Nowe Algorytmy i Własności do Pesymistycznego Sterowania Współbieżnością w Rozproszonej Pamięci Transakcyjnej

Konrad Siek
Poznań University of Technology
konrad.siek@cs.put.edu.pl

13 I 2015

Pamięć Transakcyjna

```
a_lock.acquire()
b_lock.acquire()
a = a + b
a_lock.release()
b = b + 1
b_lock.release()
```

Pamięć Transakcyjna

```
a_lock.acquire()
    b_lock.acquire()
    a = a + b
    a = a + b
    b = b + 1
b_lock.release()
```

Herlihy, Moss. Transactional Memory: Architectural Support for Lock-free Data Structures. ISCA'93.

```
transaction {
   x = x + 1
}
```

```
transaction { \mathbf{x} = \mathbf{x} + \mathbf{1} } \{x = 1\} \quad T_1 \ \big[\!\!\big[ \ r(x)\mathbf{1}, \ \ w(x)\mathbf{2} \ \big]\!\!\big]
```

```
transaction { \mathbf{x} = \mathbf{x} + \mathbf{1} } \{x = 1\} \quad T_1 \ \llbracket \ r(x)\mathbf{1}, \ \ w(x)\mathbf{2} \ \rrbracket  T_2 \quad \llbracket \ r(x)\mathbf{1}, \ \ w(x)\mathbf{2} \ \rrbracket
```

```
transaction { \mathbf{x} = \mathbf{x} + \mathbf{1} } \{x = 1\} \quad T_1 \ \big[\!\big[\!\big[ r(x)\mathbf{1}, \ w(x)\mathbf{2} \,\big]\!\big]\!\big] T_2 \quad \big[\!\big[\!\big[ r(x)\mathbf{1}, \ w(x)\mathbf{2} \,\big]\!\big]
```

```
transaction { x = x + 1  } \{x = 1\} \quad T_1 \ \llbracket \ r(x)1, \ w(x)2 \ \rrbracket  T_2 \quad \llbracket \ r(x)1, \ w(x)2 \ \circlearrowleft \rightarrow T_2' \ \llbracket \ r(x)2, w(x)3 \ \rrbracket \quad \{x = 3\}
```

```
transaction { x = x + 1  } \{x = 1\} \quad T_1 \ \llbracket \ r(x)1, \ w(x)2 \ \rrbracket  T_2 \quad \llbracket \ r(x)1, \ w(x)2 \ \circlearrowleft \rightarrow T_2' \ \llbracket \ r(x)2, w(x)3 \ \rrbracket \quad \{x = 3\}
```

Konflikt: transakcja czyta lub modyfikuje zmienną, która jest jednocześnie modyfikowana przez inną transakcje.

Poprawność Wykonania

Szeregowalność (serializability)

Papadimitrou. The Serializability of Concurrent Database Updates. Journal of the ACM, 1979.

Poprawność Wykonania

Szeregowalność (serializability)

Papadimitrou. The Serializability of Concurrent Database Updates. Journal of the ACM, 1979.

Historia H:

Poprawność Wykonania

Szeregowalność (serializability)

Papadimitrou. The Serializability of Concurrent Database Updates. Journal of the ACM, 1979.

Historia H:

Historia szeregowa S ekwiwalentna do H:

$$\{x=1\} \quad T_1 \ \left[\!\!\left[\begin{array}{cc} r(x)1, w(x)2 \end{array}\right]\!\!\right] \quad T_2' \ \left[\!\!\left[\begin{array}{cc} r(x)2, w(x)3 \end{array}\right]\!\!\right] \quad \{x=3\}$$

Bezpieczeństwo Pamięci Transakcyjnych

Bezpieczeństwo Pamięci Transakcyjnych

```
\begin{array}{lll} & & & & \\ & x=2 & & & \\ & y=4 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\
```

Bezpieczeństwo Pamięci Transakcyjnych

Nieprzejrzystość (opacity):

Historia musi być szeregowalna + żadna transakcja nie może odczytać wartości zapisanej przez niezatwierdzone transakcje.

Guerraoui and Kapałka. Principles of Transactional Memory. Morgan & Claypool, 2010.

$$T_1 \ \llbracket \ r(x)1, w(x)2 \ \rrbracket$$

 $T_2 \ \llbracket \ r(x)1, w(x)2 \ \rrbracket$

```
 \begin{array}{c|c} T_1 & \llbracket \ r(x)1, w(x)2 \ \rrbracket \\ T_2 & \llbracket \ r(x)1, w(x)2 \ \circlearrowleft \ \to T_2' \ \llbracket \ r(x)2, w(x)3 \ \rrbracket \\ T_3 & \llbracket \ r(x)1, w(x)2 \end{array}
```

```
\begin{array}{lll} T_1 & \llbracket & r(x)1, w(x)2 & \rrbracket \\ T_2 & \llbracket & r(x)1, w(x)2 & \circlearrowleft & \to T_2' & \llbracket & r(x)2, w(x)3 & \rrbracket \\ T_3 & \llbracket & r(x)1, w(x)2 & \circlearrowleft & \to T_3' & \llbracket & r(x)2, w(x)3 & \rrbracket \end{array}
```

```
\begin{array}{lll} T_1 & \left[ \begin{array}{ccc} r(x)1,w(x)2 \end{array} \right] \\ T_2 & \left[ \begin{array}{ccc} r(x)1,w(x)2 \end{array} \right] & \rightarrow T_2' & \left[ \begin{array}{ccc} r(x)2,w(x)3 \end{array} \right] \\ T_3 & \left[ \begin{array}{ccc} r(x)1,w(x)2 \end{array} \right] & \rightarrow T_3' & \left[ \begin{array}{ccc} r(x)2,w(x)3 \end{array} \right] & \rightarrow T_3'' & \left[ \begin{array}{ccc} r(x)3,w(x)4 \end{array} \right] \end{array}
```

$$T_i \llbracket ..., ir, ... \rrbracket$$

- nie operuje na danych współdzielonych
- wykonanie ma widoczne konsekwencje
- konsekwencje są niewycofywalne

```
T_i \llbracket ..., ir, ... \rrbracket
```

- nie operuje na danych współdzielonych
- wykonanie ma widoczne konsekwencje
- konsekwencje są niewycofywalne

```
transaction {
   x = x + 1
   fire_rocket()
}
```

```
T_i \llbracket ..., ir, ... \rrbracket
```

- nie operuje na danych współdzielonych
- wykonanie ma widoczne konsekwencje
- konsekwencje są niewycofywalne

```
transaction {
   x = x + 1
   local_lock.acquire()
   // ...
   local_lock.release()
}
```

```
T_i \llbracket ..., ir, ... \rrbracket
```

- nie operuje na danych współdzielonych
- wykonanie ma widoczne konsekwencje
- konsekwencje są niewycofywalne

```
transaction {
    x = x + 1
    local_lock.acquire()
    // ...
    local_lock.release()
}
T_2 \ \llbracket \ r(x)1, w(x)2, ir \ \circlearrowleft \dots \ \llbracket \ r(x)2, w(x)2, ir \ \rrbracket
```

Pesymistyczne vs Optymistyczne Pamięci Transakcyjne

Podejście optymistyczne:

Podejście pesymistyczne

Pesymistyczne vs Optymistyczne Pamięci Transakcyjne

Podejście optymistyczne:

Podejście pesymistyczne

$$T_1 \parallel r(x)1, w(x)2 \parallel$$
 $T_2 \parallel r(x)2, w(x)3 \parallel$

- Zachowanie abstrakcji transakcji
- Tolerowanie wysokiej rywalizacji
- Bezpieczna obsługa operacji nieodwołalnych

Pesymistyczne vs Optymistyczne Pamięci Transakcyjne

Podejście optymistyczne:

$$T_1 \begin{bmatrix} r(x)1, w(x)2 \end{bmatrix}$$

$$T_2 \begin{bmatrix} r(x)1, & w(x)2 \\ \end{bmatrix} \hookrightarrow T_2' \begin{bmatrix} r(x)2, w(x)3 \end{bmatrix}$$

Podejście pesymistyczne

- Zachowanie abstrakcji transakcji
- Tolerowanie wysokiej rywalizacji
- Bezpieczna obsługa operacji nieodwołalnych

Matveev, Shavit. Towards a Fully Pessimistic STM Model. TRANSACT'12.

Afek, Matveev, Shavit. Pessimistic Software Lock-Elision. DISC'12.

SVA w skrócie:

 T_i przy starcie dostaje następny wolny numer wersji (numer wersji) dla każdego z zasobów x,y,z

SVA w skrócie:

 T_i przy starcie dostaje następny wolny numer wersji (numer wersji) dla każdego z zasobów x,y,z

 T_i ma dostęp do x jak tylko numer wersji T_i dla x jest równy licznikowi wersji zmiennej x, w przeciwnym wypadku T_i czeka

SVA w skrócie:

 T_i przy starcie dostaje następny wolny numer wersji (numer wersji) dla każdego z zasobów x,y,z

 T_i ma dostęp do x jak tylko numer wersji T_i dla x jest równy licznikowi wersji zmiennej x, w przeciwnym wypadku T_i czeka

 T_i przy zatwierdzeniu x,y,z licznik wersji każdej ze zmiennych jest powiększony o 1 (transakcja z następnym numerem wersji dostaje dostęp do x,y,z)

SVA w skrócie:

 T_i przy starcie dostaje następny wolny numer wersji (numer wersji) dla każdego z zasobów x,y,z

 T_i ma dostęp do x jak tylko numer wersji T_i dla x jest równy licznikowi wersji zmiennej x, w przeciwnym wypadku T_i czeka

 T_i przy zatwierdzeniu x,y,z licznik wersji każdej ze zmiennych jest powiększony o 1 (transakcja z następnym numerem wersji dostaje dostęp do x,y,z)

Kiedy T_i używa zmiennej x ostatni raz (wg $\mathit{supremum}$) licznik wersji zmiennej x jest powiększony o 1

Wojciechowski. Isolation-only Transactions by Typing and Versioning. PPDP'05.

SVA w skrócie:

 T_i przy starcie dostaje następny wolny numer wersji (numer wersji) dla każdego z zasobów x,y,z

 T_i ma dostęp do x jak tylko numer wersji T_i dla x jest równy licznikowi wersji zmiennej x, w przeciwnym wypadku T_i czeka

 T_i przy zatwierdzeniu x,y,z licznik wersji każdej ze zmiennych jest powiększony o 1 (transakcja z następnym numerem wersji dostaje dostęp do x,y,z)

Kiedy T_i używa zmiennej x ostatni raz (wg $\mathit{supremum}$) licznik wersji zmiennej x jest powiększony o 1

Wojciechowski. Isolation-only Transactions by Typing and Versioning. PPDP'05.

Wymagana wiedzy *a priori* o *supremach*: max liczbie dostępów do zmiennych w transakcji

Siek, Wojciechowski. A Formal Design of a Tool for Static Analysis of Upper Bounds on Object Calls. FMICS'12.

Zalety Wczesnego Zwalniania Zasobów

Wykonanie bez wczesnego zwalniania

Wczesne zwalnianie przy ostatnim użyciu

Zalety Wczesnego Zwalniania Zasobów

Wykonanie bez wczesnego zwalniania

$$T_1 \ \llbracket \ r(x)1, w(x)2, r(y)1, w(y)2 \ \rrbracket$$

$$T_2 \ \llbracket \qquad \qquad r(x)2, w(x)3 \ \rrbracket$$

Wczesne zwalnianie przy ostatnim użyciu

$$T_1 \parallel r(x)1, w(x)2, r(y)1, w(y)2 \parallel$$

 $T_2 \parallel r(x)2, w(x)3 \parallel$

Poprawa wydajności:

Zalety Wczesnego Zwalniania Zasobów

Wykonanie bez wczesnego zwalniania

Wczesne zwalnianie przy ostatnim użyciu

Poprawa wydajności:

Unika całkowicie wycofań. Spełnia opacity. Siek, Wojciechowski. Atomic RMI: a Distributed Transactional Memory Framework. HLPP'14/IJPP.

Rollback

Konieczność możliwości programistycznego wycofania transakcji (rollback):

- Silniejsze (bardziej uniwersalne) narzędzie
- Niezbędne dla mechanizmów tolerowania awarii

Siek, Wojciechowski. Brief Announcement: Towards a Fully-Articulated Pessimistic Distributed Transactional Memory. SPAA'13.

Rollback

Konieczność możliwości programistycznego wycofania transakcji (rollback):

- Silniejsze (bardziej uniwersalne) narzędzie
- Niezbędne dla mechanizmów tolerowania awarii

Siek, Wojciechowski. Brief Announcement: Towards a Fully-Articulated Pessimistic Distributed Transactional Memory. SPAA'13.

Wprowadza wycofania i kaskady wycofań

$$T_1 \parallel r(x)1, w(x)2, r(y)1, w(y)2,$$

 $T_2 \parallel r(x)2, w(x)3$

Rollback

Konieczność możliwości programistycznego wycofania transakcji (rollback):

- Silniejsze (bardziej uniwersalne) narzędzie
- Niezbędne dla mechanizmów tolerowania awarii

Siek, Wojciechowski. Brief Announcement: Towards a Fully-Articulated Pessimistic Distributed Transactional Memory. SPAA'13.

Wprowadza wycofania i kaskady wycofań

Wprowadza niespójne widoki: nie spełnia *opacity* Kompromis między bezpieczeństwem i elastycznością abstrakcji

Niespójne widoki

Możliwy niespójny widok (możliwe w SVA):

Niespójne widoki

Możliwy niespójny widok (możliwe w SVA):

$$T_i \ \left[\begin{array}{ccc} \mathbf{w}(x)0, & \mathbf{w}(x)1 & & \\ \end{array} \right. \\ \left. T_j & \left[\begin{array}{ccc} \mathbf{x} \mathbf{r}(x)0 & \mathbf{x} \\ \end{array} \right. \\ \left. \begin{array}{cccc} T_j' \left[\begin{array}{cccc} \mathbf{r}(x)1, \mathbf{w}(x)2 \end{array} \right] \end{array} \right]$$

Nadpisywanie (wykluczone przez SVA):

$$T_i \ \left[\begin{array}{cc} \mathbf{w}(x)0, & \mathbf{w}(x)1 \end{array} \right]$$

$$T_j \quad \left[\begin{array}{cc} \mathbf{w}(x)0 & \mathbf{w}(x)1 \end{array} \right]$$

$$T_j' \quad \left[\begin{array}{cc} \mathbf{r}(x)1, \mathbf{w}(x)2 \end{array} \right]$$

Własności Bezpieczeństwa i Wczesne Zwalnianie

- Serializability
- Elastic Opacity
- Virtual World Consistency
- TMS1 & TMS2
- Opacity

Własności Bezpieczeństwa i Wczesne Zwalnianie

- Serializability
- Elastic Opacity
- Virtual World Consistency
- TMS1 & TMS2
- Opacity

Siek, Wojciechowski. Zen and the Art of Concurrency Control: An Exploration of TM Safety Property Space with Early Release in Mind. WTTM'14.

Last-use opacity (nieprzejrzystość do ostatniego użycia)

Składowe nieprzejrzystości:

- Szeregowalność (serializability)
- Porządek czasu rzeczywistego (*real-time order*)
- Spójność (*consistency*)

Last-use opacity (nieprzejrzystość do ostatniego użycia)

Składowe nieprzejrzystości:

- Szeregowalność (serializability)
- Porządek czasu rzeczywistego (real-time order)
- Spójność (consistency)

Składowe nieprzejrzystości do ostatniego użycia:

- Szeregowalność (serializability)
- Porządek czasu rzeczywistego (*real-time order*)
- Spójność do ostatniego użycia (*last-use consistency*)
- Odtwarzalność (recoverability)

Siek, Wojciechowski. Relaxing Opacity in Pessimistic Transactional Memory. DISC'14.

Odczyty w SVA

Zdalne wywołanie metod (RMI) vs rozproszone bazy danych: SVA nie rozróżnia operacji odczytu i zapisu.

Odczyty w SVA

Zdalne wywołanie metod (RMI) vs rozproszone bazy danych: SVA nie rozróżnia operacji odczytu i zapisu.

Odczyty w SVA

Zdalne wywołanie metod (RMI) vs rozproszone bazy danych: SVA nie rozróżnia operacji odczytu i zapisu.

Optymalizacje SVA dozwalające dodatkowe przeploty.

Lipton. Reduction: A Method of Proving Properties of Parallel Programs. Comm. of the ACM. 1975.

OptSVA: Transakcje Aktualizujące

Transakcja wykonująca wyłącznie zapisy:

- Buforowanie zapisów
- Aktualizacja zmiennych opóźniona do zatwierdzenia
- Pobieranie numerów wersji opóźnione do zatwierdzenia

OptSVA: Zmienne Tylko-do-odczytu

Transakcja wykonująca wyłącznie odczyty na zmiennej:

- Buforowanie wartości zmiennej przy starcie transakcji
- Zwolnienie zmiennej po buforowaniu
- Odczyt wyłącznie z bufora

OptSVA: Buforowanie i Wczesne Zwalnianie

Transakcja wykonująca odczyty i zapisy na zmiennej:

- Buforowanie wartości zmiennej przy pierwszym zapisie
- Zwolnienie zmiennej po ostatnim zapisie
- Odczyt z bufora, jeśli dostępny

OptSVA

OptSVA spełnia last-use opacity

OptSVA

OptSVA spełnia last-use opacity

OptSVA jest optymalnym algorytmem spełniającym *last-use-opacity*

Transakcje Ostatecznie Spójne

```
Transakcja T_1 T_1 \ \llbracket \ r(x)v, w(x)u \ \rrbracket
```

Transakcje Ostatecznie Spójne

Transakcja
$$T_1$$

$$T_1 \ \llbracket \ r(x)v, w(x)u \ \rrbracket$$

$$T_1^c \ \llbracket \ r(x)v, w(x)u \ \rrbracket$$

Tryb ostatecznie spójny (słaby)

$$T_1^{ec}[\ r(x)v_{ec},w(x)u_{ec}\]$$

Tryby uruchamiane są jednocześnie → zbieżność (convergence)

Wojciechowski, Siek. Having Your Cake and Eating it Too: Combining Strong and Eventual Consistency. PaPEC'14.

Spójny odczyt w SVA w praktyce

Zbuforowana najnowsza spójna migawka \to słabe transakcje nie czekają/nie blokują dostępu do danych współdzielonych

Zapisy w trybie słabym ukrywane przed innymi transakcjami.

```
\begin{array}{c|c} T_1 & \llbracket r(x)1, w(x)2, r(y)1, w(y)2 & \rrbracket \\ T_2^c & \llbracket & \searrow r(x)2, w(x)3 & \rrbracket \\ T_2^{ec} & \llbracket r(x)1, \frac{w(\underline{x})2}{2} & \rrbracket & \searrow \\ T_3 & \llbracket r(x)3, w(x)4 & \rrbracket \end{array}
```

Podsumowanie

- *SVA*: pesymistyczne sterowanie współbieżnością z wczesnym zwalnianiem zasobów
- Last-use consistency: własność spójności przy wczesnym zwalnianiu zasobów
- Last-use opacity: własność bezpieczeństwa przy wczesnym zwalnianiu zasobów
- OptSVA: optymalny algorytm spełniający last-use opacity
- Pamięć transakcyjna z ostateczną spójnością

Publikacje

Konrad Siek, Paweł T. Wojciechowski. *Atomic RMI: a Distributed Transactional Memory Framework*. International Journal of Parallel Processing, 2015 (TBR). **15 pt**.

Konrad Siek, Paweł T. Wojciechowski. A Formal Design of a Tool for Static Analysis of Upper Bounds on Object Calls in Java. In Proceedings of FMICS 2012: the 17th International Workshop on Formal Methods for Industrial Critical Systems (co-located with FM 2012). Lecture Notes in Computer Science, pages 192–206. August 2012. 13 pt.

Konrad Siek, Paweł T. Wojciechowski. Last-use Opacity: A Strong TM Safety Property with Early Release Support. Theoretical Computer Science. **20 pt**. (Under Review)

Konrad Siek, Paweł T. Wojciechowski. *Transactions Scheduled While You Wait: Augmenting Transactional Memory with a Sorting Queue*. Parallel Computing. **35 pt**. (Under Review)

Publikacje Konferencyjne

Konrad Siek, Paweł T. Wojciechowski. Atomic RMI: a Distributed Transactional Memory Framework. In proceedings of HLPP 2014: the 7th International Symposium on High-level Parallel Programming and Applications. July 2014.

Konrad Siek, Paweł T. Wojciechowski. *Brief Announcement: Relaxing Opacity in Pessimistic Transactional Memory.* In Proceedings of DISC'14: the 28th International Symposium on Distributed Computing. October 2014.

Konrad Siek, Paweł T. Wojciechowski. Zen and the Art of Concurrency Control: An Exploration of TM Safety Property Space with Early Release in Mind. In Proceedings of WTTM'14: the 6th Workshop on the Theory of Transactional Memory. July 2014.

Paweł T. Wojciechowski, Konrad Siek. Having Your Cake and Eating it Too: Combining Strong and Eventual Consistency. In Proceedings of PaPEC 2014: the 1st Workshop on the Principles and Practice of Eventual Consistency. April 2014.

Konrad Siek, Paweł T. Wojciechowski. *Towards a Fully-Articulated Pessimistic Distributed Transactional Memory (Brief announcement).* In Proceedings of SPAA 2013: the 25th ACM Symposium on Parallelism in Algorithms and Architectures. July 2013.

Paweł T. Wojciechowski, Konrad Siek. *Transaction Concurrency Control via Dynamic Scheduling Based on Static Analysis (Extended Abstract)*. In Proceedings of WTM 2012: Euro-TM Workshop on Transactional Memory (co-located with ACM SIGOPS EuroSys 2012). April 2012.

Konrad Siek, Paweł T. Wojciechowski. Statically Computing Upper Bounds on Object Calls for Pessimistic Concurrency Control (Extended Abstract). In Proceedings of EC^2 2010: Workshop on Exploiting Concurrency Efficiently and Correctly (co-located with CAV 2010). July 2010.

?