Developing an Automated Proof Calculator for Modal Logic

Based on Graham Priest - "An Introduction to Non-Classical Logic. From if to is (second edition)"

Andrei Dobrescu (<u>andrei.dobrescu@neurony.ro</u>) and Marian Călborean (<u>mc@filos.ro</u>) (work in progress)

Tableaux proof system

- A strictly syntactic proof system, just as natural deduction and axiomatic systems.
- In "An Introduction to Non-Classical Logic. From if to is" (2008, right), Graham Priest theorizes tableaux systems for various non-classical logics: modal logics, intuitionistic logic, many-valued logics and their first-order counterparts.
- The software is free and open-source.
 - Available online at: https://andob.io/incl/
 - Written in Rust, source code <u>here</u>.

The calculator software

Implementation coverage

(Part I of the book: Propositional logics)

	Chapter	Status
1	Classical logic	☑ Propositional logic fully implemented.
2	Basic modal logic	☑ K modal logic fully implemented.
3	Normal modal logics	✓ T,B,S4,S5 modal logics fully implemented. K tense modal logic partially implemented: for temporal convergence rule, multiple graphs per problem are needed, right now there is a single graph per problem.
4	Non-normal modal logics	☑ S0.5,N,S2,S3,S3.5 modal logics fully implemented.
5	Conditional logics	☑ C fully implemented. C+ partially implemented, multiple graphs per problem are needed.
6	Intuitionist logic	☑ Fully implemented.
7	Many-valued logics	☑ Skip, no tableaux on this chapter.
8	First degree entailment	Regular FDE fully implemented. Routley star FDE variant not implemented.
9	Logics with gaps, gluts and worlds	☑ K4,N4,I4,I3,W logics fully implemented.
10	Relevant logics	X Skip, this is really difficult to implement.
11	Fuzzy logics	☑ Skip, no tableaux on this chapter.
11a	Many-valued modal logics	☑ Lukasiewicz logic, Kleene logic, Logic of Paradox, RMingle3 logic fully implemented.

Implementation coverage

(Part II of the book: First-Order counterparts)

	Chapter	Status
12	Classical first-order logic	☑ Fully implemented.
13	Free logics	☑ Implemented only with negativity constraint. Positive free logic is not implemented.
14	Constant domain modal logics	☑ Fully implemented.
15	Variable domain modal logics	☑ Implemented only with negativity constraint.
16	Necessary identity in modal logic	☑ Fully implemented.
17	Contingent identity in modal logic	✓ Fully implemented.
18	Non-normal modal logics	☑ Fully implemented.
19	Conditional logics	☑ C fully implemented. C+ partially implemented.
20	Intuitionist logic	☑ First kind of tableaux implemented. Second kind of tableaux not implemented.
21	Many-valued logics	☑ Fully implemented.
22	First degree entailment	☑ Fully implemented.
23	Logics with gaps, gluts and worlds	✓ Fully implemented.
24	Relevant logics	X Skip, this is really difficult to implement.
25	Fuzzy logics	Skip, no tableaux on this chapter.

What is a tree?

- A data structure consisting of nodes disposed in an arborescent manner.
- Each node has a formula and many subnodes.
- Except for the root node, each node has a parent node.
- The nodes which have zero subnodes are called leaf nodes.
- A path containing all adjacent nodes from the root node to a leaf node is called a tree branch.

What is a (directed) graph?

- A directed graph is a data structure consisting of a set of nodes and a set of vertices ("arrows" between one node to another).
- The computer science concept of directed graph can be directly mapped to the philosophical concept of a **Kripke model**.

Classical logic rules

Classical logic: example

- Proving DeMorgan rule:
 - . $\neg (P \lor Q) \equiv \neg P \land \neg Q$
 - (<u>link</u>)

Modal logic rules

♦Possibility rule

♦Possibility rule

rule will also add additional graph vertices, as follows:

□ Necessity rule

- □ rule will iterate all graph vertices that start from the current world:
 - Example: □P w0 is applied here.
 - There are two vertices w0→w0 and w0→w1. Worlds w0 and w1 are accessible from world w0.
 - Thus the rule will add two nodes to the tree: P w0 and P w1.

Modal logic example

- . Proving:
- . □A ≡ ¬♦¬A
 - (<u>link</u>)

First-order modal logic example

- Proving Barcan formula:
 - . $\forall x \Box A[x] \equiv \Box \forall x A[x]$
 - (<u>link</u>)

Philosophical notes

What is a logic?

- In code I define a logic as an object with the following properties:
 - An unique name (eg: PropositionalLogic, S5ModalLogic, FirstOrder+S5ModalLogic, Lukasiewicz+KModalLogic,...)
 - The number of available truth values (2, 3, 4 or ∞)
 - A syntax: a set of symbols available in that logic (eg: \neg , \land , \lor , \rightarrow ,...)
 - A set of rules, telling the computer how tree nodes should be generated and how contradictions should be detected.
- This is, of course, not a definition of a logic as a mathematical theory, just an engineered model of the theory.

Why did I use a graph?

- The algorithm, as theorized in the book, does not use a graph data structure, only a tree data structure. In the tree, possible worlds and the relations between them are described via w_iRw_j nodes (meaning: there are two worlds w_i, w_i and a w_i→w_i relation between them).
- Since a Kripke model can be built from these nodes, and there is a direct equivalence between a Kripke model and a graph data structure, I chose, based on my programming experience, to use a graph in tandem with the proof tree.
- There are technical reasons for my choice: by using two separate data structures, the code becomes easier to follow, maintain and extend.
- In programming, simplicity over complexity is preferred, even if by simplifying we introduce new constructs.

Thank you!

Special thanks

· Graham Priest, Marian Călborean, Alexandru Dragomir

Bibliography

- Graham Priest "An Introduction to Non-Classical Logic. From if to is (second edition)" (2008)
- Graham Priest "Logic: A Very Short Introduction" (2000)
- Melvin Fitting, Richard Mendelsohn "First-Order Modal Logic" (1998)
- James Storer "An Introduction to Data Structures and Algorithms" (2002)
- Steve Klabnik, Carol Nichols "The Rust Programming Language" (2023)

Questions?

Annex: Technical details

How it works?

The software takes a *Problem* as input and outputs a *ProofTree*.

- The *Problem* consists of a logic, 0..n premises and a conclusion.
- The software can either prove or disprove the problem.
- The proof procedure starts by building the *ProofTree* with vertically disposed sequential nodes. For each premise, there will be a node for that premise. There will be another node with the non-conclusion.
- A *ProofTree* is formed by following specific decomposition rules.
- Problem is proved iff the *ProofTree* has contradiction on all brances (thus the initial assumption about the conclusion is false).
- If the *Problem* is disproved, the program provides a counterexample.
- The software will timeout (neither prove nor disprove) above a limit (if the *ProofTree* reaches 250 nodes).

What is a queue?

- A FIFO ("first in first out") data structure.
- On the rear of the queue, the program pushes formulas (starting with the premises and the non-conclusion).
- From the front of the queue, the program will sequentially pop and process formulas.
- The program stops when the queue becomes empty (when there are no formulas left to process).

The algorithm in a nutshell - 1/4

- Initial step: given a **Problem** (logic, premises, conclusion):
 - The program creates a **ProofTree** with root node = non-conclusion, and subnodes for each premise.
 - The program creates a queue with these formulas.
- While the queue is not empty:
 - Pop one formula from the queue.
 - Find the specific applicable logic rule for this formula (each logic has different rules, see next slide).
 - Apply the rule and append the result to the ProofTree.
 - Push the resulting formulas to the queue.
 - Check for contradictions in the ProofTree.

The algorithm in a nutshell - 2/4

- For instance, let's prove that ¬¬P≡P
- Initialization:
 - proofTree = { rootNode: ¬(¬¬P≡P) }
 - queue = $\{ \neg (\neg \neg P \equiv P) \}$
- First iteration: since queue is not empty:
 - The ¬(¬¬P≡P) formula is popped from the queue
 - . The queue becomes empty
 - The ¬≡ rule is applied (result: 4 formulas)
 - . The result is appended to the tree
 - Check for contradictions: there are no contradictions
 - All resulting formulas are pushed to the queue
 - The queue becomes { ¬¬P, ¬P, ¬¬¬P, P }

The algorithm in a nutshell - 3/4

- Second iteration
 - The ¬¬P formula is popped from the queue.
 - The queue becomes { ¬P, ¬¬¬P, P }
 - The double negation rule is applied
 - Check for contradictions: found a contradiction
 - Add P to queue. The queue becomes { ¬P, ¬¬¬P, P, P }
- Third iteration
 - The ¬P formula is popped from the queue.
 - The queue becomes { ¬¬¬P, P, P }
 - There is no rule for ¬P. Skip this iteration.

The algorithm in a nutshell - 4/4

- Fourth iteration
 - The ¬¬¬P formula is popped from the queue.
 - Queue: { P, P }
 - The double negation rule is applied
 - Check for contradictions: found another contradiction
 - Add ¬P to queue. The queue becomes { P, P, ¬P }
- 5th / 6th / 7th iteration
 - Pop the queue: { P, P, ¬P }.
 - . There are no rules to apply. Skip.
- The queue is empty now. Nothing left to do.
 - We have contradiction on all branches
 - Initially we assumed ¬(¬¬P≡P)
 - This can't be right, thus ¬¬P≡P is true.
 - ¬¬P≡P was proved! I

♦Possibility rule (details)

- rule will add additional graph vertices, as follows:
- K modal logic requires no other changes to the graph.
- T modal logic requires a reflexive graph.
 - The algorithm adds the missing reflexive vertices as follows: for all nodes w_i , a $w_i \rightarrow w_i$ vertex will be added to the graph, if missing.
- S4 modal logic requires a reflexive and transitive graph.
 - The algorithm adds the missing transitive vertices as follows: for all nodes w_i , $w \square$, $w \square$, if the graph contains $w_i \to w \square$ and $w \square \to w \square$ vertices, and the graph does not contain a $w_i \to w \square$ vertex, then a $w_i \to w \square$ vertex will be added to the graph.
- S5 modal logic requires a reflexive, symmetric and transitive graph.
 - The algorithm adds the missing symmetric vertices as follows: for all nodes w_i , $w \square$, if the graph contains a $w_i \to w \square$ vertex and the graph does not contain a $w \square \to w_i$ vertex, then a $w \square \to w_i$ vertex will be added to the graph.

□ Necessity rule (details)

- □ rule is applied reactively:
 - When the program first applies a $\Box P$ w_i rule, it will look at the graph and find all possible worlds w_j that have a $w_i \rightarrow w_j$ vertex. Then for each w_i possible world, it will add a P w_j node to the tree.
 - Afterwards, the algorithm can apply $\diamondsuit P$ w_i rules, which will add more w_i possible worlds and more $w_i \rightarrow w_k$ vertices to the graph.
 - The initial $\Box P$ w_i rule gets remembered. Each time a new $w_i \rightarrow w_k$ vertex is added to the graph, $\Box P$ w_i will be reapplied for each newly created worlds. Thus, for each new accessible possible world w_k , the software will add a P w_k node to the tree.

First-Order logic notations

For technical reasons, the software uses non-standard notations:

- A predicate with one argument: P[x] (instead of Px)
- A predicate with 2 arguments: P[x,y] (instead of Pxy)
- A predicate with n arguments: $P[x_1, x_2, ..., x_n]$ (instead of $Px_1x_2...x_n$)
- The software categorizes arguments as follows:
- Free variables (in P[a] $\land \exists x Q[x]$, a is a free variable).
- Binding variables (in P[a] \land \exists x Q[x], x is a binding variable).
- Instantiated objects (in $P[a] \land Q[b:x]$, b:x is an instantiated object).
 - b:x notation means "an object named b of type x"

3 Existence rule

- The ∃ rule will transform binding variables into instantiated objects.
- The rule will generate unique names, considering already existing names on the tree branch.
- Objects are uniquely identified by their names.
- The rule will also attach a type on each object. Type's name = the name of the original variable.

∀ For All rule

- The $\forall x_i$ rule will find on tree branch all instantiated objects of type x_i .
- For each object, the rule will add to the tree a node, replacing x_i with the object.
- For instance, in this example:
 - $\exists x(P[x])$ instantiates x as a:x and adds a P[a:x] node to the tree branch.
 - $\forall x(\neg P[x])$ finds one object of type x (the previously instantiated a:x) and adds one node ($\neg P[a:x]$) to the tree branch.

Equality and Contradiction

- The algorithm supports equalities between a variable / object and another variable / object.
 - Transitive equalities are automatically generated: for each $<o_1=o_2$, $o_2=o_3>$ equality pair, an $o_1=o_3$ equality node will be added, if not already present on branch.
- In FOL, the algorithm detects a contradiction iff:
 - There are two nodes P[a:x₁,b:x₂,...] and
 - $\neg P[a:x_1,b:x_2,...]$ (same arguments) on the branch.
 - Or there are two nodes $a:x_1 = b:x_2$ and
 - \neg (a:x₁ = b:x₂) (same objects) on the branch.

Equality and ∀ For All rule

- The $\forall x_i$ rule will find on tree branch all instantiated objects of type x_i and any other y_i type equivalent to x_i ($x_i = y_i$).
- For each object, the rule will add a node to the tree branch.
- For instance, in this example:
 - $\exists x(P[x])$ instantiates x as a:x and adds a P[a:x] node.
 - $\forall y(\neg P[y])$ finds no objects of type y, has nothing to add.
 - The type y has an equivalent type x (x = y).
 - $\forall y(\neg P[y])$ finds one object of equivalent type x (the previously instantiated a:x) and adds a $\neg P[x]$ node.

More links

The software is available at: andob.io/incl
Source code (Rust): here

An initial, beta version: <u>filos.ro/ls/inclcalculator</u>
Source code (Kotlin): <u>here</u>
A presentation of the beta version: <u>here</u>