

TECHNICAL UNIVERSITY MUNICH

Master Thesis

Collection of Proofs

Lukas Retschmeier

TECHNICAL UNIVERSITY MUNICH

Master Thesis

Collection of Proofs

On Parametrized Semitotal Dominating Set

Author: Lukas Retschmeier Supervisor: Paloma T. Lima

Advisor: Professor

Submission Date:

I confirm that this master thesis is my own work and I have documented all sources and material used.	
Copenhagen,	Lukas Retschmeier

Abstract

Contents

1 Proofs

(Required Definitions)

- 1. Chordal Graphs
- 2. Graph Theory: Open and Closed Neighborhood

Theorem 1. A Graph is chordal if and only if there exists a Total Domination Order

Theorem 2. *Semitotal Dominating Set is* $\omega[2]$ *hard for bipartite Graphs*

Proof. Given a bipartite Graph $G = (\{X \cup Y\}, E)$ where X and Y are Independent Sets, we construct a bipartite Graph G' in the following way:

- 1. For each vertex $x_i \in X$ we add a new vertex x_i' and an edge (x_i, x_i') in between.
- 2. For each vertex $y_i \in Y$ we add a new vertex y_i' and an edge (y_i, y_i') in between.
- 3. We add two P_1 from (u_1, d_1) and (u_2, d_2) and connect them with all (d_1, x_i') and (d_2, y_i') respectively.

Observation: G' is clearly bipartite as all y'_j and x'_i form again an Independent Set. Setting $X' = X \cup \{u_2\} \cup \bigcup y'_i$ and $Y' = Y \cup \{u_1\} \cup \bigcup x'_i$ form the partitions of bipartite G'.

Corollary 1. *G* has a Dominating Set of size k iff G has a Semitotal Dominating Set of size k' = k + 2

 \Rightarrow : Asume there exists a Dominating Set D in G with size k. $DS = D \cup \{d_1, d_2\}$ is a Semitotal Dominating Set in G' with size k' = k + 2, because d_1 dominates u_1 and all x_i' ; d_2 dominates u_2 and all y_i' . Hence, it is a Semitotal Dominating Set, because $\forall v \in (D \cap X) : d(v, d_1) = 2$ and $\forall v \in (D \cap Y) : d(v, d_2) = 2$

 \Leftarrow : On the contrary, asume any Semitotal Dominating Set SD in G' with size k'. WLOG we can asume that $u_1, u_2 \notin DS$.

Our construction forces $d_1, d_2 \in DS$. Because all x_i' are only important in dominating x_i (y_i' for y_i resp.) as $d_1, d_2 \in DS$. If $x_i' \in DS$ we simply exchange it with x_i (for y_i' and y_i respectively) in our S keeping the size of the dominating set. $D = DS \setminus \{d_1, d_2\}$ give us a Dominating Set in G with size k = k' - 2

As G' can be constructed in O(n) and parameter k is only blown up by a constant, this reduction is a FPT reduction. As Dominating Set is w[2] hard for bipartite Graphs (CITE) so is Semitotal Dominating Set.

Theorem 3. *Semitotal Dominating Set is* $\omega[2]$ *hard on Chordal Graphs*

Figure 1.1: Constructing G' by adding a K_5 and the vertex t

Proof. Given a chordal graph $G = (V = \{v_1, ..., v_n\}, E)$, we construct a chordal graph G' as described below (See also fig ??):

- 1. Add a K_{n+1} consisting of the vertices $\{k_1, ..., k_n, u\}$ and add an edge (v_i, k_i) to each vertex v_i of G. One vertex u in the clique will remain untouched.
- 2. Add one additional vertex *t* and connect it with *u*.
- 3. For all vertices v_i in G, add a new edge (n, k_i) for all $n \in N(v_i)$.

Corollary 2. $N(v_i) \in G$ form a clique iff $N(v_i)$ forms a clique in G'

Assuming that $N(v_i)$ forms a clique in G, we show that it also forms a clique in G' by induction over the number of neighbors $z = abs(N(v_i))$ in G.

- z = 0: Holds trivially as we do not have a neighbor in G and in G' the connected k_i forms a P_1 , hence a clique.
- z = z + 1:

By IH, we already know that all neigbors $n_1, ..., n_z$ form a clique together with their vertices in k_i . As $k_{z+1}, v_{z+1} \in N(v_i)$ now also in G', we show that $N(v_i)$ still forms clique in G'.

Let k_i be the vertex that was connected with n_i during step 1. All we have to show is that v_{z+1} and k_{z+1} extend our previous clique, hence are fully connected with $N(v_i)$.

Figure 1.2: Induction Step

 v_{z+1} connects to $N(v_i)$ in G by assumption. By our construction, there exists an edge to $k_1,...,k_z$, because we add an edge (n_{z+1},k_i) if there is an edge from (n_{z+1},n_i) . (See fig ??)

 k_{z+1} form a complete subgraph with the other k_i and is connected to all n_i by construction because the edge (n_{z+1}, n_i) exists.

Therefore, $N(v_i)$ will also form a clique in G'.

On the other side, if $N(v_i)$ forms a clique in G', the vertices of $N(v_i)$ in G just form an induced subgraph of G', hence preserving the clique.

Corollary 3. G is Chordal iff G' is chordal.

 \Rightarrow : Asume *G* chordal. Then exists a total elemination order $o = (v_1, ..., v_n)$ in *G* where removing v_i sequentially returns cliques in $N(v_i)$.

Define $o' = (v_1, ..., v_n, k_1, ..., k_n, u, t)$. Applying corollary **??** states that $(v_1, ...v_n)$ is a partial elemination order and as the rest is part of a clique with an additional vertex of degree 1, o' is a total elemination order $o = (v_1, ..., b_n)$ for G'.

 \Leftarrow : Holds as o' is always a total elemination order in G' and removing the complete subgraph K_{n+1} and u gives a total elemination order in G.

Corollary 4. *G* has a Dominating Set of size k iff G' has a dominating set of size k + 1

Asume a Dominating Set D of size k in G. $D \cup \{u\}$ is a Semitotal Dominating Set in G' of size k + 1, because u dominates t and for each $v \in DS$: $d(v, u) \le 2$.

Contrary, asume a Semitotal Dominating Set SD in G'. In order to dominate t, $u \in SD$ must hold, hence already dominating the complete subgraph K_{n+1} . If a vertex $k_i \in SD$, we exchange it with v_i still preserving a Dominating Set. Taking $D = SD - \{u\}$ gives

our desired Dominating Set of size k. As this reduction runs in FPT time and the parameter is only bounded by a function of k, this is a FPT reduction. As Dominating Set on Chordal Graphs is w[2] - hard, so is SDS on Chordal Graphs.

List of Tables