ELEKTRONIKER FÜR GERÄTE UND SYSTEME BETRIEBLICHER AUFTRAG 2015

DDS-Signalgenerator

HENDRIK LÜTH PRÜFLINGSNUMMER: 20050

> SCHLESWIGER STR. 21 24392 SÜDERBRARUP

Ausbildungsbetrieb:

Ausbildungswerkstatt der Marine

Mürwiker Str. 203

24944 Flensburg

Tel.Nr: 046131355080

Projekt betreuer:

Bastian Kaul

Tel.Nr: 046131355081

Inhaltsverzeichnis

1	Arb	eitsablaufplan	4
2		senheft betriebl. Auftrag	5
	2.1	0	5
	2.2	funktionale Anforderungen	5
		2.2.1 Gehäuse	5
		2.2.2 Platine & Layout	5 5
			9
3	Pflic	chtenheft betriebl. Auftrag	6
4		enblatt Signalgenerator	7
	4.1	Features	7
	4.2	Eigenschaften	7
	4.3	Absolut Maximum Ratings	7
5		8 8	8
	5.1	Zielbestimmung	8
	5.2	Funktionale Anforderungen	8
		5.2.1 Platine & Layout	8
		5.2.3 Bestücken der Platine	8
		5.2.4 Firmware des Mikrocontrollers	8
	5.3	Anhang	9
	0.0	5.3.1 Gehäuseplan	9
6	Last	senheft zur Herstellung eines Gehäuses 1	.0
	6.1	_	10
	6.2	Gehäuseplan	10
	6.3	Änderungen am Gehäuse	1
7	Kos	tenübersicht 1	2
8	Inbe	etriebnahme-Protokoll für den Signalgenerator	.5
	8.1	Optische Kontrolle	15
	8.2	Elektrische Kontrolle	15
	8.3	Funktionskontrolle	16
9	Übe	ergabeprotokoll 1	7
10	Anh	nang 1	.8
			19
	10.2	Aufbau einer Kommunikationseinheit	19
	10.3	Aufbau einzelner Befehle	19
		$10.3.1$ Computer \rightarrow Signalgenerator	20
			21
	10.4	8 8	22
		10.4.1 Frequenz	22

	10.4.2	Signalform							 								23
	10.4.3	Spitzenspannung							 								23
	10.4.4	Offsetspannung .							 								24
	10.4.5	Sonstige Register							 								24
10.5	Errorc	odes							 								25
10.6	Progra	mmablaufplan der	Fir	m	wa	re			 								26
10.7	Schalt	plan							 								28

${\bf Arbeits ablaufplan}$

Pos.	Arbeitsschritt	Soll	Ist
1	Anfertigung eines Arbeitsablaufplans	1,0h	
2	Schreiben eines Lastenheftes für die Herstellung des Signalgenerators	2,5h	
3	Anfertigung eines Inbetriebnahmeprotokolls für den Signalgenerator	2,5h	
4	Schreiben eines Lastenheftes für die Herstellung des Gehäuses	2,0h	
5	Anfertigung eines Abnahmeprotokolls für das Gehäuse	0,5h	
6	Ausfüllen des Inbetriebnahmeprotokolls für den Signalgenerator	1,0h	
7	Ausfüllen des Abnahmeprotokolls des Gehäuses	1,0h	
8	Montage des Signalgenerators in das Gehäuse	0.5h	
9	Aufstellen einer Kostenübersicht des Projektes	3,0h	
		13,0h	

Signalgenerator

2 Lastenheft des betrieblichen Auftrages

2.1 Zielbestimmungen

Der Auszubildende soll für den Ausbildungsbetrieb einen DDS-basierten Signalgenerator herstellen, welcher über eine PC-Software unter Linux und Windows gesteuert werden kann. Die Software für Linux-Systeme ist in C++ geschrieben, die Software für Windows-Systeme in C#. Hierzu soll der Azubi anhand des vorgegebenen Schaltplanes den Signalgenerator herstellen und in ein Gehäuse montieren. Des weiteren soll der Azubi die Firmware für den verbauten Mikrocontroller schreiben.

Elektronische Eigenschaften des Signalgenerators:

• Signalform: Sinus, Dreieck, Rechteck

• Frequenzbereich: 1Hz bis 12MHz

• maximale Ausgangsspannung: $12V_{ss}$

• Offset-Spannung: $\pm 6V$

• USB-Anschluss: Mikro-USB

• Signalausgang: SMA-Reverse

2.2 funktionale Anforderungen

2.2.1 Gehäuse

Für den Signalgenerator soll ein möglichst kleines Gehäuse gewählt werden, nach Möglichkeit im "Hosentaschen-Format". Das Material des Gehäuses soll schwarzer Kunststoff sein.

2.2.2 Platine & Layout

Die Platine ist den Innenmaßen des Gehäuses anzupassen. Die USB-Buchse und die SMA-Reverse-Buchse sollen in der Mitte der kürzeren Seite der Platine positioniert werden. Die Platine ist zu Bestücken, die Funktion und Einhaltung der Elektronischen Eigenschaften und Anforderungen ist zu überprüfen und zu dokumentieren.

2.2.3 Firmware

Für den Mikrocontroller ist eine Firmware zu schreiben, welche es dem Signalgenerator ermöglicht über USB mit dem Computer zu kommunizieren. Hierzu soll das LUFA-Framework¹ verwendet werden. Der Quellcode hierzu ist auf Github² einsehbar und kann auch von dort heruntergeladen werden. Die Kommunikation des Signalgenerators mit dem Computer ist im Kommunikationsprotokoll dokumentiert, welches im Anhang zu finden ist.

 $^{^{1}} http://www.fourwalledcubicle.com/files/LUFA/Doc/120730/html/index.html$

²https://github.com/abcminiuser/lufa

3 Pflichtenheft des betrieblichen Auftrages

4 Datenblatt des DDS-Signalgenerators

4.1 Features

Der Signalgenerator basiert auf dem Prinzip der Direkten Digitalen Synthese (DDS) und ist in der Lage Ausgangs ein breites Spektrum an Frequenzen, Signalformen und Ausgangsspannungen zu erzeugen. Die Steuerung des Gerätes erfolgt ausschließlich über den Computer, ein autarker Betrieb ist möglich. Im Gerät können Hardware-spezifische Kalibrierungswerte gespeichert werden.

4.2 Eigenschaften

Parameter	Min	Typ	Max	Einheit	Testbedingungen
Betriebsspannung U_B	4,7	5	5,5	Volt	
Stromaufnahme $I_{ges.}$	30	50	100	mA	$U_B=5V$
Leistungsaufnahme P	0,14	$0,\!25$	$0,\!55$	W	

4.3 Absolut Maximum Ratings

Parameter	Max	Einheit
Betriebsspannung U_B	6	Volt
Spanning an D+ U_{D+}	3,6	Volt
Spannung an D- U_{D-}	3,6	Volt
Ausgangsstrom I_a	95	mA

5 Lastenheft zur Herstellung des Signalgenerators

5.1 Zielbestimmung

Es soll ein Signalgenerator angefertigt werden. Hierbei ist sich an den Schalplan und die dort verzeichneten Werte zu halten. Die verwendeten Bauteile sollen, soweit möglich, SMD-Bauteile sein.

Der Umfang des Auftrages umfasst:

- das Layouten und Herstellen der Platine
- Beschaffung der Bauteile
- das Bestücken der Platine
- das programmieren einer Software für den Mikrocontroller des Signalgenerators
- Erstellen einer Stückliste
- Mechanische und Optische Prüfung der Platine

5.2 Funktionale Anforderungen

5.2.1 Platine & Layout

Da ein bestimmtes Gehäuse verwendet werden soll darf die Platine des Signalgenerators nicht größer als die Innenbemaßung des Gehäuses sein. Eine Technische Zeichnung des Gehäuses ist dem Lastenheft beigefügt.

Des weiteren sollte das Layout so angefertigt werden, dass die Mikro-USB Buchse und die SMA-R Buchse gegenüber von einander an den kurzen Seite der Platine platziert werden. Die Platine soll Doublelayer sein und eine Dicke von 1,6mm haben.

5.2.2 Beschaffen der Bauteile

Die Bauteile sollen so günstig wie möglich beschafft werden.

5.2.3 Bestücken der Platine

Die Platine ist vollständig zu bestücken und optisch auf Kurzschlüsse zu prüfen.

5.2.4 Firmware des Mikrocontrollers

Die Firmware für den Mikrocontroller soll in C geschrieben werden.

Zur Ansteuerung des USB-Controllers soll das LUFA Framework verwendet werden.

Der Mikrocontroller soll in der Lage sein Daten vom Computer über USB zu empfangen und diese an die entsprechende Peripherie weiterzugeben. Für die Peripherie sollen ebenfalls die in LUFA enthaltenen Bibliotheken benutzt werden.

Für die USB-Kommunikation soll der Mikrocontroller die VID 0x1209 und die PID 0x2222 benutzen und sich als Vendorspezifisches HID Gerät anmelden. Für die Kommunikation sollen nur HID-Reports verwendet werden. Der Mikrocontroller soll in der Lage sein bestimmte Daten zurück an den PC zu geben, um Fehleranalyse und Fehlererkennung auf der PC-Seite durchführen zu können. Auch hierzu ist der Aufbau der zu übertragenden Daten in der Angelegten Protokollspezifikation zu finden.

5.3 Anhang

5.3.1 Gehäuseplan

6 Lastenheft zur Herstellung eines Gehäuses

6.1 Auftrag

Es ist ein Gehäuse für den Signalgenerator herzustellen. Als Gehäuse wird ein Plastik-Gehäuse benutzt werden, welches bei dem Lieferanten Reichelt Elektronik³ unter der Bestellnummer "GEH KS 21" zu bestellen ist. Der Gehäuseplan liegt diesem Lastenheft bei. Ebenfalls liegt eine Zeichnung mit den nötigen Modifikationen bei.

6.2 Gehäuseplan

³https://www.reichelt.de/

6.3 Änderungen am Gehäuse

Die Zeichnung bezieht sich auf die schmale Seite des Gehäusedeckels. Bei dem Gehäuse handelt es sich um das Gehäuse mit der Bestellnummer "GEH KS 21" von Reichelt.

Kostenübersicht Projekt: Signalgenerator

In der folgenden Tabelle sind alle Kosten für die Herstellung des Signalgenerators zusammengestellt. In den Kostenpunkten für die Herstellung des Signalgenerators und für den Bau des Gehäuses sind neben den Materialkosten auch die Lohnkosten enthalten. Eine genaue Aufschlüsselung hierzu ist in den Angeboten auf den folgenden Seiten zu finden.

Pos.	Posten	Menge	Einzelpreis	Gesamtpreis
1	Herstellung des Signalgenerators	1	528,79€	528,79€
2	Herstellung des Gehäuses des Signalgenerators	1	15,00€	30,00€
3	Montagematerial für Montage des Signalgenerators	1	10,00€	10,00€
4	Arbeitszeit	20	15,00€	300,00€
			MwSt.:	138,71€
	Alle Preise inkl. 19% Gesetzl.MwSt.		Gesamt:	868,79€

Flensburg, 04.05.2015

Werkstatt 2 Ausbildungswerkstatt Flensburg Mürwiker Str. 203 24944 Flensburg

Hendrik Lüth Ausbildungswerkstatt Flensburg Mürwiker Str. 203 24944 Flensburg

Angebot für die Herstellung des Signalgenerators

Sehr geehrter Herr Lüth,

ich übersende ihnen das Angebot zur Herstellung des Signalgenerators nach Ihrem Schaltplan und Wünschen.

Pos.	Posten	Menge/Zeit	Einzelpreis	Gesamtpreis
1	Anfertigung des Platinenlayoutes	10 Std.	30,00€	300,00€
2	Herstellung der Platine	1	14,84€	14,84€
3	Bauteilkosten	1	53,95€	53,95€
4	Beschaffung der Bauteile	2 Std.	20,00€	40,00€
5	Bestücken der Platine	3 Std.	35,00€	105,00€
6	Prüfen des Signalgenerators	0,5 Std.	30,00€	15,00€
			MwSt.:	100,47€
	Alle Preise inkl. 19% Gesetzl.MwSt.		Gesamt:	528,79€

Bitte melden Sie sich bei uns, wenn ihnen das Angebot zusagt, wir werden dann mit der Herstellung beginnen. Das Angebot besitzt eine Gültigkeit von 2 Wochen.

mit freundlichen Grüßen,

Max Mustermann

Flensburg, 04.05.2015

Werkstatt 1 Ausbildungswerkstatt Flensburg Mürwiker Str. 203 24944 Flensburg

Hendrik Lüth Ausbildungswerkstatt Flensburg Mürwiker Str. 203 24944 Flensburg

Angebot für die Herstellung eines Gehäuses

Sehr geehrter Herr Lüth,

ich übersende ihnen das Angebot zur Herstellung zur Herstellung eines Gehäuses. Aufgrund des niedrigen Umfangs des Projektes ist es uns möglich Ihnen eine Pauschalpreis von 30,00€ anbieten zu können. Dieser beinhaltet Beschaffung und Anfertigung des Gehäuses.

Pos.	Posten	Menge/Zeit	Einzelpreis	Gesamtpreis
1	Materialkosten Gehäuse	1	10,00€	10,00€
2	Herstellung des Gehäuses	0.25	20,00€	5,00€
			MwSt.:	2,34€
	Alle Preise inkl. 19% Gesetzl.MwSt.		Gesamt:	15,00€

Bitte melden Sie sich bei uns, wenn ihnen das Angebot zusagt, wir werden dann mit der Herstellung beginnen. Das Angebot besitzt eine Gültigkeit von 2 Wochen.

mit freundlichen Grüßen,

Max Mustermann

8 Inbetriebnahme-Protokoll für den Signalgenerator

Name des Prüfers:	
Prüfdatum:	
Seriennummer:	

8.1 Optische Kontrolle

Nr.	Prüfauftrag	Ja	Nein
1	Sind alle Bauteile bestückt?		
2	Sind alle Bauteile fachgerecht gelötet?		
3	Sind IC-Beine miteinander verbunden, die nicht mitein-		
	ander verbunden sein dürfen?		
4	der Fädeldraht zum aktivieren der USB-Schnittstelle des		
	Mikrocontrollers ist eingelötet		
5	Der Lötjumper zum aktivieren des LT1615 ist gesetzt		

8.2 Elektrische Kontrolle

Die folgenden Messungen sind mit einem Digitalmultimeter durchzuführen. Sollte einer der Widerstände <u>nicht</u> den Anforderungen entsprechen, so darf die Platine unter keinen Umständen einer Funktionskontrolle unterzogen werden.

Nr.	Prüfauftrag	Ja	Nein	Wert
1	Messen des Widerstandes zwischen V_{cc} und GND. Ist			
	der Wert größer als 900Ω ?			
2	Messen des Widerstandes zwischen USB_{D+} und GND.			
	Ist der Wert größer als $500 \mathrm{k}\Omega$?			
3	Messen des Widerstandes zwischen USB_{D-} und GND.			
	Ist der Wert größer als $500 \mathrm{k}\Omega$?			
4	Messen des Widerstandes zwischen $+12V$ und GND. Ist			
	der Wert größer als $50 \mathrm{k}\Omega$?			
5	Messen des Widerstandes zwischen -12V und GND. Ist			
	der Wert größer als $10\mathrm{k}\Omega$?			
6	Messen des Widerstandes zwischen $+3.3$ V und GND. Ist			
	der Wert größer als $2k\Omega$?			
7	Messen des Widerstandes zwischen -3.3V und GND. Ist			
	der Wert größer als $2k\Omega$?			
8	Messen Sie die Stromaufnahme des Signalgenerators. Ist			
	der Strom kleiner gleich 100mA?			

8.3 Funktionskontrolle

Sollte einer der Widerstände in der elektrischen Kontrolle <u>nicht</u> den Anforderungen entsprechen, so darf die Platine unter keinen Umständen einer Funktionskontrolle unterzogen werden.

Starten Sie das Testprogramm am Computer und stecken Sie den Signalgenerator an.

Nr.	Prüfauftrag	Ja	Nein
1	Wird der Signalgenerator vom Computer erkannt?		
2	Starten sie den Software-Test. Ist der Test erfolgreich		
	verlaufen?		
3	Messen sie den Master-Clock (MCLK) an Pin 5 des		
	AD9833. Ist der Wert im 5% Rahmen von 25MHz?		

Tragen Sie die Frequenz des Master-Clock in das entsprechende Feld für Kalibrierungswerte ein. Starten Sie die Messung Nr.1 bis Nr.4 und folgen Sie den Anweisungen in

der Software. Die enthalten auch die Einstellungen für das Oszilloskop. Vergleichen Sie das Bild auf dem Oszilloskop dem Bild der Beispielmessung. Sind die Bilder annähernd identisch? Toleranzen im Bereich von $\pm 5\%$ sind akzeptabel.

Nr.	Prüfauftrag	Ja	Nein
4	Messung Nr. 1		
5	Messung Nr. 2		
6	Messung Nr. 3		
7	Messung Nr. 4		
8	Messen sie die Ausgangsspannung an Pin 10 des		
	AD9833. Liegt ihr Wert bei $700 \text{mV} \pm 100 \text{mV}$?		

Tragen Sie die Ausgangsspannung in das entsprechende Feld für Kalibrierungswerte ein.

Nr.	Prüfauftrag	Ja	Nein
9	Führen Sie den Speichertest durch. War der Test erfolg-		
	reich?		
10	Führen Sie den Lesetest durch. War der Test erfolgreich?		

Wenn alle Tests erfolgreich waren tragen Sie die Seriennummer des Gerätes in das entsprechende Feld ein und schreiben Sie die Kalibrierungswerte auf den Signalgenerator. Trennen Sie den Signalgenerator Ordnungsgemäß von der Software und vom Computer.

9 Übergabeprotokoll des Signalgenerators

Der Auftraggeber und der Auftragsnehmer bestätigen hiermit, dass der Auftrag abgeschlossen wurde. Folgende Dinge werden mit dem Abschluss dieses Projektes übergeben:

- Der Signalgenerator, eingebaut in ein Gehäuse
- Die Dokumentation des Signalgenerators
- Das Prüf- und Funktionsprotokoll des Signalgenerators
- Der Quellcode der Mikrocontroller-Firmware

Ich/Wir bestätige/n den Empfang und die Vollständigkeit, Funktion und Richtigkeit aller oben aufgelisteter Dinge.

Datum/Unterschrift

Ich/Wir bestätige/n die Übergabe und die Vollständigkeit, Funktion und Richtigkeit aller oben aufgelisteter Dinge.

Datum/Unterschrift

10 Anhang

10.1 Allgemeines

In diesem Dokument wird die Datenübertragung zwischen dem Mikrocontroller des Signalgenerators und eines Computers definiert. Die Daten werden über den USB-Bus übertragen. Die USB-Spezifikationen⁴ enthalten alle nötigen Informationen, welche für Kommunikationen über den Bus nötig sind.

Der Signalgenerator wird als HID (Human Interface Device) am Computer angemeldet, wodurch keine Installation von zusätzlichen Treibern nötig ist. Die Übertragung der Daten erfolgt über HID-Reports. Zum aktuellen Zeitpunk benutzt LabConnect für den Signalgenerator die VID 0x1209 und die PID 0x2222, welche unter Linux als GenericHID-Gerät von InterBiometrics zu finden ist. Da es sich bei der VID um eine VID handelt, welche für OpenSource Projekte gedacht ist, ist es fraglich ob der Signalgenerator je richig angezeigt wird. Von dem Kauf einer eigenen VID für LabConnect wird derzeit abgesehen.

10.2 Aufbau einer Kommunikationseinheit

Eine Kommunikationseinheit, im folgenden als "Paket" bezeichnet, besteht aus 13 Byte. Jedes Paket hat einen 1 Byte großen Header an seinem Anfang und einen 1 Byte großen Tail an seinem Ende. Der Header enthält die Paket-ID, an welcher sich Flussrichtung der Daten und Art der Daten erkennen lassen. Ist das 5. Bit des Headers gleich 0, so ist die Flussrichtung der Daten vom Computer zum Mikrocontroller, ist es gleich 1 vom Mikrocontroller zum Computer. An den unteren 4 Bit lässt sich der Typ des Paketes erkennen. In der folgenden Tabelle sind alle Befehle nach Paket-ID sortiert aufgelistet:

Paket-ID	Flussrichtung	Bezeichnung	Größe der Daten
0x00	$PC \rightarrow \mu C$	Config-Request	1 Byte
0x01	$PC \rightarrow \mu C$	Set-Command	12 Byte
0x02	$PC \rightarrow \mu C$	Data-Request	0 Byte
0x03	$PC \rightarrow \mu C$	Error/Status-Request	0 Byte
0x10	$\mu C \rightarrow PC$	Config-Response	10 Byte
0x12	$\mu C \rightarrow PC$	Data-Response	12 Byte
0x13	$\mu C \rightarrow PC$	Error/Status-Response	5 Byte

10.3 Aufbau einzelner Befehle

In diesem Abschnitt wird der Aufbau einzelner Befehle erläutert. Ob ein Befehl vom Computer zum Signalgenerator geht ist an der Paket-ID zu erkennen. Dies ist im Abschnitt "Aufbau einer Kommunikationseinheit"beschrieben.

⁴http://www.usb.org/developers/docs/usb20 docs/usb 20 031815.zip

10.3.1 Datenübertragung vom Computer zum Signalgenerator

Config-Request

Der Config-Request steht am Anfang jeglicher Kommunikation zwischen Signalgenerator und Computer nach dem anstecken des Signalgenerators. Der Config-Request fragt beim Signalgenerator diverse Kalibrierungsdaten wie die Frequenz des Refferenztaktes oder die Boot-Daten an.

Byte	Wert	Beschreibung
0	0x00	Paket-ID
1	0x55	Prüfdaten, damit der Inhalt des Paketes nicht
		null ist. Der Wert ist auf 0x55 festgesetzt.

Set-Command

Mit dem Set-Command werden alle nötigen Informationen wie Frequenz, Registerwerte für die digitalen Potentiometer und Bootdaten übergeben. Die Folgende Tabelle zeigt den Aufbau:

Byte	Wert	Beschreibung	
0	0x01	Paket-ID	
1	*	Diese beiden Bytes enthalten die Daten für das	
2	*	Kontrollregister des AD9833.	
3	*	Diese vier Byte enthalten die Daten für das	
4	*	Frequenzregister des AD9833. Die Berechnung	
5	*	Dieser Werte ist im Verlauf dieses Dokumentes	
6	*	erklärt.	
7	*	In diesen beiden Bytes sind die Registerwerte	
8	*	des Digi-Poti für die Ausgangsspannung enthalten.	
9	*	In diesen beiden Bytes sind die Registerwerte	
10	*	des Digi-Poti für die Offset-Spg. enthalten.	
11	*	Multiplexer	
12	*	Bootdaten	

Data-Request

Nach einem Config-Request werden die Daten ausgewertet. Sollten die Bootdaten anzeigen, dass bereits beim einschalten des Signalgenerators die gespeicherte Konfiguration geladen wurde, so wird ein Data-Request gesendet, um herauszufinden wie die Konfiguration ist um sie später in der graphischen Oberfläche anzuzeigen. Dieses Paket hat keine Nutzdaten.

Byte	Wert	Beschreibung
0	0x02	Paket-ID

Error/Status-Request

Ein Error/Status-Request kann zu jedem Zeitpunk, z.B. nach einer Datenübertragung gestellt werden um den Status des Systems zu prüfen. Dieses Paket enthält keine Nutzdaten.

Byte	Wert	Beschreibung
0	0x03	Paket-ID

10.3.2 Datenübertragung vom Signalgenerator zum Computer

${\bf Config\text{-}Response}$

Byte	Wert	Beschreibung
0	0x10	Paket-ID
1	*	Seriennummer
2	*	Bootdaten
3	*	Kalibrierungs-Daten des DDS-IC
4	*	Frequenz des MCLK in Hz
5	*	
6	*	
7	*	Kalibrierungs-Daten für das Digi-Poti
8	*	Multiplikatoren für Berechnung
9	*	Wert der Ausgangsspannung in mV_{ss}
10	*	

Data-Response

Dieses Paket ist die Antwort auf einen Data-Request. Es enthält die selben Daten wie ein Set-Command. Die Daten müssen vom Host dann in Frequenzen und Spannungen umgerechnet werden.

Byte	Wert	Beschreibung	
0	0x01	Paket-ID	
1	*	Diese beiden Bytes enthalten die Daten für das	
2	*	Kontrollregister des AD9833.	
3	*	Diese vier Byte enthalten die Daten für das	
4	*	Frequenzregister des AD9833. Die Berechnung	
5	*	Dieser Werte ist im Verlauf dieses Dokumentes	
6	*	erklärt.	
7	*	In diesen beiden Bytes sind die Registerwerte	
8	*	des Digi-Poti für die Ausgangsspannung enthalten.	
9	*	In diesen beiden Bytes sind die Registerwerte	
10	*	des Digi-Poti für die Offset-Spg. enthalten.	
11	*	Multiplexer	
12	*	Bootdaten	

Error/Status-Response

Der Error/Status-Response enthält alle Error/Status-Meldungen die angefallen sind.

Byte	Wert	Beschreibung
0	0x13	Paket-ID
1	*	
2	*	
3	*	Error-Codes, bis zu 5 Stück.
4	*	
5	*	

10.4 Berechnung der Registerwerte

In dieser Sektion ist aufgelistet, wie die Registerwerte für den Signalgenerator berechnet werde. Es ist sich zwingend an die Formeln zu halten, da der Signalgenerator sonst nicht die gewünschten Ausgangssignale liefert.

10.4.1 Frequenz

Die Frequenzregister sind die Register, welche die Frequenz des Ausgangssignals kontrollieren. Mit einer Formel muss in Abhängigkeit vom Referenztakt und der gewünschten Frequenz des Ausgangssignals der Wert für dieses Register errechnet werden. Hier die allgemeine Formel:

$$Registerwert = F_{out} \div \frac{F_{MCL}}{2^{28}}$$

Und hier ein Beispiel für die Werte $F_{MCLK} = 25MHz$ und $F_{out} = 7,325MHz$:

$$Registerwert = F_{out} \div \frac{F_{MCL}}{2^{28}} = 7,325MHz \div \frac{25MHz}{2^{28}}$$

 $Registerwert = 78651588,61 \approx 78651589$

In diesem Fall ist es möglich zu runden, da ein Bit nur c.a. 0,093Hz entsprechen. Nun muss der Wert noch in Binär umgerechnet werden:

Um den Wert in das Frequenzregister zu schreiben wird der binäre Wert in LSBs und MSBs aufgeteilt und hängen die Adressierung des Registers "01ünd die fehlenden Nullen, um auf 28Bit zu kommen, davor:

MSBs: 0101 0010 1100 0000 LSBs: 0110 0000 1100 0101 Dies ist ein Beispielcode in C++, in dem die entsprechenden Register berechnet werden:

```
float mclk = 25000000, register_size = 268435456;
float teiler = mclk / register_size;
int f_regwert = frequenz / teiler;
//block1=lsb Block4=msb
unsigned char block1, block2, block3, block4;

block1 = f_regwert;
f_regwert = f_regwert >> 8;
block2 = f_regwert;
block2 = (block2 | 0x40) & (~0x80);
f_regwert = f_regwert >> 6;
block3 = f_regwert;
f_regwert = f_regwert >> 8;
block4 = f_regwert;
block4 = (block4 | 0x40) & (~0x80);
```

10.4.2 Signalform

Für das Register der Signalform gibt es nicht viel zu berechnen, da es nur drei Signalformen gibt. Die 2 Byte, mit denen die Signalform gesteuert wird können folgende Werte annehmen:

Wert	Signalform
0x2000	Sinus
0x2002	Dreieck
0x0000	Rechteck

Es ist hierbei darauf zu achten, dass auch der Zustand des Multiplexers angepasst wird, da es ansonsten zu unerwünschten Ausgangsspannungen kommen kann.

10.4.3 Spitzenspannung

Die Amplitude des Ausgangsignals lässt sich über den Multiplexer und das Digitalpotentiometer einstellen. Hierzu wird die Ausgangsspannung des DDS-IC als Berechnungsgrundlage hinzu gezogen. Mit dem Multiplexer kann man auswählen, ob das Signal direkt auf den Verstärker gegeben wird oder ob eine Teilung von 5:1 bzw eine Verstärkung von ungefähr 3 stattfinden soll, bevor das Signal auf den Verstärker gegeben wird. Welchen Wert das entsprechende Byte annehmen muss ist unter SSonstige Registerïm Unterabschnitt Multiplexernachzulesen. Die Registerwerte des Digitalpotentiometers werden wie folgt berechnet:

$$Registerwert_{gesamt} = (\frac{100k\Omega}{\frac{U_{Ausgang}}{U_{Eingang}} - 1} - 2, 2k\Omega) \div \frac{200k\Omega}{512}$$

Hier ein Beispiel für die Werte $U_{Ausgang} = 7,5V_{ss}$ und $U_{Eingang} = 1V_{ss}$:

$$Registerwert_{gesamt} = (\frac{100k\Omega}{\frac{7,5V_{ss}}{1V_{ss}} - 1} - 2, 2k\Omega) \div \frac{200k\Omega}{512}$$

```
Registerwert_{gesamt} \approx 13184, 61 \div 390, 625

Registerwert_{gesamt} \approx 34
```

Da der Registerwert für zwei in Reihe geschaltete Widerstände gilt muss dieser Wert noch auf beide Register aufgeteilt werden. Sollte das Ergebnis eine ungerade Bit-Zahl annehmen so erhält eines der Register einfach ein Bit mehr. Daraus ergibt sich, dass beide Register den dezimalen Werte "17"haben bzw 0x11 in Hexadezimal.

Der Folgende Beispielcode ist in C# geschrieben und berechnet den Gesamtwert beider Register.

```
int umax = 12000, bits = 512, register1, register2;
  int ergebnis = u_amplitude_mv / (umax / bits);
  if (510 < ergebnis)
    ergebnis = 510;
  if (ergebnis\%2==0)
10
    register1 = 255 - ergebnis / 2;
11
    register2 = 255 - ergebnis / 2;
12
  else
14
  {
15
    ergebnis = ergebnis - 1;
    register 1 = 255 - ((ergebnis / 2) + 1);
17
    register2 = 255 - ergebnis / 2;
18
19 }
```

10.4.4 Offsetspannung

10.4.5 Sonstige Register

Bootdaten

Bootdaten	Beim Boot laden	Werte Speichern
0x00	Nein	Nein
0x01	Nein	Ja
0x10	Ja	Nein
0x11	Ja	Ja

${\bf Multiplexer}$

10.5 Errorcodes

Fehlercode	Beschreibung des Fehlers
0x00	Kein Fehler
0x01	Keine gültige Package-ID
0x02	Transportdaten des Config-Requests sind falsch
0x03	Digitalpotentiometer ist nicht erreichbar
0x04	
0x05	
0x06	
0x07	

10.6 Programmablaufplan der Firmware

ABW Flensburg	
28	
Betrieblicher Auftrag	

Hendrik Lüth

Signalgenerator

22. Mai 2015

