Teori Inversi

Syamsu Rosid

Geophysics, University of Indonesia

Dimanakah emas itu berada, berapa dalam dan berapa banyak?

5 pengukuran gravitasi di 5 tempat berbeda: 22, 34, 30, 24 dan 55 μgal

Definisi dan Konsep Dasar

- Hasil pengukuran geofisika

 data lapangan
- Data lapangan tergantung pada:
 - Kondisi
 - Sifat fisis batuan
- Data eksperimen diharapkn bisa meng-infokan
 - Distribusi sifat fisis batuan bawah permukaan
 - Kondisi geometri batuan
 - Posisi kedalaman batuan

Data Observasi

Sifat Fisis Batuan

Model Matematika

Ekstraksi Parameter Fisis

Inverse Modeling

Sifat Fisis

Estimasi Hasil Pengukuran

Forward Modeling

Inverse Problem

Given: Field observations

(Earth system responses)

Determine: Parameters of the earth-model

The Inversion Process

Forward Problem

The Forward Process

Proses Inversi

 Proses pengolahan data lapangan mengguna-kan teknik matematika dan statistik untuk mendapatkan informasi yang berguna mengenai distribusi sifat fisis bawah permukaan.

• *Curve Fitting* mulai dari:

- fitting garis untuk data seismik refraksi hingga
- level yang rumit seperti tomografi akustik dan matching (pencocokan) kurva resistivity yang multidimensi

Contoh Problem Inversi dlm Geofisika

- Penentuan struktur bawah tanah
- Estimasi parameter² bahan tambang
- Estimasi parameter² akumulasi sumber energi
- Penentuan lokasi gempa bumi berdasarkan waktu datang gelombang
- Pemodelan respon lithospere untuk mengamati proses sedimentasi
- Analisis sumur bor pada hidrogeologi

Proses Geofisika

- Perambatan gelombang seismik,
- Perambatan gelombang elektromagnetik di bawah tanah dan
- Aliran muatan (arus listrik) ataupun arus fluida pada batuan berpori
- Data lapangan adalah refleksi dari kompleksitas sistem geofisika yang dikontrol oleh distribusi parameter fisis batuan berikut struktur geologinya.

Data Geofisika

- Data Lapangan
 - densitas,
 - kecepatan gelombang seismik,
 - modulus bulk,
 - hambatan jenis batuan,
 - permeabilitas batuan,
 - suseptibilitas magnet
- Data Laboratorium
 - model lapisan bumi

Sifat Data (Geofisik)

- Selalu terukur noise
- Selalu ada instrumen error
- Selalu ada human error

→ Pengukuran diulang berkali-kali → distribusi probabilistik

Eksplorasi Geofisik dan Inversi

 Akuisisi Data → Analisis Data → Model Bawah Permukaan → Interpretasi → Penentuan Titik Bor

- Yg diperhatikan dalam Analisis:
 - berapakah nilai sampling rate yang optimal?
 - berapa jumlah data yang diperlukan?
 - berapa tingkat akurasi yang diinginkan?
 - dan model matematika mana yang cocok?

Model Matematika

- Seluruh proses geofisika dapat dideskripsikan secara matematika
- Suatu formulasi yang bisa menjelaskan sistem geofisika disebut model
- Model hasil laboratorium disebut sebagai model konseptual/model fisis/model matematika

 Kebanyakan proses geofisika dapat diformulasikan dalam bentuk:

$$d_i = \int_0^z K_i(z) \ p(z) \, dz$$

dengan d_i respon atau data yang terukur, p(z) parameter model yaitu suatu fungsi yang berkaitan dengan parameter fisis yang hendak dicari (misalnya: hambatan jenis, densitas, kecepatan), dan K_i disebut data kernel

• Data **kernel** menjelaskan hubungan antara data d_i dan parameter model p(z)

Forward Modeling

 Parameter model bisa berbentuk fungsi kontinyu terhadap jarak/posisi, seperti

$$t = \int_{L} \frac{1}{v(x,z)} dl$$

- Digunakan untuk memprediksi data simulasi berdasarkan hipotesa kondisi bawah permukaan
- Data simulasi tersebut biasanya dinamakan data teoritik atau data sintetik atau data prediksi atau data kalkulasi

Diskritisasi dan Linearisasi

 Dalam banyak kasus, model bumi selalu fungsi kontinyu terhadap jarak/posisi

$$Massa = 4\pi \int_{0}^{R} r^{2} \rho(r) dr$$

$$Momen\ Inersia = \frac{8\pi}{3} \int_{0}^{R} r^{4} \rho(r) dr$$

dengan R jejari bumi dan $\rho(r)$ densitas fungsi jarak r

Dalam bentuk umum kedua pers diatas ditulis menjd

$$d_i = \int_0^R K_i(r) p(r) dr$$

• Untuk pendekatan komputasi, dilakukan penyederhanaan $\rho(r) dr = m \text{ dan } K_i = G_i$, maka

$$d_i = \sum G_{ij} m_j$$

- Ini bentuk **diskritisasi** \rightarrow teori inversi diskrit
- Dalam bentuk diskrit, persamaan waktu tempuh gelombang seismik menjadi

$$t_i = \sum_{j=1}^p \frac{L_{ij}}{v_i}$$

Linearisasi

• Karena t berbanding terbalik terhadap v, kita definisikan $c = 1/v \equiv slowness$, maka

$$t_i = \sum_{j=1}^p L_{ij} c_j$$

- Persamaan memenuhi d = G m
- Disebut sebagai proses linearisasi parameter

Metoda Schlumberger

• Menurut Snis (1986)

Fungsi B

Fungsi Bessel orde 1

$$\rho_a(L) = \rho_1 \left(1 + 2L^2 \int_0^\infty K(\lambda) J_1(\lambda L) \lambda d\lambda \right)$$
 K(\lambda) Fungsi Parameter

• $K(\lambda)$ adalah fungsi parameter (resistivitas masingmasing lapisan yaitu ρ_1 dan ρ_2 serta ketebalan lapisan paling atas t) dari sistem yang kita asumsikan

$$K(\lambda) = \frac{-k_{1,2}^{(-2\lambda t)}}{1 + -k_{1,2}^{(-2\lambda t)}}$$

$$k_{1,2} = \frac{\rho_1 - \rho_2}{\rho_1 + \rho_2}$$

• Karena pers. resistivitas diatas tidak bisa didekati dengan d=Gm, maka pers ρ_a disebut sebagai highly non-linear

Operasi Matriks

$$(AB)^T = B^T A^T$$

- Jika $A^T = A$ \rightarrow matriks Simetri
- Jika $A^T = -A \rightarrow$ matriks Simetri sekrup
- Kita dapat men-split setiap matriks A menjadi jumlah dari bagian matriks Simetri dan matriks Simetri sekrup sebagai berikut,

$$A = \frac{1}{2} (A + A^{T}) + \frac{1}{2} (A - A^{T})$$

 Transpose dari sebuah matriks Hermitian adalah kompleks konjugate dari transposenya

• Jika
$$A = \begin{bmatrix} 4-i & 8 & 12+i \\ -12 & -8 & -4-i \end{bmatrix}$$

• Maka
$$\bar{A}^T \equiv A^H = \begin{bmatrix} 4+i & -12 \\ 8 & -8 \\ 12-i & -4+i \end{bmatrix}$$

 Penjumlahan dua buah matriks dapat dilakukan hanya jika banyaknya baris dan kolom kedua matriks sama

$$(A+B)_{ij}=(A_{ij}+B_{ij})$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -3 & -2 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 6 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A + B = \left[\begin{array}{rrr} 1 & 8 & 5 \\ -2 & -1 & 0 \end{array} \right]$$

- Operasi matriks bisa menyatakan sebuah operasi vektor.
- Jika $A \in R^{n \times m}$ dan $x \in R^m$, maka $A \cdot x = y \in R^m$

$$y_i = \sum_{j=1}^m A_{ij} x_j$$

$$A \cdot \mathbf{x} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Hasil kali dua buah matriks berlaku,

$$(AB)_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$$

$$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 7 \\ 8 & 15 \end{bmatrix}$$
$$BA = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 11 & 16 \end{bmatrix} \neq AB$$

• Jika kedua matriks x dan y adalah vektor dan $x \in R^m$ dan $y \in R^n$ maka hasil kali xy dan biasanya disebut sebagai hasil kali "outer" ditulis dalam bentuk xy^T

$$(xy)_{ij} = x_i + y_j$$

• Jadi jika
$$\mathbf{x} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
 dan $\mathbf{y} = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$

• Maka
$$\mathbf{x}\mathbf{y}^T = \begin{bmatrix} -1 & -3 & 0 \\ 1 & 3 & 0 \end{bmatrix}$$

Matriks Inverse

- Untuk matriks A = m x n
- Jika m > n

$$A^{-1} = (A^T A)^{-1} A^T$$

• Jika m = n

$$A^{-1} = (1/\det A) \text{ Adj. } A$$

• Jika m < n

$$A^{-1} = A^T (AA^T)^{-1}$$

Formulasi Masalah Inversi

- Dalam inversi:
 - Parameter model, M
 - Jumlah data, N
 - → Menentukan kalisifikasi permasalahan inversi dan cara penyelesaiannya.
- Bila M < N
 - overdetermined
 - Menggunakan pencocokan (best fit) terhadap data lapangan
- Bila M > N
 - underdetermined
 - banyak model yang dapat sesuai datanya. Masalah ini disebut non-uniqness

lanjutan ...

- → diselesaikan dengan model yang parameternya berbentuk fungsi kontinyu terhadap posisi.
- Bila M = N
 - evendetermined
 - Selesaikan dengan metoda inversi langsung
- Model-model Inversi: model garis, model parabola dan model bidang

Inversi Model Garis

 Pengukuran temperatur terhadap kedalaman di bawah permukaan bumi menunjukkan bahwa semakin dalam, temperatur semakin tinggi.

Misal

ada empat kali (N = 4) pengukuran temperatur (T_i) pada kedalaman yang berbeda beda (z_i)

Pengukuran ke-i	Kedalaman (m)	Temperatur $({}^{O}C)$
1	$z_1 = 5$	$T_1 = 35$
2	$z_2 = 16$	$T_2 = 57$
3	$z_3 = 25$	$T_3 = 75$
4	$z_4 = 100$	$T_4 = 225$

- Persamaan $m_1 + m_2 z_i = T_i$ disebut model matematika
- m₁ dan m₂ disebut parameter model atau biasa juga disebut unknown parameter
- Dengan M = 2 dan N = 4, diperoleh:

$$m_1 + m_2 z_1 = T_1$$

 $m_1 + m_2 z_2 = T_2$
 $m_1 + m_2 z_3 = T_3$
 $m_1 + m_2 z_4 = T_4$

Dalam bentuk operasi matrik berbentuk:

$$\begin{bmatrix} 1 & z_1 \\ 1 & z_2 \\ 1 & z_3 \\ 1 & z_4 \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \end{bmatrix} = \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \end{bmatrix}$$

Sesuai dengan bentuk umum: Gm = d
 d data yang dinyatakan dalam vektor kolom, m
 adalah model parameter, juga dinyatakan
 dalam vektor kolom, dan G disebut matrik
 Kernel

Langkah Penentuan Nilai m

Untuk mencari nilai m gunakan pendekatan

$$G^t G \mathbf{m} = G^t \mathbf{d} \tag{*}$$

1. Tentukan transpose matriks Kernel, G^t

$$G = \begin{bmatrix} 1 & z_1 \\ 1 & z_2 \\ 1 & z_3 \\ 1 & z_4 \end{bmatrix} \Rightarrow G^t = \begin{bmatrix} 1 & 1 & 1 & 1 \\ z_1 & z_2 & z_3 & z_4 \end{bmatrix}$$

2. Lakukan perkalian matriks *G^t G*

$$G^{t}G = \begin{bmatrix} 1 & 1 & 1 & 1 \\ z_{1} & z_{2} & z_{3} & z_{4} \end{bmatrix} \begin{bmatrix} 1 & z_{1} \\ 1 & z_{2} \\ 1 & z_{3} \\ 1 & z_{4} \end{bmatrix} = \begin{bmatrix} N & \sum z_{i} \\ \sum z_{i} & \sum z_{i}^{2} \end{bmatrix}$$

dimana N = 4 dan i = 1, 2, 3, 4.

3. Tentukan pula $G^t d$

$$G^{t}\mathbf{d} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ z_{1} & z_{2} & z_{3} & z_{4} \end{bmatrix} \begin{bmatrix} T_{1} \\ T_{2} \\ T_{3} \\ T_{4} \end{bmatrix} = \begin{bmatrix} \sum T_{i} \\ \sum z_{i}T_{i} \end{bmatrix}$$

4. Sekarang pers (*) dapat dinyatakan sebagai

$$\begin{bmatrix} N & \sum z_i \\ \sum z_i & \sum z_i^2 \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \end{bmatrix} = \begin{bmatrix} \sum T_i \\ \sum z_i T_i \end{bmatrix}$$

Dari data observasi diperoleh

$$\begin{bmatrix} 4 & 146 \\ 146 & 10906 \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \end{bmatrix} = \begin{bmatrix} 392 \\ 25462 \end{bmatrix}$$

dan menghasilkan $m_1 = 25$ dan $m_2 = 2$.

Dalam program Matlab tersedia perintah:

$$m=inv(G'*G)*G'*d$$

Inversi Model Parabola

Dengan jumlah data N = 8

Pengukuran ke-i	Kedalaman (m)	Temperatur $({}^{\bar{O}}C)$
1	$z_1 = 5$	$T_1 = 21,75$
2	$z_2 = 8$	$T_2 = 22,68$
3	$z_3 = 14$	$T_3 = 25,62$
4	$z_4 = 21$	$T_4 = 30,87$
5	$z_5 = 30$	$T_5 = 40, 5$
6	$z_6 = 36$	$T_6 = 48,72$
7	$z_7 = 45$	$T_7 = 63,75$
8	$z_8 = 60$	$T_8 = 96$

Diasumsikan model matematiknya

$$m_1 + m_2 z_i + m_3 z_i^2 = T_i$$

- m₁, m₂, m₃ adalah **unknown parameter**.
- Disini ada M = 3 dan N = 8

$$\begin{aligned} m_1 + m_2 z_1 + m_3 z_1^2 &= T_1 \\ m_1 + m_2 z_2 + m_3 z_2^2 &= T_2 \\ m_1 + m_2 z_3 + m_3 z_3^2 &= T_3 \\ m_1 + m_2 z_4 + m_3 z_4^2 &= T_4 \\ m_1 + m_2 z_5 + m_3 z_5^2 &= T_5 \\ m_1 + m_2 z_6 + m_3 z_6^2 &= T_6 \\ m_1 + m_2 z_7 + m_3 z_7^2 &= T_7 \end{aligned} \begin{bmatrix} 1 & z_1 & z_1^2 \\ 1 & z_2 & z_2^2 \\ 1 & z_3 & z_3^2 \\ 1 & z_4 & z_4^2 \\ 1 & z_5 & z_5^2 \\ 1 & z_6 & z_6^2 \\ 1 & z_7 & z_7^2 \\ 1 & z_8 & z_8^2 \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} = \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \\ T_7 \\ T_8 \end{bmatrix}$$

$$m_1 + m_2 z_7 + m_3 z_7^2 = T_7$$

$$m_1 + m_2 z_8 + m_3 z_8^2 = T_8$$

 $G\mathbf{m} = \mathbf{d}$

$$Gm=d$$

- **d** adalah data dalam matriks kolom, **m** matriks parameter model, dan **G** matriks **kernel**
- Manipulasikan bentuk diatas menjadi bentuk

$$G^tG\mathbf{m} = G^t\mathbf{d}$$

Langkah Penyelesaian

1- Tentukan transpose dari matriks Kernel, G^t

$$G = \begin{bmatrix} 1 & z_1 & z_1^2 \\ 1 & z_2 & z_2^2 \\ 1 & z_3 & z_3^2 \\ 1 & z_4 & z_4^2 \\ 1 & z_5 & z_5^2 \\ 1 & z_6 & z_6^2 \\ 1 & z_7 & z_7^2 \\ 1 & z_8 & z_8^2 \end{bmatrix} \Rightarrow G^t = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ z_1 & z_2 & z_3 & z_4 & z_5 & z_6 & z_7 & z_8 \\ z_1^2 & z_2^2 & z_3^2 & z_4^2 & z_5^2 & z_6^2 & z_7^2 & z_8^2 \end{bmatrix}$$

2- Tentukan *G^t G*

From Tentukan
$$G^t$$
 G

$$G^tG = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ z_1 & z_2 & z_3 & z_4 & z_5 & z_6 & z_7 & z_8 \\ z_1^2 & z_2^2 & z_3^2 & z_4^2 & z_5^2 & z_6^2 & z_7^2 & z_8^2 \end{bmatrix} \begin{bmatrix} 1 & z_1 & z_1^2 \\ 1 & z_2 & z_2^2 \\ 1 & z_3 & z_3^2 \\ 1 & z_4 & z_4^2 \\ 1 & z_5 & z_5^2 \\ 1 & z_6 & z_6^2 \\ 1 & z_7 & z_7^2 \\ 1 & z_8 & z_8^2 \end{bmatrix}$$

$$= \begin{bmatrix} N & \sum z_i & \sum z_i^2 \\ \sum z_i & \sum z_i^3 & \sum z_i^4 \\ \sum z_i^2 & \sum z_i^3 & \sum z_i^4 \end{bmatrix}$$

$$\text{dimana } N = 8 \text{ dan } i = 1, 2, 3, ..., 8$$

dimana N = 8 dan i = 1, 2, 3, ..., 8

3- Tentukan pula *G^t d*

$$G^{t}\mathbf{d} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ z_{1} & z_{2} & z_{3} & z_{4} & z_{5} & z_{6} & z_{7} & z_{8} \\ z_{1}^{2} & z_{2}^{2} & z_{3}^{2} & z_{4}^{2} & z_{5}^{2} & z_{6}^{2} & z_{7}^{2} & z_{8}^{2} \end{bmatrix} \begin{bmatrix} T_{1} \\ T_{2} \\ T_{3} \\ T_{4} \\ T_{5} \\ T_{6} \\ T_{7} \\ T_{8} \end{bmatrix}$$

$$= \begin{bmatrix} \sum T_{i} \\ \sum z_{i}T_{i} \\ \sum z_{i}^{2}T_{i} \end{bmatrix}$$

4- Sekarang pers. dapat dinyatakan dlm bentuk

$$\begin{bmatrix} N & \sum z_i & \sum z_i^2 \\ \sum z_i & \sum z_i^2 & \sum z_i^3 \\ \sum z_i^2 & \sum z_i^3 & \sum z_i^4 \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} = \begin{bmatrix} \sum T_i \\ \sum z_i T_i \\ \sum z_i^2 T_i \end{bmatrix}$$

Dari data observasi, didapatkan

$$\begin{bmatrix} 8 & 219 & 8547 \\ 219 & 8547 & 393423 \\ 8547 & 393423 & 19787859 \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} = \begin{bmatrix} 349, 89 \\ 12894, 81 \\ 594915, 33 \end{bmatrix}$$

Dengan program matlab

$$m=inv(G'*G)*G'*d$$

diperoleh nilai $m_1 = 21$; $m_2 = 0.05$; dan $m_3 = 0.02$.

Itulah model garis parabola

$$y = m_1 + m_2 x + m_3 x^2$$

Sekarang bagaimana dengan model 2-D?

Inversi Model Bidang

• Bentuk umum:

$$m_1 + m_2 x_i + m_3 y_i = d_i$$

dimana m_1 , m_2 , m_3 adalah unknown parameter yang dicari, sedangkan datanya adalah d_1 , d_2 , d_3 , ..., d_i .

 Secara matematis model tersebut adalah

```
m_{1} + m_{2}x_{1} + m_{3}y_{1} = d_{1}
m_{1} + m_{2}x_{2} + m_{3}y_{2} = d_{2}
m_{1} + m_{2}x_{3} + m_{3}y_{3} = d_{3}
\vdots \quad \vdots \quad \vdots \quad \vdots
m_{1} + m_{2}x_{N} + m_{3}y_{N} = d_{N}
```

Dalam bentuk matriks dapat dinyatakan sebg

$$\begin{bmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \\ \vdots & \vdots & \vdots \\ 1 & x_N & y_N \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \\ d_N \end{bmatrix}$$

• Yang memenuhi bentuk umum G m = d

dimana **d** vektor kolom data, **m** vektor kolom unknown parameter, dan **G** matriks Kernel.

Langkah Perhitungan

0- Rubah bentuk $Gm = d \rightarrow G^tGm = G^td$

1- Tentukan transpose matriks Kernel, G^t

$$G = \begin{bmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \\ \vdots & \vdots & \vdots \\ 1 & x_N & y_N \end{bmatrix} \implies G^t = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_N \\ y_1 & y_2 & y_3 & \cdots & y_N \end{bmatrix}$$

2- Tentukan nilai *G^t G*

$$G^{t}G = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & x_{3} & \cdots & x_{N} \\ y_{1} & y_{2} & y_{3} & \cdots & y_{N} \end{bmatrix} \begin{bmatrix} 1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2} \\ 1 & x_{3} & y_{3} \\ \vdots & \vdots & \vdots \\ 1 & x_{N} & y_{N} \end{bmatrix}$$

$$= \begin{bmatrix} N & \sum x_i & \sum y_i \\ \sum x_i & \sum x_i^2 & \sum x_i y_i \\ \sum y_i & \sum x_i y_i & \sum y_i^2 \end{bmatrix}$$

dimana N = jumlah data dani = 1, 2, 3,, N

3- Tentukan *G^t d*

$$G^{t}\mathbf{d} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & x_{3} & \cdots & x_{N} \\ y_{1} & y_{2} & y_{3} & \cdots & y_{N} \end{bmatrix} \begin{bmatrix} d_{1} \\ d_{2} \\ d_{3} \\ \vdots \\ d_{N} \end{bmatrix} = \begin{bmatrix} \sum d_{i} \\ \sum x_{i}d_{i} \\ \sum y_{i}d_{i} \end{bmatrix}$$

4- Pers. matriks sekarang menjadi berbentuk

$$\begin{bmatrix} N & \sum x_i & \sum y_i \\ \sum x_i & \sum x_i^2 & \sum x_i y_i \\ \sum y_i & \sum x_i y_i & \sum y_i^2 \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} = \begin{bmatrix} \sum d_i \\ \sum x_i d_i \\ \sum y_i d_i \end{bmatrix}$$

 Nilia m dapat ditentukan dengan perintah matlab berikut:

$$m=inv(G'*G)*G'*d$$

Contoh Aplikasi

Menghitung gravitasi di Planet X

Seorang astronout tiba di sebuah planet yang tidak dikenal. Setibanya disana, ia segera mengeluarkan kamera otomatis, lalu melakukan eksperimen kinematika yaitu melakukan pelemparan batu secara vertikal ke atas. Hasil foto-foto yang terekam dalam kamera otomatis adalah data yang bisa digunakan untuk mem-Plot waktu pengukuran vs ketinggian.

Contoh Aplikasi (Lanjutan ...)

Waktu (dt)	Ketinggian (m)	Waktu (dt)	Ketinggian (m)
0,00	5,00	2,75	7,62
0,25	5,75	3,00	7,25
0,50	6,40	3,25	6,77
0,75	6,94	3,50	6,20
1,00	7,38	3,75	5,52
1,25	7,72	4,00	4,73
1,50	7,96	4,25	3,85
1,75	8,10	4,50	2,86
2,00	8,13	4,75	1,77
2,25	8,07	5,00	0,58
2,50	7,90		

- Unknown parameternya adalah
 - Percepatan gravitasi, g dan
 - Kecepatan awal batu, V_o

Langkah Penyelesaian

 Buat model matematik dengan konsep fisika yang sesuai dengan kasus tersebut

 Dari data pada gambar samping merupakan glbb
 model parabola

Formula untuk glbb berbentuk:

$$h = h_o + v_o t - \frac{1}{2} gt^2$$

- Dari data kurva diketahui pada t = 0, $h_o = 5$ m
- Jadi persamaan geraknya adalah

$$h - 5 = v_o t - \frac{1}{2} gt^2$$

• Jika $v_o = m_1$ dan $-\frac{1}{2}g = m_2$, maka $h - 5 = m_1 t + m_2 t^2$

Bentuk umum glbb nya menjadi

$$h_i - 5 = m_1 t_i + m_2 t_i^2$$

 Masukkan data observasi ke dalam model matematik, sehingga berbentuk

$$m_1t_1 + m_2t_1^2 = h_1 - 5$$

 $m_1t_2 + m_2t_2^2 = h_2 - 5$
 $m_1t_3 + m_2t_3^2 = h_3 - 5$
 $\vdots \qquad \vdots \qquad = \vdots$
 $m_1t_{20} + m_2t_{20}^2 = h_{20} - 5$

 Nyatakan model tersebut dalam operasi matriks

$$\begin{bmatrix} t_1 & t_1^2 \\ t_2 & t_2^2 \\ t_3 & t_3^2 \\ t_4 & t_4^2 \\ \vdots & \vdots \\ t_{19} & t_{19}^2 \\ t_{20} & t_{20}^2 \end{bmatrix} = \begin{bmatrix} h_1 - 5 \\ h_2 - 5 \\ h_3 - 5 \\ \vdots \\ h_{19} - 5 \\ h_{20} - 5 \end{bmatrix}$$

Model

Gm = d

0. Lakukan manipulasi matriks dalam bentuk $G^t G m = G^t d$

1. Tentukan transpose matriks Kernel, G^t

$$G = \begin{bmatrix} t_1 & t_1^2 \\ t_2 & t_2^2 \\ t_3 & t_3^2 \\ t_4 & t_4^2 \\ \vdots & \vdots \\ t_{19} & t_{19}^2 \\ t_{20} & t_{20}^2 \end{bmatrix} \Rightarrow G^t = \begin{bmatrix} t_1 & t_2 & t_3 & t_4 & \dots & t_{19} & t_{20} \\ t_1^2 & t_2^2 & t_3^2 & t_4^2 & \dots & t_{19}^2 & t_{20}^2 \end{bmatrix}$$

2. Tentukan *G^t G*

$$G^{t}G = \begin{bmatrix} t_{1} & t_{2} & t_{3} & t_{4} & \dots & t_{19} & t_{20} \\ t_{1}^{2} & t_{2}^{2} & t_{3}^{2} & t_{4}^{2} & \dots & t_{19}^{2} & t_{20}^{2} \end{bmatrix} \begin{bmatrix} t_{1} & t_{1}^{2} \\ t_{2} & t_{2}^{2} \\ t_{3} & t_{3}^{2} \\ t_{4} & t_{4}^{2} \\ \vdots & \vdots \\ t_{19} & t_{19}^{2} \\ t_{20} & t_{20}^{2} \end{bmatrix}$$

$$= \begin{bmatrix} \sum t_{i}^{2} & \sum t_{i}^{3} \\ \sum t_{i}^{3} & \sum t_{i}^{4} \end{bmatrix}$$

dimana N = 20, dan i = 1, 2, 3,, N

3. Tentukan hasil perkalian *G^t d*

Tentukan hasil perkalian
$$G^t d$$

$$G^t d = \begin{bmatrix} t_1 & t_2 & t_3 & t_4 & \dots & t_{19} & t_{20} \\ t_1^2 & t_2^2 & t_3^2 & t_4^2 & \dots & t_{19}^2 & t_{20}^2 \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \\ \vdots \\ h_{19} \\ h_{20} \end{bmatrix}$$

$$= \left[\begin{array}{c} \sum t_i h_i \\ \sum t_i^2 h_i \end{array} \right]$$

4. Sekarang pers. matriks dapat dinyatakan dalam bentuk

$$\begin{bmatrix} \sum t_i^2 & \sum t_i^3 \\ \sum t_i^3 & \sum t_i^4 \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \end{bmatrix} = \begin{bmatrix} \sum t_i h_i \\ \sum t_i^2 h_i \end{bmatrix}$$

$$Gm = d$$

Dari data observasi diperoleh matriks

$$\begin{bmatrix} 179, 4 & 689, 1 \\ 689, 1 & 2822, 9 \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \end{bmatrix} = \begin{bmatrix} 273, 7 \\ 796, 3 \end{bmatrix}$$

Dan dengan menggunakan perintah matlab

$$m=inv(G'*G)*G'*d$$

Diperoleh nilai

$$om_1 = v_o = 3,2009 \text{ m/det}$$

$$o m_2 = -\frac{1}{2} g = -0.8169 \implies g = 1.6338 \text{ m/det}^2$$

Kurva Hasil Inversi

Garis berwarna biru merupakan garis kurva *fitting* hasil inversi parabola. Sedangkan bulatan berwarna merah adalah data pengukuran ketinggian (m) terhadap waktu (dt)

Kesimpulan

- Terlihat bahwa matrik kernel sering kali berubah-ubah (bentuk matriksnya), sesuai dengan model matematika.
- Jadi, model matematika secara otomatis akan mempengaruhi bentuk rupa matrik kernelnya