Theorem! SAT is NP- Complete

We we a "computation histories" - kind of dear here.

We have to show

- (1) SATENP
- (Z) FAENP, A GPSAT.

SATENP: Gues TRUE | FALSE for x,, x2...xn. Verify of of is satisfied for the guessed arigument.

The main part is (2). We must show that any language AENP must reduce to SAT. That is, we need of such that

WEA (=> f(w) ESAT.

All that we know about 4's that 4 CNP. We cannot assume any other structure of a any sperific language problem.

AENP: A's decided by an NTM N'in time nk. When weA, there is a sequence of computations that leads N to arrept w. This sequence has

that leads N to arrept w. This sequence has $\leq n^{k}$ steps. When $w \notin A$, no requeme $\int_{S(n,k)=2}^{\infty} (n,b,k)(s,b,k), S(n,k) = S(n,k)$ computations arrept. let N= (Q, E, T, 8, 9, 9, 9, 9, 9). let N le a 1-table NTM, runs in time & nk (actually n^k-3). Let us define $\Delta = QU \Gamma U\{ \# \}$. hadget for reduction: Table or Tableau Tableau Summerine configurations. Each row is a ahd gracle.

configuration.

Start -> [After step \>	# 9/5 W1 W2 WN LL LH # Q8 W2 WNLL LH
After step 2 ->	# a b $9_3 \cup_{n} \cup$
After nk-3 steps -	大井
	<

If the TM N anapts Prejects before n'e steps, the infiguration remains unchanged after that.

We will create a formula ϕ which was Boolean logic to check whether the tablean represents an accepting computation for N m w.

If there exists a path for N to ancept w, then & will have a ratisfying assignment. Else & won't have a rat assignment.

of checks the following:

- (1) Does N start correctly ?
- (2) Dols N more correctly ?
 - (3) Does N end correctly?
- And (4) we also need to check if the nariables form a "proper encoding"

 of the table.

Φ= Φ cell Λ Φ start Λ Φ nune Λ Φ accept.

We have an nk x n' table. We have ISI

We have an n'x x n'c table. We have 121 variables that can occupy each cell.

Xiikil = {TRUE if (iii)th cell has entry!

FRUSE if (iii)th cell has entry # ?

16iis = Nk (co

Peell: Is the table properly emoded.

 $\Phi_{\text{cell}} = \sum_{\substack{1 \leq i, i \leq n^{k} \\ 1 \leq i, i \leq n^{k}}} \left(\sum_{\substack{1 \leq i, i \leq n^{k} \\ 1 \leq i \leq n^{k}}} \left(\sum_{\substack{1 \leq i, i \leq n^{k} \\ 1 \leq i \leq n^{k}}} \sum_{\substack{1 \leq i, i \leq n^{k} \\ 1 \leq i \leq n^{k}}} \left(\sum_{\substack{1 \leq i, i \leq n^{k} \\ 1 \leq i \leq n^{k}}} \sum_{\substack{1 \leq i, i \leq n^{k} \\ 1 \leq i \leq n^{k}}} \sum_{\substack{1 \leq i, i \leq n^{k} \\ 1 \leq i \leq n^{k}}} \left(\sum_{\substack{1 \leq i, i \leq n^{k} \\ 1 \leq i \leq n^{k}}} \sum_{\substack{1 \leq i, i \leq n^{k} \\ 1 \leq i \leq n^{k}}} \sum_{\substack{1 \leq i, i \leq n^{k} \\ 1 \leq i \leq n^{k}}} \left(\sum_{\substack{1 \leq i, i \leq n^{k} \\ 1 \leq i \leq n^{k}}} \sum_{\substack{1 \leq i, i \leq n^{k}}} \sum_{\substack{1 \leq i,$

Cell (1,8) contains (cell (1,8) does not at least one entry contain >1 entry

So φ cell enemers that each cell (i,i) contains enactly one member of Δ .

Petaet For Non w.

Potast = X1,1,# 1 X1,2, Vestant 1 X1,3,0, 1 X1,4,02

4 start = "111,7"

.... \ X, mtz, wn \ X, nt3, LL \ ...

Dauept! The table represents an accepting computation.

Paucept = V (Xi, 8,9 aucept)

Omore: This is the hoodest. We have to check that each emfiguration legally follows from the premions one.

The main idea here is that it is enough to check all the 2x3 windows. We say a window is ralid if it is part of a ralid transition.

 $\frac{b \, q \, n}{b \, d \, n} \quad \text{when} \quad (n, d, R) \in \mathcal{E}(q, n)$

when (n,d,L) & 8(9,9) x be T when (n, d, L) E 8(9, a) if (n,d, R) & 8(9,a) for some a E ?. bcd where be TU {#}}, CET. if (n,d,R) & & (q,a) where be TU{#}? where a E TU {#} }, b, c E T OR a, bel, celus#3 a h c

like this, one can list all the nalid windows.

No of nalid windows is finite, and depends

only on N. It is independent of Iwl.