Difference Equations

2.1.1 Compound Interest

2.1.2 Loan Repayment

2.1.3 Gambler's Ruin

2.2.2 Exponential Population Growth

2.2.3 Average Lifespan

2.2.★ Rabbit Populations

2.2.4 Nonlinear Population Models

Goal. Compare nonlinear Differential Equations vs Difference Equations.

Goal. Compare nonlinear Differential Equations vs Difference Equations.

Consider the continuous Logistic Population Model

$$ho'(t) = R
ho(t)\left(1 - rac{
ho(t)}{K}
ight)$$

Goal. Compare nonlinear Differential Equations vs Difference Equations.

Consider the continuous Logistic Population Model

$$ho'(t) = R
ho(t)\left(1 - rac{
ho(t)}{K}
ight)$$

and the discrete Logistic Population Mode

$$p_{n+1} - p_n = Rp_n \left(1 - \frac{p_n}{K}\right)$$

Goal. Compare nonlinear Differential Equations vs Difference Equations.

Consider the continuous Logistic Population Model

$$ho'(t) = R
ho(t)\left(1 - rac{
ho(t)}{K}
ight)$$

and the discrete Logistic Population Mode

$$p_{n+1} - p_n = Rp_n \left(1 - \frac{p_n}{K}\right)$$

Using
$$x_n = \frac{R}{1+R} \frac{p_n}{K}$$
 and $\mu = 1+R$, obtain

$$x_{n+1} = \mu x_n (1 - x_n).$$

Goal. Compare nonlinear Differential Equations vs Difference Equations.

Consider the continuous Logistic Population Model

$$ho'(t) = R
ho(t)\left(1 - rac{
ho(t)}{K}
ight)$$

and the discrete Logistic Population Mode

$$p_{n+1} - p_n = Rp_n \left(1 - \frac{p_n}{K}\right)$$

Using
$$x_n = \frac{R}{1+R} \frac{p_n}{K}$$
 and $\mu = 1+R$, obtain

$$x_{n+1} = \mu x_n (1 - x_n).$$

2 Consider the influenza virus (R = 3). Then $\mu = 4$.

We can run the difference equation for x_n with different initial conditions:

We can run the difference equation for x_n with different initial conditions:

 $x_0 = 0.1$

We can run the difference equation for x_n with different initial conditions:

$$x_0 = 0.1$$

$$x_0 = 0.101$$

compare

We can run the difference equation for x_n with different initial conditions:

What happens to the continuous model with the same initial conditions?

$$x_{n+1} = \mu x_n (1 - x_n)$$

$$\mu = 1$$
 , 2 , 4 , 8 ?

$$x_{n+1} = \mu x_n (1 - x_n)$$

$$\mu = 1 , 2 , 4 , 8 ?$$

- \circ Allow $\mu \in \mathbb{C}$.
- O Which values of $\mu \in \mathbb{C}$, for which x_n doesn't go to infinity?

$$x_{n+1} = \mu x_n (1 - x_n)$$

$$\mu = 1 , 2 , 4 , 8 ?$$

- \circ Allow $\mu \in \mathbb{C}$.
- O Which values of $\mu \in \mathbb{C}$, for which x_n doesn't go to infinity?

$$x_{n+1} = \mu x_n (1 - x_n)$$

$$\mu = 1$$
 , 2 , 4 , 8 ?

- \circ Allow $\mu \in \mathbb{C}$.
- O Which values of $\mu \in \mathbb{C}$, for which x_n doesn't go to infinity?

$$x_{n+1} = \mu x_n (1 - x_n)$$

$$\mu = 1$$
 , 2 , 4 , 8 ?

- \circ Allow $\mu \in \mathbb{C}$.
- O Which values of $\mu \in \mathbb{C}$, for which x_n doesn't go to infinity?

