DevikaJainProject2

April 10, 2025

```
[1]: import pandas as pd
     import numpy as np
     import seaborn as sns
     import matplotlib.pyplot as plt
     from sklearn.model_selection import train_test_split, cross_val_score
     from sklearn.preprocessing import LabelEncoder, StandardScaler
     from sklearn.impute import SimpleImputer
     from sklearn.feature_selection import SelectKBest, f_classif
     from sklearn.linear_model import LogisticRegression
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.svm import SVC
     from sklearn.metrics import classification_report, accuracy_score
     from imblearn.over_sampling import SMOTE
[2]: from google.colab import files
     uploaded = files.upload()
    <IPython.core.display.HTML object>
    Saving HR-Employee-Attrition.csv to HR-Employee-Attrition.csv
[3]: df = pd.read_csv("HR-Employee-Attrition.csv")
     df.head()
[3]:
                          BusinessTravel DailyRate
                                                                 Department
        Age Attrition
     0
         41
                  Yes
                           Travel_Rarely
                                               1102
                                                                      Sales
        49
     1
                      Travel_Frequently
                                                279 Research & Development
                  No
     2
        37
                           Travel_Rarely
                  Yes
                                               1373
                                                     Research & Development
     3
         33
                   No
                       Travel_Frequently
                                               1392
                                                     Research & Development
         27
                           Travel_Rarely
                                                591
                                                     Research & Development
       DistanceFromHome Education EducationField EmployeeCount EmployeeNumber
     0
                                  2 Life Sciences
                                                                                 1
     1
                       8
                                  1 Life Sciences
                                                                1
                                                                                2
     2
                       2
                                             Other
                                                                1
                                                                                4
     3
                                  4 Life Sciences
                                                                                5
```

4	2	1	Medica	al	1	7
_	RelationshipSat:	isfaction	StandardHours	s StockOptionLe	evel \	
^		1	80	_	0	
4	••	4	80		1	
0		2	80		0	
3 .	••	3	80		0	
4 .	••	4	80		1	
4 .	••	4	80	,	1	
٦	TotalWorkingYears	TrainingT	TimesLastYear	WorkLifeBalance	YearsAtC	ompany \
0	8		0	1	-	6
1	10		3	3	3	10
2	7		3	3	3	0
3	8		3	3	3	8
4	6		3	3	3	2
Υe	earsInCurrentRole	YearsSind	ceLastPromotic	on YearsWithCur	rManager	
0	4			0	5	
1	7			1	7	
2	0			0	0	
3	7			3	0	
4	2			2	2	
1	2			2	2	
[5]	rows x 35 columns]					
[4]: df.s	shape					
	info()					
df.d	describe()					
	ss 'pandas.core.fr					
•	eIndex: 1470 entri					
Data	columns (total 35					
#	Column]	Non-Null Coun [.]			
0	Age		1470 non-null			
1	Attrition		1470 non-null	object		
2	BusinessTravel		1470 non-null	-		
3	DailyRate		1470 non-null	•		
4	Department		1470 non-null			
5	DistanceFromHome		1470 non-null	•		
6	Education		1470 non-null			
7	EducationField		1470 non-null	•		
8	EmployeeCount		1470 non-null	int64		
9	EmployeeNumber		1470 non-null	int64		
10	EnvironmentSatisf		1470 non-null			
11	Gender		1470 non-null	•		
12	HourlyRate		1470 non-null	int64		

13	JobInvolvement	1470	non-null	int64	
14	JobLevel	1470	non-null	int64	
15	JobRole	1470	non-null	object	
16	JobSatisfaction	1470	non-null	int64	
17	MaritalStatus	1470	non-null	object	
18	MonthlyIncome	1470	non-null	int64	
19	MonthlyRate	1470	non-null	int64	
20	NumCompaniesWorked	1470	non-null	int64	
21	Over18	1470	non-null	object	
22	OverTime	1470	non-null	object	
23	PercentSalaryHike	1470	non-null	int64	
24	PerformanceRating	1470	non-null	int64	
25	${\tt RelationshipSatisfaction}$	1470	non-null	int64	
26	StandardHours	1470	non-null	int64	
27	StockOptionLevel	1470	non-null	int64	
28	TotalWorkingYears	1470	non-null	int64	
29	${\tt Training Times Last Year}$	1470	non-null	int64	
30	WorkLifeBalance	1470	non-null	int64	
31	YearsAtCompany	1470	non-null	int64	
32	YearsInCurrentRole	1470	non-null	int64	
33	${\tt YearsSinceLastPromotion}$	1470	non-null	int64	
34	YearsWithCurrManager	1470	non-null	int64	
ltyp	es: int64(26), object(9)				
nemo	emory usage: 402.1+ KB				
				_ =	

dt

	memory	usage: 402.1+	- KB								
[4]:		Age	Ι	DailyRate	DistanceFromHo	me	Education	Eı	mployeeCoun	ıt '	\
	count	1470.000000	147	70.000000	1470.0000	000	1470.000000		1470.	0	
	mean	36.923810	80	02.485714	9.1925	17	2.912925		1.	0	
	std	9.135373	40	03.509100	8.1068	864	1.024165		0.	0	
	min	18.000000	10	02.000000	1.0000	000	1.000000		1.	0	
	25%	30.000000	46	35.000000	2.0000	000	2.000000		1.	0	
	50%	36.000000	80	02.000000	7.0000	000	3.000000		1.	0	
	75%	43.000000	115	57.000000	14.0000	000	4.000000		1.	0	
	max	60.000000	149	99.000000	29.0000	000	5.000000		1.	0	
		EmployeeNumb	er	Environme	entSatisfaction	Но	ourlyRate Jo	obIı	nvolvement	\	
	count	1470.0000	00		1470.000000	147	0.00000	14	470.000000		
	mean	1024.8653	06		2.721769	6	55.891156		2.729932		
	std	602.0243	35		1.093082	2	20.329428		0.711561		
	min	1.0000	00		1.000000	3	30.000000		1.000000		
	25%	491.2500	00		2.000000	4	8.00000		2.000000		
	50%	1020.5000	00		3.000000	6	6.000000		3.000000		
	75%	1555.7500	00		4.000000	8	3.750000		3.000000		
	max	2068.0000	00		4.000000	10	00.00000		4.000000		
		JobLevel		Relations	hipSatisfaction	. St	andardHours	\			
	count	1470.000000			1470.000000		1470.0				

```
80.0
               2.063946
                                              2.712245
     mean
               1.106940
                                                                   0.0
     std
                                              1.081209
                                                                  80.0
     min
               1.000000
                                              1.000000
     25%
                                                                  80.0
               1.000000
                                              2.000000
     50%
               2.000000
                                              3.000000
                                                                  80.0
     75%
               3.000000
                                              4.000000
                                                                  80.0
               5.000000
                                              4.000000
                                                                  80.0
     max
            StockOptionLevel
                               TotalWorkingYears
                                                   TrainingTimesLastYear
                  1470.000000
                                      1470.000000
                                                              1470.000000
     count
                                        11.279592
                                                                 2.799320
     mean
                     0.793878
     std
                     0.852077
                                         7.780782
                                                                 1.289271
     min
                     0.000000
                                         0.000000
                                                                 0.00000
     25%
                     0.000000
                                         6.000000
                                                                 2.000000
     50%
                     1.000000
                                        10.000000
                                                                 3.000000
     75%
                     1.000000
                                        15.000000
                                                                 3.000000
                     3.000000
                                        40.000000
                                                                 6.000000
     max
            WorkLifeBalance
                              YearsAtCompany
                                               YearsInCurrentRole
     count
                1470.000000
                                 1470.000000
                                                       1470.000000
                    2.761224
                                     7.008163
                                                          4.229252
     mean
     std
                    0.706476
                                    6.126525
                                                          3.623137
     min
                    1.000000
                                    0.000000
                                                          0.000000
     25%
                    2.000000
                                     3.000000
                                                          2.000000
     50%
                    3.000000
                                     5.000000
                                                          3.000000
     75%
                    3.000000
                                     9.000000
                                                          7.000000
     max
                    4.000000
                                   40.000000
                                                         18.000000
            YearsSinceLastPromotion
                                      YearsWithCurrManager
                         1470.000000
                                                1470.000000
     count
                                                   4.123129
     mean
                            2.187755
                            3.222430
     std
                                                   3.568136
     min
                            0.000000
                                                   0.000000
     25%
                            0.00000
                                                   2.000000
     50%
                            1.000000
                                                   3.000000
     75%
                            3.000000
                                                   7.000000
                           15.000000
                                                  17.000000
     max
     [8 rows x 26 columns]
[5]: # Check for nulls and basic info
     print(df.info())
     print(df['Attrition'].value counts())
     # Visualize class imbalance
     sns.countplot(data=df, x='Attrition')
     plt.title("Attrition Distribution")
```

plt.show()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	 int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	${\tt RelationshipSatisfaction}$	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	${\tt Training Times Last Year}$	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	${\tt YearsSinceLastPromotion}$	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64
d+	og. in+64(96) object(0)		

dtypes: int64(26), object(9)
memory usage: 402.1+ KB

None Attrition No 1233 Yes 237

Name: count, dtype: int64


```
[6]: # Check target distribution
sns.countplot(data=df, x='Attrition')
plt.title("Attrition Count")
plt.show()

# This graph displays the distribution of the target variable - whether and employee has left the company (Attrition = Yes)

# or not (Attrition = No).

# It helps us understand the class imbalance in the dataset.

# If one class (e.g., "No") is significantly higher than the other, it indicates the need for balancing techniques like SMOTE.

# Correlation Heatmap
plt.figure(figsize=(12, 6))
sns.heatmap(df.corr(numeric_only=True), cmap='coolwarm', annot=False)
plt.title("Correlation Heatmap")
plt.show()
```

```
# This heatmap displays the correlation coefficients between all numerical \Box
 ⇔ features in the dataset.
# Values range from -1 to +1.
      +1 indicates a strong positive correlation.
      -1 indicates a strong negative correlation.
      O means no linear correlation.
# This helps us identify features that might be strongly related, which can
 → guide feature selection or removal to avoid multicollinearity.
# Job Satisfaction Countplot split by Attrition
plt.figure(figsize=(8, 5))
sns.countplot(data=df, x='JobSatisfaction', hue='Attrition', palette='Set2')
plt.title("Job Satisfaction vs Attrition")
plt.xlabel("Job Satisfaction (1 = Low, 4 = High)")
plt.ylabel("Count")
plt.legend(title="Attrition")
plt.show()
# If attrition is higher at satisfaction level 1, it suggests low satisfaction
⇔is linked to higher attrition.
# If level 4 shows mostly "No", it implies higher satisfaction may retain_
 →employees better.
```

Attrition Count


```
[7]: # Drop unnecessary columns
      df = df.drop(['EmployeeCount', 'EmployeeNumber', 'Over18', 'StandardHours'],
       ⇒axis=1)
      # we dropped :
      # EmployeeCount: This column has the same value for all employees(usually 1), sou
       →it doesn't provide any useful information for the model.
      # EmployeeNumber: It's a unique identifier for each employee, like an ID. It
       ⇔creates noise.
      # Over18: Like EmployeeCount, it's constant across the dataset, so it adds not
       \rightarrow value
      \# Standard Hours: All employees have the same standard hours (usually 40).No_{\sqcup}
       \rightarrow variation = no influence on model prediction.
 [8]: # Encode categorical variables
      le = LabelEncoder()
      for col in df.select_dtypes(include=['object']).columns:
          df[col] = le.fit_transform(df[col])
 [9]: # Impute missing values (if any)
      imputer = SimpleImputer(strategy='mean')
      df = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)
[10]: # Feature Scaling
      scaler = StandardScaler()
      # StandardScaler normalizes the features so they all have:
          # Mean = 0
          # Standard Deviation = 1
      X_scaled = pd.DataFrame(scaler.fit_transform(df.drop('Attrition', axis=1)),__
       ⇔columns=df.drop('Attrition', axis=1).columns)
      y = df['Attrition']
      # since in ml:
          # X = Features (input variables we use to make predictions)
          # y = Target (what we want to predict)
      \# X \text{ scaled} = All \text{ employee-related attributes (like Age, JobSatisfaction, } \sqcup
       →Department, etc.)
      # y = Whether the employee left the company or not <math>\rightarrow the Attrition column
       ⇔(usually "Yes"/"No", or 0/1 after encoding)
[11]: # Show class distribution before SMOTE
      print("Before SMOTE - Class distribution:")
      print(y.value_counts())
      # Handle Class Imbalance with SMOTE
      sm = SMOTE(random state=42)
      X_resampled, y_resampled = sm.fit_resample(X_scaled, y)
```

```
# Show class distribution after SMOTE
      print("\nAfter SMOTE - Class distribution:")
      print(pd.Series(y_resampled).value_counts())
     Before SMOTE - Class distribution:
     Attrition
     0.0
             1233
     1.0
             237
     Name: count, dtype: int64
     After SMOTE - Class distribution:
     Attrition
     1.0
             1233
     0.0
            1233
     Name: count, dtype: int64
[12]: plt.figure(figsize=(10, 4))
      # Before SMOTE
      plt.subplot(1, 2, 1)
      sns.countplot(x=y)
      plt.title("Before SMOTE")
      plt.xlabel("Attrition")
      \# SMOTE (Synthetic Minority Over-sampling Technique) creates synthetic samples \sqcup
      # the minority class (e.g., employees who left) so that the dataset becomes \Box
       \hookrightarrowbalanced.
      # Purpose: Fix imbalance so the model won't be biased toward the majority class.
      # After SMOTE
      plt.subplot(1, 2, 2)
      sns.countplot(x=y_resampled)
      plt.title("After SMOTE")
      plt.xlabel("Attrition")
      plt.tight_layout()
      plt.show()
```



```
[13]: # Feature Selection
      selector = SelectKBest(score_func=f_classif, k=10)
      # SelectKBest is a feature selection technique.
      # It selects the top k features that have the strongest relationship with the
       ⇔target variable (y_resampled, which is Attrition here).
      # You set k=10, so it will keep only the 10 most important features.
      X_selected = selector.fit_transform(X_resampled, y_resampled)
      selected_features = X_scaled.columns[selector.get_support()]
      print("Top features:", selected_features)
     Top features: Index(['Age', 'JobLevel', 'MaritalStatus', 'MonthlyIncome',
     'OverTime',
            'StockOptionLevel', 'TotalWorkingYears', 'YearsAtCompany',
            'YearsInCurrentRole', 'YearsWithCurrManager'],
           dtype='object')
[14]: X_train, X_test, y_train, y_test = train_test_split(X_selected, y_resampled,__
       ⇔test_size=0.2, random_state=42)
      models = {
          "Logistic Regression": LogisticRegression(max_iter=1000),
          "Random Forest": RandomForestClassifier(),
          "Support Vector Machine": SVC(probability = True)
      }
      model_accuracies = {}
      for name, model in models.items():
          model.fit(X_train, y_train)
          y_pred = model.predict(X_test)
          acc = accuracy_score(y_test, y_pred)
          model_accuracies[name] = acc
          print(f"--- {name} ---")
          print(f"{name} Accuracy: {acc:.4f}")
```

print("Classification Report:\n", classification_report(y_test, y_pred))

--- Logistic Regression ---

Logistic Regression Accuracy: 0.6943

Classification Report:

	precision	recall	f1-score	support
0.0	0.71	0.68	0.69	250
1.0	0.68	0.71	0.70	244
accuracy			0.69	494
macro avg	0.69	0.69	0.69	494
weighted avg	0.69	0.69	0.69	494

--- Random Forest ---

Random Forest Accuracy: 0.8664

Classification Report:

	precision	recall	f1-score	support
0.0	0.85	0.89	0.87	250
1.0	0.88	0.84	0.86	244
accuracy			0.87	494
macro avg	0.87	0.87	0.87	494
weighted avg	0.87	0.87	0.87	494

--- Support Vector Machine ---

Support Vector Machine Accuracy: 0.7429

Classification Report:

	precision	recall	f1-score	support
0.0	0.75	0.75	0.75	250
1.0	0.74	0.74	0.74	244
accuracy			0.74	494
macro avg	0.74	0.74	0.74	494
weighted avg	0.74	0.74	0.74	494

```
[15]: for name, model in models.items():
    scores = cross_val_score(model, X_selected, y_resampled, cv=5)
    print(f"{name} Average CV Score: {np.mean(scores):.4f}")
```

Logistic Regression Average CV Score: 0.7271

Random Forest Average CV Score: 0.8906

Support Vector Machine Average CV Score: 0.7851

```
[16]: import matplotlib.pyplot as plt
      import seaborn as sns
      # Plot accuracies
      plt.figure(figsize=(8, 5))
      bars = sns.barplot(
          x=list(model_accuracies.keys()),
          y=list(model_accuracies.values()),
          palette='viridis',
          legend=False
      )
      plt.ylabel("Accuracy")
      plt.title("Model Accuracies")
      plt.ylim(0, 1)
      plt.xticks(rotation=15)
      for bar in bars.patches:
          height = bar.get_height()
          plt.text(
              bar.get_x() + bar.get_width() / 2,
              height + 0.01,
              f"{height * 100:.2f}%",
              ha='center',
              va='bottom',
              fontsize=10,
              fontweight='bold'
          )
      plt.tight_layout()
      plt.show()
```

<ipython-input-16-3143671cc981>:6: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

bars = sns.barplot(


```
[17]: from sklearn.model_selection import GridSearchCV
      from sklearn.ensemble import RandomForestClassifier
      from sklearn.feature_selection import SelectKBest, f_classif
      # --- Feature Selection (already done) ---
      selector = SelectKBest(score_func=f_classif, k=10)
      X_selected = selector.fit_transform(X_resampled, y_resampled)
      selected_features = X_scaled.columns[selector.get_support()]
      print("Selected Top Features:", selected_features)
      # --- Train-Test Split ---
      X_train, X_test, y_train, y_test = train_test_split(X_selected, y_resampled,__

state=42)

state=42)

state=42)

      # --- Hyperparameter Tuning for Random Forest ---
      param_grid = {
          'n_estimators': [100, 200],
          'max_depth': [None, 10, 20],
          'min_samples_split': [2, 5],
          'min_samples_leaf': [1, 2],
          'bootstrap': [True, False]
      }
      rf = RandomForestClassifier(random_state=42)
```

```
cv=5, n_jobs=-1, verbose=1, scoring='accuracy')
      grid_search.fit(X_train, y_train)
      print("Best Parameters Found:", grid_search.best_params_)
      print("Best Accuracy Score:", grid_search.best_score_)
      # --- Evaluate on Test Data ---
      best_rf = grid_search.best_estimator_
      y_pred = best_rf.predict(X_test)
      print("Test Accuracy:", accuracy_score(y_test, y_pred))
      print("Classification Report:\n", classification_report(y_test, y_pred))
     Selected Top Features: Index(['Age', 'JobLevel', 'MaritalStatus',
     'MonthlyIncome', 'OverTime',
            'StockOptionLevel', 'TotalWorkingYears', 'YearsAtCompany',
            'YearsInCurrentRole', 'YearsWithCurrManager'],
           dtype='object')
     Fitting 5 folds for each of 48 candidates, totalling 240 fits
     Best Parameters Found: {'bootstrap': False, 'max_depth': None,
     'min_samples_leaf': 2, 'min_samples_split': 2, 'n_estimators': 200}
     Best Accuracy Score: 0.8965507935488016
     Test Accuracy: 0.8805668016194332
     Classification Report:
                                recall f1-score
                    precision
                                                    support
              0.0
                        0.86
                                  0.92
                                            0.89
                                                       250
              1.0
                        0.91
                                  0.84
                                            0.87
                                                       244
                                            0.88
                                                       494
         accuracy
        macro avg
                        0.88
                                  0.88
                                            0.88
                                                       494
     weighted avg
                        0.88
                                  0.88
                                            0.88
                                                       494
[18]: from sklearn.ensemble import RandomForestClassifier
      from sklearn.model_selection import GridSearchCV, train_test_split
      from sklearn.metrics import accuracy_score
      import matplotlib.pyplot as plt
      # Split the data (assuming X_selected and y_resampled are already defined)
      X_train, X_test, y_train, y_test = train_test_split(X_selected, y_resampled,__

→test_size=0.2, random_state=42)
      # Untuned Random Forest
      rf_default = RandomForestClassifier(random_state=42)
      rf_default.fit(X_train, y_train)
```

grid_search = GridSearchCV(estimator=rf, param_grid=param_grid,

```
y_pred_default = rf_default.predict(X_test)
acc_default = accuracy_score(y_test, y_pred_default)
# GridSearchCV for Tuned Random Forest
param_grid = {
    'n_estimators': [100, 200],
    'max_depth': [None, 10, 20],
   'min_samples_split': [2, 5],
    'min_samples_leaf': [1, 2],
    'bootstrap': [True, False]
grid_search = GridSearchCV(RandomForestClassifier(random_state=42), param_grid, __
cv=5, n_jobs=-1)
grid_search.fit(X_train, y_train)
best_rf = grid_search.best_estimator_
y_pred_tuned = best_rf.predict(X_test)
acc_tuned = accuracy_score(y_test, y_pred_tuned)
# Plotting comparison
plt.bar(['Untuned RF', 'Tuned RF'], [acc_default, acc_tuned], color=['skyblue',_
plt.title('Random Forest Accuracy Comparison')
plt.ylabel('Accuracy')
plt.ylim(0, 1)
plt.text(0, acc_default + 0.01, f'{acc_default:.4f}', ha='center')
plt.text(1, acc_tuned + 0.01, f'{acc_tuned:.4f}', ha='center')
plt.show()
```

