# Abilità informatiche

A.A. 2023/2024

05b - Modellazione dei Dati

Sebastian Barzaghi

sebastian.barzaghi2@unibo.it
https://orcid.org/0000-0002-0799-1527

Riassunto della lezione precedente (05b)

# La nave di Teseo



### Non esiste un unico modello



Ipotizziamo che non abbiamo interesse a modellare le persone come entità, ma ci basta sapere i nomi delle persone coinvolte nel ciclo di vita del libro



- Non abbiamo più la classe Persona
- "scritto da" diventa un attributo di Libro
- Modello più semplice, ma perdiamo espressività ed elasticità

#### Non esiste un unico modello







Ipotizziamo che abbiamo interesse a modellare il tempo come periodo caratterizzato da un inizio e una fine

- Abbiamo una nuova entità "1984" appartenente alla nuova classe "Intervallo di tempo" con due attributi "data di inizio" e "data di fine"
- "pubblicato nel" diventa una relazione
- Modello più complesso ed espressivo

#### Non esiste un unico modello



Ipotizziamo che abbiamo interesse a modellare le pagine singole

- Abbiamo 271 nuove entità appartenente alla nuova classe "Pagina"
- "ha pagine" diventa una relazione
- Modello più complesso ed espressivo

#### Ereditarietà



Una sottoclasse eredita tutte le proprietà della propria superclasse e (solitamente) ha proprietà aggiuntive che ne giustificano l'esistenza

"Graphic novel" eredita TUTTE le proprietà di "Libro" (in questo caso stiamo utilizzando solo "ha pagine"), e in aggiunta ha anche "illustrato da"



Neuromante: la Graphic Novel, Vol. 1

#### Ereditarietà



Aggiungiamo una nuova classe "Gruppo"

Però: "scritto da" e "illustrato da" possono applicarsi sia a persone singole che a gruppi

Invece di assegnare le stesse proprietà a due classi diverse, possiamo assegnarle ad una superclasse a loro comune: Agente



# Proprietà o classe: tipizzazione



I concetti di Libro e Graphic novel sono Classi I concetti di Libro e Graphic novel sono *Tipi*: ci servono per classificare oggetti bibliografici

# Proprietà o classe: tipizzazione





Molteplici classi particolari (maggiore espressività, molto difficile da mantenere) Stessa differenziazione, ma con meno classi e nessuna informazione particolare (minore espressività, molto più facile da gestire)

# Proprietà o classe: eventi



Il concetto di creazione di un Libro è reso da una relazione "scritto da" tra Libro e Agente Il concetto di creazione di un Libro è una classe "Creazione" che rappresenta l'evento in cui un'istanza di libro è stata creata da un'istanza di Agente

# Proprietà o classe: eventi



Impossibile capire chi ha pubblicato quando



Il concetto di "Pubblicazione" (inteso come attività o evento) permette di disambiguare (rendendo il modello più complesso e più corretto)

### Dominio e codominio

**Dominio**: classe del primo membro della proprietà

**Codominio**: classe del secondo membro della proprietà





# Vincoli sulle proprietà

**Opzionale** vs **necessaria**: deve avere *almeno* un valore per ogni istanza del suo dominio (= *un Libro deve essere scritto da almeno un Agente*)



**Monovalente** vs **polivalente**: deve avere *al massimo* un valore per ogni istanza del suo dominio (= un Libro può avere al massimo un numero di pagine)



**Dominio e/o codominio**: ogni istanza del (co)dominio deve appartenere ad una/delle specifica/he classe/i (= "ha pagina" può solo avere come dominio Libro e codominio Pagina)



#### Vincoli e cardinalità



m<sub>a</sub>: numero *minimo* di istanze del dominio (es.
 Libro) con cui un'istanza del codominio (es. Agente)
 deve avere una relazione



n<sub>a</sub>: numero *massimo* di istanze del dominio (es. Libro) con cui un'istanza del codominio (es. Agente) *può* avere una relazione



Un Libro deve essere scritto da almeno  $\mathbf{m}_{\mathbf{a}}$  e può essere scritto al massimo da  $\mathbf{n}_{\mathbf{a}}$  Agenti

#### Vincoli e cardinalità



**m**<sub>b</sub>: numero *minimo* di istanze del codominio (Agente) con cui un'istanza del dominio (Libro) *deve* avere una relazione



n<sub>b</sub>: numero *massimo* di istanze del codominio
 (Agente) con cui un'istanza del dominio (Libro) *può* avere una relazione



Un Agente deve aver scritto almeno  $\mathbf{m_b}$  e può aver scritto al massimo  $\mathbf{n_b}$  Libri

#### Vincoli e cardinalità

#### $m_{a}, m_{b}$ :

- 0 → proprietà opzionale
- 1 → proprietà necessaria

# n<sub>a</sub>, n<sub>b</sub>:

- 1 → proprietà monovalente;
- \* → proprietà polivalente





#### Cos'è un database?



Collezione organizzata di dati in modo da consentirne la gestione



#### Vari tipi, tra cui:

- Relazionali: i più utilizzati, basati su tabelle relazionali e adatti ai dati strutturati
- NoSQL: adatti ai dati semi- o non strutturati, basati su vari modelli (documenti, grafi, chiave-valore, ecc.)

| dvdrental=# select title, |              |                |                  |
|---------------------------|--------------|----------------|------------------|
| dvdrental-# where lengt   |              | lacement_c     | cost > 29.50     |
| dvdrental-# order by ti   |              |                |                  |
| title                     | release_year | length         | replacement_cost |
| West Lion                 | +<br>l 2006  | ++<br>  159    | 29.99            |
| Virgin Daisy              | l 2006       | 159  <br>  179 | 29.99            |
| Uncut Suicides            | l 2006       | 179  <br>  172 | 29.99            |
| Tracy Cider               | l 2006       | 172  <br>  142 | 29.99            |
|                           |              |                | 29.99            |
| Song Hedwig               | 2006         | 165            |                  |
| Slacker Liaisons          | 2006         | 179            | 29.99            |
| Sassy Packer              | 2006         | 154            | 29.99            |
| River Outlaw              | 2006         | 149            | 29.99            |
| Right Cranes              | 2006         | 153            | 29.99            |
| Quest Mussolini           | 2006         | 177            | 29.99            |
| Poseidon Forever          | 2006         | 159            | 29.99            |
| Loathing Legally          | 2006         | 140            | 29.99            |
| Lawless Vision            | 2006         | 181            | 29.99            |
| Jingle Sagebrush          | 2006         | 124            | 29.99            |
| Jericho Mulan             | 2006         | 171            | 29.99            |
| Japanese Run              | 2006         | 135            | 29.99            |
| Gilmore Boiled            | 2006         | 163            | 29.99            |
| Floats Garden             | 2006         | 145            | 29.99            |
| Fantasia Park             | 2006         | 131            | 29.99            |
| Extraordinary Conquerer   | 2006         | 122            | 29.99            |
| Everyone Craft            | 2006         | 163            | 29.99            |
| Dirty Ace                 | 2006         | 147            | 29.99            |
| Clyde Theory              | 2006         | 139            | 29.99            |
| Clockwork Paradise        | 2006         | 143            | 29.99            |
| Ballroom Mockingbird      | 2006         | 173            | 29.99            |
| (25 rows)                 |              |                |                  |

## Struttura di un DB relazionale

I dati in un database sono organizzati in **tabelle**, ognuna secondo un suo **schema** 

Ogni tabella rappresenta una classe

Ogni **riga** rappresenta un'**entità** di quella classe

Ogni **colonna** rappresenta una **proprietà** di quella classe

|   | Name        | Data type | Primary<br>Key | Foreign<br>Key |
|---|-------------|-----------|----------------|----------------|
| 1 | id          | INTEGER   | 8              |                |
| 2 | document_id | INTEGER   |                | p/E            |
| 3 | text        | VARCHAR   |                |                |
| 4 | type        | VARCHAR   |                |                |

| id |   | document_id | text         | type |
|----|---|-------------|--------------|------|
|    | 1 | 3           | 10.1000/182  | doi  |
|    | 2 | 3           | 948577574t4i | isbn |

#### Struttura di un DB relazionale

Chiave Primaria: proprietà unica in una tabella che identifica in modo univoco ogni entità

Chiave Esterna: proprietà in una tabella che si riferisce alla chiave primaria di un'altra tabella



|   | id | document_id | text         | type |
|---|----|-------------|--------------|------|
| 1 | 1  | 3           | 10.1000/182  | doi  |
| 2 | 2  | 3           | 948577574t4i | isbn |

#### 1-1-1-1-1-1-1-1-1-1-1-1-1-1

- 1 tabella per i libri, con colonne: "id" (chiave primaria), "ha titolo", "scritto da" (chiave esterna), "pubblicato nel", "ha pagine", "ha genere" (chiave esterna)
- 1 tabella per i generi, con colonne: "id" (chiave primaria), "ha valore"
- 1 tabella per le persone, con colonne: "id" (chiave primaria), "ha nome"



|   |   |   |   |   |   |   |   |   |   |   |   |   |    | •  |
|---|---|---|---|---|---|---|---|---|---|---|---|---|----|----|
| • | • | • | • | • | • | • | • | • | - | • | • | • |    | •  |
|   |   |   |   |   |   |   |   |   |   |   |   |   | ٠. | •• |
|   |   |   |   |   |   |   |   |   |   |   |   |   | •  | •  |

| id  | ha titolo                  | scritto da | pubblicato nel | ha pagine | ha genere  |
|-----|----------------------------|------------|----------------|-----------|------------|
| L01 | Neuromante                 | <u>P01</u> | 1984           | 271       | <u>G01</u> |
| L02 | II Signore<br>degli Anelli | <u>P02</u> | 1955           | 1178      | <u>G02</u> |
| L03 |                            |            |                |           |            |



1 tabella per i libri, con colonne: "id" (chiave primaria), "ha titolo", "scritto da" (chiave esterna), "pubblicato nel", "ha pagine", "ha genere" (chiave esterna)



1 tabella per i generi, con colonne: "id" (chiave primaria), "ha valore"



1 tabella per le persone, con colonne: "id" (chiave primaria), "ha nome"

| id  | ha valore    |
|-----|--------------|
| G01 | cyberpunk    |
| G02 | high fantasy |
| G03 |              |

| id  | ha nome        |
|-----|----------------|
| P01 | William Gibson |
| P02 | J.R.R. Tolkien |
| P03 |                |

| id  | ha titolo     | scritto da | pubblicat | o nel | ha pagin | ne ha genere |
|-----|---------------|------------|-----------|-------|----------|--------------|
| L01 | Neuromante    | <u>P01</u> | 1984      |       | 271      | <u>G01</u>   |
|     |               |            |           |       |          |              |
| id  | ha nome       |            |           | id    |          | ha valore    |
| P01 | William Gibso | on         |           | G01   |          | cyberpunk    |



# Quiz 4



https://forms.gle/qxAi PtjUiQsdu1zS6





## 5.6 Semantic Web

Premesse
Definizione
Linked Open Data
Resource Description Framework
Modelli semantici di dati

# I contenuti sul Web sono (solo) per noi

Contenuti leggibili e comprensibili dagli esseri umani

Ma le macchine?

HTML  $\rightarrow$  come rappresentare (non cosa)

Alcuni tag sono semantici (es. <title>) ma il loro contenuto non è strutturato né standardizzato

???



# Link come pura funzione



#### Nessuna informazione su:

- cosa rappresenta il collegamento?
- che tipo di nesso esiste tra la risorsa A e la risorsa B?



## Il Web è universale



Qualunque pagina può collegarsi ad altre

. . . . . . . . . . . . . . . . . . .

Chiunque può pubblicare su qualsiasi argomento

- decentralizzazione
- inconsistenza dei dati
- incompletezza dei dati





# Cos'è il World Wide Web?



Un sistema documentale ipertestuale distribuito su Internet



- HTTP
- HTML
- URL
- ...



Fonte: https://rubenverborgh.github.io/WebFundamentals/

#### Il Semantic Web è uno strato ulteriore



Proposto da Tim Berners Lee nel 2001

Ragionare sui dati disponibili sul Web in maniera automatica, estendendo il Web con informazioni semantiche



# Il Semantic Web è integrato nel Web



. . . . . . . . . . . . . . . . . . .

Proposto da Tim Berners Lee nel 2001

Ragionare sui dati disponibili sul Web in maniera automatica, estendendo il Web con informazioni semantiche



# Il Semantic Web è integrato nel Web



- aggiungere informazioni
- aggiungere struttura
- permettere collegamenti semantici tra silos informativi
- permettere inferenze logiche (automatiche) sui dati





# La base sono i Linked (Open) Data

Dati (semi-)strutturati in grafi, interpretabili dalle macchine (pubblicati in formato aperto)

- 1. Molteplici dataset con licenza aperta
- Stessi formati standard di riferimento ai e modellazione dei dati
- → interrogazioni incrociate su dataset interoperabili



### La base sono i Linked (Open) Data: esempio

La persona www 0" -= G01

La persona William Gibson == 109517110

Vantaggi: se tutti utilizzano lo stesso modo per riferirsi alla stessa cosa, possiamo con certezza disambiguare e ricercare informazioni su quella cosa in qualsiasi dataset





## La base sono i Linked (Open) Data: esempio



Il romanzo Neuromante == Q662029

In pratica: quello che fa un catalogo bibliografico (o un authority file)



### Gli identificatori possono esistere già...

In entrambi gli esempi, abbiamo utilizzato degli authority file (o risorse simili) per assegnare identificativi unici a William Gibson e a Neuromante

109517110 (William Gibson) è preso da <u>VIAF</u>

Q662029 (Neuromante) è preso da WikiData



#### ... ma non sempre!

#### 5-star rating system:

- disponibile sul Web con una licenza aperta (es. Creative Commons)
- 2. 1 + formato strutturato e leggibile dalle macchine (es. Excel)
- 3. 2 + formato non proprietario (es. CSV)
- 4. 3 + usa standard aperti per identificare (es. RDF)
- 5. 4 + link a dati esterni per fornire ulteriore contesto





#### Quattro principi di pubblicazione LOD



- 1. usare **URI** come nomi per le cose
- 2. usare **HTTP** per permettere ai computer di cercare questi nomi
- 3. fornire **informazioni utili** al momento della ricerca
- 4. includere **link** ad altre cose



#### Usare URI per dare nomi alle cose



Le macchine hanno bisogno di identificativi unici per identificare i dati

Uniform Resource Identifier (URI): superclasse degli URL, si limita alla sola identificazione (localizzazione possibile ma non necessaria)

Should we call this a URI or a URL? (Trick question: it's both)

https://google.com



DANIEL MIESSLER 202

#### Usare URI per dare nomi alle cose: esempio

•••••

109517110 (William Gibson) e Q662029 (Neuromante) sono necessari ma non sufficienti

- http://viaf.org/viaf/109517110
- https://www.wikidata.org/entity/ /Q662029



Gli URI disambiguano su tutto il Web (perché i loro domini sono unici, perché registrati in maniera univoca nel DNS!)

#### Usare HTTP per permettere la ricerca



Rendere l'URI dereferenziabile (cioé in grado di fornire una rappresentazione della risorsa che esso identifica)

In pratica: diventa un URL





#### Fornire informazioni utili sulla risorsa



Un URI dereferenziato dovrebbe portare ad una rappresentazione (es. pagina HTML) che fornisca informazioni utili riguardanti la risorsa identificata dall'URI



https://www.wikidata.org/entity/Q6 62029

#### Includere link ad altre risorse



Tra le informazioni utili ci dovrebbero essere link ad altri dati

I link danno significato ai dati

I link permettono l'esplorazione del contesto e l'integrazione

I link creano un Web di dati



https://www.wikidata.org/entity/Q6 62029



## L'unità minima nei LOD: la tripla RDF

Costrutto astratto minimo di modellazione dei LOD

 $\begin{array}{l} \textbf{Soggetto} \rightarrow \textbf{il dominio del} \\ \textbf{predicato} \end{array}$ 

**Predicato** → una caratteristica del soggetto

**Oggetto** → il codominio del predicato



## L'unità minima nei LOD: la tripla RDF

Soggetto e predicato sono sempre identificati da un URI

Anche l'oggetto, se il predicato è una relazione (e quindi se anche l'oggetto è un'entità)

Se il predicato è un attributo, l'oggetto è un semplice valore, con un'indicazione del tipo (es. "date") o della lingua (es. "it")



## L'unità minima nei LOD: la tripla RDF



Per semplificare la loro visualizzazione, utilizziamo dei prefissi per abbreviare gli URI



Sono convenzioni (in teoria inventate, di fatto quelle più conosciute sono condivise da tutti)





#### Resource Description Framework

Modello di dati standard che descrive i dati tramite triple SPO

#### Dice cosa fare, ma non:

- come scrivere triple  $\rightarrow$  per questo ci sono le serializzazioni (sintassi concrete di RDF)
- come esprimere entità e proprietà → per questo ci sono vocabolari, ontologie, ecc.

```
wd:Q662029
                                             viaf:109517110
                       dcterms:creator
  wd:Q662029
                 dcterms:title
                                      "Neuromante"@it
  wd:Q662029
                                      "1984"^^xsd:gYear
             prism:publicationDate
wd:Q662029 dcterms:creator viaf:109517110;
       dcterms:title "Neuromante"@it ;
       prism:publicationDate "1984"^^xsd:gYear .
```

### Il Semantic Web ha tanti dati pronti al riuso

**Livello strutturale**: vocabolari (**modelli semantici** di dati) che forniscono classi e proprietà da riusare

**Livello contenutistico**: dataset che forniscono identificativi e dati delle entità

- Dublin Core
- FOAF
- SKOS
- ...
- OpenCitations Meta
- OpenCitations Index
  - ...
- WikiData
- ..

#### Perché non usare i DB relazionali, allora?



**Assunzione del mondo aperto**: in un sistema logico, l'assenza di un fatto non lo rende falso

I database relazionali usano strutture rigide, poiché aspirano a dati completi (quindi mondo chiuso)

In LOD, nessuna fonte ha tutti i dati

Tassonomie, tesauri, ontologie strutturano i LOD con un'apertura alla continua integrazione ed estensione

Dati, modelli pensati per essere

- espressivi
- riutilizzati
- potenzialmente estesi

## Inferenza (o reasoning)



Abilità di un agente di verificare e scoprire fatti, combinarli a partire da diverse fonti e trarre conclusioni



I LOD forniscono un corpo di conoscenza su cui gli agenti possono fare reasoning Sebastian - conosce - Cristian .

conosce - ha dominio - Persona

Sebastian - è una - Persona .



#### Tassonomia Animale Insieme di termini organizzati in una gerarchia Mammifero Volatile Primate Canide Gabbiano Esistono solo relazioni di sottoclasse / superclasse Cane Persona Scimpanzè

Hjørland, Birger. 2017. "Classification". Knowledge Organization 44, no. 2: 97-128. Also available in ISKO Encyclopedia of Knowledge Organization, eds. Birger Hjørland and Claudio Gnoli, <a href="https://www.isko.org/cyclo/classification">https://www.isko.org/cyclo/classification</a>

#### Tesauro



Vocabolario controllato nel quale sono presenti anche relazioni di varia natura, es. gerarchiche, associative (sinonimia, iperonimia, iponimia, olonimia, meronimia), ecc.



#### URI(s)

- http://id.loc.gov/authorities/subjects/sh2012000080 📮
- http://id.loc.gov/authorities/sh2012000080#concept

#### Variants

- Cyberprep fiction
- Cyberpunk novels
- Cyberpunk science fiction
- Cyberpunk stories
- Post-cyberpunk fiction
- Postcyberpunk fiction

#### **Broader Terms**

- Science fiction

#### **Closely Matching Concepts from Other Schemes**

Cyberpunk 2

kyberpunk 🗗

Littérature cyberpunk d

#### Sources

- found: Work cat.: 2009045559: Beyond cyberpunk: new critical perspectives, 2010:p. xi (Literary cyberpunk) p. xiii (cyberpunk, a subgenre [of science fiction]) p. 3 (cyberpunk SF) p. 96 (cyberpunk fiction) p. 195 (cyberpunk stories)

#### Tesauro: esempio



Usiamo LC Subject Headings (LCSH) per controllare "cyberpunk"

http://id.loc.gov/authorities/subjects/sh2012000080





#### Ontologia



Modello di dati che descrive una particolare area di conoscenza definendo una terminologia comune per:

- entità
- proprietà (relazioni e attributi)
- vincoli logici e regole di inferenza







- Libro
- Genere
- Persona
- è un/una
- pubblicato nel
- ha genere
- scritto da
- ha pagine







- Libro → <a href="http://purl.org/spar/fabio/Book">http://purl.org/spar/fabio/Book</a>
- Genere → <a href="http://www.w3.org/2004/02/skos/core#Concept">http://www.w3.org/2004/02/skos/core#Concept</a>
- Persona → <a href="http://xmlns.com/foaf/0.1/Person">http://xmlns.com/foaf/0.1/Person</a>
- è un/una → <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns#type">http://www.w3.org/1999/02/22-rdf-syntax-ns#type</a>
- pubblicato nel → http://prismstandard.org/namespaces/basic/2.0/publicationDate
- ha genere → <a href="http://purl.org/dc/terms/type">http://purl.org/dc/terms/type</a>
- scritto da → <a href="http://purl.org/dc/terms/creator">http://purl.org/dc/terms/creator</a>
- ha pagine → <a href="http://purl.org/spar/fabio/hasPageCount">http://purl.org/spar/fabio/hasPageCount</a>





Prefixes http://purl.org/dc/terms/ dcterms: http://purl.org/spar/fabio/ fabio: http://xmlns.com/foaf/0.1/ foaf: http://id.loc.gov/authorities/subjects/ loc: http://prismstandard.org/namespaces/basic/2.0/ prism: http://www.w3.org/1999/02/22-rdf-syntax-ns# rdf: rdfs: http://www.w3.org/2000/01/rdf-schema# http://www.w3.org/2004/02/skos/core# skos: viaf: http://viaf.org/viaf/ https://www.wikidata.org/entity/ wd: http://www.w3.org/2001/XMLSchema# xsd:

- dati (semi-)strutturati
- machine-readable
- semantici
- interoperabili
- riusabili

```
wd:Q662029 rdf:type fabio:Book ;
    dcterms:creator viaf:109517110 ;
    dcterms:title "Neuromante"@it ;
    prism:publicationDate "1984"^^xsd:gYear ;
    fabio:hasPageCount "271"^^xsd:positiveInteger ;
    dcterms:type loc:sh2012000080 ;
    dcterms:creator viaf:109517110 .

loc:sh2012000080 a skos:Concept ;
    skos:prefLabel "cyberpunk"^^rdfs:Literal .

viaf:109517110 a foaf:Person ;
    foaf:name "William Gibson"^^rdfs:Literal .
```



- dati (semi-)strutturati
- machine-readable
- semantici
- interoperabili
- riusabili

# Abilità informatiche

A.A. 2023/2024

05c - Fine

Sebastian Barzaghi

<u>sebastian.barzaghi2@unibo.it</u> <u>https://orcid.org/0000-0002-0799-1527</u>