ICE-closed subcategories and wide τ -tilting modules

Haruhisa Enomoto (joint work with Arashi Sakai (Nagoya)) 23 November 2020, ICRA (online)

Graduate School of Mathematics, Nagoya University

Overview

Today's talk

- 1. Study ICE-closed subcats of mod Λ using torsion classes.
- 2. Establish a bijection between ICE-closed subcategories and wide τ -tilting modules.
- 3. Hereditary & Nakayama cases

Outline

ICEs via intervals in tors Λ

ICEs via wide au-tilting

Hasse quiver of ICEs

ICEs via intervals in tors Λ

Torsion classes and wide subcategories

Throughout this talk,

- Λ: f.d. algebra over a field k.
- $mod \Lambda$: the cat. of f.g. right Λ -modules.

Definition

- A subcat. T of mod Λ is a torsion class (tors.)
 if it is closed under extensions and quotients.
- tors Λ : the poset of torsion classes in mod Λ .
- A subcat. W of mod A is wide if it is extension-closed exact abelian subcat, or equivalently, if closed under extensions, kernels and cokernels.

ICE-closed subcategories (ICEs)

Definition

A subcategory $\mathcal C$ of mod Λ is ICE-closed if closed under taking Images, Cokernels and Extensions, that is,

- C is extension-closed.
- $f: C_1 \to C_2$ with $C_1, C_2 \in \mathcal{C}$ implies Im f, coker $f \in \mathcal{C}$.

Example

Easy to see chat every tors and wide is ICE.

$$\bmod \, k[1 \leftarrow 2]$$

ICE-closed subcategories (ICEs)

Definition

A subcategory $\mathcal C$ of mod Λ is ICE-closed if closed under taking Images, Cokernels and Extensions, that is,

- C is extension-closed.
- $f: C_1 \to C_2$ with $C_1, C_2 \in \mathcal{C}$ implies Im f, coker $f \in \mathcal{C}$.

Example

$$\bmod \, k[1 \leftarrow 2 \rightarrow 3]$$

Why ICE?

Idea

ICE: a new class of ext-closed subcat of mod Λ which is

- · large enough (containing all tors & wide),
- but not so large (controlled by tors & τ -tilting)!

Previously, I gave a classification of ICEs of $mod \land for$

- $\Lambda := kQ$ with Q Dynkin, and
- Λ: Nakayama.

Want to compute all ICEs!

Method

Use the heart of intervals in tors Λ !

Definition

- For $\mathcal{U}\subseteq\mathcal{T}$ in tors Λ , an interval is a subposet of tors Λ

$$[\mathcal{U},\mathcal{T}]:=\{\mathcal{T}'\in\mathsf{tors}\,\Lambda\,|\,\mathcal{U}\subseteq\mathcal{T}'\subseteq\mathcal{T}\}.$$

• For an interval $[\mathcal{U}, \mathcal{T}]$ in tors Λ , its heart is a subcat

$$\mathcal{H}_{[\mathcal{U},\mathcal{T}]} := \mathcal{T} \cap \mathcal{U}^{\perp} \subseteq \mathsf{mod}\,\Lambda$$

8

About hearts of intervals

Remark

Heart construction is used in: [Jasso], [Demonet-Iyama-Reading-Reiten-Thomas], [Asai-Pfeifer], [Tattar], etc.
Terminology "hearts of twin torsion pairs" due to Tattar.

 $\mathcal{H}_{[\mathcal{U},\mathcal{T}]} = \mathcal{T} \cap \mathcal{U}^\perp \text{ measures a difference "} \mathcal{T} - \mathcal{U}.$

Example

•
$$\mathcal{H}_{[0,\mathcal{T}]} = \mathcal{T}$$

•
$$\mathcal{H}_{[\mathcal{T},\mathsf{mod}\,\Lambda]} = \mathcal{T}^{\perp}$$

•
$$\mathcal{H}_{[\mathcal{T},\mathcal{T}]}=0$$

•
$$\mathcal{T} = \mathcal{U} * \mathcal{H}_{[\mathcal{U},\mathcal{T}]}$$
,

$$\text{``}\mathcal{T}-0=\mathcal{T}\text{''}$$

$$\text{``mod } \Lambda - \mathcal{T} = \mathcal{T}^{\perp}\text{''}$$

"
$$T - T = 0$$
."

"
$$\mathcal{T} = \mathcal{U} + (\mathcal{T} - \mathcal{U})$$
."

Examples of hearts

$$\Lambda := k[1 \leftarrow 2] \text{,} \quad \operatorname{mod} \Lambda :$$

Every ICE is a heart

Proposition (E-Sakai)

Let C be an ICE-closed subcat of mod Λ .

Then there is some interval [U, T] in tors Λ satisfying

$$\mathcal{C} = \mathcal{H}_{[\mathcal{U},\mathcal{T}]} \quad (= \mathcal{T} \cap \mathcal{U}^{\perp})$$

(\mathcal{C} is a heart of $[{}^{\perp}\mathcal{C}, {}^{\perp}\mathcal{C} \vee \mathsf{T}(\mathcal{C})]$, but not used later)

Question

Which interval is an ICE interval, i.e. its heart is ICE?

Characterization of ICE

Theorem (E-Sakai)

The following are equivalent for an interval $[\mathcal{U}, \mathcal{T}]$ in tors Λ :

- 1. $[\mathcal{U}, \mathcal{T}]$ is an ICE interval (i.e. $\mathcal{H}_{[\mathcal{U}, \mathcal{T}]}$ is ICE).
- 2. There's some $\mathcal{T}' \in \operatorname{tors} \Lambda$ with $\mathcal{T} \subseteq \mathcal{T}'$ s.t. $[\mathcal{U}, \mathcal{T}']$ is wide interval (i.e. $\mathcal{H}_{[\mathcal{U}, \mathcal{T}']}$ is wide).

In this case, $\mathcal{H}_{[\mathcal{U},\mathcal{T}]}$ is a torsion class in an abelian cat $\mathcal{H}_{[\mathcal{U},\mathcal{T}']}$.

Characterization of ICE

Theorem (E-Sakai)

The following are equivalent for an interval $[\mathcal{U}, \mathcal{T}]$ in tors Λ :

- 1. $[\mathcal{U}, \mathcal{T}]$ is an ICE interval (i.e. $\mathcal{H}_{[\mathcal{U}, \mathcal{T}]}$ is ICE).
- 2. There's some $\mathcal{T}' \in \operatorname{tors} \Lambda$ with $\mathcal{T} \subseteq \mathcal{T}'$ s.t. $[\mathcal{U}, \mathcal{T}']$ is wide interval (i.e. $\mathcal{H}_{[\mathcal{U}, \mathcal{T}']}$ is wide).

In this case, $\mathcal{H}_{[\mathcal{U},\mathcal{T}]}$ is a torsion class in an abelian cat $\mathcal{H}_{[\mathcal{U},\mathcal{T}']}$.

Corollary (E-Sakai)

Let C be a subcategory of mod Λ . Then TFAE:

- 1. C is an ICE-closed subcategory of mod Λ .
- 2. There's some wide subcat $\mathcal W$ of $\operatorname{\mathsf{mod}} \Lambda$ s.t. $\mathcal C$ is a torsion class in an abelian category $\mathcal W$.

Combinatorial way to obtain all ICEs

Corollary (E-Sakai)

Every ICE-closed subcategory is obtained as follows:

- Choose $\mathcal{U} \in \mathsf{tors}\,\Lambda$
- Define \mathcal{U}^+ as the join of \mathcal{U}_i 's for all Hasse arrows $\mathcal{U} \leftarrow \mathcal{U}_i$ ending at \mathcal{U} .
- For each $T \in [\mathcal{U}, \mathcal{U}^+]$, the heart $\mathcal{H}_{[\mathcal{U}, \mathcal{T}]}$ is ICE.

ICE as Filt of brick labels

Remark

The heart of $[\mathcal{U},\mathcal{T}]$ is Filt of brick labels in $[\mathcal{U},\mathcal{T}]$.

$$\Lambda := k[1 \leftarrow 2 \leftarrow 3]/\operatorname{rad}^2$$

Hasse(tors Λ) with brick labels

ICEs via wide τ -tilting

Adachi-Iyama-Reiten's bijection

Theorem (Adachi-Iyama-Reiten)

There is a bijection

f-tors
$$\Lambda \xrightarrow[\text{Fac}]{P(-)} s\tau$$
-tilt Λ

between functorially finite tors and support τ -tilting mods.

Recall

Every ICE $\mathcal C$ is a torsion class in some wide subcat $\mathcal W$.

We can use Adachi-Iyama-Reiten's bij if

- W is equiv. to mod Γ for some Γ (this is equiv. to that W is fun. fin.)
- C is a fun. fin. torsion class in W.

Doubly functorially finite ICE

Definition

An ICE-closed subcat C is doubly functorially finite if there's some wide subcat W of mod Λ s.t.

- \mathcal{W} is functorially finite.
- C is a funct. fin. torsion class in W.

df-ice Λ : the set of doubly fun. fin. ICEs of mod Λ .

Clearly f-tors $\Lambda \subseteq df$ -ice Λ ($W := mod \Lambda$).

Remark

 Λ is τ -tilting finite if and only if $ice \Lambda = df$ - $ice \Lambda$.

Wide au-tilting modules and a bijection

Definition

A Λ -module M is wide τ -tilting if there's some fun. fin. wide subcat $\mathcal W$ of mod Λ s.t. M is $\tau_{\mathcal W}$ -tilting.

 $w\tau$ -tilt Λ: the set of wide τ -tilting mods.

Support au-tilting = wide au-tilting with $\mathcal W$ being Serre.

Theorem (E-Sakai)

We have a bijection

where cok M is the cat of cokernels of maps in add M.

Example of bijection

$$\mathsf{w} au$$
-tilt $\Lambda \xrightarrow[P(-)]{\mathsf{cok}} \mathsf{df}$ -ice Λ

Example

Example of bijection

$$w\tau$$
-tilt $\Lambda \xrightarrow{cok} df$ -ice Λ

Example

$$\operatorname{\mathsf{mod}} \Lambda \operatorname{\mathsf{for}} \Lambda := k[1 \leftarrow 2 \leftarrow 3]/\operatorname{\mathsf{rad}}^2$$

Remark

Wide τ -tilting modules is **not** τ -rigid in general!

Wide τ -tilting from support τ -tilting

We can obtain all wide au-tilting modules if

- Λ is τ -tilting finite, and
- The Hasse quiver of $s\tau$ -tilt Λ is given.

Proposition

Let $[Fac\ U, Fac\ T]$ be an ICE interval for $U, T \in s\tau$ -tilt Λ . Then wide τ -tilting mod. corresponding to $\mathcal{H}_{[Fac\ U, Fac\ T]}$ is:

$$T/\operatorname{tr}_U(T)$$

where $\operatorname{tr}_U(T) := \sum \{\operatorname{Im} \varphi \mid \varphi \colon U \to T\}.$

Examples of computation of wide τ -tilting

Hasse(s τ -tilt Λ) for $\Lambda = k[1 \leftarrow 2 \leftarrow 3]/\operatorname{rad}^2$

Hasse quiver of ICEs

Hasse quiver

|M|: the number of indecomposable direct summands of M up to isom.

Proposition (Adachi-Iyama-Reiten)

```
The poset s\tau-tilt \Lambda is Hasse |\Lambda|-regular, that is, for each vertex M \in \text{Hasse}(s\tau-tilt \Lambda),
```

 $\#\{arrows\ starting\ at\ M\} + \#\{arrows\ ending\ at\ M\} = |\Lambda|$

Question

Is there any analogous combinatorial property for wide τ -tilting (or ICE-closed subcats)?

Example of $Hasse(w\tau\text{-tilt }\Lambda)$

 $w\tau$ -tilt Λ has the poset str. induced by cok(-): $w\tau$ -tilt $\Lambda \cong df$ -ice Λ .

The following are $Hasse(w\tau-tilt \Lambda)$.

red: wide au-tilting, not support au-tilting.

$$\Lambda = k[1 \leftarrow 2 \leftarrow 3]/\operatorname{rad}^2$$

Hereditary case

Proposition (E-Sakai)

If Λ is hereditary, then

- wide τ -tilting modules = rigid modules.
- doubly fun. fin. = fun.fin. ICEs.

Theorem (E-Sakai)

Let Λ be hereditary. Then for each $M \in w\tau$ -tilt Λ , there are exactly |M| arrows starting at M in Hasse($w\tau$ -tilt Λ).

For each indec. summand X of M, there is an Hasse arrow

$$M o \mu_X(M)$$

with $\mu_X(M)$: generalization of left mutation of $s\tau$ -tilt Λ .

Nakayama case

Theorem (E, in preparation)

Let Λ be Nakayama. Then for each $M \in w\tau$ -tilt Λ , there are exactly |M| arrows starting at M in Hasse($w\tau$ -tilt Λ).

Proof uses simple objects in ICEs:

ICEs bijectively correspond to epibricks.