Payoff Continuity in Games with Incomplete Information: An Equivalence Result

Ashwin Kambhampati

University of Pennsylvania

Background

- Equilibrium predictions are sensitive to the common knowledge assumption (Rubinstein (AER-1989)).
- Monderer and Samet (GEB-1989) show that common-p belief is sufficient for payoff continuity of the ϵ -equilibrium correspondence.
- Monderer and Samet (MOR-1996) and Kajii and Morris (JET-1998) show that common p-belief is necessary as well.
- MS define a topology on Partition Models, while KM define a topology on Type Models.

Objective

Establish the sense in which the MS and KM topologies are equivalent.

Lower Hemicontinuity Issue

$$E \quad O \quad C \qquad E \quad O \quad C$$

$$E \quad 6, 6 \quad 6, 0 \quad 6, 0 \qquad E \quad 0, 0 \quad 0, 6 \quad 0, 0$$

$$O \quad 0, 6 \quad 0, 0 \quad 0, 0 \qquad O \quad 6, 0 \quad 6, 6 \quad 6, 0$$

$$C \quad 0, 6 \quad 0, 0 \quad 4, 4 \qquad C \quad 0, 0 \quad 0, 6 \quad 4, 4$$

$$\theta = Even. \qquad \theta = Odd.$$

Common Prior

Alice's Constant Partition

Bob's "Limit" Partition

nth Element of Bob's Partition Sequence

Primitives

- Finite set of players \mathcal{N} .
- Countable set of states S.
- Countable set of payoff parameters Θ .
- A function $\phi: S \to \Theta$.
- Full support common prior $P \in \Delta(S)$.

Partition Model

• A partition Π_i of S for each player.

Type Model

- A countable set $T := T_1 \times ... \times T_N$.
- A function $\tau: S \to T$.

Canonical Mapping: Partition Model to Type Model

- τ is Π -consistent if $\tau_i(s) = \tau_i(s')$ iff $s, s' \in \pi \in \Pi_i$.
- $P \in \Delta(S)$, $\phi: S \to \Theta$, and $\tau: S \to T$ together identify a unique measure $\mu \in \Delta(\Theta \times T)$: $\mu(\theta,t) = P(\{s \in S: \phi(s) = \theta \text{ and } \tau(s) = t\}).$

Labelings: Pairs to Pairs

- A partition labeling is a function from pairs of Partition Models to pairs of Type Models $L: \mathcal{P}^N \times \mathcal{P}^N \to T^S \times T^S.$
- L is **consistent** if $L(\Pi,\Pi')=(au, au')$ implies au is Π -consistent and au' is Π' -consistent.
- L is **invariant** if for all $\Pi \in \mathcal{P}^N$ there exists a $\tau \in T^S$ such that, $L_1(\Pi, \Pi') = \tau$ for any $\Pi' \in \mathcal{P}^N$.
- L satisfies the common support condition if $L(\Pi, \Pi') = (\tau, \tau')$ implies that $\tau(s) = \tau'(s)$ if $s \in I_{\Pi,\Pi'}(1/2)$.

$$d(\pi, \pi') = \max\{P(\pi \backslash \pi' | \pi), P(\pi' \backslash \pi | \pi')\}$$
$$I_{\Pi,\Pi'}(\epsilon) := \bigcap_{i \in \mathcal{N}} \{s \in S | d(\Pi_i(s), \Pi_i'(s)) < \epsilon\}.$$

Probabilites Conditional on Partition Element

Probabilites Conditional on Partition Element

Main Result

Suppose L is invariant, consistent, and satisfies the common support condition. If a sequence of Partition Models (Π_n) converges to Π in the MS topology and $L(\Pi,\Pi_n)=(\tau,\tau_n)$ for all n, then the sequence of Type Models (τ_n) converges to τ in the KM topology.

Proof Outline

- Convert common *p*-belief statements in Partition Model to common *p*-belief statements in Type Model. [Use consistency.]
- Prove that close-by conditional beliefs in MS sense imply close-by conditional beliefs in KM sense. [Use common support condition.]
- 3 Given that two information structures close in the MS sense are close in the KM sense, use invariance to make limiting statement.

The Converse

 A type labeling is a function from pairs of Type Models to pairs of Partition Models

$$\bar{L}: T^S \times T^S \to \mathcal{P}^N \times \mathcal{P}^N.$$

• Define a "consistent" type labeling which coincides with the inverse of any consistent, invariant partition labeling satisfying the common support condition.

Converse Statement: Suppose \bar{L} is "consistent". If a sequence of Type Models (τ_n) converges to τ in the KM topology and $\bar{L}(\tau,\tau_n)=(\Pi,\Pi_n)$ for all n, then the sequence of Type Models (Π_n) converges to Π in the MS topology.