XIII - Relations binaires

I - Relations binaires

Définition 1 - Relation binaire

Soit E un ensemble et $G \subset E \times E$. Le couple $\mathscr{R} = (E, G)$ est une relation binaire sur E.

Soit $(x,y) \in E \times E$. Si $(x,y) \in G$, l'élément x est en relation avec y, noté $x \mathcal{R} y$.

L'ensemble G est le graphe de la relation binaire.

Exemple 1 - Exemples de relations

- Si E est l'ensemble des élèves d'un lycée et G est l'ensemble des couples d'élèves qui sont dans une même classe. On notera alors $x\mathcal{R}y$ si et x et y sont dans la même classe (par ex. en 2D2).
- Si E est l'ensemble des mots et G est l'ensemble des couples de mots où le premier mot est classé avant dans l'alphabet. On note alors $x \leq y$ si x est avant y dans l'alphabet. Par exemple, (chat \leq chien) ou (chien \leq fourmi).
- $\bullet\,$ Si E est l'ensemble des réels, vous connaissez les relations :
 - \star d'égalité, noté x = y.
 - \star d'infériorité, noté $x \leq y$.
 - \star d'infériorité stricte, noté x < y.
 - * ...
- Si E est l'ensemble $\mathcal{M}_{n,p}(\mathbb{R})$. La matrice A est équivalente à la matrice B s'il existe deux matrices P, Q inversibles telle que A = PBQ.
- Si E est l'ensemble $\mathcal{M}_n(\mathbb{R})$ des matrices d'ordre n. La matrice A est semblable à la matrice B s'il existe une matrice P inversible telle que $A = PBP^{-1}$.
- En microéconomie, les relations de préférence et les rela-

tions d'indifférences sont des relations binaires sur l'ensemble des options disponibles dans le cadre d'une prise de décision.

Définition 2 - Réflexivité, (Anti)symétrie, Transitivité

Soit \mathcal{R} une relation binaire sur un ensemble E. La relation \mathcal{R} est

- (i). réflexive si pour tout $x \in E$, $x\mathcal{R}x$.
- (ii). symétrique si pour tous $x, y \in E$, si $x\mathcal{R}y$, alors $y\mathcal{R}x$.
- (iii). antisymétrique si pour tous $x, y \in E$, si $x\mathcal{R}y$ et $y\mathcal{R}x$, alors x = y.
- (iv). transitive si pour tous $x, y, z \in E$, si $[x\mathcal{R}y \text{ ET } y\mathcal{R}z]$, alors $x\mathcal{R}z$.

II - Relations d'ordre

Définition 3 - Relation d'ordre

Une relation binaire \mathcal{R} sur un ensemble E est une relation d'ordre sur E si elle est réflexive, antisymétrique, transitive.

Exemple 2 - Relations d'ordre

- Soit l'ensemble des réels muni de la relation binaire ≤.
 - \star Pour tout x réel, $x \leq x$ donc la relation est réflexive.
 - \star Pour tous $x,\,y$ réels, si $x\leqslant y$ et $y\leqslant x,$ alors x=y. Ainsi, la relation est antisymétrique.
 - \star Pour tous x, y, z réels, si $x \leq y$ et $y \leq z$, alors $x \leq z$. Ainsi, la relation est transitive.

La relation inférieur ou égal est donc une relation d'ordre.

Chapitre XIII - Relations binaires

- La relation être avant dans l'ordre alphabétique est également une relation d'ordre sur l'ensemble des mots.
- Les relations de préférence sont également des relations d'ordre.

Définition 4 - Majorant, Minorant

- (i). L'élément x est un majorant de A si $\forall a \in A, a \leq x$. La partie A est majorée.
 - Un majorant de A est un élément qui est plus grand que tous les éléments de A.
- (ii). L'élément x est un minorant de A si \forall $a \in A, x \preccurlyeq a$. La partie A est minorée.
 - Un minorant de A est un élément qui est plus petit que tous les éléments de A.
- (iii). Si A possède un majorant et un minorant, la partie A est born'ee.

Exemple 3 - Exemples de majorants

On munit \mathbb{R} de la relation binaire \leq .

- 3, 10, 100 sont des majorants de l'ensemble $]-\infty,3]$.
- 1, $\sqrt{2}$, 12 sont des majorants de l'ensemble]-1,1[.

Définition 5 - Plus grand / petit élément

(i). L'élément x est le plus grand élément de A si

$$\forall a \in A, a \leq x \text{ et } x \in A.$$

S'il existe, le plus grand élément de A est l'unique élément qui est plus grand que tous les éléments de A et qui appartient à A.

(ii). L'élément x est le plus petit élément de A si

$$\forall a \in A, x \leq a \text{ et } x \in A.$$

S'il existe, le plus petit élément de A est l'unique élément qui est plus petit que tous les éléments de A et qui appartient à A.

Exemple 4 - Exemples de plus petits/grands éléments

- Si \mathbb{R} est muni de la relation d'ordre \leq .
 - \star -1 est le plus petit élément de [-1, 100].
 - \star 3 est le plus petit élément de $[3, \sqrt{13}]$.
 - \star] $-\infty$, $\sqrt{2}$] ne possède pas de plus petit élément (il ne possède pas de minorant).
 - \star]-1,1] ne possède pas de plus petit élement (aucun des minorants de]-1,1] n'appartient à]-1,1]).
- Le mot a est le premier mot du dictionnaire. C'est le plus petit élément pour l'ordre alphabétique. Il n'y a pas de plus grand élément car, par exemple, le mot zzzzzz est plus petit que le mot zzzzzzz.

III - Relations d'équivalence

Définition 6 - Relation d'équivalence

Une relation binaire \mathcal{R} sur un ensemble E est une relation d'équivalence sur E si elle est réflexive, symétrique et transitive.

Exemple 5 - Relations d'équivalence

- La relation *être dans la même classe* est une relation d'équivalence sur l'ensemble des élèves.
 - \star Un élève est dans la même classe que lui-même. Donc la relation est réflexive.
 - \star Si *Alice* est dans la même classe que *Bob*, alors *Bob* est dans la même classe qu'Alice. Donc la relation est symétrique.
 - \star Si Alice est dans la même classe que Bob et Bob est

Chapitre XIII - Relations binaires

D 2

dans la même classe que *Claire*, alors *Alice* est dans la même classe que *Claire*. Donc la relation est transitive.

- La relation être équivalente est une relation d'équivalence sur $\mathcal{M}_{n,p}(\mathbb{R})$. En effet, pour $A, B, C \in \mathcal{M}_{n,p}(\mathbb{R})$,
 - $\star A = I_n A I_p$ et I_n , I_p sont inversibles donc A est équivalente à A. La relation est réflexive.
 - \star Si A est équivalente à B, il existe P, Q inversibles telles que A=PBQ. Alors, $B=P^{-1}AQ^{-1}$. Comme P^{-1} et Q^{-1} sont inversibles, alors B est équivalente à A. La relation est donc symétrique.
 - * Si A est équivalente à B et B est équivalente à C, il existe P, Q, R, S inversibles telles que A = PBQ et B = RCS. Alors, A = PRCSQ. Comme PR et SQ sont inversibles, alors A est équivalente à C. La relation est donc transitive.
- La relation être semblable est une relation d'équivalence sur $\mathcal{M}_n(\mathbb{R})$. En effet, pour $A, B, C \in \mathcal{M}_n(\mathbb{R})$,
 - $\star A = I_n A I_n$ et I_n est inversible donc A est semblable à A. La relation est réflexive.
 - * Si A est semblable à B, il existe P inversible telle que $A = PBP^{-1}$. Alors, $B = P^{-1}AP$. Comme $Q = P^{-1}$ est inversible et $B = QAQ^{-1}$, alors B est semblable à A. La relation est donc symétrique.
 - * Si A est semblable à B et B est semblable à C, il existe P, Q inversibles telles que $A = PBP^{-1}$ et $B = QCQ^{-1}$. Alors, $A = (PQ)C(PQ)^{-1}$ et A est semblable à C. La relation est donc transitive.
- La relation d'indifférence est une relation d'équivalence.

Définition 7 - Classe d'équivalence

Soient \mathcal{R} une relation d'équivalence sur un ensemble E et $x \in E$. La classe d'équivalence de l'élément x, notée \overline{x} ou $\mathrm{cl}(x)$, est l'ensemble $\{y \in E \; ; \; x\mathcal{R}y\}$.

Exemple 6 - Classe d'équivalence

- Si *Alice* est une élève, la classe d'équivalence d'Alice est l'ensemble des élèves qui sont dans la même classe qu'Alice.
- Soit $\lambda \in \mathbb{R}$ et $A = \lambda I_n$. La matrice B est semblable à A s'il existe une matrice inversible P telle que $B = P(\lambda I_n)P^{-1} = \lambda I_n$. Ainsi, la classe d'équivalence de A est réduite à A elle-même.

Théorème 1 - Partition

Soit \mathcal{R} une relation d'équivalence sur un ensemble E. L'ensemble des classes d'équivalence de \mathcal{R} forme une partition de E.

Exemple 7

Les classes d'un lycée forment une partition de l'ensemble des élèves :

- deux classes distinctes n'ont aucun élève en commun. Autrement dit, deux classes distinctes sont disjointes.
- tout élève appartient à une classe. Autrement dit, la réunion des classes est égale à l'ensemble des élèves.