

Dostępna pamięć: 256MB

Król Bajtocji

Jak każdy wie, Bajtocja jest potężną, wspaniałą krainą, którą włada dobry i szlachetny król. Każdy też wie, że Bajtocja sąsiaduje z Bitocją – krainą, którą włada zły i perfidny król. Tak się składa, że król Bitocji wypowiedział królowi Bajtocji wojnę. Król Bajtocji zaczął szykować plany bitewne i rozważa wszystkie możliwości.

Na szczęście, król Bitocji posiada resztki honoru i przestrzega zasad wojennych. W każdej bitwie bierze udział po k żołnierzy z każdej ze stron. Żołnierze walczą ze sobą w parach: najlepszy żołnierz króla Bajtocji z najlepszym żołnierzem króla Bitocji, drugi najlepszy z drugim najlepszym i tak dalej. Król Bajtocji ma pewność, że wygra, jeśli w każdej parze jego żołnierz jest lepszy od swojego oponenta.

Armia króla Bajtocji liczy n żołnierzy, a armia króla Bitocji m żołnierzy. Każdy z nich ma przypisaną liczbę, która oznacza jego zdolności – im wyższa, tym jest lepszy. Król Bajtocji chce poznać liczbę wszystkich sposobów na jakie on i król Bitocji wybiorą po k żołnierzy i będzie miał pewność, że wygra bitwę. Niestety wynik może być bardzo duży, więc król Bajtocji poprosił Ciebie – młodego programistę o pomoc. Jeśli Ci się uda, to może wywróży Ci Twój wynik na Olimpiadzie Informatycznej.

Wejście

W pierwszym wierszu wejścia znajdują się trzy liczby całkowite n,m oraz k $(1 \le n,m \le 50\,000,\ 1 \le k \le 10)$ oznaczające odpowiednio liczbę żołnierzy w armii Bajtocji, liczbę żołnierzy w armii Bitocji oraz liczbę żołnierzy biorących udział w bitwie po każdej ze stron. Możesz założyć, że $k \le n,m$. Drugi wiersz wejścia zawiera n liczb całkowitych a_1,a_2,\ldots,a_n $(1 \le a_i \le 1\,000)$ oznaczających zdolności kolejnych żołnierzy Bajtocji, a trzeci – m liczb całkowitych b_1,b_2,\ldots,b_m $(1 \le b_i \le 1\,000)$ oznaczających zdolności kolejnych żołnierzy Bitocji.

Wyjście

Na wyjście należy wypisać liczbę sposobów wyboru drużyn, w których król Bajtocji będzie miał pewność, że wygra. Liczba ta może być bardzo duża, trzeba więc wypisać jej resztę z dzielenia przez $10^9 + 7$.

Przykład

Wejście	Wyjście
5 4 2	15
1 2 7 8 10 4 5 6 8	

Ocenianie

Podzadanie	Ograniczenia	Limity czasowe	Punkty
1	$n, m \leqslant 10$	1 s	15
1	$n, m \leqslant 50$	1 s	40
1	$n, m \leqslant 1000$	1 s	35
1	$n, m \leqslant 50000$	1 s	10