1

Control Systems

G V V Sharma*

CONTENTS

1	Frequency Respon	nse Analysis	1
	1.1 Polar Plot	t	1

Abstract—The objective of this manual is to introduce control system design at an elementary level.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ control/ketan/codes

1 Frequency Response Analysis

1.1 Polar Plot

- 1.1.1. A position control system is to be designed such that maximum peak overshoot is less than 25 %. Further, appropriate error constant should be 50. For the motor to be used, load and torque speed curve is shown below, where, $J_1 = 2 \text{ kg-m2}$, $J_2 = 18 \text{ kg-m2}$, $f_1 = 2 \text{ N-m-s/rad}$, $f_2 = 36 \text{ N-ms/rad}$. (Although obvious, consider position as the controlled variable and armature voltage as the manipulated variable.).
 - (i) Design a lead compensator for the system.
 - (ii) Design a lag compensator for the system.

Fig. 1.1.1

Solution: Solving the system shown in 1.1.1,

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

From speed-torque curve of DC Motor in figure. Let $\mathbf{T}_{\mathbf{m}}$ be the torque exerted by DC Motor. 1.1.1

$$\mathbf{T_m} = \frac{\mathbf{K_T}}{R_a} V_a - \frac{\mathbf{K_T} \cdot \mathbf{K_v^T}}{R_a} \boldsymbol{\omega_1}$$
 (1.1.1)

$$\mathbf{T_m} = 2V_a - \frac{2}{3}\omega_1 \tag{1.1.2}$$

Vari- able	Description	
T _m	Torque applied by motor on left of J_1	
T_1	Torque existing on right of J_1	
T ₂	Torque existing on left of J_2	
θ_1	Position vector of J_1	
θ_2	Position vector of J_2	
V_a	Armature voltage of DC Motor	
ω_1	Angular velocity of J_1	
J_1	Moment of Intertia of first load	
J_2	Moment of Intertia of second	
	load	
f_1	Viscous friction on J_1	
f_2	Viscous friction on J_2	

TABLE 1.1.1: List of Variables

Change in torque across ends = torque applied on load + viscous friction. On J_1 at one end torque T_m is applied and at the other end T_1 exists.

$$T_{\rm m} = T_1 + J_1 \ddot{\theta}_1 + f_1 \dot{\theta}_1$$
 (1.1.3)

Similarly for J_2

$$\mathbf{T_2} = J_2 \ddot{\boldsymbol{\theta}_2} + f_2 \dot{\boldsymbol{\theta}_2} \tag{1.1.4}$$

$$\mathbf{T_2} = \frac{N_2}{N_1} \mathbf{T_1} \text{ (Gear Train Formula)} \quad (1.1.5)$$

$$\theta_2 = \frac{N_1}{N_2} \theta_1$$
 (Gear Train Formula) (1.1.6)

Vector/Ma- trix	Dimension
$\theta_1 \& \theta_2$	1X3
θ	2X3
T _m	1X3
K	2X3
K _v	1X3
K _T	1X3

TABLE 1.1.2: Vectors and Matrices

Converting to State Space model

$$\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \tag{1.1.7}$$

$$3\mathbf{T_m} = \begin{pmatrix} 3J_1 & J_2 \end{pmatrix} \ddot{\boldsymbol{\theta}} + \begin{pmatrix} 3f_1 & f_2 \end{pmatrix} \dot{\boldsymbol{\theta}} \qquad (1.1.8)$$

$$\mathbf{T_m} = 2V_a - \begin{pmatrix} \frac{2}{3} & 0 \end{pmatrix} \dot{\boldsymbol{\theta}} \tag{1.1.9}$$

$$\boldsymbol{\theta} = \begin{pmatrix} N_2 & 0\\ 0 & N_1 \end{pmatrix} K \tag{1.1.10}$$

This is the state space model obtained

$$\ddot{\boldsymbol{\theta}} = \begin{pmatrix} \frac{-13}{6} & 0\\ 0 & \frac{-5}{3} \end{pmatrix} \dot{\boldsymbol{\theta}} + \begin{pmatrix} \frac{1}{2}\\ \frac{1}{6} \end{pmatrix} V_a \tag{1.1.11}$$

$$\dot{\boldsymbol{\theta}}_{2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \dot{\boldsymbol{\theta}} \tag{1.1.12}$$

On solving the above State Space Model

$$V_a(s) = (6s + 10)(s\theta_2(s))$$
 (1.1.13)

$$G(s) = K \frac{\theta(s)}{V_a(s)} = \frac{K}{2s(3s+5)}$$
 (1.1.14)

From Error Constant K = 500

$$G(s) = \frac{\theta(s)}{V_a(s)} = 250 \frac{1}{s(3s+5)}$$
 (1.1.15)

$$\zeta = 0.0695 \tag{1.1.16}$$

$$M_p = e^{\frac{-\zeta\pi}{\sqrt{1-\zeta^2}}} = 81.6\%$$
 (1.1.17)

$$\phi_M = \tan^{-1}(\frac{2\zeta}{\sqrt{-2\zeta^2 + \sqrt{4\zeta^4 + 1}}})$$
 (1.1.18)

$$\phi_{max} = 39.5^{\circ} - 7.35^{\circ} + \text{ correction factor}$$
(1.1.19)

$$\phi_{max} = 57^{\circ} \tag{1.1.20}$$

Specifications	Actual	Expected
OS%	81.6%	25%
ζ	0.0695	0.403
ϕ_m	7.35°	39.5°

TABLE 1.1.3: Table of Specifications

Designing a lead compensator

$$G_c(s) = \frac{1}{a} \frac{s + \frac{1}{T}}{s + \frac{1}{aT}} (a < 1)$$
 (1.1.21)

$$\sin \phi_{max} = \frac{a-1}{a+1} \tag{1.1.22}$$

$$a = 0.1 (1.1.23)$$

$$|G(j\omega_c)| = \frac{1}{\sqrt{a}} = 10dB \tag{1.1.24}$$

$$\omega_c = 5^{\circ}$$
 (Refer figure 1.1.3) (1.1.25)

$$T = \frac{1}{\omega_c \sqrt{a}} = 0.632 \tag{1.1.26}$$

$$G_c(s) = 10 \frac{s+1.6}{s+16}$$
 (1.1.27)

$$G(s)G_c(s) = 2500 \frac{s+1.6}{s(3s+5)(s+16)} \quad (1.1.28)$$

Designing a lag compensator

$$G_c(s) = \frac{1}{b} \frac{s + \frac{1}{T}}{s + \frac{1}{bT}} (b > 1)$$
 (1.1.29)

$$\phi_{max} = 39.5^{\circ} - 7.35^{\circ} + correction factor$$
(1.1.30)

$$\phi_{max} = 45^{\circ} \tag{1.1.31}$$

 ω_c = Frequency at which phase of bode plot of G(s) is -180 + ϕ_{max} i.e. -135 ° ω_c = 1.75rad/sec as in Figure 1.1.2 We place the zero at

$$\omega = 0.2\omega_c = 0.35 rad/sec \qquad (1.1.32)$$

$$\implies T = 2.85 \tag{1.1.33}$$

codes/ee18btech11001/ee18btech11001_1.py

The magnitude of $G(j\omega)$ at the new gain crossover frequency $\omega_c = 1.75 rad/sec$ is 26 dB as in figure 1.1.3.In order to have ω_c as the new gain crossover frequency, the lag compensator

Fig. 1.1.2: Phase plot of G(s)

Fig. 1.1.3: Magnitude plot of G(s)

must give an attenuation of -26db at ω_c

$$-20\log b = -26dB \tag{1.1.34}$$

$$b = 19.95 \approx 20 \tag{1.1.35}$$

$$G_c(s) = 0.05 \frac{s + 0.35}{s + 0.0175}$$
(1.1.36)
$$G(s)G_c(s) = 12.5 \frac{s + 0.35}{s(3s + 5)(s + 0.0175)}$$
(1.1.37)

$$G(s)G_c(s) = 12.5 \frac{s + 6.55}{s(3s+5)(s+0.0175)}$$
(1.1.37)

Performance Evaluation of compensators

The following code plots the performance curves

codes/ee18btech11001/ee18btech11001 2.py

Figures 1.1.4 and 1.1.5 show the reduced overshoot & settling time for unit step input.

Fig. 1.1.4: Performance of Lead Compensator

Fig. 1.1.5: Performance of Lag Compensator

Compensator	Actual OS%	Expected OS%
Lead Compensator	26%	25%
Lag Compensator	25%	24%

TABLE 1.1.4: Performance comparison

This verifies that the designed lead and lag compensators work as per specifications.