Homework Assignment 9 Due Friday, April 8

- 1. Let G be a finite group, p a prime, and $P \in Syl_p(G)$ a Sylow p-subgroup. Use (Sylow 2) to show that $P \subseteq G$ if and only if $n_p = \#Syl_p(G) = 1$.
- 2. Use Sylow's theorems to prove that a group of order 200 can never be simple.
- 3. Generalizing question 2, let G be a group of order p^2q for primes p and q. We will show that G always has a nontrivial normal Sylow subgroup.
 - (a) Suppose p > q. Show that G has a normal subgroup of order p^2 .
 - (b) Suppose q > p. Show that either G has a normal subgroup of order q, or else $G \cong A_4$. (You may use the result from the April 5 lecture that if |G| = 12 and $n_3 \neq 1$ then $G \cong A_4$).
 - (c) Explain why a group of order p^2q can never be simple. (You may need to treat the cases where $G = A_4$ or p = q separately).
- 4. Let G be a group of order $99 = 3^2 * 11$. Let's show that G is abelian.
 - (a) Let $P \leq G$ be a Sylow 3-subgroup. Show that $P \subseteq G$.
 - (b) Construct an injective homomorphism $G/C_G(P) \hookrightarrow Aut(P)$. (Can you use group actions and part (a)?)
 - (c) Deduce from part (b) and Lagrange's theorem that $G = C_G(P)$. Leverage this fact to prove that G is abelian.