Centro Federal de Educação Tecnológica de Minas Gerais ENGENHARIA DA COMPUTAÇÃO

Aula 07 Circuitos Codificadores, Decodificadores e MUX / DEMUX

Decodificadores

Definição: é um circuito lógico que aceita um conjunto de entradas em binário (um número binário) e, em função dessas entradas, ativa somente uma saída que corresponde ao número da entrada.

Decodificadores

Definição: é um circuito lógico que aceita um conjunto de entradas em binário (um número binário) e, em função dessas entradas, ativa somente uma saída que corresponde ao número da entrada.

Resumindo, é um circuito lógico analisa as suas entradas, determina qual número binário está presente e ativa a saída correspondente a esse número (todas as demais saídas permanecem desativadas).

Decodificadores

Definição: é um circuito lógico que aceita um conjunto de entradas em binário (um número binário) e, em função dessas entradas, ativa somente uma saída que corresponde ao número da entrada.

Resumindo, é um circuito lógico analisa as suas entradas, determina qual número binário está presente e ativa a saída correspondente a esse número (todas as demais saídas permanecem desativadas).

Decodificador 3X8

C	В	Α	0,	O ₆	08	0,	Og	05	0,	0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Decodificador 3X8

C	В	A	0,	O ₆	08	0,	Og	05	0,	0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	-1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	10	0	0	0	0	0	0	0

Exercício: Qual será a saída ativa caso ABC = 111?

Decodificador 3X8 (CI 74138)

Alguns decodificadores têm uma ou mais entradas **ENABLE** (HABILITAÇÃO) que são usadas para controlar a operação deles.

\bar{E}_1	\overline{E}_2	E ₃	Saidas
0	0	1	Responde a código de entrada A ₂ A ₁ A
1	X	X	Desabilitada – todas em nível ALTO
X	1	X	Desabilitada – todas em nível ALTO
X	X	0	Desabilitada – todas em nível ALTO

Decodificador 5X32

A partir das entradas de habilitação pode-se interligar decodificadores. Neste caso está sendo construído um decodificador de 32 saída, a partir de 4 decodificadores de 8 saídas.

A4 A3 A2 A1 A0 Z

0

0 1 2

1 0 3

1 1

Decodificador 5X32

A partir das entradas de habilitação pode-se interligar decodificadores. Neste caso está sendo construído um decodificador de 32 saída, a partir de 4 decodificadores de 8 saídas.

Exercício: Qual será a saída ativa caso $A_4A_3A_2A_1A_0 = 01101$?

Decodificador BCD / Decimal

CI 7442

С	В	Α	Saída em nível ativo
L L L	L H H	L H L H	$ \overline{O}_0 $ $ \overline{O}_1 $ $ \overline{O}_2 $ $ \overline{O}_3 $
H H H	L H H	L H L	\overline{O}_4 \overline{O}_5 \overline{O}_6 \overline{O}_7
L	L L	L H	Ō ₈ Ō ₉
L	Н	H	Nenhuma Nenhuma
H H H	L H H	L H L	Nenhuma Nenhuma Nenhuma Nenhuma
	LLLL HHHH LLLL HHH		

H = Nível de tensão ALTO

L = Nível de tensão BAIXO

Decodificador BCD / Decimal

CI 7	7442
------	------

	С	В	A	Saída em nível ativo
L L L	L L L	L H H	L H L H	$ \overline{O}_{0} $ $ \overline{O}_{1} $ $ \overline{O}_{2} $ $ \overline{O}_{3} $
L L L	H H H	L H H	L H L H	$ \overline{O}_{4} $ $ \overline{O}_{5} $ $ \overline{O}_{6} $ $ \overline{O}_{7} $
H H H	L L L	L L H	L H L	O ₈ O ₉ Nenhuma Nenhuma
H H H	H H H	L L H H	L H L H	Nenhuma Nenhuma Nenhuma Nenhuma

L = Nível de tensão BAIXO

Exercício: Qual será a saída ativa caso

DCBA = 0010?

Decodificador BCD / Display

Definição: é um circuito lógico que realiza a conversão de um número qualquer para um código binário.

Codificadores

Definição: é um circuito lógico que realiza a conversão de um número qualquer para um código binário.

Geralmente, recebe um dado (bit) de entrada, onde somente 1 bit é ativado de cada vez, e tem como saída um código de N bits.

Codificadores

Definição: é um circuito lógico que realiza a conversão de um número qualquer para um código binário.

Geralmente, recebe um dado (bit) de entrada, onde somente 1 bit é ativado de cada vez, e tem como saída um código de N bits.

Codificador Octal / Binário

Definição: é um circuito lógico que seleciona um entre vários sinais de entrada e o envia para a saída.

Definição: é um circuito lógico que seleciona um entre vários sinais de entrada e o envia para a saída.

Os circuitos Multiplexadores são conhecidos, também, como "chave seletora digital" na literatura técnica.

Definição: é um circuito lógico que seleciona um entre vários sinais de entrada e o envia para a saída.

Os circuitos Multiplexadores são conhecidos, também, como "chave seletora digital" na literatura técnica.

O roteamento do sinal de entrada para a saída é controlado pelas entradas de SELEÇÃO, frequentemente chamadas de endereço.

Definição: é um circuito lógico que seleciona um entre vários sinais de entrada e o envia para a saída.

Os circuitos Multiplexadores são conhecidos, também, como "chave seletora digital" na literatura técnica.

O roteamento do sinal de entrada para a saída é controlado pelas entradas de SELEÇÃO, frequentemente chamadas de endereço.

Entrada de SELEÇÃO

Diagrama de um Multiplexador

Diagrama funcional de um multiplexador digital (MUX).

Multiplexador de 4 Entradas

Exercícios: Como construir um MUX de 4 entradas utilizando apenas circuitos MUX de 2 entradas?

Exercícios: Como construir um MUX de 4 entradas utilizando apenas circuitos MUX de 2 entradas?

A B S
0 0 I0
0 1 I1
1 0 I2
1 1 I3

Exercícios: Como construir um MUX de 16 entradas utilizando circuitos MUX de 8 e 2 entradas?

Exercícios: Como construir um MUX de 16 entradas utilizando circuitos

Multiplexador de 8 Entradas

O multiplexador CI 74LS151.

	Inp	uts		Sai	da	I ₀ I ₁ I ₂ I ₃ I ₄ I ₅ I ₆ I ₇
Ē	S ₂	S ₁	S ₀	Z	Z	
H L L L L L L L	XLLLHHHH	XLLHHLLHH	X L H L H L H	$ \frac{H}{I_{0}} $ $ \frac{I_{1}}{I_{2}} $ $ \frac{I_{2}}{I_{3}} $ $ \frac{I_{4}}{I_{5}} $ $ \frac{I_{6}}{I_{7}} $	L ₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇	Este multilpexador tem uma entrada de habilitação (Enable) e fornece tanto a saída normal quanto a saída invertida.

Demultiplexador

Definição: é um circuito lógico que recebe 1 sinal (1 entrada) e o envia para várias saídas. Resumidamente, realiza a operação inversa do circuito multiplexador.

Demultiplexador

Definição: é um circuito lógico que recebe 1 sinal (1 entrada) e o envia para várias saídas. Resumidamente, realiza a operação inversa do circuito multiplexador.

DEMUX 1X8

DEMULTIPLEXADOR

de 1 para 8 linhas.

ē	Co de Si	ódigo ELEÇ						SAÍD	AS			
	S ₂ S ₁ S ₀				07	O_6	O ₅	O_4	O^3	O_2	01	O_0
	0	0	0		0	0	0	0	0	0	0	I
	0	0	1		0	0	0	0	0	0	I	0
	0	1	0		0	0	0	0	0	I	0	0
	0	1	1		0	0	0	0	I	0	0	0
	1	0	0		0	0	0	I	0	0	0	0
	1	0	1		0	0	I	0	0	0	0	0
ı	1	1	0		0	I	0	0	0	0	0	0
	1	1	1		I	0	0	0	0	0	0	0

DEMUX a partir de 74LS138

Uma das operações mais comuns que ocorrem em qualquer sistema digital é **a transmissão da informação** de um ponto para outro.

Uma das operações mais comuns que ocorrem em qualquer sistema digital é **a transmissão da informação** de um ponto para outro.

A **informação** pode ser transmitida a uma distância tão pequena quanto a de alguns centímetros em uma placa de circuito, ou a uma distância de vários quilômetros.

Uma das operações mais comuns que ocorrem em qualquer sistema digital é **a transmissão da informação** de um ponto para outro.

A **informação** pode ser transmitida a uma distância tão pequena quanto a de alguns centímetros em uma placa de circuito, ou a uma distância de vários quilômetros.

A informação é transmitida em formato binário e, geralmente, é representada por tensões na saída de um transmissor que está conectado à entrada de um circuito receptor.

Uma das operações mais comuns que ocorrem em qualquer sistema digital é **a transmissão da informação** de um ponto para outro.

A **informação** pode ser transmitida a uma distância tão pequena quanto a de alguns centímetros em uma placa de circuito, ou a uma distância de vários quilômetros.

A informação é transmitida em formato binário e, geralmente, é representada por tensões na saída de um transmissor que está conectado à entrada de um circuito receptor.

Os dois métodos básicos para transmissão de informação digital são: paralelo e serial.

A maioria dos equipamentos digitais modernos são projetados para ser relativamente livre de ruído, e a probabilidade de erros deverá ser baixa.

A maioria dos equipamentos digitais modernos são projetados para ser relativamente livre de ruído, e a probabilidade de erros deverá ser baixa.

Entretanto, em sistemas digitais que transmitem **centenas** ou até **milhões** de bits por segundo, mesmo com uma pequena taxa de ocorrência de erros, pode-se ter erros aleatórios capazes de gerar incômodos, se não desastres.

A maioria dos equipamentos digitais modernos são projetados para ser relativamente livre de ruído, e a probabilidade de erros deverá ser baixa.

Entretanto, em sistemas digitais que transmitem **centenas** ou até **milhões** de bits por segundo, mesmo com uma pequena taxa de ocorrência de erros, pode-se ter erros aleatórios capazes de gerar incômodos, se não desastres.

Uma das técnica mais simples e mais usadas para detecção de erros é conhecida como **método de paridade**.

A maioria dos equipamentos digitais modernos são projetados para ser relativamente livre de ruído, e a probabilidade de erros deverá ser baixa.

Entretanto, em sistemas digitais que transmitem **centenas** ou até **milhões** de bits por segundo, mesmo com uma pequena taxa de ocorrência de erros, pode-se ter erros aleatórios capazes de gerar incômodos, se não desastres.

Uma das técnica mais simples e mais usadas para detecção de erros é conhecida como **método de paridade**.

Nesta estratégia, um bit de paridade (um bit extra), é anexado ao conjunto de bits do código a ser transferido de uma localidade para outra. O bit de paridade pode ser 0 ou 1, dependendo do número de 1s contido no conjunto de bits do código.

Existem dois tipos diferentes de métodos para adição do bit de paridade:

- paridade par;
- paridade ímpar.

Existem dois tipos diferentes de métodos para adição do bit de paridade:

- paridade par;
- paridade ímpar.

Detecção de erros pelo Método da Paridade

Considere que se deseja transmitir o caractere "C" cujo Código ASCII em 7 bits é 1000011, utilizando a paridade par.

Existem dois tipos diferentes de métodos para adição do bit de paridade:

- paridade par;
- paridade ímpar.

Detecção de erros pelo Método da Paridade

Considere que se deseja transmitir o caractere "C" cujo Código ASCII em 7 bits é 1000011, utilizando a paridade par.

Existem dois tipos diferentes de métodos para adição do bit de paridade:

- paridade par;
- paridade ímpar.

Detecção de erros pelo Método da Paridade

Considere que se deseja transmitir o caractere "C" cujo Código ASCII em 7 bits é 1000011, utilizando a paridade par.

Circuito Gerador de Paridade

A lógica do **Gerador de Paridade Par** é incluir um bit 1 caso o número de 1s contidos no conjunto de bits do código seja ímpar, ou incluir um bit 0 caso o número de 1s seja par.

Circuito Gerador de Paridade

A lógica do **Gerador de Paridade Par** é incluir um bit 1 caso o número de 1s contidos no conjunto de bits do código seja ímpar, ou incluir um bit 0 caso o número de 1s seja par.

A Porta EX-OR opera de tal forma que gera uma saída 1 caso o número de 1s nas entradas for ímpar, e 0 caso o número de 1s for par.

Circuito Gerador de Paridade

A lógica do **Gerador de Paridade Par** é incluir um bit 1 caso o número de 1s contidos no conjunto de bits do código seja ímpar, ou incluir um bit 0 caso o número de 1s seja par.

A Porta EX-OR opera de tal forma que gera uma saída 1 caso o número de 1s nas entradas for ímpar, e 0 caso o número de 1s for par.

Circuito Verificador de Paridade

A partir do **gerador de paridade** podemos implementar o **verificador de paridade**: gera-se o bit de paridade do conjunto de bits do código, e compara-se com o bit de paridade recebido.

