MATH1081 notes

Nira (z5417727)

September 17th, 2022

Contents

1	1.1: Introduction	2
2	1.2: Sets and subsets	3
	1.3: Power Sets and Stability 3.1. 1.4: Set Operations	4 5

1 1.1: Introduction

- 1. addition, multiplication, division and subtraction
- 2. Mainly dealing with finite sets

2 1.2: Sets and subsets

A set is a well defined collection of distinct objects

Example: $S = \{1, a, 3\}, A = \{\Pi, 1\}.$

- 1. $e \notin A$; it is not in A
- 2. For example, if A is a set of all integers; {all even integers} = $\{n \in \mathbb{R} | \text{n is even}\}$.
- 3. We can remove superfluos items (elements that occur more than one).

 $A = \{1, 2, 3, 3\}$ where 3 can be removed.

Example:

 $A = \{1, 2, 3\}, B = \{2, 3, 1\}, C = \{1, 2, 3, 3\}, D = \{1, 3\}.$

Here, D is a proper subset of A, B, C; A, B, C are supersets of D.

 \subseteq : Subset (proper subset), \supseteq : Superset.

1. To prove if a set is a proper subset; do the following:

For example, if $D \in A$, then check if $e \in D$

If $e \in D$, then $e \in A$. Thus, it would be a proper subset (here, e is just an element).

2. To prove that two sets are equal;

For example, if A = B, prove:

- i) $A \subseteq B$; if an element is in A, then the element is in B.
- ii) $B \subseteq A$; if an element is in B, then the element is in A.

3 1.3: Power Sets and Stability

Subsets of $A = \{1, 2, 3\}$:

- 1. Could throw everything out to get empty set Φ ,
- 2. One element each: $\{1\}, \{2\}, \{3\},$
- 3. Two elements: $\{1,2\},\{2,3\},\{1,3\},$
- 4. Set itself: A.

The set containing 1, 2, 3, 4 is called the powerset of A.

Given $A = \{1, 2, 3\}, B = \{1, 2, 3, 3\}, C = \{1, 3\}, D = \{1, 3\},$ where $A = B, C \subseteq A, B$ and $D \not\subseteq A, B, C$.

1. size of A = 3, B = 3, C = 2, D = 2.

[Exercise with A = 0, 1, 0, 1, B done in word].

3.1 1.4: Set Operations

1. Complement Operation:

Let there be a set A in U (A: all of the people in the video, U: universal set of everyone in the world, $A^c =$ complement of A).