Joint distribution simulation results - augSIR

June 7, 2015

Let \mathbf{x} denote a population trajectory, \mathbf{x}_j denote the trajectory for subject j, and \mathbf{y} denote the binomial samples at observation times. Take the initial distribution for infection at time 0 to be such that all individuals are infected at time 0 with probability 1. All simulations performed with population of size four, infectivity parameter 0.5 (obviously not relevant since individuals only recover), and recovery parameter 1.

Simulation #1 - Redraw subject j

Details

For k = 1, ..., K,

- 1. Draw **x** via Gillespie, and $\mathbf{y}|\mathbf{x}$. Save $(\mathbf{x},\mathbf{y})_k$.
- 2. Discard \mathbf{x}_j
- 3. Draw \mathbf{x}_{j}^{\star} conditional on \mathbf{x}_{-j} , \mathbf{y} using augSIR.
- 4. Draw $\mathbf{y}^{\star}|\mathbf{x}^{\star}$. Save $(\mathbf{x}^{\star},\mathbf{y}^{\star})_k$

Simulation #2 - Redraw subject j repeatedly, with binomial resampling after each redraw

Details

For k = 1, ..., K,

- 1. Draw $\mathbf{x}^{(1)}$ via Gillespie, and $\mathbf{y}^{(1)}|\mathbf{x}^{(1)}$. Save $(\mathbf{x}^{(1)},\mathbf{y}^{(1)})_k$
- 2. For n = 2, ..., N
 - (a) Discard $\mathbf{x}_{j}^{(n-1)}$.
 - (b) Draw $\mathbf{x}_{j}^{(n)}$ conditional on $\mathbf{x}_{-j},\ \mathbf{y}^{(n-1)}$ using augSIR.
 - (c) Draw $\mathbf{y}^{(n)}|\mathbf{x}^{(n)}$
- 3. Save $(\mathbf{x}^{(N)}, \mathbf{y}^{(N)})_k$

Simulation #3 - Redraw subject j repeatedly, no binomial resampling after each redraw

Details

For k = 1, ..., K,

- 1. Draw $\mathbf{x}^{(1)}$ via Gillespie, and $\mathbf{y}^{(1)}|\mathbf{x}^{(1)}$. Save $(\mathbf{x}^{(1)},\mathbf{y})_k$
- 2. For n = 2, ..., N
 - (a) Discard $\mathbf{x}_{j}^{(n-1)}$.
 - (b) Draw $\mathbf{x}_{j}^{(n)}$ conditional on $\mathbf{x}_{-j},~\mathbf{y}$ using augSIR.
- 3. Save $(\mathbf{x}^{(N)}, \mathbf{y})_k$

Simulation #4 - Redraw all subjects once

Details

Let $x'_j = (\mathbf{x}_1^{\star}, \dots, \mathbf{x}_j^{\star}, \mathbf{x}_{j+1}, \mathbf{x}_M)$ and $x'_{-j} = (\mathbf{x}_1^{\star}, \dots, \mathbf{x}_{j-1}^{\star}, \mathbf{x}_{j+1}, \mathbf{x}_M)$, where M is the population size. For $k = 1, \dots, K$,

- 1. Draw \mathbf{x} via Gillespie, and $\mathbf{y}|\mathbf{x}$. Save $(\mathbf{x},\mathbf{y})_k$
- 2. For j = 1, ..., 4:
 - (a) Discard \mathbf{x}_j
 - (b) Draw \mathbf{x}_j^{\star} conditional on $\mathbf{x}_{-j}^{\prime},~\mathbf{y}$ using augSIR
- 3. Draw $\mathbf{y}^{\star}|\mathbf{x}^{\star}$
- 4. Save $(\mathbf{x}^{\star}, \mathbf{y}^{\star})_k$

1 Simulation #5 - Redraw all subjects repeatedly, with binomial re-sampling after redrawing all subjects once

Let $x'_j = (\mathbf{x}_1^{\star}, \dots, \mathbf{x}_j^{\star}, \mathbf{x}_{j+1}, \mathbf{x}_M)$ and $x'_{-j} = (\mathbf{x}_1^{\star}, \dots, \mathbf{x}_{j-1}^{\star}, \mathbf{x}_{j+1}, \mathbf{x}_M)$, where M is the population size. For $k = 1, \dots, K$,

- 1. Draw $\mathbf{x}^{(1)}$ via Gillespie, and $\mathbf{y}^{(1)}|\mathbf{x}^{(1)}$. Save $(\mathbf{x}^{(1)},\mathbf{y}^{(1)})_k$
- 2. For n = 2, ..., N:
 - (a) For j = 1, ..., 4
 - i. Discard $\mathbf{x}_{j}^{(n-1)}$.
 - ii. Draw $\mathbf{x}_{j}^{(n)}$ conditional on $\mathbf{x}_{-j}^{(n-1)\prime}$, $\mathbf{y}^{(n-1)}$ using augSIR.
 - (b) Draw $\mathbf{y}^{(n)}|\mathbf{x}^{(n)}$
- 3. Save $(\mathbf{x}^{(N)}, \mathbf{y}^{(N)})_k$

Simulation #6 - Redraw all subjects repeatedly, no binomial resampling

Details

Let $x'_j = (\mathbf{x}_1^{\star}, \dots, \mathbf{x}_j^{\star}, \mathbf{x}_{j+1}, \mathbf{x}_M)$ and $x'_{-j} = (\mathbf{x}_1^{\star}, \dots, \mathbf{x}_{j-1}^{\star}, \mathbf{x}_{j+1}, \mathbf{x}_M)$, where M is the population size. For $k = 1, \dots, K$,

- 1. Draw $\mathbf{x}^{(1)}$ via Gillespie, and $\mathbf{y}|\mathbf{x}^{(1)}.$ Save $(\mathbf{x}^{(1)},\mathbf{y})_k$
- 2. For n = 2, ..., N:
 - (a) For j = 1, ..., 4
 - i. Discard $\mathbf{x}_{j}^{(n-1)}$.
 - ii. Draw $\mathbf{x}_{j}^{(n)}$ conditional on $\mathbf{x}_{-j}^{(n-1)\prime}$, \mathbf{y} using augSIR.
- 3. Save $(\mathbf{x}^{(N)}, \mathbf{y})_k$