<u>ነ</u>

2011 年全国普通高等学校招生统一考试 (上海卷) 数学 (理科)

得分评卷人

一. 填空题:本大题共 14 题,满分 56 分. 请在横线上方填写最终的、最准确的、最完整的结果. 每题填写正确得 4 分,否则一律得 0 分.

- 1. 已知 $\mathbf{a} = (k, -9)$ 、 $\mathbf{b} = (-1, k)$, $\mathbf{a} 与 \mathbf{b}$ 为平行向量, 则 k =______.
- 2. 若函数 $f(x) = x^{6m^2 5m 4}$ $(m \in \mathbb{Z})$ 的图像关于 y 轴对称, 且 f(2) < f(6), 则 f(x) 的解析式为
- 4. 在 bg 糖水中含糖 ag(b > a > 0), 若再添加 mg 糖 (m > 0),

- 7. 若 θ 为三角形的一个内角,且 $\sin \theta + \cos \theta = \frac{2}{3}$,则方程 $x^2 \csc \theta y^2 \sec \theta = 1$ 表示的曲线的焦点坐标是 _______.
- 8. 高为 h 的棱锥被平行于棱锥底面的截得棱台侧面积是原棱锥的侧面积的 $\frac{5}{9}$, 则截得的棱台的体积与原棱锥的体积之比是 _______.
- 9. 以椭圆 $\frac{x^2}{169} + \frac{y^2}{144} = 1$ 的右焦点为圆心,且与双曲线 $\frac{x^2}{9} \frac{y^2}{16} = 1$ 的渐近线相切的圆方程是
- 11. 马路上有编号 1 到 10 的 10 盏路灯, 为节约用电又不影响照明, 可以关掉其中的 3 盏, 但又不能同时关掉相邻的两盏, 也不能关掉两端的路灯, 满足条件的关灯方法有 ______ 种.
- 12. 以椭圆 $\frac{x^2}{169} + \frac{y^2}{144} = 1$ 的右焦点为圆心,且与双曲线 $\frac{x^2}{9} \frac{y^2}{16} = 1$ 的渐近线相切的圆方程是
- 14. 马路上有编号 1 到 10 的 10 盏路灯, 为节约用电又不影响照明, 可以关掉其中的 3 盏, 但又不能同时关掉相邻的两盏, 也不能关掉两端的路灯, 满足条件的关灯方法有 ______ 种.
- 15. 以椭圆 $\frac{x^2}{169} + \frac{y^2}{144} = 1$ 的右焦点为圆心,且与双曲线 $\frac{x^2}{9} \frac{y^2}{16} = 1$ 的渐近线相切的圆方程是

得分 评卷人

二. 选择题:本大题共 4 题,满分 16 分. 请选择你认为最正确的答案(每小题有且只有一个)写在括号内. 每题填写正确得 4 分,否则得 0 分.

16. 已知集合 $A = \{x \mid |x-1| < 3\}$, 集合 $B = \{y \mid y = x^2 + 2x + 1, x \in \mathbb{R}\}$, 则 $A \cap \mathcal{C}_U B$ 为 ______.

A. [0,4)

B. $(-\infty, -2] \cup [4, +\infty)$

C. (-2,0)

D. (0,4)

- 17. 若 $a \cdot b$ 是直线, $\alpha \cdot \beta$ 是平面, 则以下命题中真命题是 _____.
 - A. 若 $a \cdot b$ 异面, $a \subset \alpha, b \subset \beta$, 且 $a \perp b$, 则 $\alpha \perp \beta$
 - B. 若 $a \parallel b$, $a \subset \alpha$, $b \subset \beta$, 则 $\alpha \parallel \beta$
 - C. 若 $a \parallel \alpha, b \subset \beta$, 则 $a \cdot b$ 异面
 - D. 若 $a \perp b$, $a \perp \alpha, b \perp \beta$, 则 $\alpha \perp \beta$
- 18. 已知集合 $A = \{x \mid |x-1| < 3\}$, 集合 $B = \{y \mid y = x^2 + 2x + 1, x \in \mathbb{R}\}$, 则 $A \cap \mathcal{C}_U B$ 为 ______.

A. [0,4)

B. $(-\infty, -2] \cup [4, +\infty)$

C. (-2,0)

D. (0,4)

- 19. 若 $a \cdot b$ 是直线, $\alpha \cdot \beta$ 是平面, 则以下命题中真命题是 _____.
 - A. 若 $a \cdot b$ 异面, $a \subset \alpha, b \subset \beta$, 且 $a \perp b$, 则 $\alpha \perp \beta$
 - B. 若 $a \parallel b$, $a \subset \alpha$, $b \subset \beta$, 则 $\alpha \parallel \beta$
 - C. 若 $a \parallel \alpha, b \subset \beta$, 则 $a \cdot b$ 异面
 - D. 若 $a \perp b$, $a \perp \alpha, b \perp \beta$, 则 $\alpha \perp \beta$

得分	评卷人

三. 简答题:本大题共 5 题,满分 78 分. 请在题后空处写出必要的推理计算过程.

- 20. 已知复数 z 满足: $|z|-z^*=\frac{10}{1-w\mathbf{i}}$ (其中 z^* 是 z 的共轭复数) .
- (1) (7 分) 求复数 z;
- (2) (7 分) 若复数 $w = \cos \theta + \mathbf{i} \sin \theta \, (\theta \in \mathbb{R})$, 求 |z-2| 的取值范围.

得分

22. (16 分) 函数 $f(x) = 4 \sin \frac{\pi}{12} x \cdot \sin \left(\frac{\pi}{2} + \frac{\pi}{12} x \right), x \in [a, a+1]$, 其中常数 $a \in [0, 5]$, 求函数 f(x) 的最大值 g(a).

- 23. 已知复数 z 满足: $|z| z^* = \frac{10}{1 w\mathbf{i}}$ (其中 z^* 是 z 的共轭复数).
- (1) (8 分) 求复数 z;
- (2) (8 分) 若复数 $w = \cos \theta + \mathbf{i} \sin \theta \, (\theta \in \mathbb{R}), \, \bar{\mathbf{x}} \, |z-2|$ 的取值范围.

24. (18 分) 函数 $f(x) = 4\sin\frac{\pi}{12}x \cdot \sin\left(\frac{\pi}{2} + \frac{\pi}{12}x\right), x \in [a, a+1]$, 其中常数 $a \in [0, 5]$, 求函数 f(x) 的最大值 g(a).