$$P(w_{1}) = \frac{1}{4} \qquad P(w_{2}) = \frac{3}{4}$$

$$P(x_{1}|w_{1}) = N(2,1) = \frac{1}{12\pi} e^{-\frac{1}{2}(x-2)^{2}}$$

$$P(x_{1}|w_{2}) = N(5,1) = \frac{1}{12\pi} e^{-\frac{1}{2}(x-2)^{2}}$$

$$P(x_{1}|w_{2}) = \frac{1}{12\pi} e^{-\frac{1}{2}(x-5)^{2}}$$

$$P(x_{2}|w_{2}) = \frac{1}{12\pi} e^{-\frac{1}{2}(x-5)^{2$$

when $\chi < 21-\ln 4 \approx 3.26$ choose ω_1 x>21-104 ≈ 3.26 choose w2 so x = 3.26 is the decision boundary Zero-one prolocs fn. for cancer prediction is not preferred because the consequences of a false negative is for worse than a false positive, which is not there in zero-lone loss which is symmetric in nature. (2) $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ x_1, x_2, x_3 are three random vectors variables $\mu_{x} = \begin{bmatrix} 5 \\ -5 \end{bmatrix}$ this implies $A = \begin{bmatrix} 2 - 1 & 2 \end{bmatrix}^{T} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ $Y = A^T X + B$ $\mu_y = \mu(A^T \times + B) = \mu(A^T \times) + \mu(B)$ 45 (as 8 is a constant) $M_y = \mu(2x_1 - x_2 + 2x_3) + 5$ = $\mu(2x_1) - \mu(x_2) + \mu(2x_3) + 5$ = $2\mu(x_1) - \mu(x_2) + 2\mu(x_3) + 15$ = 2.5-(-5)+2.6+5

03) a) $P(x|\omega_i) = \frac{1}{\pi b} \left(\frac{1}{1 + (x - a_i)^2}\right)$ For zero-one loss, # as $P(\omega_1) = P(\omega_2)$ the decision boundary can be determined by if P(X/W) >1 choose w, else we if smaller than P(N/W2) $\frac{P(x|\omega_1)}{P(x|\omega_2)} = \frac{b^2 + (x-a_2)^2}{b^2 + (x-a_1)^2} > 1$ choose w_1 when $(x-a_2)^2 > (x-a_1)^2$ choose we when $(x-a_2)^2 < (x-a_1)^2$ x2+a,2-20,2 > 12+a,2-20,2 $\frac{a_2^2-a_1^2}{(a_2+a_1)} > 2x(a_2-a_1)$ if $\chi < \alpha_1 + \alpha_2$ choose ω_1 if $\chi > \alpha_1 + \alpha_2$ choose ω_2 hence $x = a_1 + a_2$ is the decision boundary Using Baye's rule we know that $P(\omega, | x) = P(x|\omega_1) \cdot P(\omega_1)$

also as there are only 2 states PHETHON + PENTON $P(\omega_1|x) + P(\omega_2|x) = 1 - 2$ From (1) & (2) and substituting values a,=3, a=5, b=1 $2\pi \left(1 + (x-3)^2 + P(x)\right) = 2\pi \left(1 + 1\right) P(x)$ $P(x) = \frac{1}{2\pi} \left(\frac{2 + (x-3)^2 + (x-5)^2}{(1 + (x-3)^2) (1 + (x-5)^2)} \right)$ $P(\omega_{1}|x) = 1 \left(\frac{1}{1+(x-3)^{2}}\right) \cdot \frac{2\pi}{2+(x-3)^{2}} \left(\frac{1+(x-5)^{2}}{1+(x-5)^{2}}\right)$ $= \frac{(1+(x-5)^2)}{2+(x-3)^2+(x-5)^2}$ c) To find error rate we need to integrate P(w;12)P(2) over regions where P(w; 1x) < 0.5 $P(\omega, |x) < 0.5 + x=4$ and hence as $P(\omega_2|x) = 1 - P(\omega, |x)$ P(w2/x) < 0.5 + x x 4 $\frac{P(error)}{\int P(\omega_{2}|x)P(x)dx} + \int P(\omega_{1}|x)P(x)dx$

$$= \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx + \int_{2\pi}^{2\pi} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx$$

$$= \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx + \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx$$

$$= \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx + \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx$$

$$= \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx + \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx$$

$$= \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx + \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx$$

$$= \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx + \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx$$

$$= \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx + \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx$$

$$= \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx + \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx$$

$$= \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx + \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx$$

$$= \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx + \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx$$

$$= \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx + \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx$$

$$= \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx + \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx$$

$$= \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx + \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx$$

$$= \int_{2\pi}^{4} \left(\frac{1}{1+(x\cdot 5)^2}\right) dx$$

$$=$$

b) As a and b are & independent grandom
variables, Niid variables of x is identical to
taking N iid samples of a & b
so joint probability: of
$(x_1, x_2, x_N) = P(a_1, a_2, a_3, a_N) \cdot P(b_1, b_2, b_N)$
Since we need to find a value for 0 to maximise
P(X X X) we can treat joint probability of the Nild
Gaussian b' variables as a constant (let us take it as k)
$q(\mathbf{x}) = P(x_1, x_2 - X_N) = P(a_1, a_2 - a_N) \cdot k$
$P(\bar{a}) = P(a_1, a_2 - a_N) = P(a_1) - P(a_2) P(a_N)$
$P(a) = \theta^{a} (1-\theta)^{1-a}$ $a = \{0,1\}$
$P(\bar{a}) = \frac{N}{K} P(a_i)$ $i=1$
$= \pi \theta^{ai} (1-\theta)^{1-ai}$
$\ln(P(\bar{\alpha})) = \sum_{i=1}^{N} \ln(\theta^{a_i}(1-\theta)^{1-a_i})$
$= \frac{1}{1} \sum_{i=1}^{N} \frac{1}{1} \sum_{i=1}^{N} \frac{1}{1} = \frac{1}{1} \frac{1}{1} = \frac{1}{1} = \frac{1}{1}$

The expected value of Zai and Zr-ai is a function of B as E[a;]= 0 Therefore $\ln(e(a)) = \ln\theta(N\theta) + \ln(1-\theta)(N-N\theta)$ $= N \left(\theta \ln \theta + (1-\theta) \ln (1-\theta) \right)$ Now In(q(x))= In(P(a))+Ink To maximise q(x), ln(q(x)) must be maximised as In() is a monotonically increasing function). Hence en (P(a)) mut be maximised The plot for $\theta \ln \theta + (1-\theta) \ln (1-\theta)$ vs θ is as follows: Hence maximum value occurs at 2 points, one just before I and just after O. a can have two values to maximise ln(q(x)) ie infinitesimally small value positive value and as value just smaller than I comething like 0,9999. .. 0 = hb1-h where h tends to 0 and h=0.