

Curious @ NCYU Hackers

2023.10.03

>_ 目錄

- ▶ 編碼
- ▶古典密碼學
- ▶ 現代密碼學
- ▶資源整理

>_ WhoAmI

- ► ID : Curious
- ► DC : curious_lucifer
- ► SCIST 4rd 總召 / LoTuX CTF 創辦人
- ► Github : <u>Link</u>
- ► Blog : <u>Link</u>

>_ Lab

Lab : http://172.104.90.38

Flag Format : NCYU_HACKERS{.*}

編碼

>_ ASCII

- ▶ 一張把字元和數字互相轉換的表
- ▶ 數字只包含 0 ~ 127
- ► 用 chr(num) 把數字轉成字元
- ► 用 ord(char) 把字元轉成數字

dec	hex	oct	char	dec	hex	oct	char	dec	hex	oct	char	dec	hex	oct	char
0	0	000	NULL	32	20	040	space	64	40	100	@	96	60	140	`
1	1	001	SOH	33	21	041	!	65	41	101	Α	97	61	141	a
2	2	002	STX	34	22	042	п	66	42	102	В	98	62	142	b
3	3	003	ETX	35	23	043	#	67	43	103	С	99	63	143	С
4	4	004	EOT	36	24	044	\$	68	44	104	D	100	64	144	d
5	5	005	ENQ	37	25	045	%	69	45	105	E	101	65	145	е
6	6	006	ACK	38	26	046	&	70	46	106	F	102	66	146	f
7	7	007	BEL	39	27	047	T.	71	47	107	G	103	67	147	g
8	8	010	BS	40	28	050	(72	48	110	Н	104	68	150	h
9	9	011	TAB	41	29	051)	73	49	111	1	105	69	151	i
10	а	012	LF	42	2a	052	*	74	4a	112	J	106	6a	152	j
11	b	013	VT	43	2b	053	+	75	4b	113	K	107	6b	153	k
12	С	014	FF	44	2c	054	,	76	4c	114	L	108	6c	154	1
13	d	015	CR	45	2d	055	_	77	4d	115	M	109	6d	155	m
14	е	016	SO	46	2e	056		78	4e	116	N	110	6e	156	n
15	f	017	SI	47	2f	057	/	79	4f	117	0	111	6f	157	0
16	10	020	DLE	48	30	060	0	80	50	120	P	112	70	160	р
17	11	021	DC1	49	31	061	1	81	51	121	Q	113	71	161	q
18	12	022	DC2	50	32	062	2	82	52	122	R	114	72	162	r
19	13	023	DC3	51	33	063	3	83	53	123	S	115	73	163	S
20	14	024	DC4	52	34	064	4	84	54	124	Т	116	74	164	t
21	15	025	NAK	53	35	065	5	85	55	125	U	117	75	165	u
22	16	026	SYN	54	36	066	6	86	56	126	V	118	76	166	v
23	17	027	ETB	55	37	067	7	87	57	127	W	119	77	167	w
24	18	030	CAN	56	38	070	8	88	58	130	X	120	78	170	X
25	19	031	EM	57	39	071	9	89	59	131	Υ	121	79	171	у
26	1a	032	SUB	58	3a	072	:	90	5a	132	Z	122	7a	172	z
27	1b	033	ESC	59	3b	073	;	91	5b	133	[123	7b	173	{
28	1c	034	FS	60	3c	074	<	92	5c	134	\	124	7c	174	1
29	1d	035	GS	61	3d	075	=	93	5d	135]	125	7d	175	}
30	1e	036	RS	62	3e	076	>	94	5e	136	^	126	7e	176	~
31	1 f	037	US	63	3f	077	?	95	5f	137	_	127	7f	177	DEL
													The second of	- 7 - L	hms com

www.alpharithms.com

>_ Base64

- 1. 把字串分成 3 個一組
- 2 型 把各個字元轉成相對應的 ASCII 數字
- 3 型各個數字轉為二進位(一個數字 8 bits)
- 4. 把 24 bits 分成 6 bits 一組
- 5. 把 6 bits 的二進位數字轉成對應的字元

文字	М					а							n											
ASCII編碼	77							97							110									
位元	0	1	0	0	1	1	0	1	0	1	1	0	0	0	0	1	0	1	1	0	1	1	1	0
索引	19						2	2								46								
Base64編碼	Т					W F						:	u											

十進位	二進位	字元									
0	000000	Α	16	010000	Q	32	100000	g	48	110000	w
1	000001	В	17	010001	R	33	100001	h	49	110001	х
2	000010	С	18	010010	S	34	100010	i	50	110010	У
3	000011	D	19	010011	Т	35	100011	j	51	110011	Z
4	000100	Е	20	010100	U	36	100100	k	52	110100	0
5	000101	F	21	010101	V	37	100101	I	53	110101	1
6	000110	G	22	010110	W	38	100110	m	54	110110	2
7	000111	Н	23	010111	Х	39	100111	n	55	110111	3
8	001000	I	24	011000	Υ	40	101000	0	56	111000	4
9	001001	J	25	011001	Z	41	101001	р	57	111001	5
10	001010	K	26	011010	а	42	101010	q	58	111010	6
11	001011	L	27	011011	b	43	101011	r	59	111011	7
12	001100	М	28	011100	С	44	101100	s	60	111100	8
13	001101	N	29	011101	d	45	101101	t	61	111101	9
14	001110	0	30	011110	е	46	101110	u	62	111110	+
15	001111	Р	31	011111	f	47	101111	v	63	111111	/
埻	充	=									

>_ Base64

- 1. 把字串分成 3 個一組,沒有滿的補 \0
- 2. 把各個字元轉成相對應的 ASCII 數字
- 3. 把各個數字轉為二進位(一個數字 8 bits)
- 4. 把 24 bits 分成 6 bits 一組
- 5. 把 6 bits 的二進位數字轉成對應的字元
- 6 如果那 6 bits 都是補的 0, 那就轉成 =

文字(1 Byte)				-	4																			
位元	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
位元(補0)	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Base64編碼			(3				-	C	3		-			:	=	-				:	=		

十進位	二進位	字元									
0	000000	Α	16	010000	Q	32	100000	g	48	110000	W
1	000001	В	17	010001	R	33	100001	h	49	110001	х
2	000010	С	18	010010	S	34	100010	i	50	110010	У
3	000011	D	19	010011	Т	35	100011	j	51	110011	z
4	000100	Е	20	010100	U	36	100100	k	52	110100	0
5	000101	F	21	010101	V	37	100101	I	53	110101	1
6	000110	G	22	010110	W	38	100110	m	54	110110	2
7	000111	Н	23	010111	Х	39	100111	n	55	110111	3
8	001000	I	24	011000	Υ	40	101000	0	56	111000	4
9	001001	J	25	011001	Z	41	101001	р	57	111001	5
10	001010	K	26	011010	а	42	101010	q	58	111010	6
11	001011	L	27	011011	b	43	101011	r	59	111011	7
12	001100	М	28	011100	С	44	101100	S	60	111100	8
13	001101	N	29	011101	d	45	101101	t	61	111101	9
14	001110	0	30	011110	е	46	101110	u	62	111110	+
15	001111	Р	31	011111	f	47	101111	V	63	111111	/
填	充	=									

>_ Base64

Crypto Lab: Base64

Crypto Lab: Identify

古典密碼學

>_ Caesar Cipher

加密

- 1. 把明文中所有英文字母轉成大寫(或小寫)
- 2. 按照設定的偏移量更改字母

解密

1. 按照設定的偏移量把字母移回去

破解方法

反正偏移量只有可能是 0 ~ 25 (英文大寫或小寫只有 26

個) ,那就暴力嘗試每一個偏移量

(偏移量:3)

>_ Caesar Cipher

Crypto Lab: Caesar Cipher

>_ Affine Cipher

加密

- 1. 選取兩個數字 a 和 b,且 a 要和 m 互質
- 2. 按照規定把明文中各個字元轉成對應的數字
- 3. 將每一個數字帶入 $y \equiv a \cdot x + b \pmod{m}$ 中的 x
- 4. 將各個數字計算出的 y 按照規定轉成對應的字元

解密

- 1. 按照規定把明文中各個字元轉成對應的數字
- 2. 將每一個數字帶入 $y \equiv a^{-1} \cdot (x b) \pmod{m}$ 中的 x
- 3 將各個數字計算出的 y 按照規定轉成對應的字元

Α	В	С	D	Ε	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	X	Υ	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

(一種簡單的字元和數字轉換方式,對於這個轉換表 m=26)

破解方法

基本上也是可以直接暴力嘗試 a 和 b,嘗試 $(m-1)\cdot m$ 次後就可以找到所有 a 和 b(如果 m 不是質數會更少)

>_ Affine Cipher

Crypto Lab: Affine Cipher

>_ Affine Cipher

簡單的頻率分析

如果想要破解 Affine Cipher 的話,需要暴力計算出 $(m-1)\cdot m$ 個不同 key 所解密出來的明文,如果 m 很大的話,基本上用眼睛去辨別哪一個是對的明文就不太現實。

如果我們知道用正確的 key decrypt 出來的明文會是英文,我們就可以利用英文各個字母的頻率分佈去分析哪一個 key decrypt 出來的明文最像英文

>_ Substitution Cipher

加密

- 1. 把兩組相同的字元組分別打亂,然後讓他們──對應
- 2 按照剛建立——對應的規則加密明文

解密

1 按照設定的規則解密明文

破解方法

基本上就只有頻率分析這條路可以走,而且要分析的包括單個字元出現的頻率、連續字元出現的頻率等等,這實現起來很麻煩,直接用線上工具

明文為 ABCDEFGHIJKLMNOPQRSTUVWXYZ 密文為 ZEBRASCDFGHIJKLMNOPQTUVWXY

(一一對應的規則大致上像這樣,但這打的不夠亂)

>_ Substitution Cipher

Crypto Lab: Substitution Cipher

Crypto Lab: Straddle Checkerboard

>_ 古典密碼總結

- ▶ 大部分的古典密碼都可以直接用頻率分析解開
- ▶ 其它的部分就要根據加密/解密的方式去特地構造破解方法,不過也不會離頻率分析太遠

>_ 古典密碼總結

Crypto Lab: Affine Cipher Double Strength

現代密碼學

▶ 對稱式加密

▶ 非對稱式加密

▶ 對稱式加密

▶ 非對稱式加密

▶ 對稱式加密

▶ 非對稱式加密

- ▶ 對稱式加密
- ▶ 非對稱式加密

- ▶ 對稱式加密
- ▶ 非對稱式加密

- ▶ 對稱式加密
- ▶ 非對稱式加密

- ▶對稱式加密
- ▶ 非對稱式加密

- ▶ 對稱式加密
- ▶ 非對稱式加密

資源整理

>_ 資源整理

<u>CryptoHack</u>

Blog

SCIST Crypto CTF