3 関数の極限

演習 $3.1 f(x) = x^2$ とする.

- (1) a=2, $\varepsilon=0.1$ に対して、" $0<|x-a|<\delta\Rightarrow|f(x)-f(a)|<\varepsilon$ " を満たすような正の実数 δ を求めよ.
- (2) a=-3 とする. 任意の正の数 $\varepsilon>0$ が与えられたときに,これに対して " $0<|x-a|<\delta\Rightarrow|f(x)-f(a)|<\varepsilon$ " を満たすような正の実数 δ をどのようにとれば良いか述べて, $\lim_{x\to a}f(x)=f(a)$ を証明せよ.
- (3) 任意の実数 $a\in\mathbb{R}$ について, $\lim_{x\to a}f(x)=f(a)$ となることを (上記のような ε - δ 論法で) 証明せよ.
- (4) 任意の正の実数 M>0 が与えられたときに、ある K>0 があって $x>K\Rightarrow f(x)>M$ となること (つまり $\lim_{x\to\infty}f(x)=+\infty$) を示せ.

[ヒント] 三角不等式 $|A+B| \le |A| + |B|$ より, $|x+a| \le |x| + |a|$, $|x| = |(x-a) + a| \le |x-a| + |a|$.

演習 3.2 (1) ε - δ 論法により, $\lim_{x\to 0} \sqrt{1+x}=1$ を示せ.

(2) 上の (1) と教科書の定理 7.5 を使って、極限値 $\lim_{x\to 0} \frac{1-\sqrt{1+x}}{x}$ を求めよ.

今回は特別扱いの問題はありません.