Univerza *v Ljubljani* Fakulteta za *matematik*o *in fizik*o

Diferenčne metode za parcialne diferencialne enačbe

10. naloga pri Matematično-fizikalnem praktikumu

Avtor: Marko Urbanč (28191096) Predavatelj: prof. dr. Borut Paul Kerševan

Kazalo

1	Uvod	2
2	Naloga	3
3	Opis reševanja	4
4	Rezultati	4
5	Komentarji in izboljšave	4
Li	uiteratura	

1 Uvod

V prejšnji nalogi smo rekli, da obstajata v glavnem dva velika razreda za reševanje parcialnih diferencialnih enačb (PDE). To sta spektralne metode, ki smo jih raziskali v prejšnji nalogi in pa diferencialne metode, ki jih spoznamo tu. Diferencialne metode so v glavnem metode, ki rešujejo PDE tako, da jih diskretizirajo in jih pretvorijo v sistem linearnih enačb. Te metode so v glavnem zelo podobne kot metode za reševanje sistemov navadnih diferencialnih enačb (ODE). V glavnem se razlikujejo v tem, da so PDE lahko tudi nelinearne in moramo posledično uporabiti iterativne metode za reševanje sistemov linearnih enačb. Tu bomo spoznali metodo končnih diferenc (FDM). Ta temleji na Taylorjevem razvoju s katerim lahko aproksimiramo odvod funkcije. To aproksimacijo nato vstavimo v PDE in dobimo sistem linearnih enačb. Ta sistem nato rešimo iterativno in dobimo končno rešitev.

Fizikalni kontekst za to nalogo bo reševanje enodimenzionalne nestacionarne Schrödingerjeve enačbe, ki se glasi

$$\left(i\hbar\frac{\partial}{\partial t} - H\right)\psi(x, t) = 0. \tag{1}$$

Predstavlja osnovno orodje za nerelativistični opis kvantnih sistemov. V enačbi 1 je H Hamiltonian sistema, ki je v splošnem odvisen od časa. V našem primeru bomo obravnavali časovno neodvisen Hamiltonian

$$H = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) . \tag{2}$$

Z menjavo spremenljivk $H/\hbar \to H$, $x\sqrt{m/\hbar} \to x$ efektivno postavimo $\hbar = m = 1$. V tem primeru je Hamiltonian enak

$$H = -\frac{1}{2}\frac{\partial^2}{\partial x^2} + V(x). \tag{3}$$

Razvoj stanja $\psi(x, t)$ v času $\psi(x, t + \Delta t)$ je opisan z približkom

$$\psi(x, t + \Delta t) = e^{-iH\Delta t}\psi(x, t) \approx \frac{1 - \frac{1}{2}iH\Delta t}{1 + \frac{1}{2}iH\Delta t}\psi(x, t). \tag{4}$$

Območje $x \in [a, b]$ diskretiziramo na krajevno mrežo z N točkami $x_j = a + j\Delta x$, kjer je $\Delta x = (b-a)/(N-1)$. Časovni razvoj spremljamo ob časovni mreži z M točkami $t_m = m\Delta t$, kjer je Δt časovni korak. Vrednosti valovne funkcije in potenciala v mrežnih točkah ob času t_m označimo z ψ_j^m in V_j . Krajevni odvod izrazimo z diferenco

$$\Psi''(x) \approx \frac{\psi(x + \Delta x, t) - 2\psi(x, t) + \psi(x - \Delta x, t)}{\Delta x^2} = \frac{\psi_{j+1}^m - 2\psi_j^m + \psi_{j-1}^m}{\Delta x^2} . (5)$$

Te približke vstavimo v razvoj stanja 4 in razpišemo Hamiltonov operator, da dobimo sistem enačb

$$\psi_{j}^{m+1} - i \frac{\Delta t}{4\Delta x^{2}} \left[\psi_{j+1}^{m+1} - 2\psi_{j}^{m+1} + \psi_{j-1}^{m+1} \right] + i \frac{\Delta t}{2} V_{j} \psi_{j}^{m+1} =$$

$$\psi_{j}^{m} + i \frac{\Delta t}{4\Delta x^{2}} \left[\psi_{j+1}^{m} - 2\psi_{j}^{m} + \psi_{j-1}^{m} \right] - i \frac{\Delta t}{2} V_{j} \psi_{j}^{m} . \quad (6)$$

v notranjih točkah mreže, medtem ko na robu (pri $j\leq 0$ in $j\geq N$) postavimo $\psi_j^m=0$. Vrednosti valovne funkcije uredimo v vektor Ψ^m in sistem 6 prepišemo v matrično obliko

$$\mathbf{A}\Psi^{m+1} = \mathbf{A}^* \Psi^m \,, \tag{7}$$

kjer je A tridiaonalna matrika z elementi

$$b = 1 + i \frac{\Delta t}{2\Delta x^2}, \quad a = -\frac{b}{2}, \quad d_j = 1 + b + i \frac{\Delta t}{2} V_j.$$
 (8)

Torej je A oblike

$$\mathbf{A} = \begin{bmatrix} d_1 & a & 0 & \cdots & 0 \\ a & d_2 & a & \cdots & 0 \\ 0 & a & d_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_{N-1} \end{bmatrix} . \tag{9}$$

Kot smo napovedali, je to torej matrični sistem, ki ga moramo rešiti v vsakem časovnem koraku iterativno.

2 Naloga

Naloga je sestavljena iz dveh delov. V prvem delu naloga od nas zahteva, da spremljamo časovni razvoj začetnega stanja

$$\Psi(x, 0) = \sqrt{\frac{\alpha}{\sqrt{\pi}}} e^{-\alpha^2 (x - \lambda)^2 / 2}, \qquad (10)$$

v harmonskem porencialu $V(x)=1/2\cdot kx^2$, kjer je $\alpha=k^{1/4}$ in $\omega=\sqrt{k}$. Analitična rešitev za to stanje je

$$\psi(x, t) = \sqrt{\frac{\alpha}{\sqrt{\pi}}} \exp\left[-\frac{1}{2}(\xi - \xi_{\lambda}\cos\omega t)^{2} - i\left(\frac{\omega t}{2} + \xi\xi_{\lambda}\sin\omega t - \frac{1}{4}\xi_{\lambda}^{2}\sin2\omega t\right)\right],\tag{11}$$

kjer je $\xi=\alpha x$ in $\xi_{\lambda}=\alpha\lambda$. Postavimo $\omega=0.2$ in $\lambda=10$. Za krajevno mrežo vzamemo razpon $x\in[-40,40]$ in N=300 točk. Nihajni čas je $T=2\pi/\omega$, zato primerno prilagodimo časovni korak Δt in stanje opazujemo deset period. V drugem delu naloge pa moramo spremljati razvoj gaussovskega valovnega paketa

$$\Psi(x, 0) = (2\pi\sigma_0^2)^{-1/4} e^{ik_0(x-\lambda)} e^{-(x-\lambda)^2/(2\sigma_0)^2}.$$
 (12)

v praznem prostoru V(x) = 0. Analitična rešitev za to stanje je

$$\psi(x, t) = \frac{(2\pi\sigma_0^2)^{-1/4}}{\sqrt{1 + it/(2\sigma_0^2)}} \exp\left[\frac{-(x - \lambda)^2/(2\sigma_0^2) + ik_0(x - \lambda) - ik_0^2t/2}{\sqrt{1 + it/(2\sigma_0^2)}}\right]$$
(13)

- 3 Opis reševanja
- 4 Rezultati
- 5 Komentarji in izboljšave

Literatura