信息论第五讲作业解答

中国科学技术大学《信息论 A》006125.01 班助教组 2024 年 5 月 28 日

第1题

For a DMS S under distortion measure $d(s, \hat{s})$, define a new distortion measure as $\tilde{d}(s, \hat{s}) = 1$ if $d(s, \hat{s}) > a$ and 0 otherwise. Describe the rate-distortion function of S under \tilde{d} at D = 0.

解: 设 d 和 \tilde{d} 是 $S \times \hat{S}$ 上的失真度量. 用 R 表示 S 在 \tilde{d} 下的率失真函数. 如果随机变量 \hat{S} 取值于 \hat{S} 则 $\mathbf{E}[\tilde{d}(S,\hat{S})] = P[d(S,\hat{S}) > a]$. R(0) 等于 $\mathbf{E}[\tilde{d}(S,\hat{S})] \leq 0$ 的条件下 $I(S;\hat{S})$ 的最小值,即 $P[d(S,\hat{S}) \leq a] = 1$ 的条件下 $I(S;\hat{S})$ 的最小值.

第 2 题

In Section II, we have studied exactly lossless compression when the index string is binary. If the index string is D-ary, $D \ge 2$, derive lower and upper bounds on the expected codeword length, by extending the analysis in Section II.

本题研究 D 进制下严格无损压缩期望码长 $\bar{\ell} = \sum_{s \in \mathcal{S}} P_S(s)\ell(s)$ 的上下界. 若不加说明,则以下不等号的成立原因均与讲义 Section II 中的分析相同.

首先对信源符号 $S = \{a_1, a_2, \dots\}$ 进行重排,使概率大小关系满足 $P_S(a_1) \ge P_S(a_2) \ge$ 我们将每个符号编码为一个 D 进制码字 W = f(S),码本为

$$\mathscr{C}^* = \{\emptyset, 0, 1, \cdots, D-1, 00, 01, \cdots, 0(D-1), 10, 11, \dots\}.$$

将更短的码字分配给发生概率更高的信源符号, 则码长满足 $\ell(a_i) = \lfloor \log_D(D-1)i \rfloor$. 首先考虑 $\bar{\ell}$ 的上界, 由于 $P_S(a_i) \leq 1/i$, 因此有

$$\ell(a_i) = \lfloor \log_D(D-1)i \rfloor \le \log_D(D-1)i \le \log_D(D-1) - \log_D P_S(a_i),$$

与

$$\bar{\ell} = \sum_{s \in \mathcal{S}} P_S(s) \ell(s)
\leq \log_D(D-1) - \sum_{s \in \mathcal{S}} P_S(s) \log_D P_S(s)
= \log_D(D-1) - \sum_{s \in \mathcal{S}} P_S(s) \frac{\log_2 P_S(s)}{\log_2 D}
= \log_D(D-1) + \frac{1}{\log_2 D} H(S).$$

接下来分析 $\bar{\ell}$ 的下界. 由于以下关系

$$H(S) = H(S) + H(\ell(S)|S)$$
$$= H(S, \ell(S))$$
$$= H(S|\ell(S)) + H(\ell(S)),$$

分别分析 $H(S|\ell(S))$ 与 $H(\ell(S))$ 两项. 对于 $H(S|\ell(S))$, 满足

$$\begin{split} H(S|\ell(S)) &= \sum_{\ell=0}^{\infty} P(\ell(S) = \ell) H(S|\ell(S) = \ell) \\ &\leq \sum_{\ell=0}^{\infty} P(\ell(S) = \ell) \log_2 D^{\ell} \\ &= \mathbf{E}[\ell(S)] \log_2 D \\ &= \bar{\ell} \log_2 D. \end{split}$$

对于 $H(\ell(S))$, 满足

$$\begin{array}{ll} H(\ell(S)) & \leq & (\bar{\ell}+1)\log_2(\bar{\ell}+1) - \bar{\ell}\log_2\bar{\ell} \\ & < & \log_2[e(\bar{\ell}+1)] \\ & \leq & \log_2[e(\frac{1}{\log_2D}H(S) + \log_D(D-1) + 1)]. \end{array}$$

由此可得

$$\begin{split} H(S) &= H(S|\ell(S)) + H(\ell(S)) \\ &< \log_2 D\bar{\ell} + \log_2 [e(\frac{1}{\log_2 D}H(S) + \log_D (D-1) + 1)]. \end{split}$$

即 ℓ满足下界

$$\bar{\ell} > \frac{1}{\log_2 D} H(S) - \log_D [e(\frac{1}{\log_2 D} H(S) + \log_D (D - 1) + 1)].$$

综上,码长的期望值满足上下界

$$\frac{1}{\log_2 D} H(S) - \log_D \left[e\left(\frac{1}{\log_2 D} H(S) + \log_D (D - 1) + 1\right) \right] < \bar{\ell} \le \frac{1}{\log_2 D} H(S) + \log_D (D - 1).$$

注 1. 为何码长满足 $\ell(a_i) = \lfloor \log_D(D-1)i \rfloor$: 根据变长编码的定义,当从 k 位码长增加到 k+1 位时,可表示的码字数量增加 D^{k+1} . 因此,码长 l 的变长编码可以容纳的码字数量为 $\sum_{k=0}^l D^k = \frac{1-D^{l+1}}{1-D}$. 因此,给定第 i 个码字,所需的位数为方程 $\frac{1-D^{l+1}}{1-D} = i$ 的解并上取整,即 $\ell(a_i) = \lceil -1 + \log_D\left((D-1)i+1\right) \rceil = \lceil \log_D\left((D-1)i+1\right) \rceil - 1 \stackrel{(a)}{=} \lfloor \log_D\left((D-1)i\right) \rfloor$. 对于等式 (a) 而言,由于 D 与 i 均为整数,因此不存在整数 n 使得 $D^n \in ((D-1)i, (D-1)i+1)$,因此 $\log_D\left((D-1)i\right)$ 与 $\log_D\left((D-1)i+1\right)$ 必然在两个连续的整数之间,故等式 (a) 成立.

第3题

For the exactly lossless compression code in Section II, numerically study $\bar{\ell}$ when S is (1) uniform over $\{1, 2, ..., M\}$, and (2) geometric with parameter ϵ . Compare the exact values of $\bar{\ell}$ under these cases with the upper and lower bounds obtained in Section II.

证明: 对于均匀分布的情况, 第 n 个码的码长为 $\lfloor \log_2(n) \rfloor$. 我们令 $M=2^k+s,\ k\in {\bf N}, 0\le s<2^k,$ 我们也可以得到 $k=\lfloor \log_2(M) \rfloor, s=M-2^{\lfloor \log_2(M) \rfloor},$ 此时:

$$\begin{split} \bar{l} &= \frac{1}{M} \left[0 \times 1 + 1 \times 2 + \ldots + (k-1) \times 2^{k-1} + k \times (s+1) \right] \\ &= \frac{1}{M} \left[(s+1)k + (k-2)2^k + 2 \right] \\ &= \frac{1}{M} \left[Mk + k - 2^{k+1} + 2 \right] \\ &= \lfloor \log_2(M) \rfloor + \frac{\lfloor \log_2(M) \rfloor + 2 - 2^{\lfloor \log_2(M) \rfloor + 1}}{M}. \end{split}$$

对于几何分布的情况,同样有第n个码的码长为 $|\log_2(n)|$,我们计算其平均码长如下:

$$\bar{l} = \sum_{i=1}^{\infty} \epsilon (1 - \epsilon)^{i-1} \lfloor \log_2(i) \rfloor$$

$$= \sum_{k=1}^{\infty} k \sum_{i=2^k}^{2^{k+1}-1} \epsilon (1 - \epsilon)^{i-1}$$

$$= \sum_{k=1}^{\infty} k [(1 - \epsilon)^{2^k - 1} - (1 - \epsilon)^{2^{k+1} - 1}]$$

$$= \sum_{k=1}^{\infty} (1 - \epsilon)^{2^k - 1}.$$

根据 Section II, 我们对这种编码方式有上下界估计:

$$H(S) - \log_2[e(H(S) + 1)] < \bar{\ell} \le H(S).$$

那么对于均匀分布和几何分布我们分别有 $H_{uniform}(S) = \log_2(M)$ 和 $H_{geometric}(S) = \frac{h_2(\epsilon)}{\epsilon}$:

$$\begin{split} \log_2(M) - \log_2[e(\log_2(M)+1)] < \lfloor \log_2(M) \rfloor + \frac{\lfloor \log_2(M) \rfloor + 2 - 2^{\lfloor \log_2(M) \rfloor + 1}}{M} \leq \log_2(M). \\ \frac{h_2(\epsilon)}{\epsilon} - \log_2[e(\frac{h_2(\epsilon)}{\epsilon} + 1)] < \sum_{k=1}^{\infty} (1-\epsilon)^{2^k - 1} \leq \frac{h_2(\epsilon)}{\epsilon}. \end{split}$$

上下界与真实的平均长度如图 3 所示.

图 1: 左: 均匀分布上界, 下界和平均码长与 M 的关系. 右: 几何分布上界, 下界和平均码长与参数 ϵ 的关系.

第4题

Prove that a code is uniquely decodable if and only if for any integer $n \geq 1$, and any \underline{s} , $\underline{s}' \in \mathcal{S}^n$, $f(\underline{s}) \neq f(\underline{s}')$.

证明: 如果 f 是惟一可译码, n 是正整数, \underline{s} , $\underline{s}' \in S^n$, $\underline{s} \neq \underline{s}'$, 则 $f(\underline{s}) \neq f(\underline{s}')$.

再假设对所有正整数 n 和 \underline{s} , $\underline{s'} \in \mathcal{S}^n$ 有 $f(\underline{s}) \neq f(\underline{s'})$. 对所有 $y_1, y_2, \dots, y_m, z_1, z_2, \dots, z_n \in \mathcal{S}$, 因为

$$f(y_1)f(y_2)\cdots f(y_m)f(z_1)f(z_2)\cdots f(z_n) \neq f(z_1)f(z_2)\cdots f(z_n)f(y_1)f(y_2)\cdots f(y_m),$$

所以
$$f(y_1)f(y_2)\cdots f(y_m) \neq f(z_1)f(z_2)\cdots f(z_n)$$
. 因此 f 是惟一可译的.

第5题

Prove that for a DMS S with $|S| = \infty$, any of its prefix-free code still satisfies the Kraft inequality, and conversely, for any index strings lengths satisfying the Kraft inequality there exists a corresponding prefix-free code.

考虑可数个信源符号时, 不能预先假设 ℓ_{max} , 因此讲义中的证明方法不再适用. 本题参考 Cover-Thomas Theorem 5.2.2 中的方法进行证明.

首先证明前缀码的码长满足 Kraft 不等式, 即

$$\sum_{i=1}^{\infty} D^{-\ell_i} \le 1.$$

不妨考虑 D 进制的码本, 第 i 个码字的码长为 $y_1y_2\cdots y_{l_i}$. 令 $0.y_1y_2\cdots y_{l_i}$ 为 D 进制下的 实数, 数值上等于

$$0.y_1y_2\cdots y_{l_i} = \sum_{j=1}^{l_i} y_j D^{-j}.$$

将该码字对应 [0,1] 上的一个子区间

$$\left[0.y_1y_2\cdots y_{l_i},0.y_1y_2\cdots y_{l_i}+\frac{1}{D^{\ell_i}}.\right)$$

由于前缀码中任意两个码字彼此互不为前缀,因此任意两个码字对应的子区间不相交. 由于区间长度 $\frac{1}{D^{\ell_i}}$ 的总和不超过 1, Kraft 不等式得证.

接下来证明给定满足 Kraft 不等式的 l_1, l_2, \ldots ,可以构造出具有相应码长的前缀码. 依然沿用划分区间并与码字对应的思路, 先将码长重排列, 使之满足 $l_1 \leq l_2 \leq \ldots$ 然后从 [0,1] 区间的左端开始, 逐步分配长度为 $\frac{1}{D_2}$ 的区间, 由此可得前缀码的码字集合.

第 6 题

Describe the binary Huffman code for a DMS S uniformly distributed over $\{1, 2, ..., 10000\}$, and compare the resulting expected index string length with the entropy bound $\log_2 10000$ bits.

解: 我们先证明一个引理: 对于全部均匀分布的信源, 在 Huffman 编码下不存在两个码字的编码长度之差大于 1.

证明: 倘若存在 $l(s_i) - l(s_j) = m > 1$, 我们考察 s_j 和具有 ℓ_{\max} 的 s_u, s_v , 我们将 s_u 和 s_j 均作为原先 s_j 的叶子节点, 此时 s_v 的编码长度也变为 $\ell_{\max-1}$, 那么我们操作后的编码方式和长度记为 ℓ' , 便有:

$$\bar{\ell} = \sum_{s \in S} P_S(s)\ell(s)
= \sum_{s \in S \setminus \{s_j, s_u, s_v\}} P_S(s)\ell(s) + P_S(s_j)\ell(s_j) + P_S(s_u)\ell(s_u) + P_S(s_v)\ell(s_v)
= \sum_{s \in S \setminus \{s_j, s_u, s_v\}} P_S(s)\ell(s) + P_S(s_j)(\ell(s_j) + 1) + P_S(s_u)(\ell(s_j) + 1) + P_S(s_v)(\ell(s_v) - 1)
- P_S(s_j) + P_S(s_u)(\ell(s_u) - \ell(s_j) - 1) + P_S(s_v)
= \sum_{s \in S} P_S(s)\ell'(s) + \frac{1}{n}(\ell(s_u) - \ell(s_j) - 1)
\ge \bar{\ell}' + \frac{1}{n}(\ell(s_i) - \ell(s_j) - 1) > \bar{\ell}'.$$

从而我们这种构造方式可以将码长极差大于等于 2 的编码方式进行优化, 故最优 Huffman 码在均匀信源下将所有码字编为长度差至多为一的码字.

那么我们假设有 x 个码字的长度为 ℓ , y 个码字的长度为为 $\ell+1$, 由 Kraft 不等式可以得到:

$$\begin{cases} x + y = 10000 \\ 2^{-\ell}x + 2^{-(\ell+1)}y = 1 \end{cases}$$

由于 $2^{13} = 8192 < 10000 < 16384 = 2^{14}$, 我们可以解出 $\ell = 13, x = 6384, y = 3616$. 此时便有:

$$\bar{\ell} = \frac{1}{10000}(6384 * 13 + 3616 * 14) \approx 13.3616 > 13.2877 \approx \log_2(10000) = H(S).$$

第7题

For a DMS S, we design a prefix-free code that minimizes the weighted expected codeword length $\bar{\ell} = \sum_{s \in \mathcal{S}} P_S(s)c(s)\ell(s)$, where c(s) > 0 is the cost per codeword position when the source letter is s. Note that when c(s) = 1, $\forall s \in \mathcal{S}$, we return to the problem studied in Section IV and it is solved by the Huffman code.

- a) Derive a lower bound on $\bar{\ell}$, and discuss when this lower bound can be achieved.
- b) Generalize the Huffman algorithm to yield the prefix-free code that minimizes $\bar{\ell}$.
- a) 解: 设随机变量 Y 取值于 S, 对每个 $s \in S$ 有 $P_Y(s) = P_S(s)c(s)/\mathbf{E}[c(S)]$. 这样

$$\bar{\ell} = \mathbf{E}[c(S)] \sum_{s \in \mathcal{S}} P_Y(s) \ell(s) = \mathbf{E}[c(S)] \mathbf{E}[\ell(Y)]. \tag{1}$$

根据讲义第 IV 节, $\mathbf{E}[\ell(Y)]$ 大于等于 Y 以 D 为底的熵 $H_D(Y)$, 等号成立当且仅当对所有 $s \in \mathcal{S}$ 有 $\ell(s) = -\log_D(P_Y(s))$. 所以 $\bar{\ell} \geq \mathbf{E}[c(S)]H_D(Y)$, 等号成立当且仅当对所有 $s \in \mathcal{S}$ 有 $\ell(s) = -\log_D(P_Y(s))$.

b) 解: 根据 (1) 式, 我们只需要用 Huffman 算法找到 Y 平均码长最小的前缀码. 这个码就是最小化 $\bar{\ell}$ 的前缀码.

第8题

For a DMS S with K positive probabilities and one zero probability, i.e., $P_S(a_1) \ge P_S(a_2) \ge \dots \ge P_S(a_K) > P_S(a_{K+1}) = 0$, we may either design a Huffman code omitting the last zero

probability, or including it. Find the relationship between the expected index string lengths of these two different Huffman codes.

先考虑 D=2 的情况. 在不考虑 a_{K+1} 的情况下构造霍夫曼编码, 则由构造规则可知 a_K 和 a_{K-1} 对应的码字为树的兄弟节点, 且对应的码长为 ℓ_{\max} . 当考虑 a_{K+1} 后, 此时在霍夫曼编码对应的树中, a_K 和 a_{K+1} 对应的码字为树的兄弟节点, 对应父节点的概率为 $P_S(a_K)+P_S(a_{K+1})=P_S(a_K)$. 因此, 此时的树只是在将 a_K 节点扩充为 a_K 与 a_{K+1} 两个叶子, 即

$$\bar{\ell} = \sum_{s \in \mathcal{S}} P_S(s)\ell(s)
\bar{\ell}' = \sum_{s \in \mathcal{S}} P_S(s)\ell'(s)
= \sum_{s \in \mathcal{S} \setminus \{a_K\}} P_S(s)\ell'(s) + P_S(a_K)\ell'(a_K) + P_S(a_{K+1})\ell'(a_{K+1})
= \sum_{s \in \mathcal{S} \setminus \{a_K\}} P_S(s)\ell(s) + (P_S(a_{K+1}) + P_S(a_{K+1})) (\ell(a_K) + 1)
= \sum_{s \in \mathcal{S} \setminus \{a_K\}} P_S(s)\ell(s) + P_S(a_K)\ell(a_K) + P_S(a_K)
= \bar{\ell} + P_S(a_K),$$

其中 $\bar{\ell}$ 与 $\bar{\ell}'$ 分别为考虑 $P_S(a_{K+1})$ 前后的霍夫曼平均码长. 因此考虑 a_{K+1} 后的霍夫曼码平均码长将增大 $P_S(a_K)$.

同理考虑 D > 2 时的扩充情况. 按照讲义中 (5.34) 的计算方式, 如果 r = 0, 即 D - 1 整除 (K - D)(D - 2), 此时无未使用的叶节点, 扩充零概率节点会增加 $P_S(a_K)$ 的码长的期望值; 如果 $r \neq 0$, 则无需扩充新的节点, 此时两种情况下码长的期望值相同.

第9题

Consider independent DMSs S and T with finite alphabets. Denote their binary Huffman codes as f_S and f_T , respectively. Now view (S,T) as a single DMS, and use the concatenation $[f_S, f_T]$ as the code for (S,T); for example, if $f_S(s) = 001$ and $f_T(t) = 101$ for some (s,t), then $f_{ST}(s,t) = 001101$.

- a) Show that f_{ST} is a prefix-free code.
- b) Does the Kraft inequality for f_{ST} always hold equal?

解: a) 倘若存在码字 $f_{ST}(s,t)$ 是 $f_{ST}(s',t')$ 的前缀, 则 $f_{ST}(s',t')$ 前面 $\ell(f_{ST}(s,t))$ 位和 $f_{ST}(s,t)$ 完全相同.

若 $\ell(f_S(s)) > \ell(f_S(s'))$, 则 $f_S(s')$ 是 $f_S(s)$ 的前缀, 矛盾.

若 $\ell(f_S(s)) < \ell(f_S(s'))$, 则 $f_S(s)$ 是 $f_S(s')$ 的前缀, 矛盾.

若 $\ell(f_S(s)) = \ell(f_S(s'))$, 由于前缀特性, 亦即 $f_S(s) = f_S(s')$. 但此时 $f_T(t)$ 是 $f_T(t')$ 的前缀, 也会与 f_T 是非前缀码产生矛盾.

b) 仍然满足 Kraft 不等式. 由于 S,T 是独立的, 因此:

$$\sum_{s,t} 2^{-\ell(f_{ST}(s,t))} = \sum_{s,t} 2^{-\ell(f_{S}(s)+f_{T}(t))}$$

$$= \sum_{s} 2^{-\ell(f_{S}(s))} * \sum_{t} 2^{-\ell(f_{T}(t))}$$

$$= 1 \times 1 = 1.$$

第 10 题

The Shannon code adopts a conservative philosophy by rounding up all non-integer values of $-\log_D P_S(s)$. It may be possible to judiciously round down some non-integer values of $-\log_D P_S(s)$, so as to obtain a prefix-free code with a smaller expected codeword length.

- a) Describe an algorithm for designing a prefix-free code that may outperforms the Shannon code, by selectively rounding down some non-integer values of $-\log_D P_S(s)$.
- b) Find an example where your algorithm is outperformed by the Huffman algorithm.
- a) 解: 记 $F = \{s \in \mathcal{S} | -\log_D(P_S(s))$ 不是整数}. 任取 $s_F \in F$ 使

$$-\log_D(P_S(s_F)) = \max_{s \in F} -\log_D(P_S(s)).$$

为 S 中除 s_F 之外的每个符号 s 分配码长 $\lceil -\log_D(P_S(s)) \rceil$. 如果

$$D^{-\lfloor -\log_D(P_S(s_F))\rfloor} + \sum_{s \in \mathcal{S}, s \neq s_F} D^{-\lceil -\log_D(P_S(s))\rceil} \le 1$$

则为 s_F 分配码长 $|-\log_D(P_S(s_F))|$. 否则为 s_F 分配码长 $[-\log_D(P_S(s_F))]$.

这样设计的前缀码的平均码长不会超过 Shannon 码的平均码长, 有时小于 Shannon 码的平均码长. 设 S 服从 $S = \{0,1,2\}$ 上的均匀分布, D = 2. 因为

$$1 < -\log_D(P_S(0)) = -\log_D(P_S(1)) = -\log_D(P_S(2)) < 2,$$

所以 $F = \{0,1,2\}$, 我们可以取 $s_F = 0$. 因为 $2^{-1} + 2 \times 2^{-2} = 1$, 所以 0 的码长是 1, 1 和 2 的码长是 2. 0, 1 和 2 的码字可以分别是 0, 10 和 11. 由于 0, 1 和 2 Shannon 码字的长度 都是 2, 这里设计的码的平均码长小于 Shannon 码的平均码长.

类似的算法还有很多. 有时我们不能简单地取码长为 $[-\log_D(P_S(s))]$,这时所有类似的算法都会失效. 设 D=4, $S=\{0,1,\cdots,14\}$, $P_S(0)=1/8$,对所有正整数 $s\leq 14$ 有 $P_S(s)=1/16$. 这样

$$-\log_D(P_S(s)) = \begin{cases} \frac{3}{2}, & s = 0\\ 2, & s \in \{1, 2, \dots, 14\} \end{cases}.$$

由于 $4^{-1} + \sum_{s=1}^{14} 4^{-2} = 9/8 > 1$,我们不能为 0 分配码长 $\lfloor -\log_D(P_S(s)) \rfloor = 1$,为 $1, 2, \cdots$, 14 分配码长 2.

b) 解: 设 D=2, $\mathcal{S}=\{0,1\}$, $P_S(0)=1/5$, $P_S(1)=4/5$. 此时 $2<-\log_D(P_S(0))<3$, $0<-\log_D(P_X(1))<1$, $F=\{0,1\}$, $s_F=0$. 因为 $2^{-2}+2^{-1}=3/4<1$, 所以 0 的码长是 2, 1 的码长是 1. 由于 0 和 1 的 Huffman 码长都是 1, 这里设计的码的平均码长大于 Huffman 码的平均码长.

第 11 题

In the problem formulation of lossy source representation in Lecture 4, the encoded index $W \in \{1, 2, \cdots, M_n\}$ may also be viewed as a binary string of a fixed length $\lceil \log_2 M_n \rceil$. Now, if we consider variable-length lossy source representation, by allowing W to be drawn from the set of all finite-length binary strings $\mathscr{C}^* = \{\emptyset, 0, 1, 00, 01, 10, 11, 000, \cdots\}$. Define the rate of a code by $R = \mathbf{E}[\ell(\underline{S})]/n$, where $\ell(\underline{S})$ is the length of W encoding \underline{S} and n is the length of \underline{S} . Modify the proof of the converse part in Lecture 4, to show that variable-length coding still cannot outperform the rate-distortion function.

解:

由于

证明逆定理,需要假设任意一对编译码器 $f_n^{(s)}, g_n^{(s)}$,满足失真约束 $\mathbf{E}[d(\underline{S}, \hat{\underline{S}})] \leq D$,对于本题, $\ell(\underline{S}) = T(W) = \{0, 1, 2 \cdots \}$, $nR = \mathbf{E}[\ell(\underline{S})] = \mathbf{E}[T(W)]$.

$$H(W) = H(W) + H(T(W)|W)$$
$$= H(W,T(W))$$
$$= H(W|T(W)) + H(T(W))$$

其中,

$$\begin{split} H(W|T(W)) &= \sum_{t=0}^{\infty} H(W|T(W) = t) P(T(W) = t) \\ &\leq \sum_{t=0}^{\infty} t P(T(W) = t) \\ &= \mathbf{E}[T(W)] \\ &= nR \end{split}$$

10

对于另一项 H(T(W)),我们知道在均值一定时,几何分布熵最大,由于 T(W) 取值从 0 开始,我们对其进行平移操作,即:

$$\begin{split} H(T(W)) &= H(T(W) + 1) \\ &\leq (nR + 1) \log_2(nR + 1) - nR \log_2(nR) \\ &= nR \log_2(1 + \frac{1}{nR}) + \log_2(nR + 1) \\ &\leq nR \cdot \frac{1}{nR} \log_2 e + \log_2(nR + 1) \\ &= \log_2 e(nR + 1) \end{split}$$

故 $H(W) \le nR + \log_2 e(nR + 1)$, 然后采用与讲义 4.3 中相同的步骤可以得到:

$$R + \frac{\log_2 e(nR+1)}{n} \ge R(D),$$

在 $n \to \infty$ 时,得到 $R \ge R(D)$.