Andrey O. Matveev Farey Sequences

Andrey O. Matveev

Farey Sequences

Duality and Maps Between Subsequences

DE GRUYTER

Mathematics Subject Classification 2010

Primary: 11B57; secondary: 05-01, 11-01

Author

Dr. Andrey O. Matveev Ekaterinburg Russia andrey.o.matveev@gmail.com

ISBN 978-3-11-054662-0 e-ISBN (PDF) 978-3-11-054766-5 e-ISBN (EPUB) 978-3-11-054665-1 Set-ISBN 978-3-11-054767-2

Library of Congress Cataloging-in-Publication Data

A CIP catalog record for this book has been applied for at the Library of Congress.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Cover image: A Perspective on Farey Duality, 2017, by Andrey L. Kopyrin, Ekaterinburg, Russia

Typesetting: Dimler & Albroscheit, Müncheberg Printing and binding: CPI books GmbH, Leck

Printed in Germany

www.degruyter.com

To the memory of my mother *Irina M. Matveeva*1934–2014

To my father Oleg S. Matveev

Contents

Preface — VII

List of Tables — XIII

Farey sequences and collective decision making — 1

1	Basic properties of Farey sequences —— 5
1.1	Sets, Boolean lattices, vector spaces, and Farey sequences \mathcal{F}_n — 5
1.2	Farey subsequences — 7
1.2.1	The sequences \mathfrak{F}_n^m , \mathfrak{F}_n^m and $\mathfrak{F}(\mathbb{B}(n), m)$ — 7
1.2.2	Well-structured Farey subsequences —— 8
1.2.3	The sequences $\mathcal{F}^{\leq \frac{1}{2}}(\mathbb{B}(n), m)$ and $\mathcal{F}^{\geq \frac{1}{2}}(\mathbb{B}(n), m)$ — 8
1.2.4	The sequences $\mathcal{F}(\mathbb{B}(n), m)^{\ell}$ and $\mathcal{G}(\mathbb{B}(n), m)^{\ell}$ — 9
1.3	Order-reversing and bijective mapping $\frac{h}{k}\mapsto \frac{k-h}{k}$. I —— 10
1.4	Pairs of neighboring fractions. I —— 11
1.4.1	Neighboring fractions in \mathcal{F}_n —— 11
1.4.2	Neighboring fractions in \mathcal{F}_n^m —— 17
1.4.3	Neighboring fractions in \mathfrak{G}_n^m —— 23
1.4.4	Neighboring fractions in $\mathcal{F}(\mathbb{B}(n), m)$ — 31
1.4.5	The det = -1 property — 43
1.5	Triples of consecutive fractions. I —— 43
1.5.1	The mediant property —— 44
1.5.2	Triples of consecutive fractions in \mathcal{F}_n —— 44
1.5.3	Triples of consecutive fractions in \mathcal{F}_n^m — 46
1.5.4	Triples of consecutive fractions in \mathfrak{G}_n^m — 48
1.5.5	Triples of consecutive fractions in $\mathcal{F}(\mathbb{B}(n), m)$ — 50
1.6	The number of fractions in Farey (sub)sequences. I —— 54
1.6.1	The number of fractions in \mathcal{F}_n^m , \mathcal{F}_n and \mathcal{G}_n^m — 55
1.7	The position of a fraction in a Farey (sub)sequence. I —— 56
1.7.1	The indices of fractions in \mathcal{F}_n^m and \mathcal{F}_n — 56
1.7.2	The indices of fractions in \mathcal{G}_n^m —— 58
1.8	The rank problem. I —— 58
1.8.1	The rank problem for \mathcal{F}_n^m and \mathcal{F}_n — 58
1.8.2	The rank problem for \mathfrak{G}_n^m —— 59
1.9	A generating function of the Farey sequence \mathcal{F}_n — 59
Notes –	— 60
2	Farey duality —— 69

Duality properties of Farey (sub)sequences —— **69** 2.1

```
The sequences \mathcal{F}^{\leq \frac{1}{2}}(\mathbb{B}(n), m), \mathcal{F}^{\geq \frac{1}{2}}(\mathbb{B}(n), m), and their duals — 69
2.1.1
                   The Farey duality and the Farey map — 71
2.1.2
                   The sequences \mathcal{F}^{\leq \frac{1}{2}}(\mathbb{B}(2m), m), \mathcal{F}^{\geq \frac{1}{2}}(\mathbb{B}(2m), m), and their dual
2.1.3
                   \mathcal{F}_m — 73
                  More on the sequences \mathcal{F}^{\leq \frac{1}{2}}(\mathbb{B}(n), m), \mathcal{F}^{\geq \frac{1}{2}}(\mathbb{B}(n), m) and their duals;
2.1.4
                   n \neq 2m - 74
                   Pairs of neighboring fractions. II — 75
2.2
                   Neighboring fractions in \mathcal{F}_m — 76
2.2.1
                   Neighboring fractions in \mathcal{F}(\mathbb{B}(2m), m) — 76
2.2.2
                   Neighboring fractions in \mathcal{F}_m^{\ell} — 80
2.2.3
                   Neighboring fractions in \mathcal{G}_m^{\ell} — 82
2.2.4
2.2.5
                   Neighboring fractions in \mathcal{F}(\mathbb{B}(n), m), n \neq 2m — 84
2.2.6
                   More on neighboring fractions in \mathcal{F}_m — 91
                  The neighbors of \frac{1}{j} and \frac{j-1}{j} — 91
The neighbors of \frac{2}{j} and \frac{j-2}{j} — 93
2.2.6.1
2.2.6.2
                   More on neighboring fractions in \mathcal{F}(\mathbb{B}(2m), m) — 94
2.2.7
                  The neighbors of \frac{1}{j+1}, \frac{j-1}{2j-1}, \frac{j}{2j-1} and \frac{j}{j+1} — 94
2.2.7.1
                  The neighbors of \frac{2}{j+2}, \frac{j-2}{2(j-1)}, \frac{j}{2(j-1)} and \frac{j}{j+2} — 95
2.2.7.2
2.2.7.3
                   The neighbors of \frac{1}{2} — 97
                   The neighbors of \frac{2}{3} — 98
2.2.7.4
                   More on neighboring fractions in \mathcal{F}_m^\ell and \mathcal{G}_m^\ell — 99
2.2.8
                  The neighbors of \frac{1}{i} — 99
2.2.8.1
                  The neighbors of \frac{j-1}{i} — 101
2.2.8.2
                  The neighbors of \frac{2}{i} — 102
2.2.8.3
                  The neighbors of \frac{j-2}{i} — 104
2.2.8.4
                   More on neighboring fractions in \mathcal{F}(\mathbb{B}(n), m), n \neq 2m — 106
2.2.9
                  The neighbors of \frac{1}{i+1} in \mathcal{F}^{\leq \frac{1}{2}}(\mathbb{B}(n), m) — 106
2.2.9.1
                  The neighbors of \frac{j}{j+1} in \mathcal{F}^{\geq \frac{1}{2}}(\mathbb{B}(n), m) — 108
2.2.9.2
                  The neighbors of \frac{j-1}{2i-1} in \mathcal{F}^{\leq \frac{1}{2}}(\mathbb{B}(n), m) — 110
2.2.9.3
                  The neighbors of \frac{j}{2j-1} in \mathcal{F}^{\geq \frac{1}{2}}(\mathbb{B}(n), m) —— 111
2.2.9.4
                  The neighbors of \frac{2}{i+2} in \mathcal{F}^{\leq \frac{1}{2}}(\mathbb{B}(n), m) — 113
2.2.9.5
                  The neighbors of \frac{j}{j+2} in \mathcal{F}^{\geq \frac{1}{2}}(\mathbb{B}(n), m) — 115
2.2.9.6
                  The neighbors of \frac{j-2}{2(j-1)} in \mathcal{F}^{\leq \frac{1}{2}}(\mathbb{B}(n), m) — 117
2.2.9.7
                  The neighbors of \frac{j}{2(j-1)} in \mathcal{F}^{\geq \frac{1}{2}}(\mathbb{B}(n), m) — 120
2.2.9.8
                   The neighbors of \frac{1}{3} — 121
2.2.9.9
                  The neighbors of \frac{2}{3} — 123
2.2.9.10
                   Triples of consecutive fractions. II — 124
2.3
                   Triples of consecutive fractions in \mathcal{F}^{\leq \frac{1}{2}}(\mathbb{B}(2m), m) and
2.3.1
                   \mathcal{F}^{\geq \frac{1}{2}}(\mathbb{B}(2m), m) — 124
```

2.3.2	Triples of consecutive fractions in $\mathcal{F}^{\leq \frac{1}{2}}(\mathbb{B}(n), m)$ and $\mathcal{F}^{\geq \frac{1}{2}}(\mathbb{B}(n), m)$,	
	$n \neq 2m$ — 127	
2.4	The number of fractions in Farey (sub)sequences. II —— 129	
2.4.1	The number of fractions in $\mathcal{F}(\mathbb{B}(n), m)$ — 129	
2.4.2	More on the number of fractions —— 130	
2.5	The position of a fraction in a Farey (sub)sequence. II —— 131	
2.5.1	The index of $\frac{1}{2}$ in $\mathcal{F}(\mathbb{B}(n), m)$ — 132	
2.5.2	The indices of fractions in $\mathcal{F}(\mathbb{B}(2m), m)$ — 132	
2.5.3	The indices of fractions in $\mathcal{F}(\mathbb{B}(n), m)$, $n \neq 2m$ — 133	
2.6	The rank problem. II —— 134	
2.6.1	The rank problem for $\mathcal{F}(\mathbb{B}(2m), m)$ — 134	
2.6.2	The rank problem for $\mathcal{F}(\mathbb{B}(n), m)$, $n \neq 2m$ — 135	
2.7	Well-structured subsequences of consecutive fractions —— 136	
2.7.1	Well-structured subsequences within \mathcal{F}_m , \mathcal{F}_m^ℓ and \mathcal{G}_m^ℓ — 136	
2.7.2	Well-structured subsequences within $\mathcal{F}(\mathbb{B}(2m), m)$ — 136	
2.7.3	Well-structured subsequences within $\mathcal{F}(\mathbb{B}(n), m)$, $n \neq 2m$ — 137	
Notes — 1	38	
3 Mo	notone maps between Farey subsequences —— 143	
3.1	Monotone bijective maps between the sequences $\mathcal{F}^{\leq \frac{1}{2}}(\mathbb{B}(2m), m)$ and	
	$\mathcal{F}^{\geq \frac{1}{2}}(\mathbb{B}(2m), m)$ — 143	
3.2	Monotone maps between the sequences $\mathcal{F}^{\leq \frac{1}{2}}(\mathbb{B}(n), m)$ and	
	$\mathcal{F}^{\geq \frac{1}{2}}(\mathbb{B}(n), m), n \neq 2m - 145$	
3.3	The sequences $\mathcal{F}_{2^s m}$, $\mathcal{F}(\mathbb{B}(2^{s+1}m), 2^s m)$, $\mathcal{F}(\mathbb{B}(2^{s+2}m), 2^{s+1}m)$, and	
	monotone maps —— 146	
3.4	Monotone bijective maps between subsequences	
	of the Farey sequence \mathcal{F}_n — 152	
3.5	Useful matrix products —— 153	
3.6	Order-reversing and bijective mapping $\frac{h}{k} \mapsto \frac{k-h}{k}$. II — 154	
Notes — 1	154	
Bibliograph	ny —— 157	
List of notation —— 165		
Index —— 167		