МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО" КАФЕДРА КЕОА

3BIT

3 лабораторної роботи №3

По курсу "Основи теорії кіл - 2"

На тему

"Одинарний коливальний контур"

Виконав:

Студент гр. ДК-81

Шунь П. О.

Перевірив:

Ас. Короткий Є.В.

Метою даної лабораторної роботи є дослідження електричних характеристик та параметрів одинарного коливального контуру з послідовною та паралельною схемою підключення живлення. Для цього ми за допомогою АЧХ схеми визначимо їх параметри, такі як ширина пропускання, частота резонансу, добротність і хвильовий опір. Симулювати схему ми будемо в LTspice IV.

1. Побудуємо послідовний контур (мал. 1):

Номінали компонентів: L = 1 мГн, C = 150 пФ, R_H = 100 кОм. Спочатку промоделюємо схему без резистора R_H .

3 симуляції знайдемо частоту резонансу f_{pes} схеми. f_{pes} = 410.94 кГц

Після цього ми додамо до схеми опір навантаження R_н згідно мал.1 і порівняємо AЧX схем:

Зелений графік без навантаження синій з.

Як бачимо, при підключенні резистора амплітудна характеристика на частоті резонансу зменшилась. Це відбувається через те, що резистор активний елемент схеми і на ньому відбувається розсіювання енергії.

Після того як відключимо паралельний резистор R_{H_2} додамо паралельний конденсатор C_2 ємністю 300 пФ.

Як бачимо, при послідовно підключеному конденсаторі, частота резонансу у нас збільшилася (синій графік — початкова схема, зелений — схема з підключеним конденсатором).

Дослідимо параметри електричної схеми, зображеної на мал. 1. Знайдемо коефіцієнт передачі напруги на частоті резонансу, у нас він дорівнює 31,7 дБ. Від цього значення віднімемо 3 дБ і знайдемо на графіку дві частоти, на яких коефіцієнт підсилення дорівнює 31,7—3 = 28,7 дБ. Використавши інструмент «лінійка» в симуляторі, знайдемо ці частоти:

Отже, f_1 = 418.24 kHz; f_2 = 403.31 kHz. $f_{\text{пропускання}}$ = $f_1 - f_2$ = 418.24 - 403.31 = 14.93 kHz

Добротність знайдемо по формулі Q =
$$\frac{f \text{рез}}{f \text{пропускання}} = \frac{410.94}{14.93} = 27,52$$

Характеристичний опір знайдемо по формулі Z =
$$\sqrt{\frac{L}{c}}$$
 = $\sqrt{\frac{10^{\circ}-3}{150*10^{\circ}-12}}$ = 2581.98 Ом.

Після цього дослідимо контур з паралельним живленням схеми, як це зображено на мал.2:

Частота цього резонансного контуру дорівнює 410,85 кГц.

Висновок: на цій лабораторній роботі ми досліджували одинарний коливальний контур з послідовним та паралельним підключенням, знайшли АЧХ і ФЧХ цих схем і експериментальним чином знайшли частоту резонансу, розрахували ширину пропускання, добротність та характеристичний опір. Для себе я виніс те, що тип підключення компонентів не впливає на частоту резонансу схеми, якщо компоненти однакові. При збільшенні ємності в коливальному контурі, збільшується частота резонансу.