

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C09J 4/00	A1	(1	11) International Publicati n Number:	WO 96/00760
C05J 4700		(4	3) International Publication Date:	11 January 1996 (11.01.96)
(21) International Application Number: PCT/US (22) International Filing Date: 26 June 1995 ((81) Designated States: AU, BR, CA, (AT, BE, CH, DE, DK, ES, F) NL, PT, SE).	
(30) Priority Data: 08/266,647 28 June 1994 (28.06.94)	1	US	Published With international search repo	rt.
(71) Applicant: TRI-POINT MEDICAL, L.P. [US/US]; 5 ital Boulevard, Raleigh, NC 27604 (US).	265 Ca	ap-		
(72) Inventors: CLARCK, Jeffrey, G.; 908 Benningto Raleigh, NC 27615 (US). LEUNG, Jeffrey, G.; 81: Way, Raleigh, NC 27615 (US).				
(74) Agents: OLIFF, James, A. et al.; Oliff & Berridge, 19928, Alexandria, VA 22320 (US).	P.O. B	ox		
			·	
·				
(54) Title: pH-MODIFIED BIOCOMPATIBLE MONOM	TER AN	ND :	POLYMER COMPOSITIONS	

(57) Abstract

The pH-modified monomer and polymer compositions are useful as biomedical and surgical adhesives, sealants, implants and bioactive agent release carriers or matrices. They comprise a monomer or polymer; and an effective amount of an acidic or basic pH mofifier effective to modify the pH of an immediate in vivo environment of the composition to a pH range at which the polymer biodegrades at a different rate then at physiologic pH. The invention also relates to in vivo applications in which surfaces are joined or treated with such pH-modified biocompatible compositions.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal .
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		=		

PH-MODIFIED BIOCOMPATIBLE MONOMER AND POLYMER COMPOSITIONS

Field of the Invention

This invention relates to improved compositions useful as biomedical adhesives, sealants, implants and bioactive agent release matrices. This invention also relates to medical, surgical and other in vivo applications in which body tissue surfaces are joined or reinforced with biocompatible compositions.

Background

5

10

15

20

25

30

35

The products in primary use for wound closure are surgical sutures and staples. Sutures are recognized to provide adequate wound support. However, sutures cause additional trauma to the wound site (by reason of the need for the needle and suture to pass through tissue) and are time-consuming to place, and, at skin level, can cause unattractive wound closure marks. Surgical staples have been developed to speed wound apposition. However, surgical staples also impose additional wound trauma and require the use of ancillary and often expensive devices for positioning and applying the staples.

To overcome these drawbacks, fast-acting surgical adhesives have been proposed. One group of such adhesives is the monomeric forms of alpha-cyanoacrylates.

Reference is made, for example, to U.S. Patents Nos. 3,527,841 (Wicker et al.); 3,722,599 (Robertson et al.); 3,995,641 (Kronenthal et al.); and 3,940,362 (Overhults), which disclose that alpha-cyanoacrylates are useful as surgical adhesives. All of the foregoing references are hereby incorporated by reference herein.

Typically, when used as adhesives and sealants, cyanoacrylates are applied in monomeric form to the surfaces to be joined or sealed, where, typically, in situ anionic polymerization of the monomer occurs, giving rise to the desired adhesive bond or seal. Implants, such as rods, meshes, screws, and plates, may also be formed of cyanoacrylate polymers, formed typically by radicalinitiated polymerization.

10

15

20

25

30

35

However, a drawback to the *in vivo* biomedical use of alpha-cyanoacrylate monomers and polymers has been their potential for causing adverse tissue response. For example, methyl alpha-cyanoacrylate has been reported to cause tissue inflammation at the site of application.

The adverse tissue response to alpha-cyanoacrylates appears to be caused by the products released during in vivo biodegradation of the polymerized alpha-cyanoacrylates. It is believed that formaldehyde is the biodegradation product most responsible for the adverse tissue response and, specifically, the high concentration of formaldehyde produced during rapid polymer biodegradation. Reference is made, for example, to F. Leonard et al., Journal of Applied Polymer Science, Vol. 10, pp. 259-272 (1966); F. Leonard, Annals New York Academy of Sciences, Vol. 146, pp. 203-213 (1968); Tseng, Yin-Chao, et al., Journal of Applied Biomaterials, Vol. 1, pp. (1990), and to Tseng, Yin-Chao, et al., Journal of Biomedical Materials Research, Vol. 24, pp. 1355-1367 (1990), which are hereby incorporated by reference herein.

For these reasons, cyanoacrylates have not come into widespread use for biomedical purposes.

Efforts to increase the tissue compatibility of alpha-cyanoacrylates have included modifying the alkyl ester group. For example, increasing the alkyl ester chain length to form the higher cyanoacrylate analogues, e.g., butyl-2-cyanoacrylates and octyl-2-cyanoacrylates, has been found to improve biocompatibility but the higher analogues biodegrade at slower rates than the lower alkyl cyanoacrylates.

Other examples of modified alpha-cyanoacrylates used in biomedical applications include carbalkoxyalkyl alpha-cyanoacrylates (see, for example, U.S. Patent No. 3,995,641 to Kronenthal et al.), fluorocyanoacrylates (see, for example, U.S. Patent No. 3,722,599 to Robertson et al.), and alkoxyalkyl 2-cyanoacrylates (see, for example, U.S. Patent No. 3,559,652 to Banitt et al.). Other efforts have included mixing alpha-cyanoacrylates

with dimethyl methylenemalonate and higher esters of 2-cyanoacrylic acid (see, for example, U.S. Patent No. 3,591,676 to Hawkins et al.).

In other efforts to increase the usefulness of alpha-cyanoacrylate adhesive compositions for surgical applications, certain viscosity modifiers have been used in combination with alkyl alpha-cyanoacrylate monomers, such as methyl alpha-cyanoacrylate. See, for example, U.S. Patents Nos. 3,564,078 (wherein the viscosity modifier is poly(ethyl 2-cyanoacrylate)) and 3,527,841 (wherein the viscosity modifier is poly(lactic acid)), both patents being to Wicker et al.

In a related application, U.S.S.N. 08/040,618, filed March 31, 1993 (U.S. Patent 5,328,687), the entire contents of which are hereby incorporated by reference, the use of formaldehyde scavengers has been proposed to improve biocompatibility of alpha-cyanoacrylate polymers, whose biodegradation produces formaldehyde, for use in in vivo applications. It is known that various compounds can affect polymerization of alpha-cyanoacrylate monomers, including acids to inhibit or slow polymerization (e.g., Leonard et al., U.S. Patent 3,896,077), and bases to accelerate polymerization (e.g., Coover et al., U.S. Patent 3,759,264 and Dombroski et al., U.S. Patent 4,042,442).

SUMMARY OF THE INVENTION

It has not been known to regulate polymer biodegradation by regulating the pH of an immediate in vivo environment of a biocompatible composition. Such regulation would improve, for instance, the biocompatibility of 1,1-disubstituted ethylene polymers for in vivo applications, by controlling the rate of release of harmful byproducts (e.g., formaldehyde) and controlling the rate of degradation of the polymer in situ.

Combining the monomer composition with a biocompatible pH modifier effective to regulate the pH of an immediate environment of the *in situ* polymer will substantially improve the usefulness of polymers formed

5

10

15

20

25

from such monomers, particularly in combination with use of formaldehyde scavengers.

The present invention is also directed to methods of using the above-described monomers, copolymers and polymers made therefrom for biomedical purposes.

The monomer compositions of this invention and polymers formed therefrom are useful as tissue adhesives, sealants for preventing bleeding or for covering open wounds, systems for delivery of therapeutic or other bioactive agents, and in other biomedical applications. They find uses in, for example, apposing surgically incised or traumatically lacerated tissues; setting fractured bone structures; retarding blood flow from wounds; aiding repair and regrowth of living tissue; and serving as matrices for delivering bioactive agents and as implants.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Embodiments of the present invention provide a biocompatible monomer composition, comprising an effective amount of at least one biocompatible pH modifier effective to regulate the pH of an immediate in vivo environment of the polymer to a pH range at which the polymer's in vivo biodegradation proceeds at a different rate than it does at physiologic pH.

In a further embodiment, the present invention is directed to a biocompatible composition comprising a polymer whose in vivo biodegradation may produce formaldehyde, and a pH modifier as described previously, and optionally including a formaldehyde scavenger.

The monomers used in this invention are polymerizable, e.g. anionically polymerizable or free radical polymerizable, to form polymers which biodegrade. In some embodiments, they form active formaldehyde upon biodegradation.

Monomer compositions of this invention may be applied to a surface to be sealed or joined together with a second surface in vivo, where, typically, in situ

5

10

15

20

25

30

10

15

25

30

anionic polymerization of the monomer occurs, giving rise to the desired adhesive bond or seal.

Useful 1,1-disubstituted ethylene monomers include, but are not limited to, monomers of the formula:

(I) CHR=CXY

wherein X and Y are each strong electron withdrawing groups, and R is H, $-CH=CH_2$ or, provided that X and Y are both cyano groups, a C_1-C_4 alkyl group.

Examples of monomers within the scope of formula (I) include alpha-cyanoacrylates, vinylidene cyanides, C_1-C_4 alkyl homologues of vinylidene cyanides, dialkyl 2-methylene malonates, acylacrylonitriles, vinyl sulfinates and vinyl sulfonates of the formula $CH_2=CX'Y'$ wherein X' is $-SO_2R'$ or $-SO_3R'$ and Y' is -CN, -COOR', $-COCH_3$, $-SO_2R'$ or $-SO_3R'$, and R' is H or hydrocarbyl.

Preferred monomers of formula (I) for use in this invention are alpha-cyanoacrylates. These monomers are known in the art and have the formula

CN / CHR²=C / COOR

wherein R^2 is hydrogen and R^3 is a hydrocarbyl or substituted hydrocarbyl group; a group having the formula $-R^4$ -O- R^5 -O- R^6 , wherein R^4 is a 1,2-alkylene group having 2-4 carbon atoms, R^5 is an alkylene group having 2-4 carbon atoms, and R^6 is an alkyl group having 1-6 carbon atoms; $-R^7$ - C -O- R^8 or a group having the formula R^7 is

 CH_3 | , or $-C(CH_3)_2-$, and R^8 is an organic radical. $-CH_2-$, -CH-

Examples of suitable hydrocarbyl and substituted hydrocarbyl groups include straight chain or branched chain alkyl groups having 1-16 carbon atoms; straight chain or branched chain C_1-C_{16} alkyl groups substituted with an acyloxy group, a haloalkyl group, an alkoxy group, a halogen atom, a cyano group, or a haloalkyl group;

10

15

20

25

30

35

straight chain or branched chain alkenyl groups having 2 to 16 carbon atoms; straight chain or branched chain alkynyl groups having 2 to 12 carbon atoms; cycloalkyl groups; aralkyl groups; alkylaryl groups; and aryl groups.

In the cyanoacrylate monomer of formula (II), R³ is preferably an alkyl group having 1-10 carbon atoms or a group having the formula -AOR⁹, wherein A is a divalent straight or branched chain alkylene or oxyalkylene radical having 2-8 carbon atoms, and R⁹ is a straight or branched alkyl radical having 1-8 carbon atoms.

Examples of groups represented by the formula -AOR9 include 1-methoxy-2-propyl, 2-butoxyethyl, 2-isopropoxyethyl, 2-methoxyethyl, 2-ethoxyethyl and 3-methoxybutyl.

advantageous Especially alpha-cyanoacrylate monomers for use in this invention are methyl alphacyanoacrylate, butyl alpha-cyanoacrylate, 2-octyl alphacyanoacrylate, 1-methoxy-2-propyl cyanoacrylate, butoxyethyl cyanoacrylate, 2-isopropoxyethyl cyanoacrylate and 3-methoxybutyl cyanoacrylate. Equally advantageous 2-methylene malonates, such as dimethyl are 2-methylenemalonate.

The alpha-cyanoacrylates of formula (II) wherein R3 is a hydrocarbyl or substituted hydrocarbyl group can be prepared according to methods known in the art. to U.S. Patents Nos. Reference is made, for example, which 2,721,858 and 3,254,111, each of is incorporated by reference herein. For example, the alphacyanoacrylates can be prepared by reacting an alkyl cyanoacetate with formaldehyde in a non-aqueous organic solvent and in the presence of a basic catalyst, followed by pyrolysis of the anhydrous intermediate polymer in the presence of a polymerization inhibitor. The alpha-cyanoacrylate monomers prepared with low moisture content and essentially free of impurities are preferred for biomedical use.

The alpha-cyanoacrylates of formula (II) wherein R^3 is a group having the formula $-R^4-0-R^5-0-R^6$ can be

10

15

20

25

30

35

prepared according to the method disclosed in U.S. Patent No. 4,364,876 (Kimura et al.), which is hereby incorporated by reference herein. In the Kimura et al. method, the alpha-cyanoacrylates are prepared by producing a cyanoacetate by esterifying cyanoacetic acid with an alcohol or by transesterifying an alkyl cyanoacetate and an alcohol; condensing the cyanoacetate and formaldehyde or paraformaldehyde in the presence of a catalyst at a molar ratio of 0.5-1.5:1, preferably 0.8-1.2:1, to obtain a condensate; depolymerizing the condensation reaction mixture either directly or after removal of the condensation catalyst to yield crude cyanoacrylate; and distilling the crude cyanoacrylate to form a high purity cyanoacrylate.

The alpha-cyanoacrylates of formula (II) -R7-C-O-R8 a group having the formula \mathbb{R}^3 can prepared according to the procedure described in U.S. Patent No. 3,995,641 (Kronenthal et al.), which is hereby In the Kronenthal et al. incorporated by reference. method, such alpha-cyanoacrylate monomers are prepared by reacting an alkyl ester of an alpha-cyanoacrylic acid with a cyclic 1,3-diene to form a Diels-Alder adduct which is then subjected to alkaline hydrolysis followed by acidification to form the corresponding alpha-cyanoacrylic acid The alpha-cyanoacrylic acid adduct is preferably esterified by an alkyl bromoacetate to yield the correcarbalkoxymethyl alpha-cyanoacrylate Alternatively, the alpha-cyanoacrylic acid adduct may be converted to the alpha-cyanoacrylyl halide adduct by reaction with thionyl chloride. The alpha-cyanoacrylyl halide adduct is then reacted with an alkyl hydroxyacetate or a methyl substituted alkyl hydroxyacetate to yield the corresponding carbalkoxymethyl alpha-cyanoacrylate adduct or carbalkoxy alkyl alpha-cyanoacrylate adduct, respec-The cyclic 1,3-diene blocking group is finally tively. removed and the carbalkoxy methyl alpha-cyanoacrylate adduct or the carbalkoxy alkyl alpha-cyanoacrylate adduct

15

20

25

30

35

is converted into the corresponding carbalkoxy alkyl alpha-cyanoacrylate by heating the adduct in the presence of a slight deficit of maleic anhydride.

Examples of monomers of formula (II) include cyanopentadienoates and alpha-cyanoacrylates of the formula:

wherein Z is -CH=CH₂ and R³ is as defined above. The monomers of formula (III) wherein R³ is an alkyl group of 1-10 carbon atoms, i.e., the 2-cyanopenta-2,4-dienoic acid esters, can be prepared by reacting an appropriate 2-cyanoacetate with acrolein in the presence of a catalyst such as zinc chloride. This method of preparing 2-cyanopenta-2,4-dienoic acid esters is disclosed, for example, in U.S. Patent No. 3,554,990, which is incorporated by reference herein.

this invention comprise Compositions of effective amount of a biocompatible pH modifier effective to regulate the pH of an immediate in situ environment of the polymer to a pH level at which the polymer's in vivo biodegradation proceeds at a different rate than it does at a physiologic pH ("effective amount"). An effective amount of a pH modifier effective to achieve the desired in situ pH modification will depend on the acidity or basicity (pKa or pKb) of the compound used, the pH of the polymer composition used when in situ, the in vivo environment's physiologic pH, and the release rate of biodegradation products resulting from the pH-modified biodegradation rate. An effective amount of pH modifier may be selected with regard to any formaldehyde scavenger or other component added to control levels of biodegradation products released. As well, a non-toxic pH modifier (e.g., an acid) is preferably used, or the pH modifier is used in an effective amount that minimizes any potential toxic effect.

- 9 -

For instance, in embodiments of the invention, a non-encapsulated, acidic pH modifier may be present in an effective amount greater than 1% by weight of the composition. In microencapsulated forms, the amount of pH modifier added may be varied from a minimum effective amount up to a maximum loading permitted by the microcapsule and any toxicity limit, according to the particular monomer or polymer composition and application. At the same time, the pH modifier should not significantly inhibit in vivo polymerization of the monomer composition or otherwise interfere with the composition's efficacy for medical or surgical applications.

An acidic or basic pH modifying compound, and its the composition, may be selected concentration in according to the in vivo pH range to be achieved in an immediate environment of the in situ polymerized or crosslinked adhesive composition. The desired in situ pH level depends on the particular monomer or polymer used and on whether that polymer's in vivo biodegradation rate is desired to be slower or faster than its biodegradation rate at the physiologic pH of the particular in vivo application. One skilled in the biocompatible monomer and polymer field will be able, upon reading this disclosure and with some routine experimentation, to select the pH modifier best suited for a given polymer or monomer composition and the particular application for which it is used.

The pH modifier may be selected to modify, in vivo, the pH of an immediate in situ environment of the polymer to a pH level at which in vivo biodegradation of the in situ polymer (and low molecular weight materials in the composition) proceeds more slowly than it does at a physiologic pH. This results in retarding the rate of release of formaldehyde and other degradation products, thereby reducing their toxic effects since, e.g., formaldehyde can be more completely eliminated before substantial, toxic concentrations occur in situ.

5

10

15

20

25

30

10

15

20

25

30

35

In such embodiments, the pH modifier may include, for example, but is not limited to, an acidic compound or anhydrous precursor thereof or a chemically protected For example, the pH modifier may comprise at least one member selected from the group consisting of: amino acids; carboxylic acids and salts thereof; di-acids and salts thereof; poly-acids and salts thereof; esters that are easily hydrolyzable in vivo; lactones that are easily organic carbonates; invivo; hydrolyzable polyphenolic compounds; compounds; acidic phenols; aromatic alcohols; ammonium compounds or salts thereof; boron-containing compounds; sulfonic acids and thereof; sulfinic acids and salts thereof; phosphoruscontaining compounds; acid halides; chloroformates; acid gases; acid anhydrides; inorganic acids and salts thereof; and polymers having functional groups of at least one of The pH modifier of this invention the preceding members. may, for example, comprise at least one member selected from the group consisting of: glycine; alanine; proline; lysine; glutaric acid; D-galacturonic acid; succinic acid; lactic acid; glycolic acid; poly(acrylic acid); sodium anhydride; succinic anhydride; diglycolic citraconic anhydride; maleic anhydride; lactide; diethyl oxalate; Meldrum's acid; diethyl carbonate; dipropyl carbonate; diethyl pyrocarbonate; diallyl pyrocarbonate; di-tert-butyl dicarbonate; ascorbic acid; catechin; ammonium chloride; D-glucosamine hydrochloride; 4-hydroxyephedrine hydrochloride; boric acid; nitric acid; hydrochloric acid; sulfuric acid; ethanesulfonic acid; and 2-aminoethylphosphoric p-toluenesulfonic acid; methylphosphonic acid; dimethylphosphinic acid; methyl carbon dioxide. dioxide; and chloroformate; sulfur Glutaric acid and diethyl carbonate are particularly preferred in embodiments of the invention.

The pH modifier may alternatively be selected to modify, in vivo, a pH of an immediate in vivo environment of the polymer to a pH level at which in vivo biodegradation of the in situ polymer proceeds more

quickly than it does at a physiologic pH. Basic pH modifiers allow the use of polymer materials otherwise degrading slowly or not at all in vivo, e.g., butyl alphacyanoacrylate or 2-octyl alphacyanoacrylate. The pH modifier is added in an amount sufficient to accelerate the polymer's biodegradation, but the accelerated release of biodegradation products (e.g., formaldehyde) must remain within physiologically tolerable ranges. In this aspect, a formaldehyde scavenger may also be added to keep formaldehyde levels within tolerable levels, for instance, in the manner of related application, U.S.S.N. 08/040,618.

In such embodiments, the pH modifier may include a basic compound or anhydrous precursor thereof, and/or a chemically protected base. For example, the pH modifier may comprise at least one member selected from the group consisting of: hydroxides; alkoxides; basic carbonates; amines; alkaloids; nitrogen-containing compounds; hydrides; organolithium compounds; Grignard reagents; carbanions; and polymers having functional groups of at least one of the preceding members. The pH modifier (whether single or in combination) may be, for example, selected from the group consisting of: sodium hydroxide; hydroxide; sodium methoxide; potassium potassium t-butoxide; sodium carbonate; calcium carbonate; dibutylamine; tryptamine; sodium hydride; calcium hydride; butyllithium; and ethylmagnesium bromide.

The present invention encompasses situations in which formaldehyde is released as a byproduct of in situ biodegradation of the biocompatible polymer. A formaldeconcentration-reducing agent or formaldehyde scavenger, e.g., sodium bisulfite, may be added to the compositions and methods of this invention to control formaldehyde release in situ and to minimize harmful effects therefrom, as disclosed in related application, U.S.S.N. 08/040,618, incorporated herein by reference. However, an acid pH modifier-containing composition herein further minimize active formaldehyde can disclosed concentrations in situ in the following manner. The pH

5

10

15

20

25

30

modifier regulates the immediate pH environment of the in situ polymerized composition such that the polymer's in situ biodegradation is slowed, thereby keeping in situ formaldehyde concentrations at a level that can be handled physiologically and that will not, in an initial burst, overwhelm any formaldehyde scavenger that is present.

The pH modifier used in this invention may either be in free form or in a protected form. For instance, it may be in a form that is insoluble in the monomer of a composition, such as a free acid monomer or may be in a chemically form, microencapsulated protected form that may be soluble or insoluble in such monomer compositions. Once in vivo, the pH modifier may diffuse through the microcapsule or be released by bioerosion of the microcapsule, into the in situ polymer. The microcapsule may be formulated so that the pH modifier is released from the microcapsule continuously over a period of time during the biodegradation of the in situ polymer. Alternatively, the microencapsulated pH modifier may be formed to release rapidly and transiently, after a time delay, or even intermittently, vis-à-vis the life of the in situ polymer, depending on when the pH modifier is desired to have effect. For example, delayed release of a basic pH modifier may be desired to cause the polymer to begin to degrade rapidly after it has served a significant portion of its useful life. As well, pH modifiers may be used in combination, allowing, e.g., quick release of an acidic pH modifier followed by later release of a basic pH modifier, for more refined control of the polymer's biodegradation.

For purposes of this invention, the microencapsulated form of the pH modifier is advantageous because this embodiment prevents or substantially reduces preapplication effects of the pH modifier, e.g., a basic pH modifier, thereby increasing shelf-life and facilitating handling of the monomer composition during use.

Microencapsulation of the pH modifier can be achieved by many known microencapsulation techniques. For

5

10

15

20

25

30

- 13 -

be carried out example, microencapsulation can dissolving a coating polymer in a volatile solvent, e.g., methylene chloride, to a polymer concentration of about 6% by weight; adding a pH modifying compound (selected to be acidic or basic according to the pH level to be achieved to the coating form in particulate situ) polymer/solvent solution under agitation, to yield a pH modifier concentration of 2% to 10% by weight; adding the resulting polymer dispersion to a methylene chloride solution containing a phase inducer, such as silicone oil, under agitation; allowing the mixture to equilibrate for about 20 minutes; further adding the mixture slowly to a non-solvent, such as heptane, under rapid agitation; allowing the more volatile solvent to evaporate under agitation; removing the agitator; separating the solids from the silicone oil and heptane; and washing and drying the microparticles. The size of the microparticles will range from about 0.001 to about 1000 microns.

The microencapsulating coating polymer should be able to undergo in vivo bioerosion or to permit diffusion of the pH modifier, and should have low inherent moisture content. Bioerosion preferably occurs at rates greater than or similar to the rate of degradation of the base polymer. Such "bioerosion" can occur as a result of the physical or chemical breakdown of the encapsulating material, for example, by the encapsulating material passing from solid to solute in the presence of body fluids, or by biodegradation of the encapsulating material by agents present in the body.

Examples of coating materials that can be used to microencapsulate the pH modifier include, but are not polyesters, such as polyglycolic acid, limited to: polylactic acid, copolymers of polyglycolic acid and polylactic acid, polycaprolactone, poly- β -hydroxybutyrate, δ -valerolactone, ε-caprolactone and copolymers of DL-dilactide, ε -caprolactone and of copolymers polyester hydrogels; polyvinylpyrrolidone; polyamides; gelatin; albumin; proteins; collagen; poly(orthoesters);

5

10

15

20

25

30

- 14 -

poly(anhydrides); poly(alkyl-2-cyanoacrylates);
poly(dihydropyrans); poly(acetals); poly(phosphazenes);
poly(urethanes); poly(dioxinones); cellulose; and
starches.

Examples of a phase inducer that can be added include silicone oil, mineral oil, polyethylene, polyisobutylene, and polybutadiene.

Compositions of this invention may further contain a stabilizer and/or one or more adjuvant substances, such as thickening agents, plasticizers, or the like, to improve its medical utility for particular medical applications.

Examples of suitable stabilizers include sulfur dioxide, sulfonic acid, lactone, boron trifluoride, hydroquinone, hydroquinone monomethyl ether, catechol, pyrogallol, benzoquinone, 2-hydroxybenzoquinone, p-methoxy phenol, t-butyl catechol, organic acid, butylated hydroxy anisole, butylated hydroxy toluene, t-butyl hydroquinone, alkyl sulfate, alkyl sulfite, 3-sulfolene, alkylsulfone, alkyl sulfoxide, mercaptan, and alkyl sulfide.

Suitable thickeners include, for example, polycyanoacrylates, polylactic acid, polyglycolic acid, lactic-glycolic acid copolymers, polycaprolactone, lactic acid-caprolactone copolymers, poly-3-hydroxybutyric acid, polyorthoesters, polyalkyl acrylates, copolymers of alkylacrylate and vinyl acetate, polyalkyl methacrylates, and copolymers of alkyl methacrylates and butadiene.

Examples of suitable plasticizers include dioctyl phthalate, dimethyl sebacate, triethyl phosphate, tri(2-ethylhexyl)phosphate, tri(p-cresyl) phosphate, glyceryl triacetate, glyceryl tributyrate, diethyl sebacate, dioctyl adipate, isopropyl myristate, butyl stearate, lauric acid, dibutyl phthalate, trioctyl trimellitate, and dioctyl glutarate.

To improve the cohesive strength of adhesives formed from the compositions of this invention, difunctional monomeric cross-linking agents may be added to compositions or used in methods of this invention in vivo

5

10

15

20

25

30

- 15 -

Such crosslinking agents are known. or ex vivo. is made, for example, to U.S. Patent No. Reference 3,940,362 (Overhults), which is hereby incorporated by Examples of suitable crosslinking reference herein. include alkyl bis(2-cyanoacrylates), triallyl isocyanurates, alkylene diacrylates, alkylene dimethacrylates, trimethylol propane triacrylate, and alkyl bis(2cyanoacrylates). When used ex vivo, a catalytic amount of initiator added radical is free polymerization of the cyanoacrylate monomer/crosslinking agent blend. Such compositions can be molded or otherwise formed to provide preformed implants and prosthetic devices for surgical use, such as rods, meshes, plates, screws, and fasteners.

The compositions of this invention may further contain fibrous reinforcement and colorants, e.g., dyes and pigments. Examples of suitable fibrous reinforcement include PGA microfibrils, collagen microfibrils, cellulosic microfibrils, and olefinic microfibrils. Examples of suitable colorants include 1-hydroxy-4-[4-methylphenylamino]-9,10 anthracenedione (FD&C violet No. 2); disodium salt of 6-hydroxy-5-[(4-sulfophenyl)axo]-2-naphthalene-sulfonic acid (FD&C Yellow No. 6); 9-(0-carboxyphenyl)-6-hydroxy-2,4,5,7-tetraiodo-3H-xanthen-3-one, disodium salt, monohydrate (FD&C Red No. 3); 2-(1,3-dihydro-3-oxo-5-sulfo-2H-indol-2-ylidene)-2,3-dihydro-3-oxo-1H-indole-5-sulfonic acid disodium salt (FD&C Blue No. 2); and [phtha-locyaninato (2-)] copper.

The biocompatible adhesive compositions of this invention can be used, for example, to join together two surfaces, at least one of the surfaces being body or living tissue, by applying the composition to at least one of the surfaces. Depending on the particular requirements of the user, the compositions of this invention can be applied by known means, such as with a glass stirring rod, sterile brush, medicine dropper, spray bottle or other non-aerosol means. However, in many situations, a pressurized aerosol dispensing package is advantageous, in

5

10

15

20

25

30

10

15

20

25

30

35

which the adhesive composition is in solution with a compatible anhydrous or other aerosol propellant. Aerosol application of the monomers is particularly advantageous for use in hemostasis. The compositions of this invention may also be stored in and dispensed from a two-phase container, in which the pH modifier is kept apart from the monomer composition until shortly before or at the moment of applying the adhesive composition in situ to the in If formaldehyde surfaces to be bonded. a concentration-reducing agent is also present, it may be present in either of the above two phases, or in a separate third phase of a multi-phase container.

embodiment, the present invention In one directed to a method of joining together in vivo two surfaces, one or both of which may be a body tissue, which comprises (a) applying to at least one of said surfaces a biocompatible composition of this invention, and (b) maintaining the surfaces in contact until said composition joins together the two surfaces (e.g., by polymerization One of said surfaces can be of the monomer composition). body tissue and the other surface a prosthetic device or the like, or both surfaces may be body tissue. example of a composition which may be used to practice this method, said composition may comprise: (1) at least one monomer (e.g., a monomer of formula (I)) which forms a in vivo biodegradation proceeds polymer whose physiologic pH (and may release formaldehyde); and (2) an effective amount of a biocompatible pH modifier effective to regulate the pH of an immediate in situ environment of the biocompatible polymer to a pH level at which said polymer biodegrades at a different rate than it does at said physiologic pH. The pH modifier may be selected to slow or to accelerate the polymer's biodegradation.

Various methods for repairing or strengthening damaged living tissue to prevent the escape of fluids therethrough exist which may employ a composition of the invention. For example, a method for repairing or dressing living tissue may comprise: (a) applying to the

tissue a surgical sealant comprising the biocompatible composition including a pH modifier of this invention; and (b) allowing the composition to polymerize. A method for stemming the flow of blood from small vessels may comprise applying to said vessels a surgical sealant or hemostatic agent comprising a biocompatible monomer composition including a pH modifier. A method of dressing burns to promote the healing thereof may comprise (a) covering said burn with a biocompatible composition of this invention; and (b) allowing the composition to polymerize in situ; and methods of dressing wounds to promote the healing thereof may comprise (a) covering said wound with a biocompatible composition this invention; and of (b) allowing the composition to polymerize.

Repairing injured tissues (for example, to control bleeding) may comprise, for example, sponging to remove superficial body fluids and subsequent application to the exposed tissue of a composition of the invention. For example, a monomer composition polymerizes to a thin film of polymer while in contact with the tissue surface. For bonding separate surfaces of body tissues, the monomer is applied to at least one surface, and the surfaces are brought quickly together while the monomer polymerizes in contact with both surfaces.

In another embodiment, the present invention may be used in a method for effecting in vivo administration of a bioactive agent, comprising introducing into a body a composition of this invention, which may comprise: (a) a polymer whose in vivo biodegradation may or (b) an effective amount formaldehyde; biocompatible pH modifier; and (c) a bioactive amount of a bioactive agent, wherein biodegradation of the polymer or diffusion of the bioactive agent effects its in vivo The bioactive agent may be encapsulated in a suitable biodegradable material for controlling release of The polymer may be one degrading the bioactive agent. slowly or not at all or may be hydrolytically sensitive, at an in vivo physiologic pH. In the former case, a basic

5

10

15

20

25

30

10

15

20

25

30

35

pH modifier may be added to promote biodegradation of the polymer. The composition may also include an effective amount of at least one biocompatible agent effective to reduce active formaldehyde concentration levels, e.g., a formaldehyde scavenger.

The compositions may be used further to administer therapeutic agents into the body. The composition will form a matrix for the therapeutic agent, with the therapeutic agent being released in vivo from the matrix by diffusion or by biodegradation, over time, of the polymer. For example, a composition comprising the monomer polymer form of the monomer, since in this application, polymerization need not occur in situ), a biocompatible pH modifier of this invention, an optional biocompatible and a therapeutic agent formaldehyde scavenger, introduced into the body where the polymer undergoes biodegradation, gradually releasing the therapeutic agent. Alternatively, the therapeutic agent may diffuse out from before polymeric body, the composition, into the biodegradation ends or even begins.

The monomers are readily polymerized to additiontype polymers and copolymers.

In most bonding applications using compositions of this invention, polymerization of the monomers is catalyzed by small amounts of moisture on the surface of the adherents. Therefore, desired bonding of tissues and hemostasis proceed well in the presence of blood and other body fluids. The bonds formed are of adequate flexibility and strength to withstand normal movement of tissue. In addition, bond strength is maintained as natural tissue healing proceeds concurrently with polymer assimilation.

Compositions employed in the invention are sterilizable by conventional methods such as by autoclave or by aseptic filtration techniques.

The invention is further illustrated by the following non-limiting examples.

- 19 -

EXAMPLES

In the Examples below, the following terms are defined as follows:

IPECA - 2-isopropoxyethyl cyanoacrylate

DMM - dimethyl 2-methylenemalonate

3MBCA - 3-methoxybutyl cyanoacrylate

20CA - 2-octyl cyanoacrylate

monomer(s) - refers generically to IPECA, DMM, SMBCA and/or 20CA

10 Examples 1-18 and Control Examples 1C-18C

Examples 1-18 and Control Examples 1C-18C illustrate the effect of a biocompatible pH modifier on the biodegradation of a 1,1-disubstituted ethylene monomer polymerized in situ. The compositions of Examples 1-18 each contain a pH modifier (in free or microencapsulated form) while the compositions of Control Examples 1C-18C contain sodium chloride (NaCl), polycaprolactone microcapsules, or no additive.

The formulations of the compositions prepared in Examples 1-18 and Control Examples 1C-18C are shown in Tables IA and IB, respectively.

The compositions of the examples are prepared as follows. Appropriate weight ratios of the monomer and an additive are mixed thoroughly by shaking. modifiers and sodium chloride are ground or milled to a fine particle size before mixing.) The resulting mixture is quickly poured onto a glass plate equipped with a 4 cm The glass plate is pre-treated with x 8 cm boundary. chlorotrimethylsilane and the boundary is fabricated with caulking cord material. The mixture is spread evenly to all edges. Polymerization of the monomer mixture is then aqueous sodium 1% spraying with a accelerated by bicarbonate solution (Examples 1-3, 5, 9-18, 1C-3C, 5C, and 9C-18C) or a 1:2:97 triethylamine/methanol/heptane mixture (Examples 4, 6-8, 4C, and 6C-8C). The hardened polymer film is gently scraped off the glass plate, cut away from the boundary and dried. It is further cut into two halves, each of 2 cm x 8 cm, for duplicate runs.

5

15

20

25

30

10

15

20

In Examples 13-15, the additive is sprinkled evenly on the glass plate and the monomer is then carefully added, instead of the two being mixed directly.

In vitro biodegradation (simulating in vivo biodegradation) of each 2 cm x 8 cm polymer film is then carried out as follows. The polymer film, encaged in aluminum mesh, is placed in a pH 7.4 buffer (e.g., monobasic potassium phosphate and dipotassium phosphate). Biodegradation is carried out at 37±2°C for 168 hours (Examples 1-9, 13-18, 1C-9C, and 13C-18C) or at 37±2°C for 192 hours (Examples 10-12, and 10C-12C). The partially degraded film is separated from the buffer solution and dried. The buffer solution is subjected to formaldehyde determination.

Determination of the amount of formaldehyde generated during biodegradation of the polymer films may be accomplished as disclosed in related application U.S.S.N. 08/040,618 (U.S. Patent 5,328,687).

In the following tables, the term " μ g formaldehyde detected per g polymer" means the amount of formaldehyde generated in micrograms divided by the original polymer weight in grams (excluding the weight of the pH modifier or control additive).

- 21 -

Table IA Examples 1-18

Example No.	Monomer	Additive	Additive Weight %	<u>μ</u> g formaldehyde Detected per g Polymer	% Change (Formaldeh) Detected
1	IPECA	diethyl carbonate	2.5	1652	- 77.4
2	IPECA	diethyl carbonate	5.0	1278	- 87.0
3	IPECA	diethyl carbonate	7.5	8806	- 14.4
4	IPECA	lactide	7.0	1161	- 73.3
5	IPECA	glucosamine hydrochloride	9.0	6082	- 19.9
6	IPECA	ascorbic acid	2.0	5226	- 66.7
7	IPECA	glutaric acid	1.0	13,788	- 7.3
8	IPECA	glutaric acid/ polycaprolactone microcapsules	8.0	3023	- 20.0
9	ЗМВСА	glycine	8.0	1909	- 8.7
10	DMM	diethyl oxalate	6.0	1723	- 61.4
11	DMM	tryptamine	3.0	2538	+ 22.6
12	DMM	potassium carbonate	2.0	2372	+ 16.2
13	IPECA	tryptamine/polycapro- lactone microcapsules	4.0	10,376	+ 53.4
14	IPECA	tryptamine/polycapro- lactone microcapsules	6.0	9961	+ 63.7
15	IPECA	tryptamine/polycapro- lactone microcapsules	8.0	9094	+ 46.9
16	IPECA	sodium carbonate/poly- caprolactone microcapsules	10.0	6949	+ 63.6
17	ЗМВСА	sodium methoxide	5.0	4389	+856.2
18	20CA	sodium hydroxide	8.5	2351	+1379.0

5

10

15

10

15

20

25

30

- 22 -

Table IB

Control Examples 1C-18C

Example No.	Monomer	Additive	Additive Weight %	μg formaldehyde Detected per g Polymer	% Change of Formaldehyde Detected
10	IPECA	sodium chloride	2.5	7295	0
20	IPECA	sodium chloride	5.0	9856	0
3C	IPECA	sodium chloride	7.5	10,293	0
4C	IPECA	sodium chloride	7.0	4355	0
5c	IPECA	sodium chloride	9.0	7595	0
6C	IPECA	sodium chloride	2.0	15,698	0
7c	IPECA	sodium chloride	1.0	14,880	0
8c	IPECA	sodium chloride	8.0	3780	0
9c	ЗМВСА	sodium chloride	8.0	2091	0
10c	DMM	sodium chloride	6.0	4466	0
110	DHM	sodium chloride	3.0	2070	0
120	DHM	sodium chloride	2.0	2041	0
13C	IPECA	polycaprolactone microcapsules	4.0	6764	0
.140	IPECA	polycaprolactone microcapsules	6.0	6085	0
15C	IPECA	polycaprolactone microcapsules	8.0	6189	0
16C	IPECA	polycaprolactone microcapsules	10.0	4248	0
17C	ЗМВСА	none	0	459	0
18C	20CA	none	0	159	0

The monomer IPECA is polymerized by azoisobutyronitrile (AIBN) at 70°C to give a polymer of approximately 25,000 molecular weight. In the following Examples, polymer(s) refers generically to the IPECA polymer prepared in this manner.

Examples 19-20 and Control Examples 19C-20C

Examples 19-20 and Control Examples 19C-20C illustrate the effect of a biocompatible pH modifier on the biodegradation of a 1,1-disubstituted ethylene polymer. The compositions of Examples 19-20 each contain a pH modifier while the compositions of Control Examples 19C-20C contain sodium chloride (NaCl).

10

15

20

25

The formulations of the compositions prepar d in Examples 19-20 and Control Examples 19C-20C are shown in Table II.

The compositions of the examples are prepared The polymer is dissolved in methylene chloride to give a polymer concentration of about 15%. The resulting polymer solution and an additive (either a pH modifier or sodium chloride) are mixed thoroughly in the appropriate weight ratio by shaking. modifiers and sodium chloride are ground or milled to a fine particle size before mixing.) The resulting mixture is quickly poured onto a glass plate equipped with a 4 cm x 8 cm boundary. The glass plate is pre-treated with chlorotrimethylsilane and the boundary is fabricated with caulking cord material. The inside border is painted with melted paraffin wax. The mixture is spread evenly to all edges. Following evaporation of solvent, the polymer film is gently scraped off the glass plate, cut away from the It is further cut into two halves, boundary and dried. each of 2 cm x 8 cm, for duplicate runs.

In vitro biodegradation (simulating in vivo biodegradation) of the polymer films and formaldehyde determination are carried out using the same procedures followed in Examples 1-9 and 13-18 and Control Examples 1C-9C and 13C-18C. The results of Examples 19-20 and Control Examples 19C-20C are shown in Table II.

<u>Table II</u>

<u>Examples 19-20 and Control Examples 19C-20C</u>

Example No.	Polymer	Additive	Additive Weight %	μg Formaldehyde Detected per g Polymer	% Change of Formaldehyde Detected
19	IPECA	hydrochloric acid	1.0	329	-37.0
20	IPECA	methylphosphonic acid	5.0	906	-55.1
19C	IPECA	sodium chloride	1.0	522	0
20c	IPECA	sodium chloride	5.0	2018	0

We claim:

5

10

15

20

25

30

A method comprising:

- (a) applying to an in vivo surface a biocompatible composition comprising: (1) at least one monomer which forms a polymer in situ at a physiologic pH; and (2) an effective amount of at least one biocompatible pH modifier effective to modify the pH of an immediate in vivo environment of said polymer to a pH range at which said polymer biodegrades at a different rate than it does at physiologic pH, without said pH modifier significantly affecting the monomer's polymerization in situ;
- (b) allowing the monomer composition to polymerize in situ.
- 2. The method of claim 1, wherein said composition is an adhesive composition, and said surface is maintained in contact with another surface in vivo until the monomer composition polymerizes.
- 3. The method of claim 2, wherein one of the surfaces is body tissue and the other surface is a prosthetic device.
- 4. The method of claim 2, wherein both surfaces are body tissue.
- 5. The method of claim 1, wherein said composition is applied to damaged or exposed tissue.
- 6. The method of claim 5, wherein said tissue comprises a blood vessel, and said method stems flow of blood from said blood vessel by applying to said blood vessel a hemostatic agent comprising said composition.
- 7. The method of claim 5, wherein said tissue has been burned or is living tissue exposed in a wound.
- 8. The method of claim 1, wherein the effective amount of a non-encapsulated, acidic pH modifier is at least 1 % by weight of the composition.
- 9. The method of claim 1, wherein the pH
 35 modifier is soluble in the monomer.

PCT/US95/08162

- wherein claim 1, method of 10. The polymer's in vivo biodegradation proceeds faster than it does at physiologic pH.
- claim 1, wherein the 11. The method of polymer's in vivo biodegradation proceeds slower than it does at physiologic pH.
- 12. The method of claim 1, wherein the polymer degrades slowly or not at all at a physiologic pH and the pH modifier is a basic compound.
- 13. The method of claim 1, wherein the polymer comprises at least one member selected from the group consisting of butyl alpha-cyanoacrylate and octyl alphacyanoacrylate, and said pH modifier is a basic compound.
- of claim 1, wherein the 14. The method further comprises: (3) at least one composition effective to reduce active biocompatible agent formaldehyde concentration levels.
- 15. The method of claim 10, wherein the composition further comprises: (3) at least one effective to reduce active biocompatible agent formaldehyde concentration levels.
- 16. The method of claim 1, wherein the monomer is an alpha-cyanoacrylate or a 2-methylene malonate.
- 17. The method of claim 16, wherein the alphacyanoacrylate, butyl methyl cyanoacrylate is cyanoacrylate, 1-methoxy-2-propyl 2-octyl acrylate, cyanoacrylate, 2-butoxyethyl cyanoacrylate, 2-isopropoxyethyl cyanoacrylate or 3-methoxybutyl cyanoacrylate.
- 18. The method of claim 1, wherein the pH modifier is microencapsulated in a material that has a low inherent moisture content and that undergoes in vivo bioerosion.
 - 19. The method of claim 1, wherein the pH is microencapsulated in a material is capable, in vivo, of diffusing through the material.
 - 20. The method of claim 1, wherein the modifier comprises at least one member selected from the group consisting of:

5

10

15

20

25

30

amino acids; carboxylic acids or salts thereof; di-acids or salts thereof; poly acids or saIts thereof; 5 esters that are easily hydrolyzable in vivo; lactones that are easily hydrolyzable in vivo; organic carbonates; enolic compounds; acidic phenols; 10 polyphenolic compounds; aromatic alcohols; ammonium compounds or salts thereof; boron-containing compounds; sulfonic acids or salts thereof; 15 sulfinic acids or salts thereof; phosphorus-containing compounds; acid halides; chloroformates; acid gases; 20 acid anhydrides; inorganic acids or salts; chemically protected acids; and polymers having functional groups of at least one of the preceding members. 25 21. The method of claim 1, wherein the pH modifier comprises at least one member selected from the group consisting of: glycine; alanine; proline; lysine; glutaric acid; D-galacturonic acid; succinic acid; lactic acid; glycolic acid; poly(acrylic acid); sodium acetate; diglycolic anhydride; succinic anhydride; 30 anhydride; maleic anhydride; lactide; diethyl oxalate; Meldrum's acid; diethyl carbonate; dipropyl carbonate; diethyl pyrocarbonate; diallyl pyrocarbonate; di-tertbutyl dicarbonate; ascorbic acid; catechin; chloride; D-glucosamine hydrochloride; 4-hydroxyephedrine 35 hydrochloride; boric acid; nitric acid; hydrochloric acid; sulfuric acid; ethanesulfonic acid; p-toluenesulfonic

20

25

30

35

acid; 2-aminoethylphosphoric acid; methylphosphonic acid; dimethylphosphinic acid; and methyl chloroformate.

22. The method of claim 1, wherein the pH modifier comprises at least one member selected from the group consisting of:

hydroxides;

alkoxides;

basic carbonates;

nitrogen-containing compounds;

10 amines;

alkaloids;

hydrides;

organolithium compounds;

Grignard reagents;

carbanions; and

chemically protected bases; and

polymers having functional groups of at least one of the preceding members.

23. The method of claim 1, wherein the pH modifier comprises at least one member selected from the group consisting of: sodium hydroxide; potassium hydroxide; sodium methoxide; potassium t-butoxide; sodium carbonate; dibutylamine; tryptamine; sodium hydride; calcium hydride; butyllithium; and ethylmagnesium bromide.

24. A method of regulating a rate of in vivo biodegradation of a polymer formed in vivo from at least one monomer which forms a polymer at a physiologic pH, comprising:

combining said at least one monomer with an effective amount of at least one biocompatible pH modifier effective to modify a pH of an immediate in situ environment of the polymer to a pH range at which the polymer's biodegradation proceeds at a different rate than it does at physiologic pH;

allowing th polymer to form in vivo; and maintaining the thus-formed polymer in vivo for a time sufficient to effect biodegradation of the polymer.

10

15

20

25

- 25. The method of claim 24, wherein the polymer is a 1,1-disubstituted ethylene.
- 26. The method of claim 24, wherein the polymer is hydrolytically sensitive in vivo at a physiologic pH.
- 27. The method of claim 24, wherein the polymer biodegrades slowly or not at all at a physiologic pH, and the pH modifier is a basic compound.
- 28. The method of claim 24, wherein the polymer comprises at least one member selected from the group consisting of butyl alpha-cyanoacrylate and octyl alpha-cyanoacrylate, and said pH modifier is a basic compound.
- 29. A biocompatible monomer composition, comprising:
- a) at least one monomer comprised of a 1,1-disubstituted ethylene, which forms a polymer in vivo at a physiologic pH; and
- b) an effective amount of a biocompatible pH modifier effective to regulate, after in vivo polymerization of the monomer in situ, the pH of an immediate in vivo environment of the polymer to a pH range at which the polymer biodegrades in vivo at a different rate than it does at physiologic pH, without significantly affecting in situ polymerization of the monomer.
- 30. The composition of claim 29, wherein the polymer biodegrades in vivo at physiologic pH.
- 31. The composition of claim 29, wherein the pH modifier is in a form that is substantially insoluble in the monomer.
- 32. The composition of claim 29, wherein the pH modifier is soluble in the monomer.
- 33. The composition of claim 29, wherein the pH modifier is microencapsulated in a coating polymer that has a low inherent moisture content and that undergoes in vivo bioerosion.
- 34. The composition of claim 33, wherein the pH modifier is capable, in vivo, of diffusing through the coating polymer.

- 29 -

35. The composition of claim 29, wherein the pH modifier is effective to promote a faster in vivo biodegradation of the polymer than that occurring at physiologic pH.

36. The composition of claim 29, wherein the pH modifier is effective to promote a slower *in vivo* biodegradation of the polymer than that occurring at physiologic pH.

37. The composition of claim 29, wherein a non-encapsulated acidic pH modifier comprises at least about 1% by weight of the composition.

38. The composition of claim 29, wherein the at least one monomer is an alpha-cyanoacrylate or a 2-methylene malonate.

39. The composition of claim 37, wherein the alpha-cyanoacrylate is methyl cyanoacrylate, butyl cyanoacrylate, 2-octyl cyanoacrylate, 1-methoxy-2-propyl cyanoacrylate, 2-butoxyethyl cyanoacrylate, or 2-isopropoxyethyl cyanoacrylate or 3-methoxybutyl cyanoacrylate.

40. The composition of claim 29, further comprising an effective amount of at least one biocompatible agent effective to reduce formaldehyde concentration levels.

41. The composition of claim 29, wherein the pH modifier is a chemically protected acid or an acid or anhydrous precursor thereof.

42. The composition of claim 29, wherein the pH modifier comprises at least one member selected from the group consisting of:

amino acids;

carboxylic acids or salts thereof;

di-acids or salts thereof;

poly acids or salts thereof;

esters that are easily hydrolyzable in vivo;

lactones that ar easily hydrolyzable in vivo;

organic carbonates;

enolic compounds;

5

10

25

acidic phenols; polyphenolic compounds; aromatic alcohols; ammonium compounds or salts thereof; boron-containing compounds; 5 sulfonic acids or salts thereof; sulfinic acids or salts thereof; phosphorus-containing compounds; acid halides; 10 chloroformates; acid gases; acid anhydrides; inorganic acids or salts; and polymers having functional groups of at least one of the preceding members. 15

> 43. The composition of claim 29, wherein the pH modifier comprises at least one member selected from the group consisting of: glycine; alanine; proline; lysine; glutaric acid; D-galacturonic acid; succinic acid; lactic acid; glycolic acid; poly(acrylic acid); sodium acetate; succinic anhydride; diglycolic anhydride; anhydride; maleic anhydride; lactide; diethyl oxalate; Meldrum's acid; diethyl carbonate; dipropyl carbonate; diethyl pyrocarbonate; diallyl pyrocarbonate; di-tertbutyl dicarbonate; ascorbic acid; catechin; chloride; D-glucosamine hydrochloride; 4-hydroxyephedrine hydrochloride; boric acid; nitric acid; hydrochloric acid; sulfuric acid; ethanesulfonic acid; p-toluenesulfonic acid; 2-aminoethylphosphoric acid; methylphosphonic acid; dimethylphosphinic acid; and methyl chloroformate.

44. The composition of claim 29, wherein the pH modifier is a chemically protected base or a base or anhydrous precursor thereof.

45. The composition of claim 29, wherein the pH modifier comprises at least one member selected from the group consisting of:

hydroxides; alkoxides;

20

25

30

- 31 -

basic carbonates;

nitrogen-containing compounds;

amines;

alkaloids;

5 hydrides;

organolithium compounds;

Grignard reagents;

carbanions; and

polymers having functional groups of at least one of the preceding members.

46. The composition of claim 29, wherein the pH modifier comprises at least one member selected from the group consisting of: sodium hydroxide; potassium hydroxide; sodium methoxide; potassium t-butoxide; sodium carbonate; dibutylamine; tryptamine; sodium hydride; calcium hydride; butyllithium; and ethylmagnesium bromide.

- 47. The composition of claim 29, wherein the polymer biodegrades slowly or not at all at physiologic pH.
- 48. The composition of claim 47, wherein the polymer comprises at least one member selected from the group consisting of butyl alpha-cyanoacrylate and octyl alpha-cyanoacrylate.
 - 49. The composition of claim 47, comprising an effective amount of at one effective to reduce active biocompatible agent formaldehyde concentration levels.
 - 50. A surgical adhesive comprising the composition of claim 29.
- 30 51. A surgical sealant comprising the composition of claim 29.
 - 52. A method of joining together two surfaces in vivo, at least one of the surfaces being body tissue, which comprises applying to at least one of the surfaces a composition of claim 29 and maintaining the surfaces in contact until said composition polymerizes in situ.
 - 53. A biocompatible composition, comprising:

35

10

15

- (a) a polymer whose in vivo biodegradation produces formaldehyde; and
- (b) an effective amount of at least one biocompatible pH modifier effective to modify the pH of an immediate environment of the biocompatible composition in situ to a pH range at which the polymer's in situ biodegradation proceeds at a rate different than at physiologic pH.
- 54. The composition of claim 53, wherein the pH modifier is an acid or anhydrous precursor thereof or a chemically protected acid.
- 55. The composition of claim 53, wherein the pH modifier is a base or anhydrous precursor thereof or a chemically protected base.
- 56. The composition of claim 53, wherein the polymer is formed in vivo.
- 57. The composition of claim 53, wherein the polymer is formed ex vivo.
- 58. The composition of claim 53, wherein the polymer can biodegrade at a physiologic pH and the pH modifier is an acid or anhydrous precursor thereof or a chemically protected acid.
- 59. The composition of claim 53, wherein the polymer biodegrades slowly or not at all at physiologic pH and the pH modifier is a base or anhydrous precursor thereof or a chemically protected base.
- 60. The composition of claim 53, further comprising at least one biocompatible agent effective to reduce active formaldehyde concentration levels.
- 30 61. A delivery system for a therapeutic agent, comprising:
 - (a) a suitable carrier or matrix comprisingthe composition of claim 53; and
 - (b) a therapeutic agent deposited on or within the carrier or matrix.
 - 62. A surgical implant molded from the composition of claim 53.

5

10

15

20

- 33 -

63. The implant of claim 62, comprising a prosthetic device.

64. The implant of claim 63, comprising a tissue fastener.

International application No. PCT/US95/08162

A COLOR OF COMPLETE MATTER						
IPC(6) US CL	SSIFICATION OF SUBJECT MATTER: C09J 4/00: 156/331.2	محمد د مد د و و د				
According to International Patent Classification (IPC) or to both national classification and IPC						
	DS SEARCHED	hy classification symbols				
	ocumentation searched (classification system followed					
ł	156/331.2; 427/2.1; 526/298; 523/118; 604/214; 424					
Documentat	tion searched other than minimum documentation to the	extent that such documents are included	in the fields searched			
Electronic d	lata base consulted during the international search (nat	me of data base and, where practicable	, search terms used)			
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT	<u> </u>				
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.			
Υ	US,A, 3,559,652 (BANITT ET AL)	02 February 1971	1-7, 9-10, 12-			
	See Abstract, col. 1 lines 3-4 and	15-69, col 2 line 67 thru	19, 22-35, 38-			
	col. 3 line 73, col. 4 lines 10-26		40, 44-53, 55- 57, 59-61			
			,			
Υ	US,A, 3,527,841 (WICKER ET AL	08 September 1970	1-7, 9-10, 12-			
	See Abstract, col. 1 lines 25-35, co	ol 2 lines 4-13 and 40-72,	19, 22-35, 38-			
	col. 3 lines 1-21		40, 44-53, 55-			
	•		57, 59-61			
Y	US.A, 3,483,870 (COOVER ET AL	.) 16 December 1969	1-7, 9-10, 12-			
•	See Abstract, col. 1 lines 66-72,		19, 22-35, 38-			
	lines 10-13 and 53-75, col. 5 lines 27-48 40, 44-53, 55					
	57, 59-61					
	·					
			1			
<u> </u>						
1 -	Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the "A" document defining the general state of the art which is not considered principle or theory underlying the invention					
to	be of particular relevance	"Y" document of particular relevance; ti	he claimed invention cannot be			
·L· do	rlier document published on or after the international filing date cument which may throw doubts on priority claim(s) or which is	considered novel or cannot be consid when the document is taken alone				
cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is						
O document referring to an oral disclosure, use, exhibition or other means combined with one or more other such documents, such combination being obvious to a person skilled in the art						
P document published prior to the international filing date but later than *&* document member of the same patent family the priority date claimed						
Date of the actual completion of the international search Date of mailing of the international search report						
04 AUGUST 1995 0 20CT1995						
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Authorized officer						
Box PCT Washington, D.C. 20231 J. J. GALLAGHER						
Facsimile N		Telephone No. (703) 308-1971	/			

Form PCT/ISA/210 (second sheet)(July 1992)★

INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/08162

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	US,A, 5,302,628 (LIM ET AL) 12 April 1994 See Abstract, col. 4 lines 25-33 and 44-55	1-7, 9-10, 12-19, 22-35, 38-40, 44-53, 55-57, 59-61
Y	US,A, 4,479,933 (AKIMOVA ET AL) 30 October 1984 See col. 1 lines 15-49	1-7, 9-10, 12-19, 22-35, 38-40, 44-53, 55-57, 59-61
Y	US,A, 4,196,271 (YAMADA ET AL) 01 April 1980 See Abstract, col. 1 lines 46-57, col. 2 lines 65 thru col. 3 line 36	1-9, 11, 14-21, 24-26, 29-34, 36- 43, 47-54, 56-68, 60-61

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

(OTAZU) NNAJB 39A9 ZIHT