Unsupervised Learning Capstone

Finding Customer Segments for a Credit Card Company

Megan Dibble

Introduction

Motivation & Explanation of Data

Motivation

- Credit Card Company has collected data on customers
 - Need marketing strategy
- No prior indication of customer segments
 - Application for clustering models
- Customizing marketing to a "customer type" (or segment)
 - Could increase profit
 - Customers more likely to sign up for promotional offers
- Goal: use segmentation to increase profit & customer satisfaction

Explanation & Structure of Data

- Dataset summarizes the usage behavior of about 9000 active credit card holders
 - During the last 6 months
- Source: Kaggle.com
- 18 columns, all continuous variables except unique Customer ID
- 8950 rows

Data Exploration & Cleaning

Distributions

Distributions

Takeaways

- Lots of distributions are skewed right,
 - Outliers that may need to be dealt with later
 - Left them for now
 - Did not appear to be errors after deep dive
- PURCHASES_FREQUENCY --not a lot of customers are in the middle
 - Could be a potential cluster split
- 75% of customers have less than 1,110 purchases during the last 6 months
 - Less than 185 purchases/month on average
- Minimal null values (3% or less for 2 variables)
 - Filled with median or mode, depending on the variable

Modeling Process & Visualizations

Model Inputs, Visualizations, & Results

Model Inputs

- Feature engineering: standardized all variables
- Data shape: 8949 observations and 18 features

Visualizing the data in 2D with PCA:

Visualizing the Data with UMAP

- Small numbers at top of graphs are tuning parameter n_neighbors
- Looking for most distinct clusters
- chose n_neighbors = 4

K Means

Silhouette Score = .254

20 15 component 1 X-Z axis

Hierarchical Clustering

Silhouette Scores:

• Complete: 0.787

• Ward: 0.181

Average: 0.841

Average method found 2 clusters

- Good silhouette score, but model is not informative
- Data is not hierarchical in nature

DBSCAN

Originally DBSCAN found 156 clusters

- Tuned min_samples hyperparameter
- Graphs (left to right) are min_samples = 2, 3, 4
- Not a good model choice for the data

GMM Clustering

GMM Clustering

15

Evaluating Consistency

- Comparing K-Means and GMM, K-Means was more consistent
- Split data evenly and then used PCA to visualize clusters

Sample 2

20

Conclusion

Business Impact & Recommendations

Business Implications of Results

Fed data labeled with clusters into a decision tree

Variable	Importance
CASH_ADVANCE	0.143418
PURCHASES	0.133598
CASH_ADVANCE_TRX	0.114313

- Cluster 1: "small spenders"
- Cluster 2: "medium spenders with large cash advances"
- Cluster 3: "big spenders"

Recommendations

- Personalize marketing to each cluster with different credit card offerings
- Collect data on effectiveness of marketing strategy
 - Evaluate change
- If I had more time
 - Go back and spend time to remove or set threshold on outliers
 - Work on more tuning to increase silhouette score
 - Evaluate sensitivity of random forest feature importance

Thank You For Listening!

Any Questions?