Taro Watanabe†, Eiichiro Sumita and Hiroshi G. Okuno taro.watanabe@atr.co.jp

ATR Spoken Language Translation Research Laboratories

Contents

- Statistical Machine Translation
- Word Alignment Based Statistical Translation
- Chunk-based Statistical Translation
- Experiments
- Summary

Statistical Machine Translation

■ Translation from *J* into *E*

$$\hat{E}$$
 = $\underset{E}{\operatorname{argmax}} P(E|J)$
= $\underset{E}{\operatorname{argmax}} P(E)P(J|E)$

Statistical Machine Translation

Translation from J into E

$$\hat{E} = \underset{E}{\operatorname{argmax}} P(E|J)$$

$$= \underset{E}{\operatorname{argmax}} P(E)P(J|E)$$

Word Alignment Based Statistical Translation

$$P(J|E) = \sum_{A} P(J,A|E)$$

Word Alignment Based Statistical Translation

$$P(J|E) = \sum_{A} P(J,A|E)$$

• Generative Process of P(J,A|E)

Problems

 Strategy: Generate a set of words from each source word and reorder them.

Problems

- Strategy: Generate a set of words from each source word and reorder them.
- Insertion/Deletion Modeling
 - Fertility Model to select deletion
 - A binomial distribution to determine insertion

Problems

- Strategy: Generate a set of words from each source word and reorder them.
- Insertion/Deletion Modeling
 - Fertility Model to select deletion
 - A binomial distribution to determine insertion
- Local Alignment Modeling
 - ◆ Collection of Local Reordering Global Reodering
 - Long distance word alignment

$$P(J|E) = \sum_{\mathcal{J}} \sum_{\mathcal{E}} P(J, \mathcal{J}, \mathcal{E}|E)$$

 \mathcal{J} , \mathcal{E} : sequences of chunks ($|\mathcal{J}| = |\mathcal{E}|$)

$$P(J|E) = \sum_{\mathcal{J}} \sum_{\mathcal{E}} P(J, \mathcal{J}, \mathcal{E}|E)$$

$$P(J, \mathcal{J}, \mathcal{E}|E) = \sum_{A} \sum_{\mathcal{A}} P(J, \mathcal{J}, A, \mathcal{A}, \mathcal{E}|E)$$

 \mathcal{J}, \mathcal{E} : sequences of chunks ($|\mathcal{J}| = |\mathcal{E}|$) A: chunk alignment \mathcal{A} : word alignment

ACL 2003 - p. 7/19

Chunking: Choose Chunk Size — $\prod_i \epsilon(\varphi_i|E_i)$ φ_i = chunk size and if $\varphi_i > 0$ then, E_i is a head word

ACL 2003 – p. 8/19

onellin

show

ACL 2003 - p. 8/19

 String-to-String translation model with a hidden chunk layer

- String-to-String translation model with a hidden chunk layer
- Bag-of-words to bag-of-words translation
 - Chunking Translate Reorder

- String-to-String translation model with a hidden chunk layer
- Bag-of-words to bag-of-words translation
 - Chunking Translate Reorder
- Chunk-wise word insertion
 vs. Sentence-wise insertion

- String-to-String translation model with a hidden chunk layer
- Bag-of-words to bag-of-words translation
 - Chunking Translate Reorder
- Chunk-wise word insertion
 vs. Sentence-wise insertion
- Chunking/Translate/Reorder by hypothesized "head" words

Parameter Estimation

- EM-Algorithm
- E-step: for each pair E and J

$$P(\mathcal{J}, A, \mathcal{A}, \mathcal{E}|J, E) = \frac{P(J, \mathcal{J}, A, \mathcal{A}, \mathcal{E}|E)}{\sum_{\mathcal{J}, A, \mathcal{A}, \mathcal{E}} P(J, \mathcal{J}, A, \mathcal{A}, \mathcal{E}|E)}$$

Then, computes expectation

M-step: From expectation, induce parameters

- Computational problem
- Local maximum problem

- Computational problem
 - Inside-Outside Algorithm
 - Approximation
- Local maximum problem

- Computational problem
 - Inside-Outside Algorithm

- Approximation
- Local maximum problem

- Computational problem
 - Inside-Outside Algorithm
 - Approximation
 - All possible word alignment: $O(lmk^4(k+1)^k)$
 - All possible chunking/alignment: $O(2^{l}2^{m}n!)$
- Local maximum problem

- Computational problem
 - Inside-Outside Algorithm
 - Approximation
 - All possible word alignment: $O(lmk^4(k+1)^k))^k$
 - All possible chunking/alignment: $O(2^{l}2^{m}n!)$
 - Viterbi Chunking/Alignment + Neighbours
- Local maximum problem

Some Tricks

- Computational problem
 - Inside-Outside Algorithm
 - Approximation
- Local maximum problem

Some Tricks

- Computational problem
 - Inside-Outside Algorithm
 - Approximation
- Local maximum problem
 - Initial parameters from IBM Model 4
 - Smoothing

Decoding

- Left-to-right generation breadth-first beam search
 - Generate possible output chunks for all possible input chunks
 - Generate hypothesized output by consuming input chunks in arbitrary order and combining possible output chunks in left-to-right order

Decoding

- Left-to-right generation breadth-first beam search
 - Generate possible output chunks for all possible input chunks
 - Generate hypothesized output by consuming input chunks in arbitrary order and combining possible output chunks in left-to-right order
- Pruning
 - Beam size pruning
 - Example-based scoring

$$\log P_{tm}(J|E) + \log P_{lm}(E) + weight \times \sum_{j} freq(\mathcal{E}_{A_j}, \mathcal{J}_j)$$

- Chunk-based translation model is a deficient model
- Many model components

Japanese-to-English Translation Experiments

Basic Travel Expression Corpus

	Japanese	English
# of sentences	171,	894
# of words	1,181,188	1,009,065
vocabulary size	20472	16232
# of singletons	82,06	5,854
3-gram perplexity	23.7	35.8

- model4: IBM Model 4
- chunk3: Chunk-based Statistical Translation (chunk size ≤ 3)
- chunk3+: + Example-based scoring

Sample Viterbi Chunking/Alignment

```
[i*have] [the * number] [of my * passport]

[*パスポートの][*番号の控え][は*あります]

[i*have] [a*stomach ache][please*give me][some*medicine]

[お腹が*痛い] [*ので] [*薬を] [*下さい]

[i*have][a*reservation] [*for] [two*nights] [my*name is][*risa kobayashi]

[二*泊] [*の] [予約を*し][ている*のです][が*名前は][小林*リサです]
```

Evaluation

- WER: Word-error-rate, which penalizes the edit distance against reference translations.
- **PER:** Position independent WER, which penalizes without considering positional disfluencies.
- **BLEU:** BLEU score, which computes the ratio of n-gram for the translation results found in reference translations.
- **SE:** Subjective evaluation ranks ranging from A to D (A:Perfect, B:Fair, C:Acceptable and D:Nonsense), judged by native speakers.
 - Tested on 510 sentences
 - 16 set of references for non-subjective evaluations

Model	WER	PER	BLEU		SE [%	<u>/6]</u>
	[%]	[%]	[%]	Α	A+B	A+B+C
model4	43.3	37.2	46.5	59.2	74.1	80.2
chunk3	40.9	36.1	48.4	59.8	73.5	78.8
chunk3+	38.5	33.7	52.1	65.1	76.3	80.6

Model	WER	PER	BLEU		SE [%	6]
	[%]	[%]	[%]	Α	A+B	A+B+C
model4	43.3	37.2	46.5	59.2	74.1	80.2
chunk3	40.9	36.1	48.4	59.8	73.5	78.8
chunk3+	38.5	33.7	52.1	65.1	76.3	80.6

Model	WER	PER	BLEU	SE [%]		
	[%]	[%]	[%]	Α	A+B	A+B+C
model4	43.3	37.2	46.5	59.2	74.1	80.2
chunk3	40.9	36.1	48.4	59.8	73.5	78.8
chunk3+	38.5	33.7	52.1	65.1	76.3	80.6

Model	WER	PER	BLEU	SE [%]		
	[%]	[%]	[%]	Α	A+B	A+B+C
model4	43.3	37.2	46.5	59.2	74.1	80.2
chunk3	40.9	36.1	48.4	59.8	73.5	78.8
chunk3+	38.5	33.7	52.1	65.1	76.3	80.6

Sample Translations

input:	一 五 二 便 の 荷物 は これ で 全部 です か
reference:	is this all the baggage from flight one five two
model4:	is this all you baggage for flight one five two
chunk3+:	is this all the baggage from flight one five two
input:	朝食 を ルームサービス で お 願い し ます
reference:	may i have room service for breakfast please
model4:	please give me some room service please
chunk3+:	i 'd like room service for breakfast
input:	もしもし 三 月 十 九 日 の 予約 を 変更 し たい の です が
reference:	hello i 'd like to change my reservation for march nineteenth
model4:	i 'd like to change my reservation for ninety days be march hello
chunk3+:	hello i 'd like to change my reservation on march nineteenth
input:	二三分待って下さい今電話中なんです
reference:	wait a couple of minutes i 'm telephoning now
model4:	is this the line is busy now a few minutes
chunk3+:	i 'm on another phone now please wait a couple of minutes

Summary

- String-to-String translation model with hidden chunks
- More hidden variables
 - More cost for training + decoding
 - ◆ Trainin Cost ≈ IBM Model 5 with pegging
 - Decoding Cost: moderate with Example-based scoring
- Quality Improvement: Slightly, but (probably) significant

Summary

- String-to-String translation model with hidden chunks
- More hidden variables
 - More cost for training + decoding
 - ◆ Trainin Cost ≈ IBM Model 5 with pegging
 - Decoding Cost: moderate with Example-based scoring
- Quality Improvement: Slightly, but (probably) significant
- Other approaches?

- Approach 1: Precomputation of Structure
- Approach 2: Structure-to-String
- Approach 3: Collection of Hierarchical FST

- Approach 1: Precomputation of Structure
- Approach 2: Structure-to-String
- Approach 3: Collection of Hierarchical FST

- Approach 1: Precomputation of Structure
 - Templates (Och et al. 1999)
 - Chunks from syntax-based phrase alignment (Watanabe et al. 2002)
 - Direct phrase induction (Marcu and Wong 2002)
 - Bias the training corpus by template, chunk or phrase
 - Works significantly better on observed word sequences, but not for unseen sequences
- Approach 2: Structure-to-String
- Approach 3: Collection of Hierarchical FST

- Approach 1: Precomputation of Structure
- Approach 2: Structure-to-String
- Approach 3: Collection of Hierarchical FST

- Approach 1: Precomputation of Structure
- Approach 2: Structure-to-String
 - Phrase-to-string Modeling (Wang 1998)
 - Syntax-to-string Modeling (Yamada and Knight 2001)
 - Bias the source part of a training corpus by "structure"
 - Computationally cheaper
 - Relies on the monolingual processing (parser or chunker)
- Approach 3: Collection of Hierarchical FST

- Approach 1: Precomputation of Structure
- Approach 2: Structure-to-String
- Approach 3: Collection of Hierarchical FST

- Approach 1: Precomputation of Structure
- Approach 2: Structure-to-String
- Approach 3: Collection of Hierarchical FST
 - (Alshawi et al. 2000)
 - Deterministic vs. Non-Deterministic
 - Faster decoding + less space vs. Slow decoding + pruning
 - Limited domain vs. Larger domain