

A Probabilistic Perspective of Classification

CSCI316 Big Data Mining Techniques and Implementation

Contents

Bayes' Theorem

Implementation of simple Naïve Bayes classifier

Bayesian Classification

- <u>A probabilistic classifier</u>: performs *probabilistic prediction*, *i.e.*, predicts class membership probabilities
- Foundation: Based on Bayes' Theorem.
- <u>Performance</u>: A simple Bayesian classifier, *naïve Bayesian classifier*, has comparable performance with decision tree and other classifiers
- <u>Incremental</u>: Each training example can incrementally increase/decrease the probability that a hypothesis is correct prior knowledge can be combined with observed data
- Standard: Even though general Bayesian methods are computationally intractable, simple Bayesian methods can provide a baseline of optimal decision making against which other methods can be measured

Classification Concepts Recap

- Given a set of records, each of which is described by a sequence of attributes $X_1, ..., X_n, Y$. The last one is an attribute of interest, called a **class**. The rest are called **features**.
- Given a new record where *Y* is unknown, the task of classification is to predict which class this record falls into.
- **Probabilistic classifier**: the output of prediction is a class together with a *probabilistic score*
 - to what extent the new record falls into the output class
 - Provides the likelihood instead of a hard decision

Probability and Uncertainty

- Our main tool is the probability theory, which assigns to a numerical degree of belief between 0 and 1 to each event.
 - It provides a way of characterizing the uncertainty
- Random variables:
 - Boolean random variables: cavity might be true or false
 - Discrete random variables: weather might be sunny, rainy, cloudy, snow
 - P(weather = sunny)
 - P(weather = rainy)
 - P(weather = cloudy)
 - P(weather = snow)
 - Continuous random variables: the temperature has continuous values
 - Discretization: < 10, [10, 20], > 20
 - Probability density function: e.g., Normal distribution.

Prior and Posterior Probabilities

- Before the evidence is obtained; prior probability
 - -P(a) the prior probability that the proposition is true
 - P(rain) = 0.1
- After the evidence is obtained; posterior probability
 - $-P(a \mid b)$
 - The probability of a given that all we know is b (i.e., conditional probability)
 - $P(rain \mid cloudy) = 0.8$

Bayes' Theorem (Simple)

• The conditional probability of event C occurring, given event A, is

$$P(C|A) = \frac{P(A \cap C)}{P(A)}$$

- E.g. A is an attribute and C is the class.
- Bayes' theorem for two events:

$$P(C|A) = \frac{P(A \cap C)}{P(A)} = \frac{P(C \cap A)}{P(A)} = \frac{P(A|C) \cdot P(C)}{P(A)}$$

 It links the prior probabilities of two events and their posterior probabilities given each other.

Example

- Computing the probability that a patient carries a disease based on the result of a lab test.
- The test returns a positive result in 95% of the cases in which the disease is actually present, and it returns a positive result in 6% of the cases in which the disease is not present.
- Furthermore, 1% of the entire population has this disease.
- Let $C = \{\text{having the disease}\}\ \text{and}\ A = \{\text{testing positive}\}\$.
- From the above description, P(C) = 0.01, $P(\neg C) = 0.99$, P(A|C) = 0.95 and $P(A|\neg C) = 0.06$.

Reasoning with Bayes' Theorem

$$P(A) = P(A \cap C) + P(A \cap \neg C)$$

= $P(C) \cdot P(A|C) + P(\neg C) \cdot P(A|\neg C)$
= $0.01 \times 0.95 + 0.99 \times 0.06 = 0.0689$

$$P(C|A) = \frac{P(A|C)P(C)}{P(A)} = \frac{0.95 \times 0.01}{0.0689} \approx 0.1379$$

Therefore, if some one has a test with positive result, he has 13.79% chance to carry the disease.

Bayes' Theorem (General)

• In a more general form, Bayes' theorem says that

$$P(Y|X_1,...,X_m) = \frac{P(X_1,...,X_m|Y) \cdot P(Y)}{P(X_1,...,X_m)}$$

- Linking it to classification: Y is the class and $X_1, ..., X_m$ are attributes.
- E.g., <u>features</u>: age, income, student_status, credit_rating; <u>class</u>: buys_computer

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes

Naïve Bayes Classifiers

- To apply Bayes theorem to classification, one main problem is *the* number of combinations of attribute values
 - If there are m attributes and each attribute has k values, there are m^k combinations! Impractical to keep track of their join probabilities.
- Recall $P(Y|X_1, ..., X_m) = \frac{P(X_1, ..., X_m|Y) \cdot P(Y)}{P(X_1, ..., X_m)}$
- We don't need to compute $P(X_1, ..., X_m)$ since we just want to find out which class (value of Y) has the highest score by comparison.
 - E.g., given age=youth, income=high, student=no, and credit_rating=fair, is buys_computer=yes more likely than buys_computer=no?
 - In this case, we don't need to know the joint probability of age=youth, income=high, student=no, and credit_rating=fair
 - In other words, we just reply on

$$P(Y|X_1,...,X_m) \propto P(X_1,...,X_m|Y) \cdot P(Y)$$

where \propto indicates "being propositional to".

Naïve Bayes Classifiers

- Still, $P(Y|X_1, ..., X_m) = \frac{P(X_1, ..., X_m|Y) \cdot P(Y)}{P(X_1, ..., X_m)}$
- We use the conditional independence assumption.
 - Each attribute is conditionally independent of every other attribute given a class label
 - Namely, $P(X_1, ..., X_m | Y) = P(X_1 | Y) \cdots P(X_m | Y)$ which dramatically simplifies the computation of $P(X_1, ..., X_m | Y)$
- Therefore, we are concerned with

$$P(Y|X_1,...,X_m) \propto P(X_1|Y) \cdots P(X_m|Y) \cdot P(Y)$$

Dataset Example

• Training tuples:

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Illustration of Naïve Bayes Classifiers

• Let X denote

```
(age = youth, income = medium, student = yes, credit rating = fair)
```

The objective is to determine which one is larger:

```
P(X | buys\_computer = yes) \cdot P(buys\_computer = yes) OR
P(X | buys\_computer = no) \cdot P(buys\_computer = no)?
```

- We perform the following steps:
- First, the prior probability of each class can be computed based on the training tuples:

$$P(buys_computer = yes) = 9/14 = 0.643$$

$$P(buys_computer = no) = 5/14 = 0.357$$

Illustration of Naïve Bayes Classifiers

• Next, compute the conditional probabilities of attributes on the class labels:

```
P(age = youth \mid buys\_computer = yes) = 2/9 = 0.222
P(age = youth \mid buys\_computer = no) = 3/5 = 0.600
P(income = medium \mid buys\_computer = yes) = 4/9 = 0.444
P(income = medium \mid buys\_computer = no) = 2/5 = 0.400
P(student = yes \mid buys\_computer = yes) = 6/9 = 0.667
P(student = yes \mid buys\_computer = no) = 1/5 = 0.200
P(credit\_rating = fair \mid buys\_computer = yes) = 6/9 = 0.667
P(credit\_rating = fair \mid buys\_computer = no) = 2/5 = 0.400
```


Naïve Bayes Reasoning

• Next, using those probabilities, obtain:

```
P(X|buys\_computer = yes) = P(age = youth \mid buys\_computer = yes) \\ \times P(income = medium \mid buys\_computer = yes) \\ \times P(student = yes \mid buys\_computer = yes) \\ \times P(credit\_rating = fair \mid buys\_computer = yes) \\ = 0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044. \\ P(X|buys\_computer = no) = 0.600 \times 0.400 \times 0.200 \times 0.400 = 0.019. \\
```

Finally

$$P(X|buys_computer = yes)P(buys_computer = yes) = 0.044 \times 0.643 = 0.028$$

 $P(X|buys_computer = no)P(buys_computer = no) = 0.019 \times 0.357 = 0.007$

• Therefore, the classifier predicts *buys_computer* = *yes*

Numerical Underflow

- If the number of attributes is large, the outputs of a Naïve Bayesian classifier are usually very small.
- In theory this is not a problem, because only the ratio between the outputs matters; however, in practical, the difference may be close or rounded off to 0 (this is unknown as the *underflow* problem).
- To avoid this, one widely used treatment is to manipulate a logarithm of a number rather than the number itself. Therefore,
- Thus $p_* = p_1 \cdots p_m$ becomes $\log(p_*) = \log(p_1) + \cdots + \log(p_m)$
 - The ratio between the output values of the classifier is not distorted!
 - As multiplication becomes +, the underflow is avoided.

Smoothing Zero Count

- Another problem is the *zero count*: the count of records with a value of an attribute is zero when some class label is given
- If the zero count occurs, then one of $P(X_1|Y), ..., P(X_m|Y)$ is zero, and their multiplication is zero (no matter how large the rest are)
 - This is certainly counter-intuitive
 - Also, applying the log function to a zero probability, log(0) is negative infinite
- One common technique to overcome this is the *Laplace smoothing* (or add-one) technique: it adds 1 to all counts.
 - Because usually the training dataset is large (i.e., the total count is large),
 adding 1 to each count causes minimum effect
 - But if it would cause effect, add a very small number $\varepsilon > 0$ instead of 1.

Smoothing Zero Count

- Suppose that for the class *buys computer* = *yes* in some training database, D, containing 1000 tuples. We have 0 tuple with *income* = low, 990 tuples with income = medium, and 10 tuples with income = high.
- Without the Laplacian smoothing, the probabilities of those events are 0, 0.990 (from 990/1000) and 0.010 (from 10/1000), respectively.
- If a tuple has *income* = *low*, the probability of falling into the class *buys computer* = *yes* is 0, no matter what values for other attributes!
- With the Laplacian smoothing for the three quantities, adding 1 more tuple for each income value: the probabilities become 0.001 (from 1/1003), 0.988 (from 991/1003) and 0.011 (form 11/1003).
- The above phenomenon won't happen.

NB Implementation with Scikit-Learn

- NB implementation by using the CategoricalNB API in Scikit-learn
 - See the supplementary materials

Continuous-Value Features

- We now consider an extension to Naïve Bayesian classifiers which are able to handle continuous-value features.
- If *X* is continuous, there are two common approaches to compute $P(X = a \mid Y = c)$:
 - *Discretization/bucketing/binning*: The range of *X* is $(-\infty, a_1], [a_2, b_1], ..., [a_k, b_{k-1}], [b_k, +\infty)$ for some *k*.
 - Assume that *X* has a **Gaussian distribution** (a.k.a. normal distribution).
- The following is the *probability density function* (PDF) of a Gaussian distribution with mean μ and variance σ^2 :

$$f(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

If we compute the mean value μ_0 and standard deviation σ_0 based on the training data for X when Y = c, then P(X = x | Y = c) is $f(x, \mu_0, \sigma_0)$

Continuous-Value Features

- Estimation of mean and variance: Given observations $[x_1, ..., x_N]$
 - $\text{ mean } \mu = \frac{1}{N} \sum_{i=1}^{N} x_i$
 - Variance $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2 = \left(\frac{1}{N} \sum_{i=1}^{N} x_i^2\right) \mu^2$
- For example, if the incomes are not discretized in the costumer data and are 30, 36, 47, 50, 56, 60, 63, 70, 110 (K dollars) when buys_computers = yes, then
 - the mean is 58K and
 - the variance is 481.56
- Then

 $P(income = 47 | buys_computers = yes)$

$$is \frac{1}{\sqrt{2\pi} \cdot 21.94} e^{-\frac{(47-58)^2}{2 \cdot 481.56}} = 0.016$$

Continuous-Value Features

• To reason about PDF of the Gaussian distribution, we can use the norm package of the scipy.stats libarary:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.norm

*Continuous-Value Features

- The previous example provides an interpretation is somehow "over simplistic", since the probability that a continuous random variable takes a particular value is zero.
- Instead, we should compute the conditional probability that X lies within some interval, say, $[r, r + \epsilon]$, where ϵ is a small constant:

$$P(r \le X \le r + \epsilon) = \int_{r}^{r + \epsilon} f(X, \mu, \sigma) dX \approx f(X, \mu, \sigma) \cdot \epsilon$$

• Since ϵ appears as a constant multiplicative factor for each class, it *cancels out* when normalizing the target probability, leaving just the $f(X, \mu, \sigma)$ part.

NB Implementation with Scikit-Learn

- NB implementation by using the **GaussianNB** API in Scikit-learn
 - See the supplementary materials

NB Classifier: Advantages / Disadvantages

- Advantages
 - Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - Assumption: class conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
 - E.g., Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naïve Bayes Classifier
 - How to deal with these dependencies?
 - Bayesian Belief Network
 - From correlation to causality?

