

Introduction to Combinatorics

Dat Tran (FMI, Leipzig University)
SoSe 2020 (Day 11 - 16/06/2020)

Contents

- Introduction to Graph theory
 - Graph Coloring

The map-colour problem

Question: Can the world map be coloured with just four colours so that neighbouring countries receive different colours?

Application

- 1 If the vertices of a graph represent academic classes, and two vertices are adjacent if the corresponding classes have people in common, then a coloring of the vertices can be used to schedule class meetings.
- 2 If the vertices of a graph represent radio stations, and two vertices are adjacent if the stations are close enough to interfere with each other, a coloring can be used to assign non-interfering frequencies to the stations.
- If the vertices of a graph represent traffic signals at an intersection, and two vertices are adjacent if the corresponding signals cannot be green at the same time, a coloring can be used to designate sets of signals than can be green at the same time.

Definition

A proper coloring of a graph is an assignment of colors to the vertices of the graph so that no two adjacent vertices have the same color. The chromatic number of a graph G is the minimum number of colors required in a proper coloring; it is denoted $\chi(G)$.

Example

If H is a subgraph of G, $\chi(H) \leq \chi(G)$.

Proof.

$$\chi(H) \leq \chi(G)$$
.

$$\chi(K_3) = 3$$

$$\chi(K_m) = m$$

$$K_m \leqslant G \Rightarrow \chi(G) \geqslant m.$$
 $\chi(K_m)$

Definition

A set S of vertices in a graph is independent if no two vertices of S are adjacent. The independence number of G is the maximum size of an independent set; it is denoted $\alpha(G)$.

Example

In any graph G on n vertices, $\frac{n}{\alpha(G)} \le \chi(G)$

Proof.

Denote by $V_1, ..., V_{\infty}$ sine sets of the colour i in graph G. $V_i: \text{ independent sof } \forall i \in [X]$ $N = \sum_{i=1}^{N} |V_i| \leq \alpha X$

$$n = \sum_{i=1}^{N} |V_i| \leq \alpha X$$
.

$$\Rightarrow \frac{n}{\alpha} \leq \chi$$

Definition

A subgraph of G that is a complete graph is called a clique. The clique number of a graph G is the largest M such that K_m is a subgraph of G.

Example

digne number = 4.

In any graph
$$G$$
, $\chi(G) \leq \Delta(G) + 1$.

Proof.

By using a greedy algorithm:

The algorithm above correctly computes the chromatic number in a finite amount of time.

Proof.

Corollary

If G is not regular, then $\chi(G) \leq \Delta(G)$.

Proof.

Theorem (Brooks's Theorem)

If G is a graph other than K_n or C_{2n+1} , then $\chi(G) \leq \Delta(G)$.

Proof.

Exercise E11.3.

$$= \sqrt{\chi = \Delta + 1}.$$

$$\chi(C_5) = 3$$

 $\Delta(C_5) = 2$

$$\Delta(C_5) = 2$$

$$X = \Delta + 1$$

$$X = \Delta + 1$$

 $[X = \Delta + 1]$ bipartite graph: 2-colonw.

