SECONDA PROVA IN ITINERE - MATEMATICA DEL CONTINUO - 09.01.23

Corso di Laurea in Informatica - a.a. 2022/23 - Docenti: Cecilia Cavaterra e Anna Gori

PARTE 1 - TEOREMA: Formula fondamentale del calcolo integrale

IPOTESI (PUNTI 2)

TESI (PUNTI 2)

DIMOSTRAZIONE (PUNTI 4)

PARTE 2 - Indicare la risposta corretta con una crocetta sulla lettera corrispondente

- 1. (PUNTI 2) Si consideri la serie $\sum a_n$.
 - a) Se la serie $\sum_{n=0}^{\infty} a_n$ converge allora la serie $\sum_{n=0}^{\infty} |a_n|$ converge
 - b) Se la serie $\sum_{n=0}^{\infty} |a_n|$ converge allora la serie $\sum_{n=0}^{\infty} a_n$ converge
 - c) Se la serie $\sum_{n=0}^{\infty} a_n$ diverge allora $\lim_{n\to\infty} a_n \neq 0$
 - d) Se $\lim_{n\to\infty} a_n = 0$ allora la serie $\sum_{n=0}^{\infty} a_n$ converge
- 2. (PUNTI 2) Sia f derivabile due volte in $x_0 = 1$. Allora vale la formula di Taylor
 - a) $f(x) = f(1) + f'(1)x + \frac{1}{2}f''(1)x^2 + o(x^2)$ per $x \to 1$
 - b) $f(x) = f(1) + f'(1)(x-1) + \frac{1}{2}f''(1)(x-1)^2 + o(x^2)$ per $x \to 1$
 - c) $f(x) = f(1) + f'(1)(x-1) + \frac{1}{2}f''(1)(x-1)^2 + o((x-1))$ per $x \to 1$
 - d) $f(x) = f(1) + f'(1)(x-1) + \frac{1}{2}f''(1)(x-1)^2 + o((x-1)^2)$ per $x \to 1$
- 3. (**PUNTI 3**) L'integrale definito $\int_0^1 \frac{e^x}{\sqrt{e^x + 3}} dx$ vale

- a) $2\sqrt{e+3}-4$ b) $\sqrt{e+3}-2$ c) $\frac{e}{\sqrt{e+3}}-\frac{1}{2}$ d) $\log(e+3)-\log 4$
- 4. (PUNTI 3) Sia $\alpha > 0$. La serie $\sum_{n=0}^{\infty} (1 \log \alpha)^n$ converge per
- a) $1 < \alpha < e^2$ b) $0 < \alpha < 1$ c) $\frac{1}{e} < \alpha < e$ d) $0 < \alpha < 2$
- 5. (PUNTI 3) L'insieme di convergenza della serie di potenze $\sum_{n=1}^{\infty} \frac{1}{n2^n} x^n$ è

- a) (-2,2) b) [-2,2) c) $\left(-\frac{1}{2},\frac{1}{2}\right)$ d) $\left[-\frac{1}{2},\frac{1}{2}\right)$
- 6. (PUNTI 3) L'integrale improprio $\int_{1}^{+\infty} \frac{x}{x^4 + 1} dx$
- a) vale $\frac{\pi}{8}$ b) vale $\frac{\pi}{4}$ c) diverge a $+\infty$ d) vale $\log 2$

PARTE 3 - Risolvere gli esercizi indicando i passaggi fondamentali

7. (PUNTI 3) Stabilire il carattere della serie $\sum_{n=1}^{\infty} \left(\frac{\frac{2}{n} - \log(1 + \frac{1}{n})}{\log n + \sqrt{n}} \right)$

8. (PUNTI 3) Dopo aver disegnato la regione A del piano limitata dai grafici della funzione $f(x) = \arctan x$ e delle rette y = 0 e x = 1, calcolarne l'area

FORMULE DI TAYLOR

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}) \qquad \text{per } x \to 0$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1}) \qquad \text{per } x \to 0$$

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n) \qquad \text{per } x \to 0$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n) \qquad \text{per } x \to 0$$

$$(1+x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^2 + o(x^2) \qquad \text{per } x \to 0$$

$$\arcsin x = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2}) \qquad \text{per } x \to 0$$

$$\tan x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2}) \qquad \text{per } x \to 0$$

$$\tan x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2}) \qquad \text{per } x \to 0$$

$$\tan x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2}) \qquad \text{per } x \to 0$$

$$\tan x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2}) \qquad \text{per } x \to 0$$