data_exploration

April 14, 2025

1 Data Exploration

This notebook explores the dataset to understand and get an overview of the dataset:

```
[24]: import sys
    from pathlib import Path
    import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt

# Add parent directory to sys.path
    parent_dir = Path().resolve().parent
    sys.path.append(str(parent_dir))

from src.utils import load_data
    from src.utils import replace_birthdate_with_age
    from src.utils import plot_boxplots
```

- load data
 - load feature data

```
[25]: file_path_features = parent_dir / 'features.parquet'
feature_data = load_data(file_path_features)
#feature_data = feature_data[feature_data['Exposure'] < 1]</pre>
```

DataFrame Info:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 678013 entries, 0 to 678012
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	IDpol	678013 non-null	float64
1	${\tt ClaimNb}$	678013 non-null	float64
2	Exposure	678013 non-null	float64
3	Area	678013 non-null	object
4	VehPower	678013 non-null	float64
5	VehAge	678013 non-null	float64
6	BonusMalus	678013 non-null	float64

```
7 VehBrand 678013 non-null object
8 VehGas 644112 non-null object
9 Density 678013 non-null float64
10 Region 678013 non-null object
11 BirthD 678013 non-null object
```

dtypes: float64(7), object(5)

memory usage: 62.1+ MB

None

First 5 Rows:

	IDpol	${\tt ClaimNb}$	Exposure	Area	VehPower	VehAge	BonusMalus	VehBrand	\
0	1.0	1.0	0.10	'D'	5.0	0.0	50.0	'B12'	
1	3.0	1.0	0.77	'D'	5.0	0.0	50.0	'B12'	
2	5.0	1.0	0.75	'B'	6.0	2.0	50.0	'B12'	
3	10.0	1.0	0.09	'B'	7.0	0.0	50.0	'B12'	
4	11.0	1.0	0.84	'B'	7.0	0.0	50.0	'B12'	

	VehGas	Density	Region	${\tt BirthD}$
0	None	1217.0	'R82'	1967-05-08
1	Regular	1217.0	'R82'	1967-12-28
2	Diesel	54.0	'R22'	1970-08-13
3	Diesel	76.0	'R72'	1976-12-05
4	Diesel	76.0	'R72'	1976-02-29

\

Summary Statistics:

~ ~	,			
	IDpol	${\tt ClaimNb}$	Exposure	VehPower
count	6.780130e+05	678013.000000	678013.000000	678013.000000
mean	2.621857e+06	0.053247	0.528750	6.454631
std	1.641783e+06	0.240117	0.364442	2.050906
min	1.000000e+00	0.000000	0.002732	4.000000
25%	1.157951e+06	0.000000	0.180000	5.000000
50%	2.272152e+06	0.000000	0.490000	6.000000
75%	4.046274e+06	0.000000	0.990000	7.000000
max	6.114330e+06	16.000000	2.010000	15.000000
	Vehlae	RonugMalug	Dansity	

	${\tt VehAge}$	BonusMalus	Density
count	678013.000000	678013.000000	678013.000000
mean	7.044265	59.761502	1792.422405
std	5.666232	15.636658	3958.646564
min	0.000000	50.000000	1.000000
25%	2.000000	50.000000	92.000000
50%	6.000000	50.000000	393.000000
75%	11.000000	64.000000	1658.000000
max	100.000000	230.000000	27000.000000

IDpol	678013
${\tt ClaimNb}$	11
Exposure	181
Area	6
VehPower	12
VehAge	78
BonusMalus	115
VehBrand	11
VehGas	2
Density	1607
Region	22
BirthD	25775

dtype: int64

Total Missing Values in DataFrame:

IDpol	0
${\tt ClaimNb}$	0
Exposure	0
Area	0
VehPower	0
VehAge	0
BonusMalus	0
VehBrand	0
VehGas	33901
Density	0
Region	0
BirthD	0

dtype: int64

• load target data

```
[26]: file_path_target = parent_dir / 'target.parquet'
target_data = load_data(file_path_target)
```

```
DataFrame Info:
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26639 entries, 0 to 26638
Data columns (total 2 columns):

Column Non-Null Count Dtype

--- ----- -----

0 IDpol 26639 non-null float64 1 ClaimAmount 26639 non-null float64

dtypes: float64(2) memory usage: 416.4 KB

None

First 5 Rows:

	${ t IDpol}$	ClaimAmount
0	1552.0	995.20
1	1010996.0	1128.12
2	4024277.0	1851.11
3	4007252.0	1204.00
4	4046424.0	1204.00

Summary Statistics:

```
IDpol ClaimAmount
count 2.663900e+04 2.663900e+04
mean 2.279864e+06 2.278536e+03
std 1.577202e+06 2.929748e+04
min 1.390000e+02 1.0000000e+00
25% 1.087642e+06 6.868100e+02
50% 2.137413e+06 1.172000e+03
75% 3.180162e+06 1.228080e+03
max 6.113971e+06 4.075401e+06
```

Unique Values Per Column:

IDpol 24950 ClaimAmount 12369

dtype: int64

Total Missing Values in DataFrame:

IDpol 0 ClaimAmount 0 dtype: int64

• merge two data sets

- Data imputation
 - Convert birthdates to ages in year
 - Fill Missing Values with a New Category in VehGas

```
[28]: df['VehGas'] = df['VehGas'].fillna('G3')
df = replace_birthdate_with_age(df, 'BirthD', reference_date='2023-01-01')
```

• Feature distribution

```
[16]: # plot the distribution of each feature
      num columns = len(df.columns)
      fig, axes = plt.subplots(nrows=(num_columns + 1) // 2, ncols=2, figsize=(16, 4_
      \rightarrow* ((num columns + 1) // 2)))
      axes = axes.flatten()
      # Plot each column's distribution
      for i, column in enumerate(df.columns):
          sns.histplot(df[column], kde=False, ax=axes[i])
          axes[i].set title(f'Distribution of {column}')
          axes[i].set_xlabel('Values')
          axes[i].set ylabel('Volume')
          axes[i].grid(True)
          #axes[i].set xlim(df[column].min(), df[column].max())
      # Adjust layout
      plt.tight_layout()
      plt.show()
```


• factorize the categorial features

```
[32]: # List of categorical columns to factorize
categorical_columns = ['Area', 'Region', 'VehGas', 'VehBrand']

# Factorize each categorical column
for column in categorical_columns:
    df[column] = pd.factorize(df[column])[0]

# Display the updated DataFrame
#print(df.head())
```

• Boxplot to detect outliers

```
[18]: # Select numerical columns
      numerical_columns = df.select_dtypes(include=['number']).columns
      # Create subplots for box plots
      num columns = len(numerical columns)
      fig, axes = plt.subplots(nrows=(num_columns + 1) // 2, ncols=2, figsize=(16, 4_
      \rightarrow* ((num columns + 1) // 2)))
      axes = axes.flatten()
      # Plot each numerical column as a box plot
      for i, column in enumerate(numerical_columns):
          sns.boxplot(data=df, y=column, ax=axes[i])
          axes[i].set_title(f'Box Plot of {column}')
          axes[i].set_ylabel(column)
          axes[i].grid(True)
      # Hide unused subplots if the number of columns is odd
      for j in range(i + 1, len(axes)):
          fig.delaxes(axes[j])
      # Adjust layout
      plt.tight_layout()
      plt.show()
```


1.0.1 feature enginearing

• define the loss amount

```
[29]: df['LossAmount_frequency'] = df['ClaimAmount'] / df['Exposure']
df['Claim_frequency'] = df['ClaimNb'] / df['Exposure']
```

• observe dependency of Loss_amount_frequency/ Claim_frequency on variables

```
[7]: # Example usage:

plot_boxplots(['DriverAge', 'VehPower', 'BonusMalus', 'Density', 'Area',

→'Region', 'VehBrand', 'VehAge'],

'Claim_frequency',

df)
```


• pool of data by Driver age shows Claim frequency to age!

```
[]: # sum of ClaimNb and Exposure when grouping by DriverAge
grouped_df = df.groupby('DriverAge').agg({'ClaimNb': 'sum', 'Exposure': 'sum'}).

→reset_index()

# calculate the claim frequency
grouped_df['Claim_frequency'] = grouped_df['ClaimNb'] / grouped_df['Exposure']

# plot the claim frequency by driver age
plt.figure(figsize=(10, 2))
sns.scatterplot(data=grouped_df, x='DriverAge', y='Claim_frequency')
plt.title('Claim Frequency by Driver Age')
plt.xlabel('Driver Age')
plt.ylabel('Claim Frequency')
```

```
plt.grid()
plt.show()
```



```
[35]: df = df[df['LossAmount_frequency'] > 0]
plot_boxplots(['DriverAge', 'VehPower', 'BonusMalus', 'Density', 'Area',

→'Region', 'VehBrand', 'VehAge'], 'LossAmount_frequency', df)
```


• Feature correlations

• Scatter plot

