BASIC PROGRAMMING

FLOWCHARTS

Le Thi Ngoc Tho, Ph.D

1

CONTENTS

- Some Concepts
- Algorithm Representation: Flowchart
- Algorithm Structures:
 - Sequential Structure
 - Selection Structure
 - Loop Structure
- Exercises

Le T.N. Tho - Basic Programming - Flowcharts

CONCEPTS

• How to solve a problem?

- · What is algorithm?
 - Specification of how to solve a class of problems.
 - A set of rules that precisely defines a sequence of operations.

Le T.N. Tho - Basic Programming - Flowcharts

3

3

CONCEPTS

- E.g., algorithm of boiling water
 - 1. Take <u>a</u> kettle;
 - 2. Pour water into the kettle;
 - 3. Put the kettle on <u>a</u> stove;
 - 4. Turn on heat;
 - 5. Wait until water in the kettle boils;
 - 6. Turn off the heat;

Le T.N. Tho - Basic Programming - Flowcharts

4

,

CONCEPTS

- Characteristics of an algorithm:
 - *Precision*: the steps are precisely stated(defined).
 - Uniqueness: results of each step are uniquely defined and only depend on the input and the result of the preceding steps.
 - Finiteness: the algorithm stops after a finite number of instructions are executed.
 - Input: the algorithm receives input.
 - Output: the algorithm produces output.
 - Generality: the algorithm applies to a set of inputs.

Le T.N. Tho - Basic Programming - Flowcharts

5

5

Algorithm Representation

- Using natural language: ref. water boiling example.
- Pseudocode: informal high-level description of the operating principle of a computer program or other algorithm.
- Flowchart: diagram that represents an algorithm, workflow or process, showing the steps as boxes of various kinds, and their order by connecting them with arrows.

Le T.N. Tho - Basic Programming - Flowcharts

FLOWCHART

• Common symbols:

Name	Symbol	Usage
Start / Stop		The beginning or the end point
Process		An instruction or command
Decision		A decision, either yes or no, true or false
Input / Output		Input: Data to computer Output: Data from computer
Direction of flow		Connect the symbols, Show directions of instructions

Le T.N. Tho - Basic Programming - Flowcharts

7

7

ALGORITHM STRUCTURES

- Sequential Structure:
 - Do Process 1,
 - Then, do Process 2,

•

Le T.N. Tho - Basic Programming - Flowcharts

8

ALGORITHM STRUCTURES Sequential Structure: E.g., Sketch flowchart: Input two integers a and b, Compute their sum. Display the sum. Le T.N. Tho - Basic Programming - Flowcharts

9

ALGORITHM STRUCTURES

- Selection Structure:
 - If selection condition is TRUE, then do Process 1 and Process 2.
 - Else, selection condition is FALSE, then do Process 3 and Process 4

11

ALGORITHM STRUCTURES

- Selection Structure:
 - E.g., solve linear equation ax + b = 0
 - If a = 0, then we consider b
 - If b = 0, then the equation has <u>infinitely many roots</u>,
 - Else, $b \neq 0$, the equation has no root,
 - Else, $a \neq 0$, there is a unique root $-\frac{b}{a}$

Le T.N. Tho - Basic Programming - Flowcharts

12

ALGORITHM STRUCTURES

• Selection Structure: Solve linear equation ax + b = 0

13

ALGORITHM STRUCTURES

- Loop Structure:
 - If loop condition is TRUE, do Process 1 and Process 2

14

ALGORITHM STRUCTURES

- Loop Structure: E.g.,
 - Input an integer n
 - Output the list of n integers from 1 to n

Le T.N. Tho - Basic Programming - Flowcharts

15

15

EXERCISES (1)

- Sketch flowcharts for following problems:
 - 1. Given two integers a and b, find the larger number.
 - 2. Solve quadratic equation $y = ax^2 + bx + c$
 - 3. Compute the sum of N first integers $S = 1 + 2 + \cdots + N$
 - 4. Compute the sum of *N* first <u>even</u> integers $S = 2 + 4 + \cdots + 2N$
 - 5. Given an integer N, list all of its divisors. E.g., divisors of N=12 are $1\ 2\ 3\ 4\ 6\ 12$
 - 6. Given an integer N, count the number of its divisors. E.g., the number of divisors of N = 12 is 6

Le T.N. Tho - Basic Programming - Flowcharts

EXERCISES (2)

- Sketch flowcharts for following problems:
 - 7. Given an integer N, sum up all its divisors. E.g., sum of all divisors of N = 12 is 28
 - 8. Given an integer N, e.g., N = 128
 - How many digits in N? E.g., 3
 - What is its last digit? E.g., 8
 - What is its first digit? E.g., 1
 - Compute the sum of all digits in N. E.g., sum = 11
 - Find the integer which is the reverse of N. E.g., 821

Le T.N. Tho - Basic Programming - Flowcharts

17

17

EXERCISES (3)

- Sketch flowcharts for following problems:
 - 9. Check if a given integer *N* is a prime number.
 - 10. Given integer n, compute:

a.
$$S = 1^2 + 2^2 + \dots + n^2$$

b.
$$S = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

c.
$$S = \frac{1}{2} + \frac{2}{3} + \dots + \frac{n}{n+1}$$

d.
$$T = 1 \times 2 \times \cdots \times n$$

e.
$$S = 1! + 2! + \dots + n!$$

Le T.N. Tho - Basic Programming - Flowcharts

