Testeigenschaften:

Intel Core i7-3770K CPU 3.50GHz (Ivy Bridge), 1 CPU, 8 logical and 4 physical cores

Es wurde ein Array mit 10_000_000 Elementen erstellt welches zu sortieren war. Dieses Array war für alle Ausführungen gleich, damit kein Bias entsteht bzw. alle Methoden denselben Ausgang haben. Jede Methode wurde zwischen 15-100 mal durchlaufen und ein Mittelwert gebildet.

Sollte der Threshold Wert unterschritten werden wird die Sortierung Sequenziell anstatt Parallel durchgeführt.

Der negative Threshold Wert ist zum Vergleichen ob der Naive und Threshold Ansatz gleich sind.

Ergebnis:

// * Summary *								
BenchmarkDotNet=v0.13.5, OS=Windows 11 (10.0.22000.1574/21H2/SunValley) Intel Core i7-3770K CPU 3.50GHz (Ivy Bridge), 1 CPU, 8 logical and 4 physical cores .NET SDK=7.0.201 [Host] : .NET 7.0.3 (7.0.323.6910), X64 RyuJIT AVX DefaultJob : .NET 7.0.3 (7.0.323.6910), X64 RyuJIT AVX								
Method	Threshold	Mean	Error		Gen0	Gen1	Gen2	Allocated
QuickSortSequentially QuickSortParallelNaive QuickSortParallelThreshold MergeSortSequentially MergeSortParallelNaive MergeSortParallelNaive QuickSortParallelNaive QuickSortParallelNaive QuickSortParallelNaive QuickSortParallelNaive MergeSortParallelNaive MergeSortParallelNaive MergeSortParallelNaive QuickSortParallelNaive QuickSortParallelThreshold QuickSortParallelNaive QuickSortParallelNaive MergeSortParallelNaive MergeSortParallelNaive MergeSortParallelNaive QuickSortParallelNaive QuickSortParallelNaive QuickSortParallelNaive QuickSortParallelNaive QuickSortParallelNaive QuickSortParallelNaive MergeSortParallelNaive MergeSortParallelNaive MergeSortParallelNaive MergeSortParallelNaive MergeSortParallelNaive MergeSortParallelNaive MergeSortParallelNaive MergeSortParallelNaive MergeSortParallelThreshold MergeSortParallelThreshold MergeSortParallelNaive MergeSortParallelNaive MergeSortParallelThreshold MergeSo	-2147483648 -2147483648 -2147483648 100000 100000 100000 100000 100000 1250000 1250000 1250000 1250000 2500000 2500000 2500000 2500000	780.7 ms 1,799.5 ms 1,988.4 ms 1,440.3 ms 3,105.6 ms 3,286.7 ms 780.7 ms 1,810.9 ms 1,95.9 ms 1,417.9 ms 3,163.1 ms 606.1 ms 775.9 ms 1,888.8 ms 316.2 ms 1,414.5 ms 3,166.8 ms 576.6 ms 769.4 ms 1,795.9 ms 327.8 ms 1,392.5 ms 3,091.0 ms 818.4 ms	24.99 ms 62.10 ms 63.24 ms 5.04 ms 35.30 ms 3.53 ms 22.21 ms 63.00 ms 11.99 ms 6.26 ms 36.87 ms 4.00 ms 16.58 ms 62.82 ms	5.46 ms 27.90 ms 37.19 ms 23.38 ms 48.48 ms 56.06 ms 4.21 ms 37.77 ms 6.19 ms 20.78 ms 110.35 ms 110.35 ms 15.22 ms	627000.0000 278000.0000 1223000.0000 1224000.0000 1224000.0000 627000.0000 			38.15 MB 2530.43 MB 1440.34 MB 5178.75 MB 38.15 MB 2530.39 MB 38.15 MB 1440.34 MB 5178.75 MB 1440.34 MB 5178.76 MB 1440.34 MB 51788.76 MB 14400.34 MB 517888 MB 14400.34 MB 517888 MB 14400.34 MB 517888 MB 517888 MB
QuickSortSequentially QuickSortParallelNaive		768.7 ms 1,840.9 ms 663.6 ms		4.18 ms 31.39 ms 7.12 ms	627000.0000	2000.0000	- -	38.15 MB 2530.64 MB 38.15 MB
QuickSortParallelThreshold MergeSortSequentially MergeSortParallelNaive MergeSortParallelThreshold	5000000 5000000	003.0 ms 1,411.8 ms 3,080.4 ms 1,386.1 ms	21.91 ms 60.79 ms	7.12 ms 20.49 ms 98.17 ms 12.85 ms	278000.0000 1224000.0000 278000.0000	4000.0000 9000.0000 4000.0000		38.15 MB 1440.34 MB 5178.75 MB 1440.34 MB

Schlussfolgerungen:

Es ist zu erkennen, dass in allen Naiven Implementationen die Software länger für das Sortieren braucht und gleichzeitig am meisten Speicher verwendet.

Die Threshold Variante ist mit Abstand die schnellste (außer der negative Threshold Wert) Methode bei den durchgeführten Tests.

Der Speicherplatzverbrauch beim Quicksort unterscheidet sich kaum zwischen den Sequenziellen und Threshold Ansatz. Beim naiven Ansatz ist ein deutlicher Speicherverbrauch zu sehen.

Auch beim Mergesort ist der Speicherverbrauch zwischen Sequenziellen und Thresholdansatz minimal, nur der naive Ansatz verbraucht deutlich mehr Speicherplatz.

Das Ergebnis ist insofern verwunderlich, dass selbst bei einem kleinen Threshold wie 100k trotzdem noch ein Performance gewinn rauszuholen ist.