10.1 Binaere Soegetroeer noter CLRS kap 12

- Nærmeste naboer
- Binære søgetræer
- Indsættelse
- Predecessor og successor
- Sletning
- Algoritmer på træer og trægennemløb

Disse noter er stærkt inspireret af noter af Philip Bille og Inge Li Gørtz til kurset Algoritmer og Datastrukturer, på DTU, http://www2.compute.dtu.dk/courses/02105+02326/2015/#generelinfo

- Nærmeste naboer
- Binære søgetræer
- Indsættelse
- Predecessor og successor
- Sletning
- Algoritmer på træer og trægennemløb

- Nærmeste naboer. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle x.key og satellitdata x.data.
- Nærmeste naboer operationer.
 - PREDECESSOR(k): returner element x med største nøgle ≤ k.
 - Successor(k): returner element x med mindste nøgle ≥ k.
 - INSERT(x): tilføj x til S (vi antager x ikke findes i forvejen)
 - DELETE(x): fjern x fra S.

- Anvendelser.
 - Søgning efter relateret data (typisk mange dimensioner).
 - Rutning på internettet.

• Udfordring. Hvordan kan vi løse problemet med nuværende teknikker?

• Løsning med hægtet liste. Gem S i en dobbelt-hægtet liste.

- Predecessor(k): lineær søgning i listen efter element med største nøgle ≤ k.
- Successor(k): lineær søgning i listen efter element med mindste nøgle ≥ k.
- INSERT(x): indsæt x i starten af liste.
- DELETE(x): fjern x fra liste.
- Tid.
 - PREDECESSOR og SUCCESSOR i O(n) tid.
 - INSERT og DELETE i O(1) tid.
- · Plads.
 - O(n).

Løsning med sorteret tabel. Gem S i tabel sorteret efter nøgle.

1	2	3	4	5	6	7
1	13	16	41	54	66	96

- Predecessor(k): binær søgning i listen efter element med største nøgle ≤ k.
- Successor(k): binær søgning i listen efter element med mindste nøgle ≥ k.
- INSERT(x): lav ny tabel af størrelse +1 med x tilføjet.
- Delete(x): lav ny tabel af størrelse -1 med x fjernet.
- Tid.
 - Predecessor og Successor i O(log n) tid.
 - INSERT og DELETE i O(n) tid.
- · Plads.
 - O(n).

Datastruktur	PREDECESSOR	Successor	INSERT	DELETE	Plads
hægtet liste	O(n)	O(n)	O(1)	O(1)	O(n)
sorteret tabel	O(log n)	O(log n)	O(n)	O(n)	O(n)

• Udfordring. Kan vi gøre det betydeligt bedre?

- Nærmeste naboer
- Binære søgetræer
- Indsættelse
- Predecessor og successor
- Sletning
- Algoritmer på træer og trægennemløb

- Binært træ. Rodfæstet træ, hvor hver intern knude har et venstre barn og/eller et højre barn.
- Binært træ (rekursiv def). Et binært træ er enten
 - Tomt.
 - En knude med to binære træer som børn (venstre deltræ og højre deltræ).
- Binært søgetræ (binary-search-tree). Binært træ der overholder søgetræsinvarianten.
- Søgetræsinvariant (binary-search-tree property).
 - Alle knuder indeholder et element.
 - For alle knuder v:
 - alle nøgler i venstre deltræ er ≤ v.key.
 - alle nøgler i højre deltræ er ≥ v.key.

null null

- Nærmeste naboer
- Binære søgetræer
- Indsættelse
- Predecessor og successor
- Sletning
- Algoritmer på træer og trægennemløb

Indsættelse

- INSERT(x): start i rod. Ved knude v:
 - hvis x.key ≤ v.key gå til venstre.
 - hvis x.key > v.key gå til højre.
 - hvis null, indsæt x

Indsættelse

- INSERT(x): start i rod. Ved knude v:
 - hvis x.key ≤ v.key gå til venstre.
 - hvis x.key > v.key gå til højre.
 - hvis null, indsæt x
- Opgave. Indsæt følgende nøglesekvens i binært søgetræ: 6, 14, 3, 8, 12, 9, 34, 1, 7

Indsættelse

```
INSERT(x, v)
  if (v == null) return x
  if (x.key \le v.key)
     v.left = INSERT(x, v.left)
  if (x.key > v.key)
     v.right = INSERT(x, v.right)
```


• Tid. O(h)

- Nærmeste naboer
- Binære søgetræer
- Indsættelse
- Predecessor og successor
- Sletning
- Algoritmer på træer og trægennemløb

Predecessor

- Predecessor(k): start i rod. Ved knude v:
 - hvis k == v.key: returner v.
 - hvis k < v.key: fortsæt søgning i venstre deltræ.
 - hvis k > v.key: fortsæt søgning i højre deltræ. Hvis der ikke findes knude i højre deltræ med nøgle ≤ k, returner v.

Predecessor

```
PREDECESSOR(v, k)
  if (v == null) return null
  if (v.key == k) return v
  if (k < v.key)
     return PREDECESSOR(v.left, k)
  t = PREDECESSOR(v.right, k)
  if (t ≠ null) return t
  else return v</pre>
```


- Tid. O(h)
- Successor med tilsvarende algoritme i O(h) tid.

- Nærmeste naboer
- Binære søgetræer
- Indsættelse
- Predecessor og successor
- Sletning
- Algoritmer på træer og trægennemløb

- DELETE(x):
 - x har 0 børn: slet x.

0 børn

- DELETE(x):
 - x har 0 børn: slet x.
 - x har 1 barn: split x ud.

1 barn

- DELETE(x):
 - x har 0 børn: slet x.
 - x har 1 barn: split x ud.
 - x har 2 børn: find y = knude med mindste nøgle > x.key. Split y ud og udskift y med x.

2 børn

- DELETE(x):
 - x har 0 børn: slet x.
 - x har 1 barn: split x ud.
 - x har 2 børn: find y = knude med mindste nøgle > x.key. Split y ud og udskift y med x.
- Tid. O(h)

- Nærmeste naboer.
 - PREDECESSOR(k): returner element x med største nøgle ≤ k.
 - Successor(k): returner element x med mindste nøgle ≥ k.
 - INSERT(x): tilføj x til S (vi antager x ikke findes i forvejen)
 - DELETE(x): fjern x fra S.
- Andre operationer på binære søgetræer.
 - SEARCH(k): afgør om element med nøgle k findes i træ, og returner elementet.
 - TREE-SEARCH(x, k): afgør om element med nøgle k findes i deltræ rodfæstet i v, og returner elementet.
 - TREE-MIN(x): returner det mindste element i deltræ rodfæstet i x.
 - Tree-Max(x): returner det største element i deltræ rodfæstet i x.
 - Max(x): returner det største element i deltræ rodfæstet i x.
 - TREE-Successor(x): returner mindste element > end x.key.
 - TREE-PREDECESSOR(x): returner mindste element > end x.key.

- · Kompleksitet.
 - Linæer plads.
 - Predecessor, Successor, Insert og Delete i O(h) tid.
 - Højden h er afhængig sekvens af operationer.
 - I værstefald er $h = \Omega(n)$.
 - I gennemsnit er $h = \Theta(\log n)$.
 - Med balancerede søgetræer (2-3 træer, AVL-træer, rød-sorte træer, ..) tager alle operationer O(log n) tid i værstefald.
 - Med mere avancerede strukturer kan man klare sig endnu bedre.

Datastruktur	PREDECESSOR	Successor	INSERT	DELETE	Plads
hægtet liste	O(n)	O(n)	O(1)	O(1)	O(n)
sorteret tabel	O(log n)	O(log n)	O(n)	O(n)	O(n)
binært søgetræ	O(h)	O(h)	O(h)	O(h)	O(n)
balanceret søgetræ	O(log n)	O(log n)	O(log n)	O(log n)	O(n)

- Nærmeste naboer
- Binære søgetræer
- Indsættelse
- Predecessor og successor
- Sletning
- Algoritmer på træer og trægennemløb

Algoritmer på træer

- Kendte algoritmer på træer.
 - Hobe (Max, Extract-Max, Increase-Key, Insert, ...)
 - Forén og find (INIT, UNION, FIND, ...)
 - Binære søgetræer (Predecessor, Successor, Insert, Delete, ...)
- Udfordring. Hvordan kan vi designe algoritmer på (binære) træer?

Algoritmer på træer

- Rekursion på binære træer.
 - Løs problem på deltræ med rod v:
 - Løs problem rekursivt på venstre og højre deltræ.
 - Kombiner løsninger på deltræer til løsning for træ med rod v.

Algoritmer på træer

- Eksempel. Beregn størrelse (= antal af knuder) af deltræ med rod v.
 - hvis v er tomt: størrelse er 0
 - hvis v er ikke-tomt: størrelse er størrelse af venstre deltræ + størrelse af højre deltræ + 1

```
SIZE(v)
  if (v == null) return 0
  else return SIZE(v.left) + SIZE(v.right) + 1
```

• Tid. O(størrelse af deltræ med rod v)

Trægennemløb

- Inorder-gennemløb (inorder traversal).
 - Besøg venstre deltræ rekursivt.
 - Besøg knude.
 - Besøg højre deltræ rekursivt.
- Udskriver knuderne i et binært søgetræ i sorteret rækkefølge.

```
INORDER(v)
   if (v == null) return
   INORDER(v.left)
   print v.key
   INORDER(v.right)
```


Inorder: 1, 3, 8, 11, 13, 14, 15, 20

• Tid. O(n)

Trægennemløb

- Preorder-gennemløb (preorder traversal).
 - Besøg knude.
 - Besøg venstre deltræ rekursivt.
 - Besøg højre deltræ rekursivt.

```
PREORDER(v)

if (v == null) return

print v.key

PREORDER(v.left)

PREORDER(v.right)
```


Preorder: 15, 8, 1, 3, 14, 11, 13, 20

• Tid. O(n)

- Postorder-gennemløb (postorder traversal).
 - Besøg venstre deltræ rekursivt.
 - Besøg højre deltræ rekursivt.
 - Besøg knude.

```
POSTORDER(v)

if (v == null) return

POSTORDER(v.left)

POSTORDER(v.right)

print v.key
```


Postorder: 3, 1, 13, 11, 14, 8, 20, 15

· Tid. O(n)