Sistemi - Modulo di Sistemi a Eventi Discreti

Laurea Magistrale in Ingegneria e Scienze Informatiche Tiziano Villa

29 Giugno 2018

Nome e Cognome:

Matricola:

Posta elettronica:

problema	punti massimi	i tuoi punti
problema 1	14	
problema 2	16	
totale	30	

1. Nella domanda seguente si sbarri per ogni affermazione l'implicazione logica corretta e si dia una breve giustificazione della scelta.

Si consideri una rete di Petri marcata (N, M_0) (dove N e' la rete e M_0 e' la marcatura iniziale) e il suo grafo di copertura.

Si consideri la seguente notazione:

- m e' il numero dei posti.
- \mathcal{N} e' l'insieme dei naturali.
- M_{ω} e' un nodo del grafo di copertura che puo' contenere componenti ω .
- $R(N, M_0)$ l'insieme delle marcature raggiungibili nella rete marcata (N, M_0) .
- Data una marcatura $M \in N^m$, si dice che essa e' ω -coperta da $M_{\omega} \in \mathcal{N}_{\omega}^m$ se $M_{\omega}(p) = M(p)$ per ogni componente p tale che $M_{\omega}(p) \neq \omega$, e si denota come $M_{\omega} \geq_{\omega} M$.
- (a) La marcatura M e' raggiungibile

 \Leftrightarrow

 \Leftarrow

 \Rightarrow

esiste nel grafo un nodo $M_{\omega} \geq_{\omega} M$.

Traccia di soluzione.

 \Leftrightarrow e \Leftarrow sono sbagliate, \Rightarrow e' corretta.

La marcatura M e' raggiungibile \Rightarrow esiste nel grafo un nodo $M_{\omega} \geq_{\omega} M$.

(b) La marcatura M e' raggiungibile

 \Leftrightarrow

 \Leftarrow

 \Rightarrow

 $M \in \mathcal{N}^m$ e' un nodo del grafo.

Traccia di soluzione.

 $\Leftrightarrow e \Rightarrow sono \ sbagliate, \Leftarrow e' \ corretta.$

La marcatura M e' raggiungibile $\Leftarrow M \in \mathcal{N}^m$ e' un nodo del grafo.

(c) Sia data $\tilde{M} \in \mathcal{N}^n$. Esiste una marcatura raggiungibile $M \geq \tilde{M}$

 \Leftrightarrow

 \Leftarrow

 \Rightarrow

esiste nel grafo un nodo $M_{\omega} \geq_{\omega} \tilde{M}$.

Traccia di soluzione.

Sono tutte corrette.

Sia data $\tilde{M} \in \mathcal{N}^n$. Esiste una marcatura raggiungibile $M \geq \tilde{M} \Leftrightarrow$ esiste nel grafo un nodo $M_{\omega} \geq_{\omega} \tilde{M}$.

(d) La marcatura M' e' raggiungibile da una marcatura $M \in R(N, M_0)$

 \Leftrightarrow

 \Leftarrow

 \Rightarrow

esistono nel grafo due nodi $M_{\omega} \geq_{\omega} M$ e $M'_{\omega} \geq_{\omega} M'$, ed esiste un cammino orientato da M_{ω} a M'_{ω} .

Traccia di soluzione.

 \Leftrightarrow e \Leftarrow sono sbagliate, \Rightarrow e' corretta,

La marcatura M' e' raggiungibile da una marcatura $M \in R(N, M_0) \Rightarrow$ esistono nel grafo due nodi $M_{\omega} \geq_{\omega} M$ e $M'_{\omega} \geq_{\omega} M'$, ed esiste un cammino orientato da M_{ω} a M'_{ω} .

(e) La marcatura M' e' raggiungibile da una marcatura $M \in R(N, M_0)$

 \Leftrightarrow

 \Leftarrow

 \Rightarrow

esistono nel grafo due nodi $M, M' \in \mathcal{N}^m$, ed esiste un cammino orientato, non passante per alcun nodo contenente componenti ω , che va da M a M'.

Traccia di soluzione.

 \Leftrightarrow e \Rightarrow sono sbagliate, \Leftarrow e' corretta.

La marcatura M' e' raggiungibile da una marcatura $M \in R(N, M_0) \Leftarrow$ esistono nel grafo due nodi $M, M' \in \mathcal{N}^m$, ed esiste un cammino orientato, non passante per alcun nodo contenente componenti ω , che va da M a M'.

(f) La transizione t e' abilitata da una marcatura $M \in R(N, M_0)$

 \Leftrightarrow

 \Leftarrow

 \Rightarrow

esiste nel grafo un nodo $M_{\omega} \geq_{\omega} M$ da cui esce un arco t.

Traccia di soluzione.

 \Leftrightarrow e \Leftarrow sono sbagliate, \Rightarrow e' corretta.

La transizione t e' abilitata da una marcatura $M \in R(N, M_0) \Rightarrow$ esiste nel grafo un nodo $M_\omega \ge_\omega M$ da cui esce un arco t.

- (g) Esiste una marcatura raggiungibile che abilita una transizione t
 - \Leftrightarrow
 - \Leftarrow
 - \Rightarrow

esiste un arco t nel grafo.

Traccia di soluzione.

Sono tutte corrette.

Esiste una marcatura raggiungibile che abilita una transizione $t \Leftrightarrow$ esiste un arco t nel grafo.

- 2. Si considerino i due seguenti automi definiti sull'alfabeto $E = \{a_1, a_2, b_1, b_2\}$. Automa G (impianto):
 - stati: 0, 1, 2, 3, 4, 5, 6, 7, 8 con 0 stato iniziale e 8 unico stato accettante;
 - transizione da 0 a 1: a_1 , transizione da 0 a 3: a_2 , transizione da 1 a 2: b_1 , transizione da 1 a 4: a_2 , transizione da 2 a 5: a_2 , transizione da 3 a 4: a_1 , transizione da 3 a 6: b_2 , transizione da 4 a 5: b_1 , transizione da 4 a 7: b_2 , transizione da 5 a 8: b_2 , transizione da 6 a 7: a_1 , transizione da 7 a 8: b_1 .

Automa H_a (specifica):

- stati: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 con 0 stato iniziale e 8 unico stato accettante;
- transizione da 0 a 1: a_1 , transizione da 0 a 3: a_2 , transizione da 1 a 2: b_1 , transizione da 1 a 9: a_2 , transizione da 2 a 5: a_2 , transizione da 3 a 4: a_1 , transizione da 3 a 6: b_2 , transizione da 4 a 7: b_2 , transizione da 6 a 7: a_1 , transizione da 6 a 7: a_1 , transizione da 6 a 7: a_1 , transizione da 9 a 9: a_1 , transizione da 9 a 9: a_1 , a_1 , transizione da a_1 : a_1 , a_1 , a_2 : a_1 , a_2 : a_1 , a_2 : a_1 , a_2 : a_2 : a_2 : a_1 , a_2 : a_2 : a_2 : a_1 .
- (a) Si disegnino i grafi dei due automi.

(b) Dati i linguaggi K e $M=\overline{M}$ sull'alfabeto E. Sia $E_{uc}\subseteq E$. Si scriva la definizione di controllabilita' di K rispetto a M e E_{uc} . Traccia di soluzione.

Definizione Siano K e $M=\overline{M}$ linguaggi sull'alfabeto di eventi E, con $E_{uc}\subseteq E$. Si dice che K e' controllabile rispetto a M e E_{uc} , se per tutte le stringhe $s\in \overline{K}$ e per tutti gli eventi $\sigma\in E_{uc}$ si ha

$$s\sigma \in M \Rightarrow s\sigma \in \overline{K}$$
,

che e' equivalente a

$$\overline{K}E_{uc} \cap M \subseteq \overline{K}$$
.

(c) Si definisca il sovralinguaggio controllabile minimo chiuso al prefisso $K^{\downarrow C}$.

Traccia di soluzione.

Sia $\mathcal{CC}_{out}(K)$ la collezione dei sovralinguaggi di K chiusi rispetto al prefisso e controllabili, allora si definisce

$$K^{\downarrow C} = \bigcap_{L \in \mathcal{CC}_{out}(K)} L.$$

(d) Siano $M = \mathcal{L}(G)$ e $K = \mathcal{L}_m(H_a)$. Siano $E_c = \{a_1, b_1\}, E_o = E$. Si consideri la formula chiusa

$$K^{\downarrow C} = \overline{K} E_{uc}^{\star} \cap M.$$

Per $K = \mathcal{L}_m(H_a)$, si calcoli $K^{\downarrow C}$.

Si esegua il calcolo mostrando tutti i passaggi della costruzione indicata dalla formula chiusa, cioe' automi di \overline{K} e di E_{uc}^{\star} , automa della loro concatenazione, e infine automa del prodotto con M.

Traccia di soluzione.

Si vedano i grafici allegati dei vari passi della costruzione (soluzione di uno studente).

Il risultato finale e' $K^{\downarrow C} = \overline{K} \cup \{a_1 a_2 b_2\}.$

(e) Dati i linguaggi K e $M=\overline{M}$ sull'alfabeto E. Siano $E_c\subseteq E$ e $E_o\subseteq E$. Sia P la proiezione naturale da E^* a E_o^* .

Si scriva la definizione di osservabilita' di K rispetto a M, E_c ed E_o . Traccia di soluzione.

Definizione Siano K e $M=\overline{M}$ linguaggi sull'alfabeto di eventi E. Sia $E_c\subseteq E$ l'insieme degli eventi controllabili. Sia $E_o\subseteq E$ l'insieme degli eventi osservabili con P la proiezione da E^* a E_o^* .

Si dice che K e' osservabile rispetto a M, P, E_c , se per tutte le stringhe $s \in \overline{K}$ e per tutti gli eventi $\sigma \in E_c$,

$$s\sigma \notin \overline{K} \wedge s\sigma \in M \Rightarrow P^{-1}[P(s)]\{\sigma\} \cap \overline{K} = \emptyset.$$

(f) Siano $M = \mathcal{L}(G)$ e $K = \mathcal{L}_m(H_a)$. Siano $E_{uo} = \{a_2\}$ e $E_{uc} = \emptyset$.

K e' osservabile rispetto a M, E_c ed E_o ? Lo si verifichi usando la definizione.

Traccia di soluzione.

Si consideri la stringa $s=a_2a_1$ e $\sigma=b_1$, allora si ha che $a_2a_1b_1\not\in\overline{K}$, ma $a_2a_1b_1\in M$; inoltre $P(s)=a_1,\,P^{-1}[P(s)]\{\sigma\}=\{a_2^{\star}a_1a_2^{\star}b_1\}$, percio' $P^{-1}[P(s)]\{\sigma\}\cap\overline{K}=\{a_2^{\star}a_1a_2^{\star}b_1\}\cap\overline{K}=\{a_1a_2b_1\}\neq\emptyset$ il che falsifica la condizione di osservabilita'.

Intuitivamente, dopo aver visto a_2a_1 il controllore dovrebbe disabilitare b_1 e abilitare b_2 , mentre dopo aver visto a_1a_2 il controllore dovrebbe abilitare b_1 e disabilitare b_2 , ma per l'inosservabilita' di a_2 il controllore non e' in grado di distinguere a_2a_1 da a_1a_2 (vede la loro proiezione comune come a_1), e quindi non sa che azione intraprendere dopo aver visto a_1 .

(g) Si enunci il teorema di controllabilita' e osservabilita' sull'esistenza di un supervisore non-bloccante in presenza di controllabilita' e osservabilita' limitata.

Traccia di soluzione.

Sia dato il sistema a eventi discreti $G = (X, E, f, \Gamma, x_o, X_m)$, dove $E_{uc} \subseteq E$ sono gli eventi incontrollabili e $E_{uo} \subseteq E$ sono gli eventi inosservabili (per cui $E_c = E \setminus E_{uc}$ e $E_o = E \setminus E_{uo}$). Si consideri la proiezione P da E^* a E_o^* , e il linguaggio $K \subseteq \mathcal{L}_m(G)$, where $K \neq \emptyset$. Esiste un P-supervisore non-bloccante S_P per G tale che

$$\mathcal{L}_m(S_P/G) = K, \quad \mathcal{L}(S_P/G) = \overline{K}$$

se e solo se le tre condizioni seguenti valgono:

- i. K e' controllabile rispetto a $\mathcal{L}(G)$ e E_{uc} .
- ii. K e' osservabile rispetto a $\mathcal{L}(G)$, E_o e E_c .
- iii. K e' $\mathcal{L}_m(G)$ -chiuso.
- (h) Nel caso precedente (punto (f)), esiste tale supervisore? Traccia di soluzione.

No, perche' non e' soddisfatta la condizione di osservabilita'.