A denotational semantics for Hindley-Milner polymorphism

Ohad Kammar <ohad.kammar@cl.cam.ac.uk> and Sean Moss

The 4^{th} ACM SIGPLAN Workshop on Higher-Order Programming with Effects 30 August 2015

Let polymorphism

Pure prenex polymorphism

```
 \begin{array}{ll} \textbf{let } f = \textbf{ fun } x \rightarrow x & \left( * \ f \colon \forall \alpha.\alpha \rightarrow \alpha \ * \right) \\ \textbf{in } f f & \left( * \ \colon \forall \beta.\beta \rightarrow \beta \ * \right) \end{array}
```

Unsafe polymorphism

```
let r = \text{ref}[] (* unsafe generalisation: r: \forall \alpha.\alpha list ref *)
in r:=[true]; (* specialise r: bool \ list \ ref *)
match ! r with (* specialise r: int \ list \ ref *)
|[] \rightarrow 0
|x:: xs \rightarrow x + 1 \text{ (*} : int \ yet \ crashes *)
```

Safe effectful polymorphism

Goals

Well-known (even to undergrads)

- ▶ How polymorphism fails
- Many fixes
- Simple and effective: value restriction

But...

- Why polymorphism fails?
- Why each fix works?
- Compare fixes.

Warning and apology: work in progress, vast existing work, so partial answers only.

Plan

How vs. why

Operational explanation (cf.[Tofte'90])

```
\begin{array}{lll} \textbf{let } r = \textbf{ref } [ \ ] & (* \longleftarrow \texttt{error} & *) \\ \textbf{in } r := [\textit{true}]; & \\ \textbf{match } ! r \textbf{ with} & \\ | \ [ \ ] \rightarrow 0 & \\ | \ x :: xs \rightarrow x+1 & (* \longleftarrow \texttt{explanation} \ *) \end{array}
```

 $\mathsf{Local}\ \mathsf{explanation}\ \Longleftrightarrow\ \mathsf{denotational}\ \mathsf{explanation}$

Scope

Separate inference from semantic concerns

Sean Moss

Talk structure

- Pure HM-polymorphism
 - Syntax
 - Models
 - Sanity check
 - Adding simple types
- Add effects
 - 1. CBN semantics
 - 2. CBV semantics
 - 3. Value restriction and thunkability
- Conclusion

HM-calculus

Kinding relation $\Delta \vdash -: \mathcal{K}$:

$$\frac{\alpha \in \Delta}{\Delta \vdash \alpha : \mathsf{type}} \qquad \qquad \frac{\Delta \uplus \{\alpha_1, \dots, \alpha_n\} \vdash \tau : \mathsf{type}}{\Delta \vdash \forall \alpha_1 \cdots \alpha_n . \tau : \mathsf{scheme}}$$

$$\frac{\text{for all } i = 1, \dots, n: \ \Delta \vdash \sigma_i : \text{scheme}}{\Delta \vdash \{x_1 \mapsto \sigma_1, \dots, x_n \mapsto \sigma_n\} : \text{cont}}$$

HM-calculus (ctd)

Scheming relation Δ ; $\Gamma \vdash M : \sigma$, $\Delta \vdash \Gamma : \mathbf{cont}$, $\Delta \vdash \sigma : \mathbf{type}$:

$$\frac{\Delta \uplus \{\alpha_1, \dots, \alpha_n\}; \Gamma \vdash M : \tau \quad \Delta \vdash \Gamma : \mathbf{cont}}{\Delta; \Gamma \vdash M : \forall \alpha_1 \dots \alpha_n. \tau}$$

Typing relation Δ ; $\Gamma \vdash M : \tau$, $\Delta \vdash \Gamma : \mathbf{cont}$, $\Delta \vdash \tau : \mathbf{type}$:

$$\frac{\Gamma(x) = \forall \vec{\alpha}.\tau' \quad |\vec{\alpha}| = |\vec{\tau}|}{\Delta; \Gamma \vdash x @ \vec{\tau} : \tau' [\vec{\tau}/\vec{\alpha}]} \qquad \frac{\Delta; \Gamma \vdash M : \sigma \quad \Delta; \Gamma[x \mapsto \sigma] \vdash N : \tau'}{\Delta; \Gamma \vdash \mathbf{let} \ (x : \sigma) = M \ \mathbf{in} \ N : \tau'}$$

Related

A fragment of Core-XML [Harper-Mitchell'93]:

- Specialisation of variables only
- Kind system
- Minimal type system (less expressive!)

Models

Core idea

Tweak System F models (PL-categories [Seely'87] / λ 2-fibrations)

$$\langle \mathbb{D}, \mathbb{S}, P, \Omega, \varphi, \forall, \theta \rangle$$

Executive summary

Relativisation w.r.t. small vs. large types

$$\langle \mathbb{D}, \mathbb{S}, P, \mathbb{T}, J, \Omega, \varphi, \forall, \theta \rangle$$

Sean Moss

'relative' as in:

- ▶ relative adjunction [Ulmer'68]
- relative monad [Altenkirch, Chapman, Uustalu'10]

includes concrete models (cf. [Harper-Mitchell'93]) and syntactic models.

Models: type contexts and substitutions

 $\ensuremath{\mathbb{D}}$ is a category with finite products. Concretely:

- ightharpoonup Ob (\mathbb{D}) := \mathbb{N}
- $\rho: m \to n$ is any function $\mathcal{U}^m \to \mathcal{U}^n$

where \mathcal{U} is a chosen universal set.

Cartesian structure

- $ightharpoonup m imes n \coloneqq m + n \text{ and}$

Models: interpreting schemes, variable contexts, and terms

 $P:\mathbb{S}\to\mathbb{D}$ is a Grothendieck fibration with local finite products.

Equivalently: indexed category

A functor $P^{-1}: \mathbb{D}^{\mathrm{op}} \to \mathbf{CAT}_{\times}$.

Concretely:

- ▶ Ob (\mathbb{S}_m) are functions $F: \mathcal{U}^m \to \mathbf{Set}$
- ▶ $M: F \to G$ in \mathbb{S}_m are \mathcal{U}^m -indexed families of functions $\langle M_\delta : F\delta \to G\delta \rangle_{\delta \in \mathcal{U}^m}$
- ▶ Reindexing along $\rho: \mathcal{U}^m \to \mathcal{U}^n$ by precomposition.

Write \mathbb{S}_{Δ} for the fibre $P^{-1}\Delta$

Models: interpreting types

 $\mathbb T$ is a sub-class of $\mathbb S$, closed under re-indexing.

 $J: \mathbb{T} \subseteq \mathbb{S}$ is the inclusion.

Define $\mathbb{T}_{\Delta} := \mathbb{S}_{\Delta} \cap \mathbb{T}$.

Concretely, \mathbb{T}_m consists of all small schemes $F:\mathcal{U}^m\to\mathcal{U}$.

Indexed-parameterised category

Following Levy's CBPV:

By defining $\mathbb{T}_{\Delta}(J\tau,J\tau')_{\sigma}$ we get that \mathbb{T}_{Δ} is a $\mathbf{Set}^{\mathbb{S}^{\mathrm{op}}_{\Delta}}$ -enriched category, and this structure is stable under reindexing, and $J_{\Delta}: \mathbb{T}_{\Delta} \to \mathbb{S}_{\Delta}$ has an enriched functor structure stable under reindexing.

This functor J gives us the required relativisation.

Models: substitution and quantification

Connecting ${\mathbb T}$ and type substitutions

A distinguished Ω in $\operatorname{Ob}(\mathbb{D})$ and a $\operatorname{Ob}(\mathbb{D})$ -indexed family of bijections $\varphi_{\Delta}: \mathbb{T}_{\Delta} \xrightarrow{\cong} \mathbb{D}(\Delta, \Omega)$ natural in Δ (making Ω a form of relative generic object)

Concretely, $\Omega := 1$ and $\varphi_m: (\mathcal{U}^m \to \mathcal{U}) \xrightarrow{\cong} (\mathcal{U}^m \to \mathcal{U}^1)$.

Interpreting universal quantification

A relative *J*-adjunction $\pi_1^*\dashv_{J_{\Delta\times\Delta'}}\forall\Delta'$, for all Δ,Δ' , with a Beck-Chevalley condition for compatibility with reindexing. This amounts to giving:

- ▶ an object map $\forall \Delta' : \mathbb{T}_{\Delta \times \Delta'} \to \mathbb{S}_{\Delta}$ and
- a family of natural bijections:

$$\theta \frac{\pi_1^*\Gamma \longrightarrow J_{\Delta \times \Delta'}\tau}{\Gamma \longrightarrow \forall \Delta'.\tau}$$

Sanity check

Syntactic type-substitution

Define $N[M[-/\vec{\alpha}]/x@-]$ by:

$$x@\vec{\tau}[M[-/\vec{\alpha}]/x@-] \coloneqq M[\vec{\tau}/\vec{\alpha}]$$

$$y@\vec{\tau}[M[-/\vec{\alpha}]/x@-] \coloneqq y@\vec{\tau}$$

$$\left(\begin{array}{l} \mathbf{let}\ (y:\forall \vec{\beta}.\tau) = M' \\ \mathbf{in}\ N' \end{array}\right)[M[-/\vec{\alpha}]/x@-] \coloneqq$$

$$\mathbf{let}\ (y:\forall \vec{\beta}.\tau) = M'[M[-/\vec{\alpha}]/x@-]$$

$$\mathbf{in}\ N'[M[-/\vec{\alpha}]/x@-]$$

Theorem

For all
$$\Delta$$
; $\Gamma \vdash M : \sigma$ and Δ ; $\Gamma[x \mapsto \sigma] \vdash N : \tau'$:

$$\llbracket \mathbf{let} \ (\mathbf{x} : \forall \vec{\alpha}.\tau) = M \ \mathbf{in} \ N \rrbracket = \llbracket N[M[-/\vec{\alpha}]/\mathbf{x}@-] \rrbracket$$

Adding simple types

Straightforward

```
 \begin{array}{ll} \vdots \\ \text{Types} & \tau ::= \alpha \mid \tau * \tau \mid \tau \to \tau \\ \vdots \\ \text{Scheme contexts} & E ::= \{x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n\} \\ \text{Scheme contexts} & \Gamma ::= \{x_1 \mapsto \sigma_1, \dots, x_n \mapsto \sigma_n\} \\ \text{Terms} & M, N ::= x@\vec{\tau} \mid \textbf{let} \ (x : \sigma) = M \textbf{ in } N \\ & \mid x \mid (M, N) \mid \textbf{fst} \ M \mid \textbf{snd} \ M \\ & \mid \lambda x : \tau.M \mid M \ N \end{array}
```

and extend model structure locally in each \mathbb{T} -fibre (gives).

Adding effects

Unifying assumption

Fibred monad on S: monads T_{Δ} over S_{Δ} , stable under re-indexing.

May relax this structure for each design choice (for syntactic models).

Semantics

Natural to interpret in terms the fibre $\mathbb{S}_{\lceil \Delta \rceil}$:

$$\pi_1^* \, \llbracket \Gamma \rrbracket \xrightarrow{ \llbracket \Delta ; \Gamma \vdash M : \tau \rrbracket } \, T_{\llbracket \Delta \rrbracket} \, \llbracket \tau \rrbracket$$

But how to generalise to schemes?

$$\Delta$$
; $\Gamma \vdash M : \forall \vec{\alpha}.\tau$

That's the source of the trouble!

Design choice 1: Call-by-Name polymorphism

Straightforward

Require an isomorphism θ :

$$\theta \frac{\pi_1^* \Gamma \longrightarrow T_{\Delta \times \Delta'} \tau}{\Gamma \longrightarrow \forall \Delta'. \tau}$$

i.e., the adjunction $\pi_1^* \dashv \forall \Delta'$ is relative to $T_{\Delta \times \Delta'}$ instead of $J_{\Delta \times \Delta'}$.

Gives CBN semantics, as computation is re-executed on specialisation.

Requires two kinds of let:

- monomorphic CBV used for sequencing (Haskell's do) (subsumed by function abstraction and application)
- polymorphic CBN

See [Leroy'93] for discussion and evaluation.

Design choice 2: Call-by-Value

Semantic restriction

Only generalise morphisms $\pi_1^*\Gamma \longrightarrow T_{\Delta \times \Delta'}\tau$ which factorise:

$$\Gamma \xrightarrow{\theta M} \forall \Delta'. T_{\Delta \times \Delta'}$$

$$T_{\Delta} \forall \Delta'. \tau$$

Gives CBV semantics, as only the polymorphic value is propagated.

Distributive law [Simpson'03, unpublished]

Above holds for *all* morphisms if $\forall \Delta' \circ T_{\Delta \times \Delta'} \cong T_{\Delta} \circ \forall \Delta'$. Fails in concrete set-theoretic semantics.

Conjecture (Simpson'03)

Let T be an equational theory. There is a parametric (né realisability) model satisfying this distributivity law with each T_{Δ} being the free model monad.

Joint with Pretnar: algebraic effects with unparameterised signatures and effect handlers need no value restriction (in Twelf).

Design choice 3: value restrictions and thunkability

Morphism taxonomy

values: factor through return

thunkable: CBN and CBV semantics agree (cf. [Führmann'00])

Where does the relaxed restriction [Garrigue'02] lie?

Conclude

Summary

- Pure HM-polymorphism
 - Syntax
 - Models
 - Sanity check
 - Adding simple types
- Add effects
 - 1. CBN semantics
 - 2. CBV semantics
 - 3. Value restriction and thunkability

Future and further work

- Parametric models for CBV
- ► Reference cells and lists
- Relationship with an operational semantics (adequacy, soundness)
- Effect handlers
- Inference
- Recursion
- Reltionship with algebraic set theory?

Images

- http://cfensi.files.wordpress.com/2014/01/ frozen-let-it-go.png
- http://www.dpmms.cam.ac.uk/people/skm45/pr.jpg