Trees Worksheet

(preparation for TreeLab)

1.

number of Nodes
Height
Depth of "B"
Length of longest path
Root
number of Leaves
number of Parents
number of Only Children
number of nodes at Level 0
Preorder Traverse
Inorder Traverse
Postorder Traverse
Levelorder Traverse

number of Nodes	
Height	
Level of "5"	
Length of longest path	
Root	
number of Leaves	
number of Parents	
number of Only Children	
number of nodes at Level 2	
Preorder Traverse	
Inorder Traverse	
Postorder Traverse	
Levelorder Traverse	

3. Trees are naturally recursive structures. Trace this code to search the BST above for "6".

If the tree is empty
return false
else if the item in the root equals the target
return true
else if the item in the root is greater than the target
return the result of searching the root's left subtree
else
return the result of searching the root's right subtree

Then trace the code to search the tree above for "7".

4.

number of Nodes	
Height	
Depth of "D"	
Width	
Root	
number of Leaves	
number of Parents	
number of Only Children	
number of nodes at Level 3	
Preorder Traverse	
Inorder Traverse	
Postorder Traverse	
Levelorder Traverse	

5.

number of Nodes	
Height of Tree	
Depth of "*"	
Width	
Root	
number of Leaves	
number of Parents	
number of Only Children	
number of nodes at Depth 1	
Preorder Traverse	
Inorder Traverse	
Postorder Traverse	
Levelorder Traverse	

6.	*	
	+	4
3	5	

number of Nodes	
Height	
Depth of "*"	
Width	
Root	
number of Leaves	
number of Parents	
number of Only Children	
number of nodes at Level 2	
Preorder Traverse	
Inorder Traverse	
Postorder Traverse	
Levelorder Traverse	

7.	Which of the trees above are complete?										
8.	Which of the trees above are full?										
9.	9. Which of the trees above have the Binary Search Tree property?										
10.	Which of the trees above have the heap	(either max or	min) property?								
11. 12.	Which of the trees above are expression Draw some full binary trees and fill ou	trees?t the table:									
		number of nodes	depth (level) of the last node	height							
		1									
		3									
		7									
		15									
		31									
	write		d								
	formulas	n									
13. A ft	ull binary tree with d levels can have a m	naximum of	nodes.								
14.	If a full binary tree has n nodes, then it h	nas	_ levels.								
15.	What is the smallest height needed to sto	ore 100,000 no	des in a binary tree?	,							
	Draw an expression tree for the prefix ex Give its infix expression		23								
	and its postfix expression										
	Draw an expression tree for the infix ex Give its prefix expression	•	9/3								
	and its postfix expression										
18.	Draw an expression tree for yr % 4 == 0 && (yr % 1	.00 != 0	yr % 400 ==	0)							

Questions 19-21 use recursion on ListNode linked lists. Think recursively!

head	-	3	_	-	9	_	->	7	_	->	2	$\overline{/}$	
------	---	---	---	----------	---	---	--------------	---	---	--------------	---	----------------	--

19. public int countNodes(ListNode head) } 20. public void display(ListNode head) } 21. public int findMax(ListNode head) { } 22. Trees are naturally recursive structures. Print the preorder expression on a tree made of TreeNodes. Use recursion. public static void preorderTraverse(TreeNode t) {

23. Open the TreeLab shell. Complete the code.