

One Size Fits All? Estimating Tax Elasticities Across Time

Patrick Macnamara † Myroslav Pidkuyko§ Raffaele Rossi†

§ Bank of Spain

† The University of Manchester

Credibility Conference LAEF, UC Santa Barbara November 16, 2019

The views expressed in this presentation are those of the authors and **do not** necessarily represent the views of the Bank of Spain and the Eurosystem.

Motivation

Main Contribution: We estimate, quantify and disentangle how the tax policy transmission mechanism varies across time, i.e. 1983 vs. 2016.

- i. We study the effects of tax changes both on macro aggregates, e.g. GDP, as well as on more micro variables, such as wealth inequality, individual saving behaviour and labour supply.
- ii. We disentangle how the **overall effects** of tax changes depend on **specific features** of the economy, such as the the increased dispersion of **labour productivity**, the decline in the **progressivity** of the income tax schedule; and the **concentration** of wealth. *et cetera*.

What We Do

- □ We estimate a **life-cycle** model with **uninsurable labor** and **capital income risk** that captures:
 - ▶ Key behavioral elasticities i.e. labor supply and consumption/saving choice;
 - Crucial to capture agents' responses to tax changes.
 - ▶ **Right tail of earnings and wealth distribution** across time.
 - Crucial to quantify the effects of fiscal policy, rich top 1% paid 42% of overall federal taxes in 2016.
- □ We use the estimated model as **laboratory** for our policy experiments.
 - ▶ Policy experiment today: across-the-board tax cut that is financed by allowing government spending to fall
 - ▶ Compare two steady-states, with and without policies in 1983 vs. 2016, i.e. long-run effects.

What We Find

- □ : Macroeconomic result: We estimate that \$1 decrease in fiscal revenues increases GDP by \$2.38 in 1983 and \$1.17 in 2016.
- □ **Public Economics result:** The long-run elasticity of taxable income (ETI) to the net of AMTR is around **0.68** in 1983 and **0.47** in 2016.
- □ The effects of marginal tax policies are **larger** in 1983 than in 2016 along the whole distribution of income but even more so for **the top** 1% of the distribution.
- Most of the differences between 1983 and 2016 are due to general equilibrium effects of: i) the **progressivity** of the tax function; ii) the distribution of **talents** and iii) the distribution of **returns**;

Novel complementary evidence on the transmission mechanism of tax policies

- □ Issues and shortcomings of the empirical literature, see Saez et al. (JEL, 2012):
 - Mainly short-run effects of tax changes, e.g. Feldstein (JPE, 1995),
 Mertens and Motiel-Olea (QJE, 2018). However many effects appear only in the long-run (wealth inequality).
 - ▶ Best available estimates of LRETI around **0.25**, Saez *et al.* (JEL, 2012).
 - Mixed results on the transmission mechanism, i.e. whether due to top or bottom income groups: top 1% Mertens and Montiel-Olea (QJE, 2019), bottom 90% Zidar (JPE, 2019);
 - Same effects in 1948 and 2015, fundamentally different economy, it matters for the transmission mechanism;
- Our approach overcomes most of the points above, at the cost of imposing a DGP on the system, e.g. we ignore human capital accumulation and tax avoidance.

General Setting

- Consider a life-cycle economy (incomplete markets and borrowing constraints):
 - Agents live up to age J, but there is an exogenous probability of early death;
 - Labour supply is endogenous;
- Idiosyncratic labor productivity risk + ex-ante heterogeneity in ability
 - e.g. Conesa *et al.* (AER, 2009) and Kaplan and Violante (Eca, 2014);
- □ **Return on wealth is risky**See empirical evidence of Fegereng *et al.* (Eca, 2019), Saez and Zucman (QJE, 2016) and models by Behabib *et al.* (Eca, 2011), Behabib *et al.* (AER, 2019) and Hubmer, Krussel and Smith (2019).

 $\ \square$ All age-1 agents have identical preferences for **consumption** c_j and **hours worked** h_j over their lifetime,

$$E\left\{\sum_{j=1}^{J}\beta^{j-1}\underbrace{\left(\prod_{k=1}^{j}s_{k}\right)}_{\text{surv prob.}}u(c_{j},h_{j})\right\}$$

- $\ \square \ \prod_{k=1}^{j} s_k$ is the unconditional probability an age-1 agent will survive to age j;
- □ We assume

$$u(c,h) = \frac{\left(c^{\gamma}(1-h)^{1-\gamma}\right)^{1-\sigma}}{1-\sigma}$$

Labor Earnings Risk

 \square Labor earnings is defined as *whe*, where *e* is labor productivity:

$$\log e(i, j, z_h) = \bar{e}_i + \underbrace{(\alpha_0 + \alpha_1 j + \alpha_2 j^2 + \alpha_3 j^3 + \alpha_4 j^4)}_{\text{life-cycle profile}} + z_h$$

- \triangleright Fixed heterogeneity via \bar{e}_i
- ▶ A life-cycle component, modeled as a quartic polynomial
- \triangleright Idiosyncratic shocks via AR(1) residual, z_h
- $\ \square \ z_h$ is AR(1): $z_h' = \rho_h z_h + \varepsilon_e \quad \varepsilon_e \sim N(0, \sigma_{\varepsilon_h}^2)$

where initial z_h is fixed at zero.

 \square We assume e=0 once individual reaches retirement age (j=R).

Asset Return Risk

□ Return on wealth is risky

see Saez and Zucman (QJE, 2016) and Fagereng, Guiso, Malacrino and Pistaferri (Eca, 2019);

- Households choose
 - \triangleright lending to other households at rate r
 - ho becoming an entrepreneur using backyard technology $q=z_rk$ to produce intermediate good q with exogenous collateral constraint $k\leq \lambda a$, that is traded at price p
 - entrepreneurial productivity is stochastic:

$$\log z'_r = \rho_r \log z_r + \varepsilon_r, \quad \varepsilon_r \sim N\left(0, \sigma_{\varepsilon r}^2\right)$$

where initial z_r is drawn from $N\left(0, \sigma_{\varepsilon r}^2/(1-\rho_r^2)\right)$.

b total return on wealth is

$$r_a(z_r) = r + \lambda \max\{pz_r - (r+\delta), 0\}$$

ho endogenous entrepreneurial threshold $\bar{z}_r = (r+\delta)/p$

Supply Side

- $\ \square$ The supply is entirely standard. Firms adopts a CRS production technology in capital and labour, $Y=F(Q,L)=AQ^{\alpha}L^{1-\alpha};$
- $\ \Box$ Optimal behaviour and perfect factor markets imply $w=F_L$ and $\bar{r}+\delta=F_Q;$

Government runs social security scheme

$$ar{b}_i = \chi w L_i$$
 (S.S. retirement benefit) $T_{ss} = au_{ss} \min(weh, ar{y})$ (Flat S.S. tax up to a cap)

□ Labor and income are jointly taxable; taxable income is:

$$y = weh + ra - \frac{1}{2} \underbrace{\min(weh, \bar{y})}_{\text{S.S. contrib}}$$

☐ The income tax function is from Gouveia and Strauss (1994):

$$\mathcal{T}(y; \tau_0, \tau_1, \tau_2) = \tau_0 \left[y - \left(y^{-\tau_1} + \tau_2 \right)^{-\frac{1}{\tau_1}} \right],$$

 au_0 is the top marginal tax rate, and (au_1, au_2) jointly determine the progressivity of the tax function.

Quantitative Strategy

- □ Three groups of parameters:
 - Estimate some parameters outside the model using Survey of Consumer Finances (SCF) and TAXSIM data
 - e.g., labor productivity age-profile; tax function
 - 2. We fix some parameters / or set to match macro ratios
 - e.g., risk aversion, discount factor
 - Remaining parameters estimated via Simulated Method of Moments (SMM) to match key wealth and earnings moments from the SCF
 - e.g., capital income risk, labor productivity risk/fixed effect

Directly Estimated Parameters: 1983 vs. 2016

		1983	2016
Parameter	Notation	Value	Value
Survival prob.	$\{s_{j+1}\}_{j=1}^{J}$	[]	[]
Income tax:			
Max. tax rate	$ au_0$	0.370	0.278
Progessivity 1	$ au_1$	1.55	2.85
Progessivity 2	$ au_2$	1.82×10^{-3}	1.14×10^{-5}
Labor ability:			
Age profile, 0	α_0	3.31	4.20
Age profile, 1	α_1	0.12	0.10
Age profile, 2	$lpha_2$	-6.41×10^{-3}	-3.72×10^{-3}
Age profile, 3	α_3	$+1.38 \times 10^{-4}$	$+6.37 \times 10^{-5}$
Age profile, 4	$lpha_4$	-1.08×10^{-6}	-4.20×10^{-7}

Note: Survival probabilities were obtained from the 1959-2016 Period Life Tables from the US Mortality Database.

Tax Functions: 1983 vs. 2016

Tax Functions. Progressivity: 1983=0.273; 2016=0.221.

Note: We use NBER's TAXSIM to measure income taxes in SCF and we fit our tax function to the data using non-linear least squares. We compute progressivity for income p50 (y_1) vs income p99 (y_2) , $P(y_1,y_2)=1-\frac{1-\mathcal{T}'(y_2)}{1-\mathcal{T}'(y_1)}$.

Calibrated Parameters: 1983 vs. 2016

	Notation	Value	Description
Number of types	I	6	
Maximum age	J	70	Age 90
Retirement age	R	45	Age 65
Risk aversion	σ	2	Typical
Population growth rate	n	0.012	
Capital share	α	0.36	Typical
Depreciation rate	δ	0.06	Typical
Replacement rate	χ	0.70	
Discount factor	β	0.99	Target $K/Y = 3$
Persistence labor shock	$ ho_h$	0.95	Typical
		1983	2016
	Notation	Model	Model
S.S. tax rate	$ au_{ss}$	0.108	0.124
S.S. income cap	\bar{y}	70.9	107.7

Estimated Parameters

		1	1983		016
Panel A: Parameters	Notation	Value	Std. Err.	Value	Std. Err.
Lab. fixed effect	$Std.Dev.(\bar{e}_i)$	0.613	(0.088)	0.852	(0.233)
Lab. idios. shock	$\sigma_{arepsilon h}$	0.170	(0.030)	0.228	(0.076)
Consumption share	γ	0.362	(0.004)	0.372	(0.026)
Return persistence	$ ho_r$	0.952	(0.012)	0.951	(0.108)
Return std. dev.	$\sigma_{arepsilon r}$	0.296	(0.019)	0.305	(0.099)
		1	983	2	016
Panel B: Moments		Model	Data	Model	Data
Wealth gini		0.81	0.78	0.88	0.86
Wealth share, top 1%		0.32	0.32	0.40	0.39
Wealth share, top 5%		0.54	0.55	0.66	0.65
Wealth share, top 20%		0.83	0.80	0.91	0.88
Earnings gini		0.60	0.57	0.67	0.68
Earnings top 1%		0.09	0.07	0.15	0.17
Tax shares top 1%		0.25	0.23	0.39	0.42
Tax shares top 5%		0.45	0.42	0.68	0.66
Average Hours		0.33	0.30	0.32	0.30
Wealth-Income Cov.		0.52	0.57	0.49	0.58

Cut in Marginal Tax Rates

Main Exercise: Cut τ_0 by 5pp

- □ This policy changes the AMTR as well as ATR, hence it affects the progressivity of the tax system;
- $\ \square$ We compensate this variation with adjustments in G;
- □ We compare two steady-states (hence these are long-run values)
- We calculate the \$ on \$ GDP Multipliers and ETI

$$Mult = \frac{\Delta Y}{-\Delta T_y} \qquad ETI = \frac{\% \Delta y}{\% \Delta (1 - AMTR)}$$

General Effects: \$ on \$ Multipliers

Variable	1983	2016	Difference
Multiplier-GDP	2.40	1.16	-51.50%
Multiplier-Tax.IncAggr.	1.91	0.86	-55.06%
Multiplier-Tax.Inc. Top 1%	2.15	0.68	-68.10%
Multiplier-Tax.Inc. Top 5%	1.61	0.68	-57.65%
Multiplier-Tax.Inc. Top 10%	1.59	0.70	-56.46%
Multiplier-Tax.Inc. Bottom 99%	1.81	0.94	-48.17%
Multiplier-Tax.Inc. Bottom 90%	2.65	1.27	-51.93%

General Effects: Elasticity of Taxable Income

Variable	1983	2016	Difference
ETI-Aggregate	0.68	0.47	-29.91%
ETI Top 1%	0.77	0.42	-45.06%
ETI Top 5%	0.61	0.41	-31.62%
ETI Top 10%	0.59	0.42	-28.62%
ETI Bottom 99%	0.63	0.50	-21.06%
ETI Bottom 90%	0.79	0.58	-26.48%

General Effects: Distributional Effects

Variable	1983	2016
Wealth Gini	0.14	0.02
Wealth top 1%	0.57	0.01
Wealth top 5%	0.34	0.05
Wealth top 20%	0.15	0.04
Earning Gini	0.02	-0.01
Earning top 1%	-0.05	-0.02
Earning top 5%	-0.01	-0.02
Earning top 20%	0.01	-0.01

Disentangling the Results: PE vs GE

Response at the top is much stronger in partial equilibrium (PE) compared to general equilibrium (GE):

	1983		20	16
	GE	PE	GE	PE
ETI Aggregate	0.68	2.00	0.48	1.06
ETI Top 1%	0.77	3.77	0.42	2.53
ETI Top 5%	0.61	2.48	0.42	1.64
ETI Top 10%	0.59	2.11	0.42	1.37
ETI Bottom 99%	0.63	1.10	0.50	0.46
ETI Bottom 90%	0.79	1.29	0.58	0.44
$\%\Delta w$	2.6%	0.0%	2.7%	0.0%
$\%\Delta p$	-4.5%	0.0%	-4.6%	0.0%

Disentangling the Results: Model Features

	1983			
		No Cap.	No Lab.	Flat
	Bench.	Inc. Risk	Inc. Risk	Tax
ETI Aggregate	0.68	0.35	0.94	0.40
ETI Top 1%	0.77	0.26	0.95	0.34
ETI Top 5%	0.61	0.31	0.80	0.35
ETI Top 10%	0.59	0.33	0.79	0.36
ETI Top Bottom 99%	0.63	0.37	0.86	0.41
ETI Top Bottom 90%	0.79	0.33	1.00	0.44

	2016			
		No Cap.	No Lab.	Flat
	Bench.	Inc. Risk	Inc. Risk	Tax
ETI Aggregate	0.48	0.27	0.52	0.39
ETI Top 1%	0.42	0.25	0.49	0.32
ETI Top 5%	0.42	0.26	0.47	0.36
ETI Top 10%	0.42	0.27	0.45	0.37
ETI Top Bottom 99%	0.50	0.27	0.54	0.42
ETI Top Bottom 90%	0.58	0.27	0.62	0.43

Disentangling the Results: Differences

		1983 +	1983 +	1983 +
	1983	2016	2016	2016
Variable	Bench.	Tax	Ability	Returns
Multiplier-GDP	2.40	1.91	1.50	2.35
Multiplier-Tax.IncAggr.	1.91	1.49	1.06	1.91
Multiplier-Tax.Inc. Top 1	2.15	1.31	1.01	2.11
Multiplier-Tax.Inc. Top 10	1.59	1.11	0.92	1.62
Multiplier-Tax.Inc. Bottom 99	1.81	1.59	1.07	1.61
Multiplier-Tax.Inc. Bottom 90	2.65	2.73	1.38	1.82
ETI-Aggregate	0.68	0.66	0.46	0.68
ETI Top 1	0.77	0.71	0.47	0.77
ETI Top 10	0.59	0.55	0.43	0.60
ETI Bottom 99	0.63	0.63	0.46	0.63
ETI Bottom 90	0.79	0.81	0.51	0.79

Conclusions/1

- □ We **develop** a quantitative life cycle model to assess the effects of tax changes
 - i. We discipline the model with external and internal estimates;
 - ii. The model captures well the right tail of the wealth distribution and key behavioural elasticities.
- □ We **quantify** the transmission mechanism of tax policy across time:
 - i. \$ on \$ multiplier is **50% lower** in 2016 than in 1983;
 - The long-run elasticity of taxable income (ETI) is 30% lower in 2016 than in 1983;
 - iii. Difference along the income distribution.
- □ **Important insights** into the transmission mechanism:
 - The progressivity of taxation matters more for the transmission on the aggregate level;
 - ii. The dispersion of productivity matters more for the transmission on the individual level.

Main take home:

- i. Substantial quantitative difference in the effects of tax policies in post 80s US data;
- Modelling the **right tail** of the distribution is crucial to evaluate the transmission mechanism of fiscal policies;
- GE effects and non-linearities extremely important for policy evaluations.

Appendices

- □ We estimate the remaining parameters using a Simulated Method of Moments (SMM) estimator, see Taylor (JoF, 2010) and Benhabib et al. (AER, 2019):
 - we select some relevant moments of the income and wealth process from the SCF (1983 and 2016);
 - 2. we estimate the parameters by matching the targeted moments generated by the stationary distribution induced by the model and those in the data.
- Specifically we use the formula

$$\hat{\Theta} = \arg\min_{\Theta} \left(\hat{M} - \frac{1}{S} \sum_{s=1}^{S} \hat{m}^{s} \left(\Theta \right) \right)' W \left(\hat{M} - \frac{1}{S} \sum_{s=1}^{S} \hat{m}^{s} \left(\Theta \right) \right),$$

with $\hat{M}{=}\mathsf{Data}$ moments; $\hat{m}^s(\Theta){=}\mathsf{Model}$ moments; $W{=}\mathsf{Efficient}$ weighting matrix;

☐ Standard errors computed using

$$\sqrt{N}(\Theta - \Theta_0) \to \mathcal{N}(0, V)$$
 where $V = (1 + 1/S)(G'WG)^{-1}$

with N=no. of data observations; G= gradient matrix of moments

Hours-Age Profile

The Return Profile

Table: Implied excess return profiles

Wealth	1983	2016
Top 1%	9.3%	6.6%
Top 5%	5.1%	3.2%
Top 10%	3.5%	2.1%
Top 20%	2.1%	1.2%
Bottom 50%	-2.9%	-3.0%
Median	0	0

Labor Productivity Age Profiles: 1983 vs. 2016

