Finite model property for residuated semigroups and related remarks

Daniel Rogozin

1 Finite networks for atomic formulas

Let $PV = \{p_i \mid i < \omega\}$ be the set of propositional variables (or atomic types). The set of formulas is generated by the following grammar:

$$\varphi, \psi ::= p \mid (\varphi \bullet \psi) \mid (\varphi \backslash \psi) \mid (\varphi / \psi)$$

The Lambek calculus is defined as a Gentzen-style sequent calculus:

1.1 Completeness

Theorem 1. Let RS be the class of all residuated semigroups, then $\Gamma \to \varphi$ iff $RS \models \Gamma \to \varphi$

2 Representability networks for at most countable residuated semigroups

2.1 Relational residuated semigroups as Kripke models

One can introduce Kripke-style relational semantics for the Lambek calculus as follows. Let W be a non-empty set and R a transitive relation on W. We consider models of the kind $M = (R, \vartheta)$, where $\vartheta : PV \to 2^R$. The truth definition is inductive:

- $\mathcal{M}, (x,y) \models p_i \text{ iff } (x,y) \in \vartheta(p_i),$
- $\mathcal{M}, (x, y) \models \varphi \bullet \psi$ iff there exists $z \in W$ such that $(x, z), (z, y) \in R$ and $\mathcal{M}, (x, z) \models \varphi$ and $\mathcal{M}, (z, y) \models \varphi$

- $\mathcal{M}, (x, y) \models \varphi \setminus \psi$ iff for all $z \in W$ such that if $(z, x) \in R$ and $\mathcal{M}, (z, x) \models \varphi$, then $\mathcal{M}, (z, y) \models \psi$
- $\mathcal{M}, (x,y) \models \varphi/\psi$ iff for all $z \in W$ such that if $(y,z) \in R$ and $\mathcal{M}, (y,z) \models \psi$, then $\mathcal{M}, (x,z) \models \varphi$
- $\mathcal{M}, (x,y) \models \varphi_1, \varphi_2, \dots, \varphi_n \to \varphi \text{ iff } \mathcal{M}, (x,y) \models \varphi_1 \bullet \varphi_2 \bullet \dots \bullet \varphi_n \text{ implies } \mathcal{M}, (x,y) \models \varphi.$

According to the definition above, to refute a sequent $\varphi_1, \varphi_2, \dots, \varphi_n \to \varphi$, we have to find a transitive binary relation R, some valuation $\vartheta : PV \to 2^R$ and $(x, y) \in R$ such that $\mathcal{M}, (x, y) \models \varphi_1 \bullet \varphi_2 \bullet \cdots \bullet \varphi_n$, but $\mathcal{M}, (x, y) \not\models \varphi$. Alternatively, one can reformulate that condition as

$$(x,y) \in ||\varphi_1||; ||\varphi_2||; \dots; ||\varphi_n||, \text{ but } (x,y) \notin ||(x,y)||$$

2.2 Relational representation of residuated semigroups: a game-theoretic approach

Let \mathcal{A} be a residuated semigroup, an \mathcal{A} -prenetwork is a triple $\mathcal{N} = (V, E, l)$, where where (V, E) is a directed graph and $l: E \to \mathcal{A}$ is a labelling function. A prenetwork is a network if the following conditions hold:

- E has no loops and it is transitive,
- $l(x,z) \le l(x,y); l(y,z)$, whenever $(x,y), (y,z) \in E$, for all $x,y,z \in V$,
- For all $a \in \mathcal{A}$, for all $x \in U$, there is some $u \in U$ such that l(u, x) = a,
- For all $a \in \mathcal{A}$, for all $y \in U$, there is some $v \in U$ such that l(y, v) = a,
- For all $a, b, c \in \mathcal{A}$, for all $x, y \in U$, if $c \leq a; b, (x, y) \in E$ and l(x, y) = c, then there exists $z \in U$ such that l(x, y) = a and l(y, z) = b.

Let $n \leq \omega$, define a game $\mathcal{G}(\mathcal{A})_n$ for two players \forall and \exists by induction on n.

1. **step** 0

 \forall picks a pair of elements $a, b \in \mathcal{A}$ such that $a \leqslant b$. \exists must respond with a network $\mathcal{N}_0 = (\{x, y\}, \{(x, y)\}, l_0 : (x, y) \mapsto a)$:

$$x \xrightarrow{a} y$$

2. **step** $n + 1 < \omega$

Suppose the networks:

$$\mathcal{N}_0 \subset \mathcal{N}_1 \subset \cdots \subset \mathcal{N}_n$$

have been already constructed.

There are four different options:

(a) Composition move

 \forall picks $x, y, z \in \mathcal{N}_n$ such that $b = l_n(x, y)$ and $c = l_n(y, z)$:

 \exists has to respond with $\mathcal{N}_{n+1} = (V_n, E_n \cup \{(x, z)\}, l_{n+1})$ where $l_{n+1}(x, z) = b; c$ and $l_{n+1}(x', y') = l_n(x', y')$ for $(x', y') \in E_n$.

(b) Witness move \forall picks $(x,y) \in E_n$ such that $l_n(x,y) = a$ and $a \leq b$; c:

$$x \xrightarrow{a} y$$

 \exists has to respond with $\mathcal{N}_{n+1} = (V_n \cup \{z\}, E_n \cup \{(x,z), (z,y)\}, l_{n+1})$, where

$$\begin{aligned} l_{n+1}(x,z) &= b\\ l_{n+1}(y,z) &= c\\ l_{n+1}(p) &= l_n \text{ for others } p \in E_n \end{aligned}$$

The latter can be visualised with the following triangle:

- (c) Left redisual move
- (d) Right residual move

Theorem 2. Let A be a at most countable residuated semigroup, then

1. \exists has a winning stragery in $\mathcal{G}_{\omega}(\mathcal{A})$

$$rep(a) = \{(x,y) \mid l(x,y) \leqslant a\}$$

- (a) rep(a;b) = rep(a); rep(b)
- $(b) \ rep(a \backslash b) = rep(a) \backslash rep(b)$
- (c) rep(a/b) = rep(a)/rep(b)
- 2. A is representable.

TODO: check if the representability class is closed under products, subalgebras and ultraproducts. Check the criterion for the Horn formulas. Closed under H? can't be defined by equations?

3 Games for the FMP

References