Nonlocal games and the Grothendieck-Tsirelson inequality

Introduction to quantum information theory

Maxi Brandstetter, Felix Kirschner, Arne Heimendahl

University of Cologne

September 21, 2018

Outline

- Local and quantum correlation matrices
 - Local correlation matrices
 - Quantum correlation matrices
 - The relations between quantum correlation and local correlation matrices
 - Motivation: The Grothendieck-Tsirelson Theorem
 - Grothendieck's Inequality
 - Tsirelson's Theorem
 - Gorthendieck-Tsirelson Theorem

• Deterministic strategies of Alice and Bob correspond to vectors $\xi \in \{-1,1\}^{\mathcal{S}}$, respectively $\eta \in \{-1,1\}^{\mathcal{T}}$

- Deterministic strategies of Alice and Bob correspond to vectors $\xi \in \{-1,1\}^{\mathcal{S}}$, respectively $\eta \in \{-1,1\}^{\mathcal{T}}$
- Their common answer is the product $\xi_i \eta_i$

- Deterministic strategies of Alice and Bob correspond to vectors $\xi \in \{-1,1\}^{\mathcal{S}}$, respectively $\eta \in \{-1,1\}^{\mathcal{T}}$
- Their common answer is the product $\xi_i \eta_i$
- Instead of deterministic strategies they can also answer according to the probability distribution of random variables X_i, Y_i

- Deterministic strategies of Alice and Bob correspond to vectors $\xi \in \{-1,1\}^{\mathcal{S}}$, respectively $\eta \in \{-1,1\}^{\mathcal{T}}$
- Their common answer is the product $\xi_i \eta_i$
- Instead of deterministic strategies they can also answer according to the probability distribution of random variables X_i, Y_i
- Their common answer is $\mathbb{E}[X_i Y_i]$

- Deterministic strategies of Alice and Bob correspond to vectors $\xi \in \{-1,1\}^{\mathcal{S}}$, respectively $\eta \in \{-1,1\}^{\mathcal{T}}$
- Their common answer is the product $\xi_i \eta_i$
- Instead of deterministic strategies they can also answer according to the probability distribution of random variables X_i, Y_i
- ullet Their common answer is $\mathbb{E}[X_iY_j]$
- This information can be encoded in an $\mathcal{S} \times \mathcal{T}$ matrix \checkmark Motivation Quantum

Let $(X_i)_{1 \le i \le m}$ and $(Y_j)_{1 \le j \le n}$ be families of random variables on a common probability space such that $|X_i|, |Y_j| \le 1$ almost surely. Then $A = (a_{ij})$ is the corresponding classical (or local) correlation matrix if

$$a_{ij} = \mathbb{E}[X_i Y_j]$$

for all $1 \le i \le m, 1 \le j \le n$.

Let $(X_i)_{1 \le i \le m}$ and $(Y_j)_{1 \le j \le n}$ be families of random variables on a common probability space such that $|X_i|, |Y_j| \le 1$ almost surely. Then $A = (a_{ij})$ is the corresponding classical (or local) correlation matrix if

$$a_{ij} = \mathbb{E}[X_i Y_j]$$

for all $1 \le i \le m, 1 \le j \le n$.

• Set of all local correlation matrices: $LC_{m,n}$

Let $(X_i)_{1 \le i \le m}$ and $(Y_j)_{1 \le j \le n}$ be families of random variables on a common probability space such that $|X_i|, |Y_j| \le 1$ almost surely. Then $A = (a_{ij})$ is the corresponding classical (or local) correlation matrix if

$$a_{ij} = \mathbb{E}[X_i Y_j]$$

for all $1 \le i \le m, 1 \le j \le n$.

• Set of all local correlation matrices: $LC_{m,n}$

Lemma

$$\mathsf{LC}_{m,n} = \mathsf{conv}\{\xi \eta^T \,|\, \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$$

Let $(X_i)_{1 \le i \le m}$ and $(Y_j)_{1 \le j \le n}$ be families of random variables on a common probability space such that $|X_i|, |Y_j| \le 1$ almost surely. Then $A = (a_{ij})$ is the corresponding classical (or local) correlation matrix if

$$a_{ij} = \mathbb{E}[X_i Y_j]$$

for all $1 \le i \le m, 1 \le j \le n$.

• Set of all local correlation matrices: $LC_{m,n}$

Lemma

$$\mathsf{LC}_{m,n} = \mathsf{conv}\{\xi \eta^T \,|\, \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$$

• No matter which probabilistic strategy there is a deterministic one which as at least as good as the one one chooses

 $LC_{m,n} \supset conv\{\xi\eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}.$

• $\xi \eta^T \in LC_{m,n}$ for all $\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n$ (Choose $X_i \equiv \xi_i, Y_j \equiv \eta_j$)

 $LC_{m,n} \supset conv\{\xi \eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}.$

- $\xi \eta^T \in LC_{m,n}$ for all $\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n$ (Choose $X_i \equiv \xi_i, Y_j \equiv \eta_j$)
- Suffices to show that $LC_{m,n}$ is convex.

 $LC_{m,n} \supset conv\{\xi\eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}.$

- $\xi \eta^T \in LC_{m,n}$ for all $\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n$ (Choose $X_i \equiv \xi_i, Y_i \equiv \eta_i$)
- Suffices to show that $LC_{m,n}$ is convex.
- Let $a_{ii}^{(k)} = \mathbb{E}[X_i^{(k)} Y_i^{(k)}]$ for $k \in \{0, 1\}$

$LC_{m,n} \supset conv\{\xi \eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}.$

- $\xi \eta^T \in LC_{m,n}$ for all $\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n$ (Choose $X_i \equiv \xi_i, Y_j \equiv \eta_j$)
- Suffices to show that $LC_{m,n}$ is convex.
- Let $a_{ij}^{(k)} = \mathbb{E}[X_i^{(k)}Y_j^{(k)}]$ for $k \in \{0,1\}$
- Find $(X_i), (Y_j)$ with $|X_i|, |Y_j| \le 1$ almost surely such that for $\beta \in [0, 1]$ $\beta a_{ij}^{(0)} + (1 \beta) a_{ij}^{(1)} = \mathbb{E}[X_i Y_j]$

$LC_{m,n} \supset conv\{\xi\eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}.$

- $\xi \eta^T \in LC_{m,n}$ for all $\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n$ (Choose $X_i \equiv \xi_i, Y_j \equiv \eta_j$)
- Suffices to show that $LC_{m,n}$ is convex.
- Let $a_{ij}^{(k)} = \mathbb{E}[X_i^{(k)}Y_j^{(k)}]$ for $k \in \{0,1\}$
- Find $(X_i), (Y_j)$ with $|X_i|, |Y_j| \le 1$ almost surely such that for $\beta \in [0, 1]$ $\beta a_{ij}^{(0)} + (1 \beta) a_{ij}^{(1)} = \mathbb{E}[X_i Y_j]$
- Define a Bernoulli random variable α (which is independent form $X_i^{(k)}, Y_j^{(k)}$) such that $\mathbb{P}(\alpha = 0) = \beta$, $\mathbb{P}(\alpha = 1) = 1 \beta$ and set $X_i = X_i^{(\alpha)}, Y_j = Y_i^{(\alpha)}$

$LC_{m,n} \supset conv\{\xi \eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}.$

- $\xi \eta^T \in LC_{m,n}$ for all $\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n$ (Choose $X_i \equiv \xi_i, Y_j \equiv \eta_j$)
- Suffices to show that $LC_{m,n}$ is convex.
- Let $a_{ij}^{(k)} = \mathbb{E}[X_i^{(k)}Y_j^{(k)}]$ for $k \in \{0,1\}$
- Find $(X_i), (Y_j)$ with $|X_i|, |Y_j| \le 1$ almost surely such that for $\beta \in [0, 1]$ $\beta a_{ij}^{(0)} + (1 \beta) a_{ij}^{(1)} = \mathbb{E}[X_i Y_j]$
- Define a Bernoulli random variable α (which is independent form $X_i^{(k)}, Y_j^{(k)}$) such that $\mathbb{P}(\alpha = 0) = \beta$, $\mathbb{P}(\alpha = 1) = 1 \beta$ and set $X_i = X_i^{(\alpha)}, Y_j = Y_j^{(\alpha)}$
- Then

$$\mathbb{E}[X_{i}Y_{j}] = \mathbb{E}[X_{i}^{(\alpha)}Y_{j}^{(\alpha)}\mathbb{1}_{\{\alpha=0\}}] + \mathbb{E}[X_{i}^{(\alpha)}Y_{j}^{(\alpha)}]\mathbb{1}_{\{\alpha=1\}}]$$

$$= \mathbb{E}[X_{i}^{(0)}Y_{j}^{(0)}]\mathbb{P}(\alpha=0) + \mathbb{E}[X_{i}^{(1)}Y_{j}^{(1)}]\mathbb{P}(\alpha=1)$$

$$= \beta a_{ij}^{(0)} + (1-\beta)a_{ij}^{(1)}$$

$LC_{m,n} \subset conv\{\xi\eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$

• Let $a_{ij} = \mathbb{E}[X_i Y_j]$ for \mathbb{R} -valued random variables $(X_i), (Y_j)$ defined on a common probability space Ω with $|X_i|, |Y_i| \leq 1$ almost surely.

$LC_{m,n} \subset conv\{\xi\eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$

- Let $a_{ij} = \mathbb{E}[X_i Y_j]$ for \mathbb{R} -valued random variables $(X_i), (Y_j)$ defined on a common probability space Ω with $|X_i|, |Y_j| \leq 1$ almost surely.
- Set $X = (X_1, ..., X_m)$ and $Y = (Y_1, ..., Y_n)$, then $X \in [-1, 1]^m$, $Y \in [-1, 1]^n$ almost surely.

$LC_{m,n} \subset conv\{\xi\eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$

- Let $a_{ij} = \mathbb{E}[X_i Y_j]$ for \mathbb{R} -valued random variables $(X_i), (Y_j)$ defined on a common probability space Ω with $|X_i|, |Y_j| \leq 1$ almost surely.
- Set $X = (X_1, ..., X_m)$ and $Y = (Y_1, ..., Y_n)$, then $X \in [-1, 1]^m$, $Y \in [-1, 1]^n$ almost surely.
- ullet Hypercube description by its vertices: $[-1,1]^d=\operatorname{conv}\{\xi\,|\,\xi\in\{-1,1\}^d\}$

$LC_{m,n} \subset conv\{\xi\eta^T | \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$

- Let $a_{ij} = \mathbb{E}[X_i Y_j]$ for \mathbb{R} -valued random variables $(X_i), (Y_j)$ defined on a common probability space Ω with $|X_i|, |Y_j| \leq 1$ almost surely.
- Set $X = (X_1, ..., X_m)$ and $Y = (Y_1, ..., Y_n)$, then $X \in [-1, 1]^m$, $Y \in [-1, 1]^n$ almost surely.
- Hypercube description by its vertices: $[-1,1]^d = \operatorname{conv}\{\xi \,|\, \xi \in \{-1,1\}^d\}$
- ullet Define random variables $\lambda_{\xi}^{(\mathcal{X})}:\Omega^m o [0,1]$ such that

$$X(\omega) = \sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega)\xi$$

almost surely and $\sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega) = 1$

$LC_{m,n} \subset conv\{\xi\eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}.$

ullet Define random variables $\lambda^{(X)}_{\mathcal{E}}:\Omega^m o[0,1]$ such that

$$X(\omega) = \sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega)\xi$$

almost surely and $\sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega) = 1$

Using the same decomposition for Y we obtain

$$a_{ij} = \mathbb{E}[X_i Y_j] = \mathbb{E}\Big[\Big(\sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)} \xi_i\Big) \Big(\sum_{\eta \in \{-1,1\}^n} \lambda_{\eta}^{(Y)} \eta_j\Big)\Big]$$
$$= \sum_{\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n} \mathbb{E}\Big[\lambda_{\xi}^{(X)} \lambda_{\eta}^{(Y)}\Big] \xi_i \eta_j$$

$LC_{m,n} \subset conv\{\xi\eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}.$

ullet Define random variables $\lambda^{(X)}_{\mathcal{E}}:\Omega^m o[0,1]$ such that

$$X(\omega) = \sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega)\xi$$

almost surely and $\sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega) = 1$

Using the same decomposition for Y we obtain

$$a_{ij} = \mathbb{E}[X_i Y_j] = \mathbb{E}\Big[\Big(\sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)} \xi_i\Big) \Big(\sum_{\eta \in \{-1,1\}^n} \lambda_{\eta}^{(Y)} \eta_j\Big)\Big]$$
$$= \sum_{\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n} \mathbb{E}\Big[\lambda_{\xi}^{(X)} \lambda_{\eta}^{(Y)}\Big] \xi_i \eta_j$$

• Due to $\sum_{\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n} \mathbb{E}\left[\lambda_{\xi}^{(X)} \lambda_{\eta}^{(Y)}\right] = 1$ the matrix (a_{ij}) is a convex combination of $\xi \eta^T$, $\xi \in \{-1,1\}^m$, $\eta \in \{-1,1\}^n$

ullet Alice and Bob share a common state ho and get inputs $i\in\mathcal{S},\,j\in\mathcal{T}$

- Alice and Bob share a common state ρ and get inputs $i \in \mathcal{S}, j \in \mathcal{T}$
- ullet They perform measurements $\{F_i^\xi\}_{\xi=\pm 1}$, respectively $\{G_j^\eta\}_{\eta=\pm 1}$

- Alice and Bob share a common state ρ and get inputs $i \in \mathcal{S}, j \in \mathcal{T}$
- ullet They perform measurements $\{F_i^\xi\}_{\xi=\pm 1}$, respectively $\{G_j^\eta\}_{\eta=\pm 1}$
- The probability that their response is (ξ, η) for inputs (i, j) is given by $a_{ij} = \operatorname{Tr}(\rho F_i^{\xi} \otimes G_j^{\eta})$

- Alice and Bob share a common state ρ and get inputs $i \in \mathcal{S}, j \in \mathcal{T}$
- ullet They perform measurements $\{F_i^\xi\}_{\xi=\pm 1}$, respectively $\{G_j^\eta\}_{\eta=\pm 1}$
- The probability that their response is (ξ, η) for inputs (i, j) is given by $a_{ij} = \operatorname{Tr}(\rho F_i^{\xi} \otimes G_i^{\eta})$
- Again we can encode this information in a matrix

Let $(X_i)_{1\leq i\leq m}$ and $(Y_j)_{1\leq j\leq n}$ be self-adjoint operators on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} for some positive integers d_1,d_2 , satisfying $\|X_i\|_{\infty},\|Y_j\|_{\infty}\leq 1$. $A=(a_{ij})$ is called quantum correlation matrix if there exists a state ρ on $\mathbb{C}^{d_1}\otimes\mathbb{C}^{d_2}$) such that

$$a_{ij} = \operatorname{Tr}(\rho X_i \otimes Y_j).$$

Let $(X_i)_{1\leq i\leq m}$ and $(Y_j)_{1\leq j\leq n}$ be self-adjoint operators on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} for some positive integers d_1,d_2 , satisfying $\|X_i\|_{\infty},\|Y_j\|_{\infty}\leq 1$. $A=(a_{ij})$ is called quantum correlation matrix if there exists a state ρ on $\mathbb{C}^{d_1}\otimes\mathbb{C}^{d_2}$) such that

$$a_{ij} = \operatorname{Tr}(\rho X_i \otimes Y_j).$$

ullet Set of all quantum correlation matrices denoted by ${\sf QC}_{m,n}$

Let $(X_i)_{1\leq i\leq m}$ and $(Y_j)_{1\leq j\leq n}$ be self-adjoint operators on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} for some positive integers d_1,d_2 , satisfying $\|X_i\|_{\infty},\|Y_j\|_{\infty}\leq 1$. $A=(a_{ij})$ is called quantum correlation matrix if there exists a state ρ on $\mathbb{C}^{d_1}\otimes\mathbb{C}^{d_2}$) such that

$$a_{ij} = \operatorname{Tr}(\rho X_i \otimes Y_j).$$

ullet Set of all quantum correlation matrices denoted by $QC_{m,n}$

Lemma

$$\mathsf{QC}_{m,n} = \{ (\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1 \}$$

$$\mathsf{QC}_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \leq i \leq m, 1 \leq j \leq n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \leq 1, |y_j| \leq 1\}$$

• $a_{ij} = \operatorname{Tr}(\rho X_i \otimes Y_j)$, state ρ on a Hilbert space $\mathcal{H} = \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}$ and Hermitian operators $(X_i)_{1 \leq i \leq m}$, $(Y_j)_{1 \leq i \leq n}$ on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} satisfying $\|X_i\|_{\infty}$, $\|Y_i\|_{\infty} \leq 1$

$$\mathsf{QC}_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \leq i \leq m, 1 \leq j \leq n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \leq 1, |y_j| \leq 1\}$$

- $a_{ij} = \operatorname{Tr}(\rho X_i \otimes Y_j)$, state ρ on a Hilbert space $\mathcal{H} = \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}$ and Hermitian operators $(X_i)_{1 \leq i \leq m}$, $(Y_j)_{1 \leq i \leq n}$ on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} satisfying $\|X_i\|_{\infty}, \|Y_j\|_{\infty} \leq 1$
- Define a positive semidefinite symmetric bilinear form on the space of Hermitian operators on $\mathcal H$ by $\beta: B^{(sa)}(\mathcal H) \times B^{(sa)}(\mathcal H) \to \mathbb R$ where $\beta(S,T) = \operatorname{Re}(\operatorname{Tr} \rho ST)$.

$$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} | x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$$

- $a_{ij} = \operatorname{Tr}(\rho X_i \otimes Y_j)$, state ρ on a Hilbert space $\mathcal{H} = \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}$ and Hermitian operators $(X_i)_{1 \leq i \leq m}$, $(Y_j)_{1 \leq i \leq n}$ on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} satisfying $\|X_i\|_{\infty}, \|Y_j\|_{\infty} \leq 1$
- Define a positive semidefinite symmetric bilinear form on the space of Hermitian operators on $\mathcal H$ by $\beta: B^{(sa)}(\mathcal H) \times B^{(sa)}(\mathcal H) \to \mathbb R$ where $\beta(S,T) = \operatorname{Re}(\operatorname{Tr} \rho ST)$.
- Obtain an inner product space $U:=B^{sa}(\mathcal{H})/\ker \beta$ equipped with the inner product

$$\tilde{\beta}([S],[T]) = \beta(S,T).$$

$$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$$

- $a_{ij} = \operatorname{Tr}(\rho X_i \otimes Y_j)$, state ρ on a Hilbert space $\mathcal{H} = \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}$ and Hermitian operators $(X_i)_{1 \leq i \leq m}$, $(Y_j)_{1 \leq i \leq n}$ on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} satisfying $\|X_i\|_{\infty}$, $\|Y_j\|_{\infty} \leq 1$
- Define a positive semidefinite symmetric bilinear form on the space of Hermitian operators on $\mathcal H$ by $\beta: B^{(sa)}(\mathcal H) \times B^{(sa)}(\mathcal H) \to \mathbb R$ where $\beta(S,T) = \operatorname{Re}(\operatorname{Tr} \rho ST)$.
- Obtain an inner product space $U:=B^{sa}(\mathcal{H})/\ker \beta$ equipped with the inner product

$$\tilde{\beta}([S],[T]) = \beta(S,T).$$

• Identify $X_i \otimes I$, $I \otimes Y_j$ with vectors x_i, y_j in U, then

$$\tilde{\beta}(x_i, y_j) = \beta(X_i \otimes I, I \otimes Y_j) = \text{ReTr}(\rho X_i \otimes Y_j) = a_{ij}$$

$$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \mid x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}.$$

• Identify $X_i \otimes I$, $I \otimes Y_j$ with vectors x_i, y_j in U, then

$$\tilde{\beta}(x_i, y_j) = \beta(X_i \otimes I, I \otimes Y_j) = \operatorname{ReTr}(\rho X_i \otimes Y_j) = a_{ij}$$

• $\beta(X \otimes I, X \otimes I), \beta(I \otimes Y, I \otimes Y) \leq 1$ (this can be shown by using a *Schmidt-decomposition* of ρ and using $\|X_i\|_{\infty}, \|Y_i\|_{\infty} < 1$)

$$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \mid x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}.$$

• Identify $X_i \otimes I$, $I \otimes Y_j$ with vectors x_i, y_j in U, then

$$\tilde{\beta}(x_i, y_j) = \beta(X_i \otimes I, I \otimes Y_j) = \mathsf{ReTr}(\rho X_i \otimes Y_j) = \mathsf{a}_{ij}$$

- $\beta(X \otimes I, X \otimes I), \beta(I \otimes Y, I \otimes Y) \leq 1$ (this can be shown by using a *Schmidt-decomposition* of ρ and using $\|X_i\|_{\infty}, \|Y_j\|_{\infty} \leq 1$)
- Project the y_j 's orthogonally onto span $\{x_1,...,x_m\}$ (wlog $m \le n$)

$$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \mid x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}.$$

• Identify $X_i \otimes I$, $I \otimes Y_j$ with vectors x_i, y_j in U, then

$$ilde{eta}(\mathsf{x}_i,\mathsf{y}_j) = eta(\mathsf{X}_i\otimes \mathsf{I},\mathsf{I}\otimes \mathsf{Y}_j) = \mathsf{ReTr}\left(
ho \mathsf{X}_i\otimes \mathsf{Y}_j
ight) = \mathsf{a}_{ij}$$

- $\beta(X \otimes I, X \otimes I), \beta(I \otimes Y, I \otimes Y) \leq 1$ (this can be shown by using a *Schmidt-decomposition* of ρ and using $\|X_i\|_{\infty}, \|Y_j\|_{\infty} \leq 1$)
- Project the y_j 's orthogonally onto span $\{x_1,...,x_m\}$ (wlog $m \le n$)
- If $\pi(y_j)$ is the projection of y_j then $\tilde{\beta}(x_i, \pi(y_j)) = \tilde{\beta}(x_i, y_j)$

$$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \mid x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}.$$

• Identify $X_i \otimes I$, $I \otimes Y_i$ with vectors x_i, y_i in U, then

$$\tilde{\beta}(x_i, y_j) = \beta(X_i \otimes I, I \otimes Y_j) = \mathsf{ReTr}\,(\rho X_i \otimes Y_j) = \mathsf{a}_{ij}$$

- $\beta(X \otimes I, X \otimes I), \beta(I \otimes Y, I \otimes Y) \leq 1$ (this can be shown by using a *Schmidt-decomposition* of ρ and using $\|X_i\|_{\infty}, \|Y_j\|_{\infty} \leq 1$)
- Project the y_j 's orthogonally onto span $\{x_1,...,x_m\}$ (wlog $m \le n$)
- If $\pi(y_j)$ is the projection of y_j then $\tilde{\beta}(x_i, \pi(y_j)) = \tilde{\beta}(x_i, y_j)$
- The vectors still have not the right dimension but again, we can project them onto vectors in \mathbb{R}^m

In order to show

$$\mathsf{QC}_{m,n} \supset \{(\langle x_i, y_j \rangle)_{1 \leq i \leq m, 1 \leq j \leq n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \leq 1, |y_j| \leq 1\}$$

we will use the following

In order to show

$$\mathsf{QC}_{m,n} \supset \{(\langle x_i, y_j \rangle)_{1 \leq i \leq m, 1 \leq j \leq n} \mid x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \leq 1, |y_j| \leq 1\}$$

we will use the following

Proposition

For all $n \ge 1$ there is a subspace of the $2^n \times 2^n$ Hermitian matrices where every element is the multiple of a unitary matrix.

In order to show

$$QC_{m,n} \supset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$$

we will use the following

Proposition

For all $n \ge 1$ there is a subspace of the $2^n \times 2^n$ Hermitian matrices where every element is the multiple of a unitary matrix.

 The proof is based on n-fold tensor products of the Pauli matrices which are the three matrices

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Maxi Brandstetter, Felix Kirschner, Arne Hei Nonlocal games and the Grothendieck-Tsirels

$$\bullet \ \ X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Proof.

Define

$$U_i = I^{\otimes (i-1)} \otimes X \otimes Y^{\otimes (n-i)},$$

 $U_{n+i} = I^{\otimes (i-1)} \otimes Z \otimes Y^{\otimes (n-i)}, i = 1, \dots n$

- U_i 's are anti-commuting traceless Hermitian unitaries, i.e. $U_iU_j=-U_jU_i$ for $i\neq j$ and $U_i^2=I$
- For $X = \sum_{i=1}^{2n} \xi_i U_i$, $Y = \sum_{i=1}^{2n} = \eta_i U_i$ we can calculate

$$XY = \sum_{i=1}^{2n} \xi_{i} \eta_{i} I + \sum_{1 \leq i, j \leq 2n} \xi_{i} \eta_{j} U_{i} U_{j}$$

$$= \sum_{i=1}^{2n} \xi_{i} \eta_{i} I + \sum_{1 \leq i < j \leq 2n} \xi_{i} \eta_{j} U_{i} U_{j} - \sum_{1 \leq i < j \leq 2n} U_{i} U_{j} = \sum_{i=1}^{2n} \xi_{i} \eta_{i} I$$

$$= \langle \xi, \eta \rangle I.$$

• The result follows by setting $Y = X^*$.

 $\mathsf{QC}_{m,n} \supset \{ (\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1 \}$

• Let $(x_i)_{1 \le i \le m}$, $(y_j)_{1 \le j \le n} \subset \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j| \le 1$.

$$\mathsf{QC}_{m,n} \supset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$$

- Let $(x_i)_{1 \leq i \leq m}$, $(y_j)_{1 \leq j \leq n} \subset \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j| \leq 1$.
- Let $X_i = \sum_{k=1}^{\min\{m,n\}} x_i(k) U_i$ and $Y_j^T = \sum_{k=1}^{\min\{m,n\}} y_j(k) U_k$ where the U_i 's are $d \times d$ matrices with $d = 2^{\lceil \min\{m,n\}/2 \rceil}$

$$QC_{m,n} \supset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$$

- Let $(x_i)_{1 \leq i \leq m}$, $(y_j)_{1 \leq j \leq n} \subset \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j| \leq 1$.
- Let $X_i = \sum_{k=1}^{\min\{m,n\}} x_i(k) U_i$ and $Y_j^T = \sum_{k=1}^{\min\{m,n\}} y_j(k) U_k$ where the U_i 's are $d \times d$ matrices with $d = 2^{\lceil \min\{m,n\}/2 \rceil}$
- Tr $(X_iY_j^T) = d \cdot \langle x_i, y_j \rangle$ and $\|X_i\|_{\infty} \leq 1$ since $X_iX_i^* = |x_i|^2I$ and $|x_i|^2 \leq 1$ (the same holds for Y_i)

 $QC_{m,n} \supset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$

- Let $(x_i)_{1 \leq i \leq m}$, $(y_j)_{1 \leq j \leq n} \subset \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j| \leq 1$.
- Let $X_i = \sum_{k=1}^{\min\{m,n\}} x_i(k) U_i$ and $Y_j^T = \sum_{k=1}^{\min\{m,n\}} y_j(k) U_k$ where the U_i 's are $d \times d$ matrices with $d = 2^{\lceil \min\{m,n\}/2 \rceil}$
- Tr $(X_iY_j^T)=d\cdot\langle x_i,y_j\rangle$ and $\|X_i\|_\infty\leq 1$ since $X_iX_i^*=|x_i|^2I$ and $|x_i|^2\leq 1$ (the same holds for Y_j)
- Let $|\psi\rangle = \frac{1}{\sqrt{d}} \sum_{i=1}^{d} |i\rangle \otimes |i\rangle$ and $\rho = |\psi\rangle \langle \psi|$. Note that we can write ρ as

$$\rho = \left| \psi \right\rangle \left\langle \psi \right| = \frac{1}{d} \sum_{1 \leq k,l \leq d} \left| k \right\rangle \otimes \left| k \right\rangle \left\langle l \right| \otimes \left\langle l \right| = \frac{1}{d} \sum_{1 \leq k,l \leq d} \left| k \right\rangle \left\langle l \right| \otimes \left| k \right\rangle \left\langle l \right|$$

$$QC_{m,n} \supset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \mid x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}.$$

• Let $|\psi\rangle = \frac{1}{\sqrt{d}} \sum_{i=1}^{d} |ii\rangle$ and $\rho = |\psi\rangle\langle\psi|$. Note that we can write ρ as

$$\rho = \left| \psi \right\rangle \left\langle \psi \right| = \frac{1}{d} \sum_{1 \le k, l \le d} \left| kk \right\rangle \left\langle ll \right| = \frac{1}{d} \sum_{1 \le k, l \le d} \left| k \right\rangle \left\langle l \right| \otimes \left| k \right\rangle \left\langle l \right|$$

Then

$$\operatorname{Tr}(\rho X_{i} \otimes Y_{j}) = \frac{1}{d} \sum_{1 \leq k, l \leq d} \operatorname{Tr}(|k\rangle \langle l| X_{i} \otimes |k\rangle \langle l| Y_{j})$$

$$= \frac{1}{d} \sum_{1 \leq k, l \leq d} \operatorname{Tr}(|k\rangle \langle l| X_{i}) \operatorname{Tr}(|k\rangle \langle l| Y_{j})$$

$$= \frac{1}{d} \operatorname{Tr} X_{i} Y_{j}^{T} = \langle x_{i}, y_{j} \rangle.$$

• $QC_{m,n}$ is convex

- $QC_{m,n}$ is convex
- Let $a_{ij} = \langle x_i, y_j \rangle$ and $\bar{a}_{ij} = \langle \bar{x}_i, \bar{y}_j \rangle$ for $x_i, y_j, \bar{x}_i, \bar{y}_j \in \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_i|, |\bar{x}_i|, |\bar{y}_i| \leq 1$.

- $QC_{m,n}$ is convex
- Let $a_{ij} = \langle x_i, y_j \rangle$ and $\bar{a}_{ij} = \langle \bar{x}_i, \bar{y}_j \rangle$ for $x_i, y_j, \bar{x}_i, \bar{y}_j \in \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j|, |\bar{x}_i|, |\bar{y}_j| \leq 1$.
- define vectors $\tilde{x}_i := \begin{pmatrix} \sqrt{\lambda} x_i \\ \sqrt{1 \lambda} \bar{x}_i \end{pmatrix}, \tilde{y}_j := \begin{pmatrix} \sqrt{\lambda} y_j \\ \sqrt{1 \lambda} \bar{y}_j \end{pmatrix}$ for $\lambda \in [0, 1]$

- $QC_{m,n}$ is convex
- Let $a_{ij} = \langle x_i, y_j \rangle$ and $\bar{a}_{ij} = \langle \bar{x}_i, \bar{y}_j \rangle$ for $x_i, y_j, \bar{x}_i, \bar{y}_j \in \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j|, |\bar{x}_i|, |\bar{y}_j| \leq 1$.
- $\bullet \ \ \text{define vectors} \ \tilde{x}_i := \begin{pmatrix} \sqrt{\lambda} x_i \\ \sqrt{1-\lambda} \bar{x_i} \end{pmatrix}, \tilde{y}_j := \begin{pmatrix} \sqrt{\lambda} y_j \\ \sqrt{1-\lambda} \bar{y_j} \end{pmatrix} \text{ for } \lambda \in [0,1]$
- it holds $|\tilde{x}_i| \leq \lambda \left| {x_i \choose 0} \right| + (1 \lambda) \left| {0 \choose \bar{x}_i} \right| \leq 1$ and $\langle \tilde{x}_i, \tilde{y}_j \rangle = \lambda \langle x_i, y_j \rangle + (1 \lambda) \langle \tilde{x}_i, \tilde{y}_j \rangle$.

- $QC_{m,n}$ is convex
- Let $a_{ij} = \langle x_i, y_j \rangle$ and $\bar{a}_{ij} = \langle \bar{x}_i, \bar{y}_j \rangle$ for $x_i, y_j, \bar{x}_i, \bar{y}_j \in \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j|, |\bar{x}_i|, |\bar{y}_j| \leq 1$.
- $\bullet \ \ \text{define vectors} \ \tilde{x}_i := \begin{pmatrix} \sqrt{\lambda} x_i \\ \sqrt{1-\lambda} \bar{x_i} \end{pmatrix}, \tilde{y}_j := \begin{pmatrix} \sqrt{\lambda} y_j \\ \sqrt{1-\lambda} \bar{y_j} \end{pmatrix} \text{ for } \lambda \in [0,1]$
- it holds $|\tilde{x}_i| \leq \lambda \left| {x_i \choose 0} \right| + (1 \lambda) \left| {0 \choose \bar{x}_i} \right| \leq 1$ and $\langle \tilde{x}_i, \tilde{y}_j \rangle = \lambda \langle x_i, y_j \rangle + (1 \lambda) \langle \tilde{x}_i, \tilde{y}_j \rangle$.
- Right dimension is obtained by projecting $(\tilde{x}_i)_{1 \leq i \leq m}$, $(\tilde{y}_j)_{1 \leq i \leq n}$ on span $\{x_1, \ldots, x_m\}$ or span $\{y_1, \ldots, y_n\}$, as in the proof before.

The relations between quantum correlation and local correlation matrices

- $LC_{m,n} = conv\{\xi \eta^T | \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$
- $QC_{m,n} = \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} | x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$
- $LC_{m,n} \subset QC_{m,n}$

The relations between quantum correlation and local correlation matrices

- $LC_{m,n} = conv\{\xi \eta^T | \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$
- $QC_{m,n} = \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} | x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$
- $LC_{m,n} \subset QC_{m,n}$
- Set $x_i = \xi_i |1\rangle$ and $y_j = \eta_j |1\rangle$ it immediately follows $\xi_i \eta_j = \langle x_i, y_j \rangle$. Hence, $\xi \eta^T \in QC_{m,n}$ (rest follows with the convexity of $QC_{m,n}$)

The relations between quantum correlation and local correlation matrices

- $LC_{m,n} = conv\{\xi \eta^T | \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$
- $QC_{m,n} = \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} | x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$
- $LC_{m,n} \subset QC_{m,n}$
- Set $x_i = \xi_i |1\rangle$ and $y_j = \eta_j |1\rangle$ it immediately follows $\xi_i \eta_j = \langle x_i, y_j \rangle$. Hence, $\xi \eta^T \in QC_{m,n}$ (rest follows with the convexity of $QC_{m,n}$)
- Inclusion is strict in general

• Let us consider the case n = m = 2.

- Let us consider the case n = m = 2.
- $LC_{2,2} = conv\{\xi \eta^T | \xi \in \{-1,1\}^2, \eta \in \{-1,1\}^2\}$
- It holds

$$\mathsf{LC}_{2,2} = \mathsf{conv}\{\pm \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \pm \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}, \pm \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}, \pm \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}\}.$$

- Let us consider the case n = m = 2.
- $LC_{2,2} = conv\{\xi \eta^T | \xi \in \{-1,1\}^2, \eta \in \{-1,1\}^2\}$
- It holds

$$\mathsf{LC}_{2,2} = \mathsf{conv}\{\pm \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \, \pm \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}, \, \pm \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}, \, \pm \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}\}.$$

• W can also write it as in intersections of halfspaces:

$$\mathsf{LC}_{2,2} = \{ A \in \mathbb{R}^{2 \times 2} \mid -1 \le \mathsf{Tr} \, AM \le 1 \text{ for all } M \in \mathcal{H} \}, \tag{1}$$

where
$$\mathcal{H} = \{\frac{1}{2}\sigma(\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}), \sigma(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}) \mid \sigma \in \{\mathsf{id}, (1\ 2), (1\ 3), (1\ 4)\}\}.$$

• We will show that the inclusion is strict by showing that both sets yield different values if we maximize in a certain direction

- We will show that the inclusion is strict by showing that both sets yield different values if we maximize in a certain direction
- Let $M = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

- We will show that the inclusion is strict by showing that both sets yield different values if we maximize in a certain direction
- Let $M = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
- $\begin{array}{l} \bullet \ \ \mathsf{LC}_{2,2} = \{A \in \mathbb{R}^{2 \times 2} \, | \, -1 \leq \mathsf{Tr} \, AM \leq 1 \ \mathsf{for \ all} \ M \in \mathcal{H}\}, \ \mathsf{where} \\ \mathcal{H} = \{\frac{1}{2}\sigma(\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}), \sigma(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}) \, | \, \sigma \in \{\mathsf{id}, (1\ 2), (1\ 3), (1\ 4)\}\}. \end{array}$
- $\max\{\operatorname{Tr}(AM) \mid A \in LC_{2,2}\} = 2$

• $\max\{\text{Tr}(AM) | A \in LC_{2,2}\} = 2$

- $\max\{\text{Tr}(AM) | A \in LC_{2,2}\} = 2$
- Recall $QC_{2,2} = \{\langle x_i, y_j \rangle \, | \, x_1, x_2, y_1, y_2 \in \mathbb{R}^2, \, |x_i|, |y_j| \leq 1 \}$

- $\max\{\text{Tr}(AM) | A \in LC_{2,2}\} = 2$
- Recall $QC_{2,2} = \{\langle x_i, y_j \rangle \, | \, x_1, x_2, y_1, y_2 \in \mathbb{R}^2, \, |x_i|, |y_j| \leq 1 \}$

- $\max\{\text{Tr}(AM) | A \in LC_{2,2}\} = 2$
- Recall $QC_{2,2} = \{\langle x_i, y_j \rangle \mid x_1, x_2, y_1, y_2 \in \mathbb{R}^2, |x_i|, |y_j| \le 1\}$
- $A \in QC_{2,2}$ we obtain, by Cauchy-Schwarz and $|y_i| \le 1$,

$$\mathsf{Tr}(AM) = \langle x_1, y_1 \rangle + \langle x_1, y_2 \rangle + \langle x_2, y_1 \rangle - \langle x_2, y_2 \rangle$$

$$= \langle x_1 + x_2, y_1 \rangle + \langle x_1 - x_2, y_2 \rangle \le |x_1 + x_2||y_1| + |x_1 - x_2||y_2|$$

$$\le |x_1 + x_2| + |x_1 - x_2|.$$

- $\max\{\text{Tr}(AM) | A \in LC_{2,2}\} = 2$
- Recall $QC_{2,2} = \{\langle x_i, y_j \rangle \mid x_1, x_2, y_1, y_2 \in \mathbb{R}^2, |x_i|, |y_j| \le 1\}$
- $A \in \mathsf{QC}_{2,2}$ we obtain, by Cauchy-Schwarz and $|y_i| \leq 1$,

$$\mathsf{Tr}(AM) = \langle x_1, y_1 \rangle + \langle x_1, y_2 \rangle + \langle x_2, y_1 \rangle - \langle x_2, y_2 \rangle$$

$$= \langle x_1 + x_2, y_1 \rangle + \langle x_1 - x_2, y_2 \rangle \le |x_1 + x_2||y_1| + |x_1 - x_2||y_2|$$

$$\le |x_1 + x_2| + |x_1 - x_2|.$$

•
$$(|x_1 + x_2| + |x_1 - x_2|)^2 \le 4(|x_1|^2 + |x_2|^2)$$

- $\max\{\text{Tr}(AM) | A \in LC_{2,2}\} = 2$
- Recall $QC_{2,2} = \{\langle x_i, y_j \rangle \mid x_1, x_2, y_1, y_2 \in \mathbb{R}^2, |x_i|, |y_j| \le 1\}$
- $A \in \mathsf{QC}_{2,2}$ we obtain, by Cauchy-Schwarz and $|y_i| \leq 1$,

$$\mathsf{Tr}(AM) = \langle x_1, y_1 \rangle + \langle x_1, y_2 \rangle + \langle x_2, y_1 \rangle - \langle x_2, y_2 \rangle$$

$$= \langle x_1 + x_2, y_1 \rangle + \langle x_1 - x_2, y_2 \rangle \le |x_1 + x_2||y_1| + |x_1 - x_2||y_2|$$

$$\le |x_1 + x_2| + |x_1 - x_2|.$$

- $(|x_1 + x_2| + |x_1 x_2|)^2 \le 4(|x_1|^2 + |x_2|^2)$
- Tr $(AM) \le |x_1 + x_2| + |x_1 x_2| \le 2\sqrt{|x_1|^2 + |x_2|^2} \le 2\sqrt{2}$.

- $\max\{\text{Tr}(AM) | A \in LC_{2,2}\} = 2$
- Recall $QC_{2,2} = \{\langle x_i, y_j \rangle \mid x_1, x_2, y_1, y_2 \in \mathbb{R}^2, |x_i|, |y_j| \le 1\}$
- $A \in \mathsf{QC}_{2,2}$ we obtain, by Cauchy-Schwarz and $|y_i| \leq 1$,

$$Tr(AM) = \langle x_1, y_1 \rangle + \langle x_1, y_2 \rangle + \langle x_2, y_1 \rangle - \langle x_2, y_2 \rangle$$

$$= \langle x_1 + x_2, y_1 \rangle + \langle x_1 - x_2, y_2 \rangle \le |x_1 + x_2||y_1| + |x_1 - x_2||y_2|$$

$$\le |x_1 + x_2| + |x_1 - x_2|.$$

- $(|x_1 + x_2| + |x_1 x_2|)^2 \le 4(|x_1|^2 + |x_2|^2)$
- Tr $(AM) \le |x_1 + x_2| + |x_1 x_2| \le 2\sqrt{|x_1|^2 + |x_2|^2} \le 2\sqrt{2}$.
- Bound is achieved by $A=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&1\end{pmatrix}$, induced by the vectors $x_1=x_2=\frac{1}{\sqrt{2}}(1,1)$ and $y_1=y_2=(1,0)$

- Local and quantum correlation matrices
 - Local correlation matrices
 - Quantum correlation matrices
 - The relations between quantum correlation and local correlation matrices
 - Motivation: The Grothendieck-Tsirelson Theorem
 - Grothendieck's Inequality
 - Tsirelson's Theorem.
 - Gorthendieck-Tsirelson Theorem

- Local and quantum correlation matrices
 - Local correlation matrices
 - Quantum correlation matrices
 - The relations between quantum correlation and local correlation matrices
 - Motivation: The Grothendieck-Tsirelson Theorem
 - Grothendieck's Inequality
 - Tsirelson's Theorem
 - Gorthendieck-Tsirelson Theorem

Theorem (Grothendieck-Tsirelson)

There exists an absolute constant $K \ge 1$ such that, for any positive integers m, n, the following three equivalent conditions hold:

(1) We have the inclusion

$$QC_{m,n} \subset KLC_{m,n}. \tag{2}$$

(2) For any $M \in \mathbb{R}^{m \times n}$ and for any ρ, X_i, Y_j verifying the conditions of Definition 4.2.1 we have

$$\sum_{i,j} M_{ij} \operatorname{Tr} \rho(X_i \otimes Y_j) \le K \max_{\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n} \sum_{i,j} M_{ij} \xi_i \eta_j \qquad (3)$$

$$\Leftrightarrow$$

$$\operatorname{\mathsf{Tr}} \mathsf{M} \mathsf{A}^\top \leq \max_{\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n} \operatorname{\mathsf{Tr}} \mathsf{M} (\xi \eta^\top)^\top. \tag{4}$$

(3) For any $M \in \mathbb{R}^{m \times n}$ and for any (real) Hilbert space vectors x_i, y_j with $|x_i| \le 1$, $|y_j| \le 1$ we have

$$\sum_{i,j} M_{i,j} \langle x_i, y_j \rangle \le K \max_{\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n} \operatorname{Tr} \xi^\top M \eta.$$
 (5)

- 1 Local and quantum correlation matrices
 - Local correlation matrices
 - Quantum correlation matrices
 - The relations between quantum correlation and local correlation matrices
 - Motivation: The Grothendieck-Tsirelson Theorem
 - Grothendieck's Inequality
 - Tsirelson's Theorem.
 - Gorthendieck-Tsirelson Theorem

Let $x, y \in S^{d-1}$. Let $r \in S^{d-1}$ be a random unit vector chosen from O(d)-invariant probability distribution on the unit sphere. Then

- i, $\mathbb{P}[\operatorname{sign}(\langle x, r \rangle) \neq \operatorname{sign}(\langle y, r \rangle)] = \frac{\operatorname{arccos}(\langle x, y \rangle)}{\pi}$
- ii, $\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)] = \frac{2}{\pi} \arcsin(\langle x, y \rangle).$

Let $x, y \in S^{d-1}$. Let $r \in S^{d-1}$ be a random unit vector chosen from O(d)-invariant probability distribution on the unit sphere. Then

- i, $\mathbb{P}[\operatorname{sign}(\langle x, r \rangle) \neq \operatorname{sign}(\langle y, r \rangle)] = \frac{\operatorname{arccos}(\langle x, y \rangle)}{\pi}$
- ii, $\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)] = \frac{2}{\pi} \arcsin(\langle x, y \rangle).$

Proof.

ullet If x and y are linearly dependent, then

Let $x,y\in S^{d-1}$. Let $r\in S^{d-1}$ be a random unit vector chosen from O(d)-invariant probability distribution on the unit sphere. Then

- i, $\mathbb{P}[\operatorname{sign}(\langle x, r \rangle) \neq \operatorname{sign}(\langle y, r \rangle)] = \frac{\operatorname{arccos}(\langle x, y \rangle)}{\pi}$
- ii, $\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)] = \frac{2}{\pi} \arcsin(\langle x, y \rangle).$

- If x and y are linearly dependent, then
 - if x = y: $arccos(\langle x, y \rangle) = arccos(1) = 0$.

Let $x, y \in S^{d-1}$. Let $r \in S^{d-1}$ be a random unit vector chosen from O(d)-invariant probability distribution on the unit sphere. Then

- i, $\mathbb{P}[\operatorname{sign}(\langle x, r \rangle) \neq \operatorname{sign}(\langle y, r \rangle)] = \frac{\operatorname{arccos}(\langle x, y \rangle)}{\pi}$
- ii, $\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)] = \frac{2}{\pi} \arcsin(\langle x, y \rangle)$.

- If x and y are linearly dependent, then
 - if x = y: $arccos(\langle x, y \rangle) = arccos(1) = 0$.
 - if x = -y: $arccos(\langle x, y \rangle) = arccos(-1) = \pi$.

Let $x, y \in S^{d-1}$. Let $r \in S^{d-1}$ be a random unit vector chosen from O(d)-invariant probability distribution on the unit sphere. Then

- i, $\mathbb{P}[\operatorname{sign}(\langle x, r \rangle) \neq \operatorname{sign}(\langle y, r \rangle)] = \frac{\operatorname{arccos}(\langle x, y \rangle)}{\pi}$
- ii, $\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)] = \frac{2}{\pi} \arcsin(\langle x, y \rangle)$.

- If x and y are linearly dependent, then
 - if x = y: $arccos(\langle x, y \rangle) = arccos(1) = 0$.
 - if x = -y: $arccos(\langle x, y \rangle) = arccos(-1) = \pi$.
- If x and y are linearly independent, then

Let $x, y \in S^{d-1}$. Let $r \in S^{d-1}$ be a random unit vector chosen from O(d)-invariant probability distribution on the unit sphere. Then

- i, $\mathbb{P}[\operatorname{sign}(\langle x, r \rangle) \neq \operatorname{sign}(\langle y, r \rangle)] = \frac{\operatorname{arccos}(\langle x, y \rangle)}{\pi}$
- ii, $\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)] = \frac{2}{\pi} \arcsin(\langle x, y \rangle)$.

- If x and y are linearly dependent, then
 - if x = y: $arccos(\langle x, y \rangle) = arccos(1) = 0$.
 - if x = -y: $arccos(\langle x, y \rangle) = arccos(-1) = \pi$.
- If x and y are linearly independent, then
 - project r orthogonally on span $\{x,y\}$ which gives us a vector s with $\langle x,r\rangle=\langle x,s\rangle$ and $\langle y,r\rangle=\langle y,s\rangle$.

Let $x, y \in S^{d-1}$. Let $r \in S^{d-1}$ be a random unit vector chosen from O(d)-invariant probability distribution on the unit sphere. Then

- i, $\mathbb{P}[\operatorname{sign}(\langle x, r \rangle) \neq \operatorname{sign}(\langle y, r \rangle)] = \frac{\operatorname{arccos}(\langle x, y \rangle)}{\pi}$
- ii, $\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)] = \frac{2}{\pi} \arcsin(\langle x, y \rangle)$.

- If x and y are linearly dependent, then
 - if x = y: $arccos(\langle x, y \rangle) = arccos(1) = 0$.
 - if x = -y: $arccos(\langle x, y \rangle) = arccos(-1) = \pi$.
- If x and y are linearly independent, then
 - project r orthogonally on span $\{x,y\}$ which gives us a vector s with $\langle x,r\rangle=\langle x,s\rangle$ and $\langle y,r\rangle=\langle y,s\rangle$,
 - the normalized vector n := s/|s| is uniformly distributed on the intersection of the unit sphere and span $\{x,y\}$ by the O(d)-invariance of the probability distribution.

Calculation of the probability that the signs of the scalar products $\langle x, n \rangle$ and $\langle y, n \rangle$ are unlike:

$$\mathbb{P}[\mathsf{sign}(\langle x, \textit{n} \rangle) \neq \mathsf{sign}(\langle y, \textit{n} \rangle)] = 2 \frac{\mathsf{arccos}(\langle x, y \rangle)}{2\pi} = \frac{\mathsf{arccos}(\langle x, y \rangle)}{\pi}$$

We conclude with the proof of the second part of Lemma 5:

$$\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)]$$

$$= 1 - 2 \frac{\operatorname{arccos}(\langle x, y \rangle)}{\pi}$$

$$= \frac{2}{\pi} \operatorname{arcsin}(\langle x, y \rangle),$$

because
$$\arcsin(t) + \arccos(t) = \pi/2$$
.

Let $x_1,\ldots,x_m,y_1,\ldots,y_n\in S^{m+n-1}$ be given. Furthermore, let $r\in S^{n+m-1}$ be a random unit vector chosen form the O(n+m-1)-invariant probability distribution on the unit sphere. Then there are $x_1',\ldots,x_m',y_1',\ldots,y_n'\in S^{m+n-1}$ so that

$$\mathbb{E}[\operatorname{sign}(\langle x_i', r \rangle) \operatorname{sign}(\langle y_j', r \rangle)] = \beta \langle x_i, y_j \rangle, \tag{6}$$

with
$$\beta = \frac{2}{\pi} \ln(1 + \sqrt{2})$$
.

Definition (The *k*-th tensor product)

The k-th tensor product of \mathbb{R}^n with orthonormal basis e_1, \ldots, e_n is denoted by $(\mathbb{R}^n)^{\otimes k}$ and it is a Euclidean vector space of dimension n^k with othonormal basis $e_{i_k} \otimes \cdots \otimes e_{i_k}$, $i_l \in \{1, \ldots, n\}$. In particular

$$\langle e_{i_1} \otimes \cdots \otimes e_{i_k}, e_{j_1} \otimes \cdots \otimes e_{j_k} \rangle = \prod_{l=1}^k \langle e_{i_l}, e_{j_l} \rangle$$

$$= \begin{cases} 1 & , \text{ if } i_l = j_l \text{ for all } l = 1, \dots, n, \\ 0 & , \text{ otherwise,} \end{cases}$$
 (7)

and for $v \in \mathbb{R}^n$ with $v = v_1 e_1 + \dots + v_n e_n$ we define $v^{\otimes k} \in (\mathbb{R}^n)^{\otimes k}$ by

$$v^{\otimes k} := (v_1 e_1 + \dots + v_n e_n) \otimes \dots \otimes (v_1 e_1 + \dots + v_n e_n)$$

$$= \sum_{i_1,\dots,i_k} v_{i_1} \cdots v_{i_k} e_{i_1} \otimes \dots \otimes e_{i_k}.$$
(8)

Thus, for $v, w \in \mathbb{R}^n$

$$\langle v^{\otimes k}, w^{\otimes k} \rangle = \langle v, w \rangle^k. \tag{9}$$

Let $x_1,\ldots,x_m,y_1,\ldots,y_n\in S^{m+n-1}$ be given. Furthermore, let $r\in S^{n+m-1}$ be a random unit vector chosen form the O(n+m-1)-invariant probability distribution on the unit sphere. Then there are $x_1',\ldots,x_m',y_1',\ldots,y_n'\in S^{m+n-1}$ so that

$$\mathbb{E}[\operatorname{sign}(\langle x_i', r \rangle) \operatorname{sign}(\langle y_j', r \rangle)] = \beta \langle x_i, y_j \rangle, \tag{10}$$

with $\beta = \frac{2}{\pi} \ln(1 + \sqrt{2})$.

Proof of Krivine's trick.

• Define $E: [-1, +1] \to [-1, +1]$ by $E(t) = \frac{2}{\pi} \arcsin(t)$.

Let $x_1,\ldots,x_m,y_1,\ldots,y_n\in S^{m+n-1}$ be given. Furthermore, let $r\in S^{n+m-1}$ be a random unit vector chosen form the O(n+m-1)-invariant probability distribution on the unit sphere. Then there are $x_1',\ldots,x_m',y_1',\ldots,y_n'\in S^{m+n-1}$ so that

$$\mathbb{E}[\operatorname{sign}(\langle x_i', r \rangle) \operatorname{sign}(\langle y_j', r \rangle)] = \beta \langle x_i, y_j \rangle, \tag{10}$$

with $\beta = \frac{2}{\pi} \ln(1 + \sqrt{2})$.

Proof of Krivine's trick.

- Define $E:[-1,+1] \rightarrow [-1,+1]$ by $E(t)=\frac{2}{\pi}\arcsin(t)$.
- $E(\langle x_i', y_j' \rangle) = \mathbb{E}[\operatorname{sign}(\langle x_i', r \rangle) \operatorname{sign}(\langle y_j', r \rangle)] \stackrel{!}{=} \beta \langle x_i, y_j \rangle$ by Grothendieck's identity.

Let $x_1,\ldots,x_m,y_1,\ldots,y_n\in S^{m+n-1}$ be given. Furthermore, let $r\in S^{n+m-1}$ be a random unit vector chosen form the O(n+m-1)-invariant probability distribution on the unit sphere. Then there are $x_1',\ldots,x_m',y_1',\ldots,y_n'\in S^{m+n-1}$ so that

$$\mathbb{E}[\operatorname{sign}(\langle x_i', r \rangle) \operatorname{sign}(\langle y_j', r \rangle)] = \beta \langle x_i, y_j \rangle, \tag{10}$$

with $\beta = \frac{2}{\pi} \ln(1 + \sqrt{2})$.

Proof of Krivine's trick.

- Define $E: [-1, +1] \to [-1, +1]$ by $E(t) = \frac{2}{\pi} \arcsin(t)$.
- $E(\langle x_i', y_j' \rangle) = \mathbb{E}[\operatorname{sign}(\langle x_i', r \rangle) \operatorname{sign}(\langle y_j', r \rangle)] \stackrel{!}{=} \beta \langle x_i, y_j \rangle$ by Grothendieck's identity.
- Idea: To find β, x'_i, y'_i invert E:

$$E^{-1}(t) = \sin(\pi/2 \cdot t) = \sum_{k=0}^{\infty} \underbrace{\frac{(-1)^{2k+1}}{(2k+1)!} \left(\frac{\pi}{2}\right)^{2k+1}}_{=:\mathcal{E}_{2k+1}} t^{2k+1},$$

• Define the infinite-dimensional Hilbert space

$$H = \bigoplus_{n=0}^{\infty} (\mathbb{R}^{m+n})^{\otimes 2k+1}.$$
 (11)

• Define the infinite-dimensional Hilbert space

$$H = \bigoplus_{r=0}^{\infty} (\mathbb{R}^{m+n})^{\otimes 2k+1}.$$
 (11)

• Define $\tilde{x}_i, \tilde{y}_i \in H$, i = 1, ..., m, j = 1, ..., n componentwise:

$$(\tilde{x}_i)_k = \operatorname{sign}(g_{2k+1}) \sqrt{|g_{2k+1}|\beta^{2k+1}} x_i^{\otimes 2k+1}$$
 (12)

$$(\tilde{y}_j)_k = \sqrt{|g_{2k+1}|\beta^{2k+1}} y_j^{\otimes 2k+1}$$
 (13)

• Define the infinite-dimensional Hilbert space

$$H = \bigoplus_{r=0}^{\infty} (\mathbb{R}^{m+n})^{\otimes 2k+1}.$$
 (11)

• Define $\tilde{x}_i, \tilde{y}_j \in H$, i = 1, ..., m, j = 1, ..., n componentwise:

$$(\tilde{x}_i)_k = \operatorname{sign}(g_{2k+1}) \sqrt{|g_{2k+1}|} \beta^{2k+1} x_i^{\otimes 2k+1}$$
 (12)

$$(\tilde{y}_j)_k = \sqrt{|g_{2k+1}|\beta^{2k+1}} \, y_j^{\otimes 2k+1}$$
 (13)

Then

$$\begin{split} \langle \tilde{x}_i, \tilde{y}_j \rangle &= \sum_{k=0}^{\infty} g_{2k+1} \beta^{2k+1} \langle x_i^{\otimes 2k+1}, y_j^{\otimes 2k+1} \rangle \\ &= \sum_{k=0}^{\infty} g_{2k+1} \beta^{2k+1} \langle x_i, y_j \rangle^{2k+1} \\ &= E^{-1} (\beta \langle x_i, y_i \rangle). \end{split}$$

• Hence, β is defined by the condition that the vectors $\tilde{x}_1, \ldots, \tilde{x}_m, \tilde{y}_1, \ldots, \tilde{y}_n$ are unit vectors:

$$1 = \langle \tilde{x}_i, \tilde{x}_i \rangle = \langle \tilde{y}_j, \tilde{y}_j \rangle = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} \left(\frac{\pi}{2}\right)^{2k+1} \beta^{2k+1} = \sinh(\frac{\pi}{2}\beta)$$

$$\Leftrightarrow \qquad \beta = \frac{2}{\pi} \operatorname{arcsinh}(1) = \frac{2}{\pi} \ln(1+\sqrt{2})$$

• Hence, β is defined by the condition that the vectors $\tilde{x}_1, \dots, \tilde{x}_m, \tilde{y}_1, \dots, \tilde{y}_n$ are unit vectors:

$$1 = \langle \tilde{x}_i, \tilde{x}_i \rangle = \langle \tilde{y}_j, \tilde{y}_j \rangle = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} \left(\frac{\pi}{2}\right)^{2k+1} \beta^{2k+1} = \sinh(\frac{\pi}{2}\beta)$$

$$\Leftrightarrow \qquad \beta = \frac{2}{\pi} \operatorname{arcsinh}(1) = \frac{2}{\pi} \ln(1+\sqrt{2})$$

• Problem: $\tilde{x}_1, \dots, \tilde{x}_m, \tilde{y}_1, \dots, \tilde{y}_n$ are infinite-dimensional

• Hence, β is defined by the condition that the vectors $\tilde{x}_1, \dots, \tilde{x}_m, \tilde{y}_1, \dots, \tilde{y}_n$ are unit vectors:

$$1 = \langle \tilde{x}_i, \tilde{x}_i \rangle = \langle \tilde{y}_j, \tilde{y}_j \rangle = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} \left(\frac{\pi}{2}\right)^{2k+1} \beta^{2k+1} = \sinh(\frac{\pi}{2}\beta)$$

$$\Leftrightarrow \qquad \beta = \frac{2}{\pi} \operatorname{arcsinh}(1) = \frac{2}{\pi} \ln(1+\sqrt{2})$$

- Problem: $\tilde{x}_1, \dots, \tilde{x}_m, \tilde{y}_1, \dots, \tilde{y}_n$ are infinite-dimensional
- ullet Solution: the positive definite and symmetric Gram matrix G

$$G = \begin{pmatrix} \langle \tilde{x}_{1}, \tilde{x}_{1} \rangle & \cdots & \langle \tilde{x}_{1}, \tilde{x}_{m} \rangle & \langle \tilde{x}_{1}, \tilde{y}_{1} \rangle & \cdots & \langle \tilde{x}_{1}, \tilde{y}_{n} \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle \tilde{x}_{m}, \tilde{x}_{1} \rangle & \cdots & \langle \tilde{x}_{m}, \tilde{x}_{m} \rangle & \langle \tilde{x}_{m}, \tilde{y}_{1} \rangle & \cdots & \langle \tilde{x}_{m}, \tilde{y}_{n} \rangle \\ \langle \tilde{y}_{1}, \tilde{x}_{1} \rangle & \cdots & \langle \tilde{y}_{1}, \tilde{x}_{m} \rangle & \langle \tilde{y}_{1}, \tilde{y}_{1} \rangle & \cdots & \langle \tilde{y}_{1}, \tilde{y}_{n} \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle \tilde{y}_{n}, \tilde{x}_{1} \rangle & \cdots & \langle \tilde{y}_{n}, \tilde{x}_{m} \rangle & \langle \tilde{y}_{n}, \tilde{y}_{1} \rangle & \cdots & \langle \tilde{y}_{n}, \tilde{y}_{n} \rangle \end{pmatrix}$$

$$(14)$$

• Due to the properties of G we can decompose G via a real orthogonal matrix Q with columns that are the eigenvectors of G and a real diagonal matrix Λ having the eigenvalues of G on the diagonal, thus

$$G = Q\Lambda Q^{\top} = \underbrace{(Q\Lambda^{1/2})^{\top}(Q\Lambda^{1/2})}_{=:A}.$$
 (15)

• Due to the properties of G we can decompose G via a real orthogonal matrix Q with columns that are the eigenvectors of G and a real diagonal matrix Λ having the eigenvalues of G on the diagonal, thus

$$G = Q\Lambda Q^{\top} = \underbrace{(Q\Lambda^{1/2})^{\top}(Q\Lambda^{1/2})}_{=:A}.$$
 (15)

• The columns of A are the vectors $x_1', \ldots, x_m', y_1', \ldots, y_n' \in S^{m+n-1}$ we are looking for.

□ > 4回 > 4 差 > 4 差 > 差 める(で)

Definition

For $M \in \mathbb{R}^{m \times n}$ define the quadratic program

$$||M||_{\infty \to 1} = \max \left\{ \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} \xi_{i} \eta_{j} : \xi_{i}^{2} = 1, i = 1, \dots, m, \eta_{j}^{2} = 1, j = 1, \dots, n \right\}$$

$$= \max \left\{ \operatorname{Tr} M \eta \xi^{\top} : \xi \in \{-1, 1\}^{m}, \eta \in \{-1, 1\}^{n} \right\}. \tag{16}$$

Definition

The SDP relaxation of $||M||_{\infty \to 1}$ is given via:

$$\operatorname{sdp}_{\infty o 1}(M) = \max \sum_{i=1}^m \sum_{j=1}^n M_{ij} \langle x_i, y_j \rangle$$
 $x_i, y_j \in \mathbb{R}^{m+n}$ $|x_i| = 1, i = 1, \dots, m$ $|y_i| = 1, j = 1, \dots, n$

Theorem (Grothendieck's inequality)

There exists a constant K such that for all $M \in \mathbb{R}^{m \times n}$:

$$||M||_{\infty \to 1} \le \operatorname{sdp}_{\infty \to 1}(M) \le K||M||_{\infty \to 1}.$$
 (17)

Proof.

Use the following approximation algorithm with randomized rounding:

Algorithm 1: Approximation algorithm with randomized rounding for $\|M\|_{\infty \to 1}$

- 1. Solve $\operatorname{sdp}_{\infty \to 1}(M)$. Let $x_1, \dots, x_m, y_1, \dots, y_n \in S^{m+n-1}$ be the optimal unit vectors.
 - 2. Apply Krivine's trick (Lemma 8) and use vectors x_i, y_j to create new unit vectors $x'_1, \ldots, x'_m, y'_1, \ldots, y'_n \in S^{m+n-1}$.
 - 3. Choose $r \in S^{m+n-1}$ randomly.
 - 4. Round: $\xi_i = \operatorname{sign}(\langle x_i', r \rangle)$ $\eta_i = \operatorname{sign}(\langle y_i', r \rangle)$

Expected quality of the outcome:

$$\begin{split} \|M\|_{\infty \to 1} &\geq \mathbb{E}\left[\sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} \xi_{i} \eta_{j}\right] \\ &= \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} \mathbb{E}[\operatorname{sign}(\langle x_{i}', r \rangle) \operatorname{sign}(\langle y_{j}', r \rangle)] \\ &= \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} \beta \langle x_{i}, y_{j} \rangle \\ &= \beta \operatorname{sdp}_{\infty \to 1}(M), \end{split}$$

where the last equality follows by Krivine's trick with $\beta=\frac{2\ln(1+\sqrt{2})}{\pi}$, thus $K<\beta^{-1}$.

- Local and quantum correlation matrices
 - Local correlation matrices
 - Quantum correlation matrices
 - The relations between quantum correlation and local correlation matrices
 - Motivation: The Grothendieck-Tsirelson Theorem
 - Grothendieck's Inequality
 - Tsirelson's Theorem
 - Gorthendieck-Tsirelson Theorem

Theorem (Tsirelson)

(Hard direction) For all positive integers n, r and any x_1, \ldots, x_n , $y_1, \ldots, y_n \in S^{r-1}$, there exists a positive integer d := d(r), a state $|\psi\rangle \in \mathbb{C}^d \otimes \mathbb{C}^d$ and $\{-1,1\}$ -observables $F_1, \ldots, F_n, G_1, \ldots, G_n \in O(\mathbb{C}^d)$, such that for every $i,j \in \{1,\ldots,n\}$, we have

$$\langle \psi | F_i \otimes G_j | \psi \rangle = \langle x_i, y_j \rangle.$$
 (18)

Moreover, $d \leq 2^{\lceil r/2 \rceil}$.

(Easy direction) Conversely, for all positive integers n, d, state $|\psi\rangle \in \mathbb{C}^d \otimes \mathbb{C}^d$ and $\{-1,1\}$ -observables $F_1, \ldots, F_n, G_1, \ldots, G_n \in O(\mathbb{C}^d)$, there exist a positive integer r := r(d) and $x_1, \ldots, x_n, y_1, \ldots, y_n \in S^{r-1}$ such that for every $i, j \in \{1, \ldots, n\}$, we have

$$\langle x_i, y_j \rangle = \langle \psi | F_i \otimes G_j | \psi \rangle. \tag{19}$$

Moreover, $r < 2d^2$.

Proof.

For the hard direction look at the second part of the proof of $QC_{m,n} = \{(\langle x_i, y_j \rangle)_{1 \leq i \leq m, 1 \leq j \leq n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \leq 1, |y_j| \leq 1\}$ (Due to the additional restriction/assumption that F_i and G_j are $\{-1,1\}$ -observables the other direction gets easier.

Since

- Local and quantum correlation matrices
 - Local correlation matrices
 - Quantum correlation matrices
 - The relations between quantum correlation and local correlation matrices
 - Motivation: The Grothendieck-Tsirelson Theorem
 - Grothendieck's Inequality
 - Tsirelson's Theorem.
 - Gorthendieck-Tsirelson Theorem

Theorem (Grothendieck-Tsirelson)

There exists an absolute constant $K \ge 1$ such that, for any positive integers m, n, the following three equivalent conditions hold:

(1) We have the inclusion

$$QC_{m,n} \subset KLC_{m,n}. \tag{20}$$

(2) For any $M \in \mathbb{R}^{m \times n}$ and for any ρ, X_i, Y_j verifying the conditions of Definition 4.2.1 we have

$$\sum_{i,j} M_{ij} \operatorname{Tr} \rho(X_i \otimes Y_j) \le K \max_{\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n} \sum_{i,j} M_{ij} \xi_i \eta_j$$
 (21)

$$\Leftrightarrow$$

$$\operatorname{\mathsf{Tr}} M A^{ op} \leq \max_{\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n} \operatorname{\mathsf{Tr}} M (\xi \eta^{ op})^{ op}.$$
 (22)

(3) For any $M \in \mathbb{R}^{m \times n}$ and for any (real) Hilbert space vectors x_i, y_j with $|x_i| \le 1$, $|y_j| \le 1$ we have

$$\sum_{i:i} M_{ij} \langle x_i, y_j \rangle \le K \max_{\xi \in \{-1, 1\}^m, \eta \in \{-1, 1\}^n} \operatorname{Tr} \xi^\top M \eta. \tag{23}$$

Proof.

Since (23) is a direct consequence of Grothendieck's inequality the only thing left to prove is the equivalence between (1)-(3). The equivalence of (3) and (2) (the Tsirelson's bound) is a consequence of either the proof of Lemma ?? or Tsirelsons Theorem (Theorem 1).

