1 Gruppen

1.1 Grundbegriffe

Definition (Gruppe). Eine Gruppe G ist eine Menge mit einem Produkt (Multiplikation) $G \times G \to G$, $(g,h) \mapsto gh$, sodass

- (i) $(gh)k = g(hk) \ \forall g, h, k \in G$ (Assoziativgesetz)
- (ii) \exists neutrales Element $1 \in G$ mit $1g = g1 = g \ \forall g \in G$
- (iii) $\forall g \in G \exists$ ein Inverses $g^{-1} \in G$, sodass $gg^{-1} = g^{-1}g = 1$

Eine Gruppe heisst **abelsch**, falls $gh = hg \ \forall g, h \in G$

eine Gruppe. **Definition** (Direktes Produkt). Das direkte Produkt $G_1 \times G_2$ zweier Gruppen ist das kartesische Produkt mit Multiplikation $(a_1, a_2)(b_1, b_2) = (a_1, b_2, b_3)$. For its sine Gruppe wit poutreless.

Definition (Untergruppe). Eine Untergruppe H einer Gruppe G ist eine nichtleere Teilmenge von G, so dass $h_1, h_2 \in H \Rightarrow h_1h_2 \in H$

und $h \in H \Rightarrow h^{-1} \in H$. Eine Untergruppe einer Grupppe ist selbst

zweier Gruppen ist das kartesische Produkt mit Multiplikation $(g_1, g_2)(h_1, h_2) = (g_1h_1, g_2h_2)$. Es ist eine Gruppe mit neutralem Element (1,1) und Inversem $(g_1, g_2)^{-1} = (g_1^{-1}, g_2^{-1})$

Definition (Diedergruppen D_n). D_n für $n \geq 3$ besteht aus den

orthogonalen Transformationen der Ebene die ein reguläres im Ur-

sprung zentriertes n-Eck invariant lassen. Es enthält eine Drehung R mit Winkel $\frac{2\pi}{n}$ und eine Spiegelung S um eine fixe Achse durch den Ursprung. Falls $\{v_i\}_{i\in\{0,\dots,n-1\}}$ die Eckpunkte sind, dann gilt: $Rv_i = v_{i+1}$ und $Sv_i = v_{n-i}$.

Lemma. Es gilt: $|D_n|=2n$ und die Elemente von D_n sind $1,R,R^2,\ldots R^{n-1},S,RS,R^2S,\ldots R^{n-1}S.$

Definition (Skalarprodukt).

$$(x,y) = \sum_{i=1}^{n} \overline{x}_i y_i$$
 , $(x,y)_{p,q} = \sum_{i=1}^{p} x_i y_i - \sum_{i=p+1}^{p+q} x_i y_j$

Definition (Verschiedene Gruppen).

$$GL(n, \mathbb{C}) = \{\text{invertierbare komplexe } n \times n \text{ Matrizen} \}$$

$$GL(V) = \{\text{invertierbare lineare Abbildung } V \to V \}$$

$$O(n) = \{A \in GL(n, \mathbb{R}) \mid A^T A = 1 \} \text{ (Orthogonale Gruppe)}$$

$$= \{A \mid (Ax, Ay) = (x, y) \ \forall x, y \in \mathbb{R}^n \}$$

 $GL(n,\mathbb{R}) = \{\text{invertierbare reelle } n \times n \text{ Matrizen}\}$

$$O(p,q) = \left\{ A \in GL(p+q,\mathbb{R}) \mid (Ax,Ay)_{p,q} = (x,y)_{p,q} \right\}$$

$$U(n) = \left\{ A \in GL(n,\mathbb{C}) \mid A^*A = 1 \right\}$$

$$= \left\{ A \in GL(n,\mathbb{C}) \mid (Az,Aw) = (z,w) \ \forall z,w \in \mathbb{C}^n \right\}$$

Definition (Sympeplektische Gruppe). Sei ω die folgende antisymmetrischen Bilinearform auf $\mathbb R$

$$\omega(X,Y) = \sum_{i=1}^{n} (X_{2i-1}Y_{2i} - X_{2i}Y_{2i-1})$$

wobe
i X_i die i-te Komponente von
 $X\in\mathbb{R}^{2n}$ bezeichnet. Die sympeplektische Gruppe ist dann

$$Sp(2n) = \{A \in GL(n, \mathbb{R}) \mid \omega(Ax, Ax') = \omega(x, x') \ \forall x, x' \in \mathbb{R}^{2n} \}$$

Definition (Spezielle Gruppen). Sei G eine Untergruppe von $GL(n,\mathbb{R})$ oder $GL(n,\mathbb{C})$.

$$SG = \{ A \in G \mid \det A = 1 \} \subseteq G$$

$$SL = (SGL(n, K)) = \{ A \in GL(n, K) \mid \det A = 1 \}$$

$$SO(n) = \{ A \in SL(n, \mathbb{R}) \mid A^{T}A = 1 \} = \{ A \in O(n) \mid \det A = 1 \}$$

$$SU(n) = \{ A \in SL(n, \mathbb{C}) \mid A^{*}A = 1 \} = \{ A \in U(n) \mid \det A = 1 \}$$

Definition (Gruppenwirkung / Gruppenoperation). Eine Gruppenwirkung/ Gruppenoperation von G auf eine Menge M ist eine Abbildung $G \times M \to M$, $(g,x) \mapsto gx$ sodass $g_1(g_2x) = (g_1g_2)x \ \forall g_1, g_2 \in G, x \in M$. Man sagt G wirkt/ operiert auf M.

Definition (Gruppenhomomorphismus). Ein (Gruppen-) Homomorphismus $\varphi:G\to H$ ist eine Abbildung zwischen Gruppen G und H sodass $\varphi(g,h)=\varphi(g)\varphi(h)\ \forall g,h\in G$. Ist φ bijektiv, so heisst φ Isomorphismus und G und H isomorph. Verknüpfungen von Homomorphismen sind wieder Homomorphismen.

Definition (Kern und Bild).

$$\operatorname{Ker}(\varphi) = \{g \in G \mid \varphi(g) = 1\} \subset G$$
$$\operatorname{Im}(\varphi) = \{\varphi(g) \mid g \in G\} \subset H$$

Satz. Sei $\varphi: G \to H$ ein Homomorphismus.

- (i) $\varphi(1) = 1$, $\varphi(g)^{-1} = \varphi(g^{-1})$
- (ii) φ ist genau dann injektiv wenn Ker(φ) = {1}

Definition (Linksnebenklassen). Sei H eine Untergruppe einer Gruppe G. Die Menge G/H der (Links-)Nebenklassen von H in G ist die Menge der Äquivalenzklassen bezüglich der Äquivalenzrelation $g_1 \sim g_2 \Leftrightarrow \exists h \in H$ mit $g_2 = g_1 h$

Definition (Normalteiler). Ein Normalteiler von G ist eine Untergruppe H mit der Eigenschaft, dass $ghg^{-1} \in H \ \forall g \in G, h \in H$. **Satz.** Sei H ein Normalteiler von G und es bezeichne [g] die Klasse

von g in G/H. Dann ist für alle g_1, g_2 das Produkt $[g_1][g_2] = [g_1g_2]$ wohldefiniert, und G/H ist mit diesem Produkt eine Gruppe, welche Faktorgruppe von G mod H heisst. Satz. Für jeden Homomorphismus $\varphi: G \to H$ ist $Ker(\varphi)$ ein Nor-

 $\varphi(g)\varphi(g)^{-1} = 1$ **Satz.** Sei $\varphi: G \to H$ ein Homomorphismus von Gruppen. Dann gilt $G/\operatorname{Ker}(\varphi) \cong \operatorname{Im}(\varphi)$. Der Isomorphismus ist $[g] \mapsto \varphi(g)$ für

malteiler von G, denn $\varphi(1) = 1 \Rightarrow \varphi(ghg^{-1}) = \varphi(g)\varphi(h)\varphi(g^{-1}) =$

Definition (Automorphismus). Sei H eine Gruppe. Dann ist $\operatorname{Aut}(H) = \{\varphi: H \to H \mid \operatorname{Gruppenisomorphismus}\}$ die Gruppe der Gruppenisomorphismen von H.

Definition (Semidirektes Produkt). Seien G und H Gruppen und $\rho: G \to \operatorname{Aut}(H), g \mapsto \rho_g$, ein Homomorphismus, wobei $\rho_g = \rho(g) \in \operatorname{Aut}(H)$. Dann ist $G \times H$ mit Multiplikation $(g_1, h_1)(g_2, h_2) = (g_1g_2, h_1\rho_{g_1}(h_2))$ eine Gruppe, das semidirekte Produkt $G \ltimes_{\rho} H$.

1.2 Lie-Gruppen

beliebige Wahl der Representanten g.

Definition (Lie-Gruppen). Eine Lie-Gruppe ist eine Gruppe, die gleichzeitig eine C^{∞} -Mannigfaltigkeit ist, so dass Multiplikation und Inversion C^{∞} -Abbildungen sind.

Definition (Stetigkeit für Untergruppen von GL(n)). Wir fassen $G \subset GL(n,\mathbb{R})$, $GL(n,\mathbb{C})$ als Teilmenge von \mathbb{C}^{n^2} auf, indem wir die Matrixelemente einer Matrix $A \in G$ als Punkt $(A_{11}, A_{12}, \ldots, A_{nn})$ in \mathbb{R}^{n^2} bzw. \mathbb{C}^{n^2} schreiben. Diese Identifikation definiert die Struktur eines Metrischen Raumes auf G. Der Abstand d(A, B) zwischen zwei Matrizen aus G ist

$$d(A,B)^{2} = \sum_{i,j}^{n} |A_{ij} - B_{ij}|^{2} = \operatorname{tr}(A-B)^{*}(A-B)$$

Satz. Sei G eine Untergruppe von $GL(n, \mathbb{K})$. Dann sind Multiplikation $G \times G \to G$, $(A, B) \mapsto AB$ und die Inversion $G \to G$, $A \mapsto A^{-1}$ stetige Abbildungen.

Definition (Weg). Ein Weg in einem metrischen Raum X ist eine stetige Abbildung $w:[0,1] \to X$. Er verbindet w(0) mit w(1). X ist wegzusammenhängend, falls $\forall x, y \in X \exists$ ein Weg, der x mit yverbindet.

 ${f Satz.}$ Die Wegzusammenhangskomponenten von X sind die Äquivalenzklassen bezüglich $x \sim y \Leftrightarrow \exists \text{Weg } w : [0,1] \to X \text{ mit}$ w(0) = x und w(1) = y.**Definition** ((Weg-)Zusammenhangskomponente). Sei \mathbb{K} =

Die (Weg-)Zusammenhangskomponenten von G $\mathrm{GL}(n,\mathbb{K})$ sind die Aquivalenzklassen bezüglich ~. Besteht G

aus einer einzigen Zusammenhangskomponente, so heisst G (weg-)zusammenhängend. **Satz.** Sei $G \subset GL(n,\mathbb{K})$ eine Untergruppe/ Lie-Gruppe und $G_0 \subset$ G die Wegzusammenhangskomponente der 1. Dann ist G_0 ein

Normalteiler von G und G/G_0 ist isomorph zu der Gruppe der

Wegzusammenhangskomponenten. (i) SO(n), SU(n), U(n) sind zusammenhängend.

(ii) O(n) besteht aus zwei Zusammenhangskomponenten:

 $\{A \in O(n) \mid \det(A) = 1\} \text{ und } \{A \in O(n) \mid \det(A) = -1\}.$ **Theorem** (Spektralsatz). Für einen Endomorphismus F, mit

Darstellungsmatrix $A \in M(n \times n; \mathbb{C})$, eines unitären $\mathbb{C}\text{-VR } V$ sind folgende Aussagen äquivalent: i) Es gibt eine Orthonormalbasis von V bestehend aus Eigenvektoren von F.

- ii) F ist normal.
- iii) $\exists S \in U(n)$ s.d. $SAS^{-1} = D$ für D eine Diagonalmatrix.

Bahnformel

 $Gx := \{gx \mid g \in G\} \subset X$

X operiert. Zu $x \in X$ definieren wir die Bahn von x

Definition (Stabilisator). Sei
$$G$$
 und X wie oben. Dann: Stab $_x := \{g \in G \mid gx = x\} \subset G$

Definition (Bahn). Sei G eine endliche Gruppe, die auf der Menge

 Stab_x ist eine Untergruppe.

 \mathbf{Satz} (Bahnensatz und Bahnenformel). Wirkt die Gruppe G auf der Menge X, dann ist für jedes $x \in X$ die Abbildung

$$G/\operatorname{Stab}_x \to Gx$$
 , $[g] \mapsto gx$

wohldefiniert und eine Bijektion. Insbesondere gilt für endliches Gdie Bahnenformel $|G| = |\operatorname{Stab}_x| |Gx|$

Darstellungen von Gruppen

Definitionen

Definition (Darstellung). Eine Darstellung einer Gruppe G auf einem VR $V \neq 0$ ist ein Homomorphismus $\rho: G \to GL(V)$. Der VR V heisst dann Darstellungsraum der Darstellung ρ . Also ordnet eine Darstellung ρ jedem Element $g \in G$ eine invertierbare lineare Abbildung $\rho(g): V \to V$ zu, so dass $\forall g, h \in G$ die Darstellungseigenschaft $\rho(gh) = \rho(g)\rho(h)$ gilt.

endlichen Gruppe G ist die Darstellung auf dem Raum $\mathbb{C}(G)$ aller Funktionen $G \to \mathbb{C}$, $(\rho_{reg}(g)f)(h) = f(g^{-1}h)$, $f \in \mathbb{C}(G), g, h \in G$

Definition (reguläre Darstellung). Die reguläre Darstellung einer

Alternativ:
$$\mathbb{C}(G)$$
 hat eine Basis $\{\delta_g\}_{g\in G}$ mit $\delta_g(g)=1$ und $\delta_g(h)=1$

0 wenn $h \neq g$. Dann ist ρ_{reg} die Darstellung, s.d. $\rho_{reg}(g)\delta_h = \delta_{gh}$.

DARSTELLUNGSTHEORIE VON ENDLICHEN GRUPPEN **Notation** Wir notieren Darstellungen als (ρ, V) oder ρ oder V

falls keine Verwirrung entsteht. **Definition** (Homomorphismus von Darstellungen). Ein Homomorphismus von Darstellungen $(\rho_1, V_1) \rightarrow (\rho_2, V_2)$ ist eine lineare Ab-

bildung $\varphi: V_1 \to V_2$ s.d. $\varphi \rho_1(g) = \rho_2(g) \varphi \ \forall g \in G$.

Definition (Äquivalent). Zwei Darstellungen (ρ_1, V_1) , (ρ_2, V_2) sind äquivalent (oder isomorph) falls ein bijektiver Homomorphismus von Darstellungen $\varphi: V_1 \to V_2$ existiert. **Korollar.** Der Vektorraum aller Homomorphismen $(\rho_1, V_1) \rightarrow$

 (ρ_2, V_2) wird mit $\operatorname{Hom}_G(V_1, V_2)$ oder $\operatorname{Hom}_G((\rho_1, V_1), (\rho_2, V_2))$ bezeichnet. **Definition** (invarianter Unterraum). Ein invarianter Unterraum einer Darstellung (ρ, V) ist ein UVR $W \subset V$ mit $\rho(g)W \subset W \ \forall g \in V$

Definition ((Ir-)reduzibel). Eine Darstellung (ρ, V) heisst irreduzibel, falls sie keine invarianten Unterräume ausser V und $\{0\}$

Lemma. Ist $W \neq \{0\}$ ein invarianter Unterraum, so ist die Einschränkung $\rho_{|W}: G \to GL(W), g \mapsto \rho(g)_{|W}$ eine Darstellung: $(\rho_{|W}, W)$ ist eine Unterdarstellung von (ρ, V) . **Definition** (vollständig reduzibel). Eine Darstellung (ρ, V) heisst

vollständig reduzibel, falls invariante UVR V_1, \ldots, V_n existieren. s.d. $V = V_1 \oplus \cdots \oplus V_n$ und die Unterdarstellungen $(\rho_{|V_i}, V_i)$ irreduzibel sind. Eine solche Zerlegung von V heisst Zerlegung in irreduzible Darstellungen.

Lemma. Sei (ρ, V) eine endlichdimensionale Darstellung s.d. \forall invarianten UVR $W \subset V \exists$ ein invarianter UVR W' mit $V = W \oplus W'$. Dann ist (ρ, V) vollständig reduzibel.

Bemerkung. Nicht jede reduzible Darstellung ist vollständig re-

2.2Unitäre Darstellungen **Definition** (unitäre Darstellung). Eine Darstellung ρ auf einem

besitzt, sonst reduzibel.

duzibel.

reduzibel.

VR V mit Skalarprodukt heisst unitär falls $\rho(g)$ unitär ist $\forall g \in G$. Sei $\rho(g)$ unitär, dann: $\rho(g)^* = \rho(g)^{-1} \ \forall g \in G$ bzw. $\rho(g^{-1}) = \rho(g)^*$

Satz. Sei (ρ, V) eine endliche Darstellung einer endlichen Gruppe

Satz. Endliche unitäre Darstellungen sind vollständig reduzibel.

G. Dann \exists ein Skalarprodukt (,) auf V, s.d. (ρ, V) unitär ist. Korollar. Darstellungen von endlichen Gruppen sind vollständig

Das Lemma von Schur

Satz (Lemma von Schur). Seien $(\rho_1, V_1), (\rho_2, V_2)$ irreduzible komplexe endlichdimensionale Darstellungen von G.

- (i) $\varphi \in \text{Hom}_G(V_1, V_2) \Rightarrow \varphi \equiv 0$ oder φ ist ein Isomorphismus.
- (ii) $\varphi \in \text{Hom}_G(V_1, V_1)$. Dann ist $\varphi = \lambda \text{Id}_{V_1}$ für $\lambda \in \mathbb{C}$.

Korollar. Jede irreduzible endlichdimensionale komplexe Darstellung einer abelschen Gruppe ist eindimensional.

3 Darstellungstheorie endlichen von Gruppen

Es bezeichne G stets eine endliche Gruppe. Alle Darstellungen werden endlichdimensional und komplex angenommen.

3.1 Orthogonalitätsrelationen der Matrixele mente

Satz. Sei $\rho: G \to GL(V)$ eine irreduzible Darstellung der Gruppe

G der Dimension d. Aus der Existenz eines Skalarproduktes auf V bezüglich wessen ρ unitär ist folgt dass für alle $g \in G$ die Matrix $(\rho_{ij}(g))$ von $\rho(g)$ bezüglich einer beliebigen orthonormierten Basis unitär ist: $\rho_{ij}(g^{-1}) = \overline{\rho_{ji}(g)}$

Satz. Seien $\rho: G \to \operatorname{GL}(V)$, $\rho': G \to \operatorname{GL}(V)$ irreduzible unitäre Darstellungen einer endlichen Gruppe G. Es bezeichnen $(\rho_{ij}(g))$, $(\rho'_{kl}(g))$ die Matrizen von $\rho(g)$, $\rho'(g)$ bezüglich orthonormierten Basen V, bzw. V'.

(i) Sind ρ , ρ' inäquivalent, so gilt für alle i, j, k, l

$$\frac{1}{|G|} \sum_{g \in G} \overline{\rho_{ij}(g)} \rho'_{kl}(g) = 0$$

(ii) Für alle i, j, k, l gilt

$$\frac{1}{|G|} \sum_{g \in G} \overline{\rho_{ij}(g)} \rho_{kl}(g) = \frac{1}{\dim V} \delta_{ik} \delta_{jl}$$

3.2 Charakteren

Definition (Charakter). Der Charakter einer endlichdimensionalen Darstellung $\rho: G \to \operatorname{GL}(V)$ einer Gruppe G ist die komplexwertige Funktion auf G:

$$\chi_{\rho}(g) = \operatorname{tr}(\rho(g)) = \sum_{j=1}^{\dim(V)} \rho_{jj}(g)$$

von G. Satz. (i) $\chi_{\rho}(g)=\chi_{\rho}(hgh^{-1})$, äquivalent: χ_{ρ} nimmt einen kon-

Hier sind $\rho_{ij}(g)$ die Matrixelemente bezüglich einer beliebigen Basis

stanten Wert auf jeder Konjugationsklasse an.

(ii) Sind ρ , ρ' äquivalente Darstellungen, so gilt $\chi_{\rho} = \chi_{\rho'}$

Definition (Konjugationsklasse). Die Konjugationsklassen von G sind die Mengen der Form $\{hgh^{-1} \mid h \in G\}$, oder äquivalent die Bahnen bzgl der Wirkung von G auf sich selbst durch Konjugation $h \cdot g = h \cdot g \cdot h^{-1}$, oder äquivalent die Äquivalenzklasse bzgl. $g \sim g' \Leftrightarrow \exists h \in G : g' = hgh^{-1}$.

Lemma. (i) $\chi_{\rho}(1) = \dim(V)$

(ii)
$$\chi_{\rho \oplus \rho'} = \chi_{\rho} + \chi_{\rho'}$$

(iii)
$$\chi_{\rho}(g^{-1}) = \overline{\chi_{\rho}(g)}, \forall g \in G$$

3.3 Der Charakter der regulären Darstellung

$$\chi_{reg}(g) = \begin{cases} |G|, & \text{falls } g = 1\\ 0, & \text{sonst} \end{cases}$$

3.4 Orthogonalitätsrelationen der Charakteren

Definition (Skalarprodukt). Wir führen das folgende Skalarprodukt auf dem Raum $\mathbb{C}(G)$ aller komplexwertigen Funktionen auf G ein.

$$(f_1, f_2) = \frac{1}{|G|} \sum_{g \in G} \overline{f_1(g)} f_2(g)$$

Satz. Seien ρ , ρ' irreduzible Darstellungen der endlichen Gruppe G, und seien χ_{ρ} , $\chi_{\rho'}$ ihre Charakteren. Dann gilt

- ele- (i) Sind a o' inequivalent so gilt (x, y, t) = 0
 - (i) Sind ρ , ρ' inequivalent, so gilt $(\chi_{\rho}, \chi_{\rho'}) = 0$
 - (ii) Sind $\rho,\,\rho'$ äquivalent, so gilt $\left(\chi_{\rho},\chi_{\rho'}\right)=1$

Korollar. Ist $\rho = \rho_1 \oplus \cdots \oplus \rho_n$ eine Zerlegung einer Darstellung ρ in irreduzible Darstellungen, und σ eine irreduzible Darstellung, so ist die Anzahl ρ_i die äquivalent zu σ sind gleich (χ_ρ, χ_σ) .

DARSTELLUNGSTHEORIE VON ENDLICHEN GRUPPEN

Korollar. ρ irreduzibel \Leftrightarrow $(\chi_{\rho}, \chi_{\rho}) = 1$

3.5 Zerlegung der regulären Darstellung

Satz. Jede irreduzible Darstellung σ einer endlichen Gruppe G kommt in der regulären Darstellung vor. Hat eine irreduzible Darstellung die Dimension d, so kommt sie d mal in der regulären Darstellung vor. Äquivalent: Für jede irreduzible Darstellung σ der Dimension d, $(\chi_{\sigma}, \chi_{reg}) = d$. Das ergibt sich aus:

$$n_{\sigma} = (\chi_{\sigma}, \chi_{reg}) = \frac{1}{|G|} \sum_{g \in G} \overline{\chi_{\sigma}(g)} \chi_{reg}(g) = \chi_{\sigma}(1) = d$$

Korollar. Eine endliche Gruppe G besitzt endlich viele Äquivalenzklassen irreduzibler Darstellungen. Ist ρ_1, \ldots, ρ_k eine Liste von irreduziblen inäquivalenten Darstellungen, eine in jeder Äquivalenzklasse, so gilt für ihre Dimensionen d_i :

$$d_1^2 + \dots + d_k^2 = |G| = \sum_{j=1}^k (\dim(\rho_j))^2$$

Es gilt $\chi_{reg}(g) = \sum_i d_i \chi_{\rho_i}(g)$. Für g = 1 erhalten wir das obere Resultat.

Korollar. Sei ρ_1, \ldots, ρ_k eine Liste irreduzibler inäquivalenter unitärer Darstellungen wie im vorherigen Korollar. Es bezeichne $\rho_{\alpha,ij}(g), \alpha = 1, \ldots, k, \ 1 \leq i,j \leq d_{\alpha}$ die Matrixelemente von $\rho_{\alpha}(g)$ bezüglich einer orthonormierten Basis. Dann bilden die Funktionen $\rho_{\alpha,ij}$ eine orthogonale Basis von $\mathbb{C}(G)$.

Definition (Klassenfunktion). Eine Funktion $f: G \to \mathbb{C}$ heisst Klassenfunktion falls $f(ghg^{-1}) = f(h)$ für alle $g, h \in G$.

Lemma. Die Klassenfunktionen sind ein UVR von $\mathbb{C}(G)$ und damit selbst ein Hilbertraum.

Korollar. Sei G eine endliche Gruppe. Die Charakteren χ_1, \ldots, χ_k der irreduziblen Darstellungen von G bilden eine orthonormierte Basis des Hilbertraums der Klassenfunktionen.

Korollar. Eine endliche Gruppe hat so viele Äquivalenzklassen irreduzibler Darstellungen wie Konjugationsklassen.

3.6 Die Charaktertafel einer endlichen Gruppe

Definition (Charaktertafel). Die Charaktertafel ist eine Tabelle

$$\begin{array}{c|ccccc} G & \begin{bmatrix} 1 \end{bmatrix} & \dots & c & \dots & \begin{bmatrix} \dots \end{bmatrix} \\ \hline \chi_1 & \ddots & & \ddots & & \\ \vdots & & \ddots & & \ddots & & \\ \chi_j & & & \chi_j(c) & & & \\ \vdots & \ddots & & & \ddots & & \\ \chi_k & & \ddots & & & \ddots & & \\ \hline \end{array}$$

mit $[1], \ldots, c, \ldots, [\ldots]$ den Konjugationsklassen, $\chi_1, \ldots, \chi_j, \ldots, \chi_k$ den irreduziblen Charakteren und $\chi_j(c)$ den Werten der Charakteren. Oft schreibt man auch die Ordnung der jeweiligen Äquivalenzklasse neben die Klasse und die Ordnung der Gruppe neben G. Zeilen sind orthogonal, insbesondere

$$\left(\sqrt{\frac{|c_j|}{|G|}}\chi_i(c_j)\right)_{ij} \in O(n)$$

Methoden der mathematischen Physik II Zusammenfassung Das heisst, die Matrix hat auch orthonormale Spalten. Es gelten:

 $\sum_{i=1}^{k} \frac{|c_{\alpha}|}{|C|} \overline{\chi_{i}(c_{\alpha})} \chi_{j}(c_{\alpha}) = \delta_{i,j}$

$$\sum_{\alpha=1}^{|C_{\alpha}|} \frac{|c_{\alpha}|}{|G|} \overline{\chi_{i}(c_{\alpha})} \chi_{j}(c_{\alpha}) = \delta_{i,j}$$

$$\sum_{j=1}^{k} \overline{\chi_{j}(c_{\alpha})} \chi_{j}(c_{\alpha}) = \frac{|G|}{|c_{\alpha}|} \delta_{\alpha,\beta}$$

Tricks zum finden der Charaktertafel

- $|G| = \sum_{j=1}^{k} (\dim(\rho_j))^2$
- Orthogonalität der Zeilen und Spalten
- Existenz der trivialen Darstellung (und allenfalls der Vorzeichendarstellung)
- 1. Spalte enthält die Dimensionen.

Die kanonische Zerlegung einer Darstellung

Satz. Sei G eine endliche Gruppe und $\rho_i: G \to GL(V), i = 1, \ldots, k$ einer Liste aller inäquivalenter irreduziblen Darstellungen von G.

Sei eine Darstellung ρ auf einem VR Vgegeben. Es sei $V=U_1\oplus$ $\cdots \oplus U_n$ eine Zerlegung in irreduzible invarianten Unterräume. $\forall i =$ $1, \ldots, k$ definieren wir W_i als die direkte Summe aller derjenigen

 U_j , so dass $\rho_{|U_i|}$ äquivalent zu ρ_i ist. Dann ist $V = W_1 \oplus \cdots \oplus W_k$, wobei $W_i = 0$ sein darf.

Satz. Die Zerlegung $V = W_1 \oplus \cdots \oplus W_k$ ist unabhängig von der Wahl

der Zerlegung von V in irreduziblen Darstellungen. Die Projektion $p_i: V \to W_i, \ w_1 \oplus \cdots \oplus w_k \mapsto w_i \text{ ist gegeben durch:}$

$$p_i(v) = \frac{\dim(V_i)}{|G|} \sum_{g \in G} \overline{\chi_i(g)} \rho(g) v$$
in Zorlogung $V = W_i \oplus \dots \oplus W_i$ beiset k

Bemerkung. Die Zerlegung $V = W_1 \oplus \cdots \oplus W_k$ heisst kanonische Zerlegung. Die Unterräume W_i heissen isotypische Komponenten.

Beispiel: Die Diedergruppe D_n

Jede Darstellung ist eindeutig bestimmt durch $\rho(R) = \overline{R}$ und $\rho(S) =: \overline{S} \in GL(V)$. Es gilt:

$$\overline{R}^n = \overline{S}^2 = 1 \quad , \quad \overline{SR} = \overline{R}^{-1} \overline{S} \quad , \quad R^a S^b R^{a'} S^{b'} = R^{a+a'-2ba'} S^{b+b'}$$

Eindimensionale Darstellung $V = \mathbb{C} \setminus \{0\}$:

n ungerade: 2 (irreduzible) 1-dim Darstellungen: ρ_{\pm}

n gerade: 4 1-dim Darstellungen: $\rho_{\pm\pm}$

Irreduzible 2-dim Darstellung $V = \mathbb{C}^2$: Sei $v \in V$ ein EV von $\overline{R} \in GL(2,\mathbb{C})$ zum EW ε , $\overline{R}v = \varepsilon v$. Dann gilt: $\overline{SR}v = \varepsilon \overline{S}v = \varepsilon \overline{S}v$ $\overline{R}^{-1}\overline{S}v \Leftrightarrow \overline{RS}v = \frac{1}{6}\overline{S}v$. D.h. $\overline{S}v$ ist ein EV von \overline{R} zum EW $\frac{1}{6}$. $v, \overline{S}v$ sind linear unabhängig also eine Basis von \mathbb{C}^2 . Bezüglich dieser

$$\overline{R} = \begin{pmatrix} \varepsilon & 0 \\ 0 & \frac{1}{\varepsilon} \end{pmatrix} \quad , \quad \overline{S} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Weiter gilt $\varepsilon = e^{\frac{2\pi i}{n}j}$, $j \in \mathbb{Z}$. Mit diesen ε können wir Darstellungen ρ_j definieren. Wir beschränken uns auf die Werte $j=1,2,\ldots,\lfloor\frac{n-1}{2}\rfloor.$ Für die Charaktere der Darstellungen gilt:

$$\chi_j(R^a) = \varepsilon_j^a + \varepsilon_j^{-a} = 2\cos\left(\frac{2\pi j}{n}a\right) \quad , \quad \chi_j(R^aS) = 0$$

Nebenrechnung: λ *n*-te Einheitswurzel:

$$\sum_{a=0}^{n-1} \lambda^a = \begin{cases} 0 & \lambda \neq 1 \\ n & \lambda = 1 \end{cases}$$

Es gilt: $(\chi_i, \chi_j) = \delta_{ij}$. Somit sind die ρ_i irreduzibel und ρ_i, ρ_j sind äquivalent für $i \neq j$ $(i, j \in \{1, \dots, \lfloor \frac{n-1}{2} \rfloor\})$. Die gefundene Liste von irreduziblen Darstellungen ist vollständig.

Kompakte Gruppen

Die "Mittelung" für die Darstellungstheorie endlicher Gruppen $\frac{1}{|G|}\sum_{g\in G} f(g)$ lässt sich für kompakte Gruppen verallgemeinern zu:

$$\int_G f(g) dg$$
 und wird Haar Mass genannt. Es hat folgende Eigenschaften:

 $\int_C 1 \ dg = 1 \quad , \quad \int_C f(gh) \ dg = \int_C f(g) \ dg \ \forall h \in G$

$$\int_G 1 \ dg = 1 \quad , \quad \int_G f(gh) \ dg = \int_G f(g) \ dg \ \forall h \in C$$

Es gilt Orthogonalität für Matrixelemente und Charaktere bzgl.

$$(f_1, f_2) = \int_G \overline{f_1(g)} f_2(g) \ dg$$

Darstellungstheorie 4 der symmetrischen Gruppe

Partitionen

Definition (Partition). Sei $n \ge 1$ eine natürliche Zahl. Eine Partition von n ist eine Zerlegung von n in eine Summe positiver ganzer Zahlen $n = \lambda_1 + \lambda_2 + \cdots + \lambda_k$. Reihenfolge der Summanden ist nicht wichtig. Jede Partition ist eindeutig bestimmt durch die Anzahlen i_1, i_2, \ldots der Zahlen $1, 2, \ldots$ in der Zerlegung, wobei

$$n = \sum_{j \ge 1} j i_j$$

Wir schreiben i für (i_1, i_2, \dots) Definition (Young-Diagramm). Ein graphischer Weg eine Parti-

tion $n = \lambda_1 + \cdots + \lambda_k$ darzustellen ist durch ein Young-Diagramm. Zuerst muss man die λ_i so sortieren, dass $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$. Dann ist das zugehörige Young-Diagramm eine Anordnung von n Kästli, mit λ_i Kästli in der *i*-ten Zeile.

Definition. Seien λ, λ' Young-Diagramme mit jeweils n Kästli, dann sagen wir $\lambda \geq \lambda'$ genau dann wenn $\lambda = \lambda'$, oder falls die erste nicht verschwindende Zahl $\lambda_i - \lambda_i'$ positiv ist. Entsprechend sagen wir $\lambda > \lambda'$, falls $\lambda \geq \lambda'$ und $\lambda \neq \lambda'$. Hierbei ist λ_i die Anzahl der Kästli in der i-ten Zeile.

Permutationen der Konjugationsklassen 4.2

Wir können ein Element $\sigma \in S_n = \text{Bij}(\{1,\ldots,n\})$ auf verschiedene Arten aufschreiben. Als Wertetabelle oder Zyklenschreibweise:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 5 & 2 & 3 \end{pmatrix} = (142)(35) = (53)(421)$$

Die Längen der Zyklen bestimmen eine Partition von n. Die einzelnen Zyklen kann man auch verstehen als die Bahn in $\{1, \ldots, n\}$ unter der Wirkung der von σ erzeugten Untergruppe von S_n , wobei die zyklische Ordnung auf den Zyklen unberücksichtigt bleibt. Wir schreiben $i_k(\sigma)$ für die Anzahl der Zyklen der Länge k in der Zyklenschreibweise von σ , und $\underline{i}(\sigma) = (i_1(\sigma), i_2(\sigma), \ldots)$. Offensichtlich gilt $\sum_{k\geq 1} k i_k(\sigma) = n$ und damit bestimmt $\underline{i}(\sigma)$ eine Partition von

Lemma. Sei $\tau \in S_n$ eine Permutation. In Zyklenschreibweise: $\tau = (i_{1,1} \cdots i_{1,\lambda_1})(i_{2,1} \cdots i_{2,\lambda_2}) \cdots (i_{k,1} \dots i_{k,\lambda_k}).$ S_n beliebig. Dann gilt in Zyklenschreibweise: $\sigma \tau \sigma^{-1}$ = $(\sigma(i_{1,1})\cdots\sigma(i_{1,\lambda_1}))(\sigma(i_{2,1})\cdots\sigma(i_{2,\lambda_2}))\cdots(\sigma(i_{k,1})\cdots\sigma(i_{k,\lambda_k})) =: \tau'$

Korollar. (1) $\forall k = 1, 2, ...$ ist die Anzahl $i_k(\tau)$ der Zyklen der Länge k in der Zyklendartellung von $\tau \in S_n$ eine Klassenfunktion, d.h. $i_k(\sigma \tau \sigma^{-1}) = i_k(\tau) \ \forall \sigma, \tau \in S_n$.

- (2) Zwei Permutationen $\tau, \tau' \in S_n$ sind genau dann in der gleichen Konjugationsklasse, wenn $\underline{i}(\tau) = \underline{i}(\tau')$.
- (3) Die Konjugationsklassen von S_n sind also in 1 1-Korrespondenz zu den Partitionen von n.

szekerb@student.ethz.ch

Basis gilt dann:

Balázs Szekér, 28. September 2021

4.3 Die Gruppenalgebra einer endlichen Gruppe

Definition (Gruppenalgebra). Sei G eine endliche Gruppe. Dann ist die Gruppenalgebra $\mathbb{C}[G]$ der VR der formalen Linearkombinationen $\sum_{g \in G} a_g g$ mit $a_g \in \mathbb{C}$. Insbesondere ist $G \subset \mathbb{C}[G]$ eine Basis von $\mathbb{C}[G]$. Die Gruppenalgebra ist ein Ring mit dem biliniaren, assoziativen Produkt $\mathbb{C}[G] \otimes \mathbb{C}[G] \to \mathbb{C}[G]$:

$$\left(\sum_{g \in G} a_g g\right) \left(\sum_{g' \in G} a'_{g'} g'\right) = \sum_{g \in G} \left(\sum_{\substack{h, h' \in G \\ hh' = g}} a_h a'_{h'}\right) g = \sum_{g \in G} \sum_{g' \in G} a_g a'_{g'} (g \cdot g')$$

und dem Einselement dem neutralen Element der Gruppe 1 $\in G \subset \mathbb{C}[G]$. Der VR $\mathbb{C}[G]$ der komplexwertigen Funktionen auf der Gruppe G ist der Dualraum von $\mathbb{C}[G]$, also $\mathbb{C}(G) = \mathbb{C}[G]^*$. Die Gruppenalgebra trägt eine Darstellung der Gruppe G durch Linksmultiplikation, $\rho_{GA}(g)p = gp$, wobei $G \subset \mathbb{C}[G]$ verstenden ist. Diese Darstellung ist äquivalent zur regulären Darstellung auf $\mathbb{C}(G)$, wobei der Isomorphismus $\mathbb{C}[G] \to \mathbb{C}(G)$ das Basiselement $g \in G$ abbildet auf δ_g .

Theorem. Sei $\rho:G\to \mathrm{GL}(V)\subset\mathrm{End}(V)$ eine Darstellung. Dann können wir diese linear fortsetzen zu einer linearen Abbildung

$$\rho: \mathbb{C}[G] \to \text{End}(V) \quad , \quad \rho\left(\sum_{g \in G} a_g g\right) = \sum_{g \in G} a_g \rho(g)$$

Diese Abbildung erfüllt $\rho(xy) = \rho(x)\rho(y) \ \forall x,y \in \mathbb{C}[G]$, ist also auch ein Ringhomomorphismus.

Satz. Sei ρ_1, \ldots, ρ_k eine Liste der inäquivalenten irreduziblen komplexen Darstellungen von G mit Darstellungsräumen V_1, \ldots, V_k . Dann ist die direkte Summe $\bigoplus_{j=1}^k \operatorname{End}(V_j)$ wieder ein Ring. Wählen wir Basen auf den V_j , so können wir $\bigoplus_{j=1}^k \operatorname{End}(V_j)$ identifizieren mit dem Ring der Blockdiagonalmatrizen

$$\begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_k \end{pmatrix}$$

mit Diagonalblöcken A_j der Grösse $\dim(V_j) \times \dim(V_j)$

 ${\bf Satz.}$ Die folgende Abbildung von VR ist ein Isomorphismus von Ringen.

$$\phi: \mathbb{C}[G] \to \bigoplus_{j=1}^k \operatorname{End}(V_j)$$
$$x \mapsto (\rho_1(x), \rho_2(x), \dots, \rho_k(x))$$

4.4 Irreduzible Darstellungen

Definition (Young-Schema). Ein Young-Schema ist ein Young-Diagramm, dessen n Kästli mit den Zahlen $1, \ldots, n$ gefüllt sind, wobei jede Zahl genau einmal vorkommt. Zu jedem Young-Diagramm λ definieren wir das Young-Schema $\hat{\lambda}_{norm}$, das aus λ gewonnen wird durch füllen der Kästli mit den Zahlen $1, 2, \ldots, n$ aufsteigend von links nach rechts und dann von oben nach unten.

Definition. Für λ (bzw. $\hat{\lambda}$) ein Young-Diagramm (bzw. Young-Schema) sei λ^T (bzw. $\hat{\lambda}^T$) das Young-Diagramm (bzw. Young-Schema), dass durch Spiegelung von λ (bzw. $\hat{\lambda}$) an der zweiten Diagonale gewonnnen wird.

Definition. Zu jedem Young-Schema $\hat{\lambda}$ definieren wir nun eine Untergruppe $G_{\hat{\lambda}} \subset S_n$, wobei $\sigma \in G_{\hat{\lambda}}$ genau dann wenn $\forall j \in \{1, \ldots, n\}$ die Zahl $\sigma(j)$ in der gleichen Zeile in $\hat{\lambda}$ steht wie j.

Definition. Zu jedem Young-Schema $\hat{\lambda}$ ordnen wir nun die folgenden beiden Elemente der Gruppenalgebra $\mathbb{C}[S_n]$ zu:

$$s_{\hat{\lambda}} \coloneqq \sum_{\sigma \in G_{\hat{\lambda}}} \sigma$$
 , $a_{\hat{\lambda}} \coloneqq \sum_{\sigma \in G_{\hat{\lambda}^T}} \operatorname{sgn}(\sigma) \sigma$

Wir erweitern die Definitionen von $G_{\hat{\lambda}}, s_{\hat{\lambda}}, a_{\hat{\lambda}}$ von Young-Schemata auf Young-Diagramme, indem wir definieren:

$$G_{\lambda} \coloneqq G_{\hat{\lambda}_{norm}} \quad , \quad s_{\lambda} \coloneqq s_{\hat{\lambda}_{norm}} \quad , \quad a_{\lambda} \coloneqq a_{\hat{\lambda}_{norm}}$$

Definition. Zu einem Young-Diagramm λ mit n Kästli definieren wir den invarianten Unterraum

$$V_{\lambda} = \mathbb{C}[S_n] s_{\lambda} a_{\lambda} = \{x s_{\lambda} a_{\lambda} \mid x \in \mathbb{C}[S_n]\} \subset \mathbb{C}[S_n]$$
 Ferner definieren wir die Darstellung ρ_{λ} von S_n auf V_{λ} durch Ein-

schränkung der Darstellung auf $\mathbb{C}[S_n]$ durch Linksmultiplikation.

Satz. Die Darstellungen ρ_{λ} der vorherigen Definition sind irreduzibel, und für $\lambda \neq \lambda'$ sind ρ_{λ} und $\rho_{\lambda'}$ inäquivalent.

Definition. $c_{\hat{\lambda}} = s_{\hat{\lambda}} a_{\hat{\lambda}}$, $c_{\lambda} = s_{\lambda} a_{\lambda}$

Lemma. Sei $\hat{\lambda}$ ein Young-Schema mit n Kästli, mit unterliegendem Young-Diagramm λ . Dann gilt: (1) Das neutrale Element von G hat Koeffizient 1 in $c_{\hat{\lambda}}$. Insbeson-

- dere gilt $c_{\hat{\lambda}} \neq 0$.
- (2) $\forall g \in G_{\hat{\lambda}} \text{ ist } gs_{\hat{\lambda}} = s_{\hat{\lambda}} = s_{\hat{\lambda}}$
- (3) $\forall h \in G_{\hat{\lambda}^T}$ ist $ha_{\hat{\lambda}} = a_{\hat{\lambda}} = \operatorname{sgn}(h)a_{\hat{\lambda}}$
- (4) Für $\sigma \in S_n$ beliebig gilt

$$G_{\sigma\hat{\lambda}}=\left\{\sigma g\sigma^{-1}\ \big|\ g\in G_{\hat{\lambda}}\right\}$$
wobei das Young-Schema $\sigma\hat{\lambda}$ aus $\hat{\lambda}$ durch Anwendungen von σ

auf die Einträge gewonnen ist. Insbesondere gilt damit auch $\sigma s_{\hat{\lambda}} \sigma^{-1} = s_{\sigma \hat{\lambda}}$ und $\sigma a_{\hat{\lambda}} \sigma^{-1} = a_{\sigma \hat{\lambda}}$. **Lemma.** Seien $\hat{\lambda}, \hat{\mu}$ Young-Schemata mit n Kästli, mit unterliegen-

Lemma. Seien λ, μ Young-Schemata mit n Kastli, mit unterliegenden Young-Diagrammen λ, μ .

- (1) Sei $\lambda > \mu$ und $x \in \mathbb{C}[G]$ beliebig. Dann gilt $s_{\hat{\lambda}}xa_{\hat{\mu}}=0$, und damit insbesondere $c_{\hat{\lambda}}c_{\hat{\mu}}=0=c_{\hat{\lambda}}xc_{\hat{\mu}}$
- (2) Sei $\lambda=\mu.$ Dann gilt genau eine der beiden Aussagen:
 - (a) $\exists i \neq j$ Zahlen, die in $\hat{\lambda}$ in einer Zeile, und in $\hat{\mu}$ in einer Spalte vorkommen.
 - (b) $\exists h_1 \in G_{\hat{\lambda}} \text{ und } h_2 \in G_{\hat{\mu}^T}, \text{ so dass } h_1 \hat{\lambda} = h_2 \hat{\mu}$
- (3) $\forall x \in \mathbb{C}[G]$ ist $s_{\hat{\lambda}} x a_{\hat{\lambda}}$ ein Vielfaches von $s_{\hat{\lambda}} a_{\hat{\lambda}} = c_{\hat{\lambda}}$. Insbesondere ist $c_{\hat{\lambda}} x c_{\hat{\lambda}}$ ein Vielfaches von $c_{\hat{\lambda}}$

Lemma. (1) Sei A eine komplexe $n \times n$ -Matrix so dass für alle $n \times n$ Matrizen X gilt, dass AXA ein Vielfaches von A ist. Dann gibt es Vektoren $u, v \in \mathbb{C}^n$, so dass $A = uv^{\dagger}$.

(2) Sei $A = \begin{pmatrix} A_1 & & \\ & \ddots & \\ & A_k \end{pmatrix}$ eine Blockdiagonalmatrix mit Diagonalblöcken der Grösse $d_j \times d_j$ mit $j = 1, \dots, k$. Es gelte für jede Blockdiagonalmatrix $X = \begin{pmatrix} X_1 & & \\ & \ddots & \\ & & X_k \end{pmatrix}$ gleicher Form, dass AXA ein Vielfaches von A ist. Dann existiert ein $j \in \{1, \dots, k\}$

4.5 Die Charakterformel von Frobenius

und $u, v \in \mathbb{C}^{d_j}$, so dass $A_i = 0$ für $i \neq j$ und $A_j = uv^{\dagger}$.

Satz (Frobenius formel). Sei λ ein Young-Diagramm mit n Kästli. Sei $\underline{i} = (i_1, i_2, \dots)$ eine Partition von n, und $C_{\underline{i}}$ die zugehörige Konjugationsklasse von S_n . Dann gilt

$$\chi_{\rho_{\lambda}}\left(C_{\underline{i}}\right) = \left(\Delta(x) \prod_{k} P_{k}^{i_{k}}(x)\right)_{x^{\lambda+\rho}}$$

mit der Folgenden Notation:

szekerb@student.ethz.ch 5 Balázs Szekér, 28. September 2021

- Methoden der mathematischen Physik II Zusammenfassung
 - $x = (x_1, ..., x_n)$, und für einen Multiindex $\lambda = (\lambda_1, ..., \lambda_n)$, $x^{\lambda} = x_1^{\lambda_1} ... x_n^{\lambda_n}$.
 - $\Delta(x) = \prod_{1 \le i \le j \le n} (x_i x_j)$ ist die Vandermonde-Determinante.
 - $P_k(x) = x_1^k + x_2^k + \dots + x_n^k$
 - Die Notation $(Q)_{x^a}$ bezeichnet den Koeffizienten von x^a im Polynom Q(x).
 - $\rho = (n-1, n-2, \dots, 1, 0)$

Definition (Haken). Der i,j-Haken des Young-Diagrammes λ als die Menge der Kästli die rechts neben, oder unter dem Kästli an der Stelle i,j stehen, inklusive des Kästli i,j selbts.

Definition (Hakenlänge). Die Hakenlänge h(i, j) ist die Anzahl Kästli im i, j-Haken.

Korollar (Hakenlängenformel). Die Dimension der irreduziblen Darstellung ρ_{λ} von S_n ist

$$\dim(\rho_{\lambda}) = \frac{n!}{\prod_{i,j} h(i,j)}$$

wobei h(i,j) die Länge des i,j-Hakens im Young-Diagramm λ ist. Das Produkt läuft über die Koordinaten i,j von allen Kästli in λ .

5 Eigenwertprobleme mit Symmetrie

5.1 Eigenwerte und Eigenvektoren

einer passenden Basis die Diagonalform

Darstellung einer komplexen endlichen Gruppe G, und $A: V \to V$ eine diagonalisierbare lineare Selbstabbildung, so dass $\rho(g)A = A\rho(g) \ \forall g \in G$. Sei $V = V_1 \oplus \cdots \oplus V_n$ eine Zerlegung von V in irreduzible Darstellungen. Dann hat A höchstens n verschiedene Eigenwerte. Bezeichnet d_i die Dimension von V_i , so hat A bezüglich

Satz. Sei $\rho: G \to GL(V)$ eine endlichdimensionale komplexe

$$\operatorname{diag}(\underbrace{\lambda_1, \dots, \lambda_1}_{d_1 \text{ mal}}, \dots, \underbrace{\lambda_n, \dots, \lambda_n}_{d_n \text{ mal}})$$

für gewisse (nicht notwendigerweise verschiedene) komplexe Zahlen $\lambda_1, \ldots, \lambda_n$.

Satz. Seien G, V, A wie im vorherigen Satz. Seien $\forall i \neq j$ die Darstellungen V_i, V_j nicht äquivalent. Dann ist, $\forall i, AV_i \subset V_i$ und die Einschränkung von A auf V_i ist $A_{|V_i} = \lambda_i 1_{V_i}$ für ein $\lambda_i \in \mathbb{C}$. Also ist A bezüglich einer Basis V mti Basisvektoren in $\bigcup_i V_i$ bereits diagonal.

Bemerkung. Im allgemeinen Fall können die Eigenvektoren wie folgt bestimmt werden. Sei $V=W_1\oplus\cdots\oplus W_k$ die kanonische Zerlegung der Darstellung ρ . Nach dem Lemma von Schur ist $AW_i\subset W_i$. Also können wir A separat in jedem W_i diagonalisieren, und wir haben das Problem auf den Fall reduziert, wo V eine direkte Summe von zueinander äquivalenten irreduziblen Darstellungen ist. Der allgemeine Fall, wo V eine direkte Summe von n zueinander äquivalenten Derstellungen V_α wird wie folgt behandelt. Die Isomorphismen zwischen den Darstellungen erlauben und für jedes $\alpha=1,\ldots,n$ eine Basis $(e_i^\alpha)_{i=1,\ldots,d}$ von V_α zu wählen, so dass die Matrix von $\rho(g)$ bezüglich der Basis $e_1^1,\ldots,e_d^1,\ldots,e_1^n,\ldots,e_d^n$ kästchendiagonalform mit gleichen diagonalen $d\times d$ Kästchen hat. Nach Schur hat dann die Matrix von A bezüglich der umnummerierten Basis $e_1^1,\ldots,e_1^n,\ldots,e_d^n$, die folgende Form

$$\begin{pmatrix} a & & \\ & \ddots & \\ & & a \end{pmatrix} \quad , \text{ mit } a = (a_{ij})_{\substack{i=1,\dots,n\\j=1,\dots,n}} \in \operatorname{Mat}(n \times n)$$

mit $n \times n$ Kästchen $a = (a_{\alpha\beta})$ gegeben durch

$$Ae_i^{\alpha} = \sum_{\beta} a_{\beta\alpha} e_i^{\beta}$$

5.2 Kleine Schwingungen von Molekülen

Wir betrachten kleine Schwingungen eines Moleküls (bzw eines Systems von N Teilchen) aus einer Ruhelage. Die N Teilchen haben Massen m_i $(i=1,\ldots,N)$ und Koordinaten $y=(\vec{y}_1,\ldots,\vec{y}_N)\in\mathbb{R}^{3N}$, mit $\vec{y}_i\in\mathbb{R}^3$ der Position der i-ten Teilchens. Die potentielle Energie sei $V(y)=(\vec{y}_1,\ldots,\vec{y}_N)$. Die Bewegungsgleichung ist

$$m_i \ddot{\vec{y}}_i \stackrel{(*)}{=} -\frac{\partial V}{\partial \vec{y}_i}(y(t)) \ \forall i = 1, \dots, N$$

Sei $y^* \in \mathbb{R}^{3N}$, $y^* = (\vec{y}_1^*, \dots, \vec{y}_N^*)$ ein Gleichgewichtspunkt, d.h. $\nabla V(y^*) = 0$ und betrachte kleine Auslenkungen $y(t) = y^* + x(t)$. Entwickeln in eine Taylorreihe um y^* ergibt aus (*):

$$m_i \ddot{\vec{x}}_i^{\alpha} = \sum_{j,\beta} \frac{\partial^2 V}{\partial y_i^{\alpha} \partial y_j^{\beta}} (y^*) x_j^{\beta} + \underbrace{\mathcal{O}(|x|^2)}_{\text{Vernachlässigen für kleine } x}$$

$$\Leftrightarrow \ddot{\vec{x}}(t) = -Ax(t)$$

 $\operatorname{mit} A$ der Matrix mit Matrixelementen

$$\frac{1}{m_i} \frac{\partial^2 V}{\partial y_i^{\alpha} \partial y_j^{\beta}} (y^*)$$

A ist diagonalisierbar. Zur Lösung der DGL verwenden wir den Ansatz $x(t) = e^{i\omega t}x_0$ mit $x_0 \in \mathbb{R}^{3N}$. Dann folgt: $\omega^2 x_0 = Ax_0$. Die positiven Wurzeln der Eigenwerte von A heissen Eigenfrequenzen des Systems. Nun zu den Symmetrien:

- Zunächst soll V invariant sein unter orthogonaler Transformaion, d.h. $\forall R \in O(3): V(R\vec{y}_1, \ldots, R\vec{y}_N) = V(\vec{y}_1, \ldots, \vec{y}_N)$ (und Invarianz unter Translation).
- Ausserdem soll V invariant sein unter Vertauschung gleichartiger Teilchen, d.h. V(\$\vec{y}_{\sigma(1)}, \ldots, \vec{y}_{\sigma(N)}\$) = V(\$\vec{y}_1, \ldots, \vec{y}_N\$) ∀σ ∈ S ⊂ S_N mit S einer geeigneten Untergruppe von S_N. Ausserdem m_{\sigma(i)} = m_i ∀σ ∈ S.
- Vor der Wahl von y^* ist die Symmetriegruppe des Systems $O(3) \times S$ mit der Darstellung $\rho : O(3) \times S \to \operatorname{GL}(\mathbb{R}^{3N})$ gegeben durch $\rho(R, \sigma)(\vec{y}_1, \dots, \vec{y}_N) = (Ry_{\sigma^{-1}(1)}, \dots, R\vec{y}_{\sigma^{-1}(N)})$
- Wir betrachten den Unterraum $G = \{g \in O(3) \times S \mid \rho(g)(y^*) = y^*\} \subset O(3) \times S$, die wieder durch Einschränkung von ρ auf \mathbb{R}^{3N} wirkt. Es folgt, dass $\forall g \in G : \rho(g)A = A\rho(g)$, also $A \in \operatorname{Hom}_G(\mathbb{R}^{3N}, \mathbb{R}^{3N})$.

5.3 Beispiel: Eigenfrequenzen von CH_4

Seien $\vec{y}_1, \ldots, \vec{y}_4$ die Koordinaten der H-Atome und \vec{y}_C die des C-Atoms. Sei die Gleichgewichtlage $\vec{y}^* = (\vec{y}_1^*, \ldots, \vec{y}_4^*, \vec{y}_C^*)$ so, dass $\vec{y}_C^* = 0$ und die \vec{y}_j^* die Eckpunkte eines regulären Tetraeders bilden mit Zentrum \vec{y}_C^* . In diesem Fall ist $G \cong T \cong S_4$ die Tetraedergruppe. Wir betrachten die Charaktertafel

24T	[1]	$8[r_{3}]$	$3[r_2]$	$6[s_4]$	$6[\tau]$
χ_1	1	1	1	1	1
χ_2	2	-1	2	0	0
χ_3	1	1	1	-1	-1
χ_4	3	1 -1 1 0	-1	1	-1
χ_5	3	0	-1	-1	1

1 ist die Identität; r_3 ist die Drehung um eine Achse durch eine Ecke mit Winkel $2\pi/3=120^\circ$; r_2 ist eine Drehung um eine Achse, die senkrecht durch eine Kante geht, mit winkel $2\pi/2=\pi=180^\circ$; s_4 ist die Zusammensetzung einer 120° Drehung r_3 um eine Achse durch eine Ecke, sagen wir \vec{v}_4 , und den Mittelpunkt mit einer Spiegelung um eine Ebene die durch zwei andere Ecken \vec{v}_1, \vec{v}_2 und den Mittelpunkt geht; schliesslich ist τ die Spiegelung bezüglich

6 DIE DREHGRUPPE UND DIE LORENTZGRUPPE

einer durch eine Kante und den Mittelpunkt gehenden Ebene. Die entsprechende Permutation der Ecken 1,2,3,4 und des Mittelpunktes C sind

Methoden der mathematischen Physik II Zusammenfassung

$$r_3:\begin{pmatrix} 1 & 2 & 3 & 4 & C \\ 1 & 3 & 4 & 2 & C \end{pmatrix} , \quad r_2:\begin{pmatrix} 1 & 2 & 3 & 4 & C \\ 2 & 1 & 4 & 3 & C \end{pmatrix}$$
$$s_4:\begin{pmatrix} 1 & 2 & 3 & 4 & C \\ 4 & 1 & 2 & 3 & C \end{pmatrix} , \quad \tau:\begin{pmatrix} 1 & 2 & 3 & 4 & C \\ 1 & 2 & 4 & 3 & C \end{pmatrix}$$

Weiter gilt:

Für $\rho(\tau)$ gilt:

$$\rho(\tau) = \begin{pmatrix} \tau & 0 & 0 & 0 & 0 \\ 0 & \tau & 0 & 0 & 0 \\ 0 & 0 & 0 & \tau & 0 \\ 0 & 0 & \tau & 0 & 0 \\ 0 & 0 & 0 & 0 & \tau \end{pmatrix} \in \operatorname{Mat}(15 \times 15) \quad \operatorname{mit} \ \tau \in \operatorname{Mat}(3 \times 3)$$
Es gilt $\operatorname{tr}(\rho(g)) = \operatorname{tr}(R) \cdot N_R \ \operatorname{mit} \ g = (R, \sigma_R) \in G \ \operatorname{und} \ N_R \ \operatorname{der} \ \operatorname{Anzahl}$

Diagonalblöcke $\neq 0$, d.h. $\{i \mid \sigma_R(i) = i\}$. Für τ : $\operatorname{tr}(\rho(\tau, \sigma_\tau)) = 3 \cdot \operatorname{tr}(\tau)$. Rechnungen:

Eine Drehung R um θ hat bzgl einer Basis die Form

$$R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix} \rightarrow \operatorname{tr}(R) = 2\cos(\theta) + 1$$

$$\Rightarrow \operatorname{tr}(r_3) = 2\cos\left(\frac{2\pi}{3}\right) + 1 = 0$$
 , $\operatorname{tr}(r_2) = 2\cos(\pi) + 1 = -1$

Eine Drehspiegelung um θ :

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & -1 \end{pmatrix} \rightarrow \operatorname{tr}(R) = 2\cos(\theta) - 1$$

$$\operatorname{tr}(s_4) = 2\cos\left(\frac{\pi}{2}\right) - 1 = -1$$
 , $\operatorname{tr}(\tau) = 2 \cdot 1 - 1 = 1$

$$N_1 = 5 \; , \; N_{r_3} = 2 \; , \; N_{r_2} = 1 \; , \; N_{s_4} = 1 \; , \; N_{\tau} = 3$$

Es folgt:

Berechne Vielfachheiten: $n_j=\langle\chi_\rho,\chi_j\rangle \implies n_1=1$, $n_2=1$, $n_3=0$, $n_4=1$, $n_5=3$

Somit: $\rho \cong \rho_1 \oplus \rho_2 \oplus \rho_4 \oplus \rho_5 \oplus \rho_5 \oplus \rho_5$. D.h. es gibt höchstens 6 Eigenfrequenzen (d.h. EW von A).

Nicht alle EW von A entsprechen Schwingungen. Manche sind = 0 wegen der Translationsinvarianz (T) und Drehinvarianz (D).

<u>(T)</u>: Entspricht $x = (\vec{a}, ..., \vec{a})$. Dies wird durch $\rho(R)$ abgebildet auf $(R\vec{a}, ..., R\vec{a})$. Entspricht Darstellung $R \mapsto R$ von (T) mit Charakter χ_5 .

(D): Entspricht $x = (\vec{b} \wedge \vec{y}_1^*, \dots, \vec{b} \wedge \vec{y}_c^*)$ mit $b \in \mathbb{R}^3$. Es gilt: $\rho(R)x = \left(R(\vec{b} \wedge y_{\sigma_R^{-1}(1)}), \dots, R(\vec{b} \wedge y_{\sigma_R^{-1}(c)})\right)$ mit \wedge dem Kreuzprodukt. $R(x \wedge y) = \det(R)(Rx \wedge Ry) \quad \forall R \in O(3)$. Somit: $\rho(R)x = \det(R)(Rb \wedge \vec{y}_1^*, \dots, Rb \wedge \vec{y}_c^*)$ entspricht der Darstellung $R \mapsto \det(R) \cdot R$ auf \mathbb{R}^3 entspricht χ_4 .

Auf dem orthogonalen Komplement von ρ_4 und ρ_5 zerlegt sich unsere Darstellung als $\rho \cong \rho_1 \oplus \rho_2 \oplus \rho_5 \oplus \rho_5$. Somit erhält man höchstens 4 verschiedene Eigenfrequenzen.

6 Die Drehgruppe und die Lorentzgruppe

6.1 Isometrien des Euklidischen Raums

Definition (Euklidischer Raum). Der Euklidische Raum ist der VR \mathbb{R}^3 versehen mit dem Skalarprodukt $x \cdot y = x_1y_1 + x_2y_2 + x_3y_3$. **Definition** (Euklidischer Abstand). Der Euklidische Abstand

zwischen zwei Punkten x und y ist d(x,y) = |x-y| wobei $|x| = \sqrt{x \cdot x}$. **Definition** (Isometrie). Eine Isometrie des Euklidischen Raums ist eine bijektive Abbildung $f : \mathbb{R}^3 \to \mathbb{R}^3$, die Abstände erhält:

 $d(f(x), f(y)) = d(x, y) \ \forall x, y$. Insbesondere sind Isometrien stetige Abbildungen. **Satz.** Sei f eine Isometrie des Euklidischen Raums. Dann ist f von der Form f(x) = Rx + a wobei $R \in O(3)$ und $a \in \mathbb{R}^3$. Dies gilt

6.2 Die Drehgruppe SO(3)

in beliebigen Dimensionen.

Die Spiegelung $P: x \mapsto -x$ (P = -1) hat Determinante -1 und jede Matrix in O(3) ist von der Form R oder PR = -R für $R \in SO(3)$. Da P mit allen $O \in O(3)$ kommutiert, können wir identifizieren: $O(3) \cong SO(3) \times \mathbb{Z}_2$. Jede Matrix in SO(3) ist von der Form:

$$OR_3(\vartheta)O^{-1}$$
 , $R_3(\vartheta) = \begin{pmatrix} \cos(\vartheta) & -\sin(\vartheta) & 0\\ \sin(\vartheta) & \cos(\vartheta) & 0\\ 0 & 0 & 1 \end{pmatrix}$, $O \in SO(3)$

Die Matrix $R_3(\vartheta)$ entspricht einer Drehung um die Achse $e_3' = n = Oe_3$ mit Winkel ϑ . Der Drehwinkel ϑ wird im Gegenuhrzeigersinn gemessen. Die Matrix $R(n,\vartheta) = OR_3(\vartheta)O^{-1}$ wird Drehung um n mit Winkel ϑ genannt. Es gilt $R(-n,\vartheta) = R(n,2\pi - \vartheta)$.

Lemma. Sei $O \in SO(3)$ und $n = Oe_3$. Dann ist

$$R(n,\vartheta)x = OR_3(\vartheta)O^{-1}x$$

= $(x \cdot n)n + [x - (x \cdot n)n]\cos(\vartheta) + n \wedge x \sin(\vartheta)$

Lemma. (i) $R(n, \vartheta) = R(-n, -\vartheta) = R(n, -\vartheta)^{-1}$

(ii)
$$R(n_1, \vartheta_1)R(n_2, \vartheta_2) = R(n'_2, \vartheta_2)R(n_1, \vartheta_1)$$
, wobei $n'_2 = R(n_1, \vartheta_1)n_2$.

6.3 Die Eulerwinkel

Definition. $R_j(\alpha) = R(e_j, \alpha)$

Satz. $R_1(\vartheta)$ und $R_3(\vartheta)$ erzeugen die Gruppe SO(3).

Satz. Jedes $A \in SO(3)$ lässt sich schreiben als

$$A = R_3(\varphi)R_1(\vartheta)R_3(\psi)$$

mit $\varphi \in [0, 2\pi[$, $\varphi \in [0, \pi]$, $\psi \in [0, 2\pi[$. Die Winkel φ, ϑ, ψ heissen Eulerwinkel. Es gilt: $\vartheta = \angle (e_3, e_3')$, $\varphi = \angle (e_1, e)$, $\psi = \angle (e, e_1')$. Hierbei ist e ein Einheitsvektor längs der Geraden, welche durch Schneiden der durch e_1, e_2 aufgespannte Ebene und der durch e_1', e_2' aufgespannten Ebene entsteht. Mit $e_i' = Ae_i$.

6.4 Der Homomorphismus $SU(2) \rightarrow SO(3)$

Die Gruppe SU(2) kann geometrisch als dreidimensionale Sphäre S^3 aufgefasst werden.

Lemma. Jede Matrix $A \in SU(2)$ ist von der Form

$$A = \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$$
 , $\alpha, \beta \in \mathbb{C}$, $|\alpha|^2 + |\beta|^2 = 1$

Definition (H_0) . H_0 ist der reelle Vektorraum aller hermitischen spurfreien 2×2 Matrizen. Also:

$$H_0 = \left\{ \begin{pmatrix} z & x - iy \\ x + iy & -z \end{pmatrix} \mid x, y, z \in \mathbb{R} \right\}$$

Es ist dim (H_0) = 3. Für $X, Y \in H_0$ definieren wir das Skalarprodukt $(X, Y) = \frac{1}{2} \text{tr}(XY)$. Für $A \in SU(2)$ definiere die lineare Abbildung $\phi(A) : H_0 \to H_0$ durch

$$\phi(A)X = AXA^* = AXA^{-1}$$

 $\phi(A)X$ ist hermitesch und spurfrei.

Satz. (i)
$$\phi(AB) = \phi(A)\phi(B)$$
, $A, B \in SU(2)$
(ii) $(\phi(A)X, \phi(A)Y) = (X, Y)$, $A \in SU(2)$, $X, Y \in H_0$

Wir betrachten die ONB von
$$H_0$$
 gegeben durch die Pauli-Matrizen.

Mittels dieser Basis identifizieren wir $(\mathbb{R}^3, (\cdot, \cdot)_{std}) \stackrel{\cong}{\longrightarrow} (H_0, (\cdot, \cdot))$

$$x = (x_1, x_2, x_3)^T \mapsto \hat{x} = \sum_{i=1}^{3} x_i \sigma_i$$

wobei σ_i die Pauli-Matrizen sind:

morphismus $\phi: SU(2) \to SO(3)$.

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 , $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Diese Matrizen sind eine ONB, denn $\operatorname{tr}(\sigma_i \sigma_j) = 2\delta_{ij}$.

Wir bezeichnen ebenfalls mit $\phi(A) \in O(3)$ die Matrix von $\phi(A)$ in der ONB $\sigma_1, \sigma_2, \sigma_3$. Da SU(2) zusammenhängend ist (Jede Matrix $A \in SU(2)$ ist von der Form A_1 mit $A_t = B \begin{pmatrix} e^{it\theta} & 0 \\ 0 & e^{-it\theta} \end{pmatrix} B^{-1}$, $B \in SU(2)$, und der Weg $t \mapsto A_t$ verbindet 1 mit A) und ϕ stetig ist, folgt $\det(\phi(A)) = 1 \ \forall A \in SU(2)$, also definiert ϕ eine Homo-

Satz. $\phi: SU(2) \to SO(3)$ ist surjektiv mit Kern $\{\pm 1\}$. Also ist

$$SU(2)/\{\pm \mathbb{1}\} \cong SO(3)$$

Bemerkung. Es gilt:

$$R(n,\theta) = \phi(\mathbb{1}\cos(\theta/2) - i\hat{n}\sin(\theta/2)) \quad , \quad n \in \mathbb{R}^3 \quad , \quad |n| = 1$$

5.5 Der Minkowski-Raum

Der Minkowski-Raum (auch Raumzeit) ist \mathbb{R}^4 versehen mit der symmetrischen nicht degenerierten Bilinearform

$$(x,y) = x^0 y^0 - x^1 y^1 - x^2 y^2 - x^3 y^3$$
, $x, y \in \mathbb{R}^4$

Ein Vektor $x \in \mathbb{R}^4$ heisst zeitartig falls (x,x) > 0, raumartig falls (x,x) < 0 und lichtartig falls (x,x) = 0. Die Menge der lichtartigen Vektoren heisst Lichtkegel K.

6.6 Die Lorentzgruppe

Die Lorentzgruppe O(1,3) ist die Gruppe aller linearen Transformationen von \mathbb{R}^4 die die Minkowskimetrik erhalten:

$$O(1,3) = \{ A \in GL(4,R) \mid (Ax,Ay) = (x,y) , \forall x,y \in \mathbb{R}^4 \}$$

Äquivalent ist

von O(1,3) auffassen.

$$O(1,3) = \left\{ A \in GL(4,\mathbb{R}) \mid A^T g A = g \right\} \text{ mit } g = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Also insbesondere $det(A) = \pm 1 \ \forall A \in O(1,3)$.

Definition. Eine Basis b_0, \ldots, b_3 von \mathbb{R}^4 heisst orthonormiert (bzgl der Minkowskimetrik) falls $(b_i, b_j) = g_{ij}$ für alle $i, j = 0, \ldots, 3$.

Satz. Sind $(b_i)_{i=0}^3$, $(b_i')_{i=0}^3$ zwei orthonormierte Basen vom Minkowskiraum \mathbb{R}^4 , so existiert genau eine Lorentztransformation A, so dass $b_j' = Ab_j$.

Korollar. Eine 4×4 Matrix ist genau dann in O(1,3) wenn ihre Spalten bzgl der Minkowskimetrik orthonormiert sind.

6.7 Beispiele von Lorentztransformationen

(a) Orthogonale Transformationen von \mathbb{R}^3 Ist $R \in O(3)$ eine orthogonale Transformation, so ist die 4×4 Matrix

$$R \coloneqq \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & & & \\ 0 & & R & \\ 0 & & & \end{pmatrix}$$

(b) Lorentzboost Der Lorentzboost in der 3-Richtung mit Ra-

eine Lorentztransformation. Wir können also O(3) als Untergruppe

pidität $\chi \in \mathbb{R}$ ist die Lorentztransformation

$$L(\chi) = \begin{pmatrix} \cosh(\chi) & 0 & 0 & \sinh(\chi) \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \\ \sinh(\chi) & 0 & 0 & \cosh(\chi) \end{pmatrix} \in O(1,3)$$

Da $\cosh(\chi)^2 - \sinh(\chi)^2 = 1$, sind die Spalten orthonormiert. Weiter gilt $L(\chi_1)L(\chi_2) = L(\chi_1 + \chi_2)$. Also bilden diese Matrizen eine zu \mathbb{R} isomorphe Untergruppe.

(c) Diskrete Lorentztransformationen Die Lorentztransformationen P ("Raumspiegelung") und T ("Zeitumkehr")

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = g \quad , \quad T = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = -g$$

bilden mit 1 und PT eine abelsche Untergruppe der Ordnung 4.

Lemma. Für alle Lorentztransformationen A gilt:

$$A^{T} = PA^{-1}P = TA^{-1}T = gA^{-1}g$$

Korollar. Eine 4×4 Matrix ist genau dann in O(1,3) wenn ihre Zeilen bezüglich der Minkowskimetrik orthonormiert sind.

6.8 Strukturen der Lorentzgruppe

Definition $(O_+(1,3))$. Sei $O_+(1,3) = \{A \in O(1,3) \mid A_{00} > 0\}$. Solche Transformationen heissten orthochron, d.h. zeitrichtungerhaltend.

Definition (Z_+) . Sei $Z_+ \subset \mathbb{R}^4$ die Menge der Zeitartigen Vektoren x mit $x^0 > 0$.

Satz. $O_+(1,3)$ ist eine Untergruppe von O(1,3). Sie besteht aus den Lorentztransformationen die Z_+ nach Z_+ abbilden.

Definition $(SO_+(1,3))$. Die orthochrone spezielle Lorentzgruppe $SO_+(1,3)$ ist die Gruppe der orthochronen Lorentztransformationen mit Determinante 1.

$$SO_{+}(1,3) := \{ A \in O_{+}(1,3) \mid \det(A) = 1 \}$$

Insbesondere ist $SO(3) \subset SO_{+}(1,3)$.

Satz. Jede Lorentztransformation liegt in genau einer der folgenden Klassen: $SO_{+}(1,3)$, $\{PX \mid X \in SO_{+}(1,3)\}$, $\{TX \mid X \in SO_{+}(1,3)\}$ oder $\{PTX \mid X \in SO_{+}(1,3)\}$.

Wenn $X \in SO_+(1,3)$, dann ist

$$\begin{array}{c|cccc} & \det = 1 & \det = -1 \\ \hline A_{00} > 0 & X & PX \\ A_{00} < 0 & PTX & TX \\ \end{array}$$

Lemma. Jede orthochrone spezielle Lorentztransformation ist von der Form $R_1L(\chi)R_2$, mit $\chi \in \mathbb{R}$ und $R_1, R_2 \in SO(3)$.

Bemerkung. Es folgt, dass $SO_+(1,3)$ zusammenhängend ist, da die stetige Abbildung

$$SO(3) \times \mathbb{R} \times SO(3) \to SO_{+}(3)$$

 $(R_1, \chi, R_2) \mapsto R_1 L(\chi) R_2$

surjektiv ist, und die linke Seite zusammenhängend. Das heisst O(1,3) hat also die 4 Zusammenhangskomponenten $SO_+(1,3)$, $PSO_+(1,3)$, $TSO_+(1,3)$, $PTSO_+(1,3)$.

6.9 Intertiale Bezugssysteme

In der speziellen Relativitätstheorie heisst eine orthonormierte Basis (b_i) ein (inertiales) Bezugssystem. Ein Punkt x im Minkowskiraum heisst Ereignis. Die Koordinaten von x im Bezugssystem (b_i) sind $x = \sum x^i b_i$ gegeben. Ein Punktteilchen wird in einem Bezugssystem durch eine Bahn (auch Weltlinie genannt) $\vec{x}(t)$

beschrieben, die die Raumkoordinaten als Funktion der Zeit angibt.
$$x^0=ct \quad , \quad \vec x=\vec x(t) \quad , \quad t\in \mathbb{R}$$

Für Teilchen mit v < c ist die Weltlinie eine Kurve im Minkowskiraum, deren Tangentialvektor dx/dt stets zeitartig ist. Ist (b_i') ein zweites Bezugssystem und $\Lambda \in O(1,3)$ mit $b_i = \Lambda b_i' = \sum_j \Lambda_{ji} b_j$, so werden die Koordinaten x'^i eines Ereignis im Bezugssystem (b_i) durch die Lorentztransformation Λ gegeben:

$$x'^i = \sum_j = \Lambda_{ij} x^j$$

6.10 Der Isomorphismus $SL(2,\mathbb{C})/\{\pm 1\}$ $SO_{\pm}(1,3)$

Definition (H). Der vierdimensionale Raum H ist der Raum aller hermitischen 2×2 Matrizen. Diese haben die Form

$$\hat{x} = \begin{pmatrix} x^0 + x^3 & x^1 - ix^2 \\ x^1 + ix^2 & x^0 - x^3 \end{pmatrix} = x^0 \mathbb{1} + \sum_{j=1}^3 x^j \sigma_j$$

mit $x \in \mathbb{R}^4$ und σ_i den Pauli Matrizen.

Lemma. Für alle $x \in \mathbb{R}^4$ gilt $(x, x) = \det(\hat{x})$

Satz. Für jede Matrix $A \in SL(2,\mathbb{C})$ definieren wir die lineare Abbildung von H nach $H \colon X \mapsto AXA^*$. Also gibt es eine lineare Abbildung $\phi(A)$ von \mathbb{R}^4 nach \mathbb{R}^4 , so dass

$$A\hat{x}A^* = \widehat{\phi(A)x}$$

Es gilt: $\det(AXA^*) = \det(A)\det(X)\det(A^*) = \det(x)\left|\det(A)\right|^2 = \det(X)$ für $A \in SL(2,\mathbb{C})$. Es folgt, dass $\phi(A) \in O(1,3)$.

Satz. Die Abbildung ϕ ist ein surjektiver Homomorphismus von $SL(2,\mathbb{C})$ nach $SO_+(1,3)$ mit Kern $\{\pm 1\}$. Also induziert ϕ einen Isomorphismus $SL(2,\mathbb{C})/\{\pm 1\} \to SO_+(1,3)$. Die Einschränkung von ϕ auf $SU(2) \subset SL(2,\mathbb{C})$ ist der Homomorphismus $SU(2) \to SO(3)$.

7 Lie-Algebren

7.1 Die Exponentialabbildung

Sei $\mathrm{Mat}(n,\mathbb{K})$, für $\mathbb{K}=\mathbb{R}$ oder \mathbb{C} , der Vektorraum aller $n\times n$ Matrizen mit Elementen in \mathbb{K} .

Definition (Frobenius norm).

$$||x|| = \left(\sum_{i,j} |x_{ij}|^2\right)^{1/2} = (\operatorname{tr}(X^*X))^{1/2}$$

Lemma. $||XY|| \le ||X|| ||Y||$, $\forall X, Y \in \text{Mat}(n, \mathbb{K})$

Lemma. Die folgende Reihe konvergiert absolut (normal)

$$\exp(X) = \sum_{k=0}^{\infty} \frac{1}{k!} X^k$$

 $\forall X \in \text{Mat}(n, \mathbb{K})$. Normal heisst hier $\sum_{k=0}^{\infty} \left\| \frac{1}{k!} X^k \right\| < \infty$.

Bemerkung. Es folgt, dass die Matrixelemente von $\exp(X)$ absolut konvergente Reihen in den Matrixelementen X_{ij} von X sind, und somit analytisch von X_{ij} abhängen.

Lemma. Seien $X, Y \in \text{Mat}(n, \mathbb{K})$ für $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} .

- (i) $\exp(X) \exp(Y) = \exp(X + Y)$ falls XY = YX
- (ii) $\exp(X)$ ist invertier bar mit $\exp(X)^{-1} = \exp(-X)$
- (iii) $A \exp(X) A^{-1} = \exp(AXA^{-1}), A \in GL(n, \mathbb{K})$
- (iv) $\det(\exp(X)) = \exp(\operatorname{tr}(X))$
- (v) $\exp(X^*) = (\exp(X))^*$, $\exp(X^T) = (\exp(X))^T$

Definition (Exponential abbilding). Die Abbilding $\operatorname{Mat}(n, \mathbb{K}) \to \operatorname{GL}(n, \mathbb{K}), X \mapsto \exp(X)$ heisst Exponential abbilding.

Bemerkung. Für Nilpotente Matrizen N $(N^{k+1} = 0)$ gilt:

$$\exp(N) = 1 + N + \frac{N^2}{2!} + \dots + \frac{N^k}{k!}$$

Lemma. Die Abbildung exp : $\operatorname{Mat}(n,\mathbb{K}) \to \operatorname{GL}(n,\mathbb{K})$ ist in einer Umgebung von 0 invertierbar, d.h. es existiert eine Umgebung U von 0 so dass die Abbildung exp : $U \mapsto \exp(U)$ invertierbar ist. Die inverse Abbildung ist durch die folgende absolut konvergente Potenzreihe gegeben für $||X - \mathbb{1}|| < 1$.

$$\log(X) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(X-1)^n}{n}$$

Definition (Einparametergruppe). Eine Abbildung \mathbb{R}

Einparametergruppen

 $\mathrm{GL}(n,\mathbb{K}),\ t\mapsto X(t),\ \mathbb{K}=\mathbb{R}\ \mathrm{oder}\ \mathbb{C},\ \mathrm{heisst}\ \mathrm{Einparametergruppe}$ falls sie stetig differenzierbar ist und ein Gruppenhomomorphismus ist, d.h. X(0) = 1 und für alle $t, s \in \mathbb{R}$ gilt: X(s+t) = X(s)X(t).

Bemerkung. Das Bild einer solchen Abbildung ist eine Untergruppe mit $X(t)^{-1} = X(-t)$.

(i) $\forall X \in \text{Mat}(n, \mathbb{K})$ ist $t \mapsto \exp(tX)$ eine Einparametergruppe.

(ii) Alle Einparametergruppen sind von dieser Form.

7.3Matrix-Lie-Gruppen

Definition (Lie-Algebra/Lie-Gruppe). Sei $G \subset GL(n, \mathbb{K})$ eine abgeschlossene Untergruppe von $GL(n, \mathbb{K})$ (abgeschlossen heisst: Für jede Folge (g_i) in G, die in $GL(n, \mathbb{K})$ konvergiert, liegt der Grenzwert $\lim g_j$ auch in G). Wir definieren

$$\operatorname{Lie}(G) = \{ X \in \operatorname{Mat}(n, \mathbb{K}) \mid \exp(tX) \in G \ \forall t \in \mathbb{R} \}$$

Lie(G) heisst Lie-Algebra der Lie-Gruppe G.

Definition ((Matrix-)Lie-Gruppe). Eine (Matrix-)Lie-Gruppe ist eine abgeschlossene Untergruppe von $GL(n, \mathbb{K})$.

Satz. Sei G eine abgeschlossene Untergruppe von $GL(n, \mathbb{K})$, $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} . Dann ist Lie(G) ein reeller VR, und $\forall X, Y \in \text{Lie}(G)$, $XY - YX \in \text{Lie}(G)$.

Lemma. Lie(G) besteht aus allen Tangentialvektoren $\dot{X}(0)$ = $\frac{d}{dt}X(t)|_{t=0}$ von glatten Kurven $]-\varepsilon,\varepsilon[\to G \text{ mit } X(0)=\mathbb{1} \text{ und } \varepsilon>0.$ Älso ist $Lie(G) = T_1G$ der Tangentialraum an der Stelle 1. Also insb. ein VR.

Bemerkung. Die Gruppen (S)U(n,m), (S)O(n,m), $GL(n,\mathbb{K})$, $SL(n,\mathbb{K})$, Sp(2n) sind alle Matrix-Lie-Gruppen. nämlich als Mengen von gemeinsamen Nullstellen von stetigen Funktionen $f: GL(n, \mathbb{K}) \to \mathbb{K}$ definiert.

Definition (Kommutator). Für $X, Y \in Mat(n, \mathbb{K})$ definieren wir den Kommutator als

$$[X,Y] = XY - YX$$

Lemma. Eigenschaften des Kommutators sind:

- (i) $[\lambda X + \mu Y, Z] = \lambda [X, Z] + \mu [Y, Z]$
- (ii) [X, Y] = -[Y, Z]
- (iii) [X, Y], Z + [Z, X], Y + [Y, Z], X = 0

Definition (Lie-Algebra). Eine Lie-Algebra ist ein K-VR \mathfrak{g} , versehen mit einer bilinearen Abbildung ("Lie-Klammer") [,]: $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, welche die obigen Eigenschaften (i)-(iii) erfüllt.

Definition (Homomorphismus). Ein Homomorphismus $\varphi : \mathfrak{g}_1 \to \mathfrak{g}_2$ von Lie-Algebren $\mathfrak{g}_1,\mathfrak{g}_2$ ist eine lineare Abbildung, die erfüllt:

$$\varphi([X,Y]) = [\varphi(X), \varphi(Y)]$$

Ist φ bijektiv, so nennt man φ einen Isomorphismus.

Beispiel. Lie($GL(n, \mathbb{K})$) = Mat(n, \mathbb{K}) als reeller VR betrachtet. Diese Lie-Algebra wird mit $\mathfrak{gl}(n,\mathbb{K})$ bezeichnet. Eine Basis von $\mathfrak{gl}(n,\mathbb{R})$ ist durch die matrizen $E_{ij},\ i,j=1,\ldots,n$ mit Matrixelementen $(E_{ij})_{kl} = \delta_{ik}\delta_{jl}$. Die Lie-Algebra Struktur ist in dieser Basis durch die Kommutationsrelationen

$$[E_{ij}, E_{kl}] = E_{il}\delta_{jk} - E_{jk}\delta_{il}$$

gegeben. Die Dimension ist n^2 . In $\mathfrak{gl}(n,\mathbb{C})$ hat man die Basis $(E_{kl}, iE_{kl})_{k,l=1}^n$. dim $(\mathfrak{gl}(n,\mathbb{C})) = 2n^2$.

Lemma.

$$\begin{split} \mathfrak{u}(n) &\coloneqq \mathrm{Lie}(U(n)) = \{X \in \mathrm{Mat}(n,\mathbb{C}) \mid X^* = -X\} \\ \mathfrak{sl}(n,\mathbb{C}) &\coloneqq \mathrm{Lie}(SL(n,\mathbb{C})) = \{A \in \mathrm{Mat}(n,\mathbb{C}) \mid \mathrm{tr}(A) = 0\} \\ \mathfrak{su}(n) &\coloneqq \mathrm{Lie}(SU(n)) = \{X \in \mathrm{Mat}(n,\mathbb{C}) \mid X^* = -X \ , \ \mathrm{tr}(X) = 0\} \\ &= \{A \in \mathfrak{sl}(n,\mathbb{C}) \mid A^* = -A\} \end{split}$$

Es gilt: $\dim(\mathfrak{u}(n)) = n^2$, $\dim(\mathfrak{su}(n)) = n^2 - 1$.

Lemma.

$$\mathfrak{o}(n) \coloneqq \operatorname{Lie}(O(n))$$
 , $\mathfrak{so}(n) \coloneqq \operatorname{Lie}(SO(n))$
 $\mathfrak{o}(n) = \mathfrak{so}(n) = \left\{ X \in \operatorname{Mat}(n, \mathbb{R}) \mid X^T = -X \right\}$

Beispiel $(\mathfrak{su}(2))$. Eine Basis ist durch die Pauli Matrizen gegeben.

$$t_1 = i\sigma_1$$
 , $t_2 = i\sigma_2$, $t_3 = i\sigma_3$

Es gilt $[t_i, t_k] = -\sum_{l=1}^{3} 2\varepsilon_{ikl}t_l$

Die Campbell-Baker-Hausdorff Formel

Satz (CBH). Seien $X, Y \in \text{Mat}(n, \mathbb{K})$. Für t klein genug gilt

$$\exp(tX)\exp(tY) = \exp\left(tX + tY + \frac{t^2}{2}[X,Y] + O(t^3)\right)$$

 \mathbf{Satz} (CBH vollständig). Für kleine t gilt

$$\exp(tX)\exp(tY) = \exp\left(\sum_{k=1}^{\infty} t^k Z_k\right)$$

wobei Z_k eine Linearkombination von k-fachen Kommutatoren ist, d.h. von Ausdrücken, die aus X und Y durch (k-1)-fache Anwendung der Operatoren $[X,\cdot],[Y,\cdot]$ erzeugt werden. Bsp:

$$Z_1 = X + Y \quad , \quad \frac{1}{2}[X,Y]$$

$$Z_3 = \frac{1}{12}\left([X,[X,Y]] + [Y,[y,X]]\right) \quad , \quad Z_4 = -\frac{1}{24}[X,[Y,[X,Y]]]$$

Definition (Unter-/Teilmannigfaltigkeit). Folgende Aussagen sind äquivalent:

- (i) $M \subseteq \mathbb{R}^n$ ist eine k-dim Unter-/Teilmannigfaltigkeit.
- (ii) $\forall p \in M \ \exists U_p \subseteq \mathbb{R}^n$ offene Umgebung von p und ein Diffeomorphismus $\Phi_p : U_p \to V_p \subseteq \mathbb{R}^n$ offen sodass $\Phi_p(U_p \cap M) = V_p \cap \mathbb{R}^k$
- (iii) $\forall p \in M \ \exists U_p \in \mathbb{R}^n \ (\text{offene Umgebung von } p) \ \text{und} \ f_p : \mathbb{R}^k \supseteq$ $\tilde{U}_p \to \mathbb{R}^{n-k}$ glatt und $\sigma \in S_n$ sodass $M \cap U_p = \sigma \operatorname{Graph}(f_p)$.
- (iv) $\forall p \in M \ \exists U_p \subseteq \mathbb{R}^n$ (offene Umgebung von p) und $\varphi_p : \mathbb{R}^k \supseteq$ $\tilde{U}_p \to \mathbb{R}^n$ glatte Einbettung mit Bild $V = U_p \cap G$

 U_p ist offen. Eine Glatte Einbettung ist eine glatte Abbildung mit • $d\varphi_p$ hat in jedem Punkt maximal Rang k.

- φ_p ist ein Homöomorphismus auf ihr Bild.

Satz. Sei $G \subseteq GL(n, \mathbb{K})$ eine Matrix-Lie-Gruppe mit Lie-Algebra \mathfrak{g} und Exponentialabbildung $\exp : \mathfrak{g} \to G$. Dann gibt es eine offene Umgebung $U \subseteq \mathfrak{g}$ von 0 und eine offene Umgebung $V \subseteq G$ von 1 so dass $\exp: U \to GL(n, \mathbb{K})$ eine glatte Einbettung ist mit Bild $\exp(U) = V \cap G$

Satz. $G \subseteq GL(n, \mathbb{K}) \subseteq \mathbb{R}^{n^2}$ ist eine Untermannigfaltigkeit.

Satz. Sei $G \subseteq GL(n, \mathbb{K})$ eine Lie-Gruppe mit Lie-Algebra $\mathfrak{g} \subseteq$ $\mathfrak{gl}(n,\mathbb{K})$. Die Gruppe aller Matrizen der Form $\exp(X_1)\cdots\exp(X_k)$ mit $X_1, \ldots, X_k \in \mathfrak{g}$ und $k \geq 1$ ist die Zusammenhangskomponente von $\mathbb{1} \in G$.

Beispiel. Jede unitäre Matrix ist von der Form

$$U = A \mathrm{diag}(e^{i\varphi_1}, \dots, e^{i\varphi_n})A^{-1} \quad , \quad A \in U(n)$$

Also ist $U = \exp(X)$, $X = A \operatorname{diag}(i\varphi_1, \dots, i\varphi_n) A^{-1}$ und $\exp(tX)$ ist eine Einparametergruppe in U(n). Es folgt, dass $\exp : \mathfrak{u}(n) \to U(n)$ surjektiv ist.

Darstellungen von Lie-Gruppen

8.1 Definitionen

Definition (Darstellung einer Lie-Gruppe). Eine Darstellung einer Lie-Gruppe G auf einem (\mathbb{R} oder \mathbb{C}) endlichdimensionalen $\operatorname{VR} V \neq 0$ ist ein stetiger Homomorphismus $\rho: G \to \operatorname{GL}(V)$. Stetigkeit bedeutet, dass die Matrixelemente von $\rho(g)$ bezüglich einer beliebigen Basis stetig von $g \in G$ abhängen.

Definition (komplex/reell). Eine Darstellung heisst komplex oder reell wenn V ein komplexer bzw. reeller VR ist.

Definition (Dimension). Die Dimension einer Darstellung ist die Dimension des Darstellungsraums V.

Wenn nichts anderes gesagt, betrachten wir komplexe Darstellungen.

8.2 Beispiele

pakte abelsche Lie-Gruppe. Also ist jede Darstellung vollständig reduzibel. Die irreduziblen Darstellungen sind eindimensional.

Die Gruppe $U(1) = \{z \in \mathbb{C} \mid |z| = 1\} \cong SO(2) \cong S^1$ ist eine kom-

Satz. Für jedes $n \in \mathbb{Z}$ ist $\rho_n : U(1) \to GL(\mathbb{C}) \setminus \{0\}$, $z \mapsto z^n$ eine Darstellung von U(1). Jede irreduzible Darstellung von U(1) ist äquivalent zu ρ_n für geeignetes n.

Die Gruppe SU(2) der unitären 2×2 Matrizen der Determinante 1 ist ebenfalls kompakt aber nicht abelsch. Wir haben also wiederum vollständige Reduzibilität. SU(2) ist eine kompakte Lie-Gruppe.

Satz. Für jedes $n=0,1,2,\ldots$ existiert eine irreduzible Darstellung $\rho_n:SU(2)\to \mathrm{GL}(V_n)$ der Dimension n+1. Jede irreduzible Darstellung von SU(2) ist äquivalent zu ρ_n für geeignetes n.

Wir konstruieren nun diese Darstellungen. Sei $\mathbb{C}[z_1,\ldots,z_n]_k$ der VR der Polynome in z_1,\ldots,z_n die homogen sind vom Grad k.

Das heisst $p(\lambda z_1, ..., \lambda z_n) = \lambda^k p(z_1, ..., z_n)$. Die Basis ist gegeben durch z^{α} mit $\alpha = (\alpha_1, ..., \alpha_2)$ und $|\alpha| = n$. Wir setzen $V_n = \mathbb{C}[z_1, z_2]_n = \operatorname{span}\{z_1^n, z_1^{n-1}z_2, ..., z_2^n\}$. Sei ferner $\rho_n : SU(2) \to \operatorname{GL}(V_n)$ definiert durch $(\rho_n(A)(p))(z) = p(A^{-1}z)$. Hierbei ist $A \in SU(2), p \in V_n$ und $z = (z_1, z_2)^T$. Es ist klar, dass die rechte Seite wieder ein Polynom in z_1, z_2 ist homogen vom Grad n. Die Darstellungseigenschaft ist erfüllt:

$$(\rho_n(A)\rho_n(B)p)(z) = (\rho_n(B)p)(A^{-1}z) = p(B^{-1}A^{-1}z)$$

= $p((AB)^{-1}z) = (\rho_n(AB)p)(z)$

Stetigkeit:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} , \det(A) = 1 , A^{-1} = A^* = \begin{pmatrix} \overline{a} & \overline{c} \\ \overline{b} & \overline{d} \end{pmatrix}$$
$$\Rightarrow p(A^{-1}z) = p\left(A^{-1}\begin{pmatrix} z_1 \\ z_2 \end{pmatrix}\right) = p\left(\begin{pmatrix} \overline{a}z_1 + \overline{c}z_2 \\ \overline{b}z_1 + \overline{d}z_2 \end{pmatrix}\right)$$

Die Koeffizienten sind Polynome in $\overline{a},\overline{b},\overline{c},\overline{d}$ und damit stetige Funktionen von a,b,c,d.

Bemerkung. Die Darstellung ρ_{2j} (j = 0, 1/2, 1, 3/2, ...) heisst Spin j Darstellung in der phsyikalischen Literatur.

Bemerkung. Es gilt: $\rho_n(-A) = (-1)^n \rho_n(A)$. Also definiert für n gerade, und nur dann, ρ_n eine Darstellung von $SU(2) \setminus \{\pm 1\} \cong SO(3)$.

3.3 Darstellungen von Lie-Algebren

Lemma. Sei $\rho:G\to \mathrm{GL}(V)$ eine Darstellung einer Lie-Gruppe G. Dann bildet ρ Einparametergruppen nach Einparametergruppen ab.

Definition. Sei $\rho: G \to GL(V)$ eine Darstellung und $X \in Lie(G)$. Definiere:

$$\rho_*(X) = \frac{d}{dt}\Big|_{t=0} \rho\left(\exp(tX)\right) \in \operatorname{Lie}(\operatorname{GL}(V)) = \mathfrak{gl}(V)$$

 ρ_* ist eine Abbildung Lie $(G) \to \mathfrak{gl}(V)$.

Definition. Sei $\mathfrak g$ eine Lie-Algebra über $\mathbb R$ oder $\mathbb C$. Eine Darstellung von $\mathfrak g$ auf einen VR $V \neq \{0\}$ ist ein (Lie-Algebra-) Homomorphismus / eine $\mathbb R$ - (bzw. $\mathbb C$ -) lineare Abbildung $\tau: \mathfrak g \to \mathfrak{gl}(V)$, so dass

$$[\tau(X),\tau(Y)] = \tau([X,Y])$$
 Definition (Invariant). Ein UR $U \subseteq V$ heisst invariant falls

 $\tau(X)U\subseteq U\ \forall X\in\mathfrak{g}.$ **Definition** (Irreduzibel). Eine Darstellung heisst irreduzibel, wenn

die einzigen invarianten UR $U = \{0\}$ und U = V sind.

Definition (Vollständig reduzibel). Eine Darstellung heisst vollständig reduzibel, falls $V = V_1 \oplus \cdots \oplus V_k$ mit V_1, \ldots, V_k den invarianten UR, so dass die Einschränkungen von τ auf V_1, \ldots, V_k irreduzibel sind.

Definition (komplex/reell). Darstellungen heissen komplex bzw
 reell je nach dem ob V komplex oder reell ist.

Satz. Sei $\rho: G \to \operatorname{GL}(V)$ eine Darstellung der Lie-Gruppe G. Dann ist ρ_* eine Darstellung der reellen Lie-Algebren Lie(G). Die Einschränkung von ρ auf die Einskomponente G_0 von G ist eindeutig durch ρ_* bestimmt.

Satz. Sei $\rho: G \to GL(V)$ Darstellung einer zusammenhängenden Lie-Gruppe G. Dann ist ρ genau dann irreduzibel (bzw. vollständig reduzibel) wenn ρ_* irreduzibel (bzw. vollständig reduzibel) ist.

Beispiel (Triviale Darstellung). $V = \mathbb{C}, \ \rho_*(X) = 0 \ \forall X \in \mathfrak{g}, \ \rho(g) = 1.$

Beispiel (Adjungierte Darstellung). Sei Ad $:G\to \mathrm{GL}(\mathfrak{g}),$

$$\mathrm{Ad}(g)X = gXg^{-1}$$

die adjungierte Darstellung von G auf $\mathfrak{g} = \text{Lie}(G)$. Die adjungierte Darstellung von \mathfrak{g} ist ad = Ad_* :

$$\operatorname{ad}(X)Y = \frac{d}{dt}\Big|_{t=0} \exp(tX)Y \exp(-tX) = [X, Y]$$

Bemerkung. • ρ_* ist die Ableitung von $\rho: G \to \mathrm{GL}(V)$ an der Stelle 1. Also

$$\rho_* = d\rho(1) : T_1G = \mathrm{Lie}(G) \to T_1\mathrm{GL}(V) = \mathfrak{gl}(V)$$

• Die Aussagen oben bleiben richtig, wenn man GL(V) durch allgemeinere Lie-Gruppen ersetzt. Für $\rho: G \to H$ einem Homomorphismus von Lie-Gruppen ist

$$\rho_* = dp(1) : \operatorname{Lie}(G) = T_1G \to \operatorname{Lie}(G) = T_1H$$

ein Lie-Algebra-Homomorphismus.

8.4 Irreduzible Darstellungen von SU(2)

Lemma. (i) Jedes $Z \in \mathfrak{sl}(n,\mathbb{C})$ kann eindeutig als Z = X + iY geschrieben werden mit $X, Y \in \mathfrak{su}(n)$.

(ii) Sei τ eine (komplexe) Darstellung von $\mathfrak{su}(n)$ auf V. Dann definiert

$$\tau_{\mathbb{C}}(X+iY) = \tau(X) + i\tau(Y)$$

eine \mathbb{C} -lineare Darstellung der Lie-Algebra $\mathfrak{sl}(n,\mathbb{C})$, deren Einschränkung auf $\mathfrak{su}(n)$ mit τ übereinstimmt.

(iii) $\tau_{\mathbb{C}}$ ist genau dann irreduzibel (vollständig reduzibel) wenn τ irreduzibel (vollständig reduzibel) ist. Die Darstellung $\tau_{\mathbb{C}}$ heisst Komplexifizierung von τ . Oft wird die

Vereinfachung der Notation τ statt $\tau_{\mathbb{C}}$ geschrieben.

Theorem. Wir klassifizieren die endlichdimensionalen irre-

duziblen komplexen \mathbb{C} -linearen Darstellungen von $\mathfrak{sl}(2,\mathbb{C}) = \{X \in \operatorname{Mat}(2,\mathbb{C}) \mid \operatorname{tr}(X) = 0\}$. Eine Basis von $\mathfrak{sl}(2,\mathbb{C})$ ist

$$h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 , $e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$

Lemma. [h, e] = 2e , [h, f] = -2f , [e, f] = h

Korollar. Ist $\tau:\mathfrak{sl}(2,\mathbb{C})\to\mathfrak{gl}(V)$ eine \mathbb{C} -lineare Darstellung, so erfüllen

$$(1) \hspace{1cm} H=\tau(h) \quad , \quad E=\tau(e) \quad , \quad F=\tau(f)$$

die Relationen

$$[H,E]=2E\quad ,\quad [H,F]=-2F\quad ,\quad [E,F]=H$$

Umgekehrt, sind H, E, F lineare Selbstabbildungen eines komplexen VR V, die (2) erfüllen, so existiert eine eindeutige \mathbb{C} -lineare Darstellung $\tau : \mathfrak{sl}(2,\mathbb{C}) \to \mathfrak{gl}(V)$, so dass (1) gilt.

Sei (τ, V) eine irreduzible Darstellung von $\mathfrak{sl}(2, \mathbb{C})$ und $\lambda \in \mathbb{C}$ der Eigenwert von H mit dem grössten Realteil, v_0 ein Eigenvektor zu λ : $Hv_0 = \lambda v_0$ mit $v_0 \neq 0$.

Lemma. (i) $Ev_0 = 0$.

(ii) Sei $v_k = F^k v_0$. Dann gilt:

$$Hv_k = (\lambda - 2k)v_k$$

$$Ev_k = k(\lambda - k + 1)v_{k-1}$$

Das heisst, span (v_0, v_1, \dots) ist ein invarianter UR, also wegen der Irreduzibilität von V gilt $V = \operatorname{span}(v_0, v_1, \dots)$. Die Vektoren v_0, v_1, \dots sind linear unabhängig, denn sie gehören zu verschiedenen EW von H. Also ist V nur dann endlichdimensionalen, wenn ein $n \geq 0$ existiert mit $v_{n+1} = 0$. Sei $v_{n+1} = 0$, und $v_m \neq 0$ für $m \leq n$. Dann ist $0 = Ev_{n+1} = (n+1)(\lambda - n)v_n$ was nur möglich ist wenn $\lambda = n = 1, 2, \dots$

Satz. Sei $n = 1, 2, \ldots$ und v_0, \ldots, v_n die Standardbasis von $V_n = \mathbb{C}^{n+1}$. Dann definiert

$$Hv_m = (n-2m)v_m$$

$$Ev_m = m(n+1-m)v_{m-1}$$

$$Fv_m = v_{m+1}$$

eine irreduzible Darstellung τ_n von $\mathfrak{sl}(2,\mathbb{C})$. Jede komplexe (n+1)dimensionale irreduzible Darstellung von $\mathfrak{sl}(2,\mathbb{C})$ ist äquivalent zu τ_n .

Bemerkung. Die Operatoren E, F werden oft Auf- und Absteige- operatoren genannt.

aus Darstellungen ρ_n von $SL(2,\mathbb{C})$ kommen. Sei $U_n=\mathbb{C}[z_1,z_2]_n$ der Raum aller homogenen Polynome in zwei Variablen $(z_1,z_2)\in\mathbb{C}^2$ vom Grad n. U_n hat Dimension n+1 mit Basis $z_1^n,z_1^{n-1}z_2,\ldots,z_1z_2^{n-1},z_2^n$. Wir definieren die Darstellung $\rho_n:SL(2,\mathbb{C})\to U_n$ gegeben durch:

Wir zeigen nun, dass alle so konstruierten Darstellungen τ_n

$$(\rho_n(A)p)(z) = p(A^{-1}z)$$

mit $A \in SL(2,\mathbb{C}), \ p \in U_n = \mathbb{C}[z_1,z_2], \ z = (z_1,z_2).$ Dies ist eine Darstellung und ist insbesondere stetig. Wir berechnen $\rho_{n*}: \mathfrak{sl}(2,\mathbb{C}) \to \mathfrak{gl}(U_n)$

$$(\rho_{n*}(h)p)(z) = \left(-z_1 \frac{\partial}{\partial z_1} + z_2 \frac{\partial}{\partial z_2}\right) p(z)$$
$$(\rho_{n*}(e)p)(z) = -z_2 \frac{\partial}{\partial z_1} p(z)$$
$$(\rho_{n*}(f)p)(z) = -z_1 \frac{\partial}{\partial z_2} p(z)$$

Wir sehen, dass diese Darstellung äquivalent ist zur Darstellung τ_n vom obigen Satz. Der Isomorphismus ist

$$v_m \mapsto \frac{(-1)^m}{(n-m)!} z_1^m z_2^{n-1}$$

wobei m = 0, 1, ..., n. Wir wollen noch zeigen, dass die Darstellung von SU(2) ρ_n unitär ist bzgl. eines geeigneten Skalarproduktes. Dazu reskalieren wir die Basis $\{v_m\}$. Sei

$$u_m = \lambda_m v_m \quad \text{mit } \lambda_m = \sqrt{\frac{(n-m)!}{m!}}$$

Dann hat man:

$$Hu_m = (n-2m)u_m$$

$$Eu_m = \sqrt{m(n+1-m)}u_{m-1}$$

$$Fu_{m-1} = \sqrt{m(n+1-m)}u_m$$

Es gilt $H^* = H$ und $E^* = F$, wobei * bezüglich des Skalarproduktes definiert ist, in dem $\{u_i\}$ eine ONB ist. Allgemeiner gilt dann $\rho_{n*}(X)^* = \rho_{n*}(X^*)$ für $X \in \mathfrak{sl}(2,\mathbb{C})$ und speziell $\rho_{n*}(X)^* = \rho_{n*}(X^*) = -\rho_{n*}(X)$ für $X \in \mathfrak{su}(2)$. Es folgt, dass ρ_n eine unitäre Darstellung von SU(2) ist.

Satz. Zu jedem n = 1, 2, ... gibt es bis auf Äquivalenz genau eine irreduzible Darstellung (ρ_n, U_n) von SU(2) der Dimension n + 1. Dabei ist

$$U_n = \left\{ \sum_{m=0}^{n} c_m z_1^m z_2^{n-m} \mid c_m \in \mathbb{C} \right\} = \mathbb{C}[z_1, z_2]_n$$

der Raum der homogenen Polynome vom Grad n in zwei Unbekannten, und für $A \in SU(2), f \in U_n$

$$\left(\rho_n(A)f\right)(z)=f(A^{-1}z)$$

 ρ_n ist unitär bezüglich des Skalar
produktes in dem die Basis

$$\frac{z_1^m z_2^{n-m}}{\sqrt{m!(n-m)!}}$$

orthonormiert ist.

Bemerkung. Allgemein nennt man eine Darstellung $\tau:\mathfrak{g}\to\mathfrak{gl}(V)$ (\mathfrak{g} reelle Lie-Algebra, V ein \mathbb{C} -VR) unitär, falls $\tau(X)^*=-\tau(X)$ $\forall X\in\mathfrak{g}$ wobei $(-)^*$ bzgl eines Skalarproduktes genommen wird.

Balázs Szekér, 28. September 2021

Bemerkung. Jede Darstellung ρ von SO(3) auf V induziert eine Darstellung $\rho \circ \varphi$ von SU(2), wobei $\varphi : SU(2) \to SO(3)$ der in 6.4 definierte Homomorphismus ist. Die Darstellung $\rho \circ \varphi$ hat die Eigenschaft $\rho \circ \varphi(-1) = \rho \circ \varphi(1) = 1$, da $-1 \in \operatorname{Ker}(\varphi)$. Umgekehrt definiert jede Darstellung von SU(2), die erfüllt $\rho(-1) = 1$, eine Darstellung von $SO(3) \cong SU(2)/\{\pm 1\}$. Also haben wir eine 1:1-Korrespondenz zwischen den Darstellungen von SO(3) und den Darstellungen von SU(2), die $\rho(-1) = 1$ erfüllen. Man prüft leicht, dass dabei die irreduziblen Darstellungen wieder auf irreduzible abgebildet werden. Die irreduzible Darstellung von SO(3) entsprechen also den irreduziblen Darstellungen von SU(2), die $\rho(-1) = 1$ erfüllen. Wegen $\rho_n(-1) = (-1)^n$ sind dies gerade die ρ_n mit n gerade, bzw die irreduziblen Darstellungen von SU(2) ungerader Dimension.

8.5 Harmonische Polynome und Kugelfunktionen

Definition (H_l) . Sei H_l der raum der homogenen Polynome von Grad l in drei Unbekannten x_1, x_2, x_3 :

$$H_{l} = \left\{ \sum_{\substack{|\alpha|=l\\\alpha \in \mathbb{N}^{3}}} c_{\alpha} x^{\alpha} \mid c_{\alpha} \in \mathbb{C} \right\} = \mathbb{C}[x_{1}, x_{2}, x_{3}]_{l}$$

Korollar. Der VR H_l hat Dimension $\dim(H_l) = \frac{1}{2}(l+1)(l+2)$. Ist $P(x) \in H_l$ so ist es auch $P(R^{-1}x)$ für alle $R \in SO(3)$. Wir haben also eine Darstellung von SO(3) auf H_l

$$(\rho(R)f)(x) = f(R^{-1}x)$$

Lemma.

$$(f,g) = \int_{|x|=1} \overline{f(x)} g(x) d\Omega(x)$$

ist ein Skalarprodukt auf $H_l.$ Die Darstellung ρ ist unitär bezüglich (,).

Bemerkung. Der Laplaceoperator $\Delta = \sum_{i=1}^{3} \frac{\partial^2}{\partial x_i^2}$ bildet H_l ab nach H_{l-2} .

Definition (V_l) . Definiere den Raum V_l der harmonischen Polynome in H_l .

$$V_l = \{ f \in H_l \mid \Delta f = 0 \}$$

Die Dimension von V_l erfüllt

$$\dim(V_l) \ge \dim(H_l) - \dim(H_{l-2}) = 2l + 1$$

Bemerkung. Für $r^2 = x_1^2 + x_2^2 + x_3^2$ gilt:

$$H_l = r^2 H_{l-1} \oplus V_l$$

Satz. Es gilt die orthogonale Summenzerlegung

$$H_l = \bigoplus_{k=0}^{\lfloor l/2 \rfloor} r^{2k} V_{l-2k}$$

in paarweise orthogonale, SO(3)-invariante Unterräume, und dim $V_l = 2l + 1$.

Darstellungen von SO(3) auf V_l Diese Darstellung definiert eine Darstellung ρ von SU(2):

$$(\rho(A)u)(x) = \mathfrak{u}(\varphi(A)^{-1}a) \quad \mathfrak{u} \in V_l, A \in SU(2), \varphi : SU(2) \to SO(3)$$

und $\varphi\left(\exp\left(-i\sum_{j=0}^{3}\sigma_{j}n_{j}\vartheta/2\right)\right)=R(n,\vartheta),\ |n|=1.$ Berechne die entsprechende Lie-Algebra Darstellung τ . Sei

$$X = \sum_{j} \alpha_{j} (-i\sigma_{j}) = \begin{pmatrix} -i\alpha_{3} & -i\alpha_{1} - \alpha_{2} \\ -i\alpha_{1} + \alpha_{2} + i\alpha_{3} \end{pmatrix} \in \mathfrak{su}(2) \quad , \quad \alpha \in \mathbb{R}^{3}$$

Sei $\alpha = n\vartheta/2$ mit |n| = 1. Dann ist

$$(\tau(X)u)(x) = \frac{d}{dt}\Big|_{t=0} u(R(n,t\vartheta)^{-1}x)$$

$$R(n,\vartheta)^{-1}x = R(n,-\vartheta)x = (x\cdot n)n + (x-(x\cdot n)n)\cos(\vartheta)$$

$$-n \wedge x\sin(\vartheta)$$

$$\frac{d}{dt}\Big|_{t=0} R(n,t\vartheta)^{-1}x = -n \wedge x\vartheta = -2\alpha \wedge x$$

Aus der Kettenregel folgt:

$$(\tau(X)u)(x) = -2\sum_{\beta=1}^{3} (\alpha \wedge x)_{\beta} \frac{\partial u}{\partial x_{\beta}}(x)$$

$$= 2\left((\alpha_{3}x_{2} - \alpha_{2}x_{3})\frac{\partial}{\partial x_{1}} + (\alpha_{1}x_{3} - \alpha_{3}x_{1})\frac{\partial}{\partial x_{2}} + (\alpha_{2}x_{1} - \alpha_{1}x_{2})\frac{\partial}{\partial x_{3}}\right)u$$

Wir rechnen $\tau_{\mathbb{C}}$ aus: H, E, F entsprechen $\alpha(0,0,i)$, $\alpha = \left(\frac{i}{2}, -\frac{1}{2}, 0\right)$, $\alpha = \left(\frac{i}{2}, \frac{1}{2}, 0\right)$. Also:

$$\tau_{\mathbb{C}}(h) = H = -2i\left(x_i \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_1}\right)$$

$$\tau_{\mathbb{C}}(e) = E = x_3 \left(\frac{\partial}{\partial x_1} + i \frac{\partial}{\partial x_2}\right) - (x_1 + ix_2) \frac{\partial}{\partial x_3}$$

$$\tau_{\mathbb{C}}(f) = F = x \left(-\frac{\partial}{\partial x_1} + i \frac{\partial}{\partial x_2}\right) + (x_1 - ix_2) \frac{\partial}{\partial x_3}$$

In V_l kennen wir das harmonische Polynom $v_0 = (x_1 + ix_2)^l$. Es erfüllt $Hv_0 = 2lv_0$ und $Ev_0 = 0$. Die Vektoren $v_m = F^m v_0$ spannen eine irreduzible Darstellung von $\mathfrak{sl}(2,\mathbb{C})$ der Dimension 2l+1 auf. Da $\dim(V_l) = 2l+1$ gilt, ist v_m eine Basis von V_l . Es folgt, dass V_l eine 2l+1 dimensionale unitäre Darstellung von SU(2) ist. Eine orthonormierte Basis finden wir wie folgt: Die Norm im Quadrat von $(x_1 + ix_2)^l$ is:

$$\left\| (x_1 + ix_2)^l \right\|^2 = \int_{S^2} (x_1^2 + x_2^2)^l d\Omega(x) = \int_0^\pi \int_0^{2\pi} (\sin(\theta))^{2l+1} d\theta d\varphi$$
$$= 2\pi \int_{-1}^1 (1 - x^2)^l dx = 4\pi \frac{2^{2l} l!^2}{(2l+1)!}$$

Also hat $u_l l(x_1, x_2, x_3)$ Norm eins und die rekursiv definierten Polynome $u_{l,l-i}(x_1, x_2, x_3)$ sind orthonormiert.

(3)
$$u_{ll}(x_1, x_2, x_3) = \sqrt{\frac{(2l+1)!}{4\pi}} \frac{(-1/2)^l}{l!} (x_1 + ix_2)^l$$
(4)
$$u_{l,l-j}(x_1, x_2, x_3) = \frac{Fu_{l,l-j+1}(x_1, x_2, x_3)}{\sqrt{i(2l+1-i)}}$$

Satz. Die Darstellung von SU(2) auf dem Raum V_l der harmonischen, homogenen Polynomen vom Grad l in drei Unbekannten ist irreduzibel und unitär bezüglich $(f,g) = \int_{S^2} \overline{f}g \ d\Omega$. (3), (4) definiert eine orthonormierte Basis und es gilt

$$Hu_{lm} = 2mu_{lm}$$

$$Eu_{lm} = \sqrt{(l-m)(l+m+1)}u_{l,m+1}$$

$$Fu_{lm} = \sqrt{(l-m+1)(l+m)}u_{l,m-1}$$

Definition (Kugelfunktion). Eine Kugelfunktion $Y: S^2 \to \mathbb{C}$ von Index l ist die Einschränkung auf $S^2 \subset \mathbb{R}^3$ eines homogenen harmonischen Polynoms vom Grad l.

Es bezeichne \hat{V}_l den VR der Kugelfunktionen von Index l. Also ist $Y = Y(\vartheta, \varphi)$ genau dann in \hat{V}_l wenn $r^l Y(\vartheta, \varphi) \in V_l$. Eine orthonormierte Basis von \hat{V}_l ist also durch $Y_{lm}(\vartheta, \varphi)$ gegeben.

$$Y_{lm}(\vartheta,\varphi) = r^{-l}u_{lm}(r,\vartheta,\varphi)$$

:= $u_{lm}(r\sin(\vartheta),\cos(\varphi),r\sin(\vartheta)\sin(\varphi),r\cos(\varphi))$

Insbesondere haben wir

$$Y_{l}l(\vartheta,\varphi) = \sqrt{\frac{(2l+1)!}{4\pi}} \frac{(-2)^{l}}{l!} \left(\sin(\vartheta)\right)^{l} e^{il\varphi}$$

$$HY_{lm} = 2mY_{lm}$$

$$EY_{lm} = \sqrt{(l-m)(l+m+1)} Y_{l,m+1}$$

$$FY_{lm} = \sqrt{(l-m+1)(l+m)} Y_{l,m-1}$$

wobei in die Operatoren H, E, F Kugelkoordinaten einzusetzen

$$H = \frac{2}{i} \frac{\partial}{\partial \varphi} \quad , \quad E = e^{i\varphi} \left(\frac{\partial}{\partial \vartheta} + i \cot(\vartheta) \frac{\partial}{\partial \varphi} \right)$$
$$F = e^{-i\varphi} \left(-\frac{\partial}{\partial \vartheta} + i \cot(\vartheta) \frac{\partial}{\partial \varphi} \right)$$

Es folgt, dass Y_{lm} die Form $Y_{lm}(\vartheta,\varphi) = F_{lm}(\vartheta)e^{im\varphi}$ hat. Die Orthonormalitätsrelation ist

$$\int_0^{\pi} \int_0^{2\pi} \overline{Y_{lm}(\vartheta,\varphi)} Y_{l'm'}(\vartheta,\varphi) \sin(\vartheta) \ d\vartheta d\varphi = \delta_{ll'} \delta_{mm'}$$

Der sphärische Laplace Operator Δ_{S^2} auf $C^{\infty}(S^2)$ ist durch die Formel für den Laplace Operator in Kugelkoordinaten definiert.

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \Delta_{S^2} \quad , \quad \Delta_{S^2} = \frac{\partial^2}{\partial \theta^2} + \cot(\vartheta) \frac{\partial}{\partial \theta} + \frac{1}{\sin^2(\theta)} \frac{\partial^2}{\partial \varphi^2}$$

Satz. Die Funktionen $Y_{lm}(\vartheta,\varphi)$ bilden für $l=0,1,2,\ldots$ und m=1 $-l, -l+1, \ldots, l$ eine orthonormierte Basis von $L^2(S^2, d\Omega)$.

Tensorprodukte von SU(2) Darstellungen

Definition (ONB im Hilbertraum). Eine ONB im Hilbertraum ist ein orthonormales System $\{e_i\}_{i\in I}$ welches vollständig ist, d.h. $\forall f$ mit $\langle f, e_i \rangle = 0$ folgt f = 0.

Definition (Tensorprodukt). Das Tensorprodukt von zwei endlichdimensionalen Darstellungen $(\rho, V), (\rho', V')$ einer Gruppe Gist die Darstellung $\rho \otimes \rho'$ auf dem Tensorprodukt $V \otimes V'$, die durch die Formel

$$(\rho \otimes \rho')(g) = \rho(g) \otimes \rho'(g)$$

$$\Rightarrow (\rho(g) \otimes \rho'(g)) (v \otimes v') = (\rho(g)v) \otimes (\rho'(g)v')$$

gegeben wird. Es folgt aus den Tensorprodukteigenschaften, dass diese Formel eine Darstellung defineirt, und dass die Assoziativität $(\rho \otimes \rho') = \rho'' = \rho \otimes (\rho' \otimes \rho'')$ gilt, wenn die Darstellungsräume $(V \otimes \rho')$ $V') \otimes V'', V \otimes (V' \otimes V'')$ durch $(v \otimes v') \otimes v'' = v \otimes (v' \otimes v'')$ identifiziert wird.

Definition (Tensorprodukt). Das Tensorprodukt von zwei Darstellungen (τ, V) , (τ', V') eine Lie-Algebra \mathfrak{g} ist die Darstellung $\tau \otimes \tau'$ von \mathfrak{g} auf $V \otimes V'$ so dass

$$(\tau \otimes \tau')(x) = \tau(x) \otimes 1_{V'} + 1_V \otimes \tau'(x)$$
$$((\tau \otimes \tau')(x))(v \otimes v') = \tau(x)(v) \otimes v' + v \otimes (\tau'(x)v')$$

Dies ist wie folgt motiviert: Ist G eine Lie Gruppe mit Lie-Algebra \mathfrak{g} , so wird die Daratellung $(\rho \otimes \rho')_*$ durch

$$(\rho \otimes \rho')_*(X) = \rho_*(X) \otimes 1_{V'} + 1_V \otimes \rho'_*(X) \ \forall X \in G$$

gegeben. Es ist nämlich nach der Produktregel:

$$\frac{d}{dt}\Big|_{t=0} \left(\exp(t\rho_*(X)) \otimes \exp(t\rho'_*(X))\right)$$

$$= \frac{d}{dt}\Big|_{t=0} \exp(t\rho_*(X)) \otimes 1_{V'} + 1_V \otimes \frac{d}{dt}\Big|_{t=0} \exp(t\rho'_*(X))$$

Die Grundsätliche Frage ist: Für 2 irreduzible Darstellungen ρ, ρ' : Wie spaltet man $\rho \otimes \rho'$ in eine Summe irreduzibler Darstellungen

Wir betrachten den Fall G = SU(2). Sei $\rho = \rho_{n'} \otimes \rho_{n''}$. Dann ist $v'_0, \ldots, v'_{n'}$ eine Basis vom Darstellungsraum von $\rho_{n'}$, und $v_0'', \ldots, v_{n''}''$ eine Basis vom Darstellungsraum von $\rho_{n''}$ mit

$$Hv'_j = (n'-2j)v'_j$$
 , $Ev'_j = j(n'+1-j)v'_{j-1}$, $Fv'_j = v'_{j+1}$

und analog für $\rho_{n''}$. Eine Basis des Darstellungsraumes von $\rho_{n'} \otimes \rho_{n''}$ ist also $W \coloneqq (v'_j \otimes v''_k)_{\substack{j=0,\ldots,n'\\k=0,\ldots,n''}}$. Es gilt:

$$H(v'_{j} \otimes v''_{k}) = H(v'_{j}) \otimes v''_{k} + v'_{j} \otimes H(v''_{k})$$
$$= (n' + n'' - 2(j + k)) (v'_{j} \otimes v''_{k})$$

Also ist W eine Basis aus Eigenvektoren von H. Die Eigenwerte sind n' + n'' - 2l mit $l = 0, \dots, n' + n''$ und $v'_j \otimes v''_k$ mit j + k = 0 $l, j \in \{0, \dots, n'\}, k \in \{0, \dots, n''\}.$ Wir möchten nun schreiben: $\rho_{n'}\otimes\rho_{n''}\cong\rho_{n_1}\oplus\cdots\oplus\rho_{n_r}$ In jeder dieser Darstellungen gibt es einen EV von H der zusätzlich im Kern von E liegt. Dieser erfüllt jeweils $Hw = n_i w$ und Ew = 0. Wir suchen also Vektoren

$$w = \sum_{j=0}^{l} a_j v_j' \otimes v_{l-j}''$$

s.d. Ew = 0. Wir nehmen zunächst an, dass $l \leq \min(n', n'')$, s.d. alle v'_i, v''_{l-i} die in w vorkommen wohldefiniert sind. Man findet durch Korffizientenvergleich:

$$a_j = (-1)^j \frac{(n'-j)!(n''-l+j)!}{j!(l-j)!}$$

Die Dimension des Lösungsraumes des lin GLS $Hw = n_i w$, Ew = 0ist aber die Vielfachheit von der irreduziblen Darstellung ρ_n , in der Zerlegung $\rho_{n'} \otimes \rho_{n''} = \rho_{n_1} \oplus \cdots \oplus \rho_{r_n}$. Wir haben gefunden: $\forall l = 0, \dots, \min(n', n'')$ und n = n' + n'' - 2l ist diese Vielfachheit also gleich 1. Betrachte aber die Dimension der gefundenen Summanden

$$\sum_{l=0}^{\min(n',n'')} \circ .B.d. \stackrel{A}{=} {n' \ge n''} (n' + n'' + 1)(n'' + 1) - 2 \frac{n''(n'' + 1)}{2}$$
$$= (n'' + 1)(n' + 1) = \dim(\rho_{n'} \otimes \rho_{n''})$$

Satz (Cebsch-Gordon Zerlegung). Die Zerlegung eines Tensorproduktes von irreduziblen Darstellungen von SU(2) (bzw. von $\mathfrak{su}(2),\mathfrak{sl}(2,\mathbb{C})$ der Dimensionen n'+1, n''+1 ist:

$$\rho_{n'}\otimes\rho_{n''}\cong\rho_{n'+n''}\oplus\rho_{n'+n''-1}\oplus\cdots\oplus\rho_{|n'-n''|}$$

Die irreduzible Unterdarstellung der Dimension n' + n'' + 1 - 2l ist aufgespannt durch $w_l, Fw_l, \dots, F^{n'+n''-2l}w_l$ wobei, bezüglich der oben definierten Basen,

$$w_l = \sum_{j=0}^{l} (-1)^j \frac{(n'-j)!(n''-l+j)!}{j!(l-j)!} v_j' \otimes v_{l-j}''$$

szekerb@student.ethz.ch Balázs Szekér, 28. September 2021