1 Vektorji in matrike

1.1 Vektor je *urejena n-terica stevil*, ki jo obicajno zapisemo kot stolpec

$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

 ${\bf 1.2}$ Produkt $vektorja~\vec{x}$ s skalarjem α je vektor

$$\alpha \vec{x} = \alpha \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{bmatrix}$$

1.3 Vsota *vektorjev* \vec{x} in \vec{y} je vektor

$$\vec{x} + \vec{y} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

1.4 Nicelni vektor $\vec{0}$ je tisti vektor, za katerega je $\vec{a}+\vec{0}=\vec{0}+\vec{a}=\vec{a}$ za vsak vektor \vec{a} . Vse komponente nicelnega vektorja so enake 0. Vsakemu vektorju \vec{a} priprada nasprotni vektor $-\vec{a}$, tako da je $\vec{a}+(-\vec{a})=\vec{0}$ Razlika vektorjev \vec{a} in \vec{b} je vsota $\vec{a}+(-\vec{b})$ in jo navadno zapisemo kot $\vec{a}-\vec{b}$.

Lastnosti vektorske vsote

- $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ (komutativnost)
- $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$ (asociativnost)
- $a(\vec{a} + \vec{b}) = a\vec{a} + a\vec{b}$ (distributivnost)
- ${\bf 1.5}$ Linearna kombinacija vektorjev \vec{x} in \vec{y} je vsota

$$a\vec{x} + b\vec{y}$$

1.6 Skalarni produkt vektorjev

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \text{ in } \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \text{ je stevilo}$$

$$\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

alternativno:

$$\vec{x} \cdot \vec{y} = ||\vec{x}|| ||\vec{y}|| \cos \phi$$

Lastnosti skalarnega produkta

- $\vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x}$ (komutativnost)
- $\vec{x} \cdot (\vec{y} + \vec{z}) = \vec{x} \cdot \vec{y} + \vec{x} \cdot \vec{z}$ (aditivnost)
- $\vec{x} \cdot (a\vec{y}) = a(\vec{x} \cdot \vec{y}) = (a\vec{x}) \cdot \vec{y}$ (homogenost)
- $\forall \vec{x} \ velja \ \vec{x} \cdot \vec{x} \ge 0$
- **1.7** Dolzina vektorja \vec{x} je

$$||\vec{x}|| = \sqrt{\vec{x} \cdot \vec{x}}$$

- 1.8 Enotski vektor je vektor z dolzino 1.
- **1.9** Za poljubna vektorja $\vec{u}, \vec{v} \in \mathbb{R}^n$ velja:

$$|\vec{u} \cdot \vec{v}| \le ||\vec{u}||||\vec{v}||,$$

enakost velja, v primeru, da sta vektorja vzporedna.

1.10 Za poljubna vektorja $\vec{u}, \vec{v} \in \mathbb{R}^n$ velja:

$$||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||.$$

1.11 Vektorja \vec{x} in \vec{y} sta ortogonalna (pravokotna) natakno takrat, kadar je

$$\vec{x} \cdot \vec{y} = 0$$

1.12 Ce je ϕ kot med vektorjema \vec{x} in \vec{y} , potem je

$$\frac{\vec{x} \cdot \vec{y}}{||\vec{x}||||\vec{y}||} = \cos \phi$$

1.13 Vektorski produkt:

$$\vec{a} \times \vec{b} = (a_2b_3 - a_3b_2)\mathbf{i} + (a_3b_1 - a_1b_3)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$

Lastnosti vektorskega produkta

- $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ (aditivnost)
- $\vec{b} \times \vec{a} = -\vec{a} \times \vec{b}$ (!komutativnost)
- $(a\vec{a}) \times \vec{b} = a(\vec{a} \times \vec{b}) = \vec{a} \times (a\vec{b})$ (homogenost)
- $\vec{a} \times \vec{a} = 0$
- $\vec{a} \times \vec{b}$ je \perp na vektorja \vec{a} in \vec{b}
- $||\vec{a} \times \vec{b}|| = ||\vec{a}|| ||\vec{b}|| \sin \phi$
- Dolzina vektorskega produkta je ploscina paralelograma, katerega vektorja oklepata
- **1.14** Mesani produkt $(\vec{a}, \vec{b}, \vec{c})$ vektorjev \vec{a}, \vec{b} in \vec{c} v R^3 je skalarni produkt vektorjev $\vec{a} \times \vec{b}$ in \vec{c} :

$$(\vec{a}, \vec{b}, \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

Lastnosti mesanega produkta

- $(\vec{a}, \vec{b}, \vec{c}) = (\vec{b}, \vec{c}, \vec{a}) = (\vec{c}, \vec{a}, \vec{b})$
- $(x\vec{a}, \vec{b}, \vec{c}) = x(\vec{a}, \vec{b}, \vec{c})$ (homogenost)
- $(\vec{a}, \vec{u} + \vec{v}, \vec{c}) = (\vec{a}, \vec{u}, \vec{c}) + (\vec{a}, \vec{v}, \vec{c})$
- Absolutna vrednost mesanega produkta $(\vec{a}, \vec{b}, \vec{c})$ je enaka prostornini paralepipeda

Razdalje

Razdalja od tocke P do ravnine, v kateri lezi tocka A :

$$\cos \phi = \frac{\vec{n} \cdot (\vec{r_P} - \vec{r_A})}{||\vec{n}||||\vec{r_P} - \vec{r_A}||} \text{ oz.}$$
$$d = |\frac{\vec{n}}{||\vec{n}||} (\vec{r_P} - \vec{r_A})|$$

Razdalja od tocke P do premice, katera gre skozi tocko A:

$$d = \frac{||\vec{e} \times (\vec{r_P} - \vec{r_A})||}{||\vec{e}||}$$

Projekcije vekotrjev

Naj bo $proj_{\vec{a}}\vec{b} = \vec{x}$ projekcija vektorja \vec{b} na vektor \vec{a} . Izracunamo jo po sledeci formuli:

$$proj_{\vec{a}}\vec{b} = \frac{\vec{a}\vec{b}}{\vec{a}\vec{a}}\vec{a}$$

1.15 Matrika dimenzije $m \times n$ je tabela $m \times n$ stevil, urejenih v m vrstic in n stolpcev:

$$A^{m \times n} = \begin{bmatrix} x_{11} & x_{12} & x_{13} & \dots & x_{1n} \\ x_{21} & x_{22} & x_{23} & \dots & x_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & x_{m3} & \dots & x_{mn} \end{bmatrix}$$

- 1.16 Matrika, katere elementi so enaki nic povsod zunaj glavne diagonale, se imenuje diagonalna matrika. Za diagonalno matriko je $a_{ij} = 0$, kadarkoli velja $i \neq j$
- **1.17** Matrika $A^{n \times n}$ je spodnjetrikotna, kadar so vsi elementi nad glavno diagonalo enaki 0:

$$a_{ij} = 0 \ kadar \ je \ i < j$$

1.18 Matrika $A^{n \times n}$ je zgornjetrikotna, kadar so vsi elementi pod glavno diagonalo enaki 0:

$$a_{ij} = 0 \ kadar \ je \ i > j$$

- **1.19** Matrika je trikotna, ce je zgornjetrikotna ali spodnjetrikotna.
- 1.20 Dve matriki A in B sta enaki natanko takrat, kadar imata enaki dimenziji in kadar so na istih mestih v obeh matrikah enaki elementi:

$$A^{m \times n} = B^{p \times q} \implies m = p \text{ in } n = q,$$

$$a_{ij} = b_{ij} \text{ za } vsak \text{ } i = 1, ..., m \text{ in } j = 1, ..., n$$

 ${f 1.21}$ Produkt matrike s skalarjem dobimo tako, da vsak element matrike pomnozimo s skalarjem

$$aA^{m \times n} = \begin{bmatrix} ax_{11} & ax_{12} & ax_{13} & \dots & ax_{1n} \\ ax_{21} & ax_{22} & ax_{23} & \dots & ax_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ ax_{m1} & ax_{m2} & ax_{m3} & \dots & ax_{mn} \end{bmatrix}$$

1.22 Vsoto dveh matrik enake dimenzije dobimo tako, da sestejemo istolezne elemente obeh matrik:

$$A + B = \begin{bmatrix} a_{11} + b_{11} & ax_{12} + b_{12} & \dots & ax_{1n} + b_{1n} \\ a_{21} + b_{21} & ax_{22} + b_{22} & \dots & ax_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & ax_{m2} + b_{m3} & \dots & ax_{mn} + b_{mn} \end{bmatrix}$$

Osnovne matricne operacije

- A + B = B + A (komutativnost)
- (A+B)+C=A+(B+C) (asociativnost)

- a(A+B) = aA + aB (mnozenje s skalarjem)
- A + (-A) = 0
- x(yA) = (xy)A in $1 \cdot A = A$

 ${\bf 1.23}$ Transponirana matrika k
 matriki A reda $m\times n$ je matrika reda $n\times m$

$$A = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{bmatrix}$$
$$\begin{bmatrix} x_{11} & x_{21} & \dots & x_{m1} \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} x_{11} & x_{21} & \dots & x_{m1} \\ x_{12} & x_{22} & \dots & x_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1n} & x_{2n} & \dots & x_{mn} \end{bmatrix}$$

Lastnosti transponiranja matrik

- $\bullet \ (A+B)^T = A^T + B^T$
- $\bullet \ (A \cdot B)^T = B^T \cdot A^T$
- $(xA)^T = xA^T$
- $\bullet \ (A^T)^T = A$

1.24 Produkt matrike A in vektorja \vec{x} je linearna kombinacija stolpcev matrike A, utezi linearne kombinacije so komponente vektorja \vec{x} :

$$A\vec{x} = \begin{bmatrix} \vec{u} & \vec{v} & \vec{w} \end{bmatrix} \cdot \begin{bmatrix} a \\ b \\ c \end{bmatrix} = a\vec{u} + b\vec{v} + c\vec{w}$$

1.25 Produkt vrstice \vec{x} z matriko A je linearna kombinacija vrstic matrike A, koeficienti linearne kombinacije so komponente vrstice \vec{y} :

$$\vec{y} \cdot A = \begin{bmatrix} y_1, y_2, y_3 \end{bmatrix} \cdot \begin{bmatrix} \vec{u} \\ \vec{v} \\ \vec{w} \end{bmatrix} = \begin{bmatrix} y_1 \vec{u} \\ y_2 \vec{v} \\ y_3 \vec{w} \end{bmatrix}$$

1.26 Produkt matrik A in B je matrika, katere stolpci so zaporedoma produkti matrike A s stolpci matrike B:

$$AB = A [b_1, b_2, \dots, b_n] = [Ab_1, Ab_2, \dots, Ab_n]$$

1.27 Element c_{ij} v i-ti vrstici in j-tem stolpcu produkta C = AB je skalarni produkt i-te vrstice A in j-tega stolpca matrike B

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

1.28 Produkt matrik A in B je matrika, katere vrstice so zaporedoma produkti vrstic matrike A z matriko B:

$$[i - ta \ vrstica \ A] \ B = [i - ta \ vrstica \ AB]$$

Lastnosti matricnega produkta

- $AB \neq BA$ (!komutativnost)
- (xA)B = x(AB) = A(xB) (homogenost)

- C(A+B) = CA + CB (distributivnost)
- A(BC) = (AB)C (asociativnost)
- $\bullet \ (AB)^T = B^T A^T$

V splosnem; komutativnost matricnega mnozenja velja samo, ko sta matriki diagonalizabilni.

1.29 Vrstice matrike A z n stolpci naj bodo a^1, \ldots, a^n , stolpci matrike B z n vrsticami pa b_1, \ldots, b_n . Potem je

$$AB = a^1b_1 + \dots + a^nb_n$$

1.30 Ce delitev na bloke v matriki A ustreza delitvi v matirki B, potem lahko matriki pomnozimo blocno:

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \\ \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

1.31 Kvadratna matrika I_k reda $k \times k$, ki ima vse diagonalne elemente enake 1, vse ostale elemente pa 0 ima lastnost, da za vsako matriko A reda $m \times n$ velja $AI_n = A$ in $I_m A = A$. Matrika I_k se imenuje enotska ali identicna matirka.

$$I_k = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

2 Sistemi linearnih enacb

 ${\bf 2.1}$ Kvadratna matrika A je obrnljiva, ce obstaja taka matrika $A^{-1},$ da je

$$AA^{-1} = I \ in \ A^{-1}A = I$$

Matrika A^{-1} (ce obstaja) se imenuje matriki A inverzna matrika. Matrika, ki ni obrnljiva, je singularna. Matrika ${\bf NI}$ obrnljiva, kadar je rang(A) < n!

- ${f 2.2}$ Kvadratna matirka reda n je obrnljiva natanko tedaj, ko pri gaussovi eliminaciji dobimo n pivotov.
- 2.3 Vsaka obrnljiva matrika ima eno samo inverzno matriko.
- ${\bf 2.4}$ Inverzna matrika inverzne matrika A^{-1} je matrika A

$$(A^{-1})^{-1} = A$$

- **2.5** Ce je matrika A obrnljiva, potem ima sistem enac
b $A\vec{x}=\vec{b}$ edino resitev $\vec{x}=A^{-1}\vec{b}$
- **2.6** Ce obstaja nenicelna resitev \vec{x} enacbe $A\vec{x}=\vec{0}$, matrika A ni obrnljiva(je singularna).
- **2.7** Ce sta matirki A in B istega reda obrnljivi, je obrnljiv tudi produkt $A \cdot B$ in

$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$

Pozor! Pravilo

$$(AB)^p = A^p B^p$$

velja le v primeru, ko matriki A in B komutirata, torej AB = BA.

2.8 Inverz transponirane matrike je transponirana matrika inverza

$$(A^T)^{-1} = (A^{-1})^T$$

2.9 Inverz diagonalne matrike z diagonalnimi elementi a_{ii} je diagonalna matrika, ki ima na diagonali elemente a_{ii}^{-1}

$$\begin{bmatrix} a_{11} & 0 \\ & \ddots & \\ 0 & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{11}^{-1} & 0 \\ & \ddots & \\ 0 & a_{nn}^{-1} \end{bmatrix}$$

 ${\bf 2.10}$ Za izracun inverza matrike A, uporabimo gausovo eliminacijo nad matriko $\left[A|I\right]$

$$\left[A|I\right] = \left[I|A^{-1}\right]$$

- **2.11** Matrika A je simetricna $\Leftrightarrow A^T = A$. Za elemente a_{ij} simetricne matrike velja $a_{ij} = a_{ji}$. Za simetricno matriko vedno velja, da je kvadratna $A \in R^{n \times n}$.
- **2.12** Ce je matrika A simetricna in obrnljiva, je tudi A^{-1} simetricna.
- **2.13** Ce je R poljubna (lahko tudi pravokotna) matrika, sta R^TR in RR^T simetricni matriki.

3 Vektorski prostori

- **3.1** Realni vektorski prostor V je mnozica "vektorjev" skupaj z pravili za
 - sestevanje vektorjev,
 - mnozenje vektorja z realnim stevilom (skalarjem)

Ce sta \vec{x} in \vec{y} poljubna vektorja v V, morajo biti v V tudi

- vsota $\vec{x} + \vec{y}$ in
- produkti $\alpha \vec{x}$ za vse $\alpha \in R$

V vektorskem prostoru V morajo biti tudi VSE linearne kombinacije $\alpha \vec{x} + \beta \vec{y}$

Pravila za operacije v vektorskih prostorih

Operaciji sestevanja vektorjev in mnozenja vektorja s skalarjem v vektorskem prostoru morajo zadoscati naslednjim pravilom:

- $\vec{x} + \vec{y} = \vec{y} + \vec{x}$ (komutativnost)
- $\vec{x} + (\vec{y} + \vec{z}) = (\vec{x} + \vec{y}) + \vec{z}$ (asociativnost)
- obstaja en sam nenicelni vektor $\vec{0}$, da velja $\vec{x} + \vec{0} = \vec{x}$
- za vsak \vec{x} obstaja natanko en $-\vec{x}$, da je $\vec{x} + (-\vec{x}) = \vec{0}$
- $\bullet \ 1 \cdot \vec{x} = \vec{x}$
- $(\alpha\beta)\vec{x} = \alpha(\beta\vec{x})$
- $\alpha(\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$ (distributivnost)
- $(\alpha + \beta)\vec{x} = \alpha\vec{x} + \beta\vec{x}$

- **3.2** Podmnozica U vektorskega prostora V je *vektorski podprostor*, ce je za vsak par vektorjev \vec{x} in \vec{y} iz U in vsako realno stevilo α tudi
 - $\vec{x} + \vec{y} \in U$ in
 - $\alpha \vec{x} \in U$.
- **3.3** Mnozica vektorjev U je vektorski podprostor natanko tedaj, ko je vsaka linearna kombinacija vektorjev iz U tudi v U.

Lastnosti vektorskih podprostorov

- Vsak vektorski podprostor nujno vsebuje nicelni vektor $\vec{0}$
- Presek dveh podprostorov vektorskega podprostora je tudi podprostor

3.4 Stolpicni prostor C(A) matrike $A \in$

- $R^{m \times n}$ je tisti podprostor vektorskega prostora R^m , ki vsebuje natanko vse linearne kombinacije stolpcev matrike A. Izracunamo ga tako, da matriko A transponiramo in izvedemo operacijo gaussove eliminacije nad A^T . Vrstice katere ostanejo po gaussivi eliminaciji so linearno neodvisni vektorji, kateri tvorijo stoplicni prostor matrike A, C(A). neformalno: linearna ogrinjaca stolpcev matrike (npr. ce imas 5 stolpcev pa lahko 2 zapises kot linearno kombinacijo os-
- **3.5** Sistem linearnih enach $A\vec{x} = \vec{b}$ je reslijv natanko tedaj, ko je vektor $\vec{b} \in C(A)$

talih 3 bo imel column space 3 elemente)

- **3.6** Naj bo matrika $A \in \mathbb{R}^{m \times n}$. Mnozica resitev homogenega sistema linearnih enach je podprostor v vektorskem prostoru \mathbb{R}^n .
- **3.7** Mnozica vseh resitev sistema linearnih enach $A\vec{x} = \vec{0}$ se imenuje nicelni prostor matirke A. Oznacujemo ga z N(A). neformalno: mnozica vektorjev, ki se z neko matriko zmnozijo v nicelni vektor. Matriko A samo eliminiras po gaussu in nato dobljene resitve enacis z 0.
- ${\bf 3.8}$ Ce je matrika A kvadratna in obrnljiva, potem N(A) vsebuje samo vektor \vec{n}
- **3.9** Matrika ima *stopnicasto* obliko, kadar se vsaka od njenih vrstic zacne z vsaj eno niclo vec kot prejsnja vrstica.
- **3.10** Prvi element, razlicen od nic v vsaki vrstici, je pivot. Stevilo pivotov v matriki se imenuje rang matrike. Rang matrike A zapisemo kot rang(A).
- **3.11** Rang matrike ni vecji od stevila vrstic in ni vecji od stevila stolpcev matrike.

3.12

 $Stevilo\ prostih\ neznank\ matrike = st.$ $stolpcev\ -\ rang\ matrike$

3.13

1. Visoka in ozka matrika (m > n) ima poln stolpicni rang, kadar je rang(A) = n

- 2. Nizka in siroka matrika (m < n) ima poln vrsticni rang, kadar je rang(A) = m
- 3. Kvadratna matrika (n = m) ima poln rang, kadar je rang(A) = m = n
- **3.14** Za vsako matriko A s polnim stolpicnim rangom $r = n \le m$, velja:
 - 1. Vsi stolpci A so pivotni stolpci
 - 2. Sistem enacb $A\vec{x} = \vec{0}$ nima prostih neznank, zato tudi nima posebnih resitev
 - 3. Nicelni prostor N(A) vsebuje le nicelni vektor $N(A) = \{\vec{0}\}$
 - 4. Kadar ima sistem enach $A\vec{x} = \vec{b}$ resitev(kar ni vedno res!), je resitev ena sama
 - 5. Reducirana vrsticna oblika matrike (A) se da zapisati kot

$$R = \begin{bmatrix} I \\ 0 \end{bmatrix} \begin{bmatrix} n \times n \; enotska \; matrika \\ m - n \; vrstic \; samih \; nicel \end{bmatrix}$$

- ${\bf 3.15}$ Za vsako matriko A s polnim vrsticnim rangom $r=m\leq n$ velja:
 - Vse vrstice so pivotne, ni prostih vrstic in U (stopnicasta oblika) in R(reducirana stopnicasta oblika) nimata nicelnih vrstic
 - 2. Sistem enac
b $A\vec{x}=\vec{b}$ je resljiv za vsak vektor \vec{b}
 - 3. Sistem $A\vec{x} = \vec{b}$ ima n-r = n-m prostih neznank, zato tudi prav toliko posebnih resitev
 - 4. Stolpicni prostor C(A) je ves prostor \mathbb{R}^m
- ${\bf 3.16}$ Za vsako kvadratno matriko A polnega ranga (rang(A) = m = n) velja:
 - 1. Reducirana vrsticna oblika matrike A je enotska matrika
 - 2. Sistem enac
b $A\vec{x}=\vec{b}$ ima natancno eno resitev za vsak vektor desnih stran
i \vec{b}
 - 3. Matrika A je obrnljiva
 - 4. Nicelni prostor matrike A je samo nicelni vektor $N(A) = \{\vec{0}\}$
 - 5. Stolpicni prostor matrike A je cel prostor $C(A) = \mathbb{R}^m$
- **3.17** Vektorji $\vec{x_1}, \dots, \vec{x_n}$ so linearno neodvisni, ce je

$$0\vec{x_1} + 0\vec{x_2} + \dots + 0\vec{x_n}$$

edina njihova linearna kombinacija, ki je enaka vektorju $\vec{0}$. Vektorji $\vec{x_1}, \ldots, \vec{x_n}$ so linearno odvisni, ce niso linearno neodvisni.

3.18 Ce so vektorji *odvisni*, lahko vsaj enega izrazimo z ostalimi.

- **3.19** Ce je med vektorji $\vec{u_1}, \dots, \vec{u_n}$ tudi nicelni vektor, so vektorji *linearno odvisni*.
- **3.20** Vsaka mnozica n vektorjev iz \mathbb{R}^n je odvisna, kadar je n > m.
- **3.21** Stolpci matrike A so linearno neodvisni natanko tedaj, ko ima homogena enacba $A\vec{x}=\vec{0}$ edino resitev $\vec{x}=\vec{0}$.
- **3.22** Kadar je rang(A) = n, so stolpci matrike $A \in R^{m \times n}$ linearno neodvisni. Kadar je pa rang(A) < n, so stolpci matrike $A \in R^{m \times n}$ linearno odvisni.
- **3.23** Kadar je rang(A) = m, so vrstice matrike $A \in R^{m \times n}$ linearno neodvisne. Kadar je pa rang(A) < m, so vrstice matrike $A \in R^{m \times n}$ linearno odvisne.
- **3.24** Vrsticni prostor matrike A je podprostor v \mathbb{R}^n , ki ga razpenjajo vrstice matrike A.
- **3.25** Vrsticni prostor matrike A je $C(A^T)$, stolpicni prostor matrike A^T .
- ${\bf 3.26}~Baza~vektorskega~prostora$ je mnozica vektorjev, ki
 - 1. je linearno neodvisna in
 - 2. napenja cel prostor.
- **3.27** Vsak vektor iz vektorskega prostora lahko na en sam nacin izrazimo kot linearno kombinacijo baznih vektorjev.
- **3.28** Vektorji $\vec{x_1}, \ldots, \vec{x_n}$ so baza prostora R^n natanko tedaj, kadar je matrika, sestavljena iz stolpcev $\vec{x_1}, \ldots, \vec{x_n}$, obrnljiva.
- ${\bf 3.29}$ Prostor \mathbb{R}^n ima za n>0neskoncno mnogo razlicnih baz.
- **3.30** Ce sta mnozici vekotrjev $\vec{v_1}, \ldots, \vec{v_m}$ in $\vec{u_1}, \ldots, \vec{u_n}$ obe bazi istega vektorskega prostora, potem je $m = n \implies$ vse baze istega vektorskega prostora imajo isto stevilo vektorjev.
- **3.31** *Dimenzija* vektroskega prostora je stevilo baznih vektorjev.
- ${\bf 3.32}$ Dimenziji stolpicnega prostora C(A) in vrsticnega prostora $C(A^T)$ sta enaki rangu matrike A

$$\dim(C(A))=\dim(C(A^T))=rang(A).$$

- **3.33** Dimenzija nicelnega prostora N(A) matrike A z n stolpci in ranga r je enaka dim(N(A)) = n r.
- **3.34** Stolpicni prostor C(A) in vrsticni prostor $C(A^T)$ imata oba dimenzijo r. Dimenzija nicelnega prostora N(A) je n-r, Dimenzija levega nicelnega prostora $N(A^T)$ pa je m-r.
- **3.35** Vsako matriko ranga 1 lahko zapisemo kot produkt(stolpcnega) vektorja z vrsticnim vektorjem $A = \vec{u}\vec{v}^T$.

4 Linearne preslikave

- **4.1** Preslikava $A:U\to V$ je linearna, ce velja
 - 1. aditivnost: $A(\vec{u}_1 + \vec{u}_2) = A\vec{u}_1 + A\vec{u}_2$ za vse $\vec{u}_1, \vec{u}_2 \in U$,
 - 2. homogenost: $A(\alpha \vec{u}) = \alpha(A\vec{u})$ za vse $\alpha \in R$ in $\vec{u} \in U$.

Oziroma v enem koraku:

$$A(\alpha \vec{u}_1 + \beta \vec{u}_2) = \alpha A(\vec{u}_1) + \beta A(\vec{u}_2).$$

Pozor! Preslikava ni linearna, ce $A(\vec{0}) \neq \vec{0}$.

4.2 Preslikava $A:U\to V$ je linearna natanko tedaj, ko velja

$$A(\alpha_1 \vec{u}_1 + \alpha_2 \vec{u}_2) = \alpha_1 A \vec{u}_1 + \alpha_2 A \vec{u}_2$$

za vse $\alpha_1, \alpha_2 \in R$ in vse $\vec{u}_1, \vec{u}_2 \in U$.

- **4.3** Ce je A *linearna preslikava*, je $A\vec{0} = \vec{0}$. **4.4** Naj bo $A: U \to V$ linearna preslikava
- in $\sum_{i=1}^{k} \alpha_i \vec{u}_i$ linearna kombinacija vektorjev. Potem je $A(\sum_{i=1}^{k} \alpha_i \vec{u}_i) = \sum_{i=1}^{k} \alpha_i A \vec{u}_i$. **4.5** Naj bo $\beta = \{\vec{u}_1, \dots, \vec{u}_n\}$ baza za vektorski prostor U. Potem je linearna preslikava
- torski prostor U. Potem je linearna preslikava $A: U \to V$ natanko dolocena, ce poznamo slike baznih vektorjev.
- **4.6** Naj bo $\beta=\{\vec{u_1},\ldots,\vec{u_n}\}$ baza za U in $\{\vec{v_1},\ldots,\vec{v_n}\}$. Potem obstaja natanko ena linearna preslikava $A:U\to V,$ za katero je $A\vec{u}_i=\vec{v}_i$ za $i=1,2,\ldots,n.$
- **4.7** Naj bo $A:U\to V$ linearna preslikava. Potem mnozico

$$ker A = \{\vec{u} \in U; A\vec{u} = \vec{0}\}$$

imenujemo jedro linearne preslikave. Ker je $A\vec{0} = \vec{0}$, je $\vec{0} \in \ker$ A za vse A. Zato je jedro vedno neprazna mnozica. Ce je matrika $A\phi$ enotska preslikava za ϕ , potem velja

$$ker\phi = N(A).$$

- **4.8** Jedro linearne preslikave $A:U\to V$ je vektorski podprostor v U.
 - 4.9 Mnozico

$$im \ A = \{ \vec{v} \in V; obstaja \ tak \ \vec{u} \in U, \ da \ je \ \vec{v} = A\vec{u} \}$$

imenujemo slika linearne preslikave $A:U\to V$. Ce je matrika $A\phi$ enotska preslikava za ϕ , potem velja

$$im\phi = C(A)$$
.

- **4.10** Ce je $A:U\to V$ linearna preslikava, potem je njena slika $im\ A$ vektorski podprostor v V.
- **4.11** Ce je $A:U\to V$ linearna preslikava, in je rang matrike te preslikave v standardni bazi poln, potem lahko sklepamo, da ima ta preslikava **trivialno jedro**.

5 Ortogonalnost

- **5.1** Podprostora U in V vektorskega prostora sta med seboj ortogonalna, ce je vsak vektor $\vec{u} \in U$ ortogonalen na vsak vektor $\vec{v} \in V$.
 - **5.2** Za vsako matriko $A \in \mathbb{R}^{m \times n}$ velja:
 - 1. Nicelni prostor N(A) in vrsticni prostor $C(A^T)$ sta ortogonalna podprostora \mathbb{R}^n
 - 2. Levi nicelni prostor $N(A^T)$ in stolpicni prostor C(A) sta ortogonalna podprostora prostora R^m .
- **5.3** Ortogonalni komplement V^{\perp} podprostora V vsebuje VSE vektorje, ki so ortogonalni na V. **5.4** Naj bo A matrika dimenzije $m \times n$.
 - Nicelni prostor N(A) je ortogonalni
 - Nicelni prostor N(A) je ortogonalni komplement vrsticnega prostora $C(A^T)$ v prostoru R^n
 - Levi nicelni prostor $N(A^T)$ je ortogonalni komplement stolpicnega prostora C(A) v prostoru R^m .

krajse:

$$N(A) = C(A^T)^{\perp}$$

 $N(A^T) = C(A)^{\perp}$
tukaj lahko vedno pomnozimo s
komplementom, da dobimo npr.

komplementom, da dobimo npr. $N(A)^{\perp} = C(A^T)$

dodatek:

$$dimN(A) = st.stolpcev - rang(A)$$

 $dimN(A^T) = st.vrstic - rang(A)$
 $dimC(A) = dimC(A^T) = rang(A)$

- **5.5** Za vsak vektor \vec{y} v stolpicnem prostoru C(A) obstaja v vrsticnem prostoru $C(A^T)$ en sam vektor \vec{x} , da je $A\vec{x} = \vec{y}$.
- ${\bf 5.6}$ Ce so stolpci matrike A linearno neodvisni, je matrika A^TA obrnljiva.
 - **5.7** Matrika P je projekcijska, kadar
 - je simetricna: $P^T = P$ in
 - velja $P^2 = P$.
- 5.8 Ce je P projekcijska matrika, ki projecira na podprostor U, potem je I-P projekcijska matrika, ki projecira na U^{\perp} , ortogonalni komplement podprostora U.
- **5.9** Vektorji $\vec{q_1}, \vec{q_2}, \dots, \vec{q_n}$ so ortonormiranim kadar so ortogonalni in imanjo vsi dolzino 1, torej

$$\vec{q_i}^T \vec{q_i} = \begin{cases} 0 \text{ ko je } i \neq j \text{ pravokotni vektorji} \\ 1 \text{ ko je } i = j \text{ enotski vektorji} \end{cases}$$

za matriko $Q = [\vec{q_1}, \vec{q_2} \dots \vec{q_n}]$ velja $Q^T Q = I$. **5.10** Vektorji $\vec{q_1}, \dots, \vec{q_n}$ naj bodo

ortonormirani v prostoru R^m . Potem za matriko

$$Q = \left[\vec{q_1} \vec{q_2} \dots \vec{q_n} \right]$$

velja, da je $Q^TQ=I_n$ enotska matrika reda

- $\bf 5.11$ Matrika Q je ortogonalna, kadar je
- 1. kvadratna in
- $2.\ \ ima\ ortonormirane\ stolpce.$
- ${\bf 5.12}$ Ce je Q ortogonalna matirka, potem je obrnljiva in

$$Q^{-1} = Q^{T}$$
$$dimU^{\perp} = n - dimU$$
$$(U^{\perp})^{\perp} = U$$

5.13 Mnozenje z ortogonalno matriko ohranja dolzino vektorjev in kote med njimi. Ce je Q ortogonalna matrika, potem je

$$||Q\vec{x}|| = ||\vec{x}||$$
 za vsak vektor \vec{x} in $(Q\vec{x})^T Q\vec{y} = \vec{x}^T \vec{y}$ za vsak vektor \vec{x} in \vec{y}

5.14 Ce sta Q_1 in Q_2 ortogonalni matriki, je tudi produkt $Q = Q_1Q_2$ ortogonalna matrika.

5.15 Gram-Schmidtova ortogonalizacija. Za vhod uporabimo Linearno ogrinjaco linearno neodvisnih vekotrjev. Po gram-schmidtovi ortogonalizaciji pa dobimo paroma ortogonalne vektorje. Postopek:

Po tem postopku dobimo paroma ortogonalne vektorje po Gram-Schmidtovi ortogonalizaciji.

5.16 QR Razcep: Iz linearno neodvisnih vektorjev a_1, \ldots, a_n z *Gram-Schmidtovo* ortogonalizacijo dobimo ortonormirane vektorje q_1, \ldots, q_n . Matriki A in Q s temi stolpci zadoscajo enacbi A = QR, kjer je R zgornjetrikotna matrika.

- Najprej z Gram-Schmidtovo ortogonalizacijo poiscemo linearno neodvisne vektorje matrike A
- Vektorje normiramo in jih zapisemo v matriko Q.
- Matriko R dobimo tako, da matriko Q^T pomnozimo z matriko A

$$R = Q^T A$$

Tako smo prisli do vseh elementov v QR razcepu matrike A.

Sedaj ko imamo izracunane vse elemente lahko zapisemo se projekcijsko matriko. To je matrika pravokotne projekcije na C(Q) = C(A). Njen izracun je preprost:

$$QQ^T = pravokotna \ projekcija \ na \ C(Q) = C(A)$$

Sedaj lahko to projekcijsko matriko pomnozimo z desne s poljubnim vektorjem in ugotovimo kam se preslika v prostoru C(A). V nasprotnem primeru, ce bi pa zeleli imeti projekcijsko matriko, s katero bi radi videli kam se vektor preslika v prostoru $N(A^T)$, bi pa od identicne matrike odsteli projekcijsko matriko za C(Q).

$$\begin{split} I - QQ^T = \\ pravokotna \ projekcija \ na \ C(A)^{\perp} \ = N(A^T) \end{split}$$

 ${\bf 5.17}$ Vektorski prostor ι je mnozica vseh neskoncnih zaporedij \vec{u} s koncno dolzino

$$||\vec{u}||^2 = \vec{u} \cdot \vec{u} = \vec{u_1}^2 + \vec{u_2}^2 + \dots < \infty$$

5.18 Predoloceni sistemi

$$A^T A \begin{bmatrix} a \\ b \end{bmatrix} = A^T \vec{f}$$

Kjer je A matrika sistemov linearnih enacb in \vec{f} vektor pricakovanih resitev po gaussovi eliminaciji zgornje enacbe, dobimo spremenljivke, ki predstavljao najboljso aproksimacijo vseh kombinaicij rezultatov in vhodnih spremenljivk.

$\mathbf{6}$ <u>Determinante</u>

6.1 Determinanta enotske matirke je det(I) = 1.

$$\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \ in \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1.$$

- **6.2** Determinanta spremeni predznak, ce med seboj zamenjamo dve vrstici.
- **6.3** Determinanta je linearna funkcija vsake vrstice posebej. To pomeni, da se
 - 1. determinanta pomnozi s faktorjem t, ce eno vrstico determinante(vsak element v tej vrstici) pomnozimo s faktorjem t.

$$\begin{vmatrix} ta & tb \\ c & d \end{vmatrix} = t \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

2. determinanta je vsota dveh determinant, ki se razlikujeta le v eni vrstici, ce je v provitni determinanti ta vrstica vsota obeh vrstic, ostale vrstice pa so enake v vseh treh determinantah.

$$\begin{vmatrix} a+a' & b+b' \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} a' & b' \\ c & d \end{vmatrix}$$

Pozor! Kadar mnozimo matriko A s skalarjem t, se vsak element matrike pomnozi s skalarjem. Ko racunamo determinanto produkta matirke s skalarjem tA, skalar t izpostavimo iz vsake vrstice posebej, zato je $det(tA) = t^n det(A)$, kjer je n stevilo vrstic (ali stolpcev) determinante.

6.4 Matrika, ki ima dve enaki vrstici, ima determinanto enako 0.

6.5 Ce v matriki od poljubne vrstice odstejemo mnogokratnik neke druge vrstice, se njena determinanta ne spremeni.

6.6 Naj boApoljubna kvadratna matirka $n\times n$ in Unjena vrsticno-stopnicasta oblika, ki jo dobimo z $Gaussovo\ eliminacijo.$ Potem je

$$det(A) = \pm det(U).$$

6.7 Determinanta, ki ima vrstico samih nicel, je enaka 0.

 ${\bf 6.8}$ Determinanta trikotne matrike A je produkt diagonalnih elementov:

$$det(A) = a_{11}a_{22}\dots a_{nn}.$$

6.9 Determinanta singularne matrike je enaka 0, determinanta obrnljive matrike je razlicna od 0.

6.10 Determinanta produkta dveh matrik je enaka produktu determinant obeh matrik:

$$det(AB) = det(A)det(B).$$

6.11 Determinanta inverzne matrike je enaka

$$det(A^{-1}) = 1/det(A)$$

in determinanta potence ${\cal A}^n$ matrike A je

$$det(A^n) = (det(A))^n$$

ter determinanta transponirane matrike je enaka determinanti originalne matrike, saj ko naredimo razvoj po vrsticah, pridemo do enakih elementov po diagonali.

$$det(A) = det(A^T).$$

6.12 Transponirana matrika A^T ima isto determinanto kot A.

6.13 Recap dovoljenih operacij nad determinanto

- 1. Ce zamenjamo dve vrstici, se **spremeni** predznak determinante
- 2. Vrednost determinante se ne spremeni, ce neki vrstici pristejemo poljuben veckratnik katerekoli druge vrstice.
- 3. Ce vse elemente neke vrstice pomnozimo z istim stevilom α , se vrednost determinante pomnozi z α .
- **6.14** Vsaka lastnost, ki velja za vrstice determinante, velja tudi za njene **stolpce**. Med drugim:
 - Determinanta spremeni predznak, ce med seboj zamenjamo dva stolpca
 - Determinanta je enaka 0, ce sta dva stolpca enaka
 - Determinanta je enaka 0, ce so v vsaj enem stolpcu same nicle.

6.15 (kofaktorska formula) Ce je A kvadratna matrika reda n
, njeno determinanto lahko izracunamo z razvojem po i-ti vrstici

$$det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \ldots + a_{in}C_{in}.$$

Kofaktorje C_{ij} izracunamo kot $C_{ij} = (-1)^{i+j}D_{ij}$, kjer je D_{ij} determinanta, ki jo dobimo, ce v A izbrisemo i-to vrstico in j-ti stolpec.

6.16 Inverzna matrika A^{-1} matrike A je transponirana matrika kofaktorjev, deljena z determinanto |A|:

$$A^{-1} = \frac{C^T}{\det(A)},$$

kjer je C matrika kofaktorjev matrike A.

6.17 Ploscina paralelograma, dolocenega z vektorjema \vec{a} in $\vec{b} \in R^2$ je enaka $\det([\vec{a}\vec{b}])$, to je absolutni vrednosti determinante s stolpcema \vec{a} in \vec{b} .

6.18 Mesani produkt vektorjev \vec{a} in \vec{b} in \vec{c} je enak determinanti matrike, ki ima te tri vektorje kot stolpce.

6.19 Naj bo A matrika $R^{n \times n}$

$$A \ je \ obrnljiva \iff det A \neq 0$$

$$A^{-1}$$
 ne obstaja \iff $det A = 0$

7 L. vrednosti in vektorji

7.1 Vektor $\vec{x} \neq \vec{0}$, za katerega je $A\vec{x} = \lambda \vec{x}$ lastni vektor. Stevilo λ je lastna vrednost. **Pozor!** Nicelni vektor $\vec{0}$ ne more biti lastni vektor. Lahko pa je lastna vrednost enaka 0.

 ${f 7.2}$ Ce ima matrika A lastno vrednost λ in lastni vektor $\vec x$, potem ima matrika A^2 lastno vrednost λ^2 in isti lastni vektor $\vec x$.

7.3 Ce ima matrika A lastno vrednost λ in lastni vektor \vec{x} , potem ima matrika A^k lastno vrednost λ^k in isti lastni vektor \vec{x} .

7.4 Ce ima matrika A lastno vrednost λ in lastni vektor \vec{x} , potem ima inverzna matrika lastno vrednost $1/\lambda$ in isti lastni vektor \vec{r}

7.5 Sled kvadratne matrike A reda n je vsota njenih diagonalnih elementov.

$$sled(A) = \sum_{i=1}^{n} a_{ii} = a_{11} + \dots + a_{nn}.$$

7.6 Sled matrike je enaka vsoti vseh lastnih vrednosti, stetih z njihovo veckratnostjo. Ce so $\lambda_1, \ldots, \lambda_n$ lastne vrednosti matrike reda n, potem je sled enaka vsoti

$$sled(A) = \sum_{i=1}^{n} \lambda_i = \lambda_1 + \dots + \lambda_n,$$

determinanta matrike pa produktu lastnih vrednosti

$$det(A) = \prod_{i=1}^{n} \lambda_i = \lambda_1 \dots \lambda_n.$$

7.7 Ce ima matrika A lastno vrednost λ , ki ji pripada lastni vektor \vec{x} , potem ima matrika A+cI lastno vrednost $\lambda+c$ z istim lastnim vektorjem \vec{x} (velja samo z enotskimi matrikami I).

7.8 Lastne vrednosti trikotne matrike so enake diagonalnim elementom.

7.9 Denimo, da ima matrika $A \in \mathbb{R}^{n \times n}$ n linearno neodvisnih lastnih vektorjev $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$. Ce jih zlozimo kot stolpce v matriko S

$$S = [\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n],$$

potem je T =: $S^{-1}AS$ diagonalna matrika z lastnimi vrednostmi $\lambda_i, i = 1, \ldots, n$ na diagonali

$$S^{-1}AS = T = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}.$$

Pozor! Lastni vektorji v matriki S morajo biti v istem vrstnem redu kot lastne vrednosti v matriki T.

- **7.10** Ce je $A = STS^{-1}$, potem je $A^k = ST^kS^{-1}$ za vsak $k \in N$.
- **7.12** Vse lastne vrednosti realne simetricne matrike so realne.
- **7.13** Lastni vektorji realne simetricne matrike, ki pripadajo razlicnim lastnim vrednostim, so med seboj pravokotni.
- 7.14 Schurov izrek Za vsako kvadratno matriko reda n, ki ima le realne lastne vrednosti, obstaja taka ortogonalna matrika Q, da je

$$Q^TAQ=T$$

zgornjetrikotna matrika, ki ima lastne vrednosti(lahko so kompleksne) matrike A na diagonali.

- **7.15 Spektralni izrek** Vsako simetricno matriko A lahko razcepimo v produkt $A = QTQ^T$, kjer je Q ortogonalna matrika lastnih vektorjev, T pa diagonalna z lastnimi vrednostmi matrike A na diagonali.
- 7.16 Vsako realno simetricno matriko lahko zapisemo kot linearno kombinacijo matrik ranga 1

$$A = \lambda_1 \vec{q}_1 \vec{q}_1^T + \lambda_2 \vec{q}_2 \vec{q}_2^T + \dots + \lambda_n \vec{q}_n \vec{q}_n^T,$$

kjer so $\vec{q_i}$ stolpci matrike Q (torej lastni vektorji matrike A).

- 7.17 Za simetricno nesingularno matriko A je stevilo pozitivnih pivotov enako stevilu pozitivnih lastnih vrednosti.
- **7.18** Kvadratna matrika je pozitivno definirana, kadar so vse njene lastne vrednosti pozitivne.
- **7.19** Kvadratna matrika reda 2 je pozitivno definirana natanko tedaj, kadar sta pozitivni sled in determinanta matrike.
- **7.20** Simetricna matrika A reda n je pozitivno definirana natanko tedaj, ko je za vsak vektor $\vec{x} \neq \vec{0} \in \mathbb{R}^n$

$$\vec{x}^T A \vec{x} > 0$$

- **7.21** Ce sta matriki A in B pozitivno definitni, je pozitivno definitna tudi njuna vsota A + B.
- **7.22** Matrika A je pozitivno definitna, kadar so vse njene vodilne glavne poddeterminante pozitivne.
- **7.23** Ce so stolpci matrike R linearno neodvisni, je matrika $A = R^T R$ pozitivno definitna.
- **7.24** Za vsako simetricno pozitivno definitno matriko A obstaja zgornjetrikotna matrika R, da je $A = R^T R$.
- 7.25 Simetricna matrka reda n, ki ima eno od spodnjih lastnosti, ima tudi ostale stiri:
 - 1. Vseh n pivotov je pozitivnih;
 - 2. Vseh *n* vodilnih glavnih determinant je pozitivnih;
 - 3. Vseh n lastnih vrednosti je pozitivnih;
 - 4. Za vsak $\vec{x} \neq \vec{0}$ je $\vec{x}^T A \vec{x} > 0$;
 - 5. $A = R^T R$ za neko matriko R z linearno neodvisnimi stolpci.

- **7.26** Vsako realno $m \times n$ matriko A lahko zapisemo kot produkt $A = UEV^T$, kjer je matrika U ortogonalna $m \times m$, E diagonalna $m \times n$ in V ortogonalna $n \times n$.
- 7.27 Ce je matrika A simetricna in so vsej njeni elementi realni, potem je njen rang enak stevilu nenicelnih lastnih vrednosti matrike A.

$$rang(A) = stevilo \lambda A$$

7.28 Diagonalizacija oz podobnost matrik. Matriki A in B sta podobni, ce imata obe iste lastne vrednosi. Diagonalno matriko sestavimo tako, da v njeno diagonalo vpisemo lastne vrednosti. Matriko P pa sestavimo iz njenih lastnih vektorjev; po stolpcih.

$$A = PDP^{-1} \text{ oz.}$$

$$D = P^{-1}AP$$

7.29 Spektralni razcep Naj bodo vekotrji $\vec{q}_1, \ldots, \vec{q}_n$ ONB iz l. vektorjev marike A za l. vrednost $\lambda_1, \ldots, \lambda n$, potem lahko matriko A zapisemo kot:

$$A = \lambda_1 \vec{q_1} \vec{q_1}^T + \dots + \lambda_n \vec{q_n} \vec{q_n}^T$$

7.30 Nekaj lastnosti simetricnih matrik

- Vse lastne vrednosti simetricne matrike so realne. Lastni vektorji realne simetricne matrike, ki pripadajo razlicnim lastnim vrednostim, so med seboj pravokotni.
- Vsako realno simetricno matriko A lahko zapisemo kot $A = QDQ^T$, kjer je Q ortogonalna matrika lastnih vektorjev, D pa diagonalna matrika, ki ima na diagonali pripadajoce lastne vrednosti matrike A.