RAP Kickoff Padova, March 9, 2024

Approximated Fixpoints of Approximated Functions

Paolo Baldan

Barbara Koenig

Sebastian Gurke

Tommaso Padoan

Florian Wittbold

The setting

Given a function

$$f: X \to X$$

X endowed with

- an **order** ≤

- a distance d

(Least) fixpoint μf :

(smallest) element $x \in X$ such that f(x) = x

Classical of results ensuring existence of fixpoints ...

In a complete lattice

 (X, \leq) complete lattice

 $f: X \to X$ monotone

μf exists by Knaster-Tarski

if $f: X \to X$ (ω)-continuous

$$\begin{cases} x_0 = \bot \\ x_{n+1} = f(x_n) \end{cases}$$

then

$$\mu f = \bigsqcup_{n \in \omega} x_n$$

$$\mu f$$

$$\vdots$$

$$f(f(\bot))$$

$$f(\bot)$$

$$\bot$$

In a complete metric space

(X, d) complete metric space

 $f: X \to X$ contraction

μf unique fixpoint by Banach

$$\begin{cases} x_0 \text{ arbitrary} \\ x_{n+1} = f(x_n) \end{cases}$$

then

$$x_n \to \mu f$$

$$f(x_0) = x_0$$

$$f(f(x_0))$$

$$\dots$$

$$\mu f$$

What if f can be only approximated?

Function f not known exactly ...

... but we can construct $f_n: L \to L$ such that

$$f_n \to f$$

$$M = (S, A, T)$$

- S states
- $A(s) \subseteq A$ set of actions in state s
- T(s'|s,a) **probability** of $s \rightarrow s'$ when choosing action a

Final states
$$F = \{s \mid A(s) = \emptyset\}$$

Policy: $\pi: S \setminus F \to A$ such that $\pi(s) \in A(s)$

 M^{π} Markov chain induced by policy π

Possible **objectives** for the agent:

- * Reachability / avoidance objectives (e.g., termination)
- * Collect reward given by (step-wise) reward function

$$R: S \times A \times S \rightarrow \mathbb{R}$$

*

Bellman optimality operator

Assume
$$S = \{1, ..., d\}$$
 and define $f : \mathbb{R}^d_{\geq 0} \to \mathbb{R}^d_{\geq 0}$ as
$$f(v)(s) = \max_{a \in A(s)} \sum_{s' \in S} T(s' \mid s, a) \cdot \left(R(s, a, s') + \gamma v(s') \right)$$

where $0 < \gamma \le 1$ discount factor (contractive if $\gamma < 1$)

Then the expected reward is the (least) fixpoint μf

When $\gamma = 1 \dots$ multiple fixpoints

We want the **least fixpoint** μf

What if **probabilities** (and **rewards**) are **unknown** and can only be approximated **sampling** the MDP?

~ Reinforcement learning

Synthesise strategies for an MDP with unknown parameters while exploring it (Q-Learning, SARSA, . . .).

Typically, **contractive** case (γ < 1) is considered \sim fixpoint unique, errors removed by iterations, ...

We focus on $\gamma = 1$ (non-expansive) and model-based (construct a model of the MDP while exploring it).

Quantitative fixpoint logics

Quantitative μ-calculus [Huth, Kwiatkowska], [Mio, Simpson]

$$\varphi ::= \mathbf{1} \mid \mathbf{0} \mid x \mid p \mid r \cdot \varphi \mid \max\{\varphi, \varphi'\} \mid \min\{\varphi, \varphi'\} \mid$$

$$\Diamond \varphi \mid \Box \varphi \mid \mu x. \phi \mid \nu x. \phi$$

Formulae evaluated on an MDP as $[\![\phi]\!]_{\rho}: S \to [0,1]$

$$\llbracket \Diamond \varphi \rrbracket_{\rho}(s) = \max_{a \in A(s)} \sum_{s' \in S} T(s' \mid s, a) \cdot \llbracket \varphi \rrbracket_{\rho}(s')$$

$$\llbracket \mu x.\varphi \rrbracket_{\rho} = \mu(\lambda v. \llbracket \varphi \rrbracket_{\rho \cup [x \mapsto v]})$$

non-expansive

Quantitative fixpoint logics

How to model check if the MDP can be only approximated?

Fixpoints can be nested

With arbitrary (non-expansive) operators outer fixpoints have to deal with approximated functions.

The setting, again

$$X = [0, +\infty)^d$$
, with

- ⋄ pointwise order ≤ and
- * sup-distance $d(x, y) = ||x y||_{\infty} = \max_{1 \le i \le n} |x_i y_i|$

Monotone and non-expansive function

$$f: X \to X$$

(When f has fixpoints, the least fixpoint μf exists and given by Kleene's iteration)

The aim

Given a sequence of **approximations** $f_n: X \to X$ with $f_n \to f$ (uniformly)

Construct a sequence approximating μf

$$x_n \rightarrow \mu f$$

Non-expansiveness wrt. sup distance covers many cases: termination probabilities in Markov chains, MDPs, stochastic games, behavioural metrics, ...

Problem: Discontinuity of µf

If f_n converges to f in the order (f_n chain and $f = | f_n$) $\mu f_n \to \mu f$

For metric convergence the above fails

Example:
$$X = [0,1]$$
 $f(x) = x$

Example:
$$X = [0,1]$$
 $f(x) = x$ $f_n(x) = \frac{1}{n} + (1 - \frac{1}{n}) \cdot x$

$$\mu f = 0$$

$$\mu f = 0$$

$$\mu f_n = 1$$

Problem: Unrecoverable errors

When $\mu f_n \to \mu f$ in principle one can

- take a sufficiently good approximation f_n
- perform Kleene iteration for f_n

But, when considering more precise approximations the previous computation is not reusable!

Mixing approximation/Kleene iteration does not work

$$\begin{cases} x_0 = \bot \\ x_{n+1} = f_n(x_n) \end{cases} \dots \text{ in general } x_n \nrightarrow \mu f$$

Problem: Unrecoverable errors

Example:
$$X = [0,1]$$
 $f(x) = x$

$$f(x) = x$$

$$f_n(x) = \begin{cases} 1/n & \text{if } x \le 1/n \\ x & \text{otherwise} \end{cases}$$

Independently of how good the first approximation is, it overapproximates μf and next approximations will not decrease it

Dampened Mann Iteration

$$x_{n+1} = (1 - \beta_n) \cdot \left(\alpha_n \cdot x_n + (1 - \alpha_n) \cdot f_n(x_n)\right)$$
dampening factor

Mann iteration

- $\lim_{n\to\infty} \alpha_n < 1$,
- $\lim_{n\to\infty} \beta_n = 0$ and $\sum_{n=1}^{\infty} \beta_n = \infty$
- $\sum_{n=1}^{\infty} |\alpha_n \alpha_{n+1}| < \infty \text{ and } \sum_{n=1}^{\infty} |\beta_n \beta_{n+1}| < \infty.$

Canonical choices: $\beta_n = 1/n$ and $\alpha_n = 1/n$ (or $\alpha_n = 0$)

Exact case ("sanity check")

Iterating the **exact function**, i.e., with $f_n = f$ then

$$x_0$$
 arbitrary

$$\overline{x_{n+1}} = (1 - \beta_n) \cdot (\alpha_n \cdot x_n + (1 - \alpha_n) \cdot f_n(x_n))$$

It holds

$$x_n \to \mu f$$

Dealing with Approximations

Assume $f_n \to f$ and consider Dampened Mann iteration x_0 arbitrary

$$x_{n+1} = (1 - \beta_n) \cdot (\alpha_n \cdot x_n + (1 - \alpha_n) \cdot f_n(x_n))$$

It holds $x_n \to \mu f$ when

- 1. f is a **(power) contraction** (f^k contraction for some k)
- 2. $\mu f_n \to \mu f$ and $f_n \to f$ monotonically
- 3. $f_n \to f$ normally $\sum ||f_n f||_{\infty} < \infty$

Example

$$f: [0,1]^2 \to [0,1]^2$$
 $f(x_1, x_2) = (\max\{x_1, a_1\}, \max\{x_2, a_2\})$ $(a_1, a_2) = (1/4, 3/4)$

$$f_n(x_1, x_2) = (\max\{x_1, (1 - a_1)x_1^n + a_1\}, \max\{x_2, (1 - a_2)x_2^n + a_2\})$$

Dampened Mann Iteration $(\alpha_n = 0)$

Dealing with MDPs

For MDPs the previous condition do not hold in general, still we can have positive results

End Component in an MDP

- ~ Set of states *E* inducing a strongly connected sub-MDP
- \Rightarrow there is a policy that once in *E*, stays in *E*

Powercontractions?

For an MDP *M*, the following are equivalent:

- * M has no end components (terminating MDP)
- * the Bellmann function f_M is a **power-contraction**.

Dampened Mann "works" for terminating MDPs

General MDPs?

With end components function f_M is just **non-expansive**

Assuming that rewards are given only outside end components, the expected reward is

- * bounded
- * identical for all states in an end-component
- * computed **quotienting** maximal end components, obtaining a terminating MDP

Using the above, one can show that Dampened Mann works for MDPs with end components.

With end components?

Ideas

- * When sampling, once non-zero approximated probabilities will never converge to 0
- * End components will eventually stabilise
- * The error due to approximations when leaving a end component behaves similarly to rewards and vanishes with better approximations

What to do in general?

What to do in cases that escapes all sufficient conditions (e.g., stochastic games)?

Consider a subsequence of functions f_{n_1} , f_{n_2} , f_{n_3} , ... that converges **normally** to f

Intuition

Perform enough samplings before the next iteration.

Hoeffding's inequality

$$\mathbb{P}\left[|T^n(s' \mid s, a) - T(s' \mid s, a)| > \varepsilon \right] \le 2e^{-2n\varepsilon^2}$$

What to do in general?

Choose n_i such that

$$\mathbb{P}\left[\|f_{n_i} - f\| > \gamma_i\right] \le \delta_i$$

where $\Sigma_i \gamma_i < \infty$ and $\Sigma_i \delta_i < \infty$ (e.g., $\gamma_i = \delta_i = 1/i^2$)

By Borel-Cantelli Lemma

$$\mathbb{P}\left[\|f_{n_i} - f\| > \gamma_i \text{ for infinitely many } i\right] = 0$$

$$||f_{n_i} - f|| \le \gamma_i$$
 (almost sure normal convergence)

Almost surely $x_n \to \mu f$

Example

Example:
$$X = [0,1]$$
 $f(x) = x$ $f_n(x) = \frac{1}{n} + (1 - \frac{1}{n}) \cdot x$

$$\mu f = 0$$

$$\mu f_n = 1$$

Dampened Mann works with the sequence $(f_{n^2})_n$ works (despite $\mu f_n \nrightarrow \mu f$)

Conclusions

Runtime and accuracy after n steps ~ to computing μf_n by Kleene iteration.

Quantitative mu-calculi?

Chaotic iteration?

Negative rewards?

Conclusions

What if $\alpha_n \to 1$ (Mann iteration converging to identity)

$$x_{n+1} = (1 - \beta_n) \cdot (\alpha_n \cdot x_n + (1 - \alpha_n) \cdot f_n(x_n))$$

~ Model-free learning

Idea: $f_n \to f$ in the limit-average $(\frac{1}{n} \sum_{i=1}^n f_i \to f)$

model-free RL algorithms as special cases?