Exploring alternative SRG generators in one dimension

Matthias Heinz, Kai Hebeler, Achim Schwenk

Potentials in Nuclear Physics

- ► Finite-range attractive force
- Short-range repulsion
- Repulsion couples low and high momenta
- Leads to poor many-body convergence

The Similarity Renormalization Group (SRG)

SRG:

Class of continuous unitary transformations given by:

$$\frac{dH_s}{ds} = [[G, H_s], H_s]$$

- $ightharpoonup s = 1/\lambda^4$
- ► H_s goes to form of G

The Similarity Renormalization Group (SRG)

SRG:

Class of continuous unitary transformations given by:

$$\frac{dH_s}{ds} = [[G, H_s], H_s]$$

- $ightharpoonup s = 1/\lambda^4$
- ► H_s goes to form of G

Features:

- Improved many-body convergence
- Induction of many-body forces

Roth et al., Phys.Rev.Lett. 107 (2011) 072501

The Similarity Renormalization Group (SRG)

SRG:

Class of continuous unitary transformations given by:

$$\frac{dH_s}{ds} = [[G, H_s], H_s]$$

- $ightharpoonup s = 1/\lambda^4$
- ► H_s goes to form of G

Features:

- Improved many-body convergence
- Induction of many-body forces

Roth et al., Phys.Rev.Lett. 107 (2011) 072501

The Case for Alternative Generators

For
$$G = T_{rel}$$
:
$$\frac{dV_s(k,k')}{ds} = -V_s(k,k')(k^2 - k'^2)^2 + ...$$

Exponential suppression for far off diagonal matrix elements

The Case for Alternative Generators

For
$$G = T_{rel}$$
:
$$\frac{dV_s(k, k')}{ds} = -V_s(k, k')(k^2 - k'^2)^2 + \dots$$

Exponential suppression for far off diagonal matrix elements

For
$$G_s = T_{rel} + X_s$$
 with $X_s(k, k') = W(k, k') V_s(k, k')$:
$$\frac{dV_s(k, k')}{ds} = -(V_s(k, k') - X_s(k, k'))(k^2 - k'^2)^2 + \dots$$

- ► Change in matrix elements small when $X_s(k, k') = V_s(k, k')$
- ightharpoonup Choose W(k, k') to reflect what we want SRG to do

The "Jurgenson" Model

Jurgenson, Furnstahl, Nucl.Phys. A818 (2009)

Features:

- ▶ 1-D
- Bosons
- Negele potential
- Jacobi harmonic oscillator for many-body results

Advantages:

- Model is simple
- Results generalize well to 3-D calculations

Generator: T_{rel}

Generator: Block Diagonal

Generator: Band Diagonal

Outlook

Status:

- ► Have framework to test alternative generators
- Considering generators of form T + WV_s
 makes implementation of new generators easy

Direction:

- Incorporate 4- and 5-body binding energies
- Learn what features of generators lead to what behavior
- Identify features that lead to optimal results

Outlook

Status:

- ► Have framework to test alternative generators
- Considering generators of form T + WV_s
 makes implementation of new generators easy

Direction:

- Incorporate 4- and 5-body binding energies
- Learn what features of generators lead to what behavior
- Identify features that lead to optimal results

Thank you!