ЛЕКЦИЯ 4 "КОНЕЧНЫЕ И МАГАЗИННЫЕ АВТОМАТЫ. ПОСТРОЕНИЕ КОНЕЧНЫХ АВТОМАТОВ С МИНИМАЛЬНЫМ ЧИСЛОМ СОСТОЯНИЙ"

ПЛАН

- 1. Построение конечных автоматов с минимальным числом состояний.
- 2. Алгоритмы минимизации
- 3. Автоматы с магазинной памятью и их особенности.
- 4. Пример преобразования с помощью НП-транслятора

О возможностях построение минимальных детерминированных конечных автоматов (МДКА)

Напоминание.

- 1. Отношение \Re , заданное на множестве \pmb{A} и являющееся *рефлексивным*, *транзитивным* и *симметричным*, называется отношением *эквивалентности*.
 - 2. Число классов эквивалентности называется индексом эквивалентности.

Если $[x\mathcal{R}y, z \in T^*$ - любой] $\Rightarrow xz\mathcal{R}yz$, то отношение \mathcal{R} – есть **правый инвариант** на T^* . Пусть $A = (Q, \Sigma, \delta, q_0, F)$ – конечный автомат.

Отношение эквивалентности \mathcal{R}_{M} , ассоциированное с конечным автоматом, определяется следующим образом:

 $x\mathcal{R}_{M}y \Leftrightarrow \widetilde{\delta}(q_0,x) = \widetilde{\delta}(q_0,y)$ и \mathcal{R}_{M} – правый инвариант на множестве цепочек, допускаемых КА

Для регулярного языка:

$$\boldsymbol{L} \subset \boldsymbol{T}^*, x \mathcal{R}_{\boldsymbol{L}} y, z \in \boldsymbol{T}^*$$
 - любой, $xz \in \boldsymbol{L}$, если $yz \in \boldsymbol{L}$.

Теорема Майхилла — **Нерода.** Для любого регулярного языка L существует детерминированный конечный автомат, который имеет переходную функцию и число состояний, равное индексу эквивалентности отношения \mathcal{R}_L , ассоциированного с языком L.

МИНИМИЗАЦИЯ КОНЕЧНЫХ АВТОМАТОВ ПО РЕГУЛЯРНОМУ ВЫРАЖЕНИЮ

• Правила написания регулярных выражений

Что заключено в фигурные скобки от нуля до бесчисленного числа раз, круглые—используются для объединения альтернатив, из которых одна обязательно присутствует.

Пусть имеется алфавит, составленный из символов (букв, литер) $V_T = \{x_1, x_2, \dots, x_n\}$.

1. Множество всевозможных цепочек, составленных из букв $x_i \in V_T$:

$$L = \{x_1 \vee x_2 \vee x_3 \vee \ldots \vee x_n \}.$$

2. Множество цепочек, составленных из литер $x_i \in V_T$ и оканчивающихся литерой x_1 .

$$L = \{x_1 \lor x_2 \lor x_3 \lor ... \lor x_n\} \land x_1.$$

3. Множество цепочек, составленных из литер $x_i \in V_T$ начинающихся цепочкой l_1 и оканчивающихся l_2 .

$$L = l_1 \wedge \{x_1 \vee x_2 \vee x_3 \vee ... \vee x_n\} \wedge l_2.$$

4. Множество однолитерных цепочек (однобуквенных слов) совпадает с алфавитом

$$L = x_1 \vee x_2 \vee x_3 \vee \ldots \vee x_n.$$

5. Множество двулитерных цепочек (двухбуквенных слов)

$$L = (x_1 \vee x_2 \vee x_3 \vee \ldots \vee x_n) \wedge (x_1 \vee x_2 \vee x_3 \vee \ldots \vee x_n).$$

6. Множество m – буквенных слов

$$L = (x_1 \lor x_2 \lor x_3 \lor \dots \lor x_n) \land \dots \land (x_1 \lor x_2 \lor x_3 \lor \dots \lor x_n)$$

•Алгоритм, разработанный профессором кафедры кибернетики и вычислительной техники, доктором технических наук Евгением Артёмовичем Бутаковым для минимизации КА Мили по регулярному выражению.

Шаги(Этапы)

- 1. Разметка мест.
- 2. Минимизация числа внутренних состояний автомата по разметке.
- 3. Построение таблицы переходов.
- 4. Дальнейшая минимизация по таблице переходов.

Место регулярного выражения - это позиция между двумя литерами (символами из алфавита входных сигналов Σ), а также начало и конец выражения.

Места регулярного выражения имеют следующие типы (названия).

Начальное место – начало выражения

Конечное место – конец выражения.

 ${\it Ochobhoe}$ место — место, слева от которого стоит литера, а также начальное место.

Предосновное место - место, справа от которого стоит литера.

Разметка мест.

- 1. Первоначально осуществляется *сквозная нумерация* всех основных мест, которые предварительно размечаются короткими вертикальными линиями на записи регулярного выражения.
- 2. Отмечаются длинными вертикальными линиями на записи регулярного выражения *предосновные* места, *которые не совпадают* с *основными*.
- 3. Выставляются индексы всех предосновных мест, не совпадающих с основными местами, при этом одному и тому же предосновному месту может соответствовать множество (несколько) индексов.

Правила построения системы индексов

- 1. Индекс перед любыми скобками распространяется на все начальные места дизъюнктивных членов, записанных в этих скобках.
- 2. Индекс конечного места любого дизъюнктивного члена, заключённого в любые скобки, распространяется на место, непосердственно следующее за этими скобками.
- 3. Индекс места перед итерационными скобками распространяется на место, непосредственно следующее за этими скобками.
- 4. Индекс места за итерационными скобками распространяется в начальные места всех дизъюнктивных членов в этих скобках.

- 5. Индекс конечного места любого дизъюнктивного члена, заключённого в итерационные скобки, распространяется на начальные места всех дизъюнктивных членов, заключённых в эти скобки.
- 6. Индексы места, справа и слева от которого стоят буквы никуда не распространяется.
- 7. Индекс конечного места распространяется на те же места, на которые и индекс начального места.

Правилом 7 можно не пользоваться, когда предполагается программная реализация конечного автомата.

Правило минимизации

Если *несколько* предосновных мест *отмечено одинаковой совокупностью* индексов и *справа* от этих мест записаны *одинаковые литеры*, то *основные* места, расположенные *справа от этих литер*, можно отметить *одинаковыми* индексами.

Возможна цикличность применения правил разметки с правилами минимизации.

Пример. Минимизируем выражение $\{1\}1 \vee \{1\}1\{0 \vee 1\}1$.

Под упрощение подпадают три пары позиций (1, 2), (3, 4) и (5, 6). После минимизации

Получаем таблицу переходов НКА

	0	1	2	3	4
0	_	_	3	3	3
1	1,2	1	2, 4	4	4

Приведём НКА к ДКА.

Получим

	0	1	2	3	4	(1, 2)	(2, 4)	(1, 2, 4)
0	-		3	3	3	3	3	3
1	(1,2)	1	(2,4)	4	4	(1, 2, 4)	(2,4)	(1, 2, 4)

В ДКА ряд состояний не достижим, это 1, 2, (2, 4). Исключим их Перенумеруем состояния КА

№ Старый	№ Новый
0	0
3	1
4	2
1, 2	3
1, 2, 4	4

Окончательно

	0	1	2	3	4
0	_	1	1	1	1
1	3	2	2	4	4

МИНИМИЗАЦИЯ КОНЕЧНОГО АВТОМАТА ПО ТАБЛИЦЕ ПЕРЕХОДОВ

Алгоритм

- 1. Ввести дополнительное множество переменных (сигналов), которое называется множеством значений выхода. Каждому из состояний КА ставится в соответствие сигнал, который появляется на выходе конечного автомата в это состоянии.
- 2. Поместить данные сигналы над соответствующими столбцами таблицы переходов
- 3. Минимизировать число состояний ДКА путём объединения столбцов с одинаковым содержимым при условии равенства их выходных сигналов.

Пример. Рассмотрим функцию переходов предыдущего раздела.

Введём сигналы: p — рабочее состояние, 3 — заключительное состояние цепочка допущена.

Сигналы	p	p	3	3	3
	0	1	2	3	4
0	_	1	1	1	1
1	3	2	2	4	4

Одинаковы столбцы, соответствуют состояниям (1 и 2), (3 и 4) и имеют одинаковые сигналы. Обозначим: $0 \to 0, 1 \to 1, 2 \to 2, (3, 4) \to 3$. Получим:

Сигналы	p	p	3	3
	0	1	2	3
0	_	1	1	1
1	3	2	2	3

МИНИМИЗАЦИЯ КОНЕЧНЫХ АВТОМАТОВ ПО ТАБЛИЦАМ ПЕРЕХОДОВ И ВЫХОДОВ

Данный способ минимизации предназначается для минимизации автоматов Мили.

- 1. Необходимо ввести множество выходных сигналов, соответствующих состояниям конечного автомата аналогично тому, как это выполняется при минимизации по таблице переходов.
- 2. Используя функцию переходов КА и соответствие состояний переменных выхода, выдаваемых КА при переходе в очередное состояние, построить функцию выхода КА.
- 3. Если *столбцы* таблицы функции *выходов* КА *совпадают*, то это указывает на *неразличимость* состояний, соответствующих столбцам, *по выходу* (по выходному сигналу).

Необходимо выписать все возможные сочетания пар из состояний, не различимых по выходному сигналу.

4. Каждая выписанная пара подвергается анализу тем же способом, как и при приведении НКА к ДКА.

Целью анализа является определение групп состояний, неразличимых *по входному символу* и *выходному сигналу*, в которые можно попасть из анализируемой пары состояний.

- 5. Если из неразличимых состояний, полученных в п. 4, можно составить замкнутую цепочку, то их можно объединить в одно. Например $(1, 2) \rightarrow (2, 6) \rightarrow (6, 1)$ можно укрупнить до (1, 2, 6).
- 6. Построить функцию переходов минимального ДКА. В качестве состояний МДКА будут использованы: устойчивые пары состояний, цепочки состояний, обособленные состояния исходного КА.

Пример.

1. Обозначим сигналы (состояния) выхода: x_1 – рабочее состояние, x_2 – состояние, соответствующее окончанию работы. Восстановим по графу КА функцию переходов.

Состояния		1	2	3	4	5
Значения выхода		x_1	x_1	x_2	x_1	x_2
C	l	2	2	1	2	4
l)	3	4	2	5	2

2. Используя таблицу переходов, составим функцию выхода

Состояния	1	2	3	4	5
Значения выхода	x_1	x_1	x_2	x_1	x_2
а	x_1	x_1		x_1	x_1
b	x_2	x_1	x_1	x_2	x_1

3. Множества состояний, которые не различимы по выходу, это $\{2, 3, 5\}$ и $\{1, 4\}$. Представим их парами $\{(2, 3), (3, 5), (2, 5)\}$ и $\{1, 4\}$.

Пары $(2, 3) \rightarrow (3, 5) \rightarrow (2, 5)$ образуют цепочку, и, если последующий анализ покажет их устойчивость, могут быть объединены в (2, 3, 5).

4. Осуществим поиск пар, которые неразличимы по выходному сигналу и по входной строке. Анализ оформим древовидно, для наглядности.

Пары (1, 4) и (3, 5) – устойчивы, не различимы ни по входной строке, ни по выходному сигналу.

Пара (2, 3) неустойчива, она различается как по входной строке, так и по выходному сигналу. Состояния (2, 5) хотя и не различимы по входной строке, отличаются по выходным сигналам, выдаваемым конечным автоматом в состояниях (2, 4).

- 5. Из устойчивых пар состояний (1, 4) и (3, 5) не может быть построена замкнутая цепочка, состояние 2 обособленное, они и составят множество состояний МДКА.
- 6. Состояния (1, 4) и (3, 5) являются состояниями неразличимости, 2 отдельное. Таблица:

Состояние	(1, 4)	2	(3, 5)
Обозначение	A	В	Z
а	В	В	A
b	Z	A	В

Конечному автомату будет соответствовать граф вида

и формальная праволинейная грамматика

Z	::=	$\mathbf{A}b b$
A	::=	$\mathbf{Z}a \mathbf{B}b$
В	::=	$\mathbf{B}a \mathbf{Z}b \mathbf{A}a$

МАГАЗИННЫЕ АВТОМАТЫ

Магазинные автоматы ≡автоматы с магазинной памятью≡МП-автоматы.

Недетерминированным МП-автоматом называется семёрка следующих объектов (компонентов):

$$A = (\Sigma, Q, \Theta, \delta, q_0, z_0, F),$$

где Σ – непустое конечное множество входных символов (входной алфавит);

Q – конечное множество внутренних состояний МП-автомата (алфавит состояний);

 Θ – конечное множество (алфавит) магазинных символов;

 δ — отображение подмножества, определяемого декартовым произведением $Q\otimes \Sigma\otimes \Theta$ во множество подмножеств $Q\otimes \Theta$: δ : $Q\otimes \Sigma\otimes \Theta \to Q\otimes \Theta$.

 $q_0 \in Q$ – начальное состояние МП-автомата;

 $z_0 \in \Theta$ – начальный (первый, инициированный) символ в магазинной памяти;

 $F \subset Q$ – множество заключительных состояний автомата.

МП-автомат

Множество правил перехода, которое реализует один такт работы автомата, называется управляющим устройством.

Конфигурация:

- 1. Текущим состоянием (его номером) МП-автомата.
- 2. Символом на вершине магазина МП-автомата.
- 3. Символом на входе (текущим входным символом) МП-автомата.

- Такт работы МП-автомата может включает следующие операции.
 - 1. Операции над магазином МП-автомата. Это:

ЗАПИСАТЬ ≡ ВТОЛКНУТЬ ≡ ПОМЕСТИТЬ; ВЫТОЛКНУТЬ; НЕ ИЗМЕНЯТЬ СОДЕРЖИМОГО МАГАЗИНА.

2. Операции над состоянием МП-автомата. Их две:

ПЕРЕЙТИ; ОСТАТЬСЯ.

Операции над входом МП-автомата:

СДВИГ (на одну позицию);

ДЕРЖАТЬ (то есть зафиксировать ленту до следующего шага).

МП-автомат называется МП-распознавателем если у него два выхода (выходных сигнала):

ДОПУСТИТЬ; ОТВЕРГНУТЬ.

Пример. Задан язык вида $L = \{0^n 1^n, n \ge 1\}$.

Порождающая КС-грамматика: $G[Z] = [V_N = \{Z\}; V_T = \{0, 1\}; R = \{Z \rightarrow 01 | 0Z1\}; Z].$

МП-автомат для анализа предложений такого языка имеет описание:

 $\Sigma = \{0, 1, \blacktriangleleft\}$, **◄** - признак (маркер) конца строки;

 $\Theta = \{z, \#\}, \#$ - выталкиватель магазина;

 $Q = \{q_0, q_1\}.$

Устройство управления:

q_0							
-		Вход					
стека		0 1					
На вершине ст	Z	ПЕРЕЙТИ q_0 ЗАПИСАТЬ Z СДВИГ	ПЕРЕЙТИ q_I ВЫТОЛКНУТЬ СДВИГ	ОТВЕРГНУТЬ			
На вер	#	ПЕРЕЙТИ <i>q₀</i> ЗАПИСАТЬ Z СДВИГ	ОТВЕРГНУТЬ	ОТВЕРГНУТЬ			

q_1							
_		Вход					
ека		0	1	\			
На вершине стека	Z	ОТВЕРГНУТЬ	ПЕРЕЙТИ q_I ВЫТОЛКНУТЬ СДВИГ	ОТВЕРГНУТЬ			
На веј	#	ОТВЕРГНУТЬ	ОТВЕРГНУТЬ	допустить			

Трасса работы МП-автомата при разборе цепочки 000111 представлена ниже

No	Магазин	Состояние	Входная лента
1	#	q_0	000111◀
2	#Z	q_0	00111◀
3	#ZZ	q_0	0111◀
4	#ZZZ	q_0	111◀
5	#ZZ	q_1	11◀
6	#Z	q_1	1◀
7	#	q_1	◀ (допустить)

То есть, цепочка 000111 допускается МП-автоматом.

Описание устройства управления МП-автоматом – в виде набора команд:

$$(q_{i}^{r}, q_{j}^{r}, z_{k}^{r}) \rightarrow \{(q_{1}^{r+1}, z_{1}^{r+1}), (q_{2}^{r+1}, z_{2}^{r+1}), ..., (q_{m}^{r+1}, z_{m}^{r+1})\},$$

где $q_i^r \in Q$, r — номер такта работы МПА с продвижением, $a_j^r \in \Sigma$, z_k^r , $z_k^{r+1} \in \Theta$ или без продвижения

$$(q_{i}^{r},\lambda,z_{k}^{r}) \rightarrow \{(q_{1}^{r+1},z_{1}^{r+1}),(q_{2}^{r+1},z_{2}^{r+1}),...(q_{m}^{r+1},z_{m}^{r+1})\}$$

где λ - пустая цепочка.

Теорема 1. Пусть $L\{G\}$ – КС язык, порождаемый грамматикой $G[S] = \langle V_N, V_T, R, S \rangle$ в нормальной форме Грейбах. Тогда существует недетерминированный нисходящий МП-автомат M, такой, что допускает все слова языка $L\{G\}$ и только их, причём автомат $M = \{\Sigma, Q, \Theta, \delta, q_0, Z_0, F\}$ строится следующим образом:

- 1. $\Sigma = V_T$; 2. $Q = \{q_I\}$;
- 3. $\Theta = V_N$; 4. $q_0 = q_1$;
- 5. $Z_0 = S$; 6. $F = \{\}$;
- 7. $(q_1, \gamma) \in \delta(q_1, a, B)$ всегда, когда подстановка $\mathbf{B} \to a \gamma$ принадлежит множеству правил R грамматики G, где $\mathbf{B} \in V_N$, $a \in V_T$, $\gamma \in (V_N \cup V_T)^*$.

Теорема 2. Пусть $L\{M\}$ — язык, допускаемый магазинным автоматом $M=\{\Sigma,\,Q,\Theta,\delta,\,q_0,\,Z_0,\,F\}$. Тогда существует такая КС-грамматика $G[S]=<V_N,\,V_T,\,R,\,S>$, что $L\{G\}=L\{M\}$, где

- 1. $V_T = \Sigma$;
- 2. V_N множество вида $(q, B, p), q, p \in Q$, и $B \in \Theta$;
- 3. Подстановка $S \rightarrow (q_0, Z_0, q)$ принадлежит множеству правил R при любом $q \in Q$;
- 4. Подстановка $(q, B, p) \rightarrow (q_1, B_1, q_2)(q_2, B_2, q_3)...(q_m, B_m, q_{m+1})$ принадлежит множеству R для всех $q, q_1, q_2, ..., q_{m+1} \in Q$, $p = q_{m+1}$, для любого $a \in \{\Sigma \cup \varepsilon\}$ и любых B, $B_1, B_2, ..., B_m \in \Theta$, таких, что $(q_1, B_1, B_2, ..., B_m) \in \delta(q, a, B)$. Если же m = 0, то $q_1 = p$, $p \in \delta(q, a, B)$ $(q, B, p) \rightarrow a$ принадлежит множеству R.

Пример Задана грамматика G[S] вида

$$V_N=\{\mathbf{S}, \ \mathbf{B}, \ \mathbf{S} \rightarrow a\mathbf{B}|b\mathbf{D};$$
 Аксиома грамматики $\mathbf{D}\};$ $\mathbf{S}.$ $V_T=\{a,b\};$ $\mathbf{D} \rightarrow a\mathbf{S}|b\mathbf{D}\mathbf{D}|a;$ $\mathbf{B} \rightarrow a\mathbf{B}\mathbf{B}|b\mathbf{S}|b;$

В соответствии с теоремами имеем:

$$\Sigma = \{a, b\}, Q = \{q_1\}, \Theta = \{S, B, D\}, q_0 = q_1, Z_0 = S.$$

Синтезированное устройство управления представляет собой

No	Команда МП-автомата	Продукция грамматики
1.	$(q_1, a, \mathbf{S}) \rightarrow (q_1, \mathbf{B});$	$S \rightarrow aB;$
2.	$(q_1, b, \mathbf{S}) \rightarrow (q_1, \mathbf{D});$	$S \rightarrow bD;$
3.	$(q_1, a, \mathbf{D}) \rightarrow \{(q_1, \mathbf{S}),$	$\mathbf{D} \rightarrow a\mathbf{S};$
	$(q_1, \lambda)\};$	$\mathbf{D} \rightarrow a;$
4.	$(q_1, b, \mathbf{D}) \rightarrow (q_1, \mathbf{DD});$	$\mathbf{D} \rightarrow b\mathbf{DD};$
5.	$(q_1, a, \mathbf{B}) \rightarrow (q_1, \mathbf{BB});$	$\mathbf{B} \rightarrow a\mathbf{B}\mathbf{B};$
6.	$(q_1, b, \mathbf{B}) \rightarrow \{(q_1, \mathbf{S});$	$\mathbf{B} \rightarrow b\mathbf{S};$
	(q_1, λ)	$\mathbf{B} \rightarrow b$.

ТРАНСЛЯЦИЯ С ПОМОЩЬЮ МП-автомата

МП-автомат называется МП-транслятором, если он порождает выходную цепочку. Для этого добавляют операцию над выходом вида

ВЫДАТЬ(s),

где s — цепочка литер (символов, кодов), которую необходимо выдать.

Пример. Пусть необходимо перевести произвольную последовательность цифр "0" и "1" в цепочку " $1^n 0^m$ ", где n — число единиц, а m — число нулей.

Пример преобразования: $011011 \Rightarrow 111100$.

Пример устройства управления МП-транслятора.

	0	1	◄
	ЗАПИСАТЬ (0)	ВЫДАТЬ (1)	ВЫТОЛКНУТЬ
0	СДВИГ	СДВИГ	ВЫДАТЬ (0)
			ДЕРЖАТЬ
	ЗАПИСАТЬ (0)	ВЫДАТЬ (1)	
#	СДВИГ	СДВИГ	ДОПУСТИТЬ

В таблице управляющего устройства обозначено # — выталкиватель магазина, ◀ — концевой маркер входной строки.