ESERCIZI ETC

Riferimento: Lezione 2 - Definizioni e notazioni preliminari

Esercizio 1

Sia U l'insieme di tutte le stringhe su $\{0,1\}$ e A = $\{x \in U \mid x \text{ può avere il carattere 0 solo nelle posizioni dispari}\}.$

La sequenza 11 appartiene ad A?

Esercizio 2

Sia U l'insieme di tutte le stringhe su $\{0,1\}$ e B = $\{x \in U \mid \text{ogni terna di bit consecutivi in } x \text{ contiene al più uno } 0\}$.

Le sequenze 1; 10 appartengono a B?

Esercizio 3

Dimostrare il seguente lemma usando il principio di induzione su |S|.

Lemma:

Se S e T sono insiemi finiti allora $|S \cup T| = |S| + |T| - |S \cap T|$. In particolare, se S e T sono disgiunti (cioè $S \cap T = \emptyset$), allora $|S \cup T| = |S| + |T|$.

Esercizio 4

Lemma Se S è un insieme finito allora $|\mathcal{P}(S)| = 2^{|S|}$.

Cioè, esistono $2^{|S|}$ differenti sottoinsiemi di S. Perchè? Suggerimento: utilizzare il principio di induzione su |S|.

Esercizio 5

Esempio. Indicare quali delle seguenti espressioni sono soddisfacibili, giustificando la risposta.

$$(x_1 \lor x_2) \land (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_2) \land (\overline{x_1} \lor \overline{x_2}),$$
$$(x_1 \lor x_2) \land (x_1 \lor \overline{x_2}),$$
$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$$

Esercizio 6

Es. Alfabeto $\Sigma=\{a,b\}$ Linguaggio $L=\{\epsilon,ab,aabb,aaabbb,...\}=\{a^nb^n\mid n\in\mathbb{N},n\geq 0\}.$ Chi è il complemento \overline{L} di L?

Esercizio 7

Es. Se
$$L = \{ba, a\}$$
, allora

$$L^* = \{\epsilon, a, aa, ba, aaa, aba, baa, aaaa, aaba, ...\}$$

Può bb essere una sottostringa di $w \in L^*$?

Esercizio 8

Esiste un linguaggio L tale che $\epsilon \in L^+$?

Esercizio 9

• Dare una definizione più semplice del linguaggio

$$L = \{w \in \{a, b\}^* \mid w \text{ non contiene occorrenze della stringa } ab$$

e non contiene occorrenze della stringa $ba\}$

Esercizio 10

Definire il seguente linguaggio in funzione del linguaggio ${\it L}$ del precedente esercizio.

 $\{w \in \{a,b\}^* \mid w \text{ non è né una potenza di } a \text{ né una potenza di } b\}$

Esercizio 11

Trovare la parola più corta sull'alfabeto $\{0\}$ che non appartiene a $\{\epsilon,0,0^2,0^5\}^3$.

Esercizio 12

Trovare una stringa w che non appartenga al linguaggio

$$\{w \in \{0,1\}^* \mid w \text{ contiene un numero pari di 0}$$

oppure esattamente due occorrenze di 1 $\}$

Esercizio 13

Fornire una dimostrazione costruttiva del seguente teorema.

Teorema

Per ogni numero pari n, n > 2, esiste un grafo non orientato con n nodi, in cui ogni nodo ha grado 3.

Esercizio 14

Fornire una dimostrazione per induzione della seguente proprietà S(n).

$$S(n): 1+2+\ldots+n = \frac{n(n+1)}{2}$$

Esercizio 15

Risolvere il Problema 0.11 in [Sip].

Trovare l'errore nella seguente dimostrazione che tutti i cavalli sono dello stesso colore.

AFFERMAZIONE: In un qualsiasi insieme di h cavalli, h ≥ 1, tutti i cavalli sono dello stesso colore.

DIMOSTRAZIONE: Per induzione su h.

Base (h=1): In ogni insieme contenente un solo cavallo, tutti i cavalli sono banalmente dello stesso colore.

Passo induttivo: Supponiamo che l'affermazione sia vera per h cavalli (ipotesi induttiva) e dimostriamola vera per h+1 cavalli.

Prendiamo un insieme H di h+1 cavalli. Mostriamo che tutti i cavalli in H sono dello stesso colore. Rimuoviamo un solo cavallo da H ottenendo l'insieme H_1 contenente h cavalli. Per ipotesi induttiva, tutti i cavalli di H_1 sono dello stesso colore. Ora sostituiamo il cavallo rimosso e rimuoviamone un altro in modo da ottenere l'insieme H_2 . Per lo stesso motivo, tutti i cavalli in H_2 sono dello stesso colore. Pertanto, tutti i cavalli in H devono essere dello stesso colore, e la dimostrazione è completa.

Esercizio 16

Risolvere il Problema 0.13 in [Sip].

Trovare l'errore nella seguente dimostrazione che 2 = 1.

Si consideri l'equazione a = b. Moltiplicare entrambi i membri per a per ottenere $a^2 = ab$.

Sottrarre b^2 da entrambi i membri per ottenere $a^2 - b^2 = ab - b^2$.

Ora fattorizzare ogni membro (a + b) (a - b) = b (a - b) e dividere entrambi i membri per (a - b) per ottenere a + b = b. Infine, porre a = b = 1, che mostra che 2 = 1.