第四讲 风险厌恶与资产配置

学习目标

- 基本要求:
- 掌握:风险资产与无风险资产投资组合的资本配置;
- ✓ 熟悉: 资本配置线
- ✓ 了解:风险,无差异曲线
- 重点难点: 资本配置线

区分投机与赌博

- 投机(speculation)指投资于风险较高的资产,并且预期得到相应较高的回报。
- 赌博(gambling)指承受风险,但是并没有相应的风险溢价作为补偿。
- 如果交易双方有不同的信息或者预期,那么可能都认为自己是投机, 而不是赌博。
- 例: 关于未来汇率的对赌。

当日外汇牌价 人民币汇率 和讯外汇

币种	交易单位	中间价	现汇买入价	现钞买入价	卖出价
澳大利亚元	100	490.8600	489.1800	473.9800	492.7800
澳门元	100	86.0900	85.9000	83.0200	86.2400
港币	100	88.4500	88.3200	87.6200	88.6800
韩元	100	0.6125	0.6070	0.5856	0.6118
加拿大元	100	529.8000	527.9200	511.2500	531.8200
美元	100	693.3800	692.5000	686.8600	695.4300
欧元	100	795.3600	793.8700	769.2000	799.7200
日元	100	6.1525	6.1650	5.9735	6.2104
英镑	100	899.8300	897.4600	869.5700	904.0700

你去买美元的时候用哪个价?

风险厌恶与效用函数

- 历史数据显示,投资人是风险厌恶的,即:风险资产必须有一定的风险溢价,投资人才愿意持有风险资产。
- 假设资产对投资人产生的效用,是该资产预期收益率和风险的函数。 投资人追求效用最大化的目标。例如:

$$U = E(r) - \frac{1}{2}A\sigma^2$$

根据此函数的定义,效用是资产预期收益率的增函数,是收益率方差的减函数,其中参数 A 度量投资人的风险厌恶程度。

- ▶ 投资者的风险厌恶程度越大,表明(▶
- A. 投资越激进 B. 投资越谨慎
- C. 看待风险无差异 D. 以上都不对
- ▶ 刘女士是一个风险厌恶的投资者,胡先生的风险厌恶程度小于刘女士的, 因此(D)。
- A. 对于相同风险, 胡先生比刘女士要求更高的回报率
- B. 对于相同的收益率, 刘女士比胡先生忍受更高的风险
- C. 对于相同的风险, 刘女士比胡先生要求较低的收益率
- D. 对于相同的收益率, 胡先生比刘女士忍受更高的风险

Table 6.1

Available risky portfolios (Risk-free rate = 5%)

Portfolio	Risk Premium	Expected Return	Risk (SD)
L (low risk)	2%	7%	5%
M (medium risk)	4	9	10
H (high risk)	8	13	20

三位投资人的风险厌恶系数分别是:

$$A_1 = 2$$
; $A_2 = 3.5$; $A_3 = 5$

Investor Risk Aversion (A)	Utility Score of Portfolio <i>L</i> $[E(r) = .07; \sigma = .05]$	Utility Score of Portfolio M [$E(r) = .09$; $\sigma = .10$]	Utility Score of Portfolio H [$E(r) = .13; \sigma = .20$]
2.0	$.07 - \frac{1}{2} \times 2 \times .05^2 = .0675$	$.09 - \frac{1}{2} \times 2 \times .1^2 = .0800$	$.13 - \frac{1}{2} \times 2 \times .2^2 = .09$
3.5	$.07 - \frac{1}{2} \times 3.5 \times .05^2 = .0656$	$.09 - \frac{1}{2} \times 3.5 \times .1^2 = .0725$	$.13 - \frac{1}{2} \times 3.5 \times .2^2 = .06$
5.0	$.07 - \frac{1}{2} \times 5 \times .05^2 = .0638$	$.09 - \frac{1}{2} \times 5 \times .1^2 = .0650$	$.13 - \frac{1}{2} \times 5 \times .2^2 = .03$

Table 6.2

Utility scores of alternative portfolios for investors with varying degrees of risk aversion

确定性等价收益率

- ■确定性等价收益率(certainty equivalent rate of return):
- 给定风险投资组合,如果存在一种无风险的资产,两者对投资人有相同的预期效用,则该无风险资产的收益率,称为原风险组合的确定性等价收益率。
- ■例:某投资组合: E(r) = 20%; $\sigma = 30\%$; $r_f = 7\%$;
- 两个投资人的风险厌恶系数分别是: $A_1 = 2$; $A_2 = 4$ 。
- 问: 各自的确定性等价收益率是多少?

风险厌恶与效用函数

$$U = E(r) - \frac{1}{2}A\sigma^2$$

U =效用值;E(r) = 某一资产或资产组合的期望收益;<math>A = 风险厌恶系数; $\sigma^2 = 收益的方差;<math>1/2 = -$ 个约定俗成的数值

- > 风险厌恶型的投资者, A>0
- > 风险中性的投资者, A=0
- > 风险偏好的投资者, A<0

风险厌恶系数,A的经验值: 2~4

均值-方差(M-V) 准则

■ 假设投资组合A优于投资组合B:

$$E(r_A) \geq E(r_B)$$

$$\sigma_A \leq \sigma_B$$

- 如果一投资组合值得投资,那么其确定性等价收益率与无风险投资收益率的关系(A)
- A. 大于 B. 小于 C. 不确定 D. 等于
- ▶ 根据均值-方差准则,下列(A)项投资优于其他?
- A. E(r)=0.15;标准差=0.2
- B. E(r)=0.1;标准差=0.2
- C. E(r)=0.1;标准差=0.25
- D. E(r)=0.15;标准差=0.25

Figure 6.1 The trade-off between risk and return of a potential investment portfolio, *P*

风险厌恶与效用函数

一个投资组合的期望收益率为20%,标准差为20%。国债能够提供的无风险收益率为7%。试计算说明风险规避系数A=4的投资者更愿意投资国债还是风险投资组合?

$$U_1 = 0.07$$

$$U_2 = 0.2 - \frac{1}{2} \times 4 \times 0.2^2 = 0.12$$

$$U_1 < U_2$$

风险规避系数为4的投资者更倾向于投资风险投资组合。

风险厌恶系数为A=4的投资者持有不同投资组合的效用值				
期望收益	标准差	效用		
0.10	0.200	0.02		
0.15	0.255	0.02		
0.20	0.300	0.02		
0.25	0.339	0.02		

Figure 6.2 The indifference curve

- » 风险厌恶程度越强的投资者,其效用无差异曲线越(B)
- A. 平缓 B. 陡峭 C. 水平 D. 下倾

- ▶ 风险中性的投资者其效用无差异曲线的形状(D)
- A. 向上倾斜 B. 向下倾斜
- C. 凸向原点 D. 水平直线

- > 对于风险厌恶型效用无差异曲线,下面说法正确的有(ACD)
- A. 曲线形状斜向上
- B. 曲线凸向原点
- C. 收益越高对应的风险位置越靠右(大)
- D. 在无差异曲线上的任何点效用都相等

- ▶ 不符合效用无差异曲线特性的是(ACD)。
- A. 效用无差异曲线相交
- B. 位置越高的效用无差异曲线上的组合点代表的满意程度越高
- C. 效用无差异曲线上的组合点的满意程度不相同
- D. 效用无差异曲线上的组合点风险相同

资本在风险资产和无风险资产上的配置

- 投资人往往同时持有无风险资产(比如短期国债)和有风险的资产 (比如股票和公司债券)。他们通过调整两者在投资组合中的比例, 来调节投资组合的风险。
- ■例:30万元的投资组合,9万元投资于货币市场基金,21万元投资于股票(11.34万元,占54%)和债券(9.66万元,占46%)。
- 风险资产(股票和债券)在整个组合中的比例: y = 0.7。

资本在风险资产和无风险资产上的配置

- ◎ 例:如果想减少风险,投资者该怎么做?
- ✓ 降低投资组合中风险资产的比例,假设将y=0.7调整为y=0.56:
 - · 投资者的风险资产价值调整为多少? 无风险资产变为多少?
 - · 为维持股票、债券的占比不变,则风险资产的构成变为?

无风险资产

- 严格意义上的无风险资产,是指其收益率,用实际购买力度量,在 某个特定时间段内是确定的。
- 在短期内,温和的通货膨胀可以忽略,因此如果将短期国债持有至 到期,就是无风险的。
- 实际操作中,货币市场的金融工具可以视为无风险的资产。这主要包括3大类:短期国债、银行存单以及商业票据。

- 资产配置的问题可以分解成两部分:
- 1. 分析哪些风险-预期收益率的组合是可行的;
- 2. 特定的投资人如何选择对他而言最优的投资组合。
- 前一部分是技术部分,与投资人的特征无关;后一部分是个性化部分,投资人根据自己对风险的态度来决定持有什么样的资产组合。

- 假设投资人已经选定了一个风险资产的组合 P。投资人在风险资产 P 上的投资占比是 y,在无风险资产上的投资占比 1-y。
- 这两者的预期收益率和标准差分别是: $E(r_p)$, σ_p , $E(r_f)$, 0 。
- 整个投资组合的预期收益率和标准差分别是: $E(r_C)$, σ_C 。
- ■例:风险资产 P: $E(r_P)=15\%$; $\sigma_P=22\%$; $r_f=7\%$;

• 以上变量之间存在如下关系:

$$r_C = yr_p + (1 - y)r_f$$

$$E(r_C) = r_f + y[E(r_p) - r_f]$$

$$\sigma_C = y\sigma_p$$

- 投资于风险组合 P 的比例 y 越高,整体组合的预期收益率越高,未来收益率的标准差也越高。
- 在"预期收益率-标准差"的平面上,刻画这些投资组合的点组成了一条直线,被称为资本配置线(capital allocation line, CAL)。

$$E(r_C) = r_f + \frac{\sigma_C}{\sigma_p} \cdot \left[E(r_p) - r_f \right]$$

Figure 6.4 The investment opportunity set with a risky asset and a risk-free asset in the expected return–standard deviation plane

 此直线的斜率 S 称为报酬-波动性比率(reward-to-volatility ratio), 也被称为Sharpe Ratio。

$$S = \frac{E(r_p) - r_f}{\sigma_p} = \frac{8\%}{22\%}$$

- 资本配置线上,风险组合 P 右边的组合也是可获得的。此时投资人需要以无风险利率借入资金,连同自有资金一起投资于风险组合 P。
- 如果投资人借款必须支付更高的利息率,则资本配置线在 P 点看起来 有一个折断。
- ■例:假设投资人自有资金30万元。以7%的利息率借入12万元,买入42万元的风险资产组合。则:y = 1.4; $E(r_c) = 18.2\%$ 。

Figure 6.5 The opportunity set with differential borrowing and lending rates

- » 资本配置线可以用来描述(A)。
- A. 一项风险资产和一项无风险资产组成的资产组合
- B. 两项风险资产组成的资产组合
- C. 对一个特定的投资者提供相同效用的所有资产组合
- D. 具有相同期望收益和不同标准差的所有资产组合
- ▶ 资本配置线(CAL)由直线变成折线是因为(B)
- A. 风险收益率上升
- B. 借款利率高于贷款利率
- C. 投资者风险承受力下降
- D. 无风险资产比例上升

一风险承受能力与资产配置

- 给定资本配置线,投资人风险厌恶程度不同,其最优投资组合的构成 也不同。
- 资产配置的问题,就是一个效用最大化的数学问题。

$$\max_{y} U = E(r_C) - \frac{1}{2} A \sigma_C^2$$
$$= r_f + y [E(r_p) - r_f] - \frac{1}{2} A y^2 \sigma_p^2$$

风险承受能力与资产配置

• 由极值的一阶条件得到投资于风险组合的最优比例 y^* :

$$y^* = \frac{E(r_p) - r_f}{A\sigma_p^2}$$

• 投资于风险组合的最优比例 y^* ,与投资人风险厌恶程度 A 成反比,与风险资产组合 P 的方差 σ_p^2 成反比,与 P 的风险溢价 $E(r_p) - r_f$ 成正比。

一风险承受能力与资产配置

- ■例:风险资产 P: $E(r_P)=15\%$; $\sigma_P=22\%$; $r_f=7\%$;
- 某投资人风险厌恶系数 A = 4,最优比例 y^* :

$$y^* = \frac{E(r_p) - r_f}{A\sigma_p^2} = \frac{15\% - 7\%}{4 \times 0.22^2} = 0.41$$

• 此时 $E(r_C) = 10.28\%$; $\sigma_C = 9.02\%$ 。

Table 6.4

Utility levels for various positions in risky assets (y) for an investor with risk aversion A = 4

(1) <i>y</i>	(2) <i>E</i> (<i>r</i> _C)	(3) σ _C	(4) $U = E(r) - \frac{1}{2}A\sigma^2$
0	.070	0	.0700
0.1	.078	.022	.0770
0.2	.086	.044	.0821
0.3	.094	.066	.0853
0.4	.102	.088	.0865
0.5	.110	.110	.0858
0.6	.118	.132	.0832
0.7	.126	.154	.0786
0.8	.134	.176	.0720
0.9	.142	.198	.0636
1.0	.150	.220	.0532

Figure 6.6 Utility as a function of allocation to the risky asset, y

风险承受能力与资产配置

- 给定投资人的效用函数,我们也可以用无差异曲线来直观地刻画投资人对风险组合的偏好。
- a) 风险厌恶程度更高的人,其无差异曲线更陡峭。这意味着给定标准 差的增量,他要求更多的风险溢价作为补偿。
- b) 投资人追求更高的效用,表示为他希望处于效用更高的无差异曲线上。直观地看,效用最大化的点,就是无差异曲线和资本配置线的切点。

Table 6.5

Spreadsheet calculations of indifference curves (Entries in columns 2–4 are expected returns necessary to provide specified utility value.)

	A =	A = 2		= 4
σ	U = .05	U = .09	U = .05	U = .09
0	.0500	.0900	.050	.090
.05	.0525	.0925	.055	.095
.10	.0600	.1000	.070	.110
.15	.0725	.1125	.095	.135
.20	.0900	.1300	.130	.170
.25	.1125	.1525	.175	.215
.30	.1400	.1800	.230	.270
.35	.1725	.2125	.295	.335
.40	.2100	.2500	.370	.410
.45	.2525	.2925	.455	.495
.50	.3000	.3400	.550	.590

Figure 6.7 Indifference curves for U = .05 and U = .09 with A = 2 and A = 4

Table 6.6

Expected returns on four indifference curves and the CAL. Investor's risk aversion is A = 4.

σ	U = .07	U = .078	U = .08653	U = .094	CAL
0	.0700	.0780	.0865	.0940	.0700
.02	.0708	.0788	.0873	.0948	.0773
.04	.0732	.0812	.0897	.0972	.0845
.06	.0772	.0852	.0937	.1012	.0918
.08	.0828	.0908	.0993	.1068	.0991
.0902	.0863	.0943	.1028	.1103	.1028
.10	.0900	.0980	.1065	.1140	.1064
.12	.0988	.1068	.1153	.1228	.1136
.14	.1092	.1172	.1257	.1332	.1209
.18	.1348	.1428	.1513	.1588	.1355
.22	.1668	.1748	.1833	.1908	.1500
.26	.2052	.2132	.2217	.2292	.1645
.30	.2500	.2580	.2665	.2740	.1791

Figure 6.8 Finding the optimal complete portfolio by using indifference curves

本章小结

- 效用函数
- 无差异曲线
- ▶资本配置线
- 单一风险资产和无风险资产的组合

课堂练习

- 1. 假定投资者预算为30万美元,投资者又另借入12万美元,把以上所有资金全部购买风险资产。风险资产组合的预期收益率为15%,标准差为22%。无风险利率为7%。试分别计算能够以7%利率借入资金、不能够以7%利率借入资金时(假定借入资金利率为9%)的资本配置线的斜率。
- 2. 如果 r_f =7%, E (r_p) =15%, σ_p =22%, A=4。试求该投资组合最优风险资产的配置比例。 并求出整体资产组合的期望收益和均方差。
- 3. 考虑一风险投资组合,年末来自该资产组合的现金流可能为7万美元或20万美元,概率都是0.5。可供选择的国库券投资的年利率为6%。如果投资者要求8%的风险溢价,那么他愿意支付多少钱购买该风险资产组合?
- 4. 考虑一投资组合,期望收益率为12%,标准差为18%。国库券的无风险收益率为7%。如果要使投资者更偏好风险资产组合,那么投资者最大风险厌恶系数是多少?
- 5. 假定你的客户面临的贷款利率是9%,标准普尔500指数有13%的期望收益率,标准差为25%, rf=5%。如果你的客户即不借入又不贷出资金, (也就是y=1时),那么其风险厌恶系数A的变化范围是多少?