Лекция 3: Конетная порождённост идеалов в кольце писточенов 3.1) Мономиальные идеалы Oppegesence 3.1: Ugeas $I=k[x_1,...,x_n]$ regularmes such a sure e_{cut} of $e_{$ подиножество в \mathbb{Z}_{20}^n Лениа 3.1: Густь $I = \langle x^{\alpha}: \alpha \in A \rangle$ — мономиционой идеа. Гюгда моном $x^{\beta} \in I \iff \kappa$ огда x^{β} демисх ка некоторый моном $x^{\alpha} \in I$ Doragaresser Eeu x^p gente $\mu \alpha x \in I$, no gar nenomoposo x^p for now serve $x^p = x^p x^{d}$. For many nonon $x^p \in I$. Eau x & I mo on sheeter rousement monous & EI c nominamans ногим кондоронущиманий hi. Затирав эти кондоронуличестой как минейте конбинации попомов и раскрыв спобые, по получия, что же данитая на какой -то из мономов x Neura 32: Fyore I - monominishow ugear in f & k[x1,...,xn] Torga creggionne yerobus sububarenmus: г) Катдон из составия ощих з могомов межет в I. 3) з является в минетной комбинации монамов из I Dokazarensorbo Hempubuanovan Ibraerça nun yrbeprogenue $1) \Rightarrow 3$, gonamene evo. Fyoro $f \in I$, morga $f = \sum_{i=1}^{n} h_i x^{u(i)}$ rge $h_i \in k[x_i,...,x_a]$ Janucab h_i кан линейние комбинации моньмов, а затем умножив их на моньмо $\chi^{*(i)}$ ма получим катурой одноглен в произведениях менит в идеале I. Cregerbue: $\Pi_{yero} I, J \subset k[x_1,...,x_n] - \text{mononumanture} \text{regenson.} Trege I = J, ecui n monsuo, ecui bonomenum yenobue$ $(s.1) \qquad x \in I \Leftrightarrow x \in J.$ Doxazaresecibo! Échu I=J, mo our orebuguo, cogeponar ogiu u re xeOspanno, ecui $f \in I$ mo no 3) renno 32 $f = \sum_{i=1}^{N} C_i \chi^{d(i)}$ ege $C_i \in k$ u $\chi^{d(i)} \in I$ no smorry $f \in J$, m.e. $I \in J$ diaronized gorazno aerce be morenue $J \in I$.

Теорена 3.1 (ленна Динсона): Пуст I = (2° : « EA) - ноношивный negear. Torga naigymae $\alpha(1), \dots, \alpha(5) \in A$ m.r. $I = \langle \chi^{\alpha(1)}, \dots, \chi^{\alpha(5)} \rangle$ Иногия говани, всекий моношиальной идея конечно порождён Dokazaren6066: Ungyrynen no komzecty nepenemore n. Nycz $I=\langle z_i^{\alpha}: \measuredangle \in A \rangle$ A = Z>0, — моношальный гидеах в k[x1] Выберем напленьший Frenerem & 60 resourceste A. Tak Kak \$ 5 d get beez d & A, mo νονομ x_i^{β} gener be ποναμο x_i^{α} ∈ I. Chegobaτελομο, $I = < x_i^{\beta} >$ Fregnosomers, emo ystepregario meoperin bepuo ges n-1, 2ge n-1. Дие удобства будем обозначат переменные серез 21,..., 2, 1, у, а мономы rig $k[x_1,...,x_{n-1},y]$ sygen zanicabañ b buge $x^{\alpha}y^m$, $zg_0 \alpha = (\alpha_1,...,\alpha_{n-1}) \in \mathbb{Z}_{\geq 0}^{n-1}$ u m & Z 30 Tyero $I \subset k[x_1,...,x_{n-1},y]$ — nonounassioni ugeas. Paccuompun gue Ingear $J \subset k[x_1, ..., x_{n-1}]$, roponganismi monamam x^{α} , $m.x. x^{\alpha}y^{m} \in I$ gas не которого m > 0 Го инотеля гиндукуни $J = \langle x^{o(1)}, \dots, x^{d(5)} \rangle$ Тогда gue ravios $i\in\{1,...,5\}$ bosepen $m; z_0$ — names some opegu ruces j , m.z. $x_j^{oli)}y^{j}\in I$. Через т обозначим максимум всех ті Due K & 20, ... , m - 13 pacersompers 8 k[x, ..., xn , 7 regear Jr, nopomganom μομομαμι x^{cl} , m.z. $x^{cl}y^{R} ∈ I$. Kangen, $J_{K} = \langle x^{cl} \rangle, \quad x^{cl} \rangle$ no πρεδποω περιμέρ m_{l} Гогда идеах порождей мономами входащими в комегной набор Devierburenous, ocu 20 y P & I, mo non p > m on general rea necomoporio моном $\mathfrak{I}^{a(b)}y^m$ а при $0 \leq p \leq m-1$ этом моном делигах на некоторот morion x de(i) y Porga no sense 3,1 $x^{\alpha}y^{\beta} \in \langle x^{\alpha(1)}, m, x^{\alpha(3)}, m, x^{\alpha(3)}, x, x^{\alpha(3)}, x = 0, m-1 \rangle$ Omenga no engerture de neuro 3.2 enpategneto $I = (x^{d(a)}y^m, x^{\alpha})^m, x^{\alpha}y^m, x$

Следствие: Пусть < - бинарное отношение ка 230, т.г. 1) (Z, <) - menerino gnopagorenuos membo 2) Écue « « p « » E Z", mo «+ » < p+». T_{02ga} $(Z_{20}^n, <)$ - $8yM \Leftrightarrow \kappa_{02ga} \quad \alpha \ge 0$ gur beex $\alpha \in Z_{20}^n$ Donazare 16c160! Myort (Z170, <) - BYM, a do ero naunentimi sienest Tronamen emo l ≤ do. Eem do < 0, mo e nonoustro el) mos nonzun 2404 с прибавив с. к обени сторонам исходного неравенства. Это невозмотью в сему выбора «. Myero $\alpha = 0$ que biez $\alpha \in \mathbb{Z}_{\geq 0}^m$, $A \subset \mathbb{Z}_{\geq 0}^m$ - remyeroe nogurionaccibo, Гокатель, сто в А есть написивший элемент. Рассиотрим мономинальноги идеаг I = (xd: dEA). В сит менно Диксона ON MOMENT FORTH Zanecan b buge $I=\langle z^{\alpha(1)},...,z^{\alpha(6)}\rangle$ ege $\alpha(i)\in A$ bez expansiveres observer suprese eximans to d(1) < d(2) < ... < d(5). Lew $d \in A$, no $x^{d} \in < x^{d(5)}$, $x^{d(5)} > 5 Torga no seuse 31 nonan <math>x^{d}$ genera μα μεκοποροιί $x^{d(i)}$, m.e. $x^{d} = x^{\delta} \cdot x^{d(i)}$ zge $\delta > 0$. Liegobarensuo, no yerobuo 2) un uneen repatence $d = \alpha(i) + \gamma > \alpha(i) + 0 = \alpha(i) > \alpha(1)$ которое означает, гто (1) — напиеньший элемент в А. Определение 21: Моноши поредкам < на Ках, ..., хи и мазываетая менейной порядок на Z" (им на множенове wo πο ποδ) $m \cdot z$.

1) ecu d < β $u ∈ Z_{>0}^n$, m ∈ d + δ < ρ + δ;

2) gur bcez $d ∈ Z_{>0}^n$ bornoeusemas 0 ≤ d. 31) Базичи Гребнера и теорена Гиноверта о базиле Определение 3.2 Густь Г С К[23, ... да] - ненульвай идеал. Идеалом старишх ченов идеала Ібуден называль пдеал, порождённый $\mathcal{U}(I) := \{ cx^{d} : \exists f \in \overline{I} (\mathcal{U}f = cx^{d}) \}$ m.e. regear < lt(I)>

Пример 3.1: Расслотрии идеаг $I = \langle x^3 - 2xy, x^2y - 2y^2 + x \rangle$ задриксируен novagor deglez na k[x,y] Corporen emapune enema Ospazyronyux $x(x^2y-2y^2+x)-y(x^5-2xy)=x^2$ Otebuguo, emo $x^2 \in \langle lt(I) \rangle$ Focusiny x^2 ne genero un na ltf_1 nu na ltf_2 nonen $x^2 \in \langle ltf_1, ltf_2 \rangle$. Taken operou, $\langle lt(I) \rangle \pm \langle llf_1, ltf_2 \rangle$. Tours nonagorbaem, and ugear compune execut (II) regers I=41,.., for Momer 5025 60 as une ven ugear < ltf1,..., ltf5? Заметим, сто поскольну мог работаем над полем
t(I)> =< lm(I)7, rge lm (I):= { lm f: f E I}, m.e. < lt(I) - un commarsioni rigear. Предложение 31 Пуст I с h[x, ..., xn] - ненулевый гидеал. Тогда cywectbycom $g_1,...,g_t \in I$, $m.z. < lt(I)> = < lt(g_t),...,lt(g_t)>$ Доказательство: Госномину «Ста) - моношиальный гидеах то по лемия Dukco μα μαίσε καίσε κονωνου τι το νομομικα μπα οδραγμουμα 100 or pegerenus (lm(I)) some expansioning governor unon bug $lmg_1,...,lmg_2$, $2ge g_1,...,g_t$ - μεκοποριε νιστο ενείσε u_3 I. Τακίμι οδραζού, < line (I) > = < ling, ling; >. Orebugue zmo < lt(I)> = < lt g1, ..., ltgt> Теорена 3.2 (Гиньберта о базись) Катули идеа I в ваго, пр кометно порожден, т.е. $I = \langle g_1, ..., g_1 \rangle$ дая некоторых $g_1, ..., g_1 \in I$. Dokazarenscilo: Hyrebori ugear I nopomgen unomeciban (0). Toomony garee будем рассматривать петрывый идеаг Ictia, ... x. 7 % предложению 31 navigyman gr, ..., gr & I, m. r. < ll I > = < lt gr, ..., ltg_> Donaxer, -uno $I = \langle g_1, ..., g_t \rangle$ Bromerue $\langle g_1,...,g_i
angle \in I$ oabugno Tyers $f \in I$, no meopene 2.1 (anopumu generus) nos momen nepenucas 7 6 buge $(5.2) f = a_1 g_1 + ... + a_t g_t + r,$ zge un ogue monon 6 m ne gemeras un na ogun ligi,..., ligi Monaven

Spegnowners, and r≠0. Focuously r∈ I mo blr € < b(I)7 = < bbg, ..., blg_? To renne 31 ltr genera na kazar-no ltgi, smo nponisoperus mony, ето Γ - остаток от деления f на $1g_1,...,g_k$. Следовательно, $\Gamma=0$ и c yrémon (3.2) 1 € < 91, ..., 9, 7, m e I C < 91,..., 9, 7 Определение 3,3: Задринсируем мономисиный поредок на 1 [x, 2,] базисом Грёбкера (стандартням базисом) годеала І назпрается KONSTHUR MOGRAHOMECIBO $G = \{g_1, ..., g_l\} \subset I$ m.z. $(3.3) \qquad \langle \ell \ell g_1, ..., \ell \ell g_s \rangle = \langle \ell \ell (I) \rangle$ Спедовие: Заринсируем мономисиний порядок на А[1, 2] Кандой менулевой гедеаг $I \in k[x_1,...,x_n]$ обладает базисам Гребнера. Более тогь, базис Грёбнера пдеала I поронедает идеал I, \mathcal{D} оказа \mathcal{T} ельство: Конструкция навра $\mathcal{G}=\{g_1,...,g_i\}$, удовие \mathcal{G} воряющею yeroвию (3.3), приведена в доказательстве теорена. Тан те rokazaro, uno, ecue ycrobie (3.3) bornosusemas To I=(g1,...,gt). Die ugeara I < klx1,..., xn] nor nomen enpegenime $V(I):=\{(a_1,...,a_n)\in k^n: f(a_1,...,a_n)=0 \ \forall f\in If$ Предложение 3.2: Мижество V(I) являетая адоринноги миогообразием Ecrus $I = \langle f_1, ..., f_s \rangle$ mo $V(I) = V(f_1, ..., f_s)$ Dokazatenscibo: No meopene Turissepma a sazuce I = <f1, ..., fs > gua некоторыя f1,..., fs 6 k[21,..., 2n]. Dokance, ero V(I)=V(f1,...,fs) Fipense buniorence ocebugno, nocuosany fie I, i=1 ..., 3 Bojanen f & I m. k. I = \fi,...fs> ero nomeno zamicara 6 buge f = h,f,+...+hsfs. Due motion $(a_1,...,a_n) \in V(f_1,...,f_1)$ guarence $f(a_1,...,a_n) = \sum_{i=1}^{3} h_i(a_1,...,a_n) \cdot f_i(a_1,...,a_n) = \sum_{i=1}^{3} h_i(a_1,...,a_n) \cdot 0 = 0$ 1700many V(f1,..., f5) < V(I) Такин образом, аффиниле многовбразия определяютая идеолами

(3.5) Нётерова кольца Определения 3.4: Кольцо R назовается нётеровам если любой идел ICR является конегио порождёнили Предложение 3.3: Кольцо R нётерово 🖨 когда выполняется условия возрастающих wenover regeard & R: ecu I, C I, C. C. I; - bospacmasonae ченог на идеаль I_j в R то для достотогно больших j глием I_j = \overline{I}_{j+1} (важая непустал совонутмость идеаль в R имеет накаплальных Доказатольство: Пуст в нётерово. Рассиотрин I, с I, с. С I; с. - возрастающи yenory ugearob & R. Doseguneruce $I=U_{i}I_{i}$ she serve regearon 6 R. Focusing этот идель конегно порождёй, то все его образуниция данных летак 6 necomphan Ij Torga I; = I gue i≥j. Пусть выполняемся условия возрастаннуюх ценочик. Гредпольтим, что NEW MORRIE Ugear ICR we elicerae noverno noponigenunu Torga un можем рассмотреть беспомень возрастающую цепь < f17 C < f1, f27 C < f1, f2, f37 C ... Гротоворечие показывает, что в нётерово. Теорена 32' (Гильберта о базии) Пусть R нётерово. Тогда кольцо миного иного керов КГ2 I тоже являеть нётеровам.

Остаєтая установий неравенство (24). Замения, гто каторе ciaracuoe 6 a: incem bug ltp(10) lt fi. Haraisuoe zuarenne p(0)= f, no story & cury morono smo gorazannozo, ltp(x) < ltf ger beex K. $\ell\ell(a_i f_i) = \ell\ell a_i \ell\ell f_i = \frac{\ell\ell p^{(k_i)}}{\ell\ell f_i} \cdot \ell\ell f_i = \ell\ell p^{k_i} < \ell\ell f_i$ Ecu & pezy simane generus of na (fr..., fs) comamor r=0, mo многоглен f E < 91,..., Яб > Одноко обратное неверно. Пример 23: Пуст f1 = xy+1, f2 = y'-1 из Q[x,y] с lex: x ту. Jogans improvem 4 = xy2 x na (fi, f2), nongrum $xy^2-x=y(xy+1)+O(y^2-1)+(-x-y).$ Ognaro xy2-x = x(y2-1) 6 < 1, f2>.