

Meet - tqf-fxqk-pzw

Generated on February 6, 2024

Summary

Notes	Screenshots	Bookmarks
= 1	(i) 15	Д 2

Usama Antuley discusses the impact of tolerance structures with minimal variation on individuals.

We stop on 2 values

xi represents xo

$$f(1) = 1/e -1$$

$$f(1) = -0.632...$$

$$x-1=0$$

$$f(0)=1$$

→ 10:18 AM

- Similarity after 2 decimal places
- Usama Antuley discusses the potential impact of Next Generation technology on performance and value.
 - □ 10:24 AM

Foundation for Advancement of Science and Technology

Use the Secant method to find a solution to $x = \cos x$, and compare the approximations with those given in Example 1 which applied Newton's method.

	<i>p_n</i>		Newton		
0	0.7853981635	n	p_n		
1	0.7071067810				
2	0.7602445972	0	0.7853981635		
3	0.7246674808	1	0.7395361337		
4	0.7487198858	2	0.7390851781		
5	0.7325608446	3	0.7390851332		
6	0.7434642113	4	0.7390851332		
7	0.7361282565				
					meet.google.com is sharing your screen. Stop sharing
				111	

Usama Antuley explains the iterative process of finding the capitated

value X in a mathematical function.

Foundation for Advancement of Science and Technology

Use the Secant method to find a solution to $\sqrt{x = \cos x}$ and compare the approximations with those given in Example 1 which applied Newton's method. f(0)=1

	P. = 1/4
n	p_n
0	0.7853981635
1	0.7071067810
2	0.7602445972
3	0.7246674808
4	0.7487198858
5	0.7325608446
6	0.7434642113
7	0.7361282565

	Newton
n	p_n
0	0.7853981635
1	0.7395361337
2	0.7390851781
3	0.7390851332
4	0.7390851332

 $f(\overline{N}_2) = -\overline{N}_2$

- ↓ Usama Antuley discusses the process of solving container X using mathematical functions and iterations.
 - D 10:26 AM
- ↓ Usama Antuley discusses the application of the secant method in mathematical functions and its convergence.
 - □ 10:26 AM
- → 10:26 AM

Use the Secant method to find a solution to $x = \cos x$, and compare the approximations with those given in Example 1 which applied Newton's method.

Usama Antuley discusses the application of a formula for computing hydration in a recent study.

10:28 AM

Foundation for Advancement of Science and Technology

Use the Secant method to find a solution to $x = \cos x$, and compare the approximations with those given in Example 1 which applied Newton's method.

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

Ni-

Usama Antuley discusses the concept of gain between root for the secant method in mathematical analysis.

10:29 AM

Foundation for Advancement

Use the Secant method to find a solution to $x = \cos x$, and compare the approximations with those given in Example 1 which applied Newton's method.

A N _{i-1}	Bui	Ni+1	tol = ni+1 - ni
0.5	11/4	0.73 \$638	
T/4	0.73638		
			112

Usama Antuley discusses the updated points and computations for a Casio excitation in his latest findings.

□ 10:32 AM

(0.000)

Use the Secant method to find a solution to $x = \cos x$, and compare the approximations \rightarrow with those given in Example 1 which applied Newton's method.

The convergence rate of the point iteration method was discussed with a focus on achieving a tolerance of 0.001 in a recent seminar.

 $f(n) = cos_{N-N} - N$ f(n) = 0

Use the Secant method to find a solution to $x = \cos x$ and compare the approximations with those given in Example 1 which applied Newton's method.

n	p_n		B= 7/4_
0	0.7853981635		Newton
1	0.7071067810	n	p_n
2	0.7602445972	0	-0.7853981635
3	0.7246674808	1	0.7395361337
4	0.7487198858	2	0.7390851781
5	0.7325608446	3	0.7390851332
6	0.7434642113	4	0.7390851332
7	0.7361282565	_	

f(1/2) = = 1/2
Po = 0.5 }
P. = 1/4)

111

neet.google.com is sharing your screen.

Stop sharing

Usama Antuley discusses the continuous functional and bounded values of a function in his latest theorem.

Root Finding Methods:

- *Bracketing methods*. As the name implies, these are based on two initial guesses that "bracket" the root—that is, are on either side of the root.
- Open methods. These methods can involve one or more initial guesses, but there is no need for them to bracket the root.

|| meet.google.com is sharing your screen.

Stop sharing

False Position Method:

The **method of False Position** (also called *Regula Falsi*) generates approximations in the same manner as the Secant method, but it includes a test to ensure that the root is always bracketed between successive iterations

$$f(R) \cdot f(R) < 0$$
 $f(R) \cdot f(R)$
 $f(R) \cdot f(R)$

The term Regula Falsi, literally a false rule or false position, refers to a technique that uses results that are known to be false, but in some specific manner, to obtain convergence to a true result. False position problems can be found on the Rhind papyrus, which dates from about 1650 B.C.E.

|| meet.google.com is sharing your screen.

Stop sharing

Usama Antuley discusses the impact of product profiles and negative Google ratings on businesses in Nova, Wisconsin.

□ 10:44 AM

Usama Antuley discusses a formula for calculating false position in his latest research.

Example: Find the solution x = cosx

Solution To make a reasonable comparison we will use the same initial approximations as in the Secant method, that is, $p_0 = 0.5$ and $p_1 = \pi/4$. Table 2.6 shows the results of the method of False Position applied to $f(x) = \cos x - x$ together with those we obtained using the Secant and Newton's methods. Notice that the False Position and Secant approximations agree through p_3 and that the method of False Position requires an additional iteration to obtain the same accuracy as the Secant method.

-1	7 - 0.5	10	- T/1 =	6=8		False Position	Secant	Newton
= = = =		, 11	= T/4 =		n	p_n	p_n	p_n
		((0))	£(P)		0	0.5	0.5	0.7853981635
a	Ь		-ve		1	0.7853981635	0.7853981635	0.7395361337
1.5	7/4	+ve	-06		2	0.7363841388	0.7363841388	0.7390851781
			1		3	0.7390581392	0.7390581392	0.7390851332
- 1			1		4	0.7390848638	0.7390851493	0.7390851332
- 1				AGAR	5R)	_0.7390831303	(A) 0.7390851332	
	- 1			1 (4)12	6	0.7390851332	/	
				10) - (con A - A)) meet.google.con	is sharing your screen. Stop sharing
1			1	Co	1B-B) - (m)	119	

Usama Antuley discusses the calculation and formulation of a new root form in an incredible automation function.

Example: Find the solution $x = cosx \ \angle$

Solution To make a reasonable comparison we will use the same initial approximations as in the Secant method, that is, $p_0 = 0.5$ and $p_1 = \pi/4$. Table 2.6 shows the results of the method of False Position applied to $f(x) = \cos x - x$ together with those we obtained using the Secant and Newton's methods. Notice that the False Position and Secant approximations agree through p_3 and that the method of False Position requires an additional iteration to obtain the same accuracy as the Secant method.

7 - K/4 = 6	= 15		False Position	Secant	Newton
1-11/9		n	p_n	p_n	p_n
(b) 1		0	0.5	0.5	0.7853981635
		1	0.7853981635	0.7853981635	0.7395361337
-05		2	0.7363841388	0.7363841388	0.7390851781
1		3	0.7390581392	0.7390581392	0.7390851332
		4	0.7390848638	0.7390851493	0.7390851332
	A (GA)	5B)	_0.7390831303 -	(A) 0.7390851332	
	- (-)10	6	0.7390851332	lltt	to de de la companya
	10	. 1 1	1 - 1000 -A) meet.google.com	n is sharing your screen. Stop sha
١	$\begin{array}{c} P_{c} = \overline{N}/y = b \\ \hline 0 & f(b) \\ \hline c & -ve \end{array}$	A (GS)	1 2 3 4 A (GSB 5B)	1 (b) 0 0.5 1 0.7853981635 2 0.7363841388 3 0.7390881392 4 0.7390848638 A (G) 5 B) 0.7390851303 6 0.7390851332	1 0.5 0.5 1 0.7853981635 0.7853981635 2 0.7363841388 0.7363841388 3 0.7390581392 0.7390581392 4 0.7390848638 0.7390851493 4 0.7390848638 0.7390851332 6 0.7390851332

Example: Find the solution x = cosx

Solution To make a reasonable comparison we will use the same initial approximations as in the Secant method, that is, $p_0 = 0.5$ and $p_1 = \pi/4$. Table 2.6 shows the results of the method of False Position applied to $f(x) = \cos x - x$ together with those we obtained using the Secant and Newton's methods. Notice that the False Position and Secant approximations agree through p_3 and that the method of False Position requires an additional iteration to obtain the same accuracy as the Secant method.

A =a =	P - 0.5	10	- K/4 :	=6=1			False Position	Secant	Newton	
		, , ,	-1.79			n	p_n	p_n	p_n	
tre	-ve	f(a) \	f (b)	C)	f(c)	0	0.5	0.5	0.7853981635	
a	b	-				1	0.7853981635	0.7853981635	0.7395361337	
0.5	7/4	+NE	-06	0.73438		2	0.7363841388	0.7363841388	0.7390851781	
07368	N/4					3	0.7390581392	0.7390581392	0.7390851332	
0,,,,,,,,,,	7-1				1	4	0.7390848638	0.7390851493	0.7390851332	
			1	A	(GAB	513)	_0.7390831303 -	A)0.7390851332		
				1 -	(4)15	6	0.7390851332			
					10-	A A) - (CODA -A)) meet.google.com	is sharing your screen. Stop sharing	Hid
	1	•	1		Co	15-15) - (con -)	113		

Function keys have both positive and negative values, with the positive pair being attributed to Rehan by Usama Antuley.

→ 10:52 AM