Mathematical Analysis II

Felix Chen

Contents

1 Convex functions	1
ntegrals on surfaces	3
1 Measures on manifolds	3
2 Stolkes' formula	5

§0.1 Convex functions

Definition 0.1.1 (Hesse matrix). Let $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ be a C^2 function, we call the Jacobi matrix of ∇f to be the **Hesse matrix** of f. (Also called Hessian matrix)

$$H_f(p) = \nabla^2 f(p) = \left(\frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} f(p)\right)_{i,j}.$$

Since the partial derivatives commute, so H_f is a symmetrical matrix, hence diagonalizable.

Proposition 0.1.2

Let $f \in C^2(\Omega)$, let x_0 be a minimum of f, then $\nabla f(x_0) = 0$, and $H_f(x_0)$ is semi positive definite.

Proof. By Taylor's expansion,

$$f(x) = f(x_0) + df(x_0)(x - x_0) + \frac{1}{2}(x - x_0)^T H_f(x_0)(x - x_0) + o(|x - x_0|^2).$$

If $H_f(x_0)$ has a negative eigenvalue $-\lambda$, with eigenvector v, then $f(x_0 + tv) = f(x_0) - \frac{1}{2}\lambda t^2|v|^2 + o(|tv|^2)$, which contradicts with the minimality of x_0 .

Proposition 0.1.3

If $\nabla f(x_0) = 0$, $H_f(x_0)$ is positive definite, then x_0 is a local minimum of f.

Proof. Same as previous one.

Definition 0.1.4 (Convex functions). If f and Ω satisfies:

$$\forall x, y \in \Omega, tx + (1-t)y \in \Omega, \quad f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

we say Ω is a **convex set** and f a **convex function**.

CONTENTS Analysis II

Theorem 0.1.5 (Jensen's inequality)

Let f be a convex function on Ω . Real numbers $t_i \geq 0, \sum_{i=1}^N t_i = 1$, for $x_i \in \Omega$,

$$f\left(\sum_{i=1}^{N} t_i x_i\right) \le \sum_{i=1}^{N} t_i f(x_i).$$

Example 0.1.6 (Convex functions)

Linear functions f(x) = Ax + b are convex.

The norm function $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}$ is convex. Also let A be an $n \times n$ positive definite matrix, then $f(x) = x^T A x$ is convex.

Just like the one dimensional case, convex functions have nice properties.

Theorem 0.1.7

Let f be a convex function on an open convex set Ω , then f is continuous, and Lipschitz continuous in any compact set, i.e.

$$|f(x) - f(y)| \le M|x - y|, \quad x, y \in U$$

where U is a compact set.

Proof. WLOG $0 \in \Omega$, take an orthogonal basis e_1, \ldots, e_n . Let

$$x = \sum_{i=1}^{n} \lambda_i \overline{e}_i, \quad \overline{e}_i = e_i \text{ or } -e_i, \lambda_i \ge 0.$$

When |x| sufficiently small, $\sum_{i=1}^{n} \lambda_i < 1$, so by Jensen's inequality,

$$f(x) \le \sum_{i=1}^{n} \lambda_i f(\overline{e}_i) + \lambda f(0),$$

$$f(x) - f(0) \le \sum_{i=1}^{n} \lambda_i (f(\overline{e}_i) - f(0)) \le \left(\sum_{i=1}^{n} \lambda_i^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} (f(\overline{e}_i) - f(0))^2\right)^{\frac{1}{2}} \le |x|C,$$

since we can change the length of e_i , and f is continuous on a straight line. This means f is continuous. For the second part, let $\lambda_0 = \frac{1}{1+\sum_{i=1}^n \lambda_i}$, since $0 = \lambda_0 x + \sum_{i=1}^n \lambda_i = 0$ $\sum_{i=1}^{n} \lambda_0 \lambda_i(-\overline{e}_i)$, by Jensen's inequality, we'll get the desired property.

Proposition 0.1.8

Let f be a differentiable function on a covex set Ω , f is convex $\iff f(x) \ge f(x_0) + \mathrm{d}f(x_0)(x - x_0)$. *Proof.* If f is convex, just use the definition and let $t \to 0$:

$$f(x_0) + f'(x_0)t(x - x_0) + o(t(x - x_0)) \le tf(x) + (1 - t)f(x_0).$$

Conversely, let $z = tx + (1 - t)x_0$,

$$f(x) \ge f(z) + f'(z)(1-t)(x-x_0), f(x_0) \ge f(z) + f'(z)t(x_0-x).$$

Thus adding these together we get

$$tf(x) + (1-t)f(x_0) \ge f(z).$$

Theorem 0.1.9

Let $\Omega \subset \mathbb{R}^n$ be an open convex set, $f \in C^2(\Omega)$, f convex $\iff H_f(x)$ semi positive definite.

Proof. One direction can be proved using Taylor's expansion.

On the other hand, let $H(t) = f(x_0 + t(x - x_0)) - f(x_0) - t df(x_0)(x - x_0)$, then $H'(t) = df(x_0 + t(x - x_0))(x - x_0) - df(x_0)(x - x_0)$,

$$H''(t) = (x - x_0)^T H_f(p)(x_0 + t(x - x_0))(x - x_0) \ge 0.$$

So H(t) is a convex function, H(0) = 0, H'(0) = 0.

§1 Integrals on surfaces

§1.1 Measures on manifolds

To define integrals, we need to define a measure on it first.

For example, let $v_1, \ldots, v_d \in \mathbb{R}^n$ be linearly independent vectors, and unit vectors v_{d+1}, \ldots, v_n complete them to a basis, satisfying $v_j \perp v_i, j > d, j > i$.

Let A be a linear map s.t. $Ae_i = v_i$, then the volume of A(E) is $|\det A| = \sqrt{\det(G \cdot G^T)}$,

where
$$G = \begin{pmatrix} v_1 \\ \vdots \\ v_d \end{pmatrix}$$
 is a $d \times n$ matrix.

Since $AA^T = \begin{pmatrix} GG^T & 0 \\ 0 & I_{n-d} \end{pmatrix}$, $|\det A| = \sqrt{\det GG^T}$, we say GG^T is the **Gram matrix** of G.

Another example is the length of a curve. Recall that we have the formula

$$L(\gamma) = \int_0^1 |\gamma'(t)| \, \mathrm{d}t.$$

The length of a curve is essentially the "volume" of a 1-dimensional manifold, so the idea of higher dimensional manifold is the same.

Definition 1.1.1. Let M be a manifold in \mathbb{R}^n . Let $\Phi: V \subset \mathbb{R}^d \to U \subset M$ be a smooth homeomorphism, rank $\Phi = d$. We can split U to many small regions and use the paraloids to approximate the volume of each regoin.

Thus we define:

$$m(U) = \int_{V} \sqrt{\det(\mathrm{d}\Phi(x)^{T} \,\mathrm{d}\Phi(x))} \,\mathrm{d}x_{1} \,\mathrm{d}x_{2} \cdots \,\mathrm{d}x_{d}.$$

The above differential form inside the integral is called the **volume form**:

$$d\sigma(y) = \sqrt{\det(d\Phi^T d\Phi)} dy.$$

Moreover, with this measure we can define the integral of general measurable function f (measurable means locally measurable on \mathbb{R}^d):

$$\int_{U} f \, d\sigma = \int_{V} f(\Phi(x)) \sqrt{\det(d\Phi^{T} \, d\Phi)} \, dx.$$

Just like the length of a curve, the volume defined above is also a geometric quantity, i.e. independent of coordinates.

Example 1.1.2

Let d = 1, $\gamma : (-1,1) \to \mathbb{R}^n$, $\gamma'(0) \neq 0$. For fixed -1 < a < b < 1 and a function f on γ , let C_a^b denote the curve between $\gamma(a), \gamma(b)$,

$$\int_{C_a^b} f \, d\sigma = \int_a^b f(\gamma(t)) |\gamma'(t)| \, dt$$

is called the curve integral of the first type.

Example 1.1.3

Let d = n - 1, $f : \mathbb{R}^{n-1} \to \mathbb{R}$, the graph of f is a hyper-surface $\Gamma_f = \{(x, f(x)) \mid x \in \mathbb{R}^{n-1}\}$. It has a parametrization $\Phi(x) = (x, f(x))$, so

$$d\Phi = \begin{pmatrix} I_{n-1} \\ \nabla f \end{pmatrix} \implies d\Phi^T d\Phi = I_{n-1} + \nabla f^T \cdot \nabla f.$$

Hence $\det(d\Phi^T d\Phi) = 1 + |\nabla f|^2$. (This can be obtained by looking at the eigenvectors) Therefore for φ on \mathbb{R}^n , we have

$$\int_{\Gamma_f} \varphi \, d\sigma = \int_{\mathbb{R}^{n-1}} \varphi(x, f(x)) \sqrt{1 + |\nabla f|^2} \, dx.$$

Next we'll compute the surface area of unit sphere S^{n-1} .

Let c_n denote the volume of unit sphere in \mathbb{R}^n ,

$$c_n = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2} + 1)}.$$

We claim in advance that the surface area of unit sphere $\omega_{n-1} = nc_n$. Here we use the sphere coordinates:

$$x_1 = r \prod_{k=1}^{n-1} \sin \theta_k, \quad x_i = r \sin \theta_{n-1} \cdots \sin \theta_i \cos \theta_{i-1}, 2 \le i \le n.$$

Let $F_n(r, \theta_1, ..., \theta_{n-1}) = (x_1, ..., x_n)$.

$$dF_n = \begin{pmatrix} \sin \theta_{n-1} dF_{n-1} & \cos \theta_{n-1} F_{n-1}^T \\ (\cos \theta_{n-1}, 0, \dots, 0) & -r \sin \theta_{n-1} \end{pmatrix}.$$

So we can compute its determinant (expand using the last row), note that the first column of dF_{n-1} is $r^{-1}F_{n-1}^T$,

$$\det dF_n = -r \sin \theta_{n-1} (\sin \theta_{n-1})^{n-1} \det (dF_{n-1}) + (-1)^{n-1} (\cos \theta_{n-1})^2 (-1)^{n-2} r (\sin \theta_{n-1})^{n-2} \det (dF_{n-1}) = -r (\sin \theta_{n-1})^{n-2} \det (dF_{n-1}).$$

Hence $dx = r^{n-1} \sin^{n-2} \theta_{n-1} \cdots \sin \theta_2 dr d\theta_1 \cdots d\theta_{n-1} = r^{n-1} dr d\omega$.

Denote F_n^S to be the function F_n restricted to S^{n-1} . Then $dF_n = (r^{-1}F_n^T, dF_n^S)$. We can compute that the Gram determinant of dF_n^S is just $\det dF_n$ with r=1.

The rest is some integrals with gamma function and beta function, which is left out.

§1.2 Stolkes' formula

Intuitively, Stolkes' formula states that: Let D be a region, $d\omega$ be a differential form, then

$$\int_{D} d\omega = \int_{\partial D} \omega.$$

Here ∂D means the "boundary" of D.

Of course we need some "regularity" requirements of D and ω , and it's the generalization of Newton-Lebniz formula into higher dimensions.

Definition 1.2.1 (Bounded regions with boundary). Let $\Omega \subset \mathbb{R}^n$ be a compact set, we say it's a **bounded region with boundary** if $\forall x \in \partial \Omega$, there exists open sets $U, V \subset \mathbb{R}^n$, $x \in U$ and a continuous homeomorphism $\Phi: U \to V$, such that

$$\Phi(U \cap \Omega) = V \cap \{x_n \ge 0\}, \quad \Phi(U \cap \partial\Omega) = V \cap \{x_n = 0\}.$$

If Φ is also C^1 , we say $x \in \partial \Omega$ is a regular point, otherwise a singular point.

Lemma 1.2.2

Let Ω be a bounded region with boundary, for all regular $p \in \partial \Omega$, there exists a unique unit vector $\nu(p) \in \mathbb{R}^n$, and $\varepsilon > 0$, s.t.

$$\nu(p) \perp T_n \partial \Omega, |\nu(p)| = 1, p - t\nu(p) \in \Omega, \forall 0 < t < \varepsilon.$$

We call $\nu(p)$ the **outward unit normal vector** of p.

Proof. By the definition of regular points, we may assume that:

$$\Omega \cap V = \{x \in V \mid f(x) \ge 0\}, \quad \partial \Omega \cap V = \{x \in V \mid f(x) = 0\}.$$

Where f is a C^1 function.

Since ∇f is nonzero, the tangent space $T_p \partial \Omega = \{v \mid v \cdot \nabla f = 0\}.$

Let
$$\nu(p) = -\frac{\nabla f}{|\nabla f|}$$
, then it's obvious $\nu(p)$ points outside of Ω .

Now for a cuboid I and a C^1 function ϕ ,

$$\int_{I} \frac{\mathrm{d}\phi}{\mathrm{d}x_{n}} \, \mathrm{d}x = \int_{I_{n-1}} \phi(x_{1}, \dots, x_{n-1}, b_{n}) \, \mathrm{d}x_{1} \cdots \mathrm{d}x_{n-1} - \int_{I_{n-1}} \phi(x_{1}, \dots, x_{n-1}, a_{n}) \, \mathrm{d}x_{1} \cdots \mathrm{d}x_{n-1}$$
$$= \int_{\partial I} \phi \cdot \nu_{n} \, \mathrm{d}\sigma.$$

Where σ is the measure on the boundary, ν is the outward unit normal vector.

Lemma 1.2.3

Let K be a compact set in \mathbb{R}^n , $U \supset K$ is open, there exists a smooth function f such that supp $f \subset U$, and $f|_{K} > 0$.

Proof. Let $\rho(x)$ be a smooth function s.t. $\rho(x) = 1$ for $|x| \le 1$ and $\rho(x) = 0$ for $|x| \ge 2$. Let

$$g(x) = \int_{|y| \le 2} f(x - \delta y) \rho(y) \, \mathrm{d}y.$$

Then g is a smooth non-negative function.

Theorem 1.2.4 (Unit decomposition on compact sets)

Let K be a compact set, $\{U_1, \ldots, U_k\}$ is an open covering of K. There exists smooth functions f_1, \ldots, f_k s.t.

$$1 = f_1(x) + f_2(x) + \dots + f_k(x), \quad \text{supp } f_i(x) \subset U_i.$$

Proof. For $1 \le i \le k$, $\delta > 0$, define

$$K_i^{\delta} = \{ x \in U_i \mid d(x, U_i^c) > \delta \}.$$

Note that $\{\bigcup_{i=1}^k K_i^{\frac{1}{m}}\}_{m=1}^{\infty}$ is also an open covering of K, thus there exists N s.t.

$$K \subset \bigcup_{i=1}^k K_i^{\frac{1}{N}}.$$

Hence by lemma we have g_i s.t. supp $g_i \subset U_i$ and $g_i > 0$ on the closure of $K_i^{\frac{1}{N}}$. Similarly we have a smooth function g s.t. g(x) = 0 on K, and g > 0 outside of the closure of $\bigcup_{i=1}^k K_i^{\frac{1}{N}}$.

Let $G(x) = g_1(x) + \dots + g_k(x) + g(x) > 0$ on $\bigcup_{i=1}^k U_i$, then we can define $f_i(x) = \frac{g_i(x)}{G(x)}$ which satisfy the condition.

Theorem 1.2.5

Let Φ be a C^1 homeomorphism from a cuboid I to Ω , then Ω satisfies Stolkes' formula: $\forall \phi \in C^1(\mathring{D}) \cap C(\overline{D})$, we have

$$\int_{D} \nabla \phi \, \mathrm{d}x = \int_{\partial D} \phi \nu \, \mathrm{d}\sigma.$$

Proof. Since $\Omega = \Phi(I)$, let y be the coordinates on I, $x = \Phi(y)$,

$$\int_{\Phi(I)} \nabla \varphi \, \mathrm{d}x = \int_{I} \nabla \varphi(\Phi(y)) (\mathrm{d}\Phi)^{-1} J_{\Phi} \, \mathrm{d}y.$$

Let $A = d\Phi$, WLOG $J_{\Phi} > 0$. Using the index notation and Einstein summation,

$$A_{ki}A^{ji} = A^{kj}A_{ii} = \delta_{ki}.$$

Thus

$$\partial_{y_i} \varphi A^{ji} |A| = \partial_{y_i} (\varphi A^{ji} |A|) - \varphi \partial_{y_i} (A^{ji} |A|)$$

Since $|A| = A_{kl}A^{kl}|A|$, $A_{kl} = \frac{\partial \Phi_k}{\partial y_l}$.

$$\begin{split} \partial_{y_j}(A^{ji}|A|) &= |A|\partial_{y_j}A^{ji} + A^{ji}\partial_{y_j}|A| \\ &= |A|\partial_{y_j}A^{ji} + A^{ji}|A|\partial_{y_j}A_{kl}A^{kl} \\ &= |A|(\partial_{y_j}A^{ji} + \partial_{y_l}A_{kj}A^{kl}) \\ &= |A|(\partial_{y_j}A^{ji} - \partial_{y_j}A^{ji}) = 0. \end{split}$$

Hence by our previous work,

$$\int_{I} \partial_{y_{j}}(\varphi A^{ji}|A|) \, \mathrm{d}y = \int_{\partial I} \varphi A^{ji}|A|\nu_{j} \, \mathrm{d}\sigma.$$

Putting this together for all i's, note that $\widetilde{\nu} = \frac{\nabla \Phi_n^{-1}}{|\nabla \Phi_n^{-1}|}$,