CSC 369 Midterm 4 Solution

- 1. a) 1) 4 inode blocks. 1 for the file c, and 3 for the directdories /, a, b
 - 2) 3 directory blocks one for root /, one for a, the other for b
 - 3) 1 single indirect block as far as we know. The file definitely has more than 12 blocks (# of data blocks pointed by direct pounters), but less than 1036 (# of data blocks pointed by direct pointers and single indirect pointers). We are reading block 1034.
 - 4) 1 data block for file c
 - b) All of the above

Notes

• Inode

- Is short form of index node
- Describes a file system object such as file or data
- Contains all information about a file/directory, including
 - * File Type,
 - * Size
 - * Number of blocks allocated to it
 - * Protection information
 - * Time information (e.g time created, time modified)
 - * Location of data blocks residing on disk

References

- 1) Wikipedia, Inode, link
- 2) Machanick, Philip. (2016). Teaching Operating Systems: Just Enough Abstraction. 642. 10.1007/978-3-319-47680-3_10., link

CSC 369 Midterm 4 Solution

c) Size, the location of data blocks that reside on disk

Notes

- I wonder what information about blocks inode has. Is it total number of blocks both inode and data, or just data?
- I struggled a bit on this one. I should find an easier way to remember which information inode has

d) Notes

- I wonder how system call for deleting file in UNIX works
- I wonder how system call for adding file in UNIX works
- Creash Scenarios
 - When only new data block is written to disk
 - * This is fine in system's point of view
 - * No inode points to it (it doesn't contain any information about file)
 - * No bitmap points to it
 - * Is as if write never occured
 - When only the updated inode is written to disk
 - When only inode bitmap is written to disk
 - When only data bitmap is written to disk