

USN

School of Computer Science and Engineering

B.Tech. (Hons.)

Continuous Internal Evaluation (CIE-2)
Evaluation Scheme
Academic Year 2024-2025

Course: Introduction to Machine	Course Code: CS2213	Semester: IV	
Time: 9:30 AM to 11:00 AM	Duration: 90 minutes	Date: 18-03-2025	Max Marks: 25

Notes/Instructions:

- a) Answer all questions
- b) Write answers to all the questions in the answer booklet

SI. No.	PART A – (MCQs/Short answers) Max Marks (5)	Marks	L1-L6	со
1.	Which of the following is a hyperparameter the affects the performance of decision tree classifier? a). learning rate b). maximum depth of decision tree c). batch size d). number of estimators Answer b)	1	L2	CO2
2.	Which of the following is true about principal components? i) They are linear combinations of the original features ii) They are not orthogonal to each other iii) The first principal component captures the most variance a) i & ii only b) ii only c) i & iii only d) i, ii, & iii Answer c)	1	L2	CO3
3.	Calculate the number of parameters present in a perceptron (step function) which takes input feature of dimension 2. Answer 3	1	L2	CO4
4.	An MLP has 3 input features, 1 hidden layer with 4 neurons, and 1 output neuron. Total number of trainable parameters Answer 21	1	L2	CO4
5.	Which of the following is true about MLPs and FNNs? a) All MLPs are FNNs, but not all FNNs are MLPs b) All FNNs are MLPs, but not all MLPs are FNNs c) MLPs and FNNs are completely different architectures d) MLPs are used only for unsupervised learning Answer a)	1	L2	CO4

SI. No.		PART B – N	Лах Marks (20)			Marks	L1-L6	со
2	b. Recall for c. Accuracy Answer: False positives f Recall for Banar TPs for FNs fo Recall Accuracy for Ap	Apple 254 28 12 itives for Oranger Banana for Apple or orange = 28- ha banana = 280 r banana = 96+ = TP/(TP+FN) =	74 317 46 317 46 317 2 Ma - 2 Ma - 2 Ma - 2 Ma - 33 = 61 33 = 129 0.6845 254 74+96 = 170 28+12 = 40 317+33+46-	nge 7 ark arks arks	96 33 280 L Mark 2 Marks		5	L3	CO2
3	Consider the dataset variable. Find the be using Gini Index cri attribute (feature) ex Weather Rainy Sunny Cloudy Answer: Gini index = Gini index for Wasplits)	5	L3	CO2					

	Gini(Temp	erature =Mild) =	= 0					
	Gini(Temp	erature =Hot) =	0					
	Gini(Temp	erature) = 0						
	Gini index	for Humidity (St	tudents are red	uired to provid	de the two			
	splits)		1 Mark	James de protin				
	' '	dity=Normal) = (
	•	•						
	,	dity =High) = 0.4	1444					
	Gini(Humic	dity) = 0.333						
	Gini index							
		1 M	ark					
	Gini(Wind=	Strong) = 0.444	14					
	Gini(Wind	=Weak) =0						
	Gini(Wind)	= 0.333						
	,							
	Choose Tel	mperature as a	hest solitting a	ttrihute a level	l-O since it has			
		i index value.	-	1 Mark	o since it mas			
	lowest dill	i iliuex value.		I Wark				
	Cluster the dat	a points (with (x, y) representi	ng locations) ir	nto two clusters			
		eans clustering						
		king the seed m						
		ts, i.e., (2, 10)						
	_		ne clusters and					
	_							
	Iteration 1:	luster members. Euclidian distance can be used for finding distance. teration 1: 2 Marks						
			Distance	Cluster	1			
	Samples	Distance from C1	from C2	Assignment				
		(2,10)	(5,8)	Assignment				
	(2,10)	(2,10)	$\sqrt{13}$	C1	-			
		0						
	(2,5)	5	√18	C2	1			
4	(8,4)	√64	$\sqrt{25}$	C2		5		
4	(5,8)	$\sqrt{13}$	0	C2		5	L3	CO3
	(7,5)	√50	√13	C2				
	Updated cluste	er centres:						
	C1 = (2,10)							
	C2 = (5.5, 5.5)							
	Iteration 2:	2 Marks						
	Samples	Distance	Distance	Cluster]			
		from C1	from C2	Assignment				
		(2,10)	(5.5,5.5)					
	(2,10)		$\sqrt{32.5}$	C1				
	(2.5)	0	110.7	G2	-			
	(2,5)	5	$\sqrt{12.5}$	C2				
	(8,4)	√64	√8.5	C2	-			
	(5,8)	√13 √50	√6.5	C2	-			
	(7,5)	√50	$\sqrt{2.5}$	C2	1			
								· · · · · · · · · · · · · · · · · · ·

	We can stop K-m	eans clustering algorith	m since there is no change in	n the				
	cluster reassignme							
	Final Cluster centi	roids $C1 = (2,10)$ and C	2 =(5.5,5.5) 1 Ma	rk				
	Consider two class							
			each element (X, t) consists					
	the feature vector	,						
	$X_2, X_3, X_4 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$							
	We want to learn to							
	to get be f(X) such	$f(X) = w_0 + w_1 x$	$x_1 + w_2 x_2$. If $f(X) \ge 0$, we					
			assify X to the -1 class.					
	Consider the solut	ion in parametric form	be $W = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}$ and let the initi	ial				
	solution be W_{init} :	$=\begin{bmatrix} -2\\0\\0 \end{bmatrix}$. Let the objective	ve function that we are trying	g to				
			here t_i is the given class labe					
	X_i and $o_i = f(X_i)$.	2 1-1						
	a. Find $J(W_{init})$	<u>.</u>)						
	b. Find $\nabla J(W_{in})$	_{nit})						
	Note: o _i represents	s predicted value not pro	edicted label.			CO4		
5	Answer Scheme:			5				
	Find predicted val	ue for each sample			L3			
	Sample	Actual Label (t _i)	Predicted value (o _i)					
	[0]	+1	-2					
	[0]	+1	-2					
	[<u>l1</u>]	+1	-2					
		-1	-2					
	a. J(V	V _{init}) = 14	2 Marks					
		$\int -\sum_{i=1}^{4} \{t_i - (w_i)\}$	$(v_0 + w_1x_1 + w_2x_2)$					
	_	$-\sum_{i=1}^{4} \{t_i - (w_0)\}$	$\begin{cases} w_0 + w_1 x_1 + w_2 x_2 \end{cases} \\ y_0 + w_1 x_1 + w_2 x_2 \end{cases} x_1 \\ y_0 + w_1 x_1 + w_2 x_2 \end{cases} $					
	b. ∇ J($(W) = L^{-} \angle_{i=1} \{\iota_{i} - (w_{0})\}$	$0 \pm w_1 x_1 \pm w_2 x_2 / 3 x_2 $					
		Γ—101						
	$\nabla J(W_init) = \begin{bmatrix} -10 \\ -4 \\ -4 \end{bmatrix} \qquad 3 \text{ Marks}$							
		L -4 J						

Course Outcomes

- 1. Understand various types of machine learning algorithms and the role of data preprocessing in machine learning
- 2. Evaluate regression and classification model's performance on real-time datasets
- 3. Apply unsupervised learning algorithms for pattern discovery and structural analysis in datasets
- 4. Build Multilayer Perceptron to perform classification
- 5. Perform image classification using Convolutional Neural Networks
- 6. Design and implement machine learning solutions to solve a real-world problem through a guided or open-ended project.

	Marks Distribution									
L1	L2	L3	L4	L5	L6	CO1	CO2	CO3	CO4	CO5
	5	20					11	6	8	