	Histor	У	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Ameenah R. Farhan	NDS 107,1923 (2006)	30-Apr-2006

 $Q(\beta^{-}) = -2562.4 \ 17$; $S(n) = 10196.24 \ 6$; $S(p) = 11012.1 \ 17$; $Q(\alpha) = -6282.6 \ 20$ 2012Wa38

Note: Current evaluation has used the following Q record -2562.5 1710196.22 6 11012.123 -6282.725 2003Au03.

Giant-dipole resonance work (photonuclear reactions) has been reported by 1976Ca06, 1975Mc06, 1973McZP, 1973Mc15.

Nuclear structure calculations: 2004Br44.

Additional information 1.

Mass measurements: 1993Hy02, 1985El01, 1977De20, 1976De21, 1964Ba03, 1963Ri07.

⁷⁴Ge Levels

Levels populated in reactions with XREF=Y:

Cross Reference (XREF) Flags

	A 74 Ga β ⁻ decay (8.12 min) B 74 As ε decay (17.77 d) C 70 Zn(6 Li,d) D 71 Ga(α,p) E 72 Ge(t,p) F 72 Ge(α, 2 He) G 73 Ge(n,γ) E=th				73 Ge(n, γ) 73 Ge(n, γ) 73 Ge(d,p) 74 Ge(γ , γ') 74 Ge(n,n'	E=290-318 eV E=332-367 eV E=380-426 eV),(pol γ,γ') γ)),(pol p,p')	$\begin{array}{lll} & & ^{75}\mathrm{As(d,^3He)} \\ & & ^{76}\mathrm{Ge(p,t)} \\ & & ^{78}\mathrm{Se(d,^6Li)} \\ & & & ^{192}\mathrm{Os(^{82}Se,X\gamma)} \\ & & & ^{74}\mathrm{Ge(^6Li,^6Li),(^6Li,^6Li')} \\ & & & & ^{74}\mathrm{Ge(^{16}O,^{16}O'),(^{18}O,^{18}O')} \\ & & & & \\ & $			
) E=102.6 eV	Q R	⁷⁴ Ge(pol o	d d')	AA	75 As(n,d)		
) E=224 eV	S	74 Ge(α,α'		AB	77 Se(n, α) E=th		
) E=240 eV	T	Coulomb			50(1.,0) 2 11		
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XR	EF				Comments		
0.0^{j}	0+	stable	ABCDEFGHIJKLM	NOPQF	RSTUVWXYZ	XREF: Others: AA, AB $\langle r^2 \rangle^{1/2} = 4.0744$ fm 12 (2004An14).				
595.850 ^j 6	2+	12.41 ps 9	AB DEFGHI M	NOPQF	RSTUVWXYZ	XREF: Others: μ =+0.87 4 (19) Q=-0.19 2 (20) μ : transient-fie (1987La20), compilation. Q: reorientation 6 (1980Le16) β_2 =0.290, 0.29 β_2 (from (pol d β_2 (from (pol p) (1986MoZR J $^{\pi}$: L=2 in (t,p T _{1/2} from B(E2) method in (r	AA, Al 84Pa20 000To1 eld PA0 +0.70 n effect (5,1989F) (6,1989F) (7,19	B 0,1989Ra17) 2) C (1984Pa20). Others: +0.70 4 24 (1977Fa07). See also 2005St24 t in Coul. ex. (2000To12). Other: -0.25 Ra17). See also 2005St24 compilation. 1 (16O,16O') (1979Fe03,1976Co04). 0.28 (1978Sz08), 0.197 10 (1985Se05).		

⁷⁴Ge(⁶Li, ⁶Li), (⁶Li, ⁶Li'): 0, 596.

⁷⁴Ge(¹⁶O, ¹⁶O'),(¹⁸O, ¹⁸O'): 0, 596, 1200.

⁷⁵As(n,d): 0, 596, 1200, 1470, 2200.

⁷⁷Se(n, α) E=th: 0, 596.

E(level) [†]	J^π ‡	T _{1/2} #	XREF Comments	Comments			
1204.205 7	2+	5.4 ps 8	AB E GH K OPQRSTUVW Z XREF: Others: AA, AB μ =+0.82 24 (1984Pa20,1989Ra17) Q=+0.26 6 (2000To12) μ : transient-field PAC (1984Pa20). See also 2005St24 compilation. β_2 =0.07 from (p,p') (1982Ta16). J $^{\pi}$: L=2 in (t,p), (p,p'), (d,d'), (α , α '), (p,t) and (d, 6 Li). T _{1/2} from DSA method in (n,n' γ). Other 5.9 ps 9 from B(E2)'s in Coul. ex.	·:			
1463.759 ^{<i>j</i>} 8	4+	1.53 ps <i>10</i>	AB DEFGHI KLMN PQRSTUVWX J^{π} : L=4 in (p,p'), (d,d') and (α , α'). $T_{1/2}$ from B(E2) in Coul. ex. β_4 =0.02 from (p,p') (1982Ta16), -0.015 15 from (pol p,p') (1986MoZR).				
1482.81 <i>4</i>	0+	6 ps +15-3	ABCDEFG OPQ ST VW J^{π} : $\gamma\gamma(\theta)$ in 74 As ε decay and (γ,γ') . $L=0$ in (t,p) , $(^{6}Li,d)$ and (α,α') . $T_{1/2}$ from B(E2) in Coul. ex.				
1697.140 8	(3)+		AB E GHI L PQ UV XREF: E(?). $J^{\pi}: L(d, {}^{3}He) = (1+3) \text{ and } \gamma(\theta) \text{ of } 493\gamma$ and 1101γ in $(n, n'\gamma)$.				
1724.954 <i>14</i> 1913 <i>14</i>	0 ⁺		G R J^{π} : $L(d,d')=(0)$ for $E=1720$ 20. E N $XREF$: $N(?)$. J^{π} : $L(t,p)=0$.				
2165 4	(1-)		E Q V J^{π} : $L(p,t)=1$ and $L(p,p')=(1)$. $L(t,p)=0$				
2165.259 8	(3,4)+		inconsistent with $J^{\pi}=(1^-)$. J ^{π} : γ to 2 ⁺ and strong primary γ from 4 ⁺ , 5 ⁺ . The L=3 group in (d, 3 He) at 2168 10 probably corresponds to this level rather than to the 2165 level of $J^{\pi}=(1^-)$. L(p,p')=(1) for a doublet E=2165 5, the second component is probably L=4.				
2197.933 24	2+		AB E G I OPQR UV XREF: Others: AA J^{π} : γ' s to 0^+ and 4^+ , L=2 in (t,p), (p,p') and (p,t). L=(4) for a 2210 group in (d,d') inconsistent with J^{π} =2 $^+$.	į			
2227.77 10	0+		E G OPQ U XREF: Others: AA J^{π} : $\gamma\gamma(\theta)$ in (γ,γ') and $L(t,p)=0$.				
2300 2403.5 <i>4</i> 2490? <i>5</i>	₁ &	0.0004 eV 1	C O N				
2536.310 <i>13</i>	3-	0.24 [@] ps +14-10	A E GH KLMN PQRS V β_3 =0.16 ((p,p'),1982Ta16), 0.15 I ((pol p,p'),1986MoZR). B(E3)(p,p')=0.020 T (2002Ki06,evaluation). J ^{π} : L=3 in (t,p), (p,p'), (d,d') and (α , α ').				
2569.329 ^j 14 2572 5	(6 ⁺) 4 ⁺		G IJ P X J^{π} : yrast population in (82 Se,x). XREF: E(?). J^{π} : $L(p,t)=4$; $L(\alpha,\alpha')=(4)$. $L(p,p')=(3)$ inconsistent with $J^{\pi}=4^+$, but assignme perturbed by J^{π} Ge impurity.				
2600.32 9	$(1,2,3)^+$	0.31 [@] ps +12-10	E G OPQ VW XREF: W(?). J^{π} : L=2 in (p,p'). L=(0) for 2610 in (t,p) and L=(1) for 2605 in (p,t) inconsister				

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XI	REF	Comments
					with $J^{\pi}=2^+$.
2669.62 <i>4</i> 2690.6 <i>3</i>	4 ⁺ 1&	0.0015 eV <i>3</i>	ΕGΙ	N PQRS V	J^{π} : L=4 in (t,p), (p,p') and (α,α') .
2693.68 4	(3,4 ⁺)	0.052 [@] ps +24-16	A e GHI K	n Pq s v	XREF: e(?). J^{π} : γ' s to 2^+ and primaries from thermal capture and from two $J^{\pi}=4^+$ neutron resonances gives $J^{\pi}=3,4^+$. If $L(p,p')=(2+3)$ for $E=2690~5$ corresponds to this level, then $J^{\pi}=(3^-)$. $L(\alpha,\alpha')=(1)$ for $E=2695~10$ inconsistent with $J^{\pi}=3,4^+$.
2696.918 <i>10</i>	(2+)		e G	n Pq s v	XREF: e(?). J^{π} : γ to 4 ⁺ and no feeding from thermal capture and from any of the five neutron resonances studied. $L(\alpha,\alpha')=(1)$ for E=2695 10 inconsistent with $J^{\pi}=2^+$.
2711 <i>6</i> 2750.61 <i>23</i> 2828.507 <i>11</i>	(4 ⁺) 0 ⁺ 4 ⁺		EF C E GHIJ L1	PQ 1 PQ	J^{π} : $L(t,p)=(4)$. J^{π} : $L(t,p)=0$. J^{π} : $L(p,p')=4$.
2833.41 <i>15</i>	(2+)	0.009 [@] ps +4-3	e	Pqr uv	E(level): it appears that 2833 and 2836 are two different levels the first populated in (n,n'γ) and the second in (n,γ) E=th, although, existence of a doublet near this energy does not seem definitive. The γ rays in both reactions proceed to the same final levels but are about 3 keV different in energy. Also the branching ratios are different in the two reactions. J ^π : L=2 in (t,p) and (p,t) for a probable doublet. L(p,p')=4 for a doublet E=2833 5, the second component is probably L=2.
2835.923 24 2842 5 2856.04 25	(2 ⁺) (3 ⁻ & 5 ⁻) 0 ⁺		e G E	qr uv N S PQ UV	E(level), J^{π} : see comment for 2833 level. J^{π} : $L(\alpha,\alpha')=(3+5)$ and $L(d,p)=1$. XREF: E(?).
2878.14 <i>17</i> 2925.45 <i>9</i>	(5 ⁻) (3,4 ⁺)		G	PQ P	J^{π} : L(p,t)=0. J^{π} : L(p,p')=(5). J^{π} : γ to 2 ⁺ , possible γ to (3) ⁺ and
2935.475 12	3-		E GHI KLI		primary from thermal capture. J^{π} : $L(d,p)=1$ and γ to 4^{+} .
2936.8	(5-)			n PQ s u	$L(d,^{3}He)=1+3$ and $L(\alpha,\alpha')=(3+5)$. J^{π} : $L(p,p')=(5)$, $L(d,p)=1$, $L(d,^{3}He)=1+3$
2938.7 2 2949.48 <i>10</i>	2 ⁺ (3 ⁻)	0.26 [@] ps +15-7	A E G	P V Pr	and $L(\alpha, \alpha') = (3+5)$. J^{π} : $L(p,t) = 2$. J^{π} : $\log f t = 5.7$ from (3^{-}) and γ to 2^{+} . $L(d,d') = (3)$. $L(t,p) = 4$ inconsistent with J^{π} .
2961.0 2 2973.472 <i>13</i>	(5 ⁻) (3)		A GH KL	PQrS PQ	J ^{π} : L(α,α')=(5). J ^{π} : γ to 0 ⁺ , primaries from thermal capture and from two J ^{π} =4 ⁺ neutron resonances.
2999.2	2+			OPQ S U	J^{π} : γ from 1^- in (γ, γ') and L=2 in (p,p') , (α,α') .

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2} #		XRE	EF	Comments
3017 3	2+			E	Q S UV	J^{π} : L=2 in (t,p), (p,t) and L=(2) in (p,p'). L=1(+3) in (d, 3 He).
3032.8 2	1 ^{&}	0.0112 eV 6			0	
3034.00 3	(3,4+)	0.059 [@] ps +10-7	A	GIKM	P	J^{π} : γ' s to 2 ⁺ and primaries from thermal capture and from $J^{\pi}=4^+$ neutron resonance.
3048.564 <i>24</i>	4 ⁺			E GH	PQ S V	J^{π} : L=4 in (t,p), (p,p'), (p,t) and (α,α') .
3060.1 5	$(2^+ \text{ to } 6^+)$			H K M	P	J^{π} : primary γ from 4^+ .
3081.321 15	(3 ⁺)	0.21 [@] ps +7-5	A	GHI KLM	PQR UV	J ^{π} : L=1+3 in (d, ³ He), L=(3,4) in (d,d'), γ to 4 ⁺ and primaries from thermal capture and from J^{π} =4 ⁺ neutron resonance. In (p,p'), either the L=(5) assignment for a 3081 group is incorrect or there is a different level near this energy.
3092.2 2	1 ⁽⁺⁾ &	0.0104 eV 11			0	-
3104.506 <i>19</i>	5-			E GHIJ LM		J^{π} : L=5 in (t,p) and (α,α') .
3118.0 <i>5</i> 3139.32 22	3-,4-,5-,6-			N	P P	J^{π} : L(d,p)=1.
3140.30 4	3-		Α	E GHI K	PQRS V	J^{π} : L=3 in (t,p), (p,p') and (α , α').
3175.47 <i>3</i>	3-	$0.097^{\text{@}} \text{ ps } +35-28$	Α	GH	PQ S U	J^{π} : L=3 in (α, α') and (p, p') .
3199.5 3211.8? 7	2+	$0.024 \text{ ps}^{1} + 8 - 4$	A		PQ S UV	J^{π} : L=2 in (α, α') , (p,t) and (p,p') .
3224.680 <i>13</i>	4+		А	E G	Q S UV	L(p,t)=2+5 unresolved doublet. J^{π} : L=4 in (t,p), (α,α') and (p,p') .
3242 <i>5</i> 3271.51 <i>5</i>	$\leq 9^+$ (2^+)			N GHI KL	Q	J^{π} : L(d,p)=4. J^{π} : γ to 4 ⁺ , possible γ to 0 ⁺ .
3276.3 2	1&	0.0013 eV 4			0	3 . y to 4 , possible y to 0 .
3270.3 <i>2</i> 3293 <i>5</i>	3-,4-,5-,6-	0.0013 6 7		N		J^{π} : L(d,p)=1.
3315.72 3	4 ⁺			G	SU	J^{π} : $L(\alpha, \alpha') = 4$.
3342.94 7	$(3^-,4^+)$		A		Q V	J^{π} : L(p,t)=3 for E=3342 <i>10</i> and L(p,p')=4 for E=3342 <i>4</i> .
3356 <i>3</i>	0+			E		J^{π} : L(t,p)=0.
3358.517 22	$(2^+,3,4^+)^b$			G L		7T 7 () F
3360 <i>4</i> 3372.4 <i>5</i>	5 ⁻ 2 ⁺ ,3 ⁺ ,4 ⁺ ,5 ⁺ ,6 ⁺			G IJ MN	Q S V	J ^{π} : L(p,t)=5. J ^{π} : L(d,p)=2 and primaries from 4 ⁺ ,5 ⁺ .
3381.74 5	3 ⁻ 2 ⁺		A	GH	Q S uV	J^{π} : L=3 in (p,p'), (α , α ') and (p,t).
3392.618 <i>18</i>	2			E G K M	Qr uV	E(level): $E(p,p')=3401 5$, E(p,t)=3400 10.
3409.931 25	(3,4+)			GHI	r U	J^{π} : L=2 in (t,p), (p,t) and (p,p'). J^{π} : possible γ' s to 4^+ , (2^+) and primaries from thermal capture and from $J^{\pi}=4^+$ neutron resonance.
3423.8 6	$(2 \text{ to } 6)^{a}$			G I M		_
3436.3 9	(2 to 6) ^a			E G J		J ^{π} : L=(0,1) in (t,p) inconsistent with J=2 to 6. The level in (t,p) may be different.
3478.37 3	$(2,3)^+$		A	GHI L	Q S UV	E(level): E(p,t)=3490. J^{π} : L=1+3 in (d, 3 He) and γ to 4 ⁺ .
3501.4 <i>10</i>	4			E LMn	QrS V	J^{π} : L=4 in (p,p') and (p,t).

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XR	EF	Comments
3515.441 <i>13</i>	(3,4*)		GHI K 1		J^{π} : γ' s to (2^+) , (4^+) and primaries from thermal capture and from two $J^{\pi}=4^+$ neutron resonances. If same as L=3 in (d,p) then $J^{\pi}=(3^-)$. If same as L=(4) in (d,d') then $J^{\pi}=(4^+)$.
3557.9 <i>3</i>	1(-)&	0.050 eV 8		0	TT
3566.75 8 3578.93 3	$(2^+,3,4^+)$ 2^+		A E G	Q S UV	J^{π} : γ to 2^+ and log $ft=7.3$ from (3^-) . J^{π} : L=2 in (t,p) and (p,t).
3603? <i>5</i> 3617 <i>7</i>	0+		C	N QSV	J^{π} : L=0 in (p,t) and (α, α') .
3629 7	(6^+)		F	QSV	XREF: F(3590).
2620.59.2					J ^{π} : L=(6) in (α,α') , L=7,6 in (p,t) and L=6+8 or 6+7 in $(\alpha,^2$ He). L(p,p')=(5) inconsistent with J^{π} .
3639.5? 2 3642 2	(4 ⁺)		A E		J^{π} : L(t,p)=(4).
3647 ^d 10	1-		a	q S	J^{π} : $L(\alpha, \alpha')=1$.
3647 ^{de} 10	2+		a g	q V	J^{π} : L(p,t)=2.
3647.9 7	1+&	0.028 eV 6		0	
3654.4 ^e 11	$(4^+,5^+)$		g L I		J^{π} : L(d,p)=(0).
3681 ^j 1 3683 4	(8 ⁺) 5 ⁻		E	Х	J^{π} : yrast cascade in (82 Se,X). J^{π} : L(t,p)=5.
3685.42 <i>12</i>	$(2 \text{ to } 5^+)$		G	v q v	J^{π} : γ to (3 ⁺) and primary from thermal
					capture. If same as L=4 in (p,p') then $J^{\pi}=4^+$.
3691.79 <i>4</i> 3696.59 <i>9</i>	3 ⁻ (3,4) ^c		G A H JKL 1	qSv nsv	J ^{π} : L(α,α')=3. L(p,p')=4 inconsistent with J ^{π} . J ^{π} : log ft =6.6 from (3 ⁻). Feeding from 4 ⁺ and
			A II SKL I		5 ⁺ resonances.
3700 <i>10</i> 3707.20 <i>14</i>	(0 ⁺) (3,4,5) ^c		G IJ 1	Q nsv	J ^{π} : L(p,p')=(0). J ^{π} : γ to 3 ⁻ and primaries from thermal capture
2707.2011			0 10		and from 4 ⁺ and 5 ⁺ resonances.
3716.7 <i>4</i>	$(1^-,2^+)^{\mathcal{C}}$			n s v	J^{π} : γ' s to 0^+ , (3^-) .
3720.79 5	$(3,4^+)$		A G 1	n	J^{π} : log ft =6.3 from (3 ⁻) and primary from thermal capture.
3733 7	4+		E 1	n Q S	J^{π} : L(t,p)=4. L(p,p')=3 is not consistent with J^{π} .
3743.348 23	$(3^-,4^+)$			n	J^{π} : γ to 5 ⁻ and possible γ to (3,4 ⁺).
3748 5	2^{+}			n QS V	J^{π} : L=2 in (p,t) and (p,p').
3771.74 <i>5</i> 3778 <i>5</i>	$(2^+,3,4^+)^b$ 0^+		GH L E	QSV	J^{π} : L=0 in (t,p) and (p,t).
3783.41 5	$(2^+,3,4^+)^{b}$		G		() = ((·) ₁ (+,·)
3790.90 8	(3,4+)		GΙ		J^{π} : γ to (2 ⁺) and primaries from thermal capture and from $J^{\pi}=4^{+},5^{+}$ neutron
3806.772 23	3-		GH	S	resonances. J^{π} : $L(\alpha, \alpha')=3$.
3807.03 11	3		A	J	v . E(a,a) 3.
3828.23^{f} 10	$(1^- \text{ to } 4^+)^f$		A		J^{π} : γ' s to 2^+ and 3^- .
$3832.23 \frac{f}{f} 5$	$(2^+,3,4^+)^{bf}$		G		
3835.27 ^f 4 3853 10	$(2^+,3,4^+)^{bf}$		GHI KL	S	
3870	$(6^+, 7^-, 8^+)$ 2^+		F		J^{π} : L(α , ² He)=6+7 or 6+8 for 3590+3870.
3874.17 <i>4</i>	2'		E G	Q V	J ^{π} : γ to 3 ⁻ ; L(p,t)=2; L(p,p')=(2) assuming the same levels are populated in (p,t), (p,p') and (n, γ) E=th.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF					Comments
3874.9 <i>3</i>	1+&	0.099 eV 18				0		
3876 ^h 10	3-	0.077 CV 10						\mathbf{I}^{π} , \mathbf{I} (a. \mathbf{a}^{f})=2
3889.69 <i>3</i>	$(2^+,3,4^+)$			G		S		J^{π} : $L(\alpha, \alpha')=3$. J^{π} : γ to 4^{+} .
3895.01 6	$(2,3,4^+)$ $(2,3,4^+)$		Α	G				J^{π} : γ' s to 2^+ , $(3)^+$ and $(3^-,4^+)$.
3897.98 <i>4</i>	$(2^+, 5, 4^-)$ $(2^+ \text{ to } 6^+)$		А	G				J^{π} : possible γ to 4^{+} .
3916 <i>5</i>	0+			E		Q	٧	J^{π} : L=0 in (t,p), (p,t).
3932.98 ^g 4	$(1^+,2,3,4^+)^g$			G		ď	•	J^{π} : γ to $(2^+,3,4^+)$.
3941.09 ⁸ 16	$(2^+,3^-)^g$			G				J^{π} : γ' s to (3) ⁺ and (4) ⁺ .
3949.80 ⁸ 10	$(2^+,3,4^+)^{bg}$			ď				3 . y 3 to (3) and (4) .
3949.808 <i>10</i> 3958.03 <i>20</i>	3-		Α	GHI	L	S		J^{π} : $L(\alpha,\alpha')=3$.
3975.86 <i>9</i>	(2^{+})			G	L	3		J^{π} : $L(\alpha, \alpha) = 3$. J^{π} : γ' s to 0^+ , (3^+) , (3^-) .
3975.80 9	$(2,3,4^+)$		Α	G				J^{π} : γ' s to 0^+ , (3^-) , (3^-) . J^{π} : γ' s to 2^+ , $(3)^+$ and log ft =6.0 from (3^-) .
3995.05 <i>10</i>	$(2,3,4^+)$ $(2^+,3,4^+)$		A					J^{π} : γ to 2^{+} and $\log f$ 6.7 from (3 ⁻).
3995.83 <i>6</i>	$(2^+,3,4^-)$ (2^+)		А	GHI	n			J^{π} : γ' s to 0^+ , 2^+ and 4^+ .
3999 <i>10</i>	5-			GIII	n			J^{π} : $L(\alpha, \alpha')=5$.
	1 <mark>&</mark>	0.044 - 17.6						\mathbf{J} . $\mathbf{L}(\alpha,\alpha)=\mathbf{J}$.
4006.8 <i>4</i> 4008 <i>10</i>	(0^+)	0.044 eV 6				0		$I\pi$. I $\langle n, n' \rangle = \langle 0 \rangle$
	2+			E C		Q S		J^{π} : L(p,p')=(0).
4022.94 <i>7</i> 4024 <i>7</i>	5-			E G		Q S	٧	J^{π} : L(t,p)=2. J^{π} : L=5 in (α,α') and (p,t) .
						Ų 3	V	$J : L=3 \text{ in } (\alpha,\alpha) \text{ and } (p,t).$
4030.1 5	$(2^+,3,4^+)^b$			G	L	C		VDEE C(9)
4045.43 4	(2 + 5)(1			G		S		XREF: $G(?)$.
4064.66 3	$(2 \text{ to } 5)^a$			G				J^{π} : γ to 3.
4069 5	3 ⁻ ,4 ⁻ ,5 ⁻ ,6 ⁻ (0 ⁺)				N			$J^{\pi}: L(d,p)=1.$
4083 10						Q		J^{π} : $L(p,p')=(0)$.
4084.9 5	1+&	0.060 eV 8		_		0		TT T 41 (1) (0) C () 1 ()
4085 10	4+			E		Q S	V	J^{π} : L=4 in (α, α') . $\sigma(\theta)$ for (p,t) and (t,p)
4002 10	(5-)					•		peaks can' $T_{1/2}$ be fit by a single L value.
4093 10	(5^{-})			G		Q		E(level): $E=4094.02$ 4 for a tentative level in
								(n,γ) .
4110.5	2- 4- 5- 6-				3.7			J^{π} : L(p,p')=(5).
4119 5	3-,4-,5-,6-			G	N			E(level): E=4114.16 4 for a tentative level in
								(n,γ) .
4120	(7- 0+)							J^{π} : L(d,p)=1.
4130	$(7^-,8^+)$			F		•		J^{π} : $L(\alpha,^{2}He)=(7,8)$.
4138 10	2.			G		Q	V	E(level): E=4137.27 6 for a tentative level in
								(n,γ) .
4144 400				•				$J^{\pi}: L(p,t)=2.$
4144.48? ⁱ 10				G				
4155.25? ⁱ 13				G				
4164 10	2+					Q	V	J^{π} : $L(p,t)=2$.
4171.5 <i>3</i>	₁ &					0		
4174 <i>4</i>	3-			E	N	Q		J^{π} : L(t,p)=3 and L(d,p)=1.
4191.32? ⁱ 5				G				
4201.55 8	2+		Α	E		Q	V	J^{π} : L(t,p)=2.
4202.94? ⁱ 5				G				***
4204.67 16	$(2^+ \text{ to } 5^-)$			Ğ	KL			J^{π} : γ' s to 4^+ and 3^- .
4217.30 5	$(2^+,3,4^+)^{b}$			G				,
4217.30 3	$(2^+,3^+,4^+)$		Α	ď				J^{π} : log $ft=7.1$ from (3 ⁻).
	1-&	0.000 -17.10	21			^		5 . 10g ji – 1.1 110m (5).
4224.9 8	$(3,4^+)$	0.090 eV <i>10</i>		CH		0		E(laval): this laval may be the same as
4234.77 6	(3,4)			GH	L			E(level): this level may be the same as 4235.33 seen in.
								J^{π} : primary γ' s from thermal capture and
								from $J^{\pi}=4^{+}$ neutron resonance.
								nom v i nout on resonance.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$			XREI	7		Comments
4235.33 13	$(2,3,4)^+$		A		N	Q		J^{π} : γ to 2^+ and $L(d,p)=2$.
4239 10	0^{+}		Λ	G	14	Q	V	E(level): $E=4238.19 6$ for a tentative level in
4239 10	U			ď			•	(n,γ) .
								J^{π} : L(p,t)=0.
4272 10	(0±)					^	77	
4273 10	(0^+)					Q	V	J^{π} : $L(p,t)=(0)$.
4276.4? ⁱ 3				G				
4290 7	2+			E G			V	E(level): $E=4292.28 6$ for a tentative level in
								(n,γ) .
								J^{π} : L=2 in (t,p) and (p,t).
4305.8 <i>13</i>	₁ &	0.047 eV 7			0)		
4320 10	4 ⁺	0.017 0 7		E	•	Q	V	J^{π} : L=4 in (p,t) and L=(4) in (t,p).
4339.67 5	(2^+)			G		Q	•	J^{π} : γ to 0^+ .
				ď	_			J. 7 to 0.
4342.6 3	1 &				0)		
4344.25? ⁱ 5				G				
4353 5	4 ⁺			E	N	Q		J^{π} : L(t,p)=4.
4367.2 5	$(1^- \text{ to } 5^-)$		Α			-		J^{π} : γ to (3^{-}) .
4368.15 7	(2+)			G		q		J^{π} : γ to 0^+ .
4387 5	2+			Е	N	q	V	J^{π} : L=2 in (p,t), L=(2) in (t,p) and (d,p).
4408.58 10	$(4^+)^a$			G		-1	V	J^{π} : $L(p,t)=0,4$.
4413.54 10	2+			E G	N		•	J^{π} : L=2 in (t,p) and (d,p).
4439.98 5	$(2,3,4)^a$			G	14			J^{π} : γ to (2^+) .
								J . y to (2).
4442.18 5	$(2^+,3,4^+)^{b}$			G				
4477.49 6	$(0^+ \text{ to } 4^+)$		Α					J^{π} : γ to 2^+ .
4493 7	4+			E	N		V	J^{π} : L=4 in (t,p) and (p,t).
4527.89 <i>4</i>	(2^{+})			G				J^{π} : γ to 0^+ .
4535 10	0^{+}						V	J^{π} : $L(p,t)=0$.
4538 10	2+			E				J^{π} : L(t,p)=2.
4544 5	$4^{+},5^{+}$				N			J^{π} : L(d,p)=0.
4586 9	4 ⁺			E				J^{π} : L(t,p)=4.
4591 <i>10</i>	2+						V	J^{π} : L(p,t)=2.
4594 5	3-,4-,5-,6-				N			J^{π} : $L(d,p)=1$.
4611.42 <i>16</i>	$(2^{-},3^{-},4^{-})$		Α					J^{π} : log $ft = 5.7$ from (3 ⁻).
4630.43 7	(2+)			E G	N		V	J^{π} : L(p,t)=(2).
4664 10	4+						V	J^{π} : $L(p,t)=4$.
4685 6	(0^+)			E			V	J^{π} : L(p,t)=(0).
4698.29 <i>13</i>	$(2^-,3^-,4^-)$		Α	-			•	J^{π} : log $ft=5.0$ from (3 ⁻).
4731 5	4 ⁺ ,5 ⁺		А		N			J^{π} : L(d,p)=0.
4767 11	$(0^+,1^-)$			E	14			J^{π} : $L(t,p)=(0,1)$.
4824 5	4 ⁺ ,5 ⁺			E	N			J^{π} : L(d,p)=0.
				C	IN			
4840.92 13	(2^+)			G				J^{π} : γ to 0^+ .
4853 8	$(0^+,2^+)$			E				J^{π} : $L(t,p)=(0+2)$.
4874 5	(2+)				N			TT 1 () (0)
4920 10	(2+)						V	J^{π} : L(p,t)=(2).
4951 10	(2+)						V	J^{π} : L(p,t)=(2).
4972.55 9	(2^{+})			G				J^{π} : γ to 0^+ .
4981 5					N			
5021 10	(2^{+})						V	J^{π} : L(p,t)=(2).
5062 5	$4^{+},5^{+}$				N			J^{π} : L(d,p)=0.
5107.82? ⁱ 5				G				
5131.45 8	$(2 \text{ to } 6)^{a}$			Ğ				
5147 5	4 ⁺ ,5 ⁺			,	N		V	J^{π} : L(d,p)=0. L(p,t)=5 is reported by 1972IsZV
51175	. ,5						•	for E=5313; however, in the work of 1977Gu12,
								the 5148 peak is not fit by any single L value.
5288.5				G				J^{π} : (2 ⁺ ,3 ⁺) proposed by 2000PoZV in (n, γ).
3200.3				ď				3. (2,3) proposed by 20001 02 v iii (ii, y).

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		XREF		Comments
5323 5	4+,5+			N		$J^{\pi}: L(d,p)=0.$
5352 10	0				V	
5434.8 5	1-&	0.40 eV 3		0		
5435.76? ⁱ 7	Q.		G	N		XREF: N(5440).
5485.1 <i>12</i>	1&	0.075 eV 11		0		
5493.1 <i>10</i>	1&	0.087 eV 17	6	0		III (2- 4-)
5510.3 5514.8 8	₁ &	0.22 -1/4	G	0		J^{π} : (3 ⁻ ,4 ⁻) proposed by 2000PoZV in (n, γ).
5514.8 8 5580 <i>10</i>	(0^+)	0.23 eV 4		0	V	J^{π} : L(p,t)=(0).
5617 5	(0)			N	•	J. E(p,t)=(0).
5717 5				N		
5743.7 10	1 ^{&}	0.110 eV <i>13</i>		0		
5758.76? ⁱ 4			G			
5766.7 4	1(+)&	0.167 eV 26		0		
5787 <i>5</i> 5850 <i>5</i>				N N		
5926.86? ⁱ 6			G	N		XREF: N(5930).
5934.16? ⁱ 9			G	N		ARLF. 14(3)30).
6017.4 24	1-&	0.120 eV <i>15</i>		NO		XREF: N(?).
0017.127	1	0.120 0 13		110		Γ from 1970Mo26.
6190?				N		
6200	$(6^+,8^+)$		F	17		J^{π} : L(α , 2 He)=(6,8).
6330?	$(4^+,5^+)$ $1^{\&}$	0.39 eV <i>11</i>		N		J^{π} : $L(d,p)=(0)$.
6445.1 <i>11</i> 6477.9 <i>6</i>	1-&	0.39 eV 11 0.226 eV 21		0		
6530?	1	0.220 eV 21		O N		
6650.3 <i>3</i>	1-&	0.92 eV 7		0		
6660.5 <i>5</i>	1-&	0.337 eV 20		0		
6680?				N		
6732.7 8	1+&	0.29 eV 3		0		
6862.00? ⁱ 7	0		G			
6942.6 6	1-&	0.35 eV 3		0		
6992.70? ⁱ 6	0		G			
7150.8 <i>16</i>	1-&	0.58 eV 9		0		
7173.18? ⁱ 4	Q _r		G			
7264.6 <i>6</i>	1-&	0.81 eV 3		0		
$7275.90?^{i}$ 4			G			
7359.39? ⁱ 9	₁ &	0.25 37.4	G	•		
7379.9 <i>10</i> 7445.3 <i>11</i>	1& 1&	0.25 eV 4		0		
7445.3 11 7493.60? ⁱ 6	I		C	0		
7493.00? 0 7506.7 <i>10</i>	1(-)&	0.40 eV 3	G	0		
7506.7 <i>10</i> 7550.7 <i>7</i>	1-&	0.40 eV 3 0.80 eV 11		0 0		
7578.96? ⁱ 5	1	0.00 C V 11	G	U		
7616.0 8	1&		3	0		
7610.0 8 7621.77? ⁱ 7	1		G	· ·		
7652.1 6	1-&	1.51 eV <i>12</i>	•	0		
$7702.02?^{i}$ 5	•		G	Ŭ		
· · · · · ·			-			

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF
7882.23? ⁱ 4			G
7980.64? ⁱ 6			G
8219.0 8	1 ^{&}	0.36 eV 5	0
8250.2 8	1&	0.33 eV 8	0
8361.1 <i>12</i>	1 ^{&}	0.88 eV 18	0
8375.70? ⁱ 8			G
8440.13? ⁱ 9			G
8560.09? ⁱ 6			G
8873.33? ⁱ 7			G
8928.00? ⁱ 8			G
9004.38? ⁱ 6			G
9133.79? ⁱ 8			G
9457.91? ⁱ 5			G

[†] In (p,p'), level energies above 3600 are too high by 10-30 keV, the evaluators have considered this deviation in establishing the level correspondences. See (n, γ) E=th for many additional levels that are considered as tentative. The 2630 and 3050 groups in (α , ²He) cannot be associated uniquely with any of the levels here due to the poor resolution in this reaction and high level density in this energy region.

 $^{^{\}ddagger}$ When arguments are based on L values in particle-transfer reactions, L(d,p) is from $9/2^{+}$ 73 Ge target; and L(d, 3 He) is from $3/2^{-}$ As target.

[#] Γ are from (γ, γ') .

[@] From $(n,n'\gamma)$.

[&]amp; From $\gamma\gamma(\theta)$ and $\gamma(\text{pol})$ in $(\gamma,\gamma'),(\text{pol }\gamma,\gamma')$.

^a Primary γ from $4^+,5^+$.

^b γ' s to 2⁺ and 4⁺.

^c L(p,t)=(2) for E=3607 10.

^d E=3639.77 10 with probable $J^{\pi}=1,2^{+}$ is reported in β^{-} decay.

^e E=3651.93 3 with probable $J^{\pi}=1^{+},2,3,4,5^{+}$ is reported in (n,γ) E=th.

^f L=2 for E(t,p)=3824 5, L=(2) for E(p,p')=3825 10, L=4 for E(p,p')=3849 10, L=3+5 for E(α,α')=3836 10, L=1+3 for E(d, α)=3837 10 and L=1 for E(d,p)=3841 5 probably correspond to any of these levels.

^g L=2 for E(t,p)=3953 δ , L=4 for E(p,p')=3966 δ 10, L=(3+5) for E(α , α ')=3948 δ 10, L=3 for E(p,t)=3935 δ and L=3 for E(p,t)=3950 δ probably correspond to any of these levels.

^h E=3874.17 4 is reported in (n,γ) , and probably corresponds to either the 3874 or 3876 levels.

ⁱ For γ rays from this level see ⁷³Ge(n, γ) E=th.

^j Band(A): g.s. band.

Gammas are known mainly from 74 Ga β^- decay and 73 Ge(n, γ) E=thermal. Low energy γ' s are from curved-crystal spectrometer data in (n, γ). See (n, γ) E=th for many additional γ rays from tentative levels.

$E_i(level)$	J_i^π	E_{γ}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. [†]	δ	Comments
595.850	2+	595.847 6	100	0.0	0+	E2		B(E2)(W.u.)=33.0 4
								Mult.: from $\gamma(\text{pol},\theta)$.
1204.205	2+	608.353 5	100 <i>I</i>	595.850	2+	E2+M1	+3.4 4	B(M1)(W.u.)=0.00099 15; B(E2)(W.u.)=43 6
		1204 200 12	46.2	0.0	0+	Ea		δ: from $\gamma\gamma(\theta)$ in ⁷⁴ As ε decay. Other: +2.2 3 from (n,n' γ).
1463.759	4+	1204.208 <i>12</i> 867.898 <i>6</i>	46 <i>3</i> 100	0.0 595.850	0 ⁺	E2 E2		B(E2)(W.u.)=0.71 11 B(E2)(W.u.)=41 3
1403.739	0 ⁺	887.19 <i>7</i>	100	595.850		E2 E2		B(E2)(W.u.)=41.3 B(E2)(W.u.)=9+9-6
1402.01	U	1482.6	100		0+	E0		From ce data (1983Pa10).
		1402.0		0.0	U	LU		$I_{(\gamma+ce)}$: <0.006 from ⁷⁴ As ε decay.
								$q_K^2(E0/E2) < 0.12$, $X(E0/E2) < 0.052$, $\rho^2(E0) > 0.032$ (2005Ki02, evaluation).
1697.140	$(3)^{+}$	233.395 12	2.1 2	1463.759	4+			$q_{K}(E0/E2) < 0.12$, $X(E0/E2) < 0.032$, p (E0)>0.032 (2003Ki02, evaluation).
1077.140	(3)	492.936 6	58 1	1204.205		(M1+E2)	+1.3 4	δ : from $\gamma(\theta)$ in (n,n' γ) (1970Ch15). Other: 2.0 +3-6 or 0.75 +15-6 (1987Do14).
								Mult.: D+Q from $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.
		1101.267 12	100 <i>I</i>	595.850	2+	(M1+E2)	+0.34 5	δ : from $\gamma(\theta)$ in $(n,n'\gamma)$ (1970Ch15). Other: 0.47 5 (1987Do14).
		1101.207 12	100 1	373.030	_	(1111 122)	10.515	Mult.: D+Q from $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.
1724.954	(0^+)	520.744 12	100	1204.205	2+			2.
2165.259	$(3,4)^{+}$	468.11 <i>3</i>	6.5 3	1697.140				
		701.487 6	42.7 3	1463.759	4+			
		961.055 <i>10</i>	100 <i>I</i>	1204.205	2+	(M1(+E2))	0.01 <i>1</i>	δ : from $\gamma(\theta)$ in $(n,n'\gamma)$ (1987Do14).
								Mult.: D+Q from $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.
2197.933	2+	715.17 3	35 2		0+			
		734.17 <i>4</i>	25 4	1463.759				74
		993.67 <i>6</i>	100 5	1204.205	2+	(E2+M1)	$-2.8\ 2$	δ : $\gamma \gamma(\theta)$ in ⁷⁴ As ε. Mult from ΔJ^{π} .
		1602.0.2	45.4	505.050	2+			Mult.: D+Q from $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.
		1602.0 2	45 4	595.850	0+			
2227.77	0^{+}	2197.95 <i>8</i> 1021.9 <i>I</i>	82 <i>10</i> 38	0.0 1204.205				
2221.11	U	1621.9 <i>1</i> 1631.89 <i>12</i>	100	595.850				
2403.5	1	2403.5 4	100		0^{+}			
2536.310	3-	839.152 <i>14</i>	2.8 3	1697.140				
2000.010		1332.12 7	31 2	1204.205				
		1940.53 <i>15</i>	100 2	595.850		(E1(+M2))	+0.02 2	δ : from $\gamma(\theta)$ in $(n,n'\gamma)$ (1987Do14).
						//		Mult.: D+Q from $\gamma(\theta)$. ΔJ^{π} =yes from placement in level scheme.
2569.329	(6^{+})	1105.562 <i>12</i>	100	1463.759				
2600.32	$(1,2,3)^+$	2004.45 9	100 9	595.850				
2669.62	4+	972.38 5	22 1	1697.140	$(3)^{+}$			

10

γ (74Ge) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	Εγ	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	E_i (level)	\mathtt{J}_i^{π}	Εγ	I_{γ}	E_f	\mathbf{J}_f^{π}
2669.62	4+	1205.88 9	74 9	1463.759		3032.8	1	1828.6		1204.205	
2690.6	1	2073.85 <i>7</i> 2690.6 <i>3</i>	100 10	595.850 0.0	2 ⁺ 0 ⁺	3034.00	$(3,4^+)$	3032.8 <i>2</i> 497.62 <i>10</i>	51 <i>5</i>	0.0 2536.310	0^{+}
2693.68	$(3,4^+)$	1489.35 5	100 2	1204.205		3034.00	(3,4)	1337.18 ^{#c} 10	<85	1697.140	
2093.08	(3,4)	2098.00 7	31 3	595.850				1570.26 10	51 2	1463.759	
2696.918	(2^{+})	531.650 9	8.3 2	2165.259				1829.86 10	100 3	1204.205	
		999.781 <i>12</i>	100 <i>I</i>	1697.140	$(3)^{+}$			2438.45 [#] <i>14</i>	14 2	595.850	2+
		1233.23 <i>15</i>	6.0 6	1463.759		3048.564	4+	850.64 <i>5</i>	33 <i>1</i>	2197.933	
2750.61	0_{+}	1546.4 <i>3</i>	100 15	1204.205				883.25 3	100 3	2165.259	
2020 507	4+	2154.6 3	100 15	595.850				1844.62 10	100 10	1204.205	
2828.507	4+	663.19 <i>6</i> 1131.360 <i>9</i>	1.2 <i>I</i> 100 2	2165.259 1697.140		3060.1	$(2^+ \text{ to } 6^+)$	3048.5 <i>4</i> 1596 <i>1</i>	9 2 100	0.0 1463.759	0 ⁺
2833.41	(2 ⁺)	667.8 3	35 <i>3</i>	2165.259		3081.321	$(2 \ 0 \ 0)$ (3^+)	545.01 [‡] <i>I</i>	11.8 3	2536.310	
2833.41	(2.)					3081.321	(3.)	916.07 [‡] 5			
		1135.9 2	20 3	1697.140					20 1	2165.259	
2835.923	(2^{+})	2237.9 <i>2</i> 670.59 <i>7</i>	100 <i>4</i> 5.8 <i>6</i>	595.850 2165.259				1384.11 [‡] 8 1617.64 8	57 <i>3</i> 100 <i>4</i>	1697.140 1463.759	
2033.923	(2)	1138.79 6	3.8 0 100 6	1697.140		3092.2	1(+)	1888.0	100 4	1204.205	
		2240.1 3	23 3	595.850		3092.2	1. 7	3092.2 2		0.0	0 ⁺
2856.04	0^{+}	1651.8 3	100 20	1204.205		3104.506	5-	939.23 2	100 2	2165.259	
		2260.0 4	100 20	595.850				1640.8 <i>1</i>	47 3	1463.759	
2878.14	(5^{-})	712.8 2	100 13	2165.259		3118.0	3-,4-,5-,6-	182.4 2	100 5	2935.475	
	(a. (±)	1414.4 2	67 13	1463.759				1654.1 2	12 2	1463.759	
2925.45	$(3,4^+)$	1228.29 <i>9</i> 1721.3 <i>2</i>	100 <i>4</i> 19 <i>1</i>	1697.140 1204.205		3139.32 3140.30	3-	1675.6 2 604.21 <i>10</i>	100 100 7	1463.759 2536.310	
2935.475	3-	399.08 <i>3</i>	0.42 3	2536.310		3140.30	3	942.47 7	45 2	2197.933	
2733.473	5	770.212 12	14.0 2	2165.259				975.1 3	9.4 10	2165.259	
		1471.72 3	100 <i>I</i>	1463.759				1443.38 <mark>dc</mark> 7	<125 ^d	1697.140	
2938.7	2+	2342.8 2	100	595.850				1676.77 14	25 1	1463.759	· /
2949.48	(3^{-})	784.3 [#] 2	1.5 2	2165.259	$(3,4)^+$	3175.47	3-	141.52 [‡] 3	21 6	3034.00	$(3,4^+)$
		1744.9 2	10.8 3	1204.205	2+			481.7 ^{‡&e} 1	56 12	2693.68	$(3,4^+)$
		2353.46 19	100 3	595.850	2+			639.10 [#] <i>10</i>	65 <i>4</i>	2536.310	3-
2961.0	(5^{-})	1756.7 2	100	1204.205	2+			1478.2 <i>3</i>	24 3	1697.140	
2973.472	(3)	437.20 [‡] <i>3</i>	0.8 1	2536.310	3-			1971.0 2	16 <i>4</i>	1204.205	2+
		808.23 [‡] 2	33 1	2165.259	$(3,4)^{+}$			2580.07 ^a 10	100 5	595.850	2+
		1509.66 9	100 2	1463.759		3199.5	2+	663.2 2	100 10	2536.310	3-
		2973.1 [‡] 4	2.5 3	0.0	0^{+}			2603.6 2	100 10	595.850	2+
2999.2	2+	777 [@] 4		2227.77	0^{+}	3211.8?		2616.67 ^e 9		595.850	2+
		1794.3 <i>1</i>	30 5	1204.205	2+			3211.11 ^{de} 11	d	0.0	0^{+}
		2402.7 <i>1</i>	100 8	595.850	2+	3224.680	4+	251.22 <i>I</i>	34 <i>1</i>	2973.472	
		2999 <i>1</i>	25 5	0.0	0_{+}			289.19 <i>I</i>	100 2	2935.475	3-

γ (74Ge) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f \mathbf{J}_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f \mathbf{J}_f^{π}
3224.680	4+	396.18 <i>3</i>	26 2	2828.507 4+	3639.5?		3639.45 <i>de</i> 13	<160 ^d	$0.0 0^{+}$
3271.51	(2^{+})	1043.6 <i>3</i>	8 2	2227.77 0+	3647.9	1+	3647.9 7	1100	$0.0 0^{+}$
02/1101	(-)	1546.7 <i>4</i>	4 1	1724.954 (0+)	3681	(8+)	1112		2569.329 (6 ⁺)
		1807.5 <i>I</i>	100 10	1463.759 4+	3685.42	$(2 \text{ to } 5^+)$	604.10 12	100	3081.321 (3 ⁺)
3276.3	1	3276.3 2		$0.0 0^{+}$	3691.79	3-	657.84 <i>4</i>	5.2 3	3034.00 (3,4+)
3315.72	4+	746.40 <i>4</i>	13 <i>1</i>	2569.329 (6 ⁺)			756.24 9	4.6 5	2935.475 3-
		1150.43 <i>4</i>	100 <i>3</i>	2165.259 (3,4)+			1022.05 10	10 2	2669.62 4 ⁺
3342.94	$(3^-,4^+)$	1177.42 <i>18</i>	29 <i>3</i>	2165.259 (3,4)+	3696.59	(3,4)	521.0 5	19 <i>4</i>	3175.47 3-
		2138.62 10	100 5	$1204.205 \ 2^{+}$			1160.33 <i>10</i>	100 7	2536.310 3-
		2747.13 10	100 6	595.850 2 ⁺			1999.3 2	64 6	1697.140 (3) ⁺
3358.517	$(2^+,3,4^+)$	530.01 2	100 4	2828.507 4+			2231.9 5	16 <i>15</i>	1463.759 4+
		1160.5 2	98 10	2197.933 2+	3707.20	(3,4,5)	1170.88 <i>14</i>	100	2536.310 3-
3381.74	3-	2785.83 5	100	595.850 2 ⁺	3716.7	$(1^-,2^+)$	540.9 5	100 18	3175.47 3
3392.618	2+	311.32 <i>3</i>	16 <i>1</i>	3081.321 (3 ⁺)			3717.1 7	18 <i>6</i>	$0.0 0^{+}$
		556.68 <i>3</i>	7.5 6	2835.923 (2+)	3720.79	$(3,4^+)$	545.5 [#] 5	3.7 11	3175.47 3-
		695.69 2	30.0 6	2696.918 (2 ⁺)			1184.4 [#] 2	16 2	2536.310 3-
		1227.2 2	100 <i>I</i>	$2165.259 (3,4)^{+}$			2023.6 3	30 7	$1697.140 (3)^{+}$
3409.931	$(3,4^+)$	574.03 <i>4</i>	5.1 4	$2835.923 (2^{+})$			2257.0 1	100 <i>3</i>	1463.759 4 ⁺
		581.47 <i>4</i>	3.1 6	2828.507 4+	3743.348	$(3^-,4^+)$	472.04 16	32 10	$3271.51 (2^+)$
		712.99 5	7.4 <i>4</i>	2696.918 (2+)			567.92 7	8 3	3175.47 3-
		1712.96 <i>12</i>	100 6	$1697.140 (3)^{+}$			638.83 2	100 <i>3</i>	3104.506 5
		1945.9 2	16 2	1463.759 4+	3771.74	$(2^+,3,4^+)$	723.21 5	7.7 7	3048.564 4+
3478.37	$(2,3)^+$	302.98 <i>3</i>	10 2	3175.47 3			1573.75 9	100 4	2197.933 2+
		429.73 [‡] 5	8 2	3048.564 4+			2307.5 6	3.6 7	1463.759 4+
		444.2 [#] 5	4 2	$3034.00 (3,4^+)$			2567.4 <i>1</i>	24 3	1204.205 2+
		942.15 [‡] <i>10</i>	7 3	2536.310 3-	3783.41	$(2^+,3,4^+)$	467.68 <i>6</i>	43 10	3315.72 4+
		1312.81 <i>11</i>	51 4	2165.259 (3,4)+			2579.15 ^b 8	100	1204.205 2+
		2014.50 6	100 5	1463.759 4 ⁺	3790.90	$(3,4^+)$	519.47 9	5.4 14	$3271.51 (2^+)$
3515.441	$(3,4^+)$	541.96 <i>1</i>	76 2	2973.472 (3)			1254.47 10	100 <i>3</i>	2536.310 3-
		579.97 <i>1</i>	96 2	2935.475 3-	3806.772	3-	291.33 2	24 3	3515.441 (3,4+)
		679.4 <i>1</i>	8 2	$2835.923 (2^{+})$			2342.89 12	75 <i>1</i>	1463.759 4+
		686.90 <i>6</i>	9 1	2828.507 4+			3210.94 8	100 4	595.850 2+
		1350.19 <i>12</i>	100 7	2165.259 (3,4)+	3807.03		2109.8 ^e 6		$1697.140 (3)^{+}$
3557.9	1 ⁽⁻⁾	2962.1		595.850 2 ⁺			3211.11 ^d 11	d	595.850 2+
		3557.9 <i>3</i>		$0.0 0^{+}$	3828.23	$(1^- \text{ to } 4^+)$	484.9 <i>3</i>	100 5	$3342.94 (3^-,4^+)$
3566.75	$(2^+,3,4^+)$	2362.36 13	15 2	1204.205 2+			652.5 5	6 3	3175.47 3-
		2970.92 10	100 4	595.850 2 ⁺			1134.5 <i>3</i>	36 <i>4</i>	$2693.68 (3,4^+)$
3578.93	2+	643.44 <i>3</i>	64 <i>3</i>	2935.475 3-			1630.7 <i>10</i>	98	2197.933 2+
		2115.5 4	51 6	1463.759 4+			2131.5 4	19 <i>1</i>	$1697.140 (3)^{+}$
		3578.9 2	100 6	$0.0 0^{+}$			2625.3 ^e 4	7 1	1204.205 2+
3639.5?		3043.6 ^e 4	100 20	595.850 2+			3232.34 11	56 7	595.850 2+

12

γ (74Ge) (continued)

3832.23	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f \mathbf{J}_f^{π}	E_i (level)	\mathtt{J}_i^{π}	\mathbb{E}_{γ}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3832.23	$(2^+,3,4^+)$	560.68 3	13 <i>I</i>	3271.51 (2 ⁺)	3995.05	$(2^+,3,4^+)$	3992.4 ^e 10	7 2	0.0	0+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			692.46 ^c 8	10 2	3140.30 3-	3995.83		212.40 [‡] 7	6.2	3783.41	$(2^+,3,4^+)$
1003.5 2 55 14 2828.507 4" 2790.4 4 11 1 1204.205 2" 2780.4 1 17 2780.205 2" 2780.4 1 2780.4 1 2780.205 2" 2780.4 1 2780.4 1 2780.205 2" 2780.4 1 2780.4 1 2780.205 2" 2780.4 1 2780.4 1 2780.205 2" 2787.7 1 2248.5 3 2828.5 3 2780.4 1 2828.5 3							,				
3835.27 (2+3,4+) 476.75 5 23 6 3358.517 (2+3,4+) 4006.8 1 4006.8 4 0.0 0 the second se					2828 507 4+						
3835.27								3996 1 2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3835.27	$(2^+,3.4^+)$				4006.8	1		21 2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2000.27	(= ,0,.)							22.6		
3874.17 2+ 182.40 2 61.5 3691.79 3- 1338.05 8 100 10 2536.310 3- 1338.05 8 100 10 2536.310 3- 3434.2 6 12 4 555.850 2+ 3454.2 6 12 4 555.850 2+ 3454.2 6 12 4 555.850 2+ 3454.2 6 12 4 555.850 2+ 3454.2 6 12 4 555.850 2+ 3454.2 6 12 4 555.850 2+ 3454.2 6 12 4 555.850 2+ 3454.2 6 12 4 555.850 2+ 3454.2 6 12 4 555.850 2+ 3454.2 6 12 4 555.850 2+ 3454.2 6 12 4 555.8 5 14 3 3889.69 (2^+,3,4^+) 1460.8 6 (2 to 5) 174.96 1 17 3 3889.69 (2^+,3,4^+) 3895.01 (2,3,4^+) 551.8 5 11 3 3342.94 (3^-,4^+) 4084.9 1+ 4084.9 5 0.0 0 the second of the							_				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
138,05	3874.17	2+				4030.1	$(2^+,3,4^+)$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3874.9	1+	3874.9 <i>3</i>		$0.0 0^{+}$	4064.66	(2 to 5)	174.96 <i>1</i>	17 <i>3</i>	3889.69	$(2^+,3,4^+)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3889.69	$(2^+,3,4^+)$	146.33 <i>3</i>					654.79 <i>4</i>			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									100 <i>13</i>	1463.759	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3895.01	$(2,3,4^+)$			$3342.94 (3^-,4^+)$	4084.9	1+	4084.9 5		0.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						4171.5				0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						4201.55	2+				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											` /
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3932.98	$(1^+,2,3,4^+)$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
3941.09 (2 ⁺ ,3 ⁻) 1112.6 2 100 13 2828.507 4 ⁺ 1776.1 4 99 10 2165.259 (3,4) ⁺ 2243.7 3 32 3 1697.140 (3) ⁺ 1534.9 3 32 6 2669.62 4 ⁺ 3949.80 (2 ⁺ ,3,4 ⁺) 471.1 5 55 7 3478.37 (2,3) ⁺ 4217.30 (2 ⁺ ,3,4 ⁺) 1136.0 3 24 5 3081.321 (3 ⁺) 809.3 3 42 9 3140.30 3 ⁻ 1381.6 2 28 4 2835.923 (2 ⁺) 999.9 2 37 13 2949.48 (3 ⁻) 2486.3 4 11 6 1463.759 4 ⁺ 2753.62 12 100 9 1463.759 4 ⁺ 3354.03 12 100 8 595.850 2 ⁺ 4222.9 (2 ⁺ ,3 ⁺ ,4 ⁺) 3018.8 4 100 15 1204.205 2 ⁺ 3975.86 (2 ⁺) 1282.1 3 100 15 2693.68 (3,4 ⁺) 4224.9 1 ⁻ 4224.9 8 0.0 0 ⁺ 3975.7 2 50 4 0.0 0 ⁺ 3976.23 (2,3,4 ⁺) 2279.05 9 100 4 1697.140 (3) ⁺ 4305.8 1 4305.8 13 00.0 0 ⁺						1201 -					2+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2041.00	(2± 2=)				4204.67	$(2^+ \text{ to } 5^-)$				(2±)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3941.09	$(2^{+},3^{-})$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2040.90	(2+ 2.4+)				4217.20	(2+ 2.4+)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3949.80	(2,3,4)				4217.30	$(2^{+},3,4^{+})$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						4222 9	$(2^{+} \ 3^{+} \ 4^{+})$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3958 03	3-				7222.)	(2 ,5 ,7)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						4224 9	1-		30 22		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3773.00	(2)							67 17		~
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1233.33	(2,3,1)				
$3976.23 (2,3,4^+) 2279.05 9 100 4 1697.140 (3)^+ 4305.8 1 4305.8 13 0.0 0^+$											
********* (=)**,* / ==****** *** ****** ****** *********	3076 23	$(2.3.4^{+})$				1305.8	1		\ 11		
	3910.23	(2,3,7)					-		65 13		
$3995.05 (2^+,3,4^+) 2790.79 10 100 9 1204.205 2^+ 618.90 8 4.8 11 3720.79 (3,4^+)$	3995.05	$(2^+,3.4^+)$				1337.07	(2)				

γ (74Ge) (continued)

$E_i(level)$	\mathtt{J}_{i}^{π}	Εγ	I_{γ}	\mathbb{E}_f	J_f^π	$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}	I_{γ}	\mathbb{E}_f	\mathtt{J}_f^π
4339.67	(2+)	648.2 2 1258.37 8 1739.2 6 2111.9 2	4.8 <i>11</i> 100 <i>4</i> 67 <i>16</i> 20 <i>2</i>	3691.79 3081.321 2600.32 2227.77	3 ⁻ (3 ⁺) (1,2,3) ⁺ 0 ⁺	4611.42 4630.43	(2 ⁻ ,3 ⁻ ,4 ⁻) (2 ⁺)	2074.14 ^c 25 516.27 12 2094.0 2 2905.23 9	100 <i>14</i> 100 <i>33</i> 9 <i>1</i> 23 2	2536.310 4119 2536.310 1724.954	3 ⁻ ,4 ⁻ ,5 ⁻ ,6 ⁻ 3 ⁻
4342.6	1	4342.6 3		0.0	0+			4034.70 10	16 <i>I</i>	595.850	
4367.2	$(1^- \text{ to } 5^-)$	1024.3 5	100 20	3342.94	$(3^-,4^+)$			4630.6 7	1.7 6	0.0	0+
4269 15	(2+)	1417.6 7	80 <i>7</i> 47 <i>10</i>	2949.48	(3^{-})	4698.29	$(2^-,3^-,4^-)$	1131.52 14	100 <i>6</i> 57 <i>6</i>	3566.75	$(2^+,3,4^+)$
4368.15	(2+)	1009.64 <i>8</i> 1263.6 <i>3</i> 1394.8 <i>5</i> 1539.58 <i>10</i>	100 <i>13</i> 27 <i>7</i> 32 <i>3</i>	3104.506 2973.472 2828.507	(3)	4840.92	(2+)	2004.6 2 685.66 3 966.7 2 1482.5 4	21 <i>I</i> 48 9 100 <i>I</i> 9	2693.68 4155.25? 3874.17 3358.517	(3,4 ⁺) 2 ⁺ (2 ⁺ ,3,4 ⁺)
		2202.4 <i>7</i> 4368.4 <i>5</i>	8 2 5.7 10	2165.259 0.0	(3,4) ⁺ 0 ⁺			1735.9 ^{dc} 9 2171.3 2	90 ^d 24 8.6 3	3104.506 2669.62	5 ⁻ 4 ⁺
4413.54	2+	606.87 ^d 13 2716.2 2 2949.6 2	100 ^d 24 11 <i>I</i> 22 <i>3</i>	3806.772 1697.140 1463.759	(3) ⁺ 4 ⁺			2675.9 <i>4</i> 3377.0 2 4245.0 <i>5</i>	14 <i>3</i> 40 <i>3</i> 32 <i>6</i>	2165.259 1463.759 595.850	4 ⁺ 2 ⁺
4439.98	(2,3,4)	100.31 1	16 4	4339.67	(2 ⁺)	4052.55	(a+)	4840.9 9	71 <i>3</i>	0.0	0+
		1058.0 3	24 5	3381.74	3-	4972.55	(2^{+})	1200.9^{d} 2	$100^{d} 33$ $13^{d} 2$	3771.74	$(2^+,3,4^+)$
		1839.9 <i>4</i> 2742.9 2	45 <i>5</i> 100 <i>10</i>	2600.32 1697.140	$(1,2,3)^+$ $(3)^+$			1393.3 ^d 3 2037.03 11	13 ⁴ 2 38 3	3578.93 2935.475	2 ⁺ 3 ⁻
4442.18	$(2^+,3,4^+)$	606.87 ^d 13 750.37 5	100 ^d 24 10 I	3835.27 3691.79	$(2^+,3,4^+)$ 3^-			3275.5 <i>3</i> 3489.9 <i>3</i>	6 <i>I</i> 10 2	1697.140 1482.81	(3) ⁺ 0 ⁺
		1049.50 ^d 9	21^{d} 2	3392.618	2+			4972.0 4	20 2	0.0	0+
		1303.0 ^{dc} 3 1393.3 ^d 3 1872.82 13	15 ^d 2 16 ^d 3 38 3	3140.30 3048.564 2569.329		5131.45	(2 to 6)	691.48 8 1735.9 ^d 9 2082.3 6	10 3 100 ^d 26 15 3	4439.98 3392.618 3048.564	
4477.49	$(0^+ \text{ to } 4^+)$	999.9 ^c 2 1134.5 <i>3</i> 1337.18 <i>10</i>		3478.37 3342.94 3140.30	$(2,3)^+$ $(3^-,4^+)$ 3^-			2562.13 <i>13</i> 2965.9 <i>3</i> 3668.0 <i>4</i>	95 8 33 4 37 6	2569.329 2165.259 1463.759	$(3,4)^+$
		1443.38 ^d 7	d	3034.00	$(3,4^+)$	5434.8	1-	5434.8 5		0.0	0 ⁺
4527.89	(2 ⁺)	3274.1 <i>12</i> 784.55 <i>3</i>	100 2	1204.205 3743.348		5485.1 5493.1	1 1	5485.1 <i>12</i> 5493.1 <i>10</i>		$0.0 \\ 0.0$	0+
		1049.50 ^d 9	71 ^d 6	3478.37	$(2,3)^{+}$	5514.8	1	5514.8 8		0.0	0+
		1303.0 ^d 3	49 ^d 6	3224.680		5743.7	1	5743.7 10		0.0	0+
		1958.1 4	16 3	2569.329		5766.7	1 ⁽⁺⁾	5766.7 <i>4</i>	40.25	0.0	0+
		2362.7 <i>4</i> 3044.8 2	24 <i>3</i> 47 <i>5</i>	2165.259 1482.81	$(3,4)^{+}$ 0^{+}	6017.4	1-	3017 <i>4</i> 3418 <i>4</i>	4.9 25 2.4 <i>1</i> 2	2999.2 2600.32	2^+ $(1,2,3)^+$
		3064.8 <i>2</i> 3064.5 <i>9</i>	8 3	1462.81				3789 <i>4</i>	9.8 24	2000.32	0+
4611.42	$(2^-,3^-,4^-)$	1471.7 2	72 8	3140.30	3-			3818 4	22.0 24	2197.933	2+

γ (⁷⁴Ge) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_{γ}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	$\underline{\mathbf{E}_f} \underline{\mathbf{J}_f^{\pi}}$
6017.4	1-	4301 ^e 4	·	1724.954	(0^{+})		7150.8	1-	7150.8 16	$0.0 \ 0^{+}$
		4532 <i>4</i>	14.6 <i>24</i>	1482.81	0^{+}		7264.6	1-	7264.6 6	$0.0 \ 0^{+}$
		4812 <i>4</i>	39 5	1204.205	2+		7379.9	1	7379.9 10	$0.0 \ 0^{+}$
		5422 <i>4</i>	100 10	595.850	2+	E1	7445.3	1	7445.3 11	$0.0 \ 0^{+}$
		6018 4	46 5	0.0	0_{+}	E1	7506.7	$1^{(-)}$	7506.7 10	$0.0 \ 0^{+}$
6445.1	1	6445.1 <i>11</i>		0.0	0_{+}		7550.7	1-	7550.7 <i>7</i>	$0.0 \ 0^{+}$
6477.9	1-	6477.9 <i>6</i>		0.0	0_{+}		7616.0	1	7616.0 8	$0.0 0^{+}$
6650.3	1-	6650.3 <i>3</i>		0.0	0_{+}		7652.1	1-	7652.1 6	$0.0 \ 0^{+}$
6660.5	1-	6660.5 5		0.0	0_{+}		8219.0	1	8219.0 8	$0.0 \ 0^{+}$
6732.7	1+	6732.7 8		0.0	0_{+}		8250.2	1	8250.2 8	$0.0 0^{+}$
6942.6	1-	6942.6 <i>6</i>		0.0	0_{+}		8361.1	1	8361.1 <i>12</i>	$0.0 \ 0^{+}$

 $^{^\}dagger$ From measured $T_{1/2}$ of levels and RUL of Weisskopf estimates for transitions of E2 or M2 multipolarity.

[†] Reported in (n,γ) E=th only.

Reported in 74 Ga β^- only.

@ Reported in (γ,γ') only.

& Placement in (n,γ) uncertain since no γ seen in 74 Ga β^- .

a Poor energy fit. Possible a doublet. See 3783 level.

^b Most probably a doublet. The second component belongs with the 3175 level.

^c Poor energy fit.

^d Multiply placed with undivided intensity.

^e Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Legend

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

