Number of electrons (& holes) in intrinsic semiconductors

Need n_i to determine conductivity σ etc. $(n_i = P_i)$

Since there are typically 10^{28} atoms m⁻³ in silicon, for example, we cannot study the individual motion of each electron. However, current, charge, etc. involve <u>net</u> motion of large numbers of carriers, so can use statistical method to find the electrical properties. So we find the <u>average</u> behaviour of electrons rather than detailed dynamics.

For example, we define a distribution function (**Fermi-Dirac function**)

P(E)= gives the *probability* that an electron has an energy E (at some temperature T).

e.g. If $P(E_1) = 0.2$, 20% of electrons have $E = E_1$

The statistics that govern detailed form of P(E) depends on 1) type of particle

2) how they interact (e.g. molecules in gas – no interaction = subject to Boltzmann statistics)

For solids:

- 1) electrons
- 2) obey Pauli exclusion principle

Fermi-Dirac (F.D.) statistics govern the behaviour of such interacting electrons. The F.D. distribution function, P(E) is then of the form

Ef = fermi energy or level

$$P(E) = \frac{1}{1 + \exp\left(\frac{E - E_F}{kT}\right)}$$

P(E) is probability that an electron has energy E, and varies from 0 to 1. $k = \text{Boltzmann constant} = 1.38 \times 10^{-23} \text{ JK}^{-1}$, T = temperature in kelvin and E is electron energy.

At T=0K, For E>E_F,

$$P(E) = \frac{1}{1 + \exp(\infty)} = 0$$

For $E < E_F$,

$$P(E) = \frac{1}{1 + \exp(-\infty)} = 1$$

Probability that electrons occupy levels for $E > E_F = 0$ at levels empty

are occupied an levels full

All levels above E_F - empty All levels below E_F - full

No electron can have $E>E_F$ at T=0KSo E_F is the maximum energy of electron at 0K

At T>0K, some electrons near E_F can acquire enough thermal energy and have $E>E_F$. Those at levels $<< E_F$ cannot move – no empty levels available. Then

The actual shape of P(E) depends on equation (1).

From eqn. (1) as T \uparrow , probability that electron can have $E > E_F$ increases, so

P(E) is symmetrical about E_F

$$P(E_F + \delta E) = 1 - P(E_F - \delta E)$$

Probability that e is at $(E_F + \delta E)$ = probability that e is not at $(E_F - \delta E)$

Apply to semiconductor

Band structure

The probability that an electron can acquire sufficient energy to be in C.B. is:

probability that it has energy $E_v+E_g = P(E_v+E_g)$

$$P(E_v + E_g) = \frac{1}{1 + \exp\left(\frac{E_v + E_g - E_F}{kT}\right)}$$

If we assume n m⁻³ electrons in C.B. at temperature T then,. n = total no. of electrons x probability of electrons being in C.B.

 $n=n_{tot} \times P(E_v+E_g)$

$$n = \frac{n_{tot}}{1 + \exp\left(\frac{E_v + E_g - E_F}{kT}\right)}$$

Similarly, if there are $n_v m^{-3}$ electrons in V.B, the probability of occupancy of V.B. is:

$$P(E_{v}) = \frac{1}{1 + \exp\left(\frac{E_{v} - E_{F}}{kT}\right)}$$

and therefore

$$n_{v} = \frac{n_{tot}}{1 + \exp\left(\frac{E_{v} - E_{F}}{kT}\right)}$$

Since $n_{tot} = n + n_{v_{s}}$

From eqns. (1) and (2)

$$n_{tot} = \frac{n_{tot}}{1 + \exp\left(\frac{E_v + E_g - E_F}{kT}\right)} + \frac{n_{tot}}{1 + \exp\left(\frac{E_v - E_F}{kT}\right)}$$

rearrange this equation and we get:

$$E_F = E_V + E_g/2$$

So in **intrinsic** semiconductor E_F is **midway** between V.B. and C.B

Because E_F is mid-gap, and because of symmetry of P(E) about E_F , probability that electron is δE above bottom of C.B. = probability that electron **does not** occupy level δE below top of V.B.

This ensures that $n=p=n_i$

From eqn. (1)

$$n_i = \frac{n_{tot}}{1 + \exp\left(\frac{E_v + E_g - E_F}{kT}\right)}$$

Since $E_F = E_V + E_g/2$,

$$n_i = \frac{n_{tot}}{1 + \exp\left(\frac{E_v + E_g - E_v - E_g/2}{kT}\right)} = \frac{n_{tot}}{1 + \exp\left(\frac{E_g}{2kT}\right)}$$

For a certain material, E_g is fixed, $n_i\alpha exp$ (-1/T), i.e. as T \uparrow , n_i increases exponentially

Also as materials change, E_g changes and at fixed T, as $E_g \uparrow$, n_i decreases exponentially, i.e. $n_i \alpha \exp(-E_g)$

Doped semiconductors

Intrinsic semiconductors rarely used so use extrinsic (doped) semiconductor since

- 1) $\sigma \neq f(T)$
- 2) can choose σ by varying doping

n-type

Intrinsic (parent) material is Si, Ge. Have 4 electrons and 4 vacancies in the outer shell. Covalently bonded in diamond type structure.

n-type donors, phosphorus (P), arsenic (As), antimony (Sb), all have 5 electrons and 3 vacancies in outer shell. Dopant atoms substitute at Si site.

Only 4 electrons taken up as covalent bonds. 'Extra electron loosely bound to parent donor at 0K.

- behaves like hydrogen (Bohr) atom except:
- i) $m \rightarrow m_e$
- ii) $\varepsilon_0 \rightarrow \varepsilon = \varepsilon_0 \varepsilon_r$ since atom is in a dielectric e.g. Si

For hydrogen,

$$E_i = \frac{me^4}{8\varepsilon_0^2 h^2 n^2} = 13.6eV$$
 for n=1 (ignore –ive sign)

For donor atom,

$$E_i = \frac{13.6m_e^*}{\varepsilon_r^2 m}$$
 Since for Si $\varepsilon_r \sim 16$, $m_e^*/m = 0.6$,

 $E_i = 0.03 \text{ eV} - \text{experimentally we observe } E_i \approx 0.01 \text{ eV}$

At most temperatures, $kT > E_i$; ($kT @ RT \sim 0.026 \text{ eV}$) So at RT all donors are ionised (free). Each donor contributes 1 electron to C.B.

n=N_d the donor density.

(note -no extra holes produced in V.B.!)

$$\sigma = f(N_d) \neq f(T)$$
 provided all N_d's are ionised, e.g. at RT

Also small levels of dopant increase σ a lot. e.g. intrinsic Si, $n_i = n = p = 10^{16} \text{ m}^{-3}$ at RT

$$N_d = \frac{10^{28}}{10^6} = 10^{22} m^{-3} = n$$

Doped 1 part in 10^6 with phosphorus, then for 10^{28} atoms per m³,

Then,

$$\frac{\sigma_n}{\sigma_i} \approx \frac{n}{n_i} = \frac{10^{22}}{10^{16}} = 10^6$$

Also, $np = n_i^2$ (very important & true for all doping conditions)

$$p = \frac{n_i^2}{n} = \frac{(10^{16})^2}{10^{22}} = 10^{10} \ll p_i (=10^{16})$$

We can therefore ignore n_i and p in n-doped material, e.g. $\sigma = n_e \mu_e + p_e \mu_h$ ignore

p-type:

dopants are called acceptors – 3 electrons and 5 vacancies in the outer shell, e.g. boron (B), Al, Ga....Substitutional doping in Si,

vacancy – loosely bound to parent – at RT, nearby bound e can move into vacancy and create a hole (: movement of hole)

energy needed again $\sim 0.01 \text{eV}$ every Boron atom produces 1 hole, i.e. N_a (acceptor density) = p (free holes)

Each acceptor creates 1 empty level

holes created in V.B. if E>E_i, e- moves into acceptor levels – 1 hole/acceptor

Again, no extra electrons created in C.B.

$$\begin{split} p &= N_a >> p_i \\ n &<< n_i \quad \text{(since ne = n; }^2\text{)} \\ \sigma_p &>> \sigma_i \end{split}$$