RAW SEQUENCE LISTING ERROR REPORT

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) detected errors when processing the following computer readable form:

Application Serial Number: 09786635

Source: 11/1401

THE ATTACHED PRINTOUT EXPLAINS DETECTED ERRORS.
PLEASE FORWARD THIS INFORMATION TO THE APPLICANT BY EITHER:

1) INCLUDING A COPY OF THIS PRINTOUT IN YOUR NEXT COMMUNICATION TO THE APPLICANT, WITH A NOTICE TO COMPLY or,

2) TELEPHONING APPLICANT AND FAXING A COPY OF THIS PRINTOUT, WITH A NOTICE TO COMPLY

FOR CRF SUBMISSION QUESTIONS, PLEASE CONTACT MARK SPENCER, 703-308-4212.

FOR SEQUENCE RULES INTERPRETATION, PLEASE CONTACT ROBERT WAX, 703-308-4216. PATENTIN 2.1 c-mail help: patin21help@uspto.gov or phone 703-306-4119 (R. Wax) PATENTIN 3.0 c-mail help: patin3help@uspto.gov or phone 703-306-4119 (R. Wax)

TO REDUCE ERRORED SEQUENCE LISTINGS, PLEASE USE THE <u>CHECKER</u> <u>VERSION 3.0 PROGRAM</u>, ACCESSIBLE THROUGH THE U.S. PATENT AND TRADEMARK OFFICE WEBSITE. SEE BELOW:

Checker Version 3.0

The Checker Version 3.0 application is a state-of the-art Windows based software program employing a logical and intuitive user-interface to check whether a sequence listing is in compliance with format and content rules. Checker Version 3.0 works for sequence listings generated for the original version of 37 CFR §§1.821 – 1.825 effective October 1, 1990 (old rules) and the revised version (new rules) effective July 1, 1998 as well as World Intellectual Property Organization (WIPO) Standard ST.25.

Checker Version 3.0 replaces the previous DOS-based version of Checker, and is Y2K-compliant. Checker allows public users to check sequence listings in Computer Readable form (CRF) before submitting them to the United States Patent and Trademark Office (USPTO). Use of Checker prior to filing the sequence listing is expected to result in fewer errored sequence listings, thus saving time and money.

Checker Version 3.0 can be down loaded from the USPTO website at the following address: http://www.uspto.gov/web/offices/pac/checker

Raw Sequence Listing Error Summary

ERROR DETECTED	SUGGESTED CORRECTION SERIAL NUMBER: 09/786635
ATTN: NEW RULES CAS	ES: PLEASE DISREGARD ENGLISH "ALPHA" HEADERS, WHICH WERE INSERTED BY P
1Wrapped Nucleics Wrapped Aminos	The numberhest at the end of each line "wrapped" down to the next line. This may occur if your file was retrieved in a word processor after creating it. Please adjust your right margin to 3; this will prevent "wrapping."
2Invalid Line Length	The rules require that a line not exceed 72 characters in length. This includes white spaces.
JMisaligned Amino Numbering	The numbering under each 5th amino acid is misaligned. Do not use tab codes between numbers; use apace characters, instead.
4Non-ASCII	The submitted file was not saved in ASCII(DOS) text, as required by the Sequence Rules. Please ensure your subsequent submission is saved in ASCII text.
SVariable Length.	Sequence(s)contain n's or Xaa's representing more than one residue. Per Sequence Rules, each n or Xaa can only represent a single residue. Please present the maximum number of each residue having variable length and indicate in the <220>-<223> section that some may be missing.
6Patentin 2.0 "bug"	A "bug" in Patentin version 2.0 has equited the <220> <223> section to be missing from a mino acid sequences(s) Normally, Patentin would automatically generate this section from the previously coded nucleic acid sequence. Please manually copy the relevant <220> <223> section to the subsequent amino acid sequence. This applies to the mandatory <220> <223> sections for Artificial or Unknown sequences.
7Skipped Sequences (OLD RULES)	Sequence(s) missing. If intentional, please insert the following lines for each skipped sequence (2) INFORMATION FOR SEQ ID NO:X: (insert SEQ ID NO where "X" is shown) (i) SEQUENCE CHARACTERISTICS: (Do not insert any subheadings under this heading) (xi) SEQUENCE DESCRIPTION:SEQ ID NO:X: (insert SEQ ID NO where "X" is shown) This sequence is intentionally skipped
<i></i>	Please also adjust the "(ii) NUMBER OF SEQUENCES:" response to Include the skipped sequences.
Skipped Sequences (NEW RULES)	Sequence(s) missing. If Intentional, please insert the following lines for each skipped sequence(210> sequence id number <400> sequence id number 000
9Use of n's or Xaa's (NEW RULES)	Use of n's and/or Xaa's have been detected in the Sequence Listing. Per 1.823 of Sequence Rules, use of <220>-<223> is MANDATORY if n's or Xaa's are present. In <220> to <223> section, please explain location of n or Xaa, and which residue n or Xaa represents
0Invalid <213> Response	Per 1.823 of Sequence Rules, the only valld <213> responses are: Unknown, Artificial Sequence, or scientific name (Genus) species). <220>-<223> section is required when <213> response is Unknown is Artificial Sequence
Usc of <220>	Sequence(s) missing the <220> "Feature" and associated numeric identifiers and responses. Use of <220> to <223> is MANDATORY if <213> "Organism" response is "Artificial Sequence" or "Unknown." Please explain source of genetic material in <220> to <223> section. (See "Federal Register," 06/01/1998, Vol. 63, No. 104, pp. 29631-32) (Sec. 1.823 of Sequence Rules)
Patentin 2.0 "bug"	Please do not use "Copy to Disk" function of Patentin version 2.0. This causes a corrupted file, resulting in missing mandatory numeric identifiers and responses (as indicated on raw sequence listing). Instead, please use "File Manager" or any other manual means to copy file to floppy disk.
Misuse of n	in can only be used to represent a single nucleotide in a nucleic acid sequence. N is not used to represent any value not specifically a nucleotide.

AMC/MH - Biotechnology Systems Branch - 08/21/2001

PCT09

```
RAW SEQUENCE LISTING DATE: 11/14/2001 PATENT APPLICATION: US/09/786,635 TIME: 14:04:22
```

Input Set : A:\Lea33298.app

Output Set: N:\CRF3\11142001\I786635.raw

```
3 <110> APPLICANT: Bayer AG
      5 <120> TITLE OF INVENTION: ATP binding cassette genes and proteins for diagnosis
             and treatment of lipid disorders and inflammatory
             diseases
      9 <130> FILE REFERENCE: ATP binding cassette genes and protein
C--> 11 <140> CURRENT APPLICATION NUMBER: US/09/786,635
C--> 12 <141> CURRENT FILING DATE: 2001-03-07
     14 <150> PRIOR APPLICATION NUMBER: 101706
     15 <151> PRIOR FILING DATE: 1998-09-25
                                                             Does Not Comply
Corrected Diskette Needed
     17 <160> NUMBER OF SEQ ID NOS: 54
    19 <170> SOFTWARE: PatentIn Ver. 2.0
    21 <210> SEQ ID NO: 1
                                                             Must ennmerate un known
    22 <211> LENGTH: 6880
    23 <212> TYPE: DNA
    24 <213> ORGANISM: Human
    26 <220> FEATURE:
    27 <223> OTHER INFORMATION: cDNA of ABCA1 (ABC1)
    29 <400> SEQUENCE: 1
    30 caaacatgtc agctgttact ggaagtggcc tggcctctat ttatcttcct gatcctgatc 60
    31 tctgttcggc tgagctaccc accctatgaa caacatgaat gccattttcc aaataaagcc 120
    32 atgecetetg caggaacact teettgggtt caggggatta tetgtaatge caacaacece 180
    33 tgtttccgtt acccgactcc tggggaggct cccggagttg ttggaaactt taacaaatcc 240
    34 attgtggctc gcctgttctc agatgctcgg aggcttcttt tatacagcca gaaagacacc 300
    35 agcatgaagg acatgcgcaa agttctgaga acattacagc agatcaagaa atccagctca 360
    36 aacttgaagc ttcaagattt cctggtggac aatgaaacct tctctgggtt cctgtatcac 420
    37 aacctctctc tcccaaagtc tactgtggac aagatgctga gggctgatgt cattctccac 480
    38 aaggtatttt tgcaaggcta ccagttacat ttgacaagtc tgtgcaatgg atcaaaatca 540
    39 gaagagatga ttcaacttgg tgaccaagaa gtttctgagc tttgtggcct accaagggag 600
    40 aaactggctg cagcagagcg agtacttcgt tccaacatgg acatcctgaa gccaatcctg. 660
    41 agaacactaa actetacate teeetteeeg ageaaggage tggeegaage cacaaaaaaca 720
    42 ttgctgcata gtcttgggac tctggcccag gagctgttca gcatgagaag ctggagtgac 780
    43 atgcgacagg aggtgatgtt tctgaccaat gtgaacagct ccagctcctc cacccaaatc 840
    44 taccaggetg tgtetegtat tgtetgeggg catecegagg gagggggget gaagateaag 900
    45 tototoaact ggtatgagga caacaactac aaagccctct ttggaggcaa tggcactgag 960
    46 gaagatgctg aaaccttcta tgacaactct acaactcctt actgcaatga tttgatgaag 1020
    47 aatttggagt ctagtcctct ttcccgcatt atctggaaag ctctgaagcc gctgctcgtt 1080
    48 gggaagatee tgtatacace tgacacteca gecacaagge aggteatgge tgaggtgaae 1140
    49 aagacettee aggaactgge tgtgtteeat gatetggaag geatgtggga ggaacteage 1200
    50 cccaagatct ggaccttcat ggagaacagc caagaaatgg accttgtccg gatgctgttg 1260
    51 gacagcaggg acaatgacca cttttgggaa cagcagttgg atggcttaga ttggacagcc 1320
    53 gtgtacacct ggagagaagc tttcaacgag actaaccagg caatccggac catatctcgc 1440
    54 ttcatggagt gtgtcaacct gaacaagcta gaacccatag caacagaagt ctggctcatc 1500
    55 aacaagtcca tggagctgct ggatgagagg aagttctggg ctggtattgt gttcactgga 1560
```

56 attactccag gcagcattga gctgccccat catgtcaagt acaagatccg aatggacatt 1620 57 gacaatgtgg agaggacaaa taaaatcaag gatgggtact gggaccctgg tcctcgagct 1680 58 gacccctttg aggacatgcg gtacgtctgg gggggcttcg cctacttgca ggatgtggtg 1740

Input Set : A:\Lea33298.app

Output Set: N:\CRF3\11142001\I786635.raw

59 gagcaggcaa tcatcagggt gctgacgggc accgagaaga aaactggtgt ctatatgcaa 1800 60 cagatgccct atccctgtta cgttgatgac atctttctgc gggtgatgag ccggtcaatg 1860 61 cccctcttca tgacgctggc ctggatttac tcagtggctg tgatcatcaa gggcatcgtg 1920 62 tatgagaagg aggcacggct gaaagagacc atgcggatca tgggcctgga caacagcatc 1980 63 ctctggttta gctggttcat tagtagcctc attcctcttc ttgtgagcgc tggcctgcta 2040 64 qtqqtcatcc tqaaqttaqq aaacctqctq ccctacagtq atcccagcqt gqtqtttqtc 2100 65 ttcctgtccg tgtttgctgt ggtgacaatc ctgcagtgct tcctgattag cacactcttc 2160 66 tecagageea acctggeage agectgtggg ggeateatet actteaeget gtacetgeee 2220 67 tacgtectgt gtgtggcatg gcaggactac gtgggettea cacteaagat ettegetage 2280 68 ctgctgtctc ctgtggcttt tgggtttggc tgtgagtact ttgccctttt tgaggagcag 2340 69 qqcattqqaq tqcaqtqqqa caacctqttt qaqaqtcctq tqqaqqaaqa tqqcttcaat 2400 70 ctcaccactt cqqtctccat qatqctqttt qacaccttcc tctatqqqqt qatqacctqq 2460 71 tacattgagg ctgtctttcc aggccagtac ggaattccca ggccctggta ttttccttgc 2520 72 accaaqtcct actggtttgg cgaggaaagt gatgagaaga gccaccctgg ttccaaccag 2580 73 aagagaatat cagaaatctg catggaggag gaacccaccc acttgaagct gggcgtgtcc 2640 74 attcagaacc tggtaaaagt ctaccgagat gggatgaagg tggctgtcga tggcctggca 2700 75 ctgaattttt atgagggcca gatcacctcc ttcctgggcc acaatggagc ggggaagacg 2760 76 accaccatgt caatectgac egggttgtte ecceegacet egggeacege etacatectg 2820 77 qqaaaaqaca ttcqctctqa qatqaqcacc atccqqcaga acctgggggt ctqtccccag 2880 78 cataacgtgc tgtttgacat gctgactgtc gaagaacaca tctggttcta tgcccgcttg 2940 79 aaagggetet etgagaagea egtgaaggeg gagatggage agatggeeet ggatgttggt 3000 80 ttqccatcaa qcaaqctqaa aaqcaaaaca aqccaqctgt caggtggaat gcagagaaag 3060 81 ctatctgtgg cettggeett tgteggggga tetaaggttg teattetgga tgaacceaca 3120 82 qctqqtqtqq acccttactc ccqcaqqqqa atatqqqaqc tqctqctqaa ataccgacaa 3180 83 ggccgcacca ttattctctc tacacaccac atggatgaag cggacgtcct gggggacagg 3240 84 attgccatca teteccatgg gaagetgtge tgtgtggget eeteeetgtt tetgaagaae 3300 85 cagctgggaa caggctacta cctgaccttg gtcaagaaag atgtggaatc ctccctcagt 3360 86 tectgeaqaa acagtagtag cactgtgtca tacetgaaaa aggaggacag tgtttetcag 3420 87 agcagttctg atgctggcct gggcagcgac catgagagtg acacgctgac catcgatgtc 3480 88 tetgetatet ceaaceteat caggaageat gtgtetgaag eeeggetggt ggaagacata 3540 89 gggcatgagc tgacctatgt gctgccatat gaagctgcta aggagggagc ctttgtggaa 3600 90 ctctttcatg agattgatga ccggctctca gacctgggca tttctagtta tggcatctca 3660 91 gagacgaccc tggaagaaat attcctcaag gtggccgaag agagtggggt ggatgctgag 3720 92 acctcaqatq gtaccttgcc aqcaagacga aacaggcggg ccttcgggga caagcagagc 3780 93 tytottogoo cyttoactya agatyatyot yotgatocaa atyattotya catagaccca 3840 94 gaatccagag agacagactt gctcagtggg atggatggca aagggtccta ccaggtgaaa 3900 95 ggctggaaac ttacacagca acagtttgtg gcccttttgt ggaagagact gctaattgcc 3960 96 agacggagtc ggaaaggatt ttttgctcag attgtcttgc cagctgtgtt tgtctgcatt 4020 97 geocttgtgt teageetgat egtgeeacce tttggeaagt accceageet ggaactteag 4080 98 ccctggatgt acaacgaaca gtacacattt gtcagcaatg atgctcctga ggacacggga 4140 99 accetggaac tettaaacge ceteaceaaa gaceetgget tegggaeeeg etgtatggaa 4200 100 ggaaacccaa tcccagacac gccctgccag gcaggggagg aagagtggac cactgcccca 4260 101 qttccccaga ccatcatqqa cctcttccag aatqqqaact ggacaatqca gaacccttca 4320 102 cctgcatgcc agtgtagcag cgacaaaatc aagaagatgc tgcctgtgtg tcccccaggg 4380 103 gcagggggc tgcctcctcc acaaagaaaa caaaacactg cagatatcct tcaggacctg 4440 104 acaggaagaa acatttcgga ttatctggtg aagacgtatg tgcagatcat agccaaaagc 4500 105 ttaaaqaaca agatctqqqt qaatqaqttt aqqtatqqcq qcttttccct qqqtgtcagt 4560 106 aatactcaag cacttcctcc qaqtcaaqaa qttaatqatg ccaccaaaca aatgaaqaaa 4620 107 cacctaaagc tggccaagga cagttctgca gatcgatttc tcaacagctt gggaagattt 4680

Input Set : A:\Lea33298.app

Output Set: N:\CRF3\11142001\1786635.raw

```
108 atgacaggac tggacaccag aaataatgtc aaggtgtggt tcaataacaa gggctggcat 4740
109 gcaatcaget ettteetgaa tgteatcaae aatgeeatte teegggeeaa eetgeaaaag 4800
110 ggagagaacc ctagccatta tggaattact gctttcaatc atcccctgaa tctcaccaag 4860
111 caqcaqctct cagaggtggc tecgatgacc acateagtgg atgteettgt gtecatetgt 4920
112 gtcatctttg caatgteett egteecagee agetttgteg tatteetgat eeaggagegg 4980
113 gtcagcaaag caaaacacct gcagttcatc agtggagtga agcctgtcat ctactggctc 5040
114 totaattttg totgggatat gtgcaattac gttgtccctg ccacactggt cattatcatc 5100
115 ttcatctgct tccagcagaa gtcctatgtg tcctccacca atctgcctgt gctagccctt 5160
116 ctacttttgc tgtatgggtg gtcaatcaca cctctcatgt acccagcctc ctttgtgttc 5220
117 aagateeeca geacageeta tgtggtgete accagegtga acctetteat tggcattaat 5280
118 ggcagcgtgg ccacctttgt gctggagctg ttcaccgaca ataagctgaa taatatcaat 5340
119 gatatectga agteegtgtt ettgatette ceacattttt geetgggaeg agggeteate 5400
120 gacatggtga aaaaccaggc aatggctgat gccctggaaa ggtttgggga gaatcgcttt 5460
121 qtqtcaccat tatcttqqqa cttqqtqqqa cqaaacctct tcgccatggc cgtggaaggg 5520
122 gtggtgttct tcctcattac tgttctgatc cagtacagat tcttcatcag gcccagacct 5580
123 gtaaatgcaa agctatctcc tctgaatgat gaagatgaag atgtgaggcg ggaaagacag 5640
124 agaattettg atggtggagg ccagaatgac atettagaaa tcaaggagtt gacgaagata 5700
125 tatagaagga agcggaagcc tgctgttgac aggatttgcg tgggcattcc tcctggtgag 5760
126 tgctttgggc tcctgggagt taatggggct ggaaaatcat caactttcaa gatgttaaca 5820
127 ggagatacca ctgttaccag aggagatgct ttccttaaca gaaatagtat cttatcaaac 5880
128 atccatgaag tacatcagaa catgggctac tgccctcagt ttgatgccat cacagagctg 5940
129 ttgactggga gagaacacgt ggagttettt gecettttga gaggagteee agagaaagaa 6000
130 gttggcaagg ttggtgagtg ggcgattcgg aaactgggcc tcgtgaagta tggagaaaaa 6060
131 tatgctggta actatagtgg aggcaacaaa cgcaagctct ctacagccat ggctttgatc 6120
132 ggcgggcctc ctgtggtgtt tctggatgaa cccaccacag gcatggatcc caaagcccgg 6180
133 cggttcttgt ggaattgtgc cctaagtgtt gtcaaggagg ggagatcagt agtgcttaca 6240
134 teteatagta tggaagaatg tgaagetett tgeactagga tggeaateat ggteaatgga 6300
135 aggttcaggt gccttggcag tgtccagcat ctaaaaaata ggtttggaga tggttataca 6360
136 atagttgtac gaatagcagg gtccaacccg gacctgaagc ctgtccagga tttctttgga 6420
137 cttgcatttc ctggaagtgt tccaaaagag aaacaccgga acatgctaca ataccagctt 6480
138 ccatcttcat tatcttctct ggccaggata ttcagcatcc tctcccagag caaaaagcga 6540
139 ctccacatag aagactactc tgtttctcag acaacacttg accaagtatt tgtgaacttt 6600
140 gccaaggacc aaagtgatga tgaccactta aaagacctct cattacacaa aaaccagaca 6660
141 gtagtggacg ttgcagttct cacatctttt ctacaggatg agaaagtgaa agaaagctat 6720
142 gtatgaagaa teetgtteat aeggggtgge tgaaagtaaa gagggaetag aettteettt 6780
143 gcaccatgtg aagtgttgtg gagaaaagag ccagaagttg atgtgggaag aagtaaactg 6840
                                                                       6880
144 gatactgtac tgatactatt caatgcaatg caattcaatg
146 <210> SEQ ID NO: 2
147 <211> LENGTH: 2201
148 <212> TYPE: PRT
149 <213> ORGANISM: Human
151 <220> FEATURE:
152 <223> OTHER INFORMATION: Peptide sequence of ABCA1 (ABC1)
154 <400> SEQUENCE: 2
155 Met Pro Ser Ala Gly Thr Leu Pro Trp Val Gln Gly Ile Ile Cys Asn
156
                                         10
158 Ala Asn Asn Pro Cys Phe Arg Tyr Pro Thr Pro Gly Glu Ala Pro Gly
                 20
                                     25
161 Val Val Gly Asn Phe Asn Lys Ser Ile Val Ala Arg Leu Phe Ser Asp
```

Input Set : A:\Lea33298.app

Output Set: N:\CRF3\11142001\I786635.raw

162			35					40					45			
164	Ala	Arg	Arg	Leu	Leu	Leu	Tyr	Ser	Gln	Lys	Asp	Thr	Ser	Met	Lys	Asp
165		50					55					60				
167	Met	Arg	Lys	Val	Leu	Arg	Thr	Leu	Gln	Gln	Ile	Lys	Lys	Ser	Ser	Ser
168	65					70					75					80
170	Asn	Leu	Lys	Leu	Gln	Asp	Phe	Leu	Val	Asp	Asn	Glu	Thr	Phe	Ser	Gly
171					85					90					95	
173	Phe	Leu	Tyr	His	Asn	Leu	Ser	Leu	Pro	Lys	Ser	Thr	Val	Asp	Lys	Met
174				100					105					110		
176	Leu	Arg	Ala	Asp	Val	Ile	Leu	His	Lys	Val	Phe	Leu	Gln	Gly	Tyr	Gln
177			115					120					125			
179	Leu	His	Leu	Thr	Ser	Leu	Cys	Asn	Gly	Ser	Lys	Ser	Glu	Glu	Met	Ile
180		130					135					140				
182	Gln	Leu	Gly	Asp	Gln	Glu	Val	Ser	Glu	Leu	Cys	Gly	Leu	Pro	Arg	Glu
	145					150					155					160
185	Lys	Leu	Ala	Ala	Ala	Glu	Arg	Val	Leu	Arg	Ser	Asn	Met	Asp	Ile	Leu
186					165					170					175	
188	Lys	Pro	Ile	Leu	Arg	Thr	Leu	Asn	Ser	Thr	Ser	Pro	Phe	Pro	Ser	Lys
189				180					185					190		
	Glu	Leu	Ala	Glu	Ala	Thr	Lys		Leu	Leu	His	Ser		Gly	Thr	Leu
192			195					200					205		_	
194	Ala	Gln	Glu	Leu	Phe	Ser		Arg	Ser	${\tt Trp}$	Ser		Met	Arg	Gln	Glu
195		210					215					220				
		Met	Phe	Leu	Thr		Val	Asn	Ser	Ser		Ser	Ser	Thr	Gln	
	225				_	230		1	_	-1	235	_	- 1	~ 1	~1	240
	Tyr	GIn	Ala	Val		Arg	He	Val	Cys		HlS	Pro	GLu	Gly		GIY
201	_	_		_	245	_	_	_	_	250	_				255	
	Leu	Lys	Пе		Ser	Leu	Asn	Trp		GLu	Asp	Asn	Asn	Tyr	ràs	Ата
204	_	-1	a 1	260	_	~ 1	ml	a 1.	265	•	. 1 -	a 1	m b	270	m	3
	ьeu	Pne		GTÄ	Asn	GIA	Thr		GIU	Asp	Ата	GIU		Phe	Tyr	Asp
207	•	a	275	m 1	n	m	G	280		7	14 a 4	T	285	T	01	O
	Asn		Thr	Thr	Pro	туг	_	ASI	Asp	ьeu	мет		ASI	Leu	GIU	ser
210	a	290	.	G	3	-1 -	295	·	T	71	т	300	Dma	T	T 0	37-1
		Pro	Leu	ser	Arg		шe	ттр	rys	Ата		гаг	Pro	Leu	neu	
	305	T	-1 -	T	m	310	D	7	mh m	Dwo	315	mh m	7	C2 n	17.0]	320
	GIY	ьys	тте	Leu		THE	Pro	ASP	THE		Ата	THE	Arg	Gln		met
216	7 J o	C1	37a 1	3.00	325	m b m	Dha	C1 n	C1	330	x 1-	37-1	nko	TI a	335	T 011
	Ата	GIU	Val	_	гаг	THE	Pne	GIII		ьеи	Ата	val	PHE	His	ASP	ьец
219	C1	C1	Wa+	340	C1	C1.,	T 0.11	Com	345	T	т1.	man	mh ∞	350 Phe	Wot	C1
	GIU	GIY		ттр	GIU	GIU	Leu	360	PIO	гÃ2	TTE	пр	365	Pile	Met	GIU
222	* an	Com	355	C1	Mot	3 00	T 011		7 ~~	Mo+	T 011	T OU		Ser	7 ~~	ň an
	ASII	370	GIII	GIU	Met	ASP	375	vaı	AIG	мес	Leu	380	ASP	ser	AIG	кър
225	λαn		uic	Dho	Фrn	Clu		Cln	Tou	λen	Glw		λen	Trp	Thr	λla
228		usb	птр	riie	ттЬ	390	GTII	GTII	ьeu	rap	395	neu	чэћ	11P	TIIT	400
		Δen	т1_	Va 1	Δla		T.e.u	Δla	Lve	ніс		Glu	Aen	Val	Gln	
231	GIII	vah	TT6	٧ат	405	F 116	ьeu	വഥ	Lys	410	110	Jiu	usb.	V U I	415	DEL
	Ser	Asn	Glv	Ser		Tvr	Thr	Trn	Ara		Ala	Phe	Asn	Glu		Asn
234	JC1	-1011	- I	420	* u _	-1-	~		425	J_4				430		
				0												

Input Set : A:\Lea33298.app

Output Set: N:\CRF3\11142001\1786635.raw

236 237	Gln	Ala	Ile 435	Arg	Thr	Ile	Ser	Arg 440	Phe	Met	Glu	Cys	Val 445	Asn	Leu	Asn
	Lys	Leu		Pro	Ile	Ala	Thr		Val	Trp	Leu	Ile		Lys	Ser	Met
240		450					455					460				
242	Glu	Leu	Leu	Asp	Glu	Arg	Lys	Phe	Trp	Ala	Gly	Ile	Val	Phe	Thr	Gly
	465			_		470	_		_		475					480
245	Ile	Thr	Pro	Gly	Ser	Ile	Glu	Leu	Pro	His	His	Val	Lys	Tyr	Lys	Ile
246				-	485					490			_		495	
248	Arg	Met	Asp	Ile	Asp	Asn	Val	Glu	Arg	Thr	Asn	Lys	Ile	Lys	Asp	Gly
249	-		_	500	_				505					510		
251	Tyr	Trp	Asp	Pro	Gly	Pro	Arg	Ala	Asp	Pro	Phe	Glu	Asp	Met	Arg	Tyr
252			515					520					525			
254	Val	Trp	Gly	Gly	Phe	Ala	Tyr	Leu	Gln	Asp	Val	Val	Glu	Gln	Ala	Ile
255		530					535					540				
257	Ile	Arg	Val	Leu	Thr	Gly	Thr	Glu	Lys	Lys	Thr	Gly	Val	Tyr	Met	Gln
258	545					550					555					560
260	Gln	Met	Pro	Tyr	${\tt Pro}$	Cys	${\tt Tyr}$	Val	Asp	Asp	Ile	Phe	Leu	Arg	Val	Met
261					565					570					575	
263	Ser	Arg	Ser	Met	Pro	Leu	Phe	Met	Thr	Leu	Ala	Trp	Ile	Tyr	Ser	Val
264				580					585					590		
266	Ala	Val		Ile	Lys	Gly	Ile		Tyr	Glu	Lys	Glu		Arg	Leu	Lys
267			595					600					605			
269	Glu	Thr	Met	Arg	Ile	Met	_	Leu	Asp	Asn	Ser		Leu	Trp	Phe	Ser
270		610					615					620				
	_	Phe	Ile	Ser	Ser	Leu	Ile	Pro	Leu	Leu		Ser	Ala	Gly	Leu	
	625					630	_ =	_	_	_	635	_	_	_	_	640
	Val	Val	Ile	Leu		Leu	GTA	Asn	Leu		Pro	Tyr	Ser	Asp		Ser
276				1	645		~	1	51 -	650	** 1	**- 1	ml	-1.	655	Q1
	vaı	vaı	Pne		Pne	Leu	ser	vaı		Ala	vaı	vaı	Thr		Leu	GIN
279	0	nh -	T	660	C	mb	т о	nha	665	7 ~~	7 1 a	7 an	T 011	670	3] -	31 5
	Cys		675	тте	ser	Thr	ьeu	680	ser	Arg	Ата	ASII	685	Ата	Ата	нта
282	0	C1		т1.	Tla	Tyr	Dho		T 011	marx.	T OU	Dro		Wa I	T 011	Cvc
285	Cys	690	СТА	TTE	тте	TAT	695	1111	Leu	тут	ьеи	700	TAT	val	ьеu	Cys
	Val		Фrn	Cln	λcn	Tyr		C1v	Dho	Thr	Len		Tla	Dho	λla	Sar
	705	нта	тъ	GIII	АЗР	710	vai	GTĀ	PHE	1111	715	пуэ	116	FIIC	Ala	720
		Lau	Sor	Dro	V a l	Ala	Dhe	G1 ₃₇	Dha	Glv		Glu	Туг	Dho	Δla	
291	Deu	цец	DET	FIO	725	AIG	rne	Gry	riie	730	Cys	Olu	1 Y 1	THE	735	DCu
	Dho	Glu	Glu	Gln		Ile	Glv	Val	Gln		Δsn	Δsn	T.011	Dhe		Ser
294	1 110	GIU	GIU	740	GLY	110	O L y	VUI	745	115	пор	11511	LCu	750	Olu	UCI
	Pro	Va 1	Glu		Asn	Gly	Phe	Asn		Thr	Thr	Ser	Va l		Met	Met
297	110	, u _	755	Olu	1156	017	1	760	J.Cu			001	765	001		
	Leu	Phe		Thr	Phe	Leu	Tvr		Val	Met	Thr	Trp		Ile	Glu	Ala
300		770					775	1				780	- <u>,</u> -			
	Val		Pro	Glv	Gln	Tyr		Ile	Pro	Arq	Pro		Tyr	Phe	Pro	Cys
	785			-1		790	- 4				795	~	•			800
		Lys	Ser	Tyr	Trp	Phe	Gly	Glu	Glu	Ser		Glu	Lys	Ser	His	
306		-		-	805		-			810	-		-		815	
	Gly	Ser	Asn	Gln	Lys	Arg	Ile	Ser	Glu	Ile	Cys	Met	Glu	Glu	Glu	Pro
	_				_	-										

09/186635

Page & 50f8B

```
<210> 3
<211> 1130
<212> DNA
<213> Human
<220>
<223> human cDNA of ABCB9
```

```
<400> 3
gccaatgnca cggtttcatc atggaactcc aggacggcta cagcacagag acaggggaga 60
agggcgccca gctgtcaggt ggccagaagc agcgggtggc catggccgng gctctggtgc 120
ggaacccccc agtcctcatc ctggatgaag ccaccagcgc tttggatgcc gagagcgagt 180
atctgateca geaggeeate catggeaace tgteagaage acaeggtaet cateategeg 240
caccadeta describina describina esta esta esta de la compacta del compacta de la compacta de la compacta del compacta de la compacta del la compacta de la compacta del la compacta de la 
gtgcagcagg gcacccacca gcagcttgct tgccccaggg cgggctttta cggcaagqt 360
gttqcaqcqq caqatqtqqq gtttcaaggc cgcagacttc acagctggcc acaacgagcc 420
tgtagccaac gggtcacaag gcctgatggg gggcccctcc ttcgcccggt ggcagaggac 480
ccggtgcctg cctggcagat gtgcccacgg aggtttccag ctgccctacc gagcccaggc 540
ctgcagcact gaaagacgac ctgccatgtc ccatgatcac cgcttnbgca atcttgcccc 600
tggtccctgc cccattccca gggcactctt acccennnct gggggatgtc caagagcata 660
gtcctctccc catacccctc cagagaaggg gcttccctgt ccggagggag acacggggaa 720
cgggattttc cgtctctccc tcttgccagc tctgtgagtc tggccagggc gggtagggag 780
cgtggagggc atctgtctgc caattgcccg ctgccaatct aagccagtct cactgtgacc 840
acacgaaacc tcaactgggg gagtgaggag ctggccaggt ctggaggggc ctcaggtgcc 900
cccagcccgg cacccagett tegececteg teaatcaace cetggetgge ageegeeete 960
cccacacccg cccctgtgctctgtctg gaggccacgt ggaccttcat gagatgcatt 1020
ctcttctgtc tttggt gan grgatggtgc aaagcccagg atctggcttt gccagaggtt 1080 gcaacatgtt gagagaaccc ggtcaataaa gtgtactacc tcttacccct 1130
```

Untersorm must be enumerated on fields 221, 222 and 223

Glokan

The type of errors shown exist throughout the Sequence Listing. Please check subsequent sequences for similar errors.

VERIFICATION SUMMARY DATE: 11/14/2001 PATENT APPLICATION: US/09/786,635 TIME: 14:04:23

Input Set : A:\Lea33298.app

Output Set: N:\CRF3\11142001\1786635.raw

```
L:11 M:270 C: Current Application Number differs, Replaced Application Number
L:12 M:271 C: Current Filing Date differs, Replaced Current Filing Date
L:579 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:3
L:579 M:258 W: Mandatory Feature missing, <222> not found for SEQ ID#:3
L:579 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:3
L:580 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:3
L:580 M:258 W: Mandatory Feature missing, <222> not found for SEQ ID#:3
L:580 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:3
L:584 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:3
L:584\ M:258\ W: Mandatory Feature missing, <222> not found for SEQ ID#:3
L:584 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:3
L:588 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:3
L:588\ M:258\ W: Mandatory Feature missing, <222> not found for SEQ ID#:3
L:588 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:3
L:589 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:3
L 589 M:258 W: Mandatory Feature missing, <222> not found for SEQ ID#:3
L:589 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:3
L:596 M:258 W: Mandatory Feature missing, <222> not found for SEQ ID#:3
L 写96 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:3
L 23 M: 258 W: Mandatory Feature missing, <221> not found for SEQ ID#:4
L \stackrel{\text{\tiny $623}}{=} 23 \text{ M}:258 \text{ W}: Mandatory Feature missing, <222> not found for SEQ ID#:4
L 623 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:4
L:624 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:4
L:624 M:258 W: Mandatory Feature missing, <222> not found for SEQ ID#:4
L:624 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:4
L 205 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:13
L 205 M:258 W: Mandatory Feature missing, <222> not found for SEQ ID#:13
L:$\frac{1}{205} M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:13
L 1212 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:13
L \square212 M:258 W: Mandatory Feature missing, <222> not found for SEQ ID#:13
L=212 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:13
L:1213 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:13
L:1213\ M:258\ W: Mandatory Feature missing, <222> not found for SEQ ID#:13
L:1213 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:13
L:1214 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:13
L:1214 M:258 W: Mandatory Feature missing, <222> not found for SEQ ID#:13
L:1214 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:13
L:1577 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:20
L:1577 M:258 W: Mandatory Feature missing, <222> not found for SEQ ID#:20
L:1577 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:20
L:1625 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:20
L:1625\ M:258\ W: Mandatory Feature missing, <222> not found for SEQ ID#:20
L:1625 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:20
L:1720 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:25
L:1720 M:258 W: Mandatory Feature missing, <222> not found for SEQ ID#:25
L:1720 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:25
L:1986 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:31
```

VERIFICATION SUMMARY

PATENT APPLICATION: US/09/786,635

DATE: 11/14/2001
TIME: 14:04:23

Input Set : A:\Lea33298.app

Output Set: N:\CRF3\11142001\I786635.raw

```
L:1986 M:258 W: Mandatory Feature missing, <222> not found for SEQ ID#:31
L:1986 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:31
L:1988\ M:258\ W: Mandatory Feature missing, <221> not found for SEQ ID#:31
L:1988 M:258 W: Mandatory Feature missing, <222> not found for SEQ ID#:31
L:1988 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:31
L:1990 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:31
L:1990\ M:258\ W: Mandatory Feature missing, <222> not found for SEQ ID#:31
L:1990 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:31
L:1993 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:31
L:1993 M:258 W: Mandatory Feature missing, <222> not found for SEQ ID#:31
L:1993 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:31
L:1994 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:31
L:1994 M:258 W: Mandatory Feature missing, <222> not found for SEQ ID#:31
L:1994 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:31
L:1995 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:31
L:1995 M:258 W: Mandatory Feature missing, <222> not found for SEQ ID#:31
L資995 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:31
L 變013 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:31
L:2013 M:258 W: Mandatory Feature missing, <222> not found for SEQ ID#:31
L$\overline{\pi}$013 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:31
L2014 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:31
L型014 M:258 W: Mandatory Feature missing, <222> not found for SEQ ID#:31
L_{2}014 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:31
L_{12}^{12}289 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:54
L:2289 M:258 W: Mandatory Feature missing, <222> not found for SEQ ID#:54
L 2289 M: 341 W: (46) "n" or "Xaa" used, for SEQ ID#:54
L 2291 M:258 W: Mandatory Feature missing, <221> not found for SEQ ID#:54
L^{1/2}291 M:258 W: Mandatory Feature missing, <222> not found for SEQ ID#:54
L 2291 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:54 L 2293 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:54
L_{2296} M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:54
L:2297 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:54
L:2298 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:54
L:2316 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:54
L:2317 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:54
```