Pauta Tarea 6 Informática Teórica

NP-completos

NP-Complete Warriors 2024-08-05

Teorema. CONTAINS PARTITION es NP-completo.

Demostración. Debemos demostrar que Contains Partition está en NP y que es NP-duro. Para demostrar que está en NP un certificado obvio es una partición $\mathscr{P} \subseteq \mathscr{C}$ de \mathscr{U} . Para verificar el certificado, tomamos cada elemento de \mathscr{U} y revisamos si aparece en exactamente uno de los conjuntos en \mathscr{P} . Esto es $|\mathscr{U}|$ revisiones de elementos, cada uno de ellos buscado en $|\mathscr{P}|$ conjuntos. Es claro que $|\mathscr{P}| \le |\mathscr{U}|$, cada elemento de \mathscr{P} es a lo más de tamaño $|\mathscr{U}|$, revisar cada conjunto toma tiempo proporcional a su tamaño si lo representamos mediante una lista. O sea, el tiempo total es $O(|\mathscr{U}|^3)$, que es polinomial en (parte de) la descripción del problema. Está en NP.

Para demostrar que es NP-duro, reducimos de 1-IN-3 SAT. Dada una fórmula lógica en 3CNF, definimos $\mathscr U$ como el conjunto de cláusulas de ϕ y los conjuntos $\mathscr C$ como las cláusulas en las que aparece cada variable y su negación. Si ϕ está en 3-IN-1 SAT, cada cláusula contiene exactamente un literal verdadero, o sea, hay un conjunto de literales tal que aparece exactamente uno de ellos en cada cláusula. Transformar la fórmula en el conjunto $\mathscr U$ y listar las cláusulas en que aparece para cada posible literal claramente puede hacerse en tiempo lineal en el tamaño de ϕ .

_

Puntajes

Total			120
Está en NP		40	
– Usar un certificado	5		
– Describir el certificado	15		
– Justificar verificación polinomial	20		
Es NP-duro		80	
- Usar una reducción 1-IN-3 SAT \leq_p CONTAINS-PARTITION)	10		
– Describir la reducción	30		
– Justificar que es una reducción	20		
– Justificar que es polinomial	20		