(1) Either prove true/false: @ of H, K & 6 then either HK or KH is a subgroup. Grabe: In GLa(Z), UT. LT, and LT, UT, are not subject as

> and Tis not in GL (7) (b) Every finde gp G is wormsphie to a subgp of $GL_n(c)$ for some n. Strue: By Cayley's theorem, G= a subgrof son for some n, and there is an isomorphic copy of Sn in GLn(1) consisting of the permetation matrices

2) Let $G = H \ltimes U$ be a finite group, for groups H and U. Let p be prime, and let $Syl_p(G)$ denote the set of Sylow p-subgroups of G.

- (a) Show that if Syl_p(G) ∩ Syl_p(U) ≠ ∅, then Syl_p(G) = Syl_p(U).
- (b) Suppose $\mathrm{Syl}_p(G)\cap\mathrm{Syl}_p(U)\neq\emptyset$ and $\gcd(|H|,|U|)=1$. Prove that H acts transitively on $\mathrm{Syl}_p(U)$ if and only if $Q \leq U$ for some $Q \in \mathrm{Syl}_p(G)$.

 All of the Sylon prubyprof G are conjugate to one orother. If some P∈ Type(G) is also a bythou produp of U, then 161=p'n ad 1U1=p'm for p/m, n. Now work that as G=HXU, UAG, and there gPg-1=U for all geG. If 6 had a Sylow subgroup not in U, then P could not be conjugate to that subgroup, violating Sylvier Hearn.

B suppose first that Q & U for some Q & Sylp (6). Note that as Sylp (6) = Sylp (11), arel all Sylou probyroups are conjugate in U, skis implies about Q is the unique Sylow protograp of U and show at is drivial that Hacks transitively on Sylp(U) Conversely, say H at stransitively an Sylp(U) and let $Q \in Sylp(U)$. Then $|H(Q)| = \frac{|Sulp(u)|}{|Stab_{\mu}(Q)|}$. Since |Sylp(u)| divides |U|, and $|Stab_{\mu}(Q)|/|H|$ with gcd(|U|,|H|)=1, we must have $|Stab_{\mu}(Q)|-1$, so that H acts francished on Syla(U)

- Let R be the subring of Q consisting of fractions with odd denominators in reduced form; you may assume without proof that R is a ring.
 - (a) Prove that all irreducible elements of R, and all prime elements of R, are of the form 2u for some invertible element u of R.
 - (b) Prove that R is Euclidean. [Hint: consider the function v : R\{0} → Z for which $v(2^k u) = k$ whenever u is a unit.]
- a Lot reR be irreducible. Note the units of r one the odd integers, and the fractions w/ odd numeroson + denominators. (a is an integral domain, and then Ris, so showing this for irreducible takes care of prines too)

r=ab and one of a, b is a unit. claim ab=du for u aunit.

Note 2 is not a unit as 1/2 \$R anything w/ more other I power of 2 in the remember is not irreducible as 2. In is a product of two non-words. If I has no power of 2 in the numerator, then I is not irreducible since it is a writ.

6 Let a, b & R. If b is a writ, then a=(abi)b and we are done.

Otherwise, b=2ku for uER* and k21. Hen a= (2" ") " a -

 $a=2^{l}v$, suppose $l\geq k$ 2 (2 " (2 " u) (2 " u' v) 4 l<k

 $2^{l}v = (2^{k}u)() - ()$ $= 2^{l}(2^{k-l}() - ()) \quad (as va unit, its remember so not dissible by 2$ $= 3^{l}(2^{k-l}() - ()) \quad (as va unit, its remember so not dissible by 2$ $= 3^{l}(2^{k-l}() - ()) \quad (as va unit, its remember so not dissible by 2$ $= 3^{l}(2^{k-l}() - ()) \quad (as va unit, its remember so not dissible by 2$ $= 3^{l}(2^{k-l}() - ()) \quad (as va unit, its remember so not dissible by 2$ $= 3^{l}(2^{k-l}() - ()) \quad (as va unit, its remember so not dissible by 2$ $= 3^{l}(2^{k-l}() - ()) \quad (as va unit, its remember so not dissible by 2$ $= 3^{l}(2^{k-l}() - ()) \quad (as va unit, its remember so not dissible by 2$ $= 3^{l}(2^{k-l}() - ()) \quad (as va unit, its remember so not dissible by 2$

Done already, see Canonical_forms.xopp.

- 5) Let p be a prime number, \mathbb{F}_p be the field with p elements, and $F = \mathbb{F}_p(t)$, where t is an indeterminate.
 - (a) Prove that the polynomial x^p-t is irreducible over F. [Hint: consider factorizations over the polynomial ring $\mathbb{F}_p[t]$ and use Gauss's Lemma.]
 - (b) Let α be a root of $x^p t$, and let $E = F(\alpha)$. Find the degree of E over F, and find the automorphism group $\operatorname{Aut}(E/F)$.
- (a) If x^p-t is irreducible over $\mathbb{F}_p[t]$, it is irreducible over $\mathbb{F}_p(t)$ by Gauss' lemma, as $\mathbb{F}_p[t]$ is a UFD.

 Eisenstein's lemma: the constant term belongs to (t) but not (t)²= (t²)

 so by Eisenstein, x^p-t is irreducible over $\mathbb{F}_p[t]$.
- (b) Since a a root of x t, and this polynomial is irreducible over F,

[E:F] =
$$deg(m_{\infty}(x)) = p$$
.
Since IFp has pelaments, $|I_p^{\infty}| = p^{-1}$ so $x^p = x + x \in I_p$.
 $x = \sqrt[n]{t}$ and $(x - \sqrt[n]{t})^p = x^p - t$, so x is the only soon of $x^p - t$.
Thus, $Aut(E/F)$ is trival. Still drue if p^{-1} as $t^{-1}t = I_2$.

- 6) Suppose F is a field, K is the splitting field of a degree 4 separable polynomial in F[x], and [K:F] = 8.
 - (a) Find Gal(K/F), up to isomorphism.
 - (b) How many degree two subextensions are there of K/F?

K is an 8-dimensional vector space over F, and
$$|Gal(K/F)|=8$$
.

Thus $Gal(K/F)$ is either D8 or a subgroup of S4 or A4.

A4 has no subgreat order 8.

S4 has only D8 as an order 8 subgroup,

SO $Gal(K/F)\cong D_8$.

(1) A deg 2 subexelension FEESK corresponents to an index 2 subgp of Do, of which where is exactly 1.