

Motor vehicle seat with air-permeable seat support and cushion

Patent number: DE19810936
Publication date: 1999-09-16
Inventor: BOLL WOLF (DE)
Applicant: DAIMLER CHRYSLER AG (DE)
Classification:
- **International:** B60H1/00; B60N2/56; B60H1/00; B60N2/56; (IPC1-7):
B60N2/44; B60H1/00
- **European:** B60H1/00C; B60N2/56C4C
Application number: DE19981010936 19980313
Priority number(s): DE19981010936 19980313

[Report a data error here](#)

Abstract of DE19810936

Air emission at an outlet is fanned out by a nozzle (30) so the air is directed onto the bottom side of the seat cushion from opposing outlet slots (32,33) spaced out in parallel on the nozzle to extend in the seat depth direction, preferably using a vee outlet array in funnel form. The seat support is carried on the frame via springs so the nozzle lies between a support and a frame. The nozzle has a fitted air sleeve channel and a control valve in the nozzle air channel can feed blower air to an air-conditioner layout and/or feed air in from below the seat. A blower connection and integrated blower are fitted where the air channel joins the conditioner channel and the control valve at the branch point controlling the sections of the connection and blower connection. The connections can swivel into two end settings to alternatively free and block the outlets, or free both outlets in an intermediate setting. The nozzle is made of soft elastomer and the cushion support is made of metal mesh.

Data supplied from the **esp@cenet** database - Worldwide

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑫ Offenlegungsschrift
⑩ DE 198 10 936 A 1

⑮ Int. Cl.⁶:
B 60 N 2/44
B 60 H 1/00

⑪ Aktenzeichen: 198 10 936.9
⑫ Anmeldetag: 13. 3. 98
⑬ Offenlegungstag: 16. 9. 99

⑭ Anmelder:
DaimlerChrysler AG, 70567 Stuttgart, DE

⑮ Erfinder:
Boll, Wolf, Dr.-Ing., 71384 Weinstadt, DE

⑯ Entgegenhaltungen:
FR 26 94 527
US 31 37 523
US 31 27 931

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

⑰ Fahrzeugsitz

⑱ Die Erfindung betrifft einen Fahrzeugsitz mit einem Sitzteil, das einen luftdurchlässigen Polsterträger und ein auf diesem aufliegendes, luftdurchlässiges Polster aufweist, und mit einer Vorrichtung zur Sitzbelüftung mittels eines zum Sitzteil führenden, mit konditionierter Luft gespeisten Luftkanals. Zur Vereinfachung der Sitzbelüftung bei gleichzeitiger Verbesserung ihrer Wirksamkeit ist der unterhalb des Sitzteils mündende Luftkanal endseitig mit einer den austretenden Luftstrom auffächерnden Düse versehen, die so ausgebildet ist, daß der aufgefächerte Luftstrom die auf dem Polsterträger aufliegende Polsterunterseite direkt anströmt.

DE 198 10 936 A 1

DE 198 10 936 A 1

Beschreibung

Die Erfindung betrifft einen Fahrzeugsitz gemäß dem Oberbegriff des Patentanspruchs 1.

Bei einem bekannten Fahrzeugsitz dieser Art (US 3 137 523 A) ist unterhalb eines Stützrahmens für den Polsterträger eine über den gesamten Stützrahmen sich erstreckende, zum Fahrzeuboden hin abgeschlossene Luftkammer ausgebildet. Der Luftkanal durchdringt die Luftkammer in deren hinteren, der Rückenlehne naheliegenden Bereich und endet innerhalb eines zwischen dem Lehnenpolster und der Rückwand der Rückenlehne ausgebildeten Hohlraums. Am Ende des Luftkanals und in dem die Luftkammer durchdringenden Kanalabschnitt ist jeweils eine Ausströmöffnung im Luftkanal vorgesehen, so daß die dem Luftkanal zugeführte, z. B. mittels einer Klimaanlage konditionierte Luft einerseits in die Luftkammer und andererseits in den Hohlraum einströmt und sich jeweils dort über die gesamte Polsterfläche verteilen kann. Im Polster selbst ist eine Vielzahl von Luftkanälen ausgebildet, die das Polster durchdringen und an der Polsteroberfläche einerseits und an der Polsterunter- oder -rückseite andererseits münden. Durch Einspeisen von Warm- oder Kaltluft in den Luftkanal kann die Sitzfläche und die Lehnenfläche des Sitzes erwärmt oder gekühlt werden.

Der Erfindung liegt die Aufgabe zugrunde, bei einem Fahrzeugsitz der eingangs genannten Art die Sitzbelüftung zu vereinfachen und belüftungswirksamer zu gestalten.

Die Aufgabe ist in einem Fahrzeugsitz der im Oberbegriff des Patentanspruchs 1 definierten Gattung erfindungsgemäß durch die Merkmale im Kennzeichenteil des Patentanspruchs 1 gelöst.

Der erfindungsgemäße Fahrzeugsitz hat den Vorteil, daß durch die direkte Anströmung der Unterseite der Sitzfläche mit Luft auf die Ausbildung einer fertigungstechnisch aufwendigen, geschlossenen Luftkammer unterhalb des Polsters zur Luftverteilung und großflächigen Durchlüftung des Polsters verzichtet werden kann. Die an der Unterseite des Polsters entlangstreichende Luft erzeugt bei stark erwärmer Polsteroberfläche einen Temperatur- und Luftfeuchtigkeitsgradienten, wodurch nicht nur Wärme sondern auch die vom Sitzenden erzeugte Transpirationsfeuchtigkeit gut aus dem nach unten offenen Sitzteil abgeleitet und so das Mikroklima auf der Sitzoberfläche verbessert wird. Die Anströmdüse zur Direktbelüftung ist kostengünstig herstellbar und läßt sich räumlich leicht unterbringen. Die Fertigungskosten betragen nur einen Bruchteil der für eine Luftkammer anzusetzenden Kosten. Der Fahrzeugsitz muß gegenüber einem herkömmlichen Sitz ohne Belüftung konstruktiv nicht geändert werden, so daß auch eine Nachrüstung des Sitzes mit einer Sitzbelüftung möglich ist.

Bei einem hochwertigen Sitz mit Roßhaarfüllung des Polsters und Metallgeflechtmatte als Polsterträger, die sich über Sitzfedern an einem in einem Sitzuntergestell gehaltenen Stützrahmen abstützt, wird die Düse zwischen den Sitzfedern im Bereich zwischen Stützrahmen und Polsterträger angeordnet und vorzugsweise aus einem Weichelastomer hergestellt, damit sie bei lokaler Extremdurchfederung der Sitzfedern nicht beschädigt wird. Bei strukturierten Schaumstoffsitzen kann es von Vorteil sein, die Düse am Schaumstoffpolster direkt zu befestigen. Der Luftkanal ist vorzugsweise als flexibler-Schlauch ausgeführt, damit er die Längsverstellmöglichkeit des Sitzes nicht beeinträchtigt, und vorzugsweise an einem längs eines Kardantunnels verlegten Luftversorgungsstrang einer Klimaanlage seitlich angeschlossen.

Vorteilhafte Ausführungsformen des erfindungsgemäßen Fahrzeugsitzes mit zweckmäßigen Weiterbildungen und

Ausgestaltungen der Erfindung sind in den weiteren Ansprüchen angegeben.

- Gemäß einer vorteilhaften Ausführungsform der Erfindung ist in dem mit der Düse verbundenen Luftkanal mittels einer Steuerklappe wahlweise Gebläseluft einer Klimaanlage oder aus dem Raumbereich unterhalb des Sitzteils angesaugte Gebläseluft einspeisbar. Hierzu sind ein Gebläsestutzen mit einem integrierten Gebläse und einer unterhalb des Sitzteils, vorzugsweise fahrzeubodenah, angeordneten Luftansaugöffnung, der von einem mit dem Klimakanal in Verbindung stehenden Anschlußstutzen für den Luftkanal abweigt und eine an der Abzweigstelle zur Steuerung der Luftpudurchtrittsquerschnitte von Anschluß und Gebläsestutzen angeordnete Steuerklappe vorgesehen, die so ausgebildet ist, daß sie in zwei Endschwenkstellungen jeweils wechselseitig den einen Luftpudurchtrittsquerschnitt freigibt und den anderen sperrt und in dazwischenliegenden Schwenstellungen beide Luftpudurchtrittsquerschnitte teilweise freigibt. Durch diese konstruktive Ausgestaltung werden zwei zusätzliche Vorteile erreicht. Zum einen kann in Hinblick auf eine schnelle Vorababkühlung der z. B. durch Sonneninstrahlung aufgeheizten Polsteroberfläche eine Luftversorgung zur Belüftung des Fahrzeugsitzes nicht über den Klimakanal aus dem aufgeheizten Klimakasten, sondern durch Luftansaugung aus dem kühleren Bereich unterhalb des Fahrzeugsitzes erfolgen. Damit wird ohne Einschalten der Klimaanlage das Polster des Fahrzeugsitzes mit kühler Luft aus dem Fußbereich angeströmt und in kürzester Zeit auf eine komfortable Temperatur heruntergekühlt. Diese Belüftungsart eignet sich auch für die Dauerbelüftung aus einer Solarstromquelle, sofern eine bestimmte Sitz- oder Raumtemperatur überschritten wird. Bei Fahrzeugen mit ferngesteuerter Zentralverriegelung kann die Aktivierung des Gebläses im Gebläsestutzen und die entsprechende Umsteuerung der Steuerklappe mit der Entriegelung des Fahrzeugs erfolgen, so daß noch vor Einsteigen in das Fahrzeug die Sitzbelüftung einsetzt. Des weiteren besteht der Vorteil, daß bei eingeschalteter Klimaanlage zunächst Kaltluft direkt in den heißen Sitz gefördert wird, um die Stauwärme schneller aus der gesamten Sitzanlage herauszubefördern. Wenn die Abkühlung stattgefunden hat, wäre eine weitere Kaltluftbeaufschlagung für den Sitzenden unangenehm, so daß durch teilweises Öffnen der Steuerklappe nunmehr eine Beaufschlagung der Polsterunterseite mit Mischluft möglich ist. Die Mischluft erlaubt – im Gegensatz zu einer Kaltluftdrosselung – eine höhere Luftgeschwindigkeit in der Sitzbelüftung. Dies hat positive Auswirkungen auf eine gleichmäßige Temperaturverteilung im Sitz und eine verbesserte Feuchtigkeitsaufnahme, da zu langsamen Luftströme und zu stark vorgekühlte Luft nur wenig Feuchtigkeit aufzunehmen vermögen.

Die Erfindung ist anhand eines in der Zeichnung dargestellten Ausführungsbeispiels im folgenden näher beschrieben. Es zeigen jeweils in schematischer Darstellung:

- Fig. 1 ausschnittsweise eine Draufsicht einer Fahrgastzelle eines Personenkraftwagens mit einem Vordersitz und einer Sitzbelüftungsvorrichtung,

Fig. 2 einen Schnitt eines Fahrzeugsitzes in der Fahrgastzelle in Fig. 1 gemäß Schnittlinie II-II in Fig. 1,

Fig. 3 eine vergrößerte Darstellung des Ausschnitts III in Fig. 1 mit modifizierter Sitzbelüftungsvorrichtung.

Die in Fig. 1 ausschnittsweise in Draufsicht dargestellte Fahrgastzelle 10 ist mit mindestens zwei am Fahrzeuboden 11 befestigten Vordersitzen ausgerüstet, von denen lediglich der Fahrersitz 12 in Draufsicht dargestellt ist. Zwischen den beiden Vordersitzen hindurch erstreckt sich in Fahrzeulängsrichtung ein Klimakanal 13, der bei Fahrzeugen mit Hinterradantrieb in oder auf einem Kardantunnel 14 verlegt

ist. Der an dem Ausgang eines sog. Klimakastens 46 einer Klimaanlage angeschlossene Klimakanal 13 endet unmittelbar vor dem Fond der Fahrgastzelle 10 und ist hier mit Luftausströmdüsen 15 zur Belüftung des Fond mit klimatisierter Luft verschen. Der Fahrersitz 12 weist ein Sitzteil 16, das in Fahrzeulgängsrichtung verschiebbar am Fahrzeugboden 11 gehalten ist, sowie eine Rückenlehne 17 auf, die zur Einstellung einer individuell gewünschten Lehnenneigung schwenkbar am Sitzteil 16 befestigt ist. Wie Fig. 2 zeigt, sind zur Längsverschiebung des Sitzteils 16 zwei Führungsschienen 18 am Fahrzeugboden 11 im Parallelabstand befestigt, und das Sitzteil 16 ist mit zwei C-Profilschienen 19 ausgestattet, von denen jeweils eine eine Führungsschiene 18 auf deren Ober- und Unterseite übergreift. Zwischen den Führungsschienen 18 und den C-Profilschienen 19 sind Kugeln 20 eingelegt, die sich auf der Ober- und Unterseite der Führungsschienen 18 zwischen den Führungsschienen 18 und den C-Profilschienen 19 abrollen. Wie nicht weiter dargestellt ist, kann das Sitzteil 16 in diskreten Verschiebepositionen jeweils am Fahrzeugboden 11 arretiert werden. Die C-Profilschienen 19 sind Teil eines Grundrahmens oder Sitzuntergestells 21, auf dessen Oberseite ein bügelförmiger Stützrahmen 22 befestigt ist. Auf dem Stützrahmen 22 stützt sich ein am Sitzuntergestell 21 randseitig gehaltener Polsterträger 23 über Sitzfedern 24 ab. Der luftdurchlässig ausgebildete Polsterträger 23 nimmt auf seiner von den Sitzfedern 24 abgekehrten Oberseite ein luftdurchlässiges Polster 25 auf, das mit einem luftdurchlässigen Polsterbezug 26 aus textillem Stoff oder einem perforierten Leder oder Kunstleder überspannt ist. Der Polsterbezug 26 ist am Sitzuntergestell 21 befestigt. Im Ausführungsbeispiel der Fig. 2 ist der Polsterträger 23 als Metallgeflechtmatte ausgebildet und das Polster 25 mit einer Röshaarfüllung versehen. Die seitlich längsverlaufenden Polsterkanten werden von einem Schaumstoffkörper 27 gebildet.

Zur Sicherstellung eines guten Sitzklimakomforts ist ein Luftkanal 28 von dem Klimakanal 13 abgezweigt und zu dem Sitzteil 16 geführt, der in einer unterhalb des Polsterträgers 23 angeordneten Düse 30 mündet. Um die Verschiebbarkeit des Sitzteils 16 nicht zu beeinträchtigen, ist der Luftkanal 28 als flexibler Schlauch 29 ausgeführt, der an einem seitlichen Luftanschlußstutzen 31 des Klimakanals 13 angeschlossen ist. Mittels einer in Fig. 3 dargestellten, manuell oder motorisch oder per Thermostatelement betätigbaren Steuerklappe 45 kann der Luftanschlußstutzen 31 gegenüber dem Klimakanal 13 abgesperrt oder freigegeben werden, so daß im letzteren Fall klimatisierte Luft über den flexiblen Schlauch 29 zur Düse 30 strömt. Die Düse 30 ist so ausgebildet, daß der aus ihr austretende Luftstrom aufgefächert wird und die auf dem Polsterträger 23 aufliegende untere Polsterfläche des Polsters 25 direkt anströmt. Hierzu weist die Düse 30 zwei im Parallelabstand voneinander angeordnete, in Fahrzeulgängsrichtung, also in Sitztiefe, sich erstreckende Luftaustrittsfächen 32, 33 auf, die von den Mündungen zweier V-förmig angeordneter Lufttrichter 34, 35 gebildet sind. Die aus einem Weichelastomer hergestellte Düse 30 ist im Zwischenraum zwischen Stützrahmen 22 und Polsterträger 23 angeordnet und mit zum Polsterträger 23 weisenden Luftaustrittsfächen 32, 33 am Stützrahmen 22 befestigt.

Wird nunmehr klimatisierte Luft aus dem Klimakanal 13 in den Luftkanal 28 geleitet, so wird die Sitzfläche über die Düse 30 direkt von unten angeströmt. Führt der Klimakanal, z. B. in den Sommermonaten Kaltluft, so wird nicht nur Wärme sondern auch Feuchtigkeit aus dem nach unten offenen Sitzteil 16 abtransportiert. In kälteren Jahreszeiten kann mit warmer Luft aus der Klimaanlage die Sitzfläche problemlos aufgewärmt werden. Die Herstellung der Düse 30

aus Weichelastomer vermeidet, daß bei lokaler Extremdurchfederung des Polsters 25 bzw. der Sitzfedern 24 die Düse 30 beschädigt wird. Wie in Fig. 3 dargestellt ist, kann in Hinblick auf eine schnelle Abkühlung der z. B. durch Sonneneinstrahlung beim Parken aufgeheizten Polsteroberfläche die Luft für die Sitzbelüftung nicht aus dem ebenfalls durch die Sonne aufgeheizten Klimakasten 46, sondern durch Luftansaugung aus dem kühleren Bereich unterhalb des Sitzes entnommen werden. Diese Luftansaugung aus dem Untersitzbereich kann bei Fahrzeugen mit ferngesteuerte Zentralverriegelung mit der Entriegelung aktiviert werden, so daß noch vor Einsteigen in das Fahrzeug das Polster 25 durch Direktanblasen mit kühler Luft auf eine komfortable Temperatur heruntergekühlt wird. Im einzelnen ist hierzu am Luftanschlußstutzen 31 des Klimakanals 13 für den Luftkanal 28 bzw. den flexiblen Schlauch 29 ein Gebläsestützen 42 angesetzt, in dem ein hier als elektromotorisch angetriebener Kleinventilator ausgebildetes Gebläse 43 integriert ist. Der Gebläsestützen 42 weist eine Luftansaugöffnung 44 auf, die unterhalb des Sitzteils 16 in Nähe des Fahrzeugbodens 11 mündet. Wie bekannt, ist bei Fahrzeugen, die beim Parken durch Sonneneinstrahlung aufgeheizt werden, die Lufttemperatur in diesem Raumbereich am kühlisten. An der Mündungsstelle des Gebläsestützens 42 im Luftanschlußstutzen 31 ist eine Steuerklappe 45 vorgesehen, die vorzugsweise motorisch schwenkbar und so ausgebildet ist, daß sie in der einen Endstellung (in Fig. 3 ausgezogen dargestellt) den Gebläsestützen 42 vollständig verschließt und den Luftaustrittsstutzen 31 des Klimakanals 13 vollständig freigibt und in ihrer anderen Schwenkendstellung (in Fig. 3 strichliniert dargestellt) den Gebläsestützen 42 vollständig freigibt und den Luftanschlußstutzen 31 absperrt. In diesem Schwenkbereich kann die Steuerklappe 45 jede beliebige Schwenkposition einnehmen, so daß die Luftströme aus Gebläsestützen 42 und aus dem Luftanschlußstutzen 31 beliebig gemischt werden können.

Bei der vorstehend beschriebenen Sitzkühlung eines in der Sonne parkenden Fahrzeugs, die mit ferngesteuerte Entriegelung der Zentralverriegelung des Fahrzeugs aktiviert wird, wird das Gebläse 43 eingeschaltet und die Steuerklappe 45 in ihre in Fig. 3 strichliniert dargestellte Schwenkendstellung überführt. Damit wird über die Düse 30 das aufgeheizte Polster 25 mit kühler Luft aus dem Untersitzbereich beaufschlagt und noch vor Einschalten der Klimaanlage gekühlt. Nach Einschalten der Klimaanlage kann durch Umsteuern der Steuerklappe 45 in die in Fig. 3 ausgezogen dargestellte Schwenkendstellung der Sitz mit Kaltluft aus der Klimaanlage gekühlt werden. Hat die Abkühlung stattgefunden, so wird eine weitere Beaufschlagung des Sitzes mit Kaltluft von dem Sitzenden als unangenehm empfunden. Nunmehr kann die Steuerklappe 45 bei eingeschalttem Gebläse 43 soweit aufgesteuert werden, daß der Kaltluft aus dem Klimakanal 13 wärmere Luft aus dem Fahrzeuginnenraum zugemischt wird. Damit wird eine höhere Luftgeschwindigkeit in der Sitzbelüftung und eine damit einhergehende gleichmäßige Temperaturverteilung im Sitz und verbesserte Feuchtigkeitsaufnahme erzielt.

Wie in Fig. 1 dargestellt ist, kann eine gleichartige Düse 30' für den hier nicht dargestellten identisch aufgebauten Beifahrersitz vorgesehen werden, die in gleicher Weise an einen Luftanschlußstutzen 31' des Klimakanals 13 angeschlossen ist. Die mit der Düse 30 für den Fahrersitz 12 übereinstimmenden Bauteile der Düse 30' sind mit gleichen Bezeichnungen versehen, die zur Unterscheidung mit einem Beistrich gekennzeichnet sind.

Die in Fig. 1 in Draufsicht zu sehende Rückenlehne 17 des Fahrersitzes 12, die oberseitig eine Kopfstütze 36 trägt, weist ein Lehnenpolster 37 auf, das eine ähnliche Struktur

haben kann, wie das Polster 25 des Sitzteils 16. Wie allgemein bekannt und daher hier nicht weiter dargestellt ist, ist zwischen der Rückseite des Lehnenspolsters 37 und einer die Rückseite der Rückenlehne abdeckenden, rückwärtigen Lehnensverkleidung 38 üblicherweise ein Hohlraum ausgebildet, der sich von der Unterkante der Rückenlehne 17 bis nahe an die Kopfstütze 36 tragende Oberkante der Rückenlehne 17 erstreckt und polsterseitig unmittelbar von dem ebenfalls luftdurchlässig ausgebildeten Polsterträger begrenzt wird. Zur Klimatisierung auch des Lehnenspolsters 37 ist die Düse 30 mit einem Abzweig 39 versehen und an dem Abzweig 39 ein im unteren Bereich des Hohlraums angeordneter Luftausströmer 40 angeschlossen. Wie in Fig. 1 strichliniert angedeutet ist, weist der Luftausströmer 40 zur breitflächigen Anströmung der Rückseite des Lehnenspolsters 37 einen in Sitzbreite sich erstreckenden Luftaustrittsschlitz 41 auf. Bei der Belüftung des Luftkanals 28 von dem Klimakanal 13 aus wird damit auch zusätzlich das Lehnenspolster 37 gewärmt oder gekühlt, je nachdem ob der Klimakanal 13 Warm- oder Kaltluft führt.

5 10 15 20

Patentansprüche

1. Fahrzeug mit einem Sitzteil, das einen luftdurchlässigen Polsterträger und ein auf diesem aufliegendes, luftdurchlässiges Polster aufweist, und mit einer Vorrichtung zur Sitzbelüftung, die einen zum Sitzteil führenden, mit konditionierter Luft gespeisten Luftkanal sowie eine unterhalb des Polsters im Luftkanal ausgebildete Luftrausströmöffnung aufweist, dadurch gekennzeichnet, daß die Luftrausströmöffnung mit einer den über die Luftrausströmöffnung austretenden Luftstrom auffächernenden Düse (30) versehen ist, die so ausgebildet ist, daß der aufgefächerte Luftstrom die auf dem Polsterträger (23) aufliegende, untere Polsterfläche des Polster (25) direkt anströmt. 25
2. Sitz nach Anspruch 1, dadurch gekennzeichnet, daß die Düse (30) mindestens eine der Polsterunterseite zugekehrte, langgestreckte, schlitzartige Luftaustrittsfläche (32, 33) aufweist. 40
3. Sitz nach Anspruch 2, dadurch gekennzeichnet, daß die Düse (30) zwei im Parallelabstand voneinander angeordnete Luftaustrittsflächen (32, 33) aufweist, die sich in Richtung Sitztiefe erstrecken. 45
4. Sitz nach Anspruch 3, dadurch gekennzeichnet, daß die beiden Luftaustrittsflächen (32, 33) von den Mündungen zweier V-förmig angeordneter Lufttrichter (34, 35) gebildet sind. 50
5. Sitz nach einem der Ansprüche 1-4, bei dem der Polsterträger über Sitzfedern auf einem Stützrahmen abgestützt ist, dadurch gekennzeichnet, daß die Düse (30) im Zwischenraum zwischen Stützrahmen (22) und Polsterträger (23) angeordnet und vorzugsweise am Stützrahmen (22) befestigt ist. 55
6. Sitz nach Anspruch 5, dadurch gekennzeichnet, daß die Düse (30) aus einem Weichelastomer und der Luftkanal (28) aus einem flexiblen Schlauch (29) hergestellt ist. 60
7. Sitz nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß der Polsterträger (23) als Metallgeflechtmatte ausgebildet ist und das Polster (23) Roßhaarfüllung aufweist. 65
8. Sitz nach einem der Ansprüche 1-7, dadurch gekennzeichnet, daß in dem mit der Düse (30) verbundenen Luftkanal (28) mittels einer Steuerklappe (45) wahlweise Gebläseluft einer Klimaanlage und/oder aus dem Raumbereich unterhalb des Sitzteils (16) ange saugte Gebläseluft einspeisbar ist.

9. Sitz nach Anspruch 8, dadurch gekennzeichnet, daß an einem mit dem Klimakanal (13) in Verbindung stehenden Anschlußstutzen (31) für den Luftkanal (28) ein Gebläsestutzen (42) mit einem integrierten Gebläse (43) und einer unterhalb des Sitzteils (16) vorzugsweise fahrzeughennah angeordneten Lufthausaugöffnung (44) abzweigt und daß an der Abzweigstelle die Steuerklappe (45) zur Steuerung der Luftpduchttritsquerschnitte von Anschluß und Gebläsestutzen (31, 42) so angeordnet ist, daß sie in zwei Schwenkstellungen jeweils wechselweise den einen Luftpduchttritsquerschnitt freigibt und den anderen sperrt und in dazwischenliegenden Schwenkstellungen beide Luftpduchttritsquerschnitte teilweise freigibt. 10
10. Sitz nach einem der Ansprüche 1-9, mit einer Rückenlehne, die einen zwischen einem Lehnenspolster und einer rückwärtigen Lehnensverkleidung ausgebildeten, sich über das gesamte Lehnenspolster erstreckenden Hohlraum aufweist, dadurch gekennzeichnet, daß die Düse (30) einen Abzweig (39) aufweist, der mit einem im unteren Bereich des Hohlraums angeordneten Luftrausströmer (40) verbunden ist. 15
11. Sitz nach Anspruch 10, dadurch gekennzeichnet, daß der Luftrausströmer (40) einen in Sitzbreite sich erstreckenden Luftaustrittsschlitz (41) aufweist. 20
12. Sitz nach Anspruch 10, dadurch gekennzeichnet, daß die Abströmöffnungen der Rückenlehne (17) so gestaltet und/ oder angeordnet sind, daß ein Teil der Abströmöffnungen einen Luftschieber erzeugt, der auch die Türfüllungen bestreichen kann. 25

Hierzu 2 Seite(n) Zeichnungen

Fig. 3