



# **NỘI DUNG**

- 1. ĐẠI CƯƠNG VỀ ĐỒ THỊ
- 2. TÍNH LIÊN THÔNG CỦA ĐỒ THỊ
- 3. ĐƯỜNG ĐI NGẮN NHẤT TRÊN ĐỒ THỊ
- 4. XÉP HẠNG ĐỒ THỊ
- 5. CÂY VÀ CÂY CÓ HƯỚNG
- 6. LUÒNG CỰC ĐẠI TRONG MẠNG

# TÀI LIỆU THAM KHẢO

- 1. TOÁN RỜI RẠC NGUYỄN TÔ THÀNH, NGUYỄN ĐỰC NGHĨA
- 2. LÝ THUYẾT ĐỒ THỊ VÀ ỨNG DỤNG NGUYỄN TUẨN ANH





# CÂY VÀ CÂY CÓ HƯỚNG

#### **NỘI DUNG:**

- 1. CÂY
- 2. CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT
- 3. CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT



#### **CÂY**

**Cây (tree)** là đồ thị vô hướng liên thông và không có chu trình **Chú ý**: Cây không chứa khuyên và cạnh song song



Rừng (forest) là đồ thị vô hướng không có chu trình



Một cây T gồm N đỉnh với N ≥ 2 chứa ít nhất 2 đỉnh treo





#### CÂY

Xét đồ thị G gồm N đỉnh, các điều sau đây tương đương:

- 1. Đồ thị G là cây.
- 2. Giữa hai đỉnh bất kỳ của G, tồn tại duy nhất một đường đi nối chúng với nhau.
- 3. G liên thông tối tiểu.
- 4. Thêm một cạnh nối 2 đỉnh bất kỳ của G thì G sẽ chứa một chu trình duy nhất.
- 5. G liên thông và có n-1 cạnh.
- 6. G không có chu trình và có n-1 cạnh.



#### **CÂY KHUNG**

Cho G=(X, E) là một đồ thị liên thông và T=(X, F) là một đồ thị bộ phận của G. Nếu T là cây thì T được gọi là một cây tối đại (cây khung, cây bao trùm, cây phủ) của G.

Mọi đồ thị liên thông đều có chứa ít nhất một cây tối đại.



## CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT

Cho G=(X, E), trọng lượng cây T của G bằng với tổng trọng lượng các cạnh trong cây:

$$L(T) = \sum_{(e \in T)} L(e)$$

Cây khung trọng lượng nhỏ nhất là cây khung có trọng lượng nhỏ nhất của G

## CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT

Thuật toán PRIM tìm cây khung trọng lượng nhỏ nhất Input: Đồ thị liên thông G=(X, E), X gồm N đỉnh Output: Cây khung nhỏ nhất T=(V, U) của G

- 1. Chọn tùy ý  $v \in X$  và khởi tạo  $V := \{v\}; U := \emptyset;$
- 2. Chọn cạnh e có trọng lượng nhỏ nhất trong các cạnh (u,v) với  $u \in X \setminus V$  và  $v \in V$
- 3.  $V := V \cup \{u\}; U := U \cup \{e\}$
- 4. Nếu U đủ N-1 cạnh thì dừng; ngược lại, lặp lại bước 2.

#### CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT

Thuật toán PRIM tìm cây khung trọng lượng nhỏ nhất

```
1 function Prim(Graph, source):
       create vertex set Q
3
      for each vertex v in Graph:
           \text{key}[v] \leftarrow \text{INFINITY}
                                             //Distance from MST to v
           prev[v] \leftarrow UNDEFINED //Previous of v
           add v to Q
      \text{key}[source] \leftarrow 0
      MST = 0;
8
9
      while Q is not empty:
           u \leftarrow \text{vertex in } Q \text{ with min dist[u]}
10
11
           remove u from Q
           MST = MST + key[u]
12
           for each neighbor v of u: // only v that are still in Q
13
               if w(u,v) < \text{key}[v]:
14
                    \text{key}[v] \leftarrow w
15
                    prev[v] \leftarrow u
16
      return MST, key∏, prev∏
17
```

## CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT

Tìm cây khung nhỏ nhất bằng thuật toán PRIM bắt đầu từ F



L.T.P.D.

CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT



|      | F     | A            | В             | C             | D             | E             |
|------|-------|--------------|---------------|---------------|---------------|---------------|
| 0    | 0, -1 | ∞, <b>-1</b> | ∞, <b>-1</b>  | ∞, <b>-</b> 1 | ∞, <b>-</b> 1 | ∞, <b>-</b> 1 |
| 1    | *     | 10, F        | ∞, <b>-</b> 1 | 9, <i>F</i>   | ∞, <b>-</b> 1 | ∞, <b>-</b> 1 |
| 2    |       | 7, C         | 15, <i>C</i>  | *             | ∞, −1         | 10, C         |
| 3    |       | *            | 12, <i>A</i>  |               | 5, <i>A</i>   | 10, <i>C</i>  |
| 4    |       |              | 12, <i>A</i>  |               | *             | 5, <i>D</i>   |
| 5    |       |              | 6, <i>E</i>   |               |               | *             |
| 6    |       |              | *             |               |               |               |
| KQ   |       | (C,A)        | (E,B)         | (F,C)         | (A,D)         | (D,E)         |
| W=32 |       | 7            | 6             | 9             | 5             | 5             |

## CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT

Tìm cây khung nhỏ nhất bằng thuật toán PRIM



| KQ   | (C,A) | (E,B) | ( <b>F</b> , <b>C</b> ) | (A,D) | ( <b>D</b> , <b>E</b> ) |
|------|-------|-------|-------------------------|-------|-------------------------|
| W=32 | 7     | 6     | 9                       | 5     | 5                       |

L.T.P.D.

## CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT

Thuật toán KRUSKAL tìm cây khung nhỏ nhất Input: Đồ thị G=(X, E) liên thông, X gồm N đỉnh Output: Cây tối đại nhỏ nhất T=(V, U) của G

- 1. Sắp xếp các cạnh trong G tăng dần theo trọng lượng; khởi tạo  $T := \emptyset$ .
- 2. Lần lượt lấy từng cạnh e thuộc danh sách đã sắp xếp. Nếu U+{e} không chứa chu trình thì kết nạp e vào T: U := U+{e}.
- 3. Nếu T đủ N-1 cạnh thì dừng; ngược lại, lặp lại bước 2.

## CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT



#### CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT



#### CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT



#### CÂY KHUNG TRONG LƯỢNG NHỎ NHẤT

Tìm cây khung nhỏ nhất bằng thuật toán KRUSKAL



Sắp xếp cạnh: Thêm cạnh:

A, D 5

B, D 16

### CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT



#### CÂY KHUNG TRONG LƯỢNG NHỎ NHẤT

Tìm cây khung nhỏ nhất bằng thuật toán KRUSKAL



Sắp xếp cạnh: Thêm cạnh:

A, D 5 D, E 5

#### CÂY KHUNG TRONG LƯỢNG NHỎ NHẤT

Tìm cây khung nhỏ nhất bằng thuật toán KRUSKAL



Sắp xếp cạnh: Thêm cạnh:

A, D 5

D, E 5

A, D 5

D, E 5

B, E 6

A, C 7

C, C 8

C, F 9

A, F 10

C, E 10

A, B 12

B, C 15

B, D 16

### CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT



#### CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT



### CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT



### CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT



### CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT

Tìm cây khung nhỏ nhất bằng thuật toán KRUSKAL



Sắp xếp cạnh: Thêm cạnh:

A, D 5 D, E 5 A, D 5 D, E 5

B, E 6

A, C 7

C, F 9

C, C 8

A, F 10

C, E 10

A, B 12

B, C 15

B, D 16

Vì C và C cùng bộ phận liên thông nên không thêm cạnh C,C

#### CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT



### CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT



### CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT

Tìm cây khung nhỏ nhất bằng thuật toán KRUSKAL



Sắp xếp cạnh: Thêm cạnh:

| Sup Acp cum. |         |
|--------------|---------|
| A, D 5       | A, D 5  |
| D, E 5       | D, E 5  |
| B, E 6       | B, E 6  |
| A, C 7       | A, C 7  |
| C, C 8       | C, F 9  |
| C, F 9       |         |
| Δ F 10       | Số canh |

A, F 10
C, E 10
dủ n-1
A, B 12
nên thuật
B, C 15
toán dừng

B, D 16

### CÂY KHUNG TRỌNG LƯỢNG NHỎ NHẤT



# CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT

Cho đồ thị có hướng G=(X, E). Ta nói G là một D THỊ CÓ G Cố nếu tồn tại đỉnh  $r \in X$  sao cho từ r có đường đi đến v,  $\forall v \in X$ 



# CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT

Cho G=(X, E) là đồ thị có hướng liên thông. G được gọi là cây có hướng nếu:

- a) G không có chu trình,
- b) G có gốc.



# CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT

#### Lưu ý:

- Gốc của cây có hướng là duy nhất
- Mỗi đỉnh i∈X có duy nhất một đỉnh j mà cạnh liên kết với (j, i) hướng vào i, đỉnh j được gọi đỉnh cha của I
- Nếu đỉnh x∈X thỏa điều kiện d<sup>+</sup>(x)=0 thì x được gọi là lá của cây có hướng.



# CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT

- Cho chu trình  $\mu$ :
- Cung u=(i,j) là cung tới  $\mu$  nếu i  $\notin \mu$  và j  $\in \mu$
- Cung v trên  $\mu$  có ngọn trùng với ngọn của cung u được gọi là cung kề trong  $\mu$  của u



# CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT

- Thuật toán EDMOND tìm cây có hướng trọng lượng nhỏ nhất
- 1. Khởi tạo:  $G_0=G$ , t=0,  $w_0(u)=w(u)$
- 2. Ở mỗi vòng lặp t:
  - a) Xây dựng đồ thị xấp xỉ H<sub>t</sub> từ G<sub>t</sub>: Với mỗi đỉnh của G<sub>t</sub> chọn cung tới có w<sub>t</sub> nhỏ nhất
  - b) Nếu  $H_t$  không chứa chu trình thì  $H_t$  là cây có hướng nhỏ nhất của  $G_t$ => Suy ngược lại tìm cây có hướng trên  $G_{t-1},...,G_0$ . Giải thuật kết thúc.
  - c) Ngược lại:  $H_t$  chứa chu trình, gọi chu trình đó là  $\mu$ :
    - Xác định đồ thị co  $G_{t+1} = G_t/\mu$
    - Trọng số w<sub>t+1</sub> được xác định:
      - $w_{t+1}(u) = w_t(u)$  với u không là cung đi tới  $\mu$
      - w<sub>t+1</sub>(u)= w<sub>t</sub>(u)- w<sub>t</sub>(v) với u là cung tới μ và v là cung kề của u
      - Gán t=t+1

### CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT

Tìm cây có hướng nhỏ nhất bằng thuật toán EDMOND



### CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT

Tìm cây có hướng nhỏ nhất bằng thuật toán EDMOND



Vì  $H_0$  có chứa chu trình nên dựng đồ thị co  $G_1$ 











Đồ thị xấp xỉ  $H_2$ 

Đồ thị co  $G_2$ 

Vì  $H_2$  không chứa chu trình nên  $H_2$  là cây có hướng của  $G_2$ .

Suy ngược lại tìm cây có hướng trên  $G_1$  và  $G_0$ 





Đồ thị xấp xỉ  $H_2$ 

Đồ thị co  $G_2$ 

Vì  $H_2$  không chứa chu trình nên  $H_2$  là cây có hướng của  $G_2$ .

Suy ngược lại tìm cây có hướng trên  $G_1$  và  $G_0$ 





Đồ thị co  $G_2$ 



Đồ thị co $G_1$ 



### CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT

Cây có hướng nhỏ nhất



### CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT

Tìm cây có hướng trọng lượng nhỏ nhất của các đồ thị sau



|   | r | a | b | c | d  | e | f  |
|---|---|---|---|---|----|---|----|
| r |   | 9 |   |   | 11 |   | 13 |
| a |   |   |   | 1 | 9  |   |    |
| b |   | 3 |   |   |    |   | 14 |
| c |   |   | 2 |   |    |   |    |
| d |   |   |   | 4 |    |   | 8  |
| e |   | 7 |   | 3 | 5  |   |    |
| f |   |   |   |   |    | 4 |    |

### CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT

Tìm cây có hướng trọng lượng nhỏ nhất của các đồ thị sau



Trọng lượng nhỏ nhất: 1+1+1+2+3+3=11

### CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT

Tìm cây có hướng trọng lượng nhỏ nhất của các đồ thị sau

|   | r | a | b | c | d  | e | f  |
|---|---|---|---|---|----|---|----|
| r |   | 9 |   |   | 11 |   | 13 |
| a |   |   |   | 1 | 9  |   |    |
| b |   | 3 |   |   |    |   | 14 |
| c |   |   | 2 |   |    |   |    |
| d |   |   |   | 4 |    |   | 8  |
| e |   | 7 |   | 3 | 5  |   |    |
| f |   |   |   |   |    | 4 |    |





Đồ thị xấp xỉ  $H_0$ 

Vì đồ thị xấp xỉ  $H_0$  có chu trình nên xây dựng đồ thị co  $G_1$ 



## CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT

|   | r | a | b | c | d  | e | f  |
|---|---|---|---|---|----|---|----|
| r |   | 9 |   |   | 11 |   | 13 |
| a |   |   |   | 1 | 9  |   |    |
| b |   | 3 |   |   |    |   | 14 |
| С |   |   | 2 |   |    |   |    |
| d |   |   |   | 4 |    |   | 8  |
| e |   | 7 |   | 3 | 5  |   |    |
| f |   |   |   |   |    | 4 |    |



3

c 5 e

Đồ thị co  $G_1$ 

Đồ thị xấp xỉ  $H_0$ 

## CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT



Đồ thị co  $G_1$ 

Vì đồ thị xấp xỉ  $H_1$  có chu trình nên xây dựng đồ thị co  $G_2$ 

L.T.D.D. CÂY CÓ HƯỚNG ÇNG NHỞ NHẤT 6=11-5 4 h g Đồ thị co  $G_1$ 2=3-1

Đồ thị xấp xỉ  $H_1$ 

h



Đồ thị co  $G_2$ 

 $Vi H_2$  không chứa chu trình nên  $H_2$  là cây có hướng trọng lượng nhỏ nhất trên G<sub>2</sub>

1=5-4

Đồ thị xấp xĩ  $H_2$ 

## CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT



CCH trên đồ thị co  $G_2$ 

Suy ngược lại tìm cây có hướng trọng lượng nhỏ nhất trên  $G_1$  và  $G_0$ 



Đồ thị xấp xĩ $H_2$ 

### CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT

Suy ngược lại tìm cây có hướng trọng lượng nhỏ nhất trên  $G_1$  và  $G_0$ 



CCH trên đồ thị co  $G_2$ 



### CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT

|   |   | - |   |   |   |    |   |    |
|---|---|---|---|---|---|----|---|----|
| - |   | r | a | b | c | d  | e | f  |
|   | r |   | 9 |   |   | 11 |   | 13 |
| 1 | a |   |   |   | 1 | 9  |   |    |
| 1 | b |   | 3 |   |   |    |   | 14 |
|   | c |   |   | 2 |   |    |   |    |
|   | d |   |   |   | 4 |    |   | 8  |
|   | e |   | 7 |   | 3 | 5  |   |    |
|   | f |   |   |   |   |    | 4 |    |

có hướng trọng lượng nhỏ nhất trên  $G_1$  và  $G_0$ 



CCH trên đồ thị co  $G_1$ 





#### CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT



có hướng trọng lượng nhỏ nhất trên  $G_1$  và  $G_0$ 





CCH trên đồ thị G

### CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT



có hướng trọng lượng nhỏ nhất trên  $G_1$  và  $G_0$ 





CCH trên đồ thị G

### CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT



có hướng trọng lượng nhỏ nhất trên  $G_1$  và  $G_0$ 





CCH trên đồ thị G

#### CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT



có hướng trọng lượng nhỏ nhất trên  $G_1$  và  $G_0$ 





CCH trên đồ thị G

### CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT

|   |   | r | a | b | c | d  | e | f  |
|---|---|---|---|---|---|----|---|----|
| Ì | r |   | 9 |   |   | 11 |   | 13 |
| Ī | a |   |   |   | 1 | 9  |   |    |
| ١ | b |   | 3 |   |   |    |   | 14 |
| Ī | c |   |   | 2 |   |    |   |    |
|   | d |   |   |   | 4 |    |   | 8  |
|   | e |   | 7 |   | 3 | 5  |   |    |
|   | f |   |   |   |   |    | 4 |    |

có hướng trọng lượng nhỏ nhất trên  $G_1$  và  $G_0$ 



CCH trên đồ thị co  $G_1$ 



#### CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT



có hướng trọng lượng nhỏ nhất trên  $G_1$  và  $G_0$ 



CCH trên đồ thị co  $G_1$ 



### CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT

|   |   | - |   |   |   |    |   |    |
|---|---|---|---|---|---|----|---|----|
| - |   | r | a | b | c | d  | e | f  |
| 1 | r |   | 9 |   |   | 11 |   | 13 |
| 1 | a |   |   |   | 1 | 9  |   |    |
| - | b |   | 3 |   |   |    |   | 14 |
| , | c |   |   | 2 |   |    |   |    |
|   | d |   |   |   | 4 |    |   | 8  |
|   | e |   | 7 |   | 3 | 5  |   |    |
|   | f |   |   |   |   |    | 4 |    |

có hướng trọng lượng nhỏ nhất trên  $G_1$  và  $G_0$ 



CCH trên đồ thị co  $G_1$ 



### CÂY CÓ HƯỚNG TRỌNG LƯỢNG NHỎ NHẤT

|   |   | r | a | b | c | d  | e | f  |
|---|---|---|---|---|---|----|---|----|
|   | r |   | 9 |   |   | 11 |   | 13 |
| 1 | a |   |   |   | 1 | 9  |   |    |
| 1 | b |   | 3 |   |   |    |   | 14 |
|   | c |   |   | 2 |   |    |   |    |
|   | d |   |   |   | 4 |    |   | 8  |
|   | e |   | 7 |   | 3 | 5  |   |    |
|   | f |   |   |   |   |    | 4 |    |

có hướng trọng lượng nhỏ nhất trên  $G_1$  và  $G_0$ 

Trọng lượng của cây có hướng nhỏ nhất là: 13+4+5+3+2+3=30





# XÉP HẠNG ĐÒ THỊ

#### **NỘI DUNG:**

- 1. HẠNG CỦA ĐỈNH
- 2. GIẢI THUẬT XẾP HẠNG
- 3. BÀI TOÁN GANT