cisco live!

Optical and Optics 101 for IP Engineers

Brad Riapolov and Kent Dailey, Technical Solution Architects

BRKOPT-1260

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 17, 2022.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKOPT-1260

Agenda

- Introduction
- DWDM Fundamentals and Necessaries
- Forward with Optical Line Systems and Transponders
- Forward with Routed Optical Networking
- Which is better decision time
- Conclusion

DWDM Fundamentals and Necessaries

Traditional IP Engineer's view of Optical Networking

- Grey optics connect buildings/floors together, a mystery beyond
- Layer 1 requires a different skillset from Fthernet
- Fiber optic technology has a "perceived" steep learning curve
- Traditional Engineers understand IP, not Transport, hard to find both skillsets
- Fiber optic networks are costly

What is optical transport and why do you need it?

- Copper or fiber cables are abundant at a site. But...
- What do you need to connect other sites across the city or to another state?

 Answer: Optical transport over fiber (longest transmission medium) to transform physical distance into micro or milliseconds.

Core
Distribution
Access

Site A

Characterized by:

Distance (w/wo amplification)

Site B

Why WDM (Wave Division Multiplexing)

- Maximize Fiber Utilization it is costly
- Supports multi-site connectivity w/o physical direct connectivity
- WDM = a "wire" between two Client Devices (even between large distances)
- WDM is Agnostic Protocol and Bit-Rate
- Allows underlying infrastructure to evolve and grow while meeting immediate network needs
- Different formats WDM, CWDM, DWDM
 same concept/more channels

What is ROADM?

- ROADM is an optical Network Element able to Add/Drop or Express through any wavelength
 - · R in ROADM: SW "reconfigurable"
- Legacy ROADM implementations have Add/Drop interfaces dedicated to a direction
- Next-gen ROADM's can leverage <u>"omni-directional, colorless and contentionless"</u> A/D architectures (CDC or CCOFS terms)

Visualizing Optical Transmissions

BRKOPT-1260

Types of DWDM Services and Cards...

Transponder: One→Wavelength

Muxponder: Many→Wavelength

Alien: Foreign DWDM→Wavelength

Optical Distances

- Maximize Fiber Efficiency
- Longer reach
- Increased Capacity
- Improved Visibility
- Multiple Connections
- Management

One of the performance metrics that matters... Optical Signal-to-Noise Ratio (OSNR)

- OSNR is a measure of the ratio of signal level to the level of system noise
- As OSNR decreases, possible errors increase
- EDFAs are the source of noise
- Different Devices have different OSNR floors Pluggables, Transponders, etc.

1st Step to improve OSNR: Forward Error Correction

- FEC extends reach and design flexibility, at "silicon cost"
- FEC detects and corrects errored bits
- Offers intrinsic performance monitoring (error statistics)
- Reduces the SNR necessary for a link to operate at a specified BER
- Not just DWDM Interfaces anymore many Client Optics use FEC too

Benefit: FEC/EFEC Extends Reach

BRKOPT-1260

Forward with Optical Line Systems and Transponders

Cisco NCS 1000 Products

BRKOPT-1260

NCS 1004 - IOS-XR Multi-Haul Solution

2RU with 4x Line Cards – fully modular

Dual DC and AC Power Supplies

Supports Transport Encryption Option

1.2Tbps C & L-Band

- 12x Client QSFP28's
- C-Band Variant :
 - 2x 100G-600G Trunks in 50G Increments
- L-Band Variant:
 - 2x 200-400G Trunks

1.2T Xponder

- All Pluggable Card
 - 4x DD-QSFP56/QSFP-28/QSFP+
 - 8x QSFP-28/QSFP+
- 2x 400G-CFP-DCO & 400G-QDD-7R+ Trunks
- Multi-Protocol & OTN Switching

800G-QDD

- 8x Client QSFP28 or 2x QSFPDD56
- 2x 400GE Clients/8x 100GE Clients
- 2x 100G-400G Trunks
- Same Optical Performance as 1.2Tbps C-Band Card

NCS 1001 - IOS-XR Optical Line System (OLS)

- Point to Point Metro/Regional DWDM networks
- Protection and unprotected topologies
- Optical Performance optimized for high baud-rate, higher-order modulation formats
- Visibility with Channel monitoring, OTDR Option
- Automated turn-up

Forward with Routed Optical Networking

Choices for driving distances

Optical Line Systems

Coherent Pluggables

Pluggables in Host Devices

- Native over Dark Fiber
- 40km(QDD)-80km(CFP2) distances
- Single Wavelength

NCS 1001

High bandwidth, point to point optical platform for metro/regional

- Point to point
- ~500 km distances
- Multiple Wavelengths

NCS 2000 / NCS 1010

High bandwidth, full featured optical platform for multipoint and long-distance designs

- Point to multipoint
- +1000's km distances
- Multiple Wavelengths/C+L Bands

Utilize Coherent Pluggables along with Line Systems to extend the distances

OpenZR+ Combination of two standardization efforts

OpenROADM SP Metro, Regional, LH 100G 200G 100G Client Line 300G 200G 400G 300G Ethernet 400G OTN **OpenROADM FlexO** Flexible Client Mapping + High Performance FEC (oFEC)

Combination of two standardization efforts that enables high performance pluggable modules that provide multi-vendor interoperability

Mass-scale Infrastructure Routers @400G

400G Routers - Customer Favorites

NCS-57C3-MOD-SYS

Dual-RP

5x400G

8x100G

48x1/10/25G

3RU

Flexible MPAs

MACsec

2.3M FIB

ASR-9903

Dual-RP

16x 100GE + 20x 10GE fixed ports

5x400GE or 20x100GE or

10x200GE or (2T PEC)

32x 25GE/10GE or 48x 10GE

(800G PEC)

3RU

Flexible MPAs

MACsec

6M FIB

8201-32FH

Network Resiliency

32x400G

1RU

12.8Tb

2.25 Watts per

100GbE(!!!)

2.M FIB

A Hidden Gem - ASR 9902

- · 2RU chassis with 2x LS+ NPUs
- Redundant Control Plane
- Redundant AC or DC power supplies
- Class C timing & MACSec on all ports

- Mix of 1GE, 10GE, 25GE, and 100GE ports
- · 2x 100GE QSFP-DD ports in 100GE mode
- 6x 100GE QSFP28 ports
- 16x 25GE/10GE ports
- 24x 10GE SFP+ ports | OTN | linear tunable optics

400G-ZR Transport with NCS 1001 Metro-Regional Networks

NCS 540 NCS 5500 ASR 9000 CISCO 8000 NCS1K-MD64 8000 400G-ZR/+ 9000 QSFPDD's IOS-XR Fnd-to-Fnd NCS1001 540 **Full C-Band Tunable** 400G Trunks **Amplified Solution** supporting 120km without intermediate

#CiscoLive

BRKOPT-1260

Hop-to-Hop Only Design Example

Which is better - decision time

Coherent Optics Models for the Router 400G Transition

Direct on Router

QSFP-56DD 100G-400G

QDD-ZR - 120km QDD-ZR+ - 1,000- 4,000km+

QSFP-56DD 100G-400G CFP2 - 100G - 400G

QDD-ZR - 120km QDD-ZR+/CFP2 - 1,000-4,000km+

Router and TXP

Embedded Trunk 100G - 600G

100KM - 20,000KM

Converging IP and Optical Networks

Routing Optical Networking with Operational Simplification

F2F Automation with Crosswork Platform

Three Management Domains to address three separate planes

Benefits

Provides a single Interface

Simplifies planning and feasibility

Moves management and control closer to the

Reduces power and footprint

Enables the sharing of network information for

Leverages industry standards

Routed Optical Networking: Removing Complexity

Back of the Napkin Cost Comparison Simple CAPEX Math

```
Transponder Costs...
Cisco NCS 2000 400G-
XP Card= $314k
 2x CFP2's= $300k
 8x Client LR4 QSFP28's
 = \frac{5312K}{TOTAL} = \frac{5232k}{100G}
  2x 200G waves
   What is your cost per 100G?
```


Cisco Global Price List (USD) - April 28, 2022

Back of the Napkin Power Comparison Simple OPEX Math

Transponder Power...
Cisco NCS 2000 400GXP Card= 330W/400G
TOTAL = 330W/400G

2x 200G waves

How much power does your Transponder use? ZR+ QSFP-DD Power = $\frac{\sim 20W}{\text{TOTAL}} = \frac{\sim 20W/400G}{}$ ~6% of the TXP Power what about Space?

A case against G.8032 Ethernet Rings

Smaller size – reconvergence suffers as the ring grows

Short L2 rings, star mesh not supported

Cascaded rings – physical disruption to stop unexplained behavior

Some locations on the ring do not have the best path to destination

No double-cut advantage

Optical restoration is not faster than IP

No traffic prioritization and engineering

No security for the control plane

No measurable latency advantage (5usec/km)

A case for IP

Using ALL available paths (resilience = # of Fiber paths)

Any-to-Any connectivity = Aggregating traffic from any site onto the optical link and/or offloading traffic directly into any other site

Optical Fiber Path = Routing Topology

Easy & flexible integration and placement of new Platforms, like Far Edge compute, cloud native BNG, etc.

Built-in Fast-Convergence/Protection mechanisms (IP-FRR/TI-LFA)

L3 Control Plane as Single Control Plane vs. IP/MPLS + Optical GMPLS + WSON/SSON

Network Slicing through Segment Routing - Low Latency path, Disjoint Path, Highest BW path, etc.

G.8032 vs IP Compared

	VLAN-Based Solutions	EVPN-SR
Scale	 Large, flat L2 architectures don't scale VLAN tag stacking is not a manageable solution 	 Will scale to thousands of nodes per domain 20-bit labels yield virtually limitless tunnels and services 10's of thousands of LSPs
Operations	Understanding switching path will be very difficult since there is no control-plane state for services or tunnels	 Traffic routing will be deterministic based on dynamic or explicit path selection via control plane Switching paths are easily traced using MPLS OAM toolkit
Automation	Requires EMS or manual configuration and assignment (which will be error-prone and complex to manage)	 EVPN dynamically learns remote endpoints Programmatically define the path for the packet at the source node
Optimization	Traffic engineering with VLAN-based switching is very difficult if not impossible	Native ECMP allows efficient use of network resources – no configuration required
Flexibility	VLAN-based solutions constrained to logical hub-and-spoke or ring architectures	Any arbitrary topology can be supported with same resiliency and scale

Routed Optical Networking Automation Stack

BRKOPT-1260

Conclusion

Takeaways

- You can implement and support DWDM, it is not harder than anything else
- The best person to make the network decisions is you
- You will save \$\$\$ and improve technology by going with Routed Optical Networking
- Always be flexible in your designs and think ahead of others

Packet Optical Networking Conference

Registration is Open!

June 28th

June 29th

June 30th

10am-1pm Eastern Time / 7am-10am Pacific Time

Technical Session Surveys

- Attendees who fill out a minimum of four session surveys and the overall event survey will get Cisco Live branded socks!
- Attendees will also earn 100 points in the Cisco Live Game for every survey completed.
- These points help you get on the leaderboard and increase your chances of winning daily and grand prizes.

Cisco Learning and Certifications

From technology training and team development to Cisco certifications and learning plans, let us help you empower your business and career. www.cisco.com/go/certs

(CLCs) are prepaid training vouchers redeemed directly with Cisco.

Learn

Train

Certify

Cisco U.

IT learning hub that guides teams and learners toward their goals

Cisco Digital Learning

Subscription-based product, technology, and certification training

Cisco Modeling Labs

Network simulation platform for design, testing, and troubleshooting

Cisco Learning Network

Resource community portal for certifications and learning

Cisco Training Bootcamps

Intensive team & individual automation and technology training programs

Cisco Learning Partner Program

Authorized training partners supporting Cisco technology and career certifications

Cisco Instructor-led and Virtual Instructor-led training

Accelerated curriculum of product, technology, and certification courses

Cisco Certifications and Specialist Certifications

Award-winning certification program empowers students and IT Professionals to advance their technical careers

Cisco Guided Study Groups

180-day certification prep program with learning and support

Cisco Continuing Education Program

Recertification training options for Cisco certified individuals

Here at the event? Visit us at The Learning and Certifications lounge at the World of Solutions

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Thank you

cisco Live!

