	Prüfung zur Systemth			Universität Freib am 25.7.2014		Prof. Dr. M	I. Diehl)	
Übungsgrup	pe: 1 André Blicker	nsdörfer	2 Thilo E	Bronnenmeyer	3 Heik	ke Dietl	4	Lukas Klar
Name:			Matri	kelnummer:			Punkte:	/9
falsche -1/3 l 1. Ein LT	tte Ihre Daten ein und met.). Sie dürfen Extrapapie I-System wird durch die Sensitivitätsfunktion $S($	er für Zwischer e Übertragungs	nrechnungen nu ${f funktion}\ G(s)$:	ıtzen, aber bitte g	geben Sie am End	le nur dies	es Blatt ab.	_
(a)	$\frac{s^2 + 7s + 12}{s^2 + 8s + 13}$		$\frac{-7s+12}{-9s+14}$	(c) s^2+	$\frac{2}{7s+12}$	(d)	$\frac{2(s+4)(s+3)}{s+2}$	3)
2. Betrac	hten Sie das folgende N	yquist Diagram	ım.					
Dog Sc		0.4 0.3 - 0.2 - 0.1 - 0+ 0+ -0.2 - -0.3 - -0.4 -1	-0.8 -0.6	Nyquist Diagram -0.4 -0.2 Real Axis	0 0.2 0.	4		
Das Sy	vstem hat die folgende A	mplitudenreser (b) 0.5	rve:	(c) x 2		(d)	-0.5	
					1. 2		-0.3	
3. Betrac	hten Sie das folgende N	2	im, in dem der i	Nyquist Diagram 1 2 Real Axis	aheitsverstärkung	g markiert.		
Das Sy	vstem hat die folgende P	hasenreserve:						
(a)	134.3 deg	(b) keir	ne	(c) x 45.7	deg	(d)	-45.7 deg	
	stem hat eine Amplitude von $k_{ m p}$ macht den gesch			len es mit einem	P-Regler $K(s) =$	$=k_{ m p}$ regelm	. Welcher	der folgender
(a) [x	2	(b) 1		(c) 0.5		(d)	0.8	
5. Vervol	lständigen Sie zu einem	korrekten Satz	. Das Integrier-	Glied bei einem	PID-Regler			
(a)	garantiert, dass der A	Ausgang wenig	er oszilliert.		ıcht keine Anti-V			
(c)	funktioniert nur mit	Systemen zwei	ter Ordnung.	(d) x hilf	t, bleibende Rege	labweichu	ngen zu ve	rmeiden.

6. Betrachten Sie das folgende Bode Diagramm.

Das System hat die folgende Amplitudenreserve:

(a) 10 dB	(b)50 dB	(c) x 50 dB	(d) <u></u> ∞

7. Ein LTI-System wird durch die Übertragungsfunktion $G(s) = \frac{s+1}{(s+4)(s-5)}$ beschrieben. Betrachten Sie den Regler $K(s) = \frac{s-5}{s+3}$. Was können wir über die Eingang/Ausgangs (E/A) Stabilität und die innere (I) Stabilität des geschlossenen Kreises sagen?

(a) E/A-stabil, I-stabil	(b) x E/A-stabil, I-instabil
(c) E/A-instabil, I-instabil	(d) E/A-instabil, I-stabil

8. Der geschlossene Kreis eines geregelten LTI-Systems wird durch die folgenden Sensitivitätsfunktionen $S(j\omega)=\frac{1}{1+G_0(j\omega)}$ und $T(j\omega)=\frac{G_0(j\omega)}{1+G_0(j\omega)}$ beschrieben.

Dieses System hat ein gutes Verhalten für

(a) \square Referenzsignale mit Frequenz $\omega=10$ rad/sec	(b) Störungen mit Frequenz $\omega=10$ rad/sec
(c) $\boxed{\mathbf{x}}$ Störungen mit Frequenz $\omega=0.1$ rad/sec	(d) \square Messrauschen mit Frequenz $\omega=1$ rad/sec

9. Betrachten Sie die Systeme $G_1(s)=\frac{1}{s^2+0.04s+4}$ und $G_2(s)=\frac{1}{s^2+4s+4}$. Wir definieren die Überschwingungshöhe als Δh , die statische Verstärkung als $h(\infty)$ und die Abklingzeit als T^s . Welche der folgenden Aussagen ist wahr?

(a) $T_1^{\mathrm{s}} < T_2^{\mathrm{s}}$	(b) $T_1^s = T_2^s$	(c) $h_2(\infty) > h_1(\infty)$	(d) $\boxed{\mathbf{x}}$ $\Delta h_1 > \Delta h_2$