Example 4: Consider a random sample of values taken from a population that follows a normal distribution with a mean of 0 and an unknown variance σ^2 . Is $\frac{\sum_{i=1}^n (x_i)^2}{n}$ a consistent estimator for σ^2 ?

with a mean of 0 and an unknown variance
$$\sigma^2$$
. Is $\frac{\sum_{k=0}^{\infty} a^{2k}}{n}$ a consistent estimator for σ^2 ?

Lim $f(1 \leq x^{2k} - \sigma^2) \geq \xi) = ?$

Noted that of $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Noted that of $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Noted that of $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Noted that of $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Noted that of $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Noted that of $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Noted that of $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Note that of $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \geq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1 \leq x^{2k} - \sigma^2) \leq \xi$

Note that $f(1$