2021 PHM Conference Data Challenge

Juan Pablo Echeagaray González

Tec de Monterrey

14 de Agosto del 2023

Agenda

- Problemática
- Prognostics and Health Management Society
 - Organización
 - 2021 PHM Conference Data Challenge
- Análisis de Datos
 - Descripción de datos proporcionados
 - Análisis Exploratorio de Datos
- Comentarios, Mesa Redonda
- 6 Referencias

Problemática

Problema Científico

Uso de mediciones de sensores de un avión para la implementación de un modelo que pronostique el tiempo de vida útil restante de una turbina de avión comercial

Problema Tecnológico

Uso de una base de datos masiva con 22 variables con registros por segundo para vuelos de más de 100 aviones

Organización

Misión

Sociedad que busca promover el desarrollo, crecimiento y reconocimiento del PHM como una rama de ingeniería a la vez que se avanza en la aplicación de PHM en la industria y la academia [1]

2021 PHM Conference Data Challenge

Objetivo

Desarrollo de un modelo de predicción para el tiempo de vida útil restante de una turbina de avión comercial utilizando datos sintéticos del modelo CMAPSS [2]

- Lanzada en Agosto del 2021
- Inclusión de datos de vuelos reales de aviones comerciales
- Variaciones condiciones iniciales
- 18 participantes, 3 ganadores

Información general

Archivo	Filas	Descriptores	Sensores	RUL	Auxiliares
N-CMAPSS_DS01-005.h5	7,641,868	4	14	1	4
N-CMAPSS_DS02-006.h5	6,517,190	4	14	1	4
N-CMAPSS_DS03-012.h5	9,822,837	4	14	1	4
N-CMAPSS_DS04.h5	9,980,013	4	14	1	4
N-CMAPSS_DS05.h5	6,912,652	4	14	1	4
N-CMAPSS_DS06.h5	6,779,656	4	14	1	4
N-CMAPSS_DS07.h5	7,219,962	4	14	1	4
N-CMAPSS_DS08a-009.h5	8,608,386	4	14	1	4
N-CMAPSS_DS08c-008.h5	6,417,737	4	14	1	4

Cuadro: Tamaños de los conjuntos datos

- Archivo corrupto en base de datos
- Datos sintéticos del modelo CMAPSS
- Frecuencia de medición de 1 segundo
- Solamente se trabaja con datos de sensores y datos auxiliares ¹

 $^{^1}$ Los datos de los sensores virtuales no se encuentran en el conjunto de validación 9 % ($^{\circ}$

Datos proporcionados

Symbol	Description	Units
alt	Altitude	ft
Mach	Flight Mach number	-
TRA	Throttle-resolver angle	%
T2	Total temperature at fan inlet	°R
Wf	Fuel flow	pps
Nf	Physical fan speed	rpm
Nc	Physical core speed	rpm
T24	Total temperature at LPC outlet	°R
T30	Total temperature at HPC outlet	°R
T48	Total temperature at HPT outlet	°R
T50	Total temperature at LPT outlet	°R
P15	Total pressure in bypass-duct	psia
P2	Total pressure at fan inlet	
P21	Total pressure at fan outlet	psia
P24	Total pressure at LPC outlet	psia
Ps30	Static pressure at HPC outlet	psia
P40	Total pressure at burner outlet	psia
P50	Total pressure at LPT outlet	psia
RUL	Remaining Useful Life	cycles
unit	Unit number	-
cycle	Flight cycle number	-
Fc	Flight class	-
hs	Health state	-

Cuadro: Información general de los conjuntos de datos [3]

Distribución de clases de vuelos

Figura: Distribución de clases de vuelo

No hay aviones que participen en 2 tipos de vuelo en ningún momento

Perfil de vuelo

Figura: Condiciones de vuelo para avión 1 en su primer vuelo

Sumario de perfiles de vuelo

Figura: Distribución de descriptores por clase de vuelo

Ejemplo de medición de sensores

Figura: Presión total/absoluta en la entrada del ventilador (psia)

Comentarios, Mesa Redonda

- Conjunto de datos fiel, no hay valores faltantes
- Es imposible cargar todos los datos de todos los archivos en memoria para un equipo convencional
- Variaciones considerables entre conjuntos de datos por modos de falla no presentes

Referencias

- (30 de mar. de 2021). Mission Statement PHM Society, dirección: https://phmsociety.org/about-the-prognostics-and-health-management-society/mission-statement/.
- M. Arias Chao, C. Kulkarni, K. Goebel y O. Fink, "Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics", *Data*, vol. 6, n.º 1, pág. 5, 2021.
 - (21 de oct. de 2021). 2021 PHM Conference Data Challenge PHM Society Data Repository, dirección:
 - https://data.phmsociety.org/2021-phm-conference-data-challenge/.