COURSE 2

Some important examples of rings

Let us remind that $(R, +, \cdot)$ is a **ring** if (R, +) is an Abelian group, \cdot is associative and the distributive laws hold (that is, \cdot is distributive with respect to +). The ring $(R, +, \cdot)$ is a **unitary** ring if it has a multiplicative identity element.

Example 1. (The residue-class rings)

Let $n \in \mathbb{N}$, $n \geq 2$. Let us remind the Division Algorithm in \mathbb{Z} : For any integers a and b,

with
$$b \neq 0$$
, there exists only one pair $(q, r) \in \mathbb{Z} \times \mathbb{Z}$ such that $a = b \cdot q + r$ and $0 \leq r < |b|$.

The Division Algorithm gives us a partition of \mathbb{Z} in classes determined by the remainders one can find when dividing by n:

when dividing by
$$n$$
:
$$\{n\mathbb{Z}, 1+n\mathbb{Z}, \dots, (n-1)+n\mathbb{Z}\},$$
 where $r+n\mathbb{Z}=\{r+nk\mid k\in\mathbb{Z}\}\ (r\in\mathbb{Z}).$ We use the following notations
$$\widehat{r}=r+n\mathbb{Z}\ (r\in\mathbb{Z})\ \text{si}\ \mathbb{Z}_n=\{n\mathbb{Z}, 1+n\mathbb{Z}, \dots, (n-1)+n\mathbb{Z}\}=\{\widehat{0}, \widehat{1}, \dots, \widehat{n-1}\}.$$
 Let us notice that for $a,r\in\mathbb{Z},$

Let us notice that for $a, r \in \mathbb{Z}$,

$$\widehat{a} = \widehat{r} \Leftrightarrow a + n\mathbb{Z} = r + n\mathbb{Z} \Leftrightarrow a - r \in n\mathbb{Z} \Leftrightarrow n|a - r|$$

The operations

$$\underbrace{\widehat{a} = \widehat{r}} \Leftrightarrow \underbrace{a + n\mathbb{Z} = r + n\mathbb{Z}} \Leftrightarrow \underbrace{a - r \in n\mathbb{Z}} \Leftrightarrow \underbrace{n|a - r.}$$

$$\widehat{a} + \widehat{b} = \widehat{a + b}, \quad \widehat{a}\widehat{b} = \widehat{ab}$$

$$+, \cdot : \mathbb{Z}_{\mathbf{A}} \times \mathbb{Z}_{\mathbf{h}} \longrightarrow \mathbb{Z}_{\mathbf{h}}$$

are well defined, i.e. if one considers another representatives (a') and (b') for the classes \hat{a} and \hat{b} , respectively, the operations provide us with the same results. Indeed, from $a' \in \hat{a}$ şi $b' \in \hat{b}$ it follows that

$$\underline{n|a'-a, n|b'-b} \Rightarrow n|a'-a+b'-b \Rightarrow \underline{n|(a'+b')-(a+b)} \Rightarrow \underline{\widehat{a'+b'}} = \widehat{a+b}$$

and

$$a' = a + nk, \ b' = b + nl \ (k, l \in \mathbb{Z}) \Rightarrow a'b' = ab + n(al + bk + nkl) \in ab + n\mathbb{Z} \Rightarrow \widehat{a'b'} = \widehat{ab}.$$

One can easily check that the operations + and \cdot are associative and commutative, + has $\widehat{0}$ as identity element, each class \hat{a} has an opposite in $(\mathbb{Z}_n, +)$, $-\hat{a} = \widehat{-a} = \widehat{n-a}$, has $\hat{1}$ as identity element and \cdot is distributive with respect to +. Thus, $(\mathbb{Z}_n, +, \cdot)$ is a unitary ring, called $(\mathbb{Z}_n, +, \cdot)$ is a commutative ring, called the **residue-class ring modulo** n.

Since $\widehat{2} \cdot \widehat{3} = \widehat{0}$, both $\widehat{2}$ and $\widehat{3}$ are zero divisors in the ring $(\mathbb{Z}_6, +, \cdot)$. Thus $(\mathbb{Z}_n, +, \cdot)$ is not a field in the general case. Actually, $\widehat{a} \in \mathbb{Z}_n$ is a unit if and only if (a,n)=1. Thus $(\mathbb{Z}_n,+,\cdot)$ is a field if during the recurrence and only if n is a prime number.

Remark 2. If $(R, +, \cdot)$ is a ring, then (R, +) is a group and \cdot is associative, so that we may talk about multiples and positive powers of elements of R.

1

Definition 3. Let $(R, +, \cdot)$ be a ring, let $x \in R$ and let $n \in \mathbb{N}^*$. Then we define

$$n \cdot x = \underbrace{x + x + \dots + x}_{n \text{ terms}}, \quad 0 \cdot x = 0, \quad (-n) \cdot x = -n \cdot x,$$

$$x^n = \underbrace{x \cdot x \cdot \dots \cdot x}_{n \text{ factors}}.$$
The opposite in (R,+)

If R is a unitary ring, then we may also consider $\underline{x^0 = 1}$. If R is a division ring, then we may also define negative powers of nonzero elements x by

$$x^{-n} = (\underline{x^{-1}})^n .$$

Remark 4. Notice that in the definition $0 \cdot x = 0$, the first 0 is the integer zero and the second 0 is the zero element of the ring R, i.e., the identity element of the additive group (R, +).

Theorem 5. Let $(R, +, \cdot) \sim x = 0$ (i) $\underline{x \cdot (y - z) = x \cdot y - x \cdot z}, (y - z) \cdot x = y \cdot x - z \cdot x;$ however $x \in \mathbb{R}$ however $x \in \mathbb{R}$.

(ii) $x \cdot 0 = 0 \cdot x = 0;$ (iii) $x \cdot (-y) = (-x) \cdot y = -x \cdot y.$

Proof. (i) $\chi \cdot [(y-2)+z=y+(z-2)=y \implies \chi \cdot [(y-2)+z]=\chi_{y}(=)$

 $\iff x \cdot (y - x) + xx = xy / \Rightarrow x \cdot (y - x) = xy - xx.$

(ii) $\forall y \in \mathbb{R}, y - y = 0 \implies \pi \cdot 0 = \pi \cdot (y - y) \stackrel{(i)}{=} \pi y - \pi y = 0$

 $(iii) \quad \chi_{\cdot}(-y) + \chi_{\cdot}y = \chi_{\cdot}(-y+y) = \chi_{\cdot}o \stackrel{(ii)}{=} O \Rightarrow \chi_{\cdot}(-y) = -\chi_{\cdot}y.$

Definition 6. Let $(R, +, \cdot)$ be a ring and $A \subseteq R$. Then A is a subring of R if:

(1) A is closed under the operations of $(R, +, \cdot)$, that is,

 $\forall x, y \in A, \ x+y, \ x\cdot y \in A;$

(2) $(A, +, \cdot)$ is a ring.

Remarks 7. (a) If $(R, +, \cdot)$ is a ring and $A \subseteq R$, then A is a subring of R if and only if A is a subgroup of (R, +) and A is closed in (R, \cdot) .

This follows directly from subring definition knowing that the disributivity is preserved by the induced operations.

(b) A ring R may have subrings with or without (multiplicative) identity, as we will see in a forthcoming example.

Definition 8. Let $(K, +, \cdot)$ be a field and let $A \subseteq K$. Then A is called a subfield of K if:

(1) A is closed under the operations of $(K, +, \cdot)$, that is,

$$\forall x,y \in K\,,\; \underline{x+y}\,,\; \underline{x\cdot y} \in K\,;$$

(2) $(A, +, \cdot)$ is a field.

Remarks 9. (a) From (2) it follows that for a subfield A, we have $|A| \geq 2$.

(b) If $(K, +, \cdot)$ is a field and $A \subseteq K$, then A is a subfield if and only if A is a subgroup of (K, +)and A^* is a subgroup of (K^*, \cdot) .

1

(c) If $(K, +, \cdot)$ is a field and $A \subseteq K$, then A is a subfield if and only if A is a subring of $(K, +, \cdot)$, $|A| \ge 2 \text{ and for any } a \in A^*, a^{-1} \in A.$

Examples 10. (a) Every non-trivial ring $(R, +, \cdot)$ has two subrings, namely $\{0\}$ and R, called the trivial subrings.

(b) \mathbb{Z} is a subring of $(\underline{\mathbb{Q}}, +, \cdot)$, $(\underline{\mathbb{R}}, +, \cdot)$ and $(\underline{\mathbb{C}}, +, \cdot)$, $\underline{\mathbb{Q}}$ is a subfield of $(\underline{\mathbb{R}}, +, \cdot)$ and $(\underline{\mathbb{C}}, +, \cdot)$, $\underline{\mathbb{R}}$ is a subfield of $(\mathbb{C}, +, \cdot)$. a subfield of $(\mathbb{C}, +, \cdot)$.

(c) If K is a field, then $\{0\}$ is a subring of K which is not a subfield.

Definition 11. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be rings and $f: R \to R'$. Then f is called a (ring) Nom. = bij how. endow. = how. from a ring into itself homomorphism if

$$f(x+y) = f(x) + f(y), \ \forall x, y \in R$$
$$f(x \cdot y) = f(x) \cdot f(y), \ \forall x, y \in R.$$

The notions of (ring) isomorphism, endomorphism and automorphism are defined as usual.

• Cutou = 6/. endow.

We denote by $R \simeq R'$ the fact that two rings R and R' are isomorphic.

Remark 12. If $f: R \to R'$ is a ring homomorphism, then the first condition from its definition tells us that f is a group homomorphism between (R, +) and (R', +). Thus,

$$\underline{\underline{f(0)} = 0'}$$
 and $\underline{f(-x)} = -f(x), \ \forall x \in R$.

But in general, even if R and R' have multiplicative identities, denoted by 1 and 1' respectively, in general it does not follow that a ring homomorphism $f: R \to R'$ has the property that f(1) = 1'.

Examples 13. (a) Let
$$(R,+,\cdot)$$
 and $(R',+,\cdot)$ be rings and let $f:R\to R'$ be defined by $f(x)=0',\ \forall x\in R.$

Then f is a homomorphism, called the **trivial homomorphism**. Notice that if R and $R' \neq \{0'\}$ have identities, we do not have f(1) = 1'.

(b) Let $(R, +, \cdot)$ be a ring. Then the identity map $1_R : R \to R$ is an automorphism of R. $(1_R (x) = x)$

(c) Let $(R,+,\cdot)$ be a ring and let $A \leq R$. Define $i:\underline{A} \to R$ by $i(x)=x, \forall x \in A$. Then i is a homomorphism, called the inclusion homomorphism.

A medring in (R,+;)

(d) Let us take $f: \mathbb{C} \to \mathbb{C}$, $f(z) = \overline{z}$ (where \overline{z} is the complex conjugate of z). Since

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}, \ \overline{z_1 z_2} = \overline{z_1} \ \overline{z_2} \ \text{and} \ \underline{\overline{\overline{z}}} = z,$$

f is an automorphism of $(\mathbb{C}, +, \cdot)$ and $\underline{f^{-1}} = \underline{f}$.

Definition 14. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be unitary rings with the multiplicative identity elements 1 and 1' respectively and let $f: R \to R'$ be a ring homomorphism. Then f is called a **unitary** $\underline{\underline{\text{homomorphism}}} \text{ if } \underline{f(1) = 1'}. \qquad (\text{the high-school region of howomorphism.})$

Theorem 15. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be rings with identity elements 1 and 1' respectively and let $f: R \to R'$ be a unitary ring homomorphism. If $x \in R$ has an inverse element $x^{-1} \in R$, then f(x) has an inverse and $f(x^{-1}) = [f(x)]^{-1}$.

Proof.
$$f(x) \cdot f(x^{-1}) = f(x \cdot x^{-1}) = f(x) = f(x)$$

$$f(x^{-1}) \cdot f(x) = f(x^{-1} \cdot x) = f(x) = f(x)$$

Remark 16. Any non-zero homomorphism between two fields is a unitary homomorphism.

Indeed, let (K,+;),(K'+;) be filled, $f: K \to K'$ be a homeword from the $f: K \to K'$ be a homeword from the $f: K \to K'$ be a homeword from the $f: K \to K'$ be a homeword. チ(1)=11 $\int_{\mathcal{F}(x_0)} \frac{1}{1!} \left| \frac{f(x_0)}{f(x_0)} \cdot 1 \right| = f(x_0) = f(x_0) \cdot f(x_0) = f($

The polynomial ring over a field the set of natural numbers. Let $(K,+,\cdot)$ be a field and let us denote by $\underline{K^{\mathbb{N}}}$ the set

$$K^{\mathbb{N}} = \{ f \mid f : \mathbb{N} \to K \}.$$

R: f=g = a;=6;, +i∈ M.

If $f: \mathbb{N} \to K$ then, denoting $f(n) = a_n$, we can write $f = (a_0, a_1, a_2, \dots).$

For $f = (a_0, a_1, a_2, ...), g = (b_0, b_1, b_2, ...) \in K^{\mathbb{N}}$ one defines:

$$f + g = (a_0 + b_0, a_1 + b_1, a_2 + b_2, \dots)$$
(1)

where

$$c_{0} = a_{0}b_{0},$$

$$c_{1} = a_{0}b_{1} + a_{1}b_{0},$$

$$\vdots$$

$$c_{n} = a_{0}b_{n} + a_{1}b_{n-1} + \dots + a_{n}b_{0} = \sum_{i+j=n} a_{i}b_{j},$$

$$\vdots$$

Theorem 17. $K^{\mathbb{N}}$ forms a commutative unitary ring with respect to the operations defined by (1) and (2) called **the ring of formal power series over** K.

Proof. HOMEWORK

$$(0,0,...,0,...)$$
 the sew elem.
 $-f = (-\alpha_0, -\alpha_1,..., -\alpha_n,...)$
 $(1,0,...,0,...)$ the multiple id. elem.

Let $f = (a_0, a_1, a_2, ...) \in K^{\mathbb{N}}$. The **support of** f is the subset of \mathbb{N} defined by

$$\operatorname{supp} f = \{ k \in \mathbb{N} \mid a_k \neq 0 \}.$$

Let us denote by $K^{(\mathbb{N})}$ the subset consisting of all the sequences from $K^{\mathbb{N}}$ with a finite support. We have

$$f \in K^{(\mathbb{N})} \Leftrightarrow \exists n \in \mathbb{N} \text{ such that } a_i = 0 \text{ for } i \geq n \Leftrightarrow f = (a_0, a_1, a_2, \dots, a_{n-1}, 0, 0, \dots).$$

Theorem 18. i) $K^{(\mathbb{N})}$ is a subring of $K^{\mathbb{N}}$ which contains the multiplicative identity element. ii) The mapping $\varphi: K \to K^{(\mathbb{N})}$, $\varphi(a) = (a, 0, 0, \dots)$ is an injective unitary ring morphism.

Proof.

The ring $(K^{(\mathbb{N})}, +, \cdot)$ is called **polynomial ring** over K. How can we make this ring look like the one we know from high school?

The injective morphism φ allows us to identify $a \in K$ with (a, 0, 0, ...). Thi way K can be seen as a subring of $K^{(\mathbb{N})}$. The polynomial

$$X = (0, 1, 0, 0, \dots)$$

is called **indeterminate** or **variable**. From (2) one deduces that:

$$X^{2} = (0, 0, 1, 0, 0, \dots)$$

$$X^{3} = (0, 0, 0, 1, 0, 0, \dots)$$

$$\vdots$$

$$X^{m} = (\underbrace{0, 0, \dots, 0}_{m \text{ ori}}, 1, 0, 0, \dots)$$

$$\vdots$$

Since we identified $a \in K$ with (a, 0, 0, ...), from (2) it follows:

$$aX^{m} = (\underbrace{0, 0, \dots, 0}_{m \text{ or } i}, a, 0, 0, \dots)$$
 (3)

This way we have

Theorem 19. Any $f \in K^{(\mathbb{N})}$ which is not zero can be uniquely written as

$$f = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n \tag{4}$$

where $a_i \in K$, $i \in \{0, 1, ..., n\}$ and $a_n \neq 0$.

We can rewrite

$$K^{(\mathbb{N})} = \{ f = a_0 + a_1 X + \dots + a_n X^n \mid a_0, a_1, \dots, a_n \in K, \ n \in \mathbb{N} \} \stackrel{\text{not}}{=} K[X].$$

The elements of K[X] are called **polynomials over** K, and if $f = a_0 + a_1X + \cdots + a_nX^n$ then $a_0, \ldots, a_n \in K$ are **the coefficients of** $f, a_0, a_1X \ldots, a_nX^n$ are called **monomials**, and a_0 is **the constant term of** f. Now, we can rewrite the operations from $(K[X], +, \cdot)$ as we did in high school (during the seminar).

If $f \in K[X]$, $f \neq 0$ and f is given by (4), then n is called **the degree of** f, and if f = 0 we say that the degree of f is $-\infty$. We will denote the degree of f by deg f. Thus we have

$$\deg f = 0 \Leftrightarrow f \in K^*.$$

By definition

$$-\infty + m = m + (-\infty) = -\infty, -\infty + (-\infty) = -\infty, -\infty < m, \forall m \in \mathbb{N}.$$

Therefore:

- i) $\deg(f+g) \le \max\{\deg f, \operatorname{grad} g\}, \forall f, g \in K[X];$
- ii) $deg(fg) = deg f + deg g, \forall f, g \in K[X];$
- iii) K[X] is an integral domain (during the seminar);
- iv) a polynomial $f \in K[X]$ este is a unit in K[X] if and only if $f \in K^*$ (during the seminar). Here are some useful notions and results concerning polynomials:

If $f, g \in K[X]$ then

$$f \mid g \Leftrightarrow \exists \ h \in R, \ g = fh.$$

The divisibility | is reflexive and transitive. The polynomial 0 satisfies the following relations

$$f \mid 0, \ \forall f \in K[X] \text{ and } \nexists f \in K[X] \setminus \{0\}: \ 0 \mid f.$$

Two polynomials $f, g \in K[X]$ are **associates** (we write $f \sim g$) if

$$\exists \ a \in K^*: \ f = ag.$$

The relation \sim is reflexive, transitive and symmetric.

A polynomial $f \in K[X]^*$ is **irreducible** if deg $f \geq 1$ and

$$f = gh \ (g, h \in K[X]) \Rightarrow g \in K^* \text{ or } h \in K^*.$$

The gcd and lcm are defined as for integers, the product of a gcm and lcma af two polynomials f, g and the product fg are associates and the polynomials divisibility acts with respect to sum and product in the way we are familiar with from the integers case.

If
$$f = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n \in K[X]$$
 and $c \in K$, then

$$f(c) = a_0 + a_1c + a_2cX^2 + \dots + a_nc^n \in K$$

is called the evaluation of f at c. The element $c \in K$ is a root of f if f(c) = 0.

Theorem 20. (The Division Algorithm in K[X]) For any polynomials $f, g \in K[X]$, $g \neq 0$, there exist $g, r \in K[X]$ uniquely determined such that

$$f = gq + r \text{ and } \deg r < \deg g.$$
 (5)

Proof. (optional) Let $a_0, \ldots, a_n, b_0, \ldots, b_m \in K$, $b_m \neq 0$ and

$$f = a_0 + a_1 X + \dots + a_n X^n$$
 şi $g = b_0 + b_1 X + \dots + b_m X^m$.

The existence of q and r: If f = 0 then q = r = 0 satisfy (5).

For $f \neq 0$ we prove by induction that that the property holds for any $n = \deg f$. If n < m (since $m \geq 0$, there exist polynomials f which satisfy this condition), then (5) holds for q = 0 and r = f.

Let us assume the statement proved for any polynomials with the degree $n \ge m$. Since $a_n X^n$ is the maximum degree monomial of the polynomial $a_n b_m^{-1} X^{n-m} g$, for $h = f - a_n b_m^{-1} X^{n-m} g$, we have deg h < n and, according to our sumption, there exist $g', r \in R[X]$ such that

$$h = gq' + r$$
 and $\deg r < \deg g$.

Thus, we have $f = h + a_n b_m^{-1} X^{n-m} g = (a_n b_m^{-1} X^{n-m} + q') g + r = gq + r$ where $q = a_n b_m^{-1} X^{n-m} + q'$. Now, the existence of q and r from (5) is proved.

The uniqueness of q and r: If we also have

$$f = gq_1 + r_1$$
 and $\deg r_1 < \deg g$,

then $gq + r = gq_1 + r_1$. It follows that $r - r_1 = g(q_1 - q)$ and $\deg(r - r_1) < \deg g$. Since $g \neq 0$ we have $q_1 - q = 0$ and, consequently, $r - r_1 = 0$, thus $q_1 = q$ and $r_1 = r$.

We call the polynomials q and r from (5) the quotient and the remainder of f when dividing by g, respectively.

Corollary 21. Let K be a field and $c \in K$. The remainder of a polynomial $f \in K[X]$ when dividing by X - c is f(c).

Indeed, from (5) one deduces that $r \in K$, and since f = (X - c)q + r, one finds that r = f(c). For r = 0 we obtain:

Corollary 22. Let K be a field. The element $c \in K$ is a root of f if and only if $(X - c) \mid f$.

Corollary 23. If K is a field and $f \in K[X]$ has the degree $k \in \mathbb{N}$, then the number of the roots of f from K is at most k.

Indeed, the statement is true for zero-degree polynomials, since they have no roots. We consider k > 0 and we assume the property valid for any polynomial with the degree smaller than k. If $c_1 \in K$ is a root of f then $f = (X - c_1)q$ and $\deg q = k - 1$. According to our assumption, q has at most k - 1 roots in K. Since K is a field, K[X] is an integral domain and from $f = (X - c_1)q$ it follows that $c \in K$ is a root of f if and only if $c = c_1$ or c is a root of f. Thus f has at most f roots in f.