# 1. Special Cipher

if not text:

This problem requires us to first apply Caesar's cipher to the input string, then apply Run-Length Encoding (RLE) to the result.

\*Caesar's Cipher\*: This is a type of substitution cipher in which each letter in the plaintext is shifted a certain number of places down or up the alphabet.

\*Run-Length Encoding (RLE)\*: This is a form of data compression in which consecutive runs of the same character are replaced by the character followed by the count of repetitions.

```
Here's the Python function to achieve this:

def caesar_cipher(text, shift):
    result = []
    for char in text:
    if char.isalpha():
        shift_base = ord('A') if char.isupper() else ord('a')
        shifted_char = chr(shift_base + (ord(char) - shift_base + shift) % 26)
        result.append(shifted_char)
    else:
        result.append(char)
    return ".join(result)
```

```
return ""
  result = []
  count = 1
  for i in range(1, len(text)):
    if text[i] == text[i - 1]:
       count += 1
    else:
       result.append(text[i - 1])
       result.append(str(count))
       count = 1
  result.append(text[-1])
  result.append(str(count))
  return ".join(result)
def special_cipher(text, rotation):
  caesar_text = caesar_cipher(text, rotation)
  encoded_text = run_length_encoding(caesar_text)
  return encoded_text
# Given Example
print(special_cipher("AABCCC", 3)) # Output: D2EF3
```

# 2. Optimized Set of 6 Units to Shop With for Values Fewer Than 100

For this problem, we need to determine the optimal way to make change using a specific set of denomination

We can use a dynamic programming approach to solve this. The goal is to find the minimum number of units needed for each value from 1 to 99 using the given denominations.

```
Here's the Python function for this:
def min_units_to_100(denominations, max_units):
  dp = [float('inf')] * 100
  dp[0] = 0
  for i in range(1, 100):
    for d in denominations:
       if i - d >= 0:
         dp[i] = min(dp[i], dp[i - d] + 1)
  units_count = [dp[i] for i in range(1, 100)]
  avg_units = sum(units_count) / len(units_count)
  return units_count, avg_units
# Example usage
denominations = [1, 2, 5, 10, 20, 50]
units_count, avg_units = min_units_to_100(denominations, 6)
print(units_count) # List of unit counts for values from 1 to 99
print(avg_units) # Average units count
```

#### 3. Metadata Information for an Item in a Databa



- \*Item ID\*: A unique identifier for the item.
- \*Name\*: The name of the item (e.g., "Men's Casual Shirt").
- \*Description\*: A detailed description of the item.
- \*Category\*: The category the item belongs to (e.g., "Clothing").
- \*Brand\*: The brand of the item.
- \*Price\*: The price of the item.
- \*Color\*: The color(s) of the item.
- \*Size\*: The available sizes of the item (e.g., S, M, L, XL).
- \*Material\*: The material composition of the item (e.g., cotton, polyester).
- \*Stock Quantity\*: The number of items available in stock.
- \*SKU\*: Stock Keeping Unit, another unique identifier used for tracking inventory.
- \*Images\*: Links to images of the item.
- \*Ratings\*: Customer ratings of the item.
- \*Reviews\*: Customer reviews of the item.
- \*Dimensions\*: Physical dimensions of the item (e.g., length, width, height).
- \*Weight\*: The weight of the item.
- \*Shipping Information\*: Information on shipping (e.g., available shipping options, cost, estimated delivery time).

# 4. Using the Metadata:

- \*Search and Filter\*: Customers can search and filter items based on attributes like size, color, price range, brand, etc.
- \*Inventory Management\*: Track stock levels, reorder items, manage SKU-based inventory.

- \*Personalization\*: Provide personalized recommendations based on customer preferences and past purchases.
  \*Analytics\*: Analyze sales data, customer preferences, and market trends.
  \*Customer Reviews and Ratings\*: Display reviews and ratings to inform other customers and improve the shopping experience.
  - \*Shipping and Handling\*: Optimize shipping options and costs based on item weight and dimensions.

High-Level Design Diagram for Portfolio Management Platform

Here's a high-level design overview of the platform:

## #### Components:

- 1. \*User Interface (UI)\*
  - Web Application
  - Mobile Application
- 2. \*Backend Services\*
  - \*User Service\*: Manages user accounts and authentication.
  - \*Portfolio Service\*: Manages user portfolios.
  - \*Asset Service\*: Manages assets like stocks and mutual funds.
  - \*Pricing Service\*: Fetches and updates prices from different sources.
  - \*Notification Service\*: Sends alerts/updates to users.
- 3. \*Data Sources\*
  - \*Market Data Providers\*: Different sources providing real-time prices for stocks and mutual funds.

#### 4. \*Databases\*

- \*User Database\*: Stores user account information.

| - *Portfolio Database*: Stores user portfolios and assets.                                                        |
|-------------------------------------------------------------------------------------------------------------------|
| - *Pricing Database*: Stores historical and real-time pricing data.                                               |
|                                                                                                                   |
| 5 *Massacina Custam*                                                                                              |
| 5. *Messaging System*                                                                                             |
| - Event-driven architecture using message queues (e.g., Kafka, RabbitMQ) for real-time updates and notifications. |
|                                                                                                                   |
| 6. *APIs*                                                                                                         |
| - External APIs for market data.                                                                                  |
| - Internal APIs for communication between services.                                                               |
|                                                                                                                   |
| 4444 Davier Diagrams                                                                                              |
| #### Design Diagram:                                                                                              |
|                                                                                                                   |
| ++                                                                                                                |
| Web/Mobile UI                                                                                                     |
| ++                                                                                                                |
|                                                                                                                   |
| +                                                                                                                 |
|                                                                                                                   |
| User Service   Portfolio Service                                                                                  |
| +++++                                                                                                             |
|                                                                                                                   |
| ++ ++ ++                                                                                                          |
| User DB     Portfolio DB   Pricing DB                                                                             |
| ++ ++ ++                                                                                                          |
|                                                                                                                   |
| ++                                                                                                                |
|                                                                                                                   |
| Messaging System (Kafka/RabbitMQ)                                                                                 |

| ++                                         |  |
|--------------------------------------------|--|
|                                            |  |
| +                                          |  |
| Pricing Service       Notification Service |  |
| +                                          |  |
|                                            |  |
| +v                                         |  |
| External Market Data Providers (APIs)      |  |
| ++                                         |  |

# #### Explanation:

- 1. \*User Interface (UI)\*: Users access their portfolios via web or mobile applications.
- 2. \*User Service\*: Handles user registration, authentication, and profile management.
- 3. \*Portfolio Service\*: Manages user portfolios, adding, removing, and updating assets.
- 4. \*Asset Service\*: Manages the details of the assets in the portfolios.
- 5. \*Pricing Service\*: Regularly fetches real-time prices from various market data providers and updates the Pricing Database.
- 6. \*Notification Service\*: Sends notifications to users about portfolio updates, price changes, and other relevant events.

#### 7. \*Databases\*:

- \*User Database\*: Stores user credentials and profiles.
- \*Portfolio Database\*: Contains user portfolios, including asset details and quantities.
- \*Pricing Database\*: Stores real-time and historical price data for assets.
- 8. \*Messaging System\*: An event-driven system ensures real-time updates and communication between services.

| 9. *Market Data Providers*: External sources provide real-time asset prices, which the Pricing Service integrates |
|-------------------------------------------------------------------------------------------------------------------|
| into the system.                                                                                                  |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |