Overview and Purpose: This analysis aims to develop a predictive tool for Alphabet Soup, a nonprofit foundation, to identify funding applicants with the highest likelihood of success in their ventures. By leveraging machine learning and neural networks, the provided dataset will be analyzed to build a binary classifier capable of predicting whether an applicant is likely to succeed if funded by Alphabet Soup.

Results: Data Preprocessing

1. Target Variable

- The target variable for the model is:
 - IS_SUCCESSFUL: A binary variable indicating whether the applicant was successful (1) or not (0).

2. Feature Variables

- The following variables were selected as features for the model:
 - APPLICATION_TYPE
 - AFFILIATION
 - CLASSIFICATION
 - USE_CASE
 - ORGANIZATION
 - STATUS
 - INCOME_AMT
 - SPECIAL CONSIDERATIONS
 - ASK AMT

3. Irrelevant Variables Removed

- The following variables were removed from the input data as they are neither targets nor meaningful features:
 - o EIN: A unique identifier for each applicant that doesn't contribute to the prediction.
 - NAME: Often highly unique and unlikely to be predictive of success.

```
# Drop the non-beneficial ID columns, 'EIN' and 'NAME'.
application_df = application_df.drop(columns=['EIN', 'NAME'])
```

4. Preprocessing Steps

- Binning:
 - The columns APPLICATION_TYPE and CLASSIFICATION were binned to reduce the number of unique categories, ensuring meaningful groupings and avoiding overfitting.

```
[ 0] Second a control value and events a list of application types as the regulators of applications, types, types are explicated, types, types are explicated, types, types are explicated, types, types are explicated types, ty
```

- Encoding Categorical Data:
 - All categorical columns were converted into numeric representations using pd.get_dummies, enabling the model to process them.

Compiling, Training, and Evaluating the Model

Neural Network Architecture

- Number of Input Features:
 - Determined dynamically using len(X_train_scaled[0]) to match the dataset's features.
- Hidden Layers:
 - o First Hidden Layer:

Neurons: 80

Activation Function: ReLU

Second Hidden Layer:

Neurons: 30

Activation Function: ReLU

Output Layer:

Neurons: 1

Activation Function: Sigmoid (for binary classification)

• Model Summary:

 The model consists of two hidden layers and one output layer. The ReLU activation function was chosen for hidden layers to capture non-linear relationships, while the Sigmoid function was used for the binary classification output.

Model Performance

Initial Model Results:

Accuracy: 72.57%

Loss: 0.5617

This performance was achieved without including the NAME column as a feature.

• Optimized Model Results:

Accuracy: 77.91%

o Loss: 0.4704

 The model performance improved by including the NAME column, which provided additional relevant information, and refining the architecture with the same two-layer structure.

Steps to Improve Model Performance

Feature Engineering:

- Added the NAME column to the categorical features encoded with pd.get_dummies, ensuring all meaningful data was included in the model.
- Verified the existence of all specified columns before encoding to prevent errors or data loss.

• Hyperparameter Tuning:

- Experimented with the number of neurons in hidden layers (80 and 30) to balance model complexity and generalization.
- Used the ReLU activation function for efficient training in hidden layers and Sigmoid for output.

• Preprocessing Improvements:

o Standardized features with X_train_scaled to optimize model convergence.

Summary

• Overall Results:

• The optimized model achieved an accuracy of 77.91% and a loss of 0.4704 on the test dataset, showing significant improvement compared to the initial implementation.