Chiffrement par flot

(Stream cipher)

October 12, 2012

Plan

- Chiffrement par flot : introduction Chiffrement de Vernam Schéma général d'un chiffrement par flot
- Registres à décalage linéaires LFSR - registre linéaire à décalage LFSR combiné Variantes et applications
- Description de RC4
 Applications de RC4

Chiffrement à clef privée

On considère deux protagonistes Alice et Bob partageant une clef privée et secrète et s'envoyant un message chiffré:

Plan

- Chiffrement par flot : introduction Chiffrement de Vernam Schéma général d'un chiffrement par flot
- 2 Registres à décalage linéaires LFSR - registre linéaire à décalage LFSR combiné Variantes et applications
- 3 RC4
 Description de RC4
 Applications de RC4

Chiffrement de Vernam (One Time Pad)

La clef secrète d'Alice et Bob est $K = k_0 \dots k_{n-1}$ (générée aléatoirement)

• Chiffrement : Alice chiffre $M=m_0m_1\dots m_{n-1}$ en $C=c_0\dots c_{n-1}$ où

$$c_i = m_i \oplus k_i$$

• Déchiffrement : Bob récupère le message clair M en calculant

$$m_i = c_i \oplus k_i$$
 pour $i = 0, \ldots, n-1$.

On vérifie que Bob retrouve bien M: pour tout i = 0, ..., n - 1

$$c_i \oplus k_i = (m_i \oplus k_i) \oplus k_i = m_i \oplus (k_i \oplus k_i) = m_i$$

Chiffrement de Vernam (One Time Pad)

La clef secrète d'Alice et Bob est $K = k_0 \dots k_{n-1}$ (générée aléatoirement)

• Chiffrement : Alice chiffre $M=m_0m_1\dots m_{n-1}$ en $C=c_0\dots c_{n-1}$ où

$$c_i=m_i\oplus k_i$$

• Déchiffrement : Bob récupère le message clair M en calculant

$$m_i = c_i \oplus k_i$$
 pour $i = 0, \ldots, n-1$.

On vérifie que Bob retrouve bien M: pour tout i = 0, ..., n - 1

$$c_i \oplus k_i = (m_i \oplus k_i) \oplus k_i = m_i \oplus (k_i \oplus k_i) = m_i$$

Point important : la clef K est une utilisée une seule fois!

Montrons que pour tout i, c_i prend la valeur 0 ou 1 avec une probabilité de 1/2:

- On suppose m_i prend la valeur 0 avec une proba de p_i et 1 de $1-p_i$.
- On suppose que k_i prend la valeur 1 et 0 avec une proba de 1/2 chacun.
- m_i et k_i sont indépendants (ce qui fait sens vu que k_i est choisi indépendement de M).

Montrons que pour tout i, c_i prend la valeur 0 ou 1 avec une probabilité de 1/2:

- On suppose m_i prend la valeur 0 avec une proba de p_i et 1 de $1-p_i$.
- On suppose que k_i prend la valeur 1 et 0 avec une proba de 1/2 chacun.
- m_i et k_i sont indépendants (ce qui fait sens vu que k_i est choisi indépendement de M).

Alors

$$P(c_{i} = 0) = P(\{m_{i} = 0 \text{ et } k_{i} = 0\} \cup \{m_{i} = 1 \text{ et } k_{i} = 1\})$$

$$= P(\{m_{i} = 0 \text{ et } k_{i} = 0\}) + P(\{m_{i} = 1 \text{ et } k_{i} = 1\})$$

$$= p_{i} \cdot \frac{1}{2} + (1 - p_{i}) \cdot \frac{1}{2}$$

$$= \frac{1}{2}$$

Donc la suite c_i ressemble à du bruit.

- On voit que chacun des bits du message chiffré ne contient aucune information sur le message clair.
- En théorie de l'information cela se traduit en

$$H(M|C) = H(M)$$

où H est l'entropie d'une variable aléatoire.

 L'inconvénient majeur de cette méthode: la clef est aussi longue que le message envoyé! En pratique c'est quasi ingérable.

- On voit que chacun des bits du message chiffré ne contient aucune information sur le message clair.
- En théorie de l'information cela se traduit en

$$H(M|C) = H(M)$$

où H est l'entropie d'une variable aléatoire.

 L'inconvénient majeur de cette méthode: la clef est aussi longue que le message envoyé! En pratique c'est quasi ingérable.

Plan

- 1 Chiffrement par flot : introduction Chiffrement de Vernam Schéma général d'un chiffrement par flot
- 2 Registres à décalage linéaires LFSR - registre linéaire à décalage LFSR combiné Variantes et applications
- 3 RC4
 Description de RC4
 Applications de RC4
 WPA

Schéma général - chiffrement

Idée : remplacer la suite aléatoire k_i , $i=0,\ldots,n-1$, dans le chiffrement de Vernam, par une suite pseudo-aléatoire générée à partir d'une clef courte K.

Schéma général - déchiffrement

Critère de Golomb

Soit une suite pseudo-alétoire $s_0, s_1, \ldots, s_{n-1}$:

1 A peu près le même nombre de 0 et de 1

$$\left|\sum_{i=0}^{n-1} (-1)^{s_i}\right| \leq 1$$

2 Une série est une succession de bits identiques entre deux bits opposés. Soit S l'ensemble des séries

Il y a |S|/2 séries de longueur 1.

Il y a |S|/4 séries de longueur 2.

:

Il y a $|S|/2^{k+1}$ séries de longueur 2^k .

Et pour chaque longueur de série il y a autant de série de 0 que de 1.

Critère de Golomb (suite)

3 La fonction d'auto-corrélation $C(\tau)$ prend deux valeurs suivant que $\tau=0$ ou $\tau\neq0$

$$C(\tau) = \sum_{i=0}^{n-1} (-1)^{s_i + s_{i+\tau}}$$

Générateur aléatoire cryptogaphique

Un générateur cryptographique utilisable pour la cryptographie doit:

- Génèrer des suites de bits satisfaisant les caractéristiques statistiques de suites vraiment aléatoires (critère de Golomb, autres tests statistiques comme le ξ^2 , etc).
- Garantir que si un attaquant connait tout ou une partie de la suit chiffrante s₀, s₁,..., s_i,..., il est difficile, d'un point de vu quantité de calcul, de trouver la clef K ayant servi de germe.

Plan

- Chiffrement par flot : introduction
 Chiffrement de Vernam
 Schéma général d'un chiffrement par flot
- Registres à décalage linéaires LFSR - registre linéaire à décalage LFSR combiné Variantes et applications
- Description de RC4
 Applications de RC4

Plan

Chiffrement par flot : introduction Chiffrement de Vernam Schéma général d'un chiffrement par flot

2 Registres à décalage linéaires LFSR - registre linéaire à décalage LFSR combiné Variantes et applications

3 RC4
Description de RC4
Applications de RC4

Une façon économe de construire une suite pseudo-aléatoire utilise une récurrence linéaire

- Les L premiers bits sont $s_0, s_1, \ldots, s_{L-1}$
- Les bits suivants $s_L, s_{L+1}, \ldots, s_i$ se déduisent des L précédants bits grâce à la relation suivante:

$$s_{i+L} = \sum_{j=0}^{L-1} c_j \cdot s_{i+j}$$

Ces suites ont de bonnes propriétés statistiques : elle satisfont par exemple les critères de Golomb.

- =XOR, i.e., addition modulo 2
- (•) =AND, i.e., multiplication modulo 2

- =XOR, i.e., addition modulo 2
- (•) =AND, i.e., multiplication modulo 2

- =XOR, i.e., addition modulo 2
- () = AND, i.e., multiplication modulo 2

- =XOR, i.e., addition modulo 2
- () = AND, i.e., multiplication modulo 2

- =XOR, i.e., addition modulo 2
- =AND, i.e., multiplication modulo 2

 On considère un LFSR de longueur L = 3 avec la relation de récurrence

$$s_{i+3} = s_{i+1} + s_i$$

i.e.
$$c_0 = 1$$
, $c_1 = 1$ et $c_2 = 0$.

• Le circuit correspondant est ci-dessous.

 On considère un LFSR de longueur L = 3 avec la relation de récurrence

$$s_{i+3} = s_{i+1} + s_i$$

i.e.
$$c_0 = 1$$
, $c_1 = 1$ et $c_2 = 0$.

 On considère un LFSR de longueur L = 3 avec la relation de récurrence

$$s_{i+3} = s_{i+1} + s_i$$

i.e.
$$c_0 = 1$$
, $c_1 = 1$ et $c_2 = 0$.

 On considère un LFSR de longueur L = 3 avec la relation de récurrence

$$s_{i+3} = s_{i+1} + s_i$$

i.e.
$$c_0 = 1$$
, $c_1 = 1$ et $c_2 = 0$.

 On considère un LFSR de longueur L = 3 avec la relation de récurrence

$$s_{i+3} = s_{i+1} + s_i$$

i.e.
$$c_0 = 1$$
, $c_1 = 1$ et $c_2 = 0$.

 On considère un LFSR de longueur L = 3 avec la relation de récurrence

$$s_{i+3} = s_{i+1} + s_i$$

i.e.
$$c_0 = 1$$
, $c_1 = 1$ et $c_2 = 0$.

 On considère un LFSR de longueur L = 3 avec la relation de récurrence

$$s_{i+3} = s_{i+1} + s_i$$

i.e.
$$c_0 = 1$$
, $c_1 = 1$ et $c_2 = 0$.

 On considère un LFSR de longueur L = 3 avec la relation de récurrence

$$s_{i+3} = s_{i+1} + s_i$$

i.e.
$$c_0 = 1$$
, $c_1 = 1$ et $c_2 = 0$.

 On considère un LFSR de longueur L = 3 avec la relation de récurrence

$$s_{i+3} = s_{i+1} + s_i$$

i.e.
$$c_0 = 1$$
, $c_1 = 1$ et $c_2 = 0$.

Suite des états des registres

Les états d'un LFSR satisfont la relation de récurrence:

$$\begin{bmatrix} s_{i+1} \\ s_{i+2} \\ s_{i+3} \\ \vdots \\ s_{i+L-1} \\ s_{i+L} \end{bmatrix}^t = \begin{bmatrix} s_i \\ s_{i+1} \\ s_{i+2} \\ \vdots \\ s_{i+L-2} \\ s_{i+L-1} \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & c_0 \\ 1 & 0 & 0 & \cdots & 0 & c_1 \\ 0 & 1 & 0 & \cdots & 0 & c_2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & c_{L-2} \\ 0 & 0 & 0 & \cdots & 1 & c_{L-1} \end{bmatrix}.$$

• Si $R_0 = [s_{L-1}, \dots, s_0]$ est le registre initial, et si A est la matrice $L \times L$ ci-dessus, on a alors

$$R_i = R_0 \cdot A^i$$
.

• La matrice A est inversible si et seulement si $c_0 = 1$, alors son déterminant vaut 1.

Exemple de suite de registre

On reprend le LFSR de longueur L=3 avec la relation de récurrence

$$s_{i+3} = s_{i+1} + s_i$$

i.e. $c_0 = 1, c_1 = 1$ et $c_2 = 0$.

La suite d'état est la suivante

Exemple de suite de registre

On reprend le LFSR de longueur L=3 avec la relation de récurrence

$$s_{i+3} = s_{i+1} + s_i$$

i.e. $c_0 = 1, c_1 = 1$ et $c_2 = 0$.

La suite d'état est la suivante

On reprend le LFSR de longueur L=3 avec la relation de récurrence

$$s_{i+3} = s_{i+1} + s_i$$

i.e. $c_0 = 1$, $c_1 = 1$ et $c_2 = 0$.

On reprend le LFSR de longueur L=3 avec la relation de récurrence

$$s_{i+3} = s_{i+1} + s_i$$

i.e. $c_0 = 1, c_1 = 1$ et $c_2 = 0$.

On reprend le LFSR de longueur L=3 avec la relation de récurrence

$$s_{i+3}=s_{i+1}+s_i$$

i.e. $c_0 = 1, c_1 = 1$ et $c_2 = 0$.

On reprend le LFSR de longueur L=3 avec la relation de récurrence

$$s_{i+3}=s_{i+1}+s_i$$

i.e. $c_0 = 1, c_1 = 1$ et $c_2 = 0$.

On reprend le LFSR de longueur L=3 avec la relation de récurrence

$$s_{i+3} = s_{i+1} + s_i$$

i.e. $c_0 = 1, c_1 = 1$ et $c_2 = 0$.

On reprend le LFSR de longueur L=3 avec la relation de récurrence

$$s_{i+3}=s_{i+1}+s_i$$

i.e. $c_0 = 1, c_1 = 1$ et $c_2 = 0$.

On reprend le LFSR de longueur L=3 avec la relation de récurrence

$$s_{i+3} = s_{i+1} + s_i$$

i.e. $c_0 = 1$, $c_1 = 1$ et $c_2 = 0$. La suite d'état est la suivante

Suite ultimement périodique

Definition

Une suite s_0, s_1, s_2, \ldots est dite ultimement périodique de type (u, r) si on

$$s_{i+r} = s_i$$
 pour tout $i \ge u$

Si u = 0 on dit que s est périodique.

Suite ultimement périodique

Definition

Une suite s_0, s_1, s_2, \ldots est dite ultimement périodique de type (u, r) si on

$$s_{i+r} = s_i$$
 pour tout $i \ge u$

Si u = 0 on dit que s est périodique.

Exemple:

La suite

est ultimement périodique de type (u = 2, r = 3).

• On peut vérifier qu'elle est engendrée par un LFSR de taille L = 4 et de récurrence $x_{i+4} = x_{i+3} + x_{i+2}$.

Borne sur la périodicité d'un LFSR

Theorem

Soit s_0, s_1, s_2, \ldots un suite engendré par un LFSR de taille L alors elle est ultimement périodique de période $< (2^L - 1)$

Proof.

La suite des registes $R_0, R_1, \ldots, R_i, \ldots$ prends ses valeurs dans $\{0,1\}^L$ qui contient 2^L éléments.

- Si pour un $i \ge 0$ on a $R_i = 0$ alors pour tout $j \ge i$ on a aussi $R_j = 0$ et la suite est donc bien ultimement périodique de type (i, 1).
- Sinon la suite de registre n'atteint jamais 0: donc pour $i < j <= 2^L 1$ on a $R_i = R_i$, mais alors

$$R_{i+k} = A^k \cdot R_i = A^k \cdot R_j = R_{j+k}$$

et donc la suite est ultimement périodique de période $i - i <= 2^L - 1$.

LFSR de période maximale $(2^L - 1)$

Proposition

Soit un LFSR de taille L, on définit son polynome de rétroaction f(x) par

$$f(x) = x^{L} + \sum_{i=0}^{L-1} c_{i}x^{i}$$

Alors le LFSR engendre des suites pseudo-aléatoire de période $2^L - 1$ si et seulement si f(x) est irréductible et primitif.

Remarque

Pour un polynome f(x) irreductible: f(x) est primitif \iff si $x^i \mod f(x) \neq 1$ pour $i = 1, ..., 2^L - 2$.

Preuve de la proposition

On ne donne qu'une esquisse rapide de la preuve:

- Soit A la matrice L × L correspondant au LFSR alors s_i, i = 0, 1, ..., est périodique de période 2^L − 1 si et seulement si Aⁱ ≠ Id pour i < 2^L − 1.
- On peut montrer que la matrice A est la matrice qui correspond à la multiplication par x modulo f(x)

$$x \cdot R(x) \mod (f(x)).$$

- La matrice A^i est la matrice de multiplication par x^i modulo f(x)
- Finalement $A^i \neq Id$ pour $1 \leq i < 2^L 1$ équivaut à $x^i \neq 1$ pour $1 \leq i < 2^L 1$.

Exemple : A est une matrice de multiplication

- Nous considerons le LFSR with $c_0 = 1, c_1 = 1$ et $c_2 = 0$, son polynome de rétroaction $f(x) = x^3 + x + 1$
- La matrice A est ici:

$$A = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right].$$

• On remarque que si $R = r_0 + r_1x + r_2x$ on a

$$A \cdot \left[\begin{array}{c} r_0 \\ r_1 \\ r_2 \end{array} \right] = \left[\begin{array}{c} r_2 \\ r_0 + r_2 \\ r_1 \end{array} \right]$$

qui sont biens les coefficients de

$$x \cdot R \mod f(x) = (r_0x + r_1x^2 + r_2x^3) \mod f(x)$$

= $r_2 + (r_0 + r_2)x + r_1x^2$

Exemple : A^2 est une matrice de multiplication

On calcule le carré de A

$$A = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right], \quad A^2 = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array} \right].$$

Et on compare

$$A^2 \cdot \left[\begin{array}{c} r_0 \\ r_1 \\ r_2 \end{array} \right] = \left[\begin{array}{c} r_1 \\ r_1 + r_2 \\ r_0 + r_1 \end{array} \right]$$

avec

$$x^2R \mod f(x) = (r_0x^2 + r_1x^3 + r_2x^4) \mod f(x)$$

= $r_1 + (r_2 + r_1)x + (r_0 + r_2)x^2$

Exemple : LFSR de période maximale

- On prend L = 4 et le polynome de rétroaction $f(x) = x^4 + x + 1$.
- f(x) est primitif: on calcule les puissance de x modulo f(x)

xi	xi	$\mod f(x)$
1		1
X		X
x^2		x^2
x^3		<i>x</i> ³

xi	$x^i \mod f(x)$
x^4	x+1
x ⁵	$x^2 + x$
x ⁶	$x^{3} + x^{2}$
x ⁷	$x^3 + x + 1$

xi	$x^i \mod f(x)$
x ⁸	$x^2 + 1$
x ⁹	$x^3 + x$
x ¹⁰	$x^2 + x + 1$
x ¹¹	$x^3 + x^2 + x$

xi	$x^i \mod f(x)$
x^{12}	$x^3 + x^2 + x + 1$
x^{13}	$x^3 + x^2 + 1$
x ¹⁴	$x^{3} + 1$
x ¹⁵	1

• La période est maximale: on calcule tous les état du registre jusqu'à obtenir un cycle:

Un LFSR n'est pas cryptographiquement sûr

- On suppose que l'on connait 2L bits consécutif de s $s_i, s_{i+1}, s_{i+2}, \ldots, s_{i+2L-1}$
- On peut calculer les c; en résolvant le système

$$\begin{bmatrix} s_{i} & s_{i+1} & \cdots & s_{i+L-1} & s_{i+L-2} \\ s_{i+1} & s_{i+2} & \cdots & s_{i+L} & s_{i+L-1} \\ \vdots & \vdots & & \vdots & & \vdots \\ s_{i+L-2} & s_{i+L-1} & \cdots & s_{i+2L-3} & s_{i+2L-4} \\ s_{i+L-1} & s_{i+L} & \cdots & s_{i+2L-2} & s_{i+2L-3} \end{bmatrix} \cdot \begin{bmatrix} c_{0} \\ c_{1} \\ \vdots \\ c_{L-2} \\ c_{L-1} \end{bmatrix} = \begin{bmatrix} s_{i+L} \\ s_{i+L+1} \\ \vdots \\ s_{i+2L-2} \\ s_{i+2L-1} \end{bmatrix}$$

- On peut alors en déduire la matrice A
- Si $c_0 = 1$, la matrice A est inversible et on peut calculer en arrière $R_{i-k} = R_i \cdot A^{-k}$ jusqu'au germe (la clef).

• On suppose que l'connaît une partie d'une suite pseudo-aléatoire générée par un LFSR de taille L=4.

Les? sont les bits inconnus.

• On suppose que l'connaît une partie d'une suite pseudo-aléatoire générée par un LFSR de taille L=4.

Les? sont les bits inconnus.

$$\left[egin{array}{c} 0\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 1\ 1\ 0\ 1\end{array}
ight] \cdot \left[egin{array}{c} c_0\ c_1\ c_2\ c_3 \end{array}
ight] = \left[egin{array}{c} 1\ 0\ 1\ 1\ 1\end{array}
ight]$$

• On suppose que l'connaît une partie d'une suite pseudo-aléatoire générée par un LFSR de taille L=4.

Les? sont les bits inconnus.

 On suppose que l'connaît une partie d'une suite pseudo-aléatoire générée par un LFSR de taille L = 4.

Les? sont les bits inconnus.

 On suppose que l'connaît une partie d'une suite pseudo-aléatoire générée par un LFSR de taille L = 4.

Les? sont les bits inconnus.

• On suppose que l'connaît une partie d'une suite pseudo-aléatoire générée par un LFSR de taille L=4.

Les? sont les bits inconnus.

Donne
$$c_0 = 1$$
, $c_1 = 1$, $c_2 = 1$, $c_3 = 1$.

On cherche à compléter la suite ???????????0111 1011 généré avec $c_0 = 1$, $c_1 = 1$, $c_2 = 1$, $c_3 = 1$.

• On en déduit la matrice A et la matrice A^{-1}

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}^{-1} \text{ et } A^{-1} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}^{-1}$$

On cherche à compléter la suite ???????????0111 1011 généré avec $c_0 = 1, c_1 = 1, c_2 = 1, c_3 = 1$.

• On en déduit la matrice A et la matrice A^{-1}

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}^{-1} \text{ et } A^{-1} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}^{-1}$$

• On obtient le début de la suite pseudo aléatoire:

$$[0,1,1,1] \cdot A^{-1} = [1,0,1,1]$$

On cherche à compléter la suite ???????????0111 1011 généré avec $c_0 = 1, c_1 = 1, c_2 = 1, c_3 = 1$.

• On en déduit la matrice A et la matrice A^{-1}

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}^{-1} \text{ et } A^{-1} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}^{-1}$$

On obtient le début de la suite pseudo aléatoire:

$$[0,1,1,1] \cdot A^{-1} = [1,0,1,1] [1,0,1,1] \cdot A^{-1} = [1,1,0,1]$$

On cherche à compléter la suite ???????????0111 1011 généré avec $c_0 = 1, c_1 = 1, c_2 = 1, c_3 = 1$.

• On en déduit la matrice A et la matrice A^{-1}

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}^{-1} \text{ et } A^{-1} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}^{-1}$$

On obtient le début de la suite pseudo aléatoire:

$$\begin{array}{lll} [0,1,1,1] \cdot A^{-1} & = & [1,0,1,1] \\ [1,0,1,1] \cdot A^{-1} & = & [1,1,0,1] \\ [1,1,0,1] \cdot A^{-1} & = & [1,1,1,0] \end{array}$$

On cherche à compléter la suite ???????????0111 1011 généré avec $c_0 = 1, c_1 = 1, c_2 = 1, c_3 = 1$.

• On en déduit la matrice A et la matrice A^{-1}

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}^{-1} \text{ et } A^{-1} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}^{-1}$$

On obtient le début de la suite pseudo aléatoire:

$$\begin{array}{lcl} [0,1,1,1] \cdot A^{-1} & = & [1,0,1,1] \\ [1,0,1,1] \cdot A^{-1} & = & [1,1,0,1] \\ [1,1,0,1] \cdot A^{-1} & = & [1,1,1,0] \\ [1,1,0,1] \cdot A^{-1} & = & [1,1,1,0] \end{array}$$

On cherche à compléter la suite ???????????0111 1011 généré avec $c_0 = 1, c_1 = 1, c_2 = 1, c_3 = 1$.

• On en déduit la matrice A et la matrice A^{-1}

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}^{-1} \text{ et } A^{-1} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}^{-1}$$

• On obtient le début de la suite pseudo aléatoire:

$$\begin{array}{lcl} [0,1,1,1] \cdot A^{-1} & = & [1,0,1,1] \\ [1,0,1,1] \cdot A^{-1} & = & [1,1,0,1] \\ [1,1,0,1] \cdot A^{-1} & = & [1,1,1,0] \\ [1,1,0,1] \cdot A^{-1} & = & [1,1,1,0] \end{array}$$

Ce qui donne les 4 bits précédents :

Plan

Chiffrement par flot : introduction
 Chiffrement de Vernam
 Schéma général d'un chiffrement par flot

2 Registres à décalage linéaires LFSR - registre linéaire à décalage LFSR combiné
Variantes et applications

3 RC4
Description de RC4
Applications de RC4

Fonction booléenne

• La fonction $F(x_1, ..., x_n)$ est une fonction booléenne

$$F: \{0,1\}^n \to \{0,1\}.$$

donné souvent par explement par une table de vérité.

• Par exemple pour n = 3

$x_1x_2x_3$	000	001	010	011	100	101	110	111
$F(x_1, x_2, x_3)$	1	0	0	1	0	0	1	0

• La période de s_i satisfait $ppcm(r_1, \ldots, r_n)$ où r_i est la période

Fonction booléenne

• Monôme: soit $b = (b_1, \dots, b_n) \in \{0, 1\}^n$ considérons un monôme

$$M_b(x_1,\ldots,x_n) = \prod_{i=1}^n (x_i + b_i + 1)$$

Ce mônome satisfait, pour $(\alpha_1, \ldots, \alpha_n)$ $in\{0,1\}^n$

$$M_b(\alpha_1,\ldots,\alpha_n) = \begin{cases} 0 \text{ si } (\alpha_1,\ldots,\alpha_n) \neq (b_1,\ldots,b_n) \\ 1 \text{ si } (\alpha_1,\ldots,\alpha_n) = (b_1,\ldots,b_n) \end{cases}$$

• Exemple : pour n=3 et b=(0,1,1) la table de vérité de $M_b=(x_1+1)x_2x_3$ est

X ₁ X ₂ X ₃	000	001	010	011	100	101	110	111
$M_b(x_1, x_2, x_3)$	0	0	0	1	0	0	0	0

Forme normale algébrique

Décomposition : en sommant les monome correspondant au $b=(b_1,\ldots,b_n)$ tel que $F(b_1,\ldots,b_n)=1$ et en développant chaque monome, on obtient la forme algébrique de f

$$F = \sum_{u \in \{0,1\}^n} F_u \prod_{i=1}^n x_i^{u_i} \text{ pour tout } u F_u \in \{0,1\}$$

Cette expression est la Forme Normale Algebrique de f.

Exemple : forme normale algébrique

Exemple : pour n = 3 et f donnée par

	X ₁ X ₂ X ₃	000	001	010	011	100	101	110	111
ĺ	$f(x_1,x_2,x_3)$	1	0	0	1	0	0	1	0

on a

$$F(x_1, x_2, x_3) = \underbrace{(x_1 + 1)(x_2 + 1)(x_3 + 1)}_{M_{110}} + \underbrace{x_1(x_2 + 1)(x_3 + 1)}_{M_{110}} + \underbrace{x_1x_2(x_3 + 1)}_{M_{110}}.$$

qui se simplifie en $F(x) = x_1x_2x_3 + x_1x_2 + x_2x_3 + x_2 + x_3 + 1$

Caractéristique requise pour les fonctions booléennes

- Insensibilité aux attaques algébriques.
 - Les bits générés peuvent être mis sous forme d'équation en les inconnues s₀,..., s_L.
 - Pour F de grand degré et "dense", ces equations sont aussi de grand degré et donc difficile à résoudre.
- Insensibilité aux attaques par corrélation.
 - Pour éviter les attaques par corrélation, F doit satisfaire des propriétés d'équilibre: elle doit dépendre de la même manière de chacun des n LFSR.

Plan

1 Chiffrement par flot: introduction Chiffrement de Vernam

2 Registres à décalage linéaires

LFSR - registre lineaire à décalage LFSR combiné

Variantes et applications

3 RC4

Description de RC4 Applications de RC4 WPA

LFSR filtré

- Le générateurs contient un seul LFSR.
- Le bit générés est combiné par une fonction booléenne d'un sous ensemble de bits du registre.

Générateur avec contrôle d'horloge - algorithme A5/1

- Introduction d'irrégularité dans la mise à jour des LFSR.
- On contrôle le bit d'horloge d'un LFSR par un ou plusieurs bits des autres LFSRs.

A chaque cloc de l'horloge les registre sont shiftés, suivant les valeur de bits oranges.

Plan

- Chiffrement par flot : introduction
 Chiffrement de Vernam
 Schéma général d'un chiffrement par flot
- Registres à décalage linéaires LFSR - registre linéaire à décalage LFSR combiné Variantes et applications
- 3 RC4
 Description de RC4
 Applications de RC4
 WPA

Plan

1 Chiffrement par flot : introduction

Chiffrement de Vernam Schéma général d'un chiffrement par flo

2 Registres à décalage linéaires

LFSR - registre linéaire à décalage LFSR combiné Variantes et applications

3 RC4

Description de RC4

Applications de RC4 WPA

RC4 - présentation

RC4 = (Rivest Cipher 4) est composé de 2 algorithmes

- L'algorithme KSA (Key schedule algorithm) qui initialise/randomise une fonction bijective $S: \{0, \dots, N-1\} \rightarrow \{0, \dots, N-1\}.$
 - En pratique N = 256.
- L'algorithme PRGA (Pseudo random generator algorithm) génere une suite aléatoire d'octet
 - L'octet aléatoire généré est un $S[j_i]$ et l'octect chiffré $c_i = m_i \oplus S[j_i]$.
 - L'indice j_i et la fonction S est mise à jour.

Remarque

C'est un algorithme proche d'Enigma : chiffrement par une substitution modifiée pour chaque nouveau caractère chiffré.

RC4 - KSA

L'algorithme de key schedule (KSA) initialise *aléatoirement* la fonction *S*.

```
KSA
Entrée : deux tableaux d'octet clef et IV
Sortie: Une fonction S:[0,N-1] \rightarrow [0,N-1]
K := [IV \mid clef ]
L := longueur(K)
pour i de 0 à N
    S[i] := i
finpour
i := 0
pour i de 0 à 255
  j := (j + S[i] + K[i \mod L]) \mod 256
  échanger(S[i], S[j])
finpour
```

Les deux opération de la boucle sont

Init. 0 1 2 3 4 5 6 7 0	ĺ	Step(i)	0	1	2	3	4	5	6	7	j = j + S[j] + K[i]	mod 8	Echange
		Init.	0	1	2	3	4	5	6	7	0		

Les deux opération de la boucle sont

I	Step(i)	0	1	2	3	4	5	6	7	$j = j + S[j] + K[i] \mod 8$	Echange
	Init.	0	1	2	3	4	5	6	7	0	
	0		1	2	3		5	6	7	$0 \\ 0 + 0 + 4 \mod 8 = 4$	$S[0] \leftrightarrow S[4]$

Les deux opération de la boucle sont

3	Step(i)	0	1	2	3	4	5	6	7	$j = j + S[j] + K[i] \mod 8$	Echange
	Init.	0	1	2	3	4	5	6	7	0	
	0		1	2	3		5	6	7	$0+0+4 \mod 8=4$	$S[0] \leftrightarrow S[4]$
	1	4			3	0	5	6	7	$4+0+6 \mod 8=2$	$S[1] \leftrightarrow S[2]$

Les deux opération de la boucle sont

```
j := (j + S[i] + K[i mod L]) mod 256
échanger(S[i], S[j])
```

Step(i)	0	1	2	3	4	5	6	7	$j = j + S[j] + K[i] \mod 8$	Echange
Init.	0	1	2	3	4	5	6	7	0	
0							6			$S[0] \leftrightarrow S[4]$
1	4			3	0	5	6	7	$4 + 0 + 6 \mod 8 = 2$	$S[1] \leftrightarrow S[2]$
2	4	2		3	0		6	7	$2+1+2 \mod 8 = 5$	$S[2] \leftrightarrow S[5]$

Les deux opération de la boucle sont

```
j := (j + S[i] + K[i mod L]) mod 256
échanger(S[i], S[j])
```

Step(i)	0	1	2	3	4	5	6	7	$j = j + S[j] + K[i] \mod 8$	Echange
Init.	0	1	2	3	4	5	6	7	0	
0		1	2	3		5	6	7	$0+0+4 \mod 8=4$	$S[0] \leftrightarrow S[4]$
1	4			3	0	5	6	7	$4 + 0 + 6 \mod 8 = 2$	$S[1] \leftrightarrow S[2]$
2	4	2		3	0		6	7	$2+1+2 \mod 8 = 5$	$S[2] \leftrightarrow S[5]$
3		2	5		0	1	6	7	$5+1+4 \mod 8 = 1$	$S[3] \leftrightarrow S[1]$
									'	

Les deux opération de la boucle sont

```
j := (j + S[i] + K[i mod L]) mod 256
échanger(S[i], S[j])
```

Step(i)	0	1	2	3	4	5	6	7	$j = j + S[j] + K[i] \mod 8$	Echange
Init.	_		2				6		0	
0		1	2	3		5	6	7	$0+0+4 \mod 8=4$	$S[0] \leftrightarrow S[4]$
	4			3	0	5	6	7	$4+0+6 \mod 8=2$	$S[1] \leftrightarrow S[2]$
2	4	2		3	0		6	7	$2+1+2 \mod 8=5$	$S[2] \leftrightarrow S[5]$
3		2	5		0	1	6	7	$5+1+4 \mod 8=1$	$S[3] \leftrightarrow S[1]$
4		2	5	4		1	6	7	$1+2+6 \mod 8 = 1$	$S[4] \leftrightarrow S[1]$
4	l	_	J	4		1	U	'	1+2+0 filled $0=1$	J[4] ↔ J[1]

Les deux opération de la boucle sont

```
j := (j + S[i] + K[i mod L]) mod 256
échanger(S[i], S[j])
```

Step(i)	0	1	2	3	4	5	6	7	$j = j + S[j] + K[i] \mod 8$ Echange
Init.	0	1	2	3	4	5	6	7	0
0		1	2	3		5	6	7	$0 + 0 + 4 \mod 8 = 4$ $S[0] \leftrightarrow S[4]$
1	4			3	0	5	6	7	$4+0+6 \mod 8=2 \qquad S[1] \leftrightarrow S[2]$
2	4	2		3	0		6	7	$2+1+2 \mod 8=5$ $S[2] \leftrightarrow S[5]$
3		2	5		0	1	6	7	$5+1+4 \mod 8=1 \qquad S[3] \leftrightarrow S[1]$
4		2	5	4		1	6	7	$1+2+6 \mod 8=1 \qquad S[4] \leftrightarrow S[1]$
5	0	2	5	4	3			7	$1+2+3 \mod 8=6 \qquad S[5] \leftrightarrow S[6]$
									'

Les deux opération de la boucle sont

```
j := (j + S[i] + K[i mod L]) mod 256
échanger(S[i], S[j])
```

Step(i)	0	1	2	3	4	5	6	7	$j = j + S[j] + K[i] \mod 8$ Echange
Init.	0	1	2	3	4	5	6	7	0
0		1	2	3		5	6	7	$0 + 0 + 4 \mod 8 = 4$ $S[0] \leftrightarrow S[4]$
1 1	4			3	0	5	6	7	$4+0+6 \mod 8=2 \qquad S[1] \leftrightarrow S[2]$
2	4	2		3	0		6	7	$2+1+2 \mod 8=5 \qquad S[2] \leftrightarrow S[5]$
3		2	5		0	1	6	7	$5+1+4 \mod 8 = 1 \qquad S[3] \leftrightarrow S[1]$
4		2	5	4		1	6	7	$1+2+6 \mod 8=1 \qquad S[4] \leftrightarrow S[1]$
5	0	2	5	4	3			7	$1+2+3 \mod 8=6 \qquad S[5] \leftrightarrow S[6]$
6	0	2		4	3	6		7	$6+1+3 \mod 8 = 2$ $S[6] \leftrightarrow S[2]$

Les deux opération de la boucle sont

```
j := (j + S[i] + K[i mod L]) mod 256
échanger(S[i], S[j])
```

Step(i)	0	1	2	3	4	5	6	7	$j = j + S[j] + K[i] \mod 8$	Echange
Init.	0	1	2	3	4	5	6	7	0	
0		1	2	3		5	6	7	$0 + 0 + 4 \mod 8 = 4$	$S[0] \leftrightarrow S[4]$
1	4			3	0	5	6	7	$4 + 0 + 6 \mod 8 = 2$	$S[1] \leftrightarrow S[2]$
2	4	2		3	0		6	7	$2+1+2 \mod 8 = 5$	$S[2] \leftrightarrow S[5]$
3		2	5		0	1	6	7	$5+1+4 \mod 8 = 1$	$S[3] \leftrightarrow S[1]$
4		2	5	4		1	6	7	$1 + 2 + 6 \mod 8 = 1$	$S[4] \leftrightarrow S[1]$
5	0	2	5	4	3			7	$1+2+3 \mod 8 = 6$	$S[5] \leftrightarrow S[6]$
6	0	2		4	3	6		7	$6+1+3 \mod 8=2$	$S[6] \leftrightarrow S[2]$
7	0	2	5	4	3	6			$2+5+7 \mod 8=6$	$S[7] \leftrightarrow S[6]$

RC4 - PRGA

PRGA génère des octets pseudo-aléatoire, et les ajoute aux caractères du message.

```
PRGA
i := 0
j := 0

tant_que générer une sortie:
    i := (i + 1) mod 256
    j := (j + S[i]) mod 256
    échanger(S[i], S[j])
    octet_chiffrement = S[(S[i] + S[j]) mod 256]
    result_chiffré = octet_chiffrement XOR octet_message
fintant_que
```

On considère le message $M=[100,101,\ldots]$. On applique l'algorithme PRGA.

k	0	1	2	3	4	5	6	7
S[k]	0	2	5	4	3	6	7	1

On considère le message M = [100, 101, ...]. On applique l'algorithme PRGA.

1 Initialisation
$$i = 0, j = 0$$

$$\begin{bmatrix} k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ S[k] & 0 & 2 & 5 & 4 & 3 & 6 & 7 & 1 \end{bmatrix}$$

2 i = 1, j = 0 + S[i] = 0 + 2, on échange $S[1] \leftrightarrow S[2]$

On chiffre le premier bloc de M. On a

$$octet_chiffrement = S[(S[i] + S[j])mod256] = S[5 + 2] = S[7] = 1$$
 et donc $C_1 = [100] \oplus [001] = 101$.

On considère le message M = [100, 101, ...]. On applique l'algorithme PRGA.

1 Initialisation
$$i = 0, j = 0$$

2
$$i = 1, j = 0 + S[i] = 0 + 2$$
, on échange $S[1] \leftrightarrow S[2]$

On chiffre le premier bloc de M. On a

octet_chiffrement =
$$S[(S[i] + S[j]) \mod 256] = S[5 + 2] = S[7] = 1$$

et donc $C_1 = [100] \oplus [001] = 101$.

3
$$i = 2, j = 2 + S[2] = 2 + 5 = 7$$
, on échange $S[2] \leftrightarrow S[7]$

On chiffre le deuxième bloc de M. On a $octet_chiffrement = S[(1+2) \mod 256] = S[3] = 4$ et donc $C_2 = [101] \oplus [100] = 001$

On considère le message M = [100, 101, ...]. On applique l'algorithme PRGA.

1 Initialisation
$$i = 0, j = 0$$

2
$$i = 1, j = 0 + S[i] = 0 + 2$$
, on échange $S[1] \leftrightarrow S[2]$

On chiffre le premier bloc de M. On a

octet_chiffrement =
$$S[(S[i] + S[j]) \mod 256] = S[5 + 2] = S[7] = 1$$

et donc $C_1 = [100] \oplus [001] = 101$.

3
$$i = 2, j = 2 + S[2] = 2 + 5 = 7$$
, on échange $S[2] \leftrightarrow S[7]$

On chiffre le deuxième bloc de M. On a $octet_chiffrement = S[(1+2) \mod 256] = S[3] = 4$ et donc $C_2 = [101] \oplus [100] = 001$

On considère le message M = [100, 101, ...]. On applique l'algorithme PRGA.

1 Initialisation
$$i = 0, j = 0$$

2
$$i = 1, j = 0 + S[i] = 0 + 2$$
, on échange $S[1] \leftrightarrow S[2]$

On chiffre le premier bloc de M. On a

octet_chiffrement =
$$S[(S[i] + S[j]) \mod 256] = S[5 + 2] = S[7] = 1$$

et donc $C_1 = [100] \oplus [001] = 101$.

3
$$i = 2, j = 2 + S[2] = 2 + 5 = 7$$
, on échange $S[2] \leftrightarrow S[7]$

On chiffre le deuxième bloc de M. On a $octet_chiffrement = S[(1+2) \mod 256] = S[3] = 4$ et donc $C_2 = [101] \oplus [100] = 001$

Plan

Chiffrement par flot : introduction Chiffrement de Vernam Schéma général d'un chiffrement par flot

2 Registres à décalage linéaires LFSR - registre linéaire à décalage LFSR combiné Variantes et applications

3 RC4
Description de RC4
Applications de RC4
WPA

WEP

- Sécurité dans les réseaux sans fil
- WEP: Wired Equivalent Protocol
- Ce protocole sécurise les données de la couche liaison pour les transmissions sans fil (WIFI) de la norme 802.11.

WEP

- Il présuppose l'existence d'une clé secrète entre les parties communicantes (la clé WEP) pour protéger le corps des frames transmises.
- L'utilisation du WEP est optionnel
- Il n'y a pas de protocoles de gestion de clé ⇒ Une seule clé partagée par plusieurs utilisateurs.
- Cette clef sert de clef de chiffrement à toutes les sessions WEP.
- Le chiffrement se fait avec RC4.

WEP - Authentification

Alice s'authetifie auprès du serveur. Stratégie : protocole aléa-retour

- Le serveur choisit un aléa r de 128 bits et l'envoi à Alice.
- Alice chiffre chiffré avec la méthode précédente,
 C' = r ⊕ RC4(v, k)
- Le serveur vérifie si C' = C (la valeur calculée par le serveur)

WEP: Structure des paquets

Un paquet/trame WEP comprend

- Une entête IEEE 802.11 de 30 octets (adresse MAC, etc.).
- Une IV de 24 bits.
- Données chiffrées avec RC4.
- Un code de détection d'erreur CRC sur 4 octets.

Entete IEEE 802.11	IV	Donnees	CRC
30 octets	3 octets	< 2312 octets	4 octets

Attaque du WEP

Deux attaques statistiques contre RC4 avec des IVs

- FSM 2001 : des IV sont faibles et révèlent de l'information sur la clé à l'aide du premier octet de sortie.
- Amélioration de cette attaque par Hulton
 - utilisation des premiers octets de sortie
 - permet de réduire la quantité de données à capturer.
- Attaque de KoreK (2004) : généralisation des deux attaques précédentes + injection de paquets.
- On détermine le reste de la clé par recherche exhaustive

Actuellement il est assez facile de casser une clef WEP (1h pour l'injection de paquets et 1mn pour l'analyse statistique).

Plan

1 Chiffrement par flot : introduction

Chiffrement de Vernam Schéma général d'un chiffrement par flo

2 Registres à décalage linéaires

LFSR - registre linéaire à décalage LFSR combiné Variantes et applications

3 RC4

Description de RC4 Applications de RC4 WPA

WPA

- WPA1. Utilise toujours RC4 mais corrige les défauts du WEP.
 - Utilisation de clef de session de 128 bits,
 - Authentification par hachage (802.1x pour l'authentification EAP (Extensive Authentication Protocol RFC 2284)).
 - Impossibilité de réutiliser un même IV avec la même clé Utilisation d'un contrôle d'intégrité du message (MIC) avec SHA-1
- WPA2, même chose que le WPA1 mais avec
 - I'AES en mode OFB pour le chiffrement,