BIMU3009 Signal Processing Final Exam Solutions

Istanbul University - Cerrahpaşa Computer Engineering Department - Fall 2021

January 7^{th} , 2022 14:00-15:10

Son güncelleme: 2022-01-15 17:36

Some useful equations

$$\cos^{2}(\theta) = \frac{1}{2} \left[1 + \cos(2 \theta) \right] \qquad \int \cos(\alpha x) \, dx = \frac{1}{\alpha} \sin(\alpha x) + c$$

Q1: The impulse response of a DISCRETE TIME Linear-Time Invariant system \mathcal{H} is given below.

(a) (10 pts) Is \mathcal{H} stable? Explain.

Solution (1a):

For an DT LTI system to be BIBO-stable the following must be true for the impulse response:

$$\sum_{k=-\infty}^{\infty} |h[n]| < \infty$$

Then:

$$\sum_{k=-\infty}^{\infty} |h[n]| = |3| + |-3| + |-1| + |1| + |2|$$
$$= 10 < \infty$$

Therefore \mathcal{H} is BIBO-stable.

(b) (10 pts) Is \mathcal{H} causal and/or memoryless? Explain.

Solution (1b):

For an DT LTI system to be memoryless the following must be true for the impulse response:

$$h[n] = 0$$
 for $n \neq 0$

Therefore \mathcal{H} is NOT memoryless.

For an DT LTI system to be causal the following must be true for the impulse response:

$$h[n] = 0$$
 for $n < 0$

Therefore \mathcal{H} is NOT Causal.

(c) (10 pts) Calculate and sketch the step response of this system.

Solution (1c):

Step function of a DT LTI system:

$$s[n] = \sum_{k = -\infty}^{n} h[k]$$

So, we can calculate the step function point by point:

$$s[n] = 0$$
 for $n < -2$
 $s[-2] = 3$
 $s[-1] = 3 - 3 = 0$
 $s[0] = 0 - 1 = -1$
 $s[1] = -1 + 1 = 0$
 $s[2] = 0 + 2 = 2$
 $s[n] = 2$ for $n > 2$

If we sketch this:

(d) (10 pts) The following input is applied to this system. Calculate and sketch the output.

$$x[n] = 2\delta[n+2] + \delta[n] - 3\delta[n+2]$$

Solution (1d):

We know that:

$$a[n] * \delta[n-k] = a[n-k]$$

So,

$$y[n] = x[n] * h[n]$$

$$= h[n] * \left\{ 2\delta[n+2] + \delta[n] - 3\delta[n+2] \right\}$$

$$= h[n] * \left\{ \delta[n] - \delta[n+2] \right\}$$

$$= h[n] - h[n+2]$$

Putting these signals on a table for easy addition:

n	-5	-4	-3	-2	-1	0	1	2	3	4
-h[n+2] $h[n]$	0	-3	3	1	-1	-2	0	0	0	0
h[n]	0	0	0	3	-3	-1	1	2	0	0
y[n]	0	-3	3	4	-4	-3	1	2	0	0

If we sketch this:

Q2: Evaluate the following Continuous-Time Convolutions.

(a) (10 pts)
$$e^t u(-t) * e^{-2t} u(t+1)$$

Solution 2a:

Let:

$$x(t) = e^{-2t} u(t+1)$$

$$h(t) = e^{t} u(-t)$$

$$y(t) = x(t) * h(t)$$

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$$

Let's plot the intermediate signals, $x(\tau)$ and $h(t-\tau)$ with respect to τ .

So, for t < -1:

$$y(t) = \int_{-1}^{\infty} e^{-2\tau} e^{t-\tau} d\tau$$
$$= e^{t} \int_{-1}^{\infty} e^{-3\tau} d\tau$$
$$= e^{t} \frac{1}{-3} \left[e^{-3\tau} \right]_{-1}^{\infty}$$
$$= \frac{1}{3} e^{t+3}$$

So, for $t \ge -1$:

$$y(t) = \int_{t}^{\infty} e^{-2\tau} e^{t-\tau} d\tau$$
$$= e^{t} \int_{t}^{\infty} e^{-3\tau} d\tau$$
$$= e^{t} \frac{1}{-3} \left[e^{-3\tau} \right]_{t}^{\infty}$$
$$= \frac{1}{3} e^{-2t}$$

Solution (2a)

Let:

$$x(t) = u(t+3) - 2u(t) + u(t-3)$$

$$h(t) = u(t-2)$$

$$y(t) = x(t) * h(t)$$

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$$

Let's plot the intermediate signals, $x(\tau)$ and $h(t-\tau)$ with respect to τ .

$$x(\tau) = u(t+3) - 2u(t) + u(t-3)$$

$$h(t - \tau) = u(t - \tau - 2)$$

 τ

So, for t - 2 < -3 which is t < -1: y(t) = 0.

For $-3 \le t - 2 < 0$ which is $-1 \le t < 2$:

$$y(t) = \int_{-3}^{t-2} 1 \, dt$$
$$= t - 2 + 3 = t + 1$$

.

For $0 \le t - 2 < 3$ which is $2 \le t < 5$:

$$y(t) = \int_{-3}^{0} 1 dt + \int_{0}^{t-2} -1 dt$$
$$= (0+3) - [(t-2) - 0] = 5 - t$$

.

For $t-2 \ge 3$ which is $t \ge 5$:

$$y(t) = \int_{-3}^{0} 1 dt + \int_{0}^{3} -1 dt$$
$$= (0+3) - (3-0) = 0$$

.

Thus:

$$y(t) = \begin{cases} 0 & , t < -1 \\ t+1 & , -1 \le t < 2 \\ 5-t & , 2 \le t < 5 \\ 0 & , 5 \le t \end{cases}$$

Q3: Consider the following CT signal. Answer the following questions.

$$x(t) = \cos\left(\frac{2\pi t}{5}\right) \left[u(t+2) - u(t-2)\right]$$

(a) (10 pts) Carefully sketch x(t). Show your work.

Solution (3a):

(b) (10 pts) Determine the energy and average power of x(t). Is it an energy signal, power signal or neither?

Solution (3b):

$$E = \int_{-2}^{2} [\cos(2\pi t/5)]^2 dt$$

$$= \int_{-2}^{2} \frac{1}{2} (1 + \cos(4\pi t/5)) dt$$

$$= \frac{1}{2} (4 + \frac{5}{4\pi} [\sin(4\pi t/5)]_{-2}^2)$$

$$= 1.6216$$

It is an energy signal, so its average power is zero.

Q4: Consider the following DT signal. Answer the following questions.

$$x[n] = \cos\left(\frac{2\pi n}{5}\right)$$

(a) (10 pts) Is x[n] periodic? If so, find the period and the frequency.

Solution 4a:

$$\Omega_0 = \frac{2\pi}{5}$$
 radians
$$N = \frac{2\pi}{\Omega_0}$$

$$= \frac{2\pi}{\frac{2\pi}{5}}$$

$$N = 5$$
 cyles

Since N is an integer, x[n] is periodic.

(b) (10 pts) If you find that the answer to Q4a is "periodic", then determine the DTFS coefficients of x[n].

Solution 4a:

$$x[n] = \sum_{k = \langle N \rangle} X[k] e^{jk\Omega_0 n}$$

If we use Euler's formula:

$$x[n] = \frac{1}{2} \left[e^{j\frac{2\pi n}{5}} + e^{-j\frac{2\pi n}{5}} \right]$$

So, over a single period between [-2, 2]

$$X[k] = \begin{cases} 1/2 &, k = 1, -1 \\ 0 &, k = -2, 0, 2 \end{cases}$$