Master Degree in Computer Science
Master Degree in Data Science and Economics

### **Information Retrieval**



# Course Introduction

### **Prof. Alfio Ferrara**

Department of Computer Science, Università degli Studi di Milano Room 7012 via Celoria 18, 20133 Milano, Italia <u>alfio.ferrara@unimi.it</u>



**Prof. Alfio Ferrara** Course Chair alfio.ferrara@unimi.it



2. Evaluation in information  $\sim 6 hrs$ retrieval and query expansion

Introduction to Information

**Expectation Maximization** 

5. Clustering and Classification for

**Information Retrieval** 

8. Word embeddings and

Word2Vec

Retrieval



3. Hidden Markov Models, **Conditional Random Fields and**  $\sim 3 hrs$ 



Notice board, General info, Materials



4. Latent Semantic Indexing and  $\sim 3 hrs$ **Latent Dirichlet Allocation** 

Code, Use cases



Sergio Picascia Instructor sergio.picascia@unimi.it



 $\sim 6 hrs$ 

 $\sim 3 hrs$ 

 $\sim 3 hrs$ 

**GitHub** https://github.com/afflint/inforet



**Davide Riva** Instructor davide.rival@unimi.it

6. Introduction to Neural Networks  $\sim 3 \ hrs$ 

Schedule



Elisabetta Rocchetti Instructor elisabetta.rocchetti@unimi.it





Monday, 15:30-18:30 Aula Alpha, via Celoria 18



Sequence to sequence modeling  $\sim 9 \ hrs$ 



Thursday, 15:30-18:30 Room V4, via Venezian



10. Attention, Transformers and  $\sim 3 hrs$ **BERT** 

 $\sim 3 hrs$ 11. Text2Images

## Final assignment

The final project consists in the preparation of a short study on one of the topics of the course, identifying a **precise research question** and **measurable objectives**. The project will propose a methodology for solving the research question and provide an experimental verification of the results obtained according to results evaluation metrics. **The emphasis is not on obtaining high performance but rather on the critical discussion of the results obtained in order to understand the potential effectiveness of the proposed methodology.** 

The results must be documented in a **short article of not less than 4 pages and no more than 8**, composed according to the guidelines provided by the lecturers. Students have also to **provide access to a GitHub repository containing the code and reproducible experimental results**. Finally, the project will be discussed by presenting a **10 minute presentation with slides**.

# Exam dates are just for the registration of the final grade

The project discussion will be set by appointment

#### **PROCEDURE**

- 1. Subscribe to any available date
- 2. Contact Prof. Ferrara as soon as
  - 1. The project is finished and ready to be discussed
  - 2. After the date of your subscription
- 3. Setup an appointment and discuss your work

If you are interested in doing your final master thesis on these topics, the final project may be a preliminary work in view of the thesis. In this case, discuss the contents with Prof. Ferrara.



Coding is a fundamental part of the course

We will present several use cases and programming examples

Students are required to **complement the theoretical study with a hands on approach** to the proposed case studies

Python 3.x is the reference programming language

If needed, just refresh your Python knowledge with the **official tutorial** (<u>https://docs.python.org/3/tutorial</u>)

















