Algorithm Design and Analysis: Homework 5

Due on Dec 19, 2017 at 10:15am

 $14784547\ luochenqi$

Luochenqi

Problem 1

Solutions

It is in PSPACE, because the recursion stack is in polynomial because there are at most n levels since n is the number of all nodes.

the FORMULA-GAME problem consists of a quantified Boolean formula .

We can reduce Formula-game problem to GG in polynomial time.

Problem 2

Solutions

Let $GG = \{ \langle G, b \rangle | P_1 \text{has a winning strategy for the generalized geography game played on graph G starting at node b}$

Proof: 1.Measure the out-degree of node n_{start} . If this degree is 0, then return reject, because there are no available path for player to move.

2.
construct a list of all nodes reachable from n_{start} by one edge,
 $n_1, n_2 ..., n_i$

3.remove n_{start} and all edges connected to it from G to form G_1 .

4. for each node n_i in the list, call $M(\langle G_1, n_i \rangle)$.

5.if all these calls return accept ,then no matter which decision P_1 makes, P_2 has a strategy to win, so return reject. Otherwise if one of the call returns reject, P_1 got a choice to deny any successful strategies for P_2 , so return accept.

Problem 3

Solutions

We can start at the leaves of the tree. Since any nodes $\in V-S$ have an edge to the dominating set. So the dominating set includes either leaves' parent or all the leaves. So it is a dynamic programming problem.

For all nodes u of G in post-order, if u is a leaf then set the value

 $M_{out}[u] = 0$

```
\begin{aligned} M_{in}[u] &= cost_u \\ \text{else } M_{out}[u] &= \sum_{v \in children(u)} min(M_{out}[u]M_{in}[u]) \\ M_{in}[u] &= cost_u + \sum_{v \in children(u)} M_{out}[u]. \\ \text{And finally we return } min(M_{out}[root], M_{in}[root]) \end{aligned}
```

Problem 4

Solutions

consider each edge as a triangle which we match, similar to a bipartite matchingit starts with adding triangles until we cannot add.

maximal 3d-matching is a 3-approximation because each edge in the maximal matching could have replaced three edges in the maximum matching . step1:consider any triple in the matching set.

step2:use matching set and all its neighbor triples.

```
step3:while T!=empty T=M;M = M \cup \{(x, y, z)\}T=T-M
```

Problem 5

Solutions

we use first-fit algorithm,

```
b=0
   for i=1 to n do
     let j be first bin that can fit object i with size Si*
3
     if j exist then
4
      insert i to L[i]
5
      B[j]=b[j]-Si
6
     else
7
       b=b+1
8
       insert i to list [b]
9
       B[b]=1-Si
10
```

 $b = \frac{total\ space\ in\ bins}{size\ of\ each\ bin} = \frac{space\ used\ in\ bins+space\ unused\ in\ bins}{1} = S + e \ge S$, since b is an integer. if we assume b=1,b=s+e\ge S + $\frac{b}{2}$, so $b \le 2S \le [2S]$. Let b^* be the optimal number of bins. $[S] \le b^*$, $b \le [2S] \le 2[S] \le 2b^*$, so $\frac{b}{b^*} \le 2$, so the approximation ratio is 2.

Problem 6

Solutions

we set an indicator $X_e = 1_{satisfied}$, for eE,then we compute using linearity of expectation. E[number of satisfied edges]= $E[\sum_{e \in E} E[X_e] = \sum_{e \in E} P[satisfied] = 2/3[E]$ the tpimal number of satisfied edges can be no more than total number of edges, $c^* \le |E|$, $\frac{2}{3}|E| \ge \frac{2}{3}c^*$