Matematika 4 — Logika pre informatikov 3. sada teoretických úloh

Riešenie hodnotenej časti tejto úlohy **odovzdajte** najneskôr v pondelok **8. marca 2021 o 11:30** cez odovzdávací formulár pre tu03¹. Riešenia odovzdané po termíne sa považujú za opravy neodovzdaných riešení s príslušnými dôsledkami podľa pravidiel².

Odovzdávajte jeden dokument vo formáte PDF s dodatočnými obmedzeniami uvedenými vo formulári. Dokument musí obsahovať **celé riešenie** v textovej forme. Odovzdané riešenia musia byť **čitateľné** a mať primerane **malý** rozsah. Na riešenie sa vzťahujú všeobecné **pravidlá**².

Čísla úloh v zátvorkách odkazujú do zbierky³, kde nájdete riešené príklady a ďalšie úlohy na precvičovanie.

Cvičenie 3.1. (3.1.1, 3.1.2, 3.1.3; Def. 3.10, tvrdenia 3.11 a 3.13)

a) Nech \mathcal{L} je jazyk výrokovologickej časti logiky prvého rádu, kde $\mathcal{C}_{\mathcal{L}} = \{\text{Jack}, \text{Corona}\}\ a\ \mathcal{P}_{\mathcal{L}} = \{\text{pivo}^1, \text{pije}^2\}.\ \text{Nech}\ \mathcal{M} = (D, i)\ \text{je}\ \text{štruktúra}\ \text{pre}\ \text{jazyk}\ \mathcal{L},\ \text{kde}$:

$$D = \{s1, s2, s3, p1, p2\}$$

$$i(\mathsf{Jack}) = s3,$$

$$i(\mathsf{Corona}) = p1,$$

$$i(\mathsf{pivo}) = \{p1, p2\},$$

$$i(\mathsf{pije}) = \{(s1, p1), (s2, p1), (s2, p2)\}$$

Zostrojte výrokovologické ohodnotenie v pre \mathcal{L} zhodné so štruktúrou \mathcal{M} .

b) Nech \mathcal{L} je jazyk výrokovologickej časti logiky prvého rádu, kde $\mathcal{C}_{\mathcal{L}} = \{\text{Andy, Woody}\}\ a\ \mathcal{P}_{\mathcal{L}} = \{\text{hračka}^1, \text{chlapec}^1, \text{hrá_sa}^2\}.$ Nech

```
\begin{split} v &= \{ \mathsf{hračka}(\mathsf{Woody}) \mapsto t, & \mathsf{hračka}(\mathsf{Andy}) \mapsto f, \\ & \mathsf{chlapec}(\mathsf{Andy}) \mapsto t, & \mathsf{chlapec}(\mathsf{Woody}) \mapsto f, \\ & \mathsf{hrá\_sa}(\mathsf{Andy}, \mathsf{Woody}) \mapsto t, & \mathsf{hrá\_sa}(\mathsf{Woody}, \mathsf{Andy}) \mapsto f \} \end{split}
```

je čiastočné ohodnotenie predikátových atómov jazyka \mathcal{L} . Zostrojte štruktúru \mathcal{M} zhodnú s v na dom v.

¹ https://forms.gle/TODO

² https://dai.fmph.uniba.sk/w/Course:Mathematics_4/sk#pravidla-uloh

³ https://github.com/FMFI-UK-1-AIN-412/lpi/blob/master/teoreticke/zbierka.pdf

Cvičenie 3.2. (3.2.1, 3.2.2) Majme výrokovologickú teóriu *T*:

$$T = \begin{cases} A_1 \colon \big(\mathsf{tancuje_s}(\mathsf{A}, \mathsf{B}) \to (\mathsf{tancuje_s}(\mathsf{A}, \mathsf{B}) \lor \mathsf{spieva}(\mathsf{A})) \big), \\ A_2 \colon \big(\neg \mathsf{tancuje_s}(\mathsf{A}, \mathsf{B}) \lor \neg \mathsf{spieva}(\mathsf{A}) \big), \\ A_3 \colon \big(\neg \mathsf{spieva}(\mathsf{A}) \to \mathsf{frajer}(\mathsf{A}) \big) \end{cases}.$$

O každej z formúl X_1 – X_3 rozhodnite, či a) vyplýva z teórie T, b) je nezávislá od T, alebo c) ani z nej nevyplýva, ani od nej nie je nezávislá:

- (X_1) (tancuje_s(A, B) \rightarrow frajer(A)),
- (X_2) ¬spieva(A),
- (X_3) (spieva(A) \rightarrow tancuje_s(A, B)).
- ② Aká formula vyplýva z teórie v prípade c)?

Cvičenie 3.3. (3.2.3, 3.2.2) Inšpektor Scotland Yardu Nick Fishtrawn predviedol troch podozrivých z krádeže klenotov v obchodnom dome Harrods: Daviesa, Milesa a Robertsa. Inšpektor vyšetrovaním zistil nasledovné skutočnosti:

- (A_1) Miles je určite vinný.
- (A_2) Miles nikdy nepracuje sám, je teda vinný, iba ak je vinný aspoň jeden zo zvyšných dvoch podozrivých.
- (A_3) Davies vždy pracuje s Robertsom.
- (A_4) Roberts sa s Milesom neznáša, vinný je preto nanajvýš jeden z nich.
- $(A_5)\,$ Na lúpeži sa mohli podieľať len títo traja podozriví a nikto iný.

Sformalizujte zistené skutočnosti ako výrokovologickú teóriu T v jazyku výrokovologickej časti logiky prvého rádu s vhodne zvolenými množinami $\mathcal{C}_{\mathcal{L}}$ a $\mathcal{P}_{\mathcal{L}}$.

S využitím splniteľnosti, vyplývania a nezávislosti rozhodnite o vine a nevine jednotlivých podozrivých, pokiaľ to je možné.

Pomôcka. Formalizáciu tentoraz obmedzte na skutočnosti, ktoré sú postačujúce k vyriešeniu úlohy (teda sústreďte sa na vinu podozrivých, ak je to postačujúce).

Hodnotená časť

Úloha 3.4. (2.2.5) Sformulujte základné definície syntaxe (symboly jazyka, atomická formula, formula, podformula) a sémantiky (pravdivosť formuly v štruktúre) pre výrokovú časť logiky prvého rádu s binárnymi spojkami \rightarrow (implikácia) so štandarným významom a \veebar (XOR), pričom neformálny význam ($A \veebar B$) je: pravdivá je práve jedna z formúl A a B. Formuly nebudú obsahovať *žiadne iné spojky*.

Účelom tejto úlohy je, aby ste si prečítali a upravili definície z prednášky a pokúsili sa osvojiť si spôsob vyjadrovania, ktorý sa v nich používa. Môže vám pripadať ťažkopádny, je však presný. Ak vám nejaká formulácia pripadá zbytočne komplikovaná, môžete sa ju pokúsiť zjednodušiť, no snažte sa, aby ste nezmenili jej význam.

V definícii pravdivosti formuly v štruktúre vyjadrite význam spojok iba pomocou slovenských spojok *a* a *alebo* a pomocou pravdivosti a nepravdivosti priamych podformúl.

Úloha 3.5. (3.2.6, 3.2.2) Sformalizujte nasledujúce výroky ako ucelenú teóriu vo vhodne zvolenom spoločnom jazyku výrokovej časti logiky prvého rádu. Zadefinujte použitý jazyk a vysvetlite význam jeho predikátových symbolov.

- (A_1) Ak minister nie je schopný, premiér ho odvolá. Alebo je premiérov kamarát.
- (A_2) Minister je premiérov kamarát, ak ho premiér neodvolal.
- (A_3) Minister, ktorý účinne zasiahol proti pandémii, je schopný.
- (A_4) Premiér ministra neodvolal, napriek tomu, že minister proti pandémii účinne nezasiahol.

Pomocou vašej teórie využitím výrokovologickej splniteľnosti, vyplývania a nezávislosti rozhodnite (ak je to možné), či na základe výrokov A_1 – A_4 :

- (C_1) je minister schopný,
- (C_2) premiér ministra odvolá,
- (C_3) minister je premiérov kamarát.
- Pomôcka. Uvedomte si, že v tomto zadaní sú minister a premiér konkrétne osoby.