Program Reference

Contents

Overview of libcint usage	1
Preparing args	1
Interface]
C routine]
Fortran routine	4
Supported angular momentum	
Data ordering	Ē
Tensor	6
Built-in function list	6

Overview of libcint usage

Preparing args

. . .

Interface

C routine

```
dim = CINTgto_cart(bas_id, bas);
dim = CINTgto_spheric(bas_id, bas);
dim = CINTgto_spinor(bas_id, bas);
fle(buf, shls, atm, natm, bas, nbas, env);
```

```
f2e(buf, shls, atm, natm, bas, nbas, env, opt);
f2e_optimizer(&opt, atm, natm, bas, nbas, env);
CINTdel_optimizer(&opt);
```

- buf: column-major double precision array.
 - for 1e integrals of shells (i,j), data are stored as [i1j1 i2j1 ...]
 - for 2e integrals of shells (i,j|k,l), data are stored as
 - [i1j1k1l1 i2j1k1l1 ... i1j2k1l1 ... i1j1k2l1 ...]
 - complex data are stored as two double elements, first is real, followed by imaginary, e.g. [Re Im Re Im . . .]
- shls: 0-based basis/shell indices.
 - int[2] for 1e integrals
 - int[4] for 2e integrals
- atm: int[natm*6], list of atoms. For ith atom, the 6 slots of atm[i] are
 - atm[i*6+0] nuclear charge of atom i
 - atm[i*6+1] env offset to save coordinates (env[atm[i*6+1]], env[atm[i*6+1]+1], env[atm[i*6+1]+2]) are (x,y,z)
 - atm[i*6+2] nuclear model of atom i, = 2 indicates gaussian nuclear model $\rho(r) = Z(\frac{\zeta}{\pi})^{3/2} \exp(-\zeta r^2)$
 - ${\tt atm[i*6+3]}$ env offset to save the nuclear charge distribution parameter ζ
 - atm[i*6+4] unused
 - atm[i*6+5] unused
- natm: int, number of atoms, natm has no effect except nuclear attraction integrals
- bas: int[nbas*8], list of basis. For ith basis, the 8 slots of bas[i] are
 - bas[i*8+0] 0-based index of corresponding atom
 - bas[i*8+1] angular momentum
 - bas[i*8+2] number of primitive GTO in basis i
 - bas[i*8+3] number of contracted GTO in basis i
 - bas[i*8+4] kappa for spinor GTO.
 - < 0 the basis $\sim i = 1 + 1/2$.
 - > 0 the basis $\sim j = 1 1/2$.
 - = 0 the basis includes both j = l + 1/2 and j = l 1/2
 - bas[i*8+5] env offset to save exponents of primitive GTOs. e.g. 10 exponents env[bas[i*8+5]] ... env[bas[i*8+5]+9]
 - bas[i*8+6] env offset to save column-major contraction coefficients.
 e.g. 10 primitive -> 5 contraction needs a 10 × 5 array

```
env[bas[i*8+6]] | env[bas[i*8+6]+10] | | env[bas[i*8+6]+40] env[bas[i*8+6]+1] | env[bas[i*8+6]+41] | env[bas[i*8+6]+41]
```

- `bas[i*8+7]` unused
 - nbas: int, number of bases, nbas has no effect, can be set to 0
 - env: double[], save the value of coordinates, exponents, contraction coefficients
 - struct CINTOpt *opt: so called "optimizer", it needs to be intialized CINTOpt *opt = NULL; intname_optimizer(&opt, atm, natm, bas, nbas, env);

every integral type has its own optimizer with the suffix optimizer in its name, e.g. the optimizer for cint2esph is $cint2e_sph_opimizer$. "optimizer" is an optional argument for the integrals. It can roughly speed the integration by 10% without affecting the value of integrals. If no optimizer is wanted, set it to NULL.

optimizer needs to be released after using.

CINTdel_optimizer(&opt);

- if the return value equals 0, every element of the integral is 0
- short example

```
#include "cint.h"
. . .
CINTOpt *opt = NULL;
cint2e sph optimizer(&opt, atm, natm, bas, nbas, env);
for (i = 0; i < nbas; i++) {
        shls[0] = i;
        di = CINTcgto_spheric(i, bas);
        for (1 = 0; 1 < nbas; 1++) {
                shls[3] = 1;
                dl = CINTcgto_spheric(1, bas);
                buf = malloc(sizeof(double) * di * dj * dk * dl);
                cint2e_cart(buf, shls, atm, natm, bas, nbas, env, opt);
                free(buf);
        }
}
CINTdel_optimizer(&opt);
```

Fortran routine

```
dim = CINTgto_cart(bas_id, bas)
dim = CINTgto_spheric(bas_id, bas)
dim = CINTgto_spinor(bas_id, bas)
call f1e(buf, shls, atm, natm, bas, nbas, env)
call f2e(buf, shls, atm, natm, bas, nbas, env, opt)
call f2e_optimizer(opt, atm, natm, bas, nbas, env)
call CINTdel_optimizer(opt)
```

- atm and bas are 2D integer array
 - atm(1:6,i) is the (charge, offset_coord, nuclear_model, unused, unused, unused, unused) of the ith atom
 - bas(1:8,i) is the (atom_index, angular, num_primitive_GTO, num_contract_GTO, kappa, offset_exponent, offset_coeff, unused) of the ith basis
- parameters are the same to the C function. Note that those offsets atm(2,i) bas(6,i) bas(7,i) are 0-based.
- buf is 2D/4D double precision/double complex array
- opt: an integer(8) to hold the address of so called "optimizer", it needs to be intialized by

```
integer(8) opt call f2e_optimizer(opt, atm, natm, bas, nbas, env)
```

The optimizier can be banned by setting the "optimizier" to 0_8

```
call f2e(buf, atm, natm, bas, nbas, env, 0_8)
To release optimizer, execute
```

```
call CINTdel_optimizer(opt);
```

• short example

```
integer,external CINTcgto_spheric
integer(8) opt
call cint2e_sph_optimizer(opt, atm, natm, bas, nbas, env)
do i = 1, nbas
   shls(1) = i - 1
   di = CINTcgto_spheric(i-1, bas)
```

```
do l = 1, nbas
    shls(4) = l - 1
    dl = CINTcgto_spheric(l-1, bas)
    allocate(buf(di,dj,dk,dl))
    call cint2e_sph(buf, shls, atm, natm, bas, nbas, env, opt)
    deallocate(buf)
    end do
end do
call CINTdel_optimizer(opt)
```

Supported angular momentum

$$l_{max} = 6$$

Data ordering

• for Cartesian GTO, the output data in buf are sorted as

s shell	p shell	d shell	
\mathbf{S}	p x	d xx	
\mathbf{s}	p y	d xy	
	p z	d xz	
	p x	dyy	
	p y	dyz	
	p z	dzz	

• for real spheric GTO, the output data in buf are sorted as

s shell	p shell	d shell	f shell	
\mathbf{s}	p x	d xy	$\int f y(3x^2 - y^2)$	
S	p y	dyz	f xyz	
	p z	dz^2	$ \begin{cases} f y(3x^2 - y^2) \\ f xyz \\ f yz^2 \\ f z^3 \end{cases} $	
	p x	d xz	$f z^3$	
	p y	$d x^2 - y^2$	$\int f r \gamma^2$	
	p z		$\begin{array}{c c} & z & z \\ & z(x^2 - y^2) \\ & z(x^2 - 3y^2) \end{array}$	
			$f x(x^2 - 3y^2)$	

• for spinor GTO, the output data in buf correspond to

 kappa=0,p shell	kappa=1,p shell	kappa=0,d shell	
$p_{1/2}(-1/2)$	$p_{1/2}(-1/2)$	$d_{3/2}(-3/2)$	
$p_{1/2}(1/2)$	$p_{1/2}(1/2)$	$d_{3/2}(-1/2)$	
$p_{3/2}(-3/2)$	$p_{1/2}(-1/2)$	$d_{3/2}(1/2)$	
$p_{3/2}(-1/2)$	$p_{1/2}(1/2)$	$d_{3/2}(3/2)$	
$p_{3/2}(1/2)$	$p_{1/2}(-1/2)$	$d_{5/2}(-5/2)$	
$p_{3/2}(3/2)$	$p_{1/2}(1/2)$	$d_{5/2}(-3/2)$	
$p_{1/2}(-1/2)$		$d_{5/2}(-1/2)$	
$p_{1/2}(1/2)$		$d_{3/2}(-3/2)$	
$p_{3/2}(-3/2)$		$d_{3/2}(-1/2)$	
$p_{3/2}(-1/2)$			

Tensor

Integrals like Gradients have more than one components. The output array is ordered in Fortran-contiguous. The tensor component takes the biggest strides.

- 3-component tensor
 - X buf(:,0)
 - Y buf(:,1)
 - Z buf(:,2)
- 9-component tensor
 - XX buf(:,0)
 - XY buf(:,1)
 - XZ buf(:,2)
 - YX buf(:,3)
 - YY buf(:,4)
 - YZ buf(:,5)
 - ZX buf(:,6)
 - ZY buf(:,7)
 - ZZ buf(:,8)

Built-in function list

- Cartesian GTO integrals
 - CINTcgto_cart(int shell_id, int bas[]): Number of cartesian functions of the given shell
 - cint1e_ovlp_cart

 $\langle i|j\rangle$

$$\begin{array}{c} - \operatorname{cint1e_nuc_cart} & \langle i|V_{nuc}|j\rangle \\ - \operatorname{cint1e_kin_cart} & .5\langle i|\vec{p}\cdot\vec{p}j\rangle \\ - \operatorname{cint1e_ia01p_cart} & \langle i|\frac{\vec{r}}{r^3}|\times\vec{\nabla}j\rangle \\ - \operatorname{cint1e_irixp_cart} & \langle i|(\vec{r}-\vec{R}_i)\times\vec{\nabla}j\rangle \\ - \operatorname{cint1e_irixp_cart} & \langle i|(\vec{r}-\vec{R}_o)\times\vec{\nabla}j\rangle \\ - \operatorname{cint1e_irixp_cart} & 0.5i\langle\vec{p}\cdot\vec{p}i|U_gj\rangle \\ - \operatorname{cint1e_involpg_cart} & i\langle i|U_gj\rangle \\ - \operatorname{cint1e_involpg_cart} & \langle \vec{\nabla}i|U_{nuc}|U_gj\rangle \\ - \operatorname{cint1e_ipovlp_cart} & \langle \vec{\nabla}i|j\rangle \\ - \operatorname{cint1e_ipivlp_cart} & \langle \vec{\nabla}i|\vec{p}\cdot\vec{p}j\rangle \\ - \operatorname{cint1e_ipinv_cart} & \langle \vec{\nabla}i|V_{nuc}|j\rangle \\ - \operatorname{cint1e_ipinv_cart} & \langle \vec{\nabla}i|V_{nuc}|j\rangle \\ - \operatorname{cint1e_ipinv_cart} & \langle \vec{\nabla}i|V_{nuc}|j\rangle \\ - \operatorname{cint1e_ipinv_cart} & \langle i|r^{-1}|j\rangle \\ - \operatorname{cint2e_cart} & (ij|kl) \\ - \operatorname{cint2e_ip1_cart} & (\vec{\nabla}ij|kl) \\ - \operatorname{cint2e_ip1_cart} & (\vec{\nabla}ij|kl) \\ \bullet \text{ Spheric GTO integrals} \\ - \operatorname{CINTcgto_spheric(int\ shell_id,\ int\ bas[]):} & \operatorname{Number\ o\ spheric\ functions\ of\ the\ given\ shell} \\ - \operatorname{cint1e_ovlp_sph} & \operatorname{Number\ o\ spheric\ functions\ of\ the\ given\ shell} \\ - \operatorname{cint1e_ovlp_sph} & \operatorname{Number\ o\ spheric\ functions\ of\ the\ given\ shell} \\ - \operatorname{cint1e_ovlp_sph} & \operatorname{Number\ o\ spheric\ functions\ of\ the\ given\ shell} \\ - \operatorname{cint1e_ovlp_sph} & \operatorname{Number\ o\ spheric\ functions\ of\ the\ given\ shell} \\ - \operatorname{cint1e_ovlp_sph} & \operatorname{Number\ o\ spheric\ functions\ o\ the\ spher$$

 $\langle i|j\rangle$

- Spinor GTO integrals
 - CINTcgto_spinor(int shell_id, int bas[]): Number of spinor functions of the given shell
 - cint1e_ovlp $\langle i|j\rangle$

- cint1e_nuc
$$\langle i|V_{nuc}|j\rangle$$

- cintle_nucg
$$\langle i|V_{nuc}|U_gj\rangle$$

- cint1e_srsr
$$\langle ec{\sigma} \cdot ec{ri} | ec{\sigma} \cdot ec{rj}
angle$$

- cint1e_sr
$$\langle \vec{\sigma} \cdot \vec{ri} | j \rangle$$

- cint1e_srsp
$$\langle \vec{\sigma} \cdot \vec{ri} | \vec{\sigma} \cdot \vec{pj} \rangle$$

 $\langle \vec{\sigma} \cdot \vec{pi} | \vec{\sigma} \cdot \vec{pj} \rangle$

$$\langle \vec{\sigma} \cdot \vec{pi} | j \rangle$$
 — cint1e_spspsp

$$\langle ec{\sigma} \cdot ec{pi} | ec{\sigma} \cdot ec{pj}
angle$$

- cint1e_spnuc
$$\langle \vec{\sigma} \cdot \vec{pi} | V_{nuc} | j \rangle$$

— cint1e_spnucsp
$$\langle \vec{\sigma} \cdot \vec{pi} | V_{nuc} | \vec{\sigma} \cdot \vec{pj} \rangle$$

- cint1e_srnucsr
$$\langle \vec{\sigma} \cdot \vec{ri} | V_{nuc} | \vec{\sigma} \cdot \vec{rj} \rangle$$

- cint1e_sa10sa01
$$0.5 \langle \vec{\sigma} \times \vec{r_c} i | \vec{\sigma} \times \frac{\vec{r}}{r^3} | j \rangle$$

- cint1e_ovlpg
$$\langle i|U_gj\rangle$$

- cint1e_sa10sp
$$0.5 \langle \vec{r}_c \times \vec{\sigma}i | \vec{\sigma} \cdot \vec{pj} \rangle$$

$$0.5\langle \vec{r_c} \times \vec{\sigma}i | V_{nuc} | \vec{\sigma} \cdot \vec{p}j \rangle$$

— cint1e_sa01sp
$$\langle i|\frac{\vec{r}}{r^3}\times\vec{\sigma}|\vec{\sigma}\cdot\vec{p}j\rangle$$

- cintle_spgsp
$$\langle U_g \vec{\sigma} \cdot \vec{pi} | \vec{\sigma} \cdot \vec{pj} \rangle$$

— cint1e_spgnucsp
$$\langle U_g \vec{\sigma} \cdot \vec{pi} | V_{nuc} | \vec{\sigma} \cdot \vec{pj} \rangle$$

$$\langle U_g \vec{\sigma} \cdot \vec{pi} | \frac{\vec{r}}{r^3} \times \vec{\sigma} | j \rangle$$

$$- \operatorname{cint1e_ipov1p} \qquad \langle \vec{\nabla}i | j \rangle$$

$$- \operatorname{cint1e_ipkin} \qquad 0.5 \langle \vec{\nabla}i | p \cdot pj \rangle$$

$$- \operatorname{cint1e_ipnuc} \qquad \langle \vec{\nabla}i | V_{nuc} | j \rangle$$

$$- \operatorname{cint1e_iprinv} \qquad \langle \vec{\nabla}i | r^{-1} | j \rangle$$

$$- \operatorname{cint1e_ipspnucsp} \qquad \langle \vec{\nabla}\vec{\sigma} \cdot \vec{pi} | V_{nuc} | \vec{\sigma} \cdot \vec{pj} \rangle$$

$$- \operatorname{cint1e_ipsprinvsp} \qquad \langle \vec{\nabla}\vec{\sigma} \cdot \vec{pi} | V_{nuc} | \vec{\sigma} \cdot \vec{pj} \rangle$$

$$- \operatorname{cint2e} \qquad (ij|kl)$$

$$- \operatorname{cint2e_spsp1} \qquad (\vec{\sigma} \cdot \vec{pi}\vec{\sigma} \cdot \vec{pj} | \vec{k} \cdot \vec{pl})$$

$$- \operatorname{cint2e_spsp1spsp2} \qquad (\vec{\sigma} \cdot \vec{pi}\vec{\sigma} \cdot \vec{rj} | \vec{k} \cdot \vec{rl})$$

$$- \operatorname{cint2e_srsr1} \qquad (\vec{\sigma} \cdot \vec{ri}\vec{\sigma} \cdot \vec{rj} | \vec{k} \cdot \vec{rl})$$

$$- \operatorname{cint2e_srsr1srsr2} \qquad (\vec{\sigma} \cdot \vec{ri}\vec{\sigma} \cdot \vec{rj} | \vec{\sigma} \cdot \vec{rk}\vec{\sigma} \cdot \vec{rl})$$

$$- \operatorname{cint2e_sa10sp1} \qquad 0.5 (\vec{r_c} \times \vec{\sigma}i\vec{\sigma} \cdot \vec{pj} | \vec{\sigma} \cdot \vec{pk}\vec{\sigma} \cdot \vec{pl})$$

$$- \operatorname{cint2e_sa10sp1spsp2} \qquad 0.5 (\vec{r_c} \times \vec{\sigma}i\vec{\sigma} \cdot \vec{pj} | \vec{\sigma} \cdot \vec{pk}\vec{\sigma} \cdot \vec{pl})$$

$$- \operatorname{cint2e_spsp1} \qquad (\vec{\sigma} \cdot \vec{pi}U_g \vec{\sigma} \cdot \vec{pj} | kl)$$

$$- \operatorname{cint2e_spsp2} \qquad (\vec{\sigma} \cdot \vec{pi}U_g \vec{\sigma} \cdot \vec{pj} | kl)$$

 $(iU_q j | \vec{\sigma} \cdot \vec{p} k \vec{\sigma} \cdot \vec{p} l)$

$$(\vec{\sigma} \cdot \vec{pi} U_g \vec{\sigma} \cdot \vec{pj} | \vec{\sigma} \cdot \vec{pk} \vec{\sigma} \cdot \vec{pl})$$

$$- cint2e_ip1$$

$$(\vec{\nabla} ij|kl)$$

$$(\vec{\nabla}\vec{\sigma}\cdot\vec{p}i\vec{\sigma}\cdot\vec{p}j|kl)$$

$$(\vec{\nabla} ij|\vec{\sigma}\cdot\vec{p}k\vec{\sigma}\cdot\vec{p}l)$$

- cint2e_ipspsp1spsp2

$$(\vec{\nabla} \vec{\sigma} \cdot \vec{p} i \vec{\sigma} \cdot \vec{p} j | \vec{\sigma} \cdot \vec{p} k \vec{\sigma} \cdot \vec{p} l)$$

- cint2e_ssp1ssp2

$$(i\vec{\sigma}\vec{\sigma}\cdot\vec{p}j|k\vec{\sigma}\vec{\sigma}\cdot\vec{p}l)$$