

Big Data Analytics Project Phase 2

YASH JIVANI
PARTH DODIA

DATA Modelling TASKS iii

- Get a random sample of 1,000 records from each year.
- Add a new column to the table and label it Delay
- Populate the Delay column as follows:
 - a. if the record has a value of zero or less in the ArrDelay and DepDelay columns, put a "N" in the Delay column
 - b. otherwise, put a "Y" in the Delay column
- Combining the file with the other sample year files from each group member.
- Choosing a different model that can predict whether new unknown records will have any delays or not at all
- Training, validating and testing the analytics model with different segments of the combined sample data.
- Agreeing on the best team model to predict the delay of twelve flight records provided by the instructor.

2000 1999 YASH JIVANI PARTH DODIA

Data Expo 2009: Airline on Time Data

The data represents flight arrival and departure details for all commercial flights within the USA for year 1999 and 2000

Download Link

<u>Data Expo 2009: Harward - Airline on Time</u> <u>Data</u>

Data Processing

Reading the csv files and cleaning the data.

```
import pandas as pd
   #reading the data from the file of year 1999
   df_1999_all = pd.read_csv('1999.csv.bz2')
   #reading the data from the file of year 2000
   df_2000_all = pd.read_csv('2000.csv.bz2')
   #not to add the record which has empty values of arrival and departure Delay
   df_1999_all = df_1999_all[~df_1999_all.ArrDelay.isnull() & ~df_1999_all.DepDelay.isnull()]
   df_2000_all = df_2000_all[~df_2000_all.ArrDelay.isnull() & ~df_2000_all.DepDelay.isnull()]
   df_1999_all.shape
(5360018, 29)
   df_2000_all.shape
(5481303, 29)
```


Data Processing

Getting 1000 sample records from each file and combining the data

```
# take sample 1000 records
df_1999_sample = df_1999_all.sample(1000)
df_2000_sample = df_2000_all.sample(1000)
df sample = pd.concat([df_1999_sample,df_2000_sample])
df_sample.reset_index(inplace=True)
df_sample.drop(columns=['index'], axis=1,inplace=True)
#adding the Delay column and adding the values in it using require condition
df_sample['Delay'] = df_sample.apply(lambda x: 'N' if x.ArrDelay <= 0 and x.DepDelay <= 0 else 'Y', axis=1)</pre>
#getting the combined data into new csv file
df_sample.to_csv('sample_1999+2000.csv', index=False)
```


Data Processing

df = pd.read_csv('sample_1999+2000.csv') df Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime UniqueCarrier FlightNum TailNum ActualElapsedTime CRSElapsedTime AirTime ArrDelay 0 1999 1835.0 1823 2050.0 2048 AS N937AS 135.0 145.0 117.0 2.0 281 1999 12 1632.0 1635 1844.0 1835 DL N173DN 132.0 96.0 9.0 120.0 2 1999 14 829.0 1108.0 1104 N906DL 159.0 154.0 123.0 12 4.0 830 DL 750.0 750 950 59.0 WN -1.0 1999 18 949.0 1767 N505 60.0 49.0 1999 902.0 N675DL -8.0 28 0.808 810 910 DL 54.0 60.0 38.0 2000 1245.0 1433.0 N515US 5 1225 1435 NW 288.0 310.0 269.0 -2.0 19 2000 1427.0 1425 1642.0 N529UA 135.0 111.0 8.0 5 9 1634 UA 129.0 1042.0 2.0 2000 10 9 918.0 920 1040 NW N986US 144.0 140.0 114.0 2000 1233 1350 NR33AA 67.0 42.0 11 8 1238.0 1345.0 AA 77.0 -5.0 2000 12 23 1443.0 1250 1652.0 1440 129.0 110.0 89.0 132.0 N911DL DL 2063 2000 rows × 30 columns

Decision Tree

What is Decision Tree?

A decision tree is a non-parametric supervised learning algorithm, which is utilized for both classification and regression tasks. It has a hierarchical, tree structure, which consists of a root node, branches, internal nodes and leaf nodes.

Why Decision tree?

Decision trees are widely used for data analytics and machine learning because they can break down complex data into more manageable parts. They're often used in these fields for prediction analysis, data classification, and regression.

Testing Data

A	В	С	D	Е	F	G	Н	I	J	K	L	М	N	О	Р	Q	R	S
1 Yea	Month	DayofMonth	DayOfWeek	DepTime	CRSDepTime	ArrTime	CRSArrTime	UniqueCarrier	FlightNum	TailNum	Actual Elapsed Time	CRSElapsedTime	AirTime	ArrDelay	DepDelay	Origin	Dest	Distance
2	1	30	6		1920	2016	2030	US	1541	N275AU		70	42	-14		ROC	PHL	257
3	2	6	6		728	957	944	TW	606	N921L		76	53	13		STL	TYS	405
4	3	17	3		0	1330	0	UA	1660	N951UA		205	182	-10		DEN	PHL	1557
5	4	24	6		700	920	940	UA	462	N998UA		100	74	-20		ORD	CLT	599
6	5	1	7		1205	1306	1312	TW	447	NA		127	NA	-6		ORF	STL	784
7	6	7	2		945	1044	1048	US	253	NA		63	NA	-4		PIT	LEX	289
8	7	14	4		1455	1730	1714	CO	1098	NA		139	NA	16		IAH	ORD	925
9	8	22	1		1750	1938	1942	DL	922	NA		112	NA	-4		CVG	LGA	585
10	9	12	3		1500	1602	1605	00	3691	N565SW		65	52	-3		SUN	SLC	223
11	10	14	7		1500	1715	1710	MQ	4471	N820AE		130	109	5		ORD	PNS	794
12	11	6	2		730	1022	1013	NW	1674	N613NW		163	147	9		AUS	MSP	1042
13	12	14	5		2030	2130	2144	DL	1969	N916DE		74	40	-14		LGA	DCA	214
14																		

Т	U	V	W	X	Υ	Z	AA	AB	AC	AD
Taxiln	TaxiOut	Cancelled	CancellationCode	Diverted	CarrierDelay	WeatherDelay	NASDelay	SecurityDelay	LateAircraftDelay	Delayed (Y or N)
8	13									
4	19									
3	13									
2	8									
NA	NA									
NA	NA									
NA	NA									
NA	NA									
4	8									
3	18									
11	20									
4	17									

Training and Testing

Training the model in Rapid Miner using the combined dataset.

Training and Testing

Selecting the appropriate attributes for training

Results

Row No.	Delay	prediction(D	confidence(Y)	confidence(N)	Month	DayofMonth	DayOfWeek	DepTime	CRSDepTime	ArrTime
1	?	N	0.202	0.798	1	30	6	?	1920	2016
2	?	Υ	1	0	2	6	6	?	728	957
3	?	N	0.202	0.798	3	17	3	?	0	1330
4	?	N	0.202	0.798	4	24	6	?	700	920
5	?	N	0.202	0.798	5	1	7	?	1205	1306
6	?	N	0.202	0.798	6	7	2	?	945	1044
7	?	Υ	1	0	7	14	4	?	1455	1730
8	?	N	0.202	0.798	8	22	1	?	1750	1938
9	?	N	0.202	0.798	9	12	3	?	1500	1602
10	?	Υ	1	0	10	14	7	?	1500	1715
11	?	Υ	1	0	11	6	2	?	730	1022
12	?	N	0.202	0.798	12	14	5	?	2030	2130

accuracy: 94.50% +/- 7.78% (micro average: 94.50%)

	true Y	true N	class precision
pred. Y	1058	0	100.00%
pred. N	110	832	88.32%
class recall	90.58%	100.00%	

Results

	Accuracy	•	
--	----------	---	--

Model	Accuracy	Standard Deviation	Gains	Total Time	Training Time (1,000	Scoring Time (1,0
Deep Learning	59.1%	± 1.7%	0	34 s	928 ms	1 s
Decision Tree 🙎 💲 📌 🤻	66.1%	± 1.4%	94	17 s	49 ms	279 ms

	•	•
	Name	Description
1	Year	1987-2008
2	Month	1-12
3	DayofMonth	1-31
4	DayOfWeek	1 (Monday) - 7 (Sunday)
5	DepTime	actual departure time (local, hhmm)
6	CRSDepTime	scheduled departure time (local, hhmm)
7	ArrTime	actual arrival time (local, hhmm)
8	CRSArrTime	scheduled arrival time (local, hhmm)
9	UniqueCarrier	unique carrier code
10	FlightNum	flight number
11	TailNum	plane tail number
12	ActualElapsedTime	in minutes
13	CRSElapsedTime	in minutes
14	AirTime	in minutes
15	ArrDelay	arrival delay, in minutes
16	DepDelay	departure delay, in minutes
17	Origin	origin <u>IATA airport code</u>
18	Dest	destination <u>IATA airport code</u>
19	Distance	in miles
20	Taxiln	taxi in time, in minutes
21	TaxiOut	taxi out time in minutes
22	Cancelled	was the flight cancelled?
23	CancellationCode	reason for cancellation (A = carrier, B = weather, C = NAS, D = security)
24	Diverted	1 = yes, 0 = no
25	CarrierDelay	in minutes
26	WeatherDelay	in minutes
27	NASDelay	in minutes
28	SecurityDelay	in minutes
29	LateAircraftDelay	in minutes

	eIndex: 2000 entrie columns (total 30		
#	Column	Non-Null Count	Dtype
0	Year	2000 non-null	int64
1	Month	2000 non-null	int64
2	DayofMonth	2000 non-null	int64
3	DayOfWeek	2000 non-null	int64
4	DepTime	2000 non-null	float64
5	CRSDepTime	2000 non-null	int64
6	ArrTime	2000 non-null	float64
7	CRSArrTime	2000 non-null	int64
8	UniqueCarrier	2000 non-null	object
9	FlightNum	2000 non-null	int64
10	TailNum	2000 non-null	object
11	ActualElapsedTime	2000 non-null	float64
12	CRSElapsedTime	2000 non-null	float64
13	AirTime	2000 non-null	float64
14	ArrDelay	2000 non-null	float64
15	DepDelay	2000 non-null	float64
16	Origin	2000 non-null	object
17	Dest	2000 non-null	object
18	Distance	2000 non-null	int64
19	TaxiIn	2000 non-null	int64
20	TaxiOut	2000 non-null	int64
21	Cancelled	2000 non-null	int64
22	CancellationCode	0 non-null	float64
23	Diverted	2000 non-null	int64
24	CarrierDelay	0 non-null	float64
25	WeatherDelay	0 non-null	float64
26	NASDelay	0 non-null	float64
27	SecurityDelay	0 non-null	float64
28	LateAircraftDelay	0 non-null	float64
29	Delay	2000 non-null	object


```
Feature Preprocessing iii
```

```
def convert_hhmm_m(df, columns_list: list):
     '''This function converts time in hhmm to mm : hh * 60 + mm
     Input: df -> pandas data frame
     columns_list: list of columns to be converted
     for column in columns_list:
         df.loc[:,column] = ((df.loc[:,column]//100)*60 + (df.loc[:,column]%100)).div(60)
.1s
 columns_list = ['CRSDepTime', 'CRSArrTime', 'ArrTime']
 convert_hhmm_m(df= df_sample, columns_list=columns_list)
```



```
from feature_engine.creation import CyclicalFeatures
columns_list1 = ['Month', 'DayofMonth', 'DayOfWeek']
cf = CyclicalFeatures(variables=columns_list+columns_list1, drop_original=True)
time_features = df_sample[columns_list+columns_list1]
df t = cf.fit transform(time features)
                                                                                                                                                                                         Python
df_t.head()
                                                                                                                                                                                         Python
                                                                                                               Month_cos DayofMonth_sin DayofMonth_cos DayOfWeek_sin DayOfWeek_cos
RSDepTime sin CRSDepTime cos CRSArrTime sin CRSArrTime cos ArrTime sin ArrTime cos
                                                                                                 Month_sin
                                                                                                              -1.836970e-
     -0.994628
                       0.103515
                                       -0.740607
                                                         0.671938
                                                                     -0.737277
                                                                                   0.675590
                                                                                             -1.000000e+00
                                                                                                                                  0.998717
                                                                                                                                                   -0.050649
                                                                                                                                                                    0.433884
                                                                                                                                                                                    -0.900969
                                                                                                                      16
                                                                                                              -5.000000e-
     -0.933097
                      -0.359624
                                       -0.987842
                                                         0.155464
                                                                     -0.981627
                                                                                   0.190809
                                                                                              8.660254e-01
                                                                                                                                  0.651372
                                                                                                                                                   -0.758758
                                                                                                                                                                    0.781831
                                                                                                                                                                                     0.623490
                                                                                                                       01
     0.792411
                      -0.609988
                                       0.239968
                                                        -0.970781
                                                                      0.224951
                                                                                  -0.974370
                                                                                              -2.449294e-16
                                                                                                             1.000000e+00
                                                                                                                                  0.299363
                                                                                                                                                   -0.954139
                                                                                                                                                                    0.974928
                                                                                                                                                                                    -0.222521
     0.886352
                      -0.463012
                                       0.535790
                                                        -0.844351
                                                                                                                                 -0.485302
                                                                                                                                                   -0.874347
                                                                                                                                                                   -0.433884
                                                                      0.540974
                                                                                   -0.841039
                                                                                              1.000000e+00
                                                                                                             6.123234e-17
                                                                                                                                                                                    -0.900969
                                                                                                               -5.000000e-
     0.842592
                       -0.538552
                                       0.674360
                                                        -0.738403
                                                                      0.700909
                                                                                   -0.713250
                                                                                              -8.660254e-01
                                                                                                                                 -0.571268
                                                                                                                                                   0.820763
                                                                                                                                                                   -0.781831
                                                                                                                                                                                     0.623490
                                                                                                                       01
```



```
1 import matplotlib.pyplot as plt
✓ 0.1s
    plt.scatter(df_sample['CRSArrTime'], df_t['CRSArrTime_sin'])
     plt.scatter(df_sample['CRSArrTime'], df_t['CRSArrTime_cos'])
     plt.xlabel('CRSArrTime - Schedule Arrtival Time') # string must be enclosed with quotes ' '
    plt.ylabel('sin(x) and cos(x)')
     plt.title('Plot of sin and cos from 00:00 to 23:59 hh:mm')
    plt.legend(['sin(x)', 'cos(x)'])
    plt.show()
✓ 0.3s
```



```
1 df_final = pd.concat([df_sample,df_t],axis=1)
 ✓ 0.0s
   1 df_final = df_final.drop(columns=['Month', 'DayofMonth', 'DayOfWeek', 'CRSDepTime', 'CRSArrTime', 'ArrTime',
                                         'Cancelled', 'FlightNum', 'TailNum', 'CancellationCode', 'Diverted', 'CarrierDelay', 'WeatherDelay', 'NASDelay',
                                       'SecurityDelay', 'LateAircraftDelay'])
 ✓ 0.1s
   1 df final.columns
 ✓ 0.0s
Index(['Year', 'DepTime', 'UniqueCarrier', 'ActualElapsedTime',
       'CRSElapsedTime', 'AirTime', 'ArrDelay', 'DepDelay', 'Origin', 'Dest',
       'Distance', 'TaxiIn', 'TaxiOut', 'Delay', 'CRSDepTime_sin',
       'CRSDepTime_cos', 'CRSArrTime_sin', 'CRSArrTime_cos', 'ArrTime_sin',
       'ArrTime_cos', 'Month_sin', 'Month_cos', 'DayofMonth_sin',
       'DayofMonth_cos', 'DayOfWeek_sin', 'DayOfWeek_cos'],
      dtype='object')
   1 df_final.to_csv('sample_1999+2000_time.csv',index=False)
 ✓ 0.1s
   1 df final.shape
 ✓ 0.0s
(2000, 26)
```


1 df_te ✓ 0.0s	st												Pyth
CRSArrTime	UniqueCarrier	FlightNum	TailNum	ActualElapsedTime	CRSElapsedTime	AirTime	ArrDelay	DepDelay	Origin	Dest	Distance	Taxiln	TaxiOut
2030	US	1541	N275AU	NaN	70	42.0	-14	NaN	ROC	PHL	257	8.0	13.0
944	TW	606	N921L	NaN	76	53.0	13	NaN	STL	TYS	405	4.0	19.0
0	UA	1660	N951UA	NaN	205	182.0	-10	NaN	DEN	PHL	1557	3.0	13.0
940	UA	462	N998UA	NaN	100	74.0	-20	NaN	ORD	CLT	599	2.0	8.0
1312	TW	447	NaN	NaN	127	NaN	-6	NaN	ORF	STL	784	NaN	NaN
1048	US	253	NaN	NaN	63	NaN	-4	NaN	PIT	LEX	289	NaN	NaN
1714	СО	1098	NaN	NaN	139	NaN	16	NaN	IAH	ORD	925	NaN	NaN
1942	DL	922	NaN	NaN	112	NaN	-4	NaN	CVG	LGA	585	NaN	NaN
1605	00	3691	N565SW	NaN	65	52.0	-3	NaN	SUN	SLC	223	4.0	8.0
1710	MQ	4471	N820AE	NaN	130	109.0	5	NaN	ORD	PNS	794	3.0	18.0
1013	NW	1674	N613NW	NaN	163	147.0	9	NaN	AUS	MSP	1042	11.0	20.0
2144	DL	1969	N916DE	NaN	74	40.0	-14	NaN	LGA	DCA	214	4.0	17.0

² df_test['ActualElapsedTime'] = df_test['AirTime'] + df_test['TaxiIn'] + df_test['TaxiOut']

^{1 #} ActualElapsedTime = AirTime + TaxiIn + TaxiOut

ne	ArrTime	CRSArrTime	UniqueCarrier	FlightNum	TailNum	ActualElapsedTime	CRSElapsedTime	AirTime	ArrDelay	DepDelay	Origin	Dest	Distance	Taxiln
20	2016	2030	US	1541	N275AU	63.0	70	42.0	-14	NaN	ROC	PHL	257	8.0
28	957	944	TW	606	N921L	76.0	76	53.0	13	NaN	STL	TYS	405	4.0
0	1330	0	UA UA	1660	N951UA	198.0	205	182.0	-10	NaN	DEN	PHL	1557	3.0
00	920	940	UA	462	N998UA	84.0	100	74.0	-20	NaN	ORD	CLT	599	2.0
05	1306	1312	TW	447	NaN	NaN	127	NaN	-6	NaN	ORF	STL	784	NaN
45	1044	1048	US	253	NaN	NaN	63	NaN	-4	NaN	PIT	LEX	289	NaN
55	1730	1714	СО	1098	NaN	NaN	139	NaN	16	NaN	IAH	ORD	925	NaN
50	1938	1942	DL	922	NaN	NaN	112	NaN	-4	NaN	CVG	LGA	585	NaN
00	1602	1605	00	3691	N565SW	64.0	65	52.0	-3	NaN	SUN	SLC	223	4.0
00	1715	1710	MQ	4471	N820AE	130.0	130	109.0	5	NaN	ORD	PNS	794	3.0
30	1022	1013	NW	1674	N613NW	178.0	163	147.0	9	NaN	AUS	MSP	1042	11.0
30	2130	2144	DL	1969	N916DE	61.0	74	40.0	-14	NaN	LGA	DCA	214	4.0

^{1 #} ArrDelay = ArrTime - CRSArrTime

² df_test.loc[2,'CRSArrTime'] = df_test.loc[2,'ArrTime'] - df_test.loc[2,'ArrDelay']


```
1 # CRSElapsedTime = CRSArrTime - CRSDepTime
   CRSArrTime = 820 # 13*60+40 (13hh:40mm)
   CRSElapsedTime = 205
   diff = CRSArrTime - CRSElapsedTime # 615
   diff = (diff//60)*100 + diff%60
6 df_test.loc[2,'CRSDepTime'] = diff
 0.0s
1 df_test
 0.1s
DepTime CRSDepTime ArrTime CRSArrTime UniqueCarrier FlightNum TailNum ActualElapsedTime CRSElapsedTime AirTime ArrDelay DepDelay
   NaN
                 1920
                         2016
                                      2030
                                                     US
                                                               1541
                                                                     N275AU
                                                                                           63.0
                                                                                                            70
                                                                                                                    42.0
                                                                                                                              -14
                                                                                                                                       NaN
   NaN
                 728
                          957
                                      944
                                                     TW
                                                                606
                                                                       N921L
                                                                                           76.0
                                                                                                            76
                                                                                                                    53.0
                                                                                                                              13
                                                                                                                                       NaN
                                                               1660
                                                                     N951UA
                                                                                          198.0
                 1015
                          1330
                                      1340
                                                     UA
                                                                                                           205
                                                                                                                                       NaN
                                                                                                                              -10
                          920
                                                                     N998UA
   NaN
                 700
                                      940
                                                     UA
                                                                462
                                                                                           84.0
                                                                                                                    74.0
                                                                                                                              -20
                                                                                                                                       NaN
                                                                                                           100
   NaN
                 1205
                         1306
                                      1312
                                                     TW
                                                                447
                                                                        NaN
                                                                                          NaN
                                                                                                           127
                                                                                                                               -6
                                                                                                                                       NaN
                                                                                                                   NaN
   NaN
                 945
                         1044
                                      1048
                                                     US
                                                                253
                                                                        NaN
                                                                                          NaN
                                                                                                                   NaN
                                                                                                                                       NaN
                                                                                                            63
                                                                                                                               -4
   NaN
                 1455
                         1730
                                      1714
                                                               1098
                                                                        NaN
                                                                                          NaN
                                                                                                           139
                                                                                                                                       NaN
                                                                                                                               16
                                                     CO
                                                                                                                   NaN
   NaN
                 1750
                         1938
                                      1942
                                                     DL
                                                               922
                                                                        NaN
                                                                                          NaN
                                                                                                                               -4
                                                                                                           112
                                                                                                                                       NaN
                                                                                                                   NaN
   NaN
                         1602
                                                               3691
                                                                     N565SW
                                                                                           64.0
                                                                                                                                       NaN
                 1500
                                      1605
                                                     00
                                                                                                            65
                                                                                                                    52.0
                                                                                                                               -3
                 1500
                         1715
                                      1710
                                                                     N820AE
   NaN
                                                    MQ
                                                               4471
                                                                                          130.0
                                                                                                           130
                                                                                                                   109.0
                                                                                                                               5
                                                                                                                                       NaN
   NaN
                                      1013
                                                                                          178.0
                 730
                         1022
                                                    NW
                                                               1674
                                                                    N613NW
                                                                                                           163
                                                                                                                   147.0
                                                                                                                                       NaN
                                                                                                                               9
                                                                                           61.0
                                                                                                            74
                 2030
                         2130
                                      2144
                                                     DL
                                                               1969
                                                                     N916DE
                                                                                                                   40.0
                                                                                                                              -14
                                                                                                                                       NaN
```



```
1 df test final = pd.concat([df test,df trans test],axis=1)
     df_test_final = df_test_final.drop(columns=['Month', 'DayofMonth', 'DayOfWeek', 'CRSDepTime', 'CRSArrTime', 'ArrTime',
                                       'Cancelled', 'FlightNum', 'TailNum', 'CancellationCode', 'Diverted', 'CarrierDelay', 'WeatherDelay', 'NASDelay'
                                      'SecurityDelay', 'LateAircraftDelay'])
  1 df test final.shape
 ✓ 0.0s
(12, 26)
  1 df test final.columns
Index(['Year', 'DepTime', 'UniqueCarrier', 'ActualElapsedTime',
      'CRSElapsedTime', 'AirTime', 'ArrDelay', 'DepDelay', 'Origin', 'Dest',
      'Distance', 'TaxiIn', 'TaxiOut', 'Delayed (Y or N)', 'CRSDepTime_sin',
      'CRSDepTime cos', 'CRSArrTime sin', 'CRSArrTime cos', 'ArrTime sin',
      'ArrTime cos', 'Month sin', 'Month cos', 'DayofMonth sin',
      'DayofMonth cos', 'DayOfWeek sin', 'DayOfWeek cos'],
     dtype='object')
  1 df test final.to csv('sample 12 records.csv',index=False)
```

Model – Deep Learning 🛍

Deep learning is a subfield of machine learning that involves the use of artificial neural networks to model and solve complex problems.

Deep learning algorithms are designed multiple levels learn of to representations of data, and they have proven to be highly effective in tasks such as prediction, image recognition, natural language processing, speech recognition, and many others.

Performance Score – Training Set

accuracy: 87.25% +/- 6.28% (micro average: 87.25%)								
	true N	class precision						
pred. Y	799	44	94.78%					
pred. N	160	597	78.86%					
class recall	83.32%	93.14%						

Performance Score – Test Set

accuracy: 91.00%								
	true Y	true N	class precision					
pred. Y	209	5	97.66%					
pred. N	31	155	83.33%					
class recall	87.08%	96.88%						

Row No.	Delayed (Y	prediction(D	confidence(confidence(UniqueCarri	ActualElaps	CRSElapse	AirTime	ArrDelay	Origin	Dest
1	?	N	0.009	0.991	us	63	70	42	-14	ROC	PHL
2	?	Υ	1.000	0.000	TW	76	76	53	13	STL	TYS
3	?	N	0.049	0.951	UA	198	205	182	-10	DEN	PHL
4	?	N	0.009	0.991	UA	84	100	74	-20	ORD	CLT
5	?	Υ	0.997	0.003	TW	?	127	?	-6	ORF	STL
6	?	N	0.434	0.566	US	?	63	?	-4	PIT	LEX
7	?	Υ	1.000	0.000	со	?	139	?	16	IAH	ORD
8	?	Υ	0.997	0.003	DL	?	112	?	-4	CVG	LGA
9	?	N	0.093	0.907	00	64	65	52	-3	SUN	SLC
10	?	Υ	0.997	0.003	MQ	130	130	109	5	ORD	PNS
11	?	Υ	1.000	0.000	NW	178	163	147	9	AUS	MSP
12	?	N	0.013	0.987	DL	61	74	40	-14	LGA	DCA

Total predicted Delay(Y) = 6

Total predicted Delay(N) = 6

Conclusion

- The accuracy from decision tree model was found to be 94.5% while from deep learning model it is 91%.
- In real world, data pre-processing is more important than just getting higher accuracy to predict unseen records.
- When input features are cyclic (i.e. day, month, time, etc), the model can perform intilally well without transforming the features but perform worst during prediction
- In the end we conclude that deep learning model with pre-processing is better than decision tree.

