Reguläre Sprachen, Ausdrucksstärke

BC George (HSBI)

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.

Motivation

Was muss ein Compiler wohl als erstes tun?

- Syntan übeprilen
- Wheth" utepringen
- Trile (Lenteiben) erkennen

Themen für heute

- Endliche Automaten
- Reguläre Sprachen
- Lexer

Endliche Automaten

Alphabete

Sigura

Def.: Ein **Alphabet** Σ ist eine endliche, nicht-leere Menge von Symbolen. Die Symbole eines Alphabets heißen *Buchstaben*.

Def.: Ein **Wort** w über einem Alphabet Σ ist eine endliche Folge von Symbolen aus Σ . ϵ ist das leere Wort. Die Länge |w| eines Wortes w ist die Anzahl von Buchstaben, die es enthält (Kardinalität).

Def.: Eine **Sprache** L *über einem Alphabet* Σ ist eine Menge von Wörtern über diesem Alphabet. Sprachen können endlich oder unendlich viele Wörter enthalten.

Beispiel

Element horm man hindereinander hängen

=) Sei M eine Menze

Cendlich velli)

M* die Menze celler huntereimander zehremsten Elemente,

lin strie plich E

Menison Hille

M+: M* ohn 23

Deterministische endliche Automaten

DFA Einschersichen

A12

An Daniel

Aufanny

An Daniel

Aufande

Aufande

sheete machine

Wenn die Enische Woughtt wahrtet wurdt und de Automat in winem Endrussand ish wind das West ahrepties

Def.: Ein **deterministischer endlicher Automat** (DFA) ist ein 5-Tupel $A = (Q, \Sigma, \delta, q_0, F)$ mit

- *Q* : endliche Menge von **Zuständen**
- Σ : Alphabet von Eingabesymbolen
- δ : die (eventuell partielle) **Übergangsfunktion** $(Q \times \Sigma) \to Q, \delta$ kann partiell sein
- $q_0 \in Q$: der **Startzustand**
- $F \subseteq Q$: die Menge der **Endzustände**

Die Übergangsfunktion

Def.: Wir definieren $\delta^*:(Q\times\Sigma^*)\to Q$: induktiv wie folgt:

- lacksquare Basis: $\delta^*(q,\epsilon)=q \; orall q \in \mathcal{Q}$
- Induktion: $\delta^*(q, a_1, \dots, a_n) = \delta(\delta^*(q, a_1, \dots, a_{n-1}), a_n)$

Def.: Ein DFA akzeptiert ein Wort $w \in \Sigma^*$ genau dann, wenn $\delta^*(q_0, w) \in F$.

Beispiel

Nichtdeterministische endliche Automaten

Def.: Ein **nichtdeterministischer endlicher Automat** (NFA) ist ein 5-Tupel $A = (Q, \Sigma, \delta, q_0, F)$ mit

- $q_0 \in Q$: der **Startzustand**
- $F \subseteq Q$: die Menge der **Endzustände**

Akzeptierte Sprachen

Def.: Sei A ein DFA oder ein NFA. Dann ist L(A) die von A akzeptierte Sprache, d. h.

$$L(A) = \{ \text{W\"orter } w \mid \delta^*(q_0, w) \in F \}$$

Wozu NFAs im Compilerbau?

Pattern Matching (Erkennung von Schlüsselwörtern, Bezeichnern, ...) geht mit NFAs.

NFAs sind so nicht zu programmieren, aber:

Satz: Eine Sprache L wird von einem NFA akzeptiert $\Leftrightarrow L$ wird von einem DFA akzeptiert.

D. h. es existieren Algorithmen zur

- Umwandlung von NFAs in DFAS
- Minimierung von DFAs (Awal) of Justande)

Reguläre Sprachen

Reguläre Ausdrücke definieren Sprachen

Def.: Induktive Definition von regulären Ausdrücken (regex) und der von ihnen repräsentierten Sprache hischrichen Sprachen Ŀ

- Basis:
 - ϵ und \emptyset sind reguläre Ausdrücke mit $L(\epsilon) = \{\epsilon\}, L(\emptyset) = \emptyset$
 - Sei a ein Symbol $\Rightarrow a$ ist ein regex mit $L(a) = \{a\}$
- Induktion: Seien E, F reguläre Ausdrücke. Dann gilt:

 - E + F ist ein regex und bezeichnet die Vereinigung $L(E + F) = L(E) \cup L(F)$ auch L(E) = EF ist ein regex und bezeichnet die Konkatenation L(EF) = L(E)L(F) Thin trem on the second L(E) = L(E)L(F) the second L(E) = L(E)L(E) the second L(E) = L(E)L(E)• E^* ist ein regex und bezeichnet die Kleene-Hülle $L(E^*) = (L(E))^*$
 - (E) ist ein regex mit L((E)) = L(E)

Vorrangregeln der Operatoren für reguläre Ausdrücke: *, Konkatenation, +

Beispiel

regu	Sprache
01	{ 01}
(a+b)	{a, b}
$(\alpha + b)^{*}$	{ε, α, b, αα, αβ, bα, bb, ααα, ααβ, ··- 9
	mendlich ville
	zides endhich long

Wichtige Identitäten

Satz: Sei A ein DFA $\Rightarrow \exists$ regex R mit L(A) = L(R).

Satz: Sei E ein regex $\Rightarrow \exists$ DFA A mit L(E) = L(A).

Mu wendling

Formale Grammatiken

-> Sulyèlus Prädikast Osjeht Subject > Artikel Substantiv | Pronomen Protolihad > "is" | "loss" | "lave" | ... Su Object > think subtandir | ... / 11/A11 | "An" | "The"

Formale Definition formaler Grammatiken

Def.: Eine formale Grammatik ist ein 4-Tupel G = (N, T, P, S) aus

- N: endliche Menge von Nichtterminalen
- Subject, Principal, $T = \emptyset \quad \text{"then", "is" usw.}$ T: endliche Menge von **Terminalen**, $N \cap T = \emptyset$
- $S \in N$: Startsymbol Scuta
- *P*: endliche Menge von **Produktionen** der Form

$$X \to Y \text{ mit } X \in (N \cup T)^* N(N \cup T)^*, Y \in (N \cup T)^*$$

Ableitungen

"A" Substantiv Principal ought

Def.: Sei G = (N, T, P, S) eine Grammatik, sei $\alpha A \beta$ eine Zeichenkette über $(N \cup T)^*$ und sei $A \to \gamma$ eine Produktion von G.

Wir schreiben: $\alpha A\beta \Rightarrow \alpha \gamma \beta$ ($\alpha A\beta$ leitet $\alpha \gamma \beta$ ab).

Def.: Wir definieren die Relation $\stackrel{*}{\Rightarrow}$ induktiv wie folgt:

- Basis: $\forall \alpha \in (N \cup T)^* \alpha \stackrel{*}{\Rightarrow} \alpha$ (Jede Zeichenkette leitet sich selbst ab.)

Def.: Sei G = (N, T, P, S) eine formale Grammatik. Dann ist $L(G) = \{\text{W\"orter } w \text{ \"uber } T \mid S \stackrel{*}{\Rightarrow} w\}$ die von G erzeugte Sprache.

Beispiel

Reguläre Grammatiken

Def.: Eine **reguläre (oder type-3-) Grammatik** ist eine formale Grammatik mit den folgenden Einschränkungen:

- Alle Produktionen sind entweder von der Form
 - $X \to aY$ mit $X \in N$, $a \in T$, $Y \in N$ (rechtsreguläre Grammatik) oder
 - $\bullet \quad X \rightarrow \textit{Ya} \ \mathsf{mit} \ X \in \textit{N}, \textit{a} \in \textit{T}, \textit{Y} \in \textit{N} \ (\textit{linksregul\"{a}re} \ \mathsf{Grammatik})$
- $X \to \epsilon$ ist erlaubt

Beispiel

Reguläre Sprachen und ihre Grenzen

Satz: Die von endlichen Automaten akzeptiert Sprachklasse, die von regulären Ausdrücken beschriebene Sprachklasse und die von regulären Grammatiken erzeugte Sprachklasse sind identisch und heißen **reguläre Sprachen**.

Reguläre Sprachen

- einfache Struktur
- Matchen von Symbolen (z. B. Klammern) nicht möglich, da die fixe Anzahl von Zuständen eines DFAs die Erkennung solcher Sprachen verhindert.

Wozu reguläre Sprachen im Compilerbau?

- Reguläre Ausdrücke if while is the time
 - definieren Schlüsselwörter und alle weiteren Symbole einer Programmiersprache, z. B. den Aufbau von Gleitkommazahlen
 - werden (oft von einem Generator) in DFAs umgewandelt
 - sind die Basis des Scanners oder Lexers Zuriller

Lexer

Ein Lexer ist mehr als ein DFA

Ein Lexer

- wandelt mittels DFAs aus regulären Ausdrücken die Folge von Zeichen der Quelldatei in eine Folge von sog. Token um
- bekommt als Input eine Liste von Paaren aus regulären Ausdrücken und Tokennamen, z. B. ("while", WHILE)
- Kommentare und Strings müssen richtig erkannt werden. (Schachtelungen)

Besuidmu

liefert Paare von Token und deren Werte, sofern benötigt, z. B. (WHILE, _), oder (IDENTIFIER, "radius") oder (INTEGERZAHL, "334")

Wie geht es weiter?

Ein Parser

- führt mit Hilfe des Tokenstreams vom Lexer die Syntaxanalyse durch
- basiert auf einer sog. kontextfreien Grammatik, deren Terminale die Token sind
- liefert die syntaktische Struktur in Form eines Ableitungsbaums (syntax tree, parse tree), bzw. einen
 AST (abstract syntax tree) ohne redundante Informationen im Ableitungsbaum (z. B. Semikolons)
- liefert evtl. Fehlermeldungen

(Or feet high our Fehlerweldingen)

Ms fexus

Wrap-Up

Wrap-Up

- Definition und Aufgaben von Lexern
- DFAs und NFAs
- Reguläre Ausdrücke
- Reguläre Grammatiken
- Zusammenhänge zwischen diesen Mechanismen und Lexern, bzw. Lexergeneratoren

LICENSE

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.