Milestone 1 Presentation

Team 3
Hector Liu
Da Teng
Guoqing Zheng
Xiawen Chu
Ryan Carlson

Pipeline Overview

- 1. Pre-process training data
- 2. Linking to external resources
- 3. Indexing and searching
- 4. Semantic and dependency parsing
- 5. Question Types
- 6. Answer Classifiers
- 7. Combining!

Pre-Processing Training Data

Raw text is kind of a mess

- There's useful information in there
 - o but also a lot of not-so-useful stuff.

Regexs, POS tagging to clean up data

 Tag with "relevant info", "author", "citation", etc

Linking to External Resources

- External knowledge can be useful
 - If we know the background information of a term, we can know its type, its description and many other details
 - For example, we would like to know that "alzheimer" is a kind of disease
- We use DBpedia as an external resource
 - We might be more interested in Bio related resources in the future

Indexing & Searching

- Built our own Solr server;
- Annotations from previous phases can serve to construct better queries (new fields, new queries, etc.);
- Beyond the current implementation, we may also try to use higher order interactions from terms and alternative retrieval models to help retrieve better results from the index.

Semantic & Dependency Parsing

Stanford CoreNLP:

- StanfordCorenlpSentence: Sentences in docs
- StanfordCorenlpToken: Tokens in docs
- StanfordDependencyNode
- StanfordDependencyRelation: dependency relation in sentence
- StanfordEntityMention: different type of name entities

FanseNLP:

- FanseDependencyRelation:label the dependency relations between lexical items
- FanseSemanticRelation: annotate basic semantic relations for each items
- FanseTokenAnnotation: Annotate token with its depedency and semantic relations.

Question Types

- 5 question types
 - factoid, causal, method, purpose, true/false

- Train a model to identify these types given the text (and possibly the training data)
 - manually annotate (some of?) the ~300 examples
 - cross-validate to get a measure of generalizability
 - probably also need an i_have_no_idea tag
- Also annotate with NOT where appropriate

Answer Classifiers

 Given a question type, use the training data and our data type representation to select an answer

(very open question right now)

Putting it all together

 We might have several methods for answering any given question, need some mechanism to combine them

 Linearly interpolate system values (based on confidences?)

No PMI Baseline

- We focus more on clean up the current annotations
- We set up the original baseline (voter) provided using the cleaned text
 - o c@1 score:0.22
 - o c@1 score:0.11000000000000001
 - o c@1 score:0.11000000000000001
 - c@1 score:0.3
 - Avg: 0.1925
- We are not sure about the performance, probably due to the mixture of our annotation with the old one

PMI Baseline

- We also tried a baseline using the PMI, this time we achieve something higher than random
 - o c@1 score:0.22
 - o c@1 score:0.55
 - o c@1 score:0.33
 - o c@1 score:0.2
 - o Avg: 0.325
- We will use this as the baseline to beat and build our system on top of it.

Future Plan

- Semantic based re-ranking
 - Question: Which technique was used to determine the cellular
 CLU1 and CLU2 gene products?

- Answer sentence: {immunofluorescence and Western blot studies:Answer Phrase:Arg0} {indicate:Answer Head} that {CLU1 and CLU2:Arg0-clause} both {produce:clause Head} secreted proteins that are similar to those detected {in the human brain:ArgM-Loc}
- Two step approach
 - Ranking first, semantic for reranking

Thanks!

Questions?
Comments?
Suggestions?
Concerns?
Gripes?