The classification of the prime graphs of finite solvable cut/rational groups

Sara Cebellán Debón (joint work with Diego García-Lucas and Ángel del Río)

University of Murcia

June 6, 2024

Graphs defined on groups

$$\{\textit{Groups}\} \longrightarrow \{\textit{Graphs}\}$$

$$G \longmapsto \Gamma(G)$$

Which properties of the group G can be recovered from the graph-theoretical properties of $\Gamma(G)$?

Examples:

- Commuting graph
- Cyclic graph
- Solvable conjugacy class graph
- Prime graph

Prime graph of a finite group

G a finite group

We construct the graph $\Gamma_{GK}(G) = \{V_{vertices}, E_{edges}\}$ as follows:

- $V = \pi(G) = \{ \text{primes dividing } |G| \}$
- $p, q \in V$ different,

$$p-q \in E \iff \exists g \in G: |g| = pq$$

Definition (Prime graph or GK-graph)

 $\Gamma_{GK}(G)$ is the prime graph or Gruenberg-Kegel graph of G.

Example:

$$S_3 \quad 2 \quad \bullet \quad 3$$

Example: A_5 has prime graph $\stackrel{2}{=}$ • 3

Some results about prime graphs:

- Gruenberg-Kegel: *G* finite solvable group,
 - $\Gamma_{GK}(G)$ disconected \iff G Frobenius or 2-Frobenius.
- Lucido: G finite group such that $\Gamma_{GK}(G)$ is a tree $\Longrightarrow |\pi(G)| \leq 8$.
- Gavrilyuk-Khramtsov-Kondrat'ev-Maslova: Characterization of the prime graphs of finite groups with at most 5 vertices.
- Gruber-Keller-Lewis-Naughton-Strasser: Characterization of the prime graphs of finite solvable groups.

Characterization of the prime graphs of finite solvable groups

Theorem (Gruber-Keller-Lewis-Naughton-Strasser)

A graph Γ is isomorphic to the prime graph of a finite solvable group if and only if its complement $\overline{\Gamma}$ is 3-colorable and triangle-free.

Example:
$$\Gamma = \begin{array}{ccc} 2 & \bullet & 3 \\ 5 & \bullet & \end{array} \implies \overline{\Gamma} = \begin{array}{ccc} 2 & \bullet & - & 3 \\ 5 & \bullet & \end{array} , \quad \Gamma \neq \Gamma_{GK}(G) \text{ for } G \text{ finite }$$

solvable

- Question 1: What are the prime graphs of finite solvable groups satisfying some property P?
- Question 2 (Realizability): Given a graph Γ , is there a finite solvable group G satisfying some property P such that $\Gamma = \Gamma_{GK}(G)$?

P = rational/cut.

Rational/Cut = Inverse-semirational

G a finite group

$$g \in G \ rational \ \stackrel{def}{\Longleftrightarrow} \ (\forall h \ \text{generator of} \ \langle g \rangle \,, h \sim g)$$

Definition (Rational)

A group G is rational if every element of G is rational.

Example: S_n is rational for every $n \in \mathbb{N}$.

 $g \in G$ inverse semi-rational $\stackrel{def}{\Longleftrightarrow}$ $(\forall h \text{ generator of } \langle g \rangle, h \sim g \text{ or } h \sim g^{-1})$

Definition (Cut = Inverse-semirational)

A group G is cut if every element of G is inverse-semirational.

Example: The monster group M is cut.

{Rational groups} << {Cut groups}

Remark (Bächle-Caicedo-Jespers-Maheshwary)

Among groups of order at most 1023:

- 78.55% are cut groups
- 0.52% are rational.

 $g \in G$,

$$B_G(g) = \frac{N_G(\langle g \rangle)}{C_G(g)} \lesssim Aut(\langle g \rangle)$$

 $\varphi = \mathsf{Euler's}$ totient function

- lacksquare g rational $\Longleftrightarrow |B_G(g)| = \varphi(|g|)$
- lacksquare g inverse-semirational $\iff \left\{ egin{array}{l} g \ \ \text{rational or} \ \ |B_{\mathcal{G}}(g)| = arphi(|g|)/2 \ \ ext{and} \ \ g \not\sim g^{-1} \end{array}
 ight.$

The classification of the prime graphs of finite solvable rational/cut groups

Example: There are no finite cut groups having (3-7) as prime graph.

G cut and $g \in G$ of order $21 \implies 2 \mid |B_G(g)|$

- Is it possible to classify the prime graphs of finite rational/cut groups? Difficult to approach! Each prime p divides the order of S_p .
- What about finite solvable rational/cut groups?

Theorem (Gow)

Let G be a finite solvable rational group. Then $\pi(G) \subseteq \{2,3,5\}$.

Theorem (Bächle)

Let G be a finite solvable cut group. Then $\pi(G) \subseteq \{2,3,5,7\}$.

GK-graphs of solvable finite cut/rational groups:

■ 1 vertex:

a) 2 • C₂ b) 3 • C₃

d)
$$2 \bullet - \bullet : S_3 \times C_2$$

e)
$$\begin{array}{c}
2 \bullet \\
5 \bullet \\
K = C_5^2 \rtimes_{Fr} Q_8
\end{array}$$

$$\begin{array}{ccc}
2 & \bullet \\
5 & \bullet \\
K \times C_2
\end{array}$$

g)
$$3 \bullet$$
 $7 \bullet$
 $C_7 \rtimes_{Fr} C_3$

GK-graphs of solvable finite cut/rational groups:

1 vertex:

d)
$$2 \bullet - \bullet 3$$

 $S_3 \times C_2$

e)
$$2 \bullet 5 \bullet$$

$$K = C_5^2 \rtimes_{Fr} Q_8$$

$$K \times C_2$$

$$C_7 \rtimes_{Fr} C_3$$

GK-graphs of solvable finite cut/rational groups:

h)
$$2 \bullet - \bullet 3$$
 i) $2 \bullet - \bullet 3$ j) $2 \bullet - \bullet 3$ k) $2 \bullet - \bullet 3$ k

 $L = C_5^2 \rtimes_{Fr} Dic_3$ $L \times C_2$ $K \times C_3$ $K \times S_3$

l) $2 \bullet - \bullet 3$ m) $2 \bullet - \bullet 3$ n) $2 \bullet - \bullet 3$ o) $2 \bullet - \bullet 3$ 7
 $M = C_7 \rtimes_{Fr} C_6$ $M \times C_2$ $M \times C_3$ $M \times S_3$

GK-graphs of solvable finite cut/rational groups:

GK-graphs of solvable finite cut/rational groups:

p)
$$2 \stackrel{\bullet}{\longrightarrow} 3$$
 q) $2 \stackrel{\bullet}{\longrightarrow} 3$ r) $2 \stackrel{\bullet}{\longrightarrow} 3$ $5 \stackrel{\bullet}{\longrightarrow} 7$ $0 \stackrel{\circ}{\longrightarrow} 3$ $0 \stackrel{\circ$

$$\begin{array}{cccc}
2 & \bullet & \bullet & 3 \\
5 & \bullet & \bullet & 7
\end{array}$$

$$\begin{array}{ccccc}
N \times C_2
\end{array}$$

$$\begin{array}{ccc}
1 & 2 & & & & \\
5 & & & & & \\
\end{array}$$

$$\begin{array}{cccc}
 & 2 & & & 3 \\
 & & & & & 7 \\
 & & & & & 7
\end{array}$$

GK-graphs of solvable finite cut/rational groups:

p)
$$2 \stackrel{\bullet}{\longrightarrow} 3$$
 q) $2 \stackrel{\bullet}{\longrightarrow} 3$ r) $2 \stackrel{\bullet}{\longrightarrow} 3$ s $\stackrel{\bullet}{\longrightarrow} 7$ $1 \stackrel{\bullet}{\longrightarrow} 7$ $2 \stackrel{\bullet}{\longrightarrow} 3$ $1 \stackrel{\bullet}{\longrightarrow} 7$ $1 \stackrel{\bullet$

$$V \times C_2$$

$$\begin{pmatrix} 2 & -- & 3 \\ 5 & 7 \end{pmatrix}$$

Summarizing...

To complete the classification we have to answer the following questions.

For rational groups:

Question (Bächle-Kiefer-Maheshwary-del Rio)

Is (3-2-5) the GK-graph of a finite solvable rational group?

For cut groups:

Question (Bächle-Kiefer-Maheshwary-del Rio)

Which of the four graphs s), t), u) and v) are realizable as the GK-graph of some finite solvable cut group?

For rational groups:

Theorem (CD, Garcia-Lucas, del Río)

(3-2-5) is not the GK-graph of a finite solvable rational group.

The GK-graphs of non-trivial finite solvable rational groups are precisely the following:

$$2 \bullet 2 \bullet \bullet 3$$
 $2 \bullet - \bullet 3$ $2 \bullet - \bullet 3$ $2 \bullet 5 \bullet 5 \bullet 5 \bullet 5$

Corollary

If G is a finite solvable rational group of order divisible by 15, then G has elements of order 6. 10 and 15.

For cut groups:

At the moment...we do not know much. But we have the following conjecture.

Conjecture

A finite solvable cut group having GK-graph s), t), u) or v) has Fitting length at least 5.

This is true for s).

Equivalently,

Conjecture

The GK-graphs of finite solvable cut groups with Fitting length at most 4 are the graphs a) - r).

Thank you!

G a finite solvable rational group and $V \in Syl_5(G)$

Theorem (Hegedüs)

V is normal and elementary abelian.

Proposition (Hegedüs)

Assume V is minimal normal and let S be a complement of V in G. If $H \leq S$ is minimal such that there exists an \mathbb{F}_5H -submodule $W \leq V$ satisfying some properties then one of the following holds:

- \blacksquare $H/K \cong Q_8$ and $W = \mathbb{F}_5^2$,
- \blacksquare $H/K \cong C_3 \rtimes C_4$ and $W = \mathbb{F}_5^2$,
- \blacksquare $H/K \cong SL(2,3)$ and $W = \mathbb{F}_5^2$,
- $H/K \cong SG[192, 989]$ and $W = \mathbb{F}_5^4$,
- ullet $H/K\cong SG[96,191]$ and $W=\mathbb{F}_5^4$ or
- H/K has order 144

where
$$K = C_H(W)$$
.

Bibliography

A. Bächle, Integral group rings of solvable groups with trivial central units, Forum Math. 30 (2018), no. 4, 845-855.

A. Bächle, M. Caicedo, E. Jespers, and S. Maheshwary, Global and local properties of finite groups with only finitely many central units in their integral group ring, 11 pages, submitted, arXiv:1808.03546v2[math.RA].

A. Bächle, A. Kiefer, S. Maheshwary, and Á. del Río, Gruenberg-kegel graphs: Cut groups, rational groups and the prime graph question, Forum Mathematicum 35 (2023), no. 2, 409-429.

P.J. Cameron, Graphs defined on groups, International Journal of Group Theory 11 (2022), no. 2, 53–107, doi: 10.22108/iiet.2021.127679.1681.

A. L. Gavrilyuk, I. V. Khramtsov, A. S. Kondrat'ev, and N. V. Maslova, On realizability of a graph as the prime graph of a finite group, Sib. Elektron. Mat. Izv. 11 (2014), 246–257.

A. Gruber, T. Mi. Keller, M. L. Lewis, K. Naughton, and B. Strasser, A characterization of the prime graphs of solvable groups, J. Algebra 442 (2015), 397–422.

R. Gow, Groups whose characters are rational-valued, J. Algebra 40 (1976), no. 1, 280-299.

P. Hegedűs, Structure of solvable rational groups, Proc. London Math. Soc. (3) 90 (2005), no. 2, 439-471.

M. S Lucido, Groups in which the prime graph is a tree, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 5 (2002), no. 1, 131–148, http://www.bdim.eu/item?id=BUMI_2002_8_5B_1_131_0&fmt=pdf.

N. V. Maslova. On the gruenberg - kegel graphs of finite groups, 2016.

J. S. Williams, Prime graph components of finite groups, J. Algebra 69 (1981), no. 2, 487-513,

