AdaBoost

Prérequis

Pour comprendre la théorie d'AdaBoost il faut bien comprendre :

- L'ensemble learning
- L'algorithme des arbres de décision
- L'algorithme du random forest

De l'aléatoire au boosting

De l'aléatoire au boosting

Du random forest à AdaBoost

- Les arbres sont créer séquentiellement l'un après l'autre afin de minimiser l'erreur des arbres précédemment créer.
- Les arbres sont des stumps c'est-à-dire des arbres de profondeur une avec seulement deux feuilles.
- Les arbres peuvent avoir des poids différents en fonction de leur importance dans la forêt.

AdaBoost

Poids des observations

Sexe	Age	Classe	Survie	Poids
1	30	3	0	1/n
2	24	3	1	1/n
1	10	1	1	1/n
2	16	2	1	1/n
1	67	1	0	1/n

 $\frac{1}{nombre\ d'exemples}$

Poids des observations

Sexe	Age	Classe	Survie	Poids
1	30	3	0	1/5
2	24	3	1	1/5
1	10	1	1	1/5
2	16	2	1	1/5
1	67	1	0	1/5

 $\frac{1}{nombre\ d'exemples}$

Création d'un stump

étonnant que Oui soit à gauche avec valeur 0....à vérifier

Sexe	Age	Classe	Survie (y)
1	30	3	0
2	24	3	1
1	10	1	1
2	16	2	1
1	67	1	0

Poids (p)
1/5
1/5
1/5
1/5
1/5

Poids du votes de l'arbre

Erreur Total =
$$\sum_{i=1}^{n} (y_i! = \hat{y}_i) * p_i$$

Poids
$$de\ l'arbre = \frac{1}{2} \log \left(\frac{1 - Erreur\ Total}{Erreur\ Total + \varepsilon} + \varepsilon \right)$$

epsilon ajouté pour éviter une division par 0 ou un log de x négatif

Poids du votes de l'arbre

Sexe	Age	Classe	Survie (y)
1	30	3	0
2	24	3	1
1	10	1	1
2	16	2	1
1	67	1	0

Poids (p)
1/5
1/5
1/5
1/5
1/5

Poids de l'arbre =
$$\frac{1}{2}\log\left(\frac{1-Erreur\ Total}{Erreur\ Total}\right)$$

= $\frac{1}{2}\log\left(\frac{1-\frac{1}{5}}{\frac{1}{5}}\right)$
= 0.69

Notre forêt

Proportion de votes d'un arbre

Sexe	Age	Classe	Survie (y)
1	30	3	0
2	24	3	1
1	10	1	1
2	16	2	1
1	67	1	0

Poids (p)	Nouveau Poids (p)
1/5	
1/5	
1/5	0.4
1/5	
1/5	

Nouveau $poids_{y!=\hat{y}} = poids$. $e^{Poids de l'arbre}$

Nouveau poids<sub>y!=
$$\hat{y}$$</sub> = $\frac{1}{5} \cdot e^{0.69} = 0.40$

$$\frac{1}{5} = 0.2 < 0.4$$

Proportion de votes d'un arbre

Sexe	Age	Classe	Survie (y)
1	30	3	0
2	24	3	1
1	10	1	1
2	16	2	1
1	67	1	0

Poids (p)	Nouveau Poids (p)
1/5	0.1
1/5	0.1
1/5	0.4
1/5	0.1
1/5	0.1

Nouveau poids $y=\hat{y}=poids$. e^{-Poids} de l'arbre

Nouveau poids
$$_{y=\hat{y}} = \frac{1}{5} \cdot e^{-0.69} = 0.10$$

$$\frac{1}{5} = 0.2 > 0.1$$

Normalisation des poids

Sexe	Age	Classe	Survie (y)	Nouveau Poids (p)		Poids norm. (p)
1	30	3	0	0.1		0.1/0.8
2	24	3	1	0.1		0.1/0.8
1	10	1	1	0.4	= 0.8	0.4/0.8
2	16	2	1	0.1		0.1/0.8
1	67	1	0	0.1		0.1/0.8

Normalisation des poids

Sexe	Age	Classe	Survie (y)	Nouveau Poids (p)		Poids norm. (p)	
1	30	3	0	0.1		0.125	
2	24	3	1	0.1		0.125	
1	10	1	1	0.4	= 0.8	0.5	- = 1
2	16	2	1	0.1		0.125	
1	67	1	0	0.1		0.125	

Création d'un nouvel arbre

Sexe	Age	Classe	Survie (y)	Poids (p)
1	30	3	0	0.125
2	24	3	1	0.125
1	10	1	1	0.5
2	16	2	1	0.125
1	67	1	0	0.125

Erreur Total =
$$\sum_{i=1}^{n} (y_i = ! \hat{y}_i) * p_i = 0.25$$

Poids de l'arbre =
$$\frac{1}{2} \log \left(\frac{1 - Erreur Total}{Erreur Total + \varepsilon} + \varepsilon \right) = 0.55$$

Notre forêt

Calcul des nouveaux poids

Nouveau poid $s_{y!=\hat{y}} = poids \cdot e^{Poids \cdot de \cdot l'arbre}$

Nouveau poids $_{y=\hat{y}} = poids.e^{-Poids de l'arbre}$

Sexe	Age	Classe	Survie (y)	Poids (p)	Nouveau poids (p)	Poids norm. (p)
1	30	3	0	0.125	0.07	0.08
2	24	3	1	0.125	0.22	0.25
1	10	1	1	0.5	0.29	0.34
2	16	2	1	0.125	0.07	0.08
1	67	1	0	0.125	0.22	0.25

Création d'un nouvel arbre

Sexe	Age	Classe	Survie (y)	Poids (p)
1	30	3	0	0.08
2	24	3	1	0.25
1	10	1	1	0.34
2	16	2	1	0.08
1	67	1	0	0.25

Notre forêt

Poids = 0.31

Poids = 0.69

Poids =
$$0.55$$

Poids =
$$0.43$$

Poids =
$$0.10$$

Prédiction de la forêt

4 Poids = 0.69

	Oui	= 1 Non
	0	1
Poids = 0.43	6 Poids	= 0.55

E	Poids =	U 13
3	i Olus –	U. T J

	Class	se = 3	
Oui			Non
	0	1	

Arbre	Décision
1	0
2	0
3	0
4	1
5	0
6	1

Prédiction de la forêt

Arbre	Décision	Poids
1	0	0.2
2	0	0.31
3	0	0.10
4	1	0.69
5	0	0.43
6	1	0.55

Prédiction de la forêt

Arbre	Décision	Poids	%	
1	0	0.2	9 %	
2	0	0.31	14%	\
3	0	0.10	4%	
4	1	0.69	30%	
5	0	0.43	19%	
6	1	0.55	24%	

1 - 54%

0 - 46%