Оглавление

Постановка задачи	2
Георетическое описание	
Харакетристика	6
Реализация	10
Процесс тестирования	15

Постановка задачи

Задача построения максимального потока в сети представляет собой одну из фундаментальных задач теории графов и оптимизации. Она состоит в определении максимального возможного потока из истока (source) в сток (sink) через ориентированную сеть с заданными пропускными способностями рёбер.

Описание задачи

Дана ориентированная сеть G=(V,E), где:

- V множество вершин,
- Е множество рёбер,
- Каждое ребро $(u,v) \in E$ имеет пропускную способность $c \ge 0$.

В сети выделены две особые вершины:

- s (исток),
- t (сток).

Требуется найти максимальный поток из s в t, то есть распределение потока f по рёбрам сети, удовлетворяющее следующим условиям:

- 1. Ограничение пропускной способности: Для любого $(u,v) \in E$ выполняется $0 \le f(u,v) \le c(u,v)$.
- 2. Сохранение потока: Для любой вершины $u \neq s$,t сумма входящих потоков равна сумме исходящих.
- 3. Максимизация потока: Суммарный поток, выходящий из источника s, должен быть максимальным.

Теоретическое описание

Основная идея

Алгоритм Диница основывается на идее разделения задачи поиска максимального потока на итеративные этапы с использованием уровневой сети. На каждом этапе сначала строится уровневый граф с использованием алгоритма поиска в ширину (BFS), который определяет минимальные расстояния от истока до всех вершин. Затем в этой сети выполняется поиск

блокирующего потока с помощью алгоритма углубленного поиска (DFS), эффективно улучшая текущее решение. Этот процесс продолжается до тех пор, пока в дополняющей сети существует путь из истока в сток.

Определения:

Обход в ширину (Breadth-First Search, BFS) — это фундаментальный алгоритм теории графов, используемый для поиска и обхода всех вершин графа. Основная идея BFS заключается в том, чтобы исследовать все вершины на текущем уровне перед переходом к вершинам следующего уровня.

Шаги алгоритма BFS

1. Инициализация:

- о Поместить исходную вершину s в очередь.
- о Пометить s как посещённую.
- о Назначить уровень level(s)=0.

2. Основной цикл:

- о Пока очередь не пуста:
 - 1. Извлечь вершину и из начала очереди.
 - 2. Для каждой вершины v, смежной с u
 - Если v ещё не посещена:
 - Пометить v как посещённую.
 - Назначить уровень level(v)=level(u)+1.
 - Добавить v в конец очереди.

3. Завершение:

• Алгоритм завершается, когда очередь становится пустой, то есть когда все достижимые от s вершины были посещены.

Применение BFS

В алгоритме Диница BFS используется для построения уровневого графа.

Обход в глубину (Depth-First Search, DFS) — это фундаментальный алгоритм теории графов, используемый для поиска и обхода всех вершин графа. Основная идея DFS заключается в том, чтобы исследовать как можно глубже по каждой ветви графа перед тем, как откатиться назад и перейти к другим ветвям.

Шаги алгоритма DFS

- 1. Инипиализапия:
 - о Выбрать исходную вершину s и пометить её как посещённую.
 - о Поместить в в стек.
- 2. Основной цикл (рекурсивный или с использованием стека):
 - о Пока стек не пуст:
 - 1. Извлечь вершину и из вершины стека.
 - 2. Для каждой вершины v, смежной с u
 - Если v ещё не посещена:
 - Пометить v как посещённую.
 - Поместить v в стек для дальнейшего исследования.
- 3. Завершение:
 - о Алгоритм завершается, когда все достижимые от s вершины были посещены.

Применение DFS

В алгоритме Диница DFS используется для поиска путей увеличения потока в построенной уровневой сети. После построения уровневой сети с помощью BFS, DFS последовательно в глубину ищет все возможные пути от истока s к стоку t в этой уровневой сети и добавляет поток по найденным путям до тех пор, пока не будет достигнут блокирующий поток.

Уровневый граф — это вспомогательная структура, используемая в алгоритме Диница для организации поиска блокирующих потоков. Он строится на основе текущего состояния потоков и обеспечивает слоистую структуру сети, где все пути от источника к стоку проходят через вершины последовательно увеличивающихся уровней.

Блокирующий поток — это поток, который нельзя дополнительно увеличить без изменения уровневого графа. В контексте уровневого графа блокирующий поток заполняет все возможные пути от s до t, не оставляя возможности для дальнейшего увеличения потока по текущим уровням.

Метод поиска блокирующего потока:

• Используется поиск в глубину (DFS) для нахождения всех возможных увеличивающих путей в уровневом графе.

- На каждом найденном пути определяется минимальная остаточная пропускная способность, и поток увеличивается на это значение.
- Процесс продолжается до тех пор, пока мы не сможем найти новые пути для увеличения потока в текущем уровневом графе.

Остаточная сеть Gf=(V,Ef) строится на основе исходной сети G=(V,E) и текущего потока f. Она включает все оригинальные рёбра с остаточной пропускной способностью, а также обратные рёбра, позволяющие корректировать поток.

Формирование Остаточной Сети:

1. Остаточная Пропускная Способность Оригинальных Ребер: Для каждого ребра (u,v)∈Е остаточная пропускная способность определяется как:

$$cf(u,v)=c(u,v)-f(u,v)$$

где c(u,v) — исходная пропускная способность, а f(u,v) — текущий поток по этому ребру.

2. Добавление Обратных Ребер: Для каждого ребра (u,v)∈Е добавляется обратное ребро (v,u) с пропускной способностью:

$$cf(v,u)=f(u,v)$$

Это позволяет алгоритму уменьшать поток по ребру (u,v) при необходимости.

Итоговое описание алгоритма

1: Инициализация

• Инициализируем поток f(u,v)=0 для всех рёбер (u,v)∈Е.

2: Построение Остаточной Сети

• На основе текущего потока f строим остаточную сеть Gf=(V,Ef) включающую как прямые, так и обратные рёбра с соответствующими остаточными пропускными способностями.

3: Построение Уровневого Графа

- Выполняем BFS от источника s, присваивая уровни каждой достижимой вершине.
- Уровневый граф включает только те рёбра, которые соединяют вершины из соседних уровней и имеют положительную остаточную пропускную способность.

4: Проверка возможности достижения стока

• Если сток t недостижим в текущем графе, алгоритм завершается, и текущий поток является максимальным.

5: Поиск Блокирующего Потока

- Используя DFS, находим возможные пути от s до t в уровневом графе.
- Потоки направляются только по рёбрам уровневого графа, обеспечивая отсутствие циклов и улучшая эффективность поиска.

6: Обновление потоков и повторение

- После нахождения блокирующего потока обновляются значения потоков по рёбрам сети.
- Повторяются этапы построения остаточной сети, уровневого графа и поиска блокирующих потоков до тех пор, пока существует путь от s до t в уровневом графе.

Харакетристика

Временная сложность

1. Построение Уровневого Графа (BFS):

- Время выполнения: О(Е)
- Описание: На каждой итерации алгоритм выполняет поиск в ширину (BFS) для построения уровневого графа. Время выполнения BFS линейно зависит от количества рёбер, поскольку каждый ребро рассматривается не более одного раза за каждую итерацию BFS.

2. Поиск Блокирующего Потока (DFS):

о Время выполнения: О(Е) на каждую итерацию поиска блокирующего потока.

 Описание: После построения уровневого графа выполняется поиск в глубину (DFS) для нахождения и отправки блокирующих потоков. Время выполнения DFS также линейно зависит от количества рёбер.

3. Количество Итераций (Уровневых Графов)

Время Выполнения: O(V) итераций.

Пояснение:

- Рост Уровней: В каждой итерации BFS увеличивает уровень вершины,
 минимально необходимого количества рёбер от источника.
- Максимальное Количество Уровней: В худшем случае, максимальное количество уровней в графе не превышает V (количество вершин), поскольку каждое новое ребро может увеличивать уровень на 1.

4. Итоговая Временная Сложность:

При этом, поскольку алгоритм может требовать до O(V) итераций для достижения максимального потока, общая временная сложность составляет: $O(V^2 E)$

Пространственная сложность

Алгоритм Диница имеет пространственную сложность:

O(V+E)

где:

- V количество вершин в графе.
- Е количество рёбер в графе.

Описание:

- Хранение Графа: Используется список смежности для хранения рёбер, что требует О(V+E) памяти.
- Дополнительные Структуры: Массив уровней O(V) и массив указателей для DFS O(V).

Сравнительный анализ

Сравнительный Анализ Алгоритмов Диница, Форда-Фалкерсона и Эдмондса-Карпа

1. Временная Сложность

Алгоритм	Временная Сложность	Комментарий	
Форд- Фалкерсона	O(E * max(f))	Использует DFS для поиска увеличиваюищих путей.	
Эдмондса- Карпа	O(V×E^2)	Использует BFS для поиска кратчайших путей.	
Диница	O(V^2×E)	Более эффективен на большинстве графов благодаря использованию уровневых графов и поиска блокирующих потоков — сочетает в себе DFS и BFS. В некоторых случаях может достигать O(V×E).	

2. Пространственная Сложность

Алгоритм	Пространственная Сложность	Комментарий
Форд- Фалкерсона	O(V+E)	Простое хранение графа через списки смежности.
Эдмондса- Карпа	O(V+E)	Аналогично Форда-Фалкерсона, использует списки смежности и дополнительные структуры для BFS.
Диница		Также использует списки смежности, а дополнительно требует хранение уровней и указателей для оптимизации DFS.

3. Практическая Эффективность

Алгоритм	Преимущества	Недостатки
Форд-	- Простота реализации.	- Может быть неэффективен на
Фалкерсона	- Подходит для небольших графов или	больших графах.

Алгоритм	Преимущества	Недостатки
	графов с небольшими пропускными	- Время выполнения сильно
	способностями.	зависит от выбора путей.
	- Гарантированная конечная временная	- Медленнее современных
Эдмондса-	сложность.	алгоритмов.
Карпа	- Избегает зацикливания за счёт	- Требует выполнения BFS на
	использования BFS.	каждой итерации.
	- Высокая эффективность на большинстве	
Диница	графов.	- Более сложная реализация.
	- Оптимизирован для плотных и	- В худшем случае может быть
	разреженных графов.	менее эффективен, чем Push-
	- Использование уровневых графов	Relabel.
	снижает количество итераций.	

4. Особенности и Применимость

Алгоритм	Особенности	Применимость
Форд- Фалкерсона	- Неограниченная временная сложность Может работать неоптимально без определённого выбора путей.	- Образовательные цели Небольшие или простые графы Случаи, где важна простота реализации, а не максимальная эффективность.
Эдмондса- Карпа	- Использует BFS для поиска кратчайших путей, что улучшает производительность по сравнению с произвольным выбором путей.	 Средние по размеру графы. Приложения, требующие предсказуемой временной сложности. Системы с ограниченными ресурсами, где требуется гарантия завершения.
Диница	- Использует уровневые графы и блокирующие потоки Эффективно управляет потоками через оптимизированные структуры.	- Большие и плотные графы Приложения, требующие высокой производительности Сложные сетевые задачи в

Алгоритм	Особенности	Применимость
		сетевых технологиях, логистике
		и других областях.

5. Преимущества Алгоритма Диница по Сравнению

- 1. Более Высокая Эффективность:
 - В большинстве случаев алгоритм Диница работает быстрее, чем Форда-Фалкерсона и Эдмондса-Карпа, особенно на больших и плотных графах.
- 2. Использование Уровневых Графов:
 - Позволяет структурировать поиск потоков, снижая количество итераций и обеспечивая более целенаправленный подход к нахождению увеличивающих путей.
- 3. Оптимизация Поиска Потоков:
 - Метод блокирующих потоков позволяет одновременно отправлять потоки по нескольким путям, что ускоряет процесс достижения максимального потока.
- 4. Гибкость и Универсальность:
 - Эффективен как на разреженных, так и на плотных графах, адаптируясь к различным структурам сетей.

Перечень инструментов

1. **Язык программирования:** Python версии 3.11

2. **Среда разработки:** IDLE (Python 3.11 64 bit)

Реализация

from collections import deque

class Edge:

,,,,,,

Класс для представления ребра в сети потока.

Каждый экземпляр содержит информацию о вершине назначения, индексе обратного ребра,

пропускной способности и текущем потоке.

" " "

```
def __init__(self, to, rev, capacity):
    self.to = to
                    # Вершина назначения
    self.rev = rev
                      # Индекс обратного ребра в списке рёбер вершины 'to'
    self.capacity = capacity # Остаточная пропускная способность
    self.flow = 0
                      # Текущий поток через ребро
class Dinic:
  ,,,,,,
  Класс для реализации Алгоритма Диница для нахождения максимального потока в сети.
  def __init__(self, N):
    ,,,,,,
    Инициализация графа.
    N: Количество вершин в графе
    self.size = N
    self.graph = [[] for _ in range(N)] # Список смежности для каждой вершины
    self.level = [-1] * N
                                # Уровни вершин
    self.ptr = [0] * N
                               # Текущие индексы для оптимизации DFS
  def add edge(self, fr, to, capacity):
    ** ** **
    Добавление ребра в граф.
    fr: Вершина начала ребра
    to: Вершина конца ребра
    capacity: Пропускная способность ребра
    forward = Edge(to, len(self.graph[to]), capacity)
    backward = Edge(fr, len(self.graph[fr]), 0) # Обратное ребро с нулевой пропускной
способностью
    self.graph[fr].append(forward)
    self.graph[to].append(backward)
```

```
def bfs(self, s, t):
    ,,,,,,
    Поиск в ширину для построения уровневого графа.
    s: Источник
    t: Сток
    True, если сток достижим из источника, иначе False
    queue = deque()
    queue.append(s)
    self.level = [-1] * self.size
    self.level[s] = 0 # Уровень источника равен 0
    while queue:
       v = queue.popleft()
       for edge in self.graph[v]:
         if self.level[edge.to] == -1 and edge.flow < edge.capacity:
           self.level[edge.to] = self.level[v] + 1
           queue.append(edge.to)
           print(f"Beршина {edge.to} достигнута из вершины {v} с уровнем
{self.level[edge.to]}")
           if edge.to == t:
              return True # Сток найден, можно прекратить BFS
    return self.level[t] != -1 # Возвращает True, если сток был достигнут
  def dfs(self, v, t, pushed):
    Поиск в глубину для отправки потока.
    :param v: Текущая вершина
    :param t: Сток
    :param pushed: Поток, который нужно отправить
    :return: Поток, который был отправлен
    ,,,,,,
```

```
if v == t:
       return pushed # Поток достиг стока
     while self.ptr[v] < len(self.graph[v]):
       edge = self.graph[v][self.ptr[v]]
       if self.level[edge.to] == self.level[v] + 1 and edge.flow < edge.capacity:
         # Минимальная остаточная пропускная способность на пути
         tr = self.dfs(edge.to, t, min(pushed, edge.capacity - edge.flow))
         if tr > 0:
            # Обновление потока и обратного потока
            edge.flow += tr
            self.graph[edge.to][edge.rev].flow -= tr
            print(f"Отправлен поток {tr} через ребро {v} -> {edge.to}")
            return tr
       self.ptr[v] += 1 # Перейти к следующему ребру
     return 0 # Невозможно отправить больше потока из этой вершины
  def max_flow(self, s, t):
     ,,,,,,
     Вычисление максимального потока из вершины s в вершину t.
     :param s: Источник
     :param t: Сток
     :return: Максимальный поток
     flow = 0
     while self.bfs(s, t):
       self.ptr = [0] * self.size # Сброс указателей для DFS
       pushed = self.dfs(s, t, float('inf'))
       while pushed > 0:
         flow += pushed
         print(f'Tекущий общий поток: {flow}")
         pushed = self.dfs(s, t, float('inf'))
     return flow
def main():
```

```
,,,,,,
Основная функция для демонстрации работы Алгоритма Диница.
Создаётся пример сети, аналогичный приведённому в отчёте.
N = 4
s = 0 # Источник
t = 3 \# CTOK
# Инициализация Алгоритма Диница
dinic = Dinic(N)
# Добавление рёбер (источник, вершина, пропускная способность)
dinic.add_edge(0, 1, 3) \# s \rightarrow a
dinic.add_edge(0, 2, 2) \# s \rightarrow b
dinic.add_edge(1, 2, 1) \# a \rightarrow b
dinic.add_edge(1, 3, 2) # a -> t
dinic.add_edge(2, 3, 3) \# b \rightarrow t
# Вычисление максимального потока
max_flow = dinic.max_flow(s, t)
print(f"\nМаксимальный поток: {max_flow}")
# Вывод потоков по рёбрам
print("\nПотоки по рёбрам:")
for u in range(N):
```

Описание реализации

if __name__ == "__main__":

main()

Основные Компоненты Реализации

for edge in dinic.graph[u]:

if edge.capacity > 0:

 $print(f''\{u\} \rightarrow \{edge.to\} : \{edge.flow\}'')$

- 1. Класс Edge представляет собой ребро в сети потока и содержит информацию о вершине назначения, индексе обратного ребра, пропускной способности и текущем потоке.
- **2.** Класс Dinic реализует сам алгоритм Диница, управляя графом и вычисляя максимальный поток.
- 3. Методы add_edge, bfs, dfs, max_flow

__init__(self, N): Инициализирует граф с N вершинами. Создаёт список смежности, массив уровней и массив указателей для оптимизации поиска.

add_edge(self, fr, to, capacity): Добавляет прямое ребро из вершины fr в вершину to с заданной пропускной способностью, а также обратное ребро с нулевой пропускной способностью. Это необходимо для корректного управления потоками и возможности уменьшения потока по обратным рёбрам

bfs(**self**, **s**, **t**): Строит уровневый граф с помощью поиска в ширину (BFS). Присваивает уровня каждой достижимой вершине от источника s. Возвращает True, если сток t достижим, иначе False.

dfs(**self**, **v**, **t**, **pushed**): Выполняет поиск в глубину (DFS) для отправки потока от вершины v до стока t. Отправляет максимально возможный поток по найденному пути и обновляет соответствующие потоки и обратные рёбра.

max_flow(self, s, t): Основной метод для вычисления максимального потока из вершины s в вершину t. Повторяет процесс построения уровневого графа и отправки блокирующих потоков до тех пор, пока сток остаётся достижимым.

4. Функция main для демонстрации работы алгоритма

Процесс тестирования

Входной граф (Рис 1)

```
# Добавление рёбер (источник, вершина, пропускная способность)
dinic.add_edge(0, 1, 3) # s -> a
dinic.add_edge(0, 2, 2) # s -> b
dinic.add_edge(1, 2, 1) # a -> b
dinic.add_edge(1, 3, 2) # a -> t
dinic.add_edge(2, 3, 3) # b -> t
```

Рис 1

Вывод (Рис 2)

```
Вершина 1 достигнута из вершины 0 с уровнем 1
Вершина 2 достигнута из вершины 0 с уровнем 1
Вершина 3 достигнута из вершины 1 с уровнем 2
Отправлен поток 2 через ребро 1 -> 3
Отправлен поток 2 через ребро 0 -> 1
Текущий общий поток: 2
Отправлен поток 2 через ребро 2 -> 3
Отправлен поток 2 через ребро 0 -> 2
Текущий общий поток: 4
Вершина 1 достигнута из вершины 0 с уровнем 1
Вершина 2 достигнута из вершины 1 с уровнем 2
Вершина 3 достигнута из вершины 2 с уровнем 3
Отправлен поток 1 через ребро 2 -> 3
Отправлен поток 1 через ребро 1 -> 2
Отправлен поток 1 через ребро 0 -> 1
Текущий общий поток: 5
Максимальный поток: 5
Потоки по рёбрам:
0 -> 2 : 2
1 -> 2 : 1
```

Рис 2

Ссылка на репозиторий: https://github.com/greeveus/protoss