串联谐振电路

学号: 2128410206 姓名: 龚烨 成绩:

一 实验原理及思路

RLC 率联电路如图所示,改变电路参数 L、C 或电源频率时,都可能使电路发生谐振。谐振频率频率 $f_0 = \frac{1}{2\pi \sqrt{LC}}$ 。

本实验采用如下所示的实验电路

二 实验内容及结果

1. 测量电路谐振频率

方法 1 维持信号源的输出幅度不变,令信号源的频率由小逐渐变大,测量 R 两端的电压 U,当 U 的读数为最大时,读得的频率值即为电路的谐振频率 f_0 。

$$f_0 = 7.4kHz$$

方法 2 根据电路发生谐振时,输入信号和电阻电压相位一致的特性,将这两路信号分别接人示波器的两个通道,并把示波器设定在 X-Y 模式。调节输入信号发生器的信号频率,可以在示波器上看到一个极距变化的椭圆,当椭圆变成一条直线时,此时的电路发生了谐振,输入信号的频率就是谐振频率。

$$f_0 = 7.8kHz$$

2. 测试电路板上串联谐振电路的谐振曲线、谐振频率、-3dB带宽。

频率f / kH ₂	$f_0 - 1$	$f_0 - 0.5$	$f_0 - 0.2$	f_0	$f_0 + 0.2$	$f_0 + 0.5$	$f_0 + 1$
电压 U_R/mV	439	453	450	447	444	440	440
电压 U_L/mV	846	916	944	960	976	1001	1054
电压 U_C / mV	1167	1098	1045	1008	973	925	860

由上面的数据和表格得知,在 $f=f_0$ 时,串联谐振电路发生谐振,电阻电压最大。