iNNvestigate neural networks! Maximilian Alber et. al.

Tomasz Kanas

19 maja 2021

Po co wyjaśniać sieci neuronowe?

Z tych samych powodów co inne techniki ML, ale też:

Aby lepiej zrozumieć jak działają!

- Porównywanie różnych architektur
- Dobieranie architektury do zadania
- Dobór technik optymalizacyjnych i hiper-parametrów

Plan prezentacji

- 1 Metody wyjaśniania sieci neuronowych
 - Gradienty względem pixeli
 - Dekonwolucja
 - Dekompozycja modelu
- 2 iNNvestigate

Wizualizacja ważnych pixeli

Ważność pixela = gradient predykcji względem tego pixela SmoothGrad: uśredniona ważność z kilku ewaluacji obrazka z dodanym szumem losowym.

Szum gaussowski $N(0, \sigma^2)$, średnia z 50 próbek.

Dekonwolucja

Dla wyniku danej warstwy "cofamy" operacje które sieć wykonała i otrzymujemy obrazek cechy którą ta warstwa wykryła.

Inne algorytmy:
Guided BackProp
PatternNet

DeConvNet: wyniki

DeConvNet: wyniki

Dekompozycja modelu

Jeśli sieć neuronowa oblicza funkcję f(x) gdzie $x \in \mathbb{R}^d$ to dane wejściowe, to dekompozycja $R(x) \in \mathbb{R}^d$ powinna spełniać

$$\forall_x f(x) = \sum_p R_p(x), \quad \forall_{x,p} R_p(x) \ge 0$$

Idea:

- Dla każdego neuronu oblicz bliską wartość wejścia dla której wynik jest 0.
- Przybliż atrybucję neuronu ze wzoru Taylora.
- Propaguj atrybucje wstecz.

DeepTaylor: wyniki

Alternatywne metody dekompozycji

- Input * Gradient
- PatternAttribution: szuka miejsc zerowych zgodnie z kierunkiem sygnału każdego neuronu.
- LRP: Przydziela rekurencyjnie atrybucję proporcjonalną do wkładu neuronu w wynik
- IntegratedGradients: całkuje gradient wzdłuż ścieżki z wejścia do wyjścia
- DeepLIFT: oblicza bakpropagację atrybucji na podstawie różnicy wyniku neuronu do wyniku "referencyjnego".

iNNvestigate

Biblioteka pythonowa do porównywania różnych metod wyjaśniania sieci neuronowych.

Umożliwia:

- Trenowanie: niektóre (ie. PatternNet, PatternAttribution) metody wyjaśnialności zależą od rozkładu danych.
- Ilościowa ewaluacja: Sprawdza sensowność wyjaśnień przez perturbowanie regionów mających duży wpływ na wynik (i oczekiwanie innego wyniku).
- Modularność: łatwo dodawać nowe metody

Posiada implementacje omówionych metod.

iNNvestigate: MINIST

iNNvestigate: ImageNet

Poprawna odpowiedź: baseball

Dziękuję za uwagę!