

Index

- 1. Introduction
 - 1.1. Project overviews
 - 1.2. Objectives
- 2. Project Initialization and Planning Phase
 - 2.1. Define Problem Statement
 - 2.2. Project Proposal (Proposed Solution)
 - 2.3. Initial Project Planning
- 3. Data Collection and Preprocessing Phase
 - 3.1. Data Collection Plan and Raw Data Sources Identified
 - 3.2. Data Quality Report
 - 3.3. Data Exploration and Preprocessing
- 4. Model Development Phase
 - 4.1. Feature Selection Report
 - 4.2. Model Selection Report
 - 4.3. Initial Model Training Code, Model Validation and Evaluation Report
- 5. Model Optimization and Tuning Phase
 - 5.1. Hyperparameter Tuning Documentation
 - 5.2. Performance Metrics Comparison Report
 - 5.3. Final Model Selection Justification
- 6. Results
 - 6.1. Output Screenshots
- 7. Advantages & Disadvantages
- 8. Conclusion
- 9. Future Scope
- 10. Appendix
 - 10.1. Source Code
 - 10.2. GitHub & Project Demo Link

1. Introduction:

1.1. Project Overview

The **Mental Health Prediction** project analyzes workplace survey data to understand factors influencing mental health. It uses machine learning techniques to predict whether individuals are likely to seek treatment for mental health issues. Key features include age, gender, family history, work environment, and awareness of mental health resources. The project involves data preprocessing, exploratory analysis, and model training using classification algorithms. It helps identify trends that can guide mental health support strategies in organizations. The insights aim to promote early intervention and reduce stigma around mental health in the workplace.

1.2. Objectives

- To develop a predictive model that can identify individuals at risk of mental health issues.
- To preprocess and clean the survey data for accurate analysis.
- To evaluate different machine learning models and select the best-performing one.
- To provide insights into the factors influencing mental health treatment seeking behavior.

2. Project Initialization and Planning Phase

2.1. Define Problem Statement

The primary problem addressed by this project is the lack of understanding of mental health issues in the workplace and the factors that influence individuals' decisions to seek treatment. The project seeks to identify these factors and predict treatment-seeking behavior.

2.2. Project Proposal (Proposed Solution)

The proposed solution involves collecting and analyzing survey data to build a machine learning model that predicts whether individuals will seek treatment for mental health issues. The model will be trained on various features derived from the survey responses.

2.3. Initial Project Planning

The project will be executed in several phases, including data collection, preprocessing, model development, optimization, and evaluation. A timeline will be established to ensure timely completion of each phase.

3. Data Collection and Preprocessing Phase

3.1. Data Collection Plan and Raw Data Sources Identified

The primary data source for this project is a CSV file containing survey responses related to mental health. The data includes various demographic and workplace-related features.

3.2. Data Quality Report

The data quality was assessed, revealing some missing values and inconsistencies in categorical variables. The preprocessing steps included handling missing values, encoding categorical variables, and normalizing numerical features.

3.3. Data Exploration and Preprocessing

- Exploration: Initial exploration of the data revealed trends and patterns in mental health treatment seeking behavior.
- Preprocessing: The data was cleaned and transformed using techniques such as label encoding for categorical variables and KNN imputation for missing values.

4. Model Development Phase

4.1. Feature Selection Report

The features selected for the model include:

- Age
- Gender
- Country
- Self-employed status
- Family history of mental health issues
- Work interference
- Number of employees
- Remote work status

Company benefits and wellness programs

4.2. Model Selection Report

Various machine learning models were evaluated, including:

- Logistic Regression
- K-Nearest Neighbors (KNN)
- Decision Tree
- Random Forest
- Naive Bayes
- Support Vector Machine (SVM)
- XGBoost
- AdaBoost
- Gradient Boosting

4.3. Initial Model Training Code, Model Validation and Evaluation Report

The initial model training was conducted using the following code:

```
# Load dataset

df = pd.read_csv('survey.csv')

# Preprocess data

X, y, label_encoders, scaler, le_target = preprocess_data(df)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Define models

all_models = {

'Logistic Regression': LogisticRegression(max_iter=1000, random_state=42),

'KNN': KNeighborsClassifier(),

'Decision Tree': DecisionTreeClassifier(random_state=42),

'Random Forest': RandomForestClassifier(random_state=42),

'Naive Bayes': GaussianNB(),

'SVM': SVC(probability=True, random_state=42),

'XGBoost': XGBClassifier(use_label_encoder=False, eval_metric='logloss',
```



```
random_state=42),

'AdaBoost': AdaBoostClassifier(random_state=42),

'Gradient Boosting': GradientBoostingClassifier(random_state=42)

# Training and evaluation

for name, model in all_models.items():

model.fit(X_train, y_train)

y_pred = model.predict(X_test)

acc = accuracy_score(y_test, y_pred)

print(f"{name} Accuracy: {acc:.4f}")
```

The evaluation metrics included accuracy, classification report, and confusion matrix.

5. Model Optimization and Tuning Phase

5.1. Hyperparameter Tuning Documentation

Hyperparameter tuning was performed using GridSearchCV to optimize model parameters for better performance.

5.2. Performance Metrics Comparison Report

The performance of each model was compared based on accuracy, precision, recall, and F1-score. The best model was selected based on these metrics.

5.3. Final Model Selection Justification

The Random Forest model was selected as the final model due to its superior performance in terms of accuracy and robustness against overfitting.

6. Results

6.1. Output Screenshots

Model.py files outputs:


```
=== Training and Evaluation of All Models ===
--- Logistic Regression ---
Accuracy: 0.7559
Classification Report:
               precision
                            recall f1-score
                                               support
           0
                   0.76
                             0.69
                                       0.73
                                                  118
                   0.75
                             0.81
                                       0.78
                                                  136
                                                  254
                                       0.76
   accuracy
                                                  254
                   0.76
                             0.75
                                       0.75
   macro avg
weighted avg
                   0.76
                             0.76
                                       0.75
                                                  254
Confusion Matrix:
[[ 82 36]
 [ 26 110]]
```

-- KNN ---Accuracy: 0.7165 Classification Report: precision recall f1-score support 0 0.66 0.81 0.73 118 1 0.79 0.64 0.71 136 254 0.72 accuracy 254 0.73 0.72 0.72 macro avg weighted avg 0.73 0.72 0.72 254 Confusion Matrix: [[95 23] [49 87]]

--- Decision Tree ---Accuracy: 0.8504 Classification Report: precision recall f1-score support 0.79 0.92 0.85 0 118 0.79 0.92 0.85 136 1 0.85 254 accuracy macro avg 0.86 0.86 0.85 254 weighted avg 0.86 0.85 0.85 254 Confusion Matrix: [[109 9] [29 107]]

Random For					
Classification					
	precision	recall	f1-score	support	
0	0.91	0.92	0.92	118	
1	0.93	0.92	0.93	136	
accuracy			0.92	254	
macro avg	0.92	0.92	0.92	254	
weighted avg	0.92	0.92	0.92	254	
Confusion Matr [[109 9] [11 125]]	rix:				

Naive Baye Accuracy: 0.72 Classification	.05	recall	f1-score	support	
Ø	0.71	0.68	0.69	118	
1	0.73	0.76	0.74	136	
accuracy			0.72	254	
macro avg	0.72	0.72	0.72	254	
weighted avg	0.72	0.72	0.72	254	
Confusion Matr [[80 38] [33 103]]	rix:				

```
--- SVM ---
Accuracy: 0.7795
Classification Report:
               precision
                            recall f1-score
                                               support
           0
                   0.78
                             0.73
                                       0.75
                                                  118
           1
                   0.78
                             0.82
                                       0.80
                                                  136
                                       0.78
                                                  254
   accuracy
   macro avg
                   0.78
                             0.78
                                       0.78
                                                  254
weighted avg
                   0.78
                             0.78
                                       0.78
                                                  254
Confusion Matrix:
 [[ 86 32]
 [ 24 112]]
```


XGBoost Accuracy: 0.87 Classification	701				
	precision	recall	f1-score	support	
0	0.81	0.93	0.87	118	
1	0.93	0.82	0.87	136	
accuracy			0.87	254	
macro avg	0.87	0.87	0.87	254	
weighted avg	0.88	0.87	0.87	254	
Confusion Matr [[110 8] [25 111]]	rix:				

AdaBoost - Accuracy: 0.74 Classification	80	recall	f1-score	support	
0 1	0.76 0.74	0.67 0.82	0.71 0.78	118 136	
accuracy macro avg weighted avg	0.75 0.75	0.74 0.75	0.75 0.74 0.75	254 254 254	
Confusion Matr [[79 39] [25 111]]	rix:				

Gradient B Accuracy: 0.83 Classification	886	recall	f1-score	support	
0 1	0.83 0.85	0.82 0.85	0.83 0.85	118 136	
accuracy macro avg weighted avg	0.84 0.84	0.84 0.84	0.84 0.84 0.84	254 254 254	
Confusion Matr [[97 21] [20 116]]	rix:				


```
Best Model: Random Forest with Accuracy: 0.9213
=== Final Model Evaluation ===
Accuracy: 0.9212598425196851
Classification Report:
               precision
                           recall f1-score
                                               support
           0
                  0.91
                            0.92
                                      0.92
                                                 118
           1
                  0.93
                                      0.93
                            0.92
                                                 136
   accuracy
                                      0.92
                                                  254
   macro avg
                  0.92
                            0.92
                                      0.92
                                                  254
weighted avg
                                                  254
                  0.92
                            0.92
                                      0.92
Confusion Matrix:
 [[109 9]
 [ 11 125]]
```

Fea	ture Importances:	
	Feature	Importance
5	work_interfere	0.194589
0	Age	0.093768
4	family_history	0.073447
10	care_options	0.062814
6	no_employees	0.055009
2	Country	0.053817
14	leave	0.040972
20	phys_health_interview	0.037498
9	benefits	0.036751
17	coworkers	0.036009
18	supervisor	0.035799
15	mental_health_consequence	0.033810
1	Gender	0.032775
12	seek_help	0.030743
21	mental_vs_physical	0.030350
13	anonymity	0.027900
11	wellness_program	0.023639
16	phys_health_consequence	0.021643
7	remote_work	0.019259
22	obs_consequence	0.016363
8	tech_company	0.016339
19	mental_health_interview	0.016103
3	self_employed	0.010603
Sau	ring model and proprocessing	objects with pickle
	ring model and preprocessing	objects with pickie
Sav	ed successfully!	

Example Prediction:

Prediction: 1 Probability: 0.95

Analysis.py file outputs:

=== De	scriptive Sta	tistics (Prep	rocessed Data) ===				
Basic	Statistics:							
	Age	Gender	Country	self_employed	phys_health_interview	mental_vs_physical	obs_consequence	treatment
count	1266.000000	1266.000000	1266.000000	1266.000000	1266.000000	1266.000000	1266.000000	1266.000000
mean	0.011150	0.834913	5.834123	0.122433	0.698262	0.823065	0.151659	0.500000
std	1.021722	0.413695	1.922031	0.327915	0.719429	0.842717	0.358832	0.500198
min	-1.971478	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	-0.728285	1.000000	5.000000	0.000000	0.000000	0.000000	0.000000	0.000000
50%	-0.175755	1.000000	7.000000	0.000000	1.000000	1.000000	0.000000	0.500000
75%	0.514908	1.000000	7.000000	0.000000	1.000000	2.000000	0.000000	1.000000
max	4.106355	2.000000	7.000000	1.000000	2.000000	2.000000	1.000000	1.000000
	s x 24 column rical Variabl							
	Age	Gender	Country	self_employed	phys_health_interview	mental_vs_physical	obs_consequence	treatment
count	1266.000000	1266.000000	1266.000000	1266.000000	1266.000000	1266.000000	1266.000000	1266.000000
mean	0.011150	0.834913	5.834123	0.122433	0.698262	0.823065	0.151659	0.500000
std	1.021722	0.413695	1.922031	0.327915	0.719429	0.842717	0.358832	0.500198
min	-1.971478	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	-0.728285	1.000000	5.000000	0.000000	0.000000	0.000000	0.000000	0.000000
50%	-0.175755	1.000000	7.000000	0.000000	1.000000	1.000000	0.000000	0.500000
75%	0.514908	1.000000	7.000000	0.000000	1.000000	2.000000	0.000000	1.000000
max	4.106355	2.000000	7.000000	1.000000	2.000000	2.000000	1.000000	1.000000
[8 row	s x 24 column	s]						

Family History of Mental Health

Treatment Status

App.py file outputs:

Age	Remote Work
	Yes
5ender	Tech Company
Male	Yes
Country	Benefits
	Yes
self Employed	Care Options
Yes	Yes
amily History of Mental Health	Wellness Program
Yes	Yes
Vork Interference	Seek Help
Never	Yes
Number of Employees	Anonymity
1-5	Yes
	Leave
	Very easy
	Mental Health Consequence
	Yes
	Physical Health Consequence
	Physical Health Consequence Yes
	Coworkers Yes
	Supervisor
	Yes
	Mental Health Interview
	Yes
	Physical Health Interview
	Yes
	Mental vs Physical
	Yes
	Observed Consequence
	Yes

20 iender Male ountry India elf Employed No	No Tech Company Yes Benefits No
Male ountry India elf Employed	Yes Benefits
ountry India elf Employed	Yes Benefits
India elf Employed	
India elf Employed	
	Care Options
	Yes
amily History of Mental Health	Wellness Program
No	No No
Vork Interference	South Made
Sometimes	Seek Help No
lumber of Employees 100-500	Anonymity Yes
100 300	
	Leave Somewhat easy
	Mental Health Consequence
	Yes
	Physical Health Consequence
	No
	Coworkers
	Yes
	Supervisor
	Yes
	Mental Health Interview
	Yes
	Physical Health Interview
	No
	Mental vs Physical
	Yes
	Observed Consequence
	Yes
	Predict
Prediction Result	
Treatment Recommendation: 1	

7. Advantages & Disadvantages

1. Advantages:

- The model provides insights into mental health treatment seeking behavior.
- It can help organizations identify at-risk employees and provide necessary support.

2. Disadvantages:

- The model's accuracy is dependent on the quality of the input data.
- There may be biases in the data that affect the model's predictions.

8. Conclusion

The Mental Health Prediction project successfully developed a predictive model to analyze mental health treatment-seeking behavior among individuals in workplace settings. By using machine learning techniques on survey data, the model identifies key factors that influence whether a person is likely to seek help for mental health issues. The insights gained from this analysis can help organizations recognize early signs of mental distress and improve their mental health support systems. This enables the creation of healthier, more supportive work environments that encourage open conversations around mental well-being.

9. Future Scope

Future work could involve expanding the dataset, incorporating additional features, and exploring more advanced machine learning techniques to enhance prediction accuracy.

10. Appendix

10.1. Source Code

Model.py:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split, GridSearchCV, cross val score

from sklearn.preprocessing import LabelEncoder, StandardScaler


```
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier,
       GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from xgboost import XGBClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from sklearn.impute import KNNImputer
from sklearn.utils import resample
import pickle
import warnings
warnings.filterwarnings('ignore')
# Load dataset
df = pd.read_csv('survey.csv')
def clean_gender(gender):
  gender = str(gender).strip().lower()
  if gender in ['male', 'm', 'male-ish', 'maile', 'mal', 'cis male', 'man', 'msle', 'mail',
       'make', 'malr', 'cis man']:
     return 'Male'
  elif gender in ['female', 'f', 'cis female', 'woman', 'femake', 'female (cis)', 'femail',
       'cis-female/femme', 'female ', 'femail']:
     return 'Female'
  else:
     return 'Other'
def preprocess_data(df):
  df_processed = df.copy()
  df_processed = df_processed[pd.to_numeric(df_processed['Age'],
```

errors='coerce').notnull()]

label_encoders = {}


```
df_processed['Age'] = df_processed['Age'].astype(float)
median age = df processed['df processed['Age'] >= 15) & (df processed['Age']
     <= 70)]['Age'].median()
df_processed.loc[df_processed['Age'] < 15, 'Age'] = median_age
df_processed.loc[df_processed['Age'] > 70, 'Age'] = median_age
df_processed['Gender'] = df_processed['Gender'].apply(clean_gender)
country_counts = df_processed['Country'].value_counts()
rare_countries = country_counts[country_counts < 20].index
df processed['Country'] = df processed['Country'].apply(lambda x: 'Other' if x in
     rare_countries else x)
valid_family_history = ['Yes', 'No']
valid_work_interfere = ['Never', 'Rarely', 'Sometimes', 'Often']
valid_treatment = ['Yes', 'No']
df_processed =
    df processed[df processed['family history'].isin(valid family history)]
df_processed =
     df_processed[df_processed['work_interfere'].isin(valid_work_interfere)]
df_processed = df_processed[df_processed['treatment'].isin(valid_treatment)]
features = ['Age', 'Gender', 'Country', 'self_employed', 'family_history',
       'work_interfere', 'no_employees', 'remote_work', 'tech_company',
       'benefits', 'care_options', 'wellness_program', 'seek_help',
       'anonymity', 'leave', 'mental_health_consequence',
       'phys_health_consequence', 'coworkers', 'supervisor',
       'mental_health_interview', 'phys_health_interview',
       'mental_vs_physical', 'obs_consequence']
categorical_columns = [col for col in features if df_processed[col].dtype ==
     'object' or col == 'Gender']
for col in categorical_columns:
  df_processed[col] = df_processed[col].fillna(df_processed[col].mode()[0])
```



```
for column in categorical_columns:
    le = LabelEncoder()
    df_processed[column] = le.fit_transform(df_processed[column].astype(str))
    label_encoders[column] = le
  imputer = KNNImputer(n_neighbors=5)
  df_processed[features] = imputer.fit_transform(df_processed[features])
  scaler = StandardScaler()
  df_processed['Age'] = scaler.fit_transform(df_processed[['Age']])
  df_processed['treatment'] = df_processed['treatment'].astype(str)
  df_majority = df_processed[df_processed['treatment'] ==
       df_processed['treatment'].mode()[0]]
  df_minority = df_processed[df_processed['treatment'] !=
       df_processed['treatment'].mode()[0]]
  df_minority_upsampled = resample(df_minority, replace=True,
       n_samples=len(df_majority), random_state=42)
  df_balanced = pd.concat([df_majority, df_minority_upsampled])
  X = df\_balanced[features]
  le_target = LabelEncoder()
  y = le_target.fit_transform(df_balanced['treatment'])
  return X, y, label_encoders, scaler, le_target
# Prepare data
X, y, label_encoders, scaler, le_target = preprocess_data(df)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
       random state=42)
# Define models
all_models = {
  'Logistic Regression': LogisticRegression(max_iter=1000, random_state=42),
  'KNN': KNeighborsClassifier(),
  'Decision Tree': DecisionTreeClassifier(random_state=42),
```



```
'Random Forest': RandomForestClassifier(random_state=42),
  'Naive Bayes': GaussianNB(),
  'SVM': SVC(probability=True, random_state=42),
  'XGBoost': XGBClassifier(use_label_encoder=False, eval_metric='logloss',
       random_state=42),
  'AdaBoost': AdaBoostClassifier(random_state=42),
  'Gradient Boosting': GradientBoostingClassifier(random_state=42)
best_model = None
best\_score = 0
best_model_name = "
print("\n=== Training and Evaluation of All Models ===")
for name, model in all_models.items():
  print(f"\nTraining {name}...")
  model.fit(X_train, y_train)
  y_pred = model.predict(X_test)
  acc = accuracy_score(y_test, y_pred)
  print(f"{name} Accuracy: {acc:.4f}")
  if acc > best_score:
    best score = acc
    best_model = model
    best_model_name = name
print(f"\nBest Model: {best_model_name} with Accuracy: {best_score:.4f}")
print("\n=== Final Model Evaluation ===")
y_pred = best_model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Classification Report:\n", classification_report(y_test, y_pred))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
if hasattr(best_model, 'feature_importances_'):
```



```
importances = pd.DataFrame({
     'Feature': X.columns,
     'Importance': best_model.feature_importances_
  }).sort_values(by='Importance', ascending=False)
  print("\nFeature Importances:\n", importances)
# Save using pickle
print("\nSaving model and preprocessing objects with pickle...")
with open('mental_health_model.pkl', 'wb') as f:
  pickle.dump(best_model, f)
with open('scaler.pkl', 'wb') as f:
  pickle.dump(scaler, f)
with open('label_encoders.pkl', 'wb') as f:
  pickle.dump(label_encoders, f)
print("Saved successfully!")
# Prediction function
def predict_mental_health(input_data):
  with open('mental_health_model.pkl', 'rb') as f:
     model = pickle.load(f)
  with open('scaler.pkl', 'rb') as f:
     scaler = pickle.load(f)
  with open('label_encoders.pkl', 'rb') as f:
     label_encoders = pickle.load(f)
  input_df = pd.DataFrame([input_data])
  categorical_columns = ['Gender', 'Country', 'self_employed', 'family_history',
                 'work_interfere', 'no_employees', 'remote_work', 'tech_company',
                 'benefits', 'care_options', 'wellness_program', 'seek_help',
                 'anonymity', 'leave', 'mental_health_consequence',
                 'phys_health_consequence', 'coworkers', 'supervisor',
                 'mental_health_interview', 'phys_health_interview',
```


'mental_vs_physical', 'obs_consequence']

```
for column in categorical_columns:
     known_categories = label_encoders[column].classes_
     input_df[column] = input_df[column].apply(lambda x: x if x in
       known_categories else known_categories[0])
     input_df[column] = label_encoders[column].transform(input_df[column])
  input_df['Age'] = scaler.transform(input_df[['Age']])
  prediction = model.predict(input_df)
  probability = model.predict_proba(input_df)
  return {'prediction': prediction[0], 'probability': probability[0].max()}
# Example usage
if __name__ == "__main__":
  example_input = {
     'Age': 30,
     'Gender': 'Male',
     'Country': 'United States',
     'self_employed': 'No',
     'family_history': 'Yes',
     'work_interfere': 'Sometimes',
     'no_employees': '26-100',
     'remote_work': 'No',
     'tech_company': 'Yes',
     'benefits': 'Yes',
     'care_options': 'Yes',
     'wellness_program': 'Yes',
     'seek_help': 'Yes',
     'anonymity': 'Yes',
     'leave': 'Somewhat easy',
     'mental_health_consequence': 'No',
     'phys_health_consequence': 'No',
```



```
'coworkers': 'Yes',
     'supervisor': 'Yes',
     'mental_health_interview': 'No',
     'phys_health_interview': 'No',
     'mental_vs_physical': 'Yes',
     'obs_consequence': 'No'
  }
  result = predict_mental_health(example_input)
  print("\nExample Prediction:")
  print(f"Prediction: {result['prediction']}")
  print(f"Probability: {result['probability']:.2f}")
Analysis.py:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from model import preprocess_data
# Read and preprocess the dataset
raw_df = pd.read_csv('survey.csv')
df, y, label_encoders, scaler, le_target = preprocess_data(raw_df)
# For analysis, merge y back if needed:
df['treatment'] = y
# 1. Descriptive Statistics
print("\n=== Descriptive Statistics (Preprocessed Data) ===")
print("\nBasic Statistics:")
print(df.describe())
```

print("\nCategorical Variables Summary:")


```
print(df.describe(include=['object', 'int', 'float']))
# 2. Univariate Analysis
print("\n=== Univariate Analysis ===")
# Age Distribution
plt.figure(figsize=(10, 6))
sns.histplot(data=df, x='Age', bins=30)
plt.title('Age Distribution')
plt.show()
# Gender Distribution
df = pd.read_csv("survey.csv")
plt.figure(figsize=(10, 6))
df['Gender'].value_counts().head(10).plot(kind='bar')
plt.title('Top 10 Gender Categories')
plt.xticks(rotation=45)
plt.show()
# Country Distribution
plt.figure(figsize=(12, 6))
df['Country'].value_counts().head(10).plot(kind='bar')
plt.title('Top 10 Countries')
plt.xticks(rotation=45)
plt.show()
# Family History of Mental Health
plt.figure(figsize=(8, 6))
df['family_history'].value_counts().plot(kind='pie', autopct='%1.1f%%')
plt.title('Family History of Mental Health')
plt.show()
```



```
# Treatment Status
plt.figure(figsize=(8, 6))
df['treatment'].value_counts().plot(kind='pie', autopct='%1.1f%%')
plt.title('Treatment Status')
plt.show()
# 3. Bivariate Analysis
print("\n=== Bivariate Analysis ===")
# Gender vs Treatment
plt.figure(figsize=(10, 6))
treatment_by_gender = pd.crosstab(df['Gender'], df['treatment'])
treatment_by_gender.plot(kind='bar', stacked=True)
plt.title('Treatment Status by Gender')
plt.xticks(rotation=45)
plt.show()
# Family History vs Treatment
plt.figure(figsize=(8, 6))
sns.heatmap(pd.crosstab(df['family_history'], df['treatment']), annot=True, fmt='d',
       cmap='YlOrRd')
plt.title('Treatment Status by Family History')
plt.show()
# Work Interference vs Treatment
plt.figure(figsize=(10, 6))
sns.heatmap(pd.crosstab(df['work_interfere'], df['treatment']), annot=True, fmt='d',
       cmap='YlOrRd')
plt.title('Treatment Status by Work Interference')
plt.show()
# 4. Correlation Analysis
print("\n=== Correlation Analysis ===")
```



```
numeric_columns = df.select_dtypes(include=[np.number]).columns
correlation_matrix = df[numeric_columns].corr()
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0)
plt.title('Correlation Matrix of Numeric Variables')
plt.show()
# 5. Additional Insights
print("\n=== Additional Insights ===")
df = pd.read_csv("survey.csv")
df['treatment'] = df['treatment'].map({'Yes': 1, 'No': 0})
treatment_rate =
       df.groupby('Country')['treatment'].mean().sort_values(ascending=False)
plt.figure(figsize=(12, 6))
treatment_rate.head(10).plot(kind='bar')
plt.title('Treatment Rate by Country (Top 10)')
plt.xticks(rotation=45)
plt.ylabel('Treatment Rate (Proportion)')
plt.tight_layout()
plt.show()
# Work Interference by Treatment Status
plt.figure(figsize=(10, 6))
sns.countplot(data=df, x='work_interfere', hue='treatment')
plt.title('Work Interference by Treatment Status')
plt.xticks(rotation=45)
plt.show()
```


App.py:

```
from flask import Flask, render_template, request, jsonify
import pickle
import pandas as pd
from model import predict_mental_health
app = Flask(__name__)
@app.route('/')
def home():
  return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
  try:
     # Get data from request
     data = request.get_json()
     # Ensure all required fields are present
     required_fields = [
       'Age', 'Gender', 'Country', 'self_employed', 'family_history',
       'work_interfere', 'no_employees', 'remote_work', 'tech_company',
       'benefits', 'care_options', 'wellness_program', 'seek_help',
       'anonymity', 'leave', 'mental_health_consequence',
       'phys_health_consequence', 'coworkers', 'supervisor',
       'mental_health_interview', 'phys_health_interview',
       'mental_vs_physical', 'obs_consequence'
     ]
     # Check if all required fields are present
     for field in required_fields:
       if field not in data:
```



```
return jsonify({
             'success': False,
             'error': f'Missing required field: {field}'
          })
     # Convert Age to integer
     try:
        data['Age'] = int(data['Age'])
     except ValueError:
       return jsonify({
          'success': False,
          'error': 'Age must be a number'
       })
     # Make prediction
     result = predict_mental_health(data)
     return jsonify({
        'success': True,
        'prediction': str(result['prediction']),
        'probability': float(result['probability'])
     })
  except Exception as e:
     return jsonify({
        'success': False,
        'error': str(e)
     })
if __name__ == '__main__':
  app.run(debug=True)
```


10.2. GitHub & Project Demo Link

GITHUB LINKS:

- 1) M B ABINAYAA https://github.com/A-Beeeeeee/Mental_Health_Prediction
- 2) K MANEESH RAM https://github.com/Maneesh1605/Mental-health-Prediction
- 3) S KSHITIJ https://github.com/ksh-20/Mental-Health-Prediction

DEMONSTRATION VIDEO LINK:

https://drive.google.com/drive/folders/1pzoA7yuDnCqfdpw6PZFovPz7_M4gK0zw