SID: 810100125

بخش کتبی:

MDP

(1

$$V_{1}((1,1)) = V_{1}((2,1)) = 0$$

$$Q = D, a = U$$

$$V_{1}((2,2)) = \max \left[\left[0.8 \times (0 + 0.9 \times 5) + 0 \right], \left[0.1 \times (0 + 0.9 \times 5) + 0 \right] \right]$$

$$= \max \left(3.6, 0.45 \right) = 3.6$$

$$V_{1}((1,2)) = \max \left[\left[0.8 \times (0 - 0.9 \times 5) + 0 \right], \left[0.1 \times (0 - 0.9 \times 5) \right], 0 \right]$$

$$= \max \left(-3.6, -0.45, 0, -0.45 \right) = 0$$

$$V_{2}((2,1)) = \max \left(0, 0.324, 0.324, 2.592 \right) = 2.592$$

$$V_{3}((1,1)) = \max \left(0, 0, 0, 0 \right) = 0$$

$$V_{3}((2,2)) = 3.924$$

$$V_{4}((1,2)) = 2.142$$

S	(1,1)	(1,2)	(1,3)	(2,1)	(2,2)	(2,3)
$\mathbf{v_0}$	0	0	-5	0	0	5
v ₁	0	0	-5	0	3.6	5
\mathbf{v}_2	0	2.142	-5	2.592	3.924	5

(2

S	(1,1)	(1,2)	(1,3)	(2,1)	(2,2)	(2,3)
$\pi^*(s)$	U	L	-	R	R	-

$$V((1,1)) = \frac{1}{N((1,1))} \sum_{i=1}^{N((0,1))} G_i = \frac{1}{3} (+5+5+5) = \frac{5}{3}$$

$$V((2,2)) = \frac{1}{2} (5+5) = \frac{5}{3}$$

4) با توجه به اینکه agent انتخاب کرده که همیشه به راست برود و فرمول TD-Learning که به شرح زیر است :

$$\alpha = 0.1$$
 $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha[R(s, \pi(s), s') + V^{\pi}(s')]$

مقادیر جدول بعد از هر iteration

S	(1,1)	(1,2)	(1,3)	(2,1)	(2,2)	(2,3)
v_0^{π}	0	0	-5	0	0	5
v_1^{π}	0	-0.5	-5	0	0.5	5
v_2^{π}	-0.05	-0.95	-5	0.05	0.95	5

Deep Q-Networks

از ترکیب شبکههای عصبی عمیق با Q-Learning استفاده کرده تا الگوهای پیچیدهتری را یاد بگیرد. در زیر مقایسه این مدل با Q-Table دیده میشود. معرفی شده توسط DeepMind در سال 2013

این شیوه به خصوص در محیطهایی با **تعداد حالات زیاد** کاربرد دارد

نكات مثبت DQN :

- مناسب برای محیطهایی با پیچیدگی زیاد (به دلیل کمک گرفتن از شبکههای عصبی عمیق)
 - توانایی جنرالیزیشن برای استفاده در حالتهایی که از قبل دیده نشده
 - کارایی بالاتر با نمونههای کمتر به دلیل استفاده از تکنیک Experience replay

محدودیتهای DQN:

- حساس به مقادیر هایپرپارامترها و در نتیجه نیاز به آزمون و خطا هنگام تمرین مدل
- عدم توانایی continual learning به صورت طبیعی (آموزش روی نمونههای به صورت لایو و real-time)
 - احتمال برآورد بیشازحد برای ضرایب به دلیل نحوه محاسبه Q-Value

	Q-learning	Deep Q-learning	Deep Q-network
Approach	Tabular learning	Function approximation	Function approximation
	using Q-table	with neural networks	with neural networks
Input	(state, action) pairs	Raw State input	Raw State input
Output	Q-values for each	Q-values for each	Q-values for each
	(state, action) pair	(state, action) pair	(state, action) pair
Training data	Q-table entries	Experience Replay buffer	Experience Replay buffer
Training time	Fast	Slow	Slow
	Limited by the	More complex	More complex
Complexity	number of states	due to the use of	due to the use of
	and actions	neural networks	neural networks
Generalization	Limited to states	Can generalize to	Can generalize to
	in Q-table	unseen states	unseen states
Scalability	Struggles with large	Handles large	Handles large
	state and action spaces	spaces well	spaces well
	Prone to	More stable than	More stable than
Stability	overfitting	Q-learning, but can	Q-learning and
		still be unstable	deep Q-learning

بخش عملی:

هایپرپارامتر های استفاده شده

P-Table در هنگام آپدیت Q-Value تاثیر هر اکشن جدید و نتایج آن بر تغییر مقادیر : Learning Rate

تاهش/افزایش تاثیر اکشنهای قدیمیتر نسبت به اکشنهای جدیدتر در یک دنباله از اتفاقات : Discount Factor

هنگام آپدیت Q-Table

Exploration : تنظیم نسـبت Exploration در برابر Exploitation (گشـتن به دنبال راه جدید یا تکیه بر بهترین

اکشنی که قبلا پیدا کردیم)

Epsilon Decay : تنظیم میزان افت Epsilon بعد از هر Episode چون بهتر اسـت که در ابتدای آموزش بیشـتر به

دنبال Exploration باشیم

Min Epsilon : کمترین میزان قابل قبول Epsilon که اگر در نتیجه Decay مقدار آن کمتر شــود، به جای آن این

مقدار قرار میگیرد تا هیچوقت کاملا 0 نشود (یکی از راههای جلوگیری از گیرکردن در Loop)

: Observation Space

بُعد اول : 8 مقدار – نشان دهنده مکان snack نسبت به سر مار

بعد دوم : 16 مقدار – نشان دهنده وجود خطر در 4 جهتی که سر میتواند به آن سو حرکت کند (در هر جهتی خط

هست یا نیست یس در کل $2^4 = 16$ حالت

: Rewards

خروج از برد / ضربه به خود / ضربه به بدن دیگری / ضربه به سر دیگری وقتی خودش کوتاهتر	-100
رسیدن به <i>snack</i> (متغیر از مدل به مدل دیگر)	(40, 50, 60)
ضربه به سر دیگری با طول برابر (خاتمه بدون برنده)	(0, -1, +1)
ضربه به سر دیگری وقتی خودش بزرگتر	(100, 10, 5)

تحلیل و نمودار مدل پنجم از بین شش مدل ضمیمه شده :

ميزان Reward دريافتي هر مار (مدل يكسان) بر حسب Reward

همانطور که مشاهده میشود در ابتدا به دلیل *Epsilon* بسیار زیاد مدل صرفا به صورت تصادفی درحال کشف محیط اطرافش است و مسیریابی واقعی انجام نمیدهد. اما از جایی که *Epsilon* به کمتر از 0.5 میل پیدا میکند تازه نمودار ما معنیدار میشود.

همچنین مقدار اختلاف کلی بین دقت دو مار دیده میشود با وجود اینکه هردو از یک مدل پیروی میکنند.

: Observation Space

