

Object honorification as agreement: [HON] as a ϕ feature

Sanghee Kim* (University of Chicago)

LSA Annual Meeting, Jan 2 – Jan 5, 2020, New Orleans, LA

1. Introduction

Verb suppletion

- Verb suppletion occurs by a number of factors (e.g., Tense, aspect, voice)
- Including internal arguments (e.g., number (Bobaljik & Harley 2017))
- Person feature of the indirect object triggering verb suppletion:
 - (1) Kolyma Yukaghir `give' (indirect object) (Maslova 2002: 353-354)
 - a. met-in er-ce n'er-ek **kej-**Nile i-DAT bad-ATTR clothing-PRED **give-**of:3SG
 - 'They gave me bad clothing.'
 - b. tat tintaN adil-Nin tude masl'uo-gele **tadi**-m ca that boy-DAT his daughter-ACC **give-**TR:3SG 'Then he gave his daughter to that boy.'

2. Phenomenon

- 1. Verb suppletion conditioned by controllers that are [+HON]:
 - (2) Korean 'help'
 - a. Sarah-ka Jino-lul [towa-**cwu** / *towa-**tuli**]-ess-ta Sarah-NOM Jino-ACC [help-APPL / *help-APPL.HON]-PST-DECL 'Sarah helped Jino.'
 - b. Sarah-ka apeci-lul [towa-**cwu** / *towa-**tuli**]-ess-ta
 Sarah-NOM father-ACC [help-APPL / *help-APPL.HON]-PST-DECL
 'Sarah helped father.'
 - (3) Korean 'meet'
 - a. Sarah-ka Jino-lul [manna / *poy]-ss-ta Sarah-NOM Jino-ACC [meet / *meet.HON]-PST-DECL 'Sarah met Jino.'
 - b. Sarah-ka apeci-lul [*manna / poy]-ess-ta Sarah-NOM father-ACC [*meet / meet.HON]-PST-DECL 'Sarah met father.'
- 2. Verb suppletion triggered by an indirect object but not a direct object:
 - (4) Korean 'introduce'
 - a. Semi-ka Jino-eykey apeci-lul sokeyhay- [cwu / *tuli]-ess-ta Semi-NOM Jino-DAT father-ACC introduce-[APPL / *APPL.HON]-PST-DECL 'Semi introduced (her) father to Jino.'
 - b. Semi-ka apeci-kkey Jino-lul sokeyhay- [*cwu / tuli]-ess-ta Semi-NOM grandfather-DAT.HON Jino-ACC introduce-[*APPL / APPL.HON]-PST-DECL 'Semi introduced Jino to (her) father.'
- 3. Verb suppletion targeting only the applicative but not the root verb:
 - (5) Korean 'eat'
 - a. Sam-i Jin-eykey sakwa-lul [mek-i-**cwu / ***mek-i-**tuli**]-ess-ta
 Sam-NOM Jin-DAT apple-ACC [eat-CAUS-**APPL/***eat-CAUS-**APPL.HON**]-PST-DECL
 'Sam made Jin eat an apple.'
 - b. Sam-i apeci-kkey sakwa-lul [*mek-i-cwu / mek-i-tuli]-ess-ta Sam-NOM father-DAT.HON apple-ACC [*eat-CAUS-APPL /eat-CAUS-APPL.HON]-PST-DECL 'Sarah made (her) father eat an apple.'

3. Relevant facts about Korean

Causative

- Structures on causative and applicative
 (6) Jung's (2014) analysis
 - ApplP <voice | Appl | VP | Appl | VP | VCAUS/do | DP_THEME | V

Subject honorification

- Honorifying verbal suffix (-si), Verbal suppletion (e.g., 'eat', 'sleep', 'die')
 - (7) Subject honorification in Korean 'eat' (Chung 2009: 544)
 - a. Sarah-ka sakwa-lul [meku / *capswu]-(*si)-ess-ta Sarah-NOM apple-ACC [eat / *eat.HON]-(*HON)-PST-DECL 'Sarah ate an apple.'
 - b. halapeci-kkeyse sakwa-lul [*meku / capswu]-*(si)-ess-ta grandfather-NOM.HON apple-ACC [*eat / eat.HON]-*(HON)-PST-DECL 'Grandfather ate an apple.'

4. Alternative: Allomorphy

Locality constraints for allomorphy

- Node Adjacency Hypothesis
 - (8) Locality constraint by node adjacency (Bobaljik 2012: 13)

a. α ...]_{X^0} ... β b. * α ...]_{XP} ... β

- \succ β cannot condition allomorph selection of head α if β is separated from α by the maximal projection boundary
- Span Adjacency Hypothesis
 - (9) Span Adjacency Hypothesis (Merchant 2015: 394) Allomorphy is conditioned only by an adjacency span
 - Span: A sequence of head complement in a single projection (Svenius 2012)

5. Proposal

Structure for object agreement with applicative and causative

(10)

a. VoiceP

ApplP voice vP Appl GOAL VP VP

- Structure (10a) for (4, 5)
- Structure (10b) for (2, 3)

Two possible options: allomorphy versus agreement

- 1. If suppletion is allomorphy:
 - > (2, 3) are NOT predicted
 - DP_{DAT} is not in the local domain of Appl
 - > (4, 5) are NOT predicted
 - Neither DP_{DAT} nor DP_{ACC} is in the local domain of Appl
- 2. If suppletion is agreement:
 - > (2, 3) are predicted
 - DP_{ACC} is in the c-command domain of Appl
 - > (4, 5) are predicted
 - DP_{DAT} is in the c-command domain of Appl
 - The closest feature-matching probe satisfies the goal

6. Summary

- Object honorification as syntactic agreement
- Applicatives also explained under syntactic agreement
- Agreement satisfied under [+HON] feature (e.g., Corbett 2006)

Acknowledgment

Many thanks to Karlos Arregi for an extensive discussion. I also thank the audience at the Arizona Linguistics Circle 13, and especially Heidi Harley for comments and suggestions.