Arquitectura de Computadoras Lab-2

anthony.aguilar

September 2020

Explicación

Al analizar el comportamiento del Tlatch observamos que este invierte los valores de q y q
n cuando t=1 y c=1. En la implementación añadí un delay y un caso base para que no todos los valores de q y q
n sean desconocidos al realizar a simulación.

Tabla de verdad

С	t	q	nq	q'	nq'
0	Х	0	1	0	1
0	Х	1	0	1	0
1	0	0	1	0	1
1	0	1	0	1	0
1	1	0	1	1	0
1	1	1	0	0	1

Mapa de Karnaugh

q'	c t				n	nq'	c t			
nq	00	01	11	10	q	1	00	01	11	10
0	1	1	0	1	0)	1	1	0	1
1	0	0	1	0	1	L	0	0	1	0
q'=~nq.~c+c.t.nq+c.~t.~nq			n	nq'=~	q.~c+	c.t.q+	⊦c.~t.	~q		

Resultados

Explicación

Al analizar el comportamiento del JKlatch observamos que este invierte los valores de q y nq cuando c=1, j=1 y k=1. Asigna los valores de j a q y de k a nq cuando j y k son diferentes ,y c=1. Y mantiene los valores previos de q y nq cuando j=0 y k=0 ,y c=1. Al igual que el T-latch en la implementacion le agregue un delay para evitar oscilaciones infinitas.

Tabla de verdad

С	j	k	q	nq	q'	nq'
0	Х	X	0	1	0	1
0	Х	X	1	0	1	0
1	0	0	0	1	0	1
1	0	0	1	0	1	0
1	0	1	0	1	0	1
1	0	1	1	0	0	1
1	1	0	0	1	1	0
1	1	0	1	0	1	0
1	1	1	0	1	1	0
1	1	1	1	0	0	1

Mapa de Karnaugh

Resultados

Explicación

Un T-flip-flop hace lo mismo que un T-latch excepto que lo realiza en los posedge del clock.

Tabla de verdad

reset	preset	t	q	nq	q'	nq'
1	1	X	Х	Х	1	1
1	0	X	X	X	0	1
0	1	X	X	X	1	0
0	0	0	0	1	0	1
0	0	0	1	0	1	0
0	0	1	0	1	1	0
0	0	1	1	0	0	1

Explicación

Un JK-flip-flop hace lo mismo que un JK-latch excepto que lo realiza en los posedge del clock.

Tabla de verdad

reset	preset	j	k	q	nq	q'	nq'
1	1	X	х	х	х	1	1
1	0	X	х	х	Х	0	1
0	1	X	X	X	х	1	0
0	0	0	0	0	1	0	1
0	0	0	0	1	0	1	0
0	0	1	1	0	1	1	0
0	0	1	1	1	0	0	1
0	0	1	0	1	0	1	0
0	0	1	0	0	1	1	0
0	0	0	1	1	0	0	1
0	0	0	1	0	1	0	1