

SLVU2.8

Low Voltae EPD TVS Diode For ESD and Latch-Up Protection Revision: A

General Description

The Ultraslow Capacitance Transient Voltage Suppressors are designed to low voltage, integrated circuits from transients caused by electrostatic discharge (ESD), electrical fast transients (EFT), tertiary lightning and other induced voltages.

Applications

- Ethernet 10/100/1000 Base T
- WAN/LAN Equipment
- Desktops, Servers, Notebooks & Handhelds
- Laser Diode Protection

Features

- 400 W Peak Pulse Power per Line (tp=8/20μs)
- One Device protects one Unidirectional Line.
- Low Capacitance.
- Low Leakage Current.
- Low Operating and Clamping Voltages.
- Transient Protection for High Speed Data Lines to

IEC61000-4-2(ESD)±15kV(air),±8kV(Contact)
IEC61000-4-4(EFT) 40A(5/50ns)
IEC61000-4-5(lightning) 24A(8/20us)

Absolute Maximum Ratings

Parameter	Symbol	Value	Units
Peak Pulse Power (tp = 8/20µs) - See Fig1.	P _{PK}	400	W
Peak Pulse Current (tp = 8/20µs)	I _{PP}	24	Α
Storage Temperature Range		-55 to 150	°C
Operating Junction Temperature Range	TJ	-55 to 150	°C

Fig1. Peak Pulse Power
VS Pulse Time

Electrical Parameter

Symbol	Parameter		
I _{PP}	Peak Pulse Current		
V _C	Clamping Voltage @ I _{PP}		
V_{RWM}	Reverse Stand-Off Voltage		
I _R	Reverse Leakage Current @ V _{RWM}		
V_{SB}	Snap-Back Voltage @ I _{SB}		
I _{SB}	Snap-Back Current		
V_{PT}	Punch-Through Voltage		
I _{PT}	Punch-Through Current		
V_{BRR}	Reverse Breakdown Voltage @ I _{BRR}		
I _{BRR}	Reverse Breakdown Current		

Fig 2. SLVU2.8 IV Characteristic Curve

Electrical Characteristics

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
Reverse Stand-Off Voltage	V_{RWM}	Pin 3 to 1 or Pin 2 to 1			2.8	V
Punch-Through Voltage	V_{PT}	I _{PT} = 2uA, Pin 3 to 1	3 to 1 3.0			V
Snap-Back Voltage	V _{SB}	I _{SB} = 50mA, Pin 3 to 1	2.8			V
Reverse Leakage Current	I _R	V _{RWM} =2.8V, T=25℃		1		
		Pin 3 to 1 or Pin 2 to 1			Į	uA
Clamping Voltage	V _C	I_{PP} =2A, t_{P} =8/20us			3.9	V
		Pin 3 to 1			5.9	
Clamping Voltage	V _C	I_{PP} =5A, t_{P} =8/20us			7	V
		Pin 3 to 1			,	
Clamping Voltage	V _C	I_{PP} =24A, t_{P} =8/20us			12.5	V
		Pin 3 to 1			12.5	
Clamping Voltage	V _C	I_{PP} =5A, t_{P} =8/20us			8.5	V
		Pin 2 to 1				
Clamping Voltage	V _C	I_{PP} =24A, t_{P} =8/20us			15	V
		Pin 2 to 1			15	V
Junction Capacitance	C _j	Pin 3 to 1 and 2				
		(Pin 1 and 2 tied together)		70	100	pF
		VR =0V, f =1MHz				
lunction Canacitance		Pin 2 to 1 (Pin 3 N.C.)	2.5		5	nE
Junction Capacitance	C_{j}	VR =0V, f =1MHz		3.5	5	pF

Steering Diode Characteristics						
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
Reverse Breakdown Voltage	V_{BRR}	I _T =10uA, Pin 3 to 2	40			V
Reverse Leakage Current	I _{BRR}	V _{RWM} =2.8V, T =25°C			1	UA
Reverse Leakage Current		Pin 3 to 2				
Forward Voltage	V_{F}	I _F =1A, Pin 2 to 3			2	V

Application Note

The SLVU2.8 is ideal for providing protection for electronic equipment that is susceptible to damage caused by Electrostatic Discharge (ESD), Electrical Fast Transients (EFT) and tertiary lightning effects. This product is offered in a unidirectional configuration and provides both commonmode and differential-mode protection.

Unidirectional Common-Mode Protection (Figure 9)

The SLVU2.8 provides one line of unidirectional protection in a common-mode configuration as depicted in figure 9.

Circuit connectivity is as follows:

- Line 1 is connected to Pin 3
- Pins 1 and 2 are connected to ground

Bidirectional Common-Mode Protection (Figure 10)

Two SLVU2.8 devices provide one line of bidirectional protection in a common-mode configuration as depicted in figure 10.

Circuit connectivity is as follows:

- Line 1 is connected to Pin1 of Device 1 & Pin 2 of Device 2
- Pin 2 of Device 1 and Pin 1 of Device 2 are connected to ground
- Pin 3 of both devices is not connected

Fig10.

Bidirectional Differential-Mode Protection (Figure 11)

Two SLVU2.8 devices provide up to two lines of bidirectional protection in a differential mode configuration as depicted in figure 11.

Circuit connectivity is as follows:

- Line 1 is connected to Pin1 of Device 1 & Pin 2 of Device 2
- Line 2 is connected to Pin 2 of Device 1 & Pin 1 of Device 2

Fig11.

Circuit Board Layout Protection

Circuit board layout is critical for Electromagnetic Compatibility (EMC) protection. The following guidelines are recommended:

- The protection device should be placed near the input terminals or connectors, the device will divert the transient current immediately before it can be coupled into the nearby traces.
- The path length between the TVS device and the protected line should be minimized.
- All conductive loops including power and ground loops should be minimized.
- The transient current return path to ground should be kept as short as possible to reduce parasitic inductance.
- Ground planes should be used whenever possible. For multilayer PCBs, use ground vias.

Typical Applications RJ45 TPIN 50 Ω 50Ω To Twisted -- Pair Network 10/100 75Ω 50Ω 50Ω Ethernet Repeater 50Ω 50Ω TPIP 50Ω ∕∕∕√√ Ē 75Ω .01uF TPON \$200Ω .001uF SLVU2.8 **≨**200Ω HTPOP .01uF VCCT .01uF SLVU2.8 GNDT

Fig12. 10/100 Ethernet Protection Circuit

Fig13. 10/100 Ethernet "Enhanced" Lightning Protection Circuit

SOT-23 Mechanical Data

Dim	Millimeters					
	Min	TYP	Max			
Α	1.00		1.40			
A 1	0		0.10			
A2	1.00		1.30			
b	0.35		0.50			
С	0.10		0.20			
D	2.70	2.90	3.10			
E	2.40		2.80			
E1	1.40		1.60			
е	0.85		1.15			
e1		1.90				
L1	0.40					
q	0°		10°			
S	0.45		0.55			

The SINO-IC logo is a registered trademark of ShangHai Sino-IC Microelectronics Co., Ltd. © 2005 SINO-IC – Printed in China – All rights reserved.

SHANGHAI SINO-IC MICROELECTRONICS CO., LTD

Add: No.55-302, 200 SongTao Road, ZhangJiang Hi-Tech Park, Pudong, Shanghai 201203, China

Phone: +86-21-50275099 50805407 50805408

Fax: +86-21-50275077

Email: webmaster@sino-ic.com
Website: http://www.sino-ic.com