I certify that this submission represents my own original work

Solution 1. Step 1: Initially i = 1. In the **Loop 1**(while $i \le n$ do), the value of i increases by the power of 2 till it reaches n. Since it is given that we can assume n is a power of 2, then let m be a number such that $2^m = n$.

Step 2: For each iteration of **Loop 1**, in **Loop 2**(for j = i to 2i - 1) the value of j goes from i to 2i - 1, so this loop runs 2i - 1 - i + 1 = i times.

Step 3: Therefore, cost of **Loop 2** is given by the sum of O(1) i.e Constant time print operations, since no other operation is inside the loop. Therefore,

$$C_2 = \sum_{j=i}^{2i-1} O(1)$$

Since it runs i number of times, it is sum of constant values i number of times.

$$= O(1) + O(1) + \dots + O(1)$$

= i

Step 4: So the cost of **Loop 1** is given by the sum of **Loop 2** $cost(C_2)$ for value i takes. Therefore,

$$C_1 = \sum_{i=1}^{n} C_2 = \sum_{i=1}^{n} i$$
$$= 1 + 2 + 4 + \dots n$$

Since i increase by the power of 2 and we have assumed that $n = 2^m$.

$$= 1 + 2 + 4 + \dots 2^{m}$$

$$= \frac{2^{m+1} - 1}{2 - 1}$$

$$= 2^{m+1} - 1 = 2 \cdot 2^{m} - 1 \qquad \text{(Substituting } n = 2^{m}\text{)}$$

$$= 2 \cdot n - 1 < 2 \cdot n$$

Step 6: Therefore, the total cost is cost of **Loop 1**(C_1) which runs in less than 2n times for a given n. Let, T(n) = n. To prove the tight bounds, there must exist c_1 and c_2 such that $c_1 \times g(n) \le T(n) \le c_2 \times g(n)$.

$$n \le n < 2n$$

Therefore, $c_1 = 1$, $c_2 = 2$ and g(n) = n. Hence, $T(n) \in \Theta(n)$.

Solution 2. Since the wall is stretched infinitely in the both direction i have assumed the starting location as 0. From the starting point we will go 2^i steps first in the right side, come back to starting location and then we will go 2^i steps in the left side and return back to starting location and increase the value of i by 1 where i = 0, 1...m which is nothing but doubling the steps to be taken in the next iteration for either side, we will continue until the door is found. One more assumption i am taking is while going from starting location to the $2^i th$ location we will check for the doors at each location but skipping the locations which are already checked that is doors between 0 to 2^{i-1} . Psuedo Code to solve this problem is given on page 3.

Part 1.

The worst case will be when the door is on the left side and let us assume its value $n = 2^m + d$, where $1 \le d \le 2^m$ Since we are traversing in both direction the total cost would be:

$$T(n) = 2 \cdot (2 \cdot (1 + 2 + 4 \dots 2^m)) + 2 \cdot 2^{m+1} + 2^m + d$$

Inner bracket cost is because we are going to 2^ith location and coming back and it is multiplied by 2 because we are doing it for both directions i.e Right and Left. $2 \cdot 2^{m+1}$ because we are going till 2^{m+1} times in the right direction and then coming back to the starting location. $2^m + d$ is added because we are going till 2^m location in the left direction and next d steps to find the door location. Therefore,

$$T(n) = 4 \cdot (1 + 2 + 4 \dots 2^m) + 2 \cdot 2^{m+1} + 2^m + d$$

Which is equivalent to the following equation.

$$T(n) = 4 \cdot (2^{m+1} - 1) + 4 \cdot 2^m + 2^m + d$$

After simplifying in 2^m terms.

$$T(n) = 8 \cdot 2^m - 4 + 4 \cdot 2^m + 2^m + d$$

$$T(n) = 13 \cdot 2^m + d - 4$$

And since $n = 2^m + d$, $2^m = n - d$. By replacing it we can get.

$$T(n) = 13 \cdot (n-d) + d - 4$$

$$T(n) = 13 \cdot n - 12 \cdot d - 4$$

$$T(n) < 13 \cdot n$$

$$T(n) = O(n)$$

Part 2.

Since we already got T(n) expression from the Part 1 which is

$$T(n) = 13 \cdot n - 12 \cdot d - 4$$

The worst case will be when d = 1. Which will the equation as,

$$T(n) = 13 \cdot n - 16$$

We can see the the equation that coefficient of n is 13. which is the constant multiple in the worst case.

```
procedure FIND\_DOOR\_LOCATION(A)
   if door at A[0] = true then
                                                                                      ▶ Base case
       door\_location \leftarrow 0
       return door_location
   end if
   pos \leftarrow 0
                                                                               is\_door\_found \leftarrow false
                                                                             ▶ True if door found
   door\_location \leftarrow 0
   steps\_to\_take \leftarrow 1
                                                                        ▶ How much step to take
   while is\_door\_found \neq true \ do
       Traverse in Right Direction
       while pos \leq steps\_to\_take/2 do

    ▷ Skipping previously checked doors

          pos + +
       end while
       while pos \leq steps\_to\_take do
                                                                        \triangleright Check Right Direction
          pos + +
                                                                           ▷ Check Each location
           if door at A[pos] = true then
               door\_location \leftarrow pos
               is\_door\_found \leftarrow true
               break
           end if
       end while
       if is\_door\_found \neq true then
                                                               \triangleright If door not found in Right Side
           while pos \neq 0 do
                                                          ▶ Traversing back to starting position
              pos - -
           end while
           Traverse Left Direction
           while pos \leq steps\_to\_take/2 do

    Skipping previously checked doors

               pos + +
           end while
                                                                         \triangleright Check Left Direction
           while pos \leq steps\_to\_take do
               pos + +
              if door at A[pos] = true then
                                                                           door\_location \leftarrow pos
                  is\_door\_found \leftarrow true
                  break
               end if
           end while
       end if
       if is\_door\_found \neq true then
                                                              \triangleright If door also not found Left Side
           while pos \neq 0 do
                                                          ▶ Traversing back to starting position
              pos - -
           end while
           steps\_to\_take \leftarrow 2*steps\_to\_take
                                                             \triangleright Increasing steps to be taken by 2
       end if
   end while
   return door\_location
end procedure
```

Solution 3. 1. Iterative substitutions

Given that

$$T(n) = \begin{cases} 1 & n = 1 \\ 4 \cdot T(\frac{n}{2}) + 3 & n > 1 \end{cases}$$

$$= 4 \cdot (4 \cdot T(\frac{n}{4}) + 3) + 3$$

$$= 16 \cdot T(\frac{n}{4}) + 4 \cdot 3 + 3$$

$$= 16 \cdot (4 \cdot T(\frac{n}{8}) + 3) + 4 \cdot 3 + 3$$

$$= 64 \cdot T(\frac{n}{8}) + 16 \cdot 3 + 4 \cdot 3 + 3$$

$$\cdot$$

$$\cdot$$

$$\cdot$$

$$= 4^{i} \cdot T(\frac{n}{2^{i}}) + 4^{i-1} \cdot 3 + 4^{i-2} \cdot 3 + \dots + 4^{0} \cdot 3$$

$$= 4^{i} \cdot T(\frac{n}{2^{i}}) + 3 \cdot (4^{i-1} + 4^{i-2} + \dots + 4^{0})$$

Geometric series for ratio r = 4

$$= 4^{i} \cdot T(\frac{n}{2^{i}}) + 3 \cdot (\frac{4^{i} - 1}{4 - 1})$$
$$= 4^{i} \cdot T(\frac{n}{2^{i}}) + 4^{i} - 1$$

 $i = \log_2(n)$ will give us the base case,

$$= 4^{\log_2(n)} \cdot T(1) + 4^{\log_2(n)} - 1 \qquad \text{(since } i = \log_2(n))$$

$$= 2 \cdot 4^{\log_2(n)} - 1$$

$$= 2 \cdot 2^{\log_2(n^2)} - 1 \qquad \text{(log manipulation)}$$

$$\therefore T(n) = 2 \cdot n^2 - 1$$

2. Proof by induction

Given that

$$T(n) = \begin{cases} 1 & n = 1\\ 4 \cdot T(\frac{n}{2}) + 3 & n > 1 \end{cases}$$

From Iterative Substitution: $T(n) = 2 \cdot n^2 - 1$

Proof: Base case: n=2

Calculate using given recurrence relation.

$$T(2) = 4 \cdot T(\frac{2}{2}) + 3$$

 $T(2) = 4 \cdot 1 + 3 = 7$ Since, $T(1) = 1$

Calculate using derived asymptotic solution.

$$T(2) = 2 \cdot n^2 - 1$$

 $T(2) = 2 \cdot 2^2 - 1 = 7$ Since, n = 2

Since both result are the same hence derived solution holds.

Induction hypothesis: $T(\frac{n}{2}) = 2 \cdot (\frac{n}{2})^2 - 1 = \frac{n^2}{2} - 1$ Induction step:

$$T(n) = 4 \cdot T(\frac{n}{2}) + 3$$

$$= 4 \cdot (\frac{n^2}{2} - 1) + 3 \qquad \text{(Substituting hypothesis)}$$

$$= 4 \cdot (\frac{n^2}{2}) - 4 + 3$$

$$= 2 \cdot n^2 - 1$$

Which is same as our hypothesis.

$$T(n) = 2 \cdot n^2 - 1.$$