

Exploring NLP Models and Datasets through Dialogue-based Explanations

Nils Feldhus, Qianli Wang, Tatiana Anikina, Sahil Chopra, Cennet Oguz, Sebastian Möller

German Research Center for Artificial Intelligence (DFKI)

Technische Universität Berlin Saarland Informatics Campus

Why do we need dialogue-based explanation?

• Interactive conversational interface providing multi-turn dialogues

and context

 One-off explanations not sufficient, potentially ambiguous

 Support various explanations in one single system

• Ease of use; More accessible to laypeople

Hello , I'm a machine learning model trained to predict to answer offensive/non-offensive attitude based on tweets.

Let's get started. Ask me something!

Can you show me three most attributed tokens for id 16?

Feedback

Text: @USER I'm astounded that conservatives hold her up as some kind of intellectual. What a failure.

Top 3 token(s): . i conservative

▼ The visualization:

Please generate an adversarial sample for this instance.

Label non-offensive (85.065%) --> offensive (57.769%)

@ USER I 'm astounded that conservatives hold her up as some kind of intellectual. What a failure.

@ user i ' m astounded that conservatives hold her up as some kind of intellectual , what a loser .

Feedback

Support for custom inputs | Similar examples

Rationale Generation

NLP Model Token Attributions

Rationale Generation with LLMs Natural Language Counterfactuals

> Semantic Similarity

HUGGING FACE

Task:
Dialogue Act
Classification

Task: Question Answering Task:
Hate Speech
Detection

Tweet: "blasey ford is a fat ugly libral snowflake" Explain in natural language, Why is this text hateful? The tweet includes insults related to body shaming.

Operations

A Instructions:

Dataset Viewer

How to recognize user intent

Building blocks of InterroLang

Operation	Tool / Model
Intent recognition / Parsing	GPT-Neo (2.7B) FLAN-T5-base (250M) BERT + Adapter (110M)
Feature Attribution / Saliency Method	Captum Integrated Gradients
Counterfactuals	Polyjuice (GPT-2)
Adversarial Examples	OpenAttack
Data Augmentation	NLPAug
Rationalization	Dolly v2 (3B)
Similar Examples	SBERT

Experiments: Intent recognition

Dataset		BoolQ			OLID			DailyDialog		
Parsing model	Size	dev	dev-gpt	test	dev	dev-gpt	test	dev	dev-gpt	test
Nearest Neighbors		34.69	35	34.02	33.67	35	30.26	36.73	37	32.51
GPT-Neo	2.7B	73	70	72.54	71	72	67.11	70	66	70.44
FLAN-T5-base	250M	71	71	74.18	63	66	66.67	66	63	75.86
BERT+Adapter	110 M	72.55	76.86	79.33	72.55	76.86	84.25	72.55	77.69	83.94

Table 2: Exact match parsing accuracy (in %) for the datasets and their three partitions (human-authored dev development data, dev-gpt data augmented via GPT-3.5, test set created from questions asked by participants of the user study). GPT-Neo uses k=20 shots in the prompt.

Human evaluation: Subjective ratings

-	Operations	Corr.	Help.	Sat.	X 200				
	Show example	52.94	44.44	42.19	D,	Similar examples	53.57	45.61	62.50
Metadata	Describe data	89.66	87.27	87.72	Z	Keywords	60.34	54.00	60.00
	Count data	56.41	44.44	45.83	-	Feature importance	55.88	42.25	50.00
	True labels	58.82	64.71	72.22	Expl.	Global feature importance	50.00	50.00	31.32
	Model cards	56.25	43.75	45.06		Free-text rationale	62.07	62.50	65.45
Prediction Sin	Random prediction	57.59	60.71	65.52		Counterfactual	40.00	27.03	21.62
	Single/Dataset prediction	53.42	53.52	54.17	Pertb	Adversarial example	61.90	40.00	37.50
	Likelihood	62.86	67.50	63.41	Pe	Augmentation	62.50	52.17	60.00
re	Performance	72.50	65.79	76.19	1	1.1.8	02.00	02.11	
-	Mistakes	81.25	68.75	77.09					

Subjective ratings (% positive) on **c**orrectness, **h**elpfulness and **s**atisfaction for single turns, macro-averaged.

Human evaluation: Simulatability

- User is exposed to: Input + Explanation
- User has to predict the expected model outcome
- Simulation accuracy:
 How often user
 prediction
 == Actual model outcome

Explanation types	Sim (all)	$\mathbf{Sim} \\ (t=1)$	Help Ratio	#Turns Avg.	
Local feature importance	91.43	93.10	82.86	3.85	
Sent. feature importance	90.00	94.44	60.00	3.84	
Free-text rationale	94.74	100.00	68.42	3.70	
Counterfactual	85.00	80.00	25.00	4.14	
Adversarial example	84.00	85.71	56.00	4.00	
Similar examples	88.46	87.50	61.54	4.00	

Table 5: Task B of the user study: Simulatability. Simulation accuracy (in %), simulation accuracy for explanations deemed helpful (in %), helpfulness ratio (in %), average number of turns needed to make a decision.

Takeaways for dialogue-based explanations

BERT + Adapter solution works best for intent recognition

Smaller models outperform LLMs!

Human evaluators preferred global explanations and analyses

- 1. Metadata (Model cards / Datasheets)
- 2. Common mistakes made by the model
- 3. Performance metrics (Accuracy, F1, etc.)

Simulatability shows multi-turn explanations are necessary. Most useful explanation types:

- Feature attribution
- 2. Free-text rationales

Outlook

- How well can InterroLang generalize to other tasks, modalities and larger LMs?
- How can we use the user feedback (ratings and responses) to improve the model?

InterroLang: Exploring NLP Models and Datasets through Dialogue-based Explanations

Nils Feldhus, Qianli Wang, <u>Tatiana Anikina</u>, <u>Sahil Chopra</u>, <u>Cennet Oguz</u>, <u>Sebastian Möller</u>
Now on arXiv!

Accepted to *EMNLP 2023 Findings*.

To be presented at *BlackboxNLP* in Singapore on December 7!

