

DVS 标定和自检套件手册

Version 1.0

上海芯仑光电科技有限公司

目录

1. 套	件介绍	3
1.1.	功能介绍	3
1.2.	涉及的设备和工具	3
1.3.	输入参数介绍	4
1.4.	输出参数介绍	4
2. 在	线内参标定工具	6
2.1.	标定板准备	6
2.2.	标定步骤	6
3. 离	[线内参标定工具	8
3.1.	标定步骤	8
4. 在	:线外参标定工具	9
4.1.	标定环境准备	9
4.2.	标定步骤	10
5. 离	[线外参标定工具	11
5.1.	标定步骤	11
6. 相	机姿态记录工具	12
6.1.	操作步骤	12
7. 相	l机姿态检查工具(IMU)	12
7.1.	数据准备	12
7.2.	操作步骤	12
8. 相	机姿态检查工具(鸟瞰图)	13
8.1.	数据准备	13
8.2.	操作步骤	13
附录一	: 常见问题解决方法	15
附录二	: 版本说明	16

1. 套件介绍

1.1. 功能介绍

本相机标定和自检套件主要包含 7 个功能,打开 calibration_tool.exe 显示功能列表,如下图所示,在输入不同的数字进入不同的工作模式。

更详细的说明见如下表格:

	类别	工具	功能描述
1		在线内参标定工具	在线/离线标定 DVS 的内参,获得焦距、主
		Online intrinsic parameters calibration	点和畸变参数。
2		离线内参标定工具	
	标定	Offline intrinsic parameters calibration	
3	工具	在线外参标定工具	在线/离线标定 DVS 安装在车辆后的逆透视
		Online extrinsic parameters calibration	变换矩阵。
4		离线外参标定工具	其中在线标定工具还能保存 IMU 数据
		Offline extrinsic parameters calibration	
5		相机姿态记录工具	记录外参标定后相机姿态信息
		IMU data recording	
6	自检	相机姿态检验工具(IMU)	检查相机姿态信息,以确定外参标定参数是
	工具	IMU data verification	否正确(方法 1. 判断 IMU 数据是否一致,
7	上共	相机姿态检验工具(鸟瞰图)	方法 2. 判断鸟瞰图是否正确)。方法 1 适合
		Bird's eye image online transform	于快速检查,方法2更直观。建议两个方法
			都验证一遍。

1.2. 涉及的设备和工具

序号	工具	涉及的设备和工具	
1	在线内参标定工具	棋盘标定板,尺子	
2	离线内参标定工具	棋盘标定板的图像(数量至少 image_count 张),标定板参数已知	
3	在线外参标定工具	卷尺或激光测距仪,水平路面(有平行直线),明显标记物 4 个	
4	离线外参标定工具	1 张含 4 个明显标记物的图像,车宽和标记物距离数据已知	
5	相机姿态记录工具	(Sensor 固件已经更新才能获取 IMU 数据。默认 Sensor 出厂时已	
6	相机姿态检验工具	经更新。)	
	(IMU)	(4) (大利。)	
7	相机姿态检验工具	水平路面,而且要有平行直线(或平行标记物)	
	(鸟瞰图)	八十퍼田,叫五女行十11 互线(以十11 怀记初)	

1.3. 输入参数介绍

标定工具所需要的配置参数可以在"config/camera_calib_config.ini"文件中输入, ini 文件内的具体参数如下。[camera_config]代表相机的分辨率参数。[config_intrinsic_calib] 代表内参标定需要的棋盘格参数和图片数量,详细说明见下表以及图 2-1。[config_extrinsic_calib] 代表外参标定需要的参数,[Offline_Ext_Calib_Info]表示离线外参标定需要的信息。主要的参数见下表以及图 4-1,未列出的参数不影响标定过程。

序 号	类型	参数名	说明		
1	[camera_confi	ROWS_CELEX5	相机图像的行像素分辨率		
2	g]	COLS_CELEX5	相机图像的列像素分辨率		
3		corner_col	棋盘格行方向角点数量		
4	Coonfig intrinci	corner_row	棋盘格列方向角点数量		
5	[config_intrinsi c_calib]	board_length	棋盘格的方格边长(mm) , 精确到		
3	c_canoj		0.1mm		
6		image_count	内参标定需要的图片数量		
7		posi_num	外参标定需要的测量点数,默认4		
8	[config_extrins ic_calib]	width_vehicle	车辆宽度(m),精确到 0.01m		
9		lon dist noon	近的测量点到前轮轴心的距离(m),		
9		lon_dist_near	精确到 0.01m		
10		lon_dist_far	远的测量点到前轮轴心的距离(m),		
10			精确到 0.01m		
11		img_point_1_x, img_point_1_y	图片上第1个测量点横/纵坐标		
12	[Offline_Ext_	img_point_2_x, img_point_2_y	图片上第2个测量点横/纵坐标		
13	3 Calib_Info] img_point_3_x, img_point_3_y		图片上第3个测量点横/纵坐标		
14		img_point_4_x, img_point_4_y	图片上第 4 个测量点横/纵坐标		

1.4. 输出参数介绍

内参/外参标定工具生成标定文件"config/CameraCalib.ini", ini 文件内的具体参数如下。
[Intrinsic_Parameters] 代表内参。[Matrix_Image2Vehicle]代表外参,即逆透视变换矩阵。
[IMU_Information]代表外参对应的 IMU 数据。

序号	类型	参数名	说明
1	[Intrinsic_Parameters]	kFocal_length	平均焦距 =(行方向焦距+列方向焦距)/2
2		kFocal_length_x	行方向焦距

3		kFocal_length_y	列方向焦距	
4		kPrincipal_x	主点行方向坐标	
5		kPrincipal_y	主点列方向坐标	
6		dist_coeff_k1	2 阶径向畸变参数	
7		dist_coeff_k2	4 阶径向畸变参数	
8		dist_coeff_p1	6 阶径向畸变参数	
9		dist_coeff_p2	1 阶切向畸变参数	
10		dist_coeff_k3	2 阶切向畸变参数	
11		date	内参标定时的时间,格式为:	
11		uate	year-month-day-hour-minute-second	
12		sensor_id	标定传感器编号(由用户手动填	
12			入)	
13		proj_mat_00-proj_mat_22	3×3 逆透视变换矩阵的 9 个元素,	
13	[Matrix_Image2Vehicle]		proj_mat_22 默认=1	
14	[wattix_mage2 venicle]	date	外 参 标 定 时 的 时 间 , 格 式 同	
17		date	[Intrinsic_Parameters]中的 date	
15		acc x mean raw	IMU 的加速度计 X 轴原始数值	
13		acc_x_mean_raw	(m/s^2)	
16		acc_y_mean_raw	加速度计 Y 轴原始数值(m/s²)	
17	[IMU_Information]	acc_z_mean_raw	加速度计 Z 轴原始数值(m/s²)	
18			IMU 标定时的时间,	
		date	格式同[Intrinsic_Parameters]中的	
			date	

注:本套件生成标定参数都不会覆盖原来的数据。但重复同一种操作后文件中会保存重复数据,请用户自行删除旧数据,保证标定文件中数据不重复。

2. 在线内参标定工具

2.1. 标定板准备

标定板的大小已经根据相机焦距改变。标定前确保焦距已经根据应用需求调节好。标定时,标定板既要保证在整个画面占比达到甚至超过1/2,而且棋盘格角点清晰。

作为参考,文档提供棋盘格图像文件(Calibration checkerboard3.pdf)。用户可按照 pdf中原始比例打印在硬板(不可形变,如厚玻璃板),打印分辨率 300dpi,即可制作得到标定板。(棋盘格图片也可打印在纸上,然后把纸粘在墙平面上)

图 2-1 标定棋盘格

棋盘格参数已经预先写入配置文件"config/camera calib config.ini",无需修改。

如用户需要采用自定义的标定板,请保证图案样式和图 2-1 提供的相同(黑白方形格交替。最外面一圈除外,不影响结果),并修改配置文件中的 corner_col、corner_row 和 board_length 三个参数。

2.2. 标定步骤

- 1) 利用录数据的 GUI 生成 FPN, 放在 config 文件夹下, 命名"FPN.txt"。
- 2) USB3.0 连接相机,打开 calibration_tool.exe,选择 1 回车,启动在线内参标定程序,稍等片刻,出现图像窗口。若出现黑/灰屏窗口,拔掉 USB3.0 线,重复一遍步骤 2)。
- 3) 若 FPN 正确,则按键盘"l"(小写 L)和"d"可以调节亮度,调节到图 2-2-1 所示亮度。按键盘方向键可以翻转图像,左右键可以左右翻转图像,上下键可以上下翻转图像。调节镜头焦距,使得画面最清晰。

图 2-2-1 合适亮度以及辅助标定框

4) 此时图像中显示黑色框,用于辅助相机位置和角度调整,如图 2-2-1 所示。调整相机位置和角度,使得标定板方格部分基本落在框内(允许存在一定偏差,但是方格必须都显示在图像中)。该辅助框和图 2-2-2 所示图片——对应,每张小图左上角红色数字代表了出现顺序。总共需要保存 20 张图片,包含了相机在标定板的不同相对位置,以及标定板呈现在图像中的不同位置,以提高标定算法的准确性。左视图和右视图摆放位置如图 2-2-3 所示。仰视图和俯视图同理,相机分别在标定板的下面和上面。

图 2-2-2 内参标定需要的 20 张图片示意图

左视图

图 2-2-3 左视图和右视图示意图

- 5) 根据黑框调整好角度后,按"s"。程序自动查找图像中的角点,判断是否能有效提取角点。
 - 若成功,控制台提示"Find No.? corner data!"",并保存图片到 img_online 文件夹,命名为 img(?)。此时黑色辅助标定框改变,回到步骤 4),开始新的一个位置标定。
 - 若不成功,提示"Can not find corners! Please use another picture or you can tune the FPN, focus or brightness."。重复步骤 4)的内容,此时黑色辅助标定框不改变。
 - 第 1、6、11 和 16 张,需按照图 2-2-2 要求的移动相机到新的位置。
- 6) 有效检测 20 张图片后,程序自动计算标定参数。标定结果除了在控制台上显示,还自动保存在"config/CameraCalib.ini"中的[Intrinsic_Parameters]数据块中。标定结束。(在"CameraCalib.ini"文件中,每次新标定的参数接在旧参数后面保存,可通过Date 信息区分标定参数。) 20 张图片自动保存在 img_online 文件夹中。

3. 离线内参标定工具

3.1. 标定步骤

- 1) 按照 2.1 和 2.2 步骤 1),3),4)提示的方法拍摄 20 张不同角度清晰的照片,放进 img_offline,命名方法为 Pic (no.),如 Pic (1)。
- 2) 棋盘格和其他标定信息已经写入 camera_calib_config.ini, 无需更改。
- 3) 打开 calibration_tool.exe,选择 2 回车,自动进行标定程序。
 - 如果有效找到角点,显示 Find No. corner data! 标定程序用全部有效角点计算标定参数。
 - 如果没有找到角点,显示 Can not find corners! Please use another picture or you

can tune the FPN, focus or brightness.找不到角点可能原因有该图片未包含所有角点、图片质量差(如 FPN 不对,亮度不合适、焦距不对等)。可以用新的照片替换该无效图片,名字保持一致,从新步骤 3)。

- 对精度要求不高的场合,10 张以上图片能找到角点,则该标定参数也可使用。
- 4) 标定参数保存在"config/CameraCalib.ini"中的[Intrinsic_Parameters]数据块中。用户自由填写 sensor_id(可选)。标定结束。(在"CameraCalib.ini"文件中,每次新标定的参数接在旧参数后面保存,可通过 Date 信息区分标定参数。)

4. 在线外参标定工具

4.1. 标定环境准备

- 1) 准备水平空旷场地,地面有平行辅助线。如图 4-1 所示
- 2) 调整车辆位置,使得车辆朝向和辅助线平行,即车辆两侧到辅助线距离一致。
- 3) 放置 4 个标志物。在左前轮中心的前方(沿平行辅助线的方向-纵向)的 lon_dist_near 和 lon_dist_far(camera_calib_config.ini 文件可设置,建议默认分别为 10 米和 35 米)的位置放置两个明显标志物(图像中能看出即可)。同样的,右前轮中心的前方的同样位置也放两个标志物,和左前轮前方的标志物成对称排布。
 - · 注意: 距离 0 点为前轮中心。
- 4) 测量车辆宽度,输入 camera_calib_config.ini 文件的 width_vehicle 中。
- 5) 安装相机,尽量使得相机在车体正中心,并且镜头水平向前。

测试标志物 O

图 4-1 外参标定环境

4.2. 标定步骤

- 1) 根据 2.2 步骤 1)提示更换 FPN。
- 2) 打开 calibration_tool.exe,选择 3 回车。稍等片刻,出现图像窗口。若出现黑/灰屏窗口,拔掉 USB3.0 线,重复一遍步骤 1)。
- 3) 根据 2.2 步骤 3)提示调节图像和焦距,并尽可能调节使得镜头水平向前、图像左右对称、远处物体清晰。
- 4) 图像中能清晰看到 4 个标志物,则点"s",图像将被窃取出来(此时图像静止), 如图 4-2 所示。

图 4-2 外参标定参考图片

5) 鼠标分别点击图像中近处的 4 个标志物的底部,如图 4-2 红色箭头所示(从左到

右的顺序点击红色箭头指示的标志物,即图 4-2 中数字的顺序),每次点击都会出现红点,表示已经确定标志物的位置。

- 6) 鼠标最后点击最远处测试标志物的底部,如图 4-2 绿色箭头所示(该位置可以根据需要改变,但坐标需要记录好,用于验证标定精度。建议 x=40m, y=车宽一半)。
- 7) 全部点击完成后,控制台出现例如图 4-3 的提示,图片如图 4-4 所示。

```
No. 0 position, x: 159 y: 687
No. 1 position, x: 372 y: 447
No. 2 position, x: 915 y: 417
No. 3 position, x: 915 y: 436
```

图 4-3 控制台显示情况

8) 若检查图像中所有点是否都在标志物底部,然后检查控制台上的4个点坐标是否 有重复的。

图 4-4 图像中选择标志物后的图片

9) 控制台出现标定结果,以及对测试标志物的测距结果,如图 4-5 所示的 test position in vehicle coordinate。

```
Success write ProjectionMatrixImage2Vehicle in ini file.
test position at pixel, u: 503 v: 581
test position in vehicle coordinate, x = 105.63, y = 1.60406
```

图 4-5

- 10) 比较该结果和实测结果,估计误差。50m 内误差不大于 2%属于正常情况,否则 需要从新标定。
- 11) 标定参数以变换矩阵的方式保存在"config/CameraCalib.ini"中。标定结束。(在 "CameraCalib.ini"文件中的[Matrix_Image2Vehicle]数据块中,每次新标定的参数接 在旧参数后面保存,可通过 Date 信息区分标定参数。)标定的原图(raw_img.jpg) 和图 4-4 所示图片(marked_img.jpg)自动保存在 img_online 文件夹中。

5. 离线外参标定工具

5.1. 标定步骤

- 1) 参考 4.1 和 4.2 步骤 1)-4)的方法,获得带有 4 个标志物的图片(无测试标志物验证功能),并更新 camera_calib_config.ini 中的参数。
- 2) 获得图片上 4 个标志物的点坐标(x,y), 从左到右的顺序(图 4-2 中数字的顺序),

输入 camera_calib_config.ini 中[config_extrinsic_calib]数据块的 img_point_1_x 至 img_point_4_y。

- 3) 打开选择 4 回车。稍等片刻,标定自动完成。
- 4) 标定参数以你透视变换矩阵的方式保存在"config/CameraCalib.ini"中。标定结束。 (在"CameraCalib.ini"文件中的[Matrix_Image2Vehicle]数据块中,每次新标定的参数接在旧参数后面保存,可通过 Date 信息区分标定参数。)

6. 相机姿态记录工具

为了相机外参的正确性,需要在每次使用前检查相机姿态和标定文件记录的姿态是否一致。因此,在外参标定结束后,需要立刻记录相机姿态。

注:此时的使用 IMU 的原始数据,未经过 IMU 标定参数补偿。

6.1. 操作步骤

- 1) 在完成相机安装固定和外参标定后,运行 calibration_tool.exe,选择 5 回车,程序自动获取 IMU 数据。此时会新建显示 event 数据的窗口"EventBinaryPic"。
- 2) 如果窗口"EventBinaryPic"有数据(显示图像或有较多噪点出现),且控制台打印 [Calibration] IMU information:,则姿态已经获取。三轴加速度数据自动保存在 config/camera calib config.ini 中[IMU Information]数据块中。
- 3) 如果该窗口全黑屏没有变化,控制台打印 No IMU data,则没有获得姿态信息。处理方法如下
 - 拔出 USB 数据线稍等片刻后,在插回相机,并重启。
 - 如果多次尝试以上方法仍未获得信息,则需要检查传感器的 IMU 固件是否升级。请联系传感器供应商检查固件。

7. 相机姿态检查工具(IMU)

7.1. 数据准备

相机每次使用前,需要对某安装好的相机进行姿态检查,需要已经完成相机姿态记录(参考第6节),并且参数已经保存在 config/ CameraCalib.ini 文件中[Intrinsic_Parameters]数据块。

7.2. 操作步骤

- 1) 在完成相机安装固定和外参标定后,运行 calibration_tool.exe,选择 6 回车,程序自动获取 IMU 数据。此时会新建显示 event 数据的窗口"EventBinaryPic"。
- 2) 如果窗口"EventBinaryPic"有数据(显示图像或有较多噪点出现),且控制台打印

[Calibration] IMU information: o

- ◆ 控制台同时显示当前时刻获取的 IMU 信息 (三轴 acc_current),以及外参标定时的 IMU 信息 (三轴 acc_recorded)。
- 每个轴的差别都小于 0.05 则可以认为传感器姿态角不变,即外参正确。控制台显示"The sensor is fixed."。
- 如果有一个轴差别不小于 0.05,则可以认为传感器姿态角改变了,外参错误,需要从新标定外参。此时控制台显示"The sensor has been moved. Please calibration again."。
- 3) 如果该窗口全黑屏没有变化,控制台打印 No IMU data,则没有获得姿态信息。处理方法如下
 - 拔出 USB 数据线稍等片刻后,在插回相机,并重启。
 - 如果多次尝试以上方法仍未获得信息,则需要检查传感器的 IMU 固件是否升级。请联系传感器供应商检查固件。

8. 相机姿态检查工具(鸟瞰图)

8.1. 数据准备

除了利用相机姿态检查工具(IMU)外,相机姿态检查工具(鸟瞰图)是另一直观的检查标定参数准确性的工具。

本工具需要已经完成相机外参标定(参考第 4 或第 5 节),并且参数已经保存在 config/ CameraCalib.ini 文件中[Matrix_Image2Vehicle]数据块,FPN 已经存放在 config 目录下。

8.2. 操作步骤

- 1) 运行 calibration_tool.exe, 选择 7 回车,显示原始图片的"Image"窗口和鸟瞰图的 "bird_view"窗口被创建。如果出现黑/灰屏,则从新启动传感器。该工具用 fullpic 模式显示。参考 2.2 的步骤 3)可以调节亮度和图像镜像。
- 2) 车辆在水平路面上行驶,路面上有直的车道线。
- 3) 观察"bird view"窗口中的车道线是否平行。
 - 如果车道线基本竖直且每条线之间平行,则外参正确(车辆行驶振动对鸟瞰图有干扰),如图 8(a)所示。
 - 如果车道线明显不竖直且每条线之间不平行,需要从新标定外参,如图 8(b) 所示。

图 8 正确(a)和错误(b)鸟瞰图变换的效果

附录一: 常见问题解决方法

1、程序启动后图像窗口全黑,没有数据。

原因: 相机未正常启动。

解决: 断开电源, 后重新接电源, 再打开标定程序, 重启相机。

附录二: 版本说明

tool 版 本号	文档修改说明	修改章	时间	作者	校验
	小修改		2019.06.11	Qisheng He	Yu Zhang
	优化文档描述	4th 章大 改	2019.05.28	Qisheng He	Yu Zhang
v1.0	修改鸟瞰图部分内容		2019.03.19	Qisheng He	Yizhao Zhang
v0.2	套件全部说明初步完成	增加3至 8节	2019.03.19	Qisheng He	Yizhao Zhang
v0.1	内参在线标定操作说明。	增加1和 2节	2019.03.12	Qisheng He	Yizhao Zhang