

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS

Estructuras Discretas Tarea 7

PRESENTA

Castañon Maldonado Carlos Emilio Bazán Rojas Karina Ivonne

PROFESORA

Araceli Liliana Reyes Cabello

AYUDANTES

Rafael Reyes Sánchez Ricardo Rubén Gónzalez García Javier Enríquez Mendoza José Eliseo Ortíz Montaño

Estructuras Discretas

Tarea Semanal 7

Verifica si las siguientes son equivalencias válidas, por medio de álgebra de equivalencias lógicas y tablas de verdad.

a)
$$(p \rightarrow q) \rightarrow q \equiv p \lor q$$

$$\begin{array}{ll} \neg(p \rightarrow q) \lor q \equiv p \lor q & \text{Eliminación de operadores} \\ \neg(\neg p \lor q) \lor q \equiv p \lor q & \text{Eliminación de operadores} \\ (p \land \neg q) \lor q \equiv p \lor q & \text{De Morgan y Doble Negación} \\ (q \lor p) \land (q \lor \neg q) \equiv p \lor q & \text{Distributividad} \\ (q \lor p) \land (True) \equiv p \lor q & \text{Tercero Excluido} \\ (q \lor p) \equiv p \lor q & \text{Identidad} \\ p \lor q \equiv p \lor q & \text{Conmutatividad} \\ \end{array}$$

	p	q	$p \rightarrow q$	$(p \to q) \to q$
	0	0	1	0
ĺ	0	1	1	1
ĺ	1	0	0	1
ĺ	1	1	1	1

p	q	$p \lor q$
0	0	0
0	1	1
1	0	1
1	1	1

b)
$$(p \leftrightarrow q) \equiv (\neg p \leftrightarrow \neg q)$$

$$\begin{array}{l} (p \leftrightarrow q) \equiv (\neg p \rightarrow \neg q) \wedge (\neg q \rightarrow \neg p) \quad \text{Eliminación de operadores} \\ (p \leftrightarrow q) \equiv (p \vee \neg q) \wedge (q \vee \neg p) \quad \text{Eliminación de operadores} \\ (p \leftrightarrow q) \equiv (q \vee \neg p) \wedge (p \vee \neg q) \quad \text{Conmutatividad} \\ (p \leftrightarrow q) \equiv (\neg p \vee q) \wedge (p \vee \neg q) \quad \text{Conmutatividad} \\ (p \leftrightarrow q) \equiv (p \rightarrow q) \wedge (q \rightarrow p) \quad \text{Eliminación de operadores} \\ (p \leftrightarrow q) \equiv (p \leftrightarrow q) \quad \text{Eliminación de operadores} \\ \end{array}$$

	p	q	$p \leftrightarrow q$
	0	0	1
	0	1	0
	1	0	0
ĺ	1	1	1

	p	q	$\neg p$	$\neg q$	$\neg p \leftrightarrow \neg q$
	0	0	1	1	1
Ì	0	1	1	0	0
Ì	1	0	0	1	0
Ì	1	1	0	0	1

c)
$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

p	q	$p \leftrightarrow q$	$\neg(p \leftrightarrow q)$
0	0	1	0
0	1	0	1
1	0	0	1
1	1	1	0

p	q	$\neg q$	$p \leftrightarrow \neg q$
0	0	1	0
0	1	0	1
1	0	1	1
1	1	0	0

2 Para cada una de las fórmulas muestra si son o no satisfacibles, si lo son muestra un modelo para cada una.

a)
$$(\neg p \lor q) \land p$$

$$\mathcal{I}(p) = 1, \mathcal{I}(\neg p) = 0, \mathcal{I}(q) = 1$$

entonces $\mathcal{I}(\neg p \lor q) = 1 \Rightarrow \mathcal{I}((\neg p \lor q) \land p) = 1$, por lo que si es un modelo para la fórmula.

b) $p \wedge q \wedge \neg p$

No es satisfacible, no hay ninguna asignación de verdad para las variables p y q que haga que la fórmula sea verdadera ya que $p \land q \land \neg p \equiv q \land p \land \neg p$ por Conmutatividad y como podremos recordar $p \land \neg p \equiv \mathit{False}$ por lo que tendríamos $q \land \mathit{False}$ y no hay modelo que satisfaga eso.

c) $(p \rightarrow q) \land (q \rightarrow p)$

Si p y q son verdaderos, entonces ambas implicaciones son verdaderas y la conjunción de ambas también es verdadera.

Si p y q son falsos, entonces ambas implicaciones son trivialmente verdaderas (ya que si el antecedente es falso, implica verdadero), y la conjunción de ambas también es verdadera.

Por lo tanto, podemos concluir que $(p \to q) \land (q \to p)$ es satisfacible.

$$\mathcal{I}(p) = 1, \mathcal{I}(q) = 1$$

entonces $\mathcal{I}(p \to q) = 1$ y $\mathcal{I}(q \to p) = 1 \Rightarrow \mathcal{I}(p \to q) \land (q \to p) = 1$, por lo que si es un modelo para la fórmula.

3 Demuestra la consecuencia lógica por medio de interpretaciones en cada uno de los casos

- a) $\{p \lor q, p \to r, q \to r\} \models r$
 - 1) $\mathcal{I}(p \lor q) = T$ Por hipótesis
 - 2) $\mathcal{I}(p \to r) = T$ Por hipótesis
 - 3) $\mathcal{I}(q \to r) = T$ Por hipótesis
 - 4) $\mathcal{I}(r) = F$ Refutación
 - 5) I(p) = F Por 2 y 4
 - 6) I(q) = F Por 3 y 4
 - 7) $\mathcal{I}(p \vee q) = F \text{ Por 5 y 6}$

 $\Gamma \cup \{\neg r\}$ insatisfacible y el argumento es correcto.

- b) $\{r \land s \rightarrow t, \neg t\} \models t \rightarrow q$
 - 1) $\mathcal{I}(r \wedge s \rightarrow t) = T$ Por hipótesis
 - 2) $\mathcal{I}(\neg t) = T$ Por hipótesis
 - 3) $\mathcal{I}(t) = F \text{ Por 2.}$ $\therefore t \rightarrow q$
- C) $\{\neg q \rightarrow \neg r, \neg r \rightarrow \neg p, \neg p \rightarrow \neg q\} \models q \leftrightarrow r$
 - 1) $\mathcal{I}(\neg q \rightarrow \neg r) = T$ Por hipótesis
 - 2) $\mathcal{I}(\neg r \rightarrow \neg p) = T$ Por hipótesis
 - 3) $\mathcal{I}(\neg p \rightarrow \neg q) = T$ Por hipótesis
 - 4) $\mathcal{I}(\neg(\neg q) \lor \neg r) \equiv \mathcal{I}(q \lor \neg r)$ Eliminación de op. 1
 - 5) $\mathcal{I}(\neg(\neg r) \lor \neg p) \equiv \mathcal{I}(r \lor \neg p)$ Eliminación de op. 2
 - 6) $\mathcal{I}(\neg(\neg p) \lor \neg q) \equiv \mathcal{I}(p \lor \neg q)$ Eliminación de op. 3
 - 7) $\mathcal{I}(q \vee \neg r) = T \text{ Por 1 y 4}$
 - 8) $\mathcal{I}(r \vee \neg p) = T \text{ Por 2 y 5}$
 - 9) $\mathcal{I}(p \vee \neg q) = T \text{ Por 3 y 6}$
 - 10) I(q) = T Por 7 y 9
 - 11) $\mathcal{I}(r) = T \text{ Por 7 y 10}$

 $\therefore q \leftrightarrow r$