

FACULTAD DE CS. EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPTO DE MATEMÁTICA. SEGUNDO CUATRIMESTRE DE 2015 CÁLCULO VARIACIONES PRÁCTICA 4: FUNCIONALES SOBRE ESPACIOS DE BANACH.

Ejercicio 1 Sea X un espacio de Banach e $I: X \to (-\infty, \infty]$ una función convexa y acotada por superiormente en un entorno del punto $a \in X$. Entonces I es continua en a.

Ejercicio 2 Sea X un espacio de Banach. Una funcional $I: X \to (-\infty, \infty]$ se llama *estrictamente convexa* si

$$I(\lambda x + (1 - \lambda)y) \le \lambda I(x) + (1 - \lambda)I(y), \quad \forall \lambda \in (0, 1) \forall x, y \in X.$$

Demostrar que una función extrictamente convexa alcanza a lo sumo un punto mínimo.

Ejercicio 3 Sea X un espacio de Banach e $I: X \to (-\infty, \infty]$ una función convexa y semicontinua inferiormente en la topología fuerte. Entonces I es coercitiva ($I(u) \to \infty$ cuando $||u|| \to \infty$) si y sólo si existen $\alpha > 0$ y $\beta \ge 0$ tales que

$$I(u) \ge \alpha ||u|| - \beta.$$

Ejercicio 4 Sea X un espacio de topológico.

- a. Si $I_1, I_2: X \to (-\infty, \infty]$ son convexas, o s.c.i., o s.s.c.i. y $\alpha \geq 0$ entonces $I_1 + I_2$ y αI_1 son convexas, o s.c.i., o s.s.c.i. respectivamente.
- b. Si $\{I_{\lambda}\}_{{\lambda}\in\Lambda}$ es un familía, posiblemente infinita, de funciones convexas, o s.c.i, o s.s.c.i. entonces

$$\sup_{\lambda \in \Lambda} I_{\lambda},$$

es convexa, o s.c.i., o s.s.c.i. respectivamente.

Ejercicio 5 Sea X un espacio topológico. Una función $I: X \to (-\infty, \infty]$ es s.c.i si y sólo si $\{u \in X | I(u) \le \alpha\}$ es cerrado para todo $\alpha \in \mathbb{R}$.

Ejercicio 6 Si $I:X\to (-\infty,\infty]$ es convexa, entonces $\{u\in X|I(u)\le \alpha\}$ es convexo para todo $\alpha\in\mathbb{R}$. Demostrar con un ejemplo que el recíproco no es en general cierto.

Ejercicio 7 Si $I: X \to (-\infty, \infty]$ es convexa, o si es s.c.i., entonces el conjunto donde I alcanza un mínimo es convexo, respectivamente cerrado, para todo $\alpha \in \mathbb{R}$.

Ejercicio 8 Si $I:X\to (-\infty,\infty]$ es convexa, entonces un mínimo local es mínimo global.

Ejercicio 9 Sean X,Y espacios de Banach y $F:X\to Y$ una función. Se dice que F es diferenciable según Fréchet en $u\in X$ si existe un operador lineal acotado $dF(u):X\to Y$ tal que

$$\lim_{\|v\|_X \to 0} \frac{\|F(u+v) - F(u) - dF(u)(v)\|_Y}{\|v\|_X} = 0.$$

Demostrar que si $F:X\to\mathbb{R}$ es diferenciable Fréchet entonces es diferenciable Gâteaux. Demostrar, con un ejemplo de una $F:\mathbb{R}^2\to\mathbb{R}$, que el recíproco no es cierto.