

Tests du respirateur PPC

BOUTRY Loan

Alternant sur le projet MakAir

Ce document fait partie d'une série de livrables concernant la conception et le prototypage d'un respirateur à pression positive continue pour diminuer l'apnée du sommeil d'un patient

Ce livrable a pour but d'énoncer et d'expliquer les tests qui vont être réalisés sur les différents composants du système. Les résultats seront aussi analysés au fur à mesure de l'avancement de la réalisation

Table des matières

Table de	as figures	3
Blower.		4
Te	st n°1 : Envoi d'air avec une vitesse fixe	4
	Objectif:	4
	Contexte:	4
	Réalisation:	
	Résultats:	
т.	st n°2 : Envoi d'air avec une vitesse variable.	
16		(
	Objectif:	(
	Contexte:	5
	Réalisation :	(
	Résultats:	(
Débitmè	tre	6
Te	st n°3 : Mesurer un débit d'air variable	6
	Objectif:	6
	Contexte:	6
	Réalisation :	(
	Résultats:	(
Capteur	de pression	7
	st n°4 : Mesurer une pression d'air variable	7
	Objectif:	
	Contexte:	
	Réalisation :	
	Résultats:	
		8
Te	st n°5 : Afficher le débit d'air et la pression d'air	8
	Objectif:	8
	Contexte:	8
	Réalisation :	8
	Résultats:	8
Te	st n°6 : Configurer des données du système	9
	Objectif:	9
	Contexte :	9
	Réalisation :	9
	Résultats:	9
Respira	teur PPC (intégration)	10
	st n°7 : Commander la vitesse.	10
10.	Objectif:	10
		10
	Contexte:	10
	Réalisation :	10
	Résultats:	
Te	st n°8 : Commander le débit d'air	12
	Objectif:	12
	Contexte:	12
	Réalisation :	12
	Résultats:	13
Te	st n°9 : Commander la pression de l'air	14
	Objectif:	14
	Contexte:	14
	Réalisation:	14
	Résultats :	
To	st n°10 : Piloter le respirateur PPC	
10.	Objectif:	
	Contexte:	10
	Réalisation :	16
	Résultats :	17

Table des figures

. 4
. 5
. 6
. 7
. 8
. 6
10
12
14
16

Blower

Test n°1: Envoi d'air avec une vitesse fixe

Objectif:

- Observer le fonctionnement du blower
- Valider l'envoi d'air externe par le blower

Contexte:

- Seulement la carte de contrôle est branchée au microcontrôleur sur la broche D10
- Alimentation 12V câblée à la carte de contrôle

Réalisation :

- Envoi d'un signal PPM de 50 Hz par le microcontrôleur à la carte de contrôle
- Vitesse fixe à 50% pendant 1 min

Figure 1 : Test n°1

Essai	Validation ?	Observations
1	×	 Le moteur émet un son mais n'envoie pas d'air Problème sur le signal émis : c'est un signal PWM et non un signal PPM
2		 Le blower envoie de l'air en continu Le blower correspond à la consigne (1 min) Le blower a une pression peu importante, sûrement dû à la tension d'alimentation

Test n°2: Envoi d'air avec une vitesse variable

Objectif:

- Observer le fonctionnement du blower avec une variation de vitesse
- Valider la variation d'air envoyé par le blower
- Trouver la meilleure solution pour l'alimentation du blower

Contexte:

- Seule la carte de contrôle est branchée au microcontrôleur sur la broche D10
- Alimentation 12V (1er essai) ou 24V (2ème essai) câblée à la carte de contrôle

Réalisation:

- Envoi d'un signal PPM de 50 Hz par le microcontrôleur à la carte de contrôle
- Vitesse variant de 0% à 100% pendant 1 min
- Changement de l'alimentation entre chaque essai

Figure 2 : Test n°2

Essai	Validation ?	Observations
1		 Le moteur varie sa vitesse de 0 à 100% Le moteur est à l'arrêt à 0% et n'est pas au maximum à 100% par rapport à ses caractéristiques L'alimentation doit passer à 24V pour avoir des caractéristiques répondant au cahier des charges
2	ightharpoons	 Le moteur varie sa vitesse de 0 à 100% Le moteur est à l'arrêt à 0% et est au maximum à 100% L'alimentation 24V est donc la meilleure solution pour répondre au cahier des charges

Débitmètre

Test n°3: Mesurer un débit d'air variable

Objectif:

- Observer le fonctionnement du débitmètre
- Valider la communication I2C entre le capteur et le microcontrôleur
- Récupérer le débit d'air envoyé par une source d'air (Souffle d'un humain ou ventilateur)

Contexte:

- Seulement le débitmètre est branché au microcontrôleur sur la broche D14 et D15
- Source d'air sous pression indépendante du système

Réalisation:

- Communication I2C entre le capteur et le microcontrôleur
- Varier le débit d'air envoyée avec une intervalle d'au moins 30 SLPM

Figure 3: Test n°3

Essai	Validation ?	Observations
1	×	 Le débitmètre ne renvoie aucune valeur. L'initialisation de la communication I2C semble poser des problèmes
2	×	 Le numéro de série I2C du capteur est reçu donc l'initialisation est validée Aucune donnée n'est reçue par le capteur malgré une communication I2C établie. Le problème semble matériel
3	abla	 Le problème venait des résistances branchées sur les signaux SDA et SCL. Suite au changement, les données du débit d'air sont reçues par le système. Une variation du débit d'air entre 20 et 70 SLPM est reçue. Le fonctionnement du débitmètre est validé

Capteur de pression

Test n°4: Mesurer une pression d'air variable

Objectif:

- Observer le fonctionnement du capteur de pression
- Valider la communication I2C entre le capteur et le microcontrôleur
- Récupérer la pression de l'air par une source d'air (Souffle d'un humain ou ventilateur)

Contexte:

- Seulement le capteur de pression est branché au microcontrôleur sur la broche D3 et D6
- Source d'air sous pression indépendante du système

Réalisation:

- Communication I2C entre le capteur et le microcontrôleur
- Varier la pression de l'air envoyée avec une intervalle d'au moins 5 mbar

Figure 4: Test n°4

Essai	Validation ?	Observations
1	×	 Le capteur de pression ne renvoie aucune valeur. Le capteur ne semble pas être fonctionnel, cela doit être un problème au niveau du câblage
2		 Le capteur envoie des données, le problème venait de la soudure d'une des broches qui était cassée Une variation de 5 mbar est captée. Cela valide le fonctionnement du capteur

IHM

Test n°5 : Afficher le débit d'air et la pression d'air

Objectif:

- Observer le fonctionnement de l'afficheur
- Valider l'affichage de données captées par les capteurs

Contexte:

- Connecter l'afficheur et le débitmètre au premier essai et ensuite le capteur de pression au deuxième essai
- Source d'air sous pression indépendante du système

Réalisation:

- Varier le débit d'air et la pression de l'air
- Afficher les données reçues par le microcontrôleur

Débit : ... Pression : ...

Figure 5 : Test n°5

Essai	Validation ?	Observations
1		L'afficheur affiche le débit d'air qui varie en fonction de la source d'air
2	$oxed{egin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	L'afficheur affiche la pression de l'air qui varie en fonction de la source d'air

Test n°6 : Configurer des données du système

Objectif:

- Observer le fonctionnement de l'IHM
- Valider l'IHM

Contexte:

- Connecter l'afficheur et les boutons

Réalisation :

- Simuler la configuration de la vitesse du blower
- Afficher les données configurées

Vitesse : 0 à 100 %

Figure 6 : Test n°6

Essai	Validation ?	Observations
1	abla	 L'afficheur affiche la vitesse qui est configuré par les boutons La configuration modifie la vitesse en la diminuant (bouton -) ou en l'augmentant (bouton +)

Respirateur PPC (intégration)

Test n°7: Commander la vitesse

Objectif:

- Valider l'intégration de chaque composant
- Observer le fonctionnement du système en modifiant un des paramètres (vitesse)

Contexte:

- Connecter tous les composants du système
- Alimentation 24V sur la carte de contrôle du blower
- Alimentation 5V par l'USB d'un ordinateur

- Configurer la vitesse du blower avec l'IHM
- Contrôler la vitesse du blower
- Récupérer le débit d'air et la pression
- Afficher les données du système

Figure 7: Test n°7

Essai	Validation ?	Observations
1	×	 La configuration de la vitesse se passe sans problème Seulement le débit d'air est renvoyé, la pression n'est pas renvoyée par le capteur Le problème vient de la communication I2C qui se fait seulement avec le débitmètre
2	abla	 Suite à l'utilisation de « TwoWire », la pression est maintenant renvoyée par le capteur La commande de la vitesse du blower et l'intégration des composants sont validées

Test n°8 : Commander le débit d'air

Objectif:

- Valider l'intégration de chaque composant
- Valider la boucle de régulation en débit
- Observer le fonctionnement du système en modifiant un des paramètres (débit d'air)

Contexte:

- Connecter tous les composants du système
- Alimentation 24V sur la carte de contrôle du blower
- Alimentation 5V par l'USB d'un ordinateur

- Configurer le débit d'air souhaité avec l'IHM
- Contrôler la vitesse du blower en fonction du débit d'air
- Récupérer le débit d'air et la pression
- Afficher les données du système

Figure 8 : Test n°8

Essai	Validation ?	Observations
1	×	 La configuration du débit d'air fonctionne mais le blower augmente sa vitesse à l'infini jusqu'à sa limite Le système est dans une boucle infinie lorsqu'il veut atteindre le seuil configuré
2		 Le problème logiciel est réglé Le système peut être commandé en débit d'air. Le test est donc validé

Test n°9 : Commander la pression de l'air

Objectif:

- Valider l'intégration de chaque composant
- Valider la boucle de régulation en pression
- Observer le fonctionnement du système en modifiant un des paramètres (pression)

Contexte:

- Connecter tous les composants du système
- Alimentation 24V sur la carte de contrôle du blower
- Alimentation 5V par l'USB d'un ordinateur

- Configurer la pression d'air souhaitée avec l'IHM
- Contrôler la vitesse du blower en fonction de la pression
- Récupérer le débit d'air et la pression
- Afficher les données du système

Essai	Validation ?	Observations
1		 Le système peut être commandé en pression. Le test est donc validé

Test n°10: Piloter le respirateur PPC

Objectif:

- Valider l'intégration de chaque composant
- Observer le fonctionnement du système complet

Contexte:

- Connecter tous les composants du système
- Alimentation 24V sur la carte de contrôle du blower
- Alimentation 5V par l'USB d'un ordinateur

- Configurer les seuils de pression du respirateur PPC
- Contrôler la vitesse du blower en fonction des seuils
- Récupérer le débit d'air et la pression
- Afficher les données du système

Figure 10 : Test n°10

Essai	Validation ?	Observations
1	×	 La configuration des seuils se passe sans problème Le système est dans une boucle infinie lorsqu'il veut atteindre le deuxième seuil configuré
2	×	 Le système fonctionne mais la simulation de respiration avec le poumon artificiel n'est pas valide car le système ne répond pas au cahier des charges Le système ne réagit pas comme un respirateur PPC autopiloté