

Spiegel Al

Datenverarbeitung in der Technik

Gruppe 5

Leon Kranner

 ${\tt leon.kranner@st.oth-regensburg.de}$

Marco Kuner

 $\verb|marco.kuner@st.oth-regensburg.de|$

David Vollmer

david1.vollmer@st.oth-regensburg.de

Marcel Wagner

marcel.wagner@st.oth-regensburg.de

15. Juli 2024

Inhaltsverzeichnis

Ei	nleitu	ıng	3
1	Hard 1.1 1.2 1.3 1.4	dware Komponenten Auswahlkriterien Installation Konfiguration	4 4 4 4
2	Disp 2.1 2.2 2.3	Spezifikationen Installation Anpassungen 2.3.1 eventuell HTMl seite und Aufbau oder in Installation 2.3.2 Widget 1 2.3.3 Widget 2 2.3.4 Widget 3 2.3.5 Widget 4 2.3.6 Uhr Widget 2.3.7 Verkehrsinformation 2.3.8 Schlagzeilen 2.3.9 Tankstellen 2.3.10 Test Verfahren	5 5 5 5 5 5 5 6 7 9 9
3	3.1 3.2 3.3	Funktionen	10 10 10 10
•	4.1 4.2 4.3	Überblick	11 11 11
5	Ges 5.1 5.2 5.3	Algorithmen	12 12 12 12

6	Ergebnisse			
	6.1	Erreichte Ziele	13	
	6.2	Herausforderungen	13	
	6.3	Zukünftige Arbeiten	13	
St	unde	nliste	14	

Einleitung

In der Einleitung stellen wir das Projekt **Spiegel AI** vor. Wir beschreiben die Zielsetzung des Projekts, die Motivation und den allgemeinen Aufbau der Dokumentation. Zudem geben wir einen Überblick über die eingesetzte Hardware und Software sowie die geplanten Anwendungsbereiche.

Zielsetzung

Beschreiben Sie hier die Zielsetzung des Projekts.

Motivation

Erläutern Sie die Motivation hinter dem Projekt.

Überblick

Geben Sie einen Überblick über die Struktur der Dokumentation.

1 Hardware

In diesem Kapitel beschreiben wir die Hardware-Komponenten, die für das Projekt **Spiegel Al** verwendet wurden. Wir gehen auf die Auswahlkriterien, die Installation und die Konfiguration der Hardware ein.

1.1 Komponenten

Beschreiben Sie die einzelnen Hardware-Komponenten und deren Spezifikationen.

1.2 Auswahlkriterien

Erläutern Sie die Kriterien, nach denen die Hardware ausgewählt wurde.

1.3 Installation

Beschreiben Sie den Installationsprozess der Hardware.

1.4 Konfiguration

Erläutern Sie die Konfiguration der Hardware-Komponenten.

2 Display

In diesem Kapitel gehen wir auf das Display ein, das im **Spiegel Al** Projekt verwendet wird. Wir beschreiben die Spezifikationen, die Installation und die Anpassungen, die vorgenommen wurden.

2.1 Spezifikationen

Beschreiben Sie die technischen Spezifikationen des Displays.

2.2 Installation

Erläutern Sie den Prozess der Installation des Displays.

2.3 Anpassungen

Beschreiben Sie etwaige Anpassungen oder Modifikationen am Display.

- 2.3.1 eventuell HTMI seite und Aufbau oder in Installation
- 2.3.2 Widget 1
- 2.3.3 Widget 2
- 2.3.4 Widget 3
- 2.3.5 Widget 4
- 2.3.6 Uhr Widget

Erarbeitet von: Marcel Wagner

Die Implementierung des Uhrzeit Widgets für den Smart Mirror ist ein wichtiger Schritt zur Verbesserung der Funktionalität und Benutzerfreundlichkeit des Geräts. Ziel dieses Widgets ist es, die aktuelle Uhrzeit exakt und zuverlässig anzuzeigen. Wobei die Anzeige in Echtzeit aktualisiert werden muss, um stets die genaue Uhrzeit widerzuspiegeln.

Die Implementierung dieses Widgets basierte auf der Nutzung von JavaScript zur

Echtzeitaktualisierung der Uhrzeit und HTML zur Einbettung des Widgets in die Benutzeroberfläche des Smart Mirrors. Desweiteren wurde CSS benutzt um das Widget zu formatieren. Die JavaScript Funktion sorgt dafür, dass die Uhrzeit jede Sekunde aktualisiert wird, während das HTML Dokument die Struktur definiert. Abschließend definiert die CSS Datei das Styling des Widgets.

Während der Entwicklung des Widgets traten mehrere Herausforderungen auf. Eine der größten Herausforderungen bestand darin, sicherzustellen, dass die Uhrzeit in Echtzeit und ohne Verzögerung aktualisiert wird. Dies war besonders wichtig, um die Genauigkeit der angezeigten Zeit zu gewährleisten. Die Verwendung der 'setTimeout' Funktion in JavaScript ermöglicht eine wiederholte Ausführung der Aktualisierungsfunktion in einem festgelegten Intervall von einer Sekunde, wodurch eine kontinuierliche und genaue Aktualisierung der Uhrzeit sichergestellt wurde. Eine weitere Herausforderung war die exakte Zeitanzeige, insbesondere hierbei ist wichtig die Erwähnung der Formatierung der Uhrzeit, um sicherzustellen, dass Stunden, Minuten und Sekunden stets zweistellig angezeigt werden. Durch die Verwendung der 'padStart' Methode konnten die Zahlen auf eine konstante Länge von zwei Stellen gebracht werden, indem bei Bedarf führende Nullen hinzugefügt werden. Dies gewährleistete eine konsistente und gut lesbare Anzeige.

Die Implementierung des Uhrzeit Widgets verlief erfolgreich und erfüllt die gestellten Anforderungen. Die Uhrzeit wird zuverlässig und exakt in Echtzeit angezeigt. Das Widget integriert sich nahtlos in die Benutzeroberfläche des Smart Mirrors und bietet eine klare und gut lesbare Darstellung der aktuellen Uhrzeit. Insgesamt stellt das Uhrzeit Widget eine wesentliche Funktionalität des Smart Mirrors dar. Der nachfolgenden Abbildung 1 kann das Implementierte Uhrzeit Widget auf der HTML Seite entnommen werden.

Abbildung 2.1: Uhrzeit Widget Quelle: eigene Darstellung

2.3.7 Verkehrsinformation

Erarbeitet von: Marcel Wagner

Die Implementierung des Stau-Widgets auf dem Smart Mirror stellt einen wichtigen Schritt dar, um den Nutzern eine umfassende und zuverlässige Quelle für aktuelle Verkehrsinformationen zur Verfügung zu stellen. Das Widget wurde speziell entwickelt, um eine Echtzeitübersicht über die Verkehrslage in Regensburg zu bieten, was insbesondere für Pendler und Reisende von großem Nutzen ist. Durch die Verwendung von JavaScript wurde eine nahtlose Integration mit der OpenStreetMap Overpass API realisiert, die als zuverlässige Datenquelle für Verkehrsdaten dient.

Die Strategie hinter der Implementierung war zweigleisig: Zum einen wurde eine sofortige Aktualisierung der Verkehrsinformationen beim Laden der Seite implementiert, um den Nutzern bei jedem Besuch des Smart Mirrors die aktuellsten Daten bereitzustellen. Zum anderen erfolgt eine regelmäßige automatische Aktualisierung alle fünf Minuten, um sicherzustellen, dass die angezeigten Informationen kontinuierlich aktuell gehalten werden. Dieser Ansatz gewährleistet eine hohe Aktualität und Relevanz der bereitgestellten Verkehrsinformationen.

Während der Entwicklung wurden mehrere Herausforderungen gemeistert, darunter die robuste Fehlerbehandlung, um sicherzustellen, dass Netzwerkprobleme oder API Ausfälle die Funktionalität des Widgets nicht beeinträchtigen. Ein besonderes Augenmerk lag auf der Gewährleistung einer stabilen und zuverlässigen Datenaktualisierung, die für eine nahtlose Benutzererfahrung entscheidend ist.

Das Verkehrs Widget präsentiert die Verkehrslage in einer klaren und intuitiven Benutzeroberfläche. Es informiert die Nutzer klar verständlich darüber, ob derzeit ein Stau vorliegt oder nicht, und bietet gegebenenfalls zusätzliche Informationen über Verkehrshindernisse oder Verkehrswarnungen. Diese klare visuelle Darstellung hilft den Nutzern, schnell zu erfassen, wie die aktuelle Verkehrssituation ihre geplante Route beeinflussen ist.

Insgesamt trägt das Verkehrs Widget erheblich zur Funktionalität und Benutzerfreundlichkeit des Smart Mirrors bei. Es bietet eine unverzichtbare Informationsquelle für die tägliche Routenplanung und unterstützt die Nutzer dabei, ihre Fahrtzeiten effizient zu optimieren. Das Implementierte Verkehrsinformationen Widget kann der nachfolgenden Abbildung entnommen werden. Diese Abbildung zeigt den Fall, dass aktuell gerade kein Stau in den Straßen von Regensburg sind.

Abbildung 2.2: Verkehrsinformations Widget Quelle: eigene Darstellung

2.3.8 Schlagzeilen

Erarbeitet von: Marcel Wagner

Die Implementierung des Nachrichten Widgets für den Smart Mirror stellt einen wichtigen Schritt dar, um den Nutzern eine aktuelle und relevante Informationsquelle direkt auf seinem Smart Mirror zur Verfügung zu stellen. Das Widget wurde in JavaScript entwickelt und verwendet die 'RSS2JSON-API', um die neuesten Nachrichtenartikel eines ausgewählten RSS Feeds abzurufen und auf dem Smart Mirror anzuzeigen.

Dies ermöglicht eine dynamische und automatische Aktualisierung der Nachrichteninhalte, sobald der Nutzer den Spiegel nutzt.

Ein zentrales Element der Implementierung ist die Verwendung des 'DOMContentLoaded' Events, das sicherstellt, dass das Widget erst aktiv wird, nachdem die gesamte Seite vollständig geladen ist. Dadurch wird sichergestellt, dass alle notwendigen Ressourcen und Elemente bereitstehen, bevor die Datenabfrage und die Darstellung der Nachrichten beginnen.

Die Funktionalität des Widgets umfasst die Asynchronität der Datenabfrage über die Fetch API, die die RSS Feeds von Nachrichtenquellen in ein JSON Format umwandelt, das vom JavaScript Code weiterverarbeitet werden kann. Dies ermöglicht eine schnelle und effiziente Bereitstellung der neuesten Nachrichteninhalte direkt auf dem Smart Mirror, ohne dass der Nutzer zusätzliche Schritte unternehmen muss, um sich auf dem Laufenden zu halten.

Eine besondere Herausforderung während der Implementierung war die unterschiedliche Verfügbarkeit von RSS Feeds bei verschiedenen Nachrichtenseiten. Viele führende Nachrichtenagenturen und Zeitungen bieten zwar RSS Feeds an, einige jedoch nicht oder beschränken den Zugang zu ihren Inhalten über diese Schnittstelle. Dies erforderte eine sorgfältige Auswahl geeigneter RSS Feeds, die eine kontinuierliche und zuverlässige Datenversorgung gewährleisten konnten. Die Ausgegeben Nachrichten dieses Widget entspannen der Frankfurter Allgemeinen Zeitung

Um die Benutzerfreundlichkeit zu maximieren, wurde die Benutzeroberfläche des Widgets bewusst einfach und intuitiv gestaltet. Die angezeigten Nachrichten werden in einer geordneten Liste präsentiert.

Zusammenfassend bietet das Nachrichten Widget einen bedeutenden Mehrwert für den Smart Mirror, indem es den Nutzern eine einfache und effektive Möglichkeit bietet, sich über aktuelle Ereignisse zu informieren. Die Implementierung war erfolgreich in Bezug auf die gesetzten Ziele. Der Nachfolgenden Abbildung kann das implementierte Widget auf dem Smart Mirror entnommen werden.

Abbildung 2.3: Verkehrsinformations Widget Quelle: eigene Darstellung

2.3.9 Tankstellen

2.3.10 Test Verfahren

Erarbeitet von: Leon Kranner und Marcel Wagner

3 | Spiegel Al Remote

Erarbeitet von David Vollmer.

Im folgenden wird die **Spiegel Al Remote** App - auch **Remote App** genannt - beschrieben. Es handelt sich dabei um eine mobile Anwendung, dessen Hauptaufgabe die Fernsteuerung des Smart Mirrors ist.

3.1 Funktionen

Funktionen

3.2 Implementierung

Implementierung und Technologien

3.3 Testen

Testen

4 |Schnittstelle

In diesem Kapitel wird die Schnittstelle des **Spiegel Al** Projekts beschrieben. Wir erläutern die verschiedenen Schnittstellen, die verwendet werden, sowie deren Implementierung und Nutzung.

4.1 Überblick

Geben Sie einen Überblick über die verwendeten Schnittstellen.

4.2 Implementierung

Beschreiben Sie die Implementierung der Schnittstellen.

4.3 Nutzung

Erläutern Sie, wie die Schnittstellen genutzt werden.

5 Gesichtserkennung

In diesem Kapitel beschreiben wir das Gesichtserkennungssystem, das im **Spiegel Al** Projekt integriert ist. Wir gehen auf die verwendeten Algorithmen, die Trainingsdaten und die Implementierung ein.

5.1 Algorithmen

Beschreiben Sie die Algorithmen, die für die Gesichtserkennung verwendet werden.

5.2 Trainingsdaten

Erläutern Sie die Quelle und Vorbereitung der Trainingsdaten.

5.3 Implementierung

Beschreiben Sie die Implementierung der Gesichtserkennung.

6 Ergebnisse

In diesem Kapitel fassen wir die Ergebnisse des Projekts **Spiegel Al** zusammen. Wir gehen auf die erreichten Ziele, die Herausforderungen und die zukünftigen Arbeiten ein.

6.1 Erreichte Ziele

Beschreiben Sie die Ziele, die im Rahmen des Projekts erreicht wurden.

6.2 Herausforderungen

Erläutern Sie die Herausforderungen, die während des Projekts aufgetreten sind.

6.3 Zukünftige Arbeiten

Beschreiben Sie mögliche zukünftige Arbeiten oder Erweiterungen des Projekts.

Stundenliste

Stundenliste Leon Kranner

Kalenderwoche	Stunden	Aufgabe
12	3	Einführungfsveranstaltung
13	3	GANNT Diagramm
	3	Teambesprechung
14	2	Planung mit Hardware-Team
	2	Teambesprechung
15	3	Postererstellung und Hw
	1	Displaymessung + postervorstellung
	2	Teambesprechung
16	4	Display-Projekt aufsetzen
	2	Baumarkt Materialien erkunden
17	2	Umstrukturierung des
		Display-Projekts
	2	Neues Widget erstellen
18	6	Weitere Widgets und Änderungen an
		alten Widget
19	3	Einkerbungen fräsen
	1	MDF Platte auf Maß schneiden
20	2	Teambesprechung
	1	Umstrukturierung des Stundenplans
21	2	Teambesprechung
22	2	Teambesprechung
23	2	Automatische Aktualisierung der
		Widgets
24	2	Teambesprechung
	2	Besprechung Schnittstellen
25	2	Teambesprechung
	1	Plexiglas überarbeiten
26	2	Teambesprechung
	3	Austausch der Spiegel Folie, Aufbau
		der Spiegels, Hardware installieren
	1	Testen des Displays mit Aufgebauten
		Spiegels
27	2	Powerpoint erstellung

Fortsetzung auf nächster Seite

Tabelle 6.1 – Fortsetzung von vorheriger Seite

Kalenderwoche	Stunden	Aufgabe
	3	HMTL neu anordnen auf Basis von
		Json Datei
	2	Besprechung profiles sync

Gesamtstunden: 109

Stundenliste Marco Kuner

Kalenderwoche	Stunden	Aufgabe
12	3	Einführungfsveranstaltung
13	3	GANNT Diagramm
14	3	Teileliste / GANNT Diagramm
	2	Teambesprechung
	3	Inventur
15	10	Technologie-Recherche +
		Postererstellung
	3	Posterdemütigung ertragen und HW
	2	Teambesprechung
16	2	Teambesprechung
	8	Erster Prototyp mit HAAR Cascades
17	2	Teambesprechung
	8	Neue Version mit DLIB Bibs
	_	geschrieben
18	2	Teambesprechung
	2	Recherche über facial Landmark
	4	Storage
	4	Neue Iteration mit Storage
10	40	Technologie
19	10	Troubleshoot da extrem langsam
00	2	Teambesprechung
20	2	Teambesprechung
	4	Recherche zu geeigneter Schnittstelle und Format der
21	2	Profilerstellung mit profile landsmarks Teambesprechung
22	2	Teambesprechung
23	2	Teambesprechung
24	2	Teambesprechung
25	2	Teambesprechung
25	6	Implementieren einer Lösung zur
	0	automatischen Erkennung eines
		neuen Gesichts und output der Daten
		in .json
	2	Schnittstellen Thinktank mit David
26	2	Teambesprechung
	5	Ausgabe und automatische
		Aktualisierung einer genormten
		profiles.json
	6	Implementierung eines neuen
		Websockets zwischen Raspi und
		Android in Vorbereitung zur
		Synchronisation
1		Fortsetzung auf nächster Seite

Fortsetzung auf nächster Seite

Tabelle 6.2 – Fortsetzung von vorheriger Seite

Kalenderwoche	Stunden	Aufgabe
	2	Recherche zu Technologien zur
		Synchronisation zwischen Raspi und
		Android (inotify?)
	2	Besprechung mit remote app
		Spezialist bzgl.
		Synchronisationsproblemen
27	4	Vor- und Aufbereiten der
		Präsentation
	2	Verbessern der readability des
		Algorithmus
	8	Implementation des Websockets
		mitsamt Logik für andauernder
		Synchronisation
	4	Troubleshooting: Gesichtserkennung
		stürzt ab auf Raspi

Gesamtstunden: 130

Stundenliste David Vollmer

Kalenderwoche	Stunden	Aufgabe
12	3	Einführungsveranstaltung
	4	Setup Gitlab und Drafts
13	4	Erstellung GANNT Diagramm und
		Lastenheft
	2	Teambesprechung
14	5	Abgabevorbereitung GANNT und
		Lastenheft
	2	Teambesprechung
	3	Hardwarediskussion und -suche
	2	Überarbeitung GANNT und
		Lastenheft
15	4	Postererstellung
	3	Vostellung Poster und
		Hardwaresuche
	6	Setup Flutter und Frontend dev
	2	Teambesprechung
	2	Frontend dev (Navigation)
16	2	Teambesprechung
	3	Frontend dev
17	2	Setup Raspberry Pi
	2	Teambesprechung
18	2	Teambesprechung
19	2	Teambesprechung
	1	Frontend dev (Widget buttons)
20	2	Teambesprechung
21	2	Teambesprechung
22	2	Teambesprechung
	4	Troubleshooting Android SDK
23	2	Teambesprechung
24	2	Besprechung Schnittstellen
	4	Frontend dev (Widgets final)
	2	Teambesprechung
	2	Konfiguration Raspberry Pi
	8	Konfiguration Schnittstellen (Flutter +
	_	Server)
	5	Konfiguration Schnittstellen (Spiegel
		+ Server)
25	2	Teambesprechung
	3	Konfiguration Raspberry Pi wifi
	5	Troubleshooting + Testing Websocket
	2	Anpassung Android und iOS (icon,
	0	splash, usw.)
	8	Anpassung Datenspeicher, Profile
		und Websocket

Fortsetzung auf nächster Seite

Tabelle 6.3 – Fortsetzung von vorheriger Seite

Kalenderwoche	Stunden	Aufgabe
	3	Speichern von Widget- und
		Remotestatus in Profilen
	3	Code Refactoring und Bugfixing
26	1	Besprechung Schnittstellen Profile
	1	Überarbeitung Poster
	2	Teambesprechung
	1	Überarbeitung Websocket-Message
	2	Troubleshooting selected Widgets
	2	Konfiguration Raspberry Pi
		Gesichtserkennung
	6	Erstellung Powerpoint
27	2	Besprechung profiles sync
	1	Refactoring File Reader
	2	Implementierung profiles sync
	3	Schreiben des Präsentationsskripts
	2	Übung Präsentation
	5	Testen der Gesichtserkennung am
		Websocket
	3	Testen und Korrigieren profiles sync

Gesamtstunden: 150

Stundenliste Marcel Wagner

Kalenderwoche	Stunden	Aufgabe
12	3	Einführungfsveranstaltung
13	3	GANNT Diagramm
	2	Teambesprechung
	2	Vorbereitung Template
14	2	Teambesprechung
	3	Planung und Hardware Suche
	3	Setup CAD und ersten Entwurf
		zeichnen
15	3	Poster Erstellung
	2	Besprechung Spiegelrahmen
	2	Detaillierung der CAD Datei
	1	Baumarkt
	2	Teambesprechung
16	3	Einführung Display Programmierung
		und erste Ansätze
	2	Planung und Besprechung für den
		Bilderrahmen
	2	Materialien im Baumarkt suchen
	2	Teambesprechung
17	4	Weitere Setup für Display
		Programmierung
	4	Projekt Besprechung und weitere
		Programmierung
	4	Weitere Widget Programmierung und
		Bug Fixing
40	2	Teambesprechung
18	2	Display Programmierung
		(Fertigstellung des
		Verkehrsinformations Widget)
	2	Teambesprechung
	3	Holz auf Maß schneiden und hobeln Vorbohren und Bilderrahmen
	3	
19	3	zurechtlegen Einkerbungen fräsen
19	1	MDF Platte auf Maß schneiden
	1	In MDF Platte Löcher bohren für
	'	Befestigung
	1	Zwischenstücke vorne anschrauben
	2	Teambespechung
	2	Holz zusammenleimen und trocknen
	_	lassen
20	2	Teambesprechung
	1	Bug Fixing von älteren Widgets
21	2	Teambesprechung
<u>-</u> ·	_	Fortsetzung auf nächster Seite

Fortsetzung auf nächster Seite

Tabelle 6.4 – Fortsetzung von vorheriger Seite

Kalenderwoche	Stunden	Aufgabe
	1	Plexiglas auf Maß schneiden
22	2	Teambesprechung
23	3	Erstellung weiter Widgets
	2	Teambespechung
24	2	Teambesprechung
	2	Besprechung Schnittstellen
	2	Bugfixing für das News Widget
25	2	Teambesprechung
	1	Bugfixing der Widget Ansicht
	1	Plexiglas überarbeiten
	2	Löcher bohren und Plexiglas
	_	festschrauben
	1	Spiegelfolie aufbringen und Kabel
		Loch bohren
	5	Schnittstelle zwischen
		Gesichtserkennung und Display die
		Grundlagen auf Seite des Displays
		aufsetzen
26	2	Teambesprechung
	1	Fehler korrigieren am Spiegel
	1	Bugfixing Widget
	3	Austausch der Spiegel Folie, Aufbau
		der Spiegels, Hardware installieren
	1	Testen des Displays mit Aufgebauten
		Spiegels
	1	Vorbereitung Präsentation
	2	Vorbereitung Präsentation (Bilder
		und Aufbau Finalisieren)
	2	Raspberry Pi Gesichtserkennung
		Testen
	5	Profile aus der Gesichtserkennung
		auslesen und Speicherin in
		Raspberry
	2	Bugfixing Browser Problem
27	2	Powerpoint erstellung
	3	HMTL neu anordnen auf Basis von
		Json Datei
	2	Troubleshooting Chache Probleme
	1	nicht ausgewählte Widgets
		ausblenden
	2	Vorbereitung Präsentation
	3	Schreiben des Präsentationsskripts
	2	Teambespechung
	1	Studenliste in Dokumentation
		eintragen

Gesamtstunden: 141

Abbildungsverzeichnis

2.1	Uhrzeit Widget Quelle: eigene Darstellung	6
2.2	Verkehrsinformations Widget Quelle: eigene Darstellung	7
2.3	Verkehrsinformations Widget Quelle: eigene Darstellung	8