Enhanced Gibbs sampling for an application to X-ray imaging

John Bardsley[†], Kevin Joyce^{†*}, Aaron Luttman^{*}

†The University of Montana *National Security Technologies LLC

April 25, 2015

Outline

Modeling Imaging Systems

Convolution with a point spread function Estimating the PSF with calibration images

Markov Chain Monte Carlo methods for posterior inference

Introduction to Monte Carlo estimation The posterior density Gibbs Sampling Collapsing the Gibbs Sampler Results

Imaging Model

Imaging Model Assumptions

▶ A general model blur in imaging is as a linear filter $b = \mathcal{A}f$, where $f : \mathbb{R}^2 \to \mathbb{R}$, $b : \mathbb{R}^2 \to \mathbb{R}$, $a : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ and

$$b(\mathbf{x}) = \iint a(\mathbf{s}; \mathbf{x}) f(\mathbf{s}) d\mathbf{s}.$$

When the blur is translation invariant, the model reduces to integral convolution when there exists a $k : \mathbb{R}^2 \to \mathbb{R}$ so that

$$b(\mathbf{x}) = \iint k(\mathbf{x} - \mathbf{s}) f(\mathbf{s}) d\mathbf{s}$$

▶ When blur is direction invariant or isotropic, this results in one more reduction with $p:[0,\infty)\to\mathbb{R}$ and

$$b(\mathbf{x}) = \iint p(|\mathbf{x} - \mathbf{s}|) f(\mathbf{s}) d\mathbf{s}$$

Measurement error is modeled as Gaussian white noise.

Imaging Model Assumptions

Point Spread Function Estimation

X-ray Radiography

Radially Symmetric PSF

We distinguish the radial profile from the kernel by $k(s, t) = p\left(\sqrt{s^2 + t^2}\right)$

$$b(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} k(s,t) E(x-s) dt ds + \varepsilon_{x,y}$$

$$= \int_{0}^{\infty} p(r) \left(\int_{0}^{2\pi} E(x-r\cos\theta) d\theta \right) r dr + \varepsilon_{x,y}$$

$$= \int_{0}^{\infty} p(r) \cdot g(x,r) r dr + \varepsilon_{x,y}.$$

Observe that g is symmetric about x = 0.

Radial Profile Inverse Problem

For the inverse problem

$$b = \mathcal{G}p + \varepsilon$$
,

- Hence, the discretized problem Gp = b results in an ill-conditioned a matrix
- ► The SVD of a matrix: $\mathbf{G} = U\Sigma V^*$, so the left-inverse is $\mathbf{G}^{\dagger} = V\Sigma^{\dagger}U^*$.

The discrete problem

In order to carry out estimation on a computer, we discretize the integral operator using mid-point quadrature

$$b = \mathcal{G}p + \epsilon \implies b = Gp + \epsilon$$

Further, we discretize the regularization operator \mathcal{L} using finite differencing

$$\|\mathcal{L}p\|_{rad}^2 = \int \left[\frac{1}{r}\frac{d}{dr}\left(r\frac{d}{dr}\right)\right]^2 p(r)rdr \implies \mathbf{L}\mathbf{p} = \mathbf{r}^{-1/2}\odot\mathbf{D}(\mathbf{r}\odot\mathbf{D}\mathbf{p})$$

and midpoint quadrature for the inner products

$$\frac{\lambda}{2} \left\| b - \mathcal{G} p \right\|_{L^2}^2 \implies \underbrace{\frac{\lambda}{2m}}_{\mathbf{p}} \left\| \mathbf{b} - \mathbf{G} \mathbf{p} \right\|_{\mathbb{R}^m}^2$$

and

$$\frac{\delta}{2} \left\| \nabla^2 k \right\|_{L^2} \implies \frac{\delta}{2} \left\| \mathcal{L} \rho \right\|_{rad}^2 \implies \underbrace{\frac{\delta}{2n}}_{\delta} \left\| \mathbf{L} \rho \right\|_{\mathbb{R}^n}^2$$

Buffon's Needle

- Suppose a needle of unit length is dropped on a panelled floor with unit width panels.
- What is the probability that the needle crosses a panel line?

Buffon's Needle

- ightharpoonup C = 1 if the needle crosses and 0 otherwise,
- Let Θ be the angle the bottom point of the needle makes with the horizontal,

Buffon's Needle

- $\blacktriangleright \ \mathbb{P}(C=1|\Theta=\theta)=\sin\theta \text{ and } \mathbb{P}(C=0|\Theta=\theta)=1-\sin\theta.$
- ▶ $\mathbb{P}(\Theta = \theta) = \frac{1}{\pi} I_{[0,\pi]}(\theta)$ where I_S is the indicator function for S.

Bayes' "Theorem"

► Bayes:

(i)
$$\mathbb{P}(A = a|B = b)\mathbb{P}(B = b) = \mathbb{P}(A = a, B = b)$$

(ii) $\int \mathbb{P}(A = a, B = b)db = \mathbb{P}(A = a)$.

$$\blacktriangleright \ \mathbb{P}(C=1|\Theta=\theta)\mathbb{P}(\Theta=\theta)=\mathbb{P}(C=1,\Theta=\theta)$$

So,

$$\mathbb{P}(C=1,\Theta=\theta)=rac{1}{\pi}I_{[0,\pi]}(\theta)\cdot\sin\theta$$

and

$$\mathbb{P}(C=1) = \int \mathbb{P}(C=1,\theta) d\theta = \int_0^{\pi} \frac{\sin \theta}{\pi} d\theta = \frac{2}{\pi}$$

► Drop *N* needles.

▶ Let $\{C_1, \ldots C_N\}$ be the simulated needle crossings.

▶ The Law of Large Numbers says $2N/\sum C_i \rightarrow \pi$.

► The Strong Law of Large Numbers says σ for $\frac{1}{N} \sum C_i$ is $O(1/\sqrt{N})$.

► So for N = 100, $\pi \approx 200/67 \approx 2.9851$ with $\sigma = O(10^{-1})$.

Hierarchical Model for PSF estimation

Let $\pi(\mathbf{x}) = \mathbb{P}(X = \mathbf{x})$ denote the probability density. For λ, δ and \mathbf{p} and

$$oldsymbol{b} = oldsymbol{G}oldsymbol{p} + oldsymbol{\epsilon}$$

assume

- ▶ The likelihood $\pi(\boldsymbol{b}|\boldsymbol{p},\lambda,\delta) = \pi(\boldsymbol{b}|\boldsymbol{p},\lambda) \propto \lambda^{M/2} \exp\left(-\frac{\lambda}{2}\|\boldsymbol{b} \boldsymbol{G}\boldsymbol{p}\|^2\right)$ since ϵ is independent Gaussian noise.
- ► The prior $\pi(\mathbf{p}|\delta,\lambda) = \pi(\mathbf{p}|\delta) \propto \delta^{N/2} \exp\left(-\frac{\delta}{2}\|\mathbf{L}\mathbf{p}\|^2\right)$ since $k \sim \mathcal{N}(0,\nabla^{-2}) \implies p \sim N(0,\mathcal{L}^{-2})$
- ► The hyperpriors $\pi(\lambda) \propto \exp\left(-10^{-4}\lambda\right)$ and $\pi(\delta) \propto \exp\left(-10^{-4}\delta\right)$ are independent "unobjective" Gamma distributions.

Bayesian Posterior

With $\pi(\boldsymbol{b}|\boldsymbol{p},\lambda,\delta),\pi(\boldsymbol{p}|\delta,\lambda)$, and $\pi(\lambda,\delta)$, use Bayes' "Theorem" to obtain

$$\pi_{\mathbf{b}}(\mathbf{p}, \lambda, \delta) \stackrel{\text{def}}{=} \pi(\mathbf{p}, \lambda, \delta | \mathbf{b}) = \pi(\mathbf{b}, \mathbf{p}, \lambda, \delta) / \pi(\mathbf{b})$$

$$\propto \lambda^{M/2} \delta^{N/2} \exp\left(-\frac{\lambda}{2} \left\| \mathbf{b} - \mathbf{G} \mathbf{p} \right\|_{\mathbb{R}^{m}} - \frac{\delta}{2} \left\| \mathbf{L} \mathbf{p} \right\|_{\mathbb{R}^{n}} - 10^{-4} (\lambda + \delta)\right)$$

- This is not a "common" probability density, hence simulations from a computer are not readily available.
- Leveraging conditional density ideas will give us a method to simulate a Monte Carlo method like Buffon's needle problem.
- ▶ Bayes' "Theorem" will allow simulations from the full conditionals $\pi_b(\lambda|\delta, \mathbf{p}), \pi_b(\delta|\lambda, \mathbf{p})$ and $\pi_b(\mathbf{p}|\lambda, \delta)$.

Markov Chains

A transition operator is a linear map on probability densities π, so that

$$\mathcal{K}[\pi](\mathbf{x}') = \int \mathcal{K}(\mathbf{x}, \mathbf{x}') \pi(\mathbf{x}) d\mathbf{x}.$$

where $K(\mathbf{x}, \cdot)$, the transition kernel.

A Markov chain is a stochastic process $\{ \boldsymbol{X}^0, \boldsymbol{X}^1, \boldsymbol{X}^2, \dots, \}$ with $\boldsymbol{X}^k : \Omega \to \mathbb{R}^M$ such that

$$\mathbb{P}\left(\boldsymbol{X}^{k+1} = x^{k+1} | \boldsymbol{X}^{k} = \boldsymbol{x}^{k}, \dots, \boldsymbol{X}^{0} = \boldsymbol{x}^{0}\right) = \mathbb{P}\left(\boldsymbol{X}^{k+1} = \boldsymbol{x}^{k+1} | \boldsymbol{X}^{k} = \boldsymbol{x}^{k}\right)$$
$$= \mathcal{K}(\boldsymbol{x}^{k}, \boldsymbol{x}^{k+1}).$$

So, given an initial density $\pi_0(\mathbf{x}^0)$

$$\mathbb{P}(\boldsymbol{X}^N = \boldsymbol{x}^N) = \mathcal{K}^N[\pi_0](\boldsymbol{x}^N)$$

 Markov chains are not independent and not identically distributed.

An Ergodic Theorem

Theorem[Tierney1994]: Suppose \mathcal{K} defines a stationary Markov chain with invariant density π . If the chain is π -irreducible and Harris recurrent, then π is unique and for any initial density π_0 and all \mathbf{x} but a subset whose measure under π is zero. Moreover,

(i) Almost surely with respect to π , for any integrable h

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}h(\boldsymbol{X}^{n})=\int h(\boldsymbol{x})\pi(\boldsymbol{x})d\boldsymbol{x}.$$
 (1)

(ii) If in addition, the chain is aperiodic, then

$$\lim_{N\to\infty} \|\mathcal{K}^N \pi_0 - \pi\|_{TV} = 0,$$

where $\|\pi\|_{TV}$ denotes the supremum of $\int_A \pi(x) dx$ over all Borel sets A.

Ergodic Theorem Hypotheses

- A Markov chain is stationary and invariant with respect to π if $\mathcal{K}\pi = \pi$.
- ▶ MCMC idea: Design a Markov chain that has $\pi_{\mathbf{b}}(\mathbf{p}, \lambda, \delta)$ as its invariant density, i.e. $\mathcal{K}\pi_{\mathbf{b}} = \pi_{\mathbf{b}}$.
- ▶ Harris recurrence, irreducibility, and aperiodicity are necessary conditions so ensure that the evolution of the chain "explores" the invariant density π enough and avoids transient states.
- The first step to appealing to the ergodic theorem is to ensure invariance with the desired density.

MCMC Inference by the Ergodic Theorem

- ► The first conclusion of the Ergodic theorem says that statistics on the realizations of the chain converge as expected.
- The second conclusion is distributional, and implies that late stages in the chain are "approximately" identically distributed, but not independent.

The Gibbs sampler [Geman and Geman 1984]: Given $(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1})$, simulate

1: $\lambda^{k} \sim \pi_{\mathbf{b}}(\lambda | \delta^{k-1}, \boldsymbol{p}^{k-1})$ 2: $\delta^{k} \sim \pi_{\mathbf{b}}(\delta | \lambda^{k}, \boldsymbol{p}^{k-1})$ 3: $\boldsymbol{p}^{k} \sim \pi_{\mathbf{b}}(\boldsymbol{p} | \lambda^{k}, \delta^{k})$

$$[\mathcal{K}\pi_{\mathbf{b}}](\lambda', \delta', \mathbf{p}') = \iiint_{\mathbf{b}} \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta')\pi_{\mathbf{b}}(\delta'|\lambda', \mathbf{p})\pi_{\mathbf{b}}(\lambda'|\delta, \mathbf{p})\pi_{\mathbf{b}}(\lambda, \delta, \mathbf{p})d\lambda d\delta d\mathbf{p}$$

$$= \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta') \int_{\mathbf{b}} \pi_{\mathbf{b}}(\delta'|\lambda', \mathbf{p}) \int_{\mathbf{b}} \frac{\pi_{\mathbf{b}}(\lambda'|\delta, \mathbf{p})}{\pi_{\mathbf{b}}(\lambda', \delta, \mathbf{p})/\pi_{\mathbf{b}}(\delta, \mathbf{p})} \int_{\mathbf{b}} \pi_{\mathbf{b}}(\lambda, \delta, \mathbf{p})d\lambda d\delta d\mathbf{p}$$

$$= \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta') \int_{\mathbf{b}} \frac{\pi_{\mathbf{b}}(\delta'|\lambda', \mathbf{p})}{\pi_{\mathbf{b}}(\lambda', \delta', \mathbf{p})/\pi_{\mathbf{b}}(\lambda', \delta, \mathbf{p})} \int_{\mathbf{b}} \pi_{\mathbf{b}}(\lambda', \delta, \mathbf{p})d\delta d\mathbf{p}$$

$$\dots$$

$$= \pi_{\mathbf{b}}(\mathbf{p}', \lambda', \delta') \text{ so the Gibbs sampler is invariant}$$

The Gibbs sampler [Geman and Geman 1984]: Given $(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1})$, simulate

1:
$$\lambda^k \sim \pi_{\mathbf{b}}(\lambda | \delta^{k-1}, \boldsymbol{p}^{k-1})$$

2: $\delta^k \sim \pi_{\mathbf{b}}(\delta | \lambda^k, \boldsymbol{p}^{k-1})$
3: $\boldsymbol{p}^k \sim \pi_{\mathbf{b}}(\boldsymbol{p} | \lambda^k, \delta^k)$

$$[\mathcal{K}\pi_{\mathbf{b}}](\lambda', \delta', \mathbf{p}') = \iiint \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta')\pi_{\mathbf{b}}(\delta'|\lambda', \mathbf{p})\pi_{\mathbf{b}}(\lambda'|\delta, \mathbf{p})\pi_{\mathbf{b}}(\lambda, \delta, \mathbf{p})d\lambda d\delta d\mathbf{p}$$

$$= \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta') \int \pi_{\mathbf{b}}(\delta'|\lambda', \mathbf{p}) \int \frac{\pi_{\mathbf{b}}(\lambda'|\delta, \mathbf{p})}{\pi_{\mathbf{b}}(\lambda', \delta, \mathbf{p})/\pi_{\mathbf{b}}(\delta, \mathbf{p})} \int \pi_{\mathbf{b}}(\lambda, \delta, \mathbf{p})d\lambda d\delta d\mathbf{p}$$

$$= \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta') \int \frac{\pi_{\mathbf{b}}(\delta'|\lambda', \mathbf{p})}{\pi_{\mathbf{b}}(\lambda', \delta', \mathbf{p})/\pi_{\mathbf{b}}(\lambda', \mathbf{p})} \int \pi_{\mathbf{b}}(\lambda', \delta, \mathbf{p})d\delta d\mathbf{p}$$

$$\cdots$$

The Gibbs sampler [Geman and Geman 1984]: Given $(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1})$, simulate

1: $\lambda^k \sim \pi_{\mathbf{b}}(\lambda | \delta^{k-1}, \boldsymbol{p}^{k-1})$ 2: $\delta^k \sim \pi_{\mathbf{b}}(\delta | \lambda^k, \boldsymbol{p}^{k-1})$ 3: $\boldsymbol{p}^k \sim \pi_{\mathbf{b}}(\boldsymbol{p} | \lambda^k, \delta^k)$

$$\begin{split} [\mathcal{K}\pi_{\mathbf{b}}](\lambda',\delta',\pmb{p}') &= \iiint \pi_{\mathbf{b}}(\pmb{p}'|\lambda',\delta')\pi_{\mathbf{b}}(\delta'|\lambda',\pmb{p})\pi_{\mathbf{b}}(\lambda'|\delta,\pmb{p})\pi_{\mathbf{b}}(\lambda,\delta,\pmb{p})d\lambda d\delta d\pmb{p} \\ &= \pi_{\mathbf{b}}(\pmb{p}'|\lambda',\delta')\int \pi_{\mathbf{b}}(\delta'|\lambda',\pmb{p})\int \underbrace{\pi_{\mathbf{b}}(\lambda'|\delta,\pmb{p})}_{\pi_{\mathbf{b}}(\lambda',\delta,\mathbf{p})/\pi_{\mathbf{b}}(\delta,\mathbf{p})}\int \pi_{\mathbf{b}}(\lambda,\delta,\pmb{p})d\lambda d\delta d\pmb{p} \\ &= \pi_{\mathbf{b}}(\pmb{p}'|\lambda',\delta')\int \underbrace{\pi_{\mathbf{b}}(\delta'|\lambda',\pmb{p})}_{\pi_{\mathbf{b}}(\lambda',\delta',\mathbf{p})/\pi_{\mathbf{b}}(\lambda',\mathbf{p})}\int \pi_{\mathbf{b}}(\lambda',\delta,\pmb{p})d\delta d\pmb{p} \\ &\cdots \\ &= \pi_{\mathbf{b}}(\pmb{p}',\lambda',\delta'), \text{ so the Gibbs sampler is invariant.} \end{split}$$

The Gibbs sampler [Geman and Geman 1984]: Given $(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1})$, simulate

1: $\lambda^k \sim \pi_{\mathbf{b}}(\lambda | \delta^{k-1}, \boldsymbol{p}^{k-1})$ 2: $\delta^k \sim \pi_{\mathbf{b}}(\delta | \lambda^k, \boldsymbol{p}^{k-1})$ 3: $\mathbf{p}^k \sim \pi_{\mathbf{h}}(\mathbf{p}|\lambda^k, \delta^k)$

$$[\mathcal{K}\pi_{\mathbf{b}}](\lambda', \delta', \mathbf{p}') = \iiint \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta')\pi_{\mathbf{b}}(\delta'|\lambda', \mathbf{p})\pi_{\mathbf{b}}(\lambda'|\delta, \mathbf{p})\pi_{\mathbf{b}}(\lambda, \delta, \mathbf{p})d\lambda d\delta d\mathbf{p}$$

$$= \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta') \int \pi_{\mathbf{b}}(\delta'|\lambda', \mathbf{p}) \int \underbrace{\pi_{\mathbf{b}}(\lambda'|\delta, \mathbf{p})}_{\pi_{\mathbf{b}}(\lambda', \delta, \mathbf{p})/\pi_{\mathbf{b}}(\delta, \mathbf{p})} \int \pi_{\mathbf{b}}(\lambda, \delta, \mathbf{p})d\lambda d\delta d\mathbf{p}$$

$$= \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta') \int \underbrace{\pi_{\mathbf{b}}(\delta'|\lambda', \mathbf{p})}_{\pi_{\mathbf{b}}(\lambda', \delta', \mathbf{p})/\pi_{\mathbf{b}}(\lambda', \mathbf{p})} \int \pi_{\mathbf{b}}(\lambda', \delta, \mathbf{p})d\delta d\mathbf{p}$$

The Gibbs sampler [Geman and Geman 1984]: Given $(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1})$, simulate

```
1: \lambda^k \sim \pi_{\mathbf{b}}(\lambda | \delta^{k-1}, \boldsymbol{p}^{k-1})

2: \delta^k \sim \pi_{\mathbf{b}}(\delta | \lambda^k, \boldsymbol{p}^{k-1})

3: \boldsymbol{p}^k \sim \pi_{\mathbf{b}}(\boldsymbol{p} | \lambda^k, \delta^k)
```

$$[\mathcal{K}\pi_{\mathbf{b}}](\lambda', \delta', \mathbf{p}') = \iiint \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta')\pi_{\mathbf{b}}(\delta'|\lambda', \mathbf{p})\pi_{\mathbf{b}}(\lambda'|\delta, \mathbf{p})\pi_{\mathbf{b}}(\lambda, \delta, \mathbf{p})d\lambda d\delta d\mathbf{p}$$

$$= \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta') \int \pi_{\mathbf{b}}(\delta'|\lambda', \mathbf{p}) \int \underbrace{\pi_{\mathbf{b}}(\lambda'|\delta, \mathbf{p})}_{\pi_{\mathbf{b}}(\lambda', \delta, \mathbf{p})/\pi_{\mathbf{b}}(\delta, \mathbf{p})} \int \pi_{\mathbf{b}}(\lambda, \delta, \mathbf{p})d\lambda d\delta d\mathbf{p}$$

$$= \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta') \int \underbrace{\pi_{\mathbf{b}}(\delta'|\lambda', \mathbf{p})}_{\pi_{\mathbf{b}}(\lambda', \delta', \mathbf{p})/\pi_{\mathbf{b}}(\lambda', \mathbf{p})} \int \pi_{\mathbf{b}}(\lambda', \delta, \mathbf{p})d\delta d\mathbf{p}$$

$$\cdots$$

The Gibbs sampler [Geman and Geman 1984]: Given $(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1})$, simulate

1: $\lambda^k \sim \pi_{\mathbf{b}}(\lambda | \delta^{k-1}, \boldsymbol{p}^{k-1})$ 2: $\delta^k \sim \pi_{\mathbf{b}}(\delta | \lambda^k, \boldsymbol{p}^{k-1})$ 3: $\boldsymbol{p}^k \sim \pi_{\mathbf{b}}(\boldsymbol{p} | \lambda^k, \delta^k)$

$$\begin{split} [\mathcal{K}\pi_{\textbf{b}}](\lambda',\delta',\textbf{p}') &= \iiint \pi_{\textbf{b}}(\textbf{p}'|\lambda',\delta')\pi_{\textbf{b}}(\delta'|\lambda',\textbf{p})\pi_{\textbf{b}}(\lambda'|\delta,\textbf{p})\pi_{\textbf{b}}(\lambda,\delta,\textbf{p})d\lambda d\delta d\textbf{p} \\ &= \pi_{\textbf{b}}(\textbf{p}'|\lambda',\delta')\int \pi_{\textbf{b}}(\delta'|\lambda',\textbf{p})\int \underbrace{\pi_{\textbf{b}}(\lambda'|\delta,\textbf{p})}_{\pi_{\textbf{b}}(\lambda',\delta,\textbf{p})/\pi_{\textbf{b}}(\delta,\textbf{p})}\int \pi_{\textbf{b}}(\lambda,\delta,\textbf{p})d\lambda d\delta d\textbf{p} \\ &= \pi_{\textbf{b}}(\textbf{p}'|\lambda',\delta')\int \underbrace{\pi_{\textbf{b}}(\delta'|\lambda',\textbf{p})}_{\pi_{\textbf{b}}(\lambda',\delta',\textbf{p})/\pi_{\textbf{b}}(\lambda',\textbf{p})}\int \pi_{\textbf{b}}(\lambda',\delta,\textbf{p})d\delta d\textbf{p} \\ &\cdots \\ &= \pi_{\textbf{b}}(\textbf{p}',\lambda',\delta'), \text{ so the Gibbs sampler is invariant.} \end{split}$$

Correlated δ chains

Literature on the Issue

- [Agapiou,Bardsley,Stuart,Papaspiliopoulos, 2014] explained this phenomena theoretically for a general class of Laplacian based Hierarchical samplers for inverse problems.
- ▶ The issue arises when the discretization of p closer approximates the continuum, the correlation in the δ component of the Markov Chain becomes more correlated.
- [VanDyke, Park 2008] provide a general method for removing the dependence of problematic components in the Gibbs sampler, called partial collapse.
- ► The idea has been independently derived in many places, however, if done carelessly [VanDyke, Park 2008] showed that the resulting Markov chain is no longer invariant, although invariance was not proved there.

Given
$$(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1}, \widetilde{\boldsymbol{p}}^{k-1})$$
, simulate

- 1: $\lambda^k \sim \pi_{\mathbf{b}}(\lambda | \delta^{k-1}, \boldsymbol{p}^{k-1})$
- 2: $(\delta^k, \widetilde{\boldsymbol{p}}^k) \sim \pi_{\mathbf{b}}(\delta, \widetilde{\boldsymbol{p}}|\lambda^k)$
- 3: $\boldsymbol{p}^k \sim \pi_{\mathbf{b}}(\boldsymbol{p}|\lambda^k, \delta^k)$

$$\begin{split} [\mathcal{K}\widetilde{\pi_{\mathbf{b}}}] &= \iiint \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta') \pi_{\mathbf{b}}(\delta', \widetilde{\mathbf{p}}'|\lambda') \pi_{\mathbf{b}}(\lambda', \mathbf{p}|\delta) \widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \mathbf{p}, \widetilde{\mathbf{p}}) d\lambda d\delta d\mathbf{p} d\widetilde{\mathbf{p}} \\ &= \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta') \pi_{\mathbf{b}}(\delta', \widetilde{\mathbf{p}}'|\lambda') \iint \pi_{\mathbf{b}}(\lambda'|\delta, \mathbf{p}) \underbrace{\int \widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \mathbf{p}, \widetilde{\mathbf{p}}) d\widetilde{\mathbf{p}} d\lambda}_{\pi_{\mathbf{b}}(\delta, \mathbf{p})} d\delta d\mathbf{p} \\ &= \underbrace{\pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta')}_{\pi_{\mathbf{b}}(\mathbf{p}', \delta', \lambda')/\pi_{\mathbf{b}}(\delta', \lambda')} \pi_{\mathbf{b}}(\delta', \widetilde{\mathbf{p}}'|\lambda') \underbrace{\iint \pi_{\mathbf{b}}(\lambda', \delta, \mathbf{p}) d\delta d\mathbf{p}}_{\pi_{\mathbf{b}}(\lambda')} \\ &= \pi_{\mathbf{b}}(\mathbf{p}', \lambda', \delta') \frac{\pi_{\mathbf{b}}(\widetilde{\mathbf{p}}', \lambda', \delta')}{\pi_{\mathbf{b}}(\lambda', \delta')} \\ &= \underbrace{\pi_{\mathbf{b}}(\mathbf{p}', \lambda', \delta') \frac{\pi_{\mathbf{b}}(\widetilde{\mathbf{p}}', \lambda', \delta')}{\pi_{\mathbf{b}}(\lambda', \delta')}}_{\pi_{\mathbf{b}}(\lambda', \delta')} \end{split}$$

Given
$$(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1}, \widetilde{\boldsymbol{p}}^{k-1})$$
, simulate

1:
$$\lambda^k \sim \pi_{\mathbf{b}}(\lambda | \delta^{k-1}, \boldsymbol{p}^{k-1})$$

2:
$$(\delta^k, \widetilde{\boldsymbol{p}}^k) \sim \pi_{\mathbf{b}}(\delta, \widetilde{\boldsymbol{p}}|\lambda^k)$$

3: $\boldsymbol{p}^k \sim \pi_{\mathbf{b}}(\boldsymbol{p}|\lambda^k, \delta^k)$

$$\begin{split} [\mathcal{K}\widetilde{\pi_{\mathbf{b}}}] &= \iiint \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta') \pi_{\mathbf{b}}(\delta', \widetilde{\mathbf{p}}'|\lambda') \pi_{\mathbf{b}}(\lambda', \mathbf{p}|\delta) \widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \mathbf{p}, \widetilde{\mathbf{p}}) d\lambda d\delta d\mathbf{p} d\widetilde{\mathbf{p}} \\ &= \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta') \pi_{\mathbf{b}}(\delta', \widetilde{\mathbf{p}}'|\lambda') \iint \pi_{\mathbf{b}}(\lambda'|\delta, \mathbf{p}) \underbrace{\int \widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \mathbf{p}, \widetilde{\mathbf{p}}) d\widetilde{\mathbf{p}} d\lambda}_{\pi_{\mathbf{b}}(\delta, \mathbf{p})} \\ &= \underbrace{\pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta')}_{\pi_{\mathbf{b}}(\mathbf{p}', \delta', \lambda') / \pi_{\mathbf{b}}(\delta', \lambda')} \pi_{\mathbf{b}}(\delta', \widetilde{\mathbf{p}}'|\lambda') \underbrace{\int \pi_{\mathbf{b}}(\lambda', \delta, \mathbf{p}) d\delta d\mathbf{p}}_{\pi_{\mathbf{b}}(\lambda')} \\ &= \pi_{\mathbf{b}}(\mathbf{p}', \lambda', \delta') \underbrace{\frac{\pi_{\mathbf{b}}(\widetilde{\mathbf{p}}', \lambda', \delta')}{\pi_{\mathbf{b}}(\lambda', \delta')}}_{\pi_{\mathbf{b}}(\lambda', \delta')} \\ &= \underbrace{\pi_{\mathbf{b}}(\mathbf{p}', \lambda', \delta') \underbrace{\frac{\pi_{\mathbf{b}}(\widetilde{\mathbf{p}}', \lambda', \delta')}{\pi_{\mathbf{b}}(\lambda', \delta')}}_{\pi_{\mathbf{b}}(\lambda', \delta')} \end{split}$$

Given
$$(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1}, \widetilde{\boldsymbol{p}}^{k-1})$$
, simulate

1:
$$\lambda^k \sim \pi_{\mathbf{b}}(\lambda | \delta^{k-1}, \boldsymbol{p}^{k-1})$$

2:
$$(\delta^k, \widetilde{\boldsymbol{p}}^k) \sim \pi_{\mathbf{b}}(\delta, \widetilde{\boldsymbol{p}}|\lambda^k)$$

3:
$$\boldsymbol{p}^k \sim \pi_{\mathbf{b}}(\boldsymbol{p}|\lambda^k, \delta^k)$$

$$\begin{split} [\mathcal{K}\widetilde{\pi_{\mathbf{b}}}] &= \iiint \pi_{\mathbf{b}}(\mathbf{p}'|\lambda',\delta')\pi_{\mathbf{b}}(\delta',\widetilde{\mathbf{p}}'|\lambda')\pi_{\mathbf{b}}(\lambda',\mathbf{p}|\delta)\widetilde{\pi_{\mathbf{b}}}(\lambda,\delta,\mathbf{p},\widetilde{\mathbf{p}})d\lambda d\delta d\mathbf{p}d\widetilde{\mathbf{p}} \\ &= \pi_{\mathbf{b}}(\mathbf{p}'|\lambda',\delta')\pi_{\mathbf{b}}(\delta',\widetilde{\mathbf{p}}'|\lambda')\iint \pi_{\mathbf{b}}(\lambda'|\delta,\mathbf{p})\underbrace{\int \widetilde{\pi_{\mathbf{b}}}(\lambda,\delta,\mathbf{p},\widetilde{\mathbf{p}})d\widetilde{\mathbf{p}}d\lambda}_{\pi_{\mathbf{b}}(\delta,\mathbf{p})} d\delta d\mathbf{p} \\ &= \underbrace{\pi_{\mathbf{b}}(\mathbf{p}'|\lambda',\delta')}_{\pi_{\mathbf{b}}(\mathbf{p}',\delta',\lambda')/\pi_{\mathbf{b}}(\delta',\lambda')} \pi_{\mathbf{b}}(\delta',\widetilde{\mathbf{p}}'|\lambda')\underbrace{\int \pi_{\mathbf{b}}(\lambda',\delta,\mathbf{p})d\delta d\mathbf{p}}_{\pi_{\mathbf{b}}(\lambda',\delta)/\pi_{\mathbf{b}}(\delta',\lambda')} \end{split}$$

$$= \pi_{\mathbf{b}}(\mathbf{p}', \lambda', \delta') \frac{\pi_{\mathbf{b}}(\widetilde{\mathbf{p}}', \lambda', \delta')}{\pi_{\mathbf{b}}(\lambda', \delta')}$$
$$= \widetilde{\pi_{\mathbf{b}}}(\lambda', \delta', \mathbf{p}', \widetilde{\mathbf{p}}')$$

Given
$$\left(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1}, \widetilde{\boldsymbol{p}}^{k-1}\right)$$
, simulate
1: $\lambda^k \sim \pi_{\mathbf{b}}(\lambda | \delta^{k-1}, \boldsymbol{p}^{k-1})$
2: $(\delta^k, \widetilde{\boldsymbol{p}}^k) \sim \pi_{\mathbf{b}}(\delta, \widetilde{\boldsymbol{p}} | \lambda^k)$
3: $\boldsymbol{p}^k \sim \pi_{\mathbf{b}}(\boldsymbol{p} | \lambda^k, \delta^k)$
The associated Markov Chain is invariant with respect to $\widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \boldsymbol{p}, \widetilde{\boldsymbol{p}}) = \pi_{\mathbf{b}}(\lambda, \delta, \boldsymbol{p}) \pi_{\mathbf{b}}(\widetilde{\boldsymbol{p}} | \lambda, \delta)$: $\left[\mathcal{K}\widetilde{\pi_{\mathbf{b}}}\right] = \iiint_{\mathbf{b}} \pi_{\mathbf{b}}(\boldsymbol{p}' | \lambda', \delta') \pi_{\mathbf{b}}(\delta', \widetilde{\boldsymbol{p}}' | \lambda') \pi_{\mathbf{b}}(\lambda', \boldsymbol{p} | \delta) \widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \boldsymbol{p}, \widetilde{\boldsymbol{p}}) d\lambda d\delta d\boldsymbol{p} d\widetilde{\boldsymbol{p}}$ $= \pi_{\mathbf{b}}(\boldsymbol{p}' | \lambda', \delta') \pi_{\mathbf{b}}(\delta', \widetilde{\boldsymbol{p}}' | \lambda') \iint_{\mathbf{b}} \pi_{\mathbf{b}}(\lambda' | \delta, \boldsymbol{p}) \underbrace{\int_{\mathbf{b}} \widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \boldsymbol{p}, \widetilde{\boldsymbol{p}}) d\widetilde{\boldsymbol{p}} d\lambda}_{\pi_{\mathbf{b}}(\delta, \mathbf{p})}$ $= \underbrace{\pi_{\mathbf{b}}(\boldsymbol{p}' | \lambda', \delta')}_{\pi_{\mathbf{b}}(\delta', \lambda', \delta')} \pi_{\mathbf{b}}(\delta', \widetilde{\boldsymbol{p}}' | \lambda') \underbrace{\int_{\mathbf{b}} \pi_{\mathbf{b}}(\lambda', \delta, \boldsymbol{p}) d\delta d\boldsymbol{p}}_{\pi_{\mathbf{b}}(\lambda', \delta', \lambda')/\pi_{\mathbf{b}}(\delta', \lambda', \delta')}$ $= \pi_{\mathbf{b}}(\boldsymbol{p}', \lambda', \delta') \underbrace{\frac{\pi_{\mathbf{b}}(\widetilde{\boldsymbol{p}}', \lambda', \delta')}{\pi_{\mathbf{b}}(\lambda', \delta')}}$

Given
$$\left(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1}, \widetilde{\boldsymbol{p}}^{k-1}\right)$$
, simulate
1: $\lambda^k \sim \pi_{\mathbf{b}}(\lambda|\delta^{k-1}, \boldsymbol{p}^{k-1})$
2: $(\delta^k, \widetilde{\boldsymbol{p}}^k) \sim \pi_{\mathbf{b}}(\delta, \widetilde{\boldsymbol{p}}|\lambda^k)$
3: $\boldsymbol{p}^k \sim \pi_{\mathbf{b}}(\boldsymbol{p}|\lambda^k, \delta^k)$
The associated Markov Chain is invariant with respect to $\widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \boldsymbol{p}, \widetilde{\boldsymbol{p}}) = \pi_{\mathbf{b}}(\lambda, \delta, \boldsymbol{p})\pi_{\mathbf{b}}(\widetilde{\boldsymbol{p}}|\lambda, \delta)$: $[\mathcal{K}\widetilde{\pi_{\mathbf{b}}}] = \iiint_{\boldsymbol{\pi_{\mathbf{b}}}(\boldsymbol{p}'|\lambda', \delta')\pi_{\mathbf{b}}(\delta', \widetilde{\boldsymbol{p}}'|\lambda')\pi_{\mathbf{b}}(\lambda', \boldsymbol{p}|\delta)\widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \boldsymbol{p}, \widetilde{\boldsymbol{p}})d\lambda d\delta d\boldsymbol{p}d\widetilde{\boldsymbol{p}}$ $= \pi_{\mathbf{b}}(\boldsymbol{p}'|\lambda', \delta')\pi_{\mathbf{b}}(\delta', \widetilde{\boldsymbol{p}}'|\lambda')\iint_{\boldsymbol{\pi_{\mathbf{b}}}(\lambda'|\delta, \boldsymbol{p})}\underbrace{\int_{\boldsymbol{\pi_{\mathbf{b}}}(\lambda, \delta, \boldsymbol{p}, \widetilde{\boldsymbol{p}})d\widetilde{\boldsymbol{p}}d\lambda}_{\boldsymbol{\pi_{\mathbf{b}}}(\delta, \boldsymbol{p})}$ $= \underbrace{\pi_{\mathbf{b}}(\boldsymbol{p}'|\lambda', \delta')}_{\pi_{\mathbf{b}}(\delta', \lambda')} \underbrace{\int_{\boldsymbol{\pi_{\mathbf{b}}}(\lambda', \delta, \boldsymbol{p})d\delta d\boldsymbol{p}}_{\boldsymbol{\pi_{\mathbf{b}}}(\lambda', \delta')}$ $\underbrace{\int_{\boldsymbol{\pi_{\mathbf{b}}}(\lambda', \delta, \boldsymbol{p})d\delta d\boldsymbol{p}}_{\boldsymbol{\pi_{\mathbf{b}}}(\lambda', \delta')}$ $\underbrace{\int_{\boldsymbol{\pi_{\mathbf{b}}}(\lambda', \delta', \boldsymbol{p})d\delta d\boldsymbol{p}}_{\boldsymbol{\pi_{\mathbf{b}}}(\lambda', \delta')}$

Given $(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1}, \widetilde{\boldsymbol{p}}^{k-1})$, simulate

1:
$$\lambda^k \sim \pi_{\mathbf{b}}(\lambda | \delta^{k-1}, \boldsymbol{p}^{k-1})$$

2:
$$(\delta^k, \widetilde{\boldsymbol{\rho}}^k) \sim \pi_{\mathbf{b}}(\delta, \widetilde{\boldsymbol{\rho}}|\lambda^k)$$

3:
$$\boldsymbol{p}^k \sim \pi_{\mathbf{b}}(\boldsymbol{p}|\lambda^k, \delta^k)$$

$$[\mathcal{K}\widetilde{\pi_{\mathbf{b}}}] = \iiint \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta') \pi_{\mathbf{b}}(\delta', \widetilde{\mathbf{p}}'|\lambda') \pi_{\mathbf{b}}(\lambda', \mathbf{p}|\delta) \widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \mathbf{p}, \widetilde{\mathbf{p}}) d\lambda d\delta d\mathbf{p} d\widetilde{\mathbf{p}}$$

$$= \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta') \pi_{\mathbf{b}}(\delta', \widetilde{\mathbf{p}}'|\lambda') \iint \pi_{\mathbf{b}}(\lambda'|\delta, \mathbf{p}) \underbrace{\int \widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \mathbf{p}, \widetilde{\mathbf{p}}) d\widetilde{\mathbf{p}} d\lambda}_{\pi_{\mathbf{b}}(\delta, \mathbf{p})} d\delta d\mathbf{p}$$

$$= \underbrace{\pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta')}_{\pi_{\mathbf{b}}(\delta, \mathbf{p})} \underbrace{\int \widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \mathbf{p}, \widetilde{\mathbf{p}}) d\widetilde{\mathbf{p}} d\lambda}_{\pi_{\mathbf{b}}(\delta, \mathbf{p})} d\delta d\mathbf{p}$$

$$=\underbrace{\pi_{\mathbf{b}}(\mathbf{p}'|\lambda',\delta')}_{\pi_{\mathbf{b}}(\mathbf{p}',\delta',\lambda')/\pi_{\mathbf{b}}(\delta',\lambda')}\pi_{\mathbf{b}}(\delta',\widetilde{\mathbf{p}}'|\lambda')\underbrace{\iint_{\pi_{\mathbf{b}}(\lambda',\delta,\mathbf{p})}\pi_{\mathbf{b}}(\lambda',\delta,\mathbf{p})d\delta d\mathbf{p}}_{\pi_{\mathbf{b}}(\lambda')}$$

$$= \pi_{\mathbf{b}}(\mathbf{p}', \lambda', \delta') \frac{\pi_{\mathbf{b}}(\widetilde{\mathbf{p}}', \lambda', \delta')}{\pi_{\mathbf{b}}(\lambda', \delta')}$$
$$= \widetilde{\pi_{\mathbf{b}}}(\lambda', \delta', \mathbf{p}', \widetilde{\mathbf{p}}')$$

Partially Collapsed Sampler

Given $(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1})$, simulate

- 1: $\lambda^k \sim \pi_{\mathbf{b}}(\lambda | \delta^{k-1}, \boldsymbol{p}^{k-1})$
- 2: $\delta^k \sim \pi_{\mathbf{b}}(\delta|\lambda^k)$ 3: $\mathbf{p}^k \sim \pi_{\mathbf{b}}(\mathbf{p}|\lambda^k, \delta^k)$

The associated Markov Chain is invariant with respect to $\int \widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \boldsymbol{\rho}, \widetilde{\boldsymbol{\rho}}) = \int \pi_{\mathbf{b}}(\lambda, \delta, \boldsymbol{\rho}) \pi_{\mathbf{b}}(\widetilde{\boldsymbol{\rho}}|\lambda, \delta) = \pi_{\mathbf{b}}(\lambda, \delta, \boldsymbol{\rho}).$

- The order of the chain matters in the previous arguments.
- Permuting steps 2 and 3 results in a chain that is no longer invariant with respect to π_h .
- Cyclically permuting results in a different sampler as well, however, this does not practically effect the overall chain, only the first and last steps, e.g. $(\mathcal{K}_1 \mathcal{K}_2 \mathcal{K}_2)^N = \mathcal{K}_1 (\mathcal{K}_3 \mathcal{K}_2 \mathcal{K}_1)^{N-1} \mathcal{K}_2 \mathcal{K}_3$

Marginalized Posterior Density

In order to sample $\pi_{\mathbf{b}}(\delta|\lambda)$, we complete the square of the quadratic form in $\pi_{\mathbf{b}}(\lambda, \delta, \mathbf{p})$ and integrate out λ , this results in

$$\pi_{\boldsymbol{b}}(\delta|\lambda) \propto \exp\left((n/2)\delta - \ln|\det\boldsymbol{J}_{\lambda,\delta}| - \frac{\lambda}{2}\langle\boldsymbol{b},\boldsymbol{H}_{\lambda,\delta}\boldsymbol{b}\rangle - 10^{-4}\delta\right),$$

where $\mathbf{J}_{\lambda,\delta} = \lambda \mathbf{G}^T \mathbf{G} + \delta \mathbf{L}$ and $\mathbf{H}_{\lambda,\delta} = \mathbf{I} - \lambda \mathbf{G} \mathbf{J}_{\lambda,\delta}^{-1} \mathbf{G}^T$.

- To draw from this density, we embed a Metropolis-Hastings algorithm within the Gibbs sampler.
- It can be shown that the resulting MCMC algorithm remains invariant.
- Both constants can be carried out using a Cholesky factorization $\mathbf{R}_{\lambda,\delta}^T \mathbf{R}_{\lambda,\delta} = \mathbf{J}_{\lambda,\delta}$ in $(O(n^3))$ flops, and will be required for each Metropolis step.

Metropolis-Hastings within Gibbs Sampling

- We use n_{MH} Metropolis-Hastings steps using a Gaussian proposal with variance γ.
- Due to numerical overflow issues, all computations are carried out on the log scale.
- ► The full implementation is:

```
1: Let \lambda_0, \delta_0, p and \gamma be given.
```

2: Draw
$$\lambda_{k+1}$$
 from $\Gamma\left(n/2 + \alpha, \frac{1}{2} \|\mathbf{A}\mathbf{x}_k - \mathbf{b}\|^2 - \beta\right)$.

3: Set
$$j=1$$
, Compute $\mathbf{R}_0^T \mathbf{R}_0 = \mathbf{J}_{\lambda^k, \delta^{k-1}}$, then $\pi_0 = \log \pi_{\mathbf{b}}(\delta^{k-1} | \lambda^k)$.

4: **for**
$$1 < j < n_{MH}$$
 do
5: Prow \widetilde{s} from $N(\widetilde{s})$

5: Draw
$$\widetilde{\delta}$$
 from $N(\widetilde{\delta}_{j-1}, \gamma)$.

6: Compute
$$\widetilde{\mathbf{R}}^T \widetilde{\mathbf{R}} = J_{\lambda^k, \widetilde{\delta}}$$
, then $\pi_j = \log p(\widetilde{\delta}_j | \mathbf{f} \lambda_k)$.

7: Set
$$\widetilde{\pi} = \pi_j$$
, $\mathbf{R}_j = \widetilde{\mathbf{R}}$ and $\delta_k = \widetilde{\delta}_j$ with probability $\widetilde{\pi}/\pi_j$

9: Draw
$$\boldsymbol{p}_k$$
 from $N(\boldsymbol{R}_k^{-1}\lambda_k \boldsymbol{A}^T \boldsymbol{b}, \boldsymbol{R}_k^{-1})$.

10: Set
$$k = k + 1$$
 and return to 2.

Marginalized δ chains

Results

Algorithm	λ_{MCMC}	δ_{MCMC}	λ - p_{Geweke}	δ - p_{Geweke}	IACT	ESS	#Chol/ESS
	$(\times 10^4)$	$(\times 10^{-8})$					
Gibbs	1.102	6.132	0.998	0.850	36.2	138.0	72.4
PC Gibbs	1.102	5.611	0.992	0.943	7.9	633.0	31.6
$n_{mh} = 1$							
PC Gibbs	1.102	5.515	0.999	0.985	1.3	3799.6	15.8
$n_{mh} = 5$							

Summary and Future Work

- We introduced a novel Hierarchical Bayesian non-parametric model for estimating translation invariant and isotropic image blur with and edge.
- We developed the Partially Collapsed Gibbs sampler from the Gibbs sampler, and showed when partial collapse remained stationary.
- We then implemented the algorithm on a synthetic example using Metropolis with Partially Collapsed Gibbs, and showed that it improves the standard Gibbs sampler.
- Future: Develop the model and algorithm completely in infinite dimensions.
- Future: Adapt the strategies to other imaging models that incorporate radial geometry such as Abel and Radon transforms.

References

Sergios Agapiou, Johnathan M Bardsley, Omiros Papaspiliopoulos, and Andrew M Stuart.

Analysis of the Gibbs sampler for hierarchical inverse problems. SIAM/ASA Journal on Uncertainty Quantification, 2(1):511–544, 2014.

Johnathan M Bardsley.

MCMC-based image reconstruction with uncertainty quantification. *SIAM Journal on Scientific Computing*, 34(3):A1316–A1332, 2012.

Daniela Calvetti and Erkki Somersalo.

An Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing, volume 2.

Springer Science & Business Media, 2007.

A. M. Stuart.

Inverse problems: A Bayesian perspective.

Acta Numerica, 19:451-559, 2010.