CSSE 332 -- OPERATING SYSTEMS

Multi-level Page Tables

Name: Solution Key

Question 1. (10 points) Based on our discussion of a two-level page table with 16-bits addresses and 16-bit PTEs, draw how the following address would be used to lookup the corresponding physical address: 0x3D0B.

Make sure to show your offset inside each page. Assume that the address of the first level page table is already provided in the appropriate register.

Solution: Solution provided in class.

Question 2. (5 points) Describe the RISC-V organization of a 64-bit address to support multilevel page tables. Make sure to label each section of the address with its use in the address translation.

 $6362616059585756555453525150494847464544443424140393837363534333231302928272625242322212019181716151413121110 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 1 \$

Unused	Level 2 addr Level 1 addr	Level 0 addr	Page offset
--------	---------------------------	--------------	-------------

Question 3. (5 points) In RISC-V, the address of the first level page table for every running process is stored in the <u>satp</u> register.

Question 4. Assume we are dealing with 4 KB pages in RISC-V with the address breakdown from **Question 2**. Answer the following questions.

(a) (5 points) How many page table entries (PTEs) does each page of the page table contain?

Solution:

Each PTE address is 9 bits, which means we have $2^9 = 512$ PTEs.

(b) (5 points) Given that, how wide if a PTE?

Solution: We have 4 KB pages with 512 PTEs per page. This means we have $\frac{2^2 \times 2^{10}}{2^9} = 2^3 = 8$ bytes = 64bits.

(c) (5 points) Describe the breakdown of a PTE into its corresponding constituents.

Solution:

335165555555555555194874141414898765433BQQ&7QQ422QQ947615432109876543210

Unused	Frame Address	Flags		