Covid-19 Fallzahlen

GETROFFENE ANNAHMEN

BETRACHTETE LÄNDER

EUROPA

- Europa als Kontinent
- Mehrheit der Fläche in Europa

ZU BEANTWORTENDE FRAGEN

FALLZAHLEN IN EUROPA

• Aufbereitung und Darstellung der Daten

EXPONENTIELLES WACHSTUM

- Modellierung des R-Wertes
- Exponentielles Wachstum wo R-Wert > 1

VERDOPPELUNGSZEIT

• Verdoppelungszeit aufgrund des R-Wertes

UNTERSCHIEDE ZWISCHEN DEN LÄNDERN

• Korrelation der R-Werte der Länder

MODELLIERUNG DES R-WERTES

- <u>R-Wert</u>: Wie viele Menschen eine infizierte Person in einer bestimmten Zeiteinheit im Mittel ansteckt
- Wenn R-Wert grösser als 1 liegt (schwaches) exponentielles Wachstum vor
- 1. Modellierung der Anzahl neuer Fälle mittels einer Poisson-Verteilung (Bettencourt & Ribeiro, 2008)

$$P(k|\lambda) = \frac{\lambda^k}{k!}e^{-\lambda}$$

k: Anzahl neuer Fälle an einem Tag

 λ : Durchschnittliche Infektionsrate an einem Tag

2. Es kann nur k beobachtet werden \rightarrow Verteilung von λ gegeben k (Likelihood-Funktion)

$$\mathcal{L}(\lambda|k) = \frac{\lambda^k}{k!}e^{-\lambda}$$

3. Beziehung zwischen des R-Wertes und λ (Bettencourt & Ribeiro, 2008)

$$\lambda = k_{t-1} e^{\gamma(R_t - 1)}$$

 k_{t-1} : Anzahl neuer Fälle zur Zeit t-1

 γ : Zeit zwischen dem Auftreten von Symptomen beim primär Infizierten und und sekundär Infizierten (4 Tage)

$$\mathcal{L}(R_t|k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

4. Modellierung des R-Wertes mittels des Satzes von Bayes (Bettencourt & Ribeiro, 2008)

$$P(R_t|k_t) = \frac{P(R_t) \times \mathcal{L}(k_t|R_t)}{P(k_t)}$$

- 5. Als «Prior» wird die «Posterior-Probability» der vorherigen Periode verwendet (Bettencourt & Ribeiro, 2008) $P(R_t) = P(R_{t-1}|k_{t-1}) \\ P(R_t|k_t) \propto P(R_0) \prod_{t=0}^T \mathcal{L}(k_t|R_t)$
- 6. Der «Prior» sollte nur aufgrund der nahen Vergangenheit berechnet werden (Systrom, 2020) $P(R_t|k_t) \propto P(R_0) \prod_{t=T-m}^T \mathcal{L}(k_t|R_t)$

Quellcode

Resultate

Fallzahlen in Europa

- 5 Wellen
- Omikron-Welle am grössten

Exponentielles Wachstum

 Geographisch nahe Länder scheinen eine ähnliche Entwicklung des R-Wertes aufzuweisen

Verdoppelungszeit

- Verdoppelungszeit entspricht ungeformtem R-Wert $t = \frac{\ln(2)}{\ln(R_t)}$

Unterschiede und Gemeinsamkeiten zwischen den Ländern

- Lineare Abhängigkeit der R-Werte zwischen den Ländern
- Korrelation ist mehrheitlich stark positiv

DANKE