Relatório Técnico: Protocolo EnLayCe

Jessica de Souza, Layssa Pacheco e Schaiana Sonaglio Outubro de 2018

1 Introdução

Este trabalho consiste no desenvolvimento do Protocolo EnLayCe: um protocolo de comunicação que possui os componentes enquadramento, ARQ e sessão.

O Protocolo EnLayCe se destina a links com baixa taxa de transmissão, de mensagens curtas, abaixo de 256 bytes, e com controle de erros. Além disso, o EnLayce é especificado para a transmissão de forma confiável.

Para isso, especificou-se as características do protocolo EnLayCe construído e a implementação foi feita em formato de API, utilizando para o protótipo as aplicações cliente 1 e cliente 2, sendo ambas para realização de testes.

Em síntese, este relatório contém as especificações do Protocolo EnLayCe, a documentação da API e o manual de usuário, sendo os dois primeiros tópicos dividos com base nos componentes do Protocolo EnLayCe.

2 Especificação

O Protocolo EnLayCe tem por finalidade e serviço a transferência pontoa-ponto de mensagens limitadas entre 8 a 256 bytes através da camada física do tipo UART, de forma confiável, com estabelecimento e término de sessão, garantia de entrega, controle de sequência e tratamento de erros. A codificação utilizada é do tipo binária.

O pacote usado na transferência de dados e estabelecimento de sessão entre os clientes é descrito a seguir:

- Controle: Este modelo usa garantia de entrega do tipo pare-e-espere, correspondendo a um byte que, em dois dois 8 bits, identifica:
 - bit 3: o número de sequência, que caracteriza o modelo pare-e-espere, pois, por exemplo, se envia um dado (0) espera receber um ACK (0).
 - bit 7: o tipo de quadro, se é referente a dados (seta bit 0) ou a ACK (seta bit 1).
- ID Sessão: identifica através de um byte a sessão negociada pelo gerenciamento de sessão e escolhida pelos usuários. Na garantia de entrega os quadros com ID Sessão diferentes do negociado são ignorados e descartados.

• ID Proto: identifica através de um byte o tipo de conteúdo transportado pelo quadro, dividindo-se entre:

0: para quadros de dados, ACK e o primeiro dado a ser mandado após o estabelecimento da sessão;

255: para quadros de gerenciamento de sessão.

• Dados: pode corresponder a:

Dado: ao payload a ser transmitido pelo cliente.

Gerenciamento de sessão: mensagem das transições do gerencimento de sessão, as quais podem ser:

CR (Connect Request): solicitação de estabelecimento de sessão representado pelo número 0.

 ${\bf CC}$ (Connect Confirm): confirmação de estabelecimento de sessão representado pelo número 1.

DR (Disconnect Request): solicitação de desconexão de sessão representado pelo número 4.

DC (Disconnect Confirm): confirmação de desconexão de sessão representado pelo número 5.

- FCS: este campo tem 2 bytes de tamanho e contém o valor do código CRC, onde se subdivide em LSB e MSB.
- **7E:** este campo tem 1 byte de tamanho e contém o delimitador de quadros, o número hexadecimal 7E, para mostrar onde começa e onde termina um quadro recebido.

O quadro tem o formato apresentado a seguir:

	Quadro do Protocolo EnLayCe							
7E	Controle	ID Sessão	Proto	Dados	FCS	7E		

A comunicação é iniciada quando um cliente remetente solicita o envio de dados para o cliente destinatário. Caso a conexão entre os clientes ainda não esteja estabelecida, é feito o estabelecimento de sessão, através de trocas de mensagens da classe Sessão (2.3); o primeiro quadro desta classe a ser enviado é o CR (Connect request, que é representado por 0). O quadro enviado é como o mostrado a seguir:

Quadro de Solicitação de Estabelecimento de Sessão						
7E	Controle	ID Sessão	255	0	FCS	7E

Para confirmar o estabelecimento da conexão, o quadro enviado pelo destinatário tem a mesma caraterística, diferenciando-se apenas pela mensagem de dados adicionada pela classe Sessão do Protocolo EnLayCe, a qual é CC (Connect confirm, que é representado por 1). O quadro é como mostrado a seguir:

		mação de Es					
7E	Controle	ID Sessão	255	1	FCS	7E	

Como o estabelecimento de conexão padronizado para o protocolo foi o do tipo 3-way handshake, o remetente envia um quadro vazio, representando que recebeu a confirmação de conexão do destinatário. Este quadro é mostrado a seguir:

Quadro de C								
	7E	Controle	ID Sessão	0	0	FCS	7E	

Agora ambos os lados estão conectados. Depois de estabelecida a sessão, ocorre o envio contínuo de dados e seus respectivos ACKs, os quais são representados de acordo com os seguintes quadros:

	Quadro de Dados							
7	Έ	000X0000	ID Sessão	0	Dados	FCS	7E	

O quadro de Ack não possui o campo "dados", pois não envia nenhuma mensagem (payload).

Quadro de ACK						
7E	000X0001	ID Sessão	0	FCS	7E	

Já para o encerramento da sessão, o remetente ou o destinatário faz o pedido de desconexão, enviando um quadro com uma mensagem DR (*Disconnect request*, que é representado por 4). O quadro é como mostrado a seguir:

		citação de E1				
7E	Controle	ID Sessão	255	4	FCS	7E

Neste momento, a conexão está parcialmente fechada. O lado que recebeu o quadro com o DR retorna um quadro com outra mensagem DR. Neste momento, ambos os lados estão cientes da desconexão. O lado que enviou o primeiro DR envia então uma mensagem DC(Disconnect confirm, que é representado por 5). O quadro é como mostrado a seguir.

Quadro de Confirmação de Encerramento de Sessão						
7E	Controle	ID Sessão	255	5	FCS	7E

Entre o segundo DR e o primeiro DC, o lado que possui envio de dados pendente faz o envio destes dados. Por fim, quando o DC é recebido, é encerrado o envio de dados e o último DC é enviado e após isto a sessão é encerrada.

 ${\bf A}$ seguir cada subcamada usada no Protocolo En Lay
Ce é explicada detalhadamente.

2.1 Enquadramento

A subcamada Enquadramento é responsável por realizar a delimitação dos quadros na interface com a camada física, através da técnica Sentinela, utilizada pelo protocolo PPP, e por realizar o controle de erros.

O Enquadramento utiliza como delimitador o valor hexadecimal 7E, no início e no fim do quadro. Caso o quadro possua em sua mensagem algum valor 7E, é realizado um "mascaramento" deste valor através de uma operação XOR(7E,20), tendo como resultado o valor 5E. Para sinalizar este byte modificado (5E), usa-se como byte de escape o valor 7D para preenchimento de octeto, transmitindo primeiramente o byte de sinalização, 7D para, posteriormente, enviar o 5E. Caso na mensagem exista o valor 7D, também é feito o mascaramento através do XOR20, resultando num byte 5D; idêntico ao byte 7E, o 5D também é enviado depois do byte de sinalização 7D.

Além dos delimitadore de quadro, o Enquadramento evita a transmissão de quadros corrompidos. Para isto, no lado transmissor, são adicionados 2 bytes de redundância, cujos valores se baseiam no conteúdo da mensagem, que é utilizada para realizar o cálculo dos bytes, através do método CRC-16; este método é uma verificação de redundância do tipo cíclica e utiliza álgebra polinomial para o cálculo. No lado receptor, é realizado o mesmo cálculo do CRC e depois se comparação do CRC transmitido com o calculado no receptor, caso haja diferença entre eles, o pacote é descartado.

Um exemplo de como é a visão do quadro pela subcamada Enquadramento é mostrado abaixo:

Quadro na subcamada Enqua				ıadraı	$_{ m nento}$
	7E	Dados	CRC	7E	

2.2 ARQ

A subcamada ARQ é responsável pela garantia de entrega do Protocolo EnLayCe, de forma a possibilitar que o transmissor se certifique de que a mensagem enviada foi entregue ou não ao destino.

Dentre os campos do cabeçalho do quadro trabalhado no Protocolo EnLayCe, a subcamada ARQ é responsável pelo Controle e ID Sessão. Nessa etapa da comunicação o ID Sessão é verificado, a fim de confirmar se os quadros manipulados correspondem a sessão estabelecida. Contrário o ID Sessão seja diferente, o quadro é descartado.

O Controle é responsável por identificar se o quadro é do tipo Dado ou ACK, correspondendo, respectivamente, aos valores 0 ou 1 do bit 7 do byte Controle. Assim como, a qual sequência de dados este dado ou ACK consiste, ou seja, se o dado enviado é da sequência 0, o ACK recebido precisa ser da sequência 0 e, se o dado enviado é da sequência 1, o ACK recebido precisa ser da sequência 1; respeitando assim o modelo pare-e-espere.

Um exemplo de como é a visão do quadro pela subcamada ARQ é mostrado abaixo:

	a subcamad	
Controle	ID Sessão	Dados

Após as formatações da subcamada Sessão, a subcamada ARQ completa o quadro com os campos de sua responsabilidade e o envia para a subcamada Enquadramento.

2.3 Sessão

A subcamada Sessão é responsável pelo estabelecimento e terminação da conexão entre um par de participantes. Isso porque, como o EnLayCe é um protocolo ponto-a-ponto, é necessário estabelecer um enlace entre as duas pontas participantes antes de poder transferir os dados. Com isso, evita-se que as transmissões entre um par de participantes sejam confundidas com transmissões de outros pares.

Dentre os campos do cabeçalho do quadro trabalhado no Protocolo EnLayCe, a subcamada Sessão é responsável pelo Proto e Dados. Quando o campo Dados é preenchido com os dados a serem enviados, o byte do campo Proto assume valor 0. Já quando o campo Dados é preenchido com informações sobre estabelecimento ou encerramento de sessão, o byte do campo Proto assume valor 255.

As etapas de estabelecimento ou encerramento de sessão são diferenciadas de acordo com o valor adicionado no campos Dados, os quais podem ser, conforme explicado na seção Especificação (2), CR, CC, DR e DC, com valores 0, 1, 4 e 5, respectivamente.

O Cliente Remetente estabelece uma sessão ao solicitar o envio de dados para o Cliente Destinatário. Da mesma maneira, quando deseja encerrar uma sessão, ambos os clientes podem solicitar a desconexão. Dessa forma, sempre que um dos pedidos é feito, o Protocolo EnLayce chama na subcamada Sessão o método correspondente, seja para estabelecer ou encerrar uma sessão, ou para enviar dados e ACK.

Depois de processar os campos ao qual é responsável, a subcamada Sessão envia os campos para a subcamada ARQ para continuar a construção do quadro.

Um exemplo de como é a visão do quadro pela subcamada Sessão é mostrado abaixo:

Quadro na subcamada Sessão Proto Dados

2.4 Diagramas e máquinas de estado

Abaixo, representados em algumas figuras, estão os diagramas e as máquinas de estado do Protocolo EnLayCe.

No diagrama da figura abaixo, é mostrada a arquitetura do *software* do protocolo, ou seja, as suas subcamadas e, no texto em sequência, uma breve explicação de como elas se relacionam entre si.

Figura 1: Arquitetura do protocolo. Fonte: Material disponibilizado pelo professor modificado.

- Cenário 1: Cliente envia payload: Quando a aplicação solicita o envio de um payload, primeiramente é estabelecida uma sessão entre este cliente e o cliente que irá receber, através de quadros da classe Sessão, onde é colocado o valor de proto. Após isso, o quadro é incrementado na classe ARQ com o byte de controle, para gerenciar se é dado ou ACK e para saber a sequência que está, além de acrescentar o ID da sessão corrente. Depois, o quadro vai para a classe Enquadramento, onde é calculado um CRC e colocado os delimitadores de início e término de quadro. Após passar por todas estas camadas, o quadro é enviado pela Classe Serial.
- Cenário 2: Cliente recebe quadro: Quando o quadro é recebido pela classe Serial do cliente remetente, a primeira ação é da classe Enquadramento, que calcula o CRC novamente e compara com o CRC do quadro recebido,

após isso, ela retira o delimitadores de quadro e passa o quadro para a Classe ARQ, que verifica se é um quadro daquela sessão corrente e de que se trata de um quadro de dados, após isso, envia o respectivo ACK e passa o quadro para a classe Sessão, que tira o campo proto e, enfim, repassa o payload para o cliente remetente.

No diagrama de classes, foram exemplificados os métodos e variáveis de cada subcamada.

Figura 2: Diagrama de classes do protocolo. Fonte: Elaboração própria.

Já nas máquinas de estado, é mostrado o comportamento de cada subcamada. Como a implementação foi feita seguindo o material disponibilizado pelo professor, as máquinas foram retiradas de lá.

Figura 3: Máquina de estados da classe Enquadramento. Fonte: Material disponibilizado pelo professor.

Figura 4: Máquina de estados da classe ARQ. Fonte: Material disponibilizado pelo professor.

Na máquina de estados da classe Sessão, mostrada na Figura 5, não foi implementado o estado "Check", pois este estado teria que acontecer através de uma ação do protocolo, a necessidade de fazer manutenção na conexão, e não se encaixava no modelo proposto para este projeto.

Figura 5: Máquina de estados da classe Sessão. Fonte: Material disponibilizado pelo professor.

3 Documentação da API

A Tabela 1 apresenta a utilização da API EnLayCe descrevendo suas funções e aplicação de uso.

Tabela 1: Funções da API EnLayCe

Função Descrição		
enlayce.envia(dado)	Função que envia um dado (payload) de uma aplicação para outra.	Cliente
enlayce.recebe()	Função que espera receber um dado de uma aplicação.	Cliente
enlayce.encerra()	Função que encerra a conexão estabelecida entre as aplicações.	Cliente

4 Manual do Usuário

Para executar as aplicações teste e verificar o funcionamento do protocolo EnLayCe, siga os passos abaixo:

- Coloque os arquivos cliente1.py, cliente2.py, enlayce.py, sessao.py, ARQ.py e enquadramento.py numa mesma pasta.
- Execute a aplicação cliente1.py passando como argumento o número da porta serial, o ID da sessão escolhido e o tempo de timeout, conforme ilustrado na 6. Exemplo: python3 cliente1.py /dev/pts/18 123 5

```
© □ schaiana@Schaiana-K46CB: ~/Área de Trabalho/PTC/Projeto1/Versão atual schaiana@Schaiana-K46CB: ~/Área de Trabalho/PTC/Projeto1/Versão atual$ python3 cliente1.py /dev/pts/18 123 5
Digite um dado para transmissão:
```

Figura 6: Exemplo de uso da aplicação do cliente 1. Fonte: Elaboração Própria.

• Execute a aplicação cliente2.py passando como argumento o número da porta serial, o ID da sessão escolhido e o tempo de timeout, conforme ilustrado na 7. Exemplo: python3 cliente2.py /dev/pts/19 123 5

```
© □ schaiana@Schaiana-K46CB: ~/Área de Trabalho/PTC/Projeto1/Versão atual schaiana@Schaiana-K46CB: ~/Área de Trabalho/PTC/Projeto1/Versão atual$ python3 cliente2.py /dev/pts/19 123 5
```

Figura 7: Exemplo de uso da aplicação do cliente 2. Fonte: Elaboração Própria.

Seguindo os passos acima, você poderá enviar mensagens de uma cliente para outro.