Lecture 11

Real functions of real variables-Limits-Continuity and Differentiability

Centents:

- 1. Real functions of real variables.
- 2. Concept of limits.
- 3. Continuity.
- 4. Differentiability.

1.1. Definitions-Examples:

A real function of a real variable is an

Maps $f: U \to \mathbb{R}$, $U \subseteq \mathbb{R}$.

Definition:

$$U = \{x \in \mathbb{R}, f(x) \text{ is well defined}\}\$$

 $U \text{ is called the domaine of } f$.

The plot of f

is the subset denoted by C_f of \mathbb{R}^2 defined by

$$C_f = \{ (x, f(x)); x \in U \}$$

Examples:

1)
$$f(x) = \frac{1}{x}$$

$$D_f = \{x \in \mathbb{R} : x \neq 0\}$$

$$D_f = \mathbb{R}^* =]-\infty, 0[\cup]0, +\infty[$$

2)
$$f(x) = x^2 + 1$$
 is defined on \mathbb{R} .

3)
$$f(x) = \sqrt{x^2 - 3x + 2}$$

$$D_f = \{x \in \mathbb{R}, \quad x^2 - 3x + 2 \ge 0\}$$

$$\Delta = 1 \Rightarrow x_1 = 1 \ et \ x_2 = 2.$$

$\boldsymbol{\mathcal{X}}$	- ∞ 1		2 +∞
x-1	_	+	+
x-2	_	_	+
$x^2 - 3x + 2$	+	-	+

$$D_f =]-\infty, 1] \cup [2, +\infty[.$$

Restriction of a function Definition:

Let f be a function and D_f the domaine of f. A a subset of D_f , $A \subset D_f$

We define the restriction of f to A,

$$f_{|A}: A \to \mathbb{R}$$

 $x \mapsto f_{|A}(x) = f(x)$

1.2. Combining functions

$$\mathcal{F}(I, \mathbb{R}) = \{ f : I \to \mathbb{R} \}$$

$$f \ et \ g \in \mathcal{F}(I, \mathbb{R}),$$

$$\downarrow \downarrow$$

$$f = g \iff \forall x \in I, f(x) = g(x)$$

$$(f+g)(x) = f(x) + g(x).$$

$$(fg)(x) = f(x)g(x).$$

✓ Quotients:

$$\forall x \in I; \left(\frac{f}{a}\right)(x) = \frac{f(x)}{a(x)}, avec \ g(x) \neq 0.$$

√ inverse:

$$f^{-1}(x) \neq [f(x)]^{-1} = \frac{1}{f(x)}$$

✓ Multiplication by scalars:

$$\forall \alpha \in \mathbb{R}; \ \forall f \in \mathcal{F}(I,\mathbb{R}), \forall x \in I,$$

 $(\alpha f)(x) = \alpha f(x)$

1.2.2. Composition of function

Definition: $f: A \rightarrow B, g: B \rightarrow C$ two fonctions. Then the composite function (also called the composition of g and f) is defined by: $(g \circ f)(x) = g(f(x)), x \in A$.

$$D_f \xrightarrow{f} f(D_f) \xrightarrow{g} \mathbb{R}$$

$$x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x))$$

Function Id_E

For all set E, we define the **identity** function

$$Id_E : E \rightarrow E$$

By

$$Id_E(x) = x, \qquad x \in E.$$

Algebric operation for the identity function:

1.
$$f: A \to E$$
, $Id_E \circ f = f$.

2.
$$f:A \to E$$
, $f \circ Id_A = f$.

The zero function

$$0(x) = 0, \forall x \in \mathbb{R}.$$

We have

$$0 + f = f + 0 = f, \forall f \in \mathcal{F}(I, \mathbb{R})$$

The unit function

$$1(x) = 1, \forall x \in \mathbb{R}.$$

We have

$$1 \cdot f = f \cdot 1 = f, \forall f \in \mathcal{F}(I, \mathbb{R})$$

1.2.3. Functions and Bounds.

a. Bounded below, Bounded above

Definitions:
$$f: I \to \mathbb{R}$$
 \checkmark f is bound below

 $\exists m \in \mathbb{R} \text{ such that: } \forall x \in I; f(x) \geq m.$

Geometric Interpretation:

b. Increasing and decreasing functions

Definition:

Let I a subset of \mathbb{R} and $f \in \mathcal{F}(I, \mathbb{R})$.

We say that
$$f$$
 is

✓ Increasing
$$\Leftrightarrow$$
 $\begin{cases} \forall (x, x') \in I^2, \\ (x < x' \Rightarrow f(x) \le f(x')). \end{cases}$
✓ Decreasing \Leftrightarrow $\begin{cases} \forall (x, x') \in I^2, \\ (x < x') \in I^2, \\ (x < x') \in I^2, \end{cases}$

✓ Strictly increasing:

$$\forall (x, x') \in I^2, (x < x' \Rightarrow f(x) < f(x')).$$

$$\forall (x, x') \in I^2, (x < x' \Rightarrow f(x) > f(x')).$$

✓ monotonic if only if is always increasing or always decreasing.

✓ strictly monotonic if only if is always strictly increasing or always strictly decreasing.

Example:

1.
$$f : \mathbb{R} \to \mathbb{R}$$
; $x \mapsto f(x) = x^3$.

is strictly increasing on \mathbb{R} .

2. $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto f(x) = x^2$.

is neither increasing nor decreasing on \mathbb{R} .

$$f(x) - f(x') = x^2 - {x'}^2 = (x - x')(x + x')$$

$$\frac{f(x) - f(x')}{x - x'} = (x + x')$$

$$f(x) - f(x') \le 0$$

Then f(x) is strictly decreasing sur $]-\infty,0]$

C. Odd and Even functions:

Definition:
$$f \in \mathcal{F}(I, \mathbb{R})$$
.

 $\checkmark f \text{ is even}$

Example:

$$A function f(x) = x^2$$
is even

is even,

$$f(-x) = (-x)^2$$
$$= x^2 = f(x).$$

A function
$$f(x) = x^3 + x$$
 is odd,
because

because
$$f(-x) = (-x)^{3} + (-x)$$

$$= -(x^{3} + x)$$

$$= -f(x)$$

d. Periodic Functions

A function y= f(x) is said to be a periodic function if there exists a positive real number P such that f(x + P) = f(x), for all x belongs to real numbers. The least value of the positive real number P is called the fundamental period of a function. This fundamental period of a function is also called the period of the function, at which the function repeats itself.

$$\forall x \in I; (x + P) \in I,$$

$$f(x + P) = f(x).$$

Example:

The sine function and cosine function are periodic with a period of 2π on \mathbb{R} .

