1 Отчет 1. Чаплыгин Андрей Викторович, ВМК МГУ, группа 603.

Первое задание курса 'Суперкомпьютерное моделирование и технологии программирования'

Вариант 10. Решение СЛАУ: Функция PDGESV (double precision) из ScaLAPACK. Платформа тестирования: Polus (http://hpc.cs.msu.ru/polus).

Программа состоит из вызова функции генерации случайной невырожденной матрицы (PDMATGEN), вызова решателя линейных систем (PDGESV) и расчет нормы невязки полученного решения.

Рабочая программа лежит в git репозитории (https://github.com/Andrcraft9/linear-solve_scalapack/tree/polus). Ветка master - для компиляции на локальной машине, Ветка polus - для компиляции на Polus. Тестирование программы на кластере Polus проводилось из ветки polus! Компилирование на Polus проводилось с помощью компилятора Fortran OpenMPI и с линковкой библиотеки netlib ScaLAPACK. Тестирование проводилось для 1 - 64 ядер, размер матриц от 4096 на 4096 до 32768 на 32768, размер блока для всех экспериментов был выставлен 32 на 32.

На первом рисунке продемонстрировано ускорение программы в зависимости от количества ядер и размера матрицы.

На втором рисунке продемонстрирована производительность программы, которая считалась как:

Perfomance = $\frac{\frac{2}{3}N^3}{\text{time}}$

где N - это размер матрицы.

В таблице показаны значения общего времени решения, ускорения и производительности:

Matrix	Cores	Time (sec)	$\operatorname{SpeedUp}$	Perfomance (GFLOPS)
4096	1	23.338857	1.000000	1.962949
4096	4	5.714939	4.083833	8.016356
4096	16	2.013850	11.589176	22.748959
4096	64	2.613160	8.931278	17.531641
8192	1	198.442571	1.000000	1.846901
8192	4	45.775619	4.335115	8.006530
8192	16	15.830993	12.535068	23.151035
8192	64	13.962872	14.212160	26.248459
12288	1	608.582600	1.000000	2.032511
12288	4	151.488635	4.017348	8.165303
12288	16	51.622919	11.789000	23.961268
12288	64	37.034892	16.432682	33.399600
16384	1	1532.0	1.000000	1.913858
16384	4	383.002799	3.999971	7.655377
16384	16	117.962025	12.987230	24.855720
16384	64	83.630529	18.318669	35.059338
20480	1	2628.0	1.000000	2.179080
20480	4	657.329388	3.997996	8.711953
20480	16	266.598261	9.857529	21.480347
20480	64	144.768822	18.153080	39.557019
24576	1	4452.0	1.000000	2.222732
24576	4	1113.463342	3.998335	8.887230
24576	16	449.233085	9.910223	22.027773
24576	64	236.318336	18.838995	41.874045
28672	1	6868.0	1.000000	2.287981
28672	4	1717.0	4.000000	9.151924
28672	16	693.050973	9.909805	22.673446
28672	64	359.139040	19.123513	43.754234
32768	1	10356.0	1.000000	2.264991
32768	4	2589.0	4.000000	9.059964
32768	16	1044.0	9.919540	22.467671
32768	64	541.945194	19.108943	43.281587

Из полученных результатов можно сделать вывод, что когда размер матрицы довольно большой, а количество процессоров невелико - наблюдается линейное ускорение. Причем, наблюдается ухудшение ускорения для матрицы размером 4096 на 4096 на 64 ядрах по сравнению с 16. Это можно объяснить накладными расходами

на перессылки между процессорами. Максимальная производительность для этой задачи наблюдается на матрице 32768 на 32768, на 64 процессорах и равна ~ 43 GFLOPS.