Projet 3: Algorithmique et Complexité

La tour de Hanoï

Dans ce mini projet vous avez la tâche d'implémenter, simuler et analyser une méthode de résolution exacte d'un problème NP-complet.

L'objet de ce projet est l'étude expérimentale de l'algorithme de résolution du problème des "tours de Hanoi", qui est un problème classique en informatique.

Partie I:

1. Implémenter l'algorithme de résolution de la tour de hanoï en version récursif et itératif en langage C.

Partie II:

Pour cette partie du projet, votre rapport doit traiter les points suivants :

- i. Etude théorique du problème :
 - a. Historique et présentation du problème.
 - b. Définition formelle du problème.
 - c. Présenter la modélisation de la solution (Structure de données de la solution).
 - d. Présenter l'algorithme de résolution avec calcul détaillé de sa complexité théorique.
 - e. Présentation l'algorithme de vérification avec pseudo-code et calcul détaillé de sa complexité théorique et spatiale.
 - f. Présenter une instance du problème avec sa solution (un exemple avec déroulement).

ii. Etude Expérimentale : (Variation de la taille du problème)

Nombre de disque (n)	5	10	15	20	25	 90	95	100
Temps d'exécution								
Nombre de déplacements effectués								

Semestre 2

- a. Simuler la complexité temporelle et spatiale **théorique** de l'algorithme de résolution (itératif et récursif).
- b. Simuler la complexité temporelle et spatiale **théorique** de l'algorithme de vérification.
- c. A quoi correspond le meilleur, moyen et pire cas pour chaque algorithme ? **Justifiez**
- d. Analyse des resultats.
- iii. Conclusion
- iv. Références
- v. Annexe: code source

Directives:

- Le travail doit se faire en quadrinôme.
- Inclure la **distribution des tâches** entre les membres du groupe dans le rapport après la conclusion.
- Un rapport version numérique (pdf) doit être envoyé vers l'adresse suivante :
 <u>hw.moulai@gmail.com</u> avec comme objet de l'email : <u>L2-ING-Hanoï-NomsBinome</u>
- Le deadline est fixé pour le //2024.
- Tout ajout ou initiative peut être récompensé!

RÈGLE DU JEU

Le départ

On dispose de 3 piquets fixés sur un socle, et d'un nombre n de disques de diamètres différents. Les disques sont empilés sur un piquet, en commençant du plus large au plus petit. Le nombre de disques peut varier. Plus il y a de disques au départ, plus le jeu est difficile.

Le but

Déplacer les disques d'une tour de 'départ' à une tour 'd'arrivée' en passant par une tour 'intermédiaire', et ceci en un minimum de coups.

Comment

2 règles simples :

- on ne déplace qu'un seul disque à la fois, et le disque déplacé doit l'être sur l'un des deux autres piquets au choix ; c'est ce que l'on appelle un déplacement.
- le disque déplacé ne doit jamais être placé au-dessus d'un disque plus petit que lui.

RÉSOLUTION

La solution générale est donnée par l'algorithme suivant.

Algorithme récursif

La solution de base du jeu de la Tour de Hanoï est formulée de manière récursive. Étiquetez les piquets avec A - B - C et numérotez les disques de 1 (le plus petit) à n (le plus grand). L'algorithme est exprimé comme suit :

- 1. Déplacez les n-1 premiers disques de A à B. (Cela laisse le disque n seul sur le piquet A)
- 2. Déplacez le disque n de A à C
- 3. Déplacez les n-1 disques de B à C

Pour déplacer n disques, il faut effectuer une opération élémentaire (déplacement d'un seul disque) et une opération complexe, c'est-à-dire le mouvement de n-1 disques. Cependant, cette opération se résout également de la même manière, en demandant comme opération complexe le déplacement de n-2 disques. En itérant ce raisonnement on réduit le processus complexe à un processus élémentaire, c'est-à-dire le déplacement de n-(n-1)=1 disque.