STATISTIQUES À DEUX VARIABLES

Penser à la touche **F6** pour voir la suite d'un menu. On reprend l'exemple du cours.

Teneur y_i (mg.L⁻¹) en potassium des eaux d'une source en fonction de l'année x_i .

Année x _i	03	04	05	06	07	08	09
Teneur y_i	0,8	1	0,9	1	1,3	1,3	1,4

I. Saisie des données.

Menu \overline{STAT} ; on entre les valeurs x_i en List1 et les valeurs y_i en List2 par exemple.

II. Représentation du nuage de points.

Menu **STAT**; **GRPH**; **SET** pour paramétrer le graphique ; puis on saisit l'écran ci-dessous ; **EXIT**; **GPH1** pour obtenir le tracé.

<u>Remarque</u>: scatter signifie dispersion.

III. Équation puis tracé de la droite des moindres carrés.

I. et II. sont effectués ; $\overline{\text{CALC}}$; $\overline{\text{X}}$; $\overline{\text{ax+b}}$ permet d'obtenir l'équation de la droite des moindres carrés (r: coefficient de corrélation ; r^2 : coefficient de détermination ; MSe: carré des moyennes des erreurs).

DRAW pour tracer la droite sur le graphique.

Estimation de la teneur en potassium en 15 : Shift; G-SLV; Y-CAL; saisir 1; 5; EXE.

Regression
Enter X-Value
. X:15

Stéphane KELLER – Lycée agricole Louis Pasteur

https://github.com/KELLERStephane/QCM-maths-physique-chimie

IV. Détermination des différentes valeurs statistiques.

4.1 Paramétrer les statistiques à deux variables.

I. est effectué ; CALC ; SET pour paramétrer les calculs ; puis on saisit l'écran ci-contre

(zone 2VAR seulement); EXIT.

2VAR pour obtenir les différentes valeurs statistiques.

.ist

ist

Free

YList

:List1

:List1

istž

: 1

1Var

1Var

2Var

<u>ŽVar</u>

Les coordonnées du point moyen sont $G(\bar{x}; \bar{y})$.

4.2 Détermination de l'équation de la droite des moindres carrés.

I. est effectué; REG; X; ax+b

COPY permet de copier l'équation de la droite de régression dans le menu graphique mais n'est pas nécessaire pour tracer la droite de régression.

V. Utilisation des listes.

Les calculs sur les listes permettent d'obtenir le tableau suivant.

Année x _i	Teneur (mg/L) y _i	$x_i y_i$	x_i^2	y_i^2
3	0,8	2,4	9	0,64
4	1	4	16	1
5	0,9	4,5	25	0,81
6	1	6	36	1
7	1,3	9,1	49	1,69
8	1,3	10,4	64	1,69
9	1,4	12,6	81	1,96
42	7,7	49	280	8,79

I. est effectué

Colonne $x_i y_i$: se placer sur List3; SHIFT; List; 1; \times ; SHIFT; List; 2; EXE.

Colonne x_i^2 : se placer sur **List4**; **SHIFT**; **List**; **1**; **2**; **EXE**.

Colonne y_i^2 : se placer sur List5; SHIFT; List; [2]; [2]; EXE.

https://github.com/KELLERStephane/QCM-maths-physique-chimie

Valeurs complémentaires : se placer sur la première ligne de la liste 6 ; **OPTN** ; **List** ; **F6** ; **Sum** ; **SHIFT** ; **List** ; **1** ; **EXE** pour obtenir $\sum x = 602$;

Idem pour obtenir :
$$[\sum y] = 7,7 ; [\sum xy] = 665 ; [\sum x^2] = 51 800 et [\sum y^2] = 8,79.$$

	List	2	LiSt	3	LiSt	4	LiSt 5		
SUB	Yi		X:Y:		X;2		γ;2	П	
- 1	1	J. 8	5	.4		9	0.64	П	
2		- 1	10000	4		16	1	П	
3	1	J. 9	ц	.5		25	0.81	П	
4		- 1		6		36	- 1	П	
8		9955					0.64	+	

	List	4	List	5	LiSt	6	LiSt	ו	
SUB	X;2		γ;2						
- 1		9	0.	64		42		┒	
2		16		- 1		٠,٦		- 1	
3		25	0.	BI		49		- 1	
4		36		1	-	: 1	2000		
1				3333	V 9 300		2	80	
Sum Prod Cum1 % 4 D									

Il est possible de récupérer ou de calculer les valeurs manquantes, menu VARS; STAT; X:

$$\boxed{n} = 7; \boxed{\overline{x}} = 86; \boxed{\sum x} = 602; \boxed{\sum x^2} = 51 \ 800; \boxed{\sigma_x} = 2; \boxed{\text{EXIT}}; \boxed{Y}; \boxed{\overline{y}} = 1.1; \boxed{\sum y} = 7.7;$$

$$\sum y^2 = 8,79 \; ; \; \sum xy = 665 \; ; \; \sigma_y \approx 0,2138.$$

Pour obtenir la covariance :

$$cov(x,y) = \frac{\sum x_i y_i}{n} - \overline{xy} = \frac{665}{7} - 86 \times 1, 1 = 0,4$$

Se placer dans une cellule vide : \overline{VARS} ; \overline{STAT} ; \overline{Y} ; $\overline{\Sigma}xy$; $\overline{\Xi}$; \overline{EXIT} ; \overline{X} ; \overline{n} ; \overline{Z} ;

				1	Τ				
	LiSt 4	LiSt 5	LiSt 6	LiSt 7	J				
SUB	2	γ;2]				
3	25	0.81	49		1				
4	36	1	580		ı				
5	49	1.69	8.79		ı				
6	64	1.69			ı				
Σxy÷n-x̄y									
5 59 592 539 69 D									
					-				

Pour obtenir la variance de X :
$$\sigma_x^2 = \frac{\sum x_i^2}{n} - \bar{x}^2 = \frac{51800}{7} - 86^2 = 4$$

Il est possible d'obtenir les autres variables avec le même principe.

Attention les paramètres de l'équation de la droite de regression **a**, **b** et **r** ne peuvent récupérés que si l'on a affiché les paramètres de l'équation de la droite de régression :

On ne peut plus maintenant obtenir les valeurs précédentes.

VI. Étude des résidus.

6.1 Calculs des résidus.

 \triangleright On calcule les ordonnées estimées : $\hat{y}_i = ax_i + b$ en liste 6.

https://github.com/KELLERStephane/QCM-maths-physique-chimie

I. et 4.2 sont effectués. On se place sur List6 puis VARS; STAT; GRPH; a; List; 1; VARS; STAT; GRPH; b; EXE.

2 8	LiSt 5	LiSt E	List	٦	List	В
SUB	γ <u>:</u>	Y;^				
	0.64		ı			П
2	1	200	1			
3	0.81		1			
4	1	90010e	1			- 1
aL	ist 1	.+b	50 m		200.00	
E	1 b	С	d	6		D

Il ne reste plus qu'a faire la différence entre les listes 2 et 3 pour obtenir la liste des résidus.

	LiSt 5	LiSt 6	LiSt	7	LiSt	8
SUB	γ;2	Yin	Ë			
1	0.64	0.8		0		П
리	1	0.9		2.40		-1
3	0.81	1				- 1
4	1	1.1	2000.0			-1
Li	st 2-	List	61			-

Autre méthode:

Shift Setup puis choisir un numéro de liste pour stocker la liste des résidus.

6.2 Tracé des résidus et de la tendance.

GRPH; **SET**; **GPH2** et on paramètre le StatGraph2 avec les paramètres ci-contre.

On lance le tracé pour obtenir le graphique cicontre.

VII. Conclusion.

n	$\sum x_i$	$\sum y_i$	$\sum x_i y_i$	$\sum x_i^2$	$\sum y_i^2$	\overline{x}	$\overline{\mathcal{Y}}$
7	42	7,7	665	280	8,79	6	1,1

cov(x, y)	$\sigma_{\scriptscriptstyle x}^{^{\ 2}}$	$\sigma_{_{y}}^{^{2}}$	$\sigma_{_{\scriptscriptstyle X}}$	$\sigma_{_y}$	а	b	r
0,4	4	0,0457	2	0,2138	0,1	-7,5	0,935