PROGRAMMING PROJECT I

LUIZ HENRIQUE MAMEDE QUEIROZ

PEDRO HENRIQUE RIBEIRO DE OLIVEIRA

RAPHAEL MORAGAS DIAS TAVEIRA GONÇALVES

Railway Network Management

Choose database

- Equipped with the standard network, but capable of accepting any properly formatted one
- .csv files must be placed in the cmake-build-debug folder

Digite:

- 1- Para usar a rede ferroviária padrão
- 2- Para usar uma rede ferroviária fornecida

Digite o nome do ficheiro de estações que deseja utilizar demo_stations.csv

Digite o nome do ficheiro de conexões que deseja utilizar demo_network.csv

User interface

- Consists of main menu that calls submenus for each function
- Upon completion of function, returns to main menu

MENU

Selecione uma das seguintes opções (0-6):

- 1- Número máximo de trens que podem viajar simultaneamente entre duas estações específicas
- 2- Pares de estações que requerem a maior quantidade de trens
- 3- Top-k municípios e distritos com mais necessidade de transportes
- 4- Número máximo de trens que podem chegar simultaneamente numa estação específica
- 5- Número máximo de trens que podem viajar simultaneamente entre duas estações com custo mínimo
- 6- Número máximo de trens que podem viajar simultaneamente entre duas estações com conexão reduzida
- 7- Top-k estações mais afetadas por cada falha num segmento
- 0- Sair

Demo network

1 - Basic Service Metrics

1.1 Most trains between two stations

- Maximum flow
- A_I_A / E_I_A expectation: 10
- A_I_A/B_I_B expectation: 0

1.2 - Pairs of stations that require the most trains

- Checks all combinations of sinks and sources to find greatest max flow
- Expected result: A_I_A/C_I_A and C_I_B/E_I_A

1.3 – District and municipalities that require the most budget

- Determines the k mun/dist with the highest flow sum from its stations
- Expected District order: C, A, E,
 D, B
- Expected Municipality order: C-A, A-A, E-A, ,

1.4 – Most incoming trains into a single station

 Checks the maximum incoming flow to a given station

• C_I_B expectation: 20

• E_L_C expectation: 2

2 - Operation Cost Minimization

AP Line

2.1 – Max trains, minimum cost

 Adds the lowest available price path until it reaches maximum flow

Max trains expected: 8

• Min cost expected: 88

3 - Reliability and Sensitivity to Line Failures

3.1 – Most trains between 2 stations/reduced connection

 Temporarily set capacity of chosen lines to 0 then find max flow

• A_I_A/E_I_A (left) expectation: 4

A_I_A/E_I_A (right) expectation:0

3.2 - Most affected stations by a segment failure

• Compares the max flow to each station before and after then failure, then returns the k most affected ones

• C_I_A/C_I_B failure expectation for k = 5: C_I_A, C_I_B, E_I_A, A_I_A

E_L_C/E_L_D failure expectation for k = 5: E_L_D, E_L_C