```
#Import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

path = r"/content/student_info.csv"
df = pd.read_csv(path)
```

df.head()

		study_hours	student_marks
	0	6.83	78.50
	1	6.56	76.74
	2	NaN	78.68
	3	5.67	71.82
	4	8.67	84.19

df.tail()

_		study_hours	student_marks
	195	7.53	81.67
	196	8.56	84.68
	197	8.94	86.75
	198	6.60	78.05
	199	8.35	83.50

df.info()

<</pre>
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 2 columns):

Data columns (total 2 columns):

Column Non-Null Count Dtype
--- 0 study_hours 195 non-null float64
1 student_marks 200 non-null float64
dtypes: float64(2)

dtypes: float64(2) memory usage: 3.2 KB

df.describe()


```
plt.scatter(x =df.study_hours, y = df.student_marks)
plt.xlabel("Students Study Hours")
plt.ylabel("Students marks")
plt.title("Scatter Plot of Students Study Hours vs Students marks")
plt.show()
```



```
df.isnull().sum()
```

study_hours 5
student_marks 0
dtype: int64

df.mean()

study_hours 6.995949
student_marks 77.933750
dtype: float64

df2 = df.fillna(df.mean())

df2.isnull().sum()

study_hours 0
student_marks 0
dtype: int64

df2.head()

→		study_hours	student_marks
	0	6.830000	78.50
	1	6.560000	76.74
	2	6.995949	78.68
	3	5.670000	71.82
	4	8.670000	84.19

```
X = df2.drop("student_marks", axis = "columns")
y = df2.drop("study_hours", axis = "columns")
print("shape of X = ", X.shape)
print("shape of y = ", y.shape)
```

```
shape of X = (200, 1)
shape of y = (200, 1)
```

from sklearn.model_selection import train_test_split
X_train, X_test,y_train,y_test = train_test_split(X,y, test_size = 0.2, random_state=51)
print("shape of X_train = ", X_train.shape)
print("shape of y_train = ", y_train.shape)
print("shape of X_test = ", X_test.shape)
print("shape of y_test = ", y_test.shape)

```
shape of X_train = (160, 1)

shape of y_train = (160, 1)

shape of X_test = (40, 1)

shape of y_test = (40, 1)
```

```
# y = m * x + c
from sklearn.linear model import LinearRegression
lr = LinearRegression()
lr.fit(X_train,y_train)
     ▼ LinearRegression
     LinearRegression()
lr.coef_
→ array([[3.93571802]])
lr.intercept
→ array([50.44735504])
m = 3.93
c = 50.44
   = m * 4 + c
€ 66.16
lr.predict([[4]])[0][0].round(2)
🚁 /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but LinearRegression
       warnings.warn(
     66.19
    4
y_pred = lr.predict(X_test)
y_pred
→ array([[83.11381458],
            [78.9025963],
            [84.57003024],
            [85.82946001],
            [84.72745896],
            [80.75238377],
            [72.84159055],
            [71.66087515],
            [73.23516235],
            [71.66087515],
            [73.47130543],
            [76.38373677],
            [73.23516235],
            [73.58937697],
            [82.95638585],
            [70.40144538],
            [73.23516235],
            [78.74516758],
            [75.55723598],
            [82.68088559],
            [76.65923703],
            [70.48015974],
            [74.77009238],
            [77.98143645],
            [85.59331693],
            [82.56281405],
            [76.42309395],
            [85.0423164],
            [78.39095296],
            [81.38209865],
            [81.73631327],
            [83.15317176],
            [82.20859943],
            [81.10659839],
            [73.58937697],
            [71.1492318],
            [71.89701823],
            [81.53952737],
            [72.60544747],
            [71.93637541]])
pd.DataFrame(np.c_[X_test, y_test, y_pred], columns = ["study_hours", "student_marks_original","student_marks_predicted"])
```

24, 7.	SS PIVI			Student m	
_	st	udy_hours	student_marks_original	student_marks_predicted	
	0	8.300000	82.02	83.113815	
	1	7.230000	77.55	78.902596	
	2	8.670000	84.19	84.570030	
	3	8.990000	85.46	85.829460	
	4	8.710000	84.03	84.727459	
	5	7.700000	80.81	80.752384	
	6	5.690000	73.61	72.841591	
	7	5.390000	70.90	71.660875	
	8	5.790000	73.14	73.235162	
	9	5.390000	73.02	71.660875	
	10	5.850000	75.02	73.471305	
	11	6.590000	75.37	76.383737	
	12	5.790000	74.44	73.235162	
	13	5.880000	73.40	73.589377	
	14	8.260000	81.70	82.956386	
	15	5.070000	69.27	70.401445	
	16	5.790000	73.64	73.235162	
	17	7.190000	77.63	78.745168	
	18	6.380000	77.01	75.557236	
	19	8.190000	83.08	82.680886	
	20	6.660000	76.63	76.659237	
	21	5.090000	72.22	70.480160	
	22	6.180000	72.96	74.770092	
	23	6.995949	76.14	77.981436	
	24	8.930000	85.96	85.593317	
	25	8.160000	83.36	82.562814	
	26	6.600000	78.05	76.423094	
	27	8.790000	84.60	85.042316	
	28	7.100000	76.76	78.390953	
	29	7.860000	81.24	81.382099	
	30	7.950000	80.86	81.736313	
<pre>lr.score(X_test,y_test)</pre>					
→	0.9514124242154466				

₹ 0.9514124242154466 33 /./90000

79.17 81.106598

plt.scatter(X_train,y_train)

```
<matplotlib.collections.PathCollection at 0x787eb446a9b0>
plt.scatter(X_test, y_test)
plt.plot(X_train, lr.predict(X_train), color = "r")
[<matplotlib.lines.Line2D at 0x787eb41b38b0>]
      85.0
      82.5
      80.0
      77.5
      75.0
      72.5
      70.0
             5.0
                           6.0
                                   6.5
                                          7.0
                                                  7.5
                                                         8.0
                                                                8.5
                                                                        9.0
import joblib
joblib.dump(lr, "student_mark_predictor.pkl")
['student_mark_predictor.pkl']
model = joblib.load("student_mark_predictor.pkl")
model.predict([[5]])[0][0]
    /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but LinearRegression
       warnings.warn(
     70.12594512018406
    4
import joblib
joblib.dump(lr, "student_mark_predictor.pkl")
['student_mark_predictor.pkl']
from google.colab import files
files.download("student_mark_predictor.pkl")
\rightarrow
```