Master-Forschungspraktikum Universität Göttingen – Fakultät für Physik

Ausarbeitung zum Versuch FM.ULP

Spatial and Temporal Distortion of Ultrashort Light Pulses

Name:	Eric Bertok					
Email:	eric.bertok@stud.uni-goettingen.de					
Datum Versuchsdurchführung:	22. November 2017					
Name Betreuer(in):	Dr. Sabine Steil					
Kopie der testierten Ausarbeitung gewünscht:	□ ja ⊠ nein					
Unterschrift:						
Abgabe						
Datum:	Unterschrift Betreuer(in):					
T	estat					
Datum:	Name Prüfer(in):					
Punktezahl:	Unterschrift:					
Note:						

Inhaltsverzeichnis Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einleitung	1
	Theorie 2.1 Grundlagen	1
3	Durchführung	1
4	Auswertung 4.1 Pulse front tilt	1
5	Diskussion	1

Objekt	Spatial Chirp $[10^{-5}\Delta\lambda/\Delta x]$		Pulse front tilt [fs/mm]	
	unkompensiert	kompensiert	unkompensiert	kompensiert
5 mm BK7	-30	-5	-8.52	-8.80
10 mm BK7	-59	2760	-8.6	-9.80
5 mm MgF2	-20	-5	-8.59	-9.01
5 mm BK7 +30°	-28	0.07	-6.59	-7.86
5 mm BK7 .30°	-31	-8	-8.44	-8.69
BK7 Keil (wedge)	-11	11	-15.87	-15.1
longpass	-90	-44	-7.06	-8.08

1 Einleitung

2 Theorie

2.1 Grundlagen

Zur Beschreibung Ultrakurzer Laserpulse verwendet man einen semiklassischen Ansatz, bei dem die Maxwell-Gleichungen für eine makroskopische Polarisation gelöst wird. Im Folgenden wird das Vektorfeld des elektrischen Feldes \vec{E} durch einen Skalar E genähert [Diels]. Hiermit wird eine für das Experiment relevante Polarisationsrichtung beachtet. Im Allgemeinen sind auch Effekte möglich, bei denen verschiedene Polarisationsrichtungen miteinander koppeln, was eine genauere Betrachtung erfordert. Ausgehend von dem elektrischen Feld E(t) definiert man mithilfe der Fourier Transformation das komplexe Spektrum $\tilde{E}(\omega) = \mathcal{F}[E(t)] = \int_{\mathbb{R}} E(t)e^{-i\omega t}\mathrm{d}t$. Die Rücktransformation ergibt sich zu $E(t) = \mathcal{F}^{-1}[\tilde{E}(\omega)] = \frac{1}{2\pi}\int_{\mathbb{R}} \tilde{E}(\omega)e^{i\omega t}\mathrm{d}\omega$. Dies funktioniert aufgrund der Linearität der Maxwell Gleichungen. Die Lösung kann somit in eine Superposition von ebenen Wellen zerlegt werden. Hier ist ω die Kreisfrequenz der ebenen Welle. Nach konvention wird häufig nur der positive Anteil des Spektrums betrachtet. Er hat aufgrund der Reellwertigkeit von E den vollen Informationsgehalt [Diels]. Bei der Fourier-Rücktransformation integriert man so nur über alle positiven ω [Diels]. Ein Puls wird nun beschrieben durch [Trebino lec]

$$E(t) = \frac{1}{2}\sqrt{I(t)} \exp(i \left[\omega_0 t - \Phi(t)\right]),$$
 (2.1)

wobei ω_0 die sog. Trägerfrequenz und $\phi(t)$ eine allgemeine Phase in Abhängigkeit von der Zeit t ist. Die Trägerfrequenz ist der oszillatorische Anteil des Pulses innerhalb der Einhüllenden $\sqrt{I(t)}$ und wird häufig in eine komplexe Einhüllende E_0 integriert. Die Phase $\phi(t)$ beschreibt die Zeitliche Veränderung der Farbe des Pulses. $I(t) = |E(t)|^2$ ist die Intensität des Pulses. Ist I eine stark gepeakte Funktion, so redet man von einem "ultrakurzen Puls". Analog kann man durch $S = |\tilde{E}(\omega)|^2$ die spektrale Intensität einführen. Somit gilt $\tilde{E}(\omega) = \sqrt{S(\omega)} \exp(-i\varphi(\omega))$, wobei $\varphi(\omega)$ die spektrale Phase ist. Diese ist zentrale Größe bei der Beschreibung von gechirpten Pulsen (siehe unten).

3 Durchführung

- 4 Auswertung
- 4.1 Pulse front tilt
- 5 Diskussion

Abb. 2: blah

Abb. 3: blah2

Abb. 4: blah2