Hash Table

Draw the II-entry hash table that results from using the hash function, $h(i) = (2i + 5) \mod 11$, to hash the keys 12,44, 13,88,23,94, 11,39,20, 16, and 5, assuming collisions are handled by chaining.

Solution

What is the result of the previous exercise, assuming collisions are handled by linear probing?

Solution

11	39	20	5	16	44	88	12	23	13	94
----	----	----	---	----	----	----	----	----	----	----

Show the result of Exercise R-9.6, assuming collisions are handled by quadratic probing, up to the point where the method fails.

Solution

_										
	20	16	11	30	44	99	17	72	12	94
	20	10		3)	77	00	12	23	13	J -

What is the result of Exercise R-9.6 when collisions are handled by double hashing using the secondary hash function $h'(k) = 7 - (k \mod 7)$?

Solution

11	23	20	16	39	44	94	12	88	13	5

What is the worst-case time for putting *n* entries in an initially empty hash table, with collisions resolved by chaining? What is the best case?

Solution:

If the sequences are not sorted, then the worst case time is O(n). If the sequences are stored in sorted order, then the worst case time is $O(n^2)$.