MA204: Mathematics IV

Complex Analysis: Some Elementary Functions

Gautam Kalita IIIT Guwahati

From the Euler's formula, we have

$$e^{iy}=\cos y+i\sin y.$$

If z = x + iy, then the exponential function is defined as

$$e^{z} = e^{x+iy} = e^{x}e^{iy} = e^{x}(\cos y + i\sin y).$$

As a result,

$$|e^z| = e^x$$
 and $arg(e^z) = y + 2n\pi$ for $n \in \mathbb{Z}$.

From the Euler's formula, we have

$$e^{iy}=\cos y+i\sin y.$$

If z = x + iy, then the exponential function is defined as

$$e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y).$$

As a result,

$$|e^z|=e^x$$
 and $\arg(e^z)=y+2n\pi$ for $n\in\mathbb{Z}.$

Properties:

- (a) $e^{z_1+z_2}=e^{z_1}e^{z_2}$.
- (b) $e^z \neq 0$ for all $z \in \mathbb{Z}$.
- (c) e^z is an entire function and $\frac{d}{dz}e^z=e^z$.

From the Euler's formula, we have

$$e^{iy}=\cos y+i\sin y.$$

If z = x + iy, then the exponential function is defined as

$$e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y).$$

As a result,

$$|e^z|=e^x$$
 and $\arg(e^z)=y+2n\pi$ for $n\in\mathbb{Z}.$

Properties:

- (a) $e^{z_1+z_2}=e^{z_1}e^{z_2}$.
- (b) $e^z \neq 0$ for all $z \in \mathbb{Z}$.
- (c) e^z is an entire function and $\frac{d}{dz}e^z=e^z$.

Question: Is e^z a bijection?

Problem: Find complex values of w for which $e^{z+w}=e^z$. Can you say something about period of the exponential function?

Problem: Find complex values of w for which $e^{z+w} = e^z$. Can you say

something about period of the exponential function?

Problem: Solve the equation $e^z = -1$.

Problem: Find complex values of w for which $e^{z+w}=e^z$. Can you say something about period of the exponential function?

Problem: Solve the equation $e^z = -1$.

Problem: If z = x + iy, then show that $|e^{2z+i} + e^{iz^2}| \le e^{2x} + e^{-2xy}$.

Problem: Find complex values of w for which $e^{z+w} = e^z$. Can you say

something about period of the exponential function?

Problem: Solve the equation $e^z = -1$.

Problem: If z = x + iy, then show that $|e^{2z+i} + e^{iz^2}| \le e^{2x} + e^{-2xy}$.

Problem: Give conditions on z such that e^z is (a) real (b) purely imaginary.

It is easy to see that the exponential function $e^z:\mathbb{C}\to\mathbb{C}$ is neither one-one as $e^{z+2ni\pi}=e^z$ nor onto. Thus the inverse of the function does not exist in the complex plane \mathbb{C} .

It is easy to see that the exponential function $e^z:\mathbb{C}\to\mathbb{C}$ is neither one-one as $e^{z+2ni\pi}=e^z$ nor onto. Thus the inverse of the function does not exist in the complex plane \mathbb{C} .

However, the exponential function $e^z: \mathbb{C} \to \mathbb{C} - \{0\}$ is on-to. For any $z \in \mathbb{C} - \{0\}$, we have $e^w = z$. As a result, $w := \log z = \ln |z| + i \arg(z)$.

It is easy to see that the exponential function $e^z:\mathbb{C}\to\mathbb{C}$ is neither one-one as $e^{z+2ni\pi}=e^z$ nor onto. Thus the inverse of the function does not exist in the complex plane \mathbb{C} .

However, the exponential function $e^z: \mathbb{C} \to \mathbb{C} - \{0\}$ is on-to. For any $z \in \mathbb{C} - \{0\}$, we have $e^w = z$. As a result, $w := \log z = \ln |z| + i \arg(z)$.

Thus we can define the complex logarithm as

$$\log z = \ln |z| + i \arg(z).$$

It is easy to see that the exponential function $e^z:\mathbb{C}\to\mathbb{C}$ is neither one-one as $e^{z+2ni\pi}=e^z$ nor onto. Thus the inverse of the function does not exist in the complex plane \mathbb{C} .

However, the exponential function $e^z: \mathbb{C} \to \mathbb{C} - \{0\}$ is on-to. For any $z \in \mathbb{C} - \{0\}$, we have $e^w = z$. As a result, $w := \log z = \ln |z| + i \arg(z)$.

Thus we can define the complex logarithm as

$$\log z = \ln |z| + i \arg(z).$$

Clearly, the complex logarithm $\log z$ is not well defined. It is multi-valued assignment.

The principal value of the logarithm is defined as

$$Log z = ln |z| + i Arg(z).$$

It is easy to see that the exponential function $e^z:\mathbb{C}\to\mathbb{C}$ is neither one-one as $e^{z+2ni\pi}=e^z$ nor onto. Thus the inverse of the function does not exist in the complex plane \mathbb{C} .

However, the exponential function $e^z: \mathbb{C} \to \mathbb{C} - \{0\}$ is on-to. For any $z \in \mathbb{C} - \{0\}$, we have $e^w = z$. As a result, $w := \log z = \ln |z| + i \arg(z)$.

Thus we can define the complex logarithm as

$$\log z = \ln |z| + i \arg(z).$$

Clearly, the complex logarithm $\log z$ is not well defined. It is multi-valued assignment.

The principal value of the logarithm is defined as

$$Log z = ln |z| + i Arg(z).$$

Note that Log z is well defined single valued function.

Note:

- (a) If $z \neq 0$, then $e^{\log z} = z$. What about of $\log(e^z)$?
- (b) The function Log z is not continuous on the negative real axis.
- (c) The function Log z is analytic everywhere except on the negative real axis and at zero.
- (d) Log $(z_1z_2) = \text{Log } z_1 + \text{Log } z_2$. What if Log is replaced by log?
- (e) For $z_2 \neq 0$, we have Log $(\frac{z_1}{z_2}) = \text{Log } z_1 \text{Log } z_2$. What if Log is replaced by log?

Note:

- (a) If $z \neq 0$, then $e^{\log z} = z$. What about of $\log(e^z)$?
- (b) The function Log z is not continuous on the negative real axis.
- (c) The function $\log z$ is analytic everywhere except on the negative real axis and at zero.
- (d) Log (z_1z_2) =Log z_1 +Log z_2 . What if Log is replaced by log?
- (e) For $z_2 \neq 0$, we have Log $(\frac{z_1}{z_2}) = \text{Log } z_1 \text{Log } z_2$. What if Log is replaced by log?

Question: What is the derivative of $\log z$?

Note:

- (a) If $z \neq 0$, then $e^{\log z} = z$. What about of $\log(e^z)$?
- (b) The function Log z is not continuous on the negative real axis.
- (c) The function $\log z$ is analytic everywhere except on the negative real axis and at zero.
- (d) Log (z_1z_2) =Log z_1 +Log z_2 . What if Log is replaced by log?
- (e) For $z_2 \neq 0$, we have Log $(\frac{z_1}{z_2}) = \text{Log } z_1 \text{Log } z_2$. What if Log is replaced by log?

Question: What is the derivative of $\log z$?

Question: Find valued of $\log(1+i)$, $\log(-i)$.

Branch, Branch cut, and Branch point

Branch of a multiple valued function: Let F be a multiple valued function defined on a domain D. A function f is said to be a branch of the multiple valued function F if in a domain $D_0 \subset D$ if f(z) is single valued and analytic in D_0 .

Branch, Branch cut, and Branch point

Branch of a multiple valued function: Let F be a multiple valued function defined on a domain D. A function f is said to be a branch of the multiple valued function F if in a domain $D_0 \subset D$ if f(z) is single valued and analytic in D_0 .

Branch Cut: The portion of a line or a curve introduced in order to define a branch of a multiple valued function is called branch cut.

Branch, Branch cut, and Branch point

Branch of a multiple valued function: Let F be a multiple valued function defined on a domain D. A function f is said to be a branch of the multiple valued function F if in a domain $D_0 \subset D$ if f(z) is single valued and analytic in D_0 .

Branch Cut: The portion of a line or a curve introduced in order to define a branch of a multiple valued function is called branch cut.

Branch Point: Any point that is common to all branch cuts is called a branch point.

For complex numbers $z \neq 0$ and w, the exponent w to z is defined as

$$z^w = e^{w \log z}.$$

For complex numbers $z \neq 0$ and w, the exponent w to z is defined as

$$z^w = e^{w \log z}.$$

The complex exponent z^w is a multi-valued function.

For complex numbers $z \neq 0$ and w, the exponent w to z is defined as

$$z^w = e^{w \log z}.$$

The complex exponent z^w is a multi-valued function.

The **principal branch** or the **principal value** of the complex exponent z^w is given by

$$P.V(z^w) = e^{w \text{Log } z}.$$

Problem: Find values of i^{-i} , $(1+i)^i$, and $i^{(1-i)}$.

Problem: Find values of i^{-i} , $(1+i)^i$, and $i^{(1-i)}$.

Problem: Discuss analyticity for the function $f(w) = z^w$ and $g(z) = z^w$. Find

derivative of the functions.

Note that $e^{ix} = \cos x + i \sin x$ and $e^{-ix} = \cos x - i \sin x$. Thus, we have

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$
 and $\cos x = \frac{e^{ix} + e^{-ix}}{2}$.

As a result, it is natural to extend the definition as follows:

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$
 and $\cos z = \frac{e^{iz} + e^{-iz}}{2}$.

Note that $e^{ix} = \cos x + i \sin x$ and $e^{-ix} = \cos x - i \sin x$. Thus, we have

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$
 and $\cos x = \frac{e^{ix} + e^{-ix}}{2}$.

As a result, it is natural to extend the definition as follows:

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$
 and $\cos z = \frac{e^{iz} + e^{-iz}}{2}$.

Properties:

- (a) Both $\cos z$ and $\sin z$ are entire functions.
- (b) Except few, all elementary properties of real trigonometric functions are also satisfied by complex trigonometric functions.

Note that $e^{ix} = \cos x + i \sin x$ and $e^{-ix} = \cos x - i \sin x$. Thus, we have

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$
 and $\cos x = \frac{e^{ix} + e^{-ix}}{2}$.

As a result, it is natural to extend the definition as follows:

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$
 and $\cos z = \frac{e^{iz} + e^{-iz}}{2}$.

Properties:

- (a) Both $\cos z$ and $\sin z$ are entire functions.
- (b) Except few, all elementary properties of real trigonometric functions are also satisfied by complex trigonometric functions.

Question: Is $\cos z$ or $\sin z$ bounded?

Note that $e^{ix} = \cos x + i \sin x$ and $e^{-ix} = \cos x - i \sin x$. Thus, we have

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i} \text{ and } \cos x = \frac{e^{ix} + e^{-ix}}{2}.$$

As a result, it is natural to extend the definition as follows:

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$
 and $\cos z = \frac{e^{iz} + e^{-iz}}{2}$.

Properties:

- (a) Both $\cos z$ and $\sin z$ are entire functions.
- (b) Except few, all elementary properties of real trigonometric functions are also satisfied by complex trigonometric functions.

Question: Is cos z or sin z bounded?

Thus we can define tan, cot, sec, and csc function in the usual way.

Problem: Show that $1 + \tan^2 z = \sec^2 z$.

Problem: Show that $1 + \tan^2 z = \sec^2 z$.

Problem: Find values of z for which (a) $\sin z = -2$ (b) $\cos z = k$

One can define the hyperbolic sine and cosine functions as

$$\sinh z = \frac{e^z - e^{-z}}{2} \text{ and } \cosh z = \frac{e^z + e^{-z}}{2}.$$

Thus it is easy to see that

 $\sinh z = i \sin iz$ and $\cosh z = \cos iz$.

One can define the hyperbolic sine and cosine functions as

$$\sinh z = \frac{e^z - e^{-z}}{2} \text{ and } \cosh z = \frac{e^z + e^{-z}}{2}.$$

Thus it is easy to see that

$$\sinh z = i \sin iz$$
 and $\cosh z = \cos iz$.

(a) $\cosh z$ and $\sinh z$ are entire functions.

One can define the hyperbolic sine and cosine functions as

$$\sinh z = \frac{e^z - e^{-z}}{2} \text{ and } \cosh z = \frac{e^z + e^{-z}}{2}.$$

Thus it is easy to see that

$$\sinh z = i \sin iz$$
 and $\cosh z = \cos iz$.

(a) $\cosh z$ and $\sinh z$ are entire functions.

Can you state some properties of these hyperbolic trigometric functions?

One can define the hyperbolic sine and cosine functions as

$$\sinh z = \frac{e^z - e^{-z}}{2} \text{ and } \cosh z = \frac{e^z + e^{-z}}{2}.$$

Thus it is easy to see that

$$\sinh z = i \sin iz$$
 and $\cosh z = \cos iz$.

(a) $\cosh z$ and $\sinh z$ are entire functions.

Can you state some properties of these hyperbolic trigometric functions?

$$\cos^2 z + \sin^2 z = 1$$

$$\sin(-z) = -\sin z, \cos(-z) = \cos z$$

$$\sin(z + 2k\pi) = \sin z, \cos(z + 2k\pi) = \cos z$$

$$\sin z = 0 \text{ iff } z = n\pi$$

$$\cos z = 0 \text{ iff } z = (2n+1)\frac{\pi}{2}$$

$$\frac{d}{dz}\sin z = \cos z, \frac{d}{dz}\cos z = -\sin z$$

$$\int \cosh^2 z - \sinh^2 z = 1$$

One can define the hyperbolic sine and cosine functions as

$$\sinh z = \frac{e^z - e^{-z}}{2} \text{ and } \cosh z = \frac{e^z + e^{-z}}{2}.$$

Thus it is easy to see that

$$\sinh z = i \sin iz$$
 and $\cosh z = \cos iz$.

(a) $\cosh z$ and $\sinh z$ are entire functions.

Can you state some properties of these hyperbolic trigometric functions?

$$\cos^2 z + \sin^2 z = 1$$

$$\sin(-z) = -\sin z, \cos(-z) = \cos z$$

$$\sin(z + 2k\pi) = \sin z, \cos(z + 2k\pi) = \cos z$$

$$\sin z = 0 \text{ iff } z = n\pi$$

$$\cos z = 0 \text{ iff } z = (2n+1)\frac{\pi}{2}$$

$$\frac{d}{dz}\sin z = \cos z, \frac{d}{dz}\cos z = -\sin z$$

$$\cos z = \cos(x + iy) = \cos x \cosh y - i \sin x \sinh y$$

$$\sin z = \sin(x + iy) = \sin x \cosh y + i \cos x \sin hy$$

Problem: Solve (a) $\sin z = \cosh 4$ (b) $\sinh z = -i$ (c) $\cosh z = -2$.

Problem: Find values of (a) $tan^{-1}(1+i)$ (b) $sinh^{-1}(-i^i)$.

Thank You

Any Question!!!