

déterminer dans chacun des casles nombres complexes z sous forme algebrique.

$$1. \ \frac{z-i}{z+i} = 2i$$

$$2. \ \frac{z+i}{2z} = 1-i$$

$$3. \ \frac{2z+i}{iz} = \frac{2iz}{1-z}$$

EXERCICE N 2

Le plan est muni d'un repère orthonormé direct $\left(O, \overrightarrow{U}, \overrightarrow{V}\right)$. Soit $z \neq i$ et M le point d'affixe z. \blacksquare On considère le nombre complexe $Z = \frac{z-i}{z+i}$

- 1. Déterminer et construire l'ensemble des points M tels que Z soit réel.
- 2. Déterminer et construire l'ensemble des points M tels que Z soit imaginaire.

EXERCICE N3

- 1. (a) Mettre sous forme cartésienne le nombre complexe $(4-2i)^2$.
 - (b) Résoudre dans \mathbb{C} , l'équation : $z^2 + (2-4i)z 6 = 0$
- 2. Pour un nombre complexe z, on pose : $f(z) = z^3 + (2-2i)z^2 + (2+4i)z 12i$
 - (a) Montrer que l'équation f(z) admet une solution imaginaire pure z_0 que l'on déterminera.
 - (b) Déterminer les nombres complexes b et c tels que ; $f(z) = (z + 2i)(z^2 + bz + c)$
 - (c) Résoudre alors l'équation f(z) = 0
- 3. Le plan est rapporté à un repère orthonormé direct $(O, \overrightarrow{U}, \overrightarrow{V})$. On donne les points A,B et C d'affixes respectives -2i; 1+i et -3+3i Soit D le symétrique de C par rapport à O
 - (a) Justifier que $z_D = 3 3i$
 - (b) Placer les points A; B; C et D.
 - (c) Calculer AB, AD et BD. En déduire la nature du triangle ABD.
 - (d) Déterminer l'ensemble des points M d'affixe z tel que $|\overline{z} + 3 + 3i| = |z + 2i|$

EXERCICE N 4

- 1. Calculer $(2+i)^2$
- 2. Résoudre dans l'ensemble \mathbb{C} des nombre complexes l'équation $(E): z^2 (4+i)z + 3 + i = 0$

3. Soit $P(z) = z^3 - (4+3i)z^2 + (1+9i)z + 2 - 6i$

- (a) Vérifier que 2i est une solution de P
- (b) Vérifier que $P(z) = (z 2i)(z^2 (4+i)z + 3 + i)$
- (c) Résoudre dans \mathbb{C} l'équation P(z) = 0.

4. Dans Le plan complexe muni d'un repère orthonormé $(O; \overrightarrow{i}; \overrightarrow{j})$, on considère les points A, B et C d'affixes respectives $z_A = 2i$; $z_B = 1$ et $z_C = 3 + i$

- (a) Montrer que le triangle ABC est rectangle et isocèle.
- (b) Déterminer l'affixe du point D tel que ABDC est un carré.
- 5. Déterminer l'ensemble des points M(z) du plan tel que : $|z-2i|=|\overline{z}-3+i|$.

6. Pour tout point M du plan d'affixe $z \neq 1$ on associe le point M' d'affixe z' tel que $z' = \frac{z-2i}{z-1}$

- (a) Montrer que $OM' = \frac{AM}{BM}$
- (b) En déduire que lorsque M décrit la médiatrice de [AM]; le point M' décrit un cercle que l'on déterminera.

EXERCICE N 5

Le plan est muni d'un repère orthonormé direct $\left(O,\overrightarrow{U},\overrightarrow{V}\right)$

1. On considère dans $\mathbb C$ l'équation: $z^3-(4+i)z^2+(7+i)z-4=0$

- (a) Montrer que l'équation (E) admet une racine réelle que l'on déterminera.
- (b) Résoudre dans $\mathbb C$ l'équation (E)
- 2. (a) Représenter les points A, B et C d'affixes respectives 1, 2+2i et 1-i.
 - (b) Déterminer le module $\frac{2+2i}{1-i}$ En déduire la nature du triangle OBC.