Содержание

Замена переменной в интеграле
Интеграл по дискретной мере
Замена переменной в интеграле по мере Лебега
Мера и интеграл Лебега — Стилтьеса
Интегралы, зависящие от параметра
Интеграл комплекснозначной функции
Примеры вычисления интегралов

Определение 1. Пусть $E \subset \mathbb{R}^n$ $f \colon E \to [0; +\infty]$. Подграфиком f называется множество

$$Q_f = \{(x; y) \in \mathbb{R}^{n+1} \mid x \in E, 0 \le y \le f(x)\}$$

Определение 2. Пусть $E \subset \mathbb{R}^n$ $f \colon E \to \overline{\mathbb{R}}$. Графиком f называется множество

$$\Gamma_f = \{ (x; f(x)) \in \mathbb{R}^{n+1} \mid x \in E \}$$

Замечание. Отличается от общего определения тем, что $\Gamma_f \subset \mathbb{R}^{n+1}$

Теорема 1 (О мере графика). Пусть $E \in \mathbb{A}_n$, $f \in S(E)$. Тогда $\Gamma_f \in \mathbb{A}_{n+1}$ и $\mu_{n+1}\Gamma_f = 0$.

Доказательство. • Сначала разберём случай, когда $\mu E < +\infty$. Заключим Γ_f в множество сколь угодно малой меры. Зафиксируем $\varepsilon > 0$. Пусть

$$e_k = E(k\varepsilon < f(k+1)\varepsilon)$$

Тогда

$$E = E(|f| = +\infty) \cup \bigcup_{k \in \mathbb{Z}} e_k$$

Тогда

$$\Gamma_f = \bigcup_{k \in \mathbb{Z}} \Gamma_f \Big|_{e_k} \subset \bigcup_{k \in \mathbb{Z}} e_k \times [k\varepsilon; (k+1)\varepsilon) = H_\varepsilon$$

Заметим, что

$$\mu_{n+1}H_{\varepsilon} = \sum_{k \in \mathbb{Z}} \mu_n e_k \cdot \varepsilon \leqslant \mu_n E \varepsilon$$

По критерию измеримости утверждение теоремы верно.

• Теперь пусть $\mu E = +\infty$. По σ -конечности μ_n

$$E = \bigcup_{j=1}^{\infty} E_j \qquad \mu_n E_j < +\infty$$

А значит $f\Big|_{E_j}$ имеет измеримый график нулевой меры, а поскольку

$$\Gamma_f = \bigcup_{j=1}^{\infty} \Gamma_f \Big|_{E_j}$$

Верно требуемое.

Теорема 2. Пусть $E \in \mathbb{A}_n$, $f \colon E \to [0; +\infty]$. Тогда измеримость f и её подграфика равносильны и в случае измеримости имеет место равенство

$$\mu_{n+1}Q_f = \int_E f \, \mathrm{d}\mu_n$$

Иванов Тимофей

Доказательство. Пусть нам известна измеримость подграфика. Тогда искомая формула следует из принципа Кавальери:

$$Q_f(x) = \begin{cases} \varnothing & x \notin E \\ [0; f(x)) & x \in E \end{cases}$$

Отсюда

$$\mu_1 Q_f(x) = \begin{cases} 0 & x \notin E \\ f(x) & x \in E \end{cases}$$

Отсюда если Q_f измеримо, то формула следует из принципа Кавальери. А также в принципе Кавальери в качестве следствия был факт, что функция $x \mapsto \mu_1 Q_f(x)$ измерима, а значит и f измерима как сужение $x \mapsto \mu_1 Q_f(x)$ на E.

Осталось доказать, что если f измерима, то её подграфик измерим. Рассмотрим случаи:

1. f простая.

$$f = \sum_{k=1}^{N} c_k \chi_{A_k} \qquad A_k \in \mathbb{A}_n, c_k \in [0; +\infty)$$

Можно считать, что A_k дизъюнктны. И ещё можно считать, что $A_k \subset E$ и в объединении дают E. Тогда

$$Q_f = \bigsqcup_{k=1}^{N} A_k \times [0; c_k]$$

Отсюда следует измеримость.

2. Общий случай: f произвольная неотрицательная измеримая функция. Приблизим её возрастающей последовательность простых функций φ_n . Проверим, что

$$Q_f = \bigcup Q_{\varphi_n} \cup \Gamma_f$$

Тогда мы докажем искомое.

- \supset ясно т.к. $\varphi_n \leqslant f \Rightarrow Q_{\varphi_n} \subset Q_f$.
- \subset рассмотрим $(x;y) \in Q_f$. То есть $x \in E, y \in [0;f(x)]$. Если y = f(x), то понятно. Иначе

$$\exists N \in \mathbb{N} \ y < \varphi_N(x) \Rightarrow \exists N \ (x;y) \in Q_{\varphi_N}$$

Замечание. Условие измеримости E существенно. Если $f\equiv 0$ не неизмеримом множестве, например, то $Q_f\in \mathbb{A}_{n+1}$ и $\mu_{n+1}Q_f=0$.

Теорема 3 (Теорема Тонелли). Пусть $E \subset \mathbb{R}^{n+m}$, $f \in S(E \to [0; +\infty])$. Тогда

- 1. При почти всех $x \in \mathbb{R}^n$ функция $f(x; \bullet) \in S(E(x))$.
- 2. Пусть $I(x) = \int_{E(x)} f(x;y) \, dy$. Тогда $I(x) \in S(\mathbb{R}^n)$.

3.

$$\int_{E} f \, \mathrm{d}\mu_{n+m} = \int_{\mathbb{R}^n} I(x) \, \mathrm{d}x$$

Доказательство. По теореме 2, что $Q_f \in \mathbb{A}_{n+m+1}$ и

$$\mu_{n+m+1}Q_f = \int_E f \, \mathrm{d}\mu_{n+m}$$

Воспользуемся принципом Кавальери:

$$\mu_{n+m+1}Q_f = \int_{\mathbb{R}^n} \mu_{m+1}Q_f(x) \, \mathrm{d}x$$

Заметим, что

$$Q_f(x) = \{(y; z) \in \mathbb{R}^{m+1} \mid (x; y; z) \in Q_f\} =$$

$$= \{(y; z) \in \mathbb{R}^{m+1} \mid (x; y) \in E, z \in [0; f(x; y)]\} =$$

$$= \{(y; z) \in \mathbb{R}^{m+1} \mid y \in E(x), z \in [0; f(x; y)]\}$$

Да это же подграфик $f(x; \bullet)!$

1. По теореме Кавальери при почти всех $x \in \mathbb{R}^n$ $Q_f(x)$ измеримо, а значит мы доказали первое утверждение по теореме 2.

2.

$$\mu_{m+1}Q_f(x) = \mu_{m+1}Q_{f(x;\bullet)} \stackrel{?}{=} \int_{E(x)} f(x;y) \, dy = I(x)$$

Отсюда I(x) измерима по всё тому же принципу Кавальери.

3. Приравняем два выражения для $\mu_{n+m+1}Q_f$.

Теорема 4 (Теорема Фубини). Пусть $E \subset \mathbb{R}^{n+m}$, $f \in L(E)$. Тогда

- 1. При почти всех $x \in \mathbb{R}^n$ функция $f(x; \bullet) \in L(E(x))$.
- 2. Пусть $I(x) = \int_{E(x)} f(x;y) \, dy$. Тогда $I(x) \in L(\mathbb{R}^n)$.

3.

$$\int_{E} f \, \mathrm{d}\mu_{n+m} = \int_{\mathbb{R}^n} I(x) \, \mathrm{d}x$$

Доказательство. Применим теорему Тонелли для f_+ и f_- . Пусть $I^\pm = \int_{E(x)} f_\pm(x;y) \; \mathrm{d}y$. По теореме Тонелли

$$\int_{E} f_{\pm} d\mu_{n+m} = \int_{\mathbb{R}^{n}} I^{\pm}(x) dx < +\infty$$

Учитывая $f_{\pm}(x; \bullet) = (f(x; \bullet))_{\pm}$, имеем

$$I^+ - I^- = I \in L(\mathbb{R}^n)$$

При почти всех x $I^{\pm}(x)<+\infty$, а значит при почти всех x $f_{\pm}\in L(E(x))$ отсюда $f\in L(E(x))$.

Замечание. В теореме Тонелли все условия можно ослабить:

- 1. Если $f \in S(E)$ (не важен знак), то при почти всех $x \in \mathbb{R}^n$ $f(x; \bullet) \in S(E(x))$.
- 2. Если I(x) существует почти во всех $x \in \mathbb{R}^n$, то $I \in S(\mathbb{R}^n)$
- 3. Если существует $\int_E f \, \mathrm{d}\mu_{n+m} \in \overline{\mathbb{R}}$, то верно условие пункта 2 и

$$\int_{E} f \, \mathrm{d}\mu_{n+m} \in \overline{\mathbb{R}} = \int_{\mathbb{R}^{n}} I(x) \, \, \mathrm{d}x$$

Доказывается всё это как в теореме Фубини.

Замечание.

$$\begin{cases} \forall x \in \mathbb{R}^n \ f(x; \bullet) \in S(E(x)) \\ \forall y \in \mathbb{R}^m \ f(\bullet; m) \in S(E(y)) \end{cases} \neq f \in S(E)$$

Серпинский построил пример такого неизмеримого $E \subset \mathbb{R}^2$, что E пересекается с любой прямой не более чем в двух точках. Мы говорить о нём не будем, т.к. он довольно сложен.

Определение 3. Пусть $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$, $f: X \to \mathbb{R}$, $g: Y \to \mathbb{R}$. Тогда

$$f \otimes g : \underset{(x;y) \mapsto f(x)g(y)}{\overset{X \times Y \to \mathbb{R}}{f(x)g(y)}}$$

Лемма 1. Если $f \in S(X)$, $g \in S(Y)$, mo $f \otimes g \in S(X \times Y)$.

Доказательство. Пусть

$$\tilde{f}(x;y) = f(x)$$
 $\tilde{g}(x;y) = g(y)$

Докажем, что \tilde{f} и \tilde{g} измеримы, тогда $f \otimes g$ будет измеримо как произведение измеримых.

$$(X \times Y)(\tilde{f} > a) = X(\tilde{f} > 0) \times Y$$

Левое измеримо по измеримости f, правое — потому что, а произведение измеримы измеримо. \square

Следствие 1.1. Пусть $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$. Если

$$\begin{cases} f \in S(X \to [0; +\infty]) \land g \in S(Y \to [0; +\infty]) \\ f \in L(X) \land g \in L(Y) \end{cases}$$

To

$$\int_{X\times Y} f \otimes g \, d\mu_{n+m} = \int_X f \, d\mu_n \int_Y g \, d\mu_m$$

Доказательство. В первом случае нет сомнений в существовании интегралов. Пусть $E = X \times Y$. Тогда

$$\int_{E} f \otimes g \, d\mu_{n+m} = \int_{X} \left(\int_{Y} f(x)g(y) \, dy \right) \, dx$$

так как
$$E(x) = \begin{cases} \varnothing & x \notin X \\ Y & x \in X \end{cases}$$

А почему то же самое верны для произвольного знака, если интегралы от них конечны? Ну, чтобы применить теорему Фубини, надо проверить суммируемость $f \otimes g$. Ну, смотрите. По доказанному

$$\int_{X\times Y} |f\otimes g| \, d\mu_{n+m} = \int_X |f| \, d\mu_n \int_Y |g| \, d\mu_m$$

По условию оба этих интеграла конечны, значит $|f \otimes g|$ суммируема, а суммируемость функции равносильна суммируемости её модуля.

Замечание. Мы знаем, что в условиях теорем Тонелли и Фубини верно

$$\int_{E} f \, d\mu_{n+m} = \int_{\mathbb{R}^{n}} \left(\int_{E(x)} f(x; y) \, dy \right) \, dx$$

Тривиально, то же можно записать, поменяв x и y родями.

$$\int_{E} f \, d\mu_{n+m} = \int_{\mathbb{R}^{n}} \left(\int_{E(y)} f(x; y) \, dx \right) \, dy$$

А значит два повторных интеграла равны.

Пример. Повторные интегралы могут быть не равны

$$f(x;y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$
 $E = [-1; 1]^2$

Тогда

$$\int_{-1}^{1} \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dy = \frac{y}{x^2 + y^2} \Big|_{y = -1}^{1} = \frac{2}{x^2 + 1}$$

$$\int_{-1}^{1} \int_{-1}^{1} \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dy \, dx = \int_{-1}^{1} \frac{2}{x^2 + 1} \, dx = 4 \tan^{-1} x \Big|_{0}^{1} = \pi$$

Другой повторный интеграл будет равен $-\pi$, как несложно заметить.

Пример. Неверно, что если повторные интегралы равны, то двойной существует.

$$g(x;y) = \frac{2xy}{(x^2 + y^2)^2}$$
 $E = [-1;1]^2$

Поскольку функция g нечётна по каждой переменной, оба повторных интеграла равны нулю. Отсюда если двойной интеграл существует, то равен нулю.

Докажем, что он не существует. Для этого докажем, что g не суммируема. Попробуем проинтегрировать |g|:

$$\int_{-1}^{1} \int_{-1}^{1} \frac{|2xy|}{(x^2+y^2)^2} \, dy \, dx = 4 \int_{0}^{1} \int_{0}^{1} \frac{|2xy|}{(x^2+y^2)^2} \, dy \, dx = 4 \int_{0}^{1} \frac{-x}{x^2+y^2} \Big|_{y=0}^{1} \, dx = 4 \int_{0}^{1} \frac{-x}{x^2+1} + \frac{1}{x} \, dx = +\infty$$

Отсюда g не суммируема. А значит нулю её интеграл не равен, то есть он не существует.

Определение 4. Пусть $E \subset \mathbb{R}^{n+m}$ Проекцией E на первое координатное пространство называется

$$\Pr_1 E = \{ x \in \mathbb{R}^n \mid E(x) \neq \emptyset \}$$

Замечание. Проекция измеримого множества может быть быть неизмеримой (достаточно добавить к измеримому двумерному множеству неизмеримое одномерное).

Определение 5. Множество

$$\Pr_{1}^{*} E = \{x \in \mathbb{R}^{n} \mid \mu_{m} E(x) > 0\}$$

называется **существенной проекцией** множества E.

Свойство 5.1. Существенная проекция измерима. (Как Лебегово множество функции $\mu_m E(\bullet)$).

Свойство 5.2. При f подходящем под теоремы Тонелли и Фубини верно

$$\int_{E} f \, \mathrm{d}\mu_{n+m} = \int_{\mathrm{Pr}_{1}^{*}} I(x) \, \mathrm{d}x$$

Замечание. Теоремы Тонедли и Фубини можно применять несколько раз.

Определение 6. Пусть $(X; \mathbb{A}; \mu)$ и $(Y; \mathbb{B}; \nu)$ — пространства с мерами. Пусть

$$\mathbb{A} \odot \mathbb{B} = \{ A \times B \mid A \in \mathbb{A}, B \in \mathbb{B} \}$$

Тогда $\mathbb{A} \odot \mathbb{B}$ является полукольцом, а

$$\pi_0: A \times B \to \mu A \nu B$$

является мерой на $\mathbb{A} \oplus \mathbb{B}$. Тогда π — стандартное распространение π_0 на σ -алгебру \mathbb{C} называется произведением мер μ и ν .

Обозначения:

$$\mathbb{C} = \mathbb{A} \otimes \mathbb{B} \qquad \pi = \mu \times \nu$$

Замечание. Доказывать корректность определения мы не будем.

Свойство 6.1.

$$\mu_{n+m} = \mu_n \times \mu_m$$

Свойство 6.2. Если μ и ν являются σ -конечными, то $\mu \times \nu$ — тоже.

Свойство 6.3. Произведение мер ассоциативно.

Свойство 6.4. Все теоремы этого параграфа с доказательствами верны для полных σ -конечных мер.

Теорема 5 (Теорема Тонелли для абстрактных пространств с мерой). Пусть $E \subset X \times Y$, $f \in S_{\mathbb{A} \otimes \mathbb{B}}(E \to [0; +\infty])$. Тогда

- 1. При почти всех $x \in x$ функция $f(x; \bullet) \in S_{\mathbb{R}}(E(x))$.
- 2. Пусть $I(x) = \int_{E(x)} f(x; \bullet) d\nu$. Тогда $I(x) \in S_{\mathbb{A}}(X)$.

3.

$$\int_{E} f \ d(\mu \times \nu) = \int_{X} I(x) \ d\mu$$

Замена переменной в интеграле.

Теорема 6 (Общая схема замены переменной в интеграле). Пусть $(X; \mathbb{A}; \mu), (Y; \mathbb{B}; \nu)$ — пространства c мерами. Пусть $h \in S_{\mathbb{A}}(X \to [0; +\infty]), \Phi \colon X \to Y$ u

$$\forall B \in \mathbb{B} \ \Phi^{-1}(B) \in \mathbb{A} \qquad \forall B \in \mathbb{B} \ \nu B = \int_{\Phi^{-1}(B)} h \ \mathrm{d}\mu$$

Пусть $f \in S_{\mathbb{B}}(Y)$. Тогда

1. $f \circ \Phi \in S_{\mathbb{A}}(X)$.

2.

$$\int_{Y} f \, d\nu = \int_{X} (f \circ \Phi) h \, d\mu$$

(Трактовка стандартная: интегралы существуют или нет одновременно, если существуют, то равны.)

Доказательство. 1. Рассмотрим Лебегово множество

$$X(f \circ \Phi > a) = \{x \in X \mid f(\Phi(x)) > a\} = \{x \in X \mid \Phi(x) \in Y(f > a)\} = \Phi^{-1}(Y(f > a))$$

По условию $Y(f > a) \in \mathbb{B}$, а значит $\Phi^{-1} \in \mathbb{A}$.

- 2. Разберём случаи
 - а. $f = \chi_B \mid B \in \mathbb{B}$. Тогда

$$(\chi_B \circ \Phi)(x) = \begin{cases} 1 & x \in \Phi^{-1}(B) \\ 0 & x \notin \Phi^{-1}(B) \end{cases} = \chi_{\Phi^{-1}(B)}(x)$$

Тогда

$$\int_{Y} \chi_{B} d\nu = \nu B = \int_{\Phi^{-1}(B)} h d\nu = \int_{X} \underbrace{\chi_{\Phi^{-1}(B)}}_{f \circ \Phi} h d\nu$$

По линейности равенство верно для простых функций.

с. Для положительных измеримых функций рассмотрим последовательность φ_n , возрастающую к f и перейдём к пределу в равенстве

$$\int_{Y} \varphi_n \, d\nu = \int_{X} (\varphi_n \circ \Phi) h \, d\mu$$

по теореме Леви.

d. Для произвольных измеримых функций рассмотрим f_{\pm}

$$\int_{Y} f_{\pm} d\nu = \int_{X} (\varphi_n \circ \Phi)_{\pm} h d\mu = \int_{X} (\varphi_n \circ \Phi h)_{\pm} d\mu$$

Замечание. В условиях теоремы 6 суммируемость f по ν равносильная суммируемости $(f \circ \Phi)h$ по μ

Следствие 1.1. В условиях теоремы 6 если $B \in \mathbb{B}, f \in S_{\mathbb{B}}(B),$ то

$$\int_{B} f \, d\nu = \int_{\Phi^{-1}(B)} (f \circ \Phi) h \, d\mu$$

Доказательство. Продолжим f нулём на $Y \setminus B$.

Определение 7. В условии теоремы 6 ν называется h-взвешенным Φ -образом меры μ .

Замечание. Пусть

$$\mathbb{A}^* = \{ \Phi^{-1}(B) \mid B \in \mathbb{B} \}$$

Нетрудно заметить, что это σ -алгебра.

В условиях теоремы $6 \mathbb{A}^* \subset \mathbb{A}$.

Пусть

$$\mathbb{B}^* = \{ B \subset Y \mid \Phi^{-1} \in \mathbb{A} \}$$

тогда условиях теоремы $6 \mathbb{B} \subset \mathbb{B}^*$.

Утверждение. Если

$$\nu B = \int_{\Phi^{-1}(B)} h \, \, \mathrm{d}\mu$$

 $To \ \nu \ --$ мера на \mathbb{B} .

Доказательство. Остаётся как несложное упражнение читателю.

 $\Pi puмер. \ h \equiv 1$ — невзвешенный образ меры.

$$\nu B = \mu \Phi^{-1}(B) \Rightarrow \int_Y f \, d\nu = \int_X f \circ \Phi \, d\mu$$

Пример. X = Y, $\mathbb{A} = \mathbb{B}$, $\Phi = id$.

$$\nu A = \int_A h \, d\mu \Rightarrow \int_X f \, d\nu = \int_X f h \, d\mu$$

Тогда пишут $d\nu = h d\mu$.

Определение 8. Если

$$\nu A = \int_{A} h \, \mathrm{d}\mu$$

то h называется **плотностью** меры ν относительны меры μ .

Свойство 8.1. Если $h = \tilde{h}$ μ -почти везде, то $\nu = \tilde{\nu}$. Для σ -конечных мер верно и обратное. Без доказательства.

Теорема 7 (Критерий плотности). Пусть даны X, \mathbb{A} и μ и ν — меры на \mathbb{A} , $h \colon S(X \to [0; +\infty])$. Тогда следующие утверэждения равносильны:

1. h — nлотность ν относительны μ .

2.

$$\forall A \in \mathbb{A} \ \mu A \inf_A h \leqslant \nu A \leqslant \mu A \sup_A h$$

Доказательство. • Из первого во второе ясно из оценки интеграла.

• Рассмотрим

$$A = A(h = 0) \cup A(0 < h < +\infty) \cup A(h = +\infty)$$

Равенство есть для первой части:

$$\nu A(h=0) = \int_{A(h=0)} h \, \mathrm{d}\mu$$

так как левое равно нулю по условию второго утверждения, а правое — потому что функция тождественный ноль.

также очевидно равенство есть для третьей части:

$$\nu A(h = +\infty) = \begin{cases} +\infty & \mu A > 0 \\ 0 & \mu A \equiv 0 \end{cases} = \int_{A(h = +\infty)} h \, d\mu$$

Далее можно считать $0 < h < +\infty$ на A.

Рассмотрим $q \in (0;1)$. Пусть

$$A_j = A(q^j \leqslant h < q^{j-1})$$

Очевидно, $A_j \in \mathbb{A}$ и $\coprod_{j \in \mathbb{Z}} A_j = A$. Нам известно, что

$$q^j \mu A_j \leqslant \nu A_j \leqslant q^{j-1} \mu A_j$$

А ещё из оценки интеграла

$$q^{j}\mu A_{j} \leqslant \int_{A_{i}} h \, \mathrm{d}\mu \leqslant q^{j-1}\mu A_{j}$$

Отсюда

$$q \int_{A} h \, d\mu = q \sum_{j} \int_{A_{j}} h \, d\mu \leqslant$$

$$\leqslant \sum_{j} q^{j} \mu A_{j} \leqslant \sum_{j} \nu A_{j} =$$

$$= \boxed{\nu A} \leqslant \sum_{j} q^{j-1} \mu A_{j} \leqslant$$

$$\leqslant \frac{1}{q} \sum_{j} \int_{A_{j}} h \, d\mu =$$

$$= \frac{1}{q} \int_{A} h \, d\mu$$

Если взять начало, конец и то, что в квадратике, после чего устремить q к единицу, то получим искомое.

Интеграл по дискретной мере.

 Π ример. δ -мера.

Пусть X — пространство, $E\subset X,\,a\in X,$ тогда, напомним, δ -мера — это

$$\delta_a(E) = \begin{cases} 1 & a \in E \\ 0 & a \notin E \end{cases}$$

В качестве сигма-алгебры выступает 2^X . Пусть $f \colon E \to \overline{\mathbb{R}}$. Что тогда такое интеграл по этой мере?

$$\int_{E} f \, d\delta_{a} = \begin{cases} 0 & a \notin E \\ \int_{\{a\}} f \, d\delta_{a} = f(a) & a \in E \end{cases}$$

Лемма 2. Пусть μ — считающая мера на $X, E \subset X, f \colon E \to \overline{\mathbb{R}}$. Тогда

$$\int_{E} f \, \mathrm{d}\mu = \sum_{E} f$$

Интеграл и сумма существуют или не существуют одновременно, если существуют, то равны.

Доказательство. будем постепенно усложнять f.

1. Сначала докажем для характеристической функции $f = \chi_A, A \subset E$. Тогда

$$\int_{E} \chi_A \, \mathrm{d}\mu = \mu A = \sum_{A} 1 = \sum_{A} \chi_A$$

- 2. По линейности равенство верно для простых функций f.
- 3. $f \ge 0$. Разберём два случая:
 - Пусть $\int_E f \ \mathrm{d}\mu < +\infty$. Тогда

$$\int_{E} f \, \mathrm{d}\mu = \sup_{\substack{A \subset E \\ \mu A \subset \bot \infty}} \int_{A} f \, \mathrm{d}\mu$$

Условие $\mu A < +\infty$ значит что $|A| < +\infty$ (у нас считающая мера). А на конечном множестве положительная функция простая:

$$\int_{E} f \, \mathrm{d}\mu = \sup_{\substack{A \subset E \\ \mu A < +\infty}} \sum_{A} f$$

Справа написано буквально определение $\sum\limits_{E}f$ (там супремум частичных сумм).

 $\bullet \,$ Пусть $\int_E f \; \mathrm{d}\mu = +\infty.$ По определению интеграла неотрицательной функции

$$\forall N>0$$
 Эпростая $\varphi\leqslant f$ на E $\int_E \varphi\;\mathrm{d}\mu\geqslant N$

При этом

$$\sum_{E} f \geqslant \sum_{E} \varphi = \int_{E} \varphi \, d\mu \geqslant N$$

4. Дальше надо рассмотреть f_+ и f_- , там всё понятно. Если в одной части нет одновременно двух бесконечностей, то в другой — тоже.

Замечание. Причём тут замена переменной?

Следствие 2.1. Пусть $h\colon X\to [0;+\infty],\ \mu$ — считающая на $X,\ \nu$ — дискретная мера c весовой функцией $h\colon$

$$\forall B\subset X\ \nu B=\sum_B h$$

Пусть $f: E \to \overline{\mathbb{R}}$. Тогда

$$\int_E f \, \, \mathrm{d}\nu = \sum_E f \cdot h$$

Доказательство. По только что доказанной лемме

$$\nu B = \int_{\mathcal{B}} h \, \mathrm{d}\mu$$

А тогда h — плотность ν относительно μ . Тогда по теореме 6

$$\int_{E} f \, d\nu \stackrel{6}{=} \int_{E} f h \, d\mu = \sum_{E} f h$$

 Π ример. Если $X=\mathbb{N},\,\mu$ — считающая мера, т

$$\int_{\mathbb{N}} f \, \mathrm{d}\mu = \sum_{k \in \mathbb{N}} f(k)$$

То есть суммируемость f равносильна абсолютной сходимости ряда f(k).

Пример. Пусть $\{a_k\}_k$ — не более чем счётный набор различных точек $X,\ \{h_k\}_k\subset [0;+\infty],\ \nu B=\sum_{k:a_k\in B}h_k.$ Тогда

$$\int_{E} f \, \mathrm{d}\nu = \sum_{k: a_k \in B} f(a_k) h_k$$

И опять суммируемость функции равносильна суммируемости семейства (на сей раз семейства $|f(a_k)|h_k$). Замечание: тут h из следствия — это не совсем h_k . Тут $h_k = h(a_k)$

Замена переменной в интеграле по мере Лебега .

Утверждение. Пусть $G \in \mathbb{A}_n$. Тогда

$$\mathbb{A}_n(G) = \{ E \in \mathbb{A}_n \mid E \subset G \}$$

является σ -алгеброй на G.

Доказательство. Очевидно.

Утверждение. $(G; \mathbb{A}_n(G); \mu\big|_{\mathbb{A}_n(G)})$ — пространство с мерой.

Доказательство. Очевидно.

3амечание. До конца параграфа μ — мера Лебега.

Замечание. Напоминание:

Пусть G, V открыты в \mathbb{R}^n . Тогда отображение $\Phi \colon G \to V$ называется **диффеоморфизмом**, если Φ гладкая биекция, обратная функция к которой тоже гладкая.

При этом обычно V опускается, и под «диффеоморфизмом Φ на G называется диффеоморфизм $G \to \Phi(G)$ ».

Также заметим некоторые свойства: якобиан Φ нигде не равен нулю. При этом если G открыто, $\Phi \colon G \to \mathbb{R}^n$ гладко и обратимо и $\det \Phi'(x)$ нигде не равен нулю, то $\Phi(G)$ открыто и $\Phi^{-1} \in C^{(1)}(\Phi(G))$.

Замечание. Также мы знаем, что гладкая замена переводит измеримые множества в измеримые. Вопрос: чему равно $\mu\Phi(A)$? Мы знаем ответ для линейного и аффинного отображения (мера умножается на модуль определителя). При этом для линейного и аффинного отображения $\Phi' = \Phi$, а значит

$$\mu\Phi(E) = |\det \Phi'|\mu E$$

А что в более общем случае? Ну, запишем определение дифференцируемости Ф:

$$\Phi(x) = \underbrace{\Phi(x^0) + \Phi'(x)(x - x^0)}_{\widetilde{\Phi}_{x^0}(x)} + o(x - x^0)$$

Если $\Phi = \widetilde{\Phi}$, то ответ мы знаем. При этом $\widetilde{\Phi}$ тем ближе к Φ , чем ближе x к x^0 . Отсюда возникает предположение, что $|\det \Phi'(x^0)|$ — плотность $\mu\Phi(\bullet)$ относительно μ . И нам удастся это доказать для диффеоморфизма.

Теорема 8 (Преобразование меры Лебега при диффеоморфизме). Пусть $G \subset \mathbb{R}^n$ открыто, $\Phi - \partial u \phi \phi e o mor \phi u s m a G. Тогда$

 $\forall E \in \mathbb{A}_n(G) \ \mu \Phi(E) = \int_E |\det \Phi'| \ \mathrm{d}\mu$

Доказательство. Why are we still here? Just to suffer.

Для начала пусть $\nu(E) = \mu \Phi(E)$. Несложно проверить, что ν — это мера на $\mathbb{A}_n(G)$.

Теперь нам надо доказать, что $|\det \Phi'|$ — плотность ν относительно μ . Тогда по определению плотности мы победим. У нас был критерий плотности, который мы хотим применить. Что нам надо проверить для этого?

$$\forall E \in \mathbb{A}_n(G) \ \mu E \inf_E |\det \Phi'| \leqslant \mu \Phi(E) \leqslant \mu E \sup_E |\det \Phi'|$$

Здесь есть два неравенства. Мы не хотим доказывать оба. Мы хотим сказать, что если правое доказать для **любого** диффеоморфизма Φ , то из него будет следовать левое. Почему? Ну, применим правое к отображению Φ^{-1} и множеству $\Phi(E)$:

$$\mu \Phi^{-1}(\Phi(E)) \leqslant \mu \Phi(E) \sup_{y \in \Phi(E)} |\det \Phi^{-1'}(y)|$$

Левая штука — μE . С $\mu \Phi(E)$ делать нечего, а вот с тем, что после него — есть что.

$$\sup_{y \in \Phi(E)} |\det \Phi^{-1'}(y)| = \sup_{y \in \Phi(E)} \frac{1}{|\det \Phi'(\Phi^{-1}(y))|} = \sup_{x \in E} \frac{1}{|\det \Phi'(x)|} = \frac{1}{\inf_{x \in E} |\det \Phi'(x)|}$$

Кажется, это то, что мы хотели.

Теперь наконец начнём доказывать правое неравенство, постепенно усложняя E.

1. Пусть $E = \Delta$ — кубическая ячейка, $\overline{\Delta} \subset G$. Докажем неравенство от противного. Пусть

$$\mu\Phi(\Delta) > \mu\Delta \sup_{\Delta} |\det \Phi'|$$

отсюда

$$\exists C > \mu \Delta \sup_{\Delta} |\det \Phi'| \ \mu \Phi(\Delta) > C\mu \Delta$$

Будем действовать методом половинного деления. Каждое ребро ячейки попилим пополам, получим 2^n ячеек. Хотя бы для одной из этих ячеек (обозначим её за Δ_1) будет верно $\mu\Phi(\Delta_1) > C\mu\Delta_1$. Иначе можно было бы сложить эти неравенства, воспользоваться аддитивностью меры и прийти к противоречию. Сделаем так ещё неограниченное количество раз.

Получим последовательность вложенных ячеек $\Delta_k \supset \Delta_{k+1}$, для каждой выполнено неравенство $\mu\Phi(\Delta_k) > C\mu\Delta_k$, при этом diam $\Delta_k \to 0$. Ну тогда, $\overline{\Delta_k}$ все имеют общую точку $x^0 \in \bigcap_{k=1}^{\infty} \overline{\Delta_k} \subset \overline{\Delta}$. Теперь будем усложнять Φ))

(a) Рассмотрим случай $\Phi'(x^0) = I$. Тогда

$$\Phi(x) = \Phi(x^0) + (x - x^0) + o(x - x^0)$$

С точностью до двух сдвигов, Φ почти тождественный оператор:

$$\Theta(x) = \Phi(x) - \Phi(x^{0}) + x^{0} = x + o(x - x^{0})$$

Зафиксируем $\varepsilon > 0$ и подберём такое δ из определения $o(x-x^0)$, что

$$\forall x \in B(x^0; \delta) |\Theta(x) - x| \leqslant \frac{\varepsilon}{\sqrt{n}} |x - x^0|$$

Очень хорошо. Заметим, что в некотором номере N $\overline{\Delta_N} \subset B(x^0;\delta)$. Пусть $\overline{\Delta_N} = [a;a+r\mathbb{1}] \ni x^0$. Тогда

$$x \in \overline{\Delta_n} \Rightarrow |x - x^0| \leqslant r\sqrt{n} \Rightarrow |\Theta(x) - x| \leqslant \varepsilon r$$

Тогда

$$\forall j \in [1:n] |\Theta_j(x) - x_j| \leq \varepsilon r$$

А это значит, что

$$a - \varepsilon r \leqslant x_i - \varepsilon r \leqslant \Theta_i(x) \leqslant x_i + \varepsilon r \leqslant a + (1 + \varepsilon)r$$

другими словами $\Theta(x) \in [a-\varepsilon r\mathbb{1}; a+(1+\varepsilon)r\mathbb{1}].$ обозначим этот куб буквой П. Тогда $\Theta(\Delta_N) \subset \Pi.$ Тогда

$$\mu\Phi(\Delta_N) = \mu\Theta(\Delta_N) \leqslant \mu\Pi = (1+2\varepsilon)^n r^n = (1+2\varepsilon)^n \mu\Delta_N$$

 ${\rm M}$ это уже почти противоречие. Но мы его не хотим, давайте сначала возьмём произвольное ${\rm \Phi}$, и там уже докопаемся до противоречия.

(b) Итак, пусть Φ произвольное. Пусть $S = (\Phi'(x^0))^{-1}$ (это линейный оператор, его производная в любой точке — он сам). Пусть $\Psi = S \circ \Phi$. Ну, хорошо

$$\Psi'(x^0) = \underbrace{S'(\Phi(x^0))}_{S} \Phi'(x^0) = S\Phi'(x^0) = I$$

 Ψ подходит под наш предыдущий случай, а значит мы нашли для него N:

$$\mu\Psi(\Delta_N) \leqslant (1+2\varepsilon)^n \mu \Delta_N$$

При этом

$$\mu\Psi(\Delta_N) = \mu S(\Phi(\Delta_N)) = |\det S| \mu\Phi(\Delta_N) = \frac{1}{|\det \Phi'(x^0)|} \mu\Phi(\Delta_N)$$

Из двух этих утверждений

$$\mu\Phi(\Delta_N) \leq (1+2\varepsilon^n)|\det\Phi'(x^0)|\mu\Delta_N$$

А ещё мы знаем, что $C\mu\Delta_n\leqslant \mu\Phi(\Delta_n)$. А это уже капец:

$$C < (1+2\varepsilon)^n |\det \Phi'(x^0)| \longrightarrow C \leqslant |\det \Phi(x^0)|$$

А у нас по выбору C $C>\sup_{\Delta}|\det\Phi'|\stackrel{|\det\Phi'|_{\text{непрерывно}}}{=}\sup_{\overline{\Delta}}|\det\Phi'|>|\det\Phi'(x^0)|$

2. Пусть E = U открытое подмножество G. Открытое множество можно представить как счётное объединения ячеек:

$$U = \bigsqcup_{k} D_k$$

Где D_k — кубические ячейки, $\overline{D_k} \subset U$. Тогда

$$\mu\Phi(U) = \mu\Phi\left(\bigsqcup_{k} D_{k}\right) = \mu\bigsqcup_{k} \Phi(D_{k}) = \sum_{k} \mu\Phi(D_{k}) \leqslant \sum_{k} \mu D_{k} \sup_{D_{k}} |\det \Phi'| \leqslant$$
$$\leqslant \sum_{k} \mu D_{k} \sup_{U} |\det \Phi'| = \sup_{U} |\det \Phi'| \sum_{k} \mu D_{k} = \mu U \sup_{U} |\det \Phi'|$$

3. От открытого множества у произвольному $E \in \mathbb{A}_n(G)$. Тут будем пользоваться регулярностью меры Лебега:

$$\mu\Phi(E) = \inf_{\substack{V \text{ открыто} \\ \Phi(E) \subset V \subset \Phi(G)}} \mu V = \inf_{\substack{U \text{ открыто} \\ E \subset U \subset G}} \mu\Phi(U) \leqslant \inf_{\substack{U \text{ открыто} \\ E \subset U \subset G}} \left(\mu U \sup_{U} |\det \Phi'|\right)$$

Хочется доказать, что это равно $\mu E \sup_E |\det \Phi'|$. Мы знаем, что правая часть больше либо равна $\mu E \sup_E |\det \Phi'|$, а нам надо доказать, что меньше либо равно.

Если $\mu E=0$, то неравенство очевидно (тогда $\mu\Phi(E)=0$, гладкое отображение переводит множество меры ноль в множество меры ноль). Если $\mu E=+\infty$, по доказывать нечего. И если супремум $\sup |\det \Phi'|$ равен $+\infty$, то тоже (в правой части либо 0 (когда $\mu E=0$), либо бесконечность; в обоих случаях доказывать нечего).

Далее считаем $\mu E, \sup_{E} |\det \Phi'| \in (0; +\infty)$. Возьмём $\varepsilon > 0$.

первое условие — регулярность меры Лебега, а второе вот:

$$x \in E \ \exists V_x \subset G \ \forall t \in V_x \ || \det \Phi'(t)| - |\det \Phi'(x)|| \leqslant \varepsilon$$

Тогда

$$U = \bigcup_{x \in E} V_x$$

Такое U подходит под

$$\sup_{U} |\det \Phi'| \leqslant \sup_{E} |\det \Phi'| + \varepsilon$$

Если пересечь его с тем, которое в регулярности меры Лебега, то получится искомое U из утверждения выше. Тогда

$$\inf_{\substack{U \text{ otriphito} \\ E \subset U \subset G}} \left(\mu U \sup_{U} |\det \Phi'| \right) \leqslant (\mu E + \varepsilon) \left(\sup_{E} |\det \Phi'| + \varepsilon \right)$$

Устремив ε к нулю, получим искомое.

Теорема 9 (Замена переменной в кратном интеграле). Пусть $G \subset \mathbb{R}^n$ открыто, $\Phi — \partial u \phi \phi e o mop \phi u з m$ на $G, E \in \mathbb{A}_n(G), f \in S(\Phi(E))$. Тогда

$$\int_{\Phi(E)} f \, \mathrm{d}\mu = \int_E (f \circ \Phi) |\det \Phi'| \, \mathrm{d}\mu$$

Интегралы существуют или не существуют одновременно, если существуют, то равны. Также равенство пишется как

$$\int_{\Phi(E)} f(y) \, dy = \int_{E} (f \circ \Phi)(x) |\det \Phi'(x)| \, dx$$

Доказательство. Возьмём теорему 6 и возьмём в ней

$$(X; \mathbb{A}; \mu) = (G; \mathbb{A}_n(G); \mu)$$
 $(Y; \mathbb{B}; \nu) = (\Phi(G); \mathbb{A}_N(\Phi(G)); \mu)$ $h = |\det \Phi'|$

От нас хотят равенство

$$\forall B \in \mathbb{B} \ \Phi^{-1}(B) \in \mathbb{A}, \nu B = \int_{\Phi^{-1}(B)} \int h \ d\mu$$

Hy, если $B = \Phi(E)$, то $\nu \Phi(E) = \int_E |\det \Phi'| \, d\mu$. А это мы доказали в 8.

Иванов Тимофей

Следствие 2.1. В условии теоремы 9

$$f \in L(\Phi(E)) \Leftrightarrow (f \circ \Phi)|\det \Phi'| \in L(E)$$

Следствие 2.2. Пусть $G \subset H \subset \mathbb{R}^n$, G открыто. Пусть $\Phi \colon H \to \mathbb{R}^n$ и пусть $\Phi\big|_G$ — диффеоморфизм. И пусть ещё $\mu(H \setminus G) = \mu(\Phi(H) \setminus \Phi(G)) = 0$. $E \in \mathbb{A}_n(H)$, $f \in S(\Phi(E))$. Тогда верна формула замены переменной:

$$\int_{\Phi(E)} f(y) \, dy = \int_{E} (f \circ \Phi)(x) |\det \Phi'(x)| \, dx$$

Доказательство.

$$\int_{\Phi(E)} f(y) \ \mathrm{d}y = \int_{\Phi(E \cap G)} f(y) \ \mathrm{d}y = \int_{E \cap G} (f \circ \Phi)(x) |\det \Phi'(x)| \ \mathrm{d}x = \int_{E} (f \circ \Phi)(x) |\det \Phi'(x)| \ \mathrm{d}x$$

Замечание. Ослаблять условия теоремы 9 дальше трудно и больно. Но можно. Но туда мы лезть не будем. Для желающих есть книжка Эванса и Гариепи «Теория меры и тонкие свойства функций».

Замечание. А что у нас в n=1, как это коррелирует с тем, что мы знаем?

$$\int_{a}^{b} f = \int_{a}^{\beta} (f \circ \varphi) \varphi' \qquad \varphi(\alpha) = a, \varphi(\beta) = b$$

Почему модуль? На самом деле у нас и тут есть модуль? Потому что φ может как возрастать, так и убывать, и во втором случае у нас меняются местами пределы интегрирования. А в формуле 9 ориентации на E не задано.

Пример. Сдвиг и отражение.

 $\Phi(x) = a \pm x, \ a \in \mathbb{R}^n$. Очевидно, это диффеоморфизм и модуль якобиана равен единице. То есть

$$\int_{\mathbb{R}^n} f(y) \, \mathrm{d}y = \int_{\mathbb{R}^n} f(a \pm x) \, \mathrm{d}x$$

Пример. Полярные координаты в \mathbb{R}^2 .

 $(x;y)=(r\cos\phi;r\sin\phi)=\Phi(r;\phi).$ Посчитаем якобиан:

$$\begin{vmatrix} \cos \phi & -r \sin \phi \\ \sin \phi & r \cos \phi \end{vmatrix} = r$$

Это не равно нулю всюду, кроме начала координат. Где Φ — диффеоморфизм? По-разному можно отвечать, например, так: удалим из плоскости отрицательную часть вещественной оси. Тогда $G=(0;+\infty)\times (-\pi;\pi), \, \Phi(G)=\mathbb{R}^2\setminus \{(x;0)\mid x\leqslant 0\}.$ Тогда Φ — диффеоморфизм. Очевидно, пренебрегать тем, что мы сделали, можно, там мера ноль.

Посчитаем следующий интеграл:

$$I = \int_{0}^{\infty} e^{-x^2} \, \mathrm{d}x$$

Это не берётся, но посчитать можно:

$$I^{2} = \left(\int_{0}^{\infty} e^{-x^{2}} dx\right) \left(\int_{0}^{\infty} e^{-y^{2}} dy\right) = \iint_{(0;+\infty)^{2}} e^{-x^{2}-y^{2}} dxdy \stackrel{x=r\cos\phi}{=}^{x=r\sin\phi}$$
$$= \int_{0}^{+\infty} \int_{0}^{\frac{\pi}{2}} e^{-r^{2}} r d\phi dr = \frac{\pi}{2} \int_{0}^{+\infty} e^{-r^{2}} r dr = \frac{\pi}{2} \frac{-e^{-r^{2}}}{2} \Big|_{0}^{+\infty} = \frac{\pi}{4}$$

Отсюда $I = \frac{\sqrt{\pi}}{2}$

 $\ \Pi p u m e p. \$ Цилиндрические координаты: $(x;y;z)=(r\cos\phi;r\sin\phi;h)=\Phi(r;\phi;h).$ Тогда $\det\Phi'=r,\ G=(0;+\infty)\times(-\pi;\pi)\times\mathbb{R},\ \Phi(G)=\{(x;0;z)\mid x\leqslant 0,z\in\mathbb{R}\}.$

Пример. Сферические координаты:

$$\begin{cases} \rho = r \cos \psi \\ z = r \sin \psi \end{cases} \begin{cases} x = \rho \cos \phi \\ y = \rho \sin \phi \end{cases}$$

(Обозначения могут быть другими.)

Тогла

$$(x; y; z) = (r \cos \phi \cos \psi; r \sin \phi \cos \psi; r \sin \psi) = \Phi(r; \phi; \psi)$$

Из написанного выше Φ можно представить как два полярных преобразования, а якобиан произведения равен произведению якобианов, т.е. $\det \Phi' = r \rho = r^2 \cos \psi$.

Что покусать из пространства? Ну,

$$G = (0; +\infty) \times (-\pi; \pi) \times \left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \qquad \Phi(G) = \{(x; 0; z) \mid x \leqslant 0, z \in \mathbb{R}\}$$

Пример. Сферические координаты в \mathbb{R}^n .

 $x \in \mathbb{R}^n$, $r \in (0; +\infty)$, $\phi \in \mathbb{R}^{n-1}$. Тут тоже последовательные полярные замены:

$$\begin{cases} x_1 = \rho_1 \cos \phi_1 \\ x_2 = \rho_1 \sin \phi_1 \end{cases} \begin{cases} \rho_1 = \rho_2 \cos \phi_2 \\ x_3 = \rho_2 \sin \phi_2 \end{cases} \dots \begin{cases} \rho_{n-3} = \rho_{n-2} \cos \phi_{n-2} \\ x_{n-1} = \rho_{n-2} \sin \phi_{n-2} \end{cases} \begin{cases} \rho_{n-2} = r \cos \phi_{n-1} \\ x_n = r \sin \phi_{n-1} \end{cases}$$

Отсюда

$$\det \Phi' = \rho_1 \rho_2 \cdots \rho_{n-2} r = r^{n-1} \cos^{n-2} \phi_{n-1} \cos^{n-1} \phi_{n-2} \cdots \cos^2 \phi_3 \cos \phi_2$$

$$\begin{cases} x_1 = r \cos \phi_{n-1} \cos \phi_{n-2} \cdots \cos \phi_2 \cos \phi_1 \\ x_2 = r \cos \phi_{n-1} \cos \phi_{n-2} \cdots \cos \phi_2 \sin \phi_1 \\ x_3 = r \cos \phi_{n-1} \cos \phi_{n-2} \cdots \sin \phi_2 \end{cases}$$

$$\vdots$$

$$x_{n-1} = r \cos \phi_{n-1} \sin \phi_{n-2}$$

$$x_n = r \sin \phi_{n-1}$$

В качестве G можно берётся вот что:

$$G = (0; +\infty) \times (-\pi; \pi) \times \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)^{n-2}$$

Желающие узнать $\Phi(G)$, могут почитать учебник.

Мера и интеграл Лебега — Стилтьеса.

Определение 9. Пусть $\Delta = (\alpha; \beta) \subset \mathbb{R}$. Пусть $g \colon \Delta \to \mathbb{R}$ возрастает и непрерывна слева. Пусть \mathbb{P}_{Δ} — множество ячеек (полуинтервалов), содержащихся в Δ вместе с замыканием:

$$\mathbb{P}_{\Lambda} = \{ [a; b) \mid \alpha < a \leq b < \beta \}$$

(В случае $\Delta=\mathbb{R}$ $\mathbb{P}_{\Delta}=\mathbb{P}_{1}.$) Очевидно, \mathbb{P}_{Δ} — полукольцо.

Объём, порождённый функцией $g - V_g[a;b) = g(b) - g(a)$.

Свойство 9.1. Очевидно, это объём.

Свойство 9.2. Объём, порождённый функцией — мера.

Доказательство. См. доказательство для меры Лебега, но используя следующее равенство:

$$\lim_{n \to \infty} V_g \left[a - \frac{1}{n}; b \right) = Vg[a; b) = \lim_{n \to \infty} V_g \left[a; b - \frac{1}{n} \right)$$

Определение 10. Стандартное продолжение V_g на некоторую σ -алгебру называется мерой Стилтьеса — Лебега, порождённой функцией g (и обозначается μ_g). Сигма-алгебру, на которой определена эта мера, обозначают \mathbb{A}_g .

Замечание. Мера Лебега μ_1 является частным случаем меры Стилтьеса — Лебега при $g(x) = x, \Delta = \mathbb{R}$.

Свойство 10.1. Мера одноточечного множества $\{a\}$ равна g(a+)-g(a)

Доказательство.

$${a} = \bigcap_{n=1}^{\infty} \left[a; a + \frac{1}{n} \right)$$

По непрерывности меры

$$\mu_g\{a\} = \lim_{n \to \infty} \mu_g\left[a; a + \frac{1}{n}\right] = \lim_{n \to \infty} g\left(a + \frac{1}{n}\right) - g(a) = g(a+) - g(a)$$

Свойство 10.2. Аналогично

$$\begin{split} \mu_g[a;b] &= g(b+) - g(a) \\ \mu_g(\alpha;b] &= g(b+) - g(\alpha+) \\ \mu_g[a;\beta) &= g(\beta-) - g(a) \\ \mu_g(\alpha;\beta) &= g(\beta-) - g(\alpha+) \end{split}$$

 $\it Замечание.$ Мера точки может быть положительной. Нулю она равна тогда и только тогда, когда $\it g$ непрерывна в этой точке.

Свойство 10.3. Мера Лебега — Стилтьеса σ -конечна. Конечна она тогда и только тогда, когда μ_g ограничена.

Определение 11. Определим меру μ_g на промежутке произвольного типа.

Пусть $\Delta = \langle \alpha; \beta \rangle \subset \mathbb{R}$.

Если $\alpha \in \Delta$, то пусть $\widetilde{g}(x) = g(\alpha)$ при $x < \alpha$.

Если $\beta \in \Delta$, то не требуем непрерывности g слева в точке β , но положим

$$\widetilde{g}(x) = \begin{cases} g(x) & x \in \langle \alpha; \beta \rangle \\ g(\beta -) & x = \beta \\ g(\beta) & x > \beta \end{cases}$$

После этого получим \widetilde{g} , заданное на открытом промежутке $\widetilde{\Delta} \supset \Delta$. При этом на нём \widetilde{g} возрастает и непрерывно слева. Положим, что мера Лебега — Стилтьеса μ_g равна $\mu_{\widetilde{g}}|_{\mathbb{A}_{\overline{g}}(\Delta)}$.

Замечание. Также можно определить меру μ_g для функции g, которая возрастает на Δ , но не обязательно непрерывна слева. Тогда мы просто исправляем g в точках левого разрыва (кроме β). Другой способ — просто определить меру Лебега — Стилтьеса как $\mu_g[a;b) = g(b-) - g(a-)$.

Замечание. У этих мер есть проблемы: \mathbb{A}_g различны для разных g. А иногда хочется сложить две меры Лебега — Стилтьеса. Тогда их сужают на Борелевскую σ -алгебру (на ней они все определены т.к. определены на ячейках), получая меру Бореля — Стилтьеса (на самом деле бывает более широкая сигма-алгебра, но обычно хватает Борелевской).

Лемма 3. Пусть Δ — промежуток в \mathbb{R} , есть мера ν , заданная на \mathbb{B}_{Δ} , которая конечна на \mathbb{P}_{Δ} (ячейках, лежащих в Δ вместе с замыканием). Тогда существует такая $g \uparrow \Delta$, что $\nu = \mu_g|_{\mathbb{R}_{\Delta}}$.

 \mathcal{A} оказательство. Пусть для определённости Δ открыт.

Пусть $x \in \Delta$. Определим g так:

$$g(x) = \begin{cases} \nu[x_0; x) & x \geqslant x_0 \\ -\nu[x; x_0) & x < x_0 \end{cases}$$

Возрастание g на Δ очевидно. Проверим непрерывность слева. Пусть для определённости $x > x_0$. Рассмотрим $u \in (x_0; x)$. Тогда

$$g(u) = \nu[x_0; u) \underset{u \to x_-}{\longrightarrow} \nu[x_0; x) = g(x)$$

Если же $x \leq x_0$, возьмём u < x:

$$g(u) = -\nu[u; x_0) \underset{u \to x_-}{\longrightarrow} -\nu[x; x_0) = g(x)$$

(Здесь мы используем конечность на отрезках.)

Осталось проверить, что ν и μ_g совпадают на ячейках. Рассмотрим $[a;b)\subset [a;b]\subset \Delta$. Тогда

$$\mu_g[a;b) = g(b) - g(a) = \begin{cases} \nu[x_0;b) - \nu[x_0;a) & x_0 \leqslant a < b \\ \nu[x_0;b) - (-\nu[a;x_0)) & a < x_0 < b = \nu[a;b) \\ -\nu[b;x_0) - (-\nu[a;x_0)) & a < b \leqslant x_0 \end{cases}$$

Определение 12. Интегралом Лебега — Стилтьеса называется никогда не догадаетесь что. Помимо стандартного обозначения $\int_E f \; \mathrm{d}\mu_g$ также пишут

$$\int_{E} f \, \mathrm{d}g \qquad \int_{E} f(x) \, \mathrm{d}g(x)$$

f называутся интегрируемой функцией (integrant), а g — интегрирующей функцией (integrand).

Утверждение. Пусть $(X; \mathbb{A}; \mu)$ — пространство с мерой, а $\mathbb{B} \subset \mathbb{A}$. Пусть $f \in S_{\mathbb{B}}(X)$. Тогда

$$\int_{Y} f \, \mathrm{d}\mu = \int_{Y} f \, \mathrm{d}\mu \big|_{\mathbb{B}}$$

Доказательство. Частный случай замены переменной в интеграле, для $\Phi=\mathrm{id}_X.$

Замечание. Дальше рассмотрим несколько частных случаев меры и интеграла Лебега — Стилтьеса. Пример. Дискретная мера.

Введём

$$\theta(x) = \begin{cases} 1 & x > 0 \\ 0 & x \leqslant 0 \end{cases}$$

— тета-функцию Хевисайда. Очевидно, что

$$\mu_{\theta}E = \delta_0 E = \begin{cases} 1 & 0 \in E \\ 0 & 0 \notin E \end{cases}$$

А дальше рассмотрим $\{a_k\}$ — не более чем счётный набор точек из Δ , Δ открыт в \mathbb{R} , $\{h_k\} \subset (0; +\infty)$. (Дальше будем считать, что имеем счётный набор, конечный будет частным случаем (много нулей)). Пусть

$$\forall [a;b] \subset \Delta \sum_{k:a_k \in [a;b)} h_k < +\infty$$

Иванов Тимофей

Тогда возьмём $x \in \Delta, c \in \mathbb{R}$ и определим

$$g(x) = c + \sum_{k} h_k(\theta(x - a_k) - \theta(x_0 - a_k))$$

Заметим, что θ возрастает, а значит при фиксированном x все слагаемые одного знака. Поэтому сумма ряда есть в $\overline{\mathbb{R}}$. На самом деле эта сумма конечна.

Пусть $x \geqslant x_0$. Тогда, выкинув из суммы нулевые слагаемые, получим

$$c \leqslant g(x) = c + \sum_{k: a_k \in [x_0:x)} h_k < +\infty$$

В случае $x < x_0$ аналогично. А ещё g возрастает (т.к. это сумма ряда возрастающих функций).

Утверждение. g непрерывна везде, кроме a_k , а в a_k непрерывна только слева, а скачок равен h_k .

Доказательство. Докажем, что ряд в определении g сходится равномерно на любом отрезке, содержащемся в Δ .

Достаточно доказывать для $[a;x_0]$ и $[x_0;b]$ (остальные являют собой объединение или разность двух таких). Рассмотрим $[x_0;b]$, $[a;x_0]$ аналогично.

Рассмотрим $x \in [x_0; b]$. Заметим, что

$$h_k(\theta(x - a_k) - \theta(x_0 - a_k)) \leqslant h_k(\theta(b - a_k) - \theta(x_0 - a_k))$$

А ряд с тем, что справа, сходится (т.к. поточечно сходится g(b)), то есть g равномерно сходится по признаку Вейерштрасса.

Заметим, что все члены ряда непрерывны на $\Delta \setminus \{a_k\}_k$, а значит и сумма тоже. Также заметим, что если удалить из суммы k-тое слагаемое, то всё остальное будет непрерывным. А $h_k(\theta(x-a_k)-\theta(x_0-a_k))$ ведёт себя так, как нам хочется.

Определение 13. Функция g такого вида, как в примере выше, называется функцией скачков.

Теорема 10 (Дискретная мера как мера Лебега — Стилтьеса). В условиях определения g, $\mathbb{A}_g = 2^{\Delta}$, $\mu_g = \partial u$ скретная мера c нагрузками h_k в точках a_k .

Доказательство. Если $[a;b] \subset \Delta$, то

$$\mu_g[a;b) = g(b) - g(a) = \sum_k h_k(\theta(b - a_k) - \theta(a - a_k)) = \sum_{k:a_k \in [a;b)} h_k$$

Кажется, это ровно определение дискретной меры. Обозначим её за $\nu[a;b)$. Кайф, две меры совпадают на ячейках. А значит совпадают на \mathbb{A}_g . (В книжке есть доказательство без теоремы о единственности стандартного продолжения меры.) Остаётся лишь доказать, что $\mathbb{A}_g = 2^{\Delta}$. Рассмотрим

$$H = \{a_1; a_2; \ldots\}$$

Это множество измеримо (как не более чем счётное). Значит и дополнение его измеримо. А $\mu_g(\Delta \backslash H) = 0$. А меры μ_g (как и любое стандартное продолжение) полна, а значит любое подмножество $\Delta \backslash H$ измеримо (и имеет меру ноль). Ну и всё, $A = (A \cap H) \cup (A \cap H^{\complement})$, и первое измеримо как не более чем счётное, а второе как множество меры ноль.

Замечание. Как мы видим, μ_g не зависит от x_0 и c. А значит, если ряд $\sum_k h_k \theta(x-a_k)$ сходится для любого x, то $\sum_k h_k \theta(x_0-a_k)$ можно вынести в c.

Пример. g(x) = |x| порождает считающую меру на \mathbb{Z} .

Замечание. Если $\alpha \in \Delta$ или $\beta \in \Delta$, то можно добавить нагрузки в этих точках.

Следствие 3.1.

$$\int_{E} f \, \mathrm{d}g = \sum_{k:a_{k} \in E} f(a_{k}) h_{k}$$

Замечание. Мы видим dg. Очень хочется заменить это на g'dx. В рассмотренном выше примере это не получится без обобщённых функций, но в некоторых примерах получится.

Замечание. Здесь и далее $\int\limits_a^b f$ — интеграл Лебега, $\int\limits_a^a f = -\int\limits_a^b f$.

Определение 14. Пусть Δ — промежуток в \mathbb{R} , $h \colon \Delta \to \overline{\mathbb{R}}$ называется локально суммируемой на Δ , еси она суммируема на любом отрезке в Δ . Обозначение: $L_{loc}(\Delta)$.

Определение 15. Пусть Δ — промежуток в \mathbb{R} . $g\colon \Delta \to \mathbb{R}$ называется локально абсолютно непрерывной на Δ , если g представляется в виде $g(x) = \int_{x_0}^x h + \underbrace{\mathrm{const}}_{a(x_0)}$, где $x_0 \in \Delta$, h локально суммируема.

Обозначение $AC_{loc}(\Delta)$.

Замечание. Далее мы будем опускать слово «локально» в этом термине.

Свойство 15.1. Если h непрерывно в точке x, то g дифференцируема в ней и g'(x) = h(x).

Доказательство. См. доказательство теоремы Барроу.

Свойство 15.2. По теореме Барроу и формуле Ньютона — Лейбница

$$C^{(1)}(\Delta) \subsetneq AC_{loc}(\Delta)$$

Доказательство. Включение строгое, если в качестве h взять θ .

Свойство 15.3.

$$AC_{loc}(\Delta) \subsetneq C(\Delta)$$

Свойство 15.4. Для включения см. теорему об абсолютной непрерывности интеграла из прошлого семестра.

Включение строгое:

$$g(x) = \int_{x}^{1} \frac{1}{t} \sin \frac{1}{t} dt \qquad \Delta = [0; 1]$$

 $B \ x = 0 \ y$ словно сходится (а значит функция g непрерывна), но абсолюно непрерывной она не будет m.к. единственный кандидат на роль $h \ (\frac{1}{t} \sin \frac{1}{t})$ не суммируемо.

Замечание. Более интересно то, что включение строгое, даже если рассматривать только возрастающие функции. Например, если взять Θ — канторову лестницу, то h по крайней мере в дополнительных канторовых промежутках была равна производной Θ , а значит почти везде была бы равна нулю.

Свойство 15.5. Если $g \in AC_{loc}(\Delta)$, то g дифференцируема в почти всех точках Δ , $g' \in L_{loc}(\Delta)$ и g' = h почти везде.

Без доказательства.

Следствие 3.2. $Tor\partial a$

$$g(x) = \int_{x_0}^{x} g' + g(x_0)$$

Утверждение. Однако условие «g почти везде дифференцируема на Δ и ' $g \in L_{loc}(\Delta)$ » не влечёт равенства

$$g(x) = \int_{x_0}^{x} g' + g(x_0)$$

(и не влечёт абсолютной локальной непрерывности).

Доказательство. Канторова лестница.

Замечание. Абсолютно локально непрерывные функции — в точности те функции, для которых верна формула Ньютона — Лейбница.

Утверждение. Если g возрастает на [a;b], то g дифференцируема почти везде на [a;b]. Тогда g'неотрицательно почти везде и

$$\int_{a}^{b} g' \leqslant g(b) - g(a)$$

Без доказательства.

Теорема 11 (Интеграл Лебега — Стилтьеса абсолютно локально непрерывной функции.). *Пусть* Δ — промежсуток в \mathbb{R} , $h \in L_{loc}(\Delta)$, $h \geqslant 0, x_0 \in \Delta$,

$$g(x) = \int_{x_0}^{x} h + g(x_0) \qquad x \in \Delta$$

Tог ∂a

- 1. $\mathbb{A}_1(\Delta) \subset \mathbb{A}_q(\Delta)$.
- 2. Если $E \in \mathbb{A}_1(\Delta)$, $f \in S(E)$, то $\int_E f \, \mathrm{d}g = \int_E f h$. Интегралы существуют или нет одновременно, если существуют, то равны.

Доказательство. Пусть $\nu E=\int_E h$. Это мера на $\mathbb{A}_1(\Delta)$. Заметим, что тогда второе утверждение — замена переменной в интеграле. О'кей, заметим, что μ_g и ν равны нулю на одноточечном множестве, а значит можно считать Δ открытым.

Круть, заметим, что $\mu_g[a;b)=g(b)-g(a)=\int\limits_a^bh=\nu[a;b),$ то есть ν и μ_g совпадают на ячейках. А значит совпадают на \mathbb{B}_{Δ} . А хочется, чтобы они совпадали на измеримых Лебегу множествах.

Хорошо, давайте дальше проверим, что ν и μ_q совпадают на множествах нулевой меры. Возьмём $e\subset \Delta: \mu_1 e=0$. Его можно заключить в множестве типа G_δ с нулевой мерой, а на множестве типа G_δ ν и μ_g совпадают (и равны нулю). Тогда по полноте μ_g $e \in \mathbb{A}_g(\Delta)$.

Итого рассмотрев множество $E \in \mathbb{A}_1(\Delta)$, представим его как $A \cup e$, где $A \in \mathbb{B}_\Delta$, $\mu_1 e = 0$, получим, что любое такое E лежит в $\mathbb{A}_q(\Delta)$.

Осталось применить теорему 6 ($\Phi = id_{\Delta}$).

Следствие 3.1. Если $g \in C^{(1)}(\Delta)$ и возрастает, то $\int_E f \, \mathrm{d}g = \int_E f g'$

Замечание. Очень жаль, но наши два примера — это не все функции.

Определение 16. $g \colon \Delta \to \mathbb{R}$ называется сингулярной, если $g \equiv 0$ или g непрерывна, $g \neq \mathrm{const}$ и q'=0 почти везде.

Пример. Канторова лестница.

Утверждение. Пусть $g: \Delta \to \mathbb{R}$, возрастает и непрерывна слева (кроме, возможно, правого конца Δ). Тогда q единственным образом (с точностью до константы) представляется в виде

$$g = g_{\rm disc} + g_{\rm c}$$

где первое — функция скачков, второе — непрерывная. При этом

$$g_{\rm c} = g_{\rm ac} + g_{\rm sing}$$

Где первое — абсолютно непрерывна, второе — сингулярна. При этом все эти д также возрастают и непрерывны слева (кроме, возможно, левого конца).

Что интересно, то же самое можно записать для мер Стелтьеса — Лебега (по крайней мере на \mathbb{B}_{\wedge}):

$$\mu_g = \mu_{g_{\text{disc}}} + \mu_{g_{\text{ac}}} + \mu_{g_{\text{sing}}}$$

Определение 17. Интеграл Лебега — Стилтьеса функции произвольного знака.

Пусть $g = g_1 - g_2$, где g_1, g_2 возрастают. Пусть f, E — борелевские. Тогда положим

$$\int_{E} f \, \mathrm{d}g = \int_{E} f \, \mathrm{d}g_1 - \int_{E} f \, \mathrm{d}g_2$$

Если правая часть существует.

Свойство 17.1. Нетрудно заметить, что этот интеграл не зависит от конкретного разбиения g на g_1 и g_2 .

Замечание. В частности, на отрезке можно интегрировать по функции ограниченной вариации.

Свойство 17.2. Интеграл заведомо существует и конечен для борелевской ограниченной функции f.

Свойство 17.3. Для таких интегралов верна теорема 11.

Теорема 12 (Интегрирование по частям в интеграле Лебега — Стилтьеса.). Пусть $f \in AC[a;b]$, $g \in V[a;b]$. Тогда

 $\int_{[a;b]} f g = fg \bigg|_a^b - \int_a^b f'g$

Доказательство. Считаем, что g возрастает, (иначе представим в виде разности двух возрастающих) и непрерывна слева (кроме, может, b).

• Докажем сначала формулу в частном случае f(a) = g(b) = 0. Тогда

$$\int_{[a;b]} f \, dg = \int_{[a;b]} \left(\int_{a}^{x} f'(u) \, du \right) \, dg(x)$$

Хочется воспользоваться теоремой Фубини. Тогда заметим, что $a \le u \le x \le b$, то есть имеем треугольник. Чтобы менять порядок интегрирования, надо проверить суммируемость подынтегральной функции. Для этого ставим модуль |f'(u)|. Тогда изменить порядок интегрирования можно по Тонелли и получить $\int\limits_a^b |f'|g$, где первое суммируемо, второе ограничено, а значит интеграл небесконечен. То есть f'(u) суммируема

$$\int_{[a;b]} f \, dg = \int_{[a;b]} f'(u) \underbrace{\left(\int_{[u;b]} dg(x)\right)}_{\mu_g[u;b] = g(b) - g(u) = -g(u)} du = -\int_a^b f'g$$

Получили то, что хотели.

• Общий случай: рассмотрим f - f(a) и g - g(b). По доказанному,

$$\int_{[a;b]} f - f(a) \, d(g - g(b)) = -\int_{a}^{b} (f - f(a))'(g - g(b))$$

Тогда

$$\int_{[a;b]} f \, dg - f(a) \int_{[a;b]} dg = -\int_{a}^{b} f'g + \int_{a}^{b} f'g(b)$$

При этом $\int_{[a;b]} dg$ мы уже считали, это g(b) - g(a), а $\int_a^b f' = f(b) - f(a)$ по формуле Ньютона — Лейбница $(f \in AC[a;b])$. Приведя подобные слагаемые, получим искомое.

Следствие 3.1 (Интегрирование по частям в интеграле Лебега). *Если* $f, g \in AC[a; b], mo$

$$\int_{a}^{b} fg' = fg \bigg|_{a}^{b} - \int_{a}^{b} f'g$$

Интегралы, зависящие от параметра.

Определение 18. Пусть $(X; \mathbb{A}; \mu)$ — пространство с мерой, Y — множество (произвольное). И есть функция $f: X \times Y \to \overline{\mathbb{R}}$. Пусть также

$$\forall y \in Y \ f(\bullet; y) \in L(X; \mu)$$

Тогда $I(y) = \int_X f(x;y) \, \mathrm{d}x$ называется **интегралом, зависящим от параметра**.

Замечание. Чтобы исследовать свойства интеграла с параметром, придётся вводить дополнительную структуру на Y. Например, если Y — метрическое пространство, можно ли перейти к пределу под знаком интеграла? Или есть ли непрерывность интеграла с параметром. Что можно сказать о дифференцируемости I и о её производной (тогда уже надо считать Y подмножеством \mathbb{R}^n). Можно ли интегрировать по y, если Y — пространство с мерой?

Впрочем, ответ на 4 вопросы мы знаем — см. теоремы Тонелли и Φ убини. На остальные сейчас попытаемся ответить.

Теорема 13 (Предельный переход по параметру под знаком интеграла). $\Pi ycmb(X; \mathbb{A}; \mu) - npocmpaн$ $ство с мерой, <math>\tilde{Y} - npocmpahcmbo c морой, Y \subset Y$. $\Pi ycmb f: X \times Y \to \overline{\mathbb{R}} \ u \ nycmb$

$$\forall y \in Y \ f(\bullet; y) \in L(X; \mu)$$

Пусть y_0 — предельная точка Y, при почти всех $x \in X$ $f(x;y) \underset{y \to y_0}{\to} g(x)$.

 $\Pi y cm b$

 $\exists \Phi \in L(X; \mu) \ \exists V_{y_0} \ npu \ novmu \ scex \ x \in X \ \forall y \in \dot{V}_{y_0} \cap Y \ |f(x; y)| \leqslant \Phi(x)$

Tог ∂a

$$\lim_{y \to y_0} \int_X f(x;y) \ d\mu(x) = \int_X \lim_{y \to y_0} f(x;y) \ d\mu(x)$$

Определение 19. Условие

$$\exists \Phi \in L(X;\mu) \; \exists V_{y_0}$$
 при почти всех $x \in X \; \forall y \in \dot{V}_{y_0} \cap Y \; |f(x;y)| \leqslant \Phi(x)$

называется **локальным условием Лебега** в точке y_0 .

Доказательство. Возьмём последовательность точек $y_n \in Y \setminus \{y_0\}, y_n \to y_0$. Тогда начиная с некоторого y_N все $y_{n>N} \in V_{y_0}$ из локального условия Лебега.

Введём последовательность функций $f_n(x) = f(x; y_n)$. Тогда при почти всех $x \in X$ $f_n(x) \underset{n \to \infty}{\to} g(x)$.

Кроме того в силу локального условия Лебега для почти всех $x \in X \ \forall n \in \mathbb{N} \ |f_n(x)| \leqslant \Phi(x)$

То теореме Лебега о мажорируемой сходимости $g \in L(X; \mu)$, и

$$\int_X f_n(x) d\mu(x) \xrightarrow[n \to \infty]{} \int_X g(x) d\mu(x)$$

3амечание. Не исключён случай, когда y_0 — бесконечно удалённая точка или $\pm \infty$, если $\tilde{Y} = \mathbb{R}$.

Замечание. Квантор \forall и «для почти всех» в общем случае менять нельзя. «Почти всех x $\forall y$ » сильнее, чем « $\forall y$ для почти всех x». Но для данной теоремы более слабое условие также работает (без изменения доказательства).

Замечание. Интересный факт: мы имели равномерную сходимость для рядов. А эта теорема в некотором смысле оперирует с равномерной сходимостью для семейств функций (f) можно рассматривать как семейство функций $f_{y}(x)$.

Определение 20. Пусть X — множество, \tilde{Y} — метрическое пространство, $Y \subset \tilde{Y}, y_0$ — передельная точка $Y, f \colon X \times Y \to \mathbb{R}$ (или \mathbb{C}), $g \colon X \to \mathbb{R}$ (или \mathbb{C}). Тогда говорят, что **семейство функций** $\{f(\bullet;y)\}_{y \in Y}$ сходится к g равномерно на X при $y \to y_0$, если

$$\sup_{x \in X} |f(x;y) - g(x)| \underset{y \to y_0}{\longrightarrow} 0$$

Записывается привычным образом $f(x;y) \underset{y \to y_0}{\rightrightarrows} g(x)$

Следствие 3.1 (Предельный переход по параметру при условии равномерной сходимости). *Пусть* $(X; \mathbb{A}; \mu)$ — пространство с мерой, μ конечна.

 $ilde{Y}$ — метрическое пространство, $Y\subset Y$, y_0 — предельная точка Y .

Пусть $f: X \times Y \to \mathbb{R}$, $f(x;y) \underset{y \to y_0}{\Longrightarrow} g(x)$ на X и пусть

$$\forall y \in Y \ f(\bullet; y) \in L(X; \mu)$$

Тогда $g \in L(X; \mu)$

$$\lim_{y \to y_0} \int_X f(x;y) \ \mathrm{d}\mu(x) = \int_X \lim_{y \to y_0} f(x;y) \ \mathrm{d}\mu(x)$$

Доказательство. Возьмём последовательность $y_n \in Y \setminus \{y_0\}, y_n \to y_0$. Введём $f_n(x) = f(x; y_n)$. Тогда f_n равномерно стремится к g на X.

Возьмём $\varepsilon = 1$ и получим N такое что $\forall n > N \ \forall x \in X \ |f_n(x) - g(x)| < 1$.

Отсюда $|g(x)| < |f_N(x)| + 1$, обе части $\in L(X; \mu)$, значит $g \in L(X; \mu)$. Тогда

$$|f_n(x)| \leqslant 1 + |g(x)|$$

Если обозначит правую часть за Ф, можно будет применить теорему Лебега.

Пример. Условие конечности меры существенно. На множестве бесконечной меры равномерная сходимость не работает:

 $X = [0; +\infty), f_n = \frac{1}{n}\chi_{[0;n]}$. Тогда интеграл каждой f_n равен 1, что не стремится к нулю.

Следствие 3.2 (Непрерывность интеграла по параметру в точке). *Пусть* $(X; \mathbb{A}; \mu)$ — *пространство* c мерой.

Пусть Y — метрическое пространство, $y_0 \in Y$.

Пусть $f: X \times Y \to \mathbb{R}$ и пусть

$$\forall y \in Y \ f(\bullet; y) \in L(X; \mu)$$

Пусть для почти всех $x \in X$ $f(x; \bullet)$ непрерывна в y_0 и пусть f удовлетворяет локальному условию Лебега нв y_0 . Тогда $\int_X f(x; y) d\mu(x)$ непрерывно в y_0 .

Доказательство. Если y_0 — изолированная точка Y, ничего доказывать не надо, иначе она предельная. Возьмём $g(x) = f(x; y_0)$. Всё.

Следствие 3.3. Если условие следствия 3.2 верно для любой точки $y_0 \in Y$, то

$$\int_{Y} f(x; y) \, d\mu(x) \in C(Y)$$

Замечание. Полезное напоминание: если $f \in C(X \times Y)$, то $\forall x \in X \ f(x; \bullet) \in C(Y)$ и $\forall y \in Y \ f(\bullet; y) \in C(X)$.

Теорема 14 (Непрерывность интеграла по параметру на множестве). Пусть X, Y — метрические пространства, X компактно, μ — конечная борелевская мера на X, $f \in C(X \times Y)$. Тогда

$$\int_X f(x;y) \, \mathrm{d}\mu(x) \in C(Y)$$

Доказательство. Из комментария выше

$$\forall y \in Y \ f(\bullet; y) \in C(X)$$

Также X — компакт, следовательно $f(\bullet;y)$ ограничена на X. μ — борелевская, значит $f(\bullet;y)$ измерима. $\mu X < +\infty$, а значит $f(\bullet;x) \in L(X;\mu)$. Отлично, теперь интеграл $\int_X f(x;y) \, \mathrm{d}\mu(x)$ корректно определён. Ну что ж, осталось проверить локальное условие Лебега в каждой точке $y_0 \in Y$. Давайте докажем, что

$$\exists V_{y_0} \ f$$
 ограничена на $X \times V_{y_0}$

(мажоранта будет константой).

Ну, давайте докажем от противного. Тогда в частности $\forall n \in \mathbb{N} \ \exists x_n \in X, y_n \in B(y_0; \frac{1}{n}) \ |f(x_n; y_n)| > n.$ y_n стремится к y_0 , а из x_n можно выделить сходящуюся (к x_0) подпоследовательность x_{n_k} (в силу секвенциальной компактности). Но подождите. $|f(x_{n_k}; y_{n_k})| > n_k \to \infty$. А левая часть стремится к $|f(x_0; y_0)|$.

Замечание. В частности, теорема верна для меры Лебега.

Следствие 3.1. Если $[a;b], \langle c;d \rangle \subset \mathbb{R}, \ f \in C([a;b] \times \langle c;d \rangle), \ mo \ \int_X f(x;y) \ \mathrm{d}x \in C\langle c;d \rangle.$

Пример. Локальное условие Лебега в следствии 3.2 и компактность X в теореме 14 существенны. Пусть $X = Y = \mathbb{R}$,

$$f(x;y) = \begin{cases} 0 & y = 0\\ \frac{1}{1 + \left(x + \frac{1}{|y|}\right)^2} & y \neq 0 \end{cases}$$

Верно ли, что $f \in C(\mathbb{R}^2)$? Если $y_0 \neq 0$, то в точке $(x_0; y_0)$ всё понятно. Что с y = 0? Ну, рассмотрим $(x_0; 0)$ в окрестности $|xy| < \frac{1}{2}$. Тогда

$$0 \leqslant f(x;y) \leqslant \frac{y^2}{y^2 + (x|y|+1)^2} \leqslant 4y^2 \underset{(x;y)\to(x_0;0)}{\longrightarrow} 0$$

Обозначим

$$I(y) = \int_{\mathbb{R}} f(x; y) \, \mathrm{d}x$$

Очевидно, I(0) = 0. А если $y \neq 0$, то

$$I(y) = \int_{\mathbb{R}} \frac{1}{1 + \left(x + \frac{1}{|y|}\right)^2} \, \mathrm{d}x$$

От y эта штука не зависит никак, потому что сдвиг. А значит y можно выкинуть, и получить, что $I(y)=\pi$. Ой. Разрыв в нуле.

Теорема 15 (Дифференцируемость интеграла по параметру). Пусть $Y = \langle c; d \rangle \subset \mathbb{R}$, $(X; \mathbb{A}; \mu)$ — пространство c мерой, $f: X \times Y \to \mathbb{R}$, $\forall y \in Y \ f(\bullet; y) \in L(X; \mu)$, при почти всех $x \in X \ f(x; \bullet)$ дифференцируемо на Y. Пусть $y_0 \in Y$ и $\frac{\partial f}{\partial y}$ удовлетворяет локальному условию Лебега. Тогда

$$\exists \left(\int_X f(x;y) \, \mathrm{d}\mu(x) \right)'_y \bigg|_{y=y_0} = \int_X f'_y(x;y_0) \, \mathrm{d}\mu(x)$$

Доказательство. Производную будем искать по определению. Возьмём $h \neq 0, y_0 + h \in Y$. Рассмотрим

$$F(x;h) = \frac{f(x; y_0 + h) - f(x; y_0)}{h}$$

Из дифференцируемости $f(x; \bullet)$ почти везде, при почти всех $x \ F(x; h) \xrightarrow[h \to 0]{} f'_y(x; y_0)$. Пусть

$$I(y) = \int_X f(x; y) d\mu(x)$$

Тогда

$$\frac{I(y_0 + h) - I(y_0)}{h} = \int_X F(x; h) \, d\mu(x)$$

Очень хочется сделать переход под знаком интеграла. Чтобы так было можно сделать по теореме 13, надо проверить локальное условие Лебега для F в точке h. По теореме Лагранжа

$$\exists \theta \in (0;1) \ F(x;h) = f'_{y}(x;y+\theta h)$$

Какое-то условие Лебега нам дано $(f'_u \in L_{loc} \text{ в } y_0)$. Запишем его подробно:

$$\exists \Phi \in L(X; \mu) \ \exists V_{y_0}$$
 для почти всех $x \in X \ \forall y \in \dot{V}_{y_0} \cap Y \ |f'_y(x; y)| \leqslant \Phi(x)$

Понятно, что

$$\exists \delta > 0 \ \forall h \in (-\delta; \delta) \setminus \{0\} \ y_0 + \theta h \in \dot{V}_{y_0} \cap Y$$

Тогда

$$|F(x;h)| = |f'(x;y_0 + \theta h)| \leqslant \Phi(x)$$

Следствие 3.1. Если X — компакт, μ — конечная борелевская мера на X, $Y = \langle c; d \rangle \subset \mathbb{R}$, $f, f'_y \in C(X \times Y)$. Тогда

$$\int_{Y} f(x;y) \, \mathrm{d}\mu(x) \in C^{(1)}(Y)$$

u для любой $y_0 \in Y$ верно правило Лейбница.

 ${\it Доказательство}$. Надо проверить, локальное условие Лебега для производной. Для любой y_0 возьмём

$$\delta > 0 \ [y_0 - \delta; y_0 + \delta] \cap \langle c; d \rangle = [\alpha; \beta]$$
 ограничено

Тогда $f_y' \in C(X \times [\alpha; \beta])$, а значит f_y' ограничена на $X \times [\alpha; \beta]$ (мажоранта — постоянная). По теореме 15 $I'(y_0)$ равно тому, чему хочется, а 14.

Пример. Условие Лебега в теореме 15 и компактность в следствии 1 существенны.

Пусть $X = (0; 1], Y = [0; +\infty), f(x; y) = \ln(x^2 + y^2)$. Тогда

$$I(y) = \int_0^1 \ln(x^2 + y^2) \, dx \stackrel{y \neq 0}{=} x \ln(x^2 + y^2) \Big|_{x=0}^1 - \int_0^1 \frac{2x^2}{x^2 + y^2} \, dx =$$

$$= \ln(1 + y^2) - 2 + 2y^2 \frac{1}{y} \tan^{-1} \frac{x}{y} \Big|_{x=0}^1 = \ln(1 + y^2) - 2 + 2y \tan^{-1} \frac{1}{y}$$

A при y = 0 это просто -2.

Теперь давайте считать производную в нуле (где нарушено правило Лейбница)

$$I'(0) = I'_{+}(0) = 0 - 0 + \pi$$

Но

$$\int_0^1 \left(\ln(x^2 + y^2) \right)_y' \bigg|_{x=0} dx = \int_0^1 0 dx = 0$$

Интеграл комплекснозначной функции.

Определение 21. Пусть $(X; \mathbb{A}; \mu)$ — пространство с мерой, $E \in \mathbb{A}$, $f \colon E \to \mathbb{C}$ (или даже $\overline{\mathbb{C}}$). Пусть $f = u + \mathbf{i}v$.

f называется **измеримой** на E, если u и v измеримы на E.

f называется **измеримой** на E, если u и v измеримы на E.

Положим

$$\int_{E} f \, \mathrm{d}\mu = \int_{E} u \, \mathrm{d}\mu + \mathbf{i} \int_{E} v \, \mathrm{d}\mu$$

если правая часть имеет смысл.

Свойство 21.1. Очевидно.

$$\int_{E} \overline{f} \, d\mu = \overline{\int_{E} \overline{f} \, d\mu}$$

Свойство 21.2. Арифметические свойства интеграла переносятся очевидно.

Лемма 4. Пусть f = u + iv, $f \in S(E)$. Тогда

- 1. $|f| \in S(E)$.
- 2. Суммируемость f u |f| равносильны.
- 3.

$$\left| \int_E f \ \mathrm{d}\mu \right| \leqslant \int_E |f| \ \mathrm{d}\mu$$

Доказательство. 1. $|f| = \sqrt{u^2 + v^2}$. А правая часть $\in S(E)$ по арифметическим действиям с измеримыми функциями.

2. Из

$$|u|, |v| \leq |f| \leq |u| + |v|$$

Отсюда всё понятно.

3. Если $\int_E f \ \mathrm{d}\mu = 0$ или ∞ , то всё понятно. Иначе

$$\int_{E} f \, \mathrm{d}\mu \in \mathbb{C} \setminus \{0\}$$

Тогда пусть

$$z = \frac{\left| \int_E f \, \mathrm{d}\mu \right|}{\int_E f \, \mathrm{d}\mu}$$

Понятно, что |z|=1. Тогда

$$\left| \int_{E} f \, \mathrm{d}\mu \right| = z \int_{E} f \, \mathrm{d}\mu = \int_{E} z f \, \mathrm{d}\mu$$

При этом левая штука $\in \mathbb{R}$, а значит правая — тоже. Отсюда

$$\left| \int_{E} f \, \mathrm{d}\mu \right| = \Re \int_{E} zf \, \mathrm{d}\mu = \int_{E} \Re zf \, \mathrm{d}\mu \leqslant \int_{E} |zf| \, \mathrm{d}\mu = \int_{E} |f| \, \mathrm{d}\mu$$

Свойство 21.3. Из леммы переносятся теоремы Фубини, Лебега о мажорируемой сходимости и все теоремы этого параграфа. При дифференцируемость сейчас разберёмся.

Теорема 16 (Голоморфность интеграла по параметру). Пусть $(X; \mathbb{A}; \mu)$ — пространство с мерой, $Y \subset \mathbb{C}, f: X \times Y \to \mathbb{C},$

$$\forall y \in Y \ f(\bullet; y) \in L(X; \mu)$$

При почти всех $\forall x \in X \ f(x; \bullet) \in \mathcal{A}(Y)$

И пусть ещё

$$\forall y_0 \in Y \ f_y' \in L_{\mathrm{loc}} \ e \ moчке \ y_0$$

тогда $I \in \mathcal{A}(Y)$ и верно правило Лейбница.

Доказательство. Единственное отличие доказательства от доказательства 15 в том, что

$$|F(x;h)| \leqslant |f_u'(x;y_0 + \theta h)|$$

Этого нам хватит, так как нам нужна мажоранта.

 Π ример. Пусть Γ замкнуто в $\mathbb C$. Пусть μ — борелевская мера на Γ . Пусть $G=\mathbb C\setminus\Gamma,\,h\in L(\Gamma;\mu).$ Пусть

$$F(z) = \int_{\Gamma} \frac{h(\zeta)}{\zeta - z} d\mu(\zeta), \qquad z \in G$$

тогда $F \in \mathcal{A}(G)$ и

$$\forall n \in \mathbb{N} \ \forall z \in G \ F^{(n)}(z) = n! \int_{\Gamma} \frac{h(\zeta)}{(\zeta - z)^{n+1}} \ d\mu(\zeta)$$

Почему?

Пусть $z_0 \in \Gamma$. Пусть $2\sigma = \rho(z_0; \Gamma) > 0$. Если $|z - z_0| < \sigma$, а $\zeta \in \Gamma$, то $|\zeta - z| \geqslant \sigma$. Тогда

$$\left| \frac{\partial^n}{\partial z^n} \frac{h(\zeta)}{\zeta - z} \right| = n! \frac{|h(\zeta)|}{|\zeta - z|^{n+1}} \leqslant \underbrace{\frac{n!}{\sigma^{n+1}} |h(\zeta)|}_{\in L(\Gamma; \mu)}$$

Значит можно дифференцировать сколько угодно раз.

Примеры вычисления интегралов.

Пример.

$$I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)^{n+1}} \qquad n \in \mathbb{Z}_+$$

А давайте введём вот такую штуку:

$$I(y) = \int_{0}^{+\infty} \frac{\mathrm{d}y}{y + x^2}$$

Это мы считать умеем. А зачем? В потому что если продифференцировать это по y n раз, то получится то, что мы хотели (только с точностью до знака и факториала):

$$\frac{\partial^n}{\partial y^n} \frac{1}{y+x^2} = \frac{(-1)^n n!}{(y+x^2)^{n+1}}$$

Хорошо, а почему можно дифференцировать под знаком интеграла? Пусть $V_{y_0} = \left(\frac{y_0}{2}; +\infty\right)$. Тогда

$$\forall y \in V_{y_0} \ \forall x \in [0; +\infty) \ \left| \frac{\partial^n}{\partial y^n} \frac{1}{y + x^2} \right| \leqslant \frac{n!}{\left(\frac{y_0}{2} + x^2\right)^{n+1}} = \Phi_{y_0}(x)$$

Где $\Phi_{y_0} \in L[0; +\infty)$. Ну, о'кей. Давайте считать I(y).

$$I(y) = \frac{1}{\sqrt{y}} \tan^{-1} \frac{x}{\sqrt{y}} \Big|_{x=0}^{+\infty} = \frac{\pi}{2\sqrt{y}}$$

Тогда

$$I^{(n)}(y) = \frac{\pi}{2} \frac{(-1)^n \frac{1}{2} \cdot \frac{3}{2} \cdot \dots \cdot \frac{2n-1}{2}}{y^{n+1/2}} = \frac{(-1)^n (2n-1)!!}{2^{n+1} y^{n+1/2}} \pi$$

Тогда

$$I_n = \frac{(-1)^n}{n!} I^{(n)}(1) = \frac{(2n-1)!!}{(2n)!!} \frac{\pi}{2}$$

Пример. Давайте возьмём интеграл из предыдущего примера, и начнём делать с ним тёмную магию

$$\int_{0}^{+\infty} \frac{\mathrm{d}x}{(1+x^2)^{n+1}} = \frac{(2n-1)!!}{(2n)!!} \frac{\pi}{2}$$

Давайте сделаем замену $x = \frac{t}{\sqrt{n+1}}$. Тогда

$$\int_{0}^{+\infty} \frac{\mathrm{d}x}{(1 + \frac{t^2}{n+1})^{n+1}} = \frac{(2n-1)!!}{(2n)!!} \frac{\pi}{2} \sqrt{n+1}$$

И теперь давайте устремим n у бесконечности. В правой части по формуле Валлиса $\frac{\sqrt{\pi}}{2}$. А в левой части получится замечательный предел, и мы получим интеграл Пуассона:

$$\int_{0}^{+\infty} e^{-t^2} dt$$

Остаётся только понять, почему можно переходить к пределу под знаком интеграла. Ну, заметим, что

$$f_n(t) = \left(1 + \frac{t^2}{n+1}\right)^{-n-1}$$

убывает по n. А тогда

$$0 \leqslant f_n(t) \leqslant f_0(t) = \frac{1}{1+t^2}$$

Где $f_0 \in L([0; +\infty)).$

Замечание. Поговорим о несобственных интегралах.

А что о них говорить-то? А то, что у нас были несобственные интегралы в смысле Римана (это предельчик), но тут у нас интеграл по множеству, и никто не заставляет множество иметь конечную меру. Надо как-то связать несобственный интеграл Римана и интеграл по множеству.

Определение 22. Пусть $a \in \mathbb{R}, f: [a; +\infty) \to \mathbb{R},$ и $\forall A \in (a; +\infty) \exists (L) \int\limits_a^A f$. Тогда положим

$$\int_{a}^{++\infty} f = \lim_{A \to +\infty} \int_{a}^{A} f$$

Лемма 5. Если существует (L) $\int_{a}^{+\infty} f$, то существует $\int_{a}^{++\infty} f$, равный собственному лебеговому интегралу.

Доказательство. Достаточно доказать для $f \geqslant 0$ (иначе рассмотреть f_+ и f_- , а потом $\Re f$ и $\Im f$). В таком случае оба интеграла существуют в $[0; +\infty]$.

Рассмотрим $f_n = f \cdot \chi_{[a;n]}$, где n > a. Тогда f_n возрастают (по n) и стремятся к f. Тогда с одной стороны

$$\int_{0}^{n} f = (L) = \int_{0}^{+\infty} f_{n} \xrightarrow[n \to \infty]{\text{Леви}} (L) \int_{0}^{+\infty} f$$

С другой стороны по определению несобственного интеграла левая часть стремится к несобственному интегралу. \Box

Утверждение. $\int\limits_a^{\to+\infty} f\ cxo dumcs\ aбсолютно\ morda\ u\ mолько\ morda,\ когдa\ f\in L[a;+\infty).$

Доказательство. Если f суммируема, то и модуль тоже. Поэтому несобственный интеграл сходится абсолютно. Аналогично обратное.

Пример. • $\int\limits_{1}^{+\infty} \frac{\mathrm{d}x}{x^2} = 1$ можно рассматривать как Лебегов интеграл или как сходящийся несобственный.

- $\int\limits_{1}^{+\infty} \frac{\mathrm{d}x}{x} = +\infty$ можно рассматривать как Лебегов интеграл или как расходящийся несобственный.
- $\int_{0}^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$ можно рассматривать как сходящийся несобственный, но не как Лебегов.

Замечание. Аналогично определяются несобственные интегралы для других типов промежутков или даже для многомерных интегралов. Как, например, можно трактовать такое?

$$\iint_{\mathbb{R}^2} f$$

Hy, рассматривать $\{G_k\}$ открытые, $G_k \subset G_{k+1}$, и объединение их всех — \mathbb{R}^2 .

Так вот это не даст нам ничего нового. Почему? Докажем, что условно сходящихся интегралов не бывает. Почему? Ну, потому что если такой бывает, то у нас разошлись интегралы f_+ и f_- . Тогда мы можем взять места, где f положительно, взять их столько, чтобы в интеграле получилось > 1 и соединить эти области перемычками. Потом сделаем то же с отрицательными частями так, чтобы они в сумме с положительными давали < -2. И так далее. Получим, что предела f нет.

В итоге рассматривают только какие-то специфичные G_n . Типа предел по квадратам или по комунибудь ещё.

Замечание. Есть много замечательных теорем о хороших свойствах несобственных интегралов, их можно прочитать в Фихтенгольце или где-нибудь ещё, а мы расскажем только одну лемму.

Лемма 6. Пусть $a\in\mathbb{R},\ f\in C[a;+\infty),\ \int\limits_{a}^{+\infty}f$ сходится. Введём

$$I(y) = \int_{-\infty}^{\infty} e^{-yx} f(x) \, dx$$

 $Tor \partial a \ I \in C[0; +\infty).$

Доказательство. Докажем сначала, что интеграл сходится. Попутно оценим остаток. Рассмотрим A>a и проинтегрируем по частям:

$$\int\limits_{A}^{++\infty}e^{-yx}f(x)~\mathrm{d}x=\underbrace{e^{-yx}(F(x)-F(A))}_{0}\bigg|_{X=A}^{++\infty}+\int\limits_{a}^{++\infty}y\underbrace{e^{-yx}}_{\text{интеграл сходится}}\underbrace{(F(x)-F(A))}_{\text{ограничена}}~\mathrm{d}x$$

Теперь докажем непрерывность интеграла в точке $y_0\geqslant 0$. Рассмотрим $\varepsilon>0$ и подберём

$$A > a \left| \int_{A}^{+\infty} f \right| < \frac{\varepsilon}{3}$$

Тогда

$$\left| \int_{A}^{++\infty} e^{-yx} f(x) \, dx \right| = \left| \int_{a}^{++\infty} y e^{-yx} \underbrace{\left(F(x) - F(A) \right)}_{\leqslant \frac{\varepsilon}{3}} \, dx \right| \leqslant \frac{\varepsilon}{3} e^{-Ay} \leqslant \frac{\varepsilon}{3}$$

То есть $I_A(y)=\int\limits_a^A e^{-yx}f(x)$ dx непрерывна. Остаётся рассмотреть такое $\delta>0,$ что $\forall y\geqslant 0:|y-y_0|<\delta\;|I_A(y)-I_A(y_0)|<\frac{\varepsilon}{3},$ тогда

$$|I(y) - I(y_0)| \le |I(y) - I_A(y)| + |I_A(y) - I_A(y_0)| + |I_A(y_0) - I(y_0)| < \varepsilon$$