Manual de Instruções

IlumiLab

Por: André, Vinícius, Carlos Eduardo e Paulo.

Ao iniciar o programa você verá a seguinte tela:

Aqui você pode escolher entre utilizer o **Espectrofotômetro ou a Eletroforese**, vamos começar pela **Eletroforese**.

1 – Eletroforese

Ao clicar em **Eletroforese**, a seguinte tela deve ser mostrada:

Aqui você deve clicar em "Selecionar imagem", após isso uma tela para os arquivos do seu computador será aberta.

No gerenciador do seu computador você deve procurar a pasta do IlumLab e abrir a pasta "Exemplos", após isso você deve abrir a imagem intitulada de "exemplo_eletroforese". Então, uma tela semelhante a essa deve ser aberta:

Bingo! Se você chegou até aqui parabens. Agora, Nessa tela você deve selecionar **11 pontos** (caso contrário não funcionará) da primeira coluna "**M**", que é a coluna utilizada como exemplo na Eletroforese. Aqui, você não precisa se preocupar com o **eixo X**(se está muito para esquerda ou para direita) pois o programa só ira computar o **eixo Y**, que serve para calcular as distâncias entre um ponto e outro.

Após isso, seu programa deve ficar mais ou menos dessa forma. Com isso podemos ir na tela anterior (onde clicamos em "Selecionar imagem") e clicar em "Montar gráfico".

Está vendo que está mostrando "**Pontos**"? isso nada mais é que a lista global onde está guardada os valores, em **pixels**, das coordenadas **X** e **Y** da sua imagem. Então clique agora em "**Montar gráfico**" e veja a mágica acontecer:

Finalmente! Esse é o fim da **Eletroforese**, com esse gráfico você ganhou de brinde a equação da **Reta de Regressão** onde básicamente você pode calcular o peso molecular ou a distância de qualquer amostra que você fez Nessa **Eletroforese** somente substituindo na variável da equação e obtendo a variável que você quer. Além disso você pode clicar no simbolo de **disquete** na parte inferior da tela e salvar esse gráfico como uma imagem **png** para utilizar em um artigo ou algo do tipo.

2 – Espectrofotômetro

Agora vamos para o **Espectrofotômetro**, se você clicar no botão de **"ESPECTROFOTÔMETRO"** uma tela pouco sugestiva e muito complexa será aberta semelhante a essa:

Primeiramente, vamos colocar um belo nome para nosso gráfico e clicar em "Salvar Nome" (Lembra daquela variável "graph_name" lá do começo? Pois é, é ai que vai ficar o nome do gráfico) com isso o nome de seu gráfico está salvo.

Atenção! A explicação aqui deve estar bem sólida para o usuário utilizar esse programa então, bastante atenção, hein.

- As linhas que vão de A até H são as amostrar com a mesma concentração;
- As colunas que vão de 1 a 12 são para cada amostra;
- No fim de cada coluna tem um espaço para colocar a concentração daquela amostra;

Ok, mas por que tem vários espaços para mesma concentração da amostra? É ai que entra nosso projeto, no **Espectrofotômetro** normalmente nos fazemos **tríplicas** que é basicamente colocar 3 vezes a amostra com a mesma concentração para tirar uma média da absorbância dessas concentrações e ter um valor mais "**exato**". Parece complicado mas na prática fiz mais fácil de entender.

Vamos usar como teste o **Cloreto de Cobalto** e três tipos de concentrações. Segue abaixo a imagem de exemplo para montar o gráfico:

Preste atenção, onde colocar os dados

	C	oloqı	ue as	amos	stras	que	vocë	dese	eja al	baixo)		
				ı	Nome (do gráfi	co:						
				Clore	to de Col	alto							
					Salv	ar Nome							
	1	2	3	4	5	6	7	8	9	10	11	12	
Α	3.22	2.92	2.15										
В	3.18	2.98	2.18										
С	3.25	2.84	2.22										
D													
E													
F													
G													
н													
Concentração	2.0	1.5	1.0										

Note que no A,B e C da coluna 1 está todas as 3 amostras que tem concentração 2.0 mol/L, na coluna 2 está as 3 amostras com concentração 1.5 mol/L e na 3 coluna está as amostras com concentração 1 mol/L. Agora vamos calcular a médias das absorbâncias clicando no botão escrito "Calcular a média das absorbâncias":

Seu programa deve estar exatamente assim antes de clicar em Montar gráfico...

Veja que surgiu no canto da tela duas listas, um para absorbância e outra para concentração e cada valor de concentração corresponde para exatamente cada valor da média de absorbância. Agora é mamão com açucar, é só clicar em **Montar gráfico de absorbância por concentração:**

Eba, assim como no outro modo temos mais um gráfico com **Reta de Regressão** e assim também com duas variáveis podemos descobrir uma substância que temos apenas uma das informações, absorbância ou concentração.

Além disso, clicando no disquete na parte inferior você pode salvar esse gráfico em .png