Math 395

Homework 6

Due: 3/28/2024

Name: Avinash Iyer

Collaborators: Antonio Cabello, Nora Manukyan, Nate Hall

Problem 2

We will show that $\{1, \sqrt{5}, \sqrt{7}, \sqrt{35}\}$ is linearly independent.

Suppose $a + b\sqrt{5} + c\sqrt{7} + d\sqrt{35} = 0$. Then,

$$(a+d\sqrt{35})^2 = (b\sqrt{5}+c\sqrt{7})^2$$
$$a^2 + 35d^2 - 5b^2 - 7c^2 = 2\sqrt{35}(bc - ad).$$

Since $2\sqrt{35} \notin \mathbb{Q}$ and $a, b, c, d \in \mathbb{Q}$, this equation is only true if bc - ad = 0, so bc = ad.

Case 1: Suppose d = 0 and a = 0. Then,

$$7c^2 + 5b^2 = 0$$
,

which is only true if b = c = 0.

Case 2: Suppose d = 0 and a is not necessarily equal to 0. Then, it must be the case that either b or c is equal to 0.

If b = c = 0, then we have $a^2 = 0$, so a = 0.

If b = 0 with c not necessarily equal to 0, we have

$$a^{2} - 7c^{2} = 0$$
$$(a - c\sqrt{7})(a + c\sqrt{7}) = 0$$

meaning $a=c\sqrt{7}$ or $a=-c\sqrt{7}$. Since $a\in\mathbb{Q}$ and $c\sqrt{7}\notin\mathbb{Q}$, this can only be the case if a=c=0.

If c = 0 with b not necessarily equal to 0, we have

$$a^{2} - 5b^{2} = 0$$
$$(a - b\sqrt{5})(a + b\sqrt{5}) = 0$$

meaning $a=b\sqrt{5}$ or $a=-b\sqrt{5}$. Since $a\in\mathbb{Q}$ and $b\sqrt{5}\notin\mathbb{Q}$, this can only be the case if a=b=0.

Case 3: Suppose a = 0 and d is not necessarily equal to 0. Then, it must be the case that either b or c is equal to 0.

If b = c = 0, we have $35d^2 = 0$, so d = 0.

If b = 0 with c not necessarily equal to 0, we have

$$35d^{2} - 7c^{2} = 0$$
$$7(5d^{2} - c^{2}) = 0$$
$$7(d\sqrt{5} - c)(d\sqrt{5} + c) = 0$$

meaning $d\sqrt{5}=c$ or $-d\sqrt{5}=c$. Since $c\in\mathbb{Q}$ and $d\sqrt{5}\notin\mathbb{Q}$, this can only be the case if d=c=0.

If c = 0 with b not necessarily equal to 0, we have

$$35d^{2} - 5b^{2} = 0$$
$$5(7d^{2} - b^{2}) = 0$$
$$5(d\sqrt{7} - b)(d\sqrt{7} + b) = 0$$

meaning $d\sqrt{7}=b$ or $-d\sqrt{7}=b$. Since $b\in\mathbb{Q}$ and $d\sqrt{7}\notin\mathbb{Q}$, this can only be the case if d=b=0.

Case 4: Suppose toward contradiction that $a \neq 0$ and $d \neq 0$. Then, $a = \frac{bc}{d}$. Substituting, we find

$$\left(\frac{bc}{d}\right)^2 + 35d^2 - 5b^2 - 7c^2 = 0$$

$$b^2c^2 + 35d^4 - 5b^2d^2 - 7c^2d^2 = 0$$

$$b^2(c^2 - 5d^2) - 7d^2(c^2 - 5d^2) = 0$$

$$(b - d\sqrt{7})(b + d\sqrt{7})(c - d\sqrt{5})(c + d\sqrt{5}) = 0$$

meaning $b=\pm d\sqrt{7}$ or $c=\pm d\sqrt{5}$. Since $d\sqrt{7}$, $d\sqrt{5}\notin\mathbb{Q}$, and $b,c\in\mathbb{Q}$, this is only the case if b=d=0 or c=d=0, which is a contradiction.

Problem 3

We will show that $\mathbb{Q}(\sqrt{5} + \sqrt{7}) = \mathbb{Q}(\sqrt{5}, \sqrt{7})$.

Clearly, $\mathbb{Q}(\sqrt{5}, \sqrt{7}) \subseteq \mathbb{Q}(\sqrt{5} + \sqrt{7})$. We need to show that $\sqrt{7}$ and $\sqrt{5}$ can be written as elements of $\mathbb{Q}(\sqrt{5} + \sqrt{7})$. By difference of squares, we have

$$\sqrt{7} - \sqrt{5} = \frac{2}{\left(\sqrt{7} + \sqrt{5}\right)},$$

meaning

$$\sqrt{7} = \frac{\left(\sqrt{7} + \sqrt{5}\right) + \frac{2}{\left(\sqrt{7} + \sqrt{5}\right)}}{2}$$

$$\sqrt{5} = \frac{\left(\sqrt{7} + \sqrt{5}\right) - \frac{2}{\left(\sqrt{7} + \sqrt{5}\right)}}{2}$$

$$\sqrt{35} = \frac{1}{2}\left(\sqrt{5} + \sqrt{7}\right)^{2} - 12$$

Thus, $\mathbb{Q}(\sqrt{5} + \sqrt{7}) \subseteq \mathbb{Q}(\sqrt{5}, \sqrt{7})$.

Problem 4

Let $F = \mathbb{Q}(\alpha_1, \dots, \alpha_n)$. Suppose $\alpha_i^2 \in \mathbb{Q}$ for all i. We will show that $\sqrt[3]{2} \notin F$.

If $\alpha_i^2 \in \mathbb{Q}$, then $\alpha_i \in \mathbb{Q}$ or $\alpha_i \notin \mathbb{Q}$. If $\alpha_i \in \mathbb{Q}$, then $[\mathbb{Q}(\alpha_i) : \mathbb{Q}] = 1$, and if $\alpha_i \notin \mathbb{Q}$, then $m_{\alpha_i,\mathbb{Q}}(x) = x^2 - \alpha_i^2$ is the unique monic irreducible polynomial over \mathbb{Q} , meaning $[\mathbb{Q}(\alpha_i) : \mathbb{Q}] = 2$. Thus,

$$[\mathbb{Q}(\alpha_1,\ldots,\alpha_n):\mathbb{Q}]=[\mathbb{Q}(\alpha_1,\ldots,\alpha_n):\mathbb{Q}(\alpha_1,\ldots,\alpha_{n-1})][\mathbb{Q}(\alpha_1,\ldots,\alpha_{n-1}):\mathbb{Q}],$$

meaning that, inductively, we have that $[\mathbb{Q}(\alpha_1,\ldots,\alpha_n):\mathbb{Q}]=2^k$ for some $k\in\mathbb{Z}_{\geq 0}$.

Suppose toward contradiction that $\sqrt[3]{2} \in \mathbb{Q}(\alpha_1, \ldots, \alpha_n)$. Then, since $m_{\sqrt[3]{2}, \mathbb{Q}}(x) = x^3 - 2$ (as it is irreducible by the Eisenstein criterion and monic, thus unique), we have that $[\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] = 3$. This implies that $3|2^k$ for some $k \in \mathbb{Z}_{>0}$, which is not possible. Thus, $\sqrt[3]{2} \notin \mathbb{Q}(\alpha_1, \ldots, \alpha_n)$.

Problem 5

We will show that x^3-2x-2 is irreducible over \mathbb{Q} , then compute $(1+\theta)(1+\theta+\theta^2)$ and $\frac{1+\theta}{1+\theta+\theta^2}$ in $\mathbb{Q}(\theta)$ for θ a root.

To start, we see that x^3-2x-2 is a monic polynomial where p=2, so by Eisenstein's criterion and Gauss's Lemma, x^3-2x-2 is irreducible over \mathbb{Q} . Thus, we have that elements of $\mathbb{Q}[x]/\langle x^3-2x-2\rangle=a\theta^2+b\theta+c$ for $a,b,c\in\mathbb{Q}$.

We have that $\theta^3 - 2\theta - 2 = 0$. So,

$$(1+\theta)(1+\theta+\theta^2) = 1 + 2\theta + 2\theta^2 + \theta^3$$

= 3 + 4\theta + 2\theta^2 \in \mathbb{Q}(\theta).

To find $\frac{1+\theta}{1+\theta+\theta^2}$, we find $\frac{1}{1+\theta+\theta^2}$ through the Euclidean algorithm and polynomial long division. Since $\gcd(1+x+x^2,x^3-2x-2)=1$ (as both are irreducible in $\mathbb{Q}[x]$ and neither is a multiple of the other), we have

$$x^{3} - 2x - 2 = (1 + x + x^{2})(x - 1) + (-2x - 1)$$
$$1 + x + x^{2} = (-2x - 1)\left(-\frac{1}{2}x - \frac{1}{4}\right) + \frac{3}{4}.$$

Multiplying backwards, we have

$$1 = \frac{4}{3} \left(1 + x + x^2 - \left(-\frac{1}{2}x - \frac{1}{4} \right) (-2x - 1) \right)$$

$$= \frac{4}{3} + \frac{4}{3}x + \frac{4}{3}x^2 - \frac{4}{3} \left(-\frac{1}{2}x - \frac{1}{4} \right) \left(x^3 - 2x - 2 - (x - 1)(x^2 + x + 1) \right)$$

$$= \left(\frac{2}{3}x + \frac{1}{3} \right) \left(x^3 - 2x - 2 \right) + \left(-\frac{2}{3}x^2 + \frac{1}{3}x + \frac{5}{3} \right) \left(x^2 + x + 1 \right).$$

In particular, by taking θ as a root of $x^3 - 2x - 1$, we have

$$1 = \left(\frac{2}{3}\theta + \frac{1}{3}\right) \left(\theta^3 - 2\theta - 2\right) + \left(-\frac{2}{3}\theta^2 + \frac{1}{3}\theta + \frac{5}{3}\right) \left(\theta^2 + \theta + 1\right)$$
$$= \left(-\frac{2}{3}\theta^2 + \frac{1}{3}\theta + \frac{5}{3}\right) \left(\theta^2 + \theta + 1\right),$$

SO

$$\frac{1}{1+\theta+\theta^2} = \left(-\frac{2}{3}\theta^2 + \frac{1}{3}\theta + \frac{5}{3}\right),\,$$

SO

$$\frac{1+\theta}{1+\theta+\theta^2} = (1+\theta)\left(-\frac{2}{3}\theta^2 + \frac{1}{3}\theta + \frac{5}{3}\right)$$
$$= \frac{5}{3} + 2\theta - \frac{1}{3}\theta^2 - \frac{2}{3}\theta^3$$
$$= \frac{5}{3} + 2\theta - \frac{1}{3}\theta^2 - \frac{2}{3}(2\theta+2)$$
$$= \frac{1}{3} + \frac{2}{3}\theta - \frac{1}{3}\theta^2.$$