Métodos Estatísticos

6 - Amostragem

Referencia: Estatística Aplicada às Ciências Sociais, Cap. 3 Pedro Alberto Barbetta. Ed. UFSC, 5^a Edição, 2002.

População x Amostra

- População conjunto dos elementos que se deseja estudar.
- Amostra subconjunto da população.

Pesquisa tipo levantamento

POPULAÇÃO

 Conjunto de elementos com pelo menos uma característica em comum observável.

Característica X observável: X₁ X₂ X₃ ...

Levantamento por amostragem

POPULAÇÃO: moradores de uma metrópole

AMOSTRA:
uma parte dos
moradores

Pesquisa eleitoral: um exemplo de levantamento por amostragem

POPULAÇÃO: eleitores brasileiros

Voto do eleitor:

AMOSTRA: uma parte dos eleitores

 $X_1 X_2 X_3$

Amostragem e Inferência estatística

O raciocínio indutivo da inferência estatística

Pesquisa eleitoral

POPULAÇÃO

Voto do eleitor:

$$\pi = p \pm erro amostral$$

População

 Finita - Alunos do mestrado, funcionários da Petrobrás, eleitores do Brasil, etc.

 Infinita - Barris de petróleo produzidos por um poço, nascimentos em uma cidade, produção de uma máquina, etc.

População e Amostra

 Censo: Estudo através do exame de todos os elementos da população.

 Amostragem: Estudo por meio do exame de uma amostra.

Por que fazer amostragem ao invés de censo?

- Economia
- Menor tempo
- Maior qualidade nos dados levantados
- População infinita.
- Mais fácil, com resultados satisfatórios.

Quando fazer censo?

- População pequena (tamanho da amostra grande em relação ao da população).
- Quando se exige o resultado exato.
- Quando já se dispõe dos dados da população.

Tamanho da amostra (n) e tamanho da população (N)

Tamanho da amostra (n) e tamanho da população (N)

IMPORTANTE: forma de seleção

Amostragem

A amostra deve ser representativa!

Técnicas de Amostragem

- Amostragem probabilística (aleatória) a probabilidade de um elemento da população ser escolhido é conhecida.
- Amostragem não probabilística (não aleatória) - Não se conhece a probabilidade de um elemento da população ser escolhido para participar da amostra.

Amostragem Probabilística

- Amostragem aleatória simples
- Amostragem sistemática
- Amostragem estratificada
- Amostragem por conglomerados

Amostragem Aleatória Simples

- Faz-se uma lista da população e sorteiam-se os elementos que farão parte da amostra.
- Pode-se utilizar uma tabela de números aleatórios.

Amostragem Aleatória Simples

 Cada subconjunto da população com o mesmo nº de elementos tem a mesma chance de ser incluído na amostra.

$$p = n / N$$

Amostragem Sistemática

 Os elementos da população apresentam-se ordenados e são retirados periodicamente (de cada k elementos, um é escolhido)

Amostragem Sistemática

- Vantagem: facilidade
- Problema: possibilidade de haver ciclos de variação

Amostragem Estratificada

- Usada quando a população divide-se em sub populações (estratos) razoavelmente homogêneos.
- A amostragem estratificada consiste em se especificar quantos itens da amostra serão retirados de cada estrato.
- A seleção em cada estrato deve ser aleatória

POPULAÇÃO: comunidade da escola

Ilustração de uma amostragem estratificada proporcional.

Amostragem Estratificada Exemplos

- População em homens e mulheres ou em faixas etárias;
- Pesquisas eleitorais
 - -região;
 - -cidades pequenas e grandes;
 - -urbano e rural.
 - -sexo;
 - -faixa etária;
 - -faixa de renda;

Amostragem por Conglomerados

- Usada quando a população pode ser dividida em subpopulações (conglomerados) heterogêneos representativos da população global.
- A amostragem é feita sobre os conglomerados, e não mais sobre os indivíduos da população.

Amostragem por Conglomerados

conglomerados:

seleção aleatória de conglomerados

elementos:

2° ESTÁGIO:

seleção aleatória de elementos

Amostragem Aleatória Simples

 Para o restante da disciplina, sempre será pressuposto que a amostra foi extraída através de uma amostragem aleatória simples.

Tamanho de Amostra

- Parâmetro: característica da população.
- Estatística: característica descritiva de elementos de uma amostra.
- Estimativa: valor acusado por uma estatística que estima o valor de um parâmetro populacional.
- ERRO AMOSTRAL: diferença entre o valor que a estatística pode acusar e o verdadeiro valor do parâmetro que se deseja estimar.
- ERRO AMOSTRAL TOLERÁVEL: quanto um pesquisador admite errar na avaliação dos parâmetros de interesse numa população.
 - Exemplo, o resultado de uma pesquisa eleitoral:
 Candidato A = 20%, com 2% de erro amostral (18% 22%)

Fórmula para cálculo do tamanho da amostra

- N = Tamanho da população
- E₀ = erro amostral tolerável
- n₀ = primeira aproximação do tamanho da amostra

•
$$n = \text{tamanho da amostra}$$

$$n_0 = \frac{1}{E_0^2}$$

$$n = \frac{N.n_0}{N + n_0}$$

Exemplo cálculo do tamanho da amostra

N = 200 famílias

 E_0 = erro amostral tolerável = 4% (E_0 = 0,04)

 $n_0 = 1/(0.04)^2 = 625$ famílias

n (tamanho da amostra corrigido) =

n = 200x625/200+625 = 125000/825 = 152 famílias

E se a população fosse de 200.000 famílias?

$$n = (200.000)x625/(200.000 +625) = 623$$
 famílias

Observe=se que se N é muito grande, não é necessário considerar o tamanho exato N da população. Nesse caso, o cálculo da primeira aproximação já é suficiente para o cálculo.

$$n = n_0 = \frac{1}{E_0^2}$$

Tamanho da amostra ...

Observe que: N = 200 famílias, $E_0 = 4\%$

n = 152 famílias → 76% da população

Observe que: N = 200.000 famílias, $E_0 = 4\%$

n = 623 famílias → 0,3% da população

Logo, é errôneo pensar que o tamanho da amostra deve ser tomado como um percentual do tamanho da população para ser representativa

Exercício Tamanho da amostra ...

4. Numa pesquisa para uma eleição presidencial, qual deve ser o tamanho de uma amostra aleatória simples, se se deseja garantir um erro amostral não superior a 2% ?

$$n = n_0 = 1/(0.02)^2 = 1/0.0004 = 2500$$
 eleitores

5. Numa empresa com 1000 funcionários, deseja-se estimar a percentagem dos favoráveis a certo treinamento. Qual deve ser o tamanho da amostra aleatória simples que garanta um erro amostral não superior a 5%?

```
N = 1000 empregados

E_0 = erro amostral tolerável = 5% (E_0 = 0,05)

n_0 = 1/(0,05)<sup>2</sup> = 400 empregados

n = 1000x400/(1000+400) = 286 empregados
```