# The R package {bigstatsr}: memory- and computation-efficient tools for big matrices stored on disk

Florian Privé (@privefl)

```
Slides: https://privefl.github.io/R-presentation/bigstatsr.html
```

Installation: remotes::install\_github("privefl/bigstatsr")

# Motivation

## My thesis work

I'm a postdoc in **Predictive Human Genetics**.



## Very large genotype matrices

- previously: 15K x 280K, celiac disease (~30GB)
- currently: 500K x 500K, UK Biobank (~2TB)



But I still want to use  $\mathbf{Q}$ ..

#### The solution I found



Format FBM is very similar to format filebacked.big.matrix from package {bigmemory} (details in this vignette).

# Simple accessors

#### Similar accessor as R matrices

```
X <- FBM(2, 5, init = 1:10, backingfile = "test")</pre>
X$backingfile
## [1] "/home/privef/Bureau/R-presentation/test.bk"
X[, 1] ## ok
## [1] 1 2
X[1, ] ## bad
## [1] 1 3 5 7 9
X[] ## super bad
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 3 5 7 9
## [2,] 2 4 6 8 10
```

#### Similar accessor as R matrices

```
colSums(X[]) ## super bad
```

## [1] 3 7 11 15 19



# Split-(par)Apply-Combine Strategy

Apply standard R functions to big matrices (in parallel)



Implemented in big\_apply().

## Similar accessor as Rcpp matrices

```
// [[Rcpp::depends(rmio, RcppArmadillo, bigstatsr)]]
#include <bigstatsr/BMAcc.h>
// [[Rcpp::export]]
NumericVector big_colsums(Environment BM) {
  XPtr<FBM> xpBM = BM["address"];
  BMAcc<double> macc(xpBM);
  size_t n = macc.nrow();
  size_t m = macc.ncol();
  NumericVector res(m);
  for (size_t j = 0; j < m; j++)</pre>
    for (size_t i = 0; i < n; i++)</pre>
      res[j] += macc(i, j);
  return res;
```

# Some examples from my work

# Partial Singular Value Decomposition

 $15K \times 100K - 10$  first PCs -- 6 cores -- 1 min (vs 2h in base R)



Implemented in big\_randomSVD(), powered by R packages {RSpectra} and {Rcpp}.

# Sparse linear models

#### Predicting complex diseases with a penalized logistic regression

 $15K \times 280K - 6$  cores - 2 min (10x faster than {glmnet})

Automatic (parallel) grid-search for the two hyper-parameters of elastic-net.



# Let us try some functions

## Create an FBM object

```
X <- FBM(10e3, 1000, backingfile = "test2")
object.size(X)

## 680 bytes

file.size(X$backingfile) ## 8 x 1e4 x 1e3

## [1] 8e+07

typeof(X)

## [1] "double"</pre>
```

#### Fill it with random values



```
big_apply(X, a.FUN = function(X, ind) {
   X[, ind] <- rnorm(nrow(X) * length(ind))
   NULL ## Here, you don't want to return anything
}, a.combine = 'c')</pre>
```

## NULL

```
X[1:5, 1]
```

## [1] 0.9049859 0.4069235 0.2709667 -1.7053191 1.0157806

#### Correlation matrix

```
mat <- X[]
system.time(corr1 <- cor(mat))</pre>
##
    user system elapsed
            0.008
##
   7.226
                   7.243
system.time(corr2 <- big_cor(X))</pre>
##
    user system elapsed
    0.452 0.062
##
                   0.514
all.equal(corr1, corr2[])
## [1] TRUE
```

## Partial Singular Value Decomposition

```
system.time(svd1 \leftarrow svd(scale(mat), nu = 10, nv = 10))
##
    user system elapsed
##
    3.802 0.330 4.142
# Quadratic in the smallest dimension, linear in the other one
system.time(svd2 <- big SVD(X, fun.scaling = big scale(), k = 10))</pre>
##
     user system elapsed
##
    1.464
            0.112
                   1.576
# Linear in both dimensions
# Extremely useful if both dimensions are very large
system.time(svd3 <- big_randomSVD(X, fun.scaling = big_scale(), k = 1</pre>
    user system elapsed
##
##
     1.933 0.014 1.948
```

## Multiple association

```
M <- 100 # number of causal variables
set <- sample(ncol(X), M)
y <- scale(X[, set]) %*% rnorm(M)
y <- y + rnorm(length(y), sd = 2 * sd(y))
mult_test <- big_univLinReg(X, y, covar.train = svd2$u)
plot(mult_test)</pre>
```



# Multiple association

```
library(ggplot2)
plot(mult_test, type = "Manhattan") +
  aes(color = cols_along(X) %in% set) +
  labs(color = "Causal?")
```





#### **Prediction**

### Prediction

```
# Plot true value vs prediction
qplot(pred, y[ind.test]) +
  geom_abline(intercept = 0, slope = 1, color = "red") +
  theme_bigstatsr()
```



# Toy case:

Compute the sum for each column

#### **Brute force solution**

sums1 <- colSums(X[]) ## /!\ access all the data in memory</pre>



# Do it by blocks

## [1] TRUE



# Using Rcpp (1/3)

```
// [[Rcpp::depends(bigstatsr, rmio, RcppArmadillo)]]
#include <bigstatsr/BMAcc.h>
// [[Rcpp::export]]
NumericVector bigcolsums(Environment BM) {
  XPtr<FBM> xpBM = BM["address"]; // get the external pointer
  BMAcc<double> macc(xpBM); // create an accessor to the data
  size_t i, j, n = macc.nrow(), m = macc.ncol();
  NumericVector res(m); // vector of m zeros
  for (j = 0; j < m; j++)
   for (i = 0; i < n; i++)
     res[j] += macc(i, j);
  return res;
```

# Using Rcpp (1/3)

```
sums3 <- bigcolsums(X)
all.equal(sums3, sums1)</pre>
```

## [1] TRUE

# Using Rcpp (2/3): the bigstatsr way

```
// [[Rcpp::depends(bigstatsr, rmio, RcppArmadillo)]]
#include <bigstatsr/BMAcc.h>
// [[Rcpp::export]]
NumericVector bigcolsums2(Environment BM,
                          const IntegerVector& rowInd,
                          const IntegerVector& colInd) {
 XPtr<FBM> xpBM = BM["address"];
  SubBMAcc<double> macc(xpBM, rowInd - 1, colInd - 1);
  size_t i, j, n = macc.nrow(), m = macc.ncol();
  NumericVector res(m); // vector of m zeros
  for (j = 0; j < m; j++)
   for (i = 0; i < n; i++)
     res[j] += macc(i, j);
  return res;
```

# Using Rcpp (2/3): the bigstatsr way

```
sums4 <- bigcolsums2(X, rows_along(mat), cols_along(mat))
all.equal(sums4, sums1)

## [1] TRUE

sums5 <- bigcolsums2(X, rows_along(mat), 1:10)
all.equal(sums5, sums1[1:10])

## [1] TRUE</pre>
```

# Using Rcpp (3/3): already implemented

```
sums6 <- big_colstats(X)
str(sums6)

## 'data.frame': 1000 obs. of 2 variables:
## $ sum: num 184.5 -55.8 77.4 -110.5 -45.1 ...
## $ var: num 0.997 1.006 0.987 1.005 1.014 ...

all.equal(sums6$sum, sums1)

## [1] TRUE</pre>
```

# Parallelism

# Most of the functions are parallelized

```
ind.rep <- rep(cols_along(X), each = 100) ## size: 100,000
 (NCORES <- nb cores())
## [1] 2
system.time(
  mult_test2 <- big_univLinReg(X, y, covar.train = svd2$u,</pre>
                               ind.col = ind.rep)
## user system elapsed
## 6.186 0.014 6.269
system.time(
  mult_test3 <- big_univLinReg(X, y, covar.train = svd2$u,</pre>
                                ind.col = ind.rep, ncores = NCORES)
##
   user system elapsed
    0.061 0.054 4.389
##
```

## Parallelize your own functions

```
system.time(
  mult_test4 <- big_parallelize(</pre>
    X, p.FUN = function(X, ind, y, covar) {
      bigstatsr::big_univLinReg(X, y, covar.train = covar,
                                 ind.col = ind)
    }, p.combine = "rbind", ind = ind.rep,
    ncores = NCORES, y = y, covar = svd2$u)
##
   user system elapsed
##
    0.055 0.057 5.046
all.equal(mult_test4, mult_test3)
## [1] TRUE
```

# Conclusion

I'm able to run algorithms on 100GB of data in **R** on my computer

# Advantages of using FBM objects

- you can apply algorithms on data larger than your RAM,
- you can easily **parallelize** your algorithms because the data on disk is shared,
- you write **more efficient algorithms** (you do less copies and think more about what you're doing),
- you can use **different types of data**, for example, in my field, I'm storing my data with only 1 byte per element (rather than 8 bytes for a standard R matrix). See the documentation of the FBM class for details.

## Check publications for details

# Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr 3

Florian Privé M, Hugues Aschard, Andrey Ziyatdinov, Michael G B Blum M

Bioinformatics, bty185, https://doi.org/10.1093/bioinformatics/bty185



#### Efficient Implementation of Penalized Regression for Genetic Risk Prediction

Florian Privé,\*.¹ Hugues Aschard,† and Michael G. B. Blum\*.¹
\*Laboratoire TIMC-IMAG, UMR 5525, University of Grenoble Alpes, CNRS, 38700 La Tronche, France and †Centre de
Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, 75015 Paris, France

## Contributors are welcome!



## Make sure to grab an hex sticker



## Thanks!

Presentation: https://privefl.github.io/R-presentation/bigstatsr.html

Package's website: https://privefl.github.io/bigstatsr/

DOIs: 10.1093/bioinformatics/bty185 and 10.1534/genetics.119.302019



Slides created via the R package **xaringan**.