

American sign language understanding

Project 1 - TAA

Duarte Mortágua - 92963 Mário Silva - 93430

Pétia Georgieva

DATA VISUALIZATION

Why this dataset and data description

01

ML MODELS

Logistic Regression and Convolutional Neural Network 02

03

HYPERPARAMETERS AND NETWORK STRUCTURE

Learning rates, epochs, batch size, convolutional layers, dropouts, decaying learning rate

TABLE OF CONTENTS

04

RESULTS AND PERFORMANCE COMPARISON

Accuracy, Loss. Comparison between models.

05

PREDICTIONS WITH DIFFERENT PICTURES

Predicting letters with images of the dataset and with our own.

06

CONCLUSIONS

How can we improve?

O1 DATA VISUALIZATION

Why this dataset and data description

DATA VISUALIZATION

Training dataset

	label	pixel1	pixel2	 pixel782	pixel783	pixel784
0	3	107	118	 204	203	202
1	6	155	157	 103	135	149
2	2	187	188	 195	194	195
3	2	211	211	 222	229	163
4	13	164	167	 163	164	179
27450	13	189	189	 200	222	225
27451	23	151	154	 195	195	194
27452	18	174	174	 202	200	200
27453	17	177	181	 64	87	93
27454	23	179	180	 205	209	215

The author transformed the original dataset:

cropping to hands-only \rightarrow gray-scaling \rightarrow resizing

Also creating at least 50+ variations to enlarge the quantity: Filters ('Mitchell', 'Robidoux', 'Catrom', 'Spline', 'Hermite') \rightarrow 5% random pixelation \rightarrow +/- 15% brightness/contrast \rightarrow 3 degrees rotation.

DATA VISUALIZATION

Number of examples/class in the Train Dataset

ML MODELS LOGISTIC REGRESSION

O PyTorch

Linear model with multi class approach

1. Initially, the function returns a tensor with 26 elements with values ranging from negative infinity to positive infinity

2. cross_entropy function that combines the negative log likelihood and softmax function to normalize the resulting values from the linear function.

ML MODELS CONVOLUTIONAL NEURAL NETWORK

Deep Learning algorithm

A ConvNet is able to successfully capture the **Spatial and Temporal dependencies** in an image..

The network can be trained to understand the sophistication of the image better.

ML MODELS WHY 2 DIFFERENT ARCHITECTURES?

In cases of extremely basic binary images, a linear method might show an average precision score while performing prediction of classes, but would have little to no accuracy when it comes to complex images having pixel dependencies throughout.

HYPERPARAMETERS LOGISTIC REGRESSION MODEL

Batch size and epochs

256 and 200, based on the literature and prior works related to this problem.

Learning rate

We tested 8 different learning rates and observed the

accuracy graphs.

		Loss	Accuracy
lr=0.001	Validation	0.4703	0.9985
worse	Test	1150.3939	0.6855
Ir=1e-05	Validation	0.0703	0.9835
better	Test	5.5739	0.5628

Convolutional may be better?

NETWORK STRUCTURE CONVOLUTIONAL NEURAL NETWORK MODEL

Layer (type)	Output	Shape	Param #
conv2d_4 (Conv2D)	(None,	26, 26, 64)	640
max_pooling2d_4 (MaxPooling2	(None,	13, 13, 64)	0
conv2d_5 (Conv2D)	(None,	11, 11, 128)	73856
max_pooling2d_5 (MaxPooling2	(None,	5, 5, 128)	0
flatten_2 (Flatten)	(None,	3200)	0
dense_4 (Dense)	(None,	256)	819456
dense 5 (Dense)	(None,	26)	6682

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,1	0 ×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

Data Augmentation

Re-scales pixels of the image to 0-1 by dividing by 255.

Rotates images between 0 and 45 degrees.

Shifts images horizontally and vertically by 15%.

Zooms in and out images by 20%.

Flips images horizontally.

CNN Hyperparameters

Batch Size

Batch Sizes	Test Accuracies
32	91%
64	95%
128	93%
256	92%
512	98%
1024	93%

Decaying Learning Rate

If the validation accuracies were fluctuating a lot the model could overshoot the optima. However, in our case, it didn't make much difference.

Changes in the Neural Network Structure

Batch Normalization Layer

Dropout Layer

Accuracies and Losses

Logistic Regression Model

	Loss	Accuracy
Validation	0.0703	0.9835
Test	5.5739	0.5628

CNN Model Without Data Augmentation

20:00:7:00:00:00:00:00:00:00:00:00:00:00:					
	Loss	Accuracy			
Validation	0.0044	1.0			
Test	0.2359	0.9331			

CNN Model With Data Augmentation

	Loss	Accuracy
Validation	0.0314	0.9950
Test	0.0315	0.9873

CNN Model Without Data Augmentation

CNN Model With

3.0

2.5

2.0

1.5

1.0

0.5

0.0

CNN Model Confusion Matrix

CNN Model Predictions With Data Set Images

Our Pictures

Label = T

Logistic Regression Model Predictions With Our Pictures

CNN Model Predictions With Our Pictures

