Introduction to Machine Learning Lab 7: Gaussian Mixture Model for Point Cloud Alignment

Hongteng Xu

April 24, 2022

1 Motivation

- Implement the EM algorithm for GMM and get some feelings about the pipeline.
- Based on the EM algorithm, implement a non-trivial application of GMM affine registration of point clouds.
- Get to know that GMM is not limited to classic clustering problems.

2 Tasks

Please read Lecture 9 carefully before doing this lab work.

• Given a source point cloud $Y \in \mathbb{R}^{M \times D}$, we would like to align/match it to a target point cloud $X \in \mathbb{R}^{N \times D}$ via an affine transformation (projection + translation): for each row of Y, i.e., $y \in \mathbb{R}^D$,

$$x = Ay + t + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2 I_D)$$
 (1)

where $\mathbf{A} \in \mathbb{R}^{D \times D}$ is the projection matrix and $\mathbf{t} \in \mathbb{R}^D$ is the translation vector, σ^2 is the variance of noise.

ullet Suppose that X is the observed data of a GMM model with M Gaussian components:

$$\mathcal{N}(\boldsymbol{A}\boldsymbol{y}_m + \boldsymbol{t}, \sigma^2 \boldsymbol{I}_D), \quad \forall \boldsymbol{y}_m \in \boldsymbol{Y}$$
 (2)

and the components are with the same weight, i.e., $w_m = \frac{1}{M}$ for m = 1, ..., M.

- Task: Align Y to X via an EM algorithm, 1) learn the model parameters $\{A, t, \sigma^2\}$ and 2) estimate the correspondence between Y and X.
 - 1. Design the E-step to estimate the correspondence between Y and X
 - 2. Design the M-step to learn the model parameters
 - 3. Design the EM algorithm, including the two modules above and an initialization strategy, to align two point clouds.