Recuperação de Informação Câmeras Digitais

•••

Bruno Cavalcanti Guilherme Henrique Pedro Henrique

Índice Invertido

Download das páginas

- Mil páginas positivamente classificadas foram baixadas ao todo
- No total 21250 páginas foram baixadas
- Havest ratio -> 0,0483

Pré-processamento automático

- Atributos mais frequentes escolhidos:
 - Nome
 - Preço
 - Modo de armazenamento
 - o Sensibilidade
 - Velocidade do obturador

Discretização dos atributos numéricos

Detalhes do índice invertido

• Atributos com vários nomes são divididos, gerando múltiplas chaves no índice invertido

Compressão

- Serialização sem compressão -> 198 kilobytes
- Serialização com compressão -> 170 kilobytes

```
name.Sony%1=37,1;
name.5DS%3=499,1;507,1;509,1;
Shutter Speed.Via%4=836,1;891,1;896,1;909,1;
Storage Mode.Eye-Fi%61=2,1;10,1;18,1;24,1;25,1;27,1;30,1;
```

```
name.Sony%1=37,1;
name.5DS%3=499,1;8,1;2,1;
Shutter Speed.Via%4=836,1;55,1;5,1;13,1;
Storage Mode.Eye-Fi%61=2,1;8,1;8,1;6,1;1,1;2,1;3,1;2,1;2,1;
```

Processamento de Consulta

Calcular os pesos dos documentos para cada termo

$$\vec{d_j} = (w_{1,j}, w_{2,j}, \dots, w_{t,j})$$

- Com TfIdf
- Sem TfIdf
- Tamanho dos vetores = 827

Calcular os pesos dos termos da consulta

$$\vec{q} = (w_{1,q}, w_{2,q}, \dots, w_{t,q})$$

- Com TfIdf
- Sem TfIdf
- Tamanho do vetor = 827

Modelo vetorial

Modelo vetorial

$$sim(d_j, q) = \frac{\vec{d_j} \cdot \vec{q}}{|\vec{d_j}| \times |\vec{q}|}$$

$$= \frac{\sum_{i=1}^t w_{i,j} \times w_{i,q}}{\sqrt{\sum_{i=1}^t w_{i,j}^2} \times \sqrt{\sum_{i=1}^t w_{i,q}^2}}$$

• sim(dj,q) = rank

$$S(\mathcal{R}_1, \mathcal{R}_2) = 1 - \frac{6 \times \sum_{j=1}^{K} (s_{1,j} - s_{2,j})^2}{K \times (K^2 - 1)}$$

name.Sony x name.Compact

$$S(\mathcal{R}_1, \mathcal{R}_2) = 1 - \frac{6 \times \sum_{j=1}^{K} (s_{1,j} - s_{2,j})^2}{K \times (K^2 - 1)}$$

shutter speed.Manual x shutter speed.Scene

$$S(\mathcal{R}_1, \mathcal{R}_2) = 1 - \frac{6 \times \sum_{j=1}^{K} (s_{1,j} - s_{2,j})^2}{K \times (K^2 - 1)}$$

shutter speed.Manual x shutter speed.Scene

name.Sony x name.Compact

$$S(\mathcal{R}_1, \mathcal{R}_2) = 1 - \frac{6 \times \sum_{j=1}^{K} (s_{1,j} - s_{2,j})^2}{K \times (K^2 - 1)}$$

shutter speed.Manual x shutter speed.Scene

name.Sony x name.Compact

sensitivity.Using x sensitivity.1EV

$$S(\mathcal{R}_1, \mathcal{R}_2) = 1 - \frac{6 \times \sum_{j=1}^{K} (s_{1,j} - s_{2,j})^2}{K \times (K^2 - 1)}$$

shutter speed.Manual x shutter speed.Scene

name.Sony x name.Compact

sensitivity. Using x sensitivity. 1EV

storage mode.Recording x storage mode.SD

Spearman Correlation (DA MANEIRA CORRETA)

Consulta	SpearmanCorrelation (TFIDF true vs TFIDF false)
name.Sony shutter speed.Scene Sensitivity.using	0.9999266319266319
Sensitivity.using Storage Mode.Recording	0.9995928395928396
Name.Compact Name.Sony Name.FujiFilm Name.Nikon	0.9975126135126136

Spearman Correlation (DA MANEIRA CORRETA)

Consulta	SpearmanCorrelation (TFIDF true vs TFIDF false)
<pre>price.\$1,099 price.\$499 Sensitivity.changes</pre>	0.999907155907156
Shutter Speed.Manual Sensitivity.limit price.\$119.95	0.9992393792393792

Conclui que deu valores próximos porque a nossa frequência de termos nos documentos é bastante parecida. Quando um documento possui um atributo, na grande maioria das vezes, sua frequência em relação a aquele documento é 1. Portanto, os vetores dos documentos com pesos de TFIDF e sem TFIDF relacionados a consulta vão retornar ranks parecidos, ainda que a forma de calcular os valores dos vetores sejam diferentes.

Composição da Resposta

Project Structure and Framework

Recomendação usando frequência

Recomendação usando mutual-information

```
Map<String, Double> attributeFrequencies = INVERTED INDEX.attributes.stream()
        .collect(Collectors.toMap(Function.identity(),
                        .filter(entry -> entry.getKey().split( regex "\\.")[0].equals(attribute))
                        .mapToInt(entry -> entry.getValue().size())
                        .sum() / (double) INVERTED INDEX.indexedDocuments.size()
Map<String, Double> termProbabilities = INVERTED INDEX.termDocuments.entrySet().stream()
        .map(entry -> {
            double termProbability = entry.getValue().size() / (double) INVERTED INDEX.indexedDocuments.size();
            String attribute = entry.getKey().split( regex: "\\.")[0];
            double attributeProbability = attributeFrequencies.get(attribute);
            return new Pair<>(entry.getKey(), termProbability / (termProbability * attributeProbability));
        .collect(Collectors.toMap(Pair::getKey, Pair::getValue));
        .collect(Collectors.toMap(
                Function.identity(),
                attribute -> termProbabilities.entrySet().stream()
                        .sorted((e1, e2) -> (int) Math.signum(e2.getValue() - e1.getValue()))
                        .map(entry -> entry.getKey().split( regex: "\\.")[1])
                        .collect(Collectors.toList())
```