MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2010 SOLUTION KEY

Round 1

- A) Y-intercepts (x = 0): $(y 1)^2 = -1 \rightarrow$ no Y-intercepts X-intercepts (y = 0): $x^2 - 1 = 1 \rightarrow x = \pm \sqrt{2} \rightarrow (\pm \sqrt{2}, \mathbf{0})$
- B) Completing the square, $5x^2 + 5y^2 + 15x = 21 \implies 5\left(x^2 + 3x + \frac{9}{4}\right) + 5y^2 = 21 + 5\left(\frac{9}{4}\right) \implies 5\left(x + \frac{3}{2}\right)^2 + 5y^2 = 21 + 5\left(\frac{9}{4}\right) \implies \text{Center } @ (-3/2, 0)$

The distance from this point to 2x + 4y + 13 = 0 can be computed by the point to line distance formula, $r = \frac{|2(-3/2) + 4(0) + 13|}{\sqrt{2^2 + 4^2}} = \frac{10}{2\sqrt{5}} = \frac{5}{\sqrt{5}} = \sqrt{5} \implies d = 2\sqrt{5}$

C) The points P(6, 5) and Q(11, 7) lie on the same side of the axis of symmetry. The parabola must open up or to the right. The slope of \overline{VP} is 1 and the slope of \overline{PQ} is 2/5.

Since the slope is decreasing as we move from left to right, the parabola must open to the right and, therefore has the form $(y-1)^2 = 4p(x-2)$. Substituting P(6, 5), we have $(5-1)^2 = 4p(6-2) \implies p = 1$. Thus, the focus is at (3, 1) and the slope of \overrightarrow{QR} is $\frac{7-1}{11-3} = \frac{3}{4}$ and the equation of \overrightarrow{QR} is 3x - 4y = 5 or $x = \frac{4y+5}{3}$.

Substituting, $(y-1)^2 = 4\left(\frac{4y+5}{2}-2\right) \implies 3(y-1)^2 = 16y-4 \implies 3y^2-22y+7=0$

Substituting,
$$(y-1)^2 = 4\left(\frac{4y+5}{3}-2\right) \Rightarrow 3(y-1)^2 = 16y-4 \Rightarrow 3y^2 - 22y+7 = 0$$

$$\Rightarrow (3y-1)(y-7) = 0 \Rightarrow y = 1/3 \Rightarrow (x,y) = \left(\frac{19}{9}, \frac{1}{3}\right)$$