ist

III.1 Einführung in die Beschreibung und Analyse nichtlinearer Systeme

Beschreibung und Analyse nichtlinearer Systeme

- Was ist ein nichtlineares System?
- Klassen nichtlinearer Systeme

- Darstellung nichtlinearer Systeme
- Eigenschaften nichtlinearer Systeme vs. Eigenschaften linearer Systeme
- Zusammenfassung

Beschreibung und Analyse nichtlinearer Systeme

- Was ist ein nichtlineares System?
- Klassen nichtlinearer Systeme
- Darstellung nichtlinearer Systeme
- Eigenschaften nichtlinearer Systeme vs. Eigenschaften linearer Systeme
- Zusammenfassung

Beschreibung und Analyse nichtlinearer **Systeme**

Durch Systeme werden Signale transformiert.

System: Operator der Signale in Signale abbildet.

Beschreibung und Analyse nichtlinearer **Systeme**

Klassifikation von Systemen:

- statisch dynamisch
- Eingrössensysteme Mehrgrössensysteme
- zeitkontinuierlich zeitdiskret
- konzentriert verteilt
- linear nichtlinear

isto

Linearität - Nichtlinearität

isto

System F

Linearitätseigenschaft:

2. Superpositionsprinzip erfüllt:

$$F\left[u_1+u_2\right]=F\left[u_1\right]+F\left[u_2\right]$$

1. Homogenitätsprinzip erfüllt:

$$F[ku] = k F[u]$$

Nichtlineares System: nicht linear, d.h. Homogenitätsprinzip und/oder Superpositionsprinzip wird verletzt.

Superpositionsprinzip für dynamische Systeme ist

Superpositionsprinzip für dynamische Systeme ist

Homogenitätsprinzip für dynamische Systeme

Homogenitätsprinzip für dynamische Systeme

Beispiel: Linearität / Nichtlinearität

Beispiel: statisches System

$$y(t) = F[u](t) = f[u(t)] = u^{2}(t)$$

Gilt Superpositionsprinzip?

$$(u_1+u_2)^2=u_{12}+u_{22}$$
 f.A.

Gilt Homogenitätsprinzip?

$$(k u)^2 = k u^2 f.A.$$

⇒ System ist nichtlinear.

Beispiel: Federkennlinien

Hooke'sche Feder:

 $F_{Feder} = c z$ $F_{Feder} = c_1 z + c_2 z^3$ Progressive Feder:

Beispiel: passives Fahrwerk mit Hooke'scher Feder

Beispiel: passives Fahrwerk mit progressiver Feder

Beispiel: Linearität / Nichtlinearität

Beispiel: allgemeines dynamisches System

$$y(t) = \int_{0}^{t} \underline{c}^{T} e^{A(t-\tau)} \underline{b} u(\tau) d\tau$$

gilt Superpositionsprinzip?

$$y(t) = \int_{0}^{t} \underline{c}^{T} e^{A(t-\tau)} \underline{b} \left(u_{1}(\tau) + u_{2}(\tau) \right) d\tau$$

$$\vdots \int_{0}^{t} \underline{c}^{T} e^{A(t-\tau)} \underline{b} u_{1}(\tau) d\tau + \int_{0}^{t} \underline{c}^{T} e^{A(t-\tau)} \underline{b} u_{2}(\tau) d\tau = y_{1}(t) + y_{2}(t)$$

⇒ System ist linear.

Beispiel: Linearität / Nichtlinearität

$$\underline{\dot{x}} = \underline{f}(\underline{x}, u)
y = h(\underline{x}, u)$$

Satz: System in ZR-Darstellung ist genau dann linear, wenn die Funktionen f und h linear in x und h sind (genauer: wenn sie *affin* in h und h sind).

$$\Rightarrow \frac{\dot{x} = A \, \underline{x} + \underline{b} \, u}{y = \underline{c}^T \, \underline{x} + du}$$

Beispiel: Linearität / Nichtlinearität

$$\dot{z} = -3(z-1) + 3\left(\sqrt[3]{z-1}\right)^2 u$$

$$v = 2\sqrt[3]{z-1}$$

- Nichtlineares Verhalten bzgl. AB wegen nichtlinearer ZR-Gleichungen
- ABER: Lineares Übertragungsverhalten

$$y + \dot{y} = 2\sqrt[3]{z - 1} + \frac{2}{3(\sqrt[3]{z - 1})^2} \dot{z} = \cdots$$

$$\dot{z} = 2\sqrt[3]{z - 1} + (-2\sqrt[3]{z - 1} + 2u)$$

$$\dot{z} = 2\sqrt[3]{z - 1} + (-2\sqrt[3]{z - 1} + 2u)$$

Beschreibung und Analyse nichtlinearer Systeme

- Was ist ein nichtlineares System?
- Klassen nichtlinearer Systeme
- Darstellung nichtlinearer Systeme
- Eigenschaften nichtlinearer Systeme vs. Eigenschaften linearer Systeme
- Zusammenfassung

- Klassen nichtlinearer Systeme
- Darstellung nichtlinearer Systeme
- Eigenschaften nichtlinearer Systeme vs. Eigenschaften linearer Systeme
- Zusammenfassung

ist

Klassen nichtlinearer Systeme

$$\underline{\dot{x}} = A \underline{x} + \underline{b} u
y = \underline{c}^T \underline{x} + du$$

Lineares System

$$\underline{\dot{x}} = \underline{f}(\underline{x}) + \underline{g}(\underline{x})u$$

Eingangsaffines System

$$\underline{\dot{x}} = A \underline{x} + N \underline{x} u + \underline{b} u$$

Bilineares System

Klassen nichtlinearer Systeme

$$\underline{\dot{x}} = \underline{f}(\underline{x}, u, t)
y = h(\underline{x}, u, t)$$

Nichtlineares, zeitvariantes System

System vom Hammerstein-Typ

System vom Wiener-Typ

Klass

Klassen nichtlinearer Systeme

Klassifizierung nach der rechten Seite:

- Stetigkeit,
- · Differenzierbarkeit,
- Lipschitz-Stetigkeit

• ...

Nichtlineare Systeme können sehr unterschiedliche Struktur aufweisen

→ sehr unterschiedliches Verhalten

Beispiele: Klassen nichtlinearer Systeme

• $y(t) = \int_{-\infty}^{t} \underline{c}^{T} e^{A(t-\tau)} \underline{b} u^{2}(\tau) d\tau$ Superpositionsprinzip gilt nicht \Rightarrow nichtlinear

•
$$\dot{x} = -x^3 + (1+x^2)u$$

nichtlinear (eingangsaffin)

$$\dot{x} = -x + u^2$$

nichtlinear (Hammerstein-Typ)

$$\dot{x} = x^3 + u$$

nichtlinear (eingangsaffin)

$$\dot{x} = -3 x + u$$

linear

•
$$\dot{x} = -3 x + 9 + 0 \cdot u$$

nichtlinear (affin)

Beispiele: Klassen nichtlinearer Systeme

•
$$\dot{x} = -3t^2x + u$$

$$\dot{x}^2 = -3x + u$$

•
$$\dot{x} = -|x| + u$$

•
$$\dot{x} = \begin{cases} -3x + u & \text{für } |x| < 1 \\ x^2 + u & \text{für } |x| \ge 1 \end{cases}$$

linear (zeitvariant)
nichtlinear, nicht eindeutig
nichtlinear, nicht
differenzierbare rechte Seite

nichtlinear, unstetige re. Seite

Klassen nichtlinearer Systeme

Fast alle realen Systeme sind nichtlinear!

Beispiel für ein nichtlineares System

- CSTR f
 ür Cyclopentenol-Synthese
- Van der Vusse Reaktionsschema

$$A\vec{k_1}B\vec{k_2}C$$
 $2A\vec{k_3}D$

 Arbeitspunkt bei maximaler Ausbeute

$$\varphi = \frac{c_{B_S}}{c_{A_0}}$$

Regelgröße: Konzentration $c_{\scriptscriptstyle \mathrm{B}}$

• Stellgröße: Durchfluss q

Störgrössen: Zuflusstemperatur T_f

Zuflusskonzentration c_{A0}

Beispiel für ein nichtlineares System

Zustandsraumdarstellung

$$\begin{split} \dot{c_{A}} &= \frac{V}{V_{R}} \Big(c_{A_{0}} - c_{A} \Big) - k_{1} \big(- \big) c_{A} - k_{3} \big(- \big) c_{A}^{2} \\ \dot{c_{B}} &= -\frac{V}{V_{R}} c_{B} + k_{1} \big(- \big) c_{A} - k_{2} \big(- \big) c_{B} \\ &\cdot = \frac{V}{V_{R}} \big(- \big) - \frac{1}{\rho C_{P}} \big(- \big) k_{1} \big(- \big) c_{A} \Delta H_{R_{AB}} + k_{2} \big(- \big) c_{B} \Delta H_{R_{BC}} \\ &+ k_{3} \big(- \big) c_{A}^{2} \Delta H_{R_{AD}} \big) + \frac{k_{w} A_{R}}{\rho C_{P} V_{R}} \big(- K - - - \big) \\ &\cdot K = \frac{1}{m_{K} C_{PK}} \big(\dot{Q}_{K} - k_{w} A_{R} \big(- K - - \big) \big) \end{split}$$

Sprungantwort des Reaktors

isto

Homogenitätsprinzip ist nicht erfüllt

→ System ist (stark) nichtlinear

Wahl des Arbeitspunktes für den CSTR

A. Industrieller Arbeitspunkt Lineare Regelung möglich 1.4 C_B 1.2 8.0 0.6 0.5 1.5 2 0 time [min]

Schwere der Nichtlinearität hängt vom Arbeitspunkt ab!

ist

Analyse des Beispielreaktors mittels Nichtlinearitätsmaßen

(Allgöwer, 1993)

Beschreibung und Analyse nichtlinearer Systeme

Klassen nichtlinearer Systeme

Darstellung nichtlinearer Systeme

 Eigenschaften nichtlinearer Systeme vs. Eigenschaften linearer Systeme

Zusammenfassung

Zustandsraumdarstellung nichtlinearer Systeme ist

$$\underline{x}(t) \in \mathbb{R}^n$$
 (Zustand)
 $u(t) \in \mathbb{R}$ (Eingang)
 $y(t) \in \mathbb{R}$ (Ausgang)

Beispiel

$$\dot{x}_1 = -x_1 + x_2^2$$

$$\dot{x}_2 = -x_2^3 + u$$

$$y = x_1$$

E/A-Darstellung nichtlinearer Systeme

(Nichtlineare) Differentialgleichung höherer Ordnung

$$f(y^{(n)}, y^{(n-1)}, ..., \dot{y}, y, u^{(m)}, ..., \dot{u}, u) = 0, m \le n$$

Beispiel

$$\ddot{y} + 3\dot{y}^2 + y\dot{y} = 2\dot{u} + u^2$$

Keine Darstellung im Frequenzbereich möglich!

Beispiel:

$$\dot{y} = u^{3}$$

$$u = \cos(\omega t) \Rightarrow y = \frac{3}{4\omega}\sin(\omega t) + \frac{1}{12\omega}\sin(3\omega t)$$

Beschreibung und Analyse nichtlinearer Systeme

- Klassen nichtlinearer Systeme
- Darstellung nichtlinearer Systeme
- Eigenschaften nichtlinearer Systeme vs. Eigenschaften linearer Systeme
- Zusammenfassung

Eigenschaften linearer Systeme

$$\underline{\dot{x}}(t) = A \underline{x}(t) + \underline{b} u(t), \quad \underline{x}(0) = \underline{x}_0 \in \mathbb{R}^n$$

$$y(t) = \underline{c}^T \underline{x}(t) + du(t)$$

a1) Für $\det A \neq 0$ und $u_S = const.$ gibt es nur eine Ruhelage. Speziell für $u_S = 0$ ist $x_S = 0$ die einzige Ruhelage.

Beispiel:

$$\dot{x}_1 = -x_1 + 3 x_2$$
 $\dot{x}_2 = -x_2 + 4 u$ aus $\dot{x}_2 = 0$ und $u_S = 0$ folgt $x_{2S} = 0$
 $y = x_2$ aus $\dot{x}_1 = 0$ und $x_{2S} = 0$ folgt $x_{1S} = 0$

a2) Für $\det A = 0$ sind zusätzlich alle Punkte zu den Eigenrichtungen zum Eigenwert 0 Ruhelagen.

tuttgart Vorlesung Regelungstechnik 2

isto

Eigenschaften linearer Systeme

- b) Die Lösung $x(\bullet)$ der Differentialgleichung existiert für alle Zeiten und ist eindeutig
- c) Die Lösung kann analytisch berechnet werden
- d) Instabilität bedeutet $\|\chi(t)\| \to \infty$ für $t \to \infty$

isto

a1) Ruhelagen für unangeregte Systeme

$$\dot{x} = f(x) \quad (u \equiv 0)$$

Beispiele

$$\dot{x} = x - 1 \Rightarrow x_S = 1 \ (\neq 0)$$
 $\dot{x} = x - x^3 \Rightarrow x_{SI} = 0, \quad x_{S2/3} = \pm 1$
 $\dot{x} = \sin x \Rightarrow x_{Sk} = k\pi$ unendlich viele Ruhelagen
 $\dot{x} = 1 + x^2 \Rightarrow \text{keine Ruhelage}$

Zustandsraummodell des CSTR

irreversible Reaktion: $A \rightarrow B$

$$\frac{dc_A}{dt} = \frac{\dot{V}^+}{V_R} \left(c_A^+ - c_A \right) - k_\infty e^{-\frac{E}{RT}} c_A$$

$$\frac{dT}{dt} = K_C \left(T_C - T \right) - \frac{\left(-\Delta h_R \right)}{\rho c_P} k_\infty e^{-\frac{E}{RT}} c_A$$

Phasenportrait des CSTR

Vorlesung Regelungstechnik 2

isto

Einige nichtlineare Phänomene

a2) Ruhelagen für angeregte Systeme

$$\dot{x} = f(x, u) \quad (u \not\equiv 0)$$

Mehrfachstationäre Zustände

$$\dot{x} = x^2 + u$$

 \Rightarrow zu jedem $u_S < 0$ gibt es zwei $x_{S1/2} = \pm \sqrt{u_S}$

- Eingangsmehrdeutigkeiten

$$\dot{x} = x + u^2$$

 \Rightarrow zu jedem $x_S < 0$ gibt es zwei $u_{S1/2} = \pm \sqrt{x_S}$

Einige nichtlineare Phänomene

a3) Grenzzyklen, z.B. van der Pol-Oszillator

ist

b1) Existenz von LösungenLösung existiert nicht immer für alle Zeiten

Beispiel (endliche Entweichzeit)

$$\dot{x} = x^2, \ x(0) = x_0$$

Lösung der Dgl. (Trennung der Veränderlichen)

$$\int_{x_0}^{x(t)} \frac{1}{x^2} dx = \int_0^t dt$$

$$\Rightarrow -\frac{1}{x(t)} + \frac{1}{x_0} = t \Rightarrow x(t) = \frac{1}{\frac{1}{x_0} - t}$$

isto

b2) Eindeutigkeit von Lösungen

Beispiel:

Lösung ist nicht eindeutig

$$\dot{x} = 2\sqrt{x}, \quad x \ge 0$$

$$x(0) = 0$$

$$\Rightarrow x = h(t - t_0)(t - t_0)^2,$$

$$t_0 \text{ beliebig}$$

- c) Berechnung von Lösungen
 - Beispiel

$$\dot{x} = \sqrt[7]{e^x + x^3} + \sin x \ln (x + 7\sqrt{x}) + u$$

Berechnung im allgemeinen analytisch nicht möglich
 → numerische Berechnung (Simulation)

ist

d) Stabilität / Instabilität

Beispiel

$$\dot{x} = -x + x^2$$
, $x(0) = x_0$
 \Rightarrow Ruhelagen $x_{S1} = 0, x_{S2} = 1$

Aus lokaler Stabilität folgt nicht globale Stabilität

ist

a) Stabilität / Instabilität

$$||x(t)|| \to \infty$$
 für $t \to \infty$

ist nur eine Form der Instabilität

Beispiel (bereits gesehen): endliche Endweichzeit

Einige nichtlineare Phänomene -Feder-Masse-System

ist

Nichtlineare Phänomene

Chaos: Extreme Sensitivität bzgl. Anfangsbedingungen

October 25, 1987

The New York Times

How Butterflies Cause Hurricanes

ist

Stabilität nichtlinearer zeitdiskreter Systeme

Mandelbrotmenge: Menge der Punkte C, für die die Folge

$$x_{k+1} = x_k^2 + c$$
, $x_j \in C$ nicht divergiert.

Seltsame Attraktoren

isto

$$x_{k+1} = x_k^2 - y_k^2 + c_1 x_k + c_2 y_k$$

$$y_{k+1} = 2 x_k y_k + c_3 x_k + c_4 y_k$$

$$c_1 = 0.9$$
 $c_2 = -0.6013$
 $c_3 = 2.0$
 $c_4 = 0.4$

Tinkerbell Attraktor

Seltsame Attraktoren

$$x_{k+1} = x_k^2 - y_k^2 + c_1 x_k + c_2 y_k$$

$$y_{k+1} = 2 x_k y_k + c_3 x_k + c_4 y_k$$

$$c_1 = -0.7...0.9$$

$$c_2 = -0.6013$$

$$c_3 = 2.0$$

$$c_4 = 0.4$$

Tinkerbell Attraktor

ist

Nichtlineare Systeme – Zusammenfassung

- Nichtlineares System = nicht lineares System, d.h.
 Superpositionsprinzip/Homogenitätsprinzip verletzt
- Reale Systeme sind im allgemeinen nichtlinear
- Keine Frequenzbereichsdarstellung
- Einige Phänomene nichtlinearer Systeme:
 - Voneinander getrennte Ruhelagen möglich
 - Mehrfachstationäre Zustände und Eingangsmehrdeutigkeiten
 - Grenzzyklen
 - Existenz/Eindeutigkeit nicht sichergestellt
 - Neue Arten der Instabilität
 - Chaos
- Analyse nichtlineare Systeme i.a. schwieriger als Analyse linearer Systeme

Typische Systemeigenschaften Stand des Wissens

Beschränkte Meßmöglichkeiten

Lineare Beobachtertheorie 60er Jahre

Mehrgrößensysteme

Lineare Mehrgrößenregelung 70er Jahre

Modellunsicherheiten

Lineare robuste Regelungstheorie 80er Jahre

Nichtlinearitäten

Nichtlineare Regelungstheorie 90er Jahre

Begrenzungen

Historischer Abriß

isto

1990 1980 1970

Moderne Verfahren / Anwendungen

Differentialgeometrische Systemtheorie

Optimale Steuerung

E/A-Operatoren

Relaisregelungen/Beschreibungsfunktion

1700

1960

1940

Brachistochronen-Problem

Vorlesung Regelungstechnik 2

isto

Ein-/Ausgangs-Linearisierung

Idee: 2-Schritt Reglerentwurf

Berechne Rückführung so, dass

E/A-Verhalten linear

Ein-/Ausgangs-Linearisierung

Idee: 2-Schritt Reglerentwurf

Berechne Rückführung so, daß E/A-Verhalten linear

