ASSIGNMENT 4 **MTH102A**

(1) Let $\{w_1, w_2, ..., w_n\}$ be a basis of a finite dimensional vector space V. Let v be a non zero vector in V. Show that there exists w_i such that if we replace w_i by v in the basis it still remains a basis of V.

Solution. Let $v = \sum_{i=1}^{n} a_i w_i$ for some $a_1, ..., a_n \in \mathbb{F}$, since v is non-zero at least one $a_i \neq 0$ for some $1 \leq i \leq n$. Assume $a_1 \neq 0$. Write $w_1 = \frac{1}{a_1}v - \sum_{i=1}^{n} \frac{a_i}{a_1}w_i$. Replace w_1 by v. Clearly $\{v, w_1, ..., w_n\}$ spans V.

Now we show that this set is L.I.. Let $b_1, ..., b_n$ be such that $b_1v + \sum_{j=1}^{n} b_jw_j = 0, \Rightarrow$ $b_1 \sum_{i=1}^{n} a_i w_i + \sum_{i=1}^{n} b_i w_i = 0 \Rightarrow b_1 a_1 w_1 + \sum_{i=1}^{n} (b_1 a_i + b_i) w_i = 0, \Rightarrow b_1 a_1 = 0, b_1 a_i + b_i = 0$ 0 for $2 \le j \le n$. Since $a_1 \ne 0 \Rightarrow b_j = 0$ for all $1 \le j \le n$. Hence done.

- (2) Find the dimension of the following vector spaces:
 - (i) $X = \{A : A \text{ is } n \times n \text{ real upper triangular matrices} \}$
 - (ii) $Y = \{A : A \text{ is } n \times n \text{ real symmetric matrices} \},$
 - (iii) $Z = \{A : A \text{ is } n \times n \text{ real skew symmetric matrices} \}$
 - (iv) $W = \{A : A \text{ is } n \times n \text{ real matrices with } Tr(A) = 0\}$

Solution. Let E_{ij} be the matrix with ij^{th} entry one and others are zero, F_{ij} be matrix with ij^{th} and ji^{th} entries are 1 and others are zero and for $i \neq j$ define D_{ij} be the matrix with ij^{th} entry is 1, ji^{th} entry is -1 and others are zero.

- (i) Set $\{E_{ij}; i \leq j\}$ forms a basis for X. Hence $dim(X) = n + \frac{n^2 n}{2} = \frac{n(n+1)}{2}$. (ii) Set $\{F_{ij}; i \leq j\}$ is a basis for Y, hence $dim(Y) = \frac{n(n+1)}{2}$.
- (iii) For a real skew-symmetric matrix all diagonal entries are zero. Then the set $\{D_{ij}; i < j\}$. Hence $dim(Z) = \frac{n^2 - n}{2} = \frac{n(n-1)}{2}$.
- (iv) Let A be any matrix with trace zero, then $\sum_{i=1}^{n} a_{ii} = 0, \Rightarrow a_{11} = -(a_{22} + ... + a_{22} + .$ a_{nn}). Hence Set $dim(W) = n^2 - 1$.
- (3) Let $\mathcal{P}(X,\mathbb{R})$ be vector space of all single variable polynomials with real coefficients and $\mathcal{P}_n(X,\mathbb{R})$ be the subspace of all polynomials with degree less or equal to n. Find a basis of $\mathcal{P}_n(X,\mathbb{R})$. Prove that $S=\{X+1,X^2-X+1,X^2+X-1\}$ is a basis of $\mathcal{P}_2(X,\mathbb{R})$. Hence, determine the coordinates of following elements: $2X - 1, 1 + X^2, X^2 + 5X - 1.$

Solution. $P = \{1, X, X^2, ..., X^n\}$ is a basis(every polynomial is a linear combination of elements of P and the set is L.I.).

First we show that the set S is L.I..Let $a_0, a_1, a_2 \in \mathbb{R}$ such that $a_0(X+1) + a_1(X^2 - X+1) + a_2(X^2 + X - 1) = 0$, $\Rightarrow a_0 + a_1 - a_2 + (a_0 - a_1 + a_2)X + (a_1 + a_2)X^2 = 0$. We get $a_0 + a_1 - a_2 = 0$, $a_0 - a_1 + a_2 = 0$, solving this system of equation we get $a_0, a_1, a_2 = 0$.

Let $p(X) = a_0 + a_1 X + a_2 X^2$ be any element in $\mathcal{P}_2(X, \mathbb{R})$. Let $b_0, b_1, b_2 \in \mathbb{R}$ such that $p(X) = a_0 + a_1 X + a_2 X^2 = b_0(X+1) + b_1(X^2 + X - 1) + b_3(X^2 - X + 1)$ then we get $b_0 = \frac{a_0 + a_1}{2}, b_1 = \frac{a_0 - a_1 + 2a_2}{4}, b_2 = \frac{a_1 - a_0 + 2a_2}{4}$. Hence S spans $\mathcal{P}_2(X, \mathbb{R})$. $2X - 1 = \frac{1}{2}(X+1) - \frac{3}{4}(X^2 - X + 1) + \frac{3}{4}(X^2 + X - 1)$. $1 + X^2 = \frac{1}{2}(X+1) + \frac{3}{4}(X^2 - X + 1) + \frac{1}{4}(X^2 + X - 1)$. $X^2 + 5X - 1 = 2(X+1) - 1(X^2 - X + 1) + (X^2 + X - 1)$.

- (4) Let W be a subspace of a finite dimensional vector space V
 - (i) Show that there is a subspace U of V such that V = W + U and $W \cap U = \{0\}$,
 - (ii) Show that there is no subspace U of V such that $W \cap U = \{0\}$ and dim(W) + dim(U) > dim(V).

Solution.

(i) Let $\dim(V) = n$, since V is finite dimensional W is also finite dimensional. Let $\dim(W) = k$ and $B_w = \{w_1, ..., w_k\}$ be a basis for W.In case k = n nothing to prove, so assume k < n. Now we can extend B_w to a basis B for V. Let $B = \{w_1, ..., w_k, v_{k+1}, ..., v_n\}$. Let U be a subspace of V generated by $\{v_{k+1}, ..., v_n\}$. Let $v \in V$ be any. Then there exist scalars $a_1, ..., a_n \in \mathbb{F}$ such that $v = a_1w_1 + ... + a_kw_k + a_{k+1}v_{k+1} + ... + a_nv_n = (a_1w_1 + ... + a_kw_k) + (a_{k+1}v_{k+1} + ... + a_nv_n) \in W + U$.

Now we show that $W \cap U = \{0\}$. Let $v \in W \cap U, \Rightarrow v \in W$ and $v \in U$. Then there exist scalars $a_1, ..., a_k$ and $b_{K+1}, ..., b_n$ such that $a_1w_1 + ... + a_kw_k = v = b_{k+1}v_{k+1} + + b_nv_n, \Rightarrow a_1w_1 + ... + a_kw_k - b_{k+1}v_{k+1} - - b_nv_n = 0, \Rightarrow a_1, ..., a_k, b_{k+1}, ..., b_n = 0$, as B is L.I.. Hence $W \cap U = \{0\}$.

- (ii) Let $W \cap U = \{0\}$ and dim(W) + dim(U) > dim(v), $\Rightarrow dim(W) + dim(U) 0 > dim(V)$, $\Rightarrow dim(W) + dim(U) dim(W \cap U) > dim(V)$, $\Rightarrow dim(W + U) > dim(V)$, which is a contradiction as W + U is a subspace of V so its dimension has to be less or equal to n.
- (5) Let $W_1 = L(\{(1,0,-1),(1,0,1)\})$ and $W_2 = L(\{(0,1,2),(0,1,-1)\})$ be two subspaces of \mathbb{R}^3 . Prove that $W_1 + W_2 = \mathbb{R}^3$. Given an example $v \in \mathbb{R}^3$ such that v can be written in two different ways of the form $v = w_1 + w_2$ where $w_1 \in W_1, w_2 \in W_2$.

Solution. Let $(x,y,z) \in \mathbb{R}^3$ be any. Let $a,b,c,d \in \mathbb{R}$ be such that (x,y,z) =

ASSIGNMENT 4 MTH102A 3

a(1,0,-1)+b(1,0,1)+c(0,1,2)+d(0,1,-1). First assume that $c=0,\Rightarrow (x,y,z)=a(1,0,-1)+b(1,0,1)+d(0,1,-1)=(a,b+c,-a-c), \Rightarrow a=\frac{x-y-z}{2},b=\frac{x+y+z}{2}$ and $d=y,\Rightarrow (x,y,z)\in W_1+W_2$. So $\mathbb{R}^3=W_1+W_2$.

Now (x,y,z)=p(1,0,-1)+q(1,0,1)+r(0,1,2)+s(0,1,-1), assume s=0, then (x,y,z)=p(1,0,-1)+q(1,0,1)+r(0,1,2), $\Rightarrow p=\frac{x+2y-z}{2}$, $q=\frac{x-2y+z}{2}$ and r=y. Let v=(1,2,3). Write (1,2,3)=a(1,0,-1)+b(1,0,1)+d(0,1,-1), $\Rightarrow (1,2,3)=-2(1,0,-1)+3(1,0,1)+2(0,1,-1)=(1,0,5)+(0,2,-2)\in W_1+W_2$. Let $(1,2,3)=p(1,0,-1)+q(1,0,1)+r(0,1,2)=(1,0,-1)+0(1,0,1)+2(0,1,2)=(1,0,-1)+(0,2,4)\in W_1+W_2$.