

Pauta Interrogación 1

Profesores: Gabriel Diéguez - Fernando Suárez

Problemas

Pregunta 1

a) Sean $\varphi, \psi, \theta \in L(P)$ y $\Sigma \subseteq L(P)$. Demuestre que

$$(\varphi \to \psi) \Rightarrow (\Sigma \cup \{\varphi, \psi\} \models \theta \Leftrightarrow \Sigma \cup \{\varphi\} \models \theta)$$

Solución

Sean $\varphi, \psi, \theta \in L(P)$ y $\Sigma \subseteq L(P)$

Por demostrar. $(\varphi \to \psi) \Rightarrow (\Sigma \cup \{\varphi, \psi\} \vDash \theta \Leftrightarrow \Sigma \cup \{\varphi\} \vDash \theta)$

Dado que estamos tratando con una implicancia, basta con tomar como hipótesis¹ a $(\varphi \to \psi)$ y luego demostrar $(\Sigma \cup \{\varphi, \psi\} \models \theta \Leftrightarrow \Sigma \cup \{\varphi\} \models \theta)$.

 $Por\ demostrar.\ \Sigma \cup \{\varphi,\psi\} \vDash \theta \Leftrightarrow \Sigma \cup \{\varphi\} \vDash \theta$

Ahora debemos demostrar la doble implicancia, por lo tanto debemos demostrar ambos lados de la afirmación.

Hacia la derecha (⇒)

 $Por\ demostrar.\ \Sigma \cup \{\varphi,\psi\} \vDash \theta \Rightarrow \Sigma \cup \{\varphi\} \vDash \theta$

Nuevamente estamos en caso de una implicancia simple, en este caso tomamos $\Sigma \cup \{\varphi, \psi\} \models \theta$ como nuestra hipótesis², ahora sólo resta demostrar $\Sigma \cup \{\varphi\} \models \theta$

Por demostrar. $\Sigma \cup \{\varphi\} \vDash \theta$

Tomemos una valuación τ tal que $\tau(\Sigma \cup \{\varphi\}) = 1$ arbitraria. Luego, τ debe ser tal que $\tau(\varphi) = 1$. Además, por hipótesis¹ se debe tener que $\tau(\psi) = 1$.

Ahora, usando la definición de satisfacibilidad de conjuntos, se debe tener que $\tau(\Sigma \cup \{\varphi, \psi\}) = 1$ y como por hipótesis² sabemos que $\Sigma \cup \{\varphi, \psi\} \models \theta$, es posible concluir que $\tau(\theta) = 1$.

Finalmente como τ es arbitrario se puede concluir que $\Sigma \cup \{\varphi\} \models \theta$.

Con esto, se concluye que $\Sigma \cup \{\varphi, \psi\} \vDash \theta \Rightarrow \Sigma \cup \{\varphi\} \vDash \theta$

Hacia la izquierda (⇐)

Por demostrar. $\Sigma \cup \{\varphi, \psi\} \vDash \theta \Leftarrow \Sigma \cup \{\varphi\} \vDash \theta$

Nuevamente estamos en caso de una implicancia simple, en este caso tomamos $\Sigma \cup \{\varphi\} \models \theta$ como nuestra hipótesis³, ahora sólo resta demostrar $\Sigma \cup \{\varphi, \psi\} \models \theta$

Por demostrar. $\Sigma \cup \{\varphi, \psi\} \vDash \theta$

Tomemos una valuación τ tal que $\tau(\Sigma \cup \{\varphi, \psi\}) = 1$ arbitraria.

Ahora, por definición de satisfacibilidad de conjuntos se debe tener que $\tau(\Sigma \cup \{\psi\}) = 1$ y como por hipótesis³ sabemos que $\Sigma \cup \{\varphi\} \models \theta$, es posible concluir que $\tau(\theta) = 1$.

Finalmente como τ es arbitrario se puede concluir que $\Sigma \cup \{\varphi, \psi\} \vDash \theta$.

De aquí se concluye que $\Sigma \cup \{\varphi, \psi\} \models \theta \Leftarrow \Sigma \cup \{\varphi\} \models \theta$

Como hemos demostrado la doble implicancia en ambos sentidos, podemos concluir que $\Sigma \cup \{\varphi, \psi\} \models \theta \Leftrightarrow \Sigma \cup \{\varphi\} \models \theta$

Habiendo demostrado $(\Sigma \cup \{\varphi, \psi\} \models \theta \Leftrightarrow \Sigma \cup \{\varphi\} \models \theta)$ usando $(\varphi \to \psi)$ como hipótesis, finalmente concluimos que

$$(\varphi \to \psi) \Rightarrow (\Sigma \cup \{\varphi, \psi\} \models \theta \Leftrightarrow \Sigma \cup \{\varphi\} \models \theta)$$

Pauta (3 pts.)

- 1 pto. por implicancia global $((\varphi \to \psi) \Rightarrow (\Sigma \cup \{\varphi, \psi\} \models \theta \Leftrightarrow \Sigma \cup \{\varphi\} \models \theta))$.
- 1 pto. por demostrar equivalencia (\Leftrightarrow) hacia la derecha (\Rightarrow).
- 1 pto. por demostrar equivalencia (\Leftrightarrow) hacia la izquierda (\Leftarrow) .
- Puntajes intermedios de cada ítem a criterio de corrección del ayudante.
- b) En clases definimos el conectivo XOR, al cual le asignaremos el símbolo \(\frac{1}{2}\).

Sea

$$C = \{\neg, \veebar\}$$

Demuestre que C no es funcionalmente completo.

 Hint : Analice la cantidad de valuaciones que hacen verdaderas a las fórmulas formadas con C e infiera qué fórmulas no podrá formar.

Solución

Sea
$$C = \{\neg, \veebar\}.$$

Por demostrar. C no es funcionalmente completo.

Sea ψ^C una fórmula formada sólo con los conectivos en C. Es posible conjeturar en base a simple inspección que la cantidad de valuaciones que satisfacen a ψ^C es par. Por lo tanto, existen fórmulas en L(P) que no serán posibles de construir sólo con los conectivos en C. Por ejemplo, si $P = \{p_1, p_2\}, p_1 \lor p_2$ tiene 3 valuaciones que la hacen verdad. Luego, si demostramos que toda fórmula construida con los conectivos en C es satisfecha por una cantidad par de valuaciones, demostraremos lo pedido.

De manera de ser más formales, sea $\psi \in L(P)$. Definamos la función $modelos : L(P) \to \mathbb{N}$ tal que

 $modelos(\psi) = n \Leftrightarrow \psi$ tiene exactamente n valuaciones que la satisfacen

Luego, demostraremos que $modelos(\psi^C) = 2k \text{ con } k \in \mathbb{N}, \text{ con } P = \{p_1, ..., p_n\} \forall n > 1.$

Por demostrar. $modelos(\psi^C) = 2k \text{ con } k \in \mathbb{N}, \text{ con } P = \{p_1, ..., p_n\} \forall n > 1.$

Se procederá por inducción estructural:

CB Sea $\psi^C = p$, con $p \in P$. Dado que la tabla de verdad debe tener 2^n posibles valuaciones y que exactamente la mitad de las filas de las tablas deben hacer verdad a p, podemos concluir que

$$modelos(\psi^C) = \frac{2^n}{2} = 2^{n-1} = 2(2^{n-2})$$

- **HI** Supongamos que se tienen $\varphi_1, \varphi_2 \in L(P)$ construidas con los conectivos C tales que $modelos(\varphi_1) = 2k_1$ y $modelos(\varphi_2) = 2k_2$ con $k_1, k_2 \in \mathbb{N}$.
- **TI** Sea $\psi = \neg \varphi_1$. Para toda valuación τ se debe tener que $\tau(\varphi_1) = 1 \Rightarrow \tau(\psi) = 0$ y $\tau(\varphi_1) = 0 \Rightarrow \tau(\psi) = 1$. Luego, como se tienen 2^n posibles valuaciones, por hipótesis se puede concluir que

$$modelos(\psi) = 2^n - modelos(\varphi_1) = 2(2^{n-1} - k_1)$$

o Sea $\psi = \varphi_1 \veebar \varphi_2$. En este caso, la fórmula será verdadera sólo cuando φ_1 ó φ_2 sean verdaderos, pero no ambos. Luego, por hipótesis de inducción se puede concluir que

$$modelos(\psi) = modelos(\varphi_1) + modelos(\varphi_2) - 2modelos(\varphi_1 \wedge \varphi_2)$$

= $2(k_1 + k_2 + modelos(\varphi_1 \wedge \varphi_2))$

Finalmente, como se tiene que la cantidad de valuaciones que satisfacen a las fórmulas en C es siempre par, concluimos que no es posible formar $p_1 \vee p_2$ y por ende C no puede ser funcionalmente completo.

Pauta (3 pts.)

- 1 pto. por notar una propiedad de los modelos (e.g. existe una cantidad par).
- 0.5 pto. por Caso Base.
- 0.5 pto. por Hipótesis de Inducción.
- 1 pto. por Tesis de Inducción.
- Puntajes intermedios de cada ítem a criterio de corrección del ayudante.

Pregunta 2

Demuestre que para todo $n \in \mathbb{N}$ la resta entre n y la suma de sus dígitos es múltiplo de 3.

Solución

Sea $n \in \mathbb{N}$ con k dígitos. Podemos escribir $n = d_1 \dots d_{k-1} d_k$.

Por demostrar.
$$n - \sum_{i=1}^{k} d_i = 3p \text{ con } p \in \mathbb{N}.$$

Alternativa 1 Procederemos por inducción simple sobre el número de dígitos.

CB: Sea *n* un número con 1 dígito, entonces se tiene

$$n - \sum_{i=1}^{1} d_i = n - n = 0 = 3 \times 0.$$

HI: Supongamos que para todo número con k dígitos se cumple que

$$n - \sum_{i=1}^{k} d_i = 3p \text{ con } p \in \mathbb{N}.$$
 (1)

TI: Debemos demostrar que un número $n \operatorname{con} k + 1$ dígitos cumple con la propiedad.

Sea $n' = \lfloor \frac{n}{10} \rfloor$ un número con k dígitos. Es posible reescribir (??) de la siguiente forma:

$$n - \sum_{i=1}^{k+1} d_i = 10n' + d_{k+1} - \sum_{i=1}^{k+1} d_i = 10n' - \sum_{i=1}^{k} d_i = 9n' + n' - \sum_{i=1}^{k} d_i$$

Aplicando nuestra hipótesis de inducción

$$n - \sum_{i=1}^{k+1} d_i = 9n' - 3p \text{ con } p \in \mathbb{N}$$
$$n - \sum_{i=1}^{k+1} d_i = 3(3n' - p) \text{ con } p \in \mathbb{N}.$$

<u>Alternativa 2</u> Para facilitar la demostración, escribiremos $n = d_{k-1} \dots d_0$. Notemos entonces que $n = \sum_{i=0}^{k-1} 10^i \cdot d_i$. Luego, podemos reescribir la igualdad a demostrar como

$$n - \sum_{i=0}^{k-1} d_i = 3p$$

$$\sum_{i=0}^{k-1} 10^i \cdot d_i - \sum_{i=0}^{k-1} d_i = 3p$$

$$\sum_{i=0}^{k-1} 10^i \cdot d_i - d_i = 3p$$

$$\sum_{i=0}^{k-1} (10^i - 1) \cdot d_i = 3p$$

Entonces, mostrar que $(10^i - 1) = 3p'$ para todo $i \in \mathbb{N}$ y con $p' \in \mathbb{N}$ basta para demostrar la propiedad requerida. Procedemos por inducción simple sobre i:

CB: i = 0: Tenemos que $10^0 - 1 = 1 - 1 = 0 = 3 \cdot 0$.

HI: Supongamos que se cumple que $(10^n - 1) = 3p'$, para algún $p' \in \mathbb{N}$.

TI: Debemos demostrar que $(10^{n+1}-1)=3p''$, para algún $p''\in\mathbb{N}$. Desarrollando el lado izquierdo obtenemos que:

$$10^{n+1} - 1 = 10 \cdot 10^n - 1 = 9 \cdot 10^n + 10^n - 1 \stackrel{\text{HI}}{=} 9 \cdot 10^n + 3p' = 3(3 \cdot 10^n + p'),$$

y como claramente $3 \cdot 10^n + p' \in \mathbb{N}$, tomamos $p'' = 3 \cdot 10^n + p'$, con lo que demostramos la propiedad para i = n + 1.

Pauta (6 pts.)

- 1 pto. por Caso Base.
- 1 pto. por Hipótesis de Inducción.
- 4 pto. por Tesis de Inducción.
- Puntajes intermedios de cada ítem a criterio de corrección del ayudante.

Pregunta 3

- a) ¿Es válido el siguiente argumento? Demuestre formalmente.
 - Premisa 1: Todos los albos son borrachos.
 - Premisa 2: Algunos cruzados no son borrachos.
 - Premisa 3: No hay hinchas cruzados y albos a la vez.
 - Conclusión: Ningún cruzado es borracho.

Solución

En primer lugar, debemos reescribir el argumento usando la sintaxis de lógica de predicados:

- $\varphi_1 = \forall x (A(x) \to B(x))$
- $\varphi_2 = \exists x (C(x) \land \neg B(x))$
- $\varphi_3 = \neg \exists x (C(x) \land A(x))$

• $\psi = \forall x (C(x) \to \neg B(x))$

Sea $\Sigma = \{\varphi_1, \varphi_2, \varphi_3\}$, sabemos que $\Sigma \vDash \psi \Leftrightarrow (\Sigma, \psi)$ es válido, por lo que basta con encontrar una estructura que satisfaga a Σ pero no a ψ para mostrar que el argumento no es válido.

Alternativa 1

Por demostrar. El argumento (Σ, ψ) no es válido.

Consideremos la siguiente estructura:

$$\mathfrak{F} = \langle \mathbb{N}, x \text{ es primo}, x \text{ es impar}, x \text{ es compuesto} \rangle$$

Luego, basta con interpretar la estructura como:

$$A(x) = x$$
 es primo

$$B(x) = x$$
 es impar

$$C(x) = x$$
 es compuesto

Evaluando en Σ :

- $\mathfrak{F} \vDash \varphi_1$, ya que todos los números primos son impares.
- $\mathfrak{F} \vDash \varphi_2$, ya que existe un número natural compuesto y par (e.g. 8).
- $\mathfrak{F} \models \varphi_3$, ya que no existe un número natural compuesto y primo a la vez.

Sin embargo, tenemos que $\mathfrak{F} \nvDash \psi$, ya que si existe un número natural compuesto que es impar (e.g. 21), por lo que $\mathfrak{F} \vDash \Sigma$ pero $\mathfrak{F} \nvDash \psi$.

De aquí concluimos que $\Sigma \nvDash \psi$ y por ende el argumento (Σ, ψ) no es válido.

Alternativa 2

Por demostrar. El argumento (Σ, ψ) no es válido.

Consideremos la siguiente estructura:

$$\mathfrak{F} = \langle \mathbb{N}_{[1,4]} = \{1,2,3,4\}, A = \{1\}, B = \{1,2,3\}, C = \{3,4\} \rangle$$

Luego, basta con interpretar la estructura como:

$$A(x) = x \in A$$

$$B(x) = x \in B$$

$$C(x) = x \in C$$

Evaluando en Σ :

- $\mathfrak{F} \vDash \varphi_1$, ya que todos los elementos del dominio que pertenecen a A pertenecen a B.
- $\mathfrak{F} \vDash \varphi_2$, ya que existe un elemento en el dominio que pertenece a C y no a B (4).

• $\mathfrak{F} \vDash \varphi_3$, ya que no existe elemento en el dominio que pertenezca a C y A a la vez.

Sin embargo, tenemos que $\mathfrak{F} \nvDash \psi$, ya que sí existe un elemento en el dominio que pertenece a C y pertenece a B a la vez (3), por lo que $\mathfrak{F} \vDash \Sigma$ pero $\mathfrak{F} \nvDash \psi$.

De aquí concluimos que $\Sigma \nvDash \psi$ y por ende el argumento (Σ, ψ) no es válido.

Pauta (3 pts.)

- 1 pto. por expresar argumento en Lógica de Predicados.
- $\bullet\,$ 1 pto. por encontrar una estructura.
- 1 pto. por demostrar que el argumento no es válido.
 - o Explicar por qué la estructura satisface Σ y no $\varphi.$
 - o Mencionar que no hay consecuencia lógica debido a lo anterior.
- Puntajes intermedios de cada ítem a criterio de corrección del ayudante.
- b) Considere las siguientes estructuras:

$$\mathfrak{A}_1=\langle \mathbb{N},<^{\mathfrak{A}_1}\rangle,\,\mathfrak{A}_2=\langle \mathbb{Z},<^{\mathfrak{A}_2}\rangle,\,\mathfrak{A}_3=\langle \mathbb{Q},<^{\mathfrak{A}_3}\rangle,\,\mathfrak{A}_4=\langle \mathbb{Q}\cap [0,1],<^{\mathfrak{A}_4}\rangle$$

Construya cuatro fórmulas en lógica de predicados $\{\varphi_i\}_{i=1}^4$, de tal forma que para cada $i \in \{1,2,3,4\}$ se tenga que φ_i es verdad para la estructura \mathfrak{A}_i , pero falsa para el resto de las estructuras definidas.

Solución

Debemos notar que para cada una de las estructuras solo una de las cuatro fórmulas será verdadera, es decir, la fórmula debe distinguir a cada estructura. En particular, las fórmulas van a distinguir propiedades del dominio de cada una de las estructuras.

Sean las siguientes fórmulas:

$$\varphi_{\rm denso} = \forall x \forall y \, (x < y \to \exists z \, (x < z \land z < y))$$

$$\varphi_{\rm mínimo} = \exists x \forall y ((x < y) \lor (x = y))$$

Entonces, construimos las fórmulas:

- $\varphi_1 = (\neg \varphi_{\text{denso}} \land \varphi_{\text{minimo}})$
- $\varphi_2 = (\neg \varphi_{\text{denso}} \wedge \neg \varphi_{\text{mínimo}})$
- $\varphi_3 = (\varphi_{\text{denso}} \land \neg \varphi_{\text{minimo}})$
- $\varphi_4 = (\varphi_{\text{denso}} \wedge \varphi_{\text{minimo}})$

Pauta (3 pts.)

- 0.75 pto. por fórmula $\varphi_i \ \forall i \in \{1, 2, 3, 4\}.$
- Se debe explicar cada una de las fórmulas.
- Puntajes intermedios de cada ítem a criterio de corrección del ayudante.

Pregunta 4

Usted ha sido contratado por el denominado "so-Lógico" para cursar su práctica profesional.

Su primera tarea a realizar es encargarse de la asignación de animales en las jaulas del recinto. En concreto, usted tiene que distribuir n animales en m jaulas, de manera que ningún animal esté libre.

Además, cada jaula tiene capacidad máxima para tres animales. Finalmente, su jefe le entrega una base de datos \mathcal{D} de depredadores, que tiene una tabla con dos columnas, en la que cada tupla (fila) es un par (i,j) que representa el hecho que el animal i depreda a j. Como podrá intuir, usted no puede permitir que un depredador esté en la misma jaula con su presa. En esta pregunta usted debe construir una formula $\varphi \in L(P)$ tal que:

$$\varphi$$
 es satisfacible

 \Leftrightarrow

existe una asignación de animales que cumple con las restricciones descritas.

Solución

En primer lugar, debemos definir nuestro conjunto P de variables proposicionales:

$$P = \{p_{ij} \mid \text{El animal } i \text{ está en la jaula } j\}$$

Luego, consideremos las siguientes fórmulas:

■ En primer lugar necesitamos un fórmula que indique que todos los animales están enjaulados:

$$\varphi_{enjaulado} = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m} p_{ij} \right)$$

 Además, necesitamos una fórmula que especifique que un animal no está en dos jaulas a la vez:

$$\varphi_{dual} = \bigwedge_{i=1}^{n} \left(\bigwedge_{j=1}^{m} \left(p_{ij} \rightarrow \bigwedge_{l \neq j} \neg p_{il} \right) \right)$$

• Por otro lado, un depredador y su presa no pueden estar en la misma jaula:

$$\varphi_{depreda} = \bigwedge_{(i,j) \in \mathcal{D}} \left(\bigwedge_{l=1}^{m} (p_{il} \to \neg p_{jl}) \right)$$

• Finalmente tenemos que especificar que la cantidad de animales en cada jaula no es mayor a 3

$$\varphi_{capacidad} = \bigwedge_{l=1}^{m} \left(\bigwedge_{\substack{(i_1,i_2,i_3) \in \{1,\dots,n\}^3 \\ i_1 \neq i_2, i_1 \neq i_3, i_2 \neq i_3}} \left(p_{i_1l} \wedge p_{i_2l} \wedge p_{i_3l} \rightarrow \bigwedge_{\substack{k \neq i_1 \neq i_2 \neq i_3 \\ 0 < k \leq n}} \neg p_{kl} \right) \right)$$

Para concluir, basta con tomar

$$\varphi = \varphi_{enjaulado} \wedge \varphi_{dual} \wedge \varphi_{depreda} \wedge \varphi_{capacidad}$$

Pauta (6 pts.)

- 1 pto. por construir variables proposicionales (p_{ij}) .
- 1 pto. por fórmula que obligue que todos los animales estén enjaulados.
- 1 pto. por fórmula que evite que un animal esté en dos jaulas distintas.
- 1 pto. por fórmula que evite que depredadores y presas estén en la misma jaula.
- 1 pto. por fórmula que evite que hayan más de 3 animales por jaula.
- 1 pto. por fórmula final (conjunción de fórmulas anteriores).
- Puntajes intermedios de cada ítem a criterio de corrección del ayudante (incluyendo error en índices o fórmulas parcialmente correctas).
- Si el alumno o alumna construye alguna fórmula que abarca más de una fórmula de la pauta, se considera 1 pto. por fórmula abarcada.