Bioinformatics @Data Science A.Y. 2018-2019

Network Biology Project

Malick Alexandre Ngorovitch Sarr¹, Pratuat Amatya¹ and Viger Durand Azimedem Tsafack¹ ¹Group no. 2

Abstract

The Chagas disease is a parasitic disease caused by the protist Trypanosoma cruzi. Mainly found in South America, It is spread mostly by insects known as Triatominae, or "kissing bugs". In this project, we will be carring out data analysis of the human genes involved in the disease. The relevant set of genes was provided by the instructor after exploring (experiments and datasets, literature etc). We then proceeded in carrying out the various protein to protein interactions related to the seed genes for the Chaga disease. Finally, gene oncology was run in order to better understand the biological processes, molecular function and cellular of all the genes directly or indirectly related to the Chagas disease in humans.

1 Basic introduction about the disease/process

Chagas disease, also known as American trypanosomiasis, is a tropical parasitic disease caused by the protist Trypanosoma cruzi.[1] The disease was named after the Brazilian physician and epidemiologist Carlos Chagas, who first described it in 1909. Chagas' disease is the most lethal endemic infectious ailment in the Western Hemisphere, with a devastating effect upon populations in rural areas of Latin America. Chagas' heart disease typically kills people in the age range of 30 to 50 years. The disease is considered incurable, and its high mortality rates translate to hundreds of thousands of deaths per year [2]. In Chagas-endemic areas, the main mode of transmission is through bite of an insect vector called a triatomine bug. The symptoms are transitive over the course of the infection. The symptoms may or may not be evident in early stages which includes fever, swollen lymph nodes, headaches or local swelling at the site of the bite. The chronic phase of disease starts after 8-12 weeks of infection during which 60-70% of the time no further symptoms are developed. The other 30–40% of people develop further symptoms 10–30 years after the initial infection, including enlargement of the ventricles of the heart in 20–30%, leading to heart failure.

2 Seed genes

With the available set of seed genes, we collected and stored the following basic information (summarized in the table 2.1.) using a python script (/Source/2_Collect_data.py) that makes use of the "bioservices" library to collect the information needed from the "Uniprot" platform and save them in local.

Table 2.1 Basic information about the seed gene

				<u></u>
Input gene name	HGNC Approved gene symbol	Uniprot AC	protein name	Status
BAT1	SLC7A9	P82251	b-type amino acid transporter 1	reviewed
CCL2	CCL2	P13500	C-C motif chemokine 2	reviewed
CCR5	CCR5	P51681	C-C chemokine receptor type 5	reviewed
CxCL10	CXCL10	P02778	C-X-C motif chemokine 10	reviewed
CXCL9	CXCL9	Q07325	C-X-C motif chemokine 9	reviewed
HLA-DPB1	HLA-DPB1	P04440	HLA class II histocompatibility antigen, DP beta 1 chain	reviewed
HLA-DQB1	HLA-DQB1	P01920	HLA class II histocompatibility antigen, DQ beta 1 chain	reviewed
HLA-DRB1	HLA-DRB1	Q29974	HLA class II histocompatibility antigen, DRB1- 16 beta chain	reviewed
FNG	IFNG	P01579	Interferon gamma	reviewed
L10	IL10RA	Q13651	Interleukin-10 receptor subunit alpha	reviewed
IL12B	IL12B	P29460	Interleukin-12 subunit beta	reviewed
L1B	IL1B	P01584	Interleukin-1 beta	reviewed
L1RN	IL1RN	P18510	Interleukin-1 receptor antagonist protein	reviewed
L4	IL4R	P24394	Interleukin-4 receptor subunit alpha	reviewed
L4R	IL4R	P24394	Interleukin-4 receptor subunit alpha	reviewed
L6	IL6	P05231	Interleukin-6	reviewed
_TA	LTA4H	P09960	Leukotriene A-4 hydrolase	reviewed
ГGFB	TGFB1	P01137	Transforming growth factor beta-1 proprotein	reviewed
ΓNF	TNF	P01375	Tumor necrosis factor	reviewed
ΓΝFΑ	TNF	P01375	Tumor necrosis factor	reviewed
NFB	LTA	P01374	Lymphotoxin-alpha	reviewed

The small summary of the data collected can be found on table 2.1 above. The full table is available in the files coming along this report at *Data/Manually_integrated_basic_info.csv*.

From the input gene name provided, we collected the official gene symbol which corresponds to the HGNC approved symbols which are unique symbols and names for human loci, including protein

coding genes, RNA genes and pseudogenes, to allow unambiguous scientific communication. We are going to use those unique symbols as identifiers for computations in following sections.

We used The *Uniprot AC* as a unique identifier as well. It gave us access to a comprehensive resource for protein sequences and annotation data. For instance, starting From the *Uniprot AC*, it is possible to collect data such as the protein full name, its function within the human body and whether or not it has been reviewed at least once. Been reviewed for a protein means that it has been manually checked, annotated, reviewed and is present in the *Switz-prots* database. The *Switz-prots* database is a high quality annotated and non-redundant protein sequence database, which brings together experimental results, computed features and scientific conclusions. Finally we collected the *Entrez Gene ID* (a.k.a GeneID) *which* is a unique integer used as a stable identifiers for genes and other loci for a subset of model organisms.

3 Summary on interaction data

After gathering the basic information about the input genes, we collected the Protein-to-Protein Interactions (PPI) using two PPI sources namely the *Biological General Repository for Interaction Datasets* (*Biogrid*) and the *Human Integrated Interactions Database* (IID).

3.1 Biogrid Results

In order to extract the BioGRID interactions of interest, we downloaded the *BioGRID Tab 2.0 Delimited Text file format* of the data set in local (/*Data/BioGRID/BIOGRID-ORGANISM-Homo_sapiens-3.5.167.tab2.txt*) and we ran it through a python script.

We used two identifiers to perform the search and retrieve the interactions of interest: **GeneID** and **Gene Symbol**. The following are the steps we used to retrieve the interactions using both types of identifiers sequentially:

- Load both basic info table and full BioGRID PPI source data
- Filter our data by keeping all the rows having a seed gene as 'Entrez Gene Interactor A' (or Official Symbol Interactor A if we are searching by gene official symbol). After this step, we will remain with the rows of interest
- Save all the protein-protein interactions from the above dataset
- Retrieve all the non-seed proteins interacting with at least one seed gene
- Retrieve and include in our interactions list the interactions among these non-seed proteins

More information and detailed comments about the implementation of these steps are available in the attached source code: **Source/3_Gather_PPIs_BioGRID.py**.

The python script produces the following output:

```
Performing the search of PPIs using BioGRID source...

Discrepancies observed between search by 'GeneIDs' an search by 'gene symbols':
    Search by GeneID: 7309 interactions
    Search by gene symbol: 7330 interactions

Summarize of the results:
    Number of seed genes found: 16
    Total Number of interacting proteins: 579
    Total Number of interactions found: 7330
```

We found 16 out of 21 seed genes in the BioGRID using both GeneID and Gene symbols as search filters. Starting from those 16 genes, we found 579 interacting proteins including the non-seed genes. Finally, we found 7730 interactions among all of them. Additionally some discrepancies were found as we have recorded 7309 interactions using the GeneID to filter the data and 7330 interactions using the Gene official Symbols. This may suggest that more than one symbol may point to the same Gene ID.

3.2 IDD Results

Similarly, as we did with BioGRID, we downloaded the *IID Tab Delimited Text file format* of the data set in local (/Data/IID/human_annotated_PPIs.txt) and we ran it through a python script.

In this case, we used two type of identifiers in order to retrieve the needed interactions: **Uniprot AC** and **Gene Symbols**. The following are the steps we used to retrieve the interactions using both types of identifiers sequentially:

- Load the basic info table
- Load by chunks of 20000 rows the full IDD PPI source data. Loading the data at once caused a memory error
- Filter our data by keeping all the rows having a seed gene as 'Uniprot Interactor A' (or Official Symbol Interactor A if we are searching by gene official symbol) keeping 'Uniprot Interactor B' unfiltered; repeat the process filtering B keeping A unfiltered and merge the two data sets. After this step, we will remain with the rows of interest
- Save all the protein-protein interactions from the above dataset
- Retrieve all the non-seed proteins interacting with at least one seed gene
- Retrieve and include in our interactions list the interactions among these non-seed proteins

More information and detailed comments about the implementation of these steps are available in the attached source code: **Source/3_Gather_PPIs_IDD.py**.

The python script produces the following output:

```
Performing the search of PPIs using IID source...

Discrepancies observed between search by 'Uniprot AC IDs' an search by 'gene symbols':
    Search by Uniprot AC ID: 13115 interactions
    Search by gene symbol: 3386 interactions

Summarize of the results:
    Number of seed genes found: 18
    Total Number of interacting proteins: 5380
    Total Number of interactions found: 13115
```

In this case, we found 18 out of 21 seed genes in the IID using both **Uniprot AC** and **Gene symbols** as search filters. Starting from those 18 genes, we found interacting proteins including the non-seed genes. Finally, we found 13115 interactions among all of them. Additionally, we found some discrepancies as we recorded 13115 interactions using the Uniprot AC and only 3386 interactions using the Gene Symbols.

This is a table summarizing the results of this section (can be found in /Question 3/Summarize_of_PPI_results.xlsx):

Table 3.1	Summaries (of the	PPI results	3
-----------	-------------	--------	-------------	---

Number of seed genes		Total Number of interacting pro-	Total Number of interactions
	found	teins	found
Biogrid	16	579	7330
IID	18	5380	13115

4 Interactomes data (Find the code in /Source/4_Arrange_interaction_data.py)

The steps used to create the interactomes are straightforward. We downloaded a mapping that would be able to convert GeneIDs to Uniprot Ac as the BioGRID PPI does not contain a Uniprot AC. We loaded our various datasets: the basic info about the input genes (*Data/Manually_integrated_basic_infos.csv*), the BioGRID PPI generated at question 3 (*Question 3/PPI_BioGRID.csv*) and the IDD PPI generated at question 3 (*Question 3/IDD_PPI*).

We started by creating a full interactome dataframe made of the two PPIs by appending one PPI dataframe to another (appending the IDD PPI to the BioGRID PPI):

- The seed gene interactome was extracted from the full interactome dataframe by looking up the rows in which the *Uniprot AC* (A and B) matches the *Uniprot AC* of our seed genes from the basic info dataframe
- The union interactome was extract from the full interactome dataframe by looking up the rows in which at least one seed gene Uniprot AC appears.
- The **intersection interactome** was obtained by merging both BioGRID and IDD PPIs, keeping the rows appearing in both databases in which at least one gene is a seed gene.

Table 4.1 Sample interaction among Seed genes (file in /Question 4/seed_genes_interactome.csv)

interactor A gene symbol	interactor B gene symbol	interactor A Uniprot AC	interactor B Uniprot AC	C database source
IFNG	IFNG	P01579	P01579	BioGRID
CCL2	CCL2	P13500	P13500	BioGRID
TGFB1	TNF	P01137	P01375	IID
TGFB1	TGFB1	P01137	P01137	IID
TGFB1	IL6	P01137	P05231	IID

Table 4.2 Sample union interactome (file in /Question 4/union_interactome.csv)

interactor A gene	interactor B gene	interactor A Uniprot A	C interactor B Uniprot A	C database source
CCL2	ORC4	P13500	B7Z5F1	BioGRID
CCL2	ORC2	P13500	Q13204	BioGRID
CCL2	МСМ7	P13500	Q96D34	BioGRID
TGFB1	CXCR4	P01137	P61073	IID
TGFB1	IGFBP3	P01137	P17936	IID

Table 4.3 Sample interesection interactome (file in /Question 4/intersection_interactome.csv)

interactor A gene	interactor B gene	interactor A Uniprot AC	interactor B Uniprot AC
symbol	symbol	interactor A omprot Ac	
IFNG	IFNGR2	P01579	P38484
IFNG	IFNG	P01579	P01579
IFNG	GOPC	P01579	Q9HD26
IL12B	IL23A	P29460	Q9NPF7
LTA	LGALS2	P01374	P05162

5 Enrichment analysis

Using InnateDB online GO (Gene Ontology) analysis service, we performed GO Enrichment analysis for above obtained gene sets, namely seed gene list, union interactome and intersection interactome. We used default Hypergeometric analysis algorithm alongside Benjamini Hochberg algorithm for P-value correction. Following are the obtained results of overrepresented GO categories and pathways.

Table 5.1 Overrepresented GO categories for seed gene list (file in /Question 5/Seed_genes_ORA_GO_categories.xlsx)

	No	Biological Process (BP)	Molecular Function (MP)	Cellular Component(CC)
1		immune response	cytokine activity	extracellular space
2		cytokine-mediated signaling pathway	peptide antigen binding	external side of plasma membrane
3		response to lipopolysaccharide	CXCR3 chemokine receptor binding	extracellular region
4		cellular response to lipopolysac- charide	chemokine activity	cell surface
5		inflammatory response	interleukin-1 receptor binding	MHC class II protein complex
6		positive regulation of interferongamma production	receptor binding	integral component of lumenal side of endoplasmic reticulum membrane
7		positive regulation of calcidiol 1- monooxygenase activity	cytokine receptor activity	clathrin-coated endocytic vesicle membrane
8		defense response to protozoan	tumor necrosis factor receptor binding	ER to Golgi transport vesicle membrane
9		negative regulation of growth of symbiont in host	growth factor activity	transport vesicle membrane
10		positive regulation of T cell proliferation	protein binding	trans-Golgi network membrane

Table 5.2 Overrepresented GO categories for Union Interactome (file in /Question 5/Union_interactome_ORA_GO_categories.xlsx)

ı	No Biological Process (BF	Molecular Function (MP)	Cellular Component(CC)
1	innate immune response	protein binding	extracellular space
2	immune response	cytokine activity	extracellular region
3	inflammatory response	growth factor activity	cell surface
4	signal transduction	receptor activity	external side of plasma membrane
5	cytokine-mediated signaling path way	receptor binding	plasma membrane
6	positive regulation of cell proliferation	chemokine activity	integral component of plasma membrane
7	extracellular matrix organization	identical protein binding	extracellular vesicular exosome
8	positive regulation of transcriptio from RNA polymerase II promote		extracellular matrix
9	cell-cell signaling	protein homodimerization activity	cytosol
10	angiogenesis	protein kinase binding	cytoplasm

Table 5.3 Overrepresented GO categories for Intersection Interactome (file in /Question 5/Intersection_interactome_ORA_GO_categories.xlsx)

	No	Biological Process (BP)	Molecular Function (MP)	Cellular Component(CC)
1	•	ive regulation of tumor necro- ctor production	interleukin-23 complex	interleukin-23 receptor binding
2	J	tive regulation of growth of iont in host	extracellular space	cytokine activity
3		ive regulation of osteoclast rentiation	interleukin-12 complex	interleukin-12 alpha subunit binding

	No	Biological Process (BP)	Molecular Function (MP)	Cellular Component(CC)
4		positive regulation of interleukin- 12 production	C-fiber	interferon-gamma receptor activity
5		interleukin-23 complex	synapse	interferon-gamma receptor binding
6		interleukin-23 receptor binding	trans-Golgi network transport vesicle	CCR2 chemokine receptor binding
7		innate immune response	dendrite	galactoside binding
8		positive regulation of NK T cell pro- liferation	axon terminus	interleukin-12 receptor binding
9		regulation of tyrosine phosphory- lation of Stat1 protein	rough endoplasmic reticulum	receptor binding
10		positive regulation of interferon- gamma production	endocytic vesicle	cytokine receptor binding

Table 5.3 Overrepresented pathways for the seed genes, the union Intereactome and the intersection interactome (file in /Question 5/ORA_GO_Pathways.xlsx)

	No	Seed Genes	Union Interactome	Intersection Interactome
1		Cytokine-cytokine receptor inter- action	Cytokine-cytokine receptor interaction	Cytokine-cytokine receptor interaction
2	ĺ	IL23-mediated signaling events	Immune System	IL23-mediated signaling events
3	-	Type I diabetes mellitus	Cytokine Signaling in Immune system	Chagas disease (American trypanosomiasis)
4	l	IL27-mediated signaling events	JAK STAT pathway and regulation	Jak-STAT signaling pathway
5	-	Toxoplasmosis	Pathways in cancer	Type I diabetes mellitus
6	I	Leishmaniasis	Osteoclast differentiation	IFN gamma signaling
7		Graft-versus-host disease	Jak-STAT signaling pathway	Leishmaniasis
8	!	Malaria	Innate Immune System	JAK STAT pathway and regulation

Group no. 2, Topic : Chaga Disease , Sarr, Amatya & Azimedem Tsafack

	No	Seed Genes	Union Interactome	Intersection Interactome
9	Chagas dise nosomiasis	ease (American trypa-)	TNFalpha	No2-dependent il-12 pathway in nk cells
10	African tryp	panosomiasis	Signaling by Interleukins	Regulation of IFNG signaling

6 Notes and comments

References (if any)

- [1] "Chagas disease (American trypanosomiasis) Fact sheet N°340". World Health Organization. March 2013. Archived from the original on 27 February 2014. Retrieved 23 February 2014.
- [2] Pathogenesis of Chagas' Disease: Parasite Persistence and Autoimmunity, Antonio R. L. Teixeira,* Mariana M. Hecht, Maria C. Guimaro, Alessandro O. Sousa, and Nadjar Nitz
- [3] HUGO Gene Nomenclature Committee at the European Bioinformatics Institute", NIH, https://www.genenames.org/about/
- [4] The UniProt Consortium UniProt: the universal protein knowledgebase Nucleic Acids Res. 45: D158-D169 (2017)
- [5] Entrez Gene: gene-centered information at NCBI. Donna Maglott, Jim Ostell, Kim D. Pruitt, and Tatiana Tatusova. 2011.
- [6] Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. Biogrid: A General Repository for Interaction Datasets. Nucleic Acids Res. Jan 1, 2006; 34:D535-9.
- [7] http://iid.ophid.utoronto.ca/#context_filter_Utoronto.ca