

ELCT201: DIGITAL LOGIC DESIGN

Prof. Dr. Eng. Tallal El-Shabrawy, tallal.el-shabrawy@guc.edu.eg

Lecture 6

محرم 1441 هـ Spring 2020

Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg

COURSE OUTLINE

- 1. Introduction
- 2. Gate-Level Minimization
- 3. Combinational Logic
- 4. Synchronous Sequential Logic
- 5. Registers and Counters
- 6. Memories and Programmable Logic

LECTURE OUTLINE

- Combinational Logic Circuits
 - Decoders
 - Encoders
 - Multiplexers
 - Tri-state Buffers

• A Decoder is a combinational circuit that converts binary information from n input lines to a maximum of 2^n unique output lines

ullet If the n —bit coded information has unused combinations,

the decoder may have fewer than 2^n outputs

 Consider a vending machine that takes 3 bits as input and releases a single product, out of the available 8 product sorts

• It is required to design a combinational circuit with two inputs (a, b) and four outputs (D_0, D_1, D_2, D_3) , such that:

- $D_0 = 1$ when a = 0 and b = 0
- $D_1 = 1$ when a = 0 and b = 1
- $D_2 = 1$ when a = 1 and b = 0
- $D_3 = 1$ when a = 1 and b = 1

Solution

 From the specifications of the circuit, determine the required number of inputs and outputs and assign a letter (symbol) to each

2. Derive the truth table that defines the required relationship between the inputs and outputs

Inp	uts		Out	puts	
а	b	D_0	D_1	D_2	D_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

 Obtain the simplified Boolean functions for each output as a function of the input variables

$$D_0 = a'b'$$

$$D_1 = a'b$$

$$D_2 = ab'$$

$$D_3 = ab$$

4. Sketch the logic diagram

3×8 DECODER

- A 3 × 8 line decoder decodes 3 input bits into one of 8 possible outputs
- Each output represents one of the minterms of the 3 input variables

	Inputs					Out	puts			
X	y	Z	D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

2×4 DECODER

- A decoder could include an *Enable* input to control the circuit operation
- A decoder could be implemented with NAND gates and thus produces the minterms in their complemented form

E	A	В	D_0	D_1	D_2	D_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

IMPLEMENTING FUNCTIONS USING DECODERS

- Any combinational circuit can be constructed using decoders and OR gates (the decoder generates the minterms and the OR gate performs the summation)
- Example: Implement a full adder circuit with a decoder and two OR gates
- Full adder equations:

$$S(x, y, z) = \Sigma m(1,2,4,7)$$
 and $C(x, y, z) = \Sigma m(3,5,6,7)$

• Since there are 3 inputs, we need a 3×8 decoder

IMPLEMENTING FUNCTIONS USING DECODERS

- $S(x, y, z) = \Sigma m(1, 2, 4, 7)$ and
- $C(x, y, z) = \Sigma m(3,5,6,7)$

	Input	Out	puts	
x	у	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

DECODER EXPANSIONS

- Larger decoders can be constructed using a number of smaller ones
- For example, a 3×8 decoder can be built using a couple of 2×4 decoders and a 4×16 decoder can be built using a couple of 3×8 decoders

4 × 16 Decoder

EXERCISE

- Can you sketch a 4×16 decoder using a number of 2×4 decoders?
- I am now giving you 5 minutes to attempt it
- After these 5 minutes, the lecture will continue

4 × 16 DECODER USENGC2 × 4 DECODERS

ENCODERS

- An encoder is a digital circuit that performs the inverse operation of a decoder
- ullet An encoder has 2^n input lines and n output lines
- ullet The output lines generate the binary equivalent of the input line whose value is 1

8×3 OCTAL-TO-BINARY ENCODER

$$x = D_4 + D_5 + D_6 + D_7$$

 $y = D_2 + D_3 + D_6 + D_7$
 $z = D_1 + D_3 + D_5 + D_7$

What happens if more than one input is active (set to HIGH) at the same time? For example, D_3 and D_6 ?

What happens if all inputs are equal to 0?

	Inputs									utput	s
	D_0	D ₁	D ₂	D_3	D_4	D_5	D ₆	D ₇	X	y	Z
	1	0	0	0	0	0	0	0	0	0	0
	0	1	0	0	0	0	0	0	0	0	1
	0	0	1	0	0	0	0	0	0	1	0
	0	0	0	1	0	0	0	0	0	1	1
	0	0	0	0	1	0	0	0	1	0	0
	0	0	0	0	0	1	0	0	1	0	1
	0	0	0	0	0	0	1	0	1	1	0
_	0	0	0	0	0	0	0	1	1	1	1

8×3 OCTAL-TO-BINARY ENCODER

What happens if more than one input is active (set to HIGH) at the same time? For example, D_3 and D_6 ?

- If D_3 and D_6 are active simultaneously, the output would be $(111)_2 = (7)_{10}$, because all three outputs would be equal to 1
- But this does not reflect the actual input which should have resulted in an output of $(011)_2 = (3)_{10}$ for D_3 or $(110)_2 = (6)_{10}$ for D_6
- To overcome this problem, we use priority encoders
- If we establish a higher priority for inputs with higher subscript numbers, and if both D_3 and D_6 are active at the same time, the output would be $(110)_2$ because D_6 has higher priority than D_3

$$x = D_4 + D_5 + D_6 + D_7$$

$$y = D_2 + D_3 + D_6 + D_7$$

$$z = D_1 + D_3 + D_5 + D_7$$

8×3 OCTAL-TO-BINARY ENCODER

What happens if all inputs are equal to 0?

- The encoder output would be $(000)_2$, but in fact this is the output when D_0 is equal to 1
- This problem can be solved by providing an extra output to indicate whether at least one input is equal to 1
- ullet v is the valid output

4×2 PRIORITY ENCODER

- The input D_3 has the highest priority, regardless of the values of the other inputs
- Thus, if D_3 is 1, the output will indicate that $A_1A_0=11$, i.e. the code $A_1A_0=11$ means that any data appearing on line D_3 will have the highest priority and will pass through the system irrespective of other inputs
- If $D_2=1$ and $D_3=0$, the output code will be $A_1A_0=10$ and this means that D_2 has the highest priority in this case

	Inp	outs	C	utpu	ıts	
D_3	D_2	D_1	D_0	A_1	A_0	V
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	Χ	0	1	1
0	1	Χ	X	1	0	1
1	Χ	Χ	Χ	1	1	1

MAKING CONNECTIONS

- Direct point-to-point connections between gates are made up of wires
- Routing one of many inputs to a single output is carried out using a multiplexer
- Routing a single input to one of many outputs is carried out using a demultiplexer

21

MULTIPLEXERS

- A multiplexer is used to connect 2^n points to a single point
- The control signal pattern forms the binary index of the input to be connected to the output

I_1	I_0	A	Z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Logical form

MULTIPLEXERS

S_0	S ₁	Z
0	0	I_{0}
0	1	I_{1}
1	0	I_2
1	1	I_3

Functional form

- I am now giving you 5 minutes to attempt sketching the logic diagram of an 8×1 line multiplexer
- After these 5 minutes, the lecture will continue

MULTIPLEXERS AS GENERAL-PURPOSE LOGIC

- A 2^{n-1} : 1 multiplexer can implement any function of n variables
- Steps:
 - 1. The Boolean function is listed in a truth table
 - 2. The first n-1 variables in the table are applied to the selection inputs of the MUX
 - 3. For each combination of the selection variables, evaluate the output as a function of the last variable
 - 4. The values are then applied to the data inputs inthe proper order

MULTIPLEXERS AS GENERAL-PURPOSE LOGIC: EXAMPLE I

$$F(x, y, z) = \Sigma(1,2,6,7)$$

X	y	Z	F	
0	0	0 1	0 1	F = z
0	1 1	0 1	1 0	F = z'
1 1	0	0 1	0	F = 0
1 1	1 1	0 1	1 1	F = 1

MULTIPLEXERS AS GENERAL-PURPOSE LOGIC: EXAMPLE II

 $F(A, B, C, D) = \Sigma(1,3,4,11,12,13,14,15)$

THREE-STATE BUFFERS (TRI-STATE BUFFERS)

- These are digital circuits that exhibit three states
- Two of these states are logic 0 and logic 1
- The third state is a high-impedance state in which:
 - 1. The logic behaves like an open circuit
 - 2. The circuit has no logic significance
 - 3. The circuit connected to the output of the threestate gate is not affected by the inputs to the gate

MULTIPLEXERS USING THREE-STATE BUFFERS

