Evaluation of semantic similarity measures

Maxat Kulmanov, Robert Hoehndorf

King Abdullah University of Science and Technology, Saudi Arabia Computational Bioscience Research Center Bio-Ontologies Research Group

Semantic Similarity Measures

- Semantic similarity measures capture the strength of interaction between concepts based on their meaning.
- Widely used in bioinformatics
 - Protein-protein interaction identification
 - Gene-Disease associations
 - Patient diagnoses

Semantic Similarity Measures

Motivation and Aim

- Large number of semantic similarity measures has been developed:
 - 21 groupwise
 - 38 pairwise with 7 different combination strategies
 - Available in Semantic Measures Library http://www.semantic-measures-library.org/
- Classify semantic similarity measures by their sensitivity to the:
 - number of annotated classes
 - difference of the number of annotated classes

Materials

- Gene Ontology (GO)
- 6,108 gene annotations from Yeast Genome Database. Annotation sizes vary from 1 to 55
- 5,500 randomly generated annotations
 - 55 groups with 100 genes in each:
 - 1st group annotated with 1 GO class
 - 2nd group annotated with 2 GO classes
 - 3rd group annotated with 3 GO classes
 - and so on

Methods

- Compute similarity between each pair of genes
 - 18,656,886 similarity values for yeast annotations ((6108+1)/2*6108)
 - 15,127,750 similarity values for random annotations
- Group similarities by annotations size
- Group similarities by annotations size difference
- Take average similarities for all groups

Results

- Sensitive
 - Similarity value increases when annotation size (difference) increases
 - \bullet Similarity value decreases when annotations size (difference) increases
- Not sensitive

Summary

- Most of the similarity measures are sensitive to the annotation size
- Pairwise measures depend on combination
- Well annotated entities get higher similarities
- Studies which use similarity measures may be biased by annotation size

Protein-protein interaction predictions

Protein-protein interaction predictions

Recommendations

• If annotations size variance is high, use pairwise similarity measures with average strategy

Thanks!

http://www.cbrc.kaust.edu.sa/onto/sim-eval/