Унификация посредством поиска путей с контекстно-свободными ограничениями в графе Source-tracking unification

Екатерина Вербицкая

Лаборатория языковых инструментов JetBrains

6 ноября 2020

TLDR

Задачу унификации можно свести к поиску путей с КС ограничениями в гра Φ^1

¹Choppella, V., and Haynes, C. T. (2005). Source-tracking unification.

План докалада

- Что такое унификация
- Как задача унификации представима в виде графа
- Какой язык будем использовать в качестве ограничений
- Почему это работает
- Какую дополнительную информацию можно получить из пути

Унификация

Даны два терма t,s

Задача: найти подстановку на свободных переменных термов (унификатор) θ , такую что

$$t\theta = s\theta$$

Подстановка

Терм:
$$\mathcal{T} :: \mathcal{V} \mid \mathcal{F}^n \mathcal{T}_1 \dots \mathcal{T}_n$$

Подстановка: $heta: \mathcal{V} o \mathcal{T}$

Применение подстановки $t\{x_1\mapsto t_1,\dots,x_k\mapsto t_k\}$: одновременно заменить свободные переменные x_i терма t на t_i

$$(f \times a (g \times z) y)\{x \mapsto h \ a \ y, z \mapsto y\} = f (h \ a \ y) \ a (g \ y) \ y$$

Применение унификации

```
apply :: (a -> b) -> a -> b
apply f x = f x
f :: Int -> Int
f x = x + 1
apply_f :: ?
apply_f = apply f
Унифицируем a -> b и Int -> Int, получаем a == Int, b == Int
apply_f :: Int -> Int
```

Простой алгоритм унификации

Будем искать подстановку как множество уравнений $\mathcal{E} = \{t_i = s_i\}$

- Упрощение термов: $(f\ t_1 \dots t_n = g\ s_1 \dots s_m) \in \mathcal{E}$
 - lacktriangle Если f,g различные константы, то $\mathcal{E}=ot$
 - lacktriangle Иначе заменяем уравнение в ${\cal E}$ на множество $t_1=s_1,\ldots,t_n=s_n$
- ullet Переориентация: $(t=x)\in \mathcal{E}$
 - lacktriangle Если t терм, x переменная, заменяем в ${\cal E}$ уравнение на x=t
- Элиминация переменных: $(x=t) \in \mathcal{E}$, x входит в какое-то уравнение
 - lacktriangle Если x входит в t, $t\equiv x$, то удаляем уравнение из ${\mathcal E}$
 - ▶ Иначе, если x входит в t, то $\mathcal{E} = \bot$
 - lacktriangle Иначе, подставляем t вместо x во всех уравнениях в ${\mathcal E}$

Унификация: пример

$$\{ node\ El\ T\ T=node\ 1\ (node\ 2\ emp\ emp)\ (node\ 2\ emp\ emp) \}$$
 $\{El=1,T=node\ 2\ emp\ emp,node\ 2\ emp\ emp=node\ 2\ emp\ emp\}$
 $\{El=1,T=node\ 2\ emp\ emp,2=2,emp=emp,emp=emp\}$
 $\{El=1,T=node\ 2\ emp\ emp\}$

Унификация: пример

$$\{ node\ El\ T\ T=node\ 1\ (node\ 2\ emp\ emp)\ (node\ 3\ emp\ emp) \}$$
 $\{El=1,T=node\ 2\ emp\ emp,node\ 2\ emp\ emp=node\ 3\ emp\ emp\}$ $\{El=1,T=node\ 2\ emp\ emp,2=3,emp=emp,emp=emp \}$

 \perp

Чем плох простой алгоритм

- Не очень эффективный
- Не говорит, почему унификация не завершилась успехом

Граф унификации

$$a \rightarrow b \stackrel{?}{=} Int \rightarrow Int$$

Граф унификации

$$a \rightarrow b \stackrel{?}{=} Int \rightarrow Int$$

Отношение эквивалентности на вершинах

Отношение на вершинах R замкнуто вниз, если для любой метки на ребре δ и двух вершин в отношении uRu' с ребрами $u\stackrel{\delta}{\to} v$ и $u'\stackrel{\delta}{\to} v'$ верно vRv'

Замыкание унификации отношения R это наименьшее замкнутое вниз отношение на вершинах, содержащее R

Отношение эквивалентности на вершинах

Отношение на вершинах R замкнуто вниз, если для любой метки на ребре δ и двух вершин в отношении uRu' с ребрами $u\stackrel{\delta}{\to} v$ и $u'\stackrel{\delta}{\to} v'$ верно vRv'

Замыкание унификации отношения R это наименьшее замкнутое вниз отношение на вершинах, содержащее R

Факторграф унификации

Вершины *равны*, если связаны arepsilon-ребром

Факторизуем граф унификации по отношению эквивалентности на вершинах, которое построено как замыкание унификации отношения равенства вершин

Факторграф унификации

Вершины hoавны, если связаны arepsilon-ребром

 Φ акторизуем граф унификации по отношению эквивалентности на вершинах, которое построено как замыкание унификации отношения равенства вершин

