

RECEIVER BT-R8

PAGE 1 OF 6

1 SCOPE

This specification covers a hearing-aid compatible dynamic type receiver for telephone handset, specially designed and constructed for payphone handsets.

2 DESIGN AND CONSTRUCTION

The receiver shall be of the design, contruction and physical dimenions as shown Fig. 1.

3 ELECTRICAL AND ACOUSTICAL CHARACTERISTICS

NO.	TEST		REQUIREMENTS		TEST CONDISTIONS		
3.1	Sweep Frequence Response Level		100 +/- 2dB SPL		FIG. 3		
3.2	Frequence Response		1) Curve: Fig.2 2) 1 KHz: 100 +4/-3dB SPL				
3.3	Impedance		1 KHz : 170 +/- 30 ohm		FIG. 4		
3.4	Insulation Resistance		At Least 50M ohm		Voltage: 250V D.C Position: Between Terminals and Metalic Case		
3.5	Dielectric Strength		Withstand		Voltage : 115V R.M.S, 60 Hz.A.C.		
3.6	Magnetic Field Intensity 1) Axial Field 2) Radial Field		1) 1 KHz: At Least -72 dBV 2) Curve : Fig. 5 1 KHz. : At Least -77dBV		FIG. 5		
3.7	Anti-Static		Not Occur Electric Discharge		FIG. 6		
		•					
NO.	SIGN	DATE		F	REVISIONS		

4 ENVIRONMENTAL TEST

4.1. GENERAL

After any following test, the sweep frequency response level shall not vary more thatn +/- 2dB from the initial value.

4.2 TEST

NO.	TEST	TEST CONDISTIONS			
4.2.1.	Humidity And High Temperature	1) Temperature 2) Relative Humidity 3) Duration of Exposure 4) Duration of Recovery	: 60 +/- 3 C : 90 - 95% RH : 72 Hours : 6 Hours		
4.2.2.	Low Temperature	Temperature Duration of Exposure Duration of Recovery	: -20 +/- 3 C : 72 Hours : 6 Hours		
4.2.3	Cycle, Temperature	1) Low Temperature 2) High Temperature 3) Number of Cycles 4) Duration of Exposure 5) Duration of Transfer Time 6) Duration of Recover	: -20 +/- 3 C : 60 +/- 3 C : 5 Cycles : 3 Hrs at Each Temperature : Less Than 5 Min. : 6 Hours		
4.2.4.	Shock, Drop Test	1) Mounting 2) Direction 3) Height 4) Floor 5) Number of Drop	: 2500 or K-type Handset : Random Drop : 1 Meter : Concrete Floor Faced with 5mm Thick Hard Wood Board : 10 Times		
4.2.5.	Vibration	2) Direction : 3 Mutual 3) Frequency : Varied L 50 Hz A One Mir 4) Amplitude : 1.5 mm			

FIG.2 FREQUENCY RESPONSE LIMIT CURVES (RELATIVE TO 1 KHz RESPONSE)

FIG.3 FREQUENCY RESPONSE MEASUREMENT

3.1 BLOCK DIAGRAM

3.2 SWEEP FREQUENCY RESPONSE

- 1) Test signal voltage (0.3 3.3KHz) :-18.4 dBV (S1: OFF)
- 2) Sweep: Apply test signal varying logarithimically from 0.3 -3.3 KHz and back to 0.3 KHz every one second. (S1:ON)
- 3) Read out the average position of the S.P.L. Meter needle (meter damping);y=yx0.45
- 3.3 FREQUENCY RESPONSE AT 1KHz
- 1) Apply on test signal (1 KHz) according to F.3.2 (1).
- 2) Read out the S.P.L. Meter Needle.
- 3.4 FREQUENCY RESPONSE CURVE
- 1) Apply on test signal according to F.3.2 (1).
- 2) Record 1) Paper Speed: 3Cm/Sec. 2) Writing Speed: 100mm/sec

FIG. 4 IMPEDANCE MEAUREMENT

F 4.2 Measurement

- 1) Test signal voltage: -18.4 dBV at 1KHz. (S1:OFF)
- 2) Apply on test signal (S2:R), and read out Voltmeter needle (Er).(S1:ON)
- 3) Apply on test signal (S2:VR), and adjust VR to the same as Er. (S1:ON)
- Read out the resistance of the VR.
 Impedance of the receiver = Resistance of the VR

FIG. 5 MAGNETIC FIELD INTENSITY MEASUREMENT

F 5.1. Axial Field Limit Curves (Relative to 1 KHz. Response)

FIG 5.2 AXIAL FIELD MEASUREMENT

(1) BLOCK DIAGRAM

(2) MEASUREMENT

- 1) Test signal voltage (0.2 -3 KHz.): -18.4 dBV (S1:OFF)
- 2) Apply on test signal of 1 KHz. And read out Voltmenter needle.
- 3) Record 0. Paper Speed: 3mm/sec.
 - 0. Writing Speed: 100 mm/sec.

(3) PROBE COIL

0. D.C. Resistance : 900 ohm
0. Inductance : 140 mmH
0. Sensitivity : -60.5 dBV/A/m

0. Dimensions

FIG 6 ANTI-STATIC TEST

SILICON VARISTOR DIODE

VR-60, VR-61

■ RATING OF STANDARD (Ta: 25°C)

DIVISIONS	SOM THE	VR-60F	VR-61F	Unit
D.C Forward Current IF (mA)		400	150	mA
Max. Surge Current	ĪFSM	32	25	
for 10m sec.	MG11	50Hz half sine - wave		
Junction Temperature	Tj	-60+100		
Storage emperature	Tstg (°C)	-60-+100		°C
Assemble of chips		0	·	
Color		orange	Grange — The Red	
COIOI	化学的特别是	- Crange	orange hed	

■ D.C CHARACTERISTICS (either direction, Ta: 25°C)

有可能证明

	DIVISIONS	SIGN	Condition measurement	VX-60F	VR-61F	Unit
		10.0	IF = 1A	"1.5 max.		v
# No. 1	Forward Voltage	Vr	IF = 1 mA		2.3 ±0.25	
Forward			1r = 10mA		2.75 ± 0.25	
	1 年 1 年 3 日		Ir = 70mA		3.1 ±0.25	
Forward	Current	ÎF	$V_F = 0.2$.20 max.		μΑ

^{*}Measurement within 3 sec.

■ GRAPH CHARACTERISTICS

OUTLINE

EXAMPLE OF APPLICATION

