بسم الله الرحمن الرحيم

نظریه علوم کامپیوتر

نظریه علوم کامپیوتر - بهار ۱۴۰۰ - ۱۴۰۱ - جلسه ششم: محاسبه پذیری و محاسبها پذیری (۲) Theory of computation - 002 - S06 - non-computability (2)

Recall

- Languages on machines which are decidable
 - ullet ADFA $= \{\langle B, w \rangle \, | \, B$ is a DFA and B accepts $w\}$
 - ullet ANFA $= \big\{ \langle B, w \rangle \, \Big| \, B$ is a NFA and B accepts $w \}$
 - ullet EDFA $= \big\{ \langle B \rangle \, \Big| \, \, B \, ext{ is a DFA and } L(B) = \emptyset \big\}$
 - ullet ullet EQDFA ullet $=\{\langle A,B
 angle \mid A ext{ and } B ext{ are DFAs and } L(A)=L(B)\}$
 - ACFG $= \{\langle G, w \rangle | G \text{ is a CFG and } w \in L(G) \}$
 - ECFG = { $\langle G \rangle \mid G$ is a CFG and $L(G) = \emptyset$ }
- EQCFG = { $\langle G, H \rangle | G, H \text{ are CFGs and } L(G) = L(H) }$
- AMBIGCFG = $\{\langle G \rangle \mid G \text{ is an ambiguous CFG } \}$

```
Let ATM = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w\}
```

Let $ATM = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: ATM is not decidable

Let $ATM = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: ATM is not decidable

Proof: Later

Let $ATM = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: ATM is not decidable

Proof: Later

Theorem: ATM is T-recognizable

Let $ATM = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: ATM is not decidable

Proof: Later

Theorem: ATM is T-recognizable

Proof: The following TM U recognizes ATM

Let $ATM = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: ATM is not decidable

Proof: Later

Theorem: ATM is T-recognizable

Proof: The following TM U recognizes ATM

Let $ATM = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: ATM is not decidable

Proof: Later

Theorem: ATM is T-recognizable

Proof: The following TM U recognizes ATM

U = "On input $\langle M, w \rangle$ "

1. Simulate M on input w.

Let $ATM = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: ATM is not decidable

Proof: Later

Theorem: ATM is T-recognizable

Proof: The following TM U recognizes ATM

$$U =$$
 "On input $\langle M, w \rangle$

- 1. Simulate M on input w.
- 2. Accept if $oldsymbol{M}$ halts and accepts.

Let $ATM = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: ATM is not decidable

Proof: Later

Theorem: ATM is T-recognizable

Proof: The following TM U recognizes ATM

- 1. Simulate M on input w.
- 2. Accept if M halts and accepts.
- 3. Reject if M halts and rejects.

Let $ATM = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: ATM is not decidable

Proof: Later

Theorem: ATM is T-recognizable

Proof: The following TM U recognizes ATM

- 1. Simulate M on input w.
- 2. Accept if $oldsymbol{M}$ halts and accepts. $^{'}$
- 3. Reject if M halts and rejects.
- 4. Reject if M never halts."

Let $ATM = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: ATM is not decidable

Proof: Later

Theorem: ATM is T-recognizable

Proof: The following TM U recognizes ATM

- 1. Simulate M on input w.
- 2. Accept if M halts and accepts.
- 3. Reject if M halts and rejects.
- 4. Reject if M never halts." Not a legal TM action.

Let $ATM = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: ATM is not decidable

Proof: Later

Theorem: ATM is T-recognizable

Proof: The following TM U recognizes ATM

U= "On input $\langle M,w
angle$

- 1. Simulate M on input w.
- 2. Accept if M halts and accepts.
- 3. Reject if M halts and rejects.
- 4. Reject if M never halts." Not a legal TM action.

Turing's original "Universal Computing Machine"

Let $ATM = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: ATM is not decidable

Proof: Later

Theorem: ATM is T-recognizable

Proof: The following TM U recognizes ATM

U = "On input $\langle M, w \rangle$

- 1. Simulate M on input w.
- 2. Accept if M halts and accepts.
- 3. Reject if M halts and rejects.
- 4. Reject if M never halts." Not a legal TM action.

Turing's original "Universal Computing Machine"

Von Neumann said $oldsymbol{U}$ inspired the concept of a stored program computer.

Let $ATM = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: ATM is not decidable

Proof: Later

Theorem: ATM is T-recognizable

Proof: The following TM U recognizes ATM

U = "On input $\langle M, w \rangle$

- 1. Simulate M on input w.
- 2. Accept if M halts and accepts.
- 3. Reject if M halts and rejects.
- 4. Reject if M never halts." Not a legal TM action.

Turing's original "Universal Computing Machine"

Von Neumann said $oldsymbol{U}$ inspired the concept of a stored program computer.

How to compare the relative sizes of infinite sets?

How to compare the relative sizes of infinite sets?

Cantor (~1890s) had the following idea.

How to compare the relative sizes of infinite sets?

Cantor (~1890s) had the following idea.

Defn: Say that set A and B have the same size if there is

a one-to-one and onto function $f:A \to B$

How to compare the relative sizes of infinite sets?

Cantor (~1890s) had the following idea.

 $f(x) \neq f(y)$ "injective"

Defn: Say that set A and B have the same size if there is a one-to-one and onto function $f: A \to B$ $x \neq y \to$

How to compare the relative sizes of infinite sets?

Cantor (~1890s) had the following idea.

"injective"

Defn: Say that set A and B have the same size if there is a one-to-one and onto function $f:A\to B$ $x\neq y\to \operatorname{Range}(f)=B$ $f(x)\neq f(y)$ "surjective"

How to compare the relative sizes of infinite sets?

Cantor (~1890s) had the following idea.

Defn: Say that set A and B have the same size if there is a one-to-one and onto function $f\colon A\to B$ $x\neq y\to \text{Range }(f)=B$ $f(x)\neq f(y) \text{ "surjective"} \text{ We call such an } f\text{ a } \underline{1\text{-}1\text{ correspondence}}$

How to compare the relative sizes of infinite sets?

Cantor (~1890s) had the following idea.

Defn: Say that set A and B have the same size if there is a one-to-one and onto function $f\colon A\to B$ $x\neq y\to \operatorname{Range}(f)=B$ $f(x)\neq f(y) \qquad \text{"surjective"} \qquad \text{We call such an } f \text{ a } \underline{\text{1-1 correspondence}}$

Informally, two sets have the same size if we can pair up their members.

How to compare the relative sizes of infinite sets?

Cantor (~1890s) had the following idea.

Defn: Say that set A and B have the same size if there is a one-to-one and onto function $f:A\to B$ $x\neq y\to \text{Range }(f)=B$ $f(x)\neq f(y) \text{ "surjective"} \text{ We call such an } f \text{ a } \underline{\text{1-1 correspondence}}$

Informally, two sets have the same size if we can pair up their members.

How to compare the relative sizes of infinite sets?

Cantor (~1890s) had the following idea.

Defn: Say that set A and B have the same size if there is a one-to-one and onto function $f:A\to B$

$$x \neq y \rightarrow \text{Range } (f) = B$$

$$f(x) \neq f(y) \text{ "surjective"} \text{ We call such an } f \text{ a } \underline{\text{1-1 correspondence}}$$
 "injective"

Informally, two sets have the same size if we can pair up their members.

How to compare the relative sizes of infinite sets?

Cantor (~1890s) had the following idea.

Defn: Say that set A and B have the same size if there is a one-to-one and onto function $f\colon A\to B$

$$x \neq y \rightarrow \text{Range } (f) = B$$
 $f(x) \neq f(y)$ "surjective" We call such an f a 1-1 correspondence "injective"

Informally, two sets have the same size if we can pair up their members.

How to compare the relative sizes of infinite sets?

Cantor (~1890s) had the following idea.

Defn: Say that set A and B have the same size if there is a one-to-one and onto function $f:A\to B$

$$x \neq y \rightarrow$$
 Range $(f) = B$
$$f(x) \neq f(y)$$
 "surjective" We call such an f a 1-1 correspondence "injective"

Informally, two sets have the same size if we can pair up their members.

How to compare the relative sizes of infinite sets?

Cantor (~1890s) had the following idea.

Defn: Say that set A and B have the same size if there is a one-to-one and onto function $f:A\to B$

Informally, two sets have the same size if we can pair up their members.

This definition works for finite sets.

Apply it to infinite sets too.

How to compare the relative sizes of infinite sets?

Cantor (~1890s) had the following idea.

Defn: Say that set A and B have the same size if there is a one-to-one and onto function $f: A \to B$

$$\begin{array}{ll} x \neq y \to & \text{Range}\,(f) = B \\ f(x) \neq f(y) & \text{"surjective"} & \text{We call such an } f \text{ a } \underline{\text{1-1 correspondence}} \end{array}$$

Informally, two sets have the same size if we can pair up their members.

This definition works for finite sets.

Apply it to infinite sets too.

How to compare the relative sizes of infinite sets?

Cantor (~1890s) had the following idea.

Defn: Say that set A and B have the same size if there is a one-to-one and onto function $f: A \to B$

Informally, two sets have the same size if we can pair up their members.

This definition works for finite sets.

Apply it to infinite sets too.

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

How to compare the relative sizes of infinite sets?

Cantor (~1890s) had the following idea.

Defn: Say that set A and B have the same size if there is a one-to-one and onto function $f: A \to B$

Informally, two sets have the same size if we can pair up their members.

This definition works for finite sets.

Apply it to infinite sets too.

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

```
Let \mathbb{N} = \{1,2,3,...\} and let \mathbb{Z} = \{..., -2, -1,0,1,2,...\}
```

Let $\mathbb{N} = \{1,2,3,...\}$ and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

$$\mathbb{N}$$

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

J

Let $\mathbb{N} = \{1,2,3,...\}$ and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

\mathbb{Z}							
\mathbb{N}	1	2	3	4	5	6	7

Let $\mathbb{N} = \{1,2,3,...\}$ and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

\mathbb{Z}	0						
\mathbb{N}	1	2	3	4	5	6	7

Let $\mathbb{N} = \{1,2,3,...\}$ and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

1	0
2	-1
3	
4	
5	
6	
7	

Let $\mathbb{N} = \{1,2,3,...\}$ and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

N	\mathbb{Z}
1	0
2	-1
3	1
4	
5	
6	
7	

Let $\mathbb{N} = \{1,2,3,...\}$ and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

N	\mathbb{Z}
1	0
2	-1
3	1
4	-2
5	
6	
7	

Let $\mathbb{N} = \{1,2,3,...\}$ and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

\mathbb{Z}	0	-1	1	-2	2		
\mathbb{N}	1	2	3	4	5	6	7

Let $\mathbb{N} = \{1,2,3,...\}$ and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

	0 -1 1 -2 2
5 6	
7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

\mathbb{Z}	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

\mathbb{Z}	0	-1	1	-2	2	-3	3	
\mathbb{N}	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

$$N Q^+$$

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

\wedge	Q^+

\mathbb{Z}	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

\mathbb{N}	Q^+

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

Z	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

N	Q^+
1	
2	
3	
4	
5	
6	
7	

Z	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

N	Q^+
1	
2	
3	
4	
5	
6	
7	

Z	0	-1	1	-2	2	-3	3	
\mathbb{N}	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

	Q ⁺
1	1/1
2	
3	
4	
5	
6	
7	

Z	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

\mathbb{N}	Q^+
1	1/1
2	
3	
4	
5	
6	
7	

\mathbb{Z}	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
	1/1				
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

N	Q^+
1	1/1
2	2/1
3	
4	
5	
6	
7	

Z	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

\mathbb{N}	Q^+
1	1/1
2	2/1
3	
4	
5	
6	
7	

Z	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

N	Q^+
1	1/1
2	2/1
3	
4	
5	
6	
7	

\mathbb{Z}	0	-1	1	-2	2	-3	3
N	1	2	3	4	5	6	7

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

\sim	Q^+
1	1/1
2	2/1
3	
4	
5	
6	
7	

\mathbb{Z}	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

N	Q^+
1	1/1
2	2/1
3	1/2
4	
5	
6	
7	

\mathbb{Z}	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

\sim	Q^+
1	1/1
2	2/1
3	1/2
4	
5	
6	
7	

\mathbb{Z}	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

N	Q^+
1	1/1
2	2/1
3	1/2
4	3/1
5	
6	
7	

\mathbb{Z}	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

\mathbb{N}	Q^+
1	1/1
2	2/1
3	1/2
4	3/1
5	
6	
7	

\mathbb{Z}	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

\mathbb{N}	Q^+
1	1/1
2	2/1
3	1/2
4	3/1
5	3/2
6	
7	

Z	0	-1	1	-2	2	-3	3	
\mathbb{N}	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

N	Q^+
1	1/1
2	2/1
3	1/2
4	3/1
5	3/2
6	
7	

\mathbb{Z}	0	-1	1	-2	2	-3	3	
\mathbb{N}	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

Z	0	-1	1	-2	2	-3	3	
\mathbb{N}	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

N	Q^+
1	1/1
2	2/1
3	1/2
4	3/1
5	3/2
6	
7	

\mathbb{Z}	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

\mathbb{N}	Q^+
1	1/1
2	2/1
3	1/2
4	3/1
5	3/2
6	2/3
7	

\mathbb{Z}	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

\sim	Q^+
1	1/1
2	2/1
3	1/2
4	3/1
5	3/2
6	2/3
7	

\mathbb{Z}	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

N	Q^+
1	1/1
2	2/1
3	1/2
4	3/1
5	3/2
6	2/3
7	1/3

\mathbb{Z}	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

N	Q^+
1	1/1
2	2/1
3	1/2
4	3/1
5	3/2
6	2/3
7	1/3

Z	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

N	Q^+
/ \	لما
1	1/1
2	2/1
3	1/2
4	3/1
5	3/2
6	2/3
7	1/3

\mathbb{Z}	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

N	Q^+
1	1/1
2	2/1
3	1/2
4	3/1
5	3/2
6	2/3
7	1/3

\mathbb{Z}	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

N	Q^+
1	
1	1/1
2	2/1
3	1/2
4	3/1
5	3/2
6	2/3
7	1/3

\mathbb{Z}	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

Show \mathbb{N} and \mathbb{Q}^+ have the same size

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

N	Q^+
/ W	لما
1	1/1
2	2/1
3	1/2
4	3/1
5	3/2
6	2/3
7	1/3

\mathbb{Z}	0	-1	1	-2	2	-3	3	
\mathbb{N}	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

Show \mathbb{N} and \mathbb{Q}^+ have the same size

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

Z	0	-1	1	-2	2	-3	3	
\mathbb{N}	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

Show \mathbb{N} and \mathbb{Q}^+ have the same size

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

N	Q^+
/ \	لما
1	1/1
2	2/1
3	1/2
4	3/1
5	3/2
6	2/3
7	1/3

Z	0	-1	1	-2	2	-3	3	
\mathbb{N}	1	2	3	4	5	6	7	

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

Show \mathbb{N} and \mathbb{Q}^+ have the same size

1		1	2	3	1	
2 2/1 2/2 2/3 2/4 3 3/1 3/2 3/3 3/4						
3 3/1 3/2 3/3 3/4	1	1/1	1/2	1/3	1/4	
	2	2/1	2/2	2/3	2/4	
4 4/1 -4/2 -4/3 -4/4	3	3/1	3/2	3/3	3/4	
	4	4/1	4/2	4/3	4/4	

\mathbb{N}	Q^+
1	1/1
2	2/1
3	1/2
4	3/1
5	3/2
6	2/3
7	1/3

	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Defn: A set is <u>countable</u> if it is finite or it has the same size as \mathbb{N} .

Both \mathbb{Z} and \mathbb{Q}^+ are countable.

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{..., -2, -1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{N} \end{array} \right\}$$

Show \mathbb{N} and \mathbb{Q}^+ have the same size

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

\mathbb{N}	Q^+
1	1/1
2	2/1
3	1/2
4	3/1
5	3/2
6	2/3
7	1/3

\mathbb{Z}	0	-1	1	-2	2	-3	3	
N	1	2	3	4	5	6	7	

Defn: A set is <u>countable</u> if it is finite or it has the same size as \mathbb{N} .

Both \mathbb{Z} and \mathbb{Q}^+ are countable.

Let \mathbb{R} = all real numbers (expressible by infinite decimal expansion)

Let \mathbb{R} = all real numbers (expressible by infinite decimal expansion)

Theorem: \mathbb{R} is uncountable

Let \mathbb{R} = all real numbers (expressible by infinite decimal expansion)

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

Let $\mathbb{R} = \text{all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

R is Uncountable – Diagonalization

Let \mathbb{R} = all real numbers (expressible by infinite decimal expansion)

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

1	
2	
3	
4	
5 6	
6	
7	

Let \mathbb{R} = all real numbers (expressible by infinite decimal expansion)

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

1	2.718281828
2	
3	
4	
5	
6	
7	

Let \mathbb{R} = all real numbers (expressible by infinite decimal expansion)

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

1	2.718281828
2	3.141592653
3	
4	
5	
6	
7	

Let \mathbb{R} = all real numbers (expressible by infinite decimal expansion)

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

1	2.718281828
2	3.141592653
3	0.000000000
4	
5	
6	
7	

Let \mathbb{R} = all real numbers (expressible by infinite decimal expansion)

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

1	2.718281828
2	3.141592653
3	0.000000000
4	1.414213562
5	
6	
7	

Let $\mathbb{R} = \text{all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

1	2.718281828
2	3.141592653
3	0.000000000
4	1.414213562
5	0.142857242
6	
7	

Let \mathbb{R} = all real numbers (expressible by infinite decimal expansion)

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

1	2.718281828
2	3.141592653
3	0.000000000
4	1.414213562
5	0.142857242
6	0.207879576
7	

Let \mathbb{R} = all real numbers (expressible by infinite decimal expansion)

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

1	2.718281828
2	3.141592653
3	0.000000000
4	1.414213562
5	0.142857242
6	0.207879576
7	1.234567890

Let $\mathbb{R} = \text{all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2.718281828
2	3.141592653
3	0.000000000
4	1.414213562
5	0.142857242
6	0.207879576
7	1.234567890

R is Uncountable – Diagonalization

Let $\mathbb{R} = \text{all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2.718281828
2	3.141592653
3	0.000000000
4	1.414213562
5	0.142857242
6	0.207879576
7	1.234567890

$$x = 0$$
.

Let $\mathbb{R} = \text{all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2.718281828
2	3.141592653
3	0.000000000
4	1.414213562
5	0.142857242
6	0.207879576
7	1.234567890

$$x = 0$$
.

Let $\mathbb{R} = \text{all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2.718281828
2	3.141592653
3	0.000000000
4	1.414213562
5	0.142857242
6	0.207879576
7	1.234567890

$$x = 0.8$$

Let $\mathbb{R} = \text{all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2.718281828
2	3.1 4 1592653
3	0.000000000
4	1.414213562
5	0.142857242
6	0.207879576
7	1.234567890

$$x = 0.8$$

Let $\mathbb{R} = \text{all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2.718281828
2	3.1 4 1592653
3	0.000000000
4	1.414213562
5	0.142857242
6	0.207879576
7	1.234567890

$$x = 0.85$$

Let $\mathbb{R} = \text{all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2.718281828
2	3.1 4 1592653
3	0.00000000
4	1.414213562
5	0.142857242
6	0.207879576
7	1.234567890

$$x = 0.85$$

Let $\mathbb{R} = \text{all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2.718281828
2	3.1 <mark>4</mark> 1592653
3	0.00000000
4	1.414213562
5	0.142857242
6	0.207879576
7	1.234567890

$$x = 0.851$$

Let $\mathbb{R} = \text{all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2.718281828
2	3.1 <mark>4</mark> 1592653
3	0.00000000
4	1.414 <mark>2</mark> 13562
5	0.142857242
6	0.207879576
7	1.234567890

$$x = 0.851$$

R is Uncountable – Diagonalization

Let $\mathbb{R} = \text{all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2.718281828
2	3.1 4 1592653
3	0.00000000
4	1.414 <mark>2</mark> 13562
5	0.142857242
6	0.207879576
7	1.234567890

$$x = 0.8516$$

Let $\mathbb{R} = \text{all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2.718281828
2	3.1 4 1592653
3	0.00000000
4	1.414 <mark>2</mark> 13562
5	0.142857242
6	0.207879576
7	1.234567890

$$x = 0.8516$$

Let $\mathbb{R} = \text{all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2.718281828
2	3.1 4 1592653
3	0.00000000
4	1.414 <mark>2</mark> 13562
5	0.142857242
6	0.207879576
7	1.234567890

$$x = 0.85161$$

Let $\mathbb{R} = \text{all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2.718281828
2	3.1 4 1592653
3	0.00000000
4	1.414 <mark>2</mark> 13562
5	0.142857242
6	0.20787 <mark>9</mark> 576
7	1.234567890

$$x = 0.85161$$

R is Uncountable – Diagonalization

Let $\mathbb{R} = \text{all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2 .7 18281828
2	3.1 <mark>4</mark> 1592653
3	0.00000000
4	1.414 <mark>2</mark> 13562
5	0.142857242
6	0.20787 <mark>9</mark> 576
7	1.234567890

$$x = 0.851618$$

Let $\mathbb{R} = \text{all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2.718281828
2	3.1 4 1592653
3	0.00000000
4	1.414 <mark>2</mark> 13562
5	0.142857242
6	0.20787 <mark>9</mark> 576
7	1.234567890

$$x = 0.851618$$

Let $\mathbb{R} = \text{all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2.718281828
2	3.1 <mark>4</mark> 1592653
3	0.00000000
4	1.414 <mark>2</mark> 13562
5	0.1428 5 7242
6	0.20787 <mark>9</mark> 576
7	1.234567890

$$x = 0.8516182...$$

R is Uncountable – Diagonalization

Let $\mathbb{R} = \text{all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2.718281828
2	3.1 4 1592653
3	0.00000000
4	1.414 <mark>2</mark> 13562
5	0.142857242
6	0.20787 <mark>9</mark> 576
7	1.234567890

Demonstrate a number $x \in \mathbb{R}$ that is missing from the list.

$$x = 0.8516182...$$

differs from the $n^{\rm th}$ number in the $n^{\rm th}$ digit so cannot be the $n^{\rm th}$ number for any n.

R is Uncountable – Diagonalization

Let $\mathbb{R} = \text{ all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2.718281828
2	3.1 41592653
3	0.00000000
4	1.414 <mark>2</mark> 13562
5	0.142857242
6	0.20787 <mark>9</mark> 576
7	1.234567 <mark>8</mark> 90

Demonstrate a number $x \in \mathbb{R}$ that is missing from the list.

$$x = 0.8516182...$$

differs from the n^{th} number in the n^{th} digit so cannot be the n^{th} number for any n.

Hence x is not paired with any n. It is missing from the list.

Let \mathbb{R} = all real numbers (expressible by infinite decimal expansion)

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2.718281828
2	3.1 <mark>4</mark> 1592653
3	0.00000000
4	1.414 <mark>2</mark> 13562
5	0.1428 5 7242
6	0.20787 <mark>9</mark> 576
7	1.234567890

Demonstrate a number $x \in \mathbb{R}$ that is missing from the list.

$$x = 0.8516182...$$

differs from the n^{th} number in the n^{th} digit so cannot be the n^{th} number for any n.

Hence x is not paired with any n. It is missing from the list.

Therefore f is not a 1-1 correspondence.

R is Uncountable – Diagonalization

Let $\mathbb{R} = \text{all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

Diagonalization

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2.718281828
2	3.1 4 1592653
3	0.00000000
4	1.414 <mark>2</mark> 13562
5	0.1428 5 7242
6	0.20787 <mark>9</mark> 576
7	1.234567890

Demonstrate a number $x \in \mathbb{R}$ that is missing from the list.

$$x = 0.8516182...$$

differs from the n^{th} number in the n^{th} digit so cannot be the n^{th} number for any n.

Hence x is not paired with any n. It is missing from the list.

Therefore f is not a 1-1 correspondence.

\mathbb{R} is Uncountable – Diagonalization

Let $\mathbb{R} = \text{ all real numbers (expressible by infinite decimal expansion)}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

Diagonalization

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

1	2 .7 18281828
2	3.1 <mark>4</mark> 1592653
3	0.00000000
4	1.414 <mark>2</mark> 13562
5	0.142857242
6	0.20787 <mark>9</mark> 576
7	1.234567 <mark>8</mark> 90

Demonstrate a number $x \in \mathbb{R}$ that is missing from the list.

$$x = 0.8516182...$$

differs from the n^{th} number in the n^{th} digit so cannot be the n^{th} number for any n.

Hence x is not paired with any n. It is missing from the list.

Therefore f is not a 1-1 correspondence.

Let $\mathcal{L} = \text{all languages}$

Let $\mathcal{L} = \text{all languages}$

Corollary 1: $\mathscr L$ is uncountable

Let $\mathcal{L} = \text{all languages}$

Corollary 1: $\mathscr L$ is uncountable

Proof: There's a 1-1 correspondence from $\mathscr L$ to $\mathbb R$ so they are the same size.

{,	0,	1,	00,	01,	10,	11,	000,	
{	0,		00,	01,				
.0	1	0	1	1	0	0	0	•••

Let $\mathcal{L} = \text{all languages}$

Corollary 1: \mathscr{L} is uncountable

Proof: There's a 1-1 correspondence from $\mathscr L$ to $\mathbb R$ so they are the same size.

Observation: $\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, ... \}$ is countable.

_								
{,	0,	1,	00,	01,	10,	11,	000,	
{	0,		00,	01,				
.0	1	0	1	1	0	0	0	•••

Let $\mathcal{L} = \text{all languages}$

Corollary 1: \mathscr{L} is uncountable

Proof: There's a 1-1 correspondence from $\mathscr L$ to $\mathbb R$ so they are the same size.

Observation: $\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, ... \}$ is countable.

Let $\mathcal{M} =$ all Turing machines

{,	0,	1,	00,	01,	10,	11,	000,	
{	0,		00,	01,				
.0	1	0	1	1	0	0	0	

Let $\mathcal{L} = \text{all languages}$

Corollary 1: \mathscr{L} is uncountable

Proof: There's a 1-1 correspondence from $\mathscr L$ to $\mathbb R$ so they are the same size.

Observation: $\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, ... \}$ is countable.

Let $\mathcal{M} =$ all Turing machines

Observation: \mathcal{M} is countable.

{,	0,	1,	00,	01,	10,	11,	000,	
{	0,		00,	01,				
.0	1	0	1	1	0	0	0	•••

R is Uncountable – Corollaries

Let $\mathcal{L} = \text{all languages}$

Corollary 1: \mathscr{L} is uncountable

Proof: There's a 1-1 correspondence from $\mathscr L$ to $\mathbb R$ so they are the same size.

Observation: $\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, ... \}$ is countable.

Let $\mathcal{M} =$ all Turing machines

Observation: \mathcal{M} is countable.

Because $\{\langle M \rangle \mid M \text{ is a TM}\} \subseteq \Sigma^*$.

{,	0,	1,	00,	01,	10,	11,	000,	
{	0,		00,	01,				
.0	1	0	1	1	0	0	0	

Let $\mathcal{L} = \text{all languages}$

Corollary 1: \mathscr{L} is uncountable

Proof: There's a 1-1 correspondence from $\mathscr L$ to $\mathbb R$ so they are the same size.

Observation: $\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, ... \}$ is countable.

Let $\mathcal{M} =$ all Turing machines

Observation: \mathcal{M} is countable.

Because $\{\langle M \rangle \, \big| \, M$ is a TM $\} \subseteq \Sigma^*$.

{,	0,	1,	00,	01,	10,	11,	000,	
{	0,		00,	01,				
.0	1	0	1	1	0	0	0	•••

Corollary 2: Some language is not decidable.

Let $\mathcal{L} = \text{all languages}$

Corollary 1: \mathscr{L} is uncountable

Proof: There's a 1-1 correspondence from ${\mathscr L}$ to ${\mathbb R}$ so they are the same size.

Observation: $\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, ... \}$ is countable.

Let $\mathcal{M} =$ all Turing machines

Observation: \mathcal{M} is countable.

Because $\{\langle M \rangle \, \big| \, M \text{ is a TM}\} \subseteq \Sigma^*.$

{,	0,	1,	00,	01,	10,	11,	000,	
{	0,		00,	01,				
.0	1	0	1	1	0	0	0	

Corollary 2: Some language is not decidable.

Because there are more languages than TMs.

R is Uncountable – Corollaries

Let $\mathcal{L} = \text{all languages}$

Corollary 1: \mathscr{L} is uncountable

Proof: There's a 1-1 correspondence from $\mathscr L$ to $\mathbb R$ so they are the same size.

Observation: $\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, ... \}$ is countable.

Let $\mathcal{M} =$ all Turing machines

Observation: \mathcal{M} is countable.

Because $\{\langle M \rangle \, \big| \, M$ is a TM $\} \subseteq \Sigma^*$.

{,	0,	1,	00,	01,	10,	11,	000,	
{	0,		00,	01,				
.0	1	0	1	1	0	0	0	

Corollary 2: Some language is not decidable.

Because there are more languages than TMs.

We will show some specific language ATM is not decidable.

Let $\mathcal{L} = \text{all languages}$

Corollary 1: \mathscr{L} is uncountable

Proof: There's a 1-1 correspondence from ${\mathscr L}$ to ${\mathbb R}$ so they are the same size.

Observation: $\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, ... \}$ is countable.

Let $\mathcal{M} =$ all Turing machines

Observation: \mathcal{M} is countable.

Because $\big\{\langle M \rangle \, \Big| \, \, M$ is a TM $\big\} \subseteq \Sigma^*.$

{,	0,	1,	00,	01,	10,	11,	000,	
{	0,		00,	01,				
.0	1	0	1	1	0	0	0	

Corollary 2: Some language is not decidable.

Because there are more languages than TMs.

We will show some specific language ATM is not decidable.

Let $\mathcal{L} = \text{all languages}$

Corollary 1: \mathscr{L} is uncountable

Proof: There's a 1-1 correspondence from $\mathscr L$ to $\mathbb R$ so they are the same size.

Observation: $\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, ... \}$ is countable

Let $\mathcal{M} =$ all Turing machines

Observation: \mathcal{M} is countable.

Because $\{\langle M \rangle \, \big| \, M \text{ is a TM}\} \subseteq \Sigma^*.$

Corollary 2: Some language is not decidable.

Because there are more languages than TMs.

We will show some specific language $A\mathsf{TM}$ is not decidable.

Check-in 8.1

Hilbert's 1st question asked if there is a set of intermediate size between $\mathbb N$ and $\mathbb R$. Gödel and Cohen showed that we cannot answer this question by using the standard axioms of mathematics. How can we interpret their conclusion?

- (a) We need better axioms to describe reality.
- (b) Infinite sets have no mathematical reality so Hilbert's 1st question has no answer.

Recall ATM = $\{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Recall ATM = $\{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: ATM is not decidable

Recall ATM = { $\langle M, w \rangle | M$ is a TM and M accepts w}

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM H decides ATM.

Recall ATM = { $\langle M, w \rangle | M$ is a TM and M accepts w}

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM H decides ATM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Recall ATM = $\{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

Recall ATM = $\{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D D= "On input $\langle M \rangle$

Recall ATM = { $\langle M, w \rangle | M$ is a TM and M accepts w}

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

1. Simulate H on input $\langle M, \langle M \rangle \rangle$

Recall ATM = $\{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if $\,H\,$ rejects. Reject if $\,H\,$ accepts."

Recall ATM = { $\langle M, w \rangle | M$ is a TM and M accepts w}

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if $\,H\,$ rejects. Reject if $\,H\,$ accepts."

D accepts $\langle M
angle$ iff M doesn't accept $\langle M
angle$.

Recall ATM = { $\langle M, w \rangle | M$ is a TM and M accepts w}

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if H rejects. Reject if H accepts."

D accepts $\langle M
angle$ iff M doesn't accept $\langle M
angle$.

D accepts $\langle D
angle$ iff D doesn't accept $\langle D
angle$.

Recall ATM = { $\langle M, w \rangle | M$ is a TM and M accepts w}

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if $\,H\,$ rejects. Reject if $\,H\,$ accepts."

D accepts $\langle M
angle$ iff M doesn't accept $\langle M
angle$.

D accepts $\langle D
angle$ iff D doesn't accept $\langle D
angle$.

Contradiction.

Recall ATM = { $\langle M, w \rangle | M$ is a TM and M accepts w}

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Why is this proof a diagonalization?

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if $\,H\,$ rejects. Reject if $\,H\,$ accepts."

D accepts $\langle M
angle$ iff M doesn't accept $\langle M
angle$.

 \overline{D} accepts $\langle D
angle$ iff D doesn't accept $\langle D
angle$.

Contradiction.

Recall ATM = { $\langle M, w \rangle | M$ is a TM and M accepts w}

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if H rejects. Reject if H accepts."

D accepts $\langle M
angle$ iff M doesn't accept $\langle M
angle$.

 \overline{D} accepts $\langle D
angle$ iff D doesn't accept $\langle D
angle$.

Contradiction.

Why is this proof a diagonalization?

TMs			

Recall ATM = { $\langle M, w \rangle | M$ is a TM and M accepts w}

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if H rejects. Reject if H accepts."

D accepts $\langle M
angle$ iff M doesn't accept $\langle M
angle$.

D accepts $\langle D
angle$ iff D doesn't accept $\langle D
angle$.

Contradiction.

Why is this proof a diagonalization?

TMs					
	асс	rej	acc	асс	

Recall ATM $= \{\langle M, w \rangle | M$ is a TM and M accepts $w\}$

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if H rejects. Reject if H accepts."

D accepts $\langle M
angle$ iff M doesn't accept $\langle M
angle$.

 \overline{D} accepts $\langle D
angle$ iff D doesn't accept $\langle D
angle$.

Contradiction.

Why is this proof a diagonalization?

TMs					
	асс	rej	асс	acc	
	rej	rej	rej	rej	

Recall ATM $= \{\langle M, w \rangle | M$ is a TM and M accepts $w\}$

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if H rejects. Reject if H accepts."

D accepts $\langle M
angle$ iff M doesn't accept $\langle M
angle$.

 \overline{D} accepts $\langle D
angle$ iff D doesn't accept $\langle D
angle$.

Contradiction.

Why is this proof a diagonalization?

TMs					
	acc	rej	acc	acc	
	rej	rej	rej	rej	
	acc	acc	acc	acc	

Recall ATM = { $\langle M, w \rangle | M$ is a TM and M accepts w}

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if H rejects. Reject if H accepts."

D accepts $\langle M
angle$ iff M doesn't accept $\langle M
angle$.

D accepts $\langle D
angle$ iff D doesn't accept $\langle D
angle$.

Contradiction.

Why is this proof a diagonalization?

TMs					
	acc	rej	acc	acc	
	rej	rej	rej	rej	
	acc	acc	acc	acc	
	rej	rej	acc	acc	

Recall ATM $= \{\langle M, w \rangle | M$ is a TM and M accepts $w\}$

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if H rejects. Reject if H accepts."

D accepts $\langle M
angle$ iff M doesn't accept $\langle M
angle$.

 \overline{D} accepts $\langle D
angle$ iff D doesn't accept $\langle D
angle$.

Contradiction.

Why is this proof a diagonalization?

TMs					
	acc	rej	acc	acc	
	rej	rej	rej	rej	
	acc	acc	acc	acc	
	rej	rej	acc	acc	

Recall ATM = { $\langle M, w \rangle | M$ is a TM and M accepts w}

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if $\,H\,$ rejects. Reject if $\,H\,$ accepts."

D accepts $\langle M
angle$ iff M doesn't accept $\langle M
angle$.

D accepts $\langle D
angle$ iff D doesn't accept $\langle D
angle$.

Contradiction.

Why is this proof a diagonalization?

TMs					
	acc	rej	acc	acc	
	rej	rej	rej	rej	
	acc	acc	acc	acc	
	rej	rej	acc	acc	
	rej				

Recall ATM = { $\langle M, w \rangle | M$ is a TM and M accepts w}

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if H rejects. Reject if H accepts."

D accepts $\langle M
angle$ iff M doesn't accept $\langle M
angle$.

D accepts $\langle D
angle$ iff D doesn't accept $\langle D
angle$.

Contradiction.

Why is this proof a diagonalization?

TMs					
	acc	rej	acc	acc	
	rej	rej	rej	rej	
	acc	acc	acc	acc	
	rej	rej	acc	acc	
	rej				

Recall ATM = { $\langle M, w \rangle | M$ is a TM and M accepts w}

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if $\,H\,$ rejects. Reject if $\,H\,$ accepts."

D accepts $\langle M
angle$ iff M doesn't accept $\langle M
angle$.

 \overline{D} accepts $\langle D
angle$ iff D doesn't accept $\langle D
angle$.

Contradiction.

Why is this proof a diagonalization?

TMs					
	acc	rej	acc	acc	
	rej	rej	rej	rej	
	acc	acc	acc	acc	
	rej	rej	acc	acc	
	rej	acc			

Recall ATM = { $\langle M, w \rangle | M$ is a TM and M accepts w}

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if $\,H\,$ rejects. Reject if $\,H\,$ accepts."

D accepts $\langle M
angle$ iff M doesn't accept $\langle M
angle$.

 \overline{D} accepts $\langle D
angle$ iff D doesn't accept $\langle D
angle$.

Contradiction.

Why is this proof a diagonalization?

TMs					
	acc	rej	acc	acc	
	rej	rej	rej	rej	
	acc	acc	acc	acc	
	rej	rej	acc	acc	
	rej	acc			

Recall ATM = { $\langle M, w \rangle | M$ is a TM and M accepts w}

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if $\,H\,$ rejects. Reject if $\,H\,$ accepts."

D accepts $\langle M
angle$ iff M doesn't accept $\langle M
angle$.

D accepts $\langle D
angle$ iff D doesn't accept $\langle D
angle$.

Contradiction.

Why is this proof a diagonalization?

TMs					
	acc	rej	acc	acc	
	rej	rej	rej	rej	
	acc	acc	acc	acc	
	rej	rej	acc	acc	
	rej	acc	rej		

Recall ATM = { $\langle M, w \rangle | M$ is a TM and M accepts w}

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if $\,H\,$ rejects. Reject if $\,H\,$ accepts."

D accepts $\langle M
angle$ iff M doesn't accept $\langle M
angle$.

D accepts $\langle D
angle$ iff D doesn't accept $\langle D
angle$.

Contradiction.

Why is this proof a diagonalization?

TMs					
	acc	rej	acc	acc	
	rej	rej	rej	rej	
	acc	acc	acc	acc	
	rej	rej	acc	acc	
	rej	acc	rej		

Recall ATM = { $\langle M, w \rangle | M$ is a TM and M accepts w}

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if H rejects. Reject if H accepts."

D accepts $\langle M
angle$ iff M doesn't accept $\langle M
angle$.

 \overline{D} accepts $\langle D
angle$ iff D doesn't accept $\langle D
angle$.

Contradiction.

Why is this proof a diagonalization?

TMs					
	acc	rej	acc	acc	
	rej	rej	rej	rej	
	acc	acc	acc	acc	
	rej	rej	acc	acc	
	rej	acc	rej	rej	

Recall ATM = { $\langle M, w \rangle | M$ is a TM and M accepts w}

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if H rejects. Reject if H accepts."

D accepts $\langle M
angle$ iff M doesn't accept $\langle M
angle$.

D accepts $\langle D
angle$ iff D doesn't accept $\langle D
angle$.

Contradiction.

Why is this proof a diagonalization?

TMs					
	acc	rej	acc	acc	
	rej	rej	rej	rej	
	acc	acc	acc	acc	
	rej	rej	acc	acc	
	rej	acc	rej	rej	?

Recall ATM = { $\langle M, w \rangle | M$ is a TM and M accepts w}

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if H rejects. Reject if H accepts."

D accepts $\langle M
angle$ iff M doesn't accept $\langle M
angle$.

 \overline{D} accepts $\langle D
angle$ iff D doesn't accept $\langle D
angle$.

Contradiction.

Why is this proof a diagonalization?

TMs					
	acc	rej	acc	acc	
	rej	rej	rej	rej	
	acc	acc	acc	acc	
	rej	rej	acc	acc	
	rej	acc	rej	rej	?

Recall ATM = { $\langle M, w \rangle | M$ is a TM and M accepts w}

Theorem: ATM is not decidable

Proof by contradiction: Assume some TM $oldsymbol{H}$ decides $oldsymbol{A}$ TM.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} \text{Accept} & \text{if } M \text{ accepts } w \\ \text{Reject} & \text{if not} \end{cases}$

Use H to construct TM D

$$D=$$
 "On input $\langle M
angle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if H rejects. Reject if H accepts."

D accepts $\langle M
angle$ iff M doesn't accept $\langle M
angle$.

 \overline{D} accepts $\langle D
angle$ iff D doesn't accept $\langle D
angle$.

Contradiction.

Why is this proof a diagonalization?

TMs					
	acc	rej	acc	acc	
	rej	rej	rej	rej	
	acc	acc	acc	acc	
	rej	rej	acc	acc	
	rej	acc	rej	rej	?

Theorem: If A and \overline{A} are T-recognizable then A is decidable

Theorem: If A and \overline{A} are T-recognizable then A is decidable

Proof: Let TM M_1 and M_2 recognize A and \overline{A} .

Theorem: If A and \overline{A} are T-recognizable then A is decidable

Proof: Let TM M_1 and M_2 recognize A and \overline{A} .

Construct TM T deciding A.

Theorem: If A and \overline{A} are T-recognizable then A is decidable

Proof: Let TM \overline{M}_1 and \overline{M}_2 recognize A and \overline{A} .

Construct TM T deciding A.

T = "On input w

Theorem: If A and \overline{A} are T-recognizable then A is decidable

Proof: Let TM M_1 and M_2 recognize A and \overline{A} .

Construct TM T deciding A.

T = "On input w

1. Run M_1 and M_2 on w in parallel until one accepts.

Theorem: If A and \overline{A} are T-recognizable then A is decidable

Proof: Let TM M_1 and M_2 recognize A and \overline{A} .

Construct TM \overline{T} deciding A.

T = "On input w

- 1. Run M_1 and M_2 on w in parallel until one accepts.
- 2. If M_1 accepts then accept. If M_2 accepts then reject."

Theorem: If A and \overline{A} are T-recognizable then A is decidable

Proof: Let TM M_1 and M_2 recognize A and \overline{A} .

Construct TM T deciding A.

T = "On input w

- 1. Run M_1 and M_2 on w in parallel until one accepts.
- 2. If M_1 accepts then accept. If M_2 accepts then reject."

Corollary: ATM is T-unrecognizable

Theorem: If A and \overline{A} are T-recognizable then A is decidable

Proof: Let TM M_1 and M_2 recognize A and \overline{A} .

Construct TM T deciding A.

T = "On input w

- 1. Run M_1 and M_2 on w in parallel until one accepts.
- 2. If M_1 accepts then accept. If M_2 accepts then reject."

Corollary: ATM is T-unrecognizable

Proof: ATM is T-recognizable but also undecidable

Theorem: If A and \overline{A} are T-recognizable then A is decidable

Proof: Let TM M_1 and M_2 recognize A and \overline{A} .

Construct TM T deciding A.

T = "On input w

- 1. Run M_1 and M_2 on w in parallel until one accepts.
- 2. If M_1 accepts then accept. If M_2 accepts then reject."

Corollary: \overline{A} TM is T-unrecognizable

Proof: ATM is T-recognizable but also undecidable

Theorem: If A and \overline{A} are T-recognizable then A is decidable

Proof: Let TM M_1 and M_2 recognize A and \overline{A} .

Construct TM T deciding A.

T = "On input w

- 1. Run M_1 and M_2 on w in parallel until one accepts.
- 2. If M_1 accepts then accept. If M_2 accepts then reject."

Corollary: \overline{A} TM is T-unrecognizable

Proof: ATM is T-recognizable but also undecidable

Theorem: If A and \overline{A} are T-recognizable then A is decidable

Proof: Let TM M_1 and M_2 recognize A and \overline{A} .

Construct TM T deciding A.

T= "On input w

- 1. Run M_1 and M_2 on w in parallel until one accepts
- 2. If M_1 accepts then accept. If M_2 accepts then reject."

Corollary: ATM is T-unrecognizable

Proof: ATM is T-recognizable but also undecidable

Check-in 8.3

From what we've learned, which closure properties can we prove for the class of T-recognizable languages? Choose all that apply.

- (a) Closed under union.
- (b) Closed under intersection.
- (c) Closed under complement.
- (d) Closed under concatenation.
- (e) Closed under star.

Use our knowledge that $A\mathsf{TM}$ is undecidable to show other problems are undecidable.

Use our knowledge that ATM is undecidable to show other problems are undecidable.

Defn: HALTTM = $\{\langle M, w \rangle \mid M \text{ halts on input } w\}$

Use our knowledge that ATM is undecidable to show other problems are undecidable.

Defn: HALTTM = $\{\langle M, w \rangle \mid M \text{ halts on input } w\}$

Theorem: HALTTM is undecidable

Use our knowledge that $A\mathsf{TM}$ is undecidable to show other problems are undecidable.

Defn: HALTTM = $\{\langle M, w \rangle \mid M \text{ halts on input } w\}$

Theorem: HALTTM is undecidable

Proof by contradiction, showing that ATM is reducible to HALTTM:

Use our knowledge that ATM is undecidable to show other problems are undecidable.

Defn: HALTTM = $\{\langle M, w \rangle \mid M \text{ halts on input } w\}$

Theorem: HALTTM is undecidable

Proof by contradiction, showing that ATM is reducible to HALTTM:

Assume that HALTTM is decidable and show that ATM is decidable (false!).

Use our knowledge that ATM is undecidable to show other problems are undecidable.

Defn: HALTTM = $\{\langle M, w \rangle \mid M \text{ halts on input } w\}$

Theorem: HALTTM is undecidable

Proof by contradiction, showing that ATM is reducible to HALTTM:

Assume that HALTTM is decidable and show that ATM is decidable (false!).

Let TM R decide HALTTM.

Use our knowledge that ATM is undecidable to show other problems are undecidable.

Defn: HALTTM = $\{\langle M, w \rangle \mid M \text{ halts on input } w\}$

Theorem: HALTTM is undecidable

Proof by contradiction, showing that ATM is reducible to HALTTM:

Assume that HALTTM is decidable and show that ATM is decidable (false!).

Let TM R decide HALTTM.

Construct TM S deciding ATM.

Use our knowledge that ATM is undecidable to show other problems are undecidable.

Defn: $HALTTM = \{\langle M, w \rangle \mid M \text{ halts on input } w\}$

Theorem: HALTTM is undecidable

Proof by contradiction, showing that ATM is reducible to HALTTM:

Assume that HALTTM is decidable and show that ATM is decidable (false!).

Let TM R decide HALTTM.

Construct TM S deciding ATM.

$$S =$$
 "On input $\langle M, w \rangle$

Use our knowledge that ATM is undecidable to show other problems are undecidable.

Defn: $HALTTM = \{\langle M, w \rangle \mid M \text{ halts on input } w\}$

Theorem: HALTTM is undecidable

Proof by contradiction, showing that ATM is reducible to HALTTM:

Assume that HALTTM is decidable and show that ATM is decidable (false!).

Let TM R decide HALTTM.

Construct TM S deciding ATM.

$$S =$$
 "On input $\langle M, w \rangle$

1. Use R to test if M on w halts. If not, reject.

Use our knowledge that ATM is undecidable to show other problems are undecidable.

Defn: $HALTTM = \{\langle M, w \rangle \mid M \text{ halts on input } w\}$

Theorem: HALTTM is undecidable

Proof by contradiction, showing that ATM is reducible to HALTTM:

Assume that HALTTM is decidable and show that ATM is decidable (false!).

Let TM R decide HALTTM.

Construct TM S deciding ATM.

$$S =$$
 "On input $\langle M, w \rangle$

- 1. Use R to test if M on w halts. If not, reject.
- 2. Simulate M on w until it halts (as guaranteed by R).

Use our knowledge that ATM is undecidable to show other problems are undecidable.

Defn: $HALTTM = \{\langle M, w \rangle \mid M \text{ halts on input } w\}$

Theorem: HALTTM is undecidable

Proof by contradiction, showing that ATM is reducible to HALTTM:

Assume that HALTTM is decidable and show that ATM is decidable (false!).

Let TM R decide HALTTM.

Construct TM S deciding ATM.

$$S =$$
 "On input $\langle M, w \rangle$

- 1. Use \overline{R} to test if M on w halts. If not, reject.
- 2. Simulate M on w until it halts (as guaranteed by R).
- 3. If M has accepted then accept. If M has rejected then reject.

Use our knowledge that ATM is undecidable to show other problems are undecidable.

Defn: $HALTTM = \{\langle M, w \rangle \mid M \text{ halts on input } w\}$

Theorem: HALTTM is undecidable

Proof by contradiction, showing that ATM is reducible to HALTTM:

Assume that HALTTM is decidable and show that ATM is decidable (false!).

Let TM R decide HALTTM.

Construct TM S deciding ATM.

$$S =$$
 "On input $\langle M, w \rangle$

- 1. Use \overline{R} to test if M on w halts. If not, reject.
- 2. Simulate M on w until it halts (as guaranteed by R).
- 3. If M has accepted then accept. If M has rejected then reject.

TM S decides ATM, a contradiction. Therefore HALTTM is undecidable.

Use our knowledge that ATM is undecidable to show other problems are undecidable.

Defn: $HALTTM = \{\langle M, w \rangle \mid M \text{ halts on input } w\}$

Theorem: HALTTM is undecidable

Proof by contradiction, showing that ATM is reducible to HALTTM:

Assume that HALTTM is decidable and show that ATM is decidable (false!).

Let TM R decide HALTTM.

Construct TM S deciding ATM.

$$S =$$
 "On input $\langle M, w \rangle$

- 1. Use \overline{R} to test if M on w halts. If not, reject.
- 2. Simulate M on w until it halts (as guaranteed by R).
- 3. If M has accepted then accept. If M has rejected then reject.

TM S decides ATM, a contradiction. Therefore HALTTM is undecidable.

If we have two languages (or problems) A and B, then A is reducible to B means that we can use B to solve A.

If we have two languages (or problems) A and B, then A is reducible to B means that we can use B to solve A.

Example 1: Measuring the area of a rectangle is reducible to measuring the lengths of its sides.

If we have two languages (or problems) A and B, then A is reducible to B means that we can use B to solve A.

Example 1: Measuring the area of a rectangle is reducible to measuring the lengths of its sides.

Example 2: We showed that ANFA is reducible to ADFA .

If we have two languages (or problems) A and B, then A is reducible to B means that we can use B to solve A.

Example 1: Measuring the area of a rectangle is reducible to measuring the lengths of its sides.

Example 2: We showed that ANFA is reducible to ADFA.

Example 3: From Pset 2, *PUSHER* is reducible to ECFG. (Idea- Convert push states to accept states.)

If we have two languages (or problems) A and B, then A is reducible to B means that we can use B to solve A.

Example 1: Measuring the area of a rectangle is reducible to measuring the lengths of its sides.

Example 2: We showed that ANFA is reducible to ADFA.

Example 3: From Pset 2, PUSHER is reducible to ECFG. (Idea- Convert push states to accept states.)

If A is reducible to B then solving B gives a solution to A.

If we have two languages (or problems) A and B, then A is reducible to B means that we can use B to solve A.

Example 1: Measuring the area of a rectangle is reducible to measuring the lengths of its sides.

Example 2: We showed that ANFA is reducible to ADFA.

Example 3: From Pset 2, PUSHER is reducible to ECFG. (Idea- Convert push states to accept states.)

If A is reducible to B then solving B gives a solution to A.

- then B is easy $\rightarrow A$ is easy.

If we have two languages (or problems) A and B, then A is reducible to B means that we can use B to solve A.

Example 1: Measuring the area of a rectangle is reducible to measuring the lengths of its sides.

Example 2: We showed that ANFA is reducible to ADFA .

Example 3: From Pset 2, PUSHER is reducible to ECFG. (Idea- Convert push states to accept states.)

If A is reducible to B then solving B gives a solution to A.

- then B is easy $\rightarrow A$ is easy.
- then A is hard $\rightarrow B$ is hard.

If we have two languages (or problems) A and B, then A is reducible to B means that we can use B to solve A.

Example 1: Measuring the area of a rectangle is reducible to measuring the lengths of its sides.

Example 2: We showed that ANFA is reducible to ADFA .

Example 3: From Pset 2, PUSHER is reducible to ECFG. (Idea- Convert push states to accept states.)

If A is reducible to B then solving B gives a solution to A.

- then B is easy $\rightarrow A$ is easy.
- then A is hard $\rightarrow B$ is hard.

If we have two languages (or problems) A and B, then A is reducible to B means that we can use B to solve A.

Example 1: Measuring the area of a rectangle is reducible to measuring the lengths of its sides.

Example 2: We showed that ANFA is reducible to ADFA .

Example 3: From Pset 2, PUSHER is reducible to ECFG. (Idea- Convert push states to accept states.)

If A is reducible to B then solving B gives a solution to A.

- then B is easy $\rightarrow A$ is easy.
- then A is hard $\rightarrow B$ is hard.

this is the form we will use

If we have two languages (or problems) A and B, then A is reducible to B means that we can use B to solve A.

Example 1: Measuring the area of a rectangle is reducible to measuring the lengths of its sides.

Example 2: We showed that ANFA is reducible to ADFA .

Example 3: From Pset 2, PUSHER is reducible to ECFG. (Idea- Convert push states to accept states.)

If A is reducible to B then solving B gives a solution to A.

- then B is easy $\rightarrow A$ is easy.
- then A is hard $\rightarrow B$ is hard.

this is the form we will use

If we have two languages (or problems) A and B, then A is reducible to B means that we can use B to solve A.

Example 1: Measuring the area of a rectangle is reducible to measuring the lengths of its sides.

Example 2: We showed that ANFA is reducible to ADFA Check-in 9.1

Example 3: From Pset 2, *PUSHER* is reducible to ECFG. (Idea- Convert push states to accept states.)

If A is reducible to B then solving B gives a solution to A

- then B is easy $\rightarrow A$ is easy.
- then \overline{A} is hard $\rightarrow \overline{B}$ is hard. this is the form we will use

Is Biology reducible to Physics?

- (a) Yes, all aspects of the physical world may be explained in terms of Physics, at least in principle.
- No, some things in the world, maybe life, the brain, or consciousness, are beyond the realm pf Physics.
- I'm on the fence on this question!

Let $E\mathsf{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: E**TM** is undecidable

Let $E\mathsf{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: E**TM** is undecidable

Proof by contradiction. Show that $A\mathsf{TM}$ is reducible to $E\mathsf{TM}$.

Let ETM $= \{\langle M \rangle | M$ is a TM and $L(M) = \emptyset \}$

Theorem: E**TM** is undecidable

Proof by contradiction. Show that $A\mathsf{TM}$ is reducible to $E\mathsf{TM}$.

Assume that $E\mathsf{TM}$ is decidable and show that $A\mathsf{TM}$ is decidable (false!).

Let $E\mathsf{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: E**TM** is undecidable

Proof by contradiction. Show that $A\mathsf{TM}$ is reducible to $E\mathsf{TM}$.

Assume that $E\mathsf{TM}$ is decidable and show that $A\mathsf{TM}$ is decidable (false!).

Let TM R decide ETM.

$E \mathrm{TM}$ is undecidable

Let $E\mathsf{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: E**TM** is undecidable

Proof by contradiction. Show that $A\mathsf{TM}$ is reducible to $E\mathsf{TM}$.

Assume that $E\mathsf{TM}$ is decidable and show that $A\mathsf{TM}$ is decidable (false!).

Let TM R decide ETM.

Construct TM S deciding ATM.

$E \mathrm{TM}$ is undecidable

Let $E\mathsf{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: E**TM** is undecidable

Proof by contradiction. Show that $A\mathsf{TM}$ is reducible to $E\mathsf{TM}$.

Assume that $E\mathsf{TM}$ is decidable and show that $A\mathsf{TM}$ is decidable (false!).

Let TM R decide ETM.

Construct TM S deciding ATM.

S = "On input $\langle M, w \rangle$

Let ETM $= \{\langle M \rangle | M$ is a TM and $L(M) = \emptyset \}$

Theorem: E**TM** is undecidable

Proof by contradiction. Show that $A\mathsf{TM}$ is reducible to $E\mathsf{TM}$.

Assume that $E\mathsf{TM}$ is decidable and show that $A\mathsf{TM}$ is decidable (false!).

Let TM R decide ETM.

Construct TM S deciding ATM.

$$S =$$
 "On input $\langle M, w \rangle$

- 1. Transform M to new TM $M_w=$ "On input x
 - 1. If $x \neq w$, reject.
 - 2. else run M on w
 - 3. Accept if M accepts."

Let ETM $= \{\langle M
angle | M$ is a TM and $L(M) = \emptyset \}$

Theorem: E**TM** is undecidable

Proof by contradiction. Show that $A\mathsf{TM}$ is reducible to $E\mathsf{TM}$.

Assume that $E\mathsf{TM}$ is decidable and show that $A\mathsf{TM}$ is decidable (false!).

Let TM R decide ETM.

Construct TM S deciding ATM.

$$S =$$
 "On input $\langle M, w \rangle$

1. Transform M to new TM $M_w =$ "On input x

- 1. If $x \neq w$, reject.
- 2. else run M on w
- 3. Accept if M accepts."

Let ETM $= \{\langle M
angle | M$ is a TM and $L(M) = \emptyset \}$

Theorem: E**TM** is undecidable

Proof by contradiction. Show that $A\mathsf{TM}$ is reducible to $E\mathsf{TM}$.

Assume that $E\mathsf{TM}$ is decidable and show that $A\mathsf{TM}$ is decidable (false!).

Let TM R decide ETM.

Construct TM S deciding ATM.

$$S =$$
 "On input $\langle M, w \rangle$

1. Transform M to new TM $M_w =$ "On input x

- 1. If $x \neq w$, reject.
- 2. else run M on w
- 3. Accept if M accepts."

$$L(M_w) = \begin{cases} \{w\} & \text{if } M \text{ accepts } w \\ \emptyset & \text{if } M \text{ rejects } w \end{cases}$$

Let ETM $= \{\langle M \rangle | M$ is a TM and $L(M) = \emptyset \}$

Theorem: E**TM** is undecidable

Proof by contradiction. Show that $A\mathsf{TM}$ is reducible to $E\mathsf{TM}$.

Assume that $E\mathsf{TM}$ is decidable and show that $A\mathsf{TM}$ is decidable (false!).

Let TM R decide ETM.

Construct TM S deciding ATM.

$$S =$$
 "On input $\langle M, w \rangle$

- 1. Transform M to new TM $M_w =$ "On input x
 - 1. If $x \neq w$, reject.
 - 2. else run M on w
 - 3. Accept if M accepts."
- 2. Use R to test whether $L(M_w) = \emptyset$

$$L(M_w) = \begin{cases} \{w\} & \text{if } M \text{ accepts } w \\ \emptyset & \text{if } M \text{ rejects } w \end{cases}$$

$E \mathrm{TM}$ is undecidable

Let $E\mathsf{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: E**TM** is undecidable

Proof by contradiction. Show that $A\mathsf{TM}$ is reducible to $E\mathsf{TM}$.

Assume that $E\mathsf{TM}$ is decidable and show that $A\mathsf{TM}$ is decidable (false!).

Let TM R decide ETM.

Construct TM S deciding ATM.

$$S =$$
 "On input $\langle M, w \rangle$

- 1. Transform M to new TM $M_w =$ "On input x
 - 1. If $x \neq w$, reject.
 - 2. else run M on w
 - 3. Accept if M accepts."
- 2. Use R to test whether $L(M_w) = \emptyset$
- 3. If YES [so M rejects w] then reject. If NO [so M accepts w] then accept.

$$L(M_w) = \begin{cases} \{w\} & \text{if } M \text{ accepts } w \\ \emptyset & \text{if } M \text{ rejects } w \end{cases}$$

Let ETM $= \{\langle M
angle | M$ is a TM and $L(M) = \emptyset \}$

Theorem: E**TM** is undecidable

Proof by contradiction. Show that $A\mathsf{TM}$ is reducible to $E\mathsf{TM}$.

Assume that $E\mathsf{TM}$ is decidable and show that $A\mathsf{TM}$ is decidable (false!).

Let TM R decide ETM.

Construct TM S deciding ATM.

$$S =$$
 "On input $\langle M, w \rangle$

- 1. Transform M to new TM $M_w =$ "On input x
 - 1. If $x \neq w$, reject.
 - 2. else run M on w
 - 3. Accept if M accepts."
- 2. Use R to test whether $L(M_w) = \emptyset$
- 3. If YES [so M rejects w] then reject. If NO [so M accepts w] then accept.

$$L(M_w) = \begin{cases} \{w\} & \text{if } M \text{ accepts } w \\ \emptyset & \text{if } M \text{ rejects } w \end{cases}$$