

DA12 - Kentekencard Uitleesdocumentatie

Interface specificatie

Auteur RDW
Versie 2.1.1
Datum 30-12-2013
Status Definitief
Classificatie -

Documentgegevens

Opdrachtgever RDW

Document titel DA12 - Kentekencard Uitleesdocumentatie, Interface specificatie

DA12 - Kentekencard Uitleesdocumentatie v2 1 1.docx

Bestandsnaam Archief naam

Trefwoorden

Status Definitief

Verspreiding

RDW Rozenburglaan 5 9727 DL Groningen

Copyright © Dienst Wegverkeer

Niets uit deze uitgave mag verveelvoudigd en/of openbaar worden gemaakt (voor willekeurig welke doeleinden) door middel van druk, fotokopie, microfilm, geluidsband, elektronisch of op welke andere wijze dan ook zonder voorafgaande schriftelijke toestemming van Dienst Wegverkeer.

RDW

Versieoverzicht

Versie	Datum	Status	Auteur
2.1.1	30-12-2013	Definitief	RDW

Wijzigingshistorie

Versie	Datum	Reden wijziging

INHOUDSOPGAVE

MANAG	EMENTSAMENVATTING	. 1
1	INLEIDING	. 2
1.1	SCOPE	. 2
1.2	LEZERSDOELGROEP	. 2
1.3	DOCUMENTOPBOUW	. 2
2	BEGRIPPENLIJST EN REFERENTIES	4
2.1	Begrippenlijst	
2.2	REFERENTIES	. 5
3	ACHTERGRONDINFORMATIE	6
3.1	HANDTEKENINGEN OP DE NEDERLANDSE KENTEKENCARD CHIP	. 6
3.2	PUBLIC KEY INFRASTRUCTUUR	
3.3	VERIFICATIE VAN DATAGROEPEN A EN B CONFORM 2003/127/EC	9
3.4	PASSIVE AUTHENTICATION	10
3.5	ACTIVE AUTHENTICATION	11
4	VERIFICATIEPROCES	12
4.1	PROCESSTROOM	12
4.2	LEZEN EN VERIFIËREN VAN DE NEDERLANDSE KENTEKENCARD CHIP	14
4.3	LEZEN EN VERIFIËREN VAN BUITENLANDSE KENTEKENCARD CHIPS	23
5	COMMUNICATIE TUSSEN KAART EN UITLEES- EN VERIFICATIESOFTWARE	33
6	INFORMATIEUITWISSELING MET VERIFICATIESOFTWARE	34
APP 1	LOGICAL DATA STRUCTURE	35
APP 1.1	OVERZICHT VAN ELEMENTARY FILES	35
APP 1.2	EF.AA	35
APP 1.3	EF.SOD	36
APP 1.4	EF.C.IA_A.DS	41
APP 1.5	EF.C.IA B.DS	41

APP 1.6 EF.F	REGISTRATION_A	42
APP 1.7 EF.F	REGISTRATION_B	44
APP 1.8 EF.F	REGISTRATION_C	46
APP 1.8.1	REGISTRATIEDATA	46
APP 1.8.2	INDIVIDUAL VEHICLE INFORMATION	46
APP 1.8.2.1	INDIVIDUALVEHICLEINFORMATION (XML)	47
APP 1.8.2.2	INDIVIDUALVEHICLEINFORMATION (COMPRESSED XML)	47
APP 1.8.2.3	INDIVIDUALVEHICLEINFORMATION (TLV)	48
APP 1.9 EF.S	SIGNATURE_A	68
APP 1.10 EF.S	SIGNATURE_B	68
APP 2 NL-I	EVRD COMMANDO'S EN RESPONSES	69
APP 2.1 SELI	ECT APPLICATION	69
APP 2.1.1	COMMAND APDU	69
APP 2.1.2	RESPONSE APDU	69
APP 2.1.3	STATUS WORDS	69
APP 2.2 SELI	ECT FILE	70
APP 2.2.1	COMMAND APDU	70
APP 2.2.2	RESPONSE APDU	70
APP 2.2.3	STATUS WORDS	71
APP 2.3 REA	D BINARY	71
APP 2.3.1	COMMAND APDU	71
APP 2.3.2	RESPONSE APDU	71
APP 2.3.3	STATUS WORDS	72
APP 2.4 INT	ERNAL AUTHENTICATE	72

APP 2.4.	1 COMMAND APDU	72
APP 2.4.	2 RESPONSE APDU	72
APP 2.4.	3 STATUS WORDS	73
APP 2.5	STATUS WORDS SUMMARY	73
APP 3	TRACES COMMUNICATIE UITLEES/VERIFICATIESW & CHIP (INFORMATIEF)	75
APP 3.1	LEZEN EN VERIFIEREN VAN DE NEDERLANDSE KENTEKENCARD CHIP	75
APP 3.2	LEZEN EN VERIFIEREN VAN BUITENLANDSE KENTEKENCARD CHIPS	82
APP 4	SPECIMEN CSCA CERTIFICAAT	90

MANAGEMENTSAMENVATTING

De Nederlandse kentekencard (NL-eVRD) is voorzien van een chip. Dit document beschrijft hoe de chip van de Nederlandse kentekencard kan worden uitgelezen en geverifiëerd. Het uitlezen van de chip kan onbeveiligd en daardoor door alle partijen gedaan worden. Hiervoor is slechts een PC/SC kaartlezer en uitleessoftware nodig. Voor verificatie is een betrouwbaar verkregen PKI certificaat en de bijbehorende Certificate Revocation List (CRL) nodig. Deze gegevens kunnen van de website van RDW gedownload worden.

De Nederlandse kentekencard voldoet aan de Europese richtlijn 2003/123/EC [1]. De chip bevat de data zoals gespecificeerd in de richtlijn en beveiligd zoals beschreven in de richtlijn. Ook bevat de chip in de Nederlandse kentekencard additionele registratiedata en kan deze Certificaat van Oorsprong (CVO) data bevatten. De chip van de Nederlandse kentekencard is daarnaast voorzien van twee additionele beveiligingsmechanismen. Alle data op de kentekencard chip is beveiligd door middel van Passive Authentication (PA) [2]. Dit houdt in dat over alle data op de chip een elektronische handtekening is gezet door de uitgevende instantie, RDW, die ervoor zorgt dat gecontroleerd kan worden dat de data in de verschillende datagroepen ongewijzigd is en bij elkaar hoort. Daarnaast kan de echtheid van de chip gecontroleerd worden door middel van Active Authentication (AA) [2]. Dit betekent dat de chip zijn echtheid kan aantonen door middel van een challenge-response protocol.

Dit document beschrijft hoe de Nederlandse kentekencard chip hoort te worden uitgelezen en geverifiëerd. Het document gaat ook in op het uitlezen en verifiëren van buitenlandse kentekencard chips die voldoen aan [1]. Aangezien Nederlandse kentekencards ook aan deze richtlijn voldoen, zouden die ook op deze manier uitgelezen en geverifiëerd kunnen worden. Er wordt dan echter geen gebruik gemaakt van de additionele beveiligingsmechanismen die in de Nederlandse kentekencard chip zijn geïmplementeerd, waardoor dit niet aan te raden is.

1 INLEIDING

1.1 Scope

De Nederlandse kentekencard (NL-eVRD) is voorzien van een chip. Dit document beschrijft hoe de chip van de Nederlandse kentekencard kan worden uitgelezen en geverifiëerd. Het uitlezen van de chip kan onbeveiligd en daardoor door alle partijen gedaan worden. Hiervoor is slechts een PC/SC kaartlezer en uitleessoftware nodig. Voor verificatie is een betrouwbaar verkregen PKI certificaat en de bijbehorende Certificate Revocation List (CRL) nodig. Deze gegevens kunnen van de website van RDW gedownload worden. Het is daarmee echter niet 100 % zeker dat dit het authentieke certificaat is. Daarvoor is vereist dat het initiële certificaat op een betrouwbare manier wordt uitgewisseld. RDW zal hiervoor een proces opzetten met erkende partijen die in staat moeten zijn de chip van de Nederlandse kentekencard te verifiëren, de zogenaamde erkende relying parties.

De Nederlandse kentekencard voldoet aan de Europese richtlijn 2003/123/EC [1]. De chip bevat de data zoals gespecificeerd in de richtlijn en beveiligd zoals beschreven in de richtlijn. Ook bevat de chip in de Nederlandse kentekencard additionele registratiedata en kan deze Certificaat van Oorsprong (CVO) data bevatten. De chip van de Nederlandse kentekencard is daarnaast voorzien van twee additionele beveiligingsmechanismen. Alle data op de kentekencard chip is beveiligd door middel van Passive Authentication (PA) [2]. Dit houdt in dat over alle data op de chip een elektronische handtekening is gezet door de uitgevende instantie, RDW, die ervoor zorgt dat gecontroleerd kan worden dat de data in de verschillende datagroepen ongewijzigd is en bij elkaar hoort. Daarnaast kan de echtheid van de chip gecontroleerd worden door middel van Active Authentication (AA) [2]. Dit betekent dat de chip zijn echtheid kan aantonen door middel van een challenge-response protocol.

Dit document beschrijft hoe de Nederlandse kentekencard chip hoort te worden uitgelezen en geverifiëerd. Het document gaat ook in op het uitlezen en verifiëren van buitenlandse kentekencard chips die voldoen aan [1]. Aangezien Nederlandse kentekencards ook aan deze richtlijn voldoen, zouden die ook op deze manier uitgelezen en geverifiëerd kunnen worden. Er wordt dan echter geen gebruik gemaakt van de additionele beveiligingsmechanismen die in de Nederlandse kentekencard chip zijn geïmplementeerd, waardoor dit niet aan te raden is.

1.2 Lezersdoelgroep

Dit document is bedoeld voor alle partijen die de chip van de kentekencard willen uitlezen en verifiëren. Het document bevat de benodigde informatie voor het implementeren van de uitlees- en verificatiesoftware. Uitlees- en verificatiesoftware kan door een partij zelf ontwikkeld worden, maar is voor erkende relying parties ook verkrijgbaar via RDW. Daarnaast bevat het document informatie over hoe de uitlees- en verificatiesoftware voorzien kan worden van de benodigde PKI certificaten en CRLs.

Er wordt van uitgegaan dat de lezers bekend zijn met asymmetrische cryptografie en public key infrastructuren.

1.3 Documentopbouw

Hoofdstuk 1 bevat de scope, lezersdoelgroep en documentopbouw. In Hoofdstuk 2 staat een uitleg van begrippen en referenties. Hoofdstuk 3 bevat achtergrondinformatie over de kentekencard chip, de

public key infrastructuur, en de beveiligingsmechanismen. In Hoofdstuk 4 staat in detail uitgewerkt hoe het uitlees- en verificatieproces dient plaats te vinden. Paragraaf 4.1 geeft de processtroom op hoog niveau, paragraaf 4.2 geeft stap voor stap aan hoe een Nederlandse kentekencard chip uitgelezen en geverifieerd dient te worden en in paragraaf 4.3 staat dit voor (buitenlandse) kentekencardchips die voldoen aan de Europese richtlijn 2003/127/EC [1]. In Hoofstuk 5 is informatie te vinden over de communicatie tussen de kentekencard chip en de uitlees- en verificatiesoftware. Hoofdstuk 6 gaat in op de informatieuitwisseling met de uitlees- en verificatiesoftware. Het gaat hierbij niet om de informatieuitwisseling met de chip, maar met andere bronnen, zoals de RDW.

In de appendices is de volgende informatie opgenomen:

- App 1 bevat de Logical Data Structure van de chip,
- App 2 bevat de APDUs voor de Nederlandse kentekencard chip in de operationele fase.
- App 3 geeft als voorbeeld een trace van de communicatie tussen uitlees- en verificatiesoftware en de chip van een Nederlandse kentekencard en een mogelijke buitenlandse kentekencard.
- App 4 bevat het CSCA certificaat dat is gebruikt voor de specimen kentkencard

2 BEGRIPPENLIJST EN REFERENTIES

2.1 Begrippenlijst

Begrip	Verklaring		
AA	Active Authentication, cryptografisch mechanisme om de authenticiteit van de chip aan te tonen via een AA public-private key pair en een challenge-response mechanisme.		
Challenge	(Deels) random getal dat gegenereerd wordt om door een andere entiteit ondertekend te worden met de private key van die entiteit en op die manier gebruikt wordt voor controle van de authenticiteit van die entiteit.		
CSCA	Country Signing Certificate Authority, de hoogste certificaat uitgevende entiteit van de uitgevende instantie RDW in de PKI keten voor het ondertekenen van data.		
CSCA private key	De geheime sleutel van het CSCA key pair die uitsluitend beschikbaar is in de CSCA en gebruikt wordt voor het ondertekenen van certificaten.		
CSCA public key	De publieke sleutel van het CSCA key pair die gebruikt kan worden voor controle van met de CSCA private key ondertekende certificaten en CRLs.		
CSCA root certificaat	Een door de CSCA uitgegeven certificaat met daarin de eigen CSCA public key. Het certificaat koppelt de publieke sleutel aan de CSCA en heeft een beperkte geldigheidstermijn. Het CSCA root certificaat is ondertekend door de CSCA private key behorend bij de CSCA public key in het certificaat. Het certificaat (de handtekening) kan gecontroleerd worden met de publieke sleutel uit het certificaat zelf. Het CSCA root certificaat is beschikbaar op de RDW website, maar erkende relying parties met een officiële verantwoordelijkheid voor het controleren van kentekencards (zoals de Nederlandse en buitenlandse politie) moeten het certificaat daarnaast verkrijgen op een betrouwbare manier via een separaat proces aangezien de website voor deze partijen niet voldoende zekerheid geeft over de authenticiteit van het initiële CSCA certificaat.		
CSCA link certificaat	Een door de CSCA uitgegeven certificaat met daarin een nieuwe CSCA public key. Het certificaat is ondertekend met de huidige CSCA private key en kan gecontroleerd worden met de huidige CSCA public key. Hierdoor kan een CSCA link certificaat uitgewisseld worden via een onbetrouwbaar kanaal zoals publicatie op de RDW website. Het certificaat koppelt het nieuwe trust point aan het huidige trust point.		
CRL	Certificate Revocation List, een lijst met ingetrokken certificaten uitgegeven door de CSCA. De CSCA ondertekent de CRL zodat de authenticiteit van de CRL gecontroleerd kan worden. De CRL is beschikbaar op de RDW website en wordt periodiek vernieuwd. Ook wordt een nieuwe versie gepubliceerd als een certificaat aan de CRL wordt toegevoegd. Voor ieder CSCA sleutelpaar wordt een aparte CRL uitgegeven.		
DS	Document Signer, een entiteit binnen RDW die de data die op een kentekencard chip geplaatst wordt, voorziet van een elektronische handtekening. De DS beschikt hiervoor over een key pair en een door de CSCA uitgegeven DS certificaat.		
DS private key	De geheime sleutel van het DS key pair die uitsluitend beschikbaar is in de DS en gebruikt wordt voor het ondertekenen van de kentekencard chip data.		
DS public key	De publieke sleutel van het DS key pair die gebruikt kan worden voor controle van met de DS private key ondertekende data. Deze DS public key is beschikbaar in het door de CSCA uitgegeven DS certificaat.		
DS certificaat	Een door de CSCA uitgegeven certificaat met daarin de DS public key. Het DS certificaat is ondertekend door de CSCA private key en kan gecontroleerd worden		

	met de bijbhorende CSCA public key waarover de verificatiesoftware dient te beschikken. Het DS certificaat is beschikbaar op de chip.Het DS certificaat heeft een beperkte geldigheidsduur.		
Hash	Uniek getal dat berekend wordt met behulp van een hash of digest algoritme over data, meestal om vervolgens getekend te worden met een private key. Als de data verandert, verandert ook de hash. Uit de hash is niet de oorspronkelijke data te herleiden. RDW maakt gebruik van het SHA256 hash algoritme.		
Key Pair	Aan elkaar gekoppelde public en private keys gebruikt in asymmetrische cryptografische algoritmen zoals gebruikt voor het tekenen van hashes en challenges.		
NL-eVRD	RD Nederlandse elektronische kentekencard (vehicle registration document).		
PA	Passive Authentication, cryptografisch mechanisme om de authenticiteit van de chip data aan te tonen via een handtekening over die data met de DS private key.		

2.2 Referenties

Ref.	Titel	Auteur	Versie	Datum
[1]	2003/127/EU	Europese Commissie	n.v.t.	23-12-2003
[2]	ISO/IEC 18013-3	ISO/IEC WG 10	n.v.t.	2009
[3]	ICAO Doc 9303	ICAO	6	2006
[4]	RFC 5280	D. Cooper et. al.	n.v.t.	mei 2008
[5]	CP/CPS NL-eVRD-PKI,	RDW	2.0	30-12-2013
	zie: http://www.rdw.nl/			
[6]	RFC 5652	R. Housley	n.v.t.	september 2009
[7]	ISO/IEC 7816-4	ISO/IEC JTC 1	2	15-01-2005
[8]	ISO/IEC 7816-8	ISO/IEC JTC 1	2	01-06-2004
[9]	RFC 4055	J. Schaad et. al.	n.v.t.	juni 2005
[10]	ISO 9796-2	ISO	2	01-10-2002

3 ACHTERGRONDINFORMATIE

De Europese Richtlijn 2003/127/EU [1] staat uitgifte van kentekenbewijzen op credit card formaat toe voorzien van een contact chip. Zowel de kentekencard als de chip dienen daarbij te voldoen aan de eisen vastgelegd in Annex 1 en 2 van [1]. De richtlijn schrijft onder andere de datastructuur van de chip voor en de aanwezigheid van files die de authenticiteit van de data garanderen en controleerbaar maken. De Nederlandse kentekencards voldoen hieraan. Daarnaast zijn de chips van de Nederlandse kentekencards voorzien van twee additionele beveiligingsmechanismen met bijbehorende datagroepen op de chip om de echtheid van de chip en alle data op de chip te garanderen. De op de Nederlandse kentekencard aanwezige datagroepen zijn beschreven in App 1.

De echtheid van de chip van een Nederlandse kentekencard kan door een relying party gecontroleerd worden door gebruik te maken van het Active Authentication (AA) beveiligingsmechansime. Dit mechanisme is afhankelijk van het andere beveiligingsmechansime dat is toegevoegd aan de chip van de Nederlandse kentekencard en dat tevens de echtheid van alle data op de chip en het bij elkaar horen van de datagroepen garandeert, namelijk Passive Auhthentication (PA). Zowel AA als PA zijn geïmplementeerd conform de internationale ISO/IEC rijbewijs standaard [2]. Daarnaast worden deze beveiligingsmechanismen ook gebruikt voor het beveiligen van paspoorten, zoals vastgelegd in ICAO Doc 9303 [3] en voor het beveiligen van Europese verblijfsvergunningen en Nederlandse en sommige buitenlandse identiteitskaarten.

De beveiligingsmechanismen worden in dit hoofdstuk nader uitgelegd, zodat partijen die op basis van dit document verificatiesoftware maken in staat zijn de controle van de beveiligingsmechanismen op de juiste manier te implementeren. Een gedetailleerde beschrijving van de door de verificatiesoftware uit te voeren stappen en controles is te vinden in Hoofdstuk 4, paragraaf 4.2. In dit hoofdstuk, in paragraaf 3.2, wordt daarnaast ingegaan op de PKI structuur die gebruikt wordt.

3.1 Handtekeningen op de Nederlandse kentekencard chip

Op een Nederlandse kentekencard chip zijn drie elektronische handtekeningen aanwezig om de authenticiteit van de data op de chip te garanderen en verifiëren. Twee van deze handtekeningen zijn verplicht conform de Europese richtlijn [1]. De derde handtekening is door Nederland toegevoegd om PA en AA mogelijk te maken. De aanwezige handtekeningen zijn:

- de handtekening in EF.Signature_A over de data in EF.Registration_A;
- de handtekening in EF.Signature_B over de data in EF.Registration_B;
- de handtekening in EF.SOd over alle datagroepen op de chip.

Nederlandse kentekencards worden uitgegeven door RDW. RDW heeft ervoor gekozen alle handtekeningen voor één kentekencard te genereren met dezelfde DS private key en daardoor verifieerbaar te maken met hetzelfde public key certificaat. Dit public key certificaat, het DS certificaat, is beschikbaar op de chip en staat om te voldoen aan de Europese richtlijn [1]en de ISO/IEC 18013 [2] standaard 3 x op de chip, namelijk in EF.C.IA_A.DS, EF.C.IA_B.DS en in de EF.SOd.

3.2 Public Key Infrastructuur

Voor generatie van de handtekeningen en benodigde certificaten heeft RDW een PKI opgezet met een Country Signing Certification Authority (CSCA) als hoogste trust point (root). De CSCA geeft certificaten

RDW

uit aan Document Signers (DS) die de handtekeningen over de datagroepen voor op de kaart genereren. Dit is weergegeve in Figuur 1.

Figuur 1: Public Key Infrastructuur voor kentekencards

De CSCA beschikt over een key pair en bijbehorend (self-signed) CSCA root certificaat. Een CSCA root certificaat heeft een geldigheidsduur van 20 jaar. Het wordt gedurende 10 jaar gebruikt voor het uitgeven van DS certificaten. Kort daarvoor wordt een nieuw key pair en bijbehorend CSCA root certificaat gegenereerd. Ook wordt dan een CSCA link certificaat gegenereerd. Dit certificaat bevat de nieuwe public key en is ondertekend met de huidige private key. Het kan daardoor met de huidige public key gecontroleerd worden op authenticiteit. Dit is weergegeven in Figuur 2.

Figuur 2: Relatie tussen CSCA root certificaten, CSCA link certificaten en DS certificaten

Relying parties hebben het CSCA certificaat nodig voor het controleren van de DS certificaten. Daarom stelt RDW de CSCA certificaten beschikbaar op haar website. Erkende relying parties met een officiële verantwoordelijkheid voor het controleren van kentekencards (zoals de Nederlandse en buitenlandse politie) moeten het certificaat daarnaast verkrijgen op een betrouwbare manier via een separaat proces aangezien de website voor deze partijen niet voldoende zekerheid geeft over de authenticiteit van het initiële CSCA certificaat. Nieuwe CSCA certificaten kunnen vervolgens van de website gedownload worden aangezien via het link certificaat de authenticiteit van de nieuwe public key gecontroleerd kan worden.

Een DS beschikt over een key pair. Met de private key van het key pair genereert de DS de handtekeningen over de datagroepen. De bijbehorende public key is beschikbaar in het DS certificaat dat door de CSCA is uitgegeven. Een DS certificaat heeft een geldigheidstermijn van 10 jaar en 3 maanden. Het wordt maximaal 3 maanden gebruikt voor het zetten van handtekeningen. De geldigheidstermijn van een DS certificaat loopt altijd eerder af dan de geldigheidstermijn van het bovenliggende CSCA certificaat.

Als het DS certificaat verlopen is, kan het in principe niet meer gebruikt worden voor het controleren van de handtekeningen op de kentekencard chip. Dit wil echter niet zeggen dat de kentekencard zijn geldigheid verliest. Ook een kentekencard met verlopen certificaten of met een niet werkende chip is geldig.

Indien de private key van een DS gecompromitteerd raakt of hiervan een vermoeden bestaat, wordt die niet meer gebruikt voor ondertekeningen. Het DS certificaat wordt ingetrokken en op de Certificate Revocation List (CRL) geplaatst. Op basis van het certificaat gezette handtekeningen zijn dan niet langer geldig.

De CRL wordt uitgegeven en ondertekend door de CSCA. Voor ieder geldig CSCA certificaat zal een CRL gepubliceerd worden. De authenticiteit van de CRL dient door relying parties gecontroleerd te worden op basis van het CSCA public key certificaat. RDW publiceert de CRLs op haar website. De locatie is aangegeven in de CDP extensie van de DS en CSCA certificaten. Periodiek (eens per 180 dagen) genereert en publiceert RDW een nieuwe CRL. De CRL is 200 dagen geldig. RDW genereert ook een

RDW

nieuwe CRL als een DS certificaat wordt ingetrokken. Erkende relying parties zullen van deze extra CRL op de hoogte gesteld worden door RDW.

Het beleid en de procedures voor de hierboven beschreven PKI staan beschreven in de gecombineerde Certificate Policy/Certification Practice Statement (CP/CPS) [5]. Dit document is te vinden op de website van RDW: http://www.rdw.nl. De object identifier (OID) van de CP/CPS is aangegeven in de Certificate Policy Extension van de DS en CSCA certificaten.

3.3 Verificatie van datagroepen A en B conform 2003/127/EC

Conform de Europese richtlijn 2003/127/EC [1] worden door de uitgevende instantie elektronische handtekeningen geplaatst over de datagroepen A en B op de chip (EF.Registration_A en EF.Registration_B). Deze handtekeningen zijn te vinden in de files EF.Signature_A en EF.Signature_B. In deze files is ook het gebruikte asymmetrische algoritme en het hash algoritme te vinden (voor het formaat zie App 1). De bij de handtekeningen horende public key certificaten waarmee de handtekeningen en daarmee de authenticiteit van de data in de datagroepen A en B te controleren is staan in EF.C.IA A.DS en EF.C.IA B.DS. Het format is X.509V3 (zie [4]) conform de eisen in [1].

Bij uitlezen van de datagroepen A en B en controle op authenticiteit volgens de Europese richtlijn dient eerst de authenticiteit van de certificaten gecontroleerd te worden, dienen vervolgens de handtekeningen te worden 'gecontroleerd'/'ontcijferd' en dienen daarna de hashes waarover de handtekeningen waren gezet vergeleken te worden met de hashes over de datagroepen. Pas als hieruit volgt dat de data in datagroepen A en B authentiek is dient deze aan de gebruiker getoond te worden. Stapsgewijs is het proces beschreven in paragraaf 4.3.

De DS certificaten dienen onder andere gecontroleerd te worden op geldigheidstermijn. Voor de Nederlandse DS certificaten geldt dat deze uitgegeven zijn door de Nederlandse CSCA en met behulp van het CSCA public key certificaat gecontroleerd dienen te worden. Ook dienen Nederlandse DS certificaten daarnaast gecontroleerd worden tegen het certificaat profiel zoals beschreven in de CP/CPS 5 en tegen de CRL waarvan de URL aangegeven is in de certificaat extensie.

Ook voor de meeste buitenlandse certificaten zal het DS certificaat getekend zijn door de nationale CSCA. Voor controle dient de verificatiesoftware te beschikken over deze buitenlandse CSCA certificaten. Mogelijk stelt RDW op termijn buitenlandse CSCA certificaten beschikbaar via een betrouwbare methode aan erkende relying parties of via haar website. Het kan echter gebeuren dat het buitenlandse CSCA certificaat niet beschikbaar is in de verificatiesoftware. In dat geval kan het DS certificaat niet gecontroleerd worden en dient de software een waarschuwing af te geven.

Het zou kunnen dat voor sommige landen de DS certificaten niet zijn uitgegeven door een CSCA, maar self-signed certificaten zijn. 2003/127/EC eist geen CSCA, al ligt dit wel voor de hand uit oogpunt van conformiteit met paspoorten, het rijbewijs en Europese verblijfsvergunningen. In dat geval dient de verificatiesoftware te beschikken over het DS certificaat uit een betrouwbare bron. Mogelijk stelt RDW op termijn voor deze gevallen de buitenlandse DS certificaten beschikbaar via een betrouwbare methode aan erkende relying parties of via haar website. Het kan echter gebeuren dat een self-signed DS certificaat niet beschikbaar is uit een betrouwbare bron. In dat geval dient het DS certificaat in ieder geval gecontroleerd te worden met de public key uit het certificaat zelf en dient de software een waarschuwing af te geven.

Indien de verificatie van het certificaat niet goed gaat dient dit duidelijk gemeld te worden aan de gebruiker van de uitlees- en verificatiesoftware.

RDW

Aangezien alle datagroepen op de Nederlandse kentekencard chip beveiligd zijn door middel van Passive Authentication hoeven deze verificaties niet uitgevoerd te worden op Nederlandse kentekencards mits verificatie door middel van Passive Authentication wordt uitgevoerd (zie paragrafen 3.4 en 4.2). Passive Authentication verdient de voorkeur boven het in deze paragraaf beschreven proces aangezien daarmee ook de authenticiteit van EF.Registration_C gegarandeerd en geverifieerd wordt indien aanwezig, duidelijk wordt dat de verschillende datagroepen bij elkaar horen en Active Authentication mogelijk is.

3.4 Passive Authentication

Voordat de data op de chip van een Nederlandse kentekencard geschreven wordt, wordt over deze data een handtekening geplaatst door de uitgevende instantie RDW. Deze handtekening wordt op de chip geplaatst. De handtekening maakt het mogelijk als de data van de chip gelezen wordt de authenticiteit ervan te controleren. Dat wil zeggen dat met behulp van de handtekening gecontroleerd kan worden dat de data afkomstig is van de RDW en niet gewijzigd is.

De elektronische handtekening wordt geplaatst door een entiteit die de Document Signer (DS) wordt genoemd. De DS beschikt hiervoor over een public-private key pair. Het certificaat van de DS is uitgegeven door de CSCA, het hoogste trust point (de root) binnen de PKI (zie paragraaf 3.2).

Om de handtekening te zetten worden tijdens het personalisatieproces eerst hashes berekend over iedere datagroep die op de chip geschreven zal worden. Deze hashes worden opgenomen in het RDWldsSecurityObject. Het RDWlDsSecurityObject maakt deel uit van het data object waarover met de DS private key een handtekening gegenereerd wordt. De RDWlDsSecurityObject, de handtekening en het bijbehorende DS certificaat worden als onderdeel van de EF.SOd op de kaart geplaatst (zie App 1 voor het exacte format van de EF.SOd).

Bij uitlezen en verifiëren van de data op de Nederlandse kentekencard chip dient eerst de authenticiteit van het certificaat uit de EF.SOd bepaald te worden, dan de correctheid van de handtekening uit de EF.SOd gecontroleerd te worden en vervolgens de authenticiteit van de datagroepen op basis van vergelijking van de hash-waarden (zie paragraaf 4.2 voor het volledige proces). Dit gebeurt conform RFC 5652 [6]. Pas als duidelijk is dat de data in de datagroepen authentiek is, dient deze aan de gebruiker getoond te worden.

Controle op basis van Passive Authentication dient gevolgd te worden in plaats van het proces geschreven in paragraaf 3.3 aangezien met Passive Authentication ook de authenticiteit van EF.Registration_C gegarandeerd en geverifieerd wordt indien aanwezig, duidelijk wordt dat de verschillende datagroepen bij elkaar horen en Active Authentication mogelijk is.

In het hier beschreven Passive Authentication proces wordt alleen ingegaan op het controleren van de correctheid van de data op de chip. Active Authentication om de authenticiteit van de chip zelf te verifiëren wordt beschreven in 3.5. Active Authentication is echter alleen mogelijk doordat de authenticiteit van de AA public key (opgenomen in EF.AA) volgt uit de Passive Authentication controle. EF.AA is één van de datagroepen die met behulp van PA gecontroleerd wordt. Het volledige proces voor het lezen en verifiëren van de Nederlandse kentekencard chip inclusief AA staat beschreven in paragraaf 4.2.

3.5 Active Authentication

De chip van Nederlandse kentekencards is bij personalisatie voorzien van een Active Authentication (AA) key pair. Hiermee kan de authenticiteit van de chip gecontroleerd worden door de verificatiesoftware. Het AA key pair is voor iedere chip uniek. De AA private key is opgeslagen in secure memory van de chip en is niet uit te lezen. De AA private key kan alleen door de chip gebruikt worden. De AA public key is op de chip geplaatst in EF.AA en vrij uit te lezen (zie App 1 voor het exacte format). EF.AA is meegenomen in de ondertekening van alle datagroepen. De hash over EF.AA bevindt zich in het RDWIDsSecurityObject in de EF.SOd. Daarmee kan de authenticiteit van de AA public key gecontroleerd worden door middel van Passive Authentication.

De verificatiesoftware kan om de authenticiteit van de chip te verifieren een challenge (random) naar de chip sturen met het verzoek deze te ondertekenen met de AA private key. Het door de chip aan de verificatiesoftware teruggestuurde antwoord kan gecontroleerd worden met behulp van de AA public key van de chip. Als uit het teruggestuurde antwoord na 'controle'/'ontcijfering' dezelfde challenge komt als die oorspronkelijk naar de chip gestuurd is, dan is daarmee de authenticiteit van de chip aangetoond.

4 VERIFICATIEPROCES

4.1 Processtroom

Het stroomschema hieronder geeft op hoog niveau de processtroom voor verificatie van een Nederlandse kentekencard aan (zie Figuur 3). In paragraaf 4.2 wordt nader ingegaan op het uitlezen en verifiëren van de chip. Paragraaf 4.3 beschrijft dit voor buitenlandse kentekencards die voldoen aan de Europese richtlijn [1].

Voor het onderstaande stroomschema is het belangrijk om te weten dat alle in Nederland geregistreerde voertuigen geregistreerd staan in het voertuigenregister dat door RDW onderhouden wordt. Het register is leidend. Uitsluitend om voertuig verificatie te vergemakkelijken en ook offline mogelijk te maken, geeft RDW kentekencards uit. Het register is echter leidend. In geval van twijfel over de echtheid van een kentekencard dient altijd het register geraadpleegd te worden.

Figuur 3: Stroomschema verificatie Nederlandse kentekencard (en registratie Nederlands voertuig)

4.2 Lezen en verifiëren van de Nederlandse kentekencard chip

Het onderstaande proces geeft aan wat de uitlees- en verificatiesoftware moet doen voor het uitlezen en controleren van de chip van de Nederlandse kentekencard. Ongeacht of het om een Nederlandse of buitenlandse kentekencard gaat, begint de uitlees- en verificatiesoftware met het selecteren van de eVRD applicatie. De AID is identiek voor alle eVRDs die voldoen aan [1]. Vervolgens probeert de uitleessoftware de EF.SOd te selecteren. Indien dat lukt, wordt verder het proces gevolgd dat in deze paragraaf beschreven is. Indien dit niet lukt, wordt door de uitleessoftware het proces gevolgd beschreven in paragraaf 4.3 vanaf stap 2.

Voor het uitlezen dient gebruik gemaakt te worden van de commando's uit App 2. Het hieronder aangegeven proces beschrijft de happy-flow. In geval op een van de commando's die naar de kaart gestuurd worden niet de verwachte response wordt teruggestuurd, wordt het proces gestopt en aan de gebruiker een foutmelding gegeven. Eventueel kan in de 2^e lijn met meer geavanceerde uitlees- en verificatiesoftware worden vastgesteld wat het probleem is met de chip.

1. Selecteer eVRC applicatie (AID = 'A0 00 00 04 56 45 56 52 2D 30 31')

```
T÷C: '00 A4 04 00 0B A0 00 00 04 56 45 56 52 2D 30 31 00'
C÷T: '6F 0D 84 0B A0 00 00 04 56 45 56 52 2D 30 31 90 00'
```

2. Passive Authentication (1^e deel)

a. Selecteer EF.SOd (File ID = '00 1D')

```
T→C: '00 A4 02 04 02 00 1D 00'
C→T: '62 08 83 02 00 1D 80 02 LL LL 90 00'
```

```
T:'62'(= FCP template)
L:'08'
    T:'83' (= File ID)
    L:'02'
    V:'00 1D' (= EF.SOd)
    T:'80' (= File size)
    L:'02'
    V:'LL LL'
SW:'90 00' (=successful processing)
```

Indien geen EF.SOd aanwezig is (Response: Status Words '6A 82' File not found), gaat het om een buitenlandse kaart en moet de uitleesprocedure gevolgd worden zoals beschreven in paragraaf 4.3 vanaf stap 2.

b. Lees EF.SOd (lengte = 'LL LL')

Lees commando vanaf offset '00 00'

```
T→C: '00 B0 00 00 00'
C→T: 'XX ...XX 90 00'
```

Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan data plus de status words '90 00' (successful processing).

Lees commando vanaf offset '01 00'

```
T→C: '00 B0 01 00 00'
C→T: 'XX ...XX 90 00'
```

Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan data plus de status words '90 00' (successful processing).

Herhaal lees commando's met juiste offset ('00 00', '01 00', '02 00', ...) totdat alle bytes van de file zijn uitgelezen. Lengte van de file volgt uit response op het hiervoor gegeven select commando: 'LL LL'.

Plaats alle data uit de responses op de lees commando's (dus zonder de status bytes '90 00') achter elkaar om de EF.SOd data te krijgen. Dit moet een totale lengte hebben van 'LL LL' bytes. De SOd (EF.SOd data) voldoet aan RFC 5652 [6].

c. Controleer DS certificaat uit EF.SOd

i. Haal DS certificaat uit EF.SOd data

DS certificaat bevindt zich in de EF.SOd data onder:

(DS certificaat begint met tag '30')

ii. DS certificaat profiel voldoet aan CP/CPS

CP/CPS OID is te vinden in de DS certificaat extensie CertificatePolicies RDW publiceert de CP/CPS op de volgende locatie:

http://www-diensten.rdw.nl/

Meestal zal de uitleessoftware al bekend zijn met het certificaatprofiel. De uitleessoftware controleert dat de kritieke extensies aanwezig zijn en dat de aangegeven KeyUsage uitsluitend DigitalSignature is.

iii. DS certificaat is niet verlopen

Certificaat valid to date ligt na huidige datum

iv. DS certificaat komt niet voor op CRL

CRL locatie is te vinden in de DS certificaat extensie CRLDistributionPoints RDW publiceert CRLs op de volgende locatie:

http://www-diensten.rdw.nl/crl/

De uitleessoftware dient de meest recente CRL te gebruiken voor verificatie. Meestal zal de uitleessoftware al de actuele CRL bezitten (zie verder hoofdstuk 6).

v. DS certificaat is uitgegeven door CSCA (controle tegen CSCA certificaat)
De CSCA waardoor het DS certificaat is uitgegeven is te vinden in het DS
certificaat veld Issuer en in de extensie AuthorityKeyldentifier.
De uitleessoftware heeft het bijbehorende CSCA public key certificaat nodig
voor het controleren van de signature van het DS certificaat (zie hoofdstuk
6). Het CSCA certificaat is een X.509V3 certificaat volgens RFC 5280 [4].
De uitleessoftware gebruikt de public key uit het vertrouwde CSCA
certificaat voor controle van de handtekening (veld signatureValue) uit het
DS certificaat.

De handtekening is door de CSCA gezet over het TBSCertificate. Het gebruikt daartoe het algoritme zoals aangegeven in het veld signatureAlgorithm en in het veld Signature van het TBSCertificate.

vi. Sla DS public key uit DS certificaat op in geheugen

d. Controleer handtekening uit EF.SOd met public key uit DS certificaat

i. Haal handtekening en algoritme uit EF.SOd

De handtekening bevindt zich in de EF.SOd data onder:

```
T: '30'(ContentInfo)
    T: 'A0'(Content)
    T: '30'(SignedData)
    T: '31'(SingerInfos)
        T: '30'(SignerInfo)
        T: '04'(Signature)
```

Het gebruikte algoritme is te vinden in de EF.SOd data onder:

```
T: '30'(ContentInfo)
    T: 'A0'(Content)
    T: '30'(SignedData)
    T: '31'(SingerInfos)
        T: '30'(SignerInfo)
        T: '30'(SignatureAlgorithm)
        T: '06'(algorithm)
```

Dit kan sha256WithRSAEncryption (OID::= 1.2.840.113549.1.1.11) of id-RSASSA-PSS (OID ::= 1.2.840.113549.1.1.10) zijn. In het laatste geval is onder Tag '30' the RSA PSS parameters te vinden

ii. 'Controleer' / 'Ontcijfer' met DS public key

Door 'controle' / 'ontcijfering' van de handtekening met de DS public key uit het DS certificaat volgt het signedAttrs TLV veld met dien verstande dat dit veld begint met tag '31' i.p.v. met tag 'A0'.

iii. Sla signedAttrs uit handtekening op in geheugen

Sla signedAttrs op in geheugen na de begintag vervangen te hebben door 'A0'.

iv. Haal signedAttrs uit EF.SOd

Het signedAttrs veld bevindt zich in de EF.SOd data onder:

```
T: '30' (ContentInfo)
```



```
T: 'A0'(Content)
    T: '30'(SignedData)
    T: '31'(SignerInfos)
        T: '30'(SignerInfo)
        T: 'A0'(signedAttrs)
```

- v. Vergelijk signedAttrs uit EF.SOd met signedAttrs uit handtekening (geheugen)
- vi. Haal AttributeValue uit signedAttrs

Binnen signedAttrs bevindt de AttributeValue zich onder:

```
T: '30'(Attribute)
    T: '31' (AttrValues)
    T: '04' (AttributeValue)
```

Dit is de hash over eContent (= RDWIdsSecurityObject) Sla deze hash op in het geheugen.

Het hash algoritme bevindt zich in EF.SOd onder:

```
T: '30'(ContentInfo)
    T: 'A0'(Content)
    T: '30'(SignedData)
    T: '31'(SignerInfos)
    T: '30'(SignerInfo)
    T: '30'(digestAlgorithm)
    T: '06'(algorithm)
```

De NL-eVRD maakt gebruik van sha256 (OID ::= 2.16.840.1.101.3.4.2.1)

vii. Haal eContent (=RDWIdsSecurityObject) uit EF.SOd

eContent bevindt zich in de EF.SOd onder:

```
T: '30 ' (ContentInfo)
    T: 'A0' (Content)
    T: '30' (SignedData)
    T: '30' (encapContentInfo)
    T: 'A0' (explicit eContent)
    T: '04' (eContent)
```

viii. Bereken hash over eContent

Gebruik hiervoor het hash algoritme ui vi. (sha256)

ix. Vergelijk hashes

Vergelijk hash over eContents met hash uit vi. (AttributeValue uit signedAttrs).

Indien deze 2 overeenkomen is het eerste deel van PA geslaagd.

- e. Sla eContent = RDWsecurityobject op in geheugen
- 3. Active Authentication
 - a. Selecteer EF.AA (File ID = '00 0D')

```
T→C: '00 A4 02 04 02 00 0D 00'
C→T: '62 08 83 02 00 0D 80 02 LL LL 90 00'
```

```
T: '62' ( = FCP template)
L: '08'
```



```
T: '83' (= File ID)
    L: '02'
    V: '00 0D' (= EF.AA)
    T: '80' ( = File size)
    L: '02'
    V: 'LL LL'
SW: '90 00' (=successful processing)
```

b. Lees EF.AA

```
T→C: '00 B0 00 00 00'
C→T: 'XX ...XX 90 00'
```

Eventueel moet dit commando herhaald worden met de juiste offset.

c. Controleer authenticiteit EF.AA (Passive Authentication (2^e deel))

i. Haal hash algoritme uit RDWIdsSecurityObject

Het RDWIdsSecurityObject (eContent) afkomstig uit de EF.SOd is onder stap 2.e opgeslagen in het geheugen van de uitlees- en verificatiesoftware.

Het hash algoritme bevindt zich in eContent onder:

```
T: '30' (RDWIdsSecurityObject)
     T: '30' (hashAlgorithm)
           T:'06'(algorithm)
```

RDW maakt gebruik van id-sha256 ::= 2.16.840.1.101.3.4.2.1.

ii. Bereken hash over EF.AA

De hash wordt berekend over de data (dus zonder status words) uit EF.AA met het hash algoritme uit i.

iii. Haal hash waarde van EF.AA uit RDWIdsSecurityObject

Het RDWIdsSecurityObject (eContent) afkomstig uit de EF.SOd is onder stap 2.e opgeslagen in het geheugen van de uitlees- en verificatiesoftware.

De hash waarde bevindt zich in eContent onder:

```
T: '30' (RDWIdsSecurityObject)
    T: '30' (dataGroupHashValues)
           T: '04' (dataGroupFileIdentifier)
                 V: '00 0D'
           T: '04' (dataGroupHashValue)
```

De file identifier van EF.AA is '00 0D'.

iv. Vergelijk de hash-waarden

Vergelijk de hash waarde van EF.AA uit RDWIdsSecurityObject met de over EF.AA berekende hash waarde in ii.

d. Sla AA public key uit EF.AA op in geheugen

De AA public key bevindt zich in EF.AA onder:

```
T: '6F' (ActiveAuthenticationPublicKeyInfo)
    T: '30' (SubjectPublicKeyInfo)
          T:'03' (subjectPublicKey)
```

Het algoritme is te vinden in EF.AA onder:

```
T: '6F'(ActiveAuthenticationPublicKeyInfo)
    T: '30' (SubjectPublicKeyInfo)
          T: '30' (AlgorithmIdentifier)
```



```
T:'06' (algorithm)
(rsaEncryption = 1.2.840.113549.1.1.1)
```

RDW maakt gebruik van RSA.

e. Genereer 8-byte challenge (RND.IFD)

De uitlees- en verificatiesoftware genereert een random van 8 bytes.

f. Chip authenticatie

Stuur 8-byte challenge (RND.IFD) naar kaart via Internal Authenticate commando.

```
T→C: '00 88 00 00 08 XX XX XX XX XX XX XX XX XX 00'
C→T: 'XX ... XX 90 00'
```

g. Controleer reponse met behulp van AA public key

Gebruik de AA public key uit EF.AA (opgeslagen in geheugen) om de data uit de response op het Internal Authenticate commando (dus zonder de status words '90 00') te 'ontcijferen' / 'controleren' met behulp van het algoritme uit stap d. (RSA).

Dit levert een string op die volgens ISO 9796-2 [10] Digital Signature Scheme 1¹ moet bestaan uit:

```
'6A ++ M1 ++ hash (M1 ++ RND.IFD) ++ 34 CC'
waarbij M1 een nonce is gegenereerd door de chip.
```

Haal M1 uit de response.

Bereken met behulp van sha256 de hash over M1 ++ RND.IFD.

Vergelijk deze hash met de hash-waarde uit de response. Indien de 2 overeenkomen is Active Authentication van de chip geslaagd.

4. Lees en controleer data

a. Selecteer EF.Registration_A ('D0 01')

```
T→C: '00 A4 02 04 02 D0 01 00'
C→T: '62 08 83 02 D0 01 80 02 LL LL 90 00'
```

```
T: '62' ( = FCP template)
L: '08'
    T: '83' (= File ID)
    L: '02'
    V: 'D0 01' (= EF.Registration A)
    T: '80' ( = File size)
    L: '02'
```

Status: Definitief 19/90 Version: 2.1.1

¹ Digital Signature Scheme 1 met de modificatie dat de 'alternative' signature production function wordt gebruikt. M zal bestaan uit M1 en M2, waarbij M1 een nonce is die gegenereerd is door de VR applicatie van c-4 bits en M2 is RND.IFD ('M', 'M1', 'M2' en 'c' zoals gedefinieerd in ISO 9796-2 [10]). Het SHA-256 hashing algoritme and trailer optie 2 zullen gebruikt worden.


```
V: 'LL LL'
SW: '90 00' (=successful processing)
```

b. Lees EF.Registration_A

```
T→C: '00 B0 00 00 00'
C→T: 'XX ...XX 90 00'
```

Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan data plus de status words '90 00' (successful processing).

Lees commando vanaf offset '01 00'.

```
T→C: '00 B0 01 00 00'
C→T: 'XX ...XX 90 00'
```

Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan data plus de status words '90 00' (successful processing).

Herhaal lees commando's met juiste offset ('00 00', '01 00', '02 00', ...) totdat alle bytes van de file zijn uitgelezen. Lengte van de file volgt uit response op het hiervoor gegeven select commando: 'LL LL'.

Plaats alle data uit de responses op de lees commando's (dus zonder de status bytes '90 00') achter elkaar om de EF.Registration_A data te krijgen. Dit moet een totale lengte hebben van 'LL LL' bytes.

c. Controleer authenticiteit EF.Registration A (Passive Authentication (2^e deel))

i. Bereken hash over EF.Registration A

Gebruik hiervoor het hash algoritme aangegeven in de het RDWIdsSecurityObject. Het hash algoritme bevindt zich in eContent onder:

RDW maakt gebruik van sha 256 (OID ::= 2.16.840.1.101.3.4.2.1). De hash wordt berekend over de data (dus zonder status words) uit EF.Registration A.

ii. Haal hash waarde uit RDWIdsSecurityObject

De hash waarde van EF.Registration A bevindt zich in eContent onder:

De file identifier van EF.Registration A is 'D0 01'.

iii. Vergelijk de hash-waarden

Indien de hash waarde uit RDWIdsSecurityObject overeenkomt met de

berekende hash over EF.Registration_A uit i. is de data in EF.Registration_A authentiek en kan aan de gebruiker getoond worden.

d. Toon EF.Registration_A data aan gebruiker

e. Selecteer EF.Registration_B ('D0 11')

```
T→C: '00 A4 02 04 02 D0 01 00'
C→T: '62 08 83 02 D0 11 80 02 LL LL 90 00'

T: '62' ( = FCP template)
L: '08'
```

```
T: '83' (= File ID)
L: '02'
V: 'D0 11' (= EF.Registration_B)
T: '80' ( = File size)
L: '02'
V: 'LL LL'
SW: '90 00' (=successful processing)
```

f. Lees EF.Registration_B

```
T→C: '00 B0 00 00 00'
C→T: 'XX ...XX 90 00'
```

Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan data plus de status words '90 00' (successful processing).

Lees commando vanaf offset '01 00'

```
T→C: '00 B0 01 00 00'
C→T: 'XX ...XX 90 00'
```

Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan data plus de status words '90 00' (successful processing).

Herhaal lees commando's met juiste offset ('00 00', '01 00', '02 00', ...) totdat alle bytes van de file zijn uitgelezen. Lengte van de file volgt uit response op het hiervoor gegeven select commando: 'LL LL'.

Plaats alle data uit de responses op de lees commando's (dus zonder de status bytes '90 00') achter elkaar om de EF.Registration_B data te krijgen. Dit moet een totale lengte hebben van 'LL LL' bytes

g. Controleer authenticiteit EF.Registration_B (Passive Authentication (2^e deel))

i. Bereken hash over EF.Registration_B
 Gebruik hiervoor het hash algoritme aangegeven in de het
 RDWIdsSecurityObject. Het hash algoritme bevindt zich in eContent onder:


```
T:'30' (RDWIdsSecurityObject)
    T: '30' (hashAlgorithm)
    T: '06' (algorithm)
```

RDW maakt gebruik van sha 256 (OID ::= 2.16.840.1.101.3.4.2.1).

De hash wordt berekend over de data (dus zonder status words) uit EF.Registration B.

ii. Haal hash waarde uit RDWldsSecurityObject

De hash waarde van EF.Registration B bevindt zich in eContent onder:

De file identifier van EF.Registration_B is 'D0 11'.

iii. Vergelijk de hash-waarden

Indien de hash waarde uit RDWIdsSecurityObject overeenkomt met de berekende hash over EF.Registration_B uit i. is de data in EF.Registration_B authentiek en kan aan de gebruiker getoond worden.

h. Toon EF.Registration_B data aan gebruiker

i. Selecteer EF.Registration_C ('D0 21')

```
T→C: '00 A4 02 04 02 D0 21 00'
C→T: '62 08 83 02 D0 21 80 02 LL LL 90 00'

T: '62' ( = FCP template)
L: '08'
    T: '83' (= File ID)
    L: '02'
    V: 'D0 21' (= EF.Registration_C)
    T: '80' ( = File size)
    L: '02'
    V: 'LL LL'
```

j. Lees EF.Registration_C

```
T→C: '00 B0 00 00 00'
C→T: 'XX ...XX 90 00'
```

Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan data plus de status words '90 00' (successful processing).

Lees commando vanaf offset '01 00'

SW: '90 00' (=successful processing)

```
T→C: '00 B0 01 00 00'
C→T: 'XX ...XX 90 00'
```


Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan data plus de status words '90 00' (successful processing).

Herhaal lees commando's met juiste offset ('00 00', '01 00', '02 00', ...) totdat alle bytes van de file zijn uitgelezen. Lengte van de file volgt uit response op het hiervoor gegeven select commando: 'LL LL'.

Plaats alle data uit de responses op de lees commando's (dus zonder de status bytes '90 00') achter elkaar om de EF.Registration_C data te krijgen. Dit moet een totale lengte hebben van 'LL LL' bytes

k. Controleer authenticiteit EF.Registration C (Passive Authentication (2^e deel))

i. Bereken hash over EF.Registration_C

Gebruik hiervoor het hash algoritme aangegeven in de het RDWIdsSecurityObject. Het hash algoritme bevindt zich in eContent onder:

RDW maakt gebruik van sha 256 (OID ::= 2.16.840.1.101.3.4.2.1). De hash wordt berekend over de data (dus zonder status words) uit EF.Registration_C.

ii. Haal hash waarde uit RDWIdsSecurityObject

De hash waarde van EF.Registration C bevindt zich in eContent onder:

```
T:'30'(RDWIdsSecurityObject)
    T:'30'(dataGroupHashValues)
        T:'04'(dataGroupFileIdentifier)
        V: 'D0 21'
        T: '04' (dataGroupHashValue)
```

De file identifier van EF.Registration C is 'D0 21'.

iii. Vergelijk de hash-waarden

Indien de hash waarde uit RDWIdsSecurityObject overeenkomt met de berekende hash over EF.Registration_C uit i. is de data in EF.Registration_C authentiek en kan aan de gebruiker getoond worden.

I. Toon EF.Registration_C data aan gebruiker

4.3 Lezen en verifiëren van buitenlandse kentekencard chips

Het onderstaande proces geeft aan wat de uitlees- en verificatiesoftware moet doen voor het uitlezen en controleren van de chip van (buitenlandse) kentekencards die voldoen aan de Europese richtlijn [1]. Voor Nederlandse kentekencards die ook voldoen aan [1] dient echter gebruik gemaakt te worden van het proces in paragraaf 4.2. Buitenlandse kentekencards dienen qua commando's te voldoen aan ISO 7816-4 [7]en ISO 7816-8 [8]. Daarbij hoeven niet dezelfde keuzes gemaakt te zijn als voor de commando's die ondersteund worden door de Nederlandse kentekencard chip. App 2 en de hieronder aangegeven exacte commando-opbouw zijn daarom niet leidend voor buitenlandse kentekencards.

1. Selecteer eVRC applicatie (AID = 'A0 00 00 04 56 45 56 52 2D 30 31')

```
T+C: '00 A4 04 00 0B A0 00 00 04 56 45 56 52 2D 30 31 00'
C+T: '6F 0D 84 0B A0 00 00 04 56 45 56 52 2D 30 31 90 00'
```

```
T: 6F ( = FCI template)
L: 0D
   T: 84 ( = DF name)
   L: 0B
   V: A0 00 00 04 56 45 56 52 2D 30 31 (= AID)
SW: 90 00 (= successful processing)
```

2. Selecteer EF.C.IA_A.DS (File ID = 'C0 01')

```
T→C: '00 A4 02 04 02 C0 01 00'
C→T: '62 08 83 02 C0 01 80 02 LL LL 90 00'
```

```
T:'62'(= FCP template)
L:'08'
   T:'83' (= File ID)
   L:'02'
   V:'C0 01' (= EF.C.IS_A.DS)
   T:'80' (= File size)
   L:'02'
   V:'LL LL'
SW:'90 00' (=successful processing)
```

3. Lees EF.C.IA_A.DS (lengte = 'LL LL')

Lees commando vanaf offset '00 00'

```
T→C: '00 B0 00 00 00'
C→T: 'XX ...XX 90 00'
```

Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan data plus de status words '90 00' (successful processing).

Lees commando vanaf offset '01 00'

```
T→C: '00 B0 01 00 00'
C→T: 'XX ...XX 90 00'
```

Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan data plus de status words '90 00' (successful processing).

Herhaal lees commando's met juiste offset ('00 00', '01 00', '02 00', ...) totdat alle bytes van de file zijn uitgelezen. Lengte van de file volgt uit response op het hiervoor gegeven select commando: 'LL LL'.

Plaats alle data uit de responses op de lees commando's (dus zonder de status bytes '90 00') achter elkaar om de EF.C.IA_A.DS data te krijgen. Dit moet een totale lengte hebben van 'LL LL' bytes

4. Controleer DS certificaat uit EF.C.IA_A.DS

a. DS certificaat profiel voldoet aan CP/CPS

CP/CPS OID is te vinden in de DS certificaat extensie CertificatePolicies Meestal zal de uitleessoftware al bekend zijn met het certificaatprofiel. De uitleessoftware controleert dat de kritieke extensies aanwezig zijn en dat de aangegeven KeyUsage uitsluitend DigitalSignature is.

b. DS certificaat is niet verlopen

Certificaat valid to date ligt na huidige datum

c. DS certificaat komt niet voor op CRL

CRL locatie is te vinden in de DS certificaat extensie CRLDistributionPoints Meestal zal de uitleessoftware al de actuele CRL bezitten (zie verder hoofdstuk 6).

d. DS certificaat is uitgegeven door CSCA

(controle tegen CSCA certificaat indien CSCA certificaat beschikbaar is)²

De CSCA waardoor het DS certificaat is uitgegeven (CSCA private key) is te vinden in het DS certificaat veld Issuer en in de extensie AuthorityKeyldentifier.

De uitleessoftware heeft het bijbehorende CSCA public key certificaat nodig voor het controleren van de signature van het DS certificaat (zie hoofdstuk 6).

De uitleessoftware gebruikt de public key uit het vertrouwde CSCA certificaat voor controle van de handtekening (veld signatureValue) uit het DS certificaat.

De handtekening is door de CSCA gezet over het TBSCertificate.

Het gebruikt daartoe het algoritme zoals aangegeven in het veld signatureAlgorithm en in het veld Signature van het TBSCertificate.

e. Sla DS public key uit DS certificaat op in geheugen

5. Selecteer EF.Signature_A ('E0 01')

```
T→C: '00 A4 02 04 02 E0 01 00'
C→T: '62 08 83 02 E0 01 80 02 LL LL 90 00'
```

```
T:'62'(= FCP template)
L:'08'
   T:'83' (= File ID)
   L:'02'
   V:'E0 01' (= EF.Signature A)
   T:'80' ( = File size)
   L:'02'
   V:'LL LL'
SW:'90 00' (=successful processing)
```

6. Lees EF.Signature_A

Status: Definitief 25/90 Version: 2.1.1

² Eventueel zou sprake kunnen zijn van een self-signed DS certificaat. Dan dient gecontroleerd te worden met de public key uit het certificaat zelf.

Lees commando vanaf offset '00 00'

```
T→C: '00 B0 00 00 00'
C→T: 'XX ...XX 90 00'
```

Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan dataplus de status words '90 00' (successful processing).

Lees commando vanaf offset '01 00'

```
T→C: '00 B0 01 00 00'
C→T: 'XX ...XX 90 00'
```

Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan data plus de status words '90 00' (successful processing).

Herhaal lees commando's met juiste offset ('00 00', '01 00', '02 00', ...) totdat alle bytes van de file zijn uitgelezen. Lengte van de file volgt uit response op het hiervoor gegeven select commando: 'LL LL'.

Plaats alle data uit de responses op de lees commando's (dus zonder de status bytes '90 00') achter elkaar om de EF.Signature_A data te krijgen. Dit moet een totale lengte hebben van 'LL LL' bytes

7. 'Controleer'/'ontcijfer' handtekening uit EF.Signature_A met public key uit DS certificaat

a. Haal handtekening en algoritme uit EF.Signature_A

De handtekening bevindt zich in de EF.Signature A data onder:

```
T: '30'(Signature)
    T: '03(SignatureValue)
```

Het gebruikte algoritme is te vinden in de EF.Signature_A data onder:

```
T: '30'(Signature)
    T: '30'(AlgorithmIdentifier)
        T: '06'(Algorithm)
```

b. 'Controleer' / 'Ontcijfer' met DS public key

Door 'controle' / 'ontcijfering' van de SignatureValue met de DS public key uit het DS certificaat volgt de hash over EF.Registration_A.

8. Selecteer EF.Registration_A ('D0 01')

```
T→C: '00 A4 02 04 02 D0 01 00'
C→T: '62 08 83 02 D0 01 80 02 LL LL 90 00'
```

```
T:'62'(= FCP template)
L:'08'
   T:'83' (= File ID)
   L:'02'
   V:'D0 01' (= EF.Registration_A)
   T:'80' ( = File size)
```



```
L:'02'
V:'LL LL'
SW:'90 00' (=successful processing)
```

9. Lees EF.Registration_A

```
T→C: '00 B0 00 00 00'
C→T: 'XX ...XX 90 00'
```

Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan data plus de status words '90 00' (successful processing).

Lees commando vanaf offset '01 00'.

```
T→C: '00 B0 01 00 00'
C→T: 'XX ...XX 90 00'
```

Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan data plus de status words '90 00' (successful processing).

Herhaal lees commando's met juiste offset ('00 00', '01 00', '02 00', ...) totdat alle bytes van de file zijn uitgelezen. Lengte van de file volgt uit response op het hiervoor gegeven select commando: 'LL LL'.

Plaats alle data uit de responses op de lees commando's (dus zonder de status bytes '90 00') achter elkaar om de EF.Registration_A data te krijgen. Dit moet een totale lengte hebben van 'LL LL' bytes

10. Controleer authenticiteit EF.Registration_A

- a. Bereken hash over EF.Registration_A
 Gebruik hiervoor het digest algoritme aangegeven in EF.Signature_A
- Vergelijk hash waarden
 Vergelijk de berekende hash-waarde met de opgeslagen hash-waarde uit
 EF.Signature_A

11. Toon EF.Registration_A data aan gebruiker

12. Selecteer EF.C.IA_B.DS (File ID = 'C0 11')

```
T→C: '00 A4 02 04 02 C0 11 00'
C→T: '62 08 83 02 C0 11 80 02 LL LL 90 00'

T:'62'(= FCP template)
L:'08'
T:'83' (= File ID)
L:'02'
V:'C0 11' (= EF.C.IS_B.DS)
T:'80' (= File size)
```



```
L:'02'
V:'LL LL'
SW:'90 00' (=successful processing)
```

13. Lees EF.C.IA_B.DS (lengte = 'LL LL')

Lees commando vanaf offset '00 00'

```
T→C: '00 B0 00 00 00'
C→T: 'XX ...XX 90 00'
```

Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan data plus de status words '90 00' (successful processing).

Lees commando vanaf offset '01 00'

```
T→C: '00 B0 01 00 00'
C→T: 'XX ...XX 90 00'
```

Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan data plus de status words '90 00' (successful processing).

Herhaal lees commando's met juiste offset ('00 00', '01 00', '02 00', ...) totdat alle bytes van de file zijn uitgelezen. Lengte van de file volgt uit response op het hiervoor gegeven select commando: 'LL LL'.

Plaats alle data uit de responses op de lees commando's (dus zonder de status bytes '90 00') achter elkaar om de EF.C.IA_B.DS data te krijgen. Dit moet een totale lengte hebben van 'LL LL' bytes

14. Controleer DS certificaat uit EF.C.IA_B.DS

a. DS certificaat profiel voldoet aan CP/CPS

CP/CPS OID is te vinden in de DS certificaat extensie CertificatePolicies Meestal zal de uitleessoftware al bekend zijn met het certificaatprofiel. De uitleessoftware controleert dat de kritieke extensies aanwezig zijn en dat de aangegeven KeyUsage uitsluitend DigitalSignature is.

b. DS certificaat is niet verlopen

Certificaat valid to date ligt na huidige datum

c. DS certificaat komt niet voor op CRL

CRL locatie is te vinden in de DS certificaat extensie CRLDistributionPoints Meestal zal de uitleessoftware al de actuele CRL bezitten (zie verder hoofdstuk 6).

d. DS certificaat is uitgegeven door CSCA

(controle tegen CSCA certificaat indien CSCA certificaat beschikbaar is)³

De CSCA waardoor het DS certificaat is uitgegeven (CSCA private key) is te vinden in het DS certificaat veld Issuer en in de extensie AuthorityKeyldentifier.

-

³ Eventueel zou sprake kunnen zijn van een self-signed DS certificaat. Dan dient gecontroleerd te worden met de public key uit het certificaat zelf.

De uitleessoftware heeft het bijbehorende CSCA public key certificaat nodig voor het controleren van de signature van het DS certificaat (zie hoofdstuk 6).

De uitleessoftware gebruikt de public key uit het vertrouwde CSCA certificaat voor controle van de handtekening (veld signatureValue) uit het DS certificaat.

De handtekening is door de CSCA gezet over het TBSCertificate.

Het gebruikt daartoe het algoritme zoals aangegeven in het veld signature Algorithm en in het veld Signature van het TBSCertificate.

e. Sla DS public key uit DS certificaat op in geheugen

15. Selecteer EF.Signature_B ('E0 11')

```
T→C: '00 A4 02 04 02 E0 11 00'
C→T: '62 08 83 02 E0 11 80 02 LL LL 90 00'

T:'62'(= FCP template)
L:'08'
    T:'83' (= File ID)
```

```
V:'E0 11' (= EF.Signature_B)
T:'80' ( = File size)
L:'02'
V:'LL LL'
SW:'90 00' (=successful processing)
```

16. Lees EF.Signature_B

Lees commando vanaf offset '00 00'

```
T→C: '00 B0 00 00 00'
C→T: 'XX ...XX 90 00'
```

Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan dataplus de status words '90 00' (successful processing).

Lees commando vanaf offset '01 00'

```
T→C: '00 B0 01 00 00'
C→T: 'XX ...XX 90 00'
```

Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan data plus de status words '90 00' (successful processing).

Herhaal lees commando's met juiste offset ('00 00', '01 00', '02 00', ...) totdat alle bytes van de file zijn uitgelezen. Lengte van de file volgt uit response op het hiervoor gegeven select commando: 'LL LL'.

Plaats alle data uit de responses op de lees commando's (dus zonder de status bytes '90 00') achter elkaar om de EF.Signature_B data te krijgen. Dit moet een totale lengte hebben van 'LL LL' bytes

17. 'Controleer'/'ontcijfer' handtekening uit EF.Signature_B met public key uit DS certificaat

a. Haal handtekening en algoritme uit EF.Signature_B

De handtekening bevindt zich in de EF.Signature B data onder:

```
T: '30'(Signature)
    T: '03(SignatureValue)
```

Het gebruikte algoritme inclusief hash algorithme is te vinden in de EF.Signature_B data onder:

```
T: '30'(Signature)
    T: '30'(AlgorithmIdentifier)
        T: '06'(Algorithm)
```

b. 'Controleer' / 'Ontcijfer' met DS public key

Door 'controle' / 'ontcijfering' van de SignatureValue met de DS public key uit het DS certificaat volgt de hash over EF.Registration_B.

18. Selecteer EF.Registration_B ('D0 11')

```
T+C: '00 A4 02 04 02 D0 11 00'
C+T: '62 08 83 02 D0 01 80 02 LL LL 90 00'
```

```
T:'62'(= FCP template)
L:'08'
   T:'83' (= File ID)
   L:'02'
   V:'D0 11' (= EF.Registration_B)
   T:'80' ( = File size)
   L:'02'
   V:'LL LL'
SW:'90 00' (=successful processing)
```

19. Lees EF.Registration_B

```
T→C: '00 B0 00 00 00'
C→T: 'XX ...XX 90 00'
```

Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan data plus de status words '90 00' (successful processing).

Lees commando vanaf offset '01 00'.

```
T→C: '00 B0 01 00 00'
C→T: 'XX ...XX 90 00'
```

Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan data plus de status words '90 00' (successful processing).

Herhaal lees commando's met juiste offset ('00 00', '01 00', '02 00', ...) totdat alle bytes van de file zijn uitgelezen. Lengte van de file volgt uit response op het hiervoor gegeven select commando: 'LL LL'.

Plaats alle data uit de responses op de lees commando's (dus zonder de status bytes '90 00') achter elkaar om de EF.Registration_B data te krijgen. Dit moet een totale lengte hebben van 'LL LL' bytes

20. Controleer authenticiteit EF.Registration_B

- a. Bereken hash over EF.Registration_B
 Gebruik hiervoor het digest algoritme aangegeven in EF.Signature_B
- Vergelijk hash waarden
 Vergelijk de berekende hash-waarde met de opgeslagen hash-waarde uit
 EF.Signature_B

21. Toon EF.Registration_B data aan gebruiker

OPTIONEEL (het is niet zeker of EF.Registration_C aanwezig zal zijn en of uitlezen gewenst is)

22. Selecteer EF.Registration_C ('D0 21')

```
T→C: '00 A4 02 04 02 D0 21 00'
C→T: '62 08 83 02 D0 21 80 02 LL LL 90 00'

T:'62'(= FCP template)
L:'08'
T:'83' (= File ID)
L:'02'
V:'D0 21' (= EF.Registration_C)
T:'80' (= File size)
L:'02'
V:'LL LL'

SW:'90 00' (=successful processing)
```

23. Lees EF.Registration_C

```
T→C: '00 B0 00 00 00'
C→T: 'XX ...XX 90 00'
```

Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan data plus de status words '90 00' (successful processing).

Lees commando vanaf offset '01 00'.

```
T→C: '00 B0 01 00 00'
C→T: 'XX ...XX 90 00'
```


Response heeft lengte van '01 02' ofwel 258 bytes. Dit is '01 00' ofwel 256 bytes aan data plus de status words '90 00' (successful processing).

Herhaal lees commando's met juiste offset ('00 00', '01 00', '02 00', ...) totdat alle bytes van de file zijn uitgelezen. Lengte van de file volgt uit response op het hiervoor gegeven select commando: 'LL LL'.

Plaats alle data uit de responses op de lees commando's (dus zonder de status bytes '90 00') achter elkaar om de EF.Registration_C data te krijgen. Dit moet een totale lengte hebben van 'LL LL' bytes

24. Toon EF.Registration_C data aan gebruiker

5 COMMUNICATIE TUSSEN KAART EN UITLEES- EN VERIFICATIESOFTWARE

De chips van kentekencards die voldoen aan de Europese richtlijn [1] zijn smart cards (ID-1 formaat) met een contact chip die voldoet aan ISO 7816 [7], [8]. De chips ondersteunen in ieder geval het T=1 protocol. Ondersteuning van het T=0 protocol is optioneel. De chips kunnen uitgelezen worden met een reader die werkt volgens ISO 7816.

Voor de Nederlandse kentekencard chips zijn voor de commando's die ondersteund worden de keuzes gemaakt zoals weergegeven in App 2.

De kentekencard applicatie op de chip heeft als Application Identifier $AID = 'A0\ 00\ 00\ 04\ 56\ 45\ 56\ 52\ 2D\ 30\ 31'.$

6 Informatieuitwisseling met verificatiesoftware

Voor verificatie van de Nederlandse kentekencard chip dient de verificatiesoftware te beschikken over het CSCA certificaat op basis waarvan de DS certificaten van de chip gecontroleerd kunnen worden. Dit CSCA certificaat is te downloaden van de RDW website, maar om zeker te zijn van de authenticiteit van het certificaat, dient het uitgewisseld te worden via een betrouwbaar kanaal. RDW zal hiervoor een proces opzetten met erkende relying parties. Als door partijen gebruik gemaakt wordt van de RDW uitlees- en verificatiesoftware zal het CSCA certificaat daarin opgenomen zijn (bijgeleverd worden).

Na 10 jaar zal RDW gebruik gaan maken van een nieuw CSCA certificaat. Mogelijk kan dit door omstandigheden al eerder het geval zijn. Ook het nieuwe certificaat zal op de website beschikbaar zijn. Daarnaast zal RDW een CSCA link certificaat genereren en beschikbaar stellen op de website waarin de nieuwe CSCA public key is opgenomen en dat is uitgegeven met het huidige key pair. Relying parties dienen periodiek, maar in ieder geval voor het verlopen van het huidige CSCA certificaat, het nieuwe CSCA (link) certificaat te downloaden van de website, te controleren op authenticiteit met behulp van het huidige certificaat en het nieuwe CSCA certificaat te laden en activeren in de uitlees- en verificatiesoftware. Indien RDW eerder gebruik gaat maken van een nieuw CSCA certificaat zal dit aan erkende relying parties gemeld worden.

Voor verificatie van de Nederlandse kentekencard chip dient de verificatiesoftware ook te beschikken over de meest recente CRL op basis waarvan de revocatie status van een DS certificaat van de chip gecontroleerd kan worden. De CRLs zijn te downloaden van de RDW website. De authenticiteit van een CRL dient gecontroleerd te worden met het CSCA public key certificaat dat gebruikt is voor ondertekening van de CRL. Een CRL is 200 dagen geldig en wordt iedere 180 dagen opnieuw uitgegeven. Relying parties dienen periodiek, minimaal eens in de 200 dagen, een nieuwe CRL van de website te downloaden voor gebruik in de uitlees- en verificatiesoftware. RDW kan ook tussentijds een nieuwe CRL uitgeven als daar aanleiding toe is. Erkende relying parties zullen hiervan op de hoogte gesteld worden. Deze relying parties dienen dan onmiddelijk na de berichtgeving de nieuwe CRL te gaan gebruiken in de uitlees- en verificatiesoftware.

Mogelijk zal RDW op termijn ook CSCA certificaten en CRLs (en eventueel DS certificaten) voor verificatie van buitenlandse kentekencards beschikbaar stellen.

App 1 Logical Data Structure

App 1.1 Overzicht van Elementary Files

File ID	File Name	Description
00 0D	EF.AA	Active Authentication Public Key Info
00 1D	EF.SOd	Document Security Object
C0 01	EF.C.IA_A.DS	X.509v3 certificaat van de uitgevende instantie dat gebruikt
		wordt voor het controleren van de handtekening in
		EF.Signature_A (zie [1]).
C0 11	EF.C.IA_B.DS	X.509v3 certificate van de uitgevende instantie dat gebruikt
		wordt voor het controleren van de handtekening in
		EF.Signature_B (zie[1]).
D0 01	EF.Registration_A	Registratie data volgens hoofdstukken II.4 en II.5 van [1].
D0 11	EF.Registration_B	Registratie data volgens hoofdstuk II.6 van [1].
D0 21	EF.Registration_C	Additionele registratiedata en evt. CVO data.
E0 01	EF.Signature_A	Elektronische handtekening over de volledige data van
		EF.Registration_A (zie [1]).
E0 11	EF.Signature_B	Eleketronische handtekening over de volledige data van
		EF.Registration_B (zie [1]).

Tabel 1: File identifiers in de NL-eVRD applicatie

App 1.2 EF.AA

De structuur van EF.AA is identiek aan die van het elektronisch rijbewijs (ISO/IEC 18013-3:2009, section 8.4.2 [2])

Tag=tag, Len=Length, Val=Value. De lengte wordt niet gespecificeerd maar wordt berekend tijdens constructie van het TLV object.

Tag	Len	Val						
6F		ActiveA	uthentica	ntionPubl	icKeyInfo			
	Tag	Len	Val					
	30		subjectI	ubjectPublicKeyInfo				
		Tag	Len	Len Val				
		30		AlgorithmIdentifier				
			Tag	Tag Len Val				
			06		rsaEncryption = 1.2.840.113549.1.1.1 (algorithm (OID))			
			05		NULL (Parameters (ANY DEFINED BY algorithm— OPTIONAL))			
		Tag	Len	Val				
		03		subject	PublicKey (BITSTRING)			

Tabel 2: Format van EF.AA.

App 1.3 EF.SOd

De twee tabellen hieronder definiëren het Document Security Object (SOd).

De SOd is een CMS Signed Data object (RFC 5652 [6]). De twee tabellen hieronder kunnen gezien worden als het gekozen profiel voor het CMS Signed Data object en geven aan welke specifieke keuzes gemaakt zijn, plus enige additionele informatie: het eerste nummer in iedere rij is de (hexadecimale) tag voor het TLV-veld (tag value '??' geeft aan dat de tag af te leiden is uit de inhoud); waar dat van toepassing is, wordt de waarde voor een veld aangegeven.

De betekenis van de 'Gebruik' kolom is als volgt: m=mandatory (verplicht), x=must not be used (dient niet gebruikt worden), c=conditional (conditioneel).

Merk op dat de structuur van een CMS Signed Data object tamelijk complex is, waaronder verschillende keuzemogelijkheden, sets en reeksen. In geval van twijfel dienst RFC 5652 [6] geraadpleegd te worden. Merk ook op dat de uiteindelijke handtekening berekend wordt *na* het vervangen van het tag nummer. Behalve voor de velden Certificate(Choices), Issuer, en rSASSA-PSS-SHA256-Params s, wordt de volledige TLV boomstructuur voor de SOd hieronder aangegeven.

De volledige SOd moet DER geëncodeerd worden (RFC 5652 [6] staat ook oneindige lengte BER encoding toe om compatibel te zijn met verouderde tape drive apparatuur).

De keuze voor sid is issuerAndSerialNumber (volgens de elektronische rijbewijs [2] en paspoort standaarden [3]), maar merkt op dat volgens RFC 5652 [6] de alternatieve optie subjectKeyldentifier voor sid ook door implementaties ondersteund moet worden.

De huidige voorkeur voor het RSA signature algoritme is PKCS#1v1.5, maar de optie om in plaats daarvan gebruik te maken van RSA-PSS wordt open gelaten. Hetzelfde signature algoritme moet gebruikt worden voor de handtekeningen over het CSCA certificaat, DS certificaat, Signature_A, Signature_B en de SOd.

Ve	ldnaaı	m					Referentie sectie (in RFC 5652 [6])	Waarde van het veld	Commentaar
30	Conte	entIn	fo			m	3		
	06 cc	nter	itTy	ре		m	3	id-signedData ::= 1.2.840.113549.1.7.2	OID
	A0 Co	Content				m	3		
	30	30 SignedData 02 Version 31 digestAlgorithms			а	m	5.1		
					n	m	5.1, 10.2.5	3	INTEGER
					Algorithms	m	5.1		
			30	Dig	estAlgorithmIdentifier	m	10.1.1		
				06	Algorithm	m	2.1 in RFC 4055 [9]	id-sha256 ::= 2.16.840.1.101.3.4.2.1	OID
		Parameters		Х					
					х			Slechts één digest algoritme is nodig	
		30	end	cap(ContentInfo	m	5.2		
			06	eCo	ontentType	m		id-RDW-ldsSecurityObject ::= 2.16.528.1.1010.3.1.1	OID
			Α0	exp	olicit eContent	m			
				04	eContent	m		RDWldsSecurityObject	OCTEST STRING, zie volgende tabel (Tabel 4) voor waarden
		A0	Cer	tific	cates	m	5.1, 10.2.3		
			??	Cer	tificateChoices	m	10.2.2	Certificate	Dit is het DS X.509 certificaat (beginnend met tag '30'), zie RFC 5280 [4]
						х			Er is slechts één certificaat nodig
			Crl	S		х			CRLs worden niet gebruikt
		31	sig	nerl	nfos	m	5.1		
			30	Sig	nerInfo	m	5.3		
				02	Version	m	5.3, 10.2.5	1 (sid=issuerAndSerialNumber), or	INTEGER waarde hangt af van de keuze voor

Velo	dnaa	am						Referentie sectie (in RFC 5652 [6])	Waarde van het veld	Commentaar
									3 (sid=subjectKeyIdentifier)	sid
				Sic	d		-			Formeel dient gekozen te worden tussen OF issuerAndSerialNumber OF subjectKeyldentifier. In de praktijk wordt issuerAndSerialNumber gebruikt.
			30		issuerAndSerialNumb er		С			
			?? issuer		m	4.1.2.4 in RFC 5280 [4]		Issuer DN Name van DS X.509 certificaat (beginnend met tag '30')		
		02 serialnumber		m	4.1.2.2 in RFC 5280 [4]	CertificateSerialNumber	INTEGER Serial Number van DS X.509 certificaat			
			ΑC)	suk	ojectKeyldentifier	С			subjectKeyldentifier is hier alleen opgenomen om conform te zijn aan RFC 5652 [6], maar wordt in de praktijk niet gebruikt.
					04	SubjectKeyIdentifi er		4.2.1.2 in RFC 5280 [4]		subjectKeyldentifier is hier alleen opgenomen om conform te zijn aan RFC 5652 [6], maar wordt in de praktijk niet gebruikt. OCTET STRING subject key identifier uit DS X.509 certificaat SKI extension
			30	di	gest	Algorithm	m	5.3		
				06 algorithm parameters			2.1 in RFC 4055 [9]	id-sha256 ::= 2.16.840.1.101.3.4.2.1	OID	
			ΔΓ) sid		lAttrs	x m			
				+	_	tribute		11.1		

Vel	dnaan	n							Referentie sectie (in RFC 5652 [6])	Waarde van het veld	Commentaar
					06	at	trType	m	11.1	id-contentType ::= 1.2.840.113549.1.9.3	OID
					31	at	trValues	m	11.1		
						06	AttributeValue	m	11.1	id-RDW-ldsSecurityObject ::= 2.16.528.1.1010.3.1.1	OID
								х	11.1		Slechts één AttributeValue is hier toegestaan
				30	Att	trib	oute	m	11.2		
					06	at	trType	m	11.2	id-messageDigest ::= 1.2.840.113549.1.9.4	OID
					31	at	trValues	m	11.2		
						04	1 AttributeValue	m	11.2, 5.4		Deze OCTET STRING bevat de hash waarde over de <i>waarde</i> van het eContent OCTET STRING (bijv. over het RDWldsSecurityObject).
								х	11.2		Slechts één AttributeValue is hier toegestaan
						•		х			Meer Attributes zijn niet nodig
			30	sig	nat	ure	Algorithm				
				06	Alg	gor	ithm	С	2.1 in RFC 4055 [9]	sha256WithRSAEncryption ::= 1.2.840.113549.1.1.11	Conditioneel: dit veld gebruiken als het signature algoritme PKCS#1v1.5 is.
				05	Pai	ran	neters	С	5 in RFC 4055 [9]	null	Conditioneel: dit veld gebruiken als het signature algoritme PKCS#1v1.5 is. Hier moeten de parameters op NULL gezet worden.
				06	Alg	gor	ithm	С	RFC 4055 [9]	id-RSASSA-PSS ::= 1.2.840.113549.1.1.10	Conditioneel: dit veld gebruiken als het signature algoritme RSA-PSS is.
				30	Pai	ran	neters	С	RFC 4055 [9]	rSASSA-PSS-SHA256-Params structure	Conditioneel: dit veld gebruiken als het signature algoritme RSA-PSS is. RSA PSS parameters moeten gebruikt worden (mgf1, SHA256, saltlength 32).

,	/eldn	eldnaam					Ge-	Referentie sectie (in RFC 5652 [6])	Waarde van het veld	Commentaar
					04	Signature	m	11.2, 5.5		Deze OCTET STRING bevat de signature over het signedAttrs TLV vels alsof dat geëncodeerd was als EXPLICIETe TAG VAN (d.w.z. vervang de leidende tag 'A0' door '31').
		٠				unsignedAttrs	х			Er zijn geen ongetekende attributen nodig
							х			Slechts één signerInfo is nodig.

Tabel 3: Format van EF.SOd.

					Ge-		
Ve	ldna	aam	1		bruik	Waarde van veld	Commentaar
30	0 RDWldsSecurityObject						
	02 Version				m	0	INTEGER
	30 hashAlgorithm				m		
	06 algorithm			orithm	m	id-sha256 ::= 2.16.840.1.101.3.4.2.1	OID
			pa	rameters	х		
	30	dat	taG	roup Hash Values	m		
		30	Da	taGroupHash	m		
			04	dataGroupFileIdentifier	m		Dit is de two-byte OCTET STRING file-identifier
							Dit is de 32-byte OCTET STRING SHA-256 hash van een
	04 dataGroupHashValue		m		datagroup		
							Herhalen voor iedere datagroup, volgorde op basis van file
	30				m		ID

Tabel 4: Format van RDWIdsSecurityObject

App 1.4 EF.C.IA_A.DS

Conform 2003/127/EC is de inhoud van deze data group een X.509v3 geformatteerd DS certificaat gebruikt om de EF.Signature_A handtekening te genereren over de data in EF.Registration_A. Het certificaat profiel voor het DS certificaat is gedefinieerd in de CP/CPS [5].

App 1.5 EF.C.IA_B.DS

Conform 2003/127/EC is de inhoud van deze data group een X.509v3 geformatteerd DS certificaat gebruikt om de EF.Signature_B handtekening te genereren over de data in EF.Registration_B. Het certificaat profiel voor het DS certificaat is gedefinieerd in de CP/CPS [5].

App 1.6 EF.Registration_A

Conform 2003/127/EC is de inhoud van deze data group in BER-TLV structuur geformatteerd volgens het profiel in 2003/127/EC Annex I, III.11, Tabel 2 [1].

						EU	NL	Corresponderend DD10 XML	
	ta	g		code	Beschrijving van veld	m/o	m/x	element	Typische waarde van veld op de chip
78				Compatible tag allocation authority			m		n/a
	4F				application identifier	m	m		'A0 00 00 04 56 45 56 52 2D 30 31'
					inter-industry template corresponding				
71					to mandatory data	m	m		n/a
	80				version of tag definition	m	m		'00'
	9F 33				name of the member state	m	m	LidstaatVanUitgifte	"Nederland"
	9F 34				another designation of document	0	Х		
	9F 35				name of competent authority	m	m	Autoriteit	"RDW"
					name of authority issuing registration				
	9F 36				certificate	0	х		
	9F 37				Character set used	m	m		'00'
					Unambiguous consecutive number of				
	9F 38				the document	m	m	Documentnummer	"1234567890"
	81			Α	Registration number	m	m	Kenteken	"44-JBT-4"
	82			В	Date of first registration	m	m	DatumEersteToelatingEU	"20121231"
	A1			С	Personal data	m	m		n/a
		A2		C.1	Holder of the registration certificate	m	m		n/a
			83	C.1.1	Surname or business name	m	m	NaamHouder	"Achternaam-Houder"
			84	C.1.2	Other names or initials	0	m	Voorletters	"V.L."
			85	C.1.3	Address in the Member State	m	m	Adreshouder	"Talingweg 76, 8218 NX, Lelystad"
		86		C.4	vehicle owner yes/no/unknown	m	m	Eigendomssituatie	'02'
	A3			D	Vehicle	m	m		n/a
		87		D.1	Make	m	m	Merk	"ТОҮОТА"
		88		D.2	Type	m	m	Туре	"LM ZVW30(H) ZVW30L-AHXEBW(1A)"

					EU	NL	Corresponderend DD10 XML	
t	ag	c	ode	Beschrijving van veld	m/o	m/x	element	Typische waarde van veld op de chip
	89		0.3	commercial descriptions	m	m	Handelsbenaming	"TOYOTA PRIUS"
8A		E		Vehicle identification number	m	m	Voertuigidentificatienummer	"JTDKN36U801019282"
A4		F		Mass	m	m		n/a
				maximum technically permissible laden				
	8B	F	.1	mass	m	m	TechMaxMassa	"12345 kg"
				Mass of the vehicle in service with				
8C		C	à	bodywork	m	m	MassaRijklaar	"12345 kg"
8D		F	1	Period of validity	m	m	GeldigheidsDuur	""
8E		I		Date of registration	m	m	DatumAanvangAansprEU	"210121231"
8F		K	(Type approval number	m	m	Typegoedkeuringsnummer	"e11*2001/116*0264*00"
A5		P)	Engine	m	m		n/a
	90	P	P.1	Engine capacity	m	m	Cilinderinhoud	"1798"
	91	F	P.2	Engine maximum net power	m	m	Vermogen	"1234,23 kW"
	92	F	P.3	Engine type of fuel	m	m	BrandstofEU	"B/E"
93		C)	Power weight ratio	m	m	VermogenGedeeldDoorMasRijklaar	"9,99 kW/kg"
A6		S	;	Seating capacity	m	m		n/a
	94	S	5.1	Number of seats	m	m	Zitplaatsen	"5"
	95	S	5.2	Number of standing places	m	m	Staanplaatsen	"0"

Tabel 5: Format van EF.Registration_A

App 1.7 EF.Registration_B

Conform 2003/127/EC is de inhoud van deze data group in BER-TLV structuur geformatteerd volgens het profiel in 2003/127/EC Annex I, III.11, Tabel 3 [1].

					EU	NL	Corresponderend DD10 XML	
	ta	ng		code Beschrijving van veld	m/o	m/x	element	Typische waarde van veld op de chip
78				Compatible tag allocation authority	m	m		n/a
	4F			application identifier	m	m		'A0 00 00 04 56 45 56 52 2D 30 31'
				inter-industry template corresponding				
72				to optional data	m	m		n/a
	80			version of tag definition	m	m		'00'
	A1			C Personal data	0	Х		
		Α7		C.2 Vehicle owner	О	Х		
			83	C.2.1 Surname or business name	О	Х		
			84	C.2.2 Other names or initials	0	х		
			85	C.2.3 Address in the Member State	0	Х		
		A8		C.2 Second vehicle owner	0	Х		
			83	C.2.1 Surname or business name	0	х		
			84	C.2.2 Other names or initials	О	Х		
			85	C.2.3 Address in the Member State	О	Х		
		A9		C.3 Person who may use the vehicle	О	Х		
			83	C.3.1 Surname or business name	0	Х		
			84	C.3.2 Other names or initials	О	Х		
			85	C.3.3 Address in the Member State	О	Х		
	A4			F Mass	О	m		n/a
				Maximum permissible laden mass of				
		96		F.2 the vehicle in service	О	m	ToegestMaxMassa	"12345 kg"
				Maximum permissible laden mass of				
		97		F.3 the whole vehicle in service	0	m	ToegestMaxMassaComb	"12345 kg"
	98			J Vehicle category	0	m	Voertuigcategorie	"M2G"
	99			L Number of axles	0	Х		
	9A			M Wheelbase	0	Х		

				EU	NL	Corresponderend DD10 XML	
ta	ag	code	Beschrijving van veld	m/o	m/x	element	Typische waarde van veld op de chip
AD		N	Distribution among axles	0	х		
	9F 1F	N.1	Axle 1	0	Х		
	9F 20	N.2	Axle 2	0	х		
	9F 21	N.3	Axle 3	0	х		
	9F 22	N.4	Axle 4	0	х		
	9F 23	N.5	Axle 5	0	х		
AE		0	maximum towable mass of the trailer	0	m		n/a
	9B	0.1	Braked	0	m	TechMaxMassaGeremd	"12345 kg"
	9C	0.2	Unbraked	0	m	TechMaxMassaOngeremd	"12345 kg"
A5		Р	Engine	0	х		
	9D	P.4	Rated speed	0	х		
	9E	P.5	Engine identification number	0	х		
9F 24		R	Colour	0	m	Kleur	"Oranje/Oranje"
9F 25		Т	Maximum speed	0	m	MaxSnelheid	"999 km/h"
AF		U	Sound level,	0	Х		
	9F 26	U.1	Stationary	0	Х		
	9F 27	U.2	Engine speed	0	Х		
	9F 28	U.3	Drive by	0	Х		
B0		V	Exhaust emissions	0	m		n/a
	9F 29	V.1	CO	0	Х		
	9F 2A	V.2	HC	0	Х		
	9F 2B	V.3	NOx	0	Х		
	9F 2C	V.4	HC+NOx	0	Х		
	9F 2D	V.5	Particulates of diesel	0	х		
	9F 2E	V.6	diesel absorption coefficient	0	Х		
	9F 2F	V.7	CO2	0	Х		
	9F 30	V.8	Combined fuel consumption	0	х		
	9F 31	V.9	environmental category	0	m	Milieuklasse	"70/222*1970/222"
9F 32		W	Fuel tanks capacity	0	Х		

Tabel 6: Format van EF.Registration_B

App 1.8 EF.Registration_C

Tag	L	Value			
BF8700	Х	Registr	ration_C Template		М
	Tag	L	Value		
	9F8701	Х	Version (current = 1)	Binary	М
	BF8710	Χ	RegistrationDates		М
	conditional	С	IndividualVehicleInformation (1)	С	С
	conditional	С	IndividualVehicleInformation (2)	С	С
	conditional	С	IndividualVehicleInformation (3)	С	С
	conditional	С	IndividualVehicleInformation (4)	С	С
	conditional	С	IndividualVehicleInformation (5)	С	С

Tabel 7: Format van EF.Registration_C

App 1.8.1 Registratiedata

EF.Registration_C bevat altijd registratiedata zoals weergegeven in Tabel 8. Dit bevat als toevoeging op de data uit EF.Registration_A de datum van eerste registratie in Nederland.

Tag	L	Value	Format	M/O	Corresponding DD10 XML element	Typical value
9F8711		Date of first registration of the vehicle	YYYYMMDD	M	DatumEersteToelatingEU	19970702
9F8712		Date of first registration of the vehicle in the Netherlands	YYYYMMDD	М	DatumEersteInschrijvingEU	20110701
9F8713		Date of registration to which this certificate refers (Laatste Tenaamstelling)	YYYYMMDD	M	DatumAanvangAansprEU	20130628
9F8714		Registration number (Kenteken)		М	Kenteken	44-JBT-4

Tabel 8: Format van registratiedata in EF.Registration_C

App 1.8.2 Individual Vehicle Information

EF.Registration_C bevat een willekeurig aantal (0, 1, 2, 3,) IndividualVehicleInformation data elementen. Voor iedere van toepassing zijnde COC/CvO zal er een IndividualVehicleInformation data element zijn. Per individueel IndiviualVehicleInformation data element zijn er drie keuzes toegestaan voor formats en slechts een representatie (XML, Compressed XML of TLV) zal aanwezig zijn (per individueel IndividualVehicaleInformation data element).

IndividualVehicleInformation	Tag	L	Value		
(choice 1)	9F8702	Χ	IndividualVehicleInformation (XML)	A-N	С
(choice 2)	BF8703	Χ	IndividualVehicleInformation		С
			(Compressed XML)		
(choice 3)	BF8100	Χ	IndividualVehicleInformation (TLV)		С

Tabel 9: Format van Individual Vehicle Information

App 1.8.2.1 IndividualVehicleInformation (XML)

XML encoded Vehicle Information zal nog gespecificeerd worden.

App 1.8.2.2 IndividualVehicleInformation (Compressed XML)

Tag	L	Value		
9F8704	Χ	Compression Algorithm Identifier (zie Tabel 11)	Binary	M
9F8705	Х	XML geëncodeerde Vehicle Information zoals gespecificeerd zal	Binary	М
		worden, gecomprimeerd volgens het algoritme aangegeven in		
		het veld met tag 9F8704		

Tabel 10: Format van IndividualVehicleInformation (Compressed XML).

Identifier	Algorithm
0	GZIP
*	RFU

Tabel 11: Compression Algorithm Identifiers

App 1.8.2.3 IndividualVehicleInformation (TLV)

L(max) geeft de maximal toegestande lengte (in bytes) aan van het overeenkomende value veld.

Tag	L(max)	Value								
BF8101	Х	Header								
	Tag	L(max)	Value	Value						
	9F8102	36	Messageld							
Tag	L(max)	Value								
BF8103	Х	Body								
	Tag	L(max)	Value							
	BF8104	X	CocDataGr	oup (TLV)						
		Tag	L(max)	Value						
		9F8105	17	VehicleIdentificationNumber						
		9F8106	17	BaseVin						
		9F8107	1	StageOfCompletionCode						
		9F8108	1	ProvisionalApprovalIndicator						
		9F8109	3	TypeApprovalTypeCode						
		9F810A	1	IndividualApprovalTypeCode						
		9F810B	4	ProductionYear						
		9F810C	4	ProductionSequentialNumber						
		9F810D	4	NumberOfTheMemberState						
		9F810E	50	Туре						
		9F810F	25	Variant						
		9F8110	35	Version						
		9F8111		RevisionDate						
		9F8112	150	MeansOfldentificationOfType						
		9F8113	150	ManufacturerPlateLocation						
		9F8114	150	ManufacturerPlateMethodOfAffix						
		9F8115	10	VehicleCategoryCode						
		9F8116	1	AdditionalVehCat23WheelCode						
		9F8117	2	LocOfTheStatutoryPlatesCode						

Tog	1/may)	Value		
Tag	L(max)	9F8118	2	MethodOfAttachmStatPlatesCode
		9F8119	2	LocationOfTheVinCode
		9F8119 9F811A	50	LocationOfTheVinCode LocationOfTheVinCode23Wheel
		9F811B	80	NumericAlphanumIdentifCode
		9F811C	1	CompletedAlteredCode
		9F811D	500	DescriptionOfCompletion
		9F811E	35	TypeApprovalNumber
		9F811F		TypeApprovalDateOfIssue
		9F8120	1	RightLeftHandTrafficCode
		9F8121	1	MetricImperialSpeedometerCode
		9F8122		DateOfApplicationIndividualApp
		9F8123	35	IndividualApprovalNumber
		9F8124	2	IndividualApprovalVersionNr
		9F8125	2	NumberOfAxles
		9F8126	2	NumberOfWheels
		9F8127	2	NumberOfAxlesWithTwinWheels
		9F8128	2	NumberOfSteeredAxles
		9F8129	2	NumberOfPoweredAxles
		9F812A	2	NumberOfBrakedAxles
		9F812B	1	ReversibleDrivingPositionInd
		9F812C	5	Wheelbase
		9F812D	5	WheelbaseMinimum
		9F812E	5	WheelbaseMaximum
		9F812F	5	Length
		9F8130	5	LengthMinimum
		9F8131	5	LengthMaximum
		9F8132	5	MaximumPermissibleLength
		9F8133	4	Width
		9F8134	4	WidthMinimum
		9F8135	4	WidthMaximum
		9F8136	4	MaximumPermissibleWidth

T	1/	Malara		
Tag	L(max)	Value	1 4	Historia .
		9F8137	4	Height
		9F8138	4	HeightMinimum
		9F8139	4	HeightMaximum
		9F813A	4	MaximumPermissibleHeight
		9F813B	150	MaxPermPosCOGCompletedVeh
		9F813C	5	LengthOfTheLoadingArea
		9F813D	5	LengthOfTheLoadingAreaMinimum
		9F813E	5	LengthOfTheLoadingAreaMaximum
		9F813F	4	RearOverhang
		9F8140	4	RearOverhangMinimum
		9F8141	4	RearOverhangMaximum
		9F8142	4	MaximumPermissibleRearOverhang
		9F8143	6	MassOfTheVehicleInRunningOrder
		9F8144	6	ActualMassOfTheVehicle
		9F8145	6	UnladenMassVehRunningOrderMin
		9F8146	6	UnladenMassVehRunningOrderMax
		9F8147	6	UnladenMassOfTheVehicle
		9F8148	6	MassIncompleteVehRunningOrder
		9F8149	6	MinMassVehCompleted
		9F814A	6	TechnPermMaxLadenMass
		9F814B	6	TechnPermMaxMassCombination
		9F814C	6	BallastMassTotal
		9F814D	50	BallastMassMaterial
		9F814E	2	BallastMassNumberOfComponents
		9F814F	15	BallastMassNumberOfComponents
		9F8150	1	BodyIndicator
		9F8151	2	PrimaryColourCode
		9F8152	2	SecondaryColourCode
		9F8153	5	TankCapacityTankerVehicle
		9F8154	1	NumberOfDoors
		9F8155	40	ConfigurationOfDoors

T	1/	Malara		
Tag	L(max)	Value 9F8156	50	FrameOrCabMake
		9F8157	40	EcTypeApprovalNrFrameCab
		9F8158	1	PositionRollOverHoopCode
		9F8159	2	TypeOfRollOverHoopCode
		9F815A	40	MakeRollOverHoop
		9F815B	40	EcTypeApprovalNrRollOverHoop
		9F815C	3	NrOfSeatingPositionExclDriver
		9F815D	3	NrOfSeatingPositions
		9F815E	40	PositionOfSeats
		9F815F	3	SeatForUseOnlyWhenTheVehStat
		9F8160	3	NrOfPassSeatingPosLowerDeck
		9F8161	3	NrOfPassSeatingPosUpperDeck
		9F8162	3	NrOfWheelchairUserAccessPos
		9F8163	3	NumberOfStandingPlaces
		9F8164	5	LoadPlatformDimensionsLength
		9F8165	5	LoadPlatformDimensionsWidth
		9F8166	5	LoadPlatformDimensionsHeight
		9F8167	6	LoadPlatformTechPermLoad
		9F8168	150	OptionalLightSignallingDevices
		9F8169	1	HydrLiftThreePointCouplingInd
		9F816A	1	TypeApprTranspDangerGoodsInd
		9F816B	1000	Remarks
		9F816C	1	ExceedingDimensionsIndicator
		9F816D	200	Exemptions
		9F816E	400	AdditionalInformation
		9F816F	7	OdometerReading
		9F8170	1	OdometerUnitCode
		9F8171	3	IntendedCountryOfRegistrCode
		9F8172	2	VersionCoc
		9F8173		VersionDateIVI
		9F8174	1	VehicleFittedWithEcoInnovInd

Tag	L(max)	Value								
Tug	E(IIIax)	9F8175	5	TotalCO2Fr	misSavingDuel	Frolingy				
		9F8176	1	FuelTypeCode						
		BF8177	_	BrakingTable BrakingTable						
		DI 0177	Tag	L(max)						
			BF8178	Liliaxi	BrakingGroup					
			DI 0170	Tag	L(max)	Value				
				9F8179	200	BrakingDesc				
		Tag	L(max)	Value	200	DiakingDesc				
		BF817A	L(IIIax)		rOrNatCodeNi	rsTahla				
		DF017A	Tag	L(max)	Value	Stable				
			BF817B	L(IIIdX)		DrNatCodeNrsGroup				
			DF01/D	Too		Value				
				Tag 9F817C	L(max)					
				ļ		FiscPowOrNatCodeNrsCountryCode				
		Too	1/2221	9F817D	40	FiscalPowerOrNatCodeNrs				
		Tag	L(max)	Value	la a site otta la la					
		BF817E	T		horityTable					
			Tag	L(max)	Value					
			BF817F		SigningAutho					
				Tag	L(max)	Value				
				9F8200	80	NameOfSigner				
				9F8201	80	PositionOfSigner				
				9F8202	80	PlaceOfSignature				
				9F8203		DateOfSignature				
		Tag	L(max)	Value						
		BF8204		GearGroup						
			Tag	L(max)	Value					
			9F8205	1	GearboxTypeCode					
			9F8206	2	NumberOfRatiosFront					
			9F8207	2	NumberOfRatiosRear					
			BF8208		GearRatioTa					
				Tag	L(max)	Value				

Tag	L(max)	Value						
				BF8209		GearRatio	oGroup	
					Tag	L(max)	Value	
					9F820A	1	DrivingDirectionCode	
					9F820B	2	GearNumber	
					9F820C	7	GearRatio	
		Tag	L(max)	Value				
		BF820D		Regulation	ısTable			
			Tag	L(max)	Value			
			BF820E		Regulations	Group		
				Tag	L(max)	Value		
				9F820F	5	RegulActI	nclLastAmendSubjNr	
				9F8210	25	Regulatio	nAct	
				9F8211	25	RegulActI	nclLastAmend	
				9F8212	200	RegulActI	nclLastAmendRemark	
				9F8213	1	RegulAct <i>A</i>	ApprovalCode	
		Tag	L(max)	Value				
		BF8214		MakeTable				
			Tag	L(max)	Value			
			BF8215		MakeGroup			
				Tag	L(max)	Value		
				9F8216	52	Make		
		Tag	L(max)	Value				
		BF8217			alNameTable			
			Tag	L(max)	Value			
			BF8218		Commercial	NameGroup	0	
				Tag	L(max)	Value		
				9F8219	50	Commerc	cialName	
		Tag	L(max)	Value				
		BF821A			Manufacturin _{	gTable		
			Tag	L(max)	Value			
			BF821B		StageNrOfN	1anufacturir	ngGroup	

Tag	L(max)	Value								
	, ,			Tag	L(max)	Value				
				9F821C	2	StageMan	StageManufacturerNumber			
				9F821D	80	StageMan	StageManufacturerName			
				9F821E	40	StageEcTy	peApprova	lNumber		
				9F821F		StageDate	<u> </u>			
				BF8220		AddressTa	able			
					Tag	L(max)	Value			
					BF8221		Address	Group		
						Tag	L(max)	Value		
						9F8222	3	AddressTypeCode		
						9F8223	80	Name		
						9F8224	150	AddressLine1		
						9F8225	150	AddressLine2		
						9F8226	150	AddressLine3		
						9F8227	80	PlaceOfResidence		
						9F8228	80	CountryOfResidence		
						9F8229	20	PhoneNumber		
						9F822A	130	EMailAddress		
		Tag	L(max)	Value						
		BF822B		TypeAppr	TranspDanger	GoodsTable				
			Tag	L(max)	Value					
			BF822C		TypeApprTr	ranspDanger(GoodsGrou	p		
				Tag	L(max)	Value				
				9F822D	30	TypeAppr	TranspDan	gerGoodsClass		
		Tag	L(max)	Value						
		BF822E		Bodywork [*]	Table					
			Tag	L(max)	Value					
			BF822F		BodyworkG	kGroup Value				
				Tag	L(max)					
				9F8230	2	CodeForB	odywork			
				9F8231	3	NumberFo	orBodyworl	<u></u>		

Tag	L(max)	Value							
				9F8232	2	CodeForBo	odyworkSp	pecPurpVeh	
				BF8233		VehicleCla	ssTable		
					Tag	L(max)	Value		
					BF8234		VehicleC	ClassGroup	
						Tag	L(max)	Value	
						9F8235	5	ClassOfVehicleCode	
		Tag	L(max)	Value					
		BF8236		TyreTable					
			Tag	L(max)	Value				
			BF8237		TyreGroup				
				Tag	L(max)	Value			
				9F8238	100	TyreSpecif	fication		
				9F8239	6	TechnPermMaxLadenMassTyreSpec			
		Tag	L(max)	Value					
		BF823A		AxleTable					
			Tag	L(max)	Value				
			BF823B		AxleGroup				
				Tag	L(max)	Value			
				9F823C	2	AxleNumb	er		
				9F823D	1	TwinWhee	elsAxleInd		
				9F823E	1	SteeredAx			
				9F823F	4	TrackOfEa	chSteered	Axle	
				9F8240	1	PoweredA			
				9F8241	1	BrakedAxl	eInd		
				9F8242	4	AxleTrack			
				9F8243	4	AxleTrackMinimum AxleTrackMaximum			
				9F8244	4				
				9F8245	4	TrackOfAll		S	
				9F8246	1	LiftAxleInd	ł		
				9F8247	1	LoadableA			
				9F8248	1	Retractabl	leOrLoadal	bleAxleInd	

Tag	L(max)	Value					
1	_(,		9F8249	1	DriveAxle\	WithAirSusp	OrEquivInd
			9F824A	1		AirSuspOrEqu	· ·
			9F824B	5	AxleSpacir	ng	
			9F824C	5		ngMinimum	
			9F824D	5	AxleSpacir	ngMaximum	
			9F824E	5	DistrOfMa	ssRunningO	rderAxle
			9F824F	5	DistribUnl	adenMassA>	kle
			9F8250	5	DistribMa	ssIncomplet	eVehAxle
			9F8251	5	DistribMa	ssCompleted	dVehAxleMin
			9F8252	5	Technicall	yPermMass <i>A</i>	Axle
			BF8253		MaxPerml	Laden Mass A	xleNatTable
				Tag	L(max)	Value	
				BF8254		MaxPerml	Laden Mass Axle Nat Group
					Tag	L(max)	Value
					9F8255	2	MaxPermLadenMassAxleCountrCode
					9F8256	5	MaxPermLadenMassAxleNational
			Tag	L(max)	Value		
			BF8257			<u>LadenMassA</u>	xleIntTable
				Tag	L(max)	Value	
				BF8258			Laden Mass Axle Int Group
					Tag	L(max)	Value
					9F8259	40	MaxPermLadenMassTrafficRegul
					9F825A	5	MaxPermLadenMassAxleInt
			Tag	L(max)	Value		
			BF825B			WithPowere	dAxleTable
				Tag	L(max)	Value	
				BF825C			WithPoweredAxleGroup
					Tag	L(max)	Value
					9F825D	1	InterconnWithPoweredAxleNumber
					9F825E	40	InterconnOfPoweredAxles
			Tag	L(max)	Value		

Tag	L(max)	Value		<u> </u>	1	T		
				BF825F			WithBraked/	AxleTable
					Tag	L(max)	Value	
					BF8260		Interconn'	WithBrakedAxleGroup
						Tag	L(max)	Value
						9F8261	1	InterconnWithBrakedAxleNumber
						9F8262	80	InterconnOfBrakedAxle
				Tag	L(max)	Value		
				BF8263		TyreAxleTa	able	
					Tag	L(max)	Value	
					BF8264		TyreAxleG	roup
						Tag	L(max)	Value
						9F8265	6	DistrMaxLadenMassTyreAxleSpec
						9F8266	6	TechnPermisMaxMassAxle
						9F8267	5	DistrTechnPermisMassAxle
						9F8268	6	TechPermMaxStatVertLoadCouplPt
						9F8269	20	TyreSize
						9F826A	3	LoadCapacityIndexSingleWheel
						9F826B	3	LoadCapacityIndexTwinWheel
						9F826C	2	SpeedCategorySymbol
						9F826D	20	RimSizeIncludingOffSet
		Tag	L(max)	Value				
		BF826E		AxleGroup	Table			
			Tag	L(max)	Value			
			BF826F		AxleGroupG	roup		
				Tag	L(max)	Value		
				9F8270	2	AxleGroup	Number	
				9F8271	6	TechPermI	MassAxleGro	oup
				BF8272		MaxPermL	_adenMassA	xleGrNatTable
					Tag	L(max)	Value	
					BF8273		MaxPerml	_aden Mass Axle Gr Nat Group
						Tag	L(max)	Value

Tag	L(max)	Value									
						9F8274	2	MaxPermLadenMassAxleGrCCode			
						9F8275	5	MaxPermLadenMassAxleGrNat			
				Tag	L(max)	Value		·			
				BF8276		MaxPerm	LadenMass <i>A</i>	AxleGrIntTable			
					Tag	L(max)	Value				
					BF8277		MaxPerm	Laden Mass Axle Grint Group			
						Tag	L(max)	Value			
						9F8278	40	MaxPermLadenMassGrTrafficRegul			
						9F8279	5	MaxPermLadenMassAxleGrInt			
		Tag	L(max)	Value							
		BF827A		EngineTab	le						
			Tag	L(max)	Value						
			BF827B		EngineGroup						
				Tag	L(max)	Value					
				9F827C	52	Manufact	urerOfTheE	ngine			
				9F827D	40	EngineCo	deAsMarked	dOnTheEngine			
				9F827E	40	EngineEc1	ГуреАрргоvа	alNumber			
				9F827F	25	EngineNu	mber				
				9F8300	80	IdentEngi	neTypeLoca	tion			
				9F8301	80	IdentEngi	neTypeMeth	nodAffixing			
				9F8302	2	WorkingP	rincipleCode	e			
				9F8303	1	DirectInje	ctionIndicat	or			
				9F8304	1		ricIndicator				
				9F8305	1	HybridInd					
				9F8306	2		fCylinders				
				9F8307	3	ArrangementOfCylindersCode					
				9F8308	7	EngineCa	pacity				
				9F8309	1	ElectricEn	gineIndicato	or			
				9F830A	1	OffVehicle	eChargingInd	dicator			
				9F830B	1	LpgFuellir	ngSystemInd	licator			
				9F830C	1	CngFuellir	ngSystemInd	dicator			

Tag	L(max)	Value				
				9F830D	5	MaxPercentBiofuelAcceptInFuel
		Tag	L(max)	Value		·
		BF830E		TrailerBral	кеTable	
			Tag	L(max)	Value	
			BF830F		TrailerBrake	eGroup
				Tag	L(max)	Value
				9F8310	3	TrailerBrakeConnectionsCode
				9F8311	7	PressFeedLineTwoLineBraking
				9F8312	7	PressFeedLineSingleLineBraking
		Tag	L(max)	Value		
		BF8313		Mechanica	alCouplingTab	le
			Tag	L(max)	Value	
			BF8314		Mechanical	CouplingGroup
				Tag	L(max)	Value
				9F8315	40	MechnicalCouplingType
				9F8316	52	MechnicalCouplingMake
				9F8317	4	HeightCouplingAboveGroundMax
				9F8318	4	HeightCouplingAboveGroundMin
				9F8319	4	FifthWheelLead
				9F831A	4	FifthWheelLeadMinimum
				9F831B	4	FifthWheelLeadMaximum
				9F831C	5	DistFrontVehCentreCouplDev
				9F831D	5	DistFrontVehCentreCouplDevMin
				9F831E	5	DistFrontVehCentreCouplDevMax
				9F831F	5	DistCentreCouplDevRearVeh
				9F8320	5	DistCentreCouplDevRearVehMin
				9F8321	5	DistCentreCouplDevRearVehMax
				9F8322	4	DistAxisFifthWheelForemost
				9F8323	4	DistAxisFifthWheelForemostMin
				9F8324	4	DistAxisFifthWheelForemostMax
				9F8325	6	TechPermMaxTowMassBrakedTrail

Tag	L(max)	Value							
- 0	, ,			9F8326	6	TechPerr	nMaxTowN	1assDrawbarTrail	
				9F8327	6	TechPerr	nMaxTowN	1assSemiTrailer	
				9F8328	6	TechPerr	mMaxTowN	1assCentAxTrail	
				9F8329	6	TechPermMaxTowMassUnbrTrailer			
				9F832A	6	TechPermMaxTowableMassTrailer			
				9F832B	6	TechPerr	nMaxStatVe	ertMassCouplPt	
				9F832C	6	TechPerr	nMaxStatM	lassCouplPoint	
				9F832D	6	Distance	CouplPointF	FirstAxle	
				9F832E	6	Distance	CouplPointF	FirstAxleMin	
				9F832F	6	Distance	CouplPointF	FirstAxleMax	
				9F8330	6	Independ	dBrakedTow	vableMass	
				9F8331	6	InertiaBrakedTowableMass			
				9F8332	6	ContinuousBrakedTowableMass			
				9F8333	35	ApprovalNrCouplingDevice			
				9F8334	6	CouplCha	arTechnPerr	mTrailer Mass	
				BF8335		Coupling	DevicesFitte	edTable	
					Tag	L(max)	Value		
					BF8336		CouplingD	DevicesFittedGroup	
						Tag	L(max)	Value	
						9F8337	80	TypeOfCouplingDeviceFitted	
				Tag	L(max)	Value			
				9F8338	6		Characteris		
				9F8339	6		Characteris		
				9F833A	6		Characteris		
				9F833B	6		Characteris		
				9F833C	6	CouplingCharacteristicValueU			
		Tag	L(max)	Value					
		BF833D		EcoInnovat					
			Tag	L(max)	Value				
			BF833E		Ecolnnovation				
				Tag	L(max)	Value			

T	1/	Malara					
Tag	L(max)	Value	1	050225	120	ConsulCodo OfThe Feeting and time	
		_	1.7	9F833F	120	GeneralCodeOfTheEcoInnovations	
		Tag	L(max)	Value			
		BF8340	_	FuelTable			
			Tag	L(max)			
			BF8341		FuelGroup		
				Tag	L(max)	Value	
				9F8342	2	FuelCode	
				9F8343	6	MaximumNetPower	
				9F8344	5	EngineSpeedMaximumNetPower	
				9F8345	6	MaximumContinuousRatedPower	
				9F8346	3	PowerMassRatio	
				9F8347	4	PowerPowerTakeOff	
				9F8348	5	EngineSpeedPowerPowerTakeOff	
				9F8349	5	CalculatedMaximumSpeed	
				9F834A	5	MaximumSpeed	
				9F834B	35	ExtSoundLevelNrBaseRegulAct	
				9F834C	5	SoundLevelStationary	
				9F834D	5	SoundLevelStatEngineSpeed	
				9F834E	5	SoundLevelDriveBy	
				9F834F	35	DriverPercSoundLevNrBaseRegAct	
				9F8350	3	DriverPerceivedSoundLevel	
				9F8351	10	ExhaustEmissionLevelEuro	
				9F8352	40	OtherEmissionLegislation	
				9F8353	35	NrBaseRegulActLastAmendMotVeh	
				9F8354	35	NrBaseRegulActLastAmendEngines	
				9F8355	9	SmokeCorrectedAbsorptionCoeff	
				9F8356	3	UrbanConditionsCO2	
				9F8357	4	UrbanConditionsFuelConsumption	
				9F8358	3	ExtraUrbanConditionsCO2	
				9F8359	4	ExtraUrbanConditionsFuelCons	
				9F835A	3	CombinedCO2	

Tag	L(max)	Value				
			9F835B	4	Combined	dFuelConsumption
			9F835C	9	Weighted	ICombinedCO2
			9F835D	5	Weighted	lCombinedFuelCons
			9F835E	9	Combined	dCO2ConditionA
			9F835F	9	Combined	dCO2ConditionB
			9F8360	5	Combined	dFuelConsConditionA
			9F8361	5	Combined	dFuelConsConditionB
			9F8362	7	ElectricEn	nergyConsConditionA
			9F8363	7	ElectricEn	nergyConsConditionB
			9F8364	7	ElectricEn	nergyConsPureElectric
			9F8365	7	ElectricEn	nergyConsWeightedComb
			9F8366	5	ElectricRa	ange
			9F8367	5	ElectricRa	angeExternChargeable
			BF8368		Testproce	edureType1Group
				Tag	L(max)	Value
				9F8369	9	TestprocType1CO
				9F836A	9	TestprocType1HC
				9F836B	9	TestprocType1NOx
				9F836C	9	TestprocType1NMHC
				9F836D	9	TestprocType1HC_NOx
				9F836E	9	TestprocType1Particulates
				9F836F	9	TestprocType1NrOfParticles
				9F8370	2	TestProcType1ExponentParticles
			Tag	L(max)	Value	
			BF8371		•	edureType2Group
				Tag	L(max)	Value
				9F8372	9	TestprocType2CO
				9F8373	9	TestprocType2HC
				9F8374	6	TestprocType2COAtNormIdleSp
				9F8375	5	TestprocType2EngSpNormalMin
				9F8376	5	TestprocType2EngSpNormalMax

_		1				
Tag	L(max)	Value		1		
				9F8377	6	TestprocType2COAtHighIdleSp
				9F8378	5	TestprocType2EngSpHighIdleMin
				9F8379	5	TestprocType2EngSpHighIdleMax
			Tag	L(max)	Value	
			BF837A			edureEscGroup
				Tag	L(max)	Value
				9F837B	9	TestprocEscCO
				9F837C	9	TestprocEscTHC
				9F837D	9	TestprocEscNOx
				9F837E	9	TestprocEscParticulates
				9F837F	9	TestProcEscNumberOfParticles
				9F8400	2	TestProcEscExponentParticles
			Tag	L(max)	Value	
			BF8401		Testproce	edureNrscGroup
				Tag	L(max)	Value
				9F8402	9	TestprocNrscCO
				9F8403	9	TestprocNrscHC
				9F8404	9	TestprocNrscNOx
				9F8405	9	TestprocNrscNMHC_NOx
				9F8406	9	TestprocNrscParticulates
				9F8407	9	TestprocNrscNumberOfParticles
				9F8408	2	TestProcNrscExponentParticles
			Tag	L(max)	Value	
			BF8409		Testproce	edureWhscGroup
				Tag	L(max)	Value
				9F840A	9	TestprocWhscCO
				9F840B	9	TestprocWhscTHC
				9F840C	9	TestprocWhscNOx
				9F840D	9	TestprocWhscNMHC
				9F840E	9	TestprocWhscCH4
				9F840F	9	TestprocWhscNH3

Tag	L(max)	Value				
				9F8410	9	TestprocWhscParticulates
				9F8411	9	TestprocWhscNumberOfParticles
				9F8412	2	TestProcWhscExponentParticles
			Tag	L(max)	Value	
			BF8413		TestProce	edureElrGroup
				Tag	L(max)	Value
				9F8414	9	TestProcElrSmokeValue
			Tag	L(max)	Value	
			BF8415		Testproce	edureEtcGroup
				Tag	L(max)	Value
				9F8416	9	TestprocEtcCO
				9F8417	9	TestprocEtcNOx
				9F8418	9	TestprocEtcNMHC
				9F8419	9	TestprocEtcTHC
				9F841A	9	TestprocEtcCH4
				9F841B	9	TestprocEtcParticulates
				9F841C	9	TestprocEtcNumberOfParticles
				9F841D	2	TestProcEtcExponentParticles
			Tag	L(max)	Value	
			BF841E		Testproce	edureNrtcGroup
				Tag	L(max)	Value
				9F841F	9	TestprocNrtcCO
				9F8420	9	TestprocNrtcNOx
				9F8421	9	TestprocNrtcNMHC
				9F8422	9	TestprocNrtcNMHC_NOx
				9F8423	9	TestprocNrtcTHC
				9F8424	9	TestprocNrtcCH4
				9F8425	9	TestprocNrtcParticulates
				9F8426	9	TestprocNrtcNumberOfParticles
				9F8427	2	TestProcEscExponentParticles
			Tag	L(max)	Value	

Tag	L(max)	Value									
				BF8428		Testproce	edureWhtcGroup				
					Tag	L(max)	Value				
					9F8429	9	TestprocWhtcCO				
					9F842A	9	TestprocWhtcNOx				
					9F842B	9	TestprocWhtcNMHC				
					9F842C	9	TestprocWhtcTHC				
					9F842D	9	TestprocWhtcCH4				
					9F842E	9	TestprocWhtcNH3				
					9F842F	9	TestprocWhtcParticulates				
					9F8430	9	TestprocWhtcNumberOfParticles				
					9F8431	9F8431 2 TestProcWhtcExponentParticles					
		Tag	L(max)	Value	Value						
		BF8432		InServiceN	MaxMassNatTable						
			Tag	L(max)	Value						
			BF8433		InServiceMa	Group					
				Tag	L(max)	Value					
				9F8434	2		nMassNatTraffCountryCode				
				9F8435	6		nLaden Mass National				
				9F8436	6	MaxPerm	nMassCombinationNational				
		Tag	L(max)	Value							
		BF8437			1axMassIntTa	ble					
			Tag	L(max)	Value						
			BF8438		InServiceMa		roup				
				Tag	L(max)	Value					
				9F8439	40	+	nMassIntTrafficRegul				
				9F843A	6	MaxPermLadenMassInternational					
				9F843B	6	MaxPermMassCombinationInt					
	Tag	L(max)	Value								
	BF843C			AdditionalDat	lDataGroup						
		Tag	L(max)	Value							
		9F843E		DateOfPro	duction						

Tag	L(max)	Value		
		9F843F	1	BrakeAssistSystemIndicator
		9F8440	1	ProtectionPedestriansIndicator
		9F8441	1	DaytimeRunningLightsIndicator
		9F8442	1	ElectronicStabilityProgramInd
		9F8443	1	TyrePressureMonitoringSystInd
		9F8444	1	LaneDepartureWarningIndicator
		9F8445	1	AdvancEmergencyBrakingSystInd
		9F8446	1	BrakeRetarderIndicator
		9F8447	1	PressureChargerInd
		9F8448	1	InterCoolerIndicator
		9F8449	1	CatalyticConvertorInd
		9F844A	1	OxygenSensorInd
		9F844B	1	AirInjectionInd
		9F844C	1	ExhaustGasRecirculationInd
		9F844D	1	Evaporative Emis Control SysInd
		9F844E	1	ParticulateTrapInd
		9F844F	1	OnBoardDiagnosInd
		9F8450	1	AntilockBrakeSysInd
		9F8451	1	FrontAirbagInd
		9F8452	1	SideAirbagInd
		9F8453	1	BeltPreloadDeviceInd
		9F8454	1	HeadAirbagInd
		9F8455	1	LowerAirbagInd
		9F8456	1	BeltForceLimiterInd
		9F8457	1	RearRegistrationPlateCode
		9F8458	10	CodeEmissionCategory
		9F8459	8	NumberRegistrationCertifPart2
		9F845A	378	RemarksExceptions
		9F845B	4	CodeOfManufacturer
		9F845C	3	CodeOfType
_		9F845D	5	CodeOfVariantVersion

Tag	L(max)	Value				
		9F845E	1	CheckDigitCodeOfVariantVersion		
		BF845F		TechnAddDataGrAxleTable		
			Tag	L(max)	L(max) Value	
			BF8460		TechnAddD	ataGrAxleGroup
				Tag	L(max)	Value
				9F8461	2	TechnAddDataGrAxleNumber
				9F8462	1	PendulumAxleIndicator
				9F8463	1	SelfTrackingAxleIndicator
	Tag	L(max)	Value			
	BF843D		NationalDataGroup (no children defined)			

Tabel 12: Format van IndividualVehicleRegistration

App 1.9 EF.Signature_A

Tag	Len	Val		
30		SIGNAT	ΓURE	
	Tag	Len	Val	
	30		Algorit	hmldentifier
		Tag	Len	Val
		06		algorithm (OID)
		??		Parameters (ANY DEFINED BY algorithm—OPTIONAL)
	Tag	Len	Val	
	03		signatureValue (BITSTRING)	

Tabel 13: Format van EF.Signature_A

De huidige voorkeur voor het RSA signature algoritme is PKCS#1v1.5, maar de mogelijkheid wordt open gelaten om in plaats daarvan gebruik te maken van RSA-PSS. Uitlees- en verificatiesoftware moet ook het RSA-PSS signature algoritme ondersteunen.

Hetzelfde signature algoritme wordt gebruikt voor de signatures over het CSCA certificaat, DS certificaat, Signature A, Signature B en de EF.SOd.

Merk op dat voor RSA PKCS#1v1.5 de optionele parameters verplicht de NULL value moeten hebben (RFC 4055 [9]).

App 1.10 EF.Signature_B

Tag	Len	Val		
30		SIGNAT	ΓURE	
	Tag	Len	Val	
	30		Algorit	hmldentifier
		Tag	Len	Val
		06		algorithm (OID)
		??		Parameters (ANY DEFINED BY algorithm-
				OPTIONAL)
	Tag	Len	Val	
	03		signatu	reValue (BITSTRING)

Tabel 14: Format van EF.Signature_B

De huidige voorkeur voor het RSA signature algoritme is PKCS#1v1.5, maar de mogelijkheid wordt open gelaten om in plaats daarvan gebruik te maken van RSA-PSS. Uitlees- en verificatiesoftware moet ook het RSA-PSS signature algoritme ondersteunen.

Hetzelfde signature algoritme wordt gebruikt voor de signatures over het CSCA certificaat, DS certificaat, Signature_A, Signature_B en de EF.SOd.

Merk op dat voor RSA PKCS#1v1.5 de optionele parameters verplicht de NULL value moeten hebben (RFC 4055 [9]).

App 2 NL-EVRD COMMANDO'S EN RESPONSES

For an explanation of the Command and Response APDUs and the abbreviations used see ISO 7816-4 and 7816-8 [7], [8].

App 2.1 SELECT APPLICATION

App 2.1.1 Command APDU

Field	Value	Description
CLA	00	
INS	A4	
P1	04	Select by DF Name
P2	00	Return FCI Data
Lc	XX	Length of the Data field
Data	XX XX	AID of the VR Application
Le	00	

Tabel 15: SELECT APPLICATION Command APDU

App 2.1.2 Response APDU

Field	Value	Description
FCI Template		
Tag	6F	
Length	XX	
DF Name		
Tag	84	
Length	XX	
Value	XX XX	AID of the VR Application
SW1 SW2	90 00	Successful processing

Tabel 16: Response on successful processing

Field	Value	Description
SW1 SW2	XX XX Tabel 17: Response in case of an error condition	See section App 2.1.3.

App 2.1.3 Status Words

Value	Description	
90 00	Successful processing	
67 00	Error: Wrong Length	Lc is smaller than 5 or bigger than 16.

		Le is not equal to 00
68 81	Error: Logical Channel not supported	CLA not equal to 00
6A 81	Error: Function not supported	The card has been blocked
6A 82	Error: File not found	The AID specified in the Command Data field is not present on the card
6A 86	Error: Incorrect parameters P1-P2	The bytes P1 P2 do not have the value 04 00.

Tabel 18: SELECT APPLICATION Status Words

App 2.2 SELECT FILE

App 2.2.1 Command APDU

Field	Value	Description
CLA	00	
INS	A4	
P1	02	Select EF under current DF
P2	04	Return FCP Data
Lc	02	
Data	XX XX	File Identifier
Le	00	

Tabel 19: SELECT FILE Command APDU

App 2.2.2 Response APDU

Field	Value	Description
FCP Template		
Tag	62	
Length	08	
File ID		
Tag	83	
Length	02	
Value	XX XX	File Identifier of the EF
File Size		
Tag	80	
Length	02	
Value	XX XX	Number of data bytes in the file
		(set at last UPDATE BINARY command during personalization)
SW1 SW2	90 00	

Tabel 20: Response on successful processing

Field	Value	Description
SW1 SW2	XX XX	See section App 2.2.3.

Tabel 21: Response in case of an error condition

App 2.2.3 Status Words

Value	Description	
90 00	Successful processing	
67 00	Error: Wrong Length	Lc is not equal to 02.
		Le is not equal to 00
68 81	Error: Logical Channel not	CLA not equal to 00
	supported	
6A 81	Error: Function not supported	The card has been blocked
6A 82	Error: File not found	The EF Identifier specified in the Data field does not
		match with one of the values specified in App 1.1.
6A 86	Error: Incorrect parameters P1-	The bytes P1 P2 do not have the value 02 04.
	P2	

Tabel 22: SELECT FILE Status Words

App 2.3 READ BINARY

App 2.3.1 Command APDU

Field	Value	Description
CLA	00	
INS	В0	
P1	XX	Offset, most significant byte, value between 00 and 7F
P2	XX	Offset, least significant byte
Lc	-	Absent
Data	-	Absent
Le	XX	Maximum number of bytes expected in the response data, 0x00 codes for
		256.

Tabel 23: READ BINARY Command APDU

App 2.3.2 Response APDU

Field	Value	Description
Response Data	XX XX	Le data bytes, starting at offset P1P2
SW1 SW2	90 00	

Tabel 24: Response on successful processing, Le bytes available

Field	Value	Description
Response Data	XX XX	Ne data bytes, starting at offset P1P2
		Ne =
		length of the data in the currently selected EF – offset P1P2
SW1 SW2	62 82	Warning: End of file reached before reading Ne bytes

Tabel 25: Response on successful processing, less than Le bytes available

Field	Value	Description
SW1 SW2	XX XX	See section App 2.3.3.

Tabel 26: Response in case of an error condition

App 2.3.3 Status Words

Value	Description	
90 00	Successful processing	
62 82	Warning: End of file reached before reading Ne bytes	Offset + Le > File Size
69 86	Error: Command not allowed	no current EF
6A 81	Error: Function not supported	The card has been blocked
6A 86	Error: Incorrect parameters P1-P2	P1 > 7F
6B 00	Error: Wrong parameters P1-P2	Offset > File Size

Tabel 27: READ BINARY Status Words

App 2.4 INTERNAL AUTHENTICATE

App 2.4.1 Command APDU

Field	Value	Description
CLA	00	
INS	88	
P1	00	
P2	00	
Lc	08	
Data	XX XX	RND.IFD
		8-byte random value generated by the off-card entity
Le	00	

Tabel 28: INTERNAL AUTHENTICATE Command APDU

App 2.4.2 Response APDU

Field	Value	Description
Response Data	XX XX	Signature
SW1 SW2	90 00	

Tabel 29: Response on successful processing

Field	Value	Description
SW1 SW2	XX XX	See section App 2.4.3

Tabel 30: Response in case of an error condition

App 2.4.3 Status Words

Value	Description	
90 00	Successful processing	
66 00	Error: Security related issues	Signature generation has failed
67 00	Error: Wrong Length	Le is not equal to 00
		Lc is not equal to 08
69 85	Error: Conditions of use not	Active Authentication Session Flag is set
	satisfied	or
		Maximum Active Authentication Counter exceeds the
		Active Authentication Counter Maximum.
6A 81	Error: Function not supported	The card has been blocked
6A 86	Error: Incorrect parameters P1-	The bytes P1 P2 do not have the value 00 00.
	P2	
6A 88	Error: Referenced Data not found	The Active Authentication Private Key has not been
		personalized.

Tabel 31: INTERNAL AUTHENTICATE Status Words

App 2.5 Status Words Summary

Value	Description
90 00	Succesful processing

Tabel 32: Status Words indicating successful processing

Value	Description
62 82	Warning: End of file reached before reading Ne bytes
63 00	Warning: No information given (authentication failure)

Tabel 33: Status Words indicating a warning

Value	Description
66 00	Error: Security related issues
67 00	Error: Wrong Length
68 81	Error: Logical Channel not supported
69 82	Error: Security Status not satisfied
69 85	Error: Conditions of use not satisfied
69 86	Error: Command not allowed
6A 80	Error: Incorrect parameters in the command data field
6A 81	Error: Function not supported
6A 82	Error: File not Found
6A 84	Error: Not enough memory space in the file
6A 86	Error: Incorrect parameters P1-P2
6A 87	Error: Nc inconsistent with parameters P1-P2
6A 88	Error: Referenced Data not found
6B 00	Error: Wrong parameters P1-P2

6D 00	Error: Instruction code not supported or invalid
6E 00	Error: Class not supported

Tabel 34: Status Words indicating an error condition

App 3 Traces communicatie uitlees/verificatiesoftware & Chip (Informatief)

De APDU traces zijn gemaakt op basis van een specimen kentekencard. De DS certificaten in de APDU trace kunnen gevalideerd worden met het CSCA certificaat uit App 4.

App 3.1 Lezen en verifieren van de Nederlandse kentekencard chip

APDU trace volgens de inspectieprocedure die gespecificeerd is in 4.2.

Selecteer eVRC applicatie (AID = 'A0 00 00 04 56 45 56 52 2D 30 31')

```
T→C: '00 A4 04 00 0B A0 00 00 04 56 45 56 52 2D 30 31 00'

C→T: '6F 0D 84 0B A0 00 00 04 56 45 56 52 2D 30 31 90 00'
```

2. Passive Authentication

a. Selecteer EF.SOd (File ID = '00 1D')

```
T→C: '00 A4 02 04 02 00 1D 00'
C→T: '62 08 83 02 00 1D 80 02 08 9C 90 00'
```

b. Lees EF.SOd (lengte = 'LL LL')

```
T→C: '00 B0 00 00
C→T: '30 82 08 98 06 09 2A 86 48 86 F7 0D 01 07 02 A0 82 08 89 30 82
08 85 02 01 03 31 0D 30 0B 06 09 60 86 48 01 65 03 04 02 01 30 82 01
6B 06 09 60 84 10 01 87
                        72
                           03 01 01 A0
                                        82
                                           01
                                              5C 04 82 01 58 30
54 02 01 00 30 0B 06 09
                        60
                           86 48 01
                                     65
                                        03
                                           04
                                              02
                                                 01
                                                    30 82 01
                                                                   26
                                                             40
04 02 00 0D 04 20
                  E6 AC A0 C2 08 A2
                                     53 C5
                                           82
                                              С8
                                                 DC BA D9 A2
                                                             06
F1 A8 2A 76 OF 16
                  4F 1A 78 4E 0F 47 EB
                                        32
                                           32
                                              30
                                                 26
                                                    04 02 C0
                                                                    2.0
                                                             01
                                           7E
                                              59
63 3A E7 9A 1D E8
                  В8
                     80 1D
                           1D
                               2E 99
                                    09
                                       ΑF
                                                 В7
                                                    D1
                                                       9E 59
                                                             2F
                                                                 1A C1
70 61 36 DD 16 45
                  36 1F 55
                           30
                               26 04
                                     02
                                        C0
                                           11
                                              04
                                                 20
                                                    63
                                                       3A E7
                                                             9A
                                                                 1D E8
                        7E
B8 80 1D 1D 2E 99
                  09 AF
                           59 B7 D1
                                     9E
                                        59
                                           2F
                                              1A
                                                 C1
                                                    70
                                                       61 36
                                                             DD
                                                                 16 45
                              20 77
36 1F 55 30 26
               04
                  02 D0 01
                           04
                                     89
                                        04 A9
                                              1F
                                                 D3
                                                    ВВ
                                                       A2
                                                          A2
                                                             56
                                                                    75
                  FO 64 17 90 7F D5 9E EC 06 A2 F6
D9 AA 21 OE 22 33
                                                    04
                                                       70 57
02 D0 11 04 20 90 00'
T→C: '00 B0 01 00 00'
C→T: 'C1 55 02 FC A1 28 16 60 04 1B BA DD 03 93 E1 A6 23 D4 B8 BC 80
EB B4 61 01 9B 8E 56 DD D0 34 A2 30 26 04 02 D0 21 04 20 18 F0 83 CB
FD 72 92 B6 34 B3 2E 96 79 15 B3 78 D4 81 B7
                                              В2
                                                 9 F.
                                                    2F C6
                                                          09 0A 4E 65
9E 3D 13 91 91 30
                  26 04 02 E0 01 04 20 8E E7
                                              D9 80 DF 89 0D A1
                                                                 08 09
                                                                E1 30
09 77 4F 9D 53 BO 7D 5A AF A7 B7 F5 9C D3 D9 0D 2F
                                                    64 CE 94 DB
                  20 10 4A 20
                                       96
                                                    A5 F2 C4
26 04 02 E0 11 04
                              74 C1 0B
                                          67
                                              87 34
                                                             D0
                                                                79 C6
D8 67 9E E1 8B AC
                  F1 35 3F 8E 3F B8 3F 41 E6 E5 A0
                                                    82 05 0B 30
                                                                82 05
07 30 82 02 EF AO 03 02 01 02 02 11 00 FA
                                          27 62 08
                                                    72 1F DE F1
                                                                 64 23
4E CE OF 92 AC F7
                  30 0D 06 09 2A 86 48 86 F7 0D 01 01 0B 05 00
31 19 30 17 06 03 55 04 03 13 10 43 53 43 41 20
                                                 47
                                                    41 54 20
65 56 52 44 31 0B 30 09 06 03 55 04 05 13 02 30 31 31 0C 30 0A 06 03
55 04 0B 13 03 90 00'
```



```
T→C: '00 B0 02 00 00'
      '52 44 57 31 21 30 1F 06 03 55 04 0A 13 18 53 74 61 74 65 20 6F
66 20 74 68 65 20 4E 65 74 68 65 72 6C 61 6E 64 73 31 0B 30 09 06 03
55 04 06 13 02 4E 4C 30 1E 17 0D 31 33 31 31 32 36 30 31 33 33 32 36
5A 17 OD 32 34 30 32 32 34
                           30 31
                                 33 33 32
                                          37 5A 30 63 31 0B 30 09 06
03 55 04 06
           13 02 4E 4C 31
                           21
                              30 1F 06 03 55 04 0A 0C 18 53 74 61
65 20 6F
        66 20 74
                  68
                     65 20 4E 65 74 68
                                       65
                                          72
                                             6C 61 6E 64 73 31 0C
OA 06 03 55 04 OB OC 03 52 44
                              57 31 16 30 14 06 03 55 04 03 0C
53 2D 30 32 20 4E 4C 20 65 56 52 44 31 0B 30 09 06 03 55 04 05
                                                               13 02
32 31 30 82 01 22 30 0D 06 09 2A 86 48 86 F7
                                             OD 01 01 01 05 00 03 82
01 OF 00 30 82 01 0A 02 82 01 01 00 C8 FE E0 20 75 27 77 40 BD 19 66
64 EE 5A 07 07 27 24 EA 82 3D D0 41 2C BE EC 5A AC 6C 8B 15 F1 B4 E9
E4 F6 47 33 76 90 00'
T→C: '00 B0 03 00 00'
C→T: '5A 16 96 41 74 32 C4 30 50 B6 65 1B 22 4F F1 6F 68 A1 4C D0 E5
ED 28 BO 8A 26 D3 27 C1 B5 C9 B7 55 70 1B DE C3 8E 2F BB B8 BO 79 73
BD DF 81 B9 AA 4C D4 2D D6 87 FF 51 CF 6C C1 6F E4 4E EF 51 27 37 C0
CA 64 24 E0 66 CE AE 66 B0 3A E2 11 EA 94 12 OF DA A3 06 6F 25 57 E9
7A 54 0A 8C 08 06 6E 32 C2 57 30 48 F6 4F 80 DE 29 62 B9 E0 99
DF 6A 90 93 4B BB 32 78 B8 F5 BB 47 9F 7E 1E 82 7B 6E E2 50 9A 8B 77
A5 52 57 6B 9F BE E8 BF C5 68 94 1C AB CB 2F
                                             7C 14 18 A9 A9 C0 98 60
OA 58 B2 3F 70 95 D0 66 97 86 66 3B BE
                                       96 C9 6F D9 4E C6 2F 44 19 4F
21 43 E3 04 5F 0C 1C 8A 7B 94 8F 81 83 28 03 3A 29 D9 5F 8D E6 F7 B5
4B C9 4F 24 C6 07 B3 BA 99 AF 58 41 02 03 01 00 01 A3 81 B2 30 81 AF
30 1D 06 03 55 1D 0E 04 16 04 14 66 E4 AB D3 C8 03 26 55 B9 A0 3E D6
BB EF 85 68 41 90 00'
T→C: '00 B0 04 00 00'
C→T: 'C5 5B 74 30 1F 06 03 55 1D 23 04 18 30 16 80 14 92 51 87 BD 8D
E7 DF BF 32 3C 66 69 29 7F DA EB 8A B4 AB B4 30 17 06 03 55 1D 20 04
                 OA 60 84 10 01 87 72 02
                                          01
                                             03 01
                                                   30 44 06 03
10 30 OE 30 OC
              0.6
                                                                  1 D
                  39 A0 37
                              35 86 33
                                          74 74
1F 04 3D 30 3B 30
                          ΑO
                                       68
                                                70
                                                   3A 2F
                                                         2F
                                                            77
                  74 65 6E
                           2E
                              72 64
                                    77
                                       2E 6E 6C
2D 64 69 65 6E 73
                                                2F
                                                   63
                                                      72
                                                         6C 2F
                                                               43
                                                                   53
                 4C 65 56 52 44 2D 30 31 2E 63
43 41 47 41 54 4E
                                                72
                                                   6C
                                                      30 OE 06
                                                               0.3
                                                                   55
1D OF 01 01 FF 04
                 04 03 02 07
                              80 30 0D 06 09 2A 86
                                                   48 86 F7 OD
                                                               0.1
                                                                   01
OB 05 00 03 82 02 01 00 82 FC C7
                                 80 1E
                                       6D 47 35 1D
                                                   40 7B B5 B4
                                                               F7 77
09 C7 4F 6F DF C7 CF 32 CF 6F 48 5C 29 99 E7
                                             E2 3C
                                                   71 87 70 26
                                                               9C
                                                                  6F
E1 E7 6F 22 BB BB BE 53 5A 4B F3 C5 3A 2F 84 56 1D 7A 69 24 26 C8 50
C1 7E C7 06 8E 35 67 82 A5 28 22 C4 82 DC 7E 70 2F FF 1D C4 3D 52 FD
86 88 19 44 1A 90 00'
T→C: '00 B0 05 00 00'
C→T: 'AB CA 36 92 B4 70 2D B4 11 85 E8 AC 6A 55 57 BA 55 DA 42 56 73
A5 49 88 1E 6D CD 22 4A 88 99 A5 D6 C1 90 96 09 07 5F 89 5D 35 20 8D
70 13 C7 B9 7A 6F 9F 6B DB 17 CE EC 0D 56 FC 45 92 B2 E4 4F 9E 3F 16
14 7F CF D7 DE 38 A5 01 BE F4 0E BE D9 AC
                                          79
                                             76 19 CO
                                                      4E 33 AB
F6 BA 7E 78 6B 8A 6C 93 5F AB BB 0A E5 31 DA 2C 7B 4C 3C 48 9C
78 0D 56 55 20 48 72 80 A9 16 6F 92 5D F0 CD F9 2F 49 B6 CC 4C
F8 64 4A 73 1C 57 0B 95 04 AE 24 E9 24 6E 33 B3 DD 06 AA B3 EA 2C A3
```

OD 2E 0F 5B 0A 8D 51 BE 21 C5 62 F4 FA 7B FE A5 A8 65 CE EE E5 2D A9

49 E4 11 B0 93 4D B7 92 83 DA 69 75 70 E1 0B 7C 84 4E B8 1F 06 CE 7A FE 92 ED DF 77 12 FA A4 49 FE A4 11 4E F4 41 CA 6C 57 11 38 21 96 D7 E6 73 3F 0B 66 6A 93 0B 4E 04 9F 4D 2D 4B 24 78 36 20 A5 01 C2 AD BD 06 AB D4 D7 EA 90 00' T→C: '00 B0 06 00 00' C→T: '4D E9 EB 40 9F C8 A7 3C D7 9C 8D 91 65 ED FA 7C C3 8B FA 2E B9 E7 C7 54 C1 9D 2E 6D B4 17 8B 0F 38 72 24 A9 39 CD 60 96 BE 4D 14 FA 61 22 88 0F B1 9E E4 46 DF 5A 26 93 3E 93 CB D7 5B C0 9E F4 3E 25 EA 38 DC 4A DD 1C 48 4A B5 F3 A4 B1 8C 36 4A 91 25 3C B0 0E 79 37 F2 04 E1 59 92 8A DD 0E 5B D2 FE 90 00 C4 BE 66 19 FE 9A 90 EC C7 30 CD 49 A7 0B A7 30 19 42 D3 42 2C ED 5A A4 38 D7 C8 2C BE 41 6A C7 00 E0 00 E7 2C EC 1B E0 D2 79 79 CC 15 D7 6A CF FC 30 40 43 FC C1 9C FD 4A 4C 9C 96 56 F0 44 33 18 74 31 82 01 F1 30 82 01 ED 02 01 01 30 7B 30 66 31 19 30 17 06 03 55 04 03 13 10 43 53 43 41 20 47 41 54 20 4E 4C 20 65 56 52 44 31 0B 30 09 06 03 55 04 05 13 02 30 31 31 0C 30 0A 06 03 55 04 0B 13 03 52 44 57 31 21 30 1F 06 03 55 04 0A 13 18 53 74 61 74 65 20 6F 66 20 90 00' T→C: '00 B0 07 00 00' C→T: '74 68 65 20 4E 65 74 68 65 72 6C 61 6E 64 73 31 0B 30 09 06 03 55 04 06 13 02 4E 4C 02 11 00 FA 27 62 08 72 1F DE F1 64 23 4E CE 0F 92 AC F7 30 0B 06 09 60 86 48 01 65 03 04 02 01 A0 4B 30 18 06 09 2A 86 48 86 F7 0D 01 09 03 31 0B 06 09 60 84 10 01 87 72 03 01 01 30 2F 06 09 2A 86 48 86 F7 0D 01 09 04 31 22 04 20 A9 56 9F B9 20 04 CD 19 OF A1 14 OE 97 D2 35 99 13 3A 84 28 2A 65 1D FD F4 AE 10 9B C3 C5 F8 73 30 0D 06 09 2A 86 48 86 F7 0D 01 01 0B 05 00 04 82 01 00 72 26 A5 37 A4 83 EB 5D 64 36 2E EE E6 01 8C 04 B9 06 75 B2 08 F5 18 88 A4 76 CB 17 3D 71 C7 FF 0A A5 0B 40 75 DD 36 E0 74 33 53 05 72 72 BE D3 60 93 15 A1 F7 5F D2 19 93 A2 36 E1 D1 CA 56 E4 B4 3E 57 94 D7 8E 71 AB B5 81 EB EB AD 3A 18 85 1C 49 45 3C 12 F4 CF 93 DA 9A 97 AA D9 05 C2 7B 71 8C 67 C8 90 00' T→C: '00 B0 08 00 00' C→T: 'E4 AA AD 1C 22 B7 B9 DA D5 1A EA EE 09 23 B4 7F 9E 8F 8F 63 2D 4C 1B 0D 5B 8C 95 0F 0A A4 38 9A BB BE 0C 3B A5 B2 D1 0E 36 F0 DD C9 14 A3 F9 EC 18 74 FC F0 9E B8 0D 65 29 FC 6F BB 9B F8 9E 16 DF F5 74 72 27 86 A7 46 9A 06 D5 4B 31 23 C1 8E 4C B8 1E 14 9D EA B0 5C 4D 16 D7 DA 2E F6 AD 80 F2 BD 57 91 CB 73 27 5C E6 A4 B6 93 27 C1 8F 89 5E 51 CC EE 85 DA 33 58 88 87 8B 3E 1A A7 CC A8 5E 3A CD 20 83 44 B6 21 D4 42 8D 4E 1D 18 01 EF BB DE 07 77 26 C4 A5 56 CE 57 29 3A 90 00'

3. Active Authentication

a. Selecteer EF.AA (File ID = '00 0D')

T→C: '00 A4 02 04 02 00 0D 00'
C→T: '62 08 83 02 00 0D 80 02 01 2A 90 00'

b. Lees EF.AA

T→C: '00 B0 00 00 00'
C→T: '6F 82 01 26 30 82 01 22 30 0D 06 09 2A 86 48 86 F7 0D 01 01 01 05 00 03 82 01 0F 00 30 82 01 0A 02 82 01 01 00 B7 59 31 B3 75 FE 3A 40 40 C6 B1 07 54 AB 07 42 B5 D8 88 FE 30 07 93 FE F5 EC C4 E0 54 DE

84 E9 10 32 DC 79 E5 46 3F 28 E4 DD 50 0D DD 55 A9 A5 71 32 53 63 63 48 9E 6E 20 DB FB 93 EA 77 B2 A4 64 AC 1F 15 DB 21 AA 9E 45 31 0F B3 F0 04 1C 66 F7 60 3E 14 F9 C8 2E AE 40 FF 16 F3 31 98 9D 5A B6 D2 09 F4 6F 91 83 C9 6F BB 14 7C A4 5D 9B FD 00 09 BD DE CC 94 7F 6D C1 AE AB 7F FA CD 3F 2E A4 43 83 8A 14 61 27 9B 68 7F 38 6B D5 16 51 B6 02 76 AF 8D F3 CD 76 A8 B5 DA 12 DC 5B 66 8E C4 FF AF 5A B2 23 19 A6 3A A3 B6 A7 3F 95 AE 0B A5 4F 50 83 59 E6 6D 48 C2 16 64 39 12 AF 82 1F DA 13 9A CC 25 A5 9E FC F2 6A B7 63 19 7E DF E4 50 4B 4C 94 90 00' T→C: '00 B0 01 00 00' C→T: '3C 75 86 C5 48 AA 31 BB 5A 9B B4 C5 B5 FF C9 F5 2F 39 AA 91 D8 67 D3 2D 55 7E 8B E9 AC 72 E2 6F 35 DD 90 94 9B 02 03 01 00 01 90 00'

c. Chip authenticatie

T→C: '00 88 00 00 08 AB C6 06 94 68 B5 44 3A 00' C→T: 'B4 EB 4B 65 14 01 CC 0E 91 4E 2A 11 74 60 2C 16 5F 52 CB 98 A1 56 38 74 B4 41 C0 44 75 33 B7 FC 64 9E 8C BE 29 6D F8 07 31 7D C0 59 FF 93 81 6C 0A 6F CC 1B A0 A1 85 71 AA C3 AC 8A 22 D3 73 41 49 5A C6 3E AE 98 65 CB F0 B1 D2 0B 32 46 CF 57 13 E6 D3 72 AC 01 6B 34 ED 2C A8 17 44 3B A9 E7 B6 3C 24 E9 2A 35 53 68 52 0D 6E 7B DB E2 BA C6 F3 2A 87 64 9D 0A AB 2A 54 6D 40 D6 BD 1A CB 28 CD 78 BF 14 BD CE B2 C6 CB 66 27 41 C6 BE 1B 49 EE DB 41 D8 51 8D 2A 2E FC DA 0F D3 81 AF. OF 5B E5 FC E4 F2 80 66 76 D2 C5 A7 1C 9D 56 02 BE 3D B3 B1 B5 96 2A 04 08 6F 47 2F 4C EE 93 6B 93 9E 1E 90 4E 0C AA 78 E4 7F 2D 06 AC D6 D8 CC 0C B3 87 96 E2 98 4B 3C 7B FE CF C6 47 1D 19 EB 92 24 1F 0C 8A 6A F3 B9 CB 78 72 06 0E A0 7F 51 FC 34 B5 DD 90 86 51 0F 47 A8 8D 8D A2 3F 65 D0 30 03 90 00'

4. Lees en controleer data

a. Selecteer EF.Registration_A ('D0 01')

T→C: '00 A4 02 04 02 D0 01 00' C→T: '62 08 83 02 D0 01 80 02 01 18 90 00'

b. Lees EF.Registration_A

T**→**C: '00 B0 00 00 00' C→T: '78 0D 4F 0B A0 00 00 04 56 45 56 52 2D 30 31 71 82 01 05 80 01 00 9F 33 09 4E 65 64 65 72 6C 61 6E 64 9F 35 03 52 44 57 9F 37 01 00 9F 38 0A 30 30 39 33 39 32 33 38 38 34 81 08 31 2D 52 44 57 2D 30 31 82 08 32 30 31 34 30 31 30 31 A1 34 A2 2F 83 08 56 69 73 73 63 68 65 72 84 03 57 20 47 85 1E 53 6B 61 67 65 72 20 52 61 6B 20 31 30 20 39 36 34 32 20 43 5A 20 20 56 65 65 6E 64 61 6D 86 01 02 A3 1A 87 07 43 49 54 52 4F 45 4E 88 0A 4B 46 20 52 48 43 20 38 2F 50 89 03 44 53 35 8A 11 56 46 37 4B 46 52 48 43 38 43 53 31 32 33 34 35 36 A4 09 32 32 36 35 20 6B 67 8C 07 31 37 33 35 20 6B 67 8D 01 30 8E 08 32 30 31 34 30 31 30 31 8F 12 65 32 2A 32 30 30 37 2F 34 36 2A 30 31 35 36 2A 30 31 A5 1A 90 08 31 39 39 37 20 63 6D 33 91 09 31 32 30 2C 30 30 20 6B 57 92 03 90 00' T→C: '00 B0 01 00 00' C→T: '45 2F 44 93 06 6E 2E 76 2E 74 2E A6 0B 94 01 35 95 06 6E 2E 76 2E 74 2E 90 00'

c. Selecteer EF.Registration_B ('D0 11')

T→C: '00 A4 02 04 02 D0 11 00' C→T: '62 08 83 02 D0 11 80 02 00 68 90 00'

d. Lees EF.Registration_B

T→C: '00 B0 00 00 00'

C→T: '78 0D 4F 0B A0 00 00 04 56 45 56 52 2D 30 31 72 57 80 01 00 A4

11 96 07 32 32 36 35 20 6B 67 97 06 6E 2E 76 2E 74 2E 98 05 4D 31 20

41 46 AE 10 9B 06 38 30 30 20 6B 67 9C 06 35 30 30 20 6B 67 9F 24 05

42 4C 41 55 57 9F 25 06 6E 2E 76 2E 74 2E B0 15 9F 31 12 37 31 35 2F

32 30 30 37 2A 36 39 32 2F 32 30 30 38 41 90 00'

e. Selecteer EF.Registration_C ('D0 21')

T+C: '00 A4 02 04 02 D0 21 00' C+T: '62 08 83 02 D0 21 80 02 09 73 90 00'

f. Lees EF.Registration_C

T→C: '00 B0 00 00 00'

C→T: 'BF 87 00 82 09 6D 9F 87 01 01 01 BF 87 10 30 9F 87 11 08 32 30 31 34 30 31 30 31 9F 87 12 08 32 30 31 34 30 31 30 31 9F 87 13 08 32 30 31 34 30 31 30 31 9F 87 14 08 31 2D 52 44 57 2D 30 31 BF 87 03 82 09 2E 9F 87 04 01 00 9F 87 05 82 09 23 1F 8B 08 00 00 00 00 00 04 00 EC BD 07 60 1C 49 96 25 26 2F 6D CA 7B 7F 4A F5 4A D7 E0 74 A1 08 80 60 13 24 D8 90 40 10 EC C1 88 CD E6 92 EC 1D 69 47 23 29 AB 2A 81 CA 65 56 65 5D 66 16 40 CC ED 9D BC F7 DE 7B EF BD F7 DE 7B EF BD F7 3B 9D 4E 27 F7 DF FF 3F 5C 66 64 01 6C F6 CE 4A DA C9 9E 21 80 AA C8 1F 3F 7E 7C 1F 3F 22 1E FF 1E EF 16 65 7A 99 D7 4D 51 2D 3F FB 68 77 BC F3 51 9A 2F A7 D5 AC 58 5E 7C F6 D1 BA 3D DF 3E F8 E8 F7 38 FA 8D 93 C7 67 CB 59 71 59 CC D6 59 F9 93 F9 BC 98 96 F9 D9 F2 BC AA 17 59 4B EF D1 F7 69 90 00' T→C: '00 B0 01 00 00' C→T: 'FA F8 49 35 BB E6 DF E8 F7 93 6A FA 34 6B B3 CF EB 6A BD D2 CF E8 53 F3 E6 2C 5F B6 C5 79 31 E5 97 5F AC 17 93 BC 3E FA C9 67 0F 7E AF 67 AF BE 7D 72 70 F2 FA FE EE CE FD 87 F7 1F DF DD D4 DC C2 7C DD 66 17 F9 97 E7 27 D5 62 55 E6 68 70 52 CD F2 A3 93 C7 77 E3 5F D8 F7 DE 5C AF F2 E3 D5 AA AE 2E B3 12 BF F3 B7 A7 F4 5E F4 8B E0 B5 A3 DF EB 99 34 F3 46 96 D5 45 B6 6C 8F 68 00 84 B7 FE E1 8D 9B C9 7B 74 70 F7 25 46 25 7F D8 6F 5F E5 97 05 3E 21 82 E5 47 7B 3B BB BB DB 3B F7 B7 F7 3E 7D 7C 37 F8 A2 4B C4 13 FA F0 A2 AA AF 19 BD 2F 76 2D B5 82 CF ED 4B CF AB E9 97 E7 6F E6 39 11 A5 5D B7 F4 F5 CB 92 DA 35 DC E8 78 E7 F1 DD 4D DF 5B 20 5F E4 ED BC 9A 7D 79 7E DC B6 D9 74 BE 40 5B 1F CC BD C7 77 37 B7 F0 B1 E1 B9 E4 2E 7F B2 58 FA 68 F4 BF 88 4E 99 B2 41 BE F7 AD 90 00' T→C: '00 B0 02 00 00' C→T: 'BD 9D 9D 07 77 F7 3F FD D6 CE EE 7D FC 13 4E 60 97 5B FC EF 40 D6 2F CF CF 9A 66 1D 92 7D A8 8D 9B B0 E2 62 DE 3E CF CF DB 6F 67 CB D9 9B 3A 3B 27 DE 64 4C 9F D0 9C 0D 7D E7 53 B1 2E A6 67 8B 55 4E 5C 52 BE 5E E5 F9 AC 5A E4 6D 5E 1B 10 9B 1B 58 38 32 34 A2 F5 BB 32 6F 8E F6 1E DF 0D 3F E8 B5 FB EE 3C CF CB E6 68 DF 35 D4 4F 7A 2D 5F 56

57 79 9D CF 7A 80 83 CF ED 5B 0C 65 92 35 44 C4 07 7B 0F 1E DF 75 7F BB F9 CE 97 17 ED FC 68 FF FE 3D CC B1 FC E1 DE 2F 66 F4 E7 EE C1 03

9A 3A F9 DD 7E F5 ED 1C D4 3C DA BD 7F EF E1 E3 BB FA 87 A3 63 D6 34 C2 27 46 1F BD 5A 2F 97 A4 B6 BE AC 67 34 E5 BB 07 F7 69 2E 6F F8 22 9F CE 97 2F F3 7A F1 45 F6 EE 79 46 0A 07 2F 1E ED ED 7D 4A 6A 28 FE 5D F4 55 7C 43 0A 67 52 2C 45 2F EE 3D E8 02 E8 B6 B0 60 5E D6 C5 22 83 D8 96 90 00' T→C: '00 B0 03 00 00' C→T: 'D5 5A 66 9A E8 D1 FF B0 37 59 4F AB AA 0E 66 55 3E B0 ED 4E AA E5 79 71 B1 AE 55 AE E4 DB BD E7 A3 BD 57 8F EF 46 BF 73 3D 10 B0 D7 39 7D B7 BC 78 59 35 05 DA 34 47 34 9C E8 E7 F6 AD B3 65 9B 2F 67 F9 EC A4 5A 2F DB FA FA CB F3 57 F9 45 D1 B4 82 FD 8B E7 8F EF 6E 6C D0 55 99 64 47 8E C8 26 59 AD 89 BF 6D 9B 67 EB DC 69 E8 2F 1E DF OD FE 76 06 A2 B8 C0 84 1F AF 49 35 D5 45 7B FD 26 9B 94 EE EB 48 83 D0 68 09 29 B2 05 A9 01 34 24 A6 F9 A2 98 CE F3 32 FD C9 E3 E7 A7 6F FE 57 C1 4B 86 38 F6 5B 1A 03 99 85 2B A2 F2 2C 2F 8B 9F 7E 9B A7 ΑF AF 97 ED 3C 6F F2 F4 65 5D 5D D4 D9 62 91 37 F4 AB AA FD 94 30 AA 16 D5 A4 20 71 4B 4F 8A B6 AE F2 25 B1 44 17 6A D8 67 99 4D 15 1D 52 E4 75 7E F4 92 6C D1 4F 37 F4 5A F7 8B E0 35 51 73 EE 4B 5F 1D 76 BF F3 28 77 77 90 74 90 00' T→C: '00 B0 04 00 00' C→T: '3F F6 FE 64 FD FC F4 F4 C5 E9 8B F4 F9 E9 97 1F 48 D4 6F 13 D1 CA EA 82 18 34 7F 5A E4 CB A6 7D 6F A2 3D A9 D7 4D 93 97 5F 83 6A 7B A0 DA CE 83 AF 49 B5 81 EF 43 8E 25 C5 F7 36 EF 31 31 3E 8C 50 18 1F 1F 59 DE E1 BF 7C 4C FA 6F C9 67 9D 1E 49 61 2D F2 7A 4A D6 08 13 D3 EB 3B FC 3A 82 45 D8 E0 E8 E9 EB FB D0 3D C1 67 3E 56 9B E0 75 BF ED 60 CA 4E 1F 14 D4 17 D9 72 7D 9E 4D 89 F6 44 C9 BE C8 47 9B F5 31 4F 1F 1F CF 66 75 DE 34 5D 08 FE 77 91 D7 FC 37 8D 42 7A F9 9A 54 C3 DE 5B 4C 8C 40 F0 CF DE BC FA F2 F4 85 C8 C4 60 2F CF 8B 65 F4 E9 28 AD D7 79 FA AC 5E 4F DB 62 56 D5 B6 3F F9 7A D3 CB 7B 47 0F EE EF EC 3E 08 DE D8 EB BF A1 02 F1 2A 6F 0A 32 84 53 D1 2F 4E BD B8 CF F1 E6 8F E9 4B 9E A6 37 5F 3F 23 A1 9D E6 98 CC DE 57 1D 22 1B 84 22 6C 65 A9 D9 90 00' T→C: '00 B0 05 00 00' $C\rightarrow$ T: '9D DE BB B7 99 DF A1 56 3E 34 8E 69 AE AA FA AD 7C 98 A6 F6 65 F3 45 94 DB 67 F9 B3 AA 36 2D 8E 8E 9F 61 9C E1 67 DE 0B 8F EF C6 61 B9 CF 3B 3C 0E FF AB 37 64 7C 18 C1 05 1F AB 0F 4C EE 84 F7 57 D0 CA 73 EC 28 CC 3B FA 7D AO 3O 83 4F 7A 3O C9 B3 9D BE 25 C7 EC 6O 4F AO CA DF BD 66 AF 57 D9 94 48 AA 9E A1 FF 49 D0 94 1D 24 8A EF CA F2 DC A4 A6 41 DB A3 5D F2 ED D5 7D 8A 7C EB 8D FE CD 75 9D 3B В2 58 C0 3E 95 4D 93 01 69 C5 D7 AF 8B 1F 90 12 ΒF 77 FF EEFED5 01 FD F4 22 01 FD B0 D7 FC 79 95 CD $4\,\mathrm{E}$ 32 8C A5 BD 26 02 E5 EF5E Α0 9C D3 CA 7D DF A3 87 F7 10 C9 6C 68 D0 03 C7 4E BE 89 DC 5E 5F 2F 55 79 F4 26 93 C4 A0 91 8F 7B EF BE 2A 16 C0 F1 6C 39 2D D7 88 DA BF 3C 27 EF AC 3D 3A 18 EF EC BC DB 3D 48 B7 F2 CF F6 1E DC 41 60 12 6D 16 0A D4 30 91 DE 8F 7E 3B 90 00' T→C: '00 B0 06 00 00'

C→T: '44 BF 87 FF 5F A7 DF 7D A2 DF 43 A6 DF C3 DB D1 6F 23 01 DF 83 82 7B F7 EF DE 07 05 1F FC 7F 9B 82 0F 98 82 0F 84 03 D3 6A 9D E6 DF 04 21 DD 57 1B 84 FD 6E EC D5 5B E8 48 D5 66 DF A8 8E FC 74 E7 E1 A0

00 00 90 00'

8E 1C 54 7C BB 0F 6F A5 F8 BA 9A EF 47 0A EF 47 0A EF EB D3 EF 47 0A EF C3 28 F8 7E 0A CF 57 58 7D 4A A6 81 42 EB AB BD 90 8D 03 2A AB B6 09 9D C6 D3 E5 05 79 F4 3D B7 51 3E 8E 06 8E C6 25 46 4E 89 12 68 D2 F2 C8 86 23 43 0D 02 28 F2 19 9C DF E3 E6 8B AC 7E 9B CF BE 5C BA A6 AF BE BD 43 0A 77 73 9B 00 DC 77 C9 19 26 02 52 56 6C 39 2D 56 EC 29 F7 15 FD 22 54 DF 84 E7 69 99 4F 39 B5 4A 4B 19 94 67 AE EA 23 1A 47 FC 8B E0 DD 6F 5F 4F EA 62 E6 BE FC 0E 25 23 3B 1F 05 ED 4D 26 EE E4 BA 2C 88 0F C3 F4 9C FB 30 34 18 35 45 44 17 F9 82 96 3A BC 36 3C 8E E7 67 34 90 00' T→C: '00 B0 07 00 00' C→T: 'A3 C3 5F C7 08 AE 52 70 B4 FB F0 E1 03 4B 61 F3 A1 6F 24 38 65 D6 33 1D F8 74 40 68 F1 15 77 BB B7 23 09 B7 78 18 4B 99 CE 62 B1 5E BC C8 5B B6 92 F0 E4 C7 F0 E5 BB 9F F7 5E 14 5C 59 0A BB 6D EF 1D DC DF 31 83 89 36 18 C2 82 1B 1F ED ED EE DA FE E5 93 B0 75 5F 43 3A 7B 9E 5F E6 25 D6 31 28 7B 44 99 58 8A 92 49 47 C4 BE B8 E1 ED A3 BD 83 83 83 2E 14 FF FB 0D A0 9E D6 C5 65 FE 84 D0 D8 1F F8 30 CC 17 7D 82 BE 9B 67 EB A6 3D 5D 14 0D 92 8A DC F8 74 5D 57 F8 27 A5 D1 OC 36 E8 81 7A 51 3F A1 B4 3E A5 6B D7 E5 F1 B4 7D 9E 35 ED 31 31 E4 EC 8B AA A5 EC FA D1 83 DD FB 77 B1 16 F3 AD 4F 1F EE E1 97 83 63 A4 8A 37 BD C1 1D 98 24 C1 EB 45 F5 96 E4 B6 AE 49 14 C9 A9 9A 34 55 BD 92 55 BB FC FC FC 68 67 7C 9F 66 6F 73 9B 1E BE 5F D5 93 8C BE 23 21 E5 90 00' T→C: '00 B0 08 00 00' C→T: '1C F5 C9 97 7B E4 58 11 D5 22 9F DF F4 AE 70 FA B2 59 2F B8 C3 A3 FD F1 5E 1F 50 B7 51 64 2E DA 3A 8B 61 B5 C3 F3 10 FF F2 56 50 4C D7 84 18 C4 6C 63 93 1E 40 59 8F 20 B3 C7 A8 3C E0 14 9B FD 60 B0 75 9F 24 A0 ED D0 B7 1D 30 E4 F9 36 2D 2D B1 4D F3 19 E9 5F A4 C3 76 E3 OA C7 6B CA AD 4E BE 24 5E D8 7D F8 00 EB 74 9D CF 6F 7A F5 C5 97 EF FO EE BD FB 92 54 E8 7C 73 D3 DB DF 3E F9 FD 15 CO FD FD BD 2E 00 FD F2 26 18 94 2C 6B 8B E9 9A 57 44 8F A0 10 77 0E EE 75 20 05 4D 7A B4 B7 6D 6F 20 9B A8 E6 D8 57 BA 4A 62 55 BE F9 34 E2 08 98 0F 83 C6 EF ED 48 C4 6D F6 E9 B0 CD FE 31 40 53 83 2C 50 9D 99 A5 A8 6B E8 AB 1B AD 9A FD 66 C0 B2 A9 69 20 A6 A5 95 AD 75 B5 6E 5E D1 1C CC C4 B2 84 D6 2B DA A4 6B 3F BE 91 29 88 CF 01 D6 90 A7 F3 8C 43 43 4A A0 AE C8 1B E8 A7 B8 FB 90 00' T→C: '00 B0 09 00 00' C→T: '4D 62 31 0E 35 D2 85 C9 37 D5 15 AF 4D 92 87 71 FC 8E 42 D5 A2 3C 3A 10 41 D9 D4 E4 06 68 5F 2D 27 35 37 24 02 A9 D8 6D 6A 32 04 0D 06 92 D6 79 5A 59 3C A5 D1 BC 6C D9 10 DF D0 C4 82 C3 9A FA 66 6A C4 7C 4F 9A 6D 4A 8B 3A 99 7B 4F 12 B4 F4 2B D6 34 67 C5 65 31 5B 67 A5 5D 67 3E AF EA 85 2C F1 FE 3F 01 00 00 FF FF 4A 5E B2 FC 63 23

App 3.2 Lezen en verifieren van buitenlandse kentekencard chips

APDU trace volgens de inspectieprocedure die gespecificeerd is in 4.3.

Disclaimer: hierbij is aangenomen dat de kentekencard is geimplementeerd volgens de EU richtlijn; het beschrijft en mogelijke uitleesprocedure. Elk land kan een specifieke uitleesprocedure voorschrijven.

1. Selecteer eVRC applicatie (AID = 'A0 00 00 04 56 45 56 52 2D 30 31')

```
T→C: '00 A4 04 00 0B A0 00 00 04 56 45 56 52 2D 30 31 00'
C→T: '6F 0D 84 0B A0 00 00 04 56 45 56 52 2D 30 31 90 00'
```

2. Selecteer EF.C.IA_A.DS (File ID = 'C0 01')

```
T→C: '00 A4 02 04 02 C0 01 00'
C→T: '62 08 83 02 C0 01 80 02 05 0B 90 00'
```

3. Lees EF.C.IA_A.DS

```
T→C: '00 B0 00 00 00'
C→T: '30 82 05 07
                  30 82 02 EF A0 03 02 01 02 02 11 00 FA 27 62 08 72
1F DE F1 64 23 4E CE OF 92 AC F7 30 0D 06 09 2A 86 48 86 F7 0D 01 01
OB 05 00 30 66 31 19 30 17 06 03 55 04
                                       0.3
                                          1.3
                                             10 43 53 43 41 20
54 20 4E 4C 20 65 56 52 44 31 0B 30 09 06 03 55 04 05 13 02 30
                                                               31 31
OC 30 0A 06 03 55 04 0B 13 03 52 44 57
                                             30 1F
                                       31 21
                                                   06 03 55 04 0A 13
                                       20 4E
                                                    68 65 72 6C
18 53 74 61 74 65 20 6F 66 20 74 68 65
                                             65 74
                                                               61
                                             30 1E
                                                   17 OD 31 33 31
64 73 31 0B 30 09 06 03 55 04 06 13 02 4E 4C
                                       30 32 32
32 36 30 31 33 33 32 36 5A 17
                              OD 32 34
                                                34
                                                    30 31 33 33 32 37
5A 30 63 31 0B 30 09 06 03 55 04 06 13 02 4E 4C
                                                31
                                                    21 30
                                                         1F 06
04 0A 0C 18 53 74 61 74 65 20 6F 66 20 74 68 65 20
                                                   4E 65 74 68
6C 61 6E 64 73 31 0C 30 0A 06 03 55 04 0B 0C 03 52 44 57 31 16 30 14
06 03 55 04 03 90 00'
T→C: '00 B0 01 00 00'
C→T: 'OC OD 44 53 2D 30 32 20 4E 4C 20 65 56 52 44 31 0B 30 09 06 03
55 04 05 13 02 32 31 30 82 01 22 30 0D 06 09 2A 86 48 86 F7 0D 01 01
                          82
01 05 00 03 82
              01
                  OF 00 30
                              01 0A 02 82
                                          01
                                              01 00 C8 FE E0 20
                                                               75 27
77 40 BD 19 66 64
                  EE 5A 07
                           07
                              27 24 EA 82
                                           3D D0 41
                                                    2C BE EC 5A AC 6C
8B 15 F1 B4 E9 E4
                  F6 47
                        33
                           76 5A 16 96 41
                                          74
                                             32 C4
                                                    30
                                                      50 B6 65 1B 22
4F F1 6F 68 A1 4C
                  D0
                     E5 ED 28 BO 8A 26
                                       D3
                                           27
                                              C1 B5
                                                    C9 B7 55
                                                             70
                                                                1B DE
C3 8E 2F BB B8 B0
                  79
                    73 BD DF
                              81 B9 AA 4C D4
                                              2D
                                                D6
                                                    87 FF 51 CF
                                                                6C C1
6F E4 4E EF 51
               27
                  37 CO CA
                           64
                              24 E0
                                    66
                                       CE AE
                                                    3A E2
                                              66
                                                В0
                                                          11
                                                             EA
                                                                94 12
OF DA A3 06 6F
               25
                  57 E9
                        7A
                           54
                                       06
                                              32
                                                 C2
                                                    57
                              0A 8C
                                    08
                                          6E
                                                       30
                                                          48
                                                             F6
                                                                4 F
                                                                   80
DE 29 62 B9 E0 99
                  45 DE DF 6A 90 93
                                          32
                                              78
                                    4B BB
                                                В8
                                                   F5 BB 47
                                                            9F
                                                                7E 1E
82 7B 6E E2 50 9A 8B 77 A5 52 57 6B 9F BE E8 BF C5 68 94 1C AB CB 2F
7C 14 18 A9 A9 90 00'
T→C: '00 B0 02 00 00'
C→T: 'CO 98 60 0A 58 B2 3F 70 95 D0 66 97 86 66 3B BE 96 C9 6F D9 4E
C6 2F 44 19 4F 21 43 E3 04 5F 0C 1C 8A 7B 94 8F 81 83 28 03 3A 29 D9
5F 8D E6 F7 B5 4B C9 4F 24 C6 07 B3 BA 99 AF
                                             58 41
                                                    02 03 01 00
                                                               01 A3
81 B2 30 81 AF 30
                  1D 06 03 55 1D 0E 04 16 04 14
                                                66
                                                    E4 AB D3 C8
                                                                03 26
55 B9 A0 3E D6 BB EF 85 68 41 C5 5B 74 30 1F 06 03
                                                    55 1D 23 04
                                                                18 30
16 80 14 92 51 87 BD 8D E7 DF BF 32 3C 66 69 29 7F
                                                   DA EB 8A B4
                                                               AB B4
30 17 06 03 55 1D 20 04 10 30 0E 30 0C 06 0A 60 84 10 01 87 72 02 01
```



```
03 01 30 44 06 03 55 1D 1F 04 3D 30 3B 30 39 A0 37 A0 35 86 33 68 74
74 70 3A 2F 2F 77 77 77 2D 64 69 65 6E 73 74 65 6E 2E 72 64 77 2E 6E
6C 2F 63 72 6C 2F 43 53 43 41 47 41 54 4E 4C 65 56 52 44 2D 30 31 2E
63 72 6C 30 0E 06 03 55 1D 0F 01 01 FF 04 04 03 02 07 80 30 0D 06 09
2A 86 48 86 F7 90 00'
T→C: '00 B0 03 00 00'
C→T: 'OD 01 01 0B 05 00 03 82 02 01 00 82 FC C7 80 1E 6D 47 35 1D 40
7B B5 B4 F7 77 09 C7 4F 6F DF C7 CF 32 CF 6F 48 5C 29 99 E7 E2 3C 71
87 70 26 9C 6F E1 E7 6F 22 BB BB BE 53 5A 4B F3 C5 3A 2F 84 56 1D 7A
69 24 26 C8 50 C1 7E C7 06 8E 35 67 82 A5 28 22 C4 82 DC 7E 70 2F FF
1D C4 3D 52 FD 86 88 19 44 1A AB CA 36 92 B4 70 2D B4 11 85 E8 AC 6A
55 57 BA 55 DA 42 56 73 A5 49 88 1E 6D CD 22 4A 88 99 A5 D6 C1 90 96
09 07 5F 89 5D 35 20 8D 70 13 C7 B9 7A 6F 9F
                                             6B DB 17 CE EC 0D 56 FC
45 92 B2 E4 4F 9E 3F 16 14 7F CF D7 DE 38 A5 01 BE F4 0E BE D9 AC
76 19 CO 4E 33 AB 8C BB F6 BA 7E 78 6B 8A 6C 93 5F AB BB 0A E5 31 DA
2C 7B 4C 3C 48 9C 1B A9 78 0D 56 55 20 48 72 80 A9 16 6F 92 5D F0 CD
F9 2F 49 B6 CC 4C 47 42 F8 64 4A 73 1C 57 0B 95 04 AE 24 E9 24 6E 33
B3 DD 06 AA B3 90 00'
T→C: '00 B0 04 00 00'
C→T: 'EA 2C A3 0D 2E 0F 5B 0A 8D 51 BE 21 C5 62 F4 FA 7B FE A5 A8 65
CE EE E5 2D A9 49 E4 11 B0 93 4D B7 92 83 DA 69 75 70 E1 0B 7C 84 4E
B8 1F 06 CE 7A FE 92 ED DF 77 12 FA A4 49 FE A4 11 4E F4 41 CA 6C 57
11 38 21 96 D7 E6 73 3F 0B 66 6A 93 0B 4E 04 9F 4D 2D 4B 24 78 36 20
A5 01 C2 AD BD 06 AB D4 D7 EA 4D E9 EB 40 9F C8 A7 3C D7 9C 8D 91 65
ED FA 7C C3 8B FA 2E B9 E7 C7 54 C1 9D 2E 6D B4 17 8B 0F 38 72 24 A9
39 CD 60 96 BE 4D 14 FA 61 22 88 0F B1 9E E4 46 DF 5A 26 93 3E 93 CB
D7 5B C0 9E F4 3E 25 EA 38 DC 4A DD 1C 48 4A B5 F3 A4 B1 8C 36 4A 91
25 3C BO 0E 79 37 F2 04 E1 59 92 8A DD 0E 5B D2 FE 90 00 C4 BE 66 19
FE 9A 90 EC C7 30 CD 49 A7 0B A7 30 19 42 D3 42 2C ED 5A A4 38 D7 C8
2C BE 41 6A C7 00 E0 00 E7 2C EC 1B E0 D2 79 79 CC 15 D7 6A CF FC 30
40 43 FC C1 9C 90 00'
T→C: '00 B0 05 00 00'
C→T: 'FD 4A 4C 9C 96 56 FO 44 33 18 74 90 00'
```

4. Selecteer EF.Signature_A ('E0 01')

T→C: '00 A4 02 04 02 E0 01 00' C→T: '62 08 83 02 E0 01 80 02 01 18 90 00'

5. Lees EF.Signature_A

T→C: '00 B0 00 00 00' C→T: '30 82 01 14 30 0D 06 09 2A 86 48 86 F7 0D 01 01 0B 05 00 03 82 01 01 00 7D B1 A9 21 8E EC 63 95 44 EF FF A2 F0 A3 EB B5 3B CE 1C 31 D2 C4 87 BF 66 CD 3E AD 5F C9 B2 53 5C C7 1A B9 D4 58 8F 63 3A 33 EC EA 1F 27 8E D5 44 E6 42 E1 78 37 92 3F 3E 78 9C 07 8D 6F AA 3B 05 95 34 49 43 C9 AA F6 FE E1 5C BC 2A E4 24 17 25 C9 46 95 CA 1E C5 F1 EA B3 CB E1 86 7C 65 24 A7 95 32 A2 7C 65 6C 44 9B 54 4F 23 47 A7 7C C5 41 70 2B 18 27 A2 7D 54 BE A1 19 ED 23 61 17 E7 AF 36 EF 1F BC 8E 72 63 ED 81 7B 34 26 3D 67 0C 78 CE 57 A5 EB A8 E5 99 04 07 A0 47 91 70 13 23 31 4C DF DD 49 99 8B 18 CB D2 7E A3 3C 1F 38 D2 A1 A0 05 95 28 31 46 64 D7 64 F3 19 18 A5 64 07 49 C6 46 5C 2F 59 13 1A 40 F2 51 D7

10 B5 23 FE 52 E7 1B 43 0E B1 44 D0 DD A5 ED DB FC 07 58 68 94 7D 9B 6D 6F 31 5E 94 90 00'

T→C: '00 B0 01 00 00'

C→T: 'A6 95 A9 0E 45 01 39 4A 65 C4 F6 42 98 6E 68 A7 93 0B B3 BD 64 4A 2E 2B 90 00'

6. Selecteer EF.Registration_A ('D0 01')

T→C: '00 A4 02 04 02 D0 01 00'

C→T: '62 08 83 02 D0 01 80 02 01 18 90 00'

7. Lees EF.Registration_A

T→C: '00 B0 00 00 00' C→T: '78 0D 4F 0B A0 00 00 04 56 45 56 52 2D 30 31 71 82 01 05 80 01 00 9F 33 09 4E 65 64 65 72 6C 61 6E 64 9F 35 03 52 44 57 9F 37 01 00 9F 38 0A 30 30 39 33 39 32 33 38 38 34 81 08 31 2D 52 44 57 2D 30 31 82 08 32 30 31 34 30 31 30 31 A1 34 A2 2F 83 08 56 69 73 73 63 68 65 72 84 03 57 20 47 85 1E 53 6B 61 67 65 72 20 52 61 6B 20 31 30 20 39 36 34 32 20 43 5A 20 20 56 65 65 6E 64 61 6D 86 01 02 A3 1A 87 07 43 49 54 52 4F 45 4E 88 0A 4B 46 20 52 48 43 20 38 2F 50 89 03 44 53 35 8A 11 56 46 37 4B 46 52 48 43 38 43 53 31 32 33 34 35 36 A4 09 8B 07 32 32 36 35 20 6B 67 8C 07 31 37 33 35 20 6B 67 8D 01 30 8E 08 32 30 31 34 30 31 30 31 8F 12 65 32 2A 32 30 30 37 2F 34 36 2A 30 31 35 36 2A 30 31 A5 1A 90 08 31 39 39 37 20 63 6D 33 91 09 31 32 30 2C 30 30 20 6B 57 92 03 90 00'

T→C: '00 B0 01 00 00'

C→T: '45 2F 44 93 06 6E 2E 76 2E 74 2E A6 0B 94 01 35 95 06 6E 2E 76 2E 74 2E 90 00'

8. Selecteer EF.C.IA_B.DS (File ID = 'C0 11')

T→C: '00 A4 02 04 02 C0 11 00'

C→T: '62 08 83 02 C0 11 80 02 05 0B 90 00'

9. Lees EF.C.IA_B.DS

T→C: '00 B0 00 00 00' C→T: '30 82 05 07 30 82 02 EF AO 03 02 01 02 02 11 00 FA 27 62 08 72 1F DE F1 64 23 4E CE OF 92 AC F7 30 0D 06 09 2A 86 48 86 F7 0D 01 01 08 05 00 30 66 31 19 30 17 06 03 55 04 03 13 10 43 53 43 41 20 47 41 54 20 4E 4C 20 65 56 52 44 31 0B 30 09 06 03 55 04 05 13 02 30 31 31 OC 30 0A 06 03 55 04 0B 13 03 52 44 57 31 21 30 1F 06 03 55 04 0A 13 18 53 74 61 74 65 20 6F 66 20 74 68 65 20 4E 65 74 68 65 72 6C 61 6E 64 73 31 0B 30 09 06 03 55 04 06 13 02 4E 4C 30 1E 17 0D 31 33 31 31 32 36 30 31 33 33 32 36 5A 17 0D 32 34 30 32 32 34 30 31 33 33 32 37 5A 30 63 31 0B 30 09 06 03 55 04 06 13 02 4E 4C 31 21 30 1F 06 03 55 04 0A 0C 18 53 74 61 74 65 20 6F 66 20 74 68 65 20 4E 65 74 68 65 72 6C 61 6E 64 73 31 0C 30 0A 06 03 55 04 0B 0C 03 52 44 57 31 16 30 14 06 03 55 04 03 90 00' T→C: '00 B0 01 00 00'

C→T: 'OC OD 44 53 2D 30 32 20 4E 4C 20 65 56 52 44 31 OB 30 09 06 03 55 04 05 13 02 32 31 30 82 01 22 30 0D 06 09 2A 86 48 86 F7 0D 01 01 01 05 00 03 82 01 0F 00 30 82 01 0A 02 82 01 01 00 C8 FE E0 20 75 27

77 40 BD 19 66 64 EE 5A 07 07 27 24 EA 82 3D DO 41 2C BE EC 5A AC 6C 8B 15 F1 B4 E9 E4 F6 47 33 76 5A 16 96 41 74 32 C4 30 50 B6 65 1B 22 E5 ED 28 B0 8A 26 D3 27 C1 B5 С9 55 68 A1 4C DO В7 79 73 C3 8E 2F BB B8 BΩ BD DF 81 B9 AA 4 C. D4 2D D6 87 FF 6F E4 4E EF 51 27 37 C0 24 E0 66 CE AE CA 64 66 B0 3A E2 11 EA OF DA A3 06 6F 25 57 E9 7A 54 0A 8C 08 06 6E 32 C2 57 30 48 F6 DE 29 62 B9 E0 99 45 DE DF 6A 90 93 4B BB 32 78 B8 F5 BB 47 9F 82 7B 6E E2 50 9A 8B 77 A5 52 57 6B 9F BE E8 BF C5 68 94 1C AB CB 2F 7C 14 18 A9 A9 90 00' T→C: '00 B0 02 00 00' 'CO 98 60 0A 58 B2 3F 70 95 DO 66 97 86 66 3B BE 96 C9 6F D9 4E $C \rightarrow T$: C6 2F 44 19 4F 21 43 E3 04 5F 0C 1C 8A 7B 94 8F 81 83 28 03 3A 29 D9 5F 8D E6 F7 B5 4B C9 4F 24 C6 07 B3 BA 99 AF 58 41 02 03 01 00 01 A3 81 B2 30 81 AF 30 1D 06 03 55 1D 0E 04 16 04 14 66 E4 AB D3 C8 03 26 55 B9 A0 3E D6 BB EF 85 68 41 C5 5B 74 30 1F 06 03 55 1D 23 04 18 16 80 14 92 51 87 BD 8D E7 DF BF 32 3C 66 69 29 7F DA EB 8A B4 AB B4 06 03 55 1 D 20 04 10 30 OE 30 OC 06 0A 60 84 10 01 87 72 03 01 30 44 06 03 55 1D 1F 04 3D 30 3B 30 39 A0 37 AΩ 35 86 33 77 3A 2F 2F 77 77 2D 64 69 65 6E 73 74 65 6E 2 E 72 64 77 6C 2F 63 72 6C 2F 43 53 43 41 47 41 54 4E 4C 65 56 52 44 2D 30 31 2E 63 72 6C 30 0E 06 03 55 1D 0F 01 01 FF 04 04 03 02 07 80 30 0D 06 09 2A 86 48 86 F7 90 00' T→C: '00 B0 03 00 00' C→T: 'OD 01 01 0B 05 00 03 82 02 01 00 82 FC C7 80 1E 6D 47 35 1D 40 7B B5 B4 F7 77 09 C7 4F 6F DF C7 CF 32 CF 6F 48 5C 29 99 E7 E2 3C 71 87 70 26 9C 6F E1 E7 6F 22 BB BB BE 53 5A 4B F3 C5 3A 2F 84 56 1D 7A 69 24 26 C8 50 C1 7E C7 06 8E 35 67 82 A5 28 22 C4 82 DC 7E 70 1D C4 3D 52 FD 86 88 19 44 1A AB CA 36 92 B4 70 2D B4 11 85 E8 AC 6A 55 57 BA 55 DA 42 56 73 A5 49 88 1E 6D CD 22 4A 88 99 A5 D6 C1 09 07 5F 89 5D 35 20 8D 70 13 C7 B9 7A 6F 9F 6B DB 17 CE EC 0D 56 FC 45 92 B2 E4 4F 9E 3F 16 14 7F CF D7 DE 38 A5 01 BE F4 0E BE D9 AC 79 76 19 CO 4E 33 AB 8C BB F6 BA 7E 78 6B 8A 6C 93 5F AB BB 0A E5 31 DA 2C 7B 4C 3C 48 9C 1B A9 78 0D 56 55 20 48 72 80 A9 16 6F 92 5D F0 CD F9 2F 49 B6 CC 4C 47 42 F8 64 4A 73 1C 57 0B 95 04 AE 24 E9 24 6E 33 B3 DD 06 AA B3 90 00' T→C: '00 B0 04 00 00' $C \rightarrow T$: 'EA 2C A3 0D 2E 0F 5B 0A 8D 51 BE 21 C5 62 F4 FA 7B FE A5 A8 65 CE EE E5 2D A9 49 E4 11 B0 93 4D B7 92 83 DA 69 75 70 E1 0B 7C 84 4E 77 B8 1F 06 CE 7A FE 92 ED DF 12 FA A4 49 FEΑ4 11 4EF4 41 CA 6C 57 11 38 21 96 D7 Ε6 73 3F 0B 66 6A 93 0B 4E04 9F 4 D 2D 4B 24 78 36 20 A5 01 C2 AD 06 AB D4 D7 EΑ 4D E9 EΒ 40 9F С8 Α7 3C D7 9C 65 BD 8 D 91 7C C3 8B FA 2E В9 Ε7 C7 54 C1 9D 2E 6D В4 17 8B 0F 72 ED FA 38 FA 61 22 88 OF B1 9E E4 39 CD 60 96 BE 4 D 14 46 DF 5A 26 93 3E 93 CB D7 5B C0 9E F4 3E 25 EA 38 DC. 4A DD 1C 48 4A B5 F3 Α4 В1 8C 36 4A 91 59 92 8A DD 0E 5B D2 25 3C BO OE 79 37 F2 O4 E1 FE90 00 C4 BE 66 19 FE 9A 90 EC C7 30 CD 49 A7 0B A7 30 19 42 D3 42 2C ED 5A A4 38 D7 C8 2C BE 41 6A C7 00 E0 00 E7 2C EC 1B E0 D2 79 79 CC 15 D7 6A CF FC 30

40 43 FC C1 9C 90 00'


```
T→C: '00 B0 05 00 00'
C→T: 'FD 4A 4C 9C 96 56 F0 44 33 18 74 90 00'
```

10. Selecteer EF.Signature_B ('E0 11')

```
T→C: '00 A4 02 04 02 E0 11 00'
C→T: '62 08 83 02 E0 11 80 02 01 18 90 00'
```

11. Lees EF.Signature_B

```
T→C: '00 B0 00 00 00'
C→T: '30 82 01 14 30 0D 06 09 2A 86 48 86 F7 0D 01 01 0B 05 00 03 82
01 01 00 3E 6C D6 C1 E0 2A 84 40 84 18 20 56 99 BB 6A EF D0 B6 6B F3
F2 5D 60 AD 53 87 F8 77 66 1B 7D FC E0 AD 15 76 7B 16 6B 21 1E 65 2B
43 5E 55 F8 C3 14 61 4A 3A 0E 20 F6 65 90 24 04 72 56 C9 9D 0E 69 5B
38 A9 34 3A 00 6E 38 AE 81 F9 C8 DE DC E9 E6 23 7A 42 A6 D6 02 45 DB
39 A7 C4 AA 41 3C 88 CE EC D8 7B B4 14 8A D6 B6 5A ED C8 23 FC B6 92
BD 86 9B D6 77 4D A3 6F 2B 12 B1 22 7C CD E0 A1 EA AC 76 4C 94 BF B7
B5 00 74 0F 37 43 B8 A1 AA AE D0 57 C3 97 17 31 44 E8 29 32 8D FC E3
24 39 E5 25 3D F5 12 1B 99 92 41 61 24 05 72 1E CD D4 F9 10 DD 01 3E
CA C6 B0 31 B7 B1 56 F9 13 87 92 58 C1 56 5D EB 8C C5 9D 12 65 F4 F6
AD 4C 15 BF F0 4D 3E 17 CC D7 A4 42 31 BE 0B AF 24 08 C3 55 F6 49 FA
7F 58 0E 18 8A 90 00'
T→C: '00 B0 01 00 00'
C→T: 'C8 C2 2A 48 07 FB 57 C8 OC CF 75 25 5C 8D 99 D4 CF 5D 93 1B FE
2E 27 OC 90 00'
```

12. Selecteer EF.Registration B ('D0 11')

```
T→C: '00 A4 02 04 02 D0 11 00'
C→T: '62 08 83 02 D0 11 80 02 00 68 90 00'
```

13. Lees EF.Registration_B

```
T→C: '00 B0 00 00 '00'
C→T: '78 0D 4F 0B A0 00 00 '04 56 45 56 52 2D 30 31 72 57 80 01 00 A4
11 96 07 32 32 36 35 20 6B 67 97 06 6E 2E 76 2E 74 2E 98 05 4D 31 20
41 46 AE 10 9B 06 38 30 30 20 6B 67 9C 06 35 30 30 20 6B 67 9F 24 05
42 4C 41 55 57 9F 25 06 6E 2E 76 2E 74 2E B0 15 9F 31 12 37 31 35 2F
32 30 30 37 2A 36 39 32 2F 32 30 30 38 41 90 00'
```

14. Selecteer EF.Registration_C ('D0 21')

```
T→C: '00 A4 02 04 02 D0 21 00'
C→T: '62 08 83 02 D0 21 80 02 09 73 90 00'
```

15. Lees EF.Registration_C

```
T→C: '00 B0 00 00 00 '00'
C→T: 'BF 87 00 82 09 6D 9F 87 01 01 01 BF 87 10 30 9F 87 11 08 32 30 31 34 30 31 30 31 9F 87 12 08 32 30 31 34 30 31 34 30 31 BF 87 03 82 30 31 34 30 31 30 31 BF 87 03 82 09 2E 9F 87 04 01 00 9F 87 05 82 09 23 1F 88 08 00 00 00 00 00 00 04 00 EC BD 07 60 1C 49 96 25 26 2F 6D CA 7B 7F 4A F5 4A D7 E0 74 A1 08 80 60 13 24 D8 90 40 10 EC C1 88 CD E6 92 EC 1D 69 47 23 29 AB 2A 81 CA 65 56 65 5D 66 16 40 CC ED 9D BC F7 DE 7B EF BD F7 DE 7B EF BD F7 BA 3B 9D 4E 27 F7 DF FF 3F 5C 66 64 01 6C F6 CE 4A DA C9 9E 21 80 AA C8 1F 3F 7E 7C 1F 3F 22 1E FF 1E EF 16 65 7A 99 D7 4D 51 2D 3F FB 68 77 BC F3 51 9A 2F A7 D5 AC 58 5E 7C F6 D1 BA 3D DF 3E F8 E8 F7 38 FA 8D
```


93 C7 67 CB 59 71 59 CC D6 59 F9 93 F9 BC 98 96 F9 D9 F2 BC AA 17 59 4B EF D1 F7 69 90 00' T→C: '00 B0 01 00 00' C→T: 'FA F8 49 35 BB E6 DF E8 F7 93 6A FA 34 6B B3 CF EB 6A BD D2 CF E8 53 F3 E6 2C 5F B6 C5 79 31 E5 97 5F AC 17 93 BC 3E FA C9 67 0F 7E AF 67 AF BE 7D 72 70 F2 FA FE EE CE FD 87 F7 1F DF DD D4 DC C2 7C DD 66 17 F9 97 E7 27 D5 62 55 E6 68 70 52 CD F2 A3 93 C7 77 E3 5F D8 F7 DE 5C AF F2 E3 D5 AA AE 2E B3 12 BF F3 B7 A7 F4 5E F4 8B E0 B5 A3 DF EB 99 34 F3 46 96 D5 45 B6 6C 8F 68 00 84 B7 FE E1 8D 9B C9 7B 74 70 F7 25 46 25 7F D8 6F 5F E5 97 05 3E 21 82 E5 47 7B 3B BB BB DB 3B F7 B7 F7 3E 7D 7C 37 F8 A2 4B C4 13 FA F0 A2 AA AF 19 BD 2F 76 2D B5 82 CF ED 4B CF AB E9 97 E7 6F E6 39 11 A5 5D B7 F4 F5 CB 92 DA 35 DC E8 78 E7 F1 DD 4D DF 5B 20 5F E4 ED BC 9A 7D 79 7E DC B6 D9 74 BE 40 5B 1F CC BD C7 77 37 B7 F0 B1 E1 B9 E4 2E 7F B2 58 FA 68 F4 BF 88 4E 99 B2 41 BE F7 AD 90 00' T→C: '00 B0 02 00 00' C→T: 'BD 9D 9D 07 77 F7 3F FD D6 CE EE 7D FC 13 4E 60 97 5B FC EF 40 D6 2F CF CF 9A 66 1D 92 7D A8 8D 9B B0 E2 62 DE 3E CF CF DB 6F 67 CB D9 9B 3A 3B 27 DE 64 4C 9F D0 9C 0D 7D E7 53 B1 2E A6 67 8B 55 4E 5C 52 BE 5E E5 F9 AC 5A E4 6D 5E 1B 10 9B 1B 58 38 32 34 A2 F5 BB 32 6F 8E F6 1E DF 0D 3F E8 B5 FB EE 3C CF CB E6 68 DF 35 D4 4F 7A 2D 5F 56 57 79 9D CF 7A 80 83 CF ED 5B 0C 65 92 35 44 C4 07 7B 0F 1E DF 75 7F BB F9 CE 97 17 ED FC 68 FF FE 3D CC B1 FC E1 DE 2F 66 F4 E7 EE C1 03 9A 3A F9 DD 7E F5 ED 1C D4 3C DA BD 7F EF E1 E3 BB FA 87 A3 63 D6 34 C2 27 46 1F BD 5A 2F 97 A4 B6 BE AC 67 34 E5 BB 07 F7 69 2E 6F 68 E4 F8 22 9F CE 97 2F F3 7A F1 45 F6 EE 79 46 0A 07 2F 1E ED ED 7D 4A 6A 28 FE 5D F4 55 7C 43 0A 67 52 2C 45 2F EE 3D E8 02 E8 B6 B0 60 5E D6 C5 22 83 D8 96 90 00' T→C: '00 B0 03 00 00' C→T: 'D5 5A 66 9A E8 D1 FF B0 37 59 4F AB AA 0E 66 55 3E B0 ED 4E AA E5 79 71 B1 AE 55 AE E4 DB BD E7 A3 BD 57 8F EF 46 BF 73 3D 10 B0 D7 39 7D B7 BC 78 59 35 05 DA 34 47 34 9C E8 E7 F6 AD B3 65 9B 2F 67 F9 EC A4 5A 2F DB FA FA CB F3 57 F9 45 D1 B4 82 FD 8B E7 8F EF 6E 6C D0 55 99 64 47 8E C8 26 59 AD 89 BF 6D 9B 67 EB DC 69 E8 2F 1E DF 0D FE 76 06 A2 B8 C0 84 1F AF 49 35 D5 45 7B FD 26 9B 94 EE EB 48 83 D0 68 09 29 B2 05 A9 01 34 24 A6 F9 A2 98 CE F3 32 FD C9 E3 E7 A7 6F 88 1A FE 57 C1 4B 86 38 F6 5B 1A 03 99 85 2B A2 F2 2C 2F 8B 9F 7E 9B A7 AF AF 97 ED 3C 6F F2 F4 65 5D 5D D4 D9 62 91 37 F4 AB AA FD 94 30 AA 16 D5 A4 20 71 4B 4F 8A B6 AE F2 25 B1 44 17 6A D8 67 99 4D 15 1D 52 E4 75 7E F4 92 6C D1 4F 37 F4 5A F7 8B E0 35 51 73 EE 4B 5F 1D 76 BF F3 28 77 77 90 74 90 00' T→C: '00 B0 04 00 00' C→T: '3F F6 FE 64 FD FC F4 F4 C5 E9 8B F4 F9 E9 97 1F 48 D4 6F 13 D1 CA EA 82 18 34 7F 5A E4 CB A6 7D 6F A2 3D A9 D7 4D 93 97 5F 83 6A 7B A0 DA CE 83 AF 49 B5 81 EF 43 8E 25 C5 F7 36 EF 31 31 3E 8C 50 18 1F 1F 59 DE E1 BF 7C 4C FA 6F C9 67 9D 1E 49 61 2D F2 7A 4A D6 08 13 D3

EB 3B FC 3A 82 45 D8 E0 E8 E9 EB FB D0 3D C1 67 3E 56 9B E0 75 BF ED 60 CA 4E 1F 14 D4 17 D9 72 7D 9E 4D 89 F6 44 C9 BE C8 47 9B F5 31 4F

1F 1F CF 66 75 DE 34 5D 08 FE 77 91 D7 FC 37 8D 42 7A F9 9A 54 54 F7 C3 DE 5B 4C 8C 40 F0 CF DE BC FA F2 F4 85 C8 C4 60 2F CF 8B 65 BE 7B F4 E9 28 AD D7 79 FA AC 5E 4F DB 62 56 D5 B6 3F F9 7A D3 CB 7B 47 0F EE EF EC 3E 08 DE D8 EB BF A1 02 F1 2A 6F 0A 32 84 53 D1 2F 4E BD B8 CF F1 E6 8F E9 4B 9E A6 37 5F 3F 23 A1 9D E6 98 CC DE 57 1D 22 1B 84 22 6C 65 A9 D9 90 00' T→C: '00 B0 05 00 00' C→T: '9D DE BB B7 99 DF A1 56 3E 34 8E 69 AE AA FA AD 7C 98 A6 F6 65 F3 45 94 DB 67 F9 B3 AA 36 2D 8E 8E 9F 61 9C E1 67 DE 0B 8F EF C6 61 B9 CF 3B 3C 0E FF AB 37 64 7C 18 C1 05 1F AB 0F 4C EE 84 F7 57 D0 CA 73 EC 28 CC 3B FA 7D AO 3O 83 4F 7A 3O C9 B3 9D BE 25 C7 EC 6O 4F AO CA DF BD 66 AF 57 D9 94 48 AA 9E A1 FF 49 D0 94 1D 24 8A EF CA F2 DC A4 A6 41 DB A3 5D F2 ED D5 7D 8A 7C EB 8D FE CD 75 9D 3B B2 58 3E 95 4D 93 01 69 C5 D7 AF 8B 1F 90 12 BF 77 FF EE FE FD F4 D5 EE 01 22 01 FD B0 D7 FC 79 95 CD 4E 32 8C A5 BD 26 02 E5 EF 5E D3 A0 CA 9C 7D DF A3 87 F7 10 C9 6C 68 D0 03 C7 4E BE 89 DC 5E 5F 2F 26 55 79 F4 93 C4 A0 91 8F 7B EF BE 2A 16 C0 F1 6C 39 2D D7 88 DA BF 3C 27 EF AC 3D 3A 18 EF EC BC DB 3D 48 B7 F2 CF F6 1E DC 41 60 12 6D 16 0A D4 30 91 DE 8F 7E 3B 90 00' T→C: '00 B0 06 00 00' C→T: '44 BF 87 FF 5F A7 DF 7D A2 DF 43 A6 DF C3 DB D1 6F 23 01 DF 83 82 7B F7 EF DE 07 05 1F FC 7F 9B 82 0F 98 82 0F 84 03 D3 6A 9D E6 DF 04 21 DD 57 1B 84 FD 6E EC D5 5B E8 48 D5 66 DF A8 8E FC 74 E7 E1 A0 8E 1C 54 7C BB 0F 6F A5 F8 BA 9A EF 47 0A EF 47 0A EF EB D3 EF 47 0A EF C3 28 F8 7E 0A CF 57 58 7D 4A A6 81 42 EB AB BD 90 8D 03 2A AB B6 09 9D C6 D3 E5 05 79 F4 3D B7 51 3E 8E 06 8E C6 25 46 4E 89 12 68 D2 F2 C8 86 23 43 0D 02 28 F2 19 9C DF E3 E6 8B AC 7E 9B CF BE 5C BA A6 AF BE BD 43 0A 77 73 9B 00 DC 77 C9 19 26 02 52 56 6C 39 2D 56 A5 E6 EC 29 F7 15 FD 22 54 DF 84 E7 69 99 4F 39 B5 4A 4B 19 94 67 AE EA 23 1A 47 FC 8B E0 DD 6F 5F 4F EA 62 E6 BE FC 0E 25 23 3B 1F 05 ED 4D 26 EE E4 BA 2C 88 0F C3 F4 9C FB 30 34 18 35 45 44 17 F9 82 96 3A BC 36 3C 8E E7 67 34 90 00' T→C: '00 B0 07 00 00' C→T: 'A3 C3 5F C7 08 AE 52 70 B4 FB F0 E1 03 4B 61 F3 A1 6F 24 38 65 D6 33 1D F8 74 40 68 F1 15 77 BB B7 23 09 B7 78 18 4B 99 CE 62 B1 5E BC C8 5B B6 92 F0 E4 C7 F0 E5 BB 9F F7 5E 14 5C 59 0A BB 6D EF 1D DC DF 31 83 89 36 18 C2 82 1B 1F ED ED EE DA FE E5 93 B0 75 5F 43 50 6C 3A 7B 9E 5F E6 25 D6 31 28 7B 44 99 58 8A 92 49 47 C4 BE B8 E1 75 OF ED A3 BD 83 83 83 2E 14 FF FB OD AO 9E D6 C5 65 FE 84 D0 D8 1F 1F EC F8 30 CC 17 7D 82 BE 9B 67 EB A6 3D 5D 14 0D 92 8A DC F8 74 5D 47 F8 27 A5 D1 OC 36 E8 81 7A 51 3F A1 B4 3E A5 6B D7 E5 F17 D 9E 35 В4 31 E4 EC 8B AA A5 EC FA D1 83 DD FB 77 B1 16 F3 AD 4 F 1 F 97 83 63 A4 8A 37 BD C1 1D 98 24 C1 EB 45 F5 96 E4 B6 AE 49 14 C9 A9 9A 34 55 BD 92 55 BB FC FC 68 67 7C 9F 66 6F 73 9B 1E BE 5F D5 93 8C BE 23 21 E5 90 00' T→C: '00 B0 08 00 00'

C→T: '1C F5 C9 97 7B E4 58 11 D5 22 9F DF F4 AE 70 FA B2 59 2F B8 C3 A3 FD F1 5E 1F 50 B7 51 64 2E DA 3A 8B 61 B5 C3 F3 10 FF F2 56 50 4C

D7 84 18 C4 6C 63 93 1E 40 59 8F 20 B3 C7 A8 3C E0 14 9B FD 60 B0 75 9F 24 A0 ED D0 B7 1D 30 E4 F9 36 2D 2D B1 4D F3 19 E9 5F A4 C3 76 E3 0A C7 6B CA AD 4E BE 24 5E D8 7D F8 00 EB 74 9D CF 6F 7A F5 C5 97 EF F0 EE BD FB 92 54 E8 7C 73 D3 DB DF 3E F9 FD 15 C0 FD FD BD 2E 00 FD F2 26 18 94 2C 6B 8B E9 9A 57 44 8F A0 10 77 0E EE 75 20 05 4D 7A B4 B7 6D 6F 20 9B A8 E6 D8 57 BA 4A 62 55 BE F9 34 E2 08 98 0F 83 C6 EF ED 48 C4 6D F6 E9 B0 CD FE 31 40 53 83 2C 50 9D 9D A5 A8 6B E8 AB 1B AD 9A FD 66 C0 B2 A9 69 20 A6 A5 95 AD 75 B5 6E 5E D1 1C CC C4 B2 84 D6 2B DA A4 6B 3F BE 91 29 88 CF 01 D6 90 A7 F3 8C 43 43 4A A0 AE C8 1B E8 A7 B8 FB 90 00'

T→C: '00 B0 09 00 00'

C+T: '4D 62 31 0E 35 D2 85 C9 37 D5 15 AF 4D 92 87 71 FC 8E 42 D5 A2 3C 3A 10 41 D9 D4 E4 06 68 5F 2D 27 35 37 24 02 A9 D8 6D 6A 32 04 0D 06 92 D6 79 5A 59 3C A5 D1 BC 6C D9 10 DF D0 C4 82 C3 9A FA 66 6A C4 5A 84 7C 4F 9A 6D 4A 8B 3A 99 7B 4F 12 B4 F4 2B D6 34 67 C5 65 31 5B 67 A5 5D 67 3E AF EA 85 2C F1 FE 3F 01 00 00 FF FF 4A 5E B2 FC 63 23 00 00 90 00 '

App 4 Specimen CSCA CERTIFICAAT

----BEGIN CERTIFICATE----

MIIGHjCCBAaqAwIBAqIRAKx4L8nRF1m12piT8OIPZ+UwDQYJKoZIhvcNAQELBQAw ZjEZMBcGA1UEAxMQQ1NDQSBHQVQqTkwqZVZSRDELMAkGA1UEBRMCMDExDDAKBqNV BAsTA1JEVzEhMB8GA1UEChMYU3RhdGUqb2YqdGhlIE5ldGhlcmxhbmRzMQswCQYD ${\tt VQQGEwJOTDAeFw0xMzAzMTQwODQ5ND1aFw0zMzAzMTQwODQ5NTBaMGYxGTAXBgNV} \\$ BAMTEENTQ0EgR0FUIE5MIGVWUkQxCzAJBgNVBAUTAjAxMQwwCgYDVQQLEwNSRFcx ITAfBgNVBAoTGFN0YXR1IG9mIHRoZSBOZXRoZXJsYW5kczELMAkGA1UEBhMCTkww ggIiMA0GCSqGSIb3DQEBAQUAA4ICDwAwggIKAoICAQDEVBXMMSULG/KPwuoBHrGi tqCyRn/DEmt+Wa40TuwCJ4IXB7IAP6hwUA74uKx8V80eIY1IrvCTcU93r4o017jB 3kFVGYxfF05BBpZM0+DpJ0dEsVdkaHqMULcLu06JBzPEvqG1hUbQhUIXm0w9Dloz kKQG1MONvYi9aUVHqWPZmyfWIIGhLqiPXa72EXt6FV1u4eMZKoW7yVW3/9tFk7KO E5/aFW1kOkn0PvmZbpkQMjMAQCfNJ3v9kdsWJvIVlZrccKsxB4jilM5h3UV4oCPX 1Bop6ik71XoB9XChQkZw9sHquzbrfRc4OI5wxOLcuDkaA8w7AKTuLYibqni0M95f Q4nIaSwrmT/8suNddOOWQBGPyf8WrYq9p/VMtB8718x9iE59IRPAzjk/SkjHKy6x rt3vD41O4j23AM/1uxuVV+DnwBl16rkm0AUwsnqYAcop7M4+Fr8VDdKaXrypo4+X DNypKgyfsac9wsd9HdvvT+3alTkftGsXi193S2wLThBgEU6VhChuhSeMwxhR64T4 YO3CZrgGg8bXTEJG6np+8r7R+MIgLbKcK0jtc7vZ3Ao125G+CxP82QfP+ocICMHy 7oq6tfOdS8kCfI3p9+VtLyfFRAWzD3f3yWj8odeWVgIQpKQincmh/kmHAPGEAsT8 V7Ptodm52qNcnXkzkFrcZQIDAQABo4HGMIHDMBcGA1UdIAQQMA4wDAYKYIQQAYdy AgEDATBEBgNVHR8EPTA7MDmgN6A1hjNodHRwOi8vd3d3LWRpZW5zdGVuLnJkdy5u bC9jcmwvQ1NDQUdBVE5MZVZSRC0wMS5jcmwwDqYDVR0PAQH/BAQDAqEGMBIGA1Ud EwEB/wQIMAYBAf8CAQAwHQYDVR0OBBYEFJJRh72N59+/MjxmaS1/2uuKtKu0MB8G A1UdIwQYMBaAFJJRh72N59+/MjxmaS1/2uuKtKu0MA0GCSqGSIb3DQEBCwUAA4IC AQBSzTXBto0qCrP0WsKNyuVorNv4M102sEoVh50lEN5/XqjI3yTcaitrxYr78YWH rdkE0qw8dT126eOHeeAig2hrwLRXwmh9/nMGcB1LIyw60IfF1UBhD1dO0UVH3FfS 0AYHbuwPdKfpxvZZN8xlA0p00ZqNELLTY0v5UHX/L3D5hyJnibhECRn1fsaIt/fh DRWDZNU8SIuD4SLliDqAPAGEPlyLp+/kx7WE/eMaqZAXlGSXqqwhM8fFAH+F/pYn czYP/VkxOo8BZqCGP9Km7COONx4Tx6tLHFma9YsYWBwuvkk4yOsSswXcSHUhD4oG 6fzFPqr1LICX8N9yFMQjc/ERb3/Y0oiFrJDQ3embQdwyqYzVvH7MuwBZcu4kh5PI AP6wu3tnnym7bNqQoRKBceMEnYgupw4Vdyp0Jm8KONJbwUAJPcKIAZwLlcn0vQE1 5uNpkeRzX8EzzYFuBD5htdhGP4VIeSr6vFiTrRtW+/+EAVfcM1Z4BzvHvalF8Akf W/YYbW9Pp6o2ziK1XQIgxPjG6g719FZF/BEvqqHO+EhG60wdmf1FR8n0Uui172H7 6A3HUH/1U9dG5As0c38KkxPyNfQ59ixB26r08hxhh0GV6wpWW06WzzU6rfesvccr SmoCIT5eP5V7MYr0AR9ve9XYb8A2UxBZkGQ8YNdmHaCaDw==

----END CERTIFICATE----