ArmoredSoftware: Trust in the cloud

Annual Demonstration

Dr. Perry Alexander, Dr. Andrew Gill, Dr. Prasad Kulkarni, Adam Petz, Paul Kline, Justin Dawson, Jason Gevargizian, Leon Searl, Edward Komp

Information and Telecommunication Technology Center
Electrical Engineering and Computer Science
The University of Kansas
palexand@ku.edu,andygill@ku.edu,prasadk@ku.edu

January 15, 2015

Outline

Introduction and Project Goals
Big Picture
Implementation

Prototype demonstration and discussion
Refine big picture to current demo
Protocol Execution
Attestation Protocol Execution
Appraisal
Measurement
Communication

Short term goals and milestones

Questions and guidance

Program Goal

Trust in the Cloud

Provide new capabilities that help establish and maintain trustworthy cloud-based application deployment

New Capabilities

- Establish trust among cloud components
 - trust among cohorts of processes
 - trust among processes and environment
- ► Promote informed decision making
 - data confidentiality can be confirmed
 - execution and data integrity can be confirmed
- Autonomous run-time response and reconfiguration
 - responds to attack, failure, reconfiguration, and repair
 - response varies based on measurement
- ► Lightweight integration with existing cloud
 - targeting TXT, Xen, Linux, and OpenStack infrastructure
 - user-space measurement and attestation

High-Level Architecture

Implementation Decisions

Standard delivery platform

- Xen+XSM VM infrastructure
- OpenStack cloud infrastructure
- ► Fedora, HotSpot JVM, GHC

Standard communication mechanisms

- JSON structures for all exchanged data
- vchan for on-platform communication
- ► TCP/IP for off-platform communication

Trusted Computing Group standards compliant

- ► Trusted Platform Module (TPM) 1.2
- ▶ TCG vTPM in principle

Executable protocol representation

- protocol fragments as first-class structures
- strand space formal semantics

What We Are Demonstrating

Execution of a CA-based Attestation Protocol

- Attestation request
- Protocol execution
- Evidence appraisal

► Major architectural subsystems

- Appraiser
- Attestation Manager
- Measurer
- Instrumented JVM
- vTPM and Certificate Authority

► Anomaly Detection

- Bad signatures and PCRs
- Bad CA certificates
- Bad quotes and AIKs
- Bad measurements

Abstract CA-Based Attestation Protocol

Message List Representation

 $App \rightarrow Att : d, N_{App}, PCR_{m} \text{ on } C_{AppAtt}$

 $Att \rightarrow TPM : make_and_load_identity \text{ on } C_{AttTPM}$

 $TPM \rightarrow Att : Att, AIK_h \text{ on } C_{TPMAtt}$

 $Att \rightarrow CA : Att, AIK^+ \text{ on } C_{AttCA}$

 $CA \rightarrow Att: \{K, |AIK|\}_{EK^+}, \{[AIK^+]_{CA^-}\}_{K^+} \text{ on } C_{CAAtt}$ $Att \rightarrow TPM: activate_identity(AIK_h, |AIK|) \text{ on } C_{AttTPM}$

 $TPM
ightarrow Att : K ext{ on } C_{TPMAtt}$ $Att
ightarrow Meas : d ext{ on } C_{AttMeas}$ $Meas
ightarrow Att : e ext{ on } C_{MeasAtt}$

 $Att \rightarrow TPM : quote(AlK_h, PCR_m, |(e, N_A, [AlK^+]_{CA^-})|) \text{ on } C_{AttTPM}$

 $TPM \rightarrow Att : PCR_c, [|PCR_c|, |(e, N_A, [AIK^+]_{CA^-})|]_{AIK^-} \text{ on } C_{TPMAtt}$

 $Att \rightarrow App : e, N_{App}, PCR_{c}, [AIK^{+}]_{CA^{-}} \text{ on } C_{AttApp}$

 $Att o App : [|PCR_c|, |(e, N_A, [AIK^+]_{CA^-})|]_{AIK^-} ext{ on } C_{AttApp}$

Strand Space Diagram Representation

Attestation Request

- Initiate with an attestation request
 - d abstractly defines desired evidence
 - ► N_{App} is the appraiser's nonce
 - ► PCR_m selects PCRs
- Attestation agent selects and executes protocol based on request

Generating and Certifying an AIK

- Request a new AIK from TPM (optional)
- ► Receive AIK handle
- ► Request AIK⁺ signed by CA (AIK cert)
- ► Receive *AIK* cert encrypted with session key *K*
- ► Receive *K* encrypted with private *EK*

Activating the AIK

- ► Request TPM decryption of the AIK cert
- ► Receive *K* used to decrypt signed public *AIK*
- ▶ Only TPM can gain access to K
- ▶ Only TPM can obtain signed, public AIK
- ▶ Oddly, No manipulation of the AIK in this "activation" process

Measurement

- ► Request information from measurer
- ► Receive evidence e from measurer
- ▶ d is abstract allowing protocol reuse
- ► Most protocols make many requests of the measurer

Generating a Quote

Att quote(AIK, PCR_m,
$$|(e, N_A, [AIK^+]_{CA^-})|$$
) Meas
$$PCR_c, [|PCR_c|, |(e, N_A, [AIK^+]_{CA^-})|]_{AIK^-}$$

- Request a quote from the TPM
 - AIK identifies the signing AIK
 - ▶ PCR_m identifies desired PCRs
 - ► $|(e, N_A, [AIK^+]_{CA^-})|$ guarantees integrity of returned evidence
- ▶ Receive quote from TPM
 - PCR_c is PCR composite built from requested PCRs
 - ▶ $[|PCR_c|, |(e, N_A, [AIK^+]_{CA^-})|]_{AIK^-}$ is the signed quote

Appraisal

Att
$$e, N_{App}, PCR_{c}, [AIK^{+}]_{CA^{-}}$$
 Meas
$$[|PCR_{c}|, |(e, N_{A}, [AIK^{+}]_{CA^{-}})|]_{AIK^{-}}]$$

- Receive quote from the attestation manager
- ► Receive evidence from the attestation manager
- ► Evaluate evidence and quote

3-4 Slides on Attestation Protocol Execution

1-2 Slides on Appraisal

3-4 Slides on Measurement

2-3 Slides on Communication Mechanisms

Goals and Milestones for 2015

- Push to the cloud
- Establish roots of trust and trust argument
- Executable protocol representation and protocol semantics
- Operational, integrated vTPM prototype
- Name Server / Certificate Authority prototype
- ► More capable measurement
- ▶ Downloadable demonstration

Questions and Guidance

- What problems are interesting?
- ▶ What problem would be a nice attention grabber?
- ▶ What should we be watching and integrating with?

References

- G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O'Hanlon, J. Ramsdell, A. Segall, J. Sheehy, and B. Sniffen. Principles of remote attestation.

 International Journal of Information Security, 10(2):63–81, June 2011.
- F. J. T. Fábrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security protocols correct. Journal of computer security, 7(2):191–230, 1999.
- V. Haldar, D. Chandra, and M. Franz.
 Semantic remote attestation a virtual machine directed approach to trusted computing.
 - In Proceedings of the Third Virtual Machine Research and Technology Symposium, San Jose, CA, May 2004.

