Algèbre Linéaire

Tissot

Semestre de printemps 2019

Corrigé 7

Valeurs propres : exercice 3

Rappel:

- ullet n vecteurs sont linéairement dépendants si et seulement si l'un d'entre eux est une combinaison linéaire des autres.
- un vecteur propre est toujours différent du vecteur nul.

 $Hypoth\`ese: f$ admet n valeurs propres distinctes.

Conclusion: les n vecteurs propres associés sont linéairement indépendants.

Preuve par l'absurde:

On considère les deux hypothèses H et non C :

f admet n valeurs propres distinctes $\lambda_1, \dots, \lambda_n$

les n vecteurs propres associés $\vec{v}_1, \dots, \vec{v}_n$ sont linéairement dépendants.

Ces n vecteurs sont donc différents du vecteur nul et l'un d'entre eux est une combinaison linéaire des autres.

On écrit l'un des vecteurs comme combinaison linéaire des n-1 autres et on applique f à ce vecteur.

D'où:

$$f(\vec{v}_i) = \lambda_i \, \vec{v}_i \quad \text{et} \quad \vec{v}_i \neq \vec{0} \,, \quad i = 1, \dots, n$$

 $\lambda_i \neq \lambda_j \,, \quad i \neq j \,, \quad i, j = 1, \dots, n$

On peut toujours supposer que le vecteur \vec{v}_n s'écrit comme combinaison linéaire des autres. C'est-à-dire, il existe $\alpha_1, \dots, \alpha_{n-1} \in \mathbb{R}$ non tous nuls tels que :

$$\vec{v}_n = \sum_{i=1}^{n-1} \alpha_i \, \vec{v}_i \qquad (1)$$

On applique f des deux côté. D'où (par linéarité)

$$f(\vec{v}_n) = \sum_{i=1}^{n-1} \alpha_i f(\vec{v}_i) \quad \Leftrightarrow \quad \lambda_n \, \vec{v}_n = \sum_{i=1}^{n-1} \alpha_i \, \lambda_i \, \vec{v}_i \qquad (2)$$

Or par (1)

$$\lambda_n \, \vec{v}_n = \lambda_n \, \sum_{i=1}^{n-1} \alpha_i \, \vec{v}_i \quad \Leftrightarrow \quad \lambda_n \, \vec{v}_n = \sum_{i=1}^{n-1} \lambda_n \, \alpha_i \, \vec{v}_i$$

Et on remplace à gauche de l'égalité (2), d'où

$$\sum_{i=1}^{n-1} \lambda_n \, \alpha_i \, \vec{v}_i = \sum_{i=1}^{n-1} \alpha_i \, \lambda_i \, \vec{v}_i$$

$$\sum_{i=1}^{n-1} \lambda_n \alpha_i \vec{v}_i - \sum_{i=1}^{n-1} \alpha_i \lambda_i \vec{v}_i = \vec{0}$$

$$\Leftrightarrow$$

$$\sum_{i=1}^{n-1} (\lambda_n \alpha_i - \alpha_i \lambda_i) \vec{v}_i = \sum_{i=1}^{n-1} \alpha_i (\lambda_n - \lambda_i) \vec{v}_i = \vec{0}$$

Par hypothèse : $\lambda_n \neq \lambda_i$, et $\vec{v}_i \neq \vec{0}$, $i=1,\ldots,n-1$. Ainsi

$$\sum_{i=1}^{n-1} \alpha_i (\lambda_n - \lambda_i) \vec{v_i} = \vec{0} \quad \Rightarrow \quad \alpha_i = 0, \quad i = 1, \dots, n-1$$

D'où

$$\vec{v}_n = \sum_{i=1}^{n-1} \alpha_i \, \vec{v}_i = \vec{0}$$
 (3)

On a donc simultanément, $\vec{v}_n \neq \vec{0}$ (car c'est un vecteur propre) et par (3), $\vec{v}_n = \vec{0}$. Ce qui est impossible.

Les n vecteurs propres sont donc linéairement indépendants.

Valeurs propres : exercice 4

Par hypothèse
$$E(-9)$$
 est la droite $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = k \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$.

Tout vecteur (non nul)appartenant à E(-9) est un vecteur propre.

En particulier
$$\vec{u} = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$
.

Soit f l'endomorphisme de matrice N.

 \vec{u} est un vecteur propre de f associé à la valeur propre -9 si et seulement si $f(\vec{u}) = -9\vec{u}$.

$$f(\vec{u}) = -9\,\vec{u} \iff N\,U = -9\,U$$

$$\Leftrightarrow \begin{pmatrix} b & 2a & -4 \\ 8 & 1 & 4 \\ -a & 4b & 7 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = -9 \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} 2b - 4a - 4 = -18 \\ 16 - 2 + 4 = 18 \\ -2a - 8b + 7 = -9 \end{cases}$$

$$\Leftrightarrow \begin{cases} 2a - b - 7 = 0 \\ 18 = 18 \\ a + 4b - 8 = 0 \end{cases}$$

D'où a = 4 et b = 1.

Valeurs propres : exercice 6

L'idée est de calculer le polynôme caractéristique $p(\lambda) = \det(A - \lambda I_3)$.

Puis de le développer en utilisant les opérations d'invariance sur les lignes et les colonnes afin d'obtenir un polynôme partiellement factorisé.

Le polynôme caractéristique de A est du 3ième degré et comporte un paramètre. D'où l'intérêt qu'il soit déjà partiellement factorisé.

$$p(\lambda) = \det(A - \lambda I_3) = \begin{vmatrix} 2 - \lambda & t & 2 \\ -2 & -1 - \lambda & 4 \\ 2 & 4 & -1 - \lambda \end{vmatrix} =$$

$$= \begin{vmatrix} 2 - \lambda & t & 2 \\ 0 & 3 - \lambda & 3 - \lambda \\ 2 & 4 & -1 - \lambda \end{vmatrix} = \begin{vmatrix} 2 - \lambda & t - 2 & 2 \\ 0 & 0 & 3 - \lambda \\ 2 & 5 + \lambda & -1 - \lambda \end{vmatrix} =$$

$$= (3 - \lambda)(\lambda^2 + 3\lambda - 14 + 2t)$$

On pose
$$r(\lambda) = \lambda^2 + 3\lambda - 14 + 2t$$

Ainsi :
$$p(\lambda) = (3 - \lambda) r(\lambda)$$

Les racines de $p(\lambda) = (3 - \lambda) r(\lambda)$ sont les valeurs propres de A, donc ce polynôme doit admettre une racine double.

Il y a deux cas à considérer :

soit $\lambda = 3$ est une valeur propre double, soit la valeur propre double est différente de 3.

• $\lambda = 3$ est la valeur propre double : c'est donc la racine double de $p(\lambda)$.

Or
$$p(\lambda) = (3 - \lambda) r(\lambda)$$
 et $r(\lambda) = \lambda^2 + 3\lambda - 14 + 2t$

Ainsi le polynôme $r(\lambda)$ admet 3 comme racine :

$$r(3) = 0 = 9 + 9 - 14 + 2t \implies t = -2$$

En remplaçant dans $p(\lambda)$, on obtient :

$$p(\lambda) = (3 - \lambda)(\lambda^2 + 3\lambda - 18) =$$

= $(3 - \lambda)(\lambda - 3)(\lambda + 6)$

Les trois valeurs propres sont : $\lambda_1 = \lambda_2 = 3$ et $\lambda_3 = -6$

• La valeur propre double est différente de 3.

Dans ce cas, le polynôme $r(\lambda) = \lambda^2 + 3\lambda - 14 + 2t$ est un carré parfait. Son discriminant est donc nul.

$$\Delta = 9 - 4(2t - 14) = 0 \implies t = \frac{65}{8}$$

En remplaçant dans $p(\lambda)$, on obtient :

$$p(\lambda) = (3 - \lambda)(\lambda^2 + 3\lambda - 14 + 2\frac{65}{8}) =$$

$$= (3 - \lambda)(\lambda^2 + 3\lambda + \frac{9}{4}) =$$

$$= (3 - \lambda)(\lambda + \frac{3}{2})^2$$

Les trois valeurs propres sont :

 $\lambda_1 = -\frac{3}{2}$ de multiplicité 2 et $\lambda_3 = 3$ de multiplicité 1.

Valeurs propres : exercice 7

(a)
$$f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $\vec{x} \longmapsto f(\vec{x}) = k (\vec{x} \cdot \vec{u}) \vec{v}$

On teste si \vec{u} et \vec{v} sont des vecteurs propres en utilisant la définition : \vec{x} est un vecteur propre associé à la valeur propre λ si et seulement si

$$f(\vec{x}) = \lambda \vec{x}$$

Il faut aussi penser à annuler le produit scalaire.

Le polynôme caractéristique de f est de degré deux, il a au plus deux racines réelles λ_1 et λ_2 , qui sont les valeurs propres de f, de sous espaces propres $E(\lambda_1)$ et $E(\lambda_2)$.

On commence par tester si les vecteurs \vec{u} ou \vec{v} sont des vecteurs propres.

- \vec{u} est vecteur propre ssi $f(\vec{u}) = \lambda \vec{u}$ On calcule, en posant $\vec{u} \cdot \vec{v} = k$: $f(\vec{u}) = k (\vec{u} \cdot \vec{u}) \vec{v} \neq \lambda \vec{u} \Leftrightarrow \vec{u}$ n'est pas un vecteur propre.
- \vec{v} est vecteur propre ssi $f(\vec{v}) = \lambda \vec{v}$

On calcule:

 $f(\vec{v}) = k (\vec{v} \cdot \vec{u}) \vec{v} = k^2 \vec{v} = \lambda \vec{v} \Leftrightarrow \vec{v}$ est un vecteur propre.

Il est associé à la valeur propre $\lambda = k^2$.

• Il faut déterminer si il y a un deuxième vecteur propre. On peut le trouver parmi les vecteurs qui annulent le produit scalaire $\vec{x} \cdot \vec{u}$.

Soit \vec{w} un vecteur perpendiculaire à \vec{u} .

 \vec{w} est vecteur propre ssi $f(\vec{w}) = \lambda \vec{w}$

On calcule:

 $f(\vec{w}) = k (\vec{w} \cdot \vec{u}) \vec{v} = 0 \vec{v} = \lambda \vec{v} \Leftrightarrow \vec{v} \text{ est un vecteur propre.}$

Il est associé à la valeur propre $\lambda = 0$.

L'endomorphisme f possède deux valeurs propres distinctes : $\lambda_1=k^2$ et $\lambda_2=0$, de multiplicité égale à 1.

Les sous espaces propres sont des droites.

 $E(k^2)$ est la droite (O, \vec{v})

E(0) est la droite (O, \vec{w})

Les vecteurs \vec{v} et \vec{w} sont linéairement indépendants, on peut donc construire une base formée de vecteurs propres.

Soit la base $\mathcal{B}(\vec{v}, \vec{w})$. Par définition, c'est une base propre de f. D'où la matrice de f par rapport à cette base :

$$M = \begin{pmatrix} k^2 & 0 \\ 0 & 0 \end{pmatrix} = k^2 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad \text{car} \qquad \begin{cases} f(\vec{v}) = k^2 \vec{v} \\ f(\vec{w}) = 0 \vec{w} \end{cases}$$

f est une homothétie de centre O et rapport k^2 , composée avec une projection d'axe la droite $(O\,,\vec{v})$ et de direction $\vec{w}\,.$

(b)
$$f : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

 $\vec{x} \longmapsto f(\vec{x}) = (\vec{x} \cdot \vec{u}) \, \vec{u} + 5 \, (\vec{x} \cdot \vec{n}) \, \vec{n} + \vec{x}$
et $\vec{u} \cdot \vec{n} = 0$, $||\vec{u}||^2 = 5$, $||\vec{n}||^2 = 1$.

On teste si \vec{u} ou \vec{n} sont des vecteurs propres en utilisant la définition : \vec{x} est un vecteur propre associé à la valeur propre λ si et seulement si

$$f(\vec{x}) = \lambda \vec{x}$$

Penser à annuler les produits scalaires!

Le polynôme caractéristique de f est de degré trois, il a au plus trois racines réelles λ_1 , λ_2 et λ_3 , qui sont les valeurs propres de f.

• \vec{u} est vecteur propre ssi $f(\vec{u}) = \lambda \vec{u}$

On calcule:

 $f(\vec{u}) = (\vec{u} \cdot \vec{u}) \vec{u} + 5 (\vec{u} \cdot \vec{n}) \vec{n} + \vec{u} = 5 \vec{u} + 0 \vec{n} + \vec{u} = 6 \vec{u} \Leftrightarrow \vec{u} \text{ est un vecteur propre.}$

Il est associé à la valeur propre $\lambda=6$.

• \vec{n} est vecteur propre ssi $f(\vec{n}) = \lambda \vec{n}$

On calcule:

 $f(\vec{n}) = (\vec{n} \cdot \vec{u}) \vec{u} + 5 (\vec{n} \cdot \vec{n}) \vec{n} + \vec{n} = 0 \vec{u} + 5 \vec{n} + \vec{n} = 6 \vec{n} \Leftrightarrow \vec{n} \text{ est un vecteur propre.}$

Il est associé à la valeur propre $\lambda = 6$.

• On cherche d'éventuels vecteurs propres parmi les vecteurs qui annulent les produits scalaires. On remarque qu'ils doivent donc être perpendiculaire à \vec{u} et \vec{n} .

Soit $\vec{v} = \vec{u} \times \vec{n}$.

On calcule:

 $f(\vec{v}) = (\vec{v} \cdot \vec{u}) \vec{u} + 5 (\vec{v} \cdot \vec{n}) \vec{n} + \vec{v} = 1 \vec{v} = \lambda \vec{v} \iff \vec{v} \text{ est un vecteur propre.}$

Il est associé à la valeur propre $\lambda = 1$.

L'endomorphisme f possède les valeurs propres suivantes : $\lambda_1 = 6$ de multiplicité égale à 2 et $\lambda_2 = 1$, de multiplicité égale à 1.

E(6) est le plan (O, \vec{u}, \vec{n}) .

E(1) est la droite (O, \vec{v}) .

Les vecteurs \vec{v} , \vec{u} et \vec{n} sont linéairement indépendants, on peut donc construire une base formée de vecteurs propres.

Soit la base $\mathcal{B}(\vec{v}, \vec{u}, \vec{n})$. Par définition, c'est une base propre de f. D'où la matrice de f par rapport à cette base :

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix} \qquad \text{car} \qquad \begin{cases} f(\vec{v}) &= 1 \vec{v} \\ f(\vec{u}) &= 6 \vec{u} \\ f(\vec{n}) &= 6 \vec{n} \end{cases}$$

f est une affinité d'axe la droite $(O\,,\vec{v})\,,$ de direction le plan $(O\,,\vec{u}\,,\vec{n})\,$ et de rapport 6.