Modul převodníku TTL na CAN - TTLCAN01B

Jakub Kákona, kaklik@mlab.cz

2. října 2016

Abstrakt

Modul je určen pro připojení procesorových modulů na fyzickou vrstvu sběrnice CAN.

Obsah

1	Technické parametry		
2	Popis konstrukce2.1 Zapojení2.2 Odrušení		
3	Výroba a testování 3.1 Osazení	5	
4	Programové vybavení	6	

1 Technické parametry

Parametr	Hodnota	Poznámka
Napájecí napětí	+5V	30 mA
Pracovní napětí vstupů	$do \pm 5V$	
Maximální budící proud výstupů	$\max 60 \text{ mA}$	

2 Popis konstrukce

2.1 Zapojení

Modul obsahuje základní ochranu proti přepěťovým špičkám a terminační rezistor který lze juperem odpojit, což je vhodné u modulů, které jsou zapojeny uprostřed sběrnice. Datové vývody jsou vyvedeny na hřebínky ve standardní konfiguraci MLAB, která je vhodná pro kratší mezimodulové spoje. V případě potřeby použití modulu na delší spoj (desítky metrů) je vhodné k modulu přidat ochranné transily pro zvýšení odolnosti proti přepětí. To lze udělat připojením konverzního modulu s konektorem RJ45. Pak lze použít standardní UTP patch kabely, které jsou vhodné pro vedení na delší vzdálenosti.

2.2 Odrušení

Vyzařování je v případě modulu značně potlačeno differenční fyzickou vrstvou sběrnice. K její správné funkci je ale potřeba využívat kroucených párů. Pro vedení signálů CAN jsou proto vhodné například UTP kabely. Kde signály CAN jsou vedeny po jednom differenčním páru.

3 Výroba a testování

Modul se testuje optickou kontrolou spojů a následným připojením na laboratorní zdroj s omezením proudu. Dále by po připojení dvou modulů k USBRS23201B a nastavení jednoho modulu na příjem a druhý na vysílání mělo být možné posílat znaky. Podrobněji je tento testovací postup popsán na wiki [1].

3.1 Osazení

Modul se osazuje standardním způsobem požívaným pro SMD součástky.

Obrázek 1: Osazovací plán horní a spodní strany plošného spoje

Počet	Označení	Тур	Pouzdro
1	C1	C0805	1uF
1	C2	C0805	100 nF
1	D3	SMA	M4
1	J1	JUMP2	Terminator
1	J2	JUMP2X5	JUMP2X5
4	J3,J5,J6,J7	JUMP2X1	JUMP2X1
1	J4	JUMP2X3	JUMP2X3
2	R1,R2	R1206	10
1	R3	R0805	10k
1	R4	R1206	120
1	U2	SO8 ₋ 150	TJA1050T

Tabulka 1: Seznam součástek osazovaných na desku plošného spoje.

4 Programové vybavení

Samotný modul pro svoje fungování nepotřebuje speciální firmware. Lze jej provozovat i na jiných protokolech, než CAN. Modul pouze vytváří fyzickou vrstvu této sběrnice.

Reference

[1] TTLCAN MLAB wiki Převodník úrovní TTL a CAN TTLCAN01B