This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

In the Claims

Please amend the claims as indicated below.

- 1. (canceled)
- 2. (New) A method for promoting healing of a pathology comprising:

 passively altering the pathology's electrical potential by conductively bridging healthy tissue surrounding the pathology, wherein the alteration in the pathology's electrical potential promotes healing of the pathology.
- 3. (New) The method of claim 1, wherein the pathology's electrical potential is lowered.
- 4. (New) The method of claim 1, wherein the pathology's electrical potential is modulated to about -10 to about -70 mV.
- 5. (New) The method of claim 1, wherein the healthy tissue surrounding the pathology is conductively bridged by applying a conductive substrate.
- 6. (New) The method of claim 5, wherein the conductive substrate comprises a metalized fiber.
- 7. (New) The method of claim 6, wherein the conductive substrate further comprises a nonmetalized fiber.
- 8. (New) The method of claim 6, wherein the metalized fiber comprises a conductive metal.
- 9. (New) The method of claim 8, wherein the conductive metal is silver.
- 10. (New) A method for inducing an analgesic effect in an organism comprising:
- (a) passively shifting a pathology's lateral potential by conductively bridging healthy tissue surrounding the pathology, wherein the shift in the lateral potential reduces neural stimulation.

- 11. (New) The method of claim 10, wherein the shift in lateral potential is deeper into the organism's tissue.
- 12. (New) The method of claim 10, wherein the healthy tissue surrounding the pathology is conductively bridged by applying a conductive substrate.
- 13. (New) The method of claim 12, wherein the conductive substrate comprises a metalized fiber.
- 14. (New) The method of claim 13, wherein the conductive substrate further comprises a nonmetalized fiber.
- 15. (New) The method of claim 13, wherein the metalized fiber comprises a conductive metal.
- 16. (New) The method of claim 15, wherein the conductive metal is silver.
- 17. (New). A composition for inducing an analgesic effect in an organism comprising:
- (a) a first conductive layer comprising conductive fibers interwoven with non-conductive fibers;
 - (b) a nonconductive layer overlaying the conductive layer; and
- (c) a second conductive layer comprising conductive fibers interwoven with nonconductive fibers overlaying the nonconductive layer.
- 18. (New) The composition of claim 17, wherein the conductive fibers comprise a conductive metal.
- 19. (New) The composition of claim 18, wherein the metal is an antibacterial metal.
- 20. (New) The composition of claim 19, wherein the antibacterial metal is silver.
- 21. (New) The composition of claim 17, wherein the nonconductive layer is permeable.