Linguagens Formais UNICAP Eduardo Araújo Oliveira http://sites.google.com/site/eaoufpe

Estrutura

- 1. Gramáticas
- 2. Gramáticas Lineares
- 3. Conversão para AF ϵ

Expressões Regulares

- Dada a expressão regular a(a*+b*)b
- Quais palavras ela denota/gera?

1

Expressões Regulares

- Dada a expressão regular a(a*+b*)b
- Podemos imaginar uma descrição do processo de geração de palavras
 - Primeiro, gera um a
 - Depois, escolhe entre:
 - Gerar vários a, ou
 - Gerar vários b
 - Depois gera um b

Gramáticas

- Uma gramática define regras de geração, lebrando a descrição anterior
- Usa símbolos intermediários durante o processo de geração
 - Símbolos não-terminais (representaremos com maiúsculas: A, B, X, Y, ...)
- Ao final ficam só os símbolos do alfabeto
 - Símbolos terminais (usaremos minúsculas e outros caracteres: a, b, c, +, -, ...)

.

Gramáticas

- Regras para gerar a(a*+b*)b
- Símbolos não-terminais
 - X para a primeira parte
 - Y para a segunda parte
 - **Z** para a parte final
 - A para repetições de a
 - B para repetições de b
 - S para o início do processo

Gramáticas

- Regras para gerar a(a*+b*)b
- Regras
 - $-S \rightarrow XYZ$
 - $-X \rightarrow a$
 - $-Z \rightarrow b$
 - $\ Y \to A$
 - $\rightarrow B$
 - $-A \rightarrow aA$
 - $\rightarrow \epsilon$
 - $-B \rightarrow bB$
 - $\rightarrow \epsilon$

7

Exemplo

- Como gerar "aaaab" ?
 - Tudo começa em **S**...
 - Notação resumida: S ⇒ aaaab
 - A palavra "aaaab" é gerada a partir de "S" aplicando uma ou mais regas

Gramáticas

- Uma outra classe de formalismo
 - Define regras que podem ser aplicadas de diversas maneiras para gerar palavras
- Formalismo gerador

9

Gramáticas (Irrestritas)

- Definição formal: G = (V, T, P, S)
 - V símbolos não-terminais (variáveis)
 - Intermediários
 - T símbolos terminais
 - Formam as palavras/cadeias finais
 - $-S-símbolo inicial (\in V)$

Gramáticas (Irrestritas)

- Definição formal: G = (V, T, P, S)
 - P relação de produções (regras)
 - P: $(V \cup T)^+ \rightarrow (V \cup T)^*$
 - Definem as regras, com lado esquerdo e lado direito
 - Dada uma palavra de V e T (lado esquerdo) a regras diz que outra(s) palavras de V e T podem ser geradas (lado direito)

11

Exemplo

- A gramática G = ({S, A, B}, {a,b}, P, S)
 - Conjunto de produções P:

$$S \rightarrow AA$$

$$A \rightarrow a$$

$$aA \rightarrow abA$$

$$bA \rightarrow baA$$

$$A \rightarrow \varepsilon$$

• Quais palavras/cadeias ela gera?

Linguagem Gerada

- Dada uma gramática G, GERA(G) é o conjunto das palavras geradas por G
- GERA(G) = { $W \in T \mid S \Rightarrow^+ W$ }
 - Palavras geradas a partir de S aplicando uma ou mais regras
- Análogo ao conjunto ACEITA, para autômatos

13

Gramáticas (Irrestritas)

- Formalismo muito poderoso
- Pode gerar linguagens regulares e não-regulares
- Como definir gramáticas que reconheçam apenas linguagens regulares?
 - Faremos restrições nas produções...

Gramáticas Lineares

- Reconhecem apenas linguagens regulares
- · Gramática Linear à Direita
 - Produções na forma: $\mathbf{A} \rightarrow \mathbf{w}\mathbf{B}$ ou $\mathbf{A} \rightarrow \mathbf{w}$
- Gramática Linear à Esquerda
 - Produções na forma: $\mathbf{A} \to \mathbf{B}\mathbf{w}$ ou $\mathbf{A} \to \mathbf{w}$

(onde w é uma cadeias formada de terminais)

15

Gramáticas Lineares Unitárias

- As gramáticas lineares são ditas "unitárias" se $|w| \le 1$
 - Ou seja, w é vazia ou tem apenas um símbolo
- Portanto, são quatro tipos de Gramáticas Lineares
 - Gramática Linear à Direita
 - Gramática Linear à Esquerda
 - Gramática Linear Unitária à Esquerda
 - Gramática Linear Unitária à Direita

Gramáticas Lineares

- Os quatro tipos são equivalentes, então usaremos apenas a Gramática Linear Unitária à Direita (GLUD) como referência
- Exemplo

 $S \rightarrow aA$

 $A \rightarrow bB$

 $\mathsf{A} \to \epsilon$

 $\mathsf{B} \to \mathsf{a}\mathsf{A}$

17

Equivalência GLUD / AFE

- Como já foi dito, as Gramáticas Lineares reconhecem as Linguagens Regulares
 - Ou seja, as linguagens que podem ser representadas pelos autômatos vistos e por expressões regulares
- Para comprovar, mostraremos a conversão de uma GLUD G para um AFε M equivalente
 - Ou seja, criar M tal que Gera(G) = ACEITA(M)

Equivalência GLUD / AF E

- Dada a gramática G = (V, T, P, S), construir o AF ϵ M = (T, Q, δ , q $_0$, F) da seguinte forma:
 - $\mathbf{Q} = V \cup \{ Q_f \}$
 - $\ {f F} = \{ \ {f Q}_f \ \}$
 - $q_0 = S$

19

Equivalência GLUD / AF E

Dado G = (V, T, P, S),
 M = (T', Q, δ, q₀, F)

construir

- Como construir **ŏ** a partir de P

Tipo da Produção	Transição Gerada
$X \to \epsilon$	$\delta(X, \varepsilon) = Q_f$
$X \rightarrow a$	$\delta(X, a) = Q_f$
$X \rightarrow Y$	$\delta(X, \epsilon) = Y$
$X \rightarrow aY$	$\delta(X, a) = Y$

Equivalência AFD / GLUD

- Para provar realmente que Gramáticas Lineares reconhecem as mesmas linguagens que os autômatos, falta converter na outra direção...
 - Tudo que um autômato faz, uma gramática pode fazer?
- Não veremos essa outra direção ...

2

Linguagens Formais

UNICAP

Eduardo Araújo Oliveira http://sites.google.com/site/eaoufpe

