

NYC MOTOR VEHICLE COLLISION ANALYTICS AND PREDICTIVE MODELING

BIA-678-WS Prof. Venu Guntupalli

TEAM A

Sneha Dharne Gunik Luthra Neha Umathe

Table Of Contents

- **1.** Project Overview
- 2. Problem Statement & Objective
- 3. Methodology
 - a. Dataset
 - **b.** Data Preparation
 - i. Handle Null Values
 - ii. Feature Selection
 - iii. Data Joining
 - c. Exploratory Data Analysis
 - d. Data Modelling: Spatial Clustering
 - e. Data Modelling: Risk Level Prediction
 - i. Scaling

Project Overview

- Vehicle collisions in NYC represent a significant aspect of urban transportation dynamics, impacting both public safety and infrastructure management.
- With its densely populated streets and bustling traffic, NYC experiences a high frequency of motor vehicle collisions, ranging from minor to severe accidents resulting in injuries or fatalities.
- The consequences of these collisions extend beyond immediate injuries or damage, affecting traffic flow, emergency response services, and community well-being.
- Understanding the patterns and factors contributing to vehicle collisions in NYC is crucial for implementing effective safety measures, improving transportation infrastructure, and ultimately enhancing the quality of life for residents and visitors alike.

Objective & Problem Statements

New York City experiences a high volume of motor vehicle collisions. Today, we present a big data project leveraging NYC Open Data to analyze these collisions.

This project dives into three key datasets: collisions, vehicles, and people involved. By analyzing these interconnected datasets, we aim to gain insights into various aspects of NYC traffic accidents, including:

- Accident Patterns (Factors): Highlighting trends in accident times, vehicle types involved, pre-accident actions, location of the victim, contributing factors, etc
- Impact Analysis (Consequences): Understanding the types of public property damaged and harm to human life
- Spatial Distribution (Location Clustering): Examining collision distribution across boroughs, identifying potential hotspots and assigning weights.
- Predictive Modeling: Developing models to predict human life loss and injuries in high-risk areas.
 - This project aims to provide valuable data-driven insights to improve road safety and inform traffic management strategies in New York City.

Methodology

CRASHES.CSV

Data till: April 4 2024

COLUMNS: 29

ROWS: 2077590

VEHICLES.CSV

Data till: April 4 2024

COLUMNS: 25

ROWS: 4169890

PEOPLE.CSV

Data till: April 4 2024

COLUMNS: 21

ROWS: 5326831

CRASHES.CSV:

- |-- CRASH DATE: string (nullable = true)
- |-- CRASH TIME: string (nullable = true)
- |-- BOROUGH: string (nullable = true)
- |-- ZIP CODE: string (nullable = true)
- |-- LATITUDE: string (nullable = true)
- |-- LONGITUDE: string (nullable = true)
- |-- LOCATION: string (nullable = true)
- |-- ON STREET NAME: string (nullable = true)
- |-- CROSS STREET NAME: string (nullable = true)
- |-- OFF STREET NAME: string (nullable = true)
- |-- NUMBER OF PERSONS INJURED: string (nullable = true)
- |-- NUMBER OF PERSONS KILLED: string (nullable = true)
- |-- NUMBER OF PEDESTRIANS INJURED: string (nullable = true)
- |-- NUMBER OF PEDESTRIANS KILLED: string (nullable = true)
- |-- NUMBER OF CYCLIST INJURED: string (nullable = true)
- |-- NUMBER OF CYCLIST KILLED: string (nullable = true)
- |-- NUMBER OF MOTORIST INJURED: string (nullable = true)
- |-- NUMBER OF MOTORIST KILLED: string (nullable = true)

- |-- CONTRIBUTING FACTOR VEHICLE 1: string (nullable = true)
- |-- CONTRIBUTING FACTOR VEHICLE 2: string (nullable = true)
- |-- CONTRIBUTING FACTOR VEHICLE 3: string (nullable = true)
- |-- CONTRIBUTING FACTOR VEHICLE 4: string (nullable = true)
- |-- CONTRIBUTING FACTOR VEHICLE 5: string (nullable = true)
- |-- COLLISION_ID: string (nullable = true)
- |-- VEHICLE TYPE CODE 1: string (nullable = true)
- |-- VEHICLE TYPE CODE 2: string (nullable = true)
- |-- VEHICLE TYPE CODE 3: string (nullable = true)
- |-- VEHICLE TYPE CODE 4: string (nullable = true)
- |-- VEHICLE TYPE CODE 5: string (nullable = true)

VEHICLES.CSV:

- |-- UNIQUE_ID: string (nullable = true)
- |-- COLLISION ID: string (nullable = true)
- |-- CRASH_DATE: string (nullable = true)
- |-- CRASH_TIME: string (nullable = true)
- |-- VEHICLE ID: string (nullable = true)
- |-- STATE_REGISTRATION: string (nullable = true)
- |-- VEHICLE_TYPE: string (nullable = true)
- |-- VEHICLE_MAKE: string (nullable = true)
- |-- VEHICLE MODEL: string (nullable = true)
- |-- VEHICLE YEAR: string (nullable = true)
- |-- TRAVEL DIRECTION: string (nullable = true)
- |-- VEHICLE OCCUPANTS: string (nullable = true)
- |-- DRIVER SEX: string (nullable = true)

- |-- DRIVER_LICENSE_STATUS: string (nullable = true)
- |-- DRIVER_LICENSE_JURISDICTION: string (nullable = true)
- |-- PRE CRASH: string (nullable = true)
- |-- POINT OF IMPACT: string (nullable = true)
- |-- VEHICLE_DAMAGE: string (nullable = true)
- |-- VEHICLE DAMAGE 1: string (nullable = true)
- |-- VEHICLE DAMAGE 2: string (nullable = true)
- |-- VEHICLE DAMAGE 3: string (nullable = true)
- |-- PUBLIC_PROPERTY_DAMAGE: string (nullable = true)
- |-- PUBLIC_PROPERTY_DAMAGE_TYPE: string (nullable = true)
- |-- CONTRIBUTING_FACTOR_1: string (nullable = true)
- |-- CONTRIBUTING FACTOR 2: string (nullable = true

PERSONS.CSV:

- |-- UNIQUE_ID: string (nullable = true)
- |-- COLLISION_ID: string (nullable = true)
- |-- CRASH_DATE: string (nullable = true)
- |-- CRASH_TIME: string (nullable = true)
- |-- PERSON_ID: string (nullable = true)
- |-- PERSON_TYPE: string (nullable = true)
- -- PERSON_INJURY: string (nullable = true)
- |-- VEHICLE_ID: string (nullable = true)
- |-- PERSON_AGE: string (nullable = true)
- |-- EJECTION: string (nullable = true)
- |-- EMOTIONAL STATUS: string (nullable = true)
- |-- BODILY INJURY: string (nullable = true)
- |-- POSITION_IN_VEHICLE: string (nullable = true)

- |-- SAFETY_EQUIPMENT: string (nullable = true)
- |-- PED_LOCATION: string (nullable = true)
- |-- PED_ACTION: string (nullable = true)
- |-- COMPLAINT: string (nullable = true)
- |-- PED_ROLE: string (nullable = true)
- |-- CONTRIBUTING FACTOR 1: string (nullable = true)
- |-- CONTRIBUTING FACTOR 2: string (nullable = true)
- |-- PERSON SEX: string (nullable = true)

Dataset - ER Diagram

DATA PREPARATION

- Handling Null Values:
 - For the initial EDA, checked for Null values
 - As all the columns were strings, converted to the required format
 - Removed the null values where most of the data was null
 - Labelled Null as unknown or unspecified in CONTRIBUTING FACTOR, PRE_CRASH, VEHICLE_TYPE.
- Data Joined:
 - Left Joined the tables Vehicles and Crashes on vehicles as we took Vehicle as the center table.
- Feature Selection:
 - Selected the features that showed trend and information for the predictive modelling.
 - Based on the EDA, we transformed the columns with many values into buckets of values, with buckets of similar types.

11

The heatmap shows the distribution of crashes on hours of day with respect to crash year

The highest number of accidents take place in daytime during 2013 to 2019

STEVENS INSTITUTE of TECHNOLOGY

The line graph shows the number of collisions vs hour of the day.

- We notice the uneven distribution.
- Most collisions happen during 12:00 to 18:00.

 The Piechart shows the distribution of crashes by time interval of a day

 The highest number of accidents take place during 12:00 and 18:00

The Bar Graph shows crash distribution by month

We notice that the distribution is almost equal for every month, hence we decided not to take this as a feature.

15

 The Bar Graph shows Proportion of Total Persons injured by Borough

Brooklyn has highest injuries while
 Staten Island has the lowest

- The Bar Graph shows Proportion of Total Persons killed by Borough
- Brooklyn has highest injuries while
 Staten Island has the lowest

- The Bar Graph shows
 Proportion of Total Persons
 injured by Person_type
 - Motorist has highest injuries while cyclist has the lowest

18

- The Bar Graph shows Proportion of Total Persons killed by Person_type
- Predestrians has highest fatalities
 while cyclist has the lowest

Observations:

The Bar Graph shows precrash action count

- Crashes.csv ->
- LOCATION, ON STREET NAME, CROSS STREET NAME, OFF STREET NAME, COLLISION_ID
- Select rows where at least one of (LOCATION, ON STREET NAME, CROSS STREET NAME, OFF STREET NAME) is not null
- NULL Values of LOCATION -
 - -> mode of rows with the same ON STREET NAME, CROSS STREET NAME, OFF STREET NAME
 - ->mode of rows with the same ON STREET NAME, CROSS STREET NAME
 - ->mode of rows with the same ON STREET NAME
- LOCATION -> Latitude , Longitude
- Latitude = Latitude * 100, Longitude = Longitude *100 [for better expressivity in Euclidean distance]

PROXIMITY

SEVERITY SCORE

Severity Score:

Ratio of

fatal/ high risk incidents of the cluster : overall fatal / high risk incidents

FEATURES FOR PREDICTIVE MODEL

	LOCATION	COLLISION_ID	NEAREST_HOTSPOT -	SEVERITY_SCORE -	PROXIMITY
1	(40.6881686, -73.8099339)	1000015	9	0	1.909677457068402
2	(40.847028, -73.8980624)	100010	1	0.00012095206554450028	0.47890452947524126
3	(40.847028, -73.8980624)	100010	1	0.00012095206554450028	0.47890452947524126
4	(40.8220183, -73.9536697)	1000224	1	0.00012095206554450028	6.247394891992881

- Using the features derived from the above spatial model
- LOCATION, COLLISION_ID, NEAREST_HOTSPOT, SEVERITY_SCORE, PROXIMITY
- Adding more features to the above features such as VEHICLE_TYPE_BUCKET, CONTRIBUTING_FACTOR_1, CONTRIBUTING_FACTOR_2, PRE_CRASH_BUCKET, TIME_INTERVAL

27

We decided to take time interval as a feature rather than just the hours.

```
def categorize_hours(hour):
    if hour >= 0 and hour < 6:
        return "0-6"
    elif hour >= 6 and hour < 12:
        return "6-12"
    elif hour >= 12 and hour < 18:
        return "12-18"
    else:
        return "18-24"

df5 = df4.withColumn("TIME_INTERVAL", F.udf(categorize_hours)(df4["CRASH_HOUR"]))</pre>
```

28

As Pre_crash had more than 20 values, we had to get it down to 6.

STEVENS INSTITUTE of TECHNOLOGY

CONTRIBUTING FACTORS had more than 70 values. We reduced it to 10 from pyspark.sql.functions import explode, array from pyspark.sql.functions import explode, array, col stacked factors = df c1.select(explode(array("CONTRIBUTING FACTOR 1", "CONTRIBUTING FACTOR 2")).alias("factors")) # Count occurrences of each factor factor_counts = stacked_factors.groupBy("factors").count() from pyspark.sql.functions import when df_c1 = df_c1.withColumn("CONTRIBUTING_FACTOR_1", when(df_c1["CONTRIBUTING_FACTOR_1"] == "Driver Inattention/Distraction", "Driver Behavior") .when(df_c1["CONTRIBUTING_FACTOR_1"] == "Following Too Closely", "Driver Behavior") .when(df c1["CONTRIBUTING FACTOR 1"] == "Failure to Keep Right", "Driver Behavior") .when(df c1["CONTRIBUTING FACTOR 1"] == "Driver Inexperience", "Driver Behavior") .when(df_c1["CONTRIBUTING_FACTOR_1"] == "Aggressive Driving/Road Rage", "Driver Behavior") .when(df_c1["CONTRIBUTING_FACTOR_1"] == "Passing Too Closely", "Driver Behavior") .when(df c1["CONTRIBUTING FACTOR 1"] == "Failure to Yield Right-of-Way", "Driver Behavior") .when(df c1["CONTRIBUTING FACTOR 1"] == "Turning Improperly", "Driver Behavior") .otherwise(df c1["CONTRIBUTING FACTOR 1"]))

- FOR TARGET VARIABLE:
- Assigned FATAL LEVEL if number of people killed>0
- Assigned HIGH LEVEL if number of persons injured >0
- Assigned MEDIUM LEVEL if Vehicle_damage or Property Damage is Yes
- Assigned LOW otherwise

31

FINAL FEATURES

PROXIMITY NEAREST		EVERITY_SCORE VEHICLE_TYPE DRIVER_			CONTRIBUTING_FACTOR_1 CONTR	[10] [10] [10] [10] [10] [10] [10] [10]	
7.5581	8	0.12737693 passenger vehicle	unknown	18-24 Going Straight Ahead	Driver Behavior	Unspecified	LOW
7.5581	8	0.12737693 other	unknown	18-24 Going Straight Ahead	Unspecified	Unspecified	LOW
13.8304	7	0.13044104 passenger vehicle	unknown]	18-24 Turn	Substances	Unspecified	LOW
13.8304	7	0.13044104 passenger vehicle	unknown	18-24 Turn	Unspecified	Unspecified	LOW
7.8614	71	0.13044104 passenger vehicle	unknown	12-18 Going Straight Ahead	Unspecified	Unspecified	HIGH
7.8614	7	0.13044104 passenger vehicle	unknown	12-18 Stop/Park	Unspecified	Unspecified	HIGH
12.4281	7	0.13044104 station wagon	unknown	0-6 Going Straight Ahead	Substances	Unspecified	HIGH
7.1529	7	0.13044104 passenger vehicle	unknown	12-18 Turn	Unspecified	Unspecified	LOW
7.1529	71	0.13044104 station wagon	unknown	12-18 Going Straight Ahead	Unspecified	Unspecified	LOW
11.2255	81	0.12737693 station wagon	unknown	18-24 Going Straight Ahead	Unspecified	Unspecified	LOW
11.2255	8	0.12737693 station wagon	unknown	18-24 Going Straight Ahead	Driver Behavior	Unspecified	LOW
14.9756	7	0.13044104 unknown	unknown	12-18 Other	Unspecified	Unspecified	LOW
14.9756	7	0.13044104 passenger vehicle	unknown	12-18 Stop/Park	Unspecified	Unspecified	LOW
4115.245	31	0.21473023 passenger vehicle	unknown]	18-24 Maneuver	Unspecified	Unspecified	LOW

PIPELINE FOR MODELLING

- Used STRINGINDEXER to code RISK_LEVEL as LABEL
- Divided the features into CATEGORICAL and NUMERIC
- Applied Standard Scaler to the Numeric Values using VectorAssembler
- Applied ONE HOT ENCODING to all the Categorical values
- Created a Vector Assembler for all the Inputs
- Applied the Models

33

RISK LEVEL PREDICTION

Main objective is to classify demand at every location in New York City.

Models

Logistic Regression

Random Forest

Decision Tree

Model Evaluation

Model	Accuracy	F1 Score	
Logistic Regression	0.716055	0.81752	
Decision Tree Classifier	0.71856	0.81787	
Random Forest Classifier	0.71663	0.81659	

STEVENS INSTITUTE of TECHNOLOGY

SCALE UP

RANDOM FOREST 50% data

- Time taken: 418.96330547332764 seconds
- Accuracy: 0.7169191661486793
- Random Forest Precision: 0.7565467697308833
- Random Forest Recall: 0.8865177491392947
- Random Forest F1 Score: 0.8163917262136676

RANDOM FOREST 75% data

- Time taken: 261.78963923454285 seconds
- Accuracy: 0.692088761891803
- Random Forest Precision: 0.6929195701214325
- Random Forest Recall: 0.923536800967712
- Random Forest F1 Score: 0.7917772908237417

RANDOM FOREST 100% data

- Time taken: 237.73797464370728 seconds
- Accuracy: 0.7166315672285669
- Random Forest Precision: 0.7538214711064303
- Random Forest Recall: 0.8907834744579882
- Random Forest F1 Score: 0.8165994039653894

LOGISTIC REGRESSION 50% data

- Time taken: 297.61940908432007 seconds
- Logistic Regression Accuracy: 0.7156399179054552
- Logistic Regression Precision: 0.7724335054004188
- Logistic Regression Recall: 0.8667506048199497
- Logistic Regression F1 Score: 0.8168785968758563

LOGISTIC REGRESSION 75% data

- Time taken: 282.52716064453125 seconds
- Logistic Regression Accuracy: 0.716267687591292
- Logistic Regression Precision: 0.7717953418241811
- Logistic Regression Recall: 0.8692280403833628
- Logistic Regression F1 Score: 0.8176192488474788

LOGISTIC REGRESSION 100% data

- Time taken: 289.8686454296112 seconds
- Logistic Regression Accuracy: 0.7160553385678399
- Logistic Regression Precision: 0.7723429623709727
- Logistic Regression Recall: 0.8683266260351726
- Logistic Regression F1 Score: 0.817527140622027

DECISION TREE 50% data

- Time taken: 294.0357983112335 seconds
- Decision Tree Accuracy: 0.7185344618756191
- Decision Tree Precision: 0.7712340342217665
- Decision Tree Recall: 0.8705132827765888
- Decision Tree F1 Score: 0.8178718661126274

DECISION TREE 75% data

- Time taken: 208.76186275482178 seconds
- Decision Tree Accuracy: 0.7185427084396367
- Decision Tree Precision: 0.7712340342217665
- Decision Tree Recall: 0.8705132827765888
- Decision Tree F1 Score: 0.8178718661126274

DECISION TREE 100% data

- Time taken: 180.8250503540039 seconds
- Decision Tree Accuracy: 0.7185643556701828
- Decision Tree Precision: 0.7712340342217665
- Decision Tree Recall: 0.8705132827765888
- Decision Tree F1 Score: 0.8178718661126274

SCALE OUT

RANDOM FOREST

Nodes = 1

- Time taken: 237.73797464370728 seconds
- Accuracy: 0.7166315672285669
- Random Forest Precision: 0.7538214711064303
- Random Forest Recall: 0.8907834744579882
- Random Forest F1 Score: 0.8165994039653894

Nodes = 2

- Time taken: 125.54719972610474 seconds
- Accuracy: 0.6924402716830516
- Random Forest Precision: 0.6927531992368112
- Random Forest Recall: 0.9227429747836605
- Random Forest F1 Score: 0.7913768638198863

Nodes = 3

- Time taken: 121.74665689468384 seconds
- Accuracy: 0.6924402716830516
- Random Forest Precision: 0.6927531992368112
- Random Forest Recall: 0.9227429747836605
- Random Forest F1 Score: 0.7913768638198863

LOGISTIC REGRESSION

Nodes = 1

Nodes = 2

Nodes = 3

- Time taken: 289.8686454296112 seconds
 - Logistic Regression Accuracy: 0.7160553385678399
 - Logistic Regression Precision: 0.7723429623709727
- Logistic Regression Recall: 0.8683266260351726
- Logistic Regression F1 Score: 0.817527140622027

- Time taken: 96.19693279266357 seconds
 - Logistic Regression Accuracy: 0.7160553385678399
 - Logistic Regression Precision: 0.7723429623709727
 - Logistic Regression Recall: 0.8683266260351726
 - Logistic Regression F1 Score: 0.817527140622027

- Time taken: 93.86266040802002 seconds
 - Logistic Regression Accuracy: 0.7160553385678
 - Logistic Regression Precision: 0.7723429623709
 - Logistic Regression Recall: 0.868326626035172
 - Logistic Regression F1 Score: 0.81752714062203

DECISION TREE

Nodes = 1

- Time taken: 180.8250503540039 seconds
- Decision Tree Accuracy: 0.7185643556701828
- Decision Tree Precision: 0.7712340342217665
- Decision Tree Recall: 0.8705132827765888
- Decision Tree F1 Score: 0.8178718661126274

Nodes = 2

- Time taken: 72.73840665817261 seconds
- Decision Tree Accuracy: 0.7185385851576279
- Decision Tree Precision: 0.7712340342217665
- Decision Tree Recall: 0.8705132827765888
- Decision Tree F1 Score: 0.8178718661126274

Nodes = 3

- Time taken: 70.05633354187012 seconds
- Decision Tree Accuracy: 0.7185385851576279
- Decision Tree Precision: 0.7712340342217665
- Decision Tree Recall: 0.8705132827765888
- Decision Tree F1 Score: 0.8178718661126274

THANK YOU!

Any questions?

50