

Lens Design I

Lecture 1: Basics

2024-04-04

Yueqian Zhang

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Preliminary Schedule - Lens Design I 2024

04.04.	Basics	Zhang	Introduction, Zemax interface, menues, file handling, preferences, Editors, updates, windows, coordinates, System description, 3D geometry, aperture, field, wavelength
18.04.	Properties of optical systems I	Tang	Diameters, stop and pupil, vignetting, layouts, materials, glass catalogs, raytrace, ray fans and sampling, footprints
25.04.	Properties of optical systems II	Tang	Types of surfaces, cardinal elements, lens properties, Imaging, magnification, paraxial approximation and modelling, telecentricity, infinity object distance and afocal image, local/global coordinates
02.05.	Properties of optical systems III	Tang	Component reversal, system insertion, scaling of systems, aspheres, gratings and diffractive surfaces, gradient media, solves
16.05.	Advanced handling I	Tang	Miscellaneous, fold mirror, universal plot, slider, multiconfiguration, lens catalogs
23.05.	Aberrations I	Zhang	Representation of geometrical aberrations, spot diagram, transverse aberration diagrams, aberration expansions, primary aberrations
30.05.	Aberrations II	Zhang	Wave aberrations, Zernike polynomials, measurement of quality
06.06.	Aberrations III	Tang	Point spread function, optical transfer function
13.06.	Optimization I	Tang	Principles of nonlinear optimization, optimization in optical design, general process, optimization in Zemax
20.06.	Optimization II	Zhang	Initial systems, special issues, sensitivity of variables in optical systems, global optimization methods
27.06.	Correction I	Zhang	Symmetry principle, lens bending, correcting spherical aberration, coma, astigmatism, field curvature, chromatical correction
04.07.	Correction II	Zhang	Field lenses, stop position influence, retrofocus and telephoto setup, aspheres and higher orders, freeform systems, miscellaneous
	18.04. 25.04. 02.05. 16.05. 23.05. 30.05. 06.06. 13.06. 20.06.	25.04. Properties of optical systems II 02.05. Properties of optical systems III 16.05. Advanced handling I 23.05. Aberrations II 30.05. Aberrations III 06.06. Aberrations IIII 13.06. Optimization II	18.04. Properties of optical systems I Tang 25.04. Properties of optical systems II Tang 02.05. Properties of optical systems III Tang 16.05. Advanced handling I Tang 23.05. Aberrations I Zhang 30.05. Aberrations II Tang 13.06. Optimization I Tang 20.06. Optimization II Zhang 27.06. Correction I Zhang

Content 1st Lecture

- 1. Introduction
- 2. Zemax interface, menues, file handling, preferences
- 3. Editors, updates, windows
- 4. Coordinate systems and notations
- 5. Aperture, field, wavelength
- 6. System description
- 7. 3D geometry

What is Lens Design (Optical Design)

Modelling of Optical Systems

- Principal purpose of calculations:
 - Solving the direct problem of understanding the properties: analysis
 - 2. Solving the inverse problem: Finding the concret system data for a required functionality: synthesis

System, data of the structure (radii, distances, indices,...)

Analysis imaging aberration theory

Synthesis lens design inverse problem

Function, data of properties,

quality performance (spot diameter, MTF, Strehl ratio,...)

Model depth of Light Propagation

- Different levels of modelling in optical propagation
- Schematical illustration (not to scale)

Modelling of Optical Systems

- Five levels of modelling:
- 1. Geometrical raytrace with analysis
- Equivalent geometrical quantities, classification
- 3. Physical model: complex pupil function
- 4. Primary physical quantities
- 5. Secondary physical quantities
- Blue arrows: conversion of quantities

Key Skills of Optical Designers

Additional
Programming
Skill

Simulation

Physical

- High NA
- High precision
- Near-field

Future: e.g. Metalens

Construction and Manufacture

- Advanced analysis
- Advanced optimization algorithm

Future: e.g. Al-aided

- There are 4 types of windows in Zemax:
- Editors for data input:
 lens data, extra data, multiconfiguration, tolerances
- 2. Output windows for graphical representation of results
 Here mostly setting-windowss are supported to optimize the layout
- 3. Text windows for output in ASCII numerical numbers (can be exported)
- 4. Dialog boxes for data input, error reports and more
- There are several files associates with Zemax
- Data files (.ZMX)
- 2. Session files (.SES) for system settings (can be de-activated)
- 3. Glass catalogs, lens catalogs, coating catalogs, BRDF catalogs, macros, images, POP data, refractive index files,...
- There are in general two working modes of Zemax
- 1. Sequential raytrace (or partial non-sequencial)
- 2. Non-sequential

Literature on Lens Design

Lens design fundamentals, SPIE Press, 2010
Geometrical Optics and Optical Design, Oxford, 1997
Optical System Design, McGraw Hill, 2000
Handbook of Lens Design, Dekker, 2013
Lens Design, Dekker, 2007
Modern Optical Engineering, Graw Hill, 2000
Modern lens design, McGraw Hill, 2005
Lens Design with practical Examples, Willmann-Bell, 2002
Handbook of optical systems, Vol 1-5, Wiley, 2005-2012
The art and science of optical design,
Cambridge Univ. Press, 1997
Practical computer-aided lens design, Willman Bell, 1998
Lens Design Fundamentals, Academic Press, 2010
Lens design a practical guide, CRC Press 2017
Optimization in Lens design, SPIE Press, 2018
Fundamental Optical Design, SPIE Press, 2001

System data

- Necessary data for system calculation:
- 1. system surfaces with parameters (radius)
- 2. distances with parameters (length, material)
- 3. stop surface
- 4. wavelength(s)
- 5. aperture
- 6. field point(s)
- Optional inputs:
- 1. finite diameters
- 2. vignetting factors
- 3. decenter and tilt
- 4. coordinate reference
- 5. weighting factors
- 6. multi configurations
- 7. ...

System model

- Single step:
 - surface and transition
 - parameters: radius, diameter, thickness, refractive index, aspherical constants, conic parameter, decenter, tilt,...

- Complete system:
 - sequence of surfaces
 - object has index 0
 - image has index N
 - tN does not exist
- Ray path has fixed sequence0-1-2-...-(N-1)-N

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Coordinate systems and sign of quantities

Coordinate systems2D sections: y-z shown

Sign of lengths, radii, angles:

Definition of Aperture and Field

- Imaging on axis: circular / rotational symmetry
 Only spherical aberration and chromatical aberrations
- Finite field size, object point off-axis:
 - chief ray as reference
 - skew ray bundels: coma and distortion
 - Vignetting, cone of ray bundle not circular symmetric
 - to distinguish:
 tangential and sagittal
 plane

Quantitative measures of relative opening / size of accepted light cone

Numerical aperture

$$NA = n \cdot \sin u'$$

F-number

$$F\# = \frac{f'}{D_{EX}}$$

Approximation for small apertures:

$$F\# = \frac{1}{2 \cdot NA}$$

Important Test Wavelengths

λ in [nm]	Name	Color	Element
248.3		UV	Hg
280.4		UV	Hg
296.7278		UV	Hg
312.5663		UV	Hg
334.1478		UV	Hg
365.0146	i	UV	Hg
404.6561	h	violett	Hg
435.8343	g	blau	Hg
479.9914	F'	blau	Cd
486.1327	F	blau	Н
546.0740	е	grün	Hg
587.5618	d	gelb	He
589.2938	D	gelb	Na
632.8			HeNe-Laser
643.8469	C'	rot	Cd
656.2725	С	rot	Н
706.5188	r	rot	He
852.11	S	IR	Cä
1013.98	t	IR	Hg
1060.0			Nd:YAG-Laser

Zemax Toolbars

Settings and Environment

- The settings can be customized in the preferences
- All the settings can be saved
- Important:
 - data file folders
 - graphics parameters
 - editor cell size and Text font
 - preferred fast button functions
 - colors
 - language (don't use German!)

roject Preference	s						
Address Colors	Column Widths Default Size						
Editors Folders	l						
	Lens Data Editor:	Save	Load	16 ▼ Set	t All Color Rows		
General	Merit Function Editor:	Save	Load	16 ▼ Set	All Color Rows		
Graphics Toolbar	Multi-Configuration Editor:	Save	Load	16 ▼ Set	t All Color Rows		
Shortcut Keys	Tolerance Data Editor:	Save	Load	16 ▼ Set	t All Color Rows		
	Non-Sequential Components Editor:	Save	Load	16 ▼ Set	t All Color Rows		
	Decimals:	5 • I0000		Font			
	Exponential Above:			Font:	Courier New ▼		
	Exponential Below:	0,01		Font Style:	Standard •		
	Auto Update:	Update ▼		Font Size:	12 ▼		
	Undo:	Disk Multi Step ▼		✓ Allow Extensions To Push Lenses			
	Default Catalog:	SCHOTT ▼					
	Move Selection After Pressing Enter:	V		Update Merit Function On Load			
	Direction To Move Selection:	Down •					

Zemax interface

- Helpful shortcuts:
- 1. F3 undo
- 2. F2 edit a cell in the editor
- 3. cntr A multiconfiguration toggle
- 4. cntr Z variable toggle
- 5. F6 merit function editor
- 6. cntr U update
- 7. shift cntr Q quick focus
- Window options:
 - 1. several export options:
 - 2. fixed aspect ratios
 - 3. clone
 - 4. adding comments or graphics

save clipboard - save as BMP/JPEG/PNG

Description of optical systems

- Interface surfaces
 - mathematical modelled surfaces
 - planes, spheres, aspheres, conics, free shaped surfaces,...
- Size of components
 - thickness and distances along the axis
 - transversal size, circular diameter, complicated contours
- Geometry of the setup
 - special case: rotational symmetry
 - general case: 3D, tilt angles, offsets and decentrations, needs vectorial approach
- Materials
 - refractive indices for all used wavelengths
 - other properties: absorption, birefringence, nonlinear coefficients, index gradients,...
- Special surfaces
 - gratings, diffractive elements
 - arrays, scattering surfaces

3D Geometry

- Auxiliary menus:
- 1. Tilt/Decenter element

2. Scale lens

3D Geometry

- General input of tilt and decenter:
 Coordinate break surface
- Change of coordinate system with lateral translation and 3 rotations angles
- Direct listing in lens editor
- Not shown in layout drawing

3D Geometry

- Local tilt and decenter of a surface
 - no direct visibility in lens editor only + near surface index
 - 2. input in surface properties
 - 3. with effect on following system surfaces

System data tables

Menu: reports / prescription data

General Data Surface Data Surface Detail Edge Thickness Multi-Config Data Solves/Variables	Global Vertex COC Point Element Volume F/ Numbers Cardinal Points POP Settings	
☑ Index/TCE Data	Files Used	

System data tables

SURFACE DATA SUMMARY:

Surf	Type	Radius	Thickness	Glass	Diameter	Conic
OBJ	STANDARD	Infinity	Infinity		0	0
1	STANDARD	Infinity	5		7,86213	0
2	STANDARD	17,35664	2,60396	FK51	6,8	0
3	STANDARD	-21,74533	0,2		6,44	0
4	STANDARD	5,97609	2,63782	LLF1	6	0
5	STANDARD	3,06343	1,83096		4,2	0
6	STANDARD	-3,01507	3,90374	SF5	4,2	0
7	STANDARD	18,74531	2,93552	FK51	7,4	0
8	STANDARD	-5,87789	0,2		8,2	0
9	STANDARD	59,18729	0,7	KZFSN4	8,86	0
10	STANDARD	8,38842	2,52456	FK54	9,2	0
STO	STANDARD	-17,32874	0,2		9,4	0
12	STANDARD	12,83435	1,95758	FK54	9,86	0
13	STANDARD	-30,45877	0,2		9,82	0
14	STANDARD	10,76567	1,95157	FK51	9,42	0
15	STANDARD	-26,59881	0,2		9,2	0
16	STANDARD	4,31068	2,15003	SK11	6,94	0
17	STANDARD	6,00286	3,806254		5,46	0
IMA	STANDARD	Infinity			0,4751514	0

INDEX OF REFRACTION DATA:

System Temperature: 20,0000 Celsius System Pressure : 1,0000 Atmospheres

Absolute air index: 1,000273 at wavelength 0,546074 µm

Index data is relative to air at the system temperature and pressure. Wavelengths are measured in air at the system temperature and pressure.

C	61	T	D	0 470001	0.546074	0.642047	
Surf	Glass	Temp	Pres	0,479991			
0		20,00	1,00	•	1,00000000	1,00000000	
1		20,00	1,00	1,00000000	1,00000000	1,00000000	
2	FK51	20,00	1,00	1,49088232	1,48793656	1,48507869	
3		20,00	1,00	1,00000000	1,00000000	1,00000000	
4	LLF1	20,00	1,00	1,55724847	1,55098671	1,54513009	lead containing glass type
5		20,00	1,00	1,00000000	1,00000000	1,00000000	
6	SF5	20,00	1,00	1,68875714	1,67763914	1,66756173	lead containing glass type
7	FK51	20,00	1,00	1,49088232	1,48793656	1,48507869	
8		20,00	1,00	1,00000000	1,00000000	1,00000000	
9	KZFSN4	20,00	1,00	1,62389433	1,61669235	1,60990058	was replaced by N-KZFS4
10	FK54	20,00	1,00	1,44060795	1,43815076	1,43575617	
11		20,00	1,00	1,00000000	1,00000000	1,00000000	
12	FK54	20,00	1,00	1,44060795	1,43815076	1,43575617	
13		20,00	1,00	1,00000000	1,00000000	1,00000000	
14	FK51	20,00	1,00	1,49088232	1,48793656	1,48507869	
15		20,00	1,00	1,00000000	1,00000000	1,00000000	
16	SK11	20,00	1,00	1,57081059	1,56605180	1,56146150	
17		20,00	1,00	1,00000000	1,00000000	1,00000000	
18		20,00	1,00	1,00000000	•	•	

Important Surface Types

Standard spherical and conic sections

Even asphere classical asphere

Paraxial ideal lens

Paraxial XY ideal toric lens

Coordinate break change of coordinate system

Diffraction grating line grating

Gradient 1 gradient medium

Toroidal cylindrical lens

Zernike Fringe sag surface as superposition of Zernike functions

Extended polynomial generalized asphere

Black Box Lens hidden system, from vendors

ABCD paraxial segment

Selection of Wavelengths

- Setting of wavelengths:
 - maximum of 24 values
 - weighting factors allow for spectral modelling
 - unit is always μm
 - selection of primary wavelength: paraxial data are based on it

System changes

- Useful commands for system changes:
 - 1. Make double pass
 - 2. Scale to focal length
 - 3. Reverse element
 - 4. Add / delete folding mirror
 - Tilt/decenter elements (see next page)

2. Insert system with other system file

