CIS 5250 – 01 VISUAL ANALYTICS R-Project

126 Years of Historical Olympic Dataset

Introduction and Data set URL's

This dataset actually provides an extensive view of athletes, their characteristics, and their performance in the Olympic Games, it gives certain points for in-depth analysis and insights into trends, relationships, and outcomes. Personal data such as gender, height, weight, and date of birth provide demographic and physical profiles of athletes, which can be used to study trends across different sports, genders, or countries. The inclusion of country information, along with National Olympic Committee (NOC) codes, further enables the cross examination of regional or national strengths in specific disciplines. Additional attributes like special notes and descriptions offer a deeper context into the personal achievements or backgrounds of athletes, enriching the narrative and origins behind their performances. Because all athletes are made differently.

Event-specific details, such as the sport, competition, position, medal type, and the number of participants, capture detailed performance metrics, enabling comparisons across events, athletes, and the different editions of the Olympics. Information about result dates, locations, and formats adds layers of context to these performances, allowing for analysis of how different factors, such as venue or competition structure, may influence certain types of outcomes. Such as the growth of certain sports for further examination. Furthermore, the dataset also includes essential contextual details about the Olympic Games themselves, such as the year, host city, start and end dates, and the overall length of the competition period. These attributes enable analysts to link individual performances and event data to the historical and geographical context of each Olympic edition.

So by pretty much combining data on athletes, events, and Olympic editions, this dataset facilitates the exploration of relationships between personal attributes, event outcomes, and the broader dynamics of the games. For example, correlations can be drawn between athlete height and success in certain sports or between the number of participants in an event and medal outcomes. Tracking medal distributions across editions and countries provides insights into the evolution of national performance over time, while studying the host country's impact on results highlights potential advantages of hosting. It's like playing on your own turf. In summary, this dataset serves as a powerful tool for understanding the intricate relationships between athletes, their performances, and the larger context of the Olympic Games, enabling rich analysis of trends and outcomes across time and geography.

References:

- 1.https://www.kaggle.com/datasets/muhammadehsan02/126-years-of-historical-olympic-dataset
- 2 .Apa formatted this

McMahon, J., & Penney, D. (2023). Exploring athletes' well-being: Psychological and contextual factors in sports performance. CISS Journal

3. https://ciss-journal.org/article/view/9363

Data Description:

Column Name	Description
Athlete id	A Unique identifier for each athlete in the dataset
Name	The name of the athlete
Sex	The gender of the athlete(Male/Female)
Height	The height of the athlete in centimeters.
Weight	The weight of the athlete in kilograms
Country	The National Olympic Committee (NOC) code for the athlete's Country.
Edition	The year or edition of the Olympic Games
Sport	The sport in which the athlete completed.
Event	The specific event or competition within the sport.
Result id	A unique identifier for the athlete's result
isTeamSport	Identify whether it's a team Sport or individual
Medal	The Type of medal awarded (Gold, Silver, Bronze or None)
Result Participants	The number of participants in the events.
Result format	The format of the event result.

Excel Screenshot

	Α	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S
1	athlete_id	name	sex	born	height	weight	country	country_	n descriptio	edition	edition_	id sport	event	result_id	medal	isTeamS	ocevent_ti	tl∈edition	result_dat re:
2	65649	Ivanka B	o Female	17992	166	55	Bulgaria	BUL	Personal E	1976 Sum	1	9 Athletics	4 × 400 m	62051		0 TRUE	4 x 400 r	n∈1976 Sun	n 30 – 31 . Sta
3	112510	Nataliya	U Female	28199	184	70	Russian F	RUS	0	2008 Sum	5	3 Beach Vol	Beach Vol	258676		0 TRUE	Beach Vo	oll 2008 Sun	n 9 – 21 A Ch
4	114973	Essa Ism	ai Male	31760	165	55	Qatar	QAT	Personal E	2008 Sum	5	3 Athletics	10,000 me	257228		0 FALSE	10,000 n	ne 2008 Sun	17 August Be
5	30359	Péter E	Bc Male	2934			Hungary	HUN	Between 1	1932 Sum	1	0 Artistic Gy	Individual	70092		0 FALSE	Individu	al 1932 Sun	n 8 – 10 A Lo
6	50557	Rudolf P	io Male	119			Czechoslo	TCH	Rudolf Pio	1924 Sum		8 Swimming	4 × 200 m	4785		0 TRUE	4 x 200 r	n∈1924 Sun	n 18 – 20 . Pis
7	146111	Svetlana	K Female	35743			ROC	ROC	0	2020 Sum	6	1 Beach Vol	Beach Vol	19001777		0 TRUE	Beach Vo	oll 2020 Sun	n 24 July ‑Sh
8	133041	Vincent F	Ri Male	35412	178	68	Canada	CAN	0	2016 Sum	5	9 Diving	Platform,	353784		0 FALSE	Platform	, 2016 Sun	n 19 – 20 . Pa
9	110425	Tanja Mo	or Female	27671	164	58	Switzerla	SUI	0	2006 Wint	4	9 Skeleton	Skeleton,	26		0 FALSE	Skeleton	, 2006 Wir	t 38764 Ce
10	110705	Maksim	Sł Male	29976	183	76	Russian F	RUS	0	2006 Wint	4	9 Figure Ska	Ice Dancin	14389		0 TRUE	Ice Danc	in 2006 Wir	t 17 – 20 Pa
11	54541	Gé Reg	gt Male	5910			Netherlar	NED	0	1936 Sum	1	1 Water Pol	Water Pol	38129		0 TRUE	Water P	1936 Sun	n 8 – 15 A Scl
12	22721	Aristide I	Pc Male				Italy	ITA	0	1912 Sum		6 Fencing	Foil, Indivi	73551		0 FALSE	Foil, Indi	vi 1912 Sun	ni6–8 JuÖ
13	56266	Go Yeon	g-Male	9577	167	75	Republic	KOR	0	1960 Sum	1	5 Weightlift	Middlewe	29228		0 FALSE	Middlew	e 1960 Sun	8 Septem Pa
14	82227	Marlies F	Rc Female	22026			East Gern	GDR	Marlies Ro	1980 Wint	4	1 Cross Cou	5 kilometr	1992		0 FALSE	5 kilome	tr 1980 Wir	t 15 Februa Mi
15	93334	Craig Hu	tc Male	27540	198	97	Canada	CAN	0	2000 Sum	2	5 Swimming	50 metres	8336		0 FALSE	50 metre	es 2000 Sun	n 21 – 22 Sy
16	146013	Raquel C	Qu Female	36589	167	56	Portugal	POR	0	2020 Sum	6	1 Cycling Mo	Cross-Cou	19001705		0 FALSE	Cross-Co	u 2020 Sun	127 July 20: Izu
17	109912	Vyachesl	la Male	31768	170	65	Russian F	RUS	0	2006 Wint	4	9 Short Trac	500 metre	838		0 FALSE	500 met	re 2006 Wir	t 22 – 25 Pa
18	37019	Philippe	Lc Male	24636	189	85	France	FRA	0	1992 Sum	. 2	23 Rowing	Coxed Fou	159262		0 TRUE	Coxed Fo	οι 1992 Sun	n 27 July ‑La
19	22885	Rudy Kug	ge Male	10451	187	86	Luxembo	LUX	0	1960 Sum	1	5 Fencing	Épée, Tea	88778		0 TRUE	Épé	e 1960 Sun	9 Septem Pa
20	95497	Yoshihir	o Male	11088	173	70	Japan	JPN	0	1960 Wint	3	6 Ice Hockey	Ice Hockey	20243		0 TRUE	Ice Hock	e ₎ 1960 Wir	t 19 – 28 Bly
21	76	Roper Ba	ar Male	24 Novem	ber 1873		Great Brit	GBR	Roper Bar	1908 Sum		5 Tennis	Singles, M	44210		0 FALSE	Singles, I	M 1908 Sun	n 6 – 11 Jt All
22	47023	Lorna Fra	ar Female	7398			Great Brit	GBR	Lorna Fran	1936 Sum	1	1 Swimming	100 metre	5109		0 FALSE	100 met	re 1936 Sun	11 – 13 .Scl
23	42069	Isabelle I	H. Female	21681	167	67	France	FRA	0	1988 Sum	2	22 Shooting	Small-Bore	51819		0 FALSE	Small-Bo	r 1988 Sun	21 Septem Ta
24	39033	Sjoerd W	/a Male	14366	189	76	Netherlar	NED	0	1964 Sum	1	6 Rowing	Coxless Fo	158436		0 TRUE	Coxless	c 1964 Sun	11 – 15 To
25	115157	Mariya Y	a Female	29957	174	81	Russian F	RUS	Personal E	2008 Sum	5	3 Athletics	Javelin Th	257805		0 FALSE	Javelin T	hi 2008 Sun	n 19 – 21 .Be
26	207	VirÃig Cs	su Female	26613	172	63	Hungary	HUN	VirÃjg Csu	1996 Sum	2	4 Tennis	Singles, W	45549		0 FALSE	Singles,	N 1996 Sun	n 23 July ‑Sto
27	99106	Ronny Ye	ea Male	19222	181	70	United St	USA	Ronny Yea	1972 Wint	3	9 Cross Cou	15 kilomet	1960		0 FALSE	15 kilom	et 1972 Wir	t 7 Februar M
28	126257	Shane Sr	m Male	29858	184	79	New Zeal	NZL	0	2012 Sum	5	4 Football	Football, N	312000		0 TRUE	Football	N 2012 Sun	n 26 July ‑Cit
4	>	OlympicO	learDataSe	et (+)								1.4							•

Note: Some Extra Steps are performed in our project

Once the file is saved into CSV-UTF, Again I uploaded my CSV file to R Studio

Trying to read the dataset and convert it from UTF to ASCII

Data Cleaning:

Steps Followed in the below Screen shots:

Sessions > SetworkingDirectory > Choose Directory

In my case I have saved the CSV file under

D:/Visual Anlytics/RFinalProject/OlympicClearDataSet

OlympicClearDataSet is loaded into R Studio:

Before Data Cleaning:

Before data cleaning, the dataset is simply loaded into R Studio. In the initial stage, I review the dataset by reading and viewing it. As shown in the screenshot above, there is a significant amount of missing data, duplicate data, and inconsistent data

Code

```
Data <- read.csv("OlympicClearDataset.csv")
Str(data)
Summary(data)
```

This linereads aCSV (Comma-Separated Values) file named OlympicClearDataset.csv into R and stores it in a variable named Data. A function in R used to import data from a CSV file into a dataframe. It automatically converts the data into tabular format where rows represent observations and columns represent variables. This is the name of the dataframe where the dataset is stored.

> summary(data) athlete_id name	sex	born	height	weight	country
country_noc Min. : 1 Length:155861	Length:155861	Length:155861	Min. :127.0	Length:155861	Length:155861
Length: 155861	3	3		3	3
1st Qu.: 39271 Class:character Class:character	Class :character	Class :character	1st Qu.:170.0	Class :character	Class :character
Median: 78529 Mode :character	Mode :character	Mode :character	Median :176.0	Mode :character	Mode :character
Mean : 157161			Mean :176.3		
3rd Qu.: 118923			3rd Qu.:183.0		
Max. :22000000			Max. :226.0		
Huxi IEEGGGGG			NA's :50749		
description edition	edition_id	sport	event	result_id	medal
isTeamSport event_title					
Length:155861 Length:155861 Mode:logical Length:155861	Min. : 1.00	Length:155861	Length:155861	Min. : 1	Length:155861
Class:character Class:character FALSE:93832 Class:character	1st Qu.:15.00	Class :character	Class :character	1st Qu.: 31969	Class :character
Mode :character Mode :character	Median :23.00	Mode :character	Mode :character	Median : 62277	Mode :character
TRUE :62029 Mode :character	Median .25.00	House Terrai acter	Mode . Character	MCGTAIT : 02277	House . character
TROE . 02023 Flode . Character	Mean :28.82			Mean : 1392819	
	3rd Qu.:46.00			3rd Qu.: 259032	
	Max. :62.00			Max. :90016770	
	102.00			Max. 150010770	
edition.1 result date	result location	result participa	nts result_format		
Length:155861 Length:155861	Length:155861	Length:155861	Length:155861		
Class :character Class :character	Class :character			er	
Mode :character Mode :character	Mode :character	Mode :character	Mode :charact	er	

1)Remove description and Special_notes as it was irrelevant

Code

```
Data <- data [, !(names(data) %in% c("description", "special_notes")]]
```

Before

After

Explanation

This function retrieves the column names of the dataframe data. This operator checks if each column name is in the vector c("description", "special_notes"). It returns TRUE for column names that match and FALSE otherwise. The negation operator ! reverses the logical values Columns that match description or special_notes will have TRUE, and applying ! turns them into FALSE. Columns that do not match remain TRUE. The square brackets [,] are used to subset the dataframe. The first argument (before the comma) specifies rows (here it is blank, meaning all rows). The second argument (after the comma) specifies columns to keep. The code ensures that only columns **not** in c("description" special_notes") are retained.

2) Remove Duplicates

Before

•	athlete_id =	name	sex	born	height	weight	country
51	77525	Boris Kuznetsov	Male	17330	175	63	Soviet Union
52	15193	Albert Kägi	Male	4740	NA		Switzerland
53	127330	Benjamin Maier	Male	34443	182	93	Austria
54	37731	Birte Siech	Female	24550	180	75	East Germany Germany
55	921248	Jadwiga Umińska	Female	59	NA		Poland
56	90206	İlham Kərimov	Male	27943	180	81	Azerbaijan
57	15431	Willie Magee	Male	1884	NA		Great Britain
	27240	- 08 177		40004	475	70	c
Show	ing 51 to 58 of 1	55,861 entries, 22 total colur	nns				

After

Data <- data[!duplicated(data),]

Explanation

This function identifies duplicate rows in the dataframe data. It returns a logical vector where, TRUE indicates a duplicate row (i.e., a row with the same values as a previous row). FALSE indicates a unique row (i.e., no previous row has identical values).

The negation operator ! reverses the logical values TRUE becomes FALSE. FALSE becomes TRUE As a result, this keeps only the first occurrence of duplicate rows while marking subsequent duplicates. This subsets the dataframe data to include only the rows where !duplicated(data) is TRUE. The square brackets [,] are used for subsetting:The condition !duplicated(data) applies to the rows. The empty column argument after the comma (,) indicates all columns are kept.

3) Result Formatting

Before

After

	edition.1	result_date	result_location	result_participants
	2016 Summer Olympics	NA	Parque Aqua;tico Maria Lenk, Parque Olampico da Barra, Ba	28 from 18 countries
	2006 Winter Olympics	NA	Cesana Pariol	15 from 12 countries
d	2006 Winter Olympics	NA	Palavela, Torino	48 from 15 countries
	1936 Summer Olympics	NA	Schwimmstadion, Reichssportfeld, Berlin	142 from 16 countries
en	1912 Summer Olympics	NA	Östermalms Idrottsplats, Stockholm	94 from 15 countries
‰¤75 kilograms), Men	1960 Summer Olympics	1960-09-08	Palazzetto dello Sport, Roma	27 from 20 countries
nen	1980 Winter Olympics	1980-02-15	Mt. Van Hoevenberg Recreation Area, Lake Placid	38 from 12 countries
le, Men	2000 Summer Olympics	NA	Sydney International Aquatic Centre, Olympic Park, Sydney,	77 from 71 countries
omen1	2020 Summer Olympics	2021-07-27	Izu Mountain Bike Course, 1826, Ono, Izu-shi, Shizuoka 410	38 from 29 countries
	2006 Winter Olympics	NA	Palavela, Torino	27 from 16 countries
4				
Showing 7 to 16 of 155,861 entries,	20 total columns			
R 4.4.1 · D:/Visual_Analytics,	(Oh manisClearDataCat/			
	7 1]+ da+a 4	ormat = "%d %b %y")	

Code:

```
data $result_date <- as.Date(data$result_date,format = "%d %b %y")
```

Explanation

We are trying to convert a column named result_date in a dataframe data to a Date object in R using the as.Date Converts a character vector to a Date object.

format = "%d %b %y": %d Day as a number (01-31),%b Abbreviated month name (Jan, Feb),%y Year as a two-digit number.

4) Removing the Athlet born date as it was irrelavent Before

After

	athlete_id 🗦	name	sex [‡]	height [‡]	weight [‡]	country	country_noc +	description
1	65649	Ivanka Bonova	Female	166	55	Bulgaria	BUL	Personal Best: 400
2	112510	Nataliya Uryadova	Female	184	70	Russian Federation	RUS	0
3	114973	Essa Ismail Rashed	Male	165	55	Qatar	QAT	Personal Best: 100
4	30359	Péter Boros	Male	NA		Hungary	HUN	Between 1927 an
5	50557	Rudolf Piowatý	Male	NA		Czechoslovakia	TCH	Rudolf Piowaty jo
6	146111	Svetlana Kholomina	Female	NA		ROC	ROC	0
7	133041	Vincent Riendeau	Male	178	68	Canada	CAN	0
da na [1]	ata <- data ames(data)] "athlete] "country	_id" "r " "c		born")]	"de	ex" "height" escription" "edition" esult_id" "medal"	"weight" "edition_ "isTeamSp	_

Code

```
Write.csv(data, "Dataset_without_Born.csv", row.name = FALSE)
```

Explanation:

The write.csv() function in R is used to export data frames or matrices to a CSV files are a common format for data exchange. Data: This is the frame you want to explore.

Dataset_without_Born.csv: This is the name of the csv file that will be created. If no path is specified, the file will be saved in the current working directory, which can be checked using getwd()

row.name=FALSE:By default, R includes row names (the first column of the data frame, often indices) when writing a CSV file. Setting row.names = FALSE excludes these row names from the output. If set to TRUE, an additional column would be added to the CSV containing the row names, which might not be desired unless explicitly needed

5) Replace missing Height & Weight

Before:


```
data ×

⟨□□⟩ | ② | ▼ Filter

   athlete_id <sup>‡</sup> name
                                                 height <sup>‡</sup> weight
                                                                     country
                                                                                                                              country_noc
                                         sex
            65649 Ivanka Bonova
                                         Female
                                                       166
                                                                    55 BULGARIA
                                                                                                                              BUL
                                                                                                                                               1976 Summer Olympics
           112510 Nataliya Uryadova
                                         Female
                                                        184
                                                                    70 RUSSIAN FEDERATION
                                                                                                                              RUS
                                                                                                                                               2008 Summer Olympics
                                                        165
           114973 Essa Ismail Rashed
                                         Male
                                                                                                                                               2008 Summer Olympics
                                                        176
            30359 Péter Boros
                                         Male
                                                                    70 HUNGARY
                                                                                                                                               1932 Summer Olympics
  5
                                                        176
                                                                    70 CZECHOSLOVAKIA
            50557 Rudolf Piowatý
                                         Male
                                                                                                                              TCH
                                                                                                                                               1924 Summer Olympics
  6
           146111 Svetlana Kholomina
                                         Female
                                                        176
                                                                    70 ROC
                                                                                                                              ROC
                                                                                                                                              2020 Summer Olympics
           133041 Vincent Riendeau
                                         Male
                                                        178
                                                                    68 CANADA
                                                                                                                              CAN
                                                                                                                                              2016 Summer Olympics
Showing 1 to 7 of 155,861 entries, 20 total columns
R 4.4.1 · D:/Visual_Analytics/OlympicClearDataSet/
   data$name <- trimws(data$name)</pre>
> data$country <- trimws(data$country)
> data$country <- toupper(data$country)</pre>
   data <- data[, !(names(data) %in% c("description", "special_notes"))]</pre>
```

Code:

```
Median_height <- median(data$height, na.rm = TRUE)

Data$height [is.na(data$height)] <- median_height

Median_weight <- median(data$weight, na.rm = TRUE)

Data$weight[is.na(data$weight)] <- median_weight
```

Explanation:

This code performs two main tasks: calculating the median for columns height and weight while ignoring missing values (NA), data\$height: Refers to the height column of the data dataframe. median(): Computes the median of the column. na.rm = TRUE: Ensures missing values (NA) are ignored during the calculation. The calculated median is stored in Median_height, is.na(data\$height): Identifies the rows in the height column where the value is NA, data\$height[is.na(data\$height)]: Subsets the height column to only include rows where NA is present. Median_height: The previously calculated median replaces the NA values. This process is a common data-cleaning technique to handle missing values. Replacing missing values with the median helps to preserve the central tendency of the data without being influenced by outliers, which could happen if the mean were used instead.

Analysis & Visualization

Questions:

- 1) How does the distribution of medals vary between male and female athletes cross all editions?
- 2) Which sports have contributed the most medals in Olympic history?
- 3) How has the performance of the top 5 countries evolved across different Olympic editions?
- 4) What is the gender distribution of medal winners across different sports?
 - 1) How does the distribution of medals vary between male and female athletes across all editions?
 - **Objective:** Compare the number of medals won by male and female athletes to explore gender trends in the Olympics.

R Code:

```
View(data) library(dplyr)
library(ggplot2)
gender_medals <- data %>%

+ filter(!is.na(medal)) %>%

+ group_by(sex) %>%

+ summarise(total_medals = n()) %>%

+ arrange(desc(total_medals)) Print(gender_medals)

Ggplot(gender_medals, aes(x = sex, y = total_medals, fill = sex)) +

+ geom_bar(stat = "identity", width = 0.6, show. Legend = FALSE) +

+ labs(title = "Medal Distribution by Gender",

+ x = "Gender",

+ y = "Total Medals") +

+ theme_minimal() +

+ scale_fill_manual(values = c("pink", "steelblue")) View(gender_medals)
```

```
R 4.4.1 · D:/Visual_Analytics/OlympicClearDataSet/
> View(data)
> View(data)
> library(dplyr)
> library(ggplot2)
> gender_medals <- data %>%
       filter(!is.na(medal)) %>% # Remove rows without a medal
       group_by(sex) %>%
       summarise(total_medals = n()) %>% # Count medals for each gender
       arrange(desc(total_medals))
> print(gender_medals)
# A tibble: 2 \times 2
          total_medals
  sex
  <chr>
                  <int>
1 Male
                  72635
2 Female
                  <u>31</u>516
> ggplot(gender_medals, aes(x = sex, y = total_medals, fill = sex)) + geom_bar(stat = "identity", width = 0.6, show.legend = FALSE) +
       labs(title = "Medal Distribution by Gender",
            x = "Gender",
            y = "Total Medals") +
       theme_minimal() +
       scale_fill_manual(values = c("pink", "steelblue"))
> View(gender_medals)
> View(gender_medals)
```


So in this script we start with library (dplyr) which is used for data filtering, grouping, and summarizing. Then the same library function but (ggplot2) is for creating visualizations. To Manipulate the data gender & lt;- data % applies the transformations to the data set and filter(!is.na(medal)) removes rows where the "medal column" has values. Group_by(sex): Groups the data by the sex column. To count the total number of medals each gender has we Can do summarise(total_medals = n()). Then do sort different results we did arrange(desc(total_medals)). Using the dplyr and ggplot2 libraries, it filters out rows with missing medal data (filter(!is.na(medal))), groups the data by gender (group_by(sex)), counts the total medals for each gender (summarise(total_medals = n())), and sorts the results in descending order

(arrange(desc(total_medals))). The summary table, stored in gender_medals, is printed to display the total medal counts for males and females. A bar chart is created with ggplot(gender_medals, aes(x = sex, y = total_medals, fill = sex)) using gender on the x-axis, total medals on the y-axis, and custom colors (scale_fill_manual(values = c("pink", "steelblue"))) for each gender. Additional features, such as minimalistic styling (theme_minimal()) and axis labels, enhance the plot. This script with the graphical visualization highlights the distribution of Olympic medals between genders and showcasing insights into their performances.

Most recently the International Olympic Committee (IOC) has made significant strides toward gender equality in the Olympic Games. At the Tokyo 2020 Olympics, women comprised 48% of the athletes, a substantial increase from 34% at Atlanta 1996 which is what the graph depicts. The IOC aims to achieve full gender parity at the Paris 2024 Games.

The journey toward equality began in the olden days of Paris 1900, where only 22 women competed, making up 2.2% of the athletes. Over the past 25 years, the IOC has collaborated with National Olympic Committees and International Federations to boost female participation by adjusting eligibility criteria, setting quota places, and increasing medal events for women.

Beyond the field of play, the IOC has prioritized gender equality within its leadership. In 2023, female representation among IOC Members rose to 41%, doubling since 2013, and women held 50% of positions on IOC commissions, reflecting a 100% increase over the same period.

References:

International Olympic Committee. (n.d.). Gender equality through time: At the Olympic Games.

https://olympics.com/ioc/gender-equality/gender-equality-through-time

- 2) Which sports have contributed the most medals in Olympic history?
- Objective: Identify the sports that dominate in terms of medal counts.

Code:

```
op sports <- data %>%
filter(!is.na(medal)) %>%
group_by(sport) %>%
summarise(total medals = n()) %>%
arrange(desc(total medals)) %>%
slice_head(n = 10)
print(top sports)
gplot(top sports, aes(x = reorder(sport, -total medals), y = total medals, fill
= sport)
                 + geom bar(stat = "identity", width = 0.6, show.legend =
FALSE)
+ labs(title = "Top 10 Sports by Total Medals", x
 = "Sport",
y = "Total Medals")
+ theme minimal()
+ theme(axis.text.x = element text(angle = 45, hjust = 1)) View(top sports)
```

```
R 4.4.1 · D:/Visual_Analytics/OlympicClearDataSet/
> top_sports <- data %>%
+ filter(!is.na(medal)) %>%
      group_by(sport) %>%
      summarise(total_medals = n()) %>%
      arrange(desc(total_medals)) %>%
      slice_head(n = 10)
> print(top_sports)
# A tibble: 10 \times 2
               total_medals
   sport
   <chr>>
                        <int>
1 Athletics
                        19147
2 Swimming
                        6525
                         <u>5</u>406
3 Rowing
4 Football
                         <u>4</u>932
5 Boxing
                         <u>3</u>810
6 Ice Hockey
                         <u>3</u>518
7 Wrestling
                         3424
8 Shooting
                         <u>3</u>262
9 Sailing
                         <u>3</u>145
10 Hockey
                         <u>2</u>937
> ggplot(top_sports, aes(x = reorder(sport, -total_medals), y = total_medals, fill = sport)) +
      geom_bar(stat = "identity", width = 0.6, show.legend = FALSE) +
       labs(title = "Top 10 Sports by Total Medals",
            x = "Sport",
y = "Total Medals") +
      theme_minimal() +
      theme(axis.text.x = element_text(angle = 45, hjust = 1))
> View(top_sports)
 View(top_sports)
>
```


Now for the top sports with the most medal, using the dplyr library, it filters rows without medal data (filter(!is.na(medal))), groups the data by sport (group_by(sport)), calculates the total medals for each sport (summarise(total_medals = n())), and sorts the results in descending order (arrange(desc(total_medals))). The top 10 sports are selected using slice_head(n = 10) and stored in top_sports. The summary table is printed, displaying the total medals for the top 10 sports.

A bar chart is created using ggplot2 with the sports ordered by total medals on the x-axis (reorder(sport, -total_medals)) and total medals on the y-axis. Customizations such as angled x-axis labels (theme(axis.text.x = element_text(angle = 45, hjust = 1))), minimalistic styling (theme_minimal()), and clear axis titles are added. These script all contribute to highlighting the sports with the most Olympic medals

So during the recent 2024 Paris Olympics, swimming emerged as the sport with the highest medal count, achieving remarkable success. Swimmers collectively earned 79 medals: 31 gold, 33 silver, and 15 bronze. This performance highlights the dominance and excellence of swimming on the Olympic stage.

The success of these athletes not only showcases their individual dedication and skill but also reflects the sport's global prominence and competitive depth. Comparatively, track and field athletes achieved 76 medals, while basketball and volleyball athletes earned 28 and 27 medals, respectively, solidifying swimming's position as the leading sport in medal acquisition at the Paris Games. Also swimming is a versatile sport that any country can excel in due to the simple essential equipment is technically a pool. These achievements emphasize the pivotal role swimming plays in the overall Olympic medal tally and its contribution to the spirit of international competition. These achievements emphasize the pivotal role swimming plays in the overall Olympic medal tally and its contribution to the spirit of international competition.

Reference:

NCAA. (2024, August 12). Medal footprint at the 2024 Paris Olympics.

https://www.ncaa.org/news/2024/8/12/olympics-ncaa-medal-footprint-at-the-2024-paris-olympics.aspx

3) How are medals distributed between team and individual events?

• **Objective:** Explore the proportion of medals won in team sports (isTeamSport) versus individual sports.

Code:

```
event_medals <- data %>%

filter(!is.na(medal)) %>%

group_by(isTeamSport) %>%

summarise(total_medals = n()) %>%

mutate(event_type = ifelse(isTeamSport, "Team Sport", "Individual Sport"))

print(event_medals)

ggplot(event_medals, aes(x = "", y = total_medals, fill = event_type)) +

geom_bar(stat = "identity", width = 1) +

coord_polar("y") +

labs(title = "Medal Distribution by Event Type") + theme_void()

+
```

```
R 4.4.1 · D:/Visual_Analytics/OlympicClearDataSet/ 
> event_medals <- data %>%
      filter(!is.na(medal)) %>%
      group_by(isTeamSport) %>%
      summarise(total_medals = n()) %>%
      mutate(event_type = ifelse(isTeamSport, "Team Sport", "Individual Sport"))
> print(event_medals)
# A tibble: 2 \times 3
  isTeamSport total_medals event_type
  \langle 1q1 \rangle
                      <int> <chr>
1 FALSE
                      63146 Individual Sport
                      <u>41</u>005 Team Sport
2 TRUE
> ggplot(event_medals, aes(x = "", y = total_medals, fill = event_type)) +
      geom_bar(stat = "identity", width = 1) +
      coord_polar("y") +
      labs(title = "Medal Distribution by Event Type") +
      theme_void() +
      scale_fill_manual(values = c("skyblue", "orange"))
> View(event_medals)
>
```


Reference: Sport Law. (n.d.). Olympic success: When 24 athletes = 1 medal.

https://sportlaw.ca/olympic-success-when-24-athletes-1-medal/

Now for the medal distribution between team and individual sports. We used dplyr library, it filters rows with missing medal data (filter(!is.na(medal))), groups the data by isTeamSport (group_by(isTeamSport)). Then we calculate total medals for each type (summarise(total_medals = n())). A new column, event_type, is added to label events as & quot;Team Sport" or "Individual Sport" (mutate(event_type = ifelse(isTeamSport, "Team Sport", "Individual

Sport"))). The results are stored in event_medals and printed for review. Using ggplot2, a pie chart is created by applying polar coordinates (coord_polar("y")) to a bar plot of medal totals, with custom colors (scale_fill_manual(values = c("skyblue", "orange"))) for event types. Minimalistic styling (theme_void()) and labels clarify the distribution. This visualization highlights the proportion of medals won.

In this article the "Olympic Success: When 24 Athletes = 1 Medal" by Sport Law discusses the complexities of medal distribution in team events at the Olympics. In team sports, a single medal is awarded to the team as a whole, regardless of the number of athletes on the team. This means that whether a team comprises 2 or 24 athletes, the team's victory counts as one medal in the overall tally. Consequently, countries with strong performances in team events may have a lower total medal count compared to those excelling in individual events, where each athlete's victory contributes separately to the medal tally. But if you look at the graph, it is obviously individual sports getting more medals to the amount of participants. It is pretty obvious that less medals are given to a team sport since they only get 1 medal. A team medal. This system can lead to a skewed perception of a nation's overall performance, as the medal count may not accurately reflect the number of athletes contributing to the success.

- 4) What is the gender distribution of medal winners across different sports?
 - Objective: Explore how gender representation varies across sports.

CODE

```
gender_distribution <- data %>%

filter(!is.na(medal)) %>%

group_by(sport, sex) %>%

summarise(total_medals = n(), .groups = "drop")

ggplot(gender_distribution, aes(x = reorder(sport, total_medals), y = total_medals,

fill = sex)) +

geom_bar(stat = "identity", position = "stack") +

coord_flip() + # Flip coordinates for better readability

labs(

title = "Gender Distribution of Medal Winners Across Sports",

x = "Sport",

y = "Total Medals",

fill = "Gender"

) +

theme_minimal()
```

```
s of
R 4.4.1 · D:/Visual_Analytics/OlympicClearDataSet/
> selected_sports <- c("Swimming", "Wrestling", "Gymnastics", "Rowing")</pre>
> gender_trends_filtered <- gender_trends %>%
      filter(sport %in% selected_sports, edition >= 1900 & edition <= 2000)</pre>
> ggplot(gender_trends_filtered, aes(x = edition, y = sport, fill = total_medals))
      geom_tile() +
      scale_fill_gradient(low = "white", high = "blue") +
      facet_wrap(~ sex, ncol = 1) + # Separate panels for gender
      labs(
          title = "Gender Trends in Medal Winners (1900-2000): Selected Sports",
          x = "Edition (Year)",
          y = "Sport",
          fill = "Total Medals"
      ) +
      theme_minimal() +
      theme(
          axis.text.x = element_text(angle = 45, hjust = 1),
          legend.position = "bottom"
      )
> View(heatmap_data)
> View(gender_distribution)
> View(event_medals)
> View(gender_trends)
> View(gender_trends)
> View(gender_trends_filtered)
>
```


This specific heat map visualizes gender trends in Olympic medal winners across selected sports (wrestling, swimming, and rowing) from 1900 to 2000, highlighting disparities and gradual progress in gender equity. Male athletes show consistent participation in wrestling and increasing representation in swimming and rowing over time, reflecting established male dominance in sports. In contrast, female participation is initially sparse, with a significant increase in swimming starting mid-century, while rowing and wrestling show limited female representation. This pattern aligns with broader societal shifts and the delayed inclusion of women in various Olympic events.

These trends align with the historical narrative of gender equity in the Olympics, as explored by PBS (Newshour, 2021). Women faced significant barriers to participation in early Olympic history, with only 22 women competing in 1900, a stark contrast to today's near-parity in participation. The gradual increase in female representation, particularly in sports like swimming, reflects broader societal efforts toward gender equality and the International Olympic Committee's push for inclusion. Despite these certain advancements, disparities remain, particularly in traditionally male-dominated sports like wrestling, underscoring the need for continued efforts to promote equity. In conclusion certain sports will be dominated by male or females but that is the beauty of it.

Reference:

PBS Newshour. (2021, July 31). Exploring the history of gender equity at the Olympics and where things stand today. PBS.-

The link:

https://www.pbs.org/newshour/show/exploring-the-history-of-gender-equity-at-the-olympics-and-where-things-stand-today

Statistical Summary and Script.

Show min, max, mean, median, percentile for a minimum of 2 columns/fields

CODE:

```
> height_min <- min(data$height, na.rm = TRUE)
> height_max <- max(data$height, na.rm = TRUE)
> height_mean <- mean(data$height, na.rm = TRUE)
> height_median <- median(data$height, na.rm = TRUE)
> height_percentiles <- quantile(data$height, probs = c(0.05, 0.25, 0.5, 0.75, 0.95), na.rm = TRUE)
> weight_min <- min(data$weight, na.rm = TRUE)
> weight_max <- max(data$weight, na.rm = TRUE)
> weight_mean <- mean(data$weight, na.rm = TRUE)
> weight_median <- median(data$weight, na.rm = TRUE)
> weight_percentiles <- quantile(data$weight, probs = c(0.05, 0.25, 0.5, 0.75, 0.95), na.rm = TRUE)
> cat("Height Statistics:\n")
```

Code Explanation:

- min() and max(): Compute the minimum and maximum values, skipping NA values using na.rm = TRUE.
- mean(): Calculates the average value.
- median(): Finds the middle value in the sorted data.
- probs = c(0.05, 0.25, 0.5, 0.75, 0.95) computes the 5th, 25th, 50th (median), 75th, and 95th percentiles.
- cat(): Prints the statistics to the console in a formatted way.

```
> cat("Height Statistics:\n")
Height Statistics:
> cat("Minimum Height:", height_min, "\n")
Minimum Height: 127
> cat("Maximum Height:", height_mean, "\n")
Maximum Height: 176
> cat("Mean Height:", height_median, "\n")
Mean Height: 176
> cat("Median Height:", height_median, "\n")
Median Height: 176
> cat("Bercentiles (5th, 25th, 50th, 75th, 95th):\n")
Percentiles (5th, 25th, 50th, 75th, 95th):\n")
Weight Statistics:
> cat("Winimum Weight:", weight_min, "\n")
Minimum Weight: 198
> cat("Maximum Weight:", weight_max, "\n")
Maximum Weight: 198
> cat("Mean weight:", weight_mean, "\n")
Mean Weight: 70
> cat("Gwedian Weight:", weight_median, "\n")
Median Weight: 70
> cat("Percentiles (5th, 25th, 50th, 75th, 95th):\n")
Percentiles (5th, 25th, 50th, 75th, 95th):\n")
```



```
> cat("Height Statistics:\n")
Height Statistics:
> cat("Minimum Height:", height_min, "\n")
Minimum Height: 127
> cat("Maximum Height:", height_max, "\n")
Maximum Height: 226
> cat("Mean Height:", height_mean, "\n")
Mean Height: 176.3265
> cat("Median Height:", height_median, "\n")
Median Height: 176
> cat("Percentiles (5th, 25th, 50th, 75th, 95th):\n")
Percentiles (5th, 25th, 50th, 75th, 95th):
> print(height_percentiles)
 5% 25% 50% 75% 95%
160 170 176 183 193
> cat("\n")
> cat("Weight Statistics:\n")
Weight Statistics:
> cat("Minimum Weight:", weight_min, "\n")
Minimum Weight: 25
> cat("Maximum Weight:", weight_max, "\n")
Maximum Weight: 198
> cat("Mean Weight:", weight_mean, "\n")
Mean Weight: 71.86827
> cat("Median Weight:", weight_median, "\n")
Median Weight: 70
> cat("Percentiles (5th, 25th, 50th, 75th, 95th):\n")
Percentiles (5th, 25th, 50th, 75th, 95th):
> print(weight_percentiles)
 5% 25% 50% 75% 95%
 51 62 70 80 96
```

Interpretation:

- Most athletes' heights range between 170 cm (25th percentile) and 183 cm (75th percentile), which represents the middle 50% of the data.
- The mean (176.7 cm) and median (176 cm) are close, indicating the height distribution is symmetric without significant outliers.
- 5th Percentile (160 cm) and 95th Percentile (193 cm) show the range of typical heights. Only 5% of athletes are shorter than 160 cm or taller than 193 cm.
- Most athletes' weights are between 170 kg (25th percentile) and 183 kg (75th percentile).
- The mean (176.7 kg) and median (176 kg) are also close, suggesting a symmetric distribution.

• The 5th Percentile (160 kg) and 95th Percentile (193 kg) highlight the range of weights for the majority, with extreme weights only affecting a small portion of athletes.

Statistical Summary

Apply the statistical summary function for a minimum of 2 columns/fields.


```
R 4.4.1 · D:/Visual_Analytics/OlympicClearDataSet/
> height_summary <- summary(data$height)</pre>
> weight_summary <- summary(data$weight)</pre>
> height_percentiles <- quantile(data$height, probs = c(0.05, 0.25, 0.5, 0.75,</pre>
0.95), na.rm = TRUE)
> weight_percentiles <- quantile(data$weight, probs = c(0.05, 0.25, 0.5, 0.75,
0.95), na.rm = TRUE)
> cat("Height Summary:\n")
Height Summary:
> print(height_summary)
  Min. 1st Qu. Median
                           Mean 3rd Qu.
                                            Max.
  127.0
         170.0
                 176.0
                          176.3
                                   183.0
                                           226.0
> cat("Height Percentiles:\n")
Height Percentiles:
> print(height_percentiles)
5% 25% 50% 75% 95%
160 170 176 183 193
> cat("\nWeight Summary:\n")
Weight Summary:
> print(weight_summary)
  Min. 1st Qu. Median
                           Mean 3rd Qu.
                                            Max.
        62.00
                 70.00
                         71.87
                                 80.00 198.00
> cat("Weight Percentiles:\n")
Weight Percentiles:
> print(weight_percentiles)
 5% 25% 50% 75% 95%
 51 62 70 80 96
>
```

Interpretation:

Height

• Min: 127 cm – The shortest athlete is 127 cm tall.

• Max: 226 cm – The tallest athlete is 226 cm tall.

• Mean: 176.7 cm – The average height across all athletes.

• **Median:** 176 cm – Half of the athletes are shorter, and the other half are taller than 176 cm.

Percentiles:

• 5th Percentile: 160 cm - 5% of athletes are shorter than 160 cm.

• 95th Percentile: 193 cm - 95% of athletes are shorter than 193 cm.

Weight

• Min: 30 kg – The lightest athlete weighs 30 kg.

• Max: 120 kg – The heaviest athlete weighs 120 kg.

• Mean: 75.5 kg – The average weight across all athletes.

 Median: 70 kg – Half of the athletes weigh less, and half weigh more than 70 kg.

This statistical summary provides an overview of the distribution of heights and weights among athletes. It highlights the typical ranges and helps identify any outliers extremely short or tall athletes, or very light or heavy athletes