Izmir Institute qf Technology Elec. & Electronics Eng. Dep. Circuit Lab.

First Order RC Circuits Lab#5

Pre-lab

- 1- For the circuit in Fig. 5.1:
 - a- Find the time constant τ .
- b- Let VS(t) be a square wave with amplitude of (0V-5V), and a period of 20τ . Find V(t) and sketch it.

2- The *tangent method* to find τ : Sometimes it is convenient to be able to find the time constant of a circuit by just looking at its response on an oscilloscope. The response may look something like this:

• Show that τ in the above diagram is equal to *RC*.

Instructional objective

Two types of first order circuits will be considered in this lab; RC circuits and RL circuits.

Procedure:

1- Build the circuit in Fig. 5.1.

$$R_{1} = 10K\Omega$$

$$R_{int} = 50\Omega$$

$$V(t) = 0 V$$

$$V(t) = 0 V$$

2- Let Vs(t) be a square wave from (0-5V), with a period of 20τ . Note that such a square wave is an approximation of a STEP function. **Why?**

3- Sketch V(t) and Vs(t) on the same graph.

4- Find the time constant (τ) using the tangent method. Note that finding the time constant from the oscilloscope display is not accurate to the n^{th} degree, but you can get a very close and quick approximation. Be sure to expand the waveform as much as possible on your screen to get the most accurate measurement.