Cryptography and Security

Lecture 3

Recalling Discrete Probability and One Time Pad

Lecture slides are adopted from slides of Dan Boneh

- Finite set $U = \{0,1\}^n$
- Probability distribution P over U:

```
A function P: U \rightarrow [0,1] such that \Sigma P(x) = 1 where x\inU.
```

Examples:

- 1.Uniform distribution: for all $x \in U$: P(x) = 1/|U|
- 2. Point distribution at x_0 : $P(x_0) = 1$, $\forall x \neq x_0$: P(x) = 0
- Distribution vector: (P(000), P(001), P(010), ..., P(111))

Event

```
For a set A \subseteq U: Pr[A] = \sum P(x) \in [0,1] where x \in A and Pr[U]=1.

Example: U = \{0,1\}^8
```

A = { all x in U such that lsb2(x)=11 } ⊆ U for the uniform distribution on {0,1}⁸:
 Pr[A] = 1/4

Random Variable

```
X is a function X:U\rightarrowV
Example: X: \{0,1\}^n \rightarrow \{0,1\};
X(y) = Isb(y) \subseteq \{0,1\}
```

For the uniform distribution on U:

Uniform Random Variable

Let U be some set, e.g. $U = \{0,1\}^n$

 We write r ← U to denote a uniform random variable over U

for all $a \subseteq U$: Pr[r = a] = 1/|U|

(formally, r is the identity function: r(x)=x for all $x \in U$)

Let r be a uniform random variable on $\{0,1\}^2$

• Define the random variable X = r1 + r2

Then $Pr[X=2] = \frac{1}{4}$

Hint: Pr[X=2] = Pr[r=11]

- Deterministic algorithm: y ← A(m)
- Randomized algorithm

$$y \leftarrow A(m; r)$$
 where $r \leftarrow \{0,1\}^{nR}$
output is a random variable $y \leftarrow A(m)$

• Example: $A(m; k) = E(k, m), y \stackrel{R}{\leftarrow} A(m)$

Independence

events A and B are independent if

$$Pr[A and B] = Pr[A] \cdot Pr[B]$$

- random variables X,Y taking values in V are independent if
 ∀a,b∈V: Pr[X=a and Y=b] = Pr[X=a] · Pr[Y=b]
- Example: $U = \{0,1\}^2 = \{00, 01, 10, 11\}$ and $r \leftarrow^R U$ Define r.v. X and Y as: X = lsb(r), Y = msb(r) $Pr[X=0 \text{ and } Y=0] = Pr[r=00] = \frac{1}{4} = Pr[X=0] \cdot Pr[Y=0]$

Review: XOR

• XOR of two strings in {0,1}ⁿ is their bit-wise addition mod 2

Y	x⊕Y
0	0
0	1
1	0

An important property of XOR

• Thm: Y a rand. var. over $\{0,1\}^n$, X an indep. uniform var. on $\{0,1\}^n$, then $Z := Y \oplus X$ is uniform var. on $\{0,1\}^n$

Proof: (for n=1)

$$Pr[Z=0] = Pr[(x,y)=(0,0) \text{ or } (x,y)=(1,1)] = \begin{cases} y \mid Pr \\ 0 \mid Po \end{cases} \\ = Pr[(x,y)=(0,0)] + Pr[(x,y)=(1,1)] = \begin{cases} x \mid y \mid Pr \\ 0 \mid Po \end{cases} \\ = \frac{Po}{2} + \frac{Po}{2} = \frac{1}{2} \end{cases}$$

$$\frac{y \mid Pr \\ 0 \mid Po \\ 1 \mid 1/2 \end{cases}$$

The Birthday Paradox

• Let $r_1, ..., r_n \subseteq U$ be indep. identically distributed random vars.

• Thm:

when $\mathbf{n} = 1.2 \times |\mathbf{U}|^{1/2}$ then Pr[∃ i≠j: $\mathbf{r}_i = \mathbf{r}_j$] ≥ ½ **Example**: Let U = {0,1}¹²⁸

After sampling about 2⁶⁴ random messages from U, some two sampled messages will likely be the same

The Birthday Paradox

Recalling Symmetric Cipher

A **cipher** defined over $(\mathcal{X}, \mathcal{M}, \mathcal{C})$ is a pair of "efficient" algs (E, D) where

$$E: \mathcal{X} \times \mathcal{M} \rightarrow \mathcal{G}$$
, $D: \mathcal{X} \times \mathcal{G} \rightarrow \mathcal{M}$
S.L. $\forall m \in \mathcal{M}$, $\kappa \in \mathcal{X}: D(\kappa, \kappa) = m$

Where,

E is often randomized.

D is always deterministic.

One Time Pad

First example of a "secure" cipher where

key = (random bit string as long the message)

$$C := E(K,m) = K \oplus M$$

 $D(K,c) = K \oplus C$

 $D(K, E(K,m)) = D(K, K \partial m) = K \partial (K \partial m) = (K \partial K) \partial m = O \partial m = M$ given a message (m) and its OTP encryption (c), it is possible to compute the OTP key from m and c?

One Time Pad

- Good point: very fast encryption and decryption.
- Bad news: long key (as long as plaintext)

Information Theoretic Security (Shannon 1949)

- CT should reveal no "info" about PT
- A cipher (E,D) over (K,M,C) has **perfect secrecy** if $\forall m_0, m_1 \subseteq M (|m_0| = |m_1|)$ and $\forall c \subseteq C$ $Pr[E(k,m_0)=c] = Pr[E(k,m_1)=c]$ where $k \leftarrow K$

R

Lemma: OTP has perfect secrecy
 Proof:

$$\forall m, c:$$
 $\Pr \left[E(K,m)=c \right] = \frac{\# \text{Keys } K \in \mathcal{J}_{K} \text{ s.f. } E(K,m)=c}{|\mathcal{J}_{K}|}$
 $e: \text{ if } \forall m, c: \# \left[K \in \mathcal{J}_{K} : E(K,m)=c \right] = \text{const.}$
 $\implies \text{cipher has perfect secrecy}$

```
Let m \in \mathcal{M} and c \in \mathcal{C}.
How many OTP keys map \boldsymbol{m} to \boldsymbol{c}?
```

None

1 4

2

Depends on m

Lemma: OTP has perfect secrecy

For OTP:
$$\forall m, c:$$
 if $E(K,m) = c$
 $\Rightarrow k \oplus m = c$

OTP: no CT only attack (but other attacks are possible)

- Thm: Perfect secrecy \Rightarrow $|\mathcal{K}| \geq |\mathcal{M}|$
- Implies that key length >= message length
- Hard to use in practice.

https://crypto.stanford.edu/~dabo/courses/On lineCrypto/