EC-252: COMPUTER ARCHITECTURE AND MICROPROCESSORS

Vaskar Raychoudhury
Indian Institute of Technology Roorkee

Computing Devices Then...

EDSAC, University of Cambridge, UK, 1949

Computing Devices Now

Computer Generations

- Zeroth Generation
 - Mechanical Computers (1642 1945)
- First Generation
 - Vacuum Tubes (1945 1955)
- Second Generation
 - Transistors (1955 1965)
- Third Generation
 - Integrated Circuits (1965 1980)
- Fourth Generation
 - Very Large Scale Integration (1980 ?)

Computer Architecture: A Little History

Why worry about old ideas?

- Helps to illustrate the design process, and explains why certain decisions were taken
- Because future technologies might be as constrained as older ones
- □ Those who ignore history are doomed to repeat it
 - Every mistake made in mainframe design was also made in minicomputers, then microcomputers, where next?

Charles Babbage 1791-1871

Lucasian Professor of Mathematics, Cambridge University, 1827-1839

6

Charles Babbage

- □ Difference Engine 1823
- Analytic Engine 1833
 - □ The forerunner of modern digital computer!

Application

- Mathematical Tables Astronomy
- Nautical Tables Navy

Background

Any continuous function can be approximated by a polynomial ---

Technology

- mechanical - gears, Jacquard's loom, simple calculators

Difference Engine

1823

Babbage's paper is published

1834

The paper is read by Scheutz & his son in Sweden

1842

Babbage gives up the idea of building it; he is onto Analytic Engine!

1855

- Scheutz displays his machine at the Paris World Fare
- Can compute any 6th degree polynomial
- Speed: 33 to 44 32-digit numbers per minute!

Analytic Engine

1833: Babbage's paper was published

 conceived during a hiatus in the development of the difference engine

Inspiration: Jacquard Looms

- looms were controlled by punched cards
 - The set of cards with fixed punched holes dictated the pattern of weave \Box program
 - The same set of cards could be used with different colored threads \(\bigcap_{\text{numbers}} \)

1871: Babbage dies

The machine remains unrealized.

It is not clear if the analytic engine could be built even today using only mechanical technology

Analytic Engine

The first conception of a general-purpose computer

- The *store* in which all variables to be operated upon, as well as all those quantities which have arisen from the results of the operations are placed.
- 2. The *mill* into which the quantities about to be operated upon are always brought.

An operation in the *mill* required feeding two punched cards and producing a new punched card for the *store*.

An operation to alter the sequence was also provided!

Electronic Numerical Integrator and Computer (ENIAC)

- Inspired by Atanasoff and Berry, Eckert and Mauchly designed and built ENIAC (1943-45) at the University of Pennsylvania
- The first, completely electronic, operational, general-purpose analytical calculator!
 - 30 tons, 72 square meters, 200KW
- Performance
 - Read in 120 cards per minute
 - Addition took 200 ms, Division 6 ms
 - 1000 times faster than Mark I
- Not very reliable!

Application: Ballistic calculations

WW-2 Effort

Electronic Discrete Variable Automatic Computer (EDVAC)

- ENIAC's programming system was external
 - Sequences of instructions were executed independently of the results of the calculation
 - Human intervention required to take instructions "out of order"
- Eckert, Mauchly, John von Neumann and others designed
 EDVAC (1944) to solve this problem
 - Solution was the stored program computer
 - ⇒ "program can be manipulated as data"
- □ First Draft of a report on EDVAC was published in 1945, but just had von Neumann's signature!
 - In 1973 the court of Minneapolis attributed the honor of inventing the computer to John Atanasoff

Stored Program Computer

Program = A sequence of instructions

How to control instruction sequencing?

```
manual control

automatic control

external (paper tape)

internal

plug board

read-only memory

read-write memory

calculators

Harvard Mark I , 1944

Zuse's Z1, WW2

ENIAC 1946

ENIAC 1948

EDVAC 1947 (concept )
```

■ The same storage can be used to store program and data

EDSAC 1950 Maurice Wilkes

Von Neumann Machine

The original Von Neumann machine.

Compatibility Problem at IBM

By early 60's, IBM had 4 incompatible lines of computers!

```
701 => 7094
650 => 7074
702 => 7080
1401 => 7010
```

Each system had its own

- Instruction set
- I/O system and Secondary Storage:
 magnetic tapes, drums and disks
- assemblers, compilers, libraries,...
- market niche

business, scientific, real time, ...

⇒ IBM 360

IBM 360

- □ IBM introduced a single product line, the System/360 (IC-based) to replace the 7094 and the 1401 product lines
- □ It was the initial offering of the IBM product line

Property	Model 30	Model 40	Model 50	Model 65
Relative performance	1	3.5	10	21
Cycle time (in billionths of a sec)	1000	625	500	250
Maximum memory (bytes)	65,536	262,144	262,144	524,288
Bytes fetched per cycle	1	2	4	16
Maximum number of data channels	3	3	4	6

IBM 360: Design Premises

Amdahl, Blaauw and Brooks, 1964

- □ The design must lend itself to growth and successor machines
- □ General method for connecting I/O devices
- Total performance answers per month rather than bits per microsecond => programming aids
- Machine must be capable of supervising itself without manual intervention
- □ Built-in hardware fault checking and locating aids to reduce down time
- Simple to assemble systems with redundant I/O devices, memories etc.
 for fault tolerance
- Some problems required floating-point larger than 36 bits

IBM 360: A General-Purpose Register (GPR) Machine

□ Processor State

- 16 General-Purpose 32-bit Registers
 - may be used as index and base register
 - Register 0 has some special properties
- 4 Floating Point 64-bit Registers
- A Program Status Word (PSW)
 - PC, Condition codes, Control flags

A 32-bit machine with 24-bit addresses

- But no instruction contains a 24-bit address!
- Data Formats
 - 8-bit bytes, 16-bit half-words, 32-bit words, 64-bit double-words

The IBM 360 is why bytes are 8-bits long today!

IBM 360: Initial Implementations

Model 30 ... Model 70

Storage 8K - 64 KB 256K - 512 KB

Datapath 8-bit 64-bit

Circuit Delay 30 nsec/level 5 nsec/level

Local Store Main Store Transistor Registers

Control Store Read only 1 µsec Conventional circuits

IBM 360 instruction set architecture (ISA) completely hid the underlying technological differences between various models.

Milestone: The first true ISA designed as portable hardware-software interface!

With minor modifications it still survives today!

Milestones in Computer Architecture (1)

Year	Name	Made by	Comments	
1834	Analytical Engine	Babbage	First attempt to build a digital computer	
1936	Z1	Zuse	First working relay calculating machine	
1943	COLOSSUS	British gov't	First electronic computer	
1944	Mark I	Aiken	First American general-purpose computer	
1946	ENIAC I	Eckert/Mauchley	Modern computer history starts here	
1949	EDSAC	Wilkes	First stored-program computer	
1951	Whirlwind I	M.I.T.	First real-time computer	
1952	IAS	Von Neumann	Most current machines use this design	
1960	PDP-1	DEC	First minicomputer (50 sold)	
1961	1401	IBM	Enormously popular small business machine	
1962	7094	IBM	Dominated scientific computing in the early 1960s	
1963	B5000	Burroughs	First machine designed for a high-level language	
1964	360	IBM	First product line designed as a family	

Some milestones in the development of the modern digital computer.

Milestones in Computer Architecture (2)

Year	Name	Made by	Comments
1965	PDP-8	DEC	First mass-market minicomputer (50,000 sold)
1970	PDP-11	DEC	Dominated minicomputers in the 1970s
1974	8080	Intel	First general-purpose 8-bit computer on a chip
1974	CRAY-1	Cray	First vector supercomputer
1978	VAX	DEC	First 32-bit superminicomputer
1981	IBM PC	IBM	Started the modern personal computer era
1981	Osborne-1	Osborne	First portable computer
1983	Lisa	Apple	First personal computer with a GUI
1985	386	Intel	First 32-bit ancestor of the Pentium line
1985	MIPS	MIPS	First commercial RISC machine
1987	SPARC	Sun	First SPARC-based RISC workstation
1990	RS6000	IBM	First superscalar machine
1992	Alpha	DEC	First 64-bit personal computer
1993	Newton	Apple	First palmtop computer

Some milestones in the development of the modern digital computer.