CS5231: Systems Security

Lecture 7: Audit Applications

Main Applications (Continue from Last Week)

- Logging-based Applications
 - Intrusion Detection
 - Intrusion Recovery
 - Software Debugging
- One question to think: What to log?
 - Depends on applications
 - Need the right abstraction and amount of information

5231 Lecture 7

Binary-Level View of an Incident

Assembly code

Source code

Binary code

Instruction Trace

Control-flow Graph

Audit-Log-Level View

- User-space utilities (e.g., Auditd) collect system call records from kernel space through Netlink and write them to a log file under /var/log/audit
 - An Example of a read log entry in Auditd

```
type=PROCTITLE msg=audit(15/08/2019 14:37:30.522:61916019) : proctitle=sshd: junzeng [priv] type=SYSCALL msg=audit(15/08/2019 14:37:30.522:61916019) : arch=x86_64 syscall=read success=yes exit=52 a0=0x3 a1=0x7ffd69eecad0 a2=0x4000 a3=0x7ffd69ef0a60 items=0 ppid=5512 pid=5542 auid=junzeng uid=junzeng gid=junzeng euid=junzeng suid=junzeng fsuid=junzeng egid=junzeng sgid=junzeng fsuid=junzeng sgid=junzeng sgid=junzeng ses=1805 comm=sshd exe=/usr/sbin/sshd key=(null)
```

An Example of a read log entry in Auditbeat

```
{"@timestamp":"2020-11-04T14:27:14.666Z","@metadata":{"beat":"auditbeat","type":"doc",
"version":"6.8.12"},"auditd":{"sequence":989996,"result":"success","session":"1402","data":
{"a3":"20656c706f657020","tty":"(none)","a2":"1000","arch":"x86_64","syscall":"read",
"exit":"4096","a1":"5583baa77f70","a0":"5"}},"user":{"name_map":{"suid":"root",
"auid":"junzeng","egid":"root","euid":"root","fsuid":"root","gid":"root","sgid":"junzeng",
"fsgid":"root","uid":"root"},"euid":"0","fsgid":"0","fsuid":"0","suid":"0","gid":"0",
"sgid":"1000","egid":"0","auid":"1000","uid":"0"},"process":{"exe":"/usr/sbin/sshd",
"pid":"7959","ppid":"1689","name":"sshd"}}
```

Network and System View

High-level Report

Levels of Understanding of Cyber Security Events

Transaction Level

System-call/Audit Level

Program/Instruction Level

Building Dependency Graph

- Nodes
 - Files, processes, sockets
- Edges
 - System calls

type=SYSCALL msg=audit(30/09/19 20:34:53.383:98866813) : arch=x86_64 syscall=read exit=25 a0=0x3 ppid=15757 pid=30204 auid=junzeng sess=6309

Provenance Graph: a representation of audit logs

```
malicious.sh
                                                                      /share/file
1. bash, read, malicious.sh
                                                                .txt
2. bash, clone, cp
                                                read
                                                                 write
                                                                           pread
3. cp, read, /etc/passwd
                                                   clone
                                              bash
                                                                          nginx
                                                              cp
4. cp, write, /share/file
5. nginx, pread, /share/file
                                                     read
                                                                     writev
6. nginx, writev, 172.26.187.19
                                          /etc/passwd
                                     .txt
```

✓ Provenance Graph constructs the overall attack scenario by combining historic audit logs!

Analysis of Provenance Graph

- Dependency analysis
- Subgraph matching
- Deep learning and recommendation

Analysis of Provenance Graph

- Dependency analysis
- Subgraph matching
- Deep learning and recommendation

Related Work

- Scale up provenance analysis:
 - Data reduction [NDSS'16, 18 ...] & Query system [Security'18, ATC'18 ...]
 - Recognizing behaviors of interest requires intensive manual efforts

A semantic gap between low-level events and high-level behaviors

- Apply expert-defined specifications to bridge the gap
 - Match audit events against domain rules that describe behaviors
 - Query graph [VLDB'15, CCS'19], Tactics Techniques Procedures (TTPs) specification [SP'19,20], and Tag policy [Security'17,18]

Behavior-specific rules heavily rely on domain knowledge (time-consuming)

Related Work

- Scale up provenance analysis:
 - Data reduction [NDSS'16, 18 ...] & Query system [Security'18, ATC'18 ...]

Can we automatically **abstract** high-level behaviors from low-level audit logs and **cluster** semantically similar behaviors before human inspection?

 Query graph [VLDB'15, CCS'19], Tactics Techniques Procedures (TTPs) specification [SP'19,20], and Tag policy [Security'17,18]

Behavior-specific rules heavily rely on domain knowledge (time-consuming)

Motivating Example

Attack Scenario: A software tester exfiltrates sensitive data that he has access to

Data Exfiltration Steps

Motivating Example Logs

Motivating Example

Attack Scenario: A software tester exfiltrates sensitive data that he has access to

Data Exfiltration Steps

Program Compiling and Upload (cluster)

Motivating Example Logs

Challenges for Behavior Abstraction

Data Exfiltration

Event Semantics Inference:

 Logs record general-purpose system activities but lack knowledge of high-level semantics

Individual Behavior Identification:

- The volume of audit logs is overwhelming
- Audit events are highly interleaving

Package Installation Events > 50,000

Our Insights

How do analysts manually interpret the semantics of audit events?

Compiling program using GCC

Our Insights

How do analysts manually interpret the semantics of audit events?

Compiling program using GCC

Reveal the semantics of audit events from their usage contexts in logs

Our Insights

How do analysts manually identify behaviors from audit events?

Data Exfiltration Behavior

Summarize behaviors by tracking information flows rooted at data objects

WATSON

An automated behavior abstraction approach that aggregates the semantics of audit logs to model behavioral patterns

- Input: audit logs (e.g., Linux Audit^[1])
- Output: representative behaviors

Knowledge Graph Construction

We propose to use a knowledge graph (KG) to represent audit logs:

- KG is a directed acyclic graph built upon triples
- Each triple, corresponding to an audit event, consists of three elements (head, relation, and tail):

$$\mathcal{KG} = \{(h, r, t) | h, t \in \{Process, File, Socket\}, r \in \{Syscall\}\}$$

KG unifies heterogeneous events in a homogeneous manner

I: Knowledge Graph
Construction

Event Semantics Inference

- Suitable granularity to capture contextual semantics
 - Prior work [CCS'17] studies log semantics using events as basic units.
 - Lose contextual information within events
 - Working on Elements (head, relation, and tail) preserves more contexts
- Employ an embedding model to extract contexts
 - Map elements into a vector space
 - Spatial distance represents semantic similarities
 - TransE: a translation-based embedding model
 - Head + Relation ≈ Tail → Context decides semantics

Behavior Summarization

Individual behavior identification: Apply an adapted depth-first search (DFS) to track information flows rooted at a data object:

- Perform the DFS on every data object except libraries
- Two behaviors are merged if one is the subset of another

Behavior Semantics Aggregation

- How to aggregate event semantics to represent behavior semantics?
 - Naïve approach: Add up the semantics of a behavior's constituent events
 - Assumption: audit events equally contribute to behavior semantics

Relative event importance

- Observation: behavior-related events are common across behaviors, while behavior-unrelated events the opposite
- Apply frequency as a metric to define event importance
- Quantify the frequency: Inverse Document Frequency (IDF)
- The presence of noisy events
 - Redundant events [CCS'16] & Mundane events

Representative Behavior Identification

- Cluster semantically similar behaviors: Agglomerative Hierarchical Clustering analysis (HCA)
- Extract the most representative behaviors
 - Representativeness: Behavior's average similarity with other behaviors in a cluster
 - Analysis workload reduction: Do not go through the whole behavior space

Evaluation

Experimental Setup:

- Simulated dataset: 275,863,292 events in 4,280 SSH sessions
- DARPA Trace Dataset^[2]: 726,072,596 events in 211 graphs

Behavior Abstraction Accuracy:

- Can Watson cluster similar behaviors?
- Event Semantics Explicability:
 - Does inferred event semantics match our domain knowledge?
- Efficacy in Attack Investigation:
 - How many manual efforts can Watson save?

Event Semantics Explicability

Use t-SNE to project the embedding space (64 dimensional in our case) into a 2D-plane, giving us an intuition of embedding distribution

Semantically similar system entities are clustered in the embedding space

Efficacy in Attack Investigation

Measure the analysis workload reduction of APT attack investigation in the DARPA TRACE dataset:

• Analysis workload: the number of events to recognize all behaviors

Two orders of magnitude reduction in analysis workload and behaviors

Gaps in Understanding of Cyber Security Events

Transaction Level

System-call/Audit Level

Program/Instruction Level

To Learn, or What to Learn

High-order Connection

- Related operations formed the context that defines the "meaning" of a sequence of system behaviors
 - High-order connection in a knowledge graph
 - Basis for many recommendation systems

Our Observation

- Cyber threats can be revealed by determining how likely a system entity would interact with another entity
 - Unlikely (or "Unintended") interactions indicate cyber threats
 - ◆ Estimate such likelihood with **historical** system entity interactions

Sensitive files normally **do not** interact with public networks!

Should gtcache interact with /proc/27/stat? **Yes!**

5231 Lecture 7 31

Recommendation as a Similar Problem

A similar problem has been explored in Recommendation Systems:

- Determine how likely a user would interact with an item
- Similar users share preferences on items: historical user-item interactions
- Item side information forms high-order connectivity that links similar items

Recommendation-guided Cyber Threat Analysis

Observation: Similar system entities share preferences on interactions

Insight: Identify high-order connectivity using side information of system entities to better uncover their similarities

We formulate cyber threat analysis as a recommendation task:

How likely a system entity would "prefer" its interactive entities?

ShadeWatcher: "Recommending" Malicious Behaviors

审堂下之阴,而知日月之行,阴阳之变 Sensing the movement of Sun and Moon from their shades [0]

Knowledge Graph Builder

 Given audit records on end hosts, we parse them into a provenance graph (PG) and extract system entity interactions into a bipartite graph (BG).

Recommendation Model

Key Idea: use different-order connectivities in a KG to model the likelihood of system entity interactions, identifying anomalous ones as cyber threats

- Model first-order connectivity to parameterize system entities as embeddings (i.e., vectors)
- Model higher-order connectivity by propagating embeddings from neighbors via GNNs
- Classify system entity interactions into normal and anomalous

Evaluation

Experimental datasets:

◆ Six real-world cyber-attacks simulated in a testbed environment:

Configuration Leakage, Content Destruction, Cheating Student, Illegal Storage, Passwd Gzip Scp, and Passwd Reuse

◆ Four APT attacks from the DARPA Transparent Computing (TC) dataset Extension Backdoor, Firefox Backdoor, Pine Backdoor, and Phishing Executable

Evaluation aspects:

- ♦ How effective is ShadeWatcher as a threat detection system?
- To what extend do first-order and high-order information facilitate analysis?
- How efficient is ShadeWatcher in deployment?

Study of Recommendation-guided Analysis

- Compare different KG embedding algorithms
- Study the importance of high-order information propagated by GNNs

KG Embedding	One-hot	TransE	TransH	TransR	TransR
GNN	✓	✓	✓	X	✓
AUC Value	0.966	0.971	0.974	0.763	0.996

SHADEWATCHER (TransR + GNN) achieves the best performance (AUC):

- High-order information is beneficial to cyber threat analysis
- It is important to **distinguish** semantics under different relation contexts

Case Study

Extension Backdoor from the DARPA TC Dataset

System Auditing

39

Summary

- Logging mechanisms
 - Application-level: Library wrapping / API hooking
 - Kernel-level: Syslogd/klogd, System call interception, Linux security module
 - Virtual Machine Monitor-level: System call interception
- Applications for auditing
 - Intrusion detection, recovery and investigation
 - Research work: Watson, ShadeWatcher