Endorsed by University of Cambridge International Examinations

Pure Mathematics 1

Sophie Goldie Series Editor: Roger Porkess

Cambridge

International A and AS Level Mathematics

Pure Mathematics 1

Sophie Goldie

Series Editor: Roger Porkess

Questions from the Cambridge International Examinations A & AS level Mathematics papers are reproduced by permission of University of Cambridge International Examinations.

Questions from the MEI A & AS level Mathematics papers are reproduced by permission of OCR.

We are grateful to the following companies, institutions and individuals you have given permission to reproduce photographs in this book.

page 106, © Jack Sullivan/Alamy; page 167, © RTimages/Fotolia; page 254, © Hunta/Fotolia; page 258, © Olga Iermolaieva/Fotolia

Every effort has been made to trace and acknowledge ownership of copyright. The publishers will be glad to make suitable arrangements with any copyright holders whom it has not been possible to contact.

Hachette UK's policy is to use papers that are natural, renewable and recyclable products and made from wood grown in sustainable forests. The logging and manufacturing processes are expected to conform to the environmental regulations of the country of origin.

Orders: please contact Bookpoint Ltd, 130 Milton Park, Abingdon, Oxon OX14 4SB. Telephone: (44) 01235 827720. Fax: (44) 01235 400454. Lines are open 9.00–5.00, Monday to Saturday, with a 24-hour message answering service. Visit our website at www.hoddereducation.co.uk

Much of the material in this book was published originally as part of the MEI Structured Mathematics series. It has been carefully adapted for the Cambridge International A & AS level Mathematics syllabus.

The original MEI author team for Pure Mathematics comprised Catherine Berry, Bob Francis, Val Hanrahan, Terry Heard, David Martin, Jean Matthews, Bernard Murphy, Roger Porkess and Peter Secker.

© MEI, 2012

First published in 2012 by Hodder Education, a Hachette UK company, 338 Euston Road London NW1 3BH

Impression number 5 4 3 2 1

Year 2016 2015 2014 2013 2012

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval system, without permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

Cover photo by © Joy Fera / Fotolia Illustrations by Pantek Media, Maidstone, Kent Typeset in 10.5pt Minion by Pantek Media, Maidstone, Kent Printed in Dubai

A catalogue record for this title is available from the British Library

ISBN 978 1444 14644 8

This eBook does not include the ancillary media that was packaged with the printed version of the book.

Contents

	Key to symbols in this book	vi
	Introduction	vii
	The Cambridge A & AS Level Mathematics 9709 syllabus	viii
Chapter 1	Algebra	1
	Background algebra	1
	Linear equations	6
	Changing the subject of a formula	10
	Quadratic equations	12
	Solving quadratic equations	17
	Equations that cannot be factorised	20
	The graphs of quadratic functions	22
	The quadratic formula	25
	Simultaneous equations	29
	Inequalities	34
Chapter 2	Co-ordinate geometry	38
	Co-ordinates	38
	Plotting, sketching and drawing	39
	The gradient of a line	39
	The distance between two points	41
	The mid-point of a line joining two points	42
	The equation of a straight line	46
	Finding the equation of a line	49
	The intersection of two lines	56
	Drawing curves	63
	The intersection of a line and a curve	70
Chapter 3	Sequences and series	75
	Definitions and notation	76
	Arithmetic progressions	77
	Geometric progressions	84
	Binomial expansions	95

Chapter 4	Functions	106
	The language of functions	106
	Composite functions	112
	Inverse functions	115
Chapter 5	Differentiation	123
	The gradient of a curve	123
	Finding the gradient of a curve	124
	Finding the gradient from first principles	126
	Differentiating by using standard results	131
	Using differentiation	134
	Tangents and normals	140
	Maximum and minimum points	146
	Increasing and decreasing functions	150
	Points of inflection	153
	The second derivative	154
	Applications	160
	The chain rule	167
Chapter 6	Integration	173
	Reversing differentiation	173
	Finding the area under a curve	179
	Area as the limit of a sum	182
	Areas below the <i>x</i> axis	193
	The area between two curves	197
	The area between a curve and the y axis	202
	The reverse chain rule	203
	Improper integrals	206
	Finding volumes by integration	208
Chapter 7	Trigonometry	216
	Trigonometry background	216
	Trigonometrical functions	217
	Trigonometrical functions for angles of any size	222
	The sine and cosine graphs	226
	The tangent graph	228
	Solving equations using graphs of trigonometrical functions	229
	Circular measure	235
	The length of an arc of a circle	239
	The area of a sector of a circle	239
iv	Other trigonometrical functions	244

Chapter 8

Vectors	254
Vectors in two dimensions	254
Vectors in three dimensions	258
Vector calculations	262
The angle between two vectors	271
Answers	280
Index	310

Key to symbols in this book

- This symbol means that you want to discuss a point with your teacher. If you are working on your own there are answers in the back of the book. It is important, however, that you have a go at answering the questions before looking up the answers if you are to understand the mathematics fully.
- This symbol invites you to join in a discussion about proof. The answers to these questions are given in the back of the book.
- This is a warning sign. It is used where a common mistake, misunderstanding or tricky point is being described.
- This is the ICT icon. It indicates where you could use a graphic calculator or a computer. Graphical calculators and computers are not permitted in any of the examinations for the Cambridge International A & AS Level Mathematics 9709 syllabus, however, so these activities are optional.
- This symbol and a dotted line down the right-hand side of the page indicates material that you are likely to have met before. You need to be familiar with the material before you move on to develop it further.
- **e** This symbol and a dotted line down the right-hand side of the page indicates material which is beyond the syllabus for the unit but which is included for completeness.

Introduction

This is the first of a series of books for the University of Cambridge International Examinations syllabus for Cambridge International A & AS Level Mathematics 9709. The eight chapters of this book cover the pure mathematics in AS level. The series also contains a more advanced book for pure mathematics and one each for mechanics and statistics.

These books are based on the highly successful series for the Mathematics in Education and Industry (MEI) syllabus in the UK but they have been redesigned for Cambridge users; where appropriate new material has been written and the exercises contain many past Cambridge examination questions. An overview of the units making up the Cambridge International A & AS Level Mathematics 9709 syllabus is given in the diagram on the next page.

Throughout the series the emphasis is on understanding the mathematics as well as routine calculations. The various exercises provide plenty of scope for practising basic techniques; they also contain many typical examination questions.

An important feature of this series is the electronic support. There is an accompanying disc containing two types of Personal Tutor presentation: examination-style questions, in which the solutions are written out, step by step, with an accompanying verbal explanation, and test yourself questions; these are multiple-choice with explanations of the mistakes that lead to the wrong answers as well as full solutions for the correct ones. In addition, extensive online support is available via the MEI website, www.mei.org.uk.

The books are written on the assumption that students have covered and understood the work in the Cambridge IGCSE syllabus. However, some of the early material is designed to provide an overlap and this is designated 'Background'. There are also places where the books show how the ideas can be taken further or where fundamental underpinning work is explored and such work is marked as 'Extension'.

The original MEI author team would like to thank Sophie Goldie who has carried out the extensive task of presenting their work in a suitable form for Cambridge International students and for her many original contributions. They would also like to thank Cambridge International Examinations for their detailed advice in preparing the books and for permission to use many past examination questions.

Roger Porkess Series Editor

The Cambridge A & AS Level Mathematics syllabus

Algebra

Sherlock Holmes: 'Now the skillful workman is very careful indeed ... He will have nothing but the tools which may help him in doing his work, but of these he has a large assortment, and all in the most perfect order.'

A. Conan Doyle

(b) Background algebra

Manipulating algebraic expressions

You will often wish to tidy up an expression, or to rearrange it so that it is easier to read its meaning. The following examples show you how to do this. You should practise the techniques for yourself on the questions in Exercise 1A.

Collecting terms

Very often you just need to collect like terms together, in this example those in x, those in y and those in z.

7

What are 'like' and 'unlike' terms?

EXAMPLE 1.1

Simplify the expression 2x + 4y - 5z - 5x - 9y + 2z + 4x - 7y + 8z.

SOLUTION

Expression =
$$2x + 4x - 5x + 4y - 9y - 7y + 2z + 8z - 5z$$
 Collect like terms
$$= 6x - 5x + 4y - 16y + 10z - 5z$$
 Tidy up
$$= x - 12y + 5z$$
 This cannot be simplified further and so it is the answer.

Removing brackets

Sometimes you need to remove brackets before collecting like terms together.

EXAMPLE 1.2

Simplify the expression 3(2x-4y)-4(x-5y).

SOLUTION

Open the brackets

Expression = 6x - 12y - 4x + 20yNotice $(-4) \times (-5y) = +20y$ = 6x - 4x + 20y - 12yCollect like terms = 2x + 8yAnswer

EXAMPLE 1.3

Simplify x(x+2) - (x-4).

SOLUTION

Expression =
$$x^2 + 2x - x + 4$$
 Open the brackets
= $x^2 + x + 4$ Answer

EXAMPLE 1.4

Simplify a(b + c) - ac.

SOLUTION

Expression =
$$ab + ac - ac$$
 Open the brackets
$$= ab$$
 Answer

Factorisation

It is often possible to rewrite an expression as the product of two or more numbers or expressions, its *factors*. This usually involves using brackets and is called *factorisation*. Factorisation may make an expression easier to use and neater to write, or it may help you to interpret its meaning.

EXAMPLE 1.5

Factorise 12x - 18y.

EXAMPLE 1.6

Factorise $x^2 - 2xy + 3xz$.

1

Multiplication

Several of the previous examples have involved multiplication of variables: cases like

$$a \times b = ab$$
 and $x \times x = x^2$.

In the next example the principles are the same but the expressions are not quite so simple.

EXAMPLE 1.7

Fractions

The rules for working with fractions in algebra are exactly the same as those used in arithmetic.

EXAMPLE 1.8

Simplify
$$\frac{x}{2} - \frac{2y}{10} + \frac{z}{4}$$
.

SOLUTION

As in arithmetic you start by finding the common denominator. For 2, 10 and 4 this is 20.

Then you write each part as the equivalent fraction with 20 as its denominator, as follows.

Expression =
$$\frac{10x}{20} - \frac{4y}{20} + \frac{5z}{20}$$

$$= \frac{10x - 4y + 5z}{20}$$
This line would often be left out.

EXAMPLE 1.9

Simplify
$$\frac{x^2}{y} - \frac{y^2}{x}$$
.

Expression =
$$\frac{x^3}{xy} - \frac{y^3}{xy}$$

$$= \frac{x^3 - y^3}{xy}$$
The common denominator is xy .

Simplify
$$\frac{3x^2}{5y} \times \frac{5yz}{6x}$$
.

SOLUTION

Since the two parts of the expression are multiplied, terms may be cancelled top and bottom as in arithmetic. In this case 3, 5, *x* and *y* may all be cancelled.

Expression =
$$\frac{3x^2}{5y} \times \frac{5yz}{6y} \times \frac{5yz}{6y}$$

= $\frac{xz}{2}$

EXAMPLE 1.11

Simplify
$$\frac{(x-1)^3}{4x(x-1)}$$
.

SOLUTION

(x-1) is a common factor of both top and bottom, so may be cancelled. However, x is not a factor of the top (the numerator), so may not be cancelled.

Expression =
$$\frac{(x-1)^2}{4x}$$

EXAMPLE 1.12

Simplify
$$\frac{24x+6}{3(4x+1)}$$
.

SOLUTION

When the numerator (top) and/or the denominator (bottom) are not factorised, first factorise them as much as possible. Then you can see whether there are any common factors which can be cancelled.

Expression =
$$\frac{6(4x+1)}{3(4x+1)}$$
$$= 2$$

EXERCISE 1A

Simplify the following expressions by collecting like terms.

(i)
$$8x + 3x + 4x - 6x$$

(ii)
$$3p+3+5p-7-7p-9$$

(iii)
$$2k + 3m + 8n - 3k - 6m - 5n + 2k - m + n$$

(iv)
$$2a + 3b - 4c + 4a - 5b - 8c - 6a + 2b + 12c$$

(v)
$$r-2s-t+2r-5t-6r-7t-s+5s-2t+4r$$

- **2** Factorise the following expressions.
 - (i) 4x + 8y

(ii) 12a + 15b - 18c

(iii) 72f - 36g - 48h

- (iv) $p^2 pq + pr$
- (v) $12k^2 + 144km 72kn$
- **3** Simplify the following expressions, factorising the answers where possible.
 - (i) 8(3x+2y)+4(x+3y)
 - (ii) 2(3a-4b+5c)-3(2a-5b-c)
 - (iii) 6(2p-3q+4r)-5(2p-6q-3r)-3(p-4q+2r)
 - (iv) 4(l+w+h) + 3(2l-w-2h) + 5w
 - (v) 5u 6(w v) + 2(3u + 4w v) 11u
- 4 Simplify the following expressions, factorising the answers where possible.
 - (i) a(b+c) + a(b-c)

- (ii) k(m+n) m(k+n)
- (iii) p(2q+r+3s) pr s(3p+q) (iv) x(x-2) x(x-6) + 8
- (v) x(x-1) + 2(x-1) x(x+1)
- **5** Perform the following multiplications, simplifying your answers.
 - (i) $2xy \times 3x^2y$

(ii) $5a^2bc^3 \times 2ab^2 \times 3c$

(iii) $km \times mn \times nk$

(iv) $3pq^2r \times 6p^2qr \times 9pqr^2$

- (v) $rs \times 2st \times 3tu \times 4ur$
- 6 Simplify the following fractions as much as possible.

(iii) $\frac{x^2}{5x}$

(iv) $\frac{4a^2b}{2ab}$

- (v) $\frac{6p^2q^3r}{3p^3a^3r^2}$
- **7** Simplify the following as much as possible.
 - (i) $\frac{a}{b} \times \frac{b}{c} \times \frac{c}{a}$
- (ii) $\frac{3x}{2y} \times \frac{8y}{3z} \times \frac{5z}{4x}$
 - (iii) $\frac{p^2}{a} \times \frac{q^2}{p}$
- (iv) $\frac{2fg}{16h} \times \frac{4gh^2}{4fh} \times \frac{32fh^3}{12f^3}$ (v) $\frac{kmn}{3n^3} \times \frac{6k^2m^3}{2k^3m}$
- **8** Write the following as single fractions.
 - (i) $\frac{x}{2} + \frac{x}{3}$
- (ii) $\frac{2x}{5} \frac{x}{3} + \frac{3x}{4}$ (iii) $\frac{3z}{8} + \frac{2z}{12} \frac{5z}{24}$

- (iv) $\frac{2x}{3} \frac{x}{4}$
- (v) $\frac{y}{2} \frac{5y}{8} + \frac{4y}{5}$
- **9** Write the following as single fractions.
 - (i) $\frac{3}{x} + \frac{5}{x}$
- (ii) $\frac{1}{x} + \frac{1}{y}$
- (iii) $\frac{4}{x} + \frac{x}{y}$

- (iv) $\frac{p}{a} + \frac{q}{p}$
- (v) $\frac{1}{a} \frac{1}{b} + \frac{1}{a}$

10 Write the following as single fractions.

(i)
$$\frac{x+1}{4} + \frac{x-1}{2}$$

(iii)
$$\frac{2x}{3} - \frac{x-1}{5}$$

(i)
$$\frac{x+1}{4} + \frac{x-1}{2}$$
 (ii) $\frac{2x}{3} - \frac{x-1}{5}$ (iii) $\frac{3x-5}{4} + \frac{x-7}{6}$

(iv)
$$\frac{3(2x+1)}{5} - \frac{7(x-2)}{2}$$
 (v) $\frac{4x+1}{8} + \frac{7x-3}{12}$

(v)
$$\frac{4x+1}{8} + \frac{7x-1}{12}$$

11 Simplify the following expressions.

(i)
$$\frac{x+3}{2x+6}$$

(ii)
$$\frac{6(2x+1)^2}{3(2x+1)^5}$$

(ii)
$$\frac{6(2x+1)^2}{3(2x+1)^5}$$
 (iii) $\frac{2x(y-3)^4}{8x^2(y-3)}$

(iv)
$$\frac{6x-12}{x-2}$$

(iv)
$$\frac{6x-12}{x-2}$$
 (v) $\frac{(3x+2)^2}{6x} \times \frac{x^4}{6x+4}$

b Linear equations

What is a variable?

You will often need to find the value of the variable in an expression in a particular case, as in the following example.

EXAMPLE 1.13

A polygon is a closed figure whose sides are straight lines. Figure 1.1 shows a seven-sided polygon (a heptagon).

Figure 1.1

An expression for S° , the sum of the angles of a polygon with n sides, is

$$S = 180(n-2)$$
.

How is this expression obtained?

Try dividing a polygon into triangles, starting from one vertex.

Find the number of sides in a polygon with an angle sum of (i) 180° (ii) 1080°.

SOLUTION

This is an equation (i) Substituting 180 for S gives 180 = 180(n-2)which can be Dividing both sides by 180 1 = n - 2solved to find n. Adding 2 to both sides 3 = n

The polygon has three sides: it is a triangle.

(ii) Substituting 1080 for S gives
$$1080 = 180(n-2)$$

Dividing both sides by 180 \Rightarrow $6 = n-2$
Adding 2 to both sides \Rightarrow $8 = n$

The polygon has eight sides: it is an octagon.

Example 1.13 illustrates the process of solving an equation. An equation is formed when an expression, in this case 180(n-2), is set equal to a value, in this case 180 or 1080, or to another expression. *Solving* means finding the value(s) of the variable(s) in the equation.

Since both sides of an equation are equal, you may do what you wish to an equation provided that you do exactly the same thing to both sides. If there is only one variable involved (like n in the above examples), you aim to get that on one side of the equation, and everything else on the other. The two examples which follow illustrate this.

In both of these examples the working is given in full, step by step. In practice you would expect to omit some of these lines by tidying up as you went along.

 \bigcirc Look at the statement 5(x-1) = 5x - 5.

What happens when you try to solve it as an equation?

This is an *identity* and not an equation. It is true for *all* values of *x*.

For example, try
$$x = 11$$
: $5(x - 1) = 5 \times (11 - 1) = 50$; $5x - 5 = 55 - 5 = 50$, or try $x = 46$: $5(x - 1) = 5 \times (46 - 1) = 225$; $5x - 5 = 230 - 5 = 225$, or try $x =$ anything else and it will still be true.

To distinguish an identity from an equation, the symbol \equiv is sometimes used.

Thus
$$5(x-1) \equiv 5x - 5$$
.

Solve the equation 5(x-3) = 2(x+6).

SOLUTION

Open the brackets	\Rightarrow	5x - 15 = 2x + 12
Subtract $2x$ from both sides	\Rightarrow	5x - 2x - 15 = 2x - 2x + 12
Tidy up	\Rightarrow	3x - 15 = 12
Add 15 to both sides	\Rightarrow	3x - 15 + 15 = 12 + 15
Tidy up	\Rightarrow	3x = 27
Divide both sides by 3	\Rightarrow	$\frac{3x}{3} = \frac{27}{3}$
	\Rightarrow	x = 9

CHECK

When the answer is substituted in the original equation both sides should come out to be equal. If they are different, you have made a mistake.

Lett-hand side	Right-hand side
5(x-3)	2(x+6)
5(9-3)	2(9+6)
5×6	2×15
30	30 (as required).

EXAMPLE 1.15

Solve the equation $\frac{1}{2}(x+6) = x + \frac{1}{3}(2x-5)$.

SOLUTION

Start by clearing the fractions. Since the numbers 2 and 3 appear on the bottom line, multiply through by 6 which cancels both of them.

Multiply both sides by 6
$$\Rightarrow$$
 $6 \times \frac{1}{2}(x+6) = 6 \times x + 6 \times \frac{1}{3}(2x-5)$
Tidy up \Rightarrow $3(x+6) = 6x + 2(2x-5)$
Open the brackets \Rightarrow $3x + 18 = 6x + 4x - 10$
Subtract 6x, 4x, and 18
from both sides \Rightarrow $3x - 6x - 4x = -10 - 18$
Tidy up \Rightarrow $-7x = -28$
Divide both sides by (-7) \Rightarrow $\frac{-7x}{-7} = \frac{-28}{-7}$

CHECK

Substituting x = 4 in $\frac{1}{2}(x+6) = x + \frac{1}{3}(2x-5)$ gives:

Left-hand side	Right-hand side
$\frac{1}{2}(4+6)$	$4 + \frac{1}{3}(8 - 5)$
$\frac{10}{2}$	$4 + \frac{3}{3}$
5	5 (as required).

Exercise

- 5a 32 = 68
- (ii) 4b - 6 = 3b + 2
- (iii) 2c + 12 = 5c + 12
- (iv) 5(2d+8) = 2(3d+24)
- 3(2e-1) = 6(e+2) + 3e(v)
- (vi) 7(2-f)-3(f-4)=10f-4
- (vii) 5g + 2(g-9) = 3(2g-5) + 11
- (viii) 3(2h-6)-6(h+5)=2(4h-4)-10(h+4)
- (ix) $\frac{1}{2}k + \frac{1}{4}k = 36$
- (x) $\frac{1}{2}(l-5) + l = 11$
- (xi) $\frac{1}{2}(3m+5) + 1\frac{1}{2}(2m-1) = 5\frac{1}{2}$
- (xii) $n + \frac{1}{3}(n+1) + \frac{1}{4}(n+2) = \frac{5}{6}$
- 2 The largest angle of a triangle is six times as big as the smallest. The third angle is 75°.
 - (i) Write this information in the form of an equation for a, the size in degrees of the smallest angle.
 - (ii) Solve the equation and so find the sizes of the three angles.
- 3 Miriam and Saloma are twins and their sister Rohana is 2 years older than them.

The total of their ages is 32 years.

- (i) Write this information in the form of an equation for r, Rohana's age in years.
- (ii) What are the ages of the three girls?
- **4** The length, d m, of a rectangular field is 40 m greater than the width. The perimeter of the field is 400 m.
 - (i) Write this information in the form of an equation for d.
 - (ii) Solve the equation and so find the area of the field.
- 5 Yash can buy three pencils and have 49c change, or he can buy five pencils and have 15c change.
 - Write this information as an equation for x, the cost in cents of one pencil.
 - (ii) How much money did Yash have to start with?

- 6 In a multiple-choice examination of 25 questions, four marks are given for each correct answer and two marks are deducted for each wrong answer. One mark is deducted for any question which is not attempted. A candidate attempts *q* questions and gets *c* correct.
 - (i) Write down an expression for the candidate's total mark in terms of q and c.
 - (ii) James attempts 22 questions and scores 55 marks. Write down and solve an equation for the number of questions which James gets right.
- **7** Joe buys 18 kg of potatoes. Some of these are old potatoes at 22c per kilogram, the rest are new ones at 36c per kilogram.
 - (i) Denoting the mass of old potatoes he buys by m kg, write down an expression for the total cost of Joe's potatoes.
 - (ii) Joe pays with a \$5 note and receives 20c change. What mass of new potatoes does he buy?
- 8 In 18 years' time Hussein will be five times as old as he was 2 years ago.
 - (i) Write this information in the form of an equation involving Hussein's present age, *a* years.
 - (ii) How old is Hussein now?

(b) Changing the subject of a formula

The area of a trapezium is given by

$$A = \frac{1}{2}(a+b)h$$

where a and b are the lengths of the parallel sides and h is the distance between them (see figure 1.2). An equation like this is often called a *formula*.

Figure 1.2

The variable *A* is called the subject of this formula because it only appears once on its own on the left-hand side. You often need to make one of the other variables the subject of a formula. In that case, the steps involved are just the same as those in solving an equation, as the following examples show.

SOLUTION

It is usually easiest if you start by arranging the equation so that the variable you want to be its subject is on the left-hand side.

$$\frac{1}{2}(a+b)h = A$$

Multiply both sides by 2 \Rightarrow (a+b)h = 2A

Divide both sides by $h \implies a+b = \frac{2A}{h}$

Subtract *b* from both sides \Rightarrow $a = \frac{2A}{b} - b$

EXAMPLE 1.17

Make T the subject in the simple interest formula $I = \frac{PRT}{100}$.

SOLUTION

Arrange with T on the left-hand side $\frac{PRT}{100} = I$

 \Rightarrow PRT = 100IMultiply both sides by 100

Divide both sides by P and $R \implies T = \frac{100I}{DD}$

EXAMPLE 1.18

Make x the subject in the formula $v = \omega \sqrt{a^2 - x^2}$. (This formula gives the speed of an oscillating point.)

SOLUTION

Square both sides $\Rightarrow v^2 = \omega^2(a^2 - x^2)$ Divide both sides by $\omega^2 \Rightarrow \frac{v^2}{\omega^2} = a^2 - x^2$ Add x^2 to both sides $\Rightarrow \frac{v^2}{\omega^2} + x^2 = a^2$ Subtract $\frac{v^2}{\omega^2}$ from both sides $\Rightarrow x^2 = a^2 - \frac{v^2}{\omega^2}$

 $\Rightarrow \qquad x = \pm \sqrt{a^2 - \frac{v^2}{m^2}}$ Take the square root of both sides

EXAMPLE 1.19

Make m the subject of the formula mv = I + mu. (This formula gives the momentum after an impulse.)

SOLUTION

Collect terms in m on the left-hand side

and terms without *m* on the other. mv - mu = I

 $\Rightarrow m(v-u) = I$ Factorise the left-hand side

 \Rightarrow $m = \frac{I}{V - II}$ Divide both sides by (v - u)

EXERCISE 1C

- **1** Make (i) a (ii) t the subject in v = u + at.
- 2 Make h the subject in V = lwh.
- **3** Make *r* the subject in $A = \pi r^2$.
- 4 Make (i) s (ii) u the subject in $v^2 u^2 = 2as$.
- **5** Make *h* the subject in $A = 2\pi rh + 2\pi r^2$.
- **6** Make *a* the subject in $s = ut + \frac{1}{2}at^2$.
- 7 Make *b* the subject in $h = \sqrt{a^2 + b^2}$.
- **8** Make *g* the subject in $T = 2\pi \sqrt{\frac{l}{g}}$.
- **9** Make *m* the subject in $E = mgh + \frac{1}{2}mv^2$.
- **10** Make *R* the subject in $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$.
- 11 Make h the subject in bh = 2A ah.
- **12** Make *u* the subject in $f = \frac{uv}{u+v}$.
- **13** Make *d* the subject in $u^2 du + fd = 0$.
- **14** Make *V* the subject in $p_1VM = mRT + p_2VM$.
- ? All the formulae in Exercise 1C refer to real situations. Can you recognise them?

Quadratic equations

EXAMPLE 1.20

The length of a rectangular field is 40 m greater than its width, and its area is $6000 \,\mathrm{m}^2$. Form an equation involving the length, x m, of the field.

SOLUTION

Since the length of the field is 40 m greater than the width,

the width in m must be x - 40

and the area in m^2 is x(x-40).

x – 40

x

So the required equation is x(x-40) = 6000

or $x^2 - 40x - 6000 = 0$.

Figure 1.3

This equation, involving terms in x^2 and x as well as a constant term (i.e. a number, in this case 6000), is an example of a *quadratic equation*. This is in contrast to a linear equation. A linear equation in the variable x involves only terms in x and constant terms.

It is usual to write a quadratic equation with the right-hand side equal to zero. To solve it, you first factorise the left-hand side if possible, and this requires a particular technique.

Quadratic factorisation

EXAMPLE 1.21

Factorise xa + xb + ya + yb.

The expression is now in the form of two factors, (x + y) and (a + b), so this is the answer.

You can see this result in terms of the area of the rectangle in figure 1.4. This can be written as the product of its length (x + y) and its width (a + b), or as the sum of the areas of the four smaller rectangles, xa, xb, ya and yb.

Figure 1.4

The same pattern is used for quadratic factorisation, but first you need to split the middle term into two parts. This gives you four terms, which correspond to the areas of the four regions in a diagram like figure 1.4. Factorise $x^2 + 7x + 12$.

SOLUTION

Splitting the middle term, 7x, as 4x + 3x you have

$$x^{2} + 7x + 12 = x^{2} + 4x + 3x + 12$$
$$= x(x+4) + 3(x+4)$$
$$= (x+3)(x+4).$$

How do you know to split the middle term, 7x, into 4x + 3x, rather than say 5x + 2x or 9x - 2x?

Figure 1.5

The numbers 4 and 3 can be added to give 7 (the middle coefficient) and multiplied to give 12 (the constant term), so these are the numbers chosen.

EXAMPLE 1.23

Factorise $x^2 - 2x - 24$.

SOLUTION

First you look for two numbers that can be added to give -2 and multiplied to give -24:

$$-6 + 4 = -2$$
 $-6 \times (+4) = -24$.

The numbers are -6 and +4 and so the middle term, -2x, is split into -6x + 4x.

$$x^{2}-2x-24 = x^{2}-6x+4x-24$$
$$= x(x-6)+4(x-6)$$
$$= (x+4)(x-6).$$

This example raises a number of important points.

1 It makes no difference if you write +4x - 6x instead of -6x + 4x. In that case the factorisation reads:

$$x^{2}-2x-24 = x^{2}+4x-6x-24$$

$$= x(x+4)-6(x+4)$$

$$= (x-6)(x+4)$$
 (clearly the same answer).

- 2 There are other methods of quadratic factorisation. If you have already learned another way, and consistently get your answers right, then continue to use it. This method has one major advantage: it is self-checking. In the last line but one of the solution to the example, you will see that (x+4) appears twice. If at this point the contents of the two brackets are different, for example (x+4) and (x-4), then something is wrong. You may have chosen the wrong numbers, or made a careless mistake, or perhaps the expression cannot be factorised. There is no point in proceeding until you have sorted out why they are different.
- **3** You may check your final answer by multiplying it out to get back to the original expression. There are two common ways of setting this out.
 - (i) Long multiplication

(ii) Multiplying term by term

You would not expect to draw the lines and arrows in your answers. They have been put in to help you understand where the terms have come from.

EXAMPLE 1.24

Factorise $x^2 - 20x + 100$.

SOLUTION

$$x^{2} - 20x + 100 = x^{2} - 10x - 10x + 100$$

$$= x(x - 10) - 10(x - 10)$$

$$= (x - 10)^{2}$$
Notice:
$$(-10) + (-10) = -20$$

$$(-10) \times (-10) = +100$$

Note

The expression in Example 1.24 was a *perfect square*. It is helpful to be able to recognise the form of such expressions.

$$(x + a)^2 = x^2 + 2ax + a^2$$
 (in this case $a = 10$)
 $(x - a)^2 = x^2 - 2ax + a^2$

EXAMPLE 1.25

Factorise $x^2 - 49$.

$$x^{2} + 0x - 49 = x^{2} - 7x + 7x - 49$$

$$= x(x - 7) + 7(x - 7)$$

$$= (x + 7)(x - 7)$$

$$= (-7) \times 7 = -49$$

Note

The expression in Example 1.25 was an example of *the difference of two squares* which may be written in more general form as

$$a^2 - b^2 = (a + b)(a - b).$$

What would help you to remember the general results from Examples 1.24 and 1.25?

The previous examples have all started with the term x^2 , that is the coefficient of x^2 has been 1. This is not the case in the next example.

EXAMPLE 1.26

Factorise $6x^2 + x - 12$.

SOLUTION

The technique for finding how to split the middle term is now adjusted. Start by multiplying the two outside numbers together:

$$6 \times (-12) = -72$$
.

Now look for two numbers which add to give +1 (the coefficient of x) and multiply to give -72 (the number found above).

Splitting the middle term gives
$$(+9) + (-8) = +1$$

$$6x^2 + 9x - 8x - 12 = 3x(2x+3) - 4(2x+3)$$

$$= (3x-4)(2x+3)$$

$$(+9) \times (-8) = -72$$

$$3x \text{ is a factor of both } 6x^2 \text{ and } 9x.$$

$$-4 \text{ is a factor of both } -8x \text{ and } -12.$$

Note

The method used in the earlier examples is really the same as this. It is just that in those cases the coefficient of x^2 was 1 and so multiplying the constant term by it had no effect.

Before starting the procedure for factorising a quadratic, you should always check that the terms do not have a common factor as for example in

$$2x^2 - 8x + 6$$
.

This can be written as $2(x^2 - 4x + 3)$ and factorised to give 2(x - 3)(x - 1).

Solving quadratic equations

It is a simple matter to solve a quadratic equation once the quadratic expression has been factorised. Since the product of the two factors is zero, it follows that one or other of them must equal zero, and this gives the solution.

EXAMPLE 1.27

Solve
$$x^2 - 40x - 6000 = 0$$
.

SOLUTION

$$x^{2} - 40x - 6000 = x^{2} - 100x + 60x - 6000$$

$$= x(x - 100) + 60(x - 100)$$

$$= (x + 60)(x - 100)$$

$$\Rightarrow (x + 60)(x - 100) = 0$$

$$\Rightarrow \text{ either } x + 60 = 0 \Rightarrow x = -60$$

$$\Rightarrow \text{ or } x - 100 = 0 \Rightarrow x = 100$$
The solution is $x = -60$ or 100 . What is the length of the field?

Note

The *solution* of the equation in the example is x = -60 or 100.

The *roots* of the equation are the values of x which satisfy the equation, in this case one root is x = -60 and the other root is x = 100.

Sometimes an equation can be rewritten as a quadratic and then solved.

EXAMPLE 1.28

Solve
$$x^4 - 13x^2 + 36 = 0$$

SOLUTION

This is a quartic equation (its highest power of x is 4) and it isn't easy to factorise this directly. However, you can rewrite the equation as a quadratic in x^2 .

Let
$$y = x^2$$

$$x^{4} - 13x^{2} + 36 = 0$$

$$\Rightarrow (x^{2})^{2} - 13x^{2} + 36 = 0$$

$$\Rightarrow y^{2} - 13y + 36 = 0$$
You can replace x^{2} with y to get a quadratic equation.

Now you have a quadratic equation which you can factorise.

You may have to do some work rearranging the equation before you can solve it.

EXAMPLE 1.29

Find the real roots of the equation $x^2 - 2 = \frac{8}{x^2}$.

SOLUTION

You need to rearrange the equation before you can solve it.

$$x^2 - 2 = \frac{8}{x^2}$$

Multiply by x^2 : $x^4 - 2x^2 = 8$ Rearrange: $x^4 - 2x^2 - 8 = 0$

This is a quadratic in x^2 . You can factorise it directly, without substituting in for x^2 .

⇒
$$(x^2 + 2)(x^2 - 4) = 0$$

So $x^2 = -2$ which has no real solutions. \checkmark
or $x^2 = 4 \Rightarrow x = \pm 2$

So this quartic equation only has two real roots. You can find out more about roots which are not real in P3.

EXERCISE 1D

1 Factorise the following expressions.

(i)
$$al + am + bl + bm$$

(ii)
$$px + py - qx - qy$$

(iii)
$$ur - vr + us - vs$$

(iv)
$$m^2 + mn + pm + pn$$

(v)
$$x^2 - 3x + 2x - 6$$

(vi)
$$y^2 + 3y + 7y + 21$$

(vii)
$$z^2 - 5z + 5z - 25$$

(viii)
$$q^2 - 3q - 3q + 9$$

(ix)
$$2x^2 + 2x + 3x + 3$$

(x)
$$6v^2 + 3v - 20v - 10$$

2 Multiply out the following expressions and collect like terms.

(i)
$$(a+2)(a+3)$$

(ii)
$$(b+5)(b+7)$$

(iii)
$$(c-4)(c-2)$$

(iv)
$$(d-5)(d-4)$$

(v)
$$(e+6)(e-1)$$

(vi)
$$(g-3)(g+3)$$

(vii)
$$(h+5)^2$$

(viii)
$$(2i-3)^2$$

(ix)
$$(a+b)(c+d)$$

(x)
$$(x+y)(x-y)$$

3 Factorise the following quadratic expressions.

(i)
$$x^2 + 6x + 8$$

(iii)
$$y^2 + 9y + 20$$

(v)
$$r^2 - 2r - 15$$

(vii)
$$x^2 - 5x - 6$$

(ix)
$$a^2 - 9$$

(i)
$$2x^2 + 5x + 2$$

(iii)
$$5x^2 + 11x + 2$$

(v)
$$2x^2 + 14x + 24$$

(vii)
$$6x^2 - 5x - 6$$

(ix)
$$t_1^2 - t_2^2$$

(ii)
$$2x^2 - 5x + 2$$

(iii) $x^2 - 6x + 8$

(iv) $r^2 + 2r - 15$

(vi) $s^2 - 4s + 4$

(viii) $x^2 + 2x + 1$

(x) $(x+3)^2-9$

(iv)
$$5x^2 - 11x + 2$$

(vi)
$$4x^2 - 49$$

(viii)
$$9x^2 - 6x + 1$$

(x)
$$2x^2 - 11xy + 5y^2$$

(i)
$$x^2 - 11x + 24 = 0$$

(iii)
$$x^2 - 11x + 18 = 0$$

(v)
$$x^2 - 64 = 0$$

(ii)
$$x^2 + 11x + 24 = 0$$

(iv)
$$x^2 - 6x + 9 = 0$$

(i)
$$3x^2 - 5x + 2 = 0$$

(iii)
$$3x^2 - 5x - 2 = 0$$

(v)
$$9x^2 - 12x + 4 = 0$$

(ii)
$$3x^2 + 5x + 2 = 0$$

(iv)
$$25x^2 - 16 = 0$$

(i)
$$x^2 - x = 20$$

(iii)
$$x^2 + 4 = 4x$$

(v)
$$x-1=\frac{6}{x}$$

(ii)
$$\frac{3x^2 + 5x}{3} = 4$$

(iv)
$$2x + 1 = \frac{15}{x}$$

(vi)
$$3x + \frac{8}{x} = 14$$

(i)
$$x^4 - 5x^2 + 4 = 0$$

(iii)
$$9x^4 - 13x^2 + 4 = 0$$

(v)
$$25x^4 - 4x^2 = 0$$

(vii)
$$x^6 - 9x^3 + 8 = 0$$

(ii)
$$x^4 - 10x^2 + 9 = 0$$

(iv)
$$4x^4 - 25x^2 + 36 = 0$$

(vi)
$$x - 6\sqrt{x} + 5 = 0$$

(viii)
$$x - \sqrt{x} - 6 = 0$$

9 Find the real roots of the following equations.

(i)
$$x^2 + 1 = \frac{2}{x^2}$$

(iii)
$$x^2 - 6 = \frac{27}{x^2}$$

(v)
$$\frac{9}{x^4} + 4 = \frac{13}{x^2}$$

$$(vii) \sqrt{x} + \frac{8}{\sqrt{x}} = 6$$

(ii)
$$x^2 = 1 + \frac{12}{x^2}$$

(iv)
$$1 + \frac{1}{x^2} - \frac{20}{x^4} = 0$$

(vi)
$$x^3 + \frac{2}{x^3} = 3$$

(viii)
$$2 + \frac{3}{x} = \frac{7}{\sqrt{x}}$$

- 10 Find the real roots of the equation $\frac{9}{x^4} + \frac{8}{x^2} = 1$.
- 11 The length of a rectangular field is 30 m greater than its width, w metres.
 - (i) Write down an expression for the area $A \,\mathrm{m}^2$ of the field, in terms of w.
 - (ii) The area of the field is 8800 m². Find its width and perimeter.
- **12** A cylindrical tin of height h cm and radius rcm, has surface area, including its top and bottom, Acm 2 .
 - (i) Write down an expression for *A* in terms of *r*, *h* and π .
 - (ii) A tin of height 6 cm has surface area 54π cm². What is the radius of the tin?
 - (iii) Another tin has the same diameter as height. Its surface area is 150π cm². What is its radius?
- 13 When the first *n* positive integers are added together, their sum is given by $\frac{1}{2}n(n+1)$.
 - (i) Demonstrate that this result holds for the case n = 5.
 - (ii) Find the value of n for which the sum is 105.
 - (iii) What is the smallest value of n for which the sum exceeds 1000?
- 14 The shortest side AB of a right-angled triangle is *x* cm long. The side BC is 1 cm longer than AB and the hypotenuse, AC, is 29 cm long. Form an equation for *x* and solve it to find the lengths of the three sides of the triangle.

Equations that cannot be factorised

The method of quadratic factorisation is fine so long as the quadratic expression can be factorised, but not all of them can. In the case of $x^2 - 6x + 2$, for example, it is not possible to find two whole numbers which add to give -6 and multiply to give +2.

There are other techniques available for such situations, as you will see in the next few pages.

Graphical solution

If an equation has a solution, you can always find an approximate value for it by drawing a graph. In the case of

$$x^2 - 6x + 2 = 0$$

you draw the graph of

$$y = x^2 - 6x + 2$$

and find where it cuts the x axis.

x	0	1	2	3	4	5	6
x^2	0	1	4	9	16	25	36
-6 <i>x</i>	0	-6	-12	-18	-24	-30	-36
+2	+2	+2	+2	+2	+2	+2	+2
y	+2	-3	-6	-7	-6	-3	+2

Figure 1.6

From figure 1.6, *x* is between 0.3 and 0.4 so approximately 0.35, or between 5.6 and 5.7 so approximately 5.65.

Clearly the accuracy of the answer is dependent on the scale of the graph but, however large a scale you use, your answer will never be completely accurate.

Completing the square

If a quadratic equation has a solution, this method will give it accurately. It involves adjusting the left-hand side of the equation to make it a perfect square. The steps involved are shown in the following example.