Game Theory: Applications in Network Protocols

Q4) How does CDMA solves the near-far problem using Distributed Power Control How does Wi-Fi manage interference in a shared network?

References:

- 1. Kevin Leyton-Brown and Yoav Shoham. (2008). Essentials of Game Theory. Morgan & Claypool Pool Publishers
- 2. Chapter 1 What makes CDMA work on my Smartphone. In Networked Life: 20 Questions and Answers.

Game Theory

https://www.youtube.com/watch?v=qY0XKSzjBKI

- Game: played between two or more players
- Models of strategic interactions:
 - Outcomes depend on more than one player's decision
 - O The decisions for one player cannot be separated from those of others!
- Networks: How to prevent users from overgrazing the Wi-Fi network capacity?
- Markets: What will happen if two companies are allowed to merge?
- E-commerce: How should an on-line auction be structured to maximize revenue?
- Legal: How should random audits of taxes be conducted?
- Sports: Should a soccer player adjust the fraction of time that s/he kicks penalty kicks to a goalies right or left based on the goalie?

Game Theoretic Models

- Players: who makes the decisions?
- Strategies: what are the actions available?
- Timing: who does what and when?
- Information: what do players know when choosing?
- Payoffs: what happens as a function of the actions? And what motivates players?
- The formal model
 - O The main ingredients: Players, Strategies, Payoffs
- Normal Form games
 - Dominance
 - **Equilibrium**

GAME THEORY AND THE ECONOMICS OF COOPERATION

- Game theory is the study of how people behave in strategic situations.
 - Strategic decisions are those in which each person, in deciding what actions to take, must consider how others might respond to that action.
 - 1. A set of players $\{1, 2, \dots, N\}$
 - 2. A strategy space A_i for each player
 - A payoff function, or utility function, U_i for each player to maximize (or a cost function to minimize). Function U_i maps each combination of all players' strategies to a real number, the payoff (or cost), to player i.

The Prisoners' Dilemma

- The *prisoners' dilemma* provides insight into the difficulty in maintaining cooperation.
 - Often people (firms) fail to cooperate with one another even when cooperation would make them better off.
 - The prisoners' dilemma is a particular "game" between two captured prisoners that illustrates why cooperation is difficult to maintain even when it is mutually beneficial.

Best Response

- Best Response of A is the strategy of A that maximizes
 her profit given a specific response of the other actor B
 - Game: (N, (A_i)_i, (u_i)_i)
 - a_i is a best response to a_{-i} (strategies of others) if
 u_i (a_i, a_{-i}) ≥ u_i (a_i', a_{-i}) for all a_i'

 Always have a best response in a finite game (every finite set of numbers has a max)

Dominant strategy

- Dominant strategy of A is the strategy of A that maximizes the payoffs irrespective of the strategic response of B
 - A strategy a_i is a (weakly) dominant strategy for a player i

$$u_i(a_i, a_{-i}) \ge u_i(a_i', a_{-i})$$
 for all a_i' and a_{-i}

• A strategy ai is a strictly dominant strategy for a player i

$$u_{i}(a_{i}, a_{-i}) > u_{i}(a_{i}', a_{-i})$$
 for all a_{i}' and a_{-i}

Nash Equilibrium

- Socially optimal equilibrium
 - O Set of strategies that maximizes sum of utilities
- Nash Equilibrium -Named after John Nash
 - Also sometimes called Cournot-Nash equilibrium
- Nash equilibrium is stable
 - O No player wishes to change her strategy if she knew what strategies the others are using

Definition 2.2.2 (Nash equilibrium). A strategy profile $s = (s_1, \ldots, s_n)$ is a Nash equilibrium if, for all agents i, s_i is a best response to s_{-i} .

$$U_1(a^*, b^*) \ge U_1(a, b^*)$$
, for any $a \in \mathcal{A}$,

$$U_2(a^*, b^*) \ge U_2(a^*, b)$$
, for any $b \in \mathcal{B}$.

The Prisoners' Dilemma

Peeyush's Decision

Confess

Remain Silent

Confess

Pranjal's Decision

Remain Silent

Anirudh is fined Rs. 8,000	Anirudh is fined Rs. 20,000
Kaushal is fined Rs. 8000	Kaushal is let off free
Anirudh is let off free	Anirudh is fined Rs. 1,000
Kaushal is fined Rs. 20,000	Anirudh is fined Rs. 1,000

Prisoner's Dilemma

	C	D
C	a, a	b, c
D	c, b	d, d

Any c > a > d > b define an instance of Prisoner's Dilemma.

TEN 1/19/2024

10

The Prisoners' Dilemma

- The dominant strategy is the best strategy for a player to follow regardless of the strategies chosen by the other players.
 - Cooperation is difficult to maintain, because cooperation
 is not in the best interest of the individual player.
 - Self-interest makes it difficult for the oligopoly to maintain a cooperative outcome with low production, high prices, and monopoly profits.

Cooperation between players

- The *prisoners' dilemma* provides insight into the difficulty in maintaining cooperation.
 - Often people (firms) *fail to cooperate* with one another even when cooperation would make them better off.
 - The prisoners' dilemma is a particular "game" between two captured prisoners that illustrates why cooperation is difficult to maintain even when it is mutually beneficial
- Firms that care about future payoffs will cooperate in repeated games rather than cheating in a single game to achieve a onetime gain.

Co-ordination Game: Battle of the Sexes

В			
A		Action Movie	Comedy Movie
	Action Movie	(2,1)	(0,0)
	Comedy Movie	(0,0)	(1,2)

TEN 1/19/2024

Matching Pennies and Zero Sum Game

В			
A		Head	Tail
	Head	(1, -1)	(-1,1)
	Tail	(-1,1)	(1, -1)

TEN 1/19/2024

Arms Race: Nash Equilibrium

Decision of			
		Arm	Disarm
Decision of	Arm	U.S. At Risk N Korea at Risk	U.S. At Risk and Weak N Korea Safe and Powerful
	Disarm 1/ 1氧 20	U.S. Safe and Powerful N Korea at Risk and Weak	U.S. Safe N Korea Safe

TEN 1/**183**2024

15

Why People Sometimes Cooperate

- Firms that care about future profits will cooperate in repeated games rather than cheating in a single game to achieve a one-time gain.
- Cooperation among oligopolists is undesirable from the standpoint of society as a whole because it leads to production that is too low and prices that are too high.

How does CDMA work: Relation to Game Theory

TEN 1/19/2024 17

Cellular Networks

TEN 1/19/2024

Multiplexing and Access Techniques

- Frequency Division Multiple Access (FDMA)
 - frequency is divided among the participants
 - similar to people talking at different pitch and intensity, but all at the same time
- Time Division Multiple Access (TDMA)
 - each participant is allocated a time slot to participate
- Code Division Multiple Access (CDMA)
 - O all the units talk at the same time
 - code word called chipset in each unit scrambles the conversation
 - O similar to people talking in different languages in a room at the same time
 - more efficient than either FDMA or TDMA

T/EISI/2024 19

2G, **3G** and **4G** Technologies: Increasing Spectral Efficiencies

TEN

Externalities

- Negative externalities
 - Your conversation crowds out the others > negative effect
- Tragedy of the Commons
 - o If everyone talks, then everyone will be crowded out
- Near-Far problem
 - Nearer devices crowds out Farther devices

Control Medium Access: *Traffic signal versus Stop signs*

www.alamy.com - F3FFCD

Which one is good for light traffic and which one for heavy traffic? What are the trade-offs?

TEN 1/19/2024

Notations

- $i \in I$: set of transmitters and receivers
- p_j : transmit power of device j
- G_{ij} : channel gain on link $\{i,j\}$
 - O Depends on location of transmitter and receiver
 - O Quality of channel in between
- N_i: noise at receiver i
- SNR_i : Signal to Noise Ratio at receiver i

Transmission Power Control(TPC)

- Receiver provides feedback to adjust the power of the transmitter if the threshold receiver power requirement is not met
 - Leads to Arms Race problem and the Nash Equilibrium is ..

$$p_{j}(t+1) = p_{j}(t) \times \{\gamma/[G_{ij}p_{j}(t)]\}$$

Uplink Interference Management

$$SIR_i = \frac{G_{ii}p_i}{\sum_{j\neq i} G_{ij}p_j + n_i}.$$

TEN 1/19/2024

Distributed Power Control (DPC)

- γ_i : Target SIR at receiver i
- At convergence: $SIR_i = \gamma_i$ for all *i*

$$p_i[t+1] = \frac{\gamma_i}{\text{SIR}_i[t]} p_i[t]$$
, for each i .

How is Wi-Fi different from cellular network protocols

- Basic Service Set (BSS) at each Access Point (AP)
- Characteristics of Wi-Fi
 - Operates in Unlicensed Industrial Scientific and Medical (ISM band
 - 2.4, 5.8, 60 GHz
 - Operate within a limited geographical area and hence limited power of
 - operation
 - Interference in general is more
- Traffic signal or Stop sign??

TEN 1/19/2024

27