第十届华为财务精英挑战赛 案例分析报告

-5G产业经营策略

——5G市场规模预测

-5G基站竞标方案

茶山刘一把手

5G业务·华为战略

目录

- 0.0 绪论
 - ◆ 情景引入
- 1.1 5G产业经营策略
- 1.2 5G市场规模预测
- 2.1 5G基站竞标方案

0.0 情景引入

会议内容:

I.无线产品线CFO汇报华为2020年5G产业经营

策略,并对5G市场及无线产品市场整体规模进行预测

Ⅱ.N国5G项目CFO分析客户财报、衡量项目风险

并决定华为对N国的5G基站竞标方案

集团财务总监

曾欣昀

徐嘉逸

目录

- 0.0 绪论
- 1.1 5G产业经营策略
 - ◆ 1.1.1 战略分析
 - ◆ 1.1.2 战略选择
- 1.2 5G市场规模预测
- 2.1 5G基站竞标方案

1.1 5G产业经营策略

战略分析

外部分析

- 宏观环境分析——5G产业蓬勃发展有望改变经济低迷现状
- 产业环境分析——产业壁垒已形成,高尖领域仍待突破
- 竞争环境分析——多方力量博弈, 华为当前居于竞争高地

内部分析

• 能力分析——各方力量强,科研开发能力尤为突出

内外部结合分析

• 风险与机遇并存, 扬长避短用实力开辟新天地

战略选择

投资策略——"一体化策略"

共合作

市场策略——"差异式营销"

差异化

供应策略——"多货源策略" "采购经理负责制"

高质量

成本策略——"领先策略"

低成本

蓝海策略——"混合策略" "创新策略"

1.1.1 外部分析——宏观环境: 5G产业蓬勃发展有望改变经济低迷现状

- 美国"实体清单"的制裁和打压
- 多国积极开展5G基建
- 运营业务需获得牌照和频谱

- 5G网络用户的上涨
- 5G发展改善生活质量
- 开拓海外市场要面临排外风险

- · 疫情爆发,全球消费市场低迷
- · 世界经济下行压力加大
- 经济全球化,加速5G业务发展

- · 5G基站天线技术的升级
- 5G网络技术的突破
- · 5G产业是各国科技开发的重点

供应商的议价能力

- 1. 华为坚持"多供应商策略". 任何一个元器件都会考虑来自 干不同的供应商、来自干不同 的国家。
- 2. 部分核心器件国产化替代难 度较大,这些供应商的议价能 力较强。

供应

商的

议价

能力

购买者的议价能力

- 1. 购买者暂时没有能力实现后 向一体化, 而卖主可实现前向 一体化。
- 2. 购买者多且他们所购买的是 一种标准化产品,暂时可选择 的卖主只有华为。

新进入者 的威胁

现有竞争者 的竞争程度

替代品的威胁

购买 者的 议价 能力

新进入者的威胁

5G技术还在不断革新、标准不断增 加,产业壁垒不高,现有的参与者 还未形成稳定的市场份额分配。

替代品的威胁

华为5G技术虽然已经领先世界1-2年, 但现有产品不足以对竞争对手构成战 略威胁,如果止步不前,仍可能被行 业颠覆性产品所超越。

现有竞争者的竞争程度

现有竞争者均是世界级的对手,实力 雄厚, 竞争力强。不过华为的5G技术 领先,可借助自身优势构建结构性障 碍和行为性障碍,逐步形成技术壁垒, 拉大与其他竞争者的差距。

1.1.1 外部分析——竞争环境:多方力量博弈,华为当前居于竞争高地

该图对华为、爱立信和诺基亚三大供应商的设备性能、产品组合完整性、标准贡献、研发投入和交付能力等方面进行了系统的评估。综合来看,华为第一,爱立信第二,诺基亚第三。

数据来源: Strategy Analytics

5G实力,这是一个综合体系,不是一项两项指标。可以从以下几个维度来进行实力比较:

- 1. **标准主导能力:** 5G标准的决定主要是美国、欧洲、中国三大核心集团在起作用,公司立项多自然在5G标准中拥有主导权。华为在一众竞争对手中立项标准数量领先,但爱立信等穷追不舍,难以拉开差距。
- 2. 芯片的研发与制造: 在服务器、核心网、基站上都需要芯片, 芯片领域总体态势是美国企业称霸世界, 欧洲企业有一定的衰落, 中国企 业正在加大加量寻求突破。
- 3. **系统设备的研发与部署**: 5G网络是核心网络、管理系统、基站、天线、铁塔等一系列产品组成的(即通信系统),华为在网络规划、网络部署、网络优化和服务提供上实力最强。
- 4. **业务的开发与运营:** 华为正在形成一个强大的华为智选产品系列,通过制作一个平台,输出整合能力,输出智能化能力,输出销售和服务能力,发展速度非常快,业务能力出色。

综上, 5G是一个庞大的体系, 欧洲强在系统, 美国强大芯片, 中国强在综合实力。在这个完整的体系中, 华为除芯片稍弱之外 在其它领域都是居于优势地位, 而芯片也打破了一无所有, 在5G 时代应该还有较大突破。可以预期随着5G的正式商用, 首先在业务上出现全面爆发, 领先世界的非华为莫属。 ***** HUAWEI

1.1.1 内部分析——能力分析:各方能力强,科研开发能力尤为突出

资源能力

企业资金雄厚

5G运行产品组合 完整,资源充足

华为5G标准立项多且 5G技术专利数量最多

通信系统设备先进,其 他企业难以模仿和替代

科研开发能力

以"开放式创新、包容式发展"为思想理念

以"愿景假设+技术突破"为方法论

以信息为中心,增加 布局"突变的技术"

以"大学合作、技术 投资"为战略举措

人力资源

人员长期激励

"谷歌军团"运作模式

强势的企业文化 的建立和贯彻

人力资源储备充足, 服务响应快、支撑久

企业文化

以客户为中心 以奋斗者为本

胜则举杯相庆败则拼死相救

注重跨团队的文化管理

打破流程中的部门墙

1.1.1 内外部结合分析:风险与机遇并存,扬长避短用实力开辟新天地

1.芯片弱势。部分核心器件国产化替代难度较大, 尤其是芯片领域美国占主导地位。

2.壁垒弱势。5G产业目前的技术壁垒不高,高尖 领域仍待突破。

- **1.政治因素。**5G发展改善人们的生活质量,多国政府积极开展5G基建。
- 2.经济因素。经济全球化,加速5G业务发展。
- **3.科技因素。**5G技术还在不断革新、标准不断增加,借此机会突破现有技术可以形成产业壁垒。

- 1.标准主导能力强。
- 2.技术优势。企业综合能力强,在科研方面尤为突出。
- 3.资金优势。企业资金雄厚。
- 4.竞争优势。多方力量博弈, 华为当前居于竞争高地。

- 1.政治威胁。华为面临着美国"实体清单"的制裁和打压。
- 2.经济威胁。新冠疫情爆发,世界经济下行压力加大。
- 3.竞争者威胁。现有竞争者均是世界级的对手,实力雄厚。
- 4.技术威胁。华为5G技术虽然已经领先世界1-2年,但现有产品不足以对竞争对手构成战略威胁,如果止步不前,仍可能被行业颠覆性产品所超越。

1.1.2 投资策略——"一体化战略":企业联盟合作,双方共赢

后向一体化战略

1.重点投资核心芯片,自主研发,多方合作,持续保持技术 壁垒

保持华为在5G部署上的先发优势,加码5G研发投入,做到5G商用差异化,降低替代品威胁和外部风险。重点研发不可替代的美方芯片,与性能更佳的5G基站芯片,保持技术溢价优势。

2.与上游核心材料供应商形成战略联盟,"固定进货+共同研 发"齐头并进

向联盟伙伴坚持固定进货,确保导热材料,PCB,滤波器,天线射频等核心材料拥有高质量;同时华为与联盟伙伴一起进行目标导向型的研发改进,由此可同时提升双方的生产效率。"固定进货+共同研发"战略旨在形成"互惠互利"的双赢场面。

企业战略联盟

1.广泛结盟,聚焦5G,形成"共竞争+共合作"的格局

大胆与5G规模部署与5G商用的中小企业甚至是独立实验室开展合作,形成"共竞争+共合作"的格局。

2.有效结盟,产品主导,精准资源倾斜

对名义联盟与实际联盟进行严格的区分,以**配比原则**进行资源合理配置,在战略领导背景下,可不追求盈利,以**产品主导**进行精准有效的资源倾斜。

1.1.2 市场策略——"差异式营销":细分市场区别营销,因地制宜

图1 华为2019年主营业务总收入地区分布图

市场细分:

发达国家:美洲,欧洲与亚太部分地区

发展中国家: 非洲, 欧洲与亚太部分地区

业务主要所在地:中国

数据来源:华为2019年年度报告

发达 国家

1.以长期目标为主,**保持卓越**,自证实力 2.友好交涉,**不卑不亢**,建立可靠的中立企业形象,取 得信任与认证,并主打宣传"5G数据隐私安全"

发展中 国家 1.**从一边向多边渗透**,由1变N,不断扩张,逐级渗透,快速抢占发展中国家的市场份额 2.**发展联盟**,与当地企业合作,产品本地化,并利用他 国企业商誉在该国建立"华为信誉"

1.聚焦**新媒体营销**,关注中国人口基数大的优势,抢占流量,尝试通过**新型流媒体**进行推广,主打宣传 "质量与技术过硬","企业责任"与"家国情怀"

1.1.2 成本策略-—"领先策略":需求与产能匹配,以结果导向管控成本

1.项目前期需求预测

项目前期需求预测为领先策略里最重要的一环,通过调研,数 学建模等方法,对产品未来的需求进行预测,预测要遵循稳健 性原则。根据预期的需求增长来进行产品的生产。

2.项目中期需求预警

即使是领先战略,也要合理超前增加产能,避免过度高估产能, 增加不必要存货,成本负担过分加重。在项目中期根据定期 (如1个月)的产能预测来设置和调整产能预警线,根据产能 预警线来话当的调整产能。

3.项目后期需求反馈

根据前期与中期的预测值和真实值的拟合,反馈预测差距,制 定基础范式,修改预测模型,为下一个项目的预测提供理论基 础。

领先战略

进攻性策略,根 据对需求增长的 预期增加产能

1.产品全周期产能监测

产品生产的全周期过程中,对产能进行实时监测。项目前期根 据需求预测调节产能物质资料来源体量;项目中期根据需求预 警适当扩大或缩小产能;项目后期比对产能与需求匹配度,为 下一产品周期做产能准备的参考。

2.启用订单生产式生产

采取"资源→订单→生产"的生产模式,通过项目前期需求预测 来确定资源采购数量,在接到订单后再开始批量生产产品,该 模式一方面具有进攻性,一方面可以避免过度的成本浪费。

3.利用闲置设备制造产品

对于5G新产品的生产,看是否有与4G产品生产有交叉的闲置 设备。通过利用现有设备,避免固定资产购置,从而降低成本, 达到在相同现金流下产能增加的效果。

1.1.2 供应策略——"多货源策略"+"采购经理负责制"

多货源策略

1.每种5G产品材料都与其国内龙头货 源供应商形成长期稳定的合作关系

采购材料的大部分进货源头都选 用国内龙头供应商,一方面国内供应商 均在中国的法律体系下,**政策一致化**避 免了海外政策的限制;另一方龙头供应 商的材料货源有**技术与质量的保证**。

2.每种5G产品材料都采取多个供应商 供应的策略

进货不仅仅从龙头供应商进货, 还可尝试向**中小企业**进货,多个供应商 既能保证货源稳定也能增加议价能力, 避免信息不对称导致的成本有效率低。

采购经理负责制

1.成立"生产采购委员会"

该委员会**专门负责供应链管理**的采购与生产,采购经理入席董事会,扩大职权,增强信息的及时沟通与共享。

2.采购经理绩效挂钩

将产品采购成本与产品价格进行对比,得出指标与采购经理薪酬挂钩,**加强采购各环节的管控**。

1.1.2 蓝海策略——"混合策略"+"创新策略"

混合策略

- 1.低价策略:全周期产能监控,结合价值链各个环节进行结果导向型成本管控,以低价快速占蓝海,控制5G商用市场主导权,形成规模经济,从此良性循环。
- 2.高值策略:产品追求差异化 与专业化,通过增大研发支出 的投入和增强相关产品线间信息的互联互通,来取得更高的 附加值,从而提升产品的核心 竞争力,建造技术壁垒,占稳 市场份额。

创新策略

1.转变赛道,"从1开始"而非 "从0开始"

研发4G转5G的转换设备, 从而降低基站价格,通过使用 转换设备和改进LTE相关产品, 在已建基站的基础上实现5G通 信。

2.更新产品商业配套方案

针对新产品的特性进行商 业方案的**配套更新**设计,提升 售前与售后的**服务质量**,与时 俱进。

1.1.2 策略总结: 通过合作和差异化使产品拥有高质量与低成本

目录

0.0 绪论

1.1 5G产业经营策略

1.2 5G市场规模预测

- ◆ 1.2.1 数据分析
- ◆ 1.2.2 数据处理
- ◆ 1.2.3 ARIMA模型预测
- 2.1 5G基站竞标方案

1.2 5G市场规模预测

1. 2. 1 数据预分析——异常数据进行正常化处理

整体市场分析

通过观察各地区整体市场规模,我们发现数据有多处缺失,并且EMEA地区和亚太地区出现过剧烈波动。所以我们需要对缺失数据进行填补,另外需要对异常的数值进行诊断。

局部市场分析

在局部市场的观察中,我们选择没有数据缺失的亚太市场进行分析。我们发现:前期的整体规模等于2、3、4G市场规模的总和;后期的整体规模略高于2、3、4G市场规模总和。

1.2.1 预测思路及假设——ARIMA模型&回归分析

预测思路

- 经过整体市场分析,我们选择采用插值法对已有数据进行处理。
- 经过局部市场分析,我们推测"后期的整体规模略高于2、3、4G市场规模总和"的原因是5G市场逐步兴起。
- (直接法)我们可以利用回归方程直接对5G历史数据进行预测。
- (间接法)也可以通过时间序列预测模型,对2、3、4G市场规模以及整体市场规模进行预测,最后用整体市场规模减去其他市场规模得到5G市场规模。

模型假设

- 由于数据均为历史数据,故在对未来预测中未考虑真实世界中的黑天鹅事件(如新冠疫情对市场规模的影响)。
- 假设未来一年内所研究的市场未达到饱和状态。

插值及异常诊断

预测2、3、4G市场 及整体市场规模

直接预测5G市场规模

or

整体市场减去其他市 场得到5G市场规模

1.2.2 数据预处理——拉格朗日插值法(部分)+小波异常点检测(整体)

拉格朗日插值

从下图的缺失情况来看,单处缺失有7处,连续缺失有1处。我们在断点前后分别选取3个已有数值,使用拉格朗日插值法进行补插,将插值对整体序列的影响减小。

小波异常点检测

我们通过小波异常点检测算法对所有序列进行检测。对于 算法提供的所有异常点进行诊断,在对应时间查找有无影响市场的事件。例如2007年第三季度的异常值被判定为有 效异常,故通过人工修正为2、3、4G市场规模之和。

 $1\ 3\ 5\ 7\ 9\ 11\ 13\ 15\ 17\ 19\ 21\ 23\ 25\ 27\ 29\ 31\ 33\ 35\ 37\ 39\ 41\ 43\ 45\ 47\ 49\ 51\ 53\ 55\ 57\ 59\ 61\ 63\ 65\ 67\ 69\ 71\ 73\ 75$

1.2.3 ARIMA间接预测—— 一阶差分得到平稳时间序列

北美整体市场预测(ARIMA模型)

根据市场规模在时间序列上的依存性,又考虑到随机波动的干扰性,采用对短期趋势的预测准确率较高的ARIMA模型。 左图为差分前的非平稳时间序列,右图为差分后的平稳时间序列(adf==1)。

Lag表示滞后的阶数,根据差分后的平稳时间序列acf(自相关)和pacf(偏自相关)图可以看出自相关与偏自相关均是 拖尾,且均在置信区间内波动。

1.2.3 ARIMA间接预测——正态性检验及置信水平判断

北美整体市场预测

- 左上角为标准差的波动值;
- 右上角为QQ图,它用于直观验证一组数据是否来自某个分布,或者验证某两组数据是否来自同一(族)分布。上图中的QQ图残差基本完全落在45°线上即符合正态性假设;
- 左下角为残差的自相关图,自相关 系数均在置信区间内;
- 右下角为残差的偏自相关图,偏自相关系数绝大部分都在置信区间内。说明测量值预测的可信度极高。

1.2.3 ARIMA间接预测——选定合适阶数,得到预测结果

确定阶数

其中R=2, M=3的AIC和BIC值最小 输入阶数p=2, 输入阶数q=3。

R	M	AIC	BIC
0	1	415. 4089	419. 9623
0	2	409. 2212	416. 0512
0	3	403. 9512	413. 0578
1	0	415. 5586	420. 1119
1	1	403. 5341	410. 3641
1	2	405. 5327	414. 6394
1	3	399. 6236	411. 0069
2	0	417. 5003	424. 3303
2	1	413. 6922	422. 7988
2	2	402. 2378	413. 6211
2	3	393. 5042	407. 1642
3	0	419. 4958	428. 6024
3	1	403. 5466	414. 9299
3	2	404. 2859	417. 9459
3	3	395. 5017	411. 4383

北美整体市场结果

即四个坐标(77, 22. 2), (78, 22. 6882), (79, 25. 5473), (80, 25. 0561), 其中77, 78, 79, 80分别表示2020年的第一季度, 第二季度, 第三季度, 第四季度。

因此北美市场的预测值为第一季度22. 200(亿美元),第二季度 22. 688(亿美元),第三季度25. 547(亿美元),第四季度25. 056(亿美元)。

间接法预测结果——整体市场规模&(间接法)5G市场规模 1. 2. 3

各地整体市场规模及5G市场规模

按照上述步骤,我们完成了对各地整体市场以及5G市场规模(=整体-2G-3G-4G)的预测。

(注:用ARIMA模型对北美2G市场进行预测时,由于数值接近于0产生了预测值部分为负数的结果。因此引入正态分布随机

数,得到四个数值。下表从左至右分别为2020年的第一、二、三、四季度。)

北美					
2G	0.045	0.055	0.042	0.045	
3G	0.765	0.513	0.701	0.777	
4G	17.840	17.330	14.390	6.960	
5G	3.549	4.788	10.413	17.273	
整体	22.200	22.688	25.547	25.056	

		亚太		
2G	0.616	0.825	0.549	0.692
3G	6.5435	7.389	7.039	7.959
4G	22.849	24.282	24.217	23.165
5G	14.727	17.440	19.784	26.710
整体	44.737	49.937	51.589	58.528

EMEA					
2G	0.819	0.661	0.568	0.532	
3G	2.512	2.306	2.347	3.619	
4G	13.823	14.700	14.563	18.927	
5G	0.155	1.627	1.331	2.215	
整体	17.310	19.294	18.811	25.295	

CALA					
2G	0.365	0.346	0.179	0.318	
3G	1.089	0.821	0.754	0.796	
4G	2.950	3.597	3.121	3.809	
5G	0.723	0.474	0.575	0.478	
整体	4.940	5.450	5.780	6.530	

回归分析直接预测—— "cftool"得到R-square最小的函数 1. 2. 3

5G市场规模

由于5G的历史数据量较少,前文的ARIMA模型不再适用,故我们采用回归分析法对各地的5G市场规模进行预测。

北美

 $f(x) = 7.674 - 6.667 \times \cos(x \times 0.4456) - 2.814 \times \sin(x \times 0.4456)$ y vs. x

亚太

f(x) = 1300 * sin(0.003175 * x - 0.002697)

EAEM

f(x) = -160.4 * exp(-0.00253 * x) + 160.1

CALA

f(x) = 0.9683*sin(0.07081*x-0.01959)y vs. x — Fit > 0.15 1.5 2.5

1. 2. 3 预测结果分析

直接法间接法对比分析

经过两种方法的预测,我们发现:直接法预测结果普遍<mark>高于</mark>间接法预测结果。

模型推广:

- 1.5G进入市场后将<mark>打破"过去</mark>20年市场规模<mark>固定</mark>在某值上下轻微浮动"的旧式,使未来市场规模大幅提升。同时,5G较以往的移动网络所涉及的功能领域大大拓展,也进一步佐证了这一推测。
- II. 下表中可以看出,亚太单一市场的规模超过了世界其余市场规模的总值。华为可凭借地域优势,将战略<mark>重心倾向</mark>需求庞大的<mark>亚太市场</mark>,之后再以技术优势稳步向欧非、拉美、北美市场迈进。

北美				
直接法	间接法			
12.354	3.549			
14.276	4.788			
14.908	10.413			
14.127	17.273			

亚太				
直接法	间接法			
21.258	14.727			
25.384	17.440			
29.511	19.784			
33.637	26.710			

EMEA				
直接法	间接法			
1.716	0.155			
2.116	1.627			
2.515	1.331			
2.913	2.215			

CALA				
直接法	间接法			
0.409	0.723			
0.637	0.474			
0.998	0.575			
1.544	0.478			

目录

0.0 绪论

1.1 5G产业经营策略

1.2 数据分析与预测

2.1 5G基站竞标方案

- ◆ 2.1.1 客户财务分析
- ◆ 2.1.2 项目风险识别
- ◆ 2.1.3 竞标解决方案

2.1 5G基站竞标方案

客户财务分析

盈利能力分析

收入增长,利润下降,陷入盈利怪圈

高负债运行,长期偿债能力较弱

如何守住风险又留住客户,实现双赢?

经营现金流分析

偿债能力分析

杜邦分析

财务预测分析

债务负担带动现金流状况恶化

高负债不可持续,ROE大幅下降

陷入流动性困境,急需下一轮股权融资

项目风险识别

保函出险+合同违约风险

汇率风险

税务风险

根本在于客户商业信用

自然对冲与财务对冲相结合

比例分摊商业折扣,做好亏损抵税

5G基站网络共享: 商业模 式创新助力运营商资产出表

解决客户痛点: 缓解运营商资金 压力 B运营商可节省: 建网成本15亿 美元

对冲交易风险: 杀出红海, 打开成 长新天地

2.1.1盈利能力分析:收入增长,利润下降,陷入盈利怪圈

B运营商利润率行业领先

B运营商收入增长,利润反而下降

- 利润率行业领先,2018年开始快速下滑:B运营商2019年利润率17.01%,明显高于行业水平,经营状况较优,然而2018年利润率开始快速下滑。
- 收入增长,利润下降,陷入盈利怪圈:尽管公司收入保持增长,但不及成本费用增长速度,导致利润反而下降。或为4G发展进入瓶颈期,用户数量提升乏力,在政府提速降费要求下,ARPU值降低,成本费用相对提升。

2.1.1偿债能力分析:高负债运行,长期偿债能力较弱

B运营商流动比率显著小于1

B运营商负债率远高于行业平均水平

- 短期偿债能力尚处合理区间:流动比率为0.33,显著小于1,但考虑行业特性,电信行业采用每月预缴话费形式,应收账款占用较少,营业周期短,现金流稳定,因此尚处合理区间。
- 长期偿债能力较弱:资产负债率高达93.55%,比行业平均水平高出一倍,杠杆率水平过高,一旦盈利受到冲击,可能陷入财务困境。

2.1.1经营现金流分析:债务负担带动现金流状况恶化

B运营商筹资现金流大幅流出

B运营商负债持续大幅增长

- <mark>现金流状况恶化</mark>:经营现金流保持上升态势,然而筹资现金流持续下降,2019年大幅流出1.18亿美元, 带动现金流量净额掉头向下。
- 债务利息负担加重:所有者权益保持基本平稳,负债大幅增长,因此筹资现金流持续流出并非偿还企业债务,而可能是随着负债率提高,债务利息负担不断增大。

2.1.1杜邦分析: 高负债模式不可持续, 净资产收益率大幅下降

- B运营商净资产收益率高达183%: 说明企业能为股东带来超高回报,其一方面得益于企业高利润率,另一方面基于企业高财务杠杆,但这损害了债权人的利益,可能为企业带来高风险。
- 高负债模式不可持续: 2019年随着负债率的进一步增加,风险的提升或导致利息负担的急剧增加,从而带来利润率的下降,最终反而带来净资产收益率下降了50.65%。

2.1.1灰色预测财务分析:陷入流动性困境,急需下一轮股权融资。

	现金流量	表			资产负债	表	
单位:百万美金	2020E	2021E	2022E	单位: 百万美金	2020E	2021E	2022E
经营现金流	317.99	336.45	355.99	流动资产	327.16	359.32	394.64
投资现金流	-139.74	-127.26	-115.90	非流动资产	2008.77	2289.95	2610.48
筹资现金流	-192.54	-384.00	-612.28	资产	<u>2335.93</u>	<u> 2649.26</u>	3005.12
现金流量净增加额	-14.29	<u>-174.81</u>	-372.20	流动负债	1117.03	1382.99	1712.26
期初现金余额	222.47	208.18	33.37	非流动负债	1093.28	1168.30	1248.48
期末现金余额	208.18	33.37	-338.82	<i>负债</i>	2210.31	<u>2551.29</u>	<u>2960.74</u>
单位: 百万美金	2020E	2021E	2022E	所有者权益	<u>125.62</u>	<u>97.97</u>	<u>44.38</u>
项目现金流	0	-22	-208	负债和所有者权益	2335.93	<u>2649.26</u>	<u>3005.12</u>

- 采用灰色时间序列预测B运营商财务数据发现,随着筹资现金流快速流出,<mark>现金流量净增加额将转为负值,</mark> 公司陷入流动性困境。
- 一期项目回款期预计在2021年,将占期末现金余额的65.92%,形成较大现金流压力;二期项目回款期预计在2022年,B运营商年底现金流已有3.38亿美元流动性缺口,而负债高速成长,不断稀释所有者权益,急需下一轮股权融资。

2.1.2保函出险+合同违约风险叠加:根本在于客户商业信用

客户要求采取独立保函形式,银 独立 谈判 履约保函本身就是风险, 代表处 行收到索赔要求后无需调查立即 保函 谈判策略肯定是不开保函。 协商 予以赔付。 客户要求提供100%合同金额的 了解 全额 了解客户保函动机,是否为集团 履约保证,远高于一般保函的10 0 统一要求或商业惯例。 保证 动机 0 % - 15%。 审慎应对 0 客户不同意采用信用证结算,无法 不同客户有不同的风险等级,对 0 无信 客户 通过出口押汇或福费廷融资。同时 客户尽调, 如商业信用、历史索 用证 尽调 客户资金紧张,存在违约风险。 赔情况。© 法律 异国 就合同与保函咨询N国的律师, 保函受N国法律约束及解释。 咨询 了解当地的法律。

2.1.2抵御汇率风险: 自然对冲与财务对冲相结合

- 本市结算风险:项目采用美元支付,能够进行合同保值。然而当地施工雇佣人工、项目合同分包,可能主要采用当地货币结算,一旦当地货币升值将导致项目成本上升,产生汇率风险。
- 风险测算:按照一期项目500基站,5G基站人力等成本1.8万美金/站,4G基站搬迁成本0.3万美金/ 站测算,将产生(1.8+0.3)×500=1050万美元,当地货币结算缺口。

自然对冲

项目分包采购合同、雇员工资等尽量采用美元计价,进行内部消化。

风险保留

以当地货币结算的零星开支,难以 预测且风险较小,进行风险保留。

协商分担

合同中设立汇损分担机制,当汇率 发生剧烈波动时,双方协商分担超 过波动范围的损失。

财务对冲

从成本效益考虑,向银行购买部分 当地货币远期外汇合约或看涨期权。

2.1.2规避税务风险:比例分摊商业折扣,做好亏损抵税与留痕管理

- IFRS 15确定收入"五步法": 关注识别合同单项履约义务和分摊交易价格的规定。假设把商业折扣全部分摊进新建5G基站,将产生搬迁4G基站应纳税所得额50万美元,则需考虑如何税收抵扣。
- 根据N国税法,在第二期项目进行第一期项目2850万美元的亏损抵税的条件。
- 第一期项目严重亏损,有可能被N国税务部 门认定为存在偷税漏税嫌疑,受到税务调查。

商业折扣全部分摊进5G基站,产生税额50万

新建5G基站

合同交易价格:

10×500-3000=2000万

成本: 500× (8+1.8) =4900万

应纳税所得额: 0

搬迁4G基站

合同交易价格:

0.4×500=200万

成本: 500×0.3=150万

应纳税所得额:50万

商业折扣按比例分摊,合理避税

新建5G基站

合同交易价格:

10×500× (1-3000÷5200) =2115.38万

成本: 500× (8+1.8) =4900万

应纳税所得额: 0

搬迁4G基站

合同交易价格:

0.4×500× (1-3000÷5200) =84.62万

成本: 500×0.3=150万

应纳税所得额: 0

解决方案:

- 合同中需注明新建5G基站与搬迁4G基站两项履约义务的交易价格,将商业折扣按比例分摊。
- 需做好留痕管理,包括合同、发票、项目验收单等,以备亏损抵扣和税务机关监督管理。

2.1.3 华为无法签约:如何既守住风险又留住客户,实现双赢?

项目利润表						
单位:万美元	第一期	第二期	项目合计			
营业收入	2200	20800	23000			
营业成本	5050	18980	24030			
营业利润	<u>-2850</u>	<u> 1820</u>	<u>-1030</u>			
所得税费用	0	0	0			
净利润	<u>-2850</u>	1820	<u>-1030</u>			

- 项目造成合计亏损1030万美元。更大风险在 于二期项目合同需待一期完成后视情况而定。 如果不再续约,项目将亏损2850万美元。
- 过低的价格有可能导致地区事业部其他客户要求同样价格优惠,扰乱经营。还可能被N国商务部认定为非法倾销,受到贸易制裁。
- 因此, 华为无法签约该方案。

如何既守住风险又留住客户?

- 然而B运营商占据了N国移动市场份额的31%, 放弃了B客户,意味着放弃了突破N国5G市场 的绝佳机会。
- 没有了业务,自然没有了经营风险。但客户是 企业生存的根本,失去了客户,企业现金流从 何而来?
- 不能光靠放弃客户来控制风险,而应该思考的 是能不能在守住风险的同时,留住客户,实现 "双赢",这才是真正的风险管理。

2.1.3 销售融资不可行: 高负债率下, 客户无法继续借贷重资产运作

5G基站项目建设周期长、投入大,短期难以看到财务回报。

B运营商规划建设

2500个5G基站 约2.3亿美金 客户是一个在财务上<mark>有着长远眼</mark>光和发展魄力的公司。

有成长潜力

第一批仅采购500 个5G基站 预计占其2021年期末现金余额

65.92%

现金流紧张已经 制约了企业的发 展。

有资金需求

客户不同意采用信用证 结算,合同完全基于商 业信用,无法通过出口 押汇或福费廷融资。

客户资产负债率高达

93.55%

客户无法继续借 贷提高负债率, 重资产运作。

无举债能力

2.1.3 经营租赁不可行: IFRS 16实施使轻资产运作难上加难

- 如何帮助B运营商解决钱的问题,又不会进一步提高其负债率呢?最直接的方式是通过租赁实现轻资产运作。
- 然而IFRS 16租赁准则(自2019年起施行),让轻资产运作变得极为困难。IFRS 16取消了对承租人区分融资租赁和经营租赁的双重会计模型,租赁成为了一项需按租金现值等计入表内的资产,同时另一侧增加了需要计提利息的、记入资产负债表内的负债。换言之,承租人将显得资产更多了,负债也更重了。

合同存在可识别资产、客户能获得几乎所有经济利益且有权主导资产的使用,即认定为租赁, 大部分租赁都将记入资产负债表内。

2.1.3 5G基站网络共享: 商业模式创新助力运营商资产出表

● 解决方案: 5G基站网络共享

- 华为负责5G基站的建设,由第三方基站共享平台 负责出资承接5G基站,向B、C运营商提供5G基站 服务,收取基站使用费。
- 第三方再通过ABS资产证券化,利用基站使用费现 金流进行融资,盘活基站资产。
- B、C运营商各自享有基站部分经济利益,有效规 避了租赁准则IFRS 16 的束缚,实现运营商资产出 表。

2.1.3 解决客户痛点:缓解运营商资金压力,抢占5G市场先机。

基站使用费仅312.5万美元/年

按照目前一期规划的500个5G基站建设规模,基站使用年限8年测算,每年只需500×10÷8÷2=312.5万美元的基站使用费

基站运维费用仅86.65万美元/年

华为5G 基站功耗3500W , 1 度电0.1美元, 维护费用每站400美元/年。 (3066+400) ×500÷2÷10000=86.65万美元

共计基站使用成本399.15万美元/年

仅占公司2021年预计期末现金余额的11.96%, 极大缓解运营商资金压力。

快速形成5G服务能力

帮助运营商提升网络效益和资产 运营效率,抢占5G市场先机。

2.1.3 B运营商可节省:建网成本15亿美元,运维成本2599.5万美元/年

- 5G频谱主要采用高频段毫米波,信号损耗高,覆盖能力较弱,因此5G的基站可能是4G的1.5-2倍。保守按照1.5倍、10万美金/站计算,B运营商当前约1万个4G站,还需建设1.5万个5G基站,预计产生15亿美元建网成本。
- 而通过基站共享,运营商不仅不需要出资建网,还将显著减少其运维成本,华为5G 基站单系统典型功耗为3500W,保守假设1 度电0.1美元,则单基站电费3500÷1000 × 365 × 24 × 0.1=3066美元/年。维护费用参考产业链调研,假设每站400美元/年。每年B运营商可节约一半基站营运费用(3066+400)×15000÷2÷10000=2599.5万美元。

数据来源: 国信证券研究所、浙商证券研究所

2.1.3 对冲交易风险: 杀出红海, 打开成长新天地

化解违约风险:

由第三方平台出资承接5G基站,根本上解决违约问题,加快回款周期,如第三方有资金需求还可进行基站资产证券化融资

抵御汇率风险

以美元计价结算,自然对冲与财务 对冲相结合,设立汇损分担机制

规避税务风险:

做好留痕管理,合同明确各项履约义务价格。 针对IFRS15设立里程碑式的验收流程,设备 和服务打包按站点验收付款,加快收入确认

守住风险下,顺利打开了N国市场

与第三方共享平台深度绑定,将运营商和华 为的利益捆绑在一起。

Thank you.

我们的愿景和使命:

把数字世界带入每个人、每个家庭、

每个组织,构建万物互联的智能世界。

Bring digital to every person, home, and organization for a fully connected, intelligent world.

