Winter Camp January 2021 Functional Equations

- 1. Solve $f(\lfloor x \rfloor y) = f(x) \lfloor f(y) \rfloor$ over \mathbb{R} .
- 2. Solve over \mathbb{R} :

$$f(x^2 - y^2) = xf(x) - yf(y).$$

- 3. Solve $f(t^2 + u) = tf(t) + f(u)$ over \mathbb{R} .
- 4. Solve the functional equation

$$f(xf(x) + f(y)) = y + f(x)^2$$

for all $x, y \in \mathbb{R}$.

5. Determine all continuous functions from $\mathbb{R} \to \mathbb{R}$ which satisfy

$$f(x + y) + f(x - y) = 2(f(x) + f(y))$$

for all $x, y \in \mathbb{R}$.

6. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that

$$(n-1)^2 < f(n)f(f(n)) < n^2 + n$$

for every positive integer n.

- 7. Does there exist a function $f: \mathbb{R} \to \mathbb{R}$ satisfying both conditions
 - \bullet f takes all real values
 - f(f(x)) = (x-1)f(x) + 2 for all $x \in \mathbb{R}$?
- 8. Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that

$$f(xy - 1) + f(x)f(y) = 2xy - 1$$

holds for all $x, y \in \mathbb{R}$.

9. Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ satisfying the equation

$$f(x + f(xy)) = xf(1 + f(y)).$$

- 10. Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that
 - f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$ and
 - $f\left(\frac{1}{x}\right) = \frac{f(x)}{x^2}$ for all $x \neq 0$.