

Universidad Nacional de Ingeniería Facultad de Ciencias

Escuela Profesional de Matemática

Ciclo 2018-I

[Cod: CM-334 Curso: Análisis Numérico I]

[Tema: Punto Flotante. Errores]

[Prof: Luis Roca G.]

Práctica Calificada Nº 1

1. Realice las siguiente operaciones con un mantisa de 4 bits, considerando la siguiente tabla y de la respuesta en base decimal y binaria.

Mantisa	n = -3	n = -2	n = -1	n = 0	n = 1	n = 2	n=3	n=4
$0.1000_{(2)}$	0.0625	0.125	0.25	0.5	1	2	4	8
$0.1001_{(2)}$	0.0703125	0.140625	0.28125	0.5625	1.125	2.25	4.5	9
$0.1010_{(2)}$	0.078125	0.15625	0.3125	0.625	1.25	2.5	5	10
$0.1011_{(2)}$	0.0859375	0.171875	0.34375	0.6875	1.375	2.75	5.5	11
$0.1100_{(2)}$	0.09375	0.1875	0.375	0.75	1.5	3	6	12
$0.1101_{(2)}$	0.1015625	0.203125	0.40625	0.8125	1.625	3.25	6.5	13
$0.1110_{(2)}$	0.109375	0.21875	0.4375	0.875	1.75	3.5	7	14
$0.1111_{(2)}$	0.1171875	0.234375	0.46875	0.9375	1.875	3.75	7.5	15

a)
$$\left(\frac{4}{3} + \frac{2}{5}\right) + \frac{11}{6}$$
 (2 puntos)

b)
$$\frac{3}{4} + \left(\frac{19}{10} + \frac{1}{12}\right)$$
 (2 puntos)

2. Suponga dos puntos (x_0, y_0) y (x_1, y_1) sobre una linea recta, $y_0 \neq y_1$. Disponemos dos formulas para calcular el intercepto con el eje x

$$x = rac{x_0 y_1 - x_1 y_0}{y_1 - y_0} \quad , \quad x = x_0 - rac{(x_1 - x_0) y_0}{y_1 - y_0}$$

Muestre que ambas fórmulas son algebraicamente correctas. (2 puntos)

Use los datos $(x_0, y_0) = (1, 31; 3, 24)$ y $(x_1, y_1) = (1, 93; 4, 76)$ y la aritmética de redondeo a 3 dígitos para calcular el intercepto x con ambas fórmulas. ¿Que método es mejor y porque? (3 puntos)

3. Sea
$$f(x) = \frac{(x - \pi/2)\sin x + \cos x}{(x - \pi/2) + \cos x}$$

- a) Calcule $\lim_{x\to\pi/2} f(x)$ (2 puntos)
- b) Use aritmética de redondea a cinco cifras para evaluar f(0.1) (3 puntos)
- 4. Si x = 0.43257143 y y = 0.43257824

- a) Use aritmética de redondeo a cinco cifras para calcular fl(x) y fl(y). (1 punto)
- b) Calcule los errores relativos y absoluto. (1 punto)
- c) Resolver $x \oplus y, \, x \ominus y, \, x \otimes y$ y $x \oslash y$. (1 punto)
- d) Calcule los errores relativos para las operaciones realizadas en el inciso c). (1 punto)
- e) Cuántos dígitos significativos se pierden al resolver cada una de las operaciones realizadas en el inciso c) (2 puntos)

Uni, 17 de mayo de 2018^*

 $^{^*}$ Hecho en \LaTeX

$$1. \quad a)$$

$$fl(4/3) = 1.375, fl(2/5) = 0.40625$$

$$fl(1.375 + 0.40625) = fl(1.78125) = 1.75$$

$$fl(11/6) = 1.875$$

$$fl(1.75 + 1.875) = fl(3.625) = 3.75$$

$$b)$$

$$fl(19/12) = 1.875, fl(1/12) = 0.0859375$$

$$fl(1.875 + 0.0859375) = 2$$

$$fl(0.75 + 2) = 2.75$$

- 2. Primer método: $x_0y_1 = 6.24$, $x_1y_0 = 6.25$, $x = -\frac{0.01}{1.52} = -0.00658$. Segundo método: $(x_1 x_0)y_0 = 0.62(3.24) = 2.01$, $x = 1.31 \frac{2.01}{1.52} = 1.31 1.32 = -0.01$. El valor correcto es x = -0.011575. El segundo método es mejor debido a que se evita operar con la diferencia de cantidades casi iguales.
- 3. a) $\lim_{x \to \pi/2} f(x) = \lim_{h \to 0} \frac{h \cos h \sin h}{h \sin h} = \lim_{h \to 0} \frac{-h \sin h}{1 \cos h} = \lim_{h \to 0} \frac{-h \cos h \sin h}{\sin h} = -2$
 - b) $\sin 0.1 = 0.099833$, $\cos 0.1 = 0.99500$, $x \pi/2 = -1.4708$ $f(0.1) = \frac{-0.14683 + 0.99500}{-1.4708 + 0.99500} = \frac{0.84817}{-0.47580} = -1.7826$

4. a)
$$fl(x) = 0.43257$$
, $fl(y) = 0.43258$

b)
$$\frac{x-fl(x)}{x} = 3.31 \times 10^{-6}, \frac{y-fl(y)}{y} = 4.07 \times 10^{-6}$$

c)
$$x \oplus y = 0.86515$$
, $x \ominus y = -1 \times 10^{-5}$, $x \otimes y = 0.18712$ y $x \oslash y = 0.99998$.

d)
$$3.8 \times 10^{-7}$$
, 0.46843 , 7.6×10^{-7} , 7.37×10^{-6}

$$e)$$
 0, todos, 0, 0