Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

MM2035 - Álgebra Moderna - Catedrático: Ricardo Barrientos 24 de septiembre de 2022

Tarea 16

Problemas 6 y 7, sección 3.7.

Problema 1 (Problema 6). Prove that the units in a commutative ring with a unit element form an abelian group.

Demostración. Sean e_1, e_2 unidades en un anillo conmutativo R y por la definición de unidades existen $e_1^{-1}, e_2^{-1} \in R$ tal que $e_1e_1^{-1} = 1$ y $e_2e_2^{-1} = 1$. Ahora comprobaremos las propiedades de grupo:

Cerradura, Sea

$$(e_1e_2)\cdot(e_1^{-1}e_2^{-1})=(e_1e_2)\cdot(e_2^{-1}e_1^{-1})=e_1\cdot(e_2\cdot e_2^{-1})\cdot e_1^{-1}=e_1\cdot 1\cdot e_1^{-1}=1\in R$$

- Elemento neutro. En este caso, la hipótesis lo da, $1 \in R$.
- Inversos. Por hipótesis, tenemos que si e es una unidad, entonces existe e^{-1} tal que $ee^{-1} \in R$.
- Asociatividad. Sean e_1, e_2, e_3 unidades, tal que $(e_1e_2)e_3 = e_1(e_2e_3)$.

Como R es conmutativo, $ee^{-1}=e^{-1}e$ también se cumple. Por lo tanto, las unidades en un anillo conmutativo con un elemento unitario 1 forma un grupo abeliano.

Problema 2 (Problema 7). Given two elements a, b in the Euclidean ring R their least common multiple $c \in R$ is an element in R such that $a \mid c$ and $b \mid c$ and such that whenever $a \mid x$ and $b \mid x$ for $x \in R$ then $c \mid x$. Prove that any two elements in the Euclidean ring R have a least common multiple in R.

Demostración. Por hipótesis, $a, b \in R - \{0\}$. Ahora bien, supóngase que $(c) = \{c \in R \ni a | c, b | c\}$ es un ideal en R, sea entonces para $x, y \in (c)$ tal que a | (x + y) y b | (x + y). De la misma manera, nótese que se cumple que para $r \in R$, a | xr, a | rx. Por lo tanto, (c) es un ideal en R para un $c \in R$. Supóngase ahora que c es el mínimo común múltiple en R, por definición sabemos también que (c) es un anillo de ideales principales en donde se cumple c | x en donde $x \in R$. Por lo tanto, c es el mínimo común múltiplo en R.