When HEAAN Meets FV:

a New Somewhat Homomorphic Encryption with Reduced Memory Overhead

Hao Chen Facebook USA

Ilia Iliashenko
Ciphermode Labs;
imec-COSIC, KU Leuven
Belgium

Kim Laine Microsoft Research USA

Fully/somewhat homomorphic encryption

Fully HE (FHE): f' is arbitrary. **Somewhat** HE (SHE): f' has a limited depth.

FHE/SHE schemes are exact

Ciphertext ct encrypts a message m.

$$Decrypt(ct) = m$$

The results of correct decryption are useless for an attacker. Every ciphertext has noise and it is removed by decryption.

Approximate HE (HEAAN/CKKS)

Idea: consider ciphertext noise as a part of a message.

Ciphertext ct encrypts a message m.

Decryption leaves some noise

$$Decrypt(ct) = m + e \simeq m$$
.

Decryption results always leak the noise and can be used for key recovery. (Li-Micciancio'20).

FHE/SHE versus AHE

FHE/SHE

- inefficient for arithmetic on complex or real numbers
- batching capacity is limited
- + small encryption parameters for simple functions
- + no decryption leakage

AHE

- + efficient for arithmetic on complex or real numbers
- + huge batching capacity
- large encryption parameters even for simple functions
- decryption leakage

Is there an HE scheme with the best of the two worlds?

SHE scheme from BCIV'18

Version of the RLWE-based scheme of Fan and Vercauteren (aka FV)

Ciphertext space: $R_q^2 = (\mathbb{Z}[X]/\langle q, X^n + 1 \rangle)^2, q \in \mathbb{Z}$

Plaintext space: $R_{X^m+b} = \mathbb{Z}[X]/\langle X^m + b, X^n + 1 \rangle$, m, n are powers of two (m = 0 in FV)

- $R_{X^m+b} \cong \mathbb{Z}[X]/\langle X^m+b, b^{n/m}+1\rangle$ natively supports polynomials with large coefficients
- If $\exists \alpha : b = \alpha^m \mod (b^{n/m}+1)$, then $R_{X^m+b} \cong \mathbb{Z}[e^{\pi i/m}]/\langle b^{n/m}+1\rangle$

natively supports cyclotomic integers

FV:
$$R_{b+1} = \mathbb{Z}[X]/\langle b+1, X^n+1 \rangle, t \in \mathbb{Z}$$

$$\mathsf{FV} \colon R_{b+1} = \mathbb{Z}[X]/\langle b+1, X^n+1 \rangle, \, t \in \mathbb{Z}$$

$$\mathsf{FV:}\ R_{b+1} = \mathbb{Z}[X]/\langle b+1, X^n+1\rangle, \ t \in \mathbb{Z}$$

$$\mathsf{FV:}\ R_{b+1} = \mathbb{Z}[X]/\langle b+1, X^n+1\rangle, \ t \in \mathbb{Z}$$

HEAAN

Version of the RLWE-based scheme of Fan and Vercauteren (aka FV)

Ciphertext space:
$$R_q^2 = (\mathbb{Z}[X]/\langle q, X^n + 1 \rangle)^2, q \in \mathbb{Z}$$

Plaintext space:
$$R_q = \mathbb{Z}[X]/\langle q, X^n + 1 \rangle \cong \mathbb{Z}[e^{\pi i/n}]/\langle q \rangle$$
 natively supports cyclotomic integers

- m/2 complex numbers can be encoded into one plaintext
 - Pack_{p,m}: $\mathbb{C}^{m/2} \to R_q$
 - Unpack_{p,m}: $R_q \to \mathbb{C}^{m/2}$ $\left| \text{Unpack}_{p,m} \left(\text{Pack}_{p,m}(\mathbf{z}) \right) \mathbf{z} \right|_{\infty} < \frac{1}{p}$

HEAAN plaintext space is constrained as in FV

$\operatorname{Pack}_{p,m} \colon \mathbb{C}^{m/2} \to R_q$

*with primitive 2m-th roots of unity

Unpack_{p,m}: $R_q \to \mathbb{C}^{m/2}$

*with primitive 2m-th roots of unity

$\operatorname{Pack}_{p,m} \colon \mathbb{C}^{m/2} \to R_{X^m+b} \text{ for BCIV}$

*with primitive 2m-th roots of unity

BCIV encoding of real polynomials

If
$$\exists \alpha : b = \alpha^m \bmod (b^{n/m} + 1)$$
, then
$$e^{\pi i/m} \mapsto \alpha^{-1} X$$

yields the isomorphism

$$\mathbb{Z}[e^{\pi i/m}]/\langle b^{n/m}+1\rangle\cong R_{X^m+b}$$
1. multiply by $\Delta_{p,m}$,
2. round coefficientwise
3. map $X\mapsto e^{\pi i/m}$

$$\mathbb{R}[X]/\langle X^m+1\rangle$$

Asymptotic comparison

To support computation of multiplicative depth L with starting precision p on m/2 complex numbers of absolute value B.

HEAAN:
$$q \in \Theta\left(m^{L+1}p^{L+1}B^{2^L}n^{L+1}\right)$$

OUR scheme:
$$q \in \Theta\left(m^{\frac{m}{n}(2^{L+1}-1)(L+2)}(pB)^{\frac{m}{n}2^{L}(L+2)}n^{L+1.5}\right)$$

Our scheme is better if
$$m/n = 2^{-L-1}$$
 and $B > (m\sqrt{n})^{2^{1-L}}$

- Shallow circuits with $m \simeq n/4$
- Deep circuits with $m = n/2^{L+1}$

Practical comparison: logistic regression

B = 2.1 Output precision 2^7

Practical comparison: x^{16}

Conclusion

- New SHE scheme natively supporting complex vectors
- No decryption leakage
- Better computational and memory overhead than in HEAAN when
 - circuits are shallow (e.g. simple statistics)
 - packing capacity is small (e.g. small data stream to be handled online)

Future work

- Implement in RNS (residue number system)
- Find an analog of HEAAN's Rescale operation

Thank you