Отчёт по лабораторной работе №4.

Вычисление наибольшего общего делителя

Коне Сирики

22 октября 2024

Российский университет дружбы народов, Москва, Россия

Объединённый институт ядерных исследований, Дубна, Россия

Докладчик

- Коне Сирики
- Студент физмат
- профессор кафедры прикладной информатики и теории вероятностей
- Российский университет дружбы народов
- · konesirisil@yandex.ru
- https://github.com/skone19

Цели и задачи работы

Целью данной лабораторной работы является ознакомление с двумя алгоритмами нахождения наибольшего общего делителя их расширениями для нахождения его линейного представления, а также их последующая программная реализация.

Задачи: Рассмотреть и реализовать на языке программирования Python:

- 1. Алгоритм Евклида;
- 2. Бинарный алгоритм Евклида;
- 3. Расширенный алгоритм Евклида;
- 4. Расширенный бинарный алгоритм Евклида.

Теоретическое введение

Пусть \$x\$ и \$y\$ -- целые числа. Говорят, что \$x\$ \textit{делит} \$y\$, если с

Пусть \$a, b \in \mathbb{Z}\$. Целое число \$d\$ называется \textit{наибольшим

\item \$d \; | \; a\$ и \$d \; | \; b\$ (т.е. \$d\$ -- общий делитель \$a\$ и \$b\$); \item если \$d'\$ -- общий делитель \$a\$ и \$b\$, то \$d' \; | \; d\$.

Линейное представление НОД

Наибольший общий делитель двух целых чисел \$a, b\$ существует и представляет

Алгоритм Евклида (1 / 2)

Алгоритм Евклида для нахождения $\mathrm{HOJ}(a,b)$ при $a\geq b>0$ основывается на следующем результате:

Если a=bq+r, то $\mathrm{HOД}(a,b)$ = $\mathrm{HOД}(b,r)$.

Строится последовательность чисел $a>b>r_1>r_2>...>r_{n-1}>r_n\geq 0$, где r_k – остаток от деления двух предыдущих чисел, т.е. $r_{k-2}=r_{k-1}q_{k-1}+r_k$. Тогда НОД(a,b) равен последнему ненулевому члену последовательности.

Алгоритм Евклида (2 / 2)

Вход. Целые числа $a, b; 0 < b \le a$.

 B ыход. $d = \mathrm{HOД}(a,b)$

- 1. Положить $r_0 \leftarrow a, r_1 \leftarrow b, i \leftarrow 1$.
- 2. Найти остаток r_{i+1} от деления r_{i-1} на r_i .
- 3. Если $r_{i+1}=0$, то положить $d \leftarrow r_i$. В противном случае положить $i \leftarrow i+1$ и вернуться на шаг 2.
- 4. Результат: d.

Бинарный алгоритм Евклида (1 / 2)

Бинарный алгоритм Евклида основан на следующих свойствах наибольшего общего делителя ($0 < b \leq a$):

- \cdot если оба числа a и b чётные, то $\mathrm{HOД}(a,b) = 2 \cdot \mathrm{HOД}(\frac{a}{2},\frac{b}{2})$;
- \cdot если число a нечётное, число b чётное, то НОД(a,b)= НОД $(a,\frac{b}{2})$;
- \cdot если оба числа a и b нечётные, то $\mathrm{HOJ}(a,b) = \mathrm{HOJ}(a-b,b)$;
- \cdot если a=b, то $\mathrm{HOД}(a,b)=a$.

Бинарный алгоритм Евклида (2 / 2)

Вход. Целые числа a, b; $0 < b \le a$.

 B ыход. $d = \mathrm{HOД}(a,b)$

- 1. Положить $q \leftarrow 1$.
- 2. Пока оба числа a и b чётные, выполнять $a \leftarrow \frac{a}{2}, b \leftarrow \frac{b}{2}, g \leftarrow 2g$ до получения хотя бы одного нечётного значения a или b.
- 3. Положить $u \leftarrow a, v \leftarrow b$.
- 4. Пока $u \neq 0$ выполнять следующие действия:
 - 4.1. Пока u чётное, полагать $u \leftarrow \frac{u}{2}$.
 - 4.2. Пока v чётное, полагать $v \leftarrow \frac{v}{2}$.
 - 4.3. При u>=v положить $u\leftarrow u-v$. В противном случае положить $v\leftarrow v-u$.
- 5. Положить $d \leftarrow gv$.
- 6. Результат: d.

Вход. Целые числа $a, b; 0 < b \le a$.

Bыход. $d=\mathrm{HOД}(a,b)$; такие целые числа x,y, что ax+by=d.

- 1. Положить $r_0 \leftarrow a, r_1 \leftarrow b, x_0 \leftarrow 1, x_1 \leftarrow 0, y_0 \leftarrow 0,$ $y_1 \leftarrow 1, i \leftarrow 1.$
- 2. Разделить с остатком r_{i-1} на r_i : $r_{i-1} = q_i r_i + r_{i+1}$.
- 3. Если $r_{i+1}=0$, то положить $d\leftarrow r_i, x\leftarrow x_i, y\leftarrow y_i$. В противном случае положить $x_{i+1}\leftarrow x_{i-1}-q_ix_i, y_{i+1}\leftarrow y_{i-1}-q_iy_i, i\leftarrow i+1$ и вернуться на шаг 2.
- 4. Результат: d, x, y.

Расширенный бинарный алгоритм Евклида

Вход. Целые числа $a, b; 0 < b \le a$.

 $\mathit{Bыход}.\ d = \mathsf{HOД}(a,b);$ такие целые числа x,y, что ax+by=d.

- 1. Положить $g \leftarrow 1$.
- 2. Пока числа a и b чётные, выполнять $a\leftarrow \frac{a}{2}$, $b\leftarrow \frac{b}{2}$, $g\leftarrow 2g$ до получения хотя бы одного нечётного значения a или b .
- 3. Положить $u \leftarrow a, v \leftarrow b, A \leftarrow 1, B \leftarrow 0, C \leftarrow 0, D \leftarrow 1.$
- 4. Пока $u \neq 0$ выполнять следующие действия:
 - 4.1. Пока u чётное:
 - 4.1.1. Положить $u \leftarrow \frac{u}{2}$.
 - 4.1.2. Если оба числа A и B чётные, то положить $A\leftarrow \frac{A}{2},$
 - $B \leftarrow rac{B}{2}$. В противном случае положить $A \leftarrow rac{A+b}{2}$, $B \leftarrow rac{B-a}{2}$.

4.2. Пока v чётное:

4.2.1. Положить $v \leftarrow \frac{v}{2}$.

4.2.2. Если оба числа C и D чётные, то положить $C \leftarrow \frac{C}{2}$,

 $D\leftarrow rac{D}{2}$. В противном случае положить $C\leftarrow rac{C+b}{2}$, $D\leftarrow rac{D-a}{2}$. 4.3. При $u\geq v$ положить $u\leftarrow u-v$, $A\leftarrow A-C$, $B\leftarrow B-D$. В

противном случае положить $v \leftarrow v-u, C \leftarrow C-A, D \leftarrow D-B.$

- 5. Положить $d \leftarrow gv, x \leftarrow C, y \leftarrow D$.
- $\frac{4}{2}$, 6. Результат: d, x, y.

Рис. 4: Расширенный бинарный алгоритм Евклида

Ход выполнения и результаты

```
def is even(a):
    return (True if a % 2 == 0 else False)
def euclidean_algorithm(a, b):
    (a, b) = (abs(int(a)), abs(int(b)))
    if b > a:
        (a. b) = (b. a)
    r = [a. b] # war 1
    while r[1] != 0: # шаги 2-3
        (r[0], r[1]) = (r[1], r[0] \% r[1])
    return r[0] # шаг 4
```

```
print("HOД({}, {}) = {}".format(12345, 24690, euclidean algorithm(12345, 24690)))
   print("HOД({}, {}) = {}".format(12345, 54321, euclidean algorithm(12345, 54321)))
   print("HOД({}, {}) = {}".format(12345, 12541, euclidean algorithm(12345, 12541)))
   print("HOД({{}}, {{}}) = {{}}".format(99, 121, euclidean algorithm(99, 121)))
 ✓ 0.3s
HOJ(12345, 24690) = 12345
HOJ(12345, 54321) = 3
HOД(12345, 12541) = 1
HOД(99, 121) = 11
```

Рис. 5: Примеры нахождения НОД двух чисел с помощью программной реализации алгоритма Евклида

Бинарный алгоритм Евклида. Реализация

```
def euclidean algorithm binary(a, b): <...>
    g = 1 # шаг 1
    while is_even(a) and is_even(b): # шаг 2
        (a, b, g) = (int(a / 2), int(b / 2), 2 * g)
    (u, v) = (a, b) # war 3
    while u != 0: # war 4
        while is even(u):
            u = int(u / 2)
        while is even(v):
            v = int(v / 2)
        if u >= v:
            u -= v
        else:
            V -= II
```

```
print("HOД({}, {}) = {}".format(12345, 24690, euclidean_algorithm_binary(12345, 24690)))
print("HOД({}, {}) = {}".format(12345, 54321, euclidean_algorithm_binary(12345, 54321)))
print("HOД({}, {}) = {}".format(12345, 12541, euclidean_algorithm_binary(12345, 12541)))
print("HOД({}, {}) = {}".format(24, 56, euclidean_algorithm_binary(24, 56)))

✓ 0.4s

... HOД(12345, 24690) = 12345
HOД(12345, 54321) = 3
HOД(12345, 12541) = 1
HOД(24, 56) = 8
```

Рис. 6: Примеры нахождения НОД двух чисел с помощью программной реализации бинарного алгоритма Евклида

Расширенный алгоритм Евклида. Реализация

```
def euclidean algorithm extended(a, b):
    (a, b) = (abs(int(a)), abs(int(b)))
    reversed = True if b > a else False
    (a, b) = (b, a) if reversed else (a, b)
    (r, x, v) = ([a, b], [1, 0], [0, 1]) # war 1
    while r[1] != 0: # шаги 2-3
        (r[0], r[1], q) = (r[1], r[0] \% r[1], r[0] // r[1])
        if r[1] != 0: # если остаток ещё не нулевой..
            (x[0], x[1]) = (x[1], x[0] - q * x[1])
            (v[0], v[1]) = (v[1], v[0] - q * v[1])
    (d. \times r. \vee r) = (r[0]. \times [1]. \vee [1])
    if reversed:
        (x r, y r) = (y r, x r)
    return (d, x r, v r)
```

```
(d, x, y) = \text{euclidean algorithm extended}(12345, 24690)
   print("HOD({a}, {b}) = {d} = {a} * {x} + {b} * {y}".format(a = 12345, b = 24690, d = d, x = x, y = y))
   (d, x, y) = \text{euclidean algorithm extended}(12345, 54321)
   print("HOD({a}, {b}) = {d} = {a} * {x} + {b} * {y}".format(a = 12345, b = 54321, d = d, x = x, y = y))
   (d, x, y) = \text{euclidean algorithm extended}(12345, 12541)
   print("HOD({a}, {b}) = {d} = {a} * {x} + {b} * {y}".format(a = 12345, b = 12541, d = d, x = x, y = y))
   (d. x. v) = euclidean algorithm extended(39, 169)
   print("HOD({a}, {b}) = {d} = {a} * {x} + {b} * {y}". format(a = 39, b = 169, d = d, x = x, y = y))
√ 0.4c
HOД(12345, 24690) = 12345 = 12345 * 1 + 24690 * 0
HOJI(12345.54321) = 3 = 12345 * 3617 + 54321 * -822
HOД(12345, 12541) = 1 = 12345 * 4159 + 12541 * -4094
HOД(39, 169) = 13 = 39 * -4 + 169 * 1
```

Рис. 7: Примеры нахождения НОД двух чисел и его линейного представления с помощью программной реализации расширенного алгоритма Евклида

```
def euclidean algorithm binary extended(a, b):
    <...>
    g = 1 \# \text{шаг } 1
    while is even(a) and is even(b): # шаг 2
        (a, b, g) = (int(a / 2), int(b / 2), 2 * g)
    (u, v, A, B, C, D) = (a, b, 1, 0, 0, 1) \# war 3
    while u != 0: # war 4
        while is even(u): # war 4.1
            u = int(u / 2) # war 4.1.1
            if is even(A) and is even(B): # ωαΓ 4.1.2
                (A. B) = (int(A / 2), int(B / 2))
            else:
                (A, B) = (int((A + b) / 2), int((B - a) / 2))
```

Расширенный бинарный алгоритм Евклида. Реализация

```
while is even(v): # war 4.2
        v = int(v / 2) # war 4.2.1
        if is_even(C) and is_even(D): # шаг 4.2.2
            (C. D) = (int(C / 2), int(D / 2))
        else:
            (C. D) = (int((C + b) / 2), int((D - a) / 2))
    if u >= v: # war 4.3
        (u. A. B) = (u - v. A - C. B - D)
    else:
        (v. C. D) = (v - u. C - A. D - B)
(d. x. v) = (g * v. C. D) # war 5
if reversed:
    (x, y) = (y, x)
return (d, x, v)
```

```
(d. x. v) = \text{euclidean algorithm binary extended}(12345, 24690)
   print("HOD({a}, {b}) = {d} = {a} * {x} + {b} * {y}".format(a = 12345, b = 24690, d = d, x = x, y = y))
   (d, x, y) = \text{euclidean algorithm binary extended}(12345, 54321)
   print("HOD({a}, {b}) = {d} = {a} * {x} + {b} * {y}".format(a = 12345, b = 54321, d = d, x = x, y = y))
   (d, x, y) = \text{euclidean algorithm binary extended}(12345, 12541)
   print("HOD({a}, {b}) = {d} = {a} * {x} + {b} * {y}".format(a = 12345, b = 12541, d = d, x = x, y = y))
   (d, x, y) = euclidean algorithm binary extended(190, 342)
   print("HOD({a}, {b}) = {d} = {a} * {x} + {b} * {y}".format(a = 190, b = 342, d = d, x = x, y = y))
 ✓ 0.3s
HOJ(12345, 24690) = 12345 = 12345 * 1 + 24690 * 0
HOII(12345, 54321) = 3 = 12345 * -32597 + 54321 * 7408
HOJI(12345, 12541) = 1 = 12345 * -8382 + 12541 * 8251
HOJ(190.342) = 38 = 190 * 11 + 342 * -6
```

Рис. 8: Примеры нахождения НОД двух чисел и его линейного представления с помощью программной реализации расширенного бинарного алгоритма Евклида

Заключение

Таким образом, была достигнута цель, поставленная в начале лабораторной работы: было проведено краткое знакомство с двумя алгоритмами нахождения наибольшего общего делителя – алгоритмом Евклида, бинарным алгоритмом Евклида, – и их расширенными версиями для нахождения линейного представления этого делителя, после чего все четыре алгоритма были успешно реализованы на языке программирования **Python**.

