CHIMIE NIVEAU SUPÉRIEUR ÉPREUVE 1

Mardi 18 mai 2004 (après-midi)

1 heure

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- N'ouvrez pas cette épreuve avant d'y être autorisé.
- Répondez à toutes les questions.
- Choisissez pour chaque question la réponse que vous estimez la meilleure et indiquez votre choix sur la feuille de réponses qui vous est fournie.

224-161 16 pages

Le tableau de la classification périodique des éléments

0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
7		9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
က		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es
				30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)
				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
				25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 N p (237)
	Numéro atomique Élément	Etement Masse atomique		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03
	Numéro Élés	Masse a		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
				22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	:-	**
7		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
1	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

- 1. Combien d'atomes d'hydrogène contient une mole d'éthanol, C₂H₅OH?
 - A. 5
 - B. 6
 - C. $1,0 \times 10^{23}$
 - D. $3,6 \times 10^{24}$
- 2. Le pourcentage en masse des éléments constitutifs d'un composé est

$$C = 72 \%$$
, $H = 12 \%$, $O = 16 \%$.

Que vaut le rapport du nombre de moles C : H dans la formule empirique (formule brute) de ce composé ?

- A. 1:1
- B. 1:2
- C. 1:6
- D. 6:1
- 3. Quel est le coefficient $de O_2(g)$ dans l'équation suivante, une fois qu'elle est pondérée (équilibrée)?

$$\underline{\hspace{1cm}} C_3H_8(g) + \underline{\hspace{1cm}} O_2(g) \rightarrow \underline{\hspace{1cm}} CO_2(g) + \underline{\hspace{1cm}} H_2O(g)$$

- A. 2
- B. 3
- C. 5
- D. 7

4. Combien de protons, de neutrons et d'électrons sont présents dans l'espèce ²⁶Mg²⁺?

	Protons	Neutrons	Électrons
A.	10	14	12
B.	12	14	10
C.	12	26	10
D.	14	12	12

- 5. Quel est le nombre total d'orbitales p contenant un ou plusieurs électrons dans l'atome de germanium (nombre atomique = 32) ?
 - A. 2
 - B. 3
 - C. 5
 - D. 8
- **6.** Parmi les propriétés physiques mentionnées ci-dessous, quelle(s) est (sont) celle(s) qui diminue(nt) lorsque le numéro atomique augmente, à la fois pour les métaux alcalins et pour les halogènes ?
 - I. Le rayon atomique
 - II. L'énergie d'ionisation
 - III. La température de fusion
 - A. I uniquement
 - B. II uniquement
 - C. III uniquement
 - D. I et III uniquement

- 7. Parmi les oxydes suivants, quel(s) est (sont) celui (ceux) qui est (sont) gazeux à la température ambiante ?
 - I. SiO₂
 - II. P_4O_6
 - III. SO₂
 - A. I uniquement
 - B. III uniquement
 - C. I et II uniquement
 - D. II et III uniquement
- 8. Des réactions suivantes, quelle(s) est (sont) celle(s) qui se déroule(nt) dans le sens indiqué ?
 - I. $Br_2 + 2I^- \rightarrow 2Br^- + I_2$
 - II. $Br_2 + 2Cl^- \rightarrow 2Br^- + Cl_2$
 - A. I uniquement
 - B. II uniquement
 - C. À la fois I et II
 - D. Ni I, ni II
- 9. Sur la base des valeurs de l'électronégativité, quelle est la liaison la plus polaire ?
 - A. B—C
 - В. С—О
 - C. N—O
 - D. O—F

- **10.** Parmi les espèces suivantes, quelle(s) est (sont) celle(s) qui est (sont) plane(s) (c'est-à-dire dont tous les atomes se situent dans un même plan)?
 - I. CO_3^{2-}
 - II. NO_3^-
 - III. SO_3^{2-}
 - A. I uniquement
 - B. II uniquement
 - C. I et II uniquement
 - D. II et III uniquement
- 11. Quelle est la substance la plus soluble dans l'eau (en mol dm⁻³) à 298 K?
 - A. CH₃CH₃
 - B. CH₃OCH₃
 - C. CH₃CH₂OH
 - D. CH₃CH₂CH₂CH₂OH
- 12. Quelle est la forme de la molécule et quel est le type d'hybridation de l'atome d'azote dans NH₃?

	Forme de la molécule	Type d'hybridation		
A.	tétraédrique	sp ³		
B.	plane trigonale	sp ²		
C.	pyramidale trigonale	sp ²		
D.	pyramidale trigonale	sp ³		

- 13. Parmi les propositions suivantes, relatives aux liaisons sigma et pi, quelle est celle qui est correcte ?
 - A. Les liaisons sigma sont formées exclusivement par des orbitales s et les liaisons pi sont formées exclusivement par des orbitales p.
 - B. Les liaisons sigma sont formées exclusivement par des orbitales p et les liaisons pi sont formées exclusivement par des orbitales s.
 - C. Les liaisons sigma sont formées soit par des orbitales s ou p et les liaisons pi sont formées exclusivement par des orbitales p.
 - D. Les liaisons sigma et les liaisons pi sont formées soit par des orbitales s, soit par des orbitales p.
- **14.** Dans quelles conditions de température et de pression, précisées ci-dessous, une masse déterminée d'un gaz idéal occupe-t-elle le plus grand volume ?

	Température	Pression		
A.	basse	basse		
B.	basse	élevée		
C.	élevée	élevée		
D.	élevée	basse		

15. Quand on mélange Ba(OH)₂ et NH₄SCN, tous deux à l'état solide, on obtient une solution et on observe un abaissement de température.

$$Ba(OH)_2(s) + 2NH_4SCN(s) \rightarrow Ba(SCN)_2(aq) + 2NH_3(g) + 2H_2O(l)$$

Parmi les propositions suivantes, laquelle est correcte en ce qui concerne les phénomènes énergétiques accompagnant cette réaction ?

- A. La réaction est endothermique et ΔH est négative.
- B. La réaction est endothermique et ΔH est positive.
- C. La réaction est exothermique et ΔH est négative.
- D. La réaction est exothermique et ΔH est positive.

Tournez la page

Sur la base des équations ci-dessous **16.**

$$Cu(s) + \frac{1}{2}O_2(g) \rightarrow CuO(s)$$
 Δ

$$Cu(s) + \frac{1}{2}O_2(g) \rightarrow CuO(s) \qquad \Delta H^{\ominus} = -156 \text{ kJ}$$

$$2Cu(s) + \frac{1}{2}O_2(g) \rightarrow Cu_2O(s) \qquad \Delta H^{\ominus} = -170 \text{ kJ}$$

quelle est la valeur de ΔH^{\ominus} (en kJ) de la réaction suivante?

$$2CuO(s) \rightarrow Cu_2O(s) + \frac{1}{2}O_2(g)$$

- A. 142
- B. 15
- C. -15
- D. -142
- Quelle est la réaction dont la valeur de ΔH^{\oplus} est la plus négative ? **17.**
 - $LiF(s) \rightarrow Li^{+}(g) + F^{-}(g)$ A.
 - B. $Li^+(g) + F^-(g) \rightarrow LiF(s)$
 - $NaCl(s) \rightarrow Na^{+}(g) + Cl^{-}(g)$ C.
 - D. $Na^+(g) + Cl^-(g) \rightarrow NaCl(s)$
- Quelle est la réaction qui s'accompagne de la plus grande augmentation d'entropie ? 18.
 - $Pb(NO_3)_2(s) + 2KI(s) \rightarrow PbI_2(s) + 2KNO_3(s)$ A.
 - $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$ B.
 - $3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$ C.
 - $H_2(g) + I_2(g) \rightarrow 2HI(g)$ D.

19. Parmi celles qui sont illustrées sur le diagramme d'enthalpie ci-dessous, quelle(s) grandeur(s) est (sont) influencée(s) par l'utilisation d'un catalyseur ?

- A. I uniquement
- B. III uniquement
- C. I et II uniquement
- D. II et III uniquement
- **20.** Quelle est la définition de la *demi-vie* pour une réaction du premier ordre ?
 - A. Le temps nécessaire pour que la quantité d'un réactif soit réduite de moitié.
 - B. La moitié du temps nécessaire à la disparition complète d'un réactif.
 - C. La moitié du temps nécessaire pour qu'une réaction atteigne sa vitesse maximale.
 - D. Le temps nécessaire pour qu'une réaction atteigne la moitié de sa vitesse maximale.
- **21.** Les valeurs de la constante cinétique, *k*, et de la température absolue, *T*, peuvent servir à la détermination de l'énergie d'activation d'une réaction par une méthode graphique. Quel graphique produit une droite ?
 - A. k en fonction de T
 - B. k en fonction de $\frac{1}{T}$
 - C. $\ln k$ en fonction de T
 - D. $\ln k$ en fonction de $\frac{1}{T}$

22. Soit la réaction

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H = -92 \text{ kJ}$

quelle(s) modification(s) aura (auront) pour effet d'augmenter la quantité d'ammoniac présente à l'équilibre dans la réaction ci-dessus ?

- I. Augmentation de la pression
- II. Augmentation de la température
- III. Addition d'un catalyseur
- A. I uniquement
- B. II uniquement
- C. I et II uniquement
- D. II et III uniquement

23. On considère la réaction

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

À l'équilibre, les concentrations sont les suivantes (in mol dm⁻³) :

$$[H_2] = 0.30$$
 $[I_2] = 0.30$ $[HI] = 3.0$

Quelle est la valeur de *K* ?

- A. 5,0
- B. 10
- C. 15
- D. 100

- **24.** Laquelle (Lesquelles) des solutions suivantes peut-on ajouter à 50 cm³ de CH₃COOH(aq) 0,10 mol dm⁻³ pour préparer une solution tampon ?
 - I. 50 cm³ de CH₃COONa(aq) 0,10 mol dm⁻³
 - II. $25 \,\mathrm{cm}^3$ de NaOH(aq) 0,10 mol dm⁻³
 - III. 50 cm³ de NaOH(aq) 0,10 mol dm⁻³
 - A. I uniquement
 - B. I et II uniquement
 - C. II et III uniquement
 - D. I, II et III
- **25.** Laquelle des équations suivantes représente une réaction acide-base selon la théorie de Lewis, **mais pas** selon la théorie de Brønsted-Lowry ?
 - A. $CO_3^{2-}(aq) + 2H^+(aq) \rightarrow H_2O(1) + CO_2(g)$
 - B. $Cu^{2+}(aq) + 4NH_3(aq) \rightarrow Cu(NH_3)_4^{2+}(aq)$
 - C. $BaO(s) + H_2O(l) \rightarrow Ba^{2+}(aq) + 2OH^{-}(aq)$
 - D. $NH_3(g) + HCl(g) \rightarrow NH_4Cl(s)$
- **26.** Que vaut la concentration en ions OH⁻ ions (en mol dm⁻³) dans une solution aqueuse dans laquelle $[H^+] = 2.0 \times 10^{-3} \text{ mol dm}^{-3}$? $(K_w = 1.0 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6})$
 - A. $2,0 \times 10^{-3}$
 - B. $4,0 \times 10^{-6}$
 - C. $5,0 \times 10^{-12}$
 - D. $2,0\times10^{-17}$

27. Quelle est la relation entre K_a and pK_a ?

A.
$$pK_a = -\log K_a$$

B.
$$pK_a = \frac{1,0 \times 10^{-14}}{K_a}$$

C.
$$pK_a = \log K_a$$

D.
$$pK_a = \frac{1,0}{K_a}$$

28. Quelle est la courbe représentative du titrage d'une base faible de concentration 0,1 mol dm⁻³ par un acide fort de concentration 0,1 mol dm⁻³?

A.

C.

D.

- **29.** Quelles transformations l'ion $Cr^{3+}(aq)$ subit-il lorsqu'il est converti en $CrO_4^{2-}(aq)$?
 - A. Son nombre d'oxydation diminue et il subit une réduction.
 - B. Son nombre d'oxydation diminue et il subit une oxydation.
 - C. Son nombre d'oxydation augmente et il subit une réduction.
 - D. Son nombre d'oxydation augmente et il subit une oxydation.

30. Les réactions suivantes sont spontanées dans le sens indiqué.

$$Fe(s) + Cd^{2+}(aq) \rightarrow Fe^{2+}(aq) + Cd(s)$$

$$Cd(s) + Sn^{2+}(aq) \rightarrow Cd^{2+}(aq) + Sn(s)$$

$$Sn(s) + Pb^{2+}(aq) \rightarrow Sn^{2+}(aq) + Pb(s)$$

Laquelle (Lesquelles) des paires suivantes réagira (réagiront) spontanément ?

I.
$$\operatorname{Sn}(s) + \operatorname{Fe}^{2+}(aq)$$

II.
$$Cd(s) + Pb^{2+}(aq)$$

III.
$$Fe(s) + Pb^{2+}(aq)$$

- A. I uniquement
- B. II uniquement
- C. III uniquement
- II et III uniquement D.
- Quel est le coefficient de H⁺ lorsque l'équation ci-dessous est pondérée (équilibrée) ? 31.

$$Pb(s) + NO_3^-(aq) + H^+(aq) \rightarrow Pb^{2+}(aq) + NO(g) + H_2O(l)$$

- A. 2
- B. 4
- C. 6
- 8 D.
- Quelle combinaison de signes de E^{\ominus} et de ΔG^{\ominus} correspond à une réaction électrochimique spontanée ? 32.

	E	ΔG°
A.	+	+
B.	+	_

C. D.

33.	Que	el(s) facteur(s) affecte(nt) la quantité de produit formé au cours d'une électrolyse ?					
		I. L'intensité du courant appliqué					
		II. La durée de l'électrolyse					
		III. La charge de l'ion					
	A.	I et II uniquement					
	B.	I et III uniquement					
	C.	II et III uniquement					
	D.	I, II et III					
34.	Que	lle proposition est correcte à propos de représentants voisins dans toute série homologue ?					
	A.	Ils ont la même formule empirique (formule brute).					
	B.	Ils diffèrent par un groupe CH_2 .					
	C.	Ils possèdent des groupes fonctionnels différents.					
	D.	Ils diffèrent par leur degré d'insaturation.					
35.	Que	el composé peut exister sous la forme d'isomères optiques ?					
	A.	H ₂ NCH ₂ COOH					
	B.	CH ₂ ClCH ₂ Cl					
	C.	CH ₃ CHBrI					
	D.	HCOOCH ₃					

26	Ouglast la	nraduit for	má lora a	de la réaction	antra CII	CII of	LIDr 2
<i>3</i> 0. '	Quei est le	produit foi	1116 1012 (ie ia reaction	chue Cn ₂	Cn_2 Ci	11101 !

- A. CH_3CH_2Br
- B. CH₂CHBr
- C. BrCHCHBr
- D. CH₃CHBr₂

37. Combien de raies présente le spectre RMN ¹H de C(CH₃)₄?

- A. 1
- B. 3
- C. 4
- D. 12

38. À quel(s) type(s) de réaction le benzène, C₆H₆, donne-t-il lieu ?

- I. Combustion
- II. Hydrogénation
- III. Substitution
- A. I uniquement
- B. I et II uniquement
- C. I et III uniquement
- D. I, II et III

- **39.** Quelle(s) réaction(s) implique(nt) la formation d'un ion positif?
 - I. $CH_3CH_2CH_2Br + OH^-$
 - II. $(CH_3)_3CBr + OH^-$
 - A. I uniquement
 - B. II uniquement
 - C. À la fois I et II
 - D. Ni I ni II
- **40.** Quel est le produit principal formé lorsqu'on chauffe énergiquement un mélange de CH₃CH₂OH et de H₂SO₄ concentré ?
 - A. CH₃CH₃
 - B. CH₃CH₂SO₄
 - C. CH₃COOH
 - D. CH₂CH₂