Ray Tracing

Foley & Van Dam, Chapters 15 and 16

Ray Tracing

- Visible Surface Ray Tracing (Ray Casting)
- Examples
- Efficiency Issues
- Computing Boolean Set Operations
- Recursive Ray Tracing

- Determine visibility of a surface by tracing rays of light from the viewer's eye to the objects in the scene
- Image precision algorithm
- VSRT is sometimes called "Ray Casting"

Simple Ray Tracer:

```
select center of projection and window on viewplane;
for (each scan line in image) {
   for (each pixel in scan line) {
       determine ray from center of projection through pixel;
       for (each object in scene) {
           if (object is intersected and is closest considered thus far)
               record intersection and object name;
       set pixel's color to that at closest object intersection;
```

- Problem: computing intersections between the ray and the objects
- Each point (x,y,x) of the ray from (x₀,y₀,z₀)
 to (x₁,y₁,z₁) is defined by:

$$x = x_0 + t\Delta x$$
, $y = y_0 + t\Delta y$, $z = z_0 + t\Delta z$

where:

$$\Delta x = x_1 - x_0$$
, $\Delta y = y_1 - y_0$, $\Delta z = z_1 - z_0$

Simplest case:

Intersection with a sphere of center (a,b,c) and radius r

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$

Example:

Ray:
$$x = x_0 + t\Delta x$$
, $y = y_0 + t\Delta y$, $z = z_0 + t\Delta z$
Sphere: $(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$

$$x^{2} - 2ax + a^{2} + y^{2} - 2by + b^{2} + z^{2} - 2cz + c^{2} = r^{2},$$

$$(x_{0} + t\Delta x)^{2} - 2a(x_{0} + t\Delta x) + a^{2} + (y_{0} + t\Delta y)^{2} - 2b(y_{0} + t\Delta y) + b^{2} + (z_{0} + t\Delta z)^{2} - 2c(z_{0} + t\Delta z) + c^{2} = r^{2},$$

$$x_{0}^{2} + 2x_{0}\Delta xt + \Delta x^{2}t^{2} - 2ax_{0} - 2a\Delta xt + a^{2} + y_{0}^{2} + 2y_{0}\Delta yt + \Delta y^{2}t^{2} - 2by_{0} - 2b\Delta yt + b^{2} + z_{0}^{2} + 2z_{0}\Delta zt + \Delta z^{2}t^{2} - 2cz_{0} - 2c\Delta zt + c^{2} = r^{2}.$$

Example:

Collecting terms:

$$(\Delta x^{2} + \Delta y^{2} + \Delta z^{2})t^{2} + 2t[\Delta x(x_{0} - a) + \Delta y(y_{0} - b) + \Delta z(z_{0} - c)]$$

$$+ (x_{0}^{2} - 2ax_{0} + a^{2} + y_{0}^{2} - 2by_{0} + b^{2} + z_{0}^{2} - 2cz_{0} + c^{2}) - r^{2} = 0,$$

$$(\Delta x^{2} + \Delta y^{2} + \Delta z^{2})t^{2} + 2t[\Delta x (x_{0} - a) + \Delta y(y_{0} - b) + \Delta z(z_{0} - c)]$$

$$+ (x_{0} - a)^{2} + (y_{0} - b)^{2} + (z_{0} - c)^{2} - r^{2} = 0.$$

Quadratic equation in t $At^2 + Bt + C = 0$ Has zero, one or two real roots

$$t = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

Example:

Zero real roots: no intersections

One root: ray grazes the sphere

Two roots: smallest positive t is the closest

At the intersection point, the surface has normal:

$$\frac{x-a}{r}$$
, $\frac{y-b}{r}$, $\frac{z-c}{r}$

- Similar approach with other quadratic surfaces
- Intersection between a ray and a polygon is harder to find:
 - Find the intersection between the ray and the polygon's plane;
 - Check whether the intersection lies within the polygon

- Similar approach for other quadratic surfaces:
 - Sphere: $x^2 + y^2 + z^2 r^2$
 - Cylinder: $x^2 + y^2 r^2$
 - Cone: $x^2 + y^2 z^2$
 - Paraboloid: $x^2 + y^2 z$
 - Hyperboloid: $x^2 + y^2 z^2 \pm r^2$
- Roots of equations of degree higher than 2 can be found with an iterative method like Newton

- Intersection between a ray and a polygon is harder to find:
 - Find the intersection between the ray and the polygon's plane;
 - Check whether the intersection lies within the polygon

Example:

Ray:
$$x = x_0 + t\Delta x$$
, $y = y_0 + t\Delta y$, $z = z_0 + t\Delta z$

Plane:
$$Ax + By + Cz + D = 0$$

$$A(x_0 + t\Delta x) + B(y_0 + t\Delta y) + C(z_0 + t\Delta z) + D = 0,$$

$$t(A\Delta x + B\Delta y + C\Delta z) + (Ax_0 + By_0 + Cz_0 + D) = 0,$$

$$t = -\frac{(Ax_0 + By_0 + Cz_0 + D)}{(A\Delta x + B\Delta y + C\Delta z)}.$$

If the denominator is 0, the ray and the plane are parallel

Example:

$$t = -\frac{Ax_0 + By_0 + Cz_0 + D}{A\Delta x + B\Delta y + C\Delta z}$$

If the denominator is 0, the ray and the plane are parallel

Ray

Testing whether the intersection lies within the polygon is done with an orthographic projection and 2D tests

Efficiency considerations:

- Ray tracing is slow because it intersects every ray with every object
- To make ray tracing faster we can use coherence:

Image coherence - neighboring pixel,

same object,

...

Spatial coherence - neighboring points,

Problem:

- Cartman is composed by 100000 polygons
- Ray tracing computes 100000 ray-polygon intersections
- Even when the ray misses Cartman

Solution:

- Place a sphere around
 Cartman
- If ray misses sphere then the ray misses Cartman

 Efficiency considerations: optimizing intersection calculations by bounding objects with parametrized slabs

 Efficiency considerations: avoiding intersection calculations with bounding volumes hierarchies

 Efficiency considerations: avoiding intersection calculation with spatial partitioning

- 3-D array of cells
- Each cell contains list of all objects it intersects
- Ray intersected with all objects in a given cell's list
- Cells visited in Bresenham order

 Efficiency considerations: avoiding intersection calculation with spatial partitioning

Must be careful when excluding objects, since an object may intersect in a different voxel than the current one

Useful to compute Boolean Set Operations

that can be used in Constructive Solid Geometry:

 $L \cap R$:

- Difference LUR:

 Extends the basic Ray Tracing algorithm to handle shadows, reflection and refraction

Shadows: fire an additional ray from the

intersection to the light source.

If this shadow ray intersects any object along the way, then the point is in shadow

Ray Tracing

• Reflection and Refraction: secondary reflection and refraction rays are fired at

intersections. In turn, these rays may spawn shadow, reflection and refraction rays

N: Surface normal

L: Shadow ray

• R: Reflected ray

• T: Transmitted ray

Ray Tracing

The rays form a ray tree

• Example:

• Example: Depth of Field with a camera model

• Example: Motion Blur

Ray Tracing

Software

Ray tracer:

Persistence Of Vision POV-Ray http://www.povray.org/

Wireframe modeller for POV-Ray:

MoRay

http://www.stmuc.com/moray/