Name: Solutions

_____/ 40

Assessment 3 Instructions:

- The AS-3 is 10 problems and is worth 40 points.
- You will have 1 hour to complete AS-3.
- The AS-3 is closed book and closed notes.
- Calculators are not allowed on the AS-3.
- Show all your work for full credit and box your final answer.

1. [4 points] Graph the function

$$f(x) = -\sqrt{x+5} - 2$$

by making the appropriate transformations of a basic curve. State the basic function, the transformations and find all intercepts that exist.

1) horiz. Shift to the left by 5

D reflection w.r.to

3 vertical shift down

x-intercept: None

y-intercept: (0,-15-2)

2. [4 points] Graph the function

$$g(x) = 2|x-4| + 3$$

by making the appropriate transformations of a basic curve. State the basic function, the transformations and find all intercepts that exist.

3. [4 points] Graph the function

$$h(x) = \begin{cases} x^2, & -1 \le x \le 1, \\ x+1, & x < -1 \text{ or } x > 1 \end{cases}$$

State all intercept points that exist.

4. [4 points]

a. Determine if the following relation $F(x) = (x-1)^2 - 2$ is a function. Hint: sketch a graph and use a Vertical Line Test.

relation F(x) is a function since the vertical line crosses F(x) exactly at one point.

b. If the above relation is a function, then find the open intervals of monotonicity where the function is increasing, decreasing, or constant.

F(x) is increasing on $(1,\infty)$ F(x) is decreasing on $(-\infty,1)$

5. [4 points] Using the graph of the function below determine:

a. the locations and types of the local extrema (local min and max)

Oh X=-2.2 and X=2 we have a loc. min at x=0.2 we have loc. max

b. the values of the local extrema

f(-2.2)=-17 f(2)=0 E(0.2) ≈ 13

6. [4 points] For the given function determine:

$$f(x) = \frac{3}{x+4}$$

a. domain of f

$$f(0) = \frac{10}{4}$$

c.
$$\frac{f(x+1)-f(x)}{x} = \frac{\frac{3}{X+5} - \frac{3}{X+4}}{X} = \frac{3(X+4) - 3(X+5)}{(X+4) \times X} =$$

$$f(x+1) = \frac{3}{X+5}$$

$$= \frac{3x+12-2x-15}{x(x+5)(x+4)} = \frac{3}{x(x+4)(x+5)}$$

7. [4 points] For the given functions

$$g(x) = x^2 - 1$$
, and $h(x) = \sqrt[3]{x}$

a. find the **formula** (g+h)(x) and **domain** for f+g

b. find the **formula** $(g \cdot h)(x) =$

$$(g.h)(x) = (x^2-1)^3 x = x^3 - 3x = x^3 - 3x = 3x^2 - 3x$$

c. find the formula $(h \circ g)(x) = k(g(x)) = k(x^2 - 1) = 3(x^2 - 1)$

8. [4 points] For the given relation

$$R = \{(4,2), (3,-1), (-2,-1), (2,4)\}$$

a. find the inverse R^{-1} of the given relation

b. find the domain of the inverse relation R^{-1}

c. find the range of the inverse relation R^{-1}

9. [4 points] Determine if the function $s(x) = \frac{1}{x^2}$ has an inverse function $s^{-1}(x)$.

Hint: sketch a graph and use a Horizontal Line Test or use a one-to-one function definition.

The function S(x) does not have an inverse $S^{-1}(x)$ Since the horizont. line crosses S(x) at two points: $S(-1) = \frac{1}{(-1)^2} = 1$ $S(1) = \frac{1}{7} = 1$ $S(1) = \frac{1}{7} = 1$

10. [4 points] Find a formula for the inverse of the following function

$$y^{2} = \sqrt[3]{3x-1}$$

$$y^{3} = 3x-1$$

$$y^{3}+1=3x$$

$$\pm (y^{3}+1)=x$$

11. [Extra Credit, 4 points points]

Write a formula for the function described below:

Use the function g(x) = |x|. Move the function 7 units to the left, reflect across the *x*-axis, and reflect across the *y*-axis.

 $f(x) = \sqrt[3]{3x-1}$.

$$g(x)=|x|$$

$$g_{1}(x)=|x+7|$$

$$g_{2}(x)=-|x+7|$$

$$g_{3}(x)=-|-x+7|$$