Home work #4

Dongkyu Kim(20162050)

September 17, 2017

Case1.

 $N^- = 10^{15} [{\rm cm}^{-3}] \ (0 \ {\rm to} \ 1 \mu m), \, N^+ = 10^{15} [{\rm cm}^{-3}] \ (1 \ {\rm to} \ 2 \mu m)$

Figure 1: Energy $\phi(x)[\text{ev}]$ versus $x[\mu m]$ with dopping density

Figure 2: Electron carrier density(red) and hole carrier density(blue)

Case 2.

$$N^- = 10^{16} [{\rm cm}^{-3}]~(0~{\rm to}~1 \mu m),\, N^+ = 10^{16} [{\rm cm}^{-3}]~(1~{\rm to}~2 \mu m)$$

Figure 3: Energy $\phi(x)[\text{ev}]$ versus $x[\mu m]$ with dopping density

Figure 4: Electron carrier density(red) and hole carrier density(blue)

Case 3.

$$N^- = 10^{17} [{\rm cm}^{-3}]~(0~{\rm to}~1\mu m),\, N^+ = 10^{17} [{\rm cm}^{-3}]~(1~{\rm to}~2\mu m)$$

Figure 5: Energy $\phi(x)[\text{ev}]$ versus $x[\mu m]$ with dopping density

Figure 6: Electron carrier density(red) and hole carrier density(blue)

Case4.

$$N^- = 10^{16} [{\rm cm}^{-3}]~(0~{\rm to}~1\mu m),\, N^+ = 10^{17} [{\rm cm}^{-3}]~(1~{\rm to}~2\mu m)$$

Figure 7: Energy $\phi(x)[\text{ev}]$ versus $x[\mu m]$ with dopping density

Figure 8: Electron carrier density(red) and hole carrier density(blue)