# Randomized Data Structures and Algorithms

John Augustine (IIT Madras)
Krishna Palem (RICE University)



### Source:

These slides are based on source material (including notation, concepts, and presentation approach) <a href="https://www.ics.uci.edu/~pattis/ICS-23/lectures/notes/Skip%20Lists.pdf">https://www.ics.uci.edu/~pattis/ICS-23/lectures/notes/Skip%20Lists.pdf</a> and <a href="http://www.cc.gatech.edu/~vigoda/7530-Spring10/Kargers-MinCut.pdf">http://www.cc.gatech.edu/~vigoda/7530-Spring10/Kargers-MinCut.pdf</a>.

### Overview

- Skip List: A Randomized Dictionary
  - Overall Structure & Operations
  - Analysis: number of levels, search time, space.
- Karger's Mincut Algorithm
  - Problem Definition
  - Algorithm
  - Analysis

# Skip List Its overall structure and operations.

# Recollecting the Dictionary ADT

- Stores (key, value) pairs.
- Operations: Insertion, Deletion, Search.
- Examples: (Balanced) Binary Search Trees.
- Typically, O(n) space and  $O(\log n)$  time per operation.
- Skip list achieves these bounds on expectation and with high probability (WHP), i.e., probability at least  $1 \frac{1}{n^c}$  for some fixed c > 0.

## Intuition

- lacktriangle A linked list requires  $\Omega(n)$  time for search
  - Why? Because the search procedure works like a slow train that stops at every station.
- How to speedup search time?
  - As a first thought, add an express lane.
  - With probability  $\frac{1}{\sqrt{n}}$ , promote each node to the express lane.

### Intuition



- ▶ Sentinel nodes (with  $-\infty$  and  $\infty$  values) are present in all lanes or levels.
- There will now be  $\mathbb{E}[\sqrt{n}]$  elements in the express lanes
- The number of elements in slow lane between two express lane elements is also  $\sim \mathbb{E}[\sqrt{n}]$ .
- Thus, expected times for each operation is  $O(\sqrt{n})$ . (Verify!)

### Intuition

Searching for key value 70



- ▶ Sentinel nodes (with  $-\infty$  and  $\infty$  values) are present in all lanes or levels.
- There will now be  $\mathbb{E}[\sqrt{n}]$  elements in the express lanes
- The number of elements in slow lane between two express lane elements is also  $\sim \mathbb{E}[\sqrt{n}]$ .
- Thus, expected times for each operation is  $O(\sqrt{n})$ . (Verify!)

# **Extending the Intuition**

- If one express lane helps, what about more?
  - Three? Four? ... 100? ...  $\log \log n$ ? ...  $\log n$ ? ...  $\sqrt{n}$ ? ...



# The Skip List

Each node at one of the levels is promoted to the next level with probability  $\frac{1}{2}$ .



# Searching for 68



# Searching for 83 and Deleting it



# Searching for 83 and Deleting it



# Inserting 97



# Inserting 97



# Analysis of Skip Lists

Number of levels, space complexity, search times

# **Expected Number of Levels**

Pick an item x. What is the probability that x is raised to level i or more?

 $\frac{1}{2^{i}}$  (= prob of fair coin coming heads *i* times)

- Probability  $p_i$  of at least one item at level i or more is  $p_i \leq \frac{n}{2^i}$  (using the union bound).
- When  $i = 3 \log n$ ,  $p_i \le \frac{n}{2^{3 \log n}} = \frac{n}{n^3} = \frac{1}{n^2}$ .
- In other words, the number of levels is less than  $3 \log n$  WHP.

# **Expected Space Complexity**

- Each item has a constant number of pointers, so we only need to count the number of items.
- Since expected number of items at level i is  $\frac{n}{2^{i}}$ , the total number of items is

$$\sum_{i=0}^{\infty} \frac{n}{2^i} = n \sum_{i=0}^{\infty} \frac{1}{2^i} = n(1 + \frac{1}{2} + \frac{1}{4} + \cdots) \in O(n).$$

# Recall Searching for 68



### Search Time

- To search for an item, we alternate between
  - making forward moves (until we overshoot the searched item) and
  - 2. stepping down one level.
- There are  $O(\log n)$  levels WHP.
- The items encountered at a level do not also occur at the level above (except for the first item and possibly the last item).

### Search Time

- The probability that an item is not raised one more level is  $\frac{1}{2}$ .
- Thus, expected number of items encountered at a level is at most 2 + 2 = 4.
- Thus expected search time is  $O(\log n)$ .
- Exercise: Show that insertion and deletion also take expected  $O(\log n)$  time.

# The Mincut problem

Which of these graphs will be a robust network?







Karger's Mincut Algorithm

# The Mincut problem

- Consider an undirected, unweighted graph G = (V, E).
- lacktriangle A cut is a partition of V into two sets S and  $V\setminus S$ .
- The cutset corresponding to this cut is the set of edges with one end in S and the other in  $V \setminus S$ .
- Our goal is to find the partition such that the corresponding cutset has least cardinality.

# Karger's Mincut Algorithm

- There is a flow based algorithm, but the randomized algorithm proposed by Karger is very elegant.
- Repeat until graph has only two vertices
  - lacktriangle Pick an edge (u,v) uniformly at random from all edges.
  - Contract (u, v), i.e., coalesce u and v into one. Remove self loops, but retain multi-edges
- Let S be the set of original vertices that lead to one of the final two vertices.
- **Lemma**: with probability at least  $\frac{1}{\binom{n}{2}}$ , S and  $V \setminus S$  induce the smallest cutset.









# **Analysis**

- Let  $C^*$  be a cutset of minimum cardinality.
- In order to prove the lemma, we will simply prove that:

Pr[cut produced by algorithm is  $C^*$ ]  $\geq \frac{1}{\binom{n}{2}}$ .

Let  $e_1, e_2, ..., e_{n-2}$  be the sequence of edges contracted by the algorithm. The algorithm succeeds if none of them are in  $C^*$ .

# Minimum Degree and Cutset Size

- Let  $k = |C^*|$ . Clearly, the minimum degree of G must be at least k.
- Moreover, this holds as an invariant for all intermediate (multi) graphs.
  - The edges incident at the low degree vertex of the intermediate graph correspond to a cutset in the original graph.

# Analysis (contd.)

- Let  $G_i$  denote the graph after j contractions.
- Note:  $G_i$  has n-j vertices
- The number of edges, therefore, is at least  $\frac{(n-j)k}{2}$ .

 $Pr[cut produced by algorithm is C^*]$ 

= 
$$\Pr[e_1 \notin C^*] \prod_{j=1}^{n-3} \Pr[e_{j+1} \notin C^* | e_1 \dots e_j \notin C^*]$$

# Analysis (contd.)

$$\geq \prod_{j=0}^{n-3} \left( 1 - \frac{k}{\frac{(n-j)k}{2}} \right)$$

$$= \frac{n-2}{n} \times \frac{n-3}{n-1} \times \dots \times \frac{2}{4} \times \frac{1}{3}$$

$$= \frac{2}{n(n-1)} = \frac{1}{\binom{n}{2}}.$$

# Boosting the Probability of Success

- To improve our success probability, we can simply repeat the algorithm, say,  $c \log n$  times (for any c > 0) and report the smallest cutset.
- Probability that all these repetitions will fail is at most

$$\left(1 - \frac{1}{\binom{n}{2}}\right)^{c \binom{n}{2} \log_e n} \leq \frac{1}{n^c}.$$

Thus, algorithm will succeed WHP.

# **Running Time Analysis**

- This is a Monte Carlo randomized algorithm, i.e., the running time is deterministic, but the algorithm may fail to produce the correct mincut with very small probability.
- Exercise: show that each run of Karger's algorithm takes  $O(n^2)$  time.
- Thus, with probability boosting, the algorithm takes  $O(n^4 \log n)$  time.

# Thank You!