Devoir Surveillé - 2 h

Exercice 1 - suite, récurrence, fonction, algorithme - polynésie jour 1 - 2024

13 points

L'objectif de cet exercice est de conjecturer en partie A puis de démontrer en partie B le comportement d'une suite.

Les deux parties peuvent cependant être traitées de manière indépendante.

On considère la suite (u_n) définie par $u_0 = 3$ et pour tout $n \in \mathbb{N}$:

$$u_{n+1} = \frac{4}{5 - u_n}.$$

Partie A

1. Recopier et compléter la fonction Python suivante suite(n) qui prend comme paramètre le rang n et renvoie la valeur du terme u_n .

- L'exécution de suite (2) renvoie 1.33333333333333333.
 Effectuer un calcul pour vérifier et expliquer cet affichage.
- **3.** À l'aide des affichages ci-dessous, émettre une conjecture sur le sens de variation et une conjecture sur la convergence de la suite (u_n) .

Partie B

On considère la fonction f définie et dérivable sur l'intervalle] $-\infty$; 5[par :

$$f(x) = \frac{4}{5 - x}.$$

Ainsi, la suite (u_n) est définie par $u_0 = 3$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

- **1.** Montrer que la fonction f est croissante sur l'intervalle $]-\infty$; 5[.
- 2. Démontrer par récurrence que pour tout entier naturel *n* on a :

$$1 \leqslant u_{n+1} \leqslant u_n \leqslant 4$$
.

3. a. Soit x un réel de l'intervalle $]-\infty$; 5[. Prouver l'équivalence suivante :

$$f(x) = x \iff x^2 - 5x + 4 = 0.$$

- **b.** Résoudre f(x) = x dans l'intervalle $]-\infty$; 5[.
- **4.** Démontrer que la suite (*u*_n) est convergente. Déterminer sa limite.
- 5. Le comportement de la suite serait-il identique en choisissant comme terme initial $u_0 = 4$ au lieu de $u_0 = 3$?

Exercice 2 - suite, récurrence, algorithme - métropole jour 2 - sujet dévoilé - 2024 7 points

Soit a un nombre réel strictement supérieur à 1.

On considère la suite (u_n) définie par $u_0 = a$ et, pour tout entier naturel n:

$$u_{n+1} = u_n^2 - 2u_n + 2.$$

On admet que pour tout entier naturel n, $u_n > 1$.

L'objectif de cet exercice est d'étudier la suite (u_n) pour différentes valeurs du nombre réel a.

Partie A : étude de la suite (u_n) dans le cas 1 < a < 2

- **1. a.** Montrer que, pour tout entier naturel n, on a : $u_{n+1} 2 = u_n (u_n 2)$.
 - **b.** Montrer que, pour tout entier naturel n, on a : $u_{n+1} u_n = (u_n 1)(u_n 2)$.
- Dans cette question, on pourra utiliser les égalités établies dans la question précédente.
 - a. En utilisant un raisonnement par récurrence démontrer que, pour tout entier naturel $n: u_n < 2$.
 - **b.** Montrer que la suite (u_n) est convergente et déterminer sa limite.

Partie B : étude dans le cas particulier a = 2

 On donne ci-contre la fonction u écrite en langage Python.
 Déterminer les valeurs renvoyées par le programme lorsque l'on saisit u(2,1) et u(2,2) dans la console Python.

```
def u(a,n) :
 u=a
 for k in range(n) :
     u=u**2-2*u+2
 return u
```

2. Quelle conjecture peut-on formuler concernant la suite (u_n) dans le cas où a = 2? On admettra ce résultat sans démonstration.