NO CALCULATORS

1. Write each as a compact expression. No need to evaluate the actual number – you can just write an equivalent numerical expression. [3 pts each]

a)
$$\sum_{n=43}^{200} F_{2n}$$

$$= F_{80} + F_{66} + \cdots + F_{400}$$

$$= F_{401} - F_{85} + F_{65} - F_{87} + \cdots + F_{401} - F_{399}$$

b)
$$\sum_{n=1}^{75} [5+7(n-1)]$$

$$= \sum_{n=1}^{75} [7n-2]$$

$$= \left(\frac{5+(75\cdot7-2)}{2}\cdot75\right)$$

2. Evaluate (your answer for this problem should be a single number). [3 pts]

$$\sum_{n=6}^{10} 512 \left(\frac{1}{2}\right)^{n} = 512 \cdot \left(\frac{1}{2}\right)^{6} + 512 \cdot \left(\frac{1}{2}\right)^{7} \cdot \cdots + 512 \left(\frac{1}{2}\right)^{10}$$

$$\frac{2}{2} = 512 \left(\frac{1}{2}\right)^{6} - 512 \left(\frac{1}{2}\right)^{11}$$

$$\frac{2}{2} = 512 \left(\frac{1}{2}\right)^{6} - 512 \left(\frac{1}{2}\right)^{11}$$

$$\frac{2}{2} = 512 \left(\frac{1}{2}\right)^{6} - 512 \left(\frac{1}{2}\right)^{11}$$

3. Simplify completely: $\binom{3n+2}{3n-1} \cdot (3!)$ Write your answer as a polynomial with integer coefficients. [3 pts]

$$=\frac{(3n+2)!}{(3n-1)!(3t)}=(3n+2)(3n+1)(3n)=(9n^2+9n+2)(3n)$$

$$=\frac{(2n+2)!}{(2n+2)!(3n+1)(3n)}=(9n^2+9n+2)(3n)$$

4. Evaluate (give your answer as a single number): [2 pts each]

a)
$$\binom{-2}{500}$$

[-2) $\cancel{-2}$

[-2) $\cancel{-3}$

[-2) $\cancel{-3}$

[-3) $\cancel{-3}$

[-4] $\cancel{-3}$

[-501]

b)
$$\binom{6}{20} = 0$$

c)
$$\binom{-8}{4}$$

= $\frac{(-9)(-9)(-10)(-11)}{4 \cdot 3 \cdot 3 \cdot 1}$
= $\frac{3 \cdot 10 \cdot 11}{-330}$

 \sim 05. Prove by mathematical induction: $1+3+5+7+\cdots+(2n-1)=n^2$ for all positive integers n. [5 pts]

Assume
$$\frac{1}{2}(2n-1)=k^2$$
 the same symbol. $\frac{1}{2}(2j-1)$

Induction shep. Prove $\frac{1}{2}(2n-1)=(k+1)^2$

$$\frac{1}{2}=k^2+2k+1$$

 \Box .

6. Prove by mathematical induction: $2 \cdot 4^n + 3 \cdot 9^n$ is a multiple of 5 for all positive integers n. [5 pts]

Assume that 2.4k+3.9k is a multiple of 5

Induction step: Prone 2.4(k+2), 3.9(k+2) is a multiple of 5

2.4(k+2), 3.9(k+2)

= 32.4k + 243.9k

= 2.4k + 3.9k + 30.4k + 240.9k

= 2.4k + 3.9k + 5 (6.4k + 48.9k)

multiple of 5

from assumption multiple of 5

Base cases: N=1, N=2

n=1: 2-4'+3-9'=8+27=35: samultiple of 5

N=2: Q.42+3.92=32+243=275 is a multiple of 5