

What are Derived Quantities?

Navigation and Ancillary Information Facility

- Derived quantities, what we often call "observation geometry," are produced using data from kernels.
 - These are the primary reason that SPICE exists!
- The SPICE Toolkit contains many routines that assist with the computations of derived quantities.
 - Some are fairly low level, some are quite high level.
 - More are being added as time permits.

Examples follow on the next several pages.

High-level Geometric Computations

Navigation and Ancillary Information Facility

- Geometric Parameter or Condition
 - Determine a quantity or a condition at a specified time.
- Geometry Finder (GF)
 - Find times, or time spans, when a specified "geometric event" occurs, or when a specified "geometric condition" exists.
 - » This is such a large topic that a separate tutorial ("geometry_finder") has been written for it.

Examples of Geometric Parameters

Navigation and Ancillary Information Facility

- Illumination angles (phase, incidence, emission)
 - ILLUMF, ILLUMG, ILUMIN*
- Sub-solar point
 - SUBSLR*
- Sub-observer point
 - SUBPNT*
- Surface intercept point
 - SINCPT*, DSKXV, DSKXSI
- Longitude of the sun (Ls), an indicator of season
 - LSPCN
- Phase angle between body centers
 - PHASEQ
- Limb and terminator points on an ellipsoid or DSK
 - LIMBPT, TERMPT
- Surface points at specified longitude, latitude coordinates
 - LATSRF
- Outward surface normal on extended object
 - SRFNRM

^{*} These routines supercede the now deprecated routines ILLUM, SUBSOL, SUBPT and SRFXPT

Examples of Geometric Conditions

Navigation and Ancillary Information Facility

- Ray in field-of-view?
 - FOVRAY
- Ephemeris object within field-of-view?
 - FOVTRG
- Determine occultation condition
 - OCCULT

Examples of Geometric Searches

Navigation and Ancillary Information Facility

- Find times when:
 - ray is in field-of-view
 - » GFRFOV
 - ephemeris object is within field-of-view
 - » GFTFOV
 - object is in occultation or transit
 - » GFOCLT
 - object is at periapse
 - » GFDIST
 - latitude and longitude are in specified ranges
 - » GFPOSC
 - solar incidence angle is below a specified limit
 - » GFILUM
- Far more GF functionality is available; see the GF tutorial.

Position and State Coordinate Transformations

Navigation and Ancillary Information Facility

Coordinate Transformation	Routine	
 Transform state vector between two coordinate systems 	- XFMSTA	General purpose API
 Latitudinal to/from Rectangular Planetographic to/from Rectangular R.A. Dec to/from Rectangular Geodetic to/from Rectangular Cylindrical to/from Rectangular Spherical to/from 	- LATREC RECLAT - PGRREC RECPGR - RADREC RECRAD - GEOREC RECGEO - CYLREC RECCYL	Single purpose APIs
Rectangular	- SPHREC RECSPH	

Vectors

Navigation and Ancillary Information Facility

Function

- < <v, w>
- $\mathbf{v} \mathbf{x} \mathbf{w}$
- v/||v||
- $\mathbf{v} \times \mathbf{w} / || \mathbf{v} \times \mathbf{w} ||$
- -v+w
- v-w
- av [+ bw [+ cu]]
- angle between v and w
- ||**v**||

Routine

- VDOT, DVDOT
- VCROSS, DVCRSS
- VHAT, DVHAT
- UCROSS, DUCRSS
- VADD, VADDG
- VSUB, VSUBG
- VSCL, [VLCOM, [VLCOM3]]

VPERP

- VSEP
- VNORM

→ W – VPROJ,

TWOVEC, FRAME

Matrices

Navigation and Ancillary Information Facility

Selected Matrix-Vector Linear Algebra Routines

Function

- -Mxv
- $-M \times M$
- $-M^t \times v$
- $-M^t \times M$
- $-MxM^{t}$
- $-v^t \times M \times v$
- $-M^{t}$
- M^{-1}

Routine

- MXV
- MXM
- MTXV
- MTXM
- MXMT
- VTMV
- XPOSE
- INVERT, INVSTM

M = Matrix

v = Vector

x = Multiplication

T = Transpose

Matrix Conversions

Navigation and Ancillary Information Facility

Function

 $a_x a_v a_z$ $b_x b_y b_z$ C_x C_v C_z

Routines

EUL2M, M2EUL

Transform between

3x3 rotation matrix

Transform between

Euler angles and Euler angle rates or rotation matrix and angular velocity vector

EUL2XF, XF2EUL RAV2XF, XF2RAV

6x6 state transformation matrix

Transform between

 $a_x a_v a_z$ $b_x b_v b_z$ Cx Cv Cz

RAXISA, AXISAR ROTATE, ROTMAT

3x3 rotation matrix

 (Q_0,Q_1,Q_2,Q_3)

SPICE Style Quaternion

Transform between

 $a_x a_v a_z$ $b_x b_v b_z$ C_x C_v C_z

3x3 rotation matrix

Q2M, M2Q

Examples of Computing Derived Quantities

Navigation and Ancillary Information Facility

- On the next several pages we present examples of using some of the "derived quantity" APIs.
- Explore the "Most Used SPICE APIs" document to learn more.

Computing Illumination Angles

Navigation and Ancillary Information Facility

 Given the direction of an instrument boresight in a body-fixed frame, return the illumination angles (incidence, phase, emission) at the boresight's surface intercept on an object, with the object's shape modeled by a tri-axial ellipsoid or by DSK

data.

Computing Illumination Angles

Navigation and Ancillary Information Facility

- CALL <u>GETFOV</u> to obtain boresight direction vector
- CALL <u>SINCPT</u> to find intersection of boresight direction vector with surface
- CALL <u>ILUMIN</u> to determine illumination angles