1.质点运动学答案

一、选择题

CBDDBA

- 二、填空题
- 7. 8m, 10m
- 8. $h_1 v/(h_1-h_2)$
- 9. $16Rt^2$, $4rad/s^2$
- 10. 20m/s
- 11. 8m/s, 35.8m/s²
- 三、计算题
- 12. 解: (1) 由运动方程,得正交坐标方程为 $\frac{x^2}{3} + y^2 = 1$, 故轨迹为抛物线.
- (2) 质点速度、加速度为: $v = -\frac{\sqrt{3}}{4}\pi\sin\frac{\pi}{4}t\,\mathbf{i} + \frac{\pi}{4}\cos\frac{\pi}{4}t\,\mathbf{j}$

$$a = -\frac{\sqrt{3}}{16}\pi^2 \cos\frac{\pi}{4}t \, \mathbf{i} - \frac{\pi^2}{16} \sin\frac{\pi}{4}t \, \mathbf{j} = -\frac{\pi^2}{16} (\sqrt{3}\cos\frac{\pi}{4}t \mathbf{i} + \sin\frac{\pi}{4}t \mathbf{j}) = -\frac{\pi^2}{16}r.$$

(3) 速度:
$$v = \sqrt{v_x^2 + v_y^2} = \frac{\sqrt{2}}{4}\pi$$
 m/s ,方向: $\tan \theta = \frac{v_y}{v_x} = -\frac{\sqrt{3}}{3}$,

加速度:
$$a = \sqrt{a_x^2 + a_y^2} = \frac{\sqrt{2}}{16}\pi^2$$
 m/s², 方向: $\tan \alpha = \frac{a_y}{a_x} = \frac{\sqrt{3}}{3}$.

13. **M**:
$$x = 2t^2 + \frac{1}{2}t^3 + 5$$

所以
$$t = 10$$
 s 时 $v_{10} = 4 \times 10 + \frac{3}{2} \times 10^2 = 190 (\text{m} \cdot \text{s}^{-1})$

$$x_{10} = 2 \times 10^2 + \frac{1}{2} \times 10^3 + 5 = 705(\text{m})$$

$$14.解: \quad t = \sqrt{\frac{R}{c}} - \frac{b}{c}$$

15.
$$\Re: a_n = \frac{v^2}{\rho}$$
 $\therefore \rho = \frac{v^2}{a_n} = \frac{v_0^2}{g \cos \alpha}$

16.**M**:
$$\vec{v}_{\text{M}} = \vec{v}_{\text{M}} = 8 \text{ m} \cdot \text{s}^{-1}$$

2.质点动力学答案:

一、选择题

CCCBB

二、填空题

6.
$$0 2g$$

7.
$$f_0$$

8.
$$1/\cos^2\theta$$

10.
$$mg/\cos\theta \qquad \sin\theta\sqrt{\frac{gl}{\cos\theta}}$$

三、计算题

11. **M**: (1)
$$v = v_0 e^{-Kt/m}$$

(2)
$$x_{\text{max}} = m v_0 / K$$

12.
$$M$$
: $a = g[1 - (v/v_0)^2] = 3.53 \,\text{m/s}^2$

13.
$$M$$
: $v = \sqrt{6k/(mA)}$

14.解:
$$l=h/\sin\theta=2.92$$
 m 时,最省力

15.
$$M$$
: $a_t = g \sin \theta$

3.质点的动量、能量答案

一、选择题

ACCCCC

7.
$$(2m/s)\vec{i}$$

9.
$$\vec{i} - 5\vec{j}$$

11.
$$-Gm_1m_2(\frac{1}{a}-\frac{1}{b})$$

$$12. -0.207$$

13.
$$M$$
: $\overline{F} = 2mv \cos \alpha / \Delta t$

14.#:
$$I = \sqrt{I_x^2 + I_y^2} = 0.739 \text{ N} \cdot \text{s}$$

方向:
$$\operatorname{tg} \theta_1 = I_y / I_x$$
 $\theta_1 = 202.5^{\circ}$ $(\theta_1 为与 x 轴正向夹角)$

15.
$$M = \int dW = \int_0^l -9kc^{\frac{2}{3}}x^{\frac{4}{3}}dx = \frac{-27kc^{\frac{2}{3}}l^{\frac{7}{3}}}{7}$$

16.解:
$$E_p = k/(2r^2)$$

17.
$$M$$
: $\frac{1}{2}mv^2 = E_{K0} + mgx\sin\alpha - \frac{1}{2}kx^2 - \frac{(mg\sin\alpha)^2}{2k}$

4.刚体的转动(1)答案

一、选择题

ACBCC

二、填空题

7.
$$J_1 = 2m\left(\frac{\sqrt{2}}{2}a\right)^2 + m\left(\sqrt{2}a\right)^2 = 3ma^2$$
, $J_2 = 2ma^2 + m\left(\sqrt{2}a\right)^2 = 4ma^2$

8.
$$3ML^2/4$$
 $mgL/2$ $2g/(3L)$

3*ML*²/4 *mgL*/2
 铁圆板先停

10. 24 rad/s

三、计算题

11.解: t=40 s

12.
$$\beta = \frac{2g}{19r}$$

13.解: F=157N

14.
$$M$$
: (1) $t = \frac{J \ln 2}{k}$

$$(2) N = \frac{J\omega_0}{4\pi k}$$

15.
$$ext{M}$$
: (1) $F_{T1} = 340 \text{ N}$, $F_{T2} = 316 \text{ N}$, $a = R\alpha = 3 \text{ m/s}^2$.

(2)
$$m_1$$
 到达地面的时间为 $t = \sqrt{\frac{2h}{a}} = \sqrt{\frac{2 \times 1}{3}}$ s = 0.816 s.

5.刚体的转动(2)答案

一、选择题

CBDBE

二、填空题

6. $3\omega_0$

7.
$$\omega = -\frac{mv}{6m'R}$$
, $v' = \omega R = -\frac{mv}{6m'}$

$$8. \quad \frac{6mv_0}{(3M+4m)l}$$

9. -4.19N·m -7896J

10. 3,
$$\theta = \arccos \frac{1}{3}$$

三、计算题

11.
$$M$$
: $\omega = \frac{mv_0(R+l)\cos\alpha}{J+m(R+l)^2}$, $\sharp = J = 2mR^2 + 5m(l+R)^2 + \frac{1}{3}3ml^2$

12.
$$M$$
: $\omega = -\frac{2R_2}{R_1^2 + 2R_2^2}v$

13.
$$M$$
: (1) $\omega_b = \frac{J_0}{J_0 + J_1} \omega_a = \frac{M}{M + 2m} \omega_a$

(2)
$$\omega_c = \frac{J_0}{J_0 + J_2} \omega_a = \frac{MR^2}{MR^2 + 2mr^2} \omega_a$$

14.解: (1) $n \approx 200 \text{ rev/min}$

(2)
$$\int M_A dt = J_A(\omega - \omega_A) = -4.19 \times 10^2 \text{ N} \cdot \text{m} \cdot \text{s}$$

$$\int M_B dt = J_B(\omega - 0) = 4.19 \times 10^2 \text{ N·m·s}$$

15.
$$M$$
: $\theta = \arccos(0.388) = 67.19^{\circ}$.

6.力学综合与拓展练习答案

一、选择题

BEDBBC

二、填空题

$$7. \quad -\frac{g}{2} \qquad \frac{2\sqrt{3}}{3g}v^2$$

8.
$$\sqrt{\frac{K}{mr}}$$
 $-\frac{K}{2r}$

9. $0.01 \text{kg} \cdot \text{m}^2$ 0.0942N.m

10. $1N \cdot m \cdot s$ 1m/s

11.
$$\omega = \frac{2mv}{(5m + 2m')R}$$

三、计算题

12.解:运动员在水中达到的深度约 4.9m, 所以跳水池的水深应该为 5m 左右比较合理。

13.解: 略

14.
$$mu$$
: (1) $\omega = \sqrt{\frac{P}{k}(1 - e^{-\frac{2kt}{J}})}$

(2)
$$\omega_{\rm m} = \sqrt{\frac{P}{k}}$$

(3)
$$\theta = \frac{J}{k} \sqrt{\frac{P}{k}}$$

15.
$$multiple : t = \frac{2m_2(v_1 + v_2)}{\mu m_1 g}$$

(2)
$$x_0 = 0.245m$$
, $v_0 = 1.31m/s$

17.
$$multiperse : \omega_0 = \frac{\sqrt{2gh}}{2R}\cos\theta, \quad \omega = \frac{1}{2R}\sqrt{\frac{g}{2}(h+4\sqrt{3}R)}, \quad \beta = \frac{g}{2R}$$

7.静电场(1)答案

一、选择题

BCCAD

二、填空题

6. 0

7. 水平向左、
$$E = \frac{mgtg\theta}{q}$$

8.
$$x = 2a$$

9.
$$\lambda_1 d/(\lambda_1 + \lambda_2)$$

10.
$$\frac{2qy\bar{j}}{4\pi\varepsilon_0(a^2+y^2)^{3/2}}$$
 $\pm\frac{\sqrt{2}a}{2}$

11.
$$M$$
: $E = \frac{q}{4\pi\varepsilon_0 L} (\frac{1}{d} - \frac{1}{d+L})$

12.
$$\text{M}: E = E_x = Q/(2\pi^2 \varepsilon_0 R^2)$$

13.
$$M$$
: (1) $\vec{E} = \frac{\lambda r_0}{2\pi\varepsilon_0 x(r_0 - x)}\vec{i}$

(2)
$$\vec{F}_{+} = \lambda \vec{E}_{-}(r_{0}) = \frac{\lambda^{2}}{2\pi\varepsilon_{0}r_{0}}\vec{i}$$
, $\vec{F}_{-} = -\lambda \vec{E}_{+}(r_{0}) = -\frac{\lambda^{2}}{2\pi\varepsilon_{0}r_{0}}\vec{i}$

$$14.\text{M}: \quad \vec{E} = \frac{-Q}{\pi^2 \varepsilon_0 R^2} \vec{j}$$

15.解:
$$R = \sqrt{3}a$$

8.静电场(2)答案

一、选择题

DBDAD

二、填空题

6. $E\pi R^2$

7. $-Q/\varepsilon_0$

8. $(q_1+q_4)/\epsilon_0$, q_1 、 q_2 、 q_3 、 q_4 , 矢量和

9. σ /(2 ϵ ₀), 向左; 3 σ /(2 ϵ ₀), 向左; σ /(2 ϵ ₀), 向右.

10. $ES\cos\theta$

三、计算题

11.解: Φ =1 N·m²/C

12.
$$multiple E_1 = Ar^2/(4\varepsilon_0)$$
, $(r \le R)$

$$E_2 = AR^4 / (4\varepsilon_0 r^2), \quad (r > R)$$

13.解:
$$|x| < d/2$$
时, $E_1 = \rho \cdot |x|/\varepsilon_0$

$$|x| > d/2$$
 时, $E_2 = \frac{\rho \cdot d}{2\varepsilon_0}$

14.解: (1) 对
$$r < R_1$$
 的区域:

$$E=0$$

对
$$R_1 < r < R_2$$
 的区域:

对
$$R_1 < r < R_2$$
 的区域:
$$E = \frac{\lambda_1}{2 \pi \varepsilon_0 r}$$

对
$$r > R_2$$
的区域:

$$E = \frac{\lambda_1 + \lambda_2}{2\pi\varepsilon_0 r}$$

$$(2) \quad E = \frac{\lambda}{2\pi\varepsilon_0 r} \quad R_1 < r < R_1$$

$$0 \quad r > R_2$$

15. (1)
$$\sigma' = -(\frac{R_2}{R_1})^2 \sigma$$

在
$$R_1 < r < R_2$$
 区域:
$$E = E_1 + E_2 = \frac{4\pi R_1^2 \sigma'}{4\pi \varepsilon_0 r^2} + 0 = -\frac{\sigma}{\varepsilon_0} \left(\frac{R_2}{r}\right)^2$$

9.静电场(3)答案

一、选择题

ACBDC

二、填空题

6. $q/(6\pi\varepsilon_0 R)$

7. 0,
$$\frac{\lambda}{2\varepsilon_0}$$

8.
$$\sigma R / 2\varepsilon_0$$

9. $\int_L \vec{E} \cdot d\vec{l} = 0$,单位正电荷在静电场中沿闭合路径绕行一周,电场力做功为 0,保守力

$$(3\sqrt{3}qQ)/(2\pi\varepsilon_0 a)$$

三、计算题

11.
$$M$$
: $U = \frac{\sigma}{2\varepsilon_0} (R - \sqrt{R^2 + x^2})$

12.解:

$$V = -\frac{\sigma}{\varepsilon_0} x \qquad (-a < x < a)$$

$$V = \frac{\sigma}{\varepsilon_0} a \qquad (x < -a)$$

$$V = -\frac{\sigma}{\varepsilon_0} a \qquad (x > a)$$

13.
$$M$$
: $V = \frac{q}{8\pi\varepsilon_0 l} \ln\left(1 + \frac{2l}{a}\right)$

14.解: (1) ($\lambda/2\pi\epsilon_0$)ln(r_2/r_1)

(2)略

15.M: V=3 $Q(R_2^2-R_1^2)/[8\pi\varepsilon_0(R_2^3-R_1^3)]$

10.静电场(4)答案

一、选择题

BAADD

二、填空题

- 6. *U*₀
- 7. 不变,减小
- 8. 是, 是, 垂直, 等于
- 9. 会, 矢量
- 10. 增大,增大

三、计算题

11.解: (1) 球电势
$$U_A = \frac{q}{4\pi\varepsilon_0 r} - \frac{q}{4\pi\varepsilon_0 R_1} + \frac{q+Q}{4\pi\varepsilon_0 R_2}$$

球壳电势
$$U_{\scriptscriptstyle B} = \frac{q+Q}{4\pi\varepsilon_{\scriptscriptstyle 0}R_{\scriptscriptstyle 2}}$$

$$\therefore U_{AB} = U_A - U_B = \frac{q}{4\pi\varepsilon_0} (\frac{1}{r} - \frac{1}{R_1})$$

(2)
$$U_{AB} = \frac{q}{4\pi\varepsilon_0} (\frac{1}{r} - \frac{1}{R_1})$$

(3)
$$U_{AB} = U_A - U_B = 0$$

12.
$$\Re$$
: (1) $q_c = -\frac{2}{3}q_A = -2 \times 10^{-7}C$, $q_B = -\frac{1}{3}q_A = -1 \times 10^{-7}C$

(2)
$$U_A = E_{AC} d_{AC} = 2.3 \times 10^3 (V)$$

13.M: $Q_B = QR_1R_2/(R_1R_2 + R_2R_3 - R_1R_3)$

$$V_A = -Q(R_2 - R_1)/[4\pi\varepsilon_0(R_1R_2 + R_2R_3 - R_1R_3)]$$

14.##: (1) $\sigma_1 = \sigma_4 = (Q_1 + Q_2)/(2S) = 2.66 \times 10^{-8} \text{C/m}^2$ $\sigma_2 = -\sigma_3 = (Q_1 - Q_2)/(2S) = 0.89 \times 10^{-8} \text{C/m}^2$ (2) $U_{AB} = 1000V$

15.解: (1) 由静电感应和高斯定理可知, 球壳内表面带电 -q, 外表面带电 q+Q。

(2)
$$U = \frac{-q}{4\pi\varepsilon_0 a}$$

(3)
$$U = \frac{q}{4\pi\varepsilon_0 r} + \frac{-q}{4\pi\varepsilon_0 a} + \frac{q+Q}{4\pi\varepsilon_0 b} = \frac{q}{4\pi\varepsilon_0} (\frac{1}{r} - \frac{1}{a} + \frac{1}{b}) + \frac{Q}{4\pi\varepsilon_0 b}$$

11.静电场(5)答案

一、选择题

CADCB

二、填空题

6. R_1/R_2 , $4\pi\varepsilon_0(R_1+R_2)$, R_2/R_1 .

7. 2*U*/3

8. $1/\varepsilon_r$, ε_r

9. 2:1, 1:2

10. 增大,增大

三、计算题

11.M: (1) $\Delta W = W - W_0 = Q^2 d/(2 \varepsilon_0 S)$

(2) $A = -A_e = -(W_0 - W) = W - W_0 = Q^2 d/(2 \varepsilon_0 S)$

12.
$$M$$
: (1) $C = \frac{Q}{C} = 4\pi\varepsilon_0 R$

$$(2) W = \frac{Q^2}{2C} = \frac{Q^2}{8\pi\varepsilon_0 R}$$

(3)
$$E = \frac{Q}{4\pi\varepsilon_0 R^2} \le Eg$$
 $Q_M = 4\pi\varepsilon_0 R^2 Eg$

13.#R: (1)
$$C = Q/U = \frac{(2\pi\varepsilon_0\varepsilon_r L)}{[\ln(b/a)]}$$

(2)
$$W = \frac{1}{2}CU^2 = \frac{Q^2}{4\pi\varepsilon_0\varepsilon_r L}\ln(b/a)$$

14. 解: (1)在
$$r < R_1$$
和 $R_2 < r < R_3$ 区域 $W_1 = \frac{Q^2}{8\pi\varepsilon_0}(\frac{1}{R_1} - \frac{1}{R_2})$

在
$$r > R_3$$
区域 $W_2 = \frac{Q^2}{8\pi\varepsilon_0} \frac{1}{R_3}$

(2)
$$W = W_1 = \frac{Q^2}{8\pi\varepsilon_0} (\frac{1}{R_1} - \frac{1}{R_2}) = 1.01 \times 10^{-4} \text{ J}$$

(3)
$$C = 4.49 \times 10^{-12} \text{ F}$$

15.
$$M = \frac{\pi \varepsilon_0 \varepsilon_r U_{12}^2 l}{\left[\ln(r_2/r_1)\right]^2} = 1.9 \times 10^{-2} \text{ J}$$

12.稳恒磁场(1)答案

一、选择题:

AABCC

二、填空题:

6.
$$\frac{\mu_0 I}{4\pi a}$$
 向里

7.
$$\frac{\mu_0 I}{4R}$$
 向里

8.
$$-\frac{\mu_0 I}{4\pi R} (\vec{j} + \vec{k}) - \frac{3\mu_0 I}{8R} \vec{i}$$

9.
$$B = \frac{\mu_0 I}{2R} \sqrt{1 + \frac{1}{\pi^2}}$$

10.
$$\frac{\mu_0 I\theta}{4\pi} \left(\frac{1}{R_2} - \frac{1}{R_1}\right)$$
 方向垂直纸面朝里

三、计算题

11.
$$multiperse I_1 = \frac{I_1}{I_2} = \frac{2}{3}$$

12.解:
$$B = \frac{\mu_0 I}{8R} + \frac{\mu_0 I}{2\pi R} = \frac{\mu_0 I}{2R} (\frac{1}{4} + \frac{1}{\pi})$$
 方向 \otimes

13.解:
$$B = \frac{\mu_0 \delta}{2\pi} \ln \frac{a+b}{b}$$
 方向: 向里

$$14.解: B = \frac{\mu_0 \sigma \omega R}{2}$$

15.解:
$$B = B_x = \frac{\mu_0 I}{\pi^2 R}$$
 方向: Ox 轴负向。

13.稳恒磁场(2)答案

一、选择题:

CEBBD

二、填空题:

6. 0,
$$B \cdot S_{ab0d}$$
, $B \cdot S_{ab0d}$;

7.
$$\mu_0 I$$
, 0, $\mu_0 2I$;

8. 0

9. 0,
$$-\mu_0 I$$

10.
$$-\frac{1}{2}\pi R^2 \cdot B \quad (\oint_{S_1} \vec{B} \cdot d\vec{S} = -\oint_{S_2} \vec{B} \cdot d\vec{S})$$

三、计算题

11.解: (1) 环外: B=0; 环内任一处磁场为: $B = \frac{\mu_0 NI}{2\pi r}$, 方向为切向

(2)
$$\therefore \Phi = \frac{\mu_0 NIh}{2\pi} \int_{\frac{D_2}{2}}^{\frac{D_1}{2}} \frac{dr}{r} = \frac{\mu_0 NIh}{2\pi} \ln \frac{D_1}{D_2}$$

12.
$$M$$
: (1) $B_i = \frac{1}{2} \mu_0 (i_1^2 + i_2^2 - 2i_1 i_2 \cos \theta)^{1/2}$

(2)
$$B_o = \frac{1}{2} \mu_0 (i_1^2 + i_2^2 + 2i_1 i_2 \cos \theta)^{1/2}$$

(3)
$$B_{i} = \frac{1}{2}\sqrt{2}\mu_{0}i\sqrt{1-\cos\theta} = 0$$

$$B_{o} = \frac{1}{2}\sqrt{2}\mu_{0}i\sqrt{1+\cos\theta} = \mu_{0}i$$

13.
$$M$$
: $B = \frac{\mu_0 I}{2\pi x} + \frac{\mu_0 I}{2\pi (3a - x)}$

14.
$$mathref{M:} \frac{\Phi_{S_1}}{\Phi_{S_2}} = 1$$

15.
$$M: B = \frac{\mu_0 I}{3\pi R}$$

14.稳恒磁场(3)答案

一、选择题

DBADC

二、填空题

6. 0.0785N.m , 向上, 0.0785J;

7.
$$\frac{m\upsilon}{qB}, \frac{2\pi m}{qB}, \quad \text{M};$$

8.
$$\sqrt{2}aIB$$
:

9. $F = \sqrt{2}BIR$,方向沿 Y 轴正向;

10. 向右运动。

三、计算题

11.
$$mbox{M:} \frac{F_e}{F_m} = \frac{1}{\varepsilon_0 \mu_0 v^2} = \frac{c^2}{v^2}$$

12.解: 须加外力F' = 0.2N, 方向向左

13.
$$\text{M}$$
: $eE = e \upsilon B \Rightarrow \upsilon = \frac{E}{B} = 3750 \text{m/s}$

14.解:
$$F = \frac{\mu_0 I_1 I_2}{2}$$
, 方向: 垂直 I_1 向右

15.解:
$$F = B_0 j = \frac{1}{2} (B_1 + B_2) \cdot \frac{B_2 - B_1}{\mu_0} = \frac{B_2^2 - B_1^2}{2\mu_0}$$
, 根据右手螺旋可知受力方向向左

15.电磁感应(1)答案

一、选择题

DBDCD

二、填空题

6. 16.5C

7. $\mu_0 n I_0 \omega \pi a^2 \cos \omega t$

8.
$$\frac{1}{\pi} \times 10^2$$

9. 变化磁场,闭合的

10.
$$Oa$$
 段电动势方向由 a 指向 O , $-\frac{1}{2}B\omega L^2$, 0 , $-\frac{1}{2}\omega Bd(2L-d)$ 。

11.解: (1)
$$\varepsilon_{ab} = \int_a^b (\vec{\upsilon} \times \vec{B}) \cdot d\vec{l} = \int_a^b \upsilon \cdot \frac{\mu_0 I_0}{2\pi r} \cdot dr = -\frac{\mu_0 I_0 \upsilon}{2\pi} \ln \frac{l_1}{l_2}$$
, (a 点电势高)

(2)
$$\varepsilon_i = -\frac{d\Phi}{dt} = -\frac{\mu_0 I_0}{2\pi} \upsilon \ln \frac{l_0 + l_1}{l_0} (\cos \omega t - \omega t \sin \omega t)$$

12.解: (1)
$$\varepsilon_{AB} = \int_A^B (\vec{v} \times \vec{B}) \cdot d\vec{l} = vBl = 8V$$
, B点电势高。
$$\varepsilon_{CD} = \int_C^D (\vec{v} \times \vec{B}) \cdot d\vec{l} = v_2Bl = 4V$$
, D点电势高

(2)
$$U_{AB} = U_A - U_B = -6V$$
, $U_{CD} = U_C - U_D = -6V$

(3)
$$U_{O_1} - U_{O_2} = 0$$

13.解:
$$\varepsilon_{MeN} = -\frac{\mu_0 I v}{2\pi} \ln \frac{a+b}{a-b}$$
 方向 $N \rightarrow M$

$$U_M - U_N = -\varepsilon_{MN} = \frac{\mu_0 I v}{2\pi} \ln \frac{a+b}{a-b}$$

14.解:
$$\varepsilon = \frac{\mu_0 Ib}{2\pi a} \left(\ln \frac{a+d}{d} - \frac{a}{a+d} \right) v$$
 方向: *ACBA*(即顺时针)

15.解: (1) $\varepsilon_i = B \operatorname{tg} \theta v^2 t$ 在导体 MN 内 ε_i 方向由 M 向 N.

(2)
$$\varepsilon_i = Kv^3 \operatorname{tg} \theta(\frac{1}{3}\omega t^3 \sin \omega t - t^2 \cos \omega t)$$

 $\epsilon_i > 0$,则 ϵ_i 方向与所设绕行正向一致, $\epsilon_i < 0$,则 ϵ_i 方向与所设绕行正向相反.

16.电磁感应(2)答案

一、选择题

DCDAC

二、填空题

$$6. \quad -L\frac{dI}{dt} = 50V,$$

7. 无感应电流,无感应电流;

8. <

9. 1:16.

10. 变化磁场产生感生电场; 变化电场产生位移电流→产生感生磁场;

11.
$$M = \frac{\Psi}{I} = N \frac{\mu_0 l}{2\pi} \ln 2$$
.

(2)
$$M = 0$$

12.
$$M$$
: $L = \frac{\Psi}{I} = \mu_0 n^2 V$

13.
$$m$$
: $a_a = a_c = 4.4 \times 10^7 \, m/s^2$

$$a_h = 0$$

14.
$$MR$$
: $L = \frac{N\Phi}{I} = \frac{\mu_0 N^2 h}{2\pi} \ln \frac{R_1}{R_2}$

15.解:
$$\varepsilon = S \, dB / dt = (\frac{1}{2}R^2\theta - \frac{1}{2}\overline{Oa}^2 \cdot \sin\theta) dB / dt = 3.68 \, \text{mV}$$
 方向:沿 adcb 绕向

17.振动(1)答案

一、选择题

CBBDD

二、填空题

6.
$$\pi/4$$
 $x = 2 \times 10^{-2} \cos(\pi t + \pi/4)$ (SI)

7. 3.43 s
$$-2\pi/3$$

8.
$$\frac{4\pi}{3}$$
; 4.5 cm/s²; $x = 0.02\cos(\frac{3}{2}t - \frac{\pi}{2})$

- 9. 0.61 s
- 10. 2.72 s

三、计算题

11.
$$\Re$$
: (1) $F = ma = 5(N)$

(2)
$$F_m = ma_m = 10 \ N$$
 此时质点最大位移处即 $x = 0.2 \ m$ 或 $x = -0.2 \ m$

12.
$$M$$
: (1) $v = \frac{\omega}{2\pi} = 0.5 Hz$

(2)
$$A=8.8 \text{ cm } \varphi = 180^{\circ} + 46.8^{\circ} = 226.8^{\circ} = 3.96 \text{ rad } (\vec{x}-2.33 \text{ rad})$$

13.
$$M$$
: $x = 0.05\cos(7t + 0.64)$ (SI)

14.
$$M$$
: $x = 0.1\cos(5\pi t/12 + 2\pi/3)$ (SI)

15.
$$multiperse M: \omega = \sqrt{\frac{k}{(J/R^2) + m}} = \sqrt{\frac{kR^2}{J + mR^2}}$$

18.振动(2)答案

一、选择题

CDBDB

二、填空题

$$6.0.08\sqrt{10} \approx 0.25 \text{ m}; 0.08\sqrt{5} \approx 1.78 \text{ m}; 0.2 \text{ J}$$

7. A/2 -0.5π

- 8. 最大; 为零
- 9. 20 cm; $\Delta \varphi = 0$

10.
$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\Delta\varphi}$$

11.
$$M$$
: (1) $x = 0.1\cos(7.07t)$

- (2) F = 30 N
- (3) $\Delta t = 0.074 \text{ s}$
- 12.M: (1) A = 0.08 m

(2)
$$x = \pm \frac{A}{\sqrt{2}} = \pm 0.0566 \text{ m}$$

(3)
$$v = \pm 0.8 \text{ m/s}$$

13.**M**:
$$E = 2\pi^2 mA^2 / T^2$$

14.
$$M$$
: (1) $x = 0.170 \text{ m}$

(2)
$$v = \mp 3.26 \ m/s$$
, $E_k = 5.31 \times 10^{-4} \ J$,

$$E_p = \frac{1}{2}Kx^2 = 1.77 \times 10^{-4} J$$
 $E = E_k + E_p = 7.08 \times 10^{-4} J$

15. M:
$$x = A\cos(\omega t + \varphi) = \frac{mv}{\sqrt{k(M+m)}}\cos\left(\sqrt{\frac{k}{M+m}}t + \frac{\pi}{2}\right)$$

19.波动(1)答案

一. 选择题

CBAAD

二、填空题

6.
$$\frac{12}{35}\pi$$

7. 0.5 m

8.
$$y = A\cos[2\pi(\nu t + \frac{x+L}{\lambda}) + \frac{\pi}{2}]$$
 $t_1 + \frac{L}{\lambda \nu} + \frac{k}{\nu}$, $k = 0$, ± 1 , ± 2 , … [只写 $t_1 + L/(\lambda \nu)$ 也可以]

9. x=0 点的相位传到 x 所用时间; x 点振动的初相位 $\frac{\omega x}{u}$; 媒质质点偏离平衡位置的距离

10. 2.4 m 6.0 m/s

三、计算题

11.
$$M$$
: (1) $y = A\cos[2\pi(250t + \frac{x}{200}) + \frac{1}{4}\pi]$ (SI)

(2)
$$y_1 = A\cos(500\pi t + \frac{5}{4}\pi)$$

振动速度表达式是: $v = -500\pi A \cos(500\pi t + \frac{5}{4}\pi)$ (SI)

12.
$$M$$
: (1) $y = 0.3\cos(4\pi t - \pi + \pi x/5)$ (SI)

(2)
$$y = 0.3\cos(4\pi t - \pi x/5)$$
 (SI) D点振动方程均为: $y_D = 0.3\cos(4\pi t - 14\pi/5)$

13.44:
$$y = 0.10 \cos \left[165\pi \left(t - \frac{x}{330} \right) \mp \pi \right]$$

14.#: (1)
$$y_P = 0.02\cos\left[\frac{\pi}{2}\left(t - \frac{25}{5}\right) - \frac{\pi}{2}\right] = 0.02\cos\left(\frac{\pi t}{2} - \pi\right)$$

$$(2) \quad y = 0.02 \cos \left[\pi - \frac{\pi x}{10} \right]$$

15.
$$M$$
: (1) $y_0 = \sqrt{2} \times 10^{-2} \cos(\frac{1}{2}\pi t + \frac{1}{3}\pi)$ (SI)

(2)
$$y = \sqrt{2} \times 10^{-2} \cos[2\pi(\frac{1}{4}t - \frac{1}{4}x) + \frac{1}{3}\pi] \text{(SI)}$$

(3) t=1 s 时,波形表达式:

$$y = \sqrt{2} \times 10^{-2} \cos(\frac{1}{2}\pi x - \frac{5}{6}\pi)$$
 (SI)

20.波动(2)答案

一、选择题

CCDBA

- 二、填空题
- 6. 相同; 4π/3

7.
$$y = 12.0 \times 10^{-2} \cos(\frac{1}{2}\pi x) \cos 20\pi t$$
 (SI)

$$x = (2n+1)$$
 m, $\mathbb{SP} x = 1$ m, 3 m, 5 m, 7 m, 9 m

$$x = 2n$$
 m, \mathbb{P} $x = 0$ m, 2 m, 4 m, 6 m, 8 m, 10 m

- 8. 0
- 9. 2
- 10. 动能最大,势能最大

三、计算题

11. ##:
$$y_{\Sigma} = 0.01\cos[(4t - \frac{16}{3}\pi) + \frac{2\pi(x-5)}{\lambda} + \pi] = 0.01\cos(4t + \pi x - \frac{4\pi}{3})$$

12.
$$M$$
: (1) $y_2 = 0.05 \cos[2\pi(\frac{t}{0.05} + \frac{x}{4})]$

(2)
$$y = y_1 + y_2 = 2A\cos\frac{2\pi}{\lambda}\cos\omega t = 0.10A\cos(\frac{\pi x}{2})\cos(40\pi t)$$

$$\pi \frac{x}{2} = \pm \frac{1}{2} \pi (2k+1) \Rightarrow x = \pm (2k+1) \quad k = 0, 1, 2, \dots$$

$$\Rightarrow$$
 $x = 1 m, -1 m, 3 m, -3 m$

13.解:(1)反射波的波方程
$$y_2 = A\cos\omega[(t-\frac{x}{u})+\pi]$$

(2) 合成波方程
$$y = y_1 + y_2 = 2A\cos(\frac{\omega x}{u} - \frac{\pi}{2})\cos(\omega t + \frac{\pi}{2})$$

14.解: $\lambda_{\text{max}} = 10 \text{ cm}$

15.解:干涉静止点的坐标是x=1, 3, 5, 7, 9, 11 m 及x>11 m 各点

21.光的干涉(1)答案

```
一、选择题
```

DBCCCB

- 二、填空题
- 7. 0.45 mm
- 8. 7.32 mm
- 9. 0.75
- 10. $2\pi (n-1) e / \lambda$ 4×10^3
- 11. $n(r_2-r_1)$
- 12. 3λ 1.33
- 三、计算题
- 13. \Re : (1) $\Delta x = 20 D \lambda / a = 0.11 m$
- (2) $k=(n-1)e/\lambda=6.96\approx7$ 零级明纹移到原第7级明纹处
- 14.M: (1) $d=10 D\lambda / \Delta x=0.910 \text{ mm}$
- (2) $l = 20 D\lambda / d = 24 \text{ mm}$
- (3) 不变

15.#:
$$k\lambda = \frac{dl}{D} = 4 \times 10^{-3} \text{ mm} = 4000 \text{ nm}$$

故当
$$k=10$$
 $\lambda_1 = 400 \text{ nm}$ $k=9$ $\lambda_2 = 444.4 \text{ nm}$ $k=8$ $\lambda_3 = 500 \text{ nm}$ $k=7$ $\lambda_4 = 571.4 \text{ nm}$ $k=6$ $\lambda_5 = 666.7 \text{ nm}$

这五种波长的光在所给观察点最大限度地加强.

16.解: (1)
$$dx/D \approx k\lambda$$

$$x \approx Dk\lambda / d = (1200 \times 5 \times 500 \times 10^{-6} / 0.50)$$
mm= 6.0 mm

(2)
$$x' = D[(n-1)l + k\lambda]/d = 1200[(1.58-1)\times0.01\pm5\times5\times10^{-4}]/0.50$$
mm = 19.9 mm

22.光的干涉(2)答案

- 一、选择题
- CBCABB
- 二、填空题
- 7. $5\lambda/(2n\theta)$
- 8. $\frac{9\lambda}{4n_2}$
- 9. r_1^2/r_2^2
- 10. 225
- 11. 539.1
- 三、计算题
- 12.解: $e=7.78\times10^{-4}$ mm
- 13.M: $\Delta l = l_1 l_2 = 9 \lambda (1 1/n) / 4\theta = 1.61 \text{ mm}$
- 14.解: 明纹数为 16
- 15.解: (1) $\lambda = 500nm$

(2) 在 OA 范围内可观察到的明环数目为 50 个

16.解:
$$r = \sqrt{R(k\lambda - 2e_0)}$$
 (k 为整数,且 $k > 2e_0 / \lambda$)

23. 光的衍射(1)答案

一、选择题

DBCCD

- 二、填空题
- 6. 4 第一 暗
- 7. 2π 暗
- 8. 30° 参考解: $a\sin\varphi = \frac{5}{2}\lambda$, $\varphi = 30^\circ$
- 9. 5.2×10^{-7}
- 10. 1.34m
- 三、计算题
- 11. M: (1) $\Delta x_0 = 2f \operatorname{tg} \varphi_1 = 2f \lambda / a = 1.2 \operatorname{cm}$
- (2) $x_2 = f \operatorname{tg} \varphi_2 \approx f \sin \varphi_2 = 2f \lambda / a = 1.2 \operatorname{cm}$
- 12.解: $f \approx a \Delta x / \lambda = 400 \text{ mm}$
- 13.解: (1) $a=\lambda$, $\sin \varphi = \lambda / \lambda = 1$, $\varphi = 90^{\circ}$
 - φ=5°44′ (2) $a=10\lambda$, $\sin \varphi = \lambda/10 \lambda = 0.1$
 - (3) $a=100\lambda$, $\sin \varphi = \lambda/100 \lambda = 0.01$ $\varphi = 3.4'$
- 14.M: $\varphi = \sin^{-1}(\pm k\lambda / a + \sin\theta)$ $k = 1, 2, (k \neq 0)$

24. 光的衍射(2)答案

一、选择题

BBBDA

- 二、填空题
- 6. 10λ
- 7. 625 nm
- 8. $0, \pm 1, \pm 3, \dots$
- 9. 1
- 10. 0.170 nm
- 三、计算题

11.
$$\Re$$
: (1) $a+b = \frac{3\lambda_1}{\sin 30^\circ} = 3.36 \times 10^{-4} \text{ cm}$

(2) $\lambda_2 = 420nm$

12.M: $\Delta x = x_1 - x_1' = f(\operatorname{tg} \varphi_1 - \operatorname{tg} \varphi_1') = f(\lambda - \lambda') / d = 1 \text{ cm}$

13.解: 第二级光谱被重叠的波长范围是 600 nm----760 nm

14.
$$\Re$$
: (1) $a + b = \frac{k\lambda}{\sin \varphi} = 2.4 \times 10^{-4} \text{ cm}$

(2)
$$a = (a + b)/3 = 0.8 \times 10^{-4}$$
 cm

- (3) 实际呈现 k=0, ± 1 , ± 2 级明纹
- 15.解: (1) λ′=510.3 nm
- (2) $\Delta \varphi = \varphi_2'' \varphi_2' = 25^\circ$

25.光的偏振答案

一、选择题

ABCBD

- 二、填空题
- 6. 2 1/4
- 7. 平行或接近平行
- 8. $\sqrt{3}$
- 9.

- 10. 37° 垂直于入射面
- 三、计算题
- 11.解: (1) *θ*=45°
- (2) P_1 与 P_2 偏振化方向的夹角 θ =22.5° P_2 转过的角度为(45°-22.5°)=22.5°
- 12.解: 在 $\alpha = A/2$ 处取得极值,且显然是极大值
- 13.解: (1) 设入射光中自然光强度为 I₀,则总强度为 2 I₀

穿过 P_1 后有光强比: $I_1/(2I_0)=5/8=0.625$,穿过 P_1 、 P_2 之后: $I_2/(2I_0)=5/16=0.313$

(2)
$$I_1'/(2I_0) = 0.9I_1/(2I_0) = 0.563$$
, $I_2'/(2I_0) = 0.253$

- 14.解: $\theta = 11.8^{\circ}$
- 15.M: (1) $n = 1.56 / \text{tg} 48.09^{\circ} = 1.40$
- $(2) r = 0.5\pi 48.09^{\circ} = 41.91^{\circ}$

26.气体动理论(1)答案

一、选择题

CAADC

- 二、填空题
- 6. 气体分子的大小与气体分子之间的距离比较,可以忽略不计. 除了分子碰撞的一瞬间外,分子之间的相互作用力可以忽略. 分子之间以及分子与器壁之间的碰撞是完全弹性碰撞.
- 7. $3.2 \times 10^{17} / \text{m}^3$
- 8. $1.33 \times 10^5 \text{ Pa}$
- 9. $1.04 \text{ kg} \cdot \text{m}^{-3}$
- 10. $\overline{w} = \frac{3}{2}kT$ 气体的温度是分子平均平动动能的量度.
- 三、计算题

11.
$$M$$
: $N\overline{\varepsilon}_{t} = N \cdot \frac{3}{2}kT = \frac{N}{N_{A}}N_{A} \cdot \frac{3}{2}kT = n'RT \cdot \frac{3}{2}\frac{N_{A}kT}{RT} = \frac{3}{2} \times 1 \times 10^{5} \times 1 = 1.5 \times 10^{5}J$

12.
$$\text{M}$$
: (1) $p = 2E / (iV) = 1.35 \times 10^5 \text{ Pa}$

(2)
$$\overline{w} = 3E/(5N) = 7.5 \times 10^{-21} \text{ J} \quad T = 2E/(5Nk) = 362K$$

13.
$$\Re: (1) O_2 : 3 \times \frac{1}{2} kT_{o_2} \ge m_{o_2} gr \Rightarrow T_{o_2} \ge 1.6 \times 10^5 K$$

$$H_2: 3 \times \frac{1}{2} kT_{H_2} \ge m_{H_2} gr \Rightarrow T_{H_2} \ge 1.1 \times 10^4 K$$

(2) 在同样的温度条件下, 氢分子具有较大的平均速率, 更容易逃逸出大气层

14.
$$\Re$$
: (1) $\Delta E = \frac{i}{2} Nk\Delta T = \frac{1}{2} Mv^2 = 2.00 \times 10^3 J$

(2)
$$\Delta \overline{\varepsilon_k} = \frac{i}{2} k \Delta T = 1.33 \times 10^{-22} J$$

15.
$$multiperse E_{H_e} = \frac{\frac{5}{2} pV}{\frac{3}{2} pV} = \frac{5}{3}$$

27.气体动理论(2)答案

一、选择题

BADCC

- 二、填空题
- 6. 氩 氦
- 7. 分布在 v_{ν} ~∞速率区间的分子数在总分子数中占的百分率 分子平动动能的平均值.
- 8. 495 m/s
- 9 2000 m s^{-1} 500 m s^{-1}
- 10. \overline{Z} 减小而 $\overline{\lambda}$ 增大.

三、计算题

- 11.解: (1) 表示分子的平均速率;
- (2) 表示分子速率在 $v_p \to \infty$ 区间的分子数占总分子数的百分比;
- (3) 表示分子速率在 v_p →∞区间的分子数.

12.
$$M_A = \frac{3RT}{m \cdot v_{rms}^2} = 6.15 \times 10^{23} \, mol^{-1}$$

13.
$$multiple{M}
= 8.3\%$$

14.
$$M$$
: (1) $\overline{Z} = 5.42 \times 10^7 \, s^{-1}$

(2)
$$\overline{\lambda} = 6 \times 10^{-5} cm$$

15.
$$M$$
: (1) $\bar{\lambda} = 6.9 \times 10^{-8} \, m$

(2)
$$\overline{Z} = 6.45 \times 10^9 \,\text{s}^{-1}$$

28.热力学(1)答案

一、选择题

DABBA

- 二、填空题
- 6. 一个点 一条曲线 一条封闭曲线
- 7. 体积、温度和压强 分子的运动速度(或分子运动速度,或分子的动量,或分子的动能)
- 8. 166 J
- 9. 500 700

10.
$$-|W_1| - |W_2|$$

11.
$$M$$
: (1) $W = 0$ $Q = \Delta E = \frac{M}{M_{mol}} C_V (T_2 - T_1) = 623 \text{ J}$

(3)
$$Q = 0$$
, $\Delta E = 1$ 回 $W = -\Delta E = -623$ J

- 12.解: (1) 略
- (2) $Q = v C_p(T_2 T_1) = 1.25 \times 10^4 \text{ J}$
- (3) $\Delta E = 0$
- (4) 据 $Q = W + \Delta E$

$$W = Q = 1.25 \times 10^4 \text{ J}$$

13.
$$\Re$$
: (1) $\Delta E = C_V (T_2 - T_1) = \frac{5}{2} (p_2 V_2 - p_1 V_1)$

(2)
$$W = \frac{1}{2}(p_2V_2 - p_1V_1)$$

(3)
$$Q = \Delta E + W = 3(p_2V_2 - p_1V_1)$$

(4)摩尔热容 $C=\Delta Q/\Delta T=3R$

14.
$$\text{M}$$
: (1) $\Delta E = 7.48 \times 10^3 \text{ J}$

(2)
$$W = -\Delta E = -7.48 \times 10^3 \text{ J}$$

(3)
$$n = p_2 / (kT_2) = 1.96 \times 10^{26} \text{ } \text{ } \text{ } \text{/m}^3$$

15.
$$\Re$$
: $\gamma = \frac{C_p}{C_V} = \frac{C_V + R}{C_V} = 1.40$

29.热力学(2)答案

一、选择题

ADDAA

二、填空题

7. 200 J

11.
$$\mathbf{M}$$
: (1) $A \rightarrow B$: $W_1 = 200 \text{ J}$.

$$\Delta E_1 = 750 \text{ J}$$

 $Q = W_1 + \Delta E_1 = 950 \text{ J}.$

$$B \rightarrow C$$
: $W_2 = 0$

$$\Delta E_2 = -600 \text{ J}$$

$$Q_2 = W_2 + \Delta E_2 = -600 \text{ J}$$

$$C \rightarrow A$$
: $W_3 = -100 \text{ J}$

$$\Delta E_3 = -150$$
 J

$$Q_3 = W_3 + \Delta E_3 = -250 \text{ J}$$

(2)
$$W = W_1 + W_2 + W_3 = 100 \text{ J}$$

$$Q = Q_1 + Q_2 + Q_3 = 100 \text{ J}$$

12.
$$multipersection 12.4
multipersection 12.4
mul$$

13.
$$M$$
: (1) $Q_1 = RT_1 \ln(V_2/V_1) = 5.35 \times 10^3 \text{ J}$

(2)
$$W = \eta Q_1 = 1.34 \times 10^3 \text{ J}$$

(3)
$$Q_2 = Q_1 - W = 4.01 \times 10^3 \text{ J}$$

14.解: (1)
$$Q_{ab} = -6.23 \times 10^3 \,\text{J}$$
 (放热)

$$Q_{bc} = 3.74 \times 10^3 \,\text{J}$$
 (吸热)

$$Q_{ca} = 3.46 \times 10^3 \,\text{J}$$
 (吸热)

(2)
$$W = (Q_{bc} + Q_{ca}) - |Q_{ab}| = 0.97 \times 10^3 \text{ J}$$

(3)
$$Q_1 = Q_{bc} + Q_{ca}, \quad \eta = W / Q_1 = 13.4\%$$

15.#:
$$\Delta S = \int_{1}^{2} \frac{dQ}{T} = \frac{Q_{T}}{T} = vR \ln \frac{V_{2}}{V_{1}} = 2.00 \times 8.31 \times \ln \frac{0.04}{0.02} = 1.15 J/K$$

30.相对论(1)答案

一、选择题

DDCCEB

二、填空题

7. *c*

8. 尾部

9. 0.866s

10. 0.976c

11. C A

三、计算题

12. μ : (1) $\nu = -1.5 \times 10^8 \text{m/s}$

(2)
$$\Delta x' = \frac{\Delta x - v \Delta t}{\sqrt{1 - \frac{v^2}{c^2}}} = 5.2 \times 10^4 \text{m}$$

13.**M**: $\tau = 7.5 \times 10^{-9}$ s

14.解: v = 0.816c S 系中米尺的长度 $l = 0.707l_0$

15.M: $\Delta t' = 8.89 \times 10^{-8} \text{s}$

16.M: $v_{\text{max}} = 0.992c$, $v_{\text{min}} = 0.213c$

31.相对论(2)答案

一、选择题

BDACA

二、填空题

6. >

7. $1.673 \times 10^{-26} \text{kg}$ $1.51 \times 10^{-9} \text{J}$ $4.99 \times 10^{18} \text{kgm/s}$ $1.36 \times 10^{-9} \text{J}$

8. 2.57×10^3 3.21×10^5

9.
$$m_0 c^2 (n-1)$$

10. 1.02MeV

三、计算题

11.
$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} = 1.25kg$$

(2)
$$\forall : E = m_0 c^2 = 9 \times 10^{16} J$$
 $\angle : E = mc^2 = 1.125 \times 10^{17} J$

13.
$$M$$
: $\Delta m = 0.284 m_0$, $\Delta E = 0.284 m_0 c^2$

14.
$$\text{M}$$
: (1) $t = 2.92 \times 10^{-8} \text{ s}$

(2) l' = 2.37m

32.量子物理(1)答案

一、选择题

DDCCDB

二、填空题

7. 16
$$\frac{1}{2}$$

9.
$$\pi$$
 0

10. 10.2eV

三、计算题

11.
$$M$$
: $T_E = 289K$

12.
$$\text{MZ}: \frac{1}{2}mv^2 = 2 \text{ eV} \quad \text{U}=2\text{V} \quad \lambda_{\text{max}} = 296\text{nm}$$

13.
$$\text{MF}$$
: $n_0 = \frac{P\lambda}{4\pi d^2 hc}$, $m = 3.33 \times 10^{-36} \, kg$

14.
$$M$$
: (1) $\lambda = \lambda_0 + \Delta \lambda = 0.1024 nm$

(2)
$$E_{\nu} = mc^2 - m_0c^2 = 291eV$$

15.
$$M$$
: $\nu = 2.93 \times 10^{15} Hz$

33.量子物理(2)答案

一、选择题

CACAD

二、填空题

6.
$$\frac{h}{2eRB}$$

7. 250cm

8. 粒子在 t 时刻在(x,y,z)处出现的概率密度 单值、有限、连续 $\iiint |\Psi|^2 dx dy dz = 1$

9.
$$\frac{1}{2}a$$

10.
$$\left(-\frac{\hbar^2}{2\mu}\frac{\partial^2}{\partial x^2} + U\right)\Psi = i\hbar\frac{\partial\Psi}{\partial t}$$

11.
$$M_{K}$$
: $E_{K \oplus \mathcal{F}} = \frac{1}{2} m_e v^2 = \frac{p^2}{2m_e} = 37.8 eV$ $E_{K \% \mathcal{F}} = mc^2 - m_0 c^2 = h \frac{c}{\lambda} = 6.22 keV$

12.
$$M$$
: $v = 2.8 \times 10^8 \, m/s$ $\lambda = 8.85 \times 10^{-13} \, m$

13.M: d = 9.68cm

14.解: E的可能值为: E₁=13.6eV, E₂= -3.4eV, E₃= -1.51eV

相应的概率:
$$P_1 = \left| \frac{2}{\sqrt{10}} \right|^2 = \frac{2}{5}$$
 $P_2 = \left| \frac{1}{\sqrt{10}} \right|^2 + \left| \frac{\sqrt{2}}{\sqrt{10}} \right|^2 = \frac{3}{10}$

能量平均值:
$$\overline{E} = P_1 E_1 + P_2 E_2 + P_3 E_3 = -6.913 eV$$

$$15.解: \quad A = \sqrt{\frac{2}{a}}$$