Graph of Words

Graph Based Features for Text
Classification

The process

Text classification

- Document collection $Loc = \{D_1, D_2, ..., D_n\}$
 - N docs Labeled with a class
- Dictionary (of the collection):
 - All useful terms in the collection
 - $T = \{t_1, t_2, ..., t_m\}$
- Vector Space Model
 - Each document is represented by a vector of m weights
 - One for each term
- How to define the weights?
 - 1. Bag of words (TF-IDF)
 - Graph of Words (TW-IDF)
- The weights are features of each document
 - Use any classifier to learn the classes (e.g. SVM)

Scenario

- Documents from Reuters
 - Labeled by hand
- Files:
 - r8-train-stemmed.txt
 - r8-test-stemmed.txt
 - tab separated
 - Label \t text
- All words are already stemmed

Class Label	# of Train docs	# of Test docs Total	# of docs
acq	1,596	696	2,292
crude	253	121	374
earn	2,840	1,083	3,923
grain	41	10	51
interest	190	81	271
money-fx	206	87	293
ship	108	36	144
trade	251	75	326
Total	5,485	2,189	7,674

Train a classifier on the two types of features and compare results

Bag of Words

- *tf(f,d):* frequency of t in d
 - Term importance within document

•
$$idf(t,D) = log \frac{N}{|\{d \in D, t \in d\}|}$$

- Term importance within collection
- tf idf(t, d, D) = tf(f, d) * idf(t, D)
 - Discriminative potential of a term
 - High values :
 - Frequent within documents
 - Infrequent in the entire collection
- Easy in python TF-IDF vectorizer

Evaluation

 A classifier can return weights/probabilities per class

Choose (the best) threshold

- Per class
 - $Precision = \frac{TP}{TP+FP}$ $Recall = \frac{TP}{TP+FN}$

 - $-F1 = 2 * \frac{precision*recall}{precision+recall}$
- Macro-average over all classes

Evaluate all thresholds

Precision Recall curve

PYTHON TF-IDF

LETS SEE THE CODE

TW-IDF: From Document to Graph

Data Science is the extraction of knowledge from large volumes of data that are structured or unstructured which is a continuation of the field of data mining and predictive analytics, also known as knowledge discovery and data mining.

Sliding Window

```
1:For each document \mathbf{d} \in \mathbf{D}:

2: Initialize a graph \mathbf{G}

3: For all words \mathbf{w}_i where \mathbf{w}_i \in \mathbf{d}:

4: Add \mathbf{w}_i to \mathbf{G}

5: For all words \mathbf{w}_{i+k} where \mathbf{i+k} < \mathbf{window\_size}

6: Add \mathbf{w}_{i+k} to \mathbf{G}

7: Add an edge in \mathbf{G} between \mathbf{w}_i and \mathbf{w}_{i+k}
```

In Python:

- networkx.Graph(): initializes a graph object
- graph_object.has_node(X): to check if X node exists
 - graph_object.add_node(X)
- graph_object.has_edge (X,Y): to check if edge between X and Y exists
 - graph_object.add_edge(X,Y)

TW-IDF

- Use graph properties to replace the TF factor
 - i.e. Node degree, PageRank etc.
- Node degree Centrality :
 - $-TW IDF(t, d, D) = degree(node_t)^* idf(t, D)$

François Rousseau and Michalis Vazirgiannis. 2013. Graph-of-word and TW-IDF: new approach to ad hoc IR. In *Proceedings of the 22nd ACM international conference on Information & Knowledge Management* (CIKM '13). ACM, New York, NY, USA, 59-68.

Python Code

- 1. Fill-in in the Code for the TW-IDF calculation
 - File : MyGraph.py
- 2. Compare the results between TF-IDF and TW-IDF
- 3. Retry with different window sizes and compare