ISYE 6420A

Homework 2

Due February 5, 2020

- 1. Suppose an engineer is 95% confident that the probability of rejecting a product is going to be .5 \pm .2. Use this information to construct a beta prior for θ . (Hint: Use normal approximation for the beta distribution. Note that if $x \sim Beta(\alpha, \beta)$, then $E(x) = \frac{\alpha}{\alpha + \beta}$ and $var(x) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$.)
- 2. Find the Jeffreys' prior for the parameter α of the Maxwell distribution

$$p(y|\alpha) = \sqrt{\frac{2}{\pi}}\alpha^{3/2}y^2 \exp(-\frac{1}{2}\alpha y^2)$$

and find a transformation of this parameter in which the corresponding prior is uniform.

3. Jeffreys' prior for multiparameter models is given by

$$p(\theta) \propto \sqrt{\det(I(\boldsymbol{\theta}))},$$

where $I(\boldsymbol{\theta})$ is the Fisher Information matrix whose ijth element is given by $-E(\partial^2 \log p(y|\boldsymbol{\theta})/\partial \theta_i \partial \theta_j)$. Suppose that for $i=1,\dots,n,\ y_i \sim p_i(y_i|\theta_i)$ and $\pi_i(\theta_i)$ is the Jeffreys' prior for θ_i . If the y_i 's are independent, show that the Jeffreys' prior for $\boldsymbol{\theta} = (\theta_1, \dots, \theta_n)'$ is $\prod_{i=1}^n \pi_i(\theta_i)$.

- 4. Suppose $x \sim Binomial(n, \pi)$ and $y \sim Binomial(n, \rho)$ are independent. Find the Bayes rule for estimating $\pi \rho$ corresponding to the loss function $L(\pi \rho, a) = (\pi \rho a)^2$ under the priors: $\pi \sim Beta(1, 3)$ and $\rho \sim Beta(3, 1)$.
- 5. Find the Bayes rule for estimating θ corresponding to the loss function $L(\theta, a) = c_1(a \theta)$ if $a \ge \theta$ and $L(\theta, a) = c_2(\theta a)$ if $a \le \theta$.

1