مباراة ولوج السنت الأولى لطب الأسنان الثلاثاء 28 يوليو 2015

موضوع مادة: الكيمياء

مدة الإنجاز: 30 دقيقت

كلية لهب الأسفان _ الرباله _

ملحوظة:

◄ يتعين على المترشح الإجابة على الشبكة المرافقة لورقة الموضوع، وذلك بوضع العلامة X على رقم الاقتراح الصحيح الوحيد من بين أربعة اقتراحات: A أو B أو C أو D.

✓ يتضمن الموضوع 10 أسئلة مرقمة من Q23 إلى Q32.

لا يسمح باستعمال الآلة الخاسية

I خلال المدة الزمنية Δt لاشتغال العمود زنك/فضة، يتوضع فلز الفضة $Ag_{(s)}$ على الكترود الفضة، وينتج عن هذا العمود تيار كهربائي شدته

 $x_f = \frac{I.\Delta t}{2.F}$ A

وعبير M(Ag) كتلة الفضة المتوضعة خلال المدة Δt بدلالة I و الفراداي \mathcal{F} و M(Ag) الكتلة المولية الذرية لـ Q24

 $m(Ag) = \frac{I.\Delta t}{F}.M(Ag)$ \mathbf{B} $m(Ag) = \frac{2.I.\Delta t}{F}.M(Ag)$ \mathbf{C} $m(Ag) = \frac{4.I.\Delta t}{F}.M(Ag)$ \mathbf{D} $m(Ag) = \frac{4.F}{I.\Delta t}.M(Ag)$

موصلية محلول حمض البنزويك (6 نقط):

 $C=10^{-2}\,mol.L^{-1}$ وتركيزه المولي $V=20\,mL$ حجمه $V=20\,mL$ حجمه الموصلية σ المولي الم $\sigma = 3.10^{-2} \text{ S.m}^{-1}$

 $.30/38,13 = 0.8 \quad : \quad \lambda_2 = \lambda_{H3O}^{-} = 34,9.10^{-3} \, \text{S.m}^2 \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, \text{S.m}^2 \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, \text{S.m}^2 \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, \text{S.m}^2 \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, \text{S.m}^2 \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, \text{S.m}^2 \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, \text{S.m}^2 \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, \text{S.m}^2 \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, \text{S.m}^2 \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, \text{S.m}^2 \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, \text{S.m}^2 \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, \text{S.m}^2 \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, \text{S.m}^2 \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, \text{S.m}^2 \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, \text{S.m}^2 \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, \text{S.m}^2 \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, \text{S.m}^2 \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, .mol^{-1} \quad : \quad \lambda_I = \lambda_{C_6H_5COO}^{-} = 3,23.10^{-3} \, .mol^{-1} \quad : \quad \lambda_I = \lambda_I = \lambda_I + \lambda_I = \lambda_I + \lambda_I + \lambda_I + \lambda_I + \lambda_I = \lambda_I + \lambda_I + \lambda_I + \lambda_I + \lambda_I + \lambda_I = \lambda_I + \lambda_I + \lambda_I + \lambda_I + \lambda_$

والموصلية الموصلية σ بدلالة والموصليات المولية الأيونية للنواتج هو: Q25

 $\sigma = \lambda_1 . \lambda_2 . \left[H_3 O^+ \right]_{\acute{e}a}$ A

 $\mathbf{B} \qquad \sigma = \lambda_2 \cdot \left[H_3 O^+ \right]_{\acute{e}q} \qquad \mathbf{C} \qquad \sigma = (\lambda_1 + \lambda_2) \cdot \left[H_3 O^+ \right]_{\acute{e}q} \qquad \mathbf{D} \qquad \sigma = (\lambda_1 + \lambda_2) \cdot \left[H_3 O^+ \right]_{\acute{e}q}^2$

Q26. تركيز أيونات الأوكسونيوم عند حالة توازن المجموعة الكيميائية هو: $\left[H_3O^+\right]_{\acute{e}q} = 0.8.10^{-2} \ \mathrm{mol.}L^1 \ \mathbf{B} \ \left[H_3O^+\right]_{\acute{e}q} = 0.8.10^{-3} \ \mathrm{mol.}L^1$ $\mathbf{C} \quad \left[H_3 O^+ \right]_{\acute{e}q} = 0.8.10^{-4} \ mol. L^1 \quad \mathbf{D} \quad \left[H_3 O^+ \right]_{\acute{e}q} = 0.8.10^{-6} \ mol. L^1$

Q27. تركيز حمض البنزويك عند حالة توازن المجموعة الكيميائية هو:

A $[C_6H_5CO_2H]_{\acute{e}q} = 0.8.10^{-3} \text{ mol.} L^1$ **B** $[C_6H_5CO_2H]_{\acute{e}q} = 9.92.10^{-3} \text{ mol.} L^1$ $\mathbf{C} \quad [C_6 H_5 C O_2 H]_{\acute{e}q} = 0.8.10^{-2} \ mol.L^{-1} \quad \mathbf{D} \quad [C_6 H_5 C O_2 H]_{\acute{e}q} = 9.2.10^{-3} \ mol.L^{-1}$

الأنترمباسموديك (l'antispasmodique) (3 نقط):

يُعرَفُ بنزوات البنزيل $V_B = 50 \, mL$ في الطب بالأنتيسباسموديك يستعمل ضد السُعال (benzoate de benzyle) وأي الطب بالأنتيسباسموديك يستعمل ضد السُعال (sirop). نقوم بحلماة بنزوات البنزيل الموجود في عينة من شراب (sirop)، لتسكين السُعال، بواسطة حجم $V_B = 50 \, mL$ محلول مائي لهيدروكسيد الموفيرة بواسطة محلول مائي لحمض الصوديوم $V_B = 18 \, mL$ بعده نعاير أيونات الهيدروكسيد الوفيرة بواسطة محلول مائي لحمض الكلوريدريك تركيزه المولي $V_A = 18 \, mL$. الحجم المضاف عند التكافؤ هو: $V_A = 18 \, mL$

/Q28. كمية مادة بنزوات البنزيل المتواجدة في عينة شراب السُعال هي:

A n = 5 mmol B n = 1.8 mmol C n = 6.8 mmol D n = 3.2 mmol

تصنيع إستر (نقطتان):

بواسطة تركيب التسخين بالارتداد، نسخن عند $70^{\circ}C$ ، خليطا مكونا من $1 \, mol$ من حمض الإيثانويك و $1 \, mol$ من البوتان -2-أول. نتبع تطور تقدم التفاعل، وعند حالة توازن المجموعة الكيميائية نجد أن نسبة التقدم النهائي هي $\tau_f = 0.60$.

و29. قيمة K ثابتة التوازن هي:

A K = 4 **B** K = 2,25 **C** K = 0,6 **D** K = 0,36

تفكك البولة (décomposition de l'urée) (5 نقط):

نتفكك البولة CO $(NH_2)_2$ في وسط مائي وينتج عنها وفق تفاعل OCN^- بطيء، تكون أيونات الآمونيوم NH_4^+ وأيونات السينات NH_4^+ حسب المعادلة: $(NH_2)_2CO_{(aq)} \Rightarrow NH_{4(aq)}^+ + OCN_{(aq)}^-$ مكنت دراسة حركية بقياس موصلية حجم $V = 100 \, mL$ من محلول البولة، موجود في حمام مريم عند $V = 100 \, mL$ وذي التركيز المولي $V = 100 \, mL$ من المصول على المنحنى جانبه لتطور التقدم $V = 100 \, mL$ نرمز لموصلية المحلول بي $V = 100 \, mL$

Q30. تعبير التقدم x للتفاعل هو:

A $x = C.V.\frac{\sigma}{\sigma_{max}}$ B $x = C.V.\sigma.\sigma_{max}$ C $x = C.V.\frac{\sigma_{max}}{\sigma}$ D $x = \frac{\sigma_{max}}{C.V.\sigma}$

يمة التقدم الأقصى x_{max} للتفاعل هي: Q31

A $x_{max} = 1 \, mmol$ B $x_{max} = 0.5 \, mmol$ C $x_{max} = 1.5 \, mmol$ D $x_{max} = 2 \, mmol$

وي: يند اللحظة $t = 200 \, min$ نسبة التقدم النهائي للتفاعل تساوي:

A $\tau = 80\%$ **B** $\tau = 85\%$ **C** $\tau = 90\%$ **D** $\tau = 95\%$