# Building a Predictive model

**Thomaz Moon** 

## **Problem Statement:**

A Real estate investment group hired me to teach their analyst (Bob), who is familiar with python, how to make a predictive model.

\*The more technical things will be in the notebooks, while this presentation is an overview of what we did.

#### **Data Process flow used**



#### Process of building the models

- 1. Clean the data
  - a. Missing values
  - b. Nonsense values
  - c. Look for outliers
- 2. Check for correlations to see where I might want to start
  - a. Using .corr()
  - b. Heatmaps
- 3. Make a model and test it
- 4. Repeat



### <u>Cleaned vs uncleaned scatter</u> <u>plots</u>









# Looking at correlations to start making a model

#### Gets the job done

| SalePrice      | 1.000000  |
|----------------|-----------|
| Overall Qual   | 0.799607  |
| Gr Liv Area    | 0.731128  |
| Garage Cars    | 0.679439  |
| Total Bsmt SF  | 0.672876  |
| Garage Area    | 0.663448  |
| 1st Flr SF     | 0.659165  |
| Year Built     | 0.579510  |
| Full Bath      | 0.560931  |
| TotRms AbvGrd  | 0.548539  |
| Garage Yr Blt  | 0.546064  |
| Year Remod/Add | 0.545951  |
| Fireplaces     | 0.446627  |
| BsmtFin SF 1   | 0.430052  |
| Lot Area       | 0.367481  |
| Open Porch SF  | 0.331948  |
| Wood Deck SF   | 0.307945  |
| Bsmt Full Bath | 0.272205  |
| Half Bath      | 0.267194  |
| 2nd Flr SF     | 0.223481  |
| Bsmt Unf SF    | 0.181009  |
| Bedroom AbvGr  | 0.128116  |
| Mo Sold        | 0.020295  |
| Yr Sold        | -0.000367 |
| BsmtFin SF 2   | -0.028894 |
| Bsmt Half Bath | -0.066242 |
| Kitchen AbvGr  | -0.085796 |
| Enclosed Porch | -0.136347 |
| Overall Cond   | -0.171375 |

#### Nice DataFrame style

|                | SalePrice |  |  |  |  |
|----------------|-----------|--|--|--|--|
| SalePrice      | 1.000000  |  |  |  |  |
| Overall Qual   | 0.799607  |  |  |  |  |
| Gr Liv Area    | 0.731128  |  |  |  |  |
| Garage Cars    | 0.679439  |  |  |  |  |
| Total Bsmt SF  | 0.672876  |  |  |  |  |
| Garage Area    | 0.663448  |  |  |  |  |
| 1st Flr SF     | 0.659165  |  |  |  |  |
| Year Built     | 0.579510  |  |  |  |  |
| Full Bath      | 0.560931  |  |  |  |  |
| TotRms AbvGrd  | 0.548539  |  |  |  |  |
| Year Remod/Add | 0.545951  |  |  |  |  |
| Fireplaces     | 0.446627  |  |  |  |  |
| BsmtFin SF 1   | 0.430052  |  |  |  |  |

#### **Beautiful Heatmap**



#### Running tests on your model

```
1 # This function will just return a Ridge score for X along with the RMSE for easier use
   def ridge it(X):
        X train, X test, y train, y test = train test split(X, y)
 5
        # scale it
        sc = StandardScaler()
 7
       Z train = sc.fit transform(X train)
 8
       Z test = sc.transform(X test)
 9
10
       r = RidgeCV(alphas = np.logspace(0,3, 100), cv = 6, scoring = 'r2')
       r.fit(Z train, y train)
11
12
13
        print(f'Train Score: {r.score(Z train, y train)}')
        print(f'Test Score: {r.score(Z test, y test)}')
14
15
        print(f'\n Train RMSE: {metrics.mean squared error(y train, r.predict(Z train), squared= False)}')
16
        print(f'Train RMSE: {metrics.mean squared error(y test, r.predict(Z test), squared=False)}')
17
 1 # Lets just test it first using our X poly df
 2 ridge it(X poly df)
Train Score: 0.9287186789108417
Test Score: 0.9198447095999542
 Train RMSE: 19844.717052914963
Train RMSE: 22613.619236475166
```

- Test your model a few times using different methods.
  - Linear
  - o Ridge
  - Lasso
- Checking for bias/variance as well as if you're overfitting your model.
  - Do this while you have the target variable

#### **After the Tests**

- Check your parameter's information.
  - Statsmodel
  - Correlation
- Compare training test scores with your real score.
  - Check for bias/variance on the real test
  - Overfit/Underfit

| Dep. Variable:    | SalePrice        | R        | squared:    | 0.9     | 47    |           |          |
|-------------------|------------------|----------|-------------|---------|-------|-----------|----------|
| Model:            | OLS              | Adj. R   | squared:    | 0.9     | 34    |           |          |
| Method:           | Least Squares    | F        | -statistic: | 75.     | 03    |           |          |
| Date:             | Sun, 26 Sep 2021 | Prob (F- | statistic): | 0.      | 00    |           |          |
| Time:             | 12:29:13         | Log-Li   | kelihood:   | -2012   | 26.   |           |          |
| No. Observations: | 1799             |          | AIC:        | 4.094e+ | 04    |           |          |
| Df Residuals:     | 1453             |          | BIC:        | 4.285e+ | 04    |           |          |
| Df Model:         | 345              |          |             |         |       |           |          |
| Covariance Type:  | nonrobust        |          |             |         |       |           |          |
|                   |                  | coef     | std err     | 1.45    | P> t  | [0.025    | 0.975]   |
|                   |                  | coei     | stu en      | L.      | PPIU  | [0.025    | 0.313]   |
|                   | Coef -1.         | 605e+09  | 9.99e+08    | -1.608  | 0.108 | -3.56e+09 | 3.53e+08 |

# Now you just



Repeat. Repeat. Repeat.

#### Recommendation 1: Clean your data

- Clean Clean
- Model
- Clean

\*But make sure what you're cleaning is even going to be used so you don't waste time



#### Recommendation 2: Don't limit yourself

 Don't be afraid to look for outside Data if you think it might help your model





\*But make sure it will actually help you

#### **Recommendation 3: Visuals**



Use Visuals
every now and
then. You might
see some data
you would have
otherwise
looked over



#### Recommendation 4: Don't tunnel vision

Don't focus too much on only one metric. R2 scores for example never go down, even if the features don't actually help your model.

R-squared: 0.952

Adj. R-squared: 0.940

RMSE Score: 23,375.032

R-squared: 0.947

Adj. R-squared: 0.934

RMSE Score: 22,417.390



# Recommendation 5: Prep for missing data

- Try to contact whoever you need to in order to verify or retrieve the data.
- If it's just a few rows, you might want to consider dropping the rows
- Not use the columns that have a lot of missing data.
- Make a model to predict the missing values

```
3 print(train.shape)
4 print(test.shape)

(2051, 81)

1 # if we drop Na
2 train.dropna().shape

(1508, 60)
```

\*Sometimes missing data can be the key to your model if you find it though



#### Sources

- Ames Data Set:
  - https://www.kaggle.com/c/dsir-830-project-2-regression-challenge/
- Cover picture:
  - https://www.cityofames.org/home/showpublishedimage/6334/63594341568773000
- Data Flow chart:
  - https://econsultancy.imgix.net/content/uploads/2018/10/15142456/upxacademy-flowchart-data-science.png?auto=compress,enhance,format,redeye&crop=faces,entropy,edges&fit=crop&g=60&w=960&h=431
- Repeat Picture:
  - http://blog.vipkid.com/wp-content/uploads/2019/08/Repeat-Blog-Image-2.png
- Mr Clean:
  - https://contentgrid.thdstatic.com/hdus/en\_US/DTCCOMNEW/fetch/FetchRules/Ric h Content/203253133-3700083906-mr-clean-magic-erasers-outdoor-pro-multi-pur pos-take-on-tough-messes-7-2020-v1.jpg
- Tunnel Vision:
- Missing Data:
  - https://www.dataapplab.com/wp-content/uploads/2017/04/missing-data.jpg