PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-017952

(43) Date of publication of application: 20.01.1995

(51)Int.CI.

C07D233/70 A61K 31/415 A61K 31/425 C07D263/38 C07D277/34 C07D401/12 C07D403/12 C07D409/12 C07D417/12 C07D417/12

(21)Application number: 05-159195

(22)Date of filing: 2

29.06.1993

(71)Applicant: NISSAN CHEM IND LTD

(72)Inventor: TANIGAWA KEIZO

SAITO AKIRA

HIROTSUKA SANKO SHIKADA KENICHI

(54) BENZYLIDENE DERIVATIVE

(57) Abstract:

PURPOSE: To obtain the novel substance composed of a specified benzylidene compound derivative, having a strong bronchodilator effect and useful for, e.g. prevention and therapy of chronic reversible obstructive respiratory diseases such as bronchial asthma. bronchitis and adult respiratory distress syndrome. CONSTITUTION: A compound (e.g. diethyl-2,4-dioxoimidazolidine-5-phosphonate) represented by formula I [R is H, a 1 to 10C alkyl, a (substituted) phenyl, formula II (A2 is, e.g. a 1 to 10C alkylene which may contamn 0; Z2 is a phenyl which may be substituted), etc.; X is O, S, amino, etc.: W is H or phosphonate] is reacted with a benzoyl derivative (e.g. 3-cyclopentyloxy-4methoxybenzaldehyde) expressed by formula III [R2 is H or a 1 to 4C alkyl; R3 is a (substituted) cycloalkyl, a (substituted) phenyl, etc.; R4 is H or a 1 to 4C alkyl] or its salt in the presence of a base. The objective benzylidene derivative represented by formula IV and having a strong bronchodilator effect can be obtained thereby.

LEGAL STATUS

[Date of request for examination]
[Date of sending the examiner's decision of rejection]

/DA4/ 9/15/1/ 35/ AAAA 347064DAA07047069D4 9009/09/05

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for application] [Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平7-17952

(43)公開日 平成7年(1995)1月20日

(51) Int. Cl. 6 C07D233/70	識別記号	庁内整理番号	FΙ			技術表示箇所
A61K 31/415	ACF	9454-4C				
31/42	ACE	9454-4C				
31/425	ACD	9454-4C				
C07D263/38						
		審査請求	未請求 請求	対項の数9 OL	(全67頁)	最終頁に続く
(21)出願番号	特願平5-159195	;	(71)出願人	000003986		
				日産化学工業株式	式会社	
(22)出願日	平成5年(1993)6	月29日		東京都千代田区	伸田錦町 3丁	⁻ 目7番地1
			(72)発明者	谷川 啓造		
				千葉県船橋市坪井	井町722番地	1 日産化学
				工業株式会社中學	央研究所内	
			(72)発明者	斎藤 晃		
				千葉県船橋市坪井	片町722番地	1 日産化学
				工業株式会社中學	央研究所内	
			(72)発明者	廣塚 三晃		
				千葉県船橋市坪井	井町722番地	1 日産化学
				工業株式会社中學	央研究所内	
						最終頁に続く

(54) 【発明の名称】 ベンジリデン誘導体

(57) 【要約】

(修正有)

【構成】

により表される化合物又はその塩及びその製法並びにこれらを有効成分として含有することを特徴とする医薬組成物。

【効果】これらの化合物は強い気管支拡張作用を有し、

気管支喘息、気管支炎及び成人呼吸窮迫症候群等の慢性 可逆閉塞性呼吸疾患の有用な予防及び治療薬として有用 である。 【特許請求の範囲】 【請求項1】 一般式 [1] 【化1】

$$R^1$$
 N
 X
 Y
 R^3
 O
 O
 O
 O
 R^2

[式中、R'は水素原子、炭素数1~10の直鎖又は分枝 鎖のアルキル基、炭素数3~7のシクロアルキル基、A' -Z' {A'は水酸基、炭素数1~4の直鎖のアルキル基で /

$$-N$$
 $N-A^2-Z^2$

$$-CON$$
 $N-A^2-Z^2$

(A'は任意の位置にエーテル結合として酸素原子を含ん でもよい炭素数1~10の直鎖又は分枝鎖のアルキレン を、21はフェニル基(該フェニル基はハロゲン原子、炭 素数1~4の直鎖又は分枝鎖のアルキル基、炭素数1~ 4の直鎖又は分枝鎖のアルコキシ基で置換されてもよ い。)、カルボキシル基、又はCO, R'(R'は前記に同 じ。) を示す。) を示す。} を示す。R¹は水素原子、炭 素数1~4の直鎖又は分枝鎖のアルキル基を示す。R'は 任意の位置に水酸基で置換されてもよい炭素数3~7の シクロアルキル基、又はA'-Z'(A'、Z'は前記に同じ。) を示す。R'は水素原子、炭素数1~4の直鎖のアルキル 基を示す。Xは酸素原子、硫黄原子、NR'{R'は水素原 子、炭素数1~10の直鎖又は分枝鎖のアルキル基、炭 素数3~7のシクロアルキル基、A'-Z'(A'、Z'は前記に 同じ。)を示す。)を示す。Yは-CH₂-、又は-CO-を示す。〕で表されるベンジリデン誘導体及び可能な場 合は薬学的に許容し得るその塩。

【請求項2】R'が炭素数1~4までのアルキル基である

$$-N$$
 $N-A^2-Z^2$

$$-CON$$
 $N-A^2-Z^2$

(A' は任意の位置にエーテル結合として酸素原子を含ん でもよい炭素数1~10の直鎖又は分枝鎖のアルキレン を、2 はハロゲン原子、炭素数1~4の直鎖又は分枝鎖 のアルキル基、炭素数 $1\sim4$ の直鎖又は分枝鎖のアルコ 50 び可能な場合は薬学的に許容し得る塩。

置換されてもよく任意の位置にエーテル結合として酸素 原子を含んでもよい炭素数1~10のアルキレンを、2' はフェニル基 (該フェニル基はハロゲン原子、炭素数1 ~4の直鎖又は分枝鎖のアルキル基、炭素数1~4の直 鎖又は分枝鎖のアルコキシ基で置換されてもよい。)、 いずれの位置で置換してもよいチエニル基、ピリジル 基、CO, Rⁱ (Ri は水素原子、炭素数1~4の直鎖又は分枝 鎖のアルキル基を示す。)、NR'R'(R'及びR'はそれぞれ 同一又は異なり水素原子、炭素数1~4の直鎖又は分枝 10 鎖のアルキル基、炭素数3~8の環状アルキル基、フェ ニル基を示すか、R'及びR'が一緒になって炭素数2~6 の環状アルキレンを形成する。)、CONR'R'(R'、R'は前 記に同じ。)、

$$-CON$$
 A^2-Z^2

) 請求項1記載のベンジリデン誘導体及び可能な場合は薬 学的に許容し得る塩。

【請求項3】R¹が任意の位置に水酸基で置換されてもよ い炭素数3~7のシクロアルキル基、又はA'-Z' {A'は 水酸基、炭素数1~4の直鎖のアルキル基で置換されて もよく任意の位置にエーテル結合として酸素原子を含ん でもよい炭素数1~10のアルキレンを、2 はフェニル 基(該フェニル基はハロゲン原子、炭素数1~4の直鎖 又は分枝鎖のアルキル基、炭素数1~4の直鎖又は分枝 鎖のアルコキシ基で置換されてもよい。)、CO, R^s (R^s は 水素原子、炭素数1~4の直鎖又は分枝鎖のアルキル基 を示す。)、NR'R'(R'及びR'はそれぞれ同一又は異なり 水素原子、炭素数1~4の直鎖又は分枝鎖のアルキル 基、炭素数3~8の環状アルキル基、フェニル基を示す か、R'及びR'が一緒になって炭素数2~6の環状アルキ レンを形成する。)、CONR'R'(R'、R'は前記に同 じ。)、

$$-\text{CON}$$
 A^2-Z^2

キシ基で置換されてもよいフェニル基、カルボキシル 基、又はCO, R^{*} (R^{*} は前記に同じ。)を示す。)を示 す。」で表される請求項2記載のベンジリデン誘導体及 【請求項4】R'が水素原子、炭素数1~10の直鎖又は分枝鎖のアルキル基、炭素数3~7のシクロアルキル基、A'-2' {A'は水酸基、炭素数1~4の直鎖のアルキル基で置換されてもよく任意の位置にエーテル結合として酸素原子を含んでもよい炭素数1~10のアルキレンを、2'はフェニル基(該フェニル基はハロゲン原子、炭素数1~4の直鎖又は分枝鎖のアルキル基、炭素数1~4の直鎖又は分枝鎖のアルコキシ基で置換されてもよ

$$-N$$
 $N-A^2-Z^2$

$$-CON$$
 $N-A^2-Z^2$

(A'は任意の位置にエーテル結合として酸素原子を含んでもよい炭素数1~10の直鎖又は分枝鎖のアルキレンを、Z'はフェニル基(該フェニル基はハロゲン原子、炭素数1~4の直鎖又は分枝鎖のアルキル基、炭素数1~4の直鎖又は分枝鎖のアルコキシ基で置換されてもよい。)、カルボキシル基、又はCO, R'(R'は前記に同じ。)を示す。)で表される請求項3記載のベンジリデン誘導体及び可能な場合は薬学的に許容し得る塩。

【請求項5】 XがNR¹である請求項4記載のベンジリデン誘導体及び可能な場合は薬学的に許容し得る塩。

【請求項6】 Yが-CO-である請求項5記載のベンジリデン誘導体及び可能な場合は薬学的に許容し得る塩。

【請求項7】 R'が水素原子である請求項6記載のベンジリデン誘導体及び可能な場合は薬学的に許容し得る塩。 【請求項8】 一般式 (IIA)

【化5】

$$R^1$$
 X
[IIA]
$$-N$$
 $N-A^2-Z^2$

$$-CON$$
 $N-A^2-Z^2$

(A^{i} は任意の位置にエーテル結合として酸素原子を含んでもよい炭素数 $1\sim10$ の直鎖又は分枝鎖のアルキレンを、 I^{i} はフェニル基(該フェニル基はハロゲン原子、炭素数 $1\sim4$ の直鎖又は分枝鎖のアルキル基、炭素数 $1\sim4$ の直鎖又は分枝鎖のアルコキシ基で置換されてもよい)、カルボキシル基、又は CO_{i} R^{i} (R^{i} は前記に同じ。)

い。)、いずれの位置で置換してもよいピリジル基、NR 4 R 7 (R 4 及びR 7 はそれぞれ同一又は異なり水素原子、炭素数 $1\sim4$ の直鎖又は分枝鎖のアルキル基、炭素数 $3\sim8$ の環状アルキル基、フェニル基を示すか、R 4 及びR 7 が一緒になって炭素数 $2\sim6$ の環状アルキレンを形成する。)、CONR 4 R 7 (R 4 、R 7 は前記に同じ。)、【化 4】

$$-N$$
 A^2-Z^2

$$-CON$$
 A^2-Z^2

[式中、R'は水素原子、炭素数1~10の直鎖又は分枝 鎖のアルキル基、炭素数3~7のシクロアルキル基、Al -2' {A'は水酸基、炭素数1~4の直鎖のアルキル基で 置換されてもよく任意の位置にエーテル結合として酸素 20 原子を含んでもよい炭素数 1~10のアルキレンを、2¹ はフェニル基(該フェニル基はハロゲン原子、炭素数1 ~4の直鎖又は分枝鎖のアルキル基、炭素数1~4の直 鎖又は分枝鎖のアルコキシ基で置換されてもよい)、い ずれの位置で置換してもよいチエニル基、ピリジル基、 CO, R'(R'は水素原子、炭素数1~4の直鎖又は分枝鎖の アルキル基を示す。)、NR'R'(R'及びR'はそれぞれ同一 又は異なり水素原子、炭素数1~4の直鎖又は分枝鎖の アルキル基、炭素数3~8の環状アルキル基、フェニル 基を示すか、R'及びR'が一緒になって炭素数2~6の環 30 状アルキレンを形成する。)、CONR'R'(R'、R'は前記に 同じ。)、

【化6】

-CON

$$-N$$
 A^2-Z^2

を示す。)を示す。}を示す。Xは酸素原子、硫黄原子、NR¹ {R¹は水素原子、炭素数 1~10の直鎖又は分枝鎖のアルキル基、炭素数 3~7のシクロアルキル基、A¹-2¹(A¹、2¹は前記に同じ。)を示す。}を示す。Wは水素原子、又はホスホナート基を示す。〕で表される化50 合物と一般式〔III〕

$$(4.7)$$

$$O$$

$$OR^3$$

$$OR^2$$

$$OR^2$$

〔式中、Riは水素原子、炭素数1~4の直鎖又は分枝鎖 のアルキル基を示す。Riは任意の位置に水酸基で置換さ れてもよい炭素数3~7のシクロアルキル基、A'-Z'{A 'は水酸基、炭素数1~4の直鎖のアルキル基で置換さ れてもよく任意の位置にエーテル結合として酸素原子を 含んでもよい炭素数1~10のアルキレンを、2 はフェ

$$-N$$
 $N-A^2-Z^2$

$$-CON$$
 $N-A^2-Z^2$

でもよい炭素数1~10の直鎖又は分枝鎖のアルキレン を、2はハロゲン原子、炭素数1~4の直鎖又は分枝鎖 のアルキル基、炭素数1~4の直鎖又は分枝鎖のアルコ キシ基で置換されてもよいフェニル基、カルボキシル 基、又はCO, R' (R' は前記に同じ。) を示す。) R' は、水 素原子、炭素数1~4の直鎖のアルキル基を示す。}を 示す。〕で表されるベンゾイル誘導体又はその塩を塩基 の存在下反応させることを特徴とする請求項1記載のべ ンジリデン誘導体及び可能な場合は薬学的に許容し得る その塩の製造法。

【請求項9】請求項1の記載のベンジリデン誘導体及び 可能な場合は薬学的に許容し得るその塩を有効成分とす る気管支拡張薬。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、気管支拡張作用を有す る新規なベンジリデン誘導体及び可能な場合は薬学的に 許容される塩、その製造法並びにこれらを有効成分とし て含有する医薬組成物に関する。

[0002]

【従来の技術】気管支喘息、気管支炎及び成人呼吸窮迫 症候群 (Adult Respiratory DistressSyndrome)等の慢 性可逆閉塞性呼吸疾患の治療においては発作時の気道緩 解が重要で有り、かかる目的のために気管支拡張剤が使 用されている。現在臨床使用されている主要な気管支拡 張剤はサルブタモールをはじめとしたβ-刺激薬とテオ フィリンに代表されるキサンチン系薬剤とに大別され る。前者においては、難治化に伴いその効力が減弱する という難点が有り、さらに気管支喘息治療においては頻 回長期投与による症状の悪化も危惧議論されている (Th 50 としてはアレルギー又は炎症治療薬であるが、本発明化

ニル基(該フェニル基はハロゲン原子、炭素数1~4の 直鎖又は分枝鎖のアルキル基、炭素数1~4の直鎖又は 分枝鎖のアルコキシ基で置換されてもよい)、いずれの 位置で置換してもよいチエニル基、ピリジル基、CO,R *(R*は水素原子、炭素数1~4の直鎖又は分枝鎖のアル キル基を示す。)、NR⁶ R'(R⁶ 及びR'はそれぞれ同一又は 異なり水素原子、炭素数1~4の直鎖又は分枝鎖のアル キル基、炭素数3~8の環状アルキル基、フェニル基を 示すか、R' 及びR' が一緒になって炭素数2~6の環状ア 10 ルキレンを形成する。)、CONR'R'(R'、R'は前記に同 じ。)、

$$-CON$$
 A^2-Z^2

(A'は任意の位置にエーテル結合として酸素原子を含ん 20 e New England Journal of Medicine, 321, 1517-1527, 1989).

> 【0003】一方、テオフィリン系薬剤においては、安 全域が狭く使用面の制約を伴っているのが現状である。 上記疾患においては、気道の閉塞を主訴とするものであ るが、その病態は気道の炎症である。従って気道の炎症 を治療する薬剤が望まれている。現在この面での治療薬 は、主にステロイドにとどまっており、副作用という大 きな問題をかかえている。最近、ホスホジエステラーゼ (PDE) IV阻害剤であるロリプラムは、テオフィリンの副 30 作用として危惧されている循環器系の作用が弱く、気管 支拡張作用を持ち、さらに好産球、好中球等の炎症細胞 の機能を抑制する作用を持つ事が報告されている[Nauny n-Schmiedeberg's Arch Pharmacol., 344, 682-690, (1 991), Br. J. Pharmacol., 99, 679-686, 1990].

> 【0004】現在、このような作用をあわせ持つ薬剤 は、今だ開発されておらず、新しい抗喘息剤として大い に期待されるものである。本発明の一般式〔1〕のベン ジリデン誘導体及び可能な場合は薬学的に許容し得るそ の塩と公知文献に記載された化合物との関係を以下に説 40 明する。

- a) アメリカ特許5036079号公報にはベンジリデン基の 置換基R', R'において、アルコキシ基、水酸基であるべ ンジリデン誘導体の記載が有る。医薬的用途としては、 5-リボキシゲナーゼ、シクロオキシゲナーゼ阻害剤であ るが本発明化合物に該当する実施例はなく化合物の例示 についての記載もない。
- b) 日本公開特許公報、特開平262864号公報にはベンジ リデン基の置換基R', R'において、アルコキシ基、水酸 基であるベンジリデン誘導体の記載が有る。医薬的用途

(5)

合物に該当する実施例はなく化合物の例示についての記 載もない。

[0005]

【課題を解決するための手段】本発明者等は気管支拡張作用を有し、さらに抗炎症作用を持つ化合物の探索に鋭意研究を行なった結果、本発明のベンジリデン誘導体および薬学的に許容し得る塩が、強い気管支拡張作用を有しさらに抗炎症作用が大いに期待される化合物である事を見いだし、本発明を完成した。

[0006] 即ち、本発明は一般式 [I] [0007] 【化9】

$$-CON$$
 $N-A^2-Z^2$

【0010】(A'は任意の位置にエーテル結合として酸素原子を含んでもよい炭素数1~10の直鎖又は分枝鎖のアルキレンを、2'はフェニル基(該フェニル基はハロ 30ゲン原子、炭素数1~4の直鎖又は分枝鎖のアルキル基、炭素数1~4の直鎖又は分枝鎖のアルコキシ基で置換されてもよい。)、カルボキシル基、又はCO、R'(R'は前記に同じ。)を示す。)を示す。

【0011】 R^1 は水素原子、炭素数 $1\sim 4$ の直鎖又は分枝鎖のアルキル基を示す。 R^1 は任意の位置に水酸基で置換されてもよい炭素数 $3\sim 7$ のシクロアルキル基、又はA'-2'(A'、2' は前記に同じ。)を示す。R' は水素原子、炭素数 $1\sim 4$ の直鎖のアルキル基を示す。X は酸素原子、硫黄原子、 NR^1 (R^1 は水素原子、炭素数 $1\sim 1$ 0の直鎖又は分枝鎖のアルキル基、炭素数 $3\sim 7$ のシクロアルキル基、A'-2'(A'、2' は前記に同じ。)を示す。 1 を示す。 1 を示す。 1 を示す。 1 を示す。 1 を示す。 1 で表されるベンジリデン誘導体及び可能な場合は薬学的に許容し得るその塩、その製造法並びにこれらを有効成分として含有する医薬組成物に関するものである。

【0012】以下、上記一般式[I]の本発明化合物におけるR'、R'、R'、R'、X及びYについて具体的に挙げ、本発明化合物について詳説する。

【0013】R'としては、水素原子、メチル基、エチル 50 エトキシカルボニル基、n-プロボキシカルボニル基、

【0008】 〔式中、R1は水素原子、炭素数1~10の 直鎖又は分枝鎖のアルキル基、炭素数3~7のシクロア ルキル基、A'-Z' {A'は水酸基、炭素数1~4の直鎖の アルキル基で置換されてもよく任意の位置にエーテル結 合として酸素原子を含んでもよい炭素数1~10のアル キレンを、2'はフェニル基(該ウェニル基はハロゲン原 子、炭素数1~4の直鎖又は分枝鎖のアルキル基、炭素 数1~4の直鎖又は分枝鎖のアルコキシ基で置換されて もよい。)、いずれの位置で置換してもよいチエニル 10 基、ピリジル基、CO, R^f (R^f は水素原子、炭素数 1~4の 直鎖又は分枝鎖のアルキル基を示す。)、NR'R'(R'及び R'はそれぞれ同一又は異なり水素原子、炭素数1~4の 直鎖又は分枝鎖のアルキル基、炭素数3~8の環状アル キル基、フェニル基を示すか、R'及びR'が一緒になって 炭素数2~6の環状アルキレンを形成する。)、CONR'R '(R'、R'は前記に同じ。)、

[0009] 【化10】

$$-N$$
 A^2-Z^2

$$-CON$$
 A^2-Z^2

基、n-プロピル基、i-プロピル基、n-プチル基、 i-ブチル基、 sec-ブチル基、 t-ブチル基、n-ペ ンチル基、i-ペンチル基、 sec-ペンチル基、n-へ キシル基、i-ヘキシル基、sec-ヘキシル基、n-ヘ プチル基、i-ヘプチル基、n-オクチル基、i-オク チル基、n-ノニル基、i-ノニル基、n-デカニル 基、i-デカニル基、シクロプロピル基、シクロブチル 基、シクロペンチル基、シクロヘキシル基、シクロヘブ チル基等を挙げられる。好ましくは、水素原子、メチル 基、エチル基、n-プロピル基、i-プロピル基が挙げ られる。又R'としてA'-2'が挙げられる。 {ここで、A' は水酸基、炭素数1~4の直鎖のアルキル基で置換され 40 てもよく任意の位置にエーテル結合として酸素原子を含 んでもよい炭素数1~10のアルキレンを示す。2'はベ ンゼン環上のオルト位、メタ位、パラ位がメチル基、エ チル基、n-プロピル基、i-プロピル基、n-ブチル 基、iーブチル基、 secーブチル基、tーブチル基、メ トキシ基、エトキシ基、n-プロボキシ基、i-プロボ キシ基、n-ブトキシ基、i-ブトキシ基、sec-ブト キシ基、tーブトキシ基、フッ素原子、塩素原子、臭素 原子、ヨウ素原子等で置換されたフェニル基、無置換の フェニル基、カルボキシル基、メトキシカルボニル基、

iープロポキシカルボニル基、nープトキシカルボニル 基、i-ブトキシカルボニル基、 sec-ブトキシカルボ ニル基、tープトキシカルボニル基、2-ピリジル基、 3-ピリジル基、4-ピリジル基、2-チエニル基、3 - チエニル基、カルバモイル基、N-メチルアミノ基、 N-エチルアミノ基、N-n-プロピルアミノ基、Niープロピルアミノ基、N-n-ブチルアミノ基、N-I-ブチルアミノ基、N-sec-ブチルアミノ基、Ntープチルアミノ基、N、N-ジメチルアミノ基、N、 N-ジエチルアミノ基、N, N-ジ-n-プロピルアミ 10 ノ基、N、N-ジーi-プロピルアミノ基、N、N-ジ -n-プチルアミノ基、N, N-ジ-i-プチルアミノ 基、N, N-ジ- sec-ブチルアミノ基、N, N-ジt-ブチルアミノ基、N-シクロブロピルアミノ基、N ーシクロプチルアミノ基、N-シクロペンチルアミノ 基、N-シクロヘキシルアミノ基、N-シクロヘキシル アミノ基、N-シクロヘプチルアミノ基、N-シクロオ クチルアミノ基、N、Nージシクロプロピルアミノ基、 N, N-ジシクロペンチルアミノ基、N, N-ジシクロ ヘキシルアミノ基、N-メチル-N-シクロペンチルア 20 ミノ基、N-エチル-N-シクロペンチルアミノ基、N -n-プロピル-N-シクロプロピルアミノ基、N-フ ェニルアミノ基、N-メチル-N-フェニルアミノ基、 N-エチル-N-フェニルアミノ基、N-n-プロピル -N-フェニルアミノ基、N-シクロプロピル-N-フ エニルアミノ基、NーシクロペンチルーNーフェニルア ミノ基、1-アジリジノ基、1-アジチジノ基、1-ピ ロリジノ基、1-ピペリジノ基、N-メチルアミノカル ボニル基、N-エチルアミノカルボニル基、N-n-プ ロピルアミノカルボニル基、N-i-ブロピルアミノカ 30 ルボニル基、N-n-ブチルアミノカルボニル基、Ni-ブチルアミノカルボニル基、N- sec-ブチルアミ ノカルボニル基、N-t-ブチルアミノカルボニル基、 N、N-ジメチルアミノカルボニル基、N、N-ジエチ ルアミノカルボニル基、N、N-ジ-n-プロピルアミ ノカルボニル基、N、N-ジーi-プロピルアミノカル ボニル基、N、N-ジ-n-ブチルアミノカルボニル 基、N, N-ジーi-ブチルアミノカルボニル基、N, Nージー secーブチルアミノカルボニル基、N, Nージ - t - プチルアミノカルボニル基、N - シクロプロピル 40 アミノカルボニル基、N-シクロブチルアミノカルボニ ル基、N-シクロペンチルアミノカルボニル基、N-シ クロヘキシルアミノカルボニル基、N-シクロヘプチル アミノカルボニル基、N、N-ジシクロプロピルアミノ カルボニル基、N、N-ジシクロブチルアミノカルボニ ル基、N、N-ジシクロペンチルアミノカルボニル基、 N, N-ジシクロヘキシルアミノカルボニル基、N-メ チルーNーシクロプロピルアミノカルボニル基、N-エ チルーNーシクロプロピルアミノカルボニル基、N-メ チルーN-シクロペンチルアミノカルボニル基、N-エ 50 リジニル基、1-(4-メトキシカルボニルメチル)ピ

チルーN-シクロペンチルアミノカルポニル基、N-n -ブロピル-N-シクロブロピルアミノカルボニル基、 N-n-プロピル-N-シクロペンチルアミノカルボニ ル基、N-メチル-N-シクロペンチルアミノカルボニ ル基、N-フェニルアミノカルボニル基、N-メチルー N-フェニルアミノカルボニル基、N-エチル-N-フ ェニルアミノカルボニル基、N-n-プロピル-N-フ エニルアミノカルボニル基、N-シクロプロピル-N-フェニルアミノカルボニル基、N-シクロペンチル-N -フェニルアミノカルボニル基、1-(4-フェニルメ チル)ピペラジニル又はベンゼン環上のオルト位、メタ 位、パラ位がメチル基、エチル基、n-プロピル基、i ープロピル基、nープチル基、iープチル基、 secープ チル基、t-ブチル基、メトキシ基、エトキシ基、n-プロボキシ基、iープロボキシ基、nープトキシ基、i ープトキシ基、 secープトキシ基、 t ープトキシ基、フ ッ素原子、塩素原子、臭素原子、ヨウ素原子等で置換さ れていてもよい1- (4-置換フェニルメチル) ピペラ ジニル基又は1-(4-メチルカルボキシル)ピペラジ ニル基、1-(4-エチルカルボキシル) ピペラジニル 基、1-(4-n-ブロピルカルボキシル) ピペラジニ ル基、1-(4-i-プロピルカルボキシル) ピペラジ ニル基、1-(4-n-ブチルカルボキシル)ピペラジ ニル基、1-(4-i-ブチルカルボキシル) ピペラジ ニル基、1-(4- sec-ブチルカルボキシル) ピペラ ジニル基、1-(4-t-ブチルカルボキシル)ピペラ ジニル基、1-(4-メトキシカルボニルメチル)ピペ ラジニル基、1-(4-エトキシカルボニルメチル)ピ ペラジニル基、1-(4-エトキシカルボニルメチル) ピペラジニル基、1-(4-エトキシカルボニルエチ ル) ピペラジニル基、1-(4-メトキシカルボニルプ ロピル) ピペラジニル基、1-(4-エトキシカルボニ ルプロピル) ピペラジニル基、1-(4-フェニルメチ ル) ピペリジニル基、又はベンゼン環上のオルト位、メ 夕位、パラ位がメチル基、エチル基、n-プロピル基、 i-プロピル基、n-ブチル基、i-ブチル基、 sec-ブチル基、t-ブチル基、メトキシ基、エトキシ基、n - プロボキシ基、i-プロボキシ基、n-ブトキシ基、 i-ブトキシ基、 sec-ブトキシ基、 t-ブトキシ基、 フッ素原子、塩素原子、臭素原子、ヨウ素原子等で置換 されていてもよい1-(4-置換フェニルメチル)ピペ リジニル基又は1-(4-メチルカルボキシル)ピペリ ジニル基、1-(4-エチルカルボキシル)ピペリジニ ル基、1-(4-n-プロピルカルボキシル) ピペリジ ニル基、1-(4-i-プロピルカルボキシル)ピペリ ジニル基、1-(4-n-ブチルカルボキシル)ピペリ ジニル基、1-(4-i-ブチルカルボキシル)ピペリ ジニル基、1-(4- sec-ブチルカルボキシル)ピペ リジニル基、1-(4-t-ブチルカルボキシル)ピペ

11

ペリジニル基、1-(4-エトキシカルボニルメチル) ピペリジニル基、1-(4-エトキシカルボニルメチ ル) ピペリジニル基、1-(4-エトキシカルボニルエ チル) ピペリジニル基、1-(4-メトキシカルボニル プロピル) ピペリジニル基、1-(4-エトキシカルボ ニルプロピル) ピペリジニル基、1-(4-フェニルメ チル)ピペラジニルカルボニル又はベンゼン環上のオル ト位、メタ位、パラ位がメチル基、エチル基、n-プロ ピル基、iープロピル基、nープチル基、iープチル 基、 sec-ブチル基、t-ブチル基、メトキシ基、エト 10 キシ基、n-プロポキシ基、i-プロポキシ基、n-ブ トキシ基、iープトキシ基、 secープトキシ基、tーブ トキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原 子等で置換されていてもよい1-(4-置換フェニルメ チル) ピペラジニルカルボニル基又は1-(4-メチル カルボキシル) ピペラジニルカルボニル基、1-(4-エチルカルボキシル)ピペラジニルカルボニル基、1-(4-n-プロピルカルボキシル) ピペラジニルカルボ ニル基、1-(4-i-プロピルカルボキシル)ピペラ ジニルカルボニル基、1-(4-n-ブチルカルボキシ 20 ボニル基、N, N-ジエチルアミノカルボニル基、N, ル) ピペラジニルカルボニル基、1-(4-i-ブチル カルボキシル) ピペラジニルカルボニル基、1-(4sec-ブチルカルボキシル) ピペラジニルカルボニル 基、1-(4-t-ブチルカルボキシル) ピペラジニル カルボニル基、1-(4-メトキシカルボニルメチル) ピペラジニルカルボニル基、1-(4-エトキシカルボ ニルメチル) ピペラジニルカルボニル基、1-(4-エ トキシカルボニルメチル) ピペラジニルカルボニル基、 1-(4-エトキシカルボニルエチル)ピペラジニルカ ルボニル基、1-(4-メトキシカルボニルブロピル) ピペラジニルカルボニル基、1-(4-エトキシカルボ ニルブロピル) ピペラジニルカルボニル基、1-(4-フェニルメチル)ピペリジニルカルボニル基、又はベン ゼン環上のオルト位、メタ位、パラ位がメチル基、エチ ル基、n-プロピル基、i-プロピル基、n-ブチル 基、i-ブチル基、 sec-ブチル基、t-ブチル基、メ トキシ基、エトキシ基、n-プロポキシ基、i-プロボ キシ基、n-プトキシ基、i-プトキシ基、sec-プト キシ基、tープトキシ基、フッ素原子、塩素原子、臭素 原子、ヨウ素原子等で置換されていてもよい1- (4- 40 ピペラジニル基、1- (4-n-ブロピルカルボキシ 置換フェニルメチル) ピペリジニルカルボニル基又は1 - (4-メチルカルボキシル) ピペリジニルカルボニル 基、1-(4-エチルカルボキシル)ピペリジニルカル ボニル基、1-(4-n-プロピルカルボキシル)ピペ リジニルカルボニル基、1-(4-i-プロピルカルボ キシル) ピペリジニルカルボニル基、1-(4-n-ブ チルカルボキシル) ピペリジニルカルボニル基、1-(4-i-ブチルカルボキシル) ピペリジニルカルボニ ル基、1- (4- sec-ブチルカルボキシル) ピペリジ ニルカルボニル基、1- (4-t-ブチルカルボキシ

ル) ピペリジニルカルボニル基、1-(4-メトキシカ ルボニルメチル) ピペリジニルカルボニル基、1-(4 ーエトキシカルボニルメチル)ピペリジニルカルボニル 基、1-(4-エトキシカルボニルメチル) ピペリジニ ルカルボニル基、1-(4-エトキシカルボニルエチ ル) ピペリジニルカルボニル基、1-(4-メトキシカ ルボニルプロピル) ピペリジニルカルボニル基、1-(4-エトキシカルボニルプロピル) ピペリジニルカル ボニル基等を挙げることができる。

【0014】上記置換基2'として好ましくは、メチル 基、エチル基、n-プロピル基、メトキシ基、エトキシ 基、フッ素原子、塩素原子、臭素原子等で置換されたフ エニル基、無置換のフェニル基、カルボキシル基、メト キシカルボニル基、エトキシカルボニル基、N, N-ジ メチルアミノ基、N、N-ジエチルアミノ基、N、N-ジシクロプロピルアミノ基、N、N-ジシクロペンチル アミノ基、N-メチル-N-シクロペンチルアミノ基、 N-エチル-N-シクロペンチルアミノ基、N-メチル -N-フェニルアミノ基、N. N-ジメチルアミノカル N-ジ-n-プロピルアミノカルボニル基、N, N-ジ シクロプロピルアミノカルボニル基、N、Nージシクロ ペンチルアミノカルボニル基、N, N-ジシクロヘキシ ルアミノカルボニル基、N-メチル-N-シクロプロピ ルアミノカルボニル基、N-エチル-N-シクロプロピ ルアミノカルボニル基、N-メチル-N-シクロペンチ ルアミノカルボニル基、N-エチル-N-シクロペンチ ルアミノカルボニル基、N-フェニルアミノカルボニル 基、N-メチル-N-フェニルアミノカルボニル基、N -エチル-N-フェニルアミノカルボニル基、N-n-プロピルーN-フェニルアミノカルボニル基、N-シク ロプロピルーN-フェニルアミノカルボニル基、N-シ クロペンチル-N-フェニルアミノカルボニル基、1-(4-フェニルメチル) ピペラジニル又はベンゼン環上 のオルト位、メタ位、パラ位がメチル基、エチル基、メ トキシ基、エトキシ基、フッ素原子、塩素原子、臭素原 子等で置換されていてもよい1-(4-置換フェニルメ チル) ピペラジニル基又は1-(4-メチルカルボキシ ル) ピペラジニル基、1-(4-エチルカルボキシル) ル) ピペラジニル基、1-(4-フェニルメチル) ピペ リジニル基、又はベンゼン環上のオルト位、メタ位、パ ラ位がメチル基、エチル基、n-プロピル基、i-プロ ピル基、メトキシ基、エトキシ基、フッ素原子、塩素原 子、臭素原子等で置換されていてもよい1-(4-置換 フェニルメチル)ピペリジニル基又は1-(4-メチル カルボキシル) ピペリジニル基、1-(4-エチルカル ボキシル) ピペリジニル基、1-(4-n-ブロピルカ ルボキシル) ピペリジニル基、1-(4-フェニルメチ 50 ル) ピペラジニルカルボニル又はベンゼン環上のオルト

位、メタ位、パラ位がメチル基、エチル基、nープロピ ル基、メトキシ基、エトキシ基、フッ素原子、塩素原 子、臭素原子等で置換されていてもよい1-(4-置換 フェニルメチル)ピペラジニルカルボニル基又は1-(4-メチルカルボキシル) ピペラジニルカルボニル 基、1-(4-エチルカルボキシル) ピペラジニルカル ボニル基、1-(4-n-プロピルカルボキシル)ピペ ラジニルカルボニル基、1-(4-フェニルメチル)ピ ペリジニルカルボニル基、又はベンゼン環上のオルト 位、メタ位、パラ位がメチル基、エチル基、n-プロピ 10 イソ、secはセカンダリー、tはターシャリーを意味 ル基、メトキシ基、エトキシ基、フッ素原子、塩素原 子、臭素原子等で置換されていてもよい1-(4-置換 フェニルメチル) ピペリジニルカルボニル基又は1-(4-メチルカルボキシル) ピペリジニルカルボニル 基、1-(4-エチルカルボキシル) ピペリジニルカル ボニル基、1-(4-n-プロピルカルボキシル) ピペ リジニルカルボニル基等を挙げることができる。

【0015】R'の具体例としては、水素原子、メチル 基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、 sec-ブチル基、t-ブチル 20 基等が挙げられ、好ましくは、メチル基、エチル基、n ープロピル基、iープロピル基、nープチル基、secー ブチル基が挙げられ、さらに好ましくはメチル基が挙げ られる。

【0016】R3の具体例としては、シクロプロピル基、 シクロプチル基、シクロペンチル基、シクロヘキシル 基、シクロヘブチル基、1-(2-ヒドロキシ)シクロ プロピル基、1-(2-ヒドロキシ)シクロブチル基、 1- (3-ヒドロキシ) シクロブチル基、1-(2-ヒ ドロキシ)シクロペンチル基、1-(3-ヒドロキシ) シクロペンチル基、1-(2,3-ジヒドロキシ)シク ロペンチル基、1-(2-ヒドロキシ)シクロヘキシル 基、1-(3-ヒドロキシ)シクロヘキシル基、1-(2, 3-ジヒドロキシ)シクロヘキシル基、1-(2. 4-ジヒドロキシ) シクロヘキシル基、又はペと 同じA'-Z'を挙げることができる。好ましくは、シクロ プロピル基、シクロペンチル基、シクロヘキシル基及び R'と同じA'-2'を挙げることができる。

【0017】R'の具体例としては、水素原子、メチル 基、エチル基、n-プロピル基、i-プロピル基、n-40 プチル基、iープチル基、 secープチル基、 tープチル

基等が挙げられる。好ましくは、水素原子、メチル基が 挙げられる。

【0018】Xの具体例としては、酸素原子、硫黄原 子、モノ置換窒素原子(NR¹)が挙げられ、その置換基R¹ としては、R'と同じ置換基が挙げられる。好ましくはモ ノ置換窒素原子(NR') が挙げられる。

【0019】Yは、メチレン基又はカルボニル基が挙げ られ、好ましくはカルボニル基を挙げることができる。 【0020】尚、上記説明においてnはノルマル、iは する。

【0021】一般式〔I〕の本発明化合物における好ま しい化合物としては、

[0022]

【化11】

【0023】 〔式中、R'、R'及びXは前記と同じ。〕 で 表される化合物を挙げることができる。一般式〔1〕の 本発明化合物には、1~9個の不斉炭素原子に基づく光 学活性体ないし立体異性体が包含される。以下本発明化 合物である一般式〔I〕で表されるベンジリデン誘導体 30 及び可能な場合は薬学的に許容しうるその塩に包含され る代表的化合物を表 I に例示するが、本発明はこれによ って何ら限定されるものではない。

【0024】尚、表中のnはノルマル、iはイソ、se c はセカンダリー、 t はターシャリー、Me はメチル 基、Etはエチル基、Prはプロピル基、Buはブチル 基、Hexはヘキシル基、Hepはヘブチル基、Oct はオクチル基、Acはアセチル基、Phはフェニル基を 意味する。又、表I中のQ1~Q32は次の式で表され る基である。

[0025]

【化12】

	15	(9)	特開平 7 16
Q1	$\overline{}$	Q2	$\overline{}$
Q3	$\overline{}$	· Q4	F
Q5	-CI	Q6	————Br
Q7	Me	Q8	Et
Q9	$ \sim$ $ ^{n}P_{I}$	Q10	OMe
Q11	———OEt	Q12	——O ⁿ Pr
Q13	-N	Q14	-N_

Q15
$$-N$$
 $-CO_2H$ Q16 $-N$ $-CH_2PH$

[0026]

Q 1 9
$$-N$$
 $N-CH_2$ $-CI$ $Q 2 0$ $-N$ $N-CH_2$ $-F$

$$Q21$$
 $-N$ $N-CH2CO2H $Q22$ $-N$ $+HCI$$

【0027】表 [0029] I [0028] 【表1】 【化14】

No.	R¹	R²	R³	R ⁴	X	Y	立体化学
1	н	Me	02	Н	NH	-00-	F

1	9						2
2	H	Me	Q2	H	NH	-CO-	2
3	Me	Me	Q2	H	NMe	-CO-	E
4	Me	Me	Q2	H	NMe	-co-	2
5	H	Me	(CH ₂), Q18·2HC1	H	NH	-C0-	Е
6	H	Me	(CH ₂), Q18·2HC1	H	NH	-CO-	2
7	H	Me	(CH ₂), Q18·2HC1	H	NMe	-C0-	E
8	H	Me	(CH ₂) ₃ Q18·2HC1	H	NMe	-CO-	2
9	H	Me	CH₂ COQ18·2HC1	H	NH	-CO-	E
10	H	Me	CH₂ COQ18·HC1	H	NH	-CO-	2
11	H	Me	(CH ₂), Q18·HC1	H	NH	-CO-	E
12	H	Me	(CH ₂), Q18·2HC1	H	NH	-CO-	2
13	H	Me	(CH ₂) ₂ Ph	Н	NH	-CO-	E
14	H	Me	(CH ₂), Ph	H	NH	-co-	2
15	H	Me	(CH ₂) ₂ Q18·2HC1	H	NMe	-C0-	· E
16	H	Me	(CH ₂), Q18·2HC1	H	NMe	-CO-	Z
17	H	Me	(CH ₂), CO, Et	H	NH	-CO-	Z
18	H	Me	(CH ₂) ₂ CO ₂ Et	H	NH	-CO-	E
19	H	Me	(CH ₂), Ph	H	NH	-CO-	2
20	H	Me	(CH ₂), Ph	H	NH	-C0-	E
21	H	Me	(CH ₂), Ph	H	NH	-CO-	Z
22	H	Me	(CH ₂), Ph	H	NH	- C0-	E
23	Н	Me	(CH,), N (Et), ·HC1	Н	NH	-co-	E

[0030]

【表2】 表 I (続)

No.	. R¹	R²	R*	R⁴	X	Y	立体化学
24	Н	Me	(CH ₂), N(Et), ·HCl	Н	NH	-C0-	Z
25	H	Me	(CH ₂) _s CONE t ₂	H	NH	-co-	E
26	H	Me	(CH ₂) _s CONE t,	H	NH	-CO-	Z
27	H	Me	(CH ₂), CO, Et	H	NH	-CO-	E
28	H	Me	(CH ₂), CO, Et	H	NH	-CO-	Z
29	H	Me	(CH ₂), CO ₂ Na	H	NH	-C0-	E
30	H	Me	(CH ₂), CO, Na	H	NH	-CO-	Z
31	. Н	Me	Q2	H	NMe	-C0-	E
32	Н	Me	Q2	Н	NMe	-C0-	
33	CH ₂ CO ₂ Me	Мe	Q2	H	NMe	-C0-	E
34	CH ₂ CH (OH) CH ₂ CH ₃	Me	Q2	H	NMe	-C0-	E
35	(CH,), CO, Et	Me	Q2	H	NMe	-C0-	E
36	CH ₂ CO ₂ H	Me	Q2	Н	NMe	-C0-	E
37	(CH,), CO, H	Me	Q2	Н	NMe	-C0-	E
38	CH ₂ CON (Et) ₂	Me	Q2	Н	NMe	-C0-	Е
39	(CH ₂), CONE t ₂	Me	Q2	Н	NMe	-C0-	Е
40	CH, CO, Me	Me	Q2	Н	NMe	-C0-	. 2
41	CH, CH (OH) CH, CH,	Me	Q2	Н	NMe	-C0-	. 2
42	(CH ₂), CO, Et	Me	Q2	Н	NMe	-C0-	. 2
43	CH, CO, H	Me	'Q2	Н	NMe	-CO-	. Z
	CH, CONEt,	Me	Q2	Н	NMe	-C0-	. 2
45	(CH,), CONE t,	Me	Q2	H	NMe	-C0-	. 2
			₹				

[0031]

【表3】 表 I (続)

No.	R ¹	R²	R ^a	R4	X	Y	立体化学
46	(CH ₂), CO, H	I Me	Q2	Н	NMe	-co-	- Z
47	Н	Me	Q1	H	NH	-co-	- Е
48	Н	Me	Q1	H	NH	-CO-	. 2
49	H	Me	Q3	Н	NH	-co-	· E
50	H	Me	Q3	H	NH	-CO-	. 2
51	H	Me	CH (CH3) CH2 Ph	Н	NH	-co-	Е
52	Н	Me	CH (CH,) CH, Ph	Н	NH	-co-	2
53	H	Me	CH (CH,) CH, CH, Ph	Н	NH	-co-	E
54	H	Me	СН (СН,) СН, СН, Рһ	Н	NH	-co-	2
55	H	Me	CH (CH,) (CH,), Ph	Н	NH	-co-	Е
56	H	Me	CH(CH ₃)(CH ₂), Ph	H	NH	-co-	Z
57	H	Me	CH, CH (CH,) CH, Ph	H	NH	-CO-	Е
58	Н	Me	CH, CH (CH,) CH, Ph	Н	NH	-CO-	Z
59	H	Me	CH, CH, CH (CH,) Ph	H	NH	-CO-	Е
60	. Н	Me	CH, CH, CH (CH,) Ph	H	NH	-co-	Z
61	H	Me	(CH ₂), Q4	H	NH	-co-	E
62	Н	Me	(CH,), Q4	H	NH	-CO-	Z
63	Н	Me	(CH ₂), Q4	H	NH	-co-	E
64	H	Me	(CH ₂) ₁ Q4	H	NH	-CO-	Z
65	Н	Me	(CH ₂), Q4	Н	NH	-CO-	E
66	H	Me	(СЩ), Q4	Н	NH	-CO-	Z
67	Н	Me	CH (CH,) CH, Q4	Н	NH	-co-	E

[0032]

30 【表4】 表 I (続)

No.	R'	R²	R³	R ⁴	X	Y	立体化学
68	Н	Me	СН (СН,) СН, Q4	Н	NH	-co-	2
69	H	Me	CH (CH,) CH, CH, Q4	H	NH	-CO-	E
70	H	Me	СН (СН,) СН, СН, Q4	H	NH	-CO-	2
71	H	Me	CH (CH,) (CH,), Q4	H	NH	-co-	E
72	H	Me	СН (СН,) (СН,), Q4	Н	NH	-CO-	Z
73	H	Me	CH, CH (CH,) CH, Q4	H	NH	-CO-	E
74	H	Me	CH, CH (CH,) CH, Q4	Н	NH	-co-	2
75	H	Me	CH, CH, CH (CH,) Q4	H	NH	-`C0-	E
76	H	Me	CH, CH, CH (CH,) Q4	H	NH	-co-	Z
77	H	Me	(CH ₂), Q5	Н	NH	-co-	E
78	H	Me	(CH,), Q5	H	NH	-CO-	2
79	H	Me	(CH,), Q5	H	NH	-co-	E
80	H	Me	(CII,), Q5	Н	NH	-co-	Z
81	H	Me	(CH₂), Q5	Н	NH	co-	E
82	H	Me	(CH,), Q5	H	NH	-co-	2
83	Н	Me	CH (CH,) CH, Q5	Н	NH	-CO-	Е

				. \			
0.4	n		(13	5)			
23 84	s H	Ме	СН (СН,) СН, Q5	Н	MILI	-00-	Z
85	n H	Me	CH (CH,) CH, CH, Q5	л Н	NH NH	-co-	E
86	Н	Me	CH (CH ₂) CH ₂ CH ₂ Q5	Н	NH	-CO-	Z
87	Н	Me	CH (CH ₂) (CH ₂), Q5	H	NH	-co-	E
88	Н	Me	CH (CH ₃) (CH ₃) ₃ Q5	H	NH	-CO-	2
89	Н	Me	CH, CH (CH ₃) CH, Q5	н	NH	-co-	E
						_	
			表 I	【ā (続	表 5 】)		
No.	R¹	R²	R³	R ⁴	Х	Y	立体化学
90	Н	Me	CH, CH (CH,) CH, Q5	Н	NH	-co-	7
91	H	Me	CH, CH, CH (CH,) Q5	H	NH	-co-	Е
92	Н	Me	CH, CH, CH (CH,) Q5	Н	NH	-co-	Z
93	Н	Me	(CH ₂), Q7	Н	NH	-co-	E
94	Н	Me	(CH ₂), Q7	H	NH	-co-	Z
95	H	Me	(CH ₂), Q7	H	NH	-CO-	E
96	Н	Me	(CH ₂), Q7	Н	NH	-CO-	2
97	Н	Me	(CH₂), Q7	H	NH	-CO-	E
98	Н	Me	(CH₂),Q7	H	NH	-CO-	Z
99	H	Me	СН (СН,) СН, Q7	H	NH	-co-	Е
100	H	Me	СН (СН,) СН, Q7	Н	NH	-CO-	Z
101	Н	Me	CH (CH,) CH, CH, Q7	Н	NH	- C0-	E
102	H	Me	CH (CH,) CH, CH, Q7	H	NH	-CO-	Z
103	Н	Me	CH (CH ₂) (CH ₂), Q7	H	NH	-CO-	E
104	H	Me	CH (CH ₃) (CH ₂), Q7	H	NH	-co-	Z
105	H	Me	CH2 CH (CH3) CH2 Q7	H	NH	-CO-	E
106	H	Me	CH ₂ CH (CH ₃) CH ₂ Q7	H	NH	-CO-	2
107	H	Me	СН, СН, СН (СН,) Q7	H	NH	-CO-	E
108	H	Me	CH ₂ CH ₂ CH (CH ₃) Q7	H	NH	-CO-	Z
109	H	Me	(CH ₂), Q10	H	NH	-CO-	E
110	H	Me	(CH ₂), Q10	H	NH	-CO-	Z
111	Н	Me	(CH ₂), Q10	H	NH	-co-	E
					長6】		
			表 I 	(続 ———)		
No.	R¹	R²	R³	R¹	Х	Y	立体化学
112	Н	Me	(CH ₂) ₂ Q10	Н	NH	-cq-	2
113	H	Me	(CH ₂), Q10	H	NH	-CO-	E
		17	/ATT \ A1A	11	ATTT	0.0	7

(CH₂)₄Q10

CH (CH,) CH, Q10

CH (CH₃) CH₂ Q10

CH (CH,) CH, CH, Q10

CH (CH,) CH, CH, Q10

CH (CH,) (CH,), Q10

CH (CH,) (CH,), Q10

CH, CH (CH,) CH, Q10

H

H

H

H

H

H Me

H Me

Н

114

115

116

117

118

119

120

121

Me

Me

Me

Me

Me

Me

H

H

Н

H

H

H

Н

H

2

E

Z

E

2

E

Z

E

-C0-

-C0-

-CO-

-CO-

-CO-

-CO-

-CO-

-CO-

NH

NH

NH

NH

NH

NH

NH

NH

[0033]

[0034]

25	5						26
122	H	Me	CH, CH (CH,) CH, Q10	H	NH	-C0-	2
123	H	Me	CH2 CH2 CH (CH2) Q10	H	NH	-CO-	E
124	H	Me	CH, CH, CH (CH,) Q10	H	NH	-C0-	Z
125	H	Me	(СН,), Q22	Н	NH	-C0-	E
126	H	Me	(CH ₂), Q22	H	NH	-C0-	2
127	H	Me	(CH ₂), Q22	H	NH	-CO-	E
128	H	Me	(CH ₂), Q22	H	NH	-C0-	2
129	H	Me	(CH ₂), Q22	H	NH	-CO-	E
130	Н	Me	(CH ₂), Q22	H	NH	-CO-	2
131	H	Me	CH (CH,) CH, Q22	H	NH	-C0-	E
132	H	Me	СН (СН,) СН, Q22	H	NH	-CO-	. 2
133	H	Me	CH (CH,) CH, CH, Q22	H	NH	-CO-	E
	122 123 124 125 126 127 128 129 130 131	123 H 124 H 125 H 126 H 127 H 128 H 129 H 130 H 131 H 132 H	122 H Me 123 H Me 124 H Me 125 H Me 126 H Me 127 H Me 128 H Me 129 H Me 130 H Me 131 H Me 132 H Me	122 H Me CH, CH (CH,) CH, Q10 123 H Me CH, CH, CH (CH,) Q10 124 H Me CH, CH, CH (CH,) Q10 125 H Me (CH,), Q22 126 H Me (CH,), Q22 127 H Me (CH,), Q22 128 H Me (CH,), Q22 129 H Me (CH,), Q22 130 H Me (CH,), Q22 131 H Me CH (CH,) CH, Q22 132 H Me CH (CH,) CH, Q22	122 H Me CH, CH (CH,) CH, Q10 H 123 H Me CH, CH, CH (CH,) Q10 H 124 H Me CH, CH, CH (CH,) Q10 H 125 H Me (CH,), Q22 H 126 H Me (CH,), Q22 H 127 H Me (CH,), Q22 H 128 H Me (CH,), Q22 H 129 H Me (CH,), Q22 H 130 H Me (CH,), Q22 H 131 H Me CH (CH,) CH, Q22 H 132 H Me CH (CH,) CH, Q22 H	122 H Me CH, CH (CH,) CH, Q10 H NH 123 H Me CH, CH, CH (CH,) Q10 H NH 124 H Me CH, CH, CH (CH,) Q10 H NH 125 H Me (CH,), Q22 H NH 126 H Me (CH,), Q22 H NH 127 H Me (CH,), Q22 H NH 128 H Me (CH,), Q22 H NH 129 H Me (CH,), Q22 H NH 130 H Me (CH,), Q22 H NH 131 H Me CH (CH,), Q22 H NH 131 H Me CH (CH,), Q22 H NH	122 H Me CH, CH (CH,) CH, Q10 H NH -C0- 123 H Me CH, CH (CH,) Q10 H NH -C0- 124 H Me CH, CH (CH,) Q10 H NH -C0- 125 H Me (CH,), Q22 H NH -C0- 126 H Me (CH,), Q22 H NH -C0- 127 H Me (CH,), Q22 H NH -C0- 128 H Me (CH,), Q22 H NH -C0- 129 H Me (CH,), Q22 H NH -C0- 130 H Me (CH,), Q22 H NH -C0- 131 H Me CH (CH,) CH, Q22 H NH -C0- 132 H Me CH (CH,) CH, Q22 H NH -C0-

[0035]

【表7】 表 I (続)

No.	R'	R²	R ^a	R¹	X	Y	立体化学
134	Н	Me	CH (CH ₂) CH ₂ CH ₂ Q22	Н	NH	-co-	Z
135	H	Me	CH (CH ₂) (CH ₂), Q22	H	NH	-CO-	E
136	H	Me	CH (CH ₂) (CH ₂), Q22	H	NH	-co-	Z
137	H	Me	CH ₂ CH (CH ₃) CH ₂ Q22	H	NH	-CO-	E
138	H	Me	CH ₂ CH (CH ₃) CH ₂ Q22	H	NH	-CO-	2
139	H	Me	CH2 CH2 CH (CH3) Q22	H	· NH	-co-	E
140	H	Me	CH ₂ CH ₂ CH (CH ₃) Q22	H	NH	-CO-	2
141	Н	Me	(CH,),Q23	Н	NH	-CO-	Е
142	Н	Me	(CH ₂), Q23	H	NH	-CO-	Z
143	H	Me	(CH ₂), Q23	H	NH	-CO-	E
144	Н	Me	(CH ₂), Q23	H	NH	-CO-	Z
145	H	Me	(CH ₂), Q23	H	NH	-CO-	E
146	H	Me	(CH ₂), Q23	H	NH	-CO-	Z
147	H	Me	СН (СН,) СН, Q23	Н	NH	-CO-	E
148	H	Me	СН (СН,) СН, Q23	H -	NH	-CO-	Z
149	H	Me	CH (CH ₃) CH ₂ CH ₂ Q23	H	NH	-CO-	E
150	H	Me	CH (CH,) CH, CH, Q23	H	NH	-CO-	Z
151	H	Me	CH (CH,) (CH,), Q23	H	NH	-CO-	E
152	H	Me	CH (CH ₃) (CH ₂), Q23	H	NH	-co-	2
153	H	Me	CH, CH (CH,) CH, Q23	H	NH	-co-	E
154	H	Me	CH (CH ₂) CH ₂ CH ₂ Q23	H	NH	-co-	2
155	H	Me	CH, CH, CH (CH,) Q23	H	NH	-CO-	E

[0036]

【表8】 表 I (続)

No.	R¹	R²	R³	R¹	Х	Y	立体化学
156	Н	Me	CH, CH, CH (CH,) Q23	Н	NH	-CO-	7
157	H	Me	(CH ₂), Q24	H	NH	-CO-	E
158	H	Me	(CH ₂), Q24	H	NH	-:CO-	7.
159	H	Me	(CH ₂) ₃ Q24	H	NH	-CO-	E

27	7			•			28
160	H	Me	(CH ₂), Q24	H	NH	-CO-	Z
161	H	Me	(CH ₂), Q24	Н	NH	-CO-	Е
162	H	Me	(CH ₂), Q24	Н	NH	-CO-	2
163	H	Me	CH (CH,) CH, Q24	H	NH	-CO-	E
164	H	Me	CH (CH,) CH, Q24	Н	NH	-CO-	2
165	H	Me	CH (CH,) CH, CH, Q24	H	NH	-CO-	E
166	H	Me	СН (СН,) СН, СН, Q24	H	NH	-CO-	Z
167	H	Me	СН (СН,) (СН,), Q24	H	NH	-co-	E
168	H	Me	CH (CH ₂) (CH ₂), Q24	H	NH	-CO-	Z
169	H	Me	CH ₂ CH (CH ₃) CH ₂ Q24	Н	NH	-CO-	E
170	H	Me	CH ₂ CH (CH ₂) CH ₂ Q24	Н	NH	-CO-	Z
171	H	Me	CH ₂ CH ₂ CH (CH ₂) Q24	H	NH	-CO-	E
172	H	Me	CH ₂ CH ₁ CH (CH ₂) Q24	H	NH	-CO-	2
173	H	Me	(CH ₂), Q25	H	NH	-CO-	E
174	H	Me	(CH ₂), Q25	H	NH	-CO-	2
175	H	Me	(CH ₂), Q25	H	NH	-CO-	E
176	H	Me	(CH ₂), Q25	H	NH	-CO-	2
177	H	Me	(CH ₄), Q25	H	NH	-CO-	E

[0037]

20 【表9】 表 I (続)

No.	R¹	R²	R ²	R¹	X	Υ	立体化学
178	Н	Me	(CH ₁), Q25	Н	NH	-co-	Z
179	H	Me	CH (CH ₂) CH ₂ Q25	H	NH	-co-	E
180	H	Me	CH (CH ₂) CH ₂ Q25	H	NH	-CO-	Z
181	H	Me	CH (CH ₃) CH ₂ CH ₂ Q25	H	NH	-CO-	E
182	H	Me	СН (СН,) СН, СН, Q25	H	NH	-co-	Z
183	H	Me	CH (CH ₂) (CH ₂), Q25	H	NH	-co-	E
184	H	Me	CH (CH ₃) (CH ₂), Q25	H	NH	-CO-	2
185	H	Me	CH ₂ CH (CH ₃) CH ₂ Q25	H	NH	-CO-	E
186	H	Me	CH ₂ CH (CH ₃) CH ₂ Q25	H	NH	-CO-	Z
187	H	Me	CH ₂ CH ₂ CH (CH ₃) Q25	H	NH	-co-	E
188	H	Me	CH, CH, CH (CH,) Q25	H	NH	-CO-	Z
189	H	Me	(CH ₂), Q26	H	NH	-co- ·	E
190	H	Me	(CH ₂), Q26	H	NH	-CO-	Z
191	H	Me	(CH ₂), Q26	H	NH	-CO-	E
192	H	Me	(CH ₂) ₁ Q26	H	NН	-co-	Z
193	H	Me	(CH ₂), Q26	H	NH	-CO-	E
194	H	Me	(CH ₂), Q26	H	NH	-co-	7.
195	H	Me	CH (CH,) CH, Q26	H	NH	-CO-	Е
196	H	Me	CH (CH,) CH, Q26	H	NH	-CO-	Z
197	H	Me	CH (CH ₂) CH ₂ CH ₂ Q26	H	NH	-CO-	E
198	H	Me	CH (CH,) CH, CH, Q26	H	NH	-CO-	Z
199	H	Me	CH (CH ₂) (CH ₂), Q26	H	NH	-CO-	Е

[0038]

【表10】

			(16)			特
29)						30
No.	R'	R²	R³	R¹	X	Y	立体化学
 200	Н	Me	CH (CH ₂) (CH ₂), Q26	Н	NH	-co-	2
201	H	Me	CH, CH (CH,) CH, Q26	H	NH	-co-	E
202	H	Me	CH ₂ CH (CH ₃) CH ₂ Q26	H	NH	-CO-	Z
203	H	Me	CH, CH, CH (CH,) Q26	H	NH	-co-	E
204	H	Me	CH, CH, CH (CH,) Q26	H	NH	-CO-	Z
205	H	Me	CH, CO, Et	H	NH	-co-	E
206	H	Me	CH2 CO2 Et	H	NH	-CO-	2
207	Н	Me	CH (CH,) CH, CO, Et	H	NH	-CO-	E
208	H	Me	CH (CH ₃) CH ₂ CO ₂ E t	H	NH	-CO-	2
209	H	Me	CH (CH,) CH, CH, CO, Et	H	NH	-CO-	E
210	H	Me	CH (CH,) CH, CH, CO, Et	H	NH	-CO-	2
211	H	Me	CH (CH,) (CH,), CO, Et	H	NH	-CO-	E
212	H	Me	CH (CH,) (CH,), CO, Et	H	NH	-CO-	Z
213	H	Me	(CH ₂) ₂ OCH ₂ CO ₂ Et	H	NH	-co-	E
214	H	Me	(CH ₂), OCH, CO, Et	H	NH	-co-	2

[0039]

215

216

217

218

219

220

221

Н

H

H

H

H

H

H

Мe

Me

Me

Me

Me

Me

(CH₂), OCH, CO, Et

(CH₂), OCH₂ CO₂ Et

CH2 CO2 H

CH₂ CO₂ H

Me CH (CH₃) CH₂ CH₂ CO₂ H

CH (CH,) CH, CO, H

CH (CH,) CH, CO, H

【表11】

H

H

Н

H

H

H

NH

NH

NH

NH

NH

NH

NH

-C0-

-C0-

-C0-

-C0-

-CO-

-CO-

-CO-

E

Z

E

Z

E

Z

E

表 I (続)

No.	R¹	R²	R ^a	R ⁴	X	Y	立体化学
222	Н	Ме	CH (CH ₂) CH ₂ CH ₂ CO ₂ H	Н	NH	-co-	7.
223	H	Me	CH (CH ₂) (CH ₂) ₁ CO ₂ H	H	NH	-CO-	E
224	H	Me	CH (CH ₃) (CH ₂), CO ₂ H	H	NH	-CO-	7
225	H	Me	(CH ₂), OCH ₂ CO ₂ H	H	NH	-CO-	E
226	H	Me	(CH ₂), OCH ₂ CO ₂ H	H	NH	-CO-	2
227	H	Me	(CH ₂), OCH ₂ CO, H	H	NH	-CO-	E
228	H	Me	(CH ₂) ₂ OCH ₂ CO ₂ H	H	NH	-CO-	2
229	H	Me	CH ₂ CH (OH) CH ₂ CH ₃	H	NH	-co-	E
230	H	Me	CH ₂ CH (OH) CH ₂ CH ₃	H	NH	-CO-	7.
231	H	Me	CH ₂ CH (OH) (CH), OE t	H	NH	-CO-	E
232	H	Me	CH ₂ CH (OH) (CH), OE t	H	NH	-co-	7
233	H	Me	(CH,), NEt,	H	NH	-C0-	E
234	H	Me	(CH ₂), NEt,	H	NH	-CO-	2
235	H	Me	(CH ₂) s NEt,	H	NH	-CO-	E
236	H	Me	(CH ₂) _s NEt ₂	H	NH	-CO-	2
237	H	Me	CH (CH,) CH, NE 1,	H	NH	-CO-	E
238	H	Me	CH (CH ₂) CH ₂ NEt ₂	H	NH	-CO-	Z
239	H	Me	CH (CH ₃) CH ₂ CH ₂ NE t ₂	H	NH	-CO-	E
240	H	Me	CH (CH ₃) CH ₂ CH ₂ NE t ₂	H	NH	-CO-	2
241	H	Me	CH(CH ₃)(CH ₂), NEt,	H	NH	-CO-	E

242 H Me CH(CH,)(CII,), NE1, H NH -CO- Z 243 H Me CH(CH,)(CH,), NE1, H NH -CO- E

[0040]

【表12】 表 I (続)

No.	R'	R²	R³	R¹	X	Y	立体化学
244	Н	Me	CH (CH ₂) (CH ₂) ₅ NEt ₂	Н	NH	-co-	Z
245	H	Me	(CH ₂) ₂ Q13·HC1	H	NH	-CO-	E
246	H	Me	(CH,), Q13·HC1	H	NH	-co-	2
247	H	Me	(CH ₂), Q13·HC1	H	NH	-CO-	E
248	H	Me	(CH ₂), Q13·HC1	H	NH	-co-	2
249	H	Me	(CH ₂), Q13·HC1	H	NH	-CO-	E
250	H	Me	(CH ₂) ₅ Q13·HC1	Н	NH	-co-	2
251	H	Me	CH (CH,) CH, Q13·HC1	Н	NH	-CO-	E
252	H	Me	CH (CH,) CH, Q13·HC1	Н	NH	-CO-	2
253	H	Me	CH (CH,) CH, CH, Q13·HC1	H	NH	-CO-	Е
254	H	Me	CH (CH,) CH, CH, Q13·HC1	Н	NH	-CO-	2
255	H	Me	CH (CH ₂) (CH ₂), Q13·HC1	Н	NH	-CO-	E
256	Н	Me	CH(CH ₂)(CH ₂), Q13·HC1	Н	NH	-CO-	2
257	H	Me	CH (CH ₃) (CH ₂), Q13·HC1	Н	NH	-CO-	E
258	H	Me	CH (CH ₂) (CH ₂), Q13·HC1	H	NH	-CO-	Z
259	H	Me	(CH ₂), Q14·HC1	H	NH	-CO-	E
260	H	Me	(CH ₂), Q14·HC1	Н	NH	-CO-	2
261	H	Me	(CH ₂) ₃ Q14·HC1	H	NH	-co-	E
262	H	Me	(CH ₂) ₃ Q14·HC1	H	NH	-CO-	2
263	H	Me	(CH ₂) ₆ Q14·HC1	H	NH	-co-	E
264	H	Me	(CH ₂) ₅ Q14·HC1	Н	NH	-CO-	2
265	H	Me	CH (CH ₃) CH ₇ Q14·HC1	Н	NH	-CO-	E

[0041]

【表13】 表 I (続)

No.	R¹	R²	R ³	R ⁴	X	Y	立体化学
266	Н	Ме	CH (CH,) CH, Q14·HC1	Н	NH	-co-	Z
267	Н	Me	CH (CH ₃) CH ₂ CH ₂ Q14·HC1	Н	NH	-CO-	Е
268	H	Me	CH (CH ₃) CH ₂ CH ₂ Q14·HC1	H	NH	-CO-	2
269	Н	Me	CH (CH ₃) (CH ₂), Q14·HC1	H	NH	-CO-	E
270	H	Me	CH (CH,) (CH,), Q14 · HC1	H	NH	-CO-	2
271	H	Me	CH (CH,) (CH,), Q14 · HC1	H	NH	-CO-	E
272	Н	Me	CH (CH,) (CH,), Q14·HC1	Н	NH	-co-	Z
273	Н	Me	(CH ₂), Q15·HC1	H	NH	-co-	E
274	H	Me	(CH ₂), Q15·HC1	Н	NH	-co-	2
275	H	Me	(CH,),Q15·HC1	Н	NH	-co-	E
276	H	Me	(CH ₂), Q15·HC1	Н	NH	-co-	2
277	Н	Me	(CH ₂), Q15·HC1	Н	NH	-co-	E
278	Н	Me	(CH ₂) _s Q15·HC1	Н	NH	-co-	2
279	Н	Me	CH (CH ₄) CH, Q15·HC1	H	NH	-co-	E

[0042]

No.	Rt	R²	R³	R ⁴	X	Y	立体化学
288	Н	Me	(CH,), Q16·HC1	Н	NH	-co-	Z
289	Н	Me	(CH ₂), Q16·HC1	H	NH	-CO-	E
290	Н	Me	(CH ₂), Q16·HC1	H	NH	-CO-	Z
291	H	Me	(CH ₂), Q16·HC1	H	NH	-CO-	E
292	Н	Me	(CH ₂), Q16·HC1	H	NH	-CO-	Z
293	Н	Me	CH (CH ₂) CH ₂ Q16 · HC1	Н	NH	-CO-	Е
294	H	Me	CH (CH ₃) CH ₂ Q16 · HC1	H	NH	-CO-	Z
295	H	Me	CH (CH ₃) CH ₂ CH ₂ Q16·HC1	H	NH	-CO-	Е
296	H	Me	CH (CH,) CH, CH, Q16 · HC1	H	NH	-co-	Z
297	Н	Me	CH (CH ₃) (CH ₂), Q16·HC1	H	NH	-CO-	Е
298	Н	Me	CH (CH ₃) (CH ₂), Q16·HC1	Н	NH	- C0-	Z
299	Н	Me	CH (CH ₃) (CH ₂) , Q16 · HC1	H	NH	-CO-	E
300	Н	Me	CH (CH ₃) (CH ₂) ₅ Q16·HC1	Н	NH	-co-	Z
301	Н	Me	(CH ₂) ₂ Q17·2HC1	H	NH	-CO-	Е
302	Н	Me	(CH ₂) ₂ Q17·2HC1	H	NH	-CO-	Z
303	H	Me	(CH ₂), Q17·2HC1	H	NH	-co-	Е
304	Н	Me	(CH ₂), Q17·2HC1	Н	NH	-CO-	Z
305	H	Me	`(CH₂), Q17·2HC1	Н	NH	-CO-	Е
306	H	Me	(CH ₂), Q17·2HC1	H	NH	-CO-	Z
307	Н	Me	CH (CH,) CH, Q17 · 2HC1	Н	NH	-CO-	E
308	Н	Me	CH (CH,) CH, Q17 · 2HC1	H	NH	-co-	Z
309	Н	Me	CH (CH ₂) CH ₂ CH ₂ Q17 · 2HC1	H	NH	-co-	E

[0043]

【表15】 表 I (続)

No.	Ŗ¹	R²	R³	R¹	Х	Υ ,	立体化学
310	Н	Me	CH (CH ₂) CH ₂ CH ₂ Q17 · 2HC1	Н	NH	-co-	2
311	H	Me	CH (CH ₃) (CH ₂), Q17·2HC1	Н	NH	-CO-	E
312	H	Me	CH (CH ₃) (CH ₂), Q17·2HC1	H	NH	-CO-	2
313	H	Me	CH (CH ₃) (CH ₂), Q17 · 2HC1	H	NH	-CO-	Е
314	Н	Me	CH (CH,) (CH,), Q17 · 2HC1	Н	NH	-CO-	2
315	Н	Me	(CH,),Q18·2HC1	Н	NH	-C0-	E
316	Н	Me	(CH,),Q18·2HC1	H	НИ	-C0-	2
317	Н	Me	(CH ₂), Q18·2HC1	Н	NН	-C0-	E

			(19)					特開平7-17952
3!	5							36
318	H	Me	(CH ₂), Q18·2HC1	Н	NH	-CO-	2	
319	H	Me	(CH ₂), Q18·2HC1	Н	NH	-co-	E	
320	H	Me	(CH ₂), Q18·2HC1	Н	NH	-CO-	2	
321	H	Me	CH (CH,) CH, Q18 · 2HC1	Н	NH	-CO-	E	
322	H	Me	CH (CH,) CH, Q18 · 2HC1	Н	NH	-CO-	2	
323	Н	Me	CH (CH,) CH, CH, Q18 · 2HC1	Н	NH	-CO-	E	
324	Н	Me	CH (CH,) CH, CH, Q18 · 2HC1	H	NH	-CO-	Z	
325	H	Me	CH (CH ₂) (CH ₂), Q18·2HC1	H	NH	-CO-	E	
326	Н	Me	CH (CH ₂) (CH ₂), Q18·2HC1	Н	NH	-CO-	Z	
327	Н	Me	CH (CH ₂) (CH ₂), Q18·2HC1	Н	NH	-CO-	E	
328	H	Me	CH (CH ₂) (CH ₂), Q18·2HC1	H	NH	-CO-	2	
329	H	Me	(CH ₂) ₂ Q19·2HC1	Н	NH	-co-	E	
330	H	Me	(CH ₂), Q19·2HC1	H	NH	-CO-	Z	
331	H	Me	(CH ₂), Q19·2HC1	Н	NH	-co-	E	

[0044]

【表16】 表 I (続)

No.	R¹	R²	R³	R ⁴	X	Y	立体化学
332	Н	Me	(CH ₂), Q19·2HC1	Н	NH	-co-	Z
333	H	Me	(CH ₂) ₅ Q19·2HC1	Н	NH	-co-	E
334	H	Me	(CH ₂) ₅ Q19·2HC1	Н	NH	-CO-	Z
335	H	Me	CH (CH₃) CH₂ Q19 · 2HC1	Н	NH	-CO-	E
336	H	Me	CH (CH ₂) CH ₂ Q19 · 2HC1	Н	NH	-CO-	Z
337	H	Me	CH (CH ₂) CH ₂ CH ₂ Q19 · 2HC1	Н	NH	-CO-	E
338	H	Me	CH (CH,) CH, CH, Q19 · 2HC1	H	NH	-CO-	Z
339	H	Me	CH (CH ₂) (CH ₂), Q19·2HC1	H	NH	-CO-	E
340	H	Me	CH (CH ₃) (CH ₂), Q19·2HC1	Н	NH	-CO-	2
341	H	Me	CH (CH ₃) (CH ₂), Q19·2HC1	Н	NH	-CO-	E
342	H	Me	CH (CH ₃) (CH ₂) ₅ Q19·2HC1	H	NH	-CO-	Z
343	H	Me	(CH ₂), Q21·HC1	H	NH	-co-	E
344	H	Me	(CH ₂), Q21·HC1	H	NH	-CO-	2
345	H	Me	(CH ₂), Q21·HC1	Н	NH	-co-	E
346	H	Me	(CH₂), Q21·HC1	H	NH	-co-	2
347	H	Me	(CH ₂), Q21·HC1	H	NH	-CO-	Е
348	H	Me	(CH ₂) ₅ Q21·HC1	H	NH	-CO-	2
349	Н	Me	CH (CH,) CH, Q21 · HC1	Н	NH	-CO-	E
350	Н	Me	CH (CH ₂) CH ₂ Q21 · HC1	H	NH	-co-	Z
351	Н	Me	CH (CH,) CH, CH, Q21 · HC1	H	NH	-co-	E
			•				

[0045]

352

353

H Me

H Me

【表17】 表 I (続)

H NH

H NH

-co-

-CO-

2

E

No.	R¹	R²	R³	R'	Х	Y	立体化学
354	Н	Me	CH (CH,) (CH,), Q21 · HC1	Н	NH	-co-	2
355	H	Me	CH (CH ₂) (CH ₂) Q21·HC1	H	NH	-CO-	E

CH (CH,) CH, CH, Q21 · HC1

CH (CH,) (CH,), Q21 · HC1

37	7						38
356	Н	Me	CH (CH ₂) (CH ₂), Q21·HC1	Н	NH	-CO-	Z
357	H	Me	(CH ₂), Q28·HC1	Н	NH	-CO-	E
358	Н	Me	(CH ₂), Q28·HC1	Н	NH	-CO-	2
359	H	Me	(CH ₂), Q28·HC1	Н	NH	-CO-	E
360	H	Me	(CH ₂), Q28·HC1	H	NH	-CO-	Z
361	Н	Me	(CH ₂), Q28·HC1	H	NH	-CO-	E
362	H	Me	(CH₂) s Q28·HC1	H	NH	-CO-	Z
363	H	Me	CH (CH ₃) CH ₂ Q28 · HC1	H	NH	-CO-	E
364	H	Me	СН (СН₃) СН₂ Q28 · НС1	Н	NH	-CO-	Z
365	H	Me	CH (CH,) CH, CH, Q28 · HC1	Н	NH	-CO-	E
366	H	Me	CH (CH,) CH, CH, Q28 · HC1	Н	NH	-CO-	2
367	H	Me	CH (CH ₂) (CH ₂), Q28·HC1	Н	NH	-co-	E
368	H	Me	CH (CH ₂) (CH ₂), Q28·HC1	Н	NH	-CO:-	Z
369	H	Me	CH (CH ₂) (CH ₂) ₅ Q28·HC1	H	NH	-CO-	E
370	H	Me	CH (CH ₂) (CH ₂), Q28·HC1	H	NH	-CO-	Z
371	H	Me	(CH ₂) ₂ Q30·HC1	H	NH	-co-	E
372	H	Me	(CH ₂) ₂ Q30·HC1	H	NH	-CO-	Z
373	H	Me	(CH ₂), Q30·HC1	H	NH	-CO-	E
374	H	Me	(CH₂), Q30·HC1	H	NH	-co-	Z
375	H	Me	(CH₂) ₅ Q30 · HC1	H	NH	-CO-	E

[0046]

【表18】

表 [(続)

No.	R¹	R²	R3	R4	X	Υ	立体化学
376	Н	Me	(CH,), Q30·HC1	Н	NH	-co-	Z
377	H	Me	CH (CH,) CH, Q30 · HC1	Н	NH	-CO-	E
378	H	Me	CH (CH,) CH, Q30 · HC1	Н	NH	-CO-	Z
379	H	Me	CH (CH ₂) CH ₂ CH ₂ Q30 · HC1	Н	NH	-CO-	E
380	H	Me	CH (CH,) CH, CH, Q30 · HC1	Н	NH	-co-	Z
381	Н	Me	CH (CH ₂) (CH ₂), Q30·HC1	H	NH	-CO-	E
382	H	Me	CH(CH ₂)(CH ₂), Q30·HC1	H	NH	-CO-	Z
383	H	Me	CH (CH ₂) (CH ₂) , Q30 · HC1	H	NH	-CO-	E
384	H	Me	CH (CH ₂) (CH ₂), Q30·HC1	H	NH	-CO-	Z
385	H	Me	(CH ₂), Q31·HC1	H	NH	-CO-	E
386	H	Me	(CH ₂), Q31·HC1	H	NH	-CO-	Z
387	H	Me	(CH ₂), Q31·HC1	H	NH	-CO-	E
388	H	Me	(CH ₂) ₂ Q31·HC1	H	NH	-CO-	2
389	Н	Me	(CH ₂) ₆ Q31·HC1	H	NH	-CO-	E
390	H	Me	(CH ₂), Q31·HC1	H	NH	-CO-	Z
391	H	Me	CH (CH,) CH, Q31 · HC1	H	NH	-CO-	Е
392	H	Me	CH (CH,) CH, Q31 · HC1	- H	NH	-CO-	2
393	H	Me	CH (CH,) CH, CH, Q31 · HC1	H	NH	-CO-	E
394	H	Me	CH (CH3) CH2 CH2 Q31 · HC1	Н	NH	-CO-	Z
395	Н	Me	CH (CH ₂) (CH ₂), Q31·HC1	H	NH	-co-	E
396	H	Ме	CH (CH,) (CH,), Q31 · HC1	Н	NH	-CO-	Z
397	Н	Me	CH (CH,) (CH,), Q31 · HC1	Н	NH	-CO-	E

表 [(続)

No.	R'	R ²	R³	R¹	X	Y	立体化学
398	Н	Me	CH(CH,)(CH,), Q31 ·HC1	Н	NH	-co-	Z
399	Н	Me	(CH₂), Q32·HC1	H	NH	-co-	E
400	Н	Me	(CH₂), Q32·HC1	H	NH	-co-	Z
401	Н	Me	(CH ₂), Q32·HC1	Н	NH	-co-	E
402	Н	Me	(CH₂), Q32·HC1	Н	NH	-co-	Z
403	Н	Me	(CH ₂), Q32·HC1	Н	NH	-co-	Е
404	H	Me	(CH ₂) ₅ Q32·HC1	H	NH	- C0-	Z
405	H	Me	CH (CH,) CH, Q32·HC1	H	NH	-CO-	Е
406	H	Me	CH (CH,) CH, Q32 · HC1	Н	NH	-co-	Z
407	H	Me	CH (CH,) CH, CH, Q32 · HC1	Н	NH	-CO-	E
408	H	Me	CH (CH,) CH, CH, Q32 · HC1	H	NH	-CO-	Z
409	H	Me	CH (CH ₂) (CH ₂), Q32·HC1	H	NH	-CO-	E
410	H	Me	CH (CH ₂) (CH ₂), Q32·HC1	Н	NH	-CO-	2
411	H	Me	CH (CH ₂) (CH ₂), Q32·HC1	H	NH	-CO-	E
412	H	Me	CH (CH ₂) (CH ₂), Q32·HC1	Н	NH	-CO-	Z
413	H	Me	CH ₂ CONE t ₂	Н	NH	-CO-	E
414	H	Me	CH ₂ CONE t ₂	Н	NH	-CO-	Z
415	H	Me	(CH ₂), CONEt,	Н	NH	-CO-	Е
416	H	Me	(CH ₂), CONEt ₂	Н	NH	-CO-	Z
417	H	Me	CH (CH ₃) CH ₂ CONE t ₂	Н	NH	-CO-	E
418	Н	Me	CH (CH ₃) CH ₂ CONE t ₂	Н	NH	-CO-	Z
419	Н	Me	CH(CH ₂)(CH ₂), CONEt ₂	Н	NH	-CO-	E

[0048]

【表20】 表 I (続)

No.	R¹	R²	R ³	R4	X	Y	立体化学
420	Н	Me	CH(CH,)(CH,),CONEt,	Н	NH	-co-	Z
421	H	Me	CH₂ COQ13	H	NH	-CO-	E
422	H	Me	CH ₂ COQ13	Н	NH	-CO-	Z
423	H	Me	(CH ₂), COQ13	Н	NH	-CO-	Е
424	H	Me	(CH ₂), COQ13	Н	NH	-CO-	2
425	H	Me	(CH ₂) ₅ COQ13	H	NH	-CO-	Е
426	H	Me	(CH₂) ₅ COQ13	H	NH	-CO-	2
427	H	Me	CH (CH ₂) CH ₂ COQ13	Н	NH	-CO-	E
428	H	Me	CH (CH ₃) CH ₂ COQ13	Н	NH	-CO-	Z
429	Ĥ	Me	CH(CH ₂)(CH ₂), COQ13	H	NH	-C0-	Е
430	Н	Me	CH(CH ₂)(CH ₂), COQ13	Н	NH	-CO-	2
431	H	Me	CH ₂ COQ14	Н	NH	-CO-	E
432	H	Me	CH₂ COQ14	Н	NH	-CO-	Z
433	H	Me	(CH ₂), COQ14	H	NH	-CO-	E
434	H	Me	(CH ₂), COQ14	Н	NH	-CO-	Z
435	Н	Me	(CH ₂) ₅ COQ14	Н	NH	-CO-	E
436	H	Me	(CH ₂) ₅ COQ14	Н	NH	-CO-	Z
437	H	Me	CH (CH ₃) CH ₂ COQ14	Ħ	NH	-CO-	E

41							42
438	H	Me	CH (CH,) CH, COQ14	H	NH	-CO-	Z
439	H	Me	CH (CH,) (CH,), COQ14	Н	NH	-CO-	E
440	H	Me	CH (CH,) (CH,), COQ14	Н	NH	-CO-	Z
441	H	Me	CH ₂ COQ15	Н	NH	-CO-	E

[0049]

【表21】 表 I (続)

No.	R'	R²	R³	R⁴	X	Y	立体化学
442	Н	Me	CH ₂ COQ15	Н	NH	-co-	7
443	H	Me	(CH ₂), COQ15	H	NH	-CO-	E
444	Н	Me	(CH ₂), COQ15	H	NH	-CO-	2
445	H	Me	(CH ₂), COQ15	H	NН	-CO-	E
446	H	Me	(CH ₂), COQ15	H	NH	-co-	2
447	H	Me	CH (CH,) CH, COQ15	H	NH	-co-	E
448	H	Me	CH (CH,) CH, COQ15	H	NH	-CO-	2
449	H	Me	CH (CH,) (CH,), COQ15	H	NH	-CO-	E
450	Н	Me	CH(CH ₁)(CH ₂), COQ15	H	NH	-CO-	Z
451	H	Me	CH ₂ COQ16	H	NH	-CO-	E
452	H	Me	CH, COQ16	H	NH	-CO-	2
453	H	Me	(CH ₂), COQ16	H	NH	-CO-	E
454	H	Me	(CH ₂), COQ16	H	NH	-CO-	Z
455	H	Me	(CH ₂), COQ16	H	NH	-CO-	Е
456	H	Me	(CH ₂) , COQ16	H	NH	-CO-	2
457	Н	Me	CH (CH ₃) CH ₂ COQ16	H	NH	-CO-	Е
458	Н	Me	CH (CH₃) CH₂ COQ16	H	NH	-CO-	2
459	H	Me	CH (CH ₂) (CH ₂) ₃ COQ16	H	NH	-CO-	Е
460	H	Me	CH(CH ₁)(CH ₂), COQ16	H	NH	-co-	2
461	H	Me	CH₂ COQ17·HC1	H	NH	-co-	E
462	Н	Me	CH₂ COQ17·HC1	Н	NH	-CO-	2 .
463	H	Me	(CH ₂), COQ17·HC1	Н	NH	-CO-	E

[0050]

【表22】 表 I (続)

No.	R¹	R²	R³	R⁴	X	Y	立体化学
464	Н	Me	(CH ₂), COQ17·HC1	Н	NH	-co-	2
465	H	Me	(CH₂) 5 COQ17·HC1	H	NH	-CO-	E
466	Н	Me	(CH₂), COQ17·HC1	Н	NH	-CO-	Z
467	H	Me	CH (CH₃) CH₂ COQ17·HC1	Н	NH	-CO-	E
468	H	Me	CH (CH,) CH, COQ17·HC1	H	NH	-CO-	2
469	Н	Me	CH (CH ₂) (CH ₂), COQ17·HC1	H	NH	-co-	E
470	H	Me	CH (CH,) (CH,), COQ17.HC1	Н	NH	-co-	2
471	H	Me	CH₂ COQ18·HC1	H	NH	-co-	Е
472	Н	Me	CH, COQ18·HC1	Н	NH	-co-	2
473	Н	Me	(CH,), COQ18·HC1	Н	NH	-co-	E
474	Н	Me	(CH ₂), COQ18·HC1	Н	NH	-co-	2
475	Н	Me	(CH ₂), COQ18·HC1	Н	NH	-CO-	E

43	}						44
476	H	Me	(CH ₂), COQ18·HC1	H	NH	-CO-	2
477	H	Me	CH (CH,) CH, COQ18·HC1	H	NH	-co-	E
478	H	Me	CH (CH,) CH, COQ18·HC1	H	NH	-CO-	Z
479	H	Me	CH (CH ₂) (CH ₂), COQ18·HC1	Н	NH	-co-	E
480	H	Me	CH (CH ₂) (CH ₂), COQ18·HC1	H	NH	-CO-	Z
481	H	Me	CH, COQ19·HC1	Н	NH	-co-	E
482	H	Me	CH, COQ19·HC1	H	NH	-co-	Z
483	H	Me	(CH ₂), COQ19·HC1	Н	NH	-CO-	E
484	H	Me	(CH ₂), COQ19·HC1	Н	NH	-CO-	Z
485	H	Me	(CH ₂), COQ19·HC1	H	NH	-co-	E

[0051]

【表23】 表 I (続)

No.	R'	R²	R³	R¹	Х	Y	立体化学
486	Н	Me	(CH₂), COQ19·HC1	Н	NH	-co-	Z
487	H	Me	CH (CH ₂) CH ₂ COQ19·HC1	H	NH	-CO-	E
488	H	Me	CH (CH,) CH, COQ19 · HC1	H	NH	-co-	Z
489	H	Me	CH (CH ₂) (CH ₂), COQ19·HC1	H	NH	-CO-	E
490	H	Me	CH (CH ₃) (CH ₂), COQ19·HC1	H	NH	-co-	Z
491	H	Me	CH ₂ COQ21	Н	NH	-CO-	E
492	H	Me	CH ₂ COQ21	H	NH	-CO-	Z
493	H	Me	(CH ₂), COQ21	H	NH	-CO-	Е
494	H	Me	(CH ₂), COQ21	H	NH	-CO-	Z
495	H	Me	(CH ₂) ₆ COQ21	H	NH	-CO-	. Е
496	H	Me	(CH ₂) _s COQ21	H	NH	-CO-	Z
497	H	Me	CH (CH ₃) CH ₂ COQ21	H	NH	-CO-	E
498	H	Me	CH (CH,) CH, COQ21	H	NH	-CO-	Z
499	H	Me	CH (CH ₃) (CH ₂), COQ21	H	NH	-CO-	E
500	H	Me	CH (CH ₃) (CH ₂), COQ21	H	NH	-CO-	Z
501	H	Me	CH ₂ COQ28	H	NH	-CO-	E
502	Н	Me	CH, COQ28	H	NH	-CO-	Z
503	H	Me	(CH ₂), COQ28	H	NH	-CO-	E
504	Н	Me	(CH ₂), COQ28	H	NH	-CO-	7
505	H	Me	(CH ₂), COQ28	H	NH	-CO-	E
506	Н	Me	(CH ₂), COQ28	H	NH	-CO-	Z
507	H	Ме	CH (CH ₃) CH ₂ COQ28	H	NH	-co-	E

[0052]

40 【表24】 表 I (続)

No.	R¹	R²	R³	R ⁴	X	Y	立体化学
508	Н	Me	CH (CH,) CH, COQ28	Н	NH	-co-	Z
509	H	Me	CH (CH,) (CH,), COQ28	Н	NH	-CO-	E
510	Н	Me	CH(CH,)(CH,),COQ28	H	NH	-co-	Z
511	Н	Me	CH ₂ COQ30	Н	NH	-CO-	E
512	Н	Me	CH, COQ30	H	NH	-C0-	Z
513	Н	Me	(CH ₂), COQ30	Н	NH	-co-	E

			(21)				17	
4	5						46	
514	Н	Me	(CH ₂), COQ30	H	NH	-co-	2	
515	H	Me	(CH ₂), COQ30	Н	NH	-co-	E	
516	Н	Me	(CH ₂), COQ30	Н	NH	-co-	2	
517	H	Me	CH (CH ₃) CH ₂ COQ30	H	NH	-co-	E	
518	Н	Me	CH (CH ₂) CH ₂ COQ30	Н	NH	-co-	Z	
519	H	Me	CH (CH ₃) (CH ₂), COQ30	H	NH	-co-	E	
520	H	Me	CH (CH ₂) (CH ₂), COQ30	Н	NH	-co-	Z	
521	H	Me	CH ₂ COQ31	H	NH	-co-	E	
522	H	Me	CH₂ COQ31	H	NH	-co-	Z	
523	H	Me	(CH ₂), COQ31	H	NH	-co-	E	
524	H	Me	(CH ₂), COQ31	Н	NH	-CO-	2	
525	H	Me	(CH ₂), COQ31	H	NH	-co-	E	
526	H	Me	(CH ₂) s COQ31	H	NH	-co-	Z	
527	H	Me	CH (CH ₃) CH ₂ COQ31	Н	NH	-CO-	E	
528	H	Me	CH (CH ₃) CH ₂ COQ31	Н	NH	-CO-	2	

[0053]

529

H Me

【表25】

H NH

-CO-

表 【 (続)

CH (CH₂) (CH₂), COQ31

No.	R¹	R²	R³	R ⁴	X	Y	立体化学
530	Н	Me	CH (CH ₂) (CH ₂) , COQ31	Н	NH	-C0-	Z
531	H	Me	CH ₂ COQ32	Н	NH	-co-	E
532	Н	Me	CH ₂ COQ32	H	NH	-CO-	2
533	Н	Me	(CH ₂), COQ32	Н	NH	-CO-	E
534	Н	Me	(CH ₂), COQ32	H	NH	-CO-	2
535	H	Me	(CH ₂) cOQ32	H	NH	-CO-	E
536	Н '	Me	(СҢ), СОQ32	H	NH	-CO-	Z
537	H	Me	СН (СН₃) СН₂ COQ32	Н	NH	-CO-	E
538	H	Me	СН (СН,) СН, COQ32	H	NH	-CO-	Z
539	H	Me	CH(CH ₃)(CH ₂), COQ32	Н	NH	-CO-	E
540	Н	Me	CH(CH ₂)(CH ₂), COQ32	Н	NH	-C0-	Z
541	CONH ₂	Me	Q2	H	NH	-CO-	E
542	CONH ₂	Me	Q2	H	NH	-CO-	Z
543	(CH ₂), Ph	Me	Q2	H	NH	-CO-	Е
544	(CH ₂), Ph	Me	Q2	H	NH	-C0-	Z
545	(CH ₂), Ph	Me	Q2	H	NH	-C0-	E
546	(CH ₂), Ph	Me	Q2	Н	NH	-CO-	Z
547	(CH ₂), Ph	Me	Q2	Н	NH	-CO-	E
548	(CH ₂) _s Ph	Me	Q2	Н	NH	-C0-	Z
549	(CH ₂), Q5	Me	Q2	Н	NH	-CO-	E
550	(CH ₂), Q5	Me	Q2	Н	NH	-CO-	Z
551	(CH ₂), Q5	Me	Q2	Н	NH	-CO-	Е

[0054]

【表26】

表 I (続)

No.	R ¹	R²	R ²	R ⁴	X	Y	立体化学

	9 =	
١.	2.0	

特開平7-17952

4	7						4	18
552	(CH ₂), Q5	Me	Q2	H	NH	-co-	Z	
553	(CH ₂), Q5	Me	Q2	Н	NH	-co-	E	
554	(CH ₂), Q5	Me	Q2	H	NH	-CO-	Z	
555	(CH ₂), Q22	Me	Q2	H	NH	-CO-	E	
556	(CH ₂), Q22	Me	Q2	H	NH	-CO-	Z	
557	(CH ₂), Q22	Me	Q2	H	NH	-CO-	E	
558	(CH ₂), Q22	Me	Q2	H	NH	-CO-	Z	
559	(CH ₂), Q22	Me	Q2	H	NH	-co-	E	
560	(CH ₂) ₅ Q22	Me	Q2	H	NH	-CO-	Z	
561	(CH,),Q23	Me	Q2	H	NH	-co-	E	
562	(CH ₂), Q23	Me	Q2	H	NH	-CO-	Z	
563	(CH ₂), Q23	Me	Q2	H	NH	-CO-	E	
564	(CH ₂), Q23	Me	Q2	H	NH	-CO-	Z	
565	(CH ₂), Q23	Me	Q2	H	NH	-CO-	E	
566	(CH ₂), Q23	Me	Q2	H	NH	-CO-	Z	
567	(CH ₂), Q24	Me	Q2	H	NH	-CO-	E	
568	(CH ₂), Q24	Me	Q2	H	NH	-CO-	Z	
569	(CH ₂), Q24	Me	Q2	H	NH	-C0-	E	
570	(CH ₂), Q24	Me	Q2	H	NH	-C0-	Z	
571	(CH ₂) ₅ Q24	Me	Q2	. Н	NH	-C0-	E	
572	(CH ₂), Q24	Me	Q2	Н	NH	-C0-	Z	
573	(CH ₂), Q25	Me	Q2	H	NH	-CO-	E	

[0055]

【表27】

表I(続)

No.	R¹	R²	R³	R⁴	X	Y 立	体化学
574	(CH ₂), Q25	Me	Q2	Н	NH	-co-	Z
575	(CH ₂), Q25	Me	Q2	H	NH	-co-	E
576	(CH ₂), Q25	Me	Q2	H	NH	-CO-	Z
577	(CH₂), Q25	Me	Q2	H	NH	-CO-	E
578	(CH _z), Q25	Me	Q2	Н	NH	-CO-	. Z
579	(CH ₂), Q26	Me	Q2	H	NH	-co-	E
580	(CH ₂), Q26	Me	Q2	Н	NH	-CO-	. 2
581	(CH ₂), Q26	Me	Q2	Н	NH	-co-	E
582	(CH ₂), Q26	Me	Q2	H	NH	-CO-	7.
583	(CH ₂), Q26	Me	Q2	Н	NH	-CO-	E
584	(CH ₂), Q26	Me	Q2	H	NH	-CO-	7
585	(CH ₂), CO ₂ Et	Me	Q2	H	NH	-CO-	E
586	(CH ₂), CO ₂ E t	Me	Q2	H	NH	-CO-	2
587	(CH ₂), CO ₂ H	Me	Q2	H	NH	-CO-	E
588	(CH ₂), CO ₂ H	Me	Q2	H	NH	-CO-	Z
589	(CH ₂), OCH, CO, Et	Me	Q2	H	NH	-CO-	E
590	(CH ₂), OCH ₂ CO ₂ E t	Me	Q2	Н	NH	-CO-	Z
591	(CH,), OCH, CO, Et	Me	Q2	H	NH	-CO-	E
592	(CH,), OCH, CO, Et	Me	Q2	Н	NH	-CO-	2
593	(CH,), OCH, CO, H	Me	Q2	Н	NH	-CO-	E
594	(CH,), OCH, CO, H	Me	Q2	H	NH:	-CO-	Z
595	(CH ₂), OCH, CO, H	Me	Q2	Н	NH	-CO-	E

[(ጉ ሰ	ገ	_ ,	6]	ŧ
ľ	,	,	ייט	U ,	ı

【表28】

表	I	(続)

No.	R'	R²	R ^a	R ⁴	X	Υ	体化学
596	(CH ₂), OCH ₂ CO, H	Me	Q2	H	NH	-co-	Z
597	CH2 CH (OH) CH2 CH2 OE t	Me	Q2	H	NH	-C0-	E
598	CH, CH (OH) CH, CH, OE t	Me	Q2	H	NH	-CO-	Z
599	(CH ₂), NE t ₂	Me	Q2	H	NH	-CO-	E
600	(CH ₂), NE t ₂	Me	Q2	H	NH	-C0-	Z
601	(CH ₁), NEt ₂	Me	Q2	H	NH	-C0-	E
602	(CH ₁), NE t ₂	Me	Q2	Н	NH	-CO-	Z
603	(CH ₂) ₅ NE t ₂	Me	Q2	H	NH	-CO-	E
604	(CH ₂), NE t ₂	Me	Q2	H	NH	-C0-	Z
605	(CH ₁), Q13·HC1	Me	Q2	H	NH	-CO-	Е
606	(CH ₁), Q13·HC1	Me	Q2	H	NH	-CO-	Z
607	(CH ₁), Q13·HC1	Me	Q2	H	NH	-co-	E
608	(CH ₁), Q13·HC1	Me	Q2	Н	NH	-CO-	Z
609	(CH ₁), Q13·HC1	Me	Q2	H	NH	-CO-	E
610	(CH ₂), Q13·HC1	Me	Q2	H	NH	-CO-	Z
611	(CH ₂), Q14·HC1	Me	Q2	H	NH	-CO-	E
612	(CH,), Q14·HC1	Me	Q2	H	NH	-CO-	Z
613	(CH ₂) ₃ Q14·HC1	Me	Q2	H	NH	-CO-	E
614	(CH ₂), Q14·HC1	Me	Q2	Н	NH	-CO-	2
615	(CH ₂) ₅ Q14·HC1	Me	Q2	H	NH	-CO-	E
616	(CH ₂), Q14·HC1	Me	Q2	H	NH	-CO-	Z
617	(CH,), Q15	Me	Q2	H	NH	-co-	E

[0057]

30 【表29】

表 I (続)

No.	R¹	R²	R ³	R ⁴	X	Y 立	体化学
618	(CH ₂), Q15	Me	Q2	Н	NH	-co-	2
619	(CH ₂), Q15	Me	Q2	H	NH	-CO-	E
620	(CH ₂) ₃ Q15	Me	Q2	H	NH	-CO-	Z
621	(CH ₂), Q15	Me	Q2	H	NH	-CO-	E
622	(CH ₂) ₅ Q15	Me	Q2	H	NH	-CO-	2
623	(CH,),Q16·HC1	Me	Q2	H	NH	-CO-	E
624	(CH,),Q16·HC1	Me	Q2	H	NH	-CO-	2
625	(CH,), Q16·HC1	Me	Q2	H	NH	-CO-	E
626	(CH ₂), Q16·HCl	Me	Q2	H	NH	-CO-	2
627	(CH ₂), Q16·HC1	Me	Q2	H	NH	-CO-	E
628	(CH ₂), Q16·HC1	Me	Q2	H	NH	-CO-	2
629	(CH,),Q17·2HC1	Me	Q2	H	NH	-CO-	E
630	(CH,),Q17·2HC1	Me	Q2	H	NH	-CO-	2
631	(CH,),Q17·2HC1	Me	Q2	H	NH	-CO-	E
632	(CH,),Q17·2HC1	Me	Q2	H	NH	-CO-	2
633	(CH ₂), Q17·2HC1	Me	Q2	Н	NH	-CO-	Е

[0058]

[0059]

No.	R¹	R²	R ^a	R⁴	X	Y 立	体化学
662	(CH ₂), Q30·HC1	Me	Q2	Н	NH	-CO-	Z
663	(CH ₂), Q30 · HC1	Me	Q2	Н	NH	-CO-	Е
664	(CH ₂), Q30·HC1	Me	Q2	Н	NH	-CO-	2
665	(CH ₂), Q31·HCl	Me	Q2	Н	NH	-CO-	E
666	(CH ₂), Q31 · HC1	Me	Q2	Н	NH	-co-	Z
667	(CH ₂), Q31·HC1	Me	Q2	Н	NH	-CO-	E
668	(CH ₂), Q31·HCl	Me	Q2	Н	NH	-CO-	Z
669	(CH ₂), Q31·HCl	Me	Q2	H	NH	-CO-	E
670	(CH ₂), Q31·HCl	Me	Q2	Н	NH	-CO-	Z
671	(CH ₂), Q32	Me	Q2	Н	NH	-CO-	E

-								
		(2	8)					特開平7-17952
53								54
672	(CH ₂), Q32	Me	Q2	Н	NH	-CO-	2	
673	(CH ₂), Q32	Me	Q2	Н	NH	-CO-	E	
674	(CH ₂), Q32	Me	Q2	Н	NH	-C0-	Z	
675	(CH ₂) _s Q32	Me	Q2	Н	NH	-CO-	E	
676	(CH ₂) ₅ Q32	Me .	Q2	Н	NH	-CO-	Z	
677	(CH ₂), CONE t ₂	Me	Q2	Н	NH	-CO-	E	
678	(CH ₂) s CONE t ₂	Me	Q2	Н	NH	-CO-	Z	
679	(CH ₂), COQ13	Me	Q2	Н	NH	-CO-	E	
680	(CH ₂), COQ13	Me	Q2	Н	NH	-CO-	Z	
681	(CH ₂), COQ13	Me	Q2	Н	NH	-CO-	E	
682	(CH ₂) ₃ COQ13	Me	Q2	Н	NH	-CO-	Z	
683	(CH ₂) ₅ COQ13	Me	Q2	H	NH	-CO-	E	
				.	,	<u></u>		
		支 I	(続	₹32)	1			•
		X 1	NOL.	·—			··· · · · · · · · · · · · · · · · · ·	
No.	R¹	R²	R³	R ⁴	X	Y \$\frac{1}{2}.	体化学	
684	(CH ₂) ₅ COQ13	Me	Q2	Н	NH	-CO-	Z	
685	(CH ₂), COQ14	Me	Q2	H	NH	-CO-	E	
686	(CH ₂), COQ14	Me	Q2	H	NH	-CO-	Z	
687	(CH ₂), COQ14	Me	Q2	H	NH	-CO-	E	
688	(CH ₂), COQ14	Me	Q2	H	NH	-CO-	Z	
689	(CH ₂) _s COQ14	Me	Q2	H	NH	-CO-	E	
690	(CH ₂), COQ14	Me	Q2	H	NH	-CO-	Z	
691	(CH ₂) ₂ COQ15	Me	Q2	Н	NH	-C0-	E	
692	(CH ₂), COQ15	Me	Q2	H	NH	-CO-	2	
693	(CH ₂), COQ15	Me	Q2	Н	NH	-CO-	E	
694	(CH ₂), COQ15	Me	Q2	H	NH	-CO-	Z	
695	(CH ₂), COQ15	Me	Q2	Н	NH	-CO-	E	
696	(CH ₂), COQ15	Me	Q2	H	NH	-CO-	2	
697	(CH ₂), COQ16	Me	Q2	H	NH	-CO-	E	
698	(CH ₂) ₂ COQ16	Me	Q2	H	NH	-CO-	Z	
699	(CH ₂) ₃ COQ16	Me	Q2	H	NH	-CO-	E	
700	(CH ₂) ₃ COQ16	Me	Q2	H	NH	-co-	Z	
701	(CH ₂), COQ16	Me	Q2	H	NH	-CO-	E	
702	(CH ₂) ₅ COQ16	Me	Q2	H	NH	-CO-	Z	
703	(CH ₂), COQ17·HC1	Me	Q2	H	NH	-CO-	E	
704	(CH ₂), COQ17·HC1	Me	Q2	H	NH	-CO-	2	
705	(CH ₂), COQ17·HC1	Me	Q2	H	NH	-co-	E	
			【表	3 3]			

[0061]

[0060]

【表33】 表 I (続)

No.	R¹	R²	R³	R'	X	Y \$\frac{1}{2}	体化学
706	(CH ₂), COQ17·HC1	Mé	Q2	Н	NH	-co-	Z
707	(CH ₂), COQ17·HC1	Me	Q2	Н	NH	-CO-	E
708	(CH ₂) ₅ COQ17·HC1	Me	Q2	H	NH	-CO-	2
709	(CH ₂), COQ18·HC1	Me	Q2	H	NH	-CO-	E

55 710 (CH₂), COQ18·HC1 Me Q2H NH -CO-Z 711 (CH₂), COQ18·HC1 Q2 NH -CO-E Мe Н 712 (CH,), COQ18·HC1 Me Q2Н NH -CO-2 713 (CH₂), COQ18·HC1 Q2NH -CO-E Мe Н 2 714 (CH₂)₅ COQ18·HC1 Q2 NH -CO-Мe Н E

715 (CH₂), COQ19·HC1 Q2-C0-Мe H NH 716 (CH₂), COQ19·HC1 Q2-CO-2 Me Н NH 717 (CH₂), COQ19·HC1 Мe Q2Н NH -C0-E

(CH₂)₂ COQ19·HC1 Z 718 Q2 -CO-Мe Н NH E 719 (CH₂), COQ19·HC1 Q2 Н NH -CO-Me

720 Q2 -C0-2 (CH₂)₅ COQ19·HC1 Мe Н NH 721 (CH₂), COQ21 Q2 NH -C0-E Me Н 722 (CH₂)₂ COQ21 Мe Q2 H NH -C0-

2 723 Q2 -C0-E (CH₂)₃ COQ21 Me H NH 724 (CH₂), COQ21 Q2 NH -C0-2 Me H

725 -C0-E (CH₂)₅ COQ21 Me Q2Н NH 726 -CO-2 (CH₂) s COQ21 Мe Q2 Н NH 727 E (CH,), COQ28 Me Q2 H NH -CO-

表

[0062]

20 【表34】 I (続)

No.	R¹	R²	R ^a	R ⁴	X	Υ	体化等
728	(CH ₂) ₂ COQ28	Me	Q2	Н	NH	-co-	Z
729	(CH ₂) ₃ COQ28	Me	Q2	H	NH	-CO-	E
730	(CH ₂), COQ28	Me	Q2	H	NH	-CO-	2
731	(CH ₂), COQ28	Me	Q2	Н	NH	-CO-	E
732	(CH ₂) ₅ COQ28	Me	Q2	H	NH	-CO-	2
733	(CH ₂), COQ30	Me	Q2	H	NH	-CO-	E
734	(CH ₂), COQ30	Me	Q2	H	NH	-co-	7
735	(CH ₂), COQ30	Me	Q2	Н	NH	-CO-	E
736	(CH ₂), COQ30	Me	Q2	H	NH	-CO-	2
737	(CH ₂), COQ30	Me	Q2	Н	NH	-CO-	E
738	(CH₂), COQ30	Me	Q2	H	NH	-CO-	2
739	(CH ₂), COQ31	Me	Q2	H	NH	-co-	E
740	(CH ₂), COQ31	Me	Q2	H	NH	-CO-	Z
741	(CH ₂), COQ31	Me	Q2	H	NH	-co-	E
742	(CH ₂), COQ31	Me	Q2	H	NH	-co-	2
743	(CH ₂) ₅ COQ31	Me	Q2	H	NH	-co-	E
744	(CH ₂) ₅ COQ31	Me	Q2	Н	NH	-co-	2
745	(CH ₂), COQ32	Me	Q2	Н	NH	-co-	E
746	(CH ₂), COQ32	Me	Q2	Н	NH	-CO-	2
747	(CH ₂), COQ32	Me	Q2	Н	NH	-co-	E
748	(CH ₁), COQ32	Me	Q2	Н	NH	-CO-	2
749	(CH ₂) ₅ COQ32	Me	Q2	Н	NH	-CO-	E

[0063]

【表35】

_	7
อ	1

57							58
No.	R¹	R²	R³	R⁴	X	Υ 3	立体化学
750	(CH ₂), COQ32	Me	Q2	Н	NH	-co-	2
751	CH ₂ CO ₂ Me	Me	CH (CH3) CH2 Ph	Н	NH	-C0 -	E
752	CH ₂ CO ₂ Me	Me	CH (CH ₃) CH ₂ Ph	H	NH	-C0 -	Z
753	CH2 CH (OH) Et	Me	CH (CH3) CH2 Ph	H	NH	-CO-	E
754	CH ₂ CH (OH) E t	Me	CH (CH3) CH2 Ph	Н	NH	-C0-	Z
755	(CH ₂) ₃ CO ₂ E t	Me	CH (CH ₃) CH ₂ Ph	Н	NH	-C0-	E
756	(CH ₂), CO ₂ E t	Me	CH (CH ₃) CH ₂ Ph	H	NH	-C0 -	Z
757	CH ₂ CO ₂ H	Me	CH (CH ₃) CH ₂ Ph	Н	NH	-C0-	E
758	CH ₂ CO ₂ H	Me	CH (CH ₂) CH ₂ Ph	H	NH	-C0-	Z
759	(CH ₂), CO ₂ H	Me	CH (CH ₃) CH ₂ Ph	H	NH	-C0-	E
760	(CH ₁), CO, H	Me	CH (CH ₂) CH ₂ Ph	H	NH	-C0-	2
761	CH ₂ CO ₂ NE t ₂	Me	CH (CH ₃) CH ₂ Ph	H	NH	-C0-	E
762	CH ₂ CO ₂ NE t ₂	Me	CH (CH ₃) CH ₂ Ph	H	NH	-C0-	Z
763	(CH ₂), CONEt,	Me	CH (CH ₂) CH ₂ Ph	H	NH	-C0-	E
764	(CH ₂) ₃ CONE t ₂	Me	CH (CH ₃) CH ₂ Ph	H	NH	-C0-	Z
765	CONH ₂	Me	CH (CH ₃) CH ₂ Ph	Н	NH	-CO-	Е
766	CONH₁	Me	CH (CH ₂) CH ₂ Ph	H	NH	-CO-	Z
767	(CH ₂), Ph	Me	CH (CH ₃) CH ₂ Ph	Н	NH	-C0-	Е
768	(CH ₂), Ph	Me	CH (CH ₂) CH ₂ Ph	Н	NH	-CO-	2
769	(CH ₂), Ph	Me	CH (CH,) CH, Ph	H	NH	-C0-	E
770	(CH ₂), Ph	Me	CH (CH ₂) CH ₂ Ph	Н	NH	-C0-	Z
771	(CH ₂) _s Ph	Me	CH (CH ₂) CH ₂ Ph	Н	NH	-C0-	E

[0064]

【表36】

表 I (続)

			4X 1 (N)L				
No.	R¹	R²	R²	R¹	Χ.	Y 立体化学	
772	(CH ₂), Ph	Ме	CH (CH,) CH, Ph	Н	NH	-CO- Z	
773	(CH ₂), Q5	Me	CH (CH ₃) CH ₂ Ph	H	NH	-C0- E	
774	(CH ₂), Q5	Me	CH (CH,) CH, Ph	Н	NH	-co- z	
775	(CH ₂), Q5	Me	CH (CH ₂) CH ₂ Ph	H	NH	-C0- E	
776	(CH ₂), Q5	Me	CH (CH ₃) CH ₂ Ph	H	NH	-CO- Z	
777	(CH ₂), Q5	Me	CH (CH₃) CH₂ Ph	H	NH	-CO- E	
778	(CH ₂), Q5	Me	CH (CH ₃) CH ₂ Ph	H	NH	-CO- Z	
779	(CH ₂), Q22	Me	CH (CH₃) CH₂ Ph	. Н	NH	-C0- E	
780	(CH ₂), Q22	Me	CH (CH,) CH, Ph	H	NH	-C0- Z	
781	(CH ₂), Q22	Me	CH (CH3) CH2 Ph	H	NH	-C0- E	
782	(CH ₂), Q22	Me	CH (CH ₂) CH ₂ Ph	H	NH	-CO- Z	
783	(CH ₂), Q22	Me	CH (CH ₃) CH ₂ Ph	H	NH	-C0- E	
784	(CH ₂), Q22	Me	CH (CH₃) CH₂ Ph	H	NH	-CO- Z	
785	(CH,),Q23	Me	CH (CH₂) CH₂ Ph	H	NH	-C0- E	
786	(CH ₂), Q23	Me	CH (CH ₃) CH ₂ Ph	Н	NH	-co- z	
787	(CH ₂), Q23	Me	CH (CH ₃) CH ₂ Ph	Н	NH	-CO- E	
788	(CH ₂), Q23	Me	CH (CH ₃) CH ₂ Ph	H	NH	-CO- Z	
789	(CH ₂), Q23	Me	CH (CH3) CH2 Ph	Н	NH	-CO- E	
790	(CH,),Q23	Me	CH (CH ₃) CH ₂ Ph	Н	NH	-CO- Z	
791	(CH ₂), Q24	Me	CH (CH2) CH2 Ph	H	NH	-C0- E	

[0065]

【表37】 表 I (続)

_	No.	R ^t	R²	R³		R⁴	Х	Y	立体化学
_	794	(CH,),Q24	Мe	CH (CH,) CH, Ph	Н	N	Н	-co-	- 2
	795	(CH ₂), Q24	Me	CH (CH,) CH, Ph	Н	N	Н	-co-	- E
	796	(CH ₂), Q24	Me	CH (CH ₃) CH ₂ Ph	Н	N	Ή	-co-	- 2
	797	(CH,),Q25	Me	CH (CH ₃) CH ₂ Ph	Н	N	Н	-co-	- Е
	798	(CH ₂), Q25	Me	CH (CH ₃) CH ₂ Ph	Н	N	H	-co-	- 7
	799	(CH ₂), Q25	Me	CH (CH ₃) CH ₂ Ph	H	N	H	-co-	- Е
	800	(CH ₂), Q25	Me	CH (CH ₃) CH ₂ Ph	Н	N	H	-co-	- Z
	801	(CH ₂) ₅ Q25	Me	CH (CH ₃) CH ₂ Ph	Н	N	H	- <u>c</u> 0-	- Е
	802	(CH ₂) ₅ Q25	Me	CH (CH ₃) CH ₂ Ph	H	N	H	-co-	- Z
	803	(CH ₂), Q26	Me	CH (CH ₂) CH ₂ Ph	Н	N	H	-co-	- Е
	804	(CH ₂), Q26	Me	CH (CH3) CH2 Ph	H	N	Н	-co-	- 2
	805	(CH ₂), Q26	Me	CH (CH ₃) CH ₂ Ph	H	N.	Н	-co-	- Е
	806	(CH ₂), Q26	Me	CH (CH ₃) CH ₂ Ph	Н	N	Н	-co-	- Z
	807	(CH ₂) _s Q26	Me	CH (CH ₃) CH ₂ Ph	H	·N	Н	-co-	- Е
	808	(CH ₂), Q26	Me	CH (CH ₂) CH ₂ Ph	Н	N	H	-CO-	. Z
	809	(CH ₂), CO ₂ Et	Me	CH (CH ₂) CH ₂ Ph	Н	N	H	-co-	- Е
	810	(CH ₂), CO ₂ Et	Me	CH (CH ₃) CH ₂ Ph	Н	N	Н	-co-	Е
	811	(CH ₂) s CO ₂ H	Me	CH (CH3) CH2 Ph	Н	NI	H	-co-	Z
	812	(CH ₂) ₅ CO ₂ H	Me	CH (CH ₃) CH ₂ Ph	Н	N	1	-co-	Е
	813	(CH ₂), OCH ₂ CO ₂ Et	Me	CH (CH ₃) CH ₂ Ph	Н	NI	ł	-co-	2
	814	(CH ₂), OCH ₂ CO ₂ Et	Me	CH (CH ₃) CH ₂ Ph	H	NI	ŀ	-co-	Е
	815	(CH ₂), OCH ₂ CO ₂ Et	Me	CH (CH ₂) CH ₂ Ph	Н	NF	ł	-co-	Z

[0066]

【表38】 表 I (続)

No.	R' R'		R ²	R¹	X	Y	立体化	学
816	(CH ₂), OCH ₂ CO ₂ Et	Me	CH (CH₁) CH	I, Ph	Н	NH	-co-	E
817	(CH ₂), OCH, CO, H	Me	CH (CH₁) CH	I, Ph	H	NH	-CO-	E
818	(CH ₂), OCH ₂ CO ₂ H	Me	CH (CH ₃) CH	ł, Ph	H	NH	-CO-	Z
819	(CH ₂), OCH, CO, H	Me	CH (CH ₃) CH	ł, Ph	H	NH	-CO-	E
820	(CH ₂), OCH ₂ CO ₂ H	Me	CH (CH ₂) CH	ł, Ph	H	NH	-CO-	Z
821	CH2 CH (OH) CH2 CH2 OE t	Me	CH (CH,) CH	l, Ph	H	NH	-CO-	E
822	CH2 CH (OH) CH2 CH2 OE t	Me	CH (CH ₂) CH	I, Ph	H	NH	-CO-	2
823	(CH ₂) ₂ NE t ₂	Me	CH (CH₃) CH	ł, Ph	H	NH	-CO-	E
824	(CH ₂), NEt ₂	Me	CH (CH ₃) CH	ł, Ph	Н	NH	-C0-	Z
825	(CH ₂), NEt ₂	Me	CH (CH _a) CH	I, Ph	H	NH	-CO-	E
826	(CH ₂), NEt ₂	Me	CH (CH ₂) CH	I, Ph	Н	NH	-co-	2
827	(CH ₂), NEt ₂	Me	CH (CH ₃) CH	I, Ph	H	NH	-CO-	E
828	(CH ₂), NEt ₂	Me	CH (CH ₃) CH	I₁ Ph	H ·	NH	-CO-	Z
829	(CH,), Q13·HC1	Me	CH (CH ₃) CH	l, Ph	H	NH	-CO-	E

```
(32)
                                                                                                 特開平7-17952
      61
                                                                                                62
  830
             (CH, ), Q13·HC1
                                         Me
                                               CH (CH, ) CH, Ph
                                                                       H
                                                                             NH
                                                                                     -CO-
                                                                                                  Z
 831
             (CH, ), Q13·HC1
                                               CH (CH, ) CH, Ph
                                         Me
                                                                      H
                                                                             NH
                                                                                     -CO-
                                                                                                 E
 832
             (CH<sub>2</sub>), Q13·HC1
                                         Мe
                                               CH (CH, ) CH, Ph
                                                                      H
                                                                             NH
                                                                                     -CO-
                                                                                                  2
 833
             (CH<sub>2</sub>), Q13·HC1
                                         Мe
                                               CH (CH, ) CH, Ph
                                                                      H
                                                                             NH
                                                                                     -CO-
                                                                                                 E
 834
             (CH, ), Q13·HC1
                                         Me
                                               CH (CH, ) CH, Ph
                                                                      Н
                                                                             NH
                                                                                     -CO-
                                                                                                 Z
 835
             (CH, ), Q14·HC1
                                         Me
                                               CH (CH, ) CH, Ph
                                                                      H
                                                                                     -CO-
                                                                             NH
                                                                                                 E
 836
                                         Me
             (CH<sub>2</sub>), Q14·HC1
                                               CH (CH, ) CH, Ph
                                                                      H
                                                                             NH
                                                                                     -CO-
                                                                                                 Z
 837
             (CH<sub>2</sub>), Q14·HC1
                                         Me
                                               CH (CH, ) CH, Ph
                                                                      Н
                                                                             NH
                                                                                     -CO-
                                                                                                 E
                                                 10
                                                         【表39】
                                     表
                                            I
                                                   ( 続 )
  No.
                 R'
                                       R²
                                                       R³
                                                                      R1
                                                                            X
                                                                                      Y 立体化学
 838
            (CH<sub>2</sub>), Q14·HC1
                                     Me
                                               CH (CH<sub>2</sub>) CH, Ph
                                                                                                 2
                                                                      H
                                                                            NH
                                                                                    -CO-
 839
            (CH<sub>2</sub>), Q14·HC1
                                     Me
                                               CH (CH<sub>2</sub>) CH<sub>2</sub> Ph
                                                                      H
                                                                            NH
                                                                                    -CO-
                                                                                                 E
 840
            (CH<sub>2</sub>), Q14·HC1
                                                                                                 Z
                                     Me
                                              CH (CH, ) CH, Ph
                                                                      H
                                                                            NH
                                                                                    -CO-
 841
                (CH<sub>2</sub>), Q15
                                     Me
                                              CH (CH, ) CH, Ph
                                                                      H
                                                                            NH
                                                                                    -CO-
                                                                                                 E
 842
                (CH<sub>2</sub>), Q15
                                     Me
                                              CH (CH, ) CH, Ph
                                                                      Н
                                                                            NH
                                                                                    -CO-
                                                                                                 Z
843
               (CH<sub>2</sub>), Q15
                                                                                                E
                                     Me
                                              CH (CH, ) CH, Ph
                                                                      H
                                                                            NH
                                                                                    -CO-
844
               (CH<sub>2</sub>), Q15
                                     Мe
                                              CH (CH, ) CH, Ph
                                                                      H
                                                                            NH
                                                                                    -CO-
                                                                                                \mathbf{Z}
845
               (CH<sub>2</sub>), Q15
                                     Мe
                                              CH (CH3) CH2 Ph
                                                                      H
                                                                            NH
                                                                                    -CO-
                                                                                                E
846
               (CH<sub>2</sub>), Q15
                                              CH (CH<sub>3</sub>) CH<sub>2</sub> Ph
                                                                     H
                                                                                    -CO-
                                                                                                Z
                                     Мe
                                                                            NH
847
            (CH<sub>2</sub>), Q16·HC1
                                                                     H
                                                                                                E
                                     Мe
                                              CH (CH<sub>3</sub>) CH<sub>2</sub> Ph
                                                                           NH
                                                                                    -CO-
848
            (CH,), Q16·HC1
                                              CH (CH, ) CH, Ph
                                                                     H
                                     Мe
                                                                           NH
                                                                                    -CO-
                                                                                                2
849
            (CH<sub>2</sub>)<sub>3</sub>Q16·HC1
                                                                     H
                                    Мe
                                              CH (CH<sub>3</sub>) CH<sub>2</sub> Ph
                                                                           NH
                                                                                    -CO-
                                                                                                Ē
850
            (CH<sub>1</sub>), Q16·HC1
                                                                                                Z
                                    Мe
                                              CH (CH, ) CH, Ph
                                                                     Н
                                                                           NH
                                                                                    -CO-
851
            (CH<sub>2</sub>), Q16·HC1
                                    Me
                                              CH (CH, ) CH, Ph
                                                                     H
                                                                           NH
                                                                                   -CO-
                                                                                                E
852
            (CH<sub>2</sub>) , Q16 · HC1
                                    Me
                                              CH (CH, ) CH, Ph
                                                                     H
                                                                           NH
                                                                                   -CO-
                                                                                                Z
853
            (CH<sub>2</sub>), Q17·2HC1
                                                                     Н
                                                                                                E
                                    Me
                                              CH (CH, ) CH, Ph
                                                                           NH
                                                                                   -CO-
854
            (CH<sub>2</sub>), Q17·2HC1
                                                                                                Z
                                    Me
                                              CH (CH<sub>3</sub>) CH<sub>2</sub> Ph
                                                                     H
                                                                           NH
                                                                                   -C0-
855
            (CH<sub>2</sub>), Q17·2HC1
                                    Me
                                              CH (CH<sub>2</sub> ) CH<sub>2</sub> Ph
                                                                                                E
                                                                     Н
                                                                           NH
                                                                                   -CO-
856
            (CH<sub>2</sub>), Q17·2HC1
                                                                     H
                                                                                                Z
                                    Me
                                              CH (CH<sub>2</sub> ) CH<sub>2</sub> Ph
                                                                           NH
                                                                                   -CO-
857
            (CH<sub>2</sub>)<sub>5</sub> Q17·2HC1
                                    Me
                                                                     Н
                                                                                                Е
                                             CH (CH, ) CH, Ph
                                                                           NH
                                                                                   -CO-
852
            (CH<sub>2</sub>), Q17·2HC1
                                    Me
                                             CH (CH<sub>2</sub>) CH<sub>2</sub> Ph
                                                                                                Z
                                                                    H
                                                                           NH
                                                                                   -CO-
853
            (CH<sub>2</sub>), Q18·2HC1
                                             CH (CH<sub>3</sub>) CH, Ph
                                                                    Н
                                                                                               E
                                    Мe
                                                                           NH
                                                                                   -CO-
                                                        【表40】
                                    表
                                           I
                                                  ( 続 )
                                      R²
 No.
                R'
                                                     R3
                                                                    R<sup>4</sup>
                                                                          X
                                                                                    Y 立体化学
```

[0067]

[0068]

(CH₂), Q18·2HC1 854 CH (CH₂) CH₂ Ph -CO-Me H NH 7 855 Me CH (CH₃) CH₂ Ph H -CO-E (CH₂), Q18 · 2HC1 NH 856 (CH₂), Q18·2HC1 Me CH (CH,) CH, Ph Н NH -CO-2 857 (CH₂), Q18·2HC1 CH (CH,) CH, Ph E Мe Н NH -CO-858 (CH₂), Q18·2HC1 Мe CH (CH₃) CH₂ Ph Н NH -CO-2 859 (CH₂), Q19·2HC1 Me CH (CH,) CH, Ph Н NII -CO-E 2 860 H (CH₁), Q19 · 2HC1 Me CH (CH₂) CH₂ Ph NH -CO-861 (CH₂), Q19·2HC1 CH (CH₂) CH₂ Ph Н NH -C0-E

```
(33)
                                                                                            特開平7-17952
     63
                                                                                            64
862
            (CH<sub>2</sub>), Q19 · 2HC1
                                                                                              Z
                                   Me
                                             CH (CH, ) CH, Ph
                                                                   Н
                                                                          NH
                                                                                 -CO-
863
            (CH<sub>2</sub>), Q19 · 2HC1
                                                                   Н
                                                                                             E
                                   Me
                                             CH (CH, ) CH, Ph
                                                                          NH
                                                                                 -CO-
864
            (CH<sub>2</sub>), Q19·2HC1
                                   Me
                                                                   Н
                                                                                 -CO-
                                                                                             2
                                             CH (CH, ) CH, Ph
                                                                          NH
865
               (CH<sub>2</sub>), Q21
                                   Me
                                                                                 -CO-
                                                                                             E
                                             CH (CH, ) CH, Ph
                                                                   Н
                                                                          NH
866
               (CH<sub>2</sub>), Q21
                                                                                             2
                                   Me
                                             CH (CH, ) CH, Ph
                                                                   H
                                                                          NH
                                                                                 -CO-
                                                                   H
                                                                                             E
867
               (CH<sub>2</sub>), Q21
                                   Мe
                                             CH (CH, ) CH, Ph
                                                                         NH
                                                                                 -CO-
868
              (CH<sub>2</sub>), Q21
                                   Me
                                             CH (CH, ) CH, Ph
                                                                   Н
                                                                         NH
                                                                                 -CO-
                                                                                             Z
                                                                                             E
869
              (CH<sub>2</sub>)<sub>s</sub> Q21
                                   Мe
                                             CH (CH, ) CH, Ph
                                                                   H
                                                                         NH
                                                                                 -CO-
870
              (CH<sub>2</sub>), Q21
                                   Me
                                            CH (CH, ) CH, Ph
                                                                   H
                                                                         NH
                                                                                 -CO-
                                                                                             Z
                                                                                 -CO-
                                                                                             E
871
            (CH<sub>2</sub>), Q28·HC1
                                            CH (CH, ) CH, Ph
                                                                   Н
                                                                         NH
                                   Me
872
                                                                   Н
                                                                                             Z
           (CH<sub>2</sub>), Q28·HC1
                                   Мe
                                            CH (CH, ) CH, Ph
                                                                         NH
                                                                                 -CO-
873
           (CH, ), Q28·HC1
                                                                   Н
                                                                                 -C0-
                                                                                             E
                                   Мe
                                            CH (CH, ) CH, Ph
                                                                         NH
                                                                                 -CO-
                                                                                             Z
874
            (CH<sub>2</sub>), Q28·HC1
                                            CH (CH, ) CH, Ph
                                                                   Н
                                                                         NH
                                   Мe
                                                                                             E
875
                                     Мe
                                                                   Н
                                                                         NH
                                                                                 -CO-
           (CH<sub>2</sub>), Q28·HC1
                                            CH (CH, ) CH, Ph
                                                       【表41】
                                   表
                                          I
                                                 (続)
 No.
               R¹
                                     R2
                                                    R^3
                                                                   R4
                                                                         X
                                                                                  Y 立体化学
                                                                                 -CO-
                                                                                             Z
876
           (CH₂) 5 Q28 · HC1
                                    Me
                                            CH (CH, ) CH, Ph
                                                                   H
                                                                         NH
                                                                                 -CO-
                                                                                             E
877
           (CH<sub>2</sub>), Q30·HC1
                                    Me
                                            CH (CH, ) CH, Ph
                                                                  Н
                                                                         NH
                                                                                             Z
878
           (CH<sub>2</sub>), Q30·HC1
                                    Me
                                            CH (CH<sub>3</sub> ) CH<sub>2</sub> Ph
                                                                   H
                                                                         NH
                                                                                 -CO-
                                                                                             E
                                                                   H
879
           (CH<sub>2</sub>)<sub>3</sub> Q30·HC1
                                    Me
                                            CH (CH<sub>3</sub>) CH<sub>2</sub> Ph
                                                                         NH
                                                                                 -CO-
                                                                                -CO-
                                                                                             Z
880
           (CH<sub>2</sub>), Q30·HC1
                                    Me
                                            CH (CH, ) CH, Ph
                                                                  Н
                                                                         NH
                                                                                            E
881
           (CH<sub>2</sub>)<sub>5</sub> Q30·HC1
                                    Me
                                            CH (CH, ) CH, Ph
                                                                   Н
                                                                         NH
                                                                                -CO-
882
           (CH<sub>2</sub>)<sub>5</sub> Q30·HC1
                                    Мe
                                            CH (CH, ) CH, Ph
                                                                  Н
                                                                         NH
                                                                                -C0-
                                                                                            Z
883
           (CH<sub>2</sub>), Q31·HC1
                                            CH (CH, ) CH, Ph
                                                                  H
                                                                         NH
                                                                                -C0-
                                                                                            E
                                    Me
                                                                                            Z
884
                                            CH (CH, ) CH, Ph
                                                                  H
                                                                         NH
                                                                                -C0-
           (CH<sub>2</sub>), Q31·HCl
                                    Me
                                                                  Н
                                                                                -C0-
                                                                                            E
885
           (CH<sub>2</sub>)<sub>3</sub> Q31·HC1
                                    Me
                                            CH (CH, ) CH, Ph
                                                                        NH
886
           (CH<sub>2</sub>), Q31·HC1
                                    Me
                                            CH (CH, ) CH, Ph
                                                                  H
                                                                        NH
                                                                                -C0-
                                                                                            Z
                                                                                -CO-
                                                                                            E
887
           (CH<sub>2</sub>)<sub>5</sub> Q31·HCl
                                    Me
                                            CH (CH, ) CH, Ph
                                                                  Н
                                                                        NH
                                                                                            Z
                                                                  H
                                                                                -CO-
888
           (CH₂), Q31 · HC1
                                    Мe
                                            CH (CH, ) CH, Ph
                                                                        NH
889
                                                                  H
                                                                        NH
                                                                                -CO-
                                                                                            Е
              (CH<sub>2</sub>), Q32
                                    Me
                                            CH (CH, ) CH, Ph
                                                                                            Z
890
              (CH<sub>2</sub>), Q32
                                    Me
                                            CH (CH, ) CH, Ph
                                                                  H
                                                                        NH
                                                                                -CO-
                                                                                -CO-
                                                                                            E
                                                                  Н
891
              (CH<sub>2</sub>), Q32
                                    Me
                                            CH (CH, ) CH, Ph
                                                                        NH
                                                                                            Z
892
              (CH<sub>2</sub>), Q32
                                    Me
                                            CH (CH, ) CH, Ph
                                                                  Н
                                                                        NH
                                                                                -C0-
                                                                                            E
893
              (CH<sub>2</sub>), Q32
                                    Me
                                            CH (CH, ) CH, Ph
                                                                  Н
                                                                        NH
                                                                                -C0-
                                                                                -C0-
                                                                                            Z
894
              (CH<sub>2</sub>)<sub>5</sub>Q32
                                    Me
                                            CH (CH, ) CH, Ph
                                                                  Н
                                                                        NH
                                                                                -C0-
                                                                                            E
                                                                  H
                                                                        NH
895
              (CH<sub>2</sub>), CONEt<sub>2</sub>
                                            CH (CH, ) CH, Ph
                                    Me
896
              (CH2), CONEt2
                                    Me
                                            CH (CH, ) CH, Ph
                                                                  Н
                                                                         NH
                                                                                -CO-
                                                                                            Z
                                                                                            E
                                            CH (CH, ) CH, Ph
                                                                  Н
                                                                         NH
                                                                                -CO-
897
              (CH<sub>2</sub>), COQ13
                                    Me
                                                      【表42】
                                   表
                                        I
                                                 ( 続 )
                                    R²
                                                    R3
               R۱
                                                                   R¹
                                                                        X
                                                                                 Y 立体化学
 No.
```

Z

Е

-CO-

-CO-

[0069]

[0070]

898

899

(CH₂), COQ13

(CH₂), COQ13

Me

Me

CH (CH,) CH, Ph

CH (CH,) CH, Ph

H · NH

Н

NH

65							66
900	(CH ₂) ₃ COQ13	Me	CH (CH1) CH2 Ph	H	NH	-C0 -	Z
901	(CH ₂) , COQ13	Me	CH (CH,) CH, Ph	H	NH	-CO-	E
902	(CH ₂) ₅ COQ13	Me	CH (CH,) CH, Ph	H	NH	-C0-	2
903	(CH ₂), COQ14	Me	CH (CH,) CH, Ph	H	NH	-C0-	E
904	(CH ₂), COQ14	Me	CH (CH ₂) CH ₂ Ph	H	NH	-C0-	2
905	(CH ₂), COQ14	Me	CH (CH ₃) CH ₂ Ph	H	NH	-CO-	E
906	(CH ₂), COQ14	Me	CH (CH,) CH, Ph	H	NH	-C0-	Z
907	(CH ₂), COQ14	Me	CH (CH,) CH, Ph	H	NH	-CO-	E
908	(CH ₂) ₅ COQ14	Me	CH (CH,) CH, Ph	H	NH	-CO-	2
909	(CH ₂) ₂ COQ15	Me	CH (CH2) CH2 Ph	H	NH	-CO-	E
910	(CH ₂), COQ15	Me	CH (CH ₂) CH ₂ Ph	H	NH	-CO-	Z
911	(CH ₂), COQ15	Me	CH (CH ₃) CH ₂ Ph	H	NH	-CO-	E
912	(CH ₂), COQ15	Me	CH (CH ₂) CH ₂ Ph	H	NH	-CO-	Z
913	(CH ₂) ₅ COQ15	Me	CH (CH ₃) CH ₂ Ph	H	NH	-CO-	E
914	(CH ₂) _s COQ15	Me	CH (CH,) CH, Ph	H	NH	-CO-	Z
915	(CH ₂) ₂ COQ16	Me	CH (CH₃) CH₂ Ph	H	NH	-CO-	E
916	(CH ₂) ₂ COQ16	Me	CH (CH₃) CH₂ Ph	H	NH	-CO-	2
917	(CH ₂), COQ16	Me	CH (CH3) CH2 Ph	H	NH	-CO-	E
918	(CH ₂) ₃ COQ16	Me	CH (CH ₃) CH ₂ Ph	H	NH	-CO-	Z
919	(CH ₂), COQ16	Me	CH (CH,) CH, Ph	H	NH	-co-	E

[0071]

【表43】 表 I (続)

No.	R ^t	ž.	R²	R³	R ⁴	Х	Y	立体化学
000	(CII)	C0016		CH (CH) CH DF		AUT		- Z
920		COQ16	Me	CH (CH,) CH, Ph	H	NH	-CO-	
921		0Q17·HC1	Me	CH (CH,) CH, Ph	H	NH	-co-	
922	-	OQ17·HC1	Me	CH (CH ₃) CH ₂ Ph	H	NH	-co-	
923	• • •	OQ17·HC1	Me	CH (CH ₃) CH ₂ Ph	H	NH	-C0-	
924	(CH ₂), C	OQ17·HC1	Me	CH (CH,) CH, Ph	H	NH	-co-	7
925	(CH ₂) ₅ C	0Q17·HC1	Me	CH (CH,) CH, Ph	H	NH	-CO-	E
926	(CH ₂) 6 C	0Q17·HC1	Me	CH (CH3) CH2 Ph	H	NH	-co-	Z
927	(CH ₂) ₂ C	OQ18·HC1	Me	CH (CH,) CH, Ph	Н	NH	-CO-	E
928	(CH ₂), C	0Q18·HC1	Me	CH (CH,) CH, Ph	H	NH	-CO-	Z
929	(CH ₂), C	0Q18·HC1	Me	CH (CH,) CH, Ph	H	NH	-CO-	Е
930	(CH ₂), C	0Q18·HC1	Me	CH (CH ₂) CH ₂ Ph	H	NH	-CO-	2
931	(CH ₂), C	0Q18·HC1	Me	CH (CH ₂) CH ₂ Ph	H	NH	-co-	Е
932	(CH ₂) ₅ C	OQ18·HCl	Me	CH (CH,) CH, Ph	H	NH	-CO-	Z
933	(CH ₂), C	0Q19·HC1	Me	CH (CH,) CH, Ph	H	NH	-CO-	E
934	(CH ₂), C	0Q19·HC1	Me	CH (CH,) CH, Ph	Н	NH	-CO-	. 2
935	(CH ₂), C	0Q19·HC1	Me	CH (CH ₂) CH ₂ Ph	H	NH	-CO-	E
936	(CH ₂), C	0Q19·HC1	Me	CH (CH₃) CH₂ Ph	H	NH	-co-	2
937	(CH ₂) ₅ C	0Q19·HC1	Me	CH (CH₃) CH₂ Ph	H	NH	-CO-	E
938	(CH ₂), C	0Q19·HC1	Me	CH (CH ₃) CH ₂ Ph	H	NH	-C0-	2
939	(CH ₂), C	0Q21	Me	CH (CH,) CH, Ph	H	NH	-CO-	E
940	(CH ₂), C	0 Q 21	Me	CH (CH3) CH2 Ph	H	NH	-CO-	7
941	(CH ₂), C	0Q21	Ме	CH (CH ₃) CH ₂ Ph	Н	NH	-C0-	E

表 I (続)

No.	R'	R²	R³	R ⁴	X	Y	立体化学
942	(CH ₂), COQ21	Me	CH (CH ₃) CH ₂ Ph	Н	NH	-co-	2
943	(CH ₂) _s COQ21	Me	CH (CH,) CH, Ph	H	NH	-co-	Е
944	(CH ₂) ₅ COQ21	Me	CH (CH3) CH2 Ph	Н	NH	-co-	Z
945	(CH ₂), COQ28	Me	CH (CH,) CH, Ph	Н	NH	-co-	E
946	(CH ₂), COQ28	Me	CH (CH,) CH, Ph	Н	NH	-co-	2
947	(CH ₂), COQ28	Me	CH (CH,) CH, Ph	Н	NH	-co-	Е
948	(CH ₂), COQ28	Me	CH (CH3) CH2 Ph	Н	NH	-co-	Z
949	(CH ₂) ₅ COQ28	Me	CH (CH,) CH, Ph	H	NH	-co-	E
950	(CH ₂), COQ28	Me	CH (CH,) CH, Ph	Н	NH	-co-	Z
951	(CH ₂), COQ30	Me	CH (CH ₃) CH ₂ Ph	H	NH	-co-	E
952	(CH ₂) ₂ COQ30	Me	CH (CH,) CH, Ph	Н	NH	-co-	Z
953	(CH ₂) ₃ COQ30	Me	CH (CH ₃) CH ₂ Ph	Н	NH	-co-	Е
954	(CH ₂) ₃ COQ30	Me	CH (CH,) CH, Ph	Н	NH	-CO-	Z
955	(CH ₂) _s COQ30	Me	CH (CH,) CH, Ph	Н	NH	-co-	Е
956	(CH ₂) ₅ COQ30	Me	CH (CH ₂) CH ₂ Ph	Н	NH	-co-	2
957	(CH ₂), COQ31	Me	CH (CH ₃) CH ₂ Ph	H	NH	-co-	Е
958	(CH ₂), COQ31	Me	CH (CH,) CH, Ph	H	NH	-co-	Z
959	(CH ₂) ₃ COQ31	Мe	CH (CH,) CH, Ph	H	NH	-CO-	Е
960	(CH ₂) ₃ COQ31	Me	CH (CH,) CH, Ph	Н	NH	-CO-	2
961	(CH ₂) ₅ COQ31	Me	CH (CH,) CH, Ph	H	NH	-co-	E
962	(CH ₂) _s COQ31	Me	CH (CH ₂) CH ₂ Ph	H	NH	-CO-	2
963	(CH ₂) ₂ COQ32	Me	CH (CH ₂) CH ₂ Ph	H	NH	-co-	E

[0073]

【表45】 表 I (続)

No.	R'	R²	R³	R ⁴	Х	Y	立体化学
964	(CH ₂), COQ32	Me	CH (CH,) CH, Ph	Н	NH	-co-	- Z
965	(CH ₂), COQ32	Me	CH (CH,) CH, Ph	H	NH	-co-	- E
966	(CH ₂), COQ32	Me	CH (CH,) CH, Ph	H	NH	-CO-	- 2
967	(CH ₂) _s COQ32	Me	CH (CH3) CH2 Ph	H	NH	-co-	- Е
968	(CH ₂) ₅ COQ32	Me	CH (CH,) CH, Ph	Н	NH	-co-	- 2
969	Н	Me	Q2	H	NCH, CO, Me	-co-	- Е
970	H	Me	Q2	Н	NCH, CO, Me	-co-	· Z
971	H	Me	Q2	H	NCH, CH (OH) Et	-co-	- Е
972	. Н	Me	Q2	H	NCH, CH (OH) E t	-C0-	. 2
973	Н	Me	Q2	H	N(CH ₂), CO, Et	-co-	Е
974	H	Me	Q2	H	N (CH ₂), CO, Et	-co-	Z
975	H	Me	Q2	H	NCH, CO, H	-co-	E
976	H	Me	Q2	H	NCH, CO, H	-co-	2
977	Н	Ме	Q2	Н	N (CH ₂) , CO, H	-co-	E
978	. Н	Me	Q2	Н	N (CH,), CO, H	-co-	2
979	H	Me	Q2	H	NCH2 CONE t2	-co-	Е
980	H	Me	Q2	H	NCH, CONE t.	-co-	2
981	Н	Me	Q2	H	N(CH,), CONEt,	-CO-	Е

(CH,), Ph

-CO- E

[0074]

69

H

H

H

H

Me

Me

Me

Me

982

983

984

985

【表46】

表 I (続)

Q2

No.	R¹	R²	R ^a	R4	X	Y 立体化学
986	Н	Me	Q2	Н	(CH,), Ph	-co- z
987	H	Me	Q2	H	(CH,), Ph	-CO- E
988	Н	Me	Q2	H	(СЩ,), Ph	-co- z
989	H	Me	Q2	H	(CH,), Ph	-CO- E
990	H	Me	Q2	H	(СН ₂); Рh	-CO- Z
991	H	Me	Q2	H	(CH,), Q5	-CO- E
992	H	Me	Q2	H	(CH ₂), Q5	-CO- Z
993	Н	Me .	Q2	H	(CH ₂), Q5	-CH ₂ _ E
994	H	Me	Q2	H	(CH ₂), Q5	-co- z
995	H	Me	Q2	H	(CH,), Q5	-CO- E
996	H	Me	Q2	H	(CH ₂), Q5	-co- z
997	H	Me	Q2	H	(CH ₂), Q22	-CO- E
998	H	Me	Q2	Н	(CH ₂), Q22	-co- z
999	H	Me	Q2	H	(CH ₂), Q22	-CO- E
1000	H	Me	Q2	H	(CH ₂) ₃ Q22	-co- z
1001	H	Me	Q2	H	(CH ₂) ₅ Q22	-со- Е
1002	Н	Me	Q2	Н	(CH ₂), Q22	-CO- Z
1003	H	Me	Q2	H	(СҢ), Q23	-CO- E
1004	H	Me	Q2	H	(CH,), Q23	-co- z
1005	H	Me	Q2	H	(CH ₂), Q23	-CO- E
1006	н .	Me	Q2	H	(CH ₄), Q23	-co- z
1007	H	Me	Q2	Н	(CH ₂) ₅ Q23	- CO - E

[0075]

【表47】 表 I (続)

No.	R¹	R²	R,	R⁴	Х	Υ	立体化学
1008	Н	Me	Q2	Н	(CH ₂), Q23	-co-	2
1009	H	Me	Q2	H	(CH ₂), Q24	-CO-	Е
1100	Н	Me	Q2	H	(CH ₁), Q24	-co-	2
1101	H	Me	Q2	H	(CH ₂), Q24	-co-	Е
1102	H	Me	Q2	Н	(CH,), Q24	-co-	Z
1103	H	Me	Q2	Н	(CH ₂), Q24	-CO-	E
1104	H	Me	Q2	Н	(CH ₂); Q24	-co-	2
1105	H	Me	Q2	Н	(CH,), Q25	-co-	E
1106	H	Me	Q2	H	(CH ₂), Q25	-co-	Z
1107	H	Me	Q2	H	(СЩ.), Q25	-co-	E
1108	H	Me	Q2	Н	(СӉ.), Q25	-co-	2
1109	H	Me	Q2	H	(CH,), Q25	-co-	Е

				,			1.4	717
71							72	
1110	H	Me	Q2	H	(CH ₂); Q25	-co-	2	
1111	H	Me	Q2	H	(CH ₂), Q26	-co-	E	
1112	H	Me	Q2	H	(CH ₂), Q26	-co-	2	
1113	H	Me	Q2	H	(CH ₂), Q26	-co-	E	
1114	H	Me	Q2	H	(CH ₂), Q26	-co-	2	
1115	H	Me	Q2	H	(CH ₂), Q26	-co-	E	
1116	H	Me	Q2	H	(CH ₂), Q26	-co-	Z	
1117	Н	. Me	Q2	H	(CH ₂) s CO ₂ E t	-co-	E	
1118	H	Me	Q2	H	(CH ₂), CO ₂ Et	-co-	2	
1119	H	Me	Q2	H	(CH ₂), CO ₂ H	-CO-	E	

[0076]

【表48】 表 I (続)

No.	R'	R²	R³	R¹	X	Y	立体化学
1120	Н	Me	Q2	Н	(CH,), CO, H	-co-	Z
1121	H	Me	Q2	H	(CH ₂), OCH, CO, Et	-CO-	E
1122	H	Me	Q2	H	(CH ₂), OCH ₂ CO, Et	-CO-	Z
1123	H	Me	Q2	H	(CH ₂), OCH ₂ CO, Et	-CO-	E
1124	H	Me	Q2	H	(CH ₂), OCH ₂ CO, Et	-CO-	2
1125	H	Me	Q2	Н	(СН,), ОСН, СО, Н	-CO-	E
1126	Н	Me	Q2	H	(CH ₂), OCH, CO, H	-CO-	Z
1127	H	Me	Q2	H	(CH ₂), OCH, CO, H	-CO-	Е
1128	Н	Me	Q2	H	(CH ₂), OCH, CO, H	-CO-	Z
1129	H	Me	Q2	H	CH, CH (OH) CH, CH, OE t	-C0-	Е
1130	H	Me	Q2	H	CH, CH (OH) CH, CH, OE t	-CO-	Z
1131	H	Me	Q2	H	(CH ₂), NE t ₂	-CO-	E
1132	H	Me	Q2	H	(CH ₂), NE t ₂	-CO-	Z
1133	H	Me	Q2	H	(CH ₂), NEt,	-CO-	E
1134	H	Me	Q2	H	(CH ₂), NEt,	-CO-	Z
1135	H	Me	Q2	H	(CH _z) s NE t _z	-CO-	E
1136	H	Me	Q2	H	(CH _z), NEt _z	-CO-	2
1137	H	Me	Q2	H	(CH₂), Q13·HC1	-CO-	Е
1138	H	Me	Q2	H	(CH₂), Q13·HC1	-CO-	Z
1139	Н	Me	Q2	H	(CH ₂), Q13·HC1	-CO-	E
1140	H	Me	Q2	H	(CH ₂), Q13·HC1	-CO-	Z
1141	Н	Me	Q2	H	(CH ₂), Q13·HC1	-CO-	E

[0077]

40 【表49】 表 I (続)

No.	R¹	R²	R³	R ⁴	X	Y	立体化学
1142	Н	Me	Q2	Н	(CH,), Q13·HC1	-co-	2
1143	Н	Me	Q2	H	(CH ₂), Q14·HC1	-co-	E
1144	H	Me	Q2	H	(CH ₂), Q14·HC1	-co-	2
1145	H	Me	Q2	H	(CH ₂), Q14·HC1	-CO-	E
1146	H	Me	Q2	H	(CH ₂), Q14·HC1	-co-	Z
1147	H	Me	Q2	H	(CH ₂); Q14·HC1	-co-	Е

					(38)		特開平7-17952
	3				(au)		74
1148	Н	Me	Q2	H	(CH ₂), Q14·HC1	-C0-	2
1149	H	Me	Q2	Н	(CH ₂), Q15	-C0-	E
1150	Н	Me	Q2	H	(СН,), Q15	-C0-	2
1151	H	Me	Q2	Н	(CH ₂), Q15	-C0-	E
1152	H	Me	Q2	H	(СН,),Q15	-C0-	2
1153	Н	Me	Q2	H	(СҢ); Q15	-C0-	E
1154	H	Me	Q2	H	(CH ₂), Q15	-C0-	2
1155	H	Me	Q2	H	(CH ₂), Q16·HC1	-C0-	E
1156	H	Me ·	Q2	H	(СЩ.), Q16·НС1	-C0-	7
1157	H	Me	Q2	H	(CH ₂), Q16·HC1	-C0-	Е
1158	H	Me	Q2	H	(CH,), Q16·HC1	-C0-	2
1159	H	Me	Q2	Н	(CH ₂) _s Q16·HC1	-C0-	E
1160	H	Me	Q2	H	(CH ₂) ₅ Q16·HC1	-C0-	Z
1161	H	Me	Q2	H	(CH ₂) ₂ Q17·2HC1	-C0-	E
1162	H	Me	Q2	H	(СН ₂), Q17·2HC1	-C0-	Z
1163	H	Me	Q2	H	(CH ₂), Q17·2HC1	-C0-	E
					【表50】		
				表	I (続)		
No.	R ^t	R²	R ³	R ⁴	X	Y	 立体化学
1164	H	Me	Q2	Н	(CH ₂), Q17·2HC1	-C0-	1
1165	H	Me	Q2	Н	(CH ₂) ₅ Q17·2HC1	-C0-	E
1166	H	Me	Q2	H	(CH ₂) ₅ Q17·2HC1	-co-	2
1167	H	Me	Q2	H	(CH ₂), Q18·2HC1	-CO-	E
1168	H	Me	Q2	Н	(CH ₂), Q18·2HC1	-co-	Z
1169	H	Me	Q2	Н	(CH ₂), Q18·2HC1	-CO-	E
1170	H	Me	Q2	H	(CH ₄), Q18·2HC1	-C0-	Z
1171	H	Me	Q2	Η.	(СН ₂), Q18·2HC1	-co-	E
1172	Н	Me	Q2	Н	(CH ₂) ₅ Q18·2HC1	-co-	2
1173	H	Me	Q2	Н	(СН ₂), Q19·2HC1	-co-	E
1174	H	Me	Q2	Н	(CH ₄), Q19·2HC1	-co-	1
1175	H	Me	Q2	H	(CH ₂), Q19·2HC1	-co-	E
1176	H	Me	Q2	Н	(CH ₂), Q19·2HC1	-CO-	. 1
1177	H	Me	Q2	H	(CH ₂) ₅ Q19·2HC1	-co-	E
1178	H	Me	Q2	H	(CH ₂), Q19·2HC1	-co-	1
1179	H	Me	Q2	Н	(CH ₂), Q21	-co-	E
1180	H	Me	Q2	Н .	(CH ₂), Q21	-co-	7
1181	Н	Me	Q2	H	(CH ₂), Q21	-co-	E
1182	H	Me	Q2	Н	(CH ₂), Q21	-co-	2
1183	H	Me	Q2	Н	(CH ₂), Q21	-co-	E
1184	Н	Me	Q2	Н	(CH ₂); Q21	-co-	7
1185	Н	Me	Q2	Н	(CH,), Q28·HC1	-CO-	E
					【表51】		
				表	I (続)		

X

Y

立体化学

[0078]

[0079]

No. R1

					(39)		特開平7-17952
75	5						76
1186	H	Me	Q2	H	(CH,),Q28·HC1	-CO-	Z
1187	H	Me	Q2	H	(CH ₂), Q28·HC1	-co-	E
1188	H	Me	Q2	H	(CH ₂), Q28·HCl	-CO-	Z
1189	H	Me	Q2	H	(CH,), Q28·HC1	-co-	E
1190	H	Me	Q2	H	(CH ₂), Q28·HC1	-co-	2
1191	H	Me	Q2	H	(CH ₂), Q30·HC1	-CO-	E
1192	H	Me	Q2	H	(CH ₂), Q30·HC1	-CO-	Z
1193	H	Me	Q2	H	(CH ₂), Q30·HC1	-CO-	E
1194	H	Me	Q2	Н	(CH,), Q30·HC1	-CO-	Z
1195	H	Me	Q2	H	(CH ₂), Q30·HC1	-CO-	E
1196	H	Me	Q2	H	(CH ₂), Q30·HC1	-CO-	Z
1197	H	Me	Q2	H	(CH ₂), Q31·HC1	-CO-	E
1198	H	Me	Q2	H	(CH ₂), Q31·HC1	-CO-	7
1199	H	Me	Q2	H	(CH ₂), Q31·HC1	-co-	Е
1200	H	Me	Q2	H	(CH ₂), Q31·HC1	-CO-	7
1201	H	Me	Q2	H	(CH ₂), Q31·HCl	-CO-	Е
1202	H	Me	Q2	H	(CH ₂), Q31·HC1	-CO-	7
1203	H	Me	Q2	H	(CH,), Q32	-CO-	E
1204	H	Me	Q2	H	(CH ₂), Q32	-CO-	7 .
1205	H	Me	Q2	H	(CH ₂), Q32	-C0-	Е
1206	H	Me	Q2	H	(CH ₂), Q32	-CO-	7
1207	H	Me	Q2	H	(CH ₂), Q32	-CO-	E

[0800]

【表 5 2】 表 I (続)

-	No.	R ^t	R²	R³	R¹	X	Y	立体化学
-	1208	Н	Me	Q2	Н	(CH ₂) _s Q32	-co-	Z
	1209	Н	Me	Q2	H	(CH,), CONE 1,	-CO-	E
	1210	Н	Me	Q2	H	(CH ₂) s CONE t ₂	-CO-	2
	1211	H	Me	Q2	H	(CH,), COQ13	-co-	E
	1212	H	Me	Q2	H	(CH ₂), COQ13	-CO-	2
	1213	H	Me	Q2	Н	(CH ₂), COQ13	-co-	E
	1214	H	Me	Q2	H	(CH ₂), COQ13	-co-	2
	1215	H	Me	Q2	H	(CH,), COQ13	-CO-	E
	1216	Н	Me	Q2	H	(CH,), COQ13	-CO-	2
	1217	H	Me	Q2	H	(CH ₂), COQ14	-co-	E
	1218	H	Me	Q2	H	(CH,), COQ14	-CO-	2
	1219	Н	Me	Q2	Н	(CH ₂), COQ14	-CO-	E
	1220	Ħ	Me	Q2	Н	(CH ₂), COQ14	-CO-	2
	1221	Н	Me	Q2	H	(CH,); COQ14	-co-	E
	1222	H	Me	Q2	H	(CH ₂); COQ14	-co-	Z
	1223	Н	Me	Q2	Н	(CH ₂), COQ15	- C0-	E
	1224	Н	Me	Q2	H	(CH ₂), COQ15	-co-	2
	1225	Н	Me	Q2	H	(CH,), COQ15	-CO-	E
	1226	Н	Me	Q2	H	(CH,), COQ15	-co-	2
	1227	H	Me	Q2	H	(CH ₂), COQ15	-co-	Е
	1228	Н	Me	Q2	H	(CH ₂); COQ15	-CO-	2
	1229	Н	Me	Q2	H	(CH ₂), COQ16	-co-	E

[0081]

【表53】 表 I (続)

No.	R¹	R²	R³	R⁴	X	Y	立体化学
1230	Н	Me	Q2	Н	(СН,), СОО16	-co-	Z
1231	H	Me	Q2	H	(CH ₂), COQ16	-co-	E
1232	H	Me	Q2	H	(CH ₂), COQ16	-co-	2
1233	H	Me	Q2	H	(CH,), COQ16	-co-	E
1334	H	Me	Q2	H	(CH ₂), COQ16	-CO-	2
1235	H	Me	$\mathbf{Q}2$	H	(CH,), COQ17·HC1	-CO-	E
1236	H	Me	$\mathbf{Q}2$	H	(CH,), COQ17·HC1	-CO-	Z
1237	Н	Me	$\mathbf{Q}2$	H	(CH,), COQ17·HC1	-CO-	E
1238	H	Me	Q2	H	(СЩ), COQ17·НС1	-CO-	2
1239	H	Me	Q2	H	(CH ₂) cOQ17·HC1	-CO-	E
1240	H	Me	$\mathbf{Q}2$	H	(CH,), COQ17·HC1	-CO-	2
1241	H	Me	Q2	H	(CH,), COQ18·HC1	-CO-	E
1242	H	Me	Q2	H	(CH ₂), COQ18·HC1	-CO-	Z
1243	H	Me	Q2	H	(CH,), COQ18·HC1	-CO-	E
1244	H	Me	Q2	H	(СН) 3 COQ18·HC1	-CO-	2
1245	H	Me	$\mathbf{Q}2$	H	(CH ₂) s COQ18·HC1	-C0-	E
1246	H	Me	Q2	H	(CH₂), COQ18·HC1	-CO-	2
1247	H	Me	Q2	H	(CH,), COQ19·HC1	-CO-	E
1248	H	Me	Q2	H	(CH ₂), COQ19·HC1	-CO-	Z
1249	H	Me	Q2	Н	(CH ₂), COQ19·HC1	-C0-	E
1250	H	Me	Q2	H	(CH ₂), COQ19·HC1	-CO-	Z
1251	H	Me	Q2	Н	(CH ₂) _s COQ19·HC1	-CO-	E

[0082]

30 【表54】 表 I (続)

No.	R'	R²	R³	R ⁴	Х	Y	立体化学
1252	Н	Ме	Q2	Н	(CH,), COQ19·HC1	-co-	2
1253	H	Me	Q2	H	(CH ₂), COQ21	-co-	E
1254	Н	Me	Q2	H	(CH ₂), COQ21	-C0-	2
1255	H	Me	Q2	H	(CH ₂), COQ21	-C0-	E
1256	Н	Me	Q2	H	(CH,), COQ21	-C0-	Z
1257	H	Me	Q2	H	(CH,), COQ21	-CO-	E
1258	Н	Me	Q2	H	(CH ₂) 5 COQ21	-co-	2
1259	H	Me	Q2	Н	(CH,), COQ28	-CO-	E
1260	Н	Me	Q2	H	(CH ₂), COQ28	-CO-	Z
1261	Н	Me	Q2	Н	(CH ₂), COQ28	-co-	E
1262	Н	Me	Q2	H	(CH ₂), COQ28	-CO-	Z
1263	Н	Me	Q2	H	(CH ₂); COQ28	-C0-	E
1264	Н	Me	Q2	H	(CH ₂); COQ28	-CO-	Z
1265	Н	Me	Q2	H	(CH ₂), COQ30	-CO-	E
1266	Н	Me	Q2	H	(CH,), COQ30	-CO-	2
1267	Н	Me	Q2	Ħ	(CH ₂), COQ30	-CO-	E

			(4)			•	#± 88 77	7 1 7 0 5 0
			(41	,				7-17952
79			00 11 (011)			00	80	
1268	H	Me), COQ3		CO- CO-	Z E	
1269	H	Me) . COQ3		CO-	Z	
1270	H	Me	· ·)		CO-	E E	
1271	H	Me), COQ3		CO-	ž	
1272	H	Me), COQ3), COQ3		CO-	E	
1273	Н	Ме	QZ II (CIĘ)	/ 3 COQ			L	
				【表	5 5]			
			表 I()			

No.	R'	R²	R³	R¹	Х	Y	立体化学	
1274	Н	Me	Q2	Н	(CH ₂), COQ31	-co-		
1275	H	Me	Q2	Н	(CH,), COQ31	-co-		
1276	H	Me	Q2	Н	(CH ₂), COQ31	-co-		
1277	H	Me	Q2	H	(CH ₂), COQ32	-CO-		
1278	H	Me	Q2	H	(CH ₂), COQ32	-co-		
1279	H	Me	Q2	Н	(CH ₂), COQ32	-co-		
1280	H	Me	Q2	Н	(CH ₂), COQ32	-C0-		
1281	H	Me	Q2	H	(CH ₂) cOQ32	-co-		
1282	H	Me	Q2	. Н	(CH ₂), COQ32	-co-		
1283	H	Me	Q2	Н	NH	-СН		
1284	H	Me	Q2	H	NH	-CH2		
1285	Me	Me	Q2	Н .	NMe	-CH		
1286	Me	Me	Q2	H	NMe	-CH3		
1287	H	Me	(CH ₂), Q18·2HC1	H	NH	-CH₂		
1288	H	Me	(CH ₂), Q18·2HCl	H	NH	−CH₂		
1289	H	Me	(CH ₂), Q18·2HC1	H	NMe NMe	-CH ₂		
1290	H	Me	(CH ₂), Q18·2HC1 CH ₂ COQ18·2HC1	H H	NMe NH	-CH ₂		
1291	Н	Me Me	CH, COQ18·2HC1	H	NH	-CH ₂		
1292 1923	H	me Me	(CH ₂), Q18·2HC1	Н	NH	-CH ₂		
1294	H H	Me	(CH ₂), Q18·2HC1	Н	NH ·	-CH₂		
1295	Н	Me	(CH ₂), Ph	Н	NH	-CH ₂		,
				【表	56]			
			表 I (続)			
No.	R'		R ² R ³		R ⁴ X	Y	立体化学	
1296	H		Me (CH ₂),	Ph	H NH	-CH ₂ -	Z	
1297	H		Me (CH ₂), Q18	· 2HC1	H NMe	-CH2 -	Е	
1298	H		Me (CH ₂) ₂ Q18	· 2HC1	H NMe	-CH2 -	Z	
1299	H		Me (CH_2),	CO ₂ E t	H NH	-CH ₂ -	Z	
1300	H		Me (CH_2),		H NH	-CH ₂ -	E	
1301	H		Me (CH ₂),	Ph	H NH	-CH ₂ -	Z	
1302	H		Me $(CH_2)_4$	Ph	H NH	-CH ₂ -	E	

NH

H NH

H

Me

1303

1304

1305

H

H

Н

(CH₂), Ph

(CH₂), Ph

Me (CH₂), N(Et), ·HCl

-CH₂ -

-CH₂ -

NH -CH₂ -

E

[0083]

[0084]

81						82
1306 H	Me	(CH ₂), N(Et), ·HCl	Н	NH	-CH ₂ -	Z
1307 H	Me	(CH,), CONEt,	Н	NH	-CH2 -	E
1308 H	Me	(CH,), CONEt,	Н	NH	-CH2 -	2
1309 H	Me	(CH ₂), CO, Et	Н	NH	-CH2 -	E
1310 H	Me	(CH ₂), CO, Et	Н	NH	-CH₂ -	2
1311 H	Me	(CH ₂), CO ₂ Na	Н	NH	-CH ₂ -	E
1312 H	Me	(CH ₂), CO ₂ Na	Н	NH	-CH₂ -	2
1313 H	Me	Q2	H	NMe	-CH² -	E
1314 H	Me	Q2	Н	NMe	-CH² -	Z
1315 CH ₂ CO ₂ Me	Me	Q2	H	NMe	-CH2 -	E
1316 CH, CH (OH) CH, C	H₃ Me	Q2	Н	NMe	-CH₂ -	E
1317 (CH ₂), CO, Et	Me	Q2	Н	NMe	-СН2 -	Е

[0085]

【表57】

表 I (続)

No.	R'	R²	R ³	R ⁴	X	Y	立体化学
1318	CH2 CO2 H	Me	Q2	Н	NMe	-CH ₂ -	E
1319	(CH ₂), CO ₂ H	Me	Q2	Н	NMe	-CH ₂ -	Е
1320	CH ₂ CON (Et),	Me	Q2	H	NMe	-CH2 -	Е
1321	(CH ₂) ₁ CONE t ₂	Me	Q2	H	NMe	-CH ₂ -	E
1322	CH ₂ CO ₂ Me	Me	Q2	H	NMe	-CH ₂ -	Z
1323	CH2 CH (OH) CH2 CH3	Me	Q2	Н	NMe	-CH2 -	Z
1324	(CH ₂), CO ₂ Et	Me	Q2	Н	NMe	-CH2 -	2
1325	CH ₂ CO ₂ H	Me	Q2	H	NMe	-CH² -	Z
1326	CH ₂ CONE t ₂	Me	Q2	Н	NMe	-CH ₂ -	2
1327	(CH ₂), CONE t ₂	Me	Q2	H	NMe	-CH ₂ -	2
1328	(CH ₂), CO ₂ H	Me	Q2	H	NMe	-CH ₂ -	2
1329	Н	Me	Q1	H	NH	-CH -	E
1330	Н	Me	Q1	Н	NH	-CH -	2
1331	Н	Me	Q3	Н	NH	-CH; -	Ē
1332	Н	Me	Q3	Н	NH	-CH² -	2
1334	Н	Me	CH (CH,) CH, Ph	Н	NH	-CH ₂ -	E
1335	Н	Me	CH (CH ₂) CH ₂ Ph	H	NH	-CH ₂ -	7
1336	Н	Me	CH (CH2) CH2 CH2 Ph	H	NH	-CH ₂ -	E
1337	Н	Me	CH (CH3) CH2 CH2 Ph	Н	NH	-CH ₂ -	2
1338	H	Me	CH (CH3) (CH1), Ph	Н	NH	-CH ₂ -	E
1339	Н	Me	CH (CH,) (CH,), Ph	Н	NH	-CH ₂ -	2
1340	Н	Me	CH, CH (CH,) CH, Ph	H	NH	-CH ₂ -	E

[0086]

【表58】

表 I (続)

No.	R'	R²	R ^x	R¹	Х	Y	立体化学
1341	Н	Me	CH, CH (CH,) CH, Ph	Н	NH	-CH ₂ -	7.
1342	H	Me	CH, CH, CH (CH,) Ph	Н	NH	-CH ₂ -	E
1343	H	Me	CH, CH, CH (CH,) Ph	Н	NH	-CH ₂ -	2
1344	H	Me	(CH,), Q4	Н	NH	-CH₂ -	E

83							84	
1345	H	Me	(CH,), Q4	Н	NH	-CH ₂ -	2	
1346	H	Me	(CH,), Q4	H	NH	-CH _z -	E	
1347	H	Me	(CH,), Q4	Н	NH	−CH₂ −	2	
1348	H	Me	(CH,), Q4	Н	NH	-CH ₂ -	E	
1349	H	Me	(CH ₂), Q4	H	NH	-CH ₂ -	Z	
1350	H	Me	СН (СҢ,) СН, Q4	H	NH	-CH ₂ -	E	
1351	H	Me	CH (CH,) CH, Q4	H	NH	-CH ₂ -	Z	
1352	Н	Me	СН (СН,) СН, СН, Q4	H	NH	-CH ₂ -	E	
1353	H	Me	CH (CH,) CH, CH, Q4	H	NH	-CH2 -	Z	
1354	H	Me	СН (СН,) (СН,), Q4	H	NH	-CH2 -	E	
1355	H	Me	CH (CH,) (CH,), Q4	H	NH	-CH₂ -	2	
1356	Н	Me	CH, CH (CH,) CH, Q4	Н	NH	-CH ₂ -	E	
1357	Н	Me	CH, CH (CH,) CH, Q4	H	NH	-CH2 -	Z	
1358	H	Me	CH, CH, CH (CH,) Q4	H	NH	-CH ₂ -	E	
1359	H	Me	CH, CH, CH (CH,) Q4	Н	NH	-CH₂ -	7	
1360	H	Me	(CH ₂), Q5	H	NH	-CH ₂ -	E	
1361	Н	Me	(CH ₂), Q5	H	NH	-CH₂ -	2	
1362	H	Me	(CH,), Q5	H	NH	-CH ₂ -	E	

[0087]

20 【表59】 表 I (続)

No.	R'	R²	R³	R¹	X	Y	立体化学
1363	Н	Me	(CH ₂), Q5	Н	NH	-CH _z -	2
1364	H	Me	(CH ₂), Q5	H	NH	-CH ₂ -	E
1365	H	Me	(CH₂), Q5	H	NH	-CH ₂ -	Z
1366	H	Me	CH (CH₃) CH₂ Q5	H	NH	-CH ₂ -	E
1367	H	Me	CH (CH₄) CH₂ Q5	H	NH	-CH₂ -	Z
1368	H	Me	CH (CH ₃) CH ₂ CH ₂ Q5	H	NH	-CH ₂ -	E
1369	H	Me	CH (CH ₂) CH ₂ CH ₂ Q5	H	NH	-CH ₂ -	Z
1370	H	Me	CH (CH ₂) (CH ₂) , Q5	H	NH	-CH ₂ -	E
1371	H	Me	CH (CH ₃) (CH ₂) ₃ Q5	H	NH	-CH ₂ -	Z
1372	H	Me	CH, CH (CH,) CH, Q5	H	NH	-CH2 -	E
1373	H	Me	CH, CH (CH,) CH, Q5	H	NH	-CH ₂ -	Z
1374	H	Me	CH ₂ CH ₂ CH (CH ₃) Q5	H	NH	-CH ₂ -	E
1375	H	Me	CH2 CH2 CH (CH3) Q5	H	NH	-CH ₂ -	2
1376	H	Me	(CH ₂) ₂ Q7	H	NH	-CH ₂ -	E
1377	H	Мe	(CH ₂), Q7	H	NH	-CH ₂ -	2
1378	H	Me	(CH ₂), Q7	Н	NH	-CH ₂ -	E
1379	H	Me	(CH ₂), Q7	H	NH	-CH ₂ -	2
1380	H	Me	(CH₂), Q7	H	NH	-CH ₂ -	E
1381	H	Me	(CH₂),Q7	H	NH	-CH ₂ -	2
1382	Н	Me	CH (CH₂) CH₂ Q7	H	NH	-CH ₂ -	E
1383	H	Me	СН (СН₃) СН₂ Q7	Н	NH	-CH ₂ -	2
1384	H	Ме	CH (CH ₂) CH ₂ CH ₂ Q7	Н	NH	-СН, -	E

[0088]

【表60】

8	5						86
No.	R'	R²	R³	R1	X	Y	立体化学
1385	Н	Me	СН (СН.) СН. СН. Q7	Н	NH	-CH ₂ -	2
1386	H	Me	СН (СН,) (СН,), Q7	H	NH	-CH ₂ -	E
1387	H	Me	CH (CH,) (CH,), Q7	H	NH	-CH2 -	. 2
1388	H	Me	CH, CH (CH,) CH, Q7	H	NH	-CH ₂ -	E
1389	H	Me	CH, CH (CH,) CH, Q7	H	NH	-CH₂ -	Z
1390	H	Me	CH ₂ CH ₂ CH (CH ₃) Q7	H	NH	-CH₂ -	E
1391	H	Me	CH, CH, CH (CH,) Q7	H	NH	-CH ₂ -	Z
1392	H	Me	(CH ₂), Q10	H	NH	-CH ₂ -	E
1393	H	Me	(CH ₂), Q10	H	NH	-CH ₂ -	Z
1394	H	Me	(CH ₂), Q10	H	NH	-CH ₂ -	E
1395	H	Me	(CH ₂), Q10	H	NH	-CH2 -	Z
1396	H	Me	(CH ₂), Q10	H	NH	-CH ₂ -	. Е
1397	H	Me	(CH ₂), Q10	H	NH	-CH ₂ -	Z
1398	H	Me	CH (CH,) CH, Q10	H	NH	-CH ₂ -	Е
1499	H	Me	CH (CH ₃) CH ₂ Q10	Н	NH	-CH ₂ -	Z
1400	H	Me	CH (CH,) CH, CH, Q10	H	NH	-CH ₂ -	Е
1401	H	Me	CH (CH ₂) CH ₂ CH ₂ Q10	H	NH	-CH₂ -	Z
1402	H	Me	CH (CH ₂) (CH ₂) 3 Q10	H	NH	-CH ₂ -	E
1403	H	Me	CH (CH ₂) (CH ₂), Q10	Н	NH	-CH ₂ -	Z
1404	H	Me	CH, CH (CH,) CH, Q10	H	NH	-CH ₂ -	E
1405	H	Me	CH ₂ CH (CH ₃) CH ₂ Q10	Н	NH	-CH ₂ -	Z
1406	H	Ме	CH, CH, CH (CH,) Q10	Н	NH	-CH ₂ -	Е

[0089]

【表 6 1】 表 I (続)

No.	R¹	R²	R ³	R ⁴	X	Y	立体化学
407	Н	Ме	СН, СН, СН (СН,) Q10	Н	NH	-CH ₂ -	2
408	H	Me	(CH ₂), Q22	H	NH	-CH₂ -	E
409	H	Me	(CH ₂), Q22	H	NH	-CH ₂ -	7
410	H	Me	(CH ₂), Q22	Н	NH	-CH ₂ -	E
411	H	Me	(CH ₂), Q22	Н	NH	-CH₂ -	2
412	H	Me	(CH ₂), Q22	Н	NH	-CH ₂ -	E
413	H	Me	(CH ₂), Q22	H	NH	-CH ₂ -	2
414	H	Me	СН (СН,) СН, Q22	Н	NH	-CH ₂ -	E
415	H	Me	СН (СН₃) СН₂ Q22	H	NH	-CH ₂ -	2
416	H	Me	СН (СН,) СН, СН, Q22	Н	NH	-CH ₂ -	E
417	À	Me	CH (CH,) CH, CH, Q22	H.	NH	-CH ₂ -	2
418	H	Me	CH (CH ₃) (CH ₂), Q22	Н	NH	-CH ₂ -	E
419	H	Me	CH (CH,) (CH,), Q22	Н	NH	-CH ₂ -	2
420	H	Me	CH, CH (CH,) CH, Q22	H	NH	-CH ₂ -	E
421	H	Me	CH, CH (CH,) CH, Q22	H	NH	-CH ₂ -	2
422	H	Me	CH, CH, CH (CH,) Q22	H	NH	-CH ₂ -	E
423	H	Me	CH ₂ CH ₂ CH (CH ₃) Q22	Н	NH	-CH ₂ -	Z
424	H	Me	(CH ₂), Q23	Н	NH	-CH ₂ -	Е
425	H	Me	(CH ₂), Q23	H	NH	-CH ₂ -	Z
426	H	Me	(CH ₂), Q23	H	NH	-СН, -	E

87
1427 H Me (CH₂)₂Q23 H NH -CH₂ - Z
1428 H Me (CH₂)₄Q23 H NH -CH₂ - E

[0090]

【表62】 表 I (続)

立体化	Y	R ⁴	R³	R²	R'	No.
Z	-CH ₂ -	Н	(CH,), Q23	Me	Н	1429
, - E	-CH ₂ -	H	СН (СН₄) СН₁ Q23	Me	H	1430
. – 2	-CH ₂ -	H	CH (CH ₂) CH ₂ Q23	Me	H	1431
, - E	-CH ₂ -	H	СН (СН,) СН, СН, Q23	Me	H	1432
. – 2	-CH ₂ -	H	CH (CH,) CH, CH, Q23	Me	H	1433
. – E	-CH _z -	H	CH (CH ₂) (CH ₂), Q23	Me	H	1434
. – 2	-CH ₂ -	H	CH (CH ₃) (CH ₂), Q23	Me	H	1435
- E	-CH ₂ -	H	CH ₂ CH (CH ₃) CH ₂ Q23	Me	H	1436
- 2	-CH ₂ -	H	CH (CH ₃) CH ₂ CH ₂ Q23	Me	H	1337
- E	-CH ₂ -	H	CH, CH, CH (CH,) Q23	Me	H	1448
- 2	-CH ₂ -	H	CH ₂ CH ₂ CH (CH ₃) Q23	Me	H	1439
- E	-CH ₂ -	H	(CH ₂), Q24	Me	H	1440
- 2	-CH₂ -	H	(CH ₂), Q24	Me	H	1441
- E	-CH ₂ -	H	(CH ₂), Q24	Me	H	1442
- 2	-CH ₂ -	H	(CH₂), Q24	Me	H	1443
- E	-CH ₂ -	H	(CH₂),Q24	Me	H	1445
- 2	-CH ₂ -	H	(CH₂), Q24	Me	H	1446
- E	-CH ₂ -	H	CH (CH ₃) CH ₂ Q24	Me	H	1447
- Z	-CH ₂ -	H	СН (СН ₄) СН ₂ Q24	Me	H	1448
- E	-CH ₂ -	H	CH (CH ₂) CH ₂ CH ₂ Q24	Me	Н	1449
- 2	$-CH_z$ $-$	H	CH (CH,) CH, CH, Q24	Me	H	1450
- E	-CH ₂ -	H .	CH (CH ₂) (CH ₂), Q24	Me	H	1451
νHz	-(H .	CH (CH ₂) (CH ₂) ₃ Q24	ме	Н	1451

[0091]

【表63】 表 I (続)

No.	R¹	R²	R ^a	R ⁴	X	Y	立体化学
1452	Н	Me	CH (CH ₂) (CH ₂), Q24	Н	NH	-CH ₂ -	2
1453	H	Me	CH2 CH (CH3) CH2 Q24	H	NH	-CH2 -	E
1454	H	Me	CH, CH (CH,) CH, Q24	H	NH	-CH ₂ -	2
1455	H	Me	CH2 CH2 CH (CH2) Q24	H	NH	-CH ₂ -	E
1456	H	Me	CH2 CH2 CH (CH2) Q24	H	NH	-CH ₂ -	2
1457	Н	Me	(CH ₂), Q25	H	NH	-CH ₂ -	E
1458	H	Me	(CH ₂), Q25	H	NH	-CH ₂ -	Z
1459	Н	Me	(CH ₂), Q25	H	NH	-CH ₂ -	Е
1460	Н	Me	(CH ₂), Q25	H	NH	-CH ₂ -	7
1461	Н	Me	(CH₂), Q25	H	NH	-CH2 -	E
1462	Н	Me	(CH,), Q25	Н	· NH	-CH ₂ -	2
1463	H	Me	CH (CH,) CH, Q25	Н	NH	-CH ₂ -	E
1464	Н	Me	CH (CH,) CH, Q25	H	NH	-CH ₂ -	Z
1465	Н	Me	CH (CH,) CH, CH, Q25	H	NH	-CH ₂ -	Е

89	9						90
1466	H	Me	СН (СН,) СН, СН, Q25	H	NH	-CH ₂ -	2
1467	H	Me	CH (CH,) (CH,), Q25	H	NH	-CH ₂ -	E
1468	H	Me	CH (CH,) (CH,), Q25	H	NH	-CH ₂ -	2
1469	H	Me	CH, CH (CH,) CH, Q25	H	NH	-CH ₂ -	E
1470	H	Me	CH, CH (CH,) CH, Q25	H	NH	-CH ₂ -	2
1471	H	Me	CH, CH, CH (CH,) Q25	H	NH	-CH ₂ -	E
1472	H	Me	CH2 CH2 CH (CH2) Q25	H	NH	-CH ₂ -	2
1473	H	Me	(CH ₂), Q26	H	NH	-CH ₂ -	Е

[0092]

10 【表64】 表 I (続)

No.	R'	R ²	R³	R ⁴	X	Y	立体化学
1474	Н	Me	(CH ₂), Q26	Н	NH	-CH ₂ -	Z
1375	H	Me	(CH ₂) ₃ Q26	H	NH	-CH ₂ -	E
1476	H	Me	(CH ₂), Q26	H	NH	-CH ₂ -	Z
1477	H	Me	(CH ₂), Q26	H	NH	-CH ₂ -	E
1478	H	Me	(CH₂),Q26	H	NH	-CH ₂ -	Z
1479	H	Me	CH (CH ₂) CH ₂ Q26	H	NH	-CH₂ -	E
1480	H	Me	CH (CH ₃) CH ₂ Q26	H	NH	-CH ₂ -	Z
1481	H	Me	CH (CH ₂) CH ₂ CH ₂ Q26	H	NH	-CH ₂ -	Е
1482	H	Me	CH (CH,) CH, CH, Q26	H	NH	-CH ₂ -	Z
1483	H	Me	CH(CH ₃)(CH ₂), Q26	H	NH	-CH ₂ -	E
1484	H	Me	СН (СН,) (СН,), Q26	Н	NH	-CH2 -	Z
1485	H	Me	CH ₂ CH (CH ₃) CH ₂ Q26	H	NH	-CH ₂ -	E
1486	H	Me	CH ₂ CH (CH ₃) CH ₂ Q26	H	NH	-CH ₂ -	Z
1487	H	Me	CH, CH, CH (CH,) Q26	Н	NH	-CH ₂ -	E
1488	H	Me	CH, CH, CH (CH,) Q26	H	NH	-CH ₂ -	2
1489	H	Me	CH ₂ CO ₂ E t	H	NH	−СН₂ −	E
1490	H	Me	CH ₂ CO ₂ E t	H	NH	-CH ₂ -	Z
1491	H	Me	CH (CH ₃) CH ₂ CO ₂ E t	H	NH	-CH ₂ -	E
1492	H	Me	CH (CH ₃) CH ₂ CO ₂ E t	H	NH	-CH ₂ -	Z
1493	H	Me	CH (CH2) CH2 CH2 CO2 Et	H	NH	-CH₂ -	E
1494	H	Me	CH (CH ₂) CH ₂ CH ₂ CO ₂ E t	H	NH	-CH ₂ -	Z
1495	H	Me	CH (CH,) (CH,), CO, Et	Н	NH	-CH ₂ -	E

[0093]

【表 6 5 】 表 I (続)

No.	Ŗ¹	R²	R³	R¹	X	Υ	立体化学
1496	Н	Me	CH (CH ₂) (CH ₂), CO, Et	Н	NH	-CH ₂ -	Z
1497	H	Me	(CH ₂) 2 OCH2 CO2 Et	H	NH	-CH ₂ -	E
1498	H	Me	(CH ₂), OCH, CO, Et	H	NH	-CH ₂ -	2
1499	H	Me	(CH,), OCH, CO, Et	H	NH	-CH ₂ -	E
1500	H	Me	(CH ₂), OCH ₂ CO ₂ Et	H	NH	-CH ₂ -	Z
1501	H	Me	CH2 CO2 H	H	NH	-СН, -	E
1502	H	Me	CH, CO, H	H	NH	-СН ₂ -	Z
1503	H	Me	CH (CH,) CH, CO, H	H	NH	-CH, -	E

[0094]

【表66】

表	I	(続)

No.	R¹	R²	R³	R ⁴	X	Y	立体化学
1518	Н	Me	(CH ₂), NEt ₂	Н	NH	−СН₂ −	Z
1519	H	Me	(CH ₂), NEt ₂	H	NH	-CH ₂ -	E
1520	Н	Me	(CH ₂), NEt ₂	H	NH	-CH ₂ -	Z
1521	H	Me	CH (CH,) CH, NEt,	H	NH	-CH ₂ -	E
1522	Н	Me	CH (CH,) CH, NEt,	H	NH	-CH ₂ -	2
1523	H	Me	CH (CH,) CH, CH, NE t,	H	NH	-CH₂ -	E
1524	Н	Me	CH (CH,) CH, CH, NE t,	H	NH	-CH₂ -	Z
1525	H	Me	CH (CH ₂) (CH ₂), NEt,	H	NH	-CH ₂ -	E
1526	H	Me	CH (CH ₄) (CH ₂), NE t,	H	NH	-CH ₂ -	Z
1527	H	Me	CH (CH ₃) (CH ₂) ₅ NE t ₂	H	NH	-CH2 -	E
1528	H	Me	CH (CH ₂) (CH ₂), NEt,	H	NH	-CH ₂ -	Z
1529	H	Me	(CH ₂), Q13·HC1	H	NH	-CH ₂ -	Е
1530	Н	Me	(CH ₂), Q13·HC1	H	NH	-CH₂ -	. Z
1531	Н	Me	(CH ₂), Q13·HC1	H	NH	-CH ₂ -	Е
1532	H	Me	(CH ₂), Q13·HC1	H	NH	-CH ₂ -	Z
1533	H	Me	(CH ₂), Q13·HC1	H	NH	-CH ₂ -	Е
1534	Н	Me	(CH₂), Q13·HC1	H	NH	-CH ₂ -	Z
1535	Н	Me	CH (CH₃) CH₂ Q13·HC1	H	NH	-CH ₂ -	E
1536	Н	Me	CH (CH ₃) CH ₂ Q13 · HC1	Н	NH	-CH ₂ -	Z
1537	Н	Me	CH (CH,) CH, CH, Q13·HC1	H	NH	-CH ₂ -	Е
1548	Ħ	Me	CH (CH,) CH, CH, Q13·HC1	H	NH	-CH, -	2
1539	Н	Me	CH (CH,) (CH,), Q13·HC1	H	NH	-CH ₂ -	Е

[0095]

【表67】

表 【 (続)

No.	R¹	R²	R³	R ⁴	Х	Y	立体化学
1540	Н	Me	CH (CH,) (CH,), Q13·HC1	Н	NH	-СН, -	Z
1541	H	Me	CH (CH ₃) (CH ₂) , Q13·HC1	H	NH	-CH ₂ -	Е

ดว	
30	

J.	U							94
1542	H	Me	CH(CH ₃)(CH ₂), Q13·HC1	Н	NH	-CH ₂ -	2	
1543	. H	Me	(CH,),Q14·HC1	H	NH	-CH ₂ -	E	
1545	H	Me	(CH,), Q14·HC1	H	NH	-CH ₂ -	2	
1546	H	Me	(CH,), Q14·HC1	H	NH	-CH ₂ -	E	
1547	H	Me	(CH,),Q14·HC1	Н	NH	-CH _z -	Z	
1548	H	Me	(CH ₂), Q14·HC1	H	NH	-CH₂ -	E	
1549	H	Me	(CH ₂), Q14·HC1	H	NH	-CH₂ -	Z	
1550	H	Me	CH (CH,) CH, Q14·HC1	H	NH	-CH2 -	E	
1551	H	Me	CH (CH ₃) CH ₂ Q14 · HC1	Н	NH	-CH ₂ -	Z	
1552	H	Me	CH (CH,) CH, CH, Q14·HC1	H	NH	-CH ₂ -	E	
1553	H	Me	CH (CH,) CH, CH, Q14 · HC1	H	NH	-CH ₂ -	2	
1554	H	Me	CH (CH ₂) (CH ₂), Q14·HC1	H	NH	-CH ₂ -	E	
1555	H	Me	CH(CH ₂)(CH ₂), Q14·HC1	H	NH	-CH ₂ -	Z	
1556	Н	Me	CH(CH,)(CH,),Q14·HC1	H	NH	-CH ₂ -	E	
1557	Н	Me	CH (CH ₂) (CH ₂), Q14·HC1	Н	NH	-CH₂ -	Z	
1558	H	Me	(CH ₂), Q15·HC1	H	NH	-CH ₂ -	E	
1559	H	Me	(CH ₂), Q15·HC1	H	NH	-CH ₂ -	Z	
1560	H	Me	(CH ₂), Q15·HC1	Н	NH	-CH ₂ -	E	
1561	H	Me	(CH ₂), Q15·HC1	H	NH	-CH ₂ -	Z	
1562	H	Me	(CH ₂), Q15·HC1	H	NH	-CH ₂ -	E	

[0096]

【表68】

表 I (続)

No.	R'	R²	R³	R¹	X	Y	立体化学
1563	Н	Me	(CH₂)	Н	NH	-CH² -	Z
1564	H	Me	СН (СН₄) СН₂ Q15 · НС1	Н	NH	-CH ₂ -	Е
1565	H	Me	CH (CH,) CH, Q15·HC1	H	NH	-CH ₂ -	Z
1566	H	Me	CH (CH ₃) CH ₂ CH ₂ Q15 · HC1	H	NH	-CH ₂ -	E
1567	H	Me	CH (CH,) CH, CH, Q15 · HC1	H	NH	-CH ₂ -	Z
1568	H	Me	CH (CH ₂) (CH ₂), Q15·HC1	H	NH	-CH₂ -	E
1569	H	Me	CH (CH ₂) (CH ₂), Q15·HC1	H	NH	-CH ₂ -	Z
1570	H	Me	CH (CH ₂) (CH ₂); Q15·HC1	H	NH	-CH ₂ -	E
1571	H	Me	CH (CH ₂) (CH ₂), Q15·HC1	H	NH	-CH₂ -	Z
1572	H	Me	(CH ₂), Q16·HC1	H	NH	-CH2 -	Е
1573	H	Me	(CH,), Q16 · HC1	H	NH	-CH ₂ -	Z
1574	H	Me	(CH ₂), Q16·HC1	H	NH	-CH2 -	Е
1575	H	Me	(CH ₂), Q16·HC1	H	NH	-CH ₂ -	2
1576	H	Me	(CH ₂), Q16·HC1	Н	NH	-CH _z -	E
1577	H	Me	(CH ₂), Q16·HC1	Н	NH	-CH ₂ -	2
1578	H	Me	CH (CH,) CH, Q16 · HC1	Н	NH	-CH ₂ -	E
1579	H	Me	СН (СН,) СН, Q16·НС1	H	NH	-CH ₂ -	Z
1580	Н	Me	CH (CH ₃) CH ₂ CH ₂ Q16·HC1	Н	NH	-CH ₂ -	Е
1581	H	Me	CH (CH3) CH2 CH2 Q16 · HC1	Н	NH	-CH ₂ -	2
1582	Н	Me	CH (CH,) (CH,), Q16 · HC1	Н	NH	-CH ₂ -	E
1583	H	Me	CH(CH ₃)(CH ₂), Q16·HC1	Н	NH	-CH; -	2
1584	H	Me	CH(CH ₃)(CH ₂);Q16·HC1	H	NH	-СН	E

表 I (続)

No.	R'	R²	R³	R4	X	Y	立体化学
1585	Н	Me	CH (CH,) (CH,), Q16·HC1	Н	NH	-CH ₂ -	Z
1586	H	Me	(CH₂), Q17·2HC1	Н	NH	-CH ₂ -	E
1587	Н	Me	(CH ₂), Q17·2HC1	Н	NH	-CH ₂ -	Z
1588	H	Me	(CH ₂), Q17·2HC1	H	NH	-CH₂ -	Е
1589	H	Me	(CH ₂), Q17·2HC1	Н	NH	-CH ₂ -	Z
1590	Н	Me	(CH ₂), Q17·2HC1	Н	NH	-CH ₂ -	E
1591	H	Me	(CH ₂), Q17·2HC1	H	NH	-CH ₂ -	2
1592	H	Me	СН (СН,) СН, Q17 · 2НС1	Н	NH	-CH ₂ -	E
1593	H	Me	CH (CH,) CH, Q17 · 2HC1	Н	NH	-CH ₂ -	2
1594	H	Me	CH (CH ₂) CH ₂ CH ₂ Q17 · 2HC1	H	NH	-CH ₂ -	Е
1595	H	Me	CH (CH,) CH, CH, Q17 · 2HC1	H	NH	-CH₂ -	2
1596	H	Me	CH (CH ₂) (CH ₂) , Q17 · 2HC1	Н	NH	-CH ₂ -	E
1597	Н	Me	CH (CH,) (CH,), Q17 · 2HC1	H	NH	-CH₂ -	2
1598	Н	Me	CH (CH ₂) (CH ₂) 5 Q17 · 2HC1	H	NH	-CH ₂ -	E
1599	H	Me	CH (CH ₃) (CH ₂) ₅ Q17 · 2HC1	H	NH	-CH ₂ -	2
1600	H	Me	(CH ₂), Q18·2HC1	H	NH ·	-CH2 -	E
1601	Н	Me	(CH ₂), Q18·2HC1	H	NH	-CH ₂ -	2
1602	H	Me	(CH ₂), Q18·2HC1	H	NH	-CH₂ -	E
1603	H	Me	(CH ₂), Q18·2HC1	H	NH	-CH ₂ -	Z
1604	H	Me	(CH₂) s Q18·2HC1	H	NH	-CH ₂ -	E
1605	H	Me	(CH ₂) ₅ Q18·2HC1	H	NH	-CH2 -	Z
1606	H	Me	CH (CH,) CH, Q18 · 2HC1	H	NH	-CH ₂ -	Е

[0098]

【表70】 表 I (続)

No.	R'	R²	R ^a	R¹	X	Y	立体化学
1607	Н	Me	CH (CH,) CH, Q18 · 2HC1	Н	NH	-СН₂ -	Z
1608	H	Me	CH (CH,) CH, CH, Q18 · 2HC1	H	NH	-CH₂ -	E
1609	H	Me	CH (CH,) CH, CH, Q18 · 2HC1	H	NH	-CH ₂ -	Z
1610	H	Me	CH (CH ₃) (CH ₂), Q18·2HC1	H	NH	-CH ₂ -	E
1611	H	Me	CH (CH ₃) (CH ₂) , Q18 · 2HC1	H	NH	-CH ₂ -	2
1612	Н	Me	CH (CH ₃) (CH ₂) ₅ Q18 · 2HC1	Н	NH	-CH ₂ -	E
1613	H	Me	CH (CH ₃) (CH ₂) ₅ Q18 · 2HC1	H	NH	-CH ₂ -	Z
1614	H	Me	(CH ₂), Q19·HC1	H	NH	-CH ₂ -	E
1615	H	Me	(CH ₂), Q19·HC1	Н	NH	-CH₂ -	Z
1616	H	Me	(CH ₂), Q19·HC1	Н	NH	-CH ₂ -	Е
1617	H	Me	(CH ₂), Q19·2HC1	H	NH	-CH ₂ -	Z
1618	H	Me	(CH ₂) ₅ Q19·2HC1	H	NH	-CH₂ -	E
1619	H	Me	(CH ₂) _s Q19·2HC1	H	NH	-CH ₂ -	Z
1620	H	Me	CH (CH,) CH, Q19 · 2HC1	Н	NH	-CH ₂ -	E
1621	H	Me	CH (CH₃) CH₂ Q19·2HC1	H	NH	-CH ₂ -	· Z
1622	H	Me	CH (CH3) CH2 CH2 Q19 · 2HC1	H	NH	-CH₂ -	Е
1623	H	Me	CH (CH ₃) CH ₂ CH ₂ Q19 · 2HC1	H	NH	-CH ₂ -	2
1624	Н	Me	CH (CH ₃) (CH ₂) , Q19 · 2HC1	H	NH	-CH ₂ -	Е

97	7						9	98
1625	H	Me	CH (CH,) (CH,), Q19·2HC1	H	NH	-CH ₂ -	2	
1626	H	Me	CH (CH ₂) (CH ₂), Q19·2HC1	Н	NH	-CH ₂ -	E	
1627	H	Me	CH (CH,) (CH,), Q19·2HC1	H	NH	-CH ₂ -	Z	
1628	H	Me	(CH ₂), Q21·HC1	Н	NH	-CH₂ -	Е	

[0099]

【表71】 表 I (続)

No.	R¹	R²	R³	R⁴	X	Y	立体化学
1629	Н	Me	(CH,), Q21·HC1	Н	NH	-CH ₂ -	2
1630	H	Me	(CH ₂) ₂ Q21·HC1	Н	NH	-CH ₂ -	E
1631	H	Me	(CH ₂), Q21·HC1	Н	NH	-CH ₂ -	2
1632	H	Me	(CH ₂), Q21·HC1	Н	NH	-CH ₂ -	E
1633	H	Me	(CH ₂), Q21·HC1	H	NH	-CH ₂ -	2
1634	Н	Me	CH (CH,) CH, Q21 · HC1	H	NH	-CH ₂ -	Е
1635	H	Me	CH (CH,) CH, Q21 · HC1	H	NH	-CH2 -	2
1636	H	Me	CH (CH,) CH, CH, Q21 · HC1	H	NH	-CH ₂ -	E
1637	H	Me	CH (CH,) CH, CH, Q21 · HC1	H	NH	-CH2 -	2
1648	Н	Me	CH (CH,) (CH,), Q21 · HC1	H	NH	-CH2 -	E
1639	Н	Me	CH (CH,) (CH,), Q21 · HC1	H	NH	-CH ₂ -	Z
1640	Н	Me	CH (CH,) (CH,), Q21 · HC1	H	NH	-CH ₂ -	E
1641	Н	Me	CH (CH,) (CH,), Q21 · HC1	H	NH	-CH ₂ -	Z
1642	H	Me	(CH ₂), Q28·HC1	H	NH	-CH ₂ -	E
1643	H	Me	(CH ₂), Q28·HC1	H	NH	-CH ₂ -	Z
1645	H	Me	(CH ₂), Q28·HC1	Н	NH	-CH ₂ -	Е
1646	Н	Me	(CH ₂), Q28·HC1	H	NH	-CH ₂ -	Z
1647	Н	Me	(CH ₂) ₅ Q28·HC1	H	NH	-CH ₂ -	E
1648	Н	Me	(CH ₂), Q28·HC1	H	NH	-CH ₂ -	Z
1649	Н	Me	CH (CH ₃) CH ₂ Q28 · HC1	Н	NH	-CH₂ -	Е
1650	Н	Me	CH (CH,) CH, Q28 · HC1	Н	NH	-CH ₂ -	Z
1651	Н	Me	CH (CH,) CH, CH, Q28·HC1	H	NH	−CH₂ −	Е

[0100]

【表72】 & I (続)

No.	R¹	R²	R³	R⁴	X	Y	立体化学
1652	Н	Me	CH (CH,) CH, CH, Q28 · HC1	Н	NH	-CH ₂ -	2
1653	Н	Me	CH (CH ₃) (CH ₂), Q28·HC1	H	NH	-CH2 -	E
1654	Н	Me	CH (CH ₂) (CH ₂), Q28·HC1	H	NH	-CH ₂ -	Z
1655	H	Me	CH (CH ₃) (CH ₂) ₅ Q28·HC1	Н	NH	-CH ₂ -	Е
1656	H	Me	CH (CH,) (CH,), Q28 · HC1	Н	NH	-CH ₂ -	2
1657	H	Me	(CH ₂), Q30·HC1	H	NH	-CH ₂ -	E
1658	H	Me	(CH ₂), Q30·HC1	H	NH	-CH ₂ -	Z
1659	H	Me	(CH ₂) ₃ Q30·HC1	H	NH	-CH ₂ -	E
1660	H	Me	(CH ₂), Q30·HC1	H	NH	-CH ₂ -	Z
1661	Н	Me	(CH ₂), Q30·HC1	H	NH	-CH ₂ -	E
1662	H	Me	(CH ₂) ₅ Q30·HC1	H	NH	-CH ₂ -	Z
1663	H	Me	CH (CH₃) CH₂ Q30 · HC1	H	NH	-CH ₂ -	Е

99								100
1664	Н	Me	СН (СН,) СН, Q30 · НС1	Н	NH	-CH ₂ -	2	
1665	H	Me	CH (CH,) CH, CH, Q30 · HC !	Н	NH	-CH ₂ -	E	
1666	H.	Me	CH (CH,) CH, CH, Q30 · HC1	H	NH	-CH ₂ -	2	
1667	Н	Me	CH (CH,) (CH,), Q30·HC1	Н	NH	-CH ₂ -	E	
1668	H	Me	CH (CH ₂) (CH ₂), Q30·HC1	Н	NH	-CH ₂ -	2	
1669	H	Me	CH (CH,) (CH,), Q30 · HC1	H	NH	-CH ₂ -	Ē	
1670	Н	Me	CH (CH ₂) (CH ₂) , Q30 · HC1	Н	NH	-CH2 -	Z	
1671	Н	Me	(CH ₂), Q31·HC1	Н	NH	-CH ₂ -	E	
1672	Н	Me	(CH ₂), Q31·HC1	H	NH	-CH ₂ -	2	
1673	Н	Me	(CH ₂), Q31·HC1	H	NH	-CH _z -	E	

[0101]

【表73】 表 I (続)

No.	R¹	R²	Rª	R ⁴	X	Y	立体化学
1674	Н	Me	(CH,), Q31·HC1	Н	NH	-CH ₂ -	Z
1675	H	Me	(CH₂), Q31·HC1	H	NH	-CH ₂ -	E
1676	H.	Me	(CH ₂) ₆ Q31·HC1	H	NH	-CH ₂ -	Z
1677	H	Me	CH (CH,) CH, Q31 · HC1	H	NH	-CH ₂ -	E
1678	H	Me	CH (CH,) CH, Q31 · HC1	H	NH	-CH ₂ -	2
1679	Н	Me	CH (CH,) CH, CH, Q31 · HC1	Н	NH	-CH₂ -	E
1680	H	Me	CH (CH,) CH, CH, Q31 · HC1	H	NH	-CH ₂ -	Z
1681	Н	Me	CH (CH ₂) (CH ₂), Q31·HC1	H	NH	-CH₂ -	E
1682	Н	Me	CH (CH ₂) (CH ₂), Q31·HC1	Н	NH	-CH ₂ -	2
1683	Н	Me	CH (CH ₂) (CH ₂), Q31·HC1	Н	NH	-CH ₂ -	E
1684	H	Me	CH (CH,) (CH,), Q31 · HC1	Н	NH	-CH ₂ -	Z
1685	Н	Me	(CH ₂) ₂ Q32·HC1	Н	NH	-CH ₂ -	E
1686	Н	Me	(CH ₂) ₂ Q32·HC1	H	NH	-CH _z -	Z .
1687	Н	Me	(CH₂), Q32·HC1	H	NH	-CH ₂ -	E
1688	Н	Me	(CH ₂), Q32·HC1	H	NH	-CH ₂ -	2
1689	Н	Me	(CH₂)	Н	NH	-CH ₂ -	E
1690	Н	Me	(CH₂) s Q32·HC1	Н	NH	-CH ₂ -	2
1691	Н	Me	CH (CH,) CH, Q32 · HC1	Н	NH	-CH ₂ -	E
1692	H	Me	CH (CH₃) CH₂ Q32 · HC1	H	NH	-CH ⁵ -	2
1693	Н	Me	CH (CH ₃) CH ₂ CH ₂ Q32 · HC1	Н	NH	-CH ₂ -	E
1694	Н	Me	CH (CH,) CH, CH, Q32 · HC1	Н	NH	-CH _z -	Z
1695	H	Me	CH (CH ₂) (CH ₂), Q32·HC1	H	NH	-CH2 -	E

[0102]

40 【表74】 表 I (続)

R¹	R²	R³	R4	X	Y	立体化学
Н	Me	CH (CH,) (CH,), Q32·HC1	Н	NH	-CH ₂ -	Z
H	Me	CH (CH ₃) (CH ₂), Q32·HC1	Н	NH	-CH ₂ -	E
H	Me	CH (CH ₂) (CH ₂), Q32·HC1	H	NH	-CH; -	2
Н	Me	CH, CONE t,	H	NH	-CH ₂ -	E
H	Me	CH, CONE t,	H	NH	-CH ₂ -	2
H	Me	(CH ₂), CONEt,	Н	NH	-CH ₂ -	E
	H H H H	H Me H Me H Me H Me	H Me CH (CH ₂), Q32·HC1 H Me CH (CH ₃) (CH ₂), Q32·HC1 H Me CH (CH ₃) (CH ₂), Q32·HC1 H Me CH (CH ₃) (CH ₂), Q32·HC1 H Me CH ₂ CONEt ₂	H Me CH (CH ₂) (CH ₂), Q32·HC1 H H Me CH (CH ₃) (CH ₂), Q32·HC1 H H Me CH (CH ₃) (CH ₂), Q32·HC1 H H Me CH (CH ₃) (CH ₂), Q32·HC1 H H Me CH ₂ CONEt ₂ H	H Me CH (CH ₂) (CH ₂), Q32·HC1 H NH H Me CH (CH ₃) (CH ₂), Q32·HC1 H NH H Me CH (CH ₂) (CH ₂), Q32·HC1 H NH H Me CH ₂ CONEt ₂ H NH H Me CH ₂ CONEt ₂ H NH	H Me CH(CH ₃)(CH ₂), Q32·HC1 H NH -CH ₂ - H Me CH(CH ₃)(CH ₂), Q32·HC1 H NH -CH ₂ - H Me CH(CH ₃)(CH ₂), Q32·HC1 H NH -CH ₂ - H Me CH ₂ CONEt ₂ H NH -CH ₂ - H Me CH ₃ CONEt ₂ H NH -CH ₂ -

101 102 1702 H Me (CH₂), CONEt, -CH₂ -2 H NH 1703 H Me CH (CH,) CH, CONE t, NH -CH₂ -E Н 1704 H Me CH (CH2) CH2 CONEt2 NH -CH₂ -Z Н 1705 H Мe CH(CH₂)(CH₂), CONE 1, -CH₂ -E Н NH 1706 H CH (CH,) (CH,), CONEt, Мe Н NH -CH_z -Z 1707 H Me CH₂ COQ13 H NH -CH₂ -E 1708 Н Me CH₂ COQ13 -СН2 -Н NH Z 1709 H Me (CH₂), COQ13 NH -CH2 -E Н 1710 H Me (CH₂), COQ13 -CH₂ -Z Н NH 1711 H Me (CH₂), COQ13 Н NH -CIL -E 1712 H Me (CH₂), COQ13 Н NH -CH₂ -Z 1713 H Me CH (CH,) CH, COQ13 Н NH -CH₂ -E 1714 Z H Me CH (CH,) CH, COQ13 Н NH -CH₂ -1715 H Me CH (CH₂) (CH₂), COQ13 Н NH -CH₂ -E 1716 H Me CH (CH,) (CH,), COQ13 Н NH -CH2 -Z CH₂ COQ14 1717 Н Me Н NH -CH2 -E

[0103]

【表75】 I (続)

表

No.	R¹	R²	R ^a	R4	X	Y	立体化学
1718	Н	Ме	CH₂ COQ14	Н	NH	-СН, -	Z
1719	H	Me	(CH ₂), COQ14	Н	NH	-CH ₂ -	E
1720	H	Me	(CH ₂), COQ14	H	NH	-CH2 -	Z
1721	Н	Me	(CH ₂) ₅ COQ14	H	NH	-СН2 -	E
1722	Н	Me	(CH ₂), COQ14	H	NH	-CH ₂ -	Z
1723	H	Me	СН (СН,) СН, СОQ14	H	NH	-CH ₂ -	Е
1724	Н	Me	CH (CH ₃) CH ₂ COQ14	H	NH	-CH ₂ -	2
1725	H	Me	CH(CH ₂)(CH ₂), COQ14	Н	NH	-CH ₂ -	E
1726	H	Me	CH(CH ₂)(CH ₂), COQ14	H	NH	-CH ₂ -	Z
1727	H	Me	CH ₂ COQ15	H	NH	-CH ₂ -	E
1728	H	Me	CH ₄ COQ15	H	NH	-CH ₂ -	2
1729	H	Me	(CH ₂), COQ15	H	NH	-CH2 -	E
1730	H	Me	(CH ₂), COQ15	H	NH	-CH _z -	Z
1731	H	Me	(CH ₂), COQ15	H	NH	-CH ₂ -	E
1732	H	Me	(CH ₂), COQ15	H	NH	-CH ₂ -	Z
1733	H	Me	CH (CH,) CH, COQ15	H	NH	-CH ₂ -	E
1734	H	Me	СН (СН,) СН, СОQ15	H	NH	-CH ₂ -	Z
1735	H	Me	CH(CH ₃)(CH ₂), COQ15	H	NH	-CH ₂ -	E
1736	H	Me	CH(CH ₃)(CH ₁), COQ15	H	NH	-CH ₂ -	Z
1737	H	Me	CH ₂ COQ16	H	NH	-CH ₂ -	E
1748	H	Me	CH₂ COQ16	H	NH	-CH ₂ -	Z
1739	H	Me	(CH ₂), COQ16	Н	NH	-CH ₂ -	Е

[0104]

【表76】

表 [(続)

No. R¹ R² R³ R⁴ X Y 立体化学

10)3							104
1740	H	Me	(CH ₂), COQ16	H	NH	-CH ₂ -	Z	
1741	H	Me	(CH ₂), COQ16	- H	NH	-CH ₂ -	E	
1742	H	Me	(CH ₁), COQ16	H	NH	-CH2 -	2	
1743	Н	Me	СН (СН,) СН, COQ16	H	NH	-CH2 -	E	
1745	H	Me	СН (СН,) СН, СОQ16	H	NH	-CH2 -	2	
1746	H	Me	CH(CH ₂)(CH ₂), COQ16	H	NH	-CH₂ -	E	
1747	Н	Me	CH (CH ₂) (CH ₂), COQ16	H	NH	-CH ₂ -	2	
1748	H	Me	CH, COQ17·HC1	Н	NH	-CH ₂ -	E	
1749	H	Me	CH, COQ17·HC1	H	NH	-CH ₂ -	2	
1750	H	Me	(CH ₂), COQ17·HC1	H	NH	-CH ₂ -	E	
1751	H	Me	(CH,), COQ17·HC1	H	NH	-CH ₂ -	Z	
1752	H	Me	(CH ₂), COQ17·HC1	H	NH	-CH ₂ -	Е	
1753	H	Me	(CH ₂) ₅ COQ17·HC1	H	NH	-CH ₂ -	7	
1754	H	Me	CH (CH,) CH, COQ17·HC1	H	NH	-CH ₂ -	E	
1755	H	Me	CH (CH,) CH, COQ17·HC1	Н	NH	-CH ₂ -	2	
1756	H	Me	CH (CH,) (CH,), COQ17·HC1	Н	NH	-CH ₂ -	. Е	
1757	Н	Me	CH (CH ₂) (CH ₂) COQ17·HC1	H	NH	-CH ₂ -	2	
1758	H	Me	CH ₂ COQ18·HC1	H	NH	-CH ₂ -	E	
1759	H	Me	CH₂ COQ18·HC1	Н	NH	-CH ₂ -	Z	
1760	H	Me	(CH ₂), COQ18·HC1	H	NH	−CH ₂ −	Ε.	
1761	H	Me	(CH ₂), COQ18·HC1	H	NH	-CH ₂ -	2	
1762	H	Me	(CH ₂) ₅ COQ18·HC1	H	NH	-CH ₂ -	E	

[0105]

【表77】 表 I (続)

No.	R¹	R²	R ³	R¹	Х	Y	立体化学
1763	Н	Me	(CH ₂), COQ18·HC1	Н	NH	-CH₂ -	Z
1764	Н	Me	CH (CH,) CH, COQ18·HC1	Н	NH	-CH ₂ -	E
1765	H	Me	CH (CH,) CH, COQ18·HC1	H	NH	-CH2 -	2
1766	Н	Me	CH (CH ₂) (CH ₂) ₂ COQ18·HC1	Н	NH	-CH₂ -	Е
1767	H	Me	CH (CH ₃) (CH ₂), COQ18·HC1	Н	NH	-CH ₂ -	2
1768	Н	Me	CH, COQ19·HC1	Н	NH	-CH₂ -	E
1769	Н	Me	CH ₂ COQ19·HC1	H	NH	-CH₂ -	Z
1770	Н	Me	(CH ₂), COQ19·HC1	H	NH	-CH₂ -	E
1771	H	Me	(CH ₂), COQ19·HC1	H	NH	-CH ₂ -	7.
1772	Н	Me	(CH ₂) ₆ COQ19·HC1	Н	NH	-CH₂ -	E
1773	H	Me	(CH ₂), COQ19·HC1	H	NH	-CH _z -	Z
1774	Н	Me	CH (CH,) CH, COQ19 · HC1	H	NH	-CH ₂ -	E
1775	Н	Me	CH (CH,) CH, COQ19 · HC1	H	NH	-CH ₂ -	2
1776	Н	Me	CH (CH ₂) (CH ₂), COQ19·HC1	Н	NH	-CH ₂ -	E
1777	Н	Me	CH (CH ₃) (CH ₂), COQ19·HC1	Н	NH	-CH2 -	7.
1778	Н	Me	CH ₂ COQ21	Н	NH	-CH₂ -	E
1779	Н	Me	CH, COQ21	Н	NH	-CH ₂ -	2
1780	Н	Me	(CH,), COQ21	Н	NH	-CH₂ -	E
1781	Н	Me	(CH,), COQ21	Н	NH	-CH ₂ -	2
1782	Н	Me	(CH ₂) _s COQ21	H	NH	-CH ₂ -	E
1783	H	Me	(CH ₂) ₅ COQ21	H	NH	-CH ₂ -	2
1784	H	Me	CH (CH ₃) CH ₂ COQ21	H	NH	-CH ₂ -	Е

[0106]

【表78】 表 I (続)

No.	R¹	R²	R³	R ⁴	X	Y	立体化学
1785	Н	Me	СН (СҢ) СҢ, СОQ21	Н	NH	-CH ₂ -	7
1786	H	Me	CH (CH ₂) (CH ₂) , COQ21	Н	NH	-CH ₂ -	Е
1787	H	Me	CH (CH,) (CH,), COQ21	Н	NH	-CH ₂ -	Z
1788	H	Me	CH, COQ28	Н	NH	-CH ₂ -	E
1789	H	Me	CH ₂ COQ28	H	NH	-CH ₂ -	2
1790	H	Me	(CH ₂), COQ28	H	NH	-CH2 -	E
1791	H	Me	(CH ₂), COQ28	Н	NH	-CH₂ -	Z
1792	H	Me	(CH ₂), COQ28	Н	NH	-СН2 -	E
1793	H	Me	(CH ₂), COQ28	H	NH	-CH ₂ -	Z
1794	H	Me	CH (CH,) CH, COQ28	H	NH	-CH ₂ -	E
1795	H	Me	CH (CH,) CH, COQ28	H	NH	-CH ₂ -	2
1796	H	Me	CH (CH,) (CH,), COQ28	H	NH	-CH ₂ -	E
1797	H	Me	CH (CH ₃) (CH ₂), COQ28	H	NH	-CH ₂ -	Z
1798	H	Me	CH₂ COQ30	H	NH	-CH ₂ -	E
1799	H	Me	CH₂ COQ30	H	NH	-CH ₂ -	Z
1800	H	Me	(CH ₂), COQ30	Н	NH	-CH ₂ -	E
1801	H	Me	(CH ₂), COQ30	Н	NH	-CH2 -	Z
1802	H	Me	(CH ₂) s COQ30	Н	NH	-CH ₂ -	E
1803	H	Me	(CH ₂) s COQ30	H	NH	-CH ₂ -	2
1804	H	Me	СН (СН₄) СН₂ СОQ30	Н	NH	−CH ₂ −	E
1805	H	Me	CH (CH,) CH, COQ30	H	NH	-CH ₂ -	2
1806	H	Me	CH(CH ₂)(CH ₂), COQ30	Н	NH	-СH ₂ -	E

[0107]

30 【表79】 表 I (続)

No.	R1	R²	R³	R ⁴	X	Y	立体化学
1807	Н	Ме	CH (CH,) (CH,), COQ30	Н	NH	−СН₂ −	2
1808	H	Me	CH, COQ31	H	NH	−СН₂ −	E
1809	H	Me	CH₂ COQ31	H	NH	-CH₂ -	2
1810	H	Me	(CH ₂), COQ31	H	NH	-CH ₂ -	E
1811	H	Me	(CH ₂), COQ31	Н	NH	-CH _z -	2
1812	H	Me	(CH ₂) 6 COQ31	Н	NH	-CH₂ -	E
1813	H	Me	(CH ₂) cOQ31	Н	NH	-CH₂ -	Z
1814	H	Me	CH (CH,) CH, COQ31	Н	NH	-СН₂ -	E
1815	H	Me	CH (CH ₃) CH ₂ COQ31	H	NH	-CH ₂ -	2
1816	H	Me	CH (CH ₂) (CH ₂), COQ31	Н	NH	-CH ₂	E
1817	H	Me	CH (CH,) (CH,), COQ31	Н	NH	-CH ₂ -	2
1818	H	Me	CH, COQ32	Н	NH	−СН₂ −	Е
1819	Н	Me	CH, COQ32	Н	NH	-CH ₂ -	2
1820	Н	Me	(CH ₂), COQ32	Н	NH	-CH ₂ -	Е
1821	Н	Me	(CH ₂), COQ32	Н	NH	-CH ₂ -	Z
1822	Н	Me	(CH ₂) ₅ COQ32	Н	NH	-СН, -	Е

10)7							108
1823	H	Me	(CH ₂) ₅ COQ32	Н	NH	-CH ₂ -	Z	
1824	H	Me	CH (CH,) CH, COQ32	H	NH	-CH ₂ -	E	
1825	H	Me	CH (CH,) CH, COQ32	H	NH	-CH ₂ -	Z	
1826	H	Me	СН (СН,) (СН,), СОQ32	H	NH	-CH ₂ -	E	
1827	H	Me	СН (СН ₁) (СН ₂), COQ32	Н	NH	-CH ₂ -	Z	

【0108】次に、本発明化合物の製法を説明する。本発明化合物 [1] は例えば以下の反応式 (1) ~ (6) で示される方法によって製造することができる。

【0109】 【化15】

反応式(1)

$$R^{1}$$
 N X $+$ R^{4} OR^{2} OR^{2} R^{3} OR^{2} R^{3} OR^{2} R^{3} OR^{2} R^{3} OR^{2}

【0110】 〔反応式中、R'、R'、R'、R' 、R' およびXは前述の一般式 [I] の説明と同じ意味であり; Wは水素原子または-PO(OR'), (R' は炭素数 $1\sim4$ の低級アルキル基を示す。) を示す。〕

【0111】反応式(1)による合成法は一般式(II a)で表わされるジオン誘導体と(III)で表わされるカルボニル誘導体とを脱水縮合反応に付し、一般式(Ia)で表わされるベンジリデン誘導体を製造する方法である。上記反応においては、ベンジリデン部二重結合の立 30

体化学に関し、E体とZ体の二種の立体異性体の生成が考えられる。E体とZ体の生成する割合は反応の条件によっても異なるが、主として反応の遷移状態における立体的安定性によって支配されることが多い。例えばXが置換アミノ基 [NR¹(R¹は前述の説明と同じ。)] である場合には、R¹が立体的にかさ高い置換基である程Z体 [Ia¹-Z] よりもE体 [Ia¹-B]

[0112]

【化16】

$$R^{1}$$
 N
 R^{8}
 R^{1}
 N
 N
 R^{8}
 OR^{2}
 $R^{3}O$
 OR^{2}
 $I[a'-Z]$

[Ia'-E]

【0113】の生成が多くなる傾向にある。また、両異性体の生成比はベンゼン環上の2つの置換基OR'、OR'の置換位置によっても影響を受け、オルソ、メタ、パラ位の順に立体的効果が強く反映することが多い。

ナトリウム、水酸化カリウム、水酸化バリウムなどの無機塩基、あるいはピロリジン、ピペリジン、モルフォリン、トリエチルアミン、ジアザビシクロノナン(DBN)、ジアザビシクロウンデセン(DBU)などの有機塩基あるいはそれらの組み合わせを用いて、好結果を得ることが多い。反応に用いる溶媒としては、無機塩基を用いる場合には酢酸、プロピオン酸などの有機酸類、メタノール、エタノール、nープロパノールなどのアルコール類、ホルムアミド、N、Nージメチルホルムアミ

ド、N. Nージメチルアセトアミド、Nーメチルピロリ ドンなどのアミド類水またはジメチルスルホキシドなど の極性溶媒類が好適に用いられる。また、前述の有機塩 基を用いる場合の反応溶媒としては、反応に関与しない 溶媒であれば特に制限はなく、無溶媒で行うこともあ る。次に反応温度としては、Xの種類や用いる塩基によ っても異なるが、多くの場合加熱下条件で行い、通常7 0~200℃の間を設定することができる。

【0115】一方、一般式[IIa]で示されるジオン体 物を用いる反応の場合は、一般に上述の反応条件に比較 し、より緩和な条件下で反応が進行し、収率の面でも有 利な結果を得ることが多い。すなわち、本反応は活性化 されたイリド種を用いる。いわゆるウィティヒ (Wit tig)型の反応であり、従ってこの種の反応の際に通 常用いる塩基存在下、-40℃~100℃程度の温度範 囲で行うことが多い。ホスホネート〔IIa〕の製造及び それを用いる (III) との反応条件については、Jou

反応式(2)

rnal of Organic Chemistry, vol 56, P. 6897~6904 (1991) に記載 された条件に準じて設定できる。

【0116】一般式 [IIa] のWが水素原子およびホス ホリル基のいずれの場合の反応においても、 (IIa) お よび〔111〕との各原料のモル比は任意に設定できる が、一般式[IIa] の化合物を一般式[III] で示される 化合物に対して1~3倍モル使用すれば十分である。

【0117】一方の原料である一般式(III)で示され のうち、Wがジアルキルホスホリル基で表わされる化合 10 るカルボニル誘導体は、多くの場合対応するフェノール 誘導体から効率良く製造でき、その製造条件としては一 般的なフェノール類のエーテル製造法を広く用いて何ら 差し支えない。目的物の単離精製法は再結晶、シリカゲ ルを用いた各種のクロマトグラフィー、蒸留等の有機合 成上自体公知の手法を用いて容易に目的を達成しうる。

[0118]

【化17】

[Ia]

【0119】 (反応式中、R'、R'、R'、R'およびXは前 述の一般式〔I〕の説明と同じ意味である。)

【0120】本反応式(2)は一般式(Ia)で示される ジオキソ誘導体を金属水素化物還元剤による還元反応に 付し、一般式 [Ib] で示されるモノオキソ誘導体 [Ib] を製造する方法である。

【0121】本反応で用いる還元剤としては通常ジイソ ブチルアルミニウムハイドライド、ナトリウムビス(2 ーメトキシエトキシ) アルミニウムハイドライドあるい はリチウムアルミニウムハイドライド等の金属水素化物 40 的速やかに完結する。目的物の単離精製法は反応式 が好ましく用いられる。反応溶媒としては、エーテル系 溶媒 (ジエチルエーテル、テトラヒドロフラン、1,4 ージオキサン、1,2ージメトキシエタンなど)、ベン

[[b]

ゼン系溶媒(ベンゼン、トルエン等)あるいはアルカン 系溶媒(n-ペンタン、n-ヘキサン、c-ヘキサン、 n-ペンタンなど) 及びその混合溶媒を好適に用いるこ とができる。

【0122】反応温度は-10℃から使用する溶媒の沸 点の範囲を設定することができる。

【0123】使用する金属水素還元剤の量については、 活性ハイドライドとして2分子換算量が反応に消費され るが、通常この2~10倍程度量を用いれば反応は比較

(1) における方法のそれに準ずることができる。

[0124]

【化18】

111 反応式 (3)

[Ib']

【0125】 (反応式中、R¹、R¹、R¹ およびXは前述の 一般式 [I] の説明と同じ意味であり、R¹ は炭素数 1 ~4の低級アルキル基を示す。)

【0126】反応式(3)は一般式[I]のR'が水素原 子、Yがカルボニル基である一般式 (Ia') で表わされ るジオキソ誘導体をoーアルキル化しイミノエーテル誘 導体 (Ic) に誘導し、これを金属ハライドにより還元 し、対応するモノオキソ誘導体 (Ib') を製造する方法 である。一般的にモノオキソ誘導体を製造する方法とし ては、前述の反応式(2)で説明した方法を用いること もできるが、その製法においては比較的強力な金属ハラ イド還元剤を用いることが多いため、R'ないしR'にエス テル基、カルボキシル基、アミド基またはアミド結合な どを含む化合物あるいはXが酸素原子である化合物など を用いる場合には、それらの官能基部分も還元を受け所 望の化合物を収率良く得ることが困難なこともある。本 製造法はこのような場合に特に優れた代替製造法を提供 40 するものである。すなわち、金属ハライド還元反応に付 す基質をイミノエーテルに変換して使用するため、反応 式(2)で通常用いる還元剤よりも緩和な金属ハライド 還元剤で目的を達することができ、上述のような官能基 を損なうことが少い。

【0127】最初のアルキル化工程においては、所望の o-アルキル化に対する選択性を効率良く得るための試 剤としては、通常ジアルキル硫酸 (ジメチル硫酸、ジエチル硫酸など) またはトリアルキルオキソニウムテトラフルオロボレートーMeerwein試薬 (トリメチルオキソニウムテトラフルオロボレート、トリエチルオキソニウムテトラフルオロボレートなど) などのアルキル 化剤が好適に用いられる。

【0128】次のイミノエーテル誘導体〔Ic〕を還元するために用いられる金属ハイドライド系還元剤としては水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、水素化ホウ素リチウムなどを挙げることができ、通常反応温度も-40℃~室温程度の温和な条件下で進行することが多い。一般式〔Ic〕及び目的物〔Ib'〕の単離精製方法は反応式(1)における方法のそれに準じて行うことができるが、〔Ic〕の中には水分に対して不安定なものがあるため、極力水との接触を避けた抽出、精製法を採用することが好結果につながることが多く、また粗生成物のまま次の還元反応に供しても通常何ら差し支えない。

[0129]

【化19】

113 反応式 (4)

H. N.
$$X$$
 $R^{1'}$ -hal
 $R^{1'}$
 R^{3}
 R^{3}
 R^{3}
 R^{3}
 R^{3}
 R^{3}
 R^{3}
 R^{3}
 R^{3}

[Id]

【0130】(反応式中、R'、R'、R'、XおよびYは前述の一般式 [I] の説明と同じ意味であり、R''は一般式 [I] のR'のうち水素原子を除く各置換基を、halは塩素原子、臭素原子、ヨウ素原子、メタンスルホニルオキシ基またはpートルエンスルホニルオキシ基を示す。)

【0131】反応式(4)は一般式[I]の本発明化合物のうち、一般式[Id]で示されるN-無置換誘導体を 20 N-アルキル化し、一般式[Ie]で示されるN-置換誘導体を製造する方法である。

【0132】本反応は通常炭酸カリウム、炭酸ナトリウム、炭酸リチウム、炭酸水素カリウム、炭酸水素ナトリウムなどの無機塩基、水素化ナトリウム、nープチルリチウムなどの金属水素化物またはトリエチルアミン、2,6ールチジン、4ーN,Nージメチルアミノピリジン、DBN、DBUまたはトリメチルベンジルアンモニウムハイドロキサイドなどの有機塩基の存在下行うことができる。

【0133】反応溶媒としては、無機塩基あるいは、有機塩基を用いる場合には、ケトン系溶媒(アセトン、メ **反応式 (5)** [le]

チルエチルケトン、ジエチルケトン等)、アミド系溶媒(ホルムアミド、N、Nージメチルホルムアミド、N、Nージメチルアセトアミド等)、アルコール系溶媒(メタノール、エタノール等)、水等及びこれらの混合溶媒が、金属水素化物を用いる場合には、通常、エーテル系溶媒(ジエチルエーテル、テトラヒドロフラン、1、4ージオキサン等)が好適に用いられる。

〕【0134】反応温度としては、無機塩基ないし有機塩基を用いる場合には、通常0℃から溶媒の沸点までの範囲を採用することができ、金属水素化物を用いる場合には、通常-78℃から60℃までの範囲を採用することができる。

【0135】原料のモル比は任意に設定できるが、一般式R''-halで表わされる反応性誘導体および塩基を一般式〔Id〕の化合物に対して1.2~3倍モル使用すれば、十分である。目的物の単離精製方法としては、反応式(1)における方法に準ずることができる。

30 [0136] [化20]

H, N, H
$$R^{8'-hal}$$

$$R^{8'-hal}$$

$$R^{8}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

III

【0137】(反応式中;R'、R'、R'およびYは前述の一般式〔I〕の説明と同じ意味であり、R''は一般式〔I〕におけるXの中で、窒素原子上の置換基R'のうち水素原子を除く各置換基を、halは前述の反応式(4)における説明と同じ意味である。)反応式(5)

ジアルキル化し、一般式で示される同一の置換基を有するジアルキル誘導体 (Ig) を一挙に製造する方法である。

[Ig]

水素原子を除く各置換基を、halは前述の反応式 [0138]本法の反応条件としては、前述の反応式 (4)における説明と同じ意味である。)反応式 (5) (4)で説明した反応条件のうち、使用するアルキル化 は一般式 [If]で示されるジーNー無置換誘導体をN-50 剤および塩基量を原料のベンジリデン誘導体に対して、

反応式(4)で設定したモル比のさらに倍量に変更する 以外、同様の反応条件を設定できる。

反応式(6)

[0139] 【化21】

【0140】(反応式中、R'、R'およびR'は前述の一般 式〔1〕の説明と同じ意味であり; パ' およびhalは 前述のそれぞれ反応式(5)および(4)における説明 と同じであり;R''は保護基を意味する。) 本法は、一 般式で表わされる1,3-無置換-2,4-イミダゾリ ジンジオン誘導体〔Ih〕の3位に選択的に保護基R''を 導入した (Ii) を用いて、この1位をアルキル化し (I j〕に導いた後、3位の保護基を除き、1位のみがアル キル基で置換された2. 4-ジイミダゾリジンジオン誘 導体(Ik)を製造する方法である。

【0141】一般式 (Ik) で表わされる1-アルキルー 2, 4-イミダゾリジンジオン誘導体は反応式(1)で 示す製造ルートによっても製造することができるが、反 応式(1)の一般式(IIa)で示される原料でXが置換 アルキルアミノ基で示される化合物のうち、アルキル基 の末端部位が2'で示されるような種々の官能基で置換さ 40 れているような場合には、原料(IIa)が効率良く製造で きないものもあり、本法はそのような際においてはその 代替製造法として意義深い製造法となり得る。

【0142】R''で示した保護基としては、2-トリメ チルシリルエトキシメチル基(Me, SiCH, CH, OCH, - 、メト キシメチル基(MeOCH, -) 、CO, R(Rは低級アルキル基を意 味する。) t - ブトキシカルボニル基、p - メトキシベ ンジルオキシカルボニル基などが好ましく用いられ、そ の導入および脱保護は、それぞれの保護基の通常用いら れる脱保護条件を用いることによって容易に達成され

る。

【0143】一般式〔li〕で示される1-無置換体をア ルキル化する反応は、反応式(4)と同様の反応条件を 用いて行うことができる。

【0144】本発明の一般式[I]のベンジリデン誘導 体及び可能な場合は薬学的に許容し得るその塩の投与形 態としては、注射剤(皮下、静脈内、筋肉内、腹腔内注 射)、軟膏剤、坐剤、エアゾール剤等による非経口投与 又は錠剤、カブセル剤、顆粒剤、丸剤、シロップ剤、液 剤、乳剤、懸濁液剤等による経口投与を挙げることがで きる。

【0145】本発明化合物を含有する上記の薬学的組成 物は、全組成物の重量に対して、本発明化合物を約0. 1~99.5%、好ましくは約0.5~95%を含有す る。本発明化合物又は本発明化合物を含有する組成物に 加えて、他の薬学的に活性な化合物を含ませることがで きる。又は、これらの組成物は本発明化合物の複数を含 ませることができる。

【0146】本発明化合物の臨床的投与量は、年令、体 重、患者の感受性、症状の程度等により異なるが、通常 効果的な投与量は、成人一日0.003~1.5g好ま しくは0.01~0.6g程度である。しかし、必要に より上記の範囲外の量を用いることもできる。本発明化 合物は製薬の慣用手段によって投与用に製剤化される。

【0147】即ち、経口投与用の錠剤、カブセル剤、顆 粒剤、丸剤は賦形剤、例えば白糖、乳糖、ブドウ糖、澱 粉、マンニット:結合剤、例えばシロップ、アラピアゴ ム、ゼラチン、ソルビット、トラガント、メチルセルロ ース、ボリビニルピロリドン;崩壊剤、例えば澱粉、カ ルボキシメチルセルロース又はそのカルシウム塩、微結 晶セルロース、ポリエチレングリコール;滑沢剤、例え ばタルク、ステアリン酸マグネシウム又はカルシウム、 シリカ;潤滑剤、例えばラウリル酸ナトリウム、グリセ ロール等を使用して調製される。

【0148】注射剤、液剤、乳剤、懸濁剤、シロップ剤 及びエアゾール剤は、活性成分の溶剤、例えば水、エチ 10 ルクロマトグラフィー(溶出液,酢酸エチル/メタノー ルアルコール、イソブロピルアルコール、ブロピレング リコール、1,3-プチレングリコール、ポリエチレング リコール:界面活性剤、例えばソルピタン脂肪酸エステ ル、ポリオキシエチレンソルピタン脂肪酸エステル、ポ リオキシエチレン脂肪酸エステル、水素添加ヒマシ油の ポリオキシエチレンエーテル、レシチン:懸濁剤、例え ばカルボキシメチルセルロースナトリウム塩、メチルセ ルロース等のセルロース誘導体、トラガント、アラビア ゴム等の天然ゴム類;保存剤、例えばパラオキシ安息香 酸のエステル、塩化ベンザルコニウム、ソルビン酸塩等 20 を使用して調製される。

【0149】坐剤は、例えばポリエチレングリコール、 ラノリン、ココナット油等を使用して調製される。

[0150]

【実施例】

【0151】実施例(参考例、合成例、製剤例、試験 例)

以下、本発明について、実施例(参考例、合成例、製剤 例、試験例)を挙げて詳述するが、本発明はこれらの実 施例に何ら限定されるものではない。

【0152】尚、参考例、合成例又は表II中の「NM R」、「MS」の各記号は、それぞれ「核磁気共鳴スペ クトル」及び「質量スペクトル」を表わす。又、特別の 記載がない場合は核磁気共鳴スペクトルは重水素クロロ ホルム中で測定している。表II中の「MS」は親ピーク 又は代表的なフラグメントピークのみを記載した。

【0153】合成例1

5-{(3-シクロペンチルオキシ-4-メトキシ)-(2) -ベンジリデン} - 2, 4-イミダゾリジンジオ ン

[0154]

【化22】

ジン-5-ホスホナート1.5gをテトラヒドロフラン 15mlに溶解し、3-シクロペンチルオキシ-4-メ トキシベンズアルデヒド1.5g,1,8-ジアザビシ クロ〔5, 4, 0〕-7-ウンデセン(DBU) 1. 2 gを加え、60℃加熱下5時間攪拌する。減圧下、溶媒 を留去し、得られる残留物をクロロホルムで抽出する。 抽出液は、飽和塩化アンモニウム水溶液、水の順に洗浄 し、硫酸ナトリウムで乾燥後、溶媒を留去する。得られ る粗結晶はテトラヒドロフランによる再結晶、シリカゲ ル=9/1)により精製し、最初に得られる低極性側の 溶出留分より、融点223~224℃の白色結晶の標題 化合物300mgを得た。

[0 1 5 6] NMR δ : 7.14-6.97(3H, m), 6.6(1H, s), 4. 95-4. 65 (1H, m), 3. 9 (3H, s), 2. 05-1. 50 (8H, m). MS(m/e): 302(M'), 234(100%), 219, 148.

【0157】合成例2

5-((3-シクロペンチルオキシ-4-メトキシ)-(E) -ベンジリデン - 2, 4-イミダゾリジンジオ ン

[0158]

【化23】

30

【0159】合成例1でのシリカゲルクロマトグラフィ ー(溶出液,酢酸エチル/メタノール=9/1)により 続いて得られる高極性側の溶出留分から、融点258~ 260℃の黄色結晶の標題化合物70mgを得た。 NMR δ : 8. 17(1H, s), 7. 22-6. 88(3H, m), 6. 54(1H, s), 6.38(1H, s), 4.90-4.74(1H, m), 3.88(3H, s), 1. 99-1.64(8H, m).

40 MS (m/e): 302 (M'), 234 (100%), 219, 148.

【0160】合成例3

1, 3-ジメチル-5-((3-シクロペンチルオキシ -4-メトキシ)-(Z)-ベンジリデン)-2,4-イミダゾリジンジオン

[0161]

【化24】

119

【0162】5-{(3-シクロペンチルオキシ-4-メトキシ)ベンジリデン}-2,4-イミダゾリジンジオンE,2混合物500mgをN,N-ジメチルホルムアミド5m1に溶かし、炭酸カリウム530mgを加え90℃で2.5時間、攪拌下加熱する。減圧下、溶媒を10留去し、得られる残留物をクロロホルムで抽出する。抽出液を水で洗浄し、硫酸ナトリウムで乾燥後、溶媒を留去する。得られる残留物を、シリカゲルカラムクロマトグラフィー(溶出液;酢酸エチル/n-ヘキサン=1/3)により精製し、最初に得られる低極性側の溶出留分から、無色の油状物として、標題化合物450mgを得た。

【0163】得られた結晶は、核オーパーハウザー効果 (NOE)を測定することによりその立体構造をZ体と 決定した。

NMR δ : 6. 89-6. 83 (4H, m), 4. 78-4. 77 (1H, m), 3. 87 (3 H, s), 3. 12 (3H, s), 3. 03 (3H, s), 1. 94-1. 62 (8H, m) MS (m/e): 330 (M⁺), 262 (100%), 247, 162.

【0164】合成例4

[0165]

[化25]

【0166】合成例3でのシリカゲルクロマトグラフィ 40 ー (溶出液;酢酸エチル/n-ヘキサン=1/3)により続いて得られる高極性側の溶出留分から、融点118~120℃の黄色結晶として標題化合物110mgを得た。得られた結晶は、NOEを測定することにより、その立体構造をE体と決定した。

[O 1 6 7] NMR δ : 8. 13(1H, d), 7. 26(1H, dd), 6. 8 2(1H, d), 6. 14(1H, s), 5. 06-4. 73(1H, m), 3. 86(3H, s), 3. 18(3H, s), 3. 10(3H, s), 2. 30-1. 53(8H, m). MS(m/e): 330(M⁺), 262(100%), 247.

【0168】合成例5

[0169]

【化26】

【0170】ジエチル-1-メチル-2, 4-ジオキソイミダゾリジン-5-ホスホナート20gをテトラヒドロフラン250m1に溶解し、3-シクロペンチルオキシー4-メトキシベンズアルデヒド16g, DBU13.3gを加え、60℃加熱下終夜攪拌した。減圧下、溶媒を留去し、得られる残留物をクロロホルムで抽出する。抽出液は、飽和塩化アンモニウム水溶液、水の順で20 洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を留去する。得られる粗結晶は、シリカゲルカラムクロマトグラフィー(溶出液;クロロホルム/メタノール=19/1)により精製し、最初に得られる低極性側の溶出留分より融点175℃~17℃の白色結晶の標題化合物3.8gを得た。

[O 1 7 1] NMR δ : 9. 38(1H, bs), 6. 80(4H, s), 4. 8 8-4. 58(1H, m), 3. 85(3H, s), 3. 00(3H, s), 2. 15-1. 48 (8H, m).

MS(m/e): 316(M⁺), 248(100%), 233, 162.

30 【0172】合成例6

1-メチル-5-{(3-シクロペンチルオキシ-4-メトキシ)-(E)-ベンジリデン}-2,4-イミダ ゾリジンジオン

[0173]

【化27】

【0174】合成例5でのシリカゲルクロマトグラフィー(溶出液;クロロホルム/メタノール=19/1)により続いて得られる高極性側の溶出留分から、融点138 \mathbb{C} ~139 \mathbb{C} の黄色結晶の標題化合物10.3gを得

50 た。

[0 1 7 5] NMR δ : 9.80(1H, bs), 8.08(1H, d), 7.1 5(1H, dd), 6.85(1H, d), 6.04(1H, s), 5.08-4.63(1H, m), 3.80(3H, s), 3.03(3H, s), 2.30-1.24(8H, m), MS(m/e): 316(M'), 248(100%), 233, 162.

【0176】合成例7

1-メチル、3-メトキシカルボニルメチルー5-{(3-シクロペンチルオキシ-4-メトキシ)-

(E) -ペンジリデン} -2, 4-イミダゾリジンジオ ン

[0177] 【化28】

【0178】1-メチル-5-{(3-シクロペンチル オキシ4-メトキシ) - (E) -ベンジリデン} - 2. 4-イミダゾリジンジオン600mg、メチルエチルケ トン8m1、炭酸カリウム390mg、プロム酢酸メチ ルエステル350mgの混合物を攪拌下終夜加熱還流す る。減圧下、溶媒を留去し、得られる残留物を酢酸エチ ルで抽出する。抽出液を飽和塩化アンモニア水、飽和食 塩水の順に洗浄、硫酸ナトリウムで乾燥後溶媒を留去す る。得られる残留物をイソプロピルエーテルから結晶化 30 し融点117~119℃の黄色結晶として標題化合物5 40mgを得た。NMR δ: 8.07(1H, d), 7.38(1H, dd), 6. 84 (1H, d), 6. 25 (1H, s), 5. 05 -4. 70 (1H, m), 4. 39 (2H, s), 3.88(3H, s), 3.76(3H, s), 3.23(3H, s), 2. 18-1.50 (8H, m).

MS(m/e): 388(M⁺), 320(100%), 305, 162.

【0179】合成例8

1-メチル-3-カルボキシメチル-5-{(3-シク ロペンチルオキシ4-メトキシ) - (E) -ベンジリデ ン) -2, 4-イミダゾリジンジオン

[0180]

【化29】

122

【0181】1-メチル-3-メトキシカルボニルメチ ルー5- ((3-シクロペンチルオキシ4-メトキシ) - (E) -ベンジリデン - 2, 4-イミダソリジンジ オン400mgをメタノール6mlに溶解し、これに水 酸化ナトリウム160mgをメタノール2mlと水2m 1の混合液にとかし、この溶液を滴下する。混合物は室 温で4時間攪拌する。濃塩酸によりpH7に調製した 後、減圧下溶媒を留去し、得られる残留物に水を注ぐ。 さらに濃塩酸を用い、pH3-4に調整した後、得られ 20 た結晶を濾過、次に水で洗浄し、減圧乾燥することによ り融点196~199℃の黄色結晶として標題化合物3 **50mgを得た。**

MS(m/e): 374(M^t), 306(100%), 291, 162.

【0182】合成例9

1-メチル-3-ジエチルアミノカルボニルメチル-5 - ((3-シクロペンチルオキシ-4-メトキシ)-(E) -ベンジリデン) - 2, 4-イミダゾリジンジオ

[0183]

【化30】

40

【0184】1-メチル-3-カルボキシメチル-5-【(3-シクロペンチルオキシ-4-メトキシ)-(E) -ベンジリデン - 2, 4-イミダゾリジンジオ ン200mg、トリエチルアミン70mg及びテトラヒ ドロフラン6m1の混合物に氷冷下クロル炭酸イソブチ ル90mgを加え、同温度で1時間攪拌、続いてジエチ ルアミン120mgを加える。同温度で1.5時間攪拌 した後、氷浴をはずし、5時間攪拌した。溶媒を減圧下 留去し、残留物に飽和塩化アンモニウム水溶液を加え、

50 酢酸エチルで抽出する。抽出液は、さらに、飽和食塩水

で洗浄し、硫酸ナトリウムで乾燥後、溶媒を留去、得ら れる残留物をシリカゲル薄層クロマトグラフィー(展開 溶媒:クロロホルム/メタノール=20/1)を用いて 分離精製し、融点136℃~137℃の黄色結晶として 標題化合物140mgを得た。

NMR δ : 7. 90 (1H, d), 7. 25 (1H, dd), 6. 75 (1H, d), 6. 09(1H, s), 4.98-4.10(1H, m), 4.32(2H, s), 3.81(3H, s), 3.60-2.95(4H, m), 3.17(3H, s), 2.21-1.45(8H, m), 1.46-0.90(6H, m).

MS(m/e): 430(M⁴), 361, 288, 261, 100(100%), 72. 【0185】合成例10

1ーメチルー5ー { [3ー (4ーベンジルー1ーピペラ ジノエチルオキシ) - 4 - メトキシ) - (E) - ベンジ リデン} - 2, 4-イミダゾリジンジオン, ハイドロク ロライド

[0186]

【化31】

【0187】1-メチル-5 { {3-(4-ベンジル-1-ピペラジノエチルオキシ) -4-メトキシ) -(E) -ペンジリデン} - 2, 4-イミダソリジンジオ 30

ン300mgを塩化メチレン5mlにとかし、10%塩 酸メタノール溶液をpHが3になるまで加え、そのまま 室温で2時間攪拌する。さらにジイソプロピルエーテル を5m1加え、室温で1時間攪拌する。結晶を濾過し、 塩化メチレン/ジイソプロピルエーテル=1/1 5m 1で洗浄し、融点179℃~185℃の白色結晶として 標題化合物300mgを得た。

124

MS(m/e): 451(M'-2HC1+1), 203(100%)

【0188】参考例1

10 3-フェニルプロボキシー4-メトキシベンズアルデヒ K

[0189]

【化32】

【0190】イソパニリン10g, 炭酸カリウム12. 4g及びジメチルホルムアミド100m1の混合物に3 フェニルプロピルブロマイド11.9gを加え、攪拌 20 下終夜加熱還流する。不溶物をろ過し、反応液を減圧下 留去した後、酢酸エチルで抽出する。1 N - 水酸化ナト リウム水溶液、続いて飽和食塩水で洗浄した後、無水硫 酸ナトリウムによって乾燥する。減圧下溶媒を留去し、 無色油状物として標題化合物17.6gを得た。 NMR δ : 9.86(1H, s), 7.60-6.80(8H, m), 4.07(2H,

t). 3.87(3H, s), 2.80(2H, t), 2.45-1.80(2H, m). MS (m/e): 270 (M⁺), 152, 118 (100%), 92,

同様な手法により以下の化合物も合成した。

[0191]

【化33】

 $R^{10}\,:\,\text{-(CH$_2)$_3$CO$_2$Et}\;,\quad\text{-(CH$_2)$_5CO_2$Et}\;,\quad\text{-(CH$_2)$_2$Ph}\;,$ -(CH₂)₄Ph, -(CH₂)₃Cl, -(CH₂)₂Cl,

【0192】参考例2

3- (4-ベンジル-1-ピペラジノエチルオキシ)-4-メトキシベンズアルデヒド

[0193]

【化34】

【0194】3-(2-クロロエチルオキシ)-4-メ トキシベンズアルデヒド6.5g、ヨウ化ナトリウム 5. 9 g およびジメチルホルムアミド 7 0 m l の混合物 を80℃で1.5時間攪拌する。続いて炭酸カリウム 3g、ベンジルピペラジン5.6gを加え、60℃ 加熱下終夜攪拌した。減圧下溶媒を留去し、残留物に炭 酸カリウム水溶液を加え、クロロホルムで抽出する。炭 酸カリウム水溶液で洗浄、硫酸ナトリウムで乾燥後、溶

50 媒を留去し、得られる残留物をシリカゲルカラムクロマ

トグラフィー (溶出液; クロロホルム/メタノール=39/1) により精製し、無色油状物として標題化合物9.6gを得た。

NMR δ: 9.68(1H, s), 7.50-6.72(8H, m), 4.10(2H, t), 3.80(3H, s), 3.40(2H, s), 2.95-2.10(10H, m). [0195] 参考例3

3- (4-ベンジル-1-ピペラジノカルボニルメチル オキシ)-4-メトキシベンズアルデヒド

[0196]

[化35]

【0197】4-ベンジル-1-ピペラジノアセチルク ロライド28gとイソバニリン18.5g、炭酸カリウ ム19.9gおよびジメチルホルムアミド300mlの混合物を60℃加熱下終夜攪拌する。減圧下溶媒を留去し、得られる残留物に水を注ぎクロロホルムで抽出する。炭酸カリウム水溶液で洗浄、硫酸ナトリウムで乾燥後、溶媒を留去し得られる残留物をシリカゲルカラムクロマトグラフィー(溶出液;酢酸エチル/メタノール=19/1)により精製し無色油状物として標題化合物40.5gを得た。

NMR : 9. 7(1H, s), 7. 50-6. 81(8H, m), 4. 72(2H, s), 10 3. 90(3H, s), 3. 70-3. 30(6H, m), 2. 57-2. 32(4H, m). MS(m/e) : 368(M'), 91(100%).

【0198】上記合成例に準じて合成した化合物を表II に示した。化合物の構造は、表Iに示した化合物番号に より参照される。表中の最右欄には準用した合成例の番 号を記した。

【0199】 【表80】

表

		表 [[
化合物	No. 融点 (℃)	M S (m/e)	準用した合成例 No.
1	258~261	合成例 2 参照	. 1
2	223~224	合成例 1 参照	1
3	118~121	合成例 4 参照	3
4	油状物	合成例3参照	3
5	207~211	450 (M'-2HC1), 91 (100%)	1, 10
6	164~168	450 (M*-2HC1), 91 (100%)	1, 10
7	214~218	464 (M+-2HC1), 91 (100%)	5, 10
8	144~148	464 (M+-2HC1), 91 (100%)	5, 10
9	200~203	451 (M+ - HC1), 91 (100%)	1, 10
1 0	273~276	451 (M ⁴ - HC1), 91 (100%)	1, 10
1 1	185~188	436 (M'-2HC1), 91 (100%)	1, 10
1.2	206~210	436 (M'-2HC1), 91 (100%)	1, 10
1 3	174~176	352 (M ⁺), 91 (100%)	1
1 4	181~184	352 (M ^t), 91 (100%)	1
15	179~185	合成例10参照	5, 10
1 6	159~164	450 (M'-2HC1), 188 (100%)	5, 10
1 7	154~155	348 (M'), 87 (100%)	1
18	174~177	348 (M ^t), 87 (100%)	1
19	188~189	366 (M ^t), 91 (100%)	1
20	200~201	366 (M ^t), 91 (100%)	1
2 1	213~214	338 (M'), 105 (100%)	1
2 2	油状物	338 (M ^t), 105 (100%)	1
23	218~223	333 (M+ -HC1), 86 (100%)	1, 10
2 4	250~254	334 (M' +1-HC1), 86 (100%)	1, 10
2 5	146~147	403 (M ^t), 170 (100%)	1
26	59~ 61	403 (M ^t), 72 (100%)	1
2 7	161~164	376 (M ^t), 97 (100%)	1
2 8	129~132	376 (M'), 97 (100%)	1
2 9	> 280	371 (M+1), 115 (100%)	1, 8

		(6	5)				特】	押7-	179	5 2
	127						128			
3 (0 > 280	371 (M+1),	115(100	0%)		1,	8			
3 :	1 138~139	合成例	6 参照			5				
. 3 2	2 175~177	合成例	5 参照			5				
3 3	3 117~119	合成例	7参照			7				
3 4	4 61∼ 63	388(M ⁺), 1	162 (100%)			7				
3 5	5 油状物	430(M ^t), 3	362 (100%)			7				
3 6	196~199	合成例	8参照			8				
3 7	7 131~133	402 (M ⁺), 3	334 (100%)		•	8				
3 8	3 136~137	合成例:	9参照			9				
3 9	油状物	458(M'), 1	15 (100%)	•		9				
[0200]			•							
製剤例	V 1									
錠	剤									
ſĿ	公合物No.1			1 0	g					
判	. 糖			2 0	g					
選	粉			4	g					
湖	と 粉 (のり用)			1	g					
ス	テアリン酸マグネ	シウム		0.	1 g					
カ	ルポキシメチルセ	ルロースカルシ	/ウム	7	g					
			全 量	42.		-				
上記成分を常法により混合	した後、1錠中に50	Omgの活性	[02	03]	_					
成分を含有する糖衣錠とする	る。		製剤例	4						
[0201]			軟	膏						
製剤例 2			化	合物N	o. 1				1.	0 g
カプセル剤			才	リープ	油				20	g
化合物No. 1	1	10g	白	色ワセ	リン				7 9	g
乳糖	2	20g					全	盘 1	0 0	g
微結晶セルロース]	l0g	上記成	分を常済	まにより	り混合	し、1:	%軟膏と	_する。	
ステアリン酸マグネシ	ウム	1 g 30	[02	04]						
	全 量 4	11g								

上記成分を常法により混合した後、ゼラチンカプセルに 充填し、1カプセル中50mgの活性成分を含有するカプ セル剤とする。

[0202]

製剤例3

軟力プセル剤

化合物No.1 10g トウモロコシ油 35g 全 量 45g

上記成分を混合した後、常法により軟カプセル剤とす る。

製剤例 5

エアゾル懸濁液

(A)

化合物No.1 0. 25% ミリスチン酸イソプロピル 0.10% エタノール 26.40%

(B)

1,2 -ジクロロテトラフルオロエタンと1-クロロペンタフルオロエタンの

60~40%の混合物

上記組成物(A)を混合し、得られた混合液をパルブを 備えた容器に仕込み、噴射剤 (B) を20℃で約 2.46 ~ 2.81 mg/cm²ケージ圧までパルプノズルから圧入しエ アゾル懸濁剤とする。

【0205】試験方法

I) モルモット摘出気管における気管支拡張試験 方法

250-450gのモルモットを放血致死させ、気管を 摘出し、脂肪、結合組織を取り除いた後、幅約 $2 \, \mathrm{mm}$ のら 10 合の弛緩パーセントで表し、 $5 \, 0 \, \%$ 弛緩させる濃度(Eせん状に切り平滑筋組織を4-5個含むように2-3本 に分割した。標本は37℃、95%O, +5%CO, を 通気したmodified-Tyrode液を含む8 ml のオルガン・ パス中に懸垂し1gの荷重を加えた。筋の弛緩はアイソ トニックトランスジューサー (日本光電、TD-112S)を介 してペンレコーダー (横河北辰電機、Type 3066) で記 録した。Modified-Tyrode液の組成は以下のとおりであ る (mM)。

73. 25%

[0 2 0 6] NaCl 137, KCl 2.7, CaCl, 1.8, MgCl, 1. 0. NaHCO, 20, NaH, PO, 0.32, Glucose 11. 標本を60-90分休ませた後イソプロテレノール1μ Mを加え弛緩させた。標本を洗浄し、一定の弛緩反応が 得られるようになるまで30-40間隔でこれを繰り返 した後、被験薬物を累積的に適用し弛緩させた。最後に アミノフィリン(AP) 1mMを加え最大弛緩反応を得 た。弛緩反応の強さは、APの弛緩を100%とした場 C., μM) を求めた。薬物はジメチルスルホキシド (DMSO) に溶解し、DMSOのパス内最終濃度は 0. 2% v/wとした。 【0207】試験結果

130

I) 気管支拡張作用

[0208]

【表81】

表Ⅲ

	32	1111	
供試化合物 化合物番号	EC ₅₀ (μΜ)	供試化合物 化合物番号	EC ₅₀ (μΜ)
アミノフィリン	37.0	18	7.9
1	0.33	19	3.3
2	0.94	20	1.9
3	0.28	21	0.34
4	0.22	22	0.37
5	6.3	25	0.48
6	7.6	26	1.2
7	7.0	27	2.8
8	14	28	3.4
9	1.9	31	0.21
11	0.28	32	0.12
12 .	2.8	33	0.44
13	0.55	34	0.46
14	3.0	35	0.54
15	3.5	37	6.9
16	2.7	38	0.35
17	3.7	39	0.42

[0209]

【発明の効果】以上説明したように本発明化合物は、優 40 な予防及び治療薬として有用である。 れた気管支拡張作用を有し、気管支喘息、気管支炎及び

成人呼吸窮迫症候群等の慢性可逆閉塞性呼吸疾患の有用

フロントページの続き

(51) Int. Cl. 6	識別記号	庁内整理番号	FI	技術表示箇所
277/34				
401/12	233			
403/12	233	*		
409/12	233			•

417/12

211

241

(72)発明者 鹿田 謙一

埼玉県南埼玉郡白岡町大字白岡1470 日産 化学工業株式会社生物科学研究所内