Lista 2 – matlab podstawy

Przydatne polecenia:

```
plot(x,y) - wykreśla x w zależności od y.
xlabel('tekst') - etykieta osi x
ylabel('tekst') - etykieta osi y
title('tekst') - tytuł wykresu
```

hold on – pozwala dorysowywać kolejne krzywe na wykresie do momentu wpisania hold off

- 1. Suma ciągów geometrycznych $1+r+r^2+r^3+\ldots+r^n$ zbliża się do granicy $\frac{1}{1-r}$ dla r<0, gdy $n\to\infty$. Utwórz wektor n składający się z 11 elementów od 0 do 10. Przyjmij r=0.5 i utwórz kolejny wektor $x=[r^0\ r^1\ r^2\ldots r^n]$ za pomocą polecenia x=r.^n. Następnie oblicz sumę elementów tego wektora stosując poleceni s=sum (x). Oblicz granicę $\frac{1}{1-r}$ i porównaj z obliczoną sumą s. Powtórz tę procedurę przyjmując n od 0 do 50, a następnie od 0 do 100. Uwaga: mogą się przydać macierze tworzone poleceniami: zeros (m, n) lub ones (m, n)
- 2. Sporządź wykres $y=\sin x$, $0 \le x \le 2\pi$ opierając go na 100 punktach rozmieszczonych liniowo w określonych odstępach. Opisz osie i zatytułuj "Wykres sporządzony przez *imię nazwisko*". Narysuj ten sam wykres zaznaczając punkty kółkami bez ich łączenia (plot (x, y, 'o')).
- 3. Za pomocą polecenia plot3 (x, y, z) wykreśl okrągłą sprężynę $x(t) = \sin(t), y(t) = \cos(t), z(t) = t, 0 \le t \le 20.$
- 4. Narysuj $y=\cos x$ oraz $z=1-\frac{x^2}{2}+\frac{x^4}{24}$ dla $0\leq x\leq \pi$ na tym samym wykresie. Wypróbuj polecenie legend.
- 5. Wpisz w edytorze poniższe wiersze. Tekst znajdujący się za znakiem % jest ignorowany.

Zapisz plik pod nazwą circle.m. W oknie poleceń Matlaba wpisz: circle.

- (a) Zmodyfikuj plik circle.m tak, by środek okręgu został oznaczony "+".
- (b) Zmodyfikuj plik circle.m nadając okręgowi promień r.
 - Po początkowych linach komentarza dodaj polecenie:

```
r = input('Podaj promień okręgu: ')
```

• Odpowiednio zmodyfikuj wyrażenia na obliczanie współrzędnych x i y.