Rainbow Memory: Continual Learning with a Memory of Diverse Samples

- Representative for corresponding class
- Discriminative to other classes

$$p(y = c|x) = \int_{\tilde{\mathcal{D}}} p(y = c|\tilde{x}_t) p(\tilde{x}_t|x) d\tilde{x}_t$$
$$\approx \frac{1}{A} \sum_{t=1}^{A} p(y = c|\tilde{x}_t),$$

$$\mathbf{S}_{c} = \sum_{t=1}^{T} \mathbb{1}_{c} \operatorname{argmax}_{\hat{c}} p(y = \hat{c} | \tilde{x}_{t}),$$

$$\mathbf{u}(x) = 1 - \frac{1}{T} \max_{c} S_{c},$$

Algorithm 1 Diversity-Aware Memory Update

- 1: **Input:** K denotes memory size, N_t denotes the number of seen classes until task t, \mathfrak{D}_t^S denotes stream data at task t, \mathfrak{D}_{t-1}^M denotes exemplars stored in a episodic memory after task t-1.
- 2: Output: \mathfrak{D}_t^M exemplars after learning task t.

```
3: \mathfrak{D}_t^M = \{\} \triangleright New exemplars from scratch

4: k_c = floor(K/N_t) \triangleright Class-balanced sampling

5: for c = 1, 2, ..., N_t do

6: \mathfrak{D}_c = \{(x, y) | y = c, (x, y) \in \mathfrak{D}_t^S \cup \mathfrak{D}_{t-1}^M \}

7: Sort \mathfrak{D}_c by u(x) computed by (4)

8: for j = 1, 2, ..., k_c do

9: i = j * |\mathfrak{D}_c|/k_c \triangleright |\mathfrak{D}_c|/k_c step-size indexing

10: \mathfrak{D}_t^M += \mathfrak{D}_c[i]

11: end for

12: end for
```


Exploring Classification Equilibrium in Long-Tailed Object Detection

- Data re-sampling is prone to over-fit tail data and under-represent the head data
- Loss reweighting may cause unstable training

$$s_y^i = \alpha s_y^{i-1} + (1 - \alpha) p_y^i,$$

Equilibrium Loss

$$L(z,y) = -\log \frac{e^{z_y}}{\sum_{y' \in \{1,2,\dots,C+1\}} e^{z_{y'}}} = \log[1 + \sum_{y' \neq y} e^{z_{y'} - z_y}].$$

$$L(z, y) = log[1 + \sum_{y' \neq y} e^{z_{y'} - z_y + \delta_{yy'}}],$$

$$\delta_{yy'} = log(\frac{s_{y'}}{s_y}).$$

- reduce the suppression of dominant classes (i.e., having high mean classification score) over weak classes, by reducing the margin between dominant positive classes and weak negative classes
- enlarge the suppression of weak classes over dominant classes, by increasing the margin between weak positive classes and dominant negative classes

Memory-augmented Feature Sampling

- (a) Existing sampling methods
- Proposal resampling depend on RPN
- Tailed data overfitting

$$\hat{b} = [x_1 \pm \frac{\eta_1 w}{6}, y_1 \pm \frac{\eta_2 h}{6}, x_2 \pm \frac{\eta_3 w}{6}, y_2 \pm \frac{\eta_4 h}{6}], \quad \mathbb{M}_y = [f_y^1, f_y^2, ..., f_y^M],$$

Memory-agumented feature sampling

(b) The proposed method

$$p_y = \frac{f(s_y)}{\sum_{y'} f(s_{y'})}, \qquad f(s_y) = \frac{1}{s_y}.$$

Method	Framework	Backbone	Dataset	AP^b	AP	AP_r	AP_c	AP_f
RFS [7]	Mask R-CNN	R-50-FPN	LVIS v0.5	26.1	25.9	17.8	26.2	28.8
EQL [22]				24.1	25.2	14.6	24.4	26.8
Forest R-CNN [27]				25.9	25.6	18.3	26.4	27.6
BAGS [13]				25.8	26.3	18.0	26.9	28.7
BALMS [19]				27.6	27.0	19.6	28.9	27.5
EQL v2 [21] [†]				27.0	27.1	18.6	27.6	29.9
LOCE (ours)				28.2	28.4	22.0	29.0	30.2
RFS [7]	Mask R-CNN	R-50-FPN	LVIS v1.0	24.7	23.7	13.5	22.8	29.3
EQL [22]				22.5	21.6	3.8	21.7	29.2
Seesaw Loss [24]* †				24.3	23.3	13.0	22.9	28.2
EQL v2 [21] [†]				26.1	25.5	17.7	24.3	30.2
LOCE (ours)				27.4	26.6	18.5	26.2	30.7
RFS [7]	Mask R-CNN	R-101-FPN	LVIS v1.0	26.6	25.5	16.6	24.5	30.6
EQL [22]				24.0	22.7	3.7	23.3	30.4
BAGS [13]				26.4	25.6	17.3	25.0	30.1
Seesaw Loss [24] [†]				27.4	27.1	18.7	26.3	31.7
EQL v2 [21] [†]				27.9	27.2	20.6	25.9	31.4
LOCE (ours)				29.0	28.0	19.5	27.8	32.0

$$\min_{\mathbf{P}, \mathbf{K}, \phi} \quad \mathcal{L}(g_{\phi}(f_r^{\text{avg}}(\boldsymbol{x}_p)), y) + \lambda \sum_{\mathbf{K}_{\boldsymbol{x}}} \gamma \left(q(\boldsymbol{x}), \boldsymbol{k}_{s_i}\right),$$