Data Science and Al for industrial systems

Hands-on session 2 Data cleaning and Clustering

Prof. Daniele Apiletti, Simone Monaco

24/02/2023

- Numpy (Numerical Python)
 - Store and operate on dense data buffers
 - Efficient storage and operations
- Features
 - Multidimensional arrays
 - Slicing/indexing
 - Math and logic operations
- Applications
 - Computation with vectors and matrices
 - Provides fundamental Python objects for data science algorithms
 - Internally used by scikit-learn and SciPy

Summary

- Numpy and computation efficiency
- Numpy arrays
- Computation with Numpy arrays
 - Broadcasting
- Accessing Numpy arrays
- Working with arrays, other functionalities

- array is the main object provided by Numpy
- Characteristics
 - Fixed Type
 - All its elements have the same type
 - Multidimensional
 - Allows representing vectors, matrices and n-dimensional arrays

- Numpy arrays vs Python lists:
 - Also Python lists allow defining multidimensional arrays
 - E.g. my_2d_list = [[3.2, 4.0], [2.4, 6.2]]
- Numpy advantages:
 - Higher flexibility of indexing methods and operations
 - Higher efficiency of operations

- Since lists can contain heterogeneous data types, they keep overhead information
 - E.g. my_heterog_list = [0.86, 'a', 'b', 4]

- Characteristics of numpy arrays
 - Fixed-type (no overhead)
 - Contiguous memory addresses (faster indexing)
 - E.g. $my_numpy_array = np.array([0.67, 0.45, 0.33])$

- Numpy data types
 - Numpy defines its own data types
 - Numerical types
 - int8, int16, int32, int64
 - uint8, ..., uint64
 - float16, float32, float64
 - Boolean values
 - bool

- Collections of elements organized along an arbitrary number of dimensions
- Multidimensional arrays can be represented with
 - Python lists
 - Numpy arrays

Multidimensional arrays with Python lists

Examples:

vector

2D matrix

1	2	3		
4	5	6		

3D array

- Multidimensional arrays with Numpy
 - Can be directly created from Python lists
 - Examples:


```
import numpy as np
arr1 = np.array([1, 2, 3])
```


- Multidimensional arrays with Numpy
 - Characterized by a set of axes and a shape
 - The axes of an array define its dimensions
 - a (row) vector has 1 axis (1 dimension)
 - a 2D matrix has 2 axes (2 dimensions)
 - a ND array has N axes

- Multidimensional arrays with Numpy
 - Axes can be numbered with negative values
 - Axis -1 is always along the row

- Multidimensional arrays with Numpy
 - The shape of a Numpy array is a tuple that specifies the number of elements along each axis
 - Examples:

Column vector vs row vector

e.g. np.array([[0.1], [0.2], [0.3]])

[0.1] [0.2] [0.3]

shape = (3, 1)

Column vector is a 2D matrix!

e.g. np.array([0.1, 0.2, 0.3])

shape = (3,)

- Creation from list:
 - np.array(my_list, dtype=np.float16)
 - Data type inferred if not specified
- Creation from scratch:
 - np.zeros(shape)
 - Array with all O of the given shape
 - np.ones(shape)
 - Array with all 1 of the given shape
 - np.full(shape, value)
 - Array with all elements to the specified value, with the specified shape

Creation from scratch: examples

Creation from scratch:

- np.linspace(start, stop, num)
 - Generates num samples from start to stop (included)
 - np.linspace(0,1,11) \rightarrow [0.0, 0.1, ..., 1.0]
- np.arange(start, stop, step)
 - Generates numbers from start to stop (excluded), with step step
 - np.arange(1, 7, 2) \rightarrow [1, 3, 5]
- np.random.normal(mean, std, shape)
 - Generates random data with normal distribution
- np.random.random(shape)
 - Random data uniformly distributed in [0, 1]

- Consider the array
 - x = np.array([[2, 3, 4], [5, 6, 7]])
- x.ndim: number of dimensions of the array
 - Out: 2
- x.shape: tuple with the array shape
 - Out: (2,3)
- x.size: array size (product of the shape values)
 - Out: 2*3=6

Summary:

- Universal functions (Ufuncs):
 - Binary operations (+,-,*,...)
 - Unary operations (exp(),abs(),...)
- Aggregate functions
- Sorting
- Algebraic operations (dot product, inner product)

- Universal functions (Ufuncs): element-wise operations
 - Binary operations with arrays of the same shape
 - +, -, *, /, % (modulus), // (floor division), **
 (exponentiation)

Example:

```
In [1]: x=np.array([[1,1],[2,2]])
    y=np.array([[3, 4],[6, 5]])
    x*y
```


- Universal functions (Ufuncs):
 - Unary operations
 - np.abs(x)
 - np.exp(x), np.log(x), np.log2(x), np.log10(x)
 - np.sin(x), cos(x), tan(x), arctan(x), ...
 - They apply the operation separately to each element of the array

Example:

Note: original array (x) is not modified

Aggregate functions

- **Return** a single value from an array
 - np.min(x), np.max(x), np.mean(x), np.std(x), np.sum(x)
 - \blacksquare np.argmin(x), np.argmax(x)
- Or equivalently:
 - x.min(), x.max() x.mean(), x.std(), x.sum()
 - x.argmin(), x.argmax()

6

Example

Out[1]:

```
In [1]:
           x=np.array([[1,1],[2,2]])
           x.sum()
```

25

index 0

Aggregate functions along axis

Allow specifying the axis along with performing the operation

(index of maximum element within each column)

Aggregate functions along axis

The aggregation dimension is removed from the output

Final output


```
shape = (3, 1, 3) shape = (3, 3) 

[[[1,2,3]], [[1, 2, 3], [7, 8, 9], [7, 8, 9], [13, 14, 15]]
```


Sorting

- np.sort(x): creates a sorted copy of x
 - x is not modified
- x.sort(): sorts x inplace (x is modified)

Sorting

Array is sorted along the last axis (-1) by default

Sorting

Allows specifying the axis being sorted

Out[1]: [[2,2,1], [7,7,3]]

axis 0	2	7	3	→	2	2	1
	7	2	1		7	7	3

Sorting

• np.argsort(x): return the position of the indices of the sorted array (sorts by default on axis -1)

Algebraic operations

- np.dot(x, y)
 - inner product if x and y are two 1-D arrays

Out[1]: 7

Algebraic operations

- np.dot(x, y)
 - matrix multiplied by vector

Out[1]: [5, 10] # result is a row vector

Algebraic operations

- np.dot(x, y)
 - matrix multiplied by matrix

```
In [1]: x=np.array([[1,1],[2,2]])
    y=np.array([[2,2],[1,1]])
    np.dot(x, y)
```

Out[1]: [[3,3],[6,6]]

Notebook Examples

- 2-Numpy Examples.ipynb
 - 1) Computation with arrays

Broadcasting

Pattern designed to perform operations between arrays with different shape

c)
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 + $\begin{bmatrix} [1] \\ [2] \end{bmatrix}$ $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ + $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$

Broadcasting

- Rules of broadcasting
 - 1. The shape of the array with **fewer dimensions** is **padded** with <u>leading</u> ones

x.shape =
$$(2, 3)$$
, y.shape = (3) y.shape = $(1, 3)$

If the shape along a dimension is 1 for one of the arrays and >1 for the other, the array with shape = 1 in that dimension is stretched to match the other array

x.shape =
$$(2, 3)$$
, y.shape = $(1, 3) \rightarrow \text{stretch}$: y.shape = $(2, 3)$

 If there is a dimension where both arrays have shape >1 and those shapes differ, then broadcasting cannot be performed

Broadcasting

Example: compute x + y

- x = np.array([1, 2, 3])
- y = np.array([[11], [12], [13]])
- z = x + y

y.shape =
$$(3,1)$$

$$x.shape = (3,)$$

y.shape = (3,1)

x.shape =
$$(1,3)$$

1 2 3

Apply Rule 2:

extend x on the vertical axis, y on the horizontal one

1	2	3		11	11	11		12	13	14
1	2	3	+	12	12	12	=	13	14	15
1	2	3		13	13	13		14	15	16

Broadcasting

Example: compute x + y

-
$$x = np.array([[1, 2],[3,4],[5,6]])$$

$$y = np.array([11, 12, 13])$$

$$z = x + y$$

- Apply Rule 1
 - y.shape becomes (1, 3): y=[[11,12,13]]
- Apply Rule 3
 - shapes (3, 2) and (1, 3) are incompatibles
 - Numpy will raise an exception

11

x.shape = (3, 2)

y.shape = (3,)

1	2
3	4
5	6

12

13

Notebook Examples

- 2-Numpy Examples.ipynb
 - 2) Broadcasting: dataset normalization

- Numpy arrays can be accessed in many ways
 - Simple indexing
 - Slicing
 - Masking
 - Fancy indexing
 - Combined indexing
- Slicing provides views on the considered array
 - Views allow reading and writing data on the original array
- Masking and fancy indexing provide copies of the array

Simple indexing: read/write access to element


```
x[i, j, k, ... ]
```


- Simple indexing: returning elements from the end
- Consider the array
 - x = np.array([[2, 3, 4], [5,6,7]])
- x[0, -1]
 - Get last element of the first row: 4
- x[0, -2]
 - Get second element from the end of the first row: 3

- Slicing: access contiguous elements
 - x[start:stop:step, ...]
 - Creates a view of the elements from start (included) to stop (excluded), taken with fixed step
 - Updates on the view yield updates on the original array
 - Useful shortcuts:
 - omit start if you want to start from the beginning of the array
 - omit stop if you want to slice until the end
 - omit step if you don't want to skip elements

Slicing: access contiguous elements

Select all rows and the last 2 columns:

1	2	3
4	5	6
7	8	9

Select the first two rows and the first and third columns

1	2	3
4	5	6
7	8	9

Update a sliced array


```
In [1]: x = np.array([[1,2,3],[4,5,6],[7,8,9]])
x[:, 1:] = 0
print(x)
```

Out[1]: [[1,0,0], [4,0,0], [7,0,0]]

Update a view

- To avoid updating the original array use .copy()
 - x1=x[:,1:].copy()

- Masking: use boolean masks to select elements
 - x[mask]
 - mask
 - boolean numpy array that specifies which elements should be selected (select if True)
 - same shape as the original array
 - The result is a one-dimensional vector that is a copy of the original array elements selected by the mask

Mask creation

- x op value (e.g x==4)
- where op can be >, >=, <, <=, ==, !=</p>

Examples

```
In [1]: x = np.array([1.2, 4.1, 1.5, 4.5])
x > 4
```

Out[1]: [False, True, False, True]

In [2]: x2 = np.array([[1.2, 4.1], [1.5, 4.5]])
x2 >= 4

Out[2]: [[False, True], [False, True]]

Operations with masks (boolean arrays)

- Numpy allows boolean operations between masks with the same shape (bitwise operators)
 - & (and), | (or), ^ (xor), ~ (negation)
- Example
 - mask = \sim ((x < 1) | (x > 5)) \Leftrightarrow ((x >= 1) & (x <= 5))
 - elements that are between 1 and 5 (included)

Masking examples

Even if the shape of x2 is (2, 2), the result is **a one-dimensional** array containing the elements that satisfy the condition

Update a masked array


```
Out[1]: [1.2, 0, 1.5, 0]
```


Masking does not create views, but copies


```
Out[2]: [1.2, 4.1, 1.5, 4.5]
```


- Fancy indexing: specify the index of elements to be selected
 - Example: select elements from 1-dimensional array

```
x[1] x[3]

In [1]: x = np.array([7.0, 9.0, 6.0, 5.0])
x[[1, 3]]

Out[1]: [9.0, 5.0]
```


Fancy indexing: selection of rows from a 2dimensional array

- Fancy indexing: selection of elements with coordinates
 - Result contains a 1-dimensional array with selected elements

```
In [1]: x = np.array([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])

x[[1, 2], [0, 2]] \longrightarrow [1, 0] (indices being selected)
```

Out[1]: [3.0, 8.0]

Similarly to masking, fancy indexing provides
 copies (not views) of the original array

```
In [1]:
         x = np.array([1.2, 4.1, 1.5, 4.5])
          x[[1, 3]] = 0 # Assignment is allowed
          Χ
Out[1]:
         [1.2, 0, 1.5, 0]
In [2]:
         x = np.array([1.2, 4.1, 1.5, 4.5])
          sel = x[[1, 3]] # sel is a copy of x
          sel[:] = 0  # Assignment does not affect x
          Χ
Out[2]:
          [1.2, 4.1, 1.5, 4.5]
```


Combined indexing:

- Allows mixing the indexing types described so far
- Important rule:
 - The number of dimensions of selected data is:
 - The same as the input if you mix:
 - masking+slicing, fancy+slicing
 - Reduced by one for each axis where simple indexing is used
 - Because simple indexing takes only 1 single element from an axis

- Combined indexing: masking+slicing, fancy+slicing
 - Output has the same numer of dimensions as input

```
x = np.array([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
```

```
x[[True,False,True], 1:]
# Masking + Slicing: [[1.0,2.0],[7.0,8.0]]
```

0.0	1.0	2.0
3.0	4.0	5.0
6.0	7.0	8.0

```
x[[0,2], :2]
# Fancy + Slicing: [[0.0,1.0],[6.0,7.0]]
```

0.0	1.0	2.0
3.0	4.0	5.0
6.0	7.0	8.0

- Combined indexing: simple+slicing, simple+masking
 - Simple indexing reduces the number of dimensions

```
x = np.array([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
```

```
x[0, 1:]
# Simple + Slicing: [1.0, 2.0]
```

0.0	1.0	2.0
3.0	4.0	5.0
6.0	7.0	8.0

```
x[[True, False, True], 0]
# Simple + Masking: [0.0, 6.0]
```

0.0	1.0	2.0
3.0	4.0	5.0
6.0	7.0	8.0

[13, 14, 15]]

Simple indexing + slicing

The dimension selected with simple indexing is removed from the output

[[13,14,15]]]

Notebook Examples

- 2-Numpy Examples.ipynb
 - 3) Accessing Numpy Arrays

Summary:

- Array concatenation
- Array splitting
- Array reshaping
- Adding new dimensions

- Array concatenation along existing axis
 - The result has the same number of dimensions of the input arrays


```
Out[1]: [[1,2,3],[4,5,6],[11,12,13],[14,15,16]]
```


Array concatenation along existing axis

Concatenation along rows (axis=1)


```
In [1]: x = np.array([[1,2,3],[4,5,6]])
y = np.array([[11,12,13],[14,15,16]])
np.concatenate((x, y), axis=1)
```

Out[1]: [[1,2,3,11,12,13],[4,5,6,14,15,16]]

Array concatenation: hstack, vstack

Similar to np.concatenate()

- Array concatenation: hstack, vstack
 - vstack allows concatenating 1-D vectors along new axis (not possible with np.concatenate)

Splitting arrays (split, hsplit, vsplit)

- np.split(arr, N, axis=0)
 - outputs a list of Numpy arrays
 - If N is integer: divide arr into N equal arrays (along axis), if possible!
 - if N is a 1d array: specify the entries where the array is split (along axis)

```
x index 0 1 2 3 4 5 values 7 7 9 9 8 8
```

Out[1]: [array([7, 7]), array([9, 9]), array([8, 8])]

Splitting arrays (split, hsplit, vsplit)

- hsplit, vsplit with 2D arrays
 - return a list with the arrays after the split

In both examples output is:

Out: [array([[1,2,3],[4,5,6]]), array([[11,12,13],[14,15,16]])]

Reshaping arrays

0	1	2	
3	4	5	

y is filled following the index order:

$$y[0,0] = x[0], y[0,1] = x[1], y[0,2] = x[2]$$

$$y[1,0] = x[3], y[1,1] = x[4], y[1,2] = x[5]$$

Reshaping arrays

- At most one dimension can be -1 ("unknown")
- If present, the size is inferred from
 - The source array
 - The other dimensions

The first dimension (rows) is inferred to be 3, considering that the second dimension (columns) is 1 and x.size = 3

Adding new dimensions

np.newaxis adds a new dimension with shape=1 at the specified position

Working with arrays

Adding new dimensions

- Application: row vector to column vector
 - Alternative approach to .reshape(-1,1)

Introduction to Pandas

Pandas

- Provides useful data structures (Series and DataFrames) and data analysis tools
- Based on Numpy arrays

Tools:

- Managing tables and series
 - data selection
 - grouping, pivoting
- Managing missing data
- Statistics on data

- Series: 1-Dimensional sequence of homogeneous elements
- Elements are associated to an explicit index
 - index elements can be either strings or integers
- Examples:

index	'3-July'	'4-July'	'5-July'
values	0.3	0.5	0.8

Creation from list

When not specified, index is set automatically with a progressive number

```
In [1]: import pandas as pd
    s1 = pd.Series([2.0, 3.1, 4.5])
    print(s1)
```

```
Out[1]: 0 2.0
1 3.1
2 4.5
```


Creation from list, specifying index

Creation from dictionary

Obtaining values and index from a Series


```
In [1]: s1 = pd.Series([2.0, 3.1, 4.5], index=['mon', 'tue', 'wed'])
    print(s1.values) # Numpy array
    print(s1.index)

Out[1]: [2.0, 3.1, 4.5]
    Index(['mon', 'tue', 'wed'], dtype='object')
```

Index is a custom Python object defined in Pandas

- Accessing Series elements
- Access by Index
 - Explicit: the one specified while creating a Series
 - Use the Series.loc attribute
 - Implicit: number associated to the element order (similarly to Numpy arrays)
 - Use the Series.iloc attribute

In [1]:

Pandas Series

Accessing Series elements

s1 = pd.Series([2.0, 3.1, 4.5], index=['a', 'b', 'c'])

print(s1.loc['a']) # With explicit index

Accessing Series elements: slicing


```
In [1]:
    s1 = pd.Series([2.0, 3.1, 4.5], index=['a', 'b', 'c'])
    print(s1.loc['b':'c']) # explicit index (stop element included)
    print(s1.iloc[1:3]) # implicit index (stop element excluded)
```

```
Out[1]: b 3.1 c 4.5 b 3.1 c 4.5
```


c 4.5

Accessing Series elements: masking


```
In [1]: s1 = pd.Series([2.0, 3.1, 4.5], index=['a', 'b', 'c'])
    print(s1[(s1>2) & (s1<10)])
Out[1]: b 3.1</pre>
```


Accessing Series elements: fancy indexing


```
In [1]:
    s1 = pd.Series([2.0, 3.1, 4.5], index=['a', 'b', 'c'])
    print(s1.loc[['a', 'c']])
    print(s1.iloc[[0, 2]])
```

```
Out[1]: a 2.0 c 4.5 a 2.0 c 4.5 c 4.5
```


- DataFrame: 2-Dimensional array
 - Can be thought as a table where columns are
 Series objects that share the same index
 - Each column has a name

Example:

Index	'Price'	'Quantity'	'Liters'
'Water'	1.0	5	1.5
'Beer'	1.4	10	0.3
'Wine'	5.0	8	1

Creation from Series

Use a dictionary to set column names

```
Out[1]:
                       Ouantity
             Price
                                   Liters
               1.0
                              5
                                      1.5
          а
          h
               1.4
                             10
                                      0.3
               5.0
                              8
                                      1.0
          C
```


Creation from dictionary of key-list pairs

- Each value (list) is associated to a column
 - Column name given by the key
- Index is automatically set to a progressive number
 - Unless explicitly passed as parameter (index=...)

Example:

```
In [1]: dct = { "c1": [0, 1, 2], "c2": [0, 2, 4] }
    df = pd.DataFrame(dct)
    print(df)
```


Creation from list of dictionaries

- Each dictionary is associated to a row
- Index is automatically set to a progressive number
 - Unless explicitly passed as parameter (index=...)

Example:

```
In [1]: dic_list = [{'c1':i, 'c2':2*i} for i in range(3)]

df = pd.DataFrame(dic_list)

print(df)
```


- Creation from 2D Numpy array
- Example:


```
Out[1]: c1 c2
a 0 1
b 2 3
c 4 5
```


- Load DataFrame from csv file
 - Allows specifying the column delimiter (sep)
 - Automatically read header from first line of the file (after skipping the specified number of rows)
 - Column data types are inferred

```
df = pd.read_csv('./mycsv.csv', sep=',', skiprows=1)
```


- Load DataFrame from csv file
 - If it contains **null** values, you can specify how to recognize them
 - Empty columns are converted to "NaN" (Not a Number)
 - Using np.nan (NumPy's representation of NaN)
 - The string 'NaN' is automatically recognized

c1,c2,c3
0,no info,
3,4,5
6,x,NaN

	c1	c2	c3 <u>/</u>
0	0	NaN	NaN
1	3	4.0	5.0
2	6	NaN	NaN

type(np.nan) > float,
hence cz and c3 are floats

Save DataFrame to csv

	c1	c2	c3
0	0	NaN	2
1	3	4	5
2	6	NaN	NaN

savedcsv.csv

Use index=False to avoid writing the index

Load DataFrame from json file

```
df = pd.read_json('./myjson.json')
```

myjson.json

Use pd.to_json(path) to save a DataFrame in json format

- Many other data types are supported
 - Excel, HTML, HDF5, SAS, ...
- Check the pandas documentation
 - https://pandas.pydata.org/pandasdocs/stable/user guide/io.html

Obtaining column names and index from a DataFrame

Index	Price	Quantity	Liters
а	1.0	5	1.5
b	1.4	10	0.3
С	5.0	8	1

Accessing DataFrame data

Get a 2D Numpy array

Index	Price	Quantity	Liters
а	1.0	5	1.5
b	1.4	10	0.3
С	5.0	8	1

- Accessing DataFrames
 - Access a DataFrame column
 - Access rows and columns with indexing
 - df.loc
 - Explicit index
 - Slicing, masking, fancy indexing
 - df.iloc
 - Implicit index
- Whether a copy or view will be returned it depends on the context
 - Usually it is difficult to make assumptions
 - https://pandas-docs.github.io/pandas-docstravis/user guide/indexing.html

Accessing DataFrame columns

Index	Price	Quantity	Liters
а	1.0	5	1.5
b	1.4	10	0.3
C	5.0	8	1

Accessing single DataFrame row by index

- loc (explicit), iloc (implicit)
- Return a Series with an element for each column

```
In [1]:
           print(df.loc['a'])
                                        # Get the first row (explicit)
           print(df.iloc[0])
                                        # Get the first row
Out[1]:
           Price
                    1.0
           Quantity 5.0
           Liters
                    1.5
           Price
                    1.0
           Quantity 5.0
           Liters
                    1.5
```


Accessing DataFrames with slicing

Allows selecting rows and columns

Accessing DataFrames with masking

Select rows based on a condition

Index	Price	Quantity	Liters
а	1.0	5	1.5
b	1.4	10	0.3
С	5.0	8	1

```
In [1]: mask = (df['Quantity']<10) & (df['Liters']>1)
    df.loc[mask, 'Quantity':] # Use masking and slicing
```

```
Out[1]: Quantity Liters
a 5 1.5
```


To select columns...

Index	Price	Quantity	Liters
а	1.0	5	1.5
b	1.4	10	0.3
С	5.0	8	1

```
In [1]: mask = (df['Quantity']<10) & (df['Liters']>1)
    df.loc[mask, ['Price', 'Liters']] # Use masking and fancy
```

Out[1]: Price Liters
a 1.0 1.5

To select rows and columns...

Index	Price	Quantity	Liters
а	1.0	5	1.5
b	1.4	10	0.3
С	5.0	8	1

```
In [1]: df.loc[['a', 'c'], ['Price','Liters']]
```

Liters

Out[1]: Price a 1.0

a 1.0 1.5 c 5.0 1.0

Assign value to selected items

```
In [1]: df.loc[['a', 'c'], ['Price', 'Liters']] = 0
```

Index	Price	Quantity	Liters
а	0.0	5	0.0
b	1.4	10	0.3
С	0.0	8	0.0

Add new column to DataFrame

DataFrame is modified inplace

Index	Price	Quantity	Liters
а	0.0	5	0.0
b	1.4	10	0.3
С	0.0	8	0.0

Index	Price	Quantity	Liters	Available
а	1.0	5	1.5	True
b	1.4	10	0.3	False
С	5.0	8	1	True

If the DataFrame already has a column with the specified name, then this is replaced

Add new column to DataFrame

It is also possible to assign directly a list

Index	Price	Quantity	Liters
а	0.0	5	0.0
b	1.4	10	0.3
С	0.0	8	0.0

Index	Price	Quantity	Liters	Available
а	1.0	5	1.5	True
b	1.4	10	0.3	False
С	5.0	8	1	True

Drop column(s)

- Returns a copy of the updated DataFrame
 - Unless inplace=True, in which case the original DataFrame is modified
 - This applies to many pandas methods -- always check the documentation!

Index	Price	Quantity	Liters/	Available
а	1.0	5	1.5	True
b	1.4	10	Ø.3	False
С	5.0	8	1	True

Rename column(s)

- Use a dictionary which maps old names with new names
- Returns a copy of the updated DataFrame

Index	Price	Quantity	Liters	Available
а	1.0	5	1.5	True
b	1.4	10	0.3	False
С	5.0	8	1	True

Index	Price	nItems	[L]	Available
а	1.0	5	1.5	True
b	1.4	10	0.3	False
С	5.0	8	1	True

- Unary operations on Series and DataFrames
 - exponentiation, logarithms, ...
- Operations between Series and DataFrames
 - Operations are performed element-wise, being aware of their indices/columns
- Aggregations (min, max, std, ...)

- Unary operations on Series and DataFrames
 - They work with any Numpy ufunc
 - The operation is applied to each element of the Series/DataFrame

Examples:

```
res = my series/4 + 1
```

- res = np.abs(my_series)
- res = np.exp(my dataframe)
- res = np.sin(my_series/4)
- • •

- Operations between Series (+,-,*,/)
 - Applied element-wise after aligning indices
 - Index elements which do not match are set to NaN (Not a Number)
 After index alignment
 - Example:

res = my series1 + my series2

Index	
b	3
а	1
С	10

mv	seri	es1
'''y_		c_{3}

Index	
а	1
b	3
d	30

my series2

Arter muex alignment
index in the result is sorted

Index	
а	2
b	6
С	NaN
d	NaN

- Operations between DataFrames
 - Applied element-wise after aligning indices and columns
 - Example (align index):
 - res = my_dataframe1 + my_dataframe2

Index in the result is **sorted**

Index	Total	Quantity
b	3	4
а	1	2
С	10	20

my_c	datafra	me1
------	---------	-----

Index	Total	Quantity
а	1	2
b	3	4
d	30	40

my_dataframe2

Index	Total	Quantity
а	2	4
b	6	8
С	NaN NaN	
d	NaN	NaN

- Operations between DataFrames
 - Example (align columns)
 - res = my_dataframe1 + my_dataframe2

Columns in the result are **sorted**

Index	Total	Quantity
а	1 2	
b	3 4	
С	5	6

Index	Total	Price
a	1 2	
b	3	4
С	5	6

Index	Price	Quantity	Total
а	NaN	NaN	2
b	NaN	NaN	6
С	NaN	NaN	10

my_dataframe1

my_dataframe2

- Operations between DataFrames and Series
 - The operation is applied between the Series and each row of the DataFrame
 - Follows broadcasting rules
 - Example:
 - res = my dataframe1 + my series1

Index	Total	Quantity
а	1	2
b	3	4
С	5	6

Index	
Total	1
Quantity	2

Index	Total	Quantity
а	2	4
b	4	6
С	6	8

my_dataframe1

my_series1

- Pandas Series and DataFrames allow performing aggregations
 - mean, std, min, max, sum
- Examples

```
In [1]: my_series.mean() # Return the mean of Series elements
```

 For DataFrames, aggregate functions are applied column-wise and return a Series

```
In [1]: my_df.mean() # Return a Series
```


Example of aggregations with DataFrames: z-score normalization

Index	Total	Quantity
а	1	2
b	3	4
С	5	6

Index	
Total	3.0
Quantity	4.0

Index	
Total	2.0
Quantity	2.0

my_dataframe1

mean_series

std_series

- Represented with sentinel value
 - None: Python null value
 - np.nan: Numpy Not A Number
- None is a Python object:
 - np.array([4, None, 5]) has dtype=Object
- np.NaN is a Floating point number
 - np.array([4, np.nan, 5]) has dtype=Float
- Using nan achieves better performances when performing numerical computations

- Pandas supports both None and NaN, and automatically converts between them when appropriate
- Example:

- Operating on missing values (for Series and DataFrames)
 - isnull()
 - Return a boolean mask indicating null values
 - notnull()
 - Return a boolean mask indicating not null values
 - dropna()
 - Return filtered data containing null values
 - fillna()
 - Return new data with filled or input missing values

- Operating on missing values: isnull, notnull
 - Return a new Series/DataFrame with the same shape as the input

dtype=float64

- Operating on missing values: dropna
 - For Series it removes null elements

```
In [1]: s1 = pd.Series([4, None, 5, np.nan])
    s1.dropna()

Out[1]: 0     4.0
     2     5.0
```


- Operating on missing values: dropna
 - For DataFrames it removes **rows** that contain at least a missing value (default behaviour)
 - Passing how=all removes rows if they contain all NaN's

Index	Total	Quantity
а	1	2
b	3	NaN
С	5	6

Index	Total	Quantity
а	1	2
С	5	6

Alternatively, it is possible to remove columns

- Operating on missing values: fillna
 - Fill null fields with a specified value (for both Series and DataFrames)

```
In [1]: s1 = pd.Series([4, None, 5, np.nan])
s1.fillna(0)

Out[1]: 0    4.0
    1    0.0
    2    5.0
    3    0.0
    dtype=float64
```


- Operating on missing values: fillna
 - The parameter **method** allows specifying different filling techniques
 - ffill: propagate last valid observation forward
 - bfill: use next valid observation to fill gap

```
In [1]: s1 = pd.Series([4, None, 5, np.nan])
s1.fillna(method='ffill')

Out[1]: 0    4.0
    1    4.0
    2    5.0
    3    5.0
```


Notebook Examples

- 3-PandasExamples.ipynb
 - 1. AccessingDataFrames and Series

- Pandas provides 2 methods for combining Series and DataFrames
 - concat()
 - Concatenate a sequence of Series/DataFrames
 - append()
 - Append a Series/DataFrame to the specified object

- Concatenating 2 Series
 - Index is preserved, even if duplicated
 - There is nothing that prevents duplicate indices in pandas!

```
In [1]:
    s1 = pd.Series(['a', 'b'], index=[1,2])
    s2 = pd.Series(['c', 'd'], index=[1,2])
    pd.concat((s1, s2))
```

```
Out[1]: 1 a 2 b 1 c 2 d d dtype=object
```


- Concatenating 2 Series
 - To avoid duplicates use ignore_index

```
In [1]:
    s1 = pd.Series(['a', 'b'], index=[1,2])
    s2 = pd.Series(['c', 'd'], index=[1,2])
    pd.concat((s1, s2), ignore_index=True)
```

```
Out[1]: 0 a

1 b

2 c

3 d

dtype=object
```


- Concatenating 2 DataFrames
 - Concatenate vertically by default

Index	Total	Quantity
а	1	2
b	3	4

Index	Total	Quantity
С	5	6
d	7	8

Index	Total	Quantity
а	1	2
b	3	4
С	5	6
d	7	8

- Concatenating 2 DataFrames
 - Missing columns are filled with NaN

Index	Total	Quantity
а	1	2
b	3	4

Index	Total	Quantity	Liters
С	5	6	1
d	7	8	2

Index	Total	Quantity	Liters
а	1	2	NaN
b	3	4	NaN
С	5	6	1.0
d	7	8	2.0

- The append() method is a shortcut for concatenating DataFrames
 - Returns the result of the concatenation

```
In [1]: df_concat = df1.append(df2)
```

is equivalent to:

```
In [1]: df_concat = pd.concat((df1, df2))
```


- Joining DataFrames with relational algebra: merge()
 - Merge on:
 - The column(s) with same name in the two DFs, by default
 - Specific columns, by specifying on=columns
 - left_on and right_on may also be used
 - The indices, if left_index/right_index are True
 - This preserves the indices (discarded otherwise)
 - Depending on the DataFrames, a one-to-one, many-to-one or many-to-many join can be performed
 - validate='1:1'|'1:m'|'m:1'|'m:m' to enforce the specific merge

```
In [1]: joined_df = pd.merge(df1, df2)
```


Examples (1)

pd.merge(df1, df2) → merge on columns in common, ["k1"]

Index	k1	c2
i1	0	a
i2	1	b

Index	k1	c3
i1	1	b1
i2	0	a1

pd.merge(df1, df2, right_index=True, left_index=True) → merge on index

Index	k1	c2
i1	0	а
i2	1	b
i3	0	С
i4	1	d

Index	k1	с3
i1	1	b1
i2	0	a1

Index	k1_x	c2	k1_y	c3
i1	0	а	1	b1
i2	1	b	0	a1

Examples (2)

pd.merge(df1, df2) → performs a one-to-one merge

Index	k1	c2
i1	0	a
i2	1	b

Index	k1	с3
i1	1	b1
i2	0	a1

Index	k1	c2	сЗ
0	0	а	a1
1	1	b	b1

pd.merge(df1, df2) → performs a many-to-one merge

Index	k1	c2
i1	0	а
i2	1	b
i3	0	С
i4	1	d

Index	k1	c3
i1	1	b1
i2	0	a1

Index	k1	c2	c3
0	0	а	a1
1	0	С	a1
2	1	b	b1
3	1	d	b1

- Pandas provides the equivalent of the SQL group by statement
- It allows the following operations:
 - Iterating on groups
 - Aggregating the values of each group (mean, min, max, ...)
 - Filtering groups according to a condition

Applying group by

- Specify the column(s) where you want to group (key)
- Obtain a DataFrameGroupBy object

Index	k	c1	c2
0	а	2	4
1	b	10	20
2	а	3	5
3	b	15	30

Index	k	c1	c2
0	а	2	4
2	а	3	5
1	b	10	20
3	b	15	30

Iterating on groups

Each group is a subset of the original DataFrame

Out[1]:

а					Index	k1	c1	c2
	k1	c1	c2	-	0	a	2	4
0	а	2	4		2	а	3	5
2	а	3	5					
b					Index	k1	c1	c2
	k1	c1	c2	-	1	b	10	20
1	b	10	20		3	b	15	30
3	b	15	30		3	D D	13	30

- Aggregating by group (min, max, mean, std)
 - The output is a DataFrame with the result of the aggregation for each group

- Aggregating a single column by group
 - The output is a Series with the result of the aggregation for each group

Filtering data by group

 The filter is expressed with a lambda function working with each group DataFrame (x)

```
In [1]: # Keep groups for which column c1 has a mean > 5
grouped_df.filter(lambda x: x['c1'].mean()>5)
```

Out[1]:

mean = 2.5
x: filtered
out

mean = 12.5
x: kept in
the result

Pivoting

- Pivoting allows inspecting relationships within a dataset
- Suppose to have the following dataset:

that shows failures for sensors of a given type and class during some test

Index	type	class	fail
0	а	3	1
1	b	2	1
2	b	3	1
3	а	3	0
4	b	2	1
5	а	1	0
6	b	1	0
7	а	2	0

Pivoting

Shows the number of failures for all the combinations of type and class

Index	type	class	fail
0	а	3	1
1	b	2	1
2	b	3	1
3	а	3	0
4	b	2	1
5	а	1	0
6	b	1	0
7	а	2	0

Pivoting

Shows the percentage of failures for all the combinations of type and class

50% of sensors of type a

and class 3 had some

failure

Index	type	class	fail
0	а	3	1
1	b	2	1
2	b	3	1
3	а	3	0
4	b	2	1
5	а	1	0
6	b	1	0
7	а	2	0

Multi-Index

- Multi-Index allows specifying an index hierarchy for
 - Series
 - DataFrames
- Example: index a Series by city and year

Building a multi-indexed Series

Out[1]:

```
Rome 2018 10
2019 13
Turin 2018 7
2019 9
```


Naming index levels


```
In [1]: s1.index.names=['city', 'year']
    print(s1)
```

Out[1]:

```
      city
      year

      Rome
      2018
      10

      2019
      13

      Turin
      2018
      7

      2019
      9
```


Accessing index levels

- Slicing and simple indexing are allowed
- Slicing on index levels follows Numpy rules

```
In [1]:
           print(s1.loc['Rome']) # Outer index level
           print(s1.loc[:,'2018']) # All cities, only 2018
Out[1]:
           year
                                                          Turin
                                                                   Turin
                                          Rome
                                                 Rome
           2018
                   10
                                          2018
                                                  2019
                                                          2018
                                                                   2019
           2019
                   13
                                           10
                                                   13
                                                           7
                                                                     9
           city
           Rome
                     10
           Turin
```


Accessing index levels (Examples)

```
In [1]: print(s1.loc['Turin', '2018':'2019'])
    print(s1[s1>10]) # Masking
```

Out[1]:

						_
city	year		Rome	Rome	Turin	Turin
Turin	2018	7	2018	2019	2018	2019
	2019	9	2010	2013	2010	2013
			10	13	7	9
city	year					
Rome	2019	13				

Multi-indexed DataFrame

- Specify a multi-index for rows
- Columns can be multi-indexed as well

		Humidity		Temperat	ure
		max	min	max	min
Turkin	2018	33	48	6	33
Turin	2019	35	45	5	35
Domo	2018	40	59	2	33
Rome	2019	41	57	3	34

Multi-indexed DataFrame: creation

```
Out[1]:
```

```
c1 c2

a b a b

Rome 2018 0 1 2 3

2019 4 5 6 7

Turin 2018 8 9 10 11

2019 12 13 14 15
```


Multi-indexed DataFrame: access with outer index level

Out[1]:

			a	b
Rome	201	L8	0	1
	201	L9	4	5
Turin	201	L8	8	9
	201	L9	12	13
	a	b		

2018

2019 4 5

		c1		c2	
		а	b	а	b
Domo	2018	0	1	2	3
Rome	2019	4	5	6	7
Turin	2018	8	9	10	11
	2019	12	13	14	15

Multi-indexed DataFrame: access with outer and inner index levels

Multi-indexed DataFrame: access with outer and inner index levels

Out[1]:

c1	a	0
c2	а	2

		C	1	c2	
		а	р	а	b
Pomo	2018	0	1	2	3
Rome	2019	4	5	6	7
Turin	2018	8	9	10	11
	2019	12	13	14	15

Reset Index: transform index to DataFrame columns and create new (single level) index

```
In [1]:
               df.index.names = ['city', 'year']
               df_reset = df.reset_index()
               print(df reset)
     Out[1]:
                    city
                           year
                                 c1
                                         c2
                                         a b
                                     b
                                 0 1 2 3
                    Rome
                           2018
                           2019 4 5
                                         6 7
                    Rome
                   Turin
                           2018
                                 8
                                     9
                                        10
                                            11
                   Turin
                           2019
                                 12
                                    13
                                        14
                                            15
New index
```


- Set Index: transform columns to Multi-Index
 - Inverse function of reset_index()

	city		c1		c2	
	city	year	а	Ь	а	b
0	Rome	2018	0	1	2	3
1	Rome	2019	4	5	6	7
2	Turin	2018	8	9	10	11
3	Turin	2019	12	13	14	15

oitu	city year		1	c2	
city	year	а	b	а	b
Domo	2018	0	1	2	3
Rome	2019	4	5	6	7
Turin	2018	8	9	10	11
	2019	12	13	14	15

New index

Unstack: transform multi-indexed Series to a Dataframe

myseries.unstack()

city	year	
Pomo	2018	0
Rome	2019	4
Turin	2018	8
	2019	12

	2018	2019
Rome	0	4
Turin	8	12

- Stack: inverse function of unstack()
 - From DataFrame to multi-indexed Series

mydataframe.stack()

	2018	2019
Rome	0	4
Turin	8	12

Pomo	2018	0
Rome	2019	4
Turin	2018	8
Turin	2019	12

Aggregates on multi-indices

- Allowed by passing the level parameter
- Level specifies the row granularity at which the result is computed

my_dataframe.max(level='city')

city	year	c1		c2	
		а	b	а	b
Rome	2018	0	1	2	3
	2019	4	5	6	7
Turin	2018	8	9	10	11
	2019	12	13	14	15

city	c1	L	c2		
city	а	b	а	b	
Rome	4	5	6	7	
Turin	12	13	14	15	

Aggregates on multi-indices

my_dataframe.max(level='year')

city	year	c1		c2	
		а	b	а	b
Rome	2018	0	1	2	3
	2019	4	5	6	7
Turin	2018	8	9	10	11
	2019	12	13	14	15

voor	c1	L	c2		
year	а	b	а	b	
2018	8	9	10	11	
2019	12	13	14	15	

Aggregates on multi-indices

- Can also aggregate columns
 - Specify axis=1

my_dataframe.max(axis=1, level=0)

city	year	c1		c2	
		а	b	а	b
Rome	2018	0	1	2	3
	2019	4	5	6	7
Turin	2018	8	9	10	11
	2019	12	13	14	15

city	year	c1	c2
Rome	2018	1	3
Rome	2019	5	7
Turin	2018	9	11
Turin	2019	13	15

- Two of the most commonly used graphical libraries are:
 - Matplotlib
 - We present here only a very short introduction as the library is fairly large and visualization is not the focus of this course
 - Seaborn (data visualization library based on Matplotlib)
 - Not covered by this course

Matplotlib

- Set of methods that make matplotlib work like matlab
- It has 2 interfaces:
 - - Plotting methods are called from the pyplot package
 - They all work on the current Figure and Axes
 - Object oriented (Stateless) <a>©
 - Plot functions are called as methods of a specific Figure and Axes
 - This allows modifying many objects at a time (the system does not keep a "current object" state)

Figures and Axes

Creation of a new figure:

```
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(5, 3))
plt.show()
```


- Subplots returns a new Figure and its Axes object
- **figsize** specifies the figure size (width, height) in inches
- By default ax is a single Axes object (1 Figure with a single Axes)

Drawing a line plot (single Axes object)

```
fig, ax = plt.subplots(figsize=(3, 2))
ax.plot([0,1,2],[2,4,6])
ax.plot([0,1,2],[3,6,9])
plt.show()
```

- The plot method of a specific Axes takes as input two lists (or NumPy arrays): x, y coordinates of the points
- The default style draws segments passing through the specified coordinates
- Subsequent calls of plot add new line to the same Axes

Creation of a new figure:

```
fig, ax = plt.subplots(2, 3, figsize=(5, 3))
plt.tight_layout()
plt.show()
```

- The first two parameters of subplots specify to create a figure with **2 rows**, **3 columns** (6 Axes objects)
- tight_layout() is necessary at the end to let the subplots fit the frame size without blank spaces at the borders

Drawing a line plot (multiple Axes object)

- The ax object is a **Numpy array** with the created Axes objects
- It has shape = (n,) if the figure has 1 row and n columns

Drawing a line plot (multiple Axes object)

It has shape = (m, n) if the figure has m rows and n columns

Plot types

- With Matplotlib you can design different plot types
- The most common are:
 - Line plot
 - Scatter plot
 - Bar chart

Line plot

- Allows displaying a sequence of points/segments that share the same properties
 - E.g. same size, color, width, ...

```
x = np.linspace(0, 5, 20)
y = np.exp(x)
fig, ax = plt.subplots(figsize=(3, 2))
ax.plot(x, y, c='blue', linestyle='', marker='*')
ax.plot(x, 2*y, c='green', linestyle='--')
                                 300
plt.show()
                                 200
                                 100
```


Line plot

 Different plots can be associated to labels to be displayed in a legend

```
x = np.linspace(0, 5, 20)
y = np.exp(x)
fig, ax = plt.subplots(figsize=(3, 2))
ax.plot(x, y, c='blue', linestyle='', marker='*', label='curve 1')
ax.plot(x, 2*y, c='green', linestyle='--', label='curve 2')
ax.legend(loc=(1.1, 0.5))
                                300
plt.show()
                                200
                                100
```


Line plot

- linestyle specifies the type of line
 - Examples: '-', '--' (or 'dashed'), ':' (or 'dotted')
- marker specifies the type of points to be drawn
 - Examples: 'o', '*', '+', 'Λ'
- c specifies the color to be applied to markers and segments
 - Examples: 'red', 'orange', 'grey'
 - Examples: '#0F0F6B' (RGB)
 - Examples: (0.5, 1, 0.8, 0.8) (RGBA tuple)

- Allows displaying a set of points and assign them custom properties
 - E.g. different color, size

```
x = np.random.rand(20)
y = np.random.rand(20)
colors = x + y  # color as a function of x and y
fig, ax = plt.subplots(figsize=(3, 2))
ax.scatter(x, y, c=colors)
plt.show()
0.75
0.00
0.25
0.00
0.25
0.00
0.75
100
```


- c=colors associate a number (float or integer) to each point
 - In the same sequence as they appear in x, y)
 - These numbers are used to select a color from a specific colormap
 - https://matplotlib.org/users/colormaps.html

```
colors = x + y  # color as a function of x and y
fig, ax = plt.subplots(figsize=(3, 2))
ax.scatter(x, y, c=colors, cmap='spring')
plt.show()

0.50
0.25
0.00
```


- c=colors associate a number (float or integer) to each point
 - Matplotlib considers the range of values of c to fit the whole range of colors of a colormap

c = [101, 120, 50, 60] -> range is 50-120

50 120

- The size of each point can be set with the parameter s
- Size is the area in dpi (dots per inch)

```
x = np.random.rand(20)
y = np.random.rand(20)
colors = x + y # color as a function of x and y
area = 100*(x+y) # size as a function of x, y
fig, ax = plt.subplots(figsize=(3, 2))
                                              1.00
ax.scatter(x, y, c=colors, s=area)
                                              0.75
plt.show()
                                              0.50
                                              0.25
                                              0.00
                                                       0.25
                                                             0.50
                                                                  0.75
                                                  0.00
```


 Allows displaying a sequence of numbers as vertical or horizontal bars

```
height = [10, 2, 8]

x = [1, 2, 3]  # position of the bars, x axis

fig, ax = plt.subplots(figsize=(3, 2))

ax.bar(x, height)

plt.show()

10.0

7.5

5.0

2.5

0.0
```


Ticks on the horizontal axis can be labeled with some text

```
height = [10, 2, 8]
x = [1, 2, 3]  # position of the bars, x axis
labels = ['Sensor 1', 'Sensor 2', 'Sensor 3']

fig, ax = plt.subplots(figsize=(3, 2))
ax.bar(x, height, tick_label=labels)
plt.show()

Sensor 1 Sensor 2 Sensor 3
```


Bars can be grouped

```
7.5
height min = [10, 2, 8]
                                         5.0 -
height max = [8, 6, 5]
                                         2.5 -
x = np.arange(3)
                                         0.0
                                             Sensor 1 Sensor 2 Sensor 3
width = 0.4
labels = ['Sensor 1', 'Sensor 2', 'Sensor 3']
fig, ax = plt.subplots(figsize=(3, 2))
ax.bar(x+width/2, height min, width=width, label='min')
ax.bar(x-width/2, height max, width=width, label='max')
ax.set xticks(x)
                    # setup positions of x ticks
ax.set_xticklabels(labels) # set up labels of x ticks
ax.legend(loc=(1.1, 0.5)) # x, y position, in percentage
plt.show()
```

10.0

Bars can be grouped

```
height min = [10, 2, 8]
                                        5.0 -
height max = [8, 6, 5]
                                        2.5 -
x = np.arange(3)
                                        0.0
width = 0.4
labels = ['Sensor 1', 'Sensor 2', 'Sensor 3']
fig, ax = plt.subplots(figsize=(3, 2))
ax.bar(x+width/2, height_min, width=width, lab
ax.bar(x-width/2, height max, width=width, lab
ax.set xticks(x)
                    # setup positions
ax.set xticklabels(labels) # set up labels o
ax.legend(loc=(1.1, 0.5)) # x, y position,
plt.show()
```

10.0 - 7.5 - 5.0 - 2.5 - 0.0 Sensor 1 Sensor 2 Sensor 3

However, other libraries might make our life easier!

```
df = pd.DataFrame({
    "min": height_min,
    "max": height_max
    },
    index=labels
)
df.plot.bar()
```


Writing images to file

 Generated figures can be saved to file with different formats

```
fig, ax = plt.subplots(figsize=(3, 2))
ax.plot([0,1,2],[2,4,6])
ax.plot([0,1,2],[3,6,9])
fig.savefig("./out/test.png") # or '.jpg', '.eps', '.pdf'
```


Seaborn

Based on Matplotlib

 High level interface for drawing complex chart with attractive visual impact

References

- Matplotlib website:
 - https://matplotlib.org/
- Seaborn website:
 - https://seaborn.pydata.org/