Review of the last lecture Conditional probabilities Bayes' Rule Random variables

Week 2: Conditional probabilities, Bayes rules, Random variables

Yilin

Table of contents

- Review of the last lecture
- 2 Conditional probabilities
 - Independence of events
 - Law of total probability and Bayes' rule
- 3 Bayes' Rule
- Random variables
 - Definitions and examples
 - Probabilities Associated to Random Variables
 - Discrete Random Variables

Permutations

- A permutation of a set is an ordered arrangement of its elements.
- An **r-permutation** of S an ordered selection of r elements from S (with no repetitions allowed).
 - These are r-tuples (a_1, \ldots, a_r) such that a_i 's are pairwise distinct and $a_i \in S$ for all i.
 - If |S| = n, then an n-permutation is a permutation.
- The number of r-permutations of a set of size n is

$$P(n,r) = \frac{n!}{(n-r)!}.$$

The number of permutations of a set of size n is P(n, n) = n!

Combinations

order doesn't matter.

- An **r-combination** of a set S is a subset of size r of S.
- The number of r-combinations of a set of size n is

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}.$$

Conditional probability

Events A and B with P(B) > 0. The **conditional probability of** $\bf A$ given $\bf B$, denoted P(A|B), is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Independent events

ullet Two events A and B are **independent** if and only if

$$P(A \cap B) = P(A)P(B). \tag{1}$$

• If P(A) > 0 and P(B) > 0, (1) is equivalent to either

$$\begin{cases}
P(A|B) = P(A) \text{ or} \\
P(B|A) = P(B).
\end{cases}$$
(2)

• To prove the independence of A and B, we only need to prove one of the equations (1) or (2) or (3).

Explanation of Independent Events

- The independence of A and B means "the information that B occurs does not affect the probability that A occurs, and vice versa".
- Remark: Do not use any other definitions of independence such as "A and B have no influence on each other" or "A and B are disjoint". They are simply incorrect.

Question 1

Let A and B be disjoint events. Are A and B independent? If the answer is not, find a counterexample.

Solution.

$$P(A) = P(B) = \frac{1}{2}$$
 $P(A \cap B) = P(\phi) = 0$
 $P(A)P(B) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$
 $P(A \cap B) \neq P(A)P(B)$

A and B are dependent.

Example 1

A fair dice is rolled two times.

 E_1 : the 1st rol**f** gives 1.

 E_2 : the 2nd rold gives 1.

Are E_1 and E_2 independent events?

Solution.

P(E1(1E2) = P(E1) P(E2) = 36 E1 &E2 are independent events. A number is chosen at random from $S = \{1, 2, \dots, 9\}$.

A: the number is a prime.

B: the number is smaller than 5. $\beta = \{1,2,3,4\}$

Are A and B independent?

Solution.
$$P(A) = \frac{4}{9}$$
.
 $P(B) = \frac{4}{9}$
 $P(A \cap B) = \frac{2}{9}$

P(ANB) + P(A)P(B)

A and B are not independent.

Multiplication rule for conditional probability

Lemma 1. The following are multiplication rules for conditional probability.

a.
$$P(A\cap B)=P(A)P(B|A).$$
 b.
$$P(A\cap B\cap C)=P(A)P(B|A)P(C|A\cap B).$$
 PLADB

Example 3 (Tutorial 1 Question 4)

You have a flight from Amsterdam to Sydney with a stopover in Dubai. The probabilities that a luggage is put on the wrong plane at the different airports are

Amsterdam : 0.05, Dubai : 0.03.

What is the probability that your luggage does not reach Sydney with you?

Example 3 solution

have luggage in Sydney
don't have luggage in Sydney

Exercise 2

You have a flight from Amsterdam to Sydney with stopovers in Dubai and Singapore. The probabilities that a luggage is put on the wrong plane at the different airports are

Amsterdam : 0.05, Dubai : 0.03, Singapore : 0.01.

What is the probability that your luggage does not reach Sydney with you?

Exercise 2 solution

$$1 - (1-0.05) (1-0.03) (1-0.01)$$

$$= 1 - (0.95) (0.97) (0.99)$$

$$= 1 - 0.9123 \approx 8.77\%.$$

Partition of a set

Let A be a set. The sets A_1, \ldots, A_n is called a **partition** of A if

- (i) $A_i \subset A$ for any i,
- (ii) A_i 's are pairwise disjoint, and
- $(iii) \cup_{i=1}^n A_i = A.$

For examples:

• A and A^c is a partition of Ω . $AUA^c = \Omega$

• $\{1\}, \{2\}, \{3\}$ is a partition of $\{1, 2, 3\}$.

Law of total probability

Theorem 1. Let P be a probability measure on Ω . Assume that B_1, \ldots, B_n is a partition of Ω . Then for any event A, we have

$$P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i).$$
 (4)

(ANB₁) U (ANB₂) U (ANB₃)
= P(AIB)P(B₁) + P(AIB)P(B₂)
+ P(AIB₃)P(B₃)

Corollary of Theorem 1

Corollary 1. Let E and F be events in the sample space Ω . Then

$$P(F) = P(F|E)P(E) + P(F|E^c)P(E^c).$$

Proof.

Example 4

P(A)

One in 100,000 people has a rare disease for which there is a fairly accurate diagnostic test. This test is correct 99.0% of the time P(B|A) when given to a person selected at random who has the disease, or and correct 99.5% of the time when given to a person selected at random who does not have the disease. Find P(B|A) = 0.995

- the disease? (a) The probability that a person who tests positive actually has the disease?
- (b) The probability that a person who tests negative does not have the disease?

Example 4 Solution

A=event that a randomly selected person has the disease.

B=event that a randomly selected person tests positive.

Need to compute P(A|B) and $P(A^c|B^c)$.

Need to compute
$$P(A|B)$$
 and $P(A^c|B^c)$.

A: has the disease

B: test positive

$$P(B|A) P(A)$$

$$P(B|A) P(A)$$

$$P(B)_{\times}$$

$$P(B|A) P(A)$$

$$P(B)_{\times}$$

$$P(B)_{\times}$$

$$P(B)_{\times}$$

B: test negative.

$$\frac{1}{100,000} \times 0.99$$

$$\approx 0.00198$$

Example 4 Continued

Bayes' Rule (Simplified Version)

Theorem 2. Events E, F with P(E) > 0, P(F) > 0. Then

$$P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^c)P(F^c)} \cdot \leftarrow P(E)$$

Proof. Idea: Express $P(E \cap F)$ in two different ways

$$P(F|E)P(E) = P(E|F)P(F)$$

$$P(F|E) = P(E|F) P(F)$$

$$P(E|F) = P(E|F) P(F)$$

Bayes' Rule General

Theorem 3. F_1, F_2, \ldots, F_n is a partition of Ω and E is an event. Assume P(E) > 0 and $P(F_i) > 0$ for $i = 1, \ldots, n$. Then for any $k \in \{1, \ldots, n\}$, we have

$$P(F_k|E) = \frac{P(E|F_k)P(F_k)}{\sum_{i=1}^{n} P(E|F_i)P(F_i)}.$$

Interpretation of Bayes' Rule

$$P(F_k|E) = \frac{P(E|F_k)P(F_k)}{\sum_{i=1}^{n} P(E|F_i)P(F_i)}.$$

- F_i 's are possible cases for the occurrence of E.
- The Bayes' formula computes the probability that F_k caused E, given that E occurred.

Example 5

A factory uses 3 machines M_1, M_2, M_3 to produce certain items.

- M_1 produces 50% of the items, of which 3% are defective.
- M_2 produces 30% of the items, of which 4% are defective.
- M_3 produces 20% of the items, of which 5% are defective.

Suppose that a defective item is found. What is the probability that it came from M_2 ?

Example 5 Solution

 B_1, B_2, B_3 are events that a given item comes from M_1, M_2, M_3 .

A is the event that a given item is defective. Compute $P(B_2|A)$.

$$P(B_2|A) = \frac{P(A|B_2)P(B_2)}{P(A)} = \frac{(6.3)\cdot(6.04)}{0.037} = \frac{32\%}{0.037}$$

$$P(A) = P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + P(B_3)P(A|B_3)$$

= $(0.5)(0.03) + (0.3)(0.04) + (0.2)(0.05) = 0.037$

Example 5 Continued

Example 6

A coin is thrown three times

$$\Omega = \{\text{hhh, hht, htt, hth, ttt, tth, thh, tht}\}$$

- Usually we are not interested in the whole Ω (too complex), but only extract information of interests, for examples,
 - the total number of heads, or
 - the total number of tails, or
 - the number of heads minus the number of tails.
- Each of these quantities is a random variable.

Random Variables

ullet A **Random Variable** on the sample space Ω is a function

$$X:\Omega\to\mathbb{R},$$

that is, X assigns a real number to each possible outcome.

ullet The set of possible values of X is

$$X(\Omega) = \{X(w) : w \in \Omega\}.$$

• Capital letters X, Y, Z, \ldots denote random variables. Small letters x, y, z, \ldots denote possible values of random variables.

Example 7

• X = # heads in 3 coin tosses.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

ullet X is a function $X:\Omega \to \mathbb{R}$ defined as follows

$$X(\mathsf{HHH}) = 3, \ X(\mathsf{HHT}) = X(\mathsf{HTH}) = X(\mathsf{THH}) = 2,$$

$$X(\mathsf{HTT}) = X(\mathsf{THT}) = X(\mathsf{TTH}) = 1, \ X(\mathsf{TTT}) = 0.$$

• The set of possible values of X is $\{0, 1, 2, 3\}$.

Exercise 3

Experiment: Roll a dice 5 times. Write out the sample space Ω and a few examples of random variables on Ω .

$$S_{2} = \{(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{6}), \alpha_{i} \in \{1, 2, 3, 4, 5, 6\}\}.$$

Exercise 3 solution

Example 3 # of 6.
$$X = \{0, 1, 2, 3, 4, 5\}$$

Sum of all 5 numbers. "range"

 $X = \{5, \dots, 30\}$

Probability measure - Recap

Probability measure P on Ω :

(i)
$$P(\Omega) = 1$$

(ii)
$$P(A) \ge 0$$
 for any $A \subset \Omega$

(iii)
$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$
 for pairwise disjoint events $A_1, A_2, \dots, A_n, \dots$

Common Probabilities of Interest

 $S \subset \mathbb{R}$ and $x \in \mathbb{R}$. Several common probabilities of interest are

- **1** $P(X = x) = P(\{w \in \Omega : X(w) = x\}).$
- **2** $P(X \in S) = P(\{w \in \Omega : X(w) \in S\}).$
- **3** The Cumulative Distribution Function (CDF) F of X

$$F(x) = P(X \le x).$$

X=# number of heads in 3 consecutive fair-coin tosses. Find $P(X=3), P(X\leq 1)$ and $P(X\neq 2).$

Solution.

$$P(X=3) = \frac{1}{8}$$
 $P(X=2) = \frac{3}{8}$
 $P(X=1) = \frac{3}{8}$
 $P(X=0) = \frac{1}{8}$

$$P(X \le 1) = P(X = 0) + P(X = 1)$$

= $\frac{1}{8} + \frac{1}{8} = \frac{1}{2}$
 $P(X \ne 2) = 1 - P(X = 2) = 1 - \frac{1}{8} = \frac{1}{8}$

Example 9

P(H)=P; P(T)= I-P

 $p \in [0,1]$. A calibrated coin has chance of landing head is p.

X= number of coin tosses until a head comes up. Given $n\in\mathbb{Z}^+$.

Find
$$P(X = n)$$
 and $P(X \le n)$.

Solution.

olution.

P(X = n) and
$$P(X \le n)$$
.

P(X=n) = $(1-P)^{n-1}P$

P(X=n) = $P + (1-P)P + (1-P)^{n-1}P$

= $\frac{P(1-(1-P)^n)}{1-(1-P)} = 1-(1-P)^n$

 $S \subset \mathbb{R}$ is **Countable** if there is an order to list all elements of S.

- Any finite subset $S = \{a_1, a_2, \dots, a_n\}$ of \mathbb{R} is countable.
- $S = \mathbb{N}$ is countable: $S = \{0, 1, 2, 3, ... \}$.
- $S=\mathbb{Q}^+$, the set of positive rational numbers, is countable. Its elements can be listed as $\frac{a}{b}$ with $a+b\in\{2,3,4,\dots\}$:

$$\frac{1}{1}$$
, $\frac{1}{2}$, $\frac{2}{1}$, $\frac{1}{3}$, $\frac{2}{2}$, $\frac{3}{1}$, $\frac{1}{4}$, $\frac{2}{3}$, $\frac{3}{2}$, $\frac{4}{1}$, ...

Discrete Random Variable

A random variable $X:\Omega\to\mathbb{R}$ is **discrete** if it takes on only countably many values, that is, the set of possible values of X, $X(\Omega)=\{X(w):w\in\Omega\}$, is countable.

Examples of Discrete Random Variables

- X= number of heads in 3 coin tosses $X(\Omega)=\{0,1,2,3\}$ is countable.
- X= number of coin tosses until a head comes up $X(\Omega)=\mathbb{N}$ is countable.
- **Remark**: \mathbb{R} is not countable. The proof is beyond the scope of this course. You can *use this property without proof*.

Probability Mass Function (PMF)

The **Probability Mass Function (PMF)** of a discrete random variable X is a function $p:\mathbb{R} \to [0,1]$ defined by

$$p(x) = P(X = x).$$

$$P(X=3) = \frac{1}{8}$$
.
 $P(X=2) = \frac{3}{8}$

$$P(x=2) = \frac{3}{8}$$

Lemma 2. If $X:\Omega\to R$ is a discrete random variable with PMF p(x). Then

- (a) p(x) = 0 for any $x \notin X(\Omega)$.
- (b) $\sum_{x \in X(\Omega)} p(x) = 1$.

Example 10

• X=# heads in 3 independent fair-coin tosses. The set of possible values of X is $\{0,1,2,3\}$ and

$$p(0) = P(X = 0) = P(\{\mathsf{TTT}\}) = \frac{1}{8},$$

$$p(1) = P(X = 1) = P(\{\mathsf{HTT},\mathsf{THT},\mathsf{TTH}\}) = \frac{3}{8},$$

$$p(2) = P(X = 2) = P(\{\mathsf{HHT},\mathsf{HTH},\mathsf{THH}\}) = \frac{3}{8},$$

$$p(3) = P(X = 3) = P(\{\mathsf{HHH}\}) = \frac{1}{8}.$$

•
$$p(0) + p(1) + p(2) + p(3) = 1$$
.

Example 11

X=# independent coin tosses until a head comes up. The set of fair coin. P(H)=P(T)===

all possible values for X is \mathbb{Z}^+ . So

•
$$p(x) = (\frac{1}{2})^x, x \in \mathbb{Z}^+$$
 and $p(x) = 0$ otherwise.

We have

$$\sum_{x \in \mathbb{Z}^+} p(x) = \sum_{x=1}^{\infty} \frac{1}{2^x} = \lim_{n \to \infty} \sum_{x=1}^n \left(\frac{1}{2}\right)^n$$

 $= \lim_{n \to \infty} (1/2) \cdot \left(1 + (1/2) + \dots + (1/2)^{n-1}\right)$

$$\frac{a}{1-r} = \lim_{n \to \infty} \frac{1}{2} \cdot \frac{1 - (1/2)^n}{1 - 1/2}$$

$$= \frac{1}{2} \cdot \frac{1 - 0}{1/2} = 1.$$

Cumulative Distribution Function (CDF)

The Cumulative Distribution Function (CDF) of a random

variable $X:\Omega\to\mathbb{R}$ is a function $F:\mathbb{R}\to[0,1]$ defined by:

$$F(x) = P(X \le x), \ x \in \mathbb{R}.$$

Lemma 3. F is a nondecreasing function, that is, $F(a) \leq F(b)$ whenever $a \leq b$.

Proof. For $a \leq b$ we have

$$F(b) = P(X \le b)$$

$$= P(X \le a) + P(a < X \le b)$$

$$\geq P(X \le a)$$

$$= F(a).$$

Graphs of CDF and PMF

X = number of heads in 3 coin tosses

Graphs of CDF and PMF

X = number of heads in 100 coin tosses