Alternating Series Convergence Proof Without Words

R. Hammack and D. Lyons

Theorem An alternating series $a_1 - a_2 + a_3 - a_4 + a_5 - a_6 + a_7 - a_8 + \cdots$ converges to a sum S if $a_1 \geq a_2 \geq a_3 \geq a_4 \geq \cdots \geq 0$ and $a_n \rightarrow 0$. Moreover, if $s_n = a_1 - a_2 + a_3 - \cdots \pm a_n$ is the nth partial sum then $s_{2n} < S < s_{2n+1}$.

Proof

