1.3 Integral de Lebesgue

Notações:

 $-(X, \eth, \mu)$: espaço de medida

– $M=M(X,\eth)$: espaço das funções $f:X\to\overline{\mathbb{R}}$ mensuráveis

 $-M^+=M^+(X,\eth)$: espaço das funções $f:X\to\overline{\mathbb{R}}$ mensuráveis não negativas

Definição 1. Uma função $\varphi: X \to \mathbb{R}$ é simples se assume apenas um número finito de valores em sua imagem $(\#\varphi(X) < \infty)$

Uma função φ simples e mensurável pode ser representada da seguinte forma

$$\varphi = \sum_{j=1}^{n} a_j \chi_{E_j} \tag{1.1}$$

onde $a_j \in \mathbb{R}$ e χ_{E_j} é a função caracteristica do conjunto $E_j \in \eth$. Essa representação é única pelo fato de todos a_j serem distintos, os conjuntos E_j serem disjuntos com $j = 1, \ldots, n$ e $X = \bigcup_{j=1}^n E_j$.

Definição 2. Seja $\varphi \in M^+$ uma função simples com a representação (1.1). Definimos a integral de φ em relação a μ por

$$\int \varphi \, d\mu = \sum_{j=1}^{n} a_j \mu(E_j)$$

Observação: Adotamos a convenção $0 \cdot \infty = 0$. Dessa forma a integral da função identicamente nula é 0 indepdendente se o conjunto tem medida finita ou ifinita.

Lema 1. Dadas funções simples $\varphi, \psi \in M^+$ e $c \ge 0$ tem-se

(a)
$$\int c\varphi \, d\mu = c \int \varphi \, d\mu$$

(b)
$$\int (\varphi + \psi) d\mu = \int \varphi d\mu + \int \psi d\mu$$

(c) A aplicação $\lambda(E)=\int \varphi\chi_E\,d\mu$ para todo $E\in\eth$ é uma medida em \eth .

Demonstração.

(a) Mostremos que

$$\int c\varphi \, d\mu = c \int \varphi \, d\mu.$$

Com efeito, para c=0,

$$\int c\varphi \, d\mu = 0 = c \int \varphi \, d\mu.$$

por outro lado, para c > 0, podemos escrever $c\varphi$ da seguinte forma

$$c\varphi = \sum_{j=1}^{n} ca_j \chi_{E_j}$$

Dito isso.

$$\int c\varphi \, d\mu = \sum_{j=1}^{n} ca_j \mu(E_j) = c \sum_{j=1}^{n} a_j \mu(E_j) = c \int \varphi \, d\mu$$

(b) Agora, mostremos que

$$\int (\varphi + \psi) \, d\mu = \int \varphi \, d\mu + \int \psi \, d\mu$$

Para isso, podemos considerar as representações padrões das funções simples $\varphi, \psi \in M^+$

$$\varphi = \sum_{j=1}^{n} a_j \chi_{E_j}$$
 e $\psi = \sum_{k=1}^{m} b_k \chi_{F_k}$,

dessa forma, obtemos uma representação para $\varphi + \psi$ dada por

$$\varphi + \psi = \sum_{j=1}^{n} a_j \chi_{E_j} + \sum_{k=1}^{m} b_k \chi_{F_k}.$$

No entanto, essa representação não necessáriamente é a representação padrão, pois é possível que existam $j_0, j_1 \in \{1, ..., n\}$ e $k_0, k_1 \in \{1, ..., m\}$, tais que $a_{j_0} + b_{k_0} = a_{j_1} + b_{k_1}$.

Considere os elementos distintos do conjunto

$$H = \{a_j + b_k; j \in \{1, \dots, n\}, k \in \{1, \dots, m\}\}\$$

e denominamos os elementos por c_h com $h=1,\ldots,\#H$, e G_h a união de todos os conjuntos $E_j\cap F_k$ tais que $a_j+b_k=c_h$

Afirmamos que os conjuntos G_h são dois-a-dois disjuntos. De fato

$$G_h \cap G_H = (E_i \cap F_k) \cap (E_J \cap F_K) = E_i \cap E_J \cap F_k \cap F_K = \emptyset \cap \emptyset = \emptyset,$$

sendo assim

$$\mu(G_h) = \overline{\sum} \mu(E_j \cap F_k)$$

onde o somatório $\overline{\Sigma}$ está relacionado aos indices $1 \leqslant j \leqslant n$ e $1 \leqslant k \leqslant m$ tais que $a_j + b_k = c_h$ Portanto definimos a representação padrão de $\varphi + \psi$ por

$$\varphi + \psi = \sum_{h=1}^{\#H} c_h \chi_{G_h},$$

deste modo

$$\int (\varphi + \psi) d\mu = \sum_{h=1}^{\#H} c_h \mu(G_h)$$

$$= \sum_{h=1}^{\#H} \sum_{k=1}^{\#H} c_h \mu(E_j \cap F_k)$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{m} (a_j + b_k) \mu(E_j \cap F_k)$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{m} a_j \mu(E_j \cap F_k) + \sum_{j=1}^{n} \sum_{k=1}^{m} b_k \mu(E_j \cap F_k)$$

como X é a união das famílias $\{E_j\}$ e $\{F_k\}$, temos que

$$\mu(E_j) = \sum_{k=1}^{m} \mu(E_j \cap F_k) \quad e \quad \mu(F_k) = \sum_{j=1}^{n} \mu(E_j \cap F_k).$$

Portanto

$$\int (\varphi + \psi) d\mu = \sum_{j=1}^{n} a_j \mu(E_j) + \sum_{k=1}^{m} b_k \mu(F_k) = \int \varphi d\mu + \int \psi d\mu.$$

(c) Por fim, queremos mostrar que

$$\lambda(E) = \int \varphi \chi_E \, d\mu$$

é uma medida em ð. Com efeito,

1.
$$\lambda(\emptyset) = \int \varphi \chi_{\emptyset} d\mu = \int 0 d\mu = 0$$

2. Note que como $\varphi \in M^+$ os elementos a_j na representação padrão são não negativos. Com efeito, sabemos que $0 \leqslant \varphi(x)$ para todo $x \in X$, daí

$$0 \leqslant \varphi(x) = \sum_{j=1}^{n} a_j \chi_{E_j}(x),$$

porem, como os conjuntos E_j são disjuntos, existe um único $1 \leq j_0 \leq n$ tal que $x \in E_{j_0}$. Dessa forma, para todo $j \neq j_0$, $\chi_{E_j}(x) = 0$, então

$$0 \leqslant \varphi(x) = \sum_{j=1}^{n} a_j \chi_{E_j}(x) = a_{j_0}$$

Daí,

$$\lambda(E) = \int \varphi \chi_E \, d\mu = \sum_{i=1}^n a_i \mu(E \cap E_i) \geqslant 0$$

pois mostramos que $a_j > 0$ para todo $1 \leqslant j \leqslant n$ e μ é uma medida.

3. Considere $(F_k) \subseteq \eth$ uma sequência disjunta de conjuntos

$$\lambda \left(\bigcup_{k=1}^{\infty} F_k \right) = \int \varphi \chi_{\bigcup F_k}$$

$$= \sum_{j=1}^{n} a_j \mu \left(\left(\bigcup_{k=1}^{\infty} F_k \right) \cap E_j \right)$$

$$= \sum_{j=1}^{n} a_j \mu \left(\bigcup_{k=1}^{\infty} (F_k \cap E_j) \right)$$

$$= \sum_{j=1}^{n} a_j \sum_{k=1}^{\infty} \mu(F_k \cap E_j)$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{\infty} a_j \mu(F_k \cap E_j)$$

$$= \sum_{k=1}^{\infty} \sum_{j=1}^{n} a_j \mu(F_k \cap E_j)$$

$$= \sum_{k=1}^{\infty} \int \varphi \chi_{F_k} d\mu$$

$$= \sum_{k=1}^{\infty} \lambda(F_k)$$

Definição 3. A integral de uma função $f \in M^+$ em relação a μ é definida por

$$\int f \, d\mu = \sup_{\varphi} \int \varphi \, d\mu$$

onde φ são funções simples em M^+ tais que $0 \leqslant \varphi(x) \leqslant f(x)$ para todo $x \in X$.

Além disso, definimos a integral da função f sobre um conjunto mensurável

Definição 4. A integral de $f \in M^+$ sobre um conjunto $E \in \eth$ é dada por

$$\int_{E} f \, d\mu = \int f \chi_{E} \, d\mu$$

Lema 2. Sejam $f, g \in M^+$ e $E, F \in \eth$. Então são válidas as afirmações abaixo

(a) se $f \leq g$ tem-se

$$\int f \, d\mu \leqslant \int g \, d\mu$$

(b) se $E \subseteq F$ tem-se

$$\int_{E} f \, d\mu \leqslant \int_{E} f \, d\mu$$

Demonstração.

(a) Seja φ uma função simples em $M^+,$ então

$$\int f \, d\mu = \sup_{\substack{0 \leqslant \varphi \leqslant f \\ \varphi \text{ simples} \\ \varphi \in M^+}} \int \varphi \, d\mu \leqslant \sup_{\substack{0 \leqslant \varphi \leqslant g \\ \varphi \text{ simples} \\ \varphi \in M^+}} \int \varphi \, d\mu = \int g \, d\mu$$

(b) Como $f\chi_E \leqslant f\chi_F$, segue do item anterior que

$$\int f\chi_E \, d\mu \leqslant \int f\chi_F \, d\mu,$$

dito isso

$$\int_E F \, d\mu \leqslant \int_F f \, d\mu.$$