Table des matières

1	Introduction	1
2	Bilan de masse du plant2.1Bilan des réactions de synthèse	
3	Nombre de tubes d'alimentation	2
\mathbf{A}	Flowsheet	2

1 Introduction

2 Bilan de masse du plant

On cherche à calculer les quantités de CH_4 , H_2O et d'air 1 (respectivement $n_i(CH_4)$, $n_i(H_2O)$ et $n_i(air)$, en moles) nécessaires pour produire $n_f(NH_3)$ mol d'ammoniac, avec une température du réformeur primaire de T K.

Pour ce faire, nous décomposons le bilan en deux parties : tout d'abord, nous allons considérer les réactions se passant au sein du plant (réformeur primaire, réformeur secondaire, WGS et réacteur) et en déduire les quantités de matière nécessaires ; ensuite, nous ajouterons à ce premier bilan la masse de méthane utilisée pour chauffer les réactifs à la température T du réformeur primaire.

2.1 Bilan des réactions de synthèse

L'ensemble des entrées, sorties et réactions se décomposent de la manière suivante :

- entrée de CH_4 et H_2O $(n_i(CH_4)$ et $n_i(H_2O))$;
- réformeur primaire (réactions R_1 et R_2 , incomplètes);
- entrée d'air $(n_i(air))$;
- réformeur secondaire (réaction R_3 , complète);
- water-gas shift (réaction R_4 , complète);
- sortie de H_2O et CO_2 $(n_f(H_2O)$ et $n_f(CO_2))$;
- synthèse de l'ammoniac (réaction R_5 , complète);
- sortie de Ar et NH_3 ($n_f(Ar)$ et $n_f(NH_3)$).

D'un côté nous avons donc 11 inconnues correspondant aux quantités d'entrée et de sortie, et à l'avancement des réactions; de l'autre, nous avons deux variables : la quantité finale d'ammoniac et la température du réformeur primaire.

On peut considérer chacune de ces 12 grandeurs comme étant les coefficients de vecteurs dans un espace $V \in \mathbb{R}^9$ représentant des flux des 9 espèces chimiques différentes qui apparaissent dans le plant. Ainsi, un vecteur $(1,0,\ldots,0)^T$ pourrait correspondre à

^{1.} La composition de l'air étant : 78% N_2 , 21% O_2 , 1% Ar, en fraction molaire.

une entrée de CH_4 , et un autre vecteur $(0, \ldots, -1)^T$ à une sortie de NH_3 . Une réaction serait alors également représentée sous la forme d'un vecteur (par exemple, R_1 : $(-1, -1, 3, 1, 0, \ldots, 0)^T$).

De cette manière, on peut manipuler algébriquement les 12 « flux » et résoudre les dépendances linéaires entre ceux-ci.

Dans un premier temps, si l'on omet de considérer que les réactions se produisant dans le réformeur primaire ne sont pas complètes,

Pour obtenir la solution à ce problème, il nous faut, dans un premier temps, résoudre les relations linéaires entre les différentes inconnues. Mathématiquement, cela correspond à obtenir une base de l'espace vectoriel des solutions.

Dans l'ordre, les colonnes sont : $n_i(CH_4)$, $n_i(H_2O)$, $n_i(air)$, $n_f(H_2O)$, $n_f(CO_2)$, $n_f(Ar)$, $n_f(NH_3)$, R_1 , R_2 , R_3 , R_4 et R_5 .

2.2 Bilan de la combustion du méthane

3 Nombre de tubes d'alimentation

A Flowsheet

