Tree Search

Week 3

Recap on Reinforcement Learning

Formulating Problems as RL

- State Space
 - Start State
 - Goal State
- Actions Space

 Place four queens on a 4 x 4 board such that they do not attack each other.

- Initial State
- Action Space
- State Space
- Goal State

Four Queens: Limiting Action Space

- State Space
 - $16 \times 15 \times 14 \times 13 = 43,680$
- Action Space
 - ~14 tiles
- Reformulate
 - One Queen per Column
- State Space
 - $4 \times 4 \times 4 \times 4 = 16$
- Action Space
 - 4 tiles

N-Queens Problem

- Eight Queens
 - Original, Published 1848
 - State Space ~ 10¹⁴ to 2,057
- Hundred Queens
 - State Space $\sim 10^{400}$ to 10^{52}
- Million Queens
 - Literally Impossible (jk)
 - Solved in a few seconds with min-conflicts heuristics.

Four Queens Solution

		Q	
Q			
			Q
	Q		

Search Tree

General strategy to search through possible plans.

Tree Search

- Generalized Method of Searching State Space
 - Useful for Most Action Based Problems
 - Useful for NP-Hard Problems

- Breadth First Search
- Depth First Search
- Advanced
 - Uniform Cost Search
 - A* Search

Search Problem

Depth First Search

- Strategy
 - Search the first unexplored path.
- Implementation
 - Stack Last in First Out
 - Recursive

Depth First Search

• Order – S,p,q,e,r,f,G

Depth First Search

push first node to stack

```
while the stack is not empty:

pop the stack

if goal:

end

push children to stack
```

Breadth First Search

- Strategy
 - Search each layer at a time.
- Implementation
 - Queue First in First Out

Breadth First Search

• Order – S,d,e,p,b,c,e,h,r,q,a,a,h,r,p,q,f,p,q,f,q,c,G

Breadth First Search

push first node to queue

```
while the queue is not empty:

pop the queue

if goal:

end

push children to queue
```

Search Algorithm Properties

- n number of states
- b max branching factor
- d min depth of solution
- m max depth of search tree

Search Algorithm Properties - DFS

- Complete
 - Yes
- Optimal
 - No
- Time Complexity
 - O(b^m)
- Space Complexity
 - O(bm)

n – number of states

b – max branching factor

d – min depth of solution

m – max depth of search tree

Search Algorithm Properties - BFS

- Complete
 - Yes
- Optimal
 - Yes
- Time Complexity
 - O(bd)
- Space Complexity
 - O(bd)

n – number of states

b – max branching factor

d – min depth of solution

m – max depth of search tree

Actions can have Cost

Uniform Cost Search

- Generalization of Breadth First Search
- Strategy:
 - Search the next cheapest state.
- Implementation:
 - Priority Queue
 - Each state has a cost function f(n)

Uniform Cost Search

Order – S,p,d,b,e,a,r,f,e,G

Trees and Conversational Question Answer

- How to query knowledge bases with natural language?
- Single-Step Reasoning
 - Semantic Parsing
 - Embedding Based
- Multi-Step Reasoning
 - Symbolic Methods
 - Embedding Based
 - Reinforcement Learning

Multi-Step Reasoning with RL

What is the citizenship of Obama?

Multi-Step Reasoning with RL

- DeepPath (Xiong et al., 2017)
- MINERVA (Das et al., 2017)
- M-Walk (Shen et al., 2018)