Graph Matching - Algorithms

Wolf-Dieter Vogl, 0626355

Pattern Recognition and Image Processing Group (PRIP)
Institute of Computer Graphics and Algorithms
University Of Technology, Vienna

May 11, 2011

Overview

Goals

Exact Matching: Find an edge preserving mapping.

Inexact Matching: Find a mapping that minimizes matching costs.

Exact Matching Complexity

Graph Isomorphism: In NP, but unknown if P or NP complete.

Subgraph Isomorphism, Monomorphism, MCS...: NP complete.

There exists algorithms for special graphs with polynomial runtime.

Tree-Search approach

Basic Idea

- Iteratively expand partial match by adding new pairs of matched nodes.
- The pair is chosen using some necessary conditions.
- Prune unfruitful search paths.
- If no further vertex pairs may be added due to constraint, undo last additions (backtracking)
- Algorithm stops if match has been found or all matchings that satisfy the constraints has been tried.

Ullmann's Algorithm [J.R. Ullmann 1976]

- Tree-Search algorithm (Depth-Search-First)
- Uses adjacency matrices and additional constraints for matching and pruning.
- Application for graph isomorphism, subgraph isomorphism and monomorphism, also for MCS problem

- Given: Two graphs $G_A(V_A, E_A)$ and $G_B(V_B, E_B)$ and their adjacency matrices: A and B
- Idea: $n = |V_a|$, $m = |V_b|$, $n \times m$ permutation matrix M with following form:
 - M contains only '0' and '1'
 - Exact one '1' in each row
 - Not more than one '1' in each column
- Permutate adjacency matrix B by multiplying it with M, and compare adjacency.

Ullmann's Algorithm

• $M \times B$: Move row j to row $i \ \forall M_{ij} = 1$

- $(MB)^T$: Move column j to column i
- $M(MB)^T$: Move column j to column i and row j to row i

Ullmann's Algorithm

Μ

Ullmann's Algorithm

0	1	0	0
1	0	1	1
0	1	0	0
0	1	0	0
		_	

$$B=B^T$$

M

$$M(MB)^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \times \left(\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \right)^{T}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix} = C$$

Ullmann's Algorithm

Creating pairs of nodes by exchanging rows and columns (renaming).

Adjacency condition

Let $C = M(MB)^T$,

A is a (subgraph-) isomorphism iff

$$A_{ij} = 1 \Rightarrow C_{ij} = 1 \forall i, j$$

How do we get M?

Ullmann's Algorithm

- Build Startmatrix M^0 by setting all values to 1 (allow all permutations)
- Set values to 0 for all M_{ij}^0 where $deg(B_j) < deg(A_i)$ (remove impossible permutations)

$$M_{ij}^0 = \left\{ egin{array}{ll} 1 & \emph{if} & deg(B_j) \geq deg(A_i) \\ 0 & \textrm{otherwise} \end{array} , orall i, j
ight.$$

Generate systematically permutation matrices M^d.

1	1	1	1
1	1	1	1
0	1	0	0

Exact Matching Ullmann's Algorithm V2

Refinement Procedure:

- For all neighbours in A there must be proper neighbours in B.
- Formally:

$$\forall k(A_{ik}=1\Rightarrow \exists p(M_{kp}B_{pj}=1))$$

• Set $M_{ij}^d = 0$ where conditions are not complied.

12 / 23

Tree-Search approaches

VF and VF2 algorithm

- Application for isomorphism and subgraph isomorphism
- VF algorithm defines a heuristic based on the analysis of the sets of nodes adjacent to the ones already considered in the partial mapping.

Group theory approach

McKay's Nauty

- Nauty No automorphisms, yes?
- Application for isomorphism only
- It uses the property that the canonical labeling for isomorph graphs is identical.
- It constructs the automorphism group of each of the input graphs and derives a canonical labeling

Reasons for using inexact matching

- Deformations in graphs (eg. noise, variability of patterns, nondeterministic elements...)
- Exact matching too expensive

How

- Relax constraints no edge preserving.
- Penalize graph differences.
- Find a mapping that minimizes matching costs.

Optimal and suboptimal inexact matching algorithms

Runtime

Optimal Inexact Matching: More expensive than exact algorithms.

Suboptimal Inexact Matching: Usually polynomial matching time.

Tree-Search approaches

Tree Search with Backtracking

- Search guided by cost function.
- Heuristic estimate matching cost for remaining nodes.
- Prune unfruitful paths.

Continuous optimization approaches

Continuous Optimization

- Idea:
 - Convert discrete optimization problem to a continuous, nonlinear optimization problem.
 - Use a nonlinear optimization algorithm.
 - Convert back to graph matching domain.
- Suboptimal Matching
- Polynomial Runtime

Spectral methods

Spectral Methods

Uses property, that

- Eigenvalues and eigenvectors of adjacency matrix of a graph are invariant to node permutations.
- G_1 , G_2 isomorph \Rightarrow $EW(Adj(G_1)) = EW(Adj(G_2)) \land EV(Adj(G_1)) = EV(Adj(G_2))$

Recall

Literature

- D.Conte, Thirty Years Of Graph Matching in Pattern Recognition, International Journal of Pattern Recognition and Artificial Intelligence, Vol. 18, No. 3, p.265-298, (2004)
- Riesen K. Jiang X., Bunke H., Exact and Inexact Graph Matching: Methodology And Applications, Managing and Mining Graph Data, p.217-247, Springer Verlag (2010)

Thank you for your attention!

Questions?

