Aula 3: 1 de 14

Aula 03 - Linguagem de hardware e síntese de circuitos

Aula 3: 2 de 14

Tópicos da aula

- Operadores Lógicos e Aritméticos
- Tipos de dados

Sinais INTERNOS e **EXTERNOS**

- Na aula anterior criamos um componente (porta lógica AND) com duas entradas e uma saída
- Na ENTIDADE definiu-se quais **sinais** "entram" ou "saem" deste componente
- Pergunta: É possível ter "vários" componentes dentro de um mesmo componente?

```
library ieee;
 use ieee.std logic 1164.all;
 use ieee.numeric std.all;
 use IEEE.STD LOGIC UNSIGNED.ALL;
 use IEEE.STD LOGIC ARITH.ALL;
FIENTITY and2 IS
    PORT (
                    : IN STD LOGIC;
                    : IN STD LOGIC;
                    : OUT STD LOGIC
 END and2;
MARCHITECTURE behavioral OF and2 IS
BEGIN
    C <= A and B;
 END behavioral:
```

Aula 3: 3 de 14

Aula 3: 4 de 14

Sinais INTERNOS e EXTERNOS

Sinais externos do componente (A, B, C, D, E)

Aula 3: 5 de 14

Sinais INTERNOS e EXTERNOS

- **EXTERNOS:** são sinais de entrada e saída do componente (na declaração da ENTIDADE)
- INTERNOS: são sinais usados para conectar os pinos de dois ou mais componentes dentro do FPGA, ou conectar sinais internos de um componente interno ao FPGA (estão dentro da ARQUITETURA)

Aula 3: 6 de 14

Exemplo: declaração de sinais

Aula 3: 7 de 14

Outros "Tipos" de sinais internos

- SIGNAL
- CONSTANT
- VARIABLE
- REAL
- **"** ...

Aula 3: 8 de 14

Exemplo: Tipos

```
ARCHITECTURE behavioral OF COMPONENTE IS

signal F : STD_LOGIC;
signal G : STD_LOGIC;

constant K : integer := 7;

BEGIN
```


Aula 3: 9 de 14

Tipos Escalares

Tipos definidos	Valor	Exemplos
STD_LOGIC	1, 0, Z	
BOOLEAN	Verdadeiro, falso	TRUE, FALSE
INTEGER	$(-2^{31} - 1) \le X \le (2^{31} - 1)$	123
NATURAL	$0 \le x \le (2^{31} - 1)$	
REAL	$-3,65^{47} \le X \le 3,65^{47}$	
TIME	Pico, nano, micro, mili, etc.	1 us

Aula 3: 10 de 14

Tipos Compostos

Tipos definidos	Valor	Exemplos
STD_LOGIC_VECTOR	1, 0, Z	"011010010100"
STRING	Tipo caracter	"texto qualquer"

Aula 3: 11 de 14

Exercícios

- Implementar uma porta lógica OR 4x1 usando STD_LOGIC_VECTOR
- Implementar uma porta lógica AND 8x1 usando STD_LOGIC_VECTOR

Aula 3: 12 de 14

Definição de novos tipos

- A linguagem permite a criação de novos tipos
- Aplicações:
 - facilitar a leitura do código: estados de uma máquina
 - definir novos tipos físicos: resistência, capacitância etc.
 - novos tipos compostos: definição de memórias
- Declaração: palavra reservada TYPE
- Exemplo:

declaração de um sinal do tipo estado
 SIGNAL abc : estado := parado;

valores possíveis para o sinal abc: parado, inicio, caso_1, caso_2, caso_3

Aula 3: 13 de 14

Operadores

- Divididos em classes:
 - as classes definem a precedência dos operadores
 - operadores de uma mesma classe: igual precedência
- Maior precedência: classe diversos
- Menor precedência: classe lógicos
- Operador not: operador lógico; está na classe diversos devido à precedência

classe	operadores	
lógicos	and or nand nor xor xnor	
relacionais	= /= < <= > >=	
deslocamento	sll srl sla sra rol ror	
adição	+ - &	
sinal	+ _	
multiplicação	* / mod rem	
diversos	** abs not	

Aula 3: 14 de 14

FIM AULA 3