Modelos no estándar y sistema deductivo de Hilbert

Semana $(11)_2 = 1011$

Lógica para Ciencia de la Computación - IIC2213

Prof. Sebastián Bugedo

Programa

Obertura

Primer acto

Definibilidad generalizada

Modelos no estándar

Intermedio

Segundo acto Sistema deductivo de Hilbert

Epílogo

Programa

Obertura

Primer acto Definibilidad generalizada Modelos no estándar

Intermedio

Segundo acto Sistema deductivo de Hilbert

Epílogo

El problema de definibilidad

Nos interesamos por saber

¿Cuándo ALGO se puede definir en LPO?

Estudiamos dos casos de este problema

- Definibilidad de conjuntos para una estructura fija A
- Definibilidad de propiedades, i.e. conjuntos de estructuras

¿Qué debe existir cuando tal objeto es definible?

Dada una estructura fija $\mathfrak A$ con dominio A, el conjunto

$$S \subseteq A^k$$

es definible si, y solo si, existe una fórmula (con k variables libres) $\varphi(x_1, \ldots, x_k)$ tal que

$$S = \{(a_1, \ldots, a_k) \in A^k \mid \mathfrak{A} \models \varphi(a_1, \ldots, a_k)\}\$$

La fórmula φ destila la esencia de las tuplas en ${\mathbb S}$

Dada una estructura \mathfrak{A} y un conjunto $S \subseteq A^k$

¿Cómo demostramos que S es definible?

 \blacksquare Construimos la fórmula φ

Esta misión puede ser engorrosa, pero es factible

¿Cómo demostramos que S no es definible?

- 1. Suponemos que existe φ adecuada
- 2. Buscamos un automorfismo h de $\mathfrak A$ en $\mathfrak A$ tal que para algún elemento $(a_1,\ldots,a_k)\in \mathbb S$

$$\mathfrak{A} \vDash \varphi(a_1, \dots, a_k)$$
 pero $\mathfrak{A} \not\models \varphi(h(a_1), \dots, h(a_k))$

3. Concluimos una contradicción con teorema del isomorfismo: no existe φ

¿Cuándo falla este método?

Pati-Reflexión

Sea $\mathcal{L} = \{+\}$, donde + es símbolo de función binaria. Sea $\mathfrak{A} = \langle \mathbb{N}, +^{\mathfrak{A}} \rangle$ con la interpretación usual de suma en los naturales

El siguiente conjunto no es definibile

$$S = \{(a, b, c) \in \mathbb{N}^3 \mid a \cdot b = c\}$$

¿Por qué no se puede demostrar con el teorema de isomorfismo?

En $\mathfrak{A} = \langle \mathbb{N}, +^{\mathfrak{A}} \rangle$ no existe un automorfismo no trivial

El segundo problema de definibilidad involucra propiedades: un conjunto de estructuras

$$\mathcal{P} \in S[\mathcal{L}]$$

es elementalmente definible en LPO si existe una \mathcal{L} -oración φ tal que

$$\mathfrak{A} \in \mathcal{P}$$
 si, y solo si, $\mathfrak{A} \models \varphi$

La oración φ destila la esencia de las estructuras $\mathcal P$

Dada una propiedad $P \in S[\mathcal{L}]$

¿Cómo demostramos que \mathcal{P} es (elementalmente) definible?

lacktriangle Construimos la oración φ

¿Qué ingrediente vimos para demostrar no-definibilidad?

Teorema de compacidad

Teorema (compacidad)

Un conjunto de fórmulas en LPO Σ es satisfacible si, y solo si, Σ es finitamente satisfacible

¿Cómo probar que una propiedad no es (elementalmente) definible?

- 1. Suponemos que existe oración φ que la define
- 2. Construir un conjunto infinito Σ de oraciones adecuado
- 3. Agregar φ al conjunto y demostrar que el resultado es satisfacible con T. de compacidad
- 4. Obtener una contradicción adecuada

Ojo, esta estrategia puede variar... este método es mucho más general

Ejemplo

Para un vocabulario arbitrario, sea

$$\mathcal{P}_{\mathsf{fin}} = \{\mathfrak{A} \in \mathrm{S}[\mathcal{L}] \mid \mathfrak{A} \mathsf{ tiene dominio finito}\}$$

Demostraremos que esta propiedad no es definible en LPO.

Supongamos que $\mathcal{P}_{\mathrm{fin}}$ es definible en LPO. Es decir, que existe una $\mathcal{L}\text{-oración }\varphi$ tal que

 $\mathfrak{A} \models \varphi$ si, y solo si, \mathfrak{A} tiene dominio finito

Ejemplo

Para $k \ge 2$, recordemos las \mathcal{L} -oraciones

$$\varphi_k = \exists x_1 \dots \exists x_k \bigwedge_{i \neq j} \neg (x_i = x_j)$$

y consideremos el conjunto (infinito) de \mathcal{L} -oraciones

$$\Sigma = \{\varphi\} \cup \{\varphi_k \mid k \ge 2\} \cup \{\forall x. \ x = x\}$$

Notamos que

- Σ es finitamente satisfacible
- **p** por teorema de compacidad, Σ es satisfacible

¿Qué significa que Σ completo sea satisfacible?

Ejemplo

Como Σ es satisfacible, existe $\mathfrak A$ tal que $\mathfrak A \models \Sigma$. Luego,

- $\mathfrak{A} \models \Sigma \setminus \{\varphi\}$, por lo que \mathfrak{A} tiene dominio infinito
- $\mathfrak{A} \models \varphi$, por lo que \mathfrak{A} tiene dominio finito

Esta contradicción desmuestra que \mathcal{P}_{fin} no es definible en LPO.

¿En qué estamos?

Hoy continuaremos nuestro estudio de la definibilidad

- Extenderemos la definibilidad elemental
- Demostraremos que tampoco podremos definir todo con esta nueva noción
- Demostraremos el teorema de compacidad usando deducción

Hoy: modelos no estándar y sistema de Hilbert

Playlist Unidad III y Orquesta

Playlist: LogiWawos #3

Además sigan en instagram: @orquesta_tamen

Objetivos de la clase

- ☐ Definir propiedades de forma generalizada
- Utilizar modelos no estándar para demostrar propiedades no definibles
- ☐ Conocer el sistema deductivo de Hilbert
- ☐ Demostrar el teorema de compacidad

Programa

Obertura

Primer acto

Definibilidad generalizada

Modelos no estándar

Intermedio

Segundo acto Sistema deductivo de Hilbert

Epílogo

Definibilidad generalizada

La definibilidad elemental requiere que exista una oración adecuada

- ¿Qué pasa si extendemos esto?
- Permitiremos una cantidad infinita de fórmulas

¿Podemos definir más cosas si permitimos esto?

Definibilidad generalizada

Definición

Una propiedad $\mathcal P$ es definible de forma generalizada en LPO si existe un conjunto de $\mathcal L$ -oraciones Σ tal que

 $\mathfrak{A} \in \mathcal{P}$ si, y solo si, $\mathfrak{A} \models \Sigma$

Si ${\mathcal P}$ es elementalmente definible, entonces es definible de forma generalizada

Definibilidad generalizada

Ejemplo

La propiedad

$$\mathcal{P}_{inf} = \{ \mathfrak{A} \in S[\mathcal{L}] \mid \mathfrak{A} \text{ tiene dominio infinito} \}$$

es definible de forma generalizada. Basta tomar

$$\Sigma = \left\{ \exists x_1 \ldots \exists x_k \bigwedge_{i \neq j} \neg (x_i = x_j) \mid k \geq 2 \right\}$$

que cumple

$$\mathfrak{A} \in \mathcal{P}_{inf}$$
 si, y solo si, $\mathfrak{A} \models \Sigma$

¿Toda propiedad es definible de forma generalizada?

Teorema de compacidad y definibilidad

Ejercicio

Demuestre que \mathcal{P}_{inf} no es elementalmente definible

Teorema de compacidad y definibilidad

Ejercicio

Supongamos que \mathcal{P}_{\inf} es elementalmente definibile, i.e. existe una oración φ tal que

$$\mathfrak{A} \in \mathcal{P}_{inf}$$
 si, y solo si, $\mathfrak{A} \models \varphi$

Ahora, sabemos que para toda estructura \mathfrak{A} ,

$$\mathfrak{A} \vDash \varphi$$
 si, y solo si, $\mathfrak{A} \vDash \{\varphi_k \mid k \ge 2\}$

Esto nos sugiere tomar el conjunto de oraciones siguiente

$$\Psi = \{\neg \varphi\} \cup \{\varphi_k \mid k \ge 2\}$$

que es insatisfacible (toda estructura que satisface $\neg \varphi$, es finita)

Teorema de compacidad y definibilidad

Ejercicio

Como Ψ no es satisfacible, por teorema de compacidad tampoco es finitamente satisfacible. Es decir, existe $\Psi' \subseteq \Psi$ finito que no es satisfacible.

Si Ψ' es finito, existe un índice n máximo tal que $\varphi_n \in \Psi'$. Luego,

$$\Psi' \subseteq \{\neg \varphi\} \cup \{\varphi_k \mid k \leq n\}$$

Consideremos ahora la estructura $\mathfrak A$ con dominio A tal que |A|=n+1, i.e. $\mathfrak A$ es finita. Luego

$$\mathfrak{A}$$
 finita $\Rightarrow \mathfrak{A} \not\models \varphi \Rightarrow \mathfrak{A} \models \neg \varphi$

Además, como |A| = n + 1, tenemos $\mathfrak{A} \models \varphi_k$ para todo $k \le n$. Con esto,

$$\mathfrak{A} \models \Psi' \Rightarrow \Psi'$$
 satisfacible

¡Contradicción! Concluimos que no existe tal φ .

Programa

Obertura

Primer acto

Definibilidad generalizada

Modelos no estándar

Intermedio

Segundo acto Sistema deductivo de Hilbert

Epílogo

El teorema de compacidad se usa frecuentemente para construir estructuras

- Estructuras que son equivalentes a otras
- Pero que no son isomorfas

Definición

Dos \mathcal{L} -estructuras $\mathfrak{A},\mathfrak{B}$ son equivalentes si para toda \mathcal{L} -oración φ ,

$$\mathfrak{A} \vDash \varphi$$
 si, y solo si, $\mathfrak{B} \vDash \varphi$

Con esta estrategia, podremos demostrar que hay propiedades que no son definibles de forma generalizada!

Ejemplo

Sea $\mathcal{L} = \{E\}$ con E símbolo de relación binaria y consideremos la siguiente \mathcal{L} -estructura infinita

$$\mathfrak{A} = \langle \mathbb{N}, \{(i, i+1), (i+1, i) \mid i \in \mathbb{N} \} \rangle$$

$$0 \longleftrightarrow 1 \longleftrightarrow 2 \longleftrightarrow 3 \longleftrightarrow \cdots$$

Sea
$$\Sigma = \{ \varphi \mid \mathfrak{A} \models \varphi \}$$

- $lue{\Sigma}$ es el conjunto de todas las fórmulas satisfechas en ${\mathfrak A}$
- Tenemos que $\mathfrak{A} \models \Sigma$

Vamos a definir otra estructura que satisface al mismo conjunto, ¡pero que representa un grafo disconexo!

Ejemplo

Sea $\mathcal{L}' = \{E, a, b\}$ con E símbolo de relación binaria y dos nuevos símbolos de constantes.

Definimos recursivamente las siguientes \mathcal{L}' -fórmulas para $n \geq 1$

$$\psi_1(x,y) = E(x,y)$$

$$\psi_{n+1}(x,y) = \exists z. \, \psi_n(x,z) \land E(z,y)$$

Además, definimos $\varphi_n^{ab} = \neg \psi_n(a, b)$

- Esta oración es satisfecha si no existe camino de largo n entre las constantes a y b
- Notemos que es una \mathcal{L}' -oración y no una \mathcal{L} -oración

Ejemplo

Para k fijo, ¿es satisfacible el siguiente conjunto?

$$\Sigma \cup \{\varphi_n^{ab} \mid n < k\}$$

Consideremos $\mathfrak{C} = \langle \mathbb{N}, E^{\mathfrak{A}}, 0, k \rangle$

- Mismo dominio que 🎗
- Mismo conjunto de aristas que 🎗
- $lue{}$ Por lo tanto, satisface todas las oraciones de Σ
- Las interpretaciones de a y b están a distancia k, por lo que satisface $\{\varphi_n^{ab} \mid n < k\}$

Concluimos que efectivamente

$$\mathfrak{C} \vDash \Sigma \cup \{\varphi_n^{ab} \mid n < k\}$$

Ejemplo

Como el siguiente conjunto es satisfacible para k arbitrario

$$\Sigma \cup \{\varphi_n^{ab} \mid n < k\}$$

el siguiente conjunto es finitamente satisfacible

$$\Sigma' = \Sigma \cup \{\varphi_n^{ab} \mid n \ge 1\}$$

y por teorema de compacidad, también es satisfacible.

De esto, sabemos que debe existir una \mathcal{L}' -estructura $\mathfrak B$ tal que

$$\langle B, E^{\mathfrak{B}}, a^{\mathfrak{B}}, b^{\mathfrak{B}} \rangle \vDash \Sigma'$$

Ejemplo

$$\Sigma' = \Sigma \cup \{\varphi_n^{ab} \mid n \ge 1\}$$

Como la \mathcal{L}' -estructura $\mathfrak{B} = \langle B, E^{\mathfrak{B}}, a^{\mathfrak{B}}, b^{\mathfrak{B}} \rangle$ cumple $\mathfrak{B} \models \Sigma'$, en ella **no existe camino** entre $a^{\mathfrak{B}}$ y $b^{\mathfrak{B}}$... jde cualquier largo!

Es decir, el grafo representado por ${\mathfrak B}$ es **disconexo**.

Ahora, como $\Sigma \subseteq \Sigma'$ tenemos que

Definimos entonces la \mathcal{L} -estructura $\mathfrak{A}' = \langle B, E^{\mathfrak{B}} \rangle$

Por definición de Σ , tenemos que $\mathfrak A$ y $\mathfrak A'$ son equivalentes

Llamamos a \mathfrak{A}' un **modelo no estándar** de \mathfrak{A}

Modelos no estándar

Observemos que en el ejemplo

- \blacksquare \mathfrak{A} y \mathfrak{A}' son equivalentes
- No son isomorfas (una es un grafo conexo, la otra no)

Decimos que la lógica de primer orden **no es capaz** de distinguir estas dos estructuras: satisfacen exactamente las mismas fórmulas

¿Para qué nos sirve este artilugio?

Modelos no estándar

Ejercicio

Sea $\mathcal{L} = \{E\}$ para representar grafos. Demuestre que la siguiente propiedad no es definible de forma generalizada

 $\mathcal{P}_{\text{cnx}} = \left\{\mathfrak{B} \in \mathrm{S}[\mathcal{L}] \mid \mathfrak{B} \text{ representa un grafo conexo}\right\}$

Modelos no estándar

Ejercicio

Supongamos que existe Ψ conjunto de oraciones tal que

$$\mathfrak{B} \in \mathcal{P}_{cnx}$$
 si, y solo si, $\mathfrak{B} \models \Psi$

Sea $\mathfrak A$ la estructura del ejemplo (grafo conexo infinito). Como el grafo representado por $\mathfrak A$ es conexo, $\mathfrak A \in \mathcal P_{cnx}$. Luego $\mathfrak A \models \Psi$.

Como $\mathfrak{A}' \models \Sigma$ por ser modelo no estándar de \mathfrak{A} y además $\Psi \subseteq \Sigma$, entonces $\mathfrak{A}' \models \Psi$. Pero el grafo representado por \mathfrak{A}' es disconexo, lo cual es una contradicción.

Concluimos que no existe tal conjunto Ψ , i.e. la propiedad \mathcal{P}_{cnx} no es definible de forma generalizada.

Programa

Obertura

Primer acto Definibilidad generalizada Modelos no estándar

Intermedio

Segundo acto Sistema deductivo de Hilbert

Epílogo

Programa

Obertura

Primer acto Definibilidad generalizada Modelos no estándar

Intermedio

Segundo acto Sistema deductivo de Hilbert

Epílogo

Hacia la demo del teorema de compacidad

Para demostrar el teorema de compacidad recurriremos al concepto de deducción

- ¿Qué se puede deducir de un conjunto de fórmulas?
- ¿Se puede deducir cualquier cosa que es consecuencia lógica?

¿Cómo formalizamos la idea de deducción en lógica proposicional?

Consecuencia lógica

Definición

Sean una \mathcal{L} -oración φ y un conjunto de oraciones Σ . Decimos que φ es consecuencia lógica de Σ , denotado por $\Sigma \vDash \varphi$ si, y solo si, para toda \mathcal{L} -estructura $\mathfrak A$ se tiene

si
$$\mathfrak{A} \models \Sigma$$
 entonces $\mathfrak{A} \models \varphi$

Una \mathcal{L} -fórmula $\varphi(x_1,\ldots,x_n)$ es consecuencia lógica de un conjunto de fórmulas Σ si, y solo si, para todo par (\mathfrak{A},σ)

si
$$(\mathfrak{A}, \sigma) \models \Sigma$$
 entonces $(\mathfrak{A}, \sigma) \models \varphi$

La misma idea que en lógica proposicional

Sistemas deductivos en LPO

Definición (sistema deductivo)

Sea $\mathcal L$ un vocabulario. Un sistema deductivo o demostración de φ desde Σ es una secuencia finita de fórmulas de primer orden $\varphi_1,\ldots,\varphi_n$ tal que

- Cada φ_i es \mathcal{L} -fórmula
- $\varphi_n = \varphi$
- Para todo φ_i
 - $\varphi_i \in \Sigma$ o
 - φ_i se obtiene de fórmulas precedentes en la secuencia mediante la aplicación de una regla de deducción

Lo denotamos por $\Sigma \vdash \varphi$

¿Qué propiedades son deseables en un sistema deductivo?

El sistema de Hilbert no es el único sistema deductivo en LPO

- Tiene todas las buenas propiedades que buscamos: ¿Qué queremos???
- Tal como resolución en proposicional, incluiremos más que solo reglas deductivas

Veremos sus ingredientes y reglas antes de enunciarlo

Axiomas lógicos

El sistema de Hilbert incluye los siguientes axiomas para \mathcal{L} -fórmulas φ, ψ, θ

- $(\varphi \to (\psi \to \theta)) \to ((\varphi \to \psi) \to (\varphi \to \theta))$
- $(\neg \varphi \to \neg \psi) \to (\psi \to \varphi)$
- $\blacksquare (\exists x.\varphi) \leftrightarrow (\neg \forall x.\neg \varphi)$
- $\forall x. \ \varphi(x) \rightarrow \varphi(t)$
- $\varphi(t) \to \exists x. \ \varphi(x)$

donde t denota una variable arbitraria

Con estos axiomas, podemos agregar fórmulas válidas convenientes. Además se pueden incluir instancias de tautologías proposicionales

Axiomas lógicos (continuación)

El sistema de Hilbert incluye los siguientes axiomas de la igualdad

- $\forall x. \ x = x$
- $\forall x. \forall y. (x = y \rightarrow y = x)$
- $\forall x. \forall y. \forall z. (x = y \land y = z \rightarrow x = z)$
- Para símbolo de relación n-aria $R \in \mathcal{L}$

$$\forall x_1 \dots \forall x_n \forall y_1 \dots \forall y_n [R(x_1, \dots, x_n) \land \bigwedge x_i = y_i \rightarrow R(y_1, \dots, y_n)]$$

Para símbolo de función *m*-aria $f \in \mathcal{L}$

$$\forall x_1 \ldots \forall x_n \forall y_1 \ldots \forall y_n \Big[\bigwedge x_i = y_i \to f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n) \Big]$$

Reglas de inferencia

Modus ponens

Para \mathcal{L} -fórmulas φ, ψ

$$\frac{\varphi \to \psi}{\varphi}$$

Generalización

Para \mathcal{L} -fórmulas φ, ψ tales que y no aparece libre en φ

$$\frac{\varphi \to \psi(y)}{\varphi \to \forall y. \psi(y)} \qquad \frac{\psi(y) \to \varphi}{\exists y. \psi(y) \to \varphi}$$

Definición (sistema deductivo)

Sea \mathcal{L} un vocabulario. Una demostración de φ desde Σ es una secuencia finita de fórmulas de primer orden $\varphi_1, \ldots, \varphi_n$ tal que

- Para cada $i \le n$
 - $\varphi_i \in \Sigma$ o
 - φ_i se obtiene de un axioma lógico o
 - existen j, k < i tales que φ_i se obtiene de φ_j y φ_k usando modus ponens
 - existe j < i tales que φ_i se obtiene de φ_j usando generalización
- $\varphi_n = \varphi$

Lo denotamos por $\Sigma \vdash_{\mathcal{H}} \varphi$

¿Es bueno este sistema?

Propiedades del sistema de Hilbert

Teorema (correctitud)

Dado un conjunto de fórmulas $\Sigma \cup \{\varphi\}$,

si $\Sigma \vdash_H \varphi$, entonces $\Sigma \vDash \varphi$

El sistema deduce solo consecuencias lógicas

Propiedades del sistema de Hilbert

Teorema (completitud de Gödel) Dado un conjunto de \mathcal{L} -fórmulas $\Sigma \cup \{\varphi\}$,

si
$$\Sigma \vDash \varphi$$
, entonces $\Sigma \vdash_H \varphi$

El sistema puede deducir todas las consecuencias lógicas desde Σ

Teorema de compacidad

Teorema (compacidad)

Un conjunto de \mathcal{L} -fórmulas en LPO Σ es satisfacible si, y solo si, Σ es finitamente satisfacible

Demostración

(⇒)Sea Σ satisfacible. Es decir, existe una \mathcal{L} -estructura $\mathfrak A$ y asignación σ en $\mathfrak A$ tal que para toda φ ∈ Σ,

$$(\mathfrak{A}, \sigma) \vDash \varphi$$

En particular, para cualquier $\Sigma' \subseteq \Sigma$ finito, se cumple que

$$(\mathfrak{A},\sigma) \vDash \Sigma'$$

por lo que Σ es finitamente satisfacible.

Teorema de compacidad

Demostración

 (\Leftarrow) Sea Σ finitamente satisfacible y supongamos que Σ no es satisfacible.

Como Σ no es satisfacible, no existe (\mathfrak{A}, σ) tal que $(\mathfrak{A}, \sigma) \models \Sigma$.Luego, al ser inconsistente podemos obtener como consecuencia lógica una contradicción arbitraria

$$\Sigma \vDash \psi \land \neg \psi$$

para una oración ψ cualquiera.

Por el teorema de completitud de Gödel, $\psi \land \neg \psi$ debe ser deducible a partir de Σ y existe una demostración

$$\varphi_1,\ldots,\varphi_n$$

Teorema de compacidad

Demostración

Notemos que la secuencia $\varphi_1,\dots,\varphi_n$ que demuestra $\psi \wedge \neg \psi$ a partir de Σ cumple

- Algunos φ_i cumplen $\varphi_i \in \Sigma$
- Existe una cantidad finita de fórmulas φ_i

Luego, existe un subconjunto finito $\Sigma' \subseteq \Sigma$ tal que

si
$$\Sigma \vdash_H \psi \land \neg \psi$$
 entonces $\Sigma' \vdash_H \psi \land \neg \psi$

Por el teorema de correctitud del sistema de Hilbert, tenemos que

$$\Sigma' \vDash \psi \land \neg \psi$$

Es decir, existe un subconjunto de Σ no satisfacible. Esto contradice la hipótesis de Σ finitamente satisfacible. Concluimos que Σ es satisfacible.

Programa

Obertura

Primer acto

Definibilidad generalizada

Modelos no estándar

Intermedio

Segundo acto Sistema deductivo de Hilbert

Epílogo

Actividad Espiritual Complementaria #2

An epic drama of adventure and exploration

Objetivos de la clase

- ☐ Definir propiedades de forma generalizada
- Utilizar modelos no estándar para demostrar propiedades no definibles
- Conocer el sistema deductivo de Hilbert
- ☐ Demostrar el teorema de compacidad

¿Qué aprendí hoy? ¿Comentarios?

Ve a

www.menti.com

Introduce el código

3319 4956

O usa el código QR