GMMs, Hierarchical Clustering

Lecture 9:

Gaussian Mixture Models, Hierarchical Clustering

ECE/CS 498 DS

Professor Ravi K. Iyer

Department of Electrical and Computer Engineering
University of Illinois

Announcements

- MP 1 final checkpoint due tomorrow Feb 20th @ 11:59 PM on Compass2G
 - One submission per group, consisting of
 - Single ipynb for all tasks
 - Single PDF with results for all tasks (template has been provided)
 - Presentation signup link is live:
 https://docs.google.com/spreadsheets/d/14braJUAaud3y4kcg6l1N1fTRBx
 ZBis6sutxqxTpWsKU/edit#gid=0
- Discuss section this week (2/21) is cancelled due to MP 1 presentations
- HW 2 will be released this upcoming Mon Feb 24
 - Covers Bayesian networks and inferencing
- MP 2 will be released this upcoming Mon Feb 24
 - Uses health data collected from the gut microbiome
- Midterm exam will take place on Wed March 11th

Gaussian Mixture Models

Expectation-Maximization: Motivation

- Clustering data points using MAP or maximum likelihood rules is very difficult when there are latent (hidden / unobservable) variables
 - Latent variables interact with the dataset but are not directly observed/known
 - In clustering, these latent variables are usually parameters of the clusters we are trying to determine (e.g. centroid locations in kmeans, mean and standard deviation in Gaussian clustering)
- Expectation Maximization is an iterative solution to this problem
 - General procedure:
 - (1) Initialization Step: "guess" latent variables (e.g. cluster parameters)
 - (2) Expectation Step: optimize model to fit the data using the currently known latent variables
 - (3) Maximization Step: optimize the parameters using the current model
 - (4) Repeat steps (2)-(3) until convergence

https://machinelearningmastery.com/expectation-maximization-em-algorithm/

Soft Clustering: Mixture Model: Clusters may Overlap

Given:

• Data points/observations: $x_1, x_2, ...$

Model:

- There is a set of K probability distributions
 - Each distribution represents a cluster
 - Each distribution is described by certain parameters
 - Clusters may overlap
 - Find strengths of association between clusters and data instances
 - Discover the parameters of the distribution e.g. mean and variance
- Each data point is sampled from one of several distributions
 - $p(x_i|b)$: Likelihood probability (density) that an instance x_i takes certain feature values given that it is from cluster b
 - $P(b|x_i)$: Posterior probability that an instance belongs to cluster b given that its features are x_i

Problem:

- Find parameters of the K distributions
- Find the posterior probabilities for each point

Expectation Maximization

· Automatically discover all the parameters for the K sources

GMM Example: Find parameters

- Observations: $x_1, x_2, ..., x_N$
 - Each observation has 1 feature (1dimension)
- Data is sampled from one of two Gaussian distributions (K=2)
 - Cluster r: (μ_r, σ_r^2)
 - Cluster b: (μ_h, σ_h^2)
- Estimation: If source (cluster) of each observation is known, it is trivial to estimate (μ_r, σ_r^2) and (μ_b, σ_b^2)

$$\mu_r = \frac{\sum_{i=1}^{N} x_i \mathbb{I}\{x_i \sim r\}}{\sum_{i=1}^{N} \mathbb{I}\{x_i \sim r\}}$$

$$\mu_r = \frac{\sum_{i=1}^{N} x_i \mathbb{I}\{x_i \sim r\}}{\sum_{i=1}^{N} \mathbb{I}\{x_i \sim r\}} \qquad \sigma_r^2 = \frac{\sum_{i=1}^{N} (x_i - \mu_a)^2 \mathbb{I}\{x_i \sim r\}}{\sum_{i=1}^{N} \mathbb{I}\{x_i \sim r\}}$$

$$\mu_b = \frac{\sum_{i=1}^{N} x_i \mathbb{I}\{x_i \sim b\}}{\sum_{i=1}^{N} \mathbb{I}\{x_i \sim b\}}$$

$$\mu_b = \frac{\sum_{i=1}^{N} x_i \mathbb{I}\{x_i \sim b\}}{\sum_{i=1}^{N} \mathbb{I}\{x_i \sim b\}} \qquad \sigma_b^2 = \frac{\sum_{i=1}^{N} (x_i - \mu_b)^2 \mathbb{I}\{x_i \sim b\}}{\sum_{i=1}^{N} \mathbb{I}\{x_i \sim b\}}$$

where $\mathbb{I}\{x_i \sim r\} = 1$ if x_i was sampled from cluster r and 0 otherwise.

GMM Example: Find posterior

- Observations: $x_1, x_2, ..., x_N$
 - Each observation has 1 feature (1dimension)
- Data is sampled from one of two Gaussian distributions (K=2)
 - Cluster a: (μ_a, σ_a^2)
 - Cluster b: (μ_b, σ_b^2)
- If the distribution and its parameters are known, estimate where the point is likely to come from using Bayes rule

$$P(b|x_i) = \frac{p(x_i|b)P(b)}{p(x_i|b)P(b) + p(x_i|r)P(r)}$$

$$p(x_i|b) = \frac{1}{\sqrt{2\pi\sigma_b^2}} \exp\left(-\frac{(x_i - \mu_b)^2}{2\sigma_b^2}\right) \quad \text{Probability density of observing } x_i \text{ when sampled from distribution } b$$

Posterior probability of distribution b given sample x_i

Expectation Maximization

- What if neither the source nor the distribution parameters are known?
- Chicken and Egg problem
 - Need (μ_b, σ_b^2) and (μ_r, σ_r^2) to guess source of points
 - Need to know source to estimate (μ_b, σ_b^2) and (μ_r, σ_r^2)
 - Use Expectation Maximization (EM) algorithm
- EM Algorithm
 - Start with **two randomly placed Gaussians** (μ_b, σ_b^2) and (μ_r, σ_r^2)
 - For each x_i , calculate $P(b|x_i)$ and $P(r|x_i) = 1 P(b|x_i)$
 - Remember it does not assign the point but says here is the probability that it came from the red cluster or from the blue cluster (Soft assignment)
 - Adjust (μ_b, σ_b^2) and (μ_r, σ_r^2) to fit points most likely belonging to them

- Start with two randomly placed **Gaussians** (μ_h, σ_h^2) and (μ_r, σ_r^2)
- Expectation step (E): Assign posterior probabilities to each sample x_i
- Let b_i be the posterior probability of sample x_i belonging to cluster b

$$b_i = P(b|x_i) = \frac{p(x_i|b)P(b)}{p(x_i|b)P(b) + p(x_i|r)P(r)}$$

$$p(x_i|b) = \frac{1}{\sqrt{2\pi\sigma_b^2}} \exp\left(-\frac{(x_i - \mu_b)^2}{2\sigma_b^2}\right)$$
 Probability density of observing x_i when sampled from distribution b

• Similarly, let r_i be the posterior probability of sample x_i belonging to cluster r

$$r_i = 1 - b_i$$

Before assigning posterior probabilities b_i and r_i

After assigning posterior probabilities b_i and r_i

- Maximization step (M): Update the distribution parameters (re-estimation)
- Take weighted average of the samples
 - Weight is the posterior probability of that sample
- Similar to previous estimation, but with $\mathbb{I}\{x_i \sim b\}$ replaced by $P(b|x_i)$
 - $P(b|x_i)$ gives how likely it is that the cluster is b given the sample x_i
 - Therefore, x_i 's contribution in re-estimating the parameters for b is $b_i = P(b|x_i)$

$$\mu_b = \frac{b_1x_i + b_2x_2 + \dots + b_Nx_N}{b_1 + b_2 + \dots + b_N} = \frac{\sum_{i=1}^N b_i x_i}{\sum_{i=1}^N b_i} \quad \begin{array}{l} \text{Mean is simply} \\ \text{weighted average} \\ \text{of samples} \end{array} \quad \mu_r = \frac{\sum_{i=1}^N r_i x_i}{\sum_{i=1}^N r_i}$$

$$\sigma_b^2 = \frac{b_1(x_1 - \mu_b)^2 + b_2(x_2 - \mu_b)^2 + \dots + b_N(x_N - \mu_b)^2}{b_1 + b_2 + \dots + b_N}$$

$$= \frac{\sum_{i=1}^N b_i (x_i - \mu_b)^2}{\sum_{i=1}^N b_i}$$
Variance is weighted sum of square distances of samples from the distribution mean

$$P(b) = \frac{b_1 + b_2 + \dots + b_N}{N} = \frac{\sum_{i=1}^N b_i}{N} \quad \frac{\text{Class prior is normalized}}{\text{sum of sample posteriors}}$$

$$\mu_r = \frac{\sum_{i=1}^{N} r_i x_i}{\sum_{i=1}^{N} r_i}$$

$$\sigma_r^2 = \frac{\sum_{i=1}^{N} r(x_i - \mu_r)^2}{\sum_{i=1}^{N} r_i}$$

$$P(r) = \frac{\sum_{i=1}^{N} r_i}{N}$$

Distributions before updating their parameters

Distributions after updating their parameters using the posteriors

- Repeat the E and M steps iteratively till convergence
- Convergence: When M step gives the same parameters that were used in E

GMM: Multi-dimensional features (1)

- Data with d features i.e., $x_1, x_2, ..., x_N \in \mathbb{R}^d$ from K sources
- Each source $c \in \{1, ..., K\}$ has a Gaussian distribution, i.e., $\mathcal{N}(\mu_c, \Sigma_c)$ where $\mu_c \in \mathbb{R}^d$ and $\Sigma_c \in \mathbb{R}^{d \times d}$
- Iteratively estimate parameters
 - Prior: What fraction of instances came from source cluster c

$$P(c) = \frac{1}{N} \sum_{i=1}^{N} P(c|\mathbf{x_i})$$

Mean: Expected value of feature *j* from source cluster *c*:

$$\mu_{c,j} = \sum_{i=1}^{N} \left(\frac{P(c|\mathbf{x}_i)}{N P(c)} \right) x_{i,j}$$

 Similar to 1D case, but with extra index j to access specific feature from input vector

Source: https://www.python-course.eu/expectation_maximization_and_gaussian_mixture_models.php

GMM: Multi-dimensional features (2)

- Data with d features i.e., $x_1, x_2, ..., x_N \in \mathbb{R}^d$ from K sources
- Each source $c \in \{1, ..., K\}$ has a Gaussian distribution, i.e., $\mathcal{N}(\mu_c, \Sigma_c)$ where $\mu_c \in \mathbb{R}^d$ and $\Sigma_c \in \mathbb{R}^{d \times d}$
- Iteratively estimate parameters
 - Covariance: How related are features j and k in source c:

$$(\Sigma_c)_{j,k} = \sum_{i=1}^{N} \left(\frac{P(c|x_i)}{NP(c)} \right) (x_{i,j} - \mu_{c,j}) (x_{i,k} - \mu_{c,k})$$

Assignment: Based on our guess of the source for each instance

$$P(c|\mathbf{x_i}) = \frac{p(\mathbf{x_i}|c)P(c)}{\sum_{c'=1}^{K} p(\mathbf{x_i}|c')P(c')}$$

Source: https://www.python-course.eu/expectation_maximization_and_gaussian_mixture_models.php

Picking K - Gaussian Components

Maximize the log likelihood of the data given the model

$$L = \log P(x_i, ..., x_n) = \sum_{i=1}^{N} \log \sum_{k=1}^{K} p(x_i|k)P(k)$$

Pick K that makes L as large as possible

$$K^* = \underset{k \in \{1,\dots,K\}}{\operatorname{argmax}} L$$

- -K=N: each data point has its own source => overfitting
 - Unlikely to yield meaningful results for new (previously unseen) data points
 - · Need to constrain (or regularize) to avoid overfitting

Overfitting

Source: https://medium.com/@srjoglekar246/overfitting-and-human-behavior-5186df1e7d19

Picking K - Gaussian Components

Possible to deal with overfitting using the following two ways:

- Split points into training set T and validation set V
 - For each K, fit parameters on T and measure likelihood of V

- Occam's Razor: Pick "simplest" of all models that fit
 - Bayes Inference Criterion (BIC):
 - $(\log(N)K 2\log L)$, where K is clusters, L: log likelihood [Fraley et. al , 2002]
 - When picking from several models, the one with the lowest BIC is preferred
 - BIC introduces a penalty term for adding parameters (i.e., #clusters)
- Cross Validation

Comparing *K*-Means and

GMM

Similarity between GMM and K-means

- GMM
 - Given K
- Randomly place K Gaussians distributions
- Calculate posterior probability for each data point for each Gaussian (soft clustering)
- 3. Recompute mean and variance parameters of Gaussian distributions
- 4. Repeat 2 & 3 until convergence

- K-means algorithm
 - Given K
 - 1. Randomly choose *K* data points (seeds) to be the initial centroids i.e. cluster centers
 - Assign each data point to the closest centroid (hard clustering)
 - 3. Recompute the centroids using the current cluster memberships
 - 4. Repeat 2 & 3 until convergence

Calculating centroid (mean) in k-means

Say you have two clusters (K=2) and six data points ($x_1, x_2, ... x_6$). Assume that (x_1, x_4, x_5) belong to cluster 'a' and (x_2, x_3, x_6) belong to cluster 'b'

For k-means, centroid of cluster a:

$$centroid_a = \frac{x_2 + x_4 + x_5}{3} = \frac{x_1(0) + x_2(1) + x_3(0) + x_4(1) + x_5(1) + x_6(0)}{1(0) + 1(1) + 1(0) + 1(1) + 1(1)}$$

• In the rightmost expression, x_i is multiplied with 1 if x_i belongs to cluster a and 0 if it does not.

Calculating mean in GMM

• If we were doing GMM, then the mean of cluster a (μ_a) is

$$\mu_a = \frac{x_1 P(a|x_1) + x_2 P(a|x_2) + x_3 P(a|x_3) + \dots + x_6 P(a|x_6)}{1(P(a|x_1)) + 1(P(a|x_2)) + 1(P(a|x_3)) + \dots + 1(P(a|x_6))}$$

Comparing formulae for means

Notice the similarity between

$$\frac{x_1(0) + x_2(1) + x_3(0) + x_4(1) + x_5(1) + x_6(0)}{1(0) + 1(1) + 1(0) + 1(1) + 1(1) + 1(0)}$$

And

$$\frac{x_1P(a|x_1) + x_2P(a|x_2) + x_3P(a|x_3) + \dots + x_6P(a|x_6)}{1(P(a|x_1)) + 1(P(a|x_2)) + 1(P(a|x_3)) + \dots + 1(P(a|x_6))}$$

- Calculation of the mean involves:
 - Multiplying by 0 or 1 in k-means (hard clustering)
 - Multiplying by posterior probability (between 0 and 1) in GMM (soft clustering)

Summary

- K-means is a hard-clustering whereas GMMs is a soft-clustering method
- GMMs and K-means: Similarity
 - Sensitive to starting point, converges to local maximum
 - Convergence: When change in $P(x_1, x_2, ..., x_n)$ is sufficiently small
 - Cannot discover k easily
- Can make GMMs to behave as K-means
 - Fix variance to be 1
 - Uniform priors

Ways to do clustering

- Agglomerative vs Divisive
 - Agglomerative: each instance is its own cluster and the algorithm merges clusters
 - Divisive: begins with all instances in one cluster and the algorithm divides it up
- Hard vs Soft/Fuzzy
 - Hard clustering assigns each instance to one cluster
 - Soft/Fuzzy clustering assigns degree of membership

 Build a tree-based hierarchical taxonomy (dendrogram) from a set of documents.

 One approach: recursive application of a partitional clustering algorithm.

Step

4

Step 3

Agglomerative approach

Step

Step

0

Step

Initialization:

Each object is a cluster Iteration:

Merge two clusters which are most similar to each other;
Until all objects are merged into a single cluster

bottom-up

Divisive Approaches

A dendrogram represents nested clusters

- A binary tree that shows how clusters are merged/split hierarchically
- Each node on the tree is a cluster; each leaf node is a singleton cluster

Example: How points are clustered

 A clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster

 A clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster

How to Merge Clusters?

How to measure the distance between clusters?

Single-link
Complete-link
Average-link
Centroid distance

Hint: <u>Distance between clusters</u> is usually defined on the basis of <u>distance between objects</u>.

How to Define Inter-Cluster Distance

Single-link

Complete-link

Average-link

Centroid distance

$$d_{min}(C_i, C_j) = \min_{p \in C_i, q \in C_j} d(p, q)$$

- The distance between two clusters is represented by the distance of the <u>closest pair of data objects</u> belonging to different clusters.
- Can result in "straggly" (long and thin) clusters due to chaining effect

How to Define Inter-Cluster Distance

Single-link

Complete-link

Average-link

Centroid distance

$$d_{max}(C_i, C_j) = \max_{p \in C_i, q \in C_j} d(p, q)$$

- The distance between two clusters is represented by the distance of the <u>farthest pair of data objects</u> belonging to different clusters.
- Makes tighter spherical clusters that are typically preferred

How to Define Inter-Cluster Distance

Single-link

Complete-link

Average-link

Centroid distance

$$d_{avg}(C_i, C_j) = \underset{p \in C_i, q \in C_j}{\operatorname{avg}} d(p, q)$$

The distance between two clusters is represented by the <u>average</u> distance of <u>all pairs of data objects</u> belonging to different clusters.

How to Define Inter-Cluster Distance

m_i,m_j are the means of C_i, C_j,

Single-link

Complete-link

Average-link

Centroid distance

$$d_{mean}(C_i, C_j) = d(m_i, m_j)$$

The distance between two clusters is represented by the distance between <u>the</u> <u>means of the clusters</u>.

Hierarchical Clustering Example

Characterization Novel HIV Drug Resistance Mutations using Clustering

- Objective: By clustering new HIV mutations with HIV mutations that have known drug resistance mechanisms, we can infer the possible drug resistance mechanisms of the new mutations
- Clustering Technique:
 Agglomerative Hierarchical
 Clustering using Average-link
- Distance Metric:
 Matthews correlation coefficient
 - This coefficient measures how two individual mutations vary together in the population.

Reference: Sing, Tobias, et al. "Characterization of novel HIV drug resistance mutations using clustering, multidimensional scaling and SVM-based feature ranking." *European Conference on Principles of Data Mining and Knowledge Discovery.* Springer, Berlin, Heidelberg, 2005

Hierarchical Clustering Example

Dendrogram after clustering

- Clustering is performed on HIV mutations with known and unknown drug resistance mechanisms
- Mutation complexes in shaded boxes have known drug resistance mechanisms
- Mutations with unknown drug resistance mechanisms may have similar drug resistance mechanisms with other mutations they are clustered with.
- E.g, Mutations E44D and V118I may have similar resistance mechanisms to the blue mutation complex, for which a drug resistance mechanism is already known.

An Example of the Agglomerative Hierarchical Clustering Algorithm

 For the following data set, we will get different clustering results with the singlelink and complete-link algorithms.

Results

Single Link algorithm

Complete Link algorithm

Hierarchical Clustering: Comparison

Single-link

Average-link

Complete-link

Centroid distance

Compare Dendrograms

Effect of Bias towards Spherical Clusters

Single-link (2 clusters)

Complete-link (2 clusters)

Strength of Single-link

Can find irregular cluster shapes

Limitations of Single-Link

Original Points

Two Clusters

Sensitive to noise and outliers

Strength of Complete-link

• Less susceptible to noise and outliers

Which Method is Better?

- Each method has its own advantages and disadvantages; application-dependent, single-link and complete-link are the most common methods
- Single-link
 - Can find irregular-shaped clusters
 - Sensitive to outliers, suffers the so-called chaining effect
- Complete-link, Average-link, and Centroid distance
 - Robust to outliers
 - Tend to break large clusters
 - Prefer spherical clusters

Another similarity measure

- In the examples described above, we used Euclidean distance to find the distance between points/clusters
- Depending on the type of the data, other similarity measures (measures of distance) might be preferred such as correlation-based distance
- Correlation-based distance considers two observations to be similar if their features are highly correlated, even though the observed values may be far apart in terms of Euclidean distance
- If Euclidean distance is chosen, then observations with high values of features will be clustered together. The same holds true for observations with low values of features.