Design and Analysis of Algorithm

Department of Computer Science and Engineering National Institute of Technology Raipur

Pramod Mane

January 16, 2021

Outline

Algorithm Analysis
Comparing Asymptotic Functions

Outline

Algorithm Analysis
Comparing Asymptotic Functions

Comparing Asymptotic Functions

Transitivity

```
f(n) = \mathcal{O}(g(n)) and g(n) = \mathcal{O}(h(n)) implies f(n) = \mathcal{O}(h(n))
Proof.
f(n) = \mathcal{O}(g(n)) and g(n) = \mathcal{O}(h(n)) \Rightarrow f(n) = \mathcal{O}(h(n))
By the definition of Big-Oh(\mathcal{O}), there exists positive constants
c, n_0 such that f(n) \leq c \cdot g(n) for all n \geq n_0
\Rightarrow f(n) \leq c_1 \cdot g(n)
\Rightarrow g(n) < c_2 \cdot h(n)
\Rightarrow f(n) \leq c_1 \cdot c_2 h(n)
\Rightarrow f(n) < c \cdot h(n), where, c = c_1 \cdot c_2.
By the definition, f(n) = \mathcal{O}(h(n)).
```

Comparing Asymptotic Functions

Transitivity

- $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ implies $f(n) = \Theta(h(n))$,
- $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ implies $f(n) = \Omega(h(n))$,
- f(n) = o(g(n)) and g(n) = o(h(n)) implies f(n) = o(h(n)),
- $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ implies $f(n) = \omega(h(n))$.

Reflexivity

- $f(n) = \Theta(f(n)),$
- $f(n) = \mathcal{O}(f(n)),$
- $f(n) = \Omega(f(n)).$

Symmetry

• $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.

Proof.

Necessary part:

$$f(n) = \Theta(g(n)) \Rightarrow g(n) = \Theta(f(n))$$

By the definition of Θ , there exists positive constants c_1, c_2, n_0 such that $c_1 \cdot g(n) < f(n) < c_2 \cdot g(n)$ for all $n > n_0$

$$\Rightarrow g(n) \leq (\frac{1}{c_1}) \cdot f(n)$$
 and $g(n) \geq (\frac{1}{c_2}) \cdot f(n)$

$$\Rightarrow (\frac{1}{c_2}) \cdot f(n) \leq g(n) \leq (\frac{1}{c_1}) \cdot f(n)$$

Since c_1 and c_2 are positive constants, $\frac{1}{c_1}$ and $\frac{1}{c_2}$ are well defined. Therefore, by the definition of Θ , $g(n) = \Theta(f(n))$

Therefore, by the definition of
$$\Theta$$
, $g(n) = \Theta(f(n))$

Sufficiency part:

$$g(n) = \Theta(f(n)) \Rightarrow f(n) = \Theta(g(n))$$

By the definition of Θ , there exists positive constants c_1, c_2, n_0 such that $c_1 \cdot f(n) \leq g(n) \leq c_2 \cdot f(n)$ for all $n \geq n_0$ $\Rightarrow f(n) \leq (\frac{1}{c_1}) \cdot g(n)$ and $f(n) \geq (\frac{1}{c_2}) \cdot g(n)$ $\Rightarrow (\frac{1}{c_2}) \cdot g(n) \leq f(n) \leq (\frac{1}{c_1}) \cdot g(n)$
By the definition of Θ , $f(n) = \Theta(g(n))$

Transpose Symmetry

• $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.

Proof.

Necessary part:

$$f(n) = \mathcal{O}(g(n)) \Rightarrow g(n) = \Theta(f(n))$$

By the definition of Big-Oh $(\mathcal{O}) \Rightarrow f(n) \leq c \cdot g(n)$ for some positive constant $c \Rightarrow g(n) \geq (\frac{1}{c}) \cdot f(n)$
By the definition of Omega $(\Theta), g(n) = \Theta(f(n))$

Sufficiency part:

$$g(n) = \Theta(f(n)) \Rightarrow f(n) = O(g(n))$$

By the definition of Omega (Θ) , for some positive constant $c \Rightarrow g(n) \geq c \cdot f(n) \Rightarrow f(n) \leq (\frac{1}{c}) \cdot g(n)$
By the definition of Big-Oh (\mathcal{O}) , $f(n) = \mathcal{O}(g(n))$.

Since these properties hold for asymptotic notations, analogies can be drawn between functions f(n) and g(n) and two real numbers a and b.

- ▶ g(n) = O(f(n))issimilartoa $\leq b$,
- $g(n) = \Omega(f(n))$ is similar to $a \geq b$,
- $g(n) = \Theta(f(n))$ is similar to a = b,
- g(n) = o(f(n)) is similar to a < b,
- $g(n) = \omega(f(n))$ is similar to a > b.

Thank You!