Dãy số sin n $(n \in \mathbb{N})$ trù mật trên [-1, 1]

Bổ đề: Với số thực α bất kì và $\epsilon > 0$ tuỳ ý, luôn tồn tại 2 số nguyên m, n không đồng thời bằng 0 sao cho

$$|m\alpha - n| < \epsilon$$
.

Thật vậy chọn số tự nhiên k sao cho $\frac{1}{k} < \epsilon$. Chia đoạn [0,1] thành k phần bằng nhau và xét l số (l>k) trong khoảng [0,1):

$$\alpha - [\alpha], 2\alpha - [2\alpha], 3\alpha - [3\alpha], ..., l\alpha - [l\alpha].$$

Hiển nhiên tồn tại 2 số nguyên $p, q(p \neq q)$ sao cho

$$|(p\alpha - [p\alpha]) - (q\alpha - [q\alpha])| = |(p-q)\alpha - ([p\alpha] - [q\alpha])| \le \frac{1}{k} < \epsilon.$$

Kí hiệu m=p-q và $n=[p\alpha]-[q\alpha]$ ta được điều phải chứng minh.

Hệ quả 1: $T \hat{q} p \ h \phi p \ A = \{ m\alpha - n \mid m, n \in \mathbb{Z} \}$, với α vô tỉ, trù mật trên \mathbb{R} .

Thật vậy xét một lận cận $U_\delta(u)=(u-\delta,u+\delta)$ (bán kính $\delta>0$ tùy ý) của số thực $u\in\mathbb{R}$ bất kì, ta sẽ chỉ ra \exists các số của tập A trong lân cận đó. Theo bổ đề $\exists m,n:0< t=|m\alpha-n|<\delta$. Khi đó lận cận U_δ (là một khoảng mở có độ dài 2δ) sẽ chứa một trong các số $kt=k|m\alpha-n|\in A,\ k=...,-2,-1,0,1,2,...$ suy ra đ.p.c.m.

 $D\tilde{e}$ dàng nhận thấy $A = \{m\alpha - n \mid m, n \in \mathbb{Z}\} = \{m\alpha + n \mid m, n \in \mathbb{Z}\}.$

Hệ quả 2: $Tập hợp các số <math>B = \{m\alpha + n \mid m \in \mathbb{Z}, n \in \mathbb{N}\} - với \alpha là số vô <math>ti - trù mật trên \mathbb{R}$.

Từ hệ quả 1 suy ra \exists dãy số $x_k = m_k \alpha + n_k \to 0, x_k \neq 0, m_k, n_k \in \mathbb{Z}$. Ta sẽ chỉ ra dãy số $|n_k| \to +\infty$ (và do vậy $|m_k| \to +\infty$). Thật vậy giả sử ngược lại, khi đó \exists dãy con n_{ki} bị chặn và do đó \exists dãy con dùng $n_{ki} = b \in \mathbb{Z} \ \forall i > i_0$, mâu thuẫn với giả thiết $x_{ki} = m_{ki} \alpha + b \to 0$.

Bây giờ ta lại có thể khẳng định tiế p, \exists dãy số $x_k = m_k \alpha + n_k \rightarrow 0, x_k \neq 0$, với các tính chất $m_k, n_k \in \mathbb{Z}$ và dãy số $n_k \rightarrow +\infty$.

Bây giờ ta chứng minh hệ quả 2. Thật vậy với số thực v cho trước và số $\varepsilon>0$ nhỏ tùy ý, tồn tại $u=m_0\alpha+n_0\in A$ để $|u-v|<\frac{\varepsilon}{2}$.

Theo nhận xét trên, tồn tại dãy số $v_k=m_k\alpha+n_k\to 0$ với $\lim n_k=+\infty$, tức là $\exists p\in\mathbb{Z},\ q\in\mathbb{N},\ q>|n_0|$ sao cho với $t=p\alpha+q,|t|<\frac{\varepsilon}{2}.$ Khi đó $u+t\in B$ và $|v-(u+t)|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$, đ.p.c.m.

Từ hệ quả 2 ta sẽ chỉ ra $\operatorname{\mathbf{day}} \sin \mathbf{n}, \mathbf{n} \in \mathbb{N}$ trù mật trong đoạn [-1, 1]:

Xét một lân cận bán kính $\delta > 0$ nhỏ tùy ý của số thực $\sin x \in [-1, 1]$, do hệ quả trên $\exists m \in \mathbb{Z}, n \in \mathbb{N}$ để $|x - (2m\pi + n)| < \delta$, suy ra

$$|\sin n - \sin x| = |\sin(2m\pi + n) - \sin x| \le |x - (2m\pi + n)| < \delta$$
, d.p.c.m.