

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar , Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

End Semester Examination January 2022

Max. Marks:- 60

Class: SE (ETRX and EXTC)

Course Code:- MA201

Name of the Course: Linear Algebra

Duration: 2 Hours

Semester:- III

Branch:- ETRX and EXTC

Instructions:

- 1) Attempt any 3 out of the 4 questions.
- 2) Assume suitable data if necessary.

Q No.		Max. Marks	СО
Q.1 (a)	Apply Gauss-Jordan elimination to the following linear system of equations: $ x + 2z + 3w = 2 $ E: $ x + 3y + 2z = 5 $ $ 2x + 4z + 9w = 10 $ to find a particular solution, solutions space of the homogeneous system E ₀ corresponding to the system E and hence find the solution set of the system E.	5	2
Q.1 (b)	Let $A \in M_n(R)$ be a square matrix of order n . If A is an upper triangular matrix when exactly is the reduced echelon form of the matrix A is the identity matrix I_n . Justify your answer.	5	1
Q.1 (c)	Let $A \in M_{m, n}(R)$, $m, n \in \mathbb{N}^+$ and let $E : A \cdot x = b$ be the linear system of m equations in n variables. Further, let r be the natural number obtained by performing Gauss - elimination process (note that $n-r$ is the number of free variables) on the system E . Then what are the relations between the natural numbers r, m and n if the system E has: (i) no solution for some E . (ii) infinitely many solutions for every E . (iii) exactly one solution for some E and no solution for other E . (iv) exactly one solution for every E .	1 1 1 2	2 2 2 2 2
Q.1 (d)	Let $E: A . x = b$ be a system of m linear equations in n variables and let $E_0: A . x = 0$ be the homogeneous linear system corresponding to the system E.		

	Suppose that the vectors x_1 and $x_2 \in \mathbb{R}^n$ are two solutions of the system E, then:		
	(i) Find two solutions of the system E_0 .	$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	1 1
	(ii) Find another solution (other than the solutions in (i)) to the system E_0 and another solution other than x_1 and x_2 to the		
0.2()	system E .	2	1
Q.2 (a)	(i) Solve the system of linear equations: $ax + y = a^{2}$ E: $x + ay = 1$	3	1
	For what values of $a \in \mathbb{R}$ does the system E fail to have solutions, and for what values of $a \in \mathbb{R}$ are there infinitely many solutions?		
	(ii) Describe all functions $f: R \to R$ defined by: $f(x) := ax^2 + bx + c,$	2	4
	where $a, b, c \in R$ (are fixed) such that $f(1) = 2$ and $f(-1) = 6$.		
Q.2 (b)	Let $A = \begin{pmatrix} 2 & 1 & 1 & 3 \\ 6 & 4 & 1 & 2 \\ 1 & 5 & 1 & 5 \end{pmatrix} \epsilon M_{3,4}(R).$		
	(i) Find two distinct echelon forms of the matrix A.(ii) Find the reduced echelon form of A.	2 3	1
Q.2 (c)	Show that the matrix $A := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(R)$ is invertible if and only if $ad - bc \neq 0$. Moreover, in this case find the inverse A^{-1} of the matrix A .	5	1
Q.2 (d)	Let $v_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} \in \mathbb{R}^3$ be two vectors in \mathbb{R}^3 .		
	(i) Are v_1 and v_2 linearly independent over R ?	1	4
	(ii) Find the dimension of the subspace W of R^3 generated by v_1 and v_2 .	2	4
	(iii) Describe all vectors $v_3 \in R^3$ such that v_1, v_2, v_3 form a basis of R^3 .	2	4
Q.3 (a)	Let $f: M_2(R) \to M_2(R)$ be the linear map defined by		
	$f\begin{pmatrix} a & b \\ c & d \end{pmatrix} := \begin{pmatrix} a & c \\ b & d \end{pmatrix}$		
	(i) Find the matrix of f with respect to the basis E_{11} , E_{12} , E_{21} , E_{22} .	1	4
	Where $E_{ij} \in M_2(R)$ is the matrix with (i,j) -th entry 1 and all		
	Where $E_{ij} \in M_2(R)$ is the matrix with (i,j) -th entry 1 and all other entries are 0.		
		2	4

	$f\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}.$		
Q.3 (b)	Let P ₄ be the vector space of polynomials with coefficients in R of		
	degree ≤ 4 and let		
	$f = \frac{d}{dX} : P_4 \to P_4, \qquad F \mapsto \frac{d}{dX}(F)$		
	Then:	1.5	4
	(i) Find the matrix of f with respect to the basis 1, X , X^2 , X^3 , X^4	1.5	4
	of P_4 and the basis 1, 2X, 3X ² , 4X ³ , X ⁴ of P_4 respectively.	1.5	4
	(ii) Find the matrix of f with respect to the basis X^4 , X^3 , X^2 , X , 1	1.3	4
	of P_4 and the basis $4X^3$, $3X^2$, $2X$, 1 , X^4 of P_4 respectively.	2	4
	(iii) Is the map f surjective? Justify your answer.	_	'
Q.3 (c)	Let $f: \mathbb{R}^3 \to P_2$ be the linear map defined by the matrix	5	4
	$\begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$		'
	$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$		
	with respect to the standard basis e_1 , e_2 , e_3 of \mathbb{R}^3 and the basis		
	$1,1+X^2, X$ of P_2 respectively.		
	Find the matrix of the map f with respect to the basis $-e_1, 2e_2, 3e_3$ of		
	R^3 and the basis 1, $-X^2$, $2X$ of P_2 respectively.		
Q.3 (d)	(i) Is the linear map	1	4
	$f: M_2(R) \to R_4$ defined by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a+b+c+d \\ a+b+c \\ a+b \\ 0 \end{pmatrix}$		
	isomorphism? Justify your answer.		
	(ii) Find two isomorphisms between the vector spaces	1	4
	R^{16} and $M_4(R)$.	1	4
	(iii) For what $k \in N$, the vector spaces $M_{m, n}(R)$, and R^k are isomorphic?	1	4
	(iv) Let P5 be the vector space of polynomials with coefficients in	2	4
	R of degree \leq 5. Is the linear map		
	$f: P_5 \to P_5$, defined by $F(X) \mapsto F(X-1)$.		
	an isomorphism of vector spaces? If yes, then what is the		
	inverse map f^{-1} of f ?		

Q.4 (a)	Let V and W be two vector spaces with bases v_1 , v_2 , $v_3 \in V$ and w_1 ,		
	$w_2, w_3 \in W$, respectively and let $f: V \to W$ be a linear map defined by		
	$f(v_1) = w_2$, $f(v_2) = f(v_3) = w_1 + 2w_3$. Then:		
		1	4
	(i) Find the matrix A of f with respect to the bases $v_1, v_2, v_3 \in V$ and $w_1, w_2, w_3 \in W$.	1	4
	(ii) Find a basis of the null-space Ker $f = \{v \in V \mid f(v) = 0\}$. What is its dimension?	2	4
	(iii) Find all solutions $v \in V$ of the equation: $f(v) = w_2$.	2	4
Q.4 (b)	Let $A = \begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix} \in M_3(R)$ be a square matrix.		
	Show that:		
	(i) If either $a = 0$, or $d = 0$, or $f = 0$, then the column vectors of A are linearly dependent over R .	3	4
	(ii) If all a, d and f are non-zero, then the column vectors of A are linearly independent over R.	2	4
Q.4 (c)	Let $f: M_2(R) \to M_2(R)$ be the linear map defined by		
	$f\begin{pmatrix} a & b \\ c & d \end{pmatrix} := \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix}$		
	Then:		
	(i) Show that the map f is injective. (Hint: Use Question 2 (c) above.)	2	4
	(ii) Use (i) and Rank-Nullity Theorem to deduce that the map f is surjective.	3	4
Q.4 (d)	Let $f: M_2(R) \to M_2(R)$ be the linear map defined		
	$f\begin{pmatrix} a & b \\ c & d \end{pmatrix} := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$		
	Then:		
	(i) Find a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(R)$ with $f \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq 0$ (=the	1.5	1
	zero matrix).		
	(ii) Describe all matrices $f\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.	1.5	1
	(iii) Describe all matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(R)$ with	2	1

_c (a	b) 0 (1 ()	
$\int \int_{C}$	$\binom{b}{d} = 0$ (= the zero matrix).	

****** All the Best *******