Série 2018 PQ selon OFPi 2006 Procédures de qualification

Planificatrice-électricienne CFC

Planificateur-électricien CFC

Connaissances professionnelles écrites

Pos. 4.2 Technique des systèmes électriques

Dossier des expertes et experts

Temps: 90 minutes pour 20 exercices sur 13 pages

Auxiliaires: Règle, équerre, chablon, recueil de formules sans exemple de calcul et

calculatrice de poche, indépendante du réseau (tablettes, smartphones

etc. ne sont pas autorisés).

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

- Pour obtenir le maximum de points, les formules ou les calculs doivent figurer dans la solution, ainsi que les valeurs et unités utilisées. Les résultats et l'unité utilisée doivent être soulignés deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.

- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elles. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.
- Le verso est à utiliser si la place manque. Par exercice, un commentaire adéquat tel que par exemple « voir la solution au dos » doit être noté.
- Toute erreur induite par une précédente erreur n'entraîne aucune déduction.

Barème: Nombres de points maximum: 51,0

48,5	-	51,0	Points = Note	6,0
43,5	-	48,0	Points = Note	5,5
38,5	-	43,0	Points = Note	5,0
33,5	-	38,0	Points = Note	4,5
28,5	-	33,0	Points = Note	4,0
23,0	-	28,0	Points = Note	3,5
18,0	-	22,5	Points = Note	3,0
13,0	-	17,5	Points = Note	2,5
8,0	-	12,5	Points = Note	2,0
3,0	-	7,5	Points = Note	1,5
0,0	-	2,5	Points = Note	1,0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Délai d'attente: Cette épreuve d'examen ne peut pas être utilisée librement comme

exercice avant le 1^{er} septembre 2019.

Créé par: Groupe de travail EFA de l'USIE pour la profession de

planificatrice-électricienne CFC / planificateur-électricien CFC

Editeur: CSFO, département procédures de qualification, Berne

LACI	cices				Nombre of maximal	de points obtenus	
1.	5.1.1 Donnez deux raisons pour les suprarégional est transformée		ınsport d'éi	nergie	2		
	 Le courant est réduit Les pertes en ligne dimunuent Des conducteurs de section plus petite peuvent être utilisés Le transport d'énergie est meilleur marché 						
	(Note pour les experts : 1 poin	t par bonne réponse)					
2.	5.1.6 Une transformateur monophas 160 VA.	sé 230 V / 48 V a une puissa	ance nomir	nale de	2		
	Calculez : a) le rapport de transformation	1.			1		
	$\ddot{\mathbf{u}} = \frac{\mathbf{U}_1}{\mathbf{U}_2} = \frac{\mathbf{230 \ V}}{\mathbf{48 \ V}} = \underline{\mathbf{4,792 : 1}}$						
	b) le courant nominal au prima	aire.			1		
	$I_{P} = \frac{S}{U_{P}} = \frac{160 \text{ VA}}{230 \text{ V}} = \underline{696 \text{ m}}$	<u>A</u>					
3.	5.1.3 Cochez pour chaque affirmation	on si elle est juste ou fausse	ı.		1		
	Affirm	Faux					
	Canalisation Tube ALU	Utilisation Peut être installé dans des environnements corrosifs.	- Juste		0,5		
		<u> </u>	1	1			

Exer	cices	Nombre maximal	de points obtenus
4	5.1.5b		
4.	Organe de protection a) Comment appelle-t-on cet organe de protection ?	2 1	
	B 16 B 16		
	FI / LS ou (Disjoncteur FI / LS)		
	b) Que signifie l'indication B16 indiquée sur cet organe de protection ?	1	
	B = Courbe de coupure (de déclenchement de l'effet magnétique)	(0,5)	
	16 = Courant nominal en ampères	(0,5)	
5.	5.3.4 Un chauffe-eau triphasé équilibré a une puissance nominale de 3 kW. Les trois corps de chauffe sont connectés en triangle sous 3 x 400 V.	3	
	Calculez : a) le courant de ligne consommé par ce chauffe-eau.	1	
	$I = \frac{P}{\sqrt{3} \cdot U} = \frac{3000 \text{ W}}{\sqrt{3} \cdot 400 \text{ V}} = \frac{4,33 \text{ A}}{}$		
	b) le courant traversant un corps de chauffe.	1	
	$I_{Ph} = \frac{I}{\sqrt{3}} = \frac{4,33 \text{ A}}{\sqrt{3}} = \underline{\frac{2,5 \text{ A}}{}}$		
	c) la résistance d'un corps de chauffe.	1	
	$R_{Ph} = \frac{U}{I_{Ph}} = \frac{400 \text{ V}}{2,5 \text{ A}} = \underline{160 \Omega}$		

Exercic		Nombre maximal	de points obtenus
	3.2 n moteur à courant alternatif est chargé à sa puissance nominale de 1100 W. es valeurs mesurées sont indiquées sur le schéma.	4	
230 V 50 Hz	P = 1480 W $I = 8.7 A$ $M P = 1100 W$		
	alculez : le rendement du moteur.	1	
	$\eta = \frac{P_{utile}}{P_{absorb\acute{e}e}} = \frac{1100 \text{ W}}{1480 \text{ W}} = \underline{0.74} = \underline{74 \%}$ la puissance apparente du moteur.	1	
:	$S = U \cdot I = 230 V \cdot 8,7 A = \underline{2001 VA}$		
c)	le facteur de puissance cos φ.	1	
C	$\cos \varphi = \frac{P_{absorb\acute{e}}}{S} = \frac{1480 \text{ W}}{2001 \text{ VA}} = \frac{0.74}{1.000 \text{ W}}$		
d)	la puissance réactive du moteur.	1	
ou	$Q = \sqrt{(S)^2 - (P_{absorb\acute{e}e})^2} = \sqrt{(2001 \text{ VA})^2 - (1480 \text{ W})^2} = \underline{1347 \text{ var}}$		
	$Q = S \cdot \sin \varphi = 2001 \text{ VA } \cdot 0,6726 = \underline{1347 \text{ var}}$		
ou	$Q = P_{absorb\acute{e}} \cdot tan\phi = 1480 \text{ W} \cdot 0,9089 = \underline{1347 \text{ var}}$		

Exer	cices	Nombre maximal	de points obtenus
7.	5.3.1 Une bobine est connectée sous 230 V / 50 Hz. La composante ohmique de la bobine est de 75 Ω , son inductance vaut 150 mH.	5	
	230 V / 50 Hz Bobine R U _R U _L		
	Calculez : a) la réactance d'induction. $X_L = \omega \cdot L = 2 \cdot \pi \cdot 50 \; Hz \cdot 0, 15 \; H = \underline{47, 1 \; \Omega}$	1	
	b) l'impédance.	1	
	$Z = \sqrt{R^2 + X_L^2} = \sqrt{(75~\Omega)^2 + (47,1~\Omega)^2} = \underline{\underline{88,6~\Omega}}$ c) le courant consommé.	1	
	$I = \frac{U}{Z} = \frac{230 \text{ V}}{88,6 \Omega} = \underline{\frac{2,6 \text{ A}}{}}$ d) la tension U_R .	1	
	$U_R = I \cdot R = 2, 6 \ A \cdot 75 \ \Omega = \underline{\underline{195 \ V}}$ e) le facteur de puissance cos ϕ .	1	
	$\cos_{\phi} = \frac{R}{Z} = \frac{75 \ \Omega}{88, 6 \ \Omega} = \ \underline{\frac{0,846}{0}} ou \ \cos_{\phi} = \frac{U_R}{U} = \frac{194, 7 \ V}{230 \ V} = \ \underline{\frac{0,846}{0}}$		
8.	5.5.2 Nommez quatre éléments différents rencontrés dans un système KNX. Alimentation	2	
	Bus Capteur Actionneur Participants Répéteurs Dorsale Coupleur de ligne ou de zone	chacun 0,5	
	(Note pour les experts : 0,5 point par bonne réponse)		

Exer	rcices	Nombre maximal	de points obtenus
	5.2.2/ 5.2.3		Obtenus
9.	Instruments de mesure	2	
	a) Avec quel instrument mesurez-vous l'éclairement ?	1	
	Luxmètre		
	b) La valeur affichée sur l'écran est-elle suffisante si la mesure a été effectuée sur la place de travail dans un bureau ?	1	
	218.6 000 000 000 NON (min. 500 lx)		
10.	5.3.3 Une résistance de 100 Ω est connectée à une tension alternative de 230 V / 50 Hz.	2	
	Que vaut :		
		0,5	
	a) le courant ?	0,0	
	$I = \frac{U}{R} = \frac{230 \text{ V}}{100 \Omega} = \frac{2.3 \text{ A}}{100 \Omega}$		
	b) la valeur de crête de la tension ?	0,5	
	$\widehat{\mathbf{U}} = \sqrt{2} \cdot \mathbf{U} = \sqrt{2} \cdot 230 \mathbf{V} = \underline{325 \mathbf{V}}$		
	c) la période ?	0,5	
	$T = \frac{1}{f} = \frac{1}{50 \text{ Hz}} = \frac{0.02 \text{ s} = 20 \text{ ms}}{1}$		
	d) la vitesse angulaire ?	0,5	
	$\omega = 2\pi \cdot f = 6,28 \cdot 50 \cdot \frac{1}{s} = \underbrace{\frac{1}{s}}_{}$		

Exercices	Nombi maxima	re de points al obtenus
5.2.1 11. Le graphique montre le prix d'achat et les coûts énergétiques sur 10 ans de de congélateurs différents. Appareil 1 : Label énergétique A+ Appareil 2 : Label énergétique A++++ Pour les 2 appareils, on considère que leur durée de vie est de 10 ans.	deux 2	
a) Quel appareil recommanderiez-vous à un client ? Appareil 2 b) Justifiez votre réponse. Pour l'appareil 1, les coûts totaux sont plus élevés après 10 ans malgré prix d'achat inférieur. ou	1 1 le	
Pour l'appareil 2, le prix d'achat plus élevé est compensé par la réduction de la consommation d'énergie.	on	
5.3.4 12. Un couplage en étoile est composé de trois résistances ayant les valeurs suivantes R_1 = 40 Ω , R_2 = 55 Ω et R_3 = 60 Ω . Il est relié au réseau 3 x 400 V / 230 V.	3	
a) Calculez le courant dans chacune des résistances.	1,5	
$I_1 = \frac{U_{R1}}{R_1} = \frac{230 \text{ V}}{40 \Omega} = \frac{5,75 \text{ A}}{}$	(0,5))
$I_2 = \frac{U_{R2}}{R_2} = \frac{230 \text{ V}}{55 \Omega} = \underline{4.18 \text{ A}}$	(0,5))
$I_3 = \frac{U_{R3}}{R_3} = \frac{230 \text{ V}}{60 \Omega} = \frac{3,83 \text{ A}}{80 \Omega}$	(0,5)	

ercices	Nombre of maximal	de point obtenu
b) Dessinez graphiquement le courant dans le conducteur de neutre I_N à partir des valeurs de la page 7.	1,5	
(Échelle : 1 cm correspond à 1 A)		
↓ U1		
12'		
11		
IN		
13		
13		
U3 U2		
I _N = 1,77 A (Correct de 1,6 A à 1,94 A)		
(Oollect de 1,0 A a 1,34 A)		
(Note pour les experts : un point pour la construction correcte et un demi-point pour la valeur numérique correcte de I_N (Propreté insuffisante -0.5 P)		

xer	cices	Nombre d maximal	e points obtenus
	5.2.5	maximai	obtenus
13.	Les moteurs électriques suivants sont disponibles:	2	
	Moteur triphasé à cage d'écureuil, moteur universel, moteur à pôles bagués		
	a) Quel type de moteur convient pour une perceuse à main?	0,5	
	Moteur universel		
	b) Nommez la caractéristique importante de ce type de moteur pour une perceuse à main.	0,5	
	 couple élevé régulation facile de la vitesse (Modification de la tension) moteur compact 		
	c) Quel type de moteur convient pour une pompe de 5,5 kW ?	0,5	
	Moteur triphasé à cage d'écureuil (asynchrone)		
	d) Nommez la caractéristique importante de ce type de moteur pour une pompe de 5,5 kW.	0,5	
	 moteur adapté pour des puissances élevées moteur robuste moteur nécessitant peu de maintenance bon rendement 		
4.	3.5.7 Un atelier de 9 m x 15 m est éclairé par 40 TL - 36 W ayant une efficacité lumineuse de 87 lm/W. Le rendement de l'éclairage est supposé être de 55 %. (Le facteur de maintenance et le facteur de planification sont inclus dans le rendement de l'éclairage).	2	
	Calculez:		
	a) le flux lumineux émis par une lampe.	1	
	$\phi L = P \cdot \eta L = 36 \text{ W} \cdot 87 \frac{\text{lm}}{\text{W}} = \underline{3132 \text{ lm}}$		
	b) l'éclairement moyen dans l'atelier.	1	
	$A = b \cdot l = 9 \text{ m} \cdot 15 \text{ m} = \underline{135 \text{ m}^2}$	(0,5)	
	$E = \frac{N \cdot \varphi L \cdot \eta B}{A} = \frac{40 \cdot 3132 \text{ lm} \cdot 0,55}{135 \text{ m}^2} = \underline{510 \text{ lx}} \text{ ou } \underline{\frac{510 \text{ lm}}{\text{m}^2}}$	(0,5)	
		1	

	cices					Nombre maximal	de poir obten
5.	5.4.1;5.4.2;5.4.3 Commander ou Cochez les affirr	régler ?	S.			1	
		Affirmation	1	Commander	Régler		
	Four réglé à	180°C			\boxtimes		
	Chauffage gé	ré par une sond	e extérieur		\boxtimes	0,5	
	Lampe encle	nchée avec un S	Schéma 0	\boxtimes		0,5	
6.	5.4.4 Complétez la tak Notez l'état 0 ou		- &	que. ≥1	Q1 Q	2	
	I 1	12	13	Q1			
	0	0	1	1			
	0	1	0	0		0.5	
	0	1	1	1		0,5 0,5	
	1	0	0 1	1		0,5	
		. (1	1 1	7			
	1	1	0	1		0,5	

Exerc	cices	Nombre of maximal	de points obtenus
17.	$5.3.1;5.3.2$ Un mât d'éclairage porte 2 projecteurs (230 V) ayant chacun une puissance de 500 W. Dans le câble d'alimentation, d'une longueur de 145 m, la chute de tension ne doit pas dépasser 3 %. $ \rho = 0.0175 \frac{\Omega \cdot \text{mm}^2}{\text{m}} $	4	
	m a) Calculez la section nécessaire pour les conducteurs.	3	
	$\Delta \mathbf{U} = \frac{\Delta \mathbf{u} \cdot \mathbf{U}}{100 \%} = \frac{3 \% \cdot 230 \text{ V}}{100 \%} = \underline{6,9 \text{ V}}$	(0,5)	
	$I = \frac{P_{Tot}}{U} = \frac{2 \cdot 500 \text{ W}}{230 \text{ V}} = \underline{4,348 \text{ A}}$	(1)	
	$R_{L} = \frac{\Delta U}{I} = \frac{6,9 \text{ V}}{4,348 \text{ A}} = \underline{1,587 \Omega}$	(0,5)	
	$A = \frac{\rho \cdot \ell \cdot 2}{R_L} = \frac{0,0175 \frac{\Omega \cdot mm^2}{m} \cdot 145 m \cdot 2}{1,587 \Omega} = \frac{3,2 mm^2}{1}$	(1)	
	b) Quelle section normalisée devez-vous utiliser ?	1	
	4 mm ²		
18.	5.2.8 Un transformateur de soudure a une tension nominale de 230 V et un courant nominal de 95 A.	2	
	Lors d'une soudure, arc allumé, il s'écoule un courant de 130 A. Calculez :		
	a) La tension lors du court-circuit, exprimée en pourcent.	1	
	$\mathbf{u}_{\mathbf{K}\%} = \frac{100 \% \cdot \mathbf{I}_{\mathbf{N}}}{\mathbf{I}_{\mathbf{kd}}} = \frac{100 \% \cdot 95 \ \mathbf{A}}{130 \ \mathbf{A}} = \underline{73,1 \ \%}$		
	b) La tension lors du court-circuit en volts.	1	
	$U_{k} = \frac{u_{k} \cdot U_{N}}{100 \%} = \frac{73,1 \% \cdot 230 \text{ V}}{100 \%} = \underline{168 \text{ V}}$		

Exer	cices	Nombre of maximal	de points obtenus
19.	5.3.5 Calculez la résistance de charge R _L en tenant compte des caractéristiques de l'ampèremètre.	4	obtoniuo
	Caractéristiques de l'ampèremètre I _{max} = 3 mA U _{max} = 360 mV		
	V U = 2,43 V R _i		
	$R_i = \frac{U_{max A-m}}{I_{max A-m}} = \frac{360 \text{ mV}}{3 \text{ mA}} = \underline{120 \Omega}$	(1)	
	$\mathbf{U_{A-m}} = \mathbf{I} \cdot \mathbf{R_i} = 2,7 \mathbf{mA} \cdot 120 \Omega = \underline{0,324 \mathbf{V}}$	(1)	
	$U_{RL} = U - U_{A-m} = 2,43 V - 0,324 V = 2,106 V$	(1)	
	$R_{L} = \frac{u_{RL}}{I} = \frac{2,106 \text{ V}}{2,7 \text{ mA}} = \frac{780 \Omega}{2}$	(1)	

Exercices	Nombre maximal	de points obtenus
5.2.5 20. Démarrage d'un moteur triphasé en étoile-triangle.	4	
Küffer Elektro Technik AG Type: T3A 132S-4 Nr. 230816 Moteur 3 ~ 50 Hz S1 100 % ED		
a) Pour quelle tension maximale les enroulements de ce moteur sont-ils construits ? 400 V	1	
b) A quelle valeur doit-être réglé le relais de protection du moteur F2 ? $I_{F2} = \frac{I_N}{\sqrt{3}} = \frac{10,8 \text{ A}}{\sqrt{3}} = \underline{6,24 \text{ A}} \qquad \text{ou interprétation de la plaquette (6,3)}$	A)	
c) Quelle est la puissance électrique de ce moteur ? $P_{tot} = \sqrt{3} \cdot U \cdot I \cdot cos\phi \ = \sqrt{3} \cdot 400 \ V \cdot 10, 8 \ A \cdot 0, 82 \ = \underline{6136 \ W}$	1	
d) Quel moment du couple développe le moteur à son arbre ? $M = \frac{P_{utile}}{2 \cdot \pi \cdot n} = \frac{5500 \text{ W}}{2 \cdot \pi \cdot 1430 \frac{1}{60 \text{ s}}} = 36,7 \text{ Ws} = = \underline{36,7 \text{ Nm}}$	1	
Total	51	