

$$f_{1} = \frac{1}{4(26.75)} \int_{0.0186}^{1} = \frac{47.9 \text{Hz}}{1} = \frac{1}{500 \times 980} = \frac{1}{4(37.75)} \int_{0.0186}^{1} = \frac{48.07 \text{Hz}}{1} = \frac{1}{500 \times 980} = \frac{1}{4(37.75)} \int_{0.0186}^{1} = \frac{1}{4(37.75)} \int_{0.0186}^{1} = \frac{1}{4(52.75)} \int_{0.0186}^{1} = \frac{1}{4(52.75)} \int_{0.0186}^{1} = \frac{1}{4(58.5)} \int_{0.0186}^{1} = \frac{1}{4(58.5)} \int_{0.0186}^{1} = \frac{1}{48.384-50} \times \frac{1}{100} = \frac{1}{50}$$

Mean frequency of 48.384

$$\frac{1}{50} = \frac{1}{50} =$$

5

Piyush

				DATE PAGE	GOYAL
*	Observations, - Mass per unit length of wire m = 0.0186 gm/cm.				
S. No.	Load with Hanger (Mgm)	Increasing load	Decreasing load (l2 cm)	Mean Length $1 \text{ cm} = (1/1+1/2)/2$	Frequency of A.C. mains fac Hz
1.1 2.1 3.1 4.1 5.1	500 1000 1500 2000 2500	26 37 45.5 52 58	27.5 38.5 46.5 53.5 59	26.75 37.75 46 52.75 58.5	47.9Hz 48.07Hz 48.31Hz 48.6Hz 49.04Hz
*	Calculations. $T = Mg$, $g = 980 \text{ cm/s}^2$ Calculate the frequency bollowing formula $f_{AC} = f = 1 + T$ $2 + 9.50$				

