MATH 416 Abstract Linear Algebra

Week 7 - Homework 6

Assigned: Fri. Oct. 10, 2025

Due: Fri. Oct. 17, 2025 (by 8pm)

Reminder: I encourage you to work together and use resources as needed. Please remember to state who you collaborated with and what resources you used.

Exercise 1 (7 points): Basis change matrices

Let $V = \mathbb{R}^3$, and consider the standard basis $S = \{e_1, e_2, e_3\}$ and the bases $\mathcal{B} = \{v_1, v_2, v_3\}$ and $\mathcal{B}' = \{w_1, w_2, w_3\}$ with

$$v_1 = (1,1,1)^T$$
 $v_2 = (1,-1,0)^T$ $v_3 = (1,0,1)^T$ $w_1 = (1,0,1)^T$ $w_2 = (1,-1,1)^T$ $w_3 = (1,1,0)^T$.

- (i) (2 points) Compute $A = \mathcal{M}(I_V)_{\mathcal{B},\mathcal{S}}$ and $B = \mathcal{M}(I_V)_{\mathcal{S},\mathcal{B}}$ and verify that $B = A^{-1}$.
- (ii) (2 points) Compute $C = \mathcal{M}(I_V)_{\mathcal{B}',\mathcal{S}}$ and $D = \mathcal{M}(I_V)_{\mathcal{S},\mathcal{B}'}$ and verify that $D = C^{-1}$.
- (iii) (2 points) Compute $E = \mathcal{M}(I_V)_{\mathcal{B},\mathcal{B}'}$ and $F = \mathcal{M}(I_V)_{\mathcal{B}',\mathcal{B}}$ and verify that $F = E^{-1}$.
- (iv) (1 point) What is the relationship between $\mathcal{M}(I_V)_{\mathcal{B},\mathcal{B}'}$, $\mathcal{M}(I_V)_{\mathcal{S},\mathcal{B}'}$, and $\mathcal{M}(I_V)_{\mathcal{B},\mathcal{S}}$?

Exercise 2 (3 points): Linear maps as matrices

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map defined by

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} 2x - 3y \\ x + y + z \\ 3y - z \end{pmatrix},$$

and let S, B, B' be the bases from Exercise 1.

(i) (2 points) Determine $\mathcal{M}(T)_{\mathcal{S},\mathcal{S}}$ and $\mathcal{M}(T)_{\mathcal{B},\mathcal{B}'}$ using the definition of the matrix representation of a linear map.

1

(ii) (1 point) Verify that $\mathcal{M}(T)_{\mathcal{B},\mathcal{B}'} = \mathcal{M}(I_V)_{\mathcal{S},\mathcal{B}'} \mathcal{M}(T)_{\mathcal{S},\mathcal{S}} \mathcal{M}(I_V)_{\mathcal{B},\mathcal{S}}$.

Exercise 3 (5 points): Reverse Triangle Inequality

For this problem, let $w, z \in \mathbb{C}$. And recall that \bar{z} denotes the complex conjugate of z.

(i) (1 point) Prove that $|\text{Re}[z]| \le |z|$ and $|\text{Im}[z]| \le |z|$.

- (ii) (1 point) Prove that |zw| = |z||w|.
- (iii) (3 points) Prove the reverse triangle inequality

$$||w| - |z|| \le |w - z|,\tag{1}$$

for all $w, z \in \mathbb{C}$.

Hint: see page 121 of Axler or Lecture 17 notes for a proof of the standard triangle inequality.