Problem 1

Dataset Description:

The blue region (labeled 1) is defined by the following inequalities:

- 1. $x_1 + x_2 \le 1$
- 2. $x_1 + x_2 \ge 4$
- 3. $x_1 + x_2 \le 6$
- 4. $x_1 + x_2 \ge 9$

Objective:

Design a neural network that outputs 1 when a point lies in any of these blue regions and outputs 0 otherwise.

Neural Network Architecture:

- Input Layer: 2 neurons (x_1, x_2)
- Hidden Layer: 4 neurons
- Output Layer: 1 neuron

Activation function:

The summation of inputs to the neuron nodes; \boldsymbol{x} . Then comparison with threshold.

$$g(x;T) = \begin{cases} 1 & \text{if } x \ge T \\ 0 & \text{otherwise} \end{cases}$$

Weights and Thresholds:

Hidden Layer Neurons:

- 1. Neuron N1: Detects $x_1 + x_2 \le 1$
 - Weights: $w_{N1,x1} = -1, w_{N1,x2} = -1$
 - Threshold: $T_{N1} = -1$
- 2. Neuron N2: Detects $x_1 + x_2 \ge 4$
 - Weights: $w_{N2,x1} = 1$, $w_{N2,x2} = 1$
 - Threshold: $T_{N2} = 4$

- 3. Neuron N3: Detects $x_1 + x_2 \leq 6$)
 - Weights: $w_{N3,x1} = -1, w_{N3,x2} = -1$
 - Threshold: $T_{N3} = -6$
- 4. Neuron N4: Detects $x_1 + x_2 \ge 9$
 - Weights: $w_{N4,x1} = 1, w_{N4,x2} = 1$
 - Threshold: $T_{N4} = 9$

Output Layer Neuron:

- Neuron O: Outputs 1 if 2 conditions are met
 - Inputs: Outputs of N1, N2, N3, N4
 - Weights: $w_{O,N1} = 1$, $w_{O,N2} = 1$, $w_{O,N3} = 1$, $w_{O,N4} = 1$
 - Threshold: $T_O = 2$

Neuron Functions Explanation:

- N1 to N4: Each neuron checks one of the inequalities defining the blue region.
- O: Outputs 1 if 2 of the conditions are satisfied, at a time only 2 conditions can be true.
- Neuron activation for different regions:
 - 1. For $x_1 + x_2 \le 1$, N1 and N3 neuron gives 1
 - 2. For $4 \ge x_1 + x_2 \le 6$, N2 and N3 neuron gives 1
 - 3. For $x_1 + x_2 \ge 9$, N2 and N4 neuron gives 1

Problem 2

Dataset Description:

The blue region (labeled 1) is defined by the following inequalities:

- 1. $x_2 \le 6$
- $2. -7x_1 + 10x_2 \ge 10$
- $3. 7x_1 + 10x_2 \ge 80$
- $4. \ 10x_1 + 4x_2 \le 80$
- $5. \ 10x_1 4x_2 \ge 20$

Objective:

Design a neural network that outputs 1 only when all these conditions are satisfied simultaneously.

Neural Network Architecture:

- Input Layer: 2 neurons (x_1, x_2)
- Hidden Layer: 5 neurons
- Output Layer: 1 neuron

Activation function:

The summation of inputs to the neuron nodes; \boldsymbol{x} . Then comparison with threshold.

$$g(x;T) = \begin{cases} 1 & \text{if } x \ge T \\ 0 & \text{otherwise} \end{cases}$$

Weights and Thresholds:

Hidden Layer Neurons:

- 1. Neuron N1: Detects $x_2 \le 6$
 - Weights: $w_{N1,x2} = -1$
 - Threshold: $T_{N1} = -6$
- 2. Neuron N2: Detects $-7x_1 + 10x_2 \ge 10$
 - Weights: $w_{N2,x1} = -7$, $w_{N2,x2} = 10$

- Threshold: $T_{N2} = 10$
- 3. Neuron N3: Detects $7x_1 + 10x_2 \ge 80$
 - Weights: $w_{N3,x1} = 7$, $w_{N3,x2} = 10$
 - Threshold: $T_{N3} = 80$
- 4. Neuron N4: Detects $10x_1 + 4x_2 \le 80$
 - Weights: $w_{N4,x1} = -10$, $w_{N4,x2} = -4$
 - Threshold: $T_{N4} = -80$
- 5. Neuron N5: Detects $10x_1 4x_2 \ge 20$
 - Weights: $w_{N5,x1} = 10, w_{N5,x2} = -4$
 - Threshold: $T_{N5} = 20$

Output Layer Neuron:

- Neuron O: Outputs 1 if at least 4 conditions are met
 - **Inputs:** Outputs of N1, N2, N3, N4, N5
 - Weights: $w_{O,N1} = 1$, $w_{O,N2} = 1$, $w_{O,N3} = 1$, $w_{O,N4} = 1$, $w_{O,N5} = 1$
 - Threshold: $T_O = 4$

Neuron Functions Explanation:

- N1 to N5: Each neuron checks one of the inequalities defining the blue region.
- O: Outputs 1 if any 4 or all 5 of the conditions are satisfied, ensuring the point is within the blue region.
- Conditions for pentagon and triangle region:
 - 1. For the central pentagon region all equations are satisfied
 - 2. For triangular arms 4 equations are satisfied

