Математическая логика. Логика предикатов

Занятие кружка по информатике ФИМЛИ 5

г. Долгопрудный, МО Грицуляк РТ, 30 сентября 2016

Базовые операции

- Как обсуждали, наличие элемента в множестве можно представить битом.
- Разберем битовую арифметику подробнее.

$$a \land b$$
—операция M (and): $1 \land 1 = 1; 1 \land 0 = 0 \land 1 = 0 \land 0 = 0$
 $BC + + : a \& b \equiv a \land b$ в математических обозначениях
 $a \lor b$ —операция $U \sqcap U$ (or): $1 \lor 1 = 1; 1 \lor 0 = 0 \lor 1 = 1; 0 \lor 0 = 0$
 $BC + + : a \mid b \equiv a \lor b$

- Исключающее ИЛИ(XOR): a^b в C++
 1^1==0^0 == 0; 1^0 == 0^1 == 1
- ~ дополнение (отрицание);
- » сдвиг вправо
- « сдвиг влево

Задачи

- Написать умножение на 2 с использованием целых беззнаковых (без использования + * / с использованием if, for, и операций с логикой) (1 *)
- Сложить два целых числа (с ограничением предыдущей задачи) (2 *)
- Умножить (3 *)
- Разделить (4 *)

```
struct book{
string book_name;
string book_id;
vector <string> references;
book(string name, string id, vector<string> ref):
book_name(name),book_id(id),references(ref)
{}
string to_string() {
 auto ret = book name + ";" + book id + ";";
 for(auto val:references) ret+=val+";";
 return ret;
};
```

```
int main(int argc, char ** argv)
{
 vector <book> library:
 vector<string> references;
  book book1("book1","ISDN-book1",references);
  library.push back(book1);
  references.push_back("ISDN-book1");
  references.push back("ISDN-catalog");
  book catalog1("catalog1","ISDN-
catalog",references);
  library.push back(catalog1);
```

Каталоги

- Нельзя
- Допустим можно. Тогда этот каталог должен входить сам в себя, чего быть не может по определению каталога.
- То есть нельзя построить множество множеств построенных по принципу каталогов (выше) так чтобы в нем были все множества, какие то будут выпадать.
- Можно исключить, или выделить в отдельный тип.

Исчисление высказываний

- Изучение этих проблем привело к вычислению высказываний.
- Формальная система исчисления высказываний описывается: {L,F,A,R}
- L алфавит
- F формулы
- A аксиомы
- R правила
- Для A и R будем пока использовать интуитивное понимание

L — алфавит, состоит из

- {символы} переменные
- &, v, →, ~, ↔
 где A ↔ B : !(A^B)
 A → B: Из А выводимо В
 Скобки ()

Формулы

- Если А формула, то А & В формула
- Если А и В формулы то и А&В, А∨В, А → В,
 А ↔ В , ~А тоже формулы
- Примеры
 - $-(x^y)$
 - x (y & z)

Логика предикатов

• Рассмотрим некоторые понятия из исчисления высказываний и логики предикатов.

• Для тех кому прошлые задачи простые:

Библиографические каталоги — это книги, которые описывают другие книги. Некоторые каталоги могут описывать другие каталоги. Некоторые каталоги могут описывать даже сами себя. Можно ли составить каталог, всех каталогов, которые не описывают сами себя?

Задача:

А Тавтологично В — если формула для всех значений истинна.

- Простая (1*) Реализовать функцию arrow(a,b) реализующую операцию a->b
- Средняя (3*) Для формул из 10 переменных проверить, являются ли они тавтологиями
- Сложная (5*) Тавтология Написать генератор более коротких тавтологий для формул.

Подсказка

- Использовать таблицы истинности
- Пример таблицы:

Α	В	С	F(A,B,C)
0	0	1	1
0	1	0	0
			итд

Исчисление предикатов

В алфавит добавим:

- Pn(x1,x2,..xn) предикатные буквы (n=0,1,...)
- В формулы:
- Pn(x1,..xn) элементарные (атомарные формулы)
- Если А(х) формула со свободной

$$\forall x A(x), \exists x A(x) - формулы$$

Задача

- Написать проверку, является ли строка утверждением в исчислении высказываний.
- Принять что алфавит ограничен х1,х2,
 Использовать символы

Вопросы и надеюсь ответы

roman.gritsulyak@gmail.com