IMAGE SENSOR

Patent Number:

JP2002185698

Publication date:

2002-06-28

Inventor(s):

ABE ICHIHIRO

Applicant(s):

MITSUBISHI ELECTRIC CORP

Application Number: JP20000379310 20001213

Priority Number(s):

IPC Classification:

H04N1/028; G06T1/00; H04N1/17

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To solve the problem that the scale of a circuit is increased, for example, accessory circuits are increased since it is necessary to increase shift registers in order to switch resolution in a conventional image sensor unit.

SOLUTION: A selector 14 to be controlled by a resolution switching signal is arranged between shift registers 9 for supplying signals to the gates of analog switches 7 for controlling the outputs of a plurality of linearly arranged photoelectric converting elements 6, and the logic of the resolution switching signal is switched so that the connection of the selector 14 can be changed, and that the connection of the shift register 9 can be changed. Thus, it is possible to switch the resolution of the image sensor.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-185698 (P2002-185698A)

(43)公開日 平成14年6月28日(2002.6.28)

(51) Int.Cl.7		識別記号	FΙ		5	7Jド(参考)
H04N	1/028		H04N	1/028	Α	5B047
G06T	1/00	430	G 0 6 T	1/00	430D	5 C O 5 1
H 0 4 N	1/17		H 0 4 N	1/17	В	5 C 0 7 2

審査請求 有 請求項の数6 OL (全 8 頁)

(21)出願番号	特願2000-379310(P2000-379310)	(71)出願人	000006013 三菱電機株式会社		
(22)出顧日	平成12年12月13日(2000.12.13)	(72)発明者	東京都千代田区丸の内二丁目2番3号 阿部 委千弘 東京都千代田区丸の内二丁目2番3号 三		
		(74)代理人	菱電機株式会社内 100073759 弁理士 大岩 増雄 (外3名)		

最終頁に続く

(54) 【発明の名称】 イメージセンサ

(57)【要約】

【課題】 従来のイメージセンサユニットでは、解像度の切替えのために、シフトレジスタを増やさなければならず、そのための付属回路の増加など回路規模が大きくなるという問題があった。

【解決手段】 直線状に配置された複数の光電変換素子6の出力を制御するアナログスイッチ7のゲートに信号を供給するシフトレジスタ9の間に、解像度切替信号によって制御されるセレクタ14を配置し、解像度切替信号の論理を切替えることにより、セレクタ14の接続を変更し、これによりシフトレジスタ9の接続を変更するように構成して、イメージセンサの解像度の切替えを行うようにした。

【特許請求の範囲】

【請求項1】 解像度が切替えられるように構成された イメージセンサにおいて、直線状に配置され、それぞれ 光信号を電気信号に変換する複数の光電変換素子、との 光電変換索子の出力を選択するよう上記光電変換索子に それぞれ対応して配置され、クロックに同期して所定の 順序で動作する複数のシフトレジスタ、隣接するシフト レジスタ間にそれぞれ配置され、解像度の切替えを指示 する解像度切替信号に応じてシフトレジスタ間の接続を 特徴とするイメージセンサ。

【請求項2】 解像度切替信号は、2ビットで構成され ていることを特徴とする請求項1記載のイメージセン サ。

【請求項3】 解像度切替信号は、Nビット(但し、N は、N>2の整数)で構成されていることを特徴とする 請求項1記載のイメージセンサ。

【請求項4】 解像度切替信号は、クロックに同期して 論理が変更されることを特徴とする請求項1~請求項3 のいずれか一項記載のイメージセンサ。

【請求項5】 解像度切替信号の論理の変更は、光電変 換素子に読み取られる原稿の一部分に対応するように行 われることを特徴とする請求項4記載のイメージセン サ。

【請求項6】 解像度切替信号は、一定周期で論理が変 更されることを特徴とする請求項4記載のイメージセン サ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】との発明は、直線上に配置さ れた複数の光電変換素子を有するイメージセンサに関す るものである。

[0002]

【従来の技術】ファクシミリ、コピー機、ハンドスキャ ナ等に用いられる密着型イメージセンサは、直線上に配 置された複数の光電変換素子を有し、各光電変換素子か らの出力信号を、各素子にそれぞれ接続されたスイッチ をシフトレジスタによって閉じることにより順次取り出 して、画像情報を時系列の電気信号に変換するものであ る。図8は、従来の画像読みとり装置の構成を示す概略 40 図である。図8において、1はイメージセンサユニッ ト、2はイメージセンサユニット1の光電変換素子回路 ICで、このICの変換素子列は、例えば1mmあたり 8個、すなわちA4版の原稿用紙に対しては全体で17 28個の光電変換緊子から構成されている。3はイメー ジセンサユニット1によって読み取られる原稿、4はイ メージセンサユニット1と原稿3との間で、原稿の像が 光電変換素子に結ぶように配置されたセルフォックレン ズアレイ、5はセルフォックレンズアレイ4の両側に配 置された発光ダイオード列で、との発光ダイオード列5 50 像度の切替が可能となる。

の光で原稿3が照射される。光電変換索子回路 I C 2 に は、10化されたシフトレジスタ、アナログスイッチ及 び信号増幅回路が配置されている。

2

【0003】とのイメージセンサユニット1を駆動する ための基本回路とタイミングチャートを各々図9、図1 0に示す。図9は、従来のイメージセンサを駆動する基 本回路を示す図である。図9において、6は128個の 光電変換素子であり、順に番号が付され、薄膜のフォト ダイオードあるいは光導電薄膜によって構成される。図 変更するよう構成された複数のセレクタを備えたことを 10 には示していないが、各々の光電変換素子6は、共通電 極を持っており、接地されるか、適当なバイアス電圧が 印加されている。7はアナログスイッチ、8は出力信号 線であるSIG端子、9はシフトレジスタ、10はシフ トレジスタ9のスタート信号が入力されるSI端子であ る。11はクロックが入力されるCLK端子、12はシ フトレジスタ9のエンド信号が出力されるS〇端子であ る。図9の光電変換案子6は、1対1でアナログスイッ チ7のゲートに電圧を印加することにより、出力信号線 であるSIG端子8に導通する。各アナログスイッチ7 のゲートは、シフトレジスタ(図の場合は128段)9 の各段に接続され、シフトレジスタ9からの信号によ り、アナログスイッチ7を開閉する。

> 【0004】図10は、図9の回路のタイミングチャー トである。次に、動作について説明する。図10に示す ようにシフトレジスタ9のSI端子10にスタート信号 が入力されると、シフトレジスタ9が動作を始め、CL K端子11に入力されるクロックパルスに従って、順次 第1ゲート、第2ゲートを閉じていく。第128ゲート が閉じられると同時にエンド信号がS〇端子12に出力 される。S〇端子12と、次の光電変換素子回路IC2 のS1端子10とを接続しておけば、順次光電変換素子 6のゲート7を開閉することができる。

[0005]

【発明が解決しようとする課題】図11は、従来のイメ ージセンサの解像度切替回路を示す図である。図11に おいて、6~12は図9におけるものと同一のものであ る。13は解像度切替信号が入力される解像度切替端子 である。14はシフトレジスタ9の前段に配置されたセ レクタであり、SI端子10と解像度切替端子13に接 続されている。なお、シフトレジスタは、8ドット/m mのシフトレジスタ9aと、4ドット/mmのシフトレ ジスタ9bから構成されている。イメージセンサの解像 度を、例えば図9のような8ドット/mmから4ドット **/mmに変換する場合は、図11のようにシフトレジス** タ前にセレクタ14を設け、SI端子10にスタート信 号が入力されると、セレクタ14に入力される解像度切 替端子13の論理により、8ドット/mmのシフトレジ スタ9aまたは4ドット/mmのシフトレジスタ9bの どちらかのシフトレジスタに、SI信号が入力され、解

【0006】図11のような回路では、シフトレジスタ 9aの他に、シフトレジスタ9bを備えなければなら ず、シフトレジスタ回路が多くなってしまう。それ以上 の低解像度化に対しては、例えば2ドット/mmの解像 度については、4ドット/mmのシフトレジスタ9bの 半分のシフトレジスタを、もう一段設けなければなら ず、より付属回路が複雑になったり、光電変換素子回路 IC2の規模が、より大きくなる。

【0007】また、図11のような、シフトレジスタ9 bを追加するような低解像度化では、部分的に解像度を 10 ログスイッチ7のゲートに電圧を印加することにより、 髙くしたり、部分的に解像度を低くする動作は、同じ光 電変換素子回路IC2上ではできない。

【0008】との発明は、上記のような課題を解決する ためになされたもので、シフトレジスタの数を増やすと となく、解像度を自在に切り替えることができるイメー ジセンサを得ることを目的にしている。

[0009]

【課題を解決するための手段】との発明に係わるイメー ジセンサにおいては、直線状に配置され、それぞれ光信 号を電気信号に変換する複数の光電変換索子と、この光 20 電変換素子の出力を選択するよう光電変換素子にそれぞ れ対応して配置され、クロックに同期して所定の順序で 動作する複数のシフトレジスタと、隣接するシフトレジ スタ間にそれぞれ配置され、解像度の切替えを指示する 解像度切替信号に応じてシフトレジスタ間の接続を変更 するよう構成された複数のセレクタを備えたものであ

【0010】また、解像度切替信号は、2ビットで構成 されているものである。また、解像度切替信号は、Nビ ットで構成されているものである。

【0011】さらに、解像度切替信号は、クロックに同 期して論理が変更されるものである。また、解像度切替 信号の論理の変更は、光電変換素子に読み取られる原稿 の一部分に対応するように行われるものである。また、 解像度切替信号は、一定周期で論理が変更されるもので ある。

[0012]

【発明の実施の形態】実施の形態1. 実施の形態1によ るイメージセンサユニットの全体構成は、図8と同じで ある。図1は、との発明の実施の形態1によるイメージ 40 センサのセレクタを用いた解像度切替回路を示す図であ る。図1において、6は128個の光電変換素子であ り、順に番号が付され、薄膜のフォトダイオードあるい は光導電薄膜によって構成される。図には示していない が、各々の光電変換累子6は、共通電極を持っており、 接地されるか、適当なバイアス電圧が印加されている。 7は光電変換索子6の出力を制御するアナログスイッ チ、8は出力信号線であるSIG端子、9は光電変換索 子6に対応するように配置され、アナログスイッチ7の ゲートに信号を出力するシフトレジスタ、10はシフト 50 ックに同期させて論理を変更することによって、その際

レジスタ9のスタート信号が入力されるSI端子であ る。11はクロックが入力されるCLK端子、12はシ フトレジスタ9のエンド信号が出力されるSO端子であ る。13は2ビットの解像度切替信号が入力される解像 度切替端子である。14はシフトレジスタ9の各段の間 に配置されたセレクタであり、解像度切替端子13が接 続されている。

【0013】図1の回路の基本的な動作は、図9で述べ たものと同じであり、光電変換素子6は、1対1でアナ 選択されて、出力信号線であるSIG端子8に導通す る。各アナログスイッチ7のゲートは、シフトレジスタ (図の場合は128段) 9の各段に接続され、シフトレ ジスタ9から所定の順序で与えられる信号により、アナ ログスイッチ7を開閉する。図2は、この発明の実施の 形態1によるイメージセンサのセレクタの論理を示す図 である。図2において、14はセレクタである。図3 は、この発明の実施の形態1によるイメージセンサのタ イミングチャートである。

【0014】次に、動作について説明する。シフトレジ スタ9の間には、セレクタ14が設けられており、その セレクタ14の動作論理を、図2のとおりとすると、例 えば光電変換素子6が8ドット/mmの解像度(Y0か ら出力) であり、その半分の4ドット/mmの出力を得 たい場合、セレクタ14の解像度切替端子13の入力 を、A[0:1]=1にすれば、光電変換素子6の出力 を、図3に示されるタイミングチャートのように、第 1、3、5···と1ドットを間引いて出力(Y1から 出力) することが可能となる。また、解像度を8ドット 30 /mmの1/3である2.67ドット/mmとしたい場 合は、セレクタ14の解像度切替端子13の入力を、A [0:1] = 2 にすればよく(Y 2 から出力)、また解 像度を8ドット/mmの1/4である2ドット/mmに したい場合は、A [0:1] = 3 にする (Y3から出 力) ととで、画像の解像度を変更することが可能とな る。

【0015】実施の形態1によれば、シフトレジスタを 増やすことなく、自在に解像度の切り替えが可能とな

【0016】実施の形態2. 図4は、この発明の実施の 形態2によるイメージセンサのタイミングチャートであ る。図5は、との発明の実施の形態2によるイメージセ ンサの原稿内の高解像度部を示す図である。 図5 におい て、3は原稿、15は髙解像度領域、16は低解像度領 域である。

【0017】図1のような回路において、実施の形態1 のような使用方法だけでなく、部分的に解像度を変更す ることも可能である。その場合のタイミングチャート は、図4のように、セレクタ14の入力信号A1をクロ

のシフトレジスタ9の間引き数(レジスタを飛ばす数) を変更することが可能となる。それによって、例えば図 5のように、読み取り原稿3に、高解像度読み取りが必 要な高解像度領域15が部分的にあり、その他は低解像 度である低解像度領域16でもよい場合など、図5の高 画像度領域15の部分のみ、セレクタ14の解像度切替 端子13を、入力信号A[0:1]=0に設定して高解 像度を得て、その他はセレクタ14の解像度切替端子1 3 を、入力信号A 「0:1]=3に設定することで、部 分的に高解像度な画像を得ることができる。

【0018】実施の形態2によれば、部分的に高解像度 の画像を読み取るととにより、画像全体を髙解像度で読 み取る場合より、原稿全体を早く読み取ることが可能と なる。

【0019】実施の形態3.図6は、この発明の実施の 形態3によるイメージセンサのタイミングチャートであ る。図1のような回路構成において、セレクタ14を図 6に示されるようなタイミングで、まずSI端子10 (SI2)から信号を与えてやり、解像度切替端子13 に、クロックどとに切り替えて間引き数を変更すれば、 出力ビットも第3、5、8、10、13(2ビット飛ば し、1ビット飛ばし、2ビット・・・)のように、変則 的な出力ビットを得ることができる。これによって、光 電変換素子6が、例えば8ドット/mmとすると、擬似 的に3.2ドット/mm(8÷5×2ドット/mm)の 解像度を得ることができ、より多くの解像度に対応でき るようになる。なお、上述では、クロック毎に解像度切 替信号の論理を切替える場合について説明したが、一定 周期で解像度切替信号を切替えれば、擬似的な解像度を 30 サのタイミングチャートである。 形成することができる。

【0020】実施の形態3によれば、一定周期ごとに、 解像度を切り替えることにより、擬似的な解像度を得る ことができ、より多くの解像度に対応することができ

【0021】実施の形態4.実施の形態1~3において は、セレクタ14の解像度切替端子13への入力を2ビ ットの場合で説明を行ったが、それ以上のビット数であ っても何ら支障はない。図7のように3ビットにすれ ば、7個のビットを間引く(飛ばす)ととが可能とな る。例えば光電変換素子6が8ドット/mmとすると、 最小1ドット/mmまで更に低解像度化が可能となり、 より多くの解像度について対応できるようになる。

【0022】実施の形態4によれば、解像度切替端子へ の入力ビット数を増やすことにより、より多くの解像度 に対応することができる。

[0023]

【発明の効果】との発明は、以上説明したように構成さ れているので、以下に示すような効果を奏する。直線状

の光電変換索子と、この光電変換索子の出力を選択する よう光電変換素子にそれぞれ対応して配置され、クロッ クに同期して所定の順序で動作する複数のシフトレジス タと、隣接するシフトレジスタ間にそれぞれ配置され、 解像度の切替えを指示する解像度切替信号に応じてシフ トレジスタ間の接続を変更するよう構成された複数のセ レクタを備えたので、新たにシフトレジスタを設けると となく、解像度の切り替えを自在に行うことができる。 【0024】また、解像度切替信号は、2ビットで構成 10 されているので、4種類の解像度の切替えが可能であ る。また、解像度切替信号は、Nビットで構成されてい るので、多種類の解像度の切替えが可能である。

【0025】さらに、解像度切替信号は、クロックに同 期して論理が変更されるので、クロックに同期して解像 度を切替えることができる。また、解像度切替信号の論 理の変更は、光電変換素子に読み取られる原稿の一部分 に対応するように行われるので、部分的に高解像度の原 稿に対応することができる。

【0026】また、解像度切替信号は、一定周期で論理 を、入力信号をA [0:1]=1とA [0:1]=2と 20 が変更されるので、解像度を擬似的に形成することがで きる。

【図面の簡単な説明】

【図1】 との発明の実施の形態1によるイメージセン サのセレクタを用いた解像度切替回路を示す図である。

【図2】 この発明の実施の形態1によるイメージセン サのセレクタの論理を示す図である。

【図3】 この発明の実施の形態1によるイメージセン サのタイミングチャートである。

【図4】 との発明の実施の形態2によるイメージセン

【図5】 この発明の実施の形態2によるイメージセン サの原稿内の高解像度部を示す図である。

【図6】 との発明の実施の形態3によるイメージセン サのタイミングチャートである。

【図7】 この発明の実施の形態4によるイメージセン サのセレクタの論理を示す図である。

【図8】 従来の画像読みとり装置の構成を示す概略図 である。

【図9】 従来のイメージセンサを駆動する基本回路を 40 示す図である。

【図10】 図9の回路のタイミングチャートである。

【図11】 従来のイメージセンサの解像度切替回路を 示す図である。

【符号の説明】

1 センサユニット、2 光電変換素子回路IC、3 原稿、4 セルフォックレンズアレイ、5 発光ダイオ ード列、6 光電変換素子、7 アナログスイッチ、8 SIG端子、9 シフトレジスタ、10 SI端子、

11 CLK端子、12 SO端子、13 解像度切替 に配置され、それぞれ光信号を電気信号に変換する複数 50 端子、14 セレクタ、15 髙解像度領域、16 低 解像度領域。

【図1】

7

【図3】

【図5】

【図4】

【図6】

【図7】

【図8】

1:センサユニット 2:光電変換案子回路IC

4:セルフォックレンズアレイ5・発光ダイナード四

【図9】

【図10】

【図11】

フロントページの続き

Fターム(参考) 5B047 AA01 BB03 BC01 BC05 BC11

CA06

5C051 AA01 BA04 DA03 DB01 DB08

D812 D822 DC03 DE02 EA03

FA01

5C072 AA01 BA01 CA05 DA02 EA07

FA07 FB23 TA04 XA01

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-185698

(43) Date of publication of application: 28.06.2002

(51)Int.CI.

HO4N 1/028 G06T 1/00 HO4N 1/17

(21)Application number: 2000-379310

(71)Applicant: MITSUBISHI ELECTRIC CORP

(22)Date of filing:

13.12.2000

(72)Inventor: ABE ICHIHIRO

(54) IMAGE SENSOR

(57) Abstract:

PROBLEM TO BE SOLVED: To solve the problem that the scale of a circuit is increased, for example, accessory circuits are increased since it is necessary to increase shift registers in order to switch resolution in a conventional image sensor unit.

SOLUTION: A selector 14 to be controlled by a resolution switching signal is arranged between shift registers 9 for supplying signals to the gates of analog switches 7 for controlling the outputs of a plurality of linearly arranged photoelectric converting elements 6, and the logic of the resolution switching signal is switched so that the connection of the selector 14 can be changed, and that the connection of the shift register 9 can be changed. Thus, it is possible to switch the resolution of the image sensor.

LEGAL STATUS

[Date of request for examination]

16.01.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] In the image sensors constituted so that resolution might be changed, it is arranged in the shape of a straight line. Respectively corresponding to the above-mentioned optoelectric transducer, it is arranged so that two or more optoelectric transducers which change a lightwave signal into an electrical signal, respectively, and the output of this optoelectric transducer may be chosen. It is arranged, respectively between two or more shift registers which operate in predetermined sequence synchronizing with a clock, and an adjoining shift register. Image sensors characterized by having two or more selectors constituted so that connection between shift registers might be changed according to the resolution change signal which directs the change of resolution.

[Claim 2] Resolution change signals are image sensors according to claim 1 characterized by consisting of 2 bits.

[Claim 3] Resolution change signals are image sensors according to claim 1 characterized by consisting of N bits (however, N, integer of N> 2).

[Claim 4] Resolution change signals are the image sensors of claim 1 characterized by changing logic synchronizing with a clock - claim 3 given in any 1 term.

[Claim 5] Modification of the logic of a resolution change signal is image sensors according to claim 4 characterized by being carried out so that it may correspond to some manuscripts read by the optoelectric transducer.

[Claim 6] Resolution change signals are image sensors according to claim 4 characterized by changing logic a fixed period.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the image sensors which have two or more optoelectric transducers arranged on a straight line.

[0002]

[Description of the Prior Art] The contact type image sensor used for facsimile, a copy machine, a hand scanner, etc. has two or more optoelectric transducers arranged on a straight line, and by closing the switch on which the output signal from each optoelectric transducer was connected to each component, respectively with a shift register, one by one, picking, it takes out and it changes image information into the electrical signal of time series. Drawing 8 is the schematic diagram showing the configuration of conventional image readout equipment. In drawing 8, 1 is an image-sensors unit, 2 is the optoelectric-transducer circuit IC of the image-sensors unit 1, and the sensing-element train of this IC consists of 1728 optoelectric transducers on the whole to eight manuscript paper, i.e., the A4 version, per mm. The manuscript in which 3 is read with the image-sensors unit 1, the selfoc-lens array arranged so that the image of a manuscript may connect 4 to an optoelectric transducer between the image-sensors unit 1 and a manuscript 3, and 5 are the light emitting diode trains arranged at the both sides of the selfoc-lens array 4, and a manuscript 3 is irradiated with the light of this light emitting diode train 5. The shift register, analog switch, and signal amplifying circuit which were IC-ized are arranged in the optoelectric-transducer circuit IC 2.

[0003] The basic circuit and timing chart for driving this image—sensors unit 1 are respectively shown in <u>drawing 9</u> and drawing 10. Drawing 9 is drawing showing the basic circuit which drives the conventional image sensors. In drawing 9, 6 is 128 optoelectric transducers, and a number is attached in order and it is constituted by the photodiode of a thin film, or the photoconduction thin film. Although not shown in drawing, each optoelectric transducer 6 has a common electrode, and it is grounded, or suitable bias voltage is impressed. It is SI terminal into which, as for the SIG terminal whose 7 is an analog switch, and whose 8 is an output—signal line, and 9, a shift register is inputted into, and, as for 10, the start signal of a shift register 9 is inputted. The CLK terminal into which, as for 11, a clock is inputted, and 12 are SO terminals with which the end signal of a shift register 9 is outputted. The optoelectric transducer 6 of drawing 9 flows for the SIG terminal 8 which is an output signal line by impressing an electrical potential difference to the gate of an analog switch 7 by 1 to 1. It connects with each stage of a shift register (in the case of drawing, they are 128 steps) 9, and the gate of each analog switch 7 opens and closes an analog switch 7 with the signal from a shift register 9.

[0004] <u>Drawing 10</u> is the timing chart of the circuit of <u>drawing 9</u>. Next, actuation is explained. If a start signal is inputted into the SI terminal 10 of a shift register 9 as shown in <u>drawing 10</u>, a shift register 9 begins actuation and closes the 1st gate and the 2nd gate one by one according to the clock pulse inputted into the CLK terminal 11. A signal is outputted to the SO terminal 12 at the same time the 128th gate is closed. If the SO terminal 12 and the SI terminal 10 of the next optoelectric—transducer circuit IC-2 are connected, the gate 7 of an optoelectric transducer 6 can be opened and closed one by one.

[0005]

[Problem(s) to be Solved by the Invention] Drawing 11 is drawing showing the resolution electronic switch of the conventional image sensors. In drawing 11, 6–12 are the same as that of the thing in drawing 9. 13 is a resolution change terminal into which a resolution change signal is inputted. 14 is a selector arranged at the preceding paragraph of a shift register 9, and is connected to the SI terminal 10 and the resolution change terminal 13. In addition, the shift register consists of 8–dot [/mm] 9of shift registers a, and 4 dot [/mm] 9of shift registers b. The resolution of image sensors for example, when changing [mm] from 8 dots/mm like drawing 9 in 4 dots / If a selector 14 is formed in front of a shift register like drawing 11 and a start signal is inputted into the SI terminal 10, by the logic of the resolution change terminal 13 inputted into a selector 14 SI signal is inputted into one of the shift registers of 8 dot [/mm] 9of shift registers a, or 4–dot [/mm] 9of shift registers b, and the change of resolution is attained.

[0006] In a circuit like drawing 11, it will have to have shift register 9b other than shift register 9a, and a shift register circuit will increase. To low-resolution-izing beyond it, for example about 2 dots/mm of resolution, one more step of shift register of the one half of 4-dot [/mm] 9of shift registers b must be prepared, more, an attached circuit becomes complicated or the magnitude of the optoelectric-transducer circuit IC 2 becomes larger.

[0007] Moreover, in low resolution-ization which adds shift register 9b like drawing 11, resolution is not selectively

made high, or actuation which makes resolution low selectively cannot be performed on the same optoelectric-transducer circuit IC 2.

[0008] This invention is aimed at obtaining the image sensors which can change resolution free, without having been made in order to solve the above technical problems, and increasing the number of shift registers.

[Means for Solving the Problem] In the image sensors concerning this invention Two or more optoelectric transducers which are arranged in the shape of a straight line, and change a lightwave signal into an electrical signal, respectively. Two or more shift registers which are arranged respectively corresponding to an optoelectric transducer so that the output of this optoelectric transducer may be chosen, and operate in predetermined sequence synchronizing with a clock, It is arranged between adjoining shift registers, respectively, and has two or more selectors constituted so that connection between shift registers might be changed according to the resolution change signal which directs the change of resolution.

[0010] Moreover, the resolution change signal consists of 2 bits. Moreover, the resolution change signal consists of N bits.

[0011] Furthermore, as for a resolution change signal, logic is changed synchronizing with a clock. Moreover, a change of the logic of a resolution change signal is made so that it may correspond to some manuscripts read by the optoelectric transducer. Moreover, as for a resolution change signal, logic is changed a fixed period. [0012]

[Embodiment of the Invention] The whole image-sensors unit configuration by the gestalt 1 of gestalt 1. implementation of operation is the same as drawing 8. Drawing 1 is drawing showing the resolution electronic switch using the selector of the image sensors by the gestalt 1 of implementation of this invention. In drawing 1, 6 is 128 optoelectric transducers, and a number is attached in order and it is constituted by the photodiode of a thin film, or the photoconduction thin film. Although not shown in drawing, each optoelectric transducer 6 has a common electrode, and it is grounded, or suitable bias voltage is impressed. The shift register which the analog switch with which 7 controls the output of an optoelectric transducer 6, the SIG terminal whose 8 is an output signal line, and 9 are arranged so that it may correspond to an optoelectric transducer 6, and outputs a signal to the gate of an analog switch 7, and 10 are SI terminals into which the start signal of a shift register 9 is inputted. The CLK terminal into which, as for 11, a clock is inputted, and 12 are SO terminals with which the end signal of a shift register 9 is outputted. 13 is a resolution change terminal into which a 2-bit resolution change signal is inputted. 14 is a selector arranged between each stage of a shift register 9, and the resolution change terminal 13 is connected. [0013] Fundamental actuation of the circuit of drawing 1 is the same as what was stated by drawing 9 , and by impressing an electrical potential difference to the gate of an analog switch 7 by 1 to 1, an optoelectric transducer 6 is chosen and flows for the SIG terminal 8 which is an output signal line. It connects with each stage of a shift register (in the case of drawing, they are 128 steps) 9, and the gate of each analog switch 7 opens and closes an analog switch 7 with the signal given in predetermined sequence from a shift register 9. Drawing 2 is drawing showing the logic of the selector of the image sensors by the gestalt 1 of implementation of this invention. In drawing 2, 14 is a selector. Drawing 3 is the timing chart of the image sensors by the gestalt 1 of implementation of this invention.

[0014] Next, actuation is explained. If the selector 14 is formed between shift registers 9 and logic of the selector 14 of operation is carried out as drawing 2 For example, if an optoelectric transducer 6 is the resolution (from Y0 to an output) which is 8 dots/mm and the input of the resolution change terminal 13 of a selector 14 is set to A[0:1] =1 to obtain 4 dots/mm of outputs of the one half It becomes possible like the timing chart shown in drawing 3 in the output of an optoelectric transducer 6 to thin out and output the 1st, 3, and 5 ... and 1 dot (from Y1 to an output). Moreover, to carry out resolution in 2.67 dots/mm which is 1/3 [8 dots //mm] To carry out [mm] resolution in 2 dots /which is 1/4 [8 dots //mm] that what is necessary is just to set the input of the resolution change terminal 13 of a selector 14 to A[0:1] =2 (from Y2 to an output) It becomes possible to change the resolution of an image what is made A[0:1] =3 (from Y3 to an output).

[0015] According to the gestalt 1 of operation, the change of resolution is attained free, without increasing a shift register.

[0016] Gestalt 2. drawing 4 of operation is the timing chart of the image sensors by the gestalt 2 of implementation of this invention. Drawing 5 is drawing showing the high resolution section in the manuscript of the image sensors by the gestalt 2 of implementation of this invention. As for a manuscript and 15, in drawing 5, 3 is [a high resolution field and 16] low resolution fields.

[0017] In a circuit like drawing 1, not only operation like the gestalt 1 of operation but the thing for which resolution is changed selectively is possible. The timing chart in that case becomes possible [changing the number of infanticide of the shift register 9 in that case (number which flies a register)] by synchronizing the input signal A1 of a selector 14 with a clock, and changing logic like drawing 4. By it, the high resolution field 15 which needs high resolution reading is in the reading manuscript 3 selectively like drawing 5. When the low resolution field 16 which is a low resolution is sufficient, others whenever [high image / of drawing 5] only the part of a field 15 The resolution change terminal 13 of a selector 14 can be set as input signal A[0:1] =0, high resolution can be obtained, and others can obtain a high resolution image selectively by setting the resolution change terminal 13 of a selector 14 as input signal A[0:1] =3.

[0018] According to the gestalt 2 of operation, it becomes possible by reading the image of high resolution selectively to read the whole manuscript early from the case where the whole image is read with high resolution.

[0019] Gestalt 3. drawing 6 of operation is the timing chart of the image sensors by the gestalt 3 of implementation of this invention. In circuitry like drawing 1, a selector 14 to timing as shown in drawing 6 If a signal is first given from the SI terminal 10 (SI2), an input signal is changed to A[0:1] =1 and A[0:1] =2 for every clock, the resolution change terminal 13 is thinned out and a number is changed An output bit can also obtain an irregular output bit like the 3rd, and 5, 8, 10 and 13 (flying 2 bits and flying 1 bit 2 bits ...). By this, if an optoelectric transducer 6 carries out in 8 dots/mm, it can obtain 3.2 dots (8/5x2 dots/(mm))/mm of resolution in false, and can respond to more resolution. In addition, although **** explained the case where the logic of a resolution change signal was changed for every clock, false resolution can be formed if a resolution change signal is changed a fixed period. [0020] For every fixed period, by changing resolution, false resolution can be obtained and, according to the gestalt 3 of operation, it can respond to more resolution.

[0021] In the gestalten 1-3 of gestalt 4. implementation of operation, although explanation was given for the input to the resolution change terminal 13 of a selector 14 by the case of 2 bits, even if it is the number of bits beyond it, it is convenient in any way. If it is made a triplet like drawing 7, what seven bits are thinned out for (it flies) will become possible. For example, if an optoelectric transducer 6 carries out in 8 dots/mm, in a minimum of 1 dot/mm, low resolution-ization is still attained and it can respond about more resolution.

[0022] According to the gestalt 4 of operation, it can respond to more resolution by increasing the input number of bits to a resolution change terminal.

[0023]

[Effect of the Invention] Since this invention is constituted as explained above, it does effectiveness as taken below so. Two or more optoelectric transducers which are arranged in the shape of a straight line, and change a lightwave signal into an electrical signal, respectively. Two or more shift registers which are arranged respectively corresponding to an optoelectric transducer so that the output of this optoelectric transducer may be chosen, and operate in predetermined sequence synchronizing with a clock, Since it had two or more selectors constituted so that connection between shift registers might be changed according to the resolution change signal which is arranged between adjoining shift registers, respectively and directs the change of resolution Resolution can be changed free, without newly preparing a shift register.

[0024] Moreover, since the resolution change signal consists of 2 bits, the change of four kinds of resolution is possible for it. Moreover, since the resolution change signal consists of N bits, the change of the resolution of varieties is possible for it.

[0025] Furthermore, since logic is changed synchronizing with a clock, a resolution change signal can change resolution synchronizing with a clock. Moreover, since a change of the logic of a resolution change signal is made so that it may correspond to some manuscripts read by the optoelectric transducer, it can respond to the manuscript of high resolution selectively.

[0026] Moreover, since logic is changed a fixed period, a resolution change signal can form resolution in false.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is drawing showing the resolution electronic switch using the selector of the image sensors by the gestalt 1 of implementation of this invention.

[Drawing 2] It is drawing showing the logic of the selector of the image sensors by the gestalt 1 of implementation of this invention.

[Drawing 3] It is the timing chart of the image sensors by the gestalt 1 of implementation of this invention.

[Drawing 4] It is the timing chart of the image sensors by the gestalt 2 of implementation of this invention.

[Drawing 5] It is drawing showing the high resolution section in the manuscript of the image sensors by the gestalt 2 of implementation of this invention.

[Drawing 6] It is the timing chart of the image sensors by the gestalt 3 of implementation of this invention.

[Drawing 7] It is drawing showing the logic of the selector of the image sensors by the gestalt 4 of implementation of this invention.

[Drawing 8] It is the schematic diagram showing the configuration of conventional image readout equipment.

[Drawing 9] It is drawing showing the basic circuit which drives the conventional image sensors.

[Drawing 10] It is the timing chart of the circuit of drawing 9.

[Drawing 11] It is drawing showing the resolution electronic switch of the conventional image sensors.

[Description of Notations]

1 A sensor unit, 2 The optoelectric-transducer circuit IC, 3 A manuscript, 4 A selfoc-lens array, 5 A light emitting diode train, 6 An optoelectric transducer, 7 An analog switch, 8 A SIG terminal, 9 A shift register, 10 SI terminal, 11 A CLK terminal, 12 SO terminal, 13 A resolution change terminal, 14 A selector, 15 A high resolution field, 16 Low resolution field.

[Translation done.]