高数重点知识及典型例题归纳

重要知识点:

第一章:

夹逼定理(数列8页,函数36页),单调有界(10页),左右极限(30页), 无穷小量(高阶、同阶、等价42页),函数连续性(48页),间断点和渐近线(49页)。

第二章:

导数定义(64页),反函数求导(65页),高阶导数(76页),莱布尼茨公式(78页),隐函数求导(81页),参数方程求导(84页)。

第三章:

罗尔 (96 页) 拉格朗日中值定理 (98 页),柯西 (99 页),洛必达法则 (101 页),泰勒公式 (109 页),单调性与凹凸性 (114 页,拐点 116 页),渐近线 (119 页)。

第四章:

积分法(3种方法149页),有理函数的积分(160)。

第五章:

定积分定义(170),定积分中值定理(174页),性质 6:估值定理(174页),积分上限函数(176页),定积分应用(面积,体积,弧长194页)。

第六章:

微分方程

典型例题归纳:

1、 夹逼定理

2、单调有界

16. 单個有甲界收敛在别 ①本核尼②有界 ②单周 有在正数Mid组《YXn 新南Xnl》M P的新 经来的故事单周 单调有界的数到一只有极限 适册: ①选推关系成功的数别 自己的数别极限存在 17.创设(20. X170, Xm=支(Xn+元) 微见明 篇 加有在 A=MX mil M A=NX mil & : A= + (A+A) A70 : A = JC x: xny=== (Xn+ 5/3) >= 12 x1 x JC = JC 人 函数有限 2: XIII= > (XIII SA) XN 3 E 1 x 3 C 1 Xnn= \$ (xx+ xx) 50 \$ (xx +xx) = Xn 、 國教 華洞 淑 · pim Xn存在,为下

3、夹逼定理,等价无穷小量代换,洛必达法则

4、间断点和渐近线

12. 72 f(x) = 1,7h	1-21 X	for the	同断点并	苗厢太平	
D x = 时)+X" ")			, ×<-1	
f(N=0)		了的	→	4<×<	
@ x > A4			0	X= (
41x 2 11m - 15	-1 · x = -2	X	fc1,= 0	^> (
**	+)i/ X9-	1+1w= -1	跳跃	
(3) x < 1 [7]	₹7 V = V		-fw= f(1)==	940	
1+)	~~ X	lim	f(x) = -1	铁铁	
2x3	65 155 H 2	xát E	f(v)= 1		
13. 12 f(x) = x2-3x+20	料斯畅				
fw= 2x	1				
	归为插渐	_			
1 m f(r) = to)		龙			
im fa) 1/2 2x	= 2 3_3y3+4x2-4x	68-44			
y = 2x + 6	X-3X+2 = X	4 3×1-5	26		
y= -ATO 4	4 July A		<i>17=</i> ₽. =	14 000 10	. 1.

26. 求下列函数的间断点类型和连续区间。
(2)
$$y = \frac{x^2 - 1}{x^2 - 3x + 2}$$
;
(3) $y = \frac{x}{\ln x}$;
(4) $y = x \left(\cos \frac{1}{x}\right)$.
(5) 水下列函数的间断点类型和连续区间。
(6) $f(x) = \lim_{t \to +\infty} \frac{1 - x e^{tx}}{x + e^{tx}}$;
(7) $f(x) = \lim_{t \to +\infty} \frac{1 - x e^{tx}}{x + e^{tx}}$;
(8) $f(x) = \lim_{t \to +\infty} \frac{1}{x + e^{tx}}$;
(9) $f(x) = \lim_{t \to +\infty} \frac{1}{1 + x^n}$ ($x \ge 0$).

5、 无穷小量

① 高阶无穷小

② 等价无穷小+函数极限

6、 通过递归构造可以被夹逼的数列

```
7 , X1=1. Xn=1+ 1+xn-1
 进市市市市城市和市
  大新星羽
  X= 1+ [+x x=12./-12(4)]
     设格际为后
     121- 14XH +1 = 13-XI
           - 1 2+xn-1-12-12xn-1
           = 1 (1-12) (1-12)
             <(5-1) | xn-1-52|
      De (2-1) 121-121
           <(12-1) /xn-5-17
```

7、零点定理

8、参数方程

+四、设
$$y = y(x)$$
 是由方程 $\begin{cases} x = 3t^2 + 2t + 3, \\ e^y \sin t - y + 1 = 0 \end{cases}$ 所确定的隐函数,求 $\frac{dy}{dx} \Big|_{t=0}$ 和 $\frac{d^2y}{dx^2} \Big|_{t=0}$ の $\frac{d^2y}{dx} \Big|_{t=0}$ 和 $\frac{d^2y}{dx^2} \Big|_{t=0}$ の $\frac{d^2y}{dx} \Big|_{t=0}$ 和 $\frac{d^2y}{dx^2} \Big|_{t=0}$ の $\frac{d^2y}{dx} \Big|_{t=0}$ の $\frac{d^2y}{dx^2} \Big|_{t$

9、隐函数

$$(4) y = f(x + \cos x), f(x) = \iint \mathbb{R}, \mathbb{R}, \mathbb{Y}, \mathbb{Y};$$

$$(5) f(x) = \begin{cases} \frac{\sin x}{x}, & x > 0, \\ \frac{x + 2\cos x}{2}, & x \leq 0, \end{cases}$$

$$(6) \ln(x^2 + y^2) = \arctan \frac{y}{x}$$

$$(6) \ln(x^2 + y^2) = \arctan \frac{y}{x}$$

$$(7) \sin \frac{1}{x} + e^{\tan \frac{1}{x}} \cdot \left(\sin \frac{1}{x}\right)'$$

$$= e^{\tan \frac{1}{x}} \cdot \sec^2 \frac{1}{x} \cdot \frac{-1}{x^2} \cdot \sin \frac{1}{x} + e^{\tan \frac{1}{x}} \cdot \cos \frac{1}{x} \cdot \frac{-1}{x^2}$$

$$= \frac{-e^{\tan \frac{1}{x}}}{2} \left(\sec^2 \frac{1}{x} \cdot \sin \frac{1}{x} + \cos \frac{1}{x}\right).$$

$$(2) y = e^{x^2 \ln x} = e^{e^{\sin x} \cdot \ln x} \cdot (e^{x \ln x} \ln x)'$$

$$= x^{x^2} \left[e^{x \ln x} \cdot (x \ln x)' \ln x + e^{x \ln x} \cdot \frac{1}{x}\right]$$

$$= x^{x^2} \cdot x^2 \left(\frac{x}{x} \ln x + \ln^2 x + \frac{1}{x}\right)$$

$$= x^{x^2 + x} \left(\frac{1}{x} + \ln^2 x + \ln x\right).$$

10、罗尔定理 构造函数

(.
$$7i\overline{f}u\overline{p}$$
) $= \varepsilon \varepsilon c(ie)$. $12 \sin i = \cos |n\varepsilon|$ $= cos|n\varepsilon|$ $= \sin i - \cos |n\varepsilon|$.

THE FORM . $= \overline{f}(\omega) = 0$ $= 0$ $= \overline{f}(\omega) = 1$ $= 1$

11、柯西中值 构造函数

12、拉格朗日余项的泰勒中值定理

13、利用拉格朗日中值定理求极限

注意: 考试时间是 90 分钟。
1.(10分)求极限
$$\lim_{x\to 0} \frac{x^2 e^x + \ln(1-x^2)}{\sin x}$$
.
2.(10分)设单调递增正数列 $\{x_n\}$ 而足: $\lim_{x\to 0} x_n = 2021$,求极限 $\lim_{x\to 0} \sqrt[a]{x_1 + x_2^2 + x_3^3 + \cdots + x_n^n}$.
3.(12分)求极限 $\lim_{x\to 0} \frac{\sin x}{\sin \arctan x}$ $\frac{1}{1-\cos x}$.
4.(12分)设 $f(x) = \lim_{x\to 0} \frac{(e^{nx} - e^{-nx})\tan(x-1)}{(e^{nx} + e^{-nx})(x-1)}$,来 $f(x)$ 的全部间断点并判断其类型.
5.(12分)设 $y = (x^3 - 1)^n e^{2x}$,来 $y^{(10)}(1)$.
6.(12分)设 $\begin{cases} x = (1+t)^{2+t}, t > -1 \\ ye^t + \arctan t = 1 \end{cases}$,来 $\frac{dy}{dx} \Big|_{x=1}$ 以及 $\frac{d^2y}{dx^2} \Big|_{x=1}$.
7.(12分)设函数 $f(x)$ 的皮亚洛尔项的二阶麦克劳林展开式;(2) 来极限证 $\frac{1+f(x)}{x^2}$.
8.(10分)设函数 $f(x)$ 在 $[-1,1]$ 上二阶可导,且 $[f''(x)] \le 1$,又 $\lim_{x\to 0} \frac{f(x)}{x} = 0$,证明: $[f(-1)] + [f(1)] \le 1$.
9.(10分)设函数 $f(x)$ 在 $[0,1]$ 上二阶可导,且 $[0,1]$ 并 $[0,1]$ 证明:存在 $\xi \in (0,1)$,使得 $f''(\xi) = \frac{2f'(\xi)}{1-\xi}$.

14、渐近线

15、凹凸性

16、洛必达法则+等价无穷小

第四章 定积分

所以
$$F(c) = F(1) = f(1)$$
, $F(x)$ 在区间 $[c, 1]$ 上满足罗尔定理的条件,由罗尔定理,存在 $\xi \in (c, 1) \subset [0, 1]$,使得 $F'(\xi) = 0$,即 $\xi f'(\xi) + f(\xi) = 0$.

例 14 求极限 $\lim_{x\to 0} \frac{\int_{0}^{x} \left[\int_{0}^{u^{2}} \arctan(1+t) dt\right] du}{x(1-\cos x)}$
解 利用积分上限函数求导和等价无穷小替换,可得 $\lim_{x\to 0} \frac{\int_{0}^{x} \left[\int_{0}^{u^{2}} \arctan(1+t) dt\right] du}{x(1-\cos x)}$

$$= 2 \lim_{x\to 0} \frac{\int_{0}^{x} \left[\int_{0}^{u^{2}} \arctan(1+t) dt\right] du}{x^{3}}$$

$$= 2 \lim_{x\to 0} \frac{\int_{0}^{x} \left[\int_{0}^{u^{2}} \arctan(1+t) dt\right] du}{3x^{2}}$$

$$= 2 \lim_{x\to 0} \frac{\int_{0}^{x} \left[\int_{0}^{u^{2}} \arctan(1+t) dt\right] du}{6x}$$

$$= \frac{\pi}{6}.$$
例 15 设 $f(x)$ 连续,则 $\frac{d}{dx} \int_{0}^{x} t f(x^{2}-t^{2}) dt = \frac{1}{2}.$

17、分部积分十递归

18、定积分定义

2.
$$\lim_{n\to\infty} \frac{1}{n} \sqrt[n]{(n+1)(n+2)\cdots(2n)}$$
.

解: 原析= $\int_0^{\infty} \ln(1+x) dx$

$$= \rho \left[\ln(1+x) \cdot x - x + 1 \right]$$

$$= \rho^{-1+2\ln 2}$$

一、填空题(每题3分,共18分).

1.极限
$$\lim_{n \to \infty} \frac{1}{n^2} \left(\sqrt{1 + \frac{1}{n}} + 2\sqrt{1 + \frac{2}{n}} + \dots + n\sqrt{1 + \frac{n}{n}} \right) = \underline{\hspace{1cm}}$$

19、利用性质求定积分

$$\frac{14.\int_{-a}^{a} \frac{\operatorname{arctan} x}{(x^{2}+1)^{2}} dx}{f(x) = \frac{\int_{-a}^{a} \frac{\operatorname{cretan} x}{(x^{2}+1)^{2}} dx}{f(x) = -f(-x)} \frac{dx}{dx}$$

$$= 0 \quad 3 \quad \text{和 Definition of } \frac{dx}{dx}$$

20、积分中值定理

解 原式 =
$$\lim_{n \to \infty} \frac{1}{n} \left[1 + (\frac{1}{n})^2 \quad 1 + (\frac{1}{n})^2 \right] + (\frac{1}{n})^2$$
 解 方法
$$= \int_0^1 \frac{1}{1 + x^2} dx = \arctan x \Big|_0^1 = \frac{\pi}{4}.$$

例 2 求极限 $\lim_{n \to \infty} \int_n^{n+1} \frac{(\arctan x)^2}{x} dx$
解 利用积分中值定理,得
$$\int_n^{n+1} \frac{(\arctan x)^2}{x} dx = \frac{(\arctan \xi_n)^2}{\xi_n} \qquad (n \leqslant \xi_n \leqslant n+1).$$

再利用 $(\arctan x)^2$ 的有界性,得
$$\lim_{n \to \infty} \int_n^{n+1} \frac{(\arctan x)^2}{x} dx = \lim_{n \to \infty} \frac{(\arctan \xi_n)^2}{\xi_n}$$

$$= \lim_{n \to \infty} \frac{(\arctan \xi_n)^2}{\xi_n}$$

21、定积分求极限

22、定积分

六、(本题满分 10 分) 设函数 f(x) 在 [a,b] 上连续,

(1) 证明:
$$\int_a^b f(x) dx = \int_a^b f(a+b-x) dx$$
,

(2) 计算
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos^2 x}{x(\pi-2x)} dx$$
.

23、偶倍积零

24、微分方程

25、必考题型

26、技巧题