

КАССАНДРА К6

комплекс радиомониторинга и анализа сигналов

Руководство по эксплуатации

Содержание:

Наименование	Стр
Введение	
1. Описание и работа	2
1.1. Назначение	2
1.2. Технические характеристики	2
1.3. Состав	3
1.4. Устройство и работа	4
1.5. Программное обеспечение	5
1.6. Конструкция	6
2. Использование по назначению	7
2.1. Эксплуатационные ограничения	7
2.2. Подготовка к использованию	8
2.3. Использование комплекса	8
2.4. Завершение работы	8
2.5. Обслуживание	8
3. Хранение и транспортирование	9
Возможные неисправности и способы их устранения.	10

Настоящее руководство предназначено для пояснения принципа работы, устройства и конструкции комплекса радиомониторинга и анализа сигналов "Кассандра К6" (далее по тексту – комплекс). Для правильной эксплуатации комплекса необходимо изучить настоящее руководство. Кроме того, при изучении и эксплуатации комплекса необходимо использовать «Руководство пользователя программного обеспечения» с описанием интерфейса управляющей программы.

Внимание! К работе с комплексом допускается персонал, прошедший обучение и имеющий навыки уверенного пользователя ПК с операционной системой, используемой в ПЭВМ управления комплекса (Windows). Практическое использование аппаратуры регламентируется соответствующими ведомственными инструкциями для подразделений.

1. Описание и работа

1.1. Назначение

- 1.1.1. Комплекс отличается простотой конструкции, эргономичностью, минимумом органов управления и нетребователен в эксплуатации.
- 1.1.2 Комплекс предназначен для:
- постоянного, периодического или оперативного мониторинга радиообстановки,
- обнаружения несанкционированных радиоизлучений в проверяемых помещениях, в том числе излучения передатчиков, использующих сложные алгоритмы скрытия своей работы (с накоплением информации, с перестройкой по частоте, широкополосные и шумоподобные излучения и т.д.),
- детального исследования физических параметров принятых радиосигналов,
- локализации источников радиоизлучений,
- создания архивов результатов радиомониторинга.

1.2. Технические характеристики

1.2.1 Основные технические характеристики основного блока. (Таб. 1)

Радиочастотная часть	
Диапазон рабочих частот	от 9 кГц – 25 МГц, 25 МГц - 6 ГГц
Чувствительность	минус 158 дБм/Гц
Динамический диапазон по одному сигналу (уровень шума -	135 дБ
точка компрессии 1 дБ) в полосе1 Гц без аттенюатора	
Динамический диапазон по интермодуляционным искаже-	
ниям 2-го и 3-го порядка при с/ш 10±1 дБ	80 дБ
Максимальное разрешение по частоте	8 Гц
Назначенная скорость сканирования	10000 МГц/с
Полоса обзора в режиме ВЧ анализа	настраиваемая, до 20 МГц
Количество каналов встроенного коммутатора	4
Тип разъемов	SMA, 50 Om
Цифровая обработка	
Полоса БПФ анализа	12 МГц
Запись I Q	потоковая
Низкочастотная часть	
Внутренние демодуляторы	AM, YM, APCO25, DMR,PAL
Полоса демодуляторов	настраиваемая 10 Гц – 8 МГц
Дополнительная обработка	АРУ, шумоподавление
Питание	
Сеть	100-250В, 50Гц
Автономное	Встроенный аккумулятор
Время автономной работы	2 часа
Масса и габариты	
Габариты основного блока	260×250×55 мм
Масса основного блока	3.8 кг
Условия эксплуатации	
Диапазон рабочих температур	от 5 до 40°C
Относительная влажность	80 % (25°C)

<u>Группа компаний «STT» г. Москва, тел/факс: +7 (495) 788 77 32</u> http://detektor.ru/, e-mail: stt@detektor.ru

Таблица 1

3

1.2.2 Рекомендуемые параметры ПЭВМ. (Таб. 2)

Операционная система	Windows 10
Процессор	Intel CORE I3 2 ГГц и выше
Оперативная память	4000 Мб и более
Разрешение экрана	1460×900 и выше
LAN	не менее 1000 Мб

Таблица 2

1.3. Варианты комплектации: (Таб. 3)

	Базовый комплект в составе:			
1	Основной блок	1		
2	Программное обеспечение "RadioInspectorRT"	1		
3	Антенна АШП-12	1		
4	Кабель управления	1		
5	Адаптер питания	1		
	Комплект эксплуатационных документов (техническое описание и руководство пользователя ПО			
6	на одном CD, паспорт)	1		
	Основной комплект в составе:			
1	Основной блок	1		
2	Управляющая ПЭВМ в комплекте	1		
3	Программное обеспечение "RadioInspectorRT"	1		
4	Программное обеспечение "RadioInspectorRP"	1		
5	Антенна АШП-12	2		
6	Кабель-удлинитель высокочастотный 20м	2		
7	Конвертер проводных линий	1		
8	Радиочастотный переход SMA - N-тип	1		
9	Сумка - укладка	1		
10	Кабель управления	1		
11	Адаптер питания	1		
	Комплект эксплуатационных документов (техническое описание, руководство пользователя ПО,	1		
12	паспорт)	ı		
	Расширенный комплект в составе:			
1	Основной блок	1		
2	Управляющая ПЭВМ в комплекте	1		
3	Программное обеспечение "RadioInspectorRT" с опцией "DTest"	1		
4	Программное обеспечение "RadioInspectorRP"			
5	Программное обеспечение "RadioInspectorWiFi" с радиоприемным модулем 1			
6	Имитатор сигналов тестовый 1			
7	Конвертер проводных линий	1		
8	Антенна АШП-12 3			
9	Антенна АШН-60600 1			
10	Кабель-удлинитель высокочастотный 20м	4		
11	Радиочастотный переход SMA - N-тип	1		
12	Сумка - укладка	1		
13	Манипулятор "мышь"	1		
14	Головные телефоны	1		
15	Кабель управления	1		
16	Адаптер питания	1		
	Комплект эксплуатационных документов (техническое описание, руководство пользователя ПО,	1		
17	паспорт)	<u> </u>		
18	Дополнительные опции:			
	Антенный коммутатор на 8 каналов в отдельном корпусе			
1	Антенна АШП-12			
2	Антенна АШН-60600			
3	Кабель-удлинитель высокочастотный 20м			
5	Программное обеспечение "RadioInspectorWiFi" с радиоприемным модулем			
6	Опция "DTest" к программному обеспечению "RadioInspectorRT"			

Таблица 3

Конкретный состав Вашего комплекса указан в паспорте на изделие.

<u>Группа компаний «STT» г. Москва, тел/факс: +7 (495) 788 77 32 http://detektor.ru/,</u> e-mail: stt@detektor.ru

1.4. Устройство и работа

1.4.1. Функциональная схема комплекса приведена на рис. 1.

Рис. 1

Радиосигналы принимаются широкополосными антеннами АШП-12 (до 4-х антенн) и по ВЧ кабелям подаются на антенные входы А1- А4 основного блока комплекса.

Основной блок функционально состоит из ВЧ коммутатора, радиоприемного устройства, блока цифровой обработки сигналов, системы питания - блока питания и аккумулятора.

Управление комплексом и обработка результатов его работы осуществляется компьютером, подключенным к основному блоку по сети (LAN). Вся информация о работе комплекса и принятых сигналах представляется оператору в виде графиков, диаграмм, панорам, спектрограмм.

- 1.4.2. Комплекс работает в режимах: радиомониторинг частотного диапазона и/или отдельных частот, высокочастотный анализ сигналов в реальном масштабе времени, низкочастотный анализ сигналов в реальном масштабе времени, отложенный анализ. Документирование результатов может осуществляться в ходе выполнения основных задач.
- 1.4.2.1. В режиме радиомониторинга осуществляется последовательное выполнение заданий на сканирование, для каждого из которых заданы параметры: интервал сканируемых частот (в рамках рабочего частотного диапазона комплекса), частотное разрешение, порог обнаружения. Все графики, панорамы, измеренные параметры принятых сигналов фиксируется в памяти компьютера. В этом режиме возможно производить маркерные и курсорные измерения на графиках спектров, так же могут выполняться заданные оператором действия по автоматическому анализу обнаруженных (превысивших порог) сигналов.
- 1.4.2.2. В режиме высокочастотного анализа программа с помощью аппаратуры комплекса эмулирует работу с типовым анализатором спектра сигналов. Выбор центральной частоты анализа можно производить прямо на полученной в результате мониторинга панораме спектра.

<u>Группа компаний «STT» г. Москва, тел/факс: +7 (495) 788 77 32</u> http://detektor.ru/, e-mail: stt@detektor.ru

1.4.2.3. В режиме низкочастотного анализа сигнал со встроенного демодулятора выводится на программный осциллограф, низкочастотный анализатор спектра и 12-полосный октавный анализатор. В этом режиме может производиться аудиозапись низкочастотной составляющей сигнала.

- 1.4.2.4. Сохраненные в процессе мониторинга и анализа данные хранятся в файлах панорам, спектров, звукозаписи. Кроме этого, по каждому сигналу, попавшему в список обнаруженных, собирается статистика физических параметров. Это позволяет осуществлять полноценный отложенный анализ (постанализ).
- 1.4.2.5. Документирование результатов работы производится экспортом данных, рисунков и графиков в документы Microsoft Office, если это ПО установлено, либо сохранением их в виде файлов рисунков (.bmp). Кроме этого, программа позволяет вести расширенную базу частотных присвоений, хранить примечания и комментарии к сохраненным данным.
- 1.4.3. Функциональность комплекса может быть расширена с помощью дополнительных программ и устройств.

1.5. Программное обеспечение

- 1.5.1. Описание программного обеспечения и порядок работы с ним изложены в прилагаемом к комплексу "Руководстве пользователя программного обеспечения".
- 1.5.2. "RadioInspectorRT" основная программа комплекса, разработана на базе комплекта программ "RadioInspector".

Предоставляет оператору следующие средства, методы и алгоритмы:

- формирование пакета заданий на сканирование в пределах рабочего диапазона с любым количеством последовательно обрабатываемых задач, каждая из которых имеет свои параметры;
- панорамы принятых сигналов в заданном диапазоне частот панорамы текущих значений, панорамы максимальных, минимальных и усредненных значений;
- спектрограмму представление полученных панорам во времени (уровень сигнала отображается цветом) в двумерном (2D) и трехмерном (3D) изображении без ограничений по времени записи;
- возможность оперативно изменять и настраивать в широких пределах вид графического представления;
- маркерные и курсорные измерения на панораме спектров и при ВЧ анализе;
- сохранение всех результатов работы и возможность отложенного анализа;
- возможность активации ранее сохраненного задания и продолжения записи в ранее сохраненную базу данных;
- сохранение эталонной панорамы и возможность сравнения панорам с эталонной;
- метод разнесенного приема с использованием встроенного антенного коммутатора;
- математическую обработку результатов измерений;
- управляемую линию порога и адаптивное значение линии порога;
- список сигналов, превысивших порог;
- фиксацию минимального уровня превышения линии порога для исключения влияния флуктуации шумов и частотной девиации известных сигналов;
- формирование базы данных частотных присвоений и средства их обработки, включая специализированный калькулятор;
- ВЧ анализатор спектра для анализа отдельных сигналов в реальном масштабе времени;
- осциллограф, низкочастотный анализатор спектра, октавный анализатор спектра для анализа демодулированных сигналов;
- запись фонограмм демодулированного аудиосигнала, включая пятисекундный отрезок времени, предшествующий моменту начала записи, анализ и редактирование записанных фонограмм;
- запись демодулированного аудиосигнала в автоматическом режиме при превышении сигналом линии порога, в том числе передача его по компьютерной сети и запись при удаленном управлении комплексом;
- анализ излучений на принадлежность к классу аналоговых телевизионных сигналов, в том числе передаваемых с использованием методов кодирования;

<u>Группа компаний «STT» г. Москва, тел/факс: +7 (495) 788 77 32</u> http://detektor.ru/, e-mail: stt@detektor.ru

– дополнительный анализ списка обнаруженных сигналов (числовой и графический), формирование отчетов об исследованных диапазонах частот и обнаруженных сигналах, возможность экспортировать их в форматы Microsoft Word®, Microsoft Excel®, в текстовые и графические файлы.

- 1.5.3. Программа "RadioInspectorRP" предназначена для осуществления отложенного анализа сохраненной базы данных. Поставляется с отдельным ключом. Это дает возможность установить программу на любой, не подключенный к комплексу компьютер и производить полноценный анализ сохраненных данных без прерывания процесса сканирования.
- 1.5.4. Программа "RadioInspectorWiFi" предназначена для анализа сетей WiFi на возможность организации каналов утечки информации. Поставляется с отдельным радиоблоком, который может работать автономно в режиме накопления информации.
- 1.5.5. Опция "DTest" к программе "RadioInspectorRP" не имеет собственной программной оболочки, предназначена для анализа цифровых сетей передачи данных и идентификации сигналов на принадлежность к сетям TETRA, DECT, APCO25, DMR, Bluetooth, 802.15.4 (ZigBee), GSM, 3G. Так же предоставляет возможность просмотреть квадратурную составляющую сигнала в векторном виде и визуализировать телевизионный сигнал на экране компьютера.
- 1.5.6. Программа "RadioInspector_IQProcess" позволяет воспроизвести ВЧ сигнал из записанных IQ файлов в реальном масштабе времени.
- 1.5.7. Программное обеспечение комплекса защищено электронным ключом. Использование специального программного обеспечения не ограничено количеством инсталляций и сроком использования.

1.6. Конструкция

- 1.6.1. Основной блок комплекса, включающий ВЧ коммутатор, радиоприемное устройство, блок цифровой обработки сигналов, блок питания и аккумулятор, выполнен в корпусе из алюминия. Все органы управления и коммутации основного блока комплекса расположены на передней панели (рис. 2). Наклейка с заводским номером изделия расположена на задней стенке блока. Снизу крепятся четыре резиновых ножки для фиксации на горизонтальной поверхности.
- 1.6.2. Органы управления и коммутации (Рис.2):

- 1 входные ВЧ разъемы (А1 А4) со светодиодами-индикаторами подключения (4 канала);
- 2 вход 9 кГц 30 МГц;
- 3 индикатор степени разряда аккумулятора;
- 4 разъем управления периферийными устройствами (I²C) опционально;
- 5 разъем LAN для подключения управляющего компьютера;
- 6 кнопки включения/выключения питания (I, O);
- 7 разъем для подключения сетевого адаптера;
- 8 индикатор процесса зарядки аккумулятора;
- 9 индикатор окончания зарядки аккумулятора.
- 1.6.3. Внешний вид антенны АШП-12 в рабочем положении представлен на рис. 3.

- широкополосная антенна;
- 2 штатив струбцина тренога;
- 3 ВЧ кабель антенны.
- 1.6.4. Для подключения антенн к входам комплекса может использоваться ВЧ кабель длиной до 20 м.

Рис. 3

2. Использование по назначению

2.1. Эксплуатационные ограничения

- 2.1.1. После транспортирования комплекса при температуре окружающей среды, отличающейся от рабочей, перед включением его необходимо выдержать при рабочей температуре не менее 2 часов.
- 2.1.2. Внутри адаптера питания есть опасное для людей напряжение. Неправильное обращение может привести к поражению электрическим током.
- 2.1.3. Оберегайте аппаратуру от воздействия температур, выходящих за пределы условий эксплуатации и прямых солнечных лучей.
- 2.1.4. При выполнении всех коммутаций основной блок должен быть выключен.
- 2.1.5. Берегите входы антенного коммутатора от воздействия статического электричества. Бережно обращайтесь с разъемами, особенно с высокочастотными, от их состояния зависит качество приема и, следовательно, достоверность полученной информации.
- 2.1.6. Оберегайте кабели, особенно высокочастотные, от механических повреждений и критических перегибов.
- 2.1.7. Комплекс предназначено только для использования внутри закрытых пространств (помещений). Защитите прибор от попадания воды, влаги, конденсата, а так же прямых солнечных лучей. Запрещается включать комплекс при явном наличии влаги внутри блока или адаптера питания.
- 2.1.8. Не пытайтесь разобрать или модифицировать устройство. Не используйте электрические вывод адаптера питания как источник электроэнергии. Он предназначен только для питания комплекса.
- 2.1.9. Используйте только штатные блоки и компоненты. Использование нештатных устройств лишает гарантии и может привести к выходу изделия из строя.
- 2.1.10 Запрещается модифицировать установленные и доустанавливать новые программы на управляющую ПЭВМ без согласования с производителем.

2.2. Подготовка комплекса к использованию

- 2.2.1. Меры безопасности:
- 2.2.1.1. При подключении к электросети необходимо соблюдать правила электробезопасности. Перед подключением прибора к сети 220В убедитесь в исправности шнура питания, вилки и розетки. Рекомендуется использовать для подключения розетки, имеющие зазем-

<u>Группа компаний «STT» г. Москва, тел/факс: +7 (495) 788 77 32</u> http://detektor.ru/, e-mail: stt@detektor.ru

ляющий контакт. Сетевые удлинители рекомендуется использовать трехпроводные с заземляющим контактом.

- 2.2.1.3. Запрещается вскрывать и самостоятельно ремонтировать блоки комплекса.
- 2.2.1.3. При малейших признаках ненормальной работы, искрении, задымлении, немедленно обесточьте аппаратуру.
- 2.2.2. Подготовка к работе:
- 2.2.2.1. Расположить основной блок комплекса в удобном для работы месте. По возможности подключить сетевой адаптер.
- 2.2.2.2. Проложить антенные ВЧ кабели от места установки основного блока к местам установки антенн. Укрепить ВЧ антенны с использованием штатива, подключить антенные кабели к антеннам, подключить кабели к входным разъемам основного блока. Подключение осуществляется последовательно, начиная с младших номеров антенных входов.
- Примечание. Антенны должны быть максимально возможно разнесены друг от друга, насколько позволяют длина кабелей и место размещения комплекса, для обеспечения максимальной базы разноса между ними. Это необходимо для уверенного различения сигналов с помощью метода разнесенного приема.
- 2.2.2.3. Установить компьютер. По возможности подключить сетевой блок питания к компьютеру. Включить питание компьютера. Дождаться загрузки операционной системы.
- 2.2.2.4. Включить питание основного блока кнопкой включения (I). При включении основного блока происходит тестирование аппаратуры, при этом индикаторы каналов антенного коммутатора должны поочередно засветиться и погаснуть, в конце теста должен гореть индикатор первого канала.
- 2.2.2.5. Соединить кабелем управления компьютер и основной блок. Обмен пакетами между компьютером и основным блоком будет индицироваться миганием светодиода сетевой карты компьютера.
- 2.2.2.6. Дать несколько секунд на установление уверенной связи устройств по LAN. Запустить программное обеспечение "RadioInspectorRT". Комплекс готов к работе.

2.3. Использование комплекса

- 2.3.1. Порядок ведение мониторинга исследуемых объектов изложен в соответствующих методиках и инструкциях для подразделений.
- 2.3.2. Функциональные возможности комплекса и описание работы с программой изложены в "Руководстве пользователя программного обеспечения" из комплекта эксплуатационной документации.

2.4. Завершение работы

- 2.4.1. Остановить сканирование, закрыть исполняемую программу кнопкой "закрыть" (**X**) основного окна программы.
- 2.4.2. Выключить компьютер стандартным способом, используя меню **ПУСК**. Выключить основной блок кнопкой выключения (**O**), отключить кабель управления, отключить адаптеры питания, свернуть антенны и фидеры.

2.5. Обслуживание

- 2.4.1. ETO самотестирование комплекса, контрольный осмотр на наличие механических повреждений блоков, кабелей питания, высокочастотных кабелей, антенн, контроль "чистоты" спектра без подключения антенн. Порядок контроля "чистоты" спектра:
- 2.4.1.1. Развернуть комплекс, как указанно в пп 2.2.2.1 2.2.2.5 не подключая антенн. Запустить сканирование, убедиться, что в отображаемой панораме присутствуют только естественные шумы (исключения могут составлять небольшие всплески на частотах, проникающих через входной разъем мощных передатчиков).
- 2.4.1.2. Подключить антенны с помощью кабелей к входным разъемам основного блока.
- 2.4.1.3. Включить имитатор сигналов и проконтролировать наличие отклика его сигнала на панораме.

<u>Группа компаний «STT» г. Москва, тел/факс: +7 (495) 788 77 32</u> http://detektor.ru/, e-mail: stt@detektor.ru

2.4.1. Периодическое ТО – полугодовое, включает в себя ЕТО, общую чистку от грязи и пыли оборудования, очистку высокочастотных разъемов спиртом техническим мягкой тканью. Для внешней очистки применяйте смоченную водой мягкую ткань, применение бытовых моющих и сильнодействующих технических средств недопустимо.

3. Хранение и транспортирование

- 3.1. Комплекс должен храниться в отапливаемых помещениях при температуре от 5 до 50°C и относительной влажности воздуха не более 80 % при 25°C.
- 3.2. Транспортирование комплекса рекомендуется производить в штатной упаковке в пассажирских салонах транспорта.
- 3.3. Штатные упаковки на транспортных средствах должны быть размещены так, чтобы исключались их удары друг о друга или об ограждающие конструкции.

Возможные неисправности и способы их устранения. (Таб. 4)

Проявление неисправности	Возможная причина	Устранение
Комплекс не включается в ре-	Разряжен аккумулятор	Зарядить аккумулятор
жиме автономного питания		
Аккумулятор не заряжается	Нет напряжения в сети	Проверить сеть
	Плохие контакты в разъемах,	Проверить контакты, провода
	повреждены провода питания	питания
	Неисправность сетевого адапте-	Направить комплекс в ремонт
	ра или зарядного модуля основ-	
	ного блока	
При запуске программы выдает-		Переустановить драйвера
ся сообщение "не найден ключ"	вильно установлены драйвера	
	Не подключен кабель управления	
	Плохой контакт в разъемах или	Проверить кабель управления
	поврежден кабель управления	
	Используется нелегальное ПО	Использовать легальное ПО
	Неисправность комплекса	Направить комплекс в ремонт
При запуске программы в поле	Не подключен или поврежден	Проверить кабель управления.
"Измерительная схема" выдает-	кабель управления.	
ся сообщение " прибор не най-		Включить питание
ден "	блока	
	Неисправность комплекса	Направить комплекс в ремонт
При запуске программы в поле	Плохой контакт в разъемах или	Проверить кабель управления
"Измерительная схема" выдает-	поврежден кабель управления	
ся сообщение "не найден при-		
емник (коммутатор)"		
		Включить питание
	блока	
	Нарушен порядок включения.	Осуществить порядок включе-
		ния, как описано в пп 2.2.2.4.
	Неисправность основного блока	Направить комплекс в ремонт
При запуске программы в поле	Порт LAN управляющей ПЭВМ	Выставить соответствующий
"Измерительная схема" выдает-		режим работы порта LAN, ис-
ся сообщение "скорость соеди-	кабель не соответствует скорости	
нения не соответствует требуе-	передачи в 1 Гб.	ту сети программы, использо-
мой"		вать штатный кабель.
	Неисправность осн. блока, ПЭВМ	
В ходе мониторинга на панора-		Проверить и наладить контакт
ме спектров появляются много-	кочастотного разъема, особенно	
численные ложные сигналы	при механических воздействиях.	
Спектр принимаемых сигналов	·	Расположить антенну в другом
"замусорен"		удобном месте.
Программа "зависла"	Основной блок комплекса обес-	Перезапустить программу
	точен на какое-то время	
	Плохой контакт в разъемах или	Проверить кабель управления.
	поврежден кабель управления	Перезапустить программу
Значительное снижение скоро-	Мощности ПЭВМ управления не	Завершить выполнение сторон-
сти сканирования		них задач, требующих значи-
	задачами.	тельных ресурсов ПЭВМ
	· · · · · · · · · · · · · · · · · · ·	Выставить более "легкие" пара-
	•	метры сканирования, обработки
	значительно загружающие ПЭВМ	
		Использовать рекомендованную
	отличная от рекомендованной	модель ПЭВМ

Таблица 4

ЮТДН.468166.005РЭ Руководство по эксплуатации комплекса. Редакция 2.5к7 Москва, 2016.

<u>Группа компаний «STT» г. Москва, тел/факс: +7 (495) 788 77 32 http://detektor.ru/,</u> e-mail: stt@detektor.ru