CHEM STRY MARKING SCHEME DELHI - 2013 SET - 56/1/3

Q no.	Ans wers	Marks		
1	Ferromagnetic	1		
2	$(CH_3)_3 \stackrel{\smile}{N} < CH_3 \stackrel{\smile}{NH_2} < (CH_3)_2 \stackrel{\smile}{NH}$	1		
3	$Cu_2S + FeS$			
4	4			
5	The linkage bet ween two monosaccharide units through oxygen is called Glycosidic Linkage	1		
6	2-chl or o-3- met hyl but ane	1		
7	G C	1		
8		1		
	H ₃ CСно			
9	Multi molecular colloids is aggregation of large number of atoms or smaller molecules of a substance having size in the colloidal range. Whereas macromolecular colloid is the solution containing macromolecules in the colloidal range Multi molecular colloid ex Cold sol, sulphur sol (or any other one correct example)	$\frac{1}{2} + \frac{1}{2}$		
	Macromolecular colloid ex Proteins, Cellulose (or any other one correct example)	72 + 72		
10				
	 (a) Cu, because in +1 oxidation state it has stable 3d¹⁰ configuration. (b) Mn²⁺, V³⁺: because of the presence of unpaired electrons in 3d orbital. (if only one ion is mentioned deduct ½ mark) 	$\frac{1/2 + 1/2}{1/2 + 1/2}$		
	(if only one ion is mentioned deduct ½ mark)			

14	(a) Si, Ge, B, Ga, In (any one example) (b) To lower the mp of mix/It acts as electrolyte./ It acts as solvent for alumina Despersed phase Despersion Medium		
14	(iii) $CH_3CH_2 \longrightarrow CH_2CH_3 \longrightarrow CH_3CH_2 - O - CH_2CH_3 + H$ (a) Si Ge B Ga In (any one example)	1	
	(ii) $CH_3CH_2 - \overset{\circ}{O}: + CH_3 - CH_2 - \overset{\circ}{O} + CH_3CH_2 - \overset{\circ}{O} - CH_2CH_3 + H_2O$	1/2	
13	(i) $CH_3-CH_2-\overset{\cdots}{\bigcirc}-H$ + H^+ \longrightarrow $CH_3-CH_2-\overset{+}{\bigcirc}-H$	1/2	
	$T_{\rm b} = 373.202\rm K$	1/2	
	$T_b - 373.15 \text{ K} = 0.052 \text{ K}$	1/2	
	$T_b - T_b^0 = 0.52 \text{ K kg mol}^{-1} \text{ x } \frac{18 \text{ g}}{180 \text{ g mol}^{-1}} \text{ x } \frac{1}{1 \text{kg}}$	1/2	
12	$\Delta T_b = K_b m$	1/2	
	(Full marks may be given if equation is not balanced)		
	(ii) 4 H ₃ PO ₃ heat 3 H ₃ PO ₄ + PH ₃	1	
	$PCl_{5} \xrightarrow{heat} PCl_{3} + Cl_{2}$		
11	(i)	1	

	OR	
	Lyophilic sols are solvent attracting sols whereas Lyophobic sols are Solvent repelling	1/2 + 1/2
	sols Lyophobic sols can be easily coagulated.	1
16	$\Lambda_{m} = \kappa / C$	1/2
	$\Lambda_{\rm m} = \frac{0.025 \text{ S cm}^{-1}}{0.20 \text{ mol L}^{-1}}$	1/2
	$\Lambda_{\rm m} = 125 \mathrm{Scm}^2 \mathrm{mol}^{-1}$	1
	(deduct ½ mark for wrong or no unit)	
17	 (i) Due to Resonance, or diagrammatic representation C Q bond length acquires double bond character in chlorobenzene and hence shorter than C Q bond length of CH₃-Q. or explanation based on hybridisation. (ii) Because in the presence of light, chlorofor mfor ms phosgene which is a poisonous gas or explained with equation. 	1+1
18		
	$CH_3-CH=CH_2 \xrightarrow{HBr} CH_3-CH_2-CH_2-B_r \xrightarrow{Q_1 \cdot KOH} CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-$	1+1
	(or by any other correct suitable method)	

19	(i) Sonali: Concerned for the society, socially active and helpful to others. Principal: Caring commanding and serious about the welfare of students.	1 1
	(or any other suitable values) (ii) Vitamins Band C	1/2 + 1/2
20	 (i) Due to incomplete filling of d-orbitals, transition metals show variable oxidation states. (ii) Because of Lanthanoid Contraction. (iii) Because of their ability to show multiple / variable oxidation states. 	1 x 3=3
	OR	
20	(i) $G_2 O^{2-} + 6Fe^{2+} + 14H^{\dagger} \rightarrow 2G^{3+} + 6Fe^{3+} + 7H_O$	
	(ii) $2G O_4^{2-} + 2H^{\dagger} \rightarrow G_2 O_2^{2-} + H_2 O$	
	(iii) $2 \text{Mh Q}^{-} + 5 \text{C}_2 \text{Q}^{2-} + 16 \text{H}^{\dagger} \rightarrow 2 \text{Mh}^{2+} + 10 \text{CQ}_2 + 8 \text{H}_2 \text{O}$	1 x 3=3
	(Accept only balanced equation)	1 X 3-3
21	(a) Sodi um Benzoate (b) To impart antiseptic properties (c) Tranquilizers	1 x 3=3
22	 (a) p-t ype se mi conduct or (b) Ferro magnetis m (c) I mpurity defect / Cati on vacancy defect 	
23	(i) A=CH ₃ CH ₂ CN B=CH ₃ CH ₂ CH ₂ NH ₂ C=CH ₃ CH ₂ CH ₂ OH	$1x3=3$ $\frac{1}{2}+\frac{1}{2}+\frac{1}{2}$
	(ii) A=CH ₃ CONH ₂ B=CH ₃ -NH ₂ C=CH ₃ -NC	1/2+1/2+1/2
24	(i) Tri a mmi netri chl ori dochr o mi u m(III)	1
	(ii) Pot assi um hexacynof errat e(III)	1
	(iii) D bromi dobi s-(et hane-1, 2-di a mi ne) cobalt (III) / D bromi dobi s-(et hyl enedi a mi ne) cobalt (III)	1
25	When K₂SQ is dissolved in water, ions are produced. Total number of ions produced = 3	

	i =3	1/2
	$\pi = i CRT$ = $i \times \underline{n} \times R \times T$ V	1/2
	$\pi = 3 \text{ x}$ $\frac{2.5 \times 10^{2} \text{ g}}{174 \text{ g mol}^{-1}}$ $\frac{1}{2L}$ $\frac{1}{2$	1
	$\pi = 5.27 \times 10^3 \text{ at m}$	1
	(deduct ½ mark for wrong or no unit)	
26	The cell reaction: Fe(s) + $2H^{\dagger}$ (aq) \rightarrow Fe ²⁺ (aq) + H_{2} (g) o $E_{cell} = 0.44 \text{ V}$ Ner nst equation	
	$E_{\text{cell}} = E_{\text{cell}}^{0} - \frac{0.059 \log [\text{Fe}^{2+}]}{2}$ $E_{\text{cell}} = \frac{10059 \log [\text{Fe}^{2+}]}{2}$	1
	$E_{\text{cell}} = 0.44 \text{ V} - \underline{0.059} \log \underline{(0.001 \text{ M})}_{2}$ $2 \qquad (1 \text{ M})^{2}$	1/2
	$= 0.44 \text{ V-} \underline{0.059}_{2} \log (10^{3})$	1/2
	= $0.44 \text{ V} + 0.0885 \text{ V}$ = 0.5285 V (deduct $\frac{1}{2}$ mark for wrong or no unit)	1
27.	(i) Phenol and For maldehyde	1/2 + 1/2
	С ₆ Ӊ ОН+ НСНО	

	(ii) Caprolactum	1/2 + 1/2
	(iii) Н hene СН =СН	1/2 + 1/2
28	(i) Because of smaller size of F-atom/ shorter bond length, the electron -electron repulsion a mong the lone pairs is greater in F_2 than G_2 (ii) Due to hydrogen bonding in NH_3 .	1+1
	(b) (i) F	
	(ii) HO P O P OH O N O O O O O O O O O O O O O O O O	

29	 (a) (i) Resonating structures of carboxyl at e i on are more stable than phenoxide i on structures. (ii)—ve charge is dispersing on t wo electronegative oxygens in carboxyl at e i on whereas on one oxygen in phenoxide i on. 	1+1
	Zn- Hg i) CH₃- CO CH₃ → CH₃- CH₂- CH₃ conc. HCl	
	ii) $\begin{array}{c} O \\ C \\ C \\ D \\ C \\ D \\ D \\ D \\ D \\ D \\ D$	
	dl. № OH iii) CH ₂ - CHO	1x3=3
	(or by any other correct suitable method) OR	
29	(a)	
	(i)	
	H—C—OH + H—C OK	
	(ii)	
	Br - CH ₂ COOH	

	(iii)	
	O ₂ N CHO	
	(b)	1 x3=3
	(i) <u>It hand and Propanal</u> : He hand gives yellow ppt of Iodoform (CH ₃) on addition of Na OH/I ₂ whereas Propanal does not give this test. (or any other suitable test)	
	(ii) <u>Benzoic acid and Phenol</u> : Add neutral FeQ ₃ to both, phenol gives purple / violet colouration whereas Benzoic acid does not give this test or / Add Na HCO ₃ to both, Benzoic acid will give brisk effervescence whereas phenol does not give this test. (or any other suitable test)	1+1
30	 (a) (i) rate= k[A]² [B] (ii) Rate will increase 9 times of the actual rate of reaction 	
	(iii) Rate will increase 8 times of the actual rate of reaction.	1x3=3
	$k = 2303 \log \left[A_{\underline{0}} \right]$ $t \qquad [A]$	1/2
	$k = \underline{2303} \log 100 \atop 40 \text{min} 70$	
	$k = \underline{2303} \times 0.155 = 0.00892 \text{mi} \text{n}^{-1}$	1/2
	$t_{1/2} = \frac{40}{0.693}$	1/2
	k $t_{1/2} = 0.693 \text{min}$	
	$\begin{array}{ccc} & 0.00892 & & & & & & & & & & & & & & & & & & &$	1/2
L	<u> </u>	ı

		OR	
20	(a)		
30	$t_{99\%} = \frac{2\ 303}{k} \log \frac{100}{1}$		1/2
	$t_{90\%} = 2.303 \log 100$		1/2
	k 10		
	on comparision $\underline{t_{99\%}} = \underline{log 100}$		
	t 90% log 10		1/2
	Hence $t_{99\%} = 2 t_{90\%}$		1/2
	(or solved by	any other correct suitable nethod)	
	(b)		
			1
	Stope = $\frac{-\text{Ea}}{2303\text{R}}$		
	-4250 K = - Fa		1
	$-4250 \mathrm{K} = -\frac{\mathrm{Ea}}{2303\mathrm{x}8314\mathrm{J}\mathrm{K}^{1}\mathrm{mol}^{-1}}$		
	Ea= 81375 J mol ⁻¹ or 81.375 kJ m	DI ⁻¹	1
	Sh. S K Munj al	Dr (Mrs.) Sangeet a Bhatia	
	Prof. R D Shukla	Mr. K.M. Abdul Raheem	
	Dr. K N Uppadhya	M. D A Mishra	
	Mr. Rakesh Dhawan	M. Deshbir Singh	
	Ms. Neeru Sofat	Mr. Akhileshwar Mishra	
	Mr. Virendra Singh		