APUNTES DE CÁLCULO I

Pepe Aranda

pparanda@fis.ucm.es

Departamento de Métodos Matemáticos Facultad de Físicas. UCM www.ucm.es/centros/webs/d215

Índice

1. Naturales, enteros, racionales y reales	
1.1 Números naturales, enteros y racionales	1
1.2 El conjunto R	5
2. Funciones, sucesiones, límites y continuidad en R	
2.1 Funciones reales de variable real	9
2.2 Sucesiones de números reales	15
2.3 Límites de funciones. Funciones continuas	21
2.4 Teoremas sobre funciones continuas en intervalos	28
3. Derivadas en R	
3.1 Definición y cálculo	31
3.2 Teoremas sobre funciones derivables	35
3.3 Polinomios	39
3.4 Ceros de funciones	42
3.5 Representación de funciones	44
3.6 Aplicaciones	48
4. Series, Taylor y límites indeterminados	
4.1 Series de números reales	51
4.2 Sucesiones y series de funciones	58
4.3 Series de potencias	61
4.4 Polinomios y series de Taylor	64
4.5 Cálculo de límites indeterminados	70
5. Integración en R	
5.1 Definición y propiedades	77
5.2 Teoremas fundamentales	80
5.3 Cálculo de primitivas	84
5.4 Integrales impropias	89
5.5 Integración aproximada	93
5.6 Aplicaciones	98
6. Introducción al cálculo en C	
6.1 Funciones de variable compleja	101
6.2 Series complejas de potencias	105
Problemas adicionales	109
Problemas comunes	I

Bibliografía:

[Sp] M. Spivak. Calculus. Ed. Reverté

[L] S. Lang. Cálculo. Ed. Addison-Wesley Iberoamericana

[St] S. Stein. Cálculo y geometría analítica. Ed. McGraw-Hill

[LHE] Larson-Hostetler-Edwards. Cálculo y geometría analítica. Ed. McGraw-Hill

[A] T. Apostol. Calculus. Ed. Reverté

[CJ] Courant-John. Introducción al cálculo y al análisis matemático. Ed. Limusa-Wiley

[B] J. Burgos. Cálculo infinitesimal de una variable. Ed. McGraw-Hill

[K] K. Kuratowski. Introducción al cálculo. Ed. Limusa-Wiley

Elaborar unos apuntes de una asignatura tiene la ventaja para los alumnos de precisar qué es lo que en concreto se va a explicar durante el curso. Además les permite no estar todo el rato pendientes de copiar a la mayor velocidad posible (con los errores que ello produce) todo lo que se escribe en la pizarra. Pero tiene también sus claras desventajas. La existencia de los apuntes suele incitarles a utilizar poco otros libros, que dan otras visiones de la asignatura y que tratan diferentes temas con más extensión, ejemplos, aplicaciones o rigor (según los casos) que en dichos apuntes.

Es importante, como se acaba de decir, consultar libros. El problema fundamental de la bibliografía para un curso de Cálculo de primer curso es que no existe 'el libro adecuado' a todos los estudiantes, pues éstos llegan a la universidad con muy diferente formación matemática. El ideal sería que toda persona de primero de Físicas pudiera seguir sin excesivo esfuerzo un libro tan bonito como el Spivak. Pero ese ideal dista mucho de la realidad.

En teoría, en las asignaturas de matemáticas del bachillerato se han tratado (está escrito en los programas oficiales) bastantes temas de los que se va a profundizar en Cálculo I. Por ejemplo: números reales, inecuaciones, sucesiones, rectas, trigonometría, exponenciales y logaritmos, concepto intuitivo de límites, derivación, gráficas, primitivas sencillas, cálculo de áreas u operaciones elementales con complejos. Según esto, sólo parte de los temas de Cálculo I se verían por primera vez: todo lo relativo a series, la definición rigurosa de límites, los desarrollos de Taylor, las sucesiones de funciones, el cálculo de primitivas complicadas, las integrales impropias y pocas cosas más (además del cambio que suele representar la insistencia de los profesores universitarios en 'las demostraciones').

La experiencia dice que, aunque hay un porcentaje digno de estudiantes que sí controlan buena parte de los citados temas del bachillerato, hay otra parte (por desgracia no muy minoritaria) con demasiados agujeros en su formación. Para los primeros, los libros clásicos de Cálculo ([Sp], [A] o [CJ]) son el complemento natural de estos apuntes (el [A] tiene temas además de otras asignaturas: Álgebra, Cálculo II, Ecuaciones Diferenciales,...). Pero para estudiantes de menor nivel matemático es preferible manejar libros más elementales, como el [L], [St] o [LHE], que contienen muchos más ejemplos sencillos (aunque no incluyen los temas más complicados del curso: diferentes demostraciones, convergencia uniforme, impropias...). Los seis libros anteriores estudian (al contrario que en el programa de Cálculo I) primero las funciones (integrales incluidas) y luego las sucesiones y series. Los dos siguientes ([B] y [K]) tratan las sucesiones y series al principio. El [K] es difícil de leer (y de encontrar), pero es citado porque de él se han extraído algunas demostraciones.

Las hojas de problemas comunes a varios grupos de Cálculo I y los adicionales de estos apuntes son más que suficientes para el curso. Pero en todos los libros de la bibliografía hay más problemas propuestos y resueltos. Si algún amante de las matemáticas quiere problemas más teóricos y complicados, que no dude en enfrentarse a los del [Sp]. Pero probablemente sea mayor el número de quienes echan en falta en nuestros problemas ejercicios sencillos que permitan repasar los temas del bachillerato. En [L], [St] o [LHE] se pueden encontrar cientos de ellos.

Novedades de las últimas versiones de los apuntes:

versión 2003: Primera escrita a LATEX, con el mismo orden en los temas que las anteriores a ordenador (y los viejos apuntes a mano de los años 80), aunque añadiendo diversas explicaciones a la teoría y nuevos ejemplos y problemas.

versión 2004: Con los mismos temas que las anteriores, pero algunos de ellos organizados de forma diferente.

Si en la versión 2003 y anteriores el capítulo 1 (además de repasar los números y sus propiedades) contenía las sucesiones y las series numéricas, en ésta se acercan estas series a las de funciones, potencias y Taylor.

Las sucesiones se trasladan a la sección 2.2, con el fin de haber dado antes el concepto de función y haber repasado las propiedades de los senos, cosenos, exponenciales,...[Creo que el límite de sucesiones (definición rigurosa de las que suelen tener problemas para ser entendidas) se debe dar antes que el ligeramente más complicado límite de funciones].

El 4 pasa a comenzar con las series numéricas, luego se tratan las sucesiones y series de funciones en general, y a continuación las de potencias. Los polinomios de Taylor (con los que en el 2003 empezaba el capítulo) se juntan en la sección 4.4 a las series de Taylor para no interrumpir los argumentos.

El capítulo 3 permanece tal como estaba. El 5 sigue casi, casi igual (simplemente las longitudes adelantan a los volúmenes en 5.6) y el 6 tampoco varía (salvo que la *i* pasa a ser i).

Como todos los años, se corrigen erratas (y probablemente se crean algunas nuevas), se añaden algunas explicaciones a la teoría (en parte necesarias por la nueva organización de los temas) y se elaboran nuevos ejemplos (y se cambian otros de sitio).

Los problemas (comunes y adicionales) se organizan según el nuevo orden de la teoría. Los comunes se reducen de 117 a 100, a pesar de incluir los de examen de 2004 y los de 2001 (antes en adicionales). Los adicionales, además de unos pocos nuevos, recogen, como siempre, los retirados de las hojas de comunes.

versión 2005: Sólo se hace alguna corrección estética y de erratas a la teoría y, como todos los años, se cambian algo los problemas, tanto los comunes como los adicionales.

versión 2006: La letra pasa a ser Times (comando \usepackage{mathptmx} en LATeX), lo que lleva a unos cuantos ajustes estéticos, de orden o de lenguaje para ajustar espacios.

Las sucesiones de Cauchy se van al final de 2.2 (para aclarar que son secundarias en el temario del curso). Por la misma razón, Trapecios y Simpson son adelantadas por la integración de series en 5.5.

Las sucesiones de límite no justificado (como $\sqrt[n]{n}$) retrasan su aparición a 2.3 (aún sin justificación, aunque más cerca del L'Hôpital, que pasa a ser demostrado (sin ser utilizado) en 3.2). Se reordena también la sección 4.5 de los límites indeterminados.

Se retoca un poco la sección 3.3 (la parte de los polinomios de tercer y cuarto orden).

Lo de siempre en problemas: se incluyen de los exámenes del 2005-06 en los 100 comunes, se cambia de sitio alguno y otros pasan a ser problemas adicionales (que de año en año van creciendo).

versión 2006 \rightarrow 2009: Esta versión es muy parecida a la 2006, con correcciones de estilo para ajustarse a nuevos márgenes y tamaños. En esencia es la elaborada para http://alqua.org/ en 2008 con el fin de servir de base a un 'libro libre'. En esa página se pueden conseguir los ficheros LATEX y los dibujos de esos apuntes.

1. Naturales, enteros, racionales y reales

1.1. Números naturales, enteros y racionales

Los números que básicamente vamos a tratar son los reales **R**. Estudiaremos sucesiones de números reales, funciones de variables reales,... Pero antes de definir los reales vamos a hacer un breve repaso de los números más sencillos. En lo que sigue se supondrá que son conocidos los significados de los símbolos \forall (para todo), \exists (existe), \Rightarrow (implica), \Leftrightarrow (si y sólo si), ... y que se han visto propiedades lógicas sencillas que se utilizarán en alguna demostración como, por ejemplo, que la afirmación ' $p \Rightarrow q$ ' equivale a '(no q) \Rightarrow (no p)'. Otros conocimientos que se presuponen son las ideas y símbolos básicos de la teoría de conjuntos: \cup (unión), \cap (intersección), \subset (contenido en), \in (pertenece), ...

Llamaremos $\mathbb{N} = \{1, 2, 3, 4, 5, 6, \ldots\}$ al conjunto de los números **naturales** (sin incluir el 0), $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ al de los **enteros**, y $\mathbb{Q} = \{p/q, p \ y \ q \ \text{enteros}, q \neq 0\}$ al conjunto de los **racionales**. La suma y el producto de dos números naturales cualesquiera son también naturales, pero su diferencia puede no serlo. Sí es un entero la diferencia de dos enteros. El cociente de racionales es racional, pero no lo es, en general, el de dos enteros. Los tres conjuntos son conjuntos ordenados por la relación ">"(ser mayor que). Con palabras más matemáticas, y refiriéndonos al mayor de los tres conjuntos, se dice que \mathbb{Q} es un **cuerpo ordenado**, es decir, que satisface las siguientes propiedades $(a, b, c \in \mathbb{Q})$:

```
Propiedades de cuerpo: Existen dos operaciones "+" y "·" que cumplen:
```

```
1) + y \cdot son asociativas y conmutativas:
```

$$a + (b + c) = (a + b) + c$$
, $a + b = b + a$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$, $a \cdot b = b \cdot a$

- 2) se cumple la propiedad distributiva: $a \cdot (b+c) = a \cdot b + a \cdot c$
- 3) hay elementos neutros 0 respecto a + y 1 respecto a · : a+0=a, $a\cdot 1=a \ \forall a$
- 4) existen elementos inversos respecto $a + y \cdot :$

$$\forall a \ \exists -a \ \text{tal que } a + (-a) = 0 \ , \ \forall a \neq 0 \ \exists \ a^{-1} \ \text{tal que } a \cdot a^{-1} = 1$$

Propiedades de orden: Existe una relación ">"que satisface:

- 5) dado a, o bien a > 0, o bien -a > 0, o bien a = 0
- 6) si a, b > 0 también a + b > 0, $a \cdot b > 0$

A partir únicamente de las propiedades anteriores se pueden definir las otras conocidas operaciones básicas (diferencia, cociente y potencias) y desigualdades:

```
a - b = a + (-b); si b \neq 0, a/b = a \cdot b^{-1}; si n \in \mathbb{N}, a^n = a \cdot \dots \cdot a, n veces; b > a si b - a > 0; b < a si a > b; b \ge a si b > a si b = a; b \le a si a \ge b.
```

N y **Z** no son un cuerpo: **N** no posee inverso siquiera respecto de la suma y **Z** no lo tiene respecto del producto. El conjunto **R** de los reales que trataremos en la próxima sección poseerá todas estas propiedades y además otra (el llamado 'axioma del extremo superior').

Repasemos algunas otras definiciones y propiedades de los naturales, enteros y racionales:

Demostraciones por inducción.

Supongamos que queremos demostrar una afirmación, que llamaremos P(n), que depende de un número natural n. Demostrar P(n) por inducción consiste en:

i) demostrar P(1) (es decir, que la afirmación es cierta si n=1) ii) probar que $P(n) \Rightarrow P(n+1) \ \forall n$ (supuesta cierta para n se demuestra para n+1)

Hecho esto, como P(1) es cierta, por ii) también lo es P(2). Y por tanto P(3). Y P(4)...

Ej. Probemos por inducción que
$$\sum\limits_{k=1}^n k=1+2+\cdots+n=rac{n(n+1)}{2}$$
 .

[recordemos que el primer símbolo se lee 'sumatorio de k desde 1 hasta n']

$$P(1)$$
 es cierta: $1 = \frac{1(1+1)}{2}$. Probemos ahora $P(n+1)$ suponiendo cierta $P(n)$:

$$\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n+1) = [\text{estamos suponiendo cierta } P(n)] = \frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2}$$

Máximo común divisor y mínimo común múltiplo.

Dados dos naturales n y d se dice que n es **múltiplo** de d (o que d es **divisor** de n) si n/d es también un número natural. Desde luego, todo n tiene al menos dos divisores: el 1 y el propio n. Si estos son sus únicos divisores dice que n es **primo**. Un conjunto de enteros $n_1, ..., n_k$ admite siempre un divisor común a todos: el 1. Se llama **máximo común divisor** al mayor natural que divide a todos ellos (y lo denotaremos por $mcd[n_1, ..., n_k]$). Por otra parte, dados los $n_1, ..., n_k$ existen naturales que son múltiplos de todos ellos (por ejemplo el producto de todos). Se llama **mínimo común múltiplo** ($mcm[n_1, ..., n_k]$) al menor número con esta propiedad.

Hallar el mcd y el mcm de unos naturales es fácil una vez calculados todos los divisores primos de cada uno, lo que puede ser muy largo si los números son muy gordos.

[Para hallar estos divisores conviene conocer las reglas de divisibilidad por números sencillos: recordamos que un entero es divisible por 3 (y por 9) si y sólo si lo es la suma de sus cifras; divisible por 4 (por 8) si lo son sus dos (tres) últimas cifras; por 5 si acaba en 0 o en 5; por 11 si la diferencia entre la suma de las cifras que ocupan un lugar par y la suma de las que ocupan lugar impar es un múltiplo de 11 (incluido el 0)].

Otra forma de hallar el mcd[m,n] es utilizar el **algoritmo de Euclides**:

Sea m>n. Dividamos m entre n y llamemos q_1 al cociente y r_1 al resto: $m=q_1n+r_1$. Dividamos ahora n entre $r_1: n=q_2r_1+r_2$. A continuación r_1 entre $r_2: r_1=q_3r_2+r_3$. Luego r_2 entre r_3 ..., y proseguimos dividiendo de esta forma hasta que el resto sea 0. El $\mathrm{mcd}[m,n]$ es entonces **el último resto no nulo**.

Calculado el mcd , se puede hallar el mcm utilizando que: $\operatorname{mcm}[m,n] = \frac{m \cdot n}{\operatorname{mcd}[m,n]}$.

Ej. Sean 2340 y 6798.

Como 2340 =
$$2^2 \cdot 3^2 \cdot 5 \cdot 13$$
 y 6798 = $2 \cdot 3 \cdot 11 \cdot 103$, mcd=6 y mcm= $2^2 \cdot 3^2 \cdot 5 \cdot 11 \cdot 13 \cdot 103$ = 2651220
Euclides: 6798 = $2 \cdot 2340 + 2118$, 2340 = $1 \cdot 2118 + 222$, 2118 = $9 \cdot 222 + 120$, 222 = $1 \cdot 120 + 102$, $120 = 1 \cdot 102 + 18$, $102 = 5 \cdot 18 + 12$, $18 = 1 \cdot 12 + 6$, $12 = 2 \cdot 6$
 \Rightarrow mcd = 6, mcm = $\frac{2340 \cdot 6798}{6}$ = 2651220

[Para hallar el $mcd[n_1,...,n_k]$ se puede calcular $m_1=mcd[n_1,n_2]$, luego $m_2=mcd[m_1,n_3]$, ...]

Factoriales, números combinatorios y binomio de Newton

Para $n \in \mathbb{N}$ se define **factorial** de n como: $n! = 1 \cdot 2 \cdot ... \cdot (n-1) \cdot n$, y además 0! = 1, y si k es otro natural con $0 \le k \le n$, el **coeficiente binomial** o **número combinatorio** es

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{k!}$$

[$\binom{n}{k}$] se lee 'n sobre k'; obsérvese que $\binom{n}{0} = \binom{n}{n} = 1$, que $\binom{n}{n-k} = \binom{n}{k}$, y que $\binom{n}{1} = \binom{n}{n-1} = n$; n! representa el número de formas distintas en que se puede ordenar un conjunto de n elementos y el número combinatorio (que siempre es un número natural) es el número de formas distintas en que se pueden escoger grupos distintos de n0 elementos (sin importar su orden) entre los n0 de un conjunto].

La fórmula más famosa en que aparecen estos números es la de binomio de Newton:

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n-1}ab^{n-1} + b^n = \sum_{k=0}^n \binom{n}{k}a^{n-k}b^k$$

Demostrémosla por inducción. Es claramente cierta si n=1: $(a+b)^1=\binom{1}{0}a^1b^0+\binom{1}{1}a^0b^1$.

Suponiendo que es cierta para n, probémosla ahora para n+1:

$$(a+b)^{n+1} = (a+b)(a+b)^n = (a+b)\left[a^n + \dots + \binom{n}{k-1}a^{n-k+1}b^{k-1} + \binom{n}{k}a^{n-k}b^k + \dots + b^n\right]$$
$$= a^{n+1} + \left[\binom{n}{1} + \binom{n}{0}\right]a^nb + \dots + \left[\binom{n}{k} + \binom{n}{k-1}\right]a^{n+1-k}b^k + \dots + b^{n+1} = \sum_{k=0}^{n+1} \binom{n+1}{k}a^{n+1-k}b^k,$$

puesto que se cumple:
$$\binom{n}{k} + \binom{n}{k-1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-k+1)!} = n! \frac{(n-k+1)+k}{k!(n-k+1)!} = \binom{n+1}{k}$$
.

Ej.
$$(1+x)^6 = 1+6x+15x^2+20x^3+15x^4+6x^5+x^6$$
,
pues $\binom{6}{2} = \frac{6 \cdot 5}{2 \cdot 1} = 3 \cdot 5 = \binom{6}{4}$, $\binom{6}{3} \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} = 5 \cdot 4$

Existen infinitos números racionales e irracionales.

Observemos que entre dos racionales p > q, por cercanos que estén, existen infinitos racionales. En efecto, $r_1 = (q+p)/2$ es otro racional que se halla entre los dos. Otros infinitos, por ejemplo, son $r_2 = (q+r_1)/2$, $r_3 = (q+r_2)/2$, ... Recordamos que una forma de precisar de forma única un racional es dar su expresión decimal, que o bien tiene sólo un número finito de decimales o bien tiene además un número finito de decimales que se repiten periódicamente (7/8 = 0.875 es un ejemplo de la primera situación y 8/7 = 1.142857142857... lo es de la segunda). Pensando en la expresión decimal vuelve a estar muy claro que entre dos racionales existen otros infinitos y que podemos encontrar racionales tan próximos como queramos a uno dado.

Sin embargo, a pesar de estar tan juntos los racionales, aparecen de forma natural (ya desde los griegos) otros números que no son racionales (es decir, **irracionales**; su expresión decimal tendrá infinitos decimales no repetidos periódicamente). Por ejemplo, el teorema de Pitágoras asegura que la hipotenusa de un triángulo rectángulo con catetos de longitud 1 mide $\sqrt{2}$ unidades de longitud. Es fácil probar que $\sqrt{2}$ no es racional (demostrar que otros números famosos como π ó e son irracionales es bastante más complicado). Para hacerlo, vamos a suponer que lo es y llegaremos a una contradicción (es lo que se llama demostración por reducción al absurdo).

Como se sabe, un racional puede ser expresado de infinitas maneras diferentes como fracción p/q. De ellas, se llama irreducible a la que tiene el denominador más pequeño posible, o sea, aquella con p y q sin divisores comunes. Supongamos que $\sqrt{2} = p/q$ fracción irreducible. Entonces $p^2 = 2q^2$. Así p^2 es par, con lo que también debe serlo p (los cuadrados de pares son pares e impares los de los impares) y por tanto es de la forma p = 2m. Así pues, $2m^2 = q^2$ y q también es par, en contradicción con la suposición de que p/q fuese irreducible.

Observemos que la suma z=p+x con p racional y x irracional es necesariamente otro número irracional (si fuese z racional, sería x=z-p también racional). Y lo mismo sucede, si el racional $p\neq 0$, con su producto (se prueba casi igual; que conste que suma y producto de irracionales puede ser racional, por ejemplo, $\sqrt{2}+(-\sqrt{2})=0$ y $\sqrt{2}\sqrt{2}=2$). Conocemos ya, pues, infinitos irracionales: todos los de la forma $p+q\sqrt{2}$, con $p,q\in \mathbf{Z}$. Con esto podemos ya ver que también entre dos racionales cualesquiera, por muy próximos que estén entre sí, existen infinitos irracionales (por ejemplo, si p>q son racionales, $q+(p-q)\sqrt{2}/n$, con $n=2,3,\ldots$, son infinitos irracionales y es fácil ver que están entre uno y otro). También entre dos irracionales hay infinitos racionales e irracionales (parece bastante claro con la expresión decimal). O entre un racional y un irracional.

Aunque existan infinitos racionales e infinitos irracionales el número de irracionales es un infinito 'más gordo' que el de los racionales (dos conjuntos, finitos o infinitos, tienen el mismo número de elementos si se puede hacer una biyección entre ellos). El número de racionales es el mismo que el de enteros (o el de naturales, que también es el mismo), ya que se puede hacer corresponder a cada entero un racional y viceversa (matemáticamente se dice que **Q** es numerable) como sugiere el

esquema de la izquierda. Los irracionales (y por tanto los reales), sin embargo, no se pueden poner en biyección con \mathbf{N} (pero esto es algo más difícil probarlo).

1.2. El conjunto R

¿Qué son exactamente los números reales? Sabemos que 5, -8/5, $\sqrt{2}$, π , e,... lo son, que los tres últimos no son racionales y no se pueden expresar sin utilizar infinitos decimales, que no se pueden escribir como una fracción. Se saben resolver algunas ecuaciones con coeficientes reales, trabajar con desigualdades... Se podría trabajar sólo con esta idea intuitiva, pero en matemáticas a veces la intuición engaña. Convendría tener una definición rigurosa del conjunto R de los números reales. Lo mas serio (pero muy largo) sería construir los reales a partir de los racionales. Para ahorrar tiempo, definiremos R como un conjunto de objetos básicos que satisfacen unas propiedades dadas que tomaremos como axiomas (si se construyese R estas propiedades serían teoremas que habría que demostrar). De ellas se podrían deducir el resto de propiedades que nos permiten hacer cálculos con reales (tampoco lo haremos (seguiría siendo demasiado largo), pero es interesante leer el Spivak para ver como se hace). Así pues, definimos a partir de las propiedades vistas para Q:

Axiomas del R es un conjunto que posee las propiedades 1), ..., 6) de cuerpo conjunto R ordenado y además satisface el axioma del extremo superior

El último axioma (que vemos algo más adelante, pues exige alguna definición) distingue R de Q.

Gracias al orden de R tiene sentido la representación usual los términos 'conjunto de números reales' y 'recta real'; 'número real' y 'punto'.

A partir exclusivamente de los axiomas se podrían demostrar todo el resto de propiedades de los números reales que se habrán utilizado en cursos anteriores. Repasamos sin demostrarlas algunas referentes a desigualdades, porque suele haber problemas en el trabajo con ellas:

Teorema:

Todas las desigualdades son válidas sustituyendo los $< por < (menos los > 0 \ \delta < 0)$.

[En estos apuntes (y como siempre se hace) \sqrt{a} representará siempre sólo la **raíz positiva** del número $a \ge 0$; el otro número real cuyo cuadrado es ese número a se debe representar por $-\sqrt{a}$].

Ej. Determinemos todos los reales x que satisfacen: $\left| x^2 + \frac{2}{x} > 3 \right|$

Si x=0, el cociente no está definido. Si $x \neq 0$, como es lícito sumar o restar a ambos lados, la desigualdad equivale a: $x^2 + \frac{2}{x} - 3 = \frac{x^3 - 3x + 2}{x} > 0$. El cociente será positivo si y sólo tienen el mismo signo denominador y numerador. Para conocer el signo de éste necesitamos hallar sus raíces. Aunque esto es complicado en general, es claro aquí que x=1 lo anula, y así, dividiendo por (x-1), tenemos que $x^3-3x+2=(x-1)(x^2+x-2)=(x-1)^2(x+2)$. Como el numerador es estrictamente positivo si x > -2, $x \ne 1$ y negativo si x < -2, los x buscados son:

$$\{x: x < -2 \text{ ó } 0 < x < 1 \text{ ó } x > 1\}$$

Podríamos haber operado de otra forma, multiplicando ambos miembros por x, pero teniendo siempre cuidado con que al multiplicar por números negativos las desigualdades se invierten.

Si
$$x > 0$$
, la desigualdad equivale a $x^3 - 3x + 2 = (x-1)^2(x+2) > 0 \rightarrow \operatorname{todo} x > 0$ con $x \ne 1$.
Si $x < 0$, cambia la desigualdad: $x^3 - 3x + 2 = (x-1)^2(x+2) < 0 \rightarrow \operatorname{todo} x < -2$.

A cada $x \in \mathbb{R}$ podemos asociar un real positivo |x|, valor absoluto de x, definido por:

$$|x| = \sqrt{x^2} = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x \le 0 \end{cases}$$

|x| representa la distancia de x al origen y |x-y| la distancia de x a y (tanto si y > x como si x > y)

Propiedades inmediatas a partir de la definición son:

$$|x|^2 = x^2$$
, $|x| = |-x|$, $|xy| = |x||y|$, $-|x| \le x \le |x|$

Probemos otras que utilizaremos en muchas ocasiones:

Teorema: Sea
$$a > 0$$
: $|x| \le a \Leftrightarrow -a \le x \le a$; $|x| < a \Leftrightarrow -a < x < a$

$$\Rightarrow$$
) si $|x| \le a \Rightarrow -|x| \ge -a \Rightarrow -a \le -|x| \le x \le |x| \le a$

$$\Leftarrow$$
) sea $-a \le x \le a$; si $x \ge 0, |x| = x \le a$; si $x \le 0, |x| = -x \le a$; por tanto, $\forall x, |x| \le a$

[con el < se demostraría igual; del teorema se deduce, desde luego, que $|x| \ge a \Leftrightarrow x \le -a$ ó $a \le x$, puesto que la afirmación ' $p \Leftrightarrow q$ ' equivale a la '(no p) \Leftrightarrow (no q)']

$$(|x+y|)^2 = (x+y)^2 = x^2 + 2xy + y^2 \le |x|^2 + 2|x||y| + |y|^2 = (|x|+|y|)^2 \Rightarrow |x+y| \le |x| + |y|$$

$$|x| = |x-y+y| \le |x-y| + |y| \Rightarrow |x| - |y| \le |x-y| \; ; \; |x-y| = |x+(-y)| \le |x| + |-y| = |x| + |y|$$

$$|x| - |y| \le |x-y| \; ; \; |y| - |x| \le |x-y| \Rightarrow |x| - |y| \ge -|x-y| \Rightarrow |x| - |y| \mid |x| -$$

Ej. Determinemos los x que satisfacen: $|\sqrt{x}-2| = x$

Si x < 0, la raíz no está definida. Desarrollando (para x > 0) el valor absoluto tenemos:

$$|\sqrt{x}-2| = \begin{cases} \sqrt{x}-2 & \text{si } \sqrt{x} \ge 2, \text{ es decir, si } x \ge 4 \\ 2-\sqrt{x} & \text{si } \sqrt{x} \le 2, \text{ es decir, si } 0 \le x \le 4 \end{cases}$$

$$\text{Y, por tanto, } |\sqrt{x}-2| = x \Leftrightarrow \begin{cases} \sqrt{x} = x+2 \text{ si } x \ge 4 \Rightarrow x^2+3x+4=0 \\ \sqrt{x} = 2-x \text{ si } 0 \le x \le 4 \Rightarrow x^2-5x+4=0 \end{cases}$$

El primer polinomio de segundo grado no se anula para ningún x real. El segundo para x = 1y para x = 4 (ambos en la región $0 \le x \le 4$ en que estamos). Pero sólo es válido x = 1(|1-2|=1). El otro real x=4 no cumple la igualdad: $|2-2| \neq 4$ (nos lo hemos inventado al elevar al cuadrado).

Ej. Hallemos los x que cumplen: $|x^2-1| \le 3 \iff -3 \le x^2-1 \le 3 \Leftrightarrow -2 \le x^2 \le 4$.

la primera es cierta $\forall x$). Podemos llegar a lo mismo discutiendo las posibilidades del valor absoluto (más legar). Ambas desigualdades se cumplen si y sólo si $|x| \le 2$ ($\Leftrightarrow x^2 \le 4$; posibilidades del valor absoluto (más largo)

$$3 \geq |x^2-1| = \left\{ \begin{array}{l} x^2-1 \text{ si } |x| \geq 1 \\ 1-x^2 \text{ si } |x| \leq 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x^2 \leq 4 \text{ si } |x| \geq 1 \rightarrow 1 \leq |x| \leq 2 \\ x^2 \geq -2 \text{ si } |x| \leq 1 \rightarrow \operatorname{todo} |x| \leq 1 \end{array} \right.$$

Ej. Probemos ahora que para todo x se cumple $|-8 \le |x-5| - |x+3| \le 8$

Los teoremas aseguran: |x| - 5 < |x - 5| < |x| + 5, |x| - 3 < |x + 3| < |x| + 3. Por tanto:

$$|x-5| - |x+3| \le |x| + 5 - [|x|-3] = 8$$
 (mayor–menor) y
 $|x-5| - |x+3| \ge |x| - 5 - [|x|+3] = -8$ (menor–mayor)

También lo podríamos haber hecho expresando los valores absolutos según los valores de x.

6

Para enunciar el axioma del extremo superior necesitamos unas definiciones previas:

Un conjunto $A \subset \mathbb{R}$ se dice **acotado superiormente** (**inferiormente**) si existe $k \in \mathbb{R}$ tal que $a \le k$ ($a \ge k$) para todo $a \in A$. A un real k con esa propiedad se le llama **cota superior** (**inferior**) de A. A se dice **acotado** si lo está superior e inferiormente ($\Leftrightarrow \exists k \text{ tal que } |a| \le k$, $\forall a \in A$).

Ej. $R_+ = \{x : x \ge 0\}$ no es acotado, aunque sí lo está inferiormente (por $-\pi$, por el propio $0 \dots$).

$$A = \{x : 0 \le x < 7\}$$
 está acotado [cotas superiores: $\sqrt{93}$, 7 (la menor), ...; cotas inferiores: -13 , 0 (la mayor), ...].

$$B = \{\frac{1}{n} : n \in \mathbb{N}\}$$
 $0 \leftarrow \frac{1/3}{n} \frac{1/2}{1}$ también lo está [cotas superiores: π , 1 (la menor), ...; cotas inferiores: -3 , 0 (la mayor), ...].

Extremo superior (o supremo) de A es la menor de sus cotas superiores. Es decir:

$$s \in \mathbb{R}$$
 es el **extremo superior** o **supremo** de A [$\sup A$] si:

i) s es cota superior de A, ii) si k es cota superior de A entonces $s \le k$.

[Se define análogo extremo inferior o ínfimo de A [$\inf A$], mayor de las cotas inferiores].

El sup A puede pertenecer o no a A; si pertenece se le llama máximo, es decir:

$$M \in \mathbb{R}$$
 es el **máximo** de $A [\max A]$ si $M \in A$ y $a \le M$, $\forall a \in A$ (análogamente, $\min A$)

Ej. Z, sin cotas superiores ni inferiores, no puede tener ni supremo ni ínfimo. 7 es el supremo del A de antes (es la cota superior más pequeña), pero no es máximo, pues $7 \notin A$; 0 es su mínimo (y, por tanto, su ínfimo). Para B, 1 es el máximo (y supremo) y 0 el ínfimo (no mínimo).

Axioma del extremo superior:

Todo conjunto no vacío de números reales acotado superiormente posee extremo superior.

[no es difícil demostrar que la afirmación: 'todo conjunto no vacío de números reales acotado inferiormente posee extremo inferior' es equivalente al axioma]

Este axioma precisa la idea intuitiva de que los números reales 'llenan del todo' la recta real. Como ocurría en ${\bf Q}$, entre todo par de reales distintos existen infinitos reales (infinitos racionales e

infinitos irracionales). Pero a pesar de estar también los elementos de ${\bf Q}$ 'tan cerca unos de otro como queramos', dejan sin embargo 'huecos' entre ellos (los puntos ocupados por los infinitos irracionales). Por eso hay conjuntos acotados en ${\bf Q}$ sin supremo. Por ejemplo, $\{x\in {\bf Q}: x^2<2\}$ es un subconjunto de ${\bf Q}$ con cotas superiores racionales (3/2, por ejemplo) pero no existe ninguna en ${\bf Q}$ que sea la más pequeña. Dada cualquier cota racional siempre puedo dar otra menor (más cercana al irracional $\sqrt{2}$). El mismo conjunto, visto como subconjunto de ${\bf R}$ debe tener supremo: $\sqrt{2}$ lo es.

Los siguientes subconjuntos de R van a aparecer un montón de veces en estos apuntes:

Intervalos. Dados a < b se define:

intervalo abierto
$$(a,b) = \{x : a < x < b\}$$
; intervalo cerrado $[a,b] = \{x : a \le x \le b\}$

$$a \ y \ b \ \text{no pertenecen} \quad \bigcirc_{\mathbf{a}} \quad \bigcirc_{\mathbf{b}} \quad a \ y \ b \ \text{si pertenecen} \quad \bigcirc_{\mathbf{a}} \quad \bigcirc_{\mathbf{b}} \quad$$

$$[a,b) = \{x : a \le x < b\}; \quad (a,\infty) = \{x : a < x\}; \quad (-\infty,b) = \{x : x < b\}$$

$$(a,b) = \{x : a < x \le b\}; \quad [a,\infty) = \{x : a \le x\}; \quad (-\infty,b] = \{x : x \ge b\}$$

 $[\infty \text{ no es ningún número real, es sólo notación}]$

Se llama **entorno** de centro a y radio r > 0 a $B(a,r) = \{x : |x-a| < r\} = (a-r,a+r)$

Los intervalos abiertos y cerrados son casos particulares tipos de conjuntos que son importantes en matemáticas más avanzadas: los conjuntos abiertos y cerrados que vamos a definir:

Def. Sea $A \subset \mathbb{R}$ y $a \in A$. a es punto **interior** a A si existe r > 0 tal que $B(a,r) \subset A$. A es **abierto** si todos sus puntos son interiores.

Def. Sea $A \subset \mathbb{R}$. p es **punto de acumulación** de A si en todo entorno de p existen puntos de A distintos de p. [p no tiene que estar en A].

Es decir, si llamamos $B^*(p,r) = B(p,r) - \{r\} = \{x : 0 < |x-p| < r\}$, p es de acumulación de A si para todo r > 0 es $A \cap B^*(p,r) \neq \phi$.

Def. A es **cerrado** si contiene a todos sus puntos de acumulación.

Ej. [a,b] no es abierto porque no todos sus puntos son interiores; hay dos de ellos que no lo son: a y b (los demás sí lo son); por muy pequeño que sea r, $B(a,r) \not\subset [a,b]$ (hay puntos de B(a,r), los de la izquierda de a, que no son de [a,b]). Para ver si es cerrado, localicemos sus puntos de acumulación: cualquier $p \notin [a,b]$ no lo es, ya que un entorno suyo suficientemente pequeño no contiene ningún punto del intervalo; todo $p \in [a,b]$ (incluidos a y b) es de acumulación pues cualquier entorno suyo contiene infinitos puntos de [a,b]. Como [a,b] contiene a todos sus puntos de acumulación, es cerrado.

 $(0,\infty)$ sí es abierto, pues todos sus puntos son interiores. En efecto, sea $x \in (0,\infty)$. $\exists r = x \text{ (o cualquier } r < x \text{) tal que } B(x,r) = (0,2x) \subset (0,\infty)$. $(0,\infty)$ no es cerrado, pues $0 \notin (0,\infty)$ y es de acumulación del conjunto.

 $\{\frac{1}{n}:n\in \mathbb{N}\}$ tiene un único punto de acumulación (el 0) que no pertenece al conjunto: no es cerrado. Tampoco es abierto, pues tiene puntos no interiores (ninguno lo es).

0 1/3 1/2 1

 $\{n \in \mathbb{N} : n \text{ es divisor de } 12\} = \{1, 2, 3, 4, 6, 12\} \text{ es claro que tampoco es abierto (puntos no interiores), pero este conjunto sí es cerrado, pues contiene a todos sus puntos de acumulación (al conjunto <math>\phi$ (no hay ninguno)).

Teorema: A es cerrado si y solo si su complementario R-A es abierto.

Sea A cerrado: tomemos cualquier $a \in \mathsf{R} - A \Leftrightarrow a \notin A \Rightarrow a$ no es de acumulación de A $\Rightarrow \exists r$ tal que $B(a,r) \cap A = \phi \Rightarrow B(a,r) \subset \mathsf{R} - A \Rightarrow \mathsf{R} - A$ es abierto

Sea R-A abierto. Probemos que A es cerrado probando: ' $a \notin A \Rightarrow a$ no es de ac. de A': $a \notin A \Rightarrow a \in R-A$ abierto $\Rightarrow \exists r/B(a,r) \subset R-A \Rightarrow B(a,r) \cap A = \phi \Rightarrow a$ no es de ac.

2. Funciones, sucesiones, límites y continuidad en R

2.1. Funciones reales de variable real

Def. Una **función** f es una regla que asigna a cada uno de los números x de un conjunto $D \subset R$ un único número real f(x). A $D \equiv \text{dom} f$ se le llama **dominio** de f. $y \equiv f(x)$ es el **valor** de f en x. **Imagen** o **recorrido** de f es $f(D) \equiv \text{im} f \equiv \{f(x) : x \in D\}$.

$$f: D \to f(D)$$
$$x \to y \equiv f(x)$$

Muchas veces f admite una expresión algebraica como f(x) = |x|, $f(x) = \sin x$,...), pero otras no será expresable ni con palabras. Una f estará determinada si conocemos todos los x de D y los valores y correspondientes. Esto lleva a una definición más teórica, aunque más precisa:

Def. Una función f es un conjunto de pares ordenados que no contiene dos distintos con el mismo primer elemento.

[Así, la 'función
$$|x|$$
' sería $\{(x,|x|):x\in\mathbf{R}\}$]

(Si no se precisa más, dom f es el conjunto de x para los que f tiene sentido).

Geométricamente, f se puede representar en un sistema de coordenadas como un conjunto de puntos (**gráfica** de f) en el plano xy. Así, la gráfica de f(x) = mx + b es un conjunto de puntos que constituyen una recta (m es su pendiente y b su corte con el eje y).

Dadas dos funciones f y g se pueden definir otras funciones f+g, f-g, $f \cdot g$, f/g y $f \circ g$:

$$\begin{array}{ll} \textbf{Def.} & (f+g)(x) = f(x) + g(x) \,, \ (f-g)(x) = f(x) - g(x) \,, \ (f \cdot g)(x) = f(x) \cdot g(x) \ \text{para} \\ x \in \text{dom} f \cap \text{dom} g \,. \ (f/g)(x) = f(x)/g(x) \ \text{para} \ x \in \text{dom} f \cap \text{dom} g \cap \{x : g(x) \neq 0\} \,. \\ (f \circ g)(x) = f[g(x)] \ \textbf{(composición de} \ f \ y \ g) \ \text{para} \ x \ \text{con} \ x \in \text{dom} g \ y \ g(x) \in \text{dom} f. \end{array}$$

Suma y producto de funciones, como es inmediato ver, son conmutativas, asociativas y hay distributiva; la composición es asociativa, pero no conmutativa:

Ej. Si
$$f(x) = x^2$$
, $g(x) = 2x - 1$ se tiene que $(f \circ g)(x) = 4x^2 - 4x + 1 \neq 2x^2 - 1 = (g \circ f)(x)$.

Def.
$$f$$
 es **inyectiva** en $A \subset \mathbb{R}$ si $f(x) = f(x^*) \Rightarrow x = x^*, \ \forall x, x^* \in A$ [o lo que es lo mismo, si $x \neq x^* \Rightarrow f(x) \neq f(x^*)$].

Ej. f(x) = |x| no es inyectiva en $A = \mathbb{R}$ (a x y $x^* = -x$ les corresponde el mismo valor). Sí lo es en $A = [0, \infty)$, o en A = [-7, -1], por ejemplo.

La gráfica de una función inyectiva no corta más de una vez cualquier recta horizontal.

Def. Si
$$f: x \to y = f(x)$$
 es inyectiva existe la **función** $f^{-1}: f(A) \to A$ inversa $f^{-1}: y \to x = f^{-1}(y)$. $f^{-1}: f(A) \to A$ $f^{-1}:$

[Si no es inyectiva, o sea, si hay $x \neq x^*$ con $f(x) = f(x^*) = y$, no podemos asignar un único x al y]. En términos de pares ordenados, la función inversa es $f^{-1} = \{(y, x) : (x, y) \in f\}$.

Propiedades inmediatas son:

$$\operatorname{dom} f^{-1} = \operatorname{im} f$$
, $\operatorname{im} f^{-1} = \operatorname{dom} f$, $(f^{-1} \circ f)(x) = (f \circ f^{-1})(x) = x$

La gráfica de f(x) y la de $f^{-1}(x)$ son simétricas respecto a la recta y=x [pues (x,y) e (y,x) lo son]. Para escribir $y=f^{-1}(x)$ explícitamente (cuando se pueda; en general será imposible) se despeja la x en función de y de y=f(x) y se cambia el nombre a las variables.

Ej. La inversa de $y = x^3 - 5$ es $y = (x+5)^{1/3}$ [pues $x = (y+5)^{1/3}$ al despejar].

Def. f es **estrictamente creciente** en $A \subset \mathbb{R}$ si $\forall x, x^* \in A$ con $x < x^*$ se tiene $f(x) < f(x^*)$. Es **estrictamente decreciente** si $f(x) > f(x^*)$. Es **creciente** si $f(x) \le f(x^*)$. Es **decreciente** si $f(x) \ge f(x^*)$. Cualquiera de ellas se dice **monótona (estrictamente monótonas,** las dos primeras).

Ej. f(x) = [x] = máximo entero menor o igual que x [llamada 'parte entera de x'] es creciente en todo R [no estrictamente].

Ej. f(x) = |x| es estrictamente decreciente en $\{x \le 0\}$ y es estrictamente creciente en $\{x \ge 0\}$.

Teorema: f estrictamente monótona en $A \Rightarrow f$ inyectiva en A [y existe su f^{-1}] [si $x \neq x^*$ o bien es $f(x) < f(x^*)$ o bien $f(x) > f(x^*)$]

[Para ver si una f es monótona (y por tanto inyectiva) acudiremos en el futuro a las derivadas].

Definición y gráficas de las funciones elementales:

$$y = x^n, y = x^{1/n} = \sqrt[n]{x}, n \in \mathbb{N}$$

Cuando n impar, $y = x^n$ es inyectiva en todo R y es f(R) = R. Su inversa $x^{1/n}$ está definida en R y su imagen es R. Si n par, no es inyectiva en R. Se llama entonces $y = x^{1/n}$ a la inversa de $y = x^n$ restringida al intervalo $[0, \infty)$, con lo que la $y = x^{1/n}$ tiene por dominio e imagen $[0, \infty)$ (la función $y = -x^{1/n}$, para n par, es la inversa de $y = x^n$ restringida a $(-\infty, 0]$).

Las curvas (cónicas):

No definen una única función (por ejemplo, (●) define dos:

$$y = \frac{b}{a}\sqrt{a^2 - x^2}$$
 e $y = -\frac{b}{a}\sqrt{a^2 - x^2}$, $x \in [-a, a]$).

Funciones trigonométricas (siempre en radianes):

Unas definiciones antes: f se dice **par** si f(-x) = f(x) e **impar** si f(-x) = -f(x); f es de **periodo** f o f-**periódica** si $f(x+f) = f(x) \ \forall x$.

sen x y cos x son de periodo 2π , sen x es impar y cos x es par, tan x es π -periódica e impar.

Aceptaremos la definición clásica de sen x [dado un número x, se toma el punto P sobre la circunferencia unidad tal que x sea la longitud del arco que une (1,0) con P; el ángulo orientado formado por las semirrectas que unen (0,0) con ambos puntos es el ángulo de x radianes y sen x es la ordenada de P], a pesar de no ser nada rigurosa, por basarse en el concepto de longitud de una curva cuya definición no tenemos bien establecida.

[Se le puede dar rigor utilizando integrales, lo mismo que a sen x : ver Spivak].

A partir del sen x definimos:

$$\boxed{\cos x = \sin\left(x + \frac{\pi}{2}\right)}, \forall x; \left[\tan x = \frac{\sin x}{\cos x}\right], \text{ si } x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbf{Z}.$$

[Nos será más útil esta definición de $\cos x$ que la equivalente 'abscisa del punto P'. Las otras clásicas funciones trigonométricas $\cot x$, $\sec x$ y $\csc x$ no serán utilizadas en estos apuntes, puesto que se pueden expresar fácilmente en términos de las dadas].

Admitimos que sus gráficas son las de arriba y repasemos algunas de sus propiedades clásicas [algunas otras se proponen en los problemas].

11

Recordemos primero la equivalencia entre grados y radianes. Como un ángulo recto son $\frac{\pi}{2}$ radianes (la longitud de la circunferencia unidad es 2π) o 90° , es $a^\circ = \frac{a\pi}{180}$ radianes. En particular, los famosos ángulos de 30° , 45° y 60° son, respectivamente, $\frac{\pi}{6}$, $\frac{\pi}{4}$ y $\frac{\pi}{3}$ radianes.

Las funciones trigonométricas tienen una infinidad de valores exactos conocidos como:

que son inmediatos, y los siguientes que se deducen fácilmente del teorema de Pitágoras:

(además de los similares de otros cuadrantes). De Pitágoras también se deduce:

$$\operatorname{sen}^2 a + \cos^2 a = 1 \implies 1 + \tan^2 a = \frac{1}{\cos^2 a}$$

A partir de las últimas igualdades es fácil hallar, dada cualquiera de las razones trigonométricas de un ángulo y el cuadrante en el que se encuentra, los valores de las restantes:

Ej. Si
$$\tan\alpha=-\frac{4}{3}$$
 y $\alpha\in(\frac{3\pi}{2},2\pi)$, los valores del seno y el coseno de este ángulo son: $\cos\alpha=+\frac{1}{\sqrt{1+\tan^2\alpha}}=\frac{1}{\sqrt{1+(16/9)}}=\frac{3}{5}$, $\sin\alpha=\cos\alpha$ $\tan\alpha=-\frac{4}{5}$.

Más difíciles de probar son las siguientes importantes identidades (válidas $\forall a, b$):

$$\operatorname{sen}(a \pm b) = \operatorname{sen} a \cos b \pm \cos a \operatorname{sen} b$$
, $\cos(a \pm b) = \cos a \cos b \mp \operatorname{sen} a \operatorname{sen} b$

pero a partir de ellas ya es fácil comprobar todas las siguientes (de hecho, nos bastaban las fórmulas para a+b, pues las de a-b son consecuencia inmediata de ellas). Por ejemplo:

$$| \sec 2a = 2 \sec a \cos a, \cos 2a = \cos^2 a - \sec^2 a | = 1 - 2 \sec^2 a = 2 \cos^2 a - 1$$

$$\Rightarrow | \sec^2 a = \frac{1}{2} [1 - \cos 2a], \cos^2 a = \frac{1}{2} [1 + \cos 2a]$$

Ej. Calculemos usando las igualdades anteriores el $\cos \frac{35\pi}{12}$.

Primero observemos que $\cos \frac{35\pi}{12} = \cos(\frac{35\pi}{12} - 2\pi) = \cos \frac{11\pi}{12} = \cos(\pi - \frac{\pi}{12}) = -\cos \frac{\pi}{12}$.

Como
$$\cos^2(\frac{\pi}{12}) = \frac{1}{2}[1 + \cos\frac{\pi}{6}] = \frac{2+\sqrt{3}}{4} \implies \cos\frac{35\pi}{12} = -\frac{1}{2}\sqrt{2+\sqrt{3}}$$
.

Podemos dar una expresión más bonita: $-\cos\frac{\pi}{12} = -\cos(\frac{\pi}{3} - \frac{\pi}{4}) = -\frac{1}{2}\frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2}\frac{\sqrt{2}}{2} = -\frac{\sqrt{2}+\sqrt{6}}{4}$.

Veamos otras propiedades que también utilizaremos. Ésta es casi inmediata:

$$\tan(a \pm b) = \frac{\tan a \pm \tan b}{1 \mp \tan a \tan b} \implies \tan 2a = \frac{2\tan a}{1 - \tan^2 a}$$

En las siguientes basta desarrollar los segundos miembros:

$$sen a sen b = \frac{1}{2} [cos (a-b) - cos (a+b)]
cos a cos b = \frac{1}{2} [cos (a+b) + cos (a-b)]
sen a cos b = \frac{1}{2} [sen (a+b) + sen (a-b)]$$

En la última, llamando $A=a+b\ \ {\rm y}\ B=b-a$, resulta ser $a=\frac{A-B}{2}\ {\rm y}\ b=\frac{A+B}{2}$ con lo que:

$$\operatorname{sen} A - \operatorname{sen} B = 2 \operatorname{sen} \frac{A - B}{2} \cos \frac{A + B}{2}$$

Para definir las **funciones trigonométricas inversas** debemos restringir los intervalos de definición para que sen x, cos x y tan x sean inyectivas:

$$\arcsin x \ (\dim = [-1, 1], \ \operatorname{im} = [-\frac{\pi}{2}, \frac{\pi}{2}])$$

es la inversa de sen x restringida a $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

$$\arccos x \ (dom = [-1, 1], im [0, \pi])$$

es la inversa de $\cos x$ restringida a $[0, \pi]$.

(El arco seno de un x no es simplemente 'el ángulo cuyo seno vale x'; hay infinitos x con el mismo seno; incluso hay 2 si sólo nos preocupamos de $[0,2\pi]$).

$$\arctan x \ \left[\operatorname{dom} = \mathbf{R} \,, \ \operatorname{im} = \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \right]$$
es la inversa de $\tan x$ definida en $\left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$.

Ej.
$$\arctan(\tan \frac{3\pi}{4}) = \arctan(-1) = -\frac{\pi}{4}$$
.

La función arctan x aparece muchas veces en el cálculo, por ejemplo hallando primitivas.

Exponenciales y logaritmos:

 b^x es fácil de definir si $x \in \mathbb{Q}$ [$b^{m/n} = \sqrt[n]{b^m}$] pero no si x es irracional (¿qué es 2^{π} ?) y por tanto $\log_b x$ tampoco tiene sentido. Definiremos primero el logaritmo neperiano así:

$$\log x \equiv \ln x = \int_1^x \frac{dt}{t}, \text{ para } x > 0$$

 $[\log x \text{ será siempre neperiano, el decimal } \log_{10} x \text{ no se utilizará}]$

que es la forma más corta de definirlo, aunque habría que esperar a las integrales para deducir todas sus propiedades. Admitimos que $\log x$ es estrictamente creciente en $\{x>0\}$ y que su imagen es R. También admitimos las propiedades clásicas:

$$\log(a \cdot b) = \log a + \log b$$
 , $\log \frac{a}{b} = \log a - \log b$, $\log(a^c) = c \log a$, $\sin a, b > 0$

A partir de la función logaritmo, definimos:

es la inversa de $\log x$, con lo que su dominio es R y su imagen x > 0.

$$x^b \equiv e^{b \log x}, x > 0;$$

$$b^x \equiv e^{x \log b}, b > 0, \forall x;$$

$$\log_b x \equiv \frac{\log x}{\log b}, \quad b > 0, b \neq 1, \\ x > 0.$$

De estas definiciones se podrían deducir:

$$b^0 = 1$$
, $b^{x+y} = b^x b^y$, $b^{-x} = \frac{1}{b^x}$, $(b^x)^y = b^{xy}$ [b^{x^y} representa siempre $b^{(x^y)}$], ...

Las definiciones son naturales, si han de satisfacerse estas propiedades. Así, por ejemplo:

$$x^b = [\text{exponencial inversa del logaritmo}] = (e^{\log x})^b = [\text{pues } (b^x)^y = b^{xy}] = e^{b \log x}$$

[La definición de arriba de x^b sólo vale para los x > 0 si b es un real cualquiera, pero no olvidemos que, por ejemplo, si b = 7 ó b = 1/3 está x^b definida $\forall x$].

Más en general (por este mismo argumento) se define:

$$f(x)^{g(x)} = e^{g(x)\log[f(x)]}$$
, para los x tales que $f(x) > 0$.

[Según la definición dada, el número e sería aquel que cumpliese $\log e = \int_1^e \frac{dt}{t} = 1$. Utilizando las propiedades de la integral se podría aproximar su valor, pero esto será mucho más corto hacerlo cuando estudiemos Taylor. Admitimos que aproximadamente es $e \approx 2.7182818...$].

Acabamos con las funciones hiperbólicas (seno, coseno y tangente hiperbólicas) definidas:

Tienen propiedades similares a las trigonométricas (todas muy fáciles de comprobar):

$${\rm sh}\left(-x
ight) = -\,{\rm sh}\,x$$
 , ${\rm ch}\left(-x
ight) = {\rm ch}\,x$, ${\rm th}\left(-x
ight) = -\,{\rm th}\,x$, ${\rm ch}^2x - {\rm sh}^2x = 1$, $1 - {\rm th}^2x = \frac{1}{{\rm ch}^2x}$,...

2.2. Sucesiones de números reales

 $\{a_n\}=a_1,a_2,...,a_n,...$ es una **sucesión**: a cada natural n corresponde un real a_n .

Matemáticamente, como una función es una regla que asigna a cada elemento de un conjunto un único elemento de otro:

Def. Una sucesión de números reales es una función de N en R
$$a: N \to R$$
 $n \to a(n) \equiv a_n$

Una sucesión tiende hacia a si en todo entorno de a, por pequeño que sea, están casi todos los términos de la sucesión (todos salvo un número finito). Por ejemplo $\{\frac{1}{n}\}=1,\frac{1}{2},\frac{1}{3},...$ tiende hacia 0 ya que fijado un entorno cualquiera del origen todos los términos de la sucesión a partir de uno dado acaban metiéndose dentro. Precisando:

Def. $\{a_n\}$ tiene por límite a (o tiende hacia a o converge hacia a) si para todo $\varepsilon > 0$ existe un número natural N tal que para todo natural $n \ge N$ es $|a_n - a| < \varepsilon$. Lo representaremos por $\lim_{n \to \infty} a_n = a$ ó $a_n \to a$. Si una sucesión $\{a_n\}$ no es convergente se dice **divergente**.

Esta definición es la primera de las definiciones rigurosas de límite de aspecto similar que veremos en los apuntes. Hagamos unas cuantas observaciones sobre ella:

Decir que $|a_n-a|<\varepsilon$ es equivalente a que $a_n\in B(a,\varepsilon)$. Para **todo** ε hemos de encontrar un N tal que $a_N,a_{N+1},a_{N+2},...$ estén dentro del entorno.

El N no es único: si los $a_n \in B(a, \varepsilon)$ para $n \ge N$, también están dentro para $n \ge N^*$ si $N^* \ge N$. No se trata de hallar el menor N, basta con dar uno para el que se cumpla.

En sucesiones escribiremos simplemente $a_n \to a$, pues sólo tiene sentido el límite para $n \to \infty$ (en funciones, la x podrá tender a 0, a ∞ , a $-\infty$,... y sí habrá que precisarlo).

- **Ej.** Formalicemos que $\frac{1}{n} \to 0$: dado cualquier ε (por pequeño que sea) existe N tal que $\frac{1}{N} < \varepsilon$. Por tanto, si $n \ge N$, $|\frac{1}{n} 0| \le \frac{1}{N} < \varepsilon$. Se ve que N depende del ε dado (si $\varepsilon = 0,1$, basta tomar N = 11, pero para $\varepsilon = 0,001$ debemos tomar N = 1001 o número mayor).
- **Ej.** La sucesión $\{(-1)^n\} = -1, 1, -1, 1, ...$ diverge, pues está claro que no todos sus términos a partir de un N están en todo entorno de -1, ni de 1, ni de cualquier otro real. Aunque haya infinitos términos en cualquier entorno de 1 (por ejemplo) otros infinitos se escapan. Si $\varepsilon = 2$ todos los a_n pertenecen al entorno B(1,2), pero esto debe ocurrir $\forall \varepsilon$ y no sólo para ε grandes.

El cálculo de límites con ε y N es, en general, complicado. Pero, gracias a los teoremas que veremos (demostrados utilizando los ε), sólo en contadas ocasiones y para sucesiones muy extrañas deberemos en el futuro acudir a la definición. Para manejar ésta (en ejemplos y en teoremas) se suele partir de lo que uno quiere hacer pequeño ($|a_n - a|$) y, tras algunos $< \delta \le$ (la desigualdad triangular suele aparecer), se llega a una expresión de la que sea ya fácil decir para qué n es $< \varepsilon$:

Ej. Probemos sólo con la definición (pronto será innecesaria) que $\{a_n\} = \left\{\frac{2\sqrt{n}+5^{-n}}{\sqrt{n}+1}\right\} \to 2$.

$$\Big|\frac{2\sqrt{n}+5^{-n}}{\sqrt{n}+1}-2\,\Big|=\frac{|5^{-n}-2|}{\sqrt{n}+1}\leq \frac{5^{-n}+2}{\sqrt{n}}\leq \frac{3}{\sqrt{n}}<\varepsilon \iff \sqrt{n}>\frac{3}{\varepsilon} \iff n>\frac{9}{\varepsilon^2}$$

Por tanto, dado cualquier ε , si N es un natural $> 9/\varepsilon^2$, para $n \ge N$ se cumple que $|a_n - 2| < \varepsilon$. [No es la única forma de precisar el N, podríamos, por ejemplo, no haber quitado el 1 del denominador y habríamos llegado a otro N; lo que, desde luego, no funcionaría sería empezar haciendo $|a_n - 2| \le |a_n| + 2$, pues no habría forma de hacer esto menor que cualquier ε].

Teorema: $\{a_n\}$ convergente $\Rightarrow \{a_n\}$ acotada.

Sea ε =1 (por fijar un número); sabemos que $\exists N / \text{ si } n \ge N \Rightarrow |a_n| - |a| \le |a_n - a| < 1$, $|a_n| \le |a| + 1$. Por tanto, llamando $M = \max\{|a_1|, \dots, |a_{N-1}|, |a| + 1\}$ se tiene $|a_n| \le M \, \forall n$.

No es cierto que toda sucesión acotada sea convergente. Por ejemplo, $\{(-1)^n\}$ es acotada y diverge. Lo que sí se deduce del teorema (no $q \Rightarrow$ no p) es que una sucesión que no está acotada seguro que diverge.

Definimos ahora un par de tipos importantes de sucesiones **divergentes** (y no acotadas):

Def. $\begin{cases} \{a_n\} \text{ diverge hacia } +\infty \left(\lim_{n \to \infty} a_n = \infty \right) \text{ si } \forall K \exists N \ / \ \forall n \ge N \text{ se cumple } a_n \ge K. \\ \{a_n\} \text{ diverge hacia } -\infty \left(\lim_{n \to \infty} a_n = -\infty \right) \text{ si } \forall K \exists N \ / \ \forall n \ge N \text{ se cumple } a_n \le K. \end{cases}$

 $[+\infty \text{ y } -\infty \text{ son sólo símbolos, no números; estas sucesiones no convergen a ningún número real}]$

Ej. $\frac{n^2+1}{2n} \to \infty$, pues $\forall K, \frac{n^2+1}{2n} \ge \frac{n}{2} > K$ si $n \ge N$ con N cualquier natural $\ge 2K$. -1,0,-2,0,-3,0,-4,... no diverge hacia $-\infty$. A pesar de que contenga términos tan pequeños como queramos, no es cierto que dado **cualquier** K queden a su izquierda todos los términos a partir de un N (para los K < 0 es evidente que es falso). Claramente, tampoco tiende a 0.

Def. $\{a_n\}$ es **creciente** si $a_n \le a_{n+1} \ \forall n$. $\{a_n\}$ es **decreciente** si $a_n \ge a_{n+1} \ \forall n$. Cualquiera de las dos se dice **monótona**.

Ej. 13,23,33,43,53,... (no acotada, divergente hacia $+\infty$) es creciente. 1,1,1/2,1/2,1/3,1/3,1/4,1/4,... es decreciente (y tiende hacia 0).

Teorema: $\{a_n\}$ creciente y acotada superiormente $\Rightarrow \{a_n\}$ convergente. $\{a_n\}$ decreciente y acotada inferiormente $\Rightarrow \{a_n\}$ convergente.

El axioma del extremo superior asegura que $\{a_n\}$ tiene supremo al que llamamos a. Veamos que a es el límite de $\{a_n\}$: Sea $\varepsilon>0$, $\exists N$ tal que $a_N>a-\varepsilon$ (si no, existirían cotas más pequeñas que a). Por tanto, si $n\geq N$, $a\geq a_n\geq a_N>a-\varepsilon\Rightarrow |a_n-a|=a-a_n<\varepsilon$. [Análoga la otra].

Dada una sucesión $\{a_n\}$, se llama **subsucesión** de $\{a_n\}$ a cualquier sucesión formada escogiendo ordenadamente infinitos términos de $\{a_n\}$, es decir:

Def.
$$\{a_{n_j}\}=a_{n_1},a_{n_2},\cdots \text{ con los } n_j \in \mathbb{N} \text{ tales que } n_1 < n_2 < \cdots \text{ es subsucesión de } \{a_n\}$$

Ej.
$$\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \frac{1}{10}, \dots, 1, \frac{1}{11}, \frac{1}{111}, \frac{1}{1111}, \frac{1}{11111}, \dots, 6, \frac{1}{25}, \frac{1}{26}, \frac{1}{27}, \frac{1}{28}, \dots$$
 son subsucciones de $\{\frac{1}{n}\}$.

No lo es, en cambio, $\frac{1}{2}$, 1, $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{6}$, $\frac{1}{5}$, ..., formada con elementos desordenados de $\{\frac{1}{n}\}$.

Está claro que si $\{a_n\} \to a$ también cualquier subsucesión suya $\{a_{n_j}\} \to a$. Por tanto, una forma de probar que una sucesión no tiene límite es encontrar dos subsucesiones suyas que converjan hacia límites distintos o alguna subsucesión que no converja.

[A las subsucesiones de las sucesiones divergentes pueden pasarle, sin embargo, todo tipo de cosas. Por ejemplo, 1,1,2,1,2,3,1,2,3,4,... tiene subsucesiones convergentes a infinitos límites distintos (a cada número natural), otras que divergen a $+\infty$ y otras que no tienen límite ni finito ni infinito; -1,0,-2,0,-3,0,-4,... tiene subsucesiones que tienden a 0 y otras a $-\infty$; 1,2,3,4,... no tiene subsucesiones convergentes... Si la sucesión es acotada veremos que sí podemos sacar alguna conclusión].

16

Con los siguientes teoremas podremos calcular un montón de límites de sucesiones sin usar ε y N (sólo los más sencillos, otros muchos exigen técnicas de límites de funciones y habrá que esperar).

Teorema: Si
$$\{a_n\} \to a$$
 y $\{b_n\} \to b$ entonces: $\{a_n+b_n\} \to a+b$, $\{a_n-b_n\} \to a-b$, $\{a_nb_n\} \to ab$, y si $b \neq 0$, $\{\frac{a_n}{b_n}\} \to \frac{a}{b}$.

- +) Dado ε , $\exists N_a/n \ge N_a \Rightarrow |a_n-a| < \frac{\varepsilon}{2} \quad \text{y} \quad \exists N_b/n \ge N_b \Rightarrow |b_n-b| < \frac{\varepsilon}{2}$. Por tanto, $|a_n+b_n-(a+b)| \le |a_n-a|+|b_n-b| < \varepsilon$, si $n \ge N = \max\{N_a,N_b\}$.
- -) Casi igual que +).
- ·) $|a_nb_n-ab|=|a_nb_n-ab_n+ab_n-ab|\leq |a_n-a||b_n|+|b_n-b||a|$. Hagamos pequeño esto: $\{b_n\}\to b\Rightarrow {\rm dado}\ \varepsilon,\ \exists N_b\ {\rm tal}\ {\rm que}\ n\geq N_b\Rightarrow |b_n-b|<\frac{\varepsilon}{2|a|}\ {\rm si}\ a\neq 0$ (y si a=0, $|b_n-b||a|=0<\frac{\varepsilon}{2}$);
 - $\{b_n\}$ convergente está acotada: $\exists B$ tal que $|b_n| < B$; y como $\{a_n\} \to a$, $\exists N_a / n \ge N_a \Rightarrow |a_n a| < \frac{\varepsilon}{2B}$. Por tanto: $|a_n b_n ab| < \frac{\varepsilon B}{2B} + \frac{\varepsilon |a|}{2|a|} = \varepsilon$.
- /) $\left|\frac{a_n}{b_n} \frac{a}{b}\right| = \frac{|ba_n ab + ab ab_n|}{|bb_n|} \le \frac{K\varepsilon}{2K} + \frac{|a||b|K\varepsilon}{2|a||b|K} = \varepsilon$, si $n \ge N = \max\{N_1, N_2, N_3\}$ donde: como $\{b_n\} \to b \ne 0$, $\exists N_1 / n \ge N_1 \Rightarrow |b_n| \ge K > 0$; como $\{b_n\} \to b$, $\exists N_2 / n \ge N_2 \Rightarrow |b_n b| < \frac{|b|K\varepsilon}{2|a|}$; y como $\{a_n\} \to a$, $\exists N_3 / n \ge N_3 \Rightarrow |a_n a| < \frac{K\varepsilon}{2}$.

Las operaciones que involucran las sucesiones que tienden a $+\infty$ o $-\infty$ son sólo algo más complicadas y vienen a formalizar la forma intuitiva en que se trabaja con los infinitos:

Teorema: Sean
$$\{c_n\} \to 0$$
, $\{p_n\} \to p > 0$, $\{q_n\} \to q < 0$, $\{a_n\}$ acotada, $\{i_n\} \to \infty$.
Entonces: $\{a_n + i_n\} \to \infty$, $\{a_n - i_n\} \to -\infty$, $\{c_n a_n\} \to 0$, $\{a_n/i_n\} \to 0$, $\{p_n i_n\} \to \infty$, $\{q_n i_n\} \to -\infty$, $\{i_n/p_n\} \to \infty$, $\{i_n/q_n\} \to -\infty$, ...

[como $\{c_n\}, \{p_n\}$ y $\{q_n\}$ están acotadas, los resultados con $\{a_n\}$ son también ciertos con ellas]

Probemos para cansarnos poco sólo un par de ellas, por ejemplo la primera y la última:

Sea $|a_n| \le A$, $\forall K, a_n + i_n \ge i_n - A \ge K$, pues $i_n \ge K + A$, si n es suficientemente grande. Si n grande $i_n > 0$ y $\exists Q/Q < q_n < 0 \Rightarrow \forall K$, $i_n/q_n < i_n/Q < K$, pues $i_n > QK$ si n grande.

Podemos abreviar el teorema (¡pero recordando que es sólo una notación!) escribiendo:

"acot
$$\pm \infty = \pm \infty$$
", " $0 \cdot \text{acot} = 0$ ", " $\frac{\text{acot}}{\infty} = 0$ ", " $(\pm 1) \cdot \infty = \pm \infty$ ", " $\frac{\infty}{\pm 1} = \pm \infty$ ", ...

y también es cierto: " $\infty + \infty = \infty$ ", " $\infty \cdot (\pm \infty) = \pm \infty$ ", " $(-1) \cdot (-\infty) = \infty$ ", ... Es tentador escribir " $1/0 = \infty$ ", pero es falso en general [$\{(-1)^n/n\} \to 0$, pero su inversa $\{(-1)^n n\}$ no tiene límite]. Sí es cierto que si $\{p_n\} \to p > 0$, $\{c_n\} \to 0$ y $c_n > 0$ entonces $p_n/c_n \to \infty$.

Los límites con potencias se deducirán de los límites de funciones. Por ahora, admitimos:

Teorema: Sean
$$\{b_n\} \to b$$
, $\{p_n\} \to p > 0$, $\{q_n\} \to q < 0$, $\{i_n\} \to \infty$. Entonces: $\{p_n^{b_n}\} \to p^b$, $\{i_n^{p_n}\} \to \infty$, $\{i_n^{q_n}\} \to 0$, $\{p_n^{i_n}\} \to \{0 \text{ si } 0$

Podríamos resumir: " $\infty^1 = \infty$ ", " $\infty^{-1} = 0$ ", " $2^\infty = \infty$ " ó " $\left(\frac{1}{2}\right)^\infty = 0$ ". Obsérvese que en ninguna la base es negativa [por ejemplo, no está escrito $(-\infty)^1$ ni $(-2)^\infty$]: las potencias racionales (y menos las reales, definidas a través del logaritmo) pueden no existir [la sucesión $\{(-2)^{1/2n}\}$, por ejemplo, no existe para ningún n].

A pesar de tanto teorema aún quedan las llamadas indeterminaciones que resumimos:

$$\infty - \infty$$
 , $0 \cdot \infty$, $\frac{0}{0}$, $\frac{\infty}{\infty}$, 1^{∞} , 0^{0} , ∞^{0}

Hay que leerlas en términos de sucesiones. Así, la primera dice que si dos sucesiones $\to \infty$ no se puede, en principio, asegurar hacia qué tiende su diferencia (por ejemplo: $n-n^2 \to -\infty$, $n-n \to 0$ y $n^2-n \to \infty$). Para resolver algunas bastará un truco algebraico como los de los ejemplos siguientes, pero en otros casos, insistimos, se necesitará L'Hôpital o Taylor para halla los límites.

Ej. Gracias a todo el trabajo con los ε ahora ya casi nunca habrá que acudir a la definición.

$$\frac{n^2 + (-1)^n}{3n^3 + 2n} = \frac{1/n + (-1)^n/n^3}{3 + 2/n^2} \to \frac{0 + 0}{3 + 0} = 0 , \quad \frac{n^3 + (-1)^n}{3n^3 + 2n} = \frac{1 + (-1)^n/n^3}{3 + 2/n^2} \to \frac{1 + 0}{3 + 0} = \frac{1}{3} ,$$

$$\frac{n^4 + (-1)^n}{3n^3 + 2n} = \frac{n + (-1)^n/n^3}{3 + 2/n^2} \to \frac{\infty + 0}{3 + 0} = \infty .$$

[Las tres son indeterminaciones y hay que reescribir la sucesión; en el cálculo hemos utilizado varios teoremas: $n^3 = n \cdot (n \cdot n) \to \infty$ porque el producto de dos sucesiones que tienden a ∞ tiende a ∞ ; $(-1)^n/n^3 \to 0$ porque "acotado/ ∞ =0"; $1+(-1)^n/n^3 \to 1$ porque la suma de sucesiones tiende a la suma de los límites; límites de cocientes, más límites con ∞ ...].

Ej.
$$\frac{\sqrt{n^3-1}-n}{5n^2-7\sqrt{n}} = \frac{\sqrt{1-\frac{1}{n^3}}-\frac{1}{\sqrt{n}}}{5\sqrt{n}-\frac{7}{n}} \rightarrow \frac{1-0}{5\cdot\infty-0} = 0$$
, o bien, $\frac{\sqrt{n^3-1}-n}{5n^2-7\sqrt{n}} = \frac{\sqrt{\frac{1}{n}-\frac{1}{n^4}}-\frac{1}{n}}{5-\frac{7}{n\sqrt{n}}} \rightarrow \frac{0-0}{5-0} = 0$.

[Aquí hemos utilizado además que $\lim \sqrt{a_n} = \sqrt{\lim a_n}$ y " $\sqrt{\infty} = \infty$ " que son casos particulares de los límites de potencias vistos; lo probaremos directamente en problemas].

Como se ve, para calcular límites de cocientes de polinomios o raíces de ellos basta comparar los términos con la máxima potencia de numerador y denominador (y se podrán hacer a ojo: si el numerador es más pequeño, el cociente tenderá a 0, si ambos son del mismo orden aparecen los coeficientes de los términos más gordos y si el denominador es mayor el límite será + o – infinito).

Ej.
$$(-1)^n \frac{13n}{n+1}$$
 diverge, pues hay subsucesiones con distintos límites $(pares \rightarrow 13, mpares \rightarrow -13)$.

Ej.
$$\sqrt{n^3-1}-n=n\left[\sqrt{n-\frac{1}{n^2}}-1\right]\to \infty$$
 $(\infty\cdot(\infty-1)=\infty$

[Hemos sacado factor común (lo habitual para $\infty - \infty$) para dejar claro que término mandaba].

Ej.
$$\sqrt{n} - \sqrt{n-1} = \frac{[\sqrt{n} - \sqrt{n-1}][\sqrt{n} + \sqrt{n-1}]}{\sqrt{n} + \sqrt{n-1}} = \frac{1}{\sqrt{n} + \sqrt{n-1}} \to 0$$

[Los ∞ eran del mismo orden y ha habido que racionalizar; sacar factor común no servía aquí].

18

Ej.
$$\frac{1+\cdots+n}{n^2+1}=\frac{n(n+1)}{2(n^2+1)}\to \frac{1}{2}$$
 [El número de sumandos crece con n ; no es cierto que como $\frac{n}{n^2}\to 0$ nuestra sucesión también lo haga].

Ej.
$$\frac{n^2}{(n-7)!} = \frac{n^2}{(n-7)(n-6)} \frac{1}{(n-5)!} \to 1 \cdot 0 = 0$$

Ej.
$$[(-1)^n + \sqrt{n}]^3 \to \text{``(acot} + \infty)^3 = \infty^3 = \infty$$
''

Ej.
$$\frac{3^n + 2^{n+1}}{3^{n+1} + 2^n} = \frac{1 + 2(2/3)^n}{3 + (2/3)^n} \to \frac{1+0}{3+0} = \frac{1}{3}$$

Ej. Calculemos el límite de a^n para todos los $a \in \mathbb{R}$ sin hacer uso de teoremas no demostrados:

```
si a>1, a=1+h, con h>0; desarrollando el binomio: a^n=(1+h)^n=1+nh+\cdots>nh>K, \forall K, si n gordo \Rightarrow a^n\to\infty; si a=1, 1^n=1,1,1,...\to 1 (esto no es ninguna indeterminación); si a\in(0,1), 1/a>1, a^n=\frac{1}{(1/a)^n}\to ``\frac{1}{\infty}=0"; si a=0, 0^n=0,0,0,...\to 0 (no estaba en el teorema de las potencias); si a\in(-1,0), a^n=(-1)^n(-a)^n\to ``acot\cdot 0=0" (tampoco estaba); si a=-1, (-1)^n=-1,1,-1,1,... diverge; si a<-1, a^n=(-1)^n(-a)^n; como (-a)^n\to\infty, a^n toma valores grandes positivos y negativos \Rightarrow diverge (ni siquiera tiende a+\infty o-\infty).
```

[Cuando veamos que sen x, $\cos x$, $\log x$, ... son funciones continuas en todo su dominio podremos decir que si $\{b_n\} \rightarrow b$ entonces:

$$\{\operatorname{sen} b_n\} \to \operatorname{sen} b$$
, $\{\cos b_n\} \to \cos b$, $\{\log b_n\} \to \log b$ $(b > 0)$, ...].

Damos para acabar definiciones y teoremas importantes en matemáticas avanzadas (las usaremos en las demostraciones de 2.4). El primer teorema es uno de esos típicos de matemáticas que aseguran que existe algo pero no dicen ni cómo es ese algo ni como buscarlo (y parecen no servir para nada):

Teorema: Toda sucesión acotada posee una subsucesión convergente.

Como $\{a_n\}$ es acotada, existe un intervalo cerrado $[c_0,b_0]\supset \{a_n\}$. Dividimos $[c_0,b_0]$ en otros dos iguales. En uno de ellos, al menos, hay infinitos términos de $\{a_n\}$. Le llamamos $[c_1,b_1]$. Volvemos a dividir y a elegir $[c_2,b_2]$ con infinitos a_n ... Tenemos así una sucesión de intervalos $[c_k,b_k]$, cada uno con infinitos términos de la sucesión. La sucesión c_0,c_1,\ldots es creciente y acotada superiormente por b_0 . La b_0,b_1,\ldots es decreciente y cotada inferiormente por c_0 . Así ambas tienen límite y es

intuitivamente claro que el límite de las dos es el mismo. Le llamamos a. Construimos una subsucesión de $\{a_n\}$ que tiende hacia a: elegimos $a_{n_0} \in [c_0,b_0]$, $a_{n_1} \in [c_1,b_1]$ con $n_1 > n_0$ (podemos, pues hay infinitos a_n en $[c_{n_1},b_1]$),... No es difícil formalizar que $a_{n_j} \to a$.

Ej. $\{\text{sen }n\} = 0.841.., 0.909.., 0.141.., -0.757.., -0.959.., -0.279.., 0.656.., 0.989.., 0.412.., ... [funciones trigonométricas siempre en radianes]; parece no tener límite y se prueba (es difícil) que es así. Como es acotada, tendrá subsucesiones convergentes, pero no sabemos cuáles.$

La siguiente definición tampoco tendrá mucha utilidad práctica para nosotros:

Def.
$$\{a_n\}$$
 es sucesión de **Cauchy** si $\forall \varepsilon \exists N \in \mathbb{N}$ tal que $\forall n, m \geq N$ se tiene que $|a_n - a_m| < \varepsilon$. [la diferencia entre dos términos suficientemente altos es tan pequeña como queramos]

Parece claro que si todos $\{a_n\}$ se acercan a un límite se acercarán también entre sí, es decir, que toda sucesión convergente será de Cauchy. Lo contrario también es cierto para las sucesiones en \mathbb{R} :

Teorema:
$$\{a_n\}$$
 converge $\Leftrightarrow \{a_n\}$ es de Cauchy

- $\Rightarrow) \ \forall \varepsilon \ \exists N \ / \ k \geq N \Rightarrow |a_k a| < \frac{\varepsilon}{2} \ ; \ \text{así pues, si} \ n, m \geq N, |a_n a_m| \leq |a_n a| + |a_m a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$
- \Leftarrow) Se puede probar que: $\{a_n\}$ de Cauchy \Rightarrow $\{a_n\}$ acotada (la demostración es parecida a la de las convergentes). Por lo tanto, existe subsucesión $\{a_{n_j}\}$ convergente hacia algún real a. Veamos que toda la sucesión $\{a_n\}$ tiende hacia ese a:

$$\{a_n\}$$
 de Cauchy $\Rightarrow \exists N_1$ tal que $n, n_j \ge N_1 \Rightarrow |a_n - a_{n_j}| < \frac{\varepsilon}{2}$. $\{a_{n_j}\}$ convergente $\Rightarrow \exists N_2$ tal que $n_j \ge N_2 \Rightarrow |a_{n_j} - a| < \frac{\varepsilon}{2}$.

Por tanto: $|a_n-a|\leq |a_n-a_{n_j}|+|a_{n_j}-a|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \ \ {\rm si} \ \ n\geq N=\max\{N_1,N_2\}$.

Un conjunto se dice **completo** si toda sucesión de Cauchy converge hacia un elemento del propio conjunto. Acabamos de ver que $\bf R$ lo es. Pero, por ejemplo, $\bf Q$ no lo es: hay sucesiones de Cauchy en $\bf Q$ que no convergen a un racional (como la 3, 3.1, 3.14, 3.1415, 3.14159, ... obtenida añadiendo decimales de π , que es de Cauchy pero su límite se escapa de $\bf Q$). Ello se debe a la inexistencia en $\bf Q$ del axioma del extremo superior (por esta misma razón, en $\bf Q$ hay sucesiones monótonas y acotadas sin límite en $\bf Q$ o sucesiones acotadas sin subsucesiones convergentes en $\bf Q$). La definición de conjunto completo es importante en análisis funcional.

El último resultado relaciona conjuntos cerrados y sucesiones y lo utilizaremos en demostraciones:

Teorema: Si
$$\{a_n\} \to a$$
 y $\{a_n\} \subset A$ cerrado $\Rightarrow a \in A$

Pues el límite de una sucesión, si tiene infinitos términos distintos, es un punto de acumulación de ella, y, por tanto, también de A que es cerrado. Y si $\{a_n\}$ toma sólo un número finito de valores, debe ser $a_n=a$ a partir de un N, con lo que, claramente, $a\in A$.

[Para abiertos es falso: hay sucesiones $\{a_n\} \subset A$ abierto cuyo límite $\notin A$, como le ocurre a $\{\frac{1}{n}\} \subset (0,1)$].

2.3. Límites de funciones y funciones continuas

[Es decir,
$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{tal que si} \ x \in B^*(a, \delta) \Rightarrow f(x) \in B(L, \varepsilon)$$
].

[En la definición está implícito que a es punto interior de $\mathrm{dom} f \cup \{a\}$ para que f tenga sentido en $B^*(a,\delta)$; también está claro que no importa nada el valor de f en a, ni siquiera si f está o no definida en el punto].

Gráficamente: Para todo debe ser posible encontrar tal que esté dentro de la banda evidentemente el δ no es único: si hemos encontrado

un δ nos vale también cualquier δ^* más pequeño].

Ej. $f_1(x) = x^2$. Gráficamente parece claro que $\lim_{x \to a} f_1(x) = a^2 \ \forall a$. Comprobémoslo para a = 0:

Dado cualquier ε debe ser $|x^2-0^2|=|x|^2<\varepsilon$ si |x-0|=|x| es suficientemente pequeño. Tomando $\delta=\sqrt{\varepsilon}$ se tiene que:

$$0<|x|<\delta \Rightarrow |x|^2<\varepsilon.$$

[Para otros *a* no es fácil hallar el límite utilizando simplemente la definición, pero será un límite trivial cuando dispongamos de los teoremas que veremos].

Ej. $f_2(x) = x^3 \arctan \frac{1}{x}$. Esta función no está definida en 0, pero veamos que $f_2(x) \to 0$ si $x \to 0$. Como $|x^3 \arctan \frac{1}{x}| \le \frac{\pi}{2}|x^3| = \frac{\pi}{2}|x|^3$, bastará tomar $|x| < \delta = \sqrt[3]{\frac{2\varepsilon}{\pi}}$ para que $|x^3 \arctan \frac{1}{x}| < \varepsilon$.

[Como siempre, para trabajar con definiciones de este tipo partimos de lo que queremos hacer pequeño y utilizamos desigualdades crecientes hasta que quede claro el δ que garantiza que lo inicial es $< \varepsilon$].

 $\mathbf{Ej.} \ \ f_3(x) = \left\{ \begin{array}{ll} -1 \ \ \mathrm{si} \ x < 0 \\ 1 \ \ \mathrm{si} \ x > 0 \end{array} \right. \ \ \text{Es claro que} \ \ f_3(x) \underset{x \rightarrow a}{\rightarrow} \left\{ \begin{array}{ll} -1 \ \ \mathrm{si} \ a < 0 \\ 1 \ \ \mathrm{si} \ a > 0 \end{array} \right. \ \ \ (\mathrm{basta} \ \mathrm{tomar} \ \ \delta < |a| \).$

Pero no tiene límite cuando $x \to 0$. Para $\varepsilon < 1$ hay x con $|x| < \delta$ para los que $|f_3(x) - L| \ge \varepsilon$, por pequeño que sea δ , sea quien sea L (1, -1 u otro número).

[La negación de que $f \to L$ si $x \to a$ es esta afirmación: existe un ε tal que para todo δ existen x con $|x-a| < \delta$ pero cumpliendo $|f(x)-L| \ge \varepsilon$ (la negación de que 'en toda clase hay algún estudiante que, si se examina, aprueba', es que 'hay una clase en que todos los estudiantes que se examinan suspenden')].

Pero f_3 se acerca a 1 ó -1 cuando $x \to 0$ si sólo miramos los x positivos o negativos.

Definamos límites laterales:

Como $0 < |x-a| < \delta \Leftrightarrow 0 < x-a < \delta$ y $0 < a-x < \delta$, es inmediato que:

Teorema:
$$\lim_{x \to a} f(x) = L \Leftrightarrow \text{ existen } \lim_{x \to a^+} f(x) \text{ y } \lim_{x \to a^-} f(x) \text{ , y coinciden con } L$$

Por tanto, si no existe un límite lateral, o si existiendo no coinciden, no existe el límite.

Ej.
$$f_3(x) \underset{x \to 0^+}{\to} 1$$
, pues $\forall \varepsilon$, para cualquier δ que escojamos, si $0 < x < \delta$ es $|f_3(x) - 1| = 0 < \varepsilon$. $f_3(x) \underset{x \to 0^+}{\to} -1$, pues $\forall \varepsilon$ para cualquier δ , $0 < -x < \delta \Leftrightarrow -\delta < x < 0 \Rightarrow |f_3(x) - (-1)| = 0 < \varepsilon$. Esto prueba que no existe el $\lim_{x \to 0} f_3(x)$. [Sí existen $\lim_{x \to 1^-} f_3(x) = \lim_{x \to 1^+} f_3(x) = 1 = \lim_{x \to 1} f_3(x)$].

En general, **para ver si una** f **tiene límite no será necesario calcular los laterales**. Sólo lo haremos cuando cuando la f sea diferente a ambos lados de a (como en el ejemplo anterior en x = 0).

El siguiente teorema será muy útil para demostrar fácilmente bastantes otros usando las propiedades de las sucesiones y, en el futuro, para calcular límites de sucesiones que aún no sabemos hacer.

Teorema:
$$\lim_{x \to a} f(x) = L \Leftrightarrow \textbf{toda} \text{ succesión } \{a_n\} \subset \text{dom} f - \{a\} \text{ con } \{a_n\} \underset{n \to \infty}{\to} a$$
 satisface $\{f(a_n)\} \underset{n \to \infty}{\to} L$.

- \Rightarrow) Sabemos que $\forall \varepsilon \exists \delta / \text{ si } 0 < |x-a| < \delta \Rightarrow |f(x)-L| < \varepsilon$. Como $a_n \to a$, $\exists N / n \ge N \Rightarrow |a_n-a| < \delta \Rightarrow |f(a_n)-L| < \varepsilon$, con lo que $\{f(a_n)\} \to L$.
- a
- \Leftarrow) Si f(x) no tiende a L existe $\varepsilon > 0$ tal que para todo $\delta > 0$ existe algún x con $0 < |x a| < \delta$ pero $|f(x) L| > \varepsilon$. En particular, para todo n existe algún a_n con $0 < |a_n - a| < \frac{1}{n}$ pero |f(x)| > 0

En particular, para todo n existe algún a_n con $0 < |a_n - a| < \frac{1}{n}$ pero $|f(a_n) - L| > \varepsilon$: existe, pues, $\{a_n\}$ que converge hacia a pero con $\{f(a_n)\} \not \to L$.

Gracias al teorema, para ver que una f **no tiene límite** en a bastará encontrar una $\{a_n\}$ (formada por puntos de domf) que tienda hacia a y tal que $\{f(a_n)\}$ diverja, o bien encontrar dos sucesiones $\{a_n\}$ y $\{b_n\}$ tales que $\{f(a_n)\}$ y $\{f(b_n)\}$ tiendan hacia distintos límites. Esto puede permitir formalizar de forma sencilla la no existencia de límites sin tener que acudir a la negación de la definición:

- **Ej.** Como $a_n = \frac{(-1)^n}{n} \to 0$ pero $\{f_3(a_n)\} = -1, 1, -1, 1, ...$ diverge $\Rightarrow f_3$ no tiene límite en x = 0. [Para otras sucesiones $b_n \to 0$ sí existe el límite de $\{f_3(b_n)\}$ (por ejemplo, para cualquier $\{b_n\}$ con $b_n > 0$ dicho límite es 1); pero el teorema pide que **todas** converjan y que el límite de **todas** sea el mismo].
- **Ej.** $f_4(x) = \begin{cases} 1 & \text{si } x \text{ racional} \\ 0 & \text{si } x \text{ irracional} \end{cases}$. Intuitivamente parece claro que f_4 no tiene límite para ningún a (racional o irracional). Por ejemplo, no puede tender f_4 hacia 1

nal o irracional). Por ejemplo, no puede tender f_4 hacia 1 cuando $x \to a$ pues por pequeño que sea el δ hay x del entorno (los irracionales) con $|f_4(x)-1| > \varepsilon$ (para los $\varepsilon < 1$). Lo mismo sucede con otros posibles límites. Esto es mucho más fácil de formalizar con sucesiones: f_4 no tiene límite en a pues si $\{a_n\}$ es una sucesión de racionales y $\{b_n\}$ de

irracionales tendiendo hacia a, se tiene que $f_4(a_n) \to 1$ mientras que $f_4(b_n) \to 0$. (Estas sucesiones siempre existen, pues en todo entorno de a hay infinitos racionales e irracionales).

Las siguientes definiciones incluyen " ∞ " (**no** son límites normales; como siempre ∞ es sólo un símbolo):

Def.
$$\lim_{x \to \infty} f(x) = L \left[\lim_{x \to \infty} f(x) = L \right]$$
 si $\forall \varepsilon > 0 \exists M$ tal que si $x > M \left[x < M \right] \Rightarrow |f(x) - L| < \varepsilon$

Def.
$$\lim_{x \to a} f(x) = \infty \quad [-\infty] \text{ si } \forall K \; \exists \delta > 0 \text{ tal que si } 0 < |x-a| < \delta \Rightarrow f(x) > K \quad [f(x) < K]$$

Def.
$$\lim_{x \to \infty} f(x) = \infty$$
 si $\forall K \exists M \text{ tal que si } x > M \Rightarrow f(x) > K$

[Análogamente
$$\lim_{x\to a^-} f(x) = -\infty$$
 , $\lim_{x\to -\infty} f(x) = \infty$, ...]

Un par de interpretaciones geométricas:

Ej. La función $f_5(x) = \frac{1}{x} \to 0$ cuando $x \to \infty$ pues $\forall \varepsilon > 0 \ \exists M = \frac{1}{\varepsilon}$ tal que si $x > \frac{1}{\varepsilon} \Rightarrow |\frac{1}{x} - 0| < \varepsilon$, y tiende a ∞ cuando $x \to 0^+$ pues $\forall K \ \exists \delta = \frac{1}{K}$ tal que si $0 < x - 0 < \frac{1}{K} \Rightarrow \frac{1}{x} > K$.

Ej.
$$f_6(x) = \sqrt[3]{x} + \operatorname{th} x \underset{x \to \infty}{\longrightarrow} \infty$$
, porque $\forall K \exists M \text{ tal que } f_6(x) > \sqrt[3]{x} - 1 > K \text{ si } x > M = (K+1)^3$.

Se pueden probar relaciones entre estos nuevos 'límites' y los de sucesiones. Por ejemplo: **Teorema:**

$$\lim_{x\to\infty} f(x) = L \iff \text{toda sucesión } \{a_n\} \subset \text{dom} f \text{ con } a_n \underset{n\to\infty}{\longrightarrow} \infty \text{ cumple } f(a_n) \underset{n\to\infty}{\longrightarrow} L$$

En particular, como la sucesión $\{n\} \to \infty$, deducimos que $f(x) \underset{x \to \infty}{\to} L \Rightarrow f(n) \underset{n \to \infty}{\to} L$.

Teorema:

$$\lim_{x \to a} f(x) = \infty \Leftrightarrow \text{toda sucesión } \{a_n\} \subset \text{dom} f - \{a\} \text{ con } a_n \underset{n \to \infty}{\to} a \text{ cumple } f(a_n) \underset{n \to \infty}{\to} \infty$$

Como consecuencia de los límites de sucesiones se puede demostrar ahora fácilmente:

Teorema:
$$f(x) \underset{x \to a}{\to} L \ , \ g(x) \underset{x \to a}{\to} M \ \Rightarrow \ f \pm g \underset{x \to a}{\to} L \pm M \ , \ f \cdot g \underset{x \to a}{\to} L \cdot M \ .$$
 Si además $M \neq 0 \ \Rightarrow \ \frac{f}{g} \underset{x \to a}{\to} \frac{L}{M} \ .$ Lo anterior es válido si se sustituye a por a^+ , a^- , $+\infty$ ó $-\infty$.

Todas se demuestran igual, relacionando sucesiones y funciones. Por ejemplo, la primera: Sea cualquier $a_n \to a$, $a_n \ne a$. Por tender la suma de sucesiones a la suma de los límites:

$$\lim_{n\to\infty}(f\pm g)(a_n)=\lim_{n\to\infty}f(a_n)\pm\lim_{n\to\infty}g(a_n)=L\pm M \ \Rightarrow \ \lim_{n\to\infty}(f\pm g)(x)=L\pm M$$

La **continuidad** se define usando el concepto de límite. Ahora importa el valor de f(a):

Def.

$$f$$
 es **continua** en un punto a (interior al dominio de f) si $\lim_{x \to a} f(x) = f(a)$, es decir, si $\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{tal que}$ si x cumple $|x-a| < \delta$ entonces $|f(x)-f(a)| < \varepsilon$.

[luego f no es continua si no existe límite o no existe f(a) o si existiendo no coinciden]

Ej. Tres sencillas funciones continuas en cualquier punto a son:

 $f(x) = c : \forall \varepsilon > 0$ vale cualquier δ para que $|x - a| < \delta \Rightarrow |c - c| = 0 < \varepsilon$.

 $f(x) = x : \forall \varepsilon > 0$ basta tomar $\delta = \varepsilon$ para que $|x - a| < \delta = \varepsilon \Rightarrow |x - a| < \varepsilon$. $f(x) = |x| : \forall \varepsilon > 0 \text{ tomando } \delta = \varepsilon \text{ es } ||x| - |a|| \le |x - a| < \varepsilon \text{ si } |x - a| < \delta$.

Ej. $f_2(x) = x^3 \arctan \frac{1}{x}$ no es continua en 0, pues no está definida $f_2(0)$. Pero si definimos $f_2(0) = 0$ sí lo es, pues vimos que $f_2(x) \underset{x \to 0}{\to} 0$. Si fuese $f_2(0) = 7$ sería discontinua. f_3 no puede hacerse continua en 0 definiendo adecuadamente $f_3(0)$, pues no existe $\lim_{x\to 0} f_3(x)$.

El teorema similar de límites nos da la caracterización de la continuidad con sucesiones: Teorema:

$$f$$
 es continua en $a \Leftrightarrow \mathbf{toda}$ sucesión $\{a_n\} \subset \mathrm{dom} f$ con $a_n \xrightarrow[n \to \infty]{} a$ cumple $f(a_n) \xrightarrow[n \to \infty]{} f(a)$

[por tanto $\lim_{n\to\infty} f(a_n) = f(\lim_{n\to\infty} a_n)$ si f es continua (no, si es discontinua)]

De los teoremas para los límites de funciones se deduce también:

Si f y g son continuas en a entonces f+g, f-g, $f\cdot g$ son continuas en a. Si además $g(a)\neq 0$, también f/g es continua en a.

Por ejemplo, $\lim_{x \to a} (f \cdot g)(x) = \sup_{d \in \text{limites}} = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = f(a) \cdot g(a)$. Las otras igual.

[Se podrían probar directamente a partir de la definición; la de la suma por ejemplo:

 $\forall \varepsilon, |f(x) + g(x) - f(a) - g(a)| \le |f(x) - f(a)| + |g(x) - g(a)| < \varepsilon \text{ si } |x - a| < \delta = \min\{\delta_1, \delta_2\},$ siendo δ_1 y δ_2 tales que: $|f(x)-f(a)|<\frac{\varepsilon}{2}$ si $|x-a|<\delta_1$, $|g(x)-g(a)|<\frac{\varepsilon}{2}$ si $|x-a|<\delta_2$, y estos δ existen por ser f y g continuas en a].

$$g$$
 continua en a y f continua en $g(a) \Rightarrow f \circ g$ continua en a .

Teorema:
$$g$$
 continua en a y f continua en $g(a) \Rightarrow f \circ g$ continua en a .
$$a_n \to a \underset{g \text{ cont. en } a}{\Rightarrow} g(a_n) \to g(a) \underset{f \text{ cont. en } g(a)}{\Rightarrow} (f \circ g)(a_n) = f(g(a_n)) \to f(g(a)) = (f \circ g)(a)$$

f continua en a y estrictamente monótona en un entorno de a $\Rightarrow f^{-1}$ continua en f(a) .

Sea f estrictamente creciente (si fuera decreciente, sería análogo).

 $\forall \varepsilon$ buscamos δ tal que $|y-f(a)| < \delta \Rightarrow |f^{-1}(y)-a| < \varepsilon$

[o sea,
$$f(a) - \delta < y < f(a) + \delta \Rightarrow a - \varepsilon < f^{-1}(y) < a + \varepsilon$$
].

El dibujo sugiere $\delta = \min\{f(a+\varepsilon) - f(a), f(a) - f(a-\varepsilon)\} > 0$.

Entonces: $f(a) - \delta < y < f(a) + \delta \Rightarrow f(a - \varepsilon) < y < f(a + \varepsilon)$ [porque $f(a) + \delta \le f(a + \varepsilon)$, $f(a - \varepsilon) \le f(a) - \delta$] $\Rightarrow a - \varepsilon < f^{-1}(v) < a + \varepsilon$ [porque f^{-1} creciente].

Hemos definido la continuidad en un punto. En **intervalos**:

Def.
$$f$$
 es continua en (a,b) si es continua en todo x de (a,b) . f es continua en $[a,b]$ si es continua en (a,b) , $\lim_{x\to a^+} f(x) = f(a)$ y $\lim_{x\to b^-} f(x) = f(b)$.

[No podemos decir simplemente 'continua en todo $x \in [a, b]$ ', pues a y b no son puntos interiores].

Comprobemos que

todas las funciones elementales (de 2.1) son continuas en su dominio

Los **polinomios** $P(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$ son continuos en todo R (ya que son sumas y productos de funciones continuas en todo a de R).

Las **funciones racionales** (cocientes de polinomios $\frac{P(x)}{Q(x)}$) son continuas $\forall a$ con $Q(a) \neq 0$.

Las **raíces** $\sqrt[n]{x}$ son continuas en su dominio: R si *n* impar, R₊ si *n* par (en x=0 hablamos de $\lim_{x\to 0^+} \sqrt[2n]{x}$), por ser inversas de funciones estrictamente crecientes y continuas.

Las funciones trigonométricas y sus inversas también son continuas en su dominio:

Comencemos probando que
$$f(x) = \operatorname{sen} x$$
 es continua $\forall a \in \mathbb{R} : \forall \varepsilon > 0$, si $|x-a| < \delta = \varepsilon$ se cumple: $|\operatorname{sen} x - \operatorname{sen} a| = |2 \operatorname{sen} \frac{x-a}{2} \cos \frac{x+a}{2}| \le 2|\operatorname{sen} \frac{x-a}{2}| \le 2\frac{|x-a|}{2} < \varepsilon$.

 $\cos x = \sin(x + \frac{\pi}{2})$ es continua $\forall a$ por ser composición de funciones continuas $\forall a$.

$$\tan x = \frac{\sin x}{\cos x}$$
 es continua si $\cos x \neq 0$, es decir, si $x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$.

 $\arcsin x$, $\arccos x$ en [-1,1] y $\arctan x \ \forall x$ son inversas de monótonas continuas.

Para probar la continuidad de **exponenciales** y **logaritmos**, con la definición dada, hay que esperar al estudio de las integrales. El teorema fundamental de cálculo integral que probaremos en 5.2 asegurará que

 $\log x \equiv \int_1^x \frac{dt}{t}$ es continua $\forall x > 0$. De ahí deducimos la continuidad de las demás: e^x es continua en R por ser inversa de continua. Y por ser composición de continuas: $x^b \equiv \mathrm{e}^{b \log x}$ continua en $(0, \infty)$ [si b > 0 en $[0, \infty)$, tomando 0 como su valor en 0], $b^x \equiv \mathrm{e}^{x \log b} \ (b > 0)$ continua $\forall x > 0$.

Las **funciones hiperbólicas**, sumas y cocientes con denominadores no nulos de funciones continuas, son también continuas en todo su dominio R.

Combinando todo lo anterior podemos afirmar que muchísimas funciones son continuas en casi todos los puntos sin necesidad de aplicar la definición (el trabajo con los ε lo hemos hecho en los teoremas, sobre todo en los de sucesiones, y sólo para funciones muy raras habrá que acudir a ellos).

Ej.
$$f_7(x) = \frac{e^{x/(x-1)} + \arctan[\log(x^2+1)] - \cos^3 x + \sqrt[4]{x}}{\sinh x \left[3 + \arcsin\frac{x}{3}\right]}$$
 es continua en $(0,1) \cap (1,3]$:

el numerador lo es en $[0,\infty)-\{1\}$, pues $\arctan[\log{(x^2+1)}]-\cos^3x$ es continua en **R** (suma de composiciones de continuas), la raíz en \mathbf{R}_+ y la exponencial si $x\neq 1$; el denominador es continuo en [-3,3] (por el $\arcsin{\frac{x}{3}}$) y sólo se anula en 0 (arcsen como mucho vale $-\frac{\pi}{2}$ y sólo $\sinh{0}=0$).

Teniendo tantas funciones continuas el cálculo de límites será casi siempre un cálculo tonto, pues bastará sustituir x por a en la expresión de la función: $f_7(x) \to f_7(2)$ si $x \to 2$, por ejemplo, por ser f_7 continua en 2. También son sencillos algunos límites con **infinitos**, utilizando propiedades análogas a las de sucesiones (demostrables basándose en aquellas, y utilizando los teoremas que relacionan límites de funciones y de sucesiones (o directamente)) que podemos esquematizar:

y que, como siempre, hay que leer en sentido de límites; por ejemplo, " $c \pm \infty = \pm \infty$ " significa que si f tiende a c y g a + ó a - ∞ (cuando $x \to a$, a^+ , a^- , $+\infty$ ó $-\infty$), la suma f+g, respectivamente, tiende a $+\infty$ ó $-\infty$. La notación +0 (-0) significa aquí que $f\to 0$ siendo $f > 0 \ (f < 0).$

[Con esto, se tiene que
$$\lim_{x \to 1^+} f_7(x) = \infty \left(\frac{c + \infty}{p} \right)$$
 y $\lim_{x \to 1^-} f_7(x) = \frac{\arctan[\log 2] - \cos^3 1 + 1}{\sinh[3 + \arcsin\frac{1}{3}]}$].

Como en sucesiones, a pesar de tanto teorema quedan límites difíciles: los **indeterminados**, la mayoría de los cuales (los que no admitan trucos algebraicos como los de sucesiones) sólo sabremos hallar una vez que estudiemos las derivadas (por ejemplo, el $\lim_{x\to 0^+} f_7$ si $x\to 0^+$, que es de la forma $\frac{0}{0}$). Recordamos que las indeterminaciones son:

$$\infty - \infty$$
 , $0 \cdot \infty$, $\frac{0}{0}$, $\frac{\infty}{\infty}$, 1^{∞} , 0^{0} , ∞^{0}

El siguiente teorema permite calcular un límite indeterminado que pronto necesitaremos:

Teorema: Si
$$f(x) \le g(x) \le h(x)$$
 y $\lim f = \lim h = L \Rightarrow \lim g = L$ $(x \to a, a^+, a^-, +\infty \circ -\infty, \text{todos valen})$

$$L-\varepsilon < f(x) \le g(x) \le h(x) < L+\varepsilon \Rightarrow |g(x)-L| < \varepsilon$$
, y los < de los extremos se dan pues $f,h \to L$.

Calculemos el siguiente límite indeterminado (que será inmediato con L'Hôpital o Taylor), usando sólo propiedades trigonométricas (basadas en la no muy rigurosa definición de senx, que ya hemos dicho que aceptamos) y el teorema anterior:

$$\frac{\sec x}{x} \xrightarrow{x \to 0} 1 \text{ . Si } x > 0 \text{ , por el significado geométrico de } \sec x \text{ y } \tan x \text{ :}$$

$$\sec x < x < \frac{\sec x}{\cos x} \Rightarrow 1 < \frac{x}{\sec x} < \frac{1}{\cos x} \Rightarrow \cos x < \frac{\sec x}{x} < 1 \text{ .}$$

$$\operatorname{Como } \cos x \xrightarrow{x \to 0^{+}} 1 \text{ , el teorema anterior prueba el límite para } x > 0 \text{ .}$$

Si x < 0, por ser $\frac{\sin x}{x} = \frac{\sin(-x)}{-x}$, reducimos el límite al anterior.

[Más fáciles de calcular serían (no son indeterminados): $\lim_{x \to \frac{\pi}{2}} \frac{\operatorname{sen} x}{x} = \frac{2}{\pi}$, $\lim_{x \to \pm \infty} \frac{\operatorname{sen} x}{x} = \frac{\operatorname{acot}}{+\infty} = 0$ "].

Hallando límites será, en ocasiones, conveniente realizar cambios de variable como:

Teorema:
$$[t = g(x)]$$
 g continua en a , $g(x) \neq g(a)$ si $x \neq a$ y $\lim_{t \to g(a)} f(t) = L \Rightarrow \lim_{x \to a} f(g(x)) = L$

[casi igual que la demostración de la continuidad de $f \circ g$]

Ej. Con este teorema podemos deducir del límite indeterminado hallado algún otro del tipo $\frac{0}{0}$:

$$\lim_{x \to -5} \frac{\operatorname{sen}(x+5)}{x+5} = 1 \quad \left[t = g(x) = x+5 \text{ es continua, no se anula si } x \neq -5 \text{ y } \frac{\operatorname{sen}t}{t} \to 1 \right].$$

Otro que exige algo de ingenio (pero que será muy fácil con los desarrollos de Taylor):

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{1}{1 + \cos x} \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2} = \frac{1}{2} \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 = \frac{1}{2}.$$

Complicándolo un poco:
$$\lim_{x \to 0} \frac{\tan(x^2)}{x} = \lim_{x \to 0} \frac{\sin(x^2)}{x^2} \lim_{x \to 0} \frac{x}{\cos(x^2)} = 1 \cdot \frac{0}{1} = 0.$$

Como ningún teorema nos dice nada sobre el siguiente, tendremos que acudir a la definición:

$$\lim_{x\to\infty}\frac{\tan{(x^2)}}{x} \text{ no existe porque la función se va a } \pm\infty \text{ infinitas veces } \left(\text{si } x=\left[\frac{\pi}{2}+k\pi\right]^{1/2}\right)$$
 y por tanto su gráfica se sale de la banda limitada por $y=L+\varepsilon$ e $y=L-\varepsilon$ sea cuál sea el L .

De cada límite de funciones se deduce una infinidad de límites de sucesiones gracias a los teoremas que los relacionan (pero por ahora solo sabemos calcular muy pocos indeterminados). Por ejemplo:

Ej. $\lim_{n\to\infty} \cos \frac{\sqrt{n}}{n+1} = 1$, porque $\frac{\sqrt{n}}{n+1} \to 0$, $\cos x$ es continua en x = 0 y $\cos 0 = 1$.

Por razones análogas: $\left\{\operatorname{sen} \frac{n\pi}{2n+1}\right\} \to \operatorname{sen} \frac{\pi}{2} = 1$, $\left\{\log \frac{n+5}{n}\right\} \to \log 1 = 0$,

Ej.
$$\lim_{n\to\infty} n^2 \operatorname{sen} \frac{1}{n^2} = 1$$
, porque $\frac{1}{n^2} \to 0$ y $g(x) = \frac{\operatorname{sen}(x)}{x} \to 1$ cuando $x \to 0$.

Admitimos ahora estos límites de sucesiones que necesitaremos en series (no son calculables aún):

$$\frac{\log n}{n^a} \to 0 , \forall a > 0 ; \quad \sqrt[n]{n} \to 1 ; \quad \{(1+c_n)^{1/c_n}\} \to e , \text{ si } \{c_n\} \to 0$$

[El primero ($\frac{\infty}{\infty}$), será consecuencia de que: $\lim_{x\to\infty}\frac{\log x}{x^a}=\lim_{L'\to 0}\frac{1/x}{ax^{a-1}}=0$. De él sale el segundo: $x^{1/x}=e^{\log x/x}\to e^0=1$. El último (1^∞) se deducirá de que $(1+x)^{1/x}\to e$. En vez de con integrales, se puede definir el número e como el límite de la sucesión creciente y acotada $\left(1+\frac{1}{n}\right)^n$.

Hallemos los límites de alguna sucesión más utilizando los anteriores y/o resultados ya vistos:

Ej.
$$\frac{\sqrt[3]{n} + \log n}{\sqrt[3]{n + \log n}} = \frac{1 + \frac{\log n}{\sqrt[3]{n}}}{\sqrt[3]{1 + \frac{\log n}{n}}} \to 1$$
 [pues hemos admitido que $\log n$ es mucho más pequeño que $n^a, a > 0$]

Ej.
$$n^{1/n-1} \to \infty^{-1} = 0$$
"; $n^{1/(n-1)} = (n^{1/n})^{\frac{n}{n-1}} \to 1^1 = 1$; $(7n^3 - 1)^{1/n} = (n^{1/n})^3 \left(7 - \frac{1}{n^3}\right)^{1/n} \to 1^3 \cdot 7^0 = 1$

[el primero no era indeterminado; en los otros usamos $(a^b)^c = a^{bc}$ y el límite admitido $n^{1/n} \to 1$]

Ej.
$$\left[\frac{6n+1}{3n+2}\right]^{-n^2} \rightarrow \text{``} 2^{-\infty} = \frac{1}{2^{\infty}} = 0 \text{'`} ; \quad \left[\frac{3n^2+1}{3n^2+2}\right]^{-n^2} = \left[\left(1 - \frac{1}{3n^2+2}\right)^{-(3n^2+2)}\right]^{\frac{n^2}{3n^2+2}} \rightarrow e^{1/3}$$

[la primera otra vez era sencilla, pero como $1^{-\infty}$ es indeterminado, en la segunda buscamos el número e identificando la $\{c_n\} \rightarrow 0$ y poniendo lo que sobra fuera del corchete]

2.4. Teoremas sobre funciones continuas en intervalos

Teorema:

f continua en c y f(c) > 0 [< 0] $\Rightarrow \exists \delta > 0$ tal que f(x) > 0 [< 0] si $x \in (c - \delta, c + \delta)$

Dado
$$\varepsilon = f(c)$$
, $\exists \delta > 0$ / si $|x - c| < \delta \Rightarrow |f(x) - f(c)| < f(c) \Rightarrow f(x) - f(c) > -f(c) \Rightarrow f(x) > 0$ [si $f(c) < 0$ tomamos $\varepsilon = -f(c)$]

Teorema: (de Bolzano para funciones continuas):

$$f$$
 continua en $[a,b]$, $f(a) < 0 < f(b) \Rightarrow$ existe algún $c \in (a,b)$ tal que $f(c) = 0$

[La gráfica corta el eje x en algún punto (el teorema no dice dónde), quizás en más de uno].

Sea $A = \{x \in [a,b] : f(x) \le 0\} \ne \phi \ (a \in A)$ y acotado superiormente (por b) \Rightarrow existe $c = \sup A$. Probemos que f(c) = 0:

Si
$$f(c) < 0 \Rightarrow \exists \delta / f(x) < 0$$
 en $(c - \delta, c + \delta)$

y c no sería cota de A. $\frac{c}{c}$

Si
$$f(c) > 0 \Rightarrow \exists \delta / f(x) > 0$$
 en $(c - \delta, c + \delta)$

y habría cotas menores.

En ninguno de los dos casos $\,c\,$ podría ser el supremo de $\,A\,$.

Teorema:

f continua en $[a,b] \Rightarrow f$ toma todos los valores comprendidos entre f(a) y f(b)

[Normalmente tomará más y si f no es continua, no tiene que tomarlos, como muestran los dibujos de la izquierda].

Si f(a) < f(b), sea p con f(a) . La función <math>g = f - p es continua en [a,b] con g(a) < 0 < g(b). El teorema de Bolzano asegura que existe $c \in (a,b)$ con g(c) = 0, es decir, con f(c) = p. Si f(a) > p > f(b), como -f es continua y $-f(a) < -p < -f(b) \Rightarrow \exists c \in (a,b)$ tal que -f(c) = -p.

Hemos hablado de conjuntos acotados y definido máximo de un conjunto, pero no de una función. De modo natural, se dice que f está **acotada** en $A \subset \mathbb{R}$ si lo está el conjunto $f(A) = \{f(x) : x \in A\}$ y se define **valor máximo** de f en A como el máximo del conjunto f(A) (en caso de que exista). Análogamente se define **valor mínimo** de f en A

Ej. La función del dibujo (que sí es acotada) no tiene valor máximo en [a,b], aunque sí valor mínimo (se alcanza en b y su valor es 0); está claro que no es continua en [a,b].

Teorema: f continua en $[a,b] \Rightarrow f$ acotada en [a,b]

Si f no estuviese acotada superiormente podríamos escoger un $x_n \in I \equiv [a,b]$ con $f(x_n) > n$ para cada $n \in \mathbb{N}$. Como $\{x_n\}$ acotada, existe $\{x_{n_j}\} \to x_o \in I$ (por ser cerrado). Como f es continua en x_o tendríamos $f(x_{n_j}) \to f(x_o)$, lo que es imposible pues $\{f(x_{n_j})\}$ no está acotada $(>n_i)$ y no puede converger. [Análogamente se vería que está acotada inferiormente].

El teorema **no es cierto** para (a,b) ó $[a,\infty)$:

Ej. f(x) = 1/x es continua pero no acotada en (0,1) y a f(x) = x le pasa lo mismo en $[0,\infty)$.

f continua en $[a,b] \Rightarrow$ existen los valores máximo y mínimo de f en [a,b]Teorema:

O sea, existen
$$y, z \in [a, b]$$
 tales que $f(z) \le f(x) \le f(y)$ para todo $x \in [a, b]$.

[estos y, z no tienen porque ser únicos, desde luego]

Sea $M=\sup f(I)$. Existe $\{y_n\}\subset I$ tal que $M-\frac{1}{n}< f(y_n)\leq M \ \forall n$. Por tanto, $f(y_n)\to M$. Podría $\{y_n\}$ no ser convergente pero, siendo acotada, existirá seguro $\{y_{n_i}\}$ subsucesión convergente hacia un $y \in I$. Como f continua en I, $f(y) = \lim_{n \to \infty} f(y_{n_i}) = M$ y, por tanto, el supremo pertenece a f(I). Análogamente, o considerando -f, se ve que el ínfimo también se alcanza.

[En la demostración se ve que el teorema es válido en conjuntos cerrados y acotados (se les llama **compactos** y son importantes en el cálculo más avanzado)].

Tampoco este teorema es cierto sustituyendo [a,b] por (a,b) o por $[a,\infty)$:

Ej. f(x) = 1/x es continua en (0,1) pero no alcanza su máximo ni su mínimo en (0,1).

Ej. f(x) = x no tiene máximo en $[0, \infty)$ (su valor mínimo existe y vale 0).

Avanzamos ahora hacia la definición de función uniformemente continua en un intervalo I:

f era continua en I si lo era en cada x de I (límites laterales en los posibles extremos de I), es decir, si $\forall x \in I$ y $\forall \varepsilon$ existe un $\delta(\varepsilon, x)$ tal que $\forall y \in I$ si $|y - x| < \delta$ entonces $|f(y) - f(x)| < \varepsilon$.

Ej. Consideremos $f(x) = \frac{1}{x}$. En (0,1) sabemos que es continua:

$$\forall x \ y \ \forall \varepsilon$$
 existe un δ tal que si $|y-x| < \delta \Rightarrow |\frac{1}{y} - \frac{1}{x}| < \varepsilon$

Pero dado un ε se ve que el δ que debemos tomar es más pequeño según elijamos un x más pequeño. Intuitivamente está claro que no podemos encontrar un δ que valga para todos los x de (0,1): por pequeño que sea δ , si x es muy pequeño, la función tomará valores muy diferentes en $(x - \delta, x + \delta)$. Pero para la misma f en $[1, \infty)$ se ve que dado un ε existe un δ válido para todos los x del intervalo (el que valga para x=1 valdrá para también para los x>1).

f es uniformemente continua en I si Def. $\forall \varepsilon$ existe un $\delta(\varepsilon)$ tal que $\forall x, y \in I$ si $|y - x| < \delta$ entonces $|f(y) - f(x)| < \varepsilon$

Ej. Acabemos de formalizar que $f(x)=\frac{1}{x}$ no es uniformemente continua en (0,1): Sea $\varepsilon=1$. Por pequeño que sea δ encontramos $x,y\!\in\!(0,1)$ con $|y\!-\!x|\!<\!\delta$ pero $|\frac{1}{y}-\frac{1}{x}|\!>\!\varepsilon$. Por ejemplo, $x = \frac{\delta}{4}$, $y = \delta$ satisfacen $|y - x| = \frac{3\delta}{4} < \delta$ pero $|\frac{1}{y} - \frac{1}{x}| = \frac{3}{\delta} > 1$ (pues $\delta < 1$).

Formalizamos ahora que $f(x) = \frac{1}{x}$ sí es uniformemente continua en $[1, \infty)$:

$$\forall \varepsilon \ \exists \delta = \varepsilon \ \text{tal que} \ \forall x, y \in [1, \infty) \ \text{con} \ |y - x| < \delta \Rightarrow |\frac{1}{v} - \frac{1}{r}| = \frac{|y - x|}{rv} \le |y - x| < \varepsilon$$

Evidentemente: f uniformemente continua en $I \Rightarrow f$ continua en I

La implicación \Leftarrow es falss en general; aunque sí es válida cuando I = [a,b]:

f continua en $[a,b] \Rightarrow f$ uniformemente continua en [a,b]Teorema:

Por reducción al absurdo. Supongamos a la vez f continua y no uniformemente continua en [a,b]. Existe, pues, $\varepsilon > 0$ tal que $\forall \delta > 0$ podemos encontrar x,y con $|y-x| < \delta$ pero $|f(y)-f(x)| \ge \varepsilon$. En particular, para cada $\delta = \frac{1}{n}$ tenemos $\{x_n\}, \{y_n\} \subset [a,b]$ con $|y_n - x_n| < \frac{1}{n}$ y $|f(y_n) - f(x_n)| \ge \varepsilon \ \forall n$. $\{x_n\}$ acotada $\Rightarrow \exists \{x_{n_j}\}$ convergente a un $c \in [a,b]$ por ser cerrado) $\Rightarrow f(x_{n_j}) \to f(c)$ (f continua). Como $|y_{n_j} - x_{n_j}| < 1/n_j \to 0$ también $f(y_{n_j}) \to f(c)$ y por tanto $|f(y_{n_j}) - f(x_{n_j})| \to 0$, lo que está en clara contradicción con el hecho de que $|f(y_{n_j}) - f(x_{n_j})| \ge \varepsilon \ \forall n_j$.

[En la demostración se ve que también este teorema será válido en cualquier conjunto compacto].

3. Derivadas en R

3.1. Definición y cálculo

La función f es **derivable** en a (interior al $\mathrm{dom} f$) si existe $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

En ese caso el límite se representa por f'(a) y se llama **derivada** de f en a.

Dos aplicaciones.

Def.

Pendiente de la tangente a una curva: [f(a+h)-f(a)]/h es la pendiente de la recta secante que pasa por (a,f(a)) y (a+h,f(a+h)). Cuando $h\to 0$, la secante tiende hacia la recta tangente y su pendiente tiende hacia f'(a). Así pues, la ecuación de la recta tangente a la gráfica de f en el punto a es (si f'(a) existe, claro):

$$y = f(a) + f'(a)(x - a)$$

Velocidad instantánea: si d(t) es la distancia recorrida por un móvil en el tiempo t, $\frac{d(a+h)-d(a)}{h}$ es su velocidad media en el intervalo [a,a+h]; por tanto, d'(a) es su velocidad en el instante t=a.

Se llama f', **función derivada** de f, a la que hace corresponder a cada $x \in \text{dom} f$ en que f es derivable el valor f'(x); f''(a) será la derivada de f'(x) en el punto a (un número) y f'' la función derivada de f';... En general, $f^{(n)}$ es la función derivada de $f^{(n-1)}$ [definida en los $x \in \text{dom} f^{(n-1)}$ tales que existe $f^{(n)}$].

[Otra notación famosa es la de Leibniz: $f' = \frac{df}{dx}$, $f'(a) = \frac{df}{dx}\Big|_{x=a}$, $f'' = \frac{d^2f}{dx^2}$]

Ej. f(x) = c es derivable para todo a y f'(a) = 0 ya que $\lim_{h \to 0} \frac{c - c}{h} = 0$.

Ej. $g(x) = x^2 \sin \frac{1}{x}$, g(0) = 0. Como existe $g'(0) = \lim_{h \to 0} h \sin \frac{1}{h} = 0$ (0×acot), g es derivable en x = 0. Era de esperar que lo fuese, pues las tangentes oscilan, pero acercándose a y = 0. Para $x \neq 0$ también va a existir g'; es difícil verlo con la definición, pero pronto será muy sencillo.

Ej.
$$h(x)=|x|$$
 . Si $a>0$, $h'(a)=\lim_{h\to 0}\frac{a+h-a}{h}=1$. Si $a>0$, $h'(a)=\lim_{h\to 0}\frac{-a+h-a}{h}=-1$.

No es derivable en x=0 porque $\lim_{h\to 0} \frac{|h|}{h}$ no existe. Pero sí existen los límites laterales.

Está claro que f es derivable en a si y sólo si **existen y coinciden** $f'(a^+)$ y $f'(a^-)$.

Ej. Para h(x) = |x|, existen las derivadas laterales en 0 pero no coinciden: $h'(0^+) = 1$, $h'(0^-) = -1$.

31

Teorema:

f derivable en
$$a \Rightarrow f$$
 continua en a Hay funciones continuas no derivables $(h(x) = |x|)$, por ejemplo; tienen 'picos').

$$\lim_{h\to 0^+} [f(a+h)-f(a)] = \lim_{h\to 0} \frac{f(a+h)-f(a)}{h} \cdot h = f'(a) \cdot 0 = 0 \Rightarrow f \text{ continua en } a.$$

Con el siguiente teorema podremos calcular casi todas las derivadas acudir a la definición: **Teorema:**

f y g derivables en $a \Rightarrow c \cdot f$, $f \pm g$, $f \cdot g$ son derivables en a y se tiene:

$$(c \cdot f)'(a) = c \cdot f'(a) \; ; \; (f \pm g)'(a) = f'(a) \pm g'(a) \; ; \; (f \cdot g)'(a) = f'(a)g(a) + f(a)g'(a) \; .$$

Si además $g(a) \neq 0$, $\frac{1}{g}$ y $\frac{f}{g}$ son derivables en a y es

$$\left(\frac{1}{g}\right)'(a) = -\frac{g'(a)}{[g(a)]^2} \; ; \; \left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{[g(a)]^2} \; .$$

g derivable en a y f derivable en $g(a) \Rightarrow f \circ g$ derivable en a y

$$(f \circ g)' = f'[g(a)]g'(a)$$
 [regla de la cadena].

 $f \ \text{ derivable en } f^{-1}(b) \ \text{y} \ f'[f^{-1}(b)] \neq 0 \Rightarrow f^{-1} \ \text{derivable en } b \ \text{y} \ \left(f^{-1}\right)'(b) = \frac{1}{f[f^{-1}(b)]} \, .$

 $c \cdot f \,$ es caso particular de $\, f \cdot g \,$; de $\, c \cdot f \,$ y de la suma se deduce la de $\, f - g = f + (-1) \cdot g \,$.

Las demás:

$$\boxed{f+g} \frac{(f+g)(a+h)-(f+g)(a)}{h} = \frac{f(a+h)-f(a)}{h} + \frac{g(a+h)-g(a)}{h} \underset{h\to 0}{\longrightarrow} f'(a) + g'(a) .$$

$$\boxed{f \cdot g} \quad \frac{(f \cdot g)(a+h) - (f \cdot g)(a)}{h} = f(a+h) \, \frac{g(a+h) - g(a)}{h} + g(a) \, \frac{f(a+h) - f(a)}{h}$$

 $\underset{h\to 0}{\longrightarrow} f'(a)g(a)+f(a)g'(a)$ (puesto que f es continua en a por ser derivable).

$$\boxed{1/g} \quad \frac{\frac{1}{g(a+h)} - \frac{1}{g(a)}}{h} = \frac{g(a) - g(a+h)}{hg(a)g(a+h)} \underset{h \to 0}{\rightarrow} - \frac{g'(a)}{[g(a)]^2} \quad \text{(g continua en a, $g(a) \neq 0$ $\Rightarrow $g(a+h) \neq 0$ si h pequeño)}$$

$$f/g$$
 $\left(f \cdot \frac{1}{g}\right)'(a) = f'(a) \frac{1}{g(a)} - \frac{g'(a)}{[g(a)]^2} f(a)$

$$\boxed{f \circ g} \quad \frac{f[g(a+h)] - f[g(a)]}{h} = \frac{f[g(a) + g(a+h) - g(a)] - f[g(a)]}{g(a+h) - g(a)} \cdot \frac{g(a+h) - g(a)}{h} \underset{h \to 0}{\longrightarrow} f'[g(a)] \cdot g'(a) ,$$

ya que
$$k = g(a+h) - g(a) \underset{h \to 0}{\longrightarrow} 0$$
 por ser g continua.

[Esta demostración necesita correcciones (ver Spivak), pues g(a+h) - g(a) podría hacerse 0 infinitas veces para valores muy pequeños de h]

Sea b=f(a); por ser $f'(a) \neq 0$, f es inyectiva (existe f^{-1}) en un entorno de a; por tanto, para cada h pequeño hay un único k tal que f(a+k)=b+h. Por tanto:

$$\frac{f^{-1}(b+h)-f^{-1}(b)}{h} = \frac{f^{-1}(f(a+k))-a}{b+h-b} = \frac{k}{f(a+k)-f(a)} \underset{h \to 0}{\to} \frac{1}{f'(a)}$$

Las dos últimas reglas de derivación adoptan una forma sugerente, pero imprecisa, con la notación de Leibniz:

Si
$$z = g(y)$$
, $y = f(x)$: $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$.
 $\frac{dy}{dx} = \frac{1}{dx/dy}$, si $\frac{dx}{dy} \neq 0$.

(no dejan claro que las diferentes derivadas están evaluadas en puntos diferentes).

Derivadas de las funciones elementales:

 $[x^b]' = bx^{b-1}$ para todo b real, x > 0. Podemos ya demostrarlo si $b \in \mathbb{Q}$. Varios pasos:

Si $b=n \in \mathbb{N}$ [la fórmula es válida entonces $\forall x$], por inducción:

Cierto para
$$n = 1$$
: $1 = [x^1]' = 1x^{1-1} = 1$. Supuesto cierto para $n - 1$: $[x^n]' = [x \cdot x^{n-1}]' = x^{n-1} + x(n-1)x^{n-2} = nx^n$, cierto para n .

Si
$$b = 0$$
 está visto. Si $b = -n$, $n \in \mathbb{N}$, $\left[\frac{1}{x^n}\right]' = \frac{-nx^{n-1}}{x^{2n}} = -nx^{-n-1}$ [válido $\forall x \neq 0$].

Si
$$b = \frac{1}{n}$$
, $n \in \mathbb{Z}$, $x^{1/n}$ es la inversa de x^n y por tanto $[x^{1/n}]' = \frac{1}{n[x^{1/n}]^{n-1}} = \frac{1}{n}x^{(1-n)/n}$.

Si
$$b = \frac{m}{n}$$
, $m, n \in \mathbb{Z}$, $[(x^{1/n})^m]' = m(x^{1/n})^{m-1} \frac{1}{n} x^{(1-n)/n} = \frac{m}{n} x^{(m-n)/n}$.

$$[\log |x|]' = \frac{1}{x}$$
, $x \neq 0$: Si $x > 0$, $[\log x]' = \frac{d}{dx} \int_1^x \frac{dt}{t} = \frac{1}{x}$. Si $x < 0$, $[\log (-x)]' = \frac{-1}{-x}$.

$$[e^x]' = e^x$$
, $\forall x$; $[b^x]' = b^x \log b$, $\forall x, b > 0$; $[\log_b x]' = \frac{1}{x \log b}$, $x > 0, b > 0, b \neq 1$

$$e^{x}$$
 inversa de $\log x \Rightarrow [e^{x}]' = \frac{1}{1/e^{x}}; [e^{x \log b}]' = e^{x \log b} \log b; [\frac{\log x}{\log b}]' = \frac{1}{x \log b}$.

Además se deduce: $[x^b]' = [e^{b\log x}]' = \frac{b}{r}e^{b\log x} = bx^{b-1}$ para cualquier b real.

$$[\sinh x]' = \cosh x$$
, $[\cosh x]' = \sinh x$, $[\th x]' = \frac{1}{\cosh^2 x} = 1 - \th^2 x$, $\forall x$

Las primeras triviales. Entonces $\left[\frac{\sinh x}{\cosh x}\right]' = \frac{\cosh^2 x - \sinh^2 x}{\cosh^2 x}$ y sabemos que $\cosh^2 x - \sinh^2 x = 1$.

$$[\operatorname{sen} x]' = \cos x \,, \ [\cos x]' = -\operatorname{sh} x \,, \ \forall x \,; \ [\tan x]' = \frac{1}{\cos^2 x} = 1 + \tan^2 x \,, \ x \neq \frac{\pi}{2} + k\pi$$

$$\frac{1}{h} [\operatorname{sen} (x+h) - \operatorname{sen} x] = \frac{2}{h} \operatorname{sen} \frac{h}{2} \cos (x + \frac{h}{2}) \to \cos x \,;$$

$$[\operatorname{sen} (x + \frac{\pi}{2})]' = \cos (x + \frac{\pi}{2}) = -\operatorname{sen} x \,; \ [\frac{\operatorname{sen} x}{\cos^2 x}]' = \frac{\cos^2 x + \operatorname{sen}^2 x}{\cos^2 x} \,.$$

$$[\arcsin x]' = \frac{1}{\sqrt{1-x^2}}$$
, $[\arccos x]' = -\frac{1}{\sqrt{1-x^2}}$, $\forall x \in (-1,1)$; $[\arctan x]' = \frac{1}{1+x^2}$, $\forall x$

$$\frac{1}{[\arccos x]' = \frac{1}{\cos(\arccos x)} = \frac{1}{\sqrt{1 - \sin^2(\arccos x)}}; \ [\arccos x]' = \frac{-1}{\sin(\arccos x)}; \ [\arctan x]' = \frac{1}{1 + \tan^2(\arctan x)}.$$

Se dice que f es **derivable** en un intervalo abierto I [finito o infinito] si es derivable en todos los puntos del intervalo; f es **de clase 1** en I [$f \in C^1(I)$] si además f' es continua en I. Diremos que $f \in C^n(I)$ [de clase n] si f posee nderivadas en $I ext{ y } f^{(n)}$ es continua en I, y que $f \in C^{\infty}(I)$ [de clase infinito] si existen derivadas de cualquier orden de f en I.

[Para intervalos cerrados, como siempre, hay que preocuparse de los extremos:

$$f$$
 es derivable en $[a,b]$ si lo es en (a,b) y existen $f'(a^+)$ y $f'(b^-)$; $f \in C^1[a,b]$ si $f \in C^1(a,b)$, $f'(x) \to f'(a^+)$ si $x \to a^+$ y $f'(x) \to f'(b^-)$ si $x \to b^-$].

Todas las funciones elementales de 2.1 son de C^{∞} en su dominio, con excepción de arc sen x y arc $\cos x$ [que no tienen siquiera derivada primera en $x = \pm 1$], y x^b con b > 0 y no entero [para la que $f^{(n)}$ no existe en x=0 cuando el exponente de $f^{(n-1)}$ pasa a estar entre 0 y 1; por ejemplo: $f(x)=x^{7/3}$, $f'(x)=\frac{7}{3}x^{4/3}$, $f''(x)=\frac{28}{9}x^{1/3}$ $\forall x$, pero f'''(0) ya no existe]. Ya es fácil hallar la derivada de cualquier función, salvo en casos excepcionales (y ver de que clase C^n son):

- **Ej.** Para la $g(x) = x^2 \operatorname{sen} \frac{1}{x}$, g(0) = 0 de antes g' existe $\forall x$:
 - Si $x \neq 0$ es producto de composiciones de derivables y $g'(x) = 2x \operatorname{sen} \frac{1}{x} \cos \frac{1}{x}$,
 - y además g'(0) = 0 (sólo salía de la definición porque un denominador se anula).
 - g' no es continua en 0 porque g' no tiene límite:

si
$$x \to 0$$
, $2x \operatorname{sen} \frac{1}{x} \to 0$ pero $\cos \frac{1}{x}$ no tiende a nada [por ejemplo, porque las sucesiones $\{a_n\} = \frac{1}{2n\pi} \text{ y } \{b_n\} = \frac{1}{(2n-1)\pi} \to 0 \text{ pero } f(a_n) = 1 \text{ y } f(b_n) = -1 \text{]}.$

Por tanto, g es derivable en todo **R**, pero no de $C^1(\mathbf{R})$ [sí lo es en $(-\infty,0)$ y en $(0,\infty)$].

Como g' no es continua en 0, no puede existir g''(0).

Para cualquier $x \neq 0$ sí existen derivadas de todos los órdenes:

$$g''(x) = [2 - \tfrac{1}{x^2}] \, \mathrm{sen} \, \tfrac{1}{x} - \tfrac{2}{x} \cos \tfrac{1}{x} \, , \ g'''(x) \, , \dots \, [\mathrm{es \ decir, \, es \ de} \, \, C^{\infty} \, \, \mathrm{en} \, \, (-\infty, 0) \, \, \mathrm{y} \, \, (0, \infty) \, \,].$$

Ej. $k(x) = \left[\frac{\log[7 + \cosh^2(3^x + x)]}{5 + \arctan(x - 2)}\right]^{1/3}$ es derivable $\forall x$, pues es suma, producto, composición, ...

de funciones derivables (el logaritmo se evalúa en valores mayores que 7, el denominador es mayor que 0 y el corchete gordo no se anula). Sabemos calcular su derivada a pesar de su aspecto tan complicado (no con la definición, desde luego):

$$k'(x) = \frac{1}{3} \frac{\frac{2\operatorname{ch}(3^x + x)\operatorname{sh}(3^x + x)(3^x\log 3 + 1)}{7 + \operatorname{ch}^2(3^x + x)} \left[5 + \arctan\left(x - 2\right)\right] - \frac{\log\left[7 + \operatorname{ch}^2\left(3^x + x\right)\right]}{1 + (x - 2)^2}}{\left[5 + \arctan\left(x - 2\right)\right]^2} \left[\frac{\log\left[7 + \operatorname{ch}^2\left(3^x + x\right)\right]}{5 + \arctan\left(x - 2\right)}\right]^{-2/3}$$

Ej. $m(x) = x|x-x^2|$ es continua $\forall x$ por ser producto de composiciones de continuas $\forall x \ [|x|]$ lo es]. Sólo puede ser no derivable cuando se anule el valor absoluto. Para precisarlo, hay que discutir:

$$m(x) = \begin{cases} x^2 - x^3 & \text{si } x \in [0, 1] \\ x^3 - x^2 & \text{si } x \notin (0, 1) \end{cases}; \ m'(x) = \begin{cases} 2x - 3x^2 & \text{si } x \in (0, 1) \\ 3x^2 - 2x & \text{si } x \notin [0, 1] \end{cases}; \ m''(x) = \begin{cases} 2 - 6x & \text{si } x \in (0, 1) \\ 6x - 2 & \text{si } x \notin [0, 1] \end{cases}$$

Utilizando las expresiones del intervalo adecuado deducimos que:

- $m'(0^-) = 0 = m'(0^+)$, m derivable en x = 0; $m'(1^-) = -1 \neq 1 = m'(0^+)$, no derivable en x = 1. $m''(0^-) = -2 \neq 2 = m''(0^+)$, m'' no existe si x = 0; tampoco existe si x = 1 por ser m' discontinua.
- **Ej.** $n(x) = \arctan \frac{1}{x^2}$, $n(0) = \frac{\pi}{2}$. Si $x \neq 0$ es fácil hallar $n'(x) = \frac{-2x}{1+x^4}$, $n''(x) = 2\frac{3x^4-1}{(1+x^4)^2}$, ... $n'(0) = \lim_{t \to 0} \frac{1}{h} \left[\arctan \frac{1}{h^2} \frac{\pi}{2}\right]$ es un límite indeterminado que aún no sabemos hacer.

Es claro que $n'(x) \to 0$ cuando $h \to 0$, pero de ahí no podemos deducir (todavía) que n'(0) = 0 (pues nada nos garantiza que n' sea continua; en la sección 3.2 veremos un teorema que permitirá dar ese paso). Admitiendo que n'(0) = 0, n es de $C^{\infty}(\mathbf{R})$, pues existen n', n'', n''', ... (denominadores no nulos).

Ej. $p(x) = x^x = e^{x \log x}$ (= $[e^{\log x}]^x$; recordamos que se define $f(x)^{g(x)} = e^{g(x) \log[f(x)]}$).

Así pues,
$$p'(x) = e^{x \log x} [\log x + 1]$$
; $p''(x) = e^{x \log x} ([\log x + 1]^2 + \frac{1}{x})$;...

3.2. Teoremas sobre funciones derivables

Los primeros resultados están destinados a determinar los x de un conjunto $A \subset \text{dom } f$ en los que una función f alcanza sus **valores máximo y mínimo** (a ambos se les llama **valores extremos** de f). Sabemos que si A es un intervalo cerrado y f es continua existen los valores extremos de f en A (es decir, existen $y,z \in A$ tales que $f(y) \le f(x) \le f(z)$ para todo $x \in A$), aunque podría no haberlos si A es otro tipo de conjuntos o si f no es continua. En ocasiones se llama a estos valores máximo y mínimo **absolutos**, para distinguirlos de los **locales o relativos**:

Def. f posee un **máximo** [**mínimo**] **local** en x sobre un conjunto $A \subset \text{dom} f$ si existe un $\delta > 0$ tal que el valor máximo [mínimo] de f en $A \cap B(x, \delta)$ se alcanza en x; es decir, si $f(x) \geq f(x+h)$ [$f(x) \leq f(x+h)$] $\forall h$ tal que $|h| < \delta$ y $x+h \in A$.

Está claro que si un valor extremo (absoluto) de f en A se alcanza en un punto x también tiene f en ese x un extremo local y que lo contrario no es cierto. Los máximos y mínimos (absolutos y locales) pueden ser infinitos o no existir, pueden darse en el borde o en el interior de A. En este último caso:

Teorema:

Si f posee un extremo local en x interior a A y f es derivable en $x \Rightarrow f'(x) = 0$

[A los puntos en que se anula la f' se les suele llamar **puntos críticos** de f].

Si ML en
$$x \Rightarrow \exists \delta$$
 tal que si $0 < h < \delta$, $\frac{f(x+h)-f(x)}{h} \le 0$, y si $-\delta < h < 0$, $\frac{f(x+h)-f(x)}{h} \ge 0$ $\Rightarrow 0 \le \lim_{x \to 0^+} \frac{f(x+h)-f(x)}{h} = f'(x) = \lim_{x \to 0^+} \frac{f(x+h)-f(x)}{h} \le 0$.

Si mL en $x \Rightarrow -f$, derivable, tiene ML en $x \Rightarrow -f'(x) = 0 \Rightarrow f'(x) = 0$.

Hay $x \operatorname{con} f'(x) = 0$ en los que f no tiene extremo local (como $f(x) = x^3$ en x = 0). Tampoco es cierto que deba ser f'(x) = 0 en todo x en el que f posea un extremo local (pues x podría no ser interior o f no ser derivable en x). De esto se sigue que:

Para buscar los valores máximo y mínimo de una f en un intervalo [a,b]

- los extremos del intervalo a y b
- hay que considerar: los $x \in (a,b)$ en los que f'(x) = 0
 - los x en los que no exista f'(x)

Comparando los valores de f en cada uno de esos puntos se hallan los extremos (si existen; si f es discontinua o el intervalo, por ejemplo, no es de longitud finita las cosas se pueden complicar).

Ej. Hallemos los valores máximo y mínimo de $f(x) = \log(1+x^2) - |x-2|$ en el intervalo [-2,3]. Tales valores han de existir por ser f continua en el intervalo. f sólo no es derivable en x=2.

$$f(x) = \begin{cases} \log(1+x^2) - x + 2, & x \ge 2\\ \log(1+x^2) + x - 2, & x \le 2 \end{cases} \implies f'(x) = \begin{cases} -(1-x)^2/(1+x^2), & x > 2\\ (1-x)^2/(1+x^2), & x < 2 \end{cases}$$

Por tanto, $f'(x) = 0 \Leftrightarrow x = -1$. Basta comparar los valores en los 4 puntos candidatos:

$$f(-2) = \log 5 - 4$$
, $f(-1) = \log 2 - 3$, $f(2) = \log 5$, $f(3) = \log 10 - 1$.

Con una calculadora es fácil hallar estos valores:

$$f(-2) \approx -2.4$$
, $f(-1) \approx -2.3$, $f(2) \approx 1.6$, $f(3) \approx 1.3$.

El máximo se da en x=2 y él mínimo en x=-2. Sin calculadora también podríamos decirlo. Es claro que f(-2) y f(-1) son negativos $\left[\log 2 < 1 \text{ pues } 2 < e \text{ y } \log 5 < 2 \text{ pues } 5 < (\frac{5}{2})^2 < e^2\right]$. Y también es claro que f(2) es el mayor de los positivos: $\log 5 > \log 5 + \log 2 - 1$ $\left[\log 2 < 1\right]$. Además: $\log 5 - 4 < \log 2 - 3 \Leftrightarrow \log 5 - \log 2 = \log \frac{5}{2} < 1$ y esto es cierto porque $\frac{5}{2} < e$.

Teorema de Rolle:

f es continua en [a,b], derivable en (a,b) y $f(a)=f(b) \Rightarrow \exists c \in (a,b)$ con f'(c)=0

f tiene máximo y mínimo en [a,b] por ser continua. Si alguno de los dos lo toma en (a,b) ya estaría. Si f toma su máximo y su mínimo en a y $b \Rightarrow f$ es constante $\Rightarrow f'(x) = 0$ para cualquier x de (a,b).

Teorema del valor medio:

$$f$$
 es continua en $[a,b]$ y derivable en (a,b) $\Rightarrow \exists c \in (a,b)$ tal que $f'(c) = \frac{f(b) - f(a)}{b - a}$

(existe al menos un c para el que la tangente es paralela a la recta que une (a, f(a)) con (b, f(b)); o bien, existe un instante c en el que la velocidad instantánea coincide con la media en el intervalo)

Sea
$$h(x) = f(x) - r(x)$$
, con $r(x) = \frac{f(b) - f(a)}{b - a}(x - a)$, continua $[a, b]$, derivable (a, b) y $h(a) = f(a) = h(b)$ $\underset{\text{Rolle}}{\Rightarrow} \exists c \in (a, b)$ tal que $h'(c) = f'(x) - \frac{f(b) - f(a)}{b - a} = 0$.

Crecimiento y decrecimiento:

Sea f continua en [a,b] y derivable en (a,b) . Entonces:

Teorema:

si f'(x) > 0 para todo $x \in (a,b)$, f es estrictamente creciente en [a,b]; si f'(x) < 0 para todo $x \in (a,b)$, f es estrictamente decreciente en [a,b]; si f'(x) = 0 para todo $x \in (a,b)$, f es constante en [a,b].

Sea $[x,y] \subset [a,b]$. Por el teorema del valor medio $\exists c \in (x,y)$ con $f'(c) = \frac{f(y) - f(x)}{y - x}$. Por tanto, si $f'(c) > 0, < 0, = 0 \Rightarrow f(y) > 0, < 0, = 0$

Se ve en la demostración que podemos sustituir en hipótesis y conclusiones '[a,' por ' $(-\infty,$ ' y ',b]' por ' $,\infty$)'. Observemos que a f' se le piden cosas sólo en el abierto, pero el resultado se tiene en todo el cerrado. Como $f \in C^1[a,b] \Rightarrow f$ continua en [a,b] y derivable en (a,b), se podría pedir sólo a las f de los teoremas que fuesen de C^1 . Pero pediríamos demasiado, y dejaríamos fuera funciones como $f(x) = x^{1/2}$, que no es $C^1[0,1]$ pero sí es continua en [0,1] y derivable en (0,1) (y por tanto sí se le puede aplicar, por ejemplo, el teorema del valor medio).

Ej. Estudiemos en qué intervalos crece y decrece $g(x) = \frac{x^3 - 6x^2 - 8}{x}$, continua si $\neq 0$.

$$g'(x) = [\text{mejor la calculamos as} i] = 2x - 6 + \frac{8}{x^2} = 2\frac{x^3 - 3x^2 + 4}{x^2} = 2\frac{[x+1][x-2]^2}{x^2} \Rightarrow g' < 0 \text{ si } x \in (-\infty, -1) \text{ y } g' > 0 \text{ si } x \in (-1, 0) \cup (0, 2) \cup (2, \infty).$$

Del teorema deducimos que g decrece en $(-\infty, -1]$ y que crece en [-1, 0) y en $(0, \infty)$ [x=2 incluido]; pero no crece en todo $[-1, \infty)$ (es discontinua en 0)]. Por tanto, tiene mínimo local en x=-1 y no tiene ni máximo ni mínimo en x=2 (a pesar de que g'=0).

36

Teorema (condición suficiente de extremo):

Sea f de C^2 en un entorno de c y sea f'(c) = 0. Entonces: si f''(c) > 0, f posee un mínimo local en c, y si f''(c) < 0, f posee un máximo local en c.

(si f''(c) = 0 podría haber en c un máximo, un mínimo o ninguna de las dos cosas) $f''(c) = \lim_{x \to 0} \frac{f(c+h) - 0}{h} > 0 \Rightarrow \text{para } h \text{ pequeño } f'(c+h) \text{ y } h \text{ tienen el mismo signo} \Rightarrow$ f decrece en un intervalo a la izquierda (h < 0) y crece en uno a la derecha (h > 0). [Igual la otra].

Ej. Para la g de arriba $g''(x) = 2 - \frac{16}{x^3} \Rightarrow g''(-1) = 18$ (mínimo, como ya sabíamos sin hallar g''), g''(2) = 0 (??, pero la g' nos dijo que ni máximo ni mínimo).

Concavidad y convexidad:

f es **convexa hacia abajo** en un intervalo Isi $\forall x, y \in I$ el segmento que une (x, f(x)) con (y, f(y)) está por encima de la gráfica de f.

Def. f es **cóncava** si -f es convexa.

> Se llama punto de inflexión a uno de la gráfica en la que ésta pasa de convexa a cóncava o viceversa.

[Hay libros que llaman cóncava a lo que nosotros llamamos convexa y viceversa; otros, dicen que se dobla hacia arriba (\cup), o hacia abajo (\cap)].

Teorema:

Sea f continua en [a,b] y derivable dos veces en (a,b). Si $f'' \ge 0$ ($f'' \le 0$) en (a,b), es f convexa (cóncava) en [a,b]. Si (c, f(c)) es un punto de inflexión, debe ser f''(c) = 0.

[No lo demostramos; geométricamente está claro: f es \cup si la pendiente de la tangente va creciendo (y si $f'' \ge 0$, la f' crece); es \cap si decrece; en un punto de inflexión hay un máximo o mínimo de la f' (pasa de crecer a decrecer o al revés); puede ocurrir que f''(c) = 0 y que en (c, f(c)) no haya punto de inflexión como ocurre con $f(x) = x^4$ en x = 0].

Ej. Para la g era $g''(x) = \frac{2[x^3 - 8]}{x^3}$, que es negativa en (0,2) y positiva en el resto. Por tanto es convexa en $(-\infty,0)$ y $[2,\infty)$ y cóncava en (0,2]. x=2 es punto de inflexión.

Si f es continua en a y f' tiene límite cuando $x \to a \Rightarrow f'(a) = \lim_{x \to a} f'(x)$

TVM en
$$[a, a+h] \Rightarrow \exists x_h \in (a, a+h) \text{ con } \frac{f(a+h)-f(a)}{h} = f'(x_h)$$
.
Si $h \to 0$, $\frac{f(a+h)-f(a)}{h} \to f'(a)$, $x_h \to a$.

[Se ve en la demostración que si $f'(x) \to \infty$ ó $-\infty$ la f'(a) no existe (la recta tangente se pone vertical, pues su pendiente tiende a infinito), pero recordemos que puede no existir el límite de f' y ser la f derivable en a (que hay funciones derivables que no son C^1); este teorema prueba que la función n de la sección anterior es derivable en x = 0 y que n'(0) = 0].

Acabamos la sección con la regla de L'Hôpital. Su utilización práctica es mejor aplazarla al capítulo 4 (para compararla con Taylor), pero por ahora ya vamos justificando algunos de los límites adelantados en 2.3. Para probar dicha regla es preciso generalizar el TVM:

Teorema del valor medio de Cauchy

Sean
$$f$$
 y g continuas en $[a,b]$, derivables en (a,b) \Rightarrow $\exists c \in (a,b)$ tal que $[f(b)-f(a)]g'(c)=[g(b)-g(a)]f'(c)$ (para $f(x)=x$ se recupera el teorema del valor medio) (Se demuestra aplicando Rolle a $h(x)=f(x)[g(b)-g(a)]-g(x)[f(b)-f(a)]$).

Regla de L'Hôpital:

Si
$$f(x), g(x) \underset{x \to a}{\longrightarrow} 0$$
 (6 $\underset{x \to a}{\longrightarrow} \pm \infty$) y existe el $\lim_{x \to a} \frac{f'(x)}{g'(x)}$, entonces $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$. La regla sigue siendo válida cambiando el a del enunciado por $a^+, a^-, +\infty$ 6 $-\infty$.

La demostramos sólo cuando $f, g \to 0$ si $x \to a, a^+$ ó a^- .

Para x-a pequeño, definiendo f(a)=g(a)=0, f y g son continuas en [a,x] y derivables en (a,x), y es $g'\neq 0$ en (a,x) [porque el límite de $\frac{f'}{g'}$ existe]. Por el TVM de Cauchy $\exists c\in (a,x)$ con f(x)g'(c)=g(x)f'(c). Como $g(x)\neq 0$ [si fuese =0, por Rolle sería g'(z)=0 para algún $z\in (a,x)$] se puede escribir

$$\tfrac{f(x)}{g(x)} = \tfrac{f'(c)}{g'(c)} \; \text{ y por tanto } \lim_{x \to a^+} \tfrac{f(x)}{g(x)} = \lim_{x \to a^+} \tfrac{f'(c)}{g'(c)} = \lim_{x \to a^+} \tfrac{f'(x)}{g'(x)} \; \text{ pues } x \to a^+ \Rightarrow c \to a^+ \; .$$

Análogamente se demostraría para $x \to a^-$, de donde se deduciría para $x \to a$.

3.3. Polinomios

Un tipo de funciones que nos aparecen continuamente son los polinomios. Más adelante aproximaremos cualquier función más complicada mediante polinomios de coeficientes reales. Repasamos brevemente varias de sus propiedades.

Un polinomio de grado n es: $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, $a_k \in \mathbb{R}$, $a_n \neq 0$.

El polinomio más sencillo (cuya gráfica no sea una recta) es el de segundo grado:

$$P_2(x) = ax^2 + bx + c$$
 = $a[x + \frac{b}{2a}]^2 - \frac{\Delta}{4a^2}$, $\Delta = b^2 - 4ac$, $a \neq 0$

(a Δ se le llama discriminante de P_2). Su gráfica es (ver 3.5) la de la parábola $y=x^2$ trasladada a izquierda o derecha, multiplicada por

una constante (positiva o negativa) y trasladada hacia arriba o abajo. Es claro que su extremo se alcanza en $x=-\frac{b}{2a}$ (o usando $P_2'(x)=2ax+b$). Sus raíces vienen dadas por: $x=\frac{1}{2a}[-b\pm\sqrt{\Delta}]$. El tipo de raíces de $P_2(x)$ depende del signo de Δ . Si $\Delta>0$ tiene dos reales y distintas, si $\Delta=0$ tiene una raíz doble real y si $\Delta<0$ dos raíces complejas conjugadas ($p\pm qi$). Observemos que la raíz doble $-\frac{b}{2a}$ también es raíz de $P_2'(x)$. Conocidas sus raíces x_1 y x_2 puede escribirse $P_2(x)=a(x-x_1)(x-x_2)$.

 P_2 puede tener o no raíces reales. Como cualquiera de grado par. Sin embargo:

Un polinomio de grado impar posee por lo menos una raíz real.

En efecto, $P_n(x) = a_n x^n [1 + \cdots + a_0 x^{-n}]$ y supongamos que $a_n > 0$. Entonces, si n es impar, $P_n(x) \to -\infty$ cuando $x \to -\infty$ y $P_n(x) \to \infty$ cuando $x \to \infty$. Existen por tanto a con $P_n(a) < 0$ y b con $P_n(b) > 0$. Por Bolzano, existe $c \in (a,b)$ con $P_n(c) = 0$.

Teorema fundamental del álgebra:

Todo polinomio de grado n posee n raíces (reales o complejas, repetidas o no).

Si x_1, \ldots, x_n son esas raíces, se puede escribir, en principio: $P_n(x) = a_n(x-x_1)\cdots(x-x_n)$. Es muy fácil ver que si un polinomio de coeficientes reales tiene la raíz compleja p+qi entonces también tiene la raíz p-qi. Cada par de productos $(x-[p+q\mathrm{i}])(x-[p-q\mathrm{i}])$ en la descomposición de $P_n(x)$ da entonces lugar a un polinomio de segundo orden con coeficientes reales $x^2-2px+(p^2+q^2)$. Así pues, siempre se puede escribir:

$$P_n(x) = a_n(x - x_1) \cdots (x - x_r)(x^2 + b_1x + c_1) \cdots (x^2 + b_sx + c_s)$$
, con $r + 2s = n$, $x_k, b_k, c_k \in \mathbb{R}$

Algunas raíces podrían estar repetidas. No es difícil ver que si $x = x_k$ es raíz simple de P_n entonces no anula la derivada P'_n y que sí la anula si es raíz múltiple. Por tanto:

Una raíz de un polinomio es múltiple si y sólo si es raíz también de su derivada.

Y, por tanto, una raíz múltiple es raíz del máximo común divisor de P_n y P'_n . Una forma de hallarlo es mediante el **algoritmo de Euclides**: dados P, Q [con $gr(P) \ge gr(Q)$], se divide P entre Q y se llama R_1 al resto obtenido (si conviene, multiplicado por una constante); a continuación se divide Q entre R_1 y se llama R_2 al nuevo resto; luego R_1 entre R_2 ... hasta obtener un resto nulo. El mcd(P,Q) es el último resto no nulo del proceso anterior.

Ej. Para
$$P(x) = x^4 + 2x^3 + 3x^2 + 4x + 2$$
 [$P' = 4x^3 + 6x^2 + 6x + 4$] se obtiene: $R_1 = x^2 + 3x + 2$, $R_2 = x + 1$, $R_3 = 0$. Por tanto, $mcd(P, P') = x + 1 \Rightarrow P$ tiene $x = -1$ como raíz doble [dividiendo por $(x + 1)^2$, $P = (x + 1)^2(x^2 + 2)$].

En las pocas ocasiones en que un polinomio con coeficientes enteros tiene raíces enteras, son muy fáciles de encontrar:

Si existe raíz entera de $P_n(x)$ se encuentra entre los divisores del término independiente a_0 .

Si c es raíz entera, entonces $a_0 = -c[a_nc^{n-1} + \cdots + a_1]$, con lo que a_0 es múltiplo de c.

Ej.
$$P^*(x) = 2x^3 - x^2 - 12x + 6$$
 no tiene raíces enteras, pues no lo son $-6, -3, -2, -1, 1, 2, 3$ ni 6 .

Nos gustaría tener fórmulas para el cálculo de las raíces de los P_n de cualquier grado similares a las de los de grado 2. Hacia 1500 se descubrieron fórmulas para las raíces de los de grado 3 y 4 (pronto veremos, sin demostración, las del polinomio cúbico). Pero en el siglo XIX se probó que es imposible expresar mediante radicales las raíces de los de grado mayor que 5. Si de alguna forma podemos encontrar una raíz x_k de un polinomio, dividiéndolo por $(x-x_k)$ reducimos el problema de hallar sus raíces al de hallar las de otro de grado menor. Por este camino es posible, en contadas ocasiones, calcularlas todas.

Tratemos ahora un caso en que sí hay fórmulas (complicadas) para las raíces, el polinomio cúbico:

$$P_3(x) = px^3 + qx^2 + rx + s$$
, $p \neq 0$.

Veamos las diferentes formas que puede tener su gráfica. Como $P_3'(x) = 3px^2 + 2qx + r$ puede tener 2 raíces reales, 1 doble o ninguna real (dependiendo de que

 $R\equiv q^2-3pr$ sea >,= 6 < 0), P_3 puede tener un máximo y un mínimo, un punto de inflexión con tangente horizontal o tener la derivada con signo constante. Si P_3 tiene una raíz x múltiple debe ser $px^3+qx^2+rx+s=3px^2+2qx+r=0$. Eliminando la x entre las dos ecuaciones se obtiene la expresión de su discriminante $\Delta=q^2r^2-4pr^3-4q^3s+18pqrs-27p^2s^2$. Este Δ se puede escribir de forma más compacta si llamamos $S\equiv 27p^2s-9pqr+2q^3$, pues entonces se tiene que: $\Delta=\frac{1}{27p^2}[4R^3-S^2]$.

Se puede probar que:

Si
$$\Delta = 0$$
, hay una raíz doble de P_3 dada por $x_d = \frac{1}{3p} \left[-q + \sqrt[3]{\frac{S}{2}} \right]$

y otra simple
$$x_s = \frac{1}{3p} \left[-q - 2\sqrt[3]{\frac{S}{2}} \right]$$
.

Si
$$\Delta < 0$$
, existe una única raíz real: $x_r = -\frac{q}{3p} + \frac{1}{3p} \left[\frac{-S + \sqrt{S^2 - 4R^3}}{2} \right]^{1/3} + \frac{1}{3p} \left[\frac{-S - \sqrt{S^2 - 4R^3}}{2} \right]^{1/3}$.

Por último, si $\Delta > 0$ ($\Rightarrow R > 0$), hay tres raíces reales distintas de P_3 que se pueden expresar:

$$x_{1,2,3} = -\frac{q}{3p} + \frac{2\sqrt{R}}{3p}\cos\frac{\phi + 2k\pi}{3}, \ k = 0,1,2$$
, siendo $\phi = \arccos\left(\frac{-S}{2R^{3/2}}\right)$.

Ej. Para el polinomio de antes $P^*(x) = 2x^3 - x^2 - 12x + 6$ sin raíces enteras se tiene que:

$$R = 73$$
, $S = 430$, $\Delta = 12696 \rightarrow \phi \approx 1.9227264$, $x_{1,2,3} \approx 2.449489$, -2.449489 , 0.500000

[Los errores de redondeo del cálculo aconsejan acudir a métodos numéricos incluso para P_3].

[Sin saber nada de discriminantes, es fácil siempre discutir cuántas raíces reales tiene un polinomio cúbico, por ser su gráfica sencilla de pintar (sus valores extremos se pueden calcular, lo que no pasa en los polinomios de mayor orden). Así, este P^* tiene un máximo en $x_- = \frac{1}{6}[1-\sqrt{73}]$ y un mínimo en $x_+ = \frac{1}{6}[1+\sqrt{73}]$, y como $P(x_-) > 0$, $P(x_+) < 0$, volvemos a comprobar que tiene 3].

Fórmulas similarespara las raíces, pero aún más complicadas, se podrían dar para los polinomios de **cuarto grado**. Nosotros nos conformaremos con saber cómo se calculan en un par de casos sencillos:

Las raíces del polinomio bicuadrado $P(x) = ax^4 + bx^2 + c$ se hallan fácilmente tras hacer $t = x^2$.

Las raíces de $P(x) = ax^4 + bx^3 + cx^2 + bx + a$ se calculan mediante el cambio $z = x + \frac{1}{x}$:

$$a(x^2 + \frac{1}{x^2}) + b(x + \frac{1}{x}) + c = a(x + \frac{1}{x})^2 + b(x + \frac{1}{x}) + c - 2a = 0 \rightarrow az^2 + bz + c - 2a = 0$$
.

Halladas sus raíces z_{\pm} , basta resolver los dos polinomios de segundo grado: $x^2 - z_{\pm}x + 1 = 0$.

Como casi nunca se pueden hallar las raíces exactas de un P_n , se deberán usar métodos numéricos como los que veremos en 3.4 para calcularlas aproximadamente. Para aplicar estos métodos será importante saber cuántas raíces reales hay y más o menos donde están. Comenzamos acotándolas:

Si
$$c$$
 es raíz real de $P_n(x)$, entonces $|c| \le \max\left\{1, \frac{1}{|a_n|} \left[|a_0| + \dots + |a_{n-1}| \right] \right\}$
Pues $|c| = \frac{1}{|a_n|} \left[|a_0||c|^{1-n} + |a_1||c|^{2-n} + \dots + |a_{n-1}| \right]$.
Si $|c| \ge 1$, $|c| \le \frac{1}{|a_n|} \left[|a_0| + \dots + |a_{n-1}| \right]$, y si $|c| \le 1$ está claro.

Ej. Las raíces c del P^* de antes debían cumplir |c| < 9.5 (mala cota, pero algo es algo)].

Nuestro objetivo es **separar** las raíces de un P, es decir, **conocer el número exacto de sus raíces reales y localizar intervalos** [a,b] **en los que sólo se encuentre una de ellas**. El teorema de Bolzano informa, pero no basta: si encontramos un [a,b] con $P(a) \cdot P(b) < 0$, hay al menos una raíz en (a,b) pero podría haber más de una (quizás el análisis de su derivada P' lo impida) e incluso podría haber raíces en intervalos con $P(a) \cdot P(b) > 0$. El siguiente resultado es fácil de aplicar pero suele dejar también bastantes dudas:

Ley de Descartes de los signos.

Sea P un polinomio de grado n con término independiente no nulo. Si r es el número de raíces reales positivas de P y s el número de cambios de signo en la sucesión de sus coeficientes, es $r \le s$ y s - r es un número par (o cero).

[Cambiando x por -x se obtiene el resultado análogo para las raíces negativas]. [Se tiene en cuenta la multiplicidad (una raíz doble cuenta por dos)].

Probamos Descartes (en el caso más simple: $a_k \neq 0 \ \forall k$): Podemos suponer $a_n > 0$. Inducción sobre n. Es cierto para n=1: $a_1x+a_0=0$ tiene una raíz positiva (r=1) si a_1 y a_0 tienen signos opuestos (s=1); y r=0 si s=0. Supongámoslo ahora cierto para polinomios de orden n-1 y demostrémoslo para los de n: Sean s' y r' los números de cambios y raíces para P'. Si $\mathrm{sg}(a_1)=\mathrm{sg}(a_0)$, es s=s', y como (fácil de ver) $(-1)^r$ y $(-1)^{r'}$ son los signos de sus términos independientes, r y r' tienen la misma paridad; si $\mathrm{sg}(a_1)\neq\mathrm{sg}(a_0)$, s=s'+1 y r es de paridad opuesta a r'; en ambos casos, s-r y s'-r' tienen la misma paridad; como para P' (de orden n-1) estamos suponiendo cierto Descartes, deducimos que s-r es par. No es difícil deducir de Rolle, además, que $r' \geq r$ ó $r' \geq r-1$, respectivamente, en los casos de antes; de ahí se obtiene que en ambos casos es $s-r \geq s'-r'$, número que estamos suponiendo positivo.

- **Ej.** Para P^* sus coeficientes 2, -1, -12, 6 (+--+) presentan s=2 cambios de signo. Esto significa, en principio, que tiene ó 2 ó 0 raíces positivas. Cambiando x por -x obtenemos $-2x^3-x^2+12x+6$ (--++); como s=1, seguro que hay una única negativa. Calculando el Δ (o analizando su gráfica) vimos que hay 3 reales y con ello aseguramos que hay 2 positivas.
- **Ej.** Para $P_4(x) = 9x^4 + 8x^3 + 28x^2 + 24x + 3$ podemos afirmar que no tiene raíces positivas (s = 0) y como tras hacer x por -x se tiene 1, -8, 28, -24, 3 podrían existir 4, 2 ó 0 raíces negativas.

3.4. Ceros de funciones

Muchas veces es necesario hallar los **ceros** de una función f, es decir, los x^* tales que $f(x^*) = 0$. Pero, como vimos, ni siquiera si f es un polinomio se tienen siempre fórmulas para calcular sus raíces. Mucho menos si f es una función trascendente como $f(x) = e^x + x^3$ o $f(x) = 3 \arctan x - \log x$. Se tratará entonces de hallar los ceros de forma aproximada. El teorema de Bolzano puede ser un camino para aproximar x^* : encontrando un intervalo [a,b] de pequeña longitud tal que f(a)f(b) < 0 estamos seguros de que al menos hay un $x^* \in (a,b)$ con $f(x^*) = 0$ (que será el único si f' es > 6 < que 0 en ese intervalillo). Pero mucho más rápidos serán, normalmente, otros caminos como el

Método de Newton. La idea de este método es simple. Supongamos que para una f como la de la figura sabemos que el cero x^* se parece más o menos a x_0 . Aproximando la gráfica con la tangente en $(x_0, f(x_0))$ obtenemos un x_1 (punto en que la recta corta el eje), probablemente más cercano a x^* que el x_0 inicial. Repitiendo el proceso con x_1 obtenemos un x_2 , luego un x_3 , ... siendo esperable que la sucesión $\{x_n\}$ converja rápidamente hacia x^* .

Hallemos una fórmula que exprese cada término de esta sucesión en función del anterior. Como la tangente en $(x_n, f(x_n))$ es $y - f(x_n) = f'(x_n)(x - x_n)$ el corte de esta recta con y = 0 nos da la siguiente aproximación. Por tanto:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

[Se ve que las cosas irán mal si f/f' es grande cerca de x^* ; se puede demostrar que $\left|\frac{f(x)f''(x)}{[f'(x)]^2}\right| < 1$ en un entorno de x^* es una condición suficiente para que converja el método].

Ej. Aproximemos las raíces reales de $P(x) = x^4 - 2x^2 + 4x - 2$ (exactamente no sabemos).

La ley de Descartes nos asegura que hay ó 3 ó 1 positivas (+-+-) y exactamente 1 negativa (+---). Vamos a hacernos una idea de su gráfica para determinar cuántas raíces positivas tiene y localizar intervalos en los que buscarlas. Para ello empezamos estudiando sus derivadas:

 $P'(x) = 4[x^3 - x + 1]$ (sin raíces enteras; 2 ó 0 positivas (no lo sabemos, por ahora) y 1 negativa) $P''(x) = 4[3x^2 - 1] = 0 \rightarrow x = \pm 1/\sqrt{3}$ (puntos de inflexión de P y máximos o mínimos de P')

$$P'(-\frac{\sqrt{3}}{3}) = 4[1 + \frac{2\sqrt{3}}{9}] \approx 5.5$$
; $P'(\frac{\sqrt{3}}{3}) = 4[1 - \frac{2\sqrt{3}}{9}] \approx 2.5$.
 $P'(-3) = -92$, $P'(-2) = -20$, $P'(-1) = P'(0) = P'(1) = 4$.

Con esto ya podemos dibujar la gráfica de P'. Vemos que: P' tiene un único cero en (-2,-1) [P''>0 en (-2,-1)] y no tiene más. Por tanto, P tiene un único mínimo entre -2 y -1. A partir de él P crece \Rightarrow sólo hay 1 raíz positiva de P. Para localizar un poco mejor las dos raíces de P:

$$P(-3) = 49, P(-2) = P(0) = -2, P(-1) = -7, P(1) = 1$$

 \Rightarrow Existe un cero de P en $[-3, -2]$ y otro en $[0, 1]$.

Aplicamos ahora el método de Newton para aproximar las raíces.

Primero la de P': $x_{n+1} = x_n - \frac{x_n^3 - x_n + 1}{3x_n^2 - 1}$. Elegimos $x_0 = 1$ y obtenemos:

 $x_1 = -1.5$; $x_2 = -1.347826087$; $x_3 = -1.325200399$; $x_4 = -1.324718174$; $x_5 = -1.324717957$;

y los posteriores x_n tienen esos mismos 9 decimales [es curioso ver que ocurre eligiendo $x_0 = 0$]. Los ceros de P los sacamos de $x_{n+1} = x_n - \frac{x_n^4 - 2x_n^2 + 4x_n - 2}{4[x_n^3 - x_n + 1]}$, obteniendo con los x_0 indicados:

 $x_0 = 0, x_1 = 0.5, x_2 = 0.675, x_3 = 0.6764448966, x_4 = 0.6764442885; x_5, x_6, \dots$ iguales decimales.

 $x_0 = -2$, $x_1 = -2.1$, $x_2 = -2.090744197$, $x_3 = -2.090657858$, $x_4 = -2.090657851 = x_5 = x_6 = \cdots$

Ej. Segundo ejemplo del método de Newton. Buscando los ceros de $x^n - a$ obtenemos una sucesión $\{x_n\}$ que tienden hacia $\sqrt[n]{a}$. Tenemos que:

$$x_{n+1} = x_n - \frac{x_n^n - a}{nx_n^{n-1}} = \left[\frac{1}{n} \left[(n-1)x_n + \frac{a}{x_n^{n-1}} \right] \right]$$
 (algoritmo de Herón para calcular raíces).

Para hallar $\sqrt[3]{12345}$, y partiendo de algún número que no esté muy lejos, por ejemplo $x_0 = 20$:

$$x_1 = 23.62083333$$
, $x_2 = 23.12251744$, $x_3 = 23.11162389$, $x_4 = 23.11161875 = x_5 = x_6 = \cdots$

Veamos ahora otro método de aproximación de ceros de un tipo de funciones particulares que, aunque sea más lento que el de Newton, tiene el interés de que es aplicable en matemáticas más avanzadas a problemas mucho más generales.

$$f:[a,b] \to [a,b]$$
 es **contractiva** si $|f(x)-f(y)| \le c|x-y|$, con $c < 1$, $\forall x,y \in [a,b]$

Una f contractiva es continua en [a,b]: $|f(x)-f(y)|<\varepsilon$ si $|x-y|<\delta=\frac{\varepsilon}{c}$.

Probemos que entonces existe un único $x^* \in [a,b]$ tal que $x^* = f(x^*)$

(A un x^* con esa propiedad se le llama **punto fijo** de f).

Aplicando Bolzano a g(x) = x - f(x), como $g(a) < 0 < g(b) \Rightarrow$ existe el x^* . Si hubiera otro $y^* = f(y^*)$ sería $|f(x^*) - f(y^*)| = |x^* - y^*| \le c|x^* - y^*| \Rightarrow x^* = y^*$.

Además existe una forma muy fácil de aproximar el x^* pues:

Para cualquier
$$x_0 \in [a,b]$$
, la sucesión $x_0, f(x_0), f(f(x_0)), f(f(f(x_0))), \ldots \to x^*$

En efecto, llamemos x_n al resultado de aplicar n veces f a x_0 .

Vamos a ver que x_n es de Cauchy. Se tiene que

$$|x_n-x_{n+1}| = |f(x_{n-1})-f(x_n)| \le c|x_{n-1}-x_n| \le \cdots \le c^n|x_0-x_1|$$
; por tanto, si $m \le n$, $|x_m-x_n| \le |x_{m+1}-x_m| + \cdots + |x_n-x_{n-1}| \le |c^m+\cdots+c^{n-1}||x_1-x_0| = \frac{c^m-c^n}{1-c}|x_1-x_0|$.

que se puede hacer tan pequeño como queremos con m y n suficientemente grandes $(c^m, c^n \to 0)$.

Como x_n es de Cauchy tiene límite x^* y se cumple $f(x^*) = f(\lim x_n) = \lim f(x_n) = \lim x_{n+1} = x^*$.

La forma más fácil de ver que una $f:[a,b] \to [a,b]$ es contractiva es ver que el máximo M de |f'(x)| en [a,b] es menor que 1, pues, por el teorema del valor medio,

$$|f(x) - f(y)| = |f'(c)||x - y| \le M|x - y| \operatorname{con} M < 1$$
.

Ej. Calculemos el único $x \in [0,1]$ tal que $\cos x = x$. $\cos x$ es contractiva: su imagen está contenida en [0,1] y $|-\sin x| \le \sin 1 < 1$.

Así pues, podemos hallar el x^* sin más que apretar la tecla del coseno de una calculadora a partir de cualquier $x_0 \in [0,1]$. Por ejemplo, si $x_0 = 1$ vamos obteniendo:

Después de apretar 20 veces obtenemos 0.73918440; tras apretar 40 veces, 0.73908517...

El método de Newton nos da el cero buscado mucho más rápidamente.

Haciendo
$$x_{n+1} = x_n - \frac{x_n - \cos x_n}{1 + \sin x_n}$$
 con $x_0 = 1$, se tiene en pocos pasos:
 $x_1 = 0.7503638678$, $x_2 = 0.7391128909$, $x_3 = 0.7390851334$, $x_4 = 0.7390851332 = x_5 = \cdots$

3.5. Representación de funciones

Cada función pide un tratamiento diferente. Las siguientes ideas no son una receta que haya que seguir desde el principio hasta el final. Por ejemplo, no tiene sentido buscar asíntotas verticales en una función continua en todo punto o empeñarse en calcular derivadas muy complicadas. La práctica en el dibujo de gráficas nos irá sugiriendo los tipos de cálculos a realizar en cada caso. Es importante conocer las gráficas de las funciones elementales.

- **Determinación del dominio**, y de los puntos en que f no es continua (posibles saltos de la función) o no derivable (picos de la gráfica, pendientes verticales).
- Simetrías: Si f(-x) = f(x), función par, la gráfica de f es simétrica respecto al eje x = 0.
 Si f(-x) = -f(x), función impar, la gráfica de f es simétrica respecto al origen.

- **Periodicidad** (sólo para algunas funciones trigonométricas): si f(x+T) = f(x) basta pintar la gráfica en un intervalo de longitud T pues luego se repite periódicamente.
- Asíntotas: Verticales (rectas x=c): f tiende a $+\infty$ 6 $-\infty$ cuando $x \to c^-$ 6 $x \to c^+$ (bastantes veces se puede calcular de una vez el límite cuando $x \to c$, pero otras son precisos los laterales). Horizontales (rectas y=c): f tiende a c si $x \to +\infty$ 6 $-\infty$. Si no existen asíntotas horizontales (y la forma de la función lo aconseja) intentaremos escribir f(x) = g(x) + h(x), con g función conocida y $h(x) \to 0$ si $x \to +\infty$ (6 $-\infty$). Entonces la gráfica de f se parecerá a la de g para f muy grandes (6 muy negativos). En particular, hallaremos así las posibles asíntotas oblicuas, sin recetas de memoria. [En ocasiones todos estos límites se podrán hallar con los teoremas del capítulo 2 (los del tipo "7/ ∞ =0"), pero si son indeterminados habrá que usar L'Hôpital o Taylor (4.5); el desarrollo de Taylor, además, dará idea de la forma de la función cerca de un punto].
- Información a partir de las derivadas (utilizando los teoremas de 3.2):

A partir de la f': crecimiento y decrecimiento (f'>0 y f'<0); puntos x en los que f posee extremos locales (si f'(c)=0, para ver si f tiene máximo, mínimo o punto de inflexión con tangente horizontal en c, es muchas veces más fácil precisar el signo de f' antes y después de c que calcular la f''(c); incluso, en ocasiones, basta dar valores a f en la proximidad de c para verlo; puede haber extremos en puntos sin derivada).

A partir de la f'': puntos de inflexión (f''(c)=0, aunque esto pueda no bastar); intervalos de concavidad y convexidad.

[Si no podemos hallar explícitamente los ceros de f' ó f'' intentaremos localizar cuántos hay y en qué intervalos están (Bolzano ayuda). Muchas ocasiones esos ceros serán raíces de polinomios (y será aplicable 3.3). El método de Newton de 3.4 nos permite aproximar los ceros con la precisión deseada si disponemos de ordenador].

• Valores concretos de f(x): En x=0 (corte con el eje y); en los x tales que f'(x)=0 o en los que no exista f', en puntos cercanos a estos x; en los x tales que f''(x)=0; en x de zonas en las que sepamos poco de la gráfica.

Valores de x que hagan f(x) = 0 (cortes con el eje x, quizás no calculables como ocurría con los ceros de f' y f''), deduciendo en qué intervalos f(x) es positiva o negativa.

A veces conviene también dar valores de f' (pendiente de la gráfica) en algún punto.

Hay funciones complicadas para las que casi todo fallará y habrá que limitarse a dar valores (en ese momento serán especialmente útiles las calculadoras y ordenadores). Al final del capítulo 4 (cuando dominemos Taylor y los límites difíciles) dibujaremos más gráficas.

Se deducen de la gráfica de
$$f(x)$$
 las gráficas de: $f(x)+c$, $f(x+c)$, $cf(x)$, $f(cx)$, $-f(x)$, $f(-x)$, $|f(x)|$ y $f(|x|)$

La de f(x) + c es la de f(x) trasladada c unidades hacia arriba (c > 0) o abajo (c < 0).

La de f(x+c) es la de f(x) trasladada c unidades hacia la izquierda o derecha (c>,<0).

La de cf(x) con c > 1 (0 < c < 1) es la de f(x) estirada (comprimida) verticalmente.

La de f(cx) con c > 1 (0 < c < 1) es la de f(x) comprimida (estirada) horizontalmente.

La de -f(x) es la reflexión de la gráfica de f(x) respecto a y = 0.

La de f(-x) es la reflexión de la gráfica de f(x) respecto a x = 0.

La de |f(x)| se obtiene reflejando hacia arriba las partes de la de f(x) bajo y = 0.

La de f(|x|) es la parte de la gráfica de f(x) para $x \ge 0$ más su reflejo respecto a x = 0.

[Todo es fácil de deducir. Por ejemplo, la gráfica de g(x)=f(x+2) vale en x=a lo que la f valía en x=a+2 y por eso la gráfica de g es la trasladada de f hacia la izquierda; la altura en cada punto de g(x)=2f(x) es el doble de la f inicial y la de $g(x)=\frac{1}{2}f(x)$ la mitad; g(x)=f(|x|) vale f(x) si $x\geq 0$ y además es par...]

Ej. De la gráfica de $\operatorname{sen} x$ (dibujada a puntos) deducimos las gráficas de: $\operatorname{sen} x + 1$, $\operatorname{sen} x - 1$, $\operatorname{sen} (x+1)$, $\operatorname{sen} (x-1)$, $2\operatorname{sen} x$, $\frac{1}{2}\operatorname{sen} x$, $\operatorname{sen} (2x)$, $\operatorname{sen} \frac{x}{2}$, $-\operatorname{sen} x$, $\operatorname{sen} (-x)$, $|\operatorname{sen} x|$ y $\operatorname{sen} |x|$:

Ej. Un ejemplo que emplea varias de las ideas anteriores: $f(x) = |(x-2)^3 + 1|$.

Dos funciones cuya gráfica no ofrece excesivas dificultades:

$$f'(x) = \frac{2x^2 - 4}{x^5}$$
; $f''(x) = \frac{20 - 6x^2}{x^6}$.

Extremos: $x = \pm \sqrt{2} \approx \pm 1.41$, $f(\pm \sqrt{2}) = -0.25$.

Inflexión:
$$i_{\pm} = \pm \sqrt{\frac{10}{3}} \approx \pm 1.8$$
, $f(i_{\pm}) = -0.21$.

$$f(x) = 0 \Leftrightarrow x = \pm 1$$
, $f(\frac{1}{2}) = 12$, $f(\frac{\sqrt{2}}{2}) = 2$, $f(2) = -\frac{3}{16} \approx -0.19$.

Ej.
$$h(x) = \sqrt{\frac{x^2}{x+1}} = \frac{|x|}{\sqrt{|x+1|}}$$
. $h(x) \ge 0 \ \forall x \in \text{dom} h = (-1, \infty)$.

$$h'(x) = \frac{-[x+2]}{2[x+1]^{3/2}}$$
 si $-1 < x < 0$ [decrece]; $h'(0^-) = -1$.

$$h'(x) = \frac{-[x+2]}{2[x+1]^{3/2}}$$
 si $x > 0$ [crece]; $h'(0^+) = 1$.

$$h''(x) = \frac{[x+4]}{4[x+1]^{5/2}}, -1 < x < 0; h''(x) = \frac{-[x+4]}{4[x+1]^{5/2}} x > 0.$$

$$h(x) = \sqrt{x - 1 + \frac{1}{x + 1}}$$
 [se parece a $\sqrt{x - 1}$ para x grande].
 $h(x) \to \infty$ si $x \to -1^+$.

$$h(0) = 0$$
, $h(-\frac{1}{2}) = \frac{\sqrt{2}}{2} = h(1)$, $h(3) = \frac{3}{2}$.

Dibujamos ahora dos de los ejemplos manejables de 3.1:

$$g(-x) = -g(x)$$
: impar. De las derivadas se saca poco: $g'(x) = 2x \operatorname{sen} \frac{1}{x} - \cos \frac{1}{x} = 0 \Leftrightarrow \tan \frac{1}{x} = \frac{1}{2x}$ (infinitos cortes)

Pero podemos dar infinitos valores a la función:

Como sen
$$\frac{1}{x} = 1 \Leftrightarrow x = \frac{2}{[4n+1]\pi}$$
; sen $\frac{1}{x} = -1 \Leftrightarrow x = \frac{2}{[4n-1]\pi}$,

la gráfica de g toca en esos x la de x^2 y la de $-x^2$, y para los demás x la gráfica oscila entre ambas.

 $\sin \frac{1}{x} = 0 \Leftrightarrow x = \frac{1}{n\pi}$, otros infinitos puntos de la gráfica.

Como sen $\frac{1}{x} \approx \frac{1}{x}$ si x gordo sospechamos que $g(x) \approx x$.

De hecho sabremos justificar por L'Hôpital o Taylor que

$$\lim_{x \to \infty} [g(x) - x] = 0$$

Ej. $n(x) = \arctan \frac{1}{x^2}$, $n(0) = \frac{\pi}{2}$. Par. $n(x) \ge 0 \ \forall x$. $n'(x) = \frac{-2x}{1+x^4} \Rightarrow n \text{ crece si } x < 0 \text{ y decrece si } x > 0.$

$$n''(x) = 2 \frac{3x^4 - 1}{(1 + x^4)^2} \Rightarrow \text{c\'oncava si } |x| \le 3^{-1/4} \approx 0.76 \ .$$

Valores: $n(1) = \frac{\pi}{4}$, $n(3^{-1/4}) = \arctan \sqrt{3} = \frac{\pi}{3}$. n'(0) = 0. $n(x) \underset{x \to \infty}{\longrightarrow} 0$.

Dos últimos ejemplos con dificultades para hallar ceros:

Ej.
$$l(x) = x^3 + 6\log(2 - x)$$
. dom $l = (-\infty, 2)$.

$$l(x) \rightarrow -\infty \text{ si } x \rightarrow 2^{-} \text{ ó } -\infty \text{ , pues}$$

$$x^3[1+\tfrac{6\log(2-x)}{x^3}]\underset{x\to-\infty}{\longrightarrow} \text{``}-\infty\cdot[1+0]=-\infty\text{''}[\text{L'Hôpital}]$$

$$l'(x) = 3\frac{x^3 - 2x^2 + 2}{x - 2} = 0 \Leftrightarrow P(x) \equiv x^3 - 2x^2 + 2 = 0$$
??

$$+-+$$
 (0 ó 2 raíces positivas ??); $--+$ (1 negativa [máx de l]);

$$P'(x) = 3x^2 - 4x$$
, $P(\frac{4}{3}) = \frac{22}{27} > 0$, $P(0) = P(2) = 2$, $P(\pm 1) = \pm 1$

$$\Rightarrow$$
 raíz de P [máx] en $c \in (-1,0)$ [Newton: $c \approx -0.84$]; no mínimos.

$$\begin{split} l''(x) &= 6\frac{[x-1][x^2-3x+1]}{[x-2]^2} = 0 \text{ si } x = 1 \text{ ó } \frac{3-\sqrt{5}}{2} \approx 0.4 \text{ } [\frac{3+\sqrt{5}}{2} \notin \text{dom } l \text{ }] \\ \Rightarrow l \text{ convexa } (\cup) \text{ entre los 2 p.inf. y cóncava en el resto de dom } l. \end{split}$$

$$l(1) = 1, l(0) = 6\log 2 \approx 4.1, l(-1) = 6\log 3 - 1 \approx 5.6, l(-2) = 12\log 2 - 8 \approx 0.3.$$

Ej.
$$k(x) = x \log |x - 2|$$
. $dom k = \mathbf{R} - \{2\}$.

$$k \underset{x \to 2}{\longrightarrow} -\infty$$
, $k \underset{x \to \infty}{\longrightarrow} \infty$, $k \underset{x \to -\infty}{\longrightarrow} -\infty$.

$$k(0) = k(1) = k(3) = 0$$
, $-k(-2) = k(4) = 4 \log 2 \approx 2.8$
[Según Rolle hay al menos un cero de k' en $(0,1)$]

$$k'(x) = \log|x-2| + \frac{x}{x-2}$$
; $k''(x) = \frac{x-4}{[x-2]^2}$.

x = 4 inflexión, x < 4 cóncava, x > 4 convexa.

k' = 0 donde se corten las gráficas de $\log |x-2|$ y $\frac{x}{2-x}$.

$$k'(0)\!=\!\log 2\!\approx\!0.7$$
 , $k'(1)\!=\!-1\Rightarrow$ máximo en $c\!\in\!(0,1)$

[utilizando Newton para $k' \cos x_0 = 0.5$: $x_1 = 0.546370$, $x_2 = 0.545267 = x_3 = x_4 = \cdots$].

Cerca de
$$x = 2$$
 no se anula k' pues

$$k' \to \infty \text{ si } x \to 2^+, k'(3) = 3 \text{ y } k' \text{ decrece en } (2,3) .$$

3.6. Aplicaciones

Tangentes a curvas.

Ej. Hallar la ecuación de la recta tangente a la hipérbola $x^2 - y^2 = 16$ en el punto (5,3).

Más corto que despejar la y derivar la raíz resultante, derivamos **implícitamente** considerando la y como función de x:

$$2x - 2yy' = 0 \rightarrow y'(x) = \frac{x}{y}$$
. Si $x = 5, y = 3$ es
$$y' = \frac{5}{3} \rightarrow y = 3 + \frac{5}{3}(x - 3), 5x - 3y = 16.$$

Ej. ¿Para qué puntos de la curva $y=x^3$ la recta tangente pasa por (1,0)?

 $y' = 3x^2 \rightarrow \text{Recta tangente en el punto } (a, a^3)$:

$$y = a^3 + 3a^2(x - a) = 3a^2x - 2a^3$$
.

Pasa por (1,0) si $3a^2 - 2a^3 = 0 \rightarrow a = 0$, $a = \frac{3}{2} \rightarrow \text{puntos } (0,0) \text{ y } (\frac{3}{2}, \frac{27}{8})$ [rectas tangentes respectivas: y = 0 e $y = \frac{27}{4}(x - 1)$].

Ritmos de cambio.

Ej. Un cilindro se comprime lateralmente y se estira, de modo que el radio de la base decrece a un ritmo de 3 cm/s y la altura crece a 8 cm/s. Hallar el ritmo al que está cambiando el volumen cuando el radio es 5 cm y la altura 7 cm.

↓

El volumen del cilindro es $V = \pi r^2 h \rightarrow \frac{dV}{dt} = \pi \left[r^2 \frac{dh}{dt} + 2rh \frac{dr}{dt}\right] = 2\pi r \left[4r - 3h\right]$

Cuando r = 5 y h = 7, $V' = -10\pi$ cm³/s (el volumen decrece en ese instante).

Ej. Una escalera de 5 m de largo permanece apoyada sobre una pared vertical y su extremo inferior se está alejando del pie de la pared a una velocidad constante de 2 m/s. Hallar la velocidad a la que desciende la parte superior cuando el extremo inferior está a 4 m de la pared.

Sea y la distancia al suelo de la parte superior y x la distancia de la parte inferior a la pared. Por pitágoras es: $y = \sqrt{25 - x^2}$. Entonces

$$\frac{dy}{dt} = \frac{dy}{dx} = \frac{dx}{dt} = \frac{-2x}{\sqrt{25-x^2}}$$
. Cuando $x = 4$ es $\frac{dy}{dt} = -\frac{8}{3}$.

Por tanto el extremo de la escalera cae en ese instante a $\frac{8}{3}$ m/s.

[Curiosidad, si $x \to 5$ la velocidad de caída $\to \infty$ (!?)].

Ej. La luz de un faro situado a 1/2 Km de la una costa recta gira con un periodo de 12 segundos. Hallar la velocidad con la que la luz se mueve por la costa: i) en el punto P más cercano al faro, ii) en un punto situado a 2 Km de P, iii) un segundo después de pasar la luz por P.

Sean θ el ángulo y x la distancia descritos en el dibujo. Se tiene que $x=\frac{1}{2}\tan\theta$. La velocidad de crecimiento de θ es $\frac{d\theta}{dt}=\frac{\pi}{6}$ radianes por segundo. La velocidad de la luz sobre la costa es

$$\frac{dx}{dt} = \frac{1}{2}(1 + \tan^2 \theta) \frac{d\theta}{dt} = \frac{\pi}{12}(1 + 4x^2)$$

- i) en P, $\theta = 0$, $x = 0 \rightarrow x' = \frac{\pi}{12}$ Km/seg ≈ 942 Km/h;
- ii) $x = 2 \rightarrow x' = \frac{17\pi}{12}$ Km/seg ≈ 16022 Km/h;
- iii) $\theta = \frac{\pi}{6} \to x' = \frac{\pi}{12} (1 + \frac{1}{3}) = \frac{\pi}{9} \text{ Km/seg} \approx 1257 \text{ Km/h}.$

Máximos y mínimos.

Ej. Hallar (si existen) dos reales positivos cuyo producto sea 1 y tales que su suma sea i) máxima, ii) mínima.

Sean los números x y $\frac{1}{x}$. Hay que buscar los extremos de $S(x) = x + \frac{1}{x}$ en el intervalo $(0, \infty)$ [como no es un cerrado podrían no existir].

$$S'(x) = 1 - \frac{1}{x^2} = 0 \rightarrow x = 1$$
 (-1 no sirve); $S''(x) = \frac{2}{x^3} \rightarrow S''(1) = 2$ hay, pues, un mínimo local en $x = 1$. S derivable para todo x de $(0, \infty)$,

 $S(x) \to \infty$ cuando $x \to 0$ y cuando $x \to \infty \Rightarrow$ no hay máximo. Por tanto, el mínimo (absoluto) se da si $x = \frac{1}{x} = 1$ (la suma es entonces 2).

Ej. Un nadador se halla en el mar a 4 km de una playa recta y a 5 km de una palmera situada en la playa junto al mar. Si nada a una velocidad de 4 km/h y camina por la playa a 5 km/h, ¿cuál es el tiempo mínimo que debe emplear para llegar hasta la palmera?

El tiempo empleado en nadar hacia un punto situado a una distancia x de la perpendicular y luego caminar hasta la palmera es

$$T(x) = \frac{\sqrt{16+x^2}}{4} + \frac{3-x}{5}$$
, con $x \in [0,3]$

 $T(x)=\frac{\sqrt{16+x^2}}{4}+\frac{3-x}{5}\;,\;\mathrm{con}\;x\in[0,3]$ [si $x\!\leq\!0$ tarda más seguro y si $x\!\geq\!3$ no vale la expresión de T(x)].

$$T'(x) = \frac{x}{4\sqrt{16+x^2}} - \frac{1}{5} = 0 \implies \frac{25}{16}x^2 = 16 + x^2 \iff x = \frac{16}{3}, -\frac{16}{3}$$

Pero $\frac{16}{3} > 3$ y $-\frac{16}{3}$ no cumple T' = 0, así que el mínimo se toma en un extremo: $T(3) = \frac{5}{4} < T(0) = \frac{8}{5}$ [$T(\frac{16}{3}) = \frac{6}{5}$ es mentira].

Por tanto, debe nadar hacia la palmera (si ésta estuviese lejos sí convendría atajar).

Ej. Con un alambre de longitud 1 m se forman un cuadrado y una circunferencia. ¿Cuánto alambre debe emplearse en cada figura para que la suma de sus áreas sea i) máxima, ii) mínima?

Área total =
$$L^2 + \pi r^2 = \frac{[1-x]^2}{16} + \frac{\pi x^2}{4\pi^2} = \frac{[4+\pi]x^2 - 2\pi x + \pi}{16\pi} = A(x)$$
 con $x \in [0,1]$. Los máximos y mínimos (que existen, por ser A

continua en [0,1]) se alcanzarán (A derivable en (0,1)) o bien

en los extremos del intervalo o bien cuando
$$A'(x)=0$$
:
$$A'(x)=\frac{[4+\pi]x-\pi}{8\pi}=0 \to x^*=\frac{\pi}{4+\pi}\approx 0.44 \text{ m}$$

Como A' < 0 si $x < x^*$, A' > 0 si $x > x^*$, el mínimo se da en x^* , y como $A(0) = \frac{1}{16} < A(1) = \frac{1}{4\pi}$ el máximo en 1 (empleando todo el alambre para el círculo [$A\approx 0.08~\text{m}^2$]; para el área mínima se usa alrededor de 44 cm para el círculo y 56 cm para el cuadrado [$A=\frac{1}{4[4+\pi]}\approx 0.035~\text{m}^2$]).

Ej. Hallar el punto de la gráfica de $f(x) = \sqrt{2\cos x^2}$ más cercano al origen.

Hallamos antes su dominio y dibujamos su gráfica: $\cos x^2 \ge 0 \Leftrightarrow x^2 \in [0, \frac{\pi}{2}] \cup [\frac{3\pi}{2}, \frac{5\pi}{2}] \cup [\frac{7\pi}{2}, \frac{9\pi}{2}] \cup \cdots$

$$\Rightarrow \mathrm{dom} f = \cdots \cup \left[-\sqrt{\tfrac{5\pi}{2}}, -\sqrt{\tfrac{3\pi}{2}} \right] \cup \left[-\sqrt{\tfrac{\pi}{2}}, \sqrt{\tfrac{\pi}{2}} \right] \cup \left[\sqrt{\tfrac{3\pi}{2}}, \sqrt{\tfrac{5\pi}{2}} \right] \cup \cdots$$

Mejor que minimizar distancias, minimizamos su cuadrado (es lo mismo y evita derivar raíces):

$$d(x) = d[(0,0),(x,f(x)]^2 = x^2 + 2\cos x^2; d'(x) = 4x(\frac{1}{2} - \sin x^2) = 0 \rightarrow x = 0 \text{ ó } x^2 = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6} \cdots$$

El valor mínimo claramente se da en $[-\sqrt{\pi/2}, \sqrt{\pi/2}]$. Candidatos son además estos extremos.

49

$$d(0) = 2$$
, $d(\pm \sqrt{\frac{\pi}{6}}) = \frac{\pi}{6} + \sqrt{3} \approx 2.26$, $d(\pm \sqrt{\frac{\pi}{2}}) = \frac{\pi}{2} \approx 1.57 \rightarrow \text{puntos más cercanos } (\pm \sqrt{\frac{\pi}{2}}, 0)$.

4. Series, Taylor y límites indeterminados

4.1. Series de números reales

Queremos hacer 'sumas de infinitos números reales', llamadas series:

$$a_1 + a_2 + a_3 + \dots = \sum_{n=1}^{\infty} a_n$$
.

Por ejemplo, 'sumemos' $1/5 + 1/5^2 + 1/5^3 + 1/5^4 + 1/5^5 + \cdots$. Sumar un número finito de términos siempre se puede: la suma de los 2 primeros es 0.24, la de los 5 primeros es 0.24992, la de los 10 es 0.2499999744, ... Pero carece de sentido 'sumar infinitas veces'. Cuando aparece la palabra 'infinito' en matemáticas se acude al concepto de límite. Dada una serie, siempre podemos hacer la suma de los k primeros términos, que llamaremos k-ésima suma parcial $S_k = a_1 + \cdots + a_k$. Parece natural decir que la suma S de los infinitos a_n será el límite de la sucesión $\{S_k\}$. En el ejemplo anterior parece que este límite existe y parece ser S=0.25, pero este límite pudiera no existir para otras series. Así, para la serie $1-1+1-1+1-\cdots$ las sumas parciales van siendo $S_1 = 1$, $S_2 = 0$, $S_3 = 1$, $S_4 = 0$,..., sucesión divergente (y, por tanto, no se le puede asignar ningún valor a la suma de los infinitos términos). Lo primero que miraremos cuando nos encontremos con una serie es si la 'suma infinita' tiene sentido:

La serie $\sum_{n=1}^{\infty} a_n$ es **convergente** si lo es la sucesión $\{S_k\}$ con $S_k = \sum_{n=1}^k a_n$.

Def. La suma de la serie es entonces el $\lim_{k\to\infty} S_k$. Se llama término general de la serie al a_n y sucesión de sus sumas parciales a $\{S_k\}$. Si una serie no converge, se dice divergente.

[La serie converge si lo hace su sucesión de sumas parciales; otra cosa distinta es que converja su término general. Para $\sum_{n=1}^{\infty} 1 = 1 + 1 + 1 + \cdots$ es $\{S_k\} = \{k\}$, que claramente diverge a ∞ , y sin embargo converge la sucesión constante $\{a_n\} = \{1\}$; pronto veremos que para que la serie converja será necesario (pero no suficiente) que $\{a_n\}$ tienda hacia cero (para que pueda ser finita la suma de infinitos números es necesario que sean muy pequeños)].

De la definición y de las conocidas propiedades de los límites de sucesiones se deduce inmediatamente que si suprimimos, cambiamos o añadimos un número finito de términos al principio de una serie, no se altera su carácter de convergencia o divergencia (aunque sí el valor de su suma, si converge), porque las nuevas sumas parciales diferirán de la inicial sólo en un constante. Por eso, cuando estemos hablando simplemente de convergencia podremos no escribir el n en que empezamos a sumar; incluso escribiremos sólo Σ (no olvidando que son infinitos términos).

También está claro (por las propiedades de sumas y productos de sucesiones) que si $\sum a_n$ y $\sum b_n$ convergen y si $c \in \mathbb{R}$, también convergerán las series $\sum [a_n + b_n]$ y $\sum c a_n$ y que:

$$\sum_{n=1}^{\infty} [a_n + b_n] = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n \quad ; \quad \sum_{n=1}^{\infty} c \, a_n = c \sum_{n=1}^{\infty} a_n$$

¿Como saber si una serie converge o no? ¿Cuánto vale su suma si es convergente? Veremos una serie de **criterios** que nos permitirán responder en la práctica a la primera pregunta para muchas series (desde luego la definición $\varepsilon - N$ del límite de sucesiones no es adecuada, ni vimos en 2.2 teoremas para trabajar con sucesiones en las que el número de sumandos va creciendo). Respecto de la segunda, casi siempre necesitaremos calculadora u ordenador para dar simplemente un valor aproximado de la suma de la serie.

Dos casos en que se puede sumar la serie (excepcionales, porque podemos encontrar una expresión manejable de la sumas parciales; cuando veamos series de Taylor en 4.4 conoceremos la suma de alguna otra serie) son los siguientes:

Series geométricas (progresiones geométricas de infinitos términos):

$$\sum_{n=0}^{\infty} r^n = 1 + r + r^2 + \cdots$$
 Si $r \neq 1$ es $S_k = \frac{1 - r^{k+1}}{1 - r} \Rightarrow$ Si $|r| < 1$, $\sum_{n=0}^{\infty} r^n = \frac{1}{1 - r}$

Y si |r| > 1 diverge, al hacerlo S_i

(también si $r = \pm 1$: $1 + 1 + \cdots \rightarrow \infty$, $1 - 1 + 1 - 1 + \cdots$ divergen).

Ej. Con esto vemos que $\frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + \dots = \frac{1}{5} \sum_{n=0}^{\infty} \left(\frac{1}{5}\right)^n = \frac{1}{5} \frac{1}{1-1/5} = \frac{1}{4} = 0.25$ como sospechábamos.

[De la misma forma que en este ejemplo, es fácil ver que, en general, $\sum_{n=k}^{\infty} r^n = \frac{r^k}{1-r}$, si |r| < 1].

Series telescópicas:
$$\sum_{n=1}^{\infty} [b_n - b_{n+1}] \Rightarrow S_k = [b_1 - b_2] + [b_2 - b_3] + \dots + [b_k - b_{k+1}] = b_1 - b_{k+1}.$$

Por tanto, la serie converge si y solo si $\{b_n\}$ converge y entonces su suma es: $b_1 - \lim_{n \to \infty} b_n$

Ej.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n} = \sum_{n=1}^{\infty} \left[\frac{1}{n} - \frac{1}{n+1} \right] = 1 - \lim_{n \to \infty} \frac{1}{n} = 1$$
.

Ej.
$$\sum_{n=1}^{\infty} \log \frac{n}{n+1} = \sum_{n=1}^{\infty} [\log n - \log (n+1)]$$
 es divergente, porque $\log n$ diverge hacia $+\infty$.

Salvo en estos dos casos nos conformaremos con saber si la serie que tratamos converge o no y con la calculadora para aproximar su suma (a ser posible, dando una cota del error cometido). Lo que sigue son los criterios más importantes para distinguir las series convergentes de las divergentes (hay más, pero aplicables en muy pocos casos prácticos). El primer criterio permite identificar un montón de series divergentes (muchas veces a simple vista):

Teorema: Si
$$\sum a_n$$
 es convergente $\Rightarrow a_n \to 0$ [la implicación opuesta (\Leftarrow) es **falsa**] Es $a_n = S_n - S_{n-1}$. Entonces $a_n \to 0$, pues S_n y S_{n-1} tienen, desde luego, el mismo límite.

Ej. $\sum \frac{n+1}{20000n}$ es divergente, porque el término general a_n no tiende a 0 (tiende a $\frac{1}{20000}$).

Ej.
$$\sum (-1)^n e^{1/n}$$
 diverge, porque a_n tampoco tiende a 0 (ni a nada; pares $\rightarrow 1$, impares $\rightarrow -1$).

Veamos que ← es falso, o sea, que no basta que los números que sumemos tiendan a 0 para que la serie converja. Para ello basta un contraejemplo.

Probemos que la 'serie armónica'
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 diverge $(a_n \to 0$, pero la suma es 'infinito').

[Es imposible verlo con calculadora: $S_1=1$, $S_2=1.5$,..., $S_{10}\approx 2.929$, ..., $S_{100}\approx 5.187$, ..., $S_{1000} \approx 7.485$,... no parece estabilizarse, pero sumandos muy altos acabarían por no afectar al número de la pantalla, pues la calculadora maneja sólo unos pocos dígitos].

Sea la serie
$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \cdots$$

de términos menores que los de la armónica. Tenemos entonces que:

$$S_2 = 1 + \frac{1}{2}$$
, $S_4 > 1 + \frac{1}{2} + \frac{1}{2}$, $S_8 > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$, ..., $S_{2n} > 1 + \frac{n}{2}$.

Por tanto la sucesión de sumas parciales de $\sum \frac{1}{n}$ diverge (ni siquiera está acotada).

Series de términos positivos $a_n \ge 0$ [o de términos negativos, pues $\sum a_n = -\sum (-a_n)$].

Observemos que entonces las sumas parciales forman una sucesión creciente.

Veamos varios criterios de convergencia. El primero exige saber algo de integrales y límites de funciones, pero lo necesitamos para tratar las importantes series $\sum \frac{1}{n^s}$.

Se define: $\int_a^\infty f(x)dx = \lim_{b\to\infty} \int_a^b f(x)dx$ (si el límite existe; la integral se dice convergente).

Criterio integral:

Sea f(x) función positiva y decreciente para $x \ge 1$. Entonces la serie $\sum_{n=1}^{\infty} f(n)$ converge $\Leftrightarrow \int_1^\infty f(x) dx$ converge. El error está acotado por $\int_{k+1}^\infty f(x) dx \leq S - S_k \leq \int_k^\infty f(x) dx$.

Este criterio, es de los pocos que dan cota del error cometido al sustituir la suma S de la serie convergente por la k-ésima suma parcial. No lo demostramos. Recordando el significado geométrico de la integral, es intuitivamente claro a partir del dibujo.

$$\sum_{n=1}^{\infty} \frac{1}{n^s} \text{ converge si } s > 1 \text{ y diverge si } s \le 1$$

Si $s \le 0$, el término general no tiende a 0 y la serie diverge.

Si s > 0, la función $f(x) = x^{-s}$ es positiva y decreciente y aplicamos el criterio anterior:

si
$$s \neq 1$$
, $\int_1^b x^{-s} dx = [1 - b^{1-s}]$; si $s = 1$, $\int_1^b x^{-1} dx = \log b$.

Si $b \to \infty$, la primera integral converge para s > 1 y $\to \infty$ si 0 < s < 1. La segunda $\to \infty$.

Ej. Para aproximar la suma S de la serie convergente $\sum_{n=1}^{\infty} \frac{1}{n^3} = 1 + \frac{1}{8} + \frac{1}{27} + \cdots$ sumamos

50 términos y obtenemos $S_{50} = 1.201860...$ ¿Qué error E hemos cometido?

El criterio integral nos dice que:

$$\int_{51}^{\infty} \frac{dx}{x^3} = \left[-x^{-2} \right]_{51}^{\infty} = \frac{1}{2 \cdot 51^2} = 0.000192... \le E = S - S_{50} \le \int_{50}^{\infty} \frac{dx}{x^3} = \left[-x^{-2} \right]_{50}^{\infty} = \frac{1}{2 \cdot 50^2} = 0.0002$$

El valor de S (no calculable exactamente) está comprendido entre 1.202052... y 1.202060...

En los dos siguientes criterios compararemos nuestra serie con otra cuya convergencia conozcamos (normalmente con las $\sum \frac{1}{n^s}$; por eso serán adecuados cuando hay como mucho potencias de n; si aparecen términos mayores, como 3^n o n!, será mejor utilizar el cociente o la raíz que veremos).

53

Criterio de comparación por desigualdades:

Si
$$0 \le a_n \le b_n$$
, entonces $\sum b_n$ converge $\Rightarrow \sum a_n$ converge y $\sum_{n=1}^{\infty} a_n \le \sum_{n=1}^{\infty} b_n$

[Y por tanto $\sum a_n$ diverge $\Rightarrow \sum b_n$ diverge. Pero no se obtiene ninguna conclusión de que la mayor diverja o de que la menor converja].

Sean $S_k = a_1 + \dots + a_k$, $T_k = b_1 + \dots + b_k$. Son successiones crecientes con $0 \le S_k \le T_k$. Entonces: T_k convergente $\Rightarrow T_k$ acotada $\Rightarrow S_k$ acotada $\Rightarrow S_k$ convergente $y \mid \text{lim} S_k \le \text{lim} T_k$.

Ej.
$$\sum \frac{\operatorname{sen} n+1}{n^3+n}$$
 converge, ya que $0 \le \frac{\operatorname{sen} n+1}{n^3+n} \le \frac{2}{n^3}$ y sabemos que $\sum \frac{2}{n^3} = 2\sum \frac{1}{n^3}$ converge.

Ej. $\sum \frac{n+1}{n^2}$ diverge, pues $\frac{n+1}{n^2} \ge \frac{1}{n}$ y la armónica diverge (de $\frac{n+1}{n^2} \ge \frac{1}{n^2}$ no sacaríamos nada). Lo podemos afirmar sin el criterio: la suma de una $\sum a_n$ convergente y otra $\sum b_n$ divergente es divergente (si convergiese, $\sum [a_n+b_n] - \sum a_n = \sum b_n$ convergería) y esto le pasa a nuestra serie $\sum [\frac{1}{n}+\frac{1}{n^2}]$. [Que conste que la suma o diferencia de dos divergentes sí puede ser convergente].

Trabajar con desigualdades puede ser complicado, por eso suele ser bastante más útil:

Criterio de comparación por paso al límite:

Sean
$$a_n$$
, $b_n \ge 0$ y $\lim_{n \to \infty} \frac{a_n}{b_n} = c$ (finito). Entonces:
Si $c > 0$, $\sum a_n$ converge $\Leftrightarrow \sum b_n$ converge. Si $c = 0$, $\sum b_n$ converge $\Rightarrow \sum a_n$ converge.

Si
$$c>0$$
, para $n\geq N$, $\frac{c}{2}\leq \frac{a_n}{b_n}\leq \frac{3c}{2}\Rightarrow 0\leq \frac{c}{2}b_n\leq a_n\leq \frac{3c}{2}b_n$ y aplicamos el criterio anterior.

Si
$$c=0$$
, para $n \ge N$, $0 \le \frac{a_n}{b_n} \le 1 \Rightarrow 0 \le a_n \le b_n$ y otra vez el criterio.

A partir de ahora, para abreviar, representaremos con el símbolo " \sim " el hecho de que a dos series les podemos aplicar la primera parte de este criterio, es decir:

$$a_n \sim b_n \text{ si } \frac{a_n}{b_n} \to c > 0$$

[A pesar del símbolo elegido, no quiere decir esto que, aunque las dos series converjan a la vez, la suma de una se parezca a la de la otra (intentemos no escribir $\sum a_n \sim \sum b_n$)].

Esta parte del criterio con c > 0 permite determinar la convergencia de muchas series a simple vista, mirando sólo en los términos n^s que 'mandan' en numerador y denominador:

Ej.
$$\sum \frac{n-1}{n^2}$$
 diverge, porque $a_n \sim \frac{n}{n^2} = \frac{1}{n}$ (es decir, $\frac{a_n}{1/n} = \frac{n}{n-1} \to 1 > 0$) y $\sum \frac{1}{n}$ diverge.

[La comparación por \leq no es adecuada aquí (de la acotación sencilla $a_n \leq \frac{1}{n}$ no sale nada, pues aunque la gorda diverja la menor podría converger); en cambio, para el primer ejemplo del criterio anterior, como $\frac{\text{sen}\,n+1}{n^3+n}$ no se parece a $\frac{1}{n^3}$ ($\frac{a_n}{1/n^3}$ no tiene límite), el paso al límite no parece adecuado (se puede usar la parte con c=0, pero es más fácil usar desigualdades)].

Ej.
$$\sum \frac{5\sqrt{n}-173}{n^2+\cos n}$$
 converge, pues $a_n \sim \frac{1}{n^{3/2}} \left(\frac{a_n}{1/n^{3/2}} \to 5 > 0\right)$ y $\sum \frac{1}{n^{3/2}}$ es convergente.

[Aunque sean unos cuantos $a_n < 0$, esto no impide aplicar criterios para series de términos positivos, pues la convergencia se mantiene si los quitamos].

Ej.
$$\sum \frac{\arctan n}{4n^2+3}$$
 converge, ya que $a_n \sim \frac{1}{n^2} \left(\frac{a_n}{1/n^2} \to \frac{\pi}{8} \right)$, pues $\arctan n \to \frac{\pi}{2}$ y $\sum \frac{1}{n^2}$ converge.

Ej.
$$\sum \frac{1}{7^n + (-1)^n}$$
 converge: $a_n \sim \frac{1}{7^n} \left(\frac{a_n}{1/7^n} \to 1 > 0 \right)$ y $\sum \left(\frac{1}{7} \right)^n$ es geométrica convergente.

[Alguna vez compararemos con otras series conocidas y no sólo con las $\sum \frac{1}{n^s}$].

Ej.
$$\sum \operatorname{sen} \frac{1}{n^3}$$
. La sucesión $\frac{1}{n^3} \to 0$ y sabemos ya que $\frac{\operatorname{sen} x}{x} \stackrel{x \to 0}{\to} 1$. Por los teoremas que relacionan límites de sucesiones y funciones se tiene: $\frac{a_n}{1/n^3} \to 1$. Como $\sum \frac{1}{n^3}$ converge, la dada también.

54

Cuando los términos que dominen contengan logaritmos habrá que aplicar la segunda parte (la de c=0) de este criterio (porque $\log n$ no se parece a ninguna potencia de n):

Ej.
$$\sum \frac{\log n}{n^4}$$
 converge, pues $\frac{\log n/n^4}{1/n^3} = \frac{\log n}{n} \to 0$ y $\sum \frac{1}{n^3}$ (más gorda) converge.

$$\sum \frac{\log n}{n} \text{ diverge, pues } \frac{1/n}{\log n/n} \to 0 \text{ y } \sum \frac{1}{n} \text{ (más pequeña) diverge.}$$

$$\left[\text{o por desigualdades } \frac{\log n}{n} > \frac{1}{n} \text{ si } n \ge 3 \right] \left[\text{o por el integral } \int_{1}^{\infty} \frac{\log x}{x} dx = \left[\frac{1}{2} (\log x)^{2} \right]_{1}^{\infty} \to \infty \right].$$

$$\sum \frac{\log n}{n^2}$$
 converge, pues $\frac{\log n/n^2}{1/n^{3/2}} = \frac{\log n}{n^{1/2}} \to 0$ y $\sum \frac{1}{n^{3/2}}$ converge.

[hemos debido afinar pues $\sum \frac{1}{n^2}$ es convergente pero menor y $\sum \frac{1}{n}$ es mayor pero diverge].

Series de términos cualesquiera.

Consideremos primero la serie, de términos positivos, de los valores absolutos $\sum |a_n|$.

Teorema:
$$\sum |a_n|$$
 es convergente $\Rightarrow \sum a_n$ es convergente

$$0 \le a_n + |a_n| \le 2|a_n|$$
, $\sum |a_n|$ converge $\Rightarrow \sum [a_n + |a_n|]$ converge (criterio de comparación por desigualdades) $\Rightarrow \sum [a_n + |a_n|] - \sum |a_n| = \sum a_n$ converge.

La implicación \Leftarrow es falsa: pronto veremos series $\sum a_n$ convergentes pero tales que $\sum |a_n|$ diverge. Diremos que $\sum a_n$ es **absolutamente convergente** si $\sum |a_n|$ es convergente (el teorema anterior dice que absolutamente convergente \Rightarrow convergente). Diremos que $\sum a_n$ es **condicio**nalmente convergente si converge, pero no absolutamente.

Ej.
$$\sum \frac{(-1)^{n+1}}{n^2+1}$$
 converge absolutamente (y por tanto converge) pues $\sum \frac{1}{n^2+1}$ converge ($\sim \frac{1}{n^2}$).

Ej.
$$\sum \frac{\cos n}{3^n} \cdot \sum \frac{|\cos n|}{3^n} \le \sum \left(\frac{1}{3}\right)^n$$
 geométrica convergente $\Rightarrow \sum |a_n|$ converge $\Rightarrow \sum a_n$ converge.

Ej.
$$\sum \frac{\cos n}{n}$$
. De $\sum \frac{|\cos n|}{n}$ no sacamos nada ($\leq \sum \frac{1}{n}$ divergente). No sabremos decir si converge.

Ej.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \cdots$$
 no converge absolutamente ($\sum \frac{1}{n}$ diverge), pero sí condicionalmente (hacia $\log 2$ como se verá) por el siguiente criterio para series **alternadas** ($+-+-+-\cdots$):

Criterio de Leibniz:

Si
$$a_n \ge 0$$
 es decreciente y $a_n \underset{n \to \infty}{\to} 0$ entonces $\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - \cdots$ converge. Además, el error absoluto $|S - S_N| \le a_{N+1}$ (primer término que se omite).

Es fácil ver que por ser $\{a_n\}$ decreciente:

$$S_2 \leq S_4 \leq \cdots \leq S_{2n} \leq \cdots \leq S_{2n+1} \leq \cdots \leq S_3 \leq S_1$$

 $S_2 \le S_4 \le \cdots \le S_{2n} \le \cdots \le S_{2n+1} \le \cdots \le S_3 \le S_1$ Como S_{2n} y S_{2n+1} son monótonas y acotadas convergen (al mismo límite, pues S_2 (al mismo límite, pues $S_{2n+1} - S_{2n} = a_{2n+1} \rightarrow 0$), con lo que la serie converge.

Sea *S* su suma. Se ve que para todo *n* es $S_{2n} \le S \le S_{2n+1}$. Además:

$$\begin{array}{l} 0 \leq S - S_{2n} \leq S_{2n+1} - S_{2n} = a_{2n+1}; |S - S_{2n}| \leq a_{2n+1} \\ 0 \leq S_{2n-1} - S \leq S_{2n-1} - S_{2n} = a_{2n}; |S - S_{2n-1}| \leq a_{2n} \end{array} \Rightarrow \forall N, \text{ par o impar, } |S - S_{N}| \leq a_{N+1}.$$

[Si la serie fuese $\sum (-1)^n a_n = -a_1 + a_2 - \cdots$, el criterio y la cota del error absoluto serían iguales. No olvidemos que esta cota tan sencilla del error sólo se tiene para estas series de Leibniz. Para las de términos positivos convergentes las sumas parciales S_n se acercan a la suma S formando una sucesión creciente y el error $S - S_N$ es, por tanto, **mayor** que el siguiente término a_{N+1} ; el único criterio que nos ha dado cota del error es el integral (pero es aplicable a muy pocas series)].

Ej.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2+1}$$
 convergía absolutamente. También podemos ver que converge usando Leibniz: es alternada, $\frac{1}{n^2+1} \to 0$ y $\forall n$ es $\frac{1}{n^2+1} > \frac{1}{(n+1)^2+1}$. Estimemos el valor de su suma S . Por ejemplo, es: $\frac{1}{2} - \frac{1}{5} + \frac{1}{10} - \frac{1}{17} = 0.341... < S < \frac{1}{2} - \frac{1}{5} + \frac{1}{10} = 0.4$, acotación nada precisa. Si queremos el valor con $|\text{error}| < 10^{-3}$ debe ser $a_{N+1} = \frac{1}{(N+1)^2+1} < \frac{1}{1000} \Leftrightarrow (N+1)^2 > 999$. Esto sucede si $N \ge 31$ (pues $31^2 = 961$, $32^2 = 1024$). Hay que sumar 31 términos. [Con ordenador (o mucha paciencia), $S \approx S_{31} = \frac{1}{2} - \frac{1}{5} + \dots + \frac{1}{962} \approx 0.364$].

- **Ej.** $\frac{2}{1} \frac{1}{1} + \frac{2}{2} \frac{1}{2} + \frac{2}{3} \frac{1}{3} + \cdots$ es alternada y $a_n \to 0$, pero **no decrece** (y Leibniz no es aplicable). De hecho diverge: $S_2 = 1$, $S_4 = 1 + \frac{1}{2}$, ..., $S_{2n} = 1 + \cdots + \frac{1}{n} \to \infty$, cuando $n \to \infty$.
- Ej. Veamos para qué valores de a converge $\sum (-1)^n \sec \frac{1}{n^a}$ y para cuales lo hace absolutamente. Si $a \le 0$, el término general no tiende a 0 (difícil probarlo con rigor) y, por tanto, diverge. Si a > 0, es convergente por Leibniz, pues $a_n = \sec \frac{1}{n^a} > 0$ (es alternada), $a_n \to 0$ claramente (sen x continua en x = 0, $\frac{1}{n^a} \to 0$ y sen 0 = 0) y a_n es decreciente (por crecer sen x en [0,1]). ¿Para cuáles de estos valores a > 0 converge $\sum \sec \frac{1}{n^a}$? Por tender $\frac{\sec x}{x} \to 1$ cuando $x \to 0$ y ser $\{\frac{1}{n^a}\}$ una sucesión que (si a > 0) tiende a 0, se tiene que sen $\frac{1}{n^a} \sim \frac{1}{n^a}$ y, por tanto, la serie converge absolutamente si a > 1 (lo hace condicionalmente si $a \in (0,1]$).

Para las series (de términos positivos o signo no definido) con n en exponentes o factoriales son muy útiles los dos siguientes criterios (para las parecidas a $\sum \frac{1}{n^s}$ no sirven):

Criterio del cociente: Sea
$$\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = r$$
. Entonces: $\lim_{n\to\infty} \frac{|a_n|}{|a_n|} = r$.

(y si r = 1, el criterio no decide: la serie puede converger o divergir)

$$r < 1$$
: sea $s \operatorname{con} r < s < 1$. $\exists N \text{ tal que si } n \ge N \Rightarrow \frac{|a_{n+1}|}{|a_n|} \le s$, es decir, $|a_{n+1}| \le s|a_n|$.

Por tanto
$$|a_{n+k}| \le \cdots \le s^k |a_n|$$
 si $n \ge N$. Así: $\sum_{n=N}^{\infty} |a_n| = |a_N| + |a_{N+1}| + \cdots = \sum_{k=0}^{\infty} |a_{N+k}|$ $\le |a_N| \sum_{k=0}^{\infty} s^k$, geométrica convergente $\Rightarrow \sum_{k=0}^{\infty} |a_n|$ también converge $\Rightarrow \sum_{k=0}^{\infty} a_n$ converge.

r>1: $\exists N$ tal que si $n\geq N$ es $\frac{|a_{n+1}|}{|a_n|}>1$, o sea, $|a_{n+1}|>|a_n|$ y $\not\to 0$ el término general.

Cuando se vean muchas potencias n-simas (y no factoriales) en la serie conviene utilizar:

Criterio de la raíz: Sea
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = r$$
. Entonces: $\lim_{n\to\infty} |x| = r \cdot 1$, $\sum a_n$ converge (absolutamente) $\lim_{n\to\infty} |x| = r \cdot 1$, $\lim_{n\to\infty} |x| = r \cdot$

(si r=1, de nuevo no sabemos; casi siempre es r=1 a la vez utilizando cociente y raíz) r < s < 1: $\exists N/n \ge N$, $\sqrt[n]{|a_n|} \le s$, $|a_n| \le s^n \Rightarrow \sum_{k=0}^{\infty} |a_n|$ converge $\Rightarrow \sum_{k=0}^{\infty} a_n$ converge. r > 1: $\exists N/n \ge N$, $\sqrt[n]{|a_n|} > 1$, $|a_n| > 1$ y no tiende a 0 el término general.

Ej.
$$\sum \frac{1}{n^s} \cdot \frac{|a_{n+1}|}{|a_n|} = \frac{n^s}{(n+1)^s} \to 1$$
; $\sqrt[n]{|a_n|} = \frac{1}{(n^{1/n})^s} \to 1$ (pues $\sqrt[n]{n} \to 1$). Ni cociente ni raíz deciden.

Ej.
$$\sum \frac{(-3)^n}{3+n!} \cdot \frac{|a_{n+1}|}{|a_n|} = \frac{3^{n+1}}{3+(n+1)!} \cdot \frac{3+n!}{3^n} = 3 \cdot \frac{3/n!+1}{3/n!+n+1} \to 0$$
. Es convergente (absolutamente).

[Por Leibniz es complicado y con la raíz no sabemos pues desconocemos como va $\sqrt[n]{n!}$]

Ej.
$$\sum \left[\frac{n}{n+2}\right]^{n^2}$$
. $\sqrt[n]{|a_n|} = \left[1 - \frac{2}{n+2}\right]^n = \left(\left[1 - \frac{2}{n+2}\right]^{-(n+2)/2}\right)^{-2n/(n+2)} \to e^{-2} < 1$. Converge.

Ej.
$$\sum (-1)^n 2^n 7^{-\sqrt{n}}$$
. $\sqrt[n]{|a_n|} = 2 \left[7^{-\sqrt{n}} \right]^{1/n} = 2 \cdot 7^{-1/\sqrt{n}} \to 2$; o bien, $\frac{|a_{n+1}|}{|a_n|} = 2 \cdot \frac{7^{\sqrt{n}}}{7^{\sqrt{n+1}}} = 7^{\sqrt{n}-\sqrt{n+1}} \to 2$ (pues $\sqrt{n} - \sqrt{n+1} = \frac{1}{\sqrt{n}+\sqrt{n+1}} \to 1$). Diverge.

Ej.
$$\sum \frac{1}{(\log n)^n}$$
 . $\sqrt[n]{|a_n|} = \frac{1}{\log n} \to 0$. Converge.

Ej.
$$\sum \frac{(n+1)^n}{n^{n+1}}$$
. $\sqrt[n]{a_n} = \frac{n+1}{n} \cdot \frac{1}{n^{1/n}} \to 1$. La raíz no decide (y parecía ser el criterio adecuado).

Como r = 1 probablemente haya que aplicar desigualdades o paso al límite:

Por
$$\leq$$
: $\frac{(n+1)^n}{n^{n+1}} \geq \frac{n^n}{n^{n+1}} = \frac{1}{n}$ y $\sum \frac{1}{n}$ divergente \Rightarrow la nuestra es divergente.

Por
$$\rightarrow$$
: $\frac{(n+1)^n}{n^{n+1}} \sim \frac{1}{n}$ (puesto que $\frac{a_n}{1/n} = \left[\frac{n+1}{n}\right]^n \rightarrow e$) \Rightarrow la nuestra diverge.

En los dos siguientes discutimos la convergencia según los valores de los a y b que aparecen:

Ej.
$$\sum \frac{n^a}{b^n}$$
, con $a > 0$, $b \neq 0$.

$$\frac{|a_{n+1}|}{|a_n|} = \frac{(n+1)^a |b|^n}{n^a |b|^{n+1}} = \frac{(1+1/n)^a}{|b|} \to \frac{1}{|b|} \text{ (o bien, } \sqrt[n]{|a_n|} = \frac{(n^{1/n})^a}{|b|} \to \frac{1}{|b|} \text{)}.$$

Cociente y raíz aseguran que converge para |b| > 1 (de esto deducimos que $n^a/b^n \to 0$ si |b| > 1) y que diverge para |b| < 1. Para $b = \pm 1$ los criterios no deciden, pero está claro que diverge porque el término general no tiende a 0 (bastaba esto para decir que divergía para $|b| \le 1$).

Ej.
$$\sum \frac{b^n}{n!} \cdot \frac{|a_{n+1}|}{|a_n|} = \frac{|b|^{n+1}/(n+1)!}{|b|^n/n!} = \frac{|b|}{n+1} \to 0$$
. Convergente $\forall b$, por gordo que sea.

Por tanto, $b^n/n! \to 0$ para cualquier b, límite que no es fácil de calcular directamente.

Ej.
$$\sum \frac{n!}{n^n} \cdot \frac{a_{n+1}}{a_n} = \frac{(n+1)!}{(n+1)^{n+1}} \frac{n^n}{n!} = \frac{n^n}{(n+1)^n} = \frac{1}{(1+1/n)^n} \to \frac{1}{e} < 1$$
. Converge.

[Y de aquí, $n!/n^n \to 0$, otro límite que no era trivial calcular].

Los tres últimos ejemplos (y un límite admitido en sucesiones) nos permiten comparar la rapidez con que varias sucesiones se van al ∞ . El símbolo " \ll " representará que lo de la izquierda dividido entre lo de la derecha tiende a 0 cuando n tiende a ∞ :

$$\log n \ll n^a, a > 0 \ll b^n, b > 1 \ll n! \ll n^n$$

Ej. Veamos ahora un 'serie de potencias' (tratadas a fondo en 4.3). Estudiemos para qué x converge:

$$\sum \frac{x^{2n}}{4^n n^2} \cdot \frac{|a_{n+1}|}{|a_n|} = \frac{|x|^2 n^2}{4(n+1)^2} \to \frac{|x|^2}{4} \; ; \; \sqrt[n]{|a_n|} = \frac{|x|^2}{4n^{2/n}} \to \frac{|x|^2}{4} \; (\text{pues } [n^{1/n}]^2 \to 1^2) \; .$$

Por tanto, la serie converge si |x| < 2 y diverge si |x| > 2. Si |x| = 2 ($x = \pm 2$) estos criterios no deciden, pero entonces $\sum 1/n^2$ converge como ya sabemos. En resumen, converge si $x \in [-2,2]$. Para cada x de ese intervalo la suma será un número real, con lo que la serie define una función f(x). Podemos mirar cada sumando como una función de x. Cada una de ellas ($x \in [-2,2]$) es continua. ¿Lo será la $x \in [-2,2]$ estos criterios no deciden, pero entonces $x \in [-2,2]$.

Ej. Acabemos con otra serie en que los sumandos dependen de x (otra 'serie de funciones'):

$$\sum \frac{\mathrm{sen}^n x}{\sqrt{n}} \cdot \mathrm{Como} \ \frac{|a_{n+1}|}{|a_n|} = \frac{\sqrt{n} \, |\operatorname{sen} x|}{\sqrt{n+1}} \to |\operatorname{sen} x| \, , \, \text{la serie converge si} \ x \neq \frac{\pi}{2} + k\pi \, .$$

Para $x=\frac{\pi}{2}+k\pi$ el cociente no decide. Si k es par, la serie que resulta $\sum \frac{1}{\sqrt{n}}$ es divergente. Si k es impar, queda $\sum \frac{(-1)^n}{\sqrt{n}}$ convergente (Leibniz). Converge pues si $x\neq -\frac{\pi}{2}+2k\pi$.

4.2. Sucesiones y series de funciones

Consideramos sucesiones cuyos términos son funciones con un dominio común A:

$$\{f_n(x)\}=f_1(x), f_2(x), ..., f_n(x), ... \text{ para } x \in A$$

Para cada x fijo de A tenemos una sucesión $\{f_n(x)\}\$ de números reales y en muchos casos sabemos (desde 2.2) calcular su límite (si lo tiene), que, en general, será una función de x. Damos un nombre nuevo a esta vieja convergencia (para cada punto x) para distinguirla de la que definiremos un poco más adelante:

$$\{f_n\}$$
 converge puntualmente hacia f en A si para cada $x \in A$ es $\lim_{n \to \infty} \{f_n(x)\} = f(x)$.

Sería bueno que f conservase las propiedades de las f_n , pero esto, en general, no ocurre:

Ej. $f_n(x) = \begin{cases} x^n, 0 \le x \le 1 \\ 1, 1 \le x \end{cases}$. Todas las f_n son continuas en $[0, \infty)$.

Para cada $x \in [0, \infty)$ existe $\lim_{n \to \infty} f_n(x) = f(x) = \begin{cases} 0, 0 \le x < 1 \\ 1, 1 \le x \end{cases}$.

Y, sin embargo, la función límite puntual f(x) es discontinua.

Para que se conserve la continuidad se necesita una definición más fuerte de convergencia:

$$\{f_n\}$$
 converge uniformemente hacia la función f en A si $\forall \varepsilon > 0$ existe algún N tal que $\forall x \in A$, si $n \ge N$ entonces $|f(x) - f_n(x)| < \varepsilon$.

[El N vale $\forall x$, sólo depende de ε ; en cambio, la convergencia puntual significa: $\forall x \in A \text{ y } \forall \varepsilon > 0 \ \exists N(\varepsilon, x) \text{ tal que si } n \ge N \text{ entonces } |f(x) - f_n(x)| < \varepsilon$

Gráficamente, que $\{f_n\} \to f$ uniformemente significa que a partir de un N todas las gráficas de las f_n quedan totalmente dentro de una banda de altura 2ε alrededor de la de f. Si la convergencia de las f_n es sólo puntual, para cada x el N será distinto y no se podrá dar uno que sea válido para todos los puntos de A.

Claramente, convergencia uniforme \Rightarrow convergencia puntual. Pero \Leftarrow es falsa:

Esto lo prueba la $\{f_n\}$ de arriba: por alto que sea el N siempre hay funciones de la sucesión que se salen de la banda de radio arepsilon . Formalizando algo más: toda f_n toma el valor $\frac{1}{2}$ que queda fuera de la banda si $\varepsilon < \frac{1}{2}$. Para cada x existe N tal que si $n \ge N$ el punto $(x, f_n(x))$ está dentro de la banda, pero hace falta elegir N mayores a medida que nos acercamos a 1. En un intervalo [0,a], con a < 1, la convergencia sí sería uniforme, pues el N que valiese para x = a claramente valdría también para el resto de los x.

Ej. Estudiemos la convergencia de $g_n(x) = \frac{n+x}{n+2}$ en i) A = [-2,2], ii) $A = \mathbb{R}$

Hay límite puntual en todo **R** pues $g_n(x) \underset{n \to \infty}{\longrightarrow} 1 \ \forall x$.

Y en [-2,2] es también uniforme: $\left| \frac{n+x}{n+2} - 1 \right| = \frac{|x-2|}{n+2} \le \frac{|x|+2}{n+2} \le \frac{4}{n+2} \le \frac{4}{n} < \varepsilon \text{ si } n \ge N > \frac{4}{\varepsilon} \ \forall x \in [-2,2] \ .$

Pero no converge uniformemente en \mathbf{R} porque cada g_n (no acotada) se escapa de la banda.

Para estudiar la convergencia uniforme, como siempre en las definiciones con ε , hemos partido de lo que se quería hacer pequeño y avanzado mediante desigualdades hacia una expresión más sencilla. Ha sido esencial hacer desaparecer la x, pues el N buscado debía depender solo de ε . Podemos ahorrarnos las últimas cuentas con el sencillo teorema:

Teorema:

Si
$$|f_n(x)-f(x)| < a_n \ \forall x \in A \ y \ a_n \to 0$$
 entonces $f_n(x) \to f(x)$ uniformemente en A

(pues dado ε , el N que asegura $a_n < \varepsilon$ nos vale, desde luego, para todos los $x \in A$).

Para encontrar el a_n en ocasiones bastará hacer acotaciones, como en el ejemplo anterior, pero otras veces será más complicado y, como en el siguiente, habrá que utilizar derivadas:

Ej. Estudiemos la convergencia de $h_n(x) = \frac{x}{1+n^4x^2}$.

Está claro que $\{h_n\}$ converge puntualmente en todo $\mathbf{R}: \frac{x}{1+n^4x^2} \to 0 \ \forall x$.

Si queremos ver la convergencia uniforme en todo \mathbf{R} de $\{h_n\}$ nos encontramos con problemas:

$$|h_n(x) - 0| = \frac{|x|}{1 + n^4 x^2}$$
 no parece acotable en **R** (la cota sencilla $\leq |x|$ no lleva a nada).

[a partir de lo anterior sí sería fácil ver que si hay convergencia puntual en [1,2], por ejemplo]

Un modo natural de acotar $|f_n(x)-f(x)|$ (sin usar los \leq) es buscar el máximo de esa diferencia.

En nuestro caso, para acotar $|h_n(x)|$ vamos a hallar los extremos de cada $h_n(x)$:

$$h'_n(x) = \frac{1 - n^4 x^2}{[1 + n^4 x^2]^2} = 0 \Rightarrow h_n(x)$$
 crece en $[-\frac{1}{n^2}, \frac{1}{n^2}]$ y decrece en el resto de **R**.

$$h_n(\pm \frac{1}{n^2}) = \pm \frac{1}{2n^2}$$
 y además $h_n(x) \underset{x \to \pm \infty}{\longrightarrow} 0$. Así que $|h_n(x)| \le \frac{1}{2n^2} = a_n \ \forall x \in \mathbb{R}$.

Como $a_n \to 0$, $\{h_n\} \to 0$ uniformemente en **R** (en contra de lo que se podía pensar en principio).

Probemos que la convergencia uniforme tiene la buena propiedad que la puntual no tenía:

Teorema:

$$f_n$$
 continuas en un intervalo I y $\{f_n\} \to f$ uniformemente en $I \Rightarrow f$ continua en I

Veamos que f es continua en un $x \in I$ cualquiera.

Sea $\varepsilon > 0$. Por la convergencia uniforme, existe algún n tal que $|f(y) - f_n(y)| < \frac{\varepsilon}{3} \ \forall y \in I$.

En particular, para todo h tal que $x + h \in I$, $|f(x) - f_n(x)| < \frac{\varepsilon}{3}$ y $|f(x+h) - f_n(x+h)| < \frac{\varepsilon}{3}$.

Como f_n es continua en x existe $\delta > 0$ tal que si $|h| < \delta$ entonces $|f_n(x+h) - f_n(x)| < \frac{\varepsilon}{3}$.

Por tanto, si $|h| < \delta$ entonces

$$|f(x+h)-f(x)| \le |f(x+h)-f_n(x+h)|+|f_n(x+h)-f_n(x)|+|f_n(x)-f(x)| < \varepsilon.$$

[Este teorema basta para probar que las f_n del primer ejemplo no convergen uniformemente en $[0,\infty)$, pues si la convergencia fuese uniforme, la f(x) debería ser continua].

[Si las f_n son derivables, que $f_n \to f$ uniformemente no basta para que f sea derivable, o puede ser f derivable y no coincidir f' con el límite de las f'_n (situaciones sugeridas por los ejemplos de la derecha); para que se cumplan ambas cosas además deben las f'_n converger uniformemente].

Todo lo anterior se aplica de modo natural a las series de funciones:

Def.
$$\sum_{n=1}^{\infty} f_n \text{ converge puntualmente o uniformemente en } A \text{ hacia } f \text{ si lo hace la sucesión de sumas parciales } S_n = f_1 + \dots + f_n$$

Por lo visto para sucesiones de funciones y como S_n es continua si las f_n lo son tenemos:

$$\sum_{n=1}^{\infty} f_n \to f \text{ uniformemente y } f_n \text{ continuas en un intervalo } I \Rightarrow f \text{ es continua en } I.$$

Aunque la definición de convergencia uniforme de series de arriba aparenta ser tan simple, está claro que será casi imposible de aplicar en la práctica (la puntual sí es fácil, aplicando para x fijos los criterios vistos para series numéricas). Es claro que casi nunca se podrá hallar directamente el N que haga $|f_1(x) + \cdots + f_n(x) - f(x)| < \varepsilon$ (ni siquiera sabemos quien es f(x), pues casi ninguna serie se puede sumar). Pero hay un criterio muy útil que permite ver para bastantes series de funciones que convergen uniformemente:

Criterio de Weierstrass

Sean $\{f_n\}$ definidas en A y $\{M_n\}$ una sucesión de números reales tal que $|f_n(x)| \le M_n$ $\forall x \in A$ y tal que $\sum M_n$ converge. Entonces $\sum f_n$ converge uniformemente en A.

$$\forall x \in A$$
, $\sum |f_n(x)|$ converge y por tanto $\sum f_n$ converge puntualmente. Sea f su suma.
$$|f(x) - S_N(x)| = \left|\sum_{N=1}^\infty f_n(x)\right| \leq \sum_{N=1}^\infty |f_n(x)| \leq \sum_{N=1}^\infty M_n$$

que se puede hacer tan pequeño como queramos haciendo N suficientemente grande ($\sum M_n$ converge). Tenemos un N independiente del x, S_n converge uniformemente.

[Si no podemos aplicar este criterio no sabremos decir nada sobre la convergencia uniforme de una serie (pero está claro que aunque no consigamos encontrar la $\sum M_n$ convergente, esto no significa que la $\sum f_n$ no converja uniformemente)].

- Ej. $\sum \frac{\operatorname{sen} nx}{n^2}$ es uniformemente convergente en todo R pues $\left|\frac{\operatorname{sen} nx}{n^2}\right| \leq \frac{1}{n^2}$ y $\sum \frac{1}{n^2}$ converge. [Deducimos, por ejemplo, que la suma f(x) de esta serie es función continua en todo R]. La serie obtenida derivando término a término: $\sum \frac{\cos nx}{n}$ diverge, por ejemplo, cuando x=0. [Para otros x, como $x=\pi$, converge (Leibniz); y para casi todos no sabemos decirlo]. [Como vemos, no se pueden derivar las sumas infinitas, en general, como las sumas finitas; las series de potencias que veremos a continuación sí se podrán derivar término a término].
- **Ej.** Estudiemos ahora la convergencia de $\sum h_n$ con $h_n = \frac{x}{1 + n^4 x^2}$ (vista hace poco).

Lo que sabíamos de series numéricas nos basta para ver que converge puntualmente $\forall x \in \mathbb{R}$:

si
$$x=0$$
 queda $\sum 0$; si $x\neq 0$, $x\sum \frac{1}{1+n^4x^2}$ converge pues $\frac{1}{1+n^4x^2}\sim \frac{1}{n^4}$ y $\sum \frac{1}{n^4}$ converge.

Para ver si la serie es uniformemente convergente sólo disponemos de Weierstrass. No saltaba a la vista la serie numérica con la que comparar, pero según hemos probado:

[Otras propiedades importantes de la convergencia uniforme (que veremos en 5.5) serán las relacionadas con la integración: el límite de las integrales de una sucesión de funciones integrables será la integral del límite cuando haya convergencia uniforme, pero podría no serlo si sólo hay la puntual (y lo mismo sucederá con las series)].

60

4.3. Series de potencias

A una serie de la forma $\sum_{n=0}^{\infty} a_n(x-a)^n$ se le llama serie de potencias en (x-a).

Para cada x que converja la suma de la serie será un número real. Por tanto, define una función f(x) cuyo dominio serán los x para los que converge. Supondremos a partir de ahora, por sencillez, que a = 0 (en caso contrario haríamos x - a = t y estaríamos en el caso a = 0):

$$f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$$
 (viene a ser, pues, un 'polinomio infinito').

Una serie de ese tipo siempre converge en x=0 (y $f(0)=a_0$), pero no tiene que hacerlo $\forall x$: vimos que la serie $\sum x^n$ converge (y que su suma f(x) = 1/[1-x]) si y sólo si |x| < 1. En general, converge en un intervalo centrado en el origen (que puede degenerar en x=0 o ampliarse a todo R):

Teorema:

A cada serie de potencias está asociado un número positivo R, llamado radio de convergencia de la serie, que, según los casos, tiene las siguientes propiedades:

- i) si R = 0, la serie sólo converge en x = 0,
- ii) si R es un número real positivo, la serie converge si |x| < R y diverge si |x| > R,
- iii) si $R = \infty$, la serie converge para todo x.

Además, si $0 < x_0 < R$, la serie converge uniformemente en $[-x_0, x_0]$.

converge uniformemente En ii), para x = R y x = -R la serie puede converger o divergir. El teorema no dice que la serie converja uniformemente en (-R,R), sino que lo hace en $[-x_0,x_0]$ con x_0 tan cercano a R como queramos).

Comencemos demostrando que:

Si $\sum a_n c^n$ converge para un c entonces $\sum a_n x^n$ converge uniformemente en $[-x_0,x_0]$, si $0 < x_0 < |c|$, y converge puntualmente (y absolutamente) en (-|c|, |c|):

Como
$$\sum a_n c^n$$
 converge $\Rightarrow a_n c^n \to 0$ y por tanto está acotada: $\exists K$ tal que $|a_n c^n| \le K$
 $\Rightarrow \text{si } x \in [-x_0, x_0]$, $|a_n x^n| \le |a_n c^n| \left|\frac{x_0}{c}\right|^n \le K \left|\frac{x_0}{c}\right|^n$.

Como $\sum \left|\frac{x_0}{c}\right|^n$ es geométrica convergente ($\left|\frac{x_0}{c}\right|<1$), Weierstrass asegura que $\sum a_nx^n$ converge uniformemente en $[-x_0,x_0]$. Además para todo $x\in(-|c|,|c|)$ existe x_0 con $|x| < x_0 < |c|$, con lo que $\sum |a_n x^n|$ converge puntualmente.

Sea $S = \{x : \sum a_n x^n \text{ converge}\}\$. Es no vacío $(0 \in S)$. Si existe algún $x \notin S$, |x| es cota superior de S (no converge para ningún real mayor por el resultado anterior) y por tanto tiene extremo superior. Veamos que el radio de convergencia $R = \sup S$: si |x| > R la serie diverge (si no, existirían puntos de S mayores que R); si |x| < R existe c con |x| < c < R para el que $\sum a_n c^n$ converge (R es cota superior) y por tanto $\sum a_n x^n$ también converge. Si $0 < x_0 < R$, existe c con $x_0 < c < R$ para el que $\sum a_n x^n$ converge y la serie converge uniformemente en $[-x_0, x_0]$. Si no existe $x \notin S$, la serie converge $\forall x \colon R = \infty$. Se ve igual que hay convergencia uniforme en todo $[-x_0,x_0]$.

El R se podrá calcular casi siempre mediante el criterio del cociente o la raíz.

Por ejemplo, si en la serie aparecen todos los x^n (no si es del tipo $\sum a_n x^{2n}$ ó $\sum a_n x^{2n+1}$)

se tiene que:
$$R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$$
, si dichos límites existen o son infinito, pues

$$\lim_{n \to \infty} \frac{|a_{n+1}||x|^{n+1}}{|a_n||x|^n} = |x| \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} < 1 \ [>1] \Leftrightarrow |x| < \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} \ [|x| > \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} \] \quad \text{(muy parecido con la raíz)}.$$

Ej.
$$\sum_{n=0}^{\infty} n^n x^n$$
. $\frac{1}{\sqrt[n]{|a_n|}} = \frac{1}{n} \underset{n \to \infty}{\longrightarrow} 0 = R$: la serie sólo converge si $x = 0$ (y podemos tirarla a la basura).

Ej.
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
. $R = \lim_{n \to \infty} \frac{(n+1)!}{n!} = \infty$ (cociente, desde luego). Converge $\forall x$ (a $f(x) = e^x$ como veremos).

Ej.
$$\sum_{n=0}^{\infty} \frac{[-9]^n}{2n+1} x^{2n+1}$$
. $\lim_{n\to\infty} \frac{9^{n+1}|x|^{2n+3}}{2n+3} \frac{2n+1}{9^n|x|^{2n+1}} = 9|x|^2 < 1 \Leftrightarrow |x| < \frac{1}{3} = R$.

Si $x=\pm\frac{1}{3}$ la serie que aparece en ambos casos $\sum \frac{[-1]^n}{2n+1}$ también converge (Leibniz). [No podíamos aplicar las fórmulas recuadradas y por eso usamos directamente el cociente].

Ej.
$$\sum_{n=1}^{\infty} \frac{x^n}{\log n}$$
. Necesitaríamos la regla de L'Hôpital (o admitir límites ya citados basados en ella):

$$R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} = \frac{\log(n+1)}{\log n} = 1, \text{ porque } \lim_{x \to \infty} \frac{\log(x+1)}{\log x} = \lim_{x \to \infty} \frac{1/(x+1)}{1/x} = \lim_{x \to \infty} \frac{1}{1+1/x} = 1.$$

Si
$$x=-1$$
, $\sum \frac{(-1)^n}{\log n}$ converge por Leibniz ($\frac{1}{\log n} \to 0$ y decrece porque $\log n$ crece).

Si
$$x=1$$
, $\sum \frac{1}{\log n}$ diverge, pues $\frac{1}{\log n}>\frac{1}{n}$ y $\sum \frac{1}{n}$ diverge. La serie converge si $x\in [-1,1)$.

[Sin L'Hôpital: converge si |x|<1, pues $\frac{|x|^n}{\log n}<|x|^n$ y $\sum |x|^n$ geométrica convergente, y si |x| > 1, el término general no tiende a 0 (pues si |x| > 1 es $\log n \ll |x|^n$) y diverge]

Propiedad esencial de las series de potencias es que se pueden derivar término a término **dentro de su intervalo de convergencia** |x| < R (como si fuesen polinomios):

Teorema:

Sea
$$R > 0$$
 (finito o infinito) y sea $f(x) = \sum_{n=0}^{\infty} a_n x^n$ para $|x| < R$. Entonces para $|x| < R$:
 f es derivable, $\sum_{n=1}^{\infty} n a_n x^{n-1}$ converge y $f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1} = a_1 + 2a_2 x + 3a_3 x^2 + \cdots$

[La demostración no la hacemos porque utiliza propiedades no vistas de derivación de series uniformemente convergentes (ver Spivak); en el capítulo 5 veremos que también las series de potencias se podrán integrar término a término en |x| < R].

Aplicando el teorema sucesivamente a f' , f'' , ... obtenemos que para |x| < R :

$$f''(x) = \sum_{n=2}^{\infty} a_n x^{n-2} = 2a_2 + 6a_3 x + \cdots, \dots, f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1) \cdots (n-k+1) n x^{n-k} = k! a_k + \cdots$$

Así, una f definida por una serie de potencias es C^{∞} en |x| < R y $|f^{(k)}(0) = k! a_k|$.

Ej. La derivada de
$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 es $f'(x) = \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} = f(x) \ \forall x \in \mathbb{R}$ [ya dijimos que era e^x].

Ej.
$$f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2} = x + \frac{x^2}{4} + \frac{x^3}{9} + \frac{x^4}{16} + \cdots$$
. Su radio de convergencia es $R = \lim_{n \to \infty} \frac{(n+1)^2}{n^2} = 1 \Rightarrow$

$$f'(x) = \sum_{n=1}^{\infty} \frac{x^{n-1}}{n} = 1 + \frac{x}{2} + \frac{x^2}{3} + \frac{x^3}{4} + \cdots, \ f''(x) = \sum_{n=2}^{\infty} \frac{n-1}{n} x^{n-2} = \frac{1}{2} + \frac{2x}{3} + \frac{3x^2}{4} + \cdots, \ \text{si} \ |x| < 1.$$

Como $\sum \frac{1}{n^2}$ y $\sum \frac{(-1)^n}{n^2}$ convergen, la serie de la última f converge en los dos extremos $x=\pm 1$ del intervalo de convergencia. Sin embargo las series de las derivadas tienen peor comportamiento en esos puntos: la de f' converge en [-1,1) y la de f'' lo hace sólo en (-1,1). Pero las funciones definidas por series son 'muy buenas' en (-R,R) (acabamos de ver que tienen infinitas derivadas ahí). El problema fundamental de estas funciones tan buenas es que para hallar sus valores debemos sumar series (y por eso casi siempre nos tendremos que conformar con valores aproximados).

Las series de potencias también se sumam, multiplican,... como si fuesen polinomios:

Teorema:

Sean
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
, $|x| < R_f$ y $g(x) = \sum_{n=0}^{\infty} b_n x^n$, $|x| < R_g$. Entonces si $|x| < \min(R_f, R_g)$:
 $f(x) + g(x) = \sum_{n=0}^{\infty} [a_n + b_n] x^n$, $f(x)g(x) = a_0 b_0 + (a_0 b_1 + a_1 b_0) x + (a_0 b_2 + a_1 b_1 + a_2 b_0) x^2 + \cdots$

[Lo de la suma es consecuencia de las propiedades de series numéricas; lo del producto es más complicado y lo admitimos sin demostración; también se pueden realizar la división f/g (si f/g tiene límite en x=0) y la 'composición' de series (veremos ambas cosas en ejemplos)].

Ej. Hallemos de varias formas el desarrollo en serie de potencias de $f(x) = \frac{1}{x^2 + 2x - 3} = \frac{1}{[x+3][x-1]}$. Sabemos que:

$$\frac{1}{x-1} = -[1+x+x^2+x^3+\cdots] = -\sum_{n=0}^{\infty} x^n \text{ si } |x| < 1 ,$$

$$\frac{1}{x+3} = \frac{1}{3} \frac{1}{1-[-\frac{x}{3}]} = \frac{1}{3} [1 - \frac{x}{3} + \frac{x^2}{9} - \frac{x^3}{27} + \cdots] = \frac{1}{3} \sum_{n=0}^{\infty} \frac{[-x]^n}{3^n} \text{ si } |x| < 3 .$$

$$\Rightarrow f(x) = \frac{1}{x-1} \frac{1}{x+3} = -\frac{1}{3} \left[1 + (1 - \frac{1}{3})x + (1 - \frac{1}{3} + \frac{1}{9})x^2 + (1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27})x^3 + \cdots \right]$$

$$= -\frac{1}{3} - \frac{2x}{9} - \frac{7x^2}{27} - \frac{20x^3}{81} + \cdots , \text{ si } |x| < 1 = \min(1,3)$$

Lo más rápido (descomponiendo en fracciones simples; usaremos esta idea en las integrales):

$$\frac{1}{[x+3][x-1]} = \frac{1}{4} \left[\frac{1}{x-1} - \frac{1}{x+3} \right] = -\frac{1}{4} \sum_{n=0}^{\infty} x^n - \frac{1}{12} \sum_{n=0}^{\infty} \frac{[-1]^n x^n}{3^n} = -\frac{1}{12} \sum_{n=0}^{\infty} \left[3 + \frac{[-1]^n x^n}{3^n} \right] x^n$$

Ahora 'dividimos': buscando una serie $\sum c_n$ tal que $[c_0 + c_1x + c_2x^2 + c_3x^3 + \cdots][x^2 + 2x - 3] = 1$. Igualando las potencias de x^0, x^1, x^2, \ldots vamos obteniendo:

$$x^0: -3c_0 = 1 \Rightarrow c_0 = -\frac{1}{3}$$
; $x^1: 2c_0 - 3c_1 = 0 \Rightarrow c_1 = \frac{2}{3}c_0 = -\frac{2}{9}$; $x^2: c_0 + 2c_1 - 3c_2 = 0 \Rightarrow c_2 = \frac{1}{3}c_0 + \frac{2}{3}c_1 = -\frac{1}{9} - \frac{4}{27} = -\frac{7}{27}$; ...

De una forma tampoco nada práctica (pero que sugiere cómo componer series):

$$f(x) = -\frac{1}{3} \frac{1}{1 - \frac{1}{3}(2x + x^2)} = -\frac{1}{3} \left[1 + \frac{1}{3}(2x + x^2) + \frac{1}{9}(2x + x^2)^2 + \frac{1}{27}(2x + x^2)^3 + \cdots \right]$$

Y eligiendo (sin olvidar ningún término) los coeficientes de las sucesivas potencias:

$$f(x) = -\frac{1}{3} \left[1 + \frac{2}{3}x + \left(\frac{1}{3} + \frac{4}{9} \right) x^2 + \left(\frac{4}{9} + \frac{8}{27} \right) x^3 + \cdots \right]$$

[La teoría para la serie más general $\sum a_n(x-a)^n$, como dijimos, es la misma; el intervalo |x-a| < R de convergencia está ahora centrado en a].

$$\begin{array}{c|cccc}
DIV ? & CONV & ? DIV \\
\hline
 & & & & \\
\end{array}$$

4.4. Polinomios y series de Taylor

¿Cómo hallar, sin calculadora, \sqrt{e} , $\log 2$ ó sen 1? Las funciones más fáciles de evaluar son los polinomios. Si encontramos un polinomio P que se parezca mucho a una función f dada cerca de un punto a (y podemos estimar el error cometido al sustituir f por P), podremos hallar valores aproximados de f(x) para los x próximos a a.

Ej. Sea $f(x) = e^x$. El polinomio de grado 1 más parecido a f cerca de x=0 es la recta tangente: $P_1(x) = f(0) + f'(0)x = 1+x$. Observemos que satisface: $P_1(0) = f(0)$; $P_1'(0) = f'(0)$. Probablemente se parecerá más a e^x el polinomio P_2 de grado 2 que cumpla $P_2(0) = f(0)$; $P_2'(0) = f'(0)$; $P_2''(0) = f''(0)$, es decir, $P_2(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 = 1 + x + \frac{1}{2}x^2$.

En general, el P_n que mejor aproximará a una función f cerca de x = a será el que coincida con f y con sus n primeras derivadas en a. Se comprueba fácilmente que:

Def. Si f tiene n derivadas en a, el polinomio, de grado $\leq n$, $P_{n,a}(x) = f(a) + f'(a)[x-a] + \frac{f''(a)}{2!}[x-a]^2 + \dots + \frac{f^{(n)}(a)}{n!}[x-a]^n$ cumple $P_{n,a}^{(k)}(a) = f^{(k)}(a)$, para k = 0, ..., n. Al $P_{n,a}$ se le llama **polinomio de Taylor** de f de grado n en a. Se llama $R_{n,a}(x)$, **resto** del polinomio de Taylor, al **error** cometido para cada x al sustituir f(x) por $P_{n,a}(x)$, es decir, $f(x) = P_{n,a}(x) + R_{n,a}(x)$.

Es esperable que el $R_{n,a}(x)$ sea pequeño si x es cercano a a y que disminuya al aumentar n. La siguiente expresión del resto, a pesar de venir en función de un c desconocido, nos va a permitir acotar este error en muchas ocasiones:

Teorema (forma de Lagrange del resto):

Si
$$f, f', \dots, f^{(n+1)}$$
 están definidas en $[a,x]$ (ó en $[x,a]$) entonces
$$R_{n,a}(x) = \frac{f^{(n+1)}(c)}{(n+1)!}[x-a]^{n+1} \text{ para algún } c \in (a,x) \text{ si } x > a \text{ [ó } c \in (x,a) \text{ si } x < a \text{]}.$$

[Otras expresiones del resto son útiles, pero se necesitan las integrales. Observemos que si f es un polinomio de grado n se deduce $R_{n,a}=0$, es decir, que, como debía suceder, el polinomio coincide con su polinomio de Taylor de grado n].

Para cada $t \in (a,x)$ tenemos que $f(x) = f(t) + f'(t)[x-t] + \dots + \frac{f^{(n)}(t)}{n!}[x-t]^n + R_{n,t}(x)$.

Miremos el resto como función de t para x fijo: $S(t) = R_{n,t}(x)$. Derivando respecto a t:

$$0 = f'(t) + (-f'(t) + f''(t)[x-t]) + (-f''(t)[x-t] + \frac{f'''(t)}{2!}[x-t]^2)$$

$$+ \dots + (-\frac{f^{(n)}(t)}{(n-1)!}[x-t]^{n-1} + \frac{f^{(n+1)}(t)}{n!}[x-t]^n) + S'(t) \implies S'(t) = \frac{f^{(n+1)}(t)}{n!}[x-t]^n$$

El TVM de Cauchy en [a,x] para S(t) y $g(t)=[x-t]^{n+1}$ implica que $\exists c\in(a,x)$ tal que

$$\frac{S(x) - S(a)}{g(x) - g(a)} = \frac{S'(c)}{g'(c)} = \frac{f^{(n+1)}(c)}{n!} \frac{[x-t]^n}{[x-t]^n} \frac{1}{n+1} = \frac{f^{(n+1)}(c)}{(n+1)!}$$

Como $S(x) = R_{n,x}(x) = 0$, $S(a) = R_{n,a}(x)$, g(x) = 0, $g(a) = [x - a]^{n+1}$ se tiene el resultado. [Igual si x < a].

Normalmente hallaremos los polinomios para a=0. En ese caso no escribiremos las a de los subíndices y las expresiones anteriores adoptan la forma (fórmula de **McLaurin**):

Si
$$f, f', ..., f^{(n+1)}$$
 existen en $[0,x]$ [ó $[x,0]$] entonces para algún $c \in (0,x)$ [ó $c \in (x,0)$]
$$f(x) = P_n(x) + R_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}$$

Hallando las derivadas se obtienen fácilmente los siguientes polinomios y restos:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + R_{n}(x) \text{ con } R_{n}(x) = \frac{e^{c}}{(n+1)!} x^{n+1}$$

$$\operatorname{sen} x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + R_{2n+1}(x) \text{ con } R_{2n+1}(x) = \frac{(-1)^{n+1} \cos c}{(2n+3)!} x^{2n+3}$$

$$\operatorname{cos} x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + R_{2n}(x) \text{ con } R_{2n}(x) = \frac{(-1)^{n+1} \cos c}{(2n+2)!} x^{2n+2}$$

[Para sen x, como la derivada sen $^{(2n+2)}(0) = (-1)^{n+1}$ sen0 = 0, es $P_{2n+1} \equiv P_{2n+2}$; por eso en su resto aparecen 2n+3 y no 2n+2; y algo muy parecido sucede con el $\cos x$].

Dado un x, hay en los tres casos cotas fáciles para el resto en términos de cosas conocidas:

para
$$e^x$$
: si $x > 0$, es $|R_n(x)| \le \frac{e^x |x|^{n+1}}{(n+1)!}$; si $x < 0$, es $|R_n(x)| \le \frac{|x|^{n+1}}{(n+1)!}$; para $\operatorname{sen} x$, $|R_{2n+1}(x)| \le \frac{|x|^{2n+3}}{(2n+3)!} \ \forall x$; para $\operatorname{cos} x$, $|R_{2n}(x)| \le \frac{|x|^{2n+2}}{(2n+2)!} \ \forall x$.

Como vimos en 4.1, una sucesión de la forma $|x|^k/k! \rightarrow 0 \ \forall x$ cuando $k \rightarrow \infty$. Por tanto, **podemos aproximar para cualquier** x **el valor de** e^x , sen x **y** cos x **con la precisión que queramos utilizando un polinomio de Taylor con** n **suficientemente grande** (aunque habrá que tomar un n mayor cuanto más lejano de 0 esté el x).

El $\log x$ no está ni definido en x=0. Por eso lo que se desarrolla es el $\log (1+x)$. Es fácil ver que la derivada n-sima de esta función es $[-1]^{n-1}(n-1)!(1+x)^{-n}$ y por tanto

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + [-1]^{n-1} \frac{x^n}{n} + R_n(x) \operatorname{con} R_n(x) = \frac{[-1]^n}{n+1} \frac{x^{n+1}}{(1+c)^{n+1}}$$

Se puede probar además (no con esta expresión del resto) que **los polinomios del** $\log(1+x)$ **sólo aproximan a la función si** $-1 < x \le 1$.

Ej. Calculemos con error menor que 10^{-5} el sen 1.

$$|R_{2n+1}(x)| \le \frac{|x|^{2n+3}}{(2n+3)!} \Rightarrow |R_{2n+1}(1)| \le \frac{1}{(2n+3)!} < \frac{1}{10000} \text{ si } 2n+3 \ge 9 \Rightarrow$$

 $\operatorname{sen} 1 \approx 1 - \frac{1}{6} + \frac{1}{120} - \frac{1}{5040} \approx 0.84147 \text{ con error } |R_7(1)| \le \frac{1}{9!} < 10^{-5}$

Ej. Si aproximamos sen 2 con este mismo $P_7(x)$ el error será mayor:

$$sen 2 \approx 2 - \frac{8}{6} + \frac{32}{120} - \frac{128}{5040} \approx 0.9079; |R_7(2)| \le \frac{2^9}{9!} = \frac{4}{2835} \approx 0.0014.$$

(Estas cotas pronto serán más fáciles con las series de Taylor).

n	n!	2 ⁿ
2	2	4
3	6	8
4	24	16
5	120	32
6	720	64
7	5040	128
8	40320	256
9	362880	512
10	3628800	1024
10	3020000	1024

Ej. Hallemos ahora $\log \frac{4}{5} = \log (1 - \frac{1}{5})$ con error $< 10^{-3}$.

Como
$$\left| R_n(-\frac{1}{5}) \right| = \frac{1}{(n+1)5^{n+1}(1+c)^{n+1}} < \frac{1}{(n+1)5^{n+1}(4/5)^{n+1}} = \frac{1}{(n+1)4^{n+1}} < \frac{1}{1000} \text{ si } n \ge 3$$

debemos usar el polinomio de grado 3 : $\log \frac{4}{5} \approx -\frac{1}{4} - \frac{1}{50} - \frac{1}{375} \approx -0.224$ con error $< 10^{-3}$.

De otra forma (que evitará la acotación del resto en cuanto tengamos las series de Taylor):

$$\log \tfrac{4}{5} = -\log \left(1 + \tfrac{1}{4}\right) \approx -\tfrac{1}{5} + \tfrac{1}{32} - \tfrac{1}{192} \approx -0.223 \,, \ \ \text{con} \ \left|R_3(\tfrac{1}{4})\right| = \tfrac{1}{4 \cdot 4^4(1+c)^4} \, \underset{0 < c < 1/4}{<} \, \tfrac{1}{4^5} < \tfrac{1}{1000} \,.$$

Dada f con infinitas derivadas en 0 su **serie de Taylor** en x = 0 es:

Esta serie de potencias es un 'polinomio de Taylor de infinitos términos'; su N-sima suma parcial es $P_N(x)$. Por tanto, es previsible que una f coincida con su serie de Taylor (al menos cerca de 0).

Como
$$f(x) = \sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} x^n + R_N(x)$$
, está claro que
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n \Leftrightarrow R_N(x) \underset{N \to \infty}{\longrightarrow} 0$$

f(x) coincide su serie de Taylor en los x para los que el resto tienda a 0.

Vimos hace poco que el resto $R_N(x) \to 0 \ \forall x \ \text{para} \ e^x$, sen $x \ y \ \cos x$. Así pues:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, $\sin x = \sum_{n=0}^{\infty} \frac{[-1]^n x^{2n+1}}{(2n+1)!}$, $\cos x = \sum_{n=0}^{\infty} \frac{[-1]^n x^{2n}}{(2n)!}$, $\forall x \in \mathbb{R}$

[La serie derivada de la de e^x es ella misma, derivando la de sen x obtenemos la de cos x y derivando la de ésta obtenemos la del seno cambiada de signo; observemos también que sólo contiene potencias impares la serie del seno (debe cambiar de signo al cambiar x por -x) y pares la del coseno].

Operando con la serie de
$$e^x$$
 y la de $e^{-x} = 1 - x + \frac{1}{2}x^2 - \frac{1}{6}x^3 + \cdots$ obtenemos que:
$$shx = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} , chx = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} , \forall x \in \mathbb{R}$$

Sabemos que
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
 si $|x| < 1 \Rightarrow \frac{1}{1+x} = \sum_{n=0}^{\infty} [-x]^n$ y $\frac{1}{1+x^2} = \sum_{n=0}^{\infty} [-1]^n x^{2n}$ si $|x| < 1$.

Por tanto:
$$\log(1+x) = \sum_{n=0}^{\infty} \frac{[-1]^n}{n+1} x^{n+1}$$
, $\arctan x = \sum_{n=0}^{\infty} \frac{[-1]^n}{2n+1} x^{2n+1}$ para $|x| < 1$

pues las derivadas de las series son las de arriba y en x = 0 se anulan funciones y series.

[La serie de $\log(1+x)$ converge también en x=1 y la de arctan x en $x=\pm 1$ (ambas tienen R=1) lo que no hacen las series derivadas; se puede ver que convergen (lentamente) hacia $\log 2 y \pm \arctan 1$:

$$\log 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{5} + \cdots$$
 , $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$

Parece normal que la serie del $\log(1+x)$ o la de 1/(1+x) sólo converjan para |x| < 1 pues en x = -1 las funciones se van a infinito, pero es sorprendente que lo hagan sólo en ese intervalo las series de $1/(1+x^2)$ o de arctan x ya que son funciones derivables en todo R. La explicación se tendrá cuando se miren esas series en el plano complejo].

Otra serie muy útil es la de $f(x) = (1+x)^r$, $r \in \mathbb{R}$ (x^r no es desarrollable en 0):

$$(1+x)^r = \sum_{n=0}^{\infty} {r \choose n} x^n, \text{ con } {r \choose n} = \frac{r(r-1)\cdots(r-n+1)}{n!}, \text{ si } |x| < 1$$
 (generaliza el binomio de Newton)

[en particular se tiene:
$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \cdots$$
, $\frac{1}{\sqrt{1+x}} = 1 - \frac{x}{2} + \frac{3x^2}{8} + \cdots$, ...]

Como:
$$f'(x) = r(1+x)^{r-1}$$
, $f''(x) = r(r-1)(1+x)^{r-2}$, ..., $f^{(n)}(x) = r(r-1)\cdots(r-n+1)(1+x)^{r-n}$, ...

la serie de Taylor es la de arriba, y se puede ver que $R_N \to 0$ si 0 < x < 1 con la expresión de Lagrange (y con otras expresiones del resto que no hemos visto se ve que también lo hace si -1 < x < 0).

De las series de Taylor anteriores podemos deducir muchísimas otras, sin más que sustituir a veces y utilizando otras las operaciones conocidas con series de potencias (muchas veces no podremos dar la expresión del término general de la serie):

Ej. Para escribir el desarrollo de sen $(3x^2)$ basta cambiar x por $(3x^2)$ en el de sen x:

$$\operatorname{sen}(3x^2) = 3x^2 - \frac{9}{2}x^6 + \dots + (-1)^n \frac{3^{2n+1}}{(2n+1)!}x^{4n+2} + \dots$$

Ej.
$$e^{x^2} \operatorname{sen} x = \left[1 + x^2 + \frac{1}{2}x^4 + \cdots\right] \left[x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + \cdots\right] = x + \frac{5}{6}x^3 + \frac{41}{120}x^5 + \cdots, \ \forall x.$$

Ej.
$$\cos \sqrt{x} = 1 - \frac{x}{2} + \frac{1}{24}x^2 - \cdots$$
, si $x \ge 0$. [Esta serie representa la función $\cot \sqrt{-x}$ para $x \le 0$].

Ej. Para el desarrollo de tanx no conviene utilizar la definición pues las derivadas se complican:

$$f(x) = \tan x$$
, $f'(x) = 1 + \tan^2 x$, $f''(x) = 2\tan x + \tan^3 x$, ...

Es mejor hacer el cociente de las dos series conocidas (tendrá sólo potencias impares):

$$\frac{\sin x}{\cos x} = c_1 x + c_3 x^3 + \cdots ; \left[c_1 x + c_3 x^3 + c_5 x^5 + \cdots \right] \left[1 - \frac{1}{2} x^2 + \frac{1}{24} x^4 + \cdots \right] = x - \frac{x^3}{6} + \frac{x^5}{120} + \cdots$$

$$\Rightarrow x^1 : c_1 = 1 ; \quad x^3 : c_3 - \frac{c_1}{2} = -\frac{1}{6} \to c_3 = \frac{1}{3} ; \quad x^5 : c_5 - \frac{c_3}{2} + \frac{c_1}{24} = \frac{1}{120} \to c_5 = \frac{2}{15} ; \dots$$

Ej. En este ejemplo vamos a hacer nuestra primera 'composición' de series:

$$\frac{1}{1+\sin x} = 1 - \sin x + \sin^2 x - \sin^3 x + \sin^4 x + \cdots$$

$$= 1 - \left[x - \frac{1}{6}x^3 + \cdots\right] + \left[x - \frac{1}{6}x^3 + \cdots\right]^2 - \left[x - \cdots\right]^3 + \left[x - \cdots\right]^4 + \cdots$$

$$= 1 - \left[x - \frac{1}{6}x^3 + \cdots\right] + \left[x^2 - \frac{1}{3}x^4 + \cdots\right] - \left[x^3 - \cdots\right] + \left[x^4 - \cdots\right] + \cdots$$

$$= 1 - x + x^2 - \frac{5}{6}x^3 + \frac{2}{3}x^4 + \cdots$$

[calcular el cuadrado, cubo,... de una serie es más corto que multiplicarla por sí misma una vez, dos veces,... si se utiliza que $(a+b+c+\cdots)^2=a^2+b^2+c^2+2ab+2ac+2bc+\cdots$, $(a+b+c+\cdots)^3=a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+\cdots$, ...]

De cualquier serie de Taylor podemos deducir, truncando la serie, la expresión del polinomio de Taylor (pero sin expresión manejable del resto) por el siguiente

Teorema:

$$f(x) = P(x) + x^n g(x) \text{ con } g(x) \underset{x \to 0}{\longrightarrow} 0 \Rightarrow P(x) \text{ es el } P_n \text{ de Taylor de grado } n \text{ de } f.$$

[es fácil comprobar que coinciden tanto f y P como sus n primeras derivadas en x=0]

Ej. El del polinomio de Taylor de arctanx es: $P_{2n+1}(x) = x - \frac{1}{3}x^3 + \dots + \frac{(-1)^n}{2n+1}x^{2n+1}$ pues el resto de la serie es de la forma $x^{2n+1}g(x)$, con $g(x) \underset{x \to 0}{\longrightarrow} 0$.

Los desarrollos en serie de Taylor permiten bastantes veces calcular valores aproximados dando fácilmente cota del error (si aparece una serie de Leibniz; en caso contrario habrá que acudir a la expresión del resto de Lagrange).

Ej. Calculemos $\sqrt[5]{\frac{3}{2}}$ con error menor que 10^{-2} . Para |x| < 1 sabemos que es:

$$(1+x)^{1/5} = 1 + \frac{1}{5}x + \frac{(1/5)(-4/5)}{2}x^2 + \frac{(1/5)(-4/5)(-9/5)}{6}x^3 + \dots = 1 + \frac{x}{5} - \frac{2x^2}{25} + \frac{6x^3}{125} - \dots$$

Por tanto: $(1+\frac{1}{2})^{1/5}=1+\frac{1}{10}-\frac{1}{50}+\frac{3}{500}-\cdots$, serie alternada y decreciente.

Así pues, es
$$\sqrt[5]{\frac{3}{2}} \approx \frac{27}{25} = 1.08$$
, con error $< \frac{3}{500} < 10^{-2}$.

[Calcular $\sqrt[5]{\frac{1}{2}}=(1-\frac{1}{2})^{1/5}$ nos costaría bastante más esfuerzo, por salir serie no alternada].

Aunque una f sea de C^{∞} en todo R y su serie de Taylor converja $\forall x$ la función puede no coincidir con la serie:

$$f(x) = e^{-1/x^2}$$
, $f(0) = 0$.

Veremos en la próxima sección que esta f cumple $f^{(n)}(0) = 0 \ \forall n$; así su serie de Taylor es $\sum 0 \cdot x^n = 0$, convergente $\forall x$; pero, evidentemente, no coincide con f salvo en x = 0.

Def. f es **analítica** en x = 0 si se puede escribir como una serie de potencias en todo un entorno |x| < r, r > 0.

(deberá, al menos, tener infinitas derivadas en x=0). Hemos visto que $\operatorname{sen} x$, $\operatorname{cos} x$, e^x , $\log(1+x)$, $\arctan x$, $(1+x)^r$ son analíticas en x=0 (coinciden las tres primeras con una serie en todo \mathbb{R} , y el resto en |x|<1). La f de arriba es un ejemplo de función no analítica en 0 a pesar de tener infinitas derivadas en el punto.

[Más en general, la **serie de Taylor** de una f en un punto a es $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$; haciendo x-a=s, se traslada el problema a una serie de Taylor en torno a s=0.

Una f es **analítica** en x = a si es igual a una serie de potencias en |x - a| < r; e^x lo es, por ejemplo, en cualquier a; \sqrt{x} no lo es en x = 0 (pero sí en x = 1)...].

[Acabamos con un tema más adecuado a una asignatura de cálculo numérico, pero que conviene contar aquí para comparar con los polinomios de Taylor. Se usará aproximando integrales].

Polinomios de interpolación.

El polinomio de Taylor P_n es sólo una de las formas de aproximar una f con polinomios. El P_n es, como vimos, el que mejor aproxima a f cerca de un punto. Pero muchas veces interesa encontrar un polinomio Q_n que aproxime a f en todo un intervalo. Una de las posibilidades de hacerlo es conseguir un Q_n que tome los mismos valores que f en unos cuantos puntos del intervalo. A éste polinomio se llama **polinomio de interpolación**. Otra situación en que es útil el polinomio de interpolación es cuando sólo disponemos de unos cuantos valores de la f (por ejemplo, esto sucederá si la f es resultado de unas cuantas medidas experimentales). Es decir:

Def. Dada una función f(x) se llama polinomio de interpolación de grado n para los n+1 puntos distintos $x_0,...,x_n$ al polinomio Q_n que satisface $Q_n(x_0) = f(x_0),...,Q_n(x_n) = f(x_n)$

Un Q_n arbitrario tiene n+1 coeficientes $a_0,...,a_n$. Se podrían determinar con las n+1 ecuaciones lineales $Q_n(x_k)=f(x_k)$, k=0...n, pero veremos formas mucho más cortas de calcular el Q_n . Es fácil ver que Q_n es único: si hubiese otro Q_n^* , la diferencia $Q_n-Q_n^*$ sería un polinomio de grado $\leq n$ con n+1 raíces distintas, lo que es imposible.

Hay varias formas de construir el Q_n . Veamos la **fórmula de Newton**. Ponemos Q_n en la forma:

$$Q_n(x) = A_0 + A_1(x - x_0) + A_2(x - x_0)(x - x_1) + \dots + A_n(x - x_0) + \dots + A_n(x - x_{n-1})$$

Sustituyendo ahora sucesivamente $x = x_0$, $x = x_1$,..., $x = x_n$, obtenemos el sencillo sistema

$$\begin{cases} A_0 = f(x_0) \\ A_0 + A_1(x_1 - x_0) = f(x_1) \\ \dots \\ A_0 + A_1(x_n - x_0) + \dots + A_n(x_n - x_0) \dots (x_n - x_{n-1}) = f(x_n) \end{cases}$$

que permite ir calculando los A_k de forma sucesiva y, por tanto, el polinomio de interpolación.

En el caso particular (y muy común) de que los x_k sean **equidistantes** (es decir, $x_{k+1} = x_k + h$) el sistema adopta la forma más simple:

$$A_0 = f(x_0)$$
, $A_0 + hA_1 = f(x_1)$, $A_0 + 2hA_1 + 2!h^2A_2 = f(x_2)$, ...,
 $A_0 + nhA_1 + \dots + \frac{n!}{(n-k)!}h^kA_k + \dots + n!h^nA_n = f(x_n) \rightarrow$

$$A_0 = f(x_0)$$

$$A_1 = \frac{1}{h} [f(x_1) - f(x_0)]$$

$$A_2 = \frac{1}{2!h^2} [f(x_2) - 2f(x_1) + f(x_0)]$$

$$A_3 = \frac{1}{3!h^3} [f(x_3) - 3f(x_2) + 3f(x_1) - f(x_0)]$$
...

Otra expresión del Q_n la da la **fórmula de Lagrange**. Llamemos

$$\pi_k(x) = (x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)$$

Observemos que el polinomio [de grado n] $\frac{\pi_k(x)}{\pi_k(x_k)}$ vale 1 si $x = x_k$ y vale 0 si $x = x_j$, con $j \neq k$.

Por tanto:
$$Q_n(x) = f(x_0) \frac{\pi_0(x)}{\pi_0(x_0)} + ... + f(x_k) \frac{\pi_k(x)}{\pi_k(x_k)} + ... + f(x_n) \frac{\pi_n(x)}{\pi_n(x_n)}$$

[parece más cómodo usar directamente esta fórmula y no resolver un sistema, pero su inconveniente principal es que si queremos añadir un nuevo punto hay que volver a calcular todos los π_k , lo que no sucedía con Newton]

Como en los polinomios de Taylor, aquí también se puede dar una estimación del error cometido al sustituir la f por su polinomio de interpolación Q_n .

Admitimos sin demostración que si $f \in C^{n+1}[x_0,x_n]$ se tiene que:

$$f(x) - Q_n(x) = \frac{1}{(n+1)!}(x - x_0)(x - x_1) \cdots (x - x_n) f^{(n+1)}(c) \text{ con } c \in (x_0, x_n)$$

Ej. Hallemos el Q_2 que toma los mismos valores que $f(x) = \operatorname{sen} x$ en 0, $\frac{\pi}{2}$ y π .

Sabemos que $f(x_0) = 0$, $f(x_1) = 1$, $f(x_2) = 0$. Calculando los A_k [$h = \frac{\pi}{2}$] tenemos:

$$\begin{array}{c} A_0=0\;, A_1=\frac{2}{\pi}[1-0]\;, A_2=\frac{2}{\pi^2}[0-2+0]\to\\ Q_2(x)=0+\frac{2}{\pi}(x-0)-\frac{4}{\pi^2}(x-0)(x-\frac{\pi}{2})=\frac{4}{\pi^2}x(\pi-x) \end{array}$$

A lo mismo llegamos con: $Q_2(x) = 0 \frac{(x-\pi/2)(x-\pi)}{(0-\pi/2)(0-\pi)} + 1 \frac{(x-0)(x-\pi)}{(\pi/2-0)(\pi/2-\pi)} + 0 \frac{(x-0)(x-\pi/2)}{(\pi-0)(\pi-\pi/2)}$

Utilicemos este polinomio para aproximar sen 1 y sen 2 :

 $Q_2(1) \approx 0.86795$, $Q_2(2) \approx 0.92534$. Los errores cometidos están acotados por

$$|E(1)| \le \frac{1}{24}|1 - 0||1 - \pi/2||1 - \pi| \approx 0.05$$
, $|E(2)| \le \frac{1}{24}|2 - 0||2 - \pi/2||2 - \pi| \approx 0.04$.

Las aproximaciones son peores que las que vimos con el P_7 de Taylor.

Pero son mejores en 2 que las obtenidas con el de orden 5 ($P_5(2) = 0.9333$, sen 2 = 0.9093).

Siguen siendo peores en 1, más cercano a 0 ($P_5(1) = 0.8417$, sen 1 = 0.8415).

4.5. Cálculo de límites indeterminados

O sea, del tipo $\boxed{ \infty - \infty, \ 0 \cdot \infty, \ \frac{0}{0}, \ \frac{\infty}{\infty}, \ 1^{\infty}, \ 0^{0}, \ \infty^{0} }$ (los otros ya sabemos hace tiempo).

Utilizando desarrollos de Taylor (en principio, para x tendiendo hacia a finito):

Introducimos una notación para abreviar: sea $g(x) \neq 0$ para $x \neq a$ en un entorno de a.

Def. Diremos que
$$f(x) = o(g(x))$$
 cuando $x \to a$ si $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$ Se lee simplemente: f es 'o pequeña' de g .

Con esta notación podemos expresar los desarrollos de Taylor escribiendo sólo aquello que se va a utilizar para calcular límites (la función es el polinomio mas 'algo despreciable'):

Si
$$f$$
 es de C^{n+1} en un entorno de a entonces $f(x) = P_{n,a}(x) + o([x-a]^n)$

(pues entonces
$$|f^{(n+1)}(c)| \le K$$
 para $c \in [a,x] \Rightarrow \left| \frac{R_{n,a}(x)}{(x-a)^n} \right| \le \frac{K|x-a|}{(n+1)!} \to 0$ si $x \to a$)

Ej.
$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{x + o(x)}{x} = 1$$
,

pues o(x) es precisamente algo que dividido por x tiende a 0 si $x \to 0$.

$$\mathbf{Ej.} \ \lim_{x \to 0} \frac{x - \operatorname{sen} x}{x^3} = \lim_{x \to 0} \frac{x - [x - \frac{1}{6}x^3 + o(x^3)]}{x^3} = \frac{1}{6} \ .$$
 Aquí no basta el $P_1(x)$ (no se sabe hacia que tiende $\frac{o(x)}{x^3}$).

[Es habitual (aunque impreciso) escribir unos puntos suspensivos en lugar de utilizar la "o"; si lo hacemos, tengamos en cuenta que esos puntos deben representar las potencias de x estrictamente mayores que las escritas; no escribir ni siquiera los puntos suele conducir a errores, como sustituir simplemente en el último límite senx por x (infinitésimo equivalente que dicen algunos) lo que nos puede llevar a decir que

$$\lim_{r \to 0} \frac{x - \sin x}{r^3} = \lim_{r \to 0} \frac{x - x}{r^3} = \lim_{r \to 0} \frac{0}{r^3} = 0 !!!].$$

Ej.
$$\lim_{x \to 0} \frac{x - \tan x}{x - \sec x} = \lim_{x \to 0} \frac{x - [x + \frac{1}{3}x^3 + o(x^3)]}{x - [x - \frac{1}{6}x^3 + o(x^3)]} = \lim_{x \to 0} \frac{-\frac{1}{3} + \frac{o(x^3)}{x^3}}{\frac{1}{6} + \frac{o(x^3)}{x^3}} = -2.$$

$$\lim_{x\to 0} \frac{x\cos x - \sin x}{x - \sin x} \frac{1}{\cos x} = \lim_{x\to 0} \frac{x - \frac{1}{2}x^3 + o(x^3) - x + \frac{1}{6}x^3 + o(x^3)}{x - x + \frac{1}{6}x^3 + o(x^3)} \lim_{x\to 0} \frac{1}{\cos x} = -2 \; .$$

$$\mathbf{Ej.} \quad \lim_{x \to 0} \frac{\operatorname{ch} x - \sqrt{1 + x^2}}{\operatorname{sh} x^4} = \lim_{x \to 0} \frac{1 + \frac{1}{2} x^2 + \frac{1}{24} x^4 + o(x^4) - [1 + \frac{1}{2} x^2 - \frac{1}{8} x^4 + o(x^4)]}{x^4 + o(x^4)} = \lim_{x \to 0} \frac{\frac{1}{6} + \frac{o(x^4)}{x^4}}{1 + \frac{o(x^4)}{x^4}} = \frac{1}{6} \; .$$

Hemos desarrollado hasta que ha quedado un término que no se anulaba en el numerador. También hemos agrupado en $o(x^4)$ todos los términos que no influyen en el valor del límite.

Las indeterminaciones anteriores eran $\frac{0}{0}$. Muchas de otro tipo se pueden llevar a ella:

Ej.
$$(1^{\infty}) \lim_{x \to 0} (1+x)^{1/x} = \lim_{x \to 0} e^{\log(1+x)/x} = e$$
, ya que $\lim_{x \to 0} \frac{\log(1+x)}{x} = \lim_{x \to 0} \frac{x + o(x)}{x} = 1$.

$$\mathbf{Ej.} \ (\infty - \infty) \lim_{x \to 0} \left[\frac{2 + \arctan x}{\log (1 + 2x)} - \frac{\cos 2x}{x} \right] = \lim_{x \to 0} \left[\frac{2 + x + o(x)}{2x - 2x^2 + o(x^2)} - \frac{1 - 2x^2 + o(x^2)}{x} \right] = \lim_{x \to 0} \frac{x^2 + 2x^2 + o(x^2)}{2x^2 + o(x^2)} = \frac{3}{2}$$

Hemos agrupado en $o(x^2)$ los términos que no influyen y utilizado unas cuantas propiedades de la "o" de demostración trivial (y muy intuitivas, si pensamos que $o(x^n)$ son las potencias de x mayores que n):

$$x^m = o(x^n)$$
 si $m > n$, $f(x) = o(x^m) \Rightarrow f(x) = o(x^n)$ si $m > n$, $x^m o(x^n) = o(x^{m+n})$, $o(x^m) o(x^n) = o(x^{m+n})$

Discutamos el uso la regla de L'Hôpital (demostrada en 3.2) y comparemos con Taylor:

Si
$$f(x), g(x) \underset{x \to a}{\longrightarrow} 0$$
 (6 $\underset{x \to a}{\longrightarrow} \pm \infty$) y existe el $\lim_{x \to a} \frac{f'(x)}{g'(x)}$, entonces $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$. La regla sigue siendo válida cambiando el a del enunciado por a^+ , a^- , $+\infty$ 6 $-\infty$.

No dice L'Hôpital que si $\frac{f'}{g'}$ no tiene límite (finito o infinito), tampoco lo tenga $\frac{f}{g}$:

Ej.
$$\lim_{x \to \infty} \frac{x}{2x + \cos x} = \frac{\infty}{\infty}$$
; $\lim_{x \to \infty} \frac{1}{2 - \sin x}$ no tiene límite, pero es claro que $\lim_{x \to \infty} \frac{1}{2 + \frac{\cos x}{x}} = \frac{1}{2}$.

Muchas veces hay que iterar L'Hôpital. Es importante simplificar lo más posible en cada paso:

Ej.
$$(\frac{0}{0}) \lim_{x \to 0} \frac{x - \tan x}{x - \sin x} = \lim_{x \to 0} \frac{\cos^2 x - 1}{(1 - \cos x)\cos^2 x} = -\lim_{x \to 0} \frac{1 + \cos x}{\cos^2 x} = -2$$
 (ya calculado por Taylor).

(sin simplificar hubiéramos tenido que volver a usar L'Hôpital pues la indeterminación seguía; pero no nos lancemos a derivar sin comprobar que sigue el $\frac{0}{0}$ ó $\frac{\infty}{\infty}$, pues podríamos hacer burradas como:

$$\lim_{x \to 0} \frac{1 + \cos x}{\cos^2 x} = !!! = \lim_{x \to 0} \frac{-\sin x}{-2\cos x \sec x} = \lim_{x \to 0} \frac{1}{2\cos x} = \frac{1}{2}).$$

Para calcular un límite indeterminado, si conocemos los desarrollos de las funciones que aparecen en la expresión, suele ser preferible acudir a Taylor.

Ej. Los límites de la página anterior se complican por L'Hôpital. Así para el $\infty - \infty$

$$\lim_{x \to 0} \frac{\cos 2x \log (1+2x) - 2x - x \arctan x}{\log (1+2x)} \stackrel{L'H}{=} \lim_{x \to 0} \frac{-2 \sin 2x \log (1+2x) + \frac{2 \cos 2x}{1+2x} - 2 - \arctan x - \frac{x}{1+x^2}}{\log (1+2x) + \frac{2x}{1+2x}} = \frac{0}{0}$$

y hay que volver a aplicar l'Hôpital para deshacer esta indeterminación y llegar al resultado. Más pasos habría que dar todavía en el ejemplo del ch y sh: Taylor muestra que deberíamos derivar 4 veces (salvo que descubramos alguna simplificación intermedia) para llegar a un límite no indenterminado.

L'Hôpital se puede aplicar en situaciones en que Taylor no es posible (si $x \to \pm \infty$, si no conocemos los polinomios,...). Esto ocurre, por ejemplo, calculando estos **límites importantes**:

Si
$$a > 0$$
, $b > 0$: $\lim_{x \to 0^+} [x^a \log x] = 0$, $\lim_{x \to \infty} \frac{(\log x)^b}{x^a} = 0$, $\lim_{x \to \infty} \frac{x^b}{e^{ax}} = 0$.

Para el primero $(0 \cdot [-\infty])$ log x no admite desarrollo de Taylor en 0. En los otros $(\frac{\infty}{\infty})$, para x gordo ni $\log x$, ni e^{ax} se parecen a ningún polinomio. Así que L'Hôpital en los tres casos:

$$\lim_{x \to 0^{+}} \frac{\log x}{x^{-a}} = \left(\frac{-\infty}{\infty}\right) = \lim_{x \to 0^{+}} \frac{1/x}{-ax^{-a-1}} = \frac{1}{-ax^{-a}} = 0.$$

$$\frac{\log x}{x^{a}} \xrightarrow{\text{L'H}} \frac{1/x}{ax^{a-1}} \to 0 \Rightarrow \frac{(\log x)^{b}}{x^{a}} = \left[\frac{\log x}{x^{a/b}}\right]^{b} \to 0 , \quad \frac{x}{e^{ax}} \xrightarrow{\text{L'H}} \frac{1}{ae^{ax}} \to 0 \Rightarrow \frac{x^{b}}{e^{ax}} = \left[\frac{x}{e^{ax/b}}\right]^{b} \to 0.$$

[En otras palabras $(\log x)^b = o(x^a)$, $x^b = o(e^{ax})$ si $x \to \infty$, por gordo que sea b y chico que sea a].

$$\mathbf{Ej.} \ \ (0 \cdot \infty) \ \ \lim_{x \to 0^+} [x \log \left(\mathbf{e}^x - 1 \right)] = \lim_{x \to 0^+} \frac{\log \left(\mathbf{e}^x - 1 \right)}{1/x} \stackrel{\infty / \infty}{=} \lim_{x \to 0^+} \frac{\mathbf{e}^x / (\mathbf{e}^x - 1)}{-1/x^2} = -1 \cdot \lim_{x \to 0^+} \frac{x^2}{\mathbf{e}^x - 1} \stackrel{0 / 0}{=} - \lim_{x \to 0^+} \frac{2x}{\mathbf{e}^x} = 0 \ .$$

El primer paso exigía L'Hôpital, pero en el segundo sí hubiera valido Taylor: $\frac{x^2}{x+o(x)} \to 0$.

Ej.
$$(\frac{\infty}{\infty}) \lim_{x \to \infty} \frac{e^x - \arctan x}{\log(1 + x^4)} = \lim_{x \to \infty} \frac{e^x}{\log(1 + x^4)} - 0 \stackrel{L'H}{=} \lim_{x \to \infty} \frac{e^x}{4x^3/(1 + x^4)} = "\frac{\infty}{0^+} = \infty".$$

Aplicamos L'Hôpital pues ni $e^x \sim 1 + x$, ni $\log(1+x^4) \sim x^4$ si x gordo. Sin apartar primero el arctanx hubiéramos tardado casi lo mismo. Era esperable que la e^x 'pudiese' con el logaritmo, pero lo hemos calculado porque exactamente no estaba escrito eso entre los límites importantes.

Como dijimos en 2.3, para calcular límites, a veces es conveniente realizar **cambios de variable**. Ya citamos los cambios de este tipo:

Teorema:
$$[t = g(x)]$$
 g continua en a , $g(x) \neq g(a)$ si $x \neq a$ y $\lim_{t \to g(a)} f(t) = L \Rightarrow \lim_{x \to a} f(g(x)) = L$

Otros que se utilizan muchas veces (si aparecen expresiones que dependen de 1/x) son:

Teorema:
$$[t = \frac{1}{x}] \qquad [\inf_{x \to \infty} f(\frac{1}{x}) = \lim_{t \to 0^+} f(t) , \lim_{x \to 0^+} f(\frac{1}{x}) = \lim_{t \to \infty} f(t) . \text{ [Análogos con } 0^- \text{ y } -\infty].$$

[basta escribir las definiciones de los límites para comprobarlo]

Ej. Con el segundo teorema:
$$(\infty \cdot 0)$$
 $\lim_{x \to \infty} x^2 \operatorname{sen} \frac{1}{x} = \lim_{t \to 0^+} \frac{\operatorname{sen} t}{t^2} = 1 \cdot \lim_{t \to 0^+} \frac{1}{t} = \infty$.

Ej. Más complicado:
$$(\infty \cdot 0)$$
 $\lim_{x \to \infty} x^2 (1 - e^{-3/x^2}) = \lim_{t \to 0^+} \frac{1 - e^{-3t^2}}{t^2} = \lim_{t \to 0^+} \frac{3t^2 + o(t^2)}{t^2} = 3$.

$$\textbf{Ej.} \quad (\ 0^0\)\ \lim_{x\to 0^+} x^x = \lim_{x\to 0^+} \ \mathrm{e}^{x\log x} = 1 \ \ ; \ \ (\ \infty^0\)\ \lim_{x\to \infty} x^{1/x} = \lim_{x\to \infty} \mathrm{e}^{\log x/x} = 1$$

(sabemos que el exponente tiende a 0 en ambos casos). O jugando con el segundo cambio: $\lim_{x\to\infty} x^{1/x} = \lim_{t\to 0^+} \left(\frac{1}{t}\right)^t = 1 \text{ , pues } \lim_{t\to 0^+} t^t = 1 \text{ (el segundo se reduce al primero)}.$

Ej.
$$\lim_{x\to 0} \frac{\sqrt{1+2x^3}-e^{x^3}}{x^6}$$
 ($\frac{0}{0}$). Taylor: $\frac{1+x^3-\frac{1}{2}x^6+\cdots-[1+x^3+\frac{1}{2}x^6+\cdots]}{x^6} \xrightarrow[t\to 0]{} -1$.

L'Hôpital exige simplificar:

$$\frac{3x^2[1+2x^3]^{-1/2}-3x^2e^{x^3}}{6x^5} = \frac{[1+2x^3]^{-1/2}-e^{x^3}}{2x^3} \to \frac{-3x^2[1+2x^3]^{-3/2}-3x^2e^{x^3}}{6x^2} = \frac{-[1+2x^3]^{-3/2}-e^{x^3}}{2} \to -1.$$

Aunque todo sería más corto (L'Hôpital, desde luego) si hiciésemos el cambio $t = x^3$.

Ej. Hallemos ahora, si existen, varios límites para la función $f(x) = \frac{\log(1+x) - x}{\sin x - x}$:

$$\lim_{x \to 0} f(x) = (\ \tfrac{0}{0}\) = \lim_{x \to 0} \frac{x - \tfrac{x^2}{2} + \tfrac{x^3}{3} + o(x^3) - x}{x - \tfrac{x^3}{6} + o(x^3) - x} = \lim_{x \to 0} \frac{-\tfrac{1}{2x} + \tfrac{1}{3} + \tfrac{o(x^3)}{x^3}}{-\tfrac{1}{6} + \tfrac{o(x^3)}{x^3}} = \pm \infty \ \text{si} \ x \to 0^\pm$$
 [o L'Hôpital:
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\tfrac{1}{1+x} - 1}{\cos x - 1} \stackrel{0/0}{=} \lim_{x \to 0} \frac{-1/[1+x]^2}{-\sin x} = \pm \infty \ \text{si} \ x \to 0^\pm \]$$

$$\lim_{x\to\infty} f(x) = (\tfrac{-\infty}{-\infty}, x \text{ manda}) = \lim_{x\to\infty} \frac{\log{(1+x)/x} - 1}{\sin{x/x} - 1} = \frac{0+1}{0+1} = 1, \text{ pues } \frac{\log{(1+x)}}{x} \to 0 \quad \text{(casi conocido; o L'Hôpital)}.$$

[No se podía aplicar Taylor (lejos de x = 0), ni directamente L'H: $\lim_{x \to \infty} \frac{1/[1+x]-1}{\cos x-1}$ no existe].

 $\lim_{x \to 1^+} f(x) = \frac{-\infty + 1}{-\sin 1 + 1} = -\infty$ " (1 - sen 1 > 0), límite fácil que sabíamos calcular hace tiempo.

Ej. Hallemos para todo valor de *a* los siguientes límites:

$$\lim_{x \to \infty} x^a \left[1 - \cos \frac{1}{x} \right] = \lim_{t \to 0^+} \frac{1 - \cos t}{t^a} = \lim_{t \to 0^+} \frac{t^2/2 + o(t^2)}{t^a} = \begin{cases} 0 \text{ si } a < 2 \\ 1/2 \text{ si } a = 2 \\ \infty \text{ si } a > 2 \end{cases}$$

$$\lim_{x \to 0} \frac{e^{-x^2} - \cos ax}{x^4} = \lim_{x \to 0} \frac{[a^2/2 - 1]x^2 + [1/2 - a^4/24]x^4 + o(x^4)}{x^4} = \begin{cases} -\infty \text{ si } a < \sqrt{2} \\ 1/3 \text{ si } a = \sqrt{2} \\ \infty \text{ si } a > \sqrt{2} \end{cases}$$

[En ambos casos, por L'Hôpital sería más largo, habría que discutir varias veces si el límite es o no de la forma 0/0 y sería mucho más fácil equivocarnos en algún paso].

Con lo aprendido sobre Taylor y límites indeterminados podemos abordar diferentes problemas de secciones anteriores para los que nos faltaban argumentos. Por ejemplo, nos aparecieron límites indeterminados en la definición de **derivada**. Aunque los teoremas de derivación permiten calcular casi todas, quedaban aún algunas que no sabíamos hacer. Ahora ya podemos con Taylor y L'Hôpital:

- **Ej.** Estudiemos si son derivables en x = 0 las siguientes funciones:
 - $n(x) = \arctan \frac{1}{x^2}$, con $n(0) = \frac{\pi}{2}$. Haciendo uso del último teorema de 3.2 vimos que n'(0) = 0.

Ahora directamente:
$$n'(0) = \lim_{h \to 0} \frac{\arctan(\frac{1}{h^2}) - \frac{\pi}{2}}{h} = \lim_{t \to \infty} \frac{\arctan(t^2) - \frac{\pi}{2}}{1/t} = \lim_{t \to \infty} \frac{2t/[1+t^4]}{-1/t^2} = 0$$
.

$$l(x) = \frac{\log(1+x)}{x}$$
, $l(0) = 1$. Como $l(x) = \frac{x+o(x)}{x} \underset{x \to 0}{\longrightarrow} 1$, la función l es al menos continua en $x = 0$.

Aunque no va a ser lo más rápido, acudamos a la definición para ver si existe l'(0):

$$l'(0) = \lim_{h \to 0} \frac{\log(1+h)/h - 1}{h} = \lim_{h \to 0} \frac{\log(1+h) - h}{h^2} = \lim_{h \to 0} \frac{-h^2/2 + o(h^2)}{h^2} = -\frac{1}{2}$$

¿Existirá también l''(0)? Siguiendo con la definición, necesitamos antes hallar l'(x) para $x \neq 0$:

$$l'(x) = \frac{x - (1 + x)\log(1 + x)}{(1 + x)x^2} \to l''(0) = \lim_{h \to 0} \frac{2h + (1 + h)h^2 - 2(1 + h)\log(1 + h)}{2(1 + h)h^3} = \dots = \lim_{h \to 0} \frac{4h^3/3 + o(h^3)}{2h^3 + 2h^4} = \frac{2}{3}$$

Pero las cosas son mucho más fáciles gracias a Taylor. Nuestra $\it l$ es exactamente:

$$l(x) = \frac{x - x^2/2 + x^3/3 - x^4/4 + \cdots}{x} = 1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \cdots$$
 para todo $|x| < 1$.

Como está definida por una serie de potencias (o sea, es analítica) es C^{∞} y sabemos que:

$$l(0) = 1$$
, $l'(0) = -\frac{1}{2}$, $\frac{l''(0)}{2} = \frac{1}{3} \Rightarrow l''(0) = \frac{2}{3}$, ...

También serán muy útiles los temas de este capítulo en el dibujo de gráficas:

Ej. $f(x) = e^{-1/x^2}$, f(0) = 0. Comprobemos primero, como aseguramos en 4.4, que $f^{(n)}(0) = 0 \, \forall n$.

Para
$$x \neq 0$$
 es: $f'(x) = \frac{2}{x^3}e^{-1/x^2}$, $f''(x) = \left[\frac{4}{x^6} - \frac{6}{x^4}\right]e^{-1/x^2}$, $f'''(x) = \left[\frac{8}{x^9} - \frac{36}{x^7} + \frac{24}{x^5}\right]e^{-1/x^2}$, ...

Entonces:
$$f'(0) = \lim_{h \to 0} \frac{e^{-1/h^2}}{h}$$
, $f'(0) = \lim_{t \to \infty} t e^{-t^2} = 0$, $f''(0) = \lim_{h \to 0} \frac{2e^{-1/h^2}}{h^4} = \lim_{t \to \infty} 2t^4 e^{-t^2} = 0$, ...

[pues e^{t^2} es aún mucho mayor que e^t ($e^t/e^{t^2}=e^{t-t^2} \underset{t\to\infty}{\to} e^{-\infty}=0$) y sabemos que $t^ne^{-t}\underset{t\to\infty}{\to} 0$]

Para cualquier n, tras hacer $h = \frac{1}{t}$, acabaremos en: $f^{(n)}(0) = \lim_{t \to \infty} (\text{polinomio}) \cdot e^{-t^2} = 0$.

Para hacer el dibujo observamos que: f es par.

f crece para x > 0 y decrece si x < 0.

Hay puntos de inflexión si $x = \pm \sqrt{2/3}$.

 $f \rightarrow e^0 = 1$ cuando $x \rightarrow \pm \infty$.

Ej. $p(x) = \cos 2x e^{\tan x}$, π -periódica. Continua si $x \neq \frac{\pi}{2} + k\pi$.

$$p'(x) = [1 - \sin^2 x] e^{\tan x} \ge 0$$
 ($k\pi$ inflexión horizontal).

$$p \mathop{\longrightarrow}_{x \to \pi/2^+} 0 \cdot 0 = 0 \; , \; \; p' \mathop{\longrightarrow}_{x \to \pi/2^+} 1 \cdot 0 = 0 \; , \; \; p \mathop{\longrightarrow}_{x \to \pi/2^-} 0 \cdot \infty ;$$

L'Hôpital:
$$\frac{e^{\tan x}}{1+\tan^2 x} \xrightarrow[\infty]{} \frac{e^{\tan x}}{2\tan x} \xrightarrow[\infty]{} \frac{e^{\tan x}}{2} \xrightarrow[x\to\pi/2^-]{} \infty$$

[o bien,
$$\lim_{x \to \pi/2^-} \frac{e^{\tan x}}{1 + \tan^2 x} = \lim_{t \to \infty} \frac{e^t}{1 + t^2} = \infty$$
]

Ej.
$$g(x) = x^2 e^{1/x} e^{-x}$$
. $g(x) \ge 0 \ \forall x$.

Asíntotas: si
$$x \to 0^-$$
, $g \to 0 \cdot 0 \cdot 1 = 0$;

$$\operatorname{si} x \to -\infty$$
, $g \to \infty \cdot 1 \cdot \infty = \infty$;

si
$$x \to 0^+$$
, $g \to 0 \cdot \infty \cdot 1$ indeterminado:
lím $g = 1 \cdot \text{lím } t^{-2} e^t = \infty$:

$$\lim_{x \to 0^+} g = 1 \cdot \lim_{t \to \infty} t^{-2} e^t = \infty;$$

si $x \to \infty$, $g \to \infty \cdot 1 \cdot 0$ indeterminado:
$$\lim_{x \to \infty} g = 1 \cdot \lim_{x \to \infty} x^2 e^{-x} = 0.$$

$$g'(x) = -[x-1]^2 e^{1/x} e^{-x}$$
 siempre decreciente

$$(x = 1 \text{ punto de inflexión con tangente horizontal});$$

 $g'(x) \to 0 \text{ si } x \to 0^-; g'(x) \to -\infty \text{ si } x \to 0^+.$

$$g''(x) = \frac{1}{x^2}[x-1][x^3 - 3x^2 + x - 1]e^{1/x}e^{-x}$$

Analizamos el número de raíces de $P(x) = x^3 - 3x^2 + x - 1$: + - + - (3 ó 1 positivas) $- - - - (\sin \text{ raíces negativas})$

$$P'(x) = 3x^2 - 6x + 1 = 0$$
 si $x = 1 \pm \frac{\sqrt{2}}{\sqrt{3}}$, $P\left(1 - \frac{\sqrt{2}}{\sqrt{3}}\right) = -2 + \frac{4}{3}\frac{\sqrt{2}}{\sqrt{3}} < 0$

 \Rightarrow sólo 1 cero real de P [en (2,3)] \Rightarrow 2 puntos de inflexión de g

Los únicos valores sencillos: g(-1) = g(1) = 1, g'(-1) = -4.

Ej.
$$h(x) = x \log(1 + \frac{4}{x^2})$$
. Impar. $\lim_{x \to 0} h = \lim_{x \to 0} \frac{\log[1 + 4/x^2]}{1/x} = (L'H) = \lim_{x \to 0} \frac{8x}{x^2 + 4} = 0$.

$$\lim_{x \to \infty} h = (L'H) = \lim_{x \to \infty} \frac{8x}{x^2 + 4} = 0 \text{ [o bien } (x = 1/t) \lim_{t \to \infty} \frac{\log[1 + 4t^2]}{t} = \lim_{t \to \infty} \left[4t + \frac{o(t^2)}{t}\right] = 0;$$

o (informal)
$$h \sim_{\text{x gordo}} x \frac{4}{x^2} = \frac{4}{x^2}$$
, pues $\log(1+\bullet) \sim \bullet$ si • chico].

$$h'(x) = \log(1 + \frac{4}{x^2}) - \frac{8}{x^2 + 4}; h'(x) \xrightarrow{x \to 0^+} \infty.$$

$$h'(1) = \log 5 - \frac{8}{5} \approx 0.01$$
, $h'(2) = \log 5 - 1 \approx -0.3$

→ existe un único máximo (en un x algo mayor que 1)

$$h''(x) = \frac{8[x^2 - 4]}{x[x^2 + 4]^2} \quad \begin{array}{l} h \text{ es } \cup \text{ en } (-2, 0) \cup (2, \infty) \\ h \text{ es } \cap \text{ en } (-\infty, 2) \cup (0, 2) \end{array}$$

 $h(1) = \log 5 \approx 1.61$, $h(2) = 2\log 2 \approx 1.4$.

Ej. $k(x) = \frac{\sinh x}{x^{1/3}}$. Par. $k \to \infty$ si $x \to \infty$.

$$k(x) = x^{2/3} + o(x^{2/3}) \Rightarrow \text{continua en } x = 0 \text{ si } k(0) = 0$$

(y no derivable; o directamente $k'(0^+) = \lim_{h \to 0^+} \frac{\sinh h}{h^{4/3}} = \infty$).

$$k(\pm 1) = \frac{1}{2}[e - e^{-1}] \approx 1.2$$
, $k(\pm 2) = 2^{-4/3}[e^2 - e^{-2}] \approx 2.9$

$$k'(x) = x^{-1/3} \cosh x - \frac{1}{2} x^{-4/3} \sinh x = 0 \Leftrightarrow \tanh x = 3x \text{ (nunca)}$$

$$k''(x) = \frac{[9x^2 + 4] \sinh x}{9x^{7/3}} - \frac{2 \cosh x}{3x^{4/3}} = 0 \Leftrightarrow \sinh x = \frac{6x}{9x^2 + 4} \equiv r(x)$$

Vemos si se cortan las gráficas de r y th [impares]:

$$r'(0)=\frac{3}{2}$$
, $r(\frac{1}{3})=0.4$, $r(\frac{2}{3})=0.5$ (máximo de r), $r\underset{x\to\infty}{\to}0$,

$$th'(0)=1$$
 , $th(\frac{1}{3})\approx 0.32$, $th(\frac{2}{3})\approx 0.58$, $th\mathop{\to}\limits_{x\to\infty} 1$

 \Rightarrow hay un punto de inflexión para un $x \in (\frac{1}{3}, \frac{2}{3})$.

Por último, con las técnicas para resolver indeterminaciones de esta sección ya sabemos calcular muchos más límites de **sucesiones** (y deducir convergencias de **series**), gracias a los teoremas que los relacionan con los de funciones. Recordamos que:

$$\lim_{x \to a} f(x) = L \Leftrightarrow \text{toda sucesión } \{a_n\} \subset \text{dom} f - \{a\} \text{ con } \{a_n\} \to a \text{ satisface que } f(a_n) \to L$$
$$\lim_{x \to \infty} f(x) = L \Leftrightarrow \text{toda sucesión } \{a_n\} \subset \text{dom} f \text{ con } \{a_n\} \to \infty \text{ satisface que } f(a_n) \to L$$

(los teoremas también valían si L era + ó $-\infty$) (en particular, $f(x) \underset{x \to \infty}{\longrightarrow} L \Rightarrow f(n) \underset{n \to \infty}{\longrightarrow} L$)

Ej. Si
$$a > 0$$
, $\frac{\log n}{n^a} \to 0$ porque $\frac{\log x}{x^a} \underset{x \to \infty}{\longrightarrow} 0$, como vimos por L'Hôpital (adelantado al final de 2.3).

[No es nada elegante aplicar L'Hôpital o Taylor directamente a una sucesión, pues estrictamente hablando una sucesión es una función que sólo toma valores sobre los enteros y claramente no tiene sentido hablar de su derivada; se debe, pues, cambiar la variable n por x para indicar que lo que se deriva es la f(x) que da lugar a la sucesión para los $n \in \mathbb{N}$; el problema es que si uno lo hace 'mal' puede llegar bien al resultado (pero que no olvide que deriva la f(x))].

Ej.
$$\sqrt[n]{n} \to 1$$
, pues $\{n\} \to \infty$ y $x^{1/x} \to 1$ cuando $x \to \infty$ (por la misma razón $\sqrt[7n+3]{7n+3} \to 1$).

Ej.
$$(1+a_n)^{1/a_n} \to e$$
 si $\{a_n\} \to 0$ pues vimos que $(1+x)^{1/x} \to e$ (también admitido en 2.3).

Ej.
$$n^2 \operatorname{sh} \frac{1}{n^2} \to 1$$
 $\left[\begin{array}{c} \operatorname{pues} \left\{ n^2 \right\} \to \infty \text{ y } \lim_{x \to \infty} x \operatorname{sh} \frac{1}{x} = \lim_{t \to 0^+} \frac{\operatorname{sh} t}{t} = \lim_{t \to 0^+} \frac{t + o(t)}{t} = 1 \\ \operatorname{o bien, porque} \left\{ \frac{1}{n^2} \right\} \to 0 \text{ y, cuando } x \to 0 \text{ , } \frac{\operatorname{sh}(x)}{x} \to 1 \end{array} \right]$

Ej.
$$n^4 - n^6 \arctan \frac{1}{n^2} \to \frac{1}{3}$$
, pues se puede poner como $f(\frac{1}{n^2}) \cot f(x) = \frac{x - \arctan x}{x^3} = \frac{x^3/3 + \cdots}{x^3} \to \frac{1}{3}$.

Ej.
$$\sum \arctan \frac{1}{n}$$
 diverge, pues $\arctan \frac{1}{n} \sim \frac{1}{n}$ (es decir, $\frac{\arctan(\frac{1}{n})}{1/n} \to 1$, pues $\frac{\arctan x}{x} \to 1$ y $\frac{1}{n} \to 0$).

Ej.
$$\sum \log(1+\frac{1}{n^2})$$
 converge, pues $\log(1+\frac{1}{n^2}) \sim \frac{1}{n^2}$ (ya que $\frac{\log(1+x)}{x} \underset{r \to 0}{\longrightarrow} 1$ y $\frac{1}{n^2} \to 0$).

Ej.
$$\sum (-1)^n n^2 e^{-\sqrt{n}}$$
 converge por Leibniz, pues es alternada, $f(n) = n^2 e^{-\sqrt{n}} \to 0$ [porque $\lim_{x \to \infty} f(x) = [x = t^2] = \lim_{t \to \infty} \frac{t^4}{e^t} = 0$, o por L'Hôpital (bastante más largo sin el cambio):
$$x^2/e^{\sqrt{x}} \to 4x^{3/2}/e^{\sqrt{x}} \to 12x/e^{\sqrt{x}} \to 24x^{1/2}/e^{\sqrt{x}} \to 24/e^{\sqrt{x}} \to 0$$
]

y es decreciente a partir de un n [ya que $f'(x) = \frac{x}{2}(4-\sqrt{x})e^{-\sqrt{x}} < 0$ si x > 16].

5. Integración en R

5.1. Definición y propiedades

Sea f acotada en [a,b]. Dividimos [a,b] en n subintervalos de la misma longitud Δx por medio de los n+1 puntos:

$$a = x_0 < x_1 < \dots < x_n = b$$
 con $x_{k+1} - x_k = \frac{b-a}{n} \equiv \Delta x$.

Para cada n llamamos suma inferior L_n y superior U_n a:

$$L_n = \sum_{k=1}^n m_k \Delta x, U_n = \sum_{k=1}^n M_k \Delta x, \text{ con } \frac{m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}}{M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\}}$$

Si ambas sucesiones $\{L_n\}$ y $\{U_n\}$ convergen hacia un mismo límite, decimos que f es **integrable** en [a,b], representamos ese límite común por $\int_a^b f$ ó $\int_a^b f(x)dx$ y le llamamos **integral** de f en [a,b].

[Esta no es la definición de 'integral de Riemann' habitual (ver Spivak), pero es mucho más corta].

El significado geométrico es claro: si $f \ge 0$, la integral (≥ 0) representa el área A de la región limitada por la gráfica de f, el eje x y las rectas x = a y x = b: A es para todo n mayor que la suma L_n de las áreas de los rectángulos pequeños y menor que la suma U_n de los grandes; al crecer n, ambas sumas se aproximan hacia A. Si $f \le 0$, L_n y U_n son negativas. La integral (≤ 0) en valor absoluto es el área de la región (situada bajo el eje x) limitada por el eje x, la gráfica de f y las rectas x = a y x = b.

Si f es positiva y negativa, la integral $\int_a^b f$ representará la **diferencia** entre las áreas de las regiones que queden por encima y las áreas de las que queden por debajo del eje x:

Con los teoremas que veremos, para saber si f es integrable y para calcular la integral no necesitaremos usar la definición casi nunca. Por ahora, sólo con lo visto, estudiemos unos ejemplos:

Ej.
$$f(x) = x^2, x \in [0, 1]$$
.
$$L_n = \sum_{k=1}^n \frac{(k-1)^2}{n^2} \frac{1}{n} = \frac{1}{n^3} [0^2 + \dots + (n-1)^2]$$
$$U_n = \sum_{k=1}^n \frac{k^2}{n^2} \frac{1}{n} = \frac{1}{n^3} [1^2 + \dots + n^2]$$

Usando el resultado que vimos en un problema de sucesiones:

$$1^2 + \dots + n^2 = \frac{n[n+1][2n+1]}{6}$$
; $L_n = \frac{[n-1]n[2n-1]}{6n^3}$, $U_n = \frac{n[n+1][2n+1]}{6n^3}$; L_n , $U_n \to \frac{1}{3} = \int_0^1 f$.

Ej.
$$g(x) = \begin{cases} -1 & \text{si } x = a \\ 0 & \text{si } a < x < b \\ 1 & \text{si } x = b \end{cases}$$
 $L_n = -\frac{b-a}{n}$, $U_n = \frac{b-a}{n} \Rightarrow \int_a^b g = 0$.

La g es discontinua, pero integrable. Se ve que la integral seguiría siendo nula si cambiamos el valor 0 por cualquier otro en un número finito de puntos de (a,b).

Veremos pronto que las funciones acotadas con un número finito de discontinuidades son siempre integrables, así que las funciones no integrables tienen que ser tan patológicas como la siguiente.

 $h(x) = \begin{cases} 1 \text{ si } x \text{ racional} \\ 0 \text{ si } x \text{ irracional} \end{cases}, x \in [a,b] \text{. En case } \text{the constant } \text{the constant } \text{ and } \text{the constant } \text{ and } \text{ the constant } \text{ the consta$ **Ej.** $h(x) = \begin{cases} 1 \text{ si } x \text{ racional} \\ 0 \text{ si } x \text{ irracional} \end{cases}$, $x \in [a,b]$. En cada $[x_{k-1},x_k]$, $\forall n$, hay racionales e irracionales.

Así pues,
$$L_n = \sum_{k=1}^n 0 \frac{b-a}{n} = 0$$
, $U_n = \sum_{k=1}^n 1 \frac{b-a}{n} = b-a \ \forall n \Rightarrow h$ no integrable.

irracionales que racionales]).

Las siguientes propiedades son intuitivamente claras a la vista del significado geométrico de la integral y se demuestran mecánicamente usando de las definiciones:

Teorema:

Las dos primeras propiedades se expresan diciendo que 'la integral es lineal' (como la derivada). La siguiente sigue siendo intuitiva, pero es pesada de demostrar con nuestra

definición (ver libros). [Para f continua será trivial usando los teoremas de 5.2, pero la propiedad es cierta también para f integrable y disconti-

Teorema:

Sean
$$a < c < b$$
; f integrable en $[a,b] \Rightarrow$
$$f \text{ integrable en } [a,c] \text{ y } [c,b], \text{ e } \int_a^b f = \int_a^c f + \int_c^b f.$$
 Definiendo $\int_a^a f = 0$ e $\int_a^b f = -\int_b^a f$, la igualdad es válida para a,b,c cualesquiera.

Los dos siguientes teoremas dicen que las f (acotadas) no integrables son extrañas:

Teorema:
$$f$$
 continua en $[a,b] \Rightarrow f$ integrable en $[a,b]$

Idea de la demostración. Se puede probar que $\{L_n\}$ y $\{U_n\}$ siempre convergen (sus límites se llaman integral inferior y superior de f) y así f es integrable si $U_n - L_n \to 0$. Sabemos que f es uniformemente continua: la diferencia entre dos valores cualesquiera de la f en dos $x, y \in [a, b]$ es tan pequeña como queramos para x e y suficientemente próximos; en particular, lo es la diferencia entre los valores máximo y mínimo de f en $[x_{k-1},x_k]$, si el intervalo es muy pequeño. Así, si n es suficientemente grande tenemos que para cada k:

$$M_k - m_k < \frac{\varepsilon}{b-a} \ \forall \varepsilon \Rightarrow U_n - L_n = \sum_{k=1}^n (M_k - m_k) \Delta x < \varepsilon \text{ para } n \text{ grande } \Rightarrow U_n - L_n \to 0.$$

Ya vimos que funciones discontinuas podían ser integrables. Una f se dice **continua a trozos** en [a,b] si es continua salvo en un número finito de puntos y en ellos posee límites laterales.

[No lo son las funciones $\frac{1}{x}$ o sen $(\frac{1}{x})$ en [0,1], definámos las como las definamos en x=0].

Teorema: f continua a trozos en $[a,b] \Rightarrow f$ integrable en [a,b]

[dividimos en subintervalos de forma que f sólo tenga discontinuidades en los extremos; en cada intervalo es fácil ver que es integrable por ser suma de una función continua y de otra integrable del tipo de la g de los ejemplos].

Como es 0 el valor de la integral de una función como la g se ve que **cambiando el valor** de una f integrable en un número finito de puntos, la nueva función h continúa siendo integrable y el valor de la integral es el mismo, pues dicha función h se puede escribir como f+g con una g de esas y la integral es lineal.

[Hay funciones integrables con infinitas discontinuidades; por ejemplo, una f creciente y acotada es integrable (pues $M_{k-1} = m_k$, $k = 1, ..., n \Rightarrow U_n - L_n = \frac{f(b) - f(a)}{n}$), aunque presente infinitos saltos].

5.2. Teoremas fundamentales

Estos teoremas fundamentales del cálculo infinitesimal relacionan las derivadas y las integrales y nos permitirán hallar muchísimas integrales prescindiendo de la definición.

Sea f acotada e integrable en [a,b]; para cada $x \in [a,b]$ la $\int_a^b f$ existe (y es un número).

Podemos, pues, definir una nueva función: $F(x) = \int_a^x f$, $x \in [a,b]$

$$F(x) = \int_a^x f, x \in [a, b]$$

Primer teorema fundamental del cálculo infinitesimal:

f integrable en $[a,b] \Rightarrow F$ continua en [a,b].

Si además f es continua en un $c \in (a,b)$ entonces F es derivable en c y F'(c)=f(c).

(y por tanto, si f es continua en todo [a,b] entonces $F'(x) = f(x) \ \forall x \in [a,b]$)

Como f es acotada en [a,b], existen supremo e ínfimo de f en cada intervalo $\subset [a,b]$.

Sea $c \in (a,b)$ y sea h > 0. Llamemos:

$$M_h = \sup\{f(x) : x \in [c, c+h]\}\ , m_h = \inf\{f(x) : x \in [c, c+h]\}\$$

 $M_{h} = \sup\{f(x) : x \in [c, c+h]\}, m_{h} = \inf\{f(x) : x \in [c, c+h]\}.$ Entonces: $m_{h}h \leq \int_{c}^{c+h} f = \int_{a}^{c+h} f - \int_{a}^{c} f = F(c+h) - F(c) \leq M_{h}h$ $\Rightarrow [F(c+h) - F(c)] \to 0, \text{ si } h \to 0^{+}.$

Así pues, F es continua en c (cambiando detalles se vería para $h \to 0^-$).

Sea ahora f continua en c. Si h > 0 se deduce que: $m_h \le \frac{F(c+h) - F(c)}{h} \le M_h$

(y a la misma igualdad se llegaría, de forma análoga, para h < 0).

Como
$$f$$
 continua en c , $M_h, m_h \to f(c)$ si $h \to 0$, y por tanto $\frac{F(c+h)-F(c)}{h} \underset{h \to 0}{\to} f(c)$.

[El teorema nos dice que, al contrario que al derivarla, la F obtenida integrando f es 'más suave' que ella. Si f es discontinua en c, F es continua en c (aunque F tenga un 'pico' en c); y si f tiene picos, desaparecen al integrarla. En general, $f \in \mathbb{C}^n \Rightarrow F \in \mathbb{C}^{n+1}$].

Ej. $f(x) = e^{\operatorname{sen}(\operatorname{ch} x)}$ continua $\forall x \Rightarrow F(x) = \int_0^x f$, $G(x) = \int_7^x f$, ... tienen por derivada $f(x) \forall x$. [F'(x) = f(x)] también para x < a (si f continua en x), pues si c < x con f integrable en [c,a]: $F(x) = \int_{a}^{x} f = \int_{c}^{x} f - \int_{c}^{a} f$].

Segundo teorema fundamental del cálculo infinitesimal:

$$f$$
 es continua en $[a,b]$ y $f=g'$ para alguna función $g \Rightarrow \int_a^b f = g(b) - g(a) \equiv g\Big|_a^b$

Como
$$F' = f = g' \Rightarrow F(x) = g(x) + k$$
 para algún número k . Como $0 = F(a) = g(a) + k$
 $\Rightarrow k = -g(a) \Rightarrow F(x) = g(x) - g(a)$. En particular: $F(b) = \int_a^b f = g(b) - g(a)$.

Dada una función f, una g cuya derivada sea f se llama primitiva de f. El segundo teorema dice que para calcular la integral de una f continua basta hallar una primitiva de f (y no es necesario utilizar las sumas superiores e inferiores). Si g es primitiva de f, es claro que cualquier otra primitiva de f es de la forma g+K.

80

El conjunto de todas las primitivas se designa por $\int f(x)dx$

(que son funciones y no un número como $\int_a^b f$; a veces se llama integral definida de f entre a y b a esta última, e integral indefinida al conjunto de primitivas).

En algunos casos, hallar la primitiva de una f es inmediato y, por tanto, lo es calcular algunas integrales. Por ejemplo, es ahora ya trivial calcular la primera integral vista en 5.1:

Ej.
$$\int_0^1 x^2 dx = \frac{x^3}{3}\Big]_0^1 = \frac{1}{3}$$
 pues $\frac{x^3}{3}$ es una primitiva de x^2 ya que $\frac{d}{dx}\frac{x^3}{3} = x^2$; (todas las primitivas de x^2 son $\int x^2 dx = \frac{1}{3}x^3 + K$; si para el cálculo de esta integral hubiésemos tomado otro valor de la $K \neq 0$, habríamos, desde luego, obtenido el mismo resultado).

Pero en muchas ocasiones calcular primitivas es muy complicado. Más aún, hay funciones de apariencia sencilla para las que se demuestra que no tienen primitivas que puedan escribirse como suma, producto, composición,... de funciones elementales, como:

$$\int \operatorname{sen} x^2 dx$$
, $\int \operatorname{e}^{x^2} dx$, $\int \frac{\operatorname{sen} x}{x} dx$, $\int \frac{\operatorname{e}^x}{x} dx$, $\int \frac{dx}{\log x}$, $\int \sqrt{1+x^3} dx$, $\int \sqrt[3]{1+x^2} dx$,...

Si f es continua una primitiva suya es F (pero esto no sirve para calcular una integral concreta); así $F(x) = \int_0^x \sin t^2 dt$, $F^*(x) = \int_{-1}^x \sin t^2 dt$, ... son todas primitivas de $\sin x^2$; es decir, $\int \sin x^2 dx = \int_a^x \sin t^2 dt + K$. Las variables x, t, ... son mudas, pero no se repite la letra del límite de integración en el integrando porque podría dar lugar a errores: F(1) es $\int_0^1 \sin t^2 dt$ pero no es $\int_0^1 \sin 1 dx$ y a esto nos podría llevar la incorrecta notación $\int_0^x \sin x^2 dx$.

También hay funciones integrables sin primitivas (claramente no pueden ser continuas):

Ej.
$$f(x) = \begin{cases} 1 \text{ si } x = 0 \\ 0 \text{ si } x \neq 0 \end{cases}$$
 no tiene primitiva $(F(x) = \int_a^x f = 0 \ \forall x \text{ no lo es}).$

De los TFCI se deducen las propiedades que habíamos adelantado para el $\left[\log x = \int_1^x \frac{dt}{t}\right]$:

$$f(x) = \frac{1}{x}$$
 continua si $x > 0 \Rightarrow F(x) = \log x$ derivable (y continua) si $x > 0$ y $F'(x) = \frac{1}{x}$.

[De la definición también se deducirían las otras propiedades: $\log(ab) = \log a + \log b, \dots$]

El segundo TFCI permite también probar con facilidad algunas de las propiedades generales de las integrales vistas en 5.1, en el caso particular de que el integrando sea **continuo**; por ejemplo, si F y G son primitivas de f y g se tiene:

$$\int_{a}^{b} [f+g] = [F+G](b) - [F+G](a) = F(b) - F(a) + G(b) - G(a) = \int_{a}^{b} f + \int_{a}^{b} g,$$

$$\int_{a}^{b} f = F(b) - F(a) = F(b) - F(c) + F(c) - F(a) = \int_{a}^{c} f + \int_{c}^{b} f, \dots$$

Pero recordemos que también son ciertas estas propiedades para las funciones **continuas a trozos**. De hecho, sabemos hallar ya fácilmente integrales de muchas f de ese tipo, dividiendo el intervalo y aplicando los TFCI en cada subintervalo:

Ej. Hallemos
$$\int_0^{\pi} f$$
, si $f(x) = \begin{cases} \cos x, 0 \le x \le \pi/2 \\ -1, \pi/2 \le x \le \pi \end{cases}$.
$$\int_0^{\pi} f = \int_0^{\pi/2} \cos x dx + \int_{\pi/2}^{\pi} [-1] dx = [\sin x]_0^{\pi/2} + [-x]_{\pi/2}^{\pi} = 1 - \frac{\pi}{2}.$$
[pues $\int_{\pi/2}^{\pi} f = \int_{\pi/2}^{\pi} [-1] dx$, ya que coinciden salvo en $x = \frac{\pi}{2}$]

También sabemos hallar $\forall x \in [0, \pi]$ la primitiva:

$$\int_0^x f = \begin{cases} \int_0^x \cos t dt \,, \, 0 \le x \le \pi/2 \\ \int_0^{\pi/2} \cos t dt + \int_{\pi/2}^x [-1] dt \,, \, \pi/2 \le x \le \pi \end{cases} = \begin{cases} \operatorname{sen} x \,, \, 0 \le x \le \pi/2 \\ 1 + \frac{\pi}{2} - x \,, \, \pi/2 \le x \le \pi \end{cases}$$

[función que, como nos aseguraba el primer TFCI, es continua también en $x = \pi/2$].

Como sabemos hallar derivadas de funciones definidas por integrales, sabemos hacer con ellas todo lo visto en cálculo diferencial: tangentes, máximos y mínimos, límites indeterminados,...

Ej. Hallemos la ecuación de la recta tangente a la gráfica de $F(x) = \int_{-1}^{x} \frac{t^3}{t^4 - 4}$ en x = 1:

$$F'(x) = \frac{x^3}{x^4 - 4}, F'(1) = -\frac{1}{3}; F(1) = \int_{-1}^1 \frac{t^3}{t^4 - 4} dt = 0 \text{ (integrando impar)} \Rightarrow \text{tangente: } y = -\frac{x - 1}{3}.$$
 [podríamos (primitiva inmediata), pero no es útil, calcular la $F(x) = \frac{1}{4} \log|x - 4| - \log 3$]

Ej. Determinemos, si existe, el límite de $G(x) = \frac{1}{x} \int_0^x \frac{|\cos t^3|}{t^2 + 1} dt$ cuando $x \to 0$ y cuando $x \to \infty$.

El numerador $F = \int_0^x$ es continuo y derivable $\forall x$ (el integrando es continuo) y es $F(0) = \int_0^0 = 0$. Cuando $x \to 0$ tenemos indeterminación 0/0 . Por L'Hôpital,

$$\lim_{x \to 0} G(x) = \lim_{x \to 0} \frac{F'(x)}{1} = \lim_{x \to 0} \frac{|\cos x^3|}{x^2 + 1} = 1 \ .$$

Si $x \to \infty$, tal vez no valga L'Hôpital (¿tenderá f a ∞ ?). De hecho, no hay indeterminación, pues vamos a ver (aunque la primitiva sea no calculable) que F está acotada. En efecto:

$$0 \le \frac{|\cos x^3|}{x^2 + 1} \le \frac{1}{x^2 + 1} \ \forall x \Rightarrow 0 \le F(x) \le \int_0^x \frac{1}{t^2 + 1} = \arctan x \ \forall x$$
$$\Rightarrow 0 \le \lim_{x \to \infty} G \le \lim_{x \to \infty} \frac{\arctan x}{x} = 0 \Rightarrow G \xrightarrow[x \to 0]{} 0.$$

En ocasiones se trabaja con funciones similares a la F(x), definidas por integrales de funciones f continuas, pero con límites de integración que son también funciones (derivables) de x. Los TFCI también nos permiten derivarlas:

Si
$$H(x) = \int_{a(x)}^{b(x)} f$$
 entonces $H'(x) = f[b(x)]b'(x) - f[a(x)]a'(x)$.

(para los x tales que f sea continua en [a(x),b(x)]) (o en [b(x),a(x)] si a(x)>b(x))

$$[H(x) = \int_0^{b(x)} f - \int_0^{a(x)} f = F[b(x)] - F[a(x)]$$
, con $F(x) = \int_0^x f$, y regla de la cadena].

Ej. Utilicemos la fórmula anterior para hallar dos derivadas de la función: $K(x) = x \int_{2x}^{3x} e^{-t^2} dt$.

$$K'(x) = \int_{2x}^{3x} e^{-t^2} dt + x[e^{-9x^2} \cdot 3 - e^{-4x^2} \cdot 2] \rightarrow K''(x) = 2[3e^{-9x^2} - 2e^{-4x^2}] + 2x^2[8e^{-4x^2} - 27e^{-9x^2}]$$
 [expressiones válidas $\forall x$, tanto si es positivo como negativo]

Ej. Estudiemos en qué $x \in [0,2\pi]$ alcanza sus valores extremos la función: $H(x) = \int_0^{\sqrt{x}} \sin t^2 dt$.

Su derivada es
$$H'(x) = \operatorname{sen}\left[(\sqrt{x})^2\right] \frac{1}{2\sqrt{x}} - 0 = \frac{\operatorname{sen}x}{2\sqrt{x}}, \forall x > 0.$$

Máximo y mínimo de H existen por ser continua. Los candidatos son los extremos y los puntos en que H'=0, es decir, x=0, $x=\pi$ y $x=2\pi$. Con el signo de H' se ve que H crece antes de π y decrece después, luego en ese punto se alcanza el máximo.

[No era necesario calcular H' para decirlo: estaba claro viendo la gráfica de $f(x) = \sin x^2$, pues hasta $x = \pi$ vamos añadiendo áreas positivas y a partir de entonces quitamos áreas por debajo del eje x].

Precisar cuál de los mínimos locales es el absoluto exige saber cuál de estos números es menor:

$$H(0) = 0$$
 6 $H(2\pi) = \int_0^{\sqrt{2\pi}} \sin(t^2) dt$

La gráfica de la f sugiere que $H(2\pi) > 0$, pero no podemos hallar el valor exacto, por no existir la primitiva de f (ya veremos cómo aproximar numéricamente las integrales en la sección 5.5).

Ej. Probemos que $L(x) = \int_{1-x}^{1+x} \log t \, dt$ es decreciente en $[0, \frac{1}{2}]$. Como $\log x$ es continua en $[\frac{1}{2}, \frac{3}{2}]$ (valores en los que integramos si $x \in [0, \frac{1}{2}]$) podemos derivar la L ahí:

$$L'(x) = \log(1+x) \cdot 1 - \log(1-x) \cdot [-1] = \log[1-x^2] < 0 \text{ si } x \in [0, \frac{1}{2}].$$

Era esperable: las áreas negativas que aparecen son mayores que las positivas. En este caso la primitiva sí sería calculable (por partes, como veremos), pero es un rodeo tonto hallar primitivas para derivarlas a continuación.

Ej. Precisar para todo $n \in \mathbb{N}$ en qué $x \ge 0$ alcanza su valor máximo la función $f_n(x) = \int_x^{2x} \frac{dt}{t^3 + 6n^6}$, y probar que la serie de funciones $\sum_{n=1}^{\infty} f_n(x)$ converge uniformemente en $[0,\infty)$.

Como la función $\frac{1}{x^3+6n^6}$ es continua para todo $x\geq 0$, es $f_n(x)$ derivable y su derivada es:

$$f'_n(x) = \frac{2}{8x^3 + 6n^6} - \frac{1}{x^3 + 6n^6} = \frac{3(n^6 - x^3)}{(4x^3 + 3n^6)(x^3 + 6n^6)}$$

La derivada se anula únicamente si $x = n^2$. Como el denominador es siempre positivo, la derivada es positiva cuando $x < n^2$ y negativa cuando $x > n^2$, tiene $f_n(x)$ un máximo local para $x = n^2$.

[Hallar
$$f_n''$$
 es más largo: $f_n''(x) = \frac{-12x^2}{(4x^3+3n^6)^2} + \frac{3x^2}{(x^3+6n^6)^2} \Rightarrow f_n''(n^2) = -\frac{12}{49n^8} + \frac{3}{49n^8} = -\frac{9}{49n^8}$]

La función $f_n(x) \ge 0$ para $x \ge 0$ (el integrando es positivo) y su valor máximo en esa semirrecta lo podemos acotar sin dificultad:

$$f_n(n^2) = \int_{n^2}^{2n^2} \frac{dt}{t^3 + 6n^6} \le \int_{n^2}^{2n^2} \frac{dt}{6n^6} = \frac{1}{6n^4}$$
 [o bien $f_n(n^2) \le \int_{n^2}^{2n^2} \frac{dt}{t^3} = \frac{3}{8n^4}$]

(sabríamos hallar el valor exacto de $f_n(n^2)$, con algún esfuerzo, después de la próxima sección).

Como
$$0 \le f_n(x) \le f_n(n^2) \le \frac{1}{6n^4} \Rightarrow |f_n(x)| \le \frac{1}{6n^4}, \forall n \ge 1, \forall x \ge 0 \text{ y } \sum_{n=1}^{\infty} \frac{1}{6n^4} \text{ converge,}$$

el criterio de Weierstrass asegura que la serie $\sum\limits_{n=1}^{\infty}f_n(x)$ converge uniformemente en $[0,\infty)$.

5.3. Cálculo de primitivas

Primitivas inmediatas (o casi inmediatas).

Cada derivada conocida nos proporciona una fórmula de integración:

Ej.
$$\int \frac{dx}{\cos^2 x} = \tan x$$
, $\int \sinh x = \cosh x$, $\int \frac{dx}{[4-x]^2} = \frac{1}{4-x}$, $\int \frac{2xdx}{x^2-1} = \log|x^2-1|$, ... (más exacto sería escribir $\tan x + K$, $\cot x + K$, ...; no lo haremos pero tengámoslo en cuenta)

Normalmente al integrando le faltarán constantes que se calculan derivando de cabeza:

Ej.
$$\int \frac{dx}{\sqrt{1-9x^2}} = \frac{1}{3} \arcsin{(3x)}$$
, $\int x^{-5/3} dx = -\frac{3}{2} x^{-2/3}$, $\int \frac{dx}{4+x^2} = \int \frac{dx}{4[1+(x/2)^2]} = \frac{1}{2} \arctan{\frac{x}{2}}$, ...

De la **linealidad** de la derivada se deduce inmediatamente para las primitivas que:

$$\int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx, \int cf(x)dx = c \int f(x)dx$$

Ej.
$$\int [5\sqrt{x+6} + 2\sin x - 7^x]dx = 4\int \sqrt{x+6}dx + 5\int \sin x dx - \int 7^x dx = \frac{8}{3}[x+6]^{3/2} - 5\cos x - \frac{7^x}{\log 7}$$

Es falso que la integral de un producto sea el producto de las integrales por no serlo la derivada, pero de la fórmula del producto (fg)' = fg' + f'g obtenemos:

Integración por partes. Sean f' y g' continuas (para que existan las primitivas). Entonces:

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx \; ; \; \int_a^b f(x)g'(x)dx = f(x)g(x)]_a^b - \int_a^b f'(x)g(x)dx$$

Esto reduce el problema a calcular otra primitiva, que será más sencilla si f' y g lo son (o si una de ellas lo es y la otra no es más complicada que la anterior).

Con la notación $df \equiv f'(x)dx$, la integración por partes se escribe $\int udv = uv - \int vdu$

Ej.
$$\int x \operatorname{sen} x dx = \begin{bmatrix} u = x, dv = \operatorname{sen} x dx \\ \to du = dx, v = -\cos x \end{bmatrix} = \int x \cos x - \int (-\cos x) dx = -x \cos x + \operatorname{sen} x$$

Ej.
$$\int xe^{-x}dx = [u = x, dv = e^{-x}dx \rightarrow du = dx, v = -e^{-x}] = \int xe^{-x} - \int (-e^{-x})dx = -(x+1)e^{-x}$$
 [las primitivas de sen x y e^{-x} no son peores que ellas, pero la derivada del x sí es más sencilla].

Otras funciones que mejoran al derivarlas son los logaritmos (las potencias de x no se complican):

Ej.
$$\int \sqrt{x} \log |x| dx = [u = \log |x|, dv = \sqrt{x} dx] = \frac{2}{3} x^{3/2} \log |x| - \frac{2}{3} \int x^{3/2} \frac{dx}{x} = x^{3/2} \left[\frac{2}{3} \log |x| - \frac{4}{9} \right]$$

Algunas veces conviene tomar g' = 1 (es decir, dv = dx):

Ej.
$$\int \log x dx = [u = \log x, dv = dx \to du = \frac{dx}{x}, v = x] = x \log x - \int dx = x \log x - x$$

Ej.
$$\int \arctan x dx = [u = \arctan x, dv = dx] = x \arctan x - \int \frac{x}{1+x^2} = x \arctan x - \frac{1}{2} \log(1+x^2)$$

Otras veces hay que repetir la integración por partes:

Ej.
$$\int x^2 e^x dx = x^2 e^x - 2 \int x e^x dx = xe^2 e^x - 2xe^x + 2 \int e^x dx = [xe^2 - 2x + 2]e^x$$

 $u^{\uparrow} dv^{\uparrow}$

Ej. Otro truco:
$$\int \frac{\log x dx}{x} = \log x \log x - \int \frac{\log x dx}{x} \to \int \frac{\log x dx}{x} = \frac{1}{2} [\log x]^2$$
 [se podía haber hecho a ojo]

Combinando las dos últimas ideas:

Ej.
$$I = \int \cos x \, e^x dx = \cos x \, e^x + \int \sin x \, e^x dx = e^x [\cos x + \sin x] - I \Rightarrow I = \frac{1}{2} e^x [\cos x + \sin x]$$

 $u^{\uparrow} dv^{\uparrow}$ $u^{\uparrow} dv^{\uparrow}$

Ej. Curiosidad:
$$\int \frac{dx}{x} = [u = x, dv = \frac{dx}{x^2} \rightarrow du = dx, v = -\frac{1}{x}] = -1 + \int \frac{dx}{x}$$
; \Rightarrow ? $0 = -1$!! [no olvidemos que hay una K arbitraria aunque no la escribamos]

Primitivas de funciones racionales:

$$\int \frac{P(x)}{Q(x)} dx$$
, con P y Q polinomios

Si el $\operatorname{gr} P \geq \operatorname{gr} Q$, dividimos: $\frac{P}{Q} = C + \frac{R}{Q}$ con el resto R de grado menor que Q.

Vimos que Q se puede poner como producto de polinomios del tipo $(x-a)^m$ [raíces reales] y $(x^2+cx+d)^n$ [complejas], siendo m y n la multiplicidad de las raíces [m=1 si simples].

[El problema es que (como vimos en 3.3), salvo para Q especialmente sencillos, realizar esta descomposición es, en la práctica, imposible por ser imposible hallar sus raíces].

Se prueba que $\frac{R}{Q}$ se puede escribir como suma de constantes por funciones del tipo:

$$\frac{1}{(x-a)^j}$$
, $\frac{1}{(x^2+cx+d)^k}$ y $\frac{x}{(x^2+cx+d)^k}$, con $1 \le j \le m, 1 \le k \le n$ (llamadas **fracciones simples**).

Para 'descomponer en fracciones simples' $\frac{R}{Q}$ (hallar la constante que acompaña a cada fracción) basta resolver un sistema lineal de ecuaciones. Y así, el problema de integrar P/Q se reduce, una vez factorizado Q, al de integrar el polinomio C y funciones como las últimas.

Ej. $I = \int \frac{4x^4 - 6x^3 + 5x^2 - 11x + 4}{x^5 - x^4 + x^3 - 3x^2 + 2x} dx = \int \frac{R(x)}{Q(x)} dx$ (ya es 4 < 5). Empezamos factorizando:

 $Q(x) = x(x-1)^2(x^2+x+2)$ [suerte hemos tenido] y descomponemos en fracciones simples:

$$\frac{R(x)}{Q(x)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^2} + \frac{Dx + E}{x^2 + x + 2} = \frac{A(x^4 - x^3 + x^2 - 3x + 2) + B(x^4 + x^2 - 2x) + C(x^3 + x^2 + 2x) + (Dx + E)(x^3 - 2x^2 + x)}{x(x-1)^2(x^2 + x + 2)}$$

[Si hubiera
$$(x-1)^m$$
 escribiríamos $\frac{B_1}{x-1} + \cdots + \frac{B_m}{(x-1)^m}$; si $(x^2+x-2)^n$, $\frac{D_1x+E_1}{x^2+x+2} + \cdots + \frac{D_nx+E_n}{(x^2+x+2)^n}$]

Igualando los coeficientes de x^4 , x^3 , x^2 , x y la constante de ambos términos se obtiene el sistema:

$$A + B + D = 4$$
, $-A + C - 2D + E = -6$, $A + B + C + D - 2E = 5$, $-3A - 2B + 2C + E = -11$, $2A = 4$
Resolviéndolo: $A = 2$, $B = 1$, $C = -1$, $D = 1$, $E = -1$

$$\Rightarrow I = \int \frac{2dx}{x} + \int \frac{dx}{x-1} - \int \frac{dx}{(x-1)^2} + \int \frac{(x-1)dx}{x^2 + x + 2}$$

Las $\int \frac{dx}{(x-a)^m}$ son casi inmediatas. Más trabajo dan las otras. Primero se busca un logaritmo:

$$\frac{1}{2} \int \frac{(2x-2)dx}{x^2+x+2} = \frac{1}{2} \int \frac{(2x+1)dx}{x^2+x+2} - \frac{3}{2} \int \frac{dx}{x^2+x+2}$$

Y luego un arco tangente completando el cuadrado: $x^2 + x + 2 = \left(x + \frac{1}{2}\right)^2 + \frac{7}{4} = \frac{7}{4} \left[\left(\frac{2x+1}{\sqrt{7}}\right)^2 + 1\right]$.

Por tanto:
$$\int \frac{(x-1)dx}{x^2 + x + 2} = \frac{1}{2} \log(x^2 + x + 2) - \frac{3}{2} \frac{2}{\sqrt{7}} \int \frac{2/\sqrt{7} dx}{\left([2x+1]/\sqrt{7}\right)^2 + 1}$$

$$I = 2\log|x| + \log|x - 1| + \frac{1}{x - 1} + \frac{1}{2}\log(x^2 + x + 2) - \frac{3}{\sqrt{7}}\arctan(\frac{2x + 1}{\sqrt{7}})$$

Ej. $I = \int \frac{x^4 - 5x^2 + x + 8}{x^3 + x^2 - 4x - 4} dx = \int (x - 1) dx + \int \frac{x + 4}{(x + 1)(x + 2)(x - 2)} dx$ [de nuevo las raíces eran sencillas].

$$\frac{x+4}{(x+1)(x+2)(x-2)} = \frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{x-2} = \frac{A(x+2)(x-2) + B(x+1)(x-2) + C(x+1)(x+2)}{(x+1)(x+2)(x-2)}$$

Cuando haya tantas raíces reales, mejor que igualar coeficientes haremos x = a para cada raíz a:

$$x = -1 \rightarrow -3A = 3, A = -1 \; ; \; x = -2 \rightarrow 4B = 2 \; , B = \frac{1}{2} \; ; \; x = 2 \rightarrow 12C = 6 \; , C = \frac{1}{2} \\ \rightarrow I = \frac{1}{2}x^2 - x - \log|x + 1| + \frac{1}{2}\log|x + 2| + \frac{1}{2}\log|x - 2| = \frac{1}{2}\left[x^2 - 2x + \log\frac{|x^2 - 4|}{|x + 1|^2}\right]$$

85

[Para hallar las primitivas de las fracciones simples más complicadas $\int \frac{dx}{(x^2+x+2)^n}$ se utilizarían fórmulas de reducción como la propuesta en problemas].

Cambios de variable:

Supongamos que buscamos una primitiva de $\int f(g(x))g'(x)dx$ (con f y g' continuas). Si F es una primitiva de f, por la regla de la cadena: $(F \circ g)'(x) = F'(g(x))g'(x) = f(g(x))g'(x)$. Así pues, $F \circ g$ es la primitiva buscada. Basta pues integrar la f y evaluar el resultado en g(x). Si lo que queremos es la integral definida entre g y g su valor es g valor es

$$\int f(g(x)) g'(x) dx = \int f(u) du \Big|_{u=g(x)} \; ; \; \int_a^b f(g(x)) g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$$

En la práctica se suele usar la notación de diferenciales: se escribe u = g(x), du = g'(x)dx y si hay límites de integración es fácil recordar que: $x = a \rightarrow u = g(a)$, $x = b \rightarrow u = g(b)$.

En algunos casos la g'(x) aparece explícitamente y es claro el cambio que hay que hacer:

Ej.
$$\int \sin^3 2x \cos 2x dx = [u = \sin 2x, du = 2\cos 2x dx] = \frac{1}{2} \int u^3 du = \frac{1}{8} u^4 = \frac{1}{8} \sin^4 2x$$
 [en casos tan sencillos no será necesario escribir la sustitución, es fácil ver a ojo que sen⁴ 2x es casi la primitiva; derivándola mentalmente se ve que falta el 1/8]

Ej.
$$\int_{e}^{5} \frac{dx}{x \log x} = \begin{bmatrix} u = \log x, du = \frac{dx}{x} \\ x = e \rightarrow u = 1, x = 5 \rightarrow u = \log 5 \end{bmatrix} = \int_{1}^{\log 5} \frac{du}{u} = \log |\log 5| - 0 = \log (\log 5)$$

[podíamos haber calculado la primitiva olvidando límites de integración y sustituir al final, una vez deshecho el cambio]

Ej.
$$\int e^x \sqrt{e^x - 1} dx = [u = e^x, du = e^x dx] = \int \sqrt{u - 1} du = [u - 1]^{3/2} = [e^x - 1]^{3/2}$$

Ej.
$$\int \text{sh}^3 x e^{-\text{ch}x} dx = \begin{bmatrix} u = \text{ch} x, du = \text{sh} x dx \\ \text{sh}^2 x = \text{ch}^2 x - 1 \end{bmatrix} = \int [u^2 - 1] e^{-u} du = [\text{partes}]$$

$$= -u^2 e^{-u} + 2 \int u e^{-u} du + e^{-u} = [\text{partes}] = [1 - 2u - u^2] e^{-u} + 2 \int e^{-u} du = -[1 + 2u + u^2] e^{-u}$$

$$= -[1 + 2 \text{ch} x + \text{ch}^2 x] e^{-\text{ch} x}$$
(o partes directamente: $\int \text{sh}^3 x e^{-\text{ch} x} dx = \begin{bmatrix} u = \text{sh}^2 x \\ dv = \text{sh} x e^{-\text{ch} x} dx \end{bmatrix} = -\text{sh}^2 x + 2 \int \text{ch} x \text{sh} x e^{-\text{ch} x} dx$

$$= [\text{partes}] = -\text{sh}^2 x e^{-\text{ch} x} - 2 \text{ch} x e^{-\text{ch} x} + 2 \int \text{sh} x e^{-\text{ch} x} dx = -[2 + 2 \text{ch} x + \text{sh}^2 x] e^{-\text{ch} x}$$

Pero en la mayoría de los casos no es tan evidente el cambio ni hay una clara du. La forma del integrando puede sugerir hacer algún cambio u = g(x). Para obtener entonces la f(u) se despeja la x en función de u, se calcula el dx y se sustituyen x y dx en la integral:

Ej.
$$\int_4^9 \cos \sqrt{x} dx = [u = \sqrt{x}, x = u^2, dx = 2udu, x = 4 \rightarrow u = 2, x = 9 \rightarrow u = 3] = 2 \int_2^3 u \cos u du = [partes] = 2[u \sin u]_2^3 - 2 \int_2^3 \sin u du = 2[u \sin u]_2^3 + 2[\cos u]_2^3 = 2[3 \sin 3 - 2 \sin 2 + \cos 3 - \cos 2]$$

Ej.
$$\int \sqrt{e^x - 1} dx = [u = e^x, x = \log u, dx = \frac{du}{u}] = \int \frac{\sqrt{u - 1}}{u} du = [\sqrt{u - 1} = z, u = z^2 + 1, du = 2zdz]$$

= $2 \int \frac{z^2}{z^2 + 1} dz = 2 \int [1 - \frac{1}{z^2 + 1}] dz = 2z - 2 \arctan z = 2\sqrt{e^x - 1} - 2 \arctan \sqrt{e^x - 1}$

[con un poco más de vista podríamos haber hecho directamente $z = \sqrt{e^x - 1}$ acabando antes]

[En los cambios de variable las funciones f y g' deben ser continuas. Si g' aparece explícitamente es fácil ver que es así. Pero si no aparece se nos podría olvidar y cometer errores].

Algo de práctica sugiere qué y cuándo sustituir. Para tipos particulares de funciones (trigonométricas, con radicales...) hay sustituciones típicas que se sabe que dan buen resultado (las veremos a continuación) y que suelen conducir a la integración de funciones racionales de las que hemos visto.

Como primer ejemplo de primitivas que se convierten en integrales racionales mediante cambios de variable estudiamos:

$$\int R(e^x) dx$$
, función racional de e^x .

Haciendo $u = e^x$ se convierte en la racional $\int \frac{R(u)}{u}$, pues $dx = \frac{du}{u}$.

Ej.
$$\int \frac{dx}{1+e^{2x}} = \int \frac{du}{u[1+u^2]} = \int \left[\frac{A}{u} + \frac{Bu+C}{1+u^2}\right] du = \int \frac{du}{u} - \int \frac{u}{1+u^2} = \log u - \frac{1}{2} \log (1+u^2) = x - \frac{1}{2} \log (1+e^{2x})$$

Más interés, por aparecer más a menudo, tienen las Primitivas de funciones trigonométricas:

Para integrar $\int R(\operatorname{sen} x, \cos x) dx$, con R racional en sen x y cos x, existe siempre un cambio $u = \tan \frac{x}{2}$ que la lleva a una racional, pero veamos antes una serie de casos más fáciles.

$$\int \operatorname{sen}^m x \cos^n x \, dx$$
:

Si m y n son pares, se escriben en función del ángulo doble:

$$sen^2 x = \frac{1 - \cos 2x}{2}, \cos^2 x = \frac{1 + \cos 2x}{2}$$

Ej.
$$\int \sin^2 x \cos^3 x dx = \int (1 - \sin^2 x) \sin^2 x \cos x dx = [u = \sin x] = \int (u^2 - u^4) du = \frac{1}{3} \sin^3 x - \frac{1}{5} \sin^5 x$$

Ej.
$$\int \cos^4 x dx = \frac{1}{4} \int (1 + \cos 2x)^2 dx = \frac{1}{4} \int dx + \frac{1}{2} \int \cos 2x dx + \frac{1}{8} \int (1 + \cos 4x) dx = \frac{3x}{8} + \frac{\sin 2x}{4} + \frac{\sin 4x}{32}$$

La integral general $\int R(\operatorname{sen} x, \cos x) dx$ | se convierte en cociente de polinomios haciendo:

$$u = \cos x$$
, si R es impar en senx [es decir, si $R(-\sin x, \cos x) = -R(\sin x, \cos x)$].

$$u = \operatorname{sen} x$$
, si R es impar en $\cos x$ [es decir, si $R(\operatorname{sen} x, -\cos x) = -R(\operatorname{sen} x, \cos x)$].

$$u = \tan x$$
 $\left[\cos^2 x = \frac{1}{1+u^2}, dx = \frac{du}{1+u^2}\right]$, si $R(-\sin x, -\cos x) = R(\sin x, \cos x)$.

$$u = \tan \frac{x}{2}$$
 [$\sec x = \frac{2u}{1+u^2}$, $\cos x = \frac{1-u^2}{1+u^2}$, $dx = \frac{2du}{1+u^2}$], para cualquier R [último recurso].

Ej.
$$\int \frac{dx}{\text{sen}x} = \int \frac{\text{sen}xdx}{1-\cos^2x} = [u = \cos x] = \int \frac{du}{u^2-1} = \frac{1}{2} \int \frac{du}{u-1} - \frac{1}{2} \int \frac{du}{u+1} = \frac{1}{2} \log |\frac{u-1}{u+1}| = \log |\frac{\cos x-1}{\cos x+1}|$$

De otra forma:
$$\int \frac{dx}{\text{sen }x} = [u = \tan \frac{x}{2}] = \int \frac{2du/[1+u^2]}{2u[1+u^2]} = \int \frac{du}{u} = \log|\tan \frac{x}{2}|$$

[ha salido tan fácil por casualidad] [las dos expresiones de la primitiva deben coincidir salvo K arbitraria (con pocas cuentas se ve que son iguales)]

Ej.
$$\int \frac{dx}{\cos^3 x \sec x} = \int \frac{dx}{\cos^4 x \tan x} = [u = \tan x] = \int \frac{[1+u^2]^2}{u[1+u^2]} = \int \frac{du}{u} + \int u du = \log|\tan x| + \frac{1}{2}\tan^2 x$$

Otro camino (más largo):
$$\int \frac{dx}{\cos^3 x \sec x} = \int \frac{\sin x dx}{\cos^3 x [1 - \cos^2 x]} = [u = \cos x] = \int \frac{du}{u^3 [u + 1] [u - 1]} = \cdots$$

[peor todavía sería hacer $u = \operatorname{sen} x$ (también es impar en coseno) ó $u = \tan \frac{x}{2}$]

Ej.
$$\int_0^{\pi} \frac{dx}{1+\cos^2 x} = [u = \tan x, dx = \frac{du}{1+u^2}] = \int_0^0 \frac{du}{2+u^2} = 0$$

 $\int_0^{\pi} \frac{1}{1 + \cos^2 x} = \int_0^{\pi} u = \tan x, dx = \frac{1}{1 + u^2} \int_0^{\pi} \frac{1}{2 + u^2} = 0$ [resultado evidentemente falso: el integrando es siempre positivo]
[resultado evidentemente falso: el integrando es siempre positivo] y la integral debía ser un número positivo. No olvidemos que en

los cambios de variable las funciones f y g' deben ser continuas. El cambio hecho (clásico, como hemos dicho, para este tipo de integrales) es válido sólo hasta $\frac{\pi}{2}$; sí es cierto que

$$\int_0^{\pi/2} \frac{dx}{1 + \cos^2 x} = \int_0^\infty \frac{du}{2 + u^2} = \frac{1}{\sqrt{2}} \int_0^\infty \frac{1/\sqrt{2} du}{1 + \left[\frac{u}{\sqrt{2}} \right]^2} = \frac{1}{\sqrt{2}} \arctan\left(\frac{u}{\sqrt{2}}\right) \Big|_0^\infty = \frac{\pi\sqrt{2}}{4} \to \int_0^\pi = \frac{\pi\sqrt{2}}{2}$$

pues el integrando es simétrico respecto a $x = \frac{\pi}{2}$. Al ∞ que nos ha aparecido (que como siempre representará un límite) le daremos más seriedad cuando estudiemos las integrales impropias].

Primitivas de irracionales

(las más simples; R función racional de x y la raíz que se indica)

 $\int R(x, \sqrt[n]{ax+b}) dx$ se convierte en racional haciendo $u = \sqrt[n]{ax+b}$.

Ej.
$$\int x[1+x]^{1/4}dx = \begin{bmatrix} u = [1+x]^{1/4}, x = u^4 - 1 \\ dx = 4u^3du \end{bmatrix} = \int 4(u^8 - u^4)du = \frac{4u^9}{9} - \frac{4u^5}{5} = \frac{4}{9}[1+x]^{9/4} - \frac{4}{5}[1+x]^{5/4}$$

También se puede hacer por partes:

$$\int x[1+x]^{1/4}dx = \frac{4}{5}x[1+x]^{5/4} - \frac{4}{5}\int [1+x]^{5/4}dx = \frac{4}{5}x[1+x]^{5/4} - \frac{16}{45}[1+x]^{9/4}$$

 $\int R\left(x,\sqrt{a^2-x^2}\right) dx$ se convierte en trigonométrica haciendo $x=a \operatorname{sen} u$.

Ej.
$$\int \sqrt{4-x^2} \, dx = [x = 2 \sin u, dx = 2 \cos u du] = \int 4 \cos^2 u du = 2u + \sin 2u$$

= $2u + 2 \sin u \sqrt{1 - \sin^2 u} = 2 \arcsin \frac{x}{2} + \frac{x}{2} \sqrt{4 - x^2}$

$$\int R\left(x,\sqrt{x^2+a}\right) dx$$
 se convierte en racional haciendo $u=x+\sqrt{x^2+a}$,

puesto que
$$(u-x)^2 = u^2 - 2xu + x^2 = x^2 + a \rightarrow x = \frac{u}{2} - \frac{a}{2u} \rightarrow dx = \frac{1}{2} + \frac{a}{2u^2}$$
.

(El cambio $u = \sqrt{x^2 + a}$ no sirve de nada pues vuelven a aparecer raíces al despejar la x).

Ej.
$$\int \frac{dx}{x\sqrt{x^2+1}} = \left[u = x + \sqrt{x^2+1}, x = \frac{u^2-1}{2u}, dx = \frac{1+u^2}{2u^2} du \right] = \int \frac{2du}{u^2-1} = \log\left|\frac{u-1}{u+1}\right| = \log\left|\frac{x}{1+\sqrt{x^2+1}}\right|$$

Ej.
$$\int \frac{xdx}{\sqrt{x^2+1}} = \sqrt{x^2+1}$$
 [¡a ojo!, antes de ponerse a calcular a lo loco, miremos si es inmediata]

[Las primitivas con raíces $\sqrt{ax^2 + bx + c}$ se reducen a las últimas completando cuadrados].

Recordamos que si las raíces son más complicadas (como $\sqrt{x^3 + a}$ ó $\sqrt[3]{x^2 + a}$), las integrales, son, en general, no calculables. Esto no quiere decir que alguna, en particular, no lo sea:

Ej.
$$\int \frac{x^7 dx}{\sqrt{x^4 + 1}} = [t = x^4] = \frac{1}{4} \int \frac{t dt}{\sqrt{t + 1}} = [u = \sqrt{t + 1}] = \frac{1}{2} \int (u^2 - 1) du = \frac{u^3}{6} - \frac{u}{2} = \frac{1}{6} [x^4 - 2] \sqrt{x^4 + 1}$$

[pero no se podría hallar la primitiva de $\int \frac{dx}{\sqrt{x^4+1}}$]

5.4. Integrales impropias

La integral la hemos definido para funciones f acotadas en intervalos [a,b] finitos. Extendemos la definición, primero para intervalos de integración no acotados $[a, \infty)$ ó $(-\infty, b]$. Como siempre que aparece un ∞ aparecerá un límite en la definición:

Supongamos que $\int_a^b f$ existe para todo $b \ge a$. Si existe el $\lim_{b \to \infty} \int_a^b f$ se le llama **integral impropia** de f en $[a, \infty)$, se representa por $\int_a^{\infty} f$ ó $\int_a^{\infty} f(x) dx$ y la integral impropia se dice **convergente**. Si $\int_a^{\infty} f$ no es convergente, se dice **divergente**.

[Análogamente se define
$$\int_{-\infty}^{b} f = \lim_{a \to -\infty} \int_{a}^{b} f$$
].

[La integral entre a y b existe $\forall b$, como sabemos, si por ejemplo f es continua (o continua a trozos) en $[a,\infty)$; como para cada b la integral es un número, tenemos una función de b y tiene sentido hablar de su límite cuando $b \to \infty$; este límite (el valor de la integral impropia) será otro número si la integral converge].

Ej.
$$\int_{1}^{\infty} \frac{dx}{x^2} = \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x^2} = \lim_{b \to \infty} \left[-\frac{1}{x} \right]_{1}^{b} = \lim_{b \to \infty} \left[1 - \frac{1}{b} \right] = 1$$
 [la integral es convergente y su valor es 1].

Ej.
$$\int_{1}^{\infty} \frac{dx}{x^{2}} = \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x^{2}} = \lim_{b \to \infty} \left[-\frac{1}{x} \right]_{1}^{b} = \lim_{b \to \infty} \left[1 - \frac{1}{b} \right] = 1$$
 [la integral es convergente y su valor es 1].

Ej.
$$\int_{1}^{\infty} \frac{dx}{x} = \lim_{b \to \infty} \left[\log x \right]_{1}^{b} = \lim_{b \to \infty} \left[\log b \right] \text{ diverge.}$$

Ej.
$$\int_1^\infty \frac{dx}{x} = \lim_{b \to \infty} [\log x]_1^b = \lim_{b \to \infty} [\log b]$$
 diverge.

En general,
$$\int_{1}^{\infty} \frac{dx}{x^s}$$
 diverge si $s \le 1$ y converge si $s > 1$ [hacia $\frac{1}{s-1}$].

[es inmediato comprobarlo; para los mismos s converge la $\int_a^\infty \frac{dx}{x^s} \, \forall a > 0$, pues $\int_a^b \, \mathrm{e} \, \int_1^b \, \mathrm{son} \, \mathrm{dos} \, \mathrm{funciones} \, \mathrm{de} \, b \, \mathrm{que} \, \mathrm{sólo} \, \mathrm{differen} \, \mathrm{en} \, \mathrm{la} \, \mathrm{constante} \, \int_1^a \, \mathrm{l} \, \mathrm{los} \, \mathrm{l$

$$\boxed{\int_0^\infty \mathrm{e}^{ax} dx} = \frac{1}{a} \lim_{b \to \infty} [\mathrm{e}^{ax}]_0^b = \frac{1}{a} \lim_{b \to \infty} [\mathrm{e}^{ab} - 1] \quad \text{converge si } a < 0 \text{ [hacia } -\frac{1}{a} \text{] y diverge si } a \ge 0.$$

[Se suele abreviar $[e^{ax}]_0^{\infty}$ en lugar de $\lim_{n \to \infty} [e^{ax}]_0^{n}$; pero no olvidemos que es un límite].

Aunque no sepamos calcular la primitiva podremos, en bastantes ocasiones, determinar si es o no convergente (como ocurría con las series; incluso teníamos un criterio integral que relacionaba unas y otras; los criterios de convergencia son muy parecidos).

Criterios para **funciones positivas** (los damos para la \int_a^∞ ; son análogos para $\int_{-\infty}^b$).

En todos suponemos que las funciones que aparecen son integrables en $[a,b] \forall b$.

Teorema:

Si
$$0 \le f(x) \le g(x)$$
 para $x \ge a$, $\int_a^\infty g$ converge $\Rightarrow \int_a^\infty f$ converge e $\int_a^\infty f \le \int_a^\infty g$

$$f$$
 $F(b)$ cree

 $0 \le F(b) = \int_a^b f \le \int_a^b g \le \int_a^\infty g \ \forall b \ge a \Rightarrow$ F(b) creciente y acotada superiormente $\Rightarrow F(b)$ tiene límite si $b \to \infty$

(la última \Rightarrow se prueba como en las sucesiones).

[El teorema dice también que $\int_a^\infty f$ divergente $\Rightarrow \int_a^\infty g$ divergente, desde luego; pero como siempre, en este tipo de criterios, de que la pequeña converja o de que la gorda diverja, no se sigue nada; e insistimos en que

es para funciones positivas: si una f cualquiera es menor que otra de integral convergente, no tiene que converger su integral, ya que podría irse a $-\infty$].

Las comparaciones con ≤ son siempre más complicadas que las hechas por paso al límite:

Teorema:

Si f y g son positivas para $x \ge a$ y $\lim_{h \to \infty} \frac{f(x)}{g(x)} = c$ finito, entonces:

Si c>0 , $\int_a^\infty g$ convergente $\Leftrightarrow \int_a^\infty f$ convergente.

Si c=0, $\int_a^\infty g$ convergente $\Rightarrow \int_a^\infty f$ convergente [es decir, $\int_a^\infty f$ diverge $\Rightarrow \int_a^\infty g$ diverge].

Si c>0, para $x\geq M$ es $\frac{c}{2}\leq \frac{f(x)}{g(x)}\leq \frac{3c}{2}\Rightarrow 0\leq \frac{c}{2}g(x)\leq f(x)\leq \frac{3c}{2}g(x)$ y podemos aplicar el teorema anterior. Si c=0, para $x\geq M$ es $0\leq f(x)\leq g(x)$ y de nuevo el teorema. Además está claro que $\int_M^\infty f$ converge $\Leftrightarrow \int_a^\infty f$ converge.

Si el integrando f no es positivo, como en las series, conviene considerar el |f|:

Teorema: $\int_a^\infty |f| \text{ convergente } \Rightarrow \int_a^\infty f \text{ convergente}$ [f se dice absolutamente integrable en $[a, \infty)$].

 $0 \le f + |f| \le 2|f| \Rightarrow \int_a^{\infty} [f + |f|]$ convergente $\Rightarrow \int_a^{\infty} f = \int_a^{\infty} [f + |f|] - \int_a^{\infty} |f|$ convergente

Ej. $\int_3^\infty \frac{[\log x]^2}{x} dx$ diverge, pues si $x \ge 3$ es $\frac{[\log x]^2}{x} \ge \frac{1}{x}$ e $\int_3^\infty \frac{dx}{x}$ diverge.

Por paso al límite debemos utilizar la parte con c = 0 porque el log no se parece a ningún x^s :

 $\frac{1/x}{[\log x]^2/x} \underset{x \to \infty}{\to} 0$ e $\int_3^\infty \frac{dx}{x}$ divergente $\Rightarrow \int_3^\infty \frac{[\log x]^2}{x} dx$ diverge (mayor que divergente).

También nos bastaba la definición: $\int_3^\infty \frac{[\log x]^2}{x} dx = \frac{1}{3} \left[\log x \right]^3 \Big|_3^\infty \to \infty$.

Ej. $\int_0^\infty \frac{xdx}{\sqrt{x^5-x+1}}$. Cuando $x \to \infty$, $\frac{x}{\sqrt{x^5-x+1}} \sim \frac{1}{x^{3/2}}$ [es decir, $\frac{x/\sqrt{x^5-x+1}}{1/x^{3/2}} \underset{x \to \infty}{\longrightarrow} 1$].

Como $\int_1^\infty \frac{1}{x^{3/2}}$ converge, la dada también (no sabemos a qué número).

Ej. $\int_0^\infty e^{-x^2} dx$ (sin primitiva elemental) converge, pues $\frac{e^{-x^2}}{e^{-x}} = e^{x-x^2} \underset{x \to \infty}{\longrightarrow} 0$ e $\int_0^\infty e^{-x} dx$ converge.

O bien, por desigualdades: si $x \ge 1$ es $e^{-x^2} \le e^{-x}$ y de aquí:

 $\int_{1}^{\infty} e^{-x} dx$ converge $(\Leftrightarrow \int_{0}^{\infty} \text{converge}) \Rightarrow \int_{1}^{\infty} e^{-x^2} \text{converge} (\Leftrightarrow \int_{0}^{\infty} \text{converge}).$

[con las integrales dobles de Cálculo II se puede ver que $\int_0^\infty {\rm e}^{-x^2} dx = \frac{1}{2} \sqrt{\pi}$]

Ej. $\int_1^\infty \sin\frac{1}{x} dx \sim \int_1^\infty \frac{dx}{x}$ divergente [pues $\lim_{x\to\infty} \frac{\sin(1/x)}{1/x} = \lim_{t\to 0^+} \frac{\sin t}{t} = 1$] \Rightarrow la dada diverge.

Ej. $\int_0^\infty \frac{\sin x}{1+x^3} dx$ es convergente porque $\left| \frac{\sin x}{1+x^3} \right| \le \frac{1}{1+x^3}$ e $\int_0^\infty \frac{1}{1+x^3}$ converge ($\sim \frac{1}{x^3}$ cuando $x \to \infty$)

Ej. Aplicando la misma idea a $\int_1^\infty \frac{\text{sen} x}{\sqrt{x}} dx$ no podemos concluir nada, ya que $\int_1^\infty \frac{1}{\sqrt{x}}$ diverge.

Pero
$$\int_0^\infty \frac{\operatorname{sen} x}{\sqrt{x}} dx = \int_0^\pi + \int_\pi^{2\pi} + \dots \equiv \sum_{k=1}^\infty a_k$$
, donde

 $|a_k| = \int_{(k-1)\pi}^{k\pi} \frac{|\sin x|}{\sqrt{x}} \le \int_{(k-1)\pi}^{k\pi} \frac{dx}{\sqrt{x}} \le 2\left[\sqrt{k\pi} - \sqrt{[k-1]\pi}\right].$

La serie es alternada, decreciente y con $a_k \to 0$, con lo que por Leibniz converge (y por tanto la integral).

De aquí deducimos que

$$\int_0^\infty \sin x^2 dx = [t = x^2] = \int_0^\infty \frac{\sin t}{\sqrt{t}} dt$$
 también converge

(¡a pesar de que f(x) no tiende a 0 si $x \to \infty$! [esto no es como en las series]).

La segunda extensión de la definición de integral es para f no acotada en un extremo del intervalo:

Supongamos que $\int_t^b f$ existe para todo $t \in (a,b]$. Se define $\int_{a^+}^b f = \lim_{t \to a^+} \int_t^b f$ si el límite existe y en ese caso la integral impropia se dice convergente.

[Análogamente:
$$\int_a^{b^-} f = \lim_{t \to b^-} \int_a^t f$$
]

(En vez de a^+ y b^- suele escribir a y b; no olvidemos que la integral es impropia).

[No se pide que f esté acotada en (a,b], ni siquiera que esté definida en el punto a; para que f sea integrable en [t,b], debe, desde luego, estar acotada en cada intervalo de esa forma; por ejemplo, si f es continua en (a,b] se tiene, para todo t, garantizada la existencia de la integral de f en [t,b], aunque el límite puede no existir y divergir la integral impropia].

Ej.
$$\int_{0^+}^1 \frac{dx}{x^2} = \lim_{t \to 0^+} \int_t^1 \frac{dx}{x^2} = \lim_{t \to 0^+} \left[\frac{1}{t} - 1\right] \text{ no existe (la integral impropia diverge).}$$
$$\int_{0^+}^1 \frac{dx}{\sqrt{x}} = \lim_{t \to 0^+} \left[2 - 2\sqrt{t}\right] = 2 \text{ , converge (y su valor es 2).}$$

En general, se ve fácil que $\int_{a^+}^{b} \frac{dx}{[x-a]^s} e^{-\int_{c}^{a^-} \frac{dx}{[a-x]^s}}$ convergen si s < 1 y divergen si $s \ge 1$ ($[x-a]^s$ tiene sentido para x < a si $s = \frac{1}{3}, \frac{2}{7}, \dots$; si $s = \frac{1}{2}$ ó $s = \pi$ la función no está definida)

Para este otro tipo de impropias existen criterios de convergencia totalmente análogos a los vistos para las del primer tipo. Resumiendo (las de a^+) y sin demostraciones:

Teorema:

Si $0 \le f \le g$ en (a,b], $\int_{a^+}^b g$ convergente $\Rightarrow \int_{a^+}^b f$ convergente e $\int_{a^+}^b f \le \int_{a^+}^b g$. Sean f, $g \ge 0$ en (a,b] y sea finito el $\lim_{x \to a^+} \frac{f(x)}{g(x)} = c$, entonces: si c > 0, $\int_{a^+}^b g$ converge $\Leftrightarrow \int_{a^+}^b f$ converge; si c = 0, $\int_{a^+}^b g$ converge $\Rightarrow \int_{a^+}^b f$ converge. $\int_{a^+}^b |f|$ convergente $\Rightarrow \int_{a^+}^b f$ convergente.

Ej.
$$\int_{0^+}^1 \frac{\cos^2 x}{x^{3/4}} dx$$
 converge, pues $0 \le \frac{\cos^2 x}{x^{3/4}} \le \frac{1}{x^{3/4}}$ e $\int_{0^+}^1 \frac{1}{x^{3/4}}$ converge (o porque $\frac{\cos^2 x/x^{3/4}}{1/x^{3/4}} \underset{x \to 0^+}{\to} 1$).

Ej.
$$\int_{2^+}^{7} \frac{dx}{x^3 - 8}$$
 diverge, pues se parece cerca de $x = 2$ a $\int_{2^+}^{7} \frac{dx}{x - 2}$ divergente: $\frac{1/[x^3 - 8]}{1/[x - 2]} = \frac{1}{x^2 + 2x + 4} \xrightarrow[r \to 2]{} \frac{1}{12}$ o L'Hôpital.

Ej.
$$\int_{0^+}^3 \frac{dx}{\sin x}$$
. Cerca de 0 el $\sin x \sim x$: $\frac{1/\sin x}{1/x} \underset{x \to 0}{\longrightarrow} 1$. Como $\int_{0^+}^3 \frac{dx}{x}$ diverge, la dada diverge.

Ej. La
$$\int_{0^+}^{\infty} \frac{\sin x}{\sqrt{x}} dx$$
 de antes, no plantea problemas en $x = 0$, a pesar de anularse su denominador, pues se parece cerca de 0 a \sqrt{x} que no sólo converge, es continua.

Ej.
$$\int_{0^+}^1 (\log x)^2 dx$$
 es convergente, pues $\frac{(\log x)^2}{1/\sqrt{x}} = (x^{1/4} \log x)^2 \xrightarrow[x \to 0^+]{} 0$ (lo sabemos desde 4.4), con lo que la nuestra es más pequeña que una convergente. Y podemos hallar su valor:
$$\int (\log x)^2 dx = x(\log x)^2 - 2 \int x \log x dx = x(\log x)^2 - 2x \log x + 2x \Rightarrow \int_{0^+}^1 (\log x)^2 dx = 2$$

Hay otras integrales que reúnen **más de un tipo de impropiedad**: $\int_{-\infty}^{\infty}$, $\int_{a^+}^{\infty}$, $\int_{a^+}^{b^-}$, ...

Cada integral de estas se dice convergente si, dividido el intervalo en subintervalos tales que en cada uno de ellos haya una única impropiedad, **todas** las integrales resultantes convergen. Por ejemplo, si f es continua en todo R:

$$\int_{-\infty}^{\infty} f$$
 converge $\Leftrightarrow \int_{-\infty}^{0} f$ e $\int_{0}^{\infty} f$ convergen y su valor es $\int_{-\infty}^{\infty} f = \int_{-\infty}^{0} f + \int_{0}^{\infty} f$

[esta integral no se define como $\lim_{b\to\infty} \int_{-b}^b f$ que podría existir a pesar de ser $\int_{-\infty}^\infty f$ divergente; a ese límite de las integrales calculadas en intervalos simétricos [-b,b], si existe, se le llama valor principal de Cauchy de la integral y aparece en matemáticas más avanzadas].

- **Ej.** $\int_{-\infty}^{\infty} \operatorname{sen} x dx$ diverge, pues $\int_{0}^{\infty} \operatorname{sen} x dx = \lim_{b \to \infty} [1 \cos b]$ no existe (y tampoco existe $\int_{-\infty}^{0} \operatorname{sen} x dx$). [Sí existe el valor principal de Cauchy: $\operatorname{VP} \int_{-\infty}^{\infty} \operatorname{sen} x dx = \lim_{b \to \infty} \int_{-b}^{b} \operatorname{sen} x dx = 0 \text{ (sen } x \text{ es impar)}].$
- **Ej.** $\int_{0^+}^{\infty} \frac{\arctan x}{x+x^2} \cdot \int_{1}^{\infty}$ es convergente pues comporta como $\int_{1}^{\infty} \frac{dx}{x^2}$ convergente [$\frac{\arctan x/x+x^2}{1/x^2} \xrightarrow[x \to \infty]{\pi} \frac{\pi}{2}$] Cerca de $0: \frac{\arctan x}{x+x^2} \sim \frac{1}{1+x}$ con límite finito $\Rightarrow \int_{0^+}^{1}$ converge. Como convergen las dos, $\int_{0^+}^{\infty}$ converge.
- Ej. $\int_{0^+}^{\infty} \frac{dx}{x^s} = \int_{0^+}^{1} + \int_{1}^{\infty} \text{diverge } \forall s :$ Si s > 1 converge la de ∞ , pero diverge la de 0^+ , si s < 1 ocurre al revés y si s = 1 divergen ambas.
- **Ej.** $\int_{-1}^{1} \frac{dx}{x^2}$ no es una integral normal y ni siquiera existe como impropia, pues no convergen ni \int_{-1}^{0} ni \int_{0}^{1} . (Tampoco existe el VP de Cauchy de la impropia, definido en estos casos por $\lim_{b\to 0} \left[\int_{-1}^{b} f + \int_{b}^{1} f\right]$).
- **Ej.** $\int_{1^+}^{\infty} \frac{xdx}{\sqrt{x^4-1}} \cdot \int_{1^+}^{2}$ converge (pues $\frac{x}{\sqrt{x-1}\sqrt{x^3+x^2+x+1}} \approx \frac{x}{2\sqrt{x-1}}$), pero \int_{2}^{∞} diverge (pues $\approx \frac{1}{x}$). Por tanto, la inicial diverge (insistimos en que deben converger las dos para ser convergente).
- **Ej.** $\int_{0^+}^{\infty} \frac{1 e^{-x^2}}{x^2} dx$ converge, pues lo hacen $\int_{0^+}^{1}$ (tiene límite en x = 0) e \int_{1}^{∞} (es $0 \le \frac{1 e^{-x^2}}{x^2} \le \frac{1}{x^2}$).
- **Ej.** $\Gamma(x) = \int_0^\infty t^{x-1} \mathrm{e}^{-t} dt$. En x = 0 converge si y sólo si x > 0 (pues se parece a $\int_0^\infty t^{x-1} dt$). En ∞ converge siempre: $\frac{t^{x-1} \mathrm{e}^{-t}}{t^{-2}} \frac{t^{x+1}}{\mathrm{e}^t} \underset{t \to \infty}{\longrightarrow} 0 \ \forall x \ \mathrm{e} \ \int_1^\infty \frac{dt}{t^2} \ \mathrm{converge}$. La $\int_0^\infty \ \mathrm{inicial\ converge} \ \forall x > 0$.

La $\Gamma(x)$ (**función gamma**) definida por esta impropia generaliza el factorial:

$$\Gamma(x+1) = \int_0^\infty t^x e^{-t} dt = -t^x e^{-t} \Big]_0^\infty + x \int_0^\infty t^{x-1} e^{-t} = x \Gamma(x)$$

y por tanto
$$\Gamma(n+1)=n\Gamma(n)=n(n-1)\Gamma(n-1)=n(n-1)\cdots 2\cdot 1\cdot \Gamma(1)=n!$$
, si $n\in \mathbf{N}$, pues $\Gamma(1)=\int_0^\infty t^0\mathrm{e}^{-t}dt=1$.

Ej. $\int_{0^+}^{\infty} \frac{1-\cos x}{x^3 \log x} dx$. Plantea problemas en 0^+ , 1^\pm , ∞ . Para converger, deben hacerlo las cuatro.

Analizamos todas: En 0^+ : $\sim \int \frac{dx}{x \log x} = \log(|\log x|) \underset{x \to 0^+}{\longrightarrow} -\infty$ (diverge).

En 1^{\pm} : $\sim \int \frac{dx}{\log x} \sim \int \frac{dx}{x-1}$ (divergen ambas). En ∞ : $\leq \int \frac{dx}{x^3}$ (converge).

5.5. Integración aproximada

Como sabemos, funciones integrables pueden no tener primitivas elementales o exigir un cálculo muy largo. Pero en muchas ocasiones, sólo se necesita el valor aproximado de una integral definida (en otras, simplemente, **cotas** de dicha integral). Las U_n y L_n de 5.1 (y algún teorema con desigualdades visto en ella) nos daban ya alguna (mala) estimación, pero será más preciso utilizar series de Taylor o utilizar las fórmulas sencillas (sobre todo para los ordenadores) de los **trapecios** o de **Simpson** que veremos al final de esta sección.

Integración de series de Taylor.

Estas series se podían derivar término a término (en el intervalo de convergencia). Veamos que también se pueden integrar término a término en ese intervalo (de nuevo como si se tratasen de 'polinomios infinitos'). Esto será consecuencia de los siguientes resultados:

Teorema: Sea $\{f_n\}$ sucesión de funciones continuas que converge **uniformemente** hacia f en [a,b]. Entonces $\int_a^b f = \lim_{n \to \infty} \int_a^b f_n$.

Sea $\varepsilon > 0$. Existe un N tal que si $n \ge N$ entonces $|f(x) - f_n(x)| < \frac{\varepsilon}{b-a}$ para todo $x \in [a,b]$.

Si
$$n \ge N$$
, $\left| \int_a^b f(x) dx - \int_a^b f_n(x) dx \right| \le \int_a^b \left| f(x) - f_n(x) \right| dx < \int_a^b \frac{\varepsilon}{b-a} dx = \varepsilon$.

Este resultado es falso si la sucesión de funciones converge sólo puntualmente (el límite de las integrales puede ser distinto de la integral del límite) como para la siguiente $\{f_n\}$:

Ej.
$$f_n(x) = \begin{cases} 2n^2x , 0 \le x \le 1/2n \\ 2n - 2n^2x , 1/2n \le x \le 1/n \end{cases}$$

La gráfica de cada f_n es un triángulo isósceles de altura f_n

sobre el intervalo $[0,\frac{1}{n}]$ y vale 0 en el resto de [0,1]; el área encerrada por cada f_n es $\frac{1}{2}$ para todo n. El límite puntual de las f_n es f(x) = 0 para todo $x \in [0,1]$ ya que para cada x, a partir de un N todas las $f_n(x) = 0$ y $f_n(0) = 0$ $\forall n$. Está claro que $\{f_n\}$ no converge uniformemente y que se tiene:

$$0 = \int_0^1 f_n \neq \lim_{n \to \infty} \int_0^1 f_n = \frac{1}{2}$$

Como consecuencia inmediata de lo anterior, tenemos que:

Teorema:

Si
$$\sum_{n=1}^{\infty} f_n$$
 converge **uniformemente** hacia f en $[a,b]$ entonces $\int_a^b f = \sum_{n=1}^{\infty} \int_a^b f_n$
Ej. Como $f(x) = \sum_{n=1}^{\infty} \frac{\text{sen } nx}{n^2}$ converge uniformemente en todo \mathbf{R} , es $\int_0^{\pi} f = \sum_{n=1}^{\infty} \int_0^{\pi} \frac{\text{sen } nx}{n^2} = \sum_{n=1}^{\infty} \frac{2}{[2n-1]^3}$

Ej. Como
$$f(x) = \sum_{n=1}^{\infty} \frac{\operatorname{sen} nx}{n^2}$$
 converge uniformemente en todo **R**, es $\int_0^{\pi} f = \sum_{n=1}^{\infty} \int_0^{\pi} \frac{\operatorname{sen} nx}{n^2} = \sum_{n=1}^{\infty} \frac{2}{[2n-1]^3}$

Y en el caso particular de las series de potencias concluimos:

Teorema: Si
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 para $|x| < R \Rightarrow$

$$\int_0^x f(t) dt = \sum_{n=0}^{\infty} \int_0^x a_n t^n dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1} = a_0 x + \frac{a_1}{2} x^2 + \frac{a_2}{3} x^3 + \cdots \text{ si } |x| < R.$$

Pues en [-x,x] sabemos que la serie converge uniformemente.

[Fuera de (-R,R) la serie no convergerá y no servirá para aproximar niguna integral]. [El conjunto de primitivas de f será, desde luego: $\int f(x) dx = C + a_0 x + \frac{a_1}{2} x^2 + \frac{a_2}{3} x^3 + \cdots$]. **Ej.** Calculemos aproximadamente $\int_0^1 \sin^2 dx$ (función sin primitiva elemental). Tenemos que:

$$\int_0^x \sin t^2 dt = \int_0^x \left[t^2 - \frac{1}{3!} t^6 + \frac{1}{5!} t^{10} - \frac{1}{7!} t^{14} + \dots \right] dt = \frac{1}{3} x^3 - \frac{1}{42} x^7 + \frac{1}{1320} x^{11} - \frac{1}{75600} x^{15} + \dots \, \forall x$$

$$\to \int_0^1 \sin t^2 dt = \frac{1}{3} - \frac{1}{42} + \frac{1}{1320} - \frac{1}{75600} + \dots$$

y podemos aproximar la integral con las sumas parciales de esta serie alternada decreciente:

$$\int_0^1 \approx \tfrac{1}{3} - \tfrac{1}{42} \approx 0.3095 \quad \text{con error menor que} \quad \tfrac{1}{1320} \approx 0.0007 < 10^{-3}$$

$$\int_0^1 \approx \tfrac{1}{3} - \tfrac{1}{42} + \tfrac{1}{1320} \approx 0.310281 \quad \text{con error menor que} \quad \tfrac{1}{75600} \approx 0.000013 \sim 10^{-5}$$

$$\int_0^1 \approx \tfrac{1}{3} - \tfrac{1}{42} + \tfrac{1}{1320} - \tfrac{1}{75600} \approx 0.310268158 \quad \text{con error menor que} \quad \tfrac{1}{9! \cdot 19} \approx 0.000000145 \sim 10^{-7}$$

La misma serie de potencias nos da la integral para cualquier otro x. Por ejemplo, si $x = \frac{1}{2}$:

$$\int_0^{1/2} \sin t^2 dt = \frac{1}{24} - \frac{1}{5376} + \frac{1}{2703360} - \frac{1}{2477260800} + \cdots$$
 (converge mucho más rápidamente, pues cerca de $x = 0$ se parece más el desarrollo).

También vemos que si $x = \sqrt{2\pi}$ (≈ 2.51) la integral es positiva (como sospechábamos en 5.2):

$$\int_0^{\sqrt{2\pi}} \operatorname{sen} t^2 dt = \frac{[2\pi]^{2/3}}{3} \left[1 - \frac{2\pi^2}{7} + \frac{2\pi^4}{55} - \frac{4\pi^6}{1575} + \cdots \right] \approx 5.24 \left[1 - 2.82 + 3.54 - 2.44 + 1.06 - 0.31 + \cdots \right]$$

Las sumas parciales de la serie entre corchetes son: 1, -1.82, 1.72, -0.72, 0.34, 0.09,... (todo va más lento ahora). Como es alternada decreciente (a partir de tercer término) su suma está entre dos sumas parciales consecutivas, con lo que la integral es > 0. [Para dar su valor con un error $< 10^{-2}$ se ve que hay que sumar 8 términos (dos más) y se obtiene 0.43].

Como disponemos de su desarrollo de Taylor, aparte de las anteriores aproximaciones, podemos realizar otras operaciones en la que aparezca la integral, como, por ejemplo, calcular algún límite indeterminado:

$$\lim_{x \to 0} \frac{3x \int_0^x \sin t^2 dt - x^4}{\arctan x^8} = \lim_{x \to 0} \frac{\left[x^4 - \frac{1}{14}x^8 + \cdots\right] - x^4}{x^8 - \frac{1}{3}x^{24}} = \frac{\frac{1}{14}x^8 + o(x^8)}{x^8 + o(x^8)} = -\frac{1}{14}$$
(Por L'H más largo:
$$\lim_{x \to 0} \left[1 + x^{16}\right] \frac{3 \int_0^x \sin t^2 dt + 3x \sin x^2 - 4x^3}{\arctan 8x^7} = \lim_{x \to 0} \frac{6 \sin x^2 + 6x^2 \cos x^2 - 12x^2}{\arctan 56x^6} = \cdots$$
).

Ej. Encontremos cotas racionales de $I = \int_0^1 f$ si $f(x) = x^2 e^{-x^2}$ (de primitiva no calculable).

Las cotas más sencillas, pues claramente $0 \le f(x) \le 1$, son $0 = \int_0^1 0 \le I \le \int_0^1 1 = 1$.

Podemos mejorar la cota superior hallando el máximo de f en [0,1]:

$$f'(x) = 2x(1-x^2)e^{-x^2} \Rightarrow \text{máximo si } x = 1 \text{ y } f(1) = e^{-1} \Rightarrow I \le \int_0^1 e^{-1} \le e^{-1} \stackrel{e>2.7}{\le \frac{10}{27}}$$

Si comparamos en [0,1] con diversas funciones integrables:

$$f(x) \le x^2 \Rightarrow I \le \frac{1}{3}x^3\Big]_0^1 = \frac{1}{3} \text{ (mejor que la anterior)}$$

$$f(x) \le x e^{-x^2} \Rightarrow I \le -\frac{1}{2}e^{-x^2}\Big]_0^1 = \frac{1}{2}[1-e^{-1}] \stackrel{\text{e}<2.8}{<} \frac{1}{2}[1-\frac{10}{28}] = \frac{9}{28} \text{ (aún menor)}$$

$$f(x) \le x^2 e^{-x^3} \Rightarrow I \le -\frac{1}{3}e^{-x^3}\Big]_0^1 = \frac{1}{3}[1-e^{-1}] < \frac{1}{3}[1-\frac{10}{28}] = \frac{3}{14} \text{ (más pequeña aún)}$$

$$f(x) \ge x^2 e^{-x} \Rightarrow I \ge \int_0^1 x^2 e^{-x} dx \underset{\text{partes}}{=} -[x^2+2x+2]e^{-x}\Big]_0^1 = 2-5e^{-1} > 2-\frac{50}{27} = \frac{4}{27}$$

Pero si queremos obtener cotas con la precisión que necesitemos, lo mejor es usar Taylor:

$$I = \int_0^1 \left[x^2 - x^4 + \frac{1}{2}x^6 - \frac{1}{6}x^8 + \dots \right] dx = \frac{1}{3} - \frac{1}{5} + \frac{1}{14} - \frac{1}{54} + \dots \, \forall x$$

$$\Rightarrow \frac{1}{3} - \frac{1}{5} = \frac{2}{15} < \frac{1}{3} - \frac{1}{5} + \frac{1}{14} - \frac{1}{54} = \frac{176}{945} < \dots < I < \dots < \frac{1}{3} - \frac{1}{5} + \frac{1}{14} = \frac{43}{210} < \frac{1}{3}$$

La cota inferior $\frac{2}{15}$ es peor que la obtenida comparando, pero $\frac{176}{945} > \frac{4}{27}$ ya la mejora.

Y la superior $\frac{43}{210}$ es más pequeña que la menor de las anteriores: $\frac{43}{210} < \frac{3}{14}$.

[Con un ordenador se consigue mucha precisión ($I \approx 0.189472$), nosotros hemos conseguido sólo deducir que $\frac{176}{945} \approx 0.186 < I < \frac{43}{210} \approx 0.205$; pero nos costaría poco sumar más términos].

Para aplicar cualquiera de los dos métodos siguientes no necesitamos la expresión analítica de f; nos bastan algunos de sus valores [situación que experimentalmente se presenta a menudo].

Fórmula de los trapecios:

Dividimos [a,b] en n partes iguales de anchura $\frac{b-a}{n} = h$. Como aproximación de $\int_{a+kh}^{a+[k+1]h}f$ tomamos el área del trapecio T de la figura: $\frac{h}{2}[f(a+kh)+f(a+[k+1]h)]$.

Entonces $\int_a^b f$ será aproximadamente igual a la suma de las áreas del los n trapecios:

$$\int_{a}^{b} f \approx \frac{h}{2} [f(a) + f(a+h)] + \frac{h}{2} [f(a+h) + f(a+2h)] + \dots + \frac{h}{2} [f(a+[n-1]h) + f(a+nh)],$$

$$\int_{a}^{b} f \approx \frac{h}{2} [f(a) + 2f(a+h) + 2f(a+2h) + \dots + 2f(a+[n-1]h) + f(b)]$$

Fórmula de Simpson:

Una aproximación mejor se tendrá si, dividido [a,b] en un número par n=2m de partes iguales de longitud $h = \frac{b-a}{n} = \frac{b-a}{2m}$, en vez de sustituir cada trozo de f por una recta, la sustituimos por la parábola que interpola la gráfica de f en tres puntos consecutivos:

$$x_0 = a + kh, \ x_1 = a + [k+1]h = x_0 + h \ y \ x_2 = a + [k+2]h = x_0 + 2h,$$
 es decir, por el polinomio: $Q_2(x) = A_0 + A_1(x - x_0) + A_2(x - x_0)(x - x_1)$, con: $A_0 = f(x_0)$, $A_1 = \frac{1}{h}[f(x_1) - f(x_0)]$, $A_2 = \frac{1}{2h^2}[f(x_2) - 2f(x_1) + f(x_0)]$. Integrando Q_2 se tiene tras algunos cálculos:
$$x_0 = x_1 + kh, \ x_1 = a + [k+1]h = x_0 + h \ y \ x_2 = a + [k+2]h = x_0 + 2h,$$

$$Q_2$$

$$x_1 = x_2 + kh, \ x_1 = a + [k+1]h = x_0 + h \ y \ x_2 = a + [k+2]h = x_0 + 2h,$$

$$Q_2$$

$$x_1 = x_2 + kh, \ x_2 = a + [k+2]h = x_0 + 2h,$$

$$Q_2$$

$$x_1 = x_2 + kh, \ x_2 = a + [k+2]h = x_0 + 2h,$$

$$Q_2$$

$$x_1 = x_2 + kh, \ x_2 = a + [k+2]h = x_0 + 2h,$$

$$Q_2$$

$$x_1 = x_2 + kh, \ x_2 = a + [k+2]h = x_0 + 2h,$$

$$Q_2$$

$$x_1 = x_2 + kh, \ x_2 = a + [k+2]h = x_0 + 2h,$$

$$Q_2$$

$$x_1 = x_2 + kh, \ x_2 = a + [k+2]h = x_0 + 2h,$$

$$Q_2$$

$$x_1 = x_2 + kh, \ x_2 = a + [k+2]h = x_0 + 2h,$$

$$Q_2$$

$$x_1 = x_2 + kh, \ x_2 = a + [k+2]h = x_0 + 2h,$$

$$Q_2$$

$$x_1 = x_2 + kh, \ x_2 = a + [k+2]h = x_0 + 2h,$$

$$Q_2$$

$$x_1 = x_2 + kh, \ x_2 = a + [k+2]h = x_0 + 2h,$$

$$Q_2$$

$$x_1 = x_2 + kh, \ x_2 = a + [k+2]h = x_0 + 2h,$$

$$Q_2$$

$$x_1 = x_2 + kh,$$

$$x_2 = a + [k+2]h = x_0 + 2h,$$

$$x_3 = a + [k+2]h = x_0 + 2h,$$

$$x_1 = x_1 + kh,$$

$$x_2 = a + [k+2]h = x_1 + 2h,$$

$$x_3 = a + [k+2]h = x_1 + 2h,$$

$$x_3 = a + [k+2]h = x_1 + 2h,$$

$$x_3 = a + [k+2]h = x_1 + 2h,$$

$$x_3 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_3 = a + [k+2]h = x_2 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2]h = x_1 + 2h,$$

$$x_4 = a + [k+2$$

Integrando
$$Q_2$$
 se tiene tras algunos cálculos

$$\int_{a+kh}^{a+[k+2]h} f \approx \int_{x_0}^{x_0+2h} Q_2(x) dx = 2hA_0 + 2h^2A_1 + \frac{2}{3}h^3A_1 = \frac{h}{3}[f(x_0) + 4f(x_0+h) + f(x_0+2h)]$$

Y sumando las m integrales anteriores obtenemos:

$$\int_{a}^{b} f \approx \frac{h}{3} [f(a) + 4f(a+h) + 2f(a+2h) + 4f(a+3h) + 2f(a+4h) + \dots + 4f(a+[n-1]h) + f(b)]$$

Si se quiere utilizar con seriedad un método numérico se debe hablar del error cometido. Demos algún resultado sin demostración. La estimación por trapecios es exacta si f(x) es una recta, función con f''=0. No es de extrañar que el error dependa de f''. Puede probarse que:

Si
$$|f''(x)| \le M_2$$
 para $x \in [a,b]$ entonces: $|error| \le \frac{1}{12}(b-a)M_2h^2$

Se prueba que Simpson es exacto si $f(x) = a + bx + cx^2 + dx^3$ y que:

Si
$$|f^{(4)}(x)| \le M_4$$
 para $x \in [a,b]$ entonces: $|error| \le \frac{1}{180}(b-a)M_4h^4$

Se ve que ambos métodos mejoran, como era esperable, cuando $h \to 0$, más rápidamente Simpson ya que h^4 tiende más fuertemente a 0 que h^2 . Como las cuentas a realizar en ambos casos son casi las mismas, será mejor acudir a Simpson si tenemos que aproximar una integral (hay métodos mucho mejores, pero también más complicados).

Ej. Poco práctico, para comparar y ver si funcionan los métodos. Aproximemos $\int_0^1 \frac{4dx}{1+x^2} \ (=\pi)$:

Trapecios:
$$h = \frac{1}{2}$$
, $n = 2$: $\int_0^1 \approx \frac{4}{4} \left[1 + 2\frac{4}{5} + \frac{1}{2} \right] = \frac{31}{10} = 3.1$

$$h = \frac{1}{4}$$
, $n = 4$: $\int_0^1 \approx \frac{4}{8} \left[1 + 2\frac{16}{17} + 2\frac{4}{5} + 2\frac{16}{25} + \frac{4}{5} \right] \approx 3.1312$

Simpson:
$$h = \frac{1}{2}$$
, $n = 2$: $\int_0^1 \approx \frac{4}{6} \left[1 + 4\frac{4}{5} + \frac{1}{2} \right] = \frac{47}{15} \approx 3.13$

$$h = \frac{1}{4}$$
, $n = 4$: $\int_0^1 \approx \frac{4}{12} \left[1 + 4\frac{16}{17} + 2\frac{4}{5} + 4\frac{16}{25} + \frac{4}{5} \right] \approx 3.14157$

Ej. Calculemos ahora aproximadamente $\int_0^1 \sin^2 dx$ (ya estimada utilizando Taylor):

$$h = \frac{1}{2}$$
 T. $\int_0^1 \approx \frac{1}{4} [0 + 2 \operatorname{sen} \frac{1}{4} + \operatorname{sen} 1] \approx 0.334$ S. $\int_0^1 \approx \frac{1}{6} [0 + 4 \operatorname{sen} \frac{1}{4} + \operatorname{sen} 1] \approx 0.305$

$$h = \frac{1}{4}$$
 T. $\int_0^1 \approx \frac{1}{8} [0 + 2 \operatorname{sen} \frac{1}{16} + 2 \operatorname{sen} \frac{1}{4} + 2 \operatorname{sen} \frac{9}{16} + \operatorname{sen} 1] \approx 0.316$

S.
$$\int_0^1 \approx \frac{1}{12} [0 + 4 \operatorname{sen} \frac{1}{16} + 2 \operatorname{sen} \frac{1}{4} + 4 \operatorname{sen} \frac{9}{16} + \operatorname{sen} 1] \approx 0.3099$$

$$h = \frac{1}{6}$$
 T. $\int_0^1 \approx \frac{1}{12} [0 + 2 \operatorname{sen} \frac{1}{36} + 2 \operatorname{sen} \frac{1}{9} + \dots + \operatorname{sen} 1] \approx 0.313$

S.
$$\int_0^1 \approx \frac{1}{18} [0 + 4 \operatorname{sen} \frac{1}{36} + 2 \operatorname{sen} \frac{1}{9} + \dots + \operatorname{sen} 1] \approx 0.310205$$

$$h = \frac{1}{100}$$
 T. $\int_0^1 \approx 0.3105$ **S.** $\int_0^1 \approx 0.3102683009$

$$h = \frac{1}{1000}$$
 T. $\int_0^1 \approx 0.31026839$ **S.** $\int_0^1 \approx 0.3102683017$

[estos últimos valores exigen, desde luego, o una enorme paciencia o un ordenador]

Como
$$f''(x) = 2\cos x^2 - 4x^2 \sin x^2$$
, $f^{(4)}(x) = (16x^4 - 12)\sin x^2 - 48x^2\cos x^2$, en $[0,1]$ es $|f''| \le 6$, $|f^{(4)}| \le 4|4x^4 - 3| + |48x^2| \le 60 \rightarrow |\operatorname{error} \mathbf{T}| \le \frac{1}{2}h^2$; $|\operatorname{error} \mathbf{S}| \le \frac{1}{2}h^4$

[Para aproximar la integral de 5.2, $\int_0^{\sqrt{2\pi}} \sin t^2 dt$, Simpson con n=2 y n=4 da, respectivamente, 1.67 (la gráfica se parece muy poco a una parábola) y 0.42].

Ej. Para la otra integral aproximada con Taylor $I = \int_0^1 x^2 e^{-x^2}$ Simpson da muy buenos resultados:

$$n = 2 \to I \approx \frac{1}{6} [0 + e^{-1/4} + e^{-1}] \approx 0.191$$

$$n = 4 \to I \approx \frac{1}{12} [0 + \frac{1}{4} e^{-1/16} + \frac{1}{2} e^{-1/4} + \frac{9}{4} e^{-9/16} + e^{-1}] \approx 0.18951].$$

[lo largo de Simpson es acotar el error (tampoco sabemos con Taylor si sale serie no alternada)]

En los siguientes ejemplos (y en algunos de la próxima sección) además de repasar temas anteriores estimaremos el valor de varias integrales utilizando Taylor, Simpson,... (u otras ideas):

Ej. Si $f(x) = \frac{2x}{8-x^2}$, hallemos de diversas formas racionales que aproximen la integral $I = \int_0^1 f$ con un error menor que 10^{-2} (sin calculadora).

Parece inútil aproximarla si podemos fácilmente dar el valor exacto: $I = -\log|8-x^2| \Big]_0^1 = \log\frac{8}{7}$.

El problema es que, sin calculadora, no sabemos el valor de ese logaritmo. Pero por Taylor:

$$\log{(1+\frac{1}{7})} = \frac{1}{7} - \frac{1}{2\cdot 49} + \frac{1}{3\cdot 243} - \cdots$$
 serie de Leibniz $\to I \approx \frac{13}{98}$, con error $<\frac{1}{729} < 10^{-2}$.

Podríamos también desarrollar primero el integrando y luego integrar la serie:

$$\frac{2x}{8-x^2} = \frac{x}{4} \frac{1}{1-x^2/8} = \frac{x}{4} \sum_{n=0}^{\infty} \left[\frac{x^2}{8} \right]^n = \frac{x}{4} + \frac{x^3}{32} + \frac{x^5}{256} + \dots \to I = \frac{1}{8} + \frac{1}{128} + \frac{1}{1536} + \dots = \sum_{n=1}^{\infty} \frac{1}{n8^n}$$

El problema de esta serie (que, desde luego, debe sumar lo mismo) es que no es alternada, lo que hace menos fácil y mecánico estimar los errores.

Sumando dos términos
$$I \approx \frac{17}{128}$$
, el error cometido es $\sum_{n=3}^{\infty} \frac{1}{n8^n} < \frac{1}{3 \cdot 8^3} \sum_{n=3}^{\infty} \left[\frac{1}{8}\right]^n = \frac{1}{3 \cdot 7 \cdot 8^2} < 10^{-2}$.

Probablemente Simpson daría un error admisible con ya con $h = \frac{1}{2}$, pero necesitaríamos acotar la $f^{(4)}$, lo que es largo. Probemos con Trapecios que hay que derivar menos:

$$f' = 2\frac{8+x^2}{[8-x^2]^2} \text{ , } f'' = 4\frac{x[24+x^2]}{[8-x^2]^3} \rightarrow \text{ en } [0,1] \text{ es } |f''| \leq \frac{100}{7^3} \rightarrow |\text{error}| \leq \frac{100}{12\cdot343}h^2 \rightarrow |\text{error}| \leq \frac{100}{$$

basta tomar
$$h = \frac{1}{2} \rightarrow I \approx [f(0) + 2f(\frac{1}{2}) + f(1)] = \frac{1}{4}[0 + \frac{8}{31} + \frac{2}{7}] = \frac{59}{434}$$
 con error $< 10^{-2}$

Ej. Dibujar la gráfica de $r(x) = \frac{x-1}{x^4+1}$ y encontrar, si existen, los x en los que la función $R(x) = \int_0^x r$, con $x \in [0, \infty)$, alcanza sus extremos.

$$r \in C^{\infty}(\mathbf{R})$$
. $r(x) \to 0$. $r(x) \gtrsim 0$ si $x \gtrsim 1$. $r'(x) = -\frac{3x^4 - 4x^3 - 1}{[x^4 + 1]^2}$, $r''(x) = -\frac{4x^2[3x^5 - 5x^4 - 5x + 3]}{[x^4 + 1]^3}$.

$$P = 3x^4 - 4x^3 - 1$$
 tiene 1 raíz positiva $x_+ [++-]$ y 1 negativa $x_- [+--]$.

$$P(-1) = -6$$
, $P(0) = 1$, $P(1) = 2$, $P(2) = -15$ $\Rightarrow x_{-} \in [-1,0]$ y $x_{+} \in [1,2]$

 \Rightarrow r decrece hasta x_- , crece hasta x_+ y decrece a partir de entonces.

x = -1 inflexión; en x = 0 no hay (no cambia de signo r''); los otros puntos de inflexión los darían las raíces (ya no hay más enteras y negativas sólo la -1) de $3x^4 - 8x^3 + 8x^2 - 8x + 3$ (se pueden hallar haciendo $z = x + \frac{1}{x}$).

Valores:
$$r(-2) = -\frac{3}{17}$$
, $r(2) = \frac{1}{17}$, $r(-1) = -1$, $r(0) = -1$ (Rolle confirma x_-); $r'(-1) = -\frac{3}{2}$, $r'(0) = 1$ (otra vez x_-),...

A la vista de la gráfica de r: R decrece si $0 \le x \le 1$ [añadimos áreas negativas] y luego crece [lo mismo se deduce del signo ya analizado de R'(x) = r(x)]. El mínimo se da, pues, si x = 1.

Aproximemos el valor de R(1):

Por Simpson con
$$h = 1/2$$
: $I_1 \equiv \int_0^1 r \approx \frac{1}{6} [-1 - \frac{4 \cdot 8}{17} + 0] = -\frac{49}{102} \approx -0.480$ (sin cota del error)

Por Taylor:
$$r(x) = [x-1][1-x^4+x^8-\cdots] = -1+x+x^4-x^5-x^8+\cdots$$
 si $|x|<1 \to 1$
 $I_1 = -1+\frac{1}{2}+\frac{1}{5}-\frac{1}{6}-\frac{1}{9}+\frac{1}{10}+\frac{1}{13}+\cdots$

[en principio, no sabemos si podamos integrar hasta x=1 (ahí diverge la serie de r), pero parece que va bien, pues la serie de I_1 converge:

$$S_1 = -1 < S_5 \approx -0.578 < \dots < I_1 < \dots < S_7 \approx -0.401 < S_3 = -0.3$$
 (coherente con Simpson)]

Podría no haber máximo de R ($[0,\infty)$ es no acotado). Si la integral impropia entre $1 e^{-\infty}$ fuese divergente (que no lo es pues r(x) se parece a x^{-3} en el ∞), la R tendería a ∞ ; si fuese convergente y tendiese a un valor I_2 mayor que $|I_1|$, R tendería hacia $I_1 + I_2 > 0$ (valor que no alcanzaría); y si converge hacia un valor menor que $|I_1|$ entonces el máximo se alcanza en x = 0 (y vale R(0) = 0). Veamos que esto último es lo que sucede realmente:

f > 0 en $[1, \infty)$. El criterio de comparación por desigualdades da cotas fáciles de la impropia:

$$I_2 \equiv \int_1^\infty r < \int_1^\infty \frac{x}{x^4+1} = \left[\arctan x^2\right]_1^\infty = \frac{1}{2}\left[\frac{\pi}{2} - \frac{\pi}{4}\right] = \frac{\pi}{8} < 0.4$$
, o bien:

$$I_2 < \int_1^\infty \frac{x-1}{x^4} = \left[\frac{1}{3x^3} - \frac{1}{2x^2}\right]_1^\infty = \frac{1}{2} - \frac{1}{3} = \frac{1}{6} < 0.17$$
, bastante mejor cota.

$$R(x) \underset{x \to \infty}{\longrightarrow} \int_0^1 f + \int_1^\infty f = I_1 + I_2 < 0$$
, como se deduce de las cotas halladas \Rightarrow el máximo es $R(0)$.

[Con mucho esfuerzo podríamos hallar la primitiva R y el valor exacto de ambas integrales. Lo primero es factorizar el denominador, para lo que necesitamos las raíces de $x^4=-1$. Probando con $a\pm bi$ en $x^2=\pm i$ o, mejor, utilizando las fórmulas para raíces de complejos del próximo capítulo obtenemos que son $(\pm 1\pm i)/\sqrt{2}$. Así:

$$R(x) = \int_0^x \frac{t dt}{t^4 + 1} = \int_0^x \frac{t dt}{[t^2 + \sqrt{2}t + 1][t^2 - \sqrt{2}t + 1]} = \cdots$$

$$= \arctan x^2 - \frac{\sqrt{2}}{8} \log \frac{x^2 + \sqrt{2}x + 1}{x^2 - \sqrt{2}x + 1} - \frac{\sqrt{2}}{4} \left[\arctan(x\sqrt{2} + 1) + \arctan(x\sqrt{2} - 1)\right]$$

Con calculadora obtenemos: $I_1 \approx -0.474$ (buena aproximación la de Simpson), $I_2 \approx 0.149$].

5.6. Aplicaciones

Áreas planas

Ya vimos que la integral no es exactamente un área, sino una suma de áreas con signo. Por tanto, para hallar el área encerrada entre el eje y=0 y la gráfica de una función f habrá que sumar las integrales de f en los intervalos en que esté por encima del eje y restar las integrales cuando f quede por debajo. Esto es equivalente a integrar |f|. Así:

Ej. Hallar el área de la región encerrada entre el eje horizontal y la gráfica de $f(x) = x^3 - x$.

Área = $\int_{-1}^{1} |f| = \int_{-1}^{0} f - \int_{0}^{1} f = -2 \int_{0}^{1} f = 2 \int_{0}^{1} (x - x^{3}) dx = \frac{1}{2}$ [la $\int_{-1}^{1} f$ (que es 0 por ser f impar) no representa el área rayada]

Ej. Determinar el área de la región acotada limitada por los ejes y la gráfica de $h(x) = \tan(x-1)$.

[Sabemos que la gráfica es la de tanx trasladada una unidad a la derecha]

Área =
$$\int_0^1 |h| = -\int_0^1 \tan(x-1) dx = \log|\cos(x-1)| \Big]_0^1 = -\log(\cos 1) > 0$$

(porque $\cos 1 < 1$; las áreas deben salir siempre positivas)

Más en general, el área comprendida entre las gráficas de f y g

en el intervalo [a,b] viene dada por $\int_a^b |f-g|$

Ej. Determinar el área de la región encerrada entre las gráficas de $f(x) = x^2 - 2x$ y g(x) = x.

Las gráficas se cortan si $x^2 - 2x = x \Leftrightarrow x = 0 \ (y = 0) \ ó \ x = 3 \ (y = 3)$.

En [0, -3] la gráfica de g está por encima de la de f, por tanto:

$$A = \int_0^3 [g - f] = \int_0^3 (3x - x^2) dx = \frac{9}{2}$$

O bien de otra forma (más complicada en este caso, pero mejor en otros), integrando respecto a $y: y = x^2 - 2x \leftrightarrow x = 1 \pm \sqrt{1 + v}$

$$A = \int_{-1}^{0} \left[1 + \sqrt{1 + y} - (1 - \sqrt{1 + y}) \right] dy + \int_{0}^{3} \left[1 + \sqrt{1 + y} - y \right] dy$$
$$= \left[\frac{4}{3} (1 + y)^{3/2} \right]_{-1}^{0} + \left[y + \frac{2}{3} (1 + y)^{3/2} - \frac{y^{2}}{2} \right]_{0}^{3} = \frac{9}{2}$$

Ej. Hallar (sin calculadora) con un error menor que 0.04 el valor aproximado del área de la región acotada por la gráfica de $h(x) = \arctan x^2$ y la recta $y = \frac{\pi}{4}$.

acotada por la granca de ..., $h \text{ par }, h \xrightarrow[|x| \to \infty]{\pi} \frac{\pi}{2}, \ h'(x) = \frac{2x}{1+x^4} \text{ (crece si } x > 0) \to \frac{\pi/2}{2}$ $\text{corta } y = \frac{\pi}{4} \text{ sólo si } x = \pm 1 \to \text{Área} = \frac{\pi}{2} - 2 \int_0^1 \arctan(x^2) dx.$

Hallar la primitiva es posible pero largo:

$$\int \arctan(x^2) dx = x \arctan(x^2) - \int \frac{2x^2 dx}{1+x^4} = \cdots$$

[y los log y arctan del resultado no podríamos evaluarlos sin calculadora].

Con trapecios o Simpson salen valores desconocidos del arctan (y sería largo acotar el error). Mejor integramos el desarrollo de Taylor [se puede llegar hasta x=1] y utilizamos la serie alternada que

$$2\int_0^1 \left[x^2 - \frac{1}{3}x^6 + \frac{1}{5}x^{10} - \frac{1}{7}x^{14} + \cdots\right] dx = \frac{2}{3} - \frac{2}{21} + \frac{2}{55} - \cdots \approx \frac{4}{7}$$
, con error $<\frac{2}{55} < \frac{2}{50} = 0.04$

Por tanto, Área ≈ 1.571 –0.571 = 1.00 con error < 0.04 (con ordenador: Área ≈ 0.974991).

Áreas en coordenadas polares.

Un punto P del plano de coordenadas cartesianas (x, y) se puede describir además por un par de coordenadas polares (r, θ) siendo r la distancia de P al origen y θ el ángulo en radianes comprendido entre el semieje de las x positivas y la semirrecta que une el origen con P. Unas coordenadas se pueden obtener de otras utilizando que:

$$x = r\cos\theta$$
, $y = r\sin\theta \leftrightarrow r = \sqrt{x^2 + y^2}$, $\theta = \arctan\frac{y}{x} [+\pi]$, si $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2}) [\theta \in (\frac{\pi}{2}, \frac{3\pi}{2})]$

Para hallar el área de una región R como la del dibujo, acotada por las semirrectas $\theta = \alpha$, $\theta = \beta$ y la curva $r = f(\theta)$, con $f(\theta) \ge 0$, dividamos el ángulo $\beta - \alpha$ en n partes iguales (de longitud $\Delta\theta$). Como el área de un sector circular de radio r y ángulo θ es $r^2\theta/2$, si m_k y M_k son el mínimo y el máximo de $f(\theta)$ en cada sectorcillo, se tiene que el área de cada uno de ellos está comprendida entre $m_k^2\Delta\theta$ y $\hat{M}_k^2\Delta\theta \to \sum m_k^2\Delta\theta \le$ área de $R \le \sum M_k^2\Delta\theta$. Como estas sumas son las sumas inferior y superior de f^2 en $[\alpha, \beta]$ deducimos que:

Área de R =
$$\frac{1}{2} \int_{\alpha}^{\beta} [f(\theta)]^{2} d\theta$$

Ej. Hallar el área de la región acotada por la curva $r = 3 + \cos \theta$

$$A = \int_0^{2\pi} [3 + \cos \theta]^2 d\theta = \int_0^{2\pi} [9 + 6\cos \theta + \frac{1}{2}\cos 2\theta] d\theta = \frac{19\pi}{2}$$

R no es el círculo de centro (1,0) y radio 3, con área 9π y expresión en polares: $r^2 - 2r\cos\theta - 8 = 0 \rightarrow r = \cos\theta + \sqrt{\cos^2\theta}$; la curva dada en cartesianas es muy complicada: $x^2 + y^2 - x = 3\sqrt{x^2 + y^2}$.

De forma similar a las del área en polares se prueban las otras fórmulas de la sección:

$$L = \int_a^b \sqrt{1 + [f'(x)]^2} dx$$
,

Longitud de la gráfica de f en el intervalo [a,b]: $L = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx$, (Lo natural es probar la fórmula estudiando las 'integrales de línea').

Ej. Hallar la longitud del tramo de parábola
$$y = x^2$$
 que une los puntos $(0,0)$ y $(1,1)$.
$$L = \int_0^1 \sqrt{1 + 4x^2} \, dx = \left[u = 2x + \sqrt{1 + 4x^2} \right] = \frac{1}{8} \int_1^{2 + \sqrt{5}} \frac{\left[1 + u^2 \right]^2}{u^3} \, du = \frac{\sqrt{5}}{2} + \frac{\log(2 + \sqrt{5})}{4} \approx 1.48$$

Ej. Probar que la longitud L del tramo de $y=x^3$ que une (0,0) y $(\frac{1}{2},\frac{1}{8})$ cumple $\frac{1}{2} < L < \frac{9}{16}$.

$$y' = 3x^2 \rightarrow L = \int_0^{1/2} \sqrt{1 + 9x^4} dx$$
 (primitiva no calculable).

$$y' = 3x^{2} \rightarrow L = \int_{0}^{1/2} \sqrt{1 + 9x^{4}} dx \text{ (primitiva no calculable)}.$$

$$f(x) \equiv [1 + 9x^{4}]^{1/2} = 1 + \frac{9}{2}x^{4} - \frac{81}{8}x^{8} + \cdots \text{ si } |9x^{4}| < 1 \Leftrightarrow |x| < \frac{1}{\sqrt{3}}$$

$$\rightarrow L = [x + \frac{9}{10}x^{5} - \frac{9}{8}x^{9} + \cdots]_{0}^{1/2} = \frac{1}{2} + \frac{9}{320} - \frac{9}{4096} + \cdots,$$

[válido por estar [0, 1/2] dentro del intervalo de convergencia]. La serie de L es decreciente y alternada a partir de segundo término

$$\rightarrow \frac{1}{2} = S_1 < S_3 < \dots < L < \dots < S_2 = \frac{169}{320} < \frac{9}{16}$$
.

De otra forma (la integral puede describir el área limitada por f en [0,1/2]):

área rectángulo = $\frac{1}{2}$ < L área trapecio = $\frac{9}{16}$ [es fácil ver que f es convexa en ese intervalo].

[La acotación L > 1/2 era clara geométricamente antes de hacer ninguna cuenta]

Volúmenes (sencillos):

El instrumento natural para calcular volúmenes son las integrales múltiples del cálculo en varias variables, pero para hallar algunos bastan integrales de funciones de una variable.

Volumen de un sólido que se extiende desde x=a hasta x=bconocida el área A(x) de cada sección plana: $V = \int_a^b A(x) dx$

Ej. Un sólido tiene base circular de radio 2. Cada sección producida por un plano perpendicular a un diámetro fijo es un triángulo equilátero. Calcular el volumen del sólido.

$$A(x)=$$
 área triángulo de base $2\sqrt{4-x^2}=\sqrt{3}(4-x^2)$, $V=2\int_0^2A(x)dx=\frac{32\sqrt{3}}{3}$

En particular, volumen de un sólido de revolución engendrado al girar en torno al eje x la región comprendida entre la gráfica de $f(f(x) \ge 0)$ y el eje x en [a,b]. El área de cada sección [círculo de radio f(x)] es

$$A(x) = \pi [f(x)]^2$$
. Por tanto, $V = \pi \int_a^b [f(x)]^2 dx$

Ej. El volumen obtenido al girar la región determinada por $g(x) = \frac{1}{x} \text{ y el eje } x \text{ en el intervalo } [1,b], b > 1 \text{ es}$ $V_b = \pi \int_1^b \left[\frac{1}{x}\right]^2 dx = \pi [1 - \frac{1}{b}]. \text{ Observemos que } V_b \xrightarrow[b \to \infty]{} \pi:$ el volumen del sólido infinito es finito (impropia convergente).

Valor medio de una función en un intervalo; se define: $M = \frac{1}{b-a} \int_a^b f(x) dx$

$$M = \frac{1}{b-a} \int_a^b f(x) \, dx$$

(si $f \ge 0$, es la altura de un rectángulo de base b-ay área igual a la limitada por la gráfica de f)

Ej. Hallar el valor medio de $f(x) = A \operatorname{sen} \omega x$ en el semiperiodo $[0, \frac{\pi}{\omega}]$: $M = \frac{\omega}{\pi} \int_0^{\omega/\pi} A \sec \omega x dx = \frac{2A}{\pi}$ (el valor medio en $[0, \frac{2\pi}{\omega}]$ es 0)

Trabajo de una fuerza variable: un punto se mueve en el eje x sometido a una fuerza f(x)función sólo de x. El trabajo realizado por f para mover el punto desde a hasta b es

$$T = \int_{a}^{b} f(x) \, dx$$

Ej. El trabajo preciso para estirar un muelle una longitud b desde su posición de equilibrio es $\int_0^b cx dx = \frac{1}{2}cb^2$.

Sea una varilla de densidad lineal variable $\rho(x)$ que ocupa desde a hasta b. Su **masa** m, su centro de gravedad x^* y su momento de inercia I respecto a 0 son:

$$m = \int_a^b \rho(x)dx$$
, $x^* = \int_a^b x \rho(x)dx$, $I = \int_a^b x^2 \rho(x)dx$

Distancia recorrida en el intervalo de tiempo [a,b] por un móvil de velocidad v(t):

$$D = \int_{a}^{b} v(t)dt$$

6. Introducción al cálculo en C

6.1. Funciones de variable compleja

No hay ningún número real x tal que $x^2+1=0$. Para que esa ecuación tenga solución es necesario introducir el número imaginario i: $i^2=-1$. Veamos algunas propiedades del conjunto de los números complejos $\mathbf{C}=\{z=a+\mathrm{i}\,b:a,b\in\mathbf{R}\}$.

En **C** están definidas las operaciones suma y producto:

$$(a+ib)+(c+id) = (a+c)+i(b+d), (a+ib)\cdot(c+id) = (ac-bd)+i(ad+bc)$$

Con estas dos operaciones **C** es un **cuerpo**: $+ y \cdot son$ asociativas y conmutativas, existe la distributiva, existen elementos neutros ($z + 0 = z y z \cdot 1 = z$) e inversos:

$$\forall z = a + ib \ \exists -z = -a - ib \ \text{tal que } z + (-z) = 0$$

$$\forall z \neq 0 \ \exists z^{-1} = \frac{a}{a^2 + b^2} - i \frac{b}{a^2 + b^2} \ \text{tal que } z \cdot z^{-1} = 1$$

Se define diferencia y cociente de complejos como: z - w = z + (-w), $\frac{z}{w} = z \cdot w^{-1}$ si $w \neq 0$. [No se puede, a diferencia de **R**, definir un orden en **C** compatible con las operaciones anteriores].

Dado
$$z = x + iy$$
, el **conjugado** de z es $\overline{z} = x - iy$; y el **módulo** de z es $|z| = \sqrt{x^2 + y^2}$.

Representando cada número complejo $z=x+\mathrm{i}\,y$ como el punto del plano de coordenadas (x,y), es fácil ver que el complejo suma z+w está en el vértice opuesto al origen de un paralelogramo dos de cuyos lados son los segmentos que unen z y w con O=(0,0). El conjugado de z es la reflexión de z respecto de y=0. El módulo es la distancia desde z al origen. La distancia de z a w viene dada por |z-w|.

Algunas propiedades de demostración inmediata son:

$$\overline{\overline{z}}=z\,,\;\overline{z+w}=\overline{z}+\overline{w}\,,\;\overline{-z}=-\overline{z}\,,\;\overline{z\cdot w}=\overline{z}\cdot\overline{w}\,,\;\overline{z^{-1}}=(\overline{z})^{-1}\,,\;|z|^2=z\cdot\overline{z}\,,\;|z\cdot w|=|z|\cdot|w|$$

Más difícil es probar (ver Spivak): $|z+w| \le |z| + |w|$ (el significado geométrico es claro).

Un z se puede describir con coordenadas **polares**: $z=x+\mathrm{i}\,y=r(\cos\theta+\mathrm{i}\,\sin\theta)$, donde r=|z| y θ es el ángulo que forma el segmento Oz con el eje x positivo. El θ no es único: todos los $\theta+2k\pi$ nos dan el mismo z. Cualquiera de ellos se llama **argumento** de z. El **argumento principal** es el θ con $0\leq\theta<2\pi$. El θ se halla utilizando que $\tan\theta=\frac{y}{x}$ y mirando el cuadrante en que está el z.

Ej. Para
$$z=-2+2i$$
 es $|z|=2\sqrt{2}$; como tan $\theta=-1$ y z está en el tercer cuadrante, se puede escribir z (con el argumento principal) en la forma $z=2\sqrt{2}\left[\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\right]$ (6 con otro θ : $z=2\sqrt{2}\left[\cos\frac{11\pi}{4}+i\sin\frac{11\pi}{4}\right]$).

Más adelante veremos que si θ es cualquier real: $e^{i\theta} = \cos \theta + i \sin \theta$ (complejo de módulo 1). Esto nos proporciona una forma más corta de expresar un complejo en polares:

$$z = re^{i\theta}$$
, donde $r = |z|$ y θ es un argumento de z.

Las formas polares son muy útiles para efectuar productos y potencias:

Si
$$z = re^{i\theta}$$
, $w = se^{i\alpha}$ entonces:

$$z \cdot w = rs e^{i(\theta + \alpha)} = rs \left[\cos(\theta + \alpha) + i \operatorname{sen}(\theta + \alpha) \right],$$

$$\frac{z}{w} = \frac{r}{s} e^{i(\theta - \alpha)} = \frac{r}{s} \left[\cos(\theta - \alpha) + i \operatorname{sen}(\theta - \alpha) \right],$$

$$z^{n} = r^{n} e^{in\theta} = r^{n} (\cos n\theta + i \operatorname{sen} n\theta).$$

[Las dos primeras son inmediatas y la de z^n se prueba por inducción].

Todo $z = re^{i\theta} \neq 0$ tiene exactamente n raíces n-simas distintas dadas por

$$\sqrt[n]{z} = \sqrt[n]{r} e^{i\phi} = \sqrt[n]{r} (\cos \phi + i \sin \phi) \text{ con } \phi = \frac{\theta + 2k\pi}{n}, k = 0, \dots, n-1.$$

[basta elevar a n y observar que si $k = n, n+1, \ldots$ se repiten los ángulos de antes; vemos que las n raíces están en los vértices de un polígono regular].

Hagamos una serie de operaciones de repaso de la aritmética compleja:

Ej. Calcular $\left|\frac{i(\overline{3-4i})}{2+i}\right|$. Basta hacer uso de las propiedades del módulo: $\left|\cdot\right| = \frac{\left|i\right|\left|3-4i\right|}{\left|2+i\right|} = \frac{1\cdot 5}{\sqrt{5}} = \sqrt{5}$.

[Vamos ahora a hacerlo dando un rodeo calculando el complejo que está dentro del módulo:

$$\frac{i[3+4i]}{2+i} = \frac{[3i-4][2-i]}{[2+i][2-i]} = \frac{3-8+6i+4i}{5} = -1+2i$$
 , cuyo módulo es, desde luego, $\sqrt{5}$]

Ej. Calcular $w = (1 - i)^6$, directamente y en polares:

$$w = 1 + 6(-i) + 15(-i)^2 + 20(-i)^3 + 15(-i)^4 + 6(-i)^5 + (-i)^6 = 1 - 6i - 15 + 20i + 15 - 6i - 1 = 8i$$

$$r = \sqrt{2} \text{ , } \tan\theta = -1 \rightarrow \theta = \frac{7\pi}{4} \text{ (θ del cuarto cuadrante)} \rightarrow \left(\sqrt{2} \, \mathrm{e}^{\mathrm{i} \, 7\pi/4}\right)^6 = 8 \mathrm{e}^{\mathrm{i} \, 21\pi/2} = 8 \mathrm{e}^{\mathrm{i} \, \pi/2} = 8 \mathrm{i} + 2 \mathrm{e}^{\mathrm{i} \, \pi/2} = 8 \mathrm{e}^{\mathrm{i} \, \pi$$

Ej. Hallar las raíces cúbicas de $z = \frac{7+i}{1-i}$.

Podemos hacer:
$$z = \frac{[7+i][1+i]}{[1-i][1+i]} = \frac{6+8i}{2} = 3+4i = 5e^{i\arctan(4/3)}$$
. O bien,

$$7 + i = 5\sqrt{2}e^{i\arctan(1/7)}$$
, $1 - i = \sqrt{2}e^{-i7\pi/4} \rightarrow z = 5e^{i\left[\arctan(1/7) + \pi/4\right]}$

[las dos expresiones de z coinciden, pues $\arctan x + \arctan y = \arctan \frac{x+y}{1-xy}$]

Por tanto, $\sqrt[3]{z}=\sqrt[3]{5}\,\mathrm{e}^{\mathrm{i}\phi}$ donde $\phi=\frac{\arctan(4/3)+2k\pi}{3}$, k=0,1,2 . Con calculadora:

$$\theta = \arctan \frac{4}{3} \approx 0.927$$
; $\phi \approx 0.309$, 2.403, 4.498 $\rightarrow z \approx 1.63 + 0.52$ i, $-1.26 + 1.15$ i, $-0.36 - 1.67$ i

Ej. Factorizar el polinomio real $x^4 + 1$ (lo habíamos necesitado para hallar una primitiva de 5.5).

Las raíces del polinomio son las 4 raíces de $-1=1\mathrm{e}^{\mathrm{i}\pi}$ que son $\sqrt[4]{1}\mathrm{e}^{\mathrm{i}\phi}$ con $\phi=\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$. Es decir, $z_{1,2}=\frac{\sqrt{2}}{2}\left[1\pm\mathrm{i}\right]$, $z_{3,4}=\frac{\sqrt{2}}{2}\left[-1\pm\mathrm{i}\right]$, complejos conjugados dos a dos, como debían

Es decir, $z_{1,2} = \frac{\sqrt{2}}{2} [1 \pm 1]$, $z_{3,4} = \frac{\sqrt{2}}{2} [-1 \pm 1]$, complejos conjugados dos a dos, como debian (a las mismas raíces llegaríamos buscando los z tales que $z^2 = \pm i$, pero sería mucho más largo).

Así pues:
$$x^4 + 1 = [(x-z_1)(x-z_2)][(x-z_3)(x-z_4)] = [x^2 - (z_1 + z_2)x + z_1z_2][x^2 - (z_3 + z_4)x + z_3z_4]$$

 $\rightarrow x^4 + 1 = [x^2 - \sqrt{2}x + 1][x^2 + \sqrt{2}x + 1]$

Ej. Hallar las raíces de la ecuación
$$z^2-iz-1-i=0 \ \to \ z={1\over 2}[i\pm\sqrt{3+4i}]$$
 .

[La fórmula $z=\frac{1}{2a}[-b\pm\sqrt{b^2-4ac}]$ sigue siendo válida interpretando $\pm\sqrt{b^2-4ac}$ como las dos raíces del complejo (no tiene sentido decir 'la raíz positiva' de un complejo)].

Trabajemos en cartesianas: buscamos $z=x+\mathrm{i}\,y$ tal que sea $z^2=x^2-y^2+2xy\mathrm{i}=3+4\mathrm{i}$. Debe ser $x^2-y^2=3$ y 2xy=4. Hay dos soluciones reales de este sistema: $x=2,\,y=1$ y $x=-2,\,y=-1$.

[En polares se tendría $\sqrt{5}\,\mathrm{e}^{\mathrm{i}\phi}$, $\phi=\frac{\arctan(4/3)}{2}+k\pi$, k=0,1 , que deben coincidir con $\pm(2+\mathrm{i})$].

Las raíces buscadas son: $z=\frac{1}{2}[\,i+(2+i\,)]=1+i\,$ y $z=\frac{1}{2}[\,i-(2+i\,)]=-1$.

Ej. Representar en el plano complejo los z que cumplen |z-i| < 2.

Si
$$z = x + iy$$
, esto equivale a $|x + i(y - 1)| < 2 \Leftrightarrow x^2 + (y - 1)^2 < 4$.

Los z buscados son los del círculo sin borde de centro (0,1) y radio 2 (claro, los z que distan del complejo i menos que 2).

Ej. Expresar $\cos 3\theta$ y $\sin 3\theta$ en términos de $\cos \theta$ y $\sin \theta$ utilizando potencias de complejos.

$$\cos 3\theta + i \sec 3\theta = e^{i3\theta} = [e^{i\theta}]^3 = [\cos \theta + i \sec \theta]^3 = \cos^3 \theta - 3\cos \theta \sec^2 \theta + i [3\cos^2 \theta \sec \theta - \sec^3 \theta]$$

$$\Rightarrow \cos 3\theta = 4\cos^3 \theta - 3\cos \theta \quad \text{y} \quad \sec 3\theta = 3\sec \theta - 4\sec^3 \theta$$

[sale usando sólo propiedades reales de senos y cosenos de sumas, pero es bastante más largo]

Tratemos ya las **funciones de variable compleja**. Una f(z) de variable compleja será una regla que asigna a cada complejo z de un dominio un único complejo f(z).

Como los reales son un tipo particular de números complejos podríamos hablar también de funciones reales de variable compleja, si f(z) es real para cada z, o de funciones complejas de variable real (incluso las funciones reales de variable real vistas hasta ahora se pueden mirar como un tipo particular de funciones complejas).

Ej. $f(z) = z^2$, $f(z) = \bar{z}$, f(z) = f(x+iy) = xy+ix son funciones complejas de variable compleja.

Una función compleja de variable real es, por ejemplo, $f(x) = \operatorname{sen} x + \operatorname{i} \operatorname{th} x$, si $x \in \mathbb{R}$.

Funciones (importantes) reales de variable compleja son:

f(z) = |z| (función 'módulo'),

 $Arg(z) = \theta$, con θ argumento principal de z (función 'argumento'),

Re(z) = Re(x+iy) = x, Im(z) = Im(x+iy) = y (funciones 'parte real' y 'parte imaginaria').

Cualquier función f de valores complejos puede escribirse en la forma f = u + iv, donde u y v (parte real y parte imaginaria de f) son funciones con valores reales (esto no siempre será útil). Por ejemplo, así podemos expresar:

$$f(z) = z^2 = (x^2 - y^2) + i(2xy)$$
, $f(z) = \bar{z} = x - iy$

Pintar funciones complejas es mucho más difícil que las reales. Podríamos dibujar flechas entre dos planos complejos, o bien escribir el valor de f(z) sobre cada z de un plano complejo. Las dos cosas están hechas abajo para $f(z) = z^2$:

Límite y continuidad se definen como en R sustituyendo valores absolutos por módulos:

Def. $(\varepsilon, \delta \in \mathbb{R}; z, a, L \in \mathbb{C})$

$$\lim_{z \to a} f(z) = L \text{ si } \forall \varepsilon > 0 \ \exists \delta > 0 \text{ tal que si } z \text{ cumple } 0 < |z - a| < \delta \Rightarrow |f(z) - L| < \varepsilon \text{ .}$$
 $f \text{ es continua en } a \text{ si } \forall \varepsilon > 0 \ \exists \delta > 0 \text{ tal que si } z \text{ cumple } |z - a| < \delta \Rightarrow |f(z) - f(a)| < \varepsilon \text{.}$

[Si un entorno es $B(a,r)=\{z\in \mathbf{C}:|z-a|< r\}$, que f es continua en a significa que podemos encontrar un entorno de a de radio δ lo suficientemente pequeño de forma que $\overline{\mathrm{su}}$ imagen este contenida en un entorno de f(a) de cualquier radio ε , por pequeño que sea ε].

Teorema:

f y g continuas en $a \in \mathbb{C} \Rightarrow f \pm g$, $f \cdot g$ y f/g (si $g(a) \neq 0$) son continuas en a. Si f = u + iv (u, v reales), entonces f continua en $a \Leftrightarrow u$ y v continuas en a.

Las demostraciones del \pm , \cdot y / son iguales que las reales, ya que seguimos teniendo la designaldad triangular; para la otra: |f(z) - f(a)| = |[u(z) - u(a)] + i[v(z) - v(a)]|es pequeño si y sólo si lo son |u(z) - u(a)| y |v(z) - v(a)|.

- **Ej.** Es fácil ver que f(z) = cte y f(z) = z son continuas en cualquier a (así pues, también lo son cualquier polinomio y cualquier cociente de polinomios donde el denominador no se anula).
- **Ej.** Re(z) = x e Im(z) = y son continuas $\forall a$ por el teorema anterior y porque f(z) = z lo es.

[O directamente: si
$$a = p + iq$$

of directamente: si
$$a = p + 1q$$

$$|x - p|, |y - q| < \sqrt{[x - p]^2 + [y - q]^2} = |z - a| < \varepsilon \text{ si } |z - a| < \delta = \varepsilon \text{]}$$

Ej.
$$f(z) = \overline{z}$$
 es continua $\forall a \in \mathbb{C}$: $|\overline{z} - \overline{a}| = |\overline{z - a}| = |z - a| < \varepsilon$ si $|z - a| < \delta = \varepsilon$ [o por el teorema y el ejemplo anterior: $u(z) = x$, $v(z) = -y$ lo son]

[como se verá en los libros de cálculo en varias variables, una función de dos variables que sea composición de funciones continuas será continua; así será fácil asegurar que lo es, por ejemplo, $f(x+iy) = y \arctan(xy) + ix \cos(x+y)$

Hay funciones discontinuas muy sencillas como Arg(z) en cualquier a real positivo. En cualquier entorno de a hay puntos z en que Arg(z) es casi 2π y por tanto $|\operatorname{Arg}(z) - \operatorname{Arg}(a)| = |\operatorname{Arg}(z) - 0|$ no se puede hacer tan pequeño como queramos [en los demás a la función sí es continua; si el argumento

principal lo hubiésemos escogido en $(-\pi,\pi]$ conseguiríamos que la función Arg(z) fuese continua en el semieje real positivo, pero la discontinuidad se trasladaría al negativo].

Def.
$$f(z)$$
 es derivable en $a \in \mathbb{C}$ si existe el $\lim_{z \to 0} \frac{f(a+z) - f(a)}{z} = f'(a)$

[Definición exactamente igual que la de R; también exactamente como allí se prueba que 'derivable ⇒ continua' y los resultados para el cálculo:

$$(f \pm g)' = f' \pm g', (f \cdot g)' = f'g + fg', (1/g)' = -g'/g^2, (f \circ g)'(a) = f'(g(a)) \cdot g'(a)$$

Con esto sabemos derivar polinomios y funciones racionales (más adelante también derivaremos senz, $\cos z$ y e^z , pero por ahora ni siquiera sabemos lo que son estas funciones complejas)].

Ej. Hay funciones muy sencillas no derivables como $f(z) = \overline{z}$, pues $\mathbb{Z}\lim_{z\to 0} \frac{f(z)-f(0)}{z} = \lim_{(x+\mathrm{i}y)\to 0} \frac{x-\mathrm{i}y}{x+\mathrm{i}y}$:

 $\frac{x-iy}{x+iy}$ cuando y=0 vale 1 y cuando x=0 vale -1; el límite no puede existir pues ciente toma valores 1 y -1 para z tan cercanos como queramos a 0.

[Sabiendo algo de derivadas parciales: se prueba en análisis complejo que para que una f = u + iv sea derivable es necesario que se cumpla: $u_x = v_y$, $u_y = -v_x$ (ecuaciones de Cauchy-Riemann). Para f(z) = x - iy no se satisfacen, pues $u_x = 1 \neq v_y = -1$. De hecho, la mayoría de las funciones definidas en la forma f = u + iv serán no derivables, pues es mucha casualidad que u y v cualesquiera satisfagan dichas ecuaciones. Comprobemos que sí se cumplen para una función derivable como $f(z) = z^2$ (de derivada f'(z) = 2z): $u_x = 2x = v_y$, $u_y = -2y = -v_x$].

6.2. Series complejas de potencias

Comencemos con sucesiones $\{a_n\}\subset C$ de complejos, o sea, funciones de N en C:

Def.
$$\{a_n\} \to L \text{ si para todo } \varepsilon > 0 \text{ existe } N \text{ natural tal que si } n \ge N \text{ entonces } |a_n - L| < \varepsilon \text{ [} |\cdot| \text{ módulo]}$$

Para cualquier entorno de L casi todos los puntos de $\{a_n\}$ están dentro:

Teorema:

Sea
$$a_n = b_n + \mathrm{i}\,c_n$$
, con b_n y c_n reales y $L = p + \mathrm{i}\,q$.
Entonces $\{a_n\} \to L \Leftrightarrow \{b_n\} \to p$ y $\{c_n\} \to q$.

$$\Rightarrow) \ \forall \varepsilon \ \exists N \ \text{tal que si} \ n \geq N \Rightarrow |a_n - L| = |(b_n - p) + \mathrm{i} \ (c_n - q)| < \varepsilon \Leftrightarrow (b_n - p)^2 + (c_n - q)^2 < \varepsilon^2 \\ \Rightarrow \left\{ \begin{array}{l} (b_n - p)^2 < \varepsilon^2 \Rightarrow |b_n - p| < \varepsilon \\ (c_n - q)^2 < \varepsilon^2 \Rightarrow |c_n - q| < \varepsilon \end{array} \right. \\ \Leftrightarrow) \ \forall \varepsilon \ \left\{ \begin{array}{l} \exists N_1, n \geq N_1 \Rightarrow |b_n - p| < \frac{\varepsilon}{2} \\ \exists N_2, n \geq N_2 \Rightarrow |c_n - q| < \frac{\varepsilon}{2} \end{array} \right. \Rightarrow |a_n - L| \leq |b_n - p| + |c_n - q| < \varepsilon \ \text{si} \ n \geq \max\{N_1, N_2\} \right.$$

$$\Leftarrow) \ \forall \varepsilon \ \left\{ \begin{array}{l} \exists N_1, n \geq N_1 \Rightarrow |b_n - p| < \frac{\varepsilon}{2} \\ \exists N_2, n \geq N_2 \Rightarrow |c_n - q| < \frac{\varepsilon}{2} \end{array} \right. \Rightarrow |a_n - L| \leq |b_n - p| + |c_n - q| < \varepsilon \ \text{si} \ n \geq \max\{N_1, N_2\}$$

Como en R, una serie de complejos $\sum a_n$ se dice convergente si lo es su sucesión S_n de sumas parciales. Una consecuencia inmediata del teorema anterior es:

$$a_n = b_n + \mathrm{i}\,c_n \colon \sum a_n$$
 converge $\Leftrightarrow \sum b_n$ y $\sum c_n$ convergen y es $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n + \mathrm{i}\sum_{n=1}^{\infty} c_n$

 $\sum a_n$ es **absolutamente convergente** si lo hace la serie real $\sum |a_n|$, a la que se le pueden aplicar los criterios de convergencia de series reales conocidos. Se tiene también que:

Teorema:
$$\sum a_n$$
 absolutamente convergente $\Rightarrow \sum a_n$ convergente
Si $a_n = b_n + \mathrm{i}\,c_n$, $|a_n|^2 = |b_n|^2 + |c_n|^2 \Rightarrow |b_n|, |c_n| \leq |a_n|$. Por tanto: $\sum |a_n|$ convergente $\Rightarrow \sum |b_n|$ y $\sum |c_n|$ convergente $\Rightarrow \sum b_n$ y $\sum c_n$ convergentes

También se tienen aquí los criterios de cociente y de la raíz (iguales que los de R) y son reales las sucesiones $\frac{|a_{n+1}|}{|a_n|}$ y $\sqrt[n]{|a_n|}$ cuyo límite hay que calcular para aplicarlos.

Ej.
$$a_n = \operatorname{sen} \frac{1}{n} + \mathrm{i} \left(2 + \frac{1}{n}\right)^n$$
 diverge, pues $b_n = \operatorname{sen} \frac{1}{n} \to 0$, pero $c_n = \left(2 + \frac{1}{n}\right)^n \to \infty$.

Ej.
$$a_n = \left(\frac{1}{2} + \frac{i}{2}\right)^n$$
; $|a_n| = 2^{-n/2} \to 0 \Rightarrow a_n \to 0$ [esto es intuitivamente claro y fácil de formalizar]

Ej.
$$\sum \left(\frac{1}{2} + \frac{\mathrm{i}}{2}\right)^n$$
 converge pues $\sum |a_n| = \sum \left(\frac{1}{\sqrt{2}}\right)^n$ es serie geométrica convergente [como en \mathbb{R} se ve que: $\sum a_n$ convergente $\Rightarrow a_n \to 0$; otra prueba de que la última $\{a_n\}$ converge]

Ej.
$$\sum \frac{\mathbf{i}^n}{n}$$
 no converge absolutamente (pues $\sum \frac{1}{n}$ es divergente), pero sí converge:
$$\sum \frac{\mathbf{i}^n}{n} = \mathbf{i} - \frac{1}{2} - \frac{\mathbf{i}}{3} + \frac{1}{4} + \frac{\mathbf{i}}{5} - \frac{1}{6} + \dots = -\frac{1}{2}(1 - \frac{1}{2} + \frac{1}{3} - \dots) + \mathbf{i}(1 - \frac{1}{3} + \frac{1}{5} - \dots)$$
 puesto que son convergentes las dos últimas series por Leibniz.

Ej.
$$\sum \frac{(7+\mathrm{i})^n}{n^3}$$
 diverge, pues $\frac{|a_{n+1}|}{|a_n|} = \frac{|7+\mathrm{i}|^{n+1}}{|7+\mathrm{i}|^n} \frac{n^3}{(n+1)^3} = 5\sqrt{2} \frac{n^3}{(n+1)^3} \to 5\sqrt{2} > 1$, o bien, porque $\sqrt[n]{|a_n|} = \frac{5\sqrt{2}}{n^{3/n}} \to 5\sqrt{2} > 1$ (que $\sum |a_n|$ diverja, en principio no prueba nada).

Veamos las **series de potencias** complejas $f(z) = \sum_{n=0}^{\infty} a_n z^n = a_0 + a_1 z + a_2 z^2 + \cdots, a_n, z \in \mathbb{C}$.

Se dan resultados como los de R con demostraciones (que no hacemos) iguales que allí:

Teorema:

A cada serie de potencias está asociado un número positivo R, llamado **radio de convergencia** de la serie, que tiene las siguientes propiedades: si R = 0, la serie sólo converge si z = 0; si $R = \infty$, la serie converge para todo z; si R es un número real positivo, la serie converge para |z| < R y diverge para |z| > R.

Aquí el intervalo de convergencia se ha convertido en el círculo de convergencia |z| < R. Sobre la circunferencia |z| = R no se puede asegurar nada. Como en los reales habrá series que convergen en toda ella, otras en puntos aislados, otras en ninguno... El cálculo del R se podrá hacer casi siempre utilizando el criterio del cociente o la raíz.

Estas series se pueden sumar, multiplicar, dividir,... igual que las reales y se tiene el mismo resultado sobre derivación:

Teorema:

Sea
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 para $|z| < R \implies f$ es derivable para $|z| < R \implies f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$

Y, por tanto, las funciones definidas por series de potencias vuelven a ser infinitamente derivables (y también continuas, desde luego) dentro del círculo de convergencia. Un resultado importante y sorprendente, que desde luego no es cierto en los reales, y que se prueba con técnicas más avanzadas de cálculo complejo es:

Teorema: Una función f(z) derivable en una región A del plano es infinitamente derivable en A. Además, en todo círculo contenido en A la función f(z) coincide con su serie de Taylor.

Definimos tres nuevas funciones complejas, que hasta ahora no tenían sentido:

Def.
$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
, $\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$, $\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$, $\forall z \in \mathbf{C}$

El R de las tres series es ∞ . Tienen propiedades (fáciles de probar) esperadas como:

$$(\operatorname{sen} z)' = \cos z$$
, $(\cos z)' = -\operatorname{sen} z$, $\operatorname{sen}(-z) = -\operatorname{sen} z$, $\cos(-z) = \cos z$,
 $(e^z)' = e^z$, $e^{-z} = 1/e^z$, $e^{z+w} = e^z e^w$,...

Además de otras nuevas como:

$$\begin{split} e^{iz} &= 1 + iz - \frac{z^2}{2!} - \frac{iz^3}{3!} + \frac{z^4}{4!} + \frac{iz^5}{5!} - \dots = (1 - \frac{z^2}{2!} + \dots) + i(z - \frac{z^3}{3!} + \dots) = \cos z + i \sec z \\ e^{-iz} &= \cos z - i \sec z \text{ , } \sec z = \frac{1}{2i} [e^{iz} - e^{-iz}] \text{ , } \cos z = \frac{1}{2} [e^{iz} + e^{-iz}] \end{split}$$

[Si z = y real deducimos la prometida relación que abreviaba la forma polar: $e^{iy} = \cos y + i \sin y$].

No es necesario sumar series para calcular exponenciales: $e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y)$.

[Ni senos:
$$sen(\pi+i) = \frac{1}{2i}[e^{i(\pi+i)} - e^{-i(\pi+i)}] = -\frac{i}{2}[e^{-1}e^{i\pi} - e^{1}e^{-i\pi}] = \frac{i}{2}[e^{-1} - e^{1}] \ (= seni) \].$$

Las funciones complejas senz y cosz no son acotadas. En el eje imaginario, por ejemplo:

$$sen(iy) = \frac{1}{2i}[e^{-y} - e^y] = i shy, cos(iy) = \frac{1}{2}[e^{-y} + e^y] = chy$$

[resultado clásico es que las únicas funciones acotadas y analíticas en todo **C** son las constantes].

Lo visto para series complejas permite explicar situaciones sorprendentes de las funciones reales. ¿Por qué si tanto e^x como $\frac{1}{1+x^2}$ son $C^\infty(R)$, la serie de la primera converge $\forall x$ mientras que la de la otra sólo lo hace si |x|<1? Pues porque la serie $1-z^2+z^4-\cdots$ de $\frac{1}{1+z^2}$ ha de definir una función continua y en $z=\pm i$ esta no lo es [esto sucede para todo cociente de polinomios complejos (reales, en particular): el radio R de su serie es la distancia al cero más próximo del denominador (en |z|< R es derivable y, por tanto, analítica)]. También entendemos el extraño comportamiento de la $f(x)=e^{-1/x^2}$, f(0)=0 que tiene infinitas derivadas pero sólo coincide con su serie de Taylor en x=0: como $f(iy)=e^{1/y^2} \underset{y\to 0}{\to} \infty$, la función compleja no es siquiera continua en z=0.

Ej. Estudiemos donde converge:
$$\sum \frac{z^n}{\sqrt{n}} \cdot \frac{|a_{n+1}|}{|a_n|} = \frac{\sqrt{n+1}}{\sqrt{n}} \to 1 = R$$
.

Converge en el círculo |z|<1 y diverge en |z|>1. ¿Qué pasa en |z|=1? No converge absolutamente en esa circunferencia, pero podría converger en algunos z de ella. Por ejemplo:

si
$$z=-1$$
, la serie $\sum \frac{[-1]^n}{\sqrt{n}}$ converge por Leibniz; si $z=1$, $\sum \frac{1}{\sqrt{n}}$ diverge;

si
$$z=i$$
, converge, pues $\sum \frac{i^n}{\sqrt{n}} = \sum \frac{[-1]^n}{\sqrt{2n}} + i \sum \frac{[-1]^n}{\sqrt{2n+1}}$ y convergen ambas (Leibniz).

Ej. Desarrollemos en serie $f(z) = \frac{1}{z^2+4}$.

Que $\sum_{n=0}^{\infty} z^n$ converge $\Leftrightarrow |z| < 1$ y que su suma es $\frac{1}{1-z}$ se prueba como en **R**. Así pues:

$$f(z) = \frac{1}{4} \frac{1}{1 - [-z^2/4]} = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{4^{n+1}}, |\frac{-z^2}{4}| < 1 \Leftrightarrow |z| < 2 \text{ (distancia de los ceros al origen)}.$$

[la serie no converge en ningún punto de la circunferencia |z|=2 pues para cualquier z con ese módulo queda una serie cuyo término general no tiende a 0 pues tiene módulo constante $\frac{1}{4}$].

Podemos desarrollarla también (dando rodeos) de otras formas.

Descomponiendo en fracciones simples complejas:

$$\frac{1}{z^2+4} = \frac{1}{4\mathrm{i}} \left[\frac{1}{z-2\mathrm{i}} - \frac{1}{z+2\mathrm{i}} \right] = \frac{1}{8} \left[\frac{1}{1-z/2\mathrm{i}} + \frac{1}{1+z/2\mathrm{i}} \right] = \frac{1}{8} \sum_{n=0}^{\infty} \left[\frac{z^n}{(2\mathrm{i})^n} + \frac{(-z)^n}{(2\mathrm{i})^n} \right] = \frac{1}{8} \sum_{n=0}^{\infty} \frac{2z^{2n}}{2^{2n}\mathrm{i}^{2n}} = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{4^{n+1}}$$

Dividiendo (las manipulaciones con series complejas, como dijimos, como las de las reales):

$$[4+z^2][a_0+a_1z+a_2z^2+\cdots]=1 \rightarrow 4a_0=1, a_0=14; 4a_1=0, a_1=0; 4a_2+a_0=0, a_2=-\frac{1}{16}; \dots$$

PROBLEMAS ADICIONALES

Naturales, enteros, racionales y reales

- **1.** Demostrar por inducción sobre n:
 - a) que la suma de los n primeros números impares es n^2 ;

b) las fórmulas: i) $\sum_{k=0}^{n} r^k = \frac{1-r^{n+1}}{1-r}$, ii) $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$;

- c) las designaldades: $\sqrt{n} \le \frac{1}{1} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} \le 2\sqrt{n}$.
- **2.** Hallar el mcd y el mcm de: a) 1995 y 9009, b) 12345 y 67890, c) 135, 315 y 351.
- **3.** Simplificar: a) $(\sqrt{2}-1)^7$, b) $(3+\sqrt{2})^4(3-\sqrt{2})^4$, c) $(\sqrt{2}-1)^{-3}$.
- **4.** Calcular $\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n-1} + \binom{n}{n}$ para n = 2, 3, 4, 5 y 6 y deducir de la fórmula del binomio el valor de la suma para cualquier n. ¿Cuánto vale $\binom{n}{0} \binom{n}{1} + \binom{n}{2} \cdots + (-1)^n \binom{n}{n}$?
- **5.** ¿Cuánto vale $\sum_{k=1}^{n} 1$? ¿Cuánto vale $\sum_{k=1}^{n} (a_k a_{k-1})$, $n \ge m$? ¿Es $\sum_{k=1}^{n} (a_k) (\frac{1}{a_k}) = \sum_{k=1}^{n} \frac{a_k}{a_k} = \sum_{k=1}^{n} 1$?
- **6.** Probar que $\sqrt{3}$ y $\sqrt[3]{2}$ son irracionales.
- 7. Probar que si a,b,c,d>0 y $\frac{a}{b}<\frac{c}{d}$ entonces $\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}$. Encontrar un racional y un irracional que sean mayores que 11/17 y menores que 9/13 .
- **8.** En dos partidos de baloncesto sucesivos un jugador ha obtenido un porcentaje de acierto en tiro de tres puntos superior al de otro jugador. ¿Implica esto que en el conjunto de los dos partidos es más alto el porcentaje del primer jugador?
- **9.** Demostrar que la media geométrica de dos números positivos x e y es menor o igual que la aritmética, es decir, que $\sqrt{xy} \le (x+y)/2$, si x,y > 0. ¿Cuándo coinciden?
- **10.** Probar que: $\max(x,y) = \frac{1}{2}(x+y+|y-x|)$, $\min(x,y) = \frac{1}{2}(x+y-|y-x|)$.
- 11. Determinar si cada afirmación es cierta o falsa:

a) $x < y \Rightarrow x^{-1} > y^{-1}$; b) $x < y \Rightarrow x^3 < y^3$; c) $0 < x < y \Rightarrow 3x^2 < x^2 + xy + y^2 < 3y^2$;

d) $|x-5| < 2 \Rightarrow 0 < x < 8$; e) $x < 5 \Rightarrow |x| < 5$; f) $|x| < 5 \Rightarrow x < 5$; g) $\exists x \text{ con } |x+1| < x$;

h) $\exists x \text{ con } |x-1| = |2-x|$; i) $\exists x \text{ con } |x-1| = -|2-x|$; j) $x^2 - 1 \le |x^2 - 1| \le x^2 + 1 \ \forall x$.

- **12.** La unión de intervalos $\bigcup_{n \in \mathbb{N}} (\frac{1}{2n}, \frac{1}{2n-1})$, ¿tiene supremo e ínfimo? ¿es abierto o cerrado?
- 13. Probar que si A y B son conjuntos abiertos entonces $A \cup B$ y $A \cap B$ son también abiertos. Más en general, ¿es abierto el conjunto unión de una sucesión infinita de conjuntos abiertos?, ¿lo es su intersección? Deducir propiedades análogas para conjuntos cerrados.

Funciones, sucesiones, límites y continuidad en R

- 1. Hallar la ecuación de la recta que pasa por (-1,4) y (2,-5). Hallar y dibujar la función inversa $y = f^{-1}(x)$ de la función y = f(x) definida por la recta anterior. Escribir las funciones compuestas $f^2 \circ [f^{-1}]^2$ y $[f^{-1}]^2 \circ f^2$.
- 2. Encontrar el dominio de las siguientes funciones:

$$f(x) = \sqrt{1-x^2} + \sqrt{x^2-1}$$
; $g(x) = \sqrt{\sin x + \cos x}$; $h(x) = \frac{1}{\tan x}$; $k(x) = \sqrt{1-x} + \log(1+x)$

- 3. Sean $C(x) = x^2$; $R(x) = \sqrt{x}$; L(x) = 1 x. Precisar en qué intervalos es $f = R \circ C \circ L$ inyectiva, hallando la f^{-1} en cada intervalo. Expresar la función $g(x) = \sqrt{1 \sqrt{1 x^2}}$ como composición de C, R y L y precisar su dominio.
- **4.** Si f y g son crecientes, ¿lo es f + g? ¿Y $f \cdot g$? ¿Y $f \circ g$?
- **5.** a) Expresar $\operatorname{sen} \frac{x}{2}$ y $\cos \frac{x}{2}$ en función de $\cos x$. b) Expresar $\operatorname{sen} x$ y $\cos x$ en función de $\tan \frac{x}{2}$. c) Probar que $\tan \frac{x}{2} = \frac{\operatorname{sen} x}{1 + \cos x}$.
- **6.** Hallar (sin calculadora) los siguientes valores (en el caso de que existan):

$$\cos(-\tfrac{13\pi}{3}) \quad \operatorname{sen} \tfrac{\pi}{8} \quad \operatorname{sen} \tfrac{7\pi}{12} \quad \tan \tfrac{5\pi}{4} \quad \arctan(\tan \tfrac{5\pi}{4}) \quad \operatorname{arc} \operatorname{sen}(\operatorname{arc} \cos 0) \quad \operatorname{ch}(\log 3)$$

$$[\cos \tfrac{3\pi}{4}]^{1/4} \quad 125^{2/3} \quad e^{3\log 4 - \log 5} \quad \log_2 64 \quad \log(\log(\log 2)) \quad \cos(\arctan 17) \quad [\operatorname{sh}(-1)]^\pi$$

- 7. a) Expresar sen 3x y $\cos 3x$ en función de sen x y $\cos x$. b) Si sen $\alpha = -\frac{3}{5}$ y α está en el tercer cuadrante, hallar $\cos 3\alpha$ y precisar en qué cuadrante está 3α .
- **8.** Comprobar que:

$$\cosh^2 x - \sinh^2 x = 1$$
; $\frac{1}{\cosh^2 x} = 1 - \tanh^2 x$; $\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$; $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$.

- 9. ¿Qué forma tienen las sucesiones convergentes cuyos términos son todos enteros?
- **10.** ¿Tienen $a_n = \sin \frac{n^2 \pi}{4} \frac{7}{n}$, $b_n = 2^{(-2)^n}$ y $c_n = \cos n + n$ alguna subsucesión convergente?
- **11.** Demostrar que $\{a_n\} \to a > 0 \Rightarrow \{\sqrt{a_n}\} \to \sqrt{a}$, y que $\{a_n\} \to \infty \Rightarrow \{\sqrt{a_n}\} \to \infty$.
- **12.** Sea $a_n \le b_n \le c_n$. Probar que:

i)
$$a_n \to L$$
, $c_n \to L \Rightarrow b_n \to L$; ii) $b_n \to \infty \Rightarrow c_n \to \infty$; iii) $b_n \to -\infty \Rightarrow a_n \to -\infty$.

- **13.** Sean: $c_n \to 0$, $b_n \to 1$, $i_n \to \infty$, $d_n \to -\infty$ y a_n acotada. ¿Qué se puede afirmar sobre la convergencia de: $\{i_n + d_n\}$, $\{c_n + a_n\}$, $\{c_n i_n\}$, $\{i_n a_n\}$, $\{b_n a_n\}$, $\{\frac{c_n}{a_n}\}$, $\{\frac{b_n}{c_n}\}$, $\{\frac{i_n}{d_n}\}$, $\{i_n^{c_n}\}$, $\{b_n^{i_n}\}$?
- **14.** Demostrar que si $\{a_n\}$ es acotada y sus únicos puntos de acumulación son 10^7 y 10^{-7} , y la sucesión $\{b_n\}$ diverge hacia $+\infty$, entonces la sucesión $\{a_nb_n\}$ es divergente hacia $+\infty$.
- **15.** Probar por inducción que $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$ y hallar el límite de $\frac{1^2+2^2+\cdots+n^2}{n^3}$.
- **16.** Hallar una sucesión cuyos 5 primeros términos sean $-1, \frac{3}{2}, -\frac{5}{6}, \frac{7}{24}, -\frac{9}{120}$ y precisar si converge.
- 17. Hallar el límite de $a^{1/n}$ para todo $a \ge 0$, sin hacer uso de teoremas no demostrados.
- **18.** Sean $f(x) = \frac{2x \text{sen } x}{x + 2 \text{ sen } x}$ y $L = \lim_{x \to \infty} f(x)$. Hallar un M tal que |f(x) L| < 0.1 si x > M.

- **19.** Utilizando únicamente las definiciones probar que: a) $\lim_{x \to \infty} (4x + 100\cos x) = \infty$, b) $\lim_{x \to 3} x^2 = 9$, y que es falso: c) $\lim_{x \to 3} 3x = 5$, d) $\lim_{x \to \infty} \sin x = 0$.
- **20.** Probar que $f(x)=x^2\sin\frac{1}{x}$, f(0)=0 y $g(x)=\sqrt{|x|}-5x$ son continuas en 0 utilizando la definición ε - δ . En particular, determinar un δ para $\varepsilon=1$ y $\varepsilon=0.01$.
- **21.** Describir todas las funciones f que cumplen las siguientes condiciones:

a)
$$\forall \varepsilon \exists \delta > 0 : |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$$
;

b)
$$\forall \varepsilon > 0 \ \forall \delta > 0 : |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$$

22. Sean $f(x) = \left[\frac{1}{x}\right]$ (parte entera), x > 0; $g(x) = \cos\frac{1}{x}$; $h(x) = \frac{\tan x}{x^2}$; $k(x) = \begin{cases} |2-x| \sin x < 3 \\ x - 4 \sin x \ge 3 \end{cases}$.

Determinar los puntos a para los que dichas funciones tienen límite en a; son continuas en a; poseen límites laterales en a. Ver si tienen límite cuando x tiende a ∞ .

23. Determinar (si existen) los límites siguientes:

a)
$$\lim_{x\to 0} \frac{e^{\sin|x|-x}-1}{1-\log(x+\cos x)}$$
; b) $\lim_{x\to 0} \frac{|x|}{7x}$; c) $\lim_{x\to 0} \left[\frac{3+2x}{x+5x^2}-\frac{3}{x}\right]$; d) $\lim_{x\to 0} \frac{6x-\sin 2x}{2x+3\sin 4x}$;

e)
$$\lim_{x \to \infty} \left[\sqrt{2x^2} - \sqrt{2x^2 - 6x} \right]$$
; f) $\lim_{x \to \infty} \operatorname{th}(\operatorname{ch} x - \cos x)$; g) $\lim_{x \to \infty} \frac{\arctan x}{x}$;

$$\text{h)} \lim_{x \to 1} \left[\frac{2}{\log x} - \frac{3}{\sqrt{\log x}} \right] \; ; \quad \text{i)} \lim_{x \to 1} e^{-1/|x-1|} \; ; \quad \text{j)} \lim_{x \to 1} \text{sh} \left(\log x \right) \; ; \quad \text{k)} \lim_{x \to 1} \frac{x^5 - 1}{x - 1} \; .$$

24. Hallar (si existe) el límite de las siguientes sucesiones:

a)
$$a_n = \frac{2n - \sqrt{n^3}}{3n + \log n}$$
; b) $b_n = \frac{1}{2n} \sqrt{12n^3 + 6n - 2} - \sqrt{3n - 5}$; c) $c_n = n^3 - \sqrt{n!}$;

d)
$$d_n = \left[\frac{n+1}{n^2+2}\right]^n$$
; e) $e_n = \left[\frac{n^2+1}{n^2+2}\right]^n$; f) $f_n = \left[n^5 + n + 7\right]^{1/n}$; g) $g_n = \frac{n!}{n^n}$.

- **25.** Supóngase que f es continua en [a,b] y que f(x) es siempre racional. ¿Qué puede decirse acerca de f?
- **26.** Probar que $x^5 = 2^x$ tiene una solución i) menor que 2, ii) mayor que 2.
- 27. Sea $f(x) = \log |x-1| \cos x$. Existe $c \in (0,2)$ con f(c) = 0? Alcanza su valor mínimo en [0,4]?
- **28.** Supóngase f continua en [a,b] y sea c un número cualquiera. Demostrar que existe un punto de la gráfica de f en [a,b] para el que la distancia a (c,0) se hace mínima. ¿Es cierto lo anterior si sustituimos [a,b] por (a,b)? ¿Y si sustituimos [a,b] por \mathbb{R} ?
- **29.** Demostrar que f(x) = 7x 5 es uniformemente continua en **R** y que $g(x) = x^2$ no lo es.

Derivadas en R

- **1.** Hallar las derivadas de las funciones inversas $(sh)^{-1}$, $(ch)^{-1}$ y $(th)^{-1}$.
- **2.** Demostrar que la derivada de una función par es impar y viceversa. ¿Es periódica la derivada de una función periódica?
- 3. Un astronauta viaja de izquierda a derecha sobre la curva $y = x^2$. Al desconectar el cohete viajará a lo largo de la tangente a la curva en el punto en que se encuentre. ¿En qué punto debe desconectar para alcanzar i) (4,9), ii) (4,-9)?
- **4.** Hallar los valores a tales que la recta tangente a la gráfica de $f(x) = (x^2 3)e^{-x}$ en x = a pase por el punto (1,0).
- **5.** Probar que la tangente a la gráfica de $f(x) = \frac{1}{x}$ corta a la gráfica de f sólo en el propio punto $(a, \frac{1}{a})$.
- **6.** Hallar la ecuación de la elipse con sus ejes paralelos a los coordenados y centrada en el origen que tiene por tangente la recta 5y + 4x = 25 en un punto de abscisa x = 4.
- 7. ¿Bajo qué ángulos se cortan las curvas $y = \sin x$, $y = \cos x$?
- **8.** Probar que $f(x) = x^2 x \sin x \cos x$ tiene exactamente dos ceros.
- 9. Dibujar la gráfica de $f(x) = |4x 3| x^2$. Determinar los valores máximo y mínimo que alcanza la función f en el intervalo [-3,3]. ¿Existe algún $x \in (0,2/3)$ para el que f(x) = 0?
- **10.** Probar que: f' acotada en un intervalo $I \Rightarrow f$ uniformemente continua en I. Probar que $f(x) = (1+x^2)^{-1}$ es uniformemente continua en todo **R**.
- **11.** Sean $P(x) = x^5 + 3x^4 7x^3 21x^2 + 10x + 30$ y $Q(x) = x^3 3x^2 5x + 15$. Hallar el mcd(P,Q). Hallar las raíces de P y de Q. Realizar el producto $P \cdot Q$ y la división P/Q.
- 12. Ver que $P(x) = 2x^5 + 3x^4 + 4x^3 + 6x^2 + 2x + 3$ tiene raíces múltiples y hallar todas sus raíces.
- **13.** Hallar todas las soluciones de: $x^4 + 2x^2 + 8x + 5 = 0$, $x^4 + 1 = 0$, $3x^4 7x^3 7x + 3 = 0$.
- 14. Precisar cuántas raíces de los siguientes polinomios hay en los intervalos que se indican:

a)
$$P(x) = 3x^3 - x^2 + x - 1$$
 en $(-\infty, 0)$ y en $(1, \infty)$ b) $P(x) = x^4 + x^3 + x^2 + x$ en $(-\infty, 0)$ y en $(0, 1)$ c) $P(x) = x^4 + 8x - 1$ en $(-3, -2)$ y en $(0, 1)$ d) $P(x) = 2x^5 + 8x^3 + 5x - 6$ en $(-\infty, 0)$ y en $(0, \infty)$

- 15. Probar que el polinomio $P(x) = x^5 + x + 9$ tiene una única raíz real. Encontrar, utilizando el teorema de Bolzano, un intervalo de longitud 1/4 en el que se encuentre dicha raíz. Precisar el valor de la raíz utilizando el método de Newton.
- 16. Sean los polinomios cúbicos: i) $x^3 + x 17$, ii) $2x^3 7x^2 + 1$, iii) $16x^3 12x^2 + 1$. Dibujar sus gráficas. Hallar sus raíces reales a partir de las fórmulas de los apuntes. Hallar aproximadamente dichas raíces utilizando el método de Newton.
- 17. Hallar aproximadamente todas las soluciones reales de las siguientes ecuaciones:

a)
$$3x^3 - 2x^2 - 6x + 4 = 0$$
; b) $x^4 + 4x^2 - 1 = 0$; c) $x^5 + x + 1 = 0$;
d) $x \sec x + \cos x = x^2$; e) $x \sec x = 1$; f) $\log |x| = x - 1$.

- **18.** Hallar aproximadamente los cortes con y = 0, los extremos y los puntos de inflexión de $P(x) = 9x^4 + 8x^3 + 28x^2 + 24x + 3$, $Q(x) = 2x^5 15x^3 + 20x^2 + 5x + 3$ y $f(x) = e^x x^3$.
- **19.** Aplicar el método de Newton partiendo de $x_0 = 1$ a las funciones $f(x) = x^2$ y $g(x) = \sqrt[3]{x}$.
- **20.** Ver que $f(x) = e^{x/3}$ es contractiva en [0,2] y aproximar el único cero de $x = e^{x/3}$ en dicho intervalo.
- **21.** Precisar cuántos ceros reales tiene el polinomio P(x) cuya derivada es $P'(x) = 3x^2 + 2x 8$ y tal que la recta tangente a la gráfica de P(x) en el punto de abscisa x = 0 pasa por (1, -1).
- 22. Dibujar las gráficas de las funciones:

a)
$$3x^4 - 4x^3$$
; b) $\frac{x}{x^2 + 1}$; c) $\frac{x^2 - 4x + 5}{x - 2}$; d) $\frac{2}{\sqrt{x}} - \frac{1}{x}$; e) $x^3 \sqrt{4 - x^2}$; f) $3x^{2/3} + 2x$; g) $3 \sec(x - 2)$; h) $\frac{x}{4} - \sec x$; i) $1 + |\tan x|$; j) $\cos^2 2x - |\cos x|$; k) $\frac{\sec x}{x}$; l) $\arcsin \frac{1 - x^2}{1 + x^2}$; m) $e^{-|x|}$; n) e^{-x^2} ; ñ) $\sec(\tan x)$; o) $\log(x^2 - x)$.

23. Dibujar las curvas:

a)
$$x^2 + y^2 + 2x - 4y = 0$$
; b) $x^2 - xy + y^2 = 3$; c) $4x^2 - y^2 - 8x = 12$; d) $x^2y^2 = x^2 - 1$.

- **24.** Una farola, que tiene su luz a 3 m de su base, ilumina a un peatón de 1.75 m que se aleja a una velocidad constante de 1 m/s . ¿A qué velocidad se mueve el extremo de su sombra? ¿A qué velocidad crece dicha sombra?
- **25.** Un globo se eleva verticalmente desde el suelo a 100 m de un observador, a una velocidad de 2 m/s. ¿A que ritmo crece el ángulo de elevación de la línea de visión del observador cuando el globo está a una altura de i) 10 m, ii) 100 m?
- **26.** Un tren parte de una estación en línea recta hacia el norte a 100 km/h. 12 minutos después parte otro hacia el este a 50 km/h. ¿A qué ritmo cambia la distancia entre los trenes 1 hora después de la partida del segundo?
- 27. Hallar el valor mínimo de la suma de los arcos tangentes de dos reales ≥ 0 cuya suma sea 1.
- **28.** Hallar los puntos de la gráfica de $f(x) = \sqrt{6 + \frac{x}{2} \frac{x^2}{4}}$ situados a mayor y menor distancia del (4,0).
- **29.** a) Precisar el número de raíces reales de $P(x) = 3x^4 3x + 1$. b) Determinar si el punto de la curva $y = x^3$ más cercano al punto (0,1) está a la derecha o a la izquierda de x = 1/2.
- 30. Hallar la forma del cono de mayor volumen entre aquellos de superficie fija (base incluida).
- 31. Un lanzador de peso es capaz de lanzar desde una altura de $1.5\,\mathrm{m}$ sobre el suelo con una velocidad de $12\,\mathrm{m/s}$. Hallar el ángulo con el que debe hacerlo para llegar lo más lejos posible. ¿Qué longitud puede alcanzar (tomar $\mathrm{g}=10\,\mathrm{m/s^2}$)?
- **32.** Determinar los puntos de la parte de la gráfica de $g(x) = 1 (x 2)^3$ contenida en $x, y \ge 0$, para los que la recta tangente en ellos corta el eje y en el punto i) más alto, ii) más bajo.

Series, Taylor y límites indeterminados

1. Determinar si las siguientes series son convergentes o divergentes:

a)
$$\sum \frac{\sqrt[3]{4n+5}}{\sqrt[4]{n^5+3}}$$

b)
$$\sum n^2 \left(\frac{e}{3}\right)^n$$

b)
$$\sum n^2 (\frac{e}{3})^n$$
 c) $\sum (-1)^n e^{-1/n^2}$ d) $\sum \frac{7^n + \log n}{n! + n^3}$

d)
$$\sum \frac{7^n + \log n}{n! + n^3}$$

e)
$$\sum \frac{n}{(-3)}$$

f)
$$\sum \frac{3n+1}{n(2n-1)}$$

e)
$$\sum \frac{n}{(-3)^n}$$
 f) $\sum \frac{3n+1}{n(2n-1)}$ g) $\sum (-1)^n \frac{2n+(-1)^n}{n^3+(-1)^n}$ h) $\sum 3^{n\cos 2}$

h)
$$\sum 3^{n\cos 2}$$

i)
$$\sum \cos \frac{\sqrt{n+1}}{n!}$$

$$\sum \frac{\operatorname{sen} n}{n^{3/2}}$$

i)
$$\sum \cos \frac{\sqrt{n+1}}{n!}$$
 j) $\sum \frac{\operatorname{sen} n}{n^{3/2}}$ k) $\sum (-1)^{n} \tan \frac{1}{n}$

- **2.** Estudiar la convergencia de la serie $\sum a_n$, siendo $a_{n+1} = -\frac{1}{2} \left(1 + \frac{1}{n}\right)^{n/2} a_n$ y $a_1 = 1$.
- **3.** Precisar para qué $c \in \mathbf{R}$ convergen las series: a) $\sum (\sqrt{n^c+1}-\sqrt{n^c})$; b) $\sum \frac{c^{n^2-5n}}{n^3}$.
- **4.** Hallar la suma de la serie $\sum_{n=1}^{\infty} \frac{1}{n^{11}}$, con error menor que 10^{-5} .
- **5.** Precisar los x para los que converge $\sum_{n=1}^{\infty} (-1)^n x^n$ y hallar su suma. Para i) $x = \frac{1}{4}$, ii) $x = -\frac{1}{4}$, ¿cuántos términos hay que sumar para aproximar el valor exacto con error menor que 10^{-3} ?
- **6.** Probar que $\sum_{n=1}^{\infty} \frac{1}{1+5^n}$ converge y que su suma está entre 0.213 y 0.215. [Usar los tres primeros términos y acotar el resto mediante una serie geométrica].
- 7. Una pelota cae desde una altura inicial de 1 m sobre una superficie horizontal. Si en cada rebote alcanza un 80% de la altura anterior, ¿qué distancia recorre hasta pararse?
- 8. Una persona y su perro caminan a una velocidad de 1 m/s hacia su casa. A 100 m de la puerta el perro comienza a correr yendo y viniendo de la persona a la puerta a 4 m/s, hasta que la persona entra en casa. ¿Qué distancia recorre el perro desde que empieza a correr?
- 9. Estudiar en qué subconjuntos de ${\bf R}$ convergen uniformemente las siguientes $f_n(x)$:

a)
$$\frac{x}{\sqrt{n^3+x}}$$

b)
$$\cos^n x$$
;

c)
$$x^{1/n}$$
;

d)
$$\frac{\operatorname{sen} nx}{n}$$

a)
$$\frac{x}{\sqrt{n^3+x}}$$
; b) $\cos^n x$; c) $x^{1/n}$; d) $\frac{\sin nx}{n}$; e) $nx^2 e^{-nx^2}$.

10. Estudiar para qué x convergen, y si lo hacen uniformemente en el intervalo que se indica:

a)
$$\sum \frac{x}{n+1}$$
 en $[0,1]$; b) $\sum e^{-nx^2} \sin nx$ en $[1,\infty)$; c) $\sum \frac{x^n}{(n+1)2^n}$ en $[-1,1]$; d) $\sum \frac{x}{\sqrt{n^3+x}}$ en $[0,1]$.

$$\sum e^{-nx^2} \operatorname{sen} nx \operatorname{en} [1, \infty) ;$$

c)
$$\sum \frac{x^n}{(n+1)2^n}$$
 en $[-1,1]$;

d)
$$\sum \frac{x}{\sqrt{n^3+x}}$$
 en $[0,1]$

- 11. Sumar la serie $\frac{x}{x+1} + \frac{x}{[x+1][2x+1]} + \frac{x}{[2x+1][3x+1]} + \cdots$ ¿Converge uniformemente en $[0,\infty)$?
- **12.** Escribir el polinomio $P(x) = x^3 2x^2 x + 5$ ordenado en potencias de (x 2).
- 13. Calcular P_3 , el polinomio de Taylor de grado 3 en x = 0 de $f(x) = \tan x$. Determinar si $P_3(1)$ es mayor o menor que tan 1 sin utilizar calculadora.
- **14.** Probar que $\frac{\pi}{4} = \arctan \frac{1}{2} + \arctan \frac{1}{2}$.

Usando el desarrollo de arctanx, calcular el valor de π con error menor que 10^{-3} .

- 15. Calcular el valor de $\sqrt[10]{1.2}$ con error menor que 0.01. Hallar el valor de $\sqrt{1/2}$ a partir de un polinomio de Taylor de orden 3 y dar una cota del error cometido.
- **16.** Escribir la serie de Taylor de $f(x) = \frac{1}{2} \log \frac{1+x}{1-x}$, hallar su radio de convergencia y precisar donde la serie coincide con f. Aproximar con el polinomio de Taylor de f de orden f0 el valor de f1 dando una cota del error cometido.

- 17. Sea $P_3(x)$ el polinomio de Tayor de orden 3 en x = e de $f(x) = x \log x$. ¿Se comete un error menor que 10^{-3} si se aproxima $f(3) = \log 27$ con el valor de $P_3(3)$?
- **18.** Hallar el desarrollo de Taylor hasta x^6 de la función $f(x)=\left[36+x^3\right]^{-1/2}$. Hallar un racional que aproxime con error menor que 10^{-2} : i) f(2), ii) f(-1).
- 19. Utilizando polinomios de Taylor determinar con un error menor que 10^{-3} el valor de:

a) sen 3, b)
$$e^{-2}$$
, c) $\log \frac{1}{2}$, d) sh(-1), e) ch $\frac{1}{2}$

20. Desarrollar en x = 0, hallando su término general y su radio de convergencia, e indicando dónde coinciden función y serie:

a)
$$2xe^{-2x}$$
; b) 3^{x^2} ; c) $-\log(1-2x)$; d) $\frac{5x-1}{x^2-x-2}$; e) $(1+x)^{-2}$.

21. Hallar los 4 primeros términos no nulos del desarrollo en serie de Taylor en x = 0 de:

a)
$$e^{-x}\cos x$$
; b) $[\arctan x]^2$; c) $\frac{\cosh x}{(1+x)^3}$; d) $\frac{\cos 2x}{1+x^2}$; e) $\log \left(x+\sqrt{1+x^2}\right)$.

22. Hallar la suma de las siguientes series:

a)
$$\sum_{n=2}^{\infty} e^{1-4n}$$
; b) $\sum_{n=1}^{\infty} \ln \frac{(n+1)^2}{n(n+2)}$; c) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n}(2n+1)}$; d) $\sum_{n=2}^{\infty} \frac{4}{n^2-1} = 3$.

23. Hallar los polinomios Q_1 , Q_2 y Q_3 de interpolación de $\cos x$ en los puntos x siguientes:

a) 0 y
$$\pi/3$$
; b) 0, $\pi/3$ y $\pi/2$; c) 0, $\pi/6$, $\pi/3$ y $\pi/2$.

Utilizar Q_1 y Q_2 para aproximar el x tal que $\cos x = x$.

- **24.** Hallar el A_4 de la fórmula de interpolación de Newton para puntos equidistantes. Hallar el Q_4 que interpola $\text{sen}^2(\pi x)$ en 0, 1/4, 1/2, 3/4 y 1. Aproximar con él $\text{sen}^2(7\pi/12)$.
- **25.** Hallar un polinomio cúbico P(x) tal que $\frac{x\cos x P(x)}{(x-1)^3}$ tienda a 0 cuando x tiende a 1 .
- **26.** Sea $f \in C^4$. Probar que: $f'(a) = \frac{f(a+h)-f(a-h)}{2h} + o(h)$ y $f''(a) = \frac{f(a+h)+f(a-h)-2f(a)}{h^2} + o(h)$. Si $f(x) = 4^x$, approve an approximat f'(0) y f''(0) tomando h = 1/2.
- 27. Calcular los siguientes límites indeterminados cuando x tiende al a indicado:

$$\begin{split} a &= 0 \ : \ \frac{1}{x^2} - \frac{1}{\sin^2 x} \ , \quad \frac{\mathrm{e}^x + \mathrm{e}^{-x} - x^2 - 2}{\sin^2 x - x^2} \ , \quad \frac{\log[\cos 2x]}{\log[\cos 3x]} \ , \quad \frac{\mathrm{ch} x - \cos x}{x^2} \ ; \\ a &= 0^+ \ : \ \left[\frac{1}{\mathrm{e}} (1+x)^{1/x} \right]^{1/x} \ ; \quad a &= 1^- \ : \ \log x \log(1-x) \ ; \\ a &= \infty \ : \ \frac{1 - x \arctan(1/x)}{1 - \cos(1/x)} \ , \quad \left[\cos \frac{1}{x} \right]^{\log x} \ , \quad x^4 \left[\cos \frac{1}{x} - \mathrm{e}^{-1/x^2} \right] \ . \end{split}$$

28. Hallar el límite cuando x tiende a 0, ∞ , -1^+ de:

i)
$$\frac{\log(1+2x^2)-\log(1+x^2)}{\arctan x^2}$$
; ii) $x[\cos\frac{1}{x}-1]$; iii) $\frac{x-\sin x}{x\arctan x^2}$; iv) $\frac{\arctan x-\sin x}{x(\cosh x-\cos x)}$.

29. Hallar el límite cuando $x \rightarrow 0$ para el único valor de a para el es finito:

i)
$$\frac{\cos x - e^{ax}}{\sin x + \log(1-x)}$$
; ii) $\frac{\sin x}{x^3} - \frac{a}{x^2}$.

- **30.** Precisar para qué valores de b tiene límite $x^{-b}[\sqrt{1+9x^4}-1]$ si i) $x\to 0^+$, ii) $x\to \infty$.
- **31.** Hallar el límite cuando $x \to 0$ de $\frac{\sin x^2 x^2}{x^{2n}}$ y $\frac{\tan x}{x^n}$ para todos los n enteros en que exista.
- **32.** Definiendo f(0) para que sean continuas, estudiar si existen f'(0) y f''(0):

a)
$$x \arctan \frac{1}{x}$$
; b) $\frac{\tan x}{x}$; c) $\frac{\log(1+|x|)}{|x|}$; d) $\arctan(\log x^2)$.

33. Dibujar las gráficas de las siguientes funciones:

a)
$$x \log x^2 - x^2$$
; b) $6 \log |x| + \frac{1}{x^2} + \frac{3}{x^3}$; c) $x \arctan \frac{1}{x}$; d) $e^{-1/x}$; e) $x^{-1}e^{-x}$; f) $x^{-3}e^{-6/x}$; g) th $\frac{1}{x}$; h) $x^{1/x}$; i) $x^a \sec \frac{1}{x}$, $a \in \mathbb{R}$.

- **34.** Sea $f(x) = \sin x x \cos x$. Dibujar su gráfica. Precisar para qué m existe el límite de $x^{-m} f(x)$ si i) $x \to 0$, ii) $x \to \infty$.
- **35.** Sea $f(x) = e^{4/x 4/x^2}$, f(0) = 0. Determinar los puntos en que f es continua y derivable. Hallar máximos, mínimos y puntos de inflexión. Hallar sus asíntotas. Dibujar su gráfica. Utilizando $P_{1,1}$, polinomio de Taylor de grado 1 en x = 1, dar un valor aproximado de f(1.1). Determinar sin calculadora si el valor aproximado es mayor o menor que el exacto.
- **36.** i) Dada $g(x) = \sec^2(\frac{\pi}{x})$, evaluarla en $x = \frac{4}{n}$, $n \in \mathbb{N}$, y esbozar su gráfica usando estos datos. ¿Converge la sucesión $\{g(\frac{4}{n})\}$? ¿Posee alguna subsucesión convergente?
 - ii) Sea $f(x) = x \sec^2(\frac{\pi}{x})$ si $x \neq 0$, f(0) = 0. Justificar si es f continua y derivable en x = 0. Determinar el límite de f cuando $x \to \infty$. Hallar los mínimos de f en x > 0. Estudiar concavidad y convexidad. Dibujar la gráfica de f. Probar que el máximo absoluto de f en todo \mathbb{R} se alcanza en un $x \in [2,3]$.
- 37. Calcular el límite de las siguientes sucesiones:

a)
$$a_n = n^{-1} \log_2 n + n^2 2^{-n}$$
; b) $b_n = \frac{n^2 - 1}{3n} \operatorname{sen} \frac{n}{n^2 - 1}$; c) $c_n = n^3 (1 - \cos \frac{1}{n}) \log(1 + \frac{1}{n})$ (utilizar técnicas de cálculo de límites de funciones y justificar los pasos).

38. Usando el teorema del valor medio encontrar el límite de la sucesión $a_n = n^{1/3} - (n+1)^{1/3}$.

Integración en R

- **1.** Utilizando exclusivamente la definición de integral calcular $\int_0^1 x dx$ e $\int_1^2 x^{-2} dx$.
- **2.** Sea f acotada en [a,b]. Determinar si las siguientes implicaciones son verdaderas o falsas: $f \in C^1[a,b] \Rightarrow f$ integrable en [a,b]; f integrable en $[a,b] \Rightarrow f$ alcanza su máximo en [a,b];

f decreciente en $[a,b] \Rightarrow f$ integrable en [a,b]; f integrable en $[a,b] \Rightarrow \int_a^b f^2 = \left[\int_a^b f\right]^2$.

- **3.** Aproximar e con la definición $\log x = \int_1^x \frac{dt}{t}$ y las designaldades $t^{-21/20} < \frac{1}{t} < t^{-19/20}$, t > 1.
- **4.** Sea f definida por: f(x) = -1 si $x \in (0,1)$; f(x) = 3 2x si $x \in (1,2)$; f(0) = f(1) = f(2) = 0. Hallar $F(x) = \int_0^x f(t) dt$ y $\Phi(x) = \int_0^x F(t) dt$ para los $x \in [0,2]$ que exista. Determinar dónde Φ tiene primera y segunda derivadas, calculando Φ' y Φ'' .
- **5.** Si $F(x) = x \int_0^x e^{t^2} dt$, hallar F''(5).
- **6.** Derivar las siguientes funciones:

a)
$$F(x) = \int_1^{x^3} \sin^3 t \, dt$$
; b) $G(x) = \int_1^x x \sin t^3 \, dt$; c) $H(x) = \sin(\int_0^x \sin(\int_0^y \sin^3 t \, dt) \, dy)$.

7. Determinar en qué x del intervalo que se indica alcanzan su máximo y su mínimo las funciones:

a)
$$F(x) = \int_{-1}^{x} \frac{t dt}{t^2 - 9}$$
 en $[-1, 2]$; b) $G(x) = \int_{x}^{x+1} \frac{t dt}{t^2 + 2}$ en **R**; c) $H(x) = \int_{-2}^{3x - x^2} t e^{t^4} dt$ en $[0, 2]$; d) $K(x) = \int_{\pi}^{x} \sin^2 t dt$ en $[0, 4\pi]$.

- **8.** Siendo $f(x) = \int_0^x \sqrt{1+3t^4} dt$ y $g(x) = e^{2x}$, hallar $(f \circ g)'(0)$ y $(g \circ f)'(0)$.
- **9.** Calcular $(f^{-1})'(0)$ si $f(x) = \int_{\pi}^{x} [1 + \operatorname{sen}(\operatorname{sen} t)] dt$.
- **10.** Calcular las siguientes primitivas:

a)
$$\int \frac{dx}{x^3+x-2}$$
 b) $\int x^3 e^{-x} dx$ c) $\int x \arctan x \, dx$ d) $\int \frac{e^x \, dx}{1+e^{2x}}$ e) $\int \frac{dx}{\cosh x}$ f) $\int \frac{\cos x \, dx}{3+\cos^2 x}$ g) $\int \cos^5 x \sec^2 x \, dx$ h) $\int x^3 (\log x)^2 \, dx$ i) $\int \cos(\log x) \, dx$ j) $\int \frac{x^2 \, dx}{\sqrt{x^2+4}}$ k) $\int \cos^2(\pi x) \, dx$ l) $\int e^{2x} \cos(e^x) \, dx$ m) $\int \sec^6 x \, dx$ n) $\int e^x \log(e^x+1) \, dx$ ñ) $\int \frac{dx}{\sqrt{1+e^x}}$ o) $\int \sqrt{x} e^{-2\sqrt{x}} \, dx$ p) $\int \frac{dx}{(1-x^2)^{3/2}}$ q) $\int \frac{dx}{\sqrt{x-1}-\sqrt{x+1}}$ r) $\int \frac{x^2+x+1}{\sqrt{9-x^2}} \, dx$ s) $\int \frac{x \, dx}{\sqrt{2+x-x^2}}$

- **11.** Expresar $I_n(x)=\int \frac{dx}{[x^2+a^2]^n}$ en función de $I_{n-1}(x)$. Calcular $\int \frac{dx}{[x^2+1]^2}$ y $\int \frac{dx}{[x^2+2x+5]^3}$.
- **12.** Expresar $I_n = \int_0^{\pi/2} \operatorname{sen}^n x dx$ en función de I_{n-2} . Calcular I_{2n} , I_{2n+1} .
- 13. Calcular: $\int_0^{\pi} \operatorname{sen} mx \operatorname{sen} nx dx$, $\int_0^{\pi} \cos mx \cos nx dx$, $\int_0^{\pi} \operatorname{sen} mx \cos nx dx$, $m, n \in \mathbb{N}$.
- 14. Explicar por qué el cambio de variable resultados falsos si:

a)
$$\int_{-1}^{1} dx$$
, $t = x^{2/3}$; b) $\int_{-1}^{1} \frac{dx}{1+x^2}$, $t = \frac{1}{x}$.

15. Sea f continua en \mathbb{R} y sea f una primitiva de f ¿Si f es impar, es necesariamente f par? ¿Si f es par, es necesariamente f impar? ¿Si f es periódica es necesariamente f periódica?

- 16. Estudiar la convergencia de las siguientes integrales impropias. Hallar su valor si se puede:

- a) $\int_{\pi}^{\infty} \frac{\arctan x}{x^3 8} dx$ b) $\int_{0}^{2} \frac{dx}{(x 1)^{4/3}}$ c) $\int_{1}^{\infty} \log(1 + \frac{4}{x^2}) dx$ d) $\int_{0}^{\infty} \frac{1 \cos x}{x^2} dx$ e) $\int_{0}^{\infty} \frac{x \cos x}{e^x} dx$

- f) $\int_0^\infty \frac{dx}{2\mathrm{e}^x 1}$ g) $\int_1^\infty \sqrt{\frac{1}{x} + \frac{3}{x^2}} \, dx$ h) $\int_0^\infty x \sec^2(\frac{\pi}{x}) \, dx$ i) $\int_0^\infty \frac{\sin^2 x}{\sqrt{x}} \, dx$ j) $\int_1^\infty \frac{\log x}{\sqrt{x 1}} \, dx$

- k) $\int_0^1 \frac{\log(1+x)}{x^2} dx$ l) $\int_1^\infty \frac{x+2e^{\cos x}}{x^3-2\sqrt{2}} dx$ m) $\int_0^\infty \frac{\sin^4 x}{e^{x^4}-1} dx$ n) $\int_0^\infty \frac{\sqrt{x} dx}{e^{2x}-1}$

- 17. Sea $f(x) = \frac{1}{x} + 4 \arctan x$. Dibujar su gráfica y probar que $\pi + 1 \le \int_1^2 f \le 2\pi$. Determinar si converge la integral impropia $\int_1^{\infty} f$. Hallar $\lim_{x \to \infty} \frac{1}{x} \int_1^x f$.
- **18.** Aproximar $\log 2 = \int_1^2 \frac{dx}{x}$ utilizando las fórmulas de los trapecios (n=2,n=4) y Simpson (n=2,n=4); o sea, m=1,m=2).
- **19.** Aproximar $\int_0^1 e^{-x^2} dx$, $\int_0^1 \sqrt{x^4 + 1} dx$ e $\int_1^2 \frac{e^x}{x} dx$ utilizando Taylor y Simpson.
- 20. Probar las acotaciones:

i)
$$0 \le \int_0^{\pi/2} \operatorname{sen}(\operatorname{sen} x) \, dx \le \frac{\pi}{2}$$
, ii) $\frac{2}{21} \le \int_0^1 \frac{x^6 dx}{\sqrt{x^4 + 1}} \le \frac{1}{7}$, iii) $\frac{3}{8} \le \int_0^{1/2} \sqrt{\frac{1 - x}{1 + x}} \, dx \le \frac{2}{5}$.

- **21.** Sea $f(x) = \cos \sqrt{|x|}$. Estudiar si es derivable en x = 0. Hallar, si existen, los valores máximo y mínimo de f en el intervalo [-4,1]. Calcular $\int_{-4}^{4} f$. Probar que $\frac{7}{10} \le \int_{0}^{1} f \le \frac{7}{8}$.
- **22.** Estudiar para qué valores enteros de *n* se verifica que $3 < \int_0^1 \frac{nx}{4+x^4} dx < 4$.
- **23.** Hallar el valor de $I = \int_0^1 \frac{x}{x^4 16} dx$ y un racional que aproxime I con error menor que 10^{-2} .
- **24.** Sea $f(x) = \frac{x^2+2}{x^4+4}$. Hallar una primitiva de f . Probar que $\frac{1}{2} \le \int_0^1 f \le \frac{3}{4}$.
- **25.** Sea $f(x) = \int_0^x \sin t^2 dt$. Hallar $\lim_{x \to 0} \frac{x \sin x}{f(x)}$. Utilizar el polinomio de Taylor de orden 3 de f en el origen para hallar un valor aproximado de $f(\frac{1}{2})$. ¿Es menor que 10^{-2} el error cometido?
- **26.** Sea $f(x) = e^{2x-x^2}$. a) Aproximar $\int_0^1 f$ usando el desarrollo de Taylor hasta x^4 de f.
 - b) Sea $H(x) = \int_x^{x+1} f$, $x \in [0,2]$. Precisar en qué x alcanza sus valores máximo y mínimo.
 - c) Calcular el límite de $\frac{1}{x} \int_0^x f(t) dt$, i) cuando $x \to 0$, ii) cuando $x \to \infty$.
- **27.** Precisar dónde $f(x) = \frac{1}{x} [\sqrt[3]{1+3x} 1]$, f(0) = 1, es derivable. Hallar im f. Probar que $\int_{-2/3}^0 f = 6 - \frac{3}{2} \log 3 - \frac{\pi}{2} \sqrt{3}$ y aproximar la integral por Simpson con $h = \frac{1}{3}$. Determinar si converge $\int_1^{\infty} f$. Si $F(x) = \int_{-x}^{0} f$, hallar F'(3)
- **28.** Hallar el área de la región acotada entre el eje x y la gráfica de $f(x) = |x^3 1| 2$.
- **29.** Hallar el área de la región encerrada entre la gráfica de $g(x) = |3-4x^{-2}|$ y su recta tangente en x=2.
- **30.** Calcular el área de la región interior a la elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 31. Hallar el área de la región encerrada entre la curva $y = x^3$ y la recta tangente a la curva en el punto de abscisa x = a > 0.

- **32.** Hallar el área de la región acotada comprendida entre y = 0, la curva $x^2 + y^2 = 4$ y la tangente a la curva en $(1, -\sqrt{3})$.
- **33.** Hallar el valor mínimo, si existe, de $S(m) = \int_0^1 |x^3 mx| dx$.
- **34.** Determinar si es mayor o menor el área encerrada por la gráfica de las funciones i) $f(x) = e^{-x/2}$, ii) $g(x) = e^{-x^2}$ y el eje de las x en el intervalo [0,1] o en el intervalo $[1,\infty)$.
- **35.** Probar que el área de la región encerrada entre las gráficas y = 3x e $y = e^x$ es menor que 3.
- **36.** Describir las gráficas de las siguientes funciones escritas en coordenadas polares:

a)
$$r = a \operatorname{sen} \theta$$
, b) $r = a \operatorname{sec} \theta$, c) $r = \cos 2\theta$, d) $r = |\cos 2\theta|$.

- **37.** Hallar el área de la región acotada por el eje x y la gráfica de la función h(x) = 1 |x-1|, integrando en coordenadas i) cartesianas, ii) polares.
- **38.** Hallar el área de la región encerrada entre la cardioide $r = 1 + \cos \theta$ y la circunferencia $r = \cos \theta$.
- **39.** Hallar el área comprendida entre las espirales $r = 2e^{-\theta}$ y $r = e^{-\theta}$ si i) $\theta \in [0, 2\pi]$, ii) $\theta \ge 0$.
- **40.** Hallar la longitud de las curvas: i) $y = \log x$, $x \in [1,e]$; ii) $y = x^{2/3}$, $x \in [0,1]$.
- **41.** El perímetro de una elipse de eje mayor 2a y de excentricidad k ($k^2 = 1 \frac{a^2}{b^2}$) viene dado por $L = 4a \int_0^{\pi/2} \sqrt{1 k^2 \sec^2 \theta} \ d\theta$. Evaluar L integrando término a término el desarrollo de la raíz en potencias de $k^2 sen^2 \theta$. Hallar aproximadamente el perímetro de la elipse $3x^2 + 4y^2 = 12$.
- **42.** Un sólido tiene por base el triángulo del plano xy limitado por los ejes y la recta x+y=1. Cada sección producida por un plano perpendicular al eje x es un cuadrado uno de cuyos lados está en la base. Hallar su volumen.
- **43.** Hallar el volumen del 'toro' obtenido al girar un círculo de radio r en torno a una recta, situada en el plano del círculo, que está a una distancia d > r de su centro.
- **44.** Sea R la región limitada por $y = \frac{x}{1+x}$ y el eje x en [1,2]. a) Hallar el área de R integrando respecto a i) x, ii) y. b) Hallar el volumen del sólido de revolución que genera R al girar en torno i) al eje x; ii) al eje y; iii) a la recta y = 1.
- **45.** Supongamos que $f(x) \to 3$ si $x \to \infty$. ¿Qué ocurre con el valor medio de f en [0,b] cuando $b \to \infty$? Justificarlo.
- **46.** Sea una varilla de longitud L situada en el eje x con un extremo en el origen. Hallar su centro de gravedad y su momento de inercia respecto del origen si su densidad es

$$\rho(x) = \begin{cases} x^2 & \text{si } 0 \le x \le L/2 \\ L^2/4 & \text{si } L/2 \le x \le L \end{cases}.$$

47. Una partícula avanza por el eje x con velocidad $v(t) = t(1+t^2)^a$ m/s en el instante t. Si inicialmente está en x = 0, ¿para qué valores de a: i) recorre 1 m antes de 1 s, ii) recorre 1 m en un tiempo finito, iii) alcanza cualquier punto del semieje positivo en tiempo finito?

Introducción al cálculo en C

- **1.** Escribir los complejos: i) -5i, $-3-i\sqrt{3}$, $-\pi$, 4-3i, en la forma $e^{i\theta}$. ii) $3e^{-3\pi i}$, $4\cos\frac{\pi}{6}-4i \sin\frac{\pi}{6}$, $e^{i \sin 2}$, i^{765432} , en la forma a+bi.
- $\textbf{2.} \; \text{Calcular:} \quad \frac{1}{i} + \frac{3}{1+i} \; , \; \; \left(-\sqrt{3} + i\right)^{10}, \; \; \left(\frac{1-i}{1+i}\right)^5 \; , \; \; \sqrt[4]{-16e^{i\pi/3}} \; , \; \; \left|e^{3-i\left|2+i\right|}\right| \; .$
- **3.** Si z = x + iy, escribir la parte real y la parte imaginaria de: $z + \overline{z} + z \cdot \overline{z}$, z^{-2} , e^{iz} .
- **4.** Determinar si las siguientes igualdades son ciertas para todo z complejo: $2\operatorname{Re}(z) = z + \overline{z}$, $\operatorname{Re}(z \cdot w) = \operatorname{Re}(z) \cdot \operatorname{Re}(w)$, $|z| = |\overline{z}|$, $z^2 = |z|^2$, $\operatorname{sen}(2z) = 2\operatorname{sen} z \cos z$.
- 5. Resolver las ecuaciones:

$$z^2 + iz + 2 = 0$$
, $z^3 + 8 = 0$, $z^4 - 16z^2 + 100 = 0$, $e^z = 1$, $\cos z = 4$.

6. Representar los complejos que satisfacen:

$$z-\bar{z}=i$$
, $|z-1| \le |z+1|$, $|z-1|=2|z+1|$, $|e^z|=\text{Re}(z)$, $\text{Arg}(z^3) \le \frac{\pi}{2}$.

- **7.** Estudiar si f(z) = |z| y $g(z) = |z|^2$ son continuas y derivables en z = 0.
- 8. Estudiar si la función $f(z) = \sqrt{z}$ que hace corresponder a cada z la raíz con argumento principal más pequeño es continua en todo el plano complejo.
- 9. Demostrar que $e^{z+w} = e^z e^w$. Probar que $f(z) = e^z$ toma todos los valores complejos menos el 0, que no es inyectiva y que tiene periodo $2\pi i$.
- **10.** Definimos $\ln z = \ln |z| + i \operatorname{Arg}(z)$, $z \neq 0$ [Arg(z) es el argumento principal de z]. Comprobar que $e^{\ln z} = z$. Hallar $\ln 1$, $\ln (2i)$, $\ln (1+i)$, $\ln (1-i)$. Estudiar la continuidad de $\ln z$.
- 11. Probar que si $z, w \in \mathbf{C}$ entonces $||z| |w|| \le |z w|$. Probar que si la sucesión compleja $\{a_n\}$ converge entonces también lo hace la sucesión real $\{|a_n|\}$.
- 12. Hallar (si existe) el límite de las siguientes sucesiones de complejos:

$$2^{-n/2}(1+\mathrm{i})^n\,,\; \left(\tfrac{1+5\mathrm{i}}{3+2\mathrm{i}}\right)^n,\; 2^{-n}(1+\mathrm{i})^n(1-\mathrm{i})^{-n}\,,\; (n-\mathrm{i}\,)^3n^{-3}\,,\; \mathrm{e}^{\mathrm{i}\,n/(n+1)}\,,\; \mathrm{e}^{(2-\mathrm{i}\,)/n}\,,\; \mathrm{e}^{-n\mathrm{e}^{\mathrm{i}}}\,.$$

- **13.** Determinar si convergen: $\sum \frac{(4-3i)^n}{n!}$, $\sum \frac{2-ni}{n^2}$, $\sum e^{i/n}$, $\sum \frac{i^n}{n^2}$, $\sum \frac{(-i)^n}{\sqrt{n}}$, $\sum \frac{1}{[2-e^{in}]n^2}$.
- **14.** Estudiar si la serie $\sum n^7 z^n$ converge cuando i) $z = \frac{4-3i}{5+i}$, ii) $z = e^{-3\pi i}$.
- **15.** Determinar la región del plano complejo en que converge la serie $\sum \frac{z^n}{e^n + n}$.
- **16.** Hallar el radio de convergencia de las siguientes series de potencias complejas y decidir si convergen para z = i, z = -i, $z = (1-i)^2$, z = 1 + ei, $z = e^{i|7+3i|}$:

$$\sum \frac{(-1)^n z^n}{n^3}$$
, $\sum \frac{2^n z^n}{n!}$, $\sum \frac{n! z^n}{n^n}$, $\sum \frac{\mathrm{i}^n n^n z^n}{2^n}$, $\sum \frac{n z^n}{n+1}$, $\sum \frac{\mathrm{i}^n z^n}{n+1}$.

17. Desarrollar en serie de Taylor en torno a z = 0, determinando el radio de convergencia:

$$\frac{3z}{1+z-2z^2}$$
, senzcosz, $\frac{\sin^2 z}{z}$, $\frac{e^z}{1+z}$.

CÁLCULO I (2006/2007). Problemas 1-16.

1. Encontrar todos los reales x para los que:

a)
$$\frac{x-2}{x+2} \ge 0$$

b)
$$|x-3| < 5$$

c)
$$|x - 5\pi| \ge 4\pi$$

a)
$$\frac{x-2}{x+2} \ge 0$$
 b) $|x-3| < 5$ c) $|x-5\pi| \ge 4\pi$ d) $|4-7x| = 4-x^2$ e) $|1-\frac{1}{x}| \le 2$ f) $x^3+x^2 > 2x$ g) $|x||x-2| < 1$ h) $|x|+|x-3| \le 5$

e)
$$|1 - \frac{1}{x}| < 1$$

f)
$$x^3 + x^2 > 2x$$

g)
$$|x||x-2|$$

h)
$$|x| + |x - 3| \le 5$$

2. Precisar si los siguientes subconjuntos de R tienen supremo, ínfimo, máximo, mínimo y si son abiertos

a) $\{x: |x| > 2\} - \{7\}$; b) $\{x \in \mathbf{Q}: x^2 \le 4\}$; c) $\{(-1)^n + \frac{1}{n}: n \in \mathbf{N}\}$; d) $\{10^{-7}n: n \in \mathbf{N}\}$; f) ϕ .

b)
$$\{x \in \mathbf{Q} : x^2 < 4\}$$

c)
$$\{(-1)^n + \frac{1}{2} : n \in \mathbb{N}\}$$

$$\{10^{-7}n:n\in\mathbb{N}\}:$$

3. Determinar el dominio de las siguientes funciones:

a)
$$f(x) = \frac{\arctan x}{2 - \sqrt[3]{x}}$$
 b) $g(x) = \log(1 - x^2)$ c) $h(x) = \tan(\pi x^2)$ d) $k(x) = \arcsin(\log x)$

c)
$$h(x) = \tan(\pi x^2)$$

d)
$$k(x) = \arcsin(\log x)$$

- **4.** Sean $f(x) = \sqrt{x+2}$, $g(x) = \frac{2}{x}$. Hallar el dominio de $f \circ g$, $g \circ f$ y $f \circ f$. Hallar im f e im g. Comprobar que f es inyectiva en todo su dominio y calcular f^{-1} indicando su dominio.
- **5.** Hallar todos los números reales *x* tales que:

a)
$$\cos 2x - 5\cos x = 2$$
 b) $\log(x+2) = 2\log x$ c) $e^{2|\log x|} < 8x$ d) $|\tan x| < 1$

c)
$$e^{2|\log x|} < 8x$$

d)
$$|\tan x| < 1$$

6. Sean a) $a_n=\frac{(-1)^n+n}{1+n}$, b) $b_n=10^{7-n}$ y c) $c_n=\frac{300\cos n-2n}{n^2}$. Hallar un N a partir del cual sus términos difieran del límite en menos de $\varepsilon=1$, $\varepsilon=0.1$ y $\varepsilon=0.01$.

- 7. Probar a partir de la definición de límite que: $\{a_n\}$ convergente $\Rightarrow \{|a_n|\}$, $\{a_n^2\}$ convergentes. ¿Es cierta la implicación inversa en alguno de los dos casos?
- 8. Calcular el límite de las sucesiones que sean convergentes:

b)
$$\frac{17\sqrt{n+3}+9}{\sqrt{n^2+1}-1}$$

a)
$$\frac{n^2 - 30n}{3 - 100n}$$
 b) $\frac{17\sqrt{n+3} + 9}{\sqrt{n^2 + 1} - 1}$ c) $(-1)^n \left(\frac{\sqrt{n-1}}{\sqrt{n}} - 1\right)$ d) $\left(\sqrt{2n^2 - 1} - 1\right)^4$

d)
$$(\sqrt{2n^2-1}-1)$$

e)
$$(2 - \frac{1}{n})^{2n}$$

f)
$$\frac{n^2}{2n-1} - \frac{n^2-1}{2n}$$

g)
$$(-1)^n \sqrt{n} - n$$

e)
$$\left(2 - \frac{1}{n}\right)^{2n}$$
 f) $\frac{n^2}{2n-1} - \frac{n^2-1}{2n}$ g) $(-1)^n \sqrt{n} - n$ h) $\frac{2^n + (-1)^n}{2^{n+1} + (-1)^{n+1}}$

i)
$$n\left(\frac{\sqrt{2n-1}}{\sqrt{n-1}} - \sqrt{2}\right)$$
 j) $\frac{\sqrt{2n^4+3}-4}{n^2+5 \operatorname{sen} n}$ k) $\left(\frac{n+1}{n-1}\right)^n$

j)
$$\frac{\sqrt{2n^4+3}-4}{n^2+5 \operatorname{sen} n}$$

k)
$$\left(\frac{n+1}{n-1}\right)^n$$

1)
$$1 + \cdots + \frac{1}{2^n}$$

9. Precisar para qué valores de a, b > 0 convergen las sucesiones:

a)
$$a_n = \sqrt{n^2 + an} - bn$$
 b) $\sqrt[n]{a^n + b^n}$ c) $\left(a + \frac{b}{n}\right)^n$

b)
$$\sqrt[n]{a^n + b^n}$$

c)
$$\left(a + \frac{b}{n}\right)^n$$

- **10.** Definimos la sucesión $\{a_n\}$ mediante: $a_n = \sqrt{2 + a_{n-1}}$, $a_1 = \sqrt{2}$. Probar que tiene límite y calcularlo. [Demostrar por inducción que $a_n < 2$ y probar que $\{a_n\}$ es creciente].
- 11. Utilizando únicamente las definiciones probar que:

a)
$$f(x) = 1 + \sqrt{4+x}$$
 es continua en $x = 0$, b) $\lim_{x \to \infty} \frac{1}{1+x^2} = 0$, c) $\lim_{x \to 0^+} \frac{1+x}{x^3} = \infty$.

12. Determinar si f+g, $f \cdot g$ y $f \circ g$ son necesariamente pares o impares en los cuatro casos obtenidos al tomar f par o impar y g par o impar. Probar que si f es impar y tiene límite en x = 0, entonces ese límite es 0.

I

13. Hallar una f que no sea continua en ningún punto, pero tal que |f(x)| sea continua $\forall x$. ¿Existe alguna función que sea continua en todo **R** menos en un único punto? ¿Y alguna que sea continua en un único punto de R y discontinua en todos los demás?

14. Hallar (si existen) los siguientes límites:

a)
$$\lim_{x\to 0} \frac{\text{sen } x}{|x|}$$
; b) $\lim_{x\to 0} \frac{\text{sen } x^2}{x}$; c) $\lim_{x\to 0} \frac{\text{sen } x}{x^3}$; d) $\lim_{x\to 0} \arctan(\log x^2)$; e) $\lim_{x\to 0} e^{1/x} \sec \frac{\pi}{x}$; f) $\lim_{x\to 0^+} \log \frac{1}{x}$;

$$g) \lim_{x \to 1} \frac{x^2 + 1}{x - 1} \; ; \; \; h) \lim_{x \to 1} \frac{x^2 - 1}{x - 1} \; ; \; ; i) \lim_{x \to 2} \frac{x^2 - 1}{x - 1} \; ; \; \; j) \lim_{x \to 1} \frac{\sin(x - 1)^2}{x^2 - 1} \; ; \; \; k) \lim_{x \to 1^-} (1 - x)^{\sin x} \; ; \; \; l) \lim_{x \to 1^-} \frac{\arcsin x}{x} \; ;$$

$$\text{m)} \lim_{x \to 0} \frac{1}{3 + 2^{1/x}} \; ; \; \; \text{n)} \lim_{x \to \infty} \frac{1}{3 + 2^{1/x}} \; ; \; \; \tilde{\text{n}}) \lim_{x \to -\infty} \frac{1}{3 + 2^{1/x}} \; ; \; \; \text{o)} \lim_{x \to \infty} \sqrt{x^2 - x} - x \; ; \; \; \text{p)} \lim_{x \to -\infty} \sqrt{x^2 - x} - x \;$$

$$\text{q)} \lim_{x \to \infty} \frac{(x+1)^{100}}{(2x+5)^{100}} \; ; \; \; \text{r)} \lim_{x \to -\infty} \frac{x+\sin^3 x}{5x+6} \; ; \; \; \text{s)} \lim_{x \to -\infty} \frac{\sqrt{x^2+1}}{x+5} \; ; \; \; \text{t)} \lim_{x \to \infty} \arctan(\log x^2) \; ; \; \; \text{u)} \lim_{x \to \infty} x \, \text{sen} \, x.$$

- **15.** Sea $f:[0,1]\to \mathbf{R}$ continua y tal que im $f\subset [0,1]$. Probar que entonces existe algún $x\in [0,1]$ tal que f(x)=x [a x se le llama punto fijo de f].
- **16.** Probar que si f es continua en $[a,\infty)$ y $\lim_{x\to\infty} f(x)$ es finito, entonces f es acotada en $[a,\infty)$. ¿Alcanza siempre f su valor máximo en dicho intervalo?

CÁLCULO I (2006/2007). Problemas 17-42.

17. Hallar la primera y segunda derivadas de las funciones siguientes indicando su dominio:

a)
$$f(x) = x^3 \sin \frac{1}{x}$$
, $f(0) = 0$; b) $g(x) = x \log |x|$, $g(0) = 0$; c) $h(x) = \arctan(\log x^2)$; d) $k(x) = |x^{7/3} - x^2|$; e) $l(x) = \arccos(\frac{x^2}{1 - x^2})$; f) $m(x) = \frac{x^2 - 1}{\sqrt[3]{3x + 1}}$.

- **18.** Sea $f(x) = \begin{cases} \frac{1}{|x|} & \text{si } 0 < |x| \le 1 \\ a + bx^2 & \text{si } |x| > 1 \end{cases}$. Hallar $a \neq b$ para que existan $f'(1) \neq f'(-1)$.
- 19. Determinar para qué puntos de la gráfica de $f(x) = e^{x^2 x}$ la recta tangente pasa por el origen.
- **20.** Hallar, si existe, un $c \in (0,1)$ en el que la tangente a $f(x) = \arctan \frac{x}{2-x}$ sea paralela a la recta que une (0,0) y $(1,\frac{\pi}{4})$.
- **21.** Hallar el punto de corte de las tangentes a la gráfica de $g(x) = \left| 1 \frac{4}{x} \right|$ en x = -2 y x = 2.
- **22.** Hallar la ecuación de la recta tangente a la curva $y + yx^2 + y^3 = 6$ en el punto (2,1).
- **23.** Sea $f(x) = \frac{e^x}{1-|x|}$. Determinar si es derivable en x=0. Hallar, si existen, el valor máximo y el valor mínimo de f en el intervalo $\left[-\frac{1}{2},\frac{1}{4}\right]$.
- **24.** Encontrar (si existen) los valores máximo y mínimo de $f(x) = \arcsinx + \sqrt{3} \log |2-x|$.
- 25. Hallar (si existen) los valores máximo y mínimo de estas funciones en los intervalos indicados:

a)
$$f(x) = 2x - 9x^{2/3}$$
 en $[-8,64]$; b) $g(x) = x + 2|\cos x|$ en $[0,\pi]$; c) $h(x) = \sqrt{(x-1)^2 + 9} + \sqrt{(x-8)^2 + 16}$ en **R**.

- **26.** Sea $f(x)=x+2\cos x$. Hallar, si existe, el valor mínimo de f en el intervalo [0,1]. Probar que existe f^{-1} , función inversa de f(x) para $x\in [-\frac{1}{2}\,,\frac{1}{2}\,]$, y hallar la derivada $(f^{-1})'(2)$.
- **27.** Probar que $f(x) = e^{\sin x} + x$ posee función inversa f^{-1} en todo su dominio y calcular $(f^{-1})'(1)$.
- **28.** Determinar cuántas veces se anula la función $f(x) = e^{\sin x} x 1$ en $\left[\frac{\pi}{2}, \pi\right]$.
- **29.** Sea $f(x) = \frac{x^2}{\sqrt{1-x^2}}$. Determinar su dominio e intervalos de crecimiento y decrecimiento. Probar que existe un único $c \in \left(\frac{3}{5}, \frac{4}{5}\right)$ tal que $f(c) = \frac{2}{3}$.
- **30.** Sea $f(x) = 3 \arctan x \log x$. Estudiar cuántas veces se anulan f' y f en el intervalo $[0, \infty)$. Probar que f es inyectiva en $[3, \infty)$.
- **31.** Sea $f(x)=(x^2+1)\,\mathrm{e}^{3x-x^2}$. Hallar $\lim_{x\to\infty}f(x)$ y $\lim_{x\to-\infty}f(x)$. Probar que f' se anula en un punto del intervalo (1,2) y que no lo hace más veces en su dominio. Estudiar cuántas soluciones tiene la ecuación f(x)=1.
- **32.** Discutir, según los valores de la constante a, cuántas soluciones reales tiene la ecuación $e^x = ax$.

III

33. Dibujar las gráficas de las funciones:

a)
$$\frac{x^2-4}{x^2-9}$$

b)
$$\sqrt{\frac{x+3}{x^2}}$$

a)
$$\frac{x^2 - 4}{x^2 - 9}$$
 b) $\sqrt{\frac{x + 3}{x^2}}$ c) $x\sqrt{\frac{x + 3}{x^2}}$ d) $\arctan(3x - x^3)$
e) $\frac{\cos x}{1 + |\sin x|}$ f) $\frac{1}{2e^x - 1}$ g) $e^{-x}\cos x$ h) $\log(x^2 + \frac{1}{x})$

d)
$$\arctan(3x-x^3)$$

e)
$$\frac{\cos x}{1+|\sin x|}$$

f)
$$\frac{1}{2e^{x}-1}$$

g)
$$e^{-x}\cos x$$

h)
$$\log (x^2 + \frac{1}{x})$$

34. Discutir según los valores a las diferentes formas que puede tener la gráfica de:

a)
$$1 + ax^2 + x^4$$
 b) $\frac{a}{x^2} + \frac{1}{x}$

b)
$$\frac{a}{x^2} + \frac{1}{x}$$

- **35.** Hallar dos números x, y tales que |x| + |y| = 1 y tales que la suma de sus cuadrados sea i) máxima, ii) mínima.
- 36. Determinar el triángulo de área mínima de entre todos aquellos del primer cuadrante cuyos catetos son los ejes y cuya hipotenusa pasa por el punto (1,2). ¿Existe el de área máxima?
- 37. Hallar el punto de la recta tangente a la curva $x^2 + y^2 = 4$ en el punto $(1, -\sqrt{3})$ que esté más próximo al punto (2,0).
- **38.** Hallar los puntos de la curva $3y^2 = 21 + 20x x^4$ situados a mayor y menor distancia del origen.
- **39.** Encontrar el punto de la gráfica de $f(x) = 2\arctan(x-2)$ para el que es mínima la suma de sus distancias a ambos ejes.
- 40. Determinar el área máxima que puede tener un rectángulo que tenga dos lados sobre los semiejes x,y positivos y el vértice opuesto sobre la gráfica de $f(x) = [x^3 + 4]^{-1/2}$.
- **41.** Hallar el punto P sobre la gráfica de $f(x) = e^{-x}$ en el primer cuadrante para el que es máxima el área del triángulo rectángulo cuya hipotenusa es tangente a dicha gráfica en P y cuyos catetos están sobre los ejes coordenados.
- **42.** Un nadador está en el punto A del borde de un estanque circular de 50 m de radio y desea ir al punto diametralmente opuesto B, nadando hasta algún punto P del borde y andando luego por el arco PB del borde. Si nada 50 m por minuto y camina 100 m por minuto ¿A qué punto P se debe dirigir para minimizar el tiempo de su recorrido?

CÁLCULO I (2006/2007). Problemas 43-69.

- **43.** Sea la sucesión $\{a_n\}$ definida por $a_{n+1} = \frac{n+2}{3n+1}a_n$, con $a_1 = 1$. Probar que tiene límite y calcularlo. Determinar la convergencia de $\sum a_n$.
- **44.** Determinar si las siguientes series son convergentes o divergentes:

a)
$$\sum \frac{2^{n^2}}{n^n}$$

b)
$$\sum \frac{3+\cos n}{\sqrt{n}}$$

c)
$$\sum (-1)^n \left(\frac{\pi}{e}\right)^n$$

a)
$$\sum \frac{2^{n^2}}{n^n}$$
 b) $\sum \frac{3+\cos n}{\sqrt{n}}$ c) $\sum (-1)^n (\frac{\pi}{e})^n$ d) $\sum [\frac{e^{-100}}{n} - \frac{e^{-n}}{100}]$
e) $\sum ne^{-n^2}$ f) $\sum \frac{n^2 2^n}{n!}$ g) $\sum \frac{2+(-1)^n}{n^2+3}$ h) $\sum (-1)^n \frac{n+24}{25n}$

e)
$$\sum ne^{-n^2}$$

f)
$$\sum \frac{n^2 2^n}{n!}$$

g)
$$\sum \frac{2+(-1)^n}{n^2+3}$$

h)
$$\sum (-1)^n \frac{n+24}{25n}$$

i)
$$\sum \frac{n^n}{(n+2)^n}$$

$$j) \sum \frac{1}{(\ln n)^2}$$

k)
$$\sum \frac{1}{n(\ln n)^2}$$

i)
$$\sum \frac{n^n}{(n+2)^n}$$
 j) $\sum \frac{1}{(\ln n)^2}$ k) $\sum \frac{1}{n(\ln n)^2}$ l) $\sum (-1)^n \frac{4n-1}{n(n-1)}$

m)
$$\sum$$
 tan

n)
$$\sum \frac{(n!)^2}{(2n)!}$$

$$\tilde{n}$$
) $\sum \frac{\sin n}{\sqrt{n^3 + \cos^3 n}}$

m)
$$\sum \tan \frac{1}{n}$$
 n) $\sum \frac{(n!)^2}{(2n)!}$ ñ) $\sum \frac{\operatorname{sen} n}{\sqrt{n^3 + \cos^3 n}}$ o) $\sum \left[\frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n+1}}\right]$

45. Probar que la suma de las siguientes series es la indicada

a)
$$\sum_{n=2}^{\infty} \frac{2^{n+1} + (-1)^n}{3^{n-2}} = \frac{99}{4}$$

a)
$$\sum_{n=2}^{\infty} \frac{2^{n+1} + (-1)^n}{3^{n-2}} = \frac{99}{4}$$
; b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}\sqrt{n+1}[\sqrt{n}+\sqrt{n+1}]} = 1$.

46. Determinar para que números reales c convergen las siguientes series

a)
$$\sum \frac{(-1)^n}{n^c}$$
; b) $\sum \frac{c^n+2}{e^n+n}$; c) $\sum \frac{(n!)^c}{(3n)!}$

a)
$$\sum \frac{(-1)^n}{n^c}$$
; b) $\sum \frac{c^n+2}{e^n+n}$; c) $\sum \frac{(n!)^c}{(3n)!}$; d) $\sum \frac{(c-1)^n}{2^{2n-1}}$; e) $\sum \frac{(2c-1)^{n^2}}{n+1}$; f) $\sum \frac{2^n c^n}{n!}$.

- **47.** Determinar para qué $a \in \mathbf{R}$ converge $\sum_{n=2}^{\infty} \frac{2^{n-2}}{a^n}$. Precisar para qué valores de a su suma es $\frac{1}{3}$.
- **48.** Probar que $0.8414 \le \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \le 0.8417$ (sumar 3 y 4 términos de la serie). ¿Cuántos términos habría que sumar para estimar la suma con error menor que 10^{-5} ?
- **49.** Estudiar si convergen puntual y uniformemente en el intervalo que se indica:

$$f_n(x) = \frac{1}{1+x^{2n}} \text{ en } [0,2] \; ; \quad g_n(x) = \frac{nx}{n+1} \text{ en } [0,1] \; ; \quad h_n(x) = \mathrm{e}^{x-n} \text{ en i) } (-\infty,0] \; , \; \mathrm{ii)} \; [0,\infty) \; .$$

- **50.** i) Calcular los valores máximo y mínimo de $f_n(x) = \frac{x}{n} e^{-nx}$ en $[0, \infty)$.
 - ii) Determinar si convergen uniformemente en $[0,\infty)$ la sucesión $f_n(x)$ y la serie $\sum f_n(x)$.
- **51.** Estudiar para qué x convergen, y si lo hacen uniformemente en el intervalo que se indica:

a)
$$\sum \frac{\arctan(nx)}{5^n}$$
 en **R**; b) $\sum \frac{\cos^n x}{n^3}$ en **R**; c) $\sum \frac{x^2 + \arctan n}{\sqrt{1 + n^3 x^2}}$ en [1,2]; d) $\sum \frac{(5x)^{n-1}}{(x^2 + 6)^n}$ en [5,6].

V

52. Determinar todos los valores de x para los que convergen las series:

a)
$$\sum \frac{(7x)^n}{\sqrt{n^2+1}}$$
 b) $\sum \frac{x^n}{n^n}$ c) $\sum \cos \frac{n\pi}{6} x^n$

b)
$$\sum \frac{x^n}{n^n}$$

c)
$$\sum \cos \frac{n\pi}{6} x^n$$

d)
$$\sum 2^{n^2} (x-2)^n$$

e)
$$\sum \frac{x^n}{n + \log n}$$

f)
$$\sum \frac{n^2 x^{2n}}{\pi^n}$$

g)
$$\sum e^{-\sqrt{n}} x'$$

e)
$$\sum \frac{x^n}{n + \log n}$$
 f) $\sum \frac{n^2 x^{2n}}{\pi^n}$ g) $\sum e^{-\sqrt{n}} x^n$ h) $\sum \frac{2^n}{\sqrt{n^3 + 1}} (x + 1)^n$

- **53.** Determinar para qué valores de x converge $\sum_{n=1}^{\infty} n3^n x^{n-1}$ y hallar su suma para esos valores.
- **54.** Hallar los x para los que converge $\sum (-2x)^{3n}$. Decidir si converge para $x = \arctan \frac{3}{5}$.
- **55.** Hallar todos los valores de x para los cuales la serie $\sum \left[1 x \cos \frac{1}{n}\right]$ es convergente.

56. Utilizando polinomios de Taylor determinar con un error menor que 10^{-3} el valor de:

a) cos 1

b) e

c) $\log \frac{3}{2}$

- **57.** Sea $f(x) = x(1+x^3)^{-1/5}$. Hallar los 3 primeros términos no nulos de su desarrollo de Taylor en x = 0. Approximar por un racional f(1/2) con error menor que 0.001.
- **58.** Hallar los 3 primeros términos no nulos del desarrollo en serie de Taylor en x = 0 de:

a) $\cos^2 \frac{x}{3}$ b) $\frac{5}{3-x}$ c) $\sin x - x \cos x$ d) $(2-x)\sqrt{1+x}$ e) $\sin x \cot x$ f) $\frac{1}{\cos x}$ g) $\frac{\log(1+2x)}{1+2x}$ h) $\cos(\sin x)$

- **59.** Hallar los primeros términos del desarrollo de $\arcsin x$, utilizando el de $(1-x^2)^{-1/2}$.
- 60. Hallar la suma de las siguientes series:

a) $\sum_{n=0}^{\infty} \frac{1}{(2n)!}$ b) $\sum_{n=0}^{\infty} \frac{(-4)^n}{(2n+1)!}$ c) $\sum_{n=0}^{\infty} \frac{1}{3^n(n+1)}$ d) $\sum_{n=0}^{\infty} \frac{2n+1}{n! \, 2^n}$ e) $\sum_{n=0}^{\infty} \frac{n}{3^n}$

- **61.** Hallar un polinomio P tal que $\lim_{x\to 0} x^{-7} \left[\sqrt{1-x^4} P(x) \right] = 0$. ¿Es único dicho polinomio?
- **62.** Calcular los siguientes límites indeterminados cuando x tiende al a indicado:

a = 0: a) $\frac{\sqrt{1 - x^2} - \cos x}{x^4}$; b) $\frac{x - \tan x}{\arctan(x^3)}$; c) $\frac{e^x - e^{\sin x}}{x^3}$; d) $(\cos 2x)^{3/x^2}$; e) $\frac{1 - \sqrt{1 - x^2}}{x}$.

a = 1: f) $\frac{1}{\log x} - \frac{1}{x-1}$; g) $\frac{x^x - x}{1 - x + \log x}$; h) $\frac{1 - \sqrt{x}}{1 - x}$. $a = 0^+$: i) $\tan x \log x$.

 $a = \infty$: j) $[\log x]^{1/x}$; k) $\frac{e^x + \operatorname{sen} x}{e^x + \cos x}$; l) $\left[\frac{x+3}{x-3}\right]^x$; m) $x^2 \arctan \frac{1}{x} - \sqrt{1+x}$; n) $x \tan \frac{1}{x}$.

63. Hallar el valor de b tal que $f(x) = x^{-2} [e^{bx^4} - \cos bx]$ tiende hacia 0 si $x \to \infty$ y tiende hacia 2 si

64. Sean a) $f(x) = \frac{x^2 - \sin^2 x}{\log(1 + x^4)}$, b) $g(x) = \frac{\sin^3 x}{1 - e^{-x^3}}$, c) $h(x) = \frac{\arctan(\sin x) - x}{\log(1 + x^3)}$.

Determinar (si existen) sus límites cuando: i) $x \to 0$; ii) $x \to -\infty$

65. Estudiar en qué puntos es continua la función: $f(x) = \frac{x^2 \sin \pi x}{1 - \cos \pi x}$ si $x \notin \mathbf{Z}$, f(x) = 0 si $x \in \mathbf{Z}$.

66. Sea $f(x)=\frac{\log|1+x^3|}{x}$, f(0)=0. Estudiar si existen f'(0) y f''(0). Dibujar su gráfica. Calcular $\lim_{n\to\infty}\{f(f(n))\}$.

- 67. Sea $f(x) = x^{-2} \sin^2 \pi x$, $f(0) = \pi^2$. Determinar si existen f'(0) y f''(0). Dibujar su gráfica. Probar que existe la inversa f^{-1} en un entorno de $x = \frac{1}{2}$ y calcular la derivada de f^{-1} en $f(\frac{1}{2})$.
- **68.** Estudiar la continuidad de $f(x)=(1-\frac{1}{x})\log|1-x^2|$, $f(\pm 1)=f(0)=0$. ¿Existe f'(0)? Probar que $\exists c \in (0,1)$ con f'(c) = 0.
- **69.** Sea $f(x)=\frac{1-\mathrm{e}^{-x}}{x}$, f(0)=1. Hallar f'(0). Determinar los límites $\lim_{x\to\pm\infty}f(x)$ y la im f. Estudiar el crecimiento y decrecimiento de f . Hallar la derivada $f^{(2003)}(\mathbf{0})$.

CÁLCULO I (2006/2007). Problemas 70-100.

- **70.** Sea $f(x) = \log(2-x)$, $x \in [0,1)$; f(x) = 0, $x \in [1,2)$; f(x) = 1, $x \in [2,3]$, y sea $F(x) = \int_0^x f$. Determinar los $x \in [0,3]$ para los que F es continua y derivable. Hallar F(3).
- **71.** Sea $F(x) = \int_{1-2x}^{x} t e^{-t^4} dt$. Hallar F(1), F'(1) y $(F \circ F)'(1)$. ¿Es F(0) mayor o menor que F(1)?
- **72.** Sea $f(x) = \frac{\operatorname{sen}(x^3) + 1}{\int_{-1}^x \operatorname{sen}(t^3) dt + x + 4}$. Calcular, si existe, $\int_{-1}^1 f(x) dx$.
- 73. Determinar en qué x del intervalo que se indica alcanzan su máximo y su mínimo las funciones:

a)
$$F(x) = \int_0^{x-x^3} \frac{dt}{\sqrt{2-\sin^2 t}}$$
 en $[0,2]$; b) $G(x) = \int_x^{2x} \frac{dt}{\sqrt{36+t^3}}$ en $[-1,6]$;
c) $H(x) = x - \int_1^x \cos(\sin t) dt$ en $[1,4]$.

- **74.** Estudiar en qué intervalos crece y decrece la función $f(x) = \int_0^{x^2} e^{t^2} dt e^{x^4}$. Determinar en cuántos puntos del intervalo $[0, \infty)$ se anula f(x).
- **75.** ¿Posee función inversa la función f definida para todo $x \ge 2$ por $f(x) = \int_{x^2}^{x^3} \frac{dt}{\log t}$?
- **76.** Sea $f(x) = \int_1^x e^{4 \arctan t} dt$. Hallar la ecuación de la recta tangente a la gráfica de f en x = 1. Probar que f posee inversa en todo **R** y calcular $(f^{-1})'(0)$.
- 77. Sea $F(x)=\int_{-1/x}^{1/x^2} \mathrm{e}^{-t^4} dt$. Hallar F'(1) . Estudiar si la serie $\sum (-1)^n F(n)$ converge.
- **78.** Sea $f(x) = x^2 e^{-x^2}$. Si $H(x) = \int_x^{2x} f(t) dt$, hallar el x para el que H(x) es máximo. Dibujar aproximadamente la gráfica de f y probar que el valor máximo de H es menor que 1/2.
- **79.** Hallar los valores máximo y mínimo de $g(x) = \frac{x^2 5x}{x 9}$ en [2,4]. Probar que $\frac{8}{5} < \int_2^4 g(x) dx < 2$. Hallar la integral y, usando desarrollos de Taylor, comprobar las desigualdades anteriores.
- **80.** Hallar las siguientes primitivas:

a)
$$\int \frac{[\log x]^2}{x} dx$$
 b) $\int \frac{\log x}{x^2} dx$ c) $\int x^2 \arctan \frac{1}{x} dx$ d) $\int (\log x)^3 dx$ e) $\int \arcsin x dx$

f)
$$\int \frac{x^4}{x+1} dx$$
 g) $\int \frac{dx}{x^4 - 2x^3}$ h) $\int \frac{3x^2 + 3x + 1}{x^3 + 2x^2 + 2x + 1} dx$ i) $\int \frac{x+2}{x^3 - 8} dx$ j) $\int 4x \cos x^2 dx$ k) $\int \frac{x dx}{\cos^2 x}$ l) $\int \frac{\sin 2x dx}{5 + 4\cos x}$ m) $\int \frac{dx}{3\sin^2 x + \cos^2 x}$ n) $\int \tan^2 x dx$ ñ) $\int 4x \cos^2 x dx$

o)
$$\int x^3 e^{x^2} dx$$
 p) $\int \frac{dx}{1+2e^x+e^{2x}}$ q) $\int x^3 \sqrt{1-x^2} dx$ r) $\int \frac{\sqrt{1+x}}{x} dx$ s) $\int \sqrt{x^2-1} dx$

81. Calcular, si existe:

a)
$$\int_{-1}^{1} e^{-|x|} dx$$
 b) $\int_{-1}^{1} \frac{dx}{x^4}$ c) $\int_{-1}^{0} \frac{dx}{x^2 + x - 2}$ d) $\int_{-2}^{4} (|x + 4| - 3|x|) dx$ e) $\int_{-\pi/2}^{\pi/2} \sin^5 x \, dx$ f) $\int_{1}^{e} x \log x \, dx$ g) $\int_{1}^{3} x \sqrt{1 + x} \, dx$ h) $\int_{0}^{1} \arctan(\sqrt{x}) \, dx$ i) $\int_{0}^{\pi/2} \cos 2x \cos x \, dx$ j) $\int_{0}^{1/2} \frac{x^2 \, dx}{\sqrt{1 - x^2}}$ k) $\int_{4}^{5} \frac{dx}{x - 4\sqrt{x - 4}}$ l) $\int_{-\pi/6}^{0} \frac{\cos x \, dx}{3 \sin x - 2 \cos^2 x}$

- **82.** Sea $f(x) = x \log(1 + \frac{4}{x^2})$. Hallar una primitiva de f. Estudiar la convergencia de $\int_1^\infty f$.
- 83. Probar que $\int_3^\infty x^{-3} e^{-6/x} dx$ es convergente y que su valor es menor que $\frac{1}{18}$.

84. Estudiar la convergencia de las siguientes integrales impropias. Hallar su valor si se puede:

a)
$$\int_0^\infty \frac{dx}{x^4 + x^2}$$

b)
$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$$

c)
$$\int_0^\infty e^{-x} \sin x \, dx$$

d)
$$\int_{1}^{\infty} \frac{dx}{x^{1+1/2}}$$

$$e) \int_1^\infty \left[\frac{1}{x} - \frac{1}{\sqrt{x^2 + 1}} \right] dx$$

f)
$$\int_1^\infty e^{-1/x} dx$$

g)
$$\int_0^\infty \frac{dx}{(x+1)\sqrt{x}}$$

b)
$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$$
 c) $\int_{0}^{\infty} e^{-x} \operatorname{sen} x dx$ d) $\int_{1}^{\infty} \frac{dx}{x^{1+1/x}}$
f) $\int_{1}^{\infty} e^{-1/x} dx$ g) $\int_{0}^{\infty} \frac{dx}{(x+1)\sqrt{x}}$ h) $\int_{1}^{\infty} \left[\frac{2}{\sqrt{x}} - \frac{1}{x}\right] dx$

i)
$$\int_0^\infty \frac{\arctan x}{x^{3/2}} \ dx$$

i)
$$\int_0^\infty \frac{\arctan x}{x^{3/2}} \ dx$$
 j) $\int_0^1 \frac{\cos(1/x)}{\sqrt{x}} \ dx$ k) $\int_1^\infty \frac{\log x}{x^3} \ dx$ l) $\int_1^\infty \frac{dx}{\sqrt[3]{x^4-1}}$

$$k) \int_1^\infty \frac{\log x}{x^3} \, dx$$

$$1) \int_1^\infty \frac{dx}{\sqrt[3]{x^4 - 1}}$$

m)
$$\int_0^\infty \frac{\log(1+x)}{x^{3/2}} dx$$
 n) $\int_1^\infty \left(1-\cos\frac{2}{x}\right) dx$ ñ) $\int_0^{\pi/2} \frac{\cos^3 x}{\sin^2 x} dx$ o) $\int_0^\infty \frac{e^{-x} dx}{(x-1)^{1/3}}$

n)
$$\int_1^\infty \left(1 - \cos\frac{2}{r}\right) ds$$

$$\tilde{\mathbf{n}}) \int_0^{\pi/2} \frac{\cos^3 x}{\sin^2 x} \, dx$$

o)
$$\int_0^\infty \frac{e^{-x} dx}{(x-1)^{1/3}}$$

p)
$$\int_{1}^{\infty} \log x \sec \frac{1}{x^{2}} dx$$
 q) $\int_{0}^{1} \log x dx$ r) $\int_{4}^{\infty} \frac{\arctan(1/x)}{(2x-8)^{1/3}} dx$ s) $\int_{0}^{\infty} \frac{\sec \sqrt{x}}{e^{x^{2}}-1} dx$

$$q) \int_0^1 \log x \, dx$$

r)
$$\int_4^{\infty} \frac{\arctan(1/x)}{(2x-8)^{1/3}} dx$$

s)
$$\int_0^\infty \frac{\sin\sqrt{x}}{e^{x^2} - 1} dx$$

- **85.** Discutir según los valores de $n \in \mathbb{N}$ la convergencia de: a) $\int_0^1 \left[\frac{n}{\ln(1+x)} \frac{1}{x} \right] dx$; b) $\int_2^\infty \frac{x dx}{x^n 8}$.
- **86.** Discutir según los valores de $a \in \mathbf{R}$ la convergencia de las integrales:

$$i) \int_0^\infty \frac{1 - e^{-x}}{x^a} \, dx$$

i)
$$\int_0^\infty \frac{1 - e^{-x}}{x^a} dx$$
; ii) $\int_0^\infty \frac{\arctan(x + \frac{1}{x})}{(1 + x^2)^a} dx$; iii) $\int_0^\infty [x^3 + \sin x]^a dx$.

iii)
$$\int_0^\infty \left[x^3 + \sin x \right]^a dx$$

- **87.** Calcular el límite cuando x tiende a 0 y a ∞ de: a) $\frac{x \int_0^x e^{-t^2} dt \arctan x^2}{\log[1+x^4]}$; b) $\frac{\int_{-x^2}^0 \sin t^2 dt}{x^6}$.
- **88.** Dada $F(x) = \int_2^x \frac{dt}{\sqrt{\log t + t}}$. Determinar si existe $\lim_{x \to \infty} F(x)$. Hallar el $\lim_{x \to \infty} \frac{F(2x)}{F(x)}$ (si existe).
- **89.** Sea $H(x) = |x-1| \int_{-1}^{x} \sin t^3 dt$. Approximar H(0) con error menor que 10^{-3} . Hallar, si existe, H'(1).
- **90.** Sea $g(x)=\frac{x^3+x^2-7}{x^3-2x^2+x-2}$. Hallar la primitiva G(x) que cumple G(0)=-1. Probar que g(x)>1 si $x\in[0,1]$ y que hay un único $c\in(0,1)$ tal que G(c)=0. Determinar si converge $\int_{2^+}^3 \sqrt{g(x)}dx$.
- **91.** Sea $F(x) = \int_{-1}^{x} t e^{t^3} dt$, con $x \in [-1, \infty)$. i) Hallar, si existen, los x del intervalo en los que Falcanza sus valores máximo y mínimo. ii) Probar que $F(0) > -\frac{1}{2}$.
- 92. Hallar, justificando los pasos, el valor de:

i)
$$\int_0^{1/2} \left(\sum_{n=0}^{\infty} (n+1)x^n\right) dx$$
, ii) $\int_0^{\pi} \left(\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}\right) dx$, iii) $\int_0^1 \left(\sum_{n=1}^{\infty} \frac{1}{[n+x]^4}\right) dx$.

ii)
$$\int_0^{\pi} \left(\sum_{n=1}^{\infty} \frac{\cos nx}{n^2} \right) dx$$
,

iii)
$$\int_0^1 \left(\sum_{n=1}^{\infty} \frac{1}{[n+x]^4}\right) dx$$

- 93. Calcular el área encerrada entre las gráficas de $g(x) = x^3 3x^2 + 3x$ y f(x) = x en [0,2].
- **94.** Calcular el área de la región acotada entre las curvas $y = \sqrt{x}$, $y = \sqrt{2-x}$ e y = 0.
- **95.** Hallar el área de una de las regiones iguales encerradas entre las gráficas de $|\sin x|$ y $|\cos x|$.
- **96.** Hallar el área de la menor de las dos regiones acotadas por las curvas $x^2 + y^2 = 2$ y $x = y^2$.
- 97. Calcular el área de una de las regiones comprendidas entre la gráfica de $f(x) = \sin x$ y esta misma gráfica trasladada horizontalmente una distancia $\frac{\pi}{3}$ hacia la derecha.
- **98.** ¿Cuál de todas las rectas que pasan por (1,2) determina con $y=x^2$ la región de mínima área?
- **99.** Sea la región del cuarto cuadrante limitada por la gráfica de $f(x) = -e^{-ax}$ (a > 0) y el eje x. Probar que la recta tangente a f(x) en x = 0 divide dicha región en dos partes de igual área.
- **100.** Hallar el área determinada por la curva $r = 1/(1 + \cos \theta)$ y las semirrectas $\theta = 0$ y $\theta = 3\pi/4$, i) trabajando en polares, ii) tras escribir la ecuación de la curva en rectangulares.