COMPUTER SECURITY

PRINCIPLES AND PRACTICE

SECOND EDITION

William Stallings | Lawrie Brown

Chapter 2Cryptographic Tools

Contents

- Confidentiality with Symmetric Encryption
- Message Authentication and Hash Functions
- Public-Key Encryption
- Digital Signatures and Key Management
- Random and Pseudorandom Numbers

Learning Objectives

After studying this chapter, you should be able to:

- Explain the basic operation of symmetric block encryption algorithms
- Discuss the use of secure hash functions for message authentication
- List other applications of secure hash functions
- Compare and contrast block encryption and secure hash functions

Cryptography

Symmetric encryption

③ 2004 The Computer Language Co. Inc.

From Computer Desktop Encyclopedia

Caesar Cipher & Vigenère cipher

- A simple substitution cipher, known as Caesar cipher
 - Replace each letter with the one "three over" in the alphabet.

```
- Plain: meet me after the toga party
- Cipher: PHHW PH DIWHU WKH WRJD SDUWB
```

- No key, just one mapping (translation)
 - Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ
 - Cipher: **DEFGHIJKLMNOPQRSTUVWXYZABC**
- $c_i = E(p_i) = (p_i + 3) \mod 26$; $p_i = D(c_i) = (c_i - 3) \mod 26$

Polyalphabetic ciphers, known as Vigenère cipher

Key: deceptivedeceptive

Plaintext: wearediscoveredsaveyourself

Cipheretxt: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Vigenère cipher (Code Table)

Key: deceptivedeceptive

Plaintext: wearediscoveredsaveyourself Cipheretxt: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

D행의 W열: Z

E행의 E열: I

C행의 A열: C

Symmetric Cryptography

 Symmetric encryption & decryption (Microsoft corporation, 2005)

Comparison of Three Popular Symmetric Encryption Algorithms

DES (Data Encryption Standard)
Triple-DES
AES (Advanced Encryption Standard)

	AES	Triple-DES
Type of algorithm Key size (in bits) Speed	Symmetric, block cipher 128, 192, 256 High	Symmetric, feistel cipher 112 or 168 Low
Time to crack (assume a machine could try 255 keys per second -		4,6 billion years
NIST) Resource consumption	149 trillion years Low	Medium

×	DES	AES
Date	1976	1999
Block size	64	128
Key length	56	128, 192, 256
Number of rounds	16	9,11,13
Encryption primitives	Substitution, permutation	Substitution, shift, bit mixing
Cryptographic primitives	Confusion, diffusion	Confusion, diffusion
Design	Open	Open
Design rationale	Closed	Open
Selection process	Secret	Secret, but accept open public comment
Source	IBM, enhanced by NSA	Independent cryptographers

Encryption/Decryption

- Two-way operation
- Two texts should roughly correspond to each other in size
- A shared secret key

Practical Application: Encryption of Stored Data

common to encrypt transmitted data

much less common for stored data

there is often little
protection beyond domain
authentication and
operating system access
controls

data are archived for indefinite periods

even though erased, until disk sectors are reused data are recoverable

approaches to encrypt stored data:

use a commercially available encryption package

back-end appliance

library based tape encryption

background laptop/PC data encryption

Hash Functions

- MD5 (Message Digest 5): 128 bit hash value
- SHA-1 (Secure Hash Algorithm 1): 160 bit hash value
- SHA-256

Cryptographic Hash Functions

http://en.wikipedia.org/wiki/Avalanche effect

http://cse.csusb.edu/tong/courses/cs330/notes/hash.php

Cryptographic Hash Functions

- Hashes are "digests" ("checksum")
 - a fixed-length hash value
- One-way operation
- may be used with or without a key

http://www.unixwiz.net/techtips/iguide-crypto-hashes.html

Computer security & OS lab, DKU

Secure Hash Functions

- One-way hash function
 - Input: A variable-size message M
 - Output: A fixed-size digest h
- A hash function does not take a secret key as input
- The message is padded out to an integer multiple of some fixed length (e.g., 1024 bits) and the padding includes the value of the length of the original message in bits.
- The length field is a security measure to increase the difficulty for an attacker to produce an alternative message with the same hash value.

Figure 2.5 Block Diagram of Secure Hash Function; h = H(M)

Hash functions

- How are hashes used?
 - **Verifying file integrity**
 - **Hashing passwords**

Host 1

plain

text

One-way

TX Digest

Hash

Digitally signed documents

Insecure Communications

Channel

Hash

plain

Cryptographic Hash: Hashing passwords

- Storing a hash instead of a password
- Testing a proposed password against the stored hash

source: http://www.unixwiz.net/techtips/iguide-crypto-hashes.html