

Clases Monótonas, λ -sistemas y π -sistemas

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 11) 22.FEBRERO.2023

Definición

Sea X un conjunto no vacío. Una colección $\mathcal M$ de subconjuntos de X se llama una **clase monótona** en X si:

- i) $X \in \mathcal{M}$,
- ii) $\{A_k\}_{k\geq 1}\subseteq \mathcal{M}$, con $A_1\subseteq A_2\subseteq A_3\subseteq \ldots \implies \bigcup_k A_k\in \mathcal{M}$,
- iii) $\{A_k\}_{k\geq 1}\subseteq \mathcal{M}$, con $A_1\supseteq A_2\supseteq A_3\supseteq\ldots\implies\bigcap_k A_k\in \mathcal{M}$.

Definición

Sea X un conjunto no vacío. Una colección $\mathcal M$ de subconjuntos de X se llama una **clase monótona** en X si:

- i) $X \in \mathcal{M}$,
- ii) $\{A_k\}_{k>1} \subseteq \mathcal{M}$, con $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots \implies \bigcup_k A_k \in \mathcal{M}$,
- iii) $\{A_k\}_{k\geq 1}\subseteq \mathcal{M}$, con $A_1\supseteq A_2\supseteq A_3\supseteq\ldots\implies\bigcap_k A_k\in \mathcal{M}$.

Lema

La intersección arbitraria $\bigcap_{\ell \in \Lambda} \mathcal{M}_{\ell}$ de clases monótonas \mathcal{M}_{ℓ} en X, es una clase monótona en X.

Prueba:

- i) $X \in \mathcal{M}_{\ell}$, para todo $\ell \in \Lambda$. Luego, $X \in \bigcap_{\ell} \mathcal{M}_{\ell}$.
- ii) Sea $\{A_k\}_{k=1}^{\infty}\in\bigcap_{\ell}\mathcal{M}_{\ell}$, una cadena ascendente de conjuntos. Entonces todos los A_k están contenidos en las \mathcal{M}_{ℓ} , $\forall \ell\in\Lambda$. Como cada \mathcal{M}_{ℓ} es clase monótona, entonces $\bigcup_k A_k\in\mathcal{M}_{\ell}$, $\forall \ell\in\Lambda$. Luego, $\bigcup_k A_k\in\bigcap_{\ell}\mathcal{M}_{\ell}$.
- iii) Sea $\{A_k\}_{k=1}^{\infty} \in \bigcap_{\ell} \mathcal{M}_{\ell}$, una cadena descendente de conjuntos. Entonces todos los A_k están contenidos en las \mathcal{M}_{ℓ} , $\forall \ell \in \Lambda$. Como cada \mathcal{M}_{ℓ} es clase monótona, entonces $\bigcap_k A_k \in \mathcal{M}_{\ell}$, $\forall \ell \in \Lambda$. Luego, $\bigcap_k A_k \in \bigcap_{\ell} \mathcal{M}_{\ell}$.

Esto muestra que $\bigcap_\ell \mathcal{M}_\ell$ es clase monótona en X. \square

Teorema

Sea X conjunto no vacío, y sea S cualquier colección de subconjuntos de X. Existe una clase monótona m(S) en X tal que

- a) $S \subseteq m(S)$,
- b) si \mathcal{M} es otra clase monótona en X tal que $\mathcal{S} \subseteq \mathcal{M}$, entonces $m(\mathcal{S}) \subseteq \mathcal{M}$.

Prueba: Consideramos la familia de todas las σ -álgebras de X que contienen a S:

$$\Phi = \{ \mathcal{F} : \mathcal{F} \text{ es } \sigma\text{-\'algebra de } X, \text{ y } \mathcal{S} \subseteq \mathcal{F} \}.$$

Ya vimos que $\Phi \neq \emptyset$. Definimos $\mathcal{A} = \sigma(\mathcal{S}) = \bigcap \Phi = \bigcap_{\mathcal{F} \in \Phi} \mathcal{F}$. Observe que $\sigma(\mathcal{S})$ es una σ -álgebra en X, por ser intersección de σ -álgebras, y además $\mathcal{S} \subseteq \mathcal{A}$.

Si $\mathcal G$ es alguna σ -álgebra en X con $\mathcal S\subseteq\mathcal G$, entonces $\mathcal G$ es uno de los elementos en Φ , de modo que $\mathcal G\subseteq\bigcap\Phi=\mathcal A$. \square

Definición

m(S) se llama la **clase monótona generada** por S.

Proposición

Sea X conjunto no vacío, y sean S, T colecciones de subconjuntos en X. La clase monótona generada satisface las siguientes propiedades:

- i) $S \subseteq m(S)$,
- ii) si $S \subseteq T$, entonces $m(S) \subseteq m(T)$,
- iii) m(m(S)) = m(S),
- iv) si S es una clase monótona, entonces m(S) = S.

Prueba: Ejercicio!

Proposición

Toda σ -álgebra \mathcal{A} en X es una clase monótona.

Prueba: Mostramos las tres condiciones requeridas para ser clase monótona.

- i) $X \in A$, ya que A es σ -álgebra.
- ii) Sea $\{A_k\}_{k\geq 1}$ una secuencia ascendente de conjuntos en \mathcal{A} . Como \mathcal{A} es cerrada bajo uniones enumerables, entonces $\bigcup_k A_k = \lim_k A_k \in \mathcal{A}$. Esto muestra que \mathcal{A} es cerrada bajo unión secuencias ascendentes.
- iii) Sea $\{A_k\}_{k\geq 1}$ una secuencia descendente de conjuntos en \mathcal{A} . Como \mathcal{A} es σ -álgebra, entonces la secuencia $\{A_k^c\}_{k\geq 1}$ está totalmente contenida en \mathcal{A} . Además, esta es una secuencia ascendente. Por (ii), tenemos que $\bigcup_k A_k^c = \left(\bigcap_k A_k\right)^c \in \mathcal{A}$. Luego, siendo \mathcal{A} una σ -álgebra, el complemento $\lim_k A_k = \bigcap_k A_k \in \mathcal{A}$. Esto muestra que \mathcal{A} es cerrada bajo unión secuencias descententes.

Portanto, ${\mathcal A}$ es una clase monótona. \square

Teorema (Teorema de Clases Monótonas)

Sea S una colección de conjuntos en X que es cerrada bajo complementos e intersecciones finitas (un álgebra en X). Entonces, $\sigma(S) = m(S)$.

Prueba: De la proposición anterior, $\sigma(S)$ es una clase monótona, con $S \subseteq \sigma(S)$. Luego, $m(S) \subseteq \sigma(S)$.

La parte difícil del teorema es mostrar que $\sigma(S) \subseteq m(S)$. Para ello, es suficiente mostrar que m(S) es una σ -álgebra que contiene a S.

1.-) Sea $E \in \mathcal{S}$, y consideremos el conjunto

$$\mathcal{G}(E) = \{F \in m(\mathcal{S}): E - F, E \cap F, F - E \in m(\mathcal{S})\}.$$

Afirmamos que $E \in \mathcal{S} \implies m(\mathcal{S}) \subseteq \mathcal{G}(E)$.

Para probar esto, tomamos $E \in \mathcal{S}$. Mostraremos que

- i) $S \subseteq G(E)$,
- ii) G(E) es una clase monótona.
- (i) Sea $H \in \mathcal{S}$. Como $\mathcal{S} \subseteq m(\mathcal{S})$ y como \mathcal{S} es cerrada bajo complementos, entonces $E, E^C, H, H^C \in \mathcal{S} \subseteq m(\mathcal{S})$.

Ahora, como m(S) es una clase monótona, tomemos la secuencia monótona $\{A_k\}_k$, donde

- $A_1 = E$, $A_k = E H = E \cap H^C$, para todo $k \ge 2$. Entonces $\lim_k A_k = E H \in m(S)$.
- $A_1 = H$, $A_k = H E = H \cap E^C$, para todo $k \ge 2$. Entonces $\lim_k A_k = H E \in m(S)$.
- $A_1 = E$, $A_k = E \cap H$, para todo $k \ge 2$. Entonces $\lim_k A_k = E \cap H \in m(S)$.

Portanto, $H \in \mathcal{G}(E)$. Esto muestra que $S \subseteq \mathcal{G}(E)$.

(iia) Sea $\{H_k\}_{k\geq 1}$ una secuencia ascendente en $\mathcal{G}(E)$, con $H_k\nearrow H=\bigcup_k H_k$. Como los $H_k\in\mathcal{G}(E)$, entonces $E-H_k,E\cap H_k,H_k-E\in m(\mathcal{S}),\forall k$.

Pero,
$$H_k \nearrow H \implies E - H_k \searrow E - H$$
, $E \cap H_k \nearrow E \cap H$, $H_k - E \nearrow H - E$ (verificar esto!!)

Siendo m(S) clase monótona, entonces $E-H, E\cap H, H-E\in m(S)$, lo que muestra que $H\in \mathcal{G}(E)$. Portanto, $\mathcal{G}(E)$ es cerrada bajo secuencias ascendentes.

(iib) Sea $\{H_k\}_{k\geq 1}$ una secuencia descendente en $\mathcal{G}(E)$, con $H_k \searrow H = \bigcap_k H_k$. $E - H_k$, $E \cap H_k$, $H_k - E \in m(\mathcal{S})$, $\forall k$.

Pero,
$$H_k \searrow H \implies E - H_k \nearrow E - H$$
, $E \cap H_k \searrow E \cap H$, $H_k - E \searrow H - E$ (verificar!)

Como m(S) es clase monótona, tenemos que $E-H, E\cap H, H-E\in m(S)$. Luego, $H\in \mathcal{G}(E)$ y $\mathcal{G}(E)$ es cerrada bajo secuencias descendentes.

Portanto, $E \in \mathcal{S} \Rightarrow \mathcal{G}(E)$ es una clase monótona.

De lo anterior, si $E \in \mathcal{S}$, entonces $\mathcal{G}(E)$ es una clase monótona conteniendo a \mathcal{S} . Portanto, $(S) \subseteq \mathcal{G}(E)$.

2.-) Extendemos la propiedad anterior a conjuntos en m(S). Esto es, si $E \in (S)$, consideramos el conjunto

$$\mathcal{G}(E) = \{F \in m(\mathcal{S}): E - F, E \cap F, F - E \in m(\mathcal{S})\}.$$

Afirmamos que $E \in m(S) \implies m(S) \subseteq G(E)$.

Para probar esto, tomamos $E \in m(S)$. Mostraremos que

- i) $S \subseteq G(E)$,
- ii) G(E) es una clase monótona.
- (i) Sea $H \in \mathcal{S}$. Entonces, $H \in m(\mathcal{S})$. Por otro lado, como $\mathcal{S} \subseteq m(\mathcal{S}) \subseteq \mathcal{G}(H)$, tenemos que $E \in \mathcal{S} \Rightarrow E \in \mathcal{G}(H)$. De ahí que $E H, E \cap H, H E \in m(\mathcal{S})$.

Esto muestra que $H \in \mathcal{G}(E)$, y portanto $\mathcal{S} \subseteq \mathcal{G}(E)$.

(iia) Sea $\{H_k\}_{k\geq 1}$ una secuencia ascendente en $\mathcal{G}(E)$, con $H_k\nearrow H=\bigcup_k H_k$. Como los $H_k\in\mathcal{G}(E)$, entonces $E-H_k,E\cap H_k,H_k-E\in m(\mathcal{S}),\forall k$.

Pero,
$$H_k \nearrow H \implies E - H_k \searrow E - H$$
, $E \cap H_k \nearrow E \cap H$, $H_k - E \nearrow H - E$ (verificar!)

Siendo m(S) clase monótona, entonces $E-H, E\cap H, H-E\in m(S)$, lo que muestra que $H\in \mathcal{G}(E)$. Portanto, $\mathcal{G}(E)$ es cerrada bajo secuencias ascendentes.

(iib) Sea $\{H_k\}_{k\geq 1}$ una secuencia descendente en $\mathcal{G}(E)$, con $H_k \searrow H = \bigcap_k H_k$. $E - H_k$, $E \cap H_k$, $H_k - E \in m(\mathcal{S})$, $\forall k$.

Pero,
$$H_k \searrow H \implies E - H_k \nearrow E - H$$
, $E \cap H_k \searrow E \cap H$, $H_k - E \searrow H - E$ (verificar!)

Como m(S) es clase monótona, tenemos que $E-H, E\cap H, H-E\in m(S)$. Luego, $H\in \mathcal{G}(E)$ y $\mathcal{G}(E)$ es cerrada bajo secuencias descendentes.

Portanto, $E \in m(S) \Rightarrow G(E)$ es una clase monótona.

- 3.-) Mostramos ahora que m(S) es una σ -álgebra en X.
 - $X \in m(S)$, ya que m(S) es una clase monótona. En particular, de la parte (2.) $m(S) \subseteq G(X)$. Observe que la colección

$$\mathcal{G}(X) = \{F \in m(\mathcal{S}): \ F \cap X, F - X, X - F \in m(\mathcal{S})\} = \{F \in m(\mathcal{S}): \ F, F^c, \varnothing \in m(\mathcal{S})\}.$$

- Si $E \in m(S)$, entonces $E \in \mathcal{G}(X)$. Luego, $E^c \in m(S)$.
- Si $E, F \in m(S)$, entonces $E, F \in \mathcal{G}(E)$ (por la parte (2)). De ahí que $E \cap F \in m(S)$.

Esto muestra que m(S) es un álgebra. (Portanto, cerrada bajo uniones finitas).

• Ahora, si $\{A_n\}_{n\geq 1}\mathcal{S}$) es una secuencia en $m(\mathcal{S})$, consideremos las secuencias de uniones parciales $E_k = A_1 \cup A_2 \cup \ldots \cup A_k, \quad \text{para } k \geq 1.$

Tenemos que $\{E_k\}_{k\geq 1}\subseteq m(\mathcal{S})$, y E_k es una secuencia monótona. Como $m(\mathcal{S})$ es una clase monótona, entonces $\lim E_k=\bigcup_n A_n\in m(\mathcal{S})$.

Esto muestra que m(S) es cerrada bajo uniones enumerables, y portanto m(S) es una σ -álgebra.

(4.-) Finalmente, como $S \subseteq m(S)$ y m(S) es una σ -álgebra, entonces $\sigma(S) \subseteq m(S)$. Esto muestra que $\sigma(S) = m(S)$, lo que concluye el teorema.

Corolario

Sea $\mathcal S$ una colección de conjuntos en X que es cerrada bajo complementos e intersecciones finitas (un álgebra en X). Entonces, si $\mathcal M$ es una clase monótona tal que $\mathcal S\subseteq \mathcal M$, entonces $\sigma(\mathcal S)\subseteq \mathcal M$.

Prueba: Se sigue de forma directa a partir del Teorema de Clases Monótonas. \Box

Corolario

Sea $\mathcal S$ una colección de subconjuntos de X, que es cerrada bajo complementos e intersecciones finitas (esto es, $\mathcal S$ ea un álgebra en X). Sea $\mathcal M$ una clase monótona en X tal que $\mathcal S\subseteq$. Entonces, $\sigma(\mathcal S)\subseteq\mathcal M$.

Prueba: Se sigue directamente del Teorema de Clases Monótonas. \Box

λ -sistemas

Definición

Sea X conjunto no vacío. Una colección \mathcal{D} de subconjuntos de X se llama un **sistema de Dynkin** (un λ -**sistema** o un **d-sistema**), si satisface:

- i) $X \in \mathcal{D}$,
- ii) $A \in \mathcal{D} \implies A^c \in \mathcal{D}$,
- iii) Si $\{A_k\}_{k\geq 1}\subseteq \mathcal{D}$, son disjuntos a pares $(A_i\cap A_j=\varnothing, para\ i\neq j)$, entonces la unión disjunta $\bigcup_k A_k\in \mathcal{D}$.

Observaciones:

- Toda σ -álgebra en X es un λ -sistema.
- No toda álgebra de conjuntos en X es un λ -sistema.

λ -sistemas

Teorema (Teorema-Definición)

Sea X conjunto no vacío, y sea S cualquier colección de subconjuntos de X. Existe un λ -sistema $\delta(S)$ en X tal que

- a) $S \subseteq \delta(S)$,
- b) si \mathcal{D} es otro λ -sistema en X tal que $\mathcal{S} \subseteq \mathcal{D}$, entonces $\delta(\mathcal{S}) \subseteq \mathcal{D}$.

 $\lambda(\mathcal{S})$ se llama el λ **-sistema generado** por \mathcal{S} . \square

Proposición

El λ -sistema generado satisface las siguientes propiedades:

- $S \subseteq \delta(S)$,
- si $S \subseteq T$, entonces $\delta(S) \subseteq \delta(T)$,
- $\delta(\delta(S)) = \delta(S)$,
- si S es un λ -sistema, entonces $\delta(S) = S$,
- \bullet $\delta(S) \subseteq \sigma(S)$.

Definición

Sea X conjunto no vacío. Una colección $\mathcal F$ de subconjuntos de X se llama un π -sistema si satisface:

- i) $\mathcal{F} \neq \emptyset$,
- ii) $A, B \in \mathcal{F} \implies A \cap B \in \mathcal{F}$.

Observaciones:

- Toda σ -álgebra en X es un π -sistema.
- Toda álgebra de conjuntos en X es un π -sistema.

Teorema (Teorema-Definición)

Sea X conjunto no vacío, y sea $\mathcal S$ cualquier colección de subconjuntos de X. Existe un π -sistema $\pi(\mathcal S)$ en X tal que

- a) $S \subseteq \pi(S)$,
- b) si \mathcal{F} es otro π -sistema en X tal que $\mathcal{S} \subseteq \mathcal{F}$, entonces $\pi(\mathcal{S}) \subseteq \mathcal{F}$.
- $\pi(S)$ se llama el π -sistema generado por S.

Proposición

El π -sistema generado satisface las siguientes propiedades:

- i) $S \subseteq \pi(S)$,
- ii) si $S \subseteq T$, entonces $\pi(S) \subseteq \pi(T)$,
- iii) $\pi(\pi(S)) = \pi(S)$,
- iv) si S es un π -sistema, entonces $\pi(S) = S$.

Lemma

Un sistema de Dynkin \mathcal{D} en X es una σ -álgebra \iff es cerrado bajo intersecciones finitas (esto es, A, B $\in \mathcal{D} \Rightarrow A \cap B \in \mathcal{D}$).

Prueba: Ejercicio! \Box

Teorema

Sea S una colección de subconjuntos en X. Si S es cerrada bajo intersecciones finitas, entonces $\delta(S) = \sigma(S)$.

Prueba: Ejercicio!

Observaciones:

- \mathcal{F} es σ -álgebra $\Longrightarrow \mathcal{F}$ es λ -sistema y es π -sistema.
- \mathcal{F} es λ -sistema + π -sistema $\Longrightarrow \mathcal{F}$ es σ -álgebra.

Teorema (Teorema π - λ)

Sea X un conjunto no vacío. Si $\mathcal P$ es un π -sistema en X, y $\mathcal D$ es un λ -sistema en X, con $\mathcal P\subseteq \mathcal D$, entonces $\sigma(\mathcal P)\subseteq \mathcal D$.

Prueba: Ejercicio! \Box