• Sean V y W dos espacios vectoriales reales (complejos) con producto interno y sea $T: V \to W$ una transformación lineal. Entonces T es una **isometría** si para cada y $\in V$

$$||\mathbf{v}||_V = ||T\mathbf{v}||_W$$

• Espacios vectoriales isométricamente isomorfos

Se dice que dos espacios vectoriales V y W son **isométricamente isomorfos** si existe una transformación lineal $T: V \to W$ que es tanto un isomorfismo como una isometría.

• Cualesquiera dos espacios reales de dimensión *n* con producto interno son isométricamente isomorfos.

AUTOEVALUACIÓN 7.5

Indique si los enunciados siguientes son falsos o verdaderos.

- I) La transformación lineal $T: \mathbb{R}^n \to \mathbb{R}^n$ es una isometría si ||Tx|| = ||x|| para todo x en \mathbb{R} .
- II) La transformación lineal $T: \mathbb{R}^n \to \mathbb{R}^n$ es una isometría si las columnas de su representación matricial son ortogonales por pares.
- III) La transformación lineal $T: \mathbb{R}^n \to \mathbb{R}^n$ es una isometría si las columnas de su representación matricial son ortogonales por pares y cada columna tiene norma 1.

IV) Si
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 es una isometría, entonces $T\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ es ortogonal a $T\begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

- V) Si $T: \mathbb{R}^n \to \mathbb{R}^n$ es un isomorfismo, entonces T es una isometría.
- VI) Si $T: \mathbb{R}^n \to \mathbb{R}^n$ es una isometría, entonces T es un isomorfismo.

Respuestas a la autoevaluación

- I) V II) F III) V
 - V IV) V
- **V)** F
- VI) V

PROBLEMAS 7.5

1. Demuestre que la transformación $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por $T\mathbf{x} = A\mathbf{x}$, donde

$$A = \frac{1}{\sqrt{8}} \begin{pmatrix} \sqrt{3} & -\sqrt{2} & -\sqrt{3} \\ 1 & \sqrt{6} & -1 \\ 2 & 0 & 2 \end{pmatrix}$$

2. Demuestre que para cualquier número real θ , la transformación $T: \mathbb{R}^n \to \mathbb{R}^n$ definida por $T\mathbf{x} = A\mathbf{x}$, donde

$$A = \begin{pmatrix} \sin \theta & \cos \theta & 0 \\ \cos \theta & -\sin \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

es una isometría.