

CENTRAL INTELLIGENCE AGENCY

INFORMATION REPORT

REPORT NO. [REDACTED]

CD NO.

COUNTRY Germany (Russian Zone) DATE DISTR. 26 April 1950
SUBJECT OSW Technical Reports DOCUMENT HAS AN ENCLOSURE ATTACHED NO. OF PAGES

PLACE ACQUIRED [REDACTED] 25X1C NO. OF ENCLS. 2 (8 photostats)
(LISTED BELOW)

DATE OF IN ACQUIRED [REDACTED] 25X1X SUPPLEMENT TO REPORT NO.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE ACT OF U. S. 1917 AND 32, AS AMENDED. IT IS UNLAWFUL TO COMMUNICATE OR DISCLOSE ITS CONTENTS IN ANY MANNER TO ANY UNAUTHORIZED PERSON. PRODUCTION OF THIS FORM IS PROHIBITED BY LAW. REPRODUCTION OF THIS FORM IS PROHIBITED.

THIS IS UNEVALUATED INFORMATION

* Documentary

25X1A

SOURCE [REDACTED]

1. Enclosed are the following photostated technical data: a. OSW Blueprint No. R 14, concerning cathode ray tube LB 9A, OSW Type 2030, OSW Technical Data Sheet No. TD 21-11. b. OSW Blueprint No. R 48 concerning metal ceramic triode LD 9, OSW Type 2006, OSW Technical Data Sheet No. TD 105-05.
2. These reports are sent to you for retention in the belief that they may be of interest to you.

25X1A

d/150

CLASSIFICATION SECRET

STATE	NAVY	ARMED FORCES	AIR	OSI	DISTRIBUTION							
ARMY	X		X	X								

OSW

Technische Daten

Kathodenstrahlröhre LB 9 A

TD

21-11

Blatt 1 von 5 Blatt

Allgemeine Angaben

Heizung:

Heizspannung: $U_f = 12,6 \text{ V}$
Kathode: Oxydkathode, indirekt geheizt

25X1A

Grenzwerte

Heizspannung: $U_f = 10,8 \dots 14,5 \text{ V}$
Max. Anodenspannung: $U_{a2 \max} = 4400 \text{ V}$
Max. Kathodenstrom: $I_k \max = 35 \mu\text{A}$ Dauerstrom
 $I_k \max = 100 \mu\text{A}$ Spitzstrom
Max. Spannung Heizfaden/
Kathode: $U_{f/k \max} = 100 \text{ V}$
Max. Gitterwiderstand: $R_{gl \max} = 1 \text{ M}\Omega$
Max. Kathodenwiderstand: $R_k \max = 2 \text{ M}\Omega$

Meßwerte

Heizstrom: $I_f = 280 \text{ mA}$ (250...310) mA
gemessen bei $U_f = 12,6 \text{ V}$
Linsenspannung für Mittenschärfe: $U_{al} = 800 \text{ Volt}$ (800...1000)V
gemessen bei $U_{a2} = 4000 \text{ V}$
 $I_k = 0 \dots 100 \mu\text{A}$
 $U_f = 12,6 \text{ V}$
Raster 50/500 Hz 80x80 mm

Kathodennullstrom: $I_{ko} \approx 500$ (400) μA
gemessen bei $U_{a2} = 4000 \text{ V}$
 $U_{al} = 800 \text{ V}$
 $U_{gl} = 0 \text{ V}$
 $U_f = 12,6$ (10,8) V
Raster 50/500 Hz 80x80 mm

25X1X

25X1X

Approved For Release 2001/12/05 : CIA-RDP83-00415R004900150002-9

OSW

Technische Daten
Kathodenstrahlröhre LB 9 A

**TD
21-11**

Blatt 2 von 5 Blatt

Arbeitspunkt: $I_k = 35 \mu\text{A}$ (25...45) μA
gemessen bei $U_{a2} = 4000 \text{ V}$
 $U_{al} = 300 \text{ V}$
 $R_k = 2 \text{ M}\Omega$
 $U_f = 12,6 \text{ V}$
Raster 50/500 Hz 80x80 mm

Steilheit: $s \approx 2,5 \mu\text{A}/\text{W}$
gemessen bei $U_{a2} = 4000 \text{ V}$
 $U_{al} = 800 \text{ V}$
 $I_k = 100 \mu\text{A}$
 $U_f = 12,6 \text{ V}$
Raster 50/500 Hz 80x80 mm

Gittersperrspannung: $U_{gl} = -80 \pm 40 \text{ V}$
gemessen bei $U_{a2} = 4000 \text{ V}$
 $U_{al} = 800 \text{ V}$
 $I_k = 0 \mu\text{A}$
 $U_f = 12,6 \text{ V}$
Raster 50/500 Hz 80x80 mm

Mittenabweichung: $\Delta \approx 5 \text{ mm}$ (Abweichung des fokussierten Leuchtflecks vom Mittelpunkt der Sockelkappe)
gemessen bei $U_{a2} = 4000 \text{ V}$
 $U_{al} = 800 \text{ V}$
 $I_k = \text{etwa } 1 \mu\text{A}$
 $U_f = 12,6 \text{ V}$

Bei dieser Messung ist die Röhre gegen Fremdfelder abzuschirmen.

Approved For Release 2001/12/05 : CIA-RDP83-00415R004900150002-9

OSW**Technische Daten**Kathodenstrahlröhre LB 9 A**TD
21-11**

Blatt 3 von 5 Blatt

Strichbreite: In der Rastermitte müssen die Einzelstriche noch erkennbar sein

gemessen bei $U_{a2} = 4000 \text{ V}$

$U_{al} = 800 \text{ V}$

$I_k = 100 \mu\text{A}$

$U_f = 12,6 \text{ V}$

Ablenkung: a) waagerecht 500 Hz

80 mm

senkrecht 50 Hz

5 mm

b) waagerecht 50 Hz

5 mm

senkrecht 500 Hz

80 mm

Anheizzeit: $t \approx 25 \text{ Sekunden}$

gemessen bei... $U_{a2} = 4000 \text{ V}$

$U_{al} = \text{s. unter Meßwerte}$

$U_{gl} = 0 \text{ V}$

$I_k = 3/4 I_{ko}$

Raster 50/500 Hz 80x80 mm

Fehlströme: $G_1/\text{alles } I \approx 10 \mu\text{A}$

$A_1/\text{alles } I \approx 5 \mu\text{A}$

$A_2/\text{alles } I \approx 5 \mu\text{A}$

P/K $I \approx 1,0 \text{ mA}$

gemessen bei... $U_{a2} = 4000 \text{ V}$

$U_{al} = \text{s. unter Meßwerte}$

$U_{gl} = -150 \text{ V}$

$U_{f/k} = \pm 100 \text{ V}$

$U_f = 14,5 \text{ V}$

Lebensdauer: während 700 Stunden $I_{ko} = 80 \% \text{ vom unteren Datenblatt geprüft bei }$

25X1X

OSW**Technische Daten**

Kathodenstrahlröhre LB 9 A

TD**21-11**

Blatt 4 von 5 Blatt

$$U_{a2} = 4000 \text{ V}$$

U_{al} = für größte Schärfe.

$$U_{f/k} = 100 \text{ V}$$

$$R_k \text{ für } I_k = 35 \mu\text{A}$$

im Anfangszustand

$$U_f = 12,6 \text{ V}$$

Raster 50/500 Hz 80x80 mm

Sämtliche anderen Werte innerhalb der Datenblattgrenzen.

Schüttelfestigkeit: Die Röhren müssen während ihrer Lebensdauer mit einer Maximalbeschleunigung von 5 g betriebssicher arbeiten.

Prüfzeit: 24 Stunden

Vorbrennbedingung: $t \dots \geq 5 \text{ Minuten}$

Nach dem Lagern von länger als 1 Woche müssen die Röhren vor dem Prüfen unter den untenstehenden Bedingungen vorgebrannt sein:

$$U_{a2} = 4000 \text{ V}$$

$$U_{al} = 750 \text{ V}$$

$$R_k = 1 \text{ M}\Omega$$

$$U_f = 12,6 \text{ V}$$

Raster 50/500 Hz 80x80 mm

Betriebs- und Anwendungshinweise

Anodenspannung U_{a2} : Der optimale Betrieb der Röhre erfordert eine Anodenspannung von $U_{a2} = 4000 \text{ V}$. Bei Herabsetzung der Anodenspannung unter diesen Wert tritt eine wesentliche Abnahme der Helligkeit und der Schärfe der Abbildung ein. Bei 4000 V ist die Röhre hohenfest.

Inbetriebnahme:

Sämtliche Spannungen dürfen gleichzeitig eingeschaltet werden.

25X1X

25X1A

Approved For Release 2001/12/05 : GPO : 2004900150002-5

OSW

Technische Daten
Kat Hodenstrahlröhre LB 9 A

TD
21-11

Blatt 5 von 5 Blatt

Lagerfähigkeit:

Die in den obigen Positionen gestellten Bedingungen bleiben bis zu einer Dauer von 3 Jahren erhalten.

Sockelschaltung
und Maßbild:

siehe Zeichnung R 14 (M_a)

25X1X

OSW	Technische Daten (TECHNISCHE LIEFERBEDINGUNGEN) Metallkeramik - Triode OSW 2006	TD 105-05
		Blatt 1 von 3 Blatt

Allgemeine Angaben

Dezimeterwellen-Triode für selbsterregten Schwingbetrieb.

Aufbautechnik:

Metallkeramik. Anode mit Kühlkörper.

Schüttelfestigkeit: 5 g (bei 0,55 mm Hub und f = 50 Hz)

Die statischen Werte der Röhre werden mit angeschaubtem Kühlkörper gemessen.

Heizung: Heizspannung $U_f = 12,6$ V
Heizstrom I_f ca 1,1 A
Oxydkathode, indirekt geheizt

Grenzwerte

1) Grenzwellenlänge:*) $\lambda_{\min} = 8$ cm

2) Anodenverlustleistung: $P_a \max = 300$ W Kühlkörpertemperatur $130^\circ C$
Luftstrom ca 500 l/min.
Lufteintrittstemperatur $20^\circ C$.

*) Röhre ohne Normalkühlkopf, statt dessen mit Spezialansatzstück versehen.

OSW	Technische Daten (TECHNISCHE LIEFERBEDINGUNGEN) Metallkeramik - Triode OSW 2006	TD 105-05
		Blatt 2 von 3 Blatt

Anodenverlust-

leistung: $P_a \text{ max} = \frac{300 - T_a}{0,33} \text{ W}$
 (Röhre ohne Normal-
 kühlkopf)

Die zulässige Ver-
 lustleistung P_a ist
 dadurch bestimmt,
 daß an der äußerem
 Anodenstirnfläche
 die Temperatur T_a
 um den Betrag $0,33^{\circ}\text{C}$
 unter 300°C liegen
 muß.

3) Gitterverlustleistung: $P_g \text{ max} = 2,2 \text{ W}$

für einen thermi-
 schen Gitterstrom
 $I_g \text{ therm} \leq 5 \text{ mA}$ bei
 einer Temperatur von
 maximal 100°C in
 der Gitterzone.

$P_g \text{ max} = 5,0 \text{ W}$

ohne Rücksicht auf
 thermischen Gitter-
 strom bei einer Tem-
 peratur von maximal
 200°C in der
 Gitterzone.

4) Heisspannung:

$U_f = 12,3 \dots 13,0 \text{ V}$

ohne Verluste an
 Leistung und Le-
 bensdauer

5) Anodenspannung bei
 Dauerstrichbetrieb:

$U_a \text{ max} = 2000 \text{ V}$

6) Anodenkaltspannung:

$U_{aL} \text{ max} = 2500 \text{ V}$

7) Kathodengleichstrom
 bei B-Betrieb un-
 moduliert:

$I_k \text{ max} = 175 \text{ mA}$

8) Temperaturbeanspruchung:

Abgesehen von den angegebenen Be-
 dingungen für Anoden- und Gitter-
 temperatur bei der Anoden- und Gitter-
 verlustleistung, darf die Temperatur
 an keiner äußeren Stelle der Röhre
 200°C überschreiten.

9) Lebensdauer:

$\geq 200 \text{ Std.}$

Die Nutzleistung darf nach 200 Betriebsstunden nicht mehr
 als 25 % vom Sollwert abgefallen sein.

M e B w o r t e

siehe Tabelle auf Blatt 3.

OSW

Technische Daten

(TECHNISCHE LIEFERBEDINGUNGEN)

Metallkeramik = Triode OSW 2006

TD
105-05

Blatt 3 von 3 Blatt

Ind. Nr.	Be- zeich- nung	Sollwerte	Meßbedingungen			Be- mer- kun- gen
			U_f (V)	U_a (V)	I_a (mA)	Meßbedingungen
1	Heizstrom	I_f 1,0...1,2	A	12,6	-	
2	Emissionsstrom	I_e = 2	A	12,6	80	- U_g = 80 V $t_L = 100 \mu\text{sec}$
3	Steilheit	S (15...24 mA/V)	20 mA/V	12,6	1300	$100 \Delta U_g = + 1 \text{ V}$
4	Durchgriff	D (0,6...1,2)	0,9 mA	12,6	1300	$100 \Delta U_g = + 1 \text{ V}$
5	Anodenstrom	I_a = 2	mA	12,6	1500	$100 \Delta U_g = + 200 \text{ V}$
6	Negativer Gitterstrom	I_g = 70	mA	13,0	1500	$U_g = - 30 \text{ V}$
7	Thermischer Gitterstrom	I_{gth} = 5	mA	12,6	120	$P_g = 2,2 \text{ W}$ $U_g \text{ ca} -140 \text{ V}$ $I_g \text{ ca} 160 \text{ mA}$ $U_g = -150 \text{ V}$
8	Kapazitäten:					
	a) Gitter-Kathode	$C_{g/k}$	= 8,3...10,3 pF	12,6		
	b) Anode-Kathode	$C_{a/k}$	= 0,02...0,03 pF	12,6		
	c) Gitter-Anode	$C_{g/a}$	= 2,7...3,3 pF	12,6		
9	Isolationsströme:					
	Kathode-Gitter	I_{1s-1} 1s01	40 mA	13	200	
	Kathode-Anode	I_{1s01} 1s01	10 mA	13	200	
	Gitter-Anode	I_{1s01} 1s01	10 mA	13	200	
10	Nutzleistung	$P \sim$ 2~	40 W	12,6	1500	$\lambda = 17,5 \text{ cm}$ $I_k = 175 \text{ mA}$ $\lambda = 9,2 \text{ cm}$ $I_k = 20 \text{ mA}$
	1) bei unbelastetem Gitter. Kolbentemperatur $T \leq 100^\circ \text{C}$					
	2) Kolbentemperatur in der Gitterzone $\leq 100^\circ \text{C}$					
	3) Röhre betriebswarm, vorbelastet mit $U_g = 1500 \text{ V}$, $I_a = 120 \text{ mA}$					
	4) U_g darf regelbar Kathodenwiderstand von ca. 1500 Ohm und positive Vorspannung					
	5) bei $\lambda = 9,2 \text{ cm}$ wird der Normalkühlkopf durch einen zum Sender gehöriges Spezialanlasserstück ersetzt					