Metrics optimization

Lesson overview

In this video:

- Metrics:
 - Why there are so many
 - Why should we care about them in competitions

Lesson overview

In this video:

- Metrics:
 - Why there are so many
 - Why should we care about them in competitions

In the following videos:

- Loss versus metric
- Review the most important metrics
 - For classification and regression tasks
 - Discuss baseline solutions for their optimization
- Optimization techniques for the metrics

Metrics

Use satellite data to track the human footprint in the Amazon rainforest

\$60,000 Prize Money

Planet · 631 teams · 22 days to go (15 days to go until merger deadline)

Overview

Data

P Featured Prediction Competition

Kernels

Discussion

Leaderboard More

Submit Predictions

Overview

Description

Evaluation

Prizes

Timeline

Submissions will be evaluated based on their mean (F_{2}) score. The F score, commonly used in information retrieval, measures accuracy using the precision p and recall r. Precision is the ratio of true positives (tp) to all predicted positives (tp + fp). Recall is the ratio of true positives to all actual positives (tp + fn). The (F_{2}) score is given by

$$(1+eta^2)rac{pr}{eta^2p+r} \;\; ext{where} \;\; p=rac{tp}{tp+fp}, \;\; r=rac{tp}{tp+fn}, \; eta=2.$$

Note that the (F_{2}) score weights recall higher than precision. The mean (F_{2}) score is formed by averaging the individual (F_{2}) scores for each row in the test set.

Submission File

For each image listed in the test set, predict a space-delimited list of tags which you believe are associated with the image. There are 17 possible tags: agriculture, artisinal_mine, bare_ground, blooming, blow_down, clear, cloudy, conventional_mine, cultivation, habitation, haze, partly_cloudy, primary, road, selective_logging, slash_burn, water. The file should contain a header and have the following format:

image_name,tags
test_0,agriculture road water
test_1,primary clear
test_2,haze primary
etc.

Chosen metric determines optimal decision boundary

Take-away point

If your model is scored with some metric, you get best results by optimizing exactly that metric

$$Loss(\hat{y}_i; y_i) = \begin{cases} |y_i - \hat{y}_i|, & \text{if trend predicted correctly} \\ (y_i - \hat{y}_i)^2, & \text{if trend predicted incorrectly} \end{cases}$$

$$Loss(\hat{y}_i; y_i) = \begin{cases} |y_i - \hat{y}_i|, & \text{if trend predicted correctly} \\ (y_i - \hat{y}_i)^2, & \text{if trend predicted incorrectly} \end{cases}$$

Predict trend instead of the values:

Predict
$$y_{last} + 10^{-6}$$
 or $y_{last} - 10^{-6}$

Conclusion

- Why there are so many metrics?
 - Different metrics for different problems
- Why should we care about metric in competitions?
 - It is how the competitors are ranked!