Theoretische Physik IV: Statistische Physik Übungsblatt 10

(Abgaben auf eCampus hochladbar bis 13 Uhr am 20.12.2024)

Quickies

- a) Warum kann der Grundzustand in bosonischen Systemen makroskopisch besetzt werden?
- b) Geben Sie die Teilchenzahl eines freien Bosegases bei der Temperatur T an.
- c) Wie verhält sich die Teilchenzahl im Grundzustand N_0 bzw. in angeregten Zuständen $N_{\rm ex}$ im Grenzfall $T \to 0$? Was trägt sich zu für $T \to \infty$?
- d) Warum verschwindet die Entropie für T=0 für ein Bose-Gas?
- e) Durch welche Parameter kann die makroskopische Wellenfunktion ψ_0 eines Bose-Einstein-Kondensats beschrieben werden? Kondensieren Sie den entsprechenden Ausdruck für ψ_0 auf Papier.
- f) Warum gibt es keine Bose-Einstein-Kondensation in Systemen ohne Teilchenzahlerhaltung?

10.1 Reißverschlussmodell für DNS-Moleküle

10 Punkte

Die Mikrozustände eines doppelstrangigen Polymers (z.B. DNS) werden in einem einfachen Modell wie folgt festgelegt: Die beiden Stränge können an den Stellen 1, 2, ..., N Bindungen miteinander eingehen. Eine geschlossene Bindung hat dabei die Energie $\epsilon_0 = 0$, eine geöffnete Bindung die Energie $\epsilon \neq 0$. Die p-te Bindung kann nur offen sein, wenn alle Bindungen 1, 2, ..., p-1 ebenfalls offen sind. Die N-te Bindung kann nicht geöffnet werden.

- a) (3P) Begünden Sie, warum hier der kanonische Formalismus angewendet werden kann. Bestimmen Sie dann die kanonische Zustandssumme $Z_C(T)$.
- b) (4P) Berechnen Sie die mittlere Zahl $\langle n \rangle$ der offenen Bindungen als Funktion von $x = e^{-\beta \epsilon}$.
- c) (3P) Bestimmen Sie anschließend den Anteil $\langle n \rangle / N$ der offenen Bindungen im Limes $N \to \infty$ für x < 1 und x > 1. Skizzieren Sie $\langle n \rangle / N$ für $N \to \infty$ als Funktion von x.

In dieser Aufgabe möchten wir thermodynamische Eigenschaften des Fermigases bei endlichen Temperaturen berechnen. Dabei wollen wir jeweils entsprechende Näherungen im Limit kleiner Temperaturen bzw. großer Temperaturen $(k_B T \gg \varepsilon_f)$ verwenden.

Tieftemperaturverhalten

Sie haben mittels der Sommerfeldentwicklung gezeigt, dass für kleine Temperaturen $(k_B T \ll \varepsilon_f)$ in führender Ordnung gilt

$$\int_{-\infty}^{\infty} d\varepsilon f(\varepsilon) H(\varepsilon) \approx \int_{-\infty}^{\mu} d\varepsilon H(\varepsilon) + \frac{\pi^2}{6} (k_B T)^2 H'(\mu) , \qquad (1)$$

wobei $H(\varepsilon)$ eine Funktion ist, die für $\varepsilon \to -\infty$ verschwindet und für $\varepsilon \to \infty$ nicht schneller als polynomial wächst. $f(\varepsilon)$ ist die Fermi-Funktion.

- a) (4P) Berechnen Sie die innere Energie U und die spezifische Wärme $C_{V,N}$ in führender Ordnung für tiefe Temperaturen $(k_B T \ll \varepsilon_f)$.
- b) (3P) Berechnen Sie außerdem die Entropie S und den Druck p in dieser Näherung.

Hochtemperaturverhalten

In der Vorlesung wurde gezeigt, dass die Fermi-Verteilung für hohe Temperaturen $(k_B T \gg \varepsilon_f)$ angenähert werden kann als

$$f(\varepsilon) = \frac{1}{e^{\beta(\varepsilon-\mu)} + 1} \approx e^{-\beta(\varepsilon-\mu)},$$
 (2)

d.h. die mittlere Besetzungszahl der Mikrozustände wird zu einem Boltzmannfaktor bei hohen Temperaturen.

- c) (5P) Berechnen Sie das chemische Potential μ , die innere Energie U und die spezifische Wärme $C_{V,N}$ in führender Ordnung für hohe Temperaturen $(k_BT \gg \varepsilon_f)$ in d=3 Dimensionen.
- d) (3P) Berechnen Sie außerdem die Entropie S und den Druck p in dieser Näherung in d=3 Dimensionen.

Wir wollen in dieser Aufgabe untersuchen, unter welchen Bedingungen Bosegase in 2D bei tiefen Temperaturen kondensieren können. Dazu betrachten wir zuerst ein freies Gas mit Teilchendichte n=N/V aus bosonischen Teilchen der Masse m, und daraufhin ebenjenes Bosegas in einer harmonischen Falle. Sie haben in der Vorlesung gesehen, dass die Gesamtteilchendichte im Kontinuumlimit geschrieben wird als

$$n = \frac{N}{V} = \frac{N_0(T)}{V} + \frac{1}{V} \int_0^\infty d\varepsilon \rho(\varepsilon) b(\varepsilon)$$
 (3)

wobei der zweite Summand die Dichte der Teilchen in angeregten Zuständen $N_{\rm ex}/V$ beschreibt. Wenn die Grundzustandsbesetzung $N_0(T)$ mit dem Volumen skaliert, handelt es sich um ein Bose-Einstein-Kondensat.

a) (3P) Berechnen Sie die Anzahl der Teilchen in angeregten Zuständen $N_{\rm ex}$ in d Dimensionen und bestimmen Sie deren Verhalten für $T \to 0$.

Hinweis: Erinnern Sie sich an die Riemann'sche Zetafunktion

$$\zeta(s) = \frac{1}{\Gamma(s)} \int_0^\infty \frac{x^{s-1}}{e^x - 1} dx \tag{4}$$

b) (1P) In welchen Dimensionen ist dem Ergebnis aus a) zufolge Kondensation möglich? Was gilt insbesondere für d=2?

Jetzt betrachten wir das Bosegas in einem harmonischen Fallenpotential. Die Bewegung eines Teilchens der Masse m in der Falle wird beschrieben durch den zweidimensionalen Oszillator

$$H = \frac{1}{2m} (p_x^2 + p_y^2) + \frac{m\omega^2}{2} (x^2 + y^2)$$

mit Eigenfrequenz ω_0 . Das Fallenpotential beeinflusst die Zustandsdichte und damit die Kondensationstemperatur T_C bzw. in diesem Fall ermöglicht es erst die Kondensation.

c) (1P) Berechnen Sie den Entartungsgrad $\Omega(n)$, d.h. die Zahl der Eigenzustände mit Energie $E_n = \hbar\omega(n+1)$ und zeigen Sie, dass die daraus resultierende Zustandsdichte geschrieben werden kann als

$$\rho(\varepsilon) = \sum_{n} \Omega(n)\delta\left(\varepsilon - E(n)\right) \tag{5}$$

Im thermodynamischen Limes wird der Abstand $\Delta E_n = \hbar \omega$ zwischen zwei Anregungsniveaus klein, sodass die Summe in Gleichung 5 als ein Integral über die Anregungsenergien E(n) ausgedrückt werden kann. Die Zustandsdichte ist dann eine kontinuierliche Funktion.

d) (3P) Zeigen, Sie dass dann gilt

$$\rho(\epsilon) = \frac{1}{(\hbar\omega)^2} (\epsilon - \hbar\omega)\Theta(\epsilon - \hbar\omega) \tag{6}$$

- e) (3P) Berechnen Sie $N_{\rm ex}$ wie in a) für ein zweidimensionales Bosegas in einer harmonischen Falle. Was gilt für das chemische Potential $\mu(T \to 0)$?
- f) (2P) Ist Bose-Einstein-Kondensation hier möglich? Falls ja, berechnen Sie die kritische Temperatur T_c als Funktion der Teilchendichte n und der Oszillatorfrequenz ω .
- g) (2P) Berechnen Sie die spezifische Wärmekapazität $C_V = T \left(\frac{\partial S}{\partial T}\right)_{V,N}$ unterhalb der kritischen Temperatur T_c , indem Sie die Entropie aus dem großkanonischen Potential ableiten.