Functions of a random variable

Given: $p_x(\zeta)$ and f(x)

Find: $p_f(\eta)$

A. Sketch f(x). Find where $f(x) < \eta$

B. Integrate to find $P_f(\eta)$.

C. Differentiate to find $p_f(\eta)$.

Example Intensity of light

$$I = a\mathcal{E}^2$$

$$p(\mathcal{E}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp[-\mathcal{E}^2/2\sigma^2]$$

B

$$P_I(\eta) = \int_{-\sqrt{\eta/a}}^{\sqrt{\eta/a}} p_{\mathcal{E}}(\zeta) d\zeta$$

$$\frac{d}{dy} \int_{a(y)}^{b(y)} g(y, x) \, dx =$$

$$g(y, x = b(y)) \frac{db(y)}{dy} - g(y, x = a(y)) \frac{da(y)}{dy} + \int_{a(y)}^{b(y)} \frac{\partial g(y, x)}{\partial y} dx$$

$$\frac{d}{dy} \int_{a(y)}^{b(y)} g(y, x) \, dx =$$

$$g(y, x = b(y)) \frac{db(y)}{dy} - g(y, x = a(y)) \frac{da(y)}{dy} + \int_{a(y)}^{b(y)} \frac{\partial g(y, x)}{\partial y} dx$$

$$\frac{d}{dy} \int_{a(y)}^{b(y)} g(y, x) \, dx =$$

$$g(y, x = b(y)) \frac{db(y)}{dy} - g(y, x = a(y)) \frac{da(y)}{dy} + \int_{a(y)}^{b(y)} \frac{\partial g(y, x)}{\partial y} dx$$

8.044 L3B4

$$\frac{d}{dy} \int_{a(y)}^{b(y)} g(y, x) \, dx =$$

$$g(y, x = b(y)) \frac{db(y)}{dy} - g(y, x = a(y)) \frac{da(y)}{dy} + \int_{a(y)}^{b(y)} \frac{\partial g(y, x)}{\partial y} dx$$

8.044 L3B4

C In general

$$p_{I}(\eta) = \frac{1}{2} \frac{1}{\sqrt{\eta a}} p_{\mathcal{E}}(\sqrt{\eta/a}) - \left(-\frac{1}{2} \frac{1}{\sqrt{\eta a}}\right) p_{\mathcal{E}}(-\sqrt{\eta/a})$$
$$= \frac{1}{2} \frac{1}{\sqrt{\eta a}} \left[p_{\mathcal{E}}(\sqrt{\eta/a}) + p_{\mathcal{E}}(-\sqrt{\eta/a})\right]$$

In our particular case

$$p(I) = \frac{1}{\sqrt{2\pi a\sigma^2 I}} \exp\left[-\frac{I}{2a\sigma^2}\right]$$

8.044 L3B5

Example Black Body Radiation

$$p(\nu) = \frac{1}{2\zeta(3)} \frac{1}{\nu_0} \frac{(\nu/\nu_0)^2}{\exp[\nu/\nu_0] - 1}$$

$$\nu_0 = kT/h$$

Given $\lambda = c/\nu$ and $p(\nu)$ Find $p(\lambda)$

B

$$P_{\lambda}(\eta) = \int_{c/\eta}^{\infty} p_{\nu}(\zeta) d\zeta$$

C

In general

$$p_{\lambda}(\eta) = -(-c/\eta^2) p_{\nu}(c/\eta)$$

In our case

$$p_{\lambda}(\eta) = \frac{c}{\eta^2} \frac{1}{2.404} \frac{1}{\nu_0} \frac{(c/\eta\nu_0)^2}{\exp[(c/\eta\nu_0)] - 1}$$

Let $\lambda_0 \equiv c/\nu_0$, then

$$p_{\lambda}(\eta) = \frac{1}{2.404} \frac{1}{\lambda_0} \left(\frac{\eta}{\lambda_0}\right)^{-4} \frac{1}{\exp[(\eta/\lambda_0)^{-1}] - 1}$$

As
$$(\lambda/\lambda_0) \rightarrow 0$$

$$\frac{1}{\exp[(\lambda/\lambda_0)^{-1}] - 1} \rightarrow e^{-(\lambda/\lambda_0)^{-1}}$$

As
$$(\lambda/\lambda_0) \to \infty$$
 $\frac{1}{\exp[(\lambda/\lambda_0)^{-1}]-1} \to \frac{1}{(1+(\lambda/\lambda_0)^{-1}-1)} \to (\lambda/\lambda_0)$

Example Random number generator for programmers

 \boldsymbol{x} and \boldsymbol{y} are statistically independent

$$z \equiv \mathsf{MAX}(x, y)$$
 Find $p(z)$

 $p(x,y) = p(x) \, p(y)$ Where is MAX $(x,y) = \eta$? Where is MAX $(x,y) < \eta$?

$$\mathbf{B} \quad P_z(\eta) = \eta^2$$

C
$$p_z(\eta) = 2\eta \quad 0 \le \eta \le 1$$

$$\langle z \rangle = \int_0^1 2\eta^2 d\eta = (2/3) \begin{bmatrix} 1 \\ 0 \\ \eta^3 = 2/3 \end{bmatrix}$$

 $\langle z^2 \rangle = \int_0^1 2\eta^3 d\eta = (2/4) \begin{bmatrix} 1 \\ 0 \\ \eta^4 = 1/2 \end{bmatrix}$

$$Var(z) = \frac{1}{2} - \frac{4}{9} = \frac{1}{18}$$
, S.D. $= \frac{1}{\sqrt{18}} = 0.24$

Example Desorbing atom

$$p(v, \theta, \phi) = p(v) p(\theta) p(\phi)$$

$$p(v) = (1/2\sigma^4) v^3 \exp[-v^2/2\sigma^2]$$

$$p(\theta) = 2\sin\theta\cos\theta$$

$$p(\phi) = 1/2\pi$$

Find $p(v_z)$

leaving the surface

$$v_z = v \cos \theta$$

$$v\,\cos\theta<\gamma$$

$$\Rightarrow v < \gamma/\cos\theta$$

B

$$P_{v_z}(\gamma) = \int_0^{\pi/2} \int_0^{\gamma/\cos\eta} p_v(\zeta) p_\theta(\eta) d\zeta d\eta$$
$$= \int_0^{\pi/2} p_\theta(\eta) \left[\int_0^{\gamma/\cos\eta} p_v(\zeta) d\zeta \right] d\eta$$

C

$$p_{v_z}(\gamma) = \frac{dP_{v_z}(\gamma)}{d\gamma} = \int_0^{\pi/2} p_{\theta}(\eta) \left[\frac{1}{\cos \eta} p_v(\frac{\gamma}{\cos \eta}) \right] d\eta$$

$$p_{v_z}(\gamma) =$$

$$\int_0^{\pi/2} (2\sin\eta\cos\eta) \left[\frac{1}{\cos\eta} \, \frac{1}{2\sigma^4} \, \left(\frac{\gamma}{\cos\eta} \right)^3 \exp\left[-\frac{1}{2\sigma^2} \, \frac{\gamma^2}{\cos^2\eta} \right] \right] d\eta$$

Let
$$\frac{1}{2\sigma^2} \frac{\gamma^2}{\cos^2 \eta} \equiv X$$

$$dX = -\frac{1}{\sigma^2} \frac{\gamma^2}{\cos^3 \eta} (-\sin \eta) d\eta$$

$$\eta = 0 \quad \Rightarrow \quad X = \gamma^2/2\sigma^2; \qquad \qquad \eta = \pi/2 \quad \Rightarrow \quad X = \infty$$

$$p_{v_z}(\gamma) = \frac{\gamma}{\sigma^2} \int_{\gamma^2/2\sigma^2}^{\infty} e^{-X} dX = -\frac{\gamma}{\sigma^2} \left[\sum_{\gamma^2/2\sigma^2}^{\infty} e^{-X} \right]$$
$$= \frac{\gamma}{\sigma^2} \exp[-\gamma^2/2\sigma^2] \qquad \gamma > 0$$

MIT OpenCourseWare http://ocw.mit.edu

8.044 Statistical Physics I Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.