NESTED COLLECTION OF CUTS

ZHAOSHEN ZHAI

1. Introduction

With the definitions in Section 2, we prove the following

Theorem 1.1. If (X,G) is a graph with a nested collection $\mathcal{C} \subseteq 2^X$ of cuts, then the graph $\mathcal{T}_{\mathcal{C}}$ whose:

- Vertices are finitely-based orientations on C; and whose
- Neighbors of $\mathcal{U} \in \mathcal{T}_{\mathcal{C}}$ are $\mathcal{U} \triangle \{A, A^c\}$ for every minimal $A \in \mathcal{U}$;

is acyclic. Furthermore, if C is closed under complements, then T_C is a tree.

2. Preliminaries

2.1. **Orientations.** Let $\mathcal{C} \subseteq 2^X$ be a collection of non-empty subsets of a set X. Since we do not assume that \mathcal{C} is closed under complements, we slightly modify the definition of orientations, as follows.

Definition 2.1. An *orientation* on \mathcal{C} is a subset $\mathcal{U} \subseteq \mathcal{C}$ such that

- 1. (Upward-closure). If $A \in \mathcal{U}$ and $B \in \mathcal{C}$ contains A, then $B \in \mathcal{U}$.
- 2. (Ultra). If $A, A^c \in \mathcal{C}$, then either $A \in \mathcal{U}$ or $A^c \in \mathcal{U}$, but not both.

Definition 2.2. A base for an orientation $\mathcal{U} \subseteq \mathcal{C}$ is a \subseteq -minimal subset $\mathcal{B} \subseteq \mathcal{U}$ such that $\mathcal{U} = \uparrow \mathcal{B}$, where

$$\uparrow\!\mathcal{B}\coloneqq\bigcup_{B\in\mathcal{B}}\uparrow\!B\coloneqq\bigcup_{B\in\mathcal{B}}\left\{A\in\mathcal{C}:A\supseteq B\right\}.$$

Definition 2.3. A collection C is said to be *nested* if every $C_1, C_2 \in C$ has an empty corner, i.e., $C_1^i \cap C_2^j = \emptyset$ for some $i, j = \pm 1$, where $C^i := C$ if i = 1 and $C^i := C^c$ if i = -1.

Remark 2.4. If \mathcal{C} is nested, then every \subseteq -minimal $B \in \mathcal{C}$ induces an orientation $\uparrow B := \{A \in \mathcal{C} : A \supseteq B\}$, called the *principal* orientation. Indeed, $\uparrow B$ is clearly upward -closed, and if $A, A^c \in \mathcal{C}$, then, by \subseteq -minimality of B and nestedness of \mathcal{C} , either $A \supseteq B$ or $A^c \supseteq B$ (but clearly not both).

This construction generalizes to any collection $\mathcal{B} \subseteq \mathcal{C}$ with each $B \in \mathcal{B}$ being \subseteq -minimal, in that $\uparrow \mathcal{B}$ is an orientation on \mathcal{C} .

Definition 2.5. An orientation $\mathcal{U} \subseteq \mathcal{C}$ is said to be *finitely-based* if it admits a finite base.

Lemma 2.6. If $\mathcal{U} \subseteq \mathcal{C}$ is an orientation, then for any \subseteq -minimal $A \in \mathcal{U}$ with $A^c \in \mathcal{C}$, so is $\mathcal{U} \triangle \{A, A^c\}$.

Proof. That $\mathcal{V} := \mathcal{U} \triangle \{A, A^c\} = \mathcal{U} \cup \{A^c\} \setminus \{A\}$ is upward-closed follows from \subseteq -minimality of A. Now, if $B, B^c \in \mathcal{C}$ and $B^c \notin \mathcal{V}$, we need to show that $B \in \mathcal{V}$.

To this end, note that $B^c \notin \mathcal{V}$ implies $A \neq B$ and either $B = A^c$ or $B^c \notin \mathcal{U}$. The former case follows from $A^c \in \mathcal{V}$, and for the latter, we have $B \in \mathcal{U} \setminus \{A\}$ since \mathcal{U} is ultra.

2.2. Cuts in graphs. Let (X,G) be a graph.

Definition 2.7. A *cut* in X is a subset $C \subseteq X$ contained in a single connected component $Y \subseteq X$ such that both C and $Y \setminus C$ are infinite but $\partial_{\mathbf{v}} C$ is finite.

3. The graph $\mathcal{T}_{\mathcal{C}}$