Výrokovologické vyplývanie

3. prednáška · Matematika (4): Logika pre informatikov

Ján Kľuka, Jozef Šiška Letný semester 2019/2020

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Katedra aplikovanej informatiky

Obsah 3. prednášky

Výrokovologické vyplývanie

Teórie a ich modely

Výrokovologické teórie a ohodnotenia

Vyplývanie, nezávislosť a nesplniteľnosť

Konzultácie

Termín konzultácií platný do konca výučbovej časti semestra alebo do odvolania:

Ak v tomto čase nemôžete, dohodnite si s nami iný termín emailom na lpi-team@lists.dai.fmph.uniba.sk.

Rekapitulácia

Minulý týždeň sme sa naučili:

- čo sú výrokovologické spojky,
- ako zodpovedajú slovenským spojkám,
- čo sú symboly jazyka výrokovologickej časti logiky prvého rádu,
- čo sú formuly tohto jazyka,
- kedy sú formuly pravdivé v danej štruktúre.

Výrokovologické vyplývanie

Logické dôsledky

Na 1. prednáške:

- Hovorili sme o tom, že logiku zaujíma, čo a prečo sú zákonitosti správneho usudzovania.
- Správne úsudky odvodzujú z predpokladov (teórií) závery, ktoré sú ich logickými dôsledkami.
- Logickými dôsledkami teórie sú tvrdenia, ktoré sú pravdivé vo všetkých modeloch teórie.

Minulý týždeň sme začali pracovať s výrokovologickou časťou logiky prvého rádu.

Čo sú v nej: teórie, modely, logické dôsledky?

Výrokovologické vyplývanie

Teórie a ich modely

Príklad teórie

Neformálne je teória súbor tvrdení, ktoré pokladáme za pravdivé.

Zvyčajne popisujú našu predstavu o zákonitostiach platných v nejakej časti sveta a pozorovania o jej stave.

Príklad 3.1

Máme troch nových známych – Kim, Jima a Sarah.

Organizujeme párty a P0: chceme, aby na ňu prišiel niekto z nich.

Od spoločných kamarátov sme sa ale dozvedeli o ich požiadavkách:

P1: Sarah nepríde na párty, ak príde Kim.

P2: Jim príde na párty, len ak príde Kim.

P3: Sarah nepríde bez Jima.

Výrokovologické teórie

V logike prvého rádu tvrdenia zapisujeme formulami.

Príklad 3.2

```
\begin{split} T_{\mathsf{party}} &= \{ ((\mathsf{pride}(\mathsf{Kim}) \vee \mathsf{pride}(\mathsf{Jim})) \vee \mathsf{pride}(\mathsf{Sarah})), \\ &\quad (\mathsf{pride}(\mathsf{Kim}) \rightarrow \neg \mathsf{pride}(\mathsf{Sarah})), \\ &\quad (\mathsf{pride}(\mathsf{Jim}) \rightarrow \mathsf{pride}(\mathsf{Kim})), \\ &\quad (\mathsf{pride}(\mathsf{Sarah}) \rightarrow \mathsf{pride}(\mathsf{Jim})) \} \end{split}
```

Definícia 3.3

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu.

Každú množinu formúl jazyka $\mathcal L$ budeme nazývať teóriou v jazyku $\mathcal L$.

Modely teórií

Neformálne je *modelom* teórie stav vybranej časti sveta.

Pre logiku prvého rádu stavy sveta vyjadrujú štruktúry.

Príklad 3.4 (Model teórie o party)

```
\mathcal{M} = (\{k, j, s, e, h\}, i),
               i(\text{Kim}) = k, i(\text{Jim}) = j, i(\text{Sarah}) = s,
               i(pride) = \{k, i, e\}:
\mathcal{M} \models ((pride(Kim) \lor pride(Jim)) \lor pride(Sarah))
\mathcal{M} \models (pride(Kim) \rightarrow \neg pride(Sarah))
\mathcal{M} \models (\text{pride}(\text{Jim}) \rightarrow \text{pride}(\text{Kim}))
\mathcal{M} \models (pride(Sarah) \rightarrow pride(Jim))
```

Model teórie

Definícia 3.5 (Model)

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu a nech T je teória v jazyku $\mathcal L$ a $\mathcal M$ je štruktúra pre jazyk $\mathcal L$.

Teória T je pravdivá v \mathcal{M} , skrátene $\mathcal{M} \models T$, vtt každá formula X z T je pravdivá v \mathcal{M} (teda $\mathcal{M} \models X$).

Hovoríme tiež, že $\mathcal M$ je $\operatorname{modelom} T$.

Teória T je nepravdivá v \mathcal{M} , skrátene $\mathcal{M} \not\models T$, vtt T nie je pravdivá v \mathcal{M} .

Výrokovologické vyplývanie

Výrokovologické teórie a ohodnotenia

Nekonečne veľa štruktúr

Logickými dôsledkami teórie sú tvrdenia, ktoré sú pravdivé vo všetkých modeloch teórie.

Ale štruktúr je nekonečne veľa a ak má teória jeden model, má aj nekonečne veľa ďalších:

$$\begin{split} \mathcal{M}_1 &= (\{\mathtt{k},\mathtt{j},\mathtt{s}\},i_1) \quad \mathcal{M}_1' = (\{\mathtt{k},\mathtt{j},\mathtt{s},0\},i_1') \quad \mathcal{M}_1'' = (\{\mathtt{k},\mathtt{j},\mathtt{s},0,1\},i_1'') \quad \cdots \\ i_1(\mathtt{Kim}) &= \mathtt{k} \qquad \qquad i_1'(\mathtt{Kim}) = \mathtt{k} \qquad \qquad i_1''(\mathtt{Kim}) = \mathtt{k} \\ i_1(\mathtt{Jim}) &= \mathtt{j} \qquad \qquad i_1'(\mathtt{Jim}) = \mathtt{j} \qquad \qquad i_1''(\mathtt{Jim}) = \mathtt{j} \\ i_1(\mathtt{Sarah}) &= \mathtt{s} \qquad \qquad i_1'(\mathtt{Sarah}) = \mathtt{s} \qquad \qquad i_1''(\mathtt{Sarah}) = \mathtt{s} \\ i_1(\mathtt{pride}) &= \{\mathtt{k},\mathtt{j}\} \qquad \qquad i_1''(\mathtt{pride}) = \{\mathtt{k},\mathtt{j}\} \qquad \qquad i_1''(\mathtt{pride}) = \{\mathtt{k},\mathtt{j}\} \end{split}$$

Rozdiely modelov

V čom sa líšia a čo majú spoločné nasledujúce modely T_{party} ?

$$\begin{split} \mathcal{M}_1 &= (\{\mathtt{k},\mathtt{j},\mathtt{s},\mathtt{e},\mathtt{h}\},i_1) & \mathcal{M}_2 &= (\{1,2,3\},i_2) & \mathcal{M}_3 &= (\{\mathtt{k}\mathtt{j},\mathtt{s}\},i_3) \\ i_1(\mathtt{K}\mathtt{i}\mathtt{m}) &= \mathtt{k} & i_2(\mathtt{K}\mathtt{i}\mathtt{m}) &= 1 & i_3(\mathtt{K}\mathtt{i}\mathtt{m}) &= \mathtt{k}\mathtt{j} \\ i_1(\mathtt{J}\mathtt{i}\mathtt{m}) &= \mathtt{j} & i_2(\mathtt{J}\mathtt{i}\mathtt{m}) &= 2 & i_3(\mathtt{J}\mathtt{i}\mathtt{m}) &= \mathtt{k}\mathtt{j} \\ i_1(\mathtt{S}\mathtt{a}\mathtt{r}\mathtt{a}\mathtt{h}) &= \mathtt{s} & i_2(\mathtt{S}\mathtt{a}\mathtt{r}\mathtt{a}\mathtt{h}) &= 3 & i_3(\mathtt{S}\mathtt{a}\mathtt{r}\mathtt{a}\mathtt{h}) &= \mathtt{s} \\ i_1(\mathtt{p}\mathtt{r}\mathtt{i}\mathtt{d}\mathtt{e}) &= \{\mathtt{k},\mathtt{j},\mathtt{e}\} & i_2(\mathtt{p}\mathtt{r}\mathtt{i}\mathtt{d}\mathtt{e}) &= \{\mathtt{l},2\} & i_3(\mathtt{p}\mathtt{r}\mathtt{i}\mathtt{d}\mathtt{e}) &= \{\mathtt{k}\mathtt{j}\} \end{split}$$

Líšia sa doménami aj v interpretáciách.

Líšia sa v pravdivosti rovnostných atómov, napr. $\mathtt{Kim} \doteq \mathtt{Jim}$.

Zhodujú sa na pravdivosti všetkých predikátových atómov príde(Kim), príde(Jim), príde(Sarah).

 VT_{party} na ničom inom nezáleží.

Ohodnotenie atómov

Z každej zo štruktúr

$$\begin{split} \mathcal{M}_1 &= (\{\mathtt{k},\mathtt{j},\mathtt{s},\mathtt{e},\mathtt{h}\},i_1) & \mathcal{M}_2 &= (\{1,2,3\},i_2) & \mathcal{M}_3 &= (\{\mathtt{k}\mathtt{j},\mathtt{s}\},i_3) \\ i_1(\mathtt{Kim}) &= \mathtt{k} & i_2(\mathtt{Kim}) &= 1 & i_3(\mathtt{Kim}) &= \mathtt{k}\mathtt{j} \\ i_1(\mathtt{Jim}) &= \mathtt{j} & i_2(\mathtt{Jim}) &= 2 & i_3(\mathtt{Jim}) &= \mathtt{k}\mathtt{j} \\ i_1(\mathtt{Sarah}) &= \mathtt{s} & i_2(\mathtt{Sarah}) &= 3 & i_3(\mathtt{Sarah}) &= \mathtt{s} \\ i_1(\mathtt{pride}) &= \{\mathtt{k},\mathtt{j},\mathtt{e}\} & i_2(\mathtt{pride}) &= \{1,2\} & i_3(\mathtt{pride}) &= \{\mathtt{k}\mathtt{j}\} \end{split}$$

môžeme skonštruovať to isté ohodnotenie predikátových atómov:

$$\begin{split} v(\operatorname{pride}(\operatorname{Kim})) &= t & \operatorname{lebo} \mathcal{M}_j \models \operatorname{pride}(\operatorname{Kim}), \\ v(\operatorname{pride}(\operatorname{Jim})) &= t & \operatorname{lebo} \mathcal{M}_j \models \operatorname{pride}(\operatorname{Jim}), \\ v(\operatorname{pride}(\operatorname{Sarah})) &= f & \operatorname{lebo} \mathcal{M}_j \not\models \operatorname{pride}(\operatorname{Sarah}). \end{split}$$

Všetky tieto štruktúry (a nekonečne veľa ďalších) vieme pri vyhodnocovaní formúl jazyka $\mathcal{L}_{\text{party}}$ nahradiť týmto ohodnotením.

Výrokovologické formuly, teórie a ohodnotenia

Definícia 3.6

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu.

Množinu predikátových atómov jazyka $\mathcal L$ označujeme $\mathcal {PA}_{\mathcal L}$.

Výrokovologickými formulami jazyka $\mathcal L$ nazveme všetky formuly jazyka $\mathcal L$, ktoré neobsahujú symbol rovnosti. Množinu všetkých výrokovologických formúl jazyka $\mathcal L$ označujeme $\mathcal P\mathcal E_{\mathcal L}$.

Definícia 3.7

Nech (f,t) je usporiadaná dvojica *pravdivostných hodnôt*, $f \neq t$, kde f predstavuje *nepravdu* a t predstavuje *pravdu*. Nech \mathcal{L} je jazyk výrokovologickej časti logiky prvého rádu.

Výrokovologickým ohodnotením pre \mathcal{L} , skrátene ohodnotením, nazveme každé zobrazenie $v: \mathcal{PA}_{\mathcal{L}} \to \{f,t\}$.

Pravdivé formuly v ohodnotení

Ako vyhodnotíme, či je formula pravdivá v nejakom ohodnotení?

Definícia 3.8

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu, nech (f,t) sú pravdivostné hodnoty a nech $v:\mathcal {PA_L} \to \{f,t\}$ je výrokovologické ohodnotenie pre $\mathcal L$. Reláciu výrokovologická formula A je pravdivá v ohodnotení v ($v \models_p A$) definujeme induktívne pre všetky výrokovologické formuly A,B jazyka $\mathcal L$ nasledovne:

- $v \models_{p} A \text{ vtt } v(A) = t$, ak A je predikátový atóm,
- $v \models_{p} \neg A \text{ vtt } v \not\models_{p} A$,
- $v \models_{p} (A \land B)$ vtt $v \models_{p} A$ a zároveň $v \models_{p} B$,
- $v \models_{p} (A \lor B) \text{ vtt } v \models_{p} A \text{ alebo } v \models_{p} B$,
- $v \models_{p} (A \rightarrow B) \text{ vtt } v \not\models_{p} A \text{ alebo } v \models_{p} B$,

kde vtt skracuje vtedy a len vtedy a $v \not\models_{p} A$ skracuje A nie je pravdivá vo v.

Vyhodnotenie formuly v ohodnotení

Príklad 3.9

Vyhodnoťme formulu

$$X = ((pride(Jim) \lor \neg pride(Kim)) \rightarrow pride(Sarah))$$

vo výrokovologickom ohodnotení

$$v = \{ \texttt{pride}(\texttt{Kim}) \mapsto t, \, \texttt{pride}(\texttt{Jim}) \mapsto t, \, \texttt{pride}(\texttt{Sarah}) \mapsto f \}$$

zdola nahor:

$$\frac{p(\text{Kim}) \quad p(\text{Jim}) \quad p(\text{Sarah}) \quad \neg p(\text{Kim}) \quad (p(\text{Jim}) \lor \neg p(\text{Kim})) \quad X}{\upsilon \quad \models_{p} \quad \qquad \not\models_{p} \quad \qquad \not\models_{p} \quad \qquad \not\models_{p}}$$

príde sme skrátili na p.

Ohodnotenie zhodné so štruktúrou

Definícia 3.10

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu, nech $\mathcal M$ je štruktúra pre $\mathcal L$, nech (f,t) sú pravdivostné hodnoty, $v: \mathcal {PA}_{\mathcal L} \to \{f,t\}$ je výrokovologické ohodnotenie pre $\mathcal L$ a $S \subseteq \mathcal {PA}_{\mathcal L}$ je množina predikátových atómov.

Ohodnotenie v a štruktúra $\mathcal M$ sú navzájom zhodné na S vtt pre každý predikátový atóm $A\in S$ platí

$$v(A) = t \text{ vtt } \mathcal{M} \models A.$$

Ohodnotenie v a štruktúra $\mathcal M$ sú navzájom zhodné vtt sú zhodné na $\mathcal{PA}_{\mathcal L}$.

Konštrukcia ohodnotenia zhodného so štruktúrou

Ohodnotenie zhodné so štruktúrou zostrojíme ľahko:

Tvrdenie 3.11

Nech \mathcal{L} je jazyk výrokovologickej časti logiky prvého rádu, nech \mathcal{M} je štruktúra pre \mathcal{L} a (f,t) sú pravdivostné hodnoty. Zobrazenie v: $\mathcal{PA}_{\mathcal{L}} \to \{f,t\}$ definované pre každý atóm $A \in \mathcal{PA}_{\mathcal{L}}$ nasledovne:

$$\upsilon(A) = \begin{cases} t, & \text{ak } \mathcal{M} \models A, \\ f, & \text{ak } \mathcal{M} \not\models A \end{cases}$$

je výrokovologické ohodnotenie zhodné s $\,\mathcal{M}.$

Dôkaz.

 $t \neq f$, tak $v(A) \neq t$.

Pre každý atóm $A \in \mathcal{PA}_{\mathcal{L}}$ musíme dokázať, že v(A) = t vtt $\mathcal{M} \models A$:

- (⇐) Priamo: Ak $\mathcal{M} \models A$, tak v(A) = t podľa jeho definície v leme.
- (\Rightarrow) Nepriamo: Ak $\mathcal{M} \not \models A$, tak v(A) = f podľa jeho definície v leme, a pretože

Konštrukcia štruktúry zhodnej s ohodnotením

Dokážeme zostrojiť aj štruktúru z ohodnotenia, aby boli zhodné?

Tvrdenie 3.12

Nech \mathcal{L} je jazyk výrokovologickej časti logiky prvého rádu, nech (f,t) sú pravdivostné hodnoty a $v: \mathcal{PA}_{\mathcal{L}} \to \{f,t\}$ je výrokovologické ohodnotenie pre \mathcal{L} .

Nech $\mathcal{M}=(D,i)$ je štruktúra pre \mathcal{L} s doménou $D=\mathcal{C}_{\mathcal{L}}$ a interpretačnou funkciou definovanou pre všetky n>0, všetky konštanty c a všetky predikátové symboly $P\in\mathcal{P}_{\mathcal{L}}$ s aritou n takto:

$$\begin{split} &i(c) = c \\ &i(P) = \{(c_1, \dots, c_n) \in \mathcal{C}_{\mathcal{L}}^n \mid v(P(c_1, \dots, c_n)) = t\} \end{split}$$

Potom \mathcal{M} je zhodná s v.

Zhoda na všetkých výrokovologických formulách

Tvrdenie 3.13

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu, $\mathcal M$ je štruktúra pre $\mathcal L$ a v je výrokovologické ohodnotenie pre $\mathcal L$ zhodné s $\mathcal M$. Potom pre každú výrokovologickú formulu $X \in \mathcal P\mathcal E_{\mathcal L}$ platí, že $v \models_p X$ vtt $\mathcal M \models X$.

Dôkaz indukciou na konštrukciu formuly.

- 1.1: Nech X je rovnostný atóm. Potom nie je výrokovologickou formulou a tvrdenie preň triviálne platí.
- 1.2: Nech X je predikátový atóm. Potom $v \models_{p} X$ vtt v(X) = t vtt $\mathcal{M} \models A$.
- 2.1: Indukčný predpoklad: Nech tvrdenie platí pre formulu X.

Dokážme tvrdenie pre $\neg X$. Ak X neobsahuje symbol rovnosti \doteq , potom $v \models_p \neg X$ vtt $v \not\models_p X$ vtt (podľa IP) $\mathcal{M} \not\models X$ vtt $\mathcal{M} \models \neg X$. Ak X obsahuje \doteq , $\neg X$ ho obsahuje tiež, teda nie je výrokovologická a tvrdenie pre ňu platí triviálne.

2.2: IP: Nech tvrdenie platí pre formuly X a Y. Ak X alebo Y obsahuje \doteq , tvrdenie platí pre $(X \land Y), (X \lor Y), (X \to Y)$ triviálne, lebo nie sú výrokovologické. Nech teda X ani Y neobsahuje \doteq . Potom platí $v \models_p (X \to Y)$ vtt $v \not\models_p X$ alebo $v \models_p Y$ vtt (podľa IP) vtt $\mathcal{M} \not\models X$ alebo $\mathcal{M} \models Y$ vtt $\mathcal{M} \models (X \to Y)$. Podobne pre ďalšie spojky.

Vyplývanie, nezávislosť a nesplniteľnosť

Výrokovologické vyplývanie

Výrokovologické teórie

Vráťme sa naspäť k teóriám, modelom a vyplývaniu.

Definícia 3.14

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu. Každú množinu výrokovologických formúl jazyka $\mathcal L$ budeme

nazývať výrokovologickou teóriou v jazyku \mathcal{L} .

Príklad 3.15

Výrokovologickou teóriou je

```
\begin{split} T_{\mathsf{party}} &= \{ ((\texttt{pride}(\texttt{Kim}) \lor \texttt{pride}(\texttt{Jim})) \lor \texttt{pride}(\texttt{Sarah})), \\ &\quad (\texttt{pride}(\texttt{Kim}) \to \neg \texttt{pride}(\texttt{Sarah})), \\ &\quad (\texttt{pride}(\texttt{Jim}) \to \texttt{pride}(\texttt{Kim})), \\ &\quad (\texttt{pride}(\texttt{Sarah}) \to \texttt{pride}(\texttt{Jim})) \}, \end{split}
```

ale nie

$$T_{\text{party}} \cup \{\text{Kim} \doteq \text{Sarah}\}.$$

Príklad výrokovologického modelu

Príklad 3.16 (Výrokovologický model teórie o party)

```
v = \{ \texttt{pride}(\texttt{Kim}) \mapsto t, \texttt{pride}(\texttt{Jim}) \mapsto t, \texttt{pride}(\texttt{Sarah}) \mapsto f \}
v \models_{p} ((\texttt{pride}(\texttt{Kim}) \vee \texttt{pride}(\texttt{Jim})) \vee \texttt{pride}(\texttt{Sarah}))
v \models_{p} (\texttt{pride}(\texttt{Kim}) \rightarrow \neg \texttt{pride}(\texttt{Sarah}))
v \models_{p} (\texttt{pride}(\texttt{Jim}) \rightarrow \texttt{pride}(\texttt{Kim}))
v \models_{p} (\texttt{pride}(\texttt{Sarah}) \rightarrow \texttt{pride}(\texttt{Jim}))
```

Výrokovologický model

Definícia 3.17 (Výrokovologický model)

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu a nech T je teória v jazyku $\mathcal L$ a v je výrokovologické ohodnotenie pre jazyk $\mathcal L$.

Teória T je $\operatorname{\textit{pravdivá}}$ v ohodnotení v, skrátene $v \models_{\operatorname{p}} T$, vtt každá formula X z T je pravdivá vo v (teda $v \models_{\operatorname{p}} X$ pre každú $X \in T$).

Hovoríme tiež, že v je výrokovologickým modelom T.

Teória T je nepravdivá vo v, skrátene $v \not\models_{p} T$, vtt T nie je pravdivá vo v.

Zrejme $v \not\models_{p} T$ vtt $v \not\models_{p} X$ pre nejakú $X \in T$.

Model teórie, splniteľnosť a nesplniteľnosť

Definícia 3.18 (Splniteľnosť a nesplniteľnosť)

Teória je **výrokovologicky splniteľná** vtt má aspoň jeden výrokovologický model.

Teória je **výrokovologicky nesplniteľná** vtt nemá žiaden výrokovologický model.

Zrejme teória nie je splniteľná vtt keď je nesplniteľná.

Príklad 3.19

 $T_{\rm party}$ je evidentne splniteľná.

Výrokovologické vyplývanie

Ak sú množiny konštánt a predikátových symbolov jazyka konečné, jazyk má konečne veľa predikátových atómov a teda aj konečne veľa ohodnotení.

Uvažovať o všetkých ohodnoteniach a modeloch teórie nie je také odstrašujúce. Napríklad si ľahšie predstavíme logický dôsledok:

Definícia 3.20

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu a nech T je výrokovologická teória a X je výrokovologická formula, obe v jazyku $\mathcal L$.

Formula X je výrokovologickým dôsledkom teórie T vtt pre každé ohodnotenie v pre jazyk \mathcal{L} platí, že ak $v \models_{\mathfrak{p}} T$, tak $v \models_{\mathfrak{p}} X$.

Hovoríme tiež, že X vyplýva z T a píšeme $T \models_{p} X$.

Ak X nevyplýva z T, píšeme $T \nvDash_{p} X$.

Príklad výrokovologického vyplývania

Príklad 3.21

Vyplýva príde(Kim) výrokovologicky z T_{party} ? Pretože vieme vymenovať všetky ohodnotenia pre $\mathcal{L}_{\text{party}}$, zistíme to ľahko:

	v_i			$((p(K) \lor p(J))$	$p(K) \rightarrow$	$(p(J) \rightarrow$	$(p(S) \rightarrow$		
	p(K)	p(J)	p(S)	∨ p(S))	¬p(S))		p(J))	T_{party}	p(K)
v_0	f	f	f	⊭ _p				⊭ _p	
v_1	f	f	t	⊨ _p	⊧ _p	⊧ _p	⊭ _p	⊭ _p	
v_2	f	t	f	⊨ _p	⊧ _p	⊭ _p		⊭ _p	
v_3	f	t	t	⊨ _p	⊧ _p	⊭ _p		⊭ _p	
v_4	t	f	f	⊨ _p	⊧ _p	⊧ _p	⊨ _p	⊧ _p	⊧ _p
v_5	t	f	t	⊨ _p	⊭ _p			⊭ _p	
v_6	t	t	f	⊨ _p	⊧ _p	⊧ _p	⊧ _p	⊧ _p	⊧ _p
v_7	t	t	t	⊧ _p	⊭ _p			⊭ _p	

Skrátili sme príde na p, Kim na K, Jim na J, Sarah na S.

Logický záver: Formula pride(Kim) výrokovologicky vyplýva z T_{party} .

Praktický záver: Aby boli všetky požiadavky splnené, Kim musí prísť na párty.

Príklad nezávislosti

Príklad 3.22

Vyplýva príde(Jim) výrokovologicky z T_{party} ?

	v_i			$((p(K) \lor p(J))$	$ p(K) \rightarrow$	$(p(J) \rightarrow$	$ p(S) \rightarrow$		
	p(K)	p(J)	p(S)	∨ p(S))	¬p(S))	p(K))	p(J))	T_{party}	p(J)
v_0	f	f	f	⊭ _p				⊭ _p	
v_1	f	f	t	⊨ _p	⊧ _p	⊧ _p	⊭ _p	⊭ _p	
v_2	f	t	f	⊨ _p	⊧ _p	⊭ _p		⊭ _p	
v_3	f	t	t	⊨ _p	⊧ _p	⊭ _p		⊭ _p	
v_4	t	f	f	⊨ _p	⊧ _p	⊧ _p	⊨ _p	⊧ _p	⊭ _p
v_5	t	f	t	⊨ _p	⊭ _p			⊭ _p	
v_6	t	t	f	⊨ _p	⊧ _p	⊧ _p	⊨ _p	⊧ _p	⊧ _p
v_7	t	t	t	⊧ _p	⊭ _p			⊭ _p	

 ${\bf Logick\acute{y}}~{\bf z\acute{a}ver}.~{\bf Formula}~{\bf pr\acute{i}de(Jim)}~{\bf nevypl\acute{y}va}~{\bf z}~T_{{\bf party}}.$

Výrokovologická nezávislosť

Vzťahu medzi pride(Jim) a T_{party} hovoríme nezávislosť.

Definícia 3.23

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu a nech T je výrokovologická teória a X je výrokovologická formula, obe v jazyku $\mathcal L$.

Formula X je **výrokovologicky nezávislá** od teórie T vtt existujú také ohodnotenia v_0 a v_1 pre jazyk \mathcal{L} , že $v_0 \models_{\mathbf{p}} T$ aj $v_1 \models_{\mathbf{p}} T$, ale $v_0 \not\models_{\mathbf{p}} X$ a $v_1 \models_{\mathbf{p}} X$.

Príklad 3.24 (pokračovanie príkladu 3.22)

Logický záver: Formula pride(Jim) je nezávislá od T_{party} .

Praktický záver: Všetky požiadavky budú naplnené bez ohľadu na to, či Jim príde alebo nepríde na párty. Nie je nutné, aby bol prítomý ani aby bol neprítomý. Jeho prítomnosť od požiadaviek nezávisí.

Príklad vyplývania negácie

Príklad 3.25

Je príde(Sarah) výrokovologickým dôsledkom $T_{\rm party}$ alebo nezávislá od $T_{\rm party}$?

	v_i			$((p(K) \lor p(J))$	$(p(K) \rightarrow$	$(p(J) \rightarrow$	$ (p(S) \rightarrow$		
	p(K)	p(J)	p(S)	∨ p(S))	¬p(S))	p(K))	p(J))	T_{party}	p(S)
v_0	f	f	f	⊭ _p				⊭ _p	
v_1	f	f	t	⊨ _p	⊧ _p	⊧ _p	⊭ _p	⊭ _p	
v_2	f	t	f	⊨ _p	⊧ _p	⊭ _p		⊭ _p	
v_3	f	t	t	⊧ _p	⊧ _p	⊭ _p		⊭ _p	
v_4	t	f	f	⊨ _p	⊧ _p	⊧ _p	⊧ _p	⊧ _p	⊭ _p
v_5	t	f	t	⊧ _p	⊭ _p			⊭ _p	
v_6	t	t	f	⊧ _p	⊧ _p	⊧ _p	⊧ _p	⊧ _p	⊭ _p
v_7	t	t	t	⊧p	⊭ _p			⊭ _p	

Logický záver: Formula príde
(Sarah) nevyplýva z $T_{\rm party}$, ale ani nie je nezávislá o
d $T_{\rm party}$.

Vyplývanie negácie

Tvrdenie 3.26

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu a nech T je splniteľná výrokovologická teória a X je výrokovologická formula, obe v jazyku $\mathcal L$.

Formula X nevyplýva z teórie T a nie je výrokovologicky nezávislá od T vtt $\neg X$ vyplýva z T.

Príklad 3.27 (pokračovanie príkladu 3.25)

Logický záver: Z T_{party} vyplýva ¬príde(Sarah).

Praktický záver: Aby boli všetky požiadavky naplnené, Sarah nesmie prísť na party.

Vzťahy teórií a formúl

Medzi ohodnotením a formulou sú iba dva vzájomne výlučné vzťahy:

Buď
$$v \models_{p} X$$
, alebo $v \not\models_{p} X$.

Medzi teóriou a formulou je viac možných vzťahov:

	existuje v také, že $v \models_p T$ a $v \models_p X$	$\begin{array}{l} \text{pre všetky } v, \\ \text{ak } v \models_{\text{p}} T, \text{tak } v \not\models_{\text{p}} X \end{array}$
existuje v také, že $v \models_p T$ a $v \not\models_p X$	X je nezávislá od T $T \nvDash_{p} X$ a $T \nvDash_{p} \neg X$	$T \vDash_{p} \neg X \text{ a } T \nvDash_{p} X$
pre všetky v , ak $v \models_p T$, tak $v \models_p X$	$T \vDash_{p} X \text{ a } T \nvDash_{p} \neg X$	T je nesplniteľná $T \vDash_{p} X$ aj $T \vDash_{p} \neg X$

Nesplniteľná teória

Príklad 3.28

Je teória $T'_{\text{party}} = T_{\text{party}} \cup \{(\neg \texttt{pride}(Sarah) \rightarrow \neg \texttt{pride}(Kim))\}\ \text{splniteľná?}$

	v_i		((p(K) ∨ p(J))	$(p(K) \rightarrow$	$(p(J) \rightarrow$	$(p(S) \rightarrow$	$(\neg p(S) \rightarrow$		
	p(K)	p(J)	p(S)	∨ p(S))	¬p(S))	p(K))	p(J))	$\neg p(K))$	$T_{ m party}'$
v_0	f	f	f	⊭ _p					⊭ _p
v_1	f	f	t	⊨ _p	⊧ _p	⊧ _p	⊭ _p		\nvDash_{p}
v_2	f	t	f	⊧ _p	⊧ _p	⊭ _p			⊭ _p
v_3	f	t	t	⊨ _p	⊧ _p	⊭ _p			\nvDash_{p}
v_4	t	f	f	⊨ _p	⊧ _p	⊧ _p	⊧ _p	\nvDash_{p}	\nvDash_{p}
v_5	t	f	t	⊨ _p	⊭ _p				\nvDash_{p}
v_6	t	t	f	⊨ _p	⊧ _p	⊧ _p	⊧ _p	⊭ _p	⊭ _p
v_7	t	t	t	⊨ _p	⊭ _p				\nvDash_{p}

Logický záver: T'_{party} je nesplniteľná, vyplýva z nej každá formula.

Praktický záver: T'_{party} nemá praktické dôsledky, lebo nevypovedá o žiadnom stave sveta. Na jej základe nevieme rozhodnúť, kto musí alebo nesmie prísť na párty.

Vyplývanie a nesplniteľnosť

Nesplniteľnosť ale nie neužitočná vlasnosť.

Tyrdenie 3.29

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu a nech T je splniteľná výrokovologická teória a X je výrokovologická formula, obe v jazyku $\mathcal L$.

Formula X výrokovologicky vyplýva z teórie T vtt $T \cup \{\neg X\}$ je výrokovologicky nesplniteľná.

Podľa tohto tvrdenia sa rozhodnutie vyplývania dá **zredukovať** na rozhodnutie splniteľnosti.

Výrokovologickú splniteľnosť rozhoduje SAT solver.

Množina atómov formuly a teórie

Definícia 3.30

Množinu atómov atoms(X) formuly $X \in \mathcal{E}_{\mathcal{L}}$ definujeme pre všetky formuly $A, B \in \mathcal{E}_{\mathcal{L}}$ nasledovne:

- $atoms(A) = \{A\}$, ak A je atóm,
- $atoms(\neg A) = atoms(A)$,
- $atoms((A \land B)) = atoms((A \lor B)) = atoms((A \to B)) = atoms(A) \cup atoms(B)$.

Množinou atómov teórie *T* je

$$atoms(T) = \bigcup_{X \in T} atoms(X).$$

Ohodnotenia zhodné na atómoch teórie

Definícia 3.31

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu, nech $M\subseteq\mathcal P\mathcal A_{\mathcal L}$. Ohodnotenia v_1 a v_2 sa **zhodujú** na množine M vtt $v_1(A)=v_2(A)$ pre každý atóm $A\in M$.

Tvrdenie 3.32

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu. Pre každú výrokovologickú teóriu T a formulu X jazyka $\mathcal L$ a všetky ohodnotenia v_1 a v_2 , ktoré zhodujú na množine $\operatorname{atoms}(T) \cup \operatorname{atoms}(X)$ platí

- $v_1 \models_p T \text{ vtt } v_2 \models_p T$,
- $v_1 \models_p X \text{ vtt } v_2 \models_p X$.

Ohodnotenia postačujúce na skúmanie teórií

Inak povedané: Pravdivosť formuly/teórie v ohodnotení závisí iba od pravdivostných hodnôt ohodnotenia tých atómov, ktoré sa v nej vyskytujú.

Takže na zistenie vyplývania, nezávislosti, splniteľnosti stačí preskúmať všetky ohodnotenia, ktoré sa líšia na atómoch vyskytujúcich sa vo formule a teórii.

Pokiaľ je teória je konečná, stačí skúmať konečne veľa ohodnotení, aj keby bol jazyk nekonečný.