OAMK Kaukovainion kampus, Tietotekniikka / Susanna Kujanpää IN00BP74 Johdatus tietotekniikan opintoihin, Yhtälöt ja funktio-oppi

TEHTÄVÄT

1. Sievennä

- a) 3a + b 2a + b 4b
- b) $5a^2b 2ab^2 + 3a^2b + ab^2$
- c) (2a + b) + (5b 3a)
- d) (2a + b) (5b 3a)
- e) $a^2b 5ab^2 (a^2b (a^2b 2ab^2)) + 3a^2b$

2. Sievennä

- a) $2a^2b \cdot 3a^3b^2$
- b) $xy^3 \cdot 2xy^4$

c) $\frac{4 a^3 b^2}{2 ab^3}$

d) $\frac{6 x^2 yz^3}{3 xy^3 z}$

e) $(2 a^2 b)^2$

f) $(5x/y^2)^3$

g)
$$\frac{(2a^2b)^2}{ab^2}$$

3. Sievennä

- a) $x(x + 2) 2(x^2 + 1)$
- b) $(x + 2)(x^2 + 1)$
- c) (a+2)(b+3) 3(a+b)
- d) $x(x^2-1-2(x-(1-2x))+1)$

4. Sievennä

a)
$$(x + a)^2 - (x - a)^2$$

b)
$$(x + 2a)^2 - (x + a)(x - a)$$

c)
$$(2x + 1)^3$$

d)
$$(2x - 3y)^4$$

5. Ratkaise yhtälöt

a)
$$x + 1 = 2 - (3x + 6)$$

b)
$$\frac{x+1}{2} = x - 2$$

d) $ax - 2 = bx + 3$

c)
$$2 - (3x - 1) = 3 - (8x + 1)$$

d)
$$ax - 2 = bx + 1$$

e)
$$\frac{3}{2x-3} = \frac{5}{3x-2}$$

f)
$$\frac{-6(x-1)+6}{2}$$
 = 10(x + 1) + 10

IN00BP74tehtvast.nb 2

g)
$$x(x-2) = x^2 + 1$$

i)
$$\frac{x}{2} - \frac{x-1}{3} = 4$$

h)
$$\frac{1-2x}{4} + x = \frac{1}{2}$$

j) 1 - $(x - (2x + (x - 1) - 1) + 2) = x + 1$

- 6. Osoita, että yhtälö ratkeaa kaikilla x:n arvoilla, kun $x(x + 1) - x^2 = x$
- Osoita, että yhtälöllä $x(x + 1) x^2 = x + 1$ ei ole ratkaisuja. 7.
- Millä parametrin a arvolla yhtälöllä 2(ax 1) = ax + 1 on ratkaisu x = 2? 8.
- 9. Kolmen peräkkäisen kokonaisluvun summa on 93. Etsi luvut.
- 10. Suorakulmion pituus on 6 m enemmän kuin sen leveys. Piiri on 52 m. Laske lävistäjän pituus.
- Suorakulmaisen kolmion sivut ovat x ja 2 ja hypotenuusa on 2x + 1. Mikä on kolmion piirin arvo? 11.
- 12. Tuotteen hinta nousee ensin p\% ja sen jälkeen laskee 2p\%. Tällöin tuotteen hinta on 98\% alkuperäisestä hinnasta. Paljonko on prosentti p?
- 13. Käytä diskriminanttia ja laske ratkaisujen lukumäärä, kun

a)
$$-3x^2 + 10x + 1 = 0$$

b)
$$x^2 + 7x + 18 = 0$$

b)
$$x^2 + 7x + 18 = 0$$
 c) $2x^2 - 12x + 28 = 0$

Millä parametrin a arvoilla yhtälöllä $x^2 + 2x + a = 3$ on 14.

a) kaksi

b) yksi

c) nolla

reaalista ratkaisua?

- Mikä on parametrin k arvo, kun paraabeli $y = x^2 + (k+2)x + 2k + 1$ koskettaa x-akselia? 15.
- 16. Kahden luvun summa on -2 ja tulo on -15. Etsi luvut.

17. a)
$$\frac{1}{x} + \frac{3}{2x} = 3$$

b)
$$\frac{x-1}{x+1} + \frac{1}{x} = 1$$

17. a)
$$\frac{1}{x} + \frac{3}{2x} = 3$$
 b) $\frac{x-1}{x+1} + \frac{1}{x} = 1$ c) $\frac{x-1}{2x+2} + \frac{x-1}{x+1} = 1$

d)
$$\frac{2}{3x-2} + 1 = \frac{1}{3x-2}$$

e)
$$\frac{x+1}{x-2} + \frac{x-1}{x+2} = 2$$

d)
$$\frac{2}{3x-2} + 1 = \frac{1}{3x-2}$$
 e) $\frac{x+1}{x-2} + \frac{x-1}{x+2} = 2$ f) $\frac{x+1}{x-2} + \frac{x-1}{x+2} = -2$

g)
$$\frac{x}{x-1} - \frac{x+1}{x} = 1$$

g)
$$\frac{x}{x-1} - \frac{x+1}{x} = 1$$
 h) $\frac{3x^2-1}{x^2} - 3 = -9$

18. a)
$$\sqrt{x+3} = 5$$
 b) $\sqrt{x+2} = 2x$ c) $\sqrt{2x-5} = x-2$

b)
$$\sqrt{x+2} = 2x$$

c)
$$\sqrt{2}x - 5 = x -$$

d)
$$\sqrt{3x+5} = \sqrt{1+7x}$$

e)
$$\sqrt{2x-1}+1=3x$$
 f) $\sqrt{x+1}-\sqrt{x}=1$

f)
$$\sqrt{x} + 1 - \sqrt{x} = 1$$

g)
$$\sqrt{1 + \sqrt{2 + x}} = 3$$
 h) $\sqrt{2x - 1} = 1 - \sqrt{-2x + 2}$ i) $\sqrt{3x + 2} = 1 + \sqrt{x + 1}$

h)
$$\sqrt{2x-1} = 1 - \sqrt{-2x+2}$$

19. Määritä funktion a) $f(x) = \sqrt{4 - 2x}$ määrittelyjoukko ja arvojoukko.

b)
$$f(x) = \frac{x+2}{3x+1}$$
 c) $f(x) = x^2 + 1$

c)
$$f(x) = x^2 +$$

20. Laske f(-2), kun a) $f(x) = \sqrt{4 - 2x}$

b)
$$f(x) = \frac{x+2}{3x+1}$$
 c) $f(x) = x^2 + 1$

c)
$$f(x) = x^2 + 1$$

- 21. Kirjoita auki
- a) $\lg(\frac{2 \operatorname{ab}^2}{c})$ b) $\lg(\frac{(a+b)^2}{\sqrt{c}})$
- **22.** Sievennä a) $\lg(\frac{x^3y^2}{z})$ $2\lg(\frac{xy}{z})$ b) $\ln(\frac{a}{b}) + \ln(\frac{b}{c}) + \ln(\frac{c}{d}) + \ln(\frac{d}{a})$

23. Sievennä

a)
$$ln(xy) + ln v^2$$

b)
$$\ln(y + y) = \ln y$$

c)
$$\log t^3 - \log 2t + 2\log 3$$

d)
$$\ln(6x + 4) - \ln(3x + 2)$$

g) $\ln(6x + 4) - \ln(3x + 2)$

b)
$$\ln(x + y) - \ln y$$
 c) $\log t^3 - \log 2t + 2\log t$
e) $\ln(1 + x) - \ln(1 - x^2)$ f) $\lg \frac{x^2}{y} - 2\lg z + 2\lg y$

f)
$$\lg \frac{x^2}{x^2} - 2\lg z + 2\lg x$$

g)
$$lgab + 2lga - lgb$$

h)
$$\frac{\lg(9x)}{2} - \lg(\frac{2}{3x})$$

$$100.8 = 2$$

b)
$$\log_3 27 = ?$$

a)
$$\log_2 8 = ?$$
 b) $\log_3 27 = ?$ c) $\log_7 50 = ?$

IN00BP74tehtvast.nb 3

25. Ratkaise

a)
$$16 = 10^{\circ}$$

a)
$$16 = 10^x$$
 b) $3^{2x+1} = 7$

c)
$$2e^x = 9$$

d)
$$10^{3x-2} = 20$$
 e) $e^{3x} - 2e^x = 0$ f) $e^{2x} = 7e^x$ g) $3^{3x} = 7^{x+1}$

e)
$$e^{3x} - 2e^x = 0$$

f)
$$e^{2x} = 7e$$

g)
$$3^{3x} = 7^{x+1}$$

h)
$$2^{x-1} = 4^{2x}$$

i)
$$\frac{e^x + 1}{e^x - 1} = 5$$

26. Ratkaise

a)
$$ln(x^2 - 1) =$$

b)
$$2\ln x + 5 =$$

a)
$$\ln(x^2 - 1) = 3$$
 b) $2\ln x + 5 = 1$ c) $\ln(x + 1) + \ln x = \ln 12$

d)
$$\lg(x-1) + 1 = \lg(x^2 - 1)$$

d)
$$\lg(x-1) + 1 = \lg(x^2-1)$$
 e) $\lg x^2 = 1 + \lg(x^2-1)$ f) $\lg(x+2) - 2 = -1 - \lg(x+1)$

g)
$$\frac{\ln(x+1)+1}{\ln(x+1)-3} = 5$$

27. Ratkaise a) $\sin x = 0.35$

b)
$$\cos x = -0.88$$

b)
$$\cos x = -0.88$$
 c) $\sin(2x + 1) = 0.315$

d)
$$cos(3x - 2) = -0.777$$

- 28. Suorakulmaisen kolmion kateetit ovat 4 ja 7. Laske hypotenuusa ja pinta-ala.
- **29.** Suorakulmaisen kolmion pituuksien suhteet ovat 1: 2: $\sqrt{5}$ ja pinta-ala on 2. Laske sivujen pituudet.
- **30.** Tasakylkisen kolmion kyljet ovat 630mm ja kanta on 450mm. Laske kannan vastainen korkeus.

VASTAUKSET:

b)
$$8a^2b - ab^2$$
 c)

1. a)
$$a - 2b$$
 b) $8a^2b - ab^2$ c) $-a + 6b$ d) $5a - 4b$ e) $4a^2b - 7ab^2$
2. a) $6a^5b^3$ b) $2x^2y^7$ c) $\frac{2a^2}{b}$ d) $\frac{2xz^2}{y^2}$ e) $4a^4b^2$ f) $\frac{125x^3}{y^6}$

e)
$$4a^4b^2$$

f)
$$\frac{125 x^3}{125 x^3}$$

3. a)
$$-x^2 + 2x - 2$$

b)
$$x^3$$

3. a)
$$-x^2 + 2x - 2$$
 b) $x^3 + 2x^2 + x + 2$ c) ab $-b + 6$ d) $x^3 - 6x^2 + 2x$

6 d)
$$x^3 - 6x^2 + 2x$$

4. a)
$$4ax$$
 b) $5a^2 + 4ax$ c) $8x^3 + 12x^2 + 6x + 1$

c)
$$\delta x^{2} + 12x + 1$$

d)
$$16x^4 - 96x^3y + 216x^2y^2 - 216xy^3 + 81y^4$$

b) 5 c) -1/5 d)
$$\frac{5}{a-b}$$
 e) 9 f) -14/13 g) -1/2

d)
$$\frac{5}{a}$$

8.
$$a = 3/2$$

9.30, 31 and 32

10.
$$\sqrt{356}$$

11.
$$1 + \sqrt{13}$$

14. a)
$$a < 4$$
 b) $a = 4$

c)
$$a > 4$$

c) 5

15.
$$k = 0 \lor k = 4$$

b) 1 c) 5 d) 1/3 e) ei ratk. f)
$$\pm$$
 1 g) $\frac{1 \pm \sqrt{5}}{2}$ h) \pm 1/3

b)
$$\frac{1+\sqrt{33}}{8}$$

c) 3 d) 1 e) ei ratk. f) 0 g) 62 h) 1/2
$$\vee$$
 1

i)
$$\frac{1+\sqrt{5}}{2}$$

19. a) Mf: $x \le 2$ ja Af: $f(x) \ge 0$

b) Mf:
$$y \neq 1/2$$
 in $A f: f(y) \subset D$

b) Mf:
$$x \neq -1/3$$
 ja Af: $f(x) \in R$ c) Mf: $x \in R$ ja Af: $x \ge 1$

20. a)
$$\sqrt{8}$$
 b) 0

$$\log 2 + \log a + 2 \log b - \log c$$

IN00BP74tehtvast.nb 4

22. a) lg xz b) 0

23. a)
$$\ln xy^3$$
 b) $\ln(\frac{x+y}{y})$ c) $\log \frac{f^4}{2}$ d) $\ln 2$ e) $-\ln(1-x)$ f) $\log \frac{x^2y}{z^2}$ g) $\log \frac{a^3}{b^2}$ h) $\log \frac{9x\sqrt{x}}{2}$

24. a) 3

b) 3

c) 2,01

25. a) 1,20 b) 0,39 g) 1,44 h) -1/3 c) 1,5

d) 1,1 e) 0,35 f) 1,95

26. a) ±4, 59 b) 0,135

c) 3

i) 0,41

d) 9

e) $\pm \sqrt{\frac{10}{9}}$ f) $\frac{-3 + \sqrt{41}}{2}$

g) 53,6

27. a)
$$20.5^{\circ} + n \cdot 360^{\circ} \lor 159.5^{\circ} + n \cdot 360^{\circ}$$

b)
$$\pm 151,6^{\circ} + n \cdot 360^{\circ}$$

b)
$$\pm 151,6^{\circ} + n \cdot 360^{\circ}$$
 c) $-0,34 + n\pi \lor 0,91 + n\pi$

d) 1,48 + n·
$$\frac{2\pi}{3}$$
 \vee -0,15 + n· $\frac{2\pi}{3}$ **28.** 8,1 ja 14 yksikkö²

30. 590mm