cogniLink: A Non-Invasive Brain-Computer Interface That Enables Seamless Execution of Commands Through Thought Recognition

Project cogniLink

Abstract

Although great strides have been achieved in making computers more accessible, its indisputable that there remains huge prospects for improvement. Given that technology is designed for the masses, it offers every individual a platform to do what is needed; this includes, but isnt limited to, support for individuals with motor, dexterity, and/or speech impairments. In this proposal, we will discuss cogniLink, a tool that assists developers in making computers more accessible for persons with afflictions. cogniLink is a brain-computer interface that allows the user to trigger the execution of a command simply by thinking of the trigger. A training data set is to be collected from n-users in order to train n-models using an ElectroEncephaloGram (EEG). Each model is programmed to recognize one or more trigger thoughts. The same model interacts with a stack of software which allows it to map positive outputs from the model and transform it into an actionable command. For the purpose of demonstration, the model will be trained to recognize commands from one user which will be mapped to a virtualHID in such a way that allows the user to play Super Mario Bros. After an extensive process of training n-models, a universal model (UM) will be trained using data from the aforementioned n-models in order to have a simpler training process for new users. cogniLink will allow disabled people to execute commands in a very seamless and orderly fashion, thus making computers more accessible to persons with digital input impairments. Two of cogniLinks long term goals are to allow an amputee to be able to effortlessly be able to control a wheelchair in real time, and for someone suffering from Locked-In Syndrome to be able to interact with the world around them with ease.

1 Implementation

1.1 Tool Chain

Figure 1: Tool Chain Diagram

Text about tool chain here Figure 1.

1.2 Project work plan

Work package description

Work package number	WP1	Starting week 1
Work package title	Virtual HID, Data Collection, and	ML Code
Participant number	1	
Short name	georgio	
Person-weeks	2	

Objectives

This work package has the following objectives:

- 1. To develop a Virtual Human Interface Device;
- 2. To develop an API that gathers raw data from the Cyton board and feeds it to a CSV file;

- 3. To write code needed to efficiently store and manage datasets;
- 4. To write code needed to start training Model 1 on Command A.

Description of work

Task T1.1: Task1 (W1-W1)

The virtualHID will be created using macOS' IOKit Library.

Task T1.2: Task2 (W1-W1)

The Cyton board will be programmed using arsh.

Task T1.3: Task3 (W1-W1)

API to gather data from Cyton Board will be built

Task T1.4: Task4 (W1-W2)

Code to manage raw EEG data will be done here.

Task T1.5: Task5 (W2-W2)

EC2, S3, and SageMaker instances will be configured.

Task T1.6: Task6 (W2-W2)

Code to feed raw data to S3 bucket will be done here.

Task T1.7: Task7 (W2-W2)

Code to start training the model will be done here.

- D1.1 WP1 W1 Progress Report. (W1)
- **D1.2** Demonstration of APIs (W2)
- D1.3 WP1 Code+Tools Merged to master. (W2)
- D1.4 Main Report with full progress accomplished after the end of WP3. (W2)

Work package number	WP2	Starting week 2
Work package title	Model 1 Command A	
Participant number	1	
Short name	georgio	
Person-weeks	4	

- 1. To collect training, validation, and test datasets for Model 1 Command A;
- 2. Training Model 1 using aforementioned data;
- 3. Testing/Patching Model 1.

Description of work

Task T2.1: Task1 (W2-W3)

Ways to efficiently collect data with high accuracy will be looked into; validated datasets will be used (if found) as a point of reference.

Task T2.2: Task2 (W3-W4)

The training dataset will be collected.

Task T2.3: Task 3 (W4-W5)

Model 1 will be trained using the aforementioned dataset.

Task T2.4: Task 4 (W4-W5)

Test and Validation datasets will be collected.

Task T2.5: Task 5 (W4-W5)

Test and Validation datasets will be collected.

Task T2.6: Task 6 (W4-W5)

All collected datasets will be uploaded to an AWS S3 Bucket.

Task T2.7: Task 7 (W4-W5)

Accuracy of trained model will be studied.

Task T2.8: Task 8 (W5-W6)

Patches and optimizations will be pushed in attempt to improve model accuracy, if possible.

- **D2.1** Report 1 about the data collection process and initiation of the first round of training. (W4)
- D2.2 First iteration of the model. (W5)
- D2.3 Report 2 about model accuracy after inputing initial test and validation datasets. (W5)

D2.4 Report 3 will include a comparative view of accuracy for each patch/iteration of the model.

(W6)

D2.5 Second iteration of the model. (W6)

D2.6 Main Report update with full progress accomplished after the end of WP2. (W6)

D2.7 Video demonstration of thought recognition process. (W6)

Work package number	WP3	Starting week 6
Work package title	Model 1 n Commands	
Participant number	1	
Short name	georgio	
Person-weeks	6	

This work package has the following objectives:

- 1. Link the output from the Model to the virtual HID created in WP1;
- 2. Map trigger thoughts to button presses;
- 3. Play a game of 1P Super Mario Bros.

Description of work

Task T3.1: Task1 (W6-W12)

Code for linking model to virtual HID will be rechecked and finalized.

Task T3.2: Task2 (W6-W12)

Model 1 will be trained for command B, and other commands simultaneously.

Task T3.3: Task3 (W12-W12)

A game of 1P Super Mario Bros will be played.

- **D3.1** A demonstration of the execution of alternating commands, after successful training of the second command to model 1. **(W8)**
- D3.2 Report 1 on findings made while training new commands. (W11)
- **D3.3** Report 2 will comapre the variation of latency between the model and the virtual HID for each code patch. **(W12)**
- **D3.4** Code for virtual HID and updated Model 1 with multiple command recognition will be pushed to master. **(W12)**
- **D3.5** A demonstration of the ability to play a game of 1P Super Mario Bros using cogniLink. **(W12)**
- D3.6 Main Report update with full progress accomplished after the end of WP3. (W12)

Work package number	WP4	Starting week 12
Work package title	Model 2 n Commands	
Participant number	1	
Short name	georgio	
Person-weeks	6	

This work package has the following objectives:

- 1. Replicate all steps in WP2 and WP3 so that we get a Model 2 for a different individual trained on n the same n Commands as Model 1;
- 2. Play a game of 2P Super Mario Bros.

Description of work

Task T4.1: Task1 (W12-W18)

A new Model 2 will be created, repeting the steps from previous WPs, in such a way that it is trained using data gathered from a different individual for the same n-Commands.

Task T4.2: Task2 (W12-W13)

The ability to switch between models will be added to the virtual HID code, for testing purposes.

Task T4.3: Task3 (W18-W18)

Models 1 and 2 will be published.

Task T4.4: Task4 (W18-W18)

A game of 2P Super Mario Bros will be played.

- **D4.1** Merging model switching code to master. **(W13)**
- D4.2 Report on the ability to use 2 models simultaneously as 2 virtual HID devices. (W13)
- D4.3 Report on Model 2 Command 8. (W15)
- D4.4 Report on training Model 2 for n-Commands. (W18)
- **D4.5** Merging code of Models 1 and 2 to master. **(W13)**
- **D4.6** A demonstration of the ability to play a game of 2P Super Mario Bros using cogniLink. **(W18)**
- **D4.7** Main Report update with full progress accomplished after the end of WP4. (W18)

1. Implementation

Work package number	WP5	Starting week 18
Work package title	Optimizations	
Participant number	1	
Short name	georgio	
Person-weeks	2	

Objectives

This work package has the following objectives:

1. Optimizing the code in such a way that a trigger thought is recognized in realtime.

Description of work

Task T5.1: Task1 (W18-W20)

Code optimization with the main goal of reducing latency.

Deliverables

D5.1 Optimized code will be merged to master. (W20)

D5.2 Main Report update with full progress accomplished after the end of WP5, emphasizing on measures taken for optimizing code. **(W20)**

Work package number	WP6	Starting week 20
Work package title	Real Life Application	
Participant number	1	
Short name	georgio	
Person-weeks	10	

This work package has the following objectives:

- 1. Implement cogniLink to work on a controller of a wheelchair, this task derives from cogniLink as a forked project;
- 2. Initiate research about Locked-in syndrome: Find suitiable use-cases and patients.

Description of work

Task T6.1: Task1 (W20-W22)

First Fork of cogniLink. A wheelchair controller/helper that can be fed command data as a replacement to the virtual HID will be designed and implemented.

Task T6.2: Task2 (W20-W30)

Initiation of formal research about Locked-in syndrome, patients, and practical use-case scenarios.

- D6.1 Report about integration with wheelchair. (W22)
- D6.2 Forking cogniLink and merging changes needed for wheelchair integration. (W30)
- **D6.3** Report about research findings and future steps towards integrating with a locked in patient. **(W30)**
- D6.4 Main Main Report update with full progress accomplished after the end of WP6. (W30)

1. Implementation

Work package number	WP7	Starting week 30
Work package title	Universal Model, n Commands	
Participant number	1	
Short name	georgio	
Person-weeks	10	

Objectives

This work package has the following objectives:

- 1. Integrating cogniLink with a Locked-in syndrome patient, in such a way for them to be able to mentally execute a command;
- 2. Designing, implementing, and training a universal model (UM).

Description of work

Task T7.1: Task1 (W30-W40)

Second fork of cogniLink: Training a new model with a Locked-in patient.

Task T7.2: Task2 (W30-W40)

Training UM using multiple models trained on multiple commands.

Task T7.3: Task3 (W30-W40)

Code optimization.

- **D7.1** Final Main Report update on Universal Model, Locked-in patient progress, and future plans for cogniLink. **(W40)**
- D7.2 Publishing Universal Model. (W40)
- D7.3 Publishing model trained on Locked-in patient. (W40)
- D7.4 Merging optimized code to master. (W40)

List of work packages

Table 1.2b: List of work packages

Work package number	Work package title	Lead partic- ipant no.	Lead partici- pant name	Person- weeks	Start week	End week
WP1	Virtual HID, Data Collection, and ML Code		georgio	2	1	2
WP2	Model 1 Command A	1	georgio	4	2	6
WP3	Model 1 n Commands	1	georgio	6	6	12
WP4	Model 2 n Commands	1	georgio	6	12	18
WP5	Optimizations	1	georgio	2	18	20
WP6	Real Life Application	1	georgio	10	20	30
WP7	Universal Model, n Com-	1	georgio	10	30	40
	mands					
	TOTAL			40		

List of deliverables

1

Table 1.2c: Deliverable list

Delive-	Deliverable name	WP	Lead par-	Na-	Disse-	Delivery
rable		no.	ticipant	tu-	mina-	date
num-			name	re	tion	(proj.
ber					Level	week)
D1.1	WP1 W1 Progress Report.	WP1	georgio	R	PU	1
D1.2	Demonstration of APIs	WP1	georgio	D	PU	2
D1.3	WP1 Code+Tools Merged to master.	WP1	georgio	P	PU	2
D1.4	Main Report with full progress accom-	WP1	georgio	R	PU	2
	plished after the end of WP3.					
D2.1	Report 1 about the data collection process	WP2	georgio	R	PU	4
	and initiation of the first round of training.					
D2.2	First iteration of the model.	WP2	georgio	P	PU	5
D2.3	Report 2 about model accuracy after input-	WP2	georgio	R	PU	5
	ing initial test and validation datasets.					
D2.4	Report 3 will include a comparative view	WP2	georgio	R	PU	6
	of accuracy for each patch/iteration of the					
	model.					
D2.5	Second iteration of the model.	WP2	georgio	P	PU	6
D2.6	Main Report update with full progress ac-	WP2	georgio	R	PU	6
	complished after the end of WP2.					
D2.7	Video demonstration of thought recogni-	WP2	georgio	D	PU	6
	tion process.					
Continued on next page						

¹If your action taking part in the Pilot on Open Research Data, you must include a data management plan as a distinct deliverable within the first 6 weeks of the project. This deliverable will evolve during the lifetime of the project in order to present the status of the project's reflections on data management. A template for such a plan is available on the Participant Portal (Guide on Data Management).

D2 1	A demonstration of the evention of alter	MD2	acomaio	D	DII	8
D3.1	A demonstration of the execution of alter-	WP3	georgio	D	PU	8
	nating commands, after successful training					
Daa	of the second command to model 1.	TATEO		D	DII	11
D3.2	Report 1 on findings made while training	WP3	georgio	R	PU	11
	new commands.					
D3.3	Report 2 will comapre the variation of la-	WP3	georgio	R	PU	12
	tency between the model and the virtual					
	HID for each code patch.					
D3.4	Code for virtual HID and updated Model	WP3	georgio	P	PU	12
	1 with multiple command recognition will					
	be pushed to master.					
D3.5	A demonstration of the ability to play a	WP3	georgio	D	PU	12
	game of 1P Super Mario Bros using cog-					
	niLink.					
D3.6	Main Report update with full progress ac-	WP3	georgio	R	PU	12
	complished after the end of WP3.		0-5-5-0			
D4.1	Merging model switching code to master.	WP4	georgio	P	PU	13
D4.1	Report on the ability to use 2 models simul-	WP4	georgio	R	PU	13
D4.4	taneously as 2 virtual HID devices.	V V I 4	georgio	1	10	13
D4.5	1	WP4	goorgio	P	PU	13
	Merging code of Models 1 and 2 to master.		georgio		PU	
D4.3	Report on Model 2 Command 8.	WP4	georgio	R		15
D4.4	Report on training Model 2 for n-Commands.	WP4	georgio	R	PU	18
D4.6	A demonstration of the ability to play a	WP4	georgio	D	PU	18
D 1.0	game of 2P Super Mario Bros using cog-	*** 1	georgio		10	
	niLink.					
D4.7	Main Report update with full progress ac-	WP4	georgio	R	PU	18
D4.7	complished after the end of WP4.	VVI T	georgio		10	
D5.1	Optimized code will be merged to master.	WP5	georgio	P	PU	20
D5.1		WP5		R	PU	20
D3.2	Main Report update with full progress ac-	VVF3	georgio	17	FU	40
	complished after the end of WP5, empha-					
	sizing on measures taken for optimizing					
DC 1	code.	TATES			DII	20
D6.1	Report about integration with wheelchair.	WP6	georgio	R	PU	22
D6.2	Forking cogniLink and merging changes	WP6	georgio	P	PU	30
	needed for wheelchair integration.					
D6.3	Report about research findings and future	WP6	georgio	R	PU	30
	steps towards integrating with a locked in					
	patient.					
D6.4	Main Main Report update with full	WP6	georgio	R	PU	30
	progress accomplished after the end of					
	WP6.					
D7.1	Final Main Report update on Universal	WP7	georgio	R	PU	40
	Model, Locked-in patient progress, and fu-					
	ture plans for cogniLink.					
D7.2	Publishing Universal Model.	WP7	georgio	P	CO	40
D7.2	Publishing model trained on Locked-in pa-	WP7	georgio	P	CO	40
טווט	tient.	,,,,	501510	1		10
	uent.		Continue	<u> </u>	l novt maga	,
İ			Continue	eu on r	iext page	=

D7.4 Merging optimized code to master. WP7 georgio P PU	40
---	----

1.3 Management and risk assessment

List of milestones

Table 1.3a: List of milestones

Milestone	Milestone name	Related	Estimated	Means of verifica-
number		WPs	date	tion
M1	Completed Development of Model	WP2	End of	Execution of com-
	1 for Command A		WP2 (add	mand using trigger
			week num-	thought
			ber)	
M2	Completed Development of Model	WP3	mid WP3	Execution of al-
	1 for Commands A and B		(add week	ternating com-
			number)	mands using trigger
				thoughts
M3	Completed Development of Model	WP3	End WP3	Playing a game of
	1 for n-Commnands		(add week	1P Super Mario
			number)	Bros
M4	Completed Development of Model	WP4	End WP4	Playing a game of
	2 for n-Commnands		(add week	2P Super Mario
			number)	Bros
M5	Transitioning from using virtual-	WP6	mid WP7	Driving a
	HID on OpenEmu to Wheelchair in		(add week	wheelchair with
	Realtime		number)	no hands
M6	Integration with Locked-In Patient	WP6	End of	Enabling a Locked-
			WP7 (add	in patient to com-
			week num-	municate using cog-
			ber)	niLink
M7	Training Universal Model for n-	WP7	End of	Ease of training
	Commands		WP8 (add	models for new
			week num-	users
			ber)	

Critical risks for implementation

Table 1.3b: Critical risks for implementation

Description of Risk	WPs involved	Proposed risk-mitigation measures
The dedicated chip sent to fabrication is	WP ??	Resort to Software simulations
not functional.		

Table 1.5a: Summary of staff effort

Partic. no.	Partic.	short	WP1	WP2	WP3	WP4	WP5	WP6	WP7	Total person
	name									weeks
1	georgio		2	4	6	6	2	10	10	40
Total			2	4	6	6	2	10	10	40

1.4 Consortium as a whole

1.5 Resources to be committed

Summary of staff efforts

Other direct cost items (travel, equipment, other goods and services, large research infrastructure)

Participant no. 1 (georgio)	Cost (EUR)	Justification		
Travel	2500	3 pairwise meetings for 2 people, 2 conferences for		
		people, 3 internal project meetings for 3 people		
Equipment	3000	CAD workstation for chip design		
Other goods and services	60000	Fabrication of 2 VLSI chips		
Total	65500			
Participant no. 1 (georgio)	Cost	Justification		
	(EUR)			

Participant no. 1 (georgio)	Cost	Justification
	(EUR)	
Large research infrastructure	400000	Synchrotron

2 Ethics and Security

- 2.1 Ethics
- 2.2 Security

2

Project cogniLink 15 August 13, 2018

²Article 37.1 of the Model Grant Agreement: Before disclosing results of activities raising security issues to a third party (including affiliated entities), a beneficiary must inform the coordinator – which must request written approval from the Commission/Agency. Article 37.2: Activities related to "classified deliverables" must comply with the "security requirements" until they are declassified. Action tasks related to classified deliverables may not be subcontracted without prior explicit written approval from the Commission/Agency. The beneficiaries must inform the coordinator – which must immediately inform the Commission/Agency – of any changes in the security context and –if necessary – request for Annex 1 to be amended (see Article 55).