AMENDMENTS TO THE CLAIMS

The following **Listing of Claims** will replace all prior versions, and listings of claims in the application.

- 1. (CURRENTLY AMENDED) A pharmaceutical composition comprising:
 - a pharmaceutically acceptable carrier, adjuvant or vehicle; and
 - a therapeutically effective amount of a compound having the structure:

$$R_{a}$$

$$R_{b}$$

$$R_{1}$$

$$R_{5}$$

$$R_{4}$$

$$R_{4}$$

$$(I)$$

or pharmaceutically acceptable salt thereof;

wherein R₁ and R₂ are each independently hydrogen, halogen, -CN, -S(O)₁₋₂R^{1A}, -NO₂, -COR^{1A}, -CO₂R^{1A}, -NR^{1A}C(=O)R^{1B}, -NR^{1A}C(=O)OR^{1B}, -CONR^{1A}R^{1B}, or lower alkyl; an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or WR^{1A}; wherein W is independently -O-, -S- or -NR^{1C}-, wherein each occurrence of R^{1A}, R^{1B} and R^{1C} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or R₁ and R₂, taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

R₃ is hydrogen, an aliphatic or lower alkyl; heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or a prodrug moiety or an oxygen protecting group;

the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety;

R₅ is hydrogen, an aliphatic, or lower alkyl; heteroaliphatic, alicyclic, heteroalicyclic, arvl or heteroarvl moiety;

 R_6 is hydrogen, halogen, -CN, $-S(O)_{1-2}R^{6A}$, $-NO_2$, $-COR^{6A}$, $-CO_2R^{6A}$, $-NR^{6A}C(=O)R^{6B}$, $-NR^{6A}C(=O)CR^{6B}$, an aliphatic, or lower alkyl; heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or $-WR^{6A}$; wherein W is independently -O, -S or $-NR^{6C}$, wherein each occurrence of $-R^{6A}$, $-R^{6B}$ and $-R^{6C}$ is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or $-R_6$ and $-R_6$ and $-R_6$ taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

 R_a and each occurrence of R_b and R_c are independently hydrogen, halogen, CN, $S(O)_1$, R^{a1} , NO_2 , COR^{a1} , CO_2R^{a1} , $NR^{a1}C(=O)R^{a2}$, $NR^{a1}C(=O)OR^{a2}$, $CONR^{a1}R^{a2}$, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or R^{a1} ; wherein R^{a2} is independently R^{a2} , R^{a2} and R^{a3} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or R_a and the adjacent occurrence of R_b , taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

 R_e is hydrogen, halogen, -CN, $-S(O)_{1-2}R^{e1}$, $-NO_2$, $-COR^{e1}$, $-CO_2R^{e1}$, $-NR^{e1}C(=O)R^{e2}$, $-NR^{e1}C(=O)R^{e2}$, $-NR^{e1}C(=O)R^{e2}$, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, arylor heteroaryl moiety, or $-WR^{e1}$; wherein W is independently -O, -S or $-NR^{e3}$, wherein each occurrence of $-R^{e1}$, $-R^{e2}$ and $-R^{e3}$ is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, arylor heteroaryl moiety; or $-R_e$ and $-R_e$, taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, arylor heteroaryl moiety;

n is 3 an integer from 1 to 5;

 X_1 is O, S_7 , NR^{X1} or $CR^{X1}R^{X2}$; wherein R^{X1} and R^{X2} are independently hydrogen, halogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or a nitrogen protecting group;

Q is hydrogen, lower alkyl,

 $S(O)_{1\cdot2}R^{Q1}$, NO_2 , COR^{Q1} , CO_2R^{Q1} , $NR^{Q1}C(=O)R^{Q2}$, $NR^{Q1}C(=O)OR^{Q2}$, $CONR^{Q1}R^{Q2}$, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or WR^{Q1} ; wherein W is independently O, S or NR^{Q3} , wherein each occurrence of R^{Q1} , R^{Q2} and R^{Q3} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; and

 Y_1 and Y_2 are independently hydrogen, <u>lower alkyl</u>, <u>or CF_3</u>; <u>an aliphatic</u>, <u>heteroaliphatic</u>, <u>heteroalicyclic</u>, <u>aryl or heteroaryl moiety</u>; or $-WR^{Y1}$; wherein W is independently -O-,—S—or $-NR^{Y2}$ -, wherein each occurrence of R^{Y1} and R^{Y2} is independently hydrogen, <u>or lower alkyl</u>; or an aliphatic, heteroaliphatic, <u>alicyclic</u>, <u>heteroalicyclic</u>, <u>aryl or heteroaryl moiety</u>; or Y_1 and Y_2 together with the carbon atom to which they are attached form

whereby the composition is formulated for administration to a subject at a dosage between about 0.1 mg/kg to about 50 mg/kg of body weight.

with the proviso that the compound does not have the following structure:

- 2. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 50 mg/kg of body weight.
- 3. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 0.1 mg/kg to about 40 mg/kg of body weight.
- 4. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 40 mg/kg of body weight.
- 5. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 0.1 mg/kg to about 30 mg/kg of body weight.
- 6. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 5 mg/kg to about 30 mg/kg of body weight.
- 7. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 30 mg/kg of body weight.
- 8. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 0.1 mg/kg to about 20 mg/kg of body weight.
- 9. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 20 mg/kg of body weight.
- 10. **(ORIGINAL)** The composition of claim 1, wherein the dosage is 10 mg/kg or greater of body
- 11. **(CURRENTLY AMENDED)** The composition of claim 1, wherein:

 R_1 and R_2 are each independently hydrogen or substituted or unsubstituted lower alkyl; or R_1 and R_2 , taken together with the carbon atoms to which they are attached, form an epoxide, an aziridine or a substituted or unsubstituted eyelopropyl moiety;

R₃ is hydrogen, or substituted or unsubstituted lower alkyl or aryl; a prodrug moiety or an oxygen protecting group;

R₄ is <u>hvdrogen</u>, halogen,—OR^{4A}, -OC(=O)R^{4A} <u>oxo</u>, -OC(=O)R^{4A}, <u>OCH₃</u> or -NR^{4A}R^{4B}; wherein R^{4A} and R^{4B} are independently hydrogen, or substituted or unsubstituted lower alkyl<u>or lower alkoxy</u>; <u>a prodrug moiety</u>, a nitrogen protecting group or an oxygen protecting group; or R^{4A} and R^{4B}, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or R₄, taken together with the carbon

R₅ and R₆ are each independently hydrogen or substituted or unsubstituted lower alkyl; or R₆ and R_e, taken together with the earbon atoms to which they are attached, form an epoxide, an aziridine or a substituted or unsubstituted cyclopropyl moiety;

 R_a and each occurrence of R_b and Rc are independently hydrogen, halogen, alkyl, heteroalkyl, eyeloalkyl, heterocycloalkyl, aryl or heteroaryl moiety, or WR^{al} ; wherein W is independently O, S or NR^{al} , wherein each occurrence of R^{al} , and R^{al} is independently hydrogen, or an alkyl, heteroalkyl, eyeloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; or R_a and the adjacent occurrence of R_b , taken together, form an epoxide, an aziridine or a substituted or unsubstituted cyclopropyl moiety;

 R_e is hydrogen, halogen, alkyl, heteroalkyl, eyeloalkyl, heteroeyeloalkyl, aryl or heteroaryl moiety, or WR^{e4} ; wherein W is independently O, S or NR^{e3} , wherein each occurrence of R^{e4} and R^{e3} is independently hydrogen, or an alkyl, heteroalkyl, eyeloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; or R_e and R_6 , taken together with the carbon atoms to which they are attached, form an epoxide, an aziridine or a substituted or unsubstituted cyclopropyl moiety;

n is <u>3</u> an integer from 1 to 5;

X₁ is O, S₂, NR^{X1} or CR^{X1}R^{X2}; wherein R^{X1} and R^{X2} are independently hydrogen, halogen, substituted or unsubstituted alkyl, heteroalkyl, eyeloalkyl, heterocycloalkyl, aryl or heteroaryl, or a nitrogen protecting group;

Q is hydrogen, lower alkyl,

 $S(O)_{1,2}R^{Q1}$, $-NO_2$, $-COR^{Q1}$, $-CO_2R^{Q1}$, $-NR^{Q1}C(-O)R^{Q2}$, $-NR^{Q1}C(-O)OR^{Q2}$, $-CONR^{Q1}R^{Q2}$, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or $-WR^{Q1}$; wherein W is independently -O, -S- or $-NR^{Q3}$, wherein each occurrence of R^{Q1} , R^{Q2} and R^{Q3} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; and

 Y_1 and Y_2 are independently hydrogen, <u>lower alkyl</u>, <u>or CF₃</u>; <u>an alkyl</u>, <u>heteroalkyl</u>, <u>eyeloalkyl</u>, <u>heteroaycloalkyl</u>, <u>aryl or heteroaryl moiety</u>; or $-WR^{Y1}$; wherein W is independently -O-, -S--or $-NR^{Y2}$ -, wherein each occurrence of R^{Y1} and R^{Y2} is independently hydrogen, or an alkyl, <u>heteroalkyl</u>, <u>eyeloalkyl</u>, <u>heterocycloalkyl</u>, <u>aryl or heteroaryl moiety</u>; or Y_1 and Y_2 together with the carbon atom to which they are attached form a moiety having the

structure:
$$N^{N} = 0$$
, $N^{N} = 0$, N^{N}

12. **(CURRENTLY AMENDED)** The composition of claim 1, wherein R_a, R_b and R_c are each hydrogen, and the compound has one of the following structures:

wherein R_1 - R_6 , Y_2 , X_1 , n and Q are as defined in claim 1; W is O or NH; and R^{Y1} is hydrogen, or an aliphatic, heteroaliphatic, alieyelic, heteroalieyelic, aryl or heteroaryl moiety.

13. (CURRENTLY AMENDED) The composition of claim 1, wherein R_a, R_b and R_c are each hydrogen, Q is a carbonyl-containing moiety and the compound has one of the following structures:

wherein R₁-R₆, Y₂, X₁, and n are as defined in claim 1; W is O or NH; and R^{Y1} is hydrogen, or an aliphatic, heteroaliphatic, alieyelic, heteroalieyelic, aryl or heteroaryl moiety; R₇ is a substituted or unsubstituted lower alkyl or heteroalkyl moiety; R₈ is a substituted or unsubstituted alkyl, heteroalkyl, heterocycloalkyl, aryl or heteroaryl moiety; and Alk is a substituted or unsubstituted C₀₋₆-alkylidenealkylenyl or C₀₋₆alkenylidene alkenylenyl chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, or alkyl, heteroalkyl, aryl, heteroaryl or acyl.

14. **(CURRENTLY AMENDED)** The composition of claim 1, wherein R_a, R_b and R_c are each hydrogen, n is 3 and the compound has one of the following structures:

wherein R_1 - R_6 , Y_2 , Q and X_1 are as defined in claim 1; W is O or NH; and R^{Y1} is hydrogen, or an aliphatic, heteroaliphatic, alieyelic, heteroalieyelic, aryl or heteroaryl moiety.

15. **(CURRENTLY AMENDED)** The composition of claim 1, wherein R_a, R_b and R_c are each hydrogen, n is 3, Q is a carbonyl-containing moiety, and the compound has one of the following structures:

wherein R₁-R₆, X₁ and Y₂ are as defined in claim 1; W is O or NH; R^{Y1} is hydrogen, or an aliphatic, heteroaliphatic, alieyelie, heteroalieyelie, aryl or heteroaryl moiety; R₇ is a substituted or unsubstituted lower alkyl or heteroalkyl moiety; R₈ is a substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; and Alk is a substituted or unsubstituted C₀₋₆alkylidenealkylenyl or C₀₋₆alkenylidene alkenylenyl chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CO₂, NR^{Z1}CO₂, NR^{Z1}CO₂, NR^{Z1}CO₃, NR^{Z1}SO₂, NR^{Z1}SO₂, NR^{Z1}SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, or alkyl, heteroalkyl, aryl, heteroaryl

or acyl; and R₈ is a substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety.

- 16. (PREVIOUSLY PRESENTED) The composition of claim 1, wherein R_1 and R_2 are each hydrogen.
- 17. (PREVIOUSLY PRESENTED) The composition of claim 1, wherein R₅ and R₆ are each methyl.
- 18. (PREVIOUSLY PRESENTED) The composition of claim 1, wherein R₃ is lower alkyl.
- 19. (ORIGINAL) The composition of claim 18, wherein R₃ is methyl.
- 20. (PREVIOUSLY PRESENTED) The composition of claim 1, wherein R₄ is OH, NH₂ or halogen.
- 21. (ORIGINAL) The composition of claim 13 or 15, wherein R_7 is lower alkyl.
- 22. (ORIGINAL) The composition of claim 21, wherein R_7 is methyl.
- 23. (CURRENTLY AMENDED) The composition of claim 1, wherein Q has the structure:

wherein R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R₈ is a substituted or unsubstituted carbocyclic, or heterocyclic, aryl or heteroaryl moiety; and X, Y and Z are independently a bond, -O-, -S-, -C(=O)-, -NR^{Z1}-, -CHOR^{Z1}, -CHNR^{Z1}R^{Z2}, C-S, C-N(R^{Y1}) or CH(Hal); or a substituted or unsubstituted C₀₋₆ alkylidene alkylenyl or C₀₋₆ alkenylidene alkenylenyl wherein up to two non-adjacent methylene units are independently optionally replaced by CO, -CO₂, -COCO, -CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂,

NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein Hal is a halogen selected from F, Cl, Br and I; and each occurrence of R^{Z1} and R^{Z2} is independently hydrogen or alkyl, heteroaryl or acyl; or R^{Z1} and R^{Z2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety; and pharmaceutically acceptable derivatives thereof.

24. (CURRENTLY AMENDED) The composition of claim 23, wherein Q has the structure:

wherein R_7 is a substituted or unsubstituted, linear or branched, eyelic or acyclic lower alkyl moiety; R_8 is a substituted or unsubstituted carbocyclic, <u>or</u> heterocyclic, <u>aryl or heteroaryl moiety</u>; and R^Y is hydrogen, <u>halogen</u>, $-OR^{Y1}$ or $-NR^{Y1}NR^{Y2}$; wherein R^{Y1} and R^{Y2} —are independently <u>is</u> hydrogen, alkyl, <u>or</u> heteroalkyl, <u>aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2} , taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.</u>

25. (CURRENTLY AMENDED) The composition claim 13, wherein R_8 is one of:

$$\{R^{8A}\}_{p} \qquad \{R^{8A}\}_{p} \qquad \{R^{$$

wherein p is an integer from 0 to 5; q is 1 or 2, r is an integer from 1 to 6; each occurrence of R^{8A} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl, -(alkyl)aryl or -(alkyl)heteroaryl, -OR^{8C}, -SR^{8C}, -N(R^{8C})₂, -SO₂N(R^{8C})₂, -(C=O)N(R^{8C})₂, halogen, -CN, -NO₂, -(C=O)OR^{8C}, -N(R^{8C})(C=O)R^{8D}, wherein each occurrence of R^{8C} and R^{8D} is independently hydrogen, lower alkyl, lower heteroalkyl, aryl, heteroaryl, -(alkyl)aryl or -(alkyl)heteroaryl; and each occurrence of R^{8B} is independently hydrogen or lower alkyl.

26. (ORIGINAL) The composition of claim 25, wherein R₈ has the structure:

wherein R^{8B} is hydrogen or lower alkyl.

- 27. **(PREVIOUSLY PRESENTED)** The composition of claim 1 wherein n is 3.
- 28. (PREVIOUSLY PRESENTED) The composition of claim 12 wherein Y_1 is OR^{Y_1} and Y_2 is lower alkyl; wherein R^{Y_1} is hydrogen or lower alkyl.
- 29. (ORIGINAL) The composition of claim 28, wherein Y_1 is OH and Y_2 is CF_3 .
- 30. (ORIGINAL) The composition of claim 11 wherein R_a , R_b and R_c are each hydrogen, and the compound has one of the structures:

or pharmaceutically acceptable derivative thereof;

wherein R_3 - R_6 , n and Q are as defined in claim 1; and Y_2 and R^{Y1} are independently hydrogen or lower alkyl.

31. (ORIGINAL) The composition of claim 1 wherein the compound has the structure:

or pharmaceutically acceptable derivative thereof;

wherein R_3 - R_6 and Q are as defined in claim 11; and Y_2 and R^{Y_1} are independently hydrogen or lower alkyl.

or pharmaceutically acceptable derivative thereof;

wherein R₃-R₆ and n are as defined in claim 11; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, linear or branched, eyelic or acyclic lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and X, Y and Z are independently a bond, -O-, -S-, -C(=O)-, -NR^{Z1}-, -CHOR^{Z1}, -CHNR^{Z1}R^{Z2}, C=S, C=N(R^{Y1}) or -CH(Hal); or a substituted or unsubstituted C₀₋₆-alkylidenealkylenyl or C₀₋₆alkenylidene alkenylenyl chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein Hal is a halogen selected from F, Cl, Br and I; and each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, or alkyl., heteroalkyl, aryl, heteroaryl or acyl; or R^{Z1} and R^{Z2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

or pharmaceutically acceptable derivative thereof;

wherein R₃-R₆ are as defined in claim 11; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic cyclic or acyclic or acyclic lower alkyl moiety; R^{SB} is hydrogen or lower alkyl; and X, Y and Z are independently a bond, -O-, -S-,-C(=O)-, -NR^{Z1}-, or -CHOR^{Z1}, -CHNR^{Z1}R^{Z2}, C-S, C-N(R^{Y1}) or -CH(Hal); or a substituted or unsubstituted C₀₋₆-alkylidenealkylenyl or C₀₋₆alkenylidene alkenylenyl chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein Hal is a halogen selected from F, Cl, Br and I; and each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, or alkyl, heteroalkyl, aryl, heteroaryl or acyl; or R^{Z1} and R^{Z2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

34. (CURRENTLY AMENDED) The composition of claim 32 or 33, wherein -X-Y-Z together represents the moiety $-CH_2-Y-CH_2-$; wherein Y is $-CHOR^{Y1}$, $-CHNR^{Y1}R^{Y2}$, or C=O, C=S,

C=N(R^{V1}) or CH(Hal); wherein Hal is a halogen selected from F, Cl, Br and I; and R^{V1} and R^{V2} are independently hydrogen, or alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{V1} and R^{V2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

35. **(CURRENTLY AMENDED)** The composition of claim 11 wherein the compound has the structure:

wherein R_3 - R_6 and n are as defined in claim 11; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R_7 is a substituted or unsubstituted, linear or branched, eyelic or aeyelic lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and Y is $-CHOR^{Y1}$, $-CHNR^{Y1}R^{Y2}$, or C=0, C=S, $C=N(R^{Y1})$ or -CH(Hal); wherein Hal is a halogen selected from F, Cl, Br and I; and R^{Y1} and R^{Y2} are independently is hydrogen, alkyl, or heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and

R^{¥2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

36. (CURRENTLY AMENDED) The composition of claim 11 wherein the compound has the structure:

wherein R_3 - R_6 are as defined in claim 11; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and Y is -CHOR^{Y1}, -CHNR^{Y1}R^{Y2}, or C=O; , C=S, C=N(R^{Y1}) or -CH(Hal); wherein Hal is a halogen selected from F, Cl, Br and I; and R^{Y1} and R^{Y2} are independently is hydrogen, alkyl, or heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2} , taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

37. **(CURRENTLY AMENDED)** The composition of claim 11 wherein the compound has the structure:

wherein n, R₃ and R₄ are as defined in claim 11; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R^{8B} is hydrogen or lower alkyl; and R^Y is hydrogen, halogen, or OR^{Y1} or NR^{Y1}NR^{Y2}; wherein R^{Y1} and R^{Y2} are independently is hydrogen, alkyl, or heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

wherein R₃ and R₄ are as defined in claim 11; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R^{8B} is hydrogen or lower alkyl; and R^Y is hydrogen, halogen, or OR^{Y1} or NR^{Y1}NR^{Y2}; wherein R^{Y1} and R^{Y2} are independently is hydrogen, alkyl, or heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

wherein R_3 - R_6 and n are as defined in claim 11; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R_7 is a substituted or unsubstituted, **linear or branched, eyelic or acyclic** lower alkyl moiety; and R^{8B} is hydrogen or lower alkyl.

$$R_{7M_{M_{1}}}$$
 R_{8B}
 $R_{7M_{M_{1}}}$
 R_{8B}
 $R_{7M_{1}}$
 R_{1}
 R_{1}
 R_{2}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{6}
 $R_{7M_{1}}$
 R_{6}
 $R_{7M_{1}}$
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{6}
 $R_{7M_{1}}$
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{6}
 $R_{7M_{1}}$
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{6}
 $R_{7M_{1}}$
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{6}
 $R_{7M_{1}}$
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{6}
 $R_{7M_{1}}$
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 $R_$

wherein R_3 - R_6 are as defined in claim 11; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R_7 is a substituted or unsubstituted, **linear or branched, eyelic or acyclic** lower alkyl moiety; and R^{8B} is hydrogen or lower alkyl.

41. **(ORIGINAL)** The composition of claim 11 wherein the compound has the following structure:

$$Y_1$$
 Y_2
 X_1
 R_{5}
 R_{10}
 R_{10}
 R_{10}

or a pharmaceutically acceptable salt thereof; wherein X_1 is CH_2 , NH or O;

 Y_1 and Y_2 are independently OH, $C(R^{Y_1})_3$ or Y_1 and Y_2 taken together with the carbon atom to which they are attached are -C=0, wherein R^{Y_1} is halo;

R₆ is H or lower alkyl;

R₅ is H or lower alkyl;

R₄ is OH; and

R₃ is alkyl.

42. **(ORIGINAL)** The composition of claim 41 wherein the compound has one of the following structures:

- 43. **(ORIGINAL)** The composition of claim 1, wherein the compound is present in an amount effective to inhibit metastasis of tumor cells.
- 44. **(ORIGINAL)** The composition of claim 1, wherein the compound is present in an amount effective to inhibit angiogenesis.
- 45. (ORIGINAL) The composition of claim 1, further comprising a cytotoxic agent.
- 46. **(ORIGINAL)** The composition of claim 45, wherein the cytotoxic agent is an anticancer agent.
- 47. (ORIGINAL) The composition of claim 1, further comprising a palliative agent.

- 48. **(ORIGINAL)** A method for treating breast tumor metastasis in a subject comprising: administering to a subject in need thereof a therapeutically effective amount of the composition of claim 1.
- 49. **(ORIGINAL)** The method of claim 48, wherein the dosage is between about 1 mg/kg to about 50 mg/kg of body weight.
- 50. (ORIGINAL) The method of claim 48, wherein the dosage is between about 0.1 mg/kg to about 40 mg/kg of body weight.
- 51. **(ORIGINAL)** The method of claim 48, wherein the dosage is between about 1 mg/kg to about 40 mg/kg of body weight.
- 52. **(ORIGINAL)** The method of claim 48, wherein the dosage is between about 0.1 mg/kg to about 30 mg/kg of body weight.
- 53. (ORIGINAL) The method of claim 48, wherein the dosage is between about 1 mg/kg to about 30 mg/kg of body weight.
- 54. **(ORIGINAL)** The method of claim 48, wherein the dosage is between about 5 mg/kg to about 30 mg/kg of body weight.
- 55. **(ORIGINAL)** The method of claim 48, wherein the dosage is between about 0.1 mg/kg to about 20 mg/kg of body weight.
- 56. (ORIGINAL) The method of claim 48, wherein the dosage is between about 1 mg/kg to about 20 mg/kg of body weight.
- 57. **(ORIGINAL)** The method of claim 48, wherein the dosage is 10 mg/kg or greater of body weight.

58. **(ORIGINAL)** The method of claim 48 wherein in the composition, the compound has one of the following structures:

- 59. **(ORIGINAL)** The method of claim 58, wherein the composition is administered at a dosage between about 10 mg/kg to about 20 mg/kg of body weight.
- 60. (ORIGINAL) The method of claim 48, further comprising administering a cytotoxic agent.
- 61. (ORIGINAL) The method of claim 60, wherein the cytotoxic agent is an anticancer agent.
- 62. (ORIGINAL) The method of claim 48, further comprising administering a palliative agent.