Raggiungibilità e Controllabilità Esercizi proposti

1 Esercizio

Dato il seguente sistema dinamico LTI a tempo continuo descritto dalle matrici A e B:

$$A = \begin{bmatrix} 0 & 1 \\ -k & -1+k \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

studiare le proprietà di raggiungibilità al variare del parametro reale k.

Risultato: il sistema è completamente raggiungibile per qualsiasi valore del parametro reale k.

2 Esercizio

Dato il seguente sistema dinamico LTI a tempo discreto descritto dalle matrici A e B:

$$A = \left[\begin{array}{cc} 1 & 0 \\ 2 & 1/k \end{array} \right], B = \left[\begin{array}{c} 0 \\ k \end{array} \right]$$

studiare le proprietà di raggiungibilità al variare del parametro reale $k \neq 0$.

 $\it Risultato$: il sistema non è completamente raggiungibile per alcun valore del parametro reale $\it k$.

Retroazione statica dallo stato Esercizi proposti

1 Esercizio

Date le seguenti matrici A e B di un sistema dinamico LTI a tempo continuo:

$$A = \left[\begin{array}{ccc} 4 & 2 & 6 \\ 2 & 1 & 3 \\ 9 & 2 & 8 \end{array} \right], B = \left[\begin{array}{c} 4 \\ 2 \\ 0 \end{array} \right]$$

progettare, se possibile, la matrice dei guadagni K di una legge di controllo per retroazione statica dallo stato del tipo u(t)=-Kx(t) in modo che gli autovalori del sistema controllato siano $\lambda_1=-0.1,\ \lambda_2=-0.2,\ \lambda_3=-0.3.$

Risultato: Il sistema non è completamente raggiungibile e quindi non è possibile progettare la legge di controllo richiesta.

2 Esercizio

Dato il seguente sistema dinamico LTI a tempo discreto:

$$\dot{x}(t) = \begin{bmatrix} 0 & 0 & 1 \\ 2 & -2 & -1 \\ 0 & -1 & -1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u(t)$$

progettare, se possibile, la matrice dei guadagni K di una legge di controllo per retroazione statica dallo stato del tipo u(t)=-Kx(t) in modo che gli autovalori del sistema controllato siano $\lambda_1=-1,\ \lambda_2=-2,\ \lambda_3=-3.$

Risultato:
$$K = \begin{bmatrix} -4 & 3 & -7 \end{bmatrix}$$

3 Esercizio

Date le seguenti matrici A e B di un sistema dinamico LTI a tempo discreto:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -0.064 & -0.48 & -1.2 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

progettare, se possibile, la matrice dei guadagni K di una legge di controllo per retroazione statica dallo stato del tipo u(k) = -Kx(k) in modo che gli autovalori del sistema controllato siano $\lambda_1 = \lambda_2 = \lambda_3 = 0.1$.

Risultato: $K = \begin{bmatrix} -0.065 & -0.45 & -1.5 \end{bmatrix}$.

4 Esercizio

Al seguente sistema dinamico LTI a tempo continuo e completamente raggiungibile:

$$\dot{x}(t) = \begin{bmatrix} -3 & 0.5 \\ 2 & -2 \end{bmatrix} x(t) + \begin{bmatrix} 4 \\ 8 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 4 & 2 \end{bmatrix} x(t)$$

viene applicata una legge di controllo del tipo $u(t)=-Kx(t)+\alpha r(t)$ in cui $K=\left[\frac{1}{4}\ \frac{1}{8}\right]$. Supponendo $r(t)=\bar{r}=4\varepsilon(t)$, calcolare, se possibile, il valore di α in modo da ottenere la regolazione dell'uscita $\bar{y}=\bar{r}$.

Risultato: $\alpha = 0.1071$.

Osservabilità e Rilevabilità Esercizi proposti

1 Esercizio

Dato il seguente sistema dinamico LTI a tempo continuo descritto dalle matrici A e C:

$$A = \begin{bmatrix} 1 & 0 \\ 2k & k+2 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

studiare le proprietà di osservabilità al variare del parametro reale k.

Risultato: il sistema è completamente osservabile per qualsiasi valore del parametro reale k ad eccezione di k=1.

2 Esercizio

Dato il seguente sistema dinamico LTI a tempo continuo descritto dalle matrici A e C:

$$A = \left[\begin{array}{cc} 0 & k+1 \\ 1 & k+2 \end{array} \right], C = \left[\begin{array}{cc} 0 & 1 \end{array} \right]$$

studiare le proprietà di osservabilità al variare del parametro reale k.

Risultato: il sistema è completamente osservabile per qualsiasi valore del parametro reale *k*

Stima dello stato e regolatore dinamico Esercizi risolti

1 Esercizio

Date le seguenti matrici A e C di un sistema dinamico LTI a tempo continuo:

$$A = \begin{bmatrix} 44 & -46 & -6 \\ 49 & -59 & 3 \\ 51 & -39 & -21 \end{bmatrix}, C = \begin{bmatrix} 31 & -8 & -28 \end{bmatrix}$$

progettare, se possibile, la matrice dei guadagni L di uno stimatore asintotico dello stato in modo che le dinamiche dell'errore di stima siano governate dagli autovalori $\lambda_1 = -1, \lambda_2 = -2, \lambda_3 = -3.$

Risultato: Il sistema non è completamente osservabile e quindi non è possibile progettare lo stimatore asintotico richiesto.

2 Esercizio

Date le seguenti matrici A e C di un sistema dinamico LTI a tempo discreto:

$$A = \begin{bmatrix} 0 & 0 & 0.008 \\ 1 & 0 & -0.12 \\ 0 & 1 & 0.6 \end{bmatrix}, C = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

progettare, se possibile, la matrice dei guadagni L di uno stimatore asintotico dello stato in modo che le dinamiche dell'errore di stima siano governate dagli autovalori $\lambda_1=0.05$, $\lambda_2=0.1$, $\lambda_3=0.2$.

Risultato:
$$L = \begin{bmatrix} 0.007 \\ -0.085 \\ 0.25 \end{bmatrix}$$

3 Esercizio

Date le seguenti matrici A e C di un sistema dinamico LTI a tempo discreto:

$$A = \left[\begin{array}{cc} 3 & 4 \\ -20 & 3 \end{array} \right], C = \left[\begin{array}{cc} 1 & 3 \end{array} \right]$$

progettare, se possibile, la matrice dei guadagni L di uno stimatore asintotico dello stato in modo che le dinamiche dell'errore di stima siano governate dagli autovalori $\lambda_1 = \lambda_2 =$

0.1.

Risultato:
$$L = \begin{bmatrix} 1.2933 \\ 1.5022 \end{bmatrix}$$

4 Esercizio

Dato il seguente sistema dinamico LTI a tempo continuo:

$$\begin{cases} \dot{x}(t) = \begin{bmatrix} -0.1 & -1 \\ 1 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 4 \\ 0 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t) \end{cases}$$

progettare, se possibile, un regolatore dinamico tramite una legge di controllo del tipo:

$$u(t) = -K\hat{x}(t) + \alpha r(t)$$

in modo da soddisfare i seguenti requisiti:

- 1. autovalori desiderati imposti dalla legge di controllo $\lambda_{K,1,des}=\lambda_{K,2,des}=-1;$
- 2. autovalori desiderati dello stimatore asintotico dello stato in $\lambda_{L,1,des} = \lambda_{L,2,des} = -5$;
- 3. regolazione dell'uscita.

Risultato:
$$K = \begin{bmatrix} 0.475 & 0 \end{bmatrix}, \alpha = 0.25, L = \begin{bmatrix} 23.01 \\ 9.9 \end{bmatrix}$$