實驗報告

實驗名稱: 射頻與類比通訊實驗

組別	學號	姓名
2	F14081046	周呈陽
2	C24074031	劉嘉峰

結報與問題討論

1. 請記錄設計之匹配的電感、電容值,並截取 S11、S21 在匹配前後的圖。

	匹配前	匹配後
S11	Agiless Technologies Strict St	Agine Translopin Funding Williams Willi
S21	Agriculturismiques (Booting print) Control Control	Agiltari Technologiss Elidifica invita 15 cis. St. Mill. (10,00000 94 c. 1) 104 db Mill. (10,0000
	-1.21dB	-1.104dB

成功大學電機系 軟體無線電導論與實作

 $33.8\Omega + j37.9\Omega$

 $77.0\Omega + j22.9\Omega$

匹配電桿值:1.149 μH

匹配電容值:259.633 pF

匹配後的電路圖

2. 阻抗完美匹配下,功率的傳輸達到最大,試問此時電壓的傳輸增益為何?

 $\frac{V_{in}}{2}$

3. 請寫下這次實驗心得與想法,並上傳結報至 moodle。

周呈陽:

劉嘉峰:

這次的實驗認識到了阻抗匹配,也學到了如何計算、設計匹配網路,在助教的教導下,我不但認識了史密斯圖,也知道了如何去讀圖上的電阻值和電導值,以及電路的焊接,這次的實驗其不不算太難,在焊接電路的部分,照著助教給的電路圖去焊接,同時記得讓電路板共地,就沒有甚麼太大問題;在計算匹配電桿值和電容值時,除了使用史密斯圖去計算,也透過網路上的資源去確認與我們的計算是否正確。自己是系統系大三的學生,修通訊實驗的目的就是為了更了解通訊領域如何實際應用,總結這四堂課,我學到了 AM 發射機、接收機和射頻分析儀的操作及應用,每周的實驗都是新的挑戰,充分體現了實驗課邊做邊學的理念,感謝鄭光偉老師在這次通訊實驗上的安排,讓未來想走通訊組的我,對於通訊的領域又有了更進一步的了解,也感謝王馨、郭明軒、莊友任三位助教的幫忙,讓我在實驗操作上能順利進行,同時也學到不少相關知識,期待之後與老師和三位助教能再次相遇,謝謝!

這次實驗是先利用射頻分析儀量測未知電路的阻抗,再利用史密斯圖得到該如何設計最佳的阻抗

成功大學電機系 軟體無線電導論與實作

匹配電路。沒有接觸過史密斯圖(一開始還覺得他很像星座盤),但覺得助教講解的淺顯易懂!大致概念是可從阻抗、導納兩個面向看待同一個電路,之後分別固定實軸、虛軸沿著線走至中心點,再經由路線的遞增或遞減就可以決定該如何設計電路。覺得這次實驗蠻多元、有趣的,一開始是焊接線路,後面藉由操作儀器得到數據,再藉由自己設計電路讓反射波變小!雖然很多概念一知半解,但瞭解到在高頻帶的傳輸,還要考慮到阻抗有沒有匹配對於反射波造成的影響,有學到了應用上的新觀念!