大数据科学与应用技术

Lecture: 焦在滨(Zaibin JIAO)

Email: jiaozaibin@mail.xjtu.edu.cn

Real World Scenarios

VS.

Real World Scenarios

What is ensemble learning?

- Many individual learning algorithms are available:
 - Decision Trees, Neural Networks, Support Vector Machines
- The process by which multiple models are strategically generated and combined in order to better solve a particular Machine Learning problem.
- Motivations
 - To improve the performance of a single model.
 - To reduce the likelihood of an unfortunate selection of a poor model.
- Multiple Classifier Systems
- One idea, many implementations
 - Bagging
 - Boosting

Algorithm Hierarchy

Combination of Classifiers

Model Selection

Divide and Conquer

Divide and Conquer

Combiners

- How to combine the outputs of classifiers?
- Averaging
- Voting
 - Majority Voting
 - Random Forest
 - Weighted Majority Voting
 - AdaBoost
- Learning Combiner
 - General Combiner
 - Stacking
 - Piecewise Combiner
 - RegionBoost
- No Free Lunch

Diversity

- The key to the success of ensemble learning
 - Need to correct the errors made by other classifiers.
 - Does not work if all models are identical.
- Different Learning Algorithms
 - DT, SVM, NN, KNN ...
- Different Training Processes
 - Different Parameters
 - Different Training Sets
 - Different Feature Sets
- Weak Learners
 - Easy to create different decision boundaries.
 - Stumps ...

Bootstrap Samples

Bagging (Bootstrap Aggregating)

Algorithm: Bagging

Input:

- Training data S with correct labels $\omega_i \Omega = \{\omega_1, ..., \omega_C\}$ representing C classes
- Weak learning algorithm WeakLearn,
- Integer *T* specifying number of iterations.
- Percent (or fraction) F to create bootstrapped training data

Do t=1, ..., T

- 1. Take a bootstrapped replica S_t by randomly drawing F percent of S.
- 2. Call **WeakLearn** with S_t and receive the hypothesis (classifier) h_t .
- 3. Add h_t to the ensemble, \mathcal{E} .

End

Test: Simple Majority Voting – Given unlabeled instance x

- 1. Evaluate the ensemble $\mathcal{E} = \{h_1, ..., h_T\}$ on **x**.
- 2. Let $\mathbf{v}_{t,j} = \begin{cases} 1, & \text{if } \mathbf{h}_t \text{ picks class } \boldsymbol{\omega}_j \\ \mathbf{0}, & \text{otherwise} \end{cases}$ be the vote given to class $\boldsymbol{\omega}_j$ by classifier h_t .
- 3. Obtain total vote received by each class , $V_j = \sum_{t=1}^T v_{t,j}$ j = 1,...,C.
- 4. Choose the class that receives the highest total vote as the final classification.

Bagging

A Decision Tree

Tree vs. Forest

Random Forests

- Developed by Prof. Leo Breiman
 - Inventor of CART
 - www.stat.berkeley.edu/users/breiman/
 - Breiman, L.: Random Forests. *Machine Learning* 45(1), 5–32, 2001
- Bootstrap Aggregation (Bagging)
 - Resample with Replacement
 - Use around two third of the original data.
- A Collection of CART-like Trees
 - Binary Partition
 - No Pruning
 - Inherent Randomness
- Majority Voting

$$1 - \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n$$

RF Main Features

- Generates substantially different trees:
 - Use random bootstrap samples of the training data.
 - Use random subsets of variables for each node.
- Number of Variables
 - Square Root (K)
 - K: total number of available variables
 - Can dramatically speed up the tree building process.
- Number of Trees
 - 500 or more
- Self-Testing
 - Around one third of the original data are left out.
 - Out of Bag (OOB)
 - Similar to Cross-Validation

RF Advantages

- All data can be used in the training process.
 - No need to leave some data for testing.
 - No need to do conventional cross-validation.
 - Data in OOB are used to evaluate the current tree.
- Performance of the entire RF
 - Each data point is tested over a subset of trees.
 - Depends on whether it is in the OOB.
- High levels of predictive accuracy
 - Only a few parameters to experiment with.
 - Suitable for both classification and regression.
- Resistant to overtraining (overfitting).
- No need for prior feature selection.

Stacking

D Base Classifiers

 $\{(x_1, y_1) \dots (x_n, y_n)\}$

Meta Classifier

$$\{(h_1(x_i), h_2(x_i), ..., h_k(x_i), y_i)\}$$

Stacking

```
Input: Data set \mathcal{D} = \{(x_1, y_1), (x_2, y_2), \cdots, (x_m, y_m)\};
         First-level learning algorithms \mathcal{L}_1, \dots, \mathcal{L}_T;
          Second-level learning algorithm \mathcal{L}.
Process:
  for t = 1, \dots, T:
          h_t = \mathcal{L}_t(\mathcal{D}) % Train a first-level individual learner h_t by applying the first-level
                      % learning algorithm \mathcal{L}_t to the original data set \mathcal{D}
  end:
  \mathcal{D}' = \emptyset; % Generate a new data set
  for i=1,\cdots,m:
          for t = 1, \dots, T:
                  z_{it} = h_t(x_i) % Use h_t to classify the training example x_i
           end;
          \mathcal{D}' = \mathcal{D}' \cup \{((z_{i1}, z_{i2}, \cdots, z_{iT}), y_i)\}
  end:
  h' = \mathcal{L}(\mathcal{D}'). % Train the second-level learner h' by applying the second-level
                         % learning algorithm \mathcal{L} to the new data set \mathcal{D}'
Output: H(\boldsymbol{x}) = h'(h_1(\boldsymbol{x}), \dots, h_T(\boldsymbol{x}))
```



```
Input: Instance distribution \mathcal{D};

Base learning algorithm \mathcal{L};

Number of learning rounds T.

Process:

1. \mathcal{D}_1 = \mathcal{D}. % Initialize distribution
2. for t = 1, \dots, T:
3. h_t = \mathcal{L}(\mathcal{D}_t); % Train a weak learner from distribution \mathcal{D}_t
4. \epsilon_t = \Pr_{\boldsymbol{x} \sim D_t, y} \boldsymbol{I}[h_t(\boldsymbol{x}) \neq y]; % Measure the error of h_t
5. \mathcal{D}_{t+1} = Adjust\_Distribution(\mathcal{D}_t, \epsilon_t)
6. end

Output: H(\boldsymbol{x}) = Combine\_Outputs(\{h_t(\boldsymbol{x})\})
```

- Bagging aims at reducing variance, not bias.
- In Boosting, classifiers are generated sequentially.
- Focuses on most informative data points.
- Training samples are weighted.
- Outputs are combined via weighted voting.
- Can create arbitrarily strong classifiers.
- The base learners can be arbitrarily weak.
- As long as they are better than random guess!

AdaBoost

```
Input: Data set D = \{(x_1, y_1), (x_2, y_2), \cdots, (x_m, y_m)\};
              Base learning algorithm \mathcal{L};
              Number of learning rounds T.
Process:
          \mathcal{D}_1(i) = 1/m. % Initialize the weight distribution
2. for t = 1, \dots, T:
3. h_t = \mathcal{L}(D, \mathcal{D}_t); % Train a learner h_t from D using distribution \mathcal{D}_t
4. \epsilon_t = \Pr_{\boldsymbol{x} \sim \mathcal{D}_t, y} \boldsymbol{I}[h_t(\boldsymbol{x}) \neq y]; % Measure the error of h_t
5. if \epsilon_t > 0.5 then break
      \alpha_t = \frac{1}{2} \ln \left( \frac{1 - \epsilon_t}{\epsilon_t} \right); % Determine the weight of h_t
            \mathcal{D}_{t+1}(i) = \frac{\mathcal{D}_{t}(i)}{Z_{t}} \times \begin{cases} \exp(-\alpha_{t}) & \text{if } h_{t}(\boldsymbol{x}_{i}) = y_{i} \\ \exp(\alpha_{t}) & \text{if } h_{t}(\boldsymbol{x}_{i}) \neq y_{i} \end{cases}
= \frac{\mathcal{D}_{t}(i)\exp(-\alpha_{t}y_{i}h_{t}(\boldsymbol{x}_{i}))}{Z_{t}} \quad \% \text{ Update the distribution, where}
                                                                    \% Z_t is a normalization factor which
                                                                    % enables \mathcal{D}_{t+1} to be a distribution
           end
Output: H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)
```

Demo: Classifier 1

Demo: Classifier 2

Demo: Classifier 3

Demo: Combined Classifier

样本序号	1	2	3	4	5	6	7	8	9	10
样本点 X	(1,5)	(2,2)	(3,1)	(4,6)	(6,8)	(6,5)	(7,9)	(8,7)	(9,8)	(10,2)
类别 Y	1	11	:/-1b]	ogl c	sdrl. n	et-lgu	vudal	iai	-1	-1
权值分布 Di	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

在分类器H1(x)=h1情况下, 样本点"5 7 8"被错分, 因此基本分类器H1(x)的误差率为:

误差率为:

$$e_1 = (0.1 + 0.1 + 0.1) = 0.3$$

根据误差率 e1 计算 H1 的权重:

$$\alpha_1 = \frac{1}{2}\ln(\frac{1-e_1}{e_1}) = \frac{1}{2}\ln(\frac{1-0.3}{0.3}) = 0.4236$$

PS: 这个a1代表 H1(x)在最终的分类函数中所占的权重为 0.4236

可见,被误分类样本的权值之和影响误差率e,误差率e影响基本分类器在最终分类器中所占的权重 α。

样本序号	1	2	3	4	5	6	7	8	9	10
样本点 X	(1,5)	(2,2)	(3,1)	(4,6)	(6,8)	(6,5)	(7,9)	(8,7)	(9,8)	(10,2)
类别 Y	1	11	:/-1b]	ogl c	sdrl. n	et-lgu	vudal	iai	-1	-1
权值分布 Di	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

在分类器H1(x)=h1情况下, 样本点"5 7 8"被错分, 因此基本分类器H1(x)的误差率为:

误差率为:

$$e_1 = (0.1 + 0.1 + 0.1) = 0.3$$

根据误差率 e1 计算 H1 的权重:

$$\alpha_1 = \frac{1}{2}\ln(\frac{1-e_1}{e_1}) = \frac{1}{2}\ln(\frac{1-0.3}{0.3}) = 0.4236$$

PS: 这个a1代表 H1(x)在最终的分类函数中所占的权重为 0.4236

可见,被误分类样本的权值之和影响误差率e,误差率e影响基本分类器在最终分类器中所占的权重 α。

然后,更新训练样本数据的权值分布,用于下一轮迭代,对于正确分类的训练样本"12346910" (共7个)的权值更新为:

$$D_2 = \frac{D_1}{2(1-\varepsilon_1)} = \frac{1}{10} \times \frac{1}{2 \times (1-0.3)} = \frac{1}{14}$$

PS: 可见, 正确分类的样本的权值由原来 1/10 减小到 1/14。

对于所有错误分类的训练样本"578"(共3个)的权值更新为:

$$D_2(i) = \frac{D_1(i)}{2e_1} = \frac{1}{10} \times \frac{1}{2 \times 03} = \frac{1}{6}$$

PS: 可见, 错误分类的样本的权值由原来 1/10 增大到 1/6。

这样, 第1轮迭代后, 最后得到各个样本数据新的权值分布:

样本序号	1	2	3	4	5	6	7	8	9	10
样本点 🔏	(1,5)	(2,2)	(3,1)	(4,6)	(6,8)	(6,5)	(7,9)	(8,7)	(9,8)	(10,2)
类别 Y	1	1	-1	-1	1	-1	1	1	-1	-1
权值分布 DI	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
权值分布 D2	1/14	1/14	1/14	1/14	1/6	1/14	1/6	1/6	1/14	1/14
$sign(f_1(x))$	1	1	-1	-1	-1	-1	-1	-1	-1	-1

PS: 用浅绿色底纹标记的表格,是被 $H_1(x)$ 分错的样本"578",没有底纹(白色的)是正确分类的样本

被 H_I(x)分错的样本

Case Study

$$H_2 = \begin{cases} 1, X_1 < 8.5 \\ -1, X_1 > 8.5 \end{cases}$$

显然, H2(x)把样本"3 4 6"分错了, 根据D2可知它们的权值为D2(3)=1/14, D2(4)=1/14, D2(6)=1/14, 所以H2(x)在训练数据集上的误差率:

序号	1	2	3	4	5	6	7	8	9	10
样本点 🗶	(1,5)	(2,2)	(3,1)	(4,6)	(6,8)	(6,5)	(7,9)	(8,7)	(9,8)	(10,2)
类别 ₹	1	1	-1	-1	1	-1	1	1	-1	-1
权值分布 <i>D1</i>	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
权值分布 <i>D2</i>	1/14	1/14	1/14	1/14	1/6	1/14	1/6	1/6	1/14	1/14
$sign(f_1(x))$	1	1	-1	-1	-1	-1	-1	-1	-1	-1
权值分布 <i>D3</i>	1/22	1/22	1/6	1/6	7/66	1/6	7/66	7/66	1/22	1/22
$sign(f_2(\mathbf{x}))$	1	1	1	1	1	1	1	1	-1	-1
				ht	tpsa	H ₂ (x)分错	的样本	net/g	guyuea	alian

D3=[1/22,1/22,1/6,1/6,7/66,1/6,7/66,7/66,1/22,1/22]

Case Study

序号	1	2	3	4	5	6	7	8	9	10
样本点 X	(1,5)	(2,2)	(3,1)	(4,6)	(6,8)	(6,5)	(7,9)	(8,7)	(9,8)	(10,2)
类别 ₹	1	1	-1	-1	1	-1	1	1	-1	-1
权值分布 D1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
权值分布 D2	1/14	1/14	1/14	1/14	1/6	1/14	1/6	1/6	1/14	1/14
$sign(f_1(x))$	1	1	-1	-1	-1	-1	-1	-1	-1	-1
权值分布 D3	1/22	1/22	1/6	1/6	7/66	1/6	7/66	7/66	1/22	1/22
$sign(f_2(x))$	1	1	1	1	1	1	1	1	-1	-1
权值分布 D4	1/6	1/6	11/114	11/114	7/114	11/114	7/114	7/114	1/6	1/38
$sign(f_3(\mathbf{x}))$	1	1	-1	<u>J</u> att	ps ı :/	/bl <u>l</u> og	cadn.	n q t/g	uy ı lea	ali _a n

$$H_{final} = sign\left(\sum_{t=1}^{T} \alpha_t H_t(x)\right) = sign(0.4236H_1(x) + 0.6496H_2(x) + 0.9229H_3(x))$$

The Choice of α

Theorem 1: Error is minimized by minimizing Z_t **Proof**:

$$D_{T+1}(i) = \frac{1}{m} \cdot \frac{e^{-y_i \alpha_1 h_1(x_i)}}{Z_1} \cdot \dots \cdot \frac{e^{-y_i \alpha_T h_T(x_i)}}{Z_T} \qquad Z = \sum_i D_i e^{-\alpha y_i h(x_i)}$$

$$= \frac{e^{\sum_t - y_i \alpha_t h_t(x_i)}}{m \prod_t Z_t} = \frac{e^{-y_i \sum_t \alpha_t h_t(x_i)}}{m \prod_t Z_t}$$

$$= \frac{e^{-y_i f(x_i)}}{m \prod_t Z_t} \qquad f(x_i) = \sum_t \alpha_t h_t(x_i)$$

$$H(x_i) \neq y_i \Rightarrow y_i f(x_i) \leq 0 \Rightarrow e^{-y_i f(x_i)} \geq 1$$

$$[H(x_i) \neq y_i] \leq e^{-y_i f(x_i)}$$

$$\frac{1}{m} \sum_{i} [H(x_i) \neq y_i] \leq \frac{1}{m} \sum_{i} e^{-y_i f(x_i)} \qquad \longleftarrow \text{ Model Error}$$

The Choice of α

Combining these results,

ining these results,
$$D_{T+1}(i) = \frac{e^{-y_i f(x_i)}}{m \prod_t Z_t}$$

$$\frac{1}{m} \sum_i [H(x_i) \neq y_i] \leq \frac{1}{m} \sum_i e^{-y_i f(x_i)}$$

$$= \sum_i \left(\prod_t Z_t\right) D_{T+1}(i)$$

$$= \prod_t Z_t \quad \text{(since } D_{T+1} \text{ sums to 1)}.$$

Thus, we can see that minimizing Z_t will minimize this error bound.

$$\min_{\alpha} Z_t \Rightarrow \min \prod_{t} Z_t$$

The Choice of a

$$y, h(x) \in \{-1, +1\}$$
 $Z = \sum_{i} D_i e^{-\alpha y_i h(x_i)}$

$$e^{-\alpha y_i h(x_i)} = e^{-\alpha} P(y_i = h(x_i)) + e^{\alpha} P(y_i \neq h(x_i))$$

$$\frac{\partial Z}{\partial \alpha} = -e^{-\alpha} \sum_{i} D_{i} P(y_{i} = h(x_{i})) + e^{\alpha} \sum_{i} D_{i} P(y_{i} \neq h(x_{i})) = 0$$

$$\alpha = \frac{1}{2} \ln \frac{\sum_{i} D_{i} (1 - P(y_{i} \neq h(x_{i})))}{\sum_{i} D_{i} P(y_{i} \neq h(x_{i}))} = \frac{1}{2} \ln \frac{1 - \varepsilon}{\varepsilon}$$

Error Bounds

$$r = \sum_{i} D_{i} y_{i} h(x_{i}) \longrightarrow \varepsilon = \frac{1-r}{2} \longrightarrow \alpha = \frac{1}{2} \ln \frac{1+r}{1-r}$$

$$Z = \sum_{i} D_{i} e^{-\alpha y_{i} h(x_{i})} = \sum_{i} D_{i} e^{-(\frac{1}{2} \ln \frac{1+r}{1-r}) y_{i} h(x_{i})} = \sum_{i} D_{i} \left(\sqrt{\frac{1+r}{1-r}} \right)^{-y_{i} h(x_{i})}$$

$$= \sum_{i} D_{i} \left(\sqrt{\frac{1+r}{1-r}} P(y_{i} \neq h(x_{i})) + \sqrt{\frac{1-r}{1+r}} P(y_{i} = h(x_{i})) \right)$$

$$= \sqrt{\frac{1+r}{1-r}} \varepsilon + \sqrt{\frac{1-r}{1+r}} (1-\varepsilon) = \frac{1}{1-r} \sqrt{1-r^{2}} \frac{1-r}{2} + \frac{1}{1+r} \sqrt{1-r^{2}} \frac{1+r}{2}$$

$$= \sqrt{1-r^{2}} \qquad \qquad \frac{1}{m} \llbracket H(x_{i}) \neq y_{i} \rrbracket \leq \prod_{t} Z_{t} = \prod_{t} \sqrt{1-r^{2}}$$

Summary of AdaBoost

- Advantages
 - Simple and easy to implement
 - Almost no parameters to tune
 - Proven upper bounds on training set
 - Immune to overfitting
- Disadvantages
 - Suboptimal α values
 - Steepest descent
 - Sensitive to noise
- Future Work
 - Theory
 - Comprehensibility
 - New Framework

Fixed Weighting Scheme

Dynamic Weighting Scheme

RegionBoost

- AdaBoost assigns fixed weights to models.
- However, different models emphasize different regions.
- The weights of models should be input-dependent.
- Given an input, only invoke appropriate models.
- Train a competency predictor for each model.
- Estimate whether the model is likely to make a right decision.
- Use this information as the weight.
- Maclin, R.: Boosting classifiers regionally. AAAI, 700-705, 1998.

RegionBoost

Base Classifier

Competency Predicator

RegionBoost with KNN

- To calculate $\alpha_i(x_i)$:
 - Find the K nearest neighbors of x_i in the training set.
 - Calculate the percentage of points correctly classified by h_i .

RegionBoost Results

RegionBoost Results

Review

- What is ensemble learning?
- What can ensemble learning help us?
- Two major types of ensemble learning:
 - Parallel (Bagging)
 - Sequential (Boosting)
- Different ways to combine models:
 - Average
 - Majority Voting
 - Weighted Majority Voting
- Some representative algorithms:
 - Random Forests
 - AdaBoost
 - RegionBoost

