Figure 4.5 The regression function  $f^*(x)$ , which minimizes the expected squared loss, is given by the mean of the conditional distribution p(t|x).



given by

$$\mathbb{E}[L] = \iint L(t, f(\mathbf{x})) p(\mathbf{x}, t) \, d\mathbf{x} \, dt$$
 (4.34)

where we are averaging over the distribution of both input and target variables, weighted by their joint distribution  $p(\mathbf{x},t)$ . A common choice of loss function in regression problems is the squared loss given by  $L(t, f(\mathbf{x})) = \{f(\mathbf{x}) - t\}^2$ . In this case, the expected loss can be written

$$\mathbb{E}[L] = \iint \{f(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) \, d\mathbf{x} \, dt.$$
 (4.35)

It is important not to confuse the squared-loss function with the sum-of-squares error function introduced earlier. The error function is used to set the parameters during training in order to determine the conditional probability distribution  $p(t|\mathbf{x})$ , whereas the loss function governs how the conditional distribution is used to arrive at a predictive function  $f(\mathbf{x})$  specifying a prediction for each value of  $\mathbf{x}$ .

Our goal is to choose  $f(\mathbf{x})$  so as to minimize  $\mathbb{E}[L]$ . If we assume a completely flexible function  $f(\mathbf{x})$ , we can do this formally using the calculus of variations to give

$$\frac{\delta \mathbb{E}[L]}{\delta f(\mathbf{x})} = 2 \int \{f(\mathbf{x}) - t\} p(\mathbf{x}, t) \, \mathrm{d}t = 0. \tag{4.36}$$

Solving for  $f(\mathbf{x})$  and using the sum and product rules of probability, we obtain

$$f^{\star}(\mathbf{x}) = \frac{1}{p(\mathbf{x})} \int tp(\mathbf{x}, t) dt = \int tp(t|\mathbf{x}) dt = \mathbb{E}_t[t|\mathbf{x}], \tag{4.37}$$

which is the conditional average of t conditioned on  $\mathbf{x}$  and is known as the *regression function*. This result is illustrated in Figure 4.5. It can readily be extended to multiple target variables represented by the vector  $\mathbf{t}$ , in which case the optimal solution is the conditional average  $\mathbf{f}^*(\mathbf{x}) = \mathbb{E}_t[\mathbf{t}|\mathbf{x}]$ . For a Gaussian conditional distribution of the

## Appendix B

## Exercise 4.8