Now, for every $i \in I$, we can write

$$A_i = (A_i \cap U) \cup (A_i \cap V),$$

where $A_i \cap U$ and $A_i \cap V$ are disjoint, since $A_i \subseteq A$ and $A \cap U$ and $A \cap V$ are disjoint. Since A_i is connected, either $A_i \cap U = \emptyset$ or $A_i \cap V = \emptyset$. This implies that either $A_i \subseteq A \cap U$ or $A_i \subseteq A \cap V$. However, by assumption, $A_i \cap A_j \neq \emptyset$, for all $i, j \in I$, and thus, either both $A_i \subseteq A \cap U$ and $A_j \subseteq A \cap U$, or both $A_i \subseteq A \cap V$ and $A_j \subseteq A \cap V$, since $A \cap U$ and $A \cap V$ are disjoint. Thus, we conclude that either $A_i \subseteq A \cap U$ for all $i \in I$, or $A_i \subseteq A \cap V$ for all $i \in I$. But this proves that either

$$A = \bigcup_{i \in I} A_i \subseteq A \cap U,$$

or

$$A = \bigcup_{i \in I} A_i \subseteq A \cap V,$$

contradicting the fact that both $A \cap U$ and $A \cap V$ are disjoint and nonempty. Thus, A must be connected.

In particular, the above lemma applies when the connected sets in a family $(A_i)_{i\in I}$ have a point in common.

Lemma 37.20. If A is a connected subset of a topological space, E, then for every subset, B, such that $A \subseteq B \subseteq \overline{A}$, where \overline{A} is the closure of A in E, the set B is connected.

Proof. If B is not connected, then there are two nonempty open subsets, U, V, of E such that $B \cap U$ and $B \cap V$ are disjoint and nonempty, and

$$B = (B \cap U) \cup (B \cap V).$$

Since $A \subseteq B$, the above implies that

$$A = (A \cap U) \cup (A \cap V),$$

and since A is connected, either $A \cap U = \emptyset$, or $A \cap V = \emptyset$. Without loss of generality, assume that $A \cap V = \emptyset$, which implies that $A \subseteq A \cap U \subseteq B \cap U$. However, $B \cap U$ is closed in the subspace topology for B and since $B \subseteq \overline{A}$ and \overline{A} is closed in E, the closure of A in B w.r.t. the subspace topology of B is clearly $B \cap \overline{A} = B$, which implies that $B \subseteq B \cap U$ (since the closure is the smallest closed set containing the given set). Thus, $B \cap V = \emptyset$, a contradiction.

In particular, Lemma 37.20 shows that if A is a connected subset, then its closure, A, is also connected. We are now ready to introduce the connected components of a space.