学院专业	'			班	年级	学号		共 6 页	第 1 页
2018~2	2019 学年第	三学期	期末考证	式试卷		11、Cauchy 序列	$ 收敛于x\in(X, \cdot)$,当且仅当它有一个 $ \cdot $	子序列收敛于 x 。	()
«	工程数学基	基础》(总	共6页)			-	芭空间 X 的完备子空间, (x_n) 是 W 中的序		, ,
(孝	6试时间: 2 0	019年6	月 18 日)		12、以》处则	E工内 A 的元番 J 工門,(** _n) たw T ну/ J	$P \mathcal{I} \cup A \wedge_n \rightarrow A \subset A ,$	
	四五六	七	八力	L 成绩	核分人签字		空间中, Cauchy 序列与收敛序列是等价的	I.,	()
得分						」 13、足 Bunden 」 14、(l [∞] , ·) 是 B	•		()
Not Not the Action of the Action	DE . 11 /						逆,则 $(e^A)^{-1} = e^{A^{-1}}$ 。		()
一、判断题(共20分,每小1、由全体无理数构成的集合					() 16、设 <i>X</i> , <i>Y</i> 是同	一数域上的赋范空间,若Y是有限维的,原	则 ℬ(X,Y) 是完备的。	. ()
2 、设 $E \subset P$,则 $\sup E \in E$ 。					() 17. $\forall A \in X^{n \times n}$,	$\left\ A\right\ _{2}^{2} \leq \left\ A\right\ _{1} \left\ A\right\ _{\infty} \circ$		()
3 、设 M_1 , M_2 是线性空间 X 的	子空间,则 $M_{_{1}}$	「YM ₂ 也;	是X的子室	芝间 。	() 18、若A∈P ^{n×n}	对称正定,则求解 $Ax = b$ 的 Jacobi 迭代格	5 式收敛。	()
4 、设 $T: X \to X, S: X \to X$ 都	3是线性算子,	则 S oT: 2	$X \to X$ 也是	是线性算子	• () 19、奇数个求积	节点的 Newton-Cotes 公式的代数精度至	少等于节点的个数。	()
5 、线性算子 $T: X \to Y$ 的值域	$\mathcal{R}(T)$ 是 Y 的	线性子空	间。		(<i>'</i>	E域 <i>D</i> ={(x,y) x∈[a,b],y∈P}上连续且:	坐手,满足 Linechite	久姓 剛解初
6 、设 $\{x_1,,x_n\}$ 是内积空间 X	的正交系,则	$\{x_1, \dots, x_n\}$	是线性无法	关集。	()			余件,则册?则
7、设 $A \in X^{n \times n}$,则 $\lambda E - A$ 是可	「逆的 (即单模	[态的]。			(自问题 $\begin{cases} y' = f(a) \\ y(a) = 0 \end{cases}$	$(x, y), a < x \le b$ 的二阶和四阶 Runge-Kutta (y_0)	a 方法是收敛的。	()
8 、若 $A \in X^{n \times n}$ 满足 $A^2 + E = 0$,则 A 可对角 \emptyset	化。			()			
$9、设A \in X^{n \times n},若A^H = -A,则$	JA是正规矩阵	车。			()			
10、设 $A = \begin{bmatrix} A_1 & \\ & A_2 \end{bmatrix}$, $C^{(1)}$,	<i>C</i> ⁽²⁾ 分别是 <i>A</i> _l	₁ , A ₂ 的才	有理标准形	$,$ 则 $C^{(1)}$	$C^{(2)}$ 是 A 的有	Ĩ			
理标准形。					()			

学院_____专业____

班

年级 学

姓名

共6页 第2页

二、填空题(共20分,每空1分)

- 1、设 $E = [-\sqrt{2}, 3)$,则 $\sup E = ____$ 。
- 2、设 $V = \{\Lambda = \text{diag}(a_{11}, a_{22}, ..., a_{nn}) \mid a_{ii} \in P, i = 1, 2, ..., n\}$,则 dimV =______。
- 3、 设A是赋范空间(X,||·||)的非空子集,则______是包含A的最小子空间。
- 4、设 $\{e_1,e_2,...,e_n\}$ 是内积空间 X 的标准正交系,则 $\forall x \in \text{span } \{e_1,e_2,...,e_n\}$,有 $x = \underline{\hspace{1cm}}$ 。
- 5、设有界线性算子 $T: C[a,b] \to C[a,b]$ 的定义为: $\forall f \in C[a,b]$, $(Tf)(x) = \int_a^x t^2 f(t) dt$, $(\forall x \in [a,b])$,则 $\|T\| = ______$ 。
- 6、设 $A \in X^{3\times 3}$ 的有理标准形 $C = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & -4 \\ 0 & 1 & 4 \end{bmatrix}$,则trA =______.
- 7、设 $A \in X^{n \times n}$,若 $\|2A^T\|_1 = 1$,则 $\|A\|_{\infty} =$ ______。
- 8、设 Hermite 矩阵 $A \in X^{3\times 3}$ 的特征值为 2、3、3。若 $B \sim A$,则 $\lambda E B$ 的第二个不变因子 $d_2(\lambda) = \underline{\hspace{1cm}}$ 。
- 9、设 $A \in X^{3\times 3}$ 的最小多项式 $m(\lambda) = (\lambda+1)(\lambda-2)^2$,则 $\det(e^A) = \underline{\hspace{1cm}}$ 。
- 10. $\forall f(x) = f(x_1, x_2, x_3) = [x_1 e^{x_2}, x_2 \sin x_3]^T$, $\forall f'(x) = \underline{\hspace{1cm}}$
- | 11、设 $A = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{bmatrix}$, 则 $\operatorname{cond}_{1}A = \underline{\hspace{1cm}}_{\circ}$
- 12、设M 是求解线性方程组Ax = b 的 Jacobi 迭代矩阵,则 $\det(e^M) =$ ____。

- 13、设线性方程组 Ax = b的系数矩阵 $A = \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}$,用迭代法 $x^{(k+1)} = x^{(k)} + \alpha (Ax^{(k)} b)$,
- k = 0,1,2,...,求解时迭代法收敛的充分必要条件是 α 的取值在区间_____中。
- 14、已知 Newton-Cotes 公式 $\int_a^b f(x) dx \approx (b-a) \sum_{k=0}^3 C_k^{(3)} f(x_k)$ 中的 $C_0^{(3)} = \frac{1}{8}$,则 $C_2^{(3)} = \underline{\qquad}$
- 15、若 $f(x) = 5x^4 + 6x^3 + 3x^2 + 1$,则差商 $f[2,4,8,16,32] = ______。$
- 16、设 $f(x) \in C^4[1,2]$,三次插值多项式 H(x) 满足插值条件 f(1) = 2, f(2) = 3, f(3) = 1, f'(2) = -1,则插值余项 R(x) = f(x) H(x) =________。
- 17、已知函数 S(x) 为[0,2]上的三次样条函数, $S(x) = \frac{1}{2}x^3 + ax^2$, $0 \le x \le 1$, $S(x) = (x-1)^3 + \frac{1}{2}(x-1)^2 + b(x-1) + c$, $1 \le x \le 2$, 则 a =______。
- 19、已知数值积分公式 $\int_a^b f(x)dx \approx \sum_{k=0}^n A_k f(x_k)$ 是 Gauss 求积公式, $l_k(x)(k=0,...,n)$ 为 Lagrange 基函数,则 $\sum_{k=0}^n \left(\int_a^b l_k^2(x)dx\right) \cdot x_k^{2n} = \underline{\hspace{1cm}}$ 。
- 20、当步长 $h \in$ _______时,求解初值问题 $\begin{cases} y' = -50y, \ 0 < x \le 1 \\ y(0) = 1 \end{cases}$ 的改进 Euler 方

法是绝对稳定的。

学院专业	班	年级	学号		共 6 页 第 3 页
------	---	----	----	--	-------------

三、(8分)(1)用列主元 Gauss 消去法求解下列线性方程组

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 3 \\ -2 & -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ -1 \end{bmatrix}$$

四、(6 分) 已知 f(x) 的数据表 x -1 0 1

$$-1$$
 0 1

$$f(x)$$
 4 -1 2 6

求 f(x) 的 3 次 Newton 插值多项式,并给出相应的插值余项。

(2)判断求解上述方程组的 Sidel 迭代格式的收敛性。

五、(1)(8 分)已知 $A = \begin{bmatrix} 2 & 1 & 0 \\ -1 & 0 & 0 \\ -2 & -1 & 2 \end{bmatrix}$,用初等变换求 $\lambda E - A$ 的 Smith 标准型,并写出 A的

最小多项式 $m(\lambda)$, Jordan 标准型J和有理标准型C。

(2) (8 分)求解以
$$A$$
 为系数矩阵的初值问题
$$\begin{cases} x'(t) = A \cdot x(t), \\ x(0) = (1,0,1)^T, \end{cases}$$
 这里 $x(t) = (x_1, x_2, x_3)^T$ 。

学院	专业	
	_ ,	
7 I) m	∠ \11/	

班 年级 学号

_姓名_____

共6页 第5页

六、(8分) 用 Legendre 多项式求出 $f(x) = e^x$ 在 [0,1] 上的一次最佳平方逼近多项式 $S_1^*(x)$,并求出平方误差(计算结果精确到小数点后四位)。

七、 $(6\, \%)$ 用 Romberg 算法计算积分 $I = \int_0^4 \frac{16}{16+x^2} \, \mathrm{d}x$,将计算结果填入以下表格(精确到小数点后五位)。

k	T_{2^k}	S_{2^k}	C_{2^k}	R_{2^k}
0	3.00000	3.13333	3.14212	
1	3.10000	3.14157		
2	3.13118			
3				

八、(6分) 写出用标准 Runge-Kutta 方法解初值问题

$$\begin{cases} y'' - (\sqrt{x} - 1)y = 0, & x \in (0,1], \\ y(0) = 1, & y'(0) = 0, \end{cases}$$

的计算格式。

九、(1) (5 分) 设T 为从赋范空间(X,||·||) 到赋范空间(Y,||·||) 的有界线性算子, (x_n) 是 N (T) = { $x \in X \mid Tx = 0$ } 中的序列, $\lim_{n \to \infty} x_n = x_0$,证明: $x_0 \in N$ (T)。

(2) (5 分) 设 $A \in P^{n \times n}$ 是实对称正定阵,证明:存在n 阶实对称正定阵B,使得 $A = B^2$ 。