CS 321H Activity 6

Submit to Canvas a pdf file containing verbal explanations and transition graphs for the Turing machines and the .jff files

1. Design single-tape Turing machines that accept the following languages using JFLAP

a) $L = \{ w : n_a(w) = n_b(w) = n_c(w) : w \in \{a, b, c\}^+ \}.$

Test case	Result	
abc	accept	
bca	accept	
babacc	accept	
cacacabbb	accept	
abba	reject	
abcc	reject	
babac	reject	

2. Design Turing Machines using JFLAP to compute the following functions for x and y positive integers represented in unary and separated by a "0" on the input tape. The value f(x,y) represented in unary should be on the tape surrounded by blanks after the calculation.

$$f(x,y) = x + 2y$$

Input	Output	Result
1101	1111	Accept
101	111	Accept
11101	11111	Accept
101111	111111111	Accept
1111011	11111111	Accept

a)
$$f(x) = x \mod 5$$

Input	Output	Result
1	1	Accept
1111	1111	Accept
11111	0	Accept
1111111	11	Accept
1111111111	0	Accept
11111111111	1	Accept

3. (5 pts) The nor of two languages is defined below:

$$nor(L_1, L_2) = \{ w: w \not\in L_1 \text{ and } w \not\in L_2 \}.$$

Prove that recursive languages are closed under the nor operation.

4. $(5 \ pts)$ Suppose we make the requirement that a Turing machine can only halt in a final state, that is, we require that $\delta(q,a)$ be defined for all pairs (q,a) with $q \notin F$ and $a \in \Gamma$. Does this restrict the power of the Turing machine? Prove your answer.