ООО «Автоматика» ОКП 42 2100 ТУ 4221-009-64267321-2015 Госреестр № 64439-16

ЩИТОВЫЕ ТРЕХФАЗНЫЕ МУЛЬТИМЕТРЫ ОМІХ Р99-М-3-0.5

Руководство по эксплуатации v. 2020-01-12 KOP-DSD-KMK-KLM-DVB-VAK

Omix P99-M-3-0.5 – трехфазные мультифункциональные приборы, измеряющие фазное напряжение, линейное напряжение, фазную силу тока, суммарную силу тока, суммарную активную, реактивную и полную мощность, частоту тока и коэффициент мощности. Приборы выпускаются в четырех модификациях:

- Р99-М-3-0.5 базовая версия;
- P99-M-3-0.5-RS485 с модулем передачи через RS-485 по протоколу Modbus RTU;
- P99-M-3-0.5-4K-RS485 с 4 релейными выходами ~1 A, 240 B;
- P99-M-3-0.5-4I420-RS485 с 4 аналоговыми выходами 0(4)...20 мA, 0(1)...5 В. ОСОБЕННОСТИ
- Два импульсных выхода для активной и реактивной энергии.
- Возможность подключения через трансформаторы тока и напряжения.
- Класс точности 0.5.
- Может выдерживать длительные перегрузки до 6 A и 480 B.
- Функция max/min, среднее.
- Щитовой корпус.

ЭЛЕМЕНТЫ ПРИБОРА

- 1. Индикатор измерения величины ×10³.
- 2. Индикатор измерения величины ×10⁶.
- 3. Дисплей 1 фазы.
- 4. Дисплей 2 фазы.
- 5. Дисплей 3 фазы.
- 6. Дисплей средних величин.
- 7. Дисплей суммарных величин.
- 8. Индикаторы активности фаз.
- 9. Индикаторы текущих величин для отображения (описание в таблице 1).
- Нижняя кнопка **④** переключение режимов отображения на дисплее 7.
- | X10' |

Рис. 1 – Управляющие элементы

- Индикатор режима отображения средней величины по установленному циклу измерений.
- 12. Индикатор режима отображения минимальных величин.
- 13. Индикатор режима отображения максимальных величин.
- 14. Кнопка включения режимов 11, 12 и 13.
- 15. Кнопка . Используется в режиме программирования.
- 16. Кнопка . Используется в режиме программирования.
- 17. Верхняя кнопка – переключение режимов отображения на дисплее 6.

(a) (c) [w]

Таблица 1. Описание индикаторов величин прибора (поз. 9 рис. 1)

Индикатор	Описание	
V_{L-N}	Фазное напряжение	
Α	Сила тока по каждой фазе	
ΣΑ	Суммарная сила тока	
W	Активная мощность по каждой фазе	
var	Реактивная мощность по каждой фазе	
VA	Полная мощность по каждой фазе	
cosφ	Коэффициент мощности по каждой фазе	
Wh	Суммарная активная энергия	
varh	Суммарная реактивная энергия	
V _{L-L}	Линейное напряжение	
Hz	Частота тока	
Σw	Суммарная активная мощность	
∑var	Суммарная реактивная мощность	
Σνα	Суммарная полная мощность	

УСТАНОВКА ПРИБОРА

- 1. Вырежьте в щите прямоугольное отверстие размером 92×92 мм.
- 2. Установите прибор в отверстие.
- 3. Закрепите прибор в щите с помощью двух креплений (входят в комплектацию прибора) таким образом, чтобы щит оказался между передней панелью и креплением (рис. 2).

Рис. 2 – Установка прибора

Рис. 3 – Размеры прибора

МЕРЫ ПРЕДОСТОРОЖНОСТИ

- 1. Перед подключением прибора удостоверьтесь, что измеряемая цепь обесточена.
- 2. Не роняйте прибор и не подвергайте его ударам.
- 3. В помещении, где установлен прибор, окружающий воздух не должен содержать токопроводящую пыль и взрывоопасные газы.

ПОДКЛЮЧЕНИЕ ПРИБОРА

Подключите прибор к сети в соответствии со схемой подключения (рис. 4–7). Для подключения напрямую и для подключения трансформаторов тока и напряжения воспользуйтесь соответствующей схемой (рис. 6–13).

Puc. 4 – Схема подключения **Р99-М-3-0.5**

Puc. 5 – Схема подключения **P99-M-3-0.5-RS485**

Рис. 6 – Схема подключения **Р99-М-3-0.5-4I420-RS485**

Puc. 7 – Схема подключения **P99-M-3-0.5-4K-RS485**

Рис. 8 – Подключение напряжения напрямую (трехфазная цепь с нейтралью)

Рис. 9 – Подключение трансформатора напряжения (трехфазная цепь с нейтралью)

Рис. 10 – Подключение напряжения напрямую (трехфазная цепь без нейтрали)

Рис. 11 — Подключение трансформатора напряжения (трехфазная цепь без нейтрали)

Рис. 12 – Подключение тока напрямую

Рис. 13 – Подключение трансформатора тока

Рис. 14 – Задняя панель прибора **Р99-М-3-0.5**

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ ПО ПОДКЛЮЧЕНИЮ

Диапазон питания данного прибора ≅85...264 В. При использовании источника питания переменного тока во избежание повреждения прибора рекомендуется использовать предохранитель на 1 А.

Если напряжение на измерительном входе выше допустимого, то рекомендуется использовать в цепи трансформатор напряжения и предохранитель на 1 А.

Если сила тока на измерительном входе выше допустимой, то рекомендуется использовать в цепи трансформатор тока.

Импульсный выход состоит из трех клемм: **P+** – выход активной энергии, **Q+** – выход реактивной энергии, **P-Q-** – общий выход активной и реактивной энергии. Параметры выхода: оптический выход связи с открытым коллектором, напряжение с открытым коллектором $Vcc \le 48~B$, сила тока $Iz \le 50~MA$. Выходные данные соответствуют вторичным показаниям. Для измерения первичной энергии нужно установить трансформатор напряжения и трансформатор тока.

Цифровой вход DI1...DI4 - это 1...4-канальный порт с сухим контактом, внутреннее питание прибора +5 B.

Прибор поддерживает передачу данных через интерфейс **RS-485** посредством протокола **Modbus RTU**. На один канал может быть подключено до 32 приборов. У каждого прибора должен быть свой индивидуальный адрес в схеме. Подключать приборы следует экранированной витой парой. Подключение рекомендуется располагать вдалеке от высоковольтных проводов или других объектов с высоким электромагнитным излучением. Длина провода не должна превышать 1200 метров.

импульсных выходов

ЗАМЕЧАНИЯ ПО ИЗМЕРЕНИЮ ЭЛЕКТРОЭНЕРГИИ

Старт измерений электроэнергии производится по состоянию номинального напряжения, опорной частоты и коэффициента мощности. Когда рабочий ток нагрузки составляет 1 мА, прибор начинает длительное измерение электроэнергии.

Если напряжение превысит номинальное на 15% или в цепи не будет тока, прибор прекратит измерение электроэнергии, и импульсный выход отключится.

РАБОТА С ПРИБОРОМ

- 1. При включении питания на индикаторе прибора появится версия прошивки (V. 17.1), а потом прибор сразу перейдет в режим измерения.
- При отображении суммарной силы тока ∑А ее величина появляется на 3-м индикаторе. 1-й индикатор используется для индикации состояния релейного входа, а 2-й – для индикации релейного выхода.
- 4. При отображении активной или реактивной энергии ее величина отображается на 2-м и 3-м индикаторах: на 2-м отображаются разряды ве-

 $Puc.\ 16 - Пример$ работы прибора. Pежим отображения силы тока. $I_1 = 5,000\ A,\ I_2 = 5,001\ A,\ I_3 = 4,999\ A$

4-му, 3-му, 2-му и 1-му каналу

Рис. 17 — Пример работы прибора. Режим отображения суммарной силы тока. Суммарная сила тока равна 14,99 А

личины от десятков тысяч до единиц миллионов, а на 3-м – разряды величины от единиц до тысяч. На 1-м индикаторе отображаются знак и тип энергии.

5. Для отображения на 4-м и 5-м индикаторах можно выбрать отдельные величины. Нажимайте кнопки рядом с этими индикаторами для переключения. Для 4-го: среднее значение фазного напряжения (VL-N), среднее значение линейного напряжения (VL-L), частота тока (Hz). Для 5-го: суммарная активная мощность (∑W), суммарная реактивная мощность (∑VA).

«1» означает, что электроэнергия положительная. Если бы энергия была отрицательной, то появилось бы «Е» «AE» - Active Energy 01201 (Активная энергия) O11 O12 O 12 O VL-N k O OA MO OZA ÓΣA «rE» – Reactive Energy Ow (Реактивная энергия) Ovar MO Реактивная энергия 0000 равна 23,596 кВАР·ч 5 Активная энергия равна 23,596 кВт-ч

Рис. 18 – Примеры работы прибора. Режимы отображения энергии.

 Также для любой выбранной величины можно установить отображение максимального, минимального или среднего значения. Для этого нажмите кнопку Set ♠.

Рис. 19 — Пример работы прибора. Режим отображения среднего фазного напряжения

РЕЖИМ ПРОГРАММИРОВАНИЯ

Для входа в меню настройки входных сигналов и параметров RS-485 нажмите и удерживайте кнопку **Set** $\textcircled{\blacksquare}$ в течение 2 секунд. Для входа в меню настройки выходных сигналов нажмите и удерживайте верхнюю кнопку $\textcircled{\blacksquare}$ в течение 2 секунд. Для входа в меню настройки сброса и очистки нажмите и удерживайте

Рис. 20 — Пример работы прибора. Режим отображения суммарной активной мощности

кнопку **③** в течение 2 секунд.Для переключения и сохранения параметров нажимайте кнопку **Set ⑤**. Для изменения числовых значений параметров нажимайте кнопки: **⑦** – для уменьшения значения, **⑥** – для увеличения значения, нижняя **⑥** – для изменения положения курсора.

Для выхода из режима программирования до завершения полного цикла настройки нажмите и удерживайте кнопку **Set (** в течение 2 секунд.

Важно! По умолчанию пароль для входа в режим программирования не задан. Пользователь может установить пароль в режиме программирования сод Е. Если пароль был изменен пользователем, а потом забыт, универсальный пароль для входа в режим программирования – 5643.

Рис. 21 — Режим отображения минимальных значений силы тока.

Минимальная сила тока на 1 фазе = 2,104 A Минимальная сила тока на 2 фазе = 2,108 A Минимальная сила тока на 3 фазе = 2,107 A Минимальная суммарная реактивная мощность = 345 BAP

Рис. 22 — Режим отображения среднего значения суммарной силы тока.
Средняя суммарная сила тока = 15,09 кА
Средняя суммарная активная мощность = 3,430 кВт

Таблица 2. Меню настройки входных сигналов и параметров RS-485 (вход − Set ♠)

Код	Параметр	Диапазон	Знач. по умолч.	Описание
ĹŁ	Коэффициент трансформации по каналам тока	19999	1	Формула расчета: $Ct=I_1/I_2$ Если нет трансформатора, установите =1
nEŁ	Выбор типа цепи	n3.3, n3.4	n3.4	n3.3 – цепь без нейтрали, n3.4 – цепь с нейтралью
PŁ	Коэффициент трансформации по каналам напряжения	13000	1	Формула расчета: $Pt=U_1/U_2$ Если нет трансформатора, установите =1
LŁ	Запуск режима max/min	oFF, rSt,	cont	off – ручной запуск после подачи питания, rSt – автоматический сброс и запуск через 1 минуту после подачи питания, cont – автоматический старт с исходными значениями через 1 минуту после подачи питания.
d.Ł	Длительность цикла вычисления среднего значения величины	560 (мин)	15	Задание значения длительности цикла вычисления среднего значения величины
Addr	Сетевой адрес	1247	1	Уникальный адрес для обмена данными по RS-485

Код	Параметр	Диапазон	Знач. по умолч.	Описание
		1200		1200 бит/с,
		2400		2400 бит/с,
bRud	Скорость обмена	4800	9600	4800 бит/с,
		9600		9600 бит/с,
		19200		19 200 бит/с
				n 8.2 – 8 бит данных, 2 стоп-
				бита, контроль четности выкл.;
	Формат отправки по протоколу Modbus RTU	n 8.2 n 8.1 o 8.1 E 8.1	n 8.2	n 8.1 – 8 бит данных, 1 стоп-
Par				бит, контроль четности выкл.;
rar				о 8.1 – 8 бит данных, 1 стоп-
				бит, контроль по нечетности;
				Е 8.1 – 8 бит данных, 1 стоп-
				бит, контроль по четности
				Установка кода для входа
				в режим программирования.
				Если установлен 0
codE	Пароль	09999	0	(по умолчанию) – разрешен
	•			вход в меню настройки.
				Универсальный пароль для
				входа — 5643

Таблица 3. Меню настройки выходных сигналов (вход – верхняя кнопка ூ)

Код	Параметр*	Диапазон	Знач. по умолч.	Описание
ЕНІ	Характеристика сигнализации или передачи** по каналу 1	См. таблицу 5	UA	Выбор характеристики сигнализации или передачи
LI	Значения нижней уставки по каналу 1	-1999 9999	0	Задание значения нижней уставки
НІ	Значения верхней уставки по каналу 1	-1999 9999	220,0	Задание значения верхней уставки
dF I	Гистерезис сигнализации по уставкам по каналу 1	09999	0,5	Зона нечувствительности возле уставок
dL I	Задержка включения сигнализации	03000 с		Время задержки включения реле при возникновении аварийной ситуации.
5c /	Коррекция выходного сигнала по каналу 1	-1,000 1,000	0	Величина добавляется к вычисленному значению выходного сигнала
SdŁ	Выбор диапазона выходного сигнала	0-20 4-20 20-0 20-4	4-20	020 мА, 420 мА, 200 мА (обратная передача), 204 мА (обратная передача)

^{*} Приведенная таблица описывает настройку выходных сигналов для канала 1. Настройка для каналов 2—4 проводится по тому же алгоритму.

^{**} Для прибора P99-M-3-0.5-4I420-RS485 — настройка передачи, для прибора P99-M-3-0.5-4K-RS485 — сигнализация (срабатывание выходных реле).

Таблица 4. Меню настройки выходных сигналов (вход — \$)

Код	Параметр	Диапазон	Знач. по умолч.
r5Ł.L	Сброс значений max/min	Yes, no	no
[Lr.d	Очистка значений средних величин по установленному циклу измерений	Yes, no	no
ELr.E	Очистка суммарной активной и реактивной энергий	Yes, no	no

Таблица 5. Информация по вычислению прибором измеряемых величин

№	Код	Параметр
	oFF	Закрыт
1	URb	Линейное напряжение. L1–L2
2	ИЬс	Линейное напряжение. L2–L3
3	UcЯ	Линейное напряжение. L1–L3
4	UR	Фазное напряжение. 1 фаза
5	UЬ	Фазное напряжение. 2 фаза
6	Uc	Фазное напряжение. 3 фаза
7	IR	Сила тока. 1 фаза
8	Њ	Сила тока. 2 фаза
9	lc	Сила тока. 3 фаза
10	FrE9	Частота тока
11	PŁ	Суммарная активная мощность
12	9Ł	Суммарная реактивная мощность
13	SŁ	Суммарная полная мощность
14	PFŁ	Суммарный коэффициент мощности
15	PR	Активная мощность. 1 фаза

№	Код	Параметр
16	РЬ	Активная мощность. 2 фаза
17	ρ_{c}	Активная мощность. 3 фаза
18	9R	Реактивная мощность. 1 фаза
19	96	Реактивная мощность. 2 фаза
20	9c	Реактивная мощность. 3 фаза
21	SA	Полная мощность. 1 фаза
22	56	Полная мощность. 2 фаза
23	Sc	Полная мощность. 3 фаза
24	PFR	Коэффициент мощности. 1 фаза
25	РҒЬ	Коэффициент мощности. 2 фаза
26	PFc	Коэффициент мощности. 3 фаза
27	U-LL	Среднее значение линейного напряжения
28	U-LN	Среднее значение фазного напряжения
29	IŁ.	Суммарный ток
30	EA IA	Среднее значение силы тока за установленный цикл измерений. 1 фаза
31	Ед ІЬ	Среднее значение силы тока за установленный цикл измерений. 2 фаза
32	Ed Ic	Среднее значение силы тока за установленный цикл измерений. 3 фаза
33	Ed IŁ	Суммарная сила тока за установленный цикл измерений
34	EdPŁ	Суммарная активная мощность за установленный цикл измерений
35	Cd9Ł	Суммарная реактивная мощность за установленный цикл измерений
36	Ed5Ł	Суммарная полная мощность за установленный цикл измерений

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

TEATH TECKHE AATAKTEI HETHKII					
	Параметр		Значение		
I			С транс-	Погрешность	
			форматором	погрешность	
	силы тока	05 A	050 кА	$\pm 0.5\% + 1$ e.m.p.	
	напряжения	0400 B	01,2 MB	±0,576 + 1 e.m.p.	
	частоты	456	5 Гц	±0,1 Гц	
	коэффициента	0	1	10.01	
	мощности	01		±0,01	
Диапазон	активной	010 ГВт		±0,5%	
измерения	мощности				
измерения	реактивной	010 ГВАр			
	мощности				
	полной мощности	010ГВА			
	активной энергии	010 1	ГВт∙ч		
	реактивной	0 10 0	Ъλъл	±2.00/	
	энергии	010 Г	омр.ч	±2,0%	

Параметр		Значение	
	силы тока	0,001	
Дискретность	напряжения	0,1	
измерения	частоты	0,1	
	коэффициента мощности	0,001	
Импеданс	силы тока	< 20 мОм	
импеданс	напряжения	> 5 кOм/B	
Имп	VIII CHAG KOHOTAHTA	Активная: 10000 имп/кВт∙ч	
YIMII	ульсная константа	Реактивная: 10000 имп/кВАР·ч	
Ско	рость измерения	3 изм./с	
П	итание прибора	≅85264 В, 5060 Гц	
Энергог	потребление прибора	< 5 BA	
	P99-M-3-0.5-RS485	RS-485 Modbus RTU	
	P99-M-3-0.5-4K-RS485	RS-485 Modbus RTU	
Передача	1 99-W-3-0.3-4K-K3483	4 релейных выхода ~1A, 240 B	
данных		RS-485 Modbus RTU	
данных	P99-M-3-0.5-4I420-RS485	4 аналоговых выхода	
	177-14-5-0.5-41420-165465	020 мА, 420 мА (ток);	
		05 В, 15 В (напр.);	
Скорос	сть передачи данных	120019 200 бит/с	
Усло	вия эксплуатации	-10+50°C, ≤ 85%RH	
Ус	ловия хранения	-25+70°C, ≤ 85%RH	
Габаритны	е размеры (В×Ш×Г), мм	96×96×86	
Размеры врезного отверстия (В×Ш), мм		92×92	

КОМПЛЕКТАЦИЯ

Наименование	Количество
1. Прибор	1 шт.
2. Руководство по эксплуатации	1 шт.
3. Крепление	2 шт.

ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Гарантийный срок составляет 12 месяцев от даты продажи. После окончания срока действия гарантии за все работы по ремонту и техобслуживанию с пользователя взимается плата. Поставщик не несет никакой ответственности за ущерб, связанный с повреждением изделия при транспортировке, в результате некорректного использования, а также в связи с модификацией или самостоятельным ремонтом изделия пользователем.

Производитель: 000 «Автоматика» 195265, г. Санкт-Петербург, а/я 71

Поставщик: kipspb.ru

195265, г. Санкт-Петербург, а/я 70

E-mail: 327@kipspb.ru

Тел./факс: (812) 327-32-74, 928-32-74

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

При подключении прибора по RS-485 вам может быть полезна следующая информация.

Таблица 6. Формат кадра сообщения

Старт	Адрес	Код функции	Данные	Контрольная сумма	Конец
Более 3 байт	1 байт	1 байт	N байт	2 байта	Более 3 байт

Таблица 7. Функции Modbus_RTU, используемые в приборе

Код функции	Название	Описание
01H	Чтение состояния DO	Получить состояние (вкл./выкл.)
0111	тепис состояния Во	внутреннего реле
02H	Чтение состояния DI	Получить состояние (вкл./выкл.) внешнего
0211	чтение состояния Бт	переключателя
03H/04H	Чтение регистра	Считать данные с одного или нескольких
0311/0411	-пение регистра	непрерывных регистров
05H	Контроль состояния DO	Изменить состояние (вкл./выкл.)
0311	Контроль состояния ДО	внутреннего реле
06H	Запись одного регистра	Записать данные в один регистр
10H	Запись нескольких	Записать данные в несколько непрерывных
1011	регистров	регистров

Таблица 8. Адресная область меню: 03H/04H (чтение) и 06H/10H (запись)

Адрес	Код	Диапазон	Значение	Тип	Атрибут	
00Н	ĽŁ	19999	Коэффициент трансформации по каналам тока	int	Ч/3	
01H	nEŁ	01	Тип цепи (0 – без нейтрали, 1 – с нейтралью)	int	Ч/3	
02H	PŁ	13000	Коэффициент трансформациипо каналам напряжения	int	Ч/3	
03H				int int	Ч/3	
04H		Резервная ячейка				
05H		I		int	Ч/3	
06H	LŁ	02	Запуск режима max/min	int	Ч/3	
07H	d.Ł	560	Длительность цикла вычисления среднего значения величины	int	Ч/3	
08H	Addr	1247	Сетевой адрес	int	Ч/3	
09H	bRud	04	Скорость обмена	int	Ч/3	
0AH	ρ_{ar}	03	Формат отправки по протоколу Modbus RTU	int	Ч/3	
0BH	codE	09999	Пароль	int	Ч/3	
0СН	Eh I	036	Характеристика сигнализации или передачи по каналу 1	int	Ч/3	
0DH *	LI	-1999 9999	Значения нижней уставки по каналу 1	int	Ч/3	
0EH *	НΙ	-1999 9999	Значения верхней уставки по каналу 1	int	Ч/3	
0FH *	dF 1 Sc 1	0 9999 -1,000 1,000	Гистерезис сигнализации или коррекция выходного сигнала по уставкам по каналу 1	int	Ч/3	
10H	dŁ l	1030000	Задержка срабатывания сигнализации	int	Ч/3	
11H	Eh2	036	Характеристика сигнализации или передачи по каналу 2	int	Ч/3	
12H *	L2	-1999 9999	Значения нижней уставки по каналу 2	int	Ч/3	
13H *	H2	-1999 9999	Значения верхней уставки по каналу 2	int	Ч/3	
14H *	dF2	0 9999 -1,000 1,000	Гистерезис сигнализации или коррекция выходного сигнала по уставкам по каналу 2	int	Ч/3	
15H	dŁ2	1030000	Задержка срабатывания сигнализации	int	Ч/3	
16H	Eh3	036	Характеристика сигнализации или передачи по каналу 3	int	Ч/3	
17H *	L3	-1999 9999	Значения нижней уставки по каналу 3	int	Ч/3	
18H *	Н3	-1999 9999	Значения верхней уставки по каналу 3	int	Ч/3	
19H *	dF3	0 9999 -1,000 1,000	Гистерезис сигнализации или коррекция выходного сигнала по уставкам по каналу 3	int	Ч/3	
1AH	dŁ3	1030000	Задержка срабатывания сигнализации	int	Ч/3	

Продолжение таблицы 8

Адрес	Код	Диапазон	Значение	Тип	Атрибут
1BH	Енч	036	Характеристика сигнализации или передачи по каналу 4	int	Ч/3
1CH *	LY	-1999 9999	Значения нижней уставки по каналу 4	int	Ч/3
1DH *	НЧ	-1999 9999	Значения верхней уставки по каналу 4	int	Ч/3
1EH *	dFЧ	0 9999 -1,000 1,000	Гистерезис сигнализации или коррекция выходного сигнала по уставкам по каналу4	int	Ч/3
1FH	dŁЧ	1030000	Задержка срабатывания сигнализации	int	Ч/3
20H	5dŁ	01	Выбор диапазона выходного сигнала	int	Ч/3

Таблица 9. Адресная область расширенного интерфейса: 03H/04H (чтение) и 06H/10H (запись)

Адрес	Название	Описание	Тип	Атрибут
21H	Расширенный интерфейс	Для сброса и перезапуска запишите в регистр 5100 Для очистки суммарной активной и реактивной энергий запишите в регистр 5170 Для сброса значений max/min запишите в регистр 5175 Для очистки значений средних величин по установленному циклу измерений запишите в регистр 5177	int	Ч/3

Таблица 10. Адресная область измеренного значения: 03H/04H (чтение) и 10H (запись)

Адрес	Код	Значение		Атрибут
22H	UAP	Линейное напряжение. L1–L2	int	Ч
23H	Ubc	Линейное напряжение. L2–L3	int	Ч
24H	UcR	Линейное напряжение. L1–L3	int	Ч
25H	UЯ	Фазное напряжение. 1 фаза	int	Ч
26H	UЬ	Фазное напряжение. 2 фаза	int	Ч
27H	Uc	Фазное напряжение. 3 фаза	int	Ч
28H	IR.	Сила тока. 1 фаза	int	Ч
29H	IЬ	Сила тока. 2 фаза		Ч
2AH	lc	Сила тока. 3 фаза		Ч
2BH	FrE9	Частота тока	int	Ч
2CH	PŁ	Суммарная активная мощность	int	Ч
2DH	9Ł	Суммарная реактивная мощность	int	Ч
2EH	SŁ	Суммарная полная мощность		Ч
2FH	PFŁ	Суммарный коэффициент мощности	int	Ч

Адрес	Код	Значение	Тип	Атрибут
30H	PA	Активная мощность. 1 фаза	int	Ч
31H	ρЬ	Активная мощность. 2 фаза	int	Ч
32H	ρ_c	Активная мощность. 3 фаза	int	Ч
33H	98	Реактивная мощность. 1 фаза	int	Ч
34H	96	Реактивная мощность. 2 фаза	int	Ч
35H	9с	Реактивная мощность. 3 фаза	int	Ч
36H	SR	Полная мощность. 1 фаза	int	Ч
37H	56	Полная мощность. 2 фаза	int	Ч
38H	Sc.	Полная мощность. 3 фаза	int	Ч
39H	PFR	Коэффициент мощности. 1 фаза	int	Ч
3AH	РРЬ	Коэффициент мощности. 2 фаза	int	Ч
3BH	PFc	Коэффициент мощности. 3 фаза	int	Ч
3СН	U-LL	Среднее значение линейного напряжения	int	Ч
3DH	U-LN	Среднее значение фазного напряжения	int	Ч
3EH	IŁ.	Суммарный ток	int	Ч
3FH	Ed IA	Среднее значение силы тока за установленный цикл измерений. 1 фаза	int	Ч
40H	Ed Ib	Среднее значение силы тока за установленный цикл измерений. 2 фаза	int	Ч
41H	Ed Ic	Среднее значение силы тока за установленный цикл измерений. 3 фаза	int	Ч
42H	Ed IŁ	Суммарная сила тока за установленный цикл измерений		Ч
43H	CdPŁ	Суммарная активная мощность за установленный цикл измерений	int	Ч
44H	Cd9Ł	Суммарная реактивная мощность за установленный цикл измерений	int	Ч
45H	EdSŁ	Суммарная полная мощность за установленный цикл измерений	int	Ч
46H		Резервная ячейка	int	Ч
47H	Ed IR	Среднее значение силы тока за установленный цикл измерений. 1 фаза	int	Ч
48H	Ed Ib	Среднее значение силы тока за установленный цикл измерений. 2 фаза	int	Ч
49H	Ed Ic	Среднее значение силы тока за установленный цикл измерений. 3 фаза	int	Ч
4AH	Ed IŁ	Суммарная сила тока за установленный цикл измерений	int	Ч
4BH	CdPŁ	Суммарная активная мощность за установленный цикл измерений		Ч
4CH	Ed9Ł	Суммарная реактивная мощность за установленный цикл измерений	int	Ч

Адрес	Код	Значение	Тип	Атрибут
4DH	CdSŁ	Суммарная полная мощность за установленный цикл измерений	int	Ч
4EH	URmax	Максимамальное фазное напряжение. 1 фаза	int	Ч
4FH	Ubmax	Максимамальное фазное напряжение. 2 фаза	int	Ч
50H	Ucmax	Максимамальное фазное напряжение. 3 фаза	int	Ч
51H	URm∙n	Минимальное фазное напряжение. 1 фаза	int	Ч
52H	Ubmin	Минимальное фазное напряжение. 2 фаза	int	Ч
53H	Ucmin	Минимальное фазное напряжение. 3 фаза	int	Ч
54H	IAma×	Максимальная сила тока. 1 фаза	int	Ч
55H	lbmax	Максимальная сила тока. 2 фаза	int	Ч
56H	lcmax	Максимальная сила тока. 3 фаза	int	Ч
57H	18m:n	Минимальная сила тока. 1 фаза	int	Ч
58H	lbmin	Минимальная сила тока. 2 фаза	int	Ч
59H	lemin	Минимальная сила тока. 3 фаза	int	Ч
5AH	lTma×	Максимальный суммарный ток	int	Ч
5BH	l Tm:r	Минимальный суммарный ток	int	Ч
5CH 5DH	PosEpŁ	Положительная активная энергия	Dword	Ч/3
5EH 5FH	NeaEeŁ	Отрицательная активная энергия	Dword	Ч/3
60H 61H	PosEaŁ	Положительная реактивная энергия	Dword	Ч/3
62H 63H	NeaEaL	Отрицательная реактивная энергия	Dword	Ч/3

Таблица 11. Адресная область DI (внешний переключатель): 02H (чтение)

Адрес	Код	Значение	Тип	Атрибут
00H])	Сигнализация входа. Бит 0 – бит 3 отвечают соответственно за входы 1–4. «0» означает, что контакт открыт, «1» – закрыт	bit	Ч
01H	D12		bit	Ч
02H	D/3		bit	Ч
03H	ШЧ		bit	Ч

Таблица 12. Адресная область DO (внутреннее выходное реле): 01H (чтение), 05H (запись)

Адрес	Код	Значение	Тип	Атрибут
00H	10 I	Сигнализация выхода. Бит 0 – бит 3	bit	Ч/3
01H	102	отвечают соответственно за выходы 1–4. «0» означает, что контакт открыт, «1» –	bit	Ч/3
02H	1103	закрыт.	bit	Ч/3
03Н]][]4	Когда внутреннее реле используется под управлением	bit	Ч/3

Примечания:

- 1. Формат передачи фиксированная точка с двумя десятичными разрядами (разделите считанные значения на 100 для получения реальных значений).
- 2. Формат посылки: 1 старт-бит, 8 бит данных, 2 стоп-бита.
- 3. Для проверки правильности полученной информации производится верификация контрольной суммы.
- Тип данных Dword это 32-значное беззнаковое целое число с диапазоном от 0 до 4 294 967 296. Integer – это 16-значное знаковое целое число с диапазоном от −32 768 до 32 767, отрицательные числа представляются в виде дополнения.
- 5. Данные по величинам электрической сети представлены в виде 32-значного беззнакового целого числа. Старший и младший разряды занимают один адрес, старший байт идет первым, за ним младший. Чтобы получить значение, нужно умножить старший разряд на 65 536 и прибавить младший разряд.
- 6. «Ч» означает, что параметр имеет атрибут только чтение (используйте команду 03H). «Ч/З» означает, что параметр имеет атрибут чтения и записи (используйте команды 03H и 10H). Запрещено записывать в адреса, которые не имеют атрибут записи и не указаны в списке выше.
- 7. Чтобы получить реальное значение параметров, отмеченных «*», нужно разделить эти параметры: для мощности на 1, для напряжения на 10, для частоты и суммарного тока на 100, для тока и коэффициента мощности на 1000.