Networks 4: Production-Inventory Planning: Multiple Products

- Adding constraints to a math program can never improve a solution
- Can ignore situations that would make a solution worse
 - Makes it easier to add constraints to implement a decision
 - Cf. setup constraints

Coupling Constraints

 Otherwise separate product networks connected via sharing the combined use of a resource's capacity

Linking Constraints

 Otherwise separate product networks connected via sharing the exclusive use of a resource's capacity

Multiple Products with Exclusive Shared Resources

Multiple Products with Exclusive Shared Resources

$$\begin{array}{lll} \text{Minimize} & \sum_{i=1}^m \sum_{j=1}^t \sum_{k=1}^g c_{ik}^p x_{ijk} + \sum_{i=1}^m \sum_{j=2}^{t-1} \sum_{k=1}^g c_{ik}^i y_{ijk} \\ \text{subject to} & -x_{ijk} + x_{(i+1)jk} - y_{ijk} + y_{i(j+1)k} = 0, & i = 1, \dots, m-1; j = 1, \dots, t; k = 1, \dots, g \quad (a) \\ & -x_{mjk} - y_{mjk} + y_{m(j+1)k} = d_{jk}, & j = 1, \dots, t; k = 1, \dots, g \quad (b) \\ & x_{ijk} \leq u_{ik} z_{ijk}, & i = 1, \dots, m; j = 1, \dots, t; k = 1, \dots, g \quad (c) \\ & \sum_{k=1}^g z_{ijk} \leq 1, & i = 1, \dots, m; j = 1, \dots, t \quad (d) \\ & y_{i1k} = y_i^0, & i = 1, \dots, m; k = 1, \dots, g \\ & y_{i(t+1)k} = y_{ik}^{t+1}, & i = 1, \dots, m; k = 1, \dots, g \\ & x, y > 0; z \in \{0, 1\}, \end{array}$$

m = number of production stages

t =number of periods of production

g = number of products

 $c_{ik}^p = \text{production cost (dollar/ton)}$ in stage i for product k

 $x_{ijk} = \text{production (ton)}$ at stage i in period j for product k

 $c_{ik}^i = \text{inventory cost (dollar/ton)}$ in stage i for product k

 $y_{ijk} = \text{stage-}i \text{ inventory (ton) from period } j-1 \text{ to } j \text{ for product } k$

 $z_{ijk} = \text{production indicator at stage } i \text{ in period } j \text{ for product } k$

 $d_{ik} = \text{demand (ton) in period } j \text{ for product } k$

 $u_{ik} = \text{production capacity (ton) of stage } i \text{ in period } j \text{ for product } k$

 $y_{ik}^0 = \text{initial inventory (ton) of stage } i \text{ for product } k$

 y_{ik}^{t+1} = final inventory (ton) of stage *i* for product *k*.

Multiple Products with Setup Costs

Setup Constraints

$$z_{mtg} \in \{0,1\}$$
, production indicator

Z_{mtg}	1	2	3	4	5	6	7
1	0	1	1	0	1	1	1
2	0	0	0	1	0	0	0

 $v_{mtg} \in \{0,1\},$ setup indicator

V_{I}	ntg	1	2	3	4	5	6	7
	1	0	1	0	0	1	0	0
	2	0	0	0	1	0	0	0

	$-v_t$	+	\mathcal{Z}_t	_	z_{t-1}	≤ 0
	0		0		0	0
	0		0		1	-1
Don't want (not feasible)			1		0	1 5
(Hot reasible)	0		1		1	0 0 tsost
	1		0		0	$\begin{bmatrix} -1 \\ -1 \end{bmatrix}$
	1		0		1	-2
Want (feasible)			1		0	$0 \mid 0$
(10001010)	1		1		1	$\begin{bmatrix} -1 \\ \end{bmatrix}$ Feasible,
					'	L

Multiple Products with Setup Costs

where,

m= number of production stages $v_{ijk}=$ setup indicator at stage i in period j for product k j=1 number of periods of products j=1 number of product j=1 number of products j=1 number of product j=1

Discussion

- 1. Indicator variables require MILP instead of LP:
- 2. Lumpy resources require indicator variables to include fixed costs (setup, prod scale economies, etc)
- Shared resources:
 - Coupling constraints used to ensures total output doesn't exceed available capacity (can still be LP)
 - Linking constraints used to ensure only one activity per period
- 4. Demand over planning horizon can be a mix of firm and forecasted orders from MPS/MRP/ERP
- 5. What is a realistic or typical number of demand periods?
 - Length should include all significant planning decisions (e.g., scheduled maintenance)
- 6. How is safety stock taken into consideration?

Work Flow of Logistics Software Stack

- Flow: Data \rightarrow Model \rightarrow Solver \rightarrow Output \rightarrow Report
 - reports are run on a regular period-to-period, rolling-horizon basis as part of normal operations management
 - model only changed when logistics network changes