FOGLIO DI ESERCIZI 1

UN (BEL) PO' DI TOPOLOGIA

Esercizio 1 (La topologia quoziente). Sia X uno spazio topologico e \sim una relazione di equivalenza su X. La topologia quoziente su $Y = X/\sim$ è definita da:

$$U \subset Y$$
 è aperto $\Leftrightarrow \pi^{-1}(U) \subset X$ è aperto ,

dove $\pi: X \to Y$ è la proiezione.

- Verificare che questo definisce una topologia su $Y = X/\sim$.
- Verificare che la proiezione π è continua.
- Mostrare che, data $f:Y\to Z$ dove Z è uno spazio topologico, f è continua se e soltanto se $f\circ\pi$ è continua.
- Ricordarsi di usare questi fatti negli esercizi successivi!

Esercizio 2 (Luoghi di zeri in $\mathbb{C}\mathrm{P}^n$). Ricordiamo che lo spazio proiettivo complesso è definito come

$$\mathbb{C}\mathrm{P}^n = \left(\mathbb{C}^{n+1} \setminus \{(0, \dots, 0)\}\right) / \sim,$$

dove $(z_0, \ldots, z_n) \sim \lambda(z_0, \ldots, z_n)$ per ogni $\lambda \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$.

• Verificare che \sim è una relazione di equivalenza.

Dato un numero naturale d, un polinomio $P \in \mathbb{C}[z_0,\ldots,z_{n-1}]$ di n variabili complesse si dice *omogeneo di grado d* se soddisfa

$$P(\lambda z_0, \dots, \lambda z_{n-1}) = \lambda^d P(z_0, \dots, z_{n-1}).$$

• Mostrare che, se P è un polinomio omogeneo di grado d>0 in n+1 variabili, allora gli insiemi

$$\Sigma_P = \{ [z_0 : \ldots : z_n] \in \mathbb{CP}^n : P(z_0, \ldots, z_n) = 0 \}$$

e

$$\Gamma_P = \{ [z_0 : \ldots : z_n] \in \mathbb{C}P^n : P(z_0, \ldots, z_n) \neq 0 \}$$

sono ben definiti come sottoinsiemi di $\mathbb{C}\mathrm{P}^n$. (Ovvero, le condizioni $P(z_0,\ldots,z_n)=0$ e $P(z_0,\ldots,z_n)\neq 0$ non dipendono dal rappresentante scelto nella classe di equivalenza $[z_0:\ldots:z_n]$.)

• Mostrare che

$$\pi^{-1}(\Sigma_P) = \{(z_0, \dots, z_n) \in \mathbb{C}^{n+1} \setminus \{0\} : P(z_0, \dots, z_n) = 0\}$$

e

$$\pi^{-1}(\Gamma_P) = \{(z_0, \dots, z_n) \in \mathbb{C}^{n+1} \setminus \{0\} : P(z_0, \dots, z_n) \neq 0\}.$$

• Dedurre che Σ_P è chiuso e Γ_P è aperto.

Esercizio 3 ($\mathbb{C}P^n$ è compatto). Definiamo ora le *carte affini* per $\mathbb{C}P^n$:

$$U_i = \{ [z_0 : \dots : z_n] \in \mathbb{C}P^n : z_i \neq 0 \}.$$

- Perché U_i è ben definita?
- Mostrare che $\varphi_i:U_i\to\mathbb{C}^n$ definita da

$$\varphi_i[z_0:\ldots:z_n] = \left(\frac{z_0}{z_i},\ldots,\frac{z_{i-1}}{z_i},\frac{z_{i+1}}{z_i},\ldots,\frac{z_n}{z_i}\right)$$

è ben definita ed è un omeomorfismo. (Suggerimento: chi è l'inversa? Usare anche gli esercizi precedenti!)

• Mostrare che $\mathbb{C}\mathrm{P}^n$ è ricoperto dagli insiemi $\varphi_i^{-1}(V_i)$, dove

$$V_i = \{(w_0, \dots, w_{i-1}, w_{i+1}, \dots, w_n) : |w_0|, \dots, |w_{i-1}|, |w_{i+1}|, |w_n| \le 1\}.$$

(Suggerimento: dato $[z_0:\ldots:z_n]$, scegliere i_0 tale che $|z_{i_0}|=\max\{|z_i|,i=1,\ldots,n\}$. Perché è ben definito? Perché il massimo è positivo?)

- Dimostrare che il prodotto di un numero finito di spazi topologici compatti è compatto¹
- Dimostrare che se uno spazio topologico X è unione finita di sottospazi compatti, allora X è compatto².
- Dedurre dai punti precedenti che $\mathbb{C}\mathrm{P}^n$ è compatto.

Esercizio 4 (Luoghi di zeri in $\mathbb{C}P^n$ sono compatti). Siamo ora quasi pronti per dimostrare che i luoghi di zeri di polinomi omogenei sono compatti. Sia P un polinomio omogeneo di grado d>0.

- Dimostrare che un sottoinsieme chiuso di uno spazio topologico compatto è compatto.
- Dedurre che $\Sigma_P \subset \mathbb{C}\mathrm{P}^n$ è compatto³.

Esercizio 5 (La topologia di Alexandrov su $\mathbb{C}P^1$). Lo scopo di questo esercizio è di capire meglio la topologia di $\mathbb{C}P^1$. Iniziamo con un fatto generale.

- Mostrare che $\mathbb{C}\mathrm{P}^n$ è in biezione con l'unione disgiunta $\mathbb{C}^n \sqcup \mathbb{C}\mathrm{P}^{n-1}$. (Suggerimento: dato $[z_0:\ldots:z_n]$ considerare i due casi $z_0=0$ e $z_0\neq 0$.)
- Osservare che $\mathbb{C}P^0$ è costituito da un solo punto, e dedurne che $\mathbb{C}P^1=\mathbb{C}\sqcup\{\infty\}$.

Punti facoltativi

Dato uno spazio topologico X, si definisce compattificazione di Alexandrov, o compattificazione ad un punto, lo spazio topologico

$$\widehat{X} = X \sqcup \{\infty\} \;,$$

dove $U\subset \widehat{X}$ è aperto se e solo se U non contiene ∞ ed è aperto in X, oppure U contiene ∞ e $X\setminus U$ è compatto.

- Mostrare che questo definisce una topologia su \hat{X} .
- Mostrare che la biezione del primo punto è un omeomorfismo, per la topologia quoziente su $\mathbb{C}P^1$ e la topologia di Alexandrov su $\widehat{\mathbb{C}} = \mathbb{C} \sqcup \{\infty\}$.

¹Si può usare liberamente la compattezza per ricoprimenti o per successioni.

²Vedi nota 1.

³Vedi nota 1.