第一天回顾

- ▶ 路线图和日程安排
- ▶ Julia 虚拟环境和 Jupyter notebook 简介
- ▶ 育种流程简介
- ▶ 统计模型和育种值
- ▶ 最小二乘原理
- ▶ 线性模型最小二乘估计
 - ▶ 优化估计(模型、目标、优化)
 - ▶ 基因组选择的最小二乘估计
 - 练习

第二天 通过系谱和表型记录估计育种值

于希江

挪威生命科学大学畜牧与水产系

目录

数量性状基因向后代的传递

多元正态分布和一些情况下遗传力的估计 方差、协方差 多元正态分布 一些情况下遗传力的估计

根据系谱和个体表现型估计育种值 引子:一个简单的估计育种值的模型 混合模型方程组 CLS BLUE BLUE

数量性状座位 QTL

- ▶ 大多数性状的 QTL 个数 (N_q) 通常以千计
- ▶ 育种中,人们通常只对加性效应感兴趣
 - ▶ 因为显性和上位效应会在形成配子的过程中分开,在后代中重新组合
 - ▶ 而加性效应是每个等位基因的效应
- ▶ 个体 i 的育种值 $a_i = \sum_{j=1}^{N_q} x_j b_j$
- ightharpoonup 一个后代 o 从个体 i 的 $2N_q$ 个等位基因中抽取 N_q 个
 - ▶ 于是后代育种值中来自 i 的部分的期望是 $\frac{a_i}{2}$

孟德尔抽样误差

- ▶ 由于 QTL 众多,且大小不一,后代 o 很难从个体 i 正好是 $\frac{a_i}{2}$
- ▶ 这个由于从众多 QTL 的等位基因抽样所造成的误差 m 叫做孟德尔抽样误差
- ightharpoonup 这样若 $y_i = \mu + a_i + e_i$, 则个体 i, j 的后代 o 的表型模型可以写作:
 - $y_o = \mu + \frac{a_i}{2} + m_i + \frac{a_j}{2} + m_j + e_o$
- $ightharpoonup m \sim (0, \, \sigma_m^2)$

目录

数量性状基因向后代的传递

多元正态分布和一些情况下遗传力的估计 方差、协方差 多元正态分布 一些情况下遗传力的估计

根据系谱和个体表现型估计育种值 引子:一个简单的估计育种值的模型 混合模型方程组 CLS BLUE BLUE

目录

数量性状基因向后代的传递

多元正态分布和一些情况下遗传力的估计 方差、协方差

一些情况下遗传力的估计

根据系谱和个体表现型估计育种值

引子:一个简单的估计育种值的模型 混合模型方程组

方差、协方差

方差 (σ^2 , 或者 Var, V)

- ▶ 方差是对一个随机变量离散 (spread) 程度的度量。
- ▶ 若由样本估计: $\hat{\sigma}^2 = \frac{\sum_{i=1}^n (x_i \bar{x})^2}{n-1}$

方差、协方差

协方差

- ▶ 对两个随机变量协同变化程度的度量
- ightharpoonup $E(x_1 \mu_1)(x_2 \mu_2)$
- ▶ 若由样本估计:

$$\hat{\sigma}_{12} = \frac{\sum_{i=1}^{n} (x_{1i} - \mu_1)(x_{2i} - \mu_2)}{n - 1}$$

方差、协方差

协方差

- ▶ 对两个随机变量协同变化程度的度量
- ightharpoonup $E(x_1 \mu_1)(x_2 \mu_2)$
- ► 若由样本估计: $\hat{\sigma}_{12} = \frac{\sum_{i=1}^{n} (x_{1i} \mu_1)(x_{2i} \mu_2)}{n-1}$

方差协方差矩阵

由 p 个随机数的组成的向量 $x = [x_1, x_2, ..., x_p]'$, 有:

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1p} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \cdots & \sigma_p^2 \end{bmatrix}$$

目录

数量性状基因向后代的传递

多元正态分布和一些情况下遗传力的估计

方差、协方差

多元正态分布

一些情况下遗传力的估计

根据系谱和个体表现型估计育种值

引子:一个简单的估计育种值的模型 混合模型方程组

GLS, BLUE, BLUP

多元正态分布

一元正态分布

$$n(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$

多元正态分布

一元正态分布

$$n(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

μ期望

σ 方差

多元正态分布

▶ 是一元正态分布的推广

$$MVN(\mathbf{x}; \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^p |\Sigma|}} e^{-\frac{1}{2}(\mathbf{x} - \mu)' \Sigma^{-1}(\mathbf{x} - \mu)}$$

▶ 也记作: $x \sim MVN(\mu, \Sigma)$

$$E(x) = \mu$$

$$Cov(x) = \Sigma$$

从两个随机变量来理解方差协方差矩阵

从两个随机变量来理解方差协方差矩阵

► 右边四图中,每个变量的方差都 是 1。

目录

数量性状基因向后代的传递

多元正态分布和一些情况下遗传力的估计

方差、协方差

多元正态分布

一些情况下遗传力的估计

根据系谱和个体表现型估计育种值

引子:一个简单的估计育种值的模型 混合模型方程组

GLS, BLUE, BLUP

半同胞对

▶ 设半同胞对 [x₁,x₂] 同父异母,则:

$$x_1 = \mu + \frac{a_S}{2} + e$$

$$x_2 = \mu + \frac{a_S}{2} + e$$

- ▶ 其中 e 包括其它遗传效应和环境 效应。
- $ightharpoonup \operatorname{Cov}(x_1, x_2) = \frac{\sigma_{a_S}^2}{4} = \frac{\sigma_a^2}{4}$
- ► 依模型: $x = \mu + a + e$, 每个半同胞 变量的方差

半同胞对

▶ 设半同胞对 [x₁,x₂] 同父异母,则:

$$x_1 = \mu + \frac{a_S}{2} + e$$

$$x_2 = \mu + \frac{a_S}{2} + e$$

- ▶ 其中 e 包括其它遗传效应和环境 效应。
- $ightharpoonup \operatorname{Cov}(x_1, x_2) = \frac{\sigma_{a_S}^2}{4} = \frac{\sigma_a^2}{4}$
- ► 依模型: $x = \mu + a + e$, 每个半同胞 变量的方差

▶ 于是:

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] \sim \text{MVN} \left(\left[\begin{array}{c} \mu \\ \mu \end{array}\right], \left[\begin{array}{cc} \sigma_p^2 & \frac{\sigma_a^2}{4} \\ \frac{\sigma_a^2}{4} & \sigma_p^2 \end{array}\right]\right)$$

▶ 注意,此处可见遗传力:

$$h^2 = \frac{\sigma_a^2}{\sigma_p^2} = \frac{4 \cdot \sigma_{12}}{(\sigma_1^2 + \sigma_2^2)/2}$$

半同胞对模拟

真值

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 1.0 & 0.1 \\ 0.1 & 1.0 \end{bmatrix}$$

$$h^2 = 0.4$$

见 day-2-mvn. ipynb.

半同胞对模拟

真值

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 1.0 & 0.1 \\ 0.1 & 1.0 \end{bmatrix}$$

$$h^2 = 0.4$$

见 day-2-mvn. ipynb.

模拟 10 对半同胞

$$\hat{\mu} = \begin{bmatrix} -0.2 \\ -0.1 \end{bmatrix}$$

$$\hat{\Sigma} = \begin{bmatrix} 1.5 & 0.1 \\ 0.1 & 1.8 \end{bmatrix}$$

$$\hat{h}^2 = 0.2$$

类似的

单亲与一子的对

- ▶ 模型
 - $y_i = \mu + a_i + e_i$
 - $y_o = \mu + \frac{a_i}{2} + e_o$
- ▶ 方差协方差矩阵

$$\Sigma = \left[\begin{array}{cc} \sigma_p^2 & \frac{\sigma_a^2}{2} \\ \frac{\sigma_a^2}{2} & \sigma_p^2 \end{array} \right]$$

$$h^2 = 2 \cdot \sigma_{12} / \sigma_p^2$$

双亲平均与一子

- ▶ 模型
 - $y_i = \mu + a_i + e_i$
 - $y_j = \mu + a_j + e_j$
 - $(y_i + y_j)/2 = \mu + (a_i + a_j)/2 + \bar{e}$
 - $y_o = \mu + \frac{a_i + a_j}{2} + e_o$
- ▶ 方差协方差矩阵

$$h^2 = \sigma_{12}/\sigma_{\bar{p}}^2$$

目录

数量性状基因向后代的传递

多元正态分布和一些情况下遗传力的估计 方差、协方差 多元正态分布 一些情况下遗传力的估计

根据系谱和个体表现型估计育种值 引子:一个简单的估计育种值的模型 混合模型方程组 GLS, BLUE, BLUP

目录

数量性状基因向后代的传递

多元正态分布和一些情况下遗传力的估计

多元正态分布

一些情况下遗传力的估计

根据系谱和个体表现型估计育种值

引子:一个简单的估计育种值的模型

混合模型方程组

GLS, BLUE, BLUF

简化公牛模型/Sire model

- ▶ 常见于奶牛育种
- ▶ p 头公牛
- ▶ 每头公牛各有 n_i 个女儿
- ▶ 这样,每个女儿的产奶量模型为

$$y_{ij} = \mu + u_i + e_{ij}$$

目录

数量性状基因向后代的传递

多元正态分布和一些情况下遗传力的估计

万差、协万差

多元止态分布

一些情况下遗传力的估计

根据系谱和个体表现型估计育种值

引子:一个简单的估计育种值的模型

混合模型方程组

GLS, BLUE, BLUF

效应/因子

几个概念

线性混合模型 除随机残差效应,同时包含固定和随机效应的线性模型效应 出现在模型中(右边)的那些量

固定效应 效应的所有水平都在样本中出现 随机效应 其水平来自更大的抽样空间

机效应 其水平来目更大的抽样空间

效应/因子

几个概念

线性混合模型 除随机残差效应,同时包含固 定和随机效应的线性模型

效应 出现在模型中(右边)的那些量 固定效应 效应的所有水平都在样本中出现 随机效应 其水平来自更大的抽样空间 y = Xb + Zu + e

其中:

y n×1 维观测值向量

X *n* × *s* 维结构矩阵, 或 者指示矩阵

 $b s \times 1$ 个固定效应

 $Z n \times q$ 维指示矩阵

 $\mathbf{u} \ q \times 1$ 个随机效应

e n×1 个随机残差效应

线性混合模型观测值举例

▶ 有来自 2 个奶牛场的 2 头公牛的 5 头女儿的记录如下:

个体号	+ 场	分 公公	牛 表型	且值
	1	1	1	11
6	2	1	1	15
;	3 :	2	1	10
4	1	1	2	19
į	5 :	2	2	25

线性混合模型观测值举例

▶ 公牛模型

目录

数量性状基因向后代的传递

多元正态分布和一些情况下遗传力的估计

万差、协万差 多元正态分布 一此情况下溃传力的估计

根据系谱和个体表现型估计育种值

引子:一个简单的估计育种值的模型 混合模型方程组

GLS, BLUE, BLUP

广义最小二乘 GLS

普通最小二乘

- $ightharpoonup e \stackrel{\mathrm{iid}}{\sim} N(0, \sigma_e^2)$
- ▶ 或者 $\epsilon \sim \text{MVN}(0, I\sigma_e^2)$
- ightharpoonup $\Rightarrow \hat{\mathbf{b}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}\mathbf{y}$

广义最小二乘

- $ightharpoonup \epsilon \sim \text{MVN}(0, \Sigma)$
- ▶ 用 Σ^{-1} 为观测值加权
 - ▶ 方差越大, 权重越低

广义最小二乘 GLS

普通最小二乘

- $ightharpoonup e \stackrel{\mathrm{iid}}{\sim} N(0, \sigma_e^2)$
- ▶ 或者 $\epsilon \sim \text{MVN}(0, I\sigma_e^2)$
- ightharpoonup \Rightarrow $\hat{b} = (X'X)^{-1}Xy$

广义最小二乘

- $ightharpoonup \epsilon \sim \text{MVN}(0, \Sigma)$
- ightharpoonup 用 ightharpoonup 为观测值加权
 - ▶ 方差越大, 权重越低

普通最小二乘的优化函数

$$(y - X\beta)'(y - X\beta)$$

广义最小二乘的优化函数

$$(y - X\beta)'\Sigma^{-1}(y - X\beta)$$

广义最小二乘 GLS

普通最小二乘

- $ightharpoonup e \stackrel{\text{iid}}{\sim} N(0, \sigma_e^2)$
- ▶ 或者 $\epsilon \sim \text{MVN}(0, I\sigma_e^2)$
- ightharpoonup $\Rightarrow \hat{\mathbf{b}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}\mathbf{y}$

广义最小二乘

- $ightharpoonup \epsilon \sim \text{MVN}(0, \Sigma)$
- ightharpoonup 用 ightharpoonup 为观测值加权
 - ▶ 方差越大, 权重越低

普通最小二乘的优化函数

$$(y - X\beta)'(y - X\beta)$$

广义最小二乘的优化函数

$$(y - X\beta)'\Sigma^{-1}(y - X\beta)$$

β 的广义最小二乘估计

$$\hat{\beta} = (\mathbf{X}' \mathbf{\Sigma}^{-1} \mathbf{X})^{-1} \mathbf{X}' \mathbf{\Sigma}^{-1} \mathbf{y}$$

	普通最小二乘	广义最小二乘	▶ 设有 Σ 的平方根 $\Sigma^{1/2}$
模型	$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$	$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$	
分布	$\epsilon \sim \text{MVN}(0, I\sigma_e^2)$	$\epsilon \sim \mathtt{MVN}(0,\Sigma)$	$\Sigma^{-1} = (\Sigma^{-1/2})^{T} \cdot \Sigma^{-1/2}$ \mathbf{D} 则转化模型
优化解	$\hat{eta}^{ ext{OLS}} =$	$\hat{\beta}^{\rm GLS} =$	$\Sigma^{-1/2} \mathbf{y} = \Sigma^{-1/2} \mathbf{X} \boldsymbol{\beta} + \Sigma^{-1/2} \boldsymbol{\epsilon}$
	$\arg\min_{\beta}\ \mathbf{y}-\mathbf{X}\beta\ ^2$		中

	普通最小二乘	广义最小二乘	•	设有 Σ 的平
模型	$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$	$y = X\beta + \epsilon$	•	$\Sigma = \Sigma^{1/2} \cdot (\Sigma^1)$
1) L	- MUNI(O T -2)	M/N/O \S\	•	$\Sigma^{-1} = (\Sigma^{-1/2}$
分布	$\epsilon \sim \text{MVN}(0, I\sigma_e^2)$	$\epsilon \sim \text{MVN}(0, \Sigma)$	•	则转化模型
优化解	$\hat{eta}^{ ext{OLS}} =$	$\hat{eta}^{ ext{GLS}} =$		$\Sigma^{-1/2} \mathbf{y} = \Sigma^{-1}$
/4 /4/	$\arg\min_{\beta} \ \mathbf{y} - \mathbf{X}\beta\ ^2$	$\arg\min_{\beta} \ \Sigma^{-1/2}(\mathbf{y} - \mathbf{X}\beta)\ ^2$		中
	β β	β " β		$Var(\Sigma^{-1/2}\epsilon) =$

> 设有
$$\Sigma$$
 的平方根 $\Sigma^{1/2}$

$$\Sigma = \Sigma^{1/2} \cdot (\Sigma^{1/2})^{\mathsf{T}}$$

$$\Sigma^{-1} = (\Sigma^{-1/2})^{\mathrm{T}} \cdot \Sigma^{-1/2}$$

▶ 则转化模型
$$\Sigma^{-1/2}y = \Sigma^{-1/2}X\beta + \Sigma^{-1/2}\epsilon$$
 中

$$ightharpoonup \operatorname{Var}(\Sigma^{-1/2}\epsilon) = \operatorname{I}\sigma^2$$

	普通最小二乘	广义最小二乘	▶ 设有 Σ 的平方根 $\Sigma^{1/2}$
模型	$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$	$y = X\beta + \epsilon$	$\Sigma = \Sigma^{1/2} \cdot (\Sigma^{1/2})^{\mathrm{T}}$
分布	MVN(O T -2)	$\alpha = MVN(0, \Sigma)$	
刀- 17	$\epsilon \sim \text{MVN}(0, I\sigma_e^2)$	$\epsilon \sim ext{MVN}(0,\Sigma)$	▶ 则转化模型
优化解	$\hat{eta}^{ ext{OLS}} =$	$\hat{\beta}^{\text{GLS}} =$	$\Sigma^{-1/2} \mathbf{y} = \Sigma^{-1/2} \mathbf{X} \boldsymbol{\beta} + \Sigma^{-1/2} \boldsymbol{\epsilon}$
	$\arg\min_{\beta} \ \mathbf{y} - \mathbf{X}\beta\ ^2$	$\arg\min_{\beta} \ \Sigma^{-1/2}(\mathbf{y} - \mathbf{X}\beta)\ ^2$	中 - 1/2 > - 2
	β	ρ	
结果	$(X'X)^{-1}X'y$	$(\mathbf{X}'\mathbf{\Sigma}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{\Sigma}^{-1}\mathbf{y}$	

	普通最小二乘	广义最小二乘	▶ 设有 Σ 的平方根 $\Sigma^{1/2}$
模型	$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$	$y = X\beta + \epsilon$	$\Sigma = \Sigma^{1/2} \cdot (\Sigma^{1/2})^{T}$
分布	$\epsilon \sim ext{MVN}(0, ext{I}\sigma_e^2)$	$\epsilon \sim ext{MVN}(0,\Sigma)$	
2) 11	$e \sim \text{MVIV}(0, 10_e)$	$e \sim \text{MVN}(0, \Delta)$	▶ 则转化模型
优化解	$\hat{eta}^{ ext{OLS}} =$	$\hat{\beta}^{\text{GLS}} =$	$\Sigma^{-1/2} \mathbf{y} = \Sigma^{-1/2} \mathbf{X} \beta + \Sigma^{-1/2} \epsilon$
	$\arg\min_{\beta} \ \mathbf{y} - \mathbf{X}\beta\ ^2$	$\arg\min_{\beta} \ \Sigma^{-1/2}(\mathbf{y} - \mathbf{X}\beta)\ ^2$	中 N(N-1/2-) I-2
	,	,	$ \operatorname{Var}(\Sigma^{-1/2}\epsilon) = \operatorname{I}\sigma^2 $
结果	$(X'X)^{-1}X'y$	$(\mathbf{X}'\mathbf{\Sigma}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{\Sigma}^{-1}\mathbf{y}$	$ ightharpoonup Σ^{1/2}$ 通常是 Σ 的克莱斯
			基(Cholesky)分解。

关于 GLS 和 OLS

- ▶ GLS 模型其实也可以用 OLS 估计
- ▶ 但 GLS 估计更好, 它考虑了非同质的方差, 以及数据内部的相关
- ▶ 这个结果是好的,因为
 - ▶ 估计结果是向模型空间的正交投影
 - ▶ 如果 $\Sigma = I\sigma^2$,则估计结果是最大似然估计。不太严格地说,以最大似然估计结果做参数,观测值的概率最大
 - ▶ 根据高斯-马尔科夫(Gauss-Markov)定理,BLUE $(X\beta) = X\hat{\beta}$

BLUE, BLUP

- ▶ 一般称固定效应的 GLS 估计为 BLUE
- ▶ 一般称随机效应的 GLS 估计为 BLUP
- ▶ 混合线性模型: y = Xb + Zu + e
 - ▶ 平衡设计没有问题
 - ▶ 需要每个家系在各个群体中有分布
 - ▶ 固定效应须要由遗传差异(随机效应)校正
 - ▶ 随机效应须要根据固定效应校正

混合模型中的方差

$$Y = Xb + Zu + e$$

$$Var(b) = 0$$

$$Var(u) = E(uu') = G$$

$$Var(e) = E(ee') = R$$

$$Var(y) = Var(Xb + Zu + e) = ZGZ' + R$$

BLUP 的最大似然推导(可选)

设 y,u 的联合概率密度为:

$$\begin{split} f(\mathbf{y},\mathbf{u}) &= g(\mathbf{y}|\mathbf{u})h(\mathbf{u}) \\ g(\mathbf{y}|\mathbf{u}) &= g(\mathbf{e}) \\ g(\mathbf{e}) &= \frac{1}{\sqrt{(2\pi)^n|\mathrm{Var}(\mathbf{e})|}} e^{-\frac{1}{2}\mathbf{e}'\mathrm{Var}(\mathbf{e})^{-1}\mathbf{e}} \\ h(\mathbf{u}) &= \frac{1}{\sqrt{(2\pi)^n|\mathrm{Var}(\mathbf{u})|}} e^{-\frac{1}{2}\mathbf{u}'\mathrm{Var}(\mathbf{u})^{-1}\mathbf{u}} \end{split}$$

$$\begin{split} f(\mathbf{y},\mathbf{u}) &= c_1 e^{-\frac{1}{2} \mathbf{e}' \mathbf{R}^{-1} \mathbf{e}} c_2 e^{-\frac{1}{2} \mathbf{u}' \mathbf{G}^{-1} \mathbf{u}} \\ &= c e^{-\frac{1}{2} \mathbf{e}' \mathbf{R}^{-1} \mathbf{e}} e^{-\frac{1}{2} \mathbf{u}' \mathbf{G}^{-1} \mathbf{u}} \\ L &= f(\mathbf{y},\mathbf{u}) \\ \log(L) &= \log(c) - \frac{1}{2} \mathbf{e}' \mathbf{R}^{-1} \mathbf{e} - \frac{1}{2} \mathbf{u}' \mathbf{G}^{-1} \mathbf{u} \end{split}$$

BLUP 的最大似然推导(续)

$$\log(L) = \log(c) - \frac{1}{2}e'R^{-1}e - \frac{1}{2}u'G^{-1}u$$

$$e = y - Xb - Zu$$

$$\log(L) = \log(c)$$

$$-\frac{1}{2}(y - Xb - Zu)'R^{-1}(y - Xb - Zu)$$

$$-\frac{1}{2}u'G^{-1}u$$

BLUP 的最大似然推导 - 结果

令
$$\frac{\partial(\log L)}{\partial b} = \frac{\partial(\log L)}{\partial u} = 0$$
, 得混合模型方程组

$$\begin{bmatrix} X'R^{-1}X & X'R^{-1}Z \\ Z'R^{-1}X & Z'R^{-1}Z + G^{-1} \end{bmatrix} \begin{bmatrix} \hat{b} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X'R^{-1}y \\ Z'R^{-1}y \end{bmatrix}$$

BLUP 的特殊情形

$$R = I\sigma_e^2$$

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{Z} \\ \mathbf{Z}'\mathbf{X} & \mathbf{Z}'\mathbf{Z} + \mathbf{G}^{-1}\sigma_e^2 \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{Z}'\mathbf{y} \end{bmatrix} \qquad \begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{Z} \\ \mathbf{Z}'\mathbf{X} & \mathbf{Z}'\mathbf{Z} + \mathbf{A}^{-1}\boldsymbol{\lambda} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{Z}'\mathbf{y} \end{bmatrix}$$

$$\begin{bmatrix} X'X & X'Z \\ Z'X & Z'Z + A^{-1}\lambda \end{bmatrix} \begin{bmatrix} \hat{b} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \end{bmatrix}$$

注: 逆矩阵的计算量 $(O(n^3))$ 比矩阵相乘 $(O(n^2))$ 高很多,而通常 G 的维度远少于观测值的个数。因而其逆矩阵计算比观测值方差的逆矩阵容易 得多。

小结

- ▶ 微效等位基因向后代的传递
- ▶ 方差、协方差
- ▶ 多元正态分布
- ▶ 广义最小二乘的原理
- ▶ BLUE 是固定效应的广义最小二乘估 计
- ▶ BLUP 和混合线性方程组

小结

- ▶ 微效等位基因向后代的传递
- ▶ 方差、协方差
- ▶ 多元正态分布
- ▶ 广义最小二乘的原理
- ► BLUE 是固定效应的广义最小二乘估 计
- ▶ BLUP 和混合线性方程组

下一节

- ► A 矩阵
- ▶ A 的逆矩阵
- ▶ 几种在育种中常用的模型
- ▶ 模拟和计算