

Deep Learning for Computer Vision

Dr. Konda Reddy Mopuri Mehta Family School of Data Science and Artificial Intelligence IIT Guwahati Aug-Dec 2022

So far in the course

Scoring function, loss function, gradient descent

So far in the course

- Scoring function, loss function, gradient descent
- Artificial Neurons and Multi-Layered Perceptron

So far in the course

- Scoring function, loss function, gradient descent
- Artificial Neurons and Multi-Layered Perceptron
- Backpropagation

Neurons are similar to that of MLP

- Neurons are similar to that of MLP
 - Perform a linear (dot product) operation and have a nonlinearity

- Neurons are similar to that of MLP
 - Perform a linear (dot product) operation and have a nonlinearity
- Architecture will have a differentiable loss function, backpropagation is used

- Neurons are similar to that of MLP
 - Perform a linear (dot product) operation and have a nonlinearity
- Architecture will have a differentiable loss function, backpropagation is used
- Same tips and tricks apply

- Neurons are similar to that of MLP
 - Perform a linear (dot product) operation and have a nonlinearity
- Architecture will have a differentiable loss function, backpropagation is used
- Same tips and tricks apply
- So, what changes?

An MLP

Input is a vector

An MLP

- Input is a vector
- Series of densely connected hidden layers

An MLP

- Input is a vector
- Series of densely connected hidden layers
- Neurons in each layer are independent

 \bullet Say, we want to process a 200×200 RGB image

- ullet Say, we want to process a 200×200 RGB image
- \bullet Vectorizing leads to $200\times200\times3\rightarrow120K$ neurons in the input layer

- \bullet Say, we want to process a 200×200 RGB image
- \bullet Vectorizing leads to $200 \times 200 \times 3 \rightarrow 120 K$ neurons in the input layer
- A hidden layer of same size leads to $\approx 1.44e^{10}$ weights $\rightarrow \approx 58GB$

- \bullet Say, we want to process a 200×200 RGB image
- ullet Vectorizing leads to $200 \times 200 \times 3 \rightarrow 120 K$ neurons in the input layer
- A hidden layer of same size leads to $\approx 1.44e^{10}$ weights $\rightarrow \approx 58GB$
- Full connectivity blows the number of weights → hardware limits, overfitting, etc.

- \bullet Say, we want to process a 200×200 RGB image
- Vectorizing leads to $200 \times 200 \times 3 \rightarrow 120 K$ neurons in the input layer
- A hidden layer of same size leads to $\approx 1.44e^{10}$ weights $\rightarrow \approx 58GB$
- ullet Full connectivity blows the number of weights o hardware limits, overfitting, etc.
- Flattening removes the structure

Large Signals

Have invariance in translation

Large Signals

- Have invariance in translation
- Features may occur at different locations in the signal

Large Signals

- Have invariance in translation
- Features may occur at different locations in the signal
- Convolution incorporates this idea: Applies same linear operation at all the locations and preserves the structure

3

Output (width W-w+1)

Output (width W-w+1)

Preserves the structure

- Preserves the structure
 - $\, \bullet \,$ if the i/p is a 2D tensor $\rightarrow \, o/p$ is also a 2D tensor

- Preserves the structure
 - if the i/p is a 2D tensor \rightarrow o/p is also a 2D tensor
 - There exist a relation between the locations of i/p and o/p values

ullet Let ${f x}=(x_1,x_2,\ldots x_W)$ is the input, ${f k}=(k_1,k_2,\ldots k_w)$ is the kernel

- ullet Let ${f x}=(x_1,x_2,\ldots x_W)$ is the input, ${f k}=(k_1,k_2,\ldots k_w)$ is the kernel
- \bullet The result $(x \circledast k)$ of convolving ${\bf x}$ with ${\bf k}$ will be a 1D tensor of size W-w+1

$$(x \circledast k)_i = \sum_{j=1}^w x_{i-1+j} k_j$$
$$= (x_i, \dots x_{i+w-1}) \cdot \mathbf{k}$$

17

Powerful feature extractor

- Powerful feature extractor
- For instance, it can perform differential operation and look for interesting patterns in the input

- Powerful feature extractor
- For instance, it can perform differential operation and look for interesting patterns in the input

0

$$(0,0,0,1,2,3,4,4,4,4) \otimes (-1,1) = (0,0,1,1,1,1,0,0,0)$$

- Powerful feature extractor
- For instance, it can perform differential operation and look for interesting patterns in the input

0

$$(0,0,1,1,0,0.1,0.2,1,1,1,0) \otimes (1,1) = (0,1,2,1,0.1,0.3,1.2,2,2,1)$$

Naturally generalizes to multiple dimensions

- Naturally generalizes to multiple dimensions
- In their most usual form, CNNs process 3D tensors of size $C \times H \times W$ with kernels of size $C \times h \times w$ and result in 2D tensors of size $H-h+1\times W-w+1$

- Naturally generalizes to multiple dimensions
- In their most usual form, CNNs process 3D tensors of size $C \times H \times W$ with kernels of size $C \times h \times w$ and result in 2D tensors of size $H-h+1 \times W-w+1$
- Note that we generally refer to these inputs as 2D signal (despite having C channels), because, they are referenced as vectors indexed by 2d locations without structure in the channel dimension

Kernel is not convolved in the channel dimension

- Kernel is not convolved in the channel dimension
- \bullet Another way to interpret convolution is that an affine function is applied on an input block of size $C\times h\times w$

- Kernel is not convolved in the channel dimension
- Another way to interpret convolution is that an affine function is applied on an input block of size $C \times h \times w$

Same affine function is applied on all such blocks in the input

32

- Kernel is not convolved in the channel dimension
- Another way to interpret convolution is that an affine function is applied on an input block of size $C \times h \times w$ and results in output of size $D \times 1 \times 1$

Same affine function is applied on all such blocks in the input

Preserves the input structure

- Preserves the input structure
 - 1D signal outputs 1D signal, 2D signal outputs 2D signal

- Preserves the input structure
 - 1D signal outputs 1D signal, 2D signal outputs 2D signal
 - $\,\,$ Adjacent components in o/p are influenced by adjacent parts in the i/p

- Preserves the input structure
 - 1D signal outputs 1D signal, 2D signal outputs 2D signal
 - $\, \bullet \,$ Adjacent components in o/p are influenced by adjacent parts in the i/p
- If the channel dimension has a metric meaning (e.g. time) 3D convolution can be employed (e.g. frames in a video)

Terminology in Convolution

F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

- F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
- ullet weight is $D \times C \times h \times w$ dimensional kernels

- F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
- ullet weight is $D \times C \times h \times w$ dimensional kernels
- bias D dimensional

- F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
- ullet weight is $D \times C \times h \times w$ dimensional kernels
- bias D dimensional
- ullet input is N imes C imes H imes W dimensional signal

- F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
- ullet weight is $D \times C \times h \times w$ dimensional kernels
- bias D dimensional
- ullet input is $N \times C \times H \times W$ dimensional signal
- Output is $N \times D \times (H h + 1) \times (W w + 1)$ tensor

- F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
- ullet weight is $D \times C \times h \times w$ dimensional kernels
- bias D dimensional
- ullet input is N imes C imes H imes W dimensional signal
- Output is $N \times D \times (H h + 1) \times (W w + 1)$ tensor
- Autograd compliant


```
input = torch.empty(128, 3, 20, 20).normal_()
weight = torch.empty(5, 3, 5, 5).normal_()
bias = torch.empty(5).normal_()
output = F.conv2d(input, weight, bias)
output.size()
torch.Size([128, 5, 16, 16])
```

Look/Access the filters


```
weight[0,0]
tensor([[-0.6974, 0.1342, -0.2632, -0.4672, 0.1827],
[-0.1184, -0.2164, 0.2772, -0.1099, 0.0103],
[-0.8272, 0.3580, 0.2398, -0.5795,-0.9472],
[-1.1734, -0.1019, 0.7394, 0.3342, 0.1699],
[ 1.9271, 0.1250, 0.4222, 0.2014, 1.1100]])
```


o Class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

- Class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
- kernel_size can be either a pair (h, w) or a single value k
 interpreted as (k, k).

- Class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
- kernel_size can be either a pair (h, w) or a single value k
 interpreted as (k, k).
- Encloses the convolution as a module

- Class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
- kernel_size can be either a pair (h, w) or a single value k
 interpreted as (k, k).
- Encloses the convolution as a module
- Initializes the kernel parameters and biases as random

Conv layer in PyTorch


```
f = nn.Conv2d(in_channels = 3, out_channels = 5,
kernel_size = (2, 3))
for n, p in f.named_parameters():
...print(n, p.size())

>>weight torch.Size([5, 3, 2, 3])
>>bias torch.Size([5])
```

Conv layer in PyTorch


```
f = nn.Conv2d(in_channels = 3, out_channels = 5,
kernel_size = (2, 3)
for n, p in f.named_parameters():
...print(n, p.size())
>>weight torch.Size([5, 3, 2, 3])
>>bias torch.Size([5])
input = torch.empty(128, 3, 28, 28).normal ()
output = f(input)
output.size()
>>torch.Size([128, 5, 27, 26])
```


Adds zeros around the input

- Adds zeros around the input
- Takes cares of size reduction after convolution

- Adds zeros around the input
- Takes cares of size reduction after convolution
- Instead of zeros, one may pad with signal values at the edges

Stride in Convolution

• Specifies the step size taken while performing convolution

Stride in Convolution

- Specifies the step size taken while performing convolution
- Default value is 1, i.e., move the kernel across the signal densely (without skipping)

Padding and Stride in Convolution

Dilation in Convolution

 Manipulates the size of the kernel via expanding its size without adding weights.

Dilation in Convolution

- Manipulates the size of the kernel via expanding its size without adding weights.
- In other words, it inserts 0s in between the kernel values

Without Dilation

Dilation (2, 2)

49

Expands the kernel by adding rows and columns of zeros

- Expands the kernel by adding rows and columns of zeros
- Default value for dilation is 1, i.e., no zeros placed

- Expands the kernel by adding rows and columns of zeros
- Default value for dilation is 1, i.e., no zeros placed
- Any higher value of dilation makes the kernel sparse

- Expands the kernel by adding rows and columns of zeros
- Default value for dilation is 1, i.e., no zeros placed
- Any higher value of dilation makes the kernel sparse
- Dilation increases the receptive field

- Expands the kernel by adding rows and columns of zeros
- Default value for dilation is 1, i.e., no zeros placed
- Any higher value of dilation makes the kernel sparse
- Dilation increases the receptive field
- It is referred to as 'atrous' convolution

• Groups multiple activations and replaces by a representative one

- Groups multiple activations and replaces by a representative one
- \bullet Reduces the dimensionality of the signal progressively \to considers non-overlapping stride

- Groups multiple activations and replaces by a representative one
- ullet Reduces the dimensionality of the signal progressively o considers non-overlapping stride
- Also called sub-sampling layer

- Groups multiple activations and replaces by a representative one
- ullet Reduces the dimensionality of the signal progressively o considers non-overlapping stride
- Also called sub-sampling layer
- Generally found between two convolution layers (and parameter free)

Max Pooling

Standard in CNNs

Max Pooling

- Standard in CNNs
- Computes maximum value over a non-overlapping blocks in the input

Average Pooling

Computes the average of the receptive field

Pooling in 2D

54

Same as 1D, but the receptive field is 2D and non-overlapping

Figure credits: Preston Hoang and Quora

Pooling in 2D

Contrary to Convolution, Pooling applies channel wise

Pooling in 2D

- Contrary to Convolution, Pooling applies channel wise
- No reduction in number of channels, only spatial size reduction

Pooling provides weak invariance

Operation is invariant to any permutation within the block

Pooling provides weak invariance

- Operation is invariant to any permutation within the block
- Withstands deformations caused by local translations


```
F.max_pool2d(input, kernel_size, stride=None, padding=0,
dilation=1, ceil_mode=False, return_indices=False)
```

Applies max pooling on each of the channels separately

F.max_pool2d(input, kernel_size, stride=None, padding=0,
dilation=1, ceil_mode=False, return_indices=False)

- Applies max pooling on each of the channels separately
- ullet input is $N \times C \times H \times W$ tensor

F.max_pool2d(input, kernel_size, stride=None, padding=0,
dilation=1, ceil_mode=False, return_indices=False)

- Applies max pooling on each of the channels separately
- ullet input is $N \times C \times H \times W$ tensor
- kernel_size is (h, w) or k

F.max_pool2d(input, kernel_size, stride=None, padding=0,
dilation=1, ceil_mode=False, return_indices=False)

- Applies max pooling on each of the channels separately
- ullet input is $N \times C \times H \times W$ tensor
- kernel_size is (h, w) or k
- Result would be a tensor of size $N \times C \times \lfloor H/h \rfloor \times \lfloor W/w \rfloor$

Pooling in PyTorch

Default stride is the kernel size (for convolution, it is 1)

Pooling in PyTorch

- Default stride is the kernel size (for convolution, it is 1)
- But, it can be modulated if required

Pooling in PyTorch

- Default stride is the kernel size (for convolution, it is 1)
- But, it can be modulated if required
- Default padding is zero

Pooling Layer in PyTorch

class torch.nn.MaxPool2d(kernel_size, stride=None,
padding=0, dilation=1, return_indices=False,
ceil mode=False)

Putting it all together

61

62

Initially Conv layer with nonlinearity

62

- Initially Conv layer with nonlinearity
- Followed by a few Conv + Nonlinearity layers

- Initially Conv layer with nonlinearity
- Followed by a few Conv + Nonlinearity layers
- \bullet Have Pooling layers in between Conv layers \to reduce the feature map size sufficiently

- Initially Conv layer with nonlinearity
- Followed by a few Conv + Nonlinearity layers
- ullet Have Pooling layers in between Conv layers o reduce the feature map size sufficiently
- Vectorize and and fully connected layers

63

64

65

input size/ layer information	output size	# parameters	# products
$1 \times 28 \times 28$			
nn.Conv2d(1, 32, kernel_size=5)			

input size/ layer information	output size	# parameters	# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$		
nn.Conv2d(1, 32, kernel_size=5)			

input size/ layer information	output size	# parameters	# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$	$32.(5^2+1)$	
nn.Conv2d(1, 32, kernel_size=5)		= 832	

input size/ layer information	output size	# parameters	# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$	$32.(5^2+1)$	$32.24^2.5^2$
nn.Conv2d(1, 32, kernel_size=5)		= 832	=460800
$32 \times 24 \times 24$			
<pre>F.max_pool2d(., kernel_size=3)</pre>			

input size/ layer information	output size	# parameters	# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$	$32.(5^2+1)$	$32.24^2.5^2$
nn.Conv2d(1, 32, kernel_size=5)		= 832	=460800
$32 \times 24 \times 24$			
<pre>F.max_pool2d(., kernel_size=3)</pre>	$32 \times 8 \times 8$	0	0

input size/ layer information	output size	# parameters	# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$	$32.(5^2+1)$	$32.24^2.5^2$
nn.Conv2d(1, 32, kernel_size=5)		= 832	=460800
$32 \times 24 \times 24$			
<pre>F.max_pool2d(., kernel_size=3)</pre>	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8 / \text{F.relu(.)}$	$32 \times 8 \times 8$	0	0

input size/ layer information	output size	# parameters	# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$	$32.(5^2+1)$	$32.24^2.5^2$
nn.Conv2d(1, 32, kernel_size=5)		= 832	=460800
$32 \times 24 \times 24$			
<pre>F.max_pool2d(., kernel_size=3)</pre>	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8 / \text{F.relu(.)}$	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8$			
nn.conv2d(32, 64, kernel_size=5)			

input size/ layer information	output size	# parameters	# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$	$32.(5^2+1)$	$32.24^2.5^2$
nn.Conv2d(1, 32, kernel_size=5)		= 832	=460800
$32 \times 24 \times 24$			
<pre>F.max_pool2d(., kernel_size=3)</pre>	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8 / \text{F.relu(.)}$	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8$			
nn.conv2d(32, 64, kernel_size=5)	$64 \times 4 \times 4$		

input size/ layer information	output size	# parameters	# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$	$32.(5^2+1)$	$32.24^2.5^2$
nn.Conv2d(1, 32, kernel_size=5)		= 832	=460800
$32 \times 24 \times 24$			
<pre>F.max_pool2d(., kernel_size=3)</pre>	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8 / \text{F.relu(.)}$	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8$		$64.(32.5^2+1)$	
nn.conv2d(32, 64, kernel_size=5)	$64 \times 4 \times 4$	=51264	

input size/ layer information	output size	# parameters	# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$	$32.(5^2+1)$	$32.24^2.5^2$
nn.Conv2d(1, 32, kernel_size=5)		= 832	=460800
$32 \times 24 \times 24$			
<pre>F.max_pool2d(., kernel_size=3)</pre>	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8 / \text{F.relu(.)}$	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8$		$64.(32.5^2+1)$	$64.32.4^2.5^2$
nn.conv2d(32, 64, kernel_size=5)	$64 \times 4 \times 4$	=51264	= 819200

input size/ layer information	output size	# parameters	# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$	$32.(5^2+1)$	$32.24^2.5^2$
nn.Conv2d(1, 32, kernel_size=5)		= 832	=460800
$32 \times 24 \times 24$			
<pre>F.max_pool2d(., kernel_size=3)</pre>	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8 / \text{F.relu(.)}$	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8$		$64.(32.5^2+1)$	$64.32.4^2.5^2$
nn.conv2d(32, 64, kernel_size=5)	$64 \times 4 \times 4$	=51264	= 819200
$64 \times 4 \times 4$			
<pre>F.max_pool2d(., kernel_size=2)</pre>	$64 \times 2 \times 2$	0	0

:		//	//
input size/ layer information	output size	# parameters	# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$	$32.(5^2+1)$	$32.24^2.5^2$
<pre>nn.Conv2d(1, 32, kernel_size=5)</pre>		= 832	=460800
$32 \times 24 \times 24$			
<pre>F.max_pool2d(., kernel_size=3)</pre>	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8 / \text{F.relu(.)}$	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8$		$64.(32.5^2+1)$	$64.32.4^2.5^2$
nn.conv2d(32, 64, kernel_size=5)	$64 \times 4 \times 4$	=51264	= 819200
$64 \times 4 \times 4$			
<pre>F.max_pool2d(., kernel_size=2)</pre>	$64 \times 2 \times 2$	0	0
$64 \times 2 \times 2$ / F.relu(.)	$64 \times 2 \times 2$	0	0

input size/ layer information	output size	# parameters	# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$	$32.(5^2+1)$	$32.24^2.5^2$
nn.Conv2d(1, 32, kernel_size=5)		= 832	=460800
$32 \times 24 \times 24$			
<pre>F.max_pool2d(., kernel_size=3)</pre>	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8 / \text{F.relu(.)}$	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8$		$64.(32.5^2+1)$	$64.32.4^2.5^2$
nn.conv2d(32, 64, kernel_size=5)	$64 \times 4 \times 4$	=51264	= 819200
$64 \times 4 \times 4$			
<pre>F.max_pool2d(., kernel_size=2)</pre>	$64 \times 2 \times 2$	0	0
$64 \times 2 \times 2 / \text{F.relu(.)}$	$64 \times 2 \times 2$	0	0
$64 \times 2 \times 2$	256	0	0
x.view(-1,256)			
256			
nn.Linear(256,200)	200		

input size/ layer information	output size	# parameters	# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$	$32.(5^2+1)$	$32.24^2.5^2$
nn.Conv2d(1, 32, kernel_size=5)		= 832	=460800
$32 \times 24 \times 24$			
<pre>F.max_pool2d(., kernel_size=3)</pre>	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8 / \text{F.relu(.)}$	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8$		$64.(32.5^2+1)$	$64.32.4^2.5^2$
nn.conv2d(32, 64, kernel_size=5)	$64 \times 4 \times 4$	= 51264	= 819200
$64 \times 4 \times 4$			
<pre>F.max_pool2d(., kernel_size=2)</pre>	$64 \times 2 \times 2$	0	0
$64 \times 2 \times 2 / \text{F.relu(.)}$	$64 \times 2 \times 2$	0	0
$64 \times 2 \times 2$	256	0	0
x.view(-1,256)			
256			
nn.Linear(256,200)	200	200(256+1)=51400	200.256=51200

input size/ layer information	output size	# parameters	# products
$1 \times 28 \times 28$	$32 \times 24 \times 24$	$32.(5^2+1)$	$32.24^2.5^2$
nn.Conv2d(1, 32, kernel_size=5)		= 832	=460800
F.max_pool2d(., kernel_size=3)	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8 / \text{F.relu(.)}$	$32 \times 8 \times 8$	0	0
$32 \times 8 \times 8$		$64.(32.5^2+1)$	$64.32.4^2.5^2$
nn.conv2d(32, 64, kernel_size=5)	$64 \times 4 \times 4$	=51264	= 819200
$64 \times 4 \times 4$			
<pre>F.max_pool2d(., kernel_size=2)</pre>	$64 \times 2 \times 2$	0	0
$64 \times 2 \times 2$ / F.relu(.)	$64 \times 2 \times 2$	0	0
$64 \times 2 \times 2$	256	0	0
x.view(-1,256)			
256	0	0	0
nn.Linear(256,200)	200	200(256+1)=51400	200.256=51200
200 / F.relu(.)	200	0	0
200	0	0	0
nn.Linear(200,10)	10	10(200+1)=2010	10.200=2000

Recent architectures are more sophisticated

 Note that LeNet is a classical architecture and does not reflect the recent CNNs in complexity

Recent architectures are more sophisticated

- Note that LeNet is a classical architecture and does not reflect the recent CNNs in complexity
- Recent CNN architectures are far more sophisticated [Contents of the next lecture(s)]
 - More depth
 - Regularizers to handle the depth