清华大学本科生考试试题专用纸					
考试课程: 复变	函数引论(A	卷) (闭卷考试)	考试时间: 2008	3年1月17上午	8:00-10:00
系别	班号	学号	_姓名	考试教室	/ 教
		、 <u>填空题、分析与计</u> 题答在试卷上,其余			
		小题只有一个正确 省直接打 √ 或 × 视 対			填入每个
~	1 = 0	2 内的奇点个数为: 3, D. 4.			
在 B 内解析的:		[域,则函数 f(z) 沿 条件, C. 充要条件,			= 0 是 $f(z)$
		$\mathbb{U} \triangleq u(x,y) = x^2 - y^2$ $C. iz^2 + c,$		f解析函数 $f(z) =$	<i>u+iv</i> 是:
	•	= x + iy) 在复平面上 公不可导, C. 仅在		D. 仅在 z = 0 女	上解析。
[] 5、z = ∞ 是 A. 本性奇点		thz + ½ - z² 的 瓜立奇点, C. 可-	去奇点, D. 二	级极点。	
得分[二、 填空题 (5 小题 6 个空,每个空 3 分,共 18 分)					
1, $\oint_C \bar{z}dz = \underline{\hspace{1cm}}$		(其中 C 为正	向椭圆 : $\frac{x^2}{4} + \frac{y^2}{9} =$	= 1).	
2、设 C 为正向圆周: $ z =3$,则积分 $\oint_C \frac{\cos(\pi z/2)}{z(z-1)^2} dz =$					
3 复级数 $\nabla^{+\infty} \frac{n^n}{2} z^n$ 的收敛坐径 $-$					

4、幂级数 $\sum_{n=2}^{+\infty} n(n-1)z^n$ 在 |z| < 1 内的和函数为 ______

5、Laurent 级数 $\sum_{n=-\infty}^{+\infty} 4^{(-|n|+2)} (z-1)^n$ 的收敛圆环域为 _

三、分析与计算题(4题,共31分,注意:每题要有完整的分析与计算过程,只写答案没有过程不给分)

1、(6 分) 设幂级数 $\sum_{n=0}^{+\infty} c_n z^n$ 的系数满足条件

$$c_0 = c_1 = 1$$
, $c_n = c_{n-1} + c_{n-2} (n \ge 2)$,

试求出幂级数的收敛半径 R。

2、(10 分, 每小题各 5 分) 设 a > 1, 计算实积分

(1).
$$I_1 = \int_0^{2\pi} \frac{d\theta}{a - \cos \theta}$$
, (2). $I_2 = \int_0^{+\infty} \frac{x \sin(ax) dx}{x^2 + a^2}$.

3、(8分) 找出函数

$$f(z) = z \cos \frac{z}{z - 1}$$

在扩充复平面 $\mathbb{C} \cup \{\infty\}$ 上的所有奇点并进行分类 (**须说明理由**, **如果是极点**, **必须指出其级数**),并且算出 f(z) 在所有孤立奇点处的留数。

4、(7分) 设函数 f(z) 在 |z| < 2 上解析并假设 f(0) 和 f'(0) 的值已知, 试求出下面的值 S:

$$S = \int_0^{2\pi} f(e^{i\theta}) \cos^2 \frac{\theta}{2} d\theta.$$

四、证明题 (2 题, 共 11 分)

1、(6 分) 假设函数 f(z) = u + iv 在区域 $\mathbb{C} - \{0\}$ 内解析, 并且满足

$$|f(z)| \le \frac{1}{|z|^{\frac{3}{2}}}.$$

求证: $f(z) \equiv 0 \ (\forall z \neq 0)$ 。

2、(5 分) 设 f(z) 在有界区域 D 内解析, 在 \overline{D} 上连续, 并且满足 $f(z) \neq 0$ ($\forall z \in \overline{D}$)。证明:如果 在 D 的边界 ∂D 上 $|f(z)| \equiv M > 0$,则 $f(z) \equiv Me^{i\theta}$,这里 $\theta \in \mathbb{R}$ 是某个实常数。