FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN COMPLEMENTOS DE MATEMÁTICA II

Práctica 5 Teoría de categorías (continuación)

Funtores

- **1.** Sean \mathcal{C} y \mathcal{D} dos categorías. Probar que $P_1: \mathcal{C} \times \mathcal{D} \to \mathcal{C}$ tal que $P_1(C, D) = C$ y $P_2: \mathcal{C} \times \mathcal{D} \to \mathcal{D}$ tal que $P_2(C, D) = D$ definen functores.
- **2.** Dado un conjunto X, definimos el conjunto $\operatorname{List}(X)$ de las listas finitas de elementos de X. Probar que $\operatorname{List}\colon \operatorname{Set} \to \operatorname{Set}$ es un funtor. Considerando ahora $\operatorname{List}(X)$ como un monoide, probar que $\operatorname{List}\colon \operatorname{Set} \to \operatorname{Mon}$ es un funtor. Determinar si List preserva productos. **Ayuda:** pensar en cuál monoide es isomorfo $\operatorname{List}(X)$ cuando X es un conjunto con un solo elemento.
- 3. Se ha visto que puede considerarse a un monoide como una categoría con un único objeto, ¿qué es un funtor entre dos categorías de este tipo? ¿Y entre categorías formadas a partir de conjuntos ordenados?
- **4.** Dados dos funtores $F: \mathcal{C} \to \mathcal{D}$ y $G: \mathcal{D} \to \mathcal{E}$, definir un funtor que componga ambos. ¿Es posible definir una categoría cuyos objetos sean las categorías y sus flechas sean los funtores entre estas?
- **5.** Sea \mathcal{C} una categoría con productos, coproductos y exponenciales y $A \in ob(\mathcal{C})$. Probar que las siguientes aplicaciones pueden extenderse con estructura funtorial:
 - a) $\Delta: \mathcal{C} \to \mathcal{C} \times \mathcal{C}$ tal que $\Delta(B) = (B, B)$.
 - **b)** $\times A : \mathcal{C} \to \mathcal{C}$ tal que $(- \times A)(B) = B \times A$.
 - c) $-^A : \mathcal{C} \to \mathcal{C}$ tal que $(-^A)(B) = B^A$.
 - **d)** $-^A \times A : \mathcal{C} \to \mathcal{C}$ tal que $(-^A \times A)(B) = B^A \times A$.
 - e) $\prod : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ tal que $\prod (B, C) = B \times C$.
 - f) $\sum : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ tal que $\sum (B, C) = B + C$.
 - g) $A^-: \mathcal{C} \to \mathcal{C}$ tal que $(A^-)(B) = A^B$ y es contravariante en los morfismos.
 - **h)** $A^{A^-}: \mathcal{C} \to \mathcal{C}$ tal que $(A^{A^-})(B) = A^{A^B}$.
- **6.** Sea $\mathcal C$ una categoría localmente pequeña, para cada objeto X de $\mathcal C$ definimos $\operatorname{Hom}(X,-)\colon \mathcal C\to\operatorname{Set}$ donde $\operatorname{Hom}(X,-)(Y)=\operatorname{Hom}(X,Y)$ y $\operatorname{Hom}(X,-)(f)=\operatorname{Hom}(X,f)=\lambda g.f\circ g.$ Probar que $\operatorname{Hom}(X,-)$ es efectivamente un funtor para cada X. Definir análogamente un funtor $\operatorname{Hom}(-,X)$.
- 7. Si $f: A \to B$ en Set, entonces definimos $f^{-1}(X) = \{a \in A: f(a) \in X\}$ donde $X \subset B$. Probar que $I: \text{Set} \to \text{Set}$ es un funtor contravariante, llevando $I(A) = \mathcal{P}(A)$ y $I(f) = f^{-1}$.
- **8.** Dado un semigrupo (S,.), podemos construir un monoide (S',.') donde $S' = S \uplus \{e\}$, (0,x).'(0,y) = (0,x.y), y (1,e).'x = x = x.'(1,e). Utilizando esta construcción, definir un funtor $F \colon \mathtt{Sem} \to \mathtt{Mon}$ y probar que es un monomorfismo en \mathtt{Cat} .
- 9. Probar o refutar: sea \mathcal{C} una categoría con productos, y $F: \mathcal{C} \to \mathcal{C}$ un functor, entonces siempre existe un único morfismo $F(A \times B) \to FA \times FB$.
- **10.** Sea $U : \operatorname{Mon} \to \operatorname{Set}$ el functor que olvida la estructura de monoide. Definimos además $U^2 : \operatorname{Mon} \to \operatorname{Set}$ que en objetos actúa llevando $(X, \oplus, e) \mapsto X \times X$. Probar que a U^2 se lo puede dotar de estructura functorial.

Transformaciones naturales

- **11.** Dadas dos categorías \mathcal{C} y \mathcal{D} , probar que todo funtor $F:\mathcal{C}\to\mathcal{D}$ es naturalmente isomorfomo a sí mismo, es decir, existe una isomorfismo natural $id_F\colon F\stackrel{\cdot}{\longrightarrow} F$.
- **12.** Considere el funtor List : Set \to Set. Mostrar que puede construirse un isomorfismo natural rev: List $\stackrel{\cdot}{\longrightarrow}$ List tal que rev_X es la función que invierte las palabras de List(X). ¿Se puede hacer lo mismo con el funtor List : Set \to Mon?
- **13.** Sea \mathcal{C} una categoría con productos y exponenciales y $A \in ob(\mathcal{C})$. Definir una transformación natural $\eta \colon (-^A \times A) \xrightarrow{\cdot} id_{\mathcal{C}}$.
- 14. Sea $\mathcal C$ una categoría cartesiana cerrada, y A un objeto de la misma. Definir una transformación natural $\eta: Id \stackrel{\cdot}{\longrightarrow} A^{A^-}$, y probar que efectivamente es una transformación natural. **Ayuda:** puede ser útil probar los siguientes lemas $curry(f) \circ g = curry(f \circ (g \times id))$ y swap $\circ (h \times i) = (i \times h) \circ$ swap, donde swap es el isomorfismo que conmuta los factores de un producto.
- **15.** Probar o refutar: sea $U: \operatorname{Grp} \to \operatorname{Set}$ el funtor forgetful de grupos, entonces toda transformación natural $\eta: U \xrightarrow{\cdot} U$ es un isomorfismo natural.
- **16.** Dadas dos categorías \mathcal{C} y \mathcal{D} , mostrar que los funtores de \mathcal{C} a \mathcal{D} forman una categoría con las transformaciones naturales como flechas. A esta categoría se la nota $\mathcal{D}^{\mathcal{C}}$.
- 17. Probar que Cat es una CCC.
- 18. Dada una categoría pequeña \mathcal{C} , mostrar que las categorías \mathcal{C}^2 y $\mathcal{C}^{\rightarrow}$ son isomorfas en Cat.

Adjunctiones

- 19. Definir una adjunción entre el funtor List : Set \to Mon y el funtor olvido U : Mon \to Set. Dado un conjunto de símbolos Σ y la función constante $f: \Sigma \to U(\mathbb{N}_0)$ tal que f(x) = 1, explicitar el morfismo de monoides asociado $\tilde{f}: \mathrm{List}(\Sigma) \to \mathbb{N}_0$.
- **20.** Sea \mathcal{C} una categoría con productos. Dar una relación de adjunción entre \prod y \triangle . Dar un resultado análogo respecto al functor $\Sigma(X,Y)=X+Y$ cuando C tiene coproductos.
- **21.** Dada una categoría \mathcal{C} y un objeto A de \mathcal{C} . Probar que $-\times A \dashv -^A$.
- 22. Construir la unidad de adjunción a partir de la counidad de adjunción
- **23.** Sea $F: \mathcal{C} \to \mathcal{D}$ y $G: \mathcal{D} \to \mathcal{C}$ dos funtores (\mathcal{C} y \mathcal{D} localmente pequeñas).
 - a) Explicar cómo se definen los funtores.

$$\operatorname{Hom}_{\mathcal{D}}(F(-),-):\mathcal{C}^{\operatorname{op}}\times\mathcal{D}\to\operatorname{Set}$$

$$\operatorname{Hom}_{\mathcal{C}}(-,G(-)):\mathcal{C}^{\operatorname{op}}\times\mathcal{D}\to\operatorname{Set}$$

- **b)** Probar que F es adjunto a izquierda de G si y solo si $\operatorname{Hom}_{\mathcal{D}}(F(-), -)$ es naturalmente isomorfo a $\operatorname{Hom}_{\mathcal{C}}(-, G(-))$.
- 24. Explicar qué es una adjunción en el caso de que las categorías en cuestión sean conjuntos ordenados vistos como categorías.

2

Página 2

Mónadas

- **25.** Considere un poset P visto como categoría y un endofuntor $T \colon P \to P$. Probar que si T admite estructura monádica, i.e. transformaciones naturales η y μ tal que los axiomas de mónadas se cumplan, entonces $x \le T(x)$ y T(T(x)) = T(x) para todo $x \in P$.
- **26.** Considere el endofuntor $T: \mathsf{Set} \to \mathsf{Set}$ definido por $T(X) = \mathcal{P}(X)$ y $T(f: X \to X')$ es la función que asigna a cada $A \in \mathcal{P}(X)$ el conjunto $f(A) = \{f(a) : a \in A\} \in \mathcal{P}(X')$. Dar estructura monádica a T.
- **27.** Sea (M, \otimes, e) un monoide. Se define el endofunctor $F(X) = M \times X$ sobre Set. Dar estructura monádica a F.
- **28.** Una tupla (M, μ) es una semi-mónada sobre \mathcal{C} cuando $M : \mathcal{C} \to \mathcal{C}$ es un functor, y $\mu : M \circ M \to M$ es una transformación natural tal que $\mu \circ \mu_M = \mu \circ M\mu$. Decimos que una semi-mónada (M, μ) se puede extender via $\eta : \mathrm{id}_{\mathcal{C}} \to M$ a una mónada si la tripla (M, μ, η) es una mónada. Probar que si una semi-mónada (M, μ) admite una extensión a una mónada via η , entonces η es única.
- **29.** Sea **Form** el conjunto de fórmulas de la lógica proposicional. Se ha probado en prácticas anteriores que $\mathcal{P}(\mathbf{Form})$ forma un poset, y por ende, se lo puede interpretar como una categoría. Dar un ejemplo de mónada sobre $\mathcal{P}(\mathbf{Form})$.
- **30.** Probar que toda adjunción $F \dashv G : \mathcal{C} \to \mathcal{D}$ da origen a una mónada para el endofunctor $G \circ F : \mathcal{C} \to \mathcal{C}$.
- **31.** Probar que toda mónada (M, μ, η) se puede factorizar en $M = G \circ F$ mediante una adjunción $F \dashv G : \mathcal{C} \to \mathcal{D}$. Ayuda:

3

- a) Definir la categoría Kleisli (notada $\mathcal{C}_{\mathcal{M}}$):
 - Sus objetos son los mismos que los de \mathcal{C} .
 - Por cada morfismo $A \to MB$ en \mathcal{C} , hay un morfismo $A \to B$ en $\mathcal{C}_{\mathcal{M}}$.
- b) Definir un functor $F: C \to \mathcal{C}_{\mathcal{M}}$ que en los objetos se comporte FA = A.
- c) Definir un functor $G: \mathcal{C}_{\mathcal{M}} \to \mathcal{C}$ que en los objetos se comporte GA = MA.

Lema de Yoneda

32. Enunciar y probar el lema de Yoneda para functores contravariantes.

Página 3