Validade de um argumento com regras de inferências

Correção Exercícios

Usar Regras de Inferência para Provar

- 1. $p \rightarrow q$, $p^q \rightarrow r$, $\sim (p^r) \mid \sim p$
 - 1. Dica: ABS, SH, ABS, MT
- 2. $p \vee q \rightarrow r, r \vee q \rightarrow (p \rightarrow (s \leftrightarrow t)), p \land s \mid --- s \leftrightarrow t$
 - 1. Dica: SIMP, AD, MP, AD, MP, MP
- 3. $p \wedge q, p \vee r \rightarrow s \mid -p \wedge s$
 - 1. Dica: SIMP, AD, MP, CONJ

1)
$$p \rightarrow q$$

2)
$$p \wedge q \rightarrow r$$

4) 1 ABS

Absorção (ABS)

$$p \to q \qquad .$$

$$p \to (p \land q)$$

1)
$$p \rightarrow q$$

2)
$$p \wedge q \rightarrow r$$

4)
$$p \rightarrow (p \land q)$$
 1 ABS

$$q \rightarrow r$$

1)
$$p \rightarrow q$$

2)
$$p \wedge q \rightarrow r$$

$$3) \quad \underline{\sim (p \land r)} \quad .$$

4)
$$p \rightarrow (p \land q)$$
 1 ABS

5)
$$p \rightarrow r$$

2,4 SH

6)

5 ABS

Absorção (ABS)

$$p \rightarrow q \qquad .$$

$$p \rightarrow (p \land q)$$

1)
$$p \rightarrow q$$

2)
$$p \wedge q \rightarrow r$$

3)
$$\sim (p \wedge r)$$

- 4) $p \rightarrow (p \land q)$ 1 ABS
- 5) $p \rightarrow r$ 2,4 SH
- 6) $p \rightarrow (p \land r)$ 5 ABS
- 7) 3,6 MT

Modus Tollens (MT)

$$p \rightarrow q$$

~p

1)
$$p \rightarrow q$$

2)
$$p \wedge q \rightarrow r$$

3)
$$\sim (p \wedge r)$$

4)
$$p \rightarrow (p \land q)$$
 1 ABS

5)
$$p \rightarrow r$$
 2,4 SH

6)
$$p \rightarrow (p \land r)$$
 5 ABS

Usar Regras de Inferência para Provar

- 1. $p \rightarrow q$, $p^q \rightarrow r$, $\sim (p^r) \sim p$
 - 1. Dica: ABS, SH, ABS, MT
- 2. $p \vee q \rightarrow r, r \vee q \rightarrow (p \rightarrow (s \leftrightarrow t)), p \land s \mid --- s \leftrightarrow t$
 - 1. Dica: SIMP, AD, MP, AD, MP, MP
- 3. $p \wedge q, p \vee r \rightarrow s \mid -p \wedge s$
 - 1. Dica: SIMP, AD, MP, CONJ

$$p \vee q \rightarrow r, r \vee q \rightarrow (p \rightarrow (s \leftrightarrow t)), p^s \mid -s \leftrightarrow t$$

- 1) $p v q \rightarrow r$
- 2) $r \vee q \rightarrow (p \rightarrow (s \leftrightarrow t))$
- 3) <u>p ^ s</u> .
- 4) ? SIMP

Simplificação (Sm) p ^ q.

p

- 1) $p v q \rightarrow r$
- 2) $r \vee q \rightarrow (p \rightarrow (s \leftrightarrow t))$
- 3) p^s.
- 4) p

3 SIMP

5)

? AD

Adição (Ad) p... p v q

1)
$$p v q \rightarrow r$$

- 2) $r \vee q \rightarrow (p \rightarrow (s \leftrightarrow t))$
- 3) p^s.
- 4) p 3 SIMP
- 5) p v q 4 AD
- 6) ?,? MP

- 1) $p v q \rightarrow r$
- 2) $r \vee q \rightarrow (p \rightarrow (s \leftrightarrow t))$
- 3) <u>p ^ s</u> .
- 4) p

3 SIMP

5) p v q

4 AD

6) r

1,5 MP

7)

? AD

Adição (Ad) p_____. p v q

1)
$$p v q \rightarrow r$$

2)
$$r \vee q \rightarrow (p \rightarrow (s \leftrightarrow t))$$

4) P

3 SIMP

5) p v q

4 AD

6) **r**

1,5 MP

7) rvq

6 AD

8)

?,? MP

Modus Ponens (MP)

$$p \rightarrow c$$

q

1)
$$p v q \rightarrow r$$

2)
$$r \vee q \rightarrow (p \rightarrow (s \leftrightarrow t))$$

- 4) p 3 SIMP
- 5) p v q 4 AD
- 6) r 1,5 MP
- 7) r v q 6 AD
- 8) $p \rightarrow (s \leftrightarrow t)$ 2,7 MP
- 9) **?,?** MP

Modus Ponens (MP)

$$p \rightarrow q$$

<u>p</u>

q

- 1) $p \vee q \rightarrow r$
- 2) $r \vee q \rightarrow (p \rightarrow (s \leftrightarrow t))$
- 3) <u>p ^ s</u> .
- 4) p 3 SIMP
- 5) p v q 4 AD
- 6) r 1,5 MP
- rvq 6AD
- 8) $p \rightarrow (s \leftrightarrow t)$ 2,7 MP
- 9) $(s \leftrightarrow t)$ 4,8 MP

Usar Regras de Inferência para Provar

- 1. $p \rightarrow q$, $p^q \rightarrow r$, $\sim (p^r) \sim p$
 - 1. Dica: ABS, SH, ABS, MT
- 2. $p \vee q \rightarrow r, r \vee q \rightarrow (p \rightarrow (s \leftrightarrow t)), p \land s \mid --- s \leftrightarrow t$
 - 1. Dica: SIMP, AD, MP, AD, MP, MP
- 3. $p \wedge q, p \vee r \rightarrow s \mid -p \wedge s$
 - 1. Dica: SIMP, AD, MP, CONJ

$p ^q, p v r \rightarrow s | -p ^s$

- 1) p ^ q
- 2) $pvr \rightarrow s$
- 3) ? SIMP

Simplificação (Sm) p^q.

- 1) p ^ q
- 2) $pvr \rightarrow s$
- 3) p 1 SIMP
- 4) ? AD

Adição (Ad)

p
.
p v q

- 1) p ^ q
- 2) $pvr \rightarrow s$
- 3) p 1 SIMP
- 4) p v r 3 AD
- 5) ?,? MP

Modus Ponens (MP)
p→ q

<u>p</u>

- 1) p ^ q
- 2) $pvr \rightarrow s$
- 3) p 1 SIMP
- 4) pvr 3AD
- 5) S 2,4 MP
- 6) ?,? CONJ

Conjunção (Cj) p q . p ^ q

- 1) p ^ q
- 2) <u>pvr → s</u>
- 3) p 1 SIMP
- 4) pvr 3AD
- 5) S 2,4 MP
- 6) p ^ s 3,5 CONJ

Conjunção (Cj) p <u>q</u>. p^q

Uma professora de matemática faz as três seguintes afirmações:

"X>Q e Z<Y"

"X>Y e Q>Y, se e somente se Y>Z"

"R≠Q se somente se Y=X"

Sabendo que todas as afirmações da professora são verdadeiras podemos concluir que:

```
"X>Q e Z<Y"

"X>Y e Q>Y, se e somente se Y>Z"

"R≠Q se somente se Y=X"
```

Sabendo que:

Ou A=B, ou B=C, mas não ambos. Se B=D, então A=D. Ora, B=D.

Com base nestas verdades podemos concluir que:

$$A=B \underline{v} B=C$$

$$B=D \rightarrow A=D$$

$$B=D$$

Sabendo que:

$$X=Y \rightarrow X=Z$$

$$X \neq Y \rightarrow X < Z$$

Com base nestas afirmações podemos concluir que:

$$X=Y \rightarrow X=Z$$

$$X \neq Y \rightarrow X < Z$$

Sabendo que:

M=2x+3y, então M=4p+3r. Se M=4p+3r então M=2w-3r. Por outro lado, M=2x+3y ou M=0. Se M=0 então M+H=1.

Com base nestas verdades podemos concluir que:

M=2x+3y
$$\rightarrow$$
M=4p+3r
M=4p+3r \rightarrow M=2w-3r
M=2x+3y v M=0
M=0 \rightarrow M+H=1