ГРАНТ 16-31-60023 мол_а_дк Математические модели и структуры социальных сетей

Исследование направлено на разработку новых методов анализа и моделирования больших социальных сетей

https://github.com/yudinev/VK_neighbourhood

https://github.com/yudinev/VK subnet

Networks

Start Stop Step Resume Current modeling time:21.0

Time of updating 2000 Time of modeling 2000 Occase Algorithm

Communities Chattering Consists CPA-Graph

Фрагмент исследованной сети ссылок веб-страниц, https://github.com/yudinev/web crawler

Мгновенный снимок программы, разработанной для моделирования сетевых процессов, https://github.com/yudinev/Simbigraph2

Основные результаты проекта

Результат	Математические модели	Примеры интерпретаций и пояснения
Предложена модель случайных графов с нелинейным правилом предпочтительного связывания с учетом потери связей между участниками сети в ходе ее эволюции	Выведены уравнения динамики, позволяющие прогнозировать развитие сети с потерями связей в процессе развития сети, а также с учетом разовых потерь после выращивания (случайное просеивание).	Граф с непрерывной потерей связей можно интерпретировать как структуру некой «разогретой» экономики, если его вершины поставить в соответствие субъектам экономической деятельности, а дуги – проектам (регулярным взаимодействиям) пар субъектов. Принцип предпочтительного связывания – вполне соответствует тому, как выбираются партнеры новыми субъектами при их вхождении в систему регулярных экономических взаимодействий. Отсутствие потерь дуг соответствует благоприятному для развития экономики климату, когда все проекты сохраняются в течение длительного времени. Модель с потерями связей соответствует «холодному экономическому климату», определяемому, в частности, большими налогами. Модель со случайным просеиванием связей соответствует ситуации, когда после некоторого «теплого периода» сбор дуг получился тем же, как и в режиме непрерывной потери дуг, но происходит это не непрерывно, а после генерации.Какая модель оказывается наиболее жизнеспособной, в какой модели присутствует (при прочих равных условиях), большее число «локомотивов экономике» обсуждается в работе [1].
Решена задача комплексной калибровки графов с нелинейным правилом предпочтительного связывания.	Формулируется и решается экстремальная задача калибровки графов по распределению степени связности вершин и совместному распределению концевых степеней ребер.	В ранее выполненных работах [2,3] мы «научились» подбирать «функцию предпочтения» для реализации заданного распределения степени связности вершин. В работе [4], выполненной в рамках гранта, мы впервые «научились» подбирать «функцию предпочтения» так, чтобы было реализовано не только заданное распределение степени связности вершин, но и совместное распределение степени связности ребер. В работе предложенный подход использован для построения модели графа сети Интернет на уровне автоматизированных систем.

Решена задача моделирования сетей путем «смешивания» случайных графов.	Формулируется и решается задача калибровки композиции (объединения) графов с нелинейным правилом предпочтительного связывания для реализации заданных распределения степени связности вершин и совместного распределения концевых степеней ребер моделируемой сети.	В работе [5], выполненной в рамках гранта, показывается, что социальная сеть Brightkite может быть представлена в виде композиции (объединения) двух крупных компонент с автономными структурами. Обе компоненты хорошо описываются графами предпочтительного связывания. В этой же работе геосоциальная сеть Gowalla рассматривается как композиция автокоррелированной случайной сети Эрдеша-Реньи и сети, описываемой графом предпочтительного связывания. Соответствующая модификация графа Эрдеша-Реньи – автокоррелированный ЭР-граф, введенный в статье [5], учитывает автокоррелированное поведение устанавливающих связи пользователей сети, поведение, на которое влияет память о предыдущих успехах и неудачах.
Решена задача калибровки графа по заданному распределению степени узлов и коэффициенту кластеризации путем введения нового типа случайных графов – модульная модель графов с нелинейным правилом предпочтительного связывания	Выводятся математические соотношения, позволяющие выполнять комплексную калибровку графа, выращиваемого присоединениями модулей. Показано, что эта модель позволяет калибровать случайные графы предпочтительного связывания одновременно по распределениям степеней связности вершин и по коэффициенту кластеризации.	В методы теории случайных графов с нелинейным правилом предпочтительного связывания вводится новый прием – использование для выращивания графов сложных стохастических приращений (модулей), состоящих из нескольких взаимосвязанных вершин (модульная модель). Предложенная в рамках гранта модульная модель [6] успешно была использована для совместной калибровки по распределению степени связности вершин и коэффициенту кластеризации. В работе [7] модульная модель была расширена до модели с добавлением целых сообществ, что отражает реальную картину роста социальных сетей, например, при поступлении в университет в социальную сеть университета добавляются сразу несколько студентов, которые сразу связываются между собой, поскольку поступают в одну студенческую группу.
Решена задача разработки ускоренного алгоритма для расчета встречаемости сетевых мотивов на основе статистического подхода	Предложены алгоритмы, основанные на метода случайной выборки каркасов (впервые предложенным в [8] и реализованным изначально только для неориентированных графов), для расчета встречаемости типовых подграфов в сетях с направленными связями.	Предложенный алгоритм позволяет ускорить расчет 3-мотивов и 4-мотивов в сетях с направленными связями в сравнении с известными подходами (реализованными в библиотеке igraph для среды R, пакетах mfinder, accMotif, Fanmod). Проблема перебора большого числа типовых подграфов на четырех вершинах в ориентированных графа решена путем развития оригинального ускоренного метода Монте-Карло (метода случайной выборки каркасов) с учетом представления найденных подграфов в канонической форме графов (алгоритм BLISS).

- 1. Задорожный В.Н., Юдин Е.Б Dynamic equations of node degrees in growing networks with connection losses // 2016 Dynamics of Systems, Mechanisms and Machines, Dynamics 2016. Proceedings, 2017. P. 7819111. DOI: 10.1109/Dynamics.2016.7819111.
- 2. Zadorozhnyi V.N., Growing graphs with addition of communities // Journal of Physics: Conference SeriesStructural properties of the scale-free Barabasi-Albert graph. // Automation and Remote Control. Vol. 73, No. 4, 2012. P. 702-716. DOI: 10.1134/ S0005117912040091.
- 3. Zadorozhnyi V.N., Yudin E.B. Growing network: models following nonlinear preferential attachment rule // Physica A: Statistical Mechanics and its Applications (2015) pp. 111-132.
- 4. Задорожный В.Н., Юдин Е.Б. Калибровка случайных графов предпочтительного связывания по распределениям степеней вершин и ребер // Омский научный вестник. 2017. № 1(151). С. 114–118.
- 5. Задорожный В.Н., Юдин Е.Б. О неоднородной структуре социальных сетей // Омский научный вестник. 2017. № 2(152). С. 91–96.
- 6. Задорожный В.Н., Юдин Е.Б., Юдина М.Н. Калибровка случайных графов предпочтительного связывания по распределениям степеней вершин и ребер // Омский научный вестник. 2017. №3(153). С. 104–109.
- 7. Yudin E.B. Growing graphs with addition of communities // Journal of Physics: Conference Series, DOI 10.1088/1742-6596/1050/1/012099.
- 8. Юдин Е.Б. Расчет числа мотивов на трех узлах методом случайной выборки каркасов в сетях с направленными связями // Омский научный вестник. 2017. № 1(151). С. 135–139.