# Week5 in-class assignment

# Jingxuan He

```
here() starts at C:/Users/anna_/OneDrive/Desktop/CHL8010/armed_conflict_vc
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr
        1.1.4
                   v readr
                                2.1.5
v forcats 1.0.0
                   v stringr
                                1.5.1
v ggplot2 3.5.1
                   v tibble
                                3.2.1
                                1.3.1
v lubridate 1.9.3
                     v tidyr
           1.0.2
v purrr
-- Conflicts ----- tidyverse conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
                 masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
Attaching package: 'table1'
The following objects are masked from 'package:base':
   units, units<-
```

## part 1

#### table 1

```
data_table <- finaldata |>
  group_by(country_name) |>
  mutate(
    ever_conflict = ifelse(sum(armconflict, na.rm = TRUE) > 0, "Ever", "Never")) |>
  ungroup()
```

```
data_country <- data_table |>
 group_by(country_name) |>
 summarise(
    gdp1000 = mean(gdp1000, na.rm = TRUE),
    #OECD = sum(OECD == 1, na.rm = TRUE),
    popdens = mean(popdens, na.rm = TRUE),
   urban = mean(urban, na.rm = TRUE),
   agedep = mean(agedep, na.rm = TRUE),
   male_edu = mean(male_edu, na.rm = TRUE),
   temp = mean(temp, na.rm = TRUE),
   rainfall1000 = mean(rainfall1000, na.rm = TRUE),
   #drought = sum(drought == 1, na.rm = TRUE),
   #earthquake = sum(earthquake == 1, na.rm = TRUE),
    ever_conflict = ifelse(sum(armconflict, na.rm = TRUE) > 0, "Ever", "Never"),
    ever_OECD = ifelse(sum(OECD, na.rm = TRUE) > 0, "Ever", "Never"),
    ever_drought = ifelse(sum(drought, na.rm = TRUE) > 0, "Ever", "Never"),
   ever_earthquake = ifelse(sum(earthquake, na.rm = TRUE) > 0, "Ever", "Never")
table1(~ gdp1000 + popdens + urban + agedep + male_edu + temp +
         rainfall1000 + ever_OECD + ever_drought + ever_earthquake | ever_conflict,
       data=data_country)
```

|                          | Ever               | Never               | Overall            |
|--------------------------|--------------------|---------------------|--------------------|
|                          | (N=88)             | (N=98)              | (N=186)            |
| $\mathrm{gdp}1000$       |                    |                     |                    |
| Mean (SD)                | 5.37(9.71)         | 16.8 (19.4)         | $11.4\ (16.5)$     |
| Median [Min, Max]        | 1.95 [0.197, 49.4] | 7.95 [0.365, 97.0]  | 4.18 [0.197, 97.0] |
| Missing                  | 0 (0%)             | 1 (1.0%)            | 1 (0.5%)           |
| popdens                  |                    |                     |                    |
| Mean (SD)                | 29.9(19.7)         | 31.2(21.3)          | 30.6 (20.5)        |
| Median [Min, Max]        |                    | 30.1 [0, 99.8]      | 26.5 [0, 99.8]     |
| Missing                  | 1 (1.1%)           | 0 (0%)              | 1 (0.5%)           |
| urban                    |                    |                     |                    |
| Mean (SD)                | $31.4\ (15.2)$     | $30.1\ (19.6)$      | 30.7(17.6)         |
| Median [Min, Max]        | 31.5 [3.33, 76.1]  | 30.4 [0.105, 92.6]  | 30.7 [0.105, 92.6] |
| Missing                  | 1 (1.1%)           | 0 (0%)              | 1 (0.5%)           |
| agedep                   |                    |                     |                    |
| Mean (SD)                | $69.0\ (19.3)$     | 55.6 (14.8)         | ` ,                |
| Median [Min, Max]        | 67.6 [33.8, 105]   | 51.1 [20.8, 98.1]   | 55.6 [20.8, 105]   |
| $\mathrm{male\_edu}$     |                    |                     |                    |
| Mean (SD)                | 7.03(2.83)         | 9.35(2.66)          | 8.26 (2.97)        |
| Median [Min, Max]        | 7.14 [1.52, 12.7]  | 9.50 [2.76, 14.2]   | 8.39 [1.52, 14.2]  |
| Missing                  | 1 (1.1%)           | 0 (0%)              | 1 (0.5%)           |
| temp                     |                    |                     |                    |
| Mean (SD)                | 21.5 (5.99)        | $18.0 \ (8.04)$     | $19.6 \ (7.34)$    |
| Median [Min, Max]        |                    | 19.7 [-0.627, 28.9] |                    |
| Missing                  | 1 (1.1%)           | 0 (0%)              | 1 (0.5%)           |
| rainfall1000             |                    |                     |                    |
| Mean (SD)                | $1.08 \ (0.752)$   | $1.31\ (0.816)$     | $1.20 \ (0.793)$   |
| Median [Min, Max]        |                    | 1.06 [0.0666, 3.49] |                    |
| Missing                  | 1 (1.1%)           | 0 (0%)              | 1 (0.5%)           |
| ${ m ever}\_{ m OECD}$   |                    |                     |                    |
| Ever                     | 7~(8.0%)           | 28~(28.6%)          | 35~(18.8%)         |
| Never                    | 81 (92.0%)         | $70 \ (71.4\%)$     | $151 \ (81.2\%)$   |
| $ever\_drought$          |                    |                     |                    |
| Ever                     | 58~(65.9%)         | $48 \ (49.0\%)$     | 106 (57.0%)        |
| Never                    | 30 (34.1%)         | 50 (51.0%)          | 80 (43.0%)         |
| ${\it ever\_earthquake}$ |                    |                     |                    |
| Ever                     | 47~(53.4%)         | 34 (34.7%)          | $81 \ (43.5\%)$    |
| Never                    | 41 (46.6%)         | 64 (65.3%)          | 105 (56.5%)        |

## Part 2

### descriptive figure

```
select_country <- finaldata |>
  dplyr::select(country_name, ISO, year, MatMor) |>
  dplyr::filter(year < 2018) |>
  arrange(ISO, year) |>
  group_by(ISO) |>
  mutate(diffmatmor = MatMor - MatMor[1L]) |>
  filter(year==2017 & diffmatmor > 0) |>
  select(country_name, ISO)
```

```
data_inc_matmor <- finaldata |>
  inner_join(select_country, by = "ISO")
```

```
data_inc_matmor |>
  ggplot(aes(x = year, y = MatMor, group = ISO)) +
  geom_line(aes(color = as.factor(ISO)), alpha = 0.5) +
  xlim(c(2000,2017)) +
  scale_y_continuous(trans='log10') +
  labs(y = "Maternal mortality", x = "Year", color = "ISO") +
  theme_bw()
```

Warning: Removed 26 rows containing missing values or values outside the scale range (`geom\_line()`).

