Exceptionally Useless Box

KYLE FITCH

NICK PADILLA

Motivation/Background

This is a useless box

But it's not really that useless...

HOW DO WE MAKE A BOX THAT IS **EXCEPTIONALLY USELESS?!**

THE EXCEPTIONALLY USELESS BOX

Remove the interaction of the user with the box altogether

- The box flips the switch itself when a hand approaches
- Then the box flips it back like normal

Components:

- Arduino
- Ultrasonic sensor (measure distance of hand)
- 2 servos
- Toggle switch

How can a robot have a purpose when you take it away?

Calculation Components

Well... about that

6. Control Specification:

No.	Item	Specification
6-1	Control system	Pulse width modification
6-2	Amplifier type	Digital controller
6-3	Operating travel	90° ±5°
6-4	Neutral position	1500 µsec
6-5	Dead band width	3 µsec
6-6	Rotating direction	Counterclockwise (When 1000 ~ 2000 µsec)
6-7	Pulse width range	1000 ~ 2000 µsec
6-8	Maximum travel	Approx. 180° (When 500 ~ 2500 µsec)

Parameters:

- 1. Use voltage: DC5V
- 2. Quiescent current: les
- 3. level output: high 5V tow ov
- 5. Induction angle: no more than 15 degrees
- 6. Detection range: 0.78~196 in/ (2cm~500cm)
- 7. High accuracy: up to 0.12 in/(0.3 cm)
- 8. Connection mode: VCC, trig (control), echo (receiving end), GND ground wire

Module working principle:

Pull the **Trig pin** to high level for more than 10us impulse, the module start ranging.

The module automatically sends eight 40KHz square wave to detect whether a signal is returned.

Finished ranging, If you find an object in front, **Echo pin** will be high level, and based on the different di So we can calculated the distance easily. The distance = ((Duration of high level)*(Sonic :340m/s))/2

Dimensions: 1.3 x 0.4 x 0.1 inch/3.03 x 1 x 0.25 cm (L*W*H)

Calculation Components (2)

Calculation Components (3)

Mechanical Components/Design

Enclosure

- Laser cut chassis, 1/8" MDF & Delrin
- Piano hinges w/ spring return on front door
- Lots of M3 hardware

Servo Arm mechanisms

- Laser cut Delrin links
- 1/8" pins with friction-fit spring clips
- Adjustable mount

Electronic Components/Design

Toggle Switch

Ultrasonic Sensor

2 Servo Motors

Arduino Pro Mini

System Control/Programming

Demonstration

Group Member Contribution

Kyle Fitch: Mechanical design, electrical design

Nick Padilla: Programming

McMaster Carr: Modeled all our fasteners, washers, nuts, rubber bumpers, snap rings, etc. Always delivered what we asked for in a day, always available to give us a part model, never argued. 10/10 group member, would recommend.

PEAK USELESSNESS AT MINIMUM EFFICIENCY

Questions?

(we have useful answers)