

课程作业报告

基于 TextCNN 的电影评论情感分类

 作者姓名:
 陈子轩 2019E8015061013

 学科专业:
 软件工程

 所在单位:
 中国科学院大学计算机科学与技术学院

2020年5月

基于 TextCNN 的电影评论情感分类

陈子轩

摘 要

本项目属于自然语言处理任务中的情感二分类。通过输入一段电影评论,要求模型输出该段文字的情感极性(正向或负向)。对比了不同的 word2Vec 模型、是否使用停用词表在训练结果中的作用。本项目使用 textCNN 模型,在测试集上成功达到了84.28%的准确率。

1 介绍

- (1) 本实验要解决的问题为电影评论情感分析,具体过程为,输入一段文字,要求模型输出该段 文字的情感极性(正向或负向)。
- (2) 训练集:包含2万条左右中文电影评论,其中正负向评论各1万条左右。 验证集:包含6千条左右中文电影评论,其中正负向评论各3千条左右。

测试集:包含360条左右中文电影评论,其中正负向评论各180条左右。

(3) 尝试使用 TextCNN 实现对中文电影评论的情感分析,目标为测试集准确率在83%以上。

2 实验过程

2.1 深度学习平台

TensorFlow $== 2.0.0_{\circ}$

2.2 语料库分析

训练集:包含2万条左右中文电影评论,其中正负向评论各1万条左右。 验证集:包含6千条左右中文电影评论,其中正负向评论各3千条左右。 测试集:包含360条左右中文电影评论,其中正负向评论各180条左右。

对语料库中文本长度进行统计,如图 1 所示,可见有 99.61% 的文本长度都在 150 以下。于是在训练时设定统一输入文本长度 sequenceLength = 150,超出将被剪断,不足则补 <pad> 标志。

图 1: 语料库中文本长度分布

2.3 停用词表

停用词是指在信息检索中,为节省存储空间和提高搜索效率,在处理自然语言数据(或文本)之前或之后会自动过滤掉某些字或词,这些字或词即被称为 Stop Words(停用词)。本实验中的停用词表为来自https://github.com/goto456/stopwords的停用词表 cn_stopwords.txt 和空的停用词表 empty_stopwords.txt。

2.4 预训练词向量

本项目中没有使用预训练模型 wiki_word2vec_50.bin。而使用 word2vec 模型 [2], 一般分为 CBOW(Continuous Bag-of-Words) 与 Skip-Gram 两种模型,如图 2 所示。CBOW 模型的训练输入是某一个特征词的上下文相关的词对应的词向量,而输出就是这特定的一个词的词向量。Skip-Gram 模型和 CBOW 模型的思路是相反的,即输入是特定的一个词的词向量,而输出是特定词对应的上下文词向量。CBOW 对小型数据库比较合适,而 Skip-Gram 在大型语料中表现更好。

在 gensim.models.word2vec.Word2Vec 函数中,有参数 sg: 用于设置训练算法,默认为 0,对应 CBOW 算法; sg = 1 则采用 Skip-Gram 算法。其他参数设置为 size = 300, min_count = 1, window = 10, workers = multiprocessing.cpu_count(), iter = 20。预训练 word2vec 模型如表 1 所示。

表 1: 预训练 word2vec 模型

模型名	其他模型参数			
保空石	sg	sentences		
word2VecModel_1	0	train.txt		
word2VecModel_2	0	train.txt + validation.txt		
word2VecModel_3	1	train.txt		
word2VecModel_4	1	train.txt + validation.txt		

图 2: CBOW(Continuous Bag-of-Words) 与 Skip-Gram 两种模型

2.5 TextCNN

Yoon Kim 在论文 [1] 中提出 TextCNN。将卷积神经网络 CNN 应用到文本分类任务,利用多个不同尺寸的卷积核来提取句子中的关键信息(类似于多窗口大小的 n-gram),从而能够更好地捕捉局部相关性。

TextCNN 和传统的 CNN 结构类似,具有词嵌入层、卷积层、池化层和全连接层的四层结构,论文 [1] 中给出的 TextCNN 结构如图 3 所示。

图 3: Model architecture with two channels for an example sentence.

图 4 为本实验中设计的 TextCNN 结构,具体参数量如**表 2** 所示。在 CNN 子网络模型中,如**表 3** 所示,设计了不同的卷积核尺寸 [1,2,3,4,5],实验中卷积核数 numFilters = 120。全连接层中神经元数量 units = 10,激活函数为 relu 函数,12 正则项系数为 0.1。Dropout 层中 rate = 0.5。输出层使

用 sigmoid 函数进行二分类。使用优化器为 Adam(lr=1e-4) 及 metrics = ['accuracy']。

图 4: 本实验中设计的 TextCNN 结构

表 2: 本实验中的 TextCNN 结构 Model: "sequential"

Layer (type)	Output Shape	Param #	
embedding(Embedding)	(None, 150, 300)	16542300	
reshape (Reshape)	(None, 150, 300, 1)	0	
model (Model)	(None, 600)	540600	
flatten (Flatten)	(None, 600)	0	
dense (Dense)	(None, 10)	6010	
dropout (Dropout)	(None, 10)	0	
dense_1 (Dense)	(None, 1)	11	

Total params: 17,088,921

Trainable params: 17,088,921 Non-trainable params: 0

训练过程中使用 callbacks = [reduce_lr, early_stopping, model_checkpoint], 其中

```
reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor = "val_loss", patience = 10,
    mode = "auto")
early_stopping = keras.callbacks.EarlyStopping(monitor="val_loss", patience=5)
```

model_checkpoint = keras.callbacks.ModelCheckpoint(config.modelCheckpoint, save_ best_only=True, save_weights_only=True)

表 3: CNN 子网络模型 Model: "model"

Layer (type)	Output Shape	Param #	Connected to			
input_1 (InputLayer)	[(None, 150, 300, 1)]	0				
conv2d (Conv2D)	(None, 150, 1, 120)	36120	input_1[0][0]			
conv2d_1 (Conv2D)	(None, 149, 1, 120)	72120	input_1[0][0]			
conv2d_2 (Conv2D)	(None, 148, 1, 120)	108120	input_1[0][0]			
conv2d_3 (Conv2D)	(None, 147, 1, 120)	144120	input_1[0][0]			
conv2d_4 (Conv2D)	(None, 146, 1, 120)	180120	input_1[0][0]			
global_max_pooling2d (GlobalMaxPooling2D)	(None, 120)	0	conv2d[0][0]			
global_max_pooling2d_1 (GlobalMaxPooling2D)	(None, 120)	0	conv2d_1[0][0]			
global_max_pooling2d_2 (GlobalMaxPooling2D)	(None, 120)	0	conv2d_2[0][0]			
global_max_pooling2d_3 (GlobalMaxPooling2D)	(None, 120)	0	conv2d_3[0][0]			
global_max_pooling2d_4 (GlobalMaxPooling2D)	(None, 120)	0	conv2d_4[0][0]			
			global_max_pooling2d[0][0]			
			global_max_pooling2d_1[0][0]			
concatenate(Concatenate)	(None, 600)	0	global_max_pooling2d_2[0][0]			
			global_max_pooling2d_3[0][0]			
			global_max_pooling2d_4[0][0]			

Total params: 540,600 Trainable params: 540,600 Non-trainable params: 0

训练结果如表4所示。

表 4: 训练结果

TextCNN 模型 预训练模型	停用词表 -	训练集		验证集		测试集		 · 过程图	
		acc %	loss %	acc %	loss %	acc %	loss %	儿性 图	
textCNN_1	word2VecModel_1	empty_stopwords	95.08	22.10	81.79	47.92	79.95	48.61	图 5
textCNN_2		cn_stopwords	97.33	19.68	83.02	47.13	81.03	52.03	图 6
textCNN_3	word2VecModel_2	empty_stopwords	96.76	18.91	82.68	48.20	82.66	48.30	图 7
textCNN_4		cn_stopwords	93.58	22.15	82.84	46.66	82.11	47.21	图 8
textCNN_5	word2VecModel 3	empty_stopwords	91.75	20.49	83.44	43.01	84.28	42.28	图 9
textCNN_6	word2 vectvlode1_3	cn_stopwords	95.76	19.39	83.05	44.10	81.84	41.37	图 10
textCNN_7	wand2VaaMadal 4	empty_stopwords	93.99	21.21	83.82	43.56	83.20	42.08	图 11
word2VecModel_4 textCNN_8	cn_stopwords	94.60	24.02	84.06	42.96	83.47	40.03	图 12	

图 5: textCNN_1 训练过程图

图 6: textCNN_2 训练过程图

图 7: textCNN_3 训练过程图

图 8: textCNN_4 训练过程图

图 9: textCNN_5 训练过程图

图 10: textCNN_6 训练过程图

图 11: textCNN_7 训练过程图

图 12: textCNN_8 训练过程图

3 结论

本项目属于自然语言处理任务中的情感二分类。总结上述8个模型各项数据,可以发现textCNN_5模型超过了83%,达到了84.28%。word2vec模型中:一方面,word2Vec_3 比 word2Vec_1 训练效果好、word2Vec_4 比 word2Vec_2 训练效果好,说明了在本实验中 Skip-Gram 模型比 CBOW 模型效果好;另一方面,word2Vec_2 比 word2Vec_1 训练效果好、word2Vec_4 比 word2Vec_3 训练效果好,说明了在预训练词向量过程中,语料库越大,训练越精确。在是否使用停用词表方面,影响既有积极也有消极。我认为对于参数量如此巨大的模型,实验所用的语料库过小,很容易出现过拟合现象,由各训练图也可以看出,在第3轮训练后,验证集上 acc 值增长缓慢,同时虽然预设 epochs = 20,但均出现了早停,说明实验所用语料库确实太小。

参考文献

- [1] Yoon Kim. Convolutional neural networks for sentence classification. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL*, pages 1746–1751, 2014.
- [2] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. In 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, 2013.