平成XX年度修士論文

タイトル

お茶の水女子大学 大学院 人間文化創成科学研究科 理学専攻 学籍番号○○○○○ 名前

指導教員 戸次大介 准教授

要旨

キーワード:

Abstract

Keywords:

目 次

第1章	序論	1
第2章	関連研究	2
第 3 章	try-with 構文のステップ実行	3
3.1	はじめに	3
3.2	対象言語とインタプリタの定義	3
3.3	ステッパの実装	5
3.4	おわりに	10
第4章	4	12
4.1	ステッパの実装方法とコンテキスト	12
4.2	algebraic effects とインタプリタの定義	13
	4.2.1 algebraic effects	13
	4.2.2 構文の定義	15
	4.2.3 CPS インタプリタによる意味論	15
4.3	インタプリタの変換	19
	4.3.1 非関数化	19
	4.3.2 CPS 変換	21
	4.3.3 非関数化	21
	4.3.4 出力	23
	4.3.5 CPS インタプリタに基づいたステッパ	23
4.4	他の言語への対応	24
	4.4.1 型無しλ計算	26
	4.4.2 try-with	26
	4.4.3 shift/reset	26
	4.4.4 Multicore OCaml	26
4.5	キレ め	26

第5章	5	2 8
5.1	ステッパの動作	28
	5.1.1 DrRacket のステッパ	28
	5.1.2 incremental でない OCaml ステッパ	28
	5.1.3 提案するステッパ	28
5.2	OCaml ${\mathcal O}$ attribute	29
	5.2.1 式の attribute	29
	5.2.2 プログラムの attribute	30
5.3	生じる問題と解決方法	31
	5.3.1 情報の消失	31
	5.3.2 表示の崩れ	32
5.4	λ 計算に対する実装	33
	5.4.1 incremental でないステッパ	34
	5.4.2 incremental なステッパ	35
	5.4.3 実際のステッパ	38
	5.4.4 ツールの実装	38
5.5	予想される問題点	39
	5.5.1 文字数の爆発	39
	5.5.2 実行時間	39
	5.5.3 関数適用評価スキップ後の前ステップ出力	39
5.6	まとめと今後の課題	40
第6章	結論	45
付録A	実験でもちいたデータ	48
付録B	インタプリタの変換過程	49
付録C	学生の実行ログから得られたデータ	52

図目次

3.1	Syntax	3
3.2	Big-step interpreter	4
3.3	コンテキストと再構成関数 (試作版)	6
3.4	コンテキストと再構成関数 (最終版)	7
3.5	ステッパ関数	9
3.6	関数 memo とメイン関数	10
4.1	型無しλ計算とそのインタプリタ	13
4.2	型無し λ 計算に対するステッパ	14
4.3	対象言語の構文	16
4.4	対象言語の定義	17
4.5	継続渡し形式で書かれたインタプリタ	18
4.6	非関数化後の継続の型	20
4.7	CPS インタプリタを非関数化したプログラム	20
4.8	2回目の非関数化後の継続の型	21
4.9	変換の後、出力関数を足して得られるステッパ	22
4.10	継続を外側に拡張する関数	23
4.11	継続の情報を保持するための言語やコンテキストの定義	24
4.12	変換の結果得られた、CPS インタプリタを基にしたステッパ	25
5.1	attribute を含む構文木の例	29
5.2	ハイライトのための attribute の利用	30
5.3	対象言語の定義	34
5.4	既存のステッパの実装	41
5.5	ステップ出力関数	42
5.6	実行の種類とステップ番号の定義	42
5.7	incremental なステッパのための出力関数	43
5.8	incremental なステッパ	44
5.9	ステッパのスキップ機能	44

B.1	CPS インタプリタを非関数化して CPS 変換したプログラム	50
B.2	CPS インタプリタを非関数化して CPS 変換して非関数化したプログラム	51

表目次

C.1	Number of uses of the stepper (step.) among all the executions (all) in 2017	
	and 2018. The columns try, mod., print, and ref represent number of uses of	
	the stepper for programs that contain exception handling, modules, printing (and	
	sequential execution), and references (including arrays), respectively. The right-	
	most column shows representative topics handled in the week	52
C.2	Result of one-sided t-test with p-values comparing the time between the beginning	
	of the class and the moment that students submitted a correct solution. The	
	column +/- shows whether the average time increased or decreased. The p-values	
	below 0.05 are colored	53

第1章 序論

- 1. 入力されたプログラムを構文解析して構文木を得る。
- 2. ステッパ関数に構文木を渡して、ステップを出力しながら入力プログラムを実行する。
- 3. 出力文字列をユーザの操作に従って1つずつ表示する。

この章では、どのような研究背景があり、そのためにどのような研究の動機が生じ、自分の研究の目的が何であるかを明確にする.

科学技術論文の場合は、句読点は「、、」「。」ではなく、「,、」「.」を使う.

卒論はしっかり書きましょう。就職する人は学生生活最後の一番大きなレポートとなります。いつも言っていることですが、社会に出たら「成績」を評価されるのではなく「業績」を評価されます。学生時代の学業の評価をされるときに一番最初に聞かれるのは「卒論では何をやったの?」という質問です。卒業論文をしっかりと書いて後で人に見せられる状態にしておくのは後々必ず役に立ちます。

研究の動機と目的を記した後に、各章の章立てを説明する.

以下に本論文の構成を示す。第2章では,関連研究について述べる。第3章では,第4章で自分が行った研究を遂行するために必要となった理論などを説明する。第4章では,自分が提案する手法の説明をし,第5章で,シミュレーションや実験などによる具体的な結果を示すと共に研究成果に対する考察を述べる。最後に,第6章で,結論を述べる.

第2章 関連研究

自分が目的とした研究課題の動向や理論・手法などについて関連する先行研究について説明する.

第3章 try-with 構文のステップ実行

3.1 はじめに

この章では、try-with 構文を含む言語を対象としたステッパ関数を OCaml で実装する方法を示す。OCaml 自体も try-with 構文で例外処理を行うので、実際に我々が大学の授業において使っている OCaml ステッパは本章で説明する方法に基づいて実装されている。ここでは簡単のため型無し λ 計算と try-with 構文のみから成る言語を対象として説明する。

ステッパの実装は対象言語の通常のインタプリタ関数を拡張することによって行う。この章ではまず 3.2 節で言語とそのインタプリタを定義し、3.3 節でインタプリタを拡張してステッパを実装する。

3.2 対象言語とインタプリタの定義

型無し λ 計算と try-with から成る言語の OCaml による定義を図 3.1 に示す。そしてこの言語 に対する call-by-value かつ right-to-left のインタプリタは図 3.2 のように定義できる。例えば関 数適用 e1 e2 を実行するときには、まず引数部分 e2 を実行して、次に関数部分 e1 を実行する。 両方が値になったら β 簡約を行い、簡約後の式を実行する。引数 expr が変数 Var だった場合は エラー終了するように書かれているが、これは入力されたプログラム全体が実行可能な閉じた式 だった場合に関数 eval の引数に変数がくることはありえないからである。なぜありえないかと いうと、関数の本体の実行は必ず、引数を受け取って仮引数を実引数に置き換えた後に行うから である。

入力プログラムの例外処理は、インタプリタで実際に (OCaml の機能の) try と raise を使って実行する。具体的には、式 raise e を実行する場合、まず e を実行してその値 v を得る。そしてメタレベルの (OCaml の) 例外 Error v を起こす。

図 3.1: Syntax

```
(* 入力プログラムの例外の値を持った例が *)
exception Error of e_t
(* 式を実行する *)
(* eval : e_t -> e_t *)
let rec eval expr = match expr with
 | Var (x) -> failwith ("unbound variable: " ^ x) (* ここには来ない*)
  | Fun (x, e) \rightarrow Fun (x, e)
  | App (e1, e2) ->
   begin
     let v2 = eval e2 in
     let v1 = eval e1 in
     match v1 with
     | Fun (x, e) ->
       let e' = subst e x v2 in (* e[v2/x] *)
       let v = eval e' in
      | _ -> failwith "not a function"
    end
  | Try (e1, x, e2) ->
    begin
      try
       let v1 = eval e1 in
       v1
     with Error (v) ->
       let e2' = subst e2 x v in (* e2[v/x] *)
       eval e2'
    end
  | Raise (e) ->
    let v = eval e in
   raise (Error (v))
(* 実行を開始する *)
(* start : e_t -> e_t *)
let start e =
  try
    eval e
  with
   Error v -> Raise v
```

図 3.2: Big-step interpreter

式 try e1 with x -> e2 の e1 を実行している間に例外 Error v が発生した場合は、関数 eval は e1 の中の残りの計算を無視して、e2 の中の変数 x に値 v を代入した式 e2[v/x] の実行 に移る。このように、OCaml の try-with 構文を利用して OCaml の try-with 構文と同じような 動作を実現することができる。説明を簡単にするため、 try e1 with x -> e2 の e1 のことを以後 tryee と呼ぶ。これは、 try ハンドラによって「try されている」ということを意図している。 メイン関数である start が eval を呼び出すとき、その呼び出しは try-with で囲まれている。

Error v -> raise v とあるように、対応する try 節が無い raise e の実行結果は、e の実行結果を v として raise v とする。例えば、2+3+ (raise 4) + 5 の実行結果は raise 4 である。

3.3 ステッパの実装

ステッパは各簡約ステップでのプログラムの全体を表示する必要がある。例えば単純な算術式 (1 + 2 * 3) + 4 をステップ実行するとき、我々が期待するステップ列は以下である。

$$(1+2*3)+4$$
 $\rightarrow (1+6)+4$
 $\rightarrow 7+4$
 $\rightarrow 11$

しかし、図 3.2 のプログラムに出力機能を加えても、直ちにこのようなステップ出力は得られない。関数 eval が部分式 2*3 を実行している時のことを考えてみよう。式を出力する関数を用意すれば実行中の部分式 2*3 は表示できるが、プログラム全体を再構成するには情報が足りていない。ここで欠けているのは 2*3 を囲んでいる コンテキスト すなわち (1+[.])+4 である。(コンテキストの穴を[.] と表記する。) したがって、ステッパを実装するためには、それまでの評価文脈を追い続ける必要がある。

図 3.3 で、frame_t 型の代数的データとしてコンテキストフレームを定義している。各フレームがなんらかの部分式の実行を表しており、例えば CAppR (e1) は、関数部分が e1 である関数適用の引数部分を実行していることを表す。評価文脈はこのフレームのリストで定義される。(後ほど触れるが、このコンテキスト定義は例外処理を含む言語には使えない。■■)

そして、式 expr をコンテキストフレーム列 ctxt で囲んでプログラムを再構成する関数 plug も定義する。

Now、 \blacksquare 関数 eval がコンテキストを表す追加の引数を受け取るようにすれば、算術式 eval のステップ表示ができるようになるはずである。例えば、部分式 2*3 を実行している時、その新しい引数の値は [(1+[.]);([.]+4)] であり、これを関数 plug に渡せばプログラム全体を得ることができる。

```
(* コンテキストフレーム *)
type frame_t =
            | CAppR of e_t
                                   (* e [.] *)
                                   (* [.] v *)
            | CAppL of e_t
            | CTry of string * e_t (* try [.] with x -> e *)
            | CRaise
                                    (* raise [.] *)
(* コンテキスト *)
type c_t = frame_t list
(* 式全体を再構成する *)
(* plug : e_t -> c_t -> e_t *)
let rec plug expr ctxt = match ctxt with
  | [] -> expr
  | CAppR (e1) :: rest -> plug (App (e1, expr)) rest
 | CAppL (e2) :: rest -> plug (App (expr, e2)) rest
  | CTry (x, e2) :: rest -> plug (Try (expr, x, e2)) rest
  | CRaise :: rest -> plug (Raise expr) rest
```

図 3.3: コンテキストと再構成関数 (試作版)

最終的に得られるステッパ \blacksquare は、式を control string \blacksquare 、評価文脈を継続とみなすと、本質的に CK 機械 [2] であるといえる。代入は β 簡約の実装のために用いられている。big-step インタプリタと small-step インタプリタの実行の対応を維持するため、抽象機械を直接実装するの suruno ではなく big-step インタプリタを拡張することで実装した。big-step インタプリタを基にすることで、ユーザが指定した関数適用をスキップすることができる (?? 節で触れる)。

しかし、この実装は例外処理について正しく機能しない。

例えば、 try (2 + 3 * (raise 4) + 5) with x -> x について考える。この式をステップ 実行する時、我々が期待するステップは以下である。

```
(* Step 0 *) try (2 + (3 * (raise 4)) + 5) with x -> x
(* Step 1 *) try (raise 4) with x -> x
(* Step 1 *) try (raise 4) with x -> x
(* Step 2 *) 4
```

最初の簡約はステッパ関数に raise 4 が渡されたときに起こる。しかし、最初のステップでハイライトされている式はそれよりも大きい式 (2+3*(raise 4)+5) である。これは raise による 間筒約が tryee の内部のコンテキストを捨てるからである。コンレキストフレームは 1 つのリストに入っているので、この時点での関数 eval の第2引数は [(3*[.]);(2+[.]);([.]+5);(try[.]with x->x)] であり、すなわち tryee の外側のコンテキストを含んでいる。例外処理を扱う場合には、tryee の内側と外側のコンテキストを区別する必要があるということで

```
(* コンテキストフレーム *)
type frame_t =
                             (* e [.] *)
            | CAppR of e_t
            | CAppL of e_t
                                 (* [.] v *)
                                  (* raise [.] *)
            | CRaise
(* try フレーム *)
type ctry_t =
           | CHole
                                         (* [.] *)
           | CTry of string * e_t * c_t (* try [.] with x -> e_t*)
(* コンテキスト *)
and c_t = frame_t list * ctry_t
(* tryee を再構成する *)
(* plug_in_try : e_t -> frame_t list -> e_t *)
let rec plug_in_try expr ctxt = match ctxt with
  | [] -> expr
  | first :: rest -> match first with
    | CAppR (e1) -> plug_in_try (App (e1, expr)) rest
    | CAppL (e2) -> plug_in_try (App (expr, e2)) rest
    | CRaise -> plug_in_try (Raise (expr)) rest
(* プログラム全体を再構成する *)
(* plug : e_t -> c_t -> e_t *)
let rec plug expr (clist, tries) =
 let tryee = plug_in_try expr clist in
 match tries with
  | CHole -> tryee
  | CTry (x, e2, outer) -> plug (Try (tryee, x, e2)) outer
```

図 3.4: コンテキストと再構成関数 (最終版)

ある。¹

図 3.4 に、改良したコンテキスト定義を示す。新しい frame_t 型の定義は、CTry を含まないようになっている。これらのフレームは、try-with 構文を使うプログラムを実行するときに tryee の内部の限定されたコンテキストを構成するために使う。次に、別の型 ctry_t が定義されており、これはメタコンテキストを表す型である。そしてコンテキストは tryee 内部に限定されたコンテキストとメタコンテキストの 2 つ組として定義される。例として、以下のプログラムの中のraise 4 を実行しているとき、

0 + (try 1 + 2 * (try (3 + raise 4) - 5 with x -> x + 6) with y -> y)

現在のコンテキストは以下のようになっている。

¹例外処理をサポートするだけならばこの■■必要はない。コンテキストフレームのリストを単純に検索すれば最も内側のハンドラを見つけることができるからである。しかし、それには評価文脈を線形探索する必要がある。さらに、shift/reset のようなより一般的な制御オペレータ■■を実装する場合にはこの区別が必要になる。

```
([(3 + [.]); ([.] - 5)],

CTry ("x", x + 6,

([2 * [.]; 1 + [.]],

CTry ("y", y,

([0 + [.]], CHole)))))
```

このようにコンテキスト定義を改良すると、まず frame_t 型のコンテキストを使って tryee 式を再構成し、その後 ctry_t 型のコンテキストを使ってプログラム全体を作ることができる。上の例でいうと、ステッパはまず (3 + raise 4) - 5 を再構成してハイライトしてから、プログラム全体を再構成している。

コンテキストフレームが蓄積されていく様子を具体的に紹介するため、例外処理を含んだ式の 実行で関数 eval がどのような順で再帰呼び出しされるかを以下に示す。

```
eval (2 * (try 3 + (raise 4) - 5 with x -> x + 6)) ([], CHole)

eval (try 3 + (raise 4) - 5 with x -> x + 6) ([2 * [.]], CHole)

eval (3 + (raise 4) - 5) ([], CTry ("x", x + 6, ([2 * [.]], CHole)))

eval 5 ([3 + (raise 4) - [.]], CTry ("x", x + 6, ([2 * [.]], CHole)))

eval (3 + (raise 4)) ([[.] - 5], CTry ("x", x + 6, ([2 * [.]], CHole)))

eval (raise 4) ([3 + [.]; [.] - 5], CTry ("x", x + 6, ([2 * [.]], CHole)))

eval 4 ([raise [.]; 3 + [.]; [.] - 5], CTry ("x", x + 6, ([2 * [.]], CHole)))

eval (4 + 6) ([2 * [.]], CHole)
```

最後のステップにおいて、tryee の内部のコンテキストすなわち 3 + (raise [.]) - 5 が捨てられている。

以上を踏まえ、ステッパ関数を図 3.5 に示す。この関数は通常の big-step インタプリタを以下の 2 点において拡張したものである (図中の灰色の部分)。(i) コンテキストを表す引数を受け取るようにする。(ii) 簡約が行われる全ての箇所で現在のプログラムを出力する。

まず関数適用 e1 e2 のケースの動作を見ると、以下のようになっている。通常のインタプリタと同じように、最初に e2 を実行してその後に e1 を実行する。e1 の実行結果が関数であれば、関数適用式は β 簡約基になっている。通常のインタプリタでは、そこで代入 subst e x v2 をしてその結果を実行する。それに対しステッパでは、図 5.5 で定義された関数 memo の呼び出しが追加されている。この関数は 3 つの引数を受け取る。見つかった簡約基と、その簡約結果と、現時点のコンテキストである。関数 memo はこれらの引数を受け取ったら、関数 plug と print_expを使って簡約前と後のプログラムをそれぞれ再構成して出力する。 2 。プログラムを出力したら、普通の実行を再開する。

²実際の実装においては、簡約基と簡約後の式の注釈をつけるのに OCaml の *attributes* という機能を利用している。ここでは green expr1 は expr1[@stepper.redex] と出力される式を表し、purple についても同様である。ステップを表示する際に、 Emacs Lisp のプログラムがその情報から適切に式をハイライトする。

```
(* ステッパ関数 *)
(* eval : e_t -> c_t -> e_t *)
let rec eval expr ctxt = match expr with (* コンテキストのための引数を増やす *)
 | Var (x) -> failwith ("unbound variable: " ^ x)
 | Lam (x, e) \rightarrow Lam (x, e)
 | App (e1, e2) ->
   begin
     let v2 = eval e2 (add ctxt (CAppR e1)) in
                                                 (* コンテキスト情報を足す *)
     let v1 = eval e1 (add ctxt (CAppL v2)) in
                                                 (* コンテキスト情報を足す *)
     match v1 with
     | Lam (x, e) ->
       let e' = subst e x v2 in
       memo (App (v1, v2)) e' ctxt;
                                                                 (* 出力 *)
       let v = eval e' ctxt in
                                                 (* コンテキスト情報を足す *)
     | _ -> failwith "not a function"
   end
  | Try (e1, x, e2) \rightarrow
   begin
     try
       let v1 = eval e1 (add_try ctxt x e2) in (* コンテキスト情報を足す *)
                                                                 (* 出力 *)
       memo (Try (v1, x, e2)) v1 ctxt;
       v1
     with Error (v) ->
       let e2' = subst e2 x v in
       memo (Try (Raise v, x, e2)) e2' ctxt;
                                                                 (* 出力 *)
       eval e2' ctxt
                                                  (* コンテキスト情報を足す *)
   end
  | Raise (e0) ->
                                                 (* コンテキスト情報を足す *)
   let v = eval e0 (add ctxt CRaise) in
    begin match ctxt with
       | ([], _) -> ()
       | (clist, tries) ->
                                                                 (* 出力 *)
         memo (plug_in_try (Raise v) clist)
              (Raise v)
              ([], tries)
    end;
   raise (Error (v))
```

図 3.5: ステッパ関数

```
(* 簡約前の式と簡約後の式とコンテキストを受け取ってステップを出力する *)
(* memo : e_t -> e_t -> c_t -> unit *)
let memo expr1 expr2 ctxt =
    print_exp (plug (green expr1) ctxt);
    print_exp (plug (purple expr2) ctxt)

(* ステップ実行を始める *)
(* start : e_t -> e_t *)
let start e =
    try
    eval e ([], CHole) (* 空のコンテキスト *)
with
    Error (v) -> (Raise v)
```

図 3.6: 関数 memo とメイン関数

関数 eval では、これ以外にあと 3 箇所で関数 memo が呼び出されている。それらはそれぞれ 以下の簡約規則を表している。

- try v with x -> e \sim v
- try raise v with x -> e2 \rightsquigarrow subst e2 x v
- ... (raise v) ... \sim raise v

2 つ目の簡約は必ず 3 つ目の簡約の直後に起こるが、それにもかかわらずこれらを別の規則として扱っていることに注目してほしい。その理由は、次のような対応する try 節が無い raise 式を簡約するのに 3 つ目の規則が必要だからである。また、これらの規則を別にしておくのは教育上の意義もある。それは、例外処理が「コンテキストを捨てること」と「例外の値を代入すること」の 2 つの動作で成り立っていることが明確にステップに表れることである。

3.4 おわりに

この章では、例外処理の構文 try-with に対応したステッパを、インタプリタを拡張することによって実装する方法を示した。

まず、 try-with 構文に対する通常の big-step インタプリタは実際の OCaml の try-with を用いて実装することができた。

ステッパへの拡張においては、各ステップでのプログラム全体を表示するために、実行中の部分式のコンテキストの情報が必要である。例外発生によって一度に捨てられる範囲のコンテキスト、すなわち try 節の内側のコンテキストフレームのリストをひとまとめにして、そのリストのような構造としてコンテキストを定義した。それをインタプリタの再帰の構造にしたがって要素

を足しながら引数に渡すようにすると実行中の部分式のコンテキストの情報が得られるようになり、プログラム全体が出力できるステッパが得られた。

第4章 4

4.1 ステッパの実装方法とコンテキスト

ステッパは small-step による実行と同じなので、small-step のインタプリタを書けば実装できる。実際、Whitington & Ridge [7] は small-step のインタプリタを書くことで OCaml に対するステッパを実装している。しかし、small-step のインタプリタをメンテナンスするのは簡単ではない。また、ステップ実行中に関数呼び出し単位でスキップする機能をつけようと思うとインタプリタは big-step で書かれていた方が都合が良い。そこで、我々の過去の研究 [3] では、big-stepのインタプリタを元にしてステッパを作成している。ここでも、そのアプローチをとる。

図 5.3 に OCaml による型無し λ 計算の定義と代入ベースの big-step インタプリタの実装を示す。関数 subst : e -> (string * v) list -> e は代入関数であり、subst e [(x, v)] は式 e の中の全ての変数 x を値 v に置換した式を返す。

このインタプリタをステッパにするには、簡約をする際に簡約前後のプログラムを出力する機能を追加すればよい。しかしステッパが出力したいのは実行中の部分式ではなく式全体であり、コンテキストを含めた式全体を出力するためには、実行中の式の構文木の他にコンテキストの情報が必要である。

コンテキストの情報を得るために、Clements ら [1] は Racket の continuation mark を使用してコンテキストフレームの情報を記録することでステッパを実装した。本研究ではそのような特殊な機能は使わずに、インタプリタ関数に明示的にコンテキスト情報のための引数を追加する。図 5.3 のインタプリタにその変更を施すと、図 4.2 のようになる。ここで、関数 memo : $e \rightarrow e \rightarrow c \rightarrow unit$ は、簡約前の式、簡約後の式、コンテキスト情報の 3 つを引数にとり、コンテキスト情報を利用して簡約前後の式全体をそれぞれ出力するものである。

図 4.2 のように、コンテキストを表すデータ型を定義して再帰呼び出し時の構造に合わせて引数として渡すようにすれば、式全体を再構成して出力することが可能になる。ここで、コンテキストを表すデータ型は、評価文脈そのものになっていることに気がつく。評価文脈のデータ型は、big-step のインタプリタを CPS 変換し、非関数化すると機械的に得られることが知られている。これは、我々が手動で定義したコンテキストのデータは、機械的に導出できることを示唆している。

λ計算に対するステッパであれば、手動でコンテキストの型を定義するのは簡単だが、言語が複雑になってくると必ずしもこれは自明ではない。実際、以前の研究 [3] で try-with 構文を含む言語のステッパを実装したときには、コンテキストを try-with 構文で区切る必要があったため、コ

```
(* 値 *)
type v = Var of string (* x *)
      | Fun of string * e (* fun x \rightarrow e *)
(* 式 *)
and e = Val of v (* 値 *)
      | App of e * e (* e e *)
(* インタプリタ *)
let rec eval (exp : e) : v = match exp with
  | Val (v) → v (* 値ならそのまま返す *)
  | App (e1, e2) ->
   let v2 = eval e2 in (* 引数部分を実行 *)
   let v1 = eval e1 in (* 関数部分を実行 *)
   let reduct = match v1 with
     | Fun (x, e) -> subst e [(x, v2)] (* 代入 e[v2/x] *)
     | _ -> failwith "type error" in (* 関数部分が関数でなければ型エラー *)
   eval reduct (* 代入後の式を実行 *)
```

図 4.1: 型無しλ計算とそのインタプリタ

ンテキストの構造が一次元的でなく、リストのリストになった。algebraic effects などが入った場合、どのようなコンテキストを使えば良いのかはまた別途、考慮する必要がある。このような場合、機械的にコンテキストの定義を導出できることにはメリットがある。次節以降ではそのような方針で algebraic effects に対するステッパを導出する。

4.2 algebraic effects とインタプリタの定義

この節では、algebraic effects を導入した後、型無し λ 計算と algebraic effects からなる言語を示し、そのインタプリタを定義する。

4.2.1 algebraic effects

algebraic effects は、例外や状態などの副作用を表現するための一般的な枠組で、副作用を起こす部分(オペレーション呼び出し)と処理する部分(ハンドラ)からなる [6]。特徴は、副作用の意味がそれを処理するハンドラ部分で決まるところである。例えば、以下のプログラムを考える。

```
with {return x -> x;

op(x; k) -> k (x + 1)}
```

```
(* コンテキスト *)
                (* [.] *)
type c = CId
      | CApp2 of e * c (* [e [.]] *)
      | CApp1 of v * c (* [[.] v] *)
(* 出力しながら再帰的に実行 *)
let rec eval (exp : e) (c : c) : v = match exp with
  | Val (v) -> v
  | App (e1, e2) ->
   let v2 = eval e2 (CApp2 (e1, c)) in (* コンテキストを1層深くする *)
   let v1 = eval e1 (CApp1 (v2, c)) in (* コンテキストを1層深くする *)
   let redex = App (Val v1, Val v2) in
   let reduct = match v1 with
     | Fun (x, e) -> subst e [(x, v2)]
     | _ -> failwith "type error" in
   memo redex reduct c; (* コンテキストを利用して式全体を出力 *)
   eval reduct c
(* 実行を始める *)
let stepper (exp : e) = eval exp CId
```

図 4.2: 型無しλ計算に対するステッパ

handle 10 + op(3)

with h handle e は、h というハンドラのもとで式 e を実行するという意味である。e の部分を見ると 10 + op(3) とあるので加算を行おうとするが、そこで op(3) というオペレーション呼び出しが起こる。オペレーション呼び出しというのは副作用を起こす命令で、直感的にはここで例外 op を引数 3 で起こすのに近い。使えるオペレーションはあらかじめ宣言するのが普通だが、本論文では使用するオペレーションは全て定義されていると仮定する。

オペレーション呼び出しが起こると、プログラムの制御はハンドラ部分に移る。ハンドラは正常終了を処理する部分 return $x \to \dots$ とオペレーション呼び出しを処理する部分に分かれている。正常終了する部分は with h handle e の e 部分の実行が終了した場合に実行され、x に実行結果が入る。上の例なら、その x がそのまま返されて、これがプログラム全体の結果となる。

一方、e の実行中にオペレーション呼び出しがあった場合は、オペレーション呼び出しの処理が行われる。まず、呼び出されたオペレーションが処理するオペレーションと同じものかがチェックされる。異なる場合は、そのオペレーションはここでは処理されず、さらに外側の with handle 文で処理されることになる。(最後まで処理されなかったら、未処理のオペレーションが報告されてプログラムは終了する。)一方、ここで処理すべきオペレーションと分かった場合には、矢印の右側の処理に移る。ここで、x の部分にはオペレーションの引数が入り、k の部分には「オペレーション呼び出しから、この with handle 文までの限定継続」が入る。k に限定継続が入るところが例外とは異なる部分である。上の例では、矢印の右側が k (x + 1) となっているので、x の値である x の x

algebraic effects の特徴は、オペレーション呼び出しの意味がハンドラで決まる部分にある。 op(3) とした時点ではこの処理の内容は未定だが、ハンドラ部分に k(x+1) と書かれているため、結果として op は 1 を加えるような作用だったことになる。

4.2.2 構文の定義

型無し λ 計算と algebraic effects からなる対象言語を図 4.3 の e と定義する。h のオペレーション節に出てくる op たちは互いに全て異ならくてはいけない。

4.2.3 CPS インタプリタによる意味論

この節では、algebraic effects を含む言語に対する意味論を与える。オペレーション呼び出しにより非局所的に制御が移るので、意味論は CPS インタプリタを定義することで与える。対象言語の OCaml による定義を図 4.4 に示す。ここで k は各ハンドラ内部の限定継続を表す。また、k は handle 節内の式の実行が正常終了したのかオペレーション呼び出しだったのかを示す型である。

```
(値)
v :=
                                      変数
                                      関数
   | fun x -> e
                                      (式)
e :=
                                      値
                                      関数適用
   l e e
                                      オペレーション呼び出し
   | op e
                                      ハンドル
   | with h handle e
                                      (ハンドラ)
h :=
                                      return 節
     \{ return x -> e ; 
      op(x; k) -> e; ...; op(x; k) -> e} オペレーション節(0個以上)
```

図 4.3: 対象言語の構文

このインタプリタは、handle 節内の実行については普通の CPS になっており、継続である k は「直近のハンドラまでの継続」である。関数 eval の下から 2 行目で with handle 文を実行する際、再帰呼び出しの継続として (fun x -> Return x) を渡していて、これによって handle 節の実行に入るたびに渡す継続を初期化している。

handle 節内を実行した結果を表すのが a 型である。handle 節内の実行は、オペレーション呼び出しが行われない限りは通常の CPS インタプリタによって進むが、オペレーション呼び出しが行われた場合(eval の下から 4 行目)は引数 e を実行後、結果を継続 k に渡すことなく OpCall を返している。これが handle 節の結果となり、eval の最下行で apply_handler に渡される。一方、handle 節内の実行が正常終了した場合は、初期継続 (fun x -> Return x) に結果が返り、それが apply_handler に渡される。

ここで、オペレーション呼び出しで返される OpCall の第 3 引数が k ではなく $fun\ v \rightarrow k\ v$ のように η -expand されているのに注意しよう。このようにしているのは、k が「直近のハンドラまでの継続」を表しているのに対し、OpCall の第 3 引数はより広い継続を指すことがあり両者を区別したいためである。これについては、次節で非関数化を施す際に詳しく述べる。

apply_handler は、そのときの継続 k、処理すべきハンドラ h、そして handle 節内の実行結果 a を受け取ってハンドラの処理をする。関数 apply_handler の動作は handle 節の実行結果 とハンドラの内容によって 3 種類ある。

第4章 4

```
(* 値 *)
type v = Var of string (* x *)
      | Fun of string * e (* fun x \rightarrow e *)
      | Cont of (k -> k) (* 継続 fun x => ... *)
(* ハンドラ *)
and h = {return : string * e;
                                                     (* {return x -> e; *)
        ops : (string * string * e) list} (* op(x; k) \rightarrow e; ...} *)
(* 式 *)
and e = Val of v
                         (* v *)
                         (* e e *)
     | App of e * e
     | Op of string * e (* op e *)
     | With of h * e
                       (* with h handle e *)
(* handle 内の継続 *)
and k = v \rightarrow a
(* handle 内の実行結果 *)
```

図 4.4: 対象言語の定義

| OpCall of string * v * k (* オペレーションが呼び出された *)

(* 値になった *)

and a = Return of v

- 1. handle 節が値 v になった場合:ハンドラの return 節 return x -> e を参照して、e[v/x] を実行
- 2. handle 節がオペレーション呼び出し OpCall (name, v, k') になった場合で、そのオペレーション name がハンドラ内で定義されていなかった場合:さらに外側の with handle 文に処理を移すため、handle 節内の限定継続 k'に、1つ外側の handle までの限定継続を合成した継続 fun v -> ...を作り、それを OpCall (name, v, (fun v -> ...)) と返す。この OpCall の第 3 引数は「直近のハンドラまでの継続」ではなく、より広い継続となっている。
- 3. handle 節がオペレーション呼び出し OpCall (name, v, k') になった場合で、そのオペレーション name がハンドラ内で定義されていた場合:そのハンドラの定義 name (x; y) -> e を参照し、e[v/x, cont_value/y] を実行する。(cont_value については、以下の説明を参照。)

オペレーション呼び出しを処理する際に k に束縛する限定継続 $cont_value$ は、「オペレーション呼び出し時の限定継続 k'」に「現在のハンドラ h」と「 $cont_value$ が呼び出された時の継続 k'」を合成したものである。

このようにして作られた限定継続が呼び出されるのは eval の App の Cont のケースである。 cont_value は、この継続が呼び出された時点での限定継続が必要なので、それを cont_value k

```
(* CPS インタプリタ *)
let rec eval (exp : e) (k : k) : a = match exp with
    | Val (v) -> k v (* 継続に値を渡す *)
    | App (e1, e2) ->
        eval e2 (fun v2 -> (* FApp2 に変換される関数 *)
             eval e1 (fun v1 -> match v1 with (* FApp1 に変換される関数 *)
                 | Fun (x, e) ->
                     let reduct = subst e [(x, v2)] in (*e[v2/x] *)
                     eval reduct k
                 | Cont (cont_value) -> (cont_value k) v2
                      (* 現在の継続と継続値が保持するメタ継続を合成して値を渡す *)
                 | _ -> failwith "type error"))
     | Op (name, e) ->
        eval e (fun v -> OpCall (name, v, fun v -> k v)) (* FOp に変換される関数 *)
    | With (h, e) ->
        let a = eval e (fun v -> Return v) in (* FId に変換される関数、空の継続 *)
        apply_handler k h a (* handle 節内の実行結果をハンドラで処理 *)
(* handle 節内の実行結果をハンドラで処理する関数 *)
and apply_handler (k : k) (h : h) (a : a) : a = match a with
     | Return v ->
                                                                                   (* handle 節内が値 v を返したとき *)
         (match h with {return = (x, e)} -> (* handler {return x -> e; ...} \begin{cases} \
             let reduct = subst e [(x, v)] in (*e[v/x] に簡約される *)
                                                                                   (* e[v/x] を実行 *)
             eval reduct k)
                                                                            (* オペレーション呼び出しがあったとき *)
     | OpCall (name, v, m) ->
         (match search_op name h with
             | None ->
                                                                            (* ハンドラで定義されていない場合、 *)
                 OpCall (name, v, (fun v -> (* OpCall の継続の後に現在の継続を合成 *)
                     let a' = m v in
                     apply_handler k h a'))
                                                                           (* ハンドラで定義されている場合、 *)
             | Some (x, y, e) \rightarrow
                 let cont_value =
                     Cont (fun k'', -> fun v -> (* 適用時にその後の継続を受け取って合成 *)
                         let a' = m v in
                         apply_handler k'' h a') in
                 let reduct = subst e [(x, v); (y, cont_value)] in
                 eval reduct k)
(* 初期継続を渡して実行を始める *)
let interpreter (e:e): a = eval e (fun v -> Return v) (* FId に変換される関
数 *)
```

第 4 章 4 19

のように渡してから値 v2 を渡している。

これまで、algebraic effects の意味論は small-step のもの [5,6] 以外には CPS で書かれた bigstep のもの [4] が提示されてきたが、この意味論はすでに部分式に名前が与えられている(A-正規形になっている)ことを仮定している上に、毎回、捕捉する継続を計算しているなど実装には必ずしも合ったものとは言えなかった。ここで示した CPS インタプリタは単純で、ハンドラの意味を的確に捉えており、algebraic effects の定義を与えるインタプリタ (definitional interpreter) と捉えて良いのではないかと考えている。

4.3 インタプリタの変換

本節では、4.2 節で定義したインタプリタ (図 4.5) に対して、正当性の保証された 2 種類のプログラム変換(非関数化と CPS 変換)をかけることで、コンテキストを明示的に保持するインタプリタを得て、そこからステッパを作成する方法を示す。

4.3.1 非関数化

4.1 節で示したインタプリタは直接形式だったので、コンテキスト情報を得るのに CPS 変換をかけてから非関数化をかけたが、4.2 節で示したインタプリタはオペレーション呼び出しをサポートするため最初から CPS で書かれている。したがって、ここではまず非関数化をかける。

非関数化というのは、高階関数を1階のデータ構造で表現する方法である。高階関数は全てその自由変数を引数に持つような1階のデータ構造となり、高階関数を呼び出していた部分は apply 関数の呼び出しとなる。この apply 関数は、高階関数が呼び出されていたら行ったであろう処理を行うように別途、定義されるものである。この変換は機械的に行うことができる。

具体的に図 $4.5\,$ のプログラムの継続 $\mathbf{k}\,$ 型の λ 式を非関数化するには次のようにする。結果は図 $4.6\,$ と図 $4.7\,$ のようになる。

- 1. 継続を表す λ 式をコンストラクタに置き換える。その際、 λ 式内の自由変数はコンストラクタの引数にする。その結果、得られるデータ構造は図 4.6 のようになる。図 4.5 の中には、コメントとしてどの関数がどのコンストラクタに置き換わったのかが書かれている。
- 2. 関数を表すコンストラクタと引数を受け取って中身を実行するような apply 関数を定義する。これは、図 4.7では apply_in と呼ばれている。
- 3. λ 式を呼び出す部分を、apply 関数にコンストラクタと引数を渡すように変更する。

非関数化した後の継続の型を見ると、ラムダ計算の通常の評価文脈に加えてオペレーション呼び出しの引数を実行するフレーム FOp が加わっていることがわかる。これが、ハンドラ内の実行のコンテキスト情報である。

```
(* handle 内の継続 *)
type k = FId
                          (* [.] *)
      | FApp2 of e * k
                        (* [e [.]] *)
      | FApp1 of v * k
                        (* [[.] v] *)
      | FOp of string * k (* [op [.]] *)
                         図 4.6: 非関数化後の継続の型
(* CPS インタプリタを非関数化した関数 *)
let rec eval (exp : e) (k : k) : a = match exp with
  | Val (v) -> apply_in k v (* 継続適用関数に継続と値を渡す *)
  | App (e1, e2) -> eval e2 (FApp2 (e1, k))
  | Op (name, e) -> eval e (FOp (name, k))
  | With (h, e) -> let a = eval e FId in (* 空の継続を渡す *)
   apply_handler k h a (* handle 節内の実行結果をハンドラで処理 *)
(* handle 節内の継続を適用する関数 *)
and apply_in (k : k) (v : v) : a = match k with
 | FId -> Return v (* 空の継続、そのまま値を返す *)
  | FApp2 (e1, k) \rightarrow let v2 = v in eval e1 (FApp1 (v2, k))
  | FApp1 (v2, k) \rightarrow let v1 = v in
   (match v1 with
     | Fun (x, e) ->
       let reduct = subst e [(x, v2)] in
       eval reduct k
     | Cont (cont_value) ->
       (cont_value k) v2
     | _ -> failwith "type error")
  | FOp (name, k) ->
   OpCall (name, v, (fun v -> apply_in k v)) (* Op 呼び出しの情報を返す *)
(* handle 節内の実行結果をハンドラで処理する関数 *)
and apply_handler (k : k) (h : h) (a : a) : a = ... (* 非関数化前と同じ *)
(* 初期継続を渡して実行を始める *)
let interpreter (e : e) : a = eval e FId
```

図 4.7: CPS インタプリタを非関数化したプログラム

図 4.8: 2回目の非関数化後の継続の型

ここで、OpCall の第3引数は非関数化されていないことに注意しよう。この部分はハンドラ内の継続とは限らないので、ここでは非関数化せずにもとのままとしている。ここを非関数化することも可能ではあるが、そうすると最終的に得られるコンテキスト情報がきれいなリストのリストの形にはならなくなってしまう。

ハンドラ内の評価文脈を表すデータ構造は非関数化により導くことができたが、図 4.7 のインタプリタはオペレーション呼び出しなどの実装で継続を非末尾の位置で使っており純粋な CPS 形式にはなっていないため、全体のコンテキストは得られていない。そのため、このコンテキストを使ってステッパを構成してもプログラム全体を再構成することはできない。プログラム全体のコンテキストを得るためには、このインタプリタに対してもう一度 CPS 変換と非関数化を施し、純粋な CPS 形式にする必要がある。

4.3.2 CPS 変換

図 4.7 では、末尾再帰でない再帰呼び出しの際に継続が初期化されてしまうせいでコンテキスト全体に対応する情報が継続に含まれていなかった。ここでは、全てのコンテキスト情報を明示化するため、さらに CPS 変換を施す。この変換によって現れる継続は a -> a 型である。この型 a -> a の名前を k2 とする。変換したプログラムは付録の図 B.1 に示す。

このプログラムは、図 4.7のプログラムを機械的に CPS 変換すれば得られるもので、OpCall の第3引数も CPS 変換される点にさえ注意すれば、特に説明を必要とする箇所はない。プログラム中には、次節で非関数化する部分にその旨、コメントが付してある。この変換により、すべての(serious な)関数呼び出しが末尾呼び出しとなり、コンテキスト情報はふたつの継続ですべて表現される。

4.3.3 非関数化

CPS 変換ですべてのコンテキスト情報がふたつの継続に集約された。ここでは、CPS 変換したことにより新たに現れた a -> a 型の関数を非関数化してデータ構造に変換する。非関数化によって型 k2 の定義は図 4.8 に、インタプリタは付録の図 B.2 に変換される。

この非関数化によって、引数 k と引数 k2 からコンテキスト全体の情報が得られるようになった。ここで、得られたコンテキストの情報を整理しておこう。k はハンドラ内のコンテキストを

```
(* handle 節内の継続を適用する関数 *)
and apply_in (k : k) (v : v) (k2 : k2) : a = match k with
  | FId -> apply_out k2 (Return v)
  | FApp2 (e1, k) \rightarrow let v2 = v in eval e1 (FApp1 (v2, k)) k2
  | FApp1 (v2, k) \rightarrow let v1 = v in (match v1 with
     | Fun (x, e) ->
       let redex = App (Val v1, Val v2) in (* (fun x \rightarrow e) v2 *)
       let reduct = subst e [(x, v2)] in
                                             (* e[v2/x] *)
       memo redex reduct (k, k2); eval reduct k k2
     | Cont (x, (k', k2'), cont_value) ->
       let redex = App (Val v1, Val v2) in (* (fun x \Rightarrow k2'[k'[x]]) v2 *)
       let reduct = plug_all (Val v2) (k', k2') in (* k2'[k'[v2]] *)
       memo redex reduct (k, k2); (cont_value k) v2 k2
     | _ -> failwith "type error")
  | FOp (name, k) ->
    apply_out k2 (OpCall (name, v, (k, GId),
                           (fun v \rightarrow fun k2' \rightarrow apply_in k v k2')))
(* handle 節内の実行結果をハンドラで処理する関数 *)
and apply_handler (k : k) (h : h) (a : a) (k2 : k2) : a = match a with
  | Return v ->
    (match h with {return = (x, e)} ->
      let redex = With (h, Val v) in (* with {return x -> e} handle v *)
      let reduct = subst e [(x, v)] in (*e[v/x] *)
      memo redex reduct (k, k2); eval reduct k k2)
  | OpCall (name, v, (k', k2'), m) -> (match search_op name h with
    | None ->
      apply_out k2 (OpCall (name, v, (k', compose_k2 k2' h (k, GId)),
        (fun v \rightarrow fun k2' \rightarrow m v (GHandle (h, k, k2')))))
    | Some (x, y, e) \rightarrow
      (* with \{name(x; y) \rightarrow e\} handle k2'[k'[name v]] *)
      let redex = With (h, plug_all (Op (name, Val v)) (k', k2')) in
      let cont_value =
        Cont (gen_var_name (), (k', compose_k2 k2' h (FId, GId)),
          (fun k'' -> fun v -> fun k2 -> m v (GHandle (h, k'', k2)))) in
      (* e[v/x, (fun n => with {name(x; y) -> e} handle k2'[k'[n]]) / y *)
      let reduct = subst e [(x, v); (y, cont_value)] in
      memo redex reduct (k, k2);
      eval reduct k k2)
```

図 4.9: 変換の後、出力関数を足して得られるステッパ

第 4 章 4 23

(* コンテキスト k2_in の外側にフレーム GHandle (h, k_out, k2_out) を付加する *) let rec compose_k2 (k2_in : k2) (h : h) ((k_out, k2_out) : k * k2) : k2 = match k2_in with

| GId -> GHandle (h, k_out, k2_out)

| GHandle (h', k', k2') -> GHandle (h', k', compose_k2 k2' h (k_out, k2_out))

図 4.10: 継続を外側に拡張する関数

示している。FId 以外はいずれの構成子も k を引数にとっているので、これは FId を空リストと とらえれば評価文脈のリストと考えることができる。k2 も同様に k と k が連なったリストと考えることができる。全体として「ハンドラに囲まれた評価文脈のリスト」のリストになっており、 直感に合ったハンドラによって区切られたコンテキストが得られていることがわかる。

得られたコンテキストはごく自然なものだが、ハンドラの入る位置などは必ずしも自明ではない。プログラム変換を使うことで、algebraic effects の入った体系に沿ったコンテキストのデータ型が機械的に得られたことには一定の価値があると考えられる。

4.3.4 出力

4.3.3 節までの変換によって、コンテキストの情報を引数に保持するインタプリタ関数を得ることができた。この情報を用いて簡約前後のプログラムを出力するようにするとステッパが得られる。具体的には、簡約が起こる部分でプログラム全体を再構成し表示するようにする。図 4.9 が表示を行う関数 memo を足した後の関数 apply_in と apply_handler である。(他の関数は簡約している部分が無いので図 B.2 と同じになる。)

ここで関数 memo : $e \rightarrow e \rightarrow (k * k2) \rightarrow unit は、簡約基とその簡約後の式と簡約時のコンテキストを受け取って、簡約前のプログラムと簡約後のプログラムをそれぞれ再構成して出力する。$

図 4.9 を見ると apply_in では普通の関数呼び出しと継続呼び出しが memo されている。また、apply_handler ではハンドラが正常終了した場合とオペレーション呼び出しが起きた場合にそれぞれ memo 関数が挿入されている。また、オペレーション呼び出しが処理されず外側の with handle 文に制御を移す際には、図 4.10 に示される関数を使ってコンテキストの結合を行なっている。

4.3.5 CPS インタプリタに基づいたステッパ

前節で algebraic effects を持つ言語に対するステッパを作ることができた。しかし、前節で作ったステッパではコンテキストの情報が非関数化されていた。また、CPS 変換されているためふたつの継続を扱っており、もともとの CPS インタプリタとは形がかなり異なったものとなってい

```
(* 値 *)
type v = \dots
      | Cont of string * (c * c2) * ((c * k) -> k) (* 継続 *)
(* handle 内の実行結果 *)
and a = Return of v
                                       (* 値になった *)
     | OpCall of string * v * (c * c2) * k (* オペレーションが呼び出された *)
(* handle 内のメタ継続 *)
and k = v \rightarrow c2 \rightarrow a
(* handle 内のコンテキスト *)
and c = FId
                       (* [.] *)
     | FOp of string * c (* [op [.]] *)
(* 全体のコンテキスト *)
and c2 = GId
      | GHandle of h * c * c2
```

図 4.11: 継続の情報を保持するための言語やコンテキストの定義

る。しかし、一度、前節までで必要なコンテキストの情報がどのようなものかが判明すると、それを直接、もとの CPS インタプリタに加えてステッパを作ることができる。

もとの CPS インタプリタの型定義に必要なコンテキストの情報を加えた定義が図 4.11 になる。ここで、c と c2 がそれぞれハンドラ内、全体のコンテキストの情報で、前節までの非関数化によって得られたものである。一方、k はもとからある高階の継続の型である。継続 k は、簡約ごとにプログラム全体を表示するので、必要なコンテキストの情報を新たに引数に取るようになっている。

このデータ定義を使って、もとの CPS インタプリタをステッパに変換したのが図 4.12 である。このインタプリタは、もとの CPS インタプリタにコンテキストの情報として引数 c と c2 を加え、簡約ごとにプログラムを再構成し、ステップ表示するようにしたものである。一度、必要なコンテキストの情報が特定されると、algebraic effects のように非自明な言語構文が入っていても、直接、ステッパを作ることができるようになる。

4.4 他の言語への対応

4.2 節で示した algebraic effects を含む言語の CPS インタプリタをステッパにするには、非関数化、CPS 変換、非関数化が必要だったが、他のいくつかの言語についても同様にインタプリタを変換することでステッパを導出することを試みた。それぞれの言語のステッパ導出について説明する。

```
(* CPS ステッパ *)
let rec eval (exp : e) ((c, k) : c * k) (c2 : c2) : a = match exp with
  | Val (v) -> k v c2
  | App (e1, e2) -> eval e2 (FApp2 (e1, c), (fun v2 c2 ->
    eval e1 (FApp1 (v2, c), (fun v1 c2 -> match v1 with
      | Fun (x, e) \rightarrow
        let redex = App (Val v1, Val v2) in (* (fun x \rightarrow e) v2 *)
        let reduct = subst e [(x, v2)] in (*e[v2/x] *)
        memo redex reduct (c, c2); eval reduct (c, k) c2
      | Cont (x, (c', c2'), cont_value) ->
        let redex = App (Val v1, Val v2) in (* (fun x \Rightarrow c2[c[x]]) v2 *)
        let reduct = plug_all (Val v2) (c', c2') in (* c2[c[v2]] *)
        memo redex reduct (c, c2); (cont_value (c, k)) v2 c2
      | _ -> failwith "type error")) c2)) c2
  | Op (name, e) \rightarrow eval e (FOp (name, c), (fun v c2 \rightarrow
    OpCall (name, v, (c, GId), (fun v c2' \rightarrow k v c2')))) c2
  | With (h, e) ->
    let a = eval e (FId, (fun v c2 -> Return v)) (GHandle (h, c, c2)) in
    apply_handler (c, k) h a c2
(* handle 節内の実行結果をハンドラで処理する関数 *)
and apply_handler ((c, k) : c * k) (h : h) (a : a) (c2 : c2) : a = match a with
  | Return v \rightarrow (match h with {return = (x, e)} ->
    let redex = With (h, Val v) in (* with {return x -> e} handle v *)
    let reduct = subst e [(x, v)] in (* e[v/x] *)
    memo redex reduct (c, c2); eval reduct (c, k) c2)
  | OpCall (name, v, (c', c2'), k') ->
    (match search_op name h with
      | None -> OpCall (name, v, (c', compose_c2 c2' h (c, GId)),
        (fun v' c2'' -> let a' = k' v' (GHandle (h, c, c2'')) in
          apply_handler (c, k) h a' c2''))
      | Some (x, y, e) \rightarrow
        (* with \{name(x; y) \rightarrow e\} handle c2'[c'[name v]] *)
        let redex = With (h, plug_all (Op (name, Val v)) (c', c2')) in
        let cont_value = Cont (gen_var_name (),
          (c', compose_c2 c2' h (FId, GId)), (fun (c'', k'') v' c2'' ->
            let a' = k' v' (GHandle (h, c'', c2'')) in
            apply_handler (c'', k'') h a' c2)) in
        (* e[v/x, (fun n => with {name(x; y) -> e} handle c2'[c'[y]])/y *)
        let reduct = subst e [(x, v); (y, cont_value)] in
        memo redex reduct (c, c2); eval reduct (c, k) c2)
let stepper (e : e) : a = eval e (FId, (fun v c2 -> Return v)) GId
```

4.4.1 型無しλ計算

型無し入計算の DS インタプリタは、CPS 変換して非関数化したら全てのコンテキストを引数 に保持するインタプリタになり、出力関数を入れるのみでステッパを作ることができた。これは、 継続を区切って一部を捨てたり束縛したりするという操作が無いためである。

4.4.2 try-with

try-with は、algebraic effects が限定継続を変数に束縛するのと違って、例外が起こされたときに限定継続を捨てるという機能である。よって継続を表す値は現れないので、インタプリタをCPS で書く必要は無い。Direct style でインタプリタを書いた場合、最初に CPS 変換をすることで、CPS インタプリタと同様の変換によってステッパが導出できた。最初から CPS インタプリタを書いていれば 4.3 節と同様の手順になる。

4.4.3 shift/reset

shift/reset は algebraic effects と同様に限定継続を変数に束縛して利用することができる機能である。4.3 節で行ったのと全く同様に、CPS インタプリタを非関数化、CPS 変換、非関数化したらコンテキストが表れ、ステッパが得られた。

4.4.4 Multicore OCaml

Multicore OCaml は、OCaml の構文に algebraic effects を追加した構文を持つ。我々は 4.3 節で得られたステッパをもとにして、Multicore OCaml の algebraic effects を含む一部の構文を対象にしたステッパの実装を目指している。Multicore OCaml の「エフェクト」は 4.2 節で定義した言語の algebraic effects のオペレーションとほとんど同じものであり、継続が one-shot であることを除いて簡約のされかたは 4.2 節で定めた言語のインタプリタと同様なので、インタプリタ関数を用意できれば変換によってステッパが導出できると考えられる。

4.5 まとめ

ステッパを実装するためには、コンテキストの情報を保持しながら部分式を再帰的に実行するインタプリタを作ればよい。以前の研究 [3] では言語ごとにコンテキストを表すデータ型を考えた上でインタプリタに実行の流れに従った新しい引数を付け足す作業が必要だったが、本研究では通常のインタプリタを CPS 変換および非関数化するという機械的な操作でコンテキストの型およびコンテキストの情報を保持するインタプリタ関数を導出した。

その方法で、継続を明示的に扱える algebraic effects を含む言語に対するステッパを実装し、他の例外処理機能である try-with や shift/reset を含む言語についても同様の変換ができることを確認した。

第5章 5

5.1 ステッパの動作

本研究のステッパは、表面上は著者らがかつて実装したステッパ [?] と同じ動作をするが、内部での処理方法および速さが大きく異なる。本節では、既存のステッパと本研究の新しいステッパの動作について説明する。

いずれのステッパも、実行可能な1つのプログラムを対象としている。

5.1.1 DrRacket のステッパ

DrRacket のステッパ [1] は、ユーザが入力したプログラムを全ステップの情報を生成するプログラムへ変換し、それを実行してステップの情報を蓄えながら、ユーザの操作に従って1つのステップを表示する。実行開始に少し遅れて、表示のための処理を並列して行うことになる。

5.1.2 incremental でない OCaml ステッパ

先行研究である著者らがかつて実装したステッパ [?] では、インタプリタにステップ出力機能を 足したものに入力プログラムを渡し、全ステップの文字列を生成する。プログラムを全て実行す るかステップ数の上限に達すると実行を終了し、最初のステップを表示し、ユーザの操作に従っ て表示するステップを変える。

インタプリタは新しく著者らが作った OCaml の関数であり、通常のインタプリタよりも実行速度が遅い。そこにさらに出力機能を足したインタプリタによるプログラム実行が終わるまで表示が始まらないため、実行に時間がかかるプログラムのステップ実行をするには長い時間待つ必要がある。

5.1.3 提案するステッパ

本研究で提案するステッパは、インタプリタにステップ出力機能を足したものに入力プログラムを渡し、1ステップの簡約を計算したらただちにそのステップを出力し、続きの実行は行わずにプロセスを終了する。ユーザから次のステップを表示するなどの命令がされ次第、前回の出力の一部を新しい入力として受け取って次の1ステップ実行をする。

図 5.1: attribute を含む構文木の例

例えば、2 * 3 + 5 * 7というプログラムを入力されると、incremental でないステッパは2 * 3 + 5 * 7 \rightsquigarrow 2 * 3 + 35 \rightsquigarrow 6 + 35 \rightsquigarrow 41 という 3 ステップを出力するのに対して、incremental なステッパは2 * 3 + 5 * 7 \rightsquigarrow 2 * 3 + 35 の1ステップを出力する。次のステップを表示する命令がされたときに、外部のプログラムがそこから2 * 3 + 35 という部分を抜き出して再度ステッパに入力することでその次のステップを得る。

incremental なステッパには、メモリに膨大なステップの情報を保存する必要がない、ユーザが見ないステップは計算されないという特徴がある。

5.2 OCaml \mathcal{O} attribute

OCaml 4.02 以降では、OCaml の構文木中に attribute という情報を付加することができる。 attribute はそれぞれ名前と、OCaml のプログラムやシグネチャなどの引数を持つ。著者らの incremental でないステッパ [?] および本研究で提案するステッパでは attribute を利用している。 本節では、本研究のステッパの実装で利用する種類の attribute を紹介する。

5.2.1 式の attribute

OCaml のプログラムでは、任意の部分式に attribute をつけることができる。式 e に OCaml プログラム P を引数に持つ name という attribute を付けたものは e [@name P] と書く。例えば (2 * 3 [@v 3]) [@v 6;; "six"] という式は大まかには図 5.1 のように構文解析され、ステッパ プログラムのように構文木を扱うプログラムの中で attribute の内容を利用することができる。通常の OCaml コンパイラは attribute を無視するので、シンタックスエラー等を起こしてしまう場合を除いて、attribute が付いた式と付いていない式で意味は変わらない。

著者らが実装した incremental でないステッパ [?] では、各ステップで簡約が起こっている部分の式をハイライトして示すために attribute を利用している。例えば (2*3)+(5*7) というプログラムに対する incremental でないステッパの出力は図 5.2 の左の文字列である。インタフェースを受け持つプログラムはこの文字列を受け取り、図 5.2 の右側のように、 attribute が付いた式をハイライトし、さらに attribute を表す文字列を削除した上で表示している。

```
(* Step 0 *)
(* Step 0 *)
(2 * 3) + (5 * 7) [@stepper.redex]
                                           (2 * 3) + (5 * 7)
(* Step 1 *)
                                           (* Step 1 *)
                                           (2 * 3) + 35
(2 * 3) + 35 [Ostepper.reduct]
(* Step 1 *)
                                           (* Step 1 *)
(2 * 3) [Ostepper.redex] + 35
                                           (2 * 3) + 35
(* Step 2 *)
                                           (* Step 2 *)
6[@stepper.reduct] + 35
                                           6 + 35
(* Step 2 *)
                                           (* Step 2 *)
(6 + 35)[@stepper.redex ]
                                           (6 + 35)
(* Step 3 *)
                                           (* Step 3 *)
41[@stepper.reduct]
                                           41
```

図 5.2: ハイライトのための attribute の利用

本研究の incremental なステッパでも、同様の方法で簡約部分のハイライトを行う。本稿ではこれ以降、ステッパの出力文字列中のハイライトのための attribute を省略したり、緑色および紫色のハイライトで現すことがある。

5.2.2 プログラムの attribute

attribute はプログラム自体にも付けることができる。

OCaml のプログラムは structure item の列であり、structure item には式、変数定義(let 変数名 = 式)、型定義、モジュール定義、attribute などの種類がある。structure item の間には;;を書くことで明示的に structure item の境を示すことができる。

attribute の structure item はプログラム中に何度でも書くことができ、名前の重複などに関する制約も無い。また式に付ける attribute と同じく、標準のコンパイラなどはこれを無視するのでプログラムの意味に影響を与えない。

name という名前で OCaml プログラム P を含む attribute の structure item を [@@@name P] と書く。例えば let a = 1 [@@@name1 1;; 2 + 3] let b = 2 [@@@name2] というプログラムは、(1)a の定義、(2)1 と 2 + 3 を引数に持つ name1 という attribute、(3)b の定義、(4) 引数 なしの name2 という attribute、の4つの structure item のリストとして処理され、それぞれの attribute の内容はステッパが参照することができる。

これを用いると、プログラムに自由に情報を付加することができる。

第 5 章 5 31

5.3 生じる問題と解決方法

著者らの incremental でないステッパ [?] と同じようにステップ出力を行うと、incremental なステッパでは様々な問題が起きた。本節ではその問題と、回避するために行った出力内容の変更について説明する。

5.3.1 情報の消失

問題点

5.1.1 節および 5.1.2 節で紹介した既存のステッパは、ステップ実行をした結果を蓄えておき、ユーザが表示ステップを切り替える際にその中から表示するステップの情報を検索して表示するので、ステップ番号を指定すれば任意のステップをすぐに表示することができる。それに対して本研究で提案するステッパは、表示を切り替える命令が入力されるたびに1ステップ先や1ステップ前を計算することになる。その際のステッパの入力は前回出力したプログラムの一部である。すると、1ステップ前を計算する時に問題が起きる。

例えば、2 * 3 + 5 * 7 というプログラムをステップ実行するとき、最初に表示される1ステップ目は2 * 3 + 5 * 7 \rightsquigarrow 2 * 3 + 35 であり、次ステップ表示命令が入力されると今度は2 * 3 + 35 を入力として2 * 3 + 35 \rightsquigarrow 6 + 35 を出力する。ここで前ステップ表示命令が入力された時に、2 * 3 + 35 や 6 + 35 という情報から2 * 3 + 5 * 7 \rightsquigarrow 2 * 3 + 35 を導き出すことは不可能である。これは計算が不可逆的であるという性質によるものである。すなわち式5 * 7 と 35 のどちらからもその値が35 だという情報は得られるが、式35 からそれがかつて5 * 7 だったという情報は得られないのである。

解決方法

本研究の incremental なステッパでは、簡約後の式に簡約前の式の情報を、簡約された式を表す attribute [@stepper.reduct] の引数として付加することで、簡約によって失われた情報を復元可能にする。「式 2 が簡約された結果の 式 1」を 式 1 [@stepper.reduct 式 2] と表して、2 * 3 + 5 * 7 \rightsquigarrow 2 * 3 + 35 の代わりに 2 * 3 + 5 * 7 \rightsquigarrow 2 * 3 + 35 [@stepper.reduct 5 * 7]、また 2 * 3 + 35 \rightsquigarrow 6 + 35 の代わりに 2 * 3 + 35 [@stepper.reduct 5 * 7] \rightsquigarrow 6 [@stepper.reduct 2 * 3] + 35 [@stepper.reduct 5 * 7] を出力すると、どのステップの出力からでもオリジナルのプログラムまで情報を復元することができる。

さらに、直前のステップで簡約された式が明示的に分かるように、簡約された時のステップ番号も attribute に含める。例えば 6 [@stepper.reduct 2 * 3] + 35 [@stepper.reduct 5 * 7] に 2 * 3 や 5 * 7 のそれぞれの簡約が行われた当時のステップ番号を追加して、6 [@stepper.reduct

(2, 2 * 3)] + 35[@stepper.reduct (1, 5 * 7)] と出力する。こうすると、ここから前のステップを求めるときに、最後に簡約されたのは 6 だとステップ番号から分かり、6 をその attribute に記録された簡約前の式 2 * 3 に置き換えることで前のステップ 2 * 3 + 35[@stepper.reduct (1, 5 * 7)] \rightsquigarrow 6[@stepper.reduct (2, 2 * 3)] + 35[@stepper.reduct (1, 5 * 7)] が得られる。

5.3.2 表示の崩れ

問題点

OCaml プログラムは、ライブラリで用意された関数を使うと文字列として出力することができ、本研究のステッパではその関数を利用する。その関数は、適当に改行やインデントを入れてプログラムを出力する。しかし、図 5.2 のように attribute が付いたプログラムを出力させて後から外部で attribute を消すと、プログラムの体裁が崩れてしまう可能性がある。

特に、5.3.1 節で示したように、簡約後の式に簡約前の式の情報を含む attribute を付けるようにしてステップ実行を進めると、attribute 付きの式の出力が複数行にわたってしまうことがある。すると、例えば

((2 * 3)

[@reduct 長い式]) +

(5 * 7)

といった式の途中に改行が入った状態になり、外部のインタフェース用プログラムがこの文字列 を受け取って

(2 * 3) + (5 * 7)

と改行やスペースを調整して表示するのは難しい。

解決方法

我々は、実行に必要な情報がすべて含まれた式「処理用の式」と、表示するための整った式「表示用の式」をそれぞれ出力することでこれを解決した。

具体的には、2 * 3 + 5 * 7 の最後のステップの出力が以下のようになるようにした。

(* Step 2 *)

[@@@stepper.process

6[@stepper.reduct (2, 2 * 3)] + 35[@stepper.reduct (1, 5 * 7)]] (6 + 35)[@x]

```
(* Step 3 *)
```

[@@@stepper.process 41[@stepper.reduct (3,
 6[@stepper.reduct (2, 2 * 3)] + 35[@stepper.reduct (1, 5 * 7)])]]
41[@t]

すなわち、

- 1. 処理用の簡約前の式([@stepper.reduct] を含む)を attribute に入れたもの
- 2. 表示用の簡約前の式([@x]を含む)
- 3. 処理用の簡約後の式([@stepper.reduct] を含む)を attribute に入れたもの
- 4. 表示用の簡約後の式([@t]を含む)

の4つのプログラムを出力する。

「処理用の式」は前後のステップを計算するための情報を持つ式であり、そこまでの全ての簡約の情報を attribute に持つ。ユーザが見る画面には表示させないようにインタフェース側で処理をする。「表示用の式」はユーザに見せるための式であり、ハイライトをする式にのみ短い attribute が付いている。

余計な改行の原因である「簡約されている式をハイライトするための attribute」は、インタフェース側のプログラムが表示に利用するので完全に省略することはできない。そこで、上の例のように最も短い attribute [$\mathbf{Q}\mathbf{x}$] や [$\mathbf{Q}\mathbf{t}$] を簡約される式に付加することでハイライトする部分を示す。 \mathbf{x} と \mathbf{t} はそれぞれ簡約基と簡約されたものを表す "redex" と "reduct" の略である。名前が 1 文字で他の情報を含まない attribute は文字数が少なくほとんどの場合改行を引き起こさないため、単純に attribute を文字列から削除してもユーザから見て不自然にプログラムの体裁が崩れることは少ないと考えられる。

次や前のステップを実行する際には、インタフェース側のプログラムが attribute である structure item [@@@stepper.process ...] の内容をステッパに渡すようにする。すると、ステッパには 簡約の情報が全て含まれたプログラムが入力され、前のステップにも戻ることができる。前のステップの実行には処理用の簡約前の式、次のステップの実行には処理用の簡約後の式をステッパに渡す。

5.4 λ 計算に対する実装

本節では、既存の OCaml ステッパ [?] の実装を紹介し、新しい OCaml ステッパの実装を示す。 対象言語は型無しの λ 式で、さらに実際の OCaml を模して任意の部分式に複数の attribute を付

(* 式の種類の定義 *)

図 5.3: 対象言語の定義

けられるものとするが、各 attribute の第一引数は attribute の名前とし、第二引数には 5.3.1 節で 定めた簡約の情報を簡単に表すために Some (整数,式) または情報を持たないことを示す None のどちらか(payload 型)をとる 1 。これらの型を図 5.3 のように定義する。式は expression 型 であり、式本体の内容を表す desc と任意の個数の attribute を表す attr の 2 つの要素を持つ。

5.4.1 incremental でないステッパ

著者らの incremental でないステッパ [?] は big-step インタプリタ関数にステップ出力のための作用を追加することで構築されている。その実装は図 5.4 のようになる。関数 eval は OCaml の call-by-value かつ right-to-left の評価戦略に従った代入ベースの λ 計算のインタプリタにステップ実行のための作用を追加したステッパである。背景に灰色が付いた部分がステップ実行のための作用であり、白い部分のみを読むと単なるインタプリタとして見ることができる。ただし関数 subst は代入の関数であり、subst f x arg_value は式 f の中の変数 x を式 arg_value に置換した式を返す。このステッパの出力は、例えば入力プログラム 2 * 3 + 5 * 7 に対して図 5.2 の 左側の文字列(にステップ番号の表示を足したもの)である。

ステッパは実行可能なプログラムのみを受け付けるため、ステッパに渡される式の中に自由変数および型エラーは存在しない。さらにこのステッパの基となる代入ベースのインタプリタでは、関数の内部の式は必ず関数適用の簡約(すなわち実引数の代入)の後に実行するので、常に変数はその実行の前に束縛を解決されており、変数がインタプリタ関数の引数として実行されることはない。よって、関数 eval 中の failwith の呼び出しは起こり得ない。

関数 eval の下から 3 行目の関数 memo は、簡約前のプログラムを出力し、 counter の値を 1 増やし、簡約後のプログラムを出力する関数である。その実装は図 5.5 に示す。ただし、関数 print_counter: unit -> unit はコメントとしてステップ番号 (* Step n *) を標準出力す

¹[@x] は ("x", None)、[@stepper.reduct (1, 5 * 7)] は ("stepper.reduct", Some (1, 5 * 7)) である。

第 5 章 5 35

る関数、関数 print : expr -> unit は式を標準出力する関数、関数 plug : expression -> frame list -> expression は計算している途中の部分式とコンテキストを受け取って式を再構成する関数であり、実装は省略する。変数 counter には、現在のステップ番号が格納されている。式の評価中に関数適用の簡約を行うたびに1ずつ増加させることで、式全体の通しステップ番号を出力できる。

5.4.2 incremental なステッパ

本稿の incremental なステッパでは、たとえば入力 2*3+35 [@stepper.reduct (1, 5*7)] に対して、以下の 3 種類の処理を実装する。

- 全ステップ出力 2 * 3 + 35 → 6 + 35, 6 + 35 → 41
- ・ 次ステップ出力 2 * 3 + 35 → 6 + 35
- ・ 前ステップ出力 2 * 3 + 5 * 7 → 2 * 3 + 35

このうちどの処理を行うかは、図 5.6 のように、ステッパの実行ごとに環境変数で定めて、mode というグローバル変数に格納する。

次ステップ出力の内容は全ステップ出力の冒頭の1ステップであるので、もし全ステップ出力 と次ステップ出力をするだけならば、例えば関数 memo (図 5.5) の最後に

;if mode <> All then exit 0

と書くことで、mode が Next のときは最初のステップしか出力されず実行が終了し、求める次ステップ出力を得ることができる。

しかし、5.3 節で述べたように、「前ステップ出力」処理のためには出力内容を増やしたり、その新しい出力を処理できるようにしなければならない。それぞれの処理において以下のような実装をする必要がある。

- 全ステップ出力:それを新しい入力として前ステップ出力は行わないので変更無し
- 次ステップ出力:そのステップの簡約によって失われる情報を前ステップ出力で復元できるように attribute を付ける
- 前ステップ出力:次ステップ出力時に attribute に書かれた情報から前ステップを導いて出力する

本研究では、incremental でないステッパにこれらの作用を更に付け足すことで、incremental なステッパを実装する。

情報の付加

```
incremental でないステッパでは、例えば (2 * 3) + (5 * 7) に対して、2 ステップ目を
```

(* Step 1 *)

(2 * 3) [Ostepper.redex] + 35

(* Step 2 *)

6[@stepper.reduct] + 35

と出力するが、incremental なステッパでは 5.3 節で述べたように

```
(* Step 1 *)
```

```
[@@@stepper.process (2 * 3) + 35[@stepper.reduct (1, 5 * 7)] ] (2 * 3)[@x] + 35
```

(* Step 2 *)

を出力したいので、出力をする関数 memo を書き換える必要がある。

図 5.5 にある関数 memo の引数は簡約基、それが簡約されたもの、その簡約時のコンテキストの 3 つであったが、新しい出力の内容もこれらの情報から構成することができる。その実装を図 5.7 に示す。関数 print_as_attribute: expression -> unit は、[@@@stepper.process...] にプログラムを入れて出力する関数である。

ここで、5.3.2節で述べたように、表示用のプログラムではハイライトに最低限必要な attribute だけを出力したい。しかし、今簡約している式の外、すなわちコンテキストに含まれる式の中には attribute [@stepper.reduct] が含まれうる。上の出力例で処理用の 35 に付いている [@stepper.reduct (1, 5 * 7)] がそれである。表示用のプログラムを出力するためには、今のステップで簡約される式以外の attribute を消したものを得る必要がある。

そのために、本研究では OCaml のモジュール Ast_mapper を利用した。Ast_mapper は OCaml プログラムの構文木を簡単に部分的に変換するためのモジュールである。ここでは詳しい紹介は省くが、Ast_mapper を利用して attribute のみを変換する関数 redex_mapper : expression -> expression と関数 reduct_mapper : expression -> expression を実装した。redex_mapper は [@x] 以外の attribute を無くす変換をする関数であり、reduct_mapper は [@stepper.reduct (今のステップ, 簡約前の式)] を [@t] にし、それ以外の attribute を無くす変換をする関数である。

以上によって、5.3節で定めたように、十分な情報を持つプログラムが出力できた。

情報の利用

簡約後の式に attribute が付加できたので、その情報を利用して「前ステップ出力」をする。前ステップ出力には、

- 1. 今のステップ番号を持つ attribute を探す
- 2. その attribute が付いた式を attribute 内の式に置換したプログラムを出力する

という操作が必要となる。「今のステップ番号を持つ [@reduct ...]」は1つの式だけに付いており、これを探すには式を全て探索する必要がある。そのために、「前ステップ出力」時にだけ利用する新しいインタプリタ関数を作ってもよいが、検索の順序はステッパ関数、すなわち図 5.4の eval と同じなので、本研究ではこの関数にさらに作用を足すことで前ステップ出力を行う。

前ステップ出力の処理は、関数 memo を図 5.7 のように定義した上で図 5.8 のように実装することができる。灰色の部分が incremental になったことで加わった部分である。灰色の部分は、if mode = Prev then begin ... end; であることから分かるように、前ステップ出力モードの時にしか実行されない。

前ステップ出力モードの時の関数 eval の実行は、まず今評価している式に [@stepper.reduct (今のステップ番号, 簡約前の式)] が付いているかを調べることから始まる。そこで見つかれば、その「簡約前の式」を利用して前ステップの出力ができプロセスを終了する。見つからなければ、eval の本体である match 文へ進む。今評価している式をパターンマッチして、関数だったらそれ以上の簡約はできず、そのままその関数を返す。関数適用だったら、引数部分の式の実行に移る。するとまたその引数部分の式に [@stepper.reduct (今のステップ番号, 簡約前の式)] が付いているかを調べる。あれば出力して終了、無ければ同様に式を普通に評価する。

このように実行を進めると、1以上の正しいステップ番号を変数 counter に持っている限り、必ずどこかに [@stepper.reduct (今のステップ番号,簡約前の式)] が付いた式が見つかる。そして、今のステップに至るまで行ってきた「次ステップの出力」と同じ順序で式を探索してきたため、見つかるまでに評価した式は全て簡約済みであり、その式を見つけるまでに簡約処理、すなわち match fun_value.desc with ... を行うことは無い。よって、灰色の部分を書き足すことで前ステップ出力が可能になる。

以上のように、incremental でないステッパ(図 5.4, 5.5)を図 5.6, 5.7, 5.8 のように書き換えることで、incremental なステッパを実装できる。

5.4.3 実際のステッパ

実際に著者らが実装するステッパは、対象を OCaml の一部としており、以下の構文に対応している(一部は開発中である)。

- 整数、実数、真偽値、文字、文字列、リスト、組、レコード、ユーザ定義型
- 条件分岐、変数定義、再帰関数定義、パターンマッチ、例外処理
- List モジュール、ユーザ定義モジュール
- 配列、逐次実行、標準出力関数(開発中)

副作用に関わる構文について、incremental でないステッパ [?] ではステッパプロセスが書き換え可能な変数の値や標準出力された文字列を保持することができたが、incremental にすることでそれが不可能になるので、プログラムの attribute を用いてそのような情報もステップ出力に含めるようにすることで実装することを目指している。

また、著者らの incremental でないステッパ [?] は、プログラムの流れを理解する助けやステッパの利便性の向上のため、関数適用式が値に計算されるまでが1ステップであるかのように進める機能を有していた。図 5.9 の左のように関数適用が簡約されるステップで Skip ボタンを押すと、図 5.9 右のように、下のプログラムが「関数適用式が値に簡約されたステップ」のプログラムに変わる。この状態で Next ボタンを押すとその続き、図 5.9 の場合には $3*2 \sim 6$ のステップが表示される。これを本研究の incremental なステッパでも 1 ステップとして扱い、1 度の実行で関数適用が値になるステップまでを計算し、その最後のステップを出力するように実装を進めている。そのためには、図 5.6 の mode 型にスキップのためのコンストラクタを追加し、そのモードの場合には「実行している関数適用式が値になるステップまでは出力・終了を行わない」ようにするだけで良い。

5.4.4 ツールの実装

ここまで、「プログラムを入力されてステップ実行の文字列を出力するプログラム」としてのステッパプログラムの実装を紹介した。ユーザが incremental なステッパツールを使用するには、ユーザの入力を受けてステッパプログラムを呼び出しステップを表示する外部のプログラムが必要になる。

DrRacket のステッパ [1] や先行研究のステッパ [?] では、外部のプログラムは「ステッパを起動して、出力を蓄えて、ユーザの操作に従って表示」をしていたが、本研究のステッパでは、「ユーザの操作に従ってステッパを呼び出して、出力されたものを少し変換して表示」をする。すると、外部のプログラムではステップ番号のみを保持することで実装が可能になる。

5.5 予想される問題点

本節では、本研究が提案するステッパを実際に利用するときに発生すると予想される問題点を 挙げる。

5.5.1 文字数の爆発

本研究のステッパでは、任意のステップの「処理用の出力」に入力プログラムからそこまでの簡約の過程が記されているため、1 ステップ進むごとに文字数が増加する。具体的には、簡約基e1 が式 e2 に簡約されるステップでは、その時点のコンテキストを E、ステップ番号を n とすると、簡約前のプログラムが E[e1]、簡約後のプログラムが E[e2[@stepper.reduct n;; e1]] となる。E の文字数は変わらないので、e2[@stepper.reduct n;; と]の分の文字数が増加することになる。これを続けていくと、1 ステップあたり少なくとも 22 文字は増加することになり、仮に百万ステップの簡約をするとプログラムは数千万文字になる。すると、毎ステップの入出力や通信に時間がかかる可能性がある。

解決策としては、古いステップの attribute は削除してしまうという方法が考えられる。たくさんのステップを見てから最初の方のステップまで戻るユーザは少ないと仮定すれば、ある程度前のステップについての attribute があったら、関数 memo で出力するプログラムを再構成する際に消去すれば、さほど実際の使用に影響なく出力する文字数を減らすことができる。

5.5.2 実行時間

ステップ数が膨大になると、後ろの方までステップ実行をするのは困難である。incremental なステッパでの実行速度は通常の OCaml 処理系に決して及ばないので、1ステップずつ進める場合でも、スキップ機能(5.4.3節)を使う場合でも、実行を多く進めるには長い時間が掛かってしまう。少しでも急ぐ為には、一般的なデバッガのように、ステップ実行したい式の付近にユーザがブレークポイントを設定して、そこからステップ実行を始めるという方法が考えられる。そのためには、ブレークポイントまでを部分的に native code にコンパイルして実行するなどの方法を取らざるを得ない。しかしいずれにしても、通常の OCaml コンパイラを用いても長時間かかるプログラムの実行を早く終わらせることは不可能である。

5.5.3 関数適用評価スキップ後の前ステップ出力

関数適用をスキップ (5.4.3 節) した後に前のステップに戻ろうとすると、incremental でないステッパ [?] と同じように戻ることができない。たとえば図 5.9 のように 2 の階乗の計算をスキップしたとすると、図 5.9 の右の状態から、incremental でないステッパでは

- スキップをする前の関数適用式が簡約されるステップ5(図5.9 左)
- 関数適用式が最終的な値になるステップ17(3 * (2 * 1) → 3 * 2)

のどちらにも戻ることができたが、incremental なステッパでは前者にしか戻ることができない。 その原因は、incremental でないステッパ [?] では 5.5.2 節で述べたように文字列検索によって ステップ表示を切り替えていたので任意のステップに移ることができたのに対して、incremental なステッパでは関数適用式が値になるまでを 1 ステップとして出力し、その間の簡約についての 情報は出力しないからである。

これを解決するには、スキップする部分の計算をしている間の簡約についても attribute に情報を蓄え、スキップ後のステップで全ての簡約の情報が入った長いプログラムを出力する必要がある。そのようにするとスキップにより時間がかかり 5.5.2 節の問題がより深刻になる可能性があるので、2019 年度に第二著者が受け持つ OCaml の初学者向けの授業で実際にステッパを使用し、実用の上で大きな問題になった場合に検討する。

5.6 まとめと今後の課題

本研究では、OCaml のプログラムの簡約による書き換えを1ステップずつ見せるプログラムであるステッパを、1度の実行で1つの簡約のみを行うように変更し、ステッパの起動時間を短縮した。またそのためにあるステップのプログラムからそれ以前のステップのプログラムを計算できるようにする必要が生まれたので、それまでの簡約の内容を全て記録したプログラムを出力することで入力プログラムの情報が失われないように変更した。

今後は、一部の副作用を伴うプログラムに対応することを目指す。incremental でない OCaml ステッパ [?] はこれらに対応しているが、incremental になり、ストアや標準出力された文字列の情報をステッパのプロセスが保持できなくなったことで、ストアの情報もステッパの出力に含める必要が生じた。これは恐らく、プログラムの attribute $(5.2.2\,\text{節})$ を利用することで解決できるであろう。

```
(* コンテキストのフレームの定義 *)
type frame = AppR of expr (* e [.] *)
          | AppL of expr (* [.] v *)
(* ステップ番号を格納する変数 *)
let counter : int ref = ref 0
(* 式 とその周りのコンテキスト を受け取って式を評価する *)
let rec eval (expr : expression) (context : frame list) : expression =
 match expr.desc with
  | Var (x) -> failwith "error: Unbound variable"
  | Fun (x, f) \rightarrow expr
  | App (e1, e2) ->
   let arg_value = eval e2 (AppR e1 :: context) in
                                                       (* 引数部分を評
価 *)
   let fun_value = eval e1 (AppL arg_value :: context) in (* 関数部分を評
   match fun_value.desc with
   | Fun (x, f) ->
   let redex = {desc = App (fun_value, arg_value);
                                                           (* 簡 約 前 の
式 *)
               attr = expr.attr} in
     let reduct = {desc = (subst f x arg_value).desc ;
                                                        (* 簡 約 後 の
式 *)
                  attr = expr.attr} in
                                                         (* ステップ出力 *)
     memo redex reduct context;
                                                       (*簡約後の式を評
     eval reduct context
価 *)
   | _ -> failwith "error: not a function"
(* 空のコンテキストで 式の評価を始める *)
let start (expr : expression) : expression =
 eval expr []
```

図 5.4: 既存のステッパの実装

第5章 5

```
(* 簡約前後の式とコンテキストを受け取って、そのステップを出力する *)
let memo (redex : expression) (reduct : expression) (context : frame list)
 : unit =
                                         (* 簡約前の式に attribute 追
 let marked_redex =
加 *)
   {redex with attr = Some ("stepper.redex", None)} in
 let marked_reduct =
                                         (* 簡約後の式に attribute 追
加 *)
   {reduct with attr = Some ("stepper.reduct", None)} in
                                            (* 簡約前ステップ番号を出
 print_counter ();
力 *)
 print (plug redex current_context);
                                            (* 簡約前のプログラムを出
                                            (* ステップ番号を1増や
 counter := !counter + 1;
す*)
                                            (*簡約後ステップ番号を出
 print_counter ();
力 *)
                                           (* 簡約後のプログラムを出
 print (plug reduct current_context)
力 *)
```

図 5.5: ステップ出力関数

図 5.6: 実行の種類とステップ番号の定義

```
(* 簡約前後の式とコンテキストを受け取って、そのステップを出力する *)
let memo (redex : expression) (reduct : expression)
   (context : frame list) : unit =
 let marked_redex =
                                        (* 簡約前の式に attribute 付
加 *)
   {redex with attr = ("stepper.redex", None) :: redex.attr} in
 let marked_reduct =
   {reduct with
   attr = ("stepper.reduct",
          Some (!counter + 1,
                                        (* 簡約後の式にステップ番号と、
*)
                                            (*簡約前の式の情報を追
               redex))
加 *)
         :: reduct.attr} in
                                             (* 前ステップ出力のとき、
 if mode = Prev
*)
                                               (* ステップ番号を1戻
 then counter := !counter - 1;
す*)
 print_counter ();
                                           (* 簡約前のステップ番号出
力 *)
                                         (* 処理用の簡約前のプログラ
 print_as_attribute (plug redex context);
 print (redex_mapper
                                        (*表示用の簡約前のプログラ
         (plug marked_redex context));
ム*)
                                             (* ステップ番号を1進め
 counter := !counter + 1;
る*)
                                           (*簡約後のステップ番号出
 print_counter ();
力 *)
 let latter_program = plug marked_reduct context in
                                         (* 処理用の簡約後のプログラ
 print_as_attribute (latter_program);
 print (reduct_mapper latter_program); (* 表示用の簡約後のプログラ
                                  (* 全ステップ実行でなければプロセス終
 if mode <> All then exit 0
了 *)
```

図 5.7: incremental なステッパのための出力関数

第5章 5

```
(* 今のステップ番号の [@stepper.reduct] を探してその中の式を返す *)
let rec find_last_reduct (attrs : attribute list) : expression =
  match attrs with
                            (* リストの最後まで見つからなければ例外 Not_found *)
  | [] -> raise Not_found
  | ("stepper.reduct", Some (n, redex)) :: _ (* 簡約後のマークがあって、*)
    when n = !counter \rightarrow redex (* その番号が今のステップ番号だったらその式を返す *)
  | _ :: rest -> find_last_reduct rest
(* ステップ実行インタプリタ *)
let rec eval (expr : expression) (context : frame list) : expression =
  if mode = Prev
  then begin try
      let marked_redex = find_last_reduct expr.attr in
                                               (* 出力して最後に exit 0 する *)
      memo marked_redex expr
    with Not_found -> ()
                                (* expr が探している式でなければ何もせず、 *)
  end;
                                                   (* 以下の match 文へ進む *)
 match expr.desc with
  | Var (x) -> failwith "error: Unbound variable"
  | Fun (x, f) \rightarrow expr
  | App (e1, e2) ->
   let arg_value = eval e2 (AppR e1 :: context) in
   let fun_value = eval e1 (AppL arg_value :: context) in
                                                    (* 以下、次ステップの簡
   match fun_value.desc with
約 *)
    | Fun (x, f) ->
     let redex = expr with desc = App (fun_value, arg_value) in
     let reduct = (subst f x arg_value)
                   with attr = expr.attr in
     memo redex reduct context;
     eval reduct context
    | _ -> failwith "error: not a function"
                         図 5.8: incremental なステッパ
(* Step 4 *)
                                            (* Step 4 *)
3 * (fact 2)
                                            3 * (fact 2)
(* Step 5 *)
                                            (* Step 17 *)
3 * (if 2 = 0 then 1 else 2 * (fact (2 - 1)))
                                            3 * (2)
```

図 5.9: ステッパのスキップ機能

第6章 結論

自分が行った研究の概要を簡単に述べ、それがどのような意味があるのかについて述べる.将 来的な課題などについて触れる.結論はおよそ2ページくらい書けばよいでしょう.

感想文にならないように研究成果の報告をする章だということを念頭において書くことに気をつけてください.

[3]

謝辞

~に感謝いたします.

関連図書

- [1] John Clements, Matthew Flatt, and Matthias Felleisen. Modeling an algebraic stepper. In European symposium on programming, pp. 320–334. Springer, 2001.
- [2] Matthias Felleisen and Daniel P. Friedman. Control operators, the secd-machine, and the λ-calculus. In M. Wirsing, editor, Formal Description of Programming Concepts III, pp. 193–219. Elsevier, 1986.
- [3] Tsukino Furukawa, Youyou Cong, and Kenichi Asai. Stepping OCaml. In Proceedings Seventh International Workshop on *Trends in Functional Programming in Education*, Chalmers University, Gothenburg, Sweden, 14th June 2018, Vol. 295 of *Electronic Proceedings in Theoretical Computer Science*, pp. 17–34, 2019.
- [4] Daniel Hillerström, Sam Lindley, Robert Atkey, and KC Sivaramakrishnan. Continuation passing style for effect handlers. In Dale Miller, editor, 2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017), Leibniz International Proceedings in Informatics (LIPIcs), pp. 18:1–18:19, 9 2017.
- [5] Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. In Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming, ICFP '13, pp. 145–158, New York, NY, USA, 2013. Association for Computing Machinery.
- [6] Matija Pretnar. An introduction to algebraic effects and handlers invited tutorial paper. Electronic Notes in Theoretical Computer Science, Vol. 319, pp. 19–35, 2015. The 31st Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXI).
- [7] John Whitington and Tom Ridge. Direct interpretation of functional programs for debugging. In Sam Lindley and Gabriel Scherer, editors, Proceedings ML Family / OCaml Users and Developers workshops, Oxford, UK, 7th September 2017, Vol. 294 of Electronic Proceedings in Theoretical Computer Science, pp. 41–73, 2019.

付 録 A 実験でもちいたデータ

ここには、実験のデータなど、論文の本文中に載せられなかったが、読者にとって役に立つと おもわれるデータなどを付録として掲載する.

付 録B インタプリタの変換過程

```
(* CPS インタプリタを非関数化して CPS 変換した関数 *)
let rec eval (exp : e) (k : k) (k2 : k2) : a = match exp with
  | Val (v) -> apply_in k v k2
  | App (e1, e2) -> eval e2 (FApp2 (e1, k)) k2
  | Op (name, e) -> eval e (FOp (name, k)) k2
  | With (h, e) ->
   eval e FId (fun a -> apply_handler k h a k2) (* GHandle に変換される *)
(* handle 節内の継続を適用する関数 *)
and apply_in (k : k) (v : v) (k2 : k2) : a = match k with
  | FId -> k2 (Return v) (* 継続を適用 *)
  | FApp2 (e1, k) \rightarrow let v2 = v in eval e1 (FApp1 (v2, k)) k2
  | FApp1 (v2, k) \rightarrow let v1 = v in
   (match v1 with
     | Fun (x, e) ->
       let reduct = subst e [(x, v2)] in
       eval reduct k k2
     | Cont (cont_value) ->
       (cont_value k) v2 k2
     | _ -> failwith "type error")
  | FOp (name, k) ->
   k2 (OpCall (name, v, (fun v -> fun k2' -> apply_in k v k2'))) (* 継 続 を 適
用 *)
(* handle 節内の実行結果をハンドラで処理する関数 *)
and apply_handler (k : k) (h : h) (a : a) (k2 : k2) : a = match a with
  | Return v ->
    (match h with {return = (x, e)} ->
     let reduct = subst e [(x, v)] in
     eval reduct k k2)
  | OpCall (name, v, va) ->
    (match search_op name h with
     | None ->
       k2 (OpCall (name, v, (fun v -> fun k2' -> (* 継続を適用 *)
         va v (fun a' -> apply_handler k h a' k2')))) (* GHandle に変換 *)
     | Some (x, y, e) ->
       let cont_value =
         Cont (fun k'' -> fun v -> fun k2 ->
           変
換 *)
       let reduct = subst e [(x, v); (y, cont_value)] in
       eval reduct k k2)
(* 初期継続を渡して実行を始める *)
let interpreter (e : e) : a = eval e FId (fun a -> a) (* GId に変換される *)
```

図 B.1: CPS インタプリタを非関数化して CPS 変換したプログラム

```
(* CPS インタプリタを非関数化して CPS 変換して非関数化した関数 *)
let rec eval (exp : e) (k : k) (k2 : k2) : a = match exp with
  | Val (v) -> apply_in k v k2
  | App (e1, e2) -> eval e2 (FApp2 (e1, k)) k2
  | Op (name, e) -> eval e (FOp (name, k)) k2
  | With (h, e) -> eval e FId (GHandle (h, k, k2))
(* handle 節内の継続を適用する関数 *)
and apply_in (k : k) (v : v) (k2 : k2) : a = match k with
  | FId -> apply_out k2 (Return v)
  | FApp2 (e1, k) \rightarrow let v2 = v in eval e1 (FApp1 (v2, k)) k2
  | FApp1 (v2, k) \rightarrow let v1 = v in (match v1 with
    | Fun (x, e) \rightarrow
      let reduct = subst e [(x, v2)] in
      eval reduct k k2
    | Cont (cont_value) ->
      (cont_value k) v2 k2
    | _ -> failwith "type error")
  | FOp (name, k) ->
    apply_out k2 (OpCall (name, v, (fun v -> fun k2' -> apply_in k v k2')))
(* 全体の継続を適用する関数 *)
and apply_out (k2 : k2) (a : a) : a = match k2 with
  | GId -> a
  | GHandle (h, k, k2) -> apply_handler k h a k2
(* handle 節内の実行結果をハンドラで処理する関数 *)
and apply_handler (k : k) (h : h) (a : a) (k2 : k2) : a = match a with
  | Return v \rightarrow (match h with {return = (x, e)} ->
    let reduct = subst e [(x, v)] in eval reduct k k2)
  | OpCall (name, v, va) ->
    (match search_op name h with
      | None ->
        apply_out k2 (OpCall (name, v,
          (fun v \rightarrow fun k2' \rightarrow va v (GHandle (h, k, k2')))))
      | Some (x, y, e) \rightarrow
        let cont_value =
          Cont (fun k'' -> fun v -> fun k2 -> va v (GHandle (h, k'', k2))) in
        let reduct = subst e [(x, v); (y, cont_value)] in
        eval reduct k k2)
(* 初期継続を渡して実行を始める *)
let interpreter (e : e) : a = eval e FId GId
```

図 B.2: CPS インタプリタを非関数化して CPS 変換して非関数化したプログラム

付 録 C 学生の実行ログから得られたデータ

	2017					2018							
week	all	step.	try	mod.	print	ref	all	step.	try	mod.	print	ref	contents
1	1293	504	0	0	0	0	1233	627	0	0	0	0	fun. def.
2	1511	235	0	0	0	0	1375	189	0	0	0	0	if
3	1618	144	0	0	0	0	1641	179	0	0	0	0	record
4	2364	169	0	0	0	0	2517	332	0	0	0	0	list
5	2556	193	0	0	0	0	3173	213	0	0	0	0	list 2
6	1596	43	0	0	0	0	1369	41	0	0	0	0	Dijkstra
7	2621	92	0	0	0	0	3570	86	0	0	0	0	map
8	1874	81	0	0	0	0	2028	75	0	0	0	0	filter
9	2184	34	0	0	0	0	3300	98	0	0	0	0	gen. rec.
10	2254	48	0	0	0	0	3298	106	3	0	0	0	tree
11	1783	20	10	0	0	0	2790	37	22	0	0	0	exception
12	1785	12	8	4	0	0	3501	37	3	26	3	0	module
13	1678	10	0	7	2	0	2943	22	0	3	16	0	seq. exec.
14	1280	11	0	0	0	1	1511	65	0	4	0	56	ref
15	517	6	0	0	0	0	1717	68	0	5	0	30	heap

表 C.1: Number of uses of the stepper (step.) among all the executions (all) in 2017 and 2018. The columns try, mod., print, and ref represent number of uses of the stepper for programs that contain exception handling, modules, printing (and sequential execution), and references (including arrays), respectively. The rightmost column shows representative topics handled in the week.

week.	2016 t	o 2017		2016 t			
problem	t	p	+/-	t	р	+/-	contents
2.r1	t(55)=2.098	p=0.020	dec	t(60)=0.635	p=0.264	dec	if
2.r2	t(56)=2.364	p=0.011	dec	t(57)=1.831	p=0.036	dec	
2.r3	t(54)=1.896	p=0.032	dec	t(59) = 0.751	p=0.228	dec	
2.1	t(66) = 3.006	p=0.002	dec	t(74)=3.372	p=0.001	dec	
2.2	t(56) = 3.672	p=0.000	dec	t(62)=3.036	p=0.002	dec	
3.r1	t(52)=3.222	p=0.001	dec	t(61)=2.936	p=0.002	dec	record
3.r2	t(42)=2.339	p=0.012	dec	t(56)=3.467	p=0.001	dec	
3.r3	t(41)=1.373	p=0.089	dec	t(51)=2.688	p=0.005	dec	
3.1	t(28) = 5.610	p=0.000	dec	t(38)=2.753	p=0.004	dec	
3.2	t(17)=1.655	p=0.058	dec	t(27)=0.105	p=0.459	dec	
3.3	t(16)=1.546	p=0.071	dec	t(13)=0.603	p=0.279	dec	
4.r1	t(47)=2.088	p=0.021	dec	t(61)=2.446	p=0.009	dec	list
4.r2	t(48)=1.909	p=0.031	dec	t(60)=2.267	p=0.014	dec	
4.1	t(51)=2.134	p=0.019	dec	t(60)=2.473	p=0.008	dec	
4.2	t(18)=3.033	p=0.004	dec	t(20)=0.489	p=0.315	dec	
5.r1	t(42)=1.037	p=0.153	dec	t(55)=0.257	p=0.399	inc	list 2
5.1	t(49)=1.592	p=0.059	dec	t(61)=0.904	p=0.185	dec	
5.2	t(55)=4.138	p=0.000	dec	t(62)=1.631	p=0.054	dec	
5.3	t(47)=3.305	p=0.001	dec	t(50)=1.940	p=0.029	dec	
6.r1	t(30)=0.322	p=0.375	inc	t(51)=2.011	p=0.025	inc	Dijkstra's algorithm
6.1	t(41)=1.678	p=0.050	dec	t(61)=1.155	p=0.126	dec	J 44 4 4 4 6 4
6.2	t(45)=1.415	p=0.082	dec	t(62)=0.976	p=0.166	dec	
6.3	t(34)=2.296	p=0.014	dec	t(42)=0.548	p=0.293	dec	
7.r1	t(42)=0.462	p=0.323	inc	t(56)=0.314	p=0.377	dec	map
7.r2	t(41)=0.286	p=0.388	inc	t(54)=1.181	p=0.121	dec	
7.r3	t(40) = 0.677	p=0.251	inc	t(51)=1.492	p=0.071	dec	
7.1	t(21)=0.965	p=0.173	dec	t(20) = 0.372	p=0.357	dec	
7.2	t(12)=0.380	p=0.355	inc	t(7)=0.686	p=0.258	dec	
8.r1	t(46)=1.162	p=0.126	inc	t(58)=2.694	p=0.005	dec	filter
8.1	t(16)=0.844	p=0.205	dec	t(22)=0.841	p=0.205	dec	
9.r1	t(44)=1.294	p=0.101	dec	t(55) = 0.678	p=0.250	dec	general recursion
10.r1	t(48)=0.312	p=0.378	dec	t(51)=1.308	p=0.098	dec	tree
10.r2	t(48) = 0.457	p=0.325	dec	t(50)=1.760	p=0.042	dec	
10.1	t(33) = 0.976	p=0.168	dec	t(38)=0.845	p=0.202	dec	
10.2	t(19)=1.498	p=0.075	dec	t(19)=0.871	p=0.197	dec	
10.3	t(15)=1.538	p=0.072	dec	t(12)=2.240	p=0.022	dec	
11.r1	t(43)=0.272	p=0.393	dec	t(53)=1.555	p=0.063	dec	exception
11.r2	t(37)=0.454	p=0.326	dec	t(44)=1.906	p=0.032	dec	•
11.r3	t(31)=0.050	p=0.480	inc	t(40)=1.208	p=0.117	dec	
11.1	t(34)=1.567	p=0.063	dec	t(46)=1.518	p=0.068	dec	1
11.2	t(28)=2.204	p=0.018	dec	t(36)=1.563	p=0.063	dec	1
11.3	t(17)=0.604	p=0.277	dec	t(21)=0.384	p=0.352	dec	1
12.r1	t(39)=2.229	p=0.016	dec	t(52)=4.009	p=0.000	dec	module
all	t(1778)=2.819	p=0.002	dec	t(2111)=2.592	p=0.005	dec	

表 C.2: Result of one-sided t-test with p-values comparing the time between the beginning of the class and the moment that students submitted a correct solution. The column +/- shows whether the average time increased or decreased. The p-values below 0.05 are colored.