Содержание

1	Дог	ашнее задание 1	4
	1.1	Вадача 1	4
		l.1.1 i	4
		l.1.2 ii	5
	1.2	Вадача 2	6
	1.3	Вадача З	7
	1.4	Вадача 4	7
	1.1	1.4.1 i	7
		1.4.2 ii	8
	1.5	Вадача 5	8
	1.0	I.5.1 i	8
			8
			9
		l.5.3 iii	
	1.0		10
	1.6	Вадача 6	10
2	Дол	ашнее задание 2	10
	2.1		$\frac{10}{10}$
	2.2		11
	2.2		11
			11
			12
	2.3		12
	2.3		12 12
	0.4		13
	2.4		13
			13
			14
	2.5		14
	2.6		14
			14
		2.6.2 ii	14
		2.6.3 iii	15
3	П.,		16
0	, ,		16 16
	3.1	•	
			16
	0.0		17
	3.2	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	17
	3.3	1	18
	3.4	Номер 4	18
4	Пол		19
4			
	4.1		19
			19
			20
	4.0		20
	4.2		20
		4.2.1 i	20

		4.2.2 ii	20
	4.3		$\frac{1}{21}$
	1.0		21
			21
	4 4		
	4.4		21
			21
			22
		4.4.3 iii	22
	_		
5			22
	5.1	= - 1 1 · · · ·	22
	5.2	Задача 2	23
		5.2.1 i	23
		5.2.2 ii	23
		5.2.3 iii	24
	5.3	Задача 3	25
	5.4		26
	5.5		26
	5.6		$\frac{20}{26}$
	5.0	Задача 0	20
6	Лом	лашнее задание 6	27
•	6.1		 27
	6.2		$\frac{21}{27}$
	0.2		$\frac{21}{27}$
	6.2		21 27
	6.3		
			27
	6.4		28
			28
	6.5		28
		6.5.1 i	28
		6.5.2 ii	28
		6.5.3 iii	28
	6.6	Задача 4	29
7	Дом		29
	7.1	Задача 1	29
	7.2	Задача 2	30
		7.2.1 i	30
		7.2.2 ii	30
			30
	7.3		31
			31
			31
			31 32
	7 1		
	7.4		33
			33
			33
	7.5		34
	7.6	Задача 6	35
		7.6.1 i	35
		7.6.2 ii	36

8	Дом	машнее задание 8	37
	8.1	Задача 1	37
	8.2	Задача 2	37
		8.2.1 i	37
		8.2.2 ii	38
	8.3	Задача 3	38
	8.4	Задача 4	39
	8.5	Задача 5	39
	8.6	Задача 6	40
9	Дог	машнее задание 9	40
	9.1	Задача 1	40
		9.1.1 i	40
		9.1.2 ii	41
	9.2	Задача 2	41
		9.2.1 i	41
		9.2.2 ii	42
		9.2.3 iii	42
		9.2.4 iv	42
	9.3	Задача 3	43
	9.4	Задача 4	43
	9.5	Задача 5	44
	9.6	Задача 6	44

1 Домашнее задание 1

1.1 Задача 1

Рис. 1: Траектории

1.1.1 i

Случайный процесс описан уравнением $X_t = e^{\xi t}$

В зависимости от того, будет реализация случайной величины положительной или отрицательной, кривые будут либо экспоненциально возрастать, либо экспоненциально убывать, где ξ будет служить коэффициентом скорости роста. Чем ближе ξ к единице, тем быстрее будет возрастать кривая траектории, а чем ближе к минус единице, тем быстрее убывать. Соответственно, семейство кривых ограничено сверху кривой $X_t = e^{\xi}$, а снизу – кривой $X_t = e^{\xi}$. Графики возможных траекторий можно увидеть на Рис. 1 слева.

Найдём конечномерные распределения процесса. Для простоты записи покажу на двумерном примере, а далее расширим до многомерного случая.

- \Leftrightarrow Очевидно, что $P\{X_1 \leq x_1, X_2 \leq x_2\} = 0$ при $x_1 \leq 0$ или $x_2 \leq 0$, так как показательнаяя функция от экспоненты не может быть отрицательной или нулевой.
- $^{\updownarrow}$ При $x_1 \ge 1$ и $x_2 \ge 1$:

$$P\{X_1 \le x_1, X_2 \le x_2\} = P\{e^{\xi t_1} \le x_1, e^{\xi t_2} \le x_2\} = P\{\xi t_1 \le \ln(x_1), \xi t_2 \le \ln(x_2)\} = P\{\xi \le \min\left(\frac{\ln(x_1)}{t_1}, \frac{\ln(x_2)}{t_2}\right)\}$$
(1)

 $^{\mbox{\ }}$ При $x_1 \geq 1$ и $0 < x_2 < 1$:

$$P\{X_{1} \leq x_{1}, X_{2} \leq x_{2}\} = P\{e^{\xi t_{1}} \leq x_{1}, e^{\xi t_{2}} \leq x_{2}\} = P\{\xi t_{1} \leq \ln(x_{1}), \xi t_{2} \leq \ln(x_{2})\} = P\{\xi \leq \min\left(\frac{\ln(x_{1})}{t_{1}}, \frac{\ln(x_{2})}{t_{2}}\right)\}$$
(2)

Так как $ln(x_2)$, будет отрицательным, $ln(x_1)$ - положительным, то $P\{\xi \leq \frac{ln(x_2)}{t_2}\}$ будет ответом в данном случае.

 * При $x_2 \ge 1$ и $0 < x_1 < 1$:

Абсолютно аналогично предыдущему случаю

 $^{\ }$ При $0 < x_2 < 1$ и $0 < x_1 < 1$:

$$P\{X_1 \le x_1, X_2 \le x_2\} = \cdots P\{\xi \le \min\left(\frac{\ln(x_1)}{t_1}, \frac{\ln(x_2)}{t_2}\right)\}$$

В данном случае оба числа будут отрицательными и формула останется без сокращений.

Очевидно (нет, ну правда очевидно, можно я не буду объяснять?), что в многомерном случае будет ровно то же самое. Следовательно, без потери общности, можно записать ответ в сокращённом виде:

$$F_{\xi}(x_1, \cdots, x_n) = P\{X_1 \le x_1, \cdots, X_n \le x_n\} = \begin{cases} 0, \text{ если } \exists j \text{ s.t. } x_j <= 0, j = 1 : n \\ F_{\xi}\left(\min\left(\frac{\ln(x_1)}{t_1}, \cdots, \frac{\ln(x_n)}{t_n}\right)\right) \end{cases}$$

где $F_{\xi}(x)$ - функция распределения равномерной случайной величины ξ на [-1,1]

1.1.2 ii

Случайный процесс описан уравнением $X_t = (\xi + \eta)/t$. В зависимости от того, будет ли реализация случайной величины $\xi + \eta$ положительной или отрицательной, траекториями будут семейства гипербол. Соответственно, чем ближе к нулю будет реализована данная случайная величина, тем более вогнуты будут гиперболы вогнуты в сторону точки (0.0). Графики возможных траекторий можно увидеть на Рис. 1 справа.

Что же касается конечномерного распределения, то здесь всё довольно похоже на предыдущий пунктб поэтому напишу с минимумом подробностей. Решим для двумерного случая и расширим на многомерный.

Для начала, однако, установим параметры нормального распределения случайной величины $\xi + \eta$. Математическое ожидание ноль. Ковариация двух величин тоже ноль, так что дисперсия равна 1. Получим стандартную нормальную величину.

$$P\{X_1 \le x_1, X_2 \le x_2\} = P\{\xi + \eta \le x_1t_1, \xi + \eta \le x_2t_2\} = P\{\xi + \eta \le \min(x_1t_1, x_2t_2)\}$$

Рассмотрим 4 случая:

 $x_1 < 0, x_2 < 0$

В данном случае обе величины x_1t_1, x_2t_2 будут отрицательными и ответ будет: $F_{N_{(0,1)}}(min(x_1t_1, x_2t_2$

 $\stackrel{\star}{
ightharpoons} x_1 \geq 0, x_2 \geq 0$ Очевидно, обе величины x_1t_1, x_2t_2 будут положительными и ответ: $F_{N_{(0,1)}}(min(x_1t_1, x_2t_2))$

$$x_1 > 0, x_2 < 0$$

 x_1t_1 будет положительной величиной, а x_2t_2 - отрицательной. Ответ: $F_{N_{(0,1)}}(min(x_1t_1,x_2t_2))=F_{N_{(0,1)}}(x_2t_2)$

Очевидно, что с повышением размерности ни один из этих вариантов не будет нарушаться. При наличии хотя бы одной отрицательной переменной x_j среди положительных, она автоматически станет минимумом, а при всех переменных одного знака формула и вовсе не упрощается. Следовательно, без потери общности, запишем ответ:

$$F_{\xi}(x_1, \dots, x_n) = P\{X_1 \le x_1, \dots, X_n \le x_n\} = F_{N_{(0,1)}}(min(x_1t_1, \dots, x_nt_n))$$

1.2 Задача 2

$$P\{X_{t_1} < X_{t_2}\} = P\{t_1(\xi_1 + \alpha(\xi_2 + 2\alpha)) < t_1(\xi_1 + \alpha(\xi_2 + 2\alpha))\} = P\{(t_1 - t_2)\xi_1 + (t_1 - t_2)\alpha\xi_2 < (t_2 - t_1)2\alpha^2\} = P\{\xi_1 + \alpha\xi_2 \ge -2\alpha^2\} = P\{\xi_1 + \alpha\xi_2 + 2\alpha^2 \ge 0\} = 1$$

Чтобы вероятность того, что эта случайная величина была положительной стала равной единице, рассмотрим график. Так как указано, что параметр α является реальным числом, будем рассматривать только случаи с положительным дискриминантом. Чтобы учесть максимальное количество случаев, при которых значение функции в точке положительно, максимально "опустим" параболу, максимизировав дискриминант. Очевидно, что это произойдёт в двух точках относительно ξ : (1, -1), (-1, -1)

$$D = \xi_2^2 - 8\xi_1$$

$$\alpha_1 = \frac{-\xi_2 - \sqrt{\xi_2^2 - 8\xi_1}}{4}$$

$$\alpha_1 = \frac{-\xi_2 + \sqrt{\xi_2^2 - 8\xi_1}}{4}$$

Все мозможные случаи корней при $\xi_2 = +-1$:

$$\begin{cases} \alpha_{11} = -\frac{1}{2} \\ \alpha_{12} = -1 \\ \alpha_{21} = \frac{1}{2} \\ \alpha_{22} = 1 \end{cases}$$

Следовательно, при $\alpha \in [-1,1]$ все возможные параболы будут принимать только неотрицательные значения. Ответ: $\alpha \in [-1,1]$

1.3 Задача 3

$$f_z(x) = \frac{1}{2}e^{-x} + e^{-2x}, x > 0$$

$$L[p](u) = \int_0^\infty \left(\frac{1}{2}e^{-x} + e^{-2x}\right)e^{-ux}dx = \int_0^\infty \frac{1}{2}e^{-x(1+u)} + e^{-x(2+u)}dx =$$

$$= \frac{1}{2(1+u)} + \frac{1}{2+u} = \frac{2+u+2+2u}{4+4u+2u+2u^2} = \frac{4+3u}{2u^2+6u+4}$$
(3)

$$L[U](u) = \frac{\frac{4+3u}{2u^2+6u+4}}{u\left(1 - \frac{4+3u}{2u^2+6u+4}\right)} = \frac{\frac{4+3u}{2u^2+6u+4}}{u\left(\frac{2u^2+3u}{2u^2+6u+4}\right)} = \frac{3u+4}{2u^3+3u^2} = \frac{3u+4}{u^2(2u+3)}$$
(4)

$$\frac{3u+4}{u^2(2u+3)} = \frac{A}{u} + \frac{B}{u^2} + \frac{C}{u+3} = \frac{Au(2u+3) + B(2u+3) + Cu^2}{u^2(2u+3)} = \frac{2Au^2 + Cu^2 + 3Au + 2Bu + 3Bu}{u^2(2u+3)} = \frac{2Au^2 + Cu^2 + 3Au + 2Bu}{u^2(2u+3)} = \frac{2Au^2 + Cu^2 + 3Au}{u^2(2u+3)} = \frac{2Au^2 + 2Au}{u^2(2u+3)} = \frac{2Au}{u^2(2u+3)} = \frac{2Au}$$

$$\begin{cases}
C + 2A = 0 \\
3A + 2B = 3 \Rightarrow \begin{cases}
A = \frac{1}{9} \\
B = \frac{4}{3} \\
C = -\frac{2}{9}
\end{cases}$$

$$U(t) = \frac{1}{9} + \frac{4}{3}t - \frac{1}{9}\exp^{-\frac{3}{2}t}$$
(5)

1.4 Задача 4

1.4.1 i

Для начала выведем несколько необходимых свойств функций плотностей.

$$F_{|\xi|} = P\{|\xi| \le x\} = P\{-x \le \xi \le x\} = P\{\xi \le x\} - P\{\xi \le x\} - F_{\xi}(x) - F_{\xi}(-x)$$
(6)

Следовательно:

$$f_{|\mathcal{E}|}(x) = f_{\mathcal{E}}(x) + f_{\mathcal{E}}(-x)$$

Теперь по формуле свёртки выведем следующую плотность:

Рис. 2:
$$f_{\xi-\eta}(x)$$

$$f_{\xi-\eta}(x) = f_{\xi+(-\eta)}(x)$$

Для этого выведем следующее свойство:

$$F_{-\eta}(x) = P\{-\eta \le x\} = P\{\eta \ge -x\} = 1 - F_{\eta}(-x) \Rightarrow f_{-\eta}(x) = f_{\eta}(-x)$$

Теперь возьмём интеграл:

$$f_{\xi-\eta}(x) = \int_{-\infty}^{\infty} I\{u-x \in [0;1]\}I\{-x \in [0;1]\} = \int_{\max(u-1,-1)}^{\min(u,0)} 1 dx = \min(u,0) - \max(u-1,-1)$$

Полученная фукнция изображена на 2.

Так как функция симметричная, $f_{|\xi|}(x) = f_{\xi}(x) + f_{\xi}(-x) = 2f_{\xi}(x)$. Следовательно:

$$f_{|\mathcal{E}-\eta|}(x) = 2(min(u,0) - max(u-1,-1))$$

Однако следует сделать важное замечание. Так как модуль случайной величины неотрицателен, складывать функции распределения следует только на положительной полуоси. Таким образом, ответ:

$$f_{|\xi-\eta|}(x) = \begin{cases} 0, u < 0 \\ 2(\min(u,0) - \max(u-1,-1)), u \ge 0 \end{cases} \Rightarrow \begin{cases} 0, u < 0 \\ -u+1, u \ge 0 \end{cases}$$

Нетрудно проверить, что эта функция будет соответствовать всем необходимым свойствам функции плотности.

1.4.2 ii

По формуле свёртки:

$$f_{\xi+\eta} = \int_{-\infty}^{\infty} \frac{1}{4} \exp^{-|u-x|-|x|} dx = \frac{1}{4} \left(\int_{-\infty}^{0} \exp^{-|u-x|+x} dx + \int_{0}^{\infty} \exp^{-|u-x|-x} dx \right) = \frac{1}{4} \left(\int_{-\infty}^{\min(u,0)} \exp^{-u+2x} dx + \int_{\min(u,0)}^{0} \exp^{u} dx + \int_{0}^{\max(u,0)} \exp^{-u} dx + \int_{\max(u,0)}^{+\infty} \exp^{u-2x} dx \right) = \frac{1}{4} \left(\frac{1}{2} \exp^{-u+2x} \Big|_{-\infty}^{\min(u,0)} + x \exp^{u} \Big|_{\min(u,0)}^{0} + x \exp^{-u} \Big|_{0}^{\max(u,0)} - \frac{1}{2} \exp^{u-2x} \Big|_{\max(u,0)}^{+\infty} \right) = \frac{1}{4} \left(\frac{1}{2} \exp^{-u+2\min(u,0)} - \min(u,0) \exp^{u} + \max(u,0) \exp^{-u} + \frac{1}{2} \exp^{u-2\max(u,0)} \right) = \frac{1}{4} \left(\mathbf{I}\{u \ge 0\}e^{-u}(1+u) + \mathbf{I}\{u < 0\}e^{u}(1-u) \right)$$

Вольфрам сказал, что интеграл под этой функцией равен единице, так что всё должно быть верно. По форме распределение напоминает нормальное. Касательно возникших функций минимума и максимума, они призваны регулировать функцию в зависимости от знака параметра u. В зависимости от него один из четырёх интегралов во 2 строке будет схлопываться в нулевой.

1.5 Задача 5

1.5.1 i

Нет, не является процессом восстановления, так как $p\{\xi_i \geq 0\} \neq 1$

1.5.2 ii

Каждая траектория имеед вид ломаной кривой. Она начинается в точке ноль и образует один из путей (слева направо) в древовидной структуре на Рис. 3.Для примера одна из возможных траекторий окрашена в оранжевый. Данная фигура по виду очень напоминает треугольник Паскаля.

Pис. 3: Траектории S_n

1.5.3 iii

Сколько-нибудь адекватный ответ в явном виде у меня не получился, остался только следующий вариант:

$$P\{X_1 \le x_1, X_2 \le x_2, \cdots, X_n \le x_n\} = P\{X_1 \le x_1, X_2 \le x_2, \cdots, X_n \le x_n\} = P\{\sum_{i=1}^{t_1} \xi_i \le x_1, \sum_{i=1}^{t_2} \xi_i \le x_2, \cdots, \sum_{i=1}^{t_n} \xi_i \le x_n\} = P\{\sum_{i=1}^{t_1} \xi_i \le x_1, \sum_{i=t_1+1}^{t_2} \xi_i \le x_2 - x_1, \cdots, \sum_{i=t_{n-1}+1}^{t_n} \xi_i \le x_n - x_{n-1}\}$$

Логика такого перехода в следующем:

$$\sum_{t_1+1}^{t_2} \xi_i + x_1 \le \sum_{t_1+1}^{t_2} \xi_i \le x_2 \Rightarrow \sum_{t_1+1}^{t_2} \xi_i \le x_2 - x_1$$

Нетрудно проверить, что для каждого периода необходимо просто вычитать предыдущий. Я не доконца уверен в этом переходе, но выглядит красиво. Теперь события независимы. Можно разбить на произведение свёрток в смысле распределений:

$$P\{\sum_{i=1}^{t_1} \xi_i \le x_1, \sum_{i=t_1+1}^{t_2} \xi_i \le x_2 - x_1, \cdots, \sum_{i=t_{n-1}}^{t_n} \xi_i \le x_n - x_{n-1}\} = F^{*t_1}(x_1) \cdot F^{*(t_2-t_1)}(x_2 - x_1) \cdot \cdots \cdot F^{*(t_n-t_{n-1})}(x_n - x_{n-1})$$

Единственное ограничение, которое можно наложить на переменные, это что при $x_j - x_{j-1} < t_j - t_{j-1}$ выражение $\sum_{i=t_{j-1}+1}^{t_j} \xi_i$ обратится в ноль. Это случится потому что сумма описанных выше величин не может быть мешьше чем (-1) * (количество величин в сумме). Итоговый ответ можно записать следующим образом:

$$F_{\xi}(x_1,\cdots,x_n) = \begin{cases} 0, \text{ если } \exists \text{ j s.t. } x_j - x_{j-1} < t_j - t_{j-1} \\ F^{*t_1}(x_1) \cdot F^{*(t_2-t_1)}(x_2 - x_1) \cdot \cdots \cdot F^{*(t_n-t_{n-1})}(x_n - x_{n-1}) \text{ иначе} \end{cases}$$

Мне самому не очень нравится этот ответ, так как она не даёт идей для следующего пункта и так как эти непонятные свёртки вообще неясно как брать в случае дискретных величин.

1.5.4 iv

1.6 Задача 6

Данное утверждение неверно. (Иначе бы его дали в лекции как более общее, ну логично же)

Событие $\{N_t \leq n\}$ можно интерпретировать следующим образом. Возможны три варианта событий:

- \rightleftarrows К моменту времени t появилось менее n клиентов.
- $\stackrel{\ \, }{\not\sim}$ В момент времени t подошёл n-ый покупатель.
- $\stackrel{\star}{\bowtie}$ В какой-то из моментов времени до t подошёл n-ый покупатель, и вплоть до момента t более покупателей не приходило

Следовательно:

$$\{N_t \le n\} = \{S_n > t\} \cup \{S_n = t\} \cup \{S_n < t\} \neq \{S_n \ge t\} = \{S_n > t\} \cup \{S_n = t\}$$

Исходное утверждение неверно.

2 Домашнее задание 2

2.1 Задача 1

Начальное условие: $Z_0 = c$

Обозначим случайную величину au следующим образом:

$$\tau = \begin{cases} 1, 1 - F_{\eta}(R) \\ 0, F_{\eta}(R) \end{cases}$$

Пусть $\mathbb{E}(\xi_n) = \mu$

Процесс восстановления: $Z_n = Z_{n-1} + \tau_n \xi_n$

Вычтем начальное условие из обоих частей:

$$Z_n - c = Z_{n-1} - c + \tau_n \xi_n$$

Переобозначим:

$$S_n = S_{n-1} + \tau_n \xi_n$$

$$N_t = \max\{k, S_k \le t\} = \max\{k, Z_k - c \le t\} = \max\{k, Z_k \le t + c\} = M(C)$$

$$t + c = C \Rightarrow t = C - c$$

$$\lim_{t \to \infty} \frac{N_t}{t} = \frac{1}{\mathbb{E}(\tau \xi_n)} = \frac{1}{(1 - F_{\eta}(R))\mu} = \lim_{C \to \infty} \frac{M(C)}{t(C)}$$

$$\mathbb{E}(\tau\xi_n)$$
 = независимость = $(1-F_{\eta}(R))\mu$

$$\lim_{C \to \infty} \frac{M(C)}{t(C)} = \frac{1}{(1 - F_{\eta}(R))\mu} \Rightarrow \lim_{C \to \infty} M(C) = \frac{C - c}{(1 - F_{\eta}(R))\mu}$$

2.2 Задача 2

2.2.1 i

Пусть очередная проверка прервёт случайный процесс в точке J. Это номер проверки, при которой обнаружат первое нарушение.

Тогда по тождеству Вальда $\mathbb{E}S_J = \mathbb{E}J \cdot \mathbb{E}\xi_i$

$$\mathbb{E}J = 1 \cdot p + 2 \cdot p(1-p) + 3 \cdot p(1-p)^2 = p \cdot \sum_{i=1}^{\infty} i \cdot (1-p)^{i-1}$$
$$g(1-p) = \sum_{i=1}^{\infty} (1-p)^i = \frac{1}{1-(1-p)} = \frac{1}{p}$$
$$g'(1-p) = \left(\sum_{i=1}^{\infty} (1-p)^i\right)' = \sum_{i=1}^{\infty} i \cdot (1-p)^{i-1}$$

Но

$$g'(1-p) = -1 \cdot \left(-\frac{1}{p^2}\right) = \frac{1}{p^2}$$
$$E[J] = p \cdot \frac{1}{p^2} = \frac{1}{p}$$
$$E[S_J] = \frac{1}{p} \cdot 45 = \frac{45}{p}$$

2.2.2 ii

Процесс восстановления: $S_n = S_{n-1} + \xi_n$

 $\mathbb{E}\xi_i = 45$

Обозначим индикатор обнаружения:

$$\tau = \begin{cases} 1, p \\ 0, 1 - p \end{cases}$$

Штраф: $\zeta \sim U[0, C(\frac{A}{B})],$

Вознаграждение случайного процесса: $R_i = \tau \zeta \Rightarrow$ независимость $\Rightarrow \mathbb{E}(R_i) = \frac{pC}{2}$

$$\frac{Y(t)}{t} \to \frac{pC}{90} \Rightarrow Y(t) \to \frac{\tau pC}{90}$$

2.2.3 iii

Рассмотрим две альтернативы поведения. Первый вариант поведения владельца это экономия. Усредним возможные профиты и лоссы. В таком случае в любой конкретный день он в среднем будет получать профит A-B. Константу сколько не усредняй, останется константой. Однако он будет в среднем получать асимптотический штраф $Y(t) \to \frac{\tau pC}{90}$, который мы вычислили в предыдущем пункте.

В ином вариант, когда владелец выбирает не экономить, он не получает выгоды, но в среднем каждый день теряет А рублей.

В таком случае владельцу будет выгодно экономить, если средяя "чистая прибыль"от экономии будет больше, чем от экономии, то есть:

$$A - B - \frac{Y(t)}{t} > -A$$

$$A - B - \frac{pC}{90} > -A$$

В таком случае владельцу будет выгодна первая стратегия даже если чистая прибыль от экономии будет отрицательной из-за штрафов, но будет больше чем -A, то экономия всё равно останется оптимальной. Преобразуя неравенство, получим:

$$2A - B - \frac{pC}{90} > 0 \Rightarrow \frac{90(2A - B)}{C(\frac{A}{B})} > p$$

Если честно, я не понял, как использовать зависимость от дроби. Разве что наложить дополнительные условия на производную C по A и B. Возможно это даст какие-то дополнительные условия на C, но особого смысла в этом не вижу.

2.3 Задача 3

Выпишем суммарное вознаграждение процесса востановления. Для начала обозначим пару вспомогательных индикаторов. τ — индикатор того, что ремонт возможно произвести самостоятельно. ρ — индикатор того, что самостоятельный ремонт был некачественным.

$$\tau = \begin{cases} 1, p \\ 0, 1 - p \end{cases}$$

$$\rho = \begin{cases} 1, q \\ 0, 1 - q \end{cases}$$

$$R_i = \tau \rho(m+\eta) + \tau (1-\rho)m + (1-\tau)\eta$$

2.3.1 i

В данном пункте необходимо только первое слагаемое. При $t \to \infty$ уммарные расходы будут следующими:

$$\frac{Y(t)}{t} \to \frac{\mathbb{E}(R_i^I)}{\mathbb{E}(\xi_i)} = \text{независимость} = \frac{pq\left(m + \frac{M+m}{2}\right)}{18} \Rightarrow Y(t) \to \frac{tpq\left(m + \frac{M+m}{2}\right)}{18}$$

2.3.2 ii

Сравним ожидаемые вознаграждения за самостоятельный ремонт и за ремонт в автосервисе. Первое должно быть меньше второго. По-хорошему, нужно обе части неравенства ниже делить на $\mathbb{E}(xi_i)$ б но все понимают, что я просто мысленно на это же положительное число 18 просто домножил обе части чтобы лишние дроби не тянуть. Матожидания позволю себе также вычислить в уме.

$$pq\left(m + \frac{M+m}{2}\right) + p(1-q)m < \frac{(1-p)(M+m)}{2} \Rightarrow \Big| *2 \text{ if } : q$$

$$q(M+3m) + 2m(1-q) < \frac{M+m}{p} - (M+m) \Rightarrow \Big| : (M+m)$$

$$\frac{q(M+3m) + 2m - 2qm}{M+m} < \frac{1-p}{p} \Rightarrow \frac{qM+qm+2m}{M+m} < \frac{1-p}{p} \Rightarrow$$

$$q + \frac{2m}{M+m} < \frac{1-p}{p}$$

$$(7)$$

2.4 Задача 4

Как и в лекции, будем пользоваться теоремой о двух милиционерах. Это до ужаса скучно, но так и быть. Поправка к графикам, которые у меня уже нет сил перерисовывать: по оси ординат, конечно же, $\xi_1, \xi_2...$, а не $S_1, S_2...$

2.4.1 i

Функция под интегралом представляет собой просто куски прямой Z(t)=t, которя в каждый момент восстановления просто сдвигается на ξ_i . Как видно из графика слева на Рис. 2.4, искомый интеграл ограничен суммами площадей треугольников до точек N_t и N_t+1 . Найдём пределы границ неравенства.

$$\frac{\sum_{1}^{N_{t}} \frac{1}{2} \xi_{i}^{2}}{t} \leq \int_{0}^{t} Z_{u}^{w} du \leq \frac{\sum_{1}^{N_{t}+1} \frac{1}{2} \xi_{i}^{2}}{t}$$

$$\lim_{t \to \infty} \frac{1}{2t} \sum_{1}^{N_{t}} \xi_{i}^{2} = \lim_{t \to \infty} \frac{N_{t}}{t} \frac{\sum_{1}^{N_{t}} \xi_{i}^{2}}{2N_{t}} = \frac{\mathbb{E}(\xi_{1}^{2})}{2\mathbb{E}(\xi_{1})}$$

$$\lim_{t \to \infty} \frac{1}{2t} \sum_{i=1}^{N_t+1} \xi_i^2 = \lim_{t \to \infty} \frac{1}{2t} \sum_{i=1}^{N_t+1} \xi_i^2 \frac{N_t+1}{N_t} \frac{N_t}{N_t+1} = \lim_{t \to \infty} \frac{N_t}{t} \frac{\sum_{i=1}^{N_t} \xi_i^2}{2N_t} \frac{N_t+1}{N_t} = \frac{\mathbb{E}(\xi_1^2)}{2\mathbb{E}(\xi_1)}$$

Видим, что исходная функция зажата двумя абсолютно идентичными функциями. Следовательно, по теореме о двух милиционерах предел исходной функции тоже будет равен $\frac{\mathbb{E}(\xi_1^2)}{2\mathbb{E}(\xi_1)}$

2.4.2 ii

Пункт абсолютно идентичен предыдущему. Единственная разница лишь в построении графика. Искомое время является ни чем иным как ξ_{N_t+1} . Скачки графика происходят непосредственно в моменты восстановления. Все вычисления и выводы абсолютно идентичны, с поправкой на $\frac{1}{2}$, так как площадь каждого квадрата будет ровно ξ_i^2 .

$$\begin{split} \frac{\sum_{1}^{N_{t}} \xi_{i}^{2}}{t} &\leq \int_{0}^{t} V_{u}^{w} du \leq \frac{\sum_{1}^{N_{t}+1} \xi_{i}^{2}}{t} \\ \lim_{t \to \infty} \sum_{1}^{N_{t}} \xi_{i}^{2} &= \lim_{t \to \infty} \frac{N_{t}}{t} \frac{\sum_{1}^{N_{t}} \xi_{i}^{2}}{N_{t}} = \frac{\mathbb{E}(\xi_{1}^{2})}{\mathbb{E}(\xi_{1})} \\ \lim_{t \to \infty} \sum_{1}^{N_{t}+1} \xi_{i}^{2} &= \lim_{t \to \infty} \sum_{1}^{N_{t}+1} \xi_{i}^{2} \frac{N_{t}+1}{N_{t}} \frac{N_{t}}{N_{t}+1} = \lim_{t \to \infty} \frac{N_{t}}{t} \frac{\sum_{1}^{N_{t}} \xi_{i}^{2}}{N_{t}} \frac{N_{t}+1}{N_{t}} = \frac{\mathbb{E}(\xi_{1}^{2})}{\mathbb{E}(\xi_{1})} \end{split}$$

Видим, что исходная функция зажата двумя абсолютно идентичными функциями. Следовательно, по теореме о двух милиционерах предел исходной функции тоже будет равен $\frac{\mathbb{E}(\xi_1^2)}{\mathbb{E}(\xi_1)}$

- 2.5 Задача 5
- 2.6 Задача 6
- 2.6.1 i

$$\mathbb{E}(S_{N_t+1}) = \mu \mathbb{E}(N_t) + \mu$$

Далее сделаем ключевой переход. $S_{N_{t+1}}$ это точка времени, в которую произойдёт следующий после точки t эпизод восстановления. Очевидно, что математическое ожидание этой случайной величины больше t, так как это событие должно произойти после t. Следовательно:

$$\mathbb{E}(S_{N_t+1}) = \mu \mathbb{E}(N_t) + \mu > t \Rightarrow \mathbb{E}(N_t) > \frac{t}{\mu} - 1 \Rightarrow \frac{\mathbb{E}(N_t)}{t} > \frac{1}{\mu} - \frac{1}{t}$$

2.6.2 ii

Снова воспользуемся тождеством Вальда. Начём доказывать с конца.

$$\mathbb{E}(\tilde{N}_t) \le \frac{t}{\tilde{\mu}(\sqrt{t})} + \frac{\sqrt{t}}{\tilde{\mu}(\sqrt{t})} \Rightarrow \tilde{\mu}(\sqrt{t})\mathbb{E}(\tilde{N}_t) \le t + \sqrt{t}$$

Согласно тождеству Вальда:

$$\mathbb{E}(S_{N_t}) = \tilde{\mu}(\sqrt{t})\mathbb{E}(\tilde{N}_t)$$

Следовательно:

$$\mathbb{E}(S_{N_t}) \leq t + \sqrt{t}$$

Данное неравенство выполняется всегда, так как событие S_{N_t} – последний момент восстановлления до t, и его математическое ожидание должно быть меньше t. Следовательно, получаем тождество. Исходное предположение доказано.

Что же касается левой части неравенства, её можно доказать интуитивно. Так как в процессе восстановления в приращениях всегда будет прибавляться меньший чем ξ_n отрезок времени $\tilde{\xi}_n$, то до момента времени t произойдёт точно не меньше эпизодов восстановлени (если все реализации случайной величины ξ_n будут больше b) или больше. Следовательно, математическое ожидание количества восстановлений к моменту t тоже будет выше.

Оба положения неравенства доказаны.

2.6.3 iii

После первых двух пунктов получаем неравенство:

$$\frac{1}{\mu} - \frac{1}{t} < \frac{\mathbb{E}(N_t)}{t} < \frac{1}{\tilde{\mu}(\sqrt{t})} + \frac{1}{\sqrt{t}\tilde{\mu}(\sqrt{t})}$$

Теперь, очевидно, как и в задаче 4, нужно воспользоваться теоремой о двух милиционерах. Но сначала нужно доказать, что $\tilde{\mu}(\sqrt{t}) \to \mu \ t \to \infty$

Для этого нужно вычислить следующее:

$$\lim_{t \to +\infty} \mathbb{E}(min(\sqrt{t}, \xi_n))$$

Для этого так и напрашивается поменять местами предел и математическое ожидание. Однако для этого нужно выполнить условия Dominated convergence theorem. Как бы по-хорошему нужно выписать все предпосылки о вероятностном пространстве как метрическом пространстве и обозначить предпосылки, но сил уже на это мало. Обозначим самые главные. Нужно найти такую мажорирующую функцию q, что:

- $\stackrel{\star}{\Rightarrow}$ Функция плотности g должна быть интегрируема
- $\stackrel{\star}{\Rightarrow}$ Математическое ожидание модуля g конечно
- $\stackrel{\star}{\triangleright}$ Функция g должна доминировать исходную функцию.

Всё просто. Обозначим $g = \xi_n$. Её математическое ожидание конечно по условию, и мы можем менять в исходном неравенстве предел и математическое ожидание.

Можно проиллюстрировать всё следующим примером.

Очевидно, что:

$$min(b, \xi_n) \leq \xi_n$$

Это было как раз условие доминирования. Оно верно с учётом того, что ξ_n неотрицательная случайная величина. Домножим на неотрицательную функцию плотности.

$$f_{\xi}(x)min(b,\xi_n) \le f_{\xi}(x)\xi_n$$

Возьмём математическое ожидание обеих частей:

$$\int_{0}^{+\infty} f_{\xi}(x) \min(\sqrt{t}, x) dx \le \int_{0}^{+\infty} f_{\xi}(x) x dx$$

Математическое ожидание исходной функции тоже доминировано конечным математическим ожиданием ξ

По пунктам. Нужно ввести предпосылку о том, что функция плотности ξ интегрируема. Математическое ожидание модуля ξ равно математическому ожиданию ξ и конечно. Очевидно, что ξ_n доминирует исходную функцию.

Поменяем предел и математическое ожидание:

$$\lim_{t \to +\infty} \mathbb{E}(min(\sqrt{t}, \xi_n)) \Rightarrow \mathbb{E}(\lim_{t \to +\infty} min(\sqrt{t}, \xi_n)) = \mathbb{E}(\xi_n) = \mu$$

Следовательно, мы доказали, что $\tilde{\mu}(\sqrt{t}) \to \mu \ t \to \infty$. Теперь воспользуемся-таки теоремой о двух милиционерах и возьмём пределы по двум границам исходного неравенства:

$$\frac{1}{\mu} - \frac{1}{t} < \frac{\mathbb{E}(N_t)}{t} \le \frac{1}{\tilde{\mu}(\sqrt{t})} + \frac{1}{\sqrt{t}\tilde{\mu}(\sqrt{t})}$$

Очевидно, что при $t \to +\infty$ дроби с t в знаменателях занулятся, а в правой части по доказанной выше сходимости появится тоже ν В итоге:

$$\frac{1}{\mu} < \lim_{t \to +\infty} \frac{\mathbb{E}(N_t)}{t} \le \frac{1}{\mu}$$

Следовательно, получаем:

$$\lim_{t \to +\infty} \frac{\mathbb{E}(N_t)}{t} = \frac{1}{\mu}$$

3 Домашнее задание 3

3.1 Номер 1

3.1.1 i

Докажем по индукции. Начальное условие:

$$S_1 = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$

Индукционный переход:

$$n \to n+1, S_{n+1} = S_n + \xi_{n+1}$$

$$f_{S_{n+1}}(x) = \int_{\mathbb{R}^+} f_{S_n}(x-y) f_{\xi_{n+1}}(y) dy = \int_{\mathbb{R}^+} \frac{\beta^{n\alpha}}{\Gamma(n\alpha)} x^{n\alpha-1} e^{-\beta x} I\{x-y>0\} \cdot \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} I\{y>0\} dy = \frac{\beta^{(n+1)\alpha}}{\Gamma(n\alpha)\Gamma(\alpha)} e^{\beta x} \underbrace{\int_0^x (x-y)^{n\alpha-1} y^{\alpha-1} dy}_{I} = \dots$$

$$I = \int_0^x (x - y)^{n\alpha - 1} y^{\alpha - 1} dy = |z = \frac{y}{x}| = \int_0^1 (x - zx)^{n\alpha - 1} z x^{\alpha - 1} x dz =$$

$$= \text{По свойству Бета-функции} = x^{(n+1)\alpha - 1} \frac{\Gamma(n\alpha)\Gamma(\alpha)}{\Gamma((n+1)\alpha)}$$

$$(9)$$

$$\dots = \frac{\beta^{(n+1)\alpha} x^{(n+1)\alpha-1}}{\Gamma((n+1)\alpha)} e^{-\beta x} = f_{S_{n+1}}(x)$$
 (10)

3.1.2 ii

$$P\{N_t = n\} = P\{S_n \le t\} - \{S_{n+1} \le t\}$$

$$F_{S_n}(x) = \int_0^t \frac{\beta^{n\alpha}}{\Gamma(n\alpha)} x^{n\alpha - 1} e^{-\beta x} dx$$
 (11)

$$P\{N_{t}=n\} = \int_{0}^{t} \frac{\beta^{n\alpha}}{\Gamma(n\alpha)} x^{n\alpha-1} e^{-\beta x} dx - \int_{0}^{t} \frac{\beta^{(n+1)\alpha}}{\Gamma((n+1)\alpha)} x^{(n+1)\alpha-1} e^{-\beta x} dx = \int_{0}^{t} \beta^{n\alpha} x^{n\alpha-1} e^{-\beta x} \left(\frac{1}{\Gamma(N\alpha)} - \frac{\beta^{\alpha}}{\Gamma((n+1)\alpha)} x^{\alpha}\right)$$

$$(12)$$

Я не знаю, как дальше брать этот интеграл кроме как численно. Ну может тут тоже есть какой-то финт ушами через дискретную вариацию распределения аля Эрланг, но я не придумал, как его тут применить. Оставлю тут просто солнышко. Вот оно: 🜣

3.2 Номер 2

Предположим независимость случайных величин S_2 и γ (суммарное время обслуживания первого клиента). Это тонкий момент. Я так и не смог привести контрпример к независимости. Вопрос в том, можно ли отделить время прихода первого покупателя от времени стрижки. В таком случае простое ручное вычисление $\text{Cov}(\xi_1 + \xi_2, \xi_2 + \eta)$ Даст как минимум $\text{Var}(\xi_1)$. Следственно, предположим, что вторая величиина неделима и независима от ξ_1 . Иначе задача нерешаема в текущих условиях.

Где необходимо, будем пользоваться следующим утверждением (очевидно, по Лопеталю):

$$\lim_{x \to +\infty} x e^{-x} = 0$$

$$P\{\xi_{1} + \xi_{2} < \gamma\} = \iint_{x_{1} < x_{2}} \lambda_{1}^{2} x_{1} e^{-\lambda_{1} x_{1}} \lambda_{2} e^{-\lambda_{2} x_{2}} dx_{1} dx_{2} = \lambda_{1}^{2} \lambda_{2} \int_{0}^{+\infty} \int_{x_{1}}^{+\infty} x_{1} e^{-(\lambda_{1} x_{1} + \lambda_{2} x_{2})} dx_{2} dx_{1} = \lambda_{1}^{2} \lambda_{2} \int_{0}^{+\infty} \left(-\frac{x_{1} e^{-(\lambda_{1} x_{1} + \lambda_{2} x_{2})}}{\lambda_{2}} \Big|_{x_{1}}^{+\infty} \right) dx_{1} = \lambda_{1}^{2} \lambda_{2} \int_{0}^{+\infty} \left(\frac{x_{1} e^{-(\lambda_{1} + \lambda_{2}) x_{1}}}{\lambda_{2}} \right) dx_{1} = \lambda_{1}^{2} \int_{0}^{+\infty} \left(x_{1} e^{-(\lambda_{1} + \lambda_{2}) x_{1}} \right) dx_{1} = \lambda_{1}^{2} \left(\frac{x_{1} e^{-(\lambda_{1} + \lambda_{2}) x_{1}}}{-(\lambda_{1} + \lambda_{2})} \Big|_{0}^{+\infty} - \int_{0}^{+\infty} \frac{e^{-(\lambda_{1} + \lambda_{2}) x_{1}}}{-(\lambda_{1} + \lambda_{2})} dx_{1} \right) = -\lambda_{1}^{2} \left(\int_{0}^{+\infty} \frac{e^{-(\lambda_{1} + \lambda_{2}) x_{1}}}{-(\lambda_{1} + \lambda_{2})} dx_{1} \right) = -\lambda_{1}^{2} \left(\frac{e^{-(\lambda_{1} + \lambda_{2}) x_{1}}}{(\lambda_{1} + \lambda_{2})^{2}} \Big|_{0}^{+\infty} \right) = \frac{\lambda_{1}^{2}}{(\lambda_{1} + \lambda_{2})^{2}} = \frac{\frac{1}{100}}{\left(\frac{35}{250}\right)^{2}} \approx 0.51$$

$$(13)$$

3.3 Номер 3

3.4 Номер 4

Необходимо найти следующую вероятность:

$$P\{N_{30} \le 3 | N_{10} \ge 2\}$$

Эту вероятность можно расписать по формуле полной вероятности. Это событие реализуется при трёх возможных условиях:

$$N_t = 2, N_t = 3, N_t > 4$$

Важно отметить, что $(A|N_t=2|N_t\geq 2)=(A|N_t=2))$. Первый элемент уравнения – событие, на которое наложены сразу два условия. Вероятности условий также должны стать условными событиями. Только тогда их сумма будет равняться единице.

В таком случае, запишем формулу следующим образом:

$$P\{N_{30} \le 3 | N_{10} \ge 2\} = P\{N_{30} \le 3 | N_{10} = 2\} P\{N_{10} = 2 | N_{10} \ge 2\} + P\{N_{30} \le 3 | N_{10} = 3\} P\{N_{10} = 3 | N_{10} \ge 2\} + P\{N_{30} \le 3 | N_{10} \ge 4\} P\{N_{10} \ge 4 | N_{10} \ge 2\} = (P\{N_{30} - N_{10} = 0\} + P\{N_{30} - N_{10} = 1\}) P\{N_{10} = 2 | N_{10} \ge 2\} + P\{N_{30} - N_{10} = 0\} P\{N_{10} = 3 | N_{10} \ge 2\}$$

$$(14)$$

Найдём все необходимые нам вероятности. Для этого воспользуемся доказанным на лекции утверждением:

$$N_t - N_s \sim Pois(\lambda(t-s)) \forall t, s \ge 0, t > s$$

Следовательно:

$$P\{N_t - N_s = k\} = \frac{(\lambda(t-s))^k}{k!} e^{-\lambda(t-s)}$$

При t-s=5 получим математическое ожидание процесса приращений равное одной квартире. Соответственно, параметр интенсивности такого распределения вычисляется следующим образом:

$$\lambda(t-s) = 1 \Rightarrow \lambda = \frac{1}{t-s} \Rightarrow \lambda = \frac{1}{5}$$

$$P\{N_{10} = 0\} = e^{-2} \approx 0.14$$

$$P\{N_{10} = 1\} = 2e^{-2} \approx 0.28$$

$$P\{N_{10} = 2\} = \frac{(\frac{1}{5}10)^2}{2!}e^{-2} \approx 0.27$$

$$P\{N_{10} = 3\} = \frac{(\frac{1}{5}10)^3}{3!}e^{-2} \approx 0.18$$

$$P\{N_{10} \geq 4\} = 1 - 0.14 - 0.28 - 0.27 - 0.18 = 0.13$$

$$P\{N_{30} - N_{10} = 0\} = \frac{1}{0!}e^{-\frac{1}{5}20} \approx 0.018$$

$$P\{N_{30} - N_{10} = 1\} = \frac{\frac{1}{5}(30 - 10)}{1!}e^{-\frac{1}{5}20} = 4e^{-4} \approx 0.073$$

$$P\{N_{10} = 2|N_{10} >= 2\} = \frac{0.27}{0.27 + 0.18 + 0.13} \approx 0.465$$

$$P\{N_{10} = 3|N_{10} >= 2\} = \frac{0.18}{0.27 + 0.18 + 0.13} \approx 0.31$$

$$P\{N_{10} \ge 4|N_{10} >= 2\} = \frac{0.13}{0.27 + 0.18 + 0.13} \approx 0.22$$

Засунем всё обратно в формулу:

$$P\{N_{30} \le 3 | N_{10} \ge 2\} = (0.018 + 0.073) \cdot 0.465 + 0.018 \cdot 0.31 = 0.0423 + 0.00558 = 0.04788$$
(15)

4 Домашнее задание 4

4.1 Задача 1

4.1.1 i

$$\mathbb{E}(e^{iu(2\xi-\mathbf{I}\{\xi>\frac{1}{2}\})})$$

Определим распределение величины $2\xi - \mathbf{I}\{\xi > \frac{1}{2}\}$, разложив её по формуле полной вероятности и использовав формулу полной вероятности.

$$\mathbb{P}\{2\xi - \mathbf{I}\{\xi > \frac{1}{2}\} \le x\} = \mathbb{P}\{2\xi \le x | \xi \le \frac{1}{2}\} \mathbb{P}\{\xi \le \frac{1}{2}\} + \mathbb{P}\{2\xi - 1 \le x | \xi > \frac{1}{2}\} \mathbb{P}\{\mathbf{I}\{\xi > \frac{1}{2}\} = \frac{\mathbb{P}\{2\xi \le x \cap \xi \le \frac{1}{2}\}}{\mathbb{P}\{\xi \le \frac{1}{2}\}} \mathbb{P}\{\xi \le \frac{1}{2}\} + \frac{\mathbb{P}\{2\xi - 1 \le x \cap \xi > \frac{1}{2}\}}{\mathbb{P}\{\xi > \frac{1}{2}\}} \mathbb{P}\{\xi > \frac{1}{2}\} = \mathbb{P}\{2\xi \le x \cap \xi \le \frac{1}{2}\} + \mathbb{P}\{2\xi - 1 \le x \cap \xi > \frac{1}{2}\} = \mathbb{F}_{\xi}(\min(\frac{x}{2}, \frac{1}{2})) + \mathbb{F}_{\xi}(\frac{x + 1}{2}) - \mathbb{F}_{\xi}(\frac{1}{2}) = \mathbb{F}_{\xi}(\frac{x}{2}) + \mathbb{F}_{\xi}(\frac{x}{2}) = \frac{x}{2} + \frac{x}{2} = x \text{ при } x \in [0; 1]$$

Последние переходы поясню. Минимум из $\frac{x}{2}$ и $\frac{1}{2}$ всегда будет в пользу первого варианта, так как $x \in [0;1]$. В следствие линейности равномерной функции распределения очевидно, что $\mathbb{F}_{\xi}(\frac{x+1}{2}) = \mathbb{F}_{\xi}(\frac{x}{2}) + \mathbb{F}_{\xi}(\frac{1}{2})$

Получается, что $\eta_1 \sim U[0,1]$. Следовательно, характеристическая функция имеет следующий вид:

$$\mathbb{E}e^{iu\eta_1} = \int_0^1 e^{iux} dx = \frac{e^{iux}}{iu} \Big|_0^1 = \frac{e^{iu} - 1}{iu} = \frac{\cos(u) + i\sin(u) - 1}{iu}$$

Очевидно, ответ будет комплексным.

4.1.2 ii

$$\mathbb{E}e^{iuln(\xi)} = \mathbb{E}(e^{ln(\xi)})^{iu} = \mathbb{E}\xi^{iu} = \int_0^1 x^{iu} dx = \frac{x^{iu+1}}{iu+1} \Big|_0^1 = \frac{1^{iu+1}}{iu+1} = \frac{1^{iu}}{iu+1}$$

Если расписать единичу в степени мнимой единицы по общей формуле комплексной степени комплексного числа, получим:

$$(re^{i\theta})^z = \exp\{z(\ln r + i\theta + 2ik\pi)\}\$$
$$= \exp\{z(\ln r + i\theta)\} \cdot \exp\{2ik\pi \cdot z\}\$$

Получим: $1^i = e^{2\pi k}$

Числитель действительнозначный, знаменатель комплексный. Ответ комплексный.

4.1.3 iii

$$\eta_{3} = \begin{cases}
-1, & 0 \leq \xi < 1/3 \\
0, & 1/3 \leq \xi < 2/3 \\
1, & 2/3 \leq \xi \leq 1
\end{cases}$$

$$\mathbb{E}e^{iu\eta_{3}} = \frac{1}{3}(e^{-iu} + 1 + e^{iu}) = \frac{1}{3}(\cos(-u) + i\sin(-u) + 1 + \cos u + i\sin u) = \frac{1}{3}(\cos u - i\sin u + 1 + \cos u + i\sin u) = \frac{1}{3}(1 + 2\cos u)$$
(17)

Действительнозначная!

4.2 Задача 2

$$\mathbb{E}N_t=100t$$
 $Y_i\sim exp(\frac{1}{5000})$ - размер выплаты $\mathbb{E}Y_1=5000$

4.2.1 i

 $X_t = \sum_0^{N_t} Y_i$ - Составной процесс Пуассона, предполагая независимость $\xi_i N_t$. N_t - процесс Пуассона. $\xi_1, \xi_2 - iid$

4.2.2 ii

$$\mathbb{E}X_{t} = 100t \mathbb{E}Y_{1} = 100t \cdot 5000 = 500000$$

$$\operatorname{Var}X_{t} = 100t \operatorname{Var}Y_{1} = 100t \cdot 5000^{2} + 5000^{2} = 5000000000 = 5t \cdot 10^{9}$$

$$\mathbb{P}\{X_{t} = 0\} = \mathbb{P}\{N_{t} = 0\} = \frac{(100t)^{0}}{0!}e^{100t} = e^{-100t}$$

$$\mathcal{L}_{Y}(u) = \int_{0}^{+\infty} \lambda e^{-\lambda x}e^{-ux} = \int_{0}^{+\infty} \lambda e^{-(\lambda + u)x} = \lambda \left(-\frac{e^{-(\lambda + u)x}}{\lambda + u}\right)\Big|_{0}^{+\infty} = \frac{\lambda}{\lambda + u}$$

$$\mathcal{L}_{Y_{t}} = e^{\lambda_{1}t(\frac{\lambda_{2}}{\lambda_{2} + u} - 1)} = e^{\frac{-\lambda_{1}ut}{\lambda_{2} + u}} = e^{\frac{-500000ut}{1 + 5000u}}$$

4.3 Задача 3

Ничтоже сумняшеся воспользуемсся формулами из четвёртого номера и определений с семинара во славу Сатаны, конечно же.

4.3.1 i

По 4(іі) Однородный случай

$$F_{S_{101}-S_{100}|S_{100}=224}(t) = P(S_{101}-S_{100} \le t|S_{100}=224) = 1 - e^{-0.1(t+224)+10\cdot224} = 1 - e^{-10t}$$

Неоднородный случай

$$F_{S_{101}-S_{100}|S_{100}=224}(t) = P(S_{101}-S_{100} \le t|S_{100}=224) = 1 - e^{10(t+224)^{\frac{5}{4}} + 10(224)^{\frac{5}{4}}}$$

4.3.2 ii

По семинару, разность считающих функций распределена по Пуассону. Однородный случай:

$$F_{S_{101}-S_{100}|S_{100}=224}(t) = P(N_{224+t}-N_{224} \ge 50) = 1 - \sum_{k=0}^{49} \frac{(10(224+t) - 10(224))^k}{k!} e^{-(10(224+t) - 10(224))} = 1 - \sum_{k=0}^{49} \frac{(10t)^k}{k!} e^{-(10t)}$$

Неоднородный случай:

$$F_{S_{101}-S_{100}|S_{100}=224}(t) = P(N_{224+t}-N_{224} \ge 50) = 1 - \sum_{k=0}^{49} \frac{(10(224+t)^{\frac{5}{4}}-10(224)^{\frac{5}{4}})^k}{k!} e^{-(10(224+t)^{\frac{5}{4}}-10(224)^{\frac{5}{4}})}$$

4.4 Задача 4

 N_t – неоднородный процесс Пуассона

$$N_t - N_s \sim Pois(\Lambda(t) - \Lambda(s))$$
 $N_t \sim Pois(\Lambda(t))$. $S_k = \min\{t: N_t = k\}; \xi_k = S_k - S_{k-1}$ По лекции: $f_{\xi_1}(t) = \lambda(t)e^{-\Lambda(t)}$

4.4.1 i

По индукции:

₩ Шаг индукции.

$$\mathbb{P}(N_t = n) = \mathbb{P}(S_n \le t) - \mathbb{P}(S_{n+1} \le t) \Rightarrow F_{S_{n+1}}(t) = \mathbb{P}(S_{n+1} \le t) = \mathbb{P}(S_n \le t) - \mathbb{P}(N_t = n) = F_{S_n}(t) - e^{-\Lambda(t)} \frac{(\Lambda(t))^n}{n!}$$

$$f_{S_{n+1}}(t) = f_{S_n}(t) - \left(-\lambda(t) \cdot e^{-\Lambda(t)} \frac{(\Lambda(t))^n}{n!} + e^{-\Lambda(t)} \frac{n(\Lambda(t))^{n-1} \cdot \lambda(t)}{n!}\right) =$$

$$=e^{-\Lambda(t)}\frac{(\Lambda(t))^{n-1}}{(n-1)!}\lambda(t)+\lambda(t)\cdot e^{-\Lambda(t)}\frac{(\Lambda(t))^n}{n!}-e^{-\Lambda(t)}\frac{n(\Lambda(t))^{n-1}\cdot\lambda(t)}{n!}=\\ =\frac{ne^{-\Lambda(t)}(\Lambda(t))^{n-1}\lambda(t)}{n!}+\frac{e^{-\Lambda(t)}(\Lambda(t))^n\lambda(t)}{n!}-\frac{ne^{-\Lambda(t)}(\Lambda(t))^{n-1}\cdot\lambda(t)}{n!}=e^{-\Lambda(t)}\frac{(\Lambda(t))^n}{n!}\lambda(t)$$

4.4.2 ii

Если $\xi_{k+1} \leq t$ то с момента S_k и до $S_k + t$ произошел как минимум один момент восстановления. Может и больше, кто эти случайные процессы разберёт. Всё не как у людей. Тогда $N_{S_k+t} - N_{S_k} \geq 1$. Исходя из $S_k = s \Rightarrow N_{s+t} - N_s \geq 1$

$$\mathbb{P}(\xi_{k+1} \leq t | S_k = s) = \mathbb{P}(N_{s+t} - N_s \geq 1) = 1 - \mathbb{P}(N_{s+t} - N_s < 1) = 1 - \mathbb{P}(N_{s+t} - N_s = 0) = 1 - e^{-\Lambda(t+s) + \Lambda(s)} = 1 -$$

4.4.3 iii

$$\begin{split} F_{\xi_k}(t) &= \mathbb{P}(\xi_K \leq t) = \int\limits_0^{+\infty} \mathbb{P}(\xi_k \leq t | S_{k-1} = s) \cdot f_{S_{k-1}}(s) ds = \int\limits_0^{+\infty} (1 - e^{-\Lambda(t+s) + \Lambda(s)}) \cdot e^{-\Lambda(s)} \frac{(\Lambda(s))^{k-2}}{(k-2)!} \lambda(s) ds = \\ &= \int\limits_0^{+\infty} e^{-\Lambda(s)} \frac{(\Lambda(s))^{k-2}}{(k-2)!} \lambda(s) - e^{-\Lambda(t+s) + \Lambda(s)} \cdot e^{-\Lambda(s)} \frac{(\Lambda(s))^{k-2}}{(k-2)!} \lambda(s) ds = \int\limits_0^{+\infty} f_{S_{k-1}}(s) - e^{-\Lambda(t+s)} \cdot \frac{(\Lambda(s))^{k-2}}{(k-2)!} \lambda(s) ds = \\ &= 1 - \int\limits_0^{+\infty} e^{-\Lambda(t+s)} \cdot \frac{(\Lambda(s))^{k-2}}{(k-2)!} \lambda(s) ds \end{split}$$

5 Домашнее задание 5

5.1 Задача 1

Для начала выпишем заготовку ответа.

$$P\{X_n = j | X_{n-1} = i_{n-1}\} = \begin{cases} 1 \text{ если } i_{n-1} < s, j = S \\ 0 \text{ если } i_{n-1} < s, j \neq S \\ (\star) \text{ если } i_{n-1} \ge s, i_{n-1} \ge j \\ (\star\star) \text{ если } i_{n-1} \ge s, i_{n-1} < j \end{cases}$$

Теперь кратко поясним полученную конструкцию. Функция распределения распадается на два случая. Если склад был в предыдущий день достаточно опустошён, то есть $i_{n-1} < s$, то очевидно, что значение заполнения склада в следующий день предопределено и с вероятностью 1 оно равно S и с нулевой - чему-то иному. Также очевидно, что никакая предыстория не влияет на эту определённость. Последнее состояние полностью определяет будущее.

Ситуацию, когда склад был заполнен достаточно, нужно рассмотреть отдельно.

$$(\star) = p\{X_{n-1} - D_{n-1} | X_{n-1} = i_{n-1}\} = \mathbb{P}\{i_{n-1} - D_{n-1} = j\} = P\{D_{n-1} = i_{n-1} - j\}$$

При добавлении предыстории ничего не изменится, так как D_{n-1} и X_{n-2} независимы. Очевидно, что заказ не может быть отрицательным, поэтому $(\star\star)=0$. Так как в задании не указано, то в предыдущей опции предполагается, что заказ может быть нулевым.

Вершина	Существенность	Период
1	Существенна	1
2	Существенна	1
3	Несущественна	1
4	Существенна	2
5	Существенна	2
6	Существенна	1
7	Существенна	1

$$P\{X_n=j|X_{n-1}=i_{n-1}\}=\begin{cases} 1 \text{ если } i_{n-1}< s, j=S\\ 0 \text{ если } i_{n-1}< s, j\neq S\\ P\{D_{n-1}=i_{n-1}-j\} \text{ если } i_{n-1}\geq s, i_{n-1}\geq j\\ 0 \text{ если } i_{n-1}\geq s, i_{n-1}< j \end{cases}$$

5.2 Задача 2

Рис. 4: Графическое представление Марковской цепи

5.2.1 i

Исходя из графа на Рис. 4, можно выделить 3 класса эквивалентности: (4,5), (3), (1,2,7,6). Я не знаю, нужно ли тут ещё что-то пояснять. Просто по определению это классы эквивалентности. Попав из любого состояния в любое иное, можно вернуться назад.

5.2.2 ii

Опять же, из графа очевидна существенность вершин. Вершины 4 и 5 существенны, так как между ними есть связь, а больше идти некуда. Вершина 3 несущественна, так как из неё можно перейти в 4 и не вернуться. Все остальные вершины существенны, так как

лежат внутри одного класса эквивалентности и вершина 1 существенна. А как мы знаем, в классе эквивалентности если одна вершина существенна, то и все остальные тоже.

Так как все вершины внутри класса эквивалентности имеют один период, то найдём период для вершины 1. Так как наличествуют пути 1-2-1 и 1-2-7-1, то НОД длин путей не может быть иным кроме 1. Следовательно, период вершин 1, 2, 6, и 7 равняется 1.

Период для вершины 3 равняется 1 по определению, так как в неё невозможно вернуться.

Периоды вершин 4 и 5, очевидно, 2, так как все возможные пути кратны 2. Все результаты представлены в таблице выше.

5.2.3 iii

Для этого нужно решить систему вида $\pi P = \pi$, где $\pi_{1\times 7}$

$$P = \begin{pmatrix} 0 & 1/2 & 0 & 0 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 0 & 0 & 1/3 & 1/3 \\ 0 & 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 & 0 & 0 & 1/2 \\ 1/3 & 1/3 & 0 & 0 & 0 & 1/3 & 0 \end{pmatrix}$$

Дополнительно нужно ввести в систему условие $\sum_{i=1}^{7} \pi_i = 1$. Из системы можно выкинуть одно уравнение, как было показано на лекции. Выкинем второе, там больше всего коэффициентов. Система, очевидно, неэргодическая, и вполне можно ожидать неединственность решения. Решение системы несложное, но уж очень лень техать. Предложу поверить мне на слово.

$$\begin{cases} \frac{1}{3}\pi_2 + \frac{1}{3}\pi_7 = \pi_1 \\ 0 = \pi_3 \\ \frac{1}{2}\pi_3 + \pi_5 = \pi_4 \\ \pi_4 = \pi_5 \\ \frac{1}{3}\pi_2 + \frac{1}{3}\pi_7 = \pi_6 \\ \frac{1}{2}\pi_1 + \frac{1}{3}\pi_2 + \frac{1}{2}\pi_6 = \pi_7 \\ \pi_1 + \pi_2 + \pi_3 + \pi_4 + \pi_5 + \pi_6 + \pi_7 = 1 \end{cases} \Rightarrow \begin{cases} \pi_1 = \pi_6 \\ \pi_2 = \pi_7 \\ \pi_3 = 0 \\ \pi_4 = \pi_5 \\ \pi_6 = \frac{2}{3}\pi_7 \\ \pi_7 = (1 - 2\pi_5)\frac{3}{10} \end{cases}$$

Например, одним из возможных распределений будет:

$$\begin{cases} \pi_1 = 0 \\ \pi_2 = 0 \\ \pi_3 = 0 \\ \pi_4 = \frac{1}{2} \\ \pi_5 = \frac{1}{2} \\ \pi_6 = 0 \\ \pi_7 = 0 \end{cases}$$

Наблюдаем то, что и должны. Неэргодическая система неустойчива к стартовому состоянию и, следовательно, $\lim_{n\to\infty} p_{ij}(n) \neq \pi_j$. Очевидно, что если стартовое стстояние будет

в одной из точек (4,5), то в асимптотике распределение будет таким, как в решении выше, а если в одной из точек (1,2,6,7), то распределение будет совсем иным. Интересный результат, я, кажется, стал лучше понимать предпосылки эргодической теоремы.

5.3 Задача 3

Воспользуемся спектральным разложением матрицы из условия для возведения в степень.

$$\begin{vmatrix} -\lambda & 1/2 & 1/2 \\ 1/3 & 1/3 - \lambda & 1/3 \\ 1/4 & 1/2 & 1/4 - \lambda \end{vmatrix} = 0 \Rightarrow$$
 Чёрное колдовство $\Rightarrow 24\lambda^3 - 14\lambda^2 - 9\lambda - 1 = 0$

Как видим, корень уравнения $\lambda=1$ подходит, так что всё хорошо. Поделим многочлен на многочлен и получим:

$$\frac{24\lambda^3 - 14\lambda^2 - 9\lambda - 1}{\lambda - 1} = 24\lambda^2 + 10\lambda + 1$$

Решим уравнение $24\lambda^2 + 10\lambda + 1$

$$D = 100 - 96 = 4$$

$$\lambda_2 = -\frac{1}{4}$$

$$\lambda_3 = -\frac{1}{6}$$

Так как элементы матрицы в степени n это какие-то линейные комбинации собственных значений. Выпишем через первые несколько степеней значения линейных комбинаций, чтобы получить систему:

$$p_{23}^n = A + B \left(-\frac{1}{4} \right)^n + C \left(-\frac{1}{6} \right)^n$$

$$\begin{cases} A + B + C = 0 \\ A - \frac{1}{4}B - \frac{1}{6}C = \frac{1}{3} \\ A + \frac{1}{16}B + \frac{1}{36}C = \frac{13}{36} \end{cases} \Rightarrow \begin{cases} A + B + C = 0 \\ 12A - 3B - 2C = 4 \\ 144A + 9B + 4C = 52 \end{cases} \Rightarrow$$
 \(\frac{A}{25} \)
$$\Rightarrow$$
 Чёрное колдовство методом Крамера
$$\Rightarrow \begin{cases} A = \frac{12}{35} \\ B = \frac{4}{5} \\ C = \frac{8}{35} \end{cases}$$

Ответ:

$$p_{23}^n = \frac{12}{35} + \frac{4}{5} \left(-\frac{1}{4} \right)^n - \frac{8}{7} \left(-\frac{1}{6} \right)^n$$

5.4 Задача 4

Обозначим два возможных состояниа: А - победа, В - поражение. Составим матрицу переходов:

$$P = \begin{pmatrix} 0.7 & 0.3 \\ 0.6 & 0.4 \end{pmatrix}$$

Для Марковской цепи мы помним, что $P^{(m)} = P^m$, так что без тени сомнений возведём матрицу в третью степень. Именно в третью, так как матрица в первой степени показывает вероятности исходов второй игры, во второй степени - третьей игры, а в третьей - четвёртой.

$$P^3 = \begin{pmatrix} 0.667 & 0.333 \\ 0.666 & 0.334 \end{pmatrix}$$

Следовательно, вероятность того, что выиграв первый матч, Крылья Советов победят вероятностью 0.667. Что-то меня терзают сомнения, что задача такая лёгкая.

5.5 Задача **5**

Вриведём контрпример, показывающий, что данная цепь не является Марковской.

Пусть
$$\xi_n = \begin{cases} 0, p \\ 1, 1-p \end{cases}$$

Найдём следующую вероятность:

$$\mathbb{P}\{\xi_n + \xi_{n+1} = 2 | \xi_{n-1} + \xi_n = 1, \xi_{n-1} + \xi_{n-2} = 0\} = \frac{\mathbb{P}\{\xi_n + \xi_{n+1} = 2 \cap \xi_{n-1} + \xi_n = 1 \cap \xi_{n-1} + \xi_{n-2} = 0\}}{\mathbb{P}\{\xi_{n-1} + \xi_n = 1 \cap \xi_{n-1} + \xi_{n-2} = 0\}} = \mathbb{P}\{\xi_n + \xi_{n+1} = 2 \cap \xi_{n-1} + \xi_n = 1 \cap \xi_{n-1} + \xi_{n-2} = 0\}$$

Очевидно, что в существует только один набор пересекающихся событий, описывающих числитель и знаменатель и что переход эквивалентен

$$=\frac{\mathbb{P}\{\xi_{n+1}=1\cap\xi_n=1\cap\xi_{n-1}=0\cap\xi_{n-2}=0\}}{\mathbb{P}\{\xi_n=1\cap\xi_{n-1}=0\cap\xi_{n-2}=0\}}=\text{ независимость }\xi_n=\mathbb{P}\{\xi_{n+1}=1\}=p$$

Теперь уберём из условия последний шаг и посмотрим, что получится.

$$\mathbb{P}\{\xi_n + \xi_{n+1} = 2|\xi_{n-1} + \xi_n = 1\} = \frac{\mathbb{P}\{\xi_n + \xi_{n+1} = 2 \cap \xi_{n-1} + \xi_n = 1\}}{\mathbb{P}\{\xi_{n-1} + \xi_n = 1\}} = \frac{\mathbb{P}\{\xi_{n+1} = 1 \cap \xi_n = 1 \cap \xi_{n-1} = 0\}}{\mathbb{P}\{\xi_n = 1 \cap \xi_{n-1} = 0\} + \mathbb{P}\{\xi_n = 0 \cap \xi_{n-1} = 1\}} = \frac{p^2(1-p)}{2p(1-p)} = \frac{p}{2}$$

Следоваетльно, предыстория дальше первого шага влияет на вероятность и данная цепь не является цепью Маркова.

5.6 Задача 6

$$P = \begin{pmatrix} p_1 & p_2 & p_3 & \dots & p_n \\ p_n & p_1 & p_2 & \dots & p_{n-1} \\ \dots & \dots & \dots & \dots & \dots \\ p_2 & p_3 & p_4 & \dots & p_1 \end{pmatrix}$$

Сразу заметим, что матрица P описывает эргодическую цепь Маркова, так как $p_i \in (0,1), \forall i=1..n, \sum_{i=1}^n p_i=1.$ Очевидно, что в каждой вершине есть цикл и, следственно, период всех вершин = 1. Так как каждая вершина сообщается с каждой, следственно, можно из каждой точки попасть в каждую и вернуться обратно. Из этого напрямую следует, что весь граф представляет собой один класс эквивалентности, в котором все вершины существенны.

Далее, проверим, что $\pi_{1\times n}^T=(\frac{1}{n},...,\frac{1}{n})$ является стационарным распределением. Очевидно, что $(\frac{1}{n},...,\frac{1}{n})P_j=\frac{1}{n}\sum_1^n p_i=\frac{1}{n}$. Следовательно, $\pi_{1\times n}^TP=\pi_{1\times n}^T$ и $\pi_{1\times n}^T$ является стационарным распределением. Так как цепь маркова эргодическая, то это распределение будет единственным и, следовательно, по теореме с семинара:

$$\lim_{n \to \infty} \mathbb{P}\left\{X_n = k\right\} = \frac{1}{n}, \quad \forall k = 1..n$$

6 Домашнее задание 6

6.1 Задача 1

6.2 i

Выпишем матрицу переходов:

$$\mathbb{P} = \begin{pmatrix} 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0\\ \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4}\\ \frac{1}{4} & \frac{1}{4} & 0 & 0 & \frac{1}{4} & \frac{1}{4}\\ \frac{1}{4} & \frac{1}{4} & 0 & 0 & \frac{1}{4} & \frac{1}{4}\\ \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4}\\ 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 \end{pmatrix}$$

Искомое распределение - это шестая строка матрицы \mathbb{P}^2 . Мысленно умножим шестую строку матрицы \mathbb{P} на каждый из столбцов и получим ответ:

$$p_{6j}^2 = \left(\frac{1}{4} \frac{1}{8} \frac{1}{8} \frac{1}{8} \frac{1}{4}\right)$$

6.2.1 ii

Ответ очевиден, вероятности будут равные, $\frac{1}{6}$. Очень лень техать систему и тем более решать.

6.3 Задача 2

6.3.1 i

Классы эквивалентности:

🜣 (1) - существенное состояние, непериодическое

☼ (2,3) - состояния несущественны, период: 2

☼ (4) - несущественное состояние, непериодическое

6.4 ii

$$\begin{cases} \frac{1}{2}\pi_3 + \frac{1}{4}\pi_4 = \pi_2 \\ \frac{1}{2}\pi_2 + \frac{1}{4}\pi_4 = \pi_3 \\ \frac{1}{4}\pi_4 = \pi_4 \\ \pi_1 + \pi_2 + \pi_3 + \pi_4 = 1 \end{cases} \Rightarrow \begin{cases} \pi_1 = 1 \\ \pi_2 = 0 \\ \pi_3 = 0 \\ \pi_4 = 0 \end{cases}$$

Получаем единственное стационарное распределение. Ответ согласуется с логикой. Из любого состояния процесс когда-нибудь перейдёт в состояние 1 и не сможет из него выйти.

6.4.1 iii

Решим с помощью метода первого шага. Спасибо ББ, что мы это прошли ещё на 2 курсе. Пусть μ - матожидание количества шагов из 2, η - ожидаемое количество шагов из 3.

$$\begin{cases} \mu = \frac{1}{2}(\eta + 1) + \frac{1}{2} \\ \eta = \frac{1}{2} + \frac{1}{2}(\mu + 1) \end{cases} \Rightarrow \mu = 2$$

6.5 Задача 3

6.5.1 i

6.5.2 ii

Классы эквивалентности:

(1 - n-1) - несущественные состояния, период: 2

☼ (n) - существенное состояние, непериодическое

6.5.3 iii

Решим систему 4×4 . Этого будет достаточно.

$$\begin{cases} (1-p)\pi_3 = \pi_2 \\ p\pi_2 = \pi_3 \\ p\pi_3 + \pi_4 = \pi_4 \\ \pi_1 + \pi_2 + \pi_3 + \pi_4 = 1 \end{cases} \Rightarrow \begin{cases} \pi_2 = 0 \\ \pi_3 = 0 \\ \pi_1 = 1 - \pi_4 \end{cases}$$

Следственно, стационарным распределением будет любое распределение вида $[p, 0 \cdots, 0, (1-p)]$, где $p \in [0,1]$

6.6 Задача 4

Найдём математическое ожидание через сумму условных математических ожиданий, взвешенных на вероятности старта из них. По аналогии с задачей 2, найдём условные математические ожидания при старте из каждой точки. При старте из точки 1 подразумевалось матожидание =0.

Решим систему по методу первого шага. η - матожидание при старте из точки 2, $\kappa =$ матожидание при старте из точки 3:

$$\begin{cases} \eta = \frac{1}{3}(\eta + 1) + \frac{1}{3}(\kappa + 1) + \frac{1}{3} \\ \kappa = \frac{1}{4}(\kappa + 1) + \frac{1}{2}(\eta + 1) + \frac{1}{4} \end{cases} \Rightarrow \begin{cases} \eta = \frac{13}{4} \\ \kappa = \frac{14}{4} \end{cases}$$

Взвесим на вероятности стартовых точек:

$$\mu = \frac{1}{3} \left(\frac{13}{4} + \frac{14}{4} + 0 \right) = \frac{27}{12}$$

7 Домашнее задание 7

7.1 Задача 1

 X_t - гауссовский процесс

$$\mathbb{E}(X_t) = 0$$
$$Y_t = X_t \eta$$

$$\eta = \begin{cases} 1, p \\ -1, (1-p) \end{cases}$$

$$(Y_{t_1}, Y_{t_2} \cdots Y_{t_n}) = (X_{t_1} \eta, X_2 \eta, \cdots X_n \eta)$$

$$\gamma = (\lambda_1 X_{t_1} \eta + \lambda_2 X_2 \eta + \cdots + \lambda_n X_n \eta) = \eta \sum_{i=1}^n \lambda_i X_{t_i}$$

Очевидно, что ξ - нормальная величина. Пусть её функция распределения обозначается как $\Phi(x)$

$$\mathbb{P}\{\gamma \le x\} = \mathbb{P}\{\gamma \le x | \eta = 1\} \mathbb{P}\{\eta = 1\} + \mathbb{P}\{\gamma \le x | \eta = -1\} \mathbb{P}\{\eta = -1\} = \mathbb{P}\{\xi \le x\} + \mathbb{P}\{-\xi \le x\} + \mathbb{P}\{-\xi \le x\} = \mathbb{P}\{\eta = 1\} + \mathbb{P}\{\eta = 1\} + \mathbb{P}\{\eta = 1\} + \mathbb{P}\{\eta = 1\} = \mathbb{P}\{\eta = 1\} = \mathbb{P}\{\eta = 1\} + \mathbb{P}\{\eta = 1\} = \mathbb{P}\{\eta = 1\}$$

$$\mathbb{P}\{\xi \leq x\}p + \mathbb{P}\{\xi \geq -x\}(1-p) = \mathbb{P}\{\xi \leq x\}p + \mathbb{P}\{xi \leq x\}(1-p) = \Phi(x)(p+1-p) = \Phi(x)(x)(p+1-p) = \Phi(x)(x)(x)($$

Следовательно, $\gamma \sim N \Rightarrow (Y_{t_1}, Y_{t_2} \cdots Y_{t_n})$ – гауссовский вектор $\Rightarrow Y_t$ – гауссовский процесс

7.2 Задача 2

7.2.1 i

K(t,s) = min(t,s) - ts - симметричная функция

Проверим положительную определённость.

Заметим, что

$$min(t,s)=\int_0^{+\infty}f_t(x)f_s(x)dx$$
 при $f_t(x)=\mathbf{I}\{x\in[0,t]\}$

B то же время ts = min(t,s)max(t,s)

Следовательно, K(t,s) = min(t,s)(1 - max(t,s))

Также заметим, что $(1 - max(t,s)) = \int_0^{+\infty} g_t(y)g_s(y)dy$ при $g_t(x) = \mathbf{I}\{x \in [t,1]\}$

Тогда:

$$\iint_{0}^{+\infty} \sum_{i,j}^{n} \lambda_{i} \lambda_{j} f_{t_{i}}(x) f_{t_{j}}(x) g_{t_{i}}(y) g_{t_{j}}(y) dx dy = \iint_{0}^{+\infty} \left(\sum_{i=1}^{n} \lambda_{i} f_{t_{i}}(x) g_{t_{i}}(y) \right)^{2} dx dy \ge 0$$

Следовательно, случайный процесс существует

7.2.2 ii

$$K(s,t) = min(s,t) - s(t+1) = min(t,s) - s(t+1) \neq min(t,s) - t(s+1) = k(t,s)$$

Функция несимметрична, следовательно процесс не существует

7.2.3 iii

$$K(s,t) = min(s,t) + cos(s-t) = min(t,s) + cos(t(t-s)) = min(t,s) + cos(t-s) = K(t,s)$$

$$\sum_{i,j}^{n} \lambda_i \lambda_j (min(t_i, t_j) + cos(t - s)) = \sum_{i,j}^{n} \lambda_i \lambda_j min(t_i, t_j) + \sum_{i,j}^{n} \lambda_i \lambda_j cos(t - s) = I + II \ge 0 \Rightarrow$$

процесс существует

$$f_t(x) = \mathbf{I}\{x \in [0,t]\}$$

$$I = \sum_{i=1}^n \lambda_i \lambda_j \int_0^{+\infty} f_i(x) f_j(x) dx = \int_0^{+\infty} \sum_{i=1}^n \lambda_i f_i(x) \sum_{i=1}^n \lambda_j f_j(x) dx = \int_0^{+\infty} (\sum_{i=1}^n \lambda_i f_i(x))^2 dx \ge 0$$

$$II = \sum_{i,j}^{n} \lambda_i \lambda_j \cos(t_i - t_j) = \sum_{i,j}^{n} \lambda_i \lambda_j (\cos t_i \cos t_j + \sin t_i \sin t_j) = \sum_{i,j}^{n} \lambda_i \lambda_j \cos t_i \cos t_j + \sum_{i,j}^{n} \lambda_i \lambda_j \sin t_i \sin t_j = \sum_{i,j}^{n} \lambda_i \lambda_j \cos t_i \cos t_j + \sum_{i,j}^{n} \lambda_i \lambda_j \sin t_i \sin t_j = \sum_{i,j}^{n} \lambda_i \lambda_j \cos t_i \cos t_j + \sum_{i,j}^{n} \lambda_i \lambda_j \sin t_i \sin t_j = \sum_{i,j}^{n} \lambda_i \lambda_j \cos t_i \cos t_j + \sum_{i,j}^{n} \lambda_i \lambda_j \cos t_i \cos t_i \cos t_i \cos t_j + \sum_{i,j}^{n} \lambda_i \lambda_j \cos t_i \cos t_i \cos t_i \cos t_j + \sum_{i,j}^{n} \lambda_i \lambda_j \cos t_i \cos t_i \cos t_j + \sum_{i,j}^{n} \lambda_i \lambda_j \cos t_i \cos t_j + \sum_{i,j}^{n} \lambda_i \lambda_j$$

$$(\sum_{i=1}^{n} \cos t_i)^2 + (\sum_{i=1}^{n} \sin t_i)^2 \ge 0$$

7.3 Задача 3

7.3.1 i

 $Z_2 \sim N$?

$$\mathbb{P}\{Z_2 \le x\} = \mathbb{P}\{Z_2 \le x | \xi > 0\} \underbrace{\mathbb{P}\{\xi > 0\}}_{\frac{1}{2}} + \mathbb{P}\{Z_2 \le x | \xi < 0\} \underbrace{\mathbb{P}\{\xi < 0\}}_{\frac{1}{2}} + \mathbb{P}\{Z_2 \le x | \xi = 0\} \underbrace{\mathbb{P}\{\xi = 0\}}_{0} = 0$$

$$\frac{1}{2}(\mathbb{P}\{|\eta| \le x\} + \mathbb{P}\{-|\eta| \le x\}) \star$$

$$F_{\xi}(x) = \Phi(x)$$

Далее, пристально вглядываясь в график плотности нормального распределения, можно рассмотреть отдельно 2 случая:

При x > 0:

$$\star = \frac{1}{2} (\mathbb{P}\{|\eta| \le x\} + 1) = \frac{1}{2} (\Phi(x) - \Phi(-x) + 1) = \frac{1}{2} (2\Phi(x) - 1 + 1) = \Phi(x)$$

При x < 0:

$$\frac{1}{2} (\underbrace{\mathbb{P}\{|\eta| \le x\}}_{0} + \mathbb{P}\{|\eta| \ge -x\}) = \frac{1}{2} (2\Phi(x)) = \Phi(x)$$

7.3.2 ii

 $cov(\xi, |\eta| sign(\xi))$ $\mathbb{E}(\xi) = 0, \mathbb{E}(|\eta| sign(\xi))$

$$\mathbb{E}(\xi|\eta|sign(\xi)) = \mathbb{E}(\xi sign(\xi))\mathbb{E}(|\eta|) = \frac{2}{\pi}$$

$$\mathbb{E}(|\eta|) = \int_{-\infty}^{+\infty} |x| \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \frac{2}{\sqrt{2\pi}} \int_{0}^{+\infty} |x| e^{-\frac{x^2}{2}} dx = \frac{2}{\sqrt{2\pi}} \left(-e^{-\frac{x^2}{2}} \right) \bigg|_{0}^{+\infty} = \frac{2}{\sqrt{2\pi}} = \sqrt{\frac{2}{\pi}}$$

xsingn(x) — борелевская функция. так что можно считать матожидание по определению

$$\mathbb{E}(\xi sign(\xi)) = \int_{-\infty}^{\infty} x sign(x) \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \left(\underbrace{\int_{-\infty}^{0} -x e^{-\frac{x^2}{2}} dx}_{I} + \underbrace{\int_{0}^{+\infty} x e^{-\frac{x^2}{2}} dx}_{II} \right) = \frac{2}{\sqrt{2\pi}} = \sqrt{\frac{2}{\pi}}$$

$$I = e^{-\frac{x^2}{2}} \Big|_{-\infty}^{0} = 1$$

$$II = -e^{-\frac{x^2}{2}} \Big|_{-\infty}^{+\infty} = 1$$

ОЛЯ.СПОЙЛЕР

Этот пункт можно не читать, он неверный, но понял я это только в конце. Можешь просто прочесть последнюю строчку и посмеяться.

Докажем от противного. Пусть вектор \vec{Z} - гауссовский. Тогда должно быть верно, что $\vec{Z}=\Sigma^{\frac{1}{2}}\vec{Z}^0+\vec{\mu}$, где \vec{Z}^0 - вектор стандартных нормальных случайных величин.

Как мы знаем из предыдущего пункта:

$$\Sigma = \begin{pmatrix} 1 & \frac{2}{\pi} \\ \frac{2}{\pi} & 1 \end{pmatrix}$$

Разложим по спекртальной теореме эту матрицу, чтобы возвести её в степень $\frac{1}{2}$. Тут я предлагаю поверить мне на слово, что она раскладывается следующим образом, подробно не вижу смысла описывать.

$$\Sigma^{\frac{1}{2}} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{\frac{\pi - 2}{\pi}} & 0 \\ 0 & \sqrt{\frac{\pi + 2}{\pi}} \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

Тогда:

$$\begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{\frac{\pi - 2}{\pi}} & 0 \\ 0 & \sqrt{\frac{\pi + 2}{\pi}} \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} Z_1^0 \\ Z_2^0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Перемножив первые три матрицы:

$$\begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix} \begin{pmatrix} Z_1^0 \\ Z_2^0 \end{pmatrix}$$

где
$$\alpha = \sqrt{\frac{\pi+2}{\pi}} + \sqrt{\frac{\pi-2}{\pi}}, \beta = \sqrt{\frac{\pi+2}{\pi}} - \sqrt{\frac{\pi-2}{\pi}}$$

По исходным данным, Z_1, Z_2 - стандартные нормальные величины. Что же Z_1^0, Z_2^0

Давайте выразим их из системы уравнений. Опять же, я пропущу никому не нужное решение. Подставив ответ в исходную систему, легко проверить его.

$$Z_1^0 = \frac{2(\alpha Z_1 - \beta Z_2)}{\alpha^2 - \beta^2}$$

$$Z_2^0 = \frac{2(\alpha Z_2 - \beta Z_1)}{\alpha^2 - \beta^2}$$

Сейчас осознал, что мог просто обратить матрицу и не городить в тетради страницу вычислений, но да какая теперь разница.

Итак, теперь посчитаем дисперсию любой из величин. Допустим, Z_1 :

$$Var(Z_1^0) = \frac{4}{(\alpha^2 - \beta^2)^2} (\alpha^2 + \beta^2 - 2\alpha\beta \frac{2}{\pi})$$

$$\alpha^2 = 2 + \frac{2\sqrt{\pi^2 - 4}}{\pi}, \beta^2 = 2 - \frac{2\sqrt{\pi^2 - 4}}{\pi}$$

Нетрудно показать, что $\alpha^2+\beta^2=4$ и $\alpha\beta=\frac{4}{\pi}$

И вот на этом моменте я на бумажке всё досчитал, и понял, что там будет единица. А значит, всё было зря. Ну и ладно.

7.4 Задача 4

7.4.1 i

$$Y_{n+1} = \alpha(\alpha Y_{n-1} + X_{n-1}) + X_n = \alpha^2 Y_{n-1} + \alpha X_{n-1} + X_n = \sum_{i=0}^n \alpha^i X_{n-i}$$

Рассмотрим вектор $(Y_{t_1}, Y_{t_2} \cdots Y_{t_n})$

$$(Y_{t_1}, Y_{t_2} \cdots Y_{t_n}) = \left(\sum_{i=0}^{t_1-1} \alpha^i X_{t_1-i-1}, \sum_{i=0}^{t_2-1} \alpha^i X_{t_2-i-1}, \cdots, \sum_{i=0}^{t_n-1} \alpha^i X_{t_n-i-1}\right)$$

Очевидно, что линейные комбинации компонент этого вектора можно записать следующим образом:

$$\lambda_0 X_0 + \lambda_1 X_1 + \dots + \lambda_{\max(t_1,\dots,t_n)} X_{\max(t_1,\dots,t_n)} \sim N$$

как линейная комбинация стандартных нормальных величин Следовательно, $(Y_{t_1},Y_{t_2}\cdots Y_{t_n})$ - гауссовский вектор $\Rightarrow Y_t$ - гауссовский процесс

7.4.2 ii

 $Cov(Y_t, Y_s) = Cov(\sum_{i=0}^{t-1} \alpha^i X_{t-1-i}, \sum_{i=0}^{s-1} \alpha^i X_{s-1-i}) =$ независимость и смена порядка суммирования =

$$\sum_{i=0}^{\min(t-1,s-1)} \alpha^{t+s-2i-2} \operatorname{Var}(X_i) = \alpha^{t+s-2} \frac{1 - \alpha^{-2(\min(t-1,s-1)+1)}}{1 - \alpha^{-2}} = \alpha^{t+s} \frac{1 - \alpha^{-2\min(t,s)}}{\alpha^2 - 1}$$

7.5 Задача 5

Вместо доказательства неотрицательной определённости функции докажем неотрицательную, а точнее положительную определённость матрицы $M_n = \left(e^{-|t_i-t_j|}\right)_{i,j=1}^n$

Для случая 3×3 матрица выглядит следующим образом:

$$\begin{pmatrix} 1 & e^{-|t_1-t_2|} & e^{-|t_1-t_3|} \\ e^{-|t_1-t_2|} & 1 & e^{-|t_2-t_3|} \\ e^{-|t_1-t_3|} & e^{-|t_2-t_3|} & 1 \end{pmatrix}$$

По критерию Сильвестра все главные миноры должны быть положительными. Докажем по индукции.

Базовый случай:

$$\triangle_1 = 1 > 0$$

Индукционный переход. Положим, что $\triangle_{n-1} > 0$ Докажем то же самое для n. Показывать будем всё на примере 3×3 для простоты. Для подсчёта определителя матрицы $n \times n$ видоизменим матрицу внутри определителя таким образом, чтобы сам определитель не изменился.

Во-первых, можно предположить $t_1 < t_2 < \cdots < t_n$. Допустим, не выполняется только первое неравенство. Тогда, поменяв местами первую и вторую строки, а также первый и второй столбец, и переобозначив моменты времени, получим новую матрицу со старым определителем, у которого дважды сменился знак. В итоге определитель не изменился. Таким образом, преобразовав матрицу до выполнения временного условия, можно раскрыть все модули со знаком минус и получить примерно следующее:

$$\begin{pmatrix} 1 & e^{t_1-t_2} & e^{t_1-t_3} \\ e^{t_1-t_2} & 1 & e^{t_2-t_3} \\ e^{t_1-t_3} & e^{t_2-t_3} & 1 \end{pmatrix}$$

Теперь каждую строку і домножим на e^{t_i} , а каждый столбец j - поделим на e^{-t_j} . Определитель матрицы снова не изменится, так как если мы вынесем множители из каждой строки (аналогично строкам можно выносить множители из столбцов, так как определитель матрицы равен определителю транспонированной матрицы), и все множители в итоге сократятся. Матрица будет выглядеть примерно следующим образом:

$$\begin{pmatrix} 1 & e^{2(t_1-t_2)} & e^{2(t_1-t_3)} \\ 1 & 1 & e^{2(t_2-t_3)} \\ 1 & 1 & 1 \end{pmatrix}$$

Далее вычтем вторую строку из третьей, что не изменит определителя.

$$\begin{pmatrix} 1 & e^{2(t_1-t_2)} & e^{2(t_1-t_3)} \\ 1 & 1 & e^{2(t_2-t_3)} \\ 0 & 0 & 1 - e^{2(t_2-t_3)} \end{pmatrix}$$

Очевидно, что последний элемент третьей строки при любой размерности будет положительным. Теперь раскладываем определитель полученной матрицы по последней строке и получаем:

$$\triangle_n = 1 - e^{2(t_{n-1} - t_n)} \triangle_{n-1} > 0$$

Следовательно, индукционный переход доказан и исходное утверждение о положительной определённости матрицы верно. Все её главные миноры положительны. Матрица положительно определена и, соответственно, функция положительно определена.

7.6 Задача 6

7.6.1 i

Для доказательства этого утверждения воспользуемся несколькими результатами, известными для независимых величин. z - вектор-столбец. ξ - вектор i.i.d. стандартных нормальных случайных величин.

Во-первых, для k независимых величин совместная плотность равна произведению отдельных плотностей:

$$f_{\xi}(\mathbf{z}) = \prod_{i=1}^{k} f_{\xi_i}(z_i) = \prod_{i=1}^{k} \frac{1}{\sqrt{2\pi}\sigma_i} e^{-z_i^2/2\sigma_i^2}, \quad \sigma_i^2 = \overline{z_i^2}$$

Аналогично можно переписать в матричной форме:

$$f_{\xi}(z) = \frac{1}{(2\pi)^{k/2} |\Lambda_{\xi}|^{1/2}} \exp\left(-\frac{1}{2}z^{T}\Lambda_{\xi}^{-1}z\right)$$

 Λ_{ξ} - диагональная матрица. Возведение в любую степень - поэлементное. $|\Lambda_{\xi}| = \sigma_1^2 \sigma_2^2 \dots \sigma_k^2$ Пусть $\Sigma^{-\frac{1}{2}} = A$ Так как исходный вектор гауссовский, его можно представить в виде

$$\vec{X} = A\xi + \vec{\mu}_x = m(\vec{X})$$

Это матричное преобразование обратимо, так как матрица Σ невырождена.

$$\xi = B(\vec{X} - \vec{\mu}_x) = g(\vec{X}), B = A^{-1}$$

Далее, как завещал нам матан, для получения функции от новых переменных, произведём в функции от независимых величин преобразование переменных (ξ), не забыв домножить на определитель Якобиана замены. Элла Львовна Хабина всегда говорила не забывать домножать на Якобиан замены. Грубо говоря, просто подставим, выразив новую плотность:

$$f_{\tilde{\mathbf{X}}}(\mathbf{x}) = f_{\xi}(g(\mathbf{x})) |J_{\mathscr{G}}(\mathbf{x})| \star$$

По определению, элемент Якобиана:

$$J_{ij} = \frac{\partial g_i(x)}{\partial \beta_j}$$

Из определения функции g(x):

$$g(x) = B(x - \vec{\mu}_x) = \begin{pmatrix} g_1(x) \\ g_2(x) \\ \vdots \\ g_k(x) \end{pmatrix}$$

Обозначив элемент матрицы B как b_{ij} , можно записать элемент g_i следующим образом:

$$g_i(\boldsymbol{x}) = \sum_{j=1}^k b_{ij} (x_i - \vec{\mu}_{xi})$$

Получается, $|J_{\mathscr{G}}(\boldsymbol{x})| = |B|$

Подставляем всё в исходную формулу ⋆:

$$f_{\tilde{\mathbf{X}}}(\boldsymbol{x}) - \frac{1}{(2\pi)^{k/2}} \left(\frac{|B|^2}{|\Lambda_{\xi}|} \right)^{1/2} \exp\left[-\frac{1}{2} \left(x - \vec{\mu}_{xi} \right)^T B^T \Lambda_{\xi}^{-1} B \left(x - \vec{\mu}_{xi} \right) \right]$$

$$\Lambda_{\vec{X}} = \mathbf{E} \left[\left(\tilde{\mathbf{X}} - \mathbf{m}_x \right) \left(\tilde{\mathbf{X}} - \mathbf{m}_x \right)^T \right] = \mathbf{E} \left[\mathbf{A} \xi^T \xi \mathbf{A}^T \right] = \mathbf{A} \mathbf{E} \left[\xi^T \xi \right] \mathbf{A}^T = \mathbf{A} \Lambda_{\xi} \mathbf{A}^T$$

$$\mathbf{B}^T \Lambda_{\xi}^{-1} \mathbf{B} = \left(\mathbf{A}^{-1} \right)^T \Lambda_{xi}^{-1} \mathbf{A}^{-1} = \left(\mathbf{A} \Lambda_x \mathbf{A}^T \right)^{-1} = \Lambda_{\vec{X}}^{-1}$$

Засовывая всё обратно, получим:

$$f_{\tilde{\mathbf{X}}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{k/2}} \left(\frac{|B|^2}{|\Lambda_{\mathcal{E}}|} \right)^{1/2} \exp \left[-\frac{1}{2} \left(x - \vec{\mu}_{xi} \right)^T \Lambda_{\vec{X}}^{-1} \left(x - \vec{\mu}_{xi} \right) \right]$$

Далее, пользуясь свойсвами определителей, преобразуем оставшееся:

$$\frac{|\mathbf{B}|^2}{|\Lambda_{\xi}|} = \frac{1}{|\mathbf{A}|^2 |\Lambda_{\xi}|} = \frac{1}{|\mathbf{A}| |\Lambda_{\xi}| |\mathbf{A}^{\mathrm{T}}|} = \frac{1}{|\mathbf{A}\Lambda_{\xi}\mathbf{A}^{\mathrm{T}}|} = \frac{1}{|\Lambda_{\vec{X}}|}$$

Получаем искомое:

$$f_{\tilde{\mathbf{X}}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{k/2} |\Lambda_{\vec{\mathbf{X}}}|^{\frac{1}{2}}} \exp \left[-\frac{1}{2} (x - \vec{\mu}_{xi})^T \Lambda_{\vec{X}}^{-1} (x - \vec{\mu}_{xi}) \right]$$

7.6.2 ii

Мы знаем, что $f_{X_2|X_1}(x_2|x_1) = \frac{f_{\vec{X}}(y)}{f_{Y_2}(x_1)}$

Нам повезло, мы уже знаем $f_{\vec{X}}(y)=\frac{1}{2\pi\sqrt{|\Sigma|}}e^{-\frac{1}{2}(y-\vec{\mu})^T\Sigma^{-1}(y-\vec{\mu})}$

И мы даже знаем $f_{X_1}(x_1)=\frac{1}{\sqrt{2\pi}\sigma_1}e^{-\frac{x_1}{2\sigma_1^2}}$ Сделаем предварительные расчеты, а затем найдем нужную функцию:

$$corr(X_1, X_2) = \rho \Rightarrow Cov(X_1, X_2) = \rho\sigma_1\sigma_2 \Rightarrow |\Sigma| = \sigma_1^2\sigma_2^2 - (\rho\sigma_1\sigma_2)^2 = \sigma_1^2\sigma_2^2(1 - \rho^2) \neq 0$$

$$\Sigma^{-1} = \frac{1}{\sigma_1^2\sigma_2^2(1 - \rho^2)} \begin{pmatrix} \sigma_1^2 & -\rho\sigma_1\sigma_2 \\ -\rho\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sigma_2^2(1 - \rho^2)} & \frac{-\rho}{\sigma_1\sigma_2(1 - \rho^2)} \\ \frac{-\rho}{\sigma_1\sigma_2(1 - \rho^2)} & \frac{1}{\sigma_1^2(1 - \rho^2)} \end{pmatrix}$$

$$(y - \vec{\mu})^T \Sigma^{-1}(y - \vec{\mu}) = (x_1 - \mu_1 \ x_2 - \mu_2) \begin{pmatrix} \frac{1}{\sigma_2^2(1 - \rho^2)} & \frac{-\rho}{\sigma_1\sigma_2(1 - \rho^2)} \\ \frac{-\rho}{\sigma_1\sigma_2(1 - \rho^2)} & \frac{1}{\sigma_1^2(1 - \rho^2)} \end{pmatrix} \begin{pmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{pmatrix} =$$

$$= \frac{(x_1 - \mu_1)^2}{\sigma_2^2(1 - \rho^2)} - \frac{2\rho(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2(1 - \rho^2)} + \frac{(x_2 - \mu_2)^2}{\sigma_1^2(1 - \rho^2)}$$

Осталось подставить и поделить

$$\begin{split} f_{X_2|X_1}(x_2|x_1) &= \frac{\frac{1}{2\pi\sqrt{|\Sigma|}}e^{-\frac{1}{2}(y-\vec{\mu})^T\Sigma^{-1}(y-\vec{\mu})}}{\frac{1}{\sqrt{2\pi}}e^{-\frac{-x_1^2}{2}}} = \frac{\frac{1}{2\pi\sqrt{\sigma_1^2\sigma_2^2(1-\rho^2)}}e^{-\frac{1}{2}\left(\frac{(x_1-\mu_1)^2}{\sigma_2^2(1-\rho^2)} - \frac{2\rho(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2(1-\rho^2)} + \frac{(x_2-\mu_2)^2}{\sigma_1^2(1-\rho^2)}\right)}}{\frac{1}{\sqrt{2\pi}\sigma_2}e^{-\frac{-x_1^2}{2}}} \\ &= \frac{1}{\sqrt{2\pi\sigma_2^2(1-\rho^2)}}e^{-\frac{1}{2}\left(\frac{(x_1-\mu_1)^2}{\sigma_2^2(1-\rho^2)} - \frac{2\rho(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2(1-\rho^2)} + \frac{(x_2-\mu_2)^2}{\sigma_1^2(1-\rho^2)} + \frac{x_1^2}{\sigma_1^2}\right)}} = \\ &= \frac{1}{\sigma_2\sqrt{1-\rho^2}}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{\sigma_1^2(x_1-\mu_1)^2 - 2\rho\sigma_1\sigma_2(x_1-\mu_1)(x_2-\mu_2) + \sigma_2^2(x_2-\mu_2)^2 + x_1^2\sigma_2^2(1-\rho^2)}{\sigma_1^2\sigma_2^2(1-\rho^2)}\right)} = \\ &= \frac{1}{\sigma_2\sqrt{1-\rho^2}}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x_2-\mu_2-\rho(x_1-\mu_1)\sigma_2/\sigma_1}{\sigma_2\sqrt{1-\rho^2}}\right)^2}\Box \end{split}$$

8 Домашнее задание 8

8.1 Задача 1

 \tilde{W}_t – гауссовский процесс?

$$\gamma = \left(\alpha_1 \tilde{W}_{t_1} + \alpha_1 \tilde{W}_{t_2} + \dots + \alpha_1 \tilde{W}_{t_n}\right) = \left(\lambda_1 W_{t_1} + \lambda_2 W_{t_2} + \dots + \lambda_n W_{t_n} + \lambda_T W_T\right) = 0$$

= линейная комбинация нормальных величин $\Rightarrow \gamma$ — нормальная величина

Следственно, \tilde{W}_t – гауссовский процесс

$$\mathbb{E}(\tilde{W}_t) = 0$$
?

При $T \leq T$:

$$\mathbb{E}(\tilde{W}_t) = \mathbb{E}(W_t) = 0$$

При T > T:

$$\mathbb{E}(\tilde{W}_t) = \mathbb{E}(2W_T - W_t) = 0$$

Найдём ковариационную функцию

При $t,s \leq T$:

$$Cov(X_t, X_s) = Cov(W_t, W_s) = min(t,s)$$

При t,s > T:

$$Cov(X_t, X_t) = Cov(2W_T - W_t, 2W_T - W_s) = 4T - 2T - 2T + min(t, s)$$

При $t > T, s \le T$ ($t \le T, s > T$ – аналогично):

$$Cov(X_t, X_t) = Cov(2W_T - W_t, W_s) = 2s - min(t, s) = 2s - s = s = min(t, s)$$

Следовательно, \tilde{W}_t – ВМ

8.2 Задача 2

8.2.1 i

 $X = e^{2W_t}$

$$\vec{X} = (X_{t_1}, X_{t_2}, \cdots, X_{t_n}) = (e^{2W_1}, e^{2W_2}, \cdots, e^{2W_n})$$

$$\gamma = \lambda_1 e^{2W_1} + \lambda_2 e^{2W_2} + \dots + e^{2W_n} \not\sim N$$

Так как при $\lambda_i>0 \ \forall i\in\overline{1,n}$ случайная величина $\gamma>0$

$$\mathbb{E}(e^{2W_t}) = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{2x - \frac{x^2}{2t}} = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{\frac{4xt - x^2}{2t}} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t)^2}{2t} + 2t} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x - 2t$$

$$\frac{e^{2t}}{\sqrt{2\pi t}} \int_{-\infty}^{+\infty} e^{\frac{4xt - x^2}{2t}} dx = \left| \frac{x - 2t}{\sqrt{2t}} = u \right| = \frac{e^{2t}}{\sqrt{2\pi t}} \int_{-\infty}^{+\infty} e^{-u^2} \sqrt{2t} dx = \frac{2e^{2t}}{\sqrt{2\pi t}} \int_{0}^{+\infty} e^{-u^2} \sqrt{2t} dx = \frac{e^{2t}}{\sqrt{2\pi t}} \int_{0}^{+\infty} e^{-u^2} \sqrt{2t} dx = \frac{e^{2t}}{\sqrt{2t}} \int_{0}^{$$

Далее замечаем в интеграле кусочек error function:

$$\operatorname{erf}(z) \equiv \frac{2}{\sqrt{\pi}} \int_0^z e^{-r^2} dt$$

Преобразуем наше выражение:

$$= \frac{2\sqrt{2t}e^{2t}}{\sqrt{2\pi t}} \lim_{z \to +\infty} \frac{\sqrt{\pi}}{2} \frac{2}{\sqrt{\pi}} \int_0^{+\infty} e^{-u^2} dx = e^{2t} \lim_{z \to +\infty} \frac{2}{\sqrt{\pi}} \int_0^{+\infty} e^{-u^2} dx = e^{2t}$$

Предел error function равен 1 на $+\infty$ Найдём ковариационную функцию.

$$Cov(X_t, X_s) = \mathbb{E}X_tX_s - \mathbb{E}X_t\mathbb{E}X_s$$

$$\mathbb{E} X_t X_s = \mathbb{E} e^{2(W_t + W_s)} = \mathbb{E} e^{2(W_{\min(t,s)} + W_{\max(t,s)})} = \mathbb{E} e^{2W_{\max(t,s)} - 2W_{\min(t,s)}} e^{4W_{\min(t,s)} - W_0} = \mathbb{E} e^{2(W_t + W_s)} = \mathbb{E} e^{2(W_{\min(t,s)} + W_{\max(t,s)})} = \mathbb{E} e^{2(W_{\min(t,s)} + W_{\min(t,s)})} = \mathbb{E} e^{2(W_{\min(t,s)} +$$

В последнем выражении при любом взаимоотношении t и s получим, что два сомножителя независимы, так как являются приращениями броуновского движения на непересекающихся интервалах. Это легко увидеть, предположив, например, t < s и раскрыв степени. Распишем далее как произведение математических ожиданий, которые мы вычисляли в предыдущем пункте.

$$= e^{2\max(t,s) - 2\min(t,s)} e^{8\min(t,s)} = e^{2(\max(t,s) - 3\min(t,s))}$$

$$Cov(X_t, X_s) = \mathbb{E}X_t X_s - \mathbb{E}X_t \mathbb{E}X_s = e^{2(\max(t, s) - 3\min(t, s))} - e^{2(s+t)}$$

8.3 Задача 3

Для нахождения плотности сначала рассмотрим функции распределения.

$$\mathbb{P}\{\tau_{\alpha} \leq x\} = \mathbb{P}\{\max_{0 \leq s \leq x} W_s \geq \alpha \} = 2\mathbb{P}\{W_x \geq \alpha\} = 2(1 - \mathbb{P}\{W_x \leq \alpha\}) = 2 - 2\Phi_{0,x}(\alpha) = 2(1 - \mathbb{P}\{W_x \leq \alpha\}) = 2(1 -$$

$$= 2 - 2\Phi_{0,1}\left(\frac{\alpha}{\sqrt{x}}\right) = 2 - 2\int_{-\infty}^{\frac{\alpha}{\sqrt{x}}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}dz}$$

Теперь для получения функции плотности продифференцируем это выражение по x.

$$f_{\tau_{\alpha}}(x) = -2f_N\left(\frac{\alpha}{\sqrt{x}}\right)\frac{\alpha}{t^{\frac{3}{2}}} = \alpha t^{-\frac{3}{2}}f_N\left(\frac{\alpha}{\sqrt{x}}\right)$$

где f_N - функция плотности стандартной нормальной случайной величины.

8.4 Задача 4

Воспользуемся формулой из предыдущего дз, осознавая $t_1 < t_2$ и $\vec{\mu}_{xi} = \vec{0}$:

$$f_{\tilde{\mathbf{X}}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{k/2} |\Lambda_{\vec{X}}|^{\frac{1}{2}}} \exp\left[-\frac{1}{2} (x - \vec{\mu}_{xi})^T \Lambda_{\vec{X}}^{-1} (x - \vec{\mu}_{xi})\right]$$

Где

$$\Lambda_{\vec{X}} = \begin{pmatrix} t_1 & t_1 \\ t_1 & t_2 \end{pmatrix}$$

$$\Lambda_{\vec{X}}^{-1} = \frac{1}{t_1 t_2 - t_1^2} \begin{pmatrix} t_2 & -t_1 \\ -t_1 & t_1 \end{pmatrix}$$

$$|\Lambda_{\vec{X}}|^{-\frac{1}{2}} = \sqrt{t_1 t_2 - t_1^2}$$

Засунем всё это в формулу.

$$f_{\vec{W}} = \frac{1}{2\pi\sqrt{t_1t_2 - t_1^2}} e^{-\frac{1}{2}\frac{1}{t_1t_2 - t_1^2}\left(x_1 - x_2\right)\left(\frac{t_2}{-t_1} - t_1\right)\left(\frac{x_1}{x_2}\right)} = \frac{1}{2\pi\sqrt{t_1t_2 - t_1^2}} e^{-\frac{1}{2}\frac{x_1^2t_2 - 2x_1x_2t_1 + x_2^2t_1}{t_1t_2 - t_1^2}} = \frac{1}{2\pi\sqrt{t_1t_2 - t_1^2}} e^{-\frac{1}{2}\frac{x_1^2t_2 - 2x_1x_2t_1 + x_2^2t_1}{t_1t_2 - t_1^2}} = \frac{1}{2\pi\sqrt{t_1t_2 - t_1^2}} e^{-\frac{1}{2}\frac{x_1^2}{t_1} - \frac{1}{2}\frac{(x_2 - x_1)^2}{t_2 - t_1}} = \frac{1}{\sqrt{2\pi}\sqrt{t_2 - t_1}} e^{-\frac{1}{2}\frac{(x_2 - x_1)^2}{t_2 - t_1}} \frac{1}{\sqrt{2\pi}\sqrt{t_1}} e^{-\frac{1}{2}\frac{x_1^2}{t_1}} = \phi_{(0, t_2 - t_1)}\left(x_2 - x_1\right)\phi_{(0, t_1)}\left(x_1\right)$$

8.5 Задача 5

Снова воспользуемся результатом предыдущего дз:

$$f_{\tilde{\mathbf{X}}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{k/2} |\Lambda_{\vec{X}}|^{\frac{1}{2}}} \exp\left[-\frac{1}{2} (x - \vec{\mu}_{xi})^T \Lambda_{\vec{X}}^{-1} (x - \vec{\mu}_{xi})\right]$$

Также воспользуемся формулой условной вероятности, а точнее, формулой условной плотности:

$$f_{W_{t^*}|W_{t_1},W_{t_2}}(x_1|x_2,x_3) = \frac{f_{W_{t^*},W_{t_1},W_{t_2}}(x_1,x_2,x_3)}{f_{W_{t_1},W_{t_2}}(x_2,x_3)}$$

Осознавая, что $t_2 > t_1$, найдём ковариационные матрицы. Сначала для числителя. Не особо вижу смысл вдаваться в детали, она выглядит вот так:

$$\Lambda_1 = \begin{pmatrix} t_1 & t_1 & t_1 \\ t_1 & t^* & t^* \\ t_1 & t^* & t_2 \end{pmatrix}$$

Избегая излишних подробностей, обратим эту матрицу.

$$|\Lambda_1| = t_1(t^*t_2 - t^{*2}) - t_1^2(t_2 - t^*) = t_1(t^* - t_1)(t_2 - t^*)$$

$$\Lambda_1^{-1} = \frac{1}{t_1(t^* - t_1)(t_2 - t^*)} \begin{pmatrix} t^*(t_2 - t^*) & t_1(t^* - t_2) & 0 \\ t_1(t^* - t_2) & 0 & t_1(t_1 - t^*) \\ 0 & t_1(t_1 - t^*) & t_1(t^* - t_1) \end{pmatrix}$$

Аналогично получим ковариационную матрицу для знаменателя и обратную к ней. Тут всё проще:

$$\Lambda_2 = \begin{pmatrix} t_1 & t_1 \\ t_1 & t_2 \end{pmatrix}$$

$$|\Lambda_2| = t_1(t_2 - t_1)$$

$$\Lambda_2^{-1} = \frac{1}{t_1(t_2 - t_1)} \begin{pmatrix} t_2 & -t_1 \\ -t_1 & t_1 \end{pmatrix}$$

Теперь без тени страха и сомнений запихнём это всё в формулу выше. Согласно формуле полной вероятности, в знаменателе будет взята плотность в точке (A,B)

$$f_{W_{t*}|W_{t_1},W_{t_2}}(x_1|x_2,x_3) = \frac{\frac{1}{2\pi\sqrt{\pi t_1(t_2-t^*)(t-t_1)}}e^{-\frac{t^*(t_2-t^*)x_1^2+2t_1(t^*-t_2)x_1x_2+2t_1(t_1-t*)x_2x_3+t_1(t^*-t_1)x_3^2}{2t_1(t_2-t^*)(t^*-t_1)}}{\frac{1}{2\pi\sqrt{t_1(t_2-t_1)}}e^{-\frac{t_2x_2^2-2t_1x_2x_3+t_1x_3^2}{t_1(t_2-t_1)}}}$$

Теперь подставим точку (B,A) в (x_2,x_3)

$$f_{W_{t^*}|W_{t_1},W_{t_2}}(x_1|A,B) = \frac{\frac{1}{2\pi\sqrt{\pi t_1(t_2-t^*)(t-t_1)}}}{\frac{1}{2\pi\sqrt{t_1(t_2-t^*)(t-t_1)}}}e^{-\frac{t^*(t_2-t^*)x_1^2+2t_1(t^*-t_2)x_1A+2t_1(t_1-t^*)AB+t_1(t^*-t_1)B^2}{2t_1(t_2-t^*)(t^*-t_1)}}{\frac{1}{2\pi\sqrt{t_1(t_2-t_1)}}}e^{-\frac{t_2A^2-2t_1AB+t_1B^2}{t_1(t_2-t_1)}}$$

В знаменателе можно выделить полный квадрат и кое-чего подсократить, чтобы было покрасивше.

$$\frac{\sqrt{(t_2-t_1)}}{\sqrt{\pi\left(t_2-t^*\right)(t-t_1)}} e^{-\frac{t^*(t_2-t^*)x_1^2+2t_1(t^*-t_2)x_1A+2t_1(t_1-t^*)AB+t_1(t^*-t_1)B^2}{2t_1(t_2-t^*)(t^*-t_1)}} e^{\frac{(B-A)^2}{2t_1(t_2-t^*)(t^*-t_1)}}$$

Что ещё с этим можно сделать я не представляю, поэтому оставлю так.

8.6 Задача 6

9 Домашнее задание 9

9.1 Задача 1

9.1.1 i

$$X_t = \sum_{k=1}^n t^k Z_k$$

Проверим, постоянно ли математическое ожидание:

$$\mathbb{E}X_t = \sum_{k=1}^n t^k \mathbb{E}Z_k = 0$$

Проверим, зависит ли ковариационная функция только от сдвига. Для простоты - постоянна ли дисперсия.

$$Var X_t = \sum_{k=1}^n t^{2k} Var Z_k = \frac{t^2(1 - t^{2n})}{1 - t^2}$$

Дисперсия непостоянна и зависит от $t \Rightarrow$ случайный процесс нестационарен в широком смысле \Rightarrow случайный процесс нестационарен в узком смысле.

9.1.2 ii

$$X_t = \sum_{k=1, \text{чётные}}^n cos(kt)Z_k + \sum_{k=1, \text{нечётныe}}^n sin(kt)Z_k$$

Очевидно, что $\mathbb{E}X_t=0$, так как Z_t - стандартные нормальные величины.

Вычислим дисперсию и убедимся, что она зависит от t.

$$\operatorname{Var}(X_t) = \sum_{k=1, \text{чётные}}^{n} \cos^2(kt) + \sum_{k=1, \text{нечётныe}}^{n} \sin^2(kt)$$

Если бы косинусы и синусы не зависели от k, то там бы красиво всё сократилось, а так ничего хорошего там не получается. Например, при n=2:

$$Var(X_1) = cos^2(1) + sin^2(2) \approx 1.118$$

$$Var(X_2) = cos^2(2) + sin^2(4) \approx 0.745$$

Дисперсия непостоянна и зависит от $t \Rightarrow$ случайный процесс нестационарен в широком смысле \Rightarrow случайный процесс нестационарен в узком смысле.

9.2 Задача 2

9.2.1 i

$$X_t = \varepsilon_1 + \cos(\varepsilon_2)$$

Следующие два утверждения проверены численно в Вольфраме. Я попытался было взять этот интеграл, но там какая-то дичь и в лоб не получилось.

$$\mathbb{E}X_t = \mathbb{E}[\cos(\varepsilon_2)] - const$$

$$\operatorname{Var} X_t = 1 + \operatorname{Var}(\cos(\varepsilon_2)) = const$$

Следовательно, процесс стационарен в широком смысле.

Проверим эргодичность.

$$\operatorname{Var}\left[\frac{1}{T}\sum_{t=1}^{T}(\varepsilon_{1}+\cos(\varepsilon_{2}))\right]=1+\operatorname{Var}(\cos(\varepsilon_{2}))\neq0$$

Следовательно, среднее не сходится по распределению к константе. Следовательно, среднее не сходится по вероятности. Следовательно, процесс не эргодический. Сейчас понял, что можно было просто взять плим с тем же успехом. Дальше так и сделаю.

9.2.2 ii

 $X_t = \varepsilon_t + \alpha t$

 $\mathbb{E}X_t = 0 + \alpha t = \alpha t \neq 0 \Rightarrow$ процесс нестационарен в широком смысле

Проверим эргодичность. Возьмём предел по вероятности при $t \to \infty$ и используем ЗБЧ.

$$\operatorname{plim} \frac{1}{T} \sum_{t=1}^{T} X_t = 3\mathbf{E}\mathbf{Y} = \mathbb{E}\varepsilon_1 + \alpha \operatorname{plim} t = +\infty$$

Среднее не сходится по вероятности к константе, следовательно, процесс не эргодичен.

9.2.3 iii

$$X_t = \varepsilon_t + e^{-\beta t}$$

Проверим стационарность

 $\mathbb{E}X_t = 0 + \mathbb{E}e^{-\beta t} \neq const \Rightarrow$ процесс нестационарен в широком смысле.

Проверим эргодичность, взяв плим среднего при $T \to +\infty$

$$\operatorname{plim} \frac{1}{T} \sum_{t=1}^{T} X_t = \operatorname{plim} \frac{1}{T} \sum_{t=1}^{T} \varepsilon_t + \operatorname{plim} \frac{1}{T} \sum_{t=1}^{T} e^{-\beta t}$$

Используя ЗБЧ, говорим, что первая сумма правой части уравнения равна 0, а для правой плим превращается в просто предел бесконечно убывающей геометрической прогрессии, делённой на Т.

$$\sum_{t=1}^{+\infty} e^{-\beta t} = \frac{e^{-\beta}}{1 - e^{-\beta}}$$

$$\lim_{T \to +\infty} \frac{1}{T} \frac{e^{-\beta}}{1 - e^{-\beta}} = 0$$

Следовательно, plim $\frac{1}{T}\sum_{t=1}^{T}X_{t}=0$ и процесс эргодичен.

9.2.4 iv

$$X_t = \varepsilon_t + e^{-\beta t} + \alpha t^2$$

Проверим стационарность.

 $\mathbb{E}X_t = e^{-\beta t} + \alpha t^2 \neq const \Rightarrow$ процесс нестационарен в широком смысле.

Пользуясь предыдущим пунктом, найдём плим среднего.

$$\operatorname{plim} \frac{1}{T} \sum_{t=1}^{T} X_t = \operatorname{plim} \frac{1}{T} \sum_{t=1}^{T} \varepsilon_t + \operatorname{plim} \frac{1}{T} \sum_{t=1}^{T} e^{-\beta t} + \operatorname{plim} \frac{1}{T} \sum_{t=1}^{T} \alpha t^2$$

В правой части первые плимы первых двух сумм равны 0. Для третьей посчитаем, воспользовавшись общеизвестной формулой.

$$\sum_{t=1}^{T} t^2 = \frac{(2T+1)(T+1)T}{6}$$

$$plim\frac{1}{T}\frac{(2T+1)(T+1)T}{6} = +\infty$$

Среднее не сходится по вероятности к константе, следственно, процесс не эргодичен.

9.3 Задача 3

$$\mathbb{E}X_t = const$$

$$Cov(X_t, X_s) = e^{-\alpha|t-s|}$$

$$Var \xi > 0$$

$$Y_t = X_t + \xi$$

Так как матожидание X_t постоянно, а ковариационная функция зависит только от разности, можно заключить, что процесс X_t стационарен в широком смысле. Также, убедившись, что $e^{-\alpha|r|}$ стремится к нулю при $r \to +\infty$, то он является согласно достаточному условию ещё и эргодичным.

Тогда возьмём плим от $\frac{1}{T}\sum_{t=1}^T Y_t$ при $t \to +\infty$

$$\operatorname{plim} \frac{1}{T} \sum_{t=1}^{T} Y_t = \operatorname{plim} \frac{1}{T} \sum_{t=1}^{T} X_t + \operatorname{plim} \frac{1}{T} \sum_{t=1}^{T} \xi = onst + \xi \neq const$$

Первый плим в правой части константа, так как X_t эргодичен. Так как ξ ни к чему не сходится по вероятности, то предел по вероятности $\frac{1}{T}\sum_{t=1}^T Y_t$ не сходится к константе и процесс не эргодичен.

9.4 Задача 4

$$X_t := Y_{t+1} - Y_t$$

Для начала проверим стационарность процесса в широком смысле.

$$\mathbb{E}X_t - \alpha + \beta t + \beta - \alpha - \beta t = \beta = const$$

$$Cov(X_t, X_s) = Cov(Y_{t+1} - Y_t, Y_{s+1} - Y_s) = Cov(Y_{t+1}, Y_{s+1}) - Cov(Y_t, Y_{s+1}) - Cov(Y_{t+1}, Y_s) + Cov(Y_t, Y_s)$$

Сделаем важное отступление.

$$Cov(Y_{t+1}, Y_{s+1}) = Cov(Y_{t+1}, Y_{t+1-t-1+s+1}) = Cov(Y_{t+1}, Y_{t+1+(s-t)}) = e^{-\lambda |t-s|}$$

Последний переход обусловлен необходимостью того, чтобы h в ковариационной функции был положительной величиной. Формула таким образом будет верной вне зависимости от соотношения t и s.

Аналогично:

$$Cov(Y_{t+1}, Y_{s+1}) = e^{-\lambda |t-s|}$$

$$Cov(Y_t, Y_{s+1}) = e^{-\lambda|t-s-1|}$$

$$Cov(Y_{t+1}, Y_s) = e^{-\lambda|t-s+1|}$$

Следовательно,

$$Cov(X_t, X_s) = 2e^{-\lambda|t-s|} - e^{-\lambda|t-s-1|} - e^{-\lambda|t-s+1|}$$

Следовательно, так как ковариационная функция завтисит только от разности t и s, можно сделать вывод о стационарности процесса в широком смысле. Следовательно, ковариационную функцию можно записать как автоковариационную функцию.

$$\gamma(r) = 2e^{-\lambda|r|} - e^{-\lambda|r-1|} - e^{-\lambda|r+1|}$$

Очевидно, что $\lim_{r\to +\infty} \gamma(r)=0$. Следовательно, согласно достаточному условию, можно заключить, что процесс будет эргодичным.

9.5 Задача 5

Навскидку так и хочется сказать, что процесс неэргодический. Единственная константа, к которой по логике можно было сойтись - 0. Однако доказательство против неё не особо иммет смысла.

Докажем от противного. Пусть W_t - эргодический. Тогда есть сходимость $\frac{1}{T}\sum_{t=1}^T W_t$ к константе по вероятности. Тогда есть сходимость к ней и по распределению. Следовательно, дисперсия $\frac{1}{T}\sum_{t=1}^T W_t$ должна стремиться к нулю. Проверим, так ли это.

$$\operatorname{Var}(\frac{1}{T} \sum_{t=1}^{T} W_t) = \frac{\operatorname{Var}(\sum_{t=1}^{T} W_t)}{T^2}$$

Распишем числитель:

$$\operatorname{Var}(\sum_{t=1}^{T} W_t) = \sum_{t=1}^{T} \sum_{s=1}^{T} \operatorname{Cov}(W_t, W_s) = \sum_{t=1}^{T} \sum_{s=1}^{T} \min(t, s) =$$

Далее, аналогично тому, как мы делали это в непрерывном случае, представим функцию минимума в форме индикаторов. Если мысленно попытаться посчитать сумму индикаторов, становится очевидно, что это тот же самый минимум.

$$\sum_{t=1}^{T} \sum_{s=1}^{T} \sum_{x=0}^{+\infty} \mathbf{I} \{ x \in [0, \min(t, s)] \} = \sum_{t=1}^{T} \sum_{s=1}^{T} \sum_{x=0}^{+\infty} \mathbf{I} \{ x \in [0, t] \} \mathbf{I} \{ x \in [0, s] \} = \sum_{t=1}^{T} \sum_{s=1}^{T} \sum_{x=0}^{+\infty} \mathbf{I} \{ x \in [0, t] \} \mathbf{I} \{ x \in [0, t] \}$$

$$=\sum_{x=0}^{+\infty}\sum_{t=1}^{T}\sum_{s=1}^{T}\mathbf{I}\{x\in[0,t]\}\mathbf{I}\{x\in[0,s]\}=\sum_{x=0}^{+\infty}(\sum_{t=1}^{T}\mathbf{I}\{x\in[0,t]\})^2=\sum_{x=0}^{T}(\sum_{t=1}^{T}\mathbf{I}\{x\in[0,t]\})^2=\sum_{t=1}^{T}\sum_{s=1}^{T}\mathbf{I}\{x\in[0,t]\}$$

Далее эти суммы можно выписать явно. Это можно представить как сумму ряда натуральных чисел и просто разложить по формуле.

$$\sum_{x=0}^{T-1} (T-x)^2 + T^2 = \frac{T(T+1)(2T+1) + T^2}{6}$$

Вернёмся к дроби.

$$\lim_{T \to +\infty} \text{Var}(\sum_{t=1}^{T} W_t) = \lim_{T \to +\infty} \frac{T(T+1)(2T+1) + T^2}{6T^2 s} = +\infty$$

Как легко увидеть, старшая степень числителя это 3, а знаменателя - 2. Следовательно, этот предел равен $+\infty$

Следовательно, броуновское движение не является эргодическим процессом.

9.6 Задача 6

$$X_t = \varepsilon_t + \frac{\alpha t}{t+1} = \varepsilon_t + \alpha - \frac{\alpha}{t+1}$$

Не мудрствуя лукаво, возьмём банальный плим от \bar{X}_t при $T \to \infty$

$$\operatorname{plim} \bar{X}_t = \operatorname{plim}_{T \to +\infty} \frac{1}{T} \sum_{t=1}^T \varepsilon_t + \alpha + \alpha \lim_{T \to +\infty} \frac{1}{T} \sum_{t=1}^T \frac{1}{t+1}$$

$$\lim_{T \to +\infty} \frac{1}{T} \sum_{t=1}^{T} \varepsilon_t = 3BH = \mathbb{E}\varepsilon_t = 0$$

$$\lim_{T \to +\infty} \frac{\sum_{t=1}^{T} \frac{1}{t+1}}{T} = 0$$

Так как каждому слагаемому меньше 1 в числителе соответствует единица в знаменателе, то знаменатель всегда будет расти быстрее числителя. Следовательно, этот предел равен нулю.

В итоге plim $\bar{X}_t = \alpha$. Следовательно, процесс эргодический.