## Оптимизация путей доставки

Артём Матвеев

9 июля 2023 г.

## Цель и задачи работы

#### Цель работы

Найти оптимальную схему развоза товаров по ПВЗ\* со склада в д. Коледино.

\*Пункт Выдачи Заказов

#### Задачи работы

- Выполнить анализ данных.
- Формализовать поставленную задачу.
- Осследовать имеющиеся решения данной проблемы.
- Реализовать собственное решение.
- Провести оценку полученных результатов.
- Привести решение в читабельный вид.

### Анализ данных

Таблица – Изначальные данные

| count | max        | max.1 | dst_office_id | office_name                   | latitude  | longitude |
|-------|------------|-------|---------------|-------------------------------|-----------|-----------|
| 379   | 2023-04-24 | 507   | 105643        | МО Одинцово Садовая 24        | 55.676228 | 37.248839 |
| 249   | 2023-04-24 | 507   | 133447        | МО Кашира Ленина 15           | 54.844701 | 38.191166 |
| 345   | 2023-04-24 | 507   | 110999        | МО Одинцово Сколковская 1Б    | 55.694942 | 37.324654 |
| 591   | 2023-04-24 | 507   | 5807          | Подольск Победы 12            | 55.360190 | 37.512755 |
| 322   | 2023-04-24 | 507   | 3300          | МО Свердловский Строителей 22 | 55.903330 | 38.155216 |

Distribution of a car load



Таблица – Совпадающие координаты

| office_name                 | latitude  | longitude |
|-----------------------------|-----------|-----------|
| МСК Лётчика Бабушкина б     | 55.859200 | 37.674346 |
| МСК Ягодная 8к3             | 55.575078 | 37.674346 |
| МО Королёв Тихонравова 44/2 | 55.937060 | 37.853607 |
| МСК Николая Старостина 9    | 55.731524 | 37.853607 |

### Формализация задачи. Часть 1

### Capacitated Vehicle Routing Problem (CVRP)

#### Дано

- $oldsymbol{G} = (N, E)$  полный граф, где:
  - $N = \{0, ..., n\}$  множество вершин.
  - $E = \{(i,j) \colon i,j \in V\}$  множество рёбер.
    - $i \in N' \Pi B3$ ,  $N' = N \setminus \{0\}$ .
- ②  $V = \{1, ..., k\}$  множество транспортных средств (TC).
- **4**  $m_i$  загруженность конкретного ПВЗ,  $i = \{1, \dots, n\}$ .
- **5**  $d_{ij}$  расстояние между двумя вершинами,  $d_{ij} > 0$ .
- Решающая переменная

$$x_{ijk} = egin{cases} 1, & ext{если TC } k ext{ едет от } i ext{ до } j \ 0, & ext{иначе} \end{cases}$$

### Формализация задачи. Часть 2

#### Найти

Minimize  $\sum_{k \in V} \sum_{i \in N} \sum_{j \in N} d_{ij} \cdot x_{ijk}$ ,

при условиях:

- $x_{iik} = \{0,1\}, i \neq j, \forall i,j \in N, \forall k \in V$



### Решение задачи

```
38
                          92
                               110
           71
                     31
38
          110
                     34
                          98
                                91
     110
                     91
                          120
                               165
31
     34
           91
                                79
92
     98
          120
                     67
                                64
     91
          165
                     79
                          64
                                0
```

### Особенности FastDepth

- Компилятор  $TVM^1$ для внедрения модели на конкретное железо.
- Урезание сети после обучения с помощью алгоритма NetAdapt<sup>2</sup>.



 $<sup>^3</sup>$ Tianqi Chen, Thierry Moreau, Ziheng Jiang, et al. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. 2018.

Tien-Ju Yang, Andrew Howard, Bo Chen, et al. NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications, 2018.

## Результаты экспериментов. FastDepth

| on NYU Depth v2             | Input<br>Size | MACs [G] RMSE |       | $\delta_1$ | CPU<br>[ms] | GPU<br>[ms] |
|-----------------------------|---------------|---------------|-------|------------|-------------|-------------|
| Eigen et al. [11]           | 228×304       | 2.06          | 0.907 | 0.611      | 307         | 23          |
| Eigen et al. [16] (AlexNet) | 228×304       | 8.39          | 0.753 | 0.697      | 1391        | 96          |
| Eigen et al. [16] (VGG)     | 228×304       | 23.4          | 0.641 | 0.769      | 2797        | 195         |
| Laina et al. [12] (UpConv)  | 228×304       | 22.9          | 0.604 | 0.789      | 2384        | 237         |
| Laina et al. [12] (UpProj)  | 228×304       | 42.7          | 0.573 | 0.811      | 3928        | 319         |
| Xian et al. 37              | 384×384       | 61.8          | 0.660 | 0.781      | 4429        | 283         |
| This Work                   | 224×224       | 0.37          | 0.604 | 0.771      | 37          | 5.6         |

## Результаты экспериментов. FastDepth



## Постановка задачи. Ни J. и др. $^3$

#### Дано:

$$X^\ell=(x_i,y_i)_{i=1}^\ell$$
,  $x_i:=I\in\mathbb{R}^{228\times 304\times 3}$ ,  $y_i:=D^*\in\mathbb{R}^{228\times 304\times 1}$   
Найти модель  $a\colon I\to D$ ,  $D\in\mathbb{R}^{228\times 304\times 1}$   
Критерий:

$$\mathcal{L}_{\mathsf{RMSE}}(\mathsf{a}, \mathsf{x}) = \sqrt{\sum_{\mathsf{a}(\mathsf{x}) \in D} \frac{(\mathsf{a}(\mathsf{x}) - \mathsf{y}(\mathsf{x}))^2}{|D|}}$$

$$\mathscr{L}_{\delta_1}(a,x) = max\left(\frac{a(x)}{y(x)}, \frac{y(x)}{a(x)}\right) < 1.25$$

Критерий на этапе применения KD с вспомогательными данными:

$$\mathcal{L} = \frac{1}{X^{\ell}} \sum_{p_i, g_i \in X^{\ell}} (\lambda L(N_s(p_i), N_t(p_i)) + (1 - \lambda) L(N_s(p_i), g_i))$$

$$p_i \equiv a(x_i), g_i \equiv y(x_i)$$

 $\mathcal{L}$  – функция потерь для обучения сети-ученика.

 $N_t$  и  $N_s$  – сети учителя и ученика.

 $L = I_{\text{depth}} + I_{\text{grad}} + I_{\text{normal}}, L - функция потерь из работы<sup>6</sup>.$ 

 $<sup>^5</sup>$ Junjie Hu, Chenyou Fan, Hualie Jiang, et al. Boosting Light-Weight Depth Estimation Via Knowledge Distillation. 2021.



### Архитектура. Hu J. и др.

#### Модель состоит из:

- 4 слоя для слияния и сжатия признаков (FFC).
  - Поканальный механизм внимания<sup>7</sup>.
  - Слой свёртки.
- Масштабирование карт признаков (upsampling).
- Объединение карт признаков (concat).
- lacktriangle Два свёрточных слоя 5 imes 5 (convs).



<sup>&</sup>lt;sup>b</sup> Junjie Hu, Mete Ozay, Yan Zhang, et al. Revisiting Single Image Depth Estimation: Toward Higher Resolution Maps with Accurate Object Boundaries. 2018.

### Особенности модели. Hu J. и др.

- Внедрение подхода дистилляции знаний (KD) с вспомогательными (auxiliary) данными.
  - ResNet-34 в качестве основы (backbone) для сети-учителя.
  - MobileNet-v2 в качестве основы для сети-ученика.



## Результаты экспериментов. Hu J. и др.

| Method                                    | Backbone     | Original set | Auxiliary set     | Params (M) ↓ | RMSE ↓ | REL ↓ | log 10 ↓ | $\delta_1 \uparrow$ |
|-------------------------------------------|--------------|--------------|-------------------|--------------|--------|-------|----------|---------------------|
| Laina et al. [20]                         | ResNet-50    | NYU-v2       | -                 | 60.6         | 0.573  | 0.127 | 0.055    | 0.811               |
| Hu et al. [16]                            | ResNet-50    | NYU-v2       | -                 | 63.6         | 0.555  | 0.126 | 0.054    | 0.843               |
| Zhang et al. [48]                         | ResNet-50    | NYU-v2       | -                 | 95.4         | 0.497  | 0.121 | -        | 0.846               |
| Fu et al. [10]                            | ResNet-101   | NYU-v2       | -                 | 110.0        | 0.509  | 0.115 | 0.051    | 0.828               |
| Hu et al. [16]                            | SeNet-154    | NYU-v2       | -                 | 149.8        | 0.530  | 0.115 | 0.051    | 0.866               |
| Chen et al. [4]                           | SeNet-154    | NYU-v2       | -                 | 210.3        | 0.514  | 0.111 | 0.048    | 0.878               |
| Chen et al.[3]                            | ResNet-101   | NYU-v2       | HC labeled data   | 163.4        | 0.376  | 0.098 | 0.042    | 0.899               |
| Ours $N_s(X \cup U)$                      | MobileNet-V2 | NYU-v2       | Unlabeled ScanNet | 1.7          | 0.482  | 0.131 | 0.056    | 0.837               |
| Ours $N_s(\mathcal{X} \cup \mathcal{U}')$ | MobileNet-V2 | NYU-v2       | Labeled ScanNet   | 1.7          | 0.461  | 0.121 | 0.052    | 0.855               |

## Результаты экспериментов. Hu J. и др.



### Постановка задачи. DANet<sup>8</sup>

#### Дано:

$$X^{\ell}=(x_i,y_i)_{i=1}^{\ell},\ x_i\coloneqq I\in\mathbb{R}^{228 imes 304 imes 3},\ y_i\coloneqq D^*\in\mathbb{R}^{228 imes 304 imes 1}$$
Найти:

модель  $a\colon I o D$ ,  $D \in \mathbb{R}^{228 \times 304 \times 1}$ 

$$a(x_i) = \sum_{n=1}^{N_b} \mathbf{P}_i(n) \mathbf{c}(n)$$
, где:

 $\mathbf{c} \in \mathbb{R}^{1 \times 1 \times N_b}$  — центральные значения ячеек глубины (depth bins).

 $\mathbf{P} \in \mathbb{R}^{228 \times 304 \times N_b}$  – карты вероятности ячеек (bin-probability maps).

#### Критерий:

$$\mathcal{L}_{\mathsf{RMSE}}(a,x) = \sqrt{\sum_{a(x) \in D} \frac{(a(x) - y(x))^2}{|D|}}$$

$$\mathcal{L}_{\delta_1}(a,x) = \max\left(\frac{a(x)}{y(x)}, \frac{y(x)}{a(x)}\right) < 1.25$$

<sup>&</sup>lt;sup>8</sup>Fei Sheng, Feng Xue, Yicong Chang, et al. Monocular Depth Distribution Alignment with Low Computation. 2022.



### Архитектура DANet

#### Модель состоит из:

- Энкодер (пирамидальный трансформер PST).
- Декодер.



## Результаты экспериментов. DANet

| Groups | Methods              | Backbone        | Resolution       | FLOPs | Params | REL ↓ | RMS ↓ | log10↓ | $\delta_1 \uparrow$ | $\delta_2 \uparrow$ | $\delta_3 \uparrow$ |
|--------|----------------------|-----------------|------------------|-------|--------|-------|-------|--------|---------------------|---------------------|---------------------|
|        | Eigen et al.[22]     | VGG16           | $240 \times 320$ | 31G   | 240M   | 0.215 | 0.772 | 0.095  | 0.611               | 0.887               | 0.971               |
|        | Eigen et al. [21]    | VGG16           | $228 \times 304$ | 23G   | -      | 0.158 | 0.565 | -      | 0.769               | 0.950               | 0.988               |
|        | Laina et al. [10]    | ResNet50        | $240 \times 320$ | 17G   | 63M    | 0.127 | 0.573 | 0.055  | 0.811               | 0.953               | 0.988               |
|        | Fu et al. [11]       | ResNet101       | $240 \times 320$ | 102G  | 85M    | 0.118 | 0.498 | 0.052  | 0.828               | 0.965               | 0.992               |
| n n    | Lee et al. [39]      | DenseNet161     | $224 \times 224$ | 96G   | 268M   | 0.126 | 0.470 | 0.054  | 0.837               | 0.971               | 0.994               |
|        | Hu et al. [16]       | ResNet50        | $228 \times 304$ | 107G  | 67M    | 0.130 | 0.505 | 0.057  | 0.831               | 0.965               | 0.991               |
|        | Chen et al. [18]     | SENet154        | $228 \times 304$ | 150G  | 258M   | 0.111 | 0.420 | 0.048  | 0.878               | 0.976               | 0.993               |
|        | Yin et al. [17]      | ResNet101       | $384 \times 384$ | 184G  | 90M    | 0.105 | 0.406 | 0.046  | 0.881               | 0.976               | 0.993               |
|        | Lee et al. [38]      | ResNet101       | $416 \times 544$ | 132G  | 66M    | 0.113 | 0.407 | 0.049  | 0.871               | 0.977               | 0.995               |
|        | Bhat et al. [24]     | EfficientNet b5 | $426 \times 560$ | 186G  | 77M    | 0.103 | 0.364 | 0.044  | 0.902               | 0.983               | 0.997               |
|        | Wofk et al. [15]     | MobileNet       | $224 \times 224$ | 0.75G | 3.9M   | 0.162 | 0.591 | -      | 0.778               | 0.942               | 0.987               |
| 2      | Nekrasov et al. [14] | MobileNet v2    | $480 \times 640$ | 6.49G | 2.99M  | 0.149 | 0.565 | -      | 0.790               | 0.955               | 0.990               |
|        | Yin et al. [17]      | MobileNet v2    | $338 \times 338$ | 15.6G | 2.7M   | 0.135 | -     | 0.060  | 0.813               | 0.958               | 0.991               |
|        | Hu et al. [40]       | MobileNet v2    | $228 \times 304$ | -     | 1.7M   | 0.138 | 0.499 | 0.059  | 0.818               | 0.960               | 0.990               |
|        | Hu et al. [16] †     | EfficientNet b0 | $228 \times 304$ | 14G   | 5.3M   | 0.142 | 0.505 | 0.059  | 0.814               | 0.961               | 0.989               |
| 3      | Chen et al. [18] †   | EfficientNet b0 | $228 \times 304$ | 8.22G | 12M    | 0.135 | 0.514 | -      | 0.828               | 0.963               | 0.990               |
|        | Yin et al. [17] †    | EfficientNet b0 | $384 \times 384$ | 18G   | 4.6M   | 0.145 | 0.567 | 0.067  | 0.771               | 0.947               | 0.988               |
|        | Ours                 | EfficientNet b0 | $228 \times 304$ | 1.5G  | 8.2M   | 0.135 | 0.488 | 0.057  | 0.831               | 0.966               | 0.991               |

## Результаты экспериментов. DANet



#### Заключение

В ходе выполнения работы были выполнены все поставленные задачи, то есть:

- Проанализирована работа Wofk D. и др. (FastDepth).
- Проанализирована работа Ни Ј. и др.
- Проанализирована работа Sheng F. и др. (DANet).

# СПАСИБО ЗА ВНИМАНИЕ!