Lecture 7: Linear Regression (continued)

Reading: Chapter 3

STATS 202: Data mining and analysis

October 07, 2019

Potential issues in linear regression

- 1. Interactions between predictors
- 2. Non-linear relationships
- 3. Correlation of error terms
- 4. Non-constant variance of error (heteroskedasticity).
- Outliers
- 6. High leverage points
- 7. Collinearity

Correlation of error terms

We assumed that the errors for each sample are independent:

$$y_i = f(x_i) + \varepsilon_i$$
 ; $\varepsilon_i \sim \mathcal{N}(0, \sigma)$ i.i.d.

What if this assumption breaks down?

The main effect is that this invalidates any assertions about Standard Errors, confidence intervals, and hypothesis tests:

Example: Suppose that by accident, we double the data (we use each sample twice). Then, the standard errors would be artificially smaller by a factor of $\sqrt{2}$, due to the square-root law.

Correlation of error terms

When could this happen in real life:

- ➤ Time series: Each sample corresponds to a different point in time. The errors for samples that are close in time are correlated.
- ► **Spatial data**: Each sample corresponds to a different location in space.
- ▶ Predicting height from weight at birth: Suppose some of the subjects in the study are in the same family, their shared environment could make them deviate from f(x) in similar ways.

Correlation of error terms

Simulations of time series with increasing correlations between ε_i .

Non-constant variance of error (heteroskedasticity)

For example, the variance of the error depends on the input.

To diagnose this, we can plot residuals vs. fitted values:

Solution: If the trend in variance is relatively simple, we can transform the response using a logarithm, for example.

Outliers

Outliers are points with very high errors.

While they may or may not affect the fit, they might affect our assessment of model quality.

Possible solutions:

- ▶ If we believe an outlier is due to an error in data collection, we can remove it.
- ► An outlier might be evidence of a missing predictor, or the need to specify a more complex model.

High leverage points

High leverage points are observations with unusual input values. They can have an outsized effect on the fit $\hat{\beta}$!

Quantified with the leverage statistic or self influence:

$$h_{ii} = \frac{\partial \hat{y}_i}{\partial y_i} = (\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)_{i,i} \in [1/n, 1].$$

Hat matrix satisfies
$$\hat{y} = \mathbf{X}\hat{\beta} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^Ty = \mathbf{H}y$$

Studentized residuals

- ► The residual $\hat{\epsilon}_i = y_i \hat{y}_i$ is an estimate for the noise $\epsilon_i = y_i f(x_i)$.
- ▶ The standard error of $\hat{\epsilon}_i$ is $\sigma \sqrt{1 h_{ii}}$.
- A studentized residual is $\hat{\epsilon}_i$ divided by its standard error.
- ▶ If the model is correct, it follows a Student-t distribution with n-p-2 degrees of freedom.

Collinearity

Two predictors are collinear if they are highly correlated:

$$\mathtt{limit} \approx a \times \mathtt{rating} + b$$

i.e. if one variable is approximately a linear function of the other. In that case they contain approximately the same information.

Collinearity

Problem: Coefficient estimates become less certain and more variable (as training data changes). Consider the extreme case of using two identical predictors limit:

$$\begin{split} \text{balance} &= \beta_0 + \beta_1 \times \text{limit} + \beta_2 \times \text{limit} \\ &= \beta_0 + (\beta_1 + 100) \times \text{limit} + (\beta_2 - 100) \times \text{limit} \end{split}$$

The fit $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)$ is just as good as $(\hat{\beta}_0, \hat{\beta}_1 + 100, \hat{\beta}_2 - 100)$.

Collinearity

If 2 variables are collinear, we can easily diagnose this using their correlation.

A group of q variables is **multilinear** if one variable is approximately a linear function of the other variables. Pairwise correlations may not reveal multilinear variables.

The Variance Inflation Factor (VIF) measures how linearly predictable a variable is from the other variables:

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{X_j|X_{-j}}^2},$$

where $R^2_{X_j|X_{-j}}$ is the R^2 statistic for Multiple Linear regression of the predictor X_j onto the remaining predictors.

Comparing Linear Regression to K-nearest neighbors

Linear regression: prototypical parametric method. **KNN regression:** prototypical nonparametric method.

Comparing Linear Regression to K-nearest neighbors

Linear regression: prototypical parametric method.

KNN regression: prototypical nonparametric method.

Long story short:

- ▶ KNN is only better when the function *f* is not linear.
- ▶ When *n* is not much larger than *p*, even if *f* is nonlinear, Linear Regression can outperform KNN. KNN has smaller bias, but this comes at a price of higher variance.

KNN estimates for a simulation from a linear model

Linear models dominate KNN when true model linear

Increasing deviations from linearity

When the number of predictors is large, Linear Regression can dominate KNN

When p sufficiently large, the nearest neighbors are not especially near, and KNN accuracy can break down. This is known as the curse of dimensionality.

Next time: Classification

Supervised learning with a qualitative or categorical response.

Just as common, if not more common than regression:

- ► Medical diagnosis: Given the symptoms a patient shows, predict which of 3 conditions they are attributed to.
- ▶ Online banking: Determine whether a transaction is fraudulent or not, on the basis of the IP address, client's history, etc.
- Web searching: Based on a user's history, location, and the string of a web search, predict which link a person is likely to click.
- Online advertising: Predict whether a user will click on an ad or not.