LI 5 I I: Computational Models of Sound Change

James Kirby and Morgan Sonderegger

9 July 2013

Administrative

 Office Hours: Wed, 5:30-6:30 (Espresso Royale)

Short email (250 words max) on topic + plan:
 Friday

 Phonetics-Phonology Social Hour: Tonight, 5-6:45 PM, Dominick's

Dialect contact I (Christina & Rebecca)

- Two groups with 5-vowel systems with I vowel different put into contact at t=0
- Herzog's Principle (mergers > splits)

Dialect contact II (Jon F. & Meghan)

- I. Two groups, connected by one 'cutout' agent
- 2. Two groups suddenly put into full contact

Q: Would convergence still happen with large enough group size?

2.

Varying $n_{minUses}$ and $p_{addition}$ (Jon H. and Russell)

- Increased $n_{minUses}$ or $p_{addition}$:
 - Higher energy, vowel inventory size, P(success)

Varying $n_{minUses}$ and $p_{addition}$ (Jon H. and Russell)

- Increased $n_{minUses}$ or $p_{addition}$:
 - Higher energy, vowel inventory size, P(success)

Figure 1: Mean Vowel Inventory after 10,000 runs

Color Key

Figure 3: Probability of Success after 10,000 runs

Color Key

0.8, 0.9

Varying the initial vowel inventory (Jiang, Kouros, Mingxing)

Agents start with just /a/ or /u/:

n=9 vs n=8, would need to check with more runs

• Start with n=1 vs n=5: faster convergence

Varying acoustic and articulatory merge thresholds (Jevon & Sarah)

Start with high articulatory threshold
 → one-vowel system

 "Individual runs of the same threshold yield different results..."

- Higher artic or acoust threshold ⇒ larger, more diffuse categories
 - Larger of the two thresholds dominates

Mortal agents with evolving ϵ , varying n_{agents} (Anthony, Emily, Reza)

- Agent dies and is replaced with p_{bd} (each round)
- $\epsilon \downarrow t = 0-300$, then $\uparrow 300-800$

- Higher p_{bd}
 - Fewer, larger V categories
 - Still get stable system! (c.f. de Boer book, Sec. 5.4)

$$p_{bd}$$
=0.1, n_{agents} = 20

$$p_{bd}$$
=0.1, n_{agents} = 40

 p_{bd} =0.005, n_{agents} = 20

$$p_{bd}$$
=0.005, n_{agents} = 40

Explorations, paper: Summary

- $p_{addition}$, $n_{minUses}$, acoust/artic thresholds, birth/death rate, ϵ (more in book)
 - $-\uparrow n$, category variance; \downarrow energy
- n_{agents} : \prototype stability
- Starting inventory: No qualitative diff
- Systems likely to converge with any contact

Explorations, paper: Summary

- $p_{addition}$, $n_{minUses}$, acoust/artic thresholds, birth/death rate, ϵ (more in book)
 - $-\uparrow n$, category variance; \downarrow energy
- n_{agents} : \prototype stability
- Starting inventory: No qualitative diff
- Systems likely to converge with any contact
 - Desirable? Any ideas to alleviate?

- In general: What's here, missing vs. empirical facts?
 - From sense of model so far, what directions to be explored to fill gaps?

- In general: What's here, missing vs. empirical facts?
 - From sense of model so far, what directions to be explored to fill gaps?
- Methodology for doing a 'real' extension
 - Many simulations per parameter setting
 - Sweep parameter subspace
 - Consider alternative explanations for observations

(keep in mind for projects..)

de Boer (1999) and extensions: What have we learned?

• Existence proofs?

Explicitness / implementation?

Counterintuitive results?

Qualitative predictions?

Baseline?

Analytic vs. simulation approaches

Recap: Pros and cons

This week: More analytic models

Interlude: Some math

- Recurrent tools:
 - Conditional probability
 - "Bayesian inference"

- Mathematical objects used (here) to analyze systems changing over time
 - Stochastic evolution: Markov chains
 - 2. Deterministic evolution: Dynamical systems

Conditional probability

• Refresher?

Bayesian inference

- Hypotheses: $h \in H$
- Data: $x \in D$

- Prior: How likely are different h, a priori?
 - Equally likely: "Flat prior"

 Posterior: How likely are different h, after seeing the data?

Bayesian inference: Example

- Guess vowel category given F₁, F₂
- Guess word in "I ate some fisS", where S = ambiguous sibilant
 - Prior: likelihood of word in this context
 - Data: Signal actually heard

Models: Overview

Dynamical systems, iterated learning models

- Main concern: Relationship of population-level diachronic dynamics to assumptions about
 - I. Knowledge state of individuals
 - 2. Learning algorithm
 - 3. Assumptions about communication
 - 4. Network structure

Usually: Examine <u>long-term</u> behavior <u>analytically</u>

Today: Discrete variables, knowledge state

- Network structure
 - Generation size = I, ∞
 - Number of parents

Knowledge state: Categorical (0/1)

- Learning algorithm
 - Various

Iterated learning: Griffiths & Kalish (2007)

• IL* scenario: chain of learners/teachers

 $-H_i$: Hypothesis $-d_i$: Data

Interlude: Markov chains

• Markov chain: Sequence of random variables v_0, v_1, \ldots s.t.

$$P(v_n|v_0,v_1,\ldots,v_{n-1}) = P(v_n|v_{n-1})$$

- States: (Finite) set V
- Transition probabilities:

$$q_{ij} = P(v_n = i | v_{n-1} = j), \quad i, j \in V$$

• Transition matrix $Q = \{q_{ij}\}$

Example

$$V = 1, 2$$

$$Q = \begin{pmatrix} 0.9 & 0.1 \\ 0.05 & 0.95 \end{pmatrix}$$

Note: Each row of Q sums to 1

Stationary distribution: vector p s.t.

$$\vec{p} = Q\vec{p}$$

Theorem: Under some conditions on Q, there
is a unique stationary distribution.

• As $t \to \infty$, always end up in the stationary distribution.

Example

$$Q = \begin{pmatrix} 0.9 & 0.1 \\ 0.05 & 0.95 \end{pmatrix}$$

Stationary distribution: $\vec{p} = \begin{pmatrix} 0.333 \\ 0.666 \end{pmatrix}$

- Griffiths & Kalish:
 - Hypothesis h_i (and data d_i) is a Markov Chain
 - Goal: Determine stationary state*

GK Model I

- Two languages, 0/1 output ("Gavagai!")
- Data: $d_i \in X$ (one data point)
- Hypotheses: I, 2 (L_1, L_2)
- Grammars: G_1 , G_2
- Production algorithm:

$$P_{PA}(d = (x, y)|h = i) = \begin{cases} P(x)(1 - \epsilon) & \text{if } y = I(x \in \mathcal{G}_i) \\ P(x)\epsilon & \text{otherwise} \end{cases}$$

• Noise: ε

• Prior:
$$P(h_1) = \alpha$$
, $P(h_2) = 1 - \alpha$

Ambiguous objects: S

$$s = P(x \in \mathcal{S})$$

• Prior:
$$P(h_1) = \alpha, \quad P(h_2) = 1 - \alpha$$

Ambiguous objects: S

$$s = P(x \in \mathcal{S})$$

• Learner *i* gets data, \Rightarrow posterior

- How do they proceed?
 - Model I.I: Sampling from the posterior
 - Model I.2: Maximum a posteriori estimation

Sampling from the posterior

- Learner i:
 - Picks h_i with $P(h_i|d_{i-1})$
 - Generates d_i from h_i
- We can calculate $P(h_t = 1 | h_{t-1} = 2)$, etc.
 - These are the $q_{ij} \Rightarrow$ transition matrix Q

Sampling from the posterior

- Learner i:
 - Picks h_i with $P(h_i|d_{i-1})$
 - Generates d_i from h_i
- We can calculate $P(h_t = 1 | h_{t-1} = 2)$, etc.
 - These are the $q_{ij} \Rightarrow$ transition matrix Q
- Stationary state: $(\alpha, 1 \alpha)$
 - Convergence to the prior
 - No dependence on ε , s!

MAP estimation

- Learner i:
 - Picks h_i which maximizes $P(h_i|d_{i-1})$
 - Generates d_i from h_i
- Can again work out Q
 - Stationary distribution now depends on all system parameters

$P(h_1)$ in stationary distribution

Properties of the Markov chain on hypotheses for iterated learning with MAP estimation

Condition	q_{12}	q_{21}	θ_1
$\epsilon < 1 - \alpha$	$s + (1-s)\epsilon$	$(1-s)\epsilon$	$\frac{s+(1-s)\epsilon}{s+2(1-s)\epsilon}$
$\epsilon = 1 - \alpha$	$s + (1-s)(1+\epsilon)/2$	$(1-s)\epsilon/2$	$\frac{s+(1-s)(1+\epsilon)/2}{s+(1-s)(1+2\epsilon)/2}$
$\epsilon > 1 - \alpha$	1	0	1

• $P(h_1)$ always > 0.5 : L_1 favored as $t \to \infty$

- By how much depends on $\,s,\,\,lpha,\,\,\epsilon\,$
 - Note: No dependence on α !

GK Model 1: Discussion

• Preference encoded in prior maintained...

- ... by how much depends heavily on
 - Learning algorithm
 - Assumptions about communication

- What relevance for sound change?
 - (what kind of situation would this model?)

Iterated learning

This type of single-chain model (usually)

- Evolang, cultural evolution literatures
 - Simulation, analytical
 (Griffiths & Kirby, 2007; Kirby, 2000 et seq; Kirby et al., 2007; Smith et al., 2003...)
 - Experimental
 (Kalish et al, 2007; Kirby et al, 2008; Sanborn & Griffiths, 2008...)

Iterated learning

This type of single-chain model (usually)

- Evolang, cultural evolution literatures
 - Simulation, analytical
 (Griffiths & Kirby, 2007; Kirby, 2000 et seq; Kirby et al., 2007; Smith et al., 2003...)
 - Experimental
 (Kalish et al, 2007; Kirby et al, 2008; Sanborn & Griffiths, 2008...)

Dynamical systems: Niyogi (2006)

• DS models: ∞ **learners per** generation

(Komarova et al., 2002; Mitchener, 2003; Niyogi & Berwick, 1995 et seq; Niyogi, 2006; Yang, 2003...)

- Learners in gen. $i(G_t)$ learn from data drawn from teachers in G_{t-1}
- Must specify:
 - Learning algorithm
 - Network structure
 - Assumptions about communication

Learning algorithm: Map from examples to ϕ^j or ϕ

Interlude: Dynamical systems

- System state at time t: $lpha_t$
 - Typically continuous, e.g. $\alpha_t \in [0,1]$
- Rule for going from t to t+1: evolution equation

$$\alpha_{t+1} = f(\alpha_t)$$

Fixed point :

$$lpha_*$$
 s.t. $f(lpha_*) = lpha_*$

- Fixed points can be
 - Stable: system returns to α_* when perturbed from it
 - Unstable: system doesn't `` ``

• Stable if $|f'(x^*)| < 1$, unstable otherwise

Slope of evolution equation

 Bifurcation: Change in the number or stability of FPs change as system parameters are varied

- Goals of a DS analysis:
 - I. For a given evolution equation, find FPs & stabilities
 - 2. Determine bifurcations as parameters are varied

Example

$$\alpha_{t+1} = a\alpha_t^2 + (1-a)\alpha_t$$

a < 0unstable FP at 0stable FP at 1

Example

$$\alpha_{t+1} = a\alpha_t^2 + (1-a)\alpha_t$$

• Because each generation is infinite, evolution of system state (α_t) is deterministic \Rightarrow a dynamical system f

Goals:

- Determine FPs of f, bifurcation structure as parameters changed

• Because each generation is infinite, evolution of system state (α_t) is deterministic \Rightarrow a dynamical system f

Goals:

- Determine FPs of f, bifurcation structure as parameters changed

- Variation/change interpretation?
 - What differs from IL?

Shen (1997): Merger in Wenzhounese

- Unconditioned merger: $/\phi^{j}/ \rightarrow [\phi]$
- Data: 0/1 (unchanged/changed)
 - 363 informants (!), ages 17-75
 - $-35*\phi^{j}$ words
- Phonetic motivation

- Results
 - Apparent-time change:S-shaped curves
 - Some lexical diffusion (Wang, 1969)
 - But, words tend to change together

of speakers

Niyogi (2006) models

Learning pronunciation of one *ø^j word

- Dimensions:
 - # of parents: 2, or ∞
 - Error in production/perception: None vs. some
 - Result of learning: categorical (0/1) or prob. (p)

• Correspond to different assumptions about...

Niyogi (2006) models

Learning pronunciation of one *ø^j word

- Dimensions: today
 - # of parents: 2, or ∞
 - Error in production/perception: None vs. some
 - Result of learning: categorical (0/1) or prob. (p)

• Correspond to different assumptions about...

Model I

• Network: Child draws N words from all teachers in G_{t-1}

Knowledge state: 0/1

• Algorithm: Choose $[\phi^j]$ if heard more than K times

- System state: $lpha_t$
 - Percentage of G_t with $[\emptyset^j]$,

• For I child in G_{t+1}

$$P(\text{hear } \phi^{j} \text{ } k \text{ times}) = {N \choose k} (\alpha_t)^k (1 - \alpha_t)^{N-k}$$

$$P(\text{choose } \underline{\emptyset}) = \sum_{k=N/2}^{N} {N \choose k} (\alpha_t)^k (1 - \alpha_t)^{N-k}$$

• For I child in G_{t+1}

$$P(\text{hear } \phi^{j} \text{ } k \text{ times}) = {N \choose k} (\alpha_t)^k (1 - \alpha_t)^{N-k}$$

$$P(\text{choose } \underline{\emptyset}) = \sum_{k=N/2}^{N} {N \choose k} (\alpha_t)^k (1 - \alpha_t)^{N-k}$$

Evolution equation:

$$\alpha_{t+1} = \sum_{k=N/2}^{N} {N \choose k} (\alpha_t)^k (1 - \alpha_t)^{N-k}$$

- Fixed points:
 - Stable: 0 and 1
 - Unstable: One between 0 and 1

- No bifurcations
 - No dependence on threshold K

- Interpretation
 - 100% or 0% [\emptyset^j] are stable
 - $-[\phi^j] \sim [\phi]$ variation possible, but unstable

Model 2: Categorical, 2 parents

- Same as model I, except child draws examples from 2 teachers ("parents")
- Draw equally from each parent

Model 2: Categorical, 2 parents

- Same as model I, except child draws examples from 2 teachers ("parents")
- Draw equally from each parent

Fixed points:

- Depends on constant c which increases with K
- $-c < 0.5 : 0\% [ø^{j}]$ stable, $100\% [ø^{j}]$ unstable
- $-c > 0.5:0\% [\phi^{j}]$ unstable, 100% $[\phi^{j}]$ stable
- Bifurcation at c = 0.5, when K=N/2

Model 3: Model 1 + noise

- Model I, plus <u>asymmetric mistransmission</u>
 - Every token of $[\phi^j]$ misheard with prob. ϵ
 - Every token of [ø] heard correctly

Model 3: Model 1 + noise

- Model I, plus asymmetric mistransmission
 - Every token of $[\phi^j]$ misheard with prob. ϵ
 - Every token of [ø] heard correctly
- Critical value C, such that:
 - ε< C: Two stable FPs: 0% $[ø^j]$ and k% $[ø^j]$ (for some k ≤ 1 ○)
 - $\varepsilon > C$: Only 0% [ϕ^{j}] FP is stable
- Bifurcation at ε= C
 - Critical value depends on N

Interpretation

Relationship to actuation

N 2006 models: Discussion

- Network structure
 - Big effect (Model 2 vs. Model 1)

- Assumptions about communication
 - Asymmetric noise

Interpretation in terms of variation and change?

IL and DS models: Discussion

Broad results

- Can say exactly what long-term dynamics are from synchronic assumptions (c.f. simulation)
- Some pieces matter a lot, others don't

- Dynamics: Linear (IL), nonlinear (DS)
 - Nonlinear only: Multiple stable states, bifurcation
 - In general, make different predictions
 (Dediu, 2009; Niyogi & Berwick, 2009; Smith, 2009)
 - DS more general, realistic (?)

• But:

- IL feasibility in lab is important
- ∞ generation size clearly also wrong.
- Maybe IL OK as an approximation, in some sense?

- Need empirical evidence (historical):
 - Sudden change once a parameter (e.g. frequency) passes a threshold?
 - Multiple stable states, for same parameter values?