Data Science and Artificial Intelligence

Machine Learning

Bayesian learning.

Lecture No.3

Topics to be Covered

Bayes Theorem

Bayes' theorem is the foundation of the Naive Bayes algorithm. It describes the probability of an event based on prior knowledge of conditions that might be related to the event. The theorem is stated as:

Where:

- \circ P(A|B) is the posterior probability: the probability of event A occurring given that B is true.
- ullet P(B|A) is the likelihood: the probability of event B occurring given that A is true.
- P(A) is the prior probability: the initial probability of event A.
- P(B) is the marginal probability: the total probability of event B occurring.

Naïve Bayes classifier

In the context of a classifier, Bayes' theorem can be rewritten as:

$$P(y|X) = \frac{P(X|y) \cdot P(y)}{P(X)}$$

Where:

- y is the class label.
- X is the feature vector ($X=(x_1,x_2,...,x_n)$).

Naïve Bayes classifier

The "naive" assumption is that all features x_i are conditionally independent given the class label y. This simplifies the computation:

$$P(X|y) = P(x_1|y) \cdot P(x_2|y) \cdot \dots \cdot P(x_n|y)$$

Thus, the posterior probability becomes:

$$P(y|X) \propto P(y) \cdot \prod_{i=1}^{n} P(x_i|y)$$

The classifier then selects the class with the highest posterior probability.

> Classification

Naïve Bayes Algorithm

The fundamental Naive Bayes assumption is that each feature makes an:

- Feature independence: The features of the data are conditionally independent of each other, given the class label.
- Features are equally important: All features are assumed to contribute equally to the prediction of the class label.

Naïve Bayes Algorithm

We can convert the MAP into...

Naïve Bayes Classifier

dabel

4 dimension

Wind Play Tennis Humidity Temp. High No Weak Sunny Hot No Hot High Sunny Strong Yes High Weak Hot Overcast Mild High Weak Yes Rain Yes Rain Cool Normal Weak Cool Normal Rain No Strong Weak Yes Cool Normal Overcast Mild Weak No High Sunny Weak Yes Normal Sunny Cool Yes Mild Normal Strong Rain Yes Mild Normal Strong Sunny Yes Mild Overcast High Strong Overcast Yes Weak Hot Normal Rain Mild Strong No High

```
Test Point:

X = [Sunny, Cool, high, strong]

Find label of X.
```

dabel + Categorical -> Yes/No Outlook > " -> Sunny , Over Cast , Rain Temp > " -> Hot, mild, Cool Humidity > " -> high, normal Wind + " -> weak, Strong.

Naïve Bayes Classifier

dabel

4 dimension

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Test Point: X= Sunny, Cool, high, Strong find label of x.

>P, P(Sunny/Y)P(GolY)P(high/Y)P(Strong/Yes)><

PNP(Sunny/N)P(Gool/N)P(high/N)P(strong/N)

Naïve Bayes Classifier

4 dimension

dabel

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Intraining phase of naive bayes we find all the poobabilities using training data

So Py.P(x'/Y)P(x2/Y)P(x3/Y)P(x4/Y)

(PN.P(x'/N)P(x2/N)P(x3/N)P(x4/N)

Sunny Hot & High weak

Overcast mild Normal Strong.

Naïve Bayes Classifier

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast ←	Cool	Normal	Weak	Yes 🗸
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes 🗸
Rain	Mild	Normal	Strong	Yes 🗸
Sunny	Mild	Normal	Strong	Yes V
Overcast <	Mild	High	Strong	Yes V
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Outlook P(O/Yes) P(O/No)

Sunny P(S/Y) = 2/gOvercast P(O/Y) = 4/gRain P(R/Y) = 3/g

- ·Sohere label is given yes
- · So Consider points with Yes label

Naïve Bayes Classifier

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny /	Hot	High	Weak	No
Sunny V	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes 🗸
Sunny V	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes V
Rain 🔶	Mild	Normal	Strong	Yes 🗸
Sunny	Mild	Normal	Strong	Yes V
Overcast <	Mild	High	Strong	Yes V
Overcast	Hot	Normal	Weak	Yes V
Rain	Mild	High	Strong	No

Outlook P(O/Yes) P(O/No)

Sunny P(S/Y) = 2/9 P(S/N)=3/5Overcast P(OY) = 4/9 P(O/N)= O

Rain P(R/Y)=3/9 P(R/N)=2/5here label Consider No

·Sohere label is given yes

· So Consider points with Yes label

Naïve Bayes Classifier

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild).	High	Strong	No

	~ ~ /	\sim
Temperature	P(T/Yes)	P(T/No)
Hot	P(H/Y)=2/9	P(H/N)=2/5
Mild	P(M/Y)=4/9	P(m/n)=2/5
Cold	(P(C/Y)=3/97)	P(CIN)=1/5

Naïve Bayes Classifier

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot	High *	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal 🗸	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal /	Strong	Yes
Sunny	Mild	Normal /	Strong	Yes
Overcast	Mild	High 🗸	Strong	Yes
Overcast	Hot	Normal V	Weak	Yes
Rain	Mild	High	Strong	No

Humidity	P(H/Yes)	P(H/No)
High	P(H/Y)=319	P(H/N)=4/5
Normal	P(N/Y)=6/9	P(N/N)=1/5

Naïve Bayes Classifier

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak 🗸	Yes
Rain	Mild	High	Weak 🗸	Yes
Rain	Cool	Normal	Weak ~	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak 🗸	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak 🗸	Yes
Rain	Mild	High	Strong	No

Wind	P(W/Yes)	P(W/No)
Weak	P(W/Y)=6/9	P(W/N)=2/5
Strong		P(SIN)=3/5

Togining of

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Outlook	P(O/Yes)	P(O/No)
Sunny	2/9	3 5
Overcast	419	0/5
Rain	3/9	0/5

Temperature	P(T/Yes)	P(T/No)	
Hot	2/9	2/5	
Mild	4/9	2/5	
Cold	3 19	1/5	

Humidity	P(H/Yes)	P(H/No)
High	3/9	4/5
Normal	619	Y5

Wind	P(W/Yes)	P(W/No)
Weak	6/9	2/5
Strong	3/9	3/5

R	<u>'</u> =	9/14
PN	=	5/14

· Hfretgainingwe Remove data
· Aftertainingwe Remove data and only store these paobabilities
Test-point & X Sunny, mild, high, weak
>PyP(S/Y)P(m/Y)P(h/Y)P(w/Y)====================================
PnP(S/n)P(m/n)P(h/n)P(ω/n)=5.3.2.4.2 = •0274

Rain	3/9	2/5
Temperature	P(T/Yes)	P(T/No)
Hot	2/9	2/5
Mild	4/9	2/5
Cold	3 19	1/5
Humidity	P(H/Yes)	P(H/No)
Market Street		
High	3/9	4/5
High	3/9	4/5
High Normal	3/9 6/9	4/5 Y5

Py= 9/14 Pn= 5/14

Outlook	P(O/Yes)	P(O/No)
Sunny	2/9	3/5
Overcast	419	0/5
Rain	3/9	2/5

· Aftertainingwe Remove data
After + gaining we Remove data and only stone these paobabilities
Test-point & X Rain, Cold, High, Strong
(RyP(R1y)7(C1y)P(H/y)P(S/y)>-9-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-
PNP(R/N)P(C/N)P(H/N)P(S/N) > 5.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
→ •0137-14

Rain	3/9	2/5	
Temperature	P(T/Yes)	P(T/No)	
Hot	2/9	2/5	
Mild	4/9	2/5	
Cold	3 19	1/5	
Humidity	P(H/Yes)	P(H/No)	
High	3/9	4/5	
Normal	619	Y5	
Wind	P(W/Yes)	P(W/No)	
Weak	6/9	2/5	
Strong	3/9	3/5	

High

Normal

After training we Remove data

and only stone these probabilities

Test point 8- X Overcast, mild, high, weak ->RyP(0/Y)P(m/y)P(h/y)P(w/y)>Non Zero >PnP(0/N)P(m/N)P(h/N)P(W/N)>

Outlook	P(O/Yes)	P(O/No)
Sunny	2/9	3/5
Overcast	419	0/5
Rain	3/9	2/5

Temperature	P(T/Yes)	P(T/No)
Hot	2/9	2/5
Mild	4/9	2/5
Cold	3 19	1/5
Humidity	P(H/Yes)	P(H/No)

3/9

619

415

45

Wind	P(W/Yes)	P(W/No)
Weak	6/9	2/5
Strong	3/9	3/5

Weak

Strong

· Aftertgainingwe Remove data
and only stone these paobabilities
Test-point 8- X [Overcast, _, _, _
Jalways Y Class.
> (Zero probability problem)

Temperature	P(T/Yes)	P(T/No)
Hot	2/9	2/5
Mild	4/9	2/5
Cold	3 19	1/5
Humidity	P(H/Yes)	P(H/No)
Humidity High	P(H/Yes) 3/9	P(H/No) 4/5

6/9

3/9

2/5

3/5

Naïve Bayes Algorithm

Phoblems in Naive Bayes Algo=> need large dataset.

- 1) Zenopnobability problem> lack of data,
- 2 Here we are Calculating probabilities of adimension given aclass, to get exact value of u we need longe dataset

Naïve Bayes Algorithm

Complexity in naïve bayes classfier...

Naïve Bayes Algorithm

Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and

Test: Yes Yes No Find Result

Naïve Bayes Algorithm

> generally due to lack of data

Zero probability problem...

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild	High	Weak 🗸	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast 🗸	Cool	Normal	Weak	Yes
Sunny	Mild	High	Weak 🗸	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast 🗸	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Outlook/Yes

Sunny2 Overlast 4 Rain 3

$$P(SM) = 2/9$$

 $P(O(Y) = 4/9$
 $P(R(Y) = 3/9$

Outlook & Jy 8 O R

Sunny 2.
Over Casta

Rain 3

Sunny of

Over Casta

Rain of

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast 🗸	Cool	Normal	Weak	Yes
Sunny ·	Mild	High	Weak 🗸	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast 🗸	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Outlook/No

Sunny 3 OverCast O Rain 2 P(s/N)=3/5 P(O(N) = 0 P(R/N)=2/5

Outlook 80R

 $P(S/N) = \frac{3+\alpha}{5+3\alpha}$ $P(O/N) = \frac{3+\alpha}{5+3\alpha}$ $P(R/N) = \frac{2+\alpha}{5+3\alpha}$

Sunny 3 OverCasto

Rain 2

Sunnyd Over Casto Paint

Naïve Bayes Algorithm

Solving the zeroprobability problem...

- >1) increase data
 - (1) Smoothing technique

THANK - YOU