Teme

LazR ('3')

 $24~\mathrm{Iunie},~2024$

Cuprins

1 Tema I.																	3
2 Tema II																	6

1 Tema I

1. Să se scrie desfășurat următoarele sume:

a)
$$\sum_{k=1}^{5} (k-1)$$
;

b)
$$\sum_{i=-4}^{2} \left(\frac{1-4i}{3-i}\right);$$

c)
$$\sum_{j=4}^{9} \sum_{i=2}^{j} j^{i}$$
;

d)
$$\sum_{i=1}^{1} \sum_{j=1}^{2} \sum_{k=1}^{3} \frac{a_i^k}{j}$$
.

Indicație: c) și d) sunt sume de sume, nu înmulțiri între sume!

2. Să se scrie în mod restrâns, folosind notația Σ , următoarele sume și să se calculeze rezultatul final, utilizând principii și formule cunoscute:

a)
$$1 + 2 + 3 + \dots + 30$$
;

b)
$$\frac{3}{2} + \frac{5}{2} + \frac{7}{2} + \frac{9}{2} + \dots + \frac{131}{2}$$
;

Indicație: Se poate folosi formula sumei primilor n termeni ai unei progresii aritemtice, stabilindu-se primul termen, al n-lea termen, și cât este de fapt n (câți termeni adunăm).

c)
$$1^2 + 2^2 + 3^2 + \dots + 30^2$$
;

d)
$$1+3+5+...+(2n-1)$$
;

e)
$$1^3 + 2^3 + 3^3 + \dots + 30^3$$
;

f)
$$1 \cdot 2 + 2 \cdot 3 + \dots + n \cdot (n+1)$$
;

g)
$$1^4 + 2^4 + 3^4 + ... +$$
 (just kidding, nu te pun să faci așa ceva :p)⁴.

h)
$$1+5+9+...+(4n-3)$$
.

3. Să se afle termenii a_2 și a_3 ai următoarelor progresii aritemitce, știind că:

a)
$$a_1 = 2, r = -3;$$

b)
$$a_1 = -\frac{1}{3}, r = 2;$$

c)
$$a_1 = 3, r = -\frac{1}{4}$$
;

d)
$$a_1 = 3, r^2 + \frac{4}{3}r - \frac{4}{3} = 0.$$

4. Numerele de forma a_n sunt în progresie aritmetică. Dacă $a_{17}=10$, să se calculeze $a_8+a_{10}-a_1$.

Indicație: Aplicând formula termenului general al unei progresii aritmetice, cum putem să rescriem $a_8 + a_{10} - a_1$?

- 5. Fie progresia aritemtică cu primul termen $a_1=2$ și suma primilor 20 termeni $S_{20}=610$. Să se afle $r,\ a_4$ și S_{30} .
- 6. Să se rezolve ecuația:

$$3x + (3x + 2) + (3x + 4) + \dots + (3x + 100) = 2652.$$

Indicație: nu e obligatoriu să se utilizeze notația Σ .

7. Calculați:

a)
$$\left[-\frac{5}{2} \right] + \left[\frac{5}{3} \right];$$

b)
$$\{1,64\} - \{-2,36\}.$$

8. Să se rezolve ecuațiile:

a)
$$|x-2| = 5$$
;

b)
$$|x-1| + |2-2x| = 12$$
;

c)
$$|1 - 2x| = |x + 4|$$
.
9. Să se calculeze

$$\sum_{i=1}^{15} \sum_{j=1}^{i} j.$$

 $\rm AL6$ și $\rm AL7$ din culegerea de poli.

2 Tema II

1. Să se rezolve ecuațiile:

a)
$$|3 - x| - 2|x - 3| = 0$$
;

Soluție:

$$x: -\infty \xrightarrow[3-x<0]{x-3>0} 3 \xrightarrow[3-x>0]{x-3<0} \infty$$

(i) $x \in (-\infty, 3] \Rightarrow$

$$x-3-2(x-3)=0 \iff -(x-3)=0 \Rightarrow x=3 \in (-\infty,3].$$

(ii) $x \in (3, \infty) \Rightarrow$

$$3 - x - 2(3 - x) = 0 \iff -2(3 - x) = 0 \Rightarrow x = 3 \notin (3, \infty).$$

$$x \in \{3\}.$$

b) |2x+1| = x+3;

c)
$$|3x - 2| = |x + 1|$$
;

Soluție:

$$x: -\infty \xrightarrow[x+1>0]{3x-2<0} -1 \xrightarrow[x+1>0]{3x-2<0} \xrightarrow{2} \xrightarrow[x+1>0]{3x-2>0} \infty$$

(i) $x \in (-\infty, -1] \Rightarrow$

$$2 - 3x = -x - 1 \Rightarrow x = \frac{3}{2} \notin (-\infty, -1].$$

(ii) $x \in \left(-1, \frac{2}{3}\right] \Rightarrow$

$$2 - 3x = x + 1 \Rightarrow x = \frac{1}{4} \in \left(-1, \frac{2}{3}\right].$$

(iii) $x \in \left(\frac{2}{3}, \infty\right) \Rightarrow$

$$3x - 2 = x + 1 \Rightarrow x = \frac{3}{2} \in \left[\frac{2}{3}, \infty\right).$$
$$x \in \left\{\frac{1}{4}, \frac{3}{2}\right\}.$$

d)
$$|x| + |x - 1| = 1$$
;

f)
$$|x-1| + |2x-2| + \dots + |9x-9| = x$$
.

Soluție:

$$|x-1|+2|x-1|+...+9|x-1|=x$$

$$(1+2+...+9)|x-1|=x$$

$$\frac{9\cdot 10}{2}|x-1|=x$$

$$45|x-1|=x$$

$$x: -\infty \xrightarrow{x-1<0} 1 \xrightarrow{x-1>0} \infty$$

(i)
$$x \in (-\infty, 1] \Rightarrow$$

$$45(1-x) = x \Rightarrow x = \frac{45}{46} \in (-\infty, 1].$$

(ii)
$$x \in (1, \infty)$$

$$45(x-1) = x \Rightarrow x = \frac{45}{44} \in (1, \infty).$$

$$x \in \left\{ \frac{45}{44}, \frac{45}{46} \right\}$$

2. Să se rezolve inecuațiile:

a)
$$|x+5| \le 2$$
;

Soluție:

$$-2 \le x + 5 \le 2 \iff -7 \le x \le -3 \Rightarrow x \in [-7, -3].$$

b) |1 - 3x| > 1;

Soluție:

 $1-3x<-1 \text{ sau } 1-3x>1 \iff x>\frac{2}{3} \text{ sau } x<0 \Rightarrow x\in (-\infty,0)\cup \left(\frac{2}{3},\infty\right).$

- c) $|3x 1| + |3 9x| \le 0$;
- d) $|2x 1| \le -1$;
- e) |3x 6| > 0;
- f) 1 < |x 2| < 2;
- g) |5 3x| < x;
- h) |x| < |3x 1|.

Soluție:

$$|x| < |3x - 1| \iff x < |3x - 1|;$$

(logic - dacă modulul unui număr e mai mic decât ceva, atunci și numărul în sine e mai mic decât acel ceva)

$$x < 3x - 1$$
 sau $3x - 1 < -x \Rightarrow x \in \left(-\infty, \frac{1}{4}\right) \cup \left(\frac{1}{2}, \infty\right)$.

- 3. Să se calculeze următoarele sume:
- a) $\sum_{k=1}^{n} (4k+3);$
- b) $\sum_{k=1}^{n} (k-2)(k+3)$;

Soluție:

$$\sum_{k=1}^{n} (k-2)(k+3) = \sum_{k=1}^{n} (k^2 + k - 6)$$

$$= \sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k - 6 \sum_{k=1}^{n} 1$$

$$= \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} - 6n$$

$$= n\left(\frac{(n+1)}{2}\left(\frac{2n+1}{3} + 1\right) - 1\right)$$

$$= \frac{n(n^2 + 3n - 16)}{3}.$$
(1)

- c) $\sum_{k=2}^{n} (k^2 + k);$
- d) $\sum_{k=1}^{n} (k+1)^3$;
- e) $\sum_{k=1}^{n} k(k+1)(k+2)$.
- 4. Să se determine termenii a_5, a_9, a_{20} ai progresiei aritmetice $(a_n)_{n\geq 1}$, știind că primii 5 termeni ai progresiei sunt:
- a) -5, a_2 , a_3 , 1, a_5 ;
- b) a_1 , 4, 1, a_4 , a_5 ;
- c) $a_1, -2, a_3, 2, a_5$.
- 5. Să se determine care dintre numerele 3101, 770, 900, 1022 este termen al progresiei aritmetice având primul termen $a_1=2$ și rația r=4.
- 6. Fie progresia aritmetică cu primul termen $a_1=3$. Să se afle $r,\,a_4,\,S_{30}$ dacă:
- a) $S_{36} = 2628;$

- b) $S_{50} = 3825$.
- 7. Să se determine termenii $b_5,$ $b_8,$ b_{20} ai unei progresii geometrice $(b_n)_{n\geq 1},$ dacă primii 4 termeni ai progresiei sunt::
- a) b_1 , 12, 36, b_4 ;
- b) b_1 , -6, b_3 , b_4 ;
- c) $b_1, b_2, \frac{1}{4}, \frac{1}{8};$
- d) $3, -2, b_3, b_4$.
- 8. Să se calculeze (în principiu, să se restrângă) următoarele sume:
- a) $1 + 2 + 2^2 + \dots + 2^{2016}$;
- b) $\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \frac{1}{3^{100}}$;
- c) $\left(\frac{1}{4}\right)^5 + \left(\frac{1}{4}\right)^6 + \dots + \left(\frac{1}{4}\right)^{n+3}, n \in \mathbb{N}, n \ge 2.$
- 9. Calculați:

$$\frac{\sin 75^{\circ}}{\sin 15^{\circ}} - \frac{\cos 75^{\circ}}{\cos 15^{\circ}}$$

- 10. Calculați:
- a) $\sin \frac{\pi}{12}$;
- b) $\cos 75^{\circ}$;
- c) $\tan 15^{\circ}$;
- d) $\cos \frac{11\pi}{12}$.
- 11. Calculați:

- a) $\sin^2(x + \frac{\pi}{2}) + \sin^2(x + \pi)$;
- b) $\sin x \cdot \cos \left(\frac{\pi}{2} + x\right) 0 \cos x \cos \sin \left(\frac{\pi}{2} + x\right);$
- c) $\sin x \cdot \cos \left(\frac{\pi}{2} x\right) + \cos^2(\pi x)$.
- 12. Să se calculeze $\sin(2x)$, știind că $\sin x = \frac{1}{2}$ și $x \in (\frac{\pi}{2}, \pi)$.
- 13. Să se rezolve ecuația trigonometrică:

$$\cos x = -\cos 40^{\circ},$$

unde $x \in (0, 360^{\circ})$.

14. Care dintre numerele cos 55°, sin 155°, sin 15°, cos 170°, cos 100°, sin 106° este cel mai aproape de 0?