Ch—02 Electrostatic Potential and Capacitance Daily Practice Problem 07

Q1. In figure, different capacitors are arranged. Find the equivalent capacity across the points A and B.

Q2. Three capacitors of capacitances $3 \mu F$, $6 \mu F$, and $4\mu F$ are connected as shown across a battery of emf 6 V.

- (i) Find the equivalent capacitance.
- (ii) Find the potential difference and charge on each capacitor.
- (iii) Find the energy stored in each capacitor and the total energy stored in the system of capacitors.

Q3. Three capacitors of equal capacitance, when connected in series have net capacitance C_1 , and when connected in parallel have net capacitance C_2 . What is the value of C_1/C_2 ?

Q4. Two capacitors of capacitance of $6\mu F$ and $12~\mu F$ are connected in series with a battery. The voltage across the $6\mu F$ capacitor is 2 V. Compute the total battery voltage.

Q5. Find the equivalent capacitance of the combination of capacitors between the points A and B as shown in Fig.. Also calculate the total charge that flows in the circuit when a 100 V battery is connected between the points A and B.

Q6. Seven capacitors, each of capacitance 2 μ F are to be connected in a configuration to obtain an effective capacitance of 10 /11 μ F. Suggest a suitable combination to achieve the desired result.

Q7. Calculate the equivalent capacitance points A and B of the circuit given below

Q8. If $C_1 = 20 \mu F$, $C_2 = 30 \mu F$ and $C_3 = 15 \mu F$ and the insulated plate of C_1 be at a potential of 90 V, one plate of C_3 being earthed. What is the potential difference between the plates of C_2 , three capacitors being connected in series?

Q9. In the circuit shown if the point C is earthed and point A is given a potential of +1200 V, find the charge on each capacitor and potential at B.

Q10. Four capacitors are connected as shown in figure to a 30 V battery. Find the potential difference between points a and b.

Q11. What charges will flow through section B of the circuit in the direction shown when switch S is closed.

Q12. Figure shows a network of seven capacitors. If charge on 5 μ F capacitor is 10 μ F, find the potential difference between points A and C

Q13. Figure shows charge (q) versus voltage (V) graph for series and parallel combination of two given capacitors. The capacitances are

- a. $60 \mu F$ and $40 \mu F$
- b. $50 \mu F$ and $30 \mu F$
- **c. 20** μF and $30 \mu F$
- d. $40 \,\mu F$ and $10 \mu F$

ANSWERS

1. (i)
$$5\mu$$
F, (ii) 3μ F

2. (i)
$$6\mu F$$
 (ii) $V_1 = 4V, V_2 = 2V$,

$$q_1 = 12\mu C, q_2 = 12\mu C, q_3$$

= 24 μC

(iii)
$$U_1 = 24 \mu J, U_2 = 12 \mu J, U_3 = 72 \mu J$$

$$U = 108\mu J$$

3.
$$\frac{C_1}{C_2} = \frac{1}{9}$$

5.
$$C = 20\mu F$$
, $q = 2mC$

6. Parallel combination of 5 capacitors in series with the other 2 capacitors

7.
$$\frac{28}{19}\mu F$$

9.
$$q_1 = 2.4 \times 10^{-3} C$$
, $q_2 = 1.6 \times 10^{-3} C$,

$$q_3 = 0.8 \times 10^{-3} C$$
,

$$V_B = 400V$$