Section 2: Random variables

ARE 210

September 5, 2017

- Introduction (10 min)
- A few tips (10 min)
- Practice questions (30 min)

The section notes are available on the section Github at github.com/johnloeser/are210 in the "section2" folder.

1 Definitions

- A probability space is a triple (Ω, \mathbf{F}, P) , where Ω is the sample space, \mathbf{F} is a σ -algebra over Ω , and P is a probability measure. (Ω, \mathbf{F}) is a measurable space.
- $\{A_i\}_{i=1}^N$ are mutually independent if $\forall I \subseteq \{1,\ldots,N\}, P(\cap_{i\in I}A_i) = \prod_{i\in I}P(A_i)$
- A random variable $X:(\Omega, \mathbf{F}) \to (E, \mathbf{E})$, where X is a measurable function, and (Ω, \mathbf{F}) and (E, \mathbf{E}) are measurable spaces
 - Note: the mapping from \mathbf{F} to \mathbf{E} is induced by the mapping from Ω to E. The mapping from P to P_X is induced by the mapping from \mathbf{F} to \mathbf{E} .
 - stochastic process $\equiv E$ = the space of functions mapping a set T to \mathbf{R}^k
 - scalar random variable $\equiv E = \mathbf{R}$
 - discrete random variable $\equiv E \cong \mathbb{N}$ (E countable)
- The **CDF** (cumulative distribution function) of a random variable $X:(\Omega, \mathbf{F}) \to (\mathbf{R}^k, \mathbf{B}^k)$ is $F_X(x) = P_X[X_1 \le x_1, \dots, X_k \le x_k]$
 - $-F: \mathbf{R}^{\mathbf{k}} \to [0,1]$ is a CDF if and only if 1) $\lim_{x \downarrow x_0} F(x) = F(x_0)$ (right continuity), 2) F is non-decreasing, 3) $\inf_{x \in \mathbf{R}^k} F(x) = 0$, $\sup_{x \in \mathbf{R}^k} F(x) = 1$
 - Assume X is absolutely continuous. Then \exists a **density** $f_X(x)$ such that $F_X(x) \equiv \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_k} f_X(\widetilde{x}) d\widetilde{x}_k \dots d\widetilde{x}_1.$ $* \Rightarrow P_X[X \in A] = \int_A f_X(x) dx$
- $X:(\Omega, \mathbf{F}) \to (E, \mathbf{E})$ is a **continuous random variable** if it has no atoms (is diffuse)
 - $-\{\omega\}\in \mathbf{E} \text{ (where } \omega\in E) \text{ is an atom if } P_X(\{\omega\})>0$
 - Let D be the set of atoms. X is discrete if and only if $P_X(E \setminus D) = 0$

- X is continuous if and only if, for any countable set $C, P(X \in C) = 0$
- X is a **mixed random variable** if it is neither continuous nor discrete
- Random variables X_1, \ldots, X_n are **mutually independent** if $P(\cap_{i=1}^n X_i \in B_i) = \prod_{i=1}^n P(X_i \in B_i)$ for all measurable sets B_i for $i \in 1, \ldots, n$.
 - Let X_1, \ldots, X_n be a vector of real valued random variables with CDF F and marginal CDFs F_i . $\{X_i\}_{i=1}^n$ are mutually independent if and only if $F(x_1, \ldots, x_n) = \prod_{i=1}^n F_i(x_i)$.
- Let $E \subset \mathbf{R}^k$, $g: E \to \mathbf{R}^k$ one-to-one, continuously differentiable, $\left| \frac{\partial g(y)}{\partial y} \right| \neq 0$ in nbd of $g^{-1}(y)$ for $y \in \mathbf{R}^k$, Y = g(X). Then, the density $f_Y(y) = f_X(g^{-1}(y)) \left| \frac{\partial g^{-1}(y)}{\partial y} \right|$
- Let F be a CDF, the quantile function is $Q(p) \equiv \inf\{x \in E : F(x) \ge p\}$.

2 Some helpful tips

• It can be helpful to think of a random variable X as a mapping just from one sample space Ω to another sample space E. However, this mapping induces a mapping from the σ -algebra \mathbf{F} to the σ -algebra \mathbf{E} ($A \in \mathbf{F} \Rightarrow X(A) \equiv \{X(\omega) | \omega \in A\} \in \mathbf{E}$) and from the probability measure P to the probability measure P_X ($\forall A \in \mathbf{F}, P(A) = P_X(X(A))$).

3 Practice questions

- 1) **Probability of complement**: Show that $P(A^c) = 1 P(A)$.
- 2) Conditional Bayes' Theorem: Show that $P(A|B,C) = \frac{P(A,B|C)}{P(B|C)}$
- 3) Mixed random variables: Let (X_1, X_2) be random variables with joint distribution F. How would you calculate the marginal distribution of X_1 ?
- 4) Independence and densities: Let X_1, X_2 be independent continuous random variables. Show that their joint density is equal to the product of their marginal densities, and assume for simplicity that each has a continuous marginal density.
- 5) **Distribution practice**: Let X_1, X_2 be standard normal random variables, each with density $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$.
- a) What is the joint distribution F of X_1 and X_2 ? What is the joint density f?

b) What is the distribution F_Y of $Y = X_1 + X_2$? What is the density f_Y ?