

Continguts i Pautes

Sessió de teoria del 20/05/2021

Contingut

De: 6.1.5 La divisió entre metalls i no metalls Fins: 6.1.8 Les interaccions p_{π} - d_{π} entre elements del segon període i elements de períodes superiors

Pautes

De: exercici 6.7 Fins: exercici 6.9*

*No s'ha de saber fer Només entendre'l

Alfonso Polo Ortiz Departament de Química (Química Inorgànica) Universitat de Girona

© Alfonso Polo Ortiz [Nom del titular dels drets d'explotació], 2021 Els continguts d'aquest document (excepte textos i imatges no creats per l'autor) estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-CompartirIgual 4.0

Exercici 6.7. Ordena raonadament els següents òxids en ordre decreixent d'acidesa. Algun d'ells és un bon candidat per tenir un comportament amfòter?

MgO, K₂O, CO₂, Al₂O₃

Resposta: $CO_2 > Al_2O_3 > MgO > K_2O$

Exercici 6.8. Amb les dades que tens a continuació, ordena raonadament, els següents elements en ordre decreixent de caràcter metàl·lic:

Ti, Mn, Ge i Mg

Dades (en V): $E^{\circ}_{Ti(II)/Ti} = -1.63$, $E^{\circ}_{Mn(II)/Mn} = -1.18$, $E^{\circ}_{GeO/Ge} = +0.26$, $E^{\circ}_{Mg(II)/Mg} = -2.38$,

Resposta: Mg > Ti > Mn > Ge

Caràcter metàl·lic ⇐⇒ Facilitat per perdre electrons ⇐⇒ Caràcter reductor

Facilitat per oxidar-se

 $E_{M(II)/M}^{0}$: $M^{2+}(aq) + 2e^{-} \rightarrow M(s) \iff$ Facilitat per reduir-se

$$E^{o}_{M(II)/M}$$
: $Mg < Ti < Mn < Ge$

Caràcter metàl·lic: Mg > Ti > Mn > Ge

Exercici 6.9. Proposa una raó plausible per la que la trimetilamina presenta una estructura molecular de piràmide trigonal i es comporta com una base de Lewis mentre que la tris(trimetilsilil)amina presenta una estructura molecular plana trigonal i no es comporta com una base de Lewis.

Resposta: Interacció $d_{\pi Si}$ - $p_{\pi N}$

El parell d'electrons sobre el nitrogen ha de quedar com no enllaçant ja que el C no té més orbitals per interaccionar amb ell i convertir-los en enllaçants

Tris(trimetilsilil)amina

Podríem pensar en un enllaç similar al de la trimetilamina però el Si, en ser del tercer període pot accedir als orbitals 3d

Aquests orbitals 3d són de simetria π respecte a l'eix de l'enllaç N-Si i per tant només poden interaccionar amb orbitals del nitrogen amb la mateixa simetria \rightarrow orbitals p

Perquè el N tingui un orbital p, la seva hibridació ha de ser $sp^2 \rightarrow$ molècula plana trigonal

El parell d'electrons no enllaçant del nitrogen a la amina, passa a ser enllaçant a la sililamina. Per fer això la molècula passa de tetraèdrica a plana trigonal