Лабораторная работа 1.2.3

"Определение моментов инерции твёрдых тел с помощью трифилярного подвеса"

Белов Михаил Б01-302

17 ноября 2023 г.

Аннотация:

Цель лабораторной работы: измерение момента инерции ряда тел и сравнение результатов с расчётами по теоретичиским формулам; проверка аддитивности моментов инерции и справедливости формулы Гюйгенса-Штейнера.

Теоретические сведения:

Момент инерции твёрдого тела относительно неподвижной оси вращения вычисляется по формуле:

$$I = \int r^2 dm$$

Здесь r – расстояние элемента массы тела dm от оси вращения. Измерить момент инерции можно пользуясь трифилярным подвесом:

Если пренебречь потерями энергии на трение, то уравнение энергии при колебаниях можно записать следующим образом:

$$\frac{I \cdot \dot{\phi}}{2} + mg(z - z_0) = E$$

Здесь I – момент инерции платформы вместе с исследуемым телом, m – масса платформы с телом, ϕ – угол поворота платформы от положения равновесия системы, точкой обозначена производная по времени (угловая скорость), z_0 – координата по вертикали центра нижней платформы O' при равновесии (ϕ = 0), z – координата той же точки при некотором угле поворота ϕ . Расстояние между точками C и C" равно длине нити L:

$$(R \cdot \cos \phi - r)^2 + R^2 \cdot \cos^2 \phi + z^2 = L^2$$

учитывая, что $\cos\phi\approx 1-\frac{\phi^2}{2}$ получим:

$$z^2 \approx z_0^2 - Rr \cdot \phi^2$$

$$z \approx z_0^2 - \frac{Rr \cdot \phi^2}{2z_0}$$

подставляя это значение z и продифференцировав получим:

$$I\ddot{\phi} + mg\frac{Rr}{z_0} \cdot \phi = 0$$

Решение этого уравнения имеет вид:

$$\phi = \phi_0 \cdot \sin\left(\sqrt{\frac{mgRr}{Iz_0}} \cdot t + \Theta\right)$$

Здесь амплитуда ϕ_0 и фаза Θ колебаний определяются начальными условиями. Период крутильных колебаний нашей системы равен:

$$T = 2\pi \sqrt{\frac{Iz_0}{mgRr}}$$

Отсюда найдём формулу для определения оммента инерции:

$$I = \frac{mgRrT^2}{4\pi^2 z_0}$$

Учитывая, что параметр установки R, r и z_0 при проведении опытов не меняются, удобно переписать последнее уравнение:

$$I = km \cdot T^2.$$

где $k=\frac{gRr}{4\pi^2z_0}$ является константой для данной установки.

Методика измерений:

В работе используются: трифилярный подвес, секундомер, счётчик числа колебаний, набор тел, момент инерции которых надлежит измерить (диск, стержень полый цилиндр и др.)

Результаты измерений:

Проведём измерения момента инерции для пустого диска и различных сочетаний грузов на нём, а затем сравним с теоретичискими:

Погрешность здесь рассчитывалась по формуле:

	I экспер.	I теор.	δI
пустой	0,00791	0,00782	$9 \cdot 10^{-5}$
крышка	0,00219	0,00217	$2 \cdot 10^{-5}$
стенка	0,00505	0,00511	$6 \cdot 10^{-5}$
стержень	0,00431	0,00442	$5 \cdot 10^{-5}$
два полугкруга	0,00174	0,00178	$2 \cdot 10^{-5}$
два полукруга + стенка	0,00668	0,00663	$7 \cdot 10^{-5}$
два полукруга + стенка + крышка	0,00877	0,00870	$9 \cdot 10^{-5}$
крышка + стенка	0,00708	0,00713	$7 \cdot 10^{-5}$

$$\delta I = I \cdot \sqrt{(\frac{\delta m}{m})^2 + (\frac{\delta R}{R})^2 + (\frac{\delta r}{r})^2 + 2 \cdot (\frac{\delta T}{T})^2 + (\frac{\delta z_0}{z_0})^2}$$

Теперь проведём измерения момента инерции постепенно раздвигая между собой два полукруга, сохраняя центр масс в центре подвеса. Выведем формулу, по которой модно будет теоретичекси рассчатать момент инерции полукругов:

Момент инерции полукруга относительно центра в силу симметрии и аддитивности:

$$I_p = \frac{m_p r^2}{2}$$

Тогда момент инерции двух полукругов, центры которых разнесены на 2h по теореме Гюйгенса-Штейнера:

$$I = 2 \cdot (m_p h^2 + \frac{m_p r^2}{2}) = 2 \cdot m_p h^2 + \frac{2 \cdot m_p r^2}{2} = M \cdot h^2 + \frac{M \cdot r^2}{2},$$

где М – масса двух полукругов. Получим значения:

По полученным значениям построим график зависимости I от h^2 :

C	T	Т	5.7
Смещение	I экспер.	I теор.	δI
1	0,00170	0,00162	$2 \cdot 10^{-5}$
2	0,00189	0,00174	$2 \cdot 10^{-5}$
3	0,00215	0,00205	$2 \cdot 10^{-5}$
4	0,00235	0,00225	$3 \cdot 10^{-5}$
5	0,00259	0,00253	$3 \cdot 10^{-5}$
6	0,00321	0,00309	$4 \cdot 10^{-5}$
7	0,00371	0,00364	$4 \cdot 10^{-5}$
8	0,00429	0,00427	$4 \cdot 10^{-5}$
9	0,00509	0,00498	$5 \cdot 10^{-5}$
10	0,00570	0,00568	$6 \cdot 10^{-5}$
11	0,00663	0,00656	$7 \cdot 10^{-5}$
12	0,00746	0,00753	$8 \cdot 10^{-5}$
13	0,00854	0,00858	$9 \cdot 10^{-5}$
14	0,00960	0,00970	$10 \cdot 10^{-5}$

Из формулы можно заметить, что угловой коэффициент графика будет равен массе двух полукругов:

M=1,464 кг

Погрешность можно рассчиатать по МНК:

 $\delta M=0,009$ кг

А из величины свободного коэффициента равна моменту инерции двух полукругов, расположенных рядом:

I = 0,001715

А погрешнность:

 $\delta I = 4 \cdot 10^{-6}$

Обсуждение результатов и вывод:

Таким образом мы измерили момент инерции ряда тел. Эти значения получились близкими к значениям, рассчитанным теоретически (отличие менее 2,5%). Так же мы проверили аддитивность моментов инерции и справедливають формулы Гюйгенса-Штейнера, так как моменты инерции нескольких тел совпали с теоритическим рассчётом (отличие менее 0.8%).

Измерив момент инерции двух полукругов, постепенно разнося их, мы измерили их массу, которая оказалась близка к массе, измеренной на весах (отличие менее 5%), и момент инерции без сдвига (отличие от теоретического рассчёта менее 4%).