Stellaris® LM3S1968 Evaluation Board

User's Manual

Copyright

Copyright © 2007–2010 Texas Instruments, Inc. All rights reserved. Stellaris and StellarisWare are registered trademarks of Texas Instruments. ARM and Thumb are registered trademarks, and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

Texas Instruments 108 Wild Basin, Suite 350 Austin, TX 78746 http://www.ti.com/stellaris

Table of Contents

Chapter 1: Stellaris® LM3S1968 Evaluation Board	7
Features	8
Block Diagram	8
Evaluation Kit Contents	
Evaluation Board Specifications	9
Features of the LM3S1968 Microcontroller	9
Chapter 2: Hardware Description	11
LM3S1968 Evaluation Board	11
LM3S1968 Microcontroller Overview	11
Hibernation Module	11
Clocking	11
Reset	11
Power Supplies	12
Debugging	12
USB Device Controller Functions	13
USB Overview	13
USB to JTAG/SWD	13
Virtual COM Port	13
Serial Wire Out	14
Organic LED Display	14
Features	14
Control Interface	14
Power Supply	
Design Guidelines	
Further Reference	14
Other Peripherals	
Speaker	
Push Switches	
User LED	
Bypassing Peripherals	
Interfacing to the EVB	
Using the In-Circuit Debugger Interface	16
Appendix A: Schematics	19
Appendix B: Connection Details	25
Component Locations	25
Evaluation Board Dimensions	26
I/O Breakout Pads	27
Recommended Connectors	28
ARM Target Pinout	28
References	29

List of Tables

Table 2-1.	Stellaris LM3S1968 Evaluation Board Hardware Debugging Configurations	12
Table 2-2.	Isolating On-Board Hardware	15
Table B-1.	I/O Breakout Pads	27
Table B-2.	Recommended Connectors	28
Table B-3.	20-Pin JTAG/SWD Configuration	28

List of Figures

Figure 1-1.	Stellaris LM3S1968 Evaluation Board Layout	7
Figure 1-2.	LM3S1968 Evaluation Board Block Diagram	8
Figure 2-1.	ICD Interface Mode	16
Figure B-1.	Component Locations	25
Figure B-2.	LM3S1968 Evaluation Board Dimensions	26

Stellaris® LM3S1968 Evaluation Board

The Stellaris® LM3S1968 Evaluation Board is a compact and versatile evaluation platform for the Stellaris LM3S1968 ARM® Cortex™-M3-based microcontroller. The evaluation kit design highlights the LM3S1968 microcontroller's peripherals and its Hibernation module.

A 3V lithium battery, included in the kit, supplies power to the Hibernation module and maintains data and real-time clock information for about two years in the absence of USB power.

You can use the EVB either as an evaluation platform or as a low-cost in-circuit debug interface (ICDI). In debug interface mode, the on-board microcontroller is disabled, allowing connection of the debug signals to an external Stellaris microcontroller target. The kit is also compatible with high-performance external JTAG debuggers.

This evaluation kit enables quick evaluation, prototype development, and creation of application-specific designs using the LM3S1968's broad range of peripherals. The kit also includes extensive source-code examples, allowing you to start building C code applications quickly.

Figure 1-1. Stellaris LM3S1968 Evaluation Board Layout

Features

The Stellaris LM3S1968 Evaluation Kit includes the following features:

- Stellaris LM3S1968 microcontroller
- Simple setup; USB cable provides serial communication, debugging, and power
- OLED graphics display with 128 x 96 pixel resolution
- User LED, navigation switches, and select pushbuttons
- \blacksquare 8 Ω magnetic speaker with class D amplifier
- Internal 3 V battery and support for on-chip hibernation module
- USB interface for debugging and power supply
- Standard ARM® 20-pin JTAG debug connector with input and output modes
- LM3S1968 I/O available on labeled break-out pads

Block Diagram

Figure 1-2. LM3S1968 Evaluation Board Block Diagram

Evaluation Kit Contents

The evaluation kit contains everything needed to develop and run applications for Stellaris microcontrollers including:

- LM3S1968 evaluation board (EVB)
- USB cable
- 20-pin JTAG/SWD target cable
- CD containing:
 - A supported version of one of the following (including a toolchain-specific Quickstart guide):
 - Keil™ RealView® Microcontroller Development Kit (MDK-ARM)
 - · IAR Embedded Workbench
 - · Code Sourcery GCC development tools
 - · Code Red Technologies development tools
 - Texas Instruments' Code Composer Studio™ IDE
 - Complete documentation
 - Quickstart application source code
 - Stellaris® Firmware Development Package with example source code

Evaluation Board Specifications

■ Board supply voltage: 4.37–5.25 Vdc from USB connector

■ Board supply current: 130 mA typ (fully active, CPU at 50 MHz)

17 uA (Hibernate mode, operating from battery)

■ Break-out power output: 3.3 Vdc (60 mA max), 15 Vdc (15 mA max)

■ Speaker power: 0.3 W max

■ Dimensions: 3.20" x 3.50" x 0.5" (LxWxH)

■ RoHS status: Compliant

Features of the LM3S1968 Microcontroller

- 32-bit RISC performance using ARM® Cortex™-M3 v7M architecture
 - 50-MHz operation
 - Hardware-division and single-cycle-multiplication
 - Integrated Nested Vectored Interrupt Controller (NVIC)
 - 42 interrupt channels with eight priority levels
- 256-KB single-cycle Flash
- 64-KB single-cycle SRAM
- Four general-purpose 32-bit timers
- Three fully programmable 16C550-type UARTs

- Eight 10-bit ADC channels (inputs) when used as single-ended inputs
- Three independent integrated analog comparators
- Two I²C modules
- Three PWM generator blocks
 - One 16-bit counter
 - Two comparators
 - Produces two independent PWM signals
 - One dead-band generator
- Two QEI modules with position integrator for tracking encoder position
- 5 to 52 GPIOs, depending on user configuration
- On-chip low drop-out (LDO) voltage regulator
- Hibernation module

Hardware Description

In addition to a microcontroller, the Stellaris LM3S1968 evaluation board includes a range of useful peripherals and an integrated in-circuit debug interface (ICDI). This chapter describes how these peripherals operate and interface to the microcontroller.

LM3S1968 Evaluation Board

LM3S1968 Microcontroller Overview

The heart of the EVB is a Stellaris LM3S1968 ARM Cortex-M3-based microcontroller. The LM3S1968 offers 256-KB Flash memory, 50-MHz operation, and a wide range of peripherals. Refer to the LM3S1968 data sheet (order number DS-LM3S1968) for complete device details.

The LM3S1968 microcontroller is factory programmed with a quickstart demo program. The quickstart program resides in the LM3S1968 on-chip Flash memory and runs each time power is applied unless the quickstart has been replaced with a user program.

Hibernation Module

The Hibernation Module manages removal and restoration of power to the microcontroller and peripherals while maintaining a real-time clock (RTC) and non-volatile memory. The EVB includes a 3 V Lithium battery to maintain Hibernate module power when USB power is unavailable.

The Hibernation state is initiated in software. Leaving Hibernation mode requires either an RTC timer match event or assertion of the $\overline{\text{WAKE}}$ signal. Pressing the Select switch on the EVB asserts $\overline{\text{WAKE}}$. The Hibernate LED (LED4) signals that the EVB is in Hibernate state (+3.3 V disabled) as long as USB power is present. When USB power is removed, the EVB will remain in the Hibernate state, however, the LED will not be on.

Clocking

The EVB uses an 8.0-MHz crystal to complete the LM3S1968 microcontroller's main internal clock circuit. An internal PLL, configured in software, multiples this clock to 50 MHz for core and peripheral timing.

The real-time clock oscillator is part of the microcontroller's Hibernation module and uses a 4.194304 MHz crystal for timing. This frequency divides by 128 to generate a 32.7680 kHz standard timing frequency.

Reset

The LM3S1968 microcontroller shares its external reset input with the OLED display. In the EVB, reset sources are gated through the CPLD, though in a typical application a simple wired-OR arrangement is sufficient.

External reset is asserted (active low) under any one of three conditions:

- Power-on reset
- Reset push switch SW1 held down

 Internal debug mode—By the USB device controller (U5 FT2232) when instructed by debugger

The LM3S1968 microcontroller has an internal power-on reset, so the external circuits used in the EVB are not required in typical applications.

Power Supplies

In normal operating mode, the LM3S1968 is powered from a +3.3-V supply. A low drop-out (LDO) regulator converts +5-V power from the USB cable to +3.3-V. +3.3-V power is available for powering external circuits.

If +5-V is removed, the Hibernation module will remain powered by the 3-V lithium battery. Other microcontroller and board functions will not function until power is restored.

+15-V power is available when the OLED display power supply is active. The speaker and OLED display boost-converter operate directly from the +5-V power.

Debugging

Stellaris microcontrollers support programming and debugging using either JTAG or SWD. JTAG uses the signals TCK, TMS, TDI, and TDO. SWD requires fewer signals (SWCLK, SWDIO, and, optionally, SWO, for trace). The debugger determines which debug protocol is used. For example, Keil RealView tools support only JTAG debugging.

The JTAG TRST signal is not required for debugging and is not connected to the 20-pin JTAG/SWD header. TRST may be asserted by the CPLD in debug Mode 2.

Debugging Modes

The LM3S1968 evaluation board supports a range of hardware debugging configurations. Table 2-1 summarizes these configurations.

Table 2-1. Stellaris LM3S1968 Evaluation Board Hardware Debugging Configurations

Mode	Debug Function	Use	Selected by
1	Internal ICDI	Debug on-board LM3S1968 microcontroller over USB interface.	Default mode
2	ICDI out to JTAG/SWD header	The EVB is used as a USB to SWD/JTAG interface to an external target.	Connecting to an external target and starting debug software.
			The red Debug Out LED will be ON.
3	In from JTAG/SWD header	For users who prefer an external debug interface (ULINK, JLINK, etc.) with the EVB.	Connecting an external debugger to the JTAG/SWD header

Modes 2 and 3 automatically detect the presence of an external debug cable. When the debugger software connected to the EVB's USB controller the EVB automatically selects Mode 2 and illuminates the red Debug Out LED.

Debug In Considerations

Debug Mode 3 supports evaluation board debugging using an external debug interface. Mode 3 is automatically selected when a device such as a Segger J-Link or Keil ULINK is connected.

Boards marked Revision B or later automatically configure pin 1 to be a 3.3-V reference, if an external debugger is connected. To determine the revision of your board, locate the product number on the bottom of the board; for example, EK-LM3S6965-B. The last character of the product number identifies the board revision.

A configuration or board-level change may be necessary when using an external debug interface with revision A of this evaluation board. Because the evaluation board supports both debug out and debug in modes, pin 1 of the 20-pin JTAG/SWD header is, by default, not connected to +3.3 V. Consequently, devices requiring a voltage on pin 1 to power their line buffers may not work.

Two solutions exist. Some debugger interfaces (such as ULINK) have an internal power jumper that, in this case, should be set to internal +3.3-V power. Refer to debugger interface documentation for full details. However, if your debugger interface does not have a selectable power source, it may be necessary to install a 0- Ω resistor on the evaluation board to route power to pin 1. Refer to the schematics and board drawing in the appendix of this manual for the location of this resistor.

USB Device Controller Functions

USB Overview

An FT2232 device from Future Technology Devices International Ltd manages USB-to-serial conversion. The FT2232 is factory-configured to implement a JTAG/SWD port (synchronous serial) on channel A and a Virtual COM Port (VCP) on channel B. This feature allows two simultaneous communications links between the host computer and the target device using a single USB cable. Separate Windows drivers for each function are provided on the Documentation and Software CD.

A small serial EEPROM holds the FT2232 configuration data. The EEPROM is not accessible by the LM3S1968 microcontroller.

For full details on FT2232 operation, go to www.ftdichip.com.

USB to JTAG/SWD

The FT2232 USB device performs JTAG/SWD serial operations under the control of the debugger. A CPLD (U6) multiplexes SWD and JTAG functions and, when working in SWD mode, provides direction control for the bidirectional data line. The CPLD also implements logic to select between the three debug modes. The target microcontroller selection is determined by multiplexing ${\tt TCK/SWCLK}$ and asserting ${\tt TRST}$.

In Hibernate state, the JTAG/SWD interface circuit remains powered. Although debugging is not possible, maintaining power avoids re-enumeration of the USB device after each wake transition. To avoid powering the microcontroller, the CPLD sets its output signals to a high-impedance state whenever the Hibernation signal is asserted.

Virtual COM Port

The Virtual COM Port (VCP) allows Windows applications (such as HyperTerminal) to communicate with UART0 on the LM3S1968 over USB. Once the FT2232 VCP driver is installed, Windows assigns a COM port number to the VCP channel.

Serial Wire Out

The evaluation board supports the Cortex-M3 serial-wire output (SWO) trace capabilities. Under debugger control, the CPLD can route the SWO datastream to the virtual communication port (VCP) transmit channel. The debugger can then decode and interpret the trace information received from the VCP. The normal VCP connection to UARTO is interrupted when using SWO. Not all debuggers support SWO. Refer to the Stellaris LM3S3748 data sheet for additional information on the trace port interface unit (TPIU).

Organic LED Display

The EVB features an Organic LED (OLED) graphics display with 128 x 96 pixel resolution. OLED is a new technology that offers many advantages over LCD display technology. The display is protected during shipping by a thin, protective plastic film. The film can be removed using a pair of tweezers.

Features

- RiT Display P14201 series display
- 128 columns by 96 rows
- High-contrast (typ. 500:1)
- Excellent brightness (120 cd/m²)
- Fast 10 us response

Control Interface

The OLED display has a built-in controller IC with synchronous serial and parallel interfaces. Synchronous serial (SSI) is used on the EVB as it requires fewer microcontroller pins. Data cannot be read from the OLED controller; only one data line is necessary. The Stellaris® Firmware Development Package (included on the Documentation and Software CD) contains complete drivers with source-code for the OLED display.

Power Supply

A +15-V supply is needed to bias the OLED display. A FAN5331 device from Fairchild combines with a few external components to complete a boost converter. A GPIO (PH3/FAULT) is assigned to turn on and off the controller as necessary for power rail sequencing. When the OLED display is operating, a small amount of power can be drawn from the +15-V supply to power other devices.

Design Guidelines

The OLED display has a lifetime of about 13,000 hours. It is also prone to degradation due to burn-in, similar to CRT and plasma displays. The quickstart application includes both a screen saver and a power-down mode to extend display life. These factors should be considered when developing EVB applications that use the OLED display.

Further Reference

For additional information on the RiT OLED display, visit www.ritekdisplay.com.

Other Peripherals

Speaker

The LM3S1968 evaluation board's speaker circuit can be used in either tone or waveform mode. The quick-start application uses tone mode.

In tone mode, the LM3S1968 microcontroller's PWM module directly generates tones within the audible frequency range. The width of the pulses determines the volume. If only one PWM signal (PWM2 or PWM3) is used, the non-PWM signal should be configured as a general-purpose output. For increased speaker volume, PWM2 and PWM3 can be configured as complementary drive signals. In tone mode, be careful to avoid large DC currents in the speaker.

Waveform mode uses two high-frequency PWM signals to drive a MOSFET H-bridge with an output filter. This circuit is essentially a Class-D amplifier. The symmetrical 2nd order low-pass L-C filter has a cut-off frequency of approximately 33 kHz. The microcontroller's PWM module should be configured with a PWM frequency of at least 100 kHz. Using 500 kHz improves audio quality even further. Once configured, audio waveform data can be used to update the PWM duty cycle at a rate equal to the audio sampling rate.

The speaker on the evaluation board has standard 8Ω impedance. Audio quality can be enhanced by adding a small, vented enclosure around the speaker.

Push Switches

The EVB has five general-purpose input switches. Four are arranged in a navigation-style configuration. The fifth functions as a Select switch on PG7. The Select switch also connects to the $\overline{\text{WAKE}}$ signal of the Hibernate module which has an internal pull-up resistor. A diode (D2) blocks current into the PG7 pin when in the Hibernate state.

User LED

A user LED (LED3) is provided for general use. The LED is connected to PG2/PWM0, allowing the option of either GPIO or PWM control (brightness control). Refer to the Quickstart Application source code for an example of PWM control.

Bypassing Peripherals

The EVB's on-board peripheral circuits require 15 GPIO lines. This leaves 31 GPIO lines and 8 ADC channels immediately available for connection to external circuits. If an application requires more GPIO lines, the on-board hardware can be disconnected. The EVB is populated with 15 jumper links, which can be cut with a knife to isolate on-board hardware. The process can be reversed by installing 0603- 0-ohm chip resistors. Table 2-2 shows the microcontroller assignments and how to isolate specific pins.

Important: The quickstart application will not run if one or more jumpers are removed.

Table 2-2. Isolating On-Board Hardware

Microcontroller Pin	Microcontroller Assignment	To Isolate, Remove
Pin 16 PG3	(Up switch)	JP1
Pin 17 PG2/PWM0	(User LED)	JP2
Pin 26 PA0/UORX	Virtual COM port receive	JP4

Table 2-2. Isolating On-Board Hardware (Continued)

Microcontroller Pin	Microcontroller Assignment	To Isolate, Remove
Pin 29 PA3/SSI0FSS	OLED display chip select	JP5
Pin 37 PG6/PHA1	Right switch	JP6
Pin 36 PG7/PHB1	Select switch	JP7
Pin 40 PG5	Left switch	JP8
Pin 41 PG4	Down switch	JP9
Pin 31 PA5/SSIOTX	OLED display data in	JP10
Pin 28 PA2/SSIOCLK	OLED display clock	JP11
Pin 34 PA6/I2C1SCL	OLED display data/control select	JP12
Pin 27 PA1/U0TX	Virtual COM port transmit	JP13
Pin 86 PH0/PWM2	Sound+	JP14
Pin 85 PH1/PWM3	Sound-	JP15

Interfacing to the EVB

An array of accessible I/O signals makes it easy to interface the EVB to external circuits. All LM3S1968 I/O lines (except those with both JTAG and SWD functions) are brought out to 0.1" pitch pads. For quick reference, silk-screened labels on the PCB show primary pin functions.

Table B-2 on page 28 has a complete list of I/O signals as well as recommended connectors.

Most LM3S1968 I/O signals are +5-V tolerant. Refer to the LM3S1968 data sheet for detailed electrical specifications.

Using the In-Circuit Debugger Interface

The Stellaris LM3S1968 Evaluation Kit can operate as an In-Circuit Debugger Interface (ICDI). ICDI acts as a USB to the JTAG/SWD adaptor, allowing debugging of any external target board that uses a Stellaris microcontroller. See "Debugging Modes" on page 12 for a description of how to enter Debug Out mode.

Figure 2-1. ICD Interface Mode

The debug interface operates in either serial-wire debug (SWD) or full JTAG mode, depending on the configuration in the debugger IDE.

The IDE/debugger does not distinguish between the on-EVB Stellaris microcontroller and an external Stellaris microcontroller. The only requirement is that the correct Stellaris device is selected in the project configuration.

Schematics

This section contains the schematics for the LM3S1968 Evaluation Board:

- LM3S1968 Microcontroller on page 20
- OLED Display, Switches and Audio on page 21
- USB and Debugger Interfaces on page 22
- USB, Debugger Interfaces and Power on page 23
- JTAG Logic with Auto Mode Detect and Hibernate on page 24

Connection Details

This appendix contains the following sections:

- Component Locations
- Evaluation Board Dimensions
- I/O Breakout Pads
- ARM Target Pinout
- References

Component Locations

Figure B-1. Component Locations

Evaluation Board Dimensions

Figure B-2. LM3S1968 Evaluation Board Dimensions

I/O Breakout Pads

The LM3S1968 EVB has 58 I/O pads, 13 power pads, and 1 control connection, for a total of 71 pads. Connection can be made by soldering wires directly to these pads, or by using 0.1" pitch headers and sockets.

Note: In Table B-1, an asterisk (*) by a signal name (also on the EVB PCB) indicates the signal is normally used for on-board functions. Normally, you should cut the associated jumper (JP1-15) before using an assigned signal for external interfacing.

Table B-1. I/O Breakout Pads

Description	Pad No.
PB4/C0-	1
GND	2
PB5/C1-	3
PB6/C0+	4
PB7/TRST	5
PH0/PWM2*	6
PH1/PWM3*	7
PH2*	8
PH3/FAULT*	9
PC2/TDI	10
PC3/TDO/SWO	11
PE3/SSI1TX	12
PE2/SSI1RX	13
PE1/SSI1FSS	14
PE0/SSI1CLK	15
PB3/I2C0SDA	16
PB2/I2C0SCL	17

Description	Pad No.
PB1/CCP2	18
PB0/CCP0	19
GND	20
PF1/IDX1	21
PF2/PWM4	22
PF3/PWM5	23
PF4/C0O	24
HIBn	25
PF0/PHB0	26
PF5	27
PF6/CCP1	28
PF7	29
PG4*	30
PG5*	31
GND	32
PG7/PHB1*	33
PG6/PHA1*	34

Description	Pad No.
PA6/I2C1SCL	35
PA7/I2C1SDA	36
PA4/SSI0RX	37
PA5/SSI0TX*	38
PA2/SSI0CLK*	39
PA3/SSI0FSS*	40
PA0/U0RX*	41
PA1/U0TX*	42
PC4/PhA0	43
GND	44
PC6/C2+	45
PC5/C1+	46
PG0/U2RX	47
PC7/C2-	48
PG2/PWM0*	49
PG1/U2TX	50
PD3/U1TX	51

Description	Pad No.
PG3*	<mark>52</mark>
PD1/PWM1	53
PD2/U1RX	54
GND	55
PD0/IDX0	56
ADC3	57
GND	58
ADC1	59
ADC2	60
ADC4	61
ADC0	62
ADC6	63
ADC5	64
GND	65
ADC7	66

Recommended Connectors

Connection can be made by soldering wires directly to pads or using 0.1" pitch headers and sockets.

Table B-2. Recommended Connectors

Pins 1-66 (2 x 33 way) PCB Socket Sullins PPPC332LFBN-RC Digikey S7136-ND
Pin Header Sullins PEC20DAAN Digikey S2012E-20-ND

ARM Target Pinout

In ICDI input and output mode, the Stellaris LM3S1968 Evaluation Kit supports ARM's standard 20-pin JTAG/SWD configuration. The same pin configuration can be used for debugging over serial-wire debug (SWD) and JTAG interfaces. The debugger software, running on the PC, determines which interface protocol is used.

The Stellaris target board should have a 2x10 0.1" pin header with signals as indicated in Table B-3. This applies to both an external Stellaris microcontroller target (Debug Output mode) and to external JTAG/SWD debuggers (Debug Input mode).

Table B-3. 20-Pin JTAG/SWD Configuration

Function	Pin	Pin	Function
VCC (optional)	1	2	nc
nc	3	4	GND
TDI	5	6	GND
TMS	7	8	GND
TCK	9	10	GND
nc	11	12	GND
TDO	13	14	GND
nc	15	16	GND
nc	17	18	GND
nc	19	20	GND

ICDI does not control \overline{RST} (device reset) or \overline{TRST} (test reset) signals. Both reset functions are implemented as commands over JTAG/SWD, so these signals are not necessary.

It is recommended that connections be made to all GND pins; however, both targets and external debug interfaces must connect pin 18 and at least one other GND pin to GND.

References

In addition to this document, the following references are included on the Stellaris LM3S1968 Evaluation Kit CD-ROM and are also available for download at www.ti.com/stellaris:

- Stellaris LM3S1968 Evaluation Kit Quickstart Guide for appropriate tool kit (see "Evaluation Kit Contents," on page 9)
- Stellaris LM3S1968 Read Me First for the CAN Evaluation Kit
- StellarisWare® Driver Library, Order number SW-DRL
- StellarisWare® Driver Library User's Manual, publication number SW-DRL-UG
- Stellaris LM3S1968 Data Sheet, publication DS-LM3S1968

Additional references include:

- Solomon Systech SSD0323-OLED Controller Datasheet
- Future Technology Devices Incorporated FT2232C Datasheet
- Information on development tool being used:
 - RealView MDK web site, www.keil.com/arm/rvmdkkit.asp
 - IAR Embedded Workbench web site, www.iar.com
 - Code Sourcery GCC development tools web site, www.codesourcery.com/gnu_toolchains/arm
 - Code Red Technologies development tools web site, www.code-red-tech.com
 - Texas Instruments' Code Composer Studio™ IDE web site, www.ti.com/ccs