Activity Browser Advanced Tutorial

Marc van der Meide | Brightcon 2022

- Master of Industrial Ecology at Leiden U.
- Have been developing for AB since 2018
- PhD at Leiden U. since Oct 2020

Email: m.t.van.der.meide@cml.leidenuniv.n Linkedin: in/marcvandermeide Researchgate: /marc-meide

Plan for today -> <u>Interactive</u> tutorial

- 1. Making sure AB is working for all of you
- 2. Flow scenarios
- 3. Live demo
- 4. Break!
- 5. Uncertainty + Monte Carlo
- 6. Live demo
- 7. Break + Playing around
- 8. Reporting problems/asking for help & Wrapping up

This tutorial has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 869336

Setting up

- 1. Installing Miniconda3 https://docs.conda.io/en/latest/miniconda.html
- 2. Installing Activity Browser https://github.com/LCA-ActivityBrowser/activity-browser
 - 1. Most OS:

conda create -n ab -c conda-forge -c cmutel -c bsteubing activity-browser
conda activate ab
activity-browser

2. Apple M1 Mac

conda create -n ab -c conda-forge -c cmutel -c bsteubing activity-browser-arm conda activate ab activity-browser

3. Add default data
Do it now, this takes
some time

What scenarios are

- Very simply:
 - Different representations of (possible) reality
- Often used for exploration of future possible realities
- Can easily be used as 'sensitivity analysis'
- Some further scenario reading:
 - <u>A talk by Dr. Bernhard Steubing</u> tonight (18:30-19:30 CEST) at the LCA network (free, requires sign-up)
 - Framework for scenario development in LCA (Pesonen et al. 2000)
 - When the background matters (Mendoza Beltran et al. 2018)

• Flow scenarios represent changes in <u>flows</u>

• Flow scenarios represent changes in <u>flows</u>

• Flow scenarios represent changes in <u>flows</u>

- Flow scenarios represent changes in <u>flows</u>
- Flows are represented by a *'from'* and *'to'*

from activity name from reference product	from location	from categories from database	from key	to activity name	to reference product	to location to categories	to database	to key	flow type	amount	
Copper, in ground		('natural resourcebiosphere3	('biospher	Production of cop	Copper	GLO	background_	('backgr	biosphere	1000	
Production of coppe Copper	GLO	background_da	a ('backgrou	Production of cop	Copper	GLO	background_	ر('backgr	production	100	
Production of electr Electricity	GLO	background_da	a ('backgrou	Production of cop	Copper	GLO	background_	ر('backgr	technosphe	10000	

Working with flow data

- From Activities table to within an activity
- You can copy flow data from AB through right-click
 - Copies all related flows
 - You can also select multiple rows
- You can then paste to Excel
- Add columns for new scenarios

Calculating flow scenarios

• Choose the `Scenario LCA` option and load a file

Flow scenarios, but cooler:

- Change *many* processes in ecoinvent background?
- Couple Integrated Assessment Models to ecoinvent?
- Generate files with >> 100'000 flows changed?
- Consider different scenarios into the deep future?
- Premise (Sacchi et al. 2022)
- Superstructure (Steubing & de Koning 2021)
- More info? Come to the talk by Romain Sacchi tomorrow

Live demo

Flow scenarios demo

I will:

- Introduce the system
- Generate flow scenario file
- Run calculations
- Assess results
 - General results
 - Process contributions
- Use multiple flow scenarios

This example is based on **Chapter 17A** of Principles of Environmental Sciences (Heijungs; 2009).

Production of fuel

What are uncertainties in LCA

- We never know a number with perfect precision
- We can assume a distribution of results

Uncertainties & AB

- You can set uncertainty distributions for every flow, parameter and characterization factor in AB
- Many different distributions can be set in AB (see <u>statsarrays</u> documentation)
- You can also use pedigree distributions (<u>Ciroth et al.</u> 2013)
 - 5 categories that get a score 1-5
- Ecoinvent also uses this for uncertainty data

• Though not without criticism (Heijungs 2020)

Setting uncertainty in AB

• Right-click a flow and choose Modify uncertainty

Calculating with uncertainty in AB

Do a normal calculation

Then go to Monte Carlo and run

Live demo

Uncertainties demo

I will:

- Use the same system
- Demonstrate some uncertainties
- Calculate results

This example is based on **Chapter 17A** of Principles of Environmental Sciences (Heijungs; 2009).

Playing around

- 1. Take a break, grab a drink
- 2. Go to: tinyurl.com/bcon22-AB102
- 3. Download all files
 - Optional: Import the databases
- 4. Use the slides as a guide to play around
 - Create some flow scenarios
 - And/or add uncertainty data
- 5. Either use the provided databases or your own system to try things out

Ready to continue?

Reporting problems and asking for help

- Are you having problems or did you find a bug?
- Don't know how to do something?
- Do you have ideas for improvements or totally new features?

Report it on our github-issues page

- Reporting a problem? Provide the following for quicker help:
 - What were you trying to do/expecting?
 - What did happen?
 - If relevant share extra information:
 - Screenshots
 - Error messages from the terminal
 - The version of your Activity Browser →

Wrapping up

- 1. You can now develop your own flow scenarios and assess results
- 2. You can now add uncertainty data and use Monte Carlo simulations

Updating AB

- Updating will <u>never</u> remove data in your projects/databases
- You can check what version of AB you're on under: Help → About Activity Browser

- You can see what version is the latest release on our github under releases
- You can update activity browser with: conda activate ab conda update activity-browser
- Want to be on the cutting edge?
 - You can download the development version <u>here</u>
 - You can have both versions side-by-side and both will have access to the same projects/databases etc
 - The development version gets more updates, but things may break more often

General tips

- **Tooltips:** Hover over a button/slider/item with your mouse to get a popup for more information.
- Excel format: While AB supports the excel format, please don't make databases in excel, only edit them there, it's *very* easy to make mistakes and break your file.
- **Modeling waste treatment:** Be aware that ecoinvent considers waste treatment a service that an activity needs as 'input', not as an output product. This is modeled by having a negative value for production and the input into a process.

Q&A

