

Nome: Carlos Roberto Gallo - 197645_______ Data: 19 de junho de 2018

1. Controle de Qualidade. Os dados a seguir foram obtidos em um ensaio R&R. Determine os parâmetros $\%R\&R_{VT}$ e $\%R\&R_{TOL}$ desses processos de medição e indique se eles são adequados ou não e o motivo (Extraído do livro Fundamentos de Metrologia Científica e Industrial de Armando Albertazzi G. Jr. e André R. de Souza, 2^a edição, página 409).

	Peças									
Operadores		1	2	3	4	5	6	7	8	9
	Medição 1	51.67	51.74	51.6	51.78	51.61	51.89	51.61	51.73	52
A	Medição 2	51.63	51.76	51.68	51.69	51.71	51.66	51.76	51.93	51.69
	Medição 3	51.74	51.73	51.5	51.78	51.68	51.78	51.86	51.94	51.65
	Medição 1	51.75	51.48	51.9	51.81	51.52	51.77	51.86	51.76	51.89
В	Medição 2	51.66	51.79	51.61	51.68	51.59	52.02	51.78	51.74	51.74
	Medição 3	51.63	51.57	51.76	52.05	51.58	51.77	51.84	51.81	51.96
	Medição 1	51.78	51.58	51.59	51.89	51.65	51.78	51.89	51.8	51.78
С	Medição 2	51.72	51.77	51.79	51.58	51.8	51.83	51.75	51.84	51.84
	Medição 3	51.73	51.81	51.79	51.82	51.94	51.82	51.83	51.96	51.89

2. Ajuste Linear. Para determinar a constante de elasticidade de uma mola, um estudante pendura várias massas M em uma extremidade da mola e mede a sua correspondente dimensão l. Os resultados obtidos estão apresentados na Tabela 1. Como a força $mg = k(l-l_0)$ é o comprimento da mola sem distensão, esses dados devem se ajustar a uma reta, $l = l_0 + (g/k)m$. Faça um ajuste por mínimos quadrados para essa reta, considerando os dados apresentados, e determine as melhores estimativas para l_0 e para k. Calcule o comprimento l e sua incerteza para o peso de 1kg (Extraído do livro Introdução à análise de erros de John R. Taylor, 2^a edição, página 200).

ſ	Daga en (emaro ag)	200	300	400	500	600	700	900	000
Į	(0)								
	Comprimento l (cm)	4.31	4.62	4.88	5.91	7.23	7.26	9	9.7

Tabela 1: Comprimento versus peso para uma mola M.

3. Medidas Correlacionadas. Considere o modelo matemático abaixo para medição de uma resistência com base nos valores simultaneamente observados de corrente e voltagem sob condições ambientais idênticas, utilizando um voltímetro e um amperímetro (ambos os instrumentos estavam com escala selecionada visando a menor incerteza associada ao conjunto de medições em questão, ver Tabelas 3 e 4), considerando a influência de correlação entre as variáveis e tendo ciência de que a temperatura ambiente estava oscilando entre 18°C e 28°C. Determine a incerteza no cálculo de R com 99.73% de confiança de acordo com a quantidade de algarismos significativos de acordo com o Método de Monte Carlo.

$$R = (V_a + V_{resol} + V_{calib} + V_{temp})/(I_a + I_{resol} + I_{calib} + I_{temp})$$
, sendo:

N	1	2	3	4	5	6	7	8
$V_a(V)$	9.09	11.26	9.85	9.86	8.5	10.86	10.44	8.12
$I_a (mA)$	90.223	112.209	99.205	98.066	84.306	108.228	104.23	82.048

Tabela 2: Medições simultâneas de voltagem e corrente

Faixa	Precisão
200mV, 2V, 20V, 200V	$\pm (0.5\% + 3D)$
1000V	$\pm (1.0\% + 5D)$

Tabela 3: Incerteza do voltímetro de 3 1/2 dígitos, segundo o certificado de calibração, válida para temperatura ambiente oscilando entre $-10^{\circ}C$ e $40^{\circ}C$.

Faixa	Incerteza				
20mA	$\pm (0.8\% + 3D)$				
200mA	$\pm (1.2\% + 4D)$				
20A	$\pm (2.0\% + 5D)$				

Tabela 4: Incerteza do amperímetro de 5 1/2 dígitos, segundo o certificado de calibração, válida para temperatura de $23^{\circ}C \pm 5^{\circ}C$ e umidade relativa < 75%.