Game Theoretical Analysis of Resource Allocation in the InterPlanetary File System

David Grisham 2 May 2018

Background

IPFS (InterPlanetery File System)

- P2P hypermedia distribution protocol
 - Goal: Replace HTTP, decentralize Internet
- Content-addressed, versioned filesystem
- Git repo in a torrent

IPFS Stack

Figure 1: The IPFS Stack

Bitswap

- IPFS's block exchange protocol
- Inspired by BitTorrent
- Given a set of peers who want data, how to allocate resources?

Bitswap

Given a set of peers who want data, how to allocate resources?

- Ever user maintains reputation for each peer
 - Very complex dynamics
- Reciprocation function

Objectives

- Discover Bitswap reciprocation function(s) that gives desired behavior
 - Will depend on conditions
 - Break down Bitswap dynamics
- Analytical and empirical analyses
- Implementation

System Model

IPFS Network as Graph

- Nodes: Users $\in \mathcal{N}$
- Edges: Peerings; unweighted, undirected
 - lacksquare i's neighborhood: $\mathcal{N}_i \subseteq \mathcal{N}$

Reputation

User i distributes B_i bits among peers in each round

- b_{ii}^t : Total bits sent from user j to peer i from round 0 to t-1
- d_{ii}^t : debt ratio of j as viewed by i in round t
 - Used as peer-wise reputation

$$d_{ji}^t = \frac{b_{ji}^t}{b_{ij}^t}$$

Reciprocation Function

- Inputs: Peer debt ratio, rest of peers' debt ratios
- Output: Peer weight
- $S_j(d_{ji}^t, \mathbf{d}_i^{-i,t}) \in [0,1]$

• e.g.
$$S_j(d_{ji}^t, \mathbf{d}_j^{-i,t}) = \frac{d_{ji}^t}{d_{ji}^t + \sum_{d_{jk}^t \in \mathbf{d}_j^{-i,t}} d_{jk}^t}$$

Data Distribution

 B_j bits distributed among peers via weighted round-robin

$$b_{ji}^{t+1}=b_{ji}^t+S_j(d_{ji}^t,\mathbf{d}_j^{-i,t})\times B_j$$

Game Formulation

- Players: Users/nodes
- Strategy: Reciprocation function

• Utility:
$$U_i = \sum_{j \in \mathcal{N}_i} b_{ji}^{\infty} = \sum_{t=0}^{\infty} u_i^t$$

$$u_i^t = \sum_{t=0}^{\infty} \sum_{j \in \mathcal{N}_i} (b_{ji}^t - b_{ji}^{t-1})$$

Model Iterations

- Complexity vs. accuracy
- Attempted formulations
 - Evolutionary game theory
 - Statistical mechanics
 - Repeated games

Game Characteristics

- Infinitely repeated
 - Discrete rounds, denoted by t
- Incomplete information

Objectives

- Classify Bitswap reciprocation functions
 - Conditions where useful
- Analytical work: Repeated game model
- Empirical work: Simulations
- Implementation: go-ipfs, IPTB

Preliminary Results

Strategy Simulator

- 3 node network
- Parameters
 - Resource distribution
 - Initial peer-wise reputations
- Tests whether given reciprocation function is a Nash equilibrium (NE)

Strategy Simulator

User 0:

- 1. Follows reciprocation function
- 2. Deviates from reciprocation function

3-Node Network

Example 1

- Reciprocation function: Linear
- Initial ledgers: Split
- Resource distribution: [10, 10, 10]

Example 2

- Reciprocation function: Linear
- Initial ledgers: Split
- Resource distribution: [10, 20, 10]

Summarized Results

Case	Payoff
Example 1 (ND)	10
Example 1 (D)	$9\frac{1}{3}$
Example 2 (ND)	13.68
Example 2 (D)	13.87

Strategy Simulator

Conclusions

- Homogeneous resource distributions
 - Any RF (trivially) NE
- Non-homogeneous resource distributions
 - NE not yet found

Symbolic Analysis

- Verified results of strategy simulator
- Mathematica notebook
- Intractable for nontrivial reciprocation functions
 - Next step: Alternative functions/representations

Implementation

- Beta strategy-integration into go-ipfs
- IPTB: IPFS nodes in Docker containers
- Scripted tests

Plan

Analytical Work

- 1. Repeated game analysis
 - Balances model accuracy with complexity
- 2. Evolutionary game theory (if time allows)
 - Good model, but high complexity

Simulations

1. Strategy simulator

Complements repeated game analysis

2. Bitswap tests

Test actual IPFS nodes

Timeline

May

- Thesis
 - Layout
 - Write intro/background, results so far
- Implementation: IPTB simulations
- **Simulation:** Continue evaluating strategies
- Analytical: Simplify intractable cases

June

- Thesis
 - Update results as they come
 - Plots and visualizations
 - Check formatting with writing center
- Implementation: IPTB simulations
- **Simulation:** Continue evaluating strategies
- Analytical: Evaluate results, re-orient

July

• Thesis: Primary focus

• Implementation: Finish up lingering work here