

Mg. CONTRERAS CUEVA Valentin Jeler

Cuando se habla de CUANTIFICADORES en la lógica, la teoría de conjuntos y las matemáticas en general, se hace referencia a aquellos símbolos utilizados en una proposición lógica para indicar "CUÁNTOS" elementos de un conjunto dado cumplen con cierta propiedad.

Los cuantificadores permiten la construcción de proposiciones a partir de funciones proposicionales, bien sea particularizando o generalizando. Por ejemplo, si consideramos la función proposicional:

P(x) = x es menor que dos

Esto podría particularizarse así: "Existe un número real que es menor que dos" o generalizarlo diciendo: "Todos los números reales son menores que dos".

CUANTIFICADOR UNIVERSAL:

Es la operación lógica que es verdadera cuando todos los valores de x, pertenementes al conjunto con el cual se relaciona, son verdaderos. Se denota con el símbolo $\forall x$ y se lee "para todo x", o sus expresiones equivalentes "para cada x", "todos los x", etc.

Sea A = $\{1; 2; 3; 4; 5; 6\}$. Determina el valor de verdad de $\forall x \in A, x^2 < 34$.

• Evaluamos $x^2 < 34$ para cada elemento de A:

Para
$$x = 1 > 1^2 < 34$$
(V) Para $x = 4 > 4^2 < 34$ (V)

Para
$$x = 2 > 2^2 < 34$$
(V) Para $x = 5 > 5^2 < 34$ (V)

Para
$$x = 3 > 3^2 < 34$$
(V) Para $x = 6 > 6^2 < 34$ (F)

La proposición $\forall x \in A$, $x^2 < 34$ es falsa, ya que no todos los elementos de A satisfacen la desigualdad.

DIMPLO

CUANTIFICADOR UNIVERSAL:

Sea A = $\{1; 2; 3; 4; 5; 6\}$. Determina el valor de verdad de $\forall x \in A$, 5x - 1 > 2.

• Evaluamos 5x - 1 > 2 para cada elemento de A:

Para
$$x = 1 > 4 > 2$$
(V) Para $x = 4 > 19 > 2$ (V)

Para
$$x = 2 > 9 > 2$$
(V) Para $x = 5 > 24 > 2$ (V)

Para
$$x = 3 > 14 > 2$$
(V) Para $x = 6 > 29 > 2$ (V)

La proposición $\forall x \in A$, 5x - 1 > 2 es verdadera, ya que todos los elementos de A satisfacen la desigualdad.

Ten en cuenta

 $\forall x \in A...$ se lee así: "Para todo elemento que pertenece al conjunto A...".

JEMPL 0

CUANTIFICADOR

Es la operación lógica que es verdadera cuando al menos un valor de x perteneciente al conjunto con el cual se relaciona, es verdadero. Se denota con el símbolo $\exists x$ y se lee "existe por lo menos un x", o sus expresiones equivalentes "hay un x", "algunos x", etc.

a) Sea A = $\{1; 2; 3; 4; 5; 6\}$. Determina el valor de verdad de $\exists x \in A / x^2 - x = 15$.

• Evaluamos $x^2 - x = 15$ hasta hallar un valor de A que satisfaga la igualdad:

Para
$$x = 1 > 0 = 15$$
(F) Para $x = 4 > 12 = 15$ (F)

Para
$$x = 2 > 2 = 15$$
(F) Para $x = 5 > 20 = 15$ (F)

Para
$$x = 3 > 6 = 15$$
(F) Para $x = 6 > 30 = 15$ (F)

La proposición es falsa, ya que no existe por lo menos un valor de A que haga verdadera la igualdad $x^2 - x = 15$.

EJEMPLO

• CUANTIFICADOR EXISTENCIAL:

LEMPLO

- b) Sea B = $\{2; 4; 6; 8; 10\}$. Determina el valor de verdad de $\exists x \in B / 3x > 10$.
 - Para x = 6, obtenemos la proposición 18 > 10, que es verdadera. Encontramos al menos un elemento de B que verifica la desigualdad.

La proposición $\exists x \in B / 3x > 10$, con $B = \{2, 4, 6, 8, 10\}$, es verdadera.

Ten en cuenta

 $\exists x \in A / \dots$ se lee así: "Existe por lo menos un x que pertenece al conjunto A tal que ...".

CUANTIFICADOR EXISTENCIAL:

EJEMPLO

c) Sea N = { 0; 1; 2; 3; 4; 5;}. Determine el valor de verdad de $\exists ! \ x \in N \ / \ x^2 = 4$.

• Únicamente para $x = 2 \in N$, obtenemos que la proposición $2^2 = 4$ es verdadera. Encontramos un único elemento en N que verifica la igualdad.

La proposición, $\exists ! \ x \in N \ / \ x^2 = 4$, con $x = 2 \in N$, es verdadera.

Ten en cuenta

Un caso particular de este cuantificador es el denotado por \exists !, que se lee "existe un único elemento" y que es verdadero si y solo si la proposición es verdadera solo en una ocasión.

• NEGACIÓN DE

CUANTIFICADORES: La negación de cualquiera de los cuantificadores se realiza negando la función proposicional P(x) y cambiando el cuantificador universal por el cuantificador existencial, o viceversa. Así:

- Negación del cuantificador universal $\triangleright \sim [\forall x \in A, P(x)] \equiv \exists x \in A / \sim P(x)$
- Negación del cuantificador existencial \triangleright ~[∃ $x \in A / P(x)$] $\equiv \forall x \in A, ~P(x)$

Simboliza y niega esta proposición: "Todos los números enteros son impares".

- Sean el dominio \mathbb{Z} y la función proposicional P(x): x es un número impar.
- Simbolizamos mediante el cuantificador universal: $\forall x \in \mathbb{Z}$, P(x)
- Negamos el cuantificador universal: $\sim [\forall x \in \mathbb{Z}, P(x)] \equiv \exists x \in \mathbb{Z} / \sim P(x)$

Interpretamos: Existe al menos un número entero x que no es impar.

EJEMPLO

OBSERVACIONES:

- Φ Las proposiciones pueden estar negadas como por ejemplo "no es cierto que hay fantasmas" la cual se simboliza como \sim [$\exists x$, F(x)], donde F(x) simboliza la expresión "x es un fantasma".
- \oplus Las proposiciones existenciales puede tener negaciones internas como "algo no es mortal" la cual se simboliza como: $\exists x, \sim F(x)$ donde F(x) simboliza la expresión "x es mortal".

Bibliografía:

♣ SANTILLANA. Matemática. Editorial Quad Graphics Perú. Lima. Perú

