

CIENCIA Y ANALÍTICA DE DATOS

RETO: Clasificación de aguas Subterráneas.

ABSTRACT

La Comisión Nacional del Agua (CONAGUA) lleva a cabo, a través de la Red Nacional de Medición de Calidad del Agua, el monitoreo de los principales cuerpos de agua del país. En este trabajo se analiza la calidad de agua del año 2020 para crear un clasificador con ayuda de un modelo de inteligencia artificial que ayude a determinar si los cuerpos analizados son seguros para el consumo humano o no.

Profesor: Dr. María de la Paz Rico Fernandez

Equipo 37

Karina Zafra Vallejo *A01793979* Francisco Javier Parga Garcia *A01794380*

TC4029

Contenido

1.	Base	e de datos	2
2.	Aná	lisis exploratorio de datos	2
	2.1.	Acondicionamiento inicial de los datos	2
	2.2.	Datos faltantes	3
	2.3.	Distribución de los datos continuos	3
	2.4.	Análisis de la variable CONTAMINANTES:	6
	2.5.	Acondicionamiento adicional de datos	6
	2.6.	Correlación entre variables numéricas	7
3.	Geo	localización de las aguas subterráneas	8
4.	Agrı	upación por Kmeans	9
	4.1.	Geolocalización y cantidad de contaminantes	12
5	Con	rlusiones	17

1. Base de datos

Para el siguiente análisis, utilizaremos la base de datos:

Datos_de_calidad_del_agua_de_sitios_de_monitoreo_de_aguas_subterraneas_2020.csv

Tenemos un total de 57 columnas y 1068 datos, de las cuales 39 son categóricas y 18 son numéricas.

Adicionalmente, también sabemos que la variable *PERIODO* solo es 2020. Así que más adelante se podría descartar ya que no aporta.

Fuente: CONAGUA

(https://files.conagua.gob.mx/aguasnacionales/Calidad%20del%20Agua%20Subterranea%20p.xlsx)

2. Análisis exploratorio de datos

Procedemos primero a observar la variable semáforo que sería nuestra variable de salida. Tenemos la siguiente distribución:

Figura 2-1 Distribución de la variable SEMÁFORO (variable objetivo para clasificación)

2.1. Acondicionamiento inicial de los datos

Se identificó que las columnas que miden contaminantes en mg/L tienen valores asignados con texto como "<0.005" por ello se decidió transformarlo a numéricos removiendo los caracteres "<" & "<="(ver Figura 2-2)

Ejemplo:

CALIDAD_CR	Potable - Excelente	CALIDAD_CR	Potable - Excelente
HG_TOT_mg/L	< 0.0005	HG_TOT_mg/L	0.0005

Figura 2-2 Transformación de texto a valores numéricos

2.2. Datos faltantes

Comenzamos con la identificación de los datos faltantes, con el objetivo de determinar qué tratamiento se les dará a estos datos: si se eliminarán o se realizará algún método de imputación.

Figura 2-3 Representación visual de datos faltantes (color blanco representa un dato faltante en la variable)

De esta gráfica podemos concluir que:

- ✓ La columna 'SDT mg/L' no tiene datos.
- ✓ Al parecer la columna 'CONTAMINANTES' tiene muchos datos faltantes, sin embargo vamos a analizar a más profundidad esta variable para identificar que sucede.

2.3. Distribución de los datos continuos

Con las variables continuas, generamos los histogramas y boxplot para ver la distribución de los datos continuos.

Figura 2-4 Histogramas de las variables continuas.

Podemos observar que los datos se encuentran en diferentes magnitudes y escalas.

Figura 2-5 Gráfica de caja de bigotes para las variables continuas. Se observan varios datos extremos y mayormente un sesgo a la derecha.

Adicionalmente, como se observó anteriormente, 'PERIODO' tiene un solo valor (2020) y 'SD T_mg/L ' no tiene valores

Figura 2-6 Variables sin aporte de información

Se realiza una primera matriz de correlación entre las variables numéricas, se observa nuevamente que 'PERIODO' y 'SDT_mg/L' no aportan información útil.

Figura 2-7 Cajas de bigotes en función de la clasificación de semáforo.

Para más información sobre los promedios, dispersión, máximos y mínimos de las variables, ver las Tabla 2 y Tabla 3.

2.4. Análisis de la variable CONTAMINANTES:

Esta variable contiene una lista de tipos contaminantes por cada toma

SEMAFORO	Verde	Verde	Rojo	Verde	Rojo	Rojo	Verde	Rojo
CONTAMINANTES	NaN	NaN	FLUO,AS,	NaN	NO3,	CF,	NaN CON	NDUC,NO3,

Figura 2-8 Ejemplo de tipos de contaminantes por dato. El semáforo es altamente dependiente de los contaminantes.

Vamos a convertir esta lista de contaminantes por un número que representará la cantidad de contaminantes de cada muestra.

Al hacer el conteo de la lista, los datos *NaN* es porque no tienen contaminantes, por lo tanto, se convierte a 0.

Y graficamos para ver cuantos contaminantes en total tienen todas las muestras.

Figura 2-9 Conteo de contaminantes por semáforo

2.5. Acondicionamiento adicional de datos

Se crea una columna SEMAFORO_cat que convierte el color en un número de la siguiente manera:

'Verde':1,

'Amarillo':2,

'Rojo':3

Adicionalmente, se eliminan las variables 'SEMAFORO', 'PERIODO', 'SDT_mg/L' y guardamos el dataframe con un nuevo nombre.

2.6. Correlación entre variables numéricas

Analizando las distribuciones y realizando gráficas cruzadas entre las variables, se observan algunas correlaciones lineales:

- Dureza, Contamiantes y sólidos se correlacionan con la conductividad
- El semáforo rojo se agrupa en función de FE, AS y MN en conjunto con los Fluoruros: La correlación no es lineal.

Figura 2-10 Matriz de correlación

Figura 2-11 Correlación de la Dureza, Contaminantes y Sólidos en fusión de la conductividad.

Figura 2-12 FE, AS y MN en función de los Fluoruros. Se observa que el semáforo rojo se mantiene en valores altos de Fluoruros.

Figura 2-13 Correlación del semáforo en función de las variables numéricas independientes.

Importante podemos destacar que la variable que más relacionada está con 'SEMAFORO_cat' es 'CONTAMINANTES'.

3. Geolocalización de las aguas subterráneas

Utilizando la librería de geopandas y mapbox se puede localizar espacialmente los acuíferos subterráneos (ver Figura 3-1)

color Tulsa Memphis Albuquerque Arkansas New Mexico eles Phoenix Dallas Tucson Ciudad Juárez Baton Rouge Austin San Antonio Tuxtla Gutiérrez Guatemala Ci**ud**ad de Guatemala Hondu El Salvador Nic

Aguas subterraneas por semaforo

Figura 3-1 Ubicación geográfica de las aguas subterráneas, codificadas por el semáforo y transparencia.

4. Agrupación por Kmeans

Considerando los datos de Longitud, Latitud y la cantidad de contaminantes, se realizó un técnica de agrupación usando la librería de Kmeans.

Sin embargo, no se observa una dependencia espacial en latitud y longitud absoluta de la calidad del agua: ver Figura 4-1, Figura 4-2 y Tabla 1.

0

Figura 4-1 Agrupación por geolocalización con 4 clústeres.

Aguas subterraneas por semaforo

Figura 4-2 Clústeres geolocalizados

Figura 4-3 Distribución de semáforo en los grupos de 4 clústeres

Tabla 1 Contenido de clases en cada clúster

kmean_	SEMAFORO	size
group	_cat	0.1.2
0	1	63
0	2	85
0	3	14
1	1	97
1	2	39
1	3	191
2	1	180
2	2	76
2	3	117
3	1	94
3	2	47
3	3	65

4.1. Geolocalización y cantidad de contaminantes

Se observó que los datos con semáforo verde no contienen contaminantes y al usar 30 clusters para agrupación se pueden separar completamente aquellas aguas subterráneas con semáforo verde de aquellas amarrillas y rojas, ver

Figura 4-4 Vista 3D de clústeres agrupados por localización espacial y cantidad de contaminantes.

Figura 4-5 Vista 3D de clústeres agrupados por localización espacial y cantidad de contaminantes: Desde perspectiva vertical. Se observa la separación de semáforo verde(1) respecto a los amarillos y rojos (2&3)

Figura 4-6 Vista 3D de clústeres agrupados por localización espacial y cantidad de contaminantes.

Figura 4-7 Vista 3D de clústeres agrupados por localización espacial y cantidad de contaminantes.

Figura 4-8 Distribución de semáforo en los grupos de 30 clústeres

5. Conclusiones

- Se analizaron los datos de semáforo de calidad de agua y se observa que con 4 clústeres se identifica una agrupación coincidente con semáforo amarillo y verde hacia la península de Yucatán. El clúster #1 contiene una mayor cantidad de aguas con semáforo rojo. El clúster 2 contiene mayor concentración de aguas con semáforo verde, mientras que el clúster 3 tiene una distribución similar de las 3 clases (Tabla 1)
- Con 30 grupos se logra separar la mayoría de las aguas con semáforo verde. Sin embargo, con esta técnica de agrupación no se logra discernir de los semáforos amarillos y rojos.
- Se requiere de un modelo un poco más complejo para poder separar las clases adecuadamente, así como usar más variables como los Fluoruros, donde se observa cierta separación entre esos semáforos.

Anexos

Tabla 2 Descripción de variables numéricas

Variable 🔻	count	mean 🔻	std 🔻	min 🔻	25%	50%	75%	max 🔻
LONGITUD	1068	-101.891007	6.703263	-116.66425	-105.388865	-102.17418	-98.974716	-86.86412
LATITUD	1068	23.163618	3.88767	14.56115	20.212055	22.61719	25.510285	32.677713
PERIODO	1068	2020	0	2020	2020	2020	2020	2020
ALC_mg/L	1064	235.633759	116.874291	26.64	164	215.5275	292.71	1650
CONDUCT_ mS/cm	1062	1138.953013	1245.563674	50.4	501.75	815	1322.75	18577
SDT_mg/L	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
SDT_M_mg/	1066	896.101567	2751.53059	25	337.5	550.4	916.1	82170
FLUORUROS _mg/L	1068	1.0756	1.924278	0.2	0.267175	0.5035	1.13985	34.8033
DUR_mg/L	1067	347.938073	359.669452	20	121.1948	245.3358	453.93	3810.6922
COLI_FEC_N MP/100_mL	1068	355.490356	2052.457014	1.1	1.1	1.1	13.25	24196
N_NO3_mg/	1067	4.319759	8.345134	0.02	0.650294	2.080932	5.201698	121.007813
AS_TOT_mg/	1068	0.019618	0.035209	0.01	0.01	0.01	0.01	0.4522
CD_TOT_mg/	1068	0.00303	0.000894	0.003	0.003	0.003	0.003	0.03211
CR_TOT_mg/	1068	0.013276	0.154391	0.005	0.005	0.005	0.005	5.0032
HG_TOT_mg	1068	0.000557	0.000467	0.0005	0.0005	0.0005	0.0005	0.01415
PB_TOT_mg/	1068	0.005282	0.003254	0.005	0.005	0.005	0.005	0.0809
MN_TOT_mg	1068	0.072478	0.376512	0.0015	0.0015	0.0015	0.009947	8.982
FE_TOT_mg/	1068	0.410387	5.537974	0.025	0.025	0.04696	0.17338	178.615
CONTAMINA NTES	1068	5.2397	7.86702	0	0	3	7	45
SEMAFORO_	1068	1.955993	0.876076	1	1	2	3	3

Tabla 3 Descripción de variables categóricas

Variable	count 🔻	unique 🔻	top	freq 🔻
CLAVE	1068		DLAGU6	1
SITIO	1068		EL FUERTE	2
	1000		CLIENCAS CENTRALES	
ORGANISMO_DE_CUENCA	1068	13	DEL NORTE	232
ESTADO	1068	32	DURANGO	121
MUNICIPIO	1068	452	LA PAZ	27
ACUIFERO	1068	273	PENINSULA DE	119
ACOIFERO	1008	2/3	YUCATAN	119
SUBTIPO	1068	8	POZO	1039
CALIDAD_ALC	1064	4	Alta	794
CALIDAD_CONDUC	1062	5	Permisible para riego	460
CALIDAD_SDT_ra	1066	5	Excelente para riego	491
CALIDAD_SDT_salin	1066	4	Potable - Dulce	834
CALIDAD_FLUO	1068		Baja	434
CALIDAD_DUR	1067	4	Potable - Dura	577
CALIDAD_COLI_FEC	1068	5	Potable - Excelente	739
CALIDAD_N_NO3	1067	3	Potable - Excelente	788
CALIDAD_AS	1068	3	Potable - Excelente	816
CALIDAD_CD	1068	2	Potable - Excelente	1066
CALIDAD_CR	1068	2	Potable - Excelente	1053
CALIDAD_HG	1068	2	Potable - Excelente	1067
CALIDAD_PB	1068	2	Potable - Excelente	1056
CALIDAD_MN	1068	3	Potable - Excelente	982
CALIDAD_FE	1068	2	Potable - Excelente	932
SEMAFORO	1068	3	Verde	434
CUMPLE_CON_ALC	1068	3	SI	1005
CUMPLE_CON_COND	1068	3	SI	939
CUMPLE_CON_SDT_ra	1068	3	SI	995
CUMPLE_CON_SDT_salin	1068	3	SI	995
CUMPLE_CON_FLUO	1068	2	SI	876
CUMPLE_CON_DUR	1068	3	SI	841
CUMPLE_CON_CF	1068	2	SI	1007
CUMPLE_CON_NO3	1068	3	SI	985
CUMPLE_CON_AS	1068		SI	941
CUMPLE_CON_CD	1068	2	SI	1066
CUMPLE_CON_CR	1068	2	-	1053
CUMPLE_CON_HG	1068		SI	1067
CUMPLE_CON_PB	1068	2	SI	1056
CUMPLE_CON_MN	1068		SI	982
CUMPLE_CON_FE	1068	2	SI	932