Chapter 27 Visual Output Processor (VOP)

27.1 Overview

VOP is the display interface from memory frame buffer to display device (LCD panel, LVDS, MIPI, eDP, HDMI and TV set). VOP is connected to an AHB bus through an AHB slave and AXI bus through an AXI master. The register setting is configured through the AHB slave interface and the display frame data is read through the AXI master interface. Furthermore, there is a data path between IEP and VOP, which can provide frame data from IEP to VOP.

27.1.1 Features

- Display interface
 - Parallel RGB LCD Interface
 - RGB101010,RGB888,RGB666,RGB565
 - Serial RGB LCD Interface
 - 2x12-bit,3x8-bit(RGB delta supported),3x8-bit+dummy
 - Parallel MCU LCD Interface
 - 24-bit(RGB888),18-bit(RGB666),16-bit(RGB565)
 - hold/auto/bypass mode
 - Serial MCU LCD Interface
 - ◆ 2x12-bit, 3x8-bit with hold mode
 - TV Interface
 - ◆ ITU-R BT.656(8-bit, 480i/576i/1080i)
 - ♦ 3 output mode: valid data in lower 8bit, middle 8bit and higher 8bit
 - ♦ TV encoder
 - Support SDR(single data rate) interface
 - Support DDR(dual data rate) interface for LVDS/PARALLEL RGB
 - parallel RGB and 2x12-bit serial RGB
 - Single or dual clock out
 - Max output resolution
 - ◆ VOP_BIG: 3840x2160
 - ♦ VOP LITTLE: 2560x1600
 - Scaning timing 8192x4096
 - Support configurable polarity of DCLK/HSYNC/VSYNC/DEN
 - 4 groups of scanning output for PARALLEL RGB, LVDS, LVDS, HDMI, eDP
 - MIPI control
 - ◆ MIPI dual channel, overlay scan(overlapped pixels=2~16 pix)
 - ◆ MIPI flow control(edpihalt)
 - ◆ MIPI DCS command mode
- Display process
 - CABC
 - BCSH,8bit
 - ◆ Brightness,Contrast,Saturation,Hue adjustment
 - ◆ YUV-10bit, RGB-10bit
 - Dither down
 - pre dither down for RGB-10bit to RGB-8bit
 - allegro for RGB565 and RGB666
 - ◆ FRC with configurable pattern for RGB666
 - Gamma
 - ◆ LUT(lookup table) for R/G/B respectively
 - ◆ 8bit/10bit RGB look up table
 - gamma after dither

- Support display data swap
 - ◆ BG swap, RB swap, RG swap, dummy swap, delta swap
- Support three YUV2RGB transition modes:
 - ♦ 8bit-YUV: rec601-mpeg/rec601-jpeg/rec709
 - ◆ 10bit-YUV: BT2020
- blank display
- black display
- standby mode
- auto dynamic power control
- X-MIRROR,Y-MIRROR for win0/win1/win2/win3/hwc?
- scale down for TV overscan
 - after overlay
 - arbitrary non-integer scaling ratio
 - ♦ horizontal scale down using bilinear, 0.5~1.0
 - ◆ vertical scale down using bilinear, 0.5~1.0
- Layer process
 - Background layer
 - programmable 24-bit color
 - Win0/Win1 layer
 - Support data format
 - ♦ RGB888, ARGB888, RGB565,
 - ♦ YCbCr420SP, YCbCr422SP, YCbCr444SP
 - ♦ YUV-8bit,YUV-10bit
 - ♦ YUV clip
 - ♦ Y-10bit:64~940;UV-10bit: 64~960
 - ♦ Y-8bit: 16~235;UV-8bit: 16~240
 - Support max input resolution 4096x8192
 - ◆ Support max output resolution 3840x2160
 - Support virtual display
 - ◆ Support 1/8 to 8 scaling-down and scaling-up engine
 - scale up using bicubic and bilinear
 - Arbitrary non-integer scaling ratio
 - 4 bicubic table for scale up using precise, spline, catrom, Mitchell
 - scale down using bilinear and average
 - Arbitrary non-integer scaling ratio
 - ♦ per-pix alpha + scale
 - Support data swap
 - ♦ RGB/BPP: alpha_swap,rb_swap
 - ♦ YUV: mid swap,uv swap
 - transparency color key, prior to alpha blending and fading
 - Support fading, prior to alpha blending
 - Support alpha blending
 - ◆ Support interlace and de-flicker for interlace output
 - ◆ Support IEP direct path input
 - Win2/Win3 layer
 - Support data format
 - ♦ RGB888, ARGB888, RGB565
 - ♦ 1BPP,2BPP,4BPP,8BPP
 - ♦ little endian and big endian for BPP
 - ♦ BYPASS and LUT mode(25bit LUT, 1bit AA+8bit-RGB) for BPP
 - 4 display regions
 - ♦ only one region at one scanning line
 - Support data swap
 - ♦ RGB/BPP:rb_swap,alpha_swap
 - ◆ Support transparency color key, prior to alpha blending and fading
 - Support fading, prior to alpha blending
 - Support alpha blending

- Support interlace read and interlace output
- ◆ Support IEP direct path input
- Hardware Cursor layer(HWC for short)
 - Support data format
 - ♦ RGB888, ARGB888, RGB565
 - ♦ 1BPP,2BPP,4BPP,8BPP
 - ♦ little endian and big endian for BPP
 - ♦ BYPASS and LUT mode(25bit LUT, 1bit AA+8bit-RGB)for BPP
 - ◆ Support four hwc size: 32x32,64x64,96x96,128x128
 - ◆ Support 2 color modes: normal and reversed color
 - Support fading, prior to alpha blending
 - Support alpha blending
 - ◆ Support displaying out of panel, right or bottom
 - ◆ Support NORMAL color and REVERSE color mode
 - Support interlace read and interlace output

Overlay

- Support 6 layers,background/win0/win1/win2/win3/hwc
- ♦ Win0/Win1/Win2/Win3 overlay position exchangeable
- Alpha blending
 - ♦ Support 12 alpha blending modes
 - ♦ Support pre-multiplied alpha
 - ♦ Support global alpha and per_pix alpha
 - ♦ Support 256 level alpha
 - ♦ layer1/layer2/layer3/hwc support alpha

Bus interface

- Support AMBA 2.0 AHB slave interface for accessing internal registers and LUT memories, 32bit data bus width
- Support AMBA 3.0 AXI master read interface for loading frame data
 - ◆ 128bit data bus width
- Support MMU
- Support two transfer modes
 - auto outstanding transfer
 - configuruable outstanding transfer(gather transfer)
- DMA line mode for YUV
- Support QoS request for higher bus priority for win2/win3
- Support NOC hurry for higher bus prioirity for win0/win1
- Support DMA stop mode
- max read outstanding number
 - ♦ 32 when MMU disable
 - ♦ 31 when MMU enable

Interrupt

- One combined interrupt
 - high active
 - raw status
 - combinational with 12 interrupt sources
 - ♦ frame start interrupt
 - ♦ line flag interrupt
 - bus error interrupt

 - ♦ win1 empty interrupt
 - ♦ win2 empty interrupt
 - ♦ win3 empty interrupt
 - hwc empty interrupt
 - ♦ post empty interrupt
 - ♦ pwm gen interrupt

27.2 Block Diagram

The architecture is shown in the following figure.

Fig. 27-1 VOP Block Diagram

27.3 Function Description

27.3.1 Pixel format

1.RGB

Fig. 27-2 RGB data format

2.YCbCr/YUV(8bit/10bit)

Fig. 27-3 YUV data format

YUV just support SP YUV-8bit 32bit align YUV-10bit 128bit align

3.BPP

Fig. 27-4 BPP little/big endian data format

27.3.2 Pixel Data Path

There are two data input path for VOP to get display layers' pixel data. One is internal DMA; the other is direction path interface.

1.Internal DMA

Internal DMA can fetch the pixel data through AXI bus from system memory (DDR) for all the display layers. Data fetching is driven by display output requirement.

Fig. 27-5 LCDC Internal DMA

2. Direct Path Interface

Direct path interface (DPI) is used for direct image display of external image processing IP. There is a local bus between VOP and external image processing IP for the data transfer.

DPI is connected to WIN0/WIN1/WIN2/WIN3 but can only be configured for One layer use (Win0 or Win1 or Win2 or Win3) in each frame.

Fig. 27-6 VOP Direct Path Interface

27.3.3 Win Scaling

The scaling operation is the image resizing process by scaling-up or scaling-down the source image from active window size to display window size for displaying on LCD panel or TV set.

Horizontal scaling and vertical scaling are realized independently.

1.Scaling factor

```
Pseudo Code:

void calc_win_scl_factor(LCDC_WIN_PARAMETERS *p_win_para)
{

    u16 srcW;
    u16 srcH;
```

```
u16 dstW;
   u16 dstH;
   u8 is_3d_mix;
   u16 yrgb_srcW;
   u16 yrgb_srcH;
   u16 yrgb_dstW;
   u16 yrgb_dstH;
   u32 yrgb_vScaleDnMult;
   u32 yrgb_xscl_factor;
   u32 yrgb_yscl_factor;
   u8 yrgb_vsd_bil_gt2;
   u8 yrgb_vsd_bil_gt4;
   u8 yrgb_vsd_bil_extra;
   u16 cbcr_srcW;
   u16 cbcr_srcH;
   u16 cbcr_dstW;
   u16 cbcr_dstH;
   u32 cbcr_vScaleDnMult;
   u32 cbcr_xscl_factor;
   u32 cbcr_yscl_factor;
   u8 cbcr_vsd_bil_gt2;
   u8 cbcr_vsd_bil_gt4;
   u8 cbcr_vsd_bil_extra;
   //width and height, 3D enable
   is_3d_mix = (p_win_para->win_3d_en == ENABLE) && ((p_win_para->win_3d_mode == MIX_R_GB)
|| (p\_win\_para->win\_3d\_mode == MIX\_G\_RB) || (p\_win\_para->win\_3d\_mode == MIX\_B\_RG));
   srcW = p_win_para->win_act_width;
   if((p_win_para->win_3d_en == ENABLE)&&(p_win_para->win_3d_mode ==
INTERLEAVE HORIZONTAL)) {
       dstW = p_win_para->dsp_win_width >> 1;
   } else {
       dstW = p_win_para->dsp_win_width;
   srcH = p_win_para->win_act_height;
   if((p_win_para->win_3d_en == ENABLE)&&(p_win_para->win_3d_mode == INTERLEAVE_VERTICAL))
       dstH = p_win_para->dsp_win_height >> 1;
   } else {
       dstH = p_win_para->dsp_win_height;
   dstH = p_win_para->dsp_win_height;
   if(p_win_para->win_3d_en == ENABLE) {
       if(p_win_para->win_3d_mode == INTERLEAVE_HORIZONTAL) {
          dstW = dstW/2;
       else if(p_win_para->win_3d_mode == INTERLEAVE_VERTICAL) {
          dstH = dstH/2;
   }
   //SCALE MODE(YGRB)
   yrgb\_srcW = srcW;
   yrgb\_dstW = dstW;
   yrgb\_srcH = srcH;
   yrgb\_dstH = dstH;
   printf("[hxx_dbg] yrgb_srcW=%d; yrgb_dstW=%d; yrgb_srcH=%d;
yrgb_dstH=%d;\n",yrgb_srcW,yrgb_dstW,yrgb_srcH,yrgb_dstH);
```

```
if (yrgb_srcW < yrgb_dstW) {</pre>
   p_win_para->yrgb_hor_scl_mode = SCALE_UP;
} else if (yrgb_srcW > yrgb_dstW) {
   p_win_para->yrgb_hor_scl_mode = SCALE_DOWN;
} else {
   p_win_para->yrgb_hor_scl_mode = SCALE_NONE;
if (yrgb_srcH < yrgb_dstH) {</pre>
   p_win_para->yrgb_ver_scl_mode = SCALE_UP;
} else if (yrgb_srcH > yrgb_dstH) {
   p_win_para->yrgb_ver_scl_mode = SCALE_DOWN;
} else {
   p_win_para->yrgb_ver_scl_mode = SCALE_NONE;
//SCALE MODE(CBCR)
if(p_win_para->win_lcdc_format == LCDC_FMT_YUV422) {
   cbcr\_srcW = srcW/2;
   cbcr_dstW = dstW;
   cbcr\_srcH = srcH;
   cbcr_dstH = dstH;
   if (cbcr_srcW < cbcr_dstW) {</pre>
       p_win_para->cbr_hor_scl_mode = SCALE_UP;
   } else if (cbcr_srcW > cbcr_dstW) {
       p_win_para->cbr_hor_scl_mode = SCALE_DOWN;
   p_win_para->cbr_hor_scl_mode = SCALE_NONE;
   if (cbcr_srcH < cbcr_dstH) {</pre>
       p_win_para->cbr_ver_scl_mode = SCALE_UP;
   } else if (cbcr_srcH > cbcr_dstH) {
       p_win_para->cbr_ver_scl_mode = SCALE_DOWN;
   } else {
       p_win_para->cbr_ver_scl_mode = SCALE_NONE;
else if(p_win_para->win_lcdc_format == LCDC_FMT_YUV420) {
   cbcr\_srcW = srcW/2;
   cbcr_dstW = dstW;
   cbcr\_srcH = srcH/2;
   cbcr_dstH = dstH;
   if (cbcr_srcW < cbcr_dstW) {</pre>
       p_win_para->cbr_hor_scl_mode = SCALE_UP;
   } else if (cbcr_srcW > cbcr_dstW) {
       p_win_para->cbr_hor_scl_mode = SCALE_DOWN;
   } else {
       p_win_para->cbr_hor_scl_mode = SCALE_NONE;
   if (cbcr_srcH < cbcr_dstH) {</pre>
       p_win_para->cbr_ver_scl_mode = SCALE_UP;
   } else if (cbcr_srcH > cbcr_dstH) {
       p_win_para->cbr_ver_scl_mode = SCALE_DOWN;
   } else {
       p_win_para->cbr_ver_scl_mode = SCALE_NONE;
else if(p_win_para->win_lcdc_format == LCDC_FMT_YUV444) {
   cbcr\_srcW = srcW;
   cbcr_dstW = dstW;
   cbcr\_srcH = srcH;
   cbcr_dstH = dstH;
```

```
if (cbcr_srcW < cbcr_dstW) {</pre>
          p_win_para->cbr_hor_scl_mode = SCALE_UP;
       } else if (cbcr_srcW > cbcr_dstW) {
          p_win_para->cbr_hor_scl_mode = SCALE_DOWN;
       } else {
          p_win_para->cbr_hor_scl_mode = SCALE_NONE;
       if (cbcr_srcH < cbcr_dstH) {</pre>
          p_win_para->cbr_ver_scl_mode = SCALE_UP;
       } else if (cbcr_srcH > cbcr_dstH) {
          p_win_para->cbr_ver_scl_mode = SCALE_DOWN;
       } else {
          p_win_para->cbr_ver_scl_mode = SCALE_NONE;
   } else {
       cbcr\_srcW = 0;
       cbcr_dstW = 0;
       cbcr\_srcH = 0;
       cbcr_dstH = 0;
       p_win_para->cbr_hor_scl_mode = SCALE_NONE;
       p_win_para->cbr_ver_scl_mode = SCALE_NONE;
   printf("[hxx_dbg] cbcr_srcW=%d; cbcr_dstW=%d; cbcr_srcH=%d;
cbcr_dstH=%d;\n",cbcr_srcW,cbcr_dstW,cbcr_srcH,cbcr_dstH);
   //SCALE ALGORITHM
   if( (p_win_para->win_lcdc_format == LCDC_FMT_YUV422) || (p_win_para->win_lcdc_format ==
LCDC FMT YUV420)){
       if(p_win_para->cbr_hor_scl_mode == $CALE_DOWN) {
          if(cbcr_dstW > 3840) {
              printf("ERROR cbcr_dst_width exceeds 3840\n")
              exit (-1);
          } else if(cbcr_dstW > 2560) {
              p_win_para->win_lb_mode = LB_RGB_3840X2;
          } else if(cbcr_dstW > 1920) {
              if(p_win_para->yrgb_hor_scl_mode == SCALE_DOWN) {
                 if(yrgb\_dstW > 3840) {
                     printf("ERROR yrgb_dst_width exceeds 3840\n");
                     exit (-1);
                  } else if(yrgb_dstW > 2560) {
                     p_win_para->win_lb_mode = LB_RGB_3840X2;
                  } else if(yrgb_dstW > 1920) {
                     p_win_para->win_lb_mode = LB_RGB_2560X4;
                  printf("ERROR never run here!yrgb_dstW<1920 ==> cbcr_dstW<1920");</pre>
                     exit (-1);
                  }
          } else if(cbcr_dstW > 1280) {
              p_win_para->win_lb_mode = LB_YUV_3840X5;
          } else {
              p_win_para->win_lb_mode = LB_YUV_2560X8;
       } else { //SCALE_UP or SCALE_NONE
          if(cbcr_srcW > 3840) {
              printf("ERROR cbcr_act_width exceeds 3840\n");
              exit (-1);
          } else if(cbcr_srcW > 2560) {
              p_win_para->win_lb_mode = LB_RGB_3840X2;
          } else if(cbcr_srcW > 1920) {
              if(p_win_para->yrgb_hor_scl_mode == SCALE_DOWN) {
                 if(yrgb\_dstW > 3840) {
```

```
printf("ERROR yrgb_dst_width exceeds 3840\n");
                     exit (-1);
                 } else if(yrgb_dstW > 2560) {
                     p_win_para->win_lb_mode = LB_RGB_3840X2;
                 } else if(yrgb_dstW > 1920) {
                     p_win_para->win_lb_mode = LB_RGB_2560X4;
                 } else {
                     printf("ERROR never run here!yrgb_dstW<1920 ==> cbcr_dstW<1920 ==>
cbcr_srcW<=1920\n");
                     exit (-1);
                 }
          } else if(cbcr_srcW > 1280) {
              p_win_para->win_lb_mode = LB_YUV_3840X5;
          } else {
              p_win_para->win_lb_mode = LB_YUV_2560X8;
       }
   }
   else {
       if(p_win_para->yrgb_hor_scl_mode == SCALE_DOWN) {
          if(yrgb\_dstW > 3840) {
              printf("ERROR yrgb_dsp_width exceeds 3840\n");
              exit (-1);
          } else if(yrgb_dstW > 2560) {
              p_win_para->win_lb_mode = LB_RGB_3840X2;
          } else if(yrgb_dstW > 1920) {
              p_win_para->win_lb_mode = LB_RGB_2560X4;
          } else if(yrgb_dstW > 1280){
              p_win_para->win_lb_mode = LB_RGB_1920X5;
          } else {
              p_win_para->win_lb_mode = LB_RGB_1280X8;
       } else { //SCALE_UP or SCALE_NONE
          if(yrgb\_srcW > 3840) {
              printf("ERROR yrgb_act_width exceeds 3840\n"
              exit (-1);
          } else if(yrgb_srcW > 2560) {
              p_win_para->win_lb_mode = LB_RGB_3840X2;
          } else if(yrgb_srcW > 1920) {
              p_win_para->win_lb_mode = LB_RGB_2560X4;
          } else if(yrgb_srcW > 1280){
              p_win_para->win_lb_mode = LB_RGB_1920X5;
          } else {
              p_win_para->win_lb_mode = LB_RGB_1280X8;
       }
   }
   printf("[hxx_dbg] p_win_para->win_lb_mode = %d;\n",p_win_para->win_lb_mode);
   //vsd/vsu scale ALGORITHM
   switch(p win para->win lb mode) {
       case LB_YUV_3840X5:
          p_win_para->yrgb_vsu_mode = SCALE_UP_BIC ;
        //p_win_para->yrgb_vsd_mode = SCALE_DOWN_BIL; //not to specify
          p_win_para->cbr_vsu_mode = SCALE_UP_BIC
        //p_win_para->cbr_vsd_mode = SCALE_DOWN_BIL; //not to specify
          break;
       case LB_YUV_2560X8:
          p_win_para->yrgb_vsu_mode = SCALE_UP_BIC ;
        //p_win_para->yrgb_vsd_mode = SCALE_DOWN_BIL; //not to specify
          p_win_para->cbr_vsu_mode = SCALE_UP_BIC
        //p_win_para->cbr_vsd_mode = SCALE_DOWN_BIL; //not to specify
          break;
       case LB_RGB_3840X2:
          if(p_win_para->yrgb_ver_scl_mode != SCALE_NONE) {
```

```
printf("ERROR: not allow yrgb ver scale\n");
          exit(-1);
       if(p_win_para->cbr_ver_scl_mode != SCALE_NONE) {
          printf("ERROR : not allow cbcr ver scale\n");
          exit(-1);
       //p_win_para->yrgb_vsu_mode = SCALE_UP_BIC
       //p_win_para->yrgb_vsd_mode = SCALE_DOWN_BIL;
       //p_win_para->cbr_vsu_mode = SCALE_UP_BIC
       //p_win_para->cbr_vsd_mode = SCALE_DOWN_BIL;
       break;
   case LB_RGB_2560X4:
       p_win_para->yrgb_vsu_mode = SCALE_UP_BIL ; //<2</pre>
     //p_win_para->yrgb_vsd_mode = SCALE_DOWN_BIL; //<2 //not to specify
       p_win_para->cbr_vsu_mode = SCALE_UP_BIL ; //<2</pre>
     //p_win_para->cbr_vsd_mode = SCALE_DOWN_BIL; //<2 //not to specify
       break;
   case LB_RGB_1920X5:
       p_win_para->yrgb_vsu_mode = SCALE_UP_BIC ;
     //p_win_para->yrgb_vsd_mode = SCALE_DOWN_BIL; //not to specify
       p_win_para->cbr_vsu_mode = SCALE_UP_BIC
     //p_win_para->cbr_vsd_mode = SCALE_DOWN_BIL; //not to specify
       break;
   case LB_RGB_1280X8:
       p_win_para->yrgb_vsu_mode = SCALE_UP_BIC
     //p_win_para->yrgb_vsd_mode = SCALE_DOWN_BIL; //not to specify
       p_win_para->cbr_vsu_mode = SCALE_UP_BIC
     //p_win_para->cbr_vsd_mode = SCALE_DOWN_BIL; //not to specify
       break;
   default:
       break;
//SCALE FACTOR
yrgb\_vsd\_bil\_gt4 = 0;
yrgb_vsd_bil_gt2 = 0;
cbcr_vsd_bil_gt4 = 0;
cbcr_vsd_bil_gt2 = 0;
//(1.1)YRGB HOR SCALE FACTOR
switch(p_win_para->yrgb_hor_scl_mode) {
   case SCALE NONE:
       yrgb_xscl_factor = (1<<SCALE_FACTOR_DEFAULT_FIXPOINT_SHIFT);</pre>
       break;
   case SCALE_UP
       yrgb_xscl_factor = GET_SCALE_FACTOR_BIC(yrgb_srcW, yrgb_dstW);
       break;
   case SCALE DOWN:
       switch(p_win_para->yrgb_hsd_mode)
          case SCALE_DOWN_BIL:
              yrgb_xscl_factor = GET_SCALE_FACTOR_BILI_DN(yrgb_srcW, yrgb_dstW);
              break;
          case SCALE_DOWN_AVG:
              yrgb_xscl_factor = GET_SCALE_FACTOR_AVRG(yrgb_srcW, yrgb_dstW);
              break;
          default:
              break;
       } //p_win_para->yrgb_vsd_mode
       break;
   default :
```

```
break:
   } //p_win_para->yrgb_hor_scl_mode
   //(1.2)YRGB VER SCALE FACTOR
   switch(p_win_para->yrgb_ver_scl_mode)
       case SCALE_NONE:
          yrgb_yscl_factor = (1<<SCALE_FACTOR_DEFAULT_FIXPOINT_SHIFT);</pre>
       case SCALE UP :
          switch(p_win_para->yrgb_vsu_mode)
              case SCALE UP BIL:
                  yrgb_yscl_factor = GET_SCALE_FACTOR_BILI_UP(yrgb_srcH, yrgb_dstH);
                  break;
              case SCALE_UP_BIC:
                  if(yrgb\_srcH < 3) {
                     printf("[hxx_dbg] yrgb_srcH should be greater than 3 !!!\n");
                     exit (-1);
                  yrgb_yscl_factor = GET_SCALE_FACTOR_BIC(yrgb_srcH, yrgb_dstH);
                  break;
              default:
                  break;
          } //p_win_para->yrgb_vsu_mode
          break;
       case SCALE_DOWN:
          switch(p_win_para->yrgb_vsd_mode)
              case SCALE DOWN BIL:
                  yrgb_vScaleDnMult = getHardWareVSkipLines(yrgb_srcH, yrgb_dstH);
                  yrgb_yscl_factor = GET_SCALE_FACTOR_BILL_DN_VSKIP(yrgb_srcH, yrgb_dstH,
yrgb_vScaleDnMult);
                  //printf("[hxx_dbg] yrgb_vScaleDnMult=%d;
yrgb_yscl_factor=%4x;\n",yrgb_vScaleDnMult,yrgb_yscl_factor);
                  if(yrgb_vScaleDnMult == 4) {
                     yrgb\_vsd\_bil\_gt4 = 1;
                     yrgb\_vsd\_bil\_gt2 = 0;
                  } else if(yrgb_vScaleDnMult == 2)
                     yrgb_vsd_bil_gt4 = 0;
                     yrgb\_vsd\_bil\_gt2 = 1;
                  } else {
                     yrgb_vsd_bil_gt4 = 0;
                     yrgb\_vsd\_bil\_gt2 = 0;
                  break;
              case SCALE_DOWN_AVG:
                  yrgb_yscl_factor = GET_SCALE_FACTOR_AVRG(yrgb_srcH, yrgb_dstH);
                  break;
              default :
                  break;
          } //p_win_para->yrgb_vsd_mode
          break;
       default :
          break:
   } //p_win_para->yrgb_hor_scl_mode
   p_win_para->win_h_YRGB_factor = yrgb_xscl_factor;
   p_win_para->win_v_YRGB_factor = yrgb_yscl_factor;
                                  = yrgb_vsd_bil_gt4;
   p_win_para->vsd_yrgb_gt4
   p_win_para->vsd_yrgb_gt2
                                  = yrgb_vsd_bil_gt2;
   //(2.1)CBCR HOR SCALE FACTOR
   switch(p_win_para->cbr_hor_scl_mode)
```

```
{
       case SCALE NONE:
           cbcr_xscl_factor = (1<<SCALE_FACTOR_DEFAULT_FIXPOINT_SHIFT);
           break;
       case SCALE UP :
           cbcr_xscl_factor = GET_SCALE_FACTOR_BIC(cbcr_srcW, cbcr_dstW);
           break;
       case SCALE_DOWN:
           switch(p_win_para->cbr_hsd_mode)
              case SCALE DOWN BIL:
                  cbcr_xscl_factor = GET_SCALE_FACTOR_BILI_DN(cbcr_srcW, cbcr_dstW);
                  break;
              case SCALE DOWN AVG:
                  cbcr_xscl_factor = GET_SCALE_FACTOR_AVRG(cbcr_srcW, cbcr_dstW);
                  break;
              default :
                  break;
           } //p_win_para->cbr_vsd_mode
           break;
       default:
           break;
   } //p_win_para->cbr_hor_scl_mode
   //(2.2)CBCR VER SCALE FACTOR
   switch(p_win_para->cbr_ver_scl_mode)
       case SCALE_NONE:
           cbcr_yscl_factor = (1<<SCALE_FACTOR_DEFAULT_FIXPOINT_SHIFT);
           break;
       case SCALE_UP :
           switch(p_win_para->cbr_vsu_mode)
              case SCALE_UP_BIL:
                  cbcr_yscl_factor = GET_SCALE_FACTOR_BILI_UP(cbcr_srcH, cbcr_dstH);
                  break;
              case SCALE_UP_BIC:
                  if(cbcr\_srcH < 3) {
                     printf("[hxx_dbg] cbcr_srcH should be greater than 3 !!!\n");
                  cbcr_yscl_factor = GET_SCALE_FACTOR_BIC(cbcr_srcH, cbcr_dstH);
                  break;
              default :
                  break:
           } //p_win_para->cbr_vsu_mode
           break;
       case SCALE DOWN:
           switch(p_win_para->cbr_vsd_mode)
           {
              case SCALE_DOWN_BIL:
                  cbcr_vScaleDnMult = getHardWareVSkipLines(cbcr_srcH, cbcr_dstH);
                  cbcr_yscl_factor = GET_SCALE_FACTOR_BILI_DN_VSKIP(cbcr_srcH, cbcr_dstH,
cbcr_vScaleDnMult);
                  //printf("[hxx_dbg] cbcr_vScaleDnMult=%d;\n",cbcr_vScaleDnMult);
                  if(cbcr_vScaleDnMult == 4) {
                     cbcr_vsd_bil_gt4 = 1;
                     cbcr_vsd_bil_gt2 = 0;
                  } else if(cbcr_vScaleDnMult == 2) {
    cbcr_vsd_bil_gt4 = 0;
                      cbcr_vsd_bil_gt2 = 1;
                  } else {
```

```
cbcr_vsd_bil_gt4 = 0;
                     cbcr_vsd_bil_gt2 = 0;
                  break;
              case SCALE_DOWN_AVG:
                  cbcr_yscl_factor = GET_SCALE_FACTOR_AVRG(cbcr_srcH, cbcr_dstH);
              default :
                  break;
          } //p_win_para->cbr_vsd_mode
          break;
       default:
          break;
   } //p_win_para->cbr_hor_scl_mode
   p_win_para->vsd_cbr_gt4
                                 = cbcr_vsd_bil_gt4;
   p_win_para->vsd_cbr_gt2
                                 = cbcr_vsd_bil_gt2;
   p_win_para->win_h_Cbr_factor = cbcr_xscl_factor;
   p_win_para->win_v_Cbr_factor = cbcr_yscl_factor;
   switch(p_win_para->yrgb_hor_scl_mode) {
       case SCALE NONE :
          printf("[hxx_dbg] X YRGB SCALE_NONE\n");
          break;
       case SCALE_UP:
          printf("[hxx_dbg] X YRGB SCALE_UP_BICUBIC; yrgb_xscl_factor=%04x;\n",yrgb_xscl_factor);
          //switch(p_win_para->yrgb_hsu_mode) {
                case SCALE_UP_BIL :
          //
                   printf("[hxx_dbg] X YRGB SCALE_UP_BILINEAR;[ERROR] yrgb_xscl_factor=%04x;\n
",yrgb_xscl_factor);
          //
                   break;
          //
                case SCALE_UP_BIC :
                   printf("[hxx_dbg] X YRGB SCALE_UP_BICUBIC; yrgb_xscl_factor=%04x;\n
          //
",yrgb_xscl_factor);
          //
                   break;
          //
                default :
          //}
          break;
       case SCALE_DOWN:
          switch(p_win_para->yrgb_hsd_mode) {
              case SCALE DOWN BIL:
                  printf("[hxx_dbg] X YRGB SCALE_DOWN_BILINEAR;
yrgb_xscl_factor=%04x;\n",yrgb_xscl_factor);
                  break;
              case SCALE_DOWN_AVG :
                  printf("[hxx_dbg] X YRGB SCALE_DOWN_AVERAGE;
yrgb_xscl_factor=%04x;\n",yrgb_xscl_factor);
                  break;
              default:
                  break;
          break;
       default:
          break;
   }
   switch(p_win_para->yrgb_ver_scl_mode) {
       case SCALE_NONE :
          printf("[hxx_dbg] Y YRGB SCALE_NONE\n");
          break;
       case SCALE UP:
          switch(p_win_para->yrgb_vsu_mode) {
              case SCALE_UP_BIL :
                  printf("[hxx_dbg] Y YRGB SCALE_UP_BILINEAR;
yrgb_yscl_factor=%04x;\n",yrgb_yscl_factor);
```

```
break;
              case SCALE_UP_BIC :
                  printf("[hxx_dbg] Y YRGB SCALE_UP_BICUBIC;
yrgb_yscl_factor=%04x;\n",yrgb_yscl_factor);
                  break;
              default:
                  break;
          break;
       case SCALE_DOWN:
          switch(p_win_para->yrgb_vsd_mode) {
              case SCALE_DOWN BIL :
                  printf("[hxx dbg] Y YRGB SCALE DOWN BILINEAR;
yrgb_yscl_factor=%04x;\n",yrgb_yscl_factor);
                  break;
              case SCALE DOWN AVG:
                  printf("[hxx_dbg] Y YRGB SCALE_DOWN_AVERAGE;
yrgb_yscl_factor=%04x;\n",yrgb_yscl_factor);
                  break;
              default:
                  break;
          break;
       default:
          break;
   switch(p_win_para->cbr_hor_scl_mode) {
       case SCALE_NONE :
          printf("[hxx_dbg] X CBCR SCALE_NONE\n");
          break;
       case SCALE UP:
          printf("[hxx_dbg] X CBCR SCALE_UP_BICUBIC; cbcr_xscl_factor=%04x;\n",cbcr_xscl_factor);
          //switch(p_win_para->cbr_hsu_mode) {
                printf("[hxx_dbg] X CBCR SCALE_UP_BICUBIC; cbcr_xscl_factor=%04x;\n
",cbcr_xscl_factor);
                case SCALE_UP_BIL :
          //
                   printf("[hxx_dbg] X CBCR SCALE_UP_BILINEAR;[ERROR] cbcr_xscl_factor=%04x;\n
          //
",cbcr_xscl_factor);
          //
                   break:
          //
                case SCALE_UP_BIC :
                   printf("[hxx_dbg] X CBCR SCALE_UP_BICUBIC; cbcr_xscl_factor=%04x;\n
          //
",cbcr_xscl_factor);
          //
                   break;
          //
                default:
          //}
          break;
       case SCALE_DOWN :
          switch(p_win_para->cbr_hsd_mode) {
              case SCALE_DOWN_BIL:
                  printf("[hxx_dbg] X CBCR SCALE_DOWN_BILINEAR;
cbcr_xscl_factor=%04x;\n",cbcr_xscl_factor);
                  break;
              case SCALE_DOWN_AVG:
                  printf("[hxx_dbg] X CBCR SCALE_DOWN_AVERAGE;
cbcr_xscl_factor=%04x;\n",cbcr_xscl_factor);
                  break;
              default:
                  break;
          break;
       default:
          break;
   }
   switch(p_win_para->cbr_ver_scl_mode) {
       case SCALE_NONE :
```

```
printf("[hxx_dbg] Y CBCR SCALE_NONE\n");
          break;
       case SCALE_UP:
          switch(p_win_para->cbr_vsu_mode) {
              case SCALE_UP_BIL :
                 printf("[hxx_dbg] Y CBCR SCALE_UP_BILINEAR;
cbcr_yscl_factor=%04x;\n",cbcr_yscl_factor);
                 break;
              case SCALE_UP_BIC :
                 printf("[hxx_dbg] Y CBCR SCALE_UP_BICUBIC;
cbcr_yscl_factor=%04x;\n",cbcr_yscl_factor);
                 break;
              default:
                 break;
          break;
       case SCALE_DOWN:
          switch(p_win_para->cbr_vsd_mode) {
              case SCALE_DOWN_BIL:
                 printf("[hxx_dbg] Y CBCR SCALE_DOWN_BILINEAR;
cbcr_yscl_factor=%04x;\n",cbcr_yscl_factor);
                 break;
              case SCALE DOWN AVG:
                 printf("[hxx_dbg] Y CBCR SCALE_DOWN_AVERAGE;
cbcr_yscl_factor=%04x;\n",cbcr_yscl_factor);
                  break;
              default:
                 break;
          break;
       default:
          break;
   }
   //printf("[hxx_dbg] p_win_para->yrgb_hor_scl_mode=%d;\n",p_win_para->yrgb_hor_scl_mode);
   //printf("[hxx_dbg] p_win_para->yrgb_ver_scl_mode=%d;\n",p_win_para->yrgb_ver_scl_mode);
   //printf("[hxx_dbg] p_win_para->cbcr_hor_scl_mode=%d;\n",p_win_para->cbr_hor_scl_mode);
   //printf("[hxx_dbg] p_win_para->cbcr_ver_scl_mode=%d;\n",p_win_para->cbr_ver_scl_mode );
   //printf("[hxx_dbg] p_win_para->yrgb_hsd_mode= %d;\n",p_win_para->yrgb_hsd_mode);
   //printf("[hxx_dbg] p_win_para->cbr_hsd_mode = %d;\n",p_win_para->cbr_hsd_mode );
   //printf("[hxx_dbg] p_win_para->yrgb_vsu_mode= %d;\n",<math>p_win_para->yrgb_vsu_mode);
   //printf("[hxx_dbg] p_win_para->yrgb_vsd_mode= %d;\n",p_win_para->yrgb_vsd_mode);
   //printf("[hxx_dbg] p_win_para->cbr_vsu_mode = %d;\n",p_win_para->cbr_vsu_mode );
   //printf("[hxx_dbg] p_win_para->cbr_vsd_mode = %d;\n",p_win_para->cbr_vsd_mode );
   //printf("[hxx_dbg] yrgb_xscl_factor= %04x\n", yrgb_xscl_factor);
   //printf("[hxx_dbg] yrgb_yscl_factor= %04x\n", yrgb_yscl_factor);
   //printf("[hxx_dbg] cbcr_xscl_factor= %04x\n", cbcr_xscl_factor);
   //printf("[hxx_dbg] cbcr_yscl_factor= %04x\n", cbcr_yscl_factor);
} //end calc_win_scl_factor
```

2.Limitation of YUV scaling down(3840 < width < 4096)

Limitation of 3840~4096 horizontal scale down for YUV422/420:

YUV422

- (1) not support vertical scale up/down if width(>3840) scale down to width(>2560);
- (2) support vertical down but only support vertical bilinear scale up if width(>3840) scale down to width(>1920 and <2560);

(3) no limitation if width(>3840) scale down to width(<=1920);

YUV420

- (1) not support width(>3840) scale down to width(>2560);
- (2) support vertical down but only support vertical bilinear scale up if width(>3840) scale down to width(>1920 and <2560);
- (3) no limitation if width(>3840) scale down to width(<=1920);

Since the sampling rate is different for lumina data and chroma data with the format of YCbCr422 and YCbCr420, the scaling factors for lumina data and chroma data are calculated and configured in VOP_WIN0_SCL_FACTOR_Y/ VOP_WIN0_SCL_FACTOR_CBR respectively.

27.3.4 De-flicker

It is necessary to display a non-interlaced video signal on an interlaced display panel (such as TV set). Thus "non-interlaced-to-interlaced conversion" is required.

The easiest approach is to throw away every other active scan line in each non-interlaced frame. Although the cost is minimal, there are problems with this approach. If there is a sharp vertical transition of color or intensity, it will flicker at one-half the refresh rate.

A better solution is to use two lines of non-interlaced data to generate one line of interlace data. Fast vertical transition is smoothed out over several interlace lines.

The vertical filtering of two non-interlaced lines can be done by enabling the vertical scaling offset updated dynamically in different fields, i.e, even field and odd field. The dynamic updated value of scaling offset is half of the scaling factor.

Fig. 27-7 De-flicker

27.3.5 Virtual display

When in virtual display, the active image is part of the virtual (original) image in frame buffer memory.

The virtual width is indicated by setting VIR_STRIDE and VIR_STRIDE for different data format. Note that RGB/BPP has one stride——yrgb_vir_stride; YUV has two virtual stride——yrgb_vir_stride and cbcr_vir_stride.

For RGB-8bit and YUV-8bit, the stride should be multiples of word (32-bit), with dummy bytes in the end of virtual line if the original width is not 32-bit aligned.

For YUV-10bit, the stride should be multiples of word (-bit), with dummy bytes in the end of virtual line if the original width is not 128-bit aligned.

Fig. 27-8 Virtual display

27.3.6 MIRROR display

Mirror display is necessary for the panel with mirror timing interface. There are two types of mirror mode: horizontal mirror(X-Mirror) and vertical mirror(Y-mirror).

The default display order is from left to right(L2R) in horizontal direction and from top to bottom(T2B) in vertical direction. However, when X-Mirror is enable, the horizontal display order is from right to left(R2L); when Y-MIRROR is enable, the vertical display order is from bottom to top(B2T).

Fig. 27-9 X-Mirror and Y-Mirror

27.3.7 Display process

1. Overlay display

There are totally 4 layers for overlay display: Background, win0 layer, win1 layer and hardware cursor layer(HWC).

Background is a programmable solid color layer, which is always in the bottom of the display screen.

HWC is a 32x32 or 64x64 3-LUT-colors layer, which is always on the top of the display screen.

Following figure is an example of overlay display for win0, win1 and hwc.

2.Post scale down

Post scale down after overlay is supported to fix overscan, that draws the borders of the image beyond the normally visiable area on the screen.

The scale ratio of post scale down is $0.5 \sim 1$.

Post timing setting

The post scale parameter ,such as,post_dsp_hact_st,post_dsp_hact_end, post_dsp_vact_st,post_dsp_vact_end can be configured.

When post scaling equal "1", the post scaler parameter are the same as dsp timing parameter. eg:

```
post_dsp_hact_st = dsp_hact_st
post_dsp_hact_end = dap_hact_end
post_dsp_vact_st = dsp_vact_st
post_dsp_vact_end = dsp_vact_end
```


Fig. 27-11 post scaling timing

Post scale down factor

For horizontal scale down, factor = $((src_width*2/3) << 16)/(dst_width-1)$. For vertical scale down, factor = $((src_width*2/3) << 16)/(dst_width-1)$.

3.Transparency color key

The transparency color key value defines the pixel treated as transparent pixel. The pixel whose value is equal to the color key value could not be visible on the screen, instead of the pixel in the under layer or solid background color.

There are two transparency color key for win0 layer and win1 layer respectively. When color key is enable, the transparency process is done after scaling but before YUV2RGB color space converter.

Moreover, transparency color key is just available for non-scaling mode.

Following figure is an example of transparency color key for win0 and win1.

Fig. 27-12 Transparency Color Key

4.Replication(dither up)

If the size of panel data bus is lager than the size of source pixel data,i.e, the source input format is RGB565 and display output format is RGB888, you could do bit replication by replicating MSBs to LSBs if replication is enable (VOP_DSP_CTRL0[9]=1) or filling with "0" to LSBs if replication is disable (VOP_DSP_CTRL0[9]=0).

5.Alpha blending

There are 12 alpha blending mode between two overlay layers for layer1/layer2/layer3/hwc. Layer0 does not support alpha blending with background.

When in per-pixel mode, the alpha value for every pixel is following with the pixel data. i.e, aRGB, and can be scaled like RGB data. Therefore it is just suitable for win0/win1/win2/win3/hwc layer with ARGB data format.

The alpha blending architechture is shown as follows.

Table 27-1 alpha blending mode settings

Blending Mode	Cs'	Fs	Cd'	Fd
AA_USER_DEFINED	X	User defined	Cd	User defined
AA_CLEAR	X	0	Cd	0
AA_SRC	X	0	Cd	1
AA_DST	X	1	Cd	1
AA_SRC_OVER	Cs	1	Cd	1-As"
AA_DST_OVER	Cs	1-As"	Cd	1
AA_SRC_IN	Cs	As"	Cd	0
AA_DST_IN	X	0	Cd	As"
AA_SRC_OUT	Cs	1-As"	Cd	0
AA_DST_OUT	X	0	Cd	1-As"
AA_SRC_ATOP	Cs	As"	Cd	1-As"
AA_DST_ATOP	Cs	1-As"	Cd	As"
AA_XOR	Cs	1-As''	Cd	1-As"
AA_SRC_OVER_GLOBAL	Cs*As"	Ags"	Cd	1-As"


```
case AA_SRC_OVER:
alpha_config->src_color_mode=AA_SRC_PRE_MUL;
alpha config->src factor mode=AA ONE;
alpha_config->dst_factor_mode=AA_SRC_INVERSE;
break;
case AA_DST_OVER:
alpha_config->src_color_mode=AA_SRC_PRE_MUL;
alpha_config->src_factor_mode=AA_SRC_INVERSE;
alpha_config->dst_factor_mode=AA_ONE;
break;
case AA_SRC_IN:
alpha_config->src_color_mode=AA_SRC_PRE_MUL;
alpha_config->src_factor_mode=AA_SRC;
alpha_config->dst_factor_mode=AA_ZERO;
break;
case AA_DST_IN:
alpha_config->src_factor_mode=AA_ZERO;
alpha_config->dst_factor_mode=AA_SRC;
break;
case AA_SRC_OUT:
alpha_config->src_color_mode=AA_SRC_PRE_MUL;
alpha_config->src_factor_mode=AA_SRC_INVERSE;
alpha_config->dst_factor_mode=AA_ZERO;
break;
case AA_DST_OUT:
alpha_config->src_factor_mode=AA_ZERO;
alpha_config->dst_factor_mode=AA_SRC_INVERSE;
break;
case AA_SRC_ATOP:
alpha_config->src_color_mode=AA_SRC_PRE_MUL;
alpha_config->src_factor_mode=AA_SRC;
alpha_config->dst_factor_mode=AA_SRC_INVERSE;
break;
case AA DST ATOP:
alpha_config->src_color_mode=AA_SRC_PRE_MUL;
alpha_config->src_factor_mode=AA_SRC_INVERSE;
alpha_config->dst_factor_mode=AA_SRC;
break;
case AA XOR:
alpha_config->src_color_mode=AA_SRC_PRE_MUL;
alpha_config->src_factor_mode=AA_SRC_INVERSE;
alpha_config->dst_factor_mode=AA_SRC_INVERSE;
break;
case AA_SRC_OVER_GLOBAL:
alpha config->src global alpha mode=AA PER PIX GLOBAL;
alpha_config->src_color_mode=AA_SRC_NO_PRE_MUL;
alpha_config->src_factor_mode=AA_SRC_GLOBAL;
alpha_config->dst_factor_mode=AA_SRC_INVERSE;
break;
default:
   printf("alpha mode error\n");
   break;
```

6.CABC

}

CABC(Content Adaptive Backlight Control) is used to increase the contrast of such LCD-screens the backlight can be (globally) dimmed when the image to be displayed is dark (i.e. not comprising high intensity image data) while the image data is numerically corrected and adapted to the reduced backlight intensity.

Config the panel total pixel num to reg 0x1c4 ,and config the calc pixel num to regfile 0x1c0 (typical calc_pixel_num / total_pixel_num \approx 80% \sim 90%).

Config the stage up and stage down to ensure the luminance difference will not to big in each two adjacent frames. Typical value is $0x20\sim0x40$.

There are 3x7 Gaussian filter tables in reg $0x1c8\sim0x1dc$.

default value as follow:

0x1c8: 0x15110903 0x1cc: 0x00030911 0x1d0: 0x1a150b04 0x1d4: 0x00040b15 0x1d8: 0x15110903 0x1dc: 0x00030911

7.BCSH

BCSH is used to adjust "Brightness, Contrast, Saturation, Hue, like IEP BCSH-8bit. For details, please refer to IEP chapter.

- Extend yuv data from 8bits(IEP) to 10bits.
- The brightness adjust support (-128,127).
- The yuv data of color bar are 10bits.

8. Color space conversion

There are three standards for YUV2RGB-8bit, and BT2020 standard for YUV2RGB-10bit.

```
    YUV2RGB-8bit
```

```
1. yuv to rgb (REC-601) range 0 (Y[16:235], UV[16:240], RGB[0:255])
R = 1.164(Y-16) + 1.596(V-128)
G = 1.164(Y-16) - 0.391(U-128) - 0.813(V-128)
B = 1.164(Y-16) + 2.018(U-128)

2. yuv to rgb (REC-601) range 1 (YUV[0:255], RGB[0:255])
R = (Y-16) + 1.402(V-128)
G = (Y-16) - 0.344(U-128) - 0.714(V-128)
B = (Y-16) + 1.772(U-128)

3. yuv to rgb (REC-709) range 0 (Y[16:235], UV[16:240], RGB[0:255])
R = 1.164(Y-16) + 1.793(V-128)
G = 1.164(Y-16) - 0.213(U-128) - 0.534(V-128)
B = 1.164(Y-16) + 2.115(U-128)

• RGB2YUV-8bit ccir601
```

YUV2RGB-10bit

Y = (230R + 595G + 52B + 65536)/1024

Y = 0.257R + 0.504G + 0.098B + 16 Cb =-0.148R - 0.291G + 0.439B + 128 Cr = 0.439R - 0.368G - 0.071B + 128 U = (-125R-323G+449B+524288)/1024 V = (449R-412G-36B+524288)/1024

RGB2YUV-10bit

R = 1.1636Y + 1.6778V - 933.504

G = 1.1636Y - 0.1872U - 0.6501V + 351.9232

B = 1.1636Y + 2.1406U - 1170.4576

9.Dither Down

Dither down directly

The invalid lower bits will be replaced by "0" after dither operation, if disable dither down. eg: $10'b10\ 1011\ 00XX \rightarrow 10'b10\ 1011\ 0000$.

Fig. 27-14 Dither down directy

Allegro Dither Down

Dithering is an intentional applied form of noise, using to randomize quantization error, and thereby preventing large-scaling patterns such as "banding".

The pixel value is used by dithering process to display the data in a lower color depth on the LCD panel, i.e, the source input format is RGB888 and display output format is RGB565 or RGB666. When dithering is enable($VOP_DSP_CTRL0[11]=1$), the output data is generated by dithering algorithm based on the pixel position and the value of removed bits. Otherwise, the MSBs of the pixel color components are output as display data.

There are two dither modes: "RGB888 to RGB666" and "RGB888 to RGB565", which is defined by VOP_DSP_CTRL0[10]. When VOP_DSP_CTRL0[10] is 1, dithering with "RGB888 to RGB666" is available; otherwise, "RGB888 to RGB565" is used.

FRC Dither Down

The pattern of dither frc was configured by vop regfile vop_base+0x1e0~0x1f4.

The following fig is the default pattern picture in vop, you can config different value of regfile $0x1e0\sim0x1f4$, to change the pattern picture.

Fig. 27-15 frc pattern diagram

There are four typical pattern as follow:

(1) default pattern:

0x1e0: 0x12844821 0x1e4: 0x21488412 0x1e8: 0xa55a9696 0x1ec: 0x5aa56969 0x1f0: 0xdeb77bed 0x1f4: 0xed7bb7de

(2) for column inversion panel:

0x1e0: 0x50a00a05 0x1e4: 0xa050050a 0x1e8: 0x5a5aa5a5 0x1ec: 0x5a5aa5a5 0x1f0: 0xaf5ff5fa 0x1f4: 0x5faffaf5

(3) for 1+2dot panel

0x1e0:0x0c308421

0x1e4: 0x124803c0 0x1e8: 0xcc339669 0x1ec: 0x33cc9669 0x1f0: 0xf3cf7bde 0x1f4: 0xedb7fc3f

(4) default enhance pattern

0x1e0: 0x12844821 0x1e4: 0x21488412 0x1e8: 0x55aaaa55 0x1ec: 0x55aaaa55 0x1f0: 0xdeb77bed 0x1f4: 0xed7bb7de

10.Gamma Correction

Gamma Correction is necessary because most monitors don't have a linear relationship between the voltage and the brightness, which results in your scene looking like it has too much contrast and the light falling off from the source outward, happens too quickly. The result can also be problematic if you are going into a composition program.

You can correct this by "Gamma Correction", which allows you to display the images and textures on your computer in an accurate manner.

Your screen is not linear, in that it displays the brightness unevenly. As a result, the image looks to be more high contrast than it should, you end up addingmore lights or turning up the intensity, or you don't use the lighting in a realistic way that matches well with live action scenes. It also creates problems for you if you use compositing software.

There are three 1024x10bits line buffers sperately for 10bit-R/G/B gamma correction. For 8bit-RGB, it only consumes 256x8bit for each channel. You can write gamma correction LUT through register GAMMA_LUT_ADDR one by one.

11.Output format

Config dsp_out_mode register to adapt a variety of panel interface. As follow:

Fig. 27-16 dsp_out_mode description

27.4 Register Description

27.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
VOP_REG_CFG_DONE	0x0000	W	0x00000000	Register config done flag
VOP_VERSION_INFO	0x0004	W	0x00000000	
VOP_SYS_CTRL	0x0008	W	0x00801000	System control register0

Name	Offset	Size	Reset Value	Description
VOP_SYS_CTRL1	0x000c	W	0x0000000	
VOP_DSP_CTRL0	0×0010	W	0×00000000	Display control register0
VOP_DSP_CTRL1	0x0014	W	0x0000e400	Display control register1
VOP_DSP_BG	0x0018	W	0x0000000	background color
VOP_MCU_CTRL	0x001c	W	0x00711c08	MCU mode control register
VOP_INTR_CTRL0	0×0020	W	0x00000000	Interrupt ctrl register0
VOP_INTR_CTRL1	0x0024	W	0x00000000	Interrupt ctrl register1
VOP_INTR_RESERVED0	0x0028	W	0x0000000	
VOP_INTR_RESERVED1	0x002c	W	0x0000000	\\\\\
VOP_WINO_CTRL0	0x0030	W	0x00000040	win0 ctrl register0
VOP_WIN0_CTRL1	0x0034	W	0x0000000	win1 ctrl register1
VOP_WIN0_COLOR_KEY	0x0038	W	0x00000000	Win0 color key register
VOP_WINO_VIR	0x003c	W	0x00000140	Win0 virtual stride
VOP_WIN0_YRGB_MST	0×0040	W	0x0000000	Win0 YRGB memory start address
VOP_WIN0_CBR_MST	0x0044	W	0x00000000	Win0 Cbr memory start address
VOP_WIN0_ACT_INFO	0x0048	W	0x00ef013f	Win0 active window width/height
VOP_WINO_DSP_INFO	0x004c	W	0x00ef013f	Win0 display width/height on panel
VOP_WIN0_DSP_ST	0x0050	W	0x000a000a	Win0 display start point on panel
VOP_WIN0_SCL_FACTO R_YRGB	0x0054	W	0x10001000	Win0 YRGB scaling factor
VOP_WIN0_SCL_FACTO R_CBR	0x0058	W	0x10001000	Win0 Cbr scaling factor
VOP_WIN0_SCL_OFFSET	0x005c	W	0x00000000	Win0 scaling start point offset
VOP_WINO_SRC_ALPHA _CTRL	0x0060	W	0x0000000	
VOP_WINO_DST_ALPHA _CTRL	0x0064	W	0x00000000	
VOP_WIN0_FADING_CT	0×0068	W	0x00000000	
VOP_WINO_RESERVED0	0x006c	W	0×00000000	
VOP_WIN1_CTRL0	0x0070	W	0x0000040	win1 ctrl register0
VOP_WIN1_CTRL1	0x0074	W	0x00000000	win1 ctrl register1

Name	Offset	Size	Reset Value	Description
VOP_WIN1_COLOR_KEY	0x0078	W	0×00000000	Win1 color key register
VOP_WIN1_VIR	0x007c	W	0x00000140	win1 virtual stride
VOP_WIN1_YRGB_MST	0x0080	W	0×00000000	Win1 YRGB memory start address
VOP_WIN1_CBR_MST	0x0084	W	0x00000000	Win1 Cbr memory start address
VOP_WIN1_ACT_INFO	0x0088	W	0x00ef013f	Win1 active window width/height
VOP_WIN1_DSP_INFO	0x008c	W	0x00ef013f	Win1 display width/height on panel
VOP_WIN1_DSP_ST	0×0090	W	0x000a000a	Win1 display start point on panel
VOP_WIN1_SCL_FACTO R_YRGB	0x0094	W	0×10001000	Win1 YRGB scaling factor
VOP_WIN1_SCL_FACTO R_CBR	0x0098	W	0x10001000	Win1 Cbr scaling factor
VOP_WIN1_SCL_OFFSET	0x009c	W	0x00000000	Win1 scaling start point offset
VOP_WIN1_SRC_ALPHA _CTRL	0x00a0	W	0x00000000	
VOP_WIN1_DST_ALPHA _CTRL	0x00a4	w	0×00000000	
VOP_WIN1_FADING_CT RL	0x00a8	W	0x00000000	
VOP_WIN1_RESERVED0	0x00ac	W	0x0000000	
VOP_WIN2_CTRL0	0x00b0	W	0x00000000	win2 ctrl register0
VOP_WIN2_CTRL1	0x00b4	W	0x00000000	win2 ctrl register0
VOP_WIN2_VIR0_1	0x00b8	W	0x01400140	Win2 virtual stride0 and virtaul stride1
VOP_WIN2_VIR2_3	0x00bc	W	0x01400140	Win2 virtual stride2 and virtaul stride3
VOP_WIN2_MST0	0x00c0	W	0×00000000	Win2 memory start address0
VOP_WIN2_DSP_INFO0	0x00c4	w	0x00ef013f	Win2 display width0/height0 on panel
VOP_WIN2_DSP_ST0	0x00c8	W	0x000a000a	Win2 display start point0 on panel
VOP_WIN2_COLOR_KEY	0x00cc	W	0x00000000	Win2 color key register
VOP_WIN2_MST1	0x00d0	W	0×00000000	Win2 memory start address1

Name	Offset	Size	Reset Value	Description
VOP_WIN2_DSP_INFO1	0x00d4	W	0x00ef013f	Win2 display width1/height1 on panel
VOP_WIN2_DSP_ST1	0x00d8	W	0x000a000a	Win2 display start point1 on panel
VOP_WIN2_SRC_ALPHA _CTRL	0x00dc	W	0x00000000	
VOP_WIN2_MST2	0x00e0	W	0x00000000	Win2 memory start address2
VOP_WIN2_DSP_INFO2	0x00e4	W	0x00ef013f	Win2 display width2/height2 on panel
VOP_WIN2_DSP_ST2	0x00e8	W	0x000a000a	Win2 display start point2 on panel
VOP_WIN2_DST_ALPHA _CTRL	0x00ec	W	0x00000000	(C)
VOP_WIN2_MST3	0x00f0	W	0x00000000	Win2 memory start address3
VOP_WIN2_DSP_INFO3	0x00f4	W	0x00ef013f	Win2 display width3/height3 on panel
VOP_WIN2_DSP_ST3	0x00f8	w	0x000a000a	Win2 display start point3 on panel
VOP_WIN2_FADING_CT RL	0x00fc	W	0x00000000	
VOP_WIN3_CTRL0	0x0100	W	0x0000000	win0 ctrl register0
VOP_WIN3_CTRL1	0x0104	W	0x00000000	win0 ctrl register1
VOP_WIN3_VIR0_1	0x0108	W	0x01400140	Win3 virtual stride0 and virtaul stride1
VOP_WIN3_VIR2_3	0x010c	w	0x01400140	Win3 virtual stride2 and virtaul stride3
VOP_WIN3_MST0	0x0110	W	0x00000000	Win3 memory start address0
VOP_WIN3_DSP_INFO0	0x0114	W	0x00ef013f	Win3 display width0/height0 on panel
VOP_WIN3_DSP_ST0	0x0118	W	0x000a000a	Win3 display start point0 on panel
VOP_WIN3_COLOR_KEY	0x011c	W	0x00000000	Win3 color key register
VOP_WIN3_MST1	0x0120	W	0x00000000	Win3 memory start address1

Name	Offset	Size	Reset Value	Description
VOP_WIN3_DSP_INFO1	0x0124	w	0x00ef013f	Win3 display width1/height1 on panel
VOP_WIN3_DSP_ST1	0x0128	W	0x000a000a	Win3 display start point1 on panel
VOP_WIN3_SRC_ALPHA _CTRL	0x012c	W	0x00000000	
VOP_WIN3_MST2	0x0130	W	0x00000000	Win3 memory start address2
VOP_WIN3_DSP_INFO2	0x0134	W	0x00ef013f	Win3 display width2/height2 on panel
VOP_WIN3_DSP_ST2	0x0138	W	0x000a000a	Win3 display start point2 on panel
VOP_WIN3_DST_ALPHA _CTRL	0x013c	W	0x00000000	
VOP_WIN3_MST3	0x0140	W	0x00000000	Win3 memory start address3
VOP_WIN3_DSP_INFO3	0x0144	W	0x00ef013f	Win3 display width3/height3 on panel
VOP_WIN3_DSP_ST3	0x0148	w	0x000a000a	Win3 display start point3 on panel
VOP_WIN3_FADING_CT RL	0x014c	W	0×00000000	
VOP_HWC_CTRL0	0x0150	W	0x00000000	Hwc ctrl register0
VOP_HWC_CTRL1	0x0154	W	0x00000000	Hwc ctrl register1
VOP_HWC_MST	0x0158	W	0x00000000	Hwc memory start address
VOP_HWC_DSP_ST	0x015c	W	0x000a000a	Hwc display start point on panel
VOP_HWC_SRC_ALPHA_ CTRL	0x0160	W	0x00000000	
VOP_HWC_DST_ALPHA_ CTRL	0x0164	W	0x00000000	
VOP_HWC_FADING_CTR L	0x0168	W	0x00000000	
VOP_HWC_RESERVED1	0x016c	W	0x00000000	
VOP_POST_DSP_HACT_I NFO	0x0170	W	0x000a014a	post scaler down horizontal start and end

Name	Offset	Size	Reset Value	Description
VOP_POST_DSP_VACT_I NFO	0x0174	W	0x000a00fa	Panel active horizontal scanning start point and end point
VOP_POST_SCL_FACTO R_YRGB	0x0178	W	0x10001000	post yrgb scaling factor
VOP_POST_RESERVED	0x017c	W	0x00001000	
VOP_POST_SCL_CTRL	0x0180	W	0×00000000	post scaling start point offset
VOP_POST_DSP_VACT_I NFO_F1	0x0184	W	0x000a00fa	Panel active horizontal scanning start point and end point F1
VOP_DSP_HTOTAL_HS_ END	0x0188	W	0x014a000a	Panel scanning horizontal width and hsync pulse end point
VOP_DSP_HACT_ST_EN D	0x018c	W	0x000a014a	Panel active horizontal scanning start point and end point
VOP_DSP_VTOTAL_VS_E ND	0×0190	W		Panel scanning vertical height and vsync pulse end point
VOP_DSP_VACT_ST_END	0x0194	W	0x000a00fa	Panel active vertical scanning start point and end point
VOP_DSP_VS_ST_END_ F1	0x0198	W	0×00000000	Vertical scanning start point and vsync pulse end point of even filed in interlace mode
VOP_DSP_VACT_ST_EN D_F1	0x019c	W	0×00000000	Vertical scanning active start point and end point of even filed in interlace mode
VOP_PWM_CTRL	0x01a0	W	0x0000200a	PWM Control Register
VOP_PWM_PERIOD_HPR	0x01a4	W	0x00000000	PWM Period Register/High Polarity Capture Register
VOP_PWM_DUTY_LPR	0x01a8	W	0x00000000	PWM Duty Register/Low Polarity Capture Register
VOP_PWM_CNT	0x01ac	W	0x00000000	PWM Counter Register

Name	Offset	Size	Reset Value	Description
VOP_BCSH_COLOR_BAR	0x01b0	W	0×00000000	color bar config register
VOP_BCSH_BCS	0x01b4	W	0xd0010000	brightness contrast saturation*contrast config register
VOP_BCSH_H	0x01b8	W	0x01000000	sin hue and cos hue config register
VOP_BCSH_RESERVED	0x01bc	W	0x00000000	
VOP_CABC_CTRL0	0x01c0	W	0x00000000	A
VOP_CABC_CTRL1	0x01c4	W	0x00000000	
VOP_CABC_GAUSS_LIN E0_0	0x01c8	W	0x15110903	Register0000 Abstract
VOP_CABC_GAUSS_LIN E0_1	0x01cc	W	0x00030911	Register0001 Abstract
VOP_CABC_GAUSS_LIN E1_0	0x01d0	W	0x1a150b04	Register0002 Abstract
VOP_CABC_GAUSS_LIN E1_1	0x01d4	W	0x00040b15	Register0003 Abstract
VOP_CABC_GAUSS_LIN E2_0	0x01d8	W	0x15110903	Register0004 Abstract
VOP_CABC_GAUSS_LIN E2_1	0x01dc	W	0x00030911	Register0005 Abstract
VOP_FRC_LOWER01_0	0x01e0	W	0x12844821	
VOP_FRC_LOWER01_1	0x01e4	W	0x21488412	
VOP_FRC_LOWER10_0	0x01e8	W	0xa55a9696	
VOP_FRC_LOWER10_1	0x01ec	W	0x5aa56969	
VOP_FRC_LOWER11_0	0x01f0	W	0xdeb77bed	
VOP_FRC_LOWER11_1	0x01f4	W	0xed7bb7de	
VOP_FRC_RESERVED0	0x01f8	W	0x00000000	
VOP FRC RESERVED1	0x01fc	W	0x00000000	
VOP_MMU_DTE_ADDR	0×0300	W	0×00000000	MMU current page Table address
VOP_MMU_STATUS	0x0304	W	0x00000000	MMU status register
VOP_MMU_COMMAND	0×0308	W	0×00000000	MMU command register
VOP_MMU_PAGE_FAULT _ADDR	0x030c	W	0x00000000	MMU logical address of last page fault
VOP_MMU_ZAP_ONE_LI NE	0x0310	W	0x00000000	MMU Zap cache line register
VOP_MMU_INT_RAWSTA T	0x0314	W	0x00000000	MMU raw interrupt status register
VOP_MMU_INT_CLEAR	0x0318	W	0x00000000	MMU raw interrupt status register

Name	Offset	Size	Reset Value	Description
VOP_MMU_INT_MASK	0x031c	W	0x00000000	MMU raw interrupt status register
VOP_MMU_INT_STATUS	0x0320	W	0x00000000	MMU raw interrupt status register
VOP_MMU_AUTO_GATIN	0x0324	W	0x00000000	mmu auto gating
VOP_WIN2_LUT_ADDR	0x0400	W	0x0000000	
VOP_WIN3_LUT_ADDR	0x0800	W	0x0000000	
VOP_HWC_LUT_ADDR	0x0c00	W	0x0000000	A
VOP_GAMMA_LUT_ADDR	0x1000	W	0x0000000	
VOP_MCU_BYPASS_WPO RT	0x2200	W	0x00000000	Register0000 Abstract
VOP_MCU_BYPASS_RPO RT	0x2300	W	0x00000000	Register0001 Abstract

Notes: Size: **B** - Byte (8 bits) access, **HW** - Half WORD (16 bits) access, **W** -WORD (32 bits) access

27.4.2 Detail Register Description

VOP_REG_CFG_DONE

Address: Operational Base + offset (0x0000)

Register config done flag

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
			reg_load_en
		• 4	lcdc register config done flag
		In the first setting of the register, the new value was	
	wo	0x0	saved into the mirror register.
U	IVVO		When all the register config finish, writing this
	1	10	register to enable the copyright of the mirror register
			to real register. Then register would be updated at
			the start of every frame.

VOP_VERSION_INFO

Address: Operational Base + offset (0x0004)

Bit	Attr	Reset Value	Description
31:16	RW	0x0000	fpga_version
15:0	RW	0x0000	rtl_version

VOP_SYS_CTRL

Address: Operational Base + offset (0x0008)

System control register0

Bit	Attr	Reset Value	Description
31:24	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			auto_gating_en
			LCDC layer axi-clk auto gating enable
23	RW	0x1	1'b0 : disable auto gating
			1'b1 : enable auto gating
			default auto gating enable
			vop_standby_en
			LCDC standby mode
			Writing "1" to turn LCDC into standby mode, All the
			layer would disable and the data transfer from frame
			buffer memory would stop at the end of current
			frame.
22	RW	0x0	The output would be blank.
			When writing "0" to this bit, standby mode would
			disable and the LCDC go back to work immediately.
			1'b0 : disable
			1'b1 : enable
			* Black display is recommended before setting
			standby mode enable.
			vop_dma_stop
			LCDC DMA stop mode
21	RW	0x0	1'b0 : disable
21	IXVV	0.00	1'b1 : enable
			* If DMA is working, the stop mode would not be
			active until current bus transfer is finished.
			vop_mmu_en
20	RW	0x0	vop mmu enable signal
			1'b0 : bypass mmu
		У	1'b1 : enable mmu
			dma_burst_length
			DMA read Burst length
19:18	RW	0x0	2'b00 : burst16 (burst 15 in rgb888 pack mode)
			2'b01: burst8 (burst 12 in rgb888 pack mode)
			2'b10 : burst4 (burst 6 in rgb888 pack mode)
17:16	RO	0x0	reserved
			mipi_out_en
15	RW	0x0	1'b0 : gating output clk ,data and control signal
			1'b1 : mipi interface enable
			edp_out_en
14	RW	0x0	1'b0 : gating output clk ,data and control signal
			1'b1 : edp interface enable
1.2	D		hdmi_out_en
13	RW	0x0	1'b0 : gating output clk ,data and control signal
			1'b1 : hdmi interface enable

Bit	Attr	Reset Value	Description
			rgb_out_en
12	RW	0x1	1'b0 : gating output clk ,data and control signal
			1'b1 : rgb/lvds interface enable
11	RO	0x0	reserved
			edpi_wms_fs
			edpi wms mode , rame st signal
10	RW	0x0	write 複: edpi_wms_mode frame start (when other
			register is config done)
			read : wms mode hold status
0	RW	0x0	edpi_wms_mode
9	KVV	UXU	1'b1: mipi command mode
8	RW	0x0	edpi_halt_en
0	KVV	UXU	mipi flow ctrl enable
			doub_ch_overlap_num
			4'h0: overlap num 0
			4'h1: overlap num 2
			4'h2: overlap num 4
7:4	RW	0x0	4'h3: overlap num 6
	IXVV	0.00	4'h4: overlap num 8
			4'h5: overlap num 10
			4'h6: overlap num 12
			4'h7: overlap num 14
			4'h8: overlap num 16
3	RW	0x0	doub_channel_en
		one -	mipi double channel enable
			direct_path_layer_sel
			direct path layer select
2:1	RW	0x0	2'b00 : select win0
			2'b01 : select win1
			2'b10 : select win2
			2'b11 : select win3
	7		direct_path_en
0	RW	0x0	iep direct path enable signal
			1'b0 : disable iep direct path
			1'b1 : enable iep direct path

VOP_SYS_CTRL1

Address: Operational Base + offset (0x000c)

Bit	Attr	Reset Value	Description
31:18	RO	0x0	reserved
17:13	RW	0×00	axi_outstanding_max_num

Bit	Attr	Reset Value	Description
12	RW	0×0	axi_max_outstanding_en
11:10	RW	0×0	noc_win_qos
9	RW	0×0	noc_qos_en
8:3	RW	0×00	noc_hurry_threshold
2:1	RW	0×0	noc_hurry_value
0	RW	0x0	noc_hurry_en

VOP_DSP_CTRL0

Address: Operational Base + offset (0x0010)
Display control register0

(0x000000) dsp_blank_en Blank display mode	splay control register0				
dsp_y_mir_en 1'b0 : no y_mirror 1'b1 : y_mirror dsp_x_mir_en 1'b0 : no x_mirror 1'b1 : x_mirror dsp_yuv_clip YCrCb clip 1'b0 : disable, YCbCr no clip 1'b1 : enable, YCbCr clip before YCbCr2RGB10bit *Y clip: 64~940, CbCr clip: 64~960 RW 0x0	Bit	Attr	Reset Value	Description	
RW 0x0 1'b0: no y_mirror 1'b1: y_mirror dsp_x_mir_en 1'b0: no x_mirror 1'b1: x_mirror dsp_yuv_clip YCrCb clip 1'b0: disable, YCbCr no clip 1'b1: enable, YCbCr clip before YCbCr2RGB10bit *Y clip: 64~940, CbCr clip: 64~960 RW 0x0 Cb-Cr filter in CCIR656 mode 1'b0: drop mode 1'b1: average mode dsp_black_en Black display mode When this bit enable, the pixel data output is all black (0x000000) dsp_blank_en Blank display mode When this bit enable, the Hsync/Vsync/Den output is	31:24	RO	0x0	reserved	
1'b1 : y_mirror dsp_x_mir_en 1'b0 : no x_mirror 1'b1 : x_mirror dsp_yuv_clip				dsp_y_mir_en	
dsp_x_mir_en 1'b0 : no x_mirror 1'b1 : x_mirror dsp_yuv_clip YCrCb clip 1'b0 : disable, YCbCr no clip 1'b1 : enable, YCbCr clip before YCbCr2RGB10bit *Y clip: 64~940, CbCr clip: 64~960 RW 0x0 dsp_ccir656_avg Cb-Cr filter in CCIR656 mode 1'b0 : drop mode 1'b1 : average mode dsp_black_en Black display mode When this bit enable, the pixel data output is all black (0x0000000) RW 0x0 dsp_blank_en Blank display mode When this bit enable, the Hsync/Vsync/Den output is	23	RW	0x0	1'b0 : no y_mirror	
22 RW 0x0 1'b0: no x_mirror 1'b1: x_mirror dsp_yuv_clip YCrCb clip 1'b0: disable, YCbCr no clip 1'b1: enable, YCbCr clip before YCbCr2RGB10bit *Y clip: 64~940, CbCr clip: 64~960 20 RW 0x0 dsp_ccir656_avg Cb-Cr filter in CCIR656 mode 1'b0: drop mode 1'b1: average mode dsp_black_en Black display mode When this bit enable, the pixel data output is all black (0x000000) dsp_blank_en Blank display mode When this bit enable, the Hsync/Vsync/Den output is Blank display mode When this bit enable, the Hsync/Vsync/Den output is				1'b1 : y_mirror	
1'b1 : x_mirror dsp_yuv_clip YCrCb clip 1'b0 : disable, YCbCr no clip 1'b1 : enable, YCbCr clip before YCbCr2RGB10bit *Y clip: 64~940, CbCr clip: 64~960 20 RW 0x0				dsp_x_mir_en	
dsp_yuv_clip YCrCb clip 1'b0 : disable, YCbCr no clip 1'b1 : enable, YCbCr clip before YCbCr2RGB10bit *Y clip: 64~940, CbCr clip: 64~960 dsp_ccir656_avg Cb-Cr filter in CCIR656 mode 1'b0 : drop mode 1'b1 : average mode dsp_black_en Black display mode When this bit enable, the pixel data output is all black (0x000000) dsp_blank_en Blank display mode When this bit enable, the Hsync/Vsync/Den output is	22	RW	0x0	1'b0 : no x_mirror	
21 RW 0x0 1'b0: disable, YCbCr no clip 1'b1: enable, YCbCr clip before YCbCr2RGB10bit *Y clip: 64~940, CbCr clip: 64~960 20 RW 0x0 dsp_ccir656_avg Cb-Cr filter in CCIR656 mode 1'b0: drop mode 1'b1: average mode dsp_black_en Black display mode When this bit enable, the pixel data output is all black (0x000000) dsp_blank_en Blank display mode When this bit enable, the Hsync/Vsync/Den output is				1'b1 : x_mirror	
21 RW 0x0 1'b0 : disable, YCbCr no clip 1'b1 : enable, YCbCr clip before YCbCr2RGB10bit *Y clip: 64~940, CbCr clip: 64~960 20 RW 0x0 dsp_ccir656_avg Cb-Cr filter in CCIR656 mode 1'b0 : drop mode 1'b1 : average mode dsp_black_en Black display mode When this bit enable, the pixel data output is all black (0x000000) dsp_blank_en Blank display mode When this bit enable, the Hsync/Vsync/Den output is			• 🗸	dsp_yuv_clip	
1'b1: enable, YCbCr clip before YCbCr2RGB10bit *Y clip: 64~940, CbCr clip: 64~960 dsp_ccir656_avg Cb-Cr filter in CCIR656 mode 1'b0: drop mode 1'b1: average mode dsp_black_en Black display mode When this bit enable, the pixel data output is all black (0x000000) dsp_blank_en Blank display mode When this bit enable, the Hsync/Vsync/Den output is				YCrCb clip	
1'b1 : enable, YCbCr clip before YCbCr2RGB10bit *Y clip: 64~940, CbCr clip: 64~960 dsp_ccir656_avg Cb-Cr filter in CCIR656 mode 1'b0 : drop mode 1'b1 : average mode dsp_black_en Black display mode When this bit enable, the pixel data output is all black (0x000000) dsp_blank_en Blank display mode When this bit enable, the Hsync/Vsync/Den output is	21	DW	0.00	1'b0 : disable, YCbCr no clip	
dsp_ccir656_avg Cb-Cr filter in CCIR656 mode 1'b0: drop mode 1'b1: average mode dsp_black_en Black display mode When this bit enable, the pixel data output is all black (0x000000) dsp_blank_en Blank display mode When this bit enable, the Hsync/Vsync/Den output is	21	IK VV	UXU	1'b1 : enable, YCbCr clip before YCbCr2RGB10bit	
20 RW 0x0 Cb-Cr filter in CCIR656 mode 1'b0 : drop mode 1'b1 : average mode dsp_black_en Black display mode When this bit enable, the pixel data output is all black (0x000000) dsp_blank_en Blank display mode When this bit enable, the Hsync/Vsync/Den output is			10	*Y clip: 64~940, CbCr clip: 64~960	
20 RW 0x0 Cb-Cr filter in CCIR656 mode 1'b0 : drop mode 1'b1 : average mode dsp_black_en Black display mode When this bit enable, the pixel data output is all black (0x000000) dsp_blank_en Blank display mode When this bit enable, the Hsync/Vsync/Den output is					
1'b0 : drop mode 1'b1 : average mode dsp_black_en Black display mode When this bit enable, the pixel data output is all black (0x000000) dsp_blank_en Blank display mode When this bit enable, the Hsync/Vsync/Den output is				dsp_ccir656_avg	
1'b0 : drop mode 1'b1 : average mode dsp_black_en Black display mode When this bit enable, the pixel data output is all black (0x000000) dsp_blank_en Blank display mode When this bit enable, the Hsync/Vsync/Den output is	20	RW	0x0	Cb-Cr filter in CCIR656 mode	
dsp_black_en Black display mode When this bit enable, the pixel data output is all black (0x000000) dsp_blank_en Blank display mode When this bit enable, the Hsync/Vsync/Den output is	20			1'b0 : drop mode	
Black display mode When this bit enable, the pixel data output is all black (0x000000) dsp_blank_en Blank display mode When this bit enable, the Hsync/Vsync/Den output is				1'b1 : average mode	
When this bit enable, the pixel data output is all black (0x000000) dsp_blank_en Blank display mode When this bit enable, the Hsync/Vsync/Den output is				dsp_black_en	
When this bit enable, the pixel data output is all black (0x000000) dsp_blank_en Blank display mode When this bit enable, the Hsync/Vsync/Den output is	10	P.W	0.0	Black display mode	
dsp_blank_en Blank display mode When this bit enable, the Hsync/Vsync/Den output is		IXVV	0.00	When this bit enable, the pixel data output is all black	
18 RW 0x0 Blank display mode When this bit enable, the Hsync/Vsync/Den output is				(0×00000)	
When this bit enable, the Hsync/Vsync/Den output is				dsp_blank_en	
When this bit enable, the Hsync/Vsync/Den output is	1.0	DW	0x0	Blank display mode	
blank	10	IXVV		When this bit enable, the Hsync/Vsync/Den output is	
				blank	

Bit	Attr	Reset Value	Description
			dsp_out_zero
4 7	DW		Hsync/Vsync/Den output software ctrl
17	RW	0x0	1'b0 : normal output
			1'b1 : all output '0'
			dsp_dummy_swap
16	RW	0×0	Display dummy swap enable
16	KVV	UXU	1'b0: B+G+R+dummy
			1'b1 : dummy+B+G+R
			dsp_delta_swap
			Display delta swap enable
15	RW	0x0	1'b0 : disable
			1'b1 : enable
			*See detail description in Delta display charpter.
			dsp_rg_swap
14	RW	0×0	Display output red and green swap enable
14	IX VV	0.00	1'b0 : RGB
			1'b1 : GRB
			dsp_rb_swap
13	RW	0×0	Display output red and blue swap enable
13	IX VV		1'b0 : RGB
			1'b1 : BGR
			dsp_bg_swap
12	RW	0x0	Display output blue and green swap enable
12		UXU	1'b0 : RGB
			1'b1 : RBG
			dsp_field_pol
11	RW	0x0	field polarity when interlace dsp
		OXO .	1'b0: normal
			1'b1 : invert
			dsp_interlace
			Interlace display enable
			1'b0 : disable
10	RW	0x0	1'b1 : enable
			*This mode is related to the ITU-R656 output, the
			display timing of odd field must be set correctly.
	, and the second		(lcdc_dsp_vs_st_end_f1/lcdc_dsp_vact_end_f1)
			dsp_ddr_phase
9	RW	0x0	dclk phase lock
_		0.00	1'b0 : no lock
			1'b1 : lock every line
			dsp_dclk_ddr
8	RW	0x0	dclk output mode
			1'b0 : SDR
			1'b1 : DDR

Bit	Attr	Reset Value	Description
			dsp_dclk_pol
			DCLK invert enable
7	RW	0x0	1'b0 : normal
			1'b1 : invert
			default dclk invert
			dsp_den_pol
6	RW	0x0	DEN polarity
0	I VV	UXU	1'b0 : positive
			1'b1 : negative
			dsp_vsync_pol
_	RW	0×0	VSYNC polarity
5	KVV	UXU	1'b0 : negative
			1'b1 : positive
			dsp_hsync_pol
4	RW	0.0	HSYNC polarity
4	I VV	0x0	1'b0 : negative
			1'b1 : positive
			dsp_out_mode
			Display output format
			4'b0000: Parallel 24-bit RGB888 output
			R[7:0],G[7:0],B[7:0]
			4'b0001: Parallel 18-bit RGB666 output
			6'b0,R[5:0],G[5:0],B[5:0]
			4'b0010: Parallel 16-bit RGB565 output
			8'b0,R[4:0],G[5:0],B[4:0]
			4'b0011: Parallel 24-bit RGB888 double pixel mix out
		0×0	phase0:G1[3:0],B1[7:0],G0[3:0],B0[7:0]
			phase1:R1[7:0],G1[7:4],R0[7:0],G0[7:4]
			4'b0100: Serial 2x12-bit 12'b0,G[3:0],B[7:0] +
3:0	RW		12'b0,R[7:0],G[7:4]
3.0			4'b0101: ITU-656 output mode0
			16'b0,pixel_data[7:0]
	\uparrow		4'b0110: ITU-656 output mode1
			8'b0,pixel_data[7:0],8'b0
			4'b0111: ITU-656 output mode2
			9'b0,pixel_data[7:0],7'b0
			4'b1000: Serial 3x8-bit RGB888 16'b0,
			B[7:0]+16'b0,G[7:0]+16'b0,R[7:0]
			4'b1100: Serial 3x8-bit RGB888 + dummy 16'b0,
			B[7:0]+16'b0,G[7:0]+16'b0,R[7:0] + dummy
			4'b1111: Parallel 30-bit RGBaaa output
			R[9:0],G[9:0],B[9:0]
			Others: Reserved.

Address: Operational Base + offset (0x0014)

Display control register1

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
15:14	RW	0x3	dsp_layer3_sel
13:12	RW	0x2	dsp_layer2_sel
11:10	RW	0×1	dsp_layer1_sel
9:8	RW	0x0	dsp_layer0_sel
7	RO	0x0	reserved
6	RW	0x0	dither_up_en
5	RO	0x0	reserved
4	RW	0×0	dither_down_sel dither down mode select 2'b0 : allegro 2'b1 : FRC
3	RW	0x0	dither_down_mode Dither-down mode 1'b0 : RGB888 to RGB565 1'b1 : RGB888 to RGB666
2	RW	0x0	dither_down_en Dither-down enable 1'b0 : disable 1'b1 : enable
1	RW	0x0	pre_dither_down_en 10bit -> 8bit (allegro)
0	RW	0x0	dsp_lut_en Display LUT ram enable 1'b0 : disable 1'b1 : enable *This bit should be "0" when CPU updates the LUT, and should be "1" when Display LUT mode enable.

VOP_DSP_BG

Address: Operational Base + offset (0x0018)

background color

Bit	Attr	Reset Value	Description
31:30	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			dsp_bg_red
29:20	RW	0x000	Background Red color
			dsp_bg_green
19:10	RW	0x000	Background Green color
			dsp_bg_blue
9:0	RW	0x000	Background Blue color

VOP_MCU_CTRL

Address: Operational Base + offset (0x001c)

MCU mode control register

Bit	Attr	Reset Value	Description
31	RW	0x0	mcu_type MCU LCD output SELECT
30	RW	0×0	mcu_bypass MCU LCD BYPASS MODE Select
29	RW	0x0	mcu_rs MCU LCD RS Select
28	RW	0x0	muc_frame_st Write"1" : MCU HOLD Mode Frame Start Read : MCU/LCDC standby HOLD status
27	RW	0x0	mcu_hold_mode MCU HOLD Mode Select
26	RW	0x0	mcu_clk_sel MCU_CLK_SEL for MCU bypass 1'b1 : MCU BYPASS sync with DCLK 1'b0 : MCU BYPASS sync with HCLK
25:20	RW	0x07	mcu_rw_pend MCU_RW signal end point (0-63)
19:16	RW	0×1	mcu_rw_pst MCU_RW signal start point (0-15)
15:10	RW	0x07	mcu_cs_pend MCU_CS signal end point (0-63)
9:6	RW	0×0	mcu_cs_pst MCU_CS signal start point (0-15)

Bit	Attr	Reset Value	Description
5:0	RW		mcu_pix_total MCU LCD Interface writing period (1-63)

VOP_INTR_CTRL0

Address: Operational Base + offset (0x0020)

Interrupt ctrl register0

nterrupt o	Attr	Reset Value	Description
31:25	RO	0x0	reserved
24:12	RW	0x0000	dsp_line_frag_num Line number of the Line flag interrupt The display line number when the flag interrupt occur, the range is (0~ DSP_VTOTAL-1).
11	wo	0x0	bus_error_intr_clr Bus error Interrupt clear (Auto clear)
10	WO	0x0	line_frag_intr_clr Line flag Interrupt clear (Auto clear)
9	WO	0×0	fs_intr_clr Frame start interrupt clear (Auto clear)
8	WO	0x0	dsp_hold_valid_intr_clr display hold valid interrupt clear (Auto clear)
7	RW	0x0	bus_error_intr_en Bus error interrupt enable 1'b0 : disable 1'b1 : enable
6	RW	0×0	line_frag_intr_en Line flag Interrupt enable 1'b0 : disable 1'b1 : enable
5	RW	0x0	fs_intr_en Frame start interrupt enable 1'b0 : disable 1'b1 : enable
4	RW	0x0	dsp_hold_valid_intr_en display hold valid interrupt enable 1'b0 : disable 1'b1 : enable
3	RO	0×0	bus_error_intr_sts Bus error Interrupt status

Bit	Attr	Reset Value	Description
			line_frag_intr_sts
2	RO	0x0	Line flag Interrupt status
			fs_intr_sts
1	RO	0x0	Frame start interrupt status
			dsp_hold_valid_intr_sts
0	RO	0x0	display hold valid interrupt status

VOP_INTR_CTRL1

Address: Operational Base + offset (0x0024)

Interrupt ctrl register1

Bit	Attr	Reset Value	Description
31:23	RO	0x0	reserved
22	RW	0x0	pwm_gen_intr_clr
21	RW	0x0	post_buf_empty_intr_clr post line buffer empty interrupt clear(auto clear)
20	RW	0x0	hwc_empty_intr_clr hwc data empty interrupt clear(auto clear)
19	RW	0x0	win3_empty_intr_clr win3 data empty interrupt clear(auto clear)
18	RW	0x0	win2_empty_intr_clr win2 data empty interrupt clear(auto clear)
17	RW	0x0	win1_empty_intr_clr win1 data empty interrupt clear(auto clear)
16	W1C	0x0	win0_empty_intr_clr win0 data empty interrupt clear(auto clear)
15	RO	0x0	reserved
14	RW	0×0	pwm_gen_intr_en
13	RW	0x0	post_buf_empty_intr_en post line buffer empty interrupt enable signal 1'b0 : disable 1'b1 : enable

Bit	Attr	Reset Value	Description
			hwc_empty_intr_en
12	DW	0.40	hwc data empty interrupt enable signal
12	RW	0x0	1'b0 : disable
			1'b1 : enable
			win3_empty_intr_en
11	RW	0x0	win3 data empty interrupt enable signal
	I V V	UXU	1'b0 : disable
			1'b1 : enable
			win2_empty_intr_en
10	RW	0x0	win2 data empty interrupt enable signal
	I V V	UXU	1'b0 : disable
			1'b1 : enable
			win1_empty_intr_en
9	RW	0x0	win1 data empty interrupt enable signal
	IXVV	0.00	1'b0 : disable
			1'b1 : enable
			win0_empty_intr_en
8	RW	0x0	win0 data empty interrupt enable signal
	IXVV	0.00	1'b0 : disable
			1'b1 : enable
7	RO	0x0	reserved
			pwm_gen_intr_sts
6	RW	0x0	pwm generated interrupt
	IX V V	OXO	0: Channel 0 Interrupt not generated
			1: Channel 0 Interrupt generated
			post_buf_empty_intr_sts
5	RW	0x0	post buffer empty interrupt status
			• 0
			hwc_empty_intr_sts
4	RW	0x0	hwc data empty interrupt status
	(
			win3_empty_intr_sts
3	RW	0x0	win3 data empty interrupt status
			win2_empty_intr_sts
2	RW	0x0	win2 data empty interrupt status
			win1_empty_intr_sts
1	RW	0x0	win1 data empty interrupt status
			win0_empty_intr_sts
0	RO	0x0	win0 data empty interrupt status

VOP_INTR_RESERVED0

Address: Operational Base + offset (0x0028)

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	reserved

VOP_INTR_RESERVED1

Address: Operational Base + offset (0x002c)

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	reserved

VOP_WINO_CTRL0

Address: Operational Base + offset (0x0030)

win0 ctrl register0

egisteru		k (7.7
Attr	Reset Value	Description
RO	0x0	reserved
		win0_yuv_clip
		YCrCb clip
RW	0x0	1'b0 : disable, YCbCr no clip
		1'b1 : enable, YCbCr clip before YCbCr2RGB
		*Y clip: 16~235, CbCr clip: 16~239
		win0_cbr_deflick
DW	0.0	Win0 Cbr deflick mode
KVV	UXU	1'b0 : disable
	101	1'b1 : enable
		win0_yrgb_deflick
DW	0x0	win0 YRGB deflick mode
IK VV		1'b0 : disable
		1'b1 : enable
RO	0x0	reserved
RW	0x0	win0_ppas_zero_en
		0:per_pix_alpha+scale,pix not change;
		1:per_pix_alpha_scale,pix=0 when alpha=0;
		win0_uv_swap
D\\/	0×0	Win0 CbCr swap
KW		1'b0 : CrCb
		1'b1 : CbCr
	0x0	win0_mid_swap
RW		Win0 Y middle swap
		1'b0 : Y3Y2Y1Y0
		1'b1 : Y3Y1Y2Y0
	RW RW RW RW RO RW	Attr Reset Value RO 0x0 RW 0x0 RW 0x0 RO 0x0 RW 0x0 RW 0x0

Bit	Attr	Reset Value	Description	
			win0_alpha_swap	
13	RW	0x0	win0 alpha swap	
13	KVV	UXU	1'b0 : ARGB	
			1'b1 : RGBA	
			win0_rb_swap	
12	RW	0x0	win0 RGB RED and BLUE swap	
12	KVV	UXU	1'b0 : RGB	
			1'b1 : BGR	
			win0_csc_mode	
			Win0 YUV2RGB	
			Color space conversion:	
11:10	RW	0x0	2'b00/01 : mpeg	
			2'b10 : jpeg	
			2'b11 : hd	
		0x0	win0_no_outstanding	
9	RW		win0 AXI master read outstanding	
			1'b0 : enable	
			1'b1 : disable	
			win0_interlace_read	
8	RW	0x0	Win0 interlace read mode	
			1'b0 : disable	
			1'b1 : enable	
7:5	RW	0x2	win0_lb_mode	
		UNE .		
		A	win0_fmt_10	
4	RW	0x0	0: yuv 8bit fmt mode	
			C \ Y	1: yuv 10bit fmt mode
		A 1 U'	win0_data_fmt	
			3'b000 : ARGB888	
	(3'b001 : RGB888	
3:1	RW	0x0	3'b010 : RGB565	
			3'b100 : YcbCr420	
			3'b101 : YcbCr422	
			3'b110 : YcbCr444	
0	RW	0x0	win0_en	

VOP_WINO_CTRL1

Address: Operational Base + offset (0x0034)

win1 ctrl register1

Bit	Attr	Reset Value	Description
-----	------	-------------	-------------

Bit	Attr	Reset Value	Description
			win0_cbr_vsd_mode
21	DW	0.40	win0 vertical scaler down mode select
31	RW	0x0	1'b0 : bilinear
			1'b1 : average
			win0_cbr_vsu_mode
20	DIA	00	win0 vertical scaler down mode select
30	RW	0x0	1'b0 : bilinear
			1'b1 : bicubic
			win0_cbr_hsd_mode
			win0 horizontal scaler down mode select
29:28	RW	0x0	2'b00 : bilinear
			2'b01 : bicubic
			2'b10 : average
27.26	D)A/	00	win0_cbr_ver_scl_mode
27:26	RW	0x0	
			win0_cbr_hor_scl_mode
			2'b00 : no scale
25:24	RW	0x0	2'b01 : scale up
			2'b10 : scale down
			2'b11 : no scale
			win0_yrgb_vsd_mode
22	DVV	0.40	win0 vertical scaler down mode select
23	RW	0x0	1'b0 : bilinear
			1'b1 : average
			win0_yrgb_vsu_mode
22	RW	0x0	win0 vertical scaler down mode select
22			1'b0 : bilinear
			1'b1 : bicubic
			win0_yrgb_hsd_mode
21:20	RW	w 0x0	win0 horizontal scaler down mode select
21:20	KVV		2'b00 : bilinear
			2'b01 : average
			win0_yrgb_ver_scl_mode
			2'b00 : no scale
19:18	RW	0x0	2'b01 : scale up
			2'b10 : scale down
			2'b11 : no scale
			win0_yrgb_hor_scl_mode
		0×0	2'b00 : no scale
17:16	RW		2'b01 : scale up
			2'b10 : scale down
			2'b11 : no scale

Bit	Attr	Reset Value	Description
			win0_line_load_mode
15	RW	0x0	when yuv fmt,if
	IXVV	0.00	1'b0: load data by axi trans
			1'b1: load data by lines
14:12	RW	0x0	win0_cbr_axi_gather_num
11:8	RW	0x0	win0_yrgb_axi_gather_num
7	RW	0x0	win0_vsd_cbr_gt2
	100	O A O	A
6	RW	0x0	win0_vsd_cbr_gt4
5	RW	0x0	win0_vsd_yrgb_gt2
4	RW	0x0	win0_vsd_yrgb_gt4
			win0_bic_coe_sel
			2'b00 : PRECISE
3:2	RW	0x0	2'b01 : SPLINE
			2'b10 : CATROM
			2'b11 : MITCHELL
1	RW	0x0	win0_cbr_axi_gather_en
0	RW	0x0	win0_yrgb_axi_gather_en

VOP_WINO_COLOR_KEY

Address: Operational Base + offset (0x0038)

Win0 color key register

Bit	Attr	Reset Value	Description
		0x0	win0_key_en
31	DW		Win0 transparency color key enable
31	RW		1'b0 : disable;
			1'b1 : enable;
30	RO	0x0	reserved
			win0_key_color
29:0	RW	0x00000000	Win0 key color

VOP_WINO_VIR

Address: Operational Base + offset (0x003c)

Win0 virtual stride

Bit	Attr	Reset Value	Description
31:30	RO	0x0	reserved

Bit	Attr	Reset Value	Description
29:16	RW	0x0000	win0_vir_stride_uv
15:14	RO	0x0	reserved
13:0	RW	0x0140	win0_vir_stride Win0 Virtual stride Number of words of Win0 Virtual width ARGB888: win0_vir_width RGB888: (win0_vir_width*3/4) + (win0_vir_width%3) RGB565: ceil(win0_vir_width/2) YUV: ceil(win0_vir_width/4)

VOP_WINO_YRGB_MST

Address: Operational Base + offset (0x0040)

Win0 YRGB memory start address

Bit	Attr	Reset Value	Description
31:0	RW		win0_yrgb_mst win0 YRGB frame buffer memory start address

VOP_WINO_CBR_MST

Address: Operational Base + offset (0x0044)

Win0 Cbr memory start address

Bit	Attr	Reset Value	Description
		• (win0_cbr_mst
31:0	RW	0x00000000	win0 CBR frame buffer memory start address
			· Y

VOP_WINO_ACT_INFO

Address: Operational Base + offset (0x0048)

Win0 active window width/height

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
			win0_act_height
28:16	RW	0x00ef	Win0 active(original) window height
			win_act_height = (win0 vertical size -1)
15:13	RO	0x0	reserved
			win0_act_width
12:0	RW	0x013f	Win0 active(original) window width
			win_act_width = (win0 horizontial size -1)

VOP_WINO_DSP_INFO

Address: Operational Base + offset (0x004c)

Win0 display width/height on panel

Bit	Attr	Reset Value	Description
1			<u>-</u>

Bit	Attr	Reset Value	Description
31:28	RO	0x0	reserved
			win0_dsp_height
27:16	RW	0x0ef	Win0 display window height
			win0_dsp_height = (win0 vertical size -1)
15:12	RO	0x0	reserved
			win0_dsp_width
11:0	RW	0x13f	Win0 display window width
			win0_dsp_width = (win0 horizontial size -1)

VOP_WINO_DSP_ST

Address: Operational Base + offset (0x0050)

Win0 display start point on panel

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
			win0_dsp_yst
28:16	RW	0x000a	Win0 vertical start point(y) of the Panel scanning
15:13	RO	0x0	reserved
			win0_dsp_xst
12:0	RW	0x000a	Win0 horizontal start point(x) of the Panel scanning

VOP_WINO_SCL_FACTOR_YRGB

Address: Operational Base + offset (0x0054)

Win0 YRGB scaling factor

Bit	Attr	Reset Value	Description
			win0_vs_factor_yrgb
31:16	DW	0x1000	Win0 YRGB vertical scaling factor:
	RW		factor=((LCDC_WIN0_ACT_INFO[31:16])
			/(LCDC_WIN0_DSP_INFO[31:16]))*2^12
			win0_hs_factor_yrgb
15:0	RW	0x1000	Win0 YRGB horizontal scaling factor:
	KVV		factor=((LCDC_WIN0_ACT_INFO[15:0])
			/(LCDC_WIN0_DSP_INFO[15:0]))*2^12

VOP_WINO_SCL_FACTOR_CBR

Address: Operational Base + offset (0x0058)

Win0 Cbr scaling factor

Bit Atti Reset value Description	Bit	Attr	tr Reset Value	Description
----------------------------------	-----	------	----------------	-------------

Bit	Attr	Reset Value	Description
			win0_vs_factor_cbr
31:16			Win0 CBR vertical scaling factor:
			YCbCr420:
	DW	0×1000	factor=((LCDC_WIN0_ACT_INFO[31:16]/ 2)
31:16	RW	0x1000	/(LCDC_WIN0_DSP_INFO[31:16]))*2^12
			YCbCr422,YCbCr444:
			factor=((LCDC_WIN0_ACT_INFO[31:16])
			/(LCDC_WIN0_DSP_INFO[31:16]))*2^12
			win0_hs_factor_cbr
	RW	0×1000	Win0 CBR horizontal scaling factor:
			YCbCr422,YCbCr420:
			factor=((LCDC_WIN0_ACT_INFO[15:0]/2)
15:0			/(LCDC_WIN0_DSP_INFO[15:0]))*2^12
			YCbCr444:
			factor=((LCDC_WIN0_ACT_INFO[15:0])
			/(LCDC_WIN0_DSP_INFO[15:0]))*2^12
			$\lambda \cup$

VOP_WINO_SCL_OFFSET

Address: Operational Base + offset (0x005c)

Win0 scaling start point offset

Bit	Attr	Reset Value	Description
			win0_vs_offset_cbr
31:24	RW	0x00	Cbr Vertical scaling start point offset
			$(0x00\sim0xff)/0x100 = 0\sim0.99$
			win0_vs_offset_yrgb
23:16	RW	0x00	Y Vertical scaling start point offset
			$(0x00\sim0xff)/0x100 = 0\sim0.99$
			win0_hs_offset_cbr
15:8	RW	0x00	Cbr Horizontal scaling start point offset
			$(0x00\sim0xff)/0x100 = 0\sim0.99$
			win0_hs_offset_yrgb
7:0	RW	0x00	Y Horizontal scaling start point offset
			$(0x00\sim0xff)/0x100 = 0\sim0.99$

VOP_WINO_SRC_ALPHA_CTRL

Address: Operational Base + offset (0x0060)

Bit	Attr	Reset Value	Description
31:24	RW	0x00	win0_fading_value
23:16	RW	0×00	win0_src_global_alpha layer0 src global alpha (eused by fading value)
15:9	RO	0x0	reserved

Bit	Attr	Reset Value	Description
8:6	RW	0x0	win0_src_factor_m0
5	RW	0x0	win0_src_alpha_cal_m0
4:3	RW	0x0	win0_src_blend_m0
2	RW	0x0	win0_src_alpha_m0
1	RW	0x0	win0_src_color_m0
0	RW	0x0	win0_src_alpha_en

VOP_WINO_DST_ALPHA_CTRL

Address: Operational Base + offset (0x0064)

Bit	Attr	Reset Value	Description
31:9	RO	0x0	reserved
8:6	RW	0x0	win0_dst_factor_m0
5:0	RW	0x00	win0_dst_m0_reserved

VOP_WINO_FADING_CTRL

Address: Operational Base + offset (0x0068)

Bit	Attr	Reset Value	Description
31:25	RO	0x0	reserved
24	RW	0x0	layer0_fading_en
23:16	RW	0x00	layer0_fading_offset_b
15:8	RW	0x00	layer0_fading_offset_g
7:0	RW	0×00	layer0_fading_offset_r

VOP_WINO_RESERVEDO

Address: Operational Base + offset (0x006c)

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	reserved

VOP_WIN1_CTRL0

Address: Operational Base + offset (0x0070)

win1 ctrl register0

Bit	Attr	Reset Value	Description
31:21	RO	0x0	reserved
			win1_yuv_clip
			YCrCb clip
20	RW	0x0	1'b0 : disable, YCbCr no clip
			1'b1 : enable, YCbCr clip before YCbCr2RGB
			*Y clip: 16~235, CbCr clip: 16~239
			win1_cbr_deflick
4.0	D.11/		Win1 Cbr deflick mode
19	RW	0x0	1'b0 : disable
			1'b1 : enable
			win1_yrgb_deflick
			win1 YRGB deflick mode
18	RW	0x0	1'b0 : disable
			1'b1 : enable
17	RO	0x0	reserved
			win1_ppas_zero_en
16	RW	0x0	0:per_pix_alpha+scale,pix not change;
			1:per_pix_alpha_scale,pix=0 when alpha=0;
			win1_uv_swap
			Win1 CbCr swap
15	RW	0x0	1'b0 : CrCb
			1'b1 : CbCr
		• 4	win1_mid_swap
			Win1 Y middle 8-bit swap
14	RW	0x0	1'b0 : Y3Y2Y1Y0
		C	1'b1: Y3Y1Y2Y0
		A 1 U	win1 alpha swap
			win1 alpha swap
13	RW	0x0	1'b0 : ARGB
			1'b1 : RGBA
			win1_rb_swap
			win1 RGB RED and BLUE swap
12	RW	0x0	1'b0 : RGB
			1'b1 : BGR
			win1_csc_mode
			Win1 YUV2RGB
			Color space conversion:
11:10	RW	0x0	2'b00/01 : mpeg
			2'b10 : jpeg
			2'b11 : hd

Bit	Attr	Reset Value	Description
			win1_no_outstanding
9	RW	0x0	win1 AXI master read outstanding
	IXVV	0.00	1'b0 : enable
			1'b1 : disable
			win1_interlace_read
8	RW	0x0	Win1 interlace read mode
		OXO	1'b0 : disable
			1'b1 : enable
7:5	RW	0x2	win1_lb_mode
,		UNZ.	A
			win1_fmt_10
4	RW	0x0	0: yuv 8bit fmt mode
			1: yuv 10bit fmt mode
			win1_data_fmt
			3'b000 : ARGB888
			3'b001 : RGB888
3:1	RW	0x0	3'b010 : RGB565
3.1			3'b100 : YcbCr420
			3'b101 : YcbCr422
			3'b110 : YcbCr444
			N. P. C.
0	RW	0×0	win1_en
-			

VOP_WIN1_CTRL1

Address: Operational Base + offset (0x0074)

win1 ctrl register1

Bit	Attr	Reset Value	Description
			win1_cbr_vsd_mode
31	RW	0×0	win1 vertical scaler down mode select
31	IKVV (UXU	1'b0 : bilinear
			1'b1 : average
		0x0	win1_cbr_vsu_mode
30	RW		win1 vertical scaler up mode select
30			1'b0 : bilinear
			1'b1 : bicubic
	RW	0×0	win1_cbr_hsd_mode
			win1 horizontal scaler down mode select
29:28			2'b00 : bilinear
			2'b01 : bicubic
			2'b10 : average

Bit	Attr	Reset Value	Description
			win1_cbr_ver_scl_mode
			2'b00 : no scale
27:26	RW	0x0	2'b01 : scale up
			2'b10 : scale down
			2'b11 : no scale
			win1_cbr_hor_scl_mode
			2'b00 : no scale
25:24	RW	0x0	2'b01 : scale up
			2'b10 : scale down
			2'b11 : no scale
			win1_yrgb_vsd_mode
			win1 vertical scaler down mode select
23	RW	0x0	1'b0 : bilinear
			1'b1 : average
			win1_yrgb_vsu_mode
			win1 vertical scaler up mode select
22	RW	0x0	1'b0 : bilinear
			1'b1 : bicubic
			win1_yrgb_hsd_mode
			win1 horizontal scaler down mode select
21:20	RW	0x0	2'b00 : bilinear
			2'b01 : average
			win1_yrgb_ver_scl_mode
			2'b00 : no scale
19:18	RW	0x0	2'b01 : scale up
		•	2'b10 : scale down
		A 0 1	2'b11 : no scale
			win1_yrgb_hor_scl_mode
			2'b00 : no scale
17:16	RW	0x0	2'b01 : scale up
	,		2'b10 : scale down
		()	2'b11 : no scale
			win1_line_load_mode
			when yuv fmt,if
15	RW	0x0	1'b0: load data by pixels
	7		1'b1: load data by lines
			win1_cbr_axi_gather_num
14:12	RW	0x0	
			win1_yrgb_axi_gather_num
11:8	RW	0x0	
			win1_vsd_cbr_gt2
7	RW	0x0	
			win1_vsd_cbr_gt4
6	RW	0x0	
	1	1	

Bit	Attr	Reset Value	Description
5	RW	0x0	win1_vsd_yrgb_gt2
4	RW	0x0	win1_vsd_yrgb_gt4
3:2	RW	0×0	win1_bic_coe_sel 2'b00 : PRECISE 2'b01 : SPLINE 2'b10 : CATROM 2'b11 : MITCHELL
1	RW	0×0	win1_cbr_axi_gather_en
0	RW	0×0	win1_yrgb_axi_gather_en

VOP_WIN1_COLOR_KEY

Address: Operational Base + offset (0x0078)

Win1 color key register

Bit	Attr	Reset Value	Description
		0×0	win1_key_en
21	DW		Win1 transparency color key enable
31	RW		1'b0 : disable;
			1'b1 : enable;
30	RO	0x0	reserved
			win1_key_color
29:0	RW	0x00000000	Win1 key color
		A	\vee

VOP_WIN1_VIR

Address: Operational Base + offset (0x007c)

win1 virtual stride

Bit	Attr	Reset Value	Description
31:30	RO	0x0	reserved
29:16	RW	0x0000	win1_vir_stride_uv
15:14	RO	0x0	reserved
13:0	RW	0x0140	win1_vir_stride Win1 Virtual stride Number of words of Win1 Virtual width ARGB888: win1_vir_width RGB888: (win1_vir_width*3/4) + (win1_vir_width%3) RGB565: ceil(win1_vir_width/2) YUV: ceil(win1_vir_width/4)

VOP_WIN1_YRGB_MST

Address: Operational Base + offset (0x0080)

Win1 YRGB memory start address

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	win1_yrgb_mst win1 YRGB frame buffer memory start address

VOP_WIN1_CBR_MST

Address: Operational Base + offset (0x0084)

Win1 Cbr memory start address

Bit	Attr	Reset Value	Description
			win1_cbr_mst
31:0	RW	0x00000000	win1 CBR frame buffer memory start address
			X

VOP_WIN1_ACT_INFO

Address: Operational Base + offset (0x0088)

Win1 active window width/height

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
			win1_act_height
28:16	RW	0x00ef	Win1 active(original) window height
			win_act_height = (win1 vertical size -1)
15:13	RO	0x0	reserved
			win1_act_width
12:0	RW	0x013f	Win1 active(original) window width
		401	win_act_width = (win1 horizontial size -1)

VOP_WIN1_DSP_INFO

Address: Operational Base + offset (0x008c)

Win1 display width/height on panel

Bit	Attr	Reset Value	Description
31:28	RO	0x0	reserved
			win1_dsp_height
27:16	RW	0x0ef	Win1 display window height
			win1_dsp_height = (win1 vertical size -1)
15:12	RO	0x0	reserved
			win1_dsp_width
11:0	RW	0x13f	Win1 display window width
			win1_dsp_width = (win1 horizontial size -1)

VOP_WIN1_DSP_ST

Address: Operational Base + offset (0x0090)

Win1 display start point on panel

Bit	Attr	Reset Value	Description
-----	------	-------------	-------------

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
			win1_dsp_yst
28:16	RW	0x000a	Win1 vertical start point(y) of the Panel scanning
15:13	RO	0x0	reserved
			win1_dsp_xst
12:0	RW	0x000a	Win1 horizontal start point(x) of the Panel scanning

VOP_WIN1_SCL_FACTOR_YRGB

Address: Operational Base + offset (0x0094)

Win1 YRGB scaling factor

Bit	Attr	Reset Value	Description
			win1_vs_factor_yrgb
31:16	RW	0v1000	Win1 YRGB vertical scaling factor:
31:16	KVV	0x1000	factor=((LCDC_WIN1_ACT_INFO[31:16])
			/(LCDC_WIN1_DSP_INFO[31:16]))*2^12
		0×1000	win1_hs_factor_yrgb
15.0	DW		Win1 YRGB horizontal scaling factor:
15:0	RW		factor=((LCDC_WIN1_ACT_INFO[15:0])
			/(LCDC_WIN1_DSP_INFO[15:0]))*2^12

VOP_WIN1_SCL_FACTOR_CBR

Address: Operational Base + offset (0x0098)

Win1 Cbr scaling factor

Bit	Attr	Reset Value	Description
			win1_vs_factor_cbr
			Win1 CBR vertical scaling factor:
		A 1 U	YCbCr420:
31:16	RW	0x1000	factor=((LCDC_WIN1_ACT_INFO[31:16]/ 2)
31.10	KVV	0000	/(LCDC_WIN1_DSP_INFO[31:16]))*2^12
		_ , , ,	YCbCr422,YCbCr444:
	$) \cup$		factor=((LCDC_WIN1_ACT_INFO[31:16])
			/(LCDC_WIN1_DSP_INFO[31:16]))*2^12
	>		win1_hs_factor_cbr
			Win1 Cbr horizontal scaling factor:
		0×1000	YCbCr422,YCbCr420:
			factor=((LCDC_WIN1_ACT_INFO[15:0]/2)
15:0	RW		/(LCDC_WIN1_DSP_INFO[15:0]))*2^12
			YCbCr444:
			factor=((LCDC_WIN1_ACT_INFO[15:0])
			/(LCDC_WIN1_DSP_INFO[15:0]))*2^12

Address: Operational Base + offset (0x009c)

Win1 scaling start point offset

Bit	Attr	Reset Value	Description
			win1_vs_offset_cbr
31:24	RW	0x00	Cbr Vertical scaling start point offset
			$(0x00\sim0xff)/0x100 = 0\sim0.99$
			win1_vs_offset_yrgb
23:16	RW	0x00	Y Vertical scaling start point offset
			$(0x00\sim0xff)/0x100 = 0\sim0.99$
			win1_hs_offset_cbr
15:8	RW	0x00	Cbr Horizontal scaling start point offset
			$(0x00\sim0xff)/0x100 = 0\sim0.99$
			win1_hs_offset_yrgb
7:0	RW	0x00	Y Horizontal scaling start point offset
			$(0x00\sim0xff)/0x100 = 0\sim0.99$

VOP_WIN1_SRC_ALPHA_CTRL

Address: Operational Base + offset (0x00a0)

Bit	Attr	Reset Value	Description
31:24	RW	0x00	win1_fading_value
23:16	RW	0×00	win1_src_global_alpha layer0 src global alpha (eused by fading value)
15:9	RO	0x0	reserved
8:6	RW	0x0	win1_src_factor_m0
5	RW	0x0	win1_src_alpha_cal_m0
4:3	RW	0x0	win1_src_blend_m0
2	RW	0x0	win1_src_alpha_m0
1	RW	0x0	win1_src_color_m0
0	RW	0x0	win1_src_alpha_en

VOP_WIN1_DST_ALPHA_CTRL

Address: Operational Base + offset (0x00a4)

Bit	Attr	Reset Value	Description
31:9	RO	0x0	reserved
8:6	RW	0x0	win1_dst_factor_m0

Bit	Attr	Reset Value	Description
5:0	RW	0x00	win1_dsp_m0_reserved

VOP_WIN1_FADING_CTRL

Address: Operational Base + offset (0x00a8)

Bit	Attr	Reset Value	Description
31:25	RO	0x0	reserved
24	RW	0×0	win1_fading_en
23:16	RW	0x00	win1_fading_offset_b
15:8	RW	0x00	win1_fading_offset_g
7:0	RW	0x00	win1_fading_offset_r

VOP_WIN1_RESERVEDO

Address: Operational Base + offset (0x00ac)

Bit	Attr	Reset Value	Description
31:0	RW	0x0000000	reserved

VOP_WIN2_CTRL0

Address: Operational Base + offset (0x00b0)

win2 ctrl register0

in2 ctrl re		D	Description
Bit	Attr	Reset Value	Description
31:19	RO	0x0	reserved
	/		win2_lut_en
			Win2 LUT ram enable
18	RW	0x0	1'b0 : disable
		UXU .	1'b1 : enable
			*This bit should be "0" when CPU updates the LUT,
	7		and should be "1" when Win1 LUT mode enable.
17:15	RO	0x0	reserved
			win2_endian_swap
			Win2 8pp palette data Big-endian/ Little-endian
14	RW	0x0	select
			1'b0 : Big-endian
			1'b1 : Little-endian
			win2_alpha_swap
13	RW	0x0	Win2 RGB alpha swap
			1'b0 : ARGB
			1'b1 : RGBA

Bit	Attr	Reset Value	Description
			win2_rb_swap
12	RW	0.40	Win2 RGB Red and Blue swap
12	KVV	0x0	1'b0 : RGB
			1'b1 : BGR
11	RO	0x0	reserved
			win2_csc_mode
			Win2 RGB2YUV
10	RW	0x0	Color space conversion:
			1'b0 : no CSC
			1'b1 : RGB2YUV
			win2_no_outstanding
9	RW	0×0	Win2 AXI master read outstanding
9	IK VV	0.00	1'b0 : enable
			1'b1 : disable
			win2_interlace_read
8	RW	0.0	Win2 interlace read mode
0	IK VV	0x0	1'b0 : disable
			1'b1 : enable
			win2_mst3_en
7	RW	0x0	win2 master3 enable
			win2_mst2_en
6	RW	0x0	win2 master2 enable
			win2_mst1_en
5	RW	0x0	win2 master1 enable
		40)	
			win2_mst0_en
4	RW	0x0	win2 master0 enable
	(win2_data_fmt
			3'b000 : ARGB888
	$\gamma(0)$		3'b001 : RGB888
			3'b010 : RGB565
3:1	RW	0x0	3'b100: 8bpp
	*		3'b101: 4bpp
			3'b110: 2bpp
			3'b111: 1bpp
			win2 on
0	RW	0x0	win2_en
		1	

VOP_WIN2_CTRL1

Address: Operational Base + offset (0x00b4)

win2 ctrl register0

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:4	RW	0×0	win2_axi_gather_num
3:1	RO	0x0	reserved
0	RW	0x0	win2_axi_gather_en

VOP_WIN2_VIR0_1

Address: Operational Base + offset (0x00b8) Win2 virtual stride0 and virtaul stride1

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
28:16	RW	0×0140	win2_vir_stride1 Win2 Virtual stride1 Number of words of Win2 Virtual1 width ARGB888: win2_vir_width1 RGB888: (win2_vir_width1 * 3/4) + (win2_vir_width1 % 3)
			RGB565 : ceil(win2_vir_width1 / 2) 8BPP : ceil(win2_vir_width1 / 4) 4BPP : ceil(win2_vir_width1 / 8) 2BPP : ceil(win2_vir_width1 / 16) 1BPP : ceil(win2_vir_width1 / 32)
15:13	RO	0x0	reserved
12:0	RW	0×0140	win2_vir_stride0 Win2 Virtual stride0 Number of words of Win2 Virtual0 width ARGB888: win2_vir_width0 RGB888: (win2_vir_width0 * 3/4) + (win2_vir_width0 % 3) RGB565: ceil(win2_vir_width0 / 2) 8BPP: ceil(win2_vir_width0 / 4) 4BPP: ceil(win2_vir_width0 / 8) 2BPP: ceil(win2_vir_width0 / 16) 1BPP: ceil(win2_vir_width0 / 32)

VOP_WIN2_VIR2_3

Address: Operational Base + offset (0x00bc) Win2 virtual stride2 and virtaul stride3

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			win2_vir_stride3
			Win2 Virtual stride3
			Number of words of Win2 Virtual3 width
			ARGB888 : win2_vir_width3
			RGB888 : (win2_vir_width3 * 3/4) +
28:16	RW	0x0140	(win2_vir_width3 % 3)
			RGB565 : ceil(win2_vir_width3 / 2)
			8BPP: ceil(win2_vir_width3 / 4)
			4BPP: ceil(win2_vir_width3 / 8)
			2BPP: ceil(win2_vir_width3 / 16)
			1BPP: ceil(win1_vir_width3 / 32)
15:13	RO	0x0	reserved
			win2_vir_stride2
			Win2 Virtual stride2
			Number of words of Win2 Virtual2 width
			ARGB888 : win2_vir_width2
			RGB888 : (win2_vir_width2 * 3/4) +
12:0	RW	0x0140	(win2_vir_width2 % 3)
			RGB565 : ceil(win2_vir_width2 / 2)
			8BPP: ceil(win2_vir_width2 / 4)
			4BPP: ceil(win2_vir_width2 / 8)
			2BPP: ceil(win2_vir_width2 / 16)
			1BPP: ceil(win1_vir_width2 / 32)

VOP_WIN2_MST0

Address: Operational Base + offset (0x00c0)

Win2 memory start address0

Bit	Attr	Reset Value	Description
31:0	RW		win2_mst0 Win2 frame buffer memory start address0 *must be alianed to 8byte address

VOP_WIN2_DSP_INFO0

Address: Operational Base + offset (0x00c4)

Win2 display width0/height0 on panel

Bit	Attr	Reset Value	Description
31:28	RO	0x0	reserved
			win2_dsp_height0
27:16	RW	0x0ef	Win2 display window height0
			win2_dsp_height0 = size -1
15:12	RO	0x0	reserved
			win2_dsp_width0
11:0	RW	0x13f	Win2 display window width0
			win2_dsp_width = size -1

VOP_WIN2_DSP_ST0

Address: Operational Base + offset (0x00c8)

Win2 display start point0 on panel

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
28:16	RW	0x000a	win2_dsp_yst0 Win2 vertical start point(y) of the Panel scanning
15:13	RO	0x0	reserved
12:0	RW	0x000a	win2_dsp_xst0 Win2 horizontal start point(x) of the Panel scanning

VOP_WIN2_COLOR_KEY

Address: Operational Base + offset (0x00cc)

Win2 color key register

VIIIZ COIOI	KCy i Cgi	3(C)	
Bit	Attr	Reset Value	Description
31:25	RO	0x0	reserved
		0×0	win2_key_en
24	DW		Win2 transparency color key enable
24	RW		1'b0 : disable;
			1'b1 : enable;
			win2_key_color
23:0	RW	0x000000	Win2 key color

VOP_WIN2_MST1

Address: Operational Base + offset (0x00d0)

Win2 memory start address1

Bit	Attr	Reset Value	Description
			win2_mst1
31:0	RW	0x00000000	Win2 frame buffer memory start address1
			*must be alianed to 8byte address

VOP_WIN2_DSP_INFO1

Address: Operational Base + offset (0x00d4)

Win2 display width1/height1 on panel

Bit	Attr	Reset Value	Description
31:28	RO	0x0	reserved
			win2_dsp_height1
27:16	RW	0x0ef	Win2 display window height1
			win2_dsp_height0 = size -1
15:12	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			win2_dsp_width1
11:0	RW	0x13f	Win2 display window width1
			win2_dsp_width = size -1

VOP_WIN2_DSP_ST1

Address: Operational Base + offset (0x00d8)

Win2 display start point1 on panel

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
			win2_dsp_yst1
28:16	RW	0x000a	Win2 vertical start point(y) of the Panel scanning
15:13	RO	0x0	reserved
			win2_dsp_xst1
12:0	RW	0x000a	Win2 horizontal start point(x) of the Panel scanning
			A (7)

VOP_WIN2_SRC_ALPHA_CTRL

Address: Operational Base + offset (0x00dc)

Bit	Attr	Reset Value	Description
31:24	RW	0x00	win2_fading_value
23:16	RW	0x00	win2_src_global_alpha layer0 src global alpha (eused by fading value)
15:9	RO	0x0	reserved
8:6	RW	0x0	win2_src_factor_m0
5	RW	0x0	win2_src_alpha_cal_m0
4:3	RW	0x0	win2_src_blend_m0
2	RW	0x0	win2_src_alpha_m0
1	RW	0x0	win2_src_color_m0
0	RW	0x0	win2_src_alpha_en

VOP_WIN2_MST2

Address: Operational Base + offset (0x00e0)

Win2 memory start address2

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
			win2_mst2
31:0	RW	0x0000000	Win2 frame buffer memory start address2
			*must be alianed to 8byte address

VOP_WIN2_DSP_INFO2

Address: Operational Base + offset (0x00e4)

Win2 display width2/height2 on panel

Bit	Attr	Reset Value	Description
31:28	RO	0x0	reserved
			win2_dsp_height2
27:16	RW	0x0ef	Win2 display window height2
			win2_dsp_height0 = size -1
15:12	RO	0x0	reserved
			win2_dsp_width2
11:0	RW	0x13f	Win2 display window width2
			win2_dsp_width = size -1

VOP_WIN2_DSP_ST2

Address: Operational Base + offset (0x00e8)

Win2 display start point2 on panel

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
			win2_dsp_yst2
28:16	RW	0x000a	Win2 vertical start point(y) of the Panel scanning
		• (
15:13	RO	0x0	reserved
			win2_dsp_xst2
12:0	RW	0x000a	Win2 horizontal start point(x) of the Panel scanning
		410	

VOP_WIN2_DST_ALPHA_CTRL

Address: Operational Base + offset (0x00ec)

Bit	Attr	Reset Value	Description
31:9	RO	0x0	reserved
8:6	RW	0x0	win2_dst_factor_m0
5:0	RW	0x00	win2_dst_m0_reserved

VOP_WIN2_MST3

Address: Operational Base + offset (0x00f0)

Win2 memory start address3

Bit Attr Reset Value Description

Bit	Attr	Reset Value	Description
			win2_mst3
31:0	RW	0x0000000	Win2 frame buffer memory start address3
			*must be alianed to 8byte address

VOP_WIN2_DSP_INFO3

Address: Operational Base + offset (0x00f4)

Win2 display width3/height3 on panel

Bit	Attr	Reset Value	Description
31:28	RO	0x0	reserved
			win2_dsp_height3
27:16	RW	0x0ef	Win2 display window height3
			win2_dsp_height0 = size -1
15:12	RO	0x0	reserved
			win2_dsp_width3
11:0	RW	0x13f	Win2 display window width3
			win2_dsp_width = size -1

VOP_WIN2_DSP_ST3

Address: Operational Base + offset (0x00f8)

Win2 display start point3 on panel

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
28:16	RW	0x000a	win2_dsp_yst3 Win2 vertical start point(y) of the Panel scanning
15:13	RO	0x0	reserved
12:0	RW	0x000a	win2_dsp_xst3 Win2 horizontal start point(x) of the Panel scanning

VOP_WIN2_FADING_CTRL

Address: Operational Base + offset (0x00fc)

Bit	Attr	Reset Value	Description
31:25	RO	0x0	reserved
24	RW	0x0	win2_fading_en
23:16	RW	0x00	win2_fading_offset_b
15:8	RW	0x00	win2_fading_offset_g
7:0	RW	0x00	win2_fading_offset_r

VOP_WIN3_CTRL0

Address: Operational Base + offset (0x0100)

win0 ctrl register0

Bit	Attr	Reset Value	Description
31:19	RO	0x0	reserved
			win3_lut_en
			Win3 LUT ram enable
			1'b0 : disable
18	RW	0x0	1'b1 : enable
			*This bit should be "0" when CPU updates the LUT,
			and should be "1" when Win1 LUT mode enable.
17:15	RO	0x0	reserved
			win3_endian_swap
			Win3 8pp palette data Big-endian/ Little-endian
14	RW	0x0	select
			1'b0 : Big-endian
			1'b1 : Little-endian
			win3_alpha_swap
4.0	5144		Win3 RGB alpha swap
13	RW	0x0	1'b0 : ARGB
			1'b1 : RGBA
			win3_rb_swap
			Win3 RGB Red and Blue swap
12	RW	0x0	1'b0 : RGB
			1'b1 : BGR
11	RO	0x0	reserved
		• 🔥	win3_csc_mode
			Win3 RGB2YUV
10	RW	0x0	Color space conversion:
			1'b0 : no CSC
		1	1'b1 : RGB2YUV
			win3_no_outstanding
9	RW	0×0	Win3 AXI master read outstanding
9	KW	UXU	1'b0 : enable
			1'b1 : disable
			win3_interlace_read
8	RW	0.0	Win3 interlace read mode
0	I VV	0x0	1'b0 : disable
			1'b1 : enable
			win3_mst3_en
7	RW	0x0	win3 master3 enable
			win3_mst2_en
6	RW	0x0	win3 master2 enable
٥	KVV	UXU	WIII3 IIIdStel Z elidble

Bit	Attr	Reset Value	Description
			win3_mst1_en
5	RW	0x0	win3 master1 enable
			win3_mst0_en
4	RW	0x0	win3 master0 enable
3:1	RW	0×0	win3_data_fmt 3'b000 : ARGB888 3'b001 : RGB888 3'b010 : RGB565 3'b100: 8bpp 3'b101: 4bpp 3'b110: 2bpp 3'b111: 1bpp
0	RW	0×0	win3_en

VOP_WIN3_CTRL1

Address: Operational Base + offset (0x0104)

win0 ctrl register1

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:4	RW	0x0	win3_axi_gather_num
3:1	RO	0x0	reserved
0	RW	0x0	win3_axi_gather_en

VOP_WIN3_VIR0_1

Address: Operational Base + offset (0x0108) Win3 virtual stride0 and virtaul stride1

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
		•	win3_vir_stride1
			Win3 Virtual stride1
			Number of words of Win3 Virtual1 width
			ARGB888 : win3_vir_width1
			RGB888 : (win3_vir_width1 * 3/4) +
28:16	RW	0x0140	(win3_vir_width1 % 3)
			RGB565 : ceil(win3_vir_width1 / 2)
			8BPP : ceil(win3_vir_width1 / 4)
			4BPP: ceil(win3_vir_width1 / 8)
			2BPP: ceil(win3_vir_width1 / 16)
			1BPP: ceil(win3_vir_width1 / 32)

Bit	Attr	Reset Value	Description
15:13	RO	0x0	reserved
			win3_vir_stride0
			Win3 Virtual stride0
			Number of words of Win3 Virtual1 width
			ARGB888 : win3_vir_width1
			RGB888 : (win3_vir_width1 * 3/4) +
12:0	RW	0x0140	(win3_vir_width1 % 3)
			RGB565 : ceil(win3_vir_width1 / 2)
			8BPP: ceil(win3_vir_width1 / 4)
			4BPP: ceil(win3_vir_width1 / 8)
			2BPP: ceil(win3_vir_width1 / 16)
			1BPP: ceil(win3_vir_width1 / 32)

VOP_WIN3_VIR2_3

Address: Operational Base + offset (0x010c) Win3 virtual stride2 and virtaul stride3

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
			win3_vir_stride3
			Win3 Virtual stride3
			Number of words of Win3 Virtual1 width
			ARGB888: win3_vir_width1
			RGB888 : (win3_vir_width1 * 3/4) +
28:16	RW	0x0140	(win3_vir_width1 % 3)
			RGB565 : ceil(win3_vir_width1 / 2)
		A .	8BPP: ceil(win3_vir_width1 / 4)
			4BPP: ceil(win3_vir_width1 / 8)
			2BPP: ceil(win3_vir_width1 / 16)
			1BPP: ceil(win3_vir_width1 / 32)
15:13	RO	0x0	reserved
	(win3_vir_stride2
			Win3 Virtual stride2
		/ /	Number of words of Win3 Virtual1 width
			ARGB888: win3_vir_width1
			RGB888 : (win3_vir_width1 * 3/4) +
12:0	RW	0x0140	(win3_vir_width1 % 3)
			RGB565 : ceil(win3_vir_width1 / 2)
			8BPP: ceil(win3_vir_width1 / 4)
			4BPP: ceil(win3_vir_width1 / 8)
			2BPP: ceil(win3_vir_width1 / 16)
			1BPP: ceil(win3_vir_width1 / 32)

VOP_WIN3_MST0

Address: Operational Base + offset (0x0110)

Win3 memory start address0

Bit	Attr	Reset Value	Description
			win3_mst0
31:0	RW	0x0000000	Win3 frame buffer memory start address0
			*must be alianed to 8byte address

VOP_WIN3_DSP_INFO0

Address: Operational Base + offset (0x0114)

Win3 display width0/height0 on panel

Bit	Attr	Reset Value	Description
31:28	RO	0x0	reserved
			win3_dsp_height0
27:16	RW	0x0ef	Win3 display window height0
			win3_dsp_height0 = size -1
15:12	RO	0x0	reserved
			win3_dsp_width0
11:0	RW	0x13f	Win3 display window width0
			win3_dsp_width = size -1

VOP_WIN3_DSP_ST0

Address: Operational Base + offset (0x0118)

Win3 display start point0 on panel

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
			win3_dsp_yst0
28:16	RW	0x000a	Win3 vertical start point(y) of the Panel scanning
		• (
15:13	RO	0x0	reserved
			win3_dsp_xst0
12:0	RW	0x000a	Win3 horizontal start point(x) of the Panel scanning
		1	

VOP_WIN3_COLOR_KEY

Address: Operational Base + offset (0x011c)

Win3 color key register

Bit	Attr	Reset Value	Description
31:25	RO	0x0	reserved
			win3_key_en
24	RW	0x0	Win3 transparency color key enable
24	KVV		1'b0 : disable;
			1'b1 : enable;
			win3_key_color
23:0	RW	0x000000	Win3 key color

VOP_WIN3_MST1

Address: Operational Base + offset (0x0120)

Win3 memory start address1

Bit	Attr	Reset Value	Description
			win3_mst1
31:0	RW	0x0000000	Win3 frame buffer memory start address1
			*must be alianed to 8byte address

VOP_WIN3_DSP_INFO1

Address: Operational Base + offset (0x0124)

Win3 display width1/height1 on panel

Bit	Attr	Reset Value	Description
31:28	RO	0x0	reserved
			win3_dsp_height1
27:16	RW	0x0ef	Win3 display window height1
			win3_dsp_height0 = size -1
15:12	RO	0x0	reserved
			win3_dsp_width1
11:0	RW	0x13f	Win3 display window width1
			win3_dsp_width = size -1

VOP_WIN3_DSP_ST1

Address: Operational Base + offset (0x0128)

Win3 display start point1 on panel

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
			win3_dsp_yst1
28:16	RW	0x000a	Win3 vertical start point(y) of the Panel scanning
		40	
15:13	RO	0x0	reserved
			win3_dsp_xst1
12:0	RW	0x000a	Win3 horizontal start point(x) of the Panel scanning

VOP_WIN3_SRC_ALPHA_CTRL

Address: Operational Base + offset (0x012c)

Bit	Attr	Reset Value	Description
31:24	RW	0x00	win3_fading_value
22.16	DW	0,,00	win3_src_global_alpha
23:16	RW	0x00	layer0 src global alpha (eused by fading value)
15:9	RO	0x0	reserved
8:6	RW	0x0	win3_src_factor_m0

Bit	Attr	Reset Value	Description
5	RW	0x0	win3_src_alpha_cal_m0
4:3	RW	0x0	win3_src_blend_m0
2	RW	0x0	win3_src_alpha_m0
1	RW	0×0	win3_src_color_m0
0	RW	0x0	win3_src_alpha_en

VOP_WIN3_MST2

Address: Operational Base + offset (0x0130)

Win3 memory start address2

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	win3_mst2 Win3 frame buffer memory start address2 *must be alianed to 8byte address

VOP_WIN3_DSP_INFO2

Address: Operational Base + offset (0x0134)

Win3 display width2/height2 on panel

Bit	Attr	Reset Value	Description
31:28	RO	0x0	reserved
		• (win3_dsp_height2
27:16	RW	0x0ef	Win3 display window height2
			win3_dsp_height0 = size -1
15:12	RO	0x0	reserved
		110	win3_dsp_width2
11:0	RW	0x13f	Win3 display window width2
		7	win3_dsp_width = size -1

VOP_WIN3_DSP_ST2

Address: Operational Base + offset (0x0138)

Win3 display start point2 on panel

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
			win3_dsp_yst2
28:16	RW	0x000a	Win3 vertical start point(y) of the Panel scanning
15:13	RO	0x0	reserved
			win3_dsp_xst2
12:0	RW	0x000a	Win3 horizontal start point(x) of the Panel scanning

VOP_WIN3_DST_ALPHA_CTRL

Address: Operational Base + offset (0x013c)

Bit	Attr	Reset Value	Description
31:9	RO	0x0	reserved
8:6	RW	0x0	win3_dst_factor_m0
5:0	RW	0x00	win3_dst_factor_reserved

VOP_WIN3_MST3

Address: Operational Base + offset (0x0140)

Win3 memory start address3

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	win3_mst3 Win3 frame buffer memory start address3
			*must be alianed to 8byte address

VOP_WIN3_DSP_INFO3

Address: Operational Base + offset (0x0144)

Win3 display width3/height3 on panel

Bit	Attr	Reset Value	Description
31:28	RO	0x0	reserved
			win3_dsp_height3
27:16	RW	0x0ef	Win3 display window height3
		• 4	win3_dsp_height0 = size -1
15:12	RO	0x0	reserved
			win3_dsp_width3
11:0	RW	0x13f	Win3 display window width3
		110	win3_dsp_width = size -1

VOP_WIN3_DSP_ST3

Address: Operational Base + offset (0x0148)

Win3 display start point3 on panel

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
			win3_dsp_yst3
28:16	RW	0x000a	Win3 vertical start point(y) of the Panel scanning
15:13	RO	0x0	reserved
			win3_dsp_xst3
12:0	RW	0x000a	Win3 horizontal start point(x) of the Panel scanning

VOP_WIN3_FADING_CTRL

Address: Operational Base + offset (0x014c)

Bit	Attr	Reset Value	Description
31:25	RO	0x0	reserved
24	RW	0x0	win3_fading_en
23:16	RW	0x00	win3_fading_offset_b
15:8	RW	0x00	win3_fading_offset_g
7:0	RW	0x00	win3_fading_offset_r

VOP_HWC_CTRL0

Address: Operational Base + offset (0x0150)

Hwc ctrl register0

Bit	Attr	Reset Value	Description
31:19	RO	0x0	reserved
18	RW	0x0	hwc_lut_en
17:15	RO	0x0	reserved
14	RW	0×0	hwc_endian_swap hwc 8pp palette data Big-endian/ Little-endian select 1'b0 : Big-endian 1'b1 : Little-endian
13	RW	0x0	hwc_alpha_swap hwc RGB alpha swap 1'b0 : ARGB 1'b1 : RGBA
12	RW	0×0	hwc_rb_swap hwc RGB Red and Blue swap 1'b0 : RGB 1'b1 : BGR
11	RO	0x0	reserved
10	RW	0×0	hwc_csc_mode hwc RGB2YUV Color space conversion: 1'b0 : no CSC 1'b1 : RGB2YUV
9	RW	0×0	hwc_no_outstanding hwc AXI master read outstanding 1'b0 : enable 1'b1 : disable

Bit	Attr	Reset Value	Description
			hwc_interlace_read
8	RW	0×0	hwc interlace read mode
0	IXVV	0.00	1'b0 : disable
			1'b1 : enable
7	RO	0x0	reserved
			hwc_size
			2'b00 : 32x32
6:5	RW	0x0	2'b01:64x64
			2'b10:96x96
			2'b11: 128x128
			hwc_mode
4	RW	0×0	hwc color mode
4	KVV	UXU	1'b0 : normal color mode
			1'b1 : reversed color mode
3:1	RW	0.0	hwc_data_fmt
3.1	IK VV	0x0	
0	RW	0x0	hwc_en

VOP_HWC_CTRL1

Address: Operational Base + offset (0x0154)

Hwc ctrl register1

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
6:4	RW	0x0	win3_axi_gather_num
3:1	RO	0x0	reserved
0	RW	0x0	win3_axi_gather_en

VOP_HWC_MST

Address: Operational Base + offset (0x0158)

Hwc memory start address

Bit	Attr	Reset Value	Description
			hwc_mst
31:0	RW	0x0000000	HWC data memory start address

VOP_HWC_DSP_ST

Address: Operational Base + offset (0x015c)

Hwc display start point on panel

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved

Bit	Attr	Reset Value	Description
28:16	RW	0x000a	hwc_dsp_yst HWC vertical start point(y) of the Panel scanning
15:13	RO	0x0	reserved
12:0	RW	0x000a	hwc_dsp_xst HWC horizontal start point(x) of the Panel scanning

VOP_HWC_SRC_ALPHA_CTRL

Address: Operational Base + offset (0x0160)

Bit	Attr	Reset Value	Description
31:24	RW	0x00	hwc_fading_value
23:16	RW	0x00	hwc_src_global_alpha layer0 src global alpha (eused by fading value)
15:9	RO	0x0	reserved
8:6	RW	0x0	hwc_src_factor_m0
5	RW	0x0	hwc_src_alpha_cal_m0
4:3	RW	0x0	hwc_src_blend_m0
2	RW	0x0	hwc_src_alpha_m0
1	RW	0x0	hwc_src_color_m0
0	RW	0x0	hwc_src_alpha_en

VOP_HWC_DST_ALPHA_CTRL

Address: Operational Base + offset (0x0164)

Bit	Attr	Reset Value	Description
31:9	RO	0x0	reserved
8:6	RW	0x0	hwc_dst_factor_m0
5:0	RW	0×00	hwc_dst_m0_reserved

VOP_HWC_FADING_CTRL

Address: Operational Base + offset (0x0168)

Bit	Attr	Reset Value	Description
D.C	7.00	iteset value	Bescription

Bit	Attr	Reset Value	Description
31:25	RO	0x0	reserved
24	RW	0x0	hwc_fading_en
23:16	RW	0x00	hwc_fading_offset_b
15:8	RW	0x00	hwc_fading_offset_g
7:0	RW	0×00	hwc_fading_offset_r

VOP_HWC_RESERVED1

Address: Operational Base + offset (0x016c)

Bit	Attr	Reset Value	Description
31:0	RW	0x0000000	reserved

VOP_POST_DSP_HACT_INFO

Address: Operational Base + offset (0x0170) post scaler down horizontal start and end

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
			dsp_hact_st_post
28:16	RW	0x000a	Panel display scanning horizontal active start point
		• (
15:13	RO	0x0	reserved
			dsp_hact_end_post
12:0	RW	0x014a	Panel display scanning horizontal active end point
		1	

VOP_POST_DSP_VACT_INFO

Address: Operational Base + offset (0x0174)

Panel active horizontal scanning start point and end point

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
			dsp_vact_st_post
28:16	RW	0x000a	Panel display scanning horizontal active start point
15:13	RO	0x0	reserved
			dsp_vact_end_post
12:0	RW	0x00fa	Panel display scanning horizontal active end point

VOP_POST_SCL_FACTOR_YRGB

Address: Operational Base + offset (0x0178)

post yrgb scaling factor

Bit	Attr	Reset Value	Description
		0x1000	post_vs_factor_yrgb
21.16	RW		post YRGB vertical scaling factor:
31:16	KVV		factor=((src_height[31:16])
			/(dst_height[31:16]))*2^12
		0×1000	post_hs_factor_yrgb
15.0	RW		Post YRGB horizontal scaling factor:
15:0	KVV		factor=((src_width[15:0])
			/(dst_width[15:0]))*2^12

VOP_POST_RESERVED

Address: Operational Base + offset (0x017c)

Bit	Attr	Reset Value	Description
31:0	RW	0×00001000	post_reserved

VOP_POST_SCL_CTRL

Address: Operational Base + offset (0x0180)

post scaling start point offset

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
			post_ver_sd_en
1	RW	0x0	1'b0 : post ver scl down disable
		• ^	1'b1 : post ver scl down enable
		10	post_hor_sd_en
0	RW	0x0	1'b0 : post hor scl down disable
		, () }	1'b1 : post hor scl down enable

VOP_POST_DSP_VACT_INFO_F1

Address: Operational Base + offset (0x0184)

Panel active horizontal scanning start point and end point F1

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
	<u> </u>		dsp_vact_st_post
28:16	RW	0x000a	Panel display scanning horizontal active start point
15:13	RO	0x0	reserved
			dsp_vact_end_post
12:0	RW	0x00fa	Panel display scanning horizontal active end point

VOP_DSP_HTOTAL_HS_END

Address: Operational Base + offset (0x0188)

Panel scanning horizontal width and hsync pulse end point

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
			dsp_htotal
28:16	RW	0x014a	Panel display scanning horizontal period
15:13	RO	0x0	reserved
			dsp_hs_end
12:0	RW	0x000a	Panel display scanning hsync pulse width

VOP_DSP_HACT_ST_END

Address: Operational Base + offset (0x018c)

Panel active horizontal scanning start point and end point

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
			dsp_hact_st
28:16	RW	0x000a	Panel display scanning horizontal active start point
15:13	RO	0x0	reserved
			dsp_hact_end
12:0	RW	0x014a	Panel display scanning horizontal active end point

VOP_DSP_VTOTAL_VS_END

Address: Operational Base + offset (0x0190)

Panel scanning vertical height and vsync pulse end point

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
		A 1 U	dsp_vtotal
28:16	RW	0x00fa	Panel display scanning vertical period.
	(
15:13	RO	0x0	reserved
			dsp_vs_end
12:0	RW	0x000a	Panel display scanning vsync pulse width
		•	

VOP_DSP_VACT_ST_END

Address: Operational Base + offset (0x0194)

Panel active vertical scanning start point and end point

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
28:16	RW		dsp_vact_st Panel display scanning vertical active start point
15:13	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			dsp_vact_end
12:0	RW	0x00fa	Panel display scanning vertical active end point

VOP_DSP_VS_ST_END_F1

Address: Operational Base + offset (0x0198)

Vertical scanning start point and vsync pulse end point of even filed in interlace mode

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
			dsp_vs_st_f1
28:16	RW	0x0000	Panel display scanning vertical vsync start point of
			2nd field (interlace display mode)
15:13	RO	0x0	reserved
			dsp_vs_end_f1
12:0	RW	0x0000	Panel display scanning vertical vsync end point of
			2nd field(interlace display mode)

VOP_DSP_VACT_ST_END_F1

Address: Operational Base + offset (0x019c)

Vertical scanning active start point and end point of even filed in interlace mode

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
			dsp_vact_st_f1
28:16	RW	0x0000	Panel display scanning vertical active start point of
		• 🗸	2nd field (interlace display mode)
15:13	RO	0x0	reserved
			dsp_vact_end_f1
12:0	RW	0x0000	Panel display scanning vertical active end point of
		410	2nd field (interlace display mode)

VOP_PWM_CTRL

Address: Operational Base + offset (0x01a0)

PWM Control Register

Bit	Attr	Reset Value	Description
	7		rpt
			Repeat Counter
31:24	RW	0x00	This field defines the repeated effective periods of
			output waveform in one-shot mode. The value N
			means N+1 repeated effective periods.
		0x00	scale
			Scale Factor
23:16	DW		This fields defines the scale factor applied to
23:16	RW		prescaled clock. The value N means the clock is
			divided by 2*N. If N is 0, it means that the clock is
			divided by 512(2*256).

Bit	Attr	Reset Value	Description
15	RO	0x0	reserved
			prescale
			Prescale Factor
14:12	RW	0x2	This field defines the prescale factor applied to input
			clock. The value N means that the input clock is
			divided by 2^N.
11:10	RO	0x0	reserved
			clk_sel
			Clock Source Select
	DW	00	0: non-scaled clock is selected as PWM clock source.
9	RW	0x0	It means that the prescale clock is directly used as
			the PWM clock source
			1: scaled clock is selected as PWM clock source
			lp_en
			Low Power Mode Enable
			0: disabled
8	RW	0x0	1: enabled
			When PWM channel is inactive state and Low Power
			Mode is enabled, the path to PWM Clock prescale
			module is blocked to reduce power consumption.
7:6	RO	0x0	reserved
			output_mode
5	RW	0×0	PWM Output mode
3	KVV	UXU	0: left aligned mode
			1: center aligned mode
			inactive_pol
		10	Inactive State Output Polarity
			This defines the output waveform polarity when PWM
			channel is in inactive state. The inactive state means
4	RW	0x0	that PWM finishes the complete waveform in
			one-shot mode or PWM channel is disabled.
		\	0: negative
	\uparrow		1: positive
			duty_pol
	"		Duty Cycle Output Polarity
3	RW	0×1	This defines the polarity for duty cycle. PWM starts
		OVI	the output waveform with duty cycle.
			0: negative
			1: positive

Bit	Attr	Reset Value	Description
2:1	RW	0x1	pwm_mode PWM Operation Mode 00: One shot mode. PWM produces the waveform within the repeated times defined by PWMx_CTRL_rpt . 01: Continuous mode. PWM produces the waveform continuously 10: Capture mode. PWM measures the cycles of high/low polarity of input waveform. 11: reserved
0	RW	0x0	pwm_en PWM channel enable 0: disabled 1: enabled. If the PWM is worked the one-shot mode, this bit will be cleared at the end of operation

VOP_PWM_PERIOD_HPR

Address: Operational Base + offset (0x01a4)

PWM Period Register/High Polarity Capture Register

Bit	Attr	Reset Value	Description
			pwm_period
			Output Waveform Period/Input Waveform High
			Polarity Cycle
			If PWM is operated at the continuous mode or
			one-shot mode, this value defines the period of the
		• ^ ^	output waveform. Note that, if the PWM is operated
		40)	at the center-aligned mode, the period should be an
31:0	RW	0×00000000	even one, and therefore only the bit [31:1] is taken
		, (°)	into account and bit [0] always considered as 0.
		1	
			If PWM is operated at the capture mode, this value
			indicates the effective high polarity cycles of input
			waveform. This value is based on the PWM clock.
			The value ranges from 0 to (2^32-1).

VOP_PWM_DUTY_LPR

Address: Operational Base + offset (0x01a8) PWM Duty Register/Low Polarity Capture Register

Bit A	Attr Reset Va	alue Description
-------	---------------	------------------

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	pwm_duty Output Waveform Duty Cycle/Input Waveform Low Polarity Cycle If PWM is operated at the continuous mode or one-shot mode, this value defines the duty cycle of the output waveform. The PWM starts the output waveform with duty cycle. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the [31:1] is taken into account. If PWM is operated at the capture mode, this value indicates the effective low polarity cycles of input waveform. This value is based on the PWM clock. The value ranges from 0 to (2^32-1).

VOP_PWM_CNT

Address: Operational Base + offset (0x01ac)

PWM Counter Register

Bit	Attr	Reset Value	Description
			pwm_cnt Timer Counter
31:0	RO	0×00000000	The 32-bit indicates current value of PWM Channel 0
		• ^	counter. The counter runs at the rate of PWM clock.
		40)	The value ranges from 0 to (2^32-1).

VOP_BCSH_COLOR_BAR

Address: Operational Base + offset (0x01b0)

color bar config register

Bit	Attr	Reset Value	Description
		/ /	color_bar_v
31:22	RW	0x000	v color value
		*	
			color_bar_u
21:12	RW	0x000	u color value
			color_bar_y
11:2	RW	0x000	y color value
1	RO	0x0	reserved
			bcsh_en
0	RW	0x0	1'b0 : bcsh bypass
			1'b1 : bcsh enable

VOP_BCSH_BCS

Address: Operational Base + offset (0x01b4)

brightness contrast saturation*contrast config register

Bit	Attr	Reset Value	Description
			out_mode
			video out mode config register
31:30	RW	0x3	2'b00 : black
31:30	KVV	UX3	2'b01 : blue
			2'b10 : color bar
			2'b11 : normal video
29:20	RW	0×100	sat_con
29:20	KVV		Saturation*Contrast*256: 0,1.992*1.992
19:17	RO	0x0	reserved
16:8	RW	0×100	contrast
10.6	KVV	0X100	Contrast*256: 0,1.992
7.0	DW	0x00	brightness
7:0	RW		Brightness: -128,127

VOP_BCSH_H

Address: Operational Base + offset (0x01b8)

sin hue and cos hue config register

Bit	Attr	Reset Value	Description
31:25	RO	0x0	reserved
			cos_hue
24:16	RW	0x100	cos hue value
		A	Q
15:9	RO	0x0	reserved
			sin_hue
8:0	RW	0x000	sin hue value

VOP_BCSH_RESERVED

Address: Operational Base + offset (0x01bc)

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	reserved

VOP_CABC_CTRL0

Address: Operational Base + offset (0x01c0)

Bit	Attr	Reset Value	Description
31:24	RW	0x00	cabc_stage_up

Bit	Attr	Reset Value	Description
			cabc_calc_pixel_num
23:1	RW	0x000000	Field0000 Abstract
			Field0000 Description
			cabc_en
0	RW	0x0	1'b0 : cabc disable
			1'b1 : cabc enable

VOP_CABC_CTRL1

Address: Operational Base + offset (0x01c4)

Bit	Attr	Reset Value	Description
31:24	RW	0x00	cabc_stage_down Field0000 Abstract Field0000 Description
23:1	RW	0x000000	cabc_total_num
0	RO 0x0	reserved	

VOP_CABC_GAUSS_LINEO_0

Address: Operational Base + offset (0x01c8)

Register0000 Abstract

Bit	Attr	Reset Value	Description
31:24	RW	0x15	t_line0_3
23:16	RW	0x11	t_line0_2
15:8	RW	0x09	t_line0_1
7:0	RW	0x03	t_line0_0

VOP_CABC_GAUSS_LINEO_1

Address: Operational Base + offset (0x01cc)

Register0001 Abstract

Bit	Attr	Reset Value	Description
31:24	RO	0x0	reserved
23:16	RW	0x03	t_line0_6
15:8	RW	0x09	t_line0_5
7:0	RW	0x11	t_line0_4

VOP_CABC_GAUSS_LINE1_0

Address: Operational Base + offset (0x01d0)

Register0002 Abstract

Bit	Attr	Reset Value	Description
31:24	RW	0x1a	t_line1_3
23:16	RW	0x15	t_line1_2
15:8	RW	0x0b	t_line1_1
7:0	RW	0x04	t_line1_0

VOP_CABC_GAUSS_LINE1_1

Address: Operational Base + offset (0x01d4)

Register0003 Abstract

Bit	Attr	Reset Value	Description
31:24	RO	0x0	reserved
23:16	RW	0x04	t_line1_6
15:8	RW	0x0b	t_line1_5
7:0	RW	0x15	t_line1_4

VOP_CABC_GAUSS_LINE2_0

Address: Operational Base + offset (0x01d8)

Register0004 Abstract

Bit	Attr	Reset Value	Description
31:24	RW	0x15	t_line2_3
23:16	RW	0x11	t_line2_2
15:8	RW	0x09	t_line2_1
7:0	RW	0x03	t_line2_0

VOP_CABC_GAUSS_LINE2_1

Address: Operational Base + offset (0x01dc)

Register0005 Abstract

Attr	Reset Value	Description
RO	0x0	reserved
		t_line2_6
RW	0x03	
	RO	RO 0x0

Bit	Attr	Reset Value	Description
15:8	RW	0x09	t_line2_5
7:0	RW	0x11	t_line2_4

VOP_FRC_LOWER01_0

Address: Operational Base + offset (0x01e0)

Bit	Attr	Reset Value		Description
31:16	RW	0x1284	lower01_frm1	
15:0	RW	0x4821	lower01_frm0	

VOP_FRC_LOWER01_1

Address: Operational Base + offset (0x01e4)

Bit	Attr	Reset Value	Description
31:16	RW	0x2148	lower01_frm3
15:0	RW	0x8412	lower01_frm2

VOP_FRC_LOWER10_0

Address: Operational Base + offset (0x01e8)

Bit	Attr	Reset Value	Description
31:16	RW	0xa55a	lower10_frm1
15:0	RW	0x9696	lower10_frm0

VOP_FRC_LOWER10_1

Address: Operational Base + offset (0x01ec)

Bit	Attr	Reset Value	Description
31:16	RW	0x5aa5	lower10_frm3
15:0	RW	0x6969	lower10_frm2

VOP_FRC_LOWER11_0

Address: Operational Base + offset (0x01f0)

Bit	Attr	Reset Value	Description
31:16	RW	0xdeb7	lower11_frm1
15:0	RW	0x7bed	lower11_frm0

VOP_FRC_LOWER11_1

Address: Operational Base + offset (0x01f4)

Bit	Attr	Reset Value		Description
31:16	RW	0xed7b	lower11_frm3	
15:0	RW	0xb7de	lower11_frm2	

VOP_FRC_RESERVEDO

Address: Operational Base + offset (0x01f8)

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0	RW	10x0	Field0000 Abstract
			Field0000 Description

VOP_FRC_RESERVED1

Address: Operational Base + offset (0x01fc)

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0	RW	0x0	Field0000 Abstract Field0000 Description

VOP_MMU_DTE_ADDR

Address: Operational Base + offset (0x0300)

MMU current page Table address

Bit	Attr	Reset Value	Description
			MMU_DTE_ADDR
31:0	RW	0x0000000	Field0000 Abstract
			Field0000 Description

VOP_MMU_STATUS

Address: Operational Base + offset (0x0304)

MMU status register

Bit	Attr	Reset Value	Description
31:11	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			PAGE_FAULT_BUS_ID
10:6	RO	0x00	Field0000 Abstract
			Index of master reponsible for last page fault
			PAGE_FAULT_IS_WRITE
			Field0000 Abstract
5	RO	0x0	The direction of access for last page fault:
			0 = Read
			1 = Write
			REPLAY_BUFFER_EMPTY
4	RO	0x0	Field0000 Abstract
			The MMU replay buffer is empty
			MMU_IDLE
3	RO	0×0	Field0000 Abstract
3	RO		The MMU is idle when accesses are being translated
			and there are no unfinished translated accesses.
			STAIL_ACTIVE
2	DO.	0.40	Field0001 Abstract
2	RO	0x0	MMU stall mode currently enabled. The mode is
			enabled by command
			PAGE_FAULT_ACTIVE
1	DO.	0×0	Field0000 Abstract
	RO		MMU page fault mode currently enabled . The mode
			is enabled by command.
			PAGING_ENABLED
0	RO	0x0	Field0000 Abstract
		• ^	Paging is enabled

VOP_MMU_COMMAND

Address: Operational Base + offset (0x0308)

MMU command register

Bit	Attr	Reset Value	Description
31:3	RO	0x0	reserved
		/ /	MMU_CMD
			Field0000 Abstract
			MMU_CMD. This can be:
	,		0: MMU_ENABLE_PAGING
			1: MMU_DISABLE_PAGING
2:0	WO	0x0	2: MMU_ENABLE_STALL
			3: MMU_DISABLE_STALL
			4: MMU_ZAP_CACHE
			5: MMU_PAGE_FAULT_DONE
			6: MMU_FORCE_RESET

Address: Operational Base + offset (0x030c)

MMU logical address of last page fault

Bit	Attr	Reset Value	Description
			PAGE_FAULT_ADDR
31:0	RO	0x0000000	Field0000 Abstract
			address of last page fault

VOP_MMU_ZAP_ONE_LINE

Address: Operational Base + offset (0x0310)

MMU Zap cache line register

Bit	Attr	Reset Value	Description
			MMU_ZAP_ONE_LINE
31:0	WO	0x00000000	Field0000 Abstract
			address to be invalidated from the page table cache

VOP_MMU_INT_RAWSTAT

Address: Operational Base + offset (0x0314)

MMU raw interrupt status register

To Tavy Interrupt Status register			
Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
			READ_BUS_ERROR
1	RW	0x0	Field0000 Abstract
			read bus error
			PAGE_FAULT
0	RW	0x0	Field0000 Abstract
			page fault

VOP_MMU_INT_CLEAR

Address: Operational Base + offset (0x0318)

MMU raw interrupt status register

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
			READ_BUS_ERROR
1	WO	0x0	Field0000 Abstract
			read bus error
	Y		PAGE_FAULT
0	WO	0x0	Field0000 Abstract
			page fault

VOP_MMU_INT_MASK

Address: Operational Base + offset (0x031c)

MMU raw interrupt status register

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			READ_BUS_ERROR
1	RW	0x0	Field0000 Abstract
			read bus error
			PAGE_FAULT
0	RW	0x0	Field0000 Abstract
			page fault

VOP_MMU_INT_STATUS

Address: Operational Base + offset (0x0320)

MMU raw interrupt status register

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
			READ_BUS_ERROR
1	RO	0x0	Field0000 Abstract
			read bus error
			PAGE_FAULT
0	RO	0x0	Field0000 Abstract
			page fault

VOP_MMU_AUTO_GATING

Address: Operational Base + offset (0x0324)

mmu auto gating

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
		• 4	mmu_auto_gating
0	RW	0x0	mmu auto gating
			when it is 1'b1, the mmu will auto gating it self

VOP_WIN2_LUT_ADDR

Address: Operational Base + offset (0x0400)

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0	RW	(()x()	Field0000 Abstract
			Field0000 Description

VOP_WIN3_LUT_ADDR

Address: Operational Base + offset (0x0800)

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0	RW	10x0	Field0000 Abstract
			Field0000 Description

VOP_HWC_LUT_ADDR

Address: Operational Base + offset (0x0c00)

Bit	Attr	Reset Value	Description	
31:1	RO	0x0	reserved	
0	DW	0.40	Field0000 Abstract	
0 RW 0×		0x0	Field0000 Description	

VOP_GAMMA_LUT_ADDR

Address: Operational Base + offset (0x1000)

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0	DW	0.40	Field0000 Abstract
U	RW	0x0	Field0000 Description

VOP_MCU_BYPASS_WPORT

Address: Operational Base + offset (0x2200)

Register0000 Abstract

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0	DW	0.40	Field0000 Abstract
U	RW	0×0	Field0000 Description

VOP_MCU_BYPASS_RPORT

Address: Operational Base + offset (0x2300)

Register0001 Abstract

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0	DW	0.40	Field0000 Abstract
U	RW	0x0	Field0000 Description

27.5 Timing Diagram

27.5.1 RGB LCD interface timing

1.Timing parameter

2.Data timing for RGB LCD SDR interface

Fig. 27-17 LCDC RGB interface timing (SDR)

Table 27-2 LCDC0 RGB interface(SDR) signal timing constant (VDD_core =0.9V to 1.1V, VDD_IO=3.0V to 3.6V , TA = -40 $^{\circ}$ C ot 125 $^{\circ}$ C)

			\rightarrow		
Item	Symbol	Min	Тур	Max	Unit
Display clock period	Tdclk				ns
VSYNC setup to DCLK falling edge	Tvsetup				ns
VSYNC hold from DCLK falling edge	Tvhold				ns
HSYNC setup to DCLK falling edge	Thsetup				ns
HSYNC hold from DCLK falling edge	Thhold				ns
DEN setup to DCLK falling edge	Tesetup				ns
DEN hold from DCLK falling edge	Tehold				ns
DATA setup to DCLK falling edge	Tdsetup				ns
DATA hold from DCLK falling edge	Tdhold				ns

3. Data timing for RGB LCD DDR interface

Fig. 27-18 LCDC RGB interface timing (DDR)

Table 27-3 LCDC0 RGB interface (DDR) signal timing constant (VDD_core =0.9V to 1.1V, VDD_IO=3.0V to 3.6V , TA = -40 $^{\circ}$ C ot 125 $^{\circ}$ C)

Item	Symbol	Min	Тур	Max	Unit
Display clock period	Tdclk				ns
VSYNC setup to DCLK_N falling edge	Tvs_p				ns
VSYNC hold from DCLK_N falling edge	Tvh_p				ns
HSYNC setup to DCLK_N falling edge	Ths_p				ns
HSYNC hold from DCLK_N falling edge	Thh_p				ns
DEN setup to DCLK_N falling edge	Tes_p				ns
DEN hold from DCLK_N falling edge	The_p				ns
DATA setup to DCLK_N falling edge	Tds_p				ns
DATA hold from DCLK_N falling edge	Tdh_p				ns
VSYNC setup to DCLK_P falling edge	Tvs_p				ns
VSYNC hold from DCLK_P falling edge	Tvh_p				ns
HSYNC setup to DCLK_P falling edge	Ths_p				ns

	1		
HSYNC hold from DCLK_P falling edge	Thh_p		ns
DEN setup to DCLK_P falling edge	Tes_p		ns
DEN hold from DCLK_P falling edge	The_p		ns
DATA setup to DCLK_P falling edge	Tds_p		ns
DATA hold from DCLK_P falling edge	Tdh_p		ns

Table 27-4 LCDC1 RGB interface signal timing constant (VDD_core =0.9V to 1.1V, VDD_IO=3.0V to 3.6V , TA = -40 $^{\circ}$ ot 125 $^{\circ}$)

Item	Symbol	Min	Тур	Max	Unit
Display clock period	Tdclk				ns
VSYNC setup to DCLK falling edge	Tvsetup				ns
VSYNC hold from DCLK falling edge	Tvhold				ns
HSYNC setup to DCLK falling edge	Thsetup				ns
HSYNC hold from DCLK falling edge	Thhold				ns
DEN setup to DCLK falling edge	Tesetup				ns
DEN hold from DCLK falling edge	Tehold				ns
DATA setup to DCLK falling edge	Tdsetup				ns
DATA hold from DCLK falling edge	Tdhold				ns

27.5.2 MCU LCD interface timing

Fig. 27-19 LCDC MCU interface (i80) timing

Table 27-5 LCDC0 RGB interface signal timing constant

(VDD_core =0.9V to 1.1V, VDD_IO=3.0V to 3.6V , TA = -40° ot 125°C)

_ <u> </u>					
Item	Symbol	Min	Тур	Max	Unit
Internal clock period	Tclk				ns

RS delay from CLK rising edge	Trsd		ns
CSN delay from CLK rising edge	Tcsd		ns
WEN delay from CLK rising edge	Twend		ns
REN delay from CLK rising edge	Trend		ns
D_out delay from CLK rising edge	Tdod		ns
D_in setup to REN rising edge	Tdsetup		ns
D_in hold from REN rising edge	Tdhold		ns

Table 27-6 LCDC1 RGB interface signal timing constant

(VDD_core =0.9V to 1.1V, VDD_IO=3.0V to 3.6V , TA = -40° ot 125°C)

Item	Symbol	Min	Тур	Max	Unit
Internal clock period	Tclk				ns
RS delay from CLK rising edge	Trsd				ns
CSN delay from CLK rising edge	Tcsd				ns
WEN delay from CLK rising edge	Twend				ns
REN delay from CLK rising edge	Trend				ns
D_out delay from CLK rising edge	Tdod				ns
D_in setup to REN rising edge	Tdsetup				ns
D_in hold from REN rising edge	Tdhold				ns

27.5.3 ITU656 interface timing

27.6 Interface Description

27.6.1 Display interface description

The VOP is suitable for different display mode by different usage, which is shown as follows.

Display	RGB	RGB	RGB	RGB	RGB	RGB
mode	Parallel	Parallel	Parallel	Serial	Serial	Serial 3x8-bit
	24-bit	18-bit	16-bit	2x12-bit	3x8-bit	+ dummy
DCLK	DCLK	DCLK	DCLK	DCLK	DCLK	DCLK

VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC
HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC
DEN	DEN	DEN	DEN	DEN	DEN	DEN
DATA	DATA[23:0]	DATA[17:0]	DATA[15:0]	DATA[11:0]	DATA[7:0]	DATA[7:0]

Display	мси	мси	мси	мси	мси
mode	Parallel	Parallel	Parallel	Serial	Serial
	24-bit	18-bit	16-bit	2x12-bit	3x8-bit
DCLK	RS	RS	RS	RS	RS
VSYNC	CSN	CSN	CSN	CSN	CSN
HSYNC	WEN	WEN	WEN	WEN	WEN
DEN	REN	REN	REN	REN	REN
DATA	DATA[23:0]	DATA[17:0]	DATA[15:0]	DATA[11:0]	DATA[7:0]

Display	ITU656	ITU656	ITU656
mode	Mode0	Mode1	Mode2
DCLK	DCLK	DCLK	DCLK
VSYNC	-	-	-
HSYNC	-	- (
DEN	-	- X	> -
DATA	DATA[7:0]	DATA[15:8]	DATA[23:16]

In the case of "RGB serial 3x8-bit", there are four scanning modes for the RGB delta data when delta swap is enable, shown as follows.

RGB delta LCD	delta_en	dsp_rg_swap	dsp_rb_swap	dsp_bg_swap
scanning mode				
CSH=1,CSV=1	1	0	1	0
CSH=0,CSV=1	1	0	0	0
CSH=1,CSV=0	1	0	0	1
CSH=0,CSV=0	1	0	1	1

27.6.2 IOMUX description

There are two VOPs in the chip, config GRF_SOC_CON6 register to select a VOP to IO/LVDS port.

```
programing flow as follow:
step1: config GRF,iomux,io driver,lcdc select
GRF_GPIO1H_SR and GRF_GPIO1D_E register are optional.
config GRF_BASE + GRF_SOC_CON6 = (0x8 < < 16) \mid (0x0) to select vop_big output to
IO/LVDS.
config GRF_BASE + GRF_SOC_CON6 = (0x8 << 16) \mid (0x1 << 3) to
select vop_lit output to IO/LVDS.
GRF_BASE + GRF_GPIO1D_IOMUX = ((0x55 << 16)|(0x55 << 0));
GRF_BASE + GRF_GPIO1H_SR
                                = (0 \times 0 + 0 \times 0 \times 0);
GRF_BASE + GRF_GPIO1D_E
                                = (0x00ff00ff);
GRF BASE + GRF SOC CON6
                                = (0x8 << 16) \mid (0x0);
GRF_BASE + GRF_SOC_CON7
                                = (0x1fff << 16) | (0x1840);
step 2: config LVDS PHY0 register to initial LVDS PHY0
eg:
LVDS BASE + 0x00*4 = 0x7f;
LVDS_BASE + 0x01*4 = 0x40;
LVDS_BASE + 0x02*4 = 0x00;
LVDS BASE + 0x03*4 = 0x46;
LVDS BASE + 0x04*4 = 0x3f;
LVDS_BASE + 0x05*4 = 0x3f;
LVDS_BASE + 0x0d*4 = 0x0a;
step 3: config LVDS PHY1 register to initial LVDS PHY1
LVDS_BASE + 0x40*4 = 0x7f;
LVDS_BASE + 0x41*4 = 0x40;
LVDS_BASE + 0x42*4 = 0x00;
LVDS_BASE + 0x43*4 = 0x46;
LVDS_BASE + 0x44*4 = 0x3f;
LVDS BASE + 0x45*4 = 0x3f;
LVDS_BASE + 0x4d*4 = 0x0a;
```

27.7 Application Notes

27.7.1 DMA transfer mode

There are three DMA transfer modes for loading win0 or win1 frame data determined by following parameters (X=0,1,2,3):

```
dma_burst_length
winX_no_outstanding
winX_gather_en
winX_gather_thres
```

auto outstanding transfer mode(random transfer)

When winX_no_outstanding is 0, multi-bursts transfer command could be sent out to AXI master interface continuously if the internal memory has enough space to store new data. The continuous random burst number is in the range of 1 to 4, mainly depending on the empty level of internal memory, dma_burst_length, data format and active image width.

configured outstanding transfer mode(fixed transfer)

When winX_gather_en is 1, fixed-number of bursts transfer command should be sent out to AXI master interface continuously if the internal memory has enough space to store new data. The fixed-number is determined by winX_gather_thres. Since the internal memory size is limited, there is some restriction for the winX_gather_thres as follows.

Table 27-7 Gather configuration for all format

Gather Threshold	dma_burst_length =2'b00(burst16)	dma_burst_length =2'b01(burst8)	dma_burst_length =2'b10(burst4)
YUV420 YUV422 YUV444	0	0,1,2	0,1,2,3
ARGB888 RGB888 RGB565	0,1,2,3	0,1,2,3	0,1,2,3
8BPP 4BPP 2BPP	0,1,2,3	0,1,2,3	0,1,2,3
4BPP	0,1,2,3	0,1,2,3	0,1,2,3

27.7.2 Win0/Win1 dma load mode

If you want to improve the efficiency of accessing external memory for loading winX frame data, you could assert winX_dma_load. When winX_dma_load is high, winX frame data is loaded in the unit of line composing with one or more burst transfers; otherwise, loaded in the unit of burst transfer. However, it is not suitable for data format YUV420, no-scaling and active width less than 256.

27.7.3 IEP direct path

There are two data source for win0/win1win2/win3: external memory and IEP internal memory. However, the IEP data is just active for one layer at one frame time when IEP data path is enable, determined by dsp_layer0/1/2/3_sel. Moreover, it is not suitable for win0/1 with scaling, reverse display.

Direct path interface (DPI) can be used for LCDC to display images from other image processing IPs, which also has DPI (slave).

There are programming flows for both DPI display on sequence and DPI display off sequence.

Fig. 27-20 LCDC DPI Programming flow

1.Turn on DPI display

First, configure IEP into DPI mode. After doing image information and image processing mode configuration, IEP DPI mode can be turn on for display. IEP is in idle mode only if LCDC's frame start input signal is valid.

Second, configure LCDC for DPI display. Note that only one layer (Win0 or Win1) can use DPI in same frame. Other layers still can use internal DMA.

Finally, set LCDC "config_done" to confirm all the new configuration and waiting frame sync to start DPI display actually.

2.Turn off DPI display

First, close LCDC layer's DPI mode by turning off DPI layer or switching it to DMA mode. Then set LCDC "config_done" to confirm new configuration.

Second, wait for LCDC's frame synchronization to close DPI display in LCDC.

Finally, turn off IEP's DPI mode.

27.7.4 WIN BPP LUT/GAMMA LUT

WIN1 LUT/DSP LUT should be configured before displaying if win2/3_lut_en/dsp_lut_en is high. You could only update these LUTs by software.

When win1_lut_load_en is 0, the WIN LUT data should be refreshed by software,i.e, writing win1 lut data to the internal memory with the start address WIN1_LUT_MST. The memory size is 256x25, i.e, lower 25bits valid, and the writing data number is determined by software, .

When dsp_lut_load_en is 0, the DSP LUT data should be refreshed by software,i.e, writing dsp lut data to the internal memory with the start address DSP_LUT_MST. The memory size is 256x24, i.e, lower 25bits valid, and the writing data number is determined by software.

27.7.5 DMA QoS request

If you want to get higher priority for VOP to access external memory when the frame data is urgent, a QoS request can be generated and sent out basing on the configured values:

noc_hurry_en noc_hurry_value noc_qos_en noc_win_qos

If noc_qos_en is enable, a win0/1_qos_req is asserted when the empty level of win0/1's linebuffer is greater than the threshold configured in noc_win_qos. And it will be disserted when the empty level is smaller than the threshold or noc_qos_en is disable.

If noc_qos_en is enable, a win0/1_hurry_req is asserted when the empty level of win2/3's fifo is greater than the threshold configured in noc_win_qos. And it will be disserted when the empty level is smaller than the threshold or noc_qos_en is disable.

Either win0/1_qos_req or win2/3_hurry_req is high, a QoS request will be sent out for VOP.

27.7.6 Mirror display

If Y-Mirror display is enable, the frame data is loaded from last line to first line, where the start address of first pixel in last line is defined in

WIN0/1_YRGB0_MST/WIN0/1_CBR0_MST/WIN0/1_YRGB1_MST/WIN0/1_CBR_MST/WIN2/3_MST for win0/1/2/3 respectively.

Otherwise, the win's frame line data width and virtual stride should be 64bit-aligned for 8bit-RGB/YUV or 128bit-aligned for 10bit YUV if X-Mirror or Y-Mirror display is enable.

27.7.7 DDR interface

LCD DDR interface is just suitable for Parallel RGB LCD panel and Serial RGB LCD 2x12 panel. If LCD DDR interface is enable, the timing parameters for LCD panel should be even.

Otherwise, you can synchronize output clock with VSYNC or HSYNC depending on dclk_ddr_sync.

27.7.8 Interrupt

VOP interrupt is comprised of 12 interrupt sources:

frame start interrupt line flag interrupt bus error interrupt win0 empty interrupt win1 empty interrupt win2 empty interrupt win3 empty interrupt hwc empty interrupt post empty interrupt pwm gen interrupt irq_mmu

Every interrupt has independent interrupt enable (VOP_INT_EN), interrupt clear (VOP_INT_CLR), interrupt status (VOP_INT_STATUS).

27.7.9 RGB display mode

RGB display mode is used for RGB panel display and CCIR656 output. It is a continuous frames display mode.

Fig. 27-21 LCDC RGB mode Programming flow

1.LCDC initialization

LCDC initialization should be done before turning display on.

First, AXI bus parameter (LCDC_SYS_CTRL) should be set for DMA transfer.

Second, display panel/interface timing should be set for display output. The registers are: LCDC_DSP_HTOTAL_HS_END/ LCDC_DSP_HACT_ST_END/ LCDC_DSP_VTOTAL_HS_END/ LCDC_DSP_VACT_ST_END/ LCDC_DSP_VS_ST_END_F1/ LCDC_DSP_VACT_ST_END_F1

2.Background display

Before normal display, the background display could be turn on.

First, set display output mode (LCDC_DSP_CTRL0/1) according to display device.

Second, disable dsp_blank mode, which would not be enable until frame synchronization.

Finally, writing '1' to "LCDC_REG_CFG_DONE" register then all the frame-sync registers will be enable at the beginning of next frame.

3. Normal display

In normal display, all the display layers' attribute could be different according display scenario. So there is a programming loop in this mode.

First, configure all the display layers' attribute registers for the change of image format, location, size, scaling factor, alpha and overlay and so on. Those register would not be enable until frame synchronization.

Finally, write '1' to "LCDC_REG_CFG_DONE" register then all the frame-sync registers will be enable at the beginning of next frame.

27.7.10 MCU display mode

MCU display mode is used for MCU panel display or MCU I80 local bus. It is a single frame display mode.

Fig. 27-22 LCDC RGB mode Programming flow

1.LCDC initialization

LCDC initialization should be done before turning display on.

First, AXI bus parameter (LCDC_SYS_CTRL) should be set for DMA transfer.

Second, display panel/interface timing should be set for display output. The registers are: LCDC_DSP_HTOTAL_HS_END/ LCDC_DSP_HACT_ST_END/ LCDC_DSP_VTOTAL_HS_END/ LCDC_DSP_VACT_ST_END/ LCDC_DSP_VS_ST_END_F1/ LCDC_DSP_VACT_ST_END_F1

Finally, fill the display LUT ram if color LUT function enable.

2.Turn on MCU hold mode

First setting MCU timing parameter (LCDC_MCU_CTRL[26:0]).

Turn on MCU hold mode (LCDC_MCU_CTRL[31] and LCDC_MCU_CTRL[27]), then wait for MCU display hold (read LCDC_MCU_CTRL[28] if it's value is `1', or set display hold valid interrupt)

3. Single display

If MCU display hold status is valid, single MCU display frame could be start by setting mcu_frame_st (LCDC_MCU_CTRL[28])

First, configure all the display layers' attribute registers for the change of image format, location, size, scaling factor, alpha and overlay and so on. Those register would not be enable until MCU frame start.

Second, write '1' to start one MCU frame.

Finally, wait for MCU display hold status.

27.7.11 MIPI control

1.double channel

MIPI double channel display is supported in the version(only left-right type).

Config doub_channel_en register in DSP_CTRL0 to adapt double channel display .

When doub_channel mode ,the vop will output two data bus to MIPI PHY,data0 is left panel data,data1 is right panel data.

Double channel overlap display is supported at the same time.

normal mode:

left panel data is from 0 to (width/2 -1).

right panel data is from width/2 to width-1.

overlap mode:

left panel data is from 0 to (width/2 -1+overlap number).

right panel data is from width/2-overlap number to width-1.

Fig. 27-23 normal mode left-right type display

Fig. 27-24 overlap mode left-right type display

The overlap number equal double_ch_overlap_num value *2,in the range of 0~16.

2.halt mode

Mipi halt fuction is supported in this version, detail configuration reference MIPI-DSI chapter.

3.command mode flow

Mipi command mode is supported in this version.

There is programming flows for command mode.

Fig. 27-25 command mode flow

27.7.12 Immediately control register

There are two type register in VOP , one type is effective immediately, the other is effective by frame sync.

Effective immediately registers list as follows, other registers are all effective by frame sync.

Table 27-8 effective immediately register table

rable 27 o effective infinitediately register table		
register address	description	

0x008[23:21],0x008[15:8]	some dsp ctrl function bit
0x00c	sys ctrl1 register
0x018	background color register
0x01c	mcu ctrl register
0x038	win0 color key register
0x078	win1 color key register
0x0cc	win2 color key register
0x11c	win3 color key register
0x188~0x19c	dsp_timing ctrl registers
0x1a0~0x1a8	pwm ctrl registers
0x1c8~0x1dc	cabc_gauss_parameter registers
0x1ec~0x1f4	frc pattern parameter registers