Theorem 3.3.10

Each of the following is equivalent to the AP:

- a. \forall z \in \mathbb{R} , \exists n \in \mathbb{N} st n > z
- b. $\forall x > 0, y \in \mathbb{R}, \exists n \in \mathbb{N} \text{ st } nx > y$
- c. $\forall x > 0, \exists n \in \mathbb{N} \text{ st } 0 < \frac{1}{n} < x$

Proof.

We shall prove:

- i) AP \Rightarrow a
- ii) $a \Rightarrow b$
- iii) b \Rightarrow c
- iv) $c \Rightarrow AP$

In other words, they all imply each other.

a. AP \Rightarrow a

Suppose: a is false.

So, $\forall z \in \mathbb{R}$, $\exists n \in \mathbb{N}$, P(z, n) (st $n \leq z$) ???

-Side Note

$$\neg [\exists \ x_1 \ \forall \ x_2 \ st \ p(x_1, \ x_2)] = \\ \forall \ x_1, \ \exists \ x_2 \ st \ \neg p(x_1, \ x_2)$$

 $\exists~z_0 \in \mathbb{R} ~\mathrm{st} ~\forall~n \in \mathbb{N} ~,\, n \leq z_0$

This indicates that the AP is false.

Thus, $AP \Rightarrow a$.

$b. a \Rightarrow b$

Assume: a) is true.

Let: $z = \frac{y}{x} \in \mathbb{R}$

By (a), $\exists n \in \mathbb{N} \text{ st}$

 $n > \frac{y}{x}$

nx > y

Hence, $a \Rightarrow b$ is true.

$c. b \Rightarrow c$

Assume: b) is true.

 $\forall x > 0$, if y = 1,

we see from (b) that $\exists n \in \mathbb{N} \text{ st } nx > 1$

Then,

 $x > \frac{1}{n} > 0.$

Hence, $b \Rightarrow c$.

d. $c \Rightarrow AP$

Reminder of c: \forall x where $0 < x \in \mathbb{R}$, \exists n $\in \mathbb{N}$ st. $0 < \frac{1}{n} < x$

Suppose: \mathbb{N} is bounded above. (In other words, that the AP is false.

Thus, $\exists z_0 \in \mathbb{R} \text{ st } 0 < n \leq z_0, \forall n \in \mathbb{N}$

$$0 < n \le z_0$$

 $\frac{1}{n} \ge \frac{1}{z_0}$ This contradicts c with $x = \frac{1}{z_0}$ where $0 < \frac{1}{z_0} \in \mathbb{R}$

Hence, result.

Theorems 3.3.13 and 3.3.15

Let: $x, y \in \mathbb{R} \text{ st } x < y$

Then:

a.
$$\exists \ r \in \mathbb{Q} \ st \ x < r < y$$

b.
$$\exists z \in \mathbb{R} \setminus \mathbb{Q} \text{ st } x < z < y$$

\mathbf{a}

Case:

(i):
$$y > 0$$

$$y = 0.a_1a_2...a_n$$
 i.e. $0.141 = \frac{141}{1000}$

(ii):
$$y \le 0$$

$$-y \ge 0, -y < -x, 0 \le -y < -x$$

By case (i),
$$\exists r \in \mathbb{Q}$$
 st

$$-y < r < -x$$

$$y > -r > x$$

$$x < -r < y$$

b

$$\exists \ z \in \mathbb{R} \ \setminus \mathbb{Q} \ \mathrm{st} \ x < z < y$$

Apply (a) to
$$\frac{x}{\sqrt{2}} < \frac{y}{\sqrt{2}}$$
 to find $r \in \mathbb{Q}$ st $\frac{x}{\sqrt{2}} < r < \frac{y}{\sqrt{2}}$

$$x < r\sqrt{2} < y$$

Let:
$$r\sqrt{2} = z$$

Hence, result.

Section 3.4: Topology of \mathbb{R}

Definitions 3.4.1 and 3.4.2

Let $x \in \mathbb{R}$ and $\epsilon > 0$.

(a)

An ϵ -neighborhood of x is:

 $N(x, \epsilon) = \{ y \in \mathbb{R} : |y - x| < \epsilon \}$

(b)

A deleted ϵ -neighborhood of x is:

 $N^*(x, \epsilon) = \{ y \in \mathbb{R} : 0 < |y - x| < \epsilon \}$

Open Set Topology: Definition 3.4.3 (interior / boundary point)

Let: $S \subset \mathbb{R}$

A point $x \in \mathbb{R}$ is an **interior point** of S if $\exists \epsilon > 0$ st $N(x, \epsilon) \subset S$.

If, $\forall \epsilon > 0$,

 $N(x, \epsilon) \cap S \neq \emptyset$

and

 $N(x, \epsilon) \cap \mathbb{R} \setminus S \neq \emptyset$

Then x is a **boundary point** of S.

The set of all interior points is denoted by **int S**.

The set of all boundary points is denoted by bd S.

Nota Bene (N.B.):

int $S \subset S$ and $bd S = bd (\mathbb{R} \setminus S)$

Side Note-

Let: $x \in int S$

Then $\exists \epsilon > 0 \text{ st N}(x, \epsilon) \subset S$

In particular, $x \in S$. Thus, int $S \subset S$.

Let: $S^C = \mathbb{R} \setminus S$, and $\mathbb{R} \setminus S^C = S$

Then $s \in bd S^C$ if $\forall \epsilon > 0$,

 $N(x, \epsilon) \cap S^C \neq \emptyset$

 $N(x,\epsilon) \cap \mathbb{R} \setminus S^C \neq \emptyset$

Thus, $N(x, \epsilon) \cap (\mathbb{R} \setminus S) \neq \emptyset$, and $N(x, \epsilon) \cap S \neq \emptyset$

So, $x \in bd S$

Theorem 1

Let: $x \in S \subset \mathbb{R}$

Then either $x \in \text{int } S$, or $x \in \text{bd } S$.

Proof.

Let: $x \in S \subset \mathbb{R}$

- i) $\exists \ \epsilon > 0 \ {\rm st} \ N(x, \, \epsilon \) \subset S.$ Then, by def, $x \in {\rm int} \ S$
- ii) $\forall \ \epsilon > 0, \ N(x, \ \epsilon \) \cap (\mathbb{R} \ \backslash S) \neq \emptyset$. However, since $x \in S$, then $N(x, \epsilon) \cap S \neq \emptyset$.

However, since $x \in S$, then $\mathcal{N}(x,c) \cap S \neq S$

By definition, $x \in bd S$.

Hence, result.

Section 3.4.4 Examples

a. **Let:** S = (0, 5)

Here, int S = (0, 5) and $D = \{0, 5\}$