This sheet covers the operations to read in data tables, process them into new forms, and translate them into graphical and modeling presentations.

Sources of Data

Data are available through many sources, but a few data tables are regularly used for examples in DCF. You will usually read the data table into R with the data(), or from the Internet with fetchData(), or fetchGapminder() functions:

```
data(nhanes)
data(OrdwayBirdsOrig)
data(WakeVotersSmall)
```

These create data tables with the indicated name.

Assignment & Naming

Use <- or = to store an object by name. Use short, mnemonic names. You can use assignment to create copies of existing tables or to read in new ones.

```
birds <- OrdwayBirdsOrig
voters <- WakeVotersSmall</pre>
```

Know your Data

Be prepared to answer these questions about any data table:

- What constitutes a **case**?
- How many cases are there?
- What are the **variables**?
- What type is each variable?

How many cases?

```
nrow(birds)
[1] 15829
```

Variable names & Renaming

Variable types

Check the variables explicitly to avoid mistakes:

factor mean categorical

```
class(voters)
[1] "data.frame"
class(voters$Age)
[1] "integer"
class(voters$party)
[1] "factor"
```

Dirty Data

Sometimes data will surprise you:

```
class(birds$Month)
[1] "factor"
```

You probably thought Month would be numeric.

See the Levels

Categorical variables have levels.

```
levels(birds$Month)
[1] "" "1" "10" "11"
[5] "12" "2" "25" "3"
[9] "4" "5" "6" "7"
[13] "8" "9" "Month"
```

Someone entered month "25" and the word "Month".

Simple Data Cleaning

Categorical \rightarrow quantitative

```
birds <- transform(birds,
  Month=as.numeric(
    as.character(Month)))</pre>
```

Change Type of Variables

Quantitative \rightarrow categorical

```
nhanes <- transform(nhanes,
  cut(age,breaks=c(0,18,65,100),
  labels=c("kid","adult","senior"));</pre>
```

Evenly spaced groups

Evenly populated groups

Group Summaries

Specify the variable or variables to use for grouping, and the operations. By default, a count of the number in each group.

```
groupBy(voters,by=party)
party count
1 DEM 4101
2 REP 3098
3 UNA 2783
```

Median age of voters, by party:

Use > 1 grouping variables.

Subset of Cases

According to a criterion:

Random sample

```
small <- sample(nhanes, size=10)</pre>
```

Subset of Variables

```
birds <- subset(OrdwayBirdsOrig,
    select=c("SpeciesName","Month"))</pre>
```

Mathematical Ops

Enough R for Data and Computing Fundamentals

Joining Two Tables

Example: Drop the low-count species of birds.

counts <- groupBy(birds,by=SpeciesNa</pre>

	SpeciesName	count
1	Arkansas Kingbird	1.00
2	Bank Swallow	21.00
3	Bay-breasted Warbler	2.00

birds <- join(birds,counts)</pre>

Joining by: SpeciesName

	SpeciesName	Month	birds <- subset(birds,
1	Robin	7	count>200)
2	Rose-breasted Grosbeak	7	157.00
3	American Goldfinch	7	1153.00
4	House Sparrow	7	207.00