Electrónica Digital Clase 15

Flip Flops y Máquinas de Estados Finitos

Latch Set-Reset (SR)

- Latch: es un tipo de dispositivo lógico biestable asíncrono.
 - **Biestable**: Que tienen dos estados estables (HIGH LOW) ("0" "1")
 - El paso de un estado a otro se realiza variando sus entradas.
 - Cambian su salida con un nivel de voltaje (level sensitive) en sus entradas sin depender de un clock (asíncrono).
- Los **biestables** pueden ser síncronos o asíncronos dependiendo de sus entradas:
 - Asíncrono: Solamente tienen entradas de control.
 - Síncrono: Posee además de las entradas de control, un clock.
- Un latch S-R con entrada activa en alto se compone de 2 compuertas NOR o 2 compuertas NAND acopladas como se muestra en la figura.

Circuito lógico

Tabla de Verdad

S	R	Q
0	0	No cambia
0	1	0
1	0	1
1	1	No válido

Circuito lógico

Tabla de Verdad

S	R	Q			
0	0	No cambia			
0	1	1			
1	0	0			
1	1	No válido			

Compuerta NOR (74LS02) y NAND (74LS00)

NOR - 74LS02

NAND - 74LS00

Flip-Flops disparados por flanco

- Los flip-flops son dispositivos síncronos de dos estados.
- También conocidos como multivibradores biestables (circuito capaz de generar una onda cuadrada).
- Se crearon para eliminar las deficiencias de los latches:
 - Estos cambian con un flanco en el reloj (edge sensitive), no con un nivel de voltaje (level sensitive) en sus entradas:
 - Flanco de subida (cambio de voltaje bajo a alto) ó flanco de bajada (cambio de voltaje alto a bajo)
- El termino **síncrono** significa que la salida cambia de estado únicamente en un instante especifico de una entrada de disparo denominada (**CLK**).
- Los cambios en la salida se producen sincrónicamente con el reloj (CLK). Este produce lo que llamamos un refresh.

Flip-Flop S-R

Tabla de Verdad

S	R	CLK	Q	$\overline{m{Q}}$	
0	0	X	Q_0	Q_0	No cambio
0	1	↑	0	1	RESET
1	0	↑	1	0	SET
1	1	1	?	?	No válido

Flip-Flop tipo D

- Útil cuando se necesita almacenar un único bit de datos (1 o 0).
- Si se añade un inversor (NOT) a un flip-flop S-R obtenemos un flip-flop D básico.

Tabla de verdad

D	CLK	Q	$ar{oldsymbol{Q}}$	
1	↑	1	0	SET
0	↑	0	1	RESET

Circuito Lógico

Flip-Flop J-K

UNIVERSIDAD EAFIT

SR flip-flop

- El flip flop mas utilizado.
- Igual al S-R pero sin condiciones no válidas.
- Entradas de control:
 - J: Grabado o SET.
 - K: Borrado o RESET.

Tabla de Verdad

J	K	CLK	Q	$\overline{m{Q}}$	
0	0	↑	Q_0	$\overline{Q_0}$	No cambio
0	1	↑	0	1	RESET
1	0	↑	1	0	SET
1	1	↑	$\overline{Q_0}$	Q_0	Basculación ó Inversión

- Tipo Toggle (T).
- Cambia de estado ("toggle" en inglés) cada vez que la entrada de CLK se dispara mientras la entrada T está a nivel alto.
- Si la entrada T está a nivel bajo, el biestable retiene el nivel previo.

Ecuación

$$Q_{siguiente} = T {\bigoplus} Q$$

Tabla de verdad

T	Q	$oldsymbol{ar{Q}}$
0	Q_0	$\overline{Q_0}$
1	$\overline{Q_0}$	Q_0

Circuito Lógico

Flip-Flop D (74LS379) Pinout

Flip-Flop J-K (74LS76) Pinout

Circuito Secuencial con MEF

- Los circuitos secuenciales son circuitos cuya función de salida depende del estado de las entradas y del estado anterior.
- Se solucionan usando compuertas lógicas y flip flops.
- Los cambios de estado del circuito se controlan por medio de una señal de reloj.
- **Estado Presente:** Es la información actualmente almacenada en los Flip Flops.
- **Estado Próximo:** Es la información que los Flip Flops deben almacenar en un flanco del clock futura.

Ejemplo Circuitos Secuenciales - MEF

- Diseñar un contador binario de 0 a 3 de tal manera que el usuario seleccione mediante un suiche si el contador funciona en forma ascendente (0 a 3) o descendente (3 a 0).
 - Con el suiche en uno, funciona en forma ascendente y en cero, el contador funciona en forma descendente.

Ej – Paso 1: Realizar diagrama de estados

 Este diagrama muestra la progresión de los estados por los que el contador avanza o retrocede cuando se aplica una señal de reloj.

Nota: como se requieren 4 estados, es necesario $log_2 estados = log_2 4 = 2 flip flops$

Ej – Paso 2: Realizar tabla de transiciones

- Esta tabla enumera cada estado del contador (Estado actual) junto con el correspondiente estado siguiente.
- El estado siguiente es el estado al que el contador pasa desde su estado actual, al aplicar un pulso de reloj.
- Se recomienda tener a la mano la tabla de excitación del Flip Flop con el que se va a implementar la lógica secuencial

ENTI	RADA	AS.				SAL	IDAS			
Estado Pa	reser	ıte	Y	Est	Estado Próximo			171	10	VO.
Nombre	<i>q</i> 1	q0	I	q1	q0	Nombre	<i>J</i> 1	<i>K</i> 1	J0	<i>K</i> 0
Como	C	0	0	1	1	Tres	1	x	1	x
Cero	0	0	1	0	1	Uno	0	x	1	x
11	0	1	0	0	0	Cero	0	x	x	1
Uno			1	1	0	Dos	1	x	x	1
Dos	1	1 0	0	0	1	Uno	x	1	1	x
			1	1	1	Tres	x	0	1	x
Tres	1	1 1	0	1	0	Dos	x	0	x	1
ires	1		1	0	0	Cero	x	1	x	1

Tabla de excitación JK

Transicione	es de Salida	Entradas del flip-flop J/K			
QN	Q _{N+1}	J	K		
0	O	0	Χ		
0	→ 1	1	X		
1	→ 0	X	1		
1	→ 1	X	0		

Ej – Paso 3: Realizar los Mapas de Karnaugh

- Los mapas de Karnaugh se usan para determinar la lógica requerida para las entradas J y K de cada flip-flop del contador.
- Se debe utilizar un mapa de Karnaugh para la entrada J y otro para la entrada K de cada flip-flop.

Ej – Paso 3: Realizar los Mapas de Karnaugh

- Después de la simplificación de las expresiones en los mapas de Karnaugh se obtienen las expresiones lógicas para las entradas a los flip-flops.
 - ► J0 = K0 = 1 (Conexión directa a +5V).
 - $J1 = K1 = q0 \cdot Y + \overline{q0} \cdot \overline{Y}$

Lógica Combinatoria

Ej – Paso 4: Implementar MEF

 El paso final consiste en implementar la lógica combinacional y la lógica secuencial a partir de las expresiones J y K, y conectar los flip-flops para conseguir el contador ascendente descendente de 2 bits.

MUCHAS GRACIAS