CS1231S TUTORIAL #8

Cardinality

Learning objectives of this tutorial

Cardinality

- relationship between bijections and cardinality
- Cantor's definition of same-cardinality
- the notion of countability
- techniques to show a set is countable
- techniques to show a set is uncountable

Quick summary

Definition (Cantor). A set A is said to have the *same cardinality* as a set B, written as |A| = |B|, iff there is a bijection $f: A \to B$.

Definition (Cantor). A set S is *countably infinite* iff $|S| = |\mathbb{Z}^+|$ (or $|\mathbb{N}|$).

Definition (Cantor). A set is *countable* iff it is finite or countably infinite.

Theorem. $\mathbb{Z}^+ \times \mathbb{Z}^+$ is countable.

Proposition 9.1. An infinite set B is countable if and only if there is a sequence $b_0, b_1, b_2, ... \in B$ in which every element of B appears exactly once.

Lemma 9.2. An infinite set B is countable if and only if there is a sequence b_0, b_1, b_2, \cdots in which every element of B appears.

Theorem 7.4.3. Any subset of any countable set is countable.

Corollary 7.4.4. Any set with an uncountable subset is uncountable.

Proposition 9.3. Every infinite set has a countably infinite subset.

Lemma 9.4. Let A and B be countably infinite sets. Then $A \cup B$ is countable.

Show that \mathbb{Z} is countable by defining a bijection $g: \mathbb{N} \to \mathbb{Z}$ using a single-line formula.

$$g(n) = (-1)^n \left\lfloor \frac{n+1}{2} \right\rfloor$$

(Other answers possible.)

A function $f: X \to Y$ is **injective** iff

 $\forall x_1, x_2 \in X (f(x_1) = f(x_2) \Rightarrow x_1 = x_2).$

1. (Injectivity)

- 1.1. Let $g(a), g(b) \in \mathbb{Z}$ and g(a) = g(b).
- 1.2. Then g(a) and g(b) must both be non-negative or both negative.
- 1.3. Case 1: g(a) and g(b) are both non-negative.
 - 1.3.1. Then a and b must be even.

1.3.2. Then
$$(-1)^a \left\lfloor \frac{a+1}{2} \right\rfloor = (-1)^b \left\lfloor \frac{b+1}{2} \right\rfloor \Rightarrow \left\lfloor \frac{a+1}{2} \right\rfloor = \left\lfloor \frac{b+1}{2} \right\rfloor \Rightarrow \frac{a}{2} = \frac{b}{2} \Rightarrow a = b$$
.

- 1.4. Case 2: g(a) and g(b) are both negative.
 - 1.4.1. Then a and b must be odd.

1.4.2. Then
$$(-1)^a \left\lfloor \frac{a+1}{2} \right\rfloor = (-1)^b \left\lfloor \frac{b+1}{2} \right\rfloor \Rightarrow -\left\lfloor \frac{a+1}{2} \right\rfloor = -\left\lfloor \frac{b+1}{2} \right\rfloor \Rightarrow \frac{a+1}{2} = \frac{b+1}{2} \Rightarrow a = b$$
.

- 1.5. In all cases, a = b.
- 1.6. Therefore g is injective.

Show that \mathbb{Z} is countable by defining a bijection $g: \mathbb{N} \to \mathbb{Z}$ using a single-line formula.

$$g(n) = (-1)^n \left\lfloor \frac{n+1}{2} \right\rfloor$$

(Other answers possible.)

A function $f: X \to Y$ is **surjective** iff $\forall y \in Y \exists x \in X (y = f(x))$.

2. (Surjectivity)

- 2.1. Let $m \in \mathbb{Z}$. Then m is non-negative or negative.
- 2.2. Case 1: m is non-negative.
 - 2.2.1. Let n = 2m.
 - 2.2.2. Then $n \in \mathbb{N}$ and $g(n) = (-1)^{2m} \left\lfloor \frac{2m+1}{2} \right\rfloor = \frac{2m}{2} = m$.
- 2.3. Case 2: m is negative.
 - 2.3.1. Let n = -2m 1.
 - 2.3.2. Then $n \in \mathbb{N}$ and $g(n) = (-1)^{-2m-1} \left\lfloor \frac{(-2m-1)+1}{2} \right\rfloor = -\frac{-2m}{2} = m$.
- 2.4. In all cases, there exists $n \in \mathbb{N}$ such that g(n) = m.
- 2.5. Therefore g is surjective.
- 3. Therefore g is a bijection from \mathbb{N} to \mathbb{Z} .

- Let B be a countably infinite set and C be a finite set. Show that $B \cup C$ is countable (a) by using the sequence argument.
 - 1. Apply Lemma 9.2 to obtain a sequence b_0 , b_1 , b_2 , ... in which every element of B appears.
 - 2. Suppose $|C| = n \in \mathbb{N}$. We may write $C = \{c_0, c_1, ..., c_{n-1}\}$.
 - 3. Then $c_0, c_1, \dots, c_{n-1}, b_0, b_1, b_2, \dots$ is a sequence in which every element of $B \cup C$ appears.
 - 4. So $B \cup C$ is countable by Lemma 9.2.

Lemma 9.2. An infinite set B is countable if and only if there is a sequence $b_0, b_1, b_2, ...$ in which every element of B appears.

Let B be a countably infinite set and C be a finite set. Show that $B \cup C$ is countable

- (b) by defining a bijection $g: \mathbb{N} \to B \cup C$.
- 1. As B is a countably infinite set, we have a bijection $f: \mathbb{N} \to B$.
- 2. Remove all elements in C that are in B. After removal, $C = \{c_0, c_1, \dots, c_{k-1}\}$.
- 3. Define a function $g: \mathbb{N} \to B \cup C$ such that

$$g(i) = \begin{cases} c_i & \text{if } i < k; \\ f(i-k) & \text{otherwise.} \end{cases}$$

- 4. As the c_i 's are distinct, $g(i) = g(j) \Rightarrow c_i = c_j \Rightarrow i = j$. Hence g is injective from $\{0,1,\cdots,k-1\}$ to C.
- 5. For every c_i , there exists an i such that $g(i) = c_i$. Hence g is surjective from $\{0,1,\cdots,k-1\}$ to C.
- 6. Therefore g is a bijection between $\{0,1,\cdots,k-1\}$ and C.
- 7. g is a bijection between $\{k, k+1, \dots\}$ and B as f is bijective between $\{0,1,2,\dots\}$ and B.
- 8. Therefore g is a bijection between \mathbb{N} and $B \cup C$.

Q3. (a) Suppose A_1, A_2, \cdots are finite sets. Then $\bigcup_{i=1}^n A_i$ is finite for any $n \ge 2$. Proof:

"We will prove by induction on n. Since A_1 and A_2 are finite, then $A_1 \cup A_2$ is finite, so the claim is true for n=2. Now suppose the claim is true for n=k, so $\bigcup_{i=1}^k A_i$ is finite. Let $A_{k+1}=\emptyset$.

Then $\bigcup_{i=1}^{k+1} A_i = (\bigcup_{i=1}^k A_i) \cup A_{k+1} = \bigcup_{i=1}^k A_i$ which is finite by the induction hypothesis, so the claim is true for n=k+1. Therefore, the claim is true for all $n \geq 2$."

What is wrong with this "proof"?

There is an implicit universal quantification on A_1, A_2, \dots , i.e. we have to prove the claim is true for all possible A_1, A_2, \dots , so we cannot just consider the special case $A_{k+1} = \emptyset$.

Q3. (b) Prove the following is false.

"Suppose A_1, A_2, \cdots are finite sets. Then $\bigcup_{i=1}^{\infty} A_i$ is finite."

Let
$$A_i = \{i\}$$
 for all $i \ge 1$.

Then $\bigcup_{i=1}^{\infty} A_i = \mathbb{Z}^+$ which is infinite.

- Q_4 . Suppose A_1, A_2, A_3, \cdots are countable sets.
 - (a) Prove, by induction, that $\bigcup_{i=1}^{n} A_i$ is countable for any $n \in \mathbb{Z}^+$.
 - 1. Let P(n) means " $\bigcup_{i=1}^{n} A_i$ is countable".
 - 2. Basis step: $\bigcup_{i=1}^{1} A_i = A_1$ is countable, so P(1) is true.
 - 3. Induction step: Suppose P(k) is true.
 - 3.1. $\bigcup_{i=1}^{k+1} A_i = (\bigcup_{i=1}^k A_i) \cup A_{k+1}$.
 - 3.2. Since $\bigcup_{i=1}^k A_i$ is countable (by induction hypothesis) and A_{k+1} is countable, so $(\bigcup_{i=1}^k A_i) \cup A_{k+1}$ is countable (by Lemma 9.4).
 - 3.3. Hence P(k + 1) is true.
 - 4. Therefore $\bigcup_{i=1}^n A_i$ is countable for any $n \in \mathbb{Z}^+$ by MI.

Lemma 9.4. Let A and B be countably infinite sets. Then $A \cup B$ is countable.

O4. Suppose A_1, A_2, A_3, \cdots are countable sets. (b) Does (a) prove that $\bigcup_{i=1}^{\infty} A_i$ is countable?

No.

Question 3(b) shows that a proof that $\bigcup_{i=1}^n A_i$ is finite for every $n \geq 2$ does not imply $\bigcup_{i=1}^{\infty} A_i$ is finite. Similarly here, a proof that $\bigcup_{i=1}^n A_i$ is countable for every $n \geq 1$ does not imply that $\bigcup_{i=1}^{\infty} A_i$ is countable

Note that $\bigcup_{i=1}^{\infty} A_i$ is indeed countable, just that it cannot be proved using the approach in part (a). We will prove it in the next question.

Q5. Let S_i be a countably infinite set for each $i \in \mathbb{Z}^+$. Prove that $\bigcup_{i \in \mathbb{Z}^+} S_i$ is countable.

Lemma 9.2. An infinite set B is countable iff there is a sequence in which every element of B appears.

Let S_i be a countably infinite set for each $i \in \mathbb{Z}^+$. Prove that $\bigcup_{i \in \mathbb{Z}^+} S_i$ is countable.

- 1. $\mathbb{Z}^+ \times \mathbb{Z}^+$ is countable (lecture 9 slide 29).
- 2. Hence there is a bijection $f: \mathbb{Z}^+ \to \mathbb{Z}^+ \times \mathbb{Z}^+$.
- 3. For each $i \in \mathbb{Z}^+$, since S_i is countable, apply Lemma 9.2 to find a sequence $b_{i,1}$, $b_{i,2}$, $b_{i,3}$, ... in which every element of S_i appears.
- 4. Define a sequence $c_1, c_2, c_3, ...$ by setting each $c_k = b_{i,j}$, where (i,j) = f(k).
- 5. In view of Lemma 9.2, it suffices to show that every element of $\bigcup_{i \in \mathbb{Z}^+} S_i$ appears in the sequence c_1, c_2, c_3, \dots
 - 5.1. Take $x \in \bigcup_{i \in \mathbb{Z}^+} S_i$.
 - 5.2. The definition of $\bigcup_{i \in \mathbb{Z}^+} S_i$ gives $i \in \mathbb{Z}^+$ such that $x \in S_i$.
 - 5.3. So line 3 tells us x appears in the sequence $b_{i,1}$, $b_{i,2}$, $b_{i,3}$,
 - 5.4. Let $j \in \mathbb{Z}^+$ such that $x = b_{i,j}$.
 - 5.5. From the surjectivity of f, we obtain $k \in \mathbb{Z}^+$ such that f(k) = (i, j).
 - 5.6. Then $x = b_{i,j} = c_k$ by the definition of c_k .

Definition. A function $f: A \rightarrow B$ is *surjective* iff $\forall y \in B \ \exists x \in A \ (y = f(x)).$

Lemma 9.2. An infinite set *B* is countable iff there is a sequence $b_0, b_1, b_2, ...$ in which every element of *B* appears.

 S_3 : $b_{3,1}$, $b_{3,2}$, $b_{3,3}$, $b_{3,4}$, ...

 S_2 : $b_{2,1}$, $b_{2,2}$, $b_{2,3}$, $b_{2,4}$, ...

 S_1 : $b_{1,1}$, $b_{1,2}$, $b_{1,3}$, $b_{1,4}$, ...

- Q6. Let *B* be an infinite set and *C* be a finite set. Define a bijection $B \cup C \rightarrow B$.
- **Q2.** Let B be a countably infinite set and C a finite set. Then $B \cup C$ is countable.
- 1. Use Proposition 9.3 to find a countably infinite subset $B_0 \subseteq B$.
- 2. Let $C_0 = C \setminus B$, so that C_0 is finite.
- 3. Then $B_0 \cup C_0$ is countable by Q2.
- 4. Hence $|B_0 \cup C_0| = |\mathbb{Z}^+| = |B_0|$ by the definition of countably infinite set.
- 5. Hence there is a bijection $f: B_0 \cup C_0 \rightarrow B_0$.
- 6. Define $g: B \cup C \rightarrow B$ as follows: for each $x \in B \cup C$,

$$g(x) = \begin{cases} f(x), & \text{if } x \in B_0 \cup C_0; \\ x, & \text{otherwise,} \end{cases}$$
 B infinite

7. *g* is the required bijection.

Proposition 9.3. Every infinite set has a countably infinite subset.

O7. Prove that a set B is infinite if and only if there is $A \subsetneq B$ such that |A| = |B|.

1. ("Only if")

- 1.1. Suppose B is infinite.
- 1.2. Take any $b \in B$.
- 1.3. Define $A = B \setminus \{b\}$.
- 1.4. Then $A \subseteq B$.
- 1.5. As *B* is infinite, we know *A* is infinite too.
- 1.6. So $|B| = |A \cup \{b\}| = |A|$ by question 6.

Q6. Let B be an infinite set and C a finite set. Then there is a bijection $B \cup C \rightarrow B$. So $|B \cup C| = |B|$.

- 2. ("If") (We prove the contrapositive: If B is finite then for all $A \subseteq B$, $|A| \neq |B|$.)
 - 2.1. Suppose B is finite.
 - 2.2. Take any $A \subseteq B$.
 - 2.3. As B is finite, we know A is also finite.
 - 2.4. There are strictly fewer elements in A than in B.
 - 2.5. Hence there is no bijection $A \rightarrow B$.
 - 2.6. This means $|A| \neq |B|$ by Equality of Cardinality of Finite Sets Theorem.

Equality of Cardinality of Finite Sets.

Let *A* and *B* be any finite sets.

|A| = |B| iff there is a bijection $f: A \to B$.

\bigcirc 8. Prove that \mathbb{C} is uncountable.

- 1. $\mathbb{R} \subseteq \mathbb{C}$.
- 2. We know \mathbb{R} is uncountable (lecture #9 example #5).
- 3. Therefore C is uncountable by Corollary 7.4.4.

Corollary 7.4.4. Any set with an uncountable subset is uncountable.

Q9. Let A be a countably infinite set. Prove that $\mathcal{P}(A)$ is uncountable.

- 1. Suppose not, that is, $\mathcal{P}(A)$ is countable.
- 2. $\mathcal{P}(A)$ is infinite as A is infinite and $\{a\} \in \mathcal{P}(A)$ for every $a \in A$.
- 3. By Proposition 9.1, there is a sequence $a_0, a_1, a_2, \dots \in A$ in which every element of A appears exactly once.
- 4. By Proposition 9.1, there is a sequence $B_0, B_1, B_2, \dots \in \mathcal{P}(A)$ in which every element of $\mathcal{P}(A)$ appears exactly once.
- 5. Now, define $B = \{a_i : a_i \notin B_i\}$.

Proposition 9.1. An infinite set B is countable if and only if there is a sequence $b_0, b_1, b_2, ... \in B$ in which every element of B appears exactly once.

Q9. Let A be a countably infinite set. Prove that $\wp(A)$ is uncountable.

- 1. Suppose not, that is, $\mathcal{P}(A)$ is countable.
- 2. $\mathcal{P}(A)$ is infinite as A is infinite and $\{a\} \in \mathcal{P}(A)$ for every $a \in A$.
- 3. By Proposition 9.1, there is a sequence $a_0, a_1, a_2, \dots \in A$ in which every element of A appears exactly once.
- 4. By Proposition 9.1, there is a sequence $B_0, B_1, B_2, \dots \in \mathcal{P}(A)$ in which every element of $\mathcal{P}(A)$ appears exactly once.
- 5. Now, define $B = \{a_i : a_i \notin B_i\}$.
- 6. Note that $B \in \mathcal{P}(A)$ since $a_0, a_1, a_2, \dots \in A$.
- 7. To show $B \neq B_i$ for all $i \in \mathbb{N}$.
 - 7.1. Let $i \in \mathbb{N}$.
 - 7.2. Case 1: If $a_i \notin B_i$, then $a_i \in B$ by the definition of B.
 - 7.3. Case 2: If $a_i \in B_i$, then $a_i \notin B$ by the definition of B.
 - 7.4. In all cases, $B \neq B_i$.
- 8. Since B is not in the sequence $B_0, B_1, B_2, \dots \in \mathcal{P}(A)$, this contradicts that $\mathcal{P}(A)$ is countable.
- 9. Therefore, $\mathcal{P}(A)$ is uncountable.

END OF FILE