

$\begin{array}{c} {\bf Type 977 \ fitting \ for \ heat \ pump} \\ {\bf SINH-11TE} \end{array}$

Parametric Heat Pump calculation

Dani Carbonell

dani.carbonell@spf.ch

2019/03/12 at: 16:05:04 h

Table 1: Fitted coefficients for the heat pump.

Coefficient	Description	
		[kW]
P_{Q_1}	1 st condenser polynomial coefficient	1.0247e+01
P_{Q_2}	2^{st} condenser polynomial coefficient	9.0916e+01
P_{Q_3}	3^{st} condenser polynomial coefficient	2.9121e+01
P_{Q_4}	4^{st} condenser polynomial coefficient	$3.1559e{+01}$
P_{Q_5}	5^{st} condenser polynomial coefficient	2.4892e+01
P_{Q_6}	6^{st} condenser polynomial coefficient	-1.4976e + 02
P_{COP_1}	1 st COP polynomial coefficient	5.0834e+00
P_{COP_2}	2^{st} COP polynomial coefficient	$3.3206e{+01}$
P_{COP_3}	3 st COP polynomial coefficient	1.0679e + 01
P_{COP_4}	4 st COP polynomial coefficient	7.0042e-01
P_{COP_5}	5 st COP polynomial coefficient	9.4678e + 01
P_{COP_6}	6 st COP polynomial coefficient	-1.1670e + 02
\dot{m}_{cond}	$1900.00 \ [kg/h]$	
\dot{m}_{evap}	1900.00 [kg/h]	
COP_{nom} (A0W35)	4.41	
$Q_{cond,nom}$ (A0W35)	10.73 [kW]	
$Q_{evap,nom}$ (A0W35)	8.29 [kW]	
$W_{comp,nom}$ (A0W35)	2.44 [kW]	
RMS_{COP}	6.01e - 02	
$RMS_{Q_{cond}}$	3.23e - 02	
$RMS_{W_{comp}}$	4.03e - 02	
Fit model	Average Temperature	

Table 2: Differences between experiments and fitted data for the heat pump. $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$ and $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$ where n_p is the number of data points.

$T_{cond,out}$	$T_{evap,in}$	COP	COP_{exp}	error	Q_{cond}	$Q_{cond,exp}$	error	W_{comp}	$W_{comp,exp}$	error
^{o}C	${}^{o}\hat{C}$	[-]	[-]	[%]	[kW]	[kW]	[%]	[kW]	$[k\hat{W}]$	[%]
35.00	-5.00	3.91	3.80	2.9	9.27	9.20	0.7	2.37	2.42	2.14
35.00	0.00	4.45	4.50	1.2	10.87	10.90	0.3	2.44	2.42	0.89
35.00	5.00	5.04	5.11	1.5	12.47	12.50	0.2	2.48	2.44	1.27
50.00	-5.00	2.63	2.72	3.2	8.52	8.57	0.6	3.24	3.15	2.70
50.00	0.00	3.18	3.07	3.6	10.15	10.11	0.5	3.19	3.29	3.03
50.00	5.00	3.79	3.70	2.2	11.80	11.77	0.3	3.12	3.18	1.91
45.00	-5.00	3.14	3.19	1.6	8.85	8.88	0.3	2.82	2.79	1.33
45.00	0.00	3.68	3.68	0.2	10.48	10.50	0.2	2.85	2.86	0.37
45.00	5.00	4.28	4.32	0.8	12.12	12.13	0.2	2.83	2.81	0.64
55.00	0.00	2.61	2.60	0.1	9.75	9.71	0.4	3.74	3.73	0.29
55.00	5.00	3.22	3.22	0.0	11.40	11.40	0.0	3.54	3.54	0.04
35.00	10.00	5.68	5.71	0.6	14.09	14.10	0.1	2.48	2.47	0.49
35.00	15.00	6.37	6.29	1.2	15.71	15.70	0.1	2.47	2.50	1.08
50.00	10.00	4.44	4.39	1.3	13.46	13.43	0.2	3.03	3.06	1.11
50.00	15.00	5.15	5.12	0.6	15.13	15.10	0.2	2.94	2.95	0.42
45.00	10.00	4.93	4.98	0.9	13.76	13.77	0.1	2.79	2.77	0.83
45.00	15.00	5.63	5.66	0.4	15.41	15.40	0.1	2.74	2.72	0.50
55.00	10.00	3.88	3.90	0.4	13.07	13.10	0.2	3.37	3.36	0.20
55.00	15.00	4.60	4.66	1.3	14.75	14.79	0.3	3.21	3.17	1.04
Sum				24.0			4.8			20.29
RMS_{COP}	6.01e - 02									
RMS_O .	3.23e - 02									
$RMS_{W_{comp}}^{Q_{comp}}$	4.03e - 02									

3

${\it Meier/SINH-11TE/SINH-11TE-Qcond.pdf}$

Figure 1: Q_{cond} differences between experiments and fitted data

${\it Meier/SINH-11TE/SINH-11TE-Qcomp.pdf}$

Figure 2: W_{comp} differences between experiments and fitted data

${\it Meier/SINH-11TE/SINH-11TE-COP.pdf}$

Figure 3: COP differences between experiments and fitted data