1. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
83	-7.5	7.5
82	-8.5	8.5
92	1.5	1.5
105	14.5	14.5
======	======	=======
$\sum x = 362$		$\sum x - \bar{x} = 32$
$\bar{x} = 90.5$		

We are ready for the formula.

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{32}{4}$$

2. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
42	-6	36
47	-1	1
48	0	0
39	-9	81
51	3	9
56	8	64
53	5	25
=======	======	======
$\sum x = 336$ $\bar{x} = 48$		$\sum (x - \bar{x})^2 = 216$

We are ready for the formula.

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{216}{7 - 1}}$$
$$= \sqrt{36}$$
$$= \boxed{6}$$