STAT 500

Two-Sample Inference: Hypothesis Test

Scenario

- Randomized Experiment
 - Two treatments
 - Is there a difference in the mean value of the response variable between the two treatments?
- Observational Study
 - Two populations
 - One sample from each population
 - Is there a difference in the mean value of the variable between the two populations?

Notation

Parameters

- Population 1
 - * μ_1 = mean value of variable in Population 1
 - * $\sigma_1^2=$ variance of variable in Population 1
 - * $\sigma_1=$ std. dev. of variable in Population 1
- Population 2
 - * μ_2 = mean value of variable in Population 2
 - * $\sigma_2^2=$ variance of variable in Population 2
 - * $\sigma_2=$ std. dev. of variable in Population 2

Notation

- Data
 - $-Y_{11}, Y_{12}, \ldots, Y_{1n_1}$

value of variable for n_1 members from sample 1.

 $-Y_{21}, Y_{22}, \ldots, Y_{2n_2}$

value of variable for n_2 members from sample 2.

Notation

- Summary Statistics
 - Sample 1

$$ar{Y}_1 = rac{1}{n_1} \sum_{j=1}^{n_1} Y_{1j}$$

$$S_1^2 = rac{1}{n_1-1}\sum_{j=1}^{n_1}(Y_{1j}-ar{Y}_1)^2$$

$$S_1^2 = rac{1}{n_1-1} \, \Sigma_{j=1}^{n_1} (Y_{1j} - ar{Y}_1)^2 \qquad \qquad S_1 = \sqrt{rac{1}{n_1-1} \, \Sigma_{j=1}^{n_1} (Y_{1j} - ar{Y}_1)^2}$$

- Sample 2

$$ar{Y}_2=rac{1}{n_2}\sum_{j=1}^{n_2}Y_{2j}$$

$$S_2^2 = rac{1}{n_2-1} \sum_{j=1}^{n_2} (Y_{2j} - ar{Y}_2)^2$$

$$S_2^2 = rac{1}{n_2-1}\,\Sigma_{j=1}^{n_2}(Y_{2j}-ar{Y}_2)^2 \qquad \qquad S_2 = \sqrt{rac{1}{n_2-1}\,\Sigma_{j=1}^{n_2}(Y_{2j}-ar{Y}_2)^2}$$

Research Question

- Do the two populations have the same mean value for the variable?
- Source of inference
 - Model-based inference.
 - Based on the distribution of test statistics.

Methods of Analysis

- Answer research question using
 - Visual displays
 - Statistical Summaries (means, std. devs., five number summaries)
 - Interval estimation: confidence interval for $\mu_1 \mu_2$
 - Hypothesis Test: $(H_o: \mu_1 = \mu_2)$

- $H_0: \mu_1 = \mu_2$
- ullet $H_A: \mu_1
 eq \mu_2 ext{ or } \mu_1 < \mu_2 ext{ or } \mu_1 > \mu_2$
- Assumptions
 - $-Y_{11},Y_{12},\ldots,Y_{1n_1}$ are i.i.d. $N(\mu_1,\sigma_1^2)$
 - $-Y_{21},Y_{22},\ldots,Y_{2n_2}$ are i.i.d. $N(\mu_2,\sigma_2^2)$
 - Y_{1j} and Y_{2j^\prime} are independent for all j and j^\prime

Results

$$-\sum_{j=1}^{n_1} Y_{1j} \sim N(n_1 \mu_1, n_1 \sigma_1^2)$$

$$-\sum_{j=1}^{n_2} Y_{2j} \sim N(n_2\mu_2,n_2\sigma_2^2)$$

$$- ar{Y}_1 \sim N(\mu_1, \sigma_1^2/n_1)$$

$$-ar{Y}_2 \sim N(\mu_2, \sigma_2^2/n_2)$$

$$-ar{Y}_1 - ar{Y}_2 \sim N\left(\mu_1 - \mu_2, rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}
ight)$$

Results

$$rac{ar{Y}_1 - ar{Y}_2 - (\mu_1 - \mu_2)}{iggert rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}} \sim N(0,1)$$

- ullet In order to use above result for inference, we would need to know σ_1^2 and σ_2^2 .
- ullet σ_1^2 and σ_2^2 are population parameters and are generally unknown.

Estimation for Variances

$$S_1^2=rac{1}{n_1-1}\mathop{arphi}_{j=1}^{n_1}(Y_{1j}-ar{Y}_1)^2$$
 estimates $\mathop{
m Var}(Y_{1j})=\sigma_1^2$.

$$S_2^2=rac{1}{n_2-1}\mathop{ riangle}_{j=1}^{n_2}(Y_{2j}-ar{Y}_2)^2$$
 estimates $\mathop{
m Var}(Y_{2j})=\sigma_2^2$.

Both estimators are unbiased estimators: $E(S_i^2) = \sigma_i^2$.

When
$$\sigma_1^2
eq \sigma_2^2$$
 estimate $ext{Var}(ar{Y}_1 - ar{Y}_2) = rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}$ as

$$rac{S_1^2}{n_1} + rac{S_2^2}{n_2}$$

Estimation for Variances

Additional Assumption

$$\sigma_1^2=\sigma_2^2=\sigma^2$$

ullet Estimate the unknown parameter σ^2 with S_p^2 (called the pooled sample variance).

$$egin{array}{lll} S_p^2 &=& rac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2} \ &=& rac{\Sigma_{j=1}^{n_1}(Y_{1j}-ar{Y}_1)^2+\Sigma_{j=1}^{n_2}(Y_{2j}-ar{Y}_2)^2}{n_1+n_2-2} \end{array}$$

ullet S_p^2 is an unbiased estimator of σ^2 , i.e. $E(S_p^2)=\sigma^2$

Model-based Inference

- Assume each sample is a simple random sample from a population with a normal distribution, the samples are independent, and $\sigma_1^2=\sigma_2^2=\sigma^2$.
- ullet It follows that $rac{(n_1+n_2-2)\,S_p^2}{\sigma^2}\sim \chi^2_{n_1+n_2-2}.$

• With equal variance assumption, we have

$$rac{ar{Y}_1 - ar{Y}_2 - (\mu_1 - \mu_2)}{\sigma \sqrt{rac{1}{n_1} + rac{1}{n_2}}} \sim N(0,1)$$

ullet Replacing σ with S_p gives

$$rac{ar{Y}_1 - ar{Y}_2 - (\mu_1 - \mu_2)}{S_p \sqrt{rac{1}{n_1} + rac{1}{n_2}}}$$

- ullet The distribution for the variable above is NOT N(0,1).
- What is the distribution?

Results

$$- \frac{(n_1 + n_2 - 2)S_p^2}{\sigma^2} \sim \chi^2_{(n_1 + n_2 - 2)}$$

- $ar{Y}_1$ is independent of S^2_1
- $ar{Y}_2$ is independent of S_2^2
- $ar{Y}_1 ar{Y}_2$ is independent of S_p^2

• Define two new variables

$$Z = rac{ar{Y}_1 - ar{Y}_2 - (\mu_1 - \mu_2)}{\sigma \sqrt{rac{1}{n_1} + rac{1}{n_2}}} \qquad W = rac{(n_1 + n_2 - 2)S_p^2}{\sigma^2}$$

- ullet $Z \sim N(0,1)$
- $W \sim \chi^2_{(n_1+n_2-2)}$
- ullet Z is independent of W

$$egin{array}{lcl} T &=& rac{Z}{\sqrt{W/(n_1+n_2-2)}} \ &=& rac{ar{Y}_1 - ar{Y}_2 - (\mu_1 - \mu_2)}{\sigma\sqrt{rac{1}{n_1} + rac{1}{n_2}}} \ &=& rac{ar{Y}_1 - ar{Y}_2 - (\mu_1 - \mu_2)}{\sqrt{\left(rac{(n_1+n_2-2)S_p^2}{\sigma^2}
ight)/(n_1+n_2-2)}} \ &=& rac{ar{Y}_1 - ar{Y}_2 - (\mu_1 - \mu_2)}{S_p\sqrt{rac{1}{n_1} + rac{1}{n_2}}} \end{array}$$

$$T = rac{Z}{\sqrt{W/(n_1+n_2-2)}} \sim t_{n_1+n_2-2}$$

- ullet t Distribution with n_1+n_2+2 degrees of freedom
- Centered at zero
- Symmetric (mean and median are both zero)
- Bell-shaped
- ullet More probability in the tails of distribution than N(0,1)
- ullet As d.f. $o \infty$, $t_{d.f.} o N(0,1)$

- $H_0: \mu_1 = \mu_2$
- ullet $H_A: \mu_1
 eq \mu_2 ext{ or } \mu_1 < \mu_2 ext{ or } \mu_1 > \mu_2$
- Assumptions
 - $-Y_{11},Y_{12},\ldots,Y_{1n_1}$ are i.i.d. $N(\mu_1,\sigma_1^2)$
 - $-Y_{21},Y_{22},\ldots,Y_{2n_2}$ are i.i.d. $N(\mu_2,\sigma_2^2)$
 - Y_{1j} and Y_{2j^\prime} are independent for all j and j^\prime
 - $-\sigma_1^2 = \sigma_2^2 = \sigma^2$

• Test Statistic

$$T=rac{Y_1-Y_2}{S_p\sqrt{rac{1}{n_1}+rac{1}{n_2}}}$$

- ullet If H_0 is true, $\mu_1-\mu_2=0$, the test statistic T has a t distribution with n_1+n_2-2 degrees of freedom.
- ullet If H_0 is true, expect to observe T close to zero. Unlikely to observe a really large deviation from zero.

- ullet The p-value is the probability of obtaining the value of the test statistic or more extreme values (against H_0) if H_0 is true
- ullet A small p-value means either:
 - (i) $m{H_0}$ is true and we were very unlucky
 - (ii) H_0 is false

or

$$\bullet \ H_a: \mu_1 \neq \mu_2$$

$$p$$
-value $= 2 * P(t_{n_1 + n_2 - 2} > |T|)$

•
$$H_a: \mu_1 < \mu_2$$

$$p$$
-value $= P(t_{n_1 + n_2 - 2} < T)$

• $H_a: \mu_1 > \mu_2$

$$p$$
-value = $P(t_{n_1+n_2-2} > T)$

Scale of evidence

p>0.10: unconvincing evidence of a difference

0.10 > p > 0.05: weak evidence

0.05 > p > 0.01: evidence of a difference

0.01 > p > 0.001: strong evidence

p < 0.001: very strong evidence

ullet The p-value is NOT the probability that H_0 is true

Lizard Infection Study

- Independent random samples of 15 lizards infected with a disease and 15 non-infected lizards
- Test null hypothesis that mean distance traveled in two minutes is the same for both populations
- ullet t-test of $H_0: \mu_1=\mu_2$ versus $H_0: \mu_1
 eq \mu_2$ $t=rac{-5.3733}{(7.4649)(\sqrt{rac{1}{15}+rac{1}{15}})}=-1.97$ on 28 d.f. $\Rightarrow p ext{-value}=0.0586$
- ullet t-test of $H_0: \mu_1=\mu_2$ versus $H_0: \mu_1<\mu_2$ $t=rac{-5.3733}{(7.4649)(\sqrt{rac{1}{15}+rac{1}{15}})}=-1.97$ on 28 d.f. $\Rightarrow p ext{-value}=0.0293$

```
/* Part of the code posted as mlizards_ttest.sas that computes
   t-tests and related graphs */
data set1;
 input lizard infection distance;
 datalines;
  1 1 16.4
  2 1 29.2
  3 1 37.1
  28 2 45.5
  29 2 24.5
  30 2 28.7
 run;
 proc format; value infection 1='yes' 2='no';
 run;
```

```
title1 'T-test for Mean Distance for Two Minute Runs';
  title2 'Sceloporis Occidentalis Lizards';
proc ttest data=set1;
  class infection;
  var distance;
  format infection infection.;
run;
```

T-test for Mean Distance for Two Minute Runs Sceloporis Occidentalis Lizards

The TTEST Procedure

Variable: distance

infection	N	Mean	Std Dev	Std Err	Minimum	Maximum
yes	15	26.8600	6.8096	1.7582	16.4000	37.1000
no	15	32.2333	8.0672	2.0829	18.4000	45.5000
Diff (1-2)		-5.3733	7.4649	2.7258		

infection	Method	Mean	95% CL Mean		Std Dev	95% CL Std Dev	
yes		26.8600	23.0889	30.6311	6.8096	4.9855	10.7395
no		32.2333	27.7659	36.7008	8.0672	5.9062	12.7228
Diff (1-2)	Pooled	-5.3733	-10.9569	0.2102	7.4649	5.9240	10.0960
Diff (1-2)	Satterthwaite	-5.3733	-10.9640	0.2173			

Method		Variances	DF	t Value	Pr > t
Pooled		Equal	28	-1.97	0.0586
Satterthy	vaite	Unequal	27.233	-1.97	0.0589

Equality of Variances						
Method	Num DF	Den DF	F Value	Pr > F		
Folded F	14	14	1.40	0.5343		

