2. Отношения на множествах

2.1 Основные понятия

Прямое (декартово) произведение двух множеств

Пусть \boldsymbol{A} и \boldsymbol{B} – два множества.

Прямым (декартовым) произведением множеств A и B называется множество всех упорядоченных пар (a, b), таких, что $a \in A$, $b \in B$.

Обозначение: $A \times B$.

Формально:

$$A \times B \stackrel{\mathsf{def}}{=} \{(a,b) | a \in A \& b \in B\}.$$

Пример.

Пусть
$$A = \{a, b, c\}, B = \{0, 1\}.$$

Тогда

$$A \times B = \{(a,0), (a,1), (b,0), (b,1), (c,0), (c,1)\},$$

$$B \times A = \{(0,a), (0,b), (1,a), (1,b), (0,c), (1,c)\}.$$

Как видно из примера, декартово произведение некоммутативно:

$$A \times B \neq B \times A$$
.

Точка на плоскости может быть задана упорядоченной парой координат (т. е. двумя точками на координатных осях).

Таким образом,
$$R^2 = R \times R$$
.

В частности, если X = [0,2], Y = [0,1], то $X \times Y -$ множество точек прямоугольника.

Метод координат ввел в употребление Рене Декарт (1596 – 1650). Отсюда название «декартово произведение» (хотя теория множеств появилась более чем 200 лет спустя).

Мощность декартова произведения конечных множеств

Теорема.

Для конечных множеств **А** и **В**

$$|A\times B|=|A|\cdot |B|.$$

В примере выше
$$A=\{a,b,c\},\ B=\{0,1\},\ |A|=3,\ |B|=2,\ |A imes B|=6.$$

Обобщение на большее число сомножителей

Прямым (**декартовым**) **произведением** множеств A_1 , A_2 , ... A_n называется множество всех упорядоченных наборов (*кортежей*):

$$A_1 \times A_2 \times ... \times A_n \stackrel{\text{def}}{=}$$

$$= \{(a_1, a_2, ..., a_n) | a_1 \in A_1 \& a_2 \in A_2 \& ... \& a_n \in A_n\}.$$

Степень множества

В определении декартова произведения сомножители не обязательно должны быть различными.

Степенью множества А называется его декартово произведение само на себя:

$$A^n \stackrel{\mathsf{def}}{=} A \times A \times \ldots \times A$$
.

Для конечного множества А

$$|A^n| = |A|^n$$
.

Пример.

Пусть **A** – конечный алфавит (конечное множество, элементами которого являются символы).

Элементами множества A^n являются слова длины n в алфавите A.

Под словом понимается любая последовательность символов данного алфавита.

Бинарные отношения

Пусть \mathbf{A} и \mathbf{B} – два непустые множества.

Бинарным отношением R между множествами A и **B** называется всякое подмножество декартова произведения **A** × **B**:

$$R \subset A \times B$$
.

Тот факт, что $(a,b) \in R$, т. е. между элементами $a \in A$ и $b \in B$ существует отношение R, обозначается так: aRb.

Пример.

Рассмотрим множества

$$A = \{1, 2, 3\}, B = \{1, 2, 3, 4, 5\}.$$

Декартово произведение **А** на **В** равно

$$A \times B = \{(1,1), (1,2), (1,3), (1,4), (1,5), (2,1), (2,2), (2,3), (2,4), (2,5), (3,1), (3,2), (3,3), (3,4), (3,5)\}.$$

Определим отношение R («больше») следующим образом:

aRb, если
$$a > b$$
, $a \in A \& b \in B$.

$$R = \{(2,1),(3,1),(3,2)\} \subset A \times B$$
.

Если A = B, т. е. $R \subset A^2$, то говорят, что R есть отношение Ha множестве A.

Примеры.

- отношения =, <, >, ≤, ≥, ≠, определенные на множестве чисел (натуральных, целых, действительных);
- отношение «быть однокурсником» на множестве студентов направления «Прикладная информатика», обучающихся в ТюмГУ;
- lacktriangle отношение включения на множестве ${f 2}^{m u}$...

Многоместные отношения

Обобщение бинарного отношения:

n-местное (n-арное) отношение R – это подмножество декартова произведения множеств A_1 , A_2 , ... A_n (множество упорядоченных наборов – кортежей):

$$R \subset A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) | a_1 \in A_1 \& a_2 \in A_2 \& ... \& a_n \in A_n\}.$$

Многоместные отношения используются, например, в теории баз данных.

Реляционная алгебра, реляционная модель данных, реляционная база данных – от relation (отношение).

Далее рассматриваются только бинарные отношения.

Дополнение отношения

Пусть R есть отношение между множествами A и B: $R \subset A \times B$.

Дополнением отношения R называется отношение \overline{R} , определяемое следующим образом:

$$\overline{R} \stackrel{\mathsf{def}}{=} \{(a,b)|(a,b)\notin R\} \subset A\times B.$$

Универсальное отношение

Пусть R есть отношение между множествами A и B: $R \subset A \times B$.

Универсальное отношение U содержит *все* пары (a, b), принадлежащие декартову произведению $A \times B$:

$$U \stackrel{\text{def}}{=} \{(a,b) | a \in A \& b \in B\} = A \times B.$$

Композиция отношений

Пусть $R_1 \subset A \times C$ — отношение между **A** и **C**, $R_2 \subset C \times B$ — отношение между **C** и **B**.

Композицией двух отношений R_1 и R_2 называется отношение $R \subset A \times B$ между **A** и **B**, определяемое следующим образом:

$$R = R_1 \circ R_2 \stackrel{\text{def}}{=}$$

$$= \{(a,b) | a \in A \& b \in B \& \exists c \in C : aR_1c \& cR_2b\}.$$

Композиция отношений на множестве \boldsymbol{A} является отношением на множестве \boldsymbol{A} .

Свойства композиции отношений:

1. Композиция отношений ассоциативна:

$$\forall R_1 \subset A \times B, R_2 \subset B \times C, R_3 \subset C \times D$$
$$(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3).$$

2. Композиция отношений, в общем случае, <u>не</u> коммутативна:

$$R_1 \circ R_2 \neq R_2 \circ R_1.$$

<u>Пример</u>: отношения R_1 – кровного родства и R_2 – супружества на множестве людей.

 $R_1 \circ R_2$ — супруги кровных родственников;

 $R_2 \circ R_1$ — кровные родственники супругов.

Представление отношений в компьютерных программах

Один из возможных способов – представление с помощью булевых матриц.

Пусть \mathbf{R} – отношение на множестве \mathbf{A} : $\mathbf{R} \subset A^2$ и $|\mathbf{A}| = \mathbf{n}$. Перенумеруем элементы множества \mathbf{A} : $A = \{a_1, a_2, ..., a_n\}$.

Тогда отношение \mathbf{R} можно представить булевой матрицей \mathbf{R} :

$$\mathbf{r}_{ij} = \begin{cases} 1, & \text{если } a_i R a_j, \\ 0, & \text{если } a_i \overline{R} a_j. \end{cases}$$

Примеры.

1. Пусть $A = \{1, 2, 3, 4, 5\},$

R – отношение «меньше либо равно» на множестве A.

$$R = \{(1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5), (3,3), (3,4), (3,5), (4,4), (4,5), (5,5)\}.$$

Представление булевой матрицей:

$$\mathbf{R} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

2. В универсальное отношение *U* входят все пары элементов множества *A*, поэтому все элементы матрицы *U* универсального отношения равны 1.

Матрица отношения \overline{R} .

Пусть отношение $R \subset A^2$ имеет матрицу R. Тогда отношение \overline{R} (дополнение отношения R) имеет матрицу

$$\overline{\mathbf{R}} = \mathbf{U} - \mathbf{R} \,,$$

t. e. $\overline{\mathbf{r}}_{ii} = \mathbf{1} - \mathbf{r}_{ii} \,, \quad i,j = 1,2, \, \ldots, \, n \,.$

Разность **С** булевых матриц **А** и **В** определяется правилом:

$$c_{ij} = a_{ij} & (1-b_{ij}), i, j=1,2,...,n.$$

Матрица композиции отношений.

Пусть на множестве \pmb{A} заданы отношения $\pmb{R_1}$ и $\pmb{R_2}$: $\pmb{R_1}, \pmb{R_2} \subset \pmb{A}^2$ с матрицами $\pmb{R_1}$ и $\pmb{R_2}$ соответственно.

Тогда отношение $extbf{\emph{R}}_1 \circ extbf{\emph{R}}_2$ имеет матрицу

$$\mathbf{R}_1 \circ \mathbf{R}_2 = \mathbf{R}_1 \times \mathbf{R}_2.$$

Произведение булевых матриц R_1 и R_2

Произведение С булевых матриц А и В определяется правилом:

$$\mathbf{c}_{ij} = \bigvee_{k=1}^{n} (\mathbf{a}_{ik} \& \mathbf{b}_{kj}), \quad i, j = 1, 2, ..., n.$$

2.2 Свойства отношений

Рефлексивность

Пусть $R \subset A^2$.

Отношение **R** называется **рефлексивным**, если

$$\forall a \in A \quad a R a$$
.

Матрица рефлексивного отношения содержит 1 на главной диагонали:

$$\mathbf{r}_{ii} = 1, i = 1, 2, ..., n.$$

Примеры.

- Отношения =, ≤, ≥ на множестве чисел;
- отношение параллельности на множестве прямых;
- отношение «быть похожим» на множестве людей.

Антирефлексивность

Отношение **R** называется **антирефлексивным**, если

$$\forall a \in A \neg a Ra$$
.

Матрица антирефлексивного отношения содержит 0 на главной диагонали:

$$\mathbf{r}_{ii} = 0, \quad i = 1, 2, \ldots, n.$$

Примеры.

- Отношения <, >, ≠ на множестве чисел;
- отношение перпендикулярности на множестве прямых.

Симметричность

Отношение R называется cummetpuuhum, если $\forall a,b\in A$ из $a\,R\,b$ следует $b\,R\,a$.

Матрица симметричного отношения является симметричной:

$$\mathbf{r}_{ji} = \mathbf{r}_{ij}, \quad i, j = 1, 2, ..., n.$$

Примеры.

- Отношения =, ≠ на множестве чисел;
- отношения параллельности и перпендикулярности на множестве прямых;
- отношение «быть родственником» на множестве людей.

Антисимметричность

Отношение R называется **антисимметричным**, если

 $\forall a,b \in A$ из aRb & bRa следует a=b.

<u>Примеры</u>.

- ▶ Отношения ≤, ≥ на множестве чисел;
- lacktriangle отношение включения на множестве 2^{υ} .

Транзитивность

Отношение R называется Tpaнзитивным, если $\forall a,b,c\in A$ из $a\,Rb\,\&\,b\,Rc\,$ следует $a\,Rc\,.$

Примеры.

- Отношения <, >, ≤, ≥, = на множестве чисел;
- lacktriangle отношение включения на множестве $oldsymbol{2}^{oldsymbol{v}}$;
- отношение параллельности на множестве прямых.

Полнота

Отношение R называется **полным**, если $\forall a,b \in A$ имеет место либо a=b, либо aRb, либо bRa.

Примеры.

- Отношения <, >, ≤, ≥ на множестве чисел (целых, действительных);
- отношение «быть старше» (по возрасту) на множестве людей.

Замыкание отношения относительно свойства

Пусть R и R' – отношения на множестве A.

Отношение R' называется **замыканием** R относительно свойства C, если:

- **1.** R' обладает свойством C: C(R');
- 2. R' является надмножеством R: $R \subset R'$;
- **3.** *R'* является наименьшим:

$$C(R'') \& R \subset R'' \Rightarrow R' \subset R''$$
.

В задачах обработки данных иногда требуется получить *транзитивное замыкание* (т. е. замыкание относительно свойства транзитивности) отношения R.

Одним из наиболее эффективных алгоритмов вычисления транзитивного замыкания отношения является *алгоритм Уоршалла*.

Алгоритм Уоршалла

Вход: R – отношение, заданное на множестве A, |A| = n, представленное булевой матрицей R;

выход: транзитивное замыкание отношения R, представленное булевой матрицей T.

1. S = R

2. Для
$$i = 1, 2, ..., n$$

2.1 для
$$j = 1, 2, ..., n$$
для $k = 1, 2, ..., n$
 $t_{jk} = s_{jk} \vee s_{ji} \& s_{ik}$

$$2.2 S = T$$

3. Вывод **Т**

Добавление к транзитивному замыканию пары элементов с номерами j и k (присваивание $t_{jk} = 1$), для которых существует элемент с номером i, такой что a_jRa_i & a_iRa_k

2.3 Классы отношений, обладающих наборами свойств

Отношения эквивалентности

Если отношение **R** на множестве **A** обладает свойствами *рефлексивности*, *симметричности* и *транзитивности*, то оно называется **отношением эквивалентности**.

Часто используемое обозначение: \sim $a \sim b$ – элемент a эквивалентен элементу b.

Примеры.

- Отношение = на множестве чисел;
- отношение «быть однокурсником» на множестве студентов ТюмГУ направления «Прикладная информатика»;
- отношение подобия на множестве треугольников;
- отношение параллельности на множестве прямых.

Классы эквивалентности

Пусть \sim – отношение эквивалентности на множестве M, $x \in M$.

Подмножество элементов M, эквивалентных x, называется κ лассом эквивалентности для x:

$$[x]_{\sim}^{\mathsf{def}} \{ y \mid y \in M \& y \sim x \}.$$

Если отношение подразумевается, то значок отношения может быть опущен.

Теорема.

Всякое отношение эквивалентности на множестве *М* определяет разбиение множества *М*, причем среди элементов разбиения нет пустых; и обратно, всякое разбиение множества *М*, не содержащее пустых элементов, определяет отношение эквивалентности на множестве *М*.

<u>Примеры</u>.

- Отношение «быть однокурсником» на множестве студентов вуза определяет классы эквивалентности: X_1 множество студентов 1 курса, X_2 множество студентов 2 курса, и т. д.;
- разбиение множества $\pmb{M} = \pmb{Z}$ семейством множеств $X_0 = \{x \mid x = 5k, \ k \in Z\},$ $X_1 = \{x \mid x = 5k+1, \ k \in Z\},$ $X_2 = \{x \mid x = 5k+2, \ k \in Z\},$ $X_3 = \{x \mid x = 5k+3, \ k \in Z\},$ $X_4 = \{x \mid x = 5k+4, \ k \in Z\}.$

определяет отношение эквивалентности «иметь одинаковый остаток от деления на 5» на **Z**.

Алгоритм построения разбиения множества на классы эквивалентности.

Вход: **М** – множество (конечное),

 \sim – отношение эквивалентности на M;

выход: ${m B}$ – разбиение множества на классы эквивалентности.

1.
$$\mathcal{B} = \emptyset$$
. Вначале разбиение пусто

- 2. Для всех $a \in M$
 - **2.1** Для всех $B \in \mathcal{B}$

Выбор одного из уже построенных классов эквивалентности

2.1.1 Выбрать $b \in B$ Выбор

Выбор любого представителя класса *В*

2.1.2 Если $b \sim a$,

Пополнение существующего класса и переход к следующему элементу *М*

то $B = B \cup \{a\}$; переход на шаг 2

2.2 $\mathcal{B} = \mathcal{B} \cup \{a\}$ Создание нового класса

3. Вывод **В**.

Фактормножество

Если ~ – отношение эквивалентности на множестве M, то множество классов эквивалентности называется фактор-множеством множества M относительно эквивалентности ~.

Обозначение: $M/_{\sim}$.

Фактор-множество является подмножеством булеана:

 $M/_{\sim} \subset 2^M$.

Отношения порядка

Отношения порядка позволяют сравнивать между собой различные элементы одного множества.

Антисимметричное транзитивное отношение называется *отношением порядка*.

Если отношение порядка обладает свойством рефлексивности, то оно называется отношением **нестрогого порядка**.

Если отношение порядка обладает свойством антирефлексивности, то оно называется отношением *строгого порядка*.

Если отношение порядка обладает свойством полноты, то оно называется отношением **полного** (или **линейного**) **порядка**.

Если отношение порядка <u>не</u> обладает свойством полноты, то оно называется отношением **частичного порядка**.

Обозначения:

- \prec отношение порядка;
- отношение строгого порядка (полного или частичного);
- ≤ отношение нестрогого порядка.

Множество, на котором определено отношение частичного порядка, называется **частично упорядоченным**.

Множество, на котором определено отношение линейного (полного) порядка, называется **линейно упорядоченным**.

Примеры.

- Множество Z с отношением < («меньше»)
 является линейно упорядоченным,
 - < отношение строгого полного порядка;
- множество Z с отношением ≤ («меньше или равно») является линейно упорядоченным,
 - ≤ отношение нестрогого полного порядка;
- - отношение нестрогого частичного порядка.

Минимальные элементы

Пусть на множестве M задано отношение порядка \prec .

Элемент $x \in M$ называется **минимальным**, если в множестве **M** не существует элементов, меньших, чем элемент x:

$$\forall y \in M \quad \neg(y \prec x) \lor y = x.$$

Теорема.

Во всяком конечном непустом частично упорядоченном множестве существует минимальный элемент.

Замечание.

Линейно упорядоченное конечное множество содержит ровно один минимальный элемент; в произвольном конечном частично упорядоченном множестве минимальных элементов может быть несколько.

Пример.

Пусть на множестве $M = \{a,b,c,d\}$ задано отношение частичного порядка

$$\{(a,b),(c,d)\},\$$

т. е. $a \prec b$ и $c \prec d$.

Элементы а и с являются минимальными.

Если задано отношение линейного порядка

$$\{(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)\},\$$

TO
$$a \prec b \prec c \prec d$$
,

и минимальным является только элемент а.

Теорема.

Всякий частичный порядок на конечном множестве может быть дополнен до линейного.

Это означает:

существует отношение линейного порядка, которое является надмножеством заданного отношения частичного порядка.

Алгоритм топологической сортировки

Это алгоритм дополнения частичного порядка до линейного на конечном множестве.

Вход: **М** – конечное частично упорядоченное множество;

выход: линейно упорядоченное множество **W**.

Линейный порядок на множестве **W** определяется последовательностью, в которой генерируются объекты этого множества.

1.
$$W = \emptyset$$
.

$$2.1 m = \min(M)$$

Определение минимального элемента в текущем множестве М (вызов функции min)

2.2
$$W = W \cup \{m\}$$

Добавление найденного **2.2** $W = W \cup \{m\}$ минимального элемента в множество W

2.3
$$M = M \setminus \{m\}$$

Исключение элемента т из дальнейшего рассмотрения

Описание функции min.

Вход: **М** – конечное частично упорядоченное множество;

выход: минимальный элемент *m*.

- 1. Выбрать любой элемент *М* в качестве *т*
- 2. Для всех $x \in M$ если $x \prec m$, то m = x
- **3.** Возврат *m*

Замечание.

Если отношение порядка представлено матрицей, то функцию **min** можно реализовать, например, так:

найти в матрице отношения первый столбец, содержащий только нули.

Пример.

На множестве $M = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ задано отношение частичного порядка, показанное на диаграмме:

Для представления отношения упорядоченными парами необходимо множество пар $\{(1,3),(3,7),(7,4),(7,5),(4,6),(5,8),(8,6),(9,5),(9,2),(2,8)\}$ дополнить до обеспечения выполнения свойства транзитивности.

В результате работы алгоритма будет сгенерирована следующая последовательность элементов множества \boldsymbol{W} :

1, 3, 7, 4, 9, 5, 2, 8, 6.

Она определяет линейный порядок на **W**:

$$1 \prec 3 \prec 7 \prec 4 \prec 9 \prec 5 \prec 2 \prec 8 \prec 6$$
.

