Атом водорода

Энергия взаимодействия электрона с ядром $U(r)=-\frac{Ze^2}{4\pi\varepsilon_0 r}$. Если подставить это выражение в уравнение Шредингера, то получим $\Delta\psi+\frac{2m}{\hbar^2}\Big(E+\frac{Ze^2}{4\pi\varepsilon_0 r}\Big)\psi=0$. Решением данного уравнения будет энергия электрона в атоме водорода $E_n=-\frac{1}{n^2}\frac{Z^2me^4}{8\hbar^2\varepsilon_0^2}$. Энергия ионизации $E_i=-E_1=13.55$ эВ.

По теории Шредингера, максимум вероятности нахождения электрона в атоме на конкретном уровне совпадает с соответствующим радиусом Боровской орбиты. При этом чем выше уровень, тем меньше вероятность нахождения электрона на нем.

С рассматриванием вероятности пропадает понятие орбиты, вводится понятие электронного облака. Говорить об орбите нельзя ввиду большой неопределенности по координате.

Квантовые числа

n = 1, 2, ... - соответствует номеру электронного облака (Боровская орбита).

l=0,1,...,n-1 — орбитальное квантовое число. Связано с орбитальным моментом импульса L. Характеризует движение электрона вокруг ядра, показывает форму электронного облака. l=0 соответствует s — состоянию. l=1 p — состоянию. l=2 d — состоянию. l=3 f — состоянию.

m=-l;-l+1;...;0;...;l-магнитное квантовое число. Связано с проекцией момента импульса на выбранное направление. Характеризует ориентацию электронного облака в пространстве.

		l	m	S	Вместимость	
	S	0	0	$\pm \frac{1}{2}$	2	
-	p	1	-1	$\pm \frac{1}{2}$	6	
			0	$\pm \frac{1}{2}$		
			1	$\pm \frac{1}{2}$		
	d				10	
	f				14	

Пример: l=0-s — орбиталь, m=0, это сферическое облако, неориентируемое. l=1-p — орбиталь, m=-1;0;1, это гантелеобразное облако.

 $s=\pm rac{1}{2}$ – спиновое квантовое число. Характеризует собственное движение электронов.

Принцип Паули: не существует двух электронов с одинаковым набором квантовых чисел. Он позволяет выяснить вместимость каждой орбитали.

Правило заполнения электронных уровней

Атомы занимают положения с наименьшей энергией. Отсюда формируется **правило Кличковского:** в атоме электронные уровни и подуровни заполняются в порядке возрастания суммы n+l. При равных значениях n+l первым заполняется уровень с меньшим n.

Структура таблицы Менделеева отражает правило заполнения уровней с помощью принципа Паули и правила Кличковского.

n	l	n + l	Nº	e
1	s(0)	1	1	2
2	<i>s</i> (0)	2	2	2
	<i>p</i> (1)	3	3	6
	<i>s</i> (0)	3	4	2
3	<i>p</i> (1)	4	5	6
	d(2)	5	7	10
	s(0)	4	6	2
4	p(1)	5	8	6
4	d(2)	6	10	10
	f(3)	7	12	14
	<i>s</i> (0)	5	9	2
5	<i>p</i> (1)	6	11	6
	d(2)	7	13	10

Собственное значение энергии жесткого квантового ротатора $E_l = \frac{\hbar^2}{2I} l(l+1).$

Орбитальный механический момент импульса $L=\hbar\sqrt{l(l+1)}$.

Проекция $m{L}$ на произвольное направление $L_z=m_l\hbar, \, m_l=0,\pm 1,...$, $\pm l.$

Орбитальный магнитный момент импульса $\overrightarrow{\mu_l} = -g\overrightarrow{L}$; $g = \frac{e}{2m_e}$ — орбитальное гиромагнитное отношения для электрона. $\mu_B = \frac{e\hbar}{2m_e} = 0.927*10^{-23} \frac{\mbox{$\Lambda \times$}}{\mbox{T}}$; $\mu_l = \mu_B \sqrt{l(l+1)}$.

Собственный механический момент импульса $L_s=\hbar\sqrt{s(s+1)}=\hbar\sqrt{\frac{1}{2}*\frac{3}{2}}=\frac{\hbar\sqrt{3}}{2}$

Проекция L_s на произвольное направление $L_{sz}=m_s\hbar=\pm\frac{1}{2}\hbar; m_s=\pm s=\pm\frac{1}{2}$ — магнитное спиновое квантовое число.

Многоэлектронные атомы

Это атомы, имеющие несколько электронов. В этом случае мы вводим суммарный орбитальный механический момент, суммарный L_L , суммарный орбитальный магнитный момент μ_L , суммарный собственный механический момент L_s и суммарный собственный орбитальный момент μ_s .

Магнитный и механический моменты противоположно направлены!

Для их вычисления используются те же формулы, что и для одноэлектронной системы, только будут использоваться **суммарные квантовые числа** $\boldsymbol{L}, \boldsymbol{S}$.

Суммарный общий момент $\overrightarrow{L_J} = \overrightarrow{L_s} + \overrightarrow{L_L} \cdot J$ – полное квантовое число.

Спектры щелочных металлов

В щелочных металлах снимается вырождение по орбитальному квантовому числу l, т.е. на спектре положение линий, соответствующих состояниям с разными l, будет разным (энергии 3s, 3p, 3d — различные).