

Principles of AI

Chapter 14: Probabilistic Reasoning

.70

P	(alb,¬e) .94
C	$\mathbf{f}_3(A,B,C)$

 $P(\neg e)$

A	B	$\mathbf{f}_1(A,B)$	B	C	$\mathbf{f}_2(B,C)$	A	B	C	$\mathbf{f}_3(A,B,C)$
T	T	.3	Т	Т	.2	Т	T	T	$.3 \times .2 = .06$
T	F	.7	T	F	.8	T	T	F	$.3 \times .8 = .24$
F	T	.9	F	T	.6	T	F	T	$.7 \times .6 = .42$
F	F	.1	F	F	.4	T	F	F	$.7 \times .4 = .28$
						F	T	T	$.9 \times .2 = .18$
						F	T	F	$.9 \times .8 = .72$
						F	F	T	$.1 \times .6 = .06$
						F	F	F	$.1 \times .4 = .04$

Figure 14.10 Illustrating pointwise multiplication: $\mathbf{f}_1(A, B) \times \mathbf{f}_2(B, C) = \mathbf{f}_3(A, B, C)$.

 $P(\neg a|b, \neg e)$

 $P(j|\neg a)$.05

 $P(m|\neg a)$

.01

Exact Inference: Enumeration

Figure 14.8 The structure of the expression shown in Equation (14.4). The evaluation proceeds top down, multiplying values along each path and summing at the "+" nodes. Notice the repetition of the paths for j and m.

- Recursive depth-first enumeration:
 - O(n) space,
 - O(dⁿ) time
- Lots of repeated calculations
- Maybe Dynamic Programming!

Variable Elimination

- Variable elimination:
 - carry out summations right-to-left,
 - store intermediate results (factors) to avoid recomputation

```
Procedure Sum-Product-VE (
           // Set of factors

 // Set of variables to be eliminated

         // Ordering on Z
  Let Z_1, \ldots, Z_k be an ordering of Z such that
     Z_i \prec Z_j if and only if i < j
  for i = 1, ..., k
     \Phi \leftarrow \text{Sum-Product-Eliminate-Var}(\Phi, Z_i)
  \phi^* \leftarrow \prod_{\phi \in \Phi} \phi
   return φ*
Procedure Sum-Product-Eliminate-Var (
           // Set of factors
         // Variable to be eliminated
  \Phi' \leftarrow \{\phi \in \Phi : Z \in Scope[\phi]\}
 \Phi'' \leftarrow \Phi - \Phi'
\psi \leftarrow \prod_{\phi \in \Phi'} \phi

\tau \leftarrow \sum_{Z} \psi
  return \Phi'' \cup \{\tau\}
```

```
function ELIMINATION-ASK(X, \mathbf{e}, bn) returns a distribution over X inputs: X, the query variable \mathbf{e}, observed values for variables \mathbf{E} bn, a Bayesian network specifying joint distribution \mathbf{P}(X_1, \dots, X_n) factors \leftarrow [] for each var in Order(bn.Vars) do factors \leftarrow [Make-Factor(var, \mathbf{e})|factors] if var is a hidden variable then factors \leftarrow Sum-Out(var, factors) return Normalize(Pointwise-Product(factors))
```

```
function ELIMINATION-ASK(X, \mathbf{e}, bn) returns a distribution over X inputs: X, the query variable \mathbf{e}, observed values for variables \mathbf{E} bn, a Bayesian network specifying joint distribution \mathbf{P}(X_1, \dots, X_n)
```

304

 $\tau \leftarrow \sum_{z} \psi$

return $\Phi'' \cup \{\tau\}$

Chapter 9. Variable Elimination

```
Procedure Sum-Product-VE (
                                               Algorithm 9.2 Using Sum-Product-VE for computing conditional probabilities
           // Set of factors
                                                     Procedure Cond-Prob-VE (
       // Set of variables to be eli
                                                        \mathcal{K}, // A network over \mathcal{X}
          // Ordering on Z
                                                       Y, // Set of query variables
  Let Z_1, \ldots, Z_k be an ordering
                                                       E = e // Evidence
     Z_i \prec Z_i if and only if i < 1
  for i=1,\ldots,k
     or i = 1, ..., k

\Phi \leftarrow \text{Sum-Product-Elimina}
                                                       \Phi \leftarrow Factors parameterizing K
                                                       Replace each \phi \in \Phi by \phi[E = e]
  \phi^* \leftarrow \prod_{\phi \in \Phi} \phi
                                                       Select an elimination ordering ≺
   return \phi^*
                                                       Z \leftarrow = \mathcal{X} - Y - E
                                                       \phi^* \leftarrow \text{Sum-Product-VE}(\Phi, \prec, \mathbf{Z})
Procedure Sum-Product-Elimin 5
                                                       \alpha \leftarrow \sum_{y \in Val(Y)} \phi^*(y)
         // Set of factors
         // Variable to be eliminated 7
                                                        return \alpha, \phi^*
  \Phi' \leftarrow \{\phi \in \Phi : Z \in Scope[\phi]\}
  \Phi'' \leftarrow \Phi - \Phi'
  \psi \leftarrow \prod_{\phi \in \Phi'} \phi
```

Eliminate One Hidden Variable

```
Procedure Sum-Product-Eliminate-Var (
      \Phi, // Set of factors
    Z // Variable to be eliminated
   \begin{array}{ll} \Phi' \leftarrow & \{\phi \in \Phi \ : \ Z \in \mathit{Scope}[\phi]\} \\ \Phi'' \leftarrow & \Phi - \Phi' \end{array}

\psi \leftarrow \prod_{\phi \in \Phi'} \phi \\
\tau \leftarrow \sum_{Z} \psi

    return \Phi'' \cup \{\tau\}
```

2 Variable Elimination

For the Bayes' net below, we are given the query $P(Y \mid +z)$. All variables have binary domains. Assume we run variable elimination to compute the answer to this query, with the following variable elimination ordering: X, T, U, V, W.

P(Y | +z): Eliminate Hidden Variables

- Initial Factors after inserting evidence:
- P(T), P(U|T), P(V|T), P(W|T), P(X|T), P(Y|V,W), P(+z|X)

$$P(Y \mid +z)$$

Eliminate First Hidden Variable: X

- P(T), P(U|T), P(V|T), P(W|T), P(X|T), P(Y|V,W), P(+z|X)
- (a) Now Eliminate X and generate a new factor f1:

$P(Y \mid +z)$

- P(T), P(U|T), P(V|T), P(W|T), P(X|T),
 P(Y|V,W), P(+z|X)
- (a) Now Eliminate X and generate a new factor f1:
 - Step 1: Collect/Combine Factors
 - P(X|T), P(+z|X)
 - Step 2: Marginalize out X
 - f1(T, +z)= $\sum_{x} P(x|T)P(+z|x)$
 - (b) Leaving us w/ Factors=P(T), P(U|T), P(V|T),P(W|T), P(Y|V,W), f1(T,+z)

$P(Y \mid +z)$

Eliminate Second Hidden Variable:

T

- P(T), P(U|T), P(V|T), P(W|T), P(Y|V,W),
 f1(T,+z)
- (c) Eliminate T -- generating a new factor f2:
 - Step 1: Collect/Combine Factors
 - P(T), P(U|T), P(V|T), P(W|T), f1(T,+z)
 - Step 2: Marginalize out T
 - f2(U, V, W, +z)= $\sum_t P(T), P(U|T), P(V|T), P(W|T), f1(T,+z)$
 - (d) Leaving us w/ Factors= P(Y|V,W),f2(U,V,W,+z)

P(Y | +z) Eliminate Third Hidden Variable: **U**

- P(Y | V,W), f2(U, V, W, +z)
- (e) Eliminate U, generate a new factor f3:
 - Step 1: Collect/Combine Factors
 - f2(U, V, W, +z)
 - Step 2: Marginalize out T
 - f3(V, W, +z)= \sum_{u} f2(u, V, W, +z)
 - (f) Leaving us w/ Factors= P(Y|V,W), f3(V,W,+z)

$P(Y \mid +z)$

Eliminate Fourth Hidden Variable:

V

- P(Y | V,W), f3(V, W, +z)
- (g) Eliminating V, generate a new factor f4:
 - Step 1: Collect/Combine Factors
 - P(Y | V,W), f3(V, W, +z)
 - Step 2: Marginalize out V
 - $f4(Y, W, +z)=\sum_{v} P(Y | v,W), f3(v, W, +z)$
 - (h) Leaving us w/ Factors= f4(Y, W, +z)

P(Y | +z) Eliminate Fifth Hidden Variable: W

- f4(Y, W, +z)
- (i) Eliminating W, generate a new factor f5:
 - Step 1: Collect/Combine Factors
 - f4(Y, W, +z)
 - Step 2: Marginalize out W
 - $f5(Y, +z) = \sum_{w} f4(Y, W, +z)$
 - (j) Leaving us w/ Factors= f5(Y, +z)

$$P(Y \mid +z)$$

- f5(Y, +z)
- (k) How would you obtain P(Y|+z) from the factors left above:
 - Simply renormalize f5(Y,+z) to obtain P(Y|+z):

•
$$P(Y|+z) = \frac{f5(y,+z)}{\sum_{y}, f5(y',+z)}$$

- (I) What is the size of the largest factor generated?
- (m) Does there exist a better elimination ordering (one which generates smaller largest factors)?

$$P(Y \mid +z)$$

- f5(Y, +z)
- (k) How would you obtain P(Y j +z) from the factors left above:
 - Simply renormalize f5(Y,+z) to obtain P(Y|+z):

•
$$P(Y|+z) = \frac{f5(y,+z)}{\sum_{y'} f5(y',+z)}$$

- (I) What is the size of the largest factor generated?
- (m) Does there exist a better elimination ordering (one which generates smaller largest factors)? [X, U, V, T, W]

Approximate Inference: Sampling

Sampling

- Sampling is a lot like repeated simulation
 - Predicting the weather, basketball games, ...
- Basic idea
 - Draw N samples from a sampling distribution S
 - Compute an approximate posterior probability
 - Show this converges to the true probability P

- Why sample?
 - Learning: get samples from a distribution you don't know
 - Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)

Sampling

- Sampling from given distribution
 - Step 1: Get sample *u* from uniform distribution over [0, 1)
 - E.g. random() in python
 - Step 2: Convert this sample u into an outcome for the given distribution by having each outcome associated with a sub-interval of [0,1) with sub-interval size equal to probability of the outcome

Example

С	P(C)		
red	0.6		
green	0.1		
blue	0.3		

$$0 \le u < 0.6, \rightarrow C = red$$

$$0.6 \le u < 0.7, \rightarrow C = green$$

$$0.7 \le u < 1, \rightarrow C = blue$$

- If random() returns u = 0.83, then our sample is C =blue
- E.g, after sampling 8 times:

Sampling in Bayes' Nets

- Prior Sampling
- Rejection Sampling
- Likelihood Weighting
- Gibbs Sampling

+s	+r	+w	0.99
		-W	0.01
	-r	+w	0.90
		-W	0.10
-S	+r	+W	0.90
		-W	0.10
	-r	+w	0.01
		-W	0.99

+c, -s, +r, +w

- For i=1, 2, ..., n
 - Sample x_i from P(X_i | Parents(X_i))
- Return (x₁, x₂, ..., x_n)

Section 14.5.

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn inputs: bn, a Bayesian network specifying joint distribution $\mathbf{P}(X_1, \dots, X_n)$

 $\mathbf{x} \leftarrow$ an event with n elements foreach variable X_i in X_1, \dots, X_n do $\mathbf{x}[i] \leftarrow$ a random sample from $\mathbf{P}(X_i \mid parents(X_i))$ return \mathbf{x}

Figure 14.13 A sampling algorithm that generates events from a Bayesian network. Each variable is sampled according to the conditional distribution given the values already sampled for the variable's parents.

Sampling from an empty network

```
function PRIOR-SAMPLE(bn) returns an event sampled from bn inputs: bn, a belief network specifying joint distribution P(X_1,\ldots,X_n) x \leftarrow an event with n elements for i=1 to n do x_i \leftarrow \text{a random sample from } P(X_i \mid parents(X_i)) given the values of Parents(X_i) in x return x
```

• This process generates samples with probability:

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i | \mathsf{Parents}(X_i)) = P(x_1 \dots x_n)$$

...i.e. the BN's joint probability

- Let the number of samples of an event be $N_{PS}(x_1 \dots x_n)$
- Then $\lim_{N \to \infty} \hat{P}(x_1, \dots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \dots, x_n)/N$ $= S_{PS}(x_1, \dots, x_n)$ $= P(x_1 \dots x_n)$
- I.e., the sampling procedure is consistent

Example

We'll get a bunch of samples from the BN:

- If we want to know P(W)
 - We have counts <+w:4, -w:1>
 - Normalize to get P(W) = <+w:0.8, -w:0.2>
 - This will get closer to the true distribution with more samples
 - Can estimate anything else, too
 - What about P(C|+w)? P(C|+r,+w)? P(C|-r,-w)?
 - Fast: can use fewer samples if less time (what's the drawback?)

Rejection Sampling

Rejection Sampling

- Let's say we want P(C)
 - No point keeping all samples around
 - Just tally counts of C as we go
- Let's say we want P(C| +s)
 - Same thing: tally C outcomes, but ignore (reject) samples which don't have S=+s
 - This is called rejection sampling
 - It is also consistent for conditional probabilities (i.e., correct in the limit)

Rejection Sampling

- IN: evidence instantiation
- For i=1, 2, ..., n
 - Sample x_i from P(X_i | Parents(X_i))
 - If x_i not consistent with evidence
 - Reject: Return, and no sample is generated in this cycle
- Return $(x_1, x_2, ..., x_n)$

Section 14.5.

```
function REJECTION-SAMPLING(X, \mathbf{e}, bn, N) returns an estimate of \mathbf{P}(X|\mathbf{e})
  inputs: X, the query variable
           e, observed values for variables E
           bn, a Bayesian network
           N, the total number of samples to be generated
  local variables: N, a vector of counts for each value of X, initially zero
  for j = 1 to N do
      \mathbf{x} \leftarrow \text{PRIOR-SAMPLE}(bn)
      if x is consistent with e then
         N[x] \leftarrow N[x] + 1 where x is the value of X in x
  return NORMALIZE(N)
```

Figure 14.14 The rejection-sampling algorithm for answering queries given evidence in a Bayesian network.

- Problem with rejection sampling:
 - If evidence is unlikely, rejects lots of samples
 - Evidence not exploited as you sample
 - Consider P(Shape|blue)

pyramid, green
pyramid, red
sphere, blue
cube, red
sphere, green

- Idea: fix evidence variables and sample the rest
 - Problem: sample distribution not consistent!
 - Solution: weight by probability of evidence given parents

- IN: evidence instantiation
- w = 1.0
- for i=1, 2, ..., n
 - if X_i is an evidence variable
 - X_i = observation X_i for X_i
 - Set $w = w * P(x_i | Parents(X_i))$
 - else
 - Sample x_i from P(X_i | Parents(X_i))
- return (x₁, x₂, ..., x_n), w


```
function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X|e)
  inputs: X, the query variable
            e, observed values for variables E
            bn, a Bayesian network specifying joint distribution \mathbf{P}(X_1,\ldots,X_n)
            N, the total number of samples to be generated
  local variables: W, a vector of weighted counts for each value of X, initially zero
  for j = 1 to N do
       \mathbf{x}, w \leftarrow \text{Weighted-Sample}(bn, \mathbf{e})
       \mathbf{W}[x] \leftarrow \mathbf{W}[x] + w where x is the value of X in x
  return NORMALIZE(W)
function WEIGHTED-SAMPLE(bn, e) returns an event and a weight
  w \leftarrow 1; \mathbf{x} \leftarrow an event with n elements initialized from \mathbf{e}
  foreach variable X_i in X_1, \ldots, X_n do
       if X_i is an evidence variable with value x_i in e
           then w \leftarrow w \times P(X_i = x_i \mid parents(X_i))
           else \mathbf{x}[i] \leftarrow a random sample from \mathbf{P}(X_i \mid parents(X_i))
   return x, w
```

Figure 14.15 The likelihood-weighting algorithm for inference in Bayesian networks. In WEIGHTED-SAMPLE, each nonevidence variable is sampled according to the conditional distribution given the values already sampled for the variable's parents, while a weight is accumulated based on the likelihood for each evidence variable.

Likelihood Weighting

Sampling distribution if z sampled and e fixed evidence

$$S_{WS}(\mathbf{z},\mathbf{e}) = \prod_{i=1}^l P(z_i|\mathsf{Parents}(Z_i))$$

Now, samples have weights

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | \mathsf{Parents}(E_i))$$

Together, weighted sampling distribution is consistent

$$S_{\text{WS}}(z, e) \cdot w(z, e) = \prod_{i=1}^{l} P(z_i | \text{Parents}(z_i)) \prod_{i=1}^{m} P(e_i | \text{Parents}(e_i))$$
$$= P(\mathbf{z}, \mathbf{e})$$

Likelihood Weighting

- Likelihood weighting is good
 - We have taken evidence into account as we generate the sample
 - E.g. here, W's value will get picked based on the evidence values of S, R
 - More of our samples will reflect the state of the world suggested by the evidence

- Likelihood weighting doesn't solve all our problems
 - Evidence influences the choice of downstream variables, but not upstream ones (C isn't more likely to get a value matching the evidence)
- We would like to consider evidence when we sample every variable
 - → Gibbs sampling

Gibbs Sampling

Gibbs Sampling

- *Procedure:* keep track of a full instantiation $x_1, x_2, ..., x_n$.
 - Start with an arbitrary instantiation consistent with the evidence.
 - Sample one variable at a time, conditioned on all the rest, but keep evidence fixed.
 - Keep repeating this for a long time.
- *Property:* in the limit of repeating this infinitely many times the resulting sample is coming from the correct distribution
- Rationale: both upstream and downstream variables condition on evidence.

In contrast:

- likelihood weighting only conditions on upstream evidence,
- hence weights obtained in likelihood weighting can sometimes be very small.
- Sum of weights over all samples is indicative of how many "effective" samples were obtained,
 - · so want high weight.

Gibbs Sampling Example: P(S | +r)

- Step 1: Fix evidence
 - -R=+r

- Step 2: Initialize other variables
 - Randomly

- Steps 3: Repeat
 - Choose a non-evidence variable X
 - Resample X from P(X | all other variables)

Sample from P(S|+c,-w,+r)

Sample from P(C|+s,-w,+r)

Sample from P(W|+s,+c,+r)

Section 14.5.

```
function GIBBS-ASK(X, \mathbf{e}, bn, N) returns an estimate of \mathbf{P}(X|\mathbf{e}) local variables: \mathbf{N}, a vector of counts for each value of X, initially zero \mathbf{Z}, the nonevidence variables in bn \mathbf{x}, the current state of the network, initially copied from \mathbf{e} initialize \mathbf{x} with random values for the variables in \mathbf{Z} for j=1 to N do for each Z_i in \mathbf{Z} do set the value of Z_i in \mathbf{x} by sampling from \mathbf{P}(Z_i|mb(Z_i)) \mathbf{N}[x] \leftarrow \mathbf{N}[x] + 1 where x is the value of X in \mathbf{x} return NORMALIZE(\mathbf{N})
```

Figure 14.16 The Gibbs sampling algorithm for approximate inference in Bayesian networks; this version cycles through the variables, but choosing variables at random also works.

Gibbs Sampling

- How is this better than sampling from the full joint?
 - In a Bayes' Net, sampling a variable given all the other variables (e.g. P(R|S,C,W)) is usually much easier than sampling from the full joint distribution
 - Only requires a join on the variable to be sampled (in this case, a join on R)
 - The resulting factor only depends on the variable's parents, its children, and its children's parents (this is often referred to as its Markov blanket)

Markov Blanket

518 Chapter 14. Probabilistic Reasoning

Figure 14.4 (a) A node X is conditionally independent of its non-descendants (e.g., the Z_{ij} s) given its parents (the U_i s shown in the gray area). (b) A node X is conditionally independent of all other nodes in the network given its Markov blanket (the gray area).

Efficient Resampling of One Variable

Sample from P(S | +c, +r, -w)

$$P(S|+c,+r,-w) = \frac{P(S,+c,+r,-w)}{P(+c,+r,-w)}$$

$$= \frac{P(S,+c,+r,-w)}{\sum_{s} P(s,+c,+r,-w)}$$

$$= \frac{P(+c)P(S|+c)P(+r|+c)P(-w|S,+r)}{\sum_{s} P(+c)P(s|+c)P(+r|+c)P(-w|s,+r)}$$

$$= \frac{P(+c)P(S|+c)P(+r|+c)P(-w|S,+r)}{P(+c)P(+r|+c)\sum_{s} P(s|+c)P(-w|s,+r)}$$

$$= \frac{P(S|+c)P(-w|S,+r)}{\sum_{s} P(s|+c)P(-w|s,+r)}$$

- Many things cancel out only CPTs with S remain!
- More generally: only CPTs that have resampled variable need to be considered, and joined together

Bayes' Net Sampling Summary

Prior Sampling P

Likelihood Weighting P(Q | e)

Further Reading on Gibbs Sampling*

- Gibbs sampling produces sample from the query distribution P(Q | e)
 in limit of re-sampling infinitely often
- Gibbs sampling is a special case of more general methods called Markov chain Monte Carlo (MCMC) methods
 - Metropolis-Hastings is one of the more famous MCMC methods (in fact, Gibbs sampling is a special case of Metropolis-Hastings)
- You may read about Monte Carlo methods they're just sampling

Markov Chain Monte Carlo*

- Idea: instead of sampling from scratch, create samples that are each like the last one.
- Procedure: resample one variable at a time, conditioned on all the rest, but keep evidence fixed. E.g., for P(b|c):

- *Properties*: Now samples are not independent (in fact they' re nearly identical), but sample averages are still consistent estimators!
- What 's the point: both upstream and downstream variables condition on evidence.