1	
2	Abstract of the Disclosure
3	
4	The present invention relates to a radar measuring device which, with a simple
5	design, ensures reliable distance determination even when a mixed signal is
6	zero, and a method for operating a radar measuring device. The radar measuring
7	device includes:
8	A high-frequency oscillator (11) which emits two different carrier frequency
9	signals (F1, F2),
10	A first switching device (14) for switching the carrier frequency signals (F1, F2)
11	as a function of first pulse signals (P1) and emitting radar pulse signals (T1, 2),
12	A transmission antenna (16) and a receiving antenna (18),
13	A second switching device (24) for switching the carrier frequency signals as a
14	function of a delayed second pulse signal (P2) and emitting delayed radar pulse
15	signals (S1, 2),
16	A mixing device (21) for mixing received radar signals (R1, 2) with the delayed
17	radar pulse signals (S1, 2) and emitting mixed signals (M1, 2).
18	
19	The phase differences between the received radar signals (R1, 2) and delayed
20	radar pulse signals (S1, 2) differ by a predetermined value when the two carrier
21	frequency signals (F1, 2) are emitted. An amplitude signal is subsequently
22	determined from the first and second mixed signal (M1, 2).
23	
24	Figure
25	
26	
27	
28	

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 25. März 2004 (25.03.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/025322 A1

(51) Internationale Patentklassifikation⁷: 13/36, 13/93

G01S 13/24,

(21) Internationales Aktenzeichen: PCT/DE2003/002006

(22) Internationales Anmeldedatum:

17. Juni 2003 (17.06.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 102 41 463.7 6. September 2002 (06.09.2002) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): ROBERT BOSCH GMBH [DE/DE]; Postfach 30 02 20, 70442 Stuttgart (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): HOETZEL, Juergen [DE/DE]; Reitfeldstrasse 9, 61197 Florstadt (DE). SCHMID, Dirk [DE/DE]; Rahaldenstrasse 12, 75397 Simmozheim (DE).

(74) Gemeinsamer Vertreter: ROBERT BOSCH GMBH; . Postfach 30 02 20, 70442 Stuttgart (DE).

(81) Bestimmungsstaaten (national): JP, US.

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Veröffentlicht:

mit internationalem Recherchenbericht

[Fortsetzung auf der nächsten Seite]

(54) Title: RADAR MEASUREMENT DEVICE, ESPECIALLY FOR A MOTOR VEHICLE, AND METHOD FOR OPERATING A RADAR MEASUREMENT DEVICE

(54) Bezeichnung: RADARMESSVORRICHTUNG, INSBESONDERE FÜR EIN KRAFTFAHRZEUG, UND VERFAHREN ZUM BETREIBEN EINER RADARMESSVORRICHTUNG

(57) Abstract: The invention relates to a radar measurement device which has a simple structure and which enables reliable distance measurement even when a mixed signal is reset to zero. The invention also relates to a method for operating a measurement device. The radar measurement device comprises a high-frequency oscillator (11) emitting two different carrier frequency signals (F1,F2), a first switching device (14) for switching the carrier frequency signals (F1,F2) according to first pulse signals (P1) and for emitting frequency signals according to a delayed second pulse signal (P2) and for emitting delayed radar pulse signals (S1,2), a mixing (M1,M2). The phase difference between the received radar signals (R1,R2) and delayed radar pulse signals (S1,S2) varies according to a predefined value when the two carrier frequency signals (F1,2) are emitted. An amplitude signal is determined from the first and second mixed signals (M1, 2).

VO 2004/025322