Intro to Digital Design Combinational Logic

Instructor: Clarice Larson

Data transfer system connects silicon chips with a hair's-width cable

"Researchers have developed a data transfer system that can transmit information 10 times faster than a USB. The new link pairs high-frequency silicon chips with a polymer cable as thin a strand of hair. The system may one day boost energy efficiency in data centers and lighten the loads of electronics-rich spacecraft."

"The researchers suggest "data-dense" applications, like server farms, could be early adopters of the new links, since they could dramatically cut data centers' high energy demands. The link could also be a key solution for the aerospace and automotive industries, which place a premium on small, light devices ..."

https://news.mit.edu/2021/data-transfer-system-silicon-0224

Lecture Outline

- Course Logistics
- Course Motivation
- Combinational Logic Review
- Combinational Logic in the Lab

Course Staff

Instructor: Clarice Larson

* TAs:

Laksh

Matthew

Noah

Sahar

Suliman

Virtual Reality

- Zoom will be used for Lectures, Office Hours, Demos
- Students will not have access to CSE lab spaces
 - Install Quartus on your machine
- Kits can be picked up in person or shipped based on your preference (Pre-Course Survey)

Course Information

Instructor:Clarice Larson (clarice@cs.uw.edu)

❖ TAS: Matthew Cinnamon (cinnam@cs.uw.edu)

Laksh Gupta (lg2000@cs.uw.edu)

Hafsa Khan (hafsa@cs.uw.edu)

Sahar Osman (saharo@cs.uw.edu)

Suliman Osman (osman92@cs.uw.edu)

Noah Ponto (ponton@cs.uw.edu)

Lab Hours: Wed & Thu 2:30-5:20 pm (Zoom)

Canvas: https://canvas.uw.edu/courses/1448815

Discussion: https://edstem.org/us/courses/4902/discussion/

Grading

- Labs (66%)
 - 6 regular labs 1 week each
 - Labs 2-3: 60 points each, Labs 1, 4-6: 100 points each
 - 1 "final project" 2 weeks
 - Lab 7 Check-In: 10 points, Lab 7: 150 points
- 3 Quizzes (no final exam)
 - Quiz 1 (10%): 20 min in class on April 27
 - Quiz 2 (10%): 25 min in class on May 18
 - Quiz 3 (14%): 40 min in class on June 1

Labs

- Labs are a combination of report + demo
 - Submit materials via Canvas Wednesdays before 2:30 pm
 - This is before your demo
 - 10-minute demos done in lab sections (Pre-course Survey)
- Each student will get a lab kit for the quarter
 - Install software on laptop (Windows or VM)
 - Lab sections are for access to TAs
- Penalties on lab submissions and demos:

Lateness	< 24 hr	< 48 hr	< 72 hr	≥ 72 hr
Penalty	10%	30%	60%	100%

Collaboration Policy

- Labs and final project are to be completed individually
 - Learn by doing
 - Violation of these rules is grounds for failing the class

***** OK:

- Discussing lectures and/or readings, studying together
- High-level discussion of general approaches
- Help with debugging, peculiarities with tools, etc.

Not OK:

- Developing a lab together
- Giving away solutions or having someone else do your lab for you

Course Workload

The workload ramps up significantly towards the end of the quarter:

L1: Combinational Logic

Lecture Outline

- Course Logistics
- Course Motivation
- Combinational Logic Review
- Combinational Logic in the Lab

Course Motivation

- Smaller, faster, cheaper hardware has enabled so many advances in electronics
 - Computers & phones
 - Vehicles (cars, planes)
 - Robots
 - Portable & household electronics

- An introduction to digital logic design
 - Lecture: How to think about hardware, basic higher-level circuit design techniques – preparation for EE/CSE469
 - Lab: Hands-on FPGA programming using Verilog preparation for EE/CSE371

Digital vs. Analog

Digital:

Discrete set of possible values

Binary (2 values):

On, 3.3 V, high, TRUE, "1" Off, 0 V, low, FALSE, "0"

Analog:

Values vary over a continuous range

Digital vs. Analog Systems

- Digital systems are more reliable and less error-prone
 - Slight errors can cascade in Analog system
 - Digital systems reject a significant amount of error; easy to cascade
- Computers use digital circuits internally
 - CPU, memory, I/O
- Interface circuits with "real world" often analog
 - Sensors & actuators

This course is about logic design, not system design (processor architecture), and not circuit design (transistor level)

Digital Design: What's It All About?

 Create an implementation using a set of building blocks given a functional description and constraints

L1: Combinational Logic

- Digital design is in some ways more art than a science
 - The creative spirit is in combining primitive elements and other components in new ways to achieve a desired function
- However, unlike art, we have objective measures of a design (i.e. constraints):
 - Performance
 - Power
 - Cost

Digital Design: What's It All About?

- How do we learn how to do this?
 - Learn about the building blocks and how to use them
 - Learn about design representations
 - Learn formal methods and tools to manipulate representations
 - Look at design examples
 - Use trial and error CAD tools and prototyping (practice!)

Lecture Outline

- Course Logistics
- Course Motivation
- Combinational Logic Review
- Combinational Logic in the Lab

Combinational vs. Sequential Logic

Combinational Logic (CL)

Network of logic gates without feedback.

Outputs are functions only of inputs.

Sequential Logic (SL)

The presence of feedback introduces the notion of "state."

Circuits that can "remember" or store information.

Representations of Combinational Logic

- Text Description
- Circuit Description
 - Transistors Not covered in 369
 - Logic Gates
- Truth Table
- Boolean Expression

All are equivalent!

Example: Simple Car Electronics

Door Ajar (DriverDoorOpen, PassengerDoorOpen)

High Beam Indicator (LightsOn, HighBeamOn)

 Seat Belt Light (DriverBeltIn, PassengerBeltIn, Passenger) CSE369, Spring 2021

Truth Tables

- Table that relates the inputs to a combinational logic (CL) circuit to its output
 - Output only depends on current inputs
 - Use abstraction of 0/1 instead of high/low voltage
 - Shows output for every possible combination of inputs ("black box" approach)

- How big is the table?
 - 0 or 1 for each of *N* inputs
 - Each output is a separate function of inputs, so don't need to add rows for additional outputs

CL General Form

If N inputs, how many distinct functions F do we have?

a	b	c	d	у
0	0	0	0	F(0,0,0,0)
0	0	0	1	F(0,0,0,1)
0	0	1	0	F(0,0,1,0)
0	0	1	1	F(0,0,1,1)
0	1	0	0	F(0,1,0,0)
0	1	0	1	F(0,1,0,1)
0	1	1	0	F(0,1,1,0)
1	1	1	1	F(0,1,1,1)
1	0	0	0	F(1,0,0,0)
1	0	0	1	F(1,0,0,1)
1	0	1	0	F(1,0,1,0)
1	0	1	1	F(1,0,1,1)
1	1	0	0	F(1,1,0,0)
1	1	0	1	F(1,1,0,1)
1	1	1	0	F(1,1,1,0)
1	1	1	1	F(1,1,1,1)

Logic Gates (1/2)

Special names and symbols:

Logic Gates (2/2)

Special names and symbols:

More Complicated Truth Tables

3-Input Majority

How many rows?

Α	В	С	Out
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

1-bit Adder

A	В	Carry	Sum
0	0		
0	1		
1	0		
1	1		

Boolean Algebra

- Represent inputs and outputs as variables
 - Each variable can only take on the value 0 or 1

L1: Combinational Logic

- Overbar is NOT: "logical complement"
 - If A is 0, then \overline{A} is 1 and vice-versa
- ❖ Plus (+) is 2-input OR: "logical sum"
- ❖ Product (·) is 2-input AND: "logical product"
- All other gates and logical expressions can be built from combinations of these
 - e.g. $A XOR B = A \oplus B = \overline{A}B + \overline{B}A$

Truth Table to Boolean Expression

- Read off of table
 - For 1, write variable name
 - For 0, write complement of variable
- Sum of Products (SoP)
 - Take rows with 1's in output column, sum products of inputs

We can show that these are equivalent!

- Product of Sums (PoS)
 - Take rows with 0's in output column, product the sum of the complements of the inputs

•
$$C = (A + B) \cdot (\overline{A} + \overline{B})$$

Basic Boolean Identities

$$\star X + 0 = X$$

$$* X + 1 = 1$$

$$\star X + X = X$$

$$*X + \overline{X} = 1$$

$$*\overline{\overline{X}} = X$$

$$*X \cdot 1 = X$$

$$*X \cdot 0 = 0$$

$$\star X \cdot X = X$$

$$* X \cdot \overline{X} = 0$$

Basic Boolean Algebra Laws

Commutative Law:

$$X + Y = Y + X$$

$$X \cdot Y = Y \cdot X$$

Associative Law:

$$X+(Y+Z) = (X+Y)+Z$$

$$X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$$

Distributive Law:

$$X \cdot (Y+Z) = X \cdot Y + X \cdot Z$$

$$X+YZ = (X+Y) \cdot (X+Z)$$

Advanced Laws (Absorption)

$$* X + XY$$

$$= X$$

$$* XY + X\overline{Y}$$

$$= X$$

$$* X + \overline{X}Y$$

$$= X + Y$$

$$\star X(X + Y)$$

$$= X$$

$$(X + Y)(X + \overline{Y}) = X$$

$$* X(\overline{X} + Y)$$

$$= XY$$

Practice Problem

* Boolean Function: $F = \overline{X}YZ + XZ$

Truth Table: Simplification:

Χ	Υ	Z	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Technology

Break

Lecture Outline

- Course Logistics
- Course Motivation
- Combinational Logic Review
- Combinational Logic in the Lab

Why Is This Useful?

- Logic minimization: reduce complexity at gate level
 - Allows us to build smaller and faster hardware
 - Care about both # of gates, # of literals (gate inputs), # of gate levels, and types of logic gates

CSE369, Spring 2021

W UNIVERSITY of WASHINGTON

Why Is This Useful?

- Faster hardware?
 - Fewer inputs implies faster gates in some technologies.
 - Fan-ins (# of gate inputs) are limited in some technologies
 - Fewer levels of gates implies reduced signal propagation delays
 - # of gates (or gate packages) influences manufacturing costs
 - Simpler Boolean expressions → smaller transistor networks \rightarrow smaller circuit delays \rightarrow faster hardware
 - Does the type of gate matter?

Does the Type of Gate Matter?

Yes!

2-Input Gate Type	# of transistors
NOT	2
AND	6
OR	6
NAND	4
NOR	4
XOR	8
XNOR	8

- Can recreate all other gates using only NAND or only NOR gates
 - Called "universal" gates
 - e.g. A NAND $A = \overline{A}$, B NOR $B = \overline{B}$
 - DeMorgan's Law helps us here!

DeMorgan's Law

				NOR		NAND		
	X	Y	X	$\overline{\mathbf{Y}}$	$\overline{X + Y}$	$\overline{X} \cdot \overline{Y}$	$\overline{X \cdot Y}$	$\overline{X} + \overline{Y}$
	0	0	1	1	1		1	_
	0	1	1	0	0		1	
	1	0	0	1	0		1	
	1	1	0	0	0		0	

In Boolean Algebra, converts between NAND/NOR and OR/AND expressions

$$Z = \overline{(A + B + \overline{C}) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + \overline{C})}$$

- $Z = \overline{A}\overline{B}C + \overline{A}BC + A\overline{B}C$
- At gate level, can convert from NAND/NOR to OR/AND gates
- "Flip" all input/output bubbles and "switch" gate

$$A \longrightarrow C \Leftrightarrow$$

$$A \longrightarrow C \Leftrightarrow$$

DeMorgan's Law Practice Problem

Simplify the following diagram:

Then implement with only NAND gates:

Transistor-Transistor Logic (TTL) Packages

- Diagrams like these and other useful/helpful information can be found on part data sheets
 - It's really useful to learn how to read these

Mapping truth tables to logic gates

L1: Combinational Logic

- Given a truth table:
 - 1) Write the Boolean expression
 - 2) Minimize the Boolean expression
 - 3) Draw circuit diagram with gates
 - 4) Map to available gates
 - 5) Determine # of packages and their connections

Breadboarding circuits

Summary

 Digital systems are constructed from Combinational and Sequential Logic

 Logic minimization to create smaller and faster hardware

Gates come in TTL
 packages that require
 careful wiring

