IGoR

Generated by Doxygen 1.8.13

Contents

1	рер	recated List	1
2	Bug	List	3
3	Hier	rarchical Index	5
	3.1	Class Hierarchy	5
4	Clas	ss Index	7
	4.1	Class List	7
5	Clas	ss Documentation	9
	5.1	Adjacency_list Struct Reference	9
		5.1.1 Detailed Description	9
	5.2	Aligner Class Reference	9
		5.2.1 Detailed Description	10
		5.2.2 Constructor & Destructor Documentation	11
		5.2.2.1 Aligner()	11
	5.3	Alignment_data Class Reference	11
		5.3.1 Detailed Description	12
	5.4	Best_scenarios_counter Class Reference	13
		5.4.1 Detailed Description	13
	5.5	CDR3SeqData Class Reference	14
		5.5.1 Detailed Description	14
	5.6	Counter Class Reference	14
		5.6.1 Detailed Description	15

ii CONTENTS

5.7	Covera	ge_err_counter Class Reference	16
	5.7.1	Detailed Description	16
5.8	D_posi	tion_comparator Struct Reference	17
5.9	Deletio	n Class Reference	17
	5.9.1	Detailed Description	18
	5.9.2	Member Function Documentation	18
		5.9.2.1 iterate()	18
5.10	Dinucl_	markov Class Reference	19
	5.10.1	Detailed Description	20
	5.10.2	Member Function Documentation	20
		5.10.2.1 add_to_marginals()	20
		5.10.2.2 iterate()	21
		5.10.2.3 update_event_internal_probas()	22
5.11	Enum_	fast_memory_dual_key_map< K1, K2, V > Class Template Reference	22
5.12	Enum_	fast_memory_map< K, V > Class Template Reference	23
5.13	Error_r	ate Class Reference	23
	5.13.1	Detailed Description	25
5.14	Errors_	counter Class Reference	25
	5.14.1	Detailed Description	26
5.15	Event_	comparator Struct Reference	26
5.16	Event_	realization Struct Reference	26
	5.16.1	Detailed Description	27
5.17	Extract	Features Class Reference	27
	5.17.1	Detailed Description	28
	5.17.2	Member Function Documentation	28
		5.17.2.1 extractCDR3()	28
		5.17.2.2 generateCDR3_csv_line()	28
		5.17.2.3 getJAnchor4Seq()	29
		5.17.2.4 getVAnchor4Seq()	29
		5.17.2.5 load_VJanchors() [1/2]	30

CONTENTS

5.17.2.6 load_VJanchors() [2/2]	30
5.17.2.7 load_VJgenomicTemplates()	30
5.18 gen_CDR3_data Struct Reference	31
5.18.1 Detailed Description	31
5.19 Gene_choice Class Reference	31
5.19.1 Detailed Description	32
5.19.2 Member Function Documentation	33
5.19.2.1 add_to_marginals()	33
5.19.2.2 iterate()	33
5.20 GenModel Class Reference	34
5.20.1 Detailed Description	35
5.20.2 Member Function Documentation	35
5.20.2.1 generate_sequences()	36
5.21 std::hash< Event_safety > Struct Template Reference	36
5.22 std::hash< Gene_class > Struct Template Reference	36
5.23 std::hash< Int_Str > Struct Template Reference	36
5.24 std::hash< Seq_type > Struct Template Reference	37
5.25 std::hash< std::pair< Gene_class, Seq_side >> Struct Template Reference	37
5.26 std::hash< std::pair< Seq_type, Seq_side > > Struct Template Reference	37
5.27 std::hash< std::tuple< Event_type, Gene_class, Seq_side > > Struct Template Reference	37
5.28 Hypermutation_full_Nmer_errorrate Class Reference	38
5.28.1 Detailed Description	38
5.29 Hypermutation_global_errorrate Class Reference	39
5.29.1 Detailed Description	40
5.30 Insertion Class Reference	40
5.30.1 Detailed Description	41
5.30.2 Member Function Documentation	42
5.30.2.1 iterate()	42
5.31 Int_Str Class Reference	43
5.32 inverse_offset_comparator Struct Reference	44

iv CONTENTS

5.33	Matrix< T > Struct Template Reference	44
5.34	Model_marginals Class Reference	45
	5.34.1 Detailed Description	46
	5.34.2 Member Function Documentation	46
	5.34.2.1 set_realization_proba()	46
5.35	Model_Parms Class Reference	46
	5.35.1 Detailed Description	47
	5.35.2 Member Function Documentation	48
	5.35.2.1 get_ancestors()	48
5.36	$null_delete < T > Struct \ Template \ Reference \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	48
	5.36.1 Detailed Description	49
5.37	offset_comp Struct Reference	49
5.38	Pgen_counter Class Reference	49
	5.38.1 Detailed Description	50
5.39	Rec_Event Class Reference	50
	5.39.1 Detailed Description	53
	5.39.2 Member Function Documentation	53
	5.39.2.1 iterate()	53
	5.39.2.2 update_event_internal_probas()	54
5.40	Single_error_rate Class Reference	55
	5.40.1 Detailed Description	55
dex		57

Index

Chapter 1

Deprecated List

Member GenModel::generate_sequences (int, bool)

This function used to store generated sequences in memory, and quickly overloaded it for large number of generated sequences.

2 Deprecated List

Chapter 2

Bug List

Member Dinucl_markov::add_to_marginals (long double, Marginal_array_p &) const

Will only count realizations of unambiguous nucleotides (realization indices>=0 since they are set to -1 in iterate_common)

4 Bug List

Chapter 3

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Adjacency_list
Aligner
Alignment_data
CDR3SeqData
Counter
Best_scenarios_counter
Coverage_err_counter
Errors_counter
Pgen_counter
D_position_comparator
$\label{lem:lemmony_dual_key_map} Enum_fast_memory_dual_key_map < K1, K2, V > \dots \dots$
$\label{eq:continuity_map} Enum_fast_memory_map < K, V > \dots \dots$
Error_rate
Hypermutation_full_Nmer_errorrate
Hypermutation_global_errorrate
Single_error_rate
Event comparator
Event_realization
ExtractFeatures
gen_CDR3_data
GenModel
std::hash< Event_safety >
std::hash< Gene_class >
std::hash< Int_Str >
std::hash< Seq_type >
$std::hash < std::pair < Gene_class, Seq_side >> \dots \dots$
$std:: hash < std:: pair < Seq_type, Seq_side >> \dots \dots$
$std:: hash < std:: tuple < Event_type, Gene_class, Seq_side >> \dots \dots$
inverse_offset_comparator
$Matrix < T > \dots \qquad \qquad$
Matrix < double >
Model_marginals
Model_Parms
$null_delete < T > \dots \dots$
offset_comp

6 Hierarchical Index

Rec_Event									 														5	50
Deletion			 					 														 	1	17
Dinucl_markov	٠.		 					 														 	1	19
Gene_choice			 					 														 	3	31
Insertion			 					 														 	4	10
vector																								
Int Str			 					 														 	4	13

Chapter 4

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Adjacency_list	
IGoR's Bayesian Network adjacency list	9
Aligner	
A modified Smith-Waterman alignment class	9
Alignment_data	
Stores information on the alignment of one genomic template against the target	11
Best_scenarios_counter	
Records the N best scenarios realizations and mismatches	13
CDR3SeqData CDR3SeqData	
Class to store CDR3 information of a sequence	14
Counter	
Scenario statistics recording abstract class	14
Coverage_err_counter	
Records the number of time each genomic position is observed with or without error	16
D_position_comparator	17
Deletion	
Deletion recombination event	17
Dinucl_markov	
Dinucleotide insertion Markov model	19
$\label{eq:local_local_local_local_local} Enum_fast_memory_dual_key_map < K1, K2, V > \dots \dots$	22
$ \underline{ Enum_fast_memory_map} < K, V > \dots \dots$	23
Error_rate	
Abstract class for generic error models behavior	23
Errors_counter	
Counter recording the number of genomic nucleotides and errors/mismatch per scenario	25
Event_comparator	26
Event_realization	
Unit that stores an event realization name, value and index	26
ExtractFeatures	
Class to extract sequences features (e.g. CDR3) of sequences using alignment and V, J anchors	
information	27
gen_CDR3_data	31
Gene_choice	
GeneChoice recombination event	31
GenModel	
High level V/D). I generative model	3/

8 Class Index

std::hash< Event_safety >	36
std::hash< Gene_class >	36
std::hash< Int_Str >	36
std::hash< Seq_type >	37
std::hash< std::pair< Gene_class, Seq_side >>	37
std::hash< std::pair< Seq_type, Seq_side >>	37
std::hash< std::tuple< Event_type, Gene_class, Seq_side >>	37
Hypermutation_full_Nmer_errorrate	
A non-additive context dependent hypermutation model	38
Hypermutation_global_errorrate	
An additive (independent site) context dependent hypermutation model	39
Insertion	
Insertion recombination events	40
Int_Str	43
inverse_offset_comparator	44
Matrix < T >	44
Model_marginals	
Encapsulates the marginal probabilities/posterior frequency for each recombination event's real-	
ization	45
Model_Parms	
Implements IGoR's Bayesian Network structure	46
null_delete < T >	
Declare a null_delete function	48
offset_comp	49
Pgen_counter	
Estimates sequences generation probability	49
Rec_Event	
Recombination event class (IGoR's graph nodes)	50
Single_error_rate	
Independent single pucleotide error model	55

Chapter 5

Class Documentation

5.1 Adjacency_list Struct Reference

IGoR's Bayesian Network adjacency list.

```
#include <Model_Parms.h>
```

Public Attributes

- std::list< std::shared_ptr< Rec_Event >> children
- std::list< std::shared_ptr< Rec_Event >> parents

5.1.1 Detailed Description

IGoR's Bayesian Network adjacency list.

Author

Q.Marcou

Version

1.0

Contains a list of smart pointers pointing to an event parents and children (i.e adjacent nodes)

The documentation for this struct was generated from the following file:

· Model_Parms.h

5.2 Aligner Class Reference

A modified Smith-Waterman alignment class.

```
#include <Aligner.h>
```

Public Member Functions

- Aligner (Matrix< double >, int, Gene_class)
- std::forward_list< Alignment_data > align_seq (std::string, double, bool, int, int, bool=false)
- std::forward_list< Alignment_data > align_seq (std::string, double, bool, int, int, std::set< std::string >, bool=false)
- std::forward list< Alignment data > align_seq (std::string, double, bool, bool, int, int, bool=false)
- std::forward_list< Alignment_data > align_seq (std::string, double, bool, bool, int, int, std::set< std::string >, bool=false)
- std::forward_list< Alignment_data > align_seq (std::string, double, bool, std::unordered_map< std::string, std::pair< int, int >>, bool=false)
- std::forward_list< Alignment_data > align_seq (std::string, double, bool, std::unordered_map< std::string, std::pair< int, int >>, std::set< std::string >, bool=false)
- std::forward_list< Alignment_data > align_seq (std::string, double, bool, bool, std::unordered_map< std
 ::string, std::pair< int, int >>, bool=false)
- std::forward_list< Alignment_data > align_seq (std::string, double, bool, bool, std::unordered_map< std ::string, std::pair< int, int >>, std::set< std::string >, bool=false)
- std::unordered_map< int, std::forward_list< Alignment_data >> align_seqs (std::vector< std::pair< const int, const std::string >>, double, bool)
- std::unordered_map< int, std::forward_list< Alignment_data >> align_seqs (std::vector< std::pair< const int, const std::string >>, double, bool, bool)
- std::unordered_map< int, std::forward_list< Alignment_data >> align_seqs (std::vector< std::pair< const int, const std::string >>, double, bool, int, int, bool=false)
- std::unordered_map< int, std::forward_list< Alignment_data >> align_seqs (std::vector< std::pair< const int, const std::string >>, double, bool, bool, int, int, bool=false)
- std::unordered_map< int, std::forward_list< Alignment_data >> align_seqs (std::vector< std::pair< const int, const std::string >>, double, bool, std::unordered_map< std::string, std::pair< int, int >>, bool=false)
- std::unordered_map< int, std::forward_list< Alignment_data > > align_seqs (std::vector< std::pair< const int, const std::string >>, double, bool, bool, std::unordered_map< std::string, std::pair< int, int >>, bool=false)
- void align_seqs (std::string, std::vector< std::pair< const int, const std::string >>, double, bool)
- void align seqs (std::string, std::vector< std::pair< const int, const std::string >>, double, bool, bool)
- void **align_seqs** (std::string, std::vector< std::pair< const int, const std::string >>, double, bool, int, int, bool=false)
- void **align_seqs** (std::string, std::vector< std::pair< const int, const std::string >>, double, bool, bool, int, int, bool=false)
- void align_seqs (std::string, std::vector< std::pair< const int, const std::string >>, double, bool, std
 ::unordered_map< std::string, std::pair< int, int >>, bool=false)
- void align_seqs (std::string, std::vector< std::pair< const int, const std::string >>, double, bool, bool, std
 ::unordered_map< std::string, std::pair< int, int >>, bool=false)
- void write_alignments_seq_csv (std::string, std::unordered_map< int, std::forward_list< Alignment_data
 >>)
- std::unordered_map< int, std::forward_list< Alignment_data > > read_alignments_seq_csv (std::string, double, bool)
- void set genomic sequences (std::vector< std::pair< std::string, std::string > >)
- int incorporate_in_dels (std::string &, std::string &, const std::forward_list< int >, const std::forward_list< int >, int)

5.2.1 Detailed Description

A modified Smith-Waterman alignment class.

Author

Q.Marcou

Version

1.0

The Aligner class allows to perform SW alignments according to the parameters (substitution matrix,gap penalty) supplied upon construction of the object. The SW alignments matrix has been altered for V and J in order to allow for deletions on the deleted side only. Alignments can be made in parallel using openMP

5.2.2 Constructor & Destructor Documentation

5.2.2.1 Aligner()

Constructor for the Aligner class: substitution matrix: sets the gap penalty (the gap penalty is linear): Gene class of the gene aligned. V gene allows for deletions on the 3' side of the genomic template, J gene on the 5', D gene and undefined allow deletion on both sides

The documentation for this class was generated from the following files:

- · Aligner.h
- Aligner.cpp

5.3 Alignment data Class Reference

Stores information on the alignment of one genomic template against the target.

```
#include <Aligner.h>
```

Public Member Functions

- · Alignment_data (std::string gene, int off)
- Alignment_data (int off, size_t five_p_off, size_t three_p_off, size_t align_len, std::forward_list< int > ins, std::forward_list< int > del, std::vector< int > mis, double alignment_score)
- Alignment_data (std::string gene, int off, size_t align_len, std::forward_list< int > ins, std::forward_list< int > del, std::vector< int > mis, double alignment_score)
- Alignment_data (std::string gene, int off, size_t five_p_off, size_t three_p_off, size_t align_len, std
 ::forward_list< int > ins, std::forward_list< int > del, std::vector< int > mis, double alignment_score)

Public Attributes

- std::string gene_name
- · int offset
- size_t five_p_offset
- size_t three_p_offset
- std::forward_list< int > insertions
- std::forward_list< int > deletions
- size_t align_length
- std::vector< int > mismatches
- · double score

5.3.1 Detailed Description

Stores information on the alignment of one genomic template against the target.

Author

Q.Marcou

Version

1.0

Stores information on the alignment of one genomic template against the target. It contains:

- · the gene name
- the offset of the alignment (index on the target sequence on which the first letter of the FULL genomic template aligns (can be negative or lie outside the target)
- 5' and 3' offset positions of the best alignment first and last aligned nucleotide
- · insertions : indices on the TARGET of inserted nucleotides
- · deletions : indices on the GENOMIC TEMPLATE of deleted nucleotides
- · alignment length
- list of mismatches (that lie event outside the best alignment to allow IGoR to know mismatch positions in advance while exploring different deletions numbers)
- · the alignment score

The documentation for this class was generated from the following file:

Aligner.h

5.4 Best scenarios counter Class Reference

Records the N best scenarios realizations and mismatches.

#include <Bestscenarioscounter.h>

Inheritance diagram for Best scenarios counter:

Public Member Functions

- Best_scenarios_counter (size_t)
- Best_scenarios_counter (size_t, bool)
- Best_scenarios_counter (size_t, std::string)
- Best scenarios counter (size t, std::string, bool)
- std::string type () const
- void initialize counter (const Model Parms &, const Model marginals &)
- void count_scenario (long double, double, const std::string &, Seq_type_str_p_map &, const Seq_offsets
 _map &, const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std::shared_ptr
 Rec Event >> &, Mismatch vectors map &)
- void count_sequence (double, const Model_marginals &, const Model_Parms &)
- void add_checked (std::shared_ptr< Counter >)
- void dump_sequence_data (int, int)
- std::shared_ptr< Counter > copy () const

Public Attributes

- size_t n_scenarios_counted
- std::shared_ptr< std::ofstream > output_scenario_file_ptr
- std::queue < std::vector < int > > single_scenario_realizations_queue
- std::list< int > single scenario mismatches list
- std::vector< std::tuple< double, std::queue< std::vector< int >>, std::list< int >>> best_scenarios \hookleftarrow _vec
- std::forward_list< std::shared_ptr< const Rec_Event >> event_fw_list

Additional Inherited Members

5.4.1 Detailed Description

Records the N best scenarios realizations and mismatches.

Author

Q.Marcou

Version

1.0

Implementation of the Counter abstract class. Records the N most likely scenario realizations and mismatches and append it to a semicolon separated file.

The documentation for this class was generated from the following files:

- · Bestscenarioscounter.h
- Bestscenarioscounter.cpp

5.5 CDR3SeqData Class Reference

Class to store CDR3 information of a sequence.

```
#include <CDR3SeqData.h>
```

Public Member Functions

- CDR3SeqData (const CDR3SeqData &orig)
- std::string strData ()

Public Attributes

- int seq_index
- int v_anchor
- int j_anchor
- std::string CDR3nt
- std::string CDR3aa

5.5.1 Detailed Description

Class to store CDR3 information of a sequence.

Author

C. Olivares

The documentation for this class was generated from the following files:

- · CDR3SeqData.h
- CDR3SeqData.cpp

5.6 Counter Class Reference

Scenario statistics recording abstract class.

```
#include <Counter.h>
```

Inheritance diagram for Counter:

Public Member Functions

- Counter (const std::string &path="/tmp/", bool last_iter=false)
- virtual std::string type () const =0
- virtual void initialize_counter (const Model_Parms &, const Model_marginals &)=0
- virtual void count_scenario (long double, double, const std::string &, Seq_type_str_p_map &, const Seq_
 offsets_map &, const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std::shared
 _ptr< Rec_Event >> &, Mismatch_vectors_map &)
- virtual void count_sequence (double, const Model_marginals &, const Model_Parms &)
- virtual void add_to_counter (std::shared_ptr< Counter >)
- virtual void add_checked (std::shared_ptr< Counter >)=0
- virtual void dump_sequence_data (int, int)
- virtual void dump_data_summary (int)
- bool is_last_iter_only () const
- std::string get_path_to_files () const
- void set_path_to_files (const std::string &new_path)
- virtual std::shared_ptr< Counter > copy () const =0

Protected Attributes

- std::string path_to_file
- · bool last_iter_only
- · bool fstreams_created

5.6.1 Detailed Description

Scenario statistics recording abstract class.

Author

Q.Marcou

Version

1.0

The Counter abstract class provides an interface to collect individual scenarios statistics and aggregate them in various ways.

The documentation for this class was generated from the following files:

- · Counter.h
- Counter.cpp

5.7 Coverage_err_counter Class Reference

Records the number of time each genomic position is observed with or without error.

#include <Coverageerrcounter.h>

Inheritance diagram for Coverage err counter:

Public Member Functions

- Coverage_err_counter (Gene_class)
- Coverage err counter (Gene class, bool, bool)
- Coverage_err_counter (std::string, Gene_class, bool)
- Coverage_err_counter (std::string, Gene_class, size_t, bool, bool)
- std::string type () const
- void initialize counter (const Model Parms &, const Model marginals &)
- void count_scenario (long double, double, const std::string &, Seq_type_str_p_map &, const Seq_offsets
 _map &, const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std::shared_ptr
 Rec Event >> &, Mismatch vectors map &)
- void count_sequence (double, const Model_marginals &, const Model_Parms &)
- void add_checked (std::shared_ptr< Counter >)
- void dump_sequence_data (int, int)
- void dump_data_summary (int)
- $std::shared_ptr < Counter > copy$ () const

Additional Inherited Members

5.7.1 Detailed Description

Records the number of time each genomic position is observed with or without error.

Author

Q.Marcou

Version

1.0

The Coverage_err_counter allows to record the number of times each genomic site is observed (coverage) and how many times a mismatch has been observed on it (error/mutation). The recording can be made at the single position level, as well as joint over positions duet,triplet etc (e.g the number of times two nucleotides were observed in the same scenario)

The documentation for this class was generated from the following files:

- · Coverageerrcounter.h
- Coverageerrcounter.cpp

5.8 D_position_comparator Struct Reference

Public Member Functions

bool operator() (std::tuple < std::string, int, int, double > position_1, std::tuple < std::string, int, int, double > position_2)

The documentation for this struct was generated from the following file:

· Utils.h

5.9 Deletion Class Reference

Deletion recombination event.

#include <Deletion.h>

Inheritance diagram for Deletion:

Public Member Functions

- **Deletion** (Gene_class, Seq_side, std::pair< int, int >)
- Deletion (std::forward_list< int >)
- **Deletion** (Gene_class, Seq_side)
- **Deletion** (Gene_class, Seq_side, std::unordered_map< std::string, Event_realization > &)
- std::shared_ptr< Rec_Event > copy ()
- void iterate (double &, Downstream_scenario_proba_bound_map &, const std::string &, const Int_Str &, Index_map &, const std::unordered_map< Rec_Event_name, std::vector< std::pair< std::shared_ptr< const Rec_Event >, int >>> &, std::shared_ptr< Next_event_ptr > &, Marginal_array_p &, const Marginal_carray_p &, const std::unordered_map< Gene_class, std::vector< Alignment_data >> &, Seq_type_str_pcape and &, Seq_offsets_map &, std::shared_ptr< Error_rate > &, std::map< size_t, std::shared_ptr< Counter >> &, const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std::shared_ptr< Rec_Event >> &, Safety_bool_map &, Mismatch_vectors_map &, double &, double &)
- void add_realization (int)
- std::queue< int > draw_random_realization (const Marginal_array_p &, std::unordered_map< Rec_
 Event_name, int > &, const std::unordered_map< Rec_Event_name, std::vector< std::pair< std::shared_
 ptr< const Rec_Event >, int >>> &, std::unordered_map< Seq_type, std::string > &, std::mt19937_64 &) const
- void write2txt (std::ofstream &)
- void initialize_event (std::unordered_set< Rec_Event_name > &, const std::unordered_map< std::tuple
 Event_type, Gene_class, Seq_side >, std::shared_ptr< Rec_Event >> &, const std::unordered_map
 Rec_Event_name, std::vector< std::pair< std::shared_ptr< const Rec_Event >, int >>> &, Downstream
 _scenario_proba_bound_map &, Seq_type_str_p_map &, Safety_bool_map &, std::shared_ptr< Error_rate
 >, Mismatch_vectors_map &, Seq_offsets_map &, Index_map &)
- void add to marginals (long double, Marginal array p &) const
- bool has_effect_on (Seq_type) const
- void iterate_initialize_Len_proba (Seq_type considered_junction, std::map< int, double > &length_
 best_proba_map, std::queue< std::shared_ptr< Rec_Event >> &model_queue, double &scenario_proba,
 const Marginal_array_p &model_parameters_point, Index_map &base_index_map, Seq_type_str_p_map
 &constructed_sequences, int &seq_len) const
- void initialize_Len_proba_bound (std::queue < std::shared_ptr < Rec_Event >> &model_queue, const Marginal_array_p &model_parameters_point, Index_map &base_index_map)

Friends

- class Coverage_err_counter
- · class Hypermutation_global_errorrate
- · class Hypermutation_full_Nmer_errorrate

Additional Inherited Members

5.9.1 Detailed Description

Deletion recombination event.

Author

Q.Marcou

Version

1.0

The Deletion RecEvent models deletions of one genomic fragment on a given side. Deletions can be either positive or negative (= Palindromic insertions)

By construction the corresponding GeneChoice must have been explored first.

5.9.2 Member Function Documentation

5.9.2.1 iterate()

```
void Deletion::iterate (
            double & ,
            Downstream_scenario_proba_bound_map & ,
            const std::string & ,
            const Int_Str & ,
            Index_map & ,
            \verb|const| std::unordered_map| < \verb|Rec_Event_name|, std::vector| < std::pair| < std::shared_{\longleftrightarrow} \\
ptr< const Rec_Event >, int >>> & ,
           std::shared_ptr< Next_event_ptr > & ,
            Marginal_array_p & ,
            const Marginal_array_p & ,
            const std::unordered_map< Gene_class, std::vector< Alignment_data >> & ,
            Seq_type_str_p_map & ,
            Seq_offsets_map & ,
            std::shared_ptr< Error_rate > & ,
            std::map< size_t, std::shared_ptr< Counter >> & ,
            ::shared_ptr< Rec_Event >> & ,
            Safety_bool_map & ,
            Mismatch_vectors_map & ,
```

```
double & , double & ) [inline], [virtual]
```

General: Loop over all possible number of deletions for a given gene on a given sequence side

Specific: -First check whether any of these number of deletions is possible given the current position and number of deletions on other genes -Loop over # of deletions in decreasing order THIS IS A TEMPORARY FIX// //FIXME

THIS IS A TEMPORARY FIX// //FIXME

THIS IS A TEMPORARY FIX// //FIXME

Implements Rec_Event.

The documentation for this class was generated from the following files:

- · Deletion.h
- · Deletion.cpp

5.10 Dinucl_markov Class Reference

Dinucleotide insertion Markov model.

Inheritance diagram for Dinucl_markov:

Public Member Functions

- Dinucl markov (Gene class)
- std::shared_ptr< Rec_Event > copy ()
- int size () const
- void iterate (double &, Downstream_scenario_proba_bound_map &, const std::string &, const Int_Str &, Index_map &, const std::unordered_map< Rec_Event_name, std::vector< std::pair< std::shared_ptr< const Rec_Event >, int >>> &, std::shared_ptr< Next_event_ptr > &, Marginal_array_p &, const Marginal_carray_p &, const std::unordered_map< Gene_class, std::vector< Alignment_data >> &, Seq_type_str_pcarray_p &, const std::shared_ptr< Error_rate > &, std::map< size_t, std::shared_ptr< Counter >> &, const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std::shared_ptr< Rec_Event >> &, Safety_bool_map &, Mismatch_vectors_map &, double &, double &)

Evaluate all Event_Realization of a RecEvent for a given sequence.

- void add_realization (int)
- std::queue< int > draw_random_realization (const Marginal_array_p &, std::unordered_map< Rec_←
 Event_name, int > &, const std::unordered_map< Rec_Event_name, std::vector< std::pair< std::shared_←
 ptr< const Rec_Event >, int >>> &, std::unordered_map< Seq_type, std::string > &, std::mt19937_64 &)
 const
- void write2txt (std::ofstream &)
- void ind_normalize (Marginal_array_p &, size_t) const

void initialize_event (std::unordered_set< Rec_Event_name > &, const std::unordered_map< std::tuple
 Event_type, Gene_class, Seq_side >, std::shared_ptr< Rec_Event >> &, const std::unordered_map
 Rec_Event_name, std::vector< std::pair< std::shared_ptr< const Rec_Event >, int >>> &, Downstream
 _scenario_proba_bound_map &, Seq_type_str_p_map &, Safety_bool_map &, std::shared_ptr< Error_rate
 >, Mismatch_vectors_map &, Seq_offsets_map &, Index_map &)

- void add to marginals (long double, Marginal array p &) const
- void update_event_internal_probas (const Marginal_array_p &, const std::unordered_map< Rec_Event_

 name, int > &)
- double * get_updated_ptr ()
- void initialize_crude_scenario_proba_bound (double &, std::forward_list< double *> &, const std ::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std::shared_ptr< Rec_Event >> &)
- bool has_effect_on (Seq_type) const
- void iterate_initialize_Len_proba (Seq_type considered_junction, std::map< int, double > &length_
 best_proba_map, std::queue< std::shared_ptr< Rec_Event >> &model_queue, double &scenario_proba,
 const Marginal_array_p &model_parameters_point, Index_map &base_index_map, Seq_type_str_p_map
 &constructed_sequences, int &seq_len) const
- void initialize_Len_proba_bound (std::queue< std::shared_ptr< Rec_Event >> &model_queue, const Marginal_array_p &model_parameters_point, Index_map &base_index_map)

Additional Inherited Members

5.10.1 Detailed Description

Dinucleotide insertion Markov model.

Author

Q.Marcou

Version

1.0

Models a Markov chain dictating the identity of inserted nucleotides in the inserted region. We assume a low error frequency and almost flat dinucleotide model regime such that we use an euristic to extract the most likely realization. This choice has been made because the full handling through a forward algorithm would not be able to cope with e.g context dependent errors.

By construction the Insertion event must have been explored first

5.10.2 Member Function Documentation

5.10.2.1 add_to_marginals()

Bug Will only count realizations of unambiguous nucleotides (realization indices>=0 since they are set to -1 in iterate_common)

Implements Rec_Event.

5.10.2.2 iterate()

```
void Dinucl_markov::iterate (
            double & ,
             Downstream_scenario_proba_bound_map & ,
             const std::string & ,
             const Int_Str & ,
             Index_map & ,
             const std::unordered_map< Rec_Event_name, std::vector< std::pair< std::shared_\leftarrow
ptr< const Rec_Event >, int >>> & ,
             std::shared_ptr< Next_event_ptr > & ,
             Marginal_array_p & ,
             const Marginal_array_p & ,
             const std::unordered_map< Gene_class, std::vector< Alignment_data >> & ,
             Seq_type_str_p_map & ,
             Seq_offsets_map & ,
             std::shared_ptr< Error_rate > & ,
             std::map< size_t, std::shared_ptr< Counter >> & ,
             const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std\leftrightarrow
::shared_ptr< Rec_Event >> & ,
             Safety_bool_map & ,
             Mismatch_vectors_map & ,
             double & ,
             double & ) [inline], [virtual]
```

Evaluate all Event_Realization of a RecEvent for a given sequence.

Author

Q.Marcou

Version

1.0

Parameters

in,out	scenario_proba	Probability of the currently explored (incomplete) scenario
in,out	downstream_proba_map	
in	sequence	The studied sequence in nucleotide code
in	int_sequence	The studied sequence in integer code
in,out	base_index_map	Dynamic map recording where probabilities should be read on the marginals.
in	offset_map	Tells the event by how much indices from the children events should be modified
in	next_event_ptr_arr	Indicates the next event to call iterate on
in	updated_marginals_point	Summary marginals on which complete scenario posteriors are recorded
in	model_parameters_point	Current recombination probability distribution
in	allowed_realizations	The set of genomic templates alignment
in,out	constructed_sequences	Map containing the (incomplete) scenario's resulting sequence
in,out	seq_offsets	Map containing the 3' and 5' offsets of each scenario sequence piece
in	error_rate_p	Pointer to the error model object
in	counters_list	The list of Counter to be counted

Parameters

in	events_map	A map containing all events contained in the Model_parms, accessible through their type, gene class and side.
in,out	safety_set	A map indicating whether checks on offsets overlap should be performed
in,out	mismatches_lists	A map containing the (incomplete) scenario mismatches
in	seq_max_prob_scenario	Most likely scenario's probability for the considered sequence
in	proba_threshold_factor	Threshold on probability ratio between most likely scenario and explored scenario

Returns

void

The iterate method is the heart of IGoR's scenario exploration. Model_Parms define an order in which the RecEvent should be processed. Upon call of iterate all EventRealization of the RecEvent are assessed and for each possible realization the iterate method is called recursively for the next event. Inside the iterate method a filtering on too improbable realizations is performed (tree prunning) using the downstream_proba_map.

The index map is used to read off the probability of the current RecEvent EventRealization at the correct location given the events parent's realizations. It is further modified to take into account the current event's realization when its children realization probabilities will be read.

Implements Rec_Event.

5.10.2.3 update_event_internal_probas()

Update probability values contained in a matrix where coordinates >=4 indicates ambiguous nucleotides We simply take the average probability over the different possible nucleotides.

Reimplemented from Rec Event.

The documentation for this class was generated from the following files:

- · Dinuclmarkov.h
- · Dinuclmarkov.cpp

5.11 Enum fast memory dual key map < K1, K2, V > Class Template Reference

Public Member Functions

- Enum_fast_memory_dual_key_map (size_t Key1_range, size_t Key2_range)
- V & at (const K1 &key1, const K2 &key2)
- · const V & at (const K1 &key1, const K2 &key2) const
- V & at (const K1 &key1, const K2 &key2, int memory_layer)
- const V & at (const K1 &key1, const K2 &key2, int memory_layer) const
- int get current memory layer (const K1 &key1, const K2 &key2)
- void request_memory_layer (const K1 &key1, const K2 &key2)
- void set_value (const K1 &key1, const K2 &key2, V value, int memory_layer)

Protected Attributes

- V * value ptr arr
- int * memory_layer_ptr
- int max_layer
- · size_t range_key1
- size_t range_key2
- · size t total range

The documentation for this class was generated from the following file:

· Utils.h

5.12 Enum_fast_memory_map < K, V > Class Template Reference

Public Member Functions

- Enum_fast_memory_map (int defined_range)
- V & operator[] (const K &key)
- V & at (const K &key)
- V & at (const K &key, int memory_layer)
- · const V & at (const K &key, int memory layer) const
- int get_current_memory_layer (const K &key)
- void **get_all_current_memory_layer** (int *memory_layers_recipient)
- bool exist (const K &key)
- void request_memory_layer (const K &key)
- void set_value (const K &key, const V &value, int memory_layer)
- void multiply_all (double &prod_operand, int *memory_adresses)
- · void reset ()
- void init_first_layer (V value)

Protected Attributes

- V * value ptr arr
- int * memory_layer_ptr
- int max_layer
- · size_t range

The documentation for this class was generated from the following file:

· Utils.h

5.13 Error_rate Class Reference

Abstract class for generic error models behavior.

Inheritance diagram for Error_rate:

Public Member Functions

virtual double compare_sequences_error_prob (double, const std::string &, Seq_type_str_p_map &, const Seq_offsets_map &, const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std← ::shared_ptr< Rec_Event >> &, Mismatch_vectors_map &, double &, double &)=0

- virtual void update ()=0
- · bool is_updated () const
- void update_value (bool update_status)
- virtual void add_to_norm_counter ()=0
- virtual void clean_seq_counters ()=0
- void norm_weights_by_seq_likelihood (Marginal_array_p &, const size_t, const double seq_weight=1)
- virtual void write2txt (std::ofstream &)=0
- virtual std::shared ptr< Error rate > copy () const =0
- virtual std::string type () const =0
- virtual Error_rate * add_checked (Error_rate *)=0
- · double get_model_likelihood () const
- double get_seq_likelihood () const
- double get_seq_probability () const
- double get_seq_mean_error_number () const
- virtual const double & get_err_rate_upper_bound (size_t, size_t)=0
- virtual void build_upper_bound_matrix (size_t, size_t)=0
- virtual int get_number_non_zero_likelihood_seqs () const =0
- virtual std::queue< int > generate_errors (std::string &, std::mt19937_64 &) const =0
- void set_viterbi_run (bool viterbi_like)

Public Attributes

• int debug_number_scenarios

Protected Attributes

- · bool updated
- long double model_log_likelihood
- int number_seq
- long double seq_likelihood
- · double seq mean error number
- · long double scenario_new_proba
- long double seq_probability
- · bool viterbi_run
- $\bullet \quad \mathsf{Matrix}{<} \, \mathsf{double} > \mathbf{upper_bound_proba_mat}$
- size_t max_err
- size_t max_noerr

5.13.1 Detailed Description

Abstract class for generic error models behavior.

Author

Q.Marcou

Version

1.0

Base class for defining different error models such as additive or non-additive hypermutation models. Errors are assessed when all RecEvent iterate have been processed (terminal leaf of the scenario tree)

The documentation for this class was generated from the following files:

- · Errorrate.h
- · Errorrate.cpp

5.14 Errors_counter Class Reference

Counter recording the number of genomic nucleotides and errors/mismatch per scenario.

#include <Errorscounter.h>

Inheritance diagram for Errors_counter:

Public Member Functions

- Errors_counter (size_t)
- Errors_counter (size_t, bool)
- Errors_counter (size_t, std::string)
- Errors_counter (size_t, std::string, bool)
- std::string type () const
- void initialize_counter (const Model_Parms &, const Model_marginals &)
- void count_scenario (long double, double, const std::string &, Seq_type_str_p_map &, const Seq_offsets
 _map &, const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std::shared_ptr
 Rec_Event >> &, Mismatch_vectors_map &)
- void count sequence (double, const Model marginals &, const Model Parms &)
- void add_checked (std::shared_ptr< Counter >)
- void dump_sequence_data (int, int)
- $std::shared_ptr < Counter > copy$ () const

Additional Inherited Members

5.14.1 Detailed Description

Counter recording the number of genomic nucleotides and errors/mismatch per scenario.

Author

Q.Marcou

Version

1.0

Counter recording the number of genomic nucleotides and errors/mismatch per scenario. This information can either be recorded for the N best scenarios or be aggregated to extract individual sequence posterior error/mutation load.

The documentation for this class was generated from the following files:

- · Errorscounter.h
- · Errorscounter.cpp

5.15 Event_comparator Struct Reference

Public Member Functions

bool operator() (std::shared_ptr< const Rec_Event > event_p1, std::shared_ptr< const Rec_Event > event_p2)

The documentation for this struct was generated from the following file:

· Rec Event.h

5.16 Event_realization Struct Reference

Unit that stores an event realization name, value and index.

```
#include <Rec_Event.h>
```

Public Member Functions

• Event_realization (std::string real_name, int val_int, std::string val_str, Int_Str val_str_int, int index_val)

Public Attributes

- · const std::string name
- · const int value int
- const std::string value_str
- · const Int_Str value_str_int
- int index

5.16.1 Detailed Description

Unit that stores an event realization name, value and index.

Author

Q.Marcou

Version

1.0

Depending on the RecEvent type to which it belongs, the Event_realization must supply either a string (both std :: string and IntStr) or an integer value. Integers values are e.g the number of deletions or insertions of Insertion or Deletion RecEvent String values are e.g realization of a GeneChoice Rec_Event, and stands for the gene sequence.

The documentation for this struct was generated from the following file:

· Rec_Event.h

5.17 ExtractFeatures Class Reference

Class to extract sequences features (e.g. CDR3) of sequences using alignment and V, J anchors information.

```
#include <ExtractFeatures.h>
```

Public Member Functions

- ExtractFeatures (const ExtractFeatures & orig)
- void load_VJgenomicTemplates (vector< pair< string, string >> v_genomic, vector< pair< string, string >> j_genomic)

Function to map the template ID and the sequence for $\it V$ and $\it J$.

• void load_VJanchors (string flnV_CDR3_anchors, string flnJ_CDR3_anchors)

load data files into GeneFeatures functor class

void load_VJanchors (unordered_map< string, size_t > flnV_CDR3_anchors, unordered_map< string, size_t > flnJ_CDR3_anchors)

load data files into GeneFeatures functor class

- void print_VgenomicTemplates ()
- void print_JgenomicTemplates ()
- void set_sorted_alignments (unordered_map< int, pair< string, unordered_map< Gene_class, vector
 Alignment_data >>>> *pointer)
- CDR3SeqData extractCDR3 (int seq_index)

Get the CDR3 as an instance of CDR3SeqData given the V and J Alignment_data structs.

- int getVAnchor4Seq (string seq str, Alignment data v alig)
- int getJAnchor4Seq (string seq_str, Alignment_data j_alig)
- string generateCDR3_csv_line (CDR3SeqData cdr3InputSeq)

Function to generate a CDR3 string line to be printed on a file.

Public Attributes

- unordered_map< string, string > UMap_v_genomic
- unordered_map< string, string > UMap_j_genomic
- unordered map< string, size t > UMap v CDR3 anchors
- unordered_map< string, size_t > UMap_j_CDR3_anchors
- unordered_map< int, pair< string, unordered_map< Gene_class, vector< Alignment_data >>>> *
 p_sorted_alignments

5.17.1 Detailed Description

Class to extract sequences features (e.g. CDR3) of sequences using alignment and V, J anchors information.

Author

C. Olivares

5.17.2 Member Function Documentation

5.17.2.1 extractCDR3()

Get the CDR3 as an instance of CDR3SeqData given the V and J Alignment_data structs.

Parameters

seq_index	
V_alignment	
J_alignment	

Returns

CDR3SeqData

5.17.2.2 generateCDR3_csv_line()

Function to generate a CDR3 string line to be printed on a file.

Parameters

cdr3InputSeq	is CDR3SeqData instance
--------------	-------------------------

Returns

csvline line string to be printed on a file.

5.17.2.3 getJAnchor4Seq()

```
int ExtractFeatures::getJAnchor4Seq ( string \ seq\_str, \\ Alignment\_data \ j\_alig )
```

Calculate the J anchor in reference to the input sequence

Parameters

seq_str	
j_alig	

Returns

cdr3_j_read_anch the anchor in reference to the input sequence.

5.17.2.4 getVAnchor4Seq()

```
int ExtractFeatures::getVAnchor4Seq ( string \ seq\_str, Alignment\_data \ v\_alig )
```

Calculate the V anchor in reference to the input sequence

Parameters

seq_str	
v_alig	

Returns

cdr3_v_read_anch the anchor in reference to the input sequence.

5.17.2.5 load_VJanchors() [1/2]

```
void ExtractFeatures::load_VJanchors ( string \ flnV\_CDR3\_anchors, \\ string \ flnJ\_CDR3\_anchors )
```

load data files into GeneFeatures functor class

Parameters

flnV_CDR3_anchors	CDR3 anchors filename for V genes
flnJ_CDR3_anchors	CDR3 anchors filename for J genes

5.17.2.6 load_VJanchors() [2/2]

```
void ExtractFeatures::load_VJanchors (
          unordered_map< string, size_t > v_CDR3_anchors,
          unordered_map< string, size_t > j_CDR3_anchors)
```

load data files into GeneFeatures functor class

Parameters

v_CDR3_anchors	unordered_map of sequence description and position for V genes CDR3 anchors.
j_CDR3_anchors	unordered_map of sequence description and position for J genes CDR3 anchors.

5.17.2.7 load_VJgenomicTemplates()

```
void ExtractFeatures::load_VJgenomicTemplates ( vector < pair < string, \ string >> v\_genomic, \\ vector < pair < string, \ string >> j\_genomic )
```

Function to map the templateID and the sequence for $\ensuremath{\mathsf{V}}$ and $\ensuremath{\mathsf{J}}.$

Parameters

ſ	v_genomic	vector with the genomic templates for V genes
ſ	j_genomic	vector with the genomic templates for J genes

Returns

The documentation for this class was generated from the following files:

- ExtractFeatures.h
- ExtractFeatures.cpp

5.18 gen_CDR3_data Struct Reference

#include <GenModel.h>

Public Member Functions

• gen_CDR3_data (const std::unordered_map< std::string, size_t > &v_anchors_indices, const std
::unordered_map< std::string, Event_realization > &v_reals, size_t v_event_pos, const std::unordered_
map< std::string, size_t > &j_anchors_indices, const std::unordered_map< std::string, Event_realization
> &j_reals, size_t j_event_pos, std::shared_ptr< std::ostream > output_stream_ptr=std::shared_ptr< std
::ostream > (&std::cout, null_delete< std::ostream > ()))

Public Attributes

- std::map< int, std::tuple< std::string, size_t, std::string >> v_anchors
- size_t v_event_queue_position
- std::map< int, std::tuple< std::string, size t, std::string > > i anchors
- size_t j_event_queue_position
- std::shared ptr< std::ostream > output stream
- bool output_nt_CDR3 = true
- bool output_anchors_found = true
- bool output inframe = true
- bool output_aa_CDR3 = false
- bool output_productive = false

5.18.1 Detailed Description

Hardcode a data structure for the function extracting CDR3s in generated sequences

The documentation for this struct was generated from the following file:

· GenModel.h

5.19 Gene choice Class Reference

GeneChoice recombination event.

#include <Genechoice.h>

Inheritance diagram for Gene_choice:

Public Member Functions

- Gene choice (Gene class)
- Gene choice (Gene class, std::unordered map< std::string, Event realization > &)
- **Gene_choice** (Gene_class, std::vector< std::pair< std::string, std::string >>)
- std::shared_ptr< Rec_Event > copy ()
- void iterate (double &, Downstream_scenario_proba_bound_map &, const std::string &, const Int_Str &, Index_map &, const std::unordered_map< Rec_Event_name, std::vector< std::pair< std::shared_ptr< const Rec_Event >, int >>> &, std::shared_ptr< Next_event_ptr > &, Marginal_array_p &, const Marginal_array_p &, const std::unordered_map< Gene_class, std::vector< Alignment_data >> &, Seq_type_str_p apple &, Seq_offsets_map &, std::shared_ptr< Error_rate > &, std::map< size_t, std::shared_ptr< Counter >> &, const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std::shared_ptr
 Rec Event >> &, Safety bool map &, Mismatch vectors map &, double &, double &)

Evaluate all Event_Realization of a RecEvent for a given sequence.

- void add_realization (int)
- bool add_realization (std::string gene_name, std::string gene_sequence)
- void set genomic templates (const std::vector< std::pair< std::string, std::string >> &)
- std::queue< int > draw_random_realization (const Marginal_array_p &, std::unordered_map< Rec_←
 Event_name, int > &, const std::unordered_map< Rec_Event_name, std::vector< std::pair< std::shared_←
 ptr< const Rec_Event >, int >>> &, std::unordered_map< Seq_type, std::string > &, std::mt19937_64 &)
 const
- void write2txt (std::ofstream &)
- void initialize_event (std::unordered_set< Rec_Event_name > &, const std::unordered_map< std::tuple
 Event_type, Gene_class, Seq_side >, std::shared_ptr< Rec_Event >> &, const std::unordered_map
 Rec_Event_name, std::vector< std::pair< std::shared_ptr< const Rec_Event >, int >>> &, Downstream
 _scenario_proba_bound_map &, Seq_type_str_p_map &, Safety_bool_map &, std::shared_ptr< Error_rate
 >, Mismatch_vectors_map &, Seq_offsets_map &, Index_map &)
- · void add to marginals (long double, Marginal array p &) const
- bool has effect on (Seq type) const
- void iterate_initialize_Len_proba (Seq_type considered_junction, std::map< int, double > &length_←
 best_proba_map, std::queue< std::shared_ptr< Rec_Event >> &model_queue, double &scenario_proba,
 const Marginal_array_p &model_parameters_point, Index_map &base_index_map, Seq_type_str_p_map
 &constructed_sequences, int &seq_len) const
- void initialize_Len_proba_bound (std::queue< std::shared_ptr< Rec_Event >> &model_queue, const Marginal_array_p &model_parameters_point, Index_map &base_index_map)

Friends

- class Coverage_err_counter
- class Hypermutation_global_errorrate
- · class Hypermutation_full_Nmer_errorrate

Additional Inherited Members

5.19.1 Detailed Description

GeneChoice recombination event.

Author

Q.Marcou

Version

1.0

Models the gene choice recombination process. The event realizations are explored based on the sequence alignments that were provdided to the inference. Since D gene can be heavily deleted and might not be recognizable by sequence alignments, a special handling of the D gene choice exploring all D positions ranked by their likelihood has been implemented.

5.19.2 Member Function Documentation

5.19.2.1 add_to_marginals()

All add_to_marginals should take into account the possibility to perform viterbi runs(take only the most likely scenario into account)

Implements Rec_Event.

5.19.2.2 iterate()

```
void Gene_choice::iterate (
            double & ,
             Downstream_scenario_proba_bound_map & ,
             const std::string & ,
            const Int_Str & ,
            Index_map & ,
            const std::unordered_map< Rec_Event_name, std::vector< std::pair< std::shared_\leftarrow
ptr< const Rec_Event >, int >>> & ,
            std::shared_ptr< Next_event_ptr > & ,
            Marginal_array_p & ,
             const Marginal_array_p & ,
             const std::unordered_map< Gene_class, std::vector< Alignment_data >> & ,
             Seq_type_str_p_map & ,
            Seq_offsets_map & ,
             std::shared_ptr< Error_rate > & ,
            std::map< size_t, std::shared_ptr< Counter >> & ,
            const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std↔
::shared_ptr< Rec_Event >> & ,
             Safety_bool_map & ,
             Mismatch_vectors_map & ,
            double & ,
             double & ) [inline], [virtual]
```

Evaluate all Event_Realization of a RecEvent for a given sequence.

Author

Q.Marcou

Version

1.0

Parameters

in,out	scenario_proba	Probability of the currently explored (incomplete) scenario
in,out	downstream_proba_map	
in	sequence	The studied sequence in nucleotide code
in	int_sequence	The studied sequence in integer code
in,out	base_index_map	Dynamic map recording where probabilities should be read on the marginals.
in	offset_map	Tells the event by how much indices from the children events should be modified
in	next_event_ptr_arr	Indicates the next event to call iterate on
in	updated_marginals_point	Summary marginals on which complete scenario posteriors are recorded
in	model_parameters_point	Current recombination probability distribution
in	allowed_realizations	The set of genomic templates alignment
in,out	constructed_sequences	Map containing the (incomplete) scenario's resulting sequence
in,out	seq_offsets	Map containing the 3' and 5' offsets of each scenario sequence piece
in	error_rate_p	Pointer to the error model object
in	counters_list	The list of Counter to be counted
in	events_map	A map containing all events contained in the Model_parms, accessible through their type, gene class and side.
in,out	safety_set	A map indicating whether checks on offsets overlap should be performed
in,out	mismatches_lists	A map containing the (incomplete) scenario mismatches
in	seq_max_prob_scenario	Most likely scenario's probability for the considered sequence
in	proba_threshold_factor	Threshold on probability ratio between most likely scenario and explored scenario

Returns

void

The iterate method is the heart of IGoR's scenario exploration. Model_Parms define an order in which the RecEvent should be processed. Upon call of iterate all EventRealization of the RecEvent are assessed and for each possible realization the iterate method is called recursively for the next event. Inside the iterate method a filtering on too improbable realizations is performed (tree prunning) using the downstream_proba_map.

The index map is used to read off the probability of the current RecEvent EventRealization at the correct location given the events parent's realizations. It is further modified to take into account the current event's realization when its children realization probabilities will be read.

Implements Rec_Event.

The documentation for this class was generated from the following files:

- · Genechoice.h
- · Genechoice.cpp

5.20 GenModel Class Reference

High level V(D)J generative model.

#include <GenModel.h>

Public Member Functions

- GenModel (const Model Parms &)
- GenModel (const Model_Parms &, const Model_marginals &)
- GenModel (const Model_Parms &, const Model_marginals &, const std::map< size_t, std::shared_ptr
 Counter >> &)
- bool **infer_model** (const std::vector< std::tuple< int, std::string, std::unordered_map< Gene_class, std ∴ ::vector< Alignment_data >>>> &sequences, const int iterations, const std::string path, bool fast_iter, double likelihood threshold=1e-25, bool viterbi like=false)

- std::forward_list< std::pair< std::queue< std::queue< int > > > generate_sequences (int, bool)
- void generate_sequences (int, bool, std::string, std::string, std::list< std::pair< gen_seq_trans, std
 ::shared_ptr< void >>>=std::list< std::pair< gen_seq_trans, std::shared_ptr< void >>>(), bool output
 _only_func=false, int=-1)
- bool load_genmodel()
- bool write2txt ()
- · bool readtxt ()
- void write_seq2txt (std::string, std::forward_list< std::string >)

5.20.1 Detailed Description

High level V(D)J generative model.

Author

Q.Marcou

Version

1.0

Highest level class to model the V(D)J recombination and subsequent processes. It contains the model's graph structure (Model_Parms), the associated probability distribution (Model_Marginals). The GenModel class provides high level functions to perform inference / sequence annotation as well as generating random sequences from the model.

5.20.2 Member Function Documentation

5.20.2.1 generate_sequences()

```
forward_list< pair< string, queue< queue< int > > > GenModel::generate_sequences ( int number_seq, bool generate_errors )
```

Deprecated This function used to store generated sequences in memory, and quickly overloaded it for large number of generated sequences.

The documentation for this class was generated from the following files:

- · GenModel.h
- · GenModel.cpp

5.21 std::hash < Event_safety > Struct Template Reference

Public Member Functions

std::size_t operator() (const Event_safety ev_saf) const

The documentation for this struct was generated from the following file:

• Utils.h

5.22 std::hash < Gene_class > Struct Template Reference

Public Member Functions

• std::size_t operator() (const Gene_class &gene) const

The documentation for this struct was generated from the following file:

• Utils.h

5.23 std::hash < Int_Str > Struct Template Reference

Public Member Functions

std::size_t operator() (Int_Str const &int_str) const

The documentation for this struct was generated from the following file:

· IntStr.h

5.24 std::hash< Seq_type > Struct Template Reference

Public Member Functions

• std::size_t operator() (const Seq_type &seq_t) const

The documentation for this struct was generated from the following file:

· Utils.h

5.25 std::hash< std::pair< Gene_class, Seq_side>> Struct Template Reference

Public Member Functions

• std::size_t operator() (const pair< Gene_class, Seq_side > &gene_pair) const

The documentation for this struct was generated from the following file:

· Utils.h

5.26 std::hash< std::pair< Seq_type, Seq_side >> Struct Template Reference

Public Member Functions

- std::size_t ${\bf operator()}$ (const std::pair< Seq_type, Seq_side > seq_pair) const

The documentation for this struct was generated from the following file:

· Utils.h

5.27 std::hash< std::tuple< Event_type, Gene_class, Seq_side > > Struct Template Reference

Public Member Functions

• std::size_t operator() (const std::tuple< Event_type, Gene_class, Seq_side > &event_triplet) const

The documentation for this struct was generated from the following file:

· Utils.h

5.28 Hypermutation_full_Nmer_errorrate Class Reference

A non-additive context dependent hypermutation model.

#include <HypermutationfullNmererrorrate.h>

Inheritance diagram for Hypermutation_full_Nmer_errorrate:

Public Member Functions

- Hypermutation_full_Nmer_errorrate (size_t, Gene_class, Gene_class, double, size_t=0)
- Hypermutation full Nmer errorrate (size t, Gene class, Gene class, std::vector< double >, size t=0)
- Hypermutation_full_Nmer_errorrate (size_t, Gene_class, Gene_class, double, std::string, size_t=0)
- Hypermutation_full_Nmer_errorrate (size_t, Gene_class, Gene_class, std::vector< double >, std::string, size t=0)
- double compare_sequences_error_prob (double, const std::string &, Seq_type_str_p_map &, const Seq_offsets_map &, const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std← ::shared_ptr< Rec_Event >> &, Mismatch_vectors_map &, double &, double &)
- · void update ()
- void initialize (const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std::shared ←
 _ptr< Rec_Event >> &)
- void add_to_norm_counter ()
- void clean_seq_counters ()
- void clean_all_counters ()
- void write2txt (std::ofstream &)
- void set_output_Nmer_stream (std::string)
- std::shared_ptr< Error_rate > copy () const
- std::string **type** () const
- Hypermutation_full_Nmer_errorrate & operator+= (Hypermutation_full_Nmer_errorrate)
- Error rate * add checked (Error rate *)
- const double & get_err_rate_upper_bound (size_t, size_t)
- void build_upper_bound_matrix (size_t, size_t)
- int get_number_non_zero_likelihood_seqs () const
- std::queue< int > generate_errors (std::string &, std::mt19937_64 &) const
- uint64_t generate_random_mutation_probas (double, double)

Additional Inherited Members

5.28.1 Detailed Description

A non-additive context dependent hypermutation model.

Author

Q.Marcou

Version

1.0

A specialization of the ErrorRate class. Implements a context dependent hypermutation/error model with tunable context size. A different mutation probability is recorded for each context of size N, leading to 4^N parameters. This model is inspired from the S5F mutability model. The identity of the resulting nucleotide after mutation is assumed to follow a uniform distribution.

The documentation for this class was generated from the following files:

- · HypermutationfullNmererrorrate.h
- HypermutationfullNmererrorrate.cpp

5.29 Hypermutation_global_errorrate Class Reference

An additive (independent site) context dependent hypermutation model.

#include <Hypermutationglobalerrorrate.h>

Inheritance diagram for Hypermutation_global_errorrate:

Public Member Functions

- Hypermutation_global_errorrate (size_t, Gene_class, Gene_class, double)
- Hypermutation_global_errorrate (size_t, Gene_class, Gene_class, double, std::vector< double >)
- Hypermutation_global_errorrate (size_t, Gene_class, Gene_class, double, std::string)
- **Hypermutation_global_errorrate** (size_t, Gene_class, Gene_class, double, std::vector< double >, std
 ::string)
- double **compare_sequences_error_prob** (double, const std::string &, Seq_type_str_p_map &, const Seq_offsets_map &, const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std← ::shared_ptr< Rec_Event >> &, Mismatch_vectors_map &, double &, double &)
- · void update ()
- void initialize (const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std::shared
 _ptr< Rec_Event >> &)
- void add_to_norm_counter ()
- void clean_seq_counters ()
- void clean_all_counters ()
- void write2txt (std::ofstream &)
- void set_output_Nmer_stream (std::string)
- std::shared_ptr< Error_rate > copy () const
- std::string type () const
- Hypermutation_global_errorrate & operator+= (Hypermutation_global_errorrate)
- Error rate * add_checked (Error rate *)
- const double & get err rate upper bound (size t, size t)
- void build upper bound matrix (size t, size t)
- int get_number_non_zero_likelihood_seqs () const
- std::queue< int > generate_errors (std::string &, std::mt19937_64 &) const
- uint64_t generate_random_contributions (double)

Additional Inherited Members

5.29.1 Detailed Description

An additive (independent site) context dependent hypermutation model.

Author

Q.Marcou

Version

1.0

A specialization of the ErrorRate class. Implements a context dependent hypermutation/error model with tunable context size. Nucleotide from the context are assumed to contribute independently to the mutability of the context through an additive logarithmic score. Such a model contains only 3N+1 parameters and allows to probe large context sizes. The identity of the resulting nucleotide after mutation is assumed to follow a uniform distribution.

The documentation for this class was generated from the following files:

- · Hypermutationglobalerrorrate.h
- · Hypermutationglobalerrorrate.cpp

5.30 Insertion Class Reference

Insertion recombination events.

#include <Insertion.h>

Inheritance diagram for Insertion:

Public Member Functions

- Insertion (Gene class, std::pair< int, int >)
- Insertion (Gene_class, std::forward_list< int >)
- Insertion (Gene class)
- Insertion (Gene class, std::unordered map< std::string, Event realization > &)
- std::shared ptr< Rec Event > copy ()
- void iterate (double &, Downstream_scenario_proba_bound_map &, const std::string &, const Int_Str &, Index_map &, const std::unordered_map< Rec_Event_name, std::vector< std::pair< std::shared_ptr< const Rec_Event >, int >>> &, std::shared_ptr< Next_event_ptr > &, Marginal_array_p &, const Marginal_carray_p &, const std::unordered_map< Gene_class, std::vector< Alignment_data >> &, Seq_type_str_pcarray_p &, const std::shared_ptr< Error_rate > &, std::map< size_t, std::shared_ptr< Counter >> &, const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std::shared_ptr
 Rec_Event >> &, Safety bool map &, Mismatch vectors map &, double &, double &)

Evaluate all Event_Realization of a RecEvent for a given sequence.

- · bool add realization (int)
- std::queue< int > draw_random_realization (const Marginal_array_p &, std::unordered_map< Rec_←
 Event_name, int > &, const std::unordered_map< Rec_Event_name, std::vector< std::pair< std::shared_←
 ptr< const Rec_Event >, int >>> &, std::unordered_map< Seq_type, std::string > &, std::mt19937_64 &)
 const
- void write2txt (std::ofstream &)
- void initialize_event (std::unordered_set< Rec_Event_name > &, const std::unordered_map< std::tuple<
 Event_type, Gene_class, Seq_side >, std::shared_ptr< Rec_Event >> &, const std::unordered_map
 Rec_Event_name, std::vector< std::pair< std::shared_ptr< const Rec_Event >, int >>> &, Downstream = __scenario_proba_bound_map &, Seq_type_str_p_map &, Safety_bool_map &, std::shared_ptr< Error_rate
 >, Mismatch_vectors_map &, Seq_offsets_map &, Index_map &)
- void add_to_marginals (long double, Marginal_array_p &) const
- void **set crude upper bound proba** (size t, size t, Marginal array p &)
- void **initialize_crude_scenario_proba_bound** (double &, std::forward_list< double *> &, const std ::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std::shared_ptr< Rec_Event >> &)
- bool has effect on (Seq type) const
- void iterate_initialize_Len_proba (Seq_type considered_junction, std::map< int, double > &length_
 best_proba_map, std::queue< std::shared_ptr< Rec_Event >> &model_queue, double &scenario_proba,
 const Marginal_array_p &model_parameters_point, Index_map &base_index_map, Seq_type_str_p_map
 &constructed_sequences, int &seq_len) const
- void initialize_Len_proba_bound (std::queue< std::shared_ptr< Rec_Event >> &model_queue, const Marginal_array_p &model_parameters_point, Index_map &base_index_map)

Additional Inherited Members

5.30.1 Detailed Description

Insertion recombination events.

Author

Q.Marcou

Version

1.0

The Insertion RecEvent models the distribution of junctional insertion length during the V(D)J recombination process.

5.30.2 Member Function Documentation

5.30.2.1 iterate()

```
void Insertion::iterate (
             double & ,
             Downstream_scenario_proba_bound_map & ,
             const std::string & ,
             const Int_Str & ,
             Index_map & ,
             \verb|const| std::unordered_map| < \verb|Rec_Event_name|, std::vector| < std::pair| < std::shared_{\longleftrightarrow} \\
ptr< const Rec_Event >, int >>> & ,
             std::shared_ptr< Next_event_ptr > & ,
             Marginal_array_p & ,
             const Marginal_array_p & ,
             const std::unordered_map< Gene_class, std::vector< Alignment_data >> & ,
             Seq_type_str_p_map & ,
             Seq_offsets_map & ,
             std::shared\_ptr< Error\_rate > \& ,
             std::map< size_t, std::shared_ptr< Counter >> & ,
             const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std\leftarrow
::shared_ptr< Rec_Event >> & ,
             Safety_bool_map & ,
             Mismatch_vectors_map & ,
             double & ,
             double & ) [inline], [virtual]
```

Evaluate all Event_Realization of a RecEvent for a given sequence.

Author

Q.Marcou

Version

1.0

Parameters

in,out	scenario_proba	Probability of the currently explored (incomplete) scenario
in,out	downstream_proba_map	
in	sequence	The studied sequence in nucleotide code
in	int_sequence	The studied sequence in integer code
in,out	base_index_map	Dynamic map recording where probabilities should be read on the marginals.
in	offset_map	Tells the event by how much indices from the children events should be modified
in	next_event_ptr_arr	Indicates the next event to call iterate on
in	updated_marginals_point	Summary marginals on which complete scenario posteriors are recorded
in	model_parameters_point	Current recombination probability distribution

Parameters

in	allowed_realizations	The set of genomic templates alignment
in,out	constructed_sequences	Map containing the (incomplete) scenario's resulting sequence
in,out	seq_offsets	Map containing the 3' and 5' offsets of each scenario sequence piece
in	error_rate_p	Pointer to the error model object
in	counters_list	The list of Counter to be counted
in	events_map	A map containing all events contained in the Model_parms, accessible through their type, gene class and side.
in,out	safety_set	A map indicating whether checks on offsets overlap should be performed
in,out	mismatches_lists	A map containing the (incomplete) scenario mismatches
in	seq_max_prob_scenario	Most likely scenario's probability for the considered sequence
in	proba_threshold_factor	Threshold on probability ratio between most likely scenario and explored scenario

Returns

void

The iterate method is the heart of IGoR's scenario exploration. Model_Parms define an order in which the RecEvent should be processed. Upon call of iterate all EventRealization of the RecEvent are assessed and for each possible realization the iterate method is called recursively for the next event. Inside the iterate method a filtering on too improbable realizations is performed (tree prunning) using the downstream_proba_map.

The index map is used to read off the probability of the current RecEvent EventRealization at the correct location given the events parent's realizations. It is further modified to take into account the current event's realization when its children realization probabilities will be read.

Implements Rec_Event.

The documentation for this class was generated from the following files:

- · Insertion.h
- · Insertion.cpp

5.31 Int_Str Class Reference

Inheritance diagram for Int_Str:

Public Member Functions

- Int_Str & operator+= (const Int_Str &)
- Int_Str & operator+= (const int &)
- Int_Str & operator+= (int &&)
- Int_Str & append (const Int_Str &)
- Int_Str & append (const int &)
- Int_Str operator+ (const Int_Str &) const
- Int Str operator+ (const int &) const
- Int_Str operator+ (int) const
- Int_Str substr (std::size_t pos=0, std::size_t len=npos) const
- Int_Str & erase (std::size_t pos, std::size_t len)

Static Public Attributes

• static const std::size t npos = -1

The documentation for this class was generated from the following files:

- · IntStr.h
- · IntStr.cpp

5.32 inverse_offset_comparator Struct Reference

Public Member Functions

bool operator() (const std::pair< std::shared_ptr< const Rec_Event >, int > &inv_offset_1, const std::pair< std::shared_ptr< const Rec_Event >, int > &inv_offset_2)

The documentation for this struct was generated from the following file:

• Utils.h

5.33 Matrix < T > Struct Template Reference

Public Member Functions

- Matrix (int m, int n)
- Matrix (int m, int n, T arr[])
- Matrix (int m, int n, std::vector< T > vect)
- Matrix (const Matrix < T > &other)
- Matrix < T > & operator= (const Matrix &other)
- T & operator() (const int &i, const int &j)
- const T & operator() (const int &i, const int &j) const
- T get_field (const int &i, const int &j) const
- const int & get_n_rows () const
- const int & get_n_cols () const

The documentation for this struct was generated from the following file:

Utils.h

5.34 Model marginals Class Reference

Encapsulates the marginal probabilities/posterior frequency for each recombination event's realization.

#include <Model_marginals.h>

Public Member Functions

- Model_marginals (const Model_Parms &)
- Model_marginals (const Model_marginals &)
- size t compute_size (const Model Parms &)
- size t get event size (std::shared ptr< const Rec Event >, const Model Parms &) const
- std::pair< std::list< std::pair< Rec_Event_name, size_t >>, std::shared_ptr< long double >> compute ←
 _event_marginal_probability (Rec_Event_name, const Model_Parms &) const
- std::pair< std::list< std::pair< Rec_Event_name, size_t >>, std::shared_ptr< long double >> compute
 _event_marginal_probability (Rec_Event_name, const std::set< Rec_Event_name > &, const Model_←
 Parms &) const
- Model_marginals & operator= (const Model_marginals &)
- Model marginals & operator+= (Model marginals)
- Model marginals & operator-= (Model marginals)
- Model_marginals operator+ (Model_marginals)
- Model marginals operator- (Model marginals)
- void normalize (std::unordered_map< Rec_Event_name, std::list< std::pair< std::shared_ptr< const
 Rec_Event >, int >>>, std::unordered_map< Rec_Event_name, int >, std::queue< std::shared_ptr
 Rec_Event >>)
- void uniform_initialize (const Model_Parms &)
- void null_initialize ()
- void random_initialize (const Model Parms &)
- void flatten (std::shared_ptr< const Rec_Event >, const Model_Parms &)
- void set_realization_proba (std::string, std::shared_ptr< const Rec_Event >, double, const Model_Parms &)
- void add pseudo counts (double)
- bool add to marginals (double event proba, std::list< std::shared ptr< Rec Event >>, Model Parms)
- std::unordered_map< Rec_Event_name, std::vector< std::pair< std::shared_ptr< const Rec_Event >, int >>> get_offsets_map (const Model_Parms &) const
- std::unordered_map< Rec_Event_name, std::vector< std::pair< std::shared_ptr< const Rec_Event >, int >>> get_offsets_map (const Model_Parms &, std::queue< std::shared_ptr< Rec_Event >>) const
- std::unordered_map< Rec_Event_name, std::list< std::pair< std::shared_ptr< const Rec_Event >, int >
 > get inverse offset map (const Model Parms &) const
- std::unordered_map< Rec_Event_name, std::list< std::pair< std::shared_ptr< const Rec_Event >, int > >
 get_inverse_offset_map (const Model_Parms &, std::queue< std::shared_ptr< Rec_Event >>) const
- std::unordered_map< Rec_Event_name, int > **get_index_map** (const Model_Parms &) const
- std::unordered_map< Rec_Event_name, int > get_index_map (const Model_Parms &, std::queue< std
 ::shared_ptr< Rec_Event >>) const
- void write2txt (std::string, const Model_Parms &)
- void txt2marginals (std::string, const Model_Parms &)
- Model_marginals empty_copy ()
- Model marginals & invert edge (Rec Event name, Rec Event name, Model Parms &)
- size_t get_length () const

Public Attributes

- std::string debug_marg_name
- std::unique_ptr< long double []> marginal_array_smart_p

5.34.1 Detailed Description

Encapsulates the marginal probabilities/posterior frequency for each recombination event's realization.

Author

Q.Marcou

Version

1.0

Model_Marginals central component is a giant array containing all the marginal probabilities (or posterior frequencies during the inference) for each event realization. The class supplies various methods to navigate into this array and as well methods handling normalization and other various transformation.

5.34.2 Member Function Documentation

5.34.2.1 set_realization_proba()

```
void Model_marginals::set_realization_proba (
    std::string ,
    std::shared_ptr< const Rec_Event > ,
    double ,
    const Model_Parms & )
```

Sets the realization probability to the given value Note that the value will be set for all conditional dependences

//TODO recode this in order to be able to set several realizations probas at the same time //FIXME if the supplied new value is 1.0 there will be a zero division issue (this could be fixed by fixing all others to 0 instead of trying to set the supplied one to 1)

The documentation for this class was generated from the following files:

- · Model_marginals.h
- · Model marginals.cpp

5.35 Model_Parms Class Reference

Implements IGoR's Bayesian Network structure.

```
#include <Model_Parms.h>
```

Public Member Functions

```
    Model Parms (std::list< std::shared ptr< Rec Event >> event list)

    Model_Parms (const Model_Parms &)

• std::list< std::shared_ptr< Rec_Event >> get_children (Rec_Event *) const

    std::list< std::shared ptr< Rec Event >> get children (std::shared ptr< Rec Event >) const

• std::list< std::shared_ptr< Rec_Event >> get_children (Rec_Event_name) const

    std::list< std::shared ptr< Rec Event > > get_parents (Rec Event *) const

    std::list< std::shared_ptr< Rec_Event >> get_parents (std::shared_ptr< Rec_Event >) const

• std::list< std::shared_ptr< Rec_Event > > get_parents (Rec_Event_name) const

    std::list< std::shared ptr< Rec Event >> get ancestors (Rec Event *) const

    std::list< std::shared ptr< Rec Event >> get ancestors (std::shared ptr< Rec Event >) const

    std::list< std::shared_ptr< Rec_Event > > get_ancestors (Rec_Event_name) const

     Get all ancestors of the supplied event.

    bool add_edge (Rec_Event *, Rec_Event *)

    bool add edge (std::shared ptr< Rec Event >, std::shared ptr< Rec Event >)

• bool add edge (Rec Event name, Rec Event name)

    bool remove_edge (Rec_Event *, Rec_Event *)

    bool remove_edge (std::shared_ptr< Rec_Event >, std::shared_ptr< Rec_Event >)

• bool remove_edge (Rec_Event_name, Rec_Event_name)

    void invert_edge (Rec_Event *, Rec_Event *)

    void invert_edge (std::shared_ptr< Rec_Event >, std::shared_ptr< Rec_Event >)

• void invert edge (Rec Event name, Rec Event name)

    bool has_edge (Rec_Event *, Rec_Event *) const

    bool has_edge (std::shared_ptr< Rec_Event >, std::shared_ptr< Rec_Event >) const

    bool has_edge (Rec_Event_name, Rec_Event_name) const

    std::list< std::shared_ptr< Rec_Event > > get_roots () const

    bool add_event (std::shared_ptr< Rec_Event >)

    bool add_event (Rec_Event *)

    std::gueue < std::shared ptr < Rec Event > > get model queue () const

    std::shared_ptr< Rec_Event > get_event_pointer (const Rec_Event_name &) const

• std::shared_ptr< Rec_Event > get_event_pointer (const std::string &, bool by_nickname) const

    void update_edge_event_name (Rec_Event_name, Rec_Event_name)

    void write model parms (std::string)

    void read model parms (std::string)

    void set_fixed_all_events (bool)

    std::list< std::shared ptr< Rec Event >> get event list () const

• std::unordered_map< Rec_Event_name, Adjacency_list > get_edges () const
• const std::unordered map< std::tuple< Event type, Gene class, Seq side >, std::shared ptr< Rec Event
 >> get_events_map () const

    std::unordered map< std::tuple< Event type, Gene class, Seq side >, std::shared ptr< Rec Event > >

 get_events_map ()

    void set_error_ratep (Error_rate *Er_r)

    void set_error_ratep (std::shared_ptr< Error_rate > Er_r)

    std::shared_ptr< Error_rate > get_err_rate_p ()
```

5.35.1 Detailed Description

Implements IGoR's Bayesian Network structure.

Author

Q.Marcou

Version

1.0

Implements IGoR's Bayesian Network structure through an acyclic directed graph. Together with the recombination model topology it also contains the error model. This class implements various methods to extract information from the graph structure such as the order in which RecEvents must be processed provided the topological constraints.

5.35.2 Member Function Documentation

5.35.2.1 get_ancestors()

```
list< shared_ptr< Rec_Event >> Model_Parms::get_ancestors ( Rec_Event_name\ event_name\ )\ const
```

Get all ancestors of the supplied event.

Author

Q.Marcou

Version

1.0

Parameters

in	event_name	The event whom we seek the ancestors
----	------------	--------------------------------------

Returns

The list of the event ancestors

Get all ancestors of the supplied event. Ancestors are all events higher than the considered event in the genealogy and with link of any degree to it

The documentation for this class was generated from the following files:

- · Model_Parms.h
- Model_Parms.cpp

5.36 null_delete < T > Struct Template Reference

Declare a null_delete function.

```
#include <Utils.h>
```

Public Member Functions

void operator() (T *&)

5.36.1 Detailed Description

```
\label{eq:template} \begin{split} \text{template} &< \text{class T}> \\ \text{struct null\_delete} &< \text{T}> \end{split}
```

Declare a null delete function.

Author

Q.Marcou This function is not performing any task, it's purpose is to supply a "null_delete" function to prevent shared pointer objects created when passing Rec_Event or Error_rate objects pointers to model_parms to be destroyed when the model_parms object is destroyed itself and the rec_event and error_rate objects might still be of used (and if not prevent from a segfault error by trying to delete them twice)

The documentation for this struct was generated from the following file:

• Utils.h

5.37 offset_comp Struct Reference

Public Member Functions

• bool **operator()** (const std::pair< std::shared_ptr< const Rec_Event >, int > pair_1, const std::pair< std ::shared_ptr< const Rec_Event >, int > pair_2)

The documentation for this struct was generated from the following file:

· Model marginals.h

5.38 Pgen_counter Class Reference

Estimates sequences generation probability.

```
#include <Pgencounter.h>
```

Inheritance diagram for Pgen_counter:

Public Member Functions

- Pgen_counter (std::string)
- Pgen_counter (std::string, bool, bool do_output_sequences=false)
- std::string type () const
- void initialize counter (const Model Parms &, const Model marginals &)
- void count_scenario (long double, double, const std::string &, Seq_type_str_p_map &, const Seq_offsets
 _map &, const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std::shared_ptr
 Rec_Event >> &, Mismatch_vectors_map &)
- void dump_sequence_data (int, int)
- void add_checked (std::shared_ptr< Counter >)
- std::shared ptr< Counter > copy () const

Additional Inherited Members

5.38.1 Detailed Description

Estimates sequences generation probability.

Author

Q.Marcou

Version

1.0

This Counter implements an estimator for the generation probability of evaluated sequences. Alternatively the counter can record the probability of generation of putative ancestor (unmutated/error free) sequences and their associated posterior probability.

The documentation for this class was generated from the following files:

- · Pgencounter.h
- Pgencounter.cpp

5.39 Rec_Event Class Reference

Recombination event class (IGoR's graph nodes)

```
#include <Rec_Event.h>
```

Inheritance diagram for Rec_Event:

Public Member Functions

- Rec Event (Gene class, Seq side)
- Rec_Event (Gene_class, Seq_side, std::unordered_map< std::string, Event_realization > &)
- virtual std::shared_ptr< Rec_Event > copy ()=0
- · virtual int size () const
- virtual void iterate (double &, Downstream_scenario_proba_bound_map &, const std::string &, const Int
 _Str &, Index_map &, const std::unordered_map< Rec_Event_name, std::vector< std::pair< std::shared
 _ptr< const Rec_Event >, int >>> &, std::shared_ptr< Next_event_ptr > &, Marginal_array_p &, const
 Marginal_array_p &, const std::unordered_map< Gene_class, std::vector< Alignment_data >> &, Seq_
 type_str_p_map &, Seq_offsets_map &, std::shared_ptr< Error_rate > &, std::map< size_t, std::shared
 _ptr< Counter >> &, const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std
 ::shared_ptr< Rec_Event >> &, Safety_bool_map &, Mismatch_vectors_map &, double &, double &)=0

Evaluate all Event_Realization of a RecEvent for a given sequence.

- bool set_priority (int)
- const Gene_class get_class () const
- const Seq_side get_side () const
- const std::unordered_map< std::string, Event_realization > get_realizations_map () const
- · const int get_priority () const
- const Rec_Event_name get_name () const
- const std::string get_nickname () const
- void set_nickname (std::string name)
- Event_type get_type () const
- · int get len max () const
- int get len min () const
- bool operator== (const Rec Event &) const
- void update_event_name ()
- virtual std::queue< int > draw_random_realization (const Marginal_array_p &, std::unordered_map< Rec_Event_name, int > &, const std::unordered_map< Rec_Event_name, std::vector< std::pair< std
 ::shared_ptr< const Rec_Event >, int >>> &, std::unordered_map< Seq_type, std::string > &, std
 ::mt19937_64 &) const =0
- virtual void write2txt (std::ofstream &)=0
- virtual void ind_normalize (Marginal_array_p &, size_t) const
- virtual void initialize_crude_scenario_proba_bound (double &, std::forward_list< double *> &, const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std::shared_ptr< Rec_Event >> &)
- virtual void add to marginals (long double, Marginal array p &) const =0
- virtual void **set_crude_upper_bound_proba** (size_t, size_t, Marginal_array_p &)
- void set_upper_bound_proba (double)
- · double get_upper_bound_proba () const
- virtual void update_event_internal_probas (const Marginal_array_p &, const std::unordered_map< Rec_←
 Event_name, int > &)
- void set event identifier (size t)
- int **get_event_identifier** () const
- void set_event_marginal_size (size_t ev_size)
- · bool is_updated () const
- void fix (bool fix_status)
- bool is_fixed () const
- void set_viterbi_run (bool viterbi_like)
- virtual double * get_updated_ptr ()
- void compute_crude_upper_bound_scenario_proba (double &)

- const std::vector< int > & get_current_realizations_index_vec () const
- virtual bool has effect on (Seq type) const =0
- void iterate_initialize_Len_proba_wrap_up (Seq_type considered_junction, std::map< int, double > &length_best_proba_map, std::queue< std::shared_ptr< Rec_Event >> model_queue, double scenario
 _proba, const Marginal_array_p &model_parameters_point, Index_map &base_index_map, Seq_type_str
 _p_map &constructed_sequences, int seq_len) const
- void iterate_initialize_Len_proba (Seq_type considered_junction, std::map< int, double > &length_
 best_proba_map, std::queue< std::shared_ptr< Rec_Event >> &model_queue, double &scenario_proba,
 const Marginal_array_p &model_parameters_point, Index_map &base_index_map, Seq_type_str_p_map
 &constructed sequences) const
- virtual void **initialize_Len_proba_bound** (std::queue< std::shared_ptr< Rec_Event >> &model_queue, const Marginal_array_p &model_parameters_point, Index_map &base_index_map)=0

Protected Member Functions

- int compare_sequences (std::string, std::string)
- void add_realization (const Event_realization &)
- void iterate_wrap_up (double &scenario_proba, Downstream_scenario_proba_bound_map &downstream
 _proba_map, const std::string &sequence, const Int_Str &int_sequence, Index_map &index_map, const std::unordered_map< Rec_Event_name, std::vector< std::pair< std::shared_ptr< const Rec_Event >, int >>> &offset_map, std::shared_ptr< Next_event_ptr > &next_event_ptr_arr, Marginal_array_p &updated
 _marginal_array_p, const Marginal_array_p &model_parameters_point, const std::unordered_map< Gene
 _class, std::vector< Alignment_data >> &allowed_realizations, Seq_type_str_p_map &constructed
 _sequences, Seq_offsets_map &seq_offsets, std::shared_ptr< Error_rate > &error_rate_p, std::map<
 size_t, std::shared_ptr< Counter >> &counters_list, const std::unordered_map< std::tuple< Event_type,
 Gene_class, Seq_side >, std::shared_ptr< Rec_Event >> &events_map, Safety_bool_map &safety_set,
 Mismatch_vectors_map &mismatches_lists, double &seq_max_prob_scenario, double &proba_threshold_colored_factor)

Protected Attributes

- std::unordered_map< std::string, Event_realization > event_realizations
- int priority
- · Gene class event class
- · Seq_side event_side
- Rec_Event_name name
- · std::string nickname
- int len min
- int len_max
- · Event type type
- int event_index
- std::forward list< std::tuple< int, int, int > > memory_and_offsets
- · bool updated
- bool viterbi_run
- bool initialized
- size_t event_marginal_size
- bool fixed
- · double event upper bound proba
- · double scenario downstream upper bound proba
- double scenario_upper_bound_proba
- std::forward_list< double * > updated_proba_bounds_list
- std::vector< int > current realizations index vec
- const int * current_realization_index
- int current_downstream_proba_memory_layers [6]

5.39.1 Detailed Description

Recombination event class (IGoR's graph nodes)

Author

Q.Marcou

Version

1.0

This class implements the recombination event object. Rec_Events are the nodes in IGoR's Bayesian Network structure. This is a purely abstract class and cannot be instanciated as is, only classes deriving from it and implementing the purely abstract methods can be.

Rec_Events contain the different Event_realization associated to it in a hashmap.

The RecEvents design is key to the way IGoR explore all possible scenarios (through the iterate method) and generate sequences (through the draw_random_realization)

5.39.2 Member Function Documentation

5.39.2.1 iterate()

```
virtual void Rec_Event::iterate (
             double & ,
             Downstream_scenario_proba_bound_map & ,
             const std::string & ,
             const Int_Str & ,
             Index_map & ,
             \verb|const| std::unordered_map| < \verb|Rec_Event_name|, std::vector| < std::pair| < std::shared_{\longleftrightarrow} \\
ptr< const Rec_Event >, int >>> & ,
             std::shared_ptr< Next_event_ptr > & ,
             Marginal_array_p & ,
             const Marginal_array_p & ,
             const std::unordered_map< Gene_class, std::vector< Alignment_data >> & ,
             Seq_type_str_p_map & ,
             Seq_offsets_map & ,
             std::shared_ptr< Error_rate > & ,
             std::map< size_t, std::shared_ptr< Counter >> & ,
             const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std↔
::shared_ptr< Rec_Event >> & ,
             Safety_bool_map & ,
             Mismatch\_vectors\_map \& ,
             double & ,
             double & ) [pure virtual]
```

Evaluate all Event_Realization of a RecEvent for a given sequence.

Author

Q.Marcou

Version

1.0

Parameters

in,out	scenario_proba	Probability of the currently explored (incomplete) scenario
in,out	downstream_proba_map	
in	sequence	The studied sequence in nucleotide code
in	int_sequence	The studied sequence in integer code
in,out	base_index_map	Dynamic map recording where probabilities should be read on the marginals.
in	offset_map	Tells the event by how much indices from the children events should be modified
in	next_event_ptr_arr	Indicates the next event to call iterate on
in	updated_marginals_point	Summary marginals on which complete scenario posteriors are recorded
in	model_parameters_point	Current recombination probability distribution
in	allowed_realizations	The set of genomic templates alignment
in,out	constructed_sequences	Map containing the (incomplete) scenario's resulting sequence
in,out	seq_offsets	Map containing the 3' and 5' offsets of each scenario sequence piece
in	error_rate_p	Pointer to the error model object
in	counters_list	The list of Counter to be counted
in	events_map	A map containing all events contained in the Model_parms, accessible through their type, gene class and side.
in,out	safety_set	A map indicating whether checks on offsets overlap should be performed
in,out	mismatches_lists	A map containing the (incomplete) scenario mismatches
in	seq_max_prob_scenario	Most likely scenario's probability for the considered sequence
in	proba_threshold_factor	Threshold on probability ratio between most likely scenario and explored scenario

Returns

void

The iterate method is the heart of IGoR's scenario exploration. Model_Parms define an order in which the RecEvent should be processed. Upon call of iterate all EventRealization of the RecEvent are assessed and for each possible realization the iterate method is called recursively for the next event. Inside the iterate method a filtering on too improbable realizations is performed (tree prunning) using the downstream_proba_map.

The index map is used to read off the probability of the current RecEvent EventRealization at the correct location given the events parent's realizations. It is further modified to take into account the current event's realization when its children realization probabilities will be read.

Implemented in Deletion, Dinucl_markov, Gene_choice, and Insertion.

5.39.2.2 update_event_internal_probas()

Does nothing since in general events will not need to perform any operation on the marginal probabilities Reimplemented in Dinucl markov.

The documentation for this class was generated from the following files:

- Rec_Event.h
- Rec_Event.cpp

5.40 Single_error_rate Class Reference

Independent single nucleotide error model.

#include <Singleerrorrate.h>

Inheritance diagram for Single_error_rate:

Public Member Functions

- Single_error_rate (double)
- double compare_sequences_error_prob (double, const std::string &, Seq_type_str_p_map &, const Seq_offsets_map &, const std::unordered_map< std::tuple< Event_type, Gene_class, Seq_side >, std← ::shared_ptr< Rec_Event >> &, Mismatch_vectors_map &, double &, double &)
- void update ()
- void add_to_norm_counter ()
- void clean seq counters ()
- Single_error_rate **operator+** (Single_error_rate)
- Single_error_rate & operator+= (Single_error_rate)
- void write2txt (std::ofstream &)
- std::shared_ptr< Error_rate > copy () const
- std::string type () const
- Error_rate * add_checked (Error_rate *)
- const double & get_err_rate_upper_bound (size_t, size_t)
- void build upper bound matrix (size t, size t)
- int get_number_non_zero_likelihood_seqs () const
- std::queue< int > generate_errors (std::string &, std::mt19937 64 &) const

Additional Inherited Members

5.40.1 Detailed Description

Independent single nucleotide error model.

Author

Q.Marcou

Version

1.0

Simplest instance of the ErrorRate family. Models errors/mutations as a Bernouilli process with a global rate independent of position and context.

The documentation for this class was generated from the following files:

- · Singleerrorrate.h
- · Singleerrorrate.cpp

Index

add_to_marginals	ExtractFeatures, 29
Dinucl_markov, 20	getVAnchor4Seq
Gene_choice, 33	ExtractFeatures, 29
Adjacency_list, 9	Hypermutation_full_Nmer_errorrate, 38
Aligner, 9	Hypermutation_global_errorrate, 39
Aligner, 11	Trypermutation_global_enomate, 55
Alignment_data, 11	Insertion, 40
D 1 10	iterate, 42
Best_scenarios_counter, 13	Int_Str, 43
CDR3SeqData, 14	inverse_offset_comparator, 44
Counter, 14	iterate
Coverage_err_counter, 16	Deletion, 18
overage_en_counter, to	Dinucl_markov, 20
D_position_comparator, 17	Gene_choice, 33
Deletion, 17	Insertion, 42
iterate, 18	Rec_Event, 53
Dinucl_markov, 19	1. 1.1/1
add_to_marginals, 20	load_VJanchors
iterate, 20	ExtractFeatures, 29, 30
update_event_internal_probas, 22	load_VJgenomicTemplates
apaato_01011ttoai_p100ao,	ExtractFeatures, 30
Enum_fast_memory_dual_key_map< K1, K2, V >, 22	Matrix $< T >$, 44
Enum_fast_memory_map< K, V >, 23	Model_Parms, 46
Error_rate, 23	get ancestors, 48
Errors_counter, 25	Model_marginals, 45
Event_comparator, 26	set_realization_proba, 46
Event_realization, 26	Set_lealization_proba, 40
extractCDR3	null_delete< T >, 48
ExtractFeatures, 28	"
ExtractFeatures, 27	offset_comp, 49
extractCDR3, 28	Pgen_counter, 49
generateCDR3_csv_line, 28	. go.i_ooa,
getJAnchor4Seq, 29	Rec_Event, 50
getVAnchor4Seq, 29	iterate, 53
load VJanchors, 29, 30	update_event_internal_probas, 54
load_VJgenomicTemplates, 30	
load_vogenomic remplates, 50	set_realization_proba
gen_CDR3_data, 31	Model_marginals, 46
GenModel, 34	Single_error_rate, 55
generate_sequences, 35	std::hash< Event_safety >, 36
Gene_choice, 31	std::hash< Gene_class >, 36
add_to_marginals, 33	std::hash< Int_Str >, 36
iterate, 33	std::hash< Seq_type >, 37
generate_sequences	std::hash< std::pair< Gene_class, Seq_side > >, 37
GenModel, 35	std::hash< std::pair< Seq_type, Seq_side >>, 37
generateCDR3_csv_line	std::hash< std::tuple< Event_type, Gene_class, Seq-
	_side > >, 37
ExtractFeatures, 28	undata avant internal probas
get_ancestors	update_event_internal_probas
Model_Parms, 48	Dinucl_markov, 22
getJAnchor4Seq	Rec_Event, 54