### Fizika 2i

A mágneses tér

5. Előadás (2022 tavasz)

### A mágneses indukciós tér

A mágneses indukciós tér jelölése: B

Mértékegysége a Tesla = Ns/Cm

a Föld mágneses terének indukciója az egyenlítő környékén kb 3\*10<sup>-5</sup> T

Lorentz-erő:  $\vec{F} = q\vec{v} \times \vec{B}$ 





Lorentz-erő nagysága:

$$F = qvB\sin\alpha$$

### A jobbkéz-szabály



Ha elektromos tér is van:

Lorentz-erő általános alakja:  $\vec{F} = q \left[ \vec{E} + \vec{v} \times \vec{B} \right]$ 

## Elektromos töltések mozgása statikus elektromos és mágneses térben l.

$$E = 0$$

B: homogén

$$qvB = m\frac{v^2}{R}$$

$$R = \frac{mv}{qB}$$



$$T = \frac{2R\pi}{v} \qquad \longrightarrow \qquad T = \frac{2\pi n}{qB}$$

## Elektromos töltések mozgása statikus elektromos és mágneses térben II.

#### A sebességszűrő:





$$qE = qvB$$

$$v = \frac{E}{B}$$

## Elektromos töltések mozgása statikus elektromos és mágneses térben III.

Source

a tömegspektrométer:





Láttuk: R ~ mv

## Elektromos töltések mozgása statikus elektromos és mágneses térben IV.

a ciklotron





Ciklotronfrekvencia: f = 1/T

$$f = \frac{qB}{\pi m}$$



## Elektromos töltések mozgása statikus elektromos és mágneses térben V.

#### Elektronmikroszkóp:





$$p = v_B T = v \cos(\theta) \frac{2\pi m}{qB}$$



Ha a  $\theta$  szög elég kicsi (  $< 5^{\circ}$  )  $\rightarrow cos(\theta) \approx 1 \rightarrow$  nyaláb lefókuszálódik

## Elektromos töltések mozgása statikus elektromos és mágneses térben VI.

mágneses térbe helyezett áramjárta huzalra ható erő:

$$\vec{F} = q\vec{v} \times \vec{B} \implies d\vec{F} = dq\vec{v} \times \vec{B} = dq\frac{d\vec{s}}{dt} \times \vec{B} = \frac{dq}{dt}d\vec{s} \times \vec{B}$$

$$\vec{F} = I \int_{S} d\vec{s} \times \vec{B}$$

Spec. eset:

Legyen B homogén, a vezeték hossza: &

$$\vec{F} = \vec{I\ell} \times \vec{B}$$

# Áramhurok mágneses térben, mágneses momentum

a jelölt oldalakra ható erő nagysága: **F = IbB** 

$$M = 2\frac{a}{2}F\cos\varphi = IabB\cos\varphi \implies M = IAB\cos\varphi$$
  $\vec{M} = I\vec{A} \times \vec{B}$   $\vec{M} = \vec{\mu} \times \vec{B}$ 





Mágneses momentum potenciális energiája mágneses térben:

$$U = -\vec{\mu}\vec{B}$$

Elektrosztatika (analógia):

$$U = -\vec{p}\vec{E}$$

## Elektromos töltések mozgása statikus elektromos és mágneses térben VII.

#### Hall effektus

$$\vec{F} = q\vec{v} \times \vec{B}$$

$$E = V_d B$$



Hall-feszültség:  $V_H = Ew = v_d Bw$ 

$$V_H = \frac{BI}{nq_e t}$$

Mágneses ind. tér mérése → Hall szonda

### Mágnes indukciós tere





Analógia → elektromos dipólus





### A mágneses Gauss törvény



Nincs mágneses monopólus!!!



### A Föld mágneses tere







### A Van-Allen öv



