README

Čauky!

Tenhle soubor jsou moje poznámky z průběžnýho učení na státnice. Neříkám, že jsou kompletní, ale někomu by se mohly hodit:)

Zatím jsou under construction :D

Vycházím ze státnicových otázek na SISu.

U některých zpracovaných otázek jsou odkazy na materiály, ze kterých vycházím (přednášky etc.).

Otázky

Požadavky znalostí k bakalářské státní závěrečné zkoušce z bioinformatiky

Matematika & informatika

- 1. Matematická analýza
 - 1. Posloupnosti a řady, konvergence, Cauchyovské posloupnosti.
 - 2. Reálně funkce jedné proměnné. Limita v bodě a spojitost. Derivace funkcí: definice a základní pravidla, věty o střední hodnotě, derivace vyšších řádů. Extrémy funkcí. Aplikace, např. průběh funkcí, Taylorův polynom.
 - 3. Integrální počet. Primitivní funkce a Newtonův integrál. Určitý (Riemannův) integrál a jeho použití.
- 2. Lineární algebra
 - 1. Soustavy lineárních rovnic, metody řešení.
 - 2. Matice, operace s maticemi. Hodnost matice, regulární matice a inverzní matice. Odstupňovaný tvar matice.
 - 3. Základní algebraické struktury: grupy, tělesa, vektorové prostory.
 - 4. Základní vlastnosti konečně generovaných vektorových prostorů, vektorové podprostory. Báze a dimenze.
 - 5. Lineární zobrazení. Základní vlastnosti, maticová reprezentace, skládání lineárních zobrazení.
 - 6. Skalární součin a norma. Vlastnosti v reálném i komplexním případě, Cauchy-Schwarzova nerovnost. Kolmost. Ortogonální doplněk a jeho vlastnosti, ortogonální projekce.
 - 7. Determinanty. Definice a základní vlastnosti determinantu. Úpravy determinantů, výpočet.
 - 8. Vlastní čísla a vlastní vektory matic. Výpočet a základní vlastnosti. Diagonální tvar matice, diagonalizovatelnost. Jordanův normální tvaru (v obecném případě).
- 3. Kombinatorika, pravděpodobnost a statistika
 - 1. Binární relace, ekvivalence a částečná uspořádání. Kombinatorické počítání: kombinační čísla, binomická věta, princip inkluze a exkluze.

2. Teorie grafů. Základní pojmy teorie grafů: grafy a podgrafy, izomorfismus. Stromy a jejich základní vlastnosti, kostra grafu.

- 3. Rovinné grafy, barvení grafů. Toky v sítícha aplikace. Souvislost grafů (míra souvislosti), Mengerovy věta.
- 4. Náhodné jevy, podmíněná pravděpodobnost, nezávislost náhodných jevů. Náhodné veličiny, střední hodnota, linearita střední hodnoty. Bodové odhady a testování hypotéz.

4. Algoritmy a datové struktury

- 1. Časová složitost algoritmů. Metoda "rozděl a panuj" aplikace a analýza složitosti, dynamické programování.
- 2. Binární vyhledávací stromy, vyvažování, haldy.
- 3. Třídění sekvenční třídění, porovnávací algoritmy, přihrádkové třídění, třídící sítě.
- 4. Grafové algoritmy prohledávání do hloubky a do šířky, souvislost, topologické třídění, nejkratší cesta, kostra grafu, toky v sítích. Tranzitivní uzávěr.
- 5. Algoritmy vyhledávání v textu Aho-Corasicková, KMP, sufixový strom, sufixové pole. Algebraické algoritmy DFT, Euklidův algoritmus. RSA. Aproximační algoritmy. Automaty a gramatiky typy automatů a gramatik, vztahy, příklady.

5. Aplikovaná informatika

- Principy a základy implementace objektově orientovaných jazyků třída, dědičnost, polymorfismus, virtuální funkce, atd. Generické programování a knihovny šablony a generika, kompilační polymorfismus.
- 2. Normální formy, referenční integrita. Základy SQL.
- 3. Unix základní pojmy (systém souborů, komunikace mezi procesy), shell (syntaxe, programové konstrukty), základní utility.

Biologie

- 1. Složení živých buněk malé molekuly a makromolekuly, jejich interakce, vlastnosti vody a vodných roztoků důležité pro život, kyseliny, zásady a pufry, role vody v živých tělech,
- 2. Stavba buňky, funkce buněčných kompartmentů, srovnání buněčné stavby pro- a eukaryot, povrchové struktury buněk, význam specifických struktur rostlinných buněk (buněčné stěny, plastidů, vakuol) pro životní strategii rostlin
- 3. Membrány stavba, biogeneze a funkce membrán, membránové proteiny, membránový potenciál a transmembránový přenos látek
- 4. Struktury proteinů a nukleových kyselin primární, sekundární, terciální a kvartérní struktury, motivy a domény, supramolekulární komplexy (ribosom, spliceosom, proteasom...); princip komplementarity bází, primární a sekundární struktury DNA a RNA
- 5. Enzymy a jejich vlastnosti mechanismy katalýzy, regulace enzymové aktivity, názvosloví enzymů
- 6. Energetický metabolismus makroergní fosfátové sloučeniny, glykolýza a citrátový cyklus, fermentace, oxidativní fosforylace a transport elektronů, fotosyntéza celkový přehled, dílčí reakce a komplexy, jejich lokalizace
- 7. Zpracování genetické informace. Centrální dogma molekulární biologie, struktura virových, pro- a eukaryotických genomů. Vertikální a horizontální přenos dědičné informace. Transpozony, viry, epigenetická dědičnost, priony
- 8. Základy genetiky Mendelovy zákony, základní pojmy, různé verze definice genu. Intraa intergenové interakce, genová vazba, genetické aspekty sexuality, chromozomové

určení pohlaví, pohlavně vázaná dědičnost, mimojaderná dědičnost.

- 9. Mutace a mutageneze mutace genové, chromozomové a genomové, molekulární podstata mutací, mutageny, reparace poškozené DNA
- 10. Exprese genů a její regulace na úrovni transkripční, posttranskripční, translační a posttranslační, genetický kód, syntéza a distribuce proteinů v buňce, folding a účast chaperonů, posttranslační modifikace, regulace stability proteinů
- 11. Dynamika a funkce buněčných kompartmentů endoplasmatické retikulum, Golgiho komplex, vezikulární transport, endo- a exocytóza, sekreční dráha a nitrobuněčné adresování proteinů, lyzosom, vakuoly, peroxisom, hydrogenosom
- 12. Funkční anatomie buněčného jádra stavba jádra, jaderný obal, organizace genetické informace, chromozomy, chromatin, jadérko
- 13. Semiautonomní organely evoluční historie, stavba, funkce, replikace a exprese organelového genomu
- 14. Cytoskelet cytoskeletální proteiny, molekulární motory a jiné asociované proteiny, interakce s dalšími buněčnými strukturami, úloha v morfogenezi buňky a buněčném cyklu, růst a pohyb buněk
- 15. Mezibuněčné spoje a mezibuněčná hmota –napojení buněk na mezibuněčnou hmotu, složení a význam mezibuněčné hmoty; buněčná stěna u prokaryot a eukaryot
- 16. Buněčný cyklus a programovaná buněčná smrt porovnání cyklu prokaryotní a eukaryotní buňky, fáze cyklu, replikace DNA, u eukaryot jaderné dělení, mitoza a meioza, rekombinace DNA, cytokineze, apoptóza, buněčná onkogeneze
- 17. Komunikace uvnitř buněk a mezi buňkami, mezibuněčný a intracelulární přenos signálu, membránové a intracelulární receptory, vybrané příklady signálních drah
- 18. Principy základních metod molekulární biologie metody analytické separace makromolekul, PCR, sekvenování, molekulární klonování, genomika, proteomika, transkriptomika. Modelové organismy v molekulární biologii a genetice a jejich krátký popis a srovnání. Nejvýznamnější sekvenační projekty
- 19. Evoluce, různá její pojetí, významné události v dějinách teorie evoluce.
- 20. Lamarckismus, darwinismus, neodarwinismus
- 21. Mechanismy evoluce drift, draft, evoluční tahy, genový tok, selekce
- 22. Mutace jako zdroj evolučních novinek, typy mutací, náhodnost mutací co do místa, času a směru
- 23. Selekce mechanismus, typy, úrovně
- 24. Pohlavní výběr intrasexuální a intersexuální selekce, epigamní znaky, evoluce
- 25. Speciace: mechanismy a typy speciací
- 26. Evoluce pohlavního rozmnožování
- 27. Homologie, analogie, plesiomorfie a apomorfie v evoluci organismů

Bioinformatika

- 1. definice oboru- historie bioinformatiky oblasti bioinformatiky- biologická data
- sekvenční srovnávání dotplot substituční tabulky metody dynamického programování–lokální a globální alignment – parwise versus multiple sequence alignment
- 3. hledání podobných sekvencí Blast versus FASTA statistické zhodnocení významnosti nálezu profilové metody (PSI-BLAST) HMM metody

4. hledání domén a motivů – predikce transmembránových proteinů – predikce buněčné lokalizace a postranslačních modifikací

- 5. databáze vlastnosti databází formáty dat- validace dat významné bioinformatické databáze
- 6. strukturní srovnávání hledání podobných struktur
- 7. predikce struktury makromolekul
- 8. fylogenetika stavba stromů základní metody tvorby stromů (ML, MP, NJ, Bayes) bootstrap analýza

Výpočet času

Okruh	n otázek	koef. učení	tok/h	hodin
Matematika & informatika	23	1.25	2	57
Biologie - molekulární a buněčná	27	1.00	2	54
Bioinformatika	8	0.9	2	14.4
Celkem	58	-	2	125.4

Poznámky

Co jsem ještě nestihl doprojít

- Hidden Markov Models
 - Bioinformatické algoritmy, přednášky 7,8,9

Bioinformatika

1. Obor "bioinformatika"

"Bioinformatika je souborem metod, které slouží k třídění, analýze a interpretaci biologických dat (především *in silico*)." (Janet Thornton)

- literatura
 - Evžen zápisky
 - lokálně
 - Marian základy bioinformatiky
 - Wiki: Bioinformatics
- · definice oboru
 - bioinformatika se zabývá zpracováním biologických dat
 - sběr,
 - archivace,
 - organizace,
 - interpretace
- historie bioinformatiky
 - 1707 1778 Carl Linne, první "bioinformatik"
 - 1951 Fred Sanger, sekvence proteinu insulinu
 - 1957 Perutz, Kendrew, první struktura proteinu

- 1965 Margarett Dayhoff, první sekvenční databáze
- 1970 Needlman Wunsch, algoritmus sekvenčního srovnávání
- 1971 první strukturní databáze
- 1988 "HUGO project" (HUman Genome Organization)
- 1990 Altshul, Lipman et al., BLAST
- 1992 NCBI GenBank
- 1995 První osekvenovaný celý genom, Haemophilus influenze
- oblasti bioinformatiky
 - sekvenční (informační biopolymery, proteiny)
 - o strukturní (Struktura DNA, RNA, proteinů)
 - o signální dráhy v buňkách (stará definice bioinformatiky)
 - o regulace exprese genů (signalizace, epigenetika)
- biologická data
 - v základu jakákoli data (délky motýlých křídel)
 - každopádně i další data
 - genomická data
 - sekvence (proteiny, RNA, DNA)
 - interakce
 - příbuzenské vztahy etc.
 - rozsah dat?
 - EBI 2015 60PB dat

2. Sekvenční bioinformatika

- literatura
 - essentials
 - Wiki CZ: Dot plot
 - Základy bioinformatiky na Drivu
 - · Bioinformatické algoritmy na GDrivu
- dotplot
 - vizuální metoda pro alignment 2 sekvencí
 - postup:
 - jedna sekvence jde do řádku, druhá do sloupce
 - z teček (identita na jednotlivých pozicích) vidíme, jaké vzory se vyskytují
 - čára diagonálně zleva nahoře doprava dolů značí identický úsek
 - kolmo na tuto čáru vidíme inverzi
 - o tento postup je možné použít i pro analýzu jedné sekvence
 - dáme do řádku i do sloupce tu stejnou sekvenci
 - samozřejmě bude nepřerušená čára na diagonále (identita)
 - mimo diagonálu uvidíme opakující se subsekvence a kolmo na ně inverzní opakující se subsekvence
 - nevýhoda dot-plotu je, že generuje mnoho šumu (např. pro DNA sekvenci je pravděpodobnost 1/4, že dojde k identitě na pozici u dvou náhodných sekvencí)
- substituční tabulky (Algoritmy 4)

 při vytváření alignmentu dvou sekvencí je možné použít různé typy skórujících funkcí

- 1. Hammingova vzdálenost (Hamming Distance, HD)
- pro sekvence stejné délky!
- identita na pozici -> 1
- neidentita -> 0
- 2. Editační (Levensteinova) vzdálenost (ED)
- minimální Hammingova vzdálenost pro alignment dvou sekvencí
- je možné ji spolehlivě získat pomocí dynamického programování (DP)
 (taková ta tabulka dvou sekvencí) a následným backtrackingem
- 3. OWED (Operation-Weighted Editation Distance)
- zobecněná ED
- jsou zavedeny hodnoty, které mohou být upraveny pro potřeby dané situace
 - d ... penalizace za mezeru
 - e ... skóre, pokud je na pozici identita
 - r... skóre, pokud na pozici není identita
- je definovaná rekurzivně, ale počítá se pomocí dynamického programování
- 4. AWED (Alphabet-Weighted Edit Distance)
- OWED upravené pro specifické hodnoty d, e, r pro každou kombinaci znaků
 - znak×mezera,
 - znak sám se sebou,
 - znak×jiný znak
- z AWEDu vychází většina skórujících tabulek, jen je většinou ještě nastavená jiná hodnota pro první gap a pro následující gapy (otevřít mezeru je "dražší" než ji prodloužit)
- Skórující tabulky
 - není problém vytvořit alignment dvou sekvencí, problém je najít vhodnou skórující tabulku, aby nám nevyšla blbost
 - Probabilistic models
 - počítání skóre na základě pravděpodobnosti, že se budou dané páry znaků ve dvou sekvencích (např. aminokyselin) vyskytovat na stejné pozici
 - dva přístupy
 - 1. Random Model
 - jde přes všechny kombinace pozic ve dvou sekvencích
 - (jakoby for cyklus přes i ve for cyklu přes j)
 - předpokládá, že sekvence jsou unrelated
 - 2. Match Model
 - jde přes shodné indexy
 - (jakoby jen jeden for cyklus přes i pro obě sekvence naráz)
 - pravděpodobnost, že na dané pozici pochází daná rezidua ze společného předka
 - match model předpokládá, že sekvence jsou si příbuzné
 - Odds Ratio je podíl výsledku Match modelu a Random modelu

- podíl pravděpodobnosti, že na pozici je daná kombinace znaků (např. aminokyselin) za předpokladu, že sekvence jsou příbuzné a že sekvence nejsou příbuzné
- když vyjde vyšší než 1, daný alignment dvou pozic je pravděpodobně nějak evolučně spřízněný
- když vyjde nižší než 1, pravděpodobně není spřízněný
- Log Odds Ratio
 - logaritmus Odds Ratio, vyhodí použitelné hodnoty do skórovací tabulky (nespřízněné -> menší než 0, spřízněné -> vyšší než 0, ((log(1)=0)))
- tenhle přístup má 2 problémy
 - 1. je potřeba dávat pozor, aby pro nějakou obecnou skórovací matici nebyly vybrány příliš příbuzné sekvence
 - 2. je potřeba chytře zvolit pravděpodobnost pro Match Model u sekvencí s evolučně bližším společným předkem bude pravděpodobnost záměny na dané pozici nižší než pro sekvence se vzdálenějším (čas po který sekvence mutovaly)
- Substituční matice PAM (Point/Percent Accepted Mutation (Dayhoff et al.))
 a BLOSSUM (BLOckS SUbstitution Matrix (Henikoff et al.))
 - při tvoření matic se využívá pravděpodobnostních modelů viz výše
 - pro evoluční studie jsou běžně používány matice PAM 250 a BLOSSUM 62
 - PAM
 - vytvoří se matice PAM 1 (velmi podobné sekvence)
 - znalost o pravděpodobnostech v PAM 1 se použije pro evolučně vzdálené sekvence (PAM n)
 - dvě sekvence jsou 1 PAM vzdálené, pokud série mutací přeměnila jednu sekvenci na druhou pomocí 1 přijaté mutace na 100 aminokyselin (point accepted mutation)
 - přijaté (accepted) znamená, že mutace není letální a není umlčená (silent)
 - dvě sekvence vzdálené 200 PAM mají cca 25% identitu (jsou to proteinové sekvence)
 - pro ideální konstrukci PAM n matice je potřeba
 - 1. vzít set n PAM vzdálených sekvencí
 - manuálně udělat jejich alignment (ještě nemáme skórovací matici, abychom to udělali automaticky)
 - 3. spočítat pomocí pravděpodobnostního modelu skóre v matici: $PAM_n[i,j] = log(rac{f(i,j)}{f(i) imes f(j)})$
 - reálně se PAM dělá pomocí markovovských modelů
 - z toho vyplývá, že PAM n se vyrábí umocněním PAM 1 na n-tou
 - BLOSSUM
 - Na bázi PROSITE
 - BLOCKS
 - bloky motivů derivované z PROSITE knihovny

- podíl spatřených identit a očekávaných identit
- BLOSSUM n se vytvoří tak, že z BLOCKS se odstraní sekvence s identitou vyšší než n%
- metody dynamického programování
 - optimalizace rekurzivních algoritmů
 - o je potřeba zjistit, jaká část předpočítaných výsledků se shoduje
 - nějak chytře je potřeba vytvořit tabulku s těmito shodujícími se tabulkami a začít od začátku, nikoli od konce...
 - příklady: Fibonacciho číslo ... začne se od 0, 1 > pak se pokračuje v řadě, až se dojde k n-tému číslu
 - v sekvenční bioinformatice ... Needleman-Wunsch algoritmus -> pro dvě sekvence se vytvoří tabulka s dvěma dimenzemi ...
 - definují se hodnoty na začátku, pak si algoritmus na každé pozici vybere minimum z předchozích pozic
 - backtrackingem se zjistí, jak "alignment" postupoval
- lokální a globální alignment
 - jde především o biologický pohled zarovnání sekvencí tak, aby odpovídaly evoluční příbuznosti
 - o je možné vytvořit aligment i ručně s biologickou intuicí
 - o automatizace -> informatický pohled
 - jde o to najít alignment s nejlepší skórovací funkcí (AWED)
 - potřeba vhodné skórovací matice
 - o globální alignment hledá alignment pro celou sekvenci
 - lokální alignment hledá alignment jednotlivých podsekvencí předpokládá příbuznost kratších úseků, které mohou být i proházené mezi sebou
 - algoritmus pro globální alignment je možné upravit na lokální tak, že místo záporných hodnot se do tabulky pro dynamické programování vkládají nuly
 - backtracking se pak dělá pro jednotlivé podoblasti
 - o algoritmus pro globální alignment (GA) se jmenuje Needleman-Wunsch
 - o dtto pro lokální alignment (LA) se jmenuje Smith-Waterman
- parwise versus multiple sequence alignment
 - o párový jednoduše pomocí DP
 - u multiple sequence alignmentu stoupá složitost exponenciálně pro n sekvencí
 - skórování MSA (multiple sequence alignmentu)
 - používá se skórování přes sloupce MSA
 - dvě metody
 - ME (Minimal Entropy) počítá pravděpodobnost, že je reziduum x na pozici i, skóre je záporně zlogaritmované, aby byla 0 nejvyšší možné skóre
 - SP Sum of Pairs
 - v podstatě se udělá skórování pomocí PAM / BLOSSUM přes všechny dvojice v každém sloupci MSA
 - spoustu heuristických algoritmů pro MSA
 - Progressive iterative methods
 - Feng&Doolitle

- ClustalW, Clustal Omega
- Consistency based
 - T-Coffee
- Iterative refinement
 - Barton&Sternberg
- Block-Based
 - DIALIGN
- Mix
 - MAFFT,
 - MUSCLE

3. Hledání podobných sekvencí v databázích

hledání podobných sekvencí – Blast versus FASTA - statistické zhodnocení významnosti nálezu - profilové metody (PSI-BLAST) – HMM metody

- literatura
 - Bioinformatické algoritmy na GDrivu, přednášky 6(, 7) a 8
- úvod
 - o obří databáze potřebujeme je efektivně prohledávat
 - v nejhorším případě lineární složitost, spíš lepší
 - optimální algoritmus má kvadratickou složitost pro sekvence
 - je potřeba využít heuristiky
 - využívá se hashování
 - list pro všechny sekvence a k-tice (všechny možné?)
 - kde v sekvenci se daná k-tice nachází
 - pomocí dvou listů, jeden (b) obsahuje pro všechny k-tice jejich první výskyt,
 - druhý (a) pro celou sekvenci dává pointry na tu další k-tici
 - lepší vysvětlení v 6. přednášce na 6. slidu
- Blast versus FASTA
 - FASTA
 - 4 kroky
 - 1. pro query a databázovou sekvenci se najdou všechny matchující ktice (v tabulce podobné jako u NW algoritmu)
 - 2. k-tice se pospojují (za gapy mezi nimi se dává penalizace)
 - 3. vybere se 10 nejlepších spojených subsekvencí a oskórují se pomocí PAMu nebo BLOSSOM, z nich se započítají ty nejlépe skórující, součtem skóre subsekvencí se ohodnotí celá sekvence
 - 4. mezi nejlépe skórujícími sekvencemi se udělá Smith-Waterman
 - BLAST (Basic Local Alignment Search Tool)
 - algoritmus má 5 kroků, stejně jako ve FASTA jde o to najít malé množství sekvencí, které pak už budou oskórované pomocí SW algoritmu
 - 1. pro query sekvenci jsou zjištěny všechny její k-tice (typicky k=3)
 - 2. pro každou k-tici z kroku 1. jsou vygenerovány všechny teoreticky možné k-tice, které s ní budou skórovat nad určitou hodnotu (T),

- skóruje se pomocí PAM, či BLOSSUM
- 3. pro množinu všech těchto k-tic se udělá "finite state automata (FSA)", kterým se proskenují všechny sekvence v databázi. FSA zaznamená pozici jednotlivých (hledaných) k-tic v sekvencích
- 4. krok 4 má dvě varianty
 - 1. ve starší verzi se rozšiřují nalezené k-tice do obou směrů, dokud skóre subsekvence nespadne pod určitý limit (X_u) , rozšířená k-tice se nazývá "high scoring pair (HSP)"
 - 2. v novější verzi BLASTU musí HSP obsahovat na konci rozšiřování alespoň 2 k-tice, čímž se sníží nějaká náhodnost toho procesu
- 5. je stanovena hodnota S_g , nad kterou dosáhne skóre jen 2% HSP. Sekvence těchto vybraných HSP pak jsou normálně zalignovány pomocí SW algoritmu
- zatímco FASTA spojuje k-tice, které jsou nalezeny v databázových sekvencích a ty se pak oskórují, BLAST pomocí všech k-tic podobných s k-ticemi v zadané sekvenci vytvoří FSA, tím najde všechna stejná místa v databázových sekvencích, tato místa pak nechá rozšířit (HSP) a ty se pak oskórují
- statistické zhodnocení významnosti nálezu
 - E-value
 - E-value rovno 1 znamená, že v prohledávané databázi se dá očekávat pro dané skóre 1 sekvence prostě náhodou
 - čím menší je E-value, tím menší je šance, že by např. vyhledaná sekvence byla vyhledána náhodně.
 - ve velkých databázích by krátké sekvence měly vysoké E-value, i kdyby byly třeba velmi podobné vstupní sekvenci
 - E-value je definovaná pomocí Gumbelova (extrémového) rozdělení
 - E-value je pravděpodobnost, že dobrý alignment nějaké sekvence v databázi má vyšší skóre, než skóre daného hitu
 - Gambelovo rozdělení má CDF definovanou jako $exp(-e^{-\lambda(x-\mu)})$, λ je rozptyl a μ střední hodnota
 - ullet E-value je pak 1- $exp(-e^{-\lambda(x-\mu)})$
 - tohle E-value je trochu jiné, než databázové E-value
 - FASTA to vypočítané E-value pronásobí počtem sekvencí v databázi
 - BLAST počítá s tím, že delší sekvence mají větší šanci na to být hitnuté
 - pronásobí E-value $\times \frac{N}{n}$, kde N je počet reziduí v sekvenci a n je délka nalezené sekvence
- profilové metody (PSI-BLAST) (lecture-09, první polovina)
 - hledají se konzervovaná místa (např. Prosite databáze)
 - přístupy mají různou komplexitu, dávají různé množství informací
 - konsenzus sekvence ("úplně jednoduchý grep"), jen aminokiselina a jeden wildcard - *
 - o patterns grep patterny,

- má trochu upravenou syntax
 - wildcard ... X
 - [] místo ^ etc.
- PSSM (Position specific scoring matrix)
 - Hoksza o PSSM říká, že na nich většina studentů u státnic zbytečně pohoří!!!
 :// Creepy
 - také se nazývá profil
 - pro daný MSA se spočítají frekvence jednotlivých typů aminokyselin na určitých pozicích
 - video přednášky Hokszy od Matěje Zátka je pure gold, na 20:00 kočka Hokszovi ničí mikrofon u sluchátek :D
 - PSSM hodnoty pro jednotlivé aminokyseliny se ještě upraví pomocí pseudocountů, aby se trochu oslabil vliv toho, co vidíme a měly šanci i jiné aminokyseliny - dává se to kvůli tomu, aby se oslabil vliv toho, že jsem neviděl všechny sekvence z celé té rodiny, v některé sekvenci by třeba nějaká jiná aminokyselina byla.
 - tato hodnota se v PSSM pro danou aminokyselinu na dané pozici se tedy spočítá takto:
 - n... počet reálných výskytů aminokyseliny v alignmentu
 - k... počet sekvencí v alignmentu
 - a... počet aminokyselin (jo jde to určitě i pro nukleotidy?)
 - ps... pseudocount
 - $ullet f_{ij} = rac{n+ps}{k+a*ps}$
 - pak se to celé ještě prožene log-likelihood ratio nulového modelu
 - $s_{ij} = log(rac{f_{ij}}{q_i})$
 - ullet kde f_{ij} je ta pseudocountovaná hodnota
 - $ullet q_i$ je pravděpodobnost, že na i-té pozici by daná aminokyselina byla náhodně
 - hodnoty tabulky pak říkají, kolikrát je pravděpodobnější, že hodnota v sekvenci pochází z match modelu než random modelu (pokud je vyšší než 0), nebo kolikrát je pravděpodobnější random model než match model (pokud je nižší než 0)
 - s PSSM se pak jede přes všechny pozice ve zkoumané sekvenci a pro každou pozici se zapisuje skóre
 - nevýhoda, neumožňuje inzerce a delece
 - nechce se mi teď zpětně přepisovat ještě poznámky, ale rád bych líp shrnul postup pro PSSM
 - 1. vytvoření dobrého MSA sekvencí s motivem
 - 2. vytvoření PSSM
 - zaznamenání počtu výskytů jednotlivých reziduí na daných pozicích
 - 2. volba hodnoty pseudo-countu
 - 3. spočtení f_{ij} pseudocountované pravděpodobnosti výskytu reziduí na daných pozicích
 - 4. log-likelihood ratio (převedení pravděpodobnosti na skóre, využívá se znalosti random a match modelu)

3. použití PSSM na dané sekvenci

1. oskórování všech pozic pomocí PSSM

PSI-BLAST

- je to docela super v tom, že se naleznou vzdálenější homologové než jen pomocí BLASTu, ale může to občas vyhledat něco dost mimo - přidá to do PSSM nějakou nesouvisející sekvenci (profile drift)
- využívá to metod BLASTu (P) a PSSM
- 1. pro zadanou sekvenci se vyhledají pomocí BLASTP podobné sekvence
- 2. z nejlepších vyhledaných se udělá MSA
- 3. z MSA se vytvoří PSSM
- 4. profil (PSSM) se použije pro další vyhledávání v databázi pomocí BLASTP
- 5. pokud jsou nové hity, přidat do MSA a vytvořit nový profil
- 6. opakovat 4. a 5., dokud jsou nalézány nové hity
- HMM metody (v přednáškách 07, 08, 09)
- HMM metody (lecture-09, druhá část, cca slide 25)
 - PSSM má nevýhodu, že neumí inzerce a delece
 - např. Viterbi algoritmus
 - zjišťuje nejpravděpodobnější variantu (nikoli nejpravdivější), jak by mohla být jakoby zalignovaná zkoumaná sekvence za předpokladu, že patří do příbuzné skupiny k určitému motivu
 - sestrojení FSA, kde jsou tři typy průchodů pro každou pozici
 - match
 - insert
 - delete
 - jde o to najít pravděpodobnosti přechodů
 - ty se vypočítají podobně jako u PSSM z poměrů toho, jak jdou jednotlivé
 "matche", "inzerce" a "delece" v MSA a plus se to ještě pseudo-countuje

4. Domény a motivy

hledání domén a motivů – predikce transmembránových proteinů – predikce buněčné lokalizace a postranslačních modifikací