MLP Week 4 SWI(shared)

February 1, 2022

You are working as a data scientist in a big automobile company. Your company aspires to enter the US market by setting up their manufacturing unit there and producing cars locally to give competition to their US and European counterparts.

They got some data to understand the factors on which the pricing of cars depends in the American market, since those may vary different from the indian market. The company wants to know:

Which variables are significant in predicting the price of a car How well those variables describe the price of a car Based on various market surveys.

1 Business Goal:

installed in editable mode: /content

Data science team are required to model the price of cars with the available independent variables. It will be used by the management to understand how exactly the prices vary with the independent variables. They can accordingly manipulate the design of the cars, the business strategy etc. to meet certain price levels. Further, the model will be a good way for management to understand the pricing dynamics of a new market.

[3]: ept-get install pandoc

```
Reading package lists... Done
Building dependency tree
Reading state information... Done
pandoc is already the newest version (1.19.2.4~dfsg-1build4).
pandoc set to manually installed.
O upgraded, O newly installed, O to remove and 37 not upgraded.
```

2 Step-1: Importing Libraries

```
[]: # Importing the libraries
import numpy as np
import pandas as pd
from numpy import math

from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score

import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
```

3 Step-2: Loading the data

```
[]: from google.colab import drive drive.mount('/content/drive')
```

Mounted at /content/drive

```
[]: # Importing the dataset
dataset = pd.read_csv('/content/drive/MyDrive/Dataset/Car_price in US market.
→csv')
```

4 Step-3: Data Inspection

5 Question set-1:

- (i) No of data point
- (ii) No of features
- (iii) No of categorical features
- (iv) No of numerical features
- (v) No of NA values
- (vi) List of all features
- (vii) What about duplicate data?

[]: dataset.shape

[]: (205, 26)

```
[]: dataset.head(5)
```

[]:	car_ID	symboling	CarName	 citympg	highwaympg	price
0	1	3	alfa-romero giulia	 21	27	13495.0
1	2	3	alfa-romero stelvio	 21	27	16500.0
2	3	1	alfa-romero Quadrifoglio	 19	26	16500.0
3	4	2	audi 100 ls	 24	30	13950.0
4	5	2	audi 1001s	18	22	17450 0

[5 rows x 26 columns]

[]: dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype				
0	car_ID	205 non-null	int64				
1	symboling	205 non-null	int64				
2	CarName	205 non-null	object				
3	fueltype	205 non-null	object				
4	aspiration	205 non-null	object				
5	doornumber	205 non-null	object				
6	carbody	205 non-null	object				
7	drivewheel	205 non-null	object				
8	enginelocation	205 non-null	object				
9	wheelbase	205 non-null	float64				
10	carlength	205 non-null	float64				
11	carwidth	205 non-null	float64				
12	carheight	205 non-null	float64				
13	curbweight	205 non-null	int64				
14	enginetype	205 non-null	object				
15	cylindernumber	205 non-null	object				
16	enginesize	205 non-null	int64				
17	fuelsystem	205 non-null	object				
18	boreratio	205 non-null	float64				
19	stroke	205 non-null	float64				
20	compressionratio	205 non-null	float64				
21	horsepower	205 non-null	int64				
22	peakrpm	205 non-null	int64				
23	citympg	205 non-null	int64				
24	highwaympg	205 non-null	int64				
25	price	205 non-null	float64				
<pre>dtypes: float64(8), int64(8), object(10)</pre>							

memory usage: 41.8+ KB

```
dataset.describe(include='all')
[]:
                car_ID
                                           highwaympg
                          symboling
                                                                price
                         205.000000
                                            205.000000
   count
            205.000000
                                                           205.000000
   unique
                    NaN
                                                   NaN
                                                                  NaN
                                 NaN
   top
                    {\tt NaN}
                                 NaN
                                                   NaN
                                                                  NaN
                                      . . .
                    NaN
                                 NaN
                                                   NaN
                                                                  NaN
   freq
                                      . . .
                                            30.751220
                                                         13276.710571
   mean
            103.000000
                           0.834146
   std
             59.322565
                           1.245307
                                             6.886443
                                                          7988.852332
              1.000000
                          -2.000000
                                             16.000000
                                                          5118.000000
   min
   25%
             52.000000
                           0.000000
                                            25.000000
                                                          7788.000000
   50%
                                                         10295.000000
            103.000000
                           1.000000
                                             30.000000
   75%
            154.000000
                           2.000000
                                            34.000000
                                                         16503.000000
   max
            205.000000
                           3.000000
                                            54.000000
                                                        45400.000000
   [11 rows x 26 columns]
[]: features=(dataset.columns)
   len(dataset[dataset.duplicated()])
[]: 0
```

6 Step-5: Exploratory data analysis

Question Set 2:

- 1) Give list of all numeric features
- 2) List of all categorical features
- 3) Type of distribution your dependent variable follow.
- 4) Plot different graph (histogram,box-plot,scatter plot e.t.c) for all independent variable to get some insight.
- 5) some scaling is needed or not.
- (5) Comment about different categorical feature.
- (6) Create a function which converts string into numerical e.g- {"four": 4, "two": 2}