- 0 Todos los apuntes que necesitas están aquí
- 0 Al mejor precio del mercado, desde 2 cent.
- 0 Recoge los apuntes en tu copistería más cercana o recibelos en tu casa
- Todas las anteriores son correctas

ARQUITECTURA DE COMPUTADORES

Estudiante:

Prueba del TEMA 1 $\frac{T_0}{T_0} = \frac{1+1}{1+05} = \frac{2}{1.5} = \frac{2}{3} = \frac{4}{3} = 1.3$

 Escriba la ley de Amdahl para la ganancia de velocidad en función de la ganancia de velocidad del recurso que se mejora, p, y de la fracción del tiempo de ejecución del código en la máquina de partida, f, durante la cual NO se utiliza el recurso:

Un código que tarda 2 segundos en ejecutarse, dedica 1 segundo de ese tiempo al procesamiento de instrucciones de coma flotante. Si se reduce el tiempo de ejecución de las instrucciones de coma flotante a la mitad. ¿Qué valor tiene la ganancia de velocidad?

$$T_{J}=2$$
 $T_{p}=1+0.5=1.5$ $S=\frac{2}{1.5}$

3. Escriba la expresión para el tiempo de CPU en términos del número de instrucciones (NI), el número instrucciones por ciclo (IPC), y la frecuencia de reloj (F). \(\tau_{CPV} = \frac{1}{2} \frac{1}{2} \tau_{TPC} \text{NL}

4. ¿Cuál es el número de GIPS que puede alcanzar un núcleo superescalar que funciona a 2GHz y es capaz de terminar 3 instrucciones por ciclo CPI = \frac{1}{3} \frac{1}{3} = \frac{2}{3} \frac{1}{3} = \frac{1}{3} \frac{1}{3} = \frac{1}{3} \frac{1}{3} = \frac{1}{3} \frac{1}{3} = \frac{1}{3} \frac{1}{3} \frac{1}{3} = \frac{1}{3} = \frac{1}{3} \frac{1}{3} = \frac

GIPS =
$$2 * \delta = 6$$
 GFLOPS = $\frac{2 \cdot \lambda 0^9}{2 \cdot \lambda_0 \cdot \lambda_0} = \frac{2 \cdot \lambda 0^9}{2 \cdot \lambda_0} = \frac{2 \cdot \lambda 0^9}$

operaciones en coma flotante por ciclo. ¿Cuál es la velocidad pico (en GFLOPS) de un núcleo con dicha arquitectura que funciona a una frecuencia de reloj de 2 GHz?

6. Dado el bucle for i=1 to N do a(i)=k*b(i)+c(i), en el que $a(\cdot)$, $b(\cdot)$, $c(\cdot)$, $y \in S$ son números en coma flotante, ¿cuántos GFLOPS consigue un computador que lo ejecuta en 2 segundos cuando N=1016

Responda Verdadero (V) o Falso (F): En un computador NUMA, la memoria está físicamente distribuida aunque utiliza un modelo de programación de memoria compartida.

En la secuencia de instrucciones que aparecen en el orden indicado en un código:

- add r1, r2, r4 ; r1 \leftarrow r2 + r4 (i1)
- add r4, r2, r3 ; r4 ← r2 + r3 (i2)
- sub r1, r1, r4; r1 \leftarrow r1 r4 (i3)
- Hay dependencia RAW entre las instrucciones i2 e i3 debido al registro r4

Hay dependencia WAW entre las instrucciones i1 e i3 debido al registro r1

Estudiante:

 Escriba la ley de Amdahl para la ganancia de velocidad en función de la ganancia de velocidad del recurso que se mejora, p, y de la fracción del tiempo de ejecución del código en la máquina de partida, f, durante la cual NO se utiliza el recurso:

2. Un código que tarda 4 segundos en ejecutarse, dedica 2 segundos de ese tiempo al procesamiento de instrucciones de coma flotante. Si se reduce el tiempo de ejecución de las instrucciones de coma flotante a la mitad. ¿Qué valor tiene la ganancia de velocidad?

3. Escriba la expresión para el tiempo de CPU en términos del número de instrucciones

(NI), el número instrucciones por ciclo (IPC), y el tiempo de ciclo (Tciclo).

Topu = NI+Toich

 ¿Cuál es el número de GIPS que puede alcanzar un núcleo superescalar que funciona a 2.5 GHz y es capaz de terminar 2 instrucciones por ciclo

5. Los núcleos de la arquitectura Sunday Bridge de Intel pueden terminar hasta 8 operaciones en coma flotante por ciclo. ¿Cuál es la velocidad pico (en GFLOPS) de un núcleo con dicha arquitectura que funciona a una frecuencia de reloj de 3 GHz?

6. Dado el bucle for i=1 to N do a(i)=k*(b(i)+c(i)), en el que $a(\cdot)$, $b(\cdot)$, $c(\cdot)$, y k son números en coma flotante, ¿cuántos GFLOPS consigue un computador que lo ejecuta en 2 segundos cuando N=1011

GFLOPS = 2 + 10" = 100

- Responda Verdadero (V) o Falso (F): Un computador NUMA es más escalable que uno de tipo UMA
- Responda Verdadero (V) o Falso (F): Un multicomputador también se denomina computador NORMA (V)
- En la secuencia de instrucciones que aparecen en el orden indicado en un código:
 - add r1, r2, r4; r1 \leftarrow r2 + r4 (i1)
 - add r4, r2, r3; r4 \leftarrow r2 + r3 (i2)
 - (i3) $sub rl, rl, r4 ; rl \leftarrow rl - r4$
- Hay dependencia WAR entre las instrucciones i2 e i3 debido al registro r4

No hay dependencias WAW entre ninguna de las instrucciones

