Procesamiento Cuántico de Información

Ariel Bendersky¹

¹Departamento de Computación - FCEyN - Universidad de Buenos Aires

Clase 9

Clase 9

- Tomografía de estados.
- Traza parcial.

Objetivo

Caracterizar el estado de un sistema cuántico.

- Medir un observable destruye el estado.
- Necesitamos muchas copias del estado para medir valores medios.
- Con esos valores medios podemos estimar el estado.

Objetivo

Caracterizar el estado de un sistema cuántico.

- Medir un observable destruye el estado.
- Necesitamos muchas copias del estado para medir valores medios.
- Con esos valores medios podemos estimar el estado.

Objetivo

Caracterizar el estado de un sistema cuántico.

- Medir un observable destruye el estado.
- Necesitamos muchas copias del estado para medir valores medios.
- Con esos valores medios podemos estimar el estado.

De la clase pasada

Podemos medir los valores medios de los operadores de Pauli (generalizados). Recordemos que para un sistema de n qubits:

$$\rho = \frac{1}{2^n} \sum_k \operatorname{Tr}(\rho P_k) P_k$$

donde P_k son los operadores de Pauli generalizados.

Pero esta no es la única forma.

De la clase pasada

Podemos medir los valores medios de los operadores de Pauli (generalizados). Recordemos que para un sistema de n qubits:

$$\rho = \frac{1}{2^n} \sum_k \operatorname{Tr}(\rho P_k) P_k$$

donde P_k son los operadores de Pauli generalizados. Pero esta no es la única forma.

Escribiendo matrices densidad en la base computacional

Sea $\{|j\rangle, j=1,...,d\}$ la base computacional. Entonces $\{|j\rangle\langle k|, j, k\in\{1,...,d\}\}$ es una base del espacio de operadores. Toda matriz densidad (a partir de ahora voy a decir estado tanto para un ket como para una matriz densidad, y se va a entender por contexto) se puede escribir como:

$$\rho = \sum_{j,k=1}^{d} \rho_{jk} \left| j \right\rangle \left\langle k \right|$$

Propiedades

$Tr \rho = 1$

$$\operatorname{Tr}\rho = \sum_{m=1}^{d} \langle m | \sum_{j,k=1}^{d} \rho_{jk} | j \rangle \langle k | m \rangle$$

$$= \sum_{j,k,m=1}^{d} \rho_{jk} \langle m | j \rangle \langle k | m \rangle$$

$$= \sum_{j,k,m=1}^{d} \rho_{jk} \delta_{mj} \delta_{km}$$

$$= \sum_{j,k,m=1}^{d} \rho_{mm}$$

Propiedades

ρ es semidefinida positiva

La matriz ρ cuyos elementos son ρ_{ii} es semidefinida positiva.

Propiedades

$$ho^{\dagger} =
ho$$

$$ho^{\dagger} = \sum_{j,k=1}^{d}
ho_{jk} * |k\rangle \langle j| = \sum_{j,k=1}^{d}
ho_{jk} |j\rangle \langle k|.$$
Por lo tanto $ho_{ij} =
ho_{ijk}$. Es desir, la matriz con socision

Por lo tanto $\rho_{jk} = \rho_{kj}*$. Es decir, la matriz con coeficientes ρ_{jk} es hermitica.

Definición del problema

Nos interesa medir los coeficientes ρ_{ik} .

Elementos diagonales

Medimos el proyector $\Pi_m = |m\rangle \langle m|$.

$$\operatorname{Tr}\rho\Pi_{m} = \sum_{t,j,k=1}^{d} \rho_{jk} \langle t|j\rangle \langle k|m\rangle \langle m|t\rangle$$
$$= \sum_{t,j,k=1}^{d} \rho_{jk} \delta_{tj} \delta_{km} \delta_{mt}$$
$$= \rho_{mm}$$

Elementos no diagonales

Mido el proyector $\Pi_{m+n} = \frac{1}{2} (|m\rangle + |n\rangle) (\langle m| + \langle n|)$

$$\operatorname{Tr}\rho\Pi_{m+n} = \frac{1}{2} \sum_{t,j,k=1}^{d} \rho_{jk} \langle t|j\rangle \langle k| (|m\rangle + |n\rangle) (\langle m| + \langle n|) |t\rangle$$

$$= \frac{1}{2} \sum_{t,j,k=1}^{d} \rho_{jk} \delta_{tj} (\delta_{km} + \delta_{kn}) (\delta_{mt} + \delta_{nt})$$

$$= \frac{1}{2} \sum_{j,k=1}^{d} \rho_{jk} (\delta_{km} + \delta_{kn}) (\delta_{mj} + \delta_{nj})$$

$$= \frac{1}{2} \sum_{j,k=1}^{d} \rho_{jk} (\delta_{km} \delta_{mj} + \delta_{km} \delta_{nj} + \delta_{kn} \delta_{mj} + \delta_{kn} \delta_{nj})$$

Elementos no diagonales

$$\operatorname{Tr}\rho\Pi_{m+n} = \frac{1}{2}(\rho_{mm} + \rho_{nm} + \rho_{mn} + \rho_{nn})$$
$$= \frac{\rho_{mm}}{2} + \frac{\rho_{nn}}{2} + \Re\rho_{mn}$$

Medimos la parte real del coeficiente ρ_{mn} .

Elementos no diagonales

Mido el proyector $\Pi_{m-in} = \frac{1}{2} (|m\rangle - i |n\rangle) (\langle m| + i \langle n|)$

$$\operatorname{Tr}\rho\Pi_{m-in} = \frac{1}{2} \sum_{t,j,k=1}^{d} \rho_{jk} \langle t|j\rangle \langle k| (|m\rangle - i|n\rangle) (\langle m| + i\langle n|) |t\rangle$$

$$= \frac{1}{2} \sum_{t,j,k=1}^{d} \rho_{jk} \delta_{tj} (\delta_{km} - i\delta_{kn}) (\delta_{mt} + i\delta_{nt})$$

$$= \frac{1}{2} \sum_{j,k=1}^{d} \rho_{jk} (\delta_{km} - i\delta_{kn}) (\delta_{mj} + i\delta_{nj})$$

$$= \frac{1}{2} \sum_{j,k=1}^{d} \rho_{jk} (\delta_{km} \delta_{mj} + i\delta_{km} \delta_{nj} - i\delta_{kn} \delta_{mj} + \delta_{kn} \delta_{nj})$$

Elementos no diagonales

$$\operatorname{Tr}\rho\Pi_{m+n} = \frac{1}{2}(\rho_{mm} + i\rho_{nm} - i\rho_{mn} + \rho_{nn})$$
$$= \frac{\rho_{mm}}{2} + \frac{\rho_{nn}}{2} + \Im\rho_{mn}$$

Medimos la parte imaginaria del coeficiente ρ_{mn} .

Variante - Ejercicio

Si medimos también Π_{m-n} y Π_{m+in} no necesitamos medir los coeficientes diagonales para medir uno no diagonal.

Tomografía selectiva, eficiente y directa de estados cuánticos

Tomografía de estados cuánticos

Tomografía selectiva, eficiente y directa de estados cuánticos

Bendersky, A., Paz, J. P. (2013). Selective and efficient quantum state tomography and its application to quantum process tomography. Physical Review A, 87(1), 012122.

Descripción de estados cuánticos

Descripción del estado en una base de ${\cal H}$

$$\rho = \sum_{ab} \alpha_{ab} \left| \psi_a \right\rangle \left\langle \psi_b \right|$$

Supongamos que...

Sabemos preparar los estados de la base, con V_a un unitario conocido e implementable (su eficiencia determina la eficiencia del método):

$$|\psi_a\rangle = V_a |0\rangle$$

Descripción de estados cuánticos

Descripción del estado en una base de ${\cal H}$

$$\rho = \sum_{\mathbf{a}\mathbf{b}} \alpha_{\mathbf{a}\mathbf{b}} \left| \psi_{\mathbf{a}} \right\rangle \left\langle \psi_{\mathbf{b}} \right|$$

Supongamos que...

Sabemos preparar los estados de la base, con V_a un unitario conocido e implementable (su eficiencia determina la eficiencia del método):

$$|\psi_a\rangle = V_a |0\rangle$$

Descripción de estados cuánticos

Descripción del estado en una base de ${\cal H}$

$$\rho = \sum_{\mathbf{a}\mathbf{b}} \alpha_{\mathbf{a}\mathbf{b}} \left| \psi_{\mathbf{a}} \right\rangle \left\langle \psi_{\mathbf{b}} \right|$$

Supongamos que...

Sabemos preparar los estados de la base, con V_a un unitario conocido e implementable (su eficiencia determina la eficiencia del método):

$$|\psi_a\rangle = V_a |0\rangle$$

Tomografía selectiva, eficiente y directa de estados

Por qué funciona?

Para hacer tomografía de estados hay que medir proyecciones sobre estados del tipo $\frac{1}{\sqrt{2}}\left(|\psi_a\rangle\pm(i)|\psi_b\rangle\right)$. Su matriz densidad tiene términos cruzados que equivalen a aplicar por derecha y por izquierda V_a y V_b , respectivamente.

Análisis en la pizarra.

Tomografía selectiva, eficiente y directa de estados

¿Por qué funciona?

Para hacer tomografía de estados hay que medir proyecciones sobre estados del tipo $\frac{1}{\sqrt{2}}\left(|\psi_a\rangle\pm(i)|\psi_b\rangle\right)$. Su matriz densidad tiene términos cruzados que equivalen a aplicar por derecha y por izquierda V_a y V_b , respectivamente.

Análisis en la pizarra.

Traza parcial

Traza parcial

Traza parcial

Estados bipartitos

Alice y Bob comparten el estado ρ_{AB} . Alice se muere, o le hace algo a su estado, o no, pero no tiene comunicación con Bob. ¿Cómo hace Bob para describir su estado parcial?

La solución: La traza parcial

El estado que ve Bob ρ_B es la traza parcial sobre el estado de Alice:

$$\rho_B = \operatorname{Tr}_A \rho_{AB} = \sum_{t=1}^{d_A} \langle t_A | \rho_{AB} | t_A \rangle$$

Ejemplo en la pizarra.

Traza parcial

Estados bipartitos

Alice y Bob comparten el estado ρ_{AB} . Alice se muere, o le hace algo a su estado, o no, pero no tiene comunicación con Bob. ¿Cómo hace Bob para describir su estado parcial?

La solución: La traza parcial

El estado que ve Bob ρ_B es la traza parcial sobre el estado de Alice:

$$\rho_{B} = \operatorname{Tr}_{A} \rho_{AB} = \sum_{t=1}^{d_{A}} \langle t_{A} | \rho_{AB} | t_{A} \rangle$$

Ejemplo en la pizarra.