts Output – count summary

genes_featureCounts.count.summary

Category	Description
Unassigned Unmapped	Unmapped reads that cannot be assigned.
Unassigned MultiMapping	Alignments reported for multi-mapping reads (indicated by the 'NH' tag).
Unassigned NoFeatures	Alignments that do not overlap any feature.
Unassigned Ambiguity	Alignments that overlap two or more features (for feature-level summarization) or meta-features (for meta-feature-level summarization).

08153/Aligned.sortedByCoord.out.bam

Assigned 1656798

Unassigned_Unmapped 464124

Unassigned Read Type 0

Unassigned Singleton 0

Unassigned_MappingQuality 0

Unassigned Chimera 0

Unassigned FragmentLength 0

Unassigned Duplicate 0

Unassigned MultiMapping 2976182

Unassigned_Secondary 0

Unassigned_NonSplit 0

Unassigned NoFeatures 77794

Unassigned Overlapping Length 0

Unassigned Ambiguity 51670

/mnt/RD_Develop/sandyteng/workdir/bed_intersect/Probe_sampleQC.NextSeq/output/genes_featureCounts.count

FeatureCounts Output – count table

genes featureCounts.count

Available columns:

- annotation columns ('Geneid', 'Chr', 'Start', 'End', 'Strand' and 'Length')
- data columns (eg. read counts for genes for each library)

'Geneid'

6769645;116771498;116771498;116771498;116771849;116771849;116771849;116774881;116774881;116774881;116777389;116777389;116777389;116777389;116778776;116778776;116778

776;116781988;116781988;116781988;116783304;116783304;116783304;116795655;116795655;116795655;116795887;116795887

116672577;116672577;116672577;116672577;116700284;116700284;116700284;116731859;116731859;116731859;116731859;116740084;1167400 4;116758620;116758620;116758620;116758620;116759490;116759490;116759490;116759490;116763268;116763268;116763268;116763268;116763268;116769791;116769910;116769791;11 6769791;116771654;116771654;116771654;116771989;116771989;116771989;116775111;116775111;116775111;116777469;116777469;116777469;1167778957;116778957;116778

957;116782097;116782097;116782097;116783469;116783469;116783469;116795791;116795791;116795791;116798377;116798377;116798377

16663 Read counts

ALK

MFT

'Length' (# of non-overlapping bases)

29192774;29192774;29196770;29196770;29197542;29197542;29207171;29207171;29209786;29209786;29213984;29220706;29220706;29222344;29222344;29222517;29 222517;29223342;29223461;29226922;29227574;29228884;29232304;29233565;29239680;29251105;29275099;29275402;29296888;29318304;29320751;29328350;2938 3732;29531915;29694850;29717578;29919993

29193922;29193922;29196860;29196860;29197676;29197676;29207272;29207272;29209878;29209878;29214081;29214081;29220835;29220835;29222408;29222408;29222607;29 222607;29223900;29223528;29225565;29227074;29227672;29229066;29232448;29233696;29239830;29251267;29275227;29275496;29297057;29318404;29320882;29328481;2938

Summary

- Gene count correlation ~99% => the counts obtained by the 2 tools are similar.
- Built-in read filters (htseq and featureCounts)
 - Duplicates can be excluded by FeatureCounts "--ignoreDup" argument in featureCounts
 - Multi-mapping reads are recognized via "NH" tag ("__alignment_not_unique" in htseq / "Unassigned MultiMapping" in featureCounts)
 - => Not applicable for caller that does not produce "NH" tag. (bwa => produce "XA" tag for multi-mapping reads)
- samtools depth (no output) & bedtools coverage -d (0 depth)
 - Output depth for each "position" => Hard to interpret (Fusion is report on exon-level)

Sample QC metrics re-visit

Arriba (STAR-based)

Fusionv4 (bwa-based)

QC metrics overview

Ref. issue:

https://actg.atlassian.net/browse/ABIE-971

413 target exons:

/mnt/RD_Develop/sandyteng/ACTFusionV5/code/fusionv4_annoloci2bed_test/targetexonbed/fusionv4.MANE.v0.95.
 GENCODE.r38.candidate.exons.transcript.bed

Tools & fusion workflows

	STAR (arriba's workflow: STAR + arriba)	Fusion v4 (bwa-based)
Alignment analysis	STAR (to genome)	bwa-mem (to preferred transcriptome, MANE, GENCODE-r38)
	samtools flagstats	samtools flagstats
(I) # of primary mapped reads	(~81.7% from Twist NextSeq data)	(~88.6% from Twist NextSeq data)
		calculate_probe_reads.sh (in-house utility: samtools + bedtools)
		(~71.85% On-Target reads, Twist NextSeq data)
	calculate_probe_reads.sh (in-house utility: samtools +	=> Remark: The reads are merged and went through isoform filtering. The value
	bedtools)	is calculated using merged single-end reads, while Arriba-STAR used paired-end
	(~54% On-Target reads, Twist NextSeq data)	<mark>reads.</mark>
(II) % of on-target/probe-	=> May over-estimate	=> Convert probe region to preferred exon regions
anchored reads	=> count the same read twice	=> 413 preferred exons as target regions
Read trimming	NA	trimadap
		quantify_preferred_exons.v2.py
		1. (transcript-level) via "htseq-count" => Need gtf file for preferred transcripts
		=> Some arguments are not applicable for bwa (no 'NH' tag)
		2. (transcript-level) obtain alignments from *callingresult.txt file for each sample
Counting (expression	HTseq ("htseq-count"),	=> Use "WILDTYPE" reads produced by the caller to quantify gene expression
quantification)	FeatureCounts ("featureCounts")	
		fastp (insert size → peak, source file: *.fastp.merge.json)
Fragmentation size	NA	(129-153 bp insertion size, Twist NextSeq data)
		fastp (duplication → rate, source file: *.fastp.merge.json)
Duplication rate	NA	(29%-34% duplication rate, Twist NextSeq data)

Counting (expression quantification)

- Quantification scenarios
 - Htseq (+ arriba.STAR.bam)
 - FeatureCounts (+ arriba.STAR.bam)
 - quantify_preferred_exons.v2.py (in-house script) (+ fusionv4.bwa.bam)
- Analysis workflow
 - Gene count quantification (via htseq, featurecounts, quantify_preferred_exons.v2.py)
 - Target gene count extraction (only compare the 220 target genes defined in twist.covered.bed (via grep -wf))
- Result summary
 - Gene count obtained from htseq and featurecounts are similar (correlation 99.9%)
 - Gene count quantified form fusion v4 and arriba workflows are similar (correlation 99.3%)

Target gene:

 /mnt/RD_Develop/sandyteng/workdir/bed_intersect/Twist_kit/Covered_Regions_RNA_Fusions_4X_TE-98493102_GRCh38.gene.list.txt (Twist)

- /mnt/RD_Develop/sandyteng/ACTFusionV5/code/plot_exon_distribution_test/ENST00000397752.8.exon_distribution.pdf
- /mnt/RD_Develop/sandyteng/ACTFusionV5/code/plot_exon_distribution_test/get_ENST00000397752.8.MET.exon.plot.sh

Exon number vs Count

• MET

chr7	116699071	116700284	MET-exon-fusionv4-2
chr7	116755355	116755515	MET-exon-fusionv4-6
chr7	116763050	116763268	MET-exon-fusionv4-11
chr7	116771498	116771654	MET-exon-fusionv4-13
chr7	116774881	116775111	MET-exon-fusionv4-15

ENST00000397752.8	1	707
ENST00000397752.8	2	2000
ENST00000397752.8	3	1117
ENST00000397752.8	4	27
ENST00000397752.8	5	763
ENST00000397752.8	<mark>6</mark>	1952
ENST00000397752.8	7	1928
ENST00000397752.8	8	1443
ENST00000397752.8	9	373
ENST00000397752.8	10	653
ENST00000397752.8	11	918
ENST00000397752.8	12	145
ENST00000397752.8	13	2624
ENST00000397752.8	14	4055
ENST00000397752.8	15	2385
ENST00000397752.8	16	884
ENST00000397752.8	17	1088
ENST00000397752.8	18	1655

ENST00000397752.8

4196

21

On-target rate (bwa, preferred exons as target regions)

- % Covered region anchored reads
- % On-Target reads = % of Primary mapped reads * % Covered region anchored reads

uuid	% of Primary mapped reads	% Covered region anchored reads	% On-Target reads
AANB02_202_AA02_AA-23-08153	87.74	80.37	70.52%
AANB02_202_AB02_AA-24-00324	89.96	82.31	74.05%
AANB02_202_AC02_AA-24-00324	85.68	79.16	67.82%
AANB02_202_AD02_AA-23-08153	91.28	82.93	75.70%
AANB02_202_AE02_AA-23-08153	87.82	80.44	70.64%
AANB02_202_AF02_AA-24-00324	89.81	82.06	73.70%
AANB02_202_AG02_AA-24-00324	85.41	78.77	67.28%
AANB02_202_AH01_AA-23-08153	90.95	82.57	75.10%

Ref. issue

https://actg.atlassian.net/browse/ABIE-971

Ref. directory

- /mnt/RD_Develop/sandyteng/workdir/bed_intersect/Probe_analysis.NextSeq/bwa-fusionv4/ (=> % of Primary mapped reads)
- /mnt/RD_Develop/sandyteng/ACTFusionV5/code/fusionv4_calculate_probe_reads_test/ (=> % Covered region anchored reads)

QC metrics overview

Ref. issue:

https://actg.atlassian.net/browse/ABIE-971

413 target exons:

/mnt/RD_Develop/sandyteng/ACTFusionV5/code/fusionv4_annoloci2bed_test/targetexonbed/fusionv4.MANE.v0.95.
 GENCODE.r38.candidate.exons.transcript.bed

• Tools & fusion workflows

	STAR (arriba's workflow: STAR + arriba)	Fusion v4 (bwa-based)
Alignment analysis	STAR (to genome)	bwa-mem (to preferred transcriptome, MANE, GENCODE-r38)
	samtools flagstats	samtools flagstats
(I) # of primary mapped reads	(~81.7% from Twist NextSeq data)	(~88.6% from Twist NextSeq data)
	calculate_probe_reads.sh (in-house utility: samtools + bedtools)	calculate_probe_reads.sh (in-house utility: samtools + bedtools)
	(~54% On-Target reads, Twist NextSeq data)	(~71.85% On-Target reads, Twist NextSeq data)
		=> Remark: The reads are merged and went through isoform filtering. The value
		is calculated using merged single-end reads, while Arriba-STAR used paired-end
		<mark>reads.</mark>
(II) % of on-target/probe-	=> May over-estimate	=> Convert probe region to preferred exon regions
anchored reads	=> count the same read twice	=> 413 preferred exons as target regions
Read trimming	NA	trimadap
		quantify_preferred_exons.v2.py
		1. (transcript-level) via "htseq-count" => Need gtf file for preferred transcripts
		=> Some arguments are not applicable for bwa (no 'NH' tag)
		2. (transcript-level) obtain alignments from *callingresult.txt file for each sample
Counting (expression	HTseq ("htseq-count"),	=> Use "WILDTYPE" reads produced by the caller to quantify gene expression
quantification)	FeatureCounts ("featureCounts")	
		fastp (insert size → peak, source file: *.fastp.merge.json)
Fragmentation size	NA	(129-153 bp insertion size, Twist NextSeq data)
		fastp (duplication → rate, source file: *.fastp.merge.json)
्रिप्राication rate	NA	(29%-34% duplication rate, Twist NextSeq data)

On-Target %

- Tools
 - samtools flagstats
 - calculate_probe_reads.sh
- Example
 - AANB02_202_AD02_AA-23-08153

NextSeq, Twist 8 RNA data

Generated by "get_probe_reads.sh"

AANB02_202_AH01_AA-23-08153.flagstats.txt 10880521 + 0 in total (QC-passed reads + QC-failed reads) 5651046 + 0 primary

AANB02_202_AH01_AA-23-08153_probe_report.txt

Probe-Anchored Primary Alignments: 3812418

5019766 + 0 secondary 209709 + 0 supplementary 0 + 0 duplicates

Percentage: 67.46%

0 + 0 primary duplicates

9777437 + 0 mapped (89.86% : N/A) 4547962 + 0 primary mapped (80.48% : N/A)

Total Primary Alignments: 5651046

5651046 + 0 paired in sequencing

2825523 + 0 read1

2825523 + 0 read2

4535110 + 0 properly paired (80.25% : N/A)

4547962 + 0 with itself and mate mapped

0 + 0 singletons (0.00%: N/A)

3164 + 0 with mate mapped to a different chr

1854 + 0 with mate mapped to a different chr (mapQ>=5)

Generated by "samtools flagstats <input.aligned.bam>" ("get_flagstats.sh")

% Covered region anchored reads

% On-Target reads = % of Primary mapped reads * % Covered region anchored reads

uuid	% of Primary mapped reads	% Covered region anchored reads	% On-Target reads
AANB02_202_AA02_AA-23-08153	83.64	66.64	55.74%
AANB02_202_AB02_AA-24-00324	81.09	67.42	54.67%
AANB02_202_AC02_AA-24-00324	82.33	64.01	52.70%
AANB02_202_AD02_AA-23-08153	80.89	68.06	55.05%
AANB02_202_AE02_AA-23-08153	83.37	66.53	55.47%
AANB02_202_AF02_AA-24-00324	79.86	66.53	53.13%
AANB02_202_AG02_AA-24-00324	81.7	63.54	51.91%
AANB02_202_AH01_AA-23-08153	80.48	67.46	54.29%

Ref. issue:

https://actg.atlassian.net/browse/ABIE-971
 Ref. directory

/mnt/RD Develop/sandyteng/workdir/bed intersect/Probe analysis.NextSeq/STAR-arriba/

Source files:

- /mnt/RD_Develop/sandyteng/workdir/bed_intersect/Probe_analysis.NextSeq/STAR-arriba/<uuid>.flagstats.txt
- /mnt/RD_Develop/sandyteng/workdir/bed_intersect/Probe_analysis.NextSeq/STAR-arriba/<uuid>_probe_report.txt
 Scripts:
- /mnt/RD_Develop/sandyteng/workdir/bed_intersect/Probe_analysis.NextSeq/STAR-arriba/get_flagstats.sh
- /mnt/RD_Develop/sandyteng/workdir/bed_intersect/Probe_analysis.NextSeq/STAR-arriba/get_probe_reads.sh

On-target rate (bwa, preferred exons as target regions)

- % Covered region anchored reads
- % On-Target reads = % of Primary mapped reads * % Covered region anchored reads

uuid	% of Primary mapped reads	% Covered region anchored reads	% On-Target reads	
AANB02_202_AA02_AA-23-08153	87.74	80.37	70.52%	
AANB02_202_AB02_AA-24-00324	89.96	82.31	74.05%	
AANB02_202_AC02_AA-24-00324	85.68	79.16	67.82%	
AANB02_202_AD02_AA-23-08153	91.28	82.93	75.70%	91.28%*82.93%
AANB02_202_AE02_AA-23-08153	87.82	80.44	70.64%	
AANB02_202_AF02_AA-24-00324	89.81	82.06	73.70%	
AANB02_202_AG02_AA-24-00324	85.41	78.77	67.28%	
AANB02_202_AH01_AA-23-08153	90.95	82.57	75.10%	

Ref. issue:

• https://actg.atlassian.net/browse/ABIE-971

Ref. directory

- $\bullet \quad /mnt/RD_Develop/sandyteng/workdir/bed_intersect/Probe_analysis.NextSeq/bwa-fusionv4/ \ (=> \% \ of \ Primary \ mapped \ reads)$
- /mnt/RD_Develop/sandyteng/ACTFusionV5/code/fusionv4_calculate_probe_reads_test/ (=> % Covered region anchored reads)

samtools flagstats

- % of Primary mapped reads
 - samtools flagstats aligned.bam

uuid	% of Primary mapped reads	% Covered region anchored reads	% On-Target reads
AANB02_202_AA02_AA-23-08153	87.74	80.37	70.52%
AANB02_202_AB02_AA-24-00324	89.96	82.31	74.05%
AANB02_202_AC02_AA-24-00324	85.68	79.16	67.82%
AANB02_202_AD02_AA-23-08153	<mark>91.28</mark>	82.93	75.70%
AANB02_202_AE02_AA-23-08153	87.82	80.44	70.64%
AANB02_202_AF02_AA-24-00324	89.81	82.06	73.70%
AANB02_202_AG02_AA-24-00324	85.41	78.77	67.28%
AANB02_202_AH01_AA-23-08153	90.95	82.57	75.10%

2327266 + 0 in total (QC-passed reads + QC-failed reads)
2121990 + 0 primary
0 + 0 secondary
205276 + 0 supplementary
0 + 0 duplicates
0 + 0 primary duplicates
2142294 + 0 mapped (92.05% : N/A)
1937018 + 0 primary mapped <mark>(91.28%</mark> : N/A)

- 0 + 0 paired in sequencing
- 0 + 0 read 1
- 0 + 0 read2
- 0 + 0 properly paired (N/A : N/A)
- 0 + 0 with itself and mate mapped
- 0 + 0 singletons (N/A: N/A)
- 0 + 0 with mate mapped to a different chr
- 0 + 0 with mate mapped to a different chr (mapQ>=5)

calculate_probe_reads.sh

- A tool for % Covered region anchored reads calculation (Probe covered reads percentage)
- Steps
 - Filter out secondary and supplementary alignments from the input BAM
 - Count total primary alignments
 - Extract probe-anchored primary alignments using bedtools intersect
 - Count primary alignments in probe-anchored BAM
 - Calculate probe-anchored read percentage

uuid	% of Primary mapped reads	% Covered region anchored reads	% On-Target reads
AANB02_202_AA02_AA-23-08153	87.74	80.37	70.52%
AANB02_202_AB02_AA-24-00324	89.96	82.31	74.05%
AANB02_202_AC02_AA-24-00324	85.68	79.16	67.82%
AANB02_202_AD02_AA-23-08153	91.28	82.93	75.70%
AANB02_202_AE02_AA-23-08153	87.82	80.44	70.64%
AANB02_202_AF02_AA-24-00324	89.81	82.06	73.70%
AANB02_202_AG02_AA-24-00324	85.41	78.77	67.28%
AANB02_202_AH01_AA-23-08153	90.95	82.57	75.10%

samtools view -b -F 0x900

AANB02 202 AD02 AA-23-08153 (fusion v4 (bwa bam))

Filter out secondary and supplementary alignments from the input BAM

- AANB02 202 AD02 AA-23-08153 primary.bam => 2,121,990
- AANB02 202 AD02 AA-23-08153 probed.bam => 1,759,749

bedtools intersect -a

primary.bam -b probe.bed

2121990 + 0 in total (QC-passed reads + QC-failed reads)

2121990 + 0 primary

0 + 0 secondary

0 + 0 supplementary

0 + 0 duplicates

0 + 0 primary duplicates

1937018 + 0 mapped (91.28% : N/A)

1937018 + 0 primary mapped (91.28%: N/A)

0 + 0 paired in sequencing

0 + 0 read 1

0 + 0 read 2

0 + 0 properly paired (N/A: N/A)

0 + 0 with itself and mate mapped

0 + 0 singletons (N/A : N/A)

0 + 0 with mate mapped to a different chr

0 + 0 with mate mapped to a different chr (mapQ>=5)

Primary.bam

0 + 0 singletons (N/A : N/A) 0 + 0 with mate mapped to a different chr

0 + 0 primary duplicates

0 + 0 paired in sequencing

0 + 0 read 1

0 + 0 singletons (N/A : N/A)

0 + 0 with mate mapped to a different chr

0 + 0 with mate mapped to a different chr (mapQ>=5)

Probed.ban

1759749 + 0 in total (QC-passed reads + QC-failed reads)

1759749 + 0 primary

0 + 0 secondary

0 + 0 supplementary

0 + 0 duplicates

1759749 + 0 mapped (100.00%: N/A)

1759749 + 0 primary mapped (100.00% : N/A)

0 + 0 read 2

0 + 0 properly paired (N/A : N/A)

0 + 0 with itself and mate mapped

Remark:

3 reports are generated via "samtools flagstats"

/2,121,990 (probe anchored reads)

2327266 + 0 in total (QC-passed reads + QC-failed reads)

Aligned.bam

2121990 + 0 primary

205276 + 0 supplementary

2142294 + 0 mapped (92.05%: N/A)

1937018 + 0 primary mapped (91.28%: N/A)

0 + 0 with mate mapped to a different chr (mapQ>=5)

Probe-Anchored Primary Alignments 1759749

Probe_report.txt

Total Primary Alignments: 2121990

0 + 0 primary duplicates

0 + 0 paired in sequencing

0 + 0 properly paired (N/A: N/A) 0 + 0 with itself and mate mapped

Percentage: 82.93%

1,759,749 (primary reads)

0 + 0 secondary

0 + 0 duplicates

0 + 0 read 10 + 0 read 2

Aligned.bam

Primary.bam

· Probed.bam

1 report is generated via "calculate probe reads.sh"

% Covered region anchored reads calulation workflows

- fusion v4
- arriba

% Covered region anchored reads calculation (fusionv4)

- Preferred exons to bed regions conversion (fusionv4_annoloci2bed.py)
 - Input files: preferred.genome.exons.annotation, preferred.transcriptome.exons.annotation
 - Output files: preferred.genome.exons.annotation.bed, preferred.transcriptome.exons.annotation.bed
- Bed coordinates sorting (sort-bed)
 - Input files: preferred.transcriptome.exons.annotation.bed, probe.bed
 - Output files: sorted.preferred.transcriptome.exons.annotation.bed, sorted.probe.bed
- Bed files intersection (bedtools intersect)
 - Input files: sorted.preferred.transcriptome.exons.annotation.bed, sorted.probe.bed
 - Output files: candidate.exons.bed
- Extract target exon list (uniq, awk)
 - Input file: candidate.exons.bed
 - Output file: target.exons.namelist.txt
- Extract transcript loci bed (grep -wf)
 - Input files: preferred.transcriptome.exons.annotation.bed, target.exons.namelist.txt
 - Output files: candidate.exons.transcript.bed
- % Covered region anchored reads calculation (calculate probe reads.sh: samtools + bedtools)
 - Input files / string: aligned.fusionv4.bam, candidate.exons.transcript.bed, sample.id (uuid string)
 - Output files: sample.id_primary.bam (&.bai), sample.id_probed.bam (& .bai), sample.id_probe_report.txt

% Covered region anchored reads calculation (arriba)

- Preferred exons to bed regions conversion (fusionv4_annoloci2bed.py)
 - Input files: preferred.genome.exons.annotation, preferred.transcriptome.exons.annotation
 - Output files: preferred.genome.exons.annotation.bed, preferred.transcriptome.exons.annotation.bed
- Bed coordinates sorting (sort-bed)
 - Input files: preferred.transcriptome.exons.annotation.bed, probe.bed
 - Output files: sorted.preferred.transcriptome.exons.annotation.bed, sorted.probe.bed
- Bed files intersection (bedtools intersect)
 - Input files: sorted.preferred.transcriptome.exons.annotation.bed, sorted.probe.bed
 - Output files: candidate.exons.bed
- Extract target exon list (uniq, awk)
 - Input file: candidate.exons.bed
 - Output file: target.exons.namelist.txt
- Extract transcript loci bed (grep -wf)
 - Input files: preferred.transcriptome.exons.annotation.bed, target.exons.namelist.txt
 - Output files: candidate.exons.transcript.bed
- % Covered region anchored reads calculation (calculate_probe_reads.sh: samtools + bedtools)
 - Input files / string: aligned.arriba.bam, probe.bed, sample.id (uuid string)
 - Output files: sample.id_primary.bam (&.bai), sample.id_probed.bam (& .bai), sample.id_probe_report.txt

• Fusion v4 (full)

```
graph TD;
%% Initial Inputs
I1[/preferred.genome.exons.annotation/]
12[/preferred.transcriptome.exons.annotation/]
[/probe.bed/]
I4[/aligned.fusionv4.bam/]
16[/sample.id/]
%% FusionV4 Workflow
I1 --> A1["Preferred Exons to BED (fusionv4_annoloci2bed.py)"]
A1 --> | preferred.genome.exons.annotation.bed | B1["BED Sorting (sort-bed)"]
A1 --> | preferred.transcriptome.exons.annotation.bed | E1
13 --> B1
B1 -->|sorted.preferred.genome.exons.annotation.bed, sorted.probe.bed| C1|"Bed Intersection (bedtools
intersect)"]
C1 --> | candidate.exons.bed | D1["Extract Target Exons (uniq, awk)"]
D1 --> | target.exons.namelist.txt | E1["Extract Transcript Loci (grep -wf)"]
E1 --> | candidate.exons.transcript.bed | F1["% Covered Region Anchored Reads (calculate_probe_reads.sh)"]
14 --> F1
16 --> F1
F1 --> O1[\sample.id probe report.txt\]
```


• Fusion v4

graph TD;
 %% Initial Inputs
 I3[/candidate.exons.transcript.bed/]
I5[/aligned.fusionv4.bam/]
I6[/sample.id/]
 %% FusionV4 Workflow
 I6 --> F1["% Covered Region Anchored Reads (calculate_probe_reads.sh)"]
I5 --> F1
F1 --> O1[\sample.id probe report.txt\]

Arriba

```
graph TD;
%% Initial Inputs
13[/probe.bed/]
15[/aligned.arriba.bam/]
16[/sample.id/]
%% Arriba Workflow
16 --> F1["% Covered Region Anchored Reads (calculate_probe_reads.sh)"]
15 --> F1
F1 --> O1[\sample.id probe report.txt\]
```


QC metrics overview

Ref. issue:

https://actg.atlassian.net/browse/ABIE-971

413 target exons:

 /mnt/RD_Develop/sandyteng/ACTFusionV5/code/fusionv4_annoloci2bed_test/targetexonbed/fusionv4.MANE.v0.95. GENCODE.r38.candidate.exons.transcript.bed

• Tools & fusion workflows

	STAR (arriba's workflow: STAR + arriba)	Fusion v4 (bwa-based)	
Alignment analysis	STAR (to genome)	bwa-mem (to preferred transcriptome, MANE, GENCODE-r38)	
	samtools flagstats	samtools flagstats	
(I) # of primary mapped reads	(~81.7% from Twist NextSeq data)	(~88.6% from Twist NextSeq data)	
(II) % of on-target/probe-	calculate_probe_reads.sh (in-house utility: samtools + bedtools)	calculate_probe_reads.sh (in-house utility: samtools + bedtools)	
anchored reads	(~54% On-Target reads, Twist NextSeq data)	To-do	
Read trimming	NA	trimadap	
		quantify_preferred_exons.v2.py	
		1. (transcript-level) via "htseq-count" => Need gtf file for preferred transcripts => Some arguments are not applicable for bwa (no 'NH' tag)	
Counting (expression	HTseq ("htseq-count"),	2. (transcript-level) obtain alignments from *callingresult.txt file for each sample	
quantification)	FeatureCounts ("featureCounts")	=> Use "WILDTYPE" reads produced by the caller to quantify gene expression	
		fastp (insert size → peak, source file: *.fastp.merge.json)	
Fragmentation size	NA	(129-153 bp insertion size, Twist NextSeq data)	
		fastp (duplication → rate, source file: *.fastp.merge.json)	
Duplication rate	NA	(29%-34% duplication rate, Twist NextSeq data)	

Counting (expression quantification)

- Quantification scenarios
 - Htseq (+ arriba.STAR.bam)
 - FeatureCounts (+ arriba.STAR.bam)
 - quantify_preferred_exons.v2.py (in-house script) (+ fusionv4.bwa.bam)
- Analysis workflow
 - Gene count quantification (via htseq, featurecounts, quantify_preferred_exons.v2.py)
 - Target gene count extraction (only compare the 220 target genes defined in twist.covered.bed (via grep -wf))
- Result summary
 - Gene count obtained from htseq and featurecounts are similar (correlation 99.9%)
 - Gene count quantified form fusion v4 and arriba workflows are similar (correlation 99.3%)

Target gene:

 /mnt/RD_Develop/sandyteng/workdir/bed_intersect/Twist_kit/Covered_Regions_RNA_Fusions_4X_TE-98493102_GRCh38.gene.list.txt (Twist)

HTSeq-count

 Default options for feature count (gene count)

- -t exon
 (default feature type => 3rd column in
 GTF file)
- -i gene_id (default id attribute => feature ID)
- -m union
 (default read overlapping handling)
- --nonunique none
 (default mode for reads aligned to more than one feature in the "-m" option)

Ref. link

Htseq-count docs

FeatureCounts

FeatureCounts (algorithm)

Steps:

- Overlap of reads with features
- Multiple overlaps
- Chromosome hashing
- Genome bins and feature blocks

- /mnt/RD_Develop/sandyteng/ACTFusionV5/code/plot_exon_distribution_test/ENST00000397752.8.exon_distribution.pdf
 Script:
- /mnt/RD_Develop/sandyteng/ACTFusionV5/code/plot_exon_distribution_test/get_ENST00000397752.8.MET.exon.plot.sh

Exon number vs Count

• MET

gene count

gene_id count

MET **18002** => identical to # of WILDTYPE MET reads

exon count

=>

(-i) *callingresult.txt ("ENST00000397752.8" => "MET")

167 WILDTYPE MET:15,16

280 WILDTYPE MET:15,16,17

53 WILDTYPE MET:16

372 WILDTYPE MET:16,17

12 WILDTYPE MET:16,17,18

- \Rightarrow (-o) exon.count ("ENST00000397752.8" exon 16)
- ⇒ ENST00000397752.8 16 884 (167+280+53+372+12 = 884)

- /mnt/RD_Develop/sandyteng/ACTFusionV5/code/plot_exon_distribution_test/ENST00000397752.8.exon_distribution.pdf
- /mnt/RD_Develop/sandyteng/ACTFusionV5/code/plot_exon_distribution_test/get_ENST00000397752.8.MET.exon.plot.sh

Exon number vs Count

• MET

chr7	116699071	116700284	MET-exon-fusionv4-2
chr7	116755355	116755515	MET-exon-fusionv4-6
chr7	116763050	116763268	MET-exon-fusionv4-11
chr7	116771498	116771654	MET-exon-fusionv4-13
chr7	116774881	116775111	MET-exon-fusionv4-15

gene_id count
MET 18002
=> identical to
of WILDTYPE MET reads

ENST00000397752.8 707 2000 ENST00000397752.8 ENST00000397752.8 1117 ENST00000397752.8 27 ENST00000397752.8 763 ENST00000397752.8 1952 ENST00000397752.8 1928 ENST00000397752.8 1443 ENST00000397752.8 373 10 ENST00000397752.8 653 ENST00000397752.8 918 ENST00000397752.8 12 145 ENST00000397752.8 2624 ENST00000397752.8 4055 14 ENST00000397752.8 2385 ENST00000397752.8 16 884 ENST00000397752.8 17 1088 ENST00000397752.8 18 1655

19

21

4196

314

ENST00000397752.8

ENST00000397752.8

ENST00000397752.8

Gene quantification (FusionV4)

Ref. issue

https://actg.atlassian.net/browse/ABIE-987 https://actg.atlassian.net/browse/ABIE-988

- FusionV4 processes
 - R1.fq.gz, R2.fq.gz (input files) -> mergefastq ("mergefastq") -> trimadap -> fastp -> bwaisoform -> bwase -> fusioncalling -> fuscall2QC
- **bwase** ("bwa") -> **fusioncalling** ("ACTGfuscall.py") -> **quantifygene** ("quantify_preferred_exons.v2.py")
 - bwase
 - Input files: preferred.transcriptome.fasta, preferred.transcriptome.fasta.indices
 - Output files: aligned.fusionv4.bam, aligned.fusionv4.bam.bai
 - Fusioncalling
 - Input files:
 aligned.fusionv4.bam, preferred.transcriptome.exons.annotation,
 protein.fasta, protein.fasta.meta, qc.thresholds.config
 - Output files: callingresult.txt, gspcallingresult.txt, protein_seq.meta.txt, callingform.txt
 - quantifygene
 - Input file: callingresult.txt
 - Output files: gene.count, exon.count

Gene quantification (Arriba)

Ref. issue

https://actg.atlassian.net/browse/ABIE-987 https://actg.atlassian.net/browse/ABIE-988

- Arriba processes
 - R1.fq.gz, R2.fq.gz (input files) -> STAR -> Arriba
- STAR ("STAR") -> quantifygene ("HTSeq" / "featureCounts")
 - STAR
 - Input files: GRCh38.fa, GRCh38.fa.indices, RefSeq_hg38.gtf
 - Output files: aligned.arriba.bam
 - quantifygene (htseq)
 - Input files: aligned.arriba.bam, RefSeq_hg38.gtf
 - Ouptut files: genes_htseq.count (gene.count)
 - quantifygene (featureCounts)
 - Input files: aligned.arriba.bam, RefSeq_hg38.gtf
 - Ouptut files: genes_featureCounts.count (gene.count), genes_featureCounts.count.summary (gene.count.summary)

FusionV4

graph TD; %% Initial Inputs I1[/R1.fq.gz/] 12[/R2.fq.gz/] 17[/preferred.transcriptome.fasta/] 18[/preferred.transcriptome.fasta.indices/] %% FusionV4 Workflow 11 --> A1 12 --> A1 17 --> A1["bwase (bwa mem)"] 18 --> A1 A1 --> | aligned.fusionv4.bam | B1 A1 --> | aligned.fusionv4.bam.bai | B1["fusioncalling ("ACTGfuscall.py") B1 -->|callingresult.txt| C1["quantifygene ("quantify_preferred_exon: C1 --> O1[\Gene.count\] C1 --> O2[\Exon.count\]

Arriba

graph TD; %% Initial Inputs I1[/R1.fq.gz/] 12[/R2.fq.gz/] 16[/GRCh38.fa/] 17[/GRCh38.fa.star.indices/] I8[/RefSeq_hg38.gtf/] %% FusionV4 Workflow 11 --> A1 12 --> A1 16 --> A1 17 --> A1["STAR (arriba)"] 18 --> A1 18 --> B1 18 --> C1 A1 --> I9[/aligned.arriba.bam/] 19 --> B1["quantifygene ("htseq")"] 19 --> C1["quantifygene ("featureCounts")"] %%A1 --> | aligned.arriba.bam | B1["quantifygene ("htseq")"] B1 --> O1[\htseq.gene.count\] %%A1 -->|aligned.arriba.bam| C1["quantifygene ("featureCounts")"] C1 --> O2[\featureCounts.gene.count\] C1 --> O3[\featureCounts.gene.count.summary\]

Gene count comparison (paper)

HTSeq/FeatureCounts

Method **Number of fragments** Time (min) Memory (MB) featureCounts 5 392 155 0.9 24.4 7000 CountOverlaps (whole genome at once) 5 392 155 CountOverlaps (by chromosome) 5 392 155 36.6 783 36 4 978 050 31 htseq-count (union) 35.7 31 htseq-count (intersection-nonempty) 4 993 644 5 366 902 4.4 41 coverageBED

(b) featureCounts htseq-count

27102 4769846 67

Paired-end

D-f.

featureCounts: an efficient general purpose program for assigning sequence reads to genomic features

(a)

Gene count comparison (AANB02_202_AD02_AA-23-08153)

- HTSeq/FeatureCounts
- FeatureCounts/quantify_preferred_exons.v2.py

Pearson's r (B, C) (featureCounts, htseq)	0.999996602
n	244
t-value (r*SQRT(n-2))/(SQRT(1-r^2))	5967.755077
p-value TDIST(x, deg_freedom, tails)	0
Pearson's r (C, D) (featureCounts, quantify_preferred_exons.v2.py)	0.993358852
n	244
t-value	134.307269
p-value	2.8426E-229

Ref issue

https://actg.atlassian.net/browse/ABIE-987 https://actg.atlassian.net/browse/ABIE-988

- HTSeq/FeatureCounts
- bedtools coverage/samtools depth
- quantify_preferred_exons.v2.py

Tool overview

	HTSeq/FeatureCounts	bedtools coverage /samtools depth	quantify_preferred_exons.v3.py
	Gene Level		
	(predefined intervals		
	within gtf => gene id	Base Level (bedtools coverage -d /samtools depth)	
Quantification level	recognition)	Interval Level (bedtools coverage)	Gene Level + Exon Level
	Some arguments are		
	not applicable for bwa		
	(no"NH"tag)		Only quantify exons defined in
			the preferred transcripts (MANE
	Count gene using the	samtools depth is preferred for SAM FLAG sensitivity (duplication removal)	0.95 + GENCODE-r38)
	predefined gtf	ABIE-976: "bedtools coverage" vs. "samtools depth"	=> one may change the
	(merged the same	Done	preferred transcripts to MANE
	gene_id)		1.4
	=> limit to predefined		
	gene intervals (may	bedtools coverage fails to identify read fragment	Rely on fusion v4 calling result
	not encompass MANE	=> extra care is required for result interpretation	=> only work for fusion v4
Limitations	1.4 transcripts)	see details for https://github.com/ACTGenomics/panel_gene_coverageConnect your Github account	pipeline

Ref. issue

https://actg.atlassian.net/browse/ABIE-987 https://actg.atlassian.net/browse/ABIE-988

