Heuristic Optimization Methods

Tabu Search: Introductory Topics

Agenda

- Introduction to Tabu Search
 - Tabu criterion
 - Tabu Tenure
 - Aspiration
 - Examples of use
 - Knapsack
 - TSP
 - Intensification
 - Diversification

Terminology: Neighborhoods (1)

- To make sure we understand this correctly:
- A **neighborhood** is a set of solutions that are close to one given solution
 - A set of solutions that can be reached from another by making only one move
 - -N(x) usually denotes the neighborhood of x
- A **neighborhood operator** is a function that takes a solution and returns its neighborhood
 - $-N: S \rightarrow 2^S$
 - So, while a neighborhood is one specific collection of neighbors, a neighborhood operator is the blue-print for how to make those neighbors if we are given an initial solution around which to build the neighborhood

Terminology: Neighborhoods (2)

- Let us assume we have a knapsack problem, with *n* binary variables
- Furthermore, let us use flip-neighborhoods
- That is, $N(x) = \{\text{all } y \text{ in } S, \text{ such that the } Hamming distance between } y \text{ and } x \text{ is } 1\}$
 - *N* is the neighborhood operator
 - -N(x) is the neighborhood of solution x

Tabu

- The word tabu (or taboo) comes from Tongan
 - a language of Polynesia
 - used by the aborigines of Tonga island to indicate things that cannot be touched because they are sacred

- "Loaded with a dangerous, unnatural force"
- "Banned due to moral, taste or risk"

Tabu Search

- Tabu Search:
 - Cut off the search from parts of the search space (temporarily)
 - Guide the search towards other parts of the search by using penalties and bonuses
- Uses principles for intelligent problem solving
- Uses structures that are exploring the search history, without remembering everything
 - Branch&Bound, A*: have complete memory
 - Simulated Annealing: have no memory

Origin of Tabu Search

- Fred Glover 1986: "Future paths for integer programming and links to artificial intelligence"
- Pierre Hansen 1986: "The Steepest Ascent/Mildest Descent Heuristic for Combinatorial Optimization"
- *Tabu* coined by Glover

Main Ideas of Tabu Search

- Based on Local Search LS
- Allows non-improving moves
 - can exit local optima
- Uses extra memory to avoid looping, and to diversify the search
- General strategy for controlling a LS, or other "inner" heuristic
- Meta-Heuristic (Glover)

General Formulation

Tabu Search

- 1: $current \Leftarrow a$ starting solution
- 2: Initialize tabu memory
- 3: while stopping criterion not met do
- 4: Find a list of candidate moves, a subset of N(current)
- 5: Select the solution, s, in the candidate list that minimizes an extended cost function
- 6: Update tabu memory and perform the move: $current \Leftarrow s$
- 7: end while

Some Critical Choices

- Choice of neighborhood, N
- Definition of the tabu memory
- How to select the candidate list
- The definition of the evaluation function
 - Improvement in solution values
 - Tabu criteria
 - Aspiration criteria
 - Long term strategies
 - Diversification, intensification, ...

Basic Tabu Search

- Local Search with "Best Improvement" strategy
 - Always select the best move
- But: Some neighbors are *tabu*, and cannot be selected
 - Defined by the *tabu criterion*
 - Tabu neighbors might be selected anyway if they are deemed to be good enough
 - Aspiration criterion
- Memory tabu list

The Tabu Criterion (1)

- In Tabu Search, we allow moving to a worse solution
- Since we (in basic TS) always select the "Best Improvement", how can we avoid cycling between solutions?
- The answer is the tabu criterion:
- We are not allowed to move to solutions that we have visited before
 - They are tabu!

The Tabu Criterion (2)

- The basic job of the tabu criterion is thus to avoid visiting the same solution more than once
- How to accomplish this?
 - Store all the solutions visited during the search, and check that the new solution is not among those previously visited
 - Too time consuming!
 - Find some way of (approximately) represent those solutions that we have seen most recently, and avoid returning immediately to those (or similar) solutions

Tabu Attribute Selection

- Attribute
 - A property of a solution or a move
- Can be based on any aspect of the solution that are changed by a move
- Attributes are the basis for tabu restrictions
 - We use them to represent the solutions visited recently
- A move can change more than one attribute
 - e.g. a 2-opt move in TSP involves 4 cities and 4 edges
- Similar to the "features" in GLS, but we don't require the attributes to have costs

Example – Attributes in TSP

- Attributes based on the edges
 - A1: Edges added to the tour
 - A2: Edges removed from the tour
- Move of type exchange
 - Exchanges two cities
 - 4 edges removed
 - 4 edges added
 - Exchange(5,6)
 - A1:(2,5),(5,7),(4,6),(6,1)
 - A2:(2,6),(6,7),(4,5),(5,1)

TS – Tabu Criterion

- The tabu criterion is defined on selected attributes of a move, (or the resulting solution if the move is selected)
- It is very often a component of the solution
- The attribute is tabu for a certain amount of time (i.e. iterations)
 - This is called the *Tabu Tenure* (TT)
- The tabu criterion usually avoids the immediate move reversal (or repetition)
- It also avoids the other (later) moves containing the tabu attribute. This cuts off a much larger part of the search space

TS – Attributes and Tabu Criteria

- Can have several tabu criteria on different attributes, each with its own tabu tenure
 - These can be disjunct
- If a move is to exchange a component (e.g. *edge*) *in* the solution with a component *not in* the solution, we can have the following tabu attributes and criteria
 - Edge added
 - Edge dropped
 - Edge added or edge dropped
 - Edge added and edge dropped

Use of Attributes in Tabu Restrictions

- Assume that the move from $s_k \rightarrow s_{k+1}$ involves the attribute A
- The usual tabu restriction:
 - Do not allow moves that reverse the status for A
- The TSP example:
 - Move: exchange cities 2 and 5: $x_{2,5}$
 - The tabu criterion could disallow:
 - Moves involving 2 and 5
 - Moves involving 2 or 5
 - Moves involving 2
 - Moves involving 5

Tabu Tenure (1)

- The tabu criterion will disallow moves that change back the value of some attribute(s)
- For how long do we need to enforce this rule?
 - For ever: the search stops because no changes are allowed
 - For too long: the search might become too limited (too much of the search space is cut off due to the tabu criterion)
 - For too short: the search will still cycle, but the length of the cycle can be more than 2
- The number of iterations for which the value of the attribute remains tabu is called the *Tabu Tenure*

Tabu Tenure (2)

- Earlier: The magical number 7, plus or minus 2
- Sometimes: in relation to problem size: $n^{1/2}$
- Static (fixed) tabu tenure is not recommended
 - The search gets more easily stuck in loops
- Dynamic tabu tenure is highly recommended
 - Change the tabu tenure at certain intervals
 - Can use uniform random selection in [tt₁, tt₂]
 - This is usually called dynamic, even though it is not
- Reactive Tabu Search
 - Detect stagnation → increase TT
 - When escaped → reduce TT

Tabu Tenure (3)

- Dependent on the tabu attributes
- Example: TSP n cities 2-opt
 - Use edges-added and edges-dropped as tabu attributes
 - $|n^2|$ edges in the problem instance
 - |n| edges in the solution
 - Many more edges outside the solution than in the solution
 - Using the same TT would be unbalanced

Example: 0/1 Knapsack

- Flip-Neighborhood
- If the move is selecting an item to include in the solution, then any move trying to remove the same item is *tabu* for the duration of the *tabu tenure*
- Similarly, an item thrown out is not allowed in for the duration of the tabu tenure iterations
- Here the attribute is the same as the whole move

Infeas. Neighbor

Variables flipped so far: 3

0000	
0	

0011

Variables flipped so far: 3

Neighbor

Infeas. Neighbor

Variables flipped so far: 3, 2

0000	
0	

0011

Neighbor

Infeas. Neighbor

Variables flipped so far: 3, 2

28

16

23

Local and Global optima

Solution value

Solution space

Aspiration Criterion (1)

- The tabu criterion is usually not exact
 - Some solutions that are not visited are nevertheless tabu for some time
- Possible problem: one of the neighbors is very good, but we cannot go there because some attribute is tabu
- Solution: if we somehow know that the solution is not visited before, we can allow ourselves to move there anyway
 - i.e., the solution is a new best solution: obviously we have not visited it before!

Aspiration Criterion (2)

- Simplest: Allow new best solutions, otherwise keep tabu status
- Criteria based on
 - Degree of feasibility
 - Degree of change
 - Feasibility level vs. Objective function value
 - Objective function value vs. Feasibility level
 - Distance between solutions
 - E.g. hamming distance
 - Influence of a move
 - The level of structural change in a solution
- If all moves are tabu:
 - Choose the best move, or choose randomly (in the candidate list)

Frequency Based Memory

- Complementary to the short term memory (tabu status)
- Used for long term strategies in the search
- Frequency counters
 - residency-based
 - transition-based
- TSP-example
 - how often has an edge been in the solution? (residency)
 - how often has the edge status been changed? (transition)

TS - Diversification

- Basic Tabu Search often gets stuck in one area of the search space
- Diversification is trying to get to somewhere else
- Historically random restarts have been very popular
- Frequency-based diversification tries to be more clever
 - penalize elements of the solution that have appeared in many other solutions visited

TS - Intensification

- To aggressively prioritize good solution attributes in a new solution
- Usually based on frequency
- Can be based on elite solutions, or part of them (vocabularies)

Intensification and Diversification

Intensification

- Aggressively prioritize attributes of good solutions in a new solution
 - Short term: based directly on the attributes
 - Longer term: use of elite solutions, or parts of elite solutions (vocabulary building)

Diversification

 The active spreading of the search, by actively prioritizing moves that gives solutions with new composition of attributes

Intensification and Diversification - simple mechanisms

- Use of frequency-based memory
- Based on a subset S_f of all the solutions visited (or moves executed)
- Diversification:
 - Choose S_f to contain a large part of the generated solutions (e.g. all the local optima)
- Intensification:
 - Choose S_f to be a small subset of *elite* solutions
 - E.g., that have overlapping attributes
 - Can have several such subset
 - Partitioning, clustering-analysis

Whips and Carrots

- Used in the move evaluation function, in addition to the change in the objective function value and tabu status
- A carrot for intensification will be a whip for diversification
- Diversification:
 - Moves containing attributes with a high frequency count are penalized
 - TSP-example: $g(x)=f(x)+w_1\Sigma\omega_{ij}$
- Intensification:
 - Moves to solutions containing attributes with a high frequency among the elite solutions are encouraged
 - TSP-example: $g(x)=f(x)-w_2\Sigma\gamma_{ij}$

TS Example: TSP

- Representation: permutation vector
- Move: pairwise exchange

$$(i, j)$$
 $i < j$ $i, j \in [1, n]$

1 2 3 4 5 6

Move: Exchange in permutation vector

Move: *Exchange*(5,6)

TSP Example

- Number of neighbors: $\binom{n}{2}$
- For every neighbor: *Move value*

$$\Delta_{k+1} = f(i_{k+1}) - f(i_k), \qquad i_{k+1} \in N(i_k)$$

- Choice of tabu criterion
 - Attribute: cities involved in a move
 - Moves involving the same cities are tabu
 - Tabu tenure = 3 (fixed)
- Aspiration criterion
 - new best solution

TSP Example: Data structure

- Data structure: triangular table, storing the number of iterations until moves are legal
- Updated for every move

	2	3		4	5	6	7
1	0	2		0	0	0	0
	2	2 0		3	0	0	0
			3	0	0	0	0
				4	1	0	0
					5	0	0
						6	0

TSP Example: Tabu Criteria/Attributes

- Illegal to operate on given cities
- Illegal to change the city in position k in the vector
- Criteria on edges
 - Links often present in good solutions
 - Length of links w.r.t. the average
- For permutation problems
 - Attributes related to previous/next often work well

1	2	3	4	5	6	7
2	4	7	3	5	6	1
	-	•	<u> </u>			_

Starting solution: Value = 234

1	2	3	4	5	6	7
2	5	7	3	4	6	1

	2	3	4	5	6	7
1	0	0	0	0	0	0
	2	2 0	0	0	0	0
		3	0	0	0	0
				4 0	0	0
				5	0	0
					6	0

Current solution: Value = 234

1	2	3	4	5	6	7	
2	5	7	3	4	6	1	

1	2	3	4	5	6	7
2	4	7	3	5	6	1

Candidate list:

Exchange	Value
5.4	-34
7.4	-4
3.6	-2
2.3	0
4.1	4

After move: Value = 200

	2		3		4	5		6	7
1	0		0		0	0		0	0
		2	0		0	0		0	0
				3	0	0		0	0
					4	3		0	0
							5	0	0
								6	0

Current solution: Value = 200

1	2	3	4	5	6	7
2	4	7	3	5	6	1

Candidate list:

Exchange	Value
3.1	-2
2.3	-1
3.6	1
7.1	2
6.1	4

 \leftarrow Choose move (3,1)

	2	3	4	5	6	7
1	0	0	0	0	0	0
	2	0	0	0	0	0
		3	0	0	0	0
			4	3	0	0
				5	0	0
					6	0

Current solution: Value = 200

1	2	3	4	5	6	7
2	4	7	3	5	6	1

Candidate list:

Exchange	Value
3.1	-2
2.3	-1
3.6	1
7.1	2
6.1	4

 \leftarrow Choose move (3,1)

Update tabu list

	2	3	4	5	6	7
1	0	3	0	0	0	0
	2	2 0	0	0	0	0
		3	0	0	0	0
			4	2	0	0
				5	0	0
					6	0

Current solution: Value = 198

1	2	3	4	5	6	7
2	4	7	1	5	6	3

Candidate list:

Exchange	Value
1.3	2
2.4	4
7.6	6
4.5	7
5.3	9

Tabu!

Choose move (2,4)

NB: Worsening move!

	2	3	4	5	6	7
1	0	3	0	0	0	0
	2	2 0	0	0	0	0
		3	0	0	0	0
			4	2	0	0
				5	0	0
					6	0

Current solution: Value = 198

1	2	3	4	5	6	7
2	4	7	1	5	6	3

Candidate list:

Exchange	Value
1.3	2
2.4	4
7.6	6
4.5	7
5.3	9

Tabu!

Choose move (2,4)

NB: Worsening move!

Tabu list:

	2		3		4	5		6	7
1	0		2		0	0		0	0
		2	0		3	0		0	0
				3	0	0		0	0
					4	1		0	0
							5	0	0
								6	0

Update tabu list

Current solution: Value = 202

1	2	3	4	5	6	7
4	2	7	1	5	6	3

Candidate list:

Exchange	Value
4.5	-6
5.3	-2
7.1	0
1.3	3
2.6	6

Tabu!

Choose move (4,5)

Aspiration!

	2		3		4	5		6	7
1	0		2		0	0		0	0
		2	0		3	0		0	0
				3	0	0		0	0
					4	1		0	0
							5	0	0
								6	0

Observations

- In the example 3 out of 21 moves are prohibited
- More restrictive tabu effect can be achieved by
 - Increasing the tabu tenure
 - Using stronger tabu-restrictions
 - Using OR instead of AND for the 2 cities in a move

TSP Example: Frequency Based Long Term Memory

- Typically used to diversify the search
- Can be activated after a period with no improvement
- Often penalize attributes of moves that have been selected often

Tabu-status (closeness in time)

	1	2	3	4	5	6	7	
1			2					
2				3				
3	3							
4	1	5			1			
5		4		4				
6			1		2			
7	4			3				

Frequency of moves

Summary

- Introduction to Tabu Search
 - Tabu criterion
 - Tabu Tenure
 - Aspiration
 - Examples of use
 - Knapsack
 - TSP
 - Intensification
 - Diversification

