INTRODUCTION TO Heliophysics SMEX Mission Concept

Solar Magnetized Atmosphere Research Telescope (SMART)

Jonathan Cirtain, NASA MSFC Scott McIntosh, NCAR HAO Tom Woods, CU LASP

Science Motivation

Solar flares, solar energetic particles (SEPs), corona mass ejections (CMEs), and solar wind (SW) are the primary drivers for space weather events at Earth and other planets

Science Motivation

CMEs are primarily released from either coronal magnetic reconnection or filament eruption

Corona magnetic reconnection is well understood to create flares, SEPs, and CMEs

Science Motivation - Example

- Two different types of magnetic reconnection may be involved during a filament eruption:
 - Tether cutting in twisted, lower flux rope (Moore & Roumeliotis, 1992)
 - Breakout with reconnected upper loops releasing lower flux rope (Antiochos et al., 1999)

Mission Objective and NASA Relevance

- Our primary mission objective is to determine how magnetic energy emerges, is stored, and released to drive solar filaments and coronal eruptions
- This objective is directly related to the 2012 NASA Heliophysics Decadal Survey (HP DS) Solar and Heliospheric (SH) objectives:
 - SH 2) Determine how the Sun's magnetism creates its dynamic atmosphere
 - SH 2b) Determine how magnetic free energy is transmitted from the photosphere to the corona
 - SH 3) Determine how magnetic energy is stored and explosively released
 - SH 3a) Determine how the sudden release of magnetic energy enables both flares and coronal mass ejections to accelerate particles to high energies efficiently

Mission Objective and NASA Relevance

- [Primary] Determine how magnetic energy emerges, is stored, and released to drive solar filaments and coronal eruptions (HP DS 3a)
- [Primary] Determine how magnetic free energy is transmitted from the photosphere to the corona (HP DS 2b)
- [Primary] Develop advanced methods of forecasting solar eruptive events (HP DS 3d)
- [Secondary] Determine whether chromospheric dynamics is the origin of heat and mass fluxes into the corona and solar wind (HP DS 2a)
- [Secondary] Determine the role of small-scale magnetic fields in driving global-scale irradiance variability and activity in the solar atmosphere (HP DS 1c)
- [Secondary] Discover how the thermal structure of the closed-field corona is determined (HP DS 2c)

SHP Science Goals

BOX 10.1 SOLAR AND HELIOSPHERIC PHYSICS PANEL'S MAJOR SCIENCE GOALS AND ASSOCIATED ACTIONS

SHP1. Determine how the Sun generates the quasi-cyclical variable magnetic field that extends throughout the heliosphere.

- a. Measure and model the near-surface polar mass flows and magnetic fields that seed variations in the solar cycle.
- b. Measure and model the deep mass flows in the convection zone and tachocline that are believed to drive the solar dynamo.
- c. Determine the role of small-scale magnetic fields in driving global-scale irradiance variability and activity in the solar atmosphere.

SHP2. Determine how the Sun's magnetism creates its dynamic atmosphere.

- Determine whether chromospheric dynamics is the origin of heat and mass fluxes into the corona and solar wind.
- b. Determine how magnetic free energy is transmitted from the photosphere to the corona.
- c. Discover how the thermal structure of the closed-field corona is determined.
- d. Discover the origin of the solar wind's dynamics and structure.

SHP3. Determine how magnetic energy is stored and explosively released.

- Determine how the sudden release of magnetic energy enables both flares and coronal mass ejections to accelerate particles to high energies efficiently.
- b. Identify the locations and mechanisms that operate in impulsive solar energetic-particle sites, and determine whether particle acceleration plays a role in coronal heating.
- c. Determine the origin and variability of suprathermal electrons, protons, and heavy ions on timescales of minutes to hours.
- d. Develop advanced methods for forecasting and nowcasting of solar eruptive events and space weather.

SHP4. Discover how the Sun interacts with the local galactic medium and protects Earth.

- a. Determine the spatial-temporal evolution of heliospheric boundaries and their interactions.
- b. Discover where and how anomalous cosmic rays are accelerated.
- c. Explore the properties of the heliopause and surrounding interstellar medium.

Synergy with DKIST

- The Daniel K. Inouye Solar Telescope (DKIST) will go on line in 2019.
- Four of the 5 first light instruments are spectropolarimeters that study various spectral lines from the photosphere and corona.
- SMART capabilities covers a region of the solar atmosphere not sampled by DKIST.

Science Traceability Matrix

		Key	GREEN = Secondary Object RED = Measurement is not				
Science Objective	Observational Goals	Scientific Meas	urement Requirements	Ins	Instrument Functional Requirements		Mission Functional
		Parameter	Requirement	Parameter	Requirement	Comment	Requirements
		FOV - Full Sun	Raster	Slit length	1.2 Rsun	Investigating feasibility of long (2.4 Rsun) or short (1.2 Rsun) slit	ISS External Payload Zenith side
		Vector Magnetic Field in Chromosphere	<3G	Spectral Resolution Meas. Precision Photons / res element Effective area	100 milliAngstrom 0.3% 3e6 photons 5.4 cm^2	SMART measures Chomo. fields., field measurements from other atmospheric layers from ground and space based satellites. Photon requirement is based on same error distribution as CLASP 1. EA calculated assumes quiet sun intensity of Mg II k line core and a single slit 1.2 Rsun long.	Solar Pointing Platforr 50% sun view 20 arc-sec pointing Telescope Steering Mir. 0.25 arc-sec pointing 1.0 degree range On-Board Processing
		Spatial Resolution for magnetic field	< 3 arc-sec	Plate scale FOV Range Detector Format	1 arc-sec 2.4 R_sun 8k x 8k CMOS	Plate scale is assumed to be 1/3 of requirement. Investigating feasibility of long (2.4 Rsun) or short (1.2 Rsun) slit	Process 30 Hz images Analyze magnetic fields Lossless data compression
Determine how magnetic energy emerges, is stored, and released to drive solar filaments and coronal		Time to complete raster for magnetic field	< 20 min	Slit number Slit width Raster Step Size Raster Step Rate Polarizer Samples Detector Rate	1-3 3 arc-sec 3 arc-sec 1 Hz 8 8 Hz	Hz step rate is needed for full-disk raster scan in 20 min with 3 slits. Observation scenario concept: 8-Hz detector readout with 1-Hz polarizer filter full rotation provides 8 polarizer angle measurements	Data storage for 1-day Downlink 20-130 Mbps
		Time Cadence for Doppler / Intensity	< 2 min	Raster Step Size Raster Step Rate Polarizer Samples Detector Rate	3 arc-sec 5.3 Hz 1 5.3 Hz		
eruptions (HP DS SH 3a)		FOV - Filament Channel	50 arc-sec raster, slit parallel to filament channel	Slit length	1.2 Rsun	Typical filament length	
	High resolution, rapid scan to measure B field, intensity and velocity before, during, and after eruption of filament channel. Slit to be parallel to filament channel.	Vector Magnetic Field in Chromosphere	<16	Spectral Resolution Meas. Precision Photon/res element Eff Area	100 milliAngstrom 0.1% 30e6 ph 76 cm^2	SMART measures Chomo. fields., field measurements from other atmospheric layers from ground and space based satellites	
		Spatial Resolution for magnetic field	< 1 arc-sec	Pixel Resolution FOV Range Detector Format	0.3 arc-sec 1.4 R_sun 8k x 8k CMOS	Pixel scale is assumed to be 1/3 of requirement. 8k x 8k CMOS camera provides 0.3 arc-sec/pixel over 1.4 R_sun	
		Time Cadence for Magnetic Fields	< 5 min	Slit number Slit width Raster Step Size Raster Step Rate Polarizer Samples Detector Rate	1 1 arc-sec 1 arc-sec 0.17 Hz 48 8 Hz	To keep PMU rotation rate the same as full disk mode (8 Hz), we increase the polarization samples. We require additional time at each raster location to achieve required polarization accuracy.	
		Eruption Velocity	< 1 km/sec	Centroid Resolution Spectral Resolution Plate scale	10 milliAngstrom 50 milliAngstrom 25 milliAngstrom	Doppler & coronal dimming method	
		Eruption Brightness Contrast	TBD	TBD	TBD	Doppler & coronal dimming method	

Mission / Instrument Concept

- Primary instrument is a long-slit imaging spectrograph / telescope to measure the magnetic fields of the chromospheric Mg II h and k lines near 280 nm using Hanle (weak field) and Zeeman (strong field) effects
 - NASA MSFC rocket SUMI and MSFC/NOAJ/ISAS CLASP instruments have flown successfully (2010, 2012, 2015) with technology similar to this concept instrument
 - The NASA IRIS SMEX has advanced solar physics by observing the Mg II h and k lines at high spatial and spectral resolution but not with full-disk images.
 - Our mission concept is an advanced study with the capability to measure the chromosphere magnetic field and imaging over the full-disk with 2-20 minute cadence and the flexibility for targeted studies. Our mission focus is on filament eruptions and other global-scale phenomena that IRIS has not addressed.
- Our plan is for sun-sync orbit (SSO) for a 2-year prime mission
 - $-\,$ $^{\sim}$ 10 arc-sec sun pointing by spacecraft and 0.1 arc-sec control for telescope secondary mirror
 - Ka-band downlink (ground station and TDRSS) for $^{\sim}100$ Mbps orbit avg rate

Current Trades Being Investigated

- Long slit vs short slit
 - Can current design accommodate a long slit to increase full disk cadence?
 (CLASP 2 has 400 arc sec slit)
- Multiple slits vs single slit
 - Can design be modified to include multiple slits and improve full disk cadence?
- Multiple slit packages vs single slit package
 - Can multiple slits be included to have the option of using a wide slit and improve full disk cadence/polarization accuracy?

Solar Mg II h & k Lines

- h & k lines are sensitive to magnetic Zeeman effect
 ~1% for 50 G and larger
- k line is sensitive to magnetic Hanle effect (5-100 G)

Solar Mg II h & k Lines

Linear polarization sensitive to scattering polarization and Hanle effect from 5-50 G.

Circular polarization sensitive to Zeeman effect for B > 50 G.

NASA MSFC Solar Instruments

 Solar Ultraviolet Magnetograph Instrument (SUMI) is designed to image the Mg II and C IV spectra and measure its magnetic field. Launched in 2010 and 2012.

 Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) is designed to image the H I Lyman-alpha spectra and measure its magnetic field. Launched in 2015.

NASA MSFC CLASP Instrument Summary

• "SMART" requirement

Telescope				
Туре	Cassegrain			
Aperture	ø277.4 mm			
Eff. Focal Length	2614 mm (F/9.42)			
Primary Mirror	ø290 mm (clear aperture), F/3.54			
Secondary Mirror	ø119.4 mm			
Visible Light Rejection	"Cold Mirror" coating on primary mirror			

Slit				
Slit Width	18.4 µm (1.45 arcsec)	1.0 arcsec		
Slit Length	5.1 mm (400 arcsec)	2000 arcsec		

Slitjaw Imaging System					
Wavelength	Lyα (band-pass filter)	~280 nm			
Optics	 Fold mirror with multilayer coating Off-axis parabola x 2 Lyα filter x 2 				
Detector	512 x 512 CCD, 13µm pixel				
Plate Scale	1.03 arcsec / pixel				
Resolution	2.9 arcsec (spot RMS diameter)				
FOV	527 arcsec x 527 arcsec				

	Polarimeter		
Measurements	Stokes I, Q, U		
Capability	Simultaneous measurement of orthogonal polarizations		
Optics	- Rotating 1/2 waveplate - Polarization analyzer x 2		
	Spectrograph		
Spectrograph Type	Inverse Wadsworth mounting		
Grating Type	Spherical constant-line-space with 3600 mm ⁻¹ groove density		
Grating Size	ø106 mm (clear aperture)		
Wavelength	Optimized for Lya (121.567 nm)		
Camera Mirror	Off-axis parabola		
Resolution	0.01 nm (spectral; RMS diamete 2.8 arcsec (spatial; RMS diamete		.5 nm arcsec
Magnification	0.73		
S	atragraph Camaras		

Spectrograph Cameras							
Detector	512 x 512 CCD, 13µm pixel	8k x 8k, 6 um					
Exposure Time	0.3 sec (nominal)	24-30 Hz					
Plate Scale	0.0048 nm / pixel (spectral) 1.40 arcsec / pixel (spatial)	0.005 nm 0.3 arcsec					
Field of View	121.567±0.61 nm (spectral) 400 arcsec (along slit)	13 nm 2500 arcsec	1				

Mission Budget Estimate

• This is based on \$115M cost cap for SMEX.

20% req. 2 wk/yr

PRIMROSE SMEX Budget ROM						
Category (\$115M cap)		otal	LASP	MSFC	HAO	SAO
	(\$M)		(\$M)	(\$M)	(\$M)	(\$M)
-25% Budget Reserve	\$	21.3				
-10% Schedule Margin	\$	8.5				
Working Budget (\$M)	\$	85.2				
Phase E (2 years) Mission Ops ~\$2.0M/yr Data System ~\$2.0M/yr 4 Science Centers ~\$1M/center/yr	\$	16.0				
50% of Phase E for MOC & SOC development	\$	8.0	MOC		SOC	
HW Phase B-D (4 years)	\$	61.2				
-5% Management	\$	3.1				
-5% System Eng	\$	3.1				
-5% Quality Assurance	\$	3.1				
S/C+Instr Budget (\$M)	\$	52.0				
Ball S/C	\$	30.0				
USA Instrument Support	\$	22.0	CMOS Camera	Integ & Cal	Spectro- polarimeter	Telescope, Steering Mirror

	Instr Cost Model	\$92
,	Japan Contribution	\$70