

Review: pyaf/load_forecasting Capstone Idea

Project Overview

The pyaf/load_forecasting repository focuses on **short-term electric load forecasting**, particularly using real-world data from the State Load Despatch Center, Delhi. The project targets time series analysis for predicting future electricity demand, a crucial task in energy systems [1].

Core Methods

- Implements classic and machine learning approaches to load forecasting.
- Jupyter Notebooks cover models including ARIMA, RNN, LSTM, and GRU—popular choices for time series prediction [2].
- Uses real hourly/daily electric load data, ensuring practical and research relevance.

Suitability for Capstone: Key Criteria

Aspect	Assessment	Notes/Details
Domain	Sustainable Environment	Electricity demand forecasting supports energy optimization.
Implementation Ease	Easy–Moderate	Python, Jupyter; code structure accessible to undergrads.
Research Value	High	Can benchmark or improve with new ML/AI architectures.
Code Complexity	Not very complex	Notebook-based, modular scripts—good for hands-on learning.
Dataset Availability	Yes	Original dataset from Delhi dispatch; structure easy to adapt $^{[1]}$ $^{[2]}$.

Project Features

- **Ready-to-run examples:** ARIMA and LSTM models as reference templates to build and extend [2].
- Data preprocessing scripts: Handle missing data, resampling, and feature creation.
- **Reproducible pipeline:** You can easily modify and retrain on other open datasets or local smart meter data [1].
- **Automated workflows:** Integrates well with CI/CD tools and supports smooth experimentation.

Potential Capstone Extensions

- Experiment with alternative deep learning models (e.g., Transformer-based).
- Test on different regions or time intervals.
- Integrate weather, socio-economic, or renewable energy features.
- Compare traditional versus neural network performance.

Project Limitations

- For highly accurate or production-grade forecasting, may require advanced hyperparameter tuning or larger datasets.
- Current structure is well-suited for education and proof-of-concept research; may need adaptation for broader or commercial deployment.

Summary Table

Suitability Criteria	Meets Criteria?	Details
Sustainable/Fintech	Yes	Electric load optimization is a key sustainability issue.
Easy to Implement	Yes	Jupyter/Python, clear steps, simple requirements.
Research-worthy	Yes	Strong foundation; extensible for new theories/models.
Code Complexity	Low-Moderate	Well-commented, instructive.
Dataset Access	Yes	Data provided and more public datasets are compatible $\frac{[1]}{2}$.

Recommendation

This project is **highly suitable as a capstone** for students or early-career researchers in energy, sustainability, or AI in infrastructure. The blend of clear code, accessible data, and research depth offers room for learning and innovation. For best results, plan to:

- Start with the provided models and data.
- Incrementally extend features, architectures, or deployment aspects.
- Benchmark and document all experiments for reproducible research.

Reference:

• GitHub: pyaf/load_forecasting [1] [2]

- 1. https://pypi.org/project/pyaf/
- 2. https://www.github-zh.com/projects/118086285-load_forecasting