Лабораторная работа 8. 1. Определение постоянных Стефана-Больцмана и Планка из анализа теплового излучения накаленного газа

Лось Денис (группа 618)

12 октября 2018

Цель работы: при помощи модели абсолютно чёрного тела (АЧТ) провести измерения температуры оптическим пирометром с исчезающей нитью и термопарой, исследовать излчения накаленных тел с различной испускательной способностью, определить постоянные Планка и Стефана-Больцмана.

Теоритическое введение

Закон Стефана-Больцмана для абсолютно чёрного тела

$$W = \sigma S \left(T^4 - T_0^4 \right)$$

Для серого тела

$$W = \varepsilon_T \sigma T^4$$

Постоянная Стефана-Больцмана

$$\sigma = \frac{2\pi^5 k_{\rm B} : 4}{15^2 h^3} = 5.67 \cdot 10^{-12} \, \frac{\rm Br}{\rm cm^2 K^4}$$

Постоянная Планка выражается как

$$h = \sqrt[3]{\frac{2\pi^5 k_{\rm B}^4}{15c^2\sigma}}$$

Изучение работы оптического пирометра

В данной части работы с помощью пирометра измеряется температура модели АЧТ и проводится сравнение её значения со значением температуры, измеренного при помощи термопарного термометра.

Учитывая, что постоянная термопары $k=41\,{\rm \frac{MKB}{°C}},$ а комнатная температура $T_{\rm комн}\approx 20\,{\rm ^{\circ}}C,$ проведём измерения

T, °C	U, mB	$T_{\text{терм}}, ^{\circ}\text{C}$
1128	43.94	1092
1103	44.47	1105
1108	44.51	1106
1101	44.59	1108
1116	44.60	1108
1110	44.60	1108

Таблица 1: Измерения для модели абсолютно чёрного тела

В результате получим результат, усреднив по лучшим измерениям

$$T = (1106 \pm 2) \, ^{\circ}\mathrm{C}$$

$$T_{\text{\tiny TEDM}} = (1106 \pm 1) \, ^{\circ}\mathrm{C}$$

Найденная с помощью пирометра температура с запасом лежит в пределах погрешности 1~% от найденной с помощью термопары.

Измерение яркостной температуры накаленных тел

Этот эксперимент предполагает показать, что различные тела, накаленные до одинаковой термодинамической температуры, имеют различную яркостную температуру.

Проведём измерения для определения яркостной температуры образцов: трубки и кольца.

Усреднив полученные результаты, получим, что

$$\begin{split} T_{\text{трубки}} &= (859 \pm 2)\,^{\circ}\text{C} \\ T_{\text{кольца}} &= (775 \pm 1)\,^{\circ}\text{C} \end{split}$$

$T_{\text{трубки}}$, °С	$T_{\text{кольца}}$, °С
863	776
856	773
858	776

Таблица 2: Измерения для определения яркостной температуры образцов

Проверка закона Стефана-Больцмана

Приведём таблицу с усреднёнными основными измерениями, при этом определяя ε_T из приведённой в описании таблицы для вольфрама

T, °C	997	1101	1202	1305	1411	1501	1607	1698	1802
I, A	0.25	0.30	0.33	0.41	0.52	0.65	0.82	0.91	1.15
U, B	3.35	3.74	3.95	4.06	4.92	5.08	5.50	6.60	7.82
W, B _T	0.82	1.08	1.27	1.62	2.50	3.30	4.46	6.02	8.98
$T_{\text{терм}}, ^{\circ}\text{C}$	1020	1130	1240	1350	1455	1560	1670	1775	1880
ε_T	0.105	0.119	0.133	0.144	0.164	0.179	0.195	0.209	0.223

Представим зависимость $W = f(T_{\text{терм}})$ на графике

Рис. 1: График зависимости W = f(T)

Для для того чтобы убедиться в правильности закона Стефана-Больцмана построим зависимость в логарифмическом масштабе $\ln W = \ln \left(e_T B \right) + n \ln T$.

Определим величину n как тангенс угла наклона прямой в области высоких температур, когда мощность подводимая к нити, практически полностью расходуется на излучение.

Ясно, что $B=S\cdot\sigma$, где S — эффективная площадь излучающей поверхности нити лампы при температуре более 1500 °C, когда вся нить одинакова накалена; σ — постоянная Стефана-Больмана; $S=0.36~{\rm cm}^2$.

Рис. 2: График зависимости $\ln(W) = f(\ln(T))$

Проведя прямую по методу наименьших квадратов, определим значение n.

$$n = (3.9 \pm 0.3)$$

Так как $n \approx 4$, то следовательно, мы можем говорить о выполнении закона Стефана-Больцмана. Определим величину постоянной Стефана-Больцмана по формуле

$$\sigma = \frac{W}{\varepsilon_T S T^4}$$

для каждого измеренного значения $T_{\text{терм}}$, превышающего 1700 °C.

$T_{\text{терм}}$	W, B _T	$arepsilon_T$	$\sigma \cdot 10^{-8}, \mathrm{Br} \cdot \mathrm{m}^{-2} \cdot \mathrm{K}^{-4}$	$\Delta \sigma \cdot 10^{-8}, \text{ BT} \cdot \text{M}^{-2} \cdot \text{K}^{-4}$
1698	6.02	0.209	8.1	0.3
1802	8.98	0.223	8.9	0.4

Полученные значения по порядку величины совпадают с табличным значением постоянной Стефана-Больцмана, однако точное численное значение имеет достаточно серьёзное расхождение.

Из найденных значений постоянных Стефана-Больмана найдём значение постоянной Планка

$$h = (5.8 \pm 0.2) \cdot 10^{-34} \cdot Дж \cdot c$$

Порядок найденной постоянной Планка совпадает с порядком табличного значения, однако как и для постоянных Стефана-Больцмана, мы получили довольно существенное количественное расхождение.

Измерение яркостной температуры неоновой лампочки

Проведём серию измерения для определения яркостной температуры неоновой лампочки

Следовательно, полученное значение яркостной температуры неоновой лампочки

$$T_{\rm spk} = (845 \pm 3) \, {}^{\circ}{\rm C}$$

Однако, если дотронутся рукой до неоновой лампочки, то можно обнаружить, что её термодинамическая температура не совпадает с яркостной. Неоновая лампа относится к числу газоразрядных истчников света. Атомы, входящие в состав инертного газа, наполняющего лампу, переходят в возбуждённое состояние при подачи напряжения, однако они не могут находиться в этом состоянии долгое время. Поэтому через достаточно короткий промежуток времени порядка миллионных долей секунды атом из возбждённого состояния переходит обратно в основное состояние. При обратном переходе происходит излучение энергии в виде кванта света-фотона.