HOMEWORK 1

JACKSON VAN DYKE

Exercise 1 (Chapter 0, 2; Hatcher). Construct an explicit (strong) deformation retraction of $\mathbb{R}^{n+1} \setminus \{0\}$ to S^n .

Solution. Define $F: \mathbb{R}^{n+1} \times I \to \mathbb{R}^{n+1}$ as follows:

$$F(x,t) = x(1-t) + \frac{x}{\|x\|}t$$
.

Then F(x,0) = x and $F(x,1) = x/\|x\|$. This means the image of F(x,1) is exactly S^n and for every $p \in S^n$

$$F\left(p,1\right) = \frac{p}{\|p\|} = p$$

since ||p|| = 1 for all $p \in S^n$.

Exercise 2 (Chapter 0, 11; Hatcher). Show that $f: X \to Y$ is a homotopy equivalence if there exist maps $g, h: Y \to X$ such that $fg \simeq \mathrm{id}_Y$ and $hf \simeq \mathrm{id}_X$. More generally, show that f is a homotopy equivalence if fg and hf are homotopy equivalences.

Solution. Let $f: X \to Y$ be a map. Assume there are maps $g, h: Y \to X$ such that $fg \simeq \mathrm{id}_Y$ and $hf \simeq \mathrm{id}_X$. It is sufficient to show that $fh \simeq \mathrm{id}_Y$. First we show that $g \simeq h$:

$$h(fg) \simeq (hf) g \simeq \mathrm{id}_X g \simeq g$$
.

And now it follows that $id_Y \simeq fg \simeq fh$ as desired.

Now assume $fg: Y \to Y$ is a homotopy equivalence with homotopy inverse $\psi: Y \to Y$ and $hf: Y \to Y$ is a homotopy equivalence with homotopy inverse $\varphi: Y \to Y$. We will show $g\psi$ is a homotopy inverse of f. By definition we already have $(fg) \psi \simeq \operatorname{id}_Y$ so it is sufficient to show that $(g\psi) f \simeq \operatorname{id}_Y$. To see this, note that $\psi(fg) \simeq \operatorname{id}_Y$ so $g\psi fg \simeq g$ which implies $(g\psi) f \simeq \operatorname{id}_Y$ as desired.

Exercise 3. Let $f: S^1 \to S^1$ be a map that is not homotopic to id_{S^1} . Show that there exists $x \in S^1$ such that f(x) = -x.

Solution. Assume we have some map $f: S^1 \to S^1$ such that for all $x \in S^1$ $f(x) \neq -x$. We will show that this must be homotopic to the identity. In fact we can explicitly define a homotopy $F: S^1 \times I \to S^1$ by:

$$F(x,t) = \frac{f(x)(1-t) + id(x)t}{\|f(x)(1-t) + id(x)t\|}.$$

Exercise 4. Let X, Y be closed subsets of $X \cup Y$. Let $f: X \to Z$ and $g: Y \to Z$ be maps such that $f|_{X \cap Y} = g|_{X \cap Y}$. Show that $f \cup g: X \cup Y \to Z$ is continuous.

Date: September 8, 2019.

Solution. Let $U \subset Z$ be any closed subset. It is sufficient to show that the preimage $V = (f \cup g)^{-1}(U)$ is closed inside of $X \cup Y$. We know that

$$V \cap X = f^{-1}(V) \qquad \qquad V \cap Y = g^{-1}(V)$$

are both closed. But then

$$V = (V \cap X) \cup (V \cap Y)$$

is closed since it is a finite union of closed sets.

Exercise 5. Let $f: X \to Y$ be a map and W a space. Define

$$f_*: [W, X] \rightarrow [W, Y]$$

by $f_*([h]) = [fh]$. Show

- (i) f_* is well-defined.
- (ii) if $f: X \to Y$, $g: Y \to Z$ are maps and W a space then

$$(fg)_* = f_*g_* : [W, X] \to [W, Z]$$

- (iii) $(id_X)_* = id_{[W,X]}$.
- (iv) if $f: X \to Y$ is a homotopy equivalence then f_* is a bijection.

(Corresponding dual properties hold for

$$f^*[Y,W] \to [X,W]$$

defined by $f^*([h]) = [hf]$.)

Solution. (i)

Exercise 6. Recall that a space X has the fixed point property (FPP) if for every map $f: X \to X$ there exists $x \in X$ such that f(x) = x.

- (i) Suppose $X \simeq Y$ and X has the FPP. Does Y have the FPP?
- (ii) If A is a retract of X and X has the FPP does A have the FPP?
- (iii) If A is a retract of X and A has the FPP does X have the FPP?
- **Solution.** (i) No. Consider the real line and $\{0\} \subset \mathbb{R}$. We know $\{0\} \simeq \mathbb{R}$, and all singletons have the FPP. However, \mathbb{R} does not. For example the map f(x) = x + 1 has no fixed points and is perfectly continuous.
 - (ii) Yes. Assume X has the FPP. Let $i:A\hookrightarrow X$ be the inclusion $\rho:X\to A$ be a retraction. Let $f:A\to A$ be any map. Then the map $i\circ f\circ \rho$ is still continuous and therefore there is some $x\in X$ such that $i\circ f\circ \rho(x)=x$. But in particular this x must be in A. So really there is some $x\in A$ such that $f\circ \rho(x)=x$. But ρ is the identity on A, so in fact f(x)=x as desired.
 - (iii) Yes. Assume A has the FPP. Then consider any map $f: X \to X$. The restriction $f|_A$ is a function on A and therefore there is some $x \in A$ such that f(x) = x. But since A is a retract of $X, x \in X$ as well, so X inherits the FPP.

Exercise 7. Use path-connectedness to show that there is no continuous injection from \mathbb{R}^n to \mathbb{R}^1 for n > 1.

Solution. Assume there is some such map $f: \mathbb{R}^n \to \mathbb{R}$. Recall that the image of a connected set under a continuous map is connected. Therefore the image of f is

a connected subset of \mathbb{R} , i.e. an interval I. Take some point p such that f(p) is in the interior of the interval.¹ Then we have

$$f\left(\mathbb{R}^{3}\setminus\left\{ p\right\} \right)=f\left(\mathbb{R}^{3}\right)\setminus f\left(p\right)=I\setminus f\left(p\right)$$

but since $f\left(p\right)$ is in the interior this means the image of a connected set $(\mathbb{R}^3\setminus\{p\})$ is not connected.

 $^{^{1}}$ We know such a point exists since if not, it would have to be a singleton and therefore not injective.