TD 4 STATISTIQUE - 1SN

Exercice 1.

Afin de tester la satisfaction des clients à service donné, on effectue un sondage et on définit une variable aléatoire Y_i de la façon suivante :

 $Y_i = 1$ si le client i est satisfait

 $Y_i = 0$ si le client i n'est pas satisfait

A l'aide d'un échantillon $(Y_1, ..., Y_n)$ de même loi de Bernoulli

$$P\left[Y_i = 0\right] = \theta$$

$$P[Y_i = 1] = 1 - \theta$$

on désire tester les hypothèese $H_0: \theta = \theta_0 = 0.52$ et $H_1: \theta = \theta_1 = 0.48$.

- 1. Construire la vraisemblance des observations $y_1, ..., y_n$ et expliciter la région de rejet de H_0 du test de Neyman-Pearson (pour l'application numérique, on choisira un risque de première espèce $\alpha = 0.1$).
- 2. Déterminer la puissance de ce test.

Exercice 2. Soit $X_1, ..., X_n$ un échantillon d'une loi normale de moyenne m et de variance σ^2 . On veut faire le test d'hypothèses binaires suivant :

 H_0 : $m = m_0$; σ^2 quelconque

 $H_1: m \neq m_0; \sigma^2$ quelconque

Pour construire le test, on retient le test du rapport des vraisemblances maximales ou test GLR (Generalized Likelihood Ratio).

- 1. On suppose $m=m_0$ connu. Rappeler l'estimateur du maximum de vraisemblance (EMV) de σ^2 .
- 2. Lorsque m et σ^2 sont inconnus, rappeler leurs estimateurs du maximum de vraisemblance.
- 3. Donner la forme du test GLR.
- 4. En décomposant $\sum_{i=1}^{n} (x_i m_0)^2$, montrer que l'on peut définir un test équivalent à l'aide de la statistique

$$T_n = \frac{\overline{X} - m_0}{\sqrt{\sum_{i=1}^n (X_i - \overline{X})^2}}$$

5. On rappelle que sous l'hypothèse H_0 , les deux variables aléatoires

$$U = \frac{\overline{X} - m_0}{\sigma / \sqrt{n}}$$
 et $V = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sigma^2}$

ont des lois connues $U \sim \mathcal{N}(0,1)$ et $V \sim \chi_{n-1}^2$. En déduire la loi de T_n . Soit $\alpha = 5\%$ le risque de première espèce. Donner la région critique du test effectué à l'aide de T_n .

1

Exercice 3.

On considère les observations x_i , i = 1, ..., n (avec n = 10) définies par

On suppose que les variables aléatoires associées à ces observations sont indépendantes et issues de la même loi de Poisson $P(\lambda)$. On rappelle que si X suit une une loi de Poisson de paramètre λ , on a $E[X] = \text{var}[X] = \lambda$ et $\varphi_X(t) = E\left[e^{itX}\right] = \exp\left[\lambda\left(e^{it}-1\right)\right]$. On désire tester les deux hypothèses

$$\begin{cases} H_0: \lambda = \lambda_0 \text{ (absence de planète)} \\ H_1: \lambda = \lambda_1 \text{ (présence de planète)} \end{cases}$$

avec $\lambda_1 < \lambda_0$.

- 1. Vérifier que la statistique du test de Neyman-Pearson peut s'écrire $T = \sum_{i=1}^{n} X_i$ et déterminer la région critique associée.
- 2. Déterminer la fonction caractéristique de T et en déduire que T suit une loi de Poisson que l'on précisera sous chaque hypothèse.
- 3. Préciser le test de puissance maximale tel que le risque de première espèce α vérifie $\alpha \leq 0.05$. On précisera le risque maximal α , la décision prise au vu des données $x_i, i=1,...,10$ et la puissance de ce test. Pour les applications numériques, on prendra $\lambda_0=1$ et $\lambda_1=0.1$.
- 4. On suppose que n est suffisamment grand pour pouvoir utiliser les résultats du théorème de la limite centrale.
 - Donner la loi approchée de T issue de ce théorème.
 - Quelle est la valeur du seuil obtenue lorsqu'on confond la loi de T avec son approximation. En comparant avec la valeur obtenue précédemment, dire ce que vous pensez de cette approximation pour n = 10.
 - Déterminer les courbes COR (caractéristiques opérationnelles du récepteur) découlant de cette loi approchée. On posera

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$$

et on notera $\Phi^{-1}(x)$ son inverse. En supposant que n est suffisamment grand pour faire les approximations nécessaires, déterminer les paramètres qui influent sur la performance asymptotique $(n \to \infty)$ du test. De ces deux cas

Premier Cas: $n = 100, \lambda_0 = 1, \lambda_1 = 0.1$

Deuxième Cas : $n = 100, \lambda_0 = 2, \lambda_1 = 1.1$

indiquer celui qui engendre la meilleure performance.

