目录

第	一部分	累积函数 Cumulative Distribution Function (CDF)	2
1	累积函	数 $F(x) = P\{X \le x\} = \sum_{x_k \le x} p_k$ \leftarrow 是对"概率函数"值的累加结果	2
2	★累力	□函数的计算公式	5
3	就得到	率函数 $f(x)$ "求积分,就得到"累加函数 $F(x)$ "。 反之,对"累加函数 $F(x)$ "求导,"概率函数 $f(x)$ "。即:① \int 概率函数 $f(x)$ = 累加函数 $F(x)$,② (累加函数 $F(x)$) 数 $f(x)$	$^{\prime}=$ 5
4	性质		7
	4.1 性	上质1: 有界性. $F\left(x\right)=P\left\{$ 随机变量 $X\leq$ 随机变量的取值 $x\right\},x\in\left(-\infty,+\infty\right)$. 即() <
	F	$\Gamma(x) \leq 1 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	7
	4.2 性	上质2: 单调不减性. 即对于任意的 $x_1 < x_2$, 有: $F(x_1) \le F(x_2) \ldots$	8
	4.3 性	±质3: 规范性. F(-∞)=0 , F(+∞)=1	8
	4.4 档	上质 A · 左连续性 $\lim_{x \to \infty} F(x) - F(x_0)$	0

文件名

第一部分 累积函数 Cumulative Distribution Function (CDF)

1 累积函数
$$\boxed{F\left(x\right) = P\left\{X \leq x\right\} = \sum_{x_k \leq x} p_k } \leftarrow \text{ 是对"概率函 }$$
 数"值的累加结果

对于随机变量, 我们通常关心的, 并不是它取某个值的概率(即我们并不关心它的分布律), 而是更关心它落在某个区间内的概率.

比如, 对某考试, 我们更关心的是"不及格的总人数", 和比如 "分数≥80分的总人数".

累积函数 Cumulative Distribution Function (CDF) \leftarrow 是对"概率函数"值的累加结果.即对"概率密度函数"的积分.

概率值 P(X=x)

这一块的 每个x的值 的总和, 即y值的累加, 就是``累加函数" F(x)

在这些个区间段所占的概率值, 就是用"累加函数"(又叫"分布函数")来表示的. 即: $(随机变量X \leq 自变量x) = F(x) \leftarrow 它表示随机变量X 落在 (-\infty, x] 这段区间上的概率.$

累加函数
$$F(x) = P\{X \le x\} = \sum_{x_k \le x} p_k$$

累加函数 F(x) 就是 " $X取 \le x$ 的所有值 x_k " 的概率之和. $P(X \le x)$ 即 "X的取值不超过x" 的概率. 这里P后面写()或{}都行, 意思是一样的.

$$F(X)=P\{X\leq X\}=\sum_{X_K\leq X}P_K$$
 \leftarrow 是对"概率函数 概率函数曲线 $f(x)$ \mathbb{X} \mathbb{X}

下图, 左边两张是"概率函数", 右边两张就是"累加函数 CDF".

左边这块"蓝色面积"的值 = 右边这条"蓝线段"的长度

2 ★累加函数的计算公式

累加函数 $F(x) = PX \le x$ 的公式有	图中: 蓝-绿=橙
$(1) P\{X \le a\} = F(a)$	
(2) $P\{X < a\} = F(a - 0) \leftarrow$ 其中的 F(a-	
0): 就是从左边逼近a, 不包括a点. 所以是"左	
极限". 就是(-∞,a)这段区间的概率之和, 不包	
括a点上的概率.	
$(3) P\{X > a\} = 1 - P\{X \le a\} = 1 - F(a)$	
	$F(a-0)$ $-\infty$ a b $P\{X >= a\}$
$(4) P\{X \ge a\} = 1 - F(a - 0)$	F(a)
(5) $P{X = a} = F(a) - F(a - 0)$	$F(a-0)$ $-\infty \qquad \qquad 0$ $a \qquad b$ $P\{X=a\}$
	蓝-绿=橙
(6) $P\{a < X \le b\} = P(X \le b) - P(X \le a)$	$P\{x <= b\}$ $P\{x <= a\}$ $-\infty$ a b $P\{a < X <= b\}$ $F(b)$
(7) $P\{a \le X \le b\} = F(b) - F(a-0)$	-∞ a b P{a <= X <= b}

3 对"概率函数f(x)"求积分,就得到"累加函数F(x)".反之,对"累加函数F(x)"求导,就得到"概率函数f(x)"。即:① \int 概率函数f(x) = 累加函数F(x),② (累加函数F(x))' = 概率函数f(x)

对"概率函数f(x)"求积分, 就得到"累加函数 F(x)"对"累加函数 F(x)" 求导, 就得到"概率函数f(x)".

例 $\underbrace{f(x)}_{\text{概率函数(相当于导函数)}} = \frac{1}{\pi (1 + x^2)}$ 概率函数(相当于导函数) $\underbrace{F\left(x\right)}_{\text{累加函数}} = \int_{-\infty}^{x} \underbrace{\frac{f\left(t\right)}{\text{概率函数}}} dt = \int_{-\infty}^{x} \underbrace{\frac{1}{\pi\left(1+t^{2}\right)}} dt = \frac{1}{\pi}\left(\arctan\left|\frac{x}{-\infty}\right.\right) = \frac{1}{\pi}\arctan x + \frac{1}{2}$ 分布函数 $F(x) = \frac{1}{\pi} \tan^{-1}(x) + \frac{1}{2}$ $\frac{1}{2}$ 3 4 5 6 7 8 概率密度函数f(x)=(分布函数 $)'=\frac{1}{\pi(1+x^2)}$ 对'分布函数'求导,就得到'概率密度函数'

有累加函数
$$F(x) = \begin{cases} 0 & (x < 0) \\ Ax^2 & (0 \le x < 1) \\ 1 & (x \ge 1) \end{cases}$$

有累加函数
$$F(x) = \begin{cases} 0 & (x < 0) \\ Ax^2 & (0 \le x < 1) \\ 1 & (x \ge 1) \end{cases}$$

$$\rightarrow 求常数A: \lim_{\substack{x \to 1^- \\ \text{从}x = 1 \text{的 E}(\emptyset), \mathbb{Z} \text{ in } L(x) = 1}} Ax^2 = A(1)^2 = A = \underbrace{F(1) = 1}_{\text{因为} \exists x \ge 1 \text{ in } F(x) = 1}$$

→ 求:

$$P\left\{0.3 < X < 0.7\right\} = \underbrace{F\left(0.7\right)}_{=\int_{-\infty}^{0.7} f(t)dt} - \underbrace{F\left(0.3\right)}_{=\int_{-\infty}^{0.3} f(t)dt}$$

因为在 $0 \le x < 1$ 的区间上, $F(x) = Ax^2$,而其中的A我们上面已经算出 = 1,

所以
$$F(x) = Ax^2 = (1) x^2 = x^2$$

所以:
$$F(0.7) = (0.7)^2 = 0.49$$

$$F(0.3) = (0.3)^2 = 0.09$$

因此:
$$P\left\{0.3 < X < 0.7\right\} = F\left(0.7\right) - F\left(0.3\right) = 0.49 - 0.09 = 0.4$$

 事实上,本例的
$$P\{0.3 < X < 0.7\} = F'(0.7) - F'(0.3) = 0.49 - 0.$$

4 性质

4.1 性质1: 有界性. $F(x) = P\{$ 随机变量 $X \le$ 随机变量的取值 $x\}, x \in (-\infty, +\infty)$. 即 0 $F(x) \le 1$

累加函数(CDF) F(x), 就是一个普通的实函数. 其定义域是 $x \in (-\infty, +\infty)$. 值域是 $y \in [0, 1]$.

$$P(a \le X \le b) = P(a < X < b) = \int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

4 性质 8

$$P(x_1 < X \le x_2)$$
,对于随机变量 X 在 $(x_1, x_2]$ 这段区间上的概率,它的值
$$= F(x_2) - F(x_1)$$

$$= P\{X \le x_2\} - P\{X \le x_1\}$$

对于"连续型随机变量",有没有两端的端点,无所谓,不影响概率值(因为它在任何一个"确定点"的概率都是0嘛).即:

$$P\{a \le X \le b\}$$

= $P\{a < X \le b\}$ ← 即, 两端是否有"等于号", 无所谓.
= $P\{a \le X < b\}$
= $P\{a < X < b\}$

同样:

$$P\{X < a\} = P\{X \le a\} \leftarrow$$
 有没有"等于号"无所谓 $P\{X > a\} = P\{X \ge a\}$

4.2 性质2: 单调不减性. 即对于任意的 $x_1 < x_2$, 有: $F(x_1) \leq F(x_2)$

F(x)是关于x的"不减函数", 类似于"单调递增"的概念. "不减"的意思就是, 该函数的y值不会下降, 只会"增长"或"平移向前".

比如, "分数小于等于70分的人" 其概率一定是小于等于 "分数小于80分的人". 即 $F(70) \leq F(80)$.

4.3 性质3: 规范性. $F(-\infty)=0$, $F(+\infty)=1$

$$\underbrace{F(-\infty)}_{=P(X \le -\infty)} = \lim_{x \to -\infty} F(x) = P(X < -\infty) = P(\Phi) = 0$$
 ← 称之为 "不可能事件".

如果随机变量X的取值,比-∞还小,那其概率,就只能是0了.

$$\boxed{\underbrace{F(+\infty)}_{=P(X\leq +\infty)} = \lim_{x\to +\infty} F(x) = P(X<+\infty) = P(\Omega) = 1} \leftarrow 称之为 "必然事件".$$

如果随机变量X的取值, 在 $+\infty$ 以下, 那其概率, 肯定就是100%了, 就是1.

1 性质 9

4.4 性质4:右连续性. $\lim_{x\to x_0^+} F(x) = F(x_0)$

这个等式的意思就是说: 累加函数在 x_0 点的右极限, 就等于累加函数在该点处的函数值.

右连续	所谓"右连续",就是"函数从x在某点的右侧,逼近该点"的极限值,就等于"该点处	
	的y值", 即: $\lim_{x\to a^+} F(x) = F(a)$.	
左连续	三连续 同理, "左连续"就是: $\lim_{x\to a^-} F(x) = F(a)$.	
连续	同时满足"左连续"和"右连续"的函数, 就称为是"连续"的. 即 $\lim_{x\to a} F(x) = F(a)$.	

满足上面4条性质的, 就一定是"累加函数". 反之, "累加函数"也一定有这4条性质.