

Estados físicos da matéria e gráficos de mudança de fase

Resumo

Estado físico da matéria

A matéria se apresenta em três estados físicos: sólido, líquido e gasoso.

Sólidos

Estado físico onde as interações intermoleculares são extremamente fortes e com isso faz com que sua forma e volume sejam fixas, ou seja, elas não se moldam ao tipo de recipiente em que se encontram. Já em relação a agitação das moléculas, os sólidos têm um grau de agitação das moléculas baixa.

Líquidos

Os líquidos têm suas interações intermoleculares com um maior comprimento que dos sólidos por exemplo, isso faz com que esse estado físico assuma uma forma fluída e assume a forma do recipiente aonde se encontra. Por mais que sua forma tenha essa característica "moldável" seu volume é fixo, pois o seu grau de agitação ser intermediário, ou seja, maior que dos sólidos, porém menor que dos gases, ainda não é suficiente para fazer com que seu volume seja variável.

Gases

Em virtude da baixa interação entre as moléculas nesse estado físico, o grau de agitação das moléculas nos gases é elevado, e com isso vem a explicação do fato da forma e do volume dos gases serem variáveis.

Mudança de estado físico da matéria

É importante ressaltar que as energias desses estados são diferentes, logo as transformações feitas requerem quantidades de calor diferentes em diferentes sentidos dependendo da transformação feitas. Veja as figuras abaixo:

Obs: Na figura acima, a seta para esquerda indica o sentido da liberação de calor.

As passagens entre os três estados físicos (sólido, líquido e gasoso) têm o nome de mudanças de estado físico.

1) Substâncias Puras

As transformações físicas das substâncias puras ocorrem a temperaturas constantes, como vemos a seguir:

Os patamares do gráfico mostram que coexistem dois estados físicos.

2) Misturas

As transformações físicas das misturas não ocorrem a temperaturas constantes, como mostra o gráfico a seguir.

Misturas Eutéticas

Essas misturas comportam-se como se fossem substâncias puras durante sua fusão, ou seja, apresentam transformação física constante durante a sua fusão.

Exemplo: solda (estanho + chumbo)

Misturas Azeotrópicas

Essas misturas comportam-se como se fossem substâncias puras durante sua ebulição, ou seja, apresentam transformação física constante durante a sua ebulição.

Exemplo: solução alcoólica (96% de álcool + 4% de água).

Quer ver este material pelo Dex? Clique aqui

Exercícios

1. Alguns fenômenos observados no cotidiano estão relacionados com as mudanças ocorridas no estado físico da matéria. Por exemplo, no sistema constituído por água em um recipiente de barro, a água mantém-se fresca mesmo em dias quentes.

A explicação para o fenômeno descrito é que, nas proximidades da superfície do recipiente, a

- a) condensação do líquido libera energia para o meio.
- **b)** solidificação do líquido libera energia para o meio.
- c) evaporação do líquido retira energia do sistema.
- d) sublimação do sólido retira energia do sistema.
- e) fusão do sólido retira energia do sistema.
- **2.** Ao aquecer o iodo num béquer coberto com o vidro de relógio, após certo tempo observa-se que seus vapores ficaram roxos.

Esse fenômeno é uma mudança de estado físico chamada

- a) liquefação.
- b) fusão.
- c) sublimação.
- d) solidificação.
- e) ebulição.

- **3.** Durante o ciclo hidrológico ocorrem diversas mudanças de estado físico da água. Um exemplo de mudança de estado denominada sublimação ocorre quando
 - a) vapor de água em elevadas altitudes transforma-se em neve.
 - b) gotículas de água transformam-se em cristais de gelo no interior das nuvens.
 - c) gotículas de água presentes nas nuvens transformam-se em gotas de chuva.
 - d) vapor de água em baixas altitudes transforma-se em neblina.
 - e) vapor de água em baixas altitudes transforma-se em orvalho.
- 4. O café solúvel é obtido a partir do café comum dissolvido em água. A solução é congelada e, a seguir, diminui-se bruscamente a pressão. Com isso, a água passa direta e rapidamente para o estado gasoso, sendo eliminada do sistema por sucção. Com a remoção da água do sistema, por esse meio, resta o café em pó e seco. Identifique as mudanças de estado físico ocorridas neste processo:
 - a) solidificação e fusão.
 - b) vaporização e liquefação.
 - c) fusão e ebulição.
 - d) solidificação e sublimação.
 - e) fusão e liquefação
- 5. Os estados de agregação das partículas de um material indeterminado possuem algumas características diferentes, conforme mostra a Figura 1. Por outro lado, as mudanças de estado físico desse mesmo material são representadas por meio de uma curva de aquecimento que correlaciona valores de temperatura com a quantidade de energia fornecida sob a forma de calor, apresentada na Figura 2.

Uma relação entre os dados da Figura 2 e os estados de agregação da Figura 1 permite estabelecer que

- a) B gasoso, D líguido, E sólido.
- **b)** A sólido, C líquido, E gasoso.
- c) A sólido, B líquido, C gasoso.
- d) C sólido, D líquido, E- gasoso.
- e) A líquido, D sólido, E gasosso

6. Podemos determinar o estado físico de uma substância, observando sua temperatura de fusão e de ebulição. Observe o quadro abaixo:

Substâncias	Fusão (°C)	Ebulição (°C)
Oxigênio	-218,4	-183,0
Amônia	-77,7	-33,4
Metanol	-97,0	64,7
Alumínio	660,0	2056,0

Assinale a alternativa CORRETA.

- a) É possível determinar se uma substância é sólida, apenas pelo seu ponto de ebulição.
- **b)** O alumínio é sólido nas condições ambientes, pois apresenta baixo ponto de fusão.
- c) A 70°C o metanol é líquido.
- d) A amônia apresenta alto ponto de fusão e ebulição.
- e) A 25°C o oxigênio é gasoso.
- **7.** Os processos envolvidos nas mudanças de estado físico da matéria, conforme figura a seguir, envolvem transferência de calor.

Dentre esses processos, os que envolvem, respectivamente, absorção e liberação de calor são:

- a) solidificação e condensação
- b) sublimação e solidificação
- c) fusão e vaporização
- **d)** vaporização e fusão
- e) condensação e sublimação

8. Observe os dois gráficos de variação da temperatura ao longo do tempo, disponibilizados abaixo:

Um dos gráficos corresponde ao perfil de uma substância pura e o outro, ao perfil de uma mistura.

O período de tempo que a substância pura permanece totalmente líquida e a temperatura de ebulição da mistura, respectivamente, são

- a) ^{5 s} e 10°C.
- b) ^{5 s} e 100°C.
- c) 10 s e 50°C.
- d) 10 s e 60°C.

9. A figura representa a curva de aquecimento de uma amostra, em que S, L e G significam, respectivamente, sólido, líquido e gasoso. Com base nas informações da figura é CORRETO afirmar que a amostra consiste em uma

- a) substância pura.
- b) mistura coloidal.
- c) mistura heterogênea.
- d) mistura homogênea azeotrópica.
- e) mistura homogênea eutética.

10. A adição de cloreto de sódio à água reduz o seu ponto de congelamento devido ao efeito crioscópico. A presença de 23,3% de $NaC\ell_{(s)}$ na água pode reduzir o seu ponto de congelamento a -21,1°C,

formando entre ambos uma mistura eutética. Se $NaC\ell$ sólido for adicionado ao gelo acima dessa temperatura, parte desse gelo se fundirá e ocorrerá a dissolução do sal adicionado. Se mais sal for adicionado, o gelo continuará a fundir. Essa é uma prática comum, utilizada para remover o gelo das ruas das cidades em que neva no inverno.

PERUZZO, F. M; CANTO, E. L. *Química*: na abordagem do cotidiano. v. 2. Físico-Química. 4. ed. São Paulo: Moderna, 2006. – Texto adaptado.

Assinale a alternativa na qual a curva de aquecimento da mistura eutética citada acima está corretamente representada.

Legenda: S=Sólido; L=Líquido, G=Gasoso.

Gabarito

1. C

A evaporação que ocorre na superfície do líquido retira calor do sistema resfriando-o. $H_2O_{(\ell)}$ + calor \to $H_2O_{(v)}$

2. C

A mudança de estado de agregação caracterizada pela passagem do estado sólido para o gasoso é classificada como sublimação.

3. A

Principais processos de transferência da água na Terra: evaporação, precipitação e escoamento. No processo de precipitação, em elevadas altitudes, o vapor de água transforma-se em neve que precipita na superfície do planeta.

Esquematicamente:

Fonte: Ministério do Meio Ambiente (adaptado).

4. D

Quando a solução é congelada, passa do estado líquido para o sólido – solidificação. Quando a água congelada passa direta e rapidamente para o gasoso – sublimação.

5. B

A água pura à pressão de 1 atm, abaixo de 0°C água encontra-se no estado sólido, de 0°C à 100°C encontra-se no estado líquido e acima dessa temperatura se torna gasosa, portanto: A - sólida, C - líquida e E - gasosa.

6. E

- a) Incorreta. É necessário conhecer seu ponto de fusão, ou seja, a passagem do sólido para o líquido.
- b) Incorreta. O alumínio é sólido a temperatura ambiente, por apresentar alto ponto de fusão.
- c) Incorreta. A -97 °C o metanol passa do estado sólido para líquido e permanece líquido até a temperatura de 64,7 °C quando passa para o estado gasoso. Portanto, a 70 °C o metanol se apresenta no estado gasoso.
- d) Incorreta. A amônia apresenta baixos pontos de fusão e ebulição (abaixo de zero, segundo a tabela)
- e) Correta. A −183 °C o oxigênio passa do estado líquido para o gasoso e acima desse valor se mantém nesse estado físico.

7. B

Absorção de calor: sublimação. Sólido + calor → Gasoso

Liberação de calor: solidificação. Líquido → Sólido + calor

8. B

A substância permanece totalmente líquida no intervalo de 10s a 15s, permanecendo nesse estado físico, durante 5s.

Pelo gráfico, podemos concluir que a mistura possui o ponto de ebulição em 100°C:

9. E

O gráfico representa uma mistura homogênea eutética, pois a temperatura de fusão é constante e existe um intervalo de ebulição (TE_1 a TE_2):

10. B

Misturas eutéticas são aquelas em que a fusão ocorre a uma temperatura constante, mas a ebulição ocorre num dado intervalo de temperatura. O gráfico correspondente é o da alternativa [B].