УСЛОВИЯ

Задача 1. Последовательность $\mathfrak{a}_{\mathfrak{n}}$ задается рекуррентным соотношением:

$$\alpha_n=\sqrt{4+3\alpha_{n-1}},\alpha_0=1.$$

Докажите, что она строго возрастающая.

Задача 2. Саша на листочке клетчатой бумаги нарисовала координатные прямые. Поставила три точки в узлах клеток и соединила их линиями. Известно, что площадь получившегося треугольника не больше 3.2 клеток по площади. Чему могла равняться площадь треугольника? (Для каждого случая предъявите взаимное расположение точек, которое дает искомый результат)

Задача 3. Известно, что числа $\sqrt{x^2-1}$ и x^2+2x+1 рациональны. Проверьте на рациональность число

$$\frac{x + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}.$$

Задача 4. Каждому целому числу z поставлено в соответствие некоторое натуральное число n_z , которое будем называть *показателем числа*. Будем называть *окрестностью числа* z — такие y, что $|y-z| < 3^{n_z}$. Известно, что для любого целого числа z_0 есть y_0 такой, который находится в окрестности z_0 и имеет больший показатель. Докажите, что найдется такое целое число, что в его окрестности содержатся все числа от -2018 до 2018.

Задача 5. На доске написаны два натуральных числа $\mathfrak a$ и $\mathfrak b$. Разрешается стирать наибольшее из них (допустим, что это $\mathfrak a$) и записывать на доску число $\frac{\mathfrak a-\mathfrak b}{4^n}$, где новое число обязательно целое, а $\mathfrak n$ — целое неотрицательное число. Изначально $\mathfrak a=4106$, а $\mathfrak b=5$. За какое наименьшее число стираний получится оставить на доске числа 1,1?

Задача 6. В стране «Математика» появился странствующий маляр, которые путешествует по городам и раскрашивает их. У него есть 3 краски. В начале его путешествия никакие города не были покрашены. Посещая каждый раз такой город, маляр раскрашивал его в один из трех цветов. Если же маляр посещал город A после городов B, C и все эти три города были им раскрашены в три цвета, то он перекрашивал город A в другой цвет. Маляр считает выполненной свою миссию, если больше половины времени своего путешествия он не раскрашивает города, посещая их. Докажите, что спустя какое-то время после начала его миссия будет выполнена независимо от того, как он будет раскрашивать.