INDR 460 | Homework 4

NAME: AJAY MEENA | ID: 0070015

Part a) Formulate a mathematical model to find the optimal investment plan that maximizes the expected return without exceeding the VTR limit of V (dollar square).

Solution:

Let the A be the decision variable associated with amount (in \$) invested in asset 1 and B be the decesion variable associated with amount (in \$) invested in asset 2. Then according to given constrained of total amount of 6M \pm B = $6*10^6$ – A

Let the random variable for return in asset 1 be R1, and for asset 2 be R2. Let E[x] denote the expectation of random variable x, and Var(x) denote its variance.

$$E[R1] = 0.12$$
, $E[R2] = 0.06$, $Var(R1) = 0.01$, $Var(R2) = 4/30000$

Let total available amount be $L = 6*10^6$ Mathematical model.

$$MAXIMIZE : E[R1 * A + R2 * (L - A)]$$

$$Constraint 1 : Var(R1 * A + R2 * (L - A)) \le V$$

$$Constraint 2 : L \ge A \ge 0$$

After simplification:

$$MAXIMIZE: 0.12 * A + 0.06 * (L - A)$$

$$Constraint 1: 0.01 * A^2 + \frac{4}{30000}(L - A)^2 \le V$$

$$Constraint 2: L > A > 0$$

Part b) Find the optimal solution for $V=\{10^{11}, 2*10^{11}, 4*10^{11}\}$. Discuss whether the solution you have found is a local or global optimum.

Solution:

Case	Fraction amount	Fraction amount	Expected	Expected Risk
	invested in Asset 1	invested in Asset 2	Return(Objective	
			function)	
$V = 10^{11}$	0.524174	0.475825	\$548702	10 ¹¹
$V = 2*10^{11}$	0.744773	0.255226	\$628118	2*10 ¹¹
$V = 4*10^{11}$	1	0	\$720000	3.6*10 ¹¹

Since the objective function is convex (since it is a linear function) and convex set is convex (since it is a quadratic function) the above solutions are global optimums.

Part c) Now assume that it is not possible to invest more than \$1M in asset-2 and solve the problem for $V=4\times10^{11}$. How does your solution in part b changes? What are the binding constraints?

Solution:

Additional constraint is added in the above formulation:

Constraint 3 :
$$L - A \le \frac{L}{6}$$

Fraction amount invested in Asset 1: 1 Fraction amount invested in Asset 1: 0

Expected Return(Objective function): \$720000

The solution does not change in this case since this constraint is already satisfied in Part b for $V=4*10^{11}$. This can be observed in the above table where Percentage amount invested in Asset 1 for $V=4*10^{11}$ is 0, i.e. it is already less than \$1M.

The only binding constrains is:

$$L \ge A$$

Which is the total invested amount.

Part d) Modify your formulation in part a to implement the regulation that total amount invested in asset-1 cannot be more than two times of the total amount invested in asset-2. Solve the problem with this new restriction and V=4x1011. What is the maximum return in this case? Comment on how is this solution different from the one you get in part b.

Solution:

Additional constraint is added in the part a formulation:

Constraint
$$3: A \leq 2*(L-A)$$

Fraction amount invested in Asset 1: 0.6666666 Fraction amount invested in Asset 1: 0.3333333 Expected Return (Objective function): \$600000

The maximum value of objective function in part b for case V=4*10¹¹ is more than Expected return in this part. That means this additional constraint is reducing feasible region and this constraint is new binding constraint.