Experiment No.-8

Title: Mini Project / Case Study

(e.g., Breast Cancer Detection, Drug Discovery, etc.)

(A Constituent College of Somaiya Vidyavihar University)

Batch: A1 Roll No.: 16014223024 Experiment No.:8

Aim: To reproduce a machine learning research work from a reputed journal article and demonstrate its practical implementation.

Resources needed: Any programming language.

1. Group Formation

• Each group can have a maximum of 2 students and a minimum of 1 student. Add group details here, shared sheet

2. Paper Selection

- Select a good-quality ML-related journal article (2020–2025).
- Only papers from **reputed journals** (IEEE, Springer, Elsevier, Wiley, ACM, etc.) are allowed.
- The paper must be **application-oriented**, specifically focusing on **applications of ML** in different domains, such as:
 - Education (student performance prediction, adaptive learning, exam analysis).
 - **Healthcare/Medical** (disease diagnosis, drug discovery, medical imaging).
 - Agriculture (crop yield prediction, soil analysis, pest detection).
 - **Social Good** (fake news detection, crime prediction, disaster management, poverty mapping).
 - Other impactful real-world domains.

3. Reproduction of Work

• Study the selected paper in detail.

• Reproduce the methodology from scratch using appropriate ML libraries/tools (Python, TensorFlow, PyTorch, Scikit-learn, etc.).

4. Extension to New Dataset / Domain

- After reproducing the original paper, run the code on a different dataset:
 - Download a dataset from **Kaggle** (or any other open-source platform).
 - This dataset must be different from the one used in the original paper, or you must apply the same implementation to a different domain.
- This ensures you:
 - Learn how to preprocess datasets independently.
 - Avoid any **copyright/ethical issues** with the original authors' dataset.

5. Implementation & Documentation

- Format your code properly and structure it as per **GitHub repository standards**:
 - Include all supporting files such as:
 - 1. README.md (project description, steps to run code).
 - 2. Other .md files (e.g., methodology, results, references if needed).
 - 3. Requirements file (requirements.txt or environment.yml).
- Upload your complete implementation in the **shared folder**:
 - Create a folder named after your **Group Number**.
 - Inside the folder, include:
 - 1. All code files.
 - 2. Supporting .md files.
 - 3. Dataset link (if large, just provide URL).
 - 4. The selected **paper PDF** (file name format given below).

File Naming Rule for Paper PDF:

BatchName GroupNumber TitleOfPaper.pdf

• (Example: TYBTechML Group3 BreastCancerDetection.pdf)

6. Excel Sheet Update

Update the **shared Excel sheet** with:

- 1. Group details (student names, roll numbers).
- 2. Title of the selected paper.
- 3. URL of the paper.
- 4. URL of the GitHub project repository (original code, if any).
- 5. Description of the **changes you made** (new dataset/domain, modifications in preprocessing, model adjustments, etc.).

7. Demonstration

- Each group must demonstrate their project before the end of the semester.
- The demo should include:
 - Problem statement.
 - Original dataset and new dataset/domain used.
 - Methodology and reproduction steps.
 - Results (comparison with the original paper + your new dataset results).
 - Challenges faced and learnings.

Expected Outcomes

- Ability to reproduce and understand ML research papers.
- Skills in dataset preprocessing and adapting models to new domains.

- Experience in project structuring for GitHub repositories.
- Hands-on practice in documenting and presenting ML projects.
- Exposure to ML applications in real-world impactful domains like education, healthcare, agriculture, and social good.

Research Paper Summary

The foundational research paper "LoRA: Low-Rank Adaptation of Large Language Models" by Hu et al. introduces a parameter-efficient fine-tuning method that addresses the challenges of adapting large pre-trained language models to downstream tasks.

Key Contributions of the Original Paper:

- 1. **Low-Rank Adaptation Principle**: Instead of fine-tuning all model parameters, LoRA freezes pre-trained weights and injects trainable rank decomposition matrices into Transformer layers, significantly reducing trainable parameters.
- 2. **Parameter Efficiency**: Demonstrates up to 10,000× reduction in trainable parameters for GPT-3 175B while maintaining performance comparable to full fine-tuning.
- 3. **No Inference Latency**: Unlike adapter-based methods, LoRA introduces no additional inference latency as the adapted weights can be merged with base model weights.
- 4. **Empirical Validation**: Shows competitive performance across RoBERTa, DeBERTa, GPT-2, and GPT-3 on various NLP benchmarks including GLUE, E2E NLG, and WikiSOL
- 5. **Theoretical Insights**: Provides analysis showing that weight updates during adaptation have low intrinsic rank, justifying the low-rank approximation approach.

Project Implementation Overview

Changes and Modifications from Original Paper

1. New Dataset and Domain

- Original Paper: Used standard NLP benchmarks (GLUE, E2E NLG, WikiSQL)
- **Our Implementation**: Applied to **MedQuAD** a biomedical question-answering dataset with 14,984 medical QA pairs
- **Domain Shift**: From general NLP to specialized biomedical domain requiring medical terminology understanding

2. Dataset Preprocessing Modifications

- Data Format: Structured 14,984 question-answer pairs from NIH sources
- Text Cleaning: Specialized medical text normalization and formatting
- **Domain-specific Handling**: Preserved medical terminology and structured medical information
- Train-Test Split: 80-20 split (11,987 training, 2,997 testing samples)

3. Model Adjustments

- **Base Model**: Used GPT-2 (124M parameters) instead of larger models like GPT-3
- LoRA Configuration:
 - o Rank (r): 4 (compared to various ranks in original paper)
 - o Alpha: 32
 - o Target Modules: Query and Value projections in attention layers
 - o Applied only to attention weights, freezing MLP modules

4. Evaluation Framework

- **Metrics**: Extended beyond original paper's metrics to include medical domain-specific evaluations
- Medical Focus: Emphasis on clinical relevance and medical accuracy
- Comparative Analysis: Base GPT-2 vs LoRA-fine-tuned performance on medical OA

Implementation Workflow

1. Baseline Establishment

- Evaluated base GPT-2 on MedQuAD without fine-tuning
- Established poor performance on medical domain (BLEU: 0.0067, ROUGE-1: 0.0833)
- Identified medical inaccuracies and domain knowledge gaps

2. LoRA Implementation

- Developed custom LoRA layers from scratch
- Integrated with Hugging Face Transformers framework
- Implemented parameter-efficient training pipeline

3. Fine-tuning Process

- Trained on medical QA pairs with LoRA adaptation
- Maintained frozen base model parameters
- Optimized only low-rank matrices (0.1% of total parameters)

4. Comprehensive Evaluation

- Quantitative metrics: BLEU, ROUGE, Perplexity, F1 Score
- Qualitative analysis: Medical accuracy assessment
- Comparative analysis: Pre vs post fine-tuning performance

Key Results and Findings

Performance Improvement:

- BLEU Score: 0.0067 → 0.0601 (797% improvement)
- **ROUGE-1**: $0.0833 \rightarrow 0.2514$ (202% improvement)
- ROUGE-2: $0.0287 \rightarrow 0.1336$ (365% improvement)
- Demonstrated effective domain adaptation to biomedical OA

```
Training complete.
Evaluation on LoRA fine-tuned GPT-2:
BLEU: 0.0071
ROUGE1: 0.0975
ROUGE2: 0.0320
ROUGEL: 0.0777
F1: 0.1575
Perplexity: 12.4294

Evaluation on LoRA fine-tuned GPT-2:
BLEU: 0.0601
ROUGE1: 0.0601
ROUGE2: 0.1336
ROUGE2: 0.1336
ROUGEL: 0.1983
F1: 0.2022
Perplexity: 12.4294
```

```
| Berliet (page 1, page 1, pag
```

Technical Validation:

- Confirmed LoRA's effectiveness for specialized domains
- Achieved significant improvements with minimal parameter updates
- Maintained model efficiency while enhancing medical knowledge

Conclusion

This project successfully reproduced and extended the original LoRA methodology, demonstrating its effectiveness for biomedical question answering. The implementation adapted the core LoRA principles to a specialized domain, showing dramatic improvements in medical QA performance while maintaining parameter efficiency. The results validate LoRA as a powerful technique for domain adaptation of large language models, particularly valuable for resource-constrained applications in specialized fields like healthcare and medicine.

The project bridges the gap between theoretical parameter-efficient fine-tuning research and practical applications in specialized domains, providing a blueprint for adapting large language models to domain-specific tasks with limited computational resources.

GitHub Repo: Link