Region-based Segmentation 基于区域的图像分割

赵海伟 王如晨 戴嘉伦

CVBIOUC

April 28, 2015

Region-based Methods

- Region
- Region Growing
- Region Splitting and Merging
- Watershed

Region

Definition:

A group of connected pixels with similar properties

Idea:

- Similarity
- Spatial Proximity

(A) Idea:

- Seed: The regions are growing from seeds points.
 The corresponding regions grow by appending those neighboring pixels to each seed points.
- Pre-defined Criterion: It groups pixels or sub-regions into larger regions based on pre-defined criterion.
- End Condition: The regions keep growing until meeting the end condition.

(B) Algorithm:

- step1 Initially, the region R needs to be extracted. The region R only contains its seed point p.
- step2 Initially, a queue Q contains the boundary points of R. Q contains the 8-neighborhood or 4-neighborhood of the seed point p.
- step3 While Q is not empty:
 - for each neighboring pixel p* of p in Q:
 - if p* is similar to p:
 - p* is added to R, p* is marked with a label.
 - neighboring pixels of p* (not in R) are added to Q.
 - else set p* as non-similar.

$$\begin{bmatrix} 1 & 0 & 4 & 7 & 5 \\ 1 & 0 & 4 & 7 & 7 \\ 0 & 1 & 5 & 5 & 5 \\ 2 & 0 & 5 & 6 & 5 \\ 2 & 2 & 5 & 6 & 4 \end{bmatrix}$$

(C) Advantages:

- Fast
- Simple conceptually

Disadvantages:

- Dependent on seed point and pre-defined criterion
- Sensitive to noise

(A) Idea:

- Splitting: Subdivide the whole image into subsidiary regions recursively while a condition of homogeneity is not satisfied.
- Merging: It starts with small regions and merges the regions that have similar characteristics to avoid over-segmentation.

(B) Algorithm:

- step1 If a region R is inhomogeneous ($P_1(R) = FALSE$), then R is split into four sub-regions.
- step2 If two adjacent regions R_i and R_j are homogeneous $(P_2(R_i \cup R_j) = TRUE)$, then they are merged.
- step3 The algorithm stops when no further splitting or merging is possible.

Figure: T=1

(C) Advantages:

Applicability in complex scenarios

Disadvantages:

- Cost of time and calculation
- Breaking boundaries of regions

(A) Idea:

- Hole: Image that a hole is done through each local minimum.
 The entire topography is flooded with water rising through the holes at a uniform rate.
- Dam: When rising water in adjacent catchment basins is about the merge, a dam is built up to prevent merging.
- Lines: These dam boundaries correspond to the watershed lines.

(B) Algorithm:

- step1 Start with all pixels with the **lowest** possible value. These pixels form the basis for initial watershed.
- step2 For each group of pixels of intensity level k:
 - If the pixels are adjacent to exactly one exising region, add these pixels to that region.
 - Else if the pixels are adjacent to more than one existing regions, mark boundary.
 - Else start a new region.

(C) Improved Algorithm:

- step1 Initially, **label some pixels** in your interested regions manually.

 Start with 8-neighborhood or 4-neighborhood of the labeled pixels.
- step2 For each group of pixels of intensity level k (k means the difference between marked pixels and the neighboring pixels) :
 - *If* the pixels are adjacent to exactly **one** exising region, add these pixels to that region.
 - Else if the pixels are adjacent to more than one existing regions, marks boundary.

