3 Idiots' Approach for Display Advertising Challenge

YuChin Juan, Yong Zhuang, and Wei-Sheng Chin

NTU CSIE MLGroup

What This Competition Challenges Us?

Predict the click probabilities of impressions.

Dataset

Label	11	12		l13	C1	C2		C26
1	3	20		2741	68fd1e64	80e26c9b		4cf72387
0	7	91		1157	3516f6e6	cfc86806		796a1a2e
0	12	73		1844	05db9164	38a947a1		5d93f8ab
					:			
?	9	62	• • •	1457	68fd1e64	cfc86806	• • •	cf59444f

```
#Train: \approx 45 \mathrm{M} #Test: \approx 6 \mathrm{M} #Features after one-hot encoding: \approx 33 \mathrm{M}
```

3/:

Evaluation

$$\log \log s = -\frac{1}{L} \sum_{i=1}^{L} y_i \log \bar{y}_i + (1 - y_i) \log (1 - \bar{y}_i),$$

where L is the number of instances, y_i is the true label (0 or 1), and \bar{y}_i is the predicted probability.

This slide introduces our approach to achieve 0.44488 and 0.44479 on the public and private leaderboards, respectively.

Flowchart

"nnz" means the number of non-zero elements of each impression; "feat" represents the size of feature space.

Preprocessing-A

Purpose: generate features for GBDT.

- All numerical data are included. (13 features)
- Categorical features (after one-hot encoding) appear more than 4 million times are also included. (26 features)

Gradient Boosting Decision Tree (GBDT)

Purpose: generate GBDT features.

- We use trees in GBDT to generate features.
- 30 trees with depth 7 are used.
- 30 features are generated for each impression.
- This approach is proposed by Xinran He et al. at Facebook.
- The imlementation of GBDT is base on Algorithm 5 in the following slides:

http://statweb.stanford.edu/~jhf/ftp/trebst.pdf

Gradient Boosting Decision Tree (GBDT)

Example: Assuming that we have already trained GBDT with 3 trees with depth 2. We feed an impression x into these trees. The first tree thinks x belong to node 4, the second node 7, and the third node 6. Then we generate the feature "1:4 2:7 3:6" for this impression.

1:4

2:7

3:6

Preprocessing-B

Purpose: generate features for FFM.

• Numerical features (I1-I13) greater than 2 are transformed by

$$v \leftarrow \lfloor \log(v)^2 \rfloor$$
.

- Categorical features (C1-C26) appear less than 10 times are transformed into a sepcial value.
- GBDT features are directly included.
- These three groups of features are hashed into 1M-dimension by hashing trick.
- Each impression has 13 (numerical) + 26 (categorical) + 30 (GBDT) = 69 features.

Hashing Trick

Field-aware Factorization Machine (FFM)

For the details of FFM, please check the following slides:

http://www.csie.ntu.edu.tw/~r01922136/slides/ffm.pdf

Calibration

Purpose: calibrate the final result.

- The average CTRs on the public / private leaderboards are 0.2632 and 0.2627, respectively.
- The average CTR of our submission is 0.2663.
- There is a gap. So we minus every prediction by 0.003, and the logloss is reduced by around 0.0001.

Running Time

Environment: A workstation with two 6-core CPUs All processes are parallelized.

Process	Time (min.)	Memory (GB)
Pre-A	8	0
GBDT	29	15
Pre-B	38	0
FFM	100	16
Calibration	1	0
Total	176	

Comparison Among Different Methods

Method	Public	Private
LR-Poly2	0.44984	0.44954
FFM	0.44613	0.44598
FFM + GBDT	0.44497	0.44483
FFM + GBDT (v2)	0.44474	0.44462
FFM + GBDT + calib.	0.44488	0.44479
FFM + GBDT + calib. (v2)	0.44461	0.44449

v2: 50 trees and 8 latent factors