

ÉTUDE DE SPECTRES INFRAROUGES DE GÉANTES ROUGES ÉVOLUÉES

Margaux Vandererven

Supervisé par Sophie Van Eck

Processus s

Käppeler et al. 2011.

+ de 50% éléments plus lourds que le fer

$$\tau_{\beta^-} < \tau_{\mathrm{n-capture}}$$

.

Étoiles de type S & étoiles à baryum

 T_{eff} étoiles S \sim T_{eff} étoiles M Bandes ZrO & enrichissement en éléments s

- de type S intrinsèques (Tc rich)
- de type S extrinsèques (Tc poor)

 T_{eff} étoiles à baryum $\sim T_{eff}$ étoiles G-K Enrichissement en éléments s

Structure interne d'une étoile AGB. (Persson 2014)

Transfert de masse. (Pearson Education 2014)

Mécanisme de production dans AGB

Instabilités thermiques durant combustion de la couche $He \rightarrow r$ éajustement, engloutissement enveloppe convective.

Source neutronique : $^{12}\text{C}(\text{p},\gamma)^{13}\text{N}(\beta^+)^{13}\text{C}(\alpha,\text{n})^{16}\text{O}$ $^{22}\text{Ne}(\alpha,\text{n})^{25}\text{Mg}$

Intéret du travail

Beaucoup d'incertitude sur les processus de production des éléments s, ainsi que sur leur détermination d'abondance (jusqu'à ± 0.3 dex dans le visible).

Infrarouge: continu plus atteint, moins de blend du aux raies moléculaires.

 \rightarrow

Comparaison visible/infrarouge des paramètres stellaires et abondances.

Spectre observé

Spectre infrarouge:

IGRINS (Immersion GRating INfrared Spectrometer)

Haute résolution : $R = \frac{\lambda}{\Delta \lambda} \sim 45000$

- Bande H $(1.45 1.80 \ \mu m)$
- Bande K $(2.05 2.50 \ \mu m)$

Correction:

Réduction, correction tellurique, première normalisation par Chris Sneden.

Seconde normalisation sur pas 20 Å et correction redshift.

Série d'étoiles

Étoile	Type spectral	T _{eff} (K)	$\log g \text{ (cm } s^{-2}\text{)}$	$\xi_{ m micro}$ (km s $^{-1}$)	[Fe/H] (dex)
HD 60197	K3.5III:Ba3.5	$3800 \pm 50^{(3)}$	$2.00 \pm 0.50^{(3)}$	2.00 ⁽³⁾	$-0.60 \pm 0.20^{(3)}$
HD 63733	S3.5/3	3700 ⁽¹⁾	$1.00^{(1)}$	-	$-0.10\pm0.13^{(1)}$
CR Cir	S6,2	-	-	-	-
HD 123949	K1pBa	$4378 \pm 80^{(3)}$	$1.78 \pm 0.53^{(3)}$	1.37 ⁽³⁾	$-0.31 \pm 0.13^{(3)}$
BD-22°1742	S3:*3	4000(1)	$1.00^{(1)}$	-	$-0.30 \pm 0.09^{(1)}$
CD-29°5912	S4,4	3600 ⁽⁴⁾	1.00 ⁽⁴⁾	-	$-0.40 \pm 0.22^{(4)}$
BD-18°2608	S	3500 ⁽²⁾	$1.00^{(2)}$	-	$-0.31 \pm 0.16^{(2)}$
HD 116869	G8III:Ba1	$4892 \pm 30^{(3)}$	$2.59 \pm 0.07^{(3)}$	$1.38 \pm 0.04^{(3)}$	$-0.44 \pm 0.09^{(3)}$
HD 120620	K0III (Ba ⁽³⁾)	$4831 \pm 13^{(3)}$	$3.03 \pm 0.30^{(3)}$	$1.11 \pm 0.05^{(3)}$	$-0.30\pm0.10^{(3)}$
HD 121447	$K4III^{(3)}$ (Ba $^{(3)}$)	$4000 \pm 50^{(3)}$	$1.00 \pm 0.50^{(3)}$	2.00 ⁽³⁾	$-0.90\pm0.13^{(3)}$
HD 100503	G/KpBa	$4000 \pm 50^{(3)}$	$2.00 \pm 0.50^{(3)}$	$2.00^{(3)}$	$-0.72 \pm 0.13^{(3)}$
HD 119185	G8IIIpBa	-	-	-	-
HD 88562	K1III (Ba ⁽³⁾)	$4000 \pm 50^{(3)}$	$2.00 \pm 0.50^{(3)}$	$2.00^{(3)}$	$-0.53 \pm 0.12^{(3)}$
V812 Oph	S5+/2.5	3500 ⁽²⁾	$1.00^{(2)}$	-	$-0.37 \pm 0.13^{(2)}$
19 Aql	F0III-IV	-	-	-	-
V915 Aql	S5+/2	3400 ⁽¹⁾	$0.00^{(1)}$	-	$-0.50\pm0.15^{(1)}$
HD 165774	S4,6	-	-	-	-

Références. $^{(1)}$ Shetye et al. 2018, $^{(2)}$ Shetye et al. 2021 , $^{(3)}$ Karinkuzhi et al. 2018, $^{(4)}$ Shetye et al. 2019

Spectre synthétique

MARCS

- Model Atmospheres with a Radiative and Convective Scheme
- 1D à équilibre hydrostatique
- convection implémentée par théorie de longueur de mélange
- turbulences implémentées par paramètres simples (micro et macro-turbulence)

TurboSpectrum v20

- code qui résoud l'équation de transfert radiatif
- approximation ETL et non-ETL
- géométrie plan-parallèle (log g > 3.5) et sphérique (log g < 3.5)
- élargissement : profil de Voigt, effet Stark linéaire

ightarrow Minimisation χ^2 entre spectres synthétiques et spectre observé

Contributions moléculaires

	Molécules	Bande H (%)	Bande K (%)
	iviolecules	Danue II (70)	Dalide K (70)
Cat. I	¹² C ¹⁴ N	55.14	44.35
(> 10%)	¹³ C ¹⁴ N	32.00	14.51
	¹² C ¹⁶ O	75.33	72.01
	HF	17.79	57.16
	¹² C ¹² C	32.97	30.73
	¹² C ¹³ C	14.12	12.26
	¹² CH	4.68	10.68
	¹⁶ OH	59.68	31.59
Cat. II	¹³ C ¹³ C	7.84	3.51
(1-10%)	¹³ C ¹⁷ O	0.04	1.96
	⁵⁶ FeH	3.12	0.08
	¹⁴ NH	1.57	1.23
	H ₂ O	1.75	6.80

Cat. III (< 1%): 13 CH, 14 NH, 48 TiO, C_2 H₂, HCl, 20 CaH, 28 SiH, 28 SiO, VO, YO, 48 TiO, 24 MgH, AlH, 52 CrH, H 12 CN, H 13 CN, ${}^{90-94}$ ZrO et 96 ZrO

Abondances C, N, O

Itération sur les abondances de C, N, O jusqu'à convergence.

 $\log \varepsilon_{\rm O}$

 $8.31\pm\ 0.01$

Initial

Final

Paramètre	Infrarouge	Visible	Littérature	Commentaires
[Fe/H] [dex]	-0.25 ± 0.10	-0.37	-0.30± 0.09	
$T_{\rm eff}$ [K]	4000 ± 125	4307	4000	
log g [dex]	to do	2.29	1.00	raies de Ti II
log g [dex]	1.04	1.54	1.00	isochrones
$\log g \text{ [dex]}$	to do	-	1.00	tracés évolutifs
$\log g \text{ [dex]}$	0.3±0.3	-	1.00	ailes raies fortes
$\xi_{\rm micro}~{\rm [km/s]}$	to do	to do	-	

Paramètre	Infrarouge	Visible	Littérature	Commentaires
[Fe/H] [dex]	-0.25 ± 0.10	-0.37	-0.30± 0.09	
$T_{\rm eff}$ [K]	4000 ± 125	4307	4000	
$\log g \text{ [dex]}$	to do	2.29	1.00	raies de Ti II
$\log g \text{ [dex]}$	1.04	1.54	1.00	isochrones
$\log g \text{ [dex]}$	to do	-	1.00	tracés évolutifs
$\log g \text{ [dex]}$	0.3±0.3	-	1.00	ailes raies fortes
$\xi_{\rm micro} \; [{\rm km/s}]$	to do	to do	-	

Métallicité [Fe/H]

Paramètre	Infrarouge	Visible	Littérature	Commentaires
[Fe/H] [dex]	-0.25 ± 0.10	-0.37	-0.30± 0.09	
T _{eff} [K]	4000 ± 125	4307	4000	
log g [dex]	to do	2.29	1.00	raies de Ti II
$\log g \text{ [dex]}$	1.04	1.54	1.00	isochrones
$\log g \text{ [dex]}$	to do	-	1.00	tracés évolutifs
$\log g \text{ [dex]}$	0.3±0.3	-	1.00	ailes raies fortes
$\xi_{\rm micro} \; [{\rm km/s}]$	to do	to do	-	

Température effective

Respect de l'équation de Boltzmann \to abondance d'un élément ne varie pas en fonction du potentiel d'excitation

$$\frac{n_i}{N} = \frac{g_i}{U(T)} e^{-\chi_i/kT}$$

Paramètre	Infrarouge	Visible	Littérature	Commentaires
[Fe/H] [dex]	-0.25 ± 0.10	-0.37	-0.30± 0.09	
$T_{\rm eff}$ [K]	4000 ± 125	4307	4000	
log g [dex]	to do	2.29	1.00	raies de Ti II
log g [dex]	1.04	1.54	1.00	isochrones
$\log g \text{ [dex]}$	to do	-	1.00	tracés évolutifs
$\log g \text{ [dex]}$	0.3±0.3	-	1.00	ailes raies fortes
$\xi_{ m micro} \ [{ m km/s}]$	to do	to do	-	

Gravité de surface : isochrones

Isochrone basée sur code PARSEC (code d'évolution stellaire).

Amas d'étoiles de même âge, supposé ici à 1-10 Gyr.

Paramètre	Infrarouge	Visible	Littérature	Commentaires
[Fe/H] [dex]	-0.25 ± 0.10	-0.37	-0.30± 0.09	
$T_{\rm eff}$ [K]	4000 ± 125	4307	4000	
$\log g \text{ [dex]}$	to do	2.29	1.00	raies de Ti II
$\log g \text{ [dex]}$	1.04	1.54	1.00	isochrones
log g [dex]	to do	-	1.00	tracés évolutifs
log g [dex]	0.3±0.3	1.54	1.00	ailes de raies fortes
$\xi_{\rm micro} \; [{\rm km/s}]$	to do	to do	-	

Gravité de surface : ailes de raies fortes

Minimisisation χ^2 sur ailes de raies fortes de Mg I et Ca I.

Paramètre	Infrarouge	Visible	Littérature	Commentaires
[Fe/H] [dex]	-0.25 ± 0.10	-0.37	-0.30± 0.09	
$T_{\rm eff}$ [K]	4000 ± 125	4307	4000	
$\log g \text{ [dex]}$	to do	2.29	1.00	raies de Ti II
$\log g \text{ [dex]}$	1.04	1.54	1.00	isochrones
$\log g \text{ [dex]}$	to do	-	1.00	tracés évolutifs
$\log g \text{ [dex]}$	0.31	-	1.00	ailes raies fortes
$\xi_{ m micro} \ [{ m km/s}]$	to do	to do	-	

Autres paramètres

Gravité de surface

- Respect de l'équation de Saha
 → abondance identique pour
 l'élément neutre et ses
 différents états d'ionisation
 (raies de Ti II)
- Tracés évolutifs (estimer masse)

Microturbulence

- Paramètre ad hoc, permet de modéliser les effets de turbulence à des échelles plus petites que le libre parcours moyen des photons
- Abondance ne varie pas en fonction de la largeur équivalente réduite

Raies atomiques

	Élement	Nb. raies
Pic du fer	Sc I	115
	Ti I	63
	Ti II	7
	VΙ	76
	Cr I	20
	Mn I	55
	Fe I	81
	Co I	69
	Ni I	58
α	Mg I	12
	Si I	13
	Ca I	5

Raies atomiques suite

	Élement	Nb. raies
Z impaire	Na I	19
	Al I	7
	ΚI	5
S	Cu I	5
	ΥI	17
	Zr I	2
	Ba I	2
	Ce II	9
	Ce III	2
	Nd II	7
	Yb II	2

La suite?

- finir détermination paramètres stellaires
- comparaison avec abondances déterminées dans le visible à partir de spectre HERMES
- détermination d'abondances d'éléments lourds ETL et non-ETL
 - besoin de listes non-ETL
 - besoin d'interpoler modèles et coefficients d'écarts non-ETL
- comparaison profil d'abondances avec modèles de nucléosynthèse