

1 Calcul de π

```
1 # -*- coding: utf-8 -*-
   def calculPi(n):
       y = calculPi(n)
       calcul de pi à l'ordre n
6
       >>> from math import fabs, pi
8
       >>> fabs(pi - calculPi(1)) < 1.
9
       True
10
       >>> fabs(pi - calculPi(1000000)) < 1.e-6
11
12
       True
       11 11 11
13
14
       assert type(n) is int and n >= 0
       y, s = 1, 1
16
       for k in range (1,n+1):
17
           s = -s
18
           u = s/(2*k+1)
19
           y = y + u
20
       {\tt return} 4*{\tt y}
21
22
   #-----
23
  if __name__ == "__main__":
25
       import doctest
       doctest.testmod()
```

2 Conversion base $b \to d\acute{e}cimal$

```
# -*- coding: utf-8 -*-
2
   def conversion(code, b=2):
3
4
        n = conversion(code,b)
5
6
        entier décimal qui représente le code en base b
7
        >>> conversion([0,0,1,0,1,1,1],2)
8
9
        >>> conversion([0, 0, 0, 4, 3],5)
10
        23
11
        >>> conversion([1,2],21)
12
13
        >>> conversion([0,0,0,0,0,23],25)
14
        23
15
        11 11 11
16
        assert type(b) is int and b > 1
17
18
        assert type(code) is list
19
20
        n = 0
        for i in range(len(code)):
21
             \mathtt{n} = \mathtt{n} + (\mathtt{b}^{**}\mathtt{i})^*\mathtt{code}[\mathtt{len}(\mathtt{code})-1-\mathtt{i}]
22
23
        return n
24
25
```


3 Polygones réguliers

```
1 # -*- coding: utf-8 -*-
3 from turtle import *
5
6
  def polygone (n,d,x=0,y=0):
      trace un polygone régulier à n côtés de longueur d
      à partir du point de coordonnées (x,y)
9
10
     >>> for i in range(3,10): polygone(i,100,-150,0)
11
12
     up()
13
     goto(x,y)
14
     \mathtt{down}()
15
     for i in range(n):
16
         forward(d)
17
         left(360./n)
19
      return
20
21 #-----
22 if __name__ == "__main__":
      import doctest
23
      doctest.testmod()
24
```

4 Coefficients de Kreweras

Portée des variables

>>> x = 2	>>> x = 2
>>> print(x)	>>> print(x)
2	2
>>> y = f(x)	>>> x = f(x)
>>> print(x)	>>> print(x)
f 6	f 6
2	6
>>> z = g(x)	>>> x = g(x)
>>> print(x)	>>> print(x)
f 6	f 18
g 24	g 72
2	72
>>> t = h(x) >>> print(x) f 6 f 18 g 72 h 144	>>> x = h(x) >>> print(x) f 216 f 648 g 2592 h 5184 5184

Exécution d'une fonction itérative

 $1. \ \, \text{ll}$ s'agit du tableau de Pascal des coefficients du binôme $(x+y)^n$ pour les valeurs de n allant de 0 à 6.

2. c représente le
$$p^{i\grave{e}me}$$
 coefficient du binôme $(x+y)^n$:
$$c=C_n^p=\left(\begin{array}{c}p\\n\end{array}\right)=\frac{n!}{p!(n-p)!}.$$

>>> for n in range(7): f(n)

1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1