Exercise 1: LU Decomposition Consider the circuit diagram below:

Following the two rules:

- (1) The voltage drop across a resistor is V = IR,
- (2) The sum of all the voltage drops in a closed loop sum to zero, we can construct the following systems of equations:

$$R_6I_1 + R_1 (I_1 - I_2) + R_2 (I_1 - I_3) = V_1,$$

 $R_3I_2 + R_4 (I_2 - I_3) + R_1 (I_2 - I_1) = V_2,$
 $R_5I_3 + R_4 (I_3 - I_2) + R_2 (I_3 - I_1) = V_3.$

Let the resistances be given by $R_1=10\Omega,\ R_2=20\Omega,\ R_3=5\Omega,\ R_4=15\Omega,\ R_5=30\Omega$ and $R_6=25\Omega.$

(a) Write the equations in matrix form $A\mathbf{x} = \mathbf{b}$ (you need to do this by hand). Using the lu command in matlab, find matrices L, U and P such that PA = LU. Concatenate A, P, L and U in one 3×12 matrix and save it as $\mathbf{A1.dat}$.

(You don't know the voltage yet. Does that matter?)

- (b) Let $V_1 = 50$, $V_2 = 0$ and let V_3 vary from 1 to 100. For each value of V_3 , calculate I_1 , I_2 and I_3 using P, L and U. Save all of the results in a 3×100 matrix as $\mathbf{A2.dat}$, with the order of the columns following that of V_3 .
- (c) Repeat part (b), but use the inverse of A instead of L, U and P (using the command inv). This method should be slower, and the result should be slightly different. Subtract your results from parts (b) and (c), then save the absolute value of the difference as $\bf A3.dat$. The answer should still be a 3×100 matrix.

Exercise 2: Forces on a Bridge Consider the bridge truss shown below.

Given a vector of external forces \mathbf{b} at any of the positions 1-13, we can compute the forces $\mathbf{x} = [\mathbf{F}_1, \mathbf{F}_2, \dots, \mathbf{F}_{13}]^T$ by solving the system

$$A\mathbf{x} = \mathbf{b}$$
,

where A is given by

and $s = \sqrt{2}/2$.

We will solve for the vector of forces \mathbf{x} assuming that there are 5 ton vehicles sitting at nodes 6, 7 and 8. This means that $\mathbf{b} = [0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 5, 0, 5]^T$.

- (a) Solve for \mathbf{x} using the LU-decomposition. (Use the lu command.) Save the intermediate answer \mathbf{y} as $\mathbf{A4.dat}$ and the final answer \mathbf{x} as $\mathbf{A5.dat}$.
- (b) Solve for \mathbf{x} using the backslash command. Save your answer as $\mathbf{A6.dat}$.
- (c) Now suppose that we add weight to the middle truck (which corresponds to the 11th entry of $\bf b$) in increments of 0.01 tons until the bridge collapses. Each bridge member is rated for no more than 30 tons of compression or

tension (i.e., positive or negative forces.) That is, the bridge will collapse when the absolute value of the largest force is larger than 30. Find the weight of the middle truck at the exact moment the bridge collapses. Save your answer as **A7.dat**.

Update: You need to find the lowest weight of the middle truck such that the maximum force is greater than or equal to 30.

Hint: You can find the absolute value of the largest entry in a vector \mathbf{x} using the infinity norm. In matlab, this is $\text{norm}(\mathbf{x}, \text{Inf})$.