Análisis Matemático **Teoria**

 $\label{eq:Facundo Beltramo} Facundo \ Beltramo \\ contacto: \ fexbef[at]gmail[dot]com$

Fecha: xx de xx del 201x

Contents

1	Fun	inciones Reales				
	1.1	Definición de Función	1			
		1.1.1 Definicion: Dominio	1			
		1.1.2 Definición: Codominio	1			
		1.1.3 Definición: Imagen	1			
	1.2		1			
			2			
			2			
		1.2.3 Función Valor Absoluto	2			
			2			
	1.3		2			
			3			
			3			
			3			
			3			
	1.4		3			
	1.1		3			
			3			
			4			
	1.5		4			
	1.0		4			
		·				
			4			
			4			
			4			
			5			
		1 , 1	5			
			5			
			5			
	4.0		5			
	1.6		5			
			5			
			5			
			5			
			5			
			6			
			6			
			6			
	1.7		6			
			6			
			6			
		1.7.1.2 Caso $m > 0$	6			
		1713 Caso m < 0	7			

CONTENTS

	1.7.2	Pendiente
	1.7.3	Intersección con el eje Y
	1.7.4	Interseccion con el eje X
1.8	Period	icidad
	1.8.1	Ejemplo: función Mantisa
1.9	Trasla	ciones
	1.9.1	Traslación Vertical
	1.9.2	Traslación Horizontal
1.10	Dilata	ciones y contracciones
		Dilataciones y contracciones verticales
		Dilataciones y contracciones horizontales
1.11		ones respecto a los ejes
		Reflexión en el eje X
		Reflexión en el eje Y
1 12		absoluto de una función
		n Cuadrática
1.10		Función cuadrática elemental
		Definición de función cuadrática
		Gráfica de la función cuadrática
	1.13.3	1.13.3.1 Raíces de la función cuadrática (intersección con el eje X)
		1.13.3.2 Discriminante de la resolvente " \triangle "
		Caso $\triangle = 0$
		Caso $\triangle = 0$
		Caso $\triangle < 0$
		1.13.3.3 Ejemplos de gráficas:
		1.13.3.4 Intersección con el eje Y
		1.13.3.5 Vertiese
		Eje de simetría
	1 10 1	Máximo o Mínimo de la funciona cuadrática
		Ejemplo de una función cuadrática
		tas
1.15		n Homográfica
		La funcion resiproca
		Gráfica de la función homográfica
		Raíces de la homográfica
		Intersección con el eje Y
		Asíntotas
	1.15.6	Dominio e Imagen
	1.15.7	Otra forma: Ejemplo
		• Forma 1
		• Forma 2
1.16	Funcio	nes Trigonométricas
		Trigonométrica
	1.16.1	Función Seno
		Gráfica de la función seno
		Raices
	1.16.2	Función Coseno
		Gráfica de la función coseno
		Raices
	1.16.3	Función Tangente
		Propiedades:
		Grafica
	1.16.4	Función Senoidal
		Propiedades
		Gráfica
		G10000

CONTENTS

		Ejemplo
1.17	Compo	sición de funciones
	compo	Ejemplo
1 10	Euroiá	<i>y</i> 1
1.10	runcio	V
		Ejemplo
1.19	Funció	n Sobreyectiva
		Ejemplos
1.20	Funció	n Biyectiva
		Ejemplo
		Nota
1.01	Euroia	n Inversa
1.21	FullCio	
		Ejemplo
		Gráfica de la función inversa
	1.21.2	Propiedad
1.22	Funció	n Exponencial
		Propiedades
	1 22 1	Función exponencial en general
	1.22.1	Ejemplo e^x
		Gráfica de e^x
1.23	Funció	n Logarítmica
		Ejemplos
	1.23.1	Gráfica de $\log_a y$
		Notaciones
	1 23 2	Propiedades de \log_a
		Prop. Cambio de base \log_a
1.04		\mathbf{I}
1.24		nes Hiperbólicas
	1.24.1	seno hiperbólico
		Gráfica
	1.24.2	coseno hiperbólico
		Gráfica
	1.24.3	tangente hiperbólica
	1.21.0	Gráfica
	1 94 4	Más funciónes hiperbólicas
1.05		
1.25		nes Trigonométricas inversas
		arcseno
	1.25.2	arccoseno
	1.25.3	arctangente
\mathbf{Lim}	ite y C	fontinuidad 32
2.1	Limite	32
		2.1.0.1 Entorno
		2.1.0.2 Ejemplo de limite sensillo
		2.1.0.3 Pincipio de arquimedes
		1 1
	0.1.1	1
	2.1.1	Unicidad de limite
		Demostracion
	2.1.2	Caracter local de limite
		Demostracion
	2.1.3	Formulas equivalentes
	-	1)
		2) "Cambio de variable"
	2.1.4	Teorema: "funcion acotada"
	4.1. 1	Demostracion
		DEHIOSH ACION

 $\mathbf{2}$

Chapter 1

Funciones Reales

1.1 Definición de Función

Una Función Real de una variable Real es una regla o una ley que asigna a cada uno de los elementos de un cierto subconjunto de los \mathbb{R} un único elemento \mathbb{R} .

Notación:

$$f: D \in \mathbb{R} \longrightarrow C \in \mathbb{R}$$

 $x \longrightarrow y = f(x)$

f toma un x de D y devuelve un y perteneciente a C. Donde D es el dominio de la función, y = f(x) es el valor de f en x y C es el codominio de la función.

1.1.1 Definicion: Dominio

Llamaremos Conjunto de Partida o Dominio de f, a el conjunto de todos los posibles valores de ingreso que la función acepta y lo notamos $\operatorname{Dom} f$.

1.1.2 Definición: Codominio

Llamaremos Conjunto de Llegada o Codominio de f, a el conjunto de todos los valores de salida de una función y lo notamos $\operatorname{Cod} f$.

1.1.3 Definición: Imagen

Llamaremos recorrido o imagen de f, al conjunto $\operatorname{Im} f = \{f(x)/x \in \operatorname{Dom} f\}$

1.2 Primeras Funciones con nombre

Existen ciertas funciones que suelen encontrarse con frecuencia en variados problemas y para poder hacer mejor referencia a ellas se les dio nombre.

1.2.1 Función Constante

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longrightarrow f(x) = k, k \in \mathbb{R}$

$$\begin{aligned} \operatorname{Dom} f &= \mathbb{R} \\ \operatorname{Cod} f &= \mathbb{R} \\ \operatorname{Im} f &= \mathbb{R} \end{aligned}$$

1.2.2 Funcion Identidad

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longrightarrow f(x) = x$

$$\begin{aligned} \operatorname{Dom} f &= \mathbb{R} \\ \operatorname{Cod} f &= \mathbb{R} \\ \operatorname{Im} f &= \mathbb{R} \end{aligned}$$

-2

1.2.3 Función Valor Absoluto

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longrightarrow f(x) = |x|$$

$$\begin{array}{c} \operatorname{Dom} f = \mathbb{R} \\ \operatorname{Cod} f = \mathbb{R} \\ \operatorname{Im} f = \mathbb{R}_0^+ \end{array}$$

$$|x| = \begin{cases} x & x > 0 \\ -x & x < 0 \end{cases}$$

1.2.3.1 Propiedades del Valor Absoluto

- |x| = |-x| o bien f(x) = f(-x) (es una función par)
 - $f(f(x)) = \begin{cases} f(x) & f(x) > 0 \\ -f(x) & f(x) < 0 \longrightarrow \text{no se da nunca} \end{cases} \Rightarrow ||x|| = |x|$
 - $f(x+y) \leq f(x) + f(y)$ es decir $|x+y| \leq |x| + |y|$ (conocida como Desigualdad Triangular)
 - $f(x) = \sqrt{x^2}$ es decir $|x| = \sqrt{x^2}$

1.3 Álgebra de funciones

Sean: $f: A \in \mathbb{R} \longrightarrow \mathbb{R}$, y $g: B \in \mathbb{R} \longrightarrow \mathbb{R}$, definiremos las siguientes funciones:

1.3.1 Función Suma

$$f + g : A \cap B \longrightarrow \mathbb{R}$$

 $x \longrightarrow (f + g)(x) = f(x) + g(x)$

1.3.2 Función Diferencia

$$f - g : A \cap B \longrightarrow \mathbb{R}$$
$$x \longrightarrow (f - g)(x) = f(x) - g(x)$$

1.3.3 Función Producto

$$\begin{array}{c} f \ge g : A \cap B \longrightarrow \mathbb{R} \\ x \longrightarrow (f \ge g)(x) = f(x) \ge g(x) \end{array}$$

1.3.4 Función Cociente

$$f/g: \{x \in A \cap B/g(x) \neq 0\} \longrightarrow \mathbb{R}$$
$$x \longrightarrow (f/g)(x) = \frac{f(x)}{g(x)}$$

1.4 Gráfica de función

1.4.1 Definicion

Sea f una función real, llamamos gráfica o grafo de f al lugar geométrico de los puntos (x, y) del plano tale que $x \in \text{Dom} f$ e y = f(x) es decir, lo notamos:

$$\mathrm{Gr} f = \! \{ (x,y) \in \mathbb{R}^2 / x \in \mathrm{Dom} f \wedge y = f(x) \}$$

1.4.2 Función Parte Entera

$$f:\mathbb{R}\longrightarrow\mathbb{N}$$
 $x\longrightarrow f(x)=\lfloor x\rfloor=n\rightarrow\text{``Mayor entero que no supera a }x"$

otra definicion

$$\lfloor x \rfloor = \left\{ \begin{array}{ll} a-n & -n \leqslant x < -n+1 \\ & \cdot & \cdot \\ & \cdot & \cdot \\ -2 & -2 \leqslant x < -2+1 \\ -1 & -1 \leqslant x < -1+1 \\ 0 & 0 \leqslant x < 0+1 \\ 1 & 1 \leqslant x < 1+1 \\ 2 & 2 \leqslant x < 2+1 \\ & \cdot & \cdot \\ & \cdot & \cdot \\ n & n \leqslant x < n+1 \end{array} \right.$$

Grafica de
$$f(x) = \lfloor x \rfloor$$

Grafica de $f(x) = \lfloor x \rfloor$

Fixed to the second seco

La gráfica corresponde a: $Grf = \{(x, f(x))/x \in Dom f\}$

1.4.3 Función Mantisa

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longrightarrow f(x) = x - \lfloor x \rfloor = m(x)$$

$$\text{Sea } x \in \mathbb{R}$$

$$\lfloor x \rfloor \leqslant x < \lfloor x \rfloor + 1$$

$$0 \leqslant x - \lfloor x \rfloor < 1$$

$$\therefore \text{ Se deduce la imagen.}$$

1.5 Paridad de Funciones Reales

1.5.1 Definición conjunto simétrico

Sea $D \subseteq \mathbb{R}$, diremos que es un conjunto simétrico sii: $x \in D \Rightarrow -x \in D$ Ejemplo: [-1,1] es simétrico pues: $x \in [-1,1] \Leftrightarrow -1 \leqslant x \leqslant 1 \Leftrightarrow -1 \leqslant -x < 1 \Leftrightarrow -x \in [-1,1]$

1.5.2 Definición Paridad

Sea D un conjunto simétrico(respecto del origen) y sea $f:D\longrightarrow \mathbb{R}$ diremos que:

1.5.2.1 Función Par

f es una función par si y solo si $f(x) = f(-x), \forall x \in D$

1.5.2.2 Función Impar

$$f$$
 es una función impar si y solo si $f(x) = -f(-x), \forall x \in D$
 $\therefore f(-x) = -f(x)$ la función es impar.

Nota: si el dominio D no es simétrico no se puede hablar de ningun tipo de paridad.

1.5.3 Interpretación gráfica

La gráfica de una función par es simétrica respecto aleje y y la de una función impar es simétrica respecto del origen de coordenadas.

El conjunto de los \mathbb{R} es simétrico.

1.5.3.1 Ejemplo: $f(x) = x^3 + x$

$$f(x) = x^3 + x$$

 $Dom f = \mathbb{R} \text{ (simétrico)}$
 $Sea \ x \in Dom f$, valido f en $(-x)$
 $f(-x) = (-x)^3 + (-x) = -(x^3 + x) = -f(x)$
 \therefore la función es impar.

1.5.4 Propiedad de f impar

Sea f una función impar y $0 \in \text{Dom} f \Rightarrow f(0) = 0$

1.5.4.1 Demostración

$$f(0) = -f(-0) \Rightarrow f(0) = -f(0) \Rightarrow$$

$$\Rightarrow f(0) + f(0) = 0 \Rightarrow 2 \times f(0) = 0 \Rightarrow$$

$$\Rightarrow f(0) = \frac{0}{2} \Rightarrow f(0) = 0$$

1.5.5 Propiedad f impar y par

Sea f una función par e impar a la vez, f termina siendo la función nula, f(x) = 0.

1.5.5.1 Demostración

$$f(x) \overset{fimpar}{=} -f(-x) \overset{fpar}{\Rightarrow} f(x) = -f(x)$$

$$f(x) + f(-x) = 0 \Rightarrow 2 \times f(-x) = 0$$

$$f(-x) = 0$$

1.6 Monotonía

Definicion: Sea $f: D \longrightarrow \mathbb{R}$ diremos que:

1.6.1 Funcion creciente

f es creciente en $D \iff \forall x_1, x_2 \in D/x_1 < x_2 \Rightarrow f(x_1) \leqslant f(x_2)$

1.6.2 Funcion estrictamente creciente

f es creciente en $D \Longleftrightarrow \forall x_1, x_2 \in D/x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$

1.6.3 Funcion decreciente

f es creciente en $D \iff \forall x_1, x_2 \in D/x_1 < x_2 \Rightarrow f(x_1) \geqslant f(x_2)$

1.6.4 Función estrictamente decreciente

f es creciente en $D \Longleftrightarrow \forall x_1, x_2 \in D/x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$

Nota: Si bien f es creciente o bien si es decreciente en todo su dominio, f se dice monótona.

1.6.5 Suma de funciones monótonas

- La suma de dos funciones crecientes, es una función creciente.
 - La suma de dos funciones decrecientes, es una función decreciente.

1.6.5.1 Demostración suma de funciones crecientes

Hipotesis: $f: A \longrightarrow \mathbb{R}, g: B \longrightarrow \mathbb{R}$ (ambas crecientes)

Definimos la función suma $f+g:A\cap B\longrightarrow \mathbb{R}/(f+g)_{(x)}=f(x)+g(x)$

Sean
$$x_1 < x_2; x_1, x_2 \in A \cap B$$

 $x_1 < x_2 \stackrel{Hip}{\Rightarrow} \begin{cases} f(x_1) < f(x_2) \\ f(g_1) < g(x_2) \end{cases} \Rightarrow f(x_1) + g(x_1) \leqslant f(x_2) + g(x_2) \Rightarrow (f+g)_{(x_1)} \leqslant (f+g)_{(x_2)}$

 $\therefore f + g$ es una función creciente.

1.6.5.2 Demostración suma de funciones decrecientes

Hipótesis: $f:A\longrightarrow \mathbb{R},\,g:B\longrightarrow \mathbb{R}$ (ambas decrecientes)

Definimos la función suma $f+g:A\cap B\longrightarrow \mathbb{R}/(f+g)_{(x)}=f(x)+g(x)$

Sean
$$x_1 < x_2; x_1, x_2 \in A \cap B$$

 $x_1 < x_2 \stackrel{Hip}{\Rightarrow} \begin{cases} f(x_1) > f(x_2) \\ f(g_1) > g(x_2) \end{cases} \Rightarrow f(x_1) + g(x_1) \geqslant f(x_2) + g(x_2) \Rightarrow (f+g)_{(x_1)} \geqslant (f+g)_{(x_2)}$

 $\therefore f + g$ es una función decreciente.

1.7 Función Lineal

m: Pendiente.

x: Variable independiente.

h: Ordenada al origen.

1.7.1 Casos de funciones lineales

 $q: \mathbb{R} \longrightarrow \mathbb{R}/q(x) = mx + h$

1.7.1.1 Caso m = 0

$$m = 0 \Rightarrow g(x) = h$$

 $g(x)$ es constante.

1.7.1.2 Caso m > 0

$$m > 0 \Rightarrow g(x) = mx + h$$

Sean
$$x_1 < x_2; x_1, x_2 \in \mathbb{R}$$

$$x_1 < x_2 \stackrel{m > 0}{\Rightarrow} mx_1 < mx_2 \Rightarrow$$

$$mx_1 + h < mx_2 + h \Rightarrow g(x_1) < g(x_2)$$

∴ es una función estrictamente creciente

$$f(x) = mx + 3 \text{ con } m = -1 < 0 \text{ y } m = 1 > 0$$

1.7.1.3 Caso m < 0

$$m < 0 \Rightarrow g(x) = mx + h$$

Sean
$$x_1 < x_2; x_1, x_2 \in \mathbb{R}$$

$$x_1 < x_2 \stackrel{m \leq 0}{\Rightarrow} mx_1 > mx_2 \Rightarrow$$

 $mx_1 + h > mx_2 + h \Rightarrow g(x_1) > g(x_2)$
 \therefore es una función estrictamente decreciente

1.7.2 Pendiente

La pendiente es la inclinación de la recta. Suponiendo que nuestra pendiente es α , sera $tg(\alpha) = m$. Siendo este m el mismo que e de nuestra ecuación mx + h.

1.7.3 Intersección con el eje Y

$$x = 0 \Rightarrow y = f(0) \Rightarrow y = m.0 + h \Rightarrow y = h$$

1.7.4 Interseccion con el eje X

$$y = 0 \Rightarrow 0 = f(x) \Rightarrow 0 = mx + h \Rightarrow x = \frac{-h}{m}$$

1.8 Periodicidad

Si existe una constante positiva $p/\forall x \in D, x+p \in D$ y f(x+p)=f(x). f se dice periódica y al mínimo p que verifica f(x+p)=f(x) se o llama periodo de la función f.

1.8.1 Ejemplo: función Mantisa

$$f: \mathbb{R} \longrightarrow \mathbb{R}/f(x) = x - |x|$$

Primero veamos que sucede si $p \in \mathbb{Z}, \Rightarrow |x+p| = |x| + p$

$$f(x+p) = (x+p) - (\lfloor x+p \rfloor) \underset{p \in \mathbb{Z}}{\Rightarrow} f(x+p) = x+p - \lfloor x \rfloor - p \Rightarrow f(x+p) = x - \lfloor x \rfloor = f(x)$$

Esto se cumple para todo $p \in \mathbb{Z}$.

Vimos que con un numero perteneciente a \mathbb{Z} se cumple parte de la condición de periodicidad pero, esta también dice que el periodo es el mínimo. Por lo tanto buscamos el mínimo de los naturales positivo y hallamos el numero 1.

Conclusión el periodo de la función Mantisa es 1.

1.9 Traslaciones

Movimientos de las representaciones gráficas.

Sea
$$f: D \longrightarrow \mathbb{R}/x \longrightarrow y = f(x)$$
:

1.9.1 Traslación Vertical

Sea
$$g(x) = f(x) + c$$
 con $c \in \mathbb{R}$

- Si c>0 la gráfica de g se obtiene desplazando la de f una distancia |c| asia arriba.
- Si c<0 la gráfica de g se obtiene desplazando la de f una distancia |c| asia abajo.

1.9.2 Traslación Horizontal

Sea
$$g(x) = f(x - c)$$
 con $c \in \mathbb{R}$
Dom $f = \{x \in \mathbb{R}/x - c \in \text{Dom}f\}$

- Si c>0 la gráfica de g se obtiene desplazando la de f una distancia |c| asia la derecha.
- Si c<0 la gráfica de g se obtiene desplazando la de f una distancia |c| asia la izquierda.

1.10 Dilataciones y contracciones

Sea c > 0:

1.10.1 Dilataciones y contracciones verticales

- y = cf(x) dilata o estira la gráfica de f verticalmente de por un factor c.
- $y = \frac{1}{c}f(x)$ comprime la gráfica de f verticalmente de por un factor c.

Ejemplo f(x) = sen(x) en roja, c = 2. Verde dilatación, azul contracción.

1.10.2 Dilataciones y contracciones horizontales

- y = f(xc) dilata o estira la gráfica de f horizontalmente por un factor c.
- $y = f(x\frac{1}{c})$ comprime la gráfica de f horizontalmente por un factor c.

Ejemplo f(x) = sen(x) en roja, c = 2. Verde dilatación, azul contracción.

1.11 Reflexiones respecto a los ejes

1.11.1 Reflexión en el eje X

Sea
$$f: D \longrightarrow \mathbb{R}/y = f(x)$$

defiimos $g(x) = (-1)f(x)$, Dom $f = \text{Dom}f$
Si $(x,y) \in \text{Gr}(f) \Rightarrow (x,-y) \in \text{Gr}(g)$

Nota: Si w es raíz de f, es decir f(w) = 0, entonces w también lo es de g.

Ejemplo f(x) = |x|, en roja. La reflexión esta en azul.

1.11.2 Reflexión en el eje Y

Sea
$$f: D \longrightarrow \mathbb{R}/y = f(x)$$

defiimos $g(x) = f(x(-1))$
Dom $f = \{x \in \mathbb{R}/ - x \in \text{Dom}f\}$
Si $(x, y) \in \text{Gr}(f) \Rightarrow (-x, y) \in \text{Gr}(g)$

Nota: se conserva la ordenada al origen y no cambia la imagen.

Ejemplo f(x) = x, en roja. La reflexión esta en azul.

1.12 Valor absoluto de una función

Sea
$$f: D \longrightarrow \mathbb{R}/y = f(x)$$

definimos $g(x) = |f(x)|$
es decir:
$$g(x) = \begin{cases} f(x) & f(x) > 0 \\ -f(x) & f(x) < 0 \end{cases}$$

Dom $f = \text{Dom}g$

1.13 Función Cuadrática

1.13.1 Función cuadrática elemental

Estudiaremos primero la función elemental:

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longrightarrow f(x) = x^2$$

$$Dom f = \mathbb{R}$$
$$Cod f = \mathbb{R}$$
$$Im f = \mathbb{R}_0^+$$

- $GR(f) = \{(x,y) \in \mathbb{R}^2/y = x^2\} = \{(x,x^2); x \in \mathbb{R}\}$
- Es par pues: $f(-x) = (-x)^2 = f(x), \forall x \in \mathbb{R}$
- f es creciente estrictamente en $(0, +\infty)$

Sean $x_1, x_2 \in (0, +\infty)$ y $x_1 < x_2$

$$x_1 < x_2 \underset{x_2 > 0}{\Rightarrow} x_1^2 < x_2^2 \Rightarrow f(x_1) < f(x_2)$$

• f es estrictamente decreciente en $(-\infty,0)$, ya que es par y estrictamente creciente en $(0,+\infty)$.

1.13.2 Definición de función cuadrática

Una "Función Cuadrática" es una función definida por:

$$f: \mathbb{R} \longrightarrow \mathbb{R}/f(x) = ax^2 + bx + c$$
, Donde $a, b, c \in \mathbb{R}$ y $a \neq 0$

1.13.3 Gráfica de la función cuadrática

Como ya conocemos la gráfica de la función cuadrática elemental $(f(x) = x^2)$, la idea es transformar nuestra función cuadrática en corrimientos de la función cuadrática elemental y así poder hallar su gráfica mucho mas fácil.

 $a.x^2 + b.x + c$

Tenemos $f(x) = ax^2 + bx + c$

$$= \langle \text{ factor común } a \rangle$$

$$a \left[x^2 + \frac{b}{a} x + \frac{c}{a} \right]$$

$$= \langle \text{ multiplicoy divido } \left(\frac{b}{a} x \right) \text{ por } 2 \rangle$$

$$a \left[x^2 + 2 \frac{b}{2a} x + \frac{c}{a} \right]$$

$$= \langle \text{ sumo y resto } \left(\frac{b}{a} x \right)^2 \text{ para completar cuadrado } \rangle$$

$$a \left[x^2 + 2 \frac{b}{2a} x + \left(\frac{b}{a} x \right)^2 - \left(\frac{b}{a} x \right)^2 + \frac{c}{a} \right]$$

$$= \langle \text{ aplico inversa del trinomio cuadrado perfecto } \rangle$$

$$a \left[\left(x + \frac{b}{2a} \right)^2 - \left(\frac{b}{2a} \right)^2 + \frac{c}{a} \right]$$

$$= \langle \text{ propiedad de potencia y resuelvo } \rangle$$

$$a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} \right]$$

$$= \langle \text{ resuelvo la suma de fracciones : } \left\{ \begin{array}{c} \frac{-b^2}{4a^2} + \frac{c}{a} \\ \text{ denominador común } \\ -\frac{b^2 + c4a}{4a^2} \end{array} \right\}$$

$$= \langle \text{ distribuyo } a \rangle$$

$$a \left(x + \frac{b}{2a} \right)^2 + \frac{-b^2 + c4a}{4a}$$

$$= \langle \text{ si llamamos a } p = \frac{-b}{2a}, \text{ y a } q = \frac{-b^2 + 4ac}{4a}, \text{ resulta } \rangle$$

$$a(x - p)^2 + q$$

1.13.3.1 Raíces de la función cuadrática (intersección con el eje X)

$$f(x) = 0 \Leftrightarrow a\left(x + \frac{a}{2a}\right)^2 + \frac{-b^2 + 4ac}{4a} = 0 \Leftrightarrow a\left(x + \frac{a}{2a}\right)^2 = -\frac{-b^2 + 4ac}{4a} \Leftrightarrow \left(x + \frac{a}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \Leftrightarrow x + \frac{b}{2a} = \pm\sqrt{\frac{b^2 - 4ac}{4a^2}} \Leftrightarrow \left(x + \frac{a}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \Leftrightarrow x + \frac{b}{2a} = \pm\sqrt{\frac{b^2 - 4ac}{4a^2}} \Leftrightarrow \left(x + \frac{a}{2a}\right)^2 = \frac{-b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} \Leftrightarrow x = \frac{-b \pm\sqrt{b^2 - 4ac}}{2a}$$

$$\therefore f(x) = 0 \Rightarrow x_{1,2} = \frac{-b \pm\sqrt{b^2 - 4ac}}{2a}$$
 resolvente

1.13.3.2 Discriminante de la resolvente " \triangle "

Llamamos discriminante de la resolvente a el numero real:

$$\triangle = b^2 - 4ac$$

Hora veremos porque es importante el discriminante, es que al ver los posibles valores q puede tomar la resolvente nos dará distinguibles resultados:

$$x_{1,2} = \frac{-b \pm \sqrt{\triangle}}{2a}$$

Caso $\triangle = 0$

$$f(x) = 0 \Leftrightarrow x_{1,2} = \frac{-b \pm \sqrt{0}}{2a} \Leftrightarrow x_{1,2} = \frac{-b}{2a} \qquad \text{(Raiz } \mathbb{R} \text{ doble)}$$
 La Gr f corta al eje X en un solo punto: $x = \frac{-b}{2a}$.

Caso $\triangle > 0$

Caso $\triangle < 0$

$$f(x) = 0 \Leftrightarrow x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 (Existen 2 raices $\mathbb C$ opuestas)
La Gr f corta al eje X en dos puntos: x_1 y x_2 .

1.13.3.3 Ejemplos de gráficas:

• Considerece a > 0

• Considérese a < 0

1.13.3.4 Intersección con el eje Y

$$f(0) = a \times 0 + b \times 0 + c \Rightarrow f(0) = c$$

La Grf corta al eje y en el punto (0,c)

1.13.3.5 Vertiese

El punto vértice en la gráfica de la función cuadrática se determina por los siguientes valores:

Eje de simetría

El eje de simetría de la función cuadrática es x=p

por tanto:
$$x = \frac{-b}{2a}$$

Máximo o Mínimo de la funciona cuadrática

El máximo o mínimo de una función cuadrática en el eje Y

lo determina el valor de
$$q$$
 es decir:
$$\frac{-b^2 + 4ac}{4a}$$

Por lo tanto el vértice queda conformado como (p,q) es decir:

$$V\left(\frac{-b}{2a}, \frac{-b^2 + 4ac}{4a}\right)$$

1.13.4 Ejemplo de una función cuadrática

Dada:

$$f: \mathbb{R} \longrightarrow \mathbb{R}/x \longrightarrow f(x) = 2x^2 - 5x + 2$$

- Hallamos el vértice: $V\left(\frac{5}{4}, -\frac{9}{8}\right)$
- Intersección con ele eje Y: $f(0) = 2 \times 0^2 5 \times 0 + 2 = 2$
- Raíces:

$$2 \times \left(x - \frac{5}{4}\right)^{2} - \frac{9}{8} = 0 \Leftrightarrow 2 \times \left(x - \frac{5}{4}\right)^{2} = \frac{9}{8} \Leftrightarrow \qquad f(x) = 2x^{2} - 5x + 2$$

$$a = 2 \quad b = (-5) \quad c = 2$$

$$x_{1,2} = \frac{-(-5) \pm \sqrt{(-5)^{2} - 4(2) \times (2)}}{2 \times (2)}$$

$$x_{1,2} = \frac{5 \pm 3}{4}$$

$$x_{1} = 2 \quad (2,0) \qquad x_{2} = \frac{1}{2} \quad \left(\frac{1}{2},0\right)$$

1.14 Asíntotas

• Asíntota vertical

Se llama Asíntota Vertical de una rama de una curva y =f(x), a la recta paralela al eje Y que hace que la rama de dicha función tienda a infinito. Si existe alguno de estos dos límites:

$$\lim_{x \to a^{-}} f(x) = \pm \infty$$

$$\lim_{x \to a^{+}} f(x) = \pm \infty$$

a la recta x = ase la denomina asíntota vertical.

• Asíntota horizontal

Se llama Asíntota Horizontal de una rama de una curva y =f(x) a la recta paralela al eje X que hace que la rama de dicha función tienda a infinito. Si existe el límite:

$$\lim_{x \to \pm \infty}$$

f(x) = a, siendo a un valor finito

la recta y = a es una asíntota horizontal.

• Asíntota oblicua

La recta de ecuación $y = mx + b(m \neq 0)$ será una asíntota oblicua si:

$$\lim_{x \to +\infty} [f(x) - (mx + b)] = 0$$

Los valores de m y de b se calculan con las fórmulas:

$$m = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$

$$b = \lim_{x \to \pm \infty} f(x) - mx$$

1.15 Función Homográfica

La función homográfica esta definida por:

$$f(x) = \frac{ax+b}{cx+d} \qquad \text{Don}$$

 $f(x) = \frac{ax+b}{cx+d}$ Donde $a, b, c, d \in \mathbb{R}; c \neq 0; ad-cb \neq 0$

$$\operatorname{Dom} f = \mathbb{R} \setminus \left\{ \frac{-d}{c} \right\}$$
 ya que $cx + d = 0 \Rightarrow x = \frac{-d}{c}$

$$cx + d = 0 \Rightarrow x = \frac{-d}{c}$$

La funcion resiproca

La función reciproca es la función homográfica mas simple: $f(x) = \frac{1}{x}$ donde a = 0, b = 1, c = 1, d = 0. Su gráfica es una hipérbola.

Podemos ver su gráfica y que se trata de una homográfica:

$$\begin{split} f(x) &= \frac{0 \times x + 1}{1 \times x + 0} \\ c &= 1 \Rightarrow c \neq 0 \quad \text{y} \\ 0 \times 0 - 1 \times 1 = -1 \Rightarrow ad - cb \neq 0 \end{split}$$

• Paridad:
$$f(-x) = \frac{1}{-x} = \frac{-1}{x} = -f(x)$$

La función reciproca es impar.

• f es decreciente en $(-\infty,0) \cup (0,+\infty)$

• Asíntota horizontal: y = 0

• Asíntota vertical: x = 0

• Centro de simetría: (0,0)

1.15.2 Gráfica de la función homográfica

Para graficar la función homográfica mas fácilmente buscaremos transformar a esta en un corrimiento de la función reciproca:

$$f(x) = \frac{ax + b}{cx + d}$$

$$= \langle \text{ factor común } a \text{ y } b \rangle$$

$$f(x) = \frac{a}{c} \left(x + \frac{b}{a} \right)$$

$$= \langle \text{ sumo y resto } \frac{d}{c} \rangle$$

$$f(x) = \frac{a}{c} \times \frac{x + \frac{d}{c} - \frac{d}{c} + \frac{b}{a}}{x + \frac{d}{c}}$$

$$= \langle \text{ reparto } \frac{d}{c} \rangle$$

$$f(x) = \frac{a}{c} \times \left[\frac{x + \frac{d}{c} - \frac{d}{c} + \frac{b}{a}}{x + \frac{d}{c}} \right]$$

$$= \langle \text{ denominador común } \frac{d}{c} \rangle$$

$$f(x) = \frac{a}{c} \times \left[1 + \frac{bc - da}{ca} \right]$$

$$= \langle \text{ resuelvo } \frac{d}{c} \rangle$$

$$f(x) = \frac{a}{c} \times \left[1 + \frac{bc - da}{ca} \right]$$

$$= \langle \text{ Distribuyo } \frac{a}{c} \rangle$$

$$f(x) = \frac{a}{c} + \frac{a}{c} \times \frac{bc - da}{ca} \times \frac{d}{c} \rangle$$

$$= \langle \text{ simplifico y resuelvo } \frac{a}{c} \rangle$$

$$f(x) = \frac{a}{c} + \frac{bc - da}{c^2} \times \frac{d}{c} \times \frac{d}{c} \rangle$$

$$= \langle \text{ Separo expresiones } \frac{a}{c} \rangle$$

$$f(x) = \frac{a}{c} + \frac{bc - da}{c^2} \times \frac{1}{x + \frac{d}{c}} \times \frac{d}{c} \times \frac{$$

Esto es la función reciproca corrida horizontalmente w unidades, verticalmente v unidades y expandida, contraída o reflejada, verticalmente según u.

1.15.3Raíces de la homográfica

Como se muestra las raíces son las mismas que las raíces del polinomio numerador:

$$f(x) = 0 \Leftrightarrow \frac{ax+b}{cx+d} = 0 \Rightarrow ax+b = 0 \Leftrightarrow x = \frac{-b}{a}$$

Intersección con el eje Y

$$f(0) = \frac{a \times 0 + b}{c \times 0 + d} = \frac{b}{d}$$

1.15.5**Asíntotas**

- La asíntota vertical es el corrimiento vertical: $\frac{-d}{c} = w$
 - La asíntota horizontal es el corrimiento horizontal: $\frac{a}{c} = v$

1.15.6 Dominio e Imagen

- Dominio: $\mathbb{R} \setminus \left\{ \frac{-d}{c} \right\} = \mathbb{R} \setminus \{w\}$
 - Imagen: $\mathbb{R} \setminus \left\{ \frac{a}{c} \right\} = \mathbb{R} \setminus \{v\}$

1.15.7 Otra forma: Ejemplo

Usaremos la función simple $f(x) = \frac{x+1}{x-1}$

• Forma 1

Es el método desarrollado anteriormente:

$$= \frac{x+1}{x-1}$$

$$= \langle \text{ sumo y resto } 1 \rangle$$

$$\frac{x+1+1-1}{x-1}$$

$$= \langle \text{ reparto } \rangle$$

$$\frac{x-1}{x-1} + \frac{1+1}{x-1}$$

$$= \langle \text{ resuelvo } \rangle$$

$$\frac{2}{x-1} + 1$$

• Forma 2 La segunda forma consta en realizar la división de polinomios y hacer uso de:

$$\begin{split} \frac{dividendo}{divisor} &= cociente \times divisor + resto \Leftrightarrow \\ \Leftrightarrow dividendo &= divisor \times \left(cociente + \frac{resto}{divisor}\right) \Leftrightarrow \\ \Leftrightarrow \frac{dividendo}{divisor} &= cociente + \frac{resto}{divisor} \end{split}$$

$$\begin{array}{c|cccc} x+1 & x-1 \\ \hline - & 1 \\ \hline x-1 & & \\ \hline & 2 & & \\ \hline \end{array}$$
 Resultando:
$$\frac{x+1}{x-1} = \frac{2}{x-1} + 1$$

$$r \perp 1$$
 2

- La asíntota vertical es el corrimiento vertical: $\frac{-(-1)}{1} = 1$
- La asíntota horizontal es el corrimiento horizontal: $\frac{1}{1} = 1$
- Dominio: $\mathbb{R} \setminus \left\{ \frac{-(-1)}{1} \right\} = \mathbb{R} \setminus \{1\}$
- Imagen: $\mathbb{R} \setminus \left\{ \frac{1}{1} \right\} = \mathbb{R} \setminus \{1\}$
- Raices: $\frac{x+1}{x-1} = 0 \Rightarrow x+1 = 0 \Leftrightarrow x = -1$
- Intersección con el eje Y: $f(0) = \frac{0+1}{0-1} = -1$

Grafica:

Funciones Trigonométricas 1.16

Trigonométrica

Circunferencia trigonométrica

$$seno(\alpha)$$
 = $\frac{CO}{H} = \frac{Y}{R}$
 $coseno(\alpha)$ = $\frac{CA}{H} = \frac{X}{R}$
 $tangente(\alpha)$ = $\frac{CO}{CA} = \frac{O}{A} = \frac{Y}{X}$

1.16.1Función Seno

Sea
$$f: \mathbb{R} \longrightarrow \mathbb{R}/f(x) = sen(x)$$

Nuestro objetivo, ademas de estudiar esta función es esposar su gráfica. Para lo cual comenzaremos viendo algunas características destacadas.

- $-1 \le sen(x) \le 1 \ \forall x \in \mathbb{R}$
 - $\therefore \text{Im} f = [-1, 1]$

luego Grf esta entre las rectas y = -1 e y = 1.

- $sen(x) = -sen(x) \Rightarrow$ es impar \Rightarrow Grf es simétrica respecto del origen de coordenadas.
- $sen(x+2\pi) = sen(x) \ \forall x \in \mathbb{R}$

 $\therefore f$ es periódica de periodo 2π .

Conociendo la gráfica en $(0, \pi)$, se conoce en todos los \mathbb{R}

•
$$sen(\pi - x) = sen(x)$$

•
$$sen(\pi + x) = -sen(x)$$

Con estas ayudas y con la circunferencia trigonométrica terminaremos la Gr(sen).

Gráfica de la función seno

Raices

Notemos que: $f(x) = 0 \Leftrightarrow x = k\pi / k \in \mathbb{Z}$

1.16.2 Función Coseno

Sea
$$f: \mathbb{R} \longrightarrow \mathbb{R}/f(x) = cos(x)$$

Podriamos trabajar como con la función seno y llegar a la gráfica a través de la circunferencia trigonométrica. Pero optaremos por hacerlo utilizando la siguientes propiedades:

•
$$cos(x) = cos(-x)$$
 la función es par.

•
$$cos(x) = cos(-x) = sen\left(\frac{\pi}{2} - (-x)\right) = sen\left(\frac{\pi}{2} + x\right) \quad \forall x \in \mathbb{R}$$

Gráfica de la función coseno

Raices

Notemos que:
$$f(x) = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi / k \in \mathbb{Z}$$

1.16.3 Función Tangente

Sea
$$f: D \longrightarrow \mathbb{R}/f(x) = tg(x)$$

$$D = \left\{ x \in \mathbb{R} / x \neq \frac{2k+1}{2} \times \pi; k \in \mathbb{Z} \right\}$$
 D es simétrico.

Propiedades: • $tg(x) = \frac{sen(x)}{cos(x)}$

•
$$tg(-x) = -tg(x) \ \forall x \in D \Rightarrow \text{es impar.}$$

•
$$tg(x+\pi) = \frac{sen(x+\pi)}{cos(x+\pi)} = \frac{-sen(x)}{-cos(x) = \frac{sen(x)}{cos(x)}} = tg(x)$$

 $\therefore tangente$ es una función periódica de periodo π .

Grafica

Función Senoidal

Sea $f: \mathbb{R} \longrightarrow \mathbb{R}/f(x) = c \times sen(kx + \alpha)$ Donde $c \neq 0, k \neq 0, \alpha$ son constantes $\in \mathbb{R}$

Propiedades • $Dom f = \mathbb{R}$

•
$$\text{Im} f = [c, -c]$$

• f es periódica de periodo $\frac{2\pi}{k}$, ya que:

$$\Leftrightarrow c \times sen(kx + \alpha) = f(x) \quad \forall x \in \mathbb{R}$$

Gráfica

Se suele transformar la ecuación de la función para poder transformarla en corrimiento de alguna función ya conocida. En este caso vamos a proceder de la siguiente forma para lograr una función seno corrida.

Primero transformamos la función ligeramente:

$$\begin{array}{cccc} f(x) & = & c \times sen(kx + \alpha) \\ = \langle factor & comun & \rangle \\ f(x) & = & c \times sen\left(k\left(x + \frac{\alpha}{k}\right)\right) \end{array}$$

Y luego graficamos por corrimientos:

$$\begin{array}{lll} f_1(x) & = & sen(x) \\ f_2(x) & = & c \times sen(x) \\ f_3(x) & = & c \times sen(kx) \\ f(x) & = & c \times sen\left(k\left(x + \frac{\alpha}{k}\right)\right) \end{array}$$

Ejemplo $f(x) = 3 \times sen(5x+1)$

- $Dom f = \mathbb{R}$
- Im f = [3, -3]
- f es periódica de periodo $\frac{2\pi}{5}$

Primero transformamos la función ligeramente:

$$\begin{array}{rcl} f(x) & = & 3 \times sen(5x+1) \\ f(x) & = & 3 \times sen\left(5\left(x+\frac{1}{5}\right)\right) \end{array}$$

Y luego graficamos por corrimientos:

$$\begin{array}{lll} f_1(x) & = & sen(x) \\ f_2(x) & = & 3 \times sen(x) \\ f_3(x) & = & 3 \times sen(5x) \\ f(x) & = & 3 \times sen\left(k\left(x + \frac{\alpha}{k}\right)\right) \end{array}$$

Grafica de f_1 : roja; f_2 : azul; f_3 :verde.

1.17 Composición de funciones

La composicion de funciones es una operación mas entre dos funciones.

Sean dos funciones reales f y g.

$$f: D_1 \longrightarrow C_1$$
 $g: D_2 \longrightarrow C_2$

Llamaremos función compuesta a la definida por:

$$\begin{array}{c} g\circ f:D\longrightarrow C/\\ x\longrightarrow (g\circ f)_{(x)}=g(f(x)) \end{array}$$

Donde: $Dom(g \circ f) = \{x \in Dom f / f(x) \in Dom g\}$

Ejemplo $g \circ f$

$$f(x) = x^2 - x - 1$$
 $g(x) = \frac{1}{x}$

Dom

$$\mathbb{R} \setminus \{0\}$$

Por lo tanto el $Dom(f \circ g)$ sera:

$$\left\{ x \in \mathbb{R}/f(x) \in \mathbb{R} \setminus \{o\} \right\} \Leftrightarrow$$

$$\Leftrightarrow \left\{ x \in \mathbb{R}/x^2 - x - 1 \in \mathbb{R} \setminus \{o\} \right\} \Leftrightarrow$$

$$\Leftrightarrow \left\{ x \in \mathbb{R}/x \in \mathbb{R} \setminus \left\{ \frac{1 - \sqrt{5}}{2}, \frac{1 + \sqrt{5}}{2} \right\} \right\}$$

$$x^2 - x - 1 \neq 0 \Leftrightarrow x \neq \frac{1 + \sqrt{5}}{2} \lor x \neq \frac{1 - \sqrt{5}}{2}$$

Buscamos la ley:

$$(g \circ f)_{(x)} = g(f(x)) = g(x^2 - x - 1) = \frac{1}{x^2 - x - 1}$$

En conclusión nuestra función es:

$$g \circ f : \mathbb{R} \setminus \left\{ \frac{1 - \sqrt{5}}{2}, \frac{1 + \sqrt{5}}{2} \right\} \longrightarrow \mathbb{R}$$

$$x \longrightarrow (g \circ f)_{(x)} = \frac{1}{x^2 - x - 1}$$

1.18 Función Inyectiva

Sea $f: D \longrightarrow C$ una funcion real.

Decimos que f es una "función inyectiva" sii $\forall x_1, x_2 \in D$, con $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$, o su equivalente:

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

Ejemplo 1) $f(x) = x^2 - 1$ no es inyectiva pues:

$$-1, 1 \in \text{Dom} f -1 \neq 1 \land f(1) = f(-1) = 0$$

2) g(x) = 2x - 3 es inyectiva pues:

Sean $x_1, x_2 \in \text{Dom} g$.

$$g(x_1) = g(x_2) \Leftrightarrow 2x_1 - 3 = 2x_2 - 3 \Leftrightarrow 2x_1 = 2x_2 \Leftrightarrow x_1 = x_2$$

1.19 Función Sobreyectiva

Sea $f:D\longrightarrow C$ un función real.

Decimos que f es una "función sobreyectiva o suryectiva" sii:

$$Cod f = Im f$$

Ejemplos

1)
$$f: \mathbb{R} \longrightarrow \mathbb{R} \qquad Cod(f) = \mathbb{R} \\ x \longrightarrow f(x) = x^2 \qquad Im(f) = \mathbb{R}_0^+ \right\} \Rightarrow Cod(f) \neq Im(f)$$

∴ no es sobreyectiva.

$$f: \mathbb{R} \longrightarrow \mathbb{R}_0^+ \\ x \longrightarrow f(x) = x^2$$

$$Cod(f) = \mathbb{R} \\ Im(f) = \mathbb{R}_0^+$$

$$\geqslant \mathbb{R}_0^+ = \mathbb{R}_0^+$$

∴ es sobreyectiva.

1.20 Función Biyectiva

Sea f una función real. Diremos que f es una "función biyectiva" sii f es inyectiva y sobreyectiva.

Ejemplo

Sea
$$f: \mathbb{R} \longrightarrow \mathbb{R} / f(x) = 5x$$

• es inyectiva, en efecto:

$$x_1 \neq x_2 \Rightarrow 5x_1 \neq 5x_2 \Rightarrow f(x_1) \neq f(x_2)$$

• es sobreyectiva pues:

$$\xi \exists x, \, \text{Dom} f = \mathbb{R} / f(x) = y?$$

$$f(x) = y$$
$$x = \frac{y}{5}$$
$$5x = y$$

$$\therefore$$
 dado $y \in \text{Cod} f$

$$\exists \frac{y}{5} \in \mathbb{R} / f\left(\frac{y}{5}\right) = y$$

Osea: $y \in \mathbb{R} \ y \frac{y}{5} \in \mathbb{R}$

Luego es biyectiva.

Nota : para determinar si f es sobre hay que despejar x y ver que y pueda tomar cualquier valor de $\operatorname{Cod} f$.

En el ejemplo anterior esto se lleva a cabo probando $y \in \mathbb{R}$ y $\frac{y}{5} \in \mathbb{R}$.

1.21 Funcion Inversa

Sea $f: D \longrightarrow C$ una función real biyectiva.

Llamaremos "función inversa" de f y la notaremos f^{-1} a la función definida por:

$$\begin{array}{c} f^{-1}: C \longrightarrow D \\ y \longrightarrow f^{-1}(y) = x \ / \ y = f(x) \end{array}$$

Ejemplo $f: \mathbb{R} \longrightarrow \mathbb{R} / x \longrightarrow f(x) = 5x$

• Sabemos que
$$f$$
 es biyectiva $\Rightarrow \exists f^{-1} : \mathbb{R} \longrightarrow \mathbb{R} / y \longrightarrow f^{-1}(y) = \frac{y}{5}$

1.21.1 Gráfica de la función inversa

La grafica de una función y su inversa son simétricas respecto de la recta y = x, esto es:

$$(a,b) \in \mathrm{Gr}(f) \Leftrightarrow f(a) = b \Leftrightarrow$$

$$\Leftrightarrow a = f^{-1}(b) \Leftrightarrow (b,a) \in \mathrm{Gr}(f^{-1})$$

1.21.2 Propiedad

$$f\circ f^{-1}=id \qquad \qquad f^{-1}\circ f=id$$

Nota: Existen casos en que esta propiedad no se cumplen, como $g(x) = x^2$.

Ya que no se cumpliría $f^{-1} \circ f = id$ es decir $\sqrt{x^2} = |x| \neq x$, solo se cumpliría si restringimos el dominio para los \mathbb{R}^+_0 .

1.22 Función Exponencial

Sea
$$f(x) = a^x$$
 $a > 0 \land a \neq 1$

Llamemos a f función exponencial.

- Analisemos:
- 1) Si x = n $n \in \mathbb{N}$ entonces $a^x = a^n = a_0 \times a_1 \times \cdots \times a_n$
- **2)** Si x = 0 $a^0 = 1$
- 3) Si $x \in \mathbb{Q}$ $\Rightarrow \frac{p}{q}$ $p, q \in \mathbb{Z}, q \neq 0$

$$a^x = a^{^p/_q} = \sqrt[q]{a^p}$$

4) Si
$$x \in \mathbb{Z}^+ \Rightarrow x = n$$
 $n \in \mathbb{N}$: $a^x = a^n$

5) Si
$$x \in \mathbb{Z}^- \Rightarrow x = -n$$
 $n \in \mathbb{N}$: $a^x = a^{-n} = \frac{1}{a^n}$

6) Si $x \in \mathbb{R}$ caso general.

No estamos en condiciones de definir con precision potencias de exponente irracional, pero no tenemos problemas en generalizar nuestros resultados.

Propiedades

- $Dom f = \mathbb{R}$ $Im f = \mathbb{R}^0$
- Propiedades:

Dados $n, m, x, y \in \mathbb{R}$

1)
$$a^n \times a^m = a^{n+m}$$

2) $\frac{a^n}{a^m} = a^{n-m}$

3)
$$(ab)^x = a^x \times b^x$$

4) $(a^x)^y = a^{xy}$

5) Si
$$0 < a < b \Rightarrow \begin{cases} a^x < b^x & si & x > 0 \\ a^x > b^x & si & x < 0 \end{cases}$$

1.22.1 Función exponencial en general

Si
$$f(x) = a^x$$
 $f(x) > 0$ $a > 0 \land a \neq 1$

- f es inyectiva.
- Si $a > 1 \longrightarrow f$ es estrictamente creciente. Si $a < 1 \longrightarrow f$ es estrictamente decreciente.
- y=0 es la asíntota horizontal.
- La Grf corta al eje Y en el punto (0,1).
- El punto $(1, a) \in Grf$.

Ejemplo e^x La funcion definida por $f(x) = e^x$

Donde e es un numero irracional, cuyo nombre se debe a Leonard Euler (1727).

$$e \simeq 2,71828\dots$$

• e > 1 la función es estrictamente creciente.

 $\text{Mas precisamente como}: \ 2 < e < 3 \Rightarrow \left\{ \begin{array}{ll} 2^x < e^x < 3^x & si & x > 0 \\ 2^x > e^x > 3^x & si & x < 0 \end{array} \right.$

Gráfica de e^x

 e^x en rojo, 2^x en azul y 3^x en verde.

1.23 Función Logarítmica

Vimos que toda función exponencial

$$f(x) = a^x$$
 $a > 0$ \land $a \neq 1$

es inyectiva y por lo tanto admite función inversa, denominada "función logarítmica de base a".

La cual notamos de la siguiente forma: $\log_a y$

Y esta definida como:

$$\begin{array}{c} f: \mathbb{R}^+ \longrightarrow \mathbb{R} \ / \\ y \longrightarrow \log_a y = x \ \ \text{tal que } a^x = y \end{array}$$

Nota: $\log_a y$ es el exponente al que hay que elevar "a" para obtener "y".

Ejemplos

$$\log_3 81 = \mathbf{4} \Leftrightarrow 3^{\mathbf{4}} = 81$$

$$\log_1 00,001 = (-3) \Leftrightarrow 10^{(-3)} = 0,001$$

1.23.1 Gráfica de $\log_a y$

Sea a > 1

 a^x en rojo, $\log_a x$ en azul.

- $\operatorname{Dom}(\log_a) = \mathbb{R}^+$
- $\operatorname{Im}(\log_a) = \mathbb{R}$
- \log_a es una función estrictamente creciente.
- x = 0 es asíntota vertical.

Sea a < 1

 a^x en rojo, $\log_a x$ en azul.

- $\operatorname{Dom}(\log_a) = \mathbb{R}^+$
- $\operatorname{Im}(\log_a) = \mathbb{R}$
- \log_a es estrictamente decreciente.
- x = 0 es asintota vertical.

Notaciones

- Si a=e entonces $\log_e x = \ln x$ (logaritmo neperiano o natural)
- Si a = 10 entonces $\log_{10} x = \log x$

1.23.2 Propiedades de log_a

 $\forall a>1 \land a\neq 0$

$$1) \log_a(xy) = \log_a x + \log_a y$$

Demostración:

$$\log_a(xy) = c \Leftrightarrow a^c = xy$$

$$a^{\log_a(xy)} = a^{\log_a x + \log_a y} = a^{\log_a x} \times a^{\log_a y} = \sup_{a^{\log_a w} = w} xy$$

$$\therefore \log_a(xy) = \log_a x + \log_a y$$

$$2) \log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

$$3) \log_a x^y = y \log_a x$$

Demostración:

$$x^{y} = a^{y \log_{a} x}$$

Es decir:
$$\log_{a} x^{y} = y \log_{a} x$$

1.23.3 Prop. Cambio de base \log_a

 $\forall a > 1 \land a \neq 0$

$$\log_a x = \frac{\log_b x}{\log_b a} \quad , \qquad b > 0$$

Demostración:

$$y = \log_a x \Leftrightarrow a^y = x$$

$$\log_b a^y \underset{a^y = x}{=} \log_b x \Leftrightarrow$$

$$\Leftrightarrow y \log_b a = \log_b x \Leftrightarrow$$

$$\Leftrightarrow y = \frac{\log_b x}{\log_b a}$$

$$\therefore \text{como } y = \log_a x \text{ concluimos: } \log_a x = \frac{\log_b x}{\log_b a}$$

1.24 Funciones Hiperbólicas

1.24.1 seno hiperbólico

La función seno hiperbólico esta definida como:

$$senh(x) = \frac{e^x - e^{-x}}{2}$$

- $Dom(senh) = \mathbb{R}$
- $\operatorname{Im}(senh) = \mathbb{R}$
- $\bullet\,$ Es estrictamente creciente.
- $senh(-x) = \frac{e^{(-x)} e^{-(-x)}}{2} = -\left[\frac{e^x e^{-x}}{2}\right] = -senh(x)$ $\therefore senh(x)$ es impar.

Gráfica

1.24.2 coseno hiperbólico

La funcion coseno hiperbólico esta definida como:

$$cosh(x) = \frac{e^x + e^{-x}}{2}$$

- $Dom(cosh) = \mathbb{R}$
- $\operatorname{Im}(\cosh) = [1, +\infty)$
- Es estrictamente:

decreciente en $\mathbb{R}_0^$ y creciente en \mathbb{R}_0^+ .

•
$$cosh(-x) = \frac{e^{(-x)} + e^{-(-x)}}{2} = \frac{e^{-x} + e^x}{2} = cosh(x)$$
 : $cosh(x)$ es par.

Gráfica

1.24.3 tangente hiperbólica

La funcion tangente hiperbólica esta definida como:

$$cosh(x) = \frac{senh(x)}{cosh(x)} = \frac{\frac{e^x - e^{-x}}{2}}{\frac{e^x + e^{-x}}{2}} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

- $Dom(tgh) = \mathbb{R}$ Im(tgh) = (-1, 1)
- Es estrictamente creciente.
- $tgh(-x) = \frac{senh(-x)}{cosh(x-x)} = \frac{-senh(x)}{cosh(x)} = -tgh(x)$ $\therefore tgh(x)$ es impar.
- Posee dos asíntotas horizontales: y = 1 e y = -1

Gráfica

1.24.4 Más funciónes hiperbólicas

A partir de las funciónes anteriores se definen:

$$cosech(x) = \frac{1}{senh(x)}$$

$$sech(x) = \frac{1}{cosh(x)}$$

$$cotgh(x) = \frac{1}{tgh(x)}$$

1.25 Funciones Trigonométricas inversas

Sabemos que las funciónes trigonométricas estudiadas anteriormente, sen, cos y tg no son inyectivas debido a su periodicidad; pero podemos restringir su dominio a un intervalo donde si lo sean, y así hallar las funciones inversas de estas.

1.25.1 arcseno

$$f: [-1,1] \longrightarrow \left[\frac{-\pi}{2}, \frac{\pi}{2}\right] /$$

$$y \longrightarrow f^{-1}(y) = x / sen(x) = y$$

1.25.2 arccoseno

$$\begin{array}{c} f: [0,\pi] \longrightarrow [-1,1] \ / \\ x \longrightarrow f(x) = \cos(x) \end{array}$$

$$\begin{array}{c} f: [-1,1] \longrightarrow [0,\pi] \ / \\ y \longrightarrow f^{-1}(y) = x \ / \ cos(x) = y \end{array}$$

1.25.3 arctangente

Chapter 2

Limite y Continuidad

2.1 Limite

El limite es la mayor erramienta para poder analisar el comportamiento de las funciones.

En si se trata de observar a que valor se acerca la funcion cuando la evaluamos en valores proximos a un punto.

2.1.0.1 Entorno

Un entorno comprende los valores cercanos al un punto dado (centro). El entorno de radio 1 de 3 comprende el intervalo [2, 4] o los valores de x que cumplen con $1 \ge x \ge 3$ lo que notaremos E(a), siendo a el centro.

Tememos otros tipos de entornos ya sea a derecha o izquierda los cuales podemos describirlos con $r \geq x \geq a$ o $a \leq x leq r$, respectivamente (siendo r el radio y a el centro). Y existe pa posobilidad de excluir el centro del entorno osea $0 < |a-x| \leq$, lo cual notaremos con $\stackrel{\circ}{E}(a)$ y llamamos entorno reducido.

Continuando...

Decimos que el limite de la funcion f cuando x tiende a a (x se acerca a a) es igual a L y se nota:

$$\lim_{x \to a} f(x) = L$$

- \odot La fuc
nion f deve estar al menos definida en
 $\stackrel{\circ}{E}(L)$
- $\odot E(L)$ depende de E(a)

Para poder trabajar se utiliza la siguiente definicion formal:

$$\lim_{x \to a} f(x) = L \Leftrightarrow \forall \varepsilon > 0, \exists \delta(\varepsilon) > 0/0 < |x - a| < \delta \Leftarrow |f(x) - L| < \varepsilon$$

Esto es: El limite de f(x) con x tendiendo a a es L si y solo si para todo ε positivo, existe un δ en fucnion de ε tal que el entorno reducido de centro a y radio δ implicque que el valor absoluto de la resta de f(x) menos L sea menor a ε .

En si plantea que si evaluamos f(x) en puntos cercanos a a, la función devolvera valores cercanos a L que estaran edentro del entorno E(L).

2.1.0.2 Ejemplo de limite sensillo

$$\lim_{x \to 2} 2x + 1 = 7$$

Demostraremos eso:

$$\forall \varepsilon > 0, \exists \delta(\varepsilon) > 0/0 < |x-3| < \delta \Rightarrow |(2x+1)-7| < \varepsilon$$

Dado un $\varepsilon > 0$ (fijamos un ε para poder trabajar).

$$|(2x+1)-7|<\varepsilon \Rightarrow |2x+1-7|<\varepsilon \Rightarrow |2\times (x-3)|<\varepsilon \Rightarrow 2\times \underbrace{|x-3|}_{<\delta}<\varepsilon$$

$$|x-3| < \delta \Rightarrow 2\delta < \varepsilon \Rightarrow \delta = \frac{\varepsilon}{2}$$

 \therefore Dado $\varepsilon > 0, \exists \delta = \frac{\varepsilon}{2}$ tal que:

$$0 < |x-3| < \frac{\varepsilon}{2} \Rightarrow 2(x-3) < \varepsilon$$
 \(\sqrt{demostrado.}

2.1.0.3 Pincipio de arquimedes

Cada segmento (y) tan largo como se quiera puede ser cubiertos con un numero finito (n) de segmentos de longitud positiva tan pequenios como se quiera (x).

Propiedad Si tres nuemros reales x,y,a satisfacen.

$$a \le x \le a + \frac{y}{n} \forall n \in \mathbb{N}; x, y, a \in \mathbb{R}$$

$$\therefore x = a$$

Demostracion Hip: $a \ge 0$, x > 0, y > 0, n > 0

Sup: a < x, x > 0, x - a > 0

Usando el principio de arquimedes, x = x - a > 0

$$n \times (x - a) > y \Rightarrow x - a > \frac{y}{n} \Rightarrow$$

 $\Rightarrow x > a + \frac{y}{n} \leftarrow ABSURDO!!$
(Ya que $a \le a + \frac{y}{n}$)

Llegando a un absurdo mostramos que la supocición es falsa(a < x), por tanto deve ser a = x.

2.1.1 Unicidad de limite

$$\lim_{x \to a} f(x) = L1 \wedge \lim_{x \to a} f(x) = L2 \Rightarrow L1 = L2$$

Demostracion Hip:

•
$$\lim_{x\to a} f(x) = L1 \Leftrightarrow \forall \varepsilon > 0, \exists \delta_1(\varepsilon)/0 < |x-a| < \delta_1 \Rightarrow |f(x)-L1| < \varepsilon$$

•
$$\lim_{x\to a} f(x) = L2 \Leftrightarrow \forall \varepsilon > 0, \exists \delta_2(\varepsilon)/0 < |x-a| < \delta_2 \Rightarrow |f(x)-L2| < \varepsilon$$

Si tomamos un $\delta = \min \delta_1, \delta_2$ entonces nos queda:

Dado un $\varepsilon > 0$, δ

$$0 < |x - a| < \delta \Rightarrow |f(x) - L1| < \varepsilon \land |f(x) - L2| < \varepsilon$$

$$\Rightarrow |f(x) - L1| + |f(x) - L2| < \varepsilon + \varepsilon \Rightarrow |f(x) - L1| - |f(x) - L2| < |f(x) - L1| + |f(x) - L2| < 2\varepsilon \Rightarrow$$

$$\Rightarrow |f(x) - L1 - (f(x) - L2)| < 2\varepsilon \Rightarrow |f(x) - L1 - (f(x) - L2)| < 2\varepsilon \Rightarrow$$

$$\Rightarrow |f(x) - L1 - f(x) + L2| < 2\varepsilon \Rightarrow |L2 - L1| < 2\varepsilon$$

En base a la propiedad del Pincipio de Arquimedes.

$$a \le x \le a + \frac{y}{n} \Rightarrow a = x$$
, donde $a, x, y \in \mathbb{R}$ y $n \in \mathbb{N}$

Tomando a = 0, x = |L2 - L1|, $\varepsilon = \frac{1}{2n}$ resulta:

$$0 \le |L2 - L1| \le 0 + 2 \times \frac{1}{2n} \Rightarrow 0 \le |l2 - l1| \le \frac{1}{n} \Rightarrow 0 = |L2 - L1| \Rightarrow 0 = L2 - L1 \Rightarrow L2 = L1$$

Son el mismo limite!

2.1.2 Caracter local de limite

Sean f y g dos funciones definidas en un $\stackrel{\circ}{E}(a)$ de manera que $\exists \delta > 0/$ $f(x) = g(x), \forall x/0 < |x-a| < \delta$ entonces los limites de f(x) y g(x) con $x \to a$ son el mismo.

Demostracion

$$\lim_{x \to a} f(x) = L \Leftrightarrow \forall \varepsilon > 0, \exists \delta_1(\varepsilon) > 0/0 < |x - a| < \delta_1 \Rightarrow |f(x) - L|\varepsilon$$

Como por hipotesis $f(x) = g(x) \ \forall x \in \stackrel{\circ}{E}(a, \delta_1)$. Tomo el minimo: $\delta_2 = \min \delta_1, \delta \ (\delta \ \text{hipotesis})$. Seguimos, dado $\varepsilon > 0, \exists \delta_2 /$

$$0 < |x - a| \delta_2 \Rightarrow |f(x) - L| < \varepsilon \overset{e^{n0 < |x - a| < \delta_2}}{\underset{\Rightarrow}{f(x) = g(x)}} |g(x) - L < \varepsilon$$

Entonces dado ε , $\exists \delta_2$

$$/0 < |x - a| < \delta_2 \Rightarrow |g(x) - L| < \varepsilon \Leftrightarrow \lim_{x \to a} g(x) = L$$

$$\therefore \lim_{x \to a} f(x) = L = \lim_{x \to a} g(x)$$

2.1.3 Formulas equivalentes

1)
$$\lim_{x \to a} f(x) = L \Leftrightarrow \lim_{x \to a} f(x) - L = 0 \Leftrightarrow \lim_{x \to a} |f(x) - L| = 0$$

Demostracion

$$\lim_{x \to a} f(x) = L \Leftrightarrow \forall \varepsilon > 0, \exists \delta(\varepsilon) > 0/0 < |x - a| < \delta \Rightarrow |f(x) - L| < \varepsilon \Leftrightarrow$$
$$\Leftrightarrow 0 < |x - a| < \delta \Rightarrow |f(x) - L| = |(f(x) - L) - 0| < \varepsilon \Leftrightarrow \lim_{x \to a} f(x) - L = 0 \Leftrightarrow$$

||x|| = |x| (propiedade de valor absoluto)

$$\Leftrightarrow 0 < |x - a| < \delta \Rightarrow |f(x) - L| = ||(f(x) - L) - 0|| < \varepsilon \Leftrightarrow \lim_{x \to a} f(x) - L = 0$$

2) "Cambio de variable"

$$\lim_{x \to a} f(x) = L \Leftrightarrow \lim_{h \to 0} f(a+h) - L = 0$$

Demostracion

$$\lim_{x \to a} f(x) = L \Leftrightarrow \forall \varepsilon > 0, \exists \delta(\varepsilon) > 0/0 < |x - a| < \delta \Leftarrow |f(x) - L| < \varepsilon \Leftrightarrow$$

Defino $h=x-a,\,h=h-0,$ despejo x=a+h y sustituyo en la formula original quedando:

$$\Leftrightarrow 0 < |h - 0| < \delta \Leftarrow |f(a + h) - L| < \varepsilon \Leftrightarrow \lim_{h \to 0} f(a + h) = L$$

2.1.4 Teorema: "funcion acotada"

Sea una funcion f(x) con limite L y vale m < L < M entonces existe δ tal que $x \in \stackrel{\circ}{E}(a)$, f(x) estara acotada inferiormente por m y superiormente por M.

$$\lim_{x \to a} f(x) = L \land m < L < M \Rightarrow [\exists \delta > 0/0 < |x - a| < \delta \Rightarrow m < f(x) < M]$$

Demostracion

Supuesto: $\lim_{x\to a} f(x) = L \land m < L < M$