```
16)= 16 n + n log3
                                           term seminarian
                                                 Francisco - Car
     T(n) = O(n)
 → Module-3
      (Greedy nethod) Dynamic programming method.
                                             the many les a letter
 -> Goverdy Method:
    peroblem P -> no. of inputs
                                                     possible solution of feasible solution.
               Select some inputs -> solution 1
fromset of i/p " -> solution
                                      -> solution J
 · Identify Best solution from feasible solution
                                         max profil-of
  To find it use a (objective function).
                                          min cost
  Example:
     Customer went to shop
      purchased for 48/-
      he have 1001- gives to shop keeper
                              the have to return the 52/- to customer
To get the shop keeper user.
2000, 500, 200, 100, 50, 20, 10, 5, 2, 1 (cuovary notes)
                              { feasible solution :
Delution 1 → <50,2>
11 (2 → <50,1,1)
      11 3-7 (20, 20, 10, 27
        is best amoung feasible solution.

(50,2) -> optimal. by objective function (notes)
Which is best amoung feasible solution.
- Applications:
1.) Fractional Knapsack problem
2) Minimum cost spanning tre problem.
```

a surce shortest path problem
3. Single sowice shoulest path problem 3. Single sowice shoulest path problem 4. Job sequencing with Dead Lines problem 5. Sking Matching problem. 5. Sking Matching problem.
4. Job sequenting
sking Matching Production
knahsack problem:
- Freactional Knapsack problem: - Jungar
and Land 16
ith capacity
Bag with capacity given by m No. of items = n
Hems into big of any order (at a time only one item should be
Hems into by
Them weight = Wi Stem into bought of long decreased by weight of items Inthe verify is it possible to m: 30-15=15
Item decreased a capacity of them.
profit : Pi
Firstly verify is it possible to m= 30-15=15
place full item can be into the bag wie about of items placed into
alit is full and meights of idems placed at
so that profit is full sun of weights of items placed into else some part; part of profit () sun of weights of items placed into bag should n't exceed bag capacity.
(5) placing were
si = 0/1/12/1/3 @ placing items is buy but of item is placed get max profit (objective) for the following knapsace problem 2x:- Find the optimal solution for the following knapsace problem 6ways to
Low much part of item is place
in bag:
in solution for the following
Ex: Find the optime "
capacity of bog =>m=20 sways to
in of items n=3
No get of items (w, w2, w) = (18,113,110)
corporate of borg =>m=20 corporate of borg =>m=20 No. of items m=3 weights of items (w, w, w) = (18,15,10) profits of items (P,)P2,P3) = (25,20,15) profits of items (P,)P2,P3) = (25,20,15) solution => coeights with len weight considered (15).
proposition considered their
Solution - coeights with less well considered Ist. profit with high profit considered Ist.
and the with high profit cores
property of the state of the state of the state of the
1) - it prolit of atems: 25/18,20/15)
profit with high profit constated 1) per unit profit of atems: 25/18,20/15, 15/10 1:38; 1:35; 1.5
(as per/per unit profit)
2.) Identify order for placing itoms: 3,1,2 (as per/per unit profit)

```
W= W3 x x 3 = 10 # 1 = 10
                                     m' my julianing place
   P=> P2 + 35 = 1541:15
    m= 20-10= 10 -> remaining bag
                     capacity.
       10 = 18 -> 10/18 (cu/ +20) = 184 10 = 10 =
                                     P1 * 73)= 25 * 10
       10 218 -> Notpossible
       .: Out 18 canplace 10 units.
   m=10-10
                      : 2000" W= 154020
                          az - carif be place
                     on to me D Afford the the total services.
 Total
 Profits = 15+13.88
   Optimal solution = (x1, x2, x5) = (10) 18, 0, 1) = 28.88.
                              of orderless longing out hill on
Es: Copacity of bag m=10
                                      ice bug to legionis
      no of itemsn=7
       weights of atoms = ( co, w2 w3 w4 w5 w6 w3)
                                          101 - 10 - 10 Kg
                   (1, u, 3, 2, 3, 6, 7)
       Profits of item: (P, P2 P3 P4 P5 P6 P7)
                  (71867534)
1 per unit profit of item= 7, 18, 5, 7, 5, 5, 6, 4
                    = (7) 4.5, 2, 3.5, 1.64 0.5, 0.57)
(2) Identity order for placing = (1, 2, 4, 3, 5, 7,6)
                 w= w*x) = [41=1]
```

P= P1xx1 = 7x1=7

m=10-1 = 9 m: 3-3=0 25 = 0, W=0, P=0 m. 9 x = # 7770, W20, P20 W= 4 4 - 16 4 P= 18 x 9 = 70 18 26 = 0, W:0, P=0 .: Total profit = 7+18+7+6 m= 9-4 = 5 m. 5 < x1, x2, x3, x4, x5, x6, x7> (=) (=, 18, 8, 7, 0, 0, 0) = profit x1=1 w= 2*1 = 2 p= 2*1=7 > < 1,1,1,1,0,0,0> 1735 - 2 = 3 w-341=3 m=3 21=1 P= 6+126 -> Algorithm of Knapsack problem:-Ex: Find the optimal solution for following knapsack problem. m=12 m=4 (W1, W2, W3, W4) = (4,7,5,7) (P,, P2, P3, P4) = (8, 7, 7,6) = (鬼,1,1.4,0.8) 2. Identify order for placing = (1, 3, 2, 4). m= 12 11/1/7. 1. P= P. + X1 Tr: 1 8 * 1=8 w = x, xw, = 1 × 4 = 4 m= 8-5=3 m= 12-4= 8 w= 7/×3 =3 12= 3/7 ·m=8 w=5x1=5 P= P3 * 33 P=P2 xx2 = 7x1=7 = 7 x 3 = 3

```
moo
  x4=0, p20
  Total profit = 7+8+3 = 18
 optimal solution = (x1 x3 x2 x4) = (x1, x2, x1, x4)
                                         (1,3/7)1,04
              = (1, 1, 3/7,0)
-> Algorithm:
  Algorithm Knapsack (m,n, w, P, 2 profit) {
 I'm' is capacity of bag
11'w' is an away contoining weights of items.
"p' is an away containing profits of items size of p' is 'n'.
1/2" is an array of size n' used to store optimal solution.
Il 'profit' is used to store maximum profit
       profit = 0;
       -for (inti=1; 12 = m; 1++){
                                           3 - 29 0 0 0 0
             PPSi] = PSi] wsi];
       tor (i=1; i = n-1; i++){...
                                       rital to when White
             for (j=i+1;j/=n)j++){
                   if (PP[i] < PP[j]) {
                        swap(pp[i], rpli]);
                          Swap (will, will);
                          Swap (Pli], PLj]);
       for (i=1; iL=n; i++)}
             if (w[i] >m) }
```

```
elx ?
         x{i]:1;
         m=m- willa k(i);
         profit = profit + r[i] + x[i];
    ali] = m/w[i]; (or) alk] = m/w[k];
    profit = profit + p[i] + x[i];
  Je tor [i=1; i = n; i++)
             nuite x Eil;
         write profit;
-> Minimum (est spanning Tree (MEST)
                                       Torees: doesn't form cycles
 Graph: - forms cycles -
                                         greeph.
                             .0
  remove eyeles.
                                      C, spanning Tirec:
                              obtained by converting graph to
                                  with removing edg
  · 🔊
                       ➂
                           cost = 90
```

as minimum cost is 60 it is minimum spaining Tiree.

single not with previous value.

```
a) lest [5, near[5]] = 40
  lest 12 near [4] = 30 -> minimum.
  (est [5] rear [5]] = 0
i) add edge (1.9) to MCST
    mear [u] = 0
    min cost = 10-130 = 40
                                Pit to March 1
c) mear [3] = 4
                     April on the war houselfor of
 a) Lost [3, near [3]] = 20 - 7 minimum

a) Lost [3 mear [5]) 50
   wst [5, near [5]) 50
b) add edge (3,4) to mest
      near[3]=0
       min cost: 10+30+20=60 ( )
c) near (5) = 4
Heration 4: -
a) rost [s, mear [s]) = so -> minimum
b) add edge (6, 4) bo MCST
        near [5] =0
         min Lost= 10+30+20+50=110/
               Francis [ Blog count ] from 1
```



```
f [2, D= 31)
     f[x,2]=C;
     min cost = min cost + cost [r, 0],
      near[n]=0;
   forli=1; 1 = n; (++)}
        if (near [i] +0), }
           If (cost[i, new[i]] > cost[i, si]) {
                    nearlije 91;
i) construct Minhean with weights of edges in given graph.
2.) Construct Disjoint sets with nodes of given graph.
3.) Repeat until His hear haver becomes empty.
     a) Delete soot mode from Micheap & neconstruct the Kinheap.
      b.) Identify the coversponding edge.
      c) If the modes of edge are in different idisjoint sets, then
      include the edge in MCST & continue the lovusponding
     disjoint sets otherwise, discound the edge.
                            [ root & child]
1) 10,30, 20, 40,50,60
```


Dykstois Algorithm:

+ We get (n+1) iterations, where 'n' is no of noder.

* Node selected is initially source node.

* dist [i] of distance of each node from selected node.

* Pi[i] => All nodes except source made are set to source made in

of source made is set to Zero.

+ initially all set[]= 0 =) no nede is included in the set.

+ dist[1] = (werent shortest distance ble source mode & destination note Pr[i] =) the via node thorough which we get that shortest distance

Dijkstra's algorithm:

11=5, n+1=6 nows.

	4					11-5	, m+1	- 6			-			2 63	1		_
(Atera- tions	, e C.		et[i] 3		5	Node Selected (u)	1		list [13	i) H	5	l	Pr [i.	J [3	14	5
	Shitial	0	0	0	0	0	1	∞ i	30	00	70	(00)	Q.	1		1	1
	1	١	O	0	0	O	2	00	30	70	50	∞	b	3	2	2	ti
	₹ :	1.	i.	0	. O	ó	4	∞	30	70	50	90	ס	1	2	2	4
	3	1	ı	O	ı	0	3.	8	30	70	50	90	O	1,	2	2.	4
	4	1	Ţ,	τ -	1	σ	15	∞	30	70	50	90	0	<u> </u>	2	2	4
: *	5	1	1	Î	18	1 :	•)	<i>∞</i>	30	70-	50	90	0	2 10C	2	2	4

```
shortest paths
                              To modey
                                          To nodes
               To modes
 To node 2
                                            pr[5]=4
                 PT[5]=2
                               Pr[4]=2
                                            P. [4] = 2
  pr[2] = 1
                pr[2] = 1
                               Pr [2] = 1
                                             Pr [2] 21
                 1->2->3
                                               5(-4 <- 24-1
                                 41-21-1
    130
                                      (CIENTENIA
                  36 at 1
    21-1
Algorithm:
 Algorithm Dijkstras (n, cost, s) {
 I'n' is no of nodes in the given graph.
"cost' is adjacency matrix of given graph.
11'5' is source node in the given graph.
     for (i=1; i <= n; 1++) {
                              ellpus till logarites got
          set[i] = 0;
           dist [i] = cost [s,i];
                           Summer of John an interior
           Pa[i] = 5;
      ] siel = mit to the let de not france of time of time of
                     head it le - (16) - willhook
  for (a=1; 2 <= n; x++){
       set [u]=1;hand billymes and in it
    if (set [i] == 0) {
                  if (duli) { min) { ib ib ib ib ib
                        min = dist (i);
 for(1=1;1 <= n; 1+t) }
          if (set[i] == 0) }
           +if (dist[i] > dist[u] + cost[u, i]) {
                      dist[i] = dist[u] + lost [u,i];
            j. Ele Pilit = U;
```

```
for (i=1; i <= n; i++) {
       if(s = i) }
           write K;
          while ( K 7 5) {
             K= PY[K];
             write ("\-", K);
}* }
-> Job Sequencing With Deadlines problem:-
                                   - finding max profit
         4 n no. of Jobs are executed by I machine
     m-Jobs
     Execution time of each Job is land of time = 1 sec.
     1- machine
    Job deadline - (di) - It Issúe deadline 0 , should be
           if jobis completed before deadline
           then the coverponding profit is achieved.
Ex: N=H
             (d1, d2, ds, d4) = (2, 1, 2, 1)
             (P1, P2, P3, Ry) = (100, 10, 15, 27) as max is 2
                                  100+10=110 0 1 2
-feasible
               Job sequence
Solutions
                  2,1
31,2]
                                 15+100=115
                  1,360,3,1
{1,3}
               100+27=127 | 4 1 2
31,4]
2,37
                                10+15=25 1-2-1
                  2,3
```

15+27=42 {3,4} 4,3 {2,4} -> Not yeasible 124 > {1,4} - optimal solution. finding man profit ča! m=5 (Pi, Po, Po, Pu, Ps) = (15, 1, 20, 10, 5) (d1,d2,d3,d4,d5)=(2,3,2,1,3) 1.) Sort the jobs in decreasing order of profit (P1, P2, P3, P4, Pr)= (20,15, 10,5,1) (d1,d2,d3,d4,d5) = (2,2,1,3,3) 2) Identify maximum deadline -max d-3 3) Initialize the state as empty. slot[1]zo 10 10 10 1 Slot [2] 20 Slot [2] 20 slot[s] =0 H) Repeat the following for each Fobilities. a) Identify the slot for the Job dry vocifying the slots from the slot indicated by the deadline of the Job until the b) If a slot is identified for the Job, the supdate the profit Porofit = 20 + 15 = 35 D 1 2 -13 profit = 35+5 = 40 Is is I can't be placed skip it ... man profit=40 Is is 3 carit be placed skip it optimal solution - {1,2,4} - 40

```
-> Algorithm:-
 Algorithm JSWD (n, P, d) {
 11'n' is no of Jobs
11 p'is profit 'P[1...n]' is an away containing forefits of items.
//d[1.n] is an away containing deadlines of Jobs.
         mard = 0; profit = 0;
        -for (i=1; i<=n-1; i++)[
             for (j= i+1; j <= n; j++) {
                    } ([j]qx[i]q) ti
                       swap(P[i], P[j]);
                       Swap (dsi), dsi);
        for (i=1; ic=n; i++) & [ ]
              it (d[i] > maxd) {
              max d = d[i];
       for (1=1; ik=max d; i++){
             slot [i] = 0
       for (i=1; i <= n; i++) {
         tor(j=d[i];j>=1;j--){
                if (slot[j] = = 0) {
                     slot [j]=i;
                      profit = profit + p[i];
                      break;
       for (i=1; i <= max d; i+1) {
          write Slot Li];
       write propit;
```



```
-> ordered sets -> ordered pails -> (P, w).
                                          U Identify the
   Contains
                                            optimal solution
     one(or) more
  ordered pairs)
Ex: Find optimal solution for the of knapsack
                      following by
    n: 4 m= 25
  (P1, P2, P3, P4) = (2, 5, 8,1)
  (w,, w,, w,, wu) = (10, 15, 6,9)
                     Sum= 40 indicates that can't place
                     all 4 items only some are placed
                                  add previous 2 30<2
 1 construct ordered pairs
                                            ( 0 > 10 X
                                  {6,0,(2,10)}
  3° = } (6,0)}
                                                  for ordered
 position of bag before
                                  on this weApply set obtained
inscriting items into bag
                                   pominance sules from before
         >50+ (P1,wi)
S_1^0 = \{(2, 10)\}
                                 400225V 10225V-
litem
                            Sof ((0,0), (2)x0)}
placing
                                  0625 / 30625 X remove
on defauter
                                          that pain Invi
Dominance suites
                         then remove that pair
                w>m
1) (P,W)
2) (Pi, wi) (Pj, wj) & Auer then remove first pair
         wirwj (den weight more profit)
   Pi LPi
      5'+ (P2, W2) 5'+ (P2, W2)
Si = } (5,15) , (7,25)
52 = 51 US1
      {(0,0),(2,10), (5,15),(7,25)} -> apply dominance
                               @ 022 0710, 215 10315, 567, 15 x25
    DOLLE 10022 15022 SLEEL
```

```
5,2= {(8,6), (10,16), (13,21), (15, 31)}
 50 = 52057 1
     = { (0,0), (2,10), (5,15), (7,25), (8,6), (10,16),
                                  (13,21), (15,21)}
53= { (0,07,(2,107,15,15), (3,67), (8,67)
                                          , wym
                                                 31795
                2576 remove (7,25)
 5^{3} = \{(0,0), (2,10), (\frac{5}{5}), (\frac{8}{5}), (\frac{8}{5}), (\frac{10}{16}), (\frac{13}{2}, \frac{1}{2})\}
      Check again valominance rule until it is not
  3= [(0,0), (2,)6), (8,6), (10,16), (13,21)]
  53= {.(0,0), (8,6), (10,16), (13,21)}
  313 = {(1,9), (9,15), (19,25), (14,30)}
 54= {(0,0), (8,6), (10,16), (13,21), (1,9), (9,15), (11,25) (1)
54= 52U5,3
[st = {(0,0), (8,6), (10,16), (13/1), (1,9), (9,15); (11,25)]
54= {(0,0), (8,6), (10), (1,9), (9,15), (11,25)}
54= { (0,0), (8,6), (1,9), (9,15), (11,25)}
 S4= {(0,0),(8,6),(10,16),(13,21),(1,9),(9,15),(11,25)}
5= {(0,0)}
5, = 5 (0,0), (2,10)]
5,2= {(0,0)(2,10),(5,15),(7,25)}
                                   5,3
5 2 {(0,0), (8,6), (10,16), (13,21)}
54 = $ (0,0), (8,6), (10,16), (13,21),
                      (1,9),(9,1,(11,25)}
```

@ Selecting Josm Last SM highest profit. i.e from sky 54= g (0,0), (8,6), (10,16), (13,21), (1,9), (4,15), (11,25)} If right side then. In 53 deft side ordered set ie item is added to bag i.e item is not added into the Bag 24 = 0, check in (33), s,3 (13,21) check in 5°, 8,3 32 5,2 7 53 534 [213=1] when 'I' then remove the profit & wt from (13,21)-(8,6)=(5,15) thatpair before after adding adding sets (5,15) check in Si, (Si) (1) (6) (1) . (2) sets. 22 = 1 (5,15) - (5,15) = (0,0) check in (3), si 2 Per [(100) (100) (110) (110) (110) (110) (0,0) 21=0 optimal Solution (2, 22 x3 x4) out of 4 doaded (1, 1, 0) ... w = 15 + 6 = 3 (13, 21) (13, 21)2 ilems [(21.11).(21.6).(p.11.70.5) (21.01).(2.0).(21.01).

-> Matrix chain Mulipleation: $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$ No of multiplication = No of sous in 1st matrix X required to multiply no. of columns in 1st matrix x no. of columns in 2nd matrix two matrices A 3×4 B4×2 3x4x2 1-171 3 11 - Multiply more than 2 matrices. 13x2 82x4 Cux3 A3x2 Bx4 4x3 3x4 1)(AB) (AB) (CO)) 4) A(B(CO)) 3×4 4×3. 2)(AB)(CO)) 5) (AB)(C)D 2-1 P(x) P(n-K) KEI TO por P.COZ ! I (illustre of sohis lande bust co ways to mode teasible solution mabelles - A3x2 B2x4 Cux3 -> 4/P 1) (AB) C = 3×2×4+3×4×3 = 24+36 = 60 / operations required 2)A(BC) = 2×4×3+ 3×2×3 = 24+18 = 42 optimal solution. and is best as Les operations are vieguired

- 07

2 3 4 B_{2×4} C_{4y3} D_{3x5} M[i,j]Sige -> doxd1 d1xd2 d2xd3 d3xd4 no.or. multiply ABCD divide into operations required. to multiply AB CD with min one matrix M[i,j] = min [M[i, K] di-1x ok dka xdj doxd2 doxd4. K= 2 + M[K+1,j] i=1, j=4 25 go xgz xgd filling of paringue m[i,j]={M[i, k] + M[k+1, j] + di-1 dk dj} M[i,i] = min [M[i,K] + M[K+1,j] + di-1dkdj] i=1 j=4 K= i boj-1 (4-m)9 (11) 18 Ex) Find optimal order for multiply following matrix. A 5x6 B6x4 C4x2 D2x3 ASIL FORTH (10x) -7 3/P dox di dixdi dixdi dixdu 1. AP. E : 382 244 +32418 = 344-36: P. Of Man one

2)1)= 51 + 10 = 242 x 3 + 5 x 2 x 3 = 24 + 10 = (11) and the second of

M Table nx m = noi of multico K Table	
1 2 1 -C. 1 178 Pares	
1 0 120 100 (1) 12,0-3,3-4 2 X 0 2 A	
2 × 0 24 9 1-4 2 × 0 3	
3 X X X O MILLON Y X X X O	
H () (ations	
upper trangle values are 138 =) perations.	
upper triangle values one 138 =) perations. calculated. calculated.	
Cacce 1 - MS 2, 2] + 5 × 6 × 4] = min [0+0+120]	
ealculated calculated $M[1, 2] = min\{M[1, 1] + M[2, 2] + 5 \times 6 \times 4\} = min\{0 + 0 + 120\}$ $M[1, 2] = min\{M[1, 1] + M[2, 2] + 5 \times 6 \times 4\} = 120$	
50+0+487	
K= 1	
$K = 1$ $M[2,3] = min \{ M[2,2] + M[3,3] + 6 \times 4 \times 2 \} = min \{ 0 + 0 + 48 \}$ $M[2,3] = min \{ M[2,2] + M[3,3] + 6 \times 4 \times 2 \} = 48$	
K= 2	
M[3,4] = min {M[3,3] + M[4,4] + 4, x2x3]	
1 5 x 6 x 2 5	
$M[1,3] = min\{M[1,1]^{\frac{1}{2}}, M[3,3] + 5 \times 4 \times 2\}$ $K=\{1,2\} + M[3,3] + 5 \times 4 \times 2\}$	
1 too N-472 M[1,2] 4	
2160+0+40}	
$= \min \left\{ 0 + 48 + 60, 120 + 6 + 40 \right\}$	
$= \min \left\{ 108, 160 \right\} = 108$ $= \min \left\{ 108, 160 \right\} = 108$ $M[2,4] = \min \left\{ M[2,2] + M[3,4] + 6 \times 4 \times 3, M[2,2] + M[4,4] + \frac{1}{2} \times \frac{1}{2} \times$	
C C - 7 + H [3,4] + 6 x 4 x 3, M [2,5] + 6 x 4 x 3 ?	
$M[2, 4] = \min \{ M[212] \}$	
= min { 0+24+72, 48+0+36}	
ما کا	
+ 5×4×3,	
$H[1,4] = min \{ H[1,1] + H[1,1] + 5 \times 4 \times 3 \}$	
κ=1,2,3 μ[1,5] + Η[4,4] +5×2×3]	
- 10 in8 + 0 + 20 l	
= min {0+84+90,720+24+60+ 108+0+30}	
= min { 174, 204, 138} = 138	

Je row o'

fake c & r as o'

fake c & r as o'

in row o'

weight values are

'q' values.

from row'.'

use formulas.

$$w(0,1) = P(1) + Q(1) + w(0,0)$$

$$= 3 + 3 + 2 = 8$$

$$= 6,1) = \min_{x \in \mathbb{Z}} \{c(0,0) + c(1,1)\} + w(0,1)$$

$$= \{0 + 0\} + 8$$

$$x = 1$$

$$cost = 32$$

Constitution of

21	1017		. 2	3
0	000=2 C0020 700=0	w11=3. C(1=0.		035=1 C35=0 735=0
Ţ	wo1 = 8 co1 = 8 Yo1 = 1	W11 = 7 C12 = 7 T12 = 2	$60_{13} = 3$ $61_3 = 3$ $62_3 = 3$	
2	WOZ=12 coz=19	W13=9 C13=12 T13=2		
3	WOS= 14		Trag V	

-> combination of

```
w(0,1) = r(1)+q(1)+w(0,0)
                                    w(1,j) = r(j)+q(1)
c(0,1)= minfe(0,0)+c(1,1)}+w(0,1)
                                         + w (1, j-1)
                                    c(lij) = min {c(i, K-1) +
                                       ((Kij))+(0(1))
           0+0+8=4
                         the day of
                                      K=1+1 601
w(1,2)= r(2)+9(2)+w(1,1)
                                    oly (1,j) - Knowing of
c(1,2)= min { c(1,1) + c(2,2)}+ w(1,2)
K= 2 to 2 = 0+0+7 = 7
w(2,3)= P(3)+9(3)+w(2,2)
c(2,3) = \min \{c(2,2) + c(3,3)\} + \omega(2,3)
             0+0+3 = 3
K= 363
w(0,2)= P(2)+9(2)+ w(0,1)
        = 3+1+8 = 127
 c(0,2)= mis {c(0,0)+c(1,2)}+w(0,2);
              ¿(0,1)+ c(2,2))+ w(0,2)
K= 1 to 2
          =min p + 7 + 12, 8+10+12}
                (19), 12011 to low 1 - 1 - 2 - 2 - 1 (1
\omega(1,3) = P(3) + Q(5) + \omega(1,2) = 1 + 1 + 7 = 9
((1,3)= min {c(1,1) + c(2,2), c(1,2) +c(3,3)]+ w(1,3)
         = min {0+3, 7+0}+9= min {3,73+9=3+9=12:
 w(0,5)2 P(3)+9(3)+w(0,2)=1+1+12=14
                                        March 12 miles
 C(0,5) = K=1,2,3 = 25
```

OBST:

The cost value in the entry of last row indicates the least cost i.e cos = 25

In given example do, if;

ros= @ second kiy word will be the scoot

=(c,0) 0

-> Triavelling Salesman Problem:

$\bigcirc \leftarrow \longrightarrow \bigcirc \bigcirc$					
11 11	(100	10	2	3	14
		0	10	15	200
	2	5	10	9.	10-3
(4) 	3	6	13	0.	12-
	(c.4)	8	8	9	0

Salesman has to start's promone node of visit every node and again to starting node.

1) $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$ cost = 10 + 9 + 12 + 8 = 39Rule:has to visit all nodes but only once

```
q(i, s) = min (cij + q(j, s- {i])
                     JES
       which Dod as
       151 = 0

1 = 2 to 4 ) As planting thom, without ing any moder relating.
Step 1:
       9(2, $) = min {C21} = min {5} =5
       1(3, 0) = min { (3, 3 = min {6} = 6
       9 (3, Ø) = min { C41} = min {8} = 8
   151=1
1=2 to 4 node 2 to 3 greaching rode?
                                      ng roun to rode !
step2:-
   9(2, {3})= min {(2,3+9(3,$))= min {9+6}=min{15}=15
  g(2, [4]) = min / C24+ g(4, 0)] = min {10+8] = min {18] = 18
  9(3, {2}) = min{(32+9(2,4)}= min {13+5}= min {18}= 18
   g(3, 243) = min { (34+9 [4,0] = min } 12+8 ]= min {20} = 20
  g(4, {2}) = min { (42+9(2, 0)) = min {8+5} = min {13} = 13
  q(4, [3]) = min { cy3+ q(3, $)} = min { 9+6} = min {15} = 15
 Step3:-
  151=2
 9(2, {6,43) = min {(23+9(3,[4]), (24+9(4, {3}))}
              = min {9+20, 10+15} = min {29, 25} = 25
g(3,[2,4]) = min { c32+ g (2, {4}), (34+ g(4{2}))}= 1
           = min { 13+18, 12+13} = min { 31, 25 } = 25
g(4, {2,5]) = min { c42+9(2,[3]), c43+g(3, {2})].
            = mis {8+15, 9+18} = mis {23, 27] = 23
```

```
Step4:
      151=3
   9 (1, [2,3,4]) = min { (12+9 (2, {3,4}), (13+9 (3, {2,4})),
                Ciu+q(4, {2,33)}
                  = min {10+25, 15+25, 20+23}
                  = min {35,40,43} = 35
    exptimal cost = 35
    The optimal tour = 1 -> 2 -> 4 -> 3 -> )
-> Longest Common Subsequence (LCS) problem:-
  A subsequence of a string S is a string which is obtained by
  enemoving Jero of more characters from the strings, without changing the relative order of remaining Character in Strings.
   Sking SI = "abe"
    Subsequence = "ab", "a", "b", " ". (4 subsequences)
  String Sz = "abc".
  subsequence = "abc"; bc', ac", ab', 'c', b", "a", " "
            (8 Subsequences)
                                           m -> 2" subsequences
                                           3-> 23 -8-
 1 cs problem:-
 Given 2 strings S1 & S2, we have to find the longest common
 subsequence b) w S1 & S2
          S1 = ab"
          S2 = " abc"
                                       Profit Line Contract
```

Common subsequences blu Si 452 are: "ab", "a", "b", " //
longest " is "ab"

in Military and American

· The next node having label or not should be checked. · Consider backward edger. · Checking sink node is labeled or not.

9:143256

node show backward edge.

A is not having label.

to taket for backward edge.

consider flow value > 0

2>0= 9

min {1,2}

135

8:14 The Queue is empty.

Stop the process

for backward cage
Subtract
the flow value.

Maximum flow = 1+2=3

consider all incoming edges to the sink node add those sink flow values to get maximum flow.

- Maximum Mothing in Bipartite Graph:

Bipartite Graphs: It is a graph in which modes are partitioned unto & desired sety.

disjoint

(no common node)

V= {1,2,3,4} U= {5,6,7,8} lonsides any edge
the edges will be
connected mode
in 2 sets
No edge blue same
set of modes
Then bipartite Graph.

MI: {(1,7), (2,6), (5,8), (4,9), (5, 10)} HL= { (1,7), (2,6), (3,8), (4,10), (5,9)}

-> By iterative improvement method:

Augmenting path for a matching M

find augmenting path of M:

end with Start from que node node in V

V= {1,2,3,4}

U={5,6,7,8}

M: [(2,5)] Augmenting path of M: 3,5,2, 7

M= {(1,6),(2,5)}

Augmenting path of M: 3, 5, 2, 7 the state of the

M= {(1,6)} ...

Augmenting path of H:

formar for

Maria.

3,6,1,5

```
Augmenting a matching with an augmenting pats:
   M= {(1,5)}
    Augmenting path of M: (2,5,1,6)
           edges in even no. q 000 odd
                 edges in odd no. add the odd no. edge
   M: { ()(5), (2,5), (1,6)} elelete the even no. edge
     M= {(2,5), (1,6)}
 M= {(2,6)}
 Augmenting path of M: (1, 6, 2, 5)
    M= { (3/6), (1,6), (2,5)}
      M={(1,6),(2,5)}
start with empty matching.
             Augmenting path: 1,5
 H= }
               odd position so add
 M= ((1,5))
              Augmenting path: 2, 5, 1,6
  M= {()(6), (2,5), (1,6)}
    M= {(2,5), (1,6)} Augmenting path: 3,5;2,77
  {(3,5),(1,6),(3,5),(2,7)}
   H= { (1,6), (3,5), (2,7)} Augmenting path: 4628
                                            Not not is
Valid match X
        maximum
                  bipartite
```