Cambridge (CIE) A Level Chemistry

Shapes of Aromatic Organic Molecules; $\sigma \& \pi$ Bonds

Contents

* The Shape of Aromatic Molecules

The Shape of Aromatic Molecules

Shape of Benzene & Aromatic Molecules

- Aromatic molecules consist of one or more rings with conjugated π systems
- Conjugated π systems arise from alternating double and single bonds in which the electrons are delocalised
- Aromatic compounds are called 'aromatic' as they often have pleasant odours

Examples of aromatic compounds table

Functional group	Example	Name
Arene	CH₂CH₂CH₃	Propyl benzene
Chlorobenzene	CL CH₃	2-methylchlorobenzene
Phenol		2,3-dimethyl phenol

Shape of benzene & aromatic compounds

- Benzene and other aromatic compounds contain sp² hybridised carbons as **two** of their **p** orbitals have mixed with an s orbital
- This means that each carbon atom in benzene and other aromatic compounds has **one p**

sp²hybridisation

The carbon atoms in aromatic compounds are sp^2 hybridised as two of their p orbitals mix with an s orbital

- Each carbon atom in the ring forms three σ bonds using the sp² orbitals
- The remaining **p orbital** overlaps laterally with p orbitals of neighbouring carbon atoms to form a π bond
- This extensive sideways overlap of p orbitals results in the electrons being delocalised and able to freely spread over the entire ring
- Benzene and other aromatic compounds are **regular** and **planar** compounds with bond angles of 120°
- The delocalisation of electrons means that all of the carbon-carbon bonds in these compounds are identical and have both single and double bond character
- The bonds all being the same length is evidence for the delocalised ring structure of benzene

The planar structure of benzene

Like other aromatic compounds, benzene has a planar structure due to the sp² hybridisation of carbon atoms and the conjugated π system in the ring