Theorem 37.63 yields a quick proof of the fact that any Hermitian space E (with Hermitian product $\langle -, - \rangle$) can be embedded in a Hilbert space E_h .

Theorem 48.1. Given a Hermitian space $(E, \langle -, - \rangle)$ (resp. Euclidean space), there is a Hilbert space $(E_h, \langle -, - \rangle_h)$ and a linear map $\varphi \colon E \to E_h$, such that

$$\langle u, v \rangle = \langle \varphi(u), \varphi(v) \rangle_h$$

for all $u, v \in E$, and $\varphi(E)$ is dense in E_h . Furthermore, E_h is unique up to isomorphism.

Proof. Let $(\widehat{E}, \| \|_{\widehat{E}})$ be the Banach space, and let $\varphi \colon E \to \widehat{E}$ be the linear isometry, given by Theorem 37.63. Let $\|u\| = \sqrt{\langle u, u \rangle}$ (with $u \in E$) and $E_h = \widehat{E}$. If E is a real vector space, we know from Section refsec5bis that the inner product $\langle -, - \rangle$ can be expressed in terms of the norm $\|u\|$ by the polarity equation

$$\langle u, v \rangle = \frac{1}{2} (\|u + v\|^2 - \|u\|^2 - \|v\|^2),$$

and if E is a complex vector space, we know from Section 14.1 that we have the polarity equation

$$\langle u, v \rangle = \frac{1}{4} (\|u + v\|^2 - \|u - v\|^2 + i\|u + iv\|^2 - i\|u - iv\|^2).$$

By the Cauchy-Schwarz inequality, $|\langle u,v\rangle| \leq ||u|| ||v||$, the map $\langle -,-\rangle \colon E \times E \to \mathbb{C}$ (resp. $\langle -,-\rangle \colon E \times E \to \mathbb{R}$) is continuous. However, it is not uniformly continuous, but we can get around this problem by using the polarity equations to extend it to a continuous map. By continuity, the polarity equations also hold in E_h , which shows that $\langle -,-\rangle$ extends to a positive definite Hermitian inner product (resp. Euclidean inner product) $\langle -,-\rangle_h$ on E_h induced by $\|\cdot\|_{\widehat{E}}$ extending $\langle -,-\rangle$.

Remark: We followed the approach in Schwartz [149] (Chapter XXIII, Section 42. Theorem 2). For other approaches, see Munkres [131] (Chapter 7, Section 43), and Bourbaki [27].

One of the most important facts about finite-dimensional Hermitian (and Euclidean) spaces is that they have orthonormal bases. This implies that, up to isomorphism, every finite-dimensional Hermitian space is isomorphic to \mathbb{C}^n (for some $n \in \mathbb{N}$) and that the inner product is given by

$$\langle (x_1,\ldots,x_n),(y_1,\ldots,y_n)\rangle = \sum_{i=1}^n x_i \overline{y_i}.$$

Furthermore, every subspace W has an orthogonal complement W^{\perp} , and the inner product induces a natural duality between E and E^* (actually, between \overline{E} and E^*) where E^* is the space of linear forms on E.

When E is a Hilbert space, E may be infinite dimensional, often of uncountable dimension. Thus, we can't expect that E always have an orthonormal basis. However, if we modify