Lesson 7 Part A

Тест, 8 вопроса

1 Баллы

1.

In a normal linear regression model with $E(y_i) = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i}$, which of the following gives the correct interpretation of β_2 ?

- While holding $x_{1,i}$ and $x_{3,i}$ constant, a one unit change in $x_{2,i}$ results in a eta_2 change in the expectation of y_i .
- While holding $x_{2,i}$ constant, the expectation of y_i is β_2 .
- While holding $x_{1,i}$ and $x_{3,i}$ constant, a one unit change in $x_{2,i}$ results in a β_2 change in y_i .
- When $x_{2,i}=0$, a one unit change in $x_{1,i}$ and $x_{3,i}$ results in a eta_2 in y_i .

1 Баллы

2.

Which of the following model specifications for $\mathrm{E}(y_i)$ is not a valid linear model?

$$\bigcirc \beta_0 + \beta_1 x_{1,i} + \beta_2 (x_{1,i}/x_{2,i})$$

$$\bigcirc \quad \beta_0+\beta_1\log(x_{1,i})+\beta_2x_{2,i}^2$$

$$\bigcirc \quad \beta_0 + \beta_1 \sin(2\pi x_{1,i}) + \beta_2 x_{2,i}$$

1 Баллы

3.

Consider the Anscombe data set in R which can be accessed with the following code:

- 1 library("car") # load the 'car' package 2 data("Anscombe") # load the data set
- 3 ?Anscombe # read a description of the data
- 4 head(Anscombe) # look at the first few lines of the data
- 5 pairs(Anscombe) # scatter plots for each pair of variables

Suppose we are interested in relating per-capita education expenditures to the other three variables. Which variable appears to have the strongest linear relationship with per-capita education expenditures?

/2019	Bayesian Statistics: Techniques and Models — главная Coursera
Les	None of these variables appears to have a linear relationship with education expenditures. SSON $7\ Part\ A$
Тест,	⁸ բարինը ion of population that is urban
	Per-capita income
	Proportion of population under age 18
1	
Балл	ы
	eference (noninformative) Bayesian linear model to the Anscombe data with education expenditures as the response le and include all three other variables as predictors. Use the lm function in R.
What i	s the posterior mean estimate of the intercept in this model? Round your answer to one decimal place.
-28	36.8
1 Балл	ы
	reference analysis of the Anscombe data, the intercept is estimated to be negative. Does this parameter have a ngful interpretation?
	Yes, it represents expected expenditures in a state with average income, average percent youth, and average percent urban.
	No, it represents expected expenditures in a state with 0 average income, 0 percent youth, and 0 percent urban which doesn't exist.
	No, there must be something wrong with the model because expenditures can never be negative.
	No, this model should not have an intercept term at all.
1 Балл	ы
G	

Тест, 8 вопроса

```
library("rjags")
 2
 3
    mod_string = " model {
         for (i in 1:length(education)) {
 4
             \texttt{education[i]} \, \sim \, \texttt{dnorm(mu[i], prec)}
 6
             mu[i] = b0 + b[1]*income[i] + b[2]*young[i] + b[3]*urban[i]
         }
 7
 8
         b0 ~ dnorm(0.0, 1.0/1.0e6)
 9
10
         for (i in 1:3) {
             b[i] \sim dnorm(0.0, 1.0/1.0e6)
11
12
13
14
         prec ~ dgamma(1.0/2.0, 1.0*1500.0/2.0)
15
           ## Initial guess of variance based on overall
16
           ## variance of education variable. Uses low prior
           ## effective sample size. Technically, this is not
17
18
           ## a true 'prior', but it is not very informative.
19
         sig2 = 1.0 / prec
20
         sig = sqrt(sig2)
    } "
21
22
23
     data_jags = as.list(Anscombe)
24
```

Before proceeding to inference, we should check our model. The first step is to check our MCMC chains. Do there appear to be any problems with the chains?

(Yes, scale reduction factors are well above 1.0. The chains are not exploring the same distri	hution
1	1	res, scale reduction factors are well above 1.0. The chains are not exploring the same disti	bution.

() No	, a few thousan	d iterations	will be	sufficient fo	r these chains

Yes, there is very	v high autor	correlation for s	sig We sho	ould help the	chain for si	σ hv fixi	ng the initial	value
res, there is very	y mgn autor	Lorrelation for a	SIB. WE SIN	ould Help the	CHaillion 21	-g by lixi	ng the initial	value

Yes, there is very high autocorrelation among the coefficients. It would be good to run the chain for 100,000+
iterations to get reliable estimates

1 Баллы

7.

Which of the following is **not** a condition we can check using a residual plot with predicted values on the x-axis and residuals on the y-axis?

	Linearity of the			

Independence of the observations

Presence of outliers

Constant error variance

1 Баллы

_		
-		

Check SECODs 7 Land 10 Land 10

1 2	plot(mod_lm) # here mod_lm is the object saved when you run lm()
Do the	ere appear to be any issues with this fit?
	Yes, the observations appear not to be independent.
	No, this plot raises no concerns.
	Yes, there is a curved pattern or shape to the residuals, indicating a nonlinear relationship between the variables.

Оплатить курс

Yes, there are a few extreme outliers.

Yes, the error variability appears to increase as predicted values increase.

