Exercise 1.10

Consider the data in the file CRMdata.txt which represents weekly claims (in million pesos) in the last 20 years for a certain insurance product, one week per row. It is only data for those weeks were claims were filed. Fit a collective risk model and estimate the expected value, variance, median, and $VaR_{0.995}$ of the total claims per week.

```
    # packages
    using DataFrames , Distributions , Statistics , StatsBase , Plots ,
    LaTeXStrings
```

Read and prepare the data

```
["5.411, 5.364, 5.664, 7.04, 14.799", "8.106, 5.883, 17.226, 14.412, 6.183, 7.598, 7.29, 7.693, 9.129]
 begin
       f = open("CRMdata.txt")
       rawdata = readlines(f)
       close(f)
       rawdata
 end
nrows = 262
 nrows = length(rawdata)
"5.411,5.364,5.664,7.04,14.799"
 rawdata[1]
 ["5.411", "5.364", "5.664", "7.04", "14.799"]
 split(rawdata[1], ",")
 [5.411, 5.364, 5.664, 7.04, 14.799]
 parse.(Float64, split(rawdata[1], ","))
 [[5.411, 5.364, 5.664, 7.04, 14.799], [8.106, 5.883, 17.226, 14.412, 6.183, 7.598, 7.29, 7.
 begin
       data = []
       for i \in 1:nrows
           push!(data, parse.(Float64, split(rawdata[i], ",")))
       end
       data
 end
```

Frequency modeling

	value	counts	proportion
1	0	778	0.748077
2	1	153	0.147115
3	2	53	0.0509615
4	3	17	0.0163462
5	4	12	0.0115385
6	5	7	0.00673077
7	6	6	0.00576923
8	7	2	0.00192308
9	8	1	0.000961538
10	9	3	0.00288462
ı	nore		
39	38	1	0.000961538

```
begin # Frequency table

Nvalues = collect(0:maximum(Nobs))

Ncounts = zeros(Int, length(Nvalues))

Ncounts[1] = 52*20 - nrows # number of cases when N = 0 (no claims)

for n ∈ Nobs

Ncounts[n+1] += 1

end

Nprop = Ncounts ./ sum(Ncounts)

NfreqTable = DataFrame(value = Nvalues, counts = Ncounts, proportion = Nprop)
end
```

```
(1040, 1040, 1.0)
• sum(Ncounts), 52*20, sum(NfreqTable.proportion) # just checking
```


When the estimated probability $\mathbb{P}(N=0)$ is significantly higher than for N>0 it is better try fitting a model for N|N>0. To be continued...

Severity modeling

[5.411, 5.364, 5.664, 7.04, 14.799, 8.106, 5.883, 17.226, 14.412, 6.183, 7.598, 7.29, 7.693

```
begin
    Yobs = zeros(0)
    for i ∈ 1:nrows
        append!(Yobs, data[i])
    end
    println("∑ N_i = ", sum(Nobs))
    Yobs # vector of claims in chronological order
    end

∑ N_i = 670
②
```

Check for serial independence of Y_1, Y_2, \ldots

For amounts of money a log-scale is preferred since vertical distances are proportional to % variations instead of absolute variations:


```
begin
logYobs = log.(Yobs)
plot(logYobs, xlabel = L"t", ylabel = L"\log\,Y_t", legend = false)
end
```



```
    begin
    println("Spearman = ", corspearman(logYobs[1:(end-1)], logYobs[2:end])) #
        Spearman's correlation
    scatter(logYobs[1:(end-1)], logYobs[2:end], xlabel = L"\log\,Y_t", ylabel =
        L"\log\,Y_{{t+1}}", legend = false)
    end
```

A Spearman correlation close to zero does not necessarily imply independence between claims Y_1, Y_2, \ldots so statistical procedures must be applied to verify. To be continued...

Check for possible dependence between claim severity and frequency:

```
begin
avgYobs = zeros(nrows)
for i ∈ 1:nrows
avgYobs[i] = mean(data[i])
end
end
```



```
    begin
    println("Spearman = ", corspearman(Nobs, avgYobs))
    scatter(Nobs, avgYobs, legend = false, xlabel = "frequency", ylabel = "average severity")
    end
```

Spearman = 0.44433139528796955 ①

The same as before but in log-scale:


```
    begin
    println("Spearman = ", corspearman(Nobs, log.(avgYobs)))
    scatter(Nobs, log.(avgYobs), legend = false, xlabel = "frequency", ylabel = "log average severity")
    end
```

Spearman = 0.44433139528796955 ⑦

Spearman's correlation clearly different from zero implies there is NO independence between frequency and severity, so in this case it is necessary to find a model for the severity conditional on the frequency. *To be continued*...