

ARP associates an IP address with its physical address. On a typical physical network, such as a LAN, each device on a link is identified by a physical or station address that is usually imprinted on the NIC.

Logical address to physical address translation can be done statically (not practical) or dynamically (with ARP).



| Hardware Type      |                                                                | Protocol Type                   |  |
|--------------------|----------------------------------------------------------------|---------------------------------|--|
| Hardware<br>length | Protocol<br>length                                             | Operation<br>Request 1, Reply 2 |  |
|                    | Sender hardwa<br>(For example, 6 byt                           |                                 |  |
|                    | Sender protoc<br>(For example, 4                               |                                 |  |
|                    | Target hardwar<br>(For example, 6 byte<br>(It is not filled in | es for Ethernet)                |  |
|                    | Target protoco<br>(For example, 4                              |                                 |  |

Hardware Type - Ethernet is type 1

Protocol Type-IPv4=x0800

Hardware Length:length of Ethernet Address (6)

Protocol Length:length of IPv4 address (4)

# **ARP** usage examples



another host on the same network.



to a host on another network. It must first be delivered to the appropriate router.

Target IP address: IP address of a router Sender Router LAN Receiver

Case 2. A host wants to send a packet to another host on another network. It must first be delivered to a router.



Case 4. A router receives a packet to be sent to a host on the same network.

# **Example**

A host with IP address 130.23.43.20 and physical address B2:34:55:10:22:10 has a packet to send to another host with IP address 130,23,43,25 and physical address A4:6E:F4:59:83:AB (which unknown to the first host). The two hosts are on the same Ethernet network. Show the ARP request and reply packets encapsulated in Ethernet frames.

#### 130.23.43.20 130.23.43.25 B2:34:55:10:22:10 A4:6E:F4:59:83:AB System A System B 0x0001 0x0800 0x06 0x04 0x0001 0xB23455102210 0x82172B14 -30.23.43.20 $0 \times 0000000000000$ 0x82172B19 -Preamble Data CRC 0xB23455102210 0xFFFFFFFFFF 28 bytes and SFD ARP Request 0x0001 0x0800 0x04 0x0002 0xA46EF45983AB 0x82172B19 0xB23455102210 0x82172B14 Preamble 0xB23455102210 0xA46EF45983AB 0x0806 CRC Data and SFD ARP Reply (from B to A)

## **ARP** internal components



#### The Cache Table Contents

- State: FREE, PENDING, RESOLVED
- Hardware type: same as ARP field
- Protocol type: same as ARP field
- Hardware length: same as ARP field
- Protocol length: same as ARP field
- Interface number: port number (m0,m1, m2)

#### How Does the Cache Work?

- The output module waits for an IP packet with a request
- Checks the cache for an existing entry
- If entry found and state RESOLVED, we already have this MAC address
- If entry found and state PENDING, packet waits until dest hard addr found

## The Cache Table Contents

- Queue number: which queue the ARP request is sitting in
- Attempts: how many times have you tried to resolve this address?
- Time-out: how long until this address is tossed out (need the room in cache)
- Hardware address: destination hardware address
- Protocol address: destination IP address



#### **RARP** operation



# How Does the Cache Work?

- The input module waits until an ARP request or reply arrives
- Module checks the cache for this entry
- If entry is found and state is PENDING, module updates entry's target hardware address, changes state to RESOLVED, and sets the TIME-OUT value

## How Does the Cache Work?

 If no entry found, output module places this request in queue, and a new entry is placed in cache with state PENDING and ATTEMPTS set to 1. An ARP request is then broadcast

# How Does the Cache Work?

- If entry is found and state RESOLVED, module still updates the entry (target hardware address could have changed) and the TIME-OUT value reset
- If entry not found, module creates a new entry. State is set to RESOLVED and TIME-OUT is set

#### How Does the Cache Work?

- Now the module checks to see if arrived ARP packet is a Request. If it is, the module immediately creates an ARP Reply message and sends it back to sender.
- The cache-control module periodically checks each cache entry
- If entry's state is FREE, skips it
- If entry's state is PENDING, Attempts field is incremented by 1. This value greater than max? Toss this entry (and mark entry as FREE). Less than max? Send another ARP request

| State | Queue | Attempt | Time-Out | Protocol Addr. | Hardware Addr. |
|-------|-------|---------|----------|----------------|----------------|
| R     | 5     |         | 900      | 180.3.6.1      | ACAE32457342   |
| P     | 2     | 2       |          | 129.34.4.8     |                |
| P     | 14    | 5       |          | 201.11.56.7    |                |
| R     | 8     |         | 450      | 114.5.7.89     | 457342ACAE32   |
| P     | 12    | 1       |          | 220.55.5.7     |                |
| F     |       |         |          |                |                |
| R     | 9     |         | 60       | 19.1.7.82      | 4573E3242ACA   |
| P     | 18    | 3       |          | 188.11.8.71    |                |

# How Does the Cache Work?

- If state of entry is RESOLVED, module decrements value of Time-out field accordingly
- If Time-out field < 0, then remove entry and set state to FREE

#### **RARP**

| Hardware type      |                                                             | Protocol type                   |  |
|--------------------|-------------------------------------------------------------|---------------------------------|--|
| Hardware<br>length | Protocol<br>length                                          | Operation<br>Request 3, Reply 4 |  |
|                    | Sender hardwa<br>(For example, 6 by                         |                                 |  |
|                    | Sender protoc<br>(For example, 4<br>(It is not filled       | bytes for IP)                   |  |
|                    | Target hardwa<br>(For example, 6 byt<br>(It is not filled f | es for Ethernet)                |  |
|                    | Target protoc<br>(For example, 4<br>(It is not filled       | bytes for IP)                   |  |