

#### Universidade Federal de Uberlândia FEELT – Faculdade de Engenharia Elétrica



# SISTEMAS E CONTROLE

Roteiro 04a – Modelagem com a TL

Professor: Dr. Éder Alves de Moura

Gabriel Cardoso Mendes de Ataide

11811ECP008

# **SUMÁRIO**

| Introdução Atividade 01 | 2  |
|-------------------------|----|
|                         | 3  |
| Atividade 02            | 4  |
| Resolução A - 17        | 4  |
| Resolução A - 18        | 5  |
| Resolução A - 19        | 6  |
| Resolução A - 20        | 6  |
| Resolução B - 26        | 7  |
| Resolução B - 27        | 7  |
| Resolução B - 28        | 8  |
| Resolução C - 32        | 9  |
| Resolução C - 33        | 9  |
| Resolução C - 34        | 10 |

# Introdução

Esta semana utilizamos a Transformada de Laplace para modelar sistemas dinâmicos. Esse método facilita a modelagem no domínio complexo e permite obter funções de transferência diretamente na variável s.

## Atividade 01

Assistir os vídeos de 1 a 3, da seguinte lista: Sistemas de Controle – Professor Aniel https://www.youtube.com/playlist?list=PLjhzxDly7tNQp2CkUHvAKPciOsnuYk\_f\_

#### Atividade 02

Da lista de problemas do livro, disponibilizado no arquivo "Nise - cap2 - Lista de Exercícios", resolva as seguintes sequências:

- a) Faça os exercícios de 17 até 20, modelando os sistemas elétricos.
- b) Faça os exercícios de 26 até 29, modelando os sistemas mecânicos lineares.
- c) Faça os exercícios de 32 até 34, modelando os sistemas mecânicos rotativos.

#### Resolução A - 17

Find the transfer function G(s) = Vo(s)/Vi(s), for each network shown in Figure P2.3. [Section: 2.4]



Figura P2.3.



Figura 1 - Resolução 17 itens A e B.

#### Resolução A - 18

Find the transfer function, G(s) = VL(s)/V(s), for each network shown in Figure P2.4. [Section: 2.4]



Figura P2.4.



Figura 2 - Resolução 18 itens A e B.

#### Resolução A - 19

Find the transfer function, G(s) = Vo(s)/Vi(s), for each network shown in Figure P2.5. Solve the problem using mesh analysis. [Section: 2.4]



Figura P2.5.



Figura 3 - Resolução 19 itens A e B.

### Resolução A - 20

Repeat Problem 19 using nodal equations. [Section: 2.4]



Figura 4 - Resolução 20 itens A e B.

#### Resolução B - 26

Find the transfer function, G(s) = X2(s)/F(s), for the translational mechanical system shown in Figure P2.11. (Hint: place a zero mass at x2(t).) [Section: 2.5]



Figura P2.11.



Figura 5 - Resolução 26.

#### Resolução B - 27

For the system of Figure P2.12 find the transfer function, G(s) = X1(s)/F(s) [Section: 2.5]



Figura P2.12.



Figura 6 - Resolução 27.

#### Resolução B - 28

Find the transfer function, G(s) = X3(s)/F(s), for the translational mechanical system shown in Figure P2.13. [Section: 2.5]



Figura P2.13.



Figura 7 - Resolução 28.

#### Resolução C - 32

For each of the rotational mechanical systems shown in Figure P2.17, write, but do not solve, the equations of motion. [Section: 2.6]



Figura P2.17.



Figura 8 - Resolução 32.

#### Resolução C - 33

For the rotational mechanical system shown in Figure P2.18, find the transfer function  $G(s) = \theta 2(s)/T(s)$  [Section: 2.6]



Figura P2.18.



Figura 9 - Resolução 33.

### Resolução C - 34

Find the transfer function,  $\theta 1(s)/T(s)$  , for the system shown in Figure P2.19.



Figura P2.19.



Figura 10 - Resolução 34.