Parcial 1 — Análisis de Datos II (2025–2)

Estadística descriptiva: medidas y gráficas (entrega en Excel, trabajo por grupos)

Programa de Ingeniería — Universidad de Manizales

Sin clase: semana del 6 al 11 de octubre de 2025 (resolución del parcial)

Sustentación: semana del 13 al 17 de octubre de 2025 (en clase)

Indicaciones generales

- Trabajo en grupos de 2 a 4 estudiantes. Un (1) archivo de Excel por grupo.
- No hay video. Toda la sustentación es en clase (semana del 13 al 17 de octubre).
- Formato de entrega: un libro de Excel con las hojas que se indican. No pegar valores: las celdas deben contener fórmulas (se revisará aleatoriamente).
- Bases de datos (n=100 cada una): ver archivos adjuntos Datos_A_TiempoReparacion.xlsx y Datos_B_ConsumoEnergetico.xlsx (también disponibles unificadas en Parcial ADII 2025-2 datasets.xlsx).
- Nombrado del archivo: GrupoX_ADII_Parcial1.xlsx (X= número de grupo). En la hoja Portada incluya integrantes (nombre, código) y correo.

Funciones de	Excel	$\acute{ ext{utiles}}$	(ES	/	EN)
Medidas centrales	PROMEDIO / AVE MODE.SNGL, MODA	,		,	A.UNO /
Dispersión	VAR.S / VAR.S, DESVEST.P / ST		*		VAR.P,
Cuartiles/Percentiles	CUARTIL.INC / PERCENTILE.INC	•	C,	PERCENTII	L.INC /
Apoyo	CONTAR / COUNT MAX, ORDENAR /	,	,	· · · · · · · · · · · · · · · · · · ·	MAX /

Estructura del libro de Excel (obligatoria)

- 1) Portada: integrantes, programa, curso, correo, fecha.
- 2) A_Datos, A_Frecuencias, A_Medidas, A_Gráficos.
- 3) B_Datos, B_Frecuencias, B_Medidas, B_Gráficos.
- 4) **Resumen**: tabla comparativa A vs. B (ver Parte C).

Parte A — Conjunto de datos A (*Tiempo de repara-ción*, min, n=100)

A1. Tabla de frecuencias (A_Frecuencias)

- a) Determine el número de clases con **Regla de Sturges**: $k = 1 + 3{,}322 \log_{10}(n)$. Redondee al entero más cercano (sug.: 6–10 clases).
- b) Ancho de clase: $w=\frac{\text{máx}-\text{mín}}{k}$ (ajuste a 0.5 o 1.0 según convenga). Fije límites de clase (LI, LS) sin solapamientos.
- c) Construya la tabla: clase (LI-LS), marca de clase (x_i) , fa, fr, Fa, Fr. Verifique que $\sum fa = n$ y $\sum fr = 1$.

A2. Medidas $(A_Medidas)$

- a) Calcule **desde datos crudos** (hoja A_Datos): media, mediana, moda (si hay multimodalidad, reportar todas), Q_1 , Q_3 .
- b) Calcule **desde datos agrupados** (usando x_i y fa): $\bar{x} = \frac{\sum x_i fa_i}{n}$, mediana y moda agrupadas (fórmulas de interpolación), Q_1 , Q_3 agrupados.
- c) Dispersión (ambos enfoques): rango, varianza y desviación estándar **muestrales**, IQR, desviación media absoluta (MAD), coeficiente de variación (CV).
- d) Construya una **tabla de comparación** (crudo vs. agrupado) con error absoluto y relativo (%).

A3. Gráficos ($A_Gráficos$)

- a) Histograma con límites de clase definidos en A1 y polígono de frecuencias.
- b) Ojiva (acumuladas) y diagrama de caja (boxplot). Anote valores atípicos si aparecen.
- c) Inserte un breve **comentario técnico** (5–7 líneas) interpretando las medidas y la forma de la distribución.

Parte B — Conjunto de datos B ($Consumo\ energ\'etico$, kWh, n=100)

Repita B1–B3 análogo a A1–A3 (hojas B_Frecuencias, B_Medidas, B_Gráficos). Mantenga el mismo criterio para k y w para facilitar la comparación.

Parte C — Resumen comparativo (Resumen)

- a) Tabla A vs. B que incluya: \bar{x} , mediana, moda(s), Q_1 , Q_3 , rango, s, CV e IQR (crudo y agrupado).
- b) Dos conclusiones clave sobre qué conjunto presenta mayor dispersión relativa (use CV) y cuál es más simétrico (apóyese en mediana vs. media y en el boxplot).

Notas de buen uso (serán revisadas)

- Deje visibles las **fórmulas** y use referencias de celda. Evite valores duros.
- Documente (en una celda de texto) cómo definió los límites de clase (LI, LS) y el redondeo de w.
- Estándar de gráficos: título claro, ejes con unidades y etiquetas, leyenda cuando aplique.

Rúbrica (100 puntos)

Parte A (Tiempo de reparación)	50
A1 Frecuencias (correctas, k y w justificados)	15
A2 Medidas (crudo y agrupado, comparación con errores)	25
A3 Gráficos (histograma+polígono, ojiva, boxplot)	10
Parte B (Consumo energético)	50
B1 Frecuencias (correctas, k y w consistentes)	15
B2 Medidas (crudo y agrupado, comparación)	25
B3 Gráficos (histograma+polígono, ojiva, boxplot)	10

Fechas y entrega

- Semana 6–11 de octubre de 2025: dedicación exclusiva al parcial (no hay clase). Se recomienda entregar el domingo 12 de octubre, 23:59.¹
- Semana 13–17 de octubre de 2025: sustentación en clase (muestra de libro Excel y preguntas rápidas). Todos los integrantes deben poder explicar cualquier hoja.

¹Si su plataforma institucional dispone otra fecha/hora, prima la de la plataforma.

 $\label{lem:archivos} Archivos\ adjuntos\ (datos): \verb|Datos_A_TiempoReparacion.xlsx|, \verb|Datos_B_ConsumoEnergetico.xlsx| \\ y\ Parcial_ADII_2025-2_datasets.xlsx|.$

Consejo: primero calcule con datos crudos, luego agrupe y compare. Si la diferencia es grande, revise $k,\,w$ o posibles atípicos.