

EINFÜHRUNGSPRAKTIKUM PHYSIK

2. Versuch

Reaktionszeit

Autoren:

Eva Brandstätter (k
12406599)

Tobias Mittermair (k12412801)

Gruppe:

Freitag Vormittag

Betreuer:

Gerald Gmachmeir

Abgabe: 28. November 2024

Inhaltsverzeichnis

1	Einleitung	2		
2	Grundlagen	2		
3	Versuchsbeschreibung 3.1 Versuchsaufbau			
4	Messergebnisse und Auswertung 4.1 Messwerte und Unsicherheiten			
5	Zusätzliche Messung der Reaktionszeit			
6	Diskussion			
7	Anhang7.1 Fallstrecke h 7.2 Reaktionszeit t			

1 Einleitung

In diesem Experiment soll die mittlere Reaktionszeit einer Probandin (Eva Brandstätter) sowie die Verteilung der Reaktionszeit ermittelt werden. Es wird vermutet, dass die Reaktionszeit annähernd Normalverteilt ist. Die gemessene Größe, aus der die Reaktionszeit ermittelt wird (Länge), ist aber nicht direkt proportional zur Zeit. Deshalb wird die Hypothese aufgestellt, dass die Verteilung dieser Größe nicht mehr einer Gaußverteilung entspricht (verzerrt ist).

2 Grundlagen

Als Reaktionszeit bezeichnet man die Zeit, die vergeht von einem auslösenden Ereignis bis zu einer Reaktion seitens der zu Testenden. In diesem Versuch wird dabei die Fallstrecke h_i gemessen, die das Lineal zurücklegt, bevor es von der zu Testenden gefangen wird. Der Index i steht dabei für den i-ten Messwert. Aus dieser Strecke berechnet man sich mit der folgenden Formel die Reaktionszeit von der zu Testeden.

$$t_i = \sqrt{\frac{2 \cdot h_i}{g}} \tag{1}$$

Dabei ist g die Erdbeschleunigung, die in diesem Versuch mit $9.81\frac{m}{s^2}$ angenommen wird und deren Unsicherheit vernachlässigt wird.

Die Reaktionszeit kann durch verschiedene Faktoren beeinflusst werden. Nennenswert hierfür ist der Lidschlag (der die Sehfähigkeit für eine kurze Zeit unterbricht) oder die körperliche Verfassung sowie die Konzentrationsfähigkeit der zu testenden Person.

Für die statistischen Größen werden folgende Formeln verwendet:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{2}$$

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$
(3)

$$\sigma_{\mu} = \frac{\sigma}{\sqrt{N}} \tag{4}$$

Mithilfe der Fehlerfortpflanzung kann die Unsicherheit der Fallstrecke auf die Reaktionszeit umgerechnet werden. Da die Messungen unkorreliert sind, kann man die Gauß'sche Fehlerfortpflanzung verwenden:

$$\sigma_t = \sqrt{\left(\frac{\partial t}{\partial h} \cdot \sigma_h\right)^2} \tag{5}$$

3 Versuchsbeschreibung

3.1 Versuchsaufbau

Für den Versuch wurde sowohl ein 30cm-Lineal als auch ein Millimeterpapier zur Verfügung gestellt. Weiters stand ein Laptop zur Führung des Laborprotokolls bereit und zur Dokumentation der Werte.

3.2 Durchführung

Der Versuch wurde am 22. November 2024 im Raum P122 an der JKU in Linz durchgeführt. Es wurden 138 Messpunkte erfasst.

Der "Tester" (Tobias Mittermair) hält das Lineal senkrecht zum Boden, möglichst ohne zu zittern. Um dies zu gewährleisten, wurden die zwei Finger, die das Lineal hielten, von der anderen Hand gestützt. Die Versuchsperson (die "zu Testende") platziert ihre Hand an der 0cm-Markierung, sodass an der Oberkante des Daumens die 0cm-Markierung abgelesen werden kann. Dabei wird der Abstand zwischen den Fingern möglichst gering gewählt (ohne das Lineal zu berühren), sodass beim Durchfallen des Lineals dieses schnell gefasst werden kann.

Nun lässt der Tester das Lineal möglichst unvorhersehbar für die andere Person los und die zu Testende fängt es so schnell es ihr möglich ist. Danach wird die Länge am Lineal and der Oberkante des Daumens abgelesen und in die Tabelle eingetragen. Weiters wird nebenbei ein Histogramm auf einem Millimeterpapier angefertigt.

Es ist einerseits darauf zu achten, dass es vom "Tester" keinerlei Signal gibt, dass das Lineal fallengelassen wird. Andererseits soll das Lineal immer in ungefähr der gleichen Position vom Tester zur Probandin gehalten werden.

4 Messergebnisse und Auswertung

4.1 Messwerte und Unsicherheiten

Die Messwerte sind dem Anhang (Kapitel 7.1) zu entnehmen.

Bezüglich den Messunsicherheiten unterscheidet man bei den abgelesenen Messwerten die Skalenunsicherheit des Lineals und der Unsicherheit des Daumens Die Skalenunsicherheit (übersetzt auf normalverteilt) beträgt $\pm \frac{0.5}{\sqrt{3}}$ mm, welche man in Anbetracht der Ableseunsicherheit vernachlässigen kann, da diese auf ± 3 mm geschätzt wird. In diese Unsicherheit fließen Faktoren ein, wie die Perspektive und die Auflagefläche des Daumens, die sich je nach ausgeübter Kraft beim Zugreifen variiert. Deshalb wird $u_h \approx 3$ mm gewählt.

Da die Messungen unkorreliert sind, kann mithilfe der Gauß'schen Fehlerfortpflanzung (Gl. 5) die Unsicherheit der Fallstrecke auf die Reaktionszeit umgerechnet werden:

Die Ableitung der Reaktionszeit nach der Fallstrecke ergibt sich zu:

$$\frac{\partial t(h)}{\partial h} = \frac{1}{\sqrt{2 \cdot q \cdot h}} \tag{6}$$

Nun kann die Unsicherheit der Reaktionszeit berechnet werden:

$$u_t(h) = \sqrt{\left(\frac{1}{\sqrt{2 \cdot g \cdot h}} \cdot u_h\right)^2} \tag{7}$$

An dieser Formel ist zu erkennen, dass die Unsicherheit der Reaktionszeit mit steigender Fallstrecke abnimmt. Beispielsweise für $h = h(\mu_t)$ ergibt sich $u_t(h(\mu_t)) \approx 0.0018$ s.

4.2 Auswertung

Der Mittelwert, die Standardabweichung und Standardabweichung des Mittelwerts wurden nach den Gleichungen 2, 3 und 4 jeweils für die Fallstrecke h und die Reaktionszeit t berechnet:

$$\mu_h = 14.42 \text{cm}$$
 $\mu_t = 0.1708 \text{s}$
 $\sigma_h = 2.55 \text{cm}$ $\sigma_t = 0.0152 \text{s}$
 $\sigma_{\mu_h} = 0.22 \text{cm}$ $\sigma_{\mu_t} = 0.0013 \text{s}$

Zusätzlich wurde überprüft, ob $t(\mu_h) \stackrel{?}{=} \mu_t$ ist:

$$t(\mu_h) = \sqrt{\frac{2 \cdot \mu_h}{g}}$$
$$= 0.1714s \neq \mu_t$$

Außerdem wurden Histogramme für Fallstrecke und Reaktionszeit angefertigt, um die Verteilung der Messwerte zu visualisieren. Weiters sind in beiden Diagrammen entsprechende Normalverteilungskurven eingezeichnet. Allerdings sei darauf hingewiesen, dass die Normalverteilungskurven nur als Referenz dienen.

Abbildung 1: Histogramm der Fallstrecke

Abbildung 2: Histogramm der Reaktionszeit

5 Zusätzliche Messung der Reaktionszeit

Zum Vergleich wird die Reaktionszeit von Eva Brandstätter mithilfe einer Stoppuhr gemessen. Dabei werden auf der Anzeige alle, bis auf die erste Zehner-Ziffer der Sekundenanzeige verdeckt (Abb. 3) und die Stoppuhr gestartet. Nach 10s erscheint eine 1 in der Anzeige (Abb. 4), woraufhin so schnell wie möglich gestoppt wird. Danach wird die Millisekundenanzeige als Wert für die Reaktionszeit abgelesen (Abb. 5).

Abbildung 3: Ausgangssituation

Abbildung 4: auslösendes Ereignis

Abbildung 5: Stoppuhr mit hervorgehobener Millisekundenanzeige

Dabei wurden für fünf Wiederholungen folgende Werte gemessen:

n	t / s
1	0.280
2	0.280
3	0.220
4	0.250
5	0.250

6 Diskussion

<> - vgl. Normalverteilung und verzerrte Normalverteilung

7 Anhang

7.1 Fallstrecke h

	h / m
1	19.5
2	18.0
3	10.3
4	12.0
5	8.1
6	18.9
7	13.8
8	14.7
9	9.5
10	9.3
11	12.9
12	14.8
13	15.0
14	12.3
15	15.0
16	13.4
17	13.7
18	14.0
19	8.5
20	14.2
21	11.0
22	15.3
23	14.3
24	19.2
25	13.5
26	18.0
27	15.6
28	10.0
29	15.6
30	11.5
31	13.7
32	18.0
33	11.8
34	14.9
35	14.0

36	13.0
37	9.7
38	15.6
39	14.7
40	11.3
41	15.9
42	14.3
43	13.6
44	11.4
45	18.2
46	16.8
47	13.8
48	13.8
49	14.8
50	14.3
51	17.6
52	17.0
53	14.1
54	19.1
55	14.2
56	16.3
57	14.2
58	17.2
59	19.0
60	13.7
61	13.5
62	14.9
63	13.7
64	15.3
65	15.0
66	11.7
67	14.3
68	14.2
69	15.2
70	23.0
71	14.2

72	15.1
73	12.5
74	13.7
75	11.4
76	14.3
77	14.5
78	13.8
79	16.7
80	12.5
81	14.5
82	15.2
83	14.6
84	20.6
85	14.1
86	10.0
87	12.0
88	11.5
89	11.8
90	13.8
91	17.3
92	13.6
93	15.4
94	12.8
95	11.2
96	12.5
97	15.2
98	14.8
99	9.1
100	12.3
101	16.3
102	14.3
103	13.4
104	14.7
105	16.4
106	18.7
107	14.4

108	14.3
109	14.5
110	15.0
111	16.2
112	13.2
113	12.3
114	14.4
115	12.1
116	14.7
117	15.2
118	14.5
119	14.8
120	16.3
121	14.8
122	20.6
123	13.2
124	14.2
125	13.1
126	11.9
127	17.3
128	21.1
129	14.7
130	15.1
131	12.3
132	14.8
133	16.4
134	12.5
135	17.0
136	18.0
137	12.6
138	15.0
11	Folletr

7.2 Reaktionszeit t

	t / s	
1	0.1994	
$\overline{2}$	0.1916	
3	0.1449	
4	0.1564	
5	0.1285	
6	0.1963	
7	0.1677	
8	0.1731	
9	0.1392	
10	0.1377	
11	0.1622	
12	0.1737	
13	0.1749	
14	0.1584	
15	0.1749	
16	0.1653	
17	0.1671	
18	0.1689	
19	0.1316	
20	0.1701	
21	0.1498	
22	0.1766	
23	0.1707	
24	0.1978	
25	0.1659	
26	0.1916	
27	0.1783	
28	0.1428	
29	0.1783	
30	0.1531	
31	0.1671	
32	0.1916	
33	0.1551	
34	0.1743	
35	0.1689	

ι	
36	0.1628
37	0.1406
38	0.1783
39	0.1731
40	0.1518
41	0.1800
42	0.1707
43	0.1665
44	0.1525
45	0.1926
46	0.1851
47	0.1677
48	0.1677
49	0.1737
50	0.1707
51	0.1894
52	0.1862
53	0.1695
54	0.1973
55	0.1701
56	0.1823
57	0.1701
58	0.1873
59	0.1968
60	0.1671
61	0.1659
62	0.1743
63	0.1671
64	0.1766
65	0.1749
66	0.1544
67	0.1707
68	0.1701
69	0.1760
70	0.2165
71	0.1701

72	0.1755
73	0.1596
74	0.1671
75	0.1525
76	0.1707
77	0.1719
78	0.1677
79	0.1845
80	0.1596
81	0.1719
82	0.1760
83	0.1725
84	0.2049
85	0.1695
86	0.1428
87	0.1564
88	0.1531
89	0.1551
90	0.1677
91	0.1878
92	0.1665
93	0.1772
94	0.1615
95	0.1511
96	0.1596
97	0.1760
98	0.1737
99	0.1362
100	0.1584
101	0.1823
102	0.1707
103	0.1653
104	0.1731
105	0.1829
106	0.1953
107	0.1713

108	0.1707
109	0.1719
110	0.1749
111	0.1817
112	0.1640
113	0.1584
114	0.1713
115	0.1571
116	0.1731
117	0.1760
118	0.1719
119	0.1737
120	0.1823
121	0.1737
122	0.2049
123	0.1640
124	0.1701
125	0.1634
126	0.1558
127	0.1878
128	0.2074
129	0.1731
130	0.1755
131	0.1584
132	0.1737
133	0.1829
134	0.1596
135	0.1862
136	0.1916
137	0.1603
138	0.1749

Tabelle 2: Reaktionszeit