Criptología simétrica (moderna)

Criptografía simétrica

- Términos equivalentes: Cifrado
 - simétrico
 - convencional
 - de clave secreta
 - de una clave
- Requisitos:
 - -Emisor y receptor comparten clave (secreta)
 - Algoritmo de cifrado bueno
- Supone que algoritmo es conocido
- Implica un canal seguro para distribuir clave
- Algoritmos:

DES, 3-DES, Bowfish, RC4, RC5, IDEA, AES, CAST-128, ...

Cifrado de Feinsel

Trabaja con bloques

- Divide bloque en 2
- Procesa en varias etapas
 - Sustitución de parte izquierda basada en parte derecha y subclave
 - Permutación intercambiando mitades

Parámetros:

- Tamaño del bloque:
 - + grande → + seguridad, -rápido
- Tamaño de clave:
 - + grande → + seguridad, -rápido
- Número de etapas:
 - + grande → + seguridad, -rápido
- Algoritmo de subclave:
 - + complejo → + seguridad, -rápido
- Función:
 - +compleja → + seguridad, -rápido

Proceso inverso para descifrado

Base de muchos otros

Facilidad de análisis

Rapidez de proceso

DES (Data Encriptation Standard)

- Sigue diseño de Feinsel
- De IBM (origen en Lucifer)
- Adoptado por NIST como estándar federal (FIPS PUB 46) en 1977
- Sustituido por AES como estándar NIST en 2000
- Trabaja con bloques de 64 bits y clave de 56 bits:
 - Permutación inicial (tabla)
 - 16 etapas con la misma función,
 con subclave distinta
 - Permutación final (tabla)
- Preocupación por longitud de clave y algoritmo

DES. Modos de operación

- ECB (Electronic Code Book)
 - Cifrado de cada bloque es independiente
 - Necesario rellenar bloque final
 - -Para texto corto

Ventajas:

- -Descifrado de cada bloque es independiente
- -Procesamiento en paralelo

Desventajas:

- Ataques de texto conocido fáciles
- Se pueden ver repeticiones de texto
 (Bloques iguales en texto claro dan lugar a bloques iguales de texto cifrado)
- -Fácil sustituir, reordenar, borrar o insertar bloques antiguos

DES. Permutación inicial y final

DES. Función principal de etapa

DES. Generación de subclaves

DES. Criterios de diseño de cajas S

- Ninguna salida de caja S demasiado cerca de una función lineal de bit de entrada
- Cada fila de caja S debe incluir todos los 16 posibles valores de salida
- Si dos entradas de una caja S difieren en un bit, sus salidas deben diferir en, al menos, dos bits (difusión y amplificación de las diferencias)
- Si dos entradas de una caja S difieren en los dos bits centrales centrales, sus salidas deben diferir en, al menos, dos bits
- Si dos entradas de una caja S difieren en sus dos primeros bits y son iguales en los dos últimos, las salidas no deben ser iguales
- Para cualquier diferencia de 6 bits no nula, no mas de 8 de los 32 pares de entradas con esa diferencia pueden dar la misma diferencia de salida (para evitar criptoanálisis diferencial)

DES. Criterios de diseño de P

- 1. Las cuatro salidas de cada caja S en vuelta i-ésima deben ser distribuidas de forma que dos de ellas afecten a los bits centrales de siguiente vuelta
 - Los bits centrales no son compartidos entre cajas S
 - Los bits extremos son los que se comparten
- 2. Los cuatro bits de salida de cada caja S deben afectar a 6 cajas S en la siguiente vuelta y no a ella misma (difusión)
- 3. Para dos cajas S_j y S_k , si un bit de S_j afecta un bit central de S_k en siguiente vuelta, entonces, un bit de salida de S_k no puede afectar a un bit central de S_i (evitar ciclos)
 - Para j=k, un bit de salida de S_j no debe afectar a un bit central de esa misma caja, en la siguiente ronda

• CBC (Cipher Block Chaining)

Cada nuevo bloque relacionado con anterior mediante XOR

Necesario vector inicial (secreto)

- Necesario completar bloque final
- Cambio en un bloque afecta a resto:
 Cifrado depende de mensaje completo

Ventajas:

- Descifrado de cada bloque análogo
- Bloques iguales en texto claro dan lugar a bloques distintos de texto cifrado

Desventajas:

- Propagación de errores
- -Repetición de vector inicial con misma clave añade vulnerabilidad

- CFB (Cipher Feedback)
 - Cifra bit (carácter) a bit (carácter)
 - Texto cifrado realimentado
 - Necesario vector inicial
 - No necesario completar final

Ventajas:

- Simula cifrador de flujo

Desventajas:

- Propagación de errores

- OFB (OutputFeedback)
 - Cifra bit (carácter) a bit (carácter)
 - Salida de 'cifrador' añadida a mensaje y realimentada
 - Necesario vector inicial
 - No necesario completar final
 - Realimentación es independiente de texto

Ventajas:

- Simula cifrador de flujo
- Permite cálculos por adelantado
- −No propagación de errores

Desventajas:

-Repetición de vector inicial con misma clave añade vulnerabilidad

- CTR (CounTeR)
 - -Posterior a anteriores
 - Similar a OFB, pero cifra valor de contador en lugar de realimentado
 - -Comienza con contador aleatorio

Ventajas:

-Simula cifrador de flujo

Desventajas:

- Reutilización de valores clave/contador añade vulnerabilidad
- Modos de operación generalizables a otros cifradores por bloques

DES. Ataques

• Análisis diferencial:

- Murphy, Biham y Shamir en 1990
- Compara pares de textos cifrados relacionados cuyos textos originales tienen diferencias conocidas y concretas
- Analiza evolución de diferencias de textos claros a medida que se propagan por etapas de cifrador de bloques
- -DES requiere 2⁴⁷ textos en claro elegidos (y su criptograma)

• Análisis lineal:

- Matsui en 1993
- Busca aproximaciones lineales para describir acción de un cifrador de bloques
- −DES requiere 2⁴⁷ textos en claro conocidos (y su criptograma)

DES. Ataques (cont.)

• Fuerza bruta:

- 1997: por Internet tras unos meses
- 1998: con hardware especial (Deep Crack) tras unos días
- 1999: con combinación de hardware y red tras 22 horas

¿Clave más larga?

¿Reemplazar DES?

DES múltiple

• Doble DES:

 Complejidad de ataque similar a fuerza bruta sobre DES

• Triple DES:

- Dos claves (112 bits)
 - Ataques posibles, pero no prácticos
 - Merkle y Hellman, 1981:
 2⁵⁶ pares texto claro elegido/texto cifrado

- Tres claves (168 bits)
 - Complejidad de ataque aumenta, pero no hay diferencia sustancial con anterior
 - Muy lento en software

AES (Advanced Encryption Standard)

- Rijndael de Vincent Rijmen y Joan Daemen en 1997
- Estándar de NIST (FIPS PUB 197) en 2001 tras concurso
- Varios tamaños:
 - Claves de 128/192/256 bits con 9/11/13 etapas y bloques de datos de 128 bits

PROCEDIMIENTO:

- Datos en 4 grupos de 4 bytes
- Operaciones con bloque entero en cada etapa:
 - Sustitución de byte (1 caja-S sobre cada byte)
 - Desplazamiento de filas (permuta bytes entre columnas)
 - Mezcla de columnas (sustitución usando matrices de multiplicación de grupos)
 - Adición de clave de etapa (XOR con parte de clave expandida)
- XOR inicial con parte de clave y última etapa incompleta (sin mezcla)
- Implementación muy eficiente
- Criptoanálisis: Ataque sobre estructura algebraica. Seguro por ahora
- Descifrado: Similar a cifrado, con operaciones inversas para sustitución, mezcla y desplazamiento

AES. Etapa

AES. Tablas de sustitución

		у															
		()	1	2	3	4	3	6	7	8	9	a	ь	c	d	e	f
	()-	63	7 c	77	7Ъ	f2	6 b	6f	c5	30	01	67	2 b	fe	d7	ab	7
	1	ca	82	c9	7 d	fa	59	47	f0	ad	d4	a 2	a f	9 c	a 4	72	C
	2	b7	fd	93	26	36	3 f	f7	0 c	34	a 5	e5	f1	71	d8	31	1
	3	04	c7	23	c3	18	96	05	9a	07	12	80	e 2	eb	27	b2	7
	4	09	83	2 c	1 a	1 b	6 e	5 a	0 a	52	.3b	d6	b3	29	e 3	2 f	8
	5	53	d1	0.0	ed	20	fc	b1	5 b	6 a	cb	be	39	4a	4 c	58	c
	6	d0	ef	a a	fb	43	4 d	33	85	45	f9	02	7 f	50	3 c	9 f	a
x	7	51	a 3	40	8 f	92	9 d	38	f5	bc	b6	da	21	10	ff	f3	d
	8	cd	0 c	13	ec	5 f	97	44	17	c4	a 7	7 e	3 d	64	5 d	19	7
1	9	60	81	4 f	dc	22	2 a	90	88	46	ee	Ь8	14	de	5e	0Ъ	d
	a	e0	32	3 a	0 a	49	06	24	5 c	c2	d 3	ac	62	91	95	e4	7
	Ь	e7	c8	37	6d	8 d	d5	4 e	a 9	6 c	56	f4	e a	65	7 a	ae	0
	c	ba	78	25	2 e	1 c	a 6	b4	c6	e8	d d	74	1 f	4 b	bd	80	8
	d	70	3 e	b5	66	48	03	f6	0e	61	35	57	b9	8 6	c1	1d	9
	e	e 1	f 8	98	11	69	d9	8 e	94	9Ъ	1e	87	e9	0 e	55	28	d
	f	8 c	a 1	89	0 d	bf	E6	42	68	41	99	2 d	0 f	b0	54	bb	1

Cifrado

		y															
		0	1	2	3	4	5	6	7	8	9	a	ь	С	d	le	T f
	0	52	09	6 a	d 5	30	36	a 5	38	bf	40	a3	9e	81	f3	d7	fb
x	1	7 c	e 3	39	82	9Ъ	2 f	ff	87	34	8 e	43	44	c4	de	e9	cb
	2	54	7 b	94	32	a 6	c2	23	3 d	ee	4 c	95	0 Ь	42	fa	c3	4 6
	3	0.8	de	a 1	66	28	d9	24	b2	76	5 b	a4	49	6d	86	d1	2.5
	4	72	f8	-f6	64	86	68	98	16	4 d	a 4	5 c	cc	5 d	65	b6	92
	5	6 c	70	48	50	fd	ed	Ь9	da	5 e	15	46	57	a 7	8 d	9 d	84
	6	90	d8	ab	0.0	8 c	bc	d3	0 a	f 7	e4	58	0.5	b8	Ь3	45	06
	7	d0	3 с	1 e	8 f	ca	3 f	0 f	02	c 1	af	bd	03	01	13	8 a	6t
	8.	3 a	91	11	41	4 f	67	d c	ea	97	f2	cf	0 e	fO	b4	e6	73
	9	96	ac	74	22	e7	ad	3.5	85	e 2	f 9	37	e8	1 c	75	df	6 6
	a	47	f1	1 a	71	1 d	29	c5	89	6 f	b7	62	0e	aa	18	be	1 b
	h	fc	56	3 e	4 b	с 6	d 2	79	20	9 a	db	c0	fe	78	cd	5 a	f 4
	¢	1 f	dd	a 8	33	88	07	c7	31	b1	12	10	59	27	80	ec	51
	ď	60	51	7 f	a 9	19	b 5	4 a	0 d	2 d	e5	7 a	9 f	93	c9	9 c	ef
	e	a 0	e 0	3 b	4 d	ae	2 a	f5	b0	c 8	eb	bb	3 с	83	53	99	61
	t	17	2 b	04	7 e	ba	77	d6	26	e1	69	14	63	55	21	0 c	70

Descifrado

AES. Desplazamiento y mezcla

Tablas de desplazamiento

- Bloque de 128 y 192
 - fila 0: inamovible, fila 1: 1 lugar, fila 2: 2 lugares, fila 3: 3 lugares
- Bloque de 256
 - fila 0: inamovible, fila 1: 1 lugar, fila 2: 3 lugares, fila 3: 4 lugares

Matrices de mezcla

• Nuevo valor de elemento depende de todos los de su columna

AES. Expansión de clave

- Clave de 128/192/256 bits pasa a vector de 44/52/60 palabras de 32 bits
- Copia clave en 4 1^{as} palabras de clave expandida
- Bucle para crear resto
 - Palabra nueva con XOR de anterior y 4 posiciones anteriores
 - Cada 4ª iteración usa caja S, desplazamiento y XOR con anterior antes de XOR
- Clave sólo usada en operación de adición (4 palabras)

IDEA (International Data Encription Algorithm)

- Lai y Massey en 1990/1992, alternativa europea
- Trabaja con bloques de 64 bits y clave de 128 bits
- Consta de 8 etapas iguales y una transformación final
 - Se desvía de modelo de Feistel, usa:
 - XOR
 - Suma de enteros modulo 2¹⁶
 - Multiplicación de enteros modulo 2¹⁶-1 (0=2¹⁶)
- Implementación eficiente en hardware y software
- Patentado, pero gratuito para uso no comercial
- Incluido en muchas aplicaciones de dominio público: PGP, ...
- Criptoanálisis: Muy seguro por ahora
- Descifrado: mismo algoritmo que cifrado con diferente uso y valor de claves de etapa

IDEA. Procedimiento

Transformación final

- 8 etapas iguales con bloques de 64 bits y subclaves de 96 bits
 - Bloque en argumentos de 16 bits
 - Operaciones: XOR, multiplicaciones
 y sumas modulares
 - Dos etapas de mezcla con claves intermedias
 - Función central: cada bit de salida depende de cada bit de argumentos
 - Intercambio final de bloques centrales
- Por último
 - Intercambio de bloques centrales
 - Combinación con claves
 - Depende de cuatro claves de 16 bits.

IDEA. Subclaves de cifrado y descifrado

- Clave original de 128 bits genera 832 bits de claves intermedias (necesarias 52 subclaves de 96 bits)
 - Subclaves en cada etapa utilizan un conjunto diferente de bits de clave inicial
 - Los 96 bits utilizados no son contiguos
- Claves de descifrado se deducen de claves de cifrado:
 - Cuatro primeras claves de iésima etapa se deducen de cuatro primeras claves de la etapa (10i)-ésima de cifrado
 - 1^a y 4^a subclaves de descifrado son inversa multiplicativa (módulo 2¹⁶-1) de 1^a y 4^a subclaves de cifrado
 - Para etapas 2 a 8, 2^a y 3^a
 subclaves de descifrado son
 inversa a suma módulo 2¹⁶ de 3^a
 y 2^a subclaves de cifrado

