Pairwise Combination of Classifiers for Ensemble Learning on Data Streams

By Heitor Muril Gomes, Jean Paul Baraddal, Fabrício Enembreck **From** Pontifical Catholic University of Paraná

Introduction

- Despite attempts to create a diverse ensemble, there is always some amount of overlap between the component classifier models.
- Combining classifier pairs might alleviate incorrect predictions that would otherwise negatively impact the entire ensemble decision.
- Two voting strategies aimed at using these overlaps to support ensemble prediction.
 - Pairwise Accuracy (PA)
 - Pairwise Patterns (PP)

Pairwise Accuracy

- Combines classifiers into pairs and weights predictions based on their shared estimated accuracy.
- Pairwise estimated accuracy.
- Shared estimated error rate.

Figure 1: Venn diagram representation of window n and classifiers c_i and c_j correctly and incorrectly classified subsets of instances

$$S_{acc}(c_i, c_j) = \frac{|I \cap J|}{|U_n^t|} \tag{1}$$

$$S_{err}(c_i, c_j) = \frac{|I_e \cap J_e|}{|U_n^t|} \tag{2}$$

$$acc(c_i) = \frac{|I|}{|U_n^t|} \tag{3}$$

Pairwise Accuracy

$$\vec{v}(h_i(x)) := \vec{v}(h_i(x)) + S_{acc}(c_i, c_j) - S_{err}(c_i, c_j)$$
 (4)

$$\vec{v}(h_i(x)) := \vec{v}(h_i(x)) + acc(c_i) - S_{acc}(c_i, c_j)$$
 (5)

$$\vec{v}(h_j(x)) := \vec{v}(h_j(x)) + acc(c_j) - S_{acc}(c_i, c_j)$$
 (6)

- Employs a weighting function that prioritises equal pairwise prediction over individual prediction.
- ullet Every position in vector $ec{v}$ corresponds to a possible label, which is initialised to zero.
- Individual predictions for and instance x are found and the vector position is updated with the new estimated accuracies.

Pairwise Patterns

- ullet Records prediction patterns during training and uses these patterns to weight decisions while predicting the label of an unknown instance $\, \mathcal{X} \, . \,$
- Maintains a vector \vec{p} with all possible prediction patterns, given two classifiers and k classes. It also maintains a matrix with one column for each possible label and one row for each pattern.
- Classifiers c_i and c_j predict the label of an instance to form the pattern, and the correct label determines the position in the matrix to be incremented.

$ec{p}$	1
(0,0)	
(0,1)	
	0.
•	
(k 1 k 1)	-

Corr. 0	Corr. 1	 Corr. (k-1)
12	4	 0
3	16	 1
:		
3	5	 18

Figure 2: Example of the data stored for a given pair of classifiers c_i and c_j for a classification problem with k classes. Every entry in \vec{p} has a one-to-one relation to a line in M.

Ensemble Adaptations

- Generic Ensemble (GE) is an ensemble structure based on existing methods, used to test PA and PP.
 - Updating classifiers.
 - Windows.
- New classifiers can only replace existing ones.
- Creates a diverse set and can gradually adapt in case of concept drift.

Experiments

- Comparing PA and PP.
- Prequential evaluation with a sample frequency
 1/10 the total stream length.
- Maximum number of classifiers as 10.
- Window size at 1% the total stream length.

110.5	Data stream configuration			
ID	Data generator	# drifts	Type of drift	
RTG	RTG	121	-	
AGR1	AGRAWAL	2	A/A	
AGR2	AGRAWAL	2	G/G	
SEA1	SEA	2	A/A	
SEA2	SEA	2	G/G	
HYPE	Hyperplane	7-8	I	

Table 1: Synthetic data streams configurations (A: Abrupt Drift, G: Gradual Drift, I: Incremental Drift)

Experiments

LevBag Vs. LevBag-PP

Dataset	LevBag-PP	\mathbf{LevBag}
AGR1	93.64 ± 0.15	93.69 ± 0.83
AGR2	90.95 ± 1.17	91.07 ± 1.29
AIRL	63.7 ± 0.28	62.67 ± 0.25
COVT	92.95 ± 0.26	92.19 ± 0.28
ELEC	90.67 ± 0.24	90.82 ± 0.21
RTS	97.99 ± 0.1	98.21 ± 0.09
SEA1	89.91 ± 0.04	89.64 ± 0.34
SEA2	90.46 ± 0.03	90.45 ± 0.04
SPAM	93.89 ± 0.55	93.11 ± 0.35
HYPE	90.75 ± 0.11	90.29 ± 0.12

Table 2: Average accuracy for LevBag and LevBag-PP. The best accuracies per data stream are indicated in boldface.

GE Vs. GE-PA Vs. GA-PP

Dataset	GE-PA	GE-PP	GE
AGR1	94.2 ± 0.27	87.43	92.04 ± 0.08
AGR2	92.42 ± 0.41	82.7	90.87 ± 0.01
AIRL	66.38 ± 0.15	62.67	66.21 ± 0.02
COVT	87.72 ± 0.43	89.67	88.31 ± 0.16
ELEC	86.03 ± 0.17	84.76	85.97 ± 0.15
RTS	95.13 ± 0.08	96.57	95.19 ± 0.02
SEA1	89.32 ± 0.22	86.54	89.33 ± 0
SEA2	89.41 ± 0.07	86.51	89.43 ± 0
SPAM	87.19 ± 0.06	88.76	87.1 ± 0.02
HYPE	91.16 ± 0.06	86.42	91.15 ± 0.06

Table 3: Average accuracy for GE, GE-PA and GE-PP. The best accuracies per data stream are indicated in boldface. GE-PP standard deviation was below 10^{-9} for all experiments.

Experiments

• GE-PA & LevBag-PP Vs. Other ensemble methods.

Dataset	LevBag-PP	GE-PA	ADWBag	DWM	OAUE	SFNC	SAE2
AGR1	93.64 ± 0.15	94.2 ± 0.27	94.36 ± 0.2	86.5	93.77	93.33	94.68 ± 0.15
AGR2	90.95 ± 1.17	92.42 ± 0.41	90.69 ± 1.32	82.41	93.24	92.31	89.79 ± 2.09
AIRL	63.7 ± 0.28	66.38 ± 0.15	66.05 ± 0.32	61.46	64.48	66.42	60.8 ± 0.58
COVT	92.95 ± 0.26	87.72 ± 0.43	85.67 ± 0.25	91.28	93.55	85.85	86.59 ± 0.53
ELEC	90.67 ± 0.24	86.03 ± 0.17	85.05 ± 0.33	84.69	89.38	85.38	85.8 ± 0.48
RTS	97.99 ± 0.1	95.13 ± 0.08	95.6 ± 0.09	93.64	97.35	95.09	95.06 ± 0.12
SEA1	89.91 ± 0.04	89.32 ± 0.22	88.63 ± 0.48	88.6	90.02	89.54	89.86 ± 0.17
SEA2	90.46 ± 0.03	89.41 ± 0.07	90.15 ± 0.08	88.63	90.25	89.16	90.12 ± 0.1
SPAM	93.89 ± 0.55	87.19 ± 0.06	88.34 ± 0.9	88.21	67.23	86.5	87.76 ± 0.42
HYPE	90.75 ± 0.11	91.16 ± 0.06	90.5 ± 0.12	88.2	90.41	90.91	90.88 ± 0.12
Avg. Rank	2.6	3.4	4.2	6.1	3	4.4	4.3

Table 4: Comparison of average accuracy. The best accuracies per data stream are indicated in boldface. SFNC standard deviation were below 10^{-14} for all experiments.

Figure 3: Accuracy on the AGR1 experiment (2 abrupt concept drifts around instances $3.33{\times}10^5$ and $6.66{\times}10^5$)

Figure 4: Accuracy on the AGR2 experiment (2 gradual concept drifts around instances 3.33×10^5 and 6.66×10^5)

Conclusion

- Presented two voting strategies.
- The experiments performed have provided moderate accuracy improvements.
- Combining classifiers into pairs may allow more sophisticated weighting mechanisms.
- Future work?

Questions?

Feel free to ask!