Funzioni

Riprendiamo il concetto di funzione.

Definizione di funzione : una funzione $f: A \to B$, con A e B insiemi non vuoti, è una legge che associa ad **ogni elemento** $x \in A$ uno e un solo elemento $y \in B$

$$x \rightarrow y = f(x)$$

y viene chiamato "immagine" di x e indicato anche con f(x).

Esempio: se consideriamo come insieme A l'insieme degli studenti della classe quinta A del liceo classico di Montevarchi nell'anno scolastico in corso e come insieme B l'insieme dei giorni dell'anno, possiamo considerare la funzione f che associa ad ogni studente la propria data di nascita.

Proprietà di una funzione

• Una funzione f si dice **iniettiva** se ad elementi distinti $(x_1 \neq x_2)$ corrispondono immagini distinte $f(x_1) \neq f(x_2)$

Per esempio la funzione f: studente 5ACL \rightarrow data di nascita, non è detto che sia iniettiva perché ci potrebbero essere studenti nati nello stesso giorno.

• Una funzione f si dice **suriettiva** se ogni elemento $y \in B$ è l'immagine di almeno un elemento $x \in A$.

Esempio di funzione suriettiva ma non iniettiva

NOTA: se prendiamo come insieme di arrivo B l'insieme delle immagini, ogni funzione diventa suriettiva.

Una funzione f si dice biunivoca quando è iniettiva e suriettiva e quindi quando ad ogni elemento x ∈ A corrisponde uno e un solo elemento y ∈ B e viceversa.
 Questa funzione viene anche chiamata "funzione uno-a-uno".

Funzioni reali di variabile reale

Data $f:A\to B$ se $A,B\subseteq\Re$, cioè A e B sottoinsiemi dell'insieme dei numeri reali, f si dice funzione reale di variabile reale.

La variabile $x \in A$ viene detta **variabile indipendente** mentre y = f(x) viene chiamata **variabile dipendente.**

Esempio: $f: x \rightarrow x+1$

è la funzione che associa ad ogni numero reale $x \in \Re$ il suo successivo.

• Dominio della funzione: è l'insieme dei numeri reali per cui la funzione risulta definita.

Esempio:

$$f: x \to \frac{1}{x}$$
 ha come dominio $D_f = \Re - \{0\}$ poiché per $x = 0$ non è possibile effettuare $\frac{1}{0}$.

Esempio:

$$f: x \to tgx$$
 è definita per $x \neq \frac{\pi}{2} + k\pi$ cioè il suo dominio è $Df = \Re - \left\{ x = \frac{\pi}{2} + k\pi, k \in Z \right\}$.

• Codominio della funzione: è l'insieme delle immagini della funzione.

Esempio: $f: x \to tgx$ ha come codominio $Cf = \Re$.

Esempio: $f: x \to senx$ ha come codominio Cf = [-1;1]

• Grafico della funzione: è l'insieme dei punti (x, y) con $x \in Df$ e y = f(x) rispetto ad un sistema di riferimento.

Esempio: il grafico di y = senx è il seguente.

 $Df = \Re$ Cf = [-1,1]

Nota 1: dal grafico di una funzione possiamo vedere se è iniettiva tracciando rette parallele all'asse x: se le rette parallele all'asse x che intersecano il grafico lo intersecano solo in un punto allora si tratta di una funzione iniettiva, altrimenti no.

Infatti per esempio nel grafico di y = senx una retta y = k con $-1 \le k \le 1$ interseca infinite volte il grafico ed infatti y = senx non è una funzione iniettiva.

Nota 2: se una curva è grafico di una funzione allora tagliandola con rette parallele all'asse y dobbiamo avere **al massimo una intersezione** (ad ogni $x \in A$ è associato uno ed un solo $y = f(x) \in B$)

Per esempio una circonferenza non è grafico di una funzione.

Ad un valore $-1 \le x \le 1$ corrispondono due immagini distinte.

ESERCIZIDOMINIO, CODOMINIO E GRAFICO

Determina dominio, codominio e grafico delle seguenti funzioni:

1.
$$y = x+1$$
 $(f: x \to x+1)$

2.
$$y = x^2 + 1$$

$$3. \quad y = \frac{1}{x}$$

4.
$$y = \cos x$$

5.
$$y = tgx$$

*6.
$$y = \frac{1}{2}\sqrt{4-x^2}$$

Svolgimento: se eleviamo al quadrato entrambi i membri otteniamo

$$y^2 = \frac{1}{4}(4 - x^2) \rightarrow \frac{x^2}{4} + y^2 = 1$$

Si tratta di una ellisse con semiassi a=2, b=1 (centro l'origine e assi di simmetria coincidenti con gli assi cartesiani).

Non possiamo però considerare tutta la curva ma solo la parte con $y \ge 0$ poiché la funzione era

$$y = \frac{1}{2}\sqrt{4 - x^2} \text{ e quindi } y \ge 0$$

Il dominio: $D_f: -2 \le x \le 2$ (infatti si deve avere $4 - x^2 \ge 0 \Leftrightarrow -2 \le x \le 2$)

Il codominio : $0 \le y \le 1$

7.
$$y = 2\sqrt{x^2 - 1}$$

$$8. \quad y = \frac{2x}{x-1}$$

Esempi

1) Se abbiamo una funzione polinomiale

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

il suo dominio è \Re .

Esempio: le funzioni

$$y = x + 1$$
; $y = x^2 - 1$; $y = x^3 + x - 2$

Hanno tutte come dominio \Re .

2) Se f è una funzione razionale fratta (cioè quoziente di due polinomi) per determinare il suo dominio basterà escludere i valori che annullano il denominatore.

$$f: x \to \frac{N(x)}{D(x)} = \frac{a_0 + a_1 x + \dots + a_n x^n}{b_0 + b_1 x + \dots + b_m x^m}$$

$$D_f = \Re - \left\{ x : D(x) = 0 \right\}$$

Esempi: $y = \frac{1}{x-1}$ ha come dominio $\Re -\{1\}$;

$$y = \frac{x}{x^2 - 4}$$
 ha come dominio $\Re - \{\pm 2\}$

3) a) Se $f(x) = \sqrt[2n]{R(x)}$ cioè è una radice con indice pari , il dominio si troverà risolvendo $R(x) \ge 0$

Esempio: $y = \sqrt{\frac{x}{x^2 - 1}}$

$$\frac{x}{x^2-1} \ge 0 \Rightarrow$$

D + + + + N --1 0 1

$$D_f: -1 < x \le 0 \cup x > 1$$

b) Se $f(x) = \sqrt[2n+1]{R(x)}$ cioè f(x) è una radice di indice dispari, il duo dominio coinciderà con quello del radicando R(x).

Esempio: $y = \sqrt[3]{\frac{1}{x}}$ $D_f: x \neq 0$

4) Se f(x) è una funzione goniometrica ricordiamo che

$$\begin{aligned} y &= senx & D_f &= \Re \\ y &= \cos x & D_f &= \Re \\ y &= tgx & D_f &= \Re - \left\{ \frac{\pi}{2} + k\pi/k \in Z \right\} \end{aligned}$$

Esempi

$$y = sen\left(x - \frac{\pi}{3}\right) \qquad D_f = \Re$$

$$y = tg\left(2x - \frac{\pi}{4}\right) \qquad 2x - \frac{\pi}{4} \neq \frac{\pi}{2} + k\pi \Rightarrow x \neq \frac{3}{8}\pi + k\frac{\pi}{2}$$

5) $f(x) = a^x$ funzione esponenziale ha come dominio \Re .

Esempio: $y = 2^{\frac{x}{x-1}}$ ha come dominio $\Re -\{1\}$ perché l'esponente è definito per $x \neq 1$.

6) $f(x) = \log_a x$ funzione logaritmica ha come dominio x > 0 cioè l'argomento deve essere positivo.

Quindi se per esempio abbiamo $y = \log_a(x-1)$ dovremo porre l'argomento positivo:

$$x-1>0 \Rightarrow x>1$$

Nota: per indicare il logaritmo in base e (numero irrazionale $\cong 2,7$) scriveremo ln, cioè

$$\ln x = \log_e x.$$

ESERCIZIDOMINI DI FUNZIONI

Determina il dominio delle seguenti funzioni:

1)
$$y = x^3 + x^2 + 1$$
 [\Rightarrow]

2)
$$y = \frac{x}{x^2 - 1}$$
 [$x \neq \pm 1$]

3)
$$y = \sqrt{\frac{x}{x-1}}$$
 [$x \le 0 \cup x > 1$]

4)
$$y = \sqrt[3]{\frac{x}{x-1}}$$

5)
$$y = \sqrt{senx + \cos x}$$
 [$-\frac{\pi}{4} + 2k\pi \le x \le \frac{3}{4}\pi + 2k\pi$]

6)
$$y = \sqrt[4]{\frac{x}{x^2 + 1}}$$

7)
$$y = e^{\frac{1}{x-2}}$$

8)
$$y = \ln\left(\frac{x-1}{x^2-9}\right)$$
 [-3 < x < 1 \cdot x > 3]

9)
$$y = \sqrt{\ln x}$$

10)
$$y = \sqrt[4]{9^x - 3^x}$$

11)
$$y = \frac{1}{\ln^2 x - 1}$$
 [$x > 0$ $x \neq e, \frac{1}{e}$]

12)
$$y = \sqrt[3]{tgx}$$

13)
$$y = \sqrt{\ln^2 x - 4}$$
 $[0 < x \le \frac{1}{e^2} \cup x \ge e^2]$

$$14) \ y = \frac{1}{e^x}$$

15)
$$y = senx + tg 2x$$

$$\left[x \neq \frac{\pi}{4} + k \frac{\pi}{2} \right]$$

Funzioni

16)
$$y = \frac{1}{x^3 - 1}$$

17)
$$y = \frac{2-x}{x^2 - x}$$
 [$x \neq 0$; 1]

18)
$$y = \sqrt{\frac{1}{x^2 + 1}}$$

19)
$$y = \sqrt{x^2 - 1}$$
 [$x \le -1 \cup x \ge 1$]

20)
$$y = \sqrt{x^3 - 1}$$

21)
$$y = \sqrt[3]{\frac{1}{2-x}}$$

22)
$$y = 2^{\frac{1}{x}}$$

23)
$$y = \sqrt{2^x + 1}$$

24)
$$y = tg(3x)$$
 [$x \neq \frac{\pi}{6} + k\frac{\pi}{3}$]

$$(x \neq k\pi)$$

$$(x \neq k\frac{\pi}{2})$$

27)
$$y = \ln(3 - x)$$

28)
$$y = \frac{1}{\ln x}$$
 [$x > 0$, $x \ne 1$]

29)
$$y = \sqrt{3^x - 9}$$

30)
$$y = \frac{1}{e^x - 1}$$

Caratteristiche di una funzione

Vediamo alcune caratteristiche di una funzione:

1) f(x) si dice funzione crescente in I(a,b) (I intervallo anche illimitato) se per ogni $x_1 < x_2 \in I$ si ha $f(x_1) < f(x_2)$, mentre si dice decrescente in I per ogni $x_1 < x_2 \in I \Rightarrow f(x_1) > f(x_2)$.

Può darsi che una funzione sia crescente (o decrescente) in tutto il dominio oppure crescente in alcuni intervalli e decrescente in altri.

Esempi

y = x + 1 è crescente $\forall x \in D_f$

 $y = x^2$ è decrescente $\forall x \le 0$ quindi in $I = (-\infty, 0]$ è crescente $\forall x \ge 0$ cioè in $I = [0, +\infty)$

y = senx è crescente negli intervalli

$$-\frac{\pi}{2} + 2k\pi \le x \le \frac{\pi}{2} + 2k\pi \ ,$$

decrescente quando

$$\frac{\pi}{2} + 2k\pi \le x \le \frac{3}{2}\pi + 2k\pi$$

Nota: naturalmente una funzione può essere costante cioè f(x) = k $\forall x \in D_f$

Esempio: y = 2

2) a. Una funzione f(x) si dice **limitata inferiormente**

• se $f(x) \ge m$ $\forall x \in D_f$ (m si dice minimo della funzione e appartiene al codominio)

• oppure se $f(x) > I \quad \forall x \in D_f$ (I si dice "estremo inferiore" e non appartiene al codominio).

Esempio: $y = x^2 + 1$ ha un minimo m = 1 $f(x) \ge 1$ $\forall x \in D_f = \Re$

Esempio: $y = e^x$ ha un estremo inferiore I = 0 f(x) > 0 $\forall x \in D_f = \Re$

b. Una funzione f(x) si dice **limitata superiormente**

• se $f(x) \le M$ $\forall x \in D_f$ (M si dice massimo della funzione e appartiene al codominio)

• oppure se f(x) < S $\forall x \in D_f$ (S si dice "estremo superiore" e non appartiene al codominio)

Esempio: $y = -x^2 + 1$ ha massimo M = 1: $f(x) \le 1$ $\forall x \in \Re$

Esempio: $y = -e^x$ ha estremo superiore S = 0: $f(x) < 0 \quad \forall x \in \Re$

c. f(x) si dice **limitata** se è limitata inferiormente e superiormente.

Esempio: y = senx è limitata (m = -1, M = 1)

Esempio: y = arctgx è limitata $\left(I = -\frac{\pi}{2}, S = \frac{\pi}{2}\right)$

3) **a.** Una funzione f(x) si dice **pari** quando f(-x) = f(x) e quindi il suo grafico è simmetrico rispetto all'asse y.

Esempio: $y = x^2 + 1$ è pari

Nota: se in una funzione la variabile x compare solo con esponente "pari" la funzione è pari.

Esempio: $y = \frac{x^4 - 1}{3 + x^2}$ è una funzione pari poiché $f(-x) = \frac{(-x)^4 - 1}{3 + (-x)^2} = f(x)$

b. Una funzione f(x) si dice **dispari** quando f(-x) = -f(x) e quindi il suo grafico è simmetrico rispetto all'origine del sistema di riferimento.

Esempio: $y = x^3$ è dispari

P(x; f(x)) P'(-x;-f(x)) sono simmetrici rispetto a (0;0)

4) Una funzione f(x) si dice **periodica di periodo T** quando T è il minimo valore per cui

$$f(x+T) = f(x) \quad (\forall x \in D_f)$$

a. y = senx ha periodo $T = 2\pi$

y = sen2x ha periodo $T = \pi$

Infatti

$$f(x+\pi) = sen2(x+\pi) = sen(2x+2\pi) = sen2x = f(x)$$

In generale y = senkx ha periodo $T = \frac{2\pi}{k}$

$$f\left(x + \frac{2\pi}{k}\right) = sen\left[k\left(x + \frac{2\pi}{k}\right)\right] = sen(kx + 2\pi) = senkx = f(x)$$

b. $y = \cos x$ ha periodo $T = 2\pi$

 $y = \cos 2x$ ha periodo $T = \pi$

In generale $y = \cos kx$ ha periodo $T = \frac{2\pi}{k}$ poiché

$$f(x + \frac{2\pi}{k}) = \cos\left[k\left(x + \frac{2\pi}{k}\right)\right] = \cos(kx + 2\pi) = \cos kx = f(x)$$

c. y = tgx ha periodo $T = \pi$

In generale y = tgkx ha periodo $T = \frac{\pi}{k}$ poiché

$$f\left(x + \frac{\pi}{k}\right) = tg\left[k\left(x + \frac{\pi}{k}\right)\right] = tg\left(kx + \pi\right) = tgkx = f\left(x\right)$$

- 5) Una funzione f(x) può avere un **asintoto**
- orizzontale: quando il suo grafico si "avvicina" ad una retta orizzontale di equazione y = k. Esempio: $y = e^x$ ha l'asse x come asintoto orizzontale ma solo quando $x \to -\infty$ (parte sinistra del grafico).

Esempio: $y = \frac{1}{x}$ ha l'asse x come asintoto orizzontale sia per $x \to +\infty$ che quando $x \to -\infty$ (cioè sia a sinistra che a destra).

• **verticale**: quando il suo grafico si "avvicina" ad una retta verticale di equazione x = k quando $x \to k$ ($x = k \notin D_f$).

Esempio: y = tgx ha come asintoti verticali le rette di equazione $x = \frac{\pi}{2} + k\pi$

Esempio: $y = \ln x$ ha come asintoto verticale l'asse y.

• **obliquo**: quando il suo grafico si "avvicina" ad una retta di equazione y = mx + q quando $x \to +\infty$ e/o $x \to -\infty$

Esempio: $y = \frac{2}{3}\sqrt{x^{x} - 9} \quad (\frac{x^{2}}{9} - \frac{y^{2}}{4} = 1)$

asintoti obliqui $y = \pm \frac{2}{3}x$

ESERCIZI

CARATTERISTICHE DI UNA FUNZIONE

Determina dominio, codominio, grafico e caratteristiche delle seguenti funzioni:

$$1) \ \ y = \cos 3x$$

11)
$$y = \frac{x-2}{x-3}$$

2)
$$y = -\sqrt{1 - x^2}$$

12)
$$y = x^2 - x$$

3)
$$y = 3x - 1$$

13)
$$y = tg2x$$

4)
$$y = \sqrt{x^2 - 1}$$

14)
$$y = \frac{1}{3}\sqrt{9-x^2}$$

5)
$$y = sen4x$$

15)
$$y = -x^2$$

6)
$$y = tg4x$$

16)
$$y = x^2 + 1$$

7)
$$y = 2x - 1$$

17)
$$y = 3^x$$

8)
$$y = 2^x$$

18)
$$y = \log_2 x$$

9)
$$y = \ln x$$

19)
$$y = 3 - x^2$$

$$10) \ \ y = \left(\frac{1}{2}\right)^x$$

$$20) \ \ y = sen\left(\frac{1}{2}x\right)$$

Grafici deducibili dal grafico di f(x)

Se conosciamo il grafico G_f di una funzione f(x) possiamo facilmente disegnare anche il grafico di:

- f(x)+a
- $a \in \Re$
- f(x-a)
- $a \in \Re$
- $\bullet \quad -f(x)$
- \bullet f(-x)
- $\bullet \quad |f(x)|$

Vediamo un esempio: consideriamo come funzione $f(x) = \ln x$

E' chiaro che sarà traslato verso l'alto di 1.

Naturalmente se considero $y = \ln x - 1$ traslo verso il basso.

b. Come risulterà il grafico di $y = \ln(x-1)$?

In questo caso il dominio cambia e risulta x > 1: il grafico è traslato verso destra ed ha asintoto verticale x = 1.

Se invece avessi considerato $y = \ln(x+1)$ il grafico del logaritmo traslava verso sinistra e aveva asintoto verticale x = -1 (il dominio: x > -1)

b. Come risulta il grafico di $y = -\ln x$?

Le immagini risultano opposte e quindi si ha il grafico simmetrico rispetto all'asse x.

c. Come risulta il grafico di $y = \ln(-x)$?

Questa volta il dominio cambia e si ha $-x > 0 \Rightarrow x < 0$.

Il grafico sarà simmetrico (di quello del logaritmo) $\,$ rispetto all'asse $\,y\,$.

d. Come risulta il grafico di $y = |\ln x|$?

Ricordiamo che:

$$\left| \ln x \right| = \begin{cases} & \ln x \quad quando \quad \ln x \ge 0 \quad cioè \quad per \quad x \ge 1 \\ & -\ln x \quad quando \quad \ln x < 0 \quad cioè \quad per \quad 0 < x < 1 \end{cases}$$

Quindi il grafico di $|\ln x|$ coincide con il grafico di $\ln x$ quando questo si trova sopra all'asse x (cioè quando le immagini sono positive), mentre andrà "ribaltato" rispetto all'asse x quando si trova sotto all'asse x (cioè quando le immagini sono negative).

ESERCIZI

GRAFICI DEDUCIBILI

Traccia il grafico delle seguenti funzioni:

$$1) \ \ y = \ln(x - 2)$$

2)
$$y = 2^x - 1$$

$$3) \ \ y = \left| \frac{x}{x - 4} \right|$$

4)
$$y = 3^{x-2}$$

$$5) \ y = \ln x - 2$$

*6)
$$y = -\ln(x+2)$$

Svolgimento:

Partiamo dal grafico di $f(x) = \ln x$ e consideriamo all'inizio il grafico di $y = \ln(x+2)$ (dominio x > -2: traslo a sinistra).

Infine consideriamo $y = -\ln(x+2)$ cioè ribaltiamo rispetto all'asse x:

$$7) \ \ y = \left| \ln(x - 3) \right|$$

$$8) \ \ y = \ln(x+1)$$

9)
$$y = -\ln(x-3)$$

10)
$$y = |tgx|$$

11)
$$y = -2^x$$

$$12) \ \ y = \left| \ln(x - 4) \right|$$

13)
$$y = \left| \frac{x - 2}{x} \right|$$

14)
$$y = 2^{x-1}$$

*15)
$$y = -e^x + 2$$

Svolgimento:

Partiamo dal grafico di $f(x) = e^x$ e consideriamo il grafico di -f(x) (simmetrico rispetto all'asse x)

Infine consideriamo y = -f(x) + 2 cioè trasliamo verso l'alto di 2 (l'asintoto orizzontale diventa y = 2)

Composizione di funzioni

Le funzioni si possono "comporre".

Se per esempio abbiamo

$$f_1: x \to x+1$$

$$f_2: x \to x^2$$

possiamo applicare $\,f_{\scriptscriptstyle 1}\,$ e al risultato applicare $\,f_{\scriptscriptstyle 2}\,$

$$x \xrightarrow{f_1} x + 1 \xrightarrow{f_2} (x+1)^2$$

 $y = (x+1)^2$ corrisponde a $f_2 \circ f_1$ che si legge f_2 **composto** f_1 (si scrive vicino alla x la funzione che si applica per prima).

$$f_2 \circ f_1 = f_2(f_1(x))$$

Nota

Notiamo che la composizione tra funzioni non gode della proprietà commutativa cioè:

$$f_2 \circ f_1 \neq f_1 \circ f_2$$

Infatti per esempio considerando le funzioni precedenti se applico prima $\,f_2\,$ e poi $\,f_1\,$ ho:

$$x \xrightarrow{f_2} x^2 \xrightarrow{f_1} x^2 + 1$$

 $f_1 \circ f_2$ risulta $y = x^2 + 1$ ed è diversa da $y = (x+1)^2$

Nota: si possono comporre anche più di 2 funzioni.

Per esempio $y = \ln^2(x+1)$ può essere pensata come la composizione di

$$x \xrightarrow{f_1} x + 1 \xrightarrow{f_2} \ln(x+1) \xrightarrow{f_3} \ln^2(x+1)$$

Funzione inversa

Consideriamo una funzione f(x): per funzione inversa di f(x), indicata con il simbolo $f^{-1}(x)$, intendiamo la funzione che associa all'immagine f(x) il valore x di partenza.

Per esempio se

$$f(x): x \to x+1$$

$$f^{-1}(x): x \to x-1$$

Infatti da

$$y = x + 1$$

y = x + 1 ricavando x = y - 1 abbiamo che

$$x \xrightarrow{f} x + 1 = y$$
$$x = y - 1 \xleftarrow{f^{-1}} y$$

$$x = y - 1 \stackrel{f^{-1}}{\longleftarrow} y$$

Generalmente poi, invece di scrivere $f^{-1}(y) = y - 1$ si scrive $f^{-1}(x) = x - 1$.

Riportando i grafici di f(x) e $f^{-1}(x)$ nello stesso sistema di riferimento, notiamo che sono simmetrici rispetto alla bisettrice del I-III quadrante: infatti se

$$(x, f(x)) \in G_f \rightarrow (f(x), x) \in G_{f^{-1}}$$

La funzione logaritmica è la funzione inversa della funzione esponenziale (in figura è stata disegnato il grafico della funzione esponenziale in base e): osserviamo che il dominio e il codominio si scambiano.

Ma possiamo sempre invertire una funzione?

Perché la f^{-1} sia una funzione occorre che f(x) sia **iniettiva** (come dominio di f^{-1} prenderemo il codominio di f).

Infatti consideriamo per esempio $f(x) = x^2$. Se proviamo a ricavare x abbiamo:

$$y = x^2 x = \pm \sqrt{y}$$

Ma $y = \pm \sqrt{x}$ non è una funzione! (ad ogni valore di x corrispondono 2 immagini).

In questi casi però, se vogliamo, possiamo decidere di "restringere" il dominio della funzione in modo da renderla iniettiva e poterla così invertire.

Se per esempio consideriamo $y = x^2$ ma solo con x > 0 la funzione diventa iniettiva e la sua inversa è $y = \sqrt{x}$

Vediamo come sono state definite le funzioni inverse delle funzioni goniometriche.

• Funzione inversa del seno

Restringiamo y = senx all'intervallo $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$: in questo intervallo la funzione è iniettiva.

La funzione inversa si indica con *arcsenx* (che si legge arcoseno di x ed indica l' angolo il cui seno è di x) ed ha come dominio $\left[-1;1\right]$ e come codominio $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

Esempi

$$arcsen(1) = \frac{\pi}{2}$$
; $arcsen(\frac{1}{2}) = \frac{\pi}{6}$

Funzione inversa del coseno

Se restringiamo $y = \cos x$ all'intervallo $[0, \pi]$ possiamo invertire la funzione: la funzione inversa del coseno ristretto a $[0, \pi]$ si chiama $\arccos x$ (arcocoseno di x).

Esempi

$$\arccos(0) = \frac{\pi}{2}$$
; $\arccos(1) = 0$

• Funzione inversa della tangente

Se restringiamo la tangente y = tgx all'intervallo $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$ possiamo considerare la funzione inversa, indicata con arctgx (arcotangente di x) che ha come dominio \Re e come codominio $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$.

Il grafico è il seguente ed osserviamo che i due asintoti verticali della funzione tangente diventano asintoti orizzontali per la funzione inversa arcotangente.

SCHEDA DI VERIFICA 1

FUNZIONI

1) Determina il dominio delle seguenti funzioni:

a)
$$y = \sqrt{\frac{x}{3 - x^2}}$$
 $\left[x < -\sqrt{3} \cup 0 \le x < \sqrt{3}\right]$
b) $y = arctg\left(\frac{x}{x - 5}\right)$ $\left[x \ne 5\right]$
c) $y = \ln\left(\frac{1}{x^2 - 1}\right)$ $\left[x < -1 \cup x > 1\right]$
d) $y = \sqrt{1 - 2^x}$ $\left[x \le 0\right]$

2) Traccia il grafico delle seguenti funzioni indicando anche dominio e caratteristiche:

a)
$$y = \left| \frac{1}{x - 2} \right|$$

b) $y = -\ln(3 - x)$
c) $y = 3^{x} + 1$
d) $y = \sqrt{x^{2} - 4}$

3) a) Date $f_1: x \to \frac{1}{x}$ e $f_2: x \to \ln x$, scrivi come risultano $f_2 \circ f_1$ e $f_1 \circ f_2$ e indica i loro domini.

$$\left[f_2 \circ f_1 : x \to \ln\left(\frac{1}{x}\right) \qquad D_{f_2 \circ f_1} : x > 0 \qquad ; \qquad f_1 \circ f_2 : x \to \frac{1}{\ln x} \qquad D_{f_1 \circ f_2} : x > 0, x \neq 1 \right]$$

- b) Determina la funzione inversa di $y = e^x 2$ Traccia i grafici di f e f^{-1} nello stesso sistema di riferimento. Cosa osservi?
- c) E' possibile invertire la funzione $y = x^2 + 1$? Motiva la risposta. Come si dovrebbe restringere il dominio per invertirla? Disegna il grafico della funzione inversa nel caso in cui si restringa il dominio di f.

SCHEDA DI VERIFICA 2

FUNZIONI

1) Determina il dominio delle seguenti funzioni:

a)
$$y = \ln\left(\frac{x^2 - 9}{x - 2}\right)$$
 [$-3 < x < 2 \cup x > 3$]
b) $y = \sqrt{5^x - 1}$ [$x \ge 0$]
c) $y = \sqrt[5]{\frac{\ln x}{\ln x - 2}}$ [$x > 0$; $x \ne e^2$]
d) $y = \ln\left(\frac{1}{x - 2}\right)$ [$x > 2$]
e) $y = arctg\left(\frac{1}{2^x - 8}\right)$

2) Traccia il grafico delle seguenti funzioni indicando anche dominio e caratteristiche:

a)
$$y = |\ln(1 - x)|$$

b)
$$y = e^x + 5$$

c)
$$y = \sqrt{9 - x^2}$$

d)
$$y = -3^x$$

3) a) Date $f_1: x \to 2^x$ e $f_2: x \to x+1$, scrivi come risultano $f_2 \circ f_1$ e $f_1 \circ f_2$ e indica i loro domini.

b) Si può invertire la funzione $y = \frac{x-1}{x}$?

Se la risposta è affermativa determina l'inversa.

c) Disegna il grafico della funzione $y = e^x + 3$ e indicane dominio e caratteristiche. Si può invertire? Se la risposta è affermativa determina la funzione inversa.