

Assignment 4

1- Paraboloidal coordinates u, v, φ are defined in terms of Cartesian coordinates

$$x = \alpha\beta\cos\varphi$$
, $y = \alpha\beta\sin\varphi$, $z = \frac{1}{2}(\alpha^2 - \beta^2)$
where $0 \le \alpha \le \infty$, $0 \le \beta \le \infty$, $0 \le \varphi \le 2\pi$

Prove that the α -component of $\overrightarrow{\nabla} \times \overrightarrow{A}$ is

$$\frac{1}{(\alpha^2 + \beta^2)^{1/2}} \left(\frac{A_{\varphi}}{\beta} + \frac{\partial \varphi}{\partial \beta} \right) - \frac{1}{\alpha \beta} \frac{\partial A_{\beta}}{\partial \varphi}$$

2- Using spherical coordinates, evaluate

$$\nabla^2 \left(\vec{\nabla} \cdot \frac{\vec{r}}{r^2} \right)$$

3- We introduce the so-called spheroidal coordinates (η, θ, φ) by the following equations expressed in rectangular coordinates

$$x = a \sinh \eta \sin \theta \cos \varphi,$$

$$y = a \sinh \eta \sin \theta \sin \varphi,$$

$$z = a \cosh \eta \cos \theta$$

$$where \quad 0 \le \eta \le \infty, \qquad 0 \le \theta \le \pi, \qquad 0 \le \varphi \le 2\pi$$

- a) Show that this coordinate system is orthogonal.
- b) Find the scale factors.
- c) Show that the function $f(\eta, \theta, \varphi) = \ln \tanh \left(\frac{\eta}{2}\right)$ is a solution of Laplace's equation.