ORIENTABILITY OF A REGULAR LEVEL SET

Luiz Felipe Silva Marques

Theorem. Let M and N be oriented smooth manifolds and $F: M \longrightarrow N$ a smooth map. Suppose $m \doteq \dim M > \dim N \doteq n$. If $a \in N$ is a regular value of F, the smooth manifold $S \doteq F^{-1}(a)$ is orientable.

Proof. Denote by $i: S \hookrightarrow M$ the inclusion map. We shall prove the existence of a smooth nowhere-vanishing (m-n)-form on S.

Since M and N are orientable, there are nowhere-vanishing smooth forms $\omega \in \Omega^m(M)$ and $\alpha \in \Omega^n(N)$. We claim that, in order to conclude the proof, it suffices to show that, for some $\tau \in \Omega^{m-n}(M)$, we have

$$(\tau \wedge F^*\alpha)_q = \omega_q \quad \forall \ q \in S. \tag{1}$$

Indeed, let τ be such a differential form. Given $q \in S$, consider a basis $\{v_1, \ldots, v_m\}$ for T_qM such that $\{v_1, \ldots, v_{m-n}\}$ is a basis for $T_qS \cong \ker dF_q$. Then

$$0 \neq \omega_q(v_1, \dots, v_m)$$

$$= (\tau \wedge F^*\alpha)_q(v_1, \dots, v_m)$$

$$= \tau_q(v_1, \dots, v_{m-n}) \alpha_q(dF_q v_{m-n+1}, \dots, dF_q v_m),$$
(2)

where the last equality holds since, for $\sigma \in S_m$,

$$\alpha_a(dF_q \, v_{\sigma(m-n+1)}, \ldots, dF_q \, v_{\sigma(m)})$$

is non-zero if and only if $\sigma(\{m-n+1,\ldots,m\}) \subseteq \{m-n+1,\ldots,m\}$. It then follows from (2) that $\tau_q(v_1,\ldots,v_{m-n}) \neq 0$ and thus $(i^*\tau)_q \neq 0$. Therefore we conclude that $i^*\tau$ is a nowhere-vanishing smooth (m-n)-form on S.

Having established this, our goal is to prove that (1) holds for some $\tau \in \Omega^{m-n}(M)$. We achieve this using a patching argument with a partition of unity.

First notice that $(F^*\alpha)_p \neq 0$ for all $p \in S$ by the surjectivity of dF_p . Now, consider $p \in S$ and a chart (U_p, x^1, \dots, x^m) on M about p. On U_p , write

$$\omega = g dx^1 \wedge \cdots \wedge dx^m, \ g \in C^{\infty}(U_p),$$

and

$$F^*\alpha = \sum_I a_I \, dx^I, \ a_I \in C^\infty(U_p).$$

Since $(F^*\alpha)_p \neq 0$, there is an increasing multi-index $I_p = (i_1, \ldots, i_n)$ such that $a_{I_p}(p) \neq 0$ and we may assume by continuity that a_{I_p} does not vanish on U_p . Denote by j_1, \ldots, j_{m-n} the elements of $\{1, \ldots, m\} \setminus I_p$ and define, on U_p ,

$$\tau^p \doteq \frac{g}{(\operatorname{sgn}\sigma) a_{I_p}} dx^{j_1} \wedge \cdots \wedge dx^{j_{m-n}} \in \Omega^{m-n}(U_p),$$

where σ is the unique permutation on S_m that maps

$$(j_1,\ldots,j_{m-n},i_1,\ldots,i_n)\longmapsto (1,\ldots,m).$$

Then, on U_p , we have

$$\tau^{p} \wedge F^{*}\alpha = \left(\frac{g}{(\operatorname{sgn}\sigma) a_{I}} dx^{j_{1}} \wedge \dots \wedge dx^{j_{m-n}}\right) \wedge \left(\sum_{I} a_{I} dx^{I}\right)$$

$$= \frac{g}{(\operatorname{sgn}\sigma)} dx^{j_{1}} \wedge \dots \wedge dx^{j_{m-n}} \wedge dx^{I} = \omega.$$
(3)

Finally, we glue the local forms $\{\tau_p\}_{p\in S}$ together to obtain the desired (m-n)-form τ . Let $\{\psi_p\}_{p\in S}\cup\{\psi_{M\setminus S}\}$ be a partition of unity on M subordinate to the open cover $\{U_p\}_{p\in S}\cup\{M\setminus S\}$. Define

$$\tau \doteq \sum_{p \in S} \psi_p \tau^p \in \Omega^{m-n}(M).$$

Note that:

- For each $p \in S$, the form $\psi_p \tau^p$ is defined on U_p . Nonetheless, it may be trivially extended to a smooth form on M by defining it to be identically zero outside U_p since supp ψ_p is closed in M and contained in U_p .
- Since $\{\sup \psi_p\}_{p \in S}$ is a locally finite family, τ is indeed well defined and smooth on M.

We claim that τ is the desired (m-n)-form. In fact, if $q \in S$, then

$$\begin{split} (\tau \wedge F^*\alpha)_q &= \tau_q \wedge (F^*\alpha)_q \\ &= \left(\sum_{p \in S} \psi_p(q) \, \tau_q^p \right) \wedge (F^*\alpha)_q \\ &= \sum_{p \in S} \psi_p(q) \, \tau_q^p \wedge (F^*\alpha)_q \\ &= \sum_{p \in S} \psi_p(q) \, [\tau^p \wedge (F^*\alpha)]_q \\ &\stackrel{\text{(i)}}{=} \sum_{p \in S} \psi_p(q) \, \omega_q \\ &\stackrel{\text{(ii)}}{=} \left(\sum_{p \in S} \psi_p(q) + \psi_{M \backslash S}(q) \right) \omega_q = \omega_q, \end{split}$$

where (i) holds by (3) since the sum is taken over $p \in S$ with $q \in \text{supp} \psi_p \subseteq U_p$; and (ii) holds since $q \in S$. This concludes the proof of (1).