09/09/2025 - Matematicas Discretas A (Ude@) 1. Repaso Logica proposicional Proposiciones Expresiones Logicas -> Operadores logicos 🕝 , 🔦 , 🕣 , 🗪 -> Tablas de verdad -> Regions de Prioridad y asociatividad A Recipioco (condiciona): > Contrarecipioco Condicional 1 P-a Contrario 1P -> 7Q Tantologia (V)
Contingencia (V/F)
Contradicion (F) Tipos de Proposiciones Proposicion (Valor de Verdad) **(5)** Demostraciones Eguwalencias $P \equiv Q$ $P \leftrightarrow Q$ Basado en Axiomatica Ma delas P - Q es una Uso de Axionas Tautologia (I dentidudes) Tablas de verdad $\mathcal{L} \longleftrightarrow \mathcal{D}$

 $\longleftrightarrow \mathbf{\hat{Q}}$

2. Formulas importantes

Operadores lógicos

Operador	Símbolo	Nombre	Descripción
Negación	$\neg p$	No (NOT)	Niega el valor de verdad de una proposición. Si p
			es verdadera, ¬p es falsa.
Conjunción	$p \wedge q$	Y (AND)	Es verdadera solo si ambas proposiciones lo son.
			$p \wedge q$ es verdadera solo si $p \vee q$ lo son.
Disyunción	$p \lor q$	O (OR)	Es verdadera si al menos una de las proposiciones
_			lo es.
Disyunción exclusiva	$p \oplus q$	O exclusiva (XOR)	Es verdadera si una, y solo una, de las
			proposiciones es verdadera.
Condicional	$p \rightarrow q$	Si entonces (Implica)	Solo es falsa cuando p es verdadera y q es falsa.
Bicondicional	$p \leftrightarrow q$	si y solo si (Equivale)	Es verdadera cuando ambas proposiciones tienen
			el mismo valor de verdad.

Tablas de verdad para los operadores lógicos

Negación	Conjunción	Disyunción inclusiva	
p ¬p F V V F	$\begin{array}{c cccc} p & q & p \wedge q \\ F & F & F \\ F & V & F \\ \hline V & F & F \\ V & V & V \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Disyunción exclusiva	Condicional	Bicondicional	
$\begin{array}{c cccc} p & q & p \oplus q \\ \hline F & F & F \\ \hline F & V & V \\ \hline V & F & V \\ V & V & F \\ \end{array}$	$\begin{array}{c cccc} p & q & p \rightarrow q \\ \hline F & F & V \\ \hline F & V & V \\ \hline V & F & F \\ V & V & V \\ \end{array}$	$\begin{array}{c cccc} p & q & p \leftrightarrow q \\ \hline F & F & V \\ \hline F & V & F \\ \hline V & F & F \\ \hline V & V & V \\ \end{array}$	

Reglas de precedencia y asociatividad

Prioridad	Símbolo	Asociatividad	Ejemplo con paréntesis
1 (más alta)	7	No aplica (unitario)	$\neg p \land q \mapsto ((\neg p) \land q)$
2	٨	Izquierda ($I \rightarrow D$)	$p \wedge q \wedge r \mapsto ((p \wedge q) \wedge r)$
3	V	Izquierda ($I \rightarrow D$)	$p \lor q \lor r \mapsto \big((p \lor q) \lor r \big)$
4	Ф	Izquierda ($I \rightarrow D$)	$p \oplus q \oplus r \mapsto \big((p \oplus q) \oplus r\big)$
5	→	Derecha ($I \leftarrow D$)	$p \rightarrow q \rightarrow r \mapsto (p \rightarrow (q \rightarrow r))$
6 (más baja)	\leftrightarrow	Derecha $(I \leftarrow D)$	$p \leftrightarrow q \leftrightarrow r \mapsto (p \leftrightarrow (q \leftrightarrow r))$

Equivalencias lógicas

Nombre	Equivalencia lógica			
Conmutatividad	$P \wedge Q \equiv Q \wedge P$	$P \lor Q \equiv Q \lor P$		
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$		
Distributividad	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$		
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$		
Doble negación	$\neg(\neg P) \equiv P$			
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$		
Identidad	$P \wedge V \equiv P$	$P \vee F \equiv P$		
Dominación	$P \wedge F \equiv F$	$P \lor V \equiv V$		
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$		
Complemento	$P \wedge \neg P \equiv \mathbf{F}$	$P \vee \neg P \equiv V$		
Implicación	$P \to Q \equiv \neg P \lor Q$			
Contrarrecíproco	$P \rightarrow Q \equiv \neg Q \rightarrow \neg P$			
Equivalencia	$P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$			

3. Ejempla Tarea

Demostrar:
$$p \rightarrow (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

* Entoque de modelos (Tablas de verdad)

$$p \rightarrow (q \rightarrow r) \equiv (p \wedge q) \rightarrow r$$

i. Vansables: p, 9, r

ii. Filas: N=3 - Pilas= 2"=23=8

iii. Tabla de verdad

11	√ √	6	A	②· P → 🕢	3 /	(A):(3) → Y	<u> </u>
<u> </u>	q	\ \r'	9 -> 4	$P \rightarrow (q \rightarrow r)$	PAG	(p ∧ q) → v	p -> (q-r) = (p ~ g) -> v
0	٥.	0	٠ ح	1	, 0	. 🗡	1
٥	Ö	اد	۸	1	0	ر.	<u>^</u>
Ō	١,	o o	0	<u></u>	0	۸	<u>^</u>
0	ہ	۸	٨	<u> </u>	5	1	<u> </u>
٨	0	0	Λ	A	0		<mark>^</mark>
٨	0	_A	٨	٨	0	,	4
ゝ	٠.	0,-	۵ ٔ	0	1	0	<u> </u>
٨	٨	ブ	A	<u></u>	1	<u></u>	/

 $P \rightarrow (q \rightarrow r) \equiv (p \land q) \rightarrow r \quad \text{es} \quad \text{Verdadero} \quad (\text{Tautologia})$

Por lo tanto:

* Enfoque Axomatics Lado izq. Lado devecho

$$p \rightarrow (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

Equivalencias lógicas

Nombre	Equivalencia lógica		
Conmutatividad	$P \wedge Q \equiv Q \wedge P$	$P \lor Q \equiv Q \lor P$	
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$	
Distributividad	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$	
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$	
Doble negación	$\neg(\neg P) \equiv P$		
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$	
Identidad	$P \wedge V \equiv P$	$P \vee F \equiv P$	
Dominación	$P \wedge F \equiv F$	$P \lor V \equiv V$	
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$	
Complemento	$P \wedge \neg P \equiv F$	$P \vee \neg P \equiv V$	
(Implicación)	$P \rightarrow Q \equiv \neg P \lor Q$		
Contrarrecíproco	$P \rightarrow Q \equiv \neg Q \rightarrow \neg P$		
Equivalencia	$P \leftrightarrow Q = (P \rightarrow Q) \land (Q \rightarrow P)$		

Procedimiento

Justificación

2

78 ~ (g = v)

3. 7p (7qvr)

(¬pv¬q)~~

Lado izquierdo (Punto de partido)

Implicación en 1

Implicación en 2

Assumatived and para or (v) en 3

 $(p \land q) \longrightarrow r$

- Ley de Morgan para el Ø(v)en (y)
 (I = D: Factor cornis)
- Implicación en (5) (Lado derecho)

4. Argumentación « Cuando una argumentación es valida

Expresión condicional

Infe

Premisor
Hipotesis
Antecedente
Verdad

Inferencia

Table de verdad

Premisas

Premis

Representación

1. Notación de consecuentes

	Pa	
	Pz	
	•	
	Pn	
٠.	Q	

2. Tanto logia.

3. Forma . simbolica

و چ

Como demostrar validez?

1. Modelos (Tablas de verdad) -

2. Enfoque axiomatico (Region)

	P	_a	P -> Q
	(2)	V	\ <u>\</u>
7	7	F	+
	₹	~	~
	۶	F	\

Validación de argumentos mediante tabla de verdad

Ejemplo: Dado el siguiente argumento:

$$p \to q \lor \neg r$$
$$q \to p \land r$$
$$\therefore p \to r$$

Determine su validez mediante una tabla de verdad, indicando qué columnas representan las premisas y cuáles representan la conclusión y anotando en la tabla una frase de la explicación.

Solucion =

Notación de conserventes

Tautologia

Forma simbolica

Representación en tabla de verdad

Notacion de conseinntes

Tantologia

$$(b \rightarrow d \wedge h) \vee (d \rightarrow b \vee h) \rightarrow b \rightarrow h$$

I. Variables: P. q, r

iii. Table de verdad

