那好吧,我再告诉你一件事:赫尔辛根山靠着海,在山顶能看到默斯肯岛,默斯肯岛是距赫尔辛根山最近的一座海岛!

6.图

Dijkstra算法 算法

邓俊辉

deng@tsinghua.edu.cn

绳索计算机

u_1

❖ 按照到s的最短距离,对其余的顶点排序

$$dist(s, u_1) \le dist(s, u_2) \le \dots \le dist(s, u_{n-1})$$

- ❖ 最短距离最短者u₁ = ?
- ❖ 沿任一最短路径,各顶点到s的最短距离单调变化
- ❖ u₁必与s直接相联

dist(s,
$$u_1$$
) = w(s, u_1) < ∞

- ❖ ∀u ≠ s,
 w(s, u) < ∞ 仅当 w(s, u₁) ≤ w(s, u)</p>
- ❖ 为找到u₁ , 只需 在与s关联的各顶点中 , 找到对应边权值最小者

 u_2

❖ 最短距离次小的顶点u₂ = ?

$$\dot{v}$$
 dist(s, u_2) = min{ w(s, u_2), dist(s, u_1) + w(u_1 , u_2) }

 $\mathbf{u}_{\mathbf{k}}$

$$*u_3 = ?, u_4 = ?, ...,$$

 $u_k = ?$

- ❖三角不等式:dist(s, v) <= dist(s, u) + w(u, v)</p>
- ❖若记 u_0 = s,则有:dist(s, u_k) = min{ dist(s, u_i) + w(u_i , u_k) | 0 ≤ i < k }

❖算法?

策略

$$- V_1 = S$$

-
$$T_k = (V_k; E_k)$$

$$- |V_k| = k$$

-
$$|E_k| = k-1$$
, $V_k \subset V_{k+1}$

算法

- ❖ 由以上分析,为由T_k构造T_{k+1},只需
 - 将(V_k : V\V_k)视作原图的一个割
 - 在该割的所有 跨边 中

找出 极近者 $e_k = (v_k, u_k) (u_k 到 s 距离 极近)$

