

GT9147

HotKnot 系列: 4.5 寸单层多点

Rev.00——2013年12月12日

===== 免责声明======

本出版物中所述的器件应用信息及其他类似内容仅为您提供,它们可能由更新之信息所替代。确保应用符合技术规范,是您自身应负的责任。GOODIX对这些信息不作任何明示或暗示、书面或口头、法定或其他形式的声明或担保,包括但不限于针对其使用情况、质量、性能、适销性或特定用途的适用性的声明或担保。GOODIX 对因这些信息及使用这些信息而引起的后果不承担任何责任。未经GOODIX书面批准,不得将GOODIX 的产品用作生命维持系统中的关键组件。在GOODIX 知识产权保护下,不得暗中或以其他方式转让任何许可证。

目录

1.	概述	3
2.	产品特点	3
3.	芯片原理图	4
4.	管脚定义	5
5.	传感器设计	6
	5.1 触摸 Sensor 设计	6
	5.2 触摸按键设计	6
6.	I ² C 通讯	7
	6.1 I2C 通讯	7
	a) 数据传输	8
	b) 对 GT9147 写操作	9
	c) 对 GT9147 读操作	9
7.	HotKnot	.10
7.1.	启动 HotKnot	.10
7.2.	TP 间数据传输	.10
7.3.	CPU 从 GT9147 接收数据	.10
8.	功能描述	. 11
	8.1. 工作模式	. 11
	a) Normal Mode	. 11
	b) Green Mode	. 11
	c) Sleep Mode	
	d) Approach Mode	.12
	e) Receive Mode	.12
	f) Send Mode	.12
	8.1 中断触发方式	.12
	8.2 睡眠模式	.13
	8.3 跳频功能	.13
	8.4 自动校准	.13
	a) 初始化校准	
	b) 自动温漂补偿	.13
9.	参考电路图	. 14
10.		
	10.1 极限电气参数	. 15
	10.2 推荐工作条件	. 15
	10.3 AC 特性	
	10.4 DC 特性	
11.	产品封装	.16
12.	版本记录	.17
13.	联系方式	.18

1. 概述

GT9147 是采用最新的电容检测技术,内置高性能微信号检测电路,可很好地解决 LCD 干扰和共模干扰问题。软件算法方面,专门基于单层互容的电气环境所设计,可支持 5 点触控。同时支持 HotKnot 功能

GT9147 可同时识别 5 个触摸点位的实时准确位置,移动轨迹及触摸面积。并可根据主控需要,读取相应点数的触摸信息。

2.产品特点

- ◆ 内置电容检测电路及高性能 MPU
 - ▶ 触摸扫描频率: 100Hz
 - ▶ 触摸点坐标实时输出
 - ▶ 统一软件版本适用于多种尺寸的电容屏
 - ▶ 单电源供电,内置 1.8V LDO
 - ➤ HotKnot 功能
- ◆ 电容屏传感器
 - ▶ 检测通道: 18(驱动通道)*10(感应通道)
 - ▶ 电容屏尺寸范围: ≦4.5"
 - ▶ 支持 FPC 按键设计
 - ▶ 同时支持 ITO 玻璃和 ITO Film
 - ➤ Cover Lens 厚度支持: 0.7mm ≤ 玻璃 ≤ 2mm
- ◆ 环境适应性能
 - ▶ 初始化自动校准
 - ▶ 自动温漂补偿
 - ➤ 工作温度: -40°C~+85°C, 湿度: ≦95%RH
 - ▶ 储存温度: -60℃~+125℃, 湿度: ≦95%RH
- ♦ 通讯接口
 - ▶ 标准 I²C 通讯接口
 - > 从设备工作模式
 - ➤ 支持 1.8V~3.3V 接口电平
- ◇ 响应时间
 - Green mode: <48msSleep mode: <200msInitialization: <200ms
- ◆ 电源电压:

- ➤ 单电源供电: 2.8V~3.3V
- ◆ 电源纹波:
 - > Vpp≤50mV
- ◆ 封装: 40 pins, 5mm*5mm QFN_0.4P
- ◆ 应用开发支持工具
 - ▶ 触摸屏模组参数侦测及配置参数自动生成
 - ▶ 触摸屏模组性能综合测试工具
 - ▶ 模组量产测试工具
 - ▶ 主控软件开发参考驱动代码及文档指导

3. 芯片原理图

4. 管脚定义

管脚号.	名称	功能描述	备注
1~10	SEN0~SEN9	触摸模拟信号输入	
11	AVDD28	模拟电源正	接 2.2uF 滤波电容
12	AVDD18		接 2.2uF 滤波电容
13	DVDD12		接 2.2uF 滤波电容
14	DGND	数字信号地	
15	INT	中断信号	边沿触发寄存器可设
16	Sensor_OPT1	模组识别口	
17	Sensor_OPT2	模组识别口(备选)	需外部下拉
18	I2C_SDA	I ² C 数据信号	
19	I2C_SCL	I ² C 时钟信号	
20	VDDIO	GPIO 电平控制	接 2.2uF 滤波电容 悬空: 1.8V 接 AVDD: AVDD
21	/RSTB	系统复位脚	需外部 10K 上拉, 拉低复位
22~39	DRV17~DRV0	驱动信号输出	
40	AGND	模拟电源地	

5.传感器设计

5.1 触摸 Sensor 设计

单层多点的 sensor 图案设计,是方案的核心部分。图案设计均为 Goodix 专利,下表是对各个制程的支持示意图,不同制程工艺效果会有所差异,方阻越低、ITO gap 越小,最终的效果越好。

GT9147	出线方式	最大方阻	建议 ITO gap	最大 ITO gap	Pad 间距
Glass	全 ITO	100Ω	30um	50um	0.3mm
film 黄光	单边出线	150Ω	50um	100um	0.4mm
film 黄光	双边出线	150Ω	50um	200um	0.6mm

5.2 触摸按键设计

GT9147 支持 4 个触摸按键,实现方式有两种:

Sensor 扩展方式:由驱动通道作按键公共端,将一条驱动通道与 4 根感应形成 4 个按键。作按键的驱动通道不可与屏体上驱动复用,但作按键的感应通道必须与屏体上复用;

FPC 设计方式:单独拿出一条驱动通道与 4 条感应通道形成 4 个按键, 4 条感应通道与屏体部分复用。FPC 的 sensor 图案需专门设计。

6.I²C 通讯

6.1 I2C 通讯

GT9147 提供标准的 I2C 通讯接口,由 SCL 和 SDA 与主 CPU 进行通讯。在系统中 GT9147 始终作为从设备,所有通讯都是由主 CPU 发起,建议通讯速度为 400Kbps 或以下。其支持的 I2C 硬件电路支持时序如下:

测试条件 1: 1.8V 通讯接口, 400Kbps 通讯速度, 上拉电阻 2K

Parameter	Symbol	Min.	Max.	Unit
SCL low period	t _{lo}	1.3	-	us
SCL high period	t _{hi}	0.6	-	us
SCL setup time for START condition	t _{st1}	0.6	-	us
SCL setup time for STOP condition	t _{st3}	0.6	-	us
SCL hold time for START condition	t _{hd1}	0.6	-	us
SDA setup time	t _{st2}	0.1	-	us
SDA hold time	t _{hd2}	0	-	us

测试条件 2: 3.3V 通讯接口, 400Kbps 通讯速度, 上拉电阻 2K

Parameter	Symbol	Min.	Max.	Unit
SCL low period	t _{lo}	1.3	-	us
SCL high period	t _{hi}	0.6	-	us
SCL setup time for START condition	t _{st1}	0.6	-	us
SCL setup time for STOP condition	t _{st3}	0.6	-	us
SCL hold time for START condition	t _{hd1}	0.6	-	us
SDA setup time	t _{st2}	0.1	-	us
SDA hold time	t _{hd2}	0	-	Us

GT9147 的 I2C 从设备地址有两组,分别为 0xBA/0xBB 和 0x28/0x29。主控在上电初始化时控制 Reset 和 INT 口状态进行设定,设定方法及时序图如下:

上电时序图:

设定地址为 0x28/0x29 的时序:

设定地址为 0xBA/0xBB 的时序:

a) 数据传输

(以设备地址为 0xBA/0xBB 为例)

通讯总是由主 CPU 发起,有效的起始信号为:在 SCL 保持为"1"时,SDA 上发生由"1"到"0"的跳变。地址信息或数据流均在起始信号之后传输。

所有连接在 I2C 总线上的从设备,都要检测总线上起始信号之后所发送的 8 位地址信息,并做出正确反应。在收到与自己相匹配的地址信息时,GT9147 在第 9 个时钟周期,将 SDA 改为输出口,并置"0",作为应答信号。若收到不与自己匹配的地址信息,即非 0XBA 或 0XBB,GT9147 将保持闲置状态。

SDA 口上的数据按 9 个时钟周期串行发送 9 位数据: 8 位有效数据加 1 位接收方发送的应答信号 ACK 或非应答信号 NACK。数据传输在 SCL 为"1"时有效。

当通讯完成时,由主 CPU 发送停止信号。停止信号是当 SCL 为"1"时,SDA 状态由"0"到"1"的跳变。

b) 对 GT9147 写操作

(以设备地址为 0xBA/0xBB 为例)

写操作时序图

上图为主 CPU 对 GT9147 进行的写操作流程图。首先主 CPU 产生一个起始信号,然后发送地址信息及读写位信息"0"表示写操作:0xBA。

在收到应答后, 主 CPU 发送寄存器的 16 位地址, 随后是 8 位要写入到寄存器的数据内容。

GT9147 寄存器的地址指针会在写操作后自动加 1,所以当主 CPU 需要对连续地址的寄存器进行写操作时,可以在一次写操作中连续写入。写操作完成,主 CPU 发送停止信号结束当前写操作。

c) 对 GT9147 读操作

(以设备地址为 0xBA/0xBB 为例)

读操作时序图

上图为主 CPU 对 GT9147 进行的读操作流程图。首先主 CPU 产生一个起始信号,然后发送设备地址信息及读写位信息"0"表示写操作: 0xBA。

在收到应答后,主 CPU 发送首寄存器的 16 位地址信息,设置要读取的寄存器地址。在收到 应答后,主 CPU 重新发送一次起始信号,发送读操作: 0xBB。收到应答后,主 CPU 开始 读取数据。

GT9147 同样支持连续的读操作,默认为连续读取数据。主 CPU 在每收到一个 Byte 数据后需发送一个应答信号表示成功接收。在接收到所需的最后一个 Byte 数据后,主 CPU 发送"非应答信号 NACK",然后再发送停止信号结束通讯。

7. HotKnot

7.1. 启动 HotKnot

当有数据发送时,则主 CPU 下发进入主机接近检测模式命令 0x21,则该终端可以检测到与之通讯的接收端。成功检测到另一支持 HotKnot 技术通讯终端,会以 INT 的方式告知主 CPU。

7.2.TP 间数据传输

GT9147 在接收到 0x22 进入数据传输模式的命令后,默认处于接收状态,即检测是否有数据从发送端发来。当 GT9147 的发送缓冲区被正确刷新,则会立即启动发送,接收方就可以检测到数据。。

7.3. CPU 从 GT9147 接收数据

GT9147 发送完或接收完一帧数据,会通过翻转 INT 来通知 CPU 处理。当 GT9147 接收完一帧数据, CPU 先获取 HotKnot 系列的状态寄存器,当接收状态寄存器指示成功接收到一帧数据时, CPU 再去接收缓冲区将收到的数据通过 I²C 读取上来,读取上来后再往指定地址写入 0xAA,告知 GT9147 数据读取完毕。对于发送也是一样,获取成功发送的状态后,往指定地址写入 0xAA,告知 GT9147 已处理完毕,GT9147 会自动切换至接收数据状态,直到发送缓冲区被再次刷新才会启动发送

8.功能描述

8.1.工作模式

a) Normal Mode

GT9147 在 Normal mode 时,最快的坐标刷新周期为 7ms-10ms 间(依赖于配置信息的设定,配置信息可控周期步进长度为 1ms)。

Normal mode 状态下,一段时间无触摸事件发生,GT9147 将自动转入 Green mode,以降低功耗。GT9147 无触摸自动进入 Green mode 的时间可通过配置信息设置,范围为 $0\sim15s$,步进为 1s。

b) Green Mode

在 Green mode 下,GT9147 扫描周期约为 40ms,若检测到有触摸动作发生,自动进入 Normal mode。

c) Sleep Mode

主 CPU 通过 I2C 命令,使 GT9147 进入 Sleep mode (需要先将 INT 脚输出低电平)。当需要 GT9147 退出 Sleep mode 时,主机输出一个高电平到 INT 脚(主机打高 INT 脚 2~5ms),唤 醒后 GT9147 将进入 Normal mode。下发 I2C 关屏命令与唤醒之间的时间间隔要求大于 58ms。

d) Approach Mode

在 GT9147 运行在 Normal mode 或 Green mode 时,主 CPU 通过 I²C 命令,使 GT9147 进入 Approach mode,该模式下,触控检测和近场的接近检测相间进行。Approach mode 在发送端与接收端模式存在区别:在发送端是会通过驱动感应通道发送约定规律约定频率的信标,发送完再检测是否收到接收端返回的约定规律约定频率的信标,以此判定有无接收端存在。在接收端,Approach mode 一般开机后就会进入,一直检测是否收到发送端发来的约定规律约定频率的信标,若检测到,返回约定规律约定频率的信标通知发送端。在 Approach mode 下,当发现近场范围存在可通讯终端,会以 INT 的方式通知主 CPU 来获取状态。

e) Receive Mode

在 GT9147 运行在 Approach mode 时,主 CPU 通过 I^2C 获取到 GT9147 检测到可通讯终端,发送 I2C 命令使 GT9147 进入 Receive mode。在该模式下,不断地检测有无起始帧信号,检测到后,开始检测数据,接收完成后,进行校验,若校验失败,重新开始接收;若接收成功,则以 INT 方式通知主 CPU 来接收缓冲区读取数据。

f) Send Mode

在 GT9147 运行在 Receive mode 时,主 CPU 通过 I^2 C 将待发数据发送至发送缓冲区,GT9147 检测到发送缓冲区有数据需要发送,自动从从 Receive mode 切换到 Send mode。在该模式下,先发送起始帧信号,并检测到接收端有返回 ACK,再接着发送数据信号,每次发送 8 次,传送 16bit,发送完一个 WORD,开始检测 ACK,若 ACK 没有或不对,重发刚发过的字节,重发若超过五次都失败,会将本帧数据重新开始发送,直到主 CPU 超时使其退出。数据成功发送完成后,待主 CPU 处理完或超时后,自动切换到 Receive mode

8.1 中断触发方式

为有效减轻主 CPU 负担,有触摸时 GT9147 才会通知主 CPU 读取坐标信息。由 INT 口输出脉冲信号。主 CPU 可以通过相关的寄存器位"INT"来设置触发方式。设为"0"表示上升沿触发,即在有用户操作时,GT9147 会在 INT 口输出上升沿跳变通知 CPU;设为"1"表示下降沿触发,GT9147 会在 INT 口输出下降沿跳变通知 CPU。

8.2 睡眠模式

当显示屏熄灭时或在其他不需要操作触摸屏的状态下,可以通过 I²C 命令使 GT9147 进入 Sleep mode 以降低功耗。当需要 GT9147 正常工作时,主控将 INT 口输出一段时间的高电平将其唤醒。具体时序请参考第 8.1 节描述。

8.3 跳频功能

GT9147 拥有很好的硬件抗干扰基础,当 GT9147 的驱动频谱与干扰信号的峰值频谱叠加时,可通过自适应跳频机制来切换到另一个频率,从而避开干扰。若与主控配合,切换充电状态,可获得更优的效果。

8.4 自动校准

a) 初始化校准

不同的温度、湿度及物理空间结构均会影响到电容传感器在闲置状态的基准值。GT9147 会在初始化的 200ms 内根据环境情况自动获得新的检测基准。完成触摸屏检测的初始化。

b) 自动温漂补偿

温度、湿度或灰尘等环境因素的缓慢变化,也会影响到电容传感器在闲置状态的基准值。 GT9147 实时检测各点数据的变化,对历史数据进行统计分析,由此来修正检测基准。从而 降低环境变化对触摸屏检测的影响。

9.参考电路图

GT9147 参考应用电路图

注:

- 1、本电路仅表示基本应用方式,实际或根据应用环境需要对部分电路进行调整。
- 2、电容建议采用 X7R 材质

10. 电气特性

10.1 极限电气参数

(环境温度为 25℃)

参数	最小值	最大值	单位
模拟电源 AVDD28(参考 AGND)	2.66	3.47	V
VDDIO(参考 DGND)	1.7	3.47	V
数字 I/O 可承受电压	-0.3	3.47	V
模拟 I/O 可承受电压	-0.3	3.47	V
工作温度范围	-40	85	°C
存储温度范围	-60	125	\mathbb{C}
焊接温度(10 秒钟)		300	°C
ESD 保护电压(HB Model)	_	±2	KV

10.2 推荐工作条件

参数	最小值	典型值	最大值	单位
AVDD28	2.8	-	3.3	V
VDDIO	1.8	-	3.3	V
工作温度	-20	25	85	$^{\circ}$

10.3 AC 特性

(环境温度为 25℃, AVDD=2.8V, VDDIO=1.8V)

参数	最小值	典型值	最大值	单位
OSC 振荡频率	59	60	61	MHz
I/O 输出由低到高转换时间	-	-	0.5	ns
I/O 输出由高到低转换时间	-	-	0.5	ns

10.4 DC 特性

(环境温度为 25℃, AVDD=2.8V, VDDIO=1.8V)

参数	最小值	典型值	最大值	单位
Normal mode 工作电流	-	6.2		mA
Green mode 工作电流		3	-	mA
Sleep mode 工作电流	70	-	120	uA
数字输入为低电平电压值	-0.3	0	0.45	V
数字输入为高电平电压值	1.35	1.8	2.1	V

11. 产品封装

TOP VIEW

BOTTOM VIEW

QFN 5 X 5 40PIN 0.4 PITCH SQUARE

cymbol	Dimensions In Millimeters			
symbol	Min.	Normal	Max.	
А	0.70	0.75	0.80	
A1	0.00	0.035	0.05	
b	0.40BSC			
D	5.00BSC			
D1	3.30 3.50		3.80	
Е	5.00BSC			
E1	3.30	3.50	3.80	
е	0.15	0.20	0.25	
L	0.30	0.40	0.50	
K	0.203BSC			

12. 版本记录

文件版本	修改记录	修订
Rev.00	2013-12-12	预发布

13. 联系方式

深圳市汇顶科技股份有限公司

深圳市福田保税区腾飞工业大厦 B 座 13 层 518000

Floor 13, Phase B, TengFei Industrial Building, FuTian Free Trade Zone, ShenZhen 518000

电话/TEL: +86-755-33338828 传真/FAX: +86-755-33338828

www.goodix.com

