距離空間

空間 X に関数 $d: X \times X \to \mathbb{R}$ が定義され、d が次の 3 つを満たすとする。

- 1. $\forall x, y \in X$ に対し、 $d(x,y) \geq 0$ であり、 $d(x,y) = 0 \Leftrightarrow x = y$
- 2. $\forall x, y \in X$ に対し、d(x,y) = d(y,x)
- 3. $\forall x, y, z \in X$ に対し、 $d(x,y) + d(y,z) \ge d(x,z)$

この時、関数 d を距離関数といい、距離関数が定義された空間 X を距離空間という。

ユークリッド距離

 \mathbb{R}^n の元 $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n)$ に対し、

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
 (1)

をユークリッド距離という。

開集合

集合 X の部分集合 O が開集合であるとは、任意の点 $x \in O$ についてある ε 近傍 $U_{\varepsilon}(x)$ が存在し $U_{\varepsilon}(x) \subset O$ であるときをいう。

閉集合

集合 X の部分集合 C が閉集合であるとは、C の補集合 $X \setminus C$ が開集合となるときをいう。

 \mathbb{R}^n 上の通常のユークリッド距離 d_n に対して (\mathbb{R}^n,d_n) は距離空間になることを示せ。

.....

ユークリッド距離 d_n が距離関数の 3 条件を満たすことを確認する。

 $\forall x, y, z \in \mathbb{R}^n$ とする。

$$d_n(\boldsymbol{x}, \boldsymbol{y}) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2} \ge 0$$
 (2)

ユークリッド距離は正の平方根であるため常に 0 以上である。また、 $d_n(\boldsymbol{x},\boldsymbol{y})=0$ となる時 $x_i=y_i$ であり、 $\boldsymbol{x}=\boldsymbol{y}$ であれば $d_n(\boldsymbol{x},\boldsymbol{y})=0$ となる。つまり、 $d_n(\boldsymbol{x},\boldsymbol{y})=0$ 会 $\boldsymbol{x}=\boldsymbol{y}$ である。

$$d_n(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2} = \sqrt{\sum_{i=1}^n (y_i - x_i)^2} = d_n(\mathbf{y}, \mathbf{x})$$
 (3)

根号の中は平方和であるので、 $(x_i-y_i)^2=(y_i-x_i)^2$ となり、 $d_n(\boldsymbol{x},\boldsymbol{y})=d_n(\boldsymbol{y},\boldsymbol{x})$ である。

三角不等式 $d_n(\boldsymbol{x}, \boldsymbol{y}) + d_n(\boldsymbol{y}, \boldsymbol{z}) \ge d_n(\boldsymbol{x}, \boldsymbol{z})$ を示す。

最初に示した通り d_n は常に 0 以上である。そこで、2 乗の差が正となることを示せばよい。

$$(d_n(\boldsymbol{x}, \boldsymbol{y}) + d_n(\boldsymbol{y}, \boldsymbol{z}))^2 - (d_n(\boldsymbol{x}, \boldsymbol{z}))^2 \ge 0$$
(4)

$$(d_n(\boldsymbol{x},\boldsymbol{y}) + d_n(\boldsymbol{y},\boldsymbol{z}))^2 - (d_n(\boldsymbol{x},\boldsymbol{z}))^2$$
(5)

$$= \left(\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} + \sqrt{\sum_{i=1}^{n} (y_i - z_i)^2}\right)^2 - \left(\sqrt{\sum_{i=1}^{n} (x_i - z_i)^2}\right)^2$$
 (6)

$$=2\left(\sqrt{\left(\sum_{i=1}^{n}(x_{i}-y_{i})^{2}\right)\left(\sum_{i=1}^{n}(y_{i}-z_{i})^{2}\right)}-\sum_{i=1}^{n}(x_{i}-y_{i})(y_{i}-z_{i})\right)$$
(7)

$$\geq 2\left(\sqrt{\left(\sum_{i=1}^{n}(x_i-y_i)(y_i-z_i)\right)^2}-\sum_{i=1}^{n}(x_i-y_i)(y_i-z_i)\right)=0$$
(8)

式 (7) には Schwarz の不等式 $((\sum_{i=1}^n a_i^2)(\sum_{i=1}^n b_i^2) \geq (\sum_{i=1}^n a_i b_i)^2)$ を利用した。

三角不等式 $d_n(\boldsymbol{x}, \boldsymbol{y}) + d_n(\boldsymbol{y}, \boldsymbol{z}) \ge d_n(\boldsymbol{x}, \boldsymbol{z})$ が成り立つことが示せた。

これによりユークリッド距離 d_n は \mathbb{R}^n 上の距離関数となるので、 (\mathbb{R}^n, d_n) は距離空間である。

 \mathbb{R}^n の 2 つの元 $\boldsymbol{x} = (x_1, \dots, x_n), \boldsymbol{y} = (y_1, \dots, y_n)$ に対して $d_n^*(\boldsymbol{x}, \boldsymbol{y}) = \max\{|x_i - y_i| \in \mathbb{R} \mid i = 1, \dots, n\}$ とすると (\mathbb{R}^n, d_n^*) は距離空間になることを示せ。

.....

 d_n^* の定義に $|x_i-y_i|$ とあるので、 ${}^\forall {m x},{m y}\in \mathbb{R}^n$ に対し $d_n^*({m x},{m y})\geq 0$ である。また、 $d_n^*({m x},{m y})=0$ ⇒ ${m x}={m y}$ であり、 $d_n^*({m x},{m x})=0$ である。

次の式の通り $d_n^*(\boldsymbol{x}, \boldsymbol{y}) = d_n^*(\boldsymbol{y}, \boldsymbol{x})$ である。

$$d_n^*(\boldsymbol{x}, \boldsymbol{y}) = \max\{|x_i - y_i| \in \mathbb{R} \mid i = 1, \dots, n\}$$
(9)

$$= \max\{|y_i - x_i| \in \mathbb{R} \mid i = 1, \dots, n\} = d_n^*(\boldsymbol{y}, \boldsymbol{x})$$
(10)

三角不等式 $d_n^*(\boldsymbol{x}, \boldsymbol{y}) + d_n^*(\boldsymbol{y}, \boldsymbol{z}) \ge d_n^*(\boldsymbol{x}, \boldsymbol{z})$ を示す。 $d_n^*(\boldsymbol{x}, \boldsymbol{z})$ は定義からある k が存在し $d_n^*(\boldsymbol{x}, \boldsymbol{z}) = |x_k - z_k|$ となる。

実数の絶対値における三角不等式から y の k 成分 y_k を用いて次の不等式が成り立つ。

$$|x_k - y_k| + |y_k - z_k| \ge |x_k - z_k| \tag{11}$$

 d_n^* の定義より $d_n^*(\boldsymbol{x}, \boldsymbol{y}) \ge |x_k - y_k|$ 、 $d_n^*(\boldsymbol{y}, \boldsymbol{z}) \ge |y_k - z_k|$ である。

$$d_n^*(\boldsymbol{x}, \boldsymbol{y}) + d_n^*(\boldsymbol{y}, \boldsymbol{z}) \ge |x_k - y_k| + |y_k - z_k| \ge |x_k - z_k| = d_n^*(\boldsymbol{x}, \boldsymbol{z})$$
(12)

これにより d_n^* は距離関数であり、 (\mathbb{R}^n, d_n^*) は距離空間になる。

閉集合の無限個の和集合が閉集合ではない開集合となる例をあげ、それを証明せよ。

.....

ℝ 上の集合を考える。

$$A_1 = [0, 0] = \{0\}, \ A_2 = \left[-\frac{1}{2}, \frac{1}{2}\right], \ A_3 = \left[-\frac{2}{3}, \frac{2}{3}\right],$$
 (13)

$$A_4 = \left[-\frac{3}{4}, \frac{3}{4} \right], \dots, A_n = \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right], \dots$$
 (14)

この時、各 A_i は閉集合であるが、 $\bigcup_{i=1}^{\infty} A_i$ は閉集合ではなく開集合となる。

 $A_n = \left[-1 + \frac{1}{n}, 1 - \frac{1}{n}\right]$ に対して補集合は次のようになる。

$$A_n^c = \left(-\infty, -1 + \frac{1}{n}\right) \cup \left(1 - \frac{1}{n}, \infty\right) \tag{15}$$

 $\forall x \in A_n^c$ とすると $x \in \left(-\infty, -1 + \frac{1}{n}\right)$ または $x \in \left(1 - \frac{1}{n}, \infty\right)$ である。 $x \in \left(-\infty, -1 + \frac{1}{n}\right)$ の場合を考える。 $\varepsilon = \frac{1}{2}\left(\left(-1 + \frac{1}{n}\right) - x\right)$ とすると

$$x \in (x - \varepsilon, x + \varepsilon) \subset A_n^c \tag{16}$$

である。 $x\in \left(1-\frac{1}{n},\infty\right)$ の場合も同様の議論により x の ε 近傍は A_n の補集合に含まれる。この為、補集合 A_n^c が開集合となり、 A_n は閉集合である。

閉集合 A_n の和集合 $\bigcup_{i=1}^{\infty} A_i$ について考える。

 A_n は次のような包含関係が成り立っている。

$$A_1 \subset A_2 \subset A_3 \subset A_4 \subset \dots \subset A_n \subset \dots \tag{17}$$

 $\forall x \in \bigcup_{i=1}^{\infty} A_i$ とする。この時、ある k が存在し $x \in A_k$ であり、 $x = -1 + \frac{1}{k}$ 又は $x = 1 - \frac{1}{k}$ 又は $-1 + \frac{1}{k} < x < 1 - \frac{1}{k}$ である。 $-1 + \frac{1}{k} < x < 1 - \frac{1}{k}$ の場合

$$\varepsilon = \min\left\{\frac{1}{2}\left(x - \left(-1 + \frac{1}{k}\right)\right), \frac{1}{2}\left(\left(1 - \frac{1}{k}\right) - x\right)\right\}$$
(18)

このように ε を定義すると ε 近傍 $U_{\varepsilon}(x)$ は $U_{\varepsilon}(x) \subset A_k$ である。

$$x = -1 + \frac{1}{k}$$
 又は $x = 1 - \frac{1}{k}$ の場合

閉集合 A_{k+1} が存在し $x \in A_{k+1}$ である。

$$\varepsilon = \min\left\{\frac{1}{2}\left(x - \left(-1 + \frac{1}{k+1}\right)\right), \frac{1}{2}\left(\left(1 - \frac{1}{k+1}\right) - x\right)\right\}$$
 (19)

このように ε を定義すると ε 近傍 $U_{\varepsilon}(x)$ は $U_{\varepsilon}(x) \subset A_{k+1}$ である。

この為、 $\forall x \in \bigcup_{i=1}^{\infty} A_i$ について ε 近傍が存在し $U_{\varepsilon}(x) \subset \bigcup_{i=1}^{\infty} A_i$ であることが分かる。 つまり、 $\bigcup_{i=1}^{\infty} A_i$ は開集合となる。