On recovering induced polarization information from airborne time domain EM data

Seogi Kang*, Douglas W. Oldenburg, Dikun Yang, David Marchant, Geophysical Inversion Facility, University of British Columbia

SUMMARY

XXX

XXX

Weidelt (1982) Smith and Klein (1996) Marchant et al. (2014) Jansen and Witherly (2004) Macnae (2015) Smith et al. (1988) Kang and Oldenburg (2016) Power and Hildes (2007)

On recovering IP information from ATEM data

REFERENCES

- Jansen, J., and K. Witherly, 2004, The Tli Kwi Cho kimberlite complex, Northwest Territories, Canada: A geophysical case study: SEG Technical Program Expanded Abstracts, 1147–1150.
- Kang, S., and D. W. Oldenburg, 2016, On recovering distributed IP information from inductive source time domain electromagnetic data (in revision): Geophysical Journal International.
- Macnae, J., 2015, Quantifying Airborne Induced Polarization effects in helicopter time domain electromagnetics: Journal of Applied Geophysics.
- Marchant, D., E. Haber, and D. Oldenburg, 2014, Three-dimensional modeling of IP effects in time-domain electromagnetic data: Geophysics, **79**, E303–E314.
- Power, M., and D. Hildes, 2007, Geophysical strategies for kimberlite exploration in northern Canada: Proceedings of Exploration '07: Fifth Decennial International Conference on Mineral Exploration, 1025–1031.
- Smith, R. S., and J. Klein, 1996, A special circumstance of airborne inducedpolarization measurements: Geophysics, 61, 66–73
- Smith, R. S., P. Walker, B. Polzer, and G. F. West, 1988, The time-domain electromagnetic response of polarizable bodies: an approximate convolution algorithm: Geophysical Prospecting, **36**, 772–785.
- Weidelt, P., 1982, Response characteristics of coincident loop transient electromagnetic systems: **47**, 1325–1330.