MA571 Homework 14

Carlos Salinas

December 7, 2015

PROBLEM 14.1 (MUNKRES §74, Ex. 6)

If n > 1, show that the fundamental group of the n-fold torus is not Abelian. [Hint: Let G be a free group on the set $\{\alpha_1, \beta_1, ..., \alpha_n, \beta_n\}$; let F be the free group on the set $\{\gamma, \delta\}$. Consider the homomorphism of G onto F that sends α_1 and β_1 to γ and all other α_i and β_i to δ .]

Proof. Let \mathbf{T}^n denote the *n*-fold torus and let $x_0 \in \mathbf{T}^n$. By Theorem 74.3, the $\pi_1(\mathbf{T}^n, x_0)$ is isomorphic to the quotient of the free group on 2n letters, say $\alpha_1, \beta_1, ..., \alpha_n, \beta_n$, by the least normal subgroup, N, containing $[\alpha_1, \beta_1][\alpha_2, \beta_2] \cdots [\alpha_n, \beta_n]$ where $[\alpha, \beta] = \alpha \beta \alpha^{-1} \beta^{-1}$, i.e., the commutator of α and β .

PROBLEM 14.2 (MUNKRES §76, Ex. 1)

Calculate $H_1(P^2 \# T)$. Assuming that the list of compact surfaces given in Theorem 75.5 is a complete list, to which of these surfaces is $P^2 \# T$ homeomorphic?

Proof.

Problem 14.3 (Munkres $\S76$, Ex. 2)

If K is the Klein bottle, calculate $H_1(K)$ directly.

Proof.

PROBLEM 14.4 (MUNKRES §76, Ex. 3(A,B,C))

Let X be the quotient space obtained from an 8-sided polygonal region P by pasting its edges together according to the labelling scheme $acadbcb^{-1}d$.

- (a) Check that all vertices of P are mapped to the same point of the quotient space X by the pasting map.
- (b) Calculate $H_1(X)$.
- (c) Assuming X is homeomorphic to one of the surfaces given in Theorem 75.5 (which it is), which surface is it?

Proof.

CARLOS SALINAS PROBLEM 14.5(A)

PROBLEM 14.5 (A)

Define P^n to be the space S^n/\sim where $z\sim z'$ if and only if z=z' or z=-z'. Use the Seifert–van Kampen Theorem to calculate $\pi_1(P^n)$. (Hint: induction starting from the case n=2 that was done in class.)

Proof.

CARLOS SALINAS PROBLEM 14.6(B)

PROBLEM 14.6 (B)

A topological space X is called *homogeneous* if for every pair of points $x,y \in X$ there is a homeomorphism $\varphi \colon X \to X$ with $\varphi(x) = y$. Prove that every connected 2-manifold is homogeneous. (Hint: use the optional problem from the previous assignment.)

Proof.

PROBLEM 14.7 (OPTIONAL PROBLEM)

(i) Let $x \subset \mathbf{R}^3$ be the cylinder

$$\left\{ (x, y, z) \mid x^2 + y^2 = \frac{1}{\sqrt{2}} \text{ and } |z| \le \frac{1}{\sqrt{2}} \right\}$$

and let $f: X \to \mathbf{R}^3$ be the map

$$f(x, y, z) = (2^{1/4}x\sqrt{1 - z^2}, 2^{1/4}, y\sqrt{1 - z^2}, z).$$

Prove that f is a homeomorphism from X to the subspace

$$Y = S^2 \cap \left\{ (x, y, z) \mid |z| \le \frac{1}{\sqrt{2}} \right\}.$$

(ii) Prove that the Möbius band is homeomorphic to P^2 with an open disk removed (think of P^2 as S^2/\sim and use part (i)).

Proof.