# Тестовый файл

## Содержание

| 1 | Стереометрия |                                   |   |
|---|--------------|-----------------------------------|---|
|   | 1.1          | Введение                          | 2 |
|   | 1.2          | Следствия из аксиом               | 2 |
|   | 1.3          | Скрещивающиеся прямые             | 3 |
|   | 1.4          | Параллельность прямой и плоскости | 3 |
|   | 1.9          | Параллельность плоскостей         | 5 |

### 1 Стереометрия

#### 1.1 Введение

**Аксиома 1.** В  $\mathbb{R}^3$  существуют плоскости, причем для любой из них выполняются аксиомы планиметрии.

**Аксиома 2** (Аксиома плоскости). Через любые три неколлинеарные точки пространства проходит плоскость, при чем только одна.

**Аксиома 3.** Прямая, проходящая через две точки плоскости полностью лежит в данной плоскости.

**Аксиома 4** (Аксиома пересечения плоскостей). Если две плоскости имеют общую точку, то они пересекаются по прямой:

$$M \in \alpha$$
;  $M \in \beta \Longrightarrow \exists l : l \subset \alpha$ ;  $l \subset \beta$ 

**Аксиома 5** (Аксиома расстояния). В любой из плоскостей, проходящих через две различные точки расстояние между этими точками одно и то же:

$$A \neq B$$
;  $\forall \alpha : A, B \in \alpha \ \rho_{\alpha}(A; B) = \text{const}$ 

**Определение 1.** Прямая и плоскость называются пересекающимися, если они имеют одну общую точку.

**Определение 2.** Две плоскости называются пересекающимися, если они имеют одну общую прямую.

**Определение 3.** Прямые, лежащие в одной плоскости и не имеющие общих точек называются параллельными.

#### 1.2 Следствия из аксиом

**Лемма 1.1.** Через прямую и точку, не лежащую на ней, проходит плоскость, при том только одна:

$$\forall A; \ \forall l: \ A \notin l \ \exists ! \ \alpha: \ l \subset \alpha; \ A \in \alpha$$

Доказательство.



Рассмотрим  $B, C \in l: l \subset \alpha \Longrightarrow B, C \in \alpha$ . По аксиоме плоскости  $\exists ! \alpha: A, B, C \in \alpha; l \subset \alpha$ .

Лемма 1.2. Через две пересекающиеся прямые проходит плоскость, при том только одна:

$$a \cap b = C \Longrightarrow \exists ! \alpha : a, b \subset \alpha$$

Лемма 1.3. Через две параллельные прямые проходит плоскость, при том только одна:

$$a \parallel b \Longrightarrow \exists ! \alpha : a, b \subset \alpha$$

#### 1.3 Скрещивающиеся прямые

Определение 4. Две прямые называются скрещивающимися, если у них нет общих точек и они не параллельны.

**Теорема 1.4** (Признак скрещивающихся). Если одна прямая лежит в плоскости, а другая пересекают данную плоскость в точке, не лежащей на первой прямой, данные прямые скрещиваются:

$$a \subset \alpha, b \cap \alpha = M : M \notin a \Longrightarrow a \doteq b$$

Доказательство.



Пусть a и b не скрещиваются. Тогда  $a \parallel b$  или  $a \cap b \neq \varnothing$  :

- 1.  $a \parallel b \Longrightarrow \exists ! \beta : a, b \subset \beta \Longrightarrow M \in \beta$ , при этом  $a \subset \alpha$  (по условию);  $a \subset \beta$  (по предложению)  $\Longrightarrow \alpha \cap \beta = a, M \in \alpha, M \in \beta \Longrightarrow M \in a$ , противоречие.
- 2.  $a \cap \beta \neq \emptyset \Longrightarrow \exists k : k \in a, k \in b \Longrightarrow \exists \beta : a, b \subset \beta \Longrightarrow M \in \beta$ , при этом  $a \subset \alpha$  (по условию);  $a \subset \beta$  (по предложению)  $\Longrightarrow \alpha \cap \beta = a, M \in \alpha, M \in \beta \Longrightarrow M \in a$ , противоречие.

**Теорема 1.5.** Пусть  $a \parallel b$ ;  $a \cap \alpha \neq \emptyset$ , тогда  $b \cap \alpha \neq \emptyset$ .

Доказательство.



$$a\parallel b\Longrightarrow \exists !\ \beta:\ a,\,b\subset\beta,\,a\cap\alpha=A\Longrightarrow A\in\beta\Longrightarrow \exists\,l:\ l=\alpha\cap\beta$$
 
$$l\cap a=A,\,a\parallel\beta\Longrightarrow l\cap\beta=B:\ B\in b,\,B\in l\Longrightarrow b\cap\alpha=B.$$

#### 1.4 Параллельность прямой и плоскости

Определение 5. Прямая и плоскость называются параллельными, если они не имеют общих точек.

**Теорема 1.6** (Признак параллельности прямой и плоскости). Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то эти прямая и плоскость параллельны:

$$a \subset \alpha, b \not\subset \alpha, a \parallel b \Longrightarrow \alpha \parallel b$$

Доказательство.



 $a \parallel b \Longrightarrow \exists ! \beta : a, b \subset \beta$ . Пусть  $b \cap \alpha \neq \emptyset$ . Но  $\alpha \cap \beta = a$ . Противоречие.

**Теорема 1.7** (О линии пересечения плоскостей). Если плоскость проходит через прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой:

$$a \parallel \alpha, a \subset \beta, \alpha \cap \beta = b \Longrightarrow a \parallel b$$

Доказательство.



 $a\parallel \alpha\Longrightarrow a\cap b=\varnothing$ . Пусть  $a\doteq b$ , тогда  $a\cap \alpha\neq\varnothing$ , но  $a\parallel\alpha$ . Противоречие.

**Теорема 1.8** (О крыше). Если через каждую из двух параллельных прямых проведена плоскость, причём эти плоскости пересекаются, то линия их пересечения параллельна каждой из данных прямых:

$$a\parallel b,\, a\subset\alpha,\, b\subset\beta,\, \alpha\cap\beta=c\Longrightarrow a\parallel c,\, b\parallel c$$

Доказательство.



 $a\parallel b,\,b\not\subset\alpha\Longrightarrow b\parallel\alpha\Longrightarrow b\parallel c$  (по теореме о линии пересечения плоскостей). Аналогично  $c\parallel a.$ 

4

Следствие 1.8.1. Параллельность прямых в пространстве транзитивна.

Следствие 1.8.2. Если прямая параллельна каждой из двух пересекающихся плоскостей, то она параллельна их линии пересечения.

#### 1.9 Параллельность плоскостей

Определение 6. Две плоскости называются параллельными, если они не имеют общих точек.

**Теорема 1.9** (Признак параллельности плоскостей). Если две пересекающиеся прямые одной плоскости параллельны соответственно двум прямым другой плоскости, то эти плоскости параллельны:

$$a, b \subset \alpha, a \cap b \neq \emptyset; c, d \subset \beta; a \parallel c, b \parallel d \Longrightarrow \alpha \parallel \beta$$

Доказательство.



Пусть  $\alpha \cap \beta \neq \emptyset$ . Тогда по теореме о линии пересечения плоскостей  $\alpha \cap \beta = k, k \parallel a \ (c \subset \beta); \ \alpha \cap \beta = l, l \parallel b \ (d \subset \beta)$ . Противоречие.

**Теорема 1.10.** Линии пересечения двух параллельных плоскостей третьей плоскостью параллельны:

$$\alpha \parallel \beta, \gamma \cap \alpha = a, \gamma \cap \beta = b \Longrightarrow a \parallel b$$

Доказательство.



 $\alpha \parallel \beta \Longrightarrow \exists \, c \subset \alpha : \ c \parallel b$ . По теореме о крыше  $a \parallel c, \, b \parallel c$ .