Simple Linear Regression.

A. Skripnikov¹

¹New College of Florida

IDC 5205

Linear Regression.

Linear regression is a useful tool for predicting/explaining a **quantitative** response based on one or more **predictors**:

- Estimate employee's salary based on experience and education.
- Using house characteristics (size, age, location), evaluate its worth.
- Predict the score differential for a football game based on comparative team statistics and home-field advantage.

Main reference example (Advertisement.csv):

We're asked to infer the effects that various types of advertisement (TV, radio, newspaper) may have on product sales (**See** *R* **code**).

Simple Linear Regression.

Presume one has

- Quantitative response Y
- \bullet single predictor variable X

Simple Linear Regression equation:

$$Y = \beta_0 + \beta_1 X + \epsilon,$$

or, in full-blown notation,

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \ i = 1, \dots, n$$

Simple Linear Regression.

Example. Let's just focus on how TV ads affect the sales. Then

- Quantitative response is Sales,
- predictor variable is TV

Simple Linear Regression equation:

Sales =
$$\beta_0 + \beta_1 TV + \epsilon$$
,

or, in full-blown notation,

Here,

- β_0, β_1 are model **parameters** (their values **unknown**), and
- need to be **estimated** via some values $\hat{\beta}_0, \hat{\beta}_1$.

Estimating β_0 and β_1 .

Q: How do we find estimates $\hat{\beta}_0$, $\hat{\beta}_1$ for parameters β_0 , β_1 ?

Task: Find $\hat{\beta}_0$ and $\hat{\beta}_1$ such that

the **estimated** ("fitted") value,
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

is as close as possible to

the **observed** ("true") value, Y_i

 \Downarrow

We need to **minimize** magnitude of **residuals**, $e_i = Y_i - \hat{Y}_i$, i = 1, ..., n

Geometry of (Simple) Linear Regression: Straight Line.

Geometrically, it amounts to finding a **fitted line** $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$ that's **closest to the data points** (vertical lines are residuals $e = \hat{Y} - Y$):

Estimating β_0 and β_1 : **Least Squares**.

Note: Can't minimize every single residual e_i individually, but instead use

Method of Least Squares. Define Residual <u>Sum</u> of Squares (RSS):

$$RSS = \sum_{i} e_i^2 = \sum_{i} (Y_i - \hat{Y}_i)^2$$

and formulate the following optimization task:

$$\min_{\beta_0,\beta_1} RSS =$$

Values $\hat{\beta}_0, \hat{\beta}_1$ solving this criteria are called **least squares** estimates.

Advertising Example: Interpretation of slope.

Example. For Advertising data (see R code), we got

- $\hat{\beta}_0 = 7.03$, $\hat{\beta}_1 = 0.04754$,
- hence, the **fitted regression equation** is

Task. Noting that the units are 1,000\$'s for TV & 1,000 items for Sales,

• Interpret the **slope** estimate, $\hat{\beta}_1 = 0.0475$.

Advertising Example: Interpretation of intercept.

Example. For Advertising data (see R code), we got

- $\hat{\beta}_0 = 7.03$, $\hat{\beta}_1 = 0.04754$,
- hence, the fitted regression equation is

$$\widehat{Sales} = 7.03 + 0.04754 \times TV$$

Task. Noting that the units are: 1,000\$'s for TV & 1,000 items for Sales,

• Interpret the **intercept** estimate, $\hat{\beta}_0 = 7.03$.

Slope and **intercept**: Generic Interpretations.

Say, you have the following general fitted regression equation

$$\widehat{Y} = \hat{\beta}_0 + \hat{\beta}_1 \times X$$

Task. Write down a generic template for interpretation of

• **Slope** estimate $\hat{\beta}_1$:

• Intercept estimate $\hat{\beta}_0$:

Advertising Example: Prediction.

Having fitted the model, one can proceed to **make predictions**:

• What sales are expected for markets that invest 20,000\$ in TV ads?

$$\widehat{Sales} = 7.03 + 0.0475 \times 20 = 7.98$$

Interpretation: *On average*, ...

• What sales are expected for markets that invest 100,000\$ in TV ads?

See R code.

Assessing Quality of Fit.

Two main measures to evaluate the quality of fit for your linear regression model:

Residual Standard Error (RSE):

$$RSE = \sqrt{\frac{1}{n-2}RSS} = \sqrt{\frac{1}{n-2}\sum_{i}(Y_{i} - \hat{Y}_{i})^{2}}$$

Interpretation:

Q: Why n - 2?

A: Explained later, but it does have to do with "degrees of freedom".

R^2 statistic.

Issue with **RSE**? It is measured in units of Y, not standardized.

Alternative:

Q R^2 -statistic:

$$R^{2} = \frac{TSS - RSS}{TSS} = \frac{\sum_{i} (Y_{i} - \overline{\mathbf{Y}})^{2} - \sum_{i} (Y_{i} - \hat{Y}_{i})^{2}}{\sum_{i} (Y_{i} - \overline{\mathbf{Y}})^{2}}$$

- measures the **proportion of variability in** response Y that's explained by the regression model, specifically
 - TSS (Total Sum of Squares) = $\sum_i (Y_i \bar{\mathbf{Y}})^2$ measures the **initial** variability in *response*
 - RSS (Residual Sum of Squares) = $\sum_i (Y_i \hat{Y}_i)^2$ measures the amount of **variability** in *response* that is **left unexplained** after performing the **regression**.
 - Hence, TSS RSS measures the amount of variability in the response that is explained (or removed) by performing the regression.

R^2 statistic.

Q: What values of R^2 are indicative of a good model? Bad model? Why?

Example. Calculate *RSE* and R^2 (see *R* code) for the *Sales* $\sim TV$ regression, interpret.

R^2 statistic.

While R^2 statistic is more interpretable than RSE, it is still unclear what's a good R^2 value depending on application:

- In certain physics problems, we may know that the data truly comes from a linear model with a small residual error. Then, R^2 is expected \approx 1, otherwise there's a problem with data generation in the experiment.
- In biology, psychology, marketing & other domains, linear model is at best an extremely rough approximation to the data, and sometimes even an R² value below 0.1 may be indicative of an acceptable fit.

Statistical Inference: Sample (\hat{eta}) to Population (eta).

Q: How can sample estimates $\hat{\beta}_0$, $\hat{\beta}_1$ be used to infer the unknown true parameter values $\hat{\beta}_0$, $\hat{\beta}_1$?

A: Statistical inference techniques, such as

- hypothesis testing,
- confidence intervals.

Q: So, what is the difference between β_1 and $\hat{\beta}_1$?

•

•

Statistical Inference: Sample $(\hat{\beta})$ to Population (β) .

Our fitted line

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 \times X$$

is nothing more but a sample estimate to the population line

$$Y \approx \beta_0 + \beta_1 \times X$$

which we try to infer about.

Simple Linear Regression: Full Model Equation.

Full Model Equation for Simple Linear Regression is:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
, $\epsilon_i \sim_{ind} N(0, \sigma^2)$, $i = 1, ..., n$,

Example (cont'd). In our example, we'd have Y = Sales, X = TV:

Qs:

• (Once again) What are β_0, β_1 as opposed to $\hat{\beta}_0, \hat{\beta}_1$? Are the parameters β_0, β_1 constant or random? Why?

Simple Linear Regression: Full Model Equation.

Qs (cont'd):

• What is the ϵ_i term for? Is it **constant** or **random**? Why?

Task. Let Y = Sales, X = TV. Show that

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2)$$

leads to

$$Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2),$$

hence Y_i is a random draw from a population of response values for <u>all</u> observations with $X = X_i$, which has distribution $N(\beta_0 + \beta_1 X_i, \sigma^2)$.

Note. Y_i 's, ϵ_i 's are considered random. X_i 's - fixed. See R code.

Task (cont'd).

The fact of

$$Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2), i = 1, \ldots, n$$

points to three critical assumptions of linear regression:

Linearity:

$$E[Y_i] = \beta_0 + \beta_1 X_i, \quad AKA \quad E[Y \mid (X = X_i)] = \beta_0 + \beta_1 X_i$$

Y, on average, represents a linear function of X.

Constant variance:

$$V[Y_i] = \sigma^2$$
, AKA $V[Y \mid (X = X_i)] = \sigma^2$

Y has the same variance across all values of X.

Normality:

$$Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2), \quad AKA \quad [Y \mid (X = X_i)] \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$$

Y is normally distributed for a fixed value of X (e.g. $X = X_i$).

Simple Linear Regression: Assumption of Independence.

Another critical assumption is that of:

Independence:

```
\epsilon_i \sim_{\mathsf{ind}} \ldots \Leftrightarrow \epsilon_i \text{ and } \epsilon_j \text{ are independent for } i \neq j, i, j = 1, \ldots, n.
```

It also implies that (details left out):

$$Y_i$$
 and Y_j are independent for $i \neq j$, $i, j = 1, \ldots, n$.

This assumption is determined by whether the observations are sampled **independently**, and needs to be justified by procedures of data collection:

- if it's random sample from a large population, then independence is roughly satisfied;
- if it's a time series, or spatial data, then the assumption of independence may be very wrong, subsequently affecting legitimacy of your statistical inference (p-values, confidence intervals, etc)

To recollect all the model assumptions of simple linear regression.

- **1 Linearity**: $E[Y_i] = \beta_0 + \beta_1 X_i$
- **2** Constant variance: $V[Y_i] = \sigma^2$.
- **3** Normality: $Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$
- **1 Independence**: ϵ_i and ϵ_j ($\Leftrightarrow Y_i$ and Y_j) are independent for $i \neq j$.

NOTE: $Y_i \equiv [Y_i \mid (X = X_i)].$

The classic model formulation capturing all these assumptions is

Simple Linear Regression: Full Modeling Equation

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \quad \epsilon_i \sim_{ind} N(0, \sigma^2), \quad i = 1, 2, \dots, n$$
 (1)

Why Least Squares? Nice Theoretical Properties.

Q: To estimate regression parameters, why use least squares in particular?

Reason #1: Least squares approach leads to a well-defined, **closed-form**, analytical solution (see one of HW problems for solution formulas).

Reason #2: Under the linear regression model assumptions, least squares (LS) estimators $\hat{\beta}_0$, $\hat{\beta}_1$ have desirable statistical properties:

- **1** Unbiasedness $(E[\hat{\beta}_j] = \beta_j, \ j = 0, 1).$
- ② Analytical formulas for sampling variances $(V[\hat{\beta}_j],\ j=0,1)$
- **③** Normality of sampling distribution $(\hat{\beta}_j \sim N, j = 0, 1)$.

making them **great** for **conducting inference** about population parameters β_0 , β_1 .

Why Least Squares? Reason #2: Nice Properties.

Example (will be done as a Lab). Presume we know that the true relationship is

$$Y = 2 + 3X + \epsilon, \epsilon \sim N(0, 40^2) \tag{2}$$

with $\beta_0 = 2$, $\beta_1 = 3$.

We proceed to:

- Generate 200 values of $X = (X_1, X_2, \dots, X_{200})$. Keep them fixed.
- **②** Repeat the following process a 1000 times, j = 1, ..., 1000:
 - **generate a sample** of response values $Y^{(i)} = (Y_1^{(i)}, Y_2^{(i)}, \dots, Y_{200}^{(i)})$ for those 200 values of X according to equation (2):

$$Y^{(i)} = 2 + 3X + \epsilon, \ \epsilon \sim N(0, 40^2)$$

• calculate the **least squares estimate line** for that *j*th sample:

$$\hat{Y}^{(i)} = \hat{\beta}_0^{(i)} + \hat{\beta}_1^{(i)} X$$

Statistical Inference: Population to Sample.

Least squares estimate lines $Y^{(i)} = \hat{\beta}_0^{(i)} + \hat{\beta}_1^{(i)}X$ for each sample won't be exactly the same as the **true population line** $Y = \beta_0 + \beta_1X$:

but they will be relatively close.

Statistical Inference: Population to Sample.

Least squares estimate lines $Y^{(i)} = \hat{\beta}_0^{(i)} + \hat{\beta}_1^{(i)}X$ for each sample won't be exactly the same as the **true population line** $Y = \beta_0 + \beta_1 X$:

but they will be relatively close.

Unbiasedness of $\hat{\beta}$'s.

After m = 1000 simulations, we get:

$$\frac{1}{m}\sum_{i}\hat{\beta}_{0}^{(i)}\approx\beta_{0}, \quad \frac{1}{m}\sum_{i}\hat{\beta}_{1}^{(i)}\approx\beta_{1}$$

which means that $\hat{\beta}_j$ is an **unbiased** estimate of $\beta_j, \ j=0,1.$

Practical definition of "Unbiasedness" (for Least Squares Estimates $\hat{\beta}$)

Over many random samples taken from the population, the least squares estimate $\hat{\beta}_j$ will be equal to the population value β_j , on average

Theoretical notation: $E[\hat{\beta}_j] = \beta_j, \ j = 0, 1.$

Standard error.

Unbiasedness across many hypothetical samples is great and all, but...

with real data we only get to see one sample $^{\mid\mid}$

just one sample estimate for each parameter.

Q: How to use that **one sample estimate** (e.g. $\hat{\beta}_1$) in order to infer about the true parameter value (β_1) ?

A: We need the **standard error** $SE[\hat{\beta}_1]$ of the estimate, where

$$SE[\hat{eta}_1] = \{ ext{by how much, on average, } \hat{eta}_1 \text{ deviates from } eta_1 \}$$

Task. Check the *summary*() of fitted *sales* $\sim TV$ regression in R, find and interpret std. errors there.

Origins of $SE(\hat{\beta})$ - **FOR CURIOUS**.

Q: Where do the $SE(\hat{\beta})$ values come from?

A: They come from taking a square root of $(SE(\hat{\beta}) = \sqrt{V[\hat{\beta}]})$

1 Theoretical formulas for **sampling variance** of **least squares est-s**:

$$V[\hat{\beta}_0] = \sigma^2(\frac{1}{n} + \frac{\bar{\mathbf{X}}^2}{\sum_{i=1}^n (X_i - \bar{\mathbf{X}})^2}), \quad V[\hat{\beta}_1] = \frac{\sigma^2}{\sum_{i=1}^n (X_i - \bar{\mathbf{X}})^2},$$

Practical definition of "Sampling Variance" (for Least Squares Estimates $\hat{\beta}$)

Variance of $\hat{\beta}$ **estimates** over many samples taken from population.

② Where we substitute unknown population standard deviation σ for

$$\hat{\sigma} = RSE = \sqrt{\frac{1}{n-2} \sum_{i} (Y_i - \hat{Y}_i)^2}$$

Sampling Distribution of $\hat{\beta}_0, \hat{\beta}_1$.

For sampling distribution of least squares estimates $\hat{\beta}_j$, we've discussed the

• sampling mean ("unbiasedness"):

$$E[\hat{\beta}_j] = \beta_j, \ j = 0, 1$$

• sampling variance:

$$V[\hat{\beta}_j], j = 0, 1$$

Qs:

• What's meant by **sampling distribution** of a *statistic* (e.g. $\bar{\mathbf{x}}$, $\hat{\rho}$, $\hat{\beta}_1$)?

• To conduct inference on population parameters β_j , what else do we need to know about sampling distributions of $\hat{\beta}_i$?

A: Shape.

Sampling Distribution of $\hat{\beta}_0, \hat{\beta}_1$.

Theorem. For simple linear regression

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
, $\epsilon_i \sim_{ind} N(0, \sigma^2)$, $i = 1, 2, ..., n$

the sampling distributions of $\hat{\beta}_0,\hat{\beta}_1$ are

$$\hat{\beta}_j \sim N(\beta_j, V[\hat{\beta}_j]), j = 0, 1$$

Statistical Inference for $\hat{\beta}_0, \hat{\beta}_1$: Unknown σ .

Sampling distributions of \hat{eta}_0,\hat{eta}_1 are

$$\hat{\beta}_j \sim N(\beta_j, V[\hat{\beta}_j]), j = 0, 1$$

Q: Formulas for $V[\hat{\beta}_j]$ contain σ^2 . Why is that an issue when trying to do **inference**? What should we do to address this?

Statistical Inference for $\hat{\beta}_0, \hat{\beta}_1$: Unknown σ .

REMINDER:

• When using sample mean $\bar{\mathbf{X}}$ to infer about μ ,

$$rac{ar{\mathbf{X}}-\mu}{\sigma/\sqrt{n}}\sim \mathcal{N}(0,1),$$

Q: how did we deal with the unknown σ ?

• Now, when using $\hat{\beta}_i$ to infer about β_i ,

$$\hat{\beta}_j \sim N(\beta_j, V[\hat{\beta}_j]) \implies$$

 $\sim N(0,1)$

for the unknown σ we plug in

$$\hat{\sigma} = RSE = \sqrt{\frac{\sum_{i} (Y_i - \hat{Y}_i)^2}{n - 2}} = \sqrt{\frac{\sum_{i} (Y_i - [\hat{\beta}_0 + \hat{\beta}_1 X_i])^2}{n - 2}}$$

Statistical Inference for $\hat{\beta}_0, \hat{\beta}_1$: Degrees of Freedom.

Q: Why do we use

- **1** n-1 in the denominator of $\hat{\sigma}$ for inference via sample mean $\bar{\mathbf{X}}$,
- 2 n-2 in the denominator of $\hat{\sigma}$ for inference via $\hat{\beta}_j,\ j=0,1$?

A: Those are **degrees of freedom**, and each estimated parameter (be it μ , or the β_i 's) "takes up" a degree of freedom.

• For sample mean $\bar{\mathbf{X}}$, when calculating

$$\hat{\sigma} = \sqrt{\frac{\sum_{i} (X_i - \bar{\mathbf{X}})^2}{n-1}} \equiv \sqrt{\frac{\sum_{i} (X_i - \hat{\mu})^2}{n-1}},$$

we use the estimate $\bar{\mathbf{X}}$ (or " $\hat{\mu}$ ") instead of true population mean μ \Longrightarrow 1 degree of freedom lost.

Statistical Inference for \hat{eta}_0,\hat{eta}_1 : Degrees of Freedom.

Q: Why do we use

- **1** n-1 in the denominator of $\hat{\sigma}$ for inference via sample mean $\bar{\mathbf{X}}$,
- ② n-2 in the denominator of $\hat{\sigma}$ for inference via $\hat{\beta}_j$, j=0,1?

A: Those are **degrees of freedom**, and each estimated parameter (be it μ , or the β_i 's) "takes up" a degree of freedom.

② For least squares estimates $\hat{\beta}_0, \hat{\beta}_1$ in simple linear regression, when calculating

$$\hat{\sigma} = \sqrt{\frac{\sum_{i} (Y_i - [\hat{\beta}_0 + \hat{\beta}_1 X_i])^2}{n - 2}}$$

. . . .

Sampling Distribution of $\hat{\beta}_0, \hat{\beta}_1$.

Q: In sample mean inference, when plugging in $\hat{\sigma} = s$ for σ , did we have

$$rac{ar{\mathbf{X}}-\mu}{s/\sqrt{n}}\sim N(0,1)$$
 ???

If not, what did we have instead? Why?

Q: Denoting $SE(\hat{\beta}_j)$ as the standard error of $\hat{\beta}_j$, after plugging in $\hat{\sigma} = RSE$ for σ , what should be the distribution of

$$rac{\hat{eta}_j - eta_j}{\mathsf{SE}(\hat{eta}_i)} \sim$$

Confidence Intervals.

Now that we've figured out

$$T = rac{\hat{eta}_j - eta_j}{\mathsf{SE}(\hat{eta}_j)} \sim t_{n-2}, \ j = 0, 1$$

we may proceed to derive the **confidence intervals** for β_j 's.

REMINDER:

95% confidence interval for parameter β_j is such interval (c, d) that

$$P(\beta_j \in (c,d)) = 0.95$$

In particular, if we were to

- (hypothetically) Obtain many samples from the population, and
- Calculate the confidence interval for each of those samples,

then parameter β_j should end up in 95% of those confidence intervals. It is also known as 95% coverage.

Confidence Intervals.

Formula for $(1 - \alpha) \times 100\%$ confidence interval of β_j parameter is $(\hat{\beta}_j - t_{1-\lceil \alpha/2 \rceil} SE(\hat{\beta}_j), \ \hat{\beta}_j + t_{1-\lceil \alpha/2 \rceil} SE(\hat{\beta}_j))$

Statistical Inference: Confidence Intervals.

Example (cont'd). For Sales $\sim TV$ linear regression (see R code),

• Obtain and **interpret** 95% confidence interval for β_1 ,

Interpretation: We are 95% confident that ...

Task. Explain what "we are 95% confident" means exactly.

Confidence Intervals: Interpretation.

Example (cont'd). For Sales $\sim TV$ linear regression (see R code),

• Obtain and **interpret** 90% CI for β_1 ,

Statistical Inference: Confidence Intervals.

Example (cont'd). For Sales $\sim TV$ linear regression (see R code),

• Obtain 90%, 95%, 99% (in that order) confidence intervals for β_1 .

Q: What happens to confidence interval as confidence level increases? Why does it make sense?

Confidence Intervals: Interpretation.

Example (cont'd). For Sales $\sim TV$ linear regression (see R code),

• Obtain and **interpret** 95% CI for β_0 .

Prediction and confidence bands.

When providing model **predictions**, one often presents uncertainty bands around them, of which there are two kinds:

- Confidence (narrow) bands, and
- Prediction (wide) bands.

Prediction and confidence bands.

When predicting for an observation with predictor value $X = X_0$:

• Confidence (narrow) bands try to capture the average response \bar{Y} for all observations with $X=X_0$. E.g., you are 95% sure that the average response \bar{Y} for observations with $X=x_0$ would lie within the 95% confidence bands.

Note: Larger sample size $n \implies$ more narrow the confidence bands.

• Prediction (wide) bands try to capture all response values Y_i (not just their mean \bar{Y}) for all observations with $X=X_0$. Hence, 95% prediction bands contain 95% of all future responses Y with $X=x_0$.

Note: Larger sample size $n \implies$ more narrow the prediction bands.

Prediction and confidence bands: illustration.

With many data points, you expect:

- a large fraction of data points to lie outside the confidence bands, but
- about 95% of the points to lie within the prediction bands.

See R code for the $Sales \sim TV$ example.

Prediction and confidence bands: Interpretation.

Task (See R code). In Advertising data example, for regression

Sales $\sim TV$

we make predictions of markets with 100k TV advertisement budget.

Proceed to **interpret** the following results:

• Single prediction of items sold: 11.78.

• 95% confidence bands for items sold: (11.27, 12.30)

Prediction and confidence bands: Interpretation.

Task (See R code). In Advertising data example, for regression

Sales
$$\sim TV$$

we make predictions of markets with 100k TV advertisement budget.

• 95% prediction bands for items sold: (5.34, 18.23)

Comment on differences between confidence and prediction bands.

summary() Output Breakdown.

Example. summary() function output for our $Sales \sim TV$ linear regression model fitted for Advertising data set:

```
> summary(lm.obj)
. . .
Residuals:
   Min 1Q Median 3Q Max
-8.3860 -1.9545 -0.1913 2.0671 7.2124
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.032594 0.457843 15.36 <2e-16 ***
TV
    0.047537 0.002691 17.67 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 3.259 on 198 degrees of freedom
Multiple R-squared: 0.6119, Adjusted R-squared: 0.6099
F-statistic: 312.1 on 1 and 198 DF, p-value: < 2.2e-16
```

summary() Output: Coefficients table,...

Example (cont'd). Focusing on the *Coefficients* table:

- Estimate:
- Std. Error:

• t value, Pr(>|t|): where do these come from? See following slides.

Statistical Inference: Hypothesis Testing.

The most common hypothesis test in simple linear regression involves:

 H_0 : {There is **no linear** relationship between X and Y} vs H_a : {There **is a linear** relationship between X and Y}

Keeping in mind the simple linear regression modeling equation:

$$Y = \beta_0 + \beta_1 X + \epsilon,$$

these hypotheses mathematically correspond to

$$H_0$$
: $\beta_1 = 0$ vs H_a : $\beta_1 \neq 0$

Why?

Statistical Inference: Hypothesis Testing.

Example (cont'd). For our *Sales* $\sim TV$ simple linear regression model:

Task: Formulate the H_0 and H_0 hypotheses

• In plain English.

Mathematically

Statistical Inference: Hypothesis Testing.

Q: We estimated β_1 with $\hat{\beta}_1 = 0.0475 \neq 0$. Therefore, H_0 should be false and H_a is true, right? Or no? Why?

Hypothesis Testing: Main Steps.

① State the hypotheses about parameter of interest β_1 :

$$H_0$$
: $\beta_1 = 0$, vs H_a : $\beta_1 \neq 0$,

- ② Calculate the **observed** test statistic value: $TS = \frac{\hat{\beta}_1 0}{SE(\hat{\beta}_1)}$
- **1** If H_0 : $\beta_1 = 0$ were true, test statistic T depending on a random sample drawn from the population is expected to take on values according to t_{n-2} distribution:

$$T = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} \sim t_{n-2}$$
, given that H_0 : $\beta_1 = 0$ were true

- ① Use t_{n-2} distribution to calculate p-value, which quantifies "how likely it was to witness T = TS (or more extreme) if H_0 were actually true" (see next slide for illustrations).

Hypothesis Testing: Main Steps.

Illustration (to be filled out during lecture).

Q: What values of |TS| (large? small?) hint at H_0 being false? Why?

Hypothesis Testing: Main Steps.

Example (cont'd). For $Sales \sim TV$ regression, work through all the steps of the hypothesis test for linear relationship between TV ads and sales.