# Chapter 5: Network Layer: Control Plane

Haixia Peng

**CECS 474 Computer Network Interoperability** 

## Routing protocols



College of Engineering

Routing protocol goal: determine "good" paths (equivalently, routes), from sending hosts to receiving host, through network of routers

- path: sequence of routers packets traverse from given initial source host to final destination host
- "good": least "cost", "fastest", "least congested"
- routing: a "top-10" networking challenge!



## Graph abstraction: link costs





 $c_{a,b}$ : cost of *direct* link connecting a and b e.g.,  $c_{w,z} = 5$ ,  $c_{u,z} = \infty$ 

cost defined by network operator: could always be 1, or inversely related to bandwidth, or inversely related to congestion

graph: G = (N, E)

N: set of routers =  $\{u, v, w, x, y, z\}$ 

E: set of links = { (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

## Dijkstra's link-state (LS) routing algorithm



College of Engineering

- centralized: network topology, link costs known to all nodes
  - accomplished via "link state broadcast"
  - all nodes have same info
- computes least cost paths from one node ("source") to all other nodes
  - gives *forwarding table* for that node
- iterative: after *k* iterations, know least cost path to *k* destinations

### notation

- $C_{x,y}$ : direct link cost from node x to y; =  $\infty$  if not direct neighbors
- D(v): current estimate of cost of least-cost-path from source to destination v
- p(v): predecessor node along path from source to v
- N': set of nodes whose leastcost-path definitively known

## Dijkstra's link-state (LS) routing algorithm LONG BEACH

College of Engineering

```
1 Initialization:
   N' = \{u\}
                                  /* compute least cost path from u to all other nodes */
   for all nodes v
     if v adjacent to u
                                  /* u initially knows direct-path-cost only to direct neighbors
       then D(v) = c_{\mu,\nu}
                                 /* but may not be minimum cost!
                                                                                           */
     else D(v) = \infty
   Loop
     find w not in N' such that D(w) is a minimum
     add w to N'
     update D(v) for all v adjacent to w and not in N':
         D(v) = \min \left( D(v), D(w) + c_{w,v} \right)
     /* new least-path-cost to v is either old least-cost-path to v or known
      least-cost-path to w plus direct-cost from w to v */
15 until all nodes in N'
```

## Dijkstra's algorithm: an example



College of Engineering

D(v): current estimate of cost of least-cost-path from source to destination v; p(v): predecessor node along path from source to v; N': set of nodes whose least-cost-path definitively known

|      |                | $\overline{(v)}$ | W          | X        | y         | Z           |
|------|----------------|------------------|------------|----------|-----------|-------------|
| Step | N'             | D(y)p(y)         | D(w)p(w)   | D(x)p(x) | D(y),p(y) | D(z),p(z)   |
| 0    | u              | 2 u              | 5 u        | (1,u)    | <b>X</b>  | co          |
| 1    | U(X)           | 2 4              | 4,x        |          | (2,x)     | œ           |
| 2    | u <b>x</b> y 🗸 | 2,u              | 3.y        |          |           | <b>4</b> ,y |
| 3    | uxyv           |                  | <u>3,y</u> |          |           | <b>4</b> ,y |
| 4    | uxyvw          |                  |            |          |           | <u>4,y</u>  |
| 5    | UXVVWZ         |                  |            |          |           |             |



Initialization (step 0): For all a: if a adjacent to then  $D(a) = c_{u,a}$ 

find a not in N' such that D(a) is a minimum add a to N' update D(b) for all b adjacent to a and not in N':  $D(b) = \min (D(b), D(a) + c_{a,b})$ 

## Dijkstra's algorithm: an example





resulting least-cost-path tree from u:



resulting forwarding table in u:

| destination | outgoing link |                                          |
|-------------|---------------|------------------------------------------|
| V           | (u,v) —       | route from <i>u</i> to <i>v</i> directly |
| X           | (u,x)         |                                          |
| У           | (u,x)         | route from u to all                      |
| W           | (u,x)         | other destinations                       |
| Z           | (u,x)         | via <i>x</i>                             |

Please read for yourself if interested (The following slides are not going to be on the exam)

## Distance vector algorithm



## Based on *Bellman-Ford* (BF) equation (dynamic programming):



## Bellman-Ford Example



Suppose that u's neighboring nodes, x,v,w, know that for destination z:



Bellman-Ford equation says:

$$D_{u}(z) = \min \{ c_{u,v} + D_{v}(z), c_{u,x} + D_{x}(z), c_{u,w} + D_{w}(z) \}$$

$$= \min \{ 2 + 5, 1 + 3, 5 + 3 \} = 4$$

node achieving minimum (x) is next hop on estimated leastcost path to destination (z)

## Distance vector algorithm



### key idea:

- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from any neighbor, it updates its own DV using B-F equation:

$$D_x(y) \leftarrow \min_{v} \{c_{x,v} + D_v(y)\}$$
 for each node  $y \in N$ 

• under minor, natural conditions, the estimate  $D_x(y)$  converges to the actual least cost  $d_x(y)$ 

## Distance vector algorithm:



### each node:

wait for (change in local link cost or msg from neighbor)

recompute DV estimates using DV received from neighbor

if DV to any destination has changed, *notify* neighbors

## iterative, asynchronous: each local iteration caused by:

- local link cost change
- DV update message from neighbor

# distributed, self-stopping: each node notifies neighbors *only* when its DV changes

- neighbors then notify their neighbors – only if necessary
- no notification received, no actions taken!

## Distance vector: example





- All nodes have distance estimates to nearest neighbors (only)
- All nodes send their local distance vector to their neighbors







- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors







- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors







- receive distance vectors from
  - neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors







#### **L**-\_\_

- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors







- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors







- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors





.... and so on

Let's next take a look at the iterative computations at nodes

## Distance vector example: co

#### DV in b:

(r) D.(

 $D_b(a) = 8$   $D_b(f) = \infty$  $D_b(c) = 1$   $D_b(g) = \infty$ 

 $D_b(d) = \infty$   $D_b(h) = \infty$ 

 $D_b(e) = 1$   $D_b(i) = \infty$ 



t=1

b receives DVs from a, c, e

#### DV in a:

 $D_a(a)=0$ 

 $D_a(b) = 8$  $D_a(c) = \infty$ 

 $D_a(d) = 1$ 

 $D_a(e) = \infty$ 

 $D_a(f) = \infty$ 

 $D_a(g) = \infty$ 

 $D_a(h) = \infty$ 

 $D_a(i) = \infty$ 







-b-

#### DV in c:

BEACH VERSITY

 $D_c(a) = \infty$  gineering

 $D_c(b) = 1$ 

 $D_c(c)=0$ 

 $D_c(d) = \infty$ 

 $D_c(e) = \infty$ 

 $D_c(f) = \infty$ 

 $D_c(g) = \infty$ 

 $D_c(h) = \infty$ 

 $D_c(i) = \infty$ 

#### DV in e:

 $D_e(a) = \infty$ 

 $D_{e}(b) = 1$ 

 $D_e(c) = \infty$ 

 $D_e(d) = 1$ 

 $D_{\rm e}(\rm e)=0$ 

 $D_e(f) = 1$ 

 $D_e(g) = \infty$ 

 $D_e(h) = 1$ 

 $D_e(i) = \infty$ 

## Distance vector example: co

### t=1

b receives DVs from a, c, e, computes:

#### DV in a:

$$D_{a}(a)=0$$

$$D_{a}(b) = 8$$

$$D_{a}(c) = \infty$$

$$D_{a}(d) = 1$$

$$D_{a}(e) = \infty$$

$$D_{a}(f) = \infty$$

$$D_{a}(g) = \infty$$

$$D_{a}(h) = \infty$$

$$D_{a}(i) = \infty$$



#### $D_b(a) = \min\{c_{b,a} + D_a(a), c_{b,c} + D_c(a), c_{b,e} + D_e(a)\} = \min\{8, \infty, \infty\} = 8$

$$D_b(c) = \min\{c_{b,a} + D_a(c), c_{b,c} + D_c(c), c_{b,e} + D_e(c)\} = \min\{\infty, 1, \infty\} = 1$$

$$D_b(d) = min\{c_{b,a} + D_a(d), c_{b,c} + D_c(d), c_{b,e} + D_e(d)\} = min\{9,2,\infty\} = 2$$

$$D_b(e) = min\{c_{b,a} + D_a(e), c_{b,c} + D_c(e), c_{b,e} + D_e(e)\} = min\{\infty, \infty, 1\} = 1$$

$$D_b(f) = \min\{c_{b,a} + D_a(f), c_{b,c} + D_c(f), c_{b,e} + D_e(f)\} = \min\{\infty, \infty, 2\} = 2$$

$$D_b(g) = \min\{c_{b,a} + D_a(g), c_{b,c} + D_c(g), c_{b,e} + D_e(g)\} = \min\{\infty, \infty, \infty\} = \infty$$

$$D_b(h) = \min\{c_{b,a} + D_a(h), c_{b,c} + D_c(h), c_{b,e} + D_e(h)\} = \min\{\infty, \infty, 2\} = 2$$

$$D_b(i) = \min\{c_{b,a} + D_a(i), c_{b,c} + D_c(i), c_{b,e} + D_e(i)\} = \min\{\infty, \infty, \infty\} = \infty$$

#### DV in b:

$$\begin{array}{ll} D_b(a) = 8 & D_b(f) = \infty \\ D_b(c) = 1 & D_b(g) = \infty \\ D_b(d) = \infty & D_b(h) = \infty \\ D_b(e) = 1 & D_b(i) = \infty \end{array}$$

#### DV in b:

$$D_b(a) = 8$$
  $D_b(f) = 2$   
 $D_b(c) = 1$   $D_b(g) = \infty$   
 $D_b(d) = 2$   $D_b(h) = 2$   
 $D_b(e) = 1$   $D_b(i) = \infty$ 

#### DV in c:

**VERSITY** 

$$D_c(a) = \infty$$
 | gineering

$$D_{c}(b) = 1$$

$$D_c(c) = 0$$

$$D_c(d) = \infty$$

$$D_c(e) = \infty$$

$$D_c(f) = \infty$$

$$D_c(g) = \infty$$

$$D_c(h) = \infty$$

$$D_c(i) = \infty$$

#### DV in e:

$$D_e(a) = \infty$$

$$D_{e}(b) = 1$$

$$D_e(c) = \infty$$

$$D_{e}(d) = 1$$

$$D_{e}(e) = 0$$

$$D_{e}(f) = 1$$

$$D_e(g) = \infty$$

$$D_{e}(h) = 1$$

$$D_e(i) = \infty$$

## Distance vector example: co

#### DV in b:

 $D_b(f) = \infty$ 

 $D_{b}(a) = 8$  $D_{b}(c) = 1$  $D_{b}(g) = \infty$ 

 $D_b(d) = \infty$  $D_b(h) = \infty$ 

 $D_{b}(e) = 1$  $D_b(i) = \infty$ 



t=1

c receives DVs from b

#### DV in a:

 $D_a(a)=0$ 

 $D_{a}(b) = 8$  $D_a(c) = \infty$ 

 $D_a(d) = 1$ 

 $D_a(e) = \infty$ 

 $D_a(f) = \infty$ 

 $D_a(g) = \infty$ 

 $D_a(h) = \infty$ 

 $D_a(i) = \infty$ 



#### DV in c:

 $D_c(a) = \infty$ 

 $D_{c}(b) = 1$ 

 $D_c(c) = 0$ 

 $D_c(d) = \infty$ 

 $D_c(e) = \infty$ 

 $D_c(f) = \infty$ 

 $D_c(g) = \infty$ 

 $D_c(h) = \infty$ 

 $D_c(i) = \infty$ 

**BEACH** VERSITY

gineering

#### DV in e:

 $D_e(a) = \infty$ 

 $D_{e}(b) = 1$ 

 $D_e(c) = \infty$ 

 $D_{e}(d) = 1$ 

 $D_e(e) = 0$ 

 $D_e(f) = 1$ 

 $D_e(g) = \infty$ 

 $D_e(h) = 1$ 

 $D_e(i) = \infty$