F-test

A random variable X is said to follow F distribution, if its probability density function is given by

$$f(F) = \frac{(v_1/v_2)^{v_1/2}}{\beta\left(\frac{v_1}{2}, \frac{v_2}{2}\right)} \cdot \frac{F^{\frac{v_1}{2}-1}}{\left(1 + \frac{v_1 F}{v_2}\right)^{(v_1+v_2)/2}}, \quad F > 0,$$

where v_1 and v_2 are the degrees of freedom of samples.

Use of F distribution:

F distribution is used to test the equality of the variance of the populations from which two small samples have been drawn.

F test of significance of the difference between population variances

To test the significance of the difference between population variances, we shall first find their estimates, $\widehat{\sigma_1}^2$ and $\widehat{\sigma_2}^2$ based on the sample variances s_1^2 and s_2^2 . We compute estimates by the following formulas: $\widehat{\sigma_1}^2 = \frac{n_1 s_1^2}{1}$,

$$\widehat{\sigma_2}^2 = \frac{n_2 s_2^2}{n_2 - 1}.$$

Test statistics is $F = \frac{\widehat{\sigma_2}^2}{\widehat{\sigma_1}^2}$, where $\widehat{\sigma_1}^2 < \widehat{\sigma_2}^2$ or $F = \frac{\widehat{\sigma_1}^2}{\widehat{\sigma_2}^2}$, where $\widehat{\sigma_2}^2 < \widehat{\sigma_1}^2$

The value of F is greater than 1. Then, compare calculated value F with the table value $F_{\nu_1,\nu_2}(\alpha)$ (in case of $\widehat{\sigma_2}^2 < \widehat{\sigma_1}^2$) or $F_{\nu_2,\nu_1}(\alpha)$ (in case of $\widehat{\sigma_1}^2 < \widehat{\sigma_2}^2$) by using F-table. If the calculated value F is less than the table value, then fail to reject null hypothesis.

742

Table A.6 Critical Values of the F-Distribution

Table A.6 (continued) Critical Values of the F-Distribution

	-			J	$v_{0.08}(v_1, v_2)$	1)			- 20						fo.08 (
					v_1	_							4.6							500
2	1	2	3	4	5	6	7	8	9	v_2	10	12	15	20	24	30	40	60	120	~
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	1	241.88	243.91	245.95	248.01	249.05	250.10	251.14	252.20	253.25	254.
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	2	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19
4	10.13 7.71	9.55 6.94	9.28	9.12 6.39	9.01 6.26	8.94 6.16	8.89 6.09	8.85 6.04	8.81 6.00	3	8.79 5.96	8.74 5.91	8.70 5.86	8.66 5.80	8.64 5.77	8.62 5.75	8.59 5.72	8.57 5.69	8.55	5
5	6.61	5.79	6.59 5.41	5.19	5.05	4.95	4.88	4.82	4.77	4 5	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	5.66 4.40	4
	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	6	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3
	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	7	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	
	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	8	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	1 8
	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	9	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	
	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	10	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	
	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	11	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	
	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	12	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	
	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	13	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	
	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	14	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	
	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	15	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	
	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	16	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	
	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	17	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	
	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	18	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	
	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	19	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	
	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	20	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	
	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	21	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	
	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	22	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	
	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	23	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	
	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	24	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	
	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	25	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	
	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	26	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	
	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	27	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	
	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	28	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	
	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	29	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	
	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	30	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	
	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	40	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	
	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	60	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	
	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	120	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	
į	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	00	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	

Table A.6 (continued) Critical Values of the F-Distribution

Table A.6 (continued) Critical Values of the F-Distribution

_					. /	`				Tab	le A.6 (continued	Critical	Values of t	the F-Dist	ribution				
	î) -				fo.o1 (v1, v2	1)									fo.01($v_1, v_2)$				
	-	2		-	v ₁ 5		7	8							1	1				
v_2	1	2	3	4		6			9	v_2	10	12	15	20	24	30	40	60	120	∞
1	4052.18	4999.50	5403.35	5624.58	5763.65	5858.99	5928.36	5981.07	6022.47	1	6055.85	6106.32	6157.28	6208.73	6234.63	6260.65	6286.78	6313.03	6339.39	6365.86
3	98.50	99.00 30.82	99.17 29.46	99.25	99.30	99.33	99.36 27.67	99.37 27.49	99.39	2	99.40	99.42	99.43	99.45	99.46	99.47	99.47	99.48	99.49	99.50
4	34.12 21.20	18.00	16.69	28.71 15.98	28.24 15.52	27.91 15.21	14.98	14.80	27.35 14.66	3	27.23	27.05	26.87	26.69	26.60	26.50	26.41	26.32	26.22	26.13
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29		4	14.55	14.37	14.20	14.02	13.93	13.84	13.75	13.65	13.56	13.46
9									10.16	5	10.05	9.89	9.72	9.55	9.47	9.38	9.29	9.20	9.11	9.02
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98	6	7.87	7.72	7.56	7.40	7.31	7.23	7.14	7.06	6.97	6.88
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	7	6.62	6.47	6.31	6.16	6.07	5.99	5.91	5.82	5.74	5.65
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	8	5.81	5.67	5.52	5.36	5.28	5.20	5.12	5.03	4.95	4.86
9	10.56	8.02 7.56	6.99	6.42 5.99	6.06 5.64	5.80 5.39	5.61	5.47 5.06	5.35	9	5.26	5.11	4.96	4.81	4.73	4.65	4.57	4.48	4.40	4.31
10	10.04		6.55				5.20		4.94	10	4.85	4.71	4.56	4.41	4.33	4.25	4.17	4.08	4.00	3.91
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	11	4.54	4.40	4.25	4.10	4.02	3.94	3.86	3.78	3.69	3.60
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	12	4.30	4.16	4.01	3.86	3.78	3.70	3.62	3.54	3.45	3.36
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	13	4.10	3.96	3.82	3.66	3.59	3.51	3.43	3.34	3.25	3.17
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03	14	3.94	3.80	3.66	3.51	3.43	3.35	3.27	3.18	3.09	3.00
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	15	3.80	3.67	3.52	3.37	3.29	3.21	3.13	3.05	2.96	2.87
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	16	3.69	3.55	3.41	3.26	3.18	3.10	3.02	2.93	2.84	2.75
17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68	17	3.59	3.46	3.31	3.16	3.08	3.00	2.92	2.83	2.75	2.65
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	18	3.51	3.37	3.23	3.08	3.00	2.92	2.84	2.75	2.66	2.57
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	19	3.43	3.30	3.15	3.00	2.92	2.84	2.76	2.67	2.58	2.49
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	20	3.37	3.23	3.09	2.94	2.86	2.78	2.69	2.61	2.52	2.42
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	21	3.31	3.17	3.03	2.88	2.80	2.72	2.64	2.55	2.46	2.36
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	22	3.26	3.12	2.98	2.83	2.75	2.67	2.58	2.50	2.40	2.31
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	23	3.21	3.07	2.93	2.78	2.70	2.62	2.54	2.45	2.35	2.26
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	24	3.17	3.03	2.89	2.74	2.66	2.58	2.49	2.40	2.31	2.21
25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	3.22	25	3.13	2.99	2.85	2.70	2.62	2.54	2.45	2.36	2.27	2.17
26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	26	3.09	2.96	2.81	2.66	2.58	2.50	2.42	2.33	2.23	2.13
27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15	27	3.06	2.93	2.78	2.63	2.55	2.47	2.38	2.29	2.20	2.10
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	28	3.03	2.90	2.75	2.60	2.52	2.44	2.35	2.26	2.17	2.06
29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09	29	3.00	2.87	2.73	2.57	2.49	2.41	2.33	2.23	2.14	2.03
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	30	2.98	2.84	2.70	2.55	2.47	2.39	2.30	2.21	2.11	2.01
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	40	2.80	2.66	2.52	2.37	2.29	2.20	2.11	2.02	1.92	1.80
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	60	2.63	2.50	2.35	2.20	2.12	2.03	1.94	1.84	1.73	1.60
120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56	120	2.47	2.34	2.19	2.03	1.95	1.86	1.76	1.66	1.53	1.38
00	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41	_∞	2.32	2.18	2.04	1.88	1.79	1.70	1.59	1.47	1.32	1.00

Example: Two independent samples of 7 and 6 items respectively had the following values of the variable.

Sample A: 28, 30, 32, 33, 33, 29, 34.

Sample B: 29, 30, 30, 24, 27, 29.

Do the two estimates of population variance differ significantly at 5% LOS?

Solution: We have $n_1 = 7$, $n_2 = 6$.

Degrees of freedom = $n_1 - 1$, $n_2 - 1 = 6$, 5.

Level of significance = 5%

Null hypothesis H_0 : The two horses have the same running capacity, i.e. $\sigma_1^2 = \sigma_2^2$

Alternative hypothesis $H_1: \sigma_1^2 \neq \sigma_2^2$

Test statistics is
$$F = \frac{\widehat{\sigma_2}^2}{\widehat{\sigma_1}^2} = \frac{5.368}{5.224} = 1.02$$

Table value of F for (5, 6) degrees of freedom at 5% LS is 4.39.

Note: After computing two variance estimates $\widehat{\sigma_1}^2$ and $\widehat{\sigma_2}^2$ for two different samples our next job is to compute F-test statistic value. If you look at the F-test statistic formula and it's provided condition always in numerator we are taking highest value and in denominator lowest value of estimates.

Since the calculated value of F is less than the table value of F for d.fs (5, 6) at 5% L.S we accept H_0 .

The two horses have the same running capacity.

Example: A sample of size 13 gave an estimated population variance of 3.0, while another sample of size 15 gave an estimate of 2.5. Could both samples be from populations with the same variance?

Solution Here, $n_1 = 13$, $\hat{\sigma}_1^2 = 3.0$ and $v_1 = 12$, $n_2 = 15$, $\hat{\sigma}_2^2 = 2.5$ and $v_2 = 14$.

 H_0 : $\hat{\sigma}_1^2 = \hat{\sigma}_2^2$, i.e. the two samples have been drawn from populations with the

same variance. $H_1: \hat{\sigma}_1^2 \neq \hat{\sigma}_2^2$.

Let LOS. be 5%.

$$F = \frac{\hat{\sigma}_1^2}{\hat{\sigma}_2^2} = \frac{3 \cdot 0}{2 \cdot 5} = 1.2$$

$$v_1 = 12$$
 and $v_2 = 14$.

 $F_{0.05\%}$ ($v_1 = 12$, $v_2 = 14$) = 2.53, from the *F*-table. Since $F < F_{0.05}$, H_0 is accepted. That is the two samples could have come from two normal populations with the same variance.

χ^2 -Test

In this study, we introduce chi-square distribution, the measure of which enables us to find the degree of discrepancy between the observed and expected frequencies is due to error of sampling or due to chance.

- The chi-square is denoted by the symbol χ^2 . It is always positive. The value of chi-square lies between 0 and ∞ .
- Since chi-square is not derived from the observation in a population, it is not a parameter. The chi-square test is not a parametric test.
- Chi-square is computed on the basis of frequencies in a sample and the value of chi-square so obtained is a statistic.

 χ^2 -Test is defined as

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i},$$

where O_i = Observed frequencies and E_i = Expected frequencies.

χ^2 -Distribution

Let samples of size n be drawn from a normal population with standard deviation σ . If for each sample we calculate χ^2 a sampling distribution of χ^2 can be obtained. It is given by

$$f(\chi^2) = \frac{1}{2^{\nu/2} \sqrt{\frac{\nu}{2}}} (\chi^2)^{\frac{\nu}{2} - 1} e^{-\frac{\chi^2}{2}},$$

where $0 < \chi^2 < \infty$ and v is the number of degrees of freedom.

Conditions for using χ^2 -Test

- The total number of observations used in this test must be large.
- Each of the observations making up the sample for the χ^2 test should be independent of each other.
- The test is wholly dependent on the degrees of freedom.
- The frequencies used in a χ^2 test should be absolute and not relative in terms.
- The expected frequency of any item or cell should not be less than 5. If it is less than 5, then the frequencies from the adjacent items or cells should be pooled together in order to make it 5 or more than 5 (preferably not less than 10).
- The observations collected for χ^2 must be based on the method of random sampling.

Uses of χ^2 -Test

 χ^2 -test is an important test. We require only the degrees of freedom for using this test. It is used

- as a test of goodness of fit,
- as a test of independence of attributes, and
- as a test of homogeneity. (This concept is not in your syllabus.)

Table A.5 Critical Values of the Chi-Squared Distribution

Table A.5 (continued) Critical Values of the Chi-Squared Distribution

	α												α								
\boldsymbol{v}	0.995	0.99	0.98	0.975	0.95	0.90	0.80	0.75	0.70	0.50	\boldsymbol{v}	0.30	0.25	0.20	0.10	0.05	0.025	0.02	0.01	0.005	0.001
1	0.0^4393	0.0^3157	0.0^3628	0.0^3982	0.00393	0.0158	0.0642	0.102	0.148	0.455	1	1.074	1.323	1.642	2.706	3.841	5.024	5.412	6.635	7.879	10.827
2	0.0100	0.0201	0.0404	0.0506	0.103	0.211	0.446	0.575	0.713	1.386	2	2.408	2.773	3.219	4.605	5.991	7.378	7.824	9.210	10.597	13.815
3	0.0717	0.115	0.185	0.216	0.352	0.584	1.005	1.213	1.424	2.366	3	3.665	4.108	4.642	6.251	7.815	9.348	9.837	11.345	12.838	16.266
4	0.207	0.297	0.429	0.484	0.711	1.064	1.649	1.923	2.195	3.357	4	4.878	5.385	5.989	7.779	9.488	11.143	11.668	13.277	14.860	18.466
5	0.412	0.554	0.752	0.831	1.145	1.610	2.343	2.675	3.000	4.351	5	6.064	6.626	7.289	9.236	11.070	12.832	13.388	15.086	16.750	20.515
6	0.676	0.872	1.134	1.237	1.635	2.204	3.070	3.455	3.828	5.348	6	7.231	7.841	8.558	10.645	12.592	14.449	15.033	16.812	18.548	22.457
7	0.989	1.239	1.564	1.690	2.167	2.833	3.822	4.255	4.671	6.346	7	8.383	9.037	9.803	12.017	14.067	16.013	16.622	18.475	20.278	24.321
8	1.344	1.647	2.032	2.180	2.733	3.490	4.594	5.071	5.527	7.344	8	9.524	10.219	11.030	13.362	15.507	17.535	18.168	20.090	21.955	26.124
9	1.735	2.088	2.532	2.700	3.325	4.168	5.380	5.899	6.393	8.343	9	10.656	11.389	12.242	14.684	16.919	19.023	19.679	21.666	23.589	27.877
10	2.156	2.558	3.059	3.247	3.940	4.865	6.179	6.737	7.267	9.342	10	11.781	12.549	13.442	15.987	18.307	20.483	21.161	23.209	25.188	29.588
11	2.603	3.053	3.609	3.816	4.575	5.578	6.989	7.584	8.148	10.341	11	12.899	13.701	14.631	17.275	19.675	21.920	22.618	24.725	26.757	31.264
12	3.074	3.571	4.178	4.404	5.226	6.304	7.807	8.438		11.340	12	14.011	14.845	15.812	18.549	21.026	23.337	24.054	26.217	28.300	32.909
13	3.565	4.107	4.765	5.009	5.892	7.041	8.634	9.299	9.926	12.340	13	15.119	15.984	16.985	19.812	22.362	24.736	25.471	27.688	29.819	34.527
14	4.075	4.660	5.368	5.629	6.571	7.790	9.467		10.821	13.339	14	16.222	17.117	18.151	21.064	23.685	26.119	26.873	29.141	31.319	36.124
15	4.601	5.229	5.985	6.262	7.261	8.547	10.307		11.721	14.339	15	17.322	18.245	19.311	22.307	24.996	27.488	28.259	30.578	32.801	37.698
16	5.142	5.812	6.614	6.908	7.962	9.312	11.152			15.338	16	18.418	19.369	20.465	23.542	26.296	28.845	29.633	32.000	34.267	39.252
17	5.697	6.408	7.255	7.564	8.672	10.085	12.002			16.338	17	19.511	20.489	21.615	24.769	27.587	30.191	30.995	33.409	35.718	40.791
18	6.265	7.015	7.906	8.231	9.390	10.865	12.857		14.440		18	20.601 21.689	21.605 22.718	22.760 23.900	25.989 27.204	28.869 30.144	31.526 32.852	32.346 33.687	34.805 36.191	37.156 38.582	42.312 43.819
19 20	6.844 7.434	7.633 8.260	8.567 9.237	8.907 9.591	10.117 10.851	11.651 12.443	13.716 14.578			18.338 19.337	19 20	22.775	23.828	25.038	28.412	31.410	34.170	35.020	37.566	39.997	45.314
21	8.034	8.897	9.915	10.283	11.591	13.240	15.445	16.344		20.337	21	23.858 24.939	24.935	26.171	29.615 30.813	32.671	35.479 36.781	36.343 37.659	38.932 40.289	41.401 42.796	46.796
22	8.643 9.260	9.542	10.600	10.982	12.338	14.041	16.314		18.101 19.021	21.337 22.337	22 23	26.018	26.039 27.141	27.301 28.429	32.007	33.924 35.172	38.076	38.968	40.289	44.181	48.268 49.728
23 24	9.886	10.196 10.856	11.293 11.992	11.689 12.401	13.091 13.848	14.848 15.659	17.187 18.062	18.137 19.037	19.021	23.337	24	27.096	28.241	29.553	33.196	36.415	39.364	40.270	42.980	45.558	51.179
25		11.524	12.697	13.120	14.611	16.473	18.940		20.867	24.337	25	28.172	29.339	30.675	34.382	37.652	40.646	41.566	44.314	46.928	52.619
											26	29.246	30.435	31.795	35.563	38.885	41.923	42.856	45.642	48.290	54.051
26	11.160 11.808	12.198 12.878	13.409 14.125	13.844 14.573	15.379 16.151	17.292 18.114	19.820 20.703	20.843 21.749	21.792 22.719	25.336 26.336	27	30.319	31.528	32.912	36.741	40.113	43.195	44.140	46.963	49.645	55.475
27 28	12.461	13.565	14.125	15.308	16.131	18.939	21.588	22.657	23.647	27.336	28	31.391	32.620	34.027	37.916	40.113 41.337	44.461	45.419	48.278	50.994	56.892
29	13.121	14.256	15.574	16.047	17.708	19.768	22.475	23.567	24.577	28.336	29	32.461	33.711	35.139	39.087	42.557	45.722	46.693	49.588	52.335	58.301
30	13.787	14.250	16.306	16.791	18.493	20.599	23.364		25.508	29.336	30	33.530	34.800	36.250	40.256	43.773	46.979	47.962	50.892	53.672	59.702
	20.707	22.164	23.838	24.433	26.509	29.051	32.345	33.66	34.872	39.335	40	44.165	45.616	47.269	51.805	55.758	59.342	60.436	63.691	66.766	73.403
40 50	27.991	29.707	31.664	32.357	34.764	37.689	41.449		44.313	49.335	50	54.723	56.334	58.164	63.167	67.505	71.420	72.613	76.154	79.490	86.660
8.8		37.485	39.699	40.482	43.188	46.459	50.641		53.809	59.335	60	65.226	66.981	68.972	74.397	79.082	83.298	84.58	88.379	91.952	99.608
UU	00.004	01.400	03.033	40.402	40.100	40.403	00.041	02.294	00.009	03.000	00	00.220	00.001	00.012	14.001	10.002	00.200	V1.00	00.010	01.002	00.000

χ^2 -test as a test of goodness of fit

 χ^2 -test is applied as a test of goodness of fit to determine whether the actual (i.e. observed) frequencies are close to the expected (i.e. theoretical) frequencies. The degrees of freedom in this case are v = n - 1, where n is the number of observations.

Problem 1:In 90 throws of a die, face 1 turned 9 times, face 2 or 3 turned 24 times, face 4 or 5 turned 36 times and 6 turned 18 times. Test at 10% level if the die is honest.

Solution: H_0 : The die is honest

 H_1 : The die is not honest

Expected frequencies for each face= $90 * \frac{1}{6} = 15$

Level of significance= 10% = 0.1

Degree of freedom=4 - 1 = 3

 χ^2 -value for 3 degrees of freedom at 10% level of significance = 6.25.

χ^2 -test as a test of goodness of fit (Conti...)

Face turned	Observed <i>O_i</i>	Expected <i>E_i</i>	$\frac{(O_i - E_i)^2}{E_i}$
1	9	15	2.4
2 or 3	27	30	0.3
4 or 5	36	30	1.2
6	18	15	0.6
Total	90	90	4.5

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

Since the calculated value of χ^2 is less than the table value at 10% level of significance and for 3 degrees of freedom, we accept the null hypothesis, and conclude that the die honest.

Problem 2: A sample analysis of examination results of 500 students was made. It was found that 230 students had failed. 160 had secured a third class, 80 were placed in second class and 30 got first class. Do these figures commensurate with the general examination results which is in the ratio 4:3:2:1 for various categories respectively?

Solution: H_0 : The observed results commensurate with the general examination results H_1 : It is not true that the observed results commensurate with the general examination results.

Level of significance=5%. Degrees of freedom=4 - 1 = 3.

The total frequency=N = 500.

Table value χ^2 for 3 df at 5% level of significance = 7.81.

Dividing 500 in the ratio 4:3:2:1, we get 200, 150, 100 and 50. Therefore, the expected frequencies are 200, 150, 100 and 50 corresponding to the observed frequencies 230, 160, 80 and 30.

			$(O_i - E_i)^2$
Class/division	Observed <i>O_i</i>	Expected E _i	$\overline{E_i}$
Failed	230	200	4.500
Third	160	150	0.666
Second	80	100	4.000
First	30	50	8.000

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

Since the calculated value of χ^2 is greater than the table value of χ^2 , the null hypothesis is rejected.

χ^2 -test as a test of goodness of fit (Conti...)

Problem 3: The table below gives the number of aircraft accidents that occurred during the various days of the week. Test whether the accidents are uniformly distributed over the week.

Days	Mon	Tue	Wed	Thu	Fri	Sat
No. of accidents	14	18	12	11	15	14

Problem 4: Fit a Poisson distribution to the following data and test the goodness of fit

x:	0	1	2	3	4	5	6
f:	275	72	30	7	5	2	1

χ^2 -test as a test of goodness of fit (Conti...)

Problem 5: Four coins are tossed 160 times and the following results were obtained.

Numbers of heads:	0	1	2	3	4
Observed frequencies:	17	52	54	31	6

Under the assumption that coins are balanced, find the expected frequencies of getting 0,1,2,3 or 4 heads and test the goodness of fit.

Test for independence attributes

The chi-square test can also be applied to test the association between attributes such as honesty, smoking etc, when the sample data is presented in the form of a contingency table with any number of rows and columns.

Contingency Table: A classification table containing m rows and n columns with observed frequencies is called a contingency table.

Test for independence attributes (Conti...)

Problem 1:The following table gives the classification of 150 workers according to sex and nature of work. Test whether the nature of work is independent of the sex of the work.

	Stable	Unstable
Males	60	30
Females	15	45

Solution: H_0 : The nature of the work is independent of the sex of the worker.

 H_1 : The nature of the work is not independent of the sex of the worker.

Test for independence attributes (Conti...)

Degrees of freedom =(m-1)(n-1) = (2-1)(2-1) = 1.

Level of significance = 5%

Table value of χ^2 =3.84

Contingency Table:

	Stable	Unstable	Total
Males	60	30	90
Females	15	45	60
Total	75	75	150

Expected frequencies are given in the following table

	Stable	Unstable
Males	75×90/150=45	75×90/150=45
Females	75×60/150=30	75×60/150=30

Expected Cell Frequency = (Row Total * Column Total)/N.

Calculation of χ^2

Oi	Ei	(O _i –E _i)	$\frac{(O_i - E_i)^2}{E_i}$
60	45	15	5.00
15	30	-15	7.50
30	45	-15	5.00
45	30	15	7.50
Total			25

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

The calculated value of χ^2 is greater than the table value at 5% LS and 1 df. Hence, we reject the null hypothesis.

• Problem 2:A tobacco company claims that there is no relationship between smoking and lung ailments. To investigate the claim, a random sample of 300 persons in the age group of 40 and 50 are given a medical test. The observed sample results are tabulated below

	Lung ailment	Non-lung ailment
Smokers	75	105
Non smokers	25	95

On the basis of this information, can it be concluded that smoking and lung ailments are independent? ($\chi^2_{0.05} = 3.841$ for 1 df)