

Chapter 6: Trees

Dr. Sirasit Lochanachit

Abstract Data Type

Linear:

- Arrays, Stacks, Queues, and Linked Lists
- Operations: push, pop, enqueue, dequeue
- Algorithms: Searching and sorting, insertion, deletion

Non-Linear:

- Trees and Graphs
- Algorithms: Traversal, Insertion and Deletion, Balancing, and etc.

Today's Outline

General Trees:

- Definition and examples
- Elements of Tree Structure

Binary Trees:

Definition, examples, properties, and types

Tree traversal algorithms:

- Depth-first Traversal (Preorder, postorder, and inorder)
- Breadth-first Traversal

What is a Tree?

A tree stores elements in a hierarchical structure.

Tree Example

Tree Applications

- Tree represents natural organisation for data.
- Tree structure has been used widely in
 - File systems (Directory)
 - Graphical User Interfaces
 - Databases (Sub-categories, etc.)
 - Websites

Log Out Derek K. Miller.

Retrieved from https://live.staticflickr.com/7315/13167827344_f2a0ab2015_o_d.png CC BY 2.0 https://live.staticflickr.com/2261/1817203755_c0b7db3f64_o_d.jpg CC BY-NC 2.0

Formal Definition

• A **tree** is a collection of nodes that store elements with a **parent-child** relationship.

Formal Definition

- Siblings
- External or <u>leaf</u> node
- Internal
- Ancestor
 - **Descendant**

Basic Elements of Tree Structure

Basic Elements of Tree Structure

Implementation of Trees

Tree

Other Implementation of Trees

A{ B{E, F}, C, D{G, H, I} }

(a) General Form

(b) Tab Form

(c) Set Form

Binary Trees

 A binary tree is a tree in which any node can have only two children at maximum.

Each child node is designated as being either a **left child** or **right child**.

Binary Trees

Types of Binary Trees

 A binary tree is nearly complete when every level, except the last, is completely filled and all leaf nodes are <u>as far left as possible</u>.

(a) Complete/Perfect Binary Tree

(b) Nearly Complete Binary Tree at level 2

Types of Binary Trees

• A binary tree is proper or full when every node has zero or two children.

(a) **Proper/Full** Binary Tree
Each node has either 0 or 2 children

(b) Improper Binary Tree

Examples of Binary Trees

Examples of Binary Trees

- Binary trees can be used to represent an arithmetic expression.
- Leaves are associated with variables or constants.
- Root and Internal nodes are associated with operators.
- Subtree is a sub-expression.

Recursive Binary Trees

- A binary tree is either empty or consists of:
 - A root node that stores an element
 - A binary left subtree (possibly empty)
 - A binary right subtree (possibly empty)

Binary Trees' Properties

Binary Trees' Properties

- *n* denotes the number of nodes
- h denotes the height of tree

Binary Trees Implementation

Arrays (List of Lists)

or

Doubly Linked Lists

Binary Tree Traversal

- A traversal of a tree is a method to access all the tree nodes.
- Two main approaches: Depth-first and Breadth-first
 - Depth-first
 - Preorder traversal
 - Postorder traversal
 - Inorder traversal
 - \circ Breadth-first visit all the nodes at depth d before moving to depth d+1.

Depth-first Traversal

Preorder Traversal

Inorder Traversal

Postorder Traversal

Preorder Traversal

Root -> Left subtree -> Right subtree

```
Algorithm preOrder(root):
    if (root is not null):
        process(root)
        preOrder(leftSubtree)
        preOrder(rightSubtree)
    end if
end preOrder
```


Preorder Traversal

Preorder Traversal

Visited nodes

Preorder Traversal

Preorder Traversal

Visited nodes

Left subtree -> Right subtree -> root

```
Algorithm postOrder(root):
    if (root is not null):
        postOrder(leftSubTree)
        postOrder(rightSubtree)
        process(root)
    end if
end postOrder
```


Postorder Traversal

L R N

Visited nodes

Postorder Traversal

Visited nodes

Postorder Traversal

Inorder Traversal

Left subtree -> root -> Right subtree

```
Algorithm inOrder(root):
    if (root is not null):
        inOrder(leftSubTree)
        process(root)
        inOrder(rightSubtree)
    end if
end inOrder
```


Inorder Traversal

Inorder Traversal

Visited nodes

Inorder Traversal

Inorder Traversal

Visited nodes

Depth-first Traversal Exercise 1

Depth-first Traversal Exercise 2

Preorder Traversal

. R

Inorder Traversal

R

Postorder Traversal

Depth-first Traversal Exercise 3

Preorder Traversal

Inorder Traversal

Postorder Traversal L R

Depth-first Traversal Application

Preorder traversal of an ordered tree - Table of contents.

Depth-first Traversal Application

- Binary trees can be used to represent an arithmetic expression.
- The **inorder** traversal visits node in a consistent order with the expression.

Expression: (8/2) - ((3*5)+1)

R

Breadth-first Traversal

• Visit all the nodes at depth *d* before moving to depth *d*+1.