

Statistics of Diagnostic Tests

Basic Principles

Niall Anderson

Diagnostic Tests

Often need to use a "test" to classify samples/individuals as 1 of 2 categories:

- Biologically active/ Inactive
- Disease/ No disease ... etc

Test = measurement (categorical,..., continuous)

Often need threshold for test results

e.g. DBP > 90 mmHg => Hypertension Haemoglobin < 12 g/dl => Anaemia If test is to be useful, need to know how reliable it is.

What is "reliable" in this context?

Sample/ patient may or may not have the characteristic of interest

Test gives a result indicating one of 2 possible outcomes

How do these match?

Look at some ways of measuring test performance...

Notation/Basics

- D+ "Disease"/ Outcome present
- D- "Disease"/ Outcome absent
- T+ Test positive
- T- Test negative

Pr (A | B) = probability that A happens, *given that* B happens

Need "gold standard" diagnosis to get D+/-

Example

Exercise test to diagnose CAD.

Positive test defined by changes on EEG.

Disease diagnosed definitively by angiogram.

		Coronary Artery Disease			
		Present (D+)	Absent (D-)	Total	
Exercise Tolerance	Positive (T+)	815	115	930	
Test	Negative (T-)	208	327	535	
	Total	1023	442	1465	

		Coronary Artery Disease			
		Present (D+)	Absent (D-)	Total	
Exercise Tolerance Test	Positive (T+)	815	115	930	
	Negative (T-)	208	327	535	
	Total	1023	442	1465	

Define two measures of test performance

Sensitivity: Pr(T+ | D+) = 815/1023 = 0.80 (Tells us about the test in a positive sense)

Specificity: Pr(T- | D-) = 327/442 = 0.74 (Gives information about negative performance)

Good test would have high sensitivity and specificity (close to 1)

Prevalence : Pr(D+) = 1023/1465 = 0.70

i.e. estimate of frequency of outcome in population

Sensitivity and Specificity are independent of prevalence

(try doubling number of D+ people in each cell, then recalculating sensitivity and specificity).

Useful property – measures are comparable between populations for same test.

May also see **false positive rate** = 1 - specificity **false negative rate** = 1 - sensitivity