趣题: 满足条件的所有 n

题目

设自然数 n>1,现有 n-1 个分数 $\frac{1}{n},\frac{2}{n},\ldots,\frac{n-1}{n}$,将这些分数化为最简分数,把这些最简分数的分子相加,得到的和记为 f(n).求所有自然数 n,满足 f(n) 与 f(2021n) 的奇偶性不同.

Solution 1

注意到

- 加减一个偶数不影响一个数的奇偶性
- 乘除一个奇数不影响一个数的奇偶性

我们只关心 $\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}$ 的最简分数形式中奇数分子数量的奇偶性.

如果 n 是奇数, 那么 f(n) 为奇数; 2021n 也是奇数, 故 f(2021n) 也为奇数, 不满足条件.

如果 n 是偶数,记 $n=2^km$,其中 m 为奇数.考虑 $\frac{i}{n},1\leq i\leq n-1$,若 i 为奇数,那么约分后也为奇数,这样的奇数一共有 $\frac{n}{2}=2^{k-1}m$ 个;若 i 为偶数,设 $i=2^{k_i}m_i$,只有当 $k_i>k$ 时约分结果为为偶数,这样的偶数一共有 $\left\lfloor \frac{n}{2^{k+1}} \right\rfloor$ 个,所以 i 为偶数时提供的奇数为 $2^{k-1}m-1-\left\lfloor \frac{n}{2^{k+1}} \right\rfloor$ 个,对于偶数 n,最终 f(n) 的奇偶性与 $2^{k-1}m+2^{k-1}m-1-\left\lfloor \frac{n}{2^{k+1}} \right\rfloor=2^km-1-\left\lfloor \frac{n}{2^{k+1}} \right\rfloor=\left\lfloor \frac{n}{2^{k+1}} \right\rfloor+1$ 相同.而 $f(2021n)\equiv \left\lfloor \frac{2021n}{2^{k+1}} \right\rfloor+1=\left\lfloor \frac{2^k\cdot 2021m}{2^{k+1}} \right\rfloor+1=\left\lfloor \frac{2^k\cdot 2020m}{2^{k+1}} + \frac{2^k\cdot m}{2^{k+1}} \right\rfloor+1=\left\lfloor 1010m+\frac{2^k\cdot m}{2^{k+1}} \right\rfloor+1\equiv \left\lfloor \frac{n}{2^{k+1}} \right\rfloor+1\equiv \left\lfloor \frac{n}{2^{k+1}} \right\rfloor+1\equiv f(n)$,故满足条件的偶数 n 也不存在.

综上, 不存在满足要求的自然数 n.