Overdue Rate Prediction based on Personal and Behavior Information of Clients

6202 Project

Professor: Amir Hossein Jafari

Jiaxi Jiang, Xueqi Zhou, Meijiao Wang

Background

Historical behavior data of the Chinese Credit Platform

Aim:

Predict the probability of users overdue in the next 6 months

Background

Mirror Risk Control System:

- the first real risk control model based on big data in the industry
- 13.6 million online users
- 12.86 billion pieces of data

Reason of Research

- 1. The labor cost is relatively high
- 2. The accuracy is difficult to guarantee by human
- 3. It is easy to cause corruption if there are no good standards.

Table of Contents

- Introduction
- Description of dataset
- Experimental setup and Results
 - (1) Data visualization
 - (2) Data cleaning
 - (3) Feature engineering
 - (4) Feature selection
 - (5) Model Building
 - (6) Accuracy
- Conclusion

data visualization

Graph1

Graph 3

- data cleaning
 - Delete features have missing values higher than 60
 - Delete features have standard deviation near 0
 - Change the format of city's name ("重庆" equals to "重庆市")

We found the missing value, the white represent the missing value, black means filled with values, and I just change the object value with mode, the int or float value with mean

Plot the overdue with date and group by the overdue, 0 or 1. see whether there is some time series relationship between target and date. As we can see, there indeed have some time series information, so I change the date data from 1~10 to 1, 11~20 to 2,.....29991~30000 to 3000

Plot the log(the numbers if cities) We can see there are three group of cities, it is clearly to see this in the plot, group 1 equal to 1, group 2 equal to 2, group 3 equal to 3.

- feature engineering
 - (i) create new features, according to provinces having overdue ratio higher than 85%
 - (ii) whether the names are the same among every two columns

Idx	UserInfo 2	UserInfo 4	UserInfo 7	UserInfo 8	UserInfo 19	UserInfo 20
10005	广州	韶关	广东	广州	辽宁省	锦州市
10013	郴州	广州	广东	广州	湖南省	郴州市
10020	惠州	惠州	广东	惠州	四川省	广安市
10033	水庄	水庄	山东	冬庄	山东省	枣圧市
10035	深圳	南平	福建	南平	福建省	不详
10038	济宁	济宁	山东	济宁	山东省	济宁市
1004	连云港	连云港	江苏	连云港	江苏省	连云港市
10042	德州	德州	山东	滨州	山东省	德州市
10043	青岛	聊城	不详	不详	山东省	聊城市
10046	深圳	汕尾	广东 _	汕尾	广东省	汕尾市
1005	新乡	新乡	河南	新乡	河南省	新乡市

- (iii) rank the cities
- (iv) For the rest, we made them one hot encoder

Dummy variables:

After we do all the data transformation and cleaning process, we change the left object variables into dummy variable. This step is fault, but we still do that, cause it is easy.

feature selection

- 200 the most important features
- Combine 5 models to rank the feature importance
 - Pearson correlation selector, chi-squared selector, random forest selector, logistic selector, and RFE

Choose the model and use the stacking method

Modeling:

We choose the logisticregression, knn, decisiontree, svm, gaussianbayes, nn, xgb model and combine them to make a stacking model

K-fold:

then we use the 10-fold and repeat = 3 to train the model.

Finally we can get the result, like the box plot or the mean(score)

Accuracy


```
[0 1 1 ... 1 0 1]

[[ 3481 15407]

[ 179 933]]

0.057099143206854344

0.8390287769784173

0.1069218427687371

0.5116628425341049
```

Prediction
Confusion matrix
precision score, recall-score, f1-score
and AUC

Conclusion

- Still have a lot to improve
 - Dummy variable (factorization)
 - Feature engineering
 - Building model