Chapter 2: Getting to Know Your Data

Data Objects and Attribute Types

- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Dissimilarity
- Summary

Types of Data Sets

- Record
 - Relational records / Data matrix
 - Text documents: term-frequency vector
 - Transaction data
- Graph and network
 - Social or information networks
 - World Wide Web
 - Molecular Structures
- Ordered
 - Video data: sequence of images
 - Temporal data: time-series
 - Sequential Data: transaction sequences
 - Genetic sequence data
- Spatial, image, and multimedia:
 - Spatial data: maps
 - Image data
 - Video data

ency vector	team	:oach	pla У	ball	score	game	n <u>W</u> .	lost	meout	eason
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Important Characteristics of Data

- Dimensionality
 - Curse of dimensionality
- Sparsity
 - Only a small portion of presence
- Resolution
 - Patterns depend on the scale
- Distribution
 - Centrality and dispersion

ion	team	coach	pla y	ball	score	game	n Wi.	lost	timeout	season	
Document 1	3	0	5	0	2	6	0	2	0	2	
Document 2	0	7	0	2	1	0	0	3	0	0	1
Document 3	0	1	0	0	1	2	2	0	3	0	

Data Objects

- Data sets are made up of data objects
- A data object represents a real-world entity
- Examples:
 - Sales database: customers, store items, sales
 - Medical database: patients, treatments
 - University database: students, professors, courses
- Also called tuples, samples, examples, instances, data points, objects
- Data objects are described by attributes
- Database rows -> data objects; columns ->attributes

Attributes

- Attribute (or dimensions, features, variables):
 - Data field, representing a characteristic or a feature of a data object
 - E.g., customer _ID, name, address
- Types:
 - Nominal
 - Binary
 - Numeric: quantitative
 - Ratio-scaled
 - Times meaningful, zero means absence (ex: weight in kg)
 - Interval-scaled:
 - Only difference meaningful (ex: temperature in celcsius)

Attribute Types

- **Nominal:** categories, states, or "names of things"
 - Has a finite number of values
 - Hair_color = { black, blond, brown, grey, red, white}
 - marital status, occupation, ID numbers, zip codes

Binary

- Special case of a nominal attribute with only 2 states (0 and 1)
- **Symmetric** binary: both outcomes equally important
 - e.g., gender
- <u>Asymmetric</u> binary: outcomes not equally important
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Attribute Types

Ordinal

- Values have a meaningful order (ranking)
- Magnitude between successive values is not known though
- Size = {small, medium, large}, grades, army rankings

Numeric Attribute Types

Quantity (integer or real-valued)

Interval-scaled

- Measured on a scale of **equal-sized units**
- Values have order
 - e.g., temperature in C°or F°, calendar dates
- No true zero-point

Ratio-scaled

- Inherent zero-point (meaning absence)
- We can speak of values as being an order of magnitude larger than the unit of measurement
 - 6kg is twice as high as 3kg
 - e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete vs. Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floating-point variables

Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data

- Data Visualization
- Measuring Data Similarity and Dissimilarity
- Summary

Basic Statistical Descriptions of Data

Motivation

- To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
 - median, max, min, quartiles, outliers, variance, etc.

Measuring the Central Tendency

Mean (algebraic measure) (sample vs. population):

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \mu = \frac{\sum x}{N}$$

Note: *n* is sample size and *N* is population size.

Weighted arithmetic mean:

$$\bar{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

- Trimmed mean:
 - taking mean after chopping extreme values

Measuring the Central Tendency

Median:

- Middle value if odd number of values, or average of the middle two values otherwise
- Estimated by interpolation (for *grouped* data):

$$median = L_1 + (\frac{n/2 - (\sum freqI)}{freq_{median}}) * width$$

age	frequency
1-5	200
6 - 15	450
16-20	300
21 - 50	1500
51 - 80	700
81-110	44

Example

$$\blacksquare$$
 n = 3194, n/2 = 1597, L1 = 21, freq_{median} = 1500

Numerator =
$$1597 - (200 + 450 + 300) = 647$$

$$\blacksquare$$
 width = $(50-21) = 29$

■ Median =
$$21+(647/1500)*(50-21)$$

Measuring the Central Tendency

Mode

- Value that occurs most frequently in the data
- Unimodal, bimodal, trimodal
- Empirical formula:

$$mean-mode = 3 \times (mean-median)$$

Symmetric vs. Skewed Data

 Median, mean, and mode of symmetric, positively and negatively skewed data

and Techniques

Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - **Quartiles**: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range (IQR): $IQR = Q_3 Q_1$
 - **Five number summary**: min, Q_1 , median, Q_3 , max
 - Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
 - Outlier: usually, a value higher/lower than 1.5 x IQR

Measuring the Dispersion of Data

- Variance and standard deviation (sample: s, population: σ)
 - Variance: (algebraic, scalable computation)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} (\sum_{i=1}^{n} x_{i})^{2} \right] \quad \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

Standard deviation s (or σ) is the square root of variance s^2 (or σ^2)

Boxplot Analysis

- Five-number summary of a distribution
 - Minimum, Q1, Median, Q3, Maximum

Boxplot

- Data is represented with a box
- The ends of the box are at the first and third [
 quartiles, i.e., the height of the box is IQR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to Minimum and Maximum
- Outliers: points beyond a specified outlier threshold, plotted individually

Visualization of Data Dispersion: 3-D Boxplots

Properties of Normal Distribution Curve

- The normal (distribution) curve
 - From μ – σ to μ + σ : contains about 68% of the measurements (μ : mean, σ : standard deviation)
 - From μ –2 σ to μ +2 σ : contains about 95% of it

Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data

- Data Visualization
- Measuring Data Similarity and Dissimilarity
- Summary

Graphic Displays of Basic Statistical Descriptions

- Boxplot: graphic display of five-number summary
- **Histogram**: x-axis are values, y-axis repres. frequencies
- **Quantile plot**: each value x_i is paired with f_i indicating that approximately 100 f_i % of data are $\leq x_i$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

Histogram Analysis

- Histogram: Graph display of frequencies shown as bars
- It shows what proportion of cases fall into each of several categories
 - The categories are usually specified as non-overlapping intervals of some variable
 - The categories (bars) must be adjacent

Histogram Analysis

- Differs from a bar chart
 - The area of the bar denotes the value (histogram)
 - The *height* denotes the value (bar chart)
 - A crucial distinction when the categories are not of uniform width

