

AXSaxena@gmail.com | Google Home | My Account | Sign out

Search History (Beta) for AXSaxena@gmail.com

Search History [Web](#) [Images](#) [News](#) [Videos](#) [Encyclo](#) [Trends](#) [Bookmarks](#) [Unlisted \(1\)](#) [Add bookmark](#)

Jul 8, 2006 No search history to show for this day

Jul 7, 2006

- VRML kinematic simulation - Related history
- ↳ VRML for Kinematic and Physical Modeling and Simulations - 7:26pm
www.ece.cmu.edu/~ace786/seminar/fvml.ppt
- VRML kinematic robot simulation
- ↳ Web based robot simulation using VRML - Simulation IEEEexplore.ieee.org/.J/1945&isde8135.pdf?arnumber=899135
- From CAD-Based Kinematic Modeling to automated robot programming
- ↳ Manufacturing Group - 7:23pm
www.mne.us.edu/students/FYP/PPLS10807/MAN.pdf
- ↳ AUTOMATION AND ROBOTICS LAB - 7:16pm
www.psu.edu/~arweb/Members.htm
- ↳ Ingentia Connected From CAD-based kinematic modeling to automation! - 7:04pm
www.ingentiaconnected.com/content/els/07365845/1998000000...

Journal of Computer Aided Design

- ↳ ICCAD - 6:51pm
poratam.net/pbserve_d1/cm?linkid=1&part=series&...
- ↳ Elsevier.com - Computer-Aided Design - 6:51pm
www.elsevier.com/locate/cad

overview of analytical solid modeling

- ↳ Nat Academ's Press. Univ Manufacturing Processes. ISSUES AND... - 12:39pm
darwin.nap.edu/books/0309051932/html/121.html
- ↳ MSC FEA: The Power of MSC Nastran & MSC Patran in an Integrated... - 12:36pm
www.mscsoftware.com/assets/FEA/2004-JUN/221.TDAT.pdf
- ↳ Profice - 12:37pm
profice.net/eduDesignLib/publics/preface.pdf

An overview of analytical solid modeling

- ↳ Citations: An analytical access time model for on-chip cache... - 12:37pm
citeseer.ist.psu.edu/context/4143984/0

Searches with no clickied results:
Journal of Computer Aided Design
Bookmark pages more easily, install the [Free Google Toolbar](#).

[Search History](#) [Search the Web](#) [Search History](#) [Search the Web](#)

[Search History](#) [Search the Web](#) [Search History](#) [Search the Web](#)

[Search Activity](#) [Jul 2006](#)

S	M	T	W	T	F	S							
4	5	6	7	8	9	10	11	12	13	14	15		
16	17	18	19	20	21	22	23	24	25	26	27	28	29

Total searches: 419

Google Home - Personalized Search Help - Privacy Policy - About Google

[Search Google](#)

EAST Search History

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L2	5	US-4968195-\$ DID. OR US-6369815-\$ DID. OR US-4890242-\$ DID. OR US-6452604-\$ DID. OR US-5999188-\$ DID.	US-PGPUB; USPAT	OR	OFF	2006/07/08 18:34
L3	16	(US-20010033281-\$ or US-20020123812-\$ or US-20020063707-\$ or US-20020167513-\$ or US-20030085890-\$).did. or (US-5831875-\$ or US-6629065-\$ or US-6963825-\$ or US-4890242-\$ or US-5251290-\$ or US-4868766-\$ or US-7002585-\$ or US-6366293-\$ or US-6910001-\$ or US-5684725-\$ or US-6219049-\$).did.	US-PGPUB; USPAT	OR	OFF	2006/07/08 18:34
L4	15	L3 not L2	US-PGPUB; USPAT; USOCR	OR	OFF	2006/07/08 18:35
S1	1	"6812924".pn.	US-PGPUB; USPAT	OR	OFF	2006/07/07 12:22
S2	1	"10/827254"	US-PGPUB; USPAT	OR	OFF	2006/07/08 18:34
S3	6	("4890242" "4968195" "5999188" "6271856" "6369815" "6452604").PN. OR ("6812924"). URPN.	US-PGPUB; USPAT; USOCR	OR	OFF	2006/07/07 12:41
S4	1845	polygon with (cone torus cylinder)	US-PGPUB; USPAT; USOCR	OR	ON	2006/07/07 16:57
S5	49	polygon with (cone torus cylinder) with (model\$4 simulat\$4)	US-PGPUB; USPAT; USOCR	OR	ON	2006/07/07 17:30
S6	9	("5265197" "5412762").pn. or ("08/046985" "09/371843" "10/388663" "10/721544" "10/743086" "10/743090" "11/442223")	US-PGPUB; USPAT; USOCR	OR	ON	2006/07/07 17:02
S7	12	polygon with (cone torus cylinder) with (fitting)	US-PGPUB; USPAT; USOCR	OR	ON	2006/07/07 17:49
S8	933	345/420.ccls.	US-PGPUB; USPAT; USOCR	OR	ON	2006/07/08 15:52
S9	30	S8 and kinematic	US-PGPUB; USPAT; USOCR	OR	ON	2006/07/07 17:50

EAST Search History

S10	241	S8 and (cone torus cylinder)	US-PGPUB; USPAT; USOCR	OR	ON	2006/07/07 18:45
S11	56	(CAD with VRML)	US-PGPUB; USPAT; USOCR	OR	ON	2006/07/07 19:11
S12	544	CAD with (polyhedral polygonal cone conic torus toruses cylinder cylindrical)	US-PGPUB; USPAT; USOCR	OR	ON	2006/07/07 19:12
S13	25	S12 and analytic\$4	US-PGPUB; USPAT; USOCR	OR	ON	2006/07/07 19:12
S14	2785	703/1,2,7.ccls.	US-PGPUB; USPAT; USOCR	OR	ON	2006/07/08 15:52
S15	933	345/420.ccls.	US-PGPUB; USPAT; USOCR	OR	ON	2006/07/08 15:53
S16	79	S14 and S15	US-PGPUB; USPAT; USOCR	OR	ON	2006/07/08 15:53

PORTAL

Search... The Guide The Catalog

An Interactive and Exact Collision Detection System

The ACM Digital Library

Electronic Standardized Information Sources

Found 66 of 171,800

Try an Advanced Search Try this search in The ACM Guide

Save results to a Binder Search tips Open results in a new window

Sort by relevance expanded form

Results 1 - 20 of 200 Best 200 shown

Collision detection and proximity queries Sunil Hadap, Dave Eberle, Paschal Volino, Ming C. Lin, Stephane Redon, Christer Ericson August 2004 Proceedings of the conference on SIGGRAPH 2004 course notes GRAPH '04 Publisher: ACM Press Full text available: [http://www.cs.cornell.edu/~eberle/papers/graph04.pdf](#)

This course will primarily cover widely accepted and proved methodologies in collision detection. In addition more advanced or recent topics such as continuous collision detection, ADFs, and using graphics hardware will be introduced. When appropriate the methods discussed will be tied to familiar applications such as rigid body and cloth simulation, and will be compared. The course is a good overview for those developing applications in physically based modeling, VR, haptics, and robotics.

2 Time warp rigid body simulation Brian Mirtich April 2000 Proceedings of the 27th annual conference on Computer graphics and interactive techniques Publisher: ACM Press/Adelson-Vellin Publishing Co Full text available: [http://www.cs.ubc.ca/~mirtich/pubs/twsig00.pdf](#)

The traditional high-level algorithms for rigid body simulation work well for moderate numbers of bodies but scale poorly to systems of hundreds or more moving, interacting bodies. The problem is unnecessary synchronization implicit in these methods. Jefferson's time warp algorithm [22] is a technique for alleviating this problem in parallel discrete event simulation. Rigid body dynamics, though a continuous process, exhibits many aspects of a discrete one. With modification ...

Keywords: animation, physics based modeling

3 Six degrees-of-freedom haptic rendering using voxel sampling William A. McNeely, Kevin D. Puterbaugh, James J. Troy July 1998 Proceedings of the 26th annual conference on Computer graphics and interactive techniques Publisher: ACM Press/Adelson-Vellin Publishing Co Full text available: [http://www.cs.ubc.ca/~troy/pubs/98_vox.pdf](#)

Keywords: force feedback, virtual environments, voxel representations

4 Collision detection for volumetric objects Taesoon He, Are Kauffman October 1997 Proceedings of the 8th conference on Visualization '97 Publisher: IEEE Computer Society Press Full text available: [http://www.cs.ubc.ca/~taesoon/pubs/v97.pdf](#)

Keywords: collision probability, distance map, octree, sphere tree, surface crossing probability, virtual reality, volume graphics, volume rendering, volume visualization, volumetric collision

1 Visibility sorting and compositing without splitting for image layer decompositions John Snyder, Ied Jengel April 1996 Proceedings of the 25th annual conference on Computer graphics and interactive techniques Publisher: ACM Press Full text available: [http://www.cs.ubc.ca/~snyder/pubs/96vis.pdf](#)

Keywords: compositing, kd-tree, nonsplitting layered decomposition, occlusion cyle, occlusion graph, sprite, visibility sorting

2 Interactive simulation of fire in virtual building environments Richard Buijrowski, Carlo Seulin August 1997 Proceedings of the 24th annual conference on Computer graphics and interactive techniques Publisher: ACM Press/Adelson-Vellin Publishing Co Full text available: [http://www.cs.ubc.ca/~seulin/pubs/97fire.pdf](#)

Keywords: information visualization, interactive techniques, scientific visualization, simulation, virtual reality, virtual/interactive environments

3 V-COLLIDE: Accelerated collision detection for VRML Thomas C. Hudson, Ming C. Lin, Jonathan Cohen, Kieran Gotschalk, Dinesh Manocha February 1997 Proceedings of the second symposium on Virtual reality modeling language Publisher: ACM Press Full text available: [http://www.cs.ubc.ca/~lin/pubs/vrml.pdf](#)

Keywords: collision detection, virtual reality modeling language (VRML)

4 QOTA: a fast, multi-purpose algorithm for terrain following in virtual environments John W. Barnes, Richard C. Waters February 1997 Proceedings of the second symposium on Virtual reality modeling language Publisher: ACM Press Full text available: [http://www.cs.ubc.ca/~waters/pubs/qota.pdf](#)

Keywords: collision detection, quadtree, terrain following

5 I-COLLIDE: an interactive and exact collision detection system for large-scale environments Jonathan D. Cohen, Ming C. Lin, Dinesh Manocha, Mukun Ponamgi April 1998 Proceedings of the 1998 symposium on Interactive 3D graphics Publisher: ACM Press Full text available: [http://www.cs.ubc.ca/~lin/pubs/icollide.pdf](#)

We present an exact and interactive collision detection system, I-COLLIDE, for large-scale environments. Such environments are characterized by the number of objects undergoing rigid motion and the complexity of the models. The algorithm does not assume the objects' motions can be expressed as a closed form function of time. The collision detection system is general and can be easily interfaced with a variety of applications. The algorithm uses a two-level approach based on pruning multiple ...

6 Session A. Object interactions and collisions: Multi-layered deformable surfaces for virtual clothing Wingo Sia-Keung Wong, George Baciu, Jinlian Hu November 2000 Proceedings of the ACM symposium on Virtual reality software and technology Publisher: ACM Press Full text available: [http://www.cs.ubc.ca/~wong/pubs/vrst00.pdf](#)

We propose a positional constraint method to solve the multi-layered deformable surface problem based on a master-slave scheme. This allows two or more deformable surfaces to be attached together in any orientation relative to each other for the purpose of modeling cloth attachments and multi-layered clothing. The method does not require the mesh resolution of the deformable surfaces to be the same or the matching of anchor points between layers. After the attachment process, the

Surfaces ...

Keywords: collision detection, deformable surfaces, master-slave, multi-layer, non-manifold geometry, virtual clothing

11 Systems: YABLE—yet another behaviour language
Tony Burrows, David England
Procceedings of the tenth International conference on 3D Web technology
 Publisher: ACM Press
 Publication date: 2004
 Pages: 1–10

 Address: <http://www.cs.york.ac.uk/~tburrow/yable.html> [Accessed: 2004-07-10]

There is an increasing use of virtual environments for applications ranging from education to industrial processes, behavioural modification and games. While tools have been developed to enable end users to generate static environments, little has been done with respect to dynamic ones, behaviour is a major element for believability. This is still very much the province of the programme. This paper examines the current state of virtual reality development with particular reference to the space ...

12 Algorithms: Significant facial retrieval for real-time 3D sound rendering in complex virtual environments
Chris Joslin, Nada Magrin-Thalmann
Proceedings of the ACM symposium on Virtual reality software and technology
 Publisher: ACM Press
 Publication date: October 2004
 Pages: 1–10

 Address: <http://www.cs.york.ac.uk/~joslin/vr04.pdf> [Accessed: 2004-07-10]

Sound rendering requires that many different aspects are considered simultaneously, especially as for when rendering a real-time virtual environment. In 3D sound rendering, much the same as for graphics, one of the major influencing factors is the number of reflective polygons in a scene as due to the increase in the ability of most common graphics cards this number can now be very large. When scene designers produce an optimum scene using other optimizing tools such as Polygon Cruncher or R ...

Keywords: bounding-box, scene segmentation, sound rendering, virtual environments

13 NITPACK: An interactive Tree Package
P. W. Gaffney, J. W. Wooter, K. A. Kessel, W. R. McKinley
ACM Transactions on Mathematical Software (TOMS), Volume 9 Issue 4
 Publisher: ACM Press
 Publication date: April 1983
 Pages: 1–10

 Address: <http://www.cs.york.ac.uk/~mckinley/toms/nitpack.pdf> [Accessed: 2004-07-10]

An interactive introduction to OpenGL programming

14 An interactive introduction to OpenGL Programming
Dave Shreiner, Ed Angel, Vicki Shreiner
Proceedings of the conference on SIGGRAPH 2004 course notes GRAPH '04
 Publisher: ACM Press
 Publication date: August 2004
 Pages: 1–10

 Address: <http://www.cs.york.ac.uk/~mckinley/graph04.pdf> [Accessed: 2004-07-10]

An Interactive Introduction to OpenGL Programming provides an overview of the OpenGL Application Programming Interface (API), a library of subroutines for drawing three-dimensional objects and images on a computer. After the completion of the course, a programmer able to simple programs in the C language will be able to create an OpenGL application that has no more than 30 objects that look like they are being lit by lights in the scene and by specifying colors or in that should be used ...

15 An Interactive Simulation System for structured logic design—ISS
Takeshi Sakai, Yoshiyuki Itochiba, Hiroto Tsuruda, Yasushi Ooi, Yoshihisa Ono, Hiroshi Kano, Shinji Kikura, Shuzo Yajima
Symmetry '92
Proceedings of the 19th conference on Design automation
 Publisher: IEEE Press
 Publication date: November 1992
 Pages: 1–10

 Address: <http://www.cs.york.ac.uk/~mckinley/sym92.pdf> [Accessed: 2004-07-10]

An Interactive Simulation System (ISS) is presented. ISS is an integrated interactive CAD system for logic design, and is configured "module oriented" to support structured logic design. An Interactive Simulator (IS) is used for design verification. A designer can control simulation directly in ISS, and he can find design errors early using a good interactive interface. A Structured Hardware Design Language (SHDL) is used to describe logic designs.

16 PERUSE: An Interactive System for Mathematical Programs
William G. Kurator, Richard P. O'Neill
ACM Transactions on Mathematical Software (TOMS), Volume 6 Issue 4
 Publisher: ACM Press
 Publication date: December 1980
 Pages: 1–10

 Address: <http://www.cs.york.ac.uk/~mckinley/toms/peruse.pdf> [Accessed: 2004-07-10]

[Home](#) | [Login](#) | [Logout](#) | [Access Information](#) | [Alerts](#) |

Welcome United States Patent and Trademark Office

 [Search Session History](#)[BROWSE](#)[SEARCH](#)[IEEE XPLORE GUIDE](#)

Fri, 7 Jul 2006, 6:38:13 PM EST

Edit an existing query or
compose a new query in the
Search Query Display.

Select a search number (#)
to:

- Add a query to the Search Query Display
- Combine search queries using AND, OR, or NOT
- Delete a search
- Run a search

Recent Search Queries

#1 (casale<in>au)
#2 (((casale<in>au))<AND>(analytical<in>metadata))
#3 ((kinematic<in>metadata) <and> (simulation<in>metadata))
#4 ((((kinematic<in>metadata) <and>
#5 ((kinematic<in>metadata) <and> (simulation<in>metadata))
#6 ((((kinematic<in>metadata) <and>
#7 ((kinematic<in>metadata) <and> (simulation<in>metadata))
#8 (polygons<IN>metadata)
#9 ((kinematic<in>metadata) <and> (simulation<in>metadata))
#10 ((((kinematic<in>metadata) <and>
#11 ((kinematic<in>metadata) <and> (simulation<in>metadata))
#12 ((((kinematic<in>metadata) <and>
#13 ((kinematic<in>metadata) <and> (simulation<in>metadata))
#14 ((((kinematic<in>metadata) <and>
#15 ((kinematic<in>metadata) <and> (simulation<in>metadata))
#16 ((kinematic<in>metadata) <and> (simulation<in>metadata))
#17 ((((kinematic<in>metadata) <and>

(simulation<in>metadata))<AND>(polygonal<in>metadata))

#18 ((kinematic<in>metadata) <and> (simulation<in>metadata))

#19 ((((kinematic<in>metadata) <and>
 (simulation<in>metadata)))<AND>(interference<in>metadata))

[REDACTED]

[Help](#) [Contact Us](#) [Privacy &](#)

© Copyright 2006 IEEE -

Indexed by
 Inspec®