פונקציות בכמה משתנים

שאלות על תרגילים 14 ו18

נערך ע"י אמיר קסיס

תזכורת:

- . נקרא שדה וקטורי. $f:\mathbb{R}^k o \mathbb{R}^d$ נקראת פונקציה סקלרית. $f:\mathbb{R}^k o \mathbb{R}$ נקרא שדה וקטורי.
 - $< x,y> = \sum x_j y_j : \mathbb{R}^k$ מכפלה פנימית ב-
 - x = y אם ורק אם ורק אם $< x, x > \geq 0$ חיוביות:
 - < x, y > = < y, x >ימטריות: -
 - $< \alpha x + \beta y, z > = \alpha < x, z > + \beta < y, z > -$ לניאריות:
 - $x \cdot y$:סימון מקובל *
 - $\|x\| = \sqrt{\sum_{j=1}^k x_j^2}: \mathbb{R}^k$ נורמה אוקלידית ב־
 - x=0 אם ורק אם וושיוויון א $\|x\|\geq 0$ חיוביות.
 - $\|\alpha x\| = |\alpha| \cdot \|x\|$ מתקיים $\alpha \in \mathbb{R}$ לכל -
 - $||x + y|| \le ||x|| + ||y||$ אי־שיוויון המשולש: -

 $\|x\|$ במקום במקום הערה: נהוג לסמן גם

- $d\left(x,y
 ight)=\sqrt{\sum_{j=1}^{k}\left|x_{j}-y_{j}
 ight|^{2}}:\mathbb{R}^{k}$ מטריקה אוקלידית ב־
 - x=y אם ורק אם וויון $d\left(x,y\right) >0$ חיוביות:
 - d(x,y) = d(y,x) :סימטריות
 - $d(x,y) \le d(x,z) + d(z,y)$ אי־שיוויון המשולש:
 - סביבה:
- $.B\left(x,r
 ight)=\left\{y\in\mathbb{R}^{k}\,:\,d\left(x,y
 ight)=|x-y|< r
 ight\}\,:x$ סביבה כדורית של ביבה $r-R\left(x,r
 ight)=\left\{y\in\mathbb{R}^{k}\,:\,|x_{j}-y_{j}|< r\,j=1,2,\ldots,n
 ight\}\,:x$ סביבה תיבתית של כיד תיבתית היבתית של אוני
 - משלים של קבוצה:

 $A^c=\left\{y\in\mathbb{R}^k\,:\,y
otin A
ight\}$ נסמן: $A\subseteq\mathbb{R}^k$ ונקראת המשלים של $A\subseteq\mathbb{R}^k$

• נקודה פנימית:

נאמר ש־ x המוכלת אם אם קיימת אם אם אם אם אוסף הנקודות של אוסף הנקודות אוסף היא נקודה פנימית של אוסף או $A\subseteq\mathbb{R}^k$ ומסומן של אוסף הפנימיות אל נקרא הפנים של אומסומן ב־ A° ומסומן אוסף אוסף אוסף אוסף הפנימיות אל אוסף אוסף אוסף אוסף אוסף הנקודות הנקודות אוסף הנקודות אוסף הנקודות הנק

• נקודת שפה:

נאמר ש
- A^c אוסף את Aחותכת של סביבה של סביבה א
ם אם אוסף נקודות שפה אוסף נקודות אם אוסף או
 $A\subseteq\mathbb{R}^n$ אוסף נקודות השפה מסומן ב־Aאו
 Aאו אוסף נקודות מסומן ב־Aאו אוסף לאו $\mathrm{bd}\,(A)$

- סגור של קבוצה:
- $A \subseteq \overline{A}$ עבור $A \cup \partial A$ ומסומן ב־ $A \subseteq \mathbb{R}^k$ עבור
 - $A=A^\circ$ אם פתוחה קבוצה לקראת (קבוצה אם $A\subseteq\mathbb{R}^k$ פתוחה \bullet
 - $.\partial\left(A\right)\subseteq A$ אם סגורה קבוצה קבואת נקראת $A\subseteq\mathbb{R}^{k}$. סגורה סגורה
- $A\subseteq B\left(0,r
 ight)$ כך ש־ r>0 כקיים אם נקראת מקראת $A\subseteq\mathbb{R}^{k}$ כק ש־ $A\subseteq\mathbb{R}^{k}$
 - . נקראת אם היא סגורה וחסומה. $A\subseteq\mathbb{R}^k$ נקראת קומפקטית היא סגורה וחסומה.
- .yור בין x המחבר בין ב־ מסלול קיים מסלול אם לכל אם קשירה קשירה קשירה לקראת $A\subseteq\mathbb{R}^k$ המחבר \bullet
 - $x^{(n)} \to \infty$ כאשר $\left|x^{(n)} x \right| \to 0$ אם \mathbb{R}^k ב־ $x^{(n)} \to x$ כאשר סדרה מתכנסת:
 - $i=1,2,\ldots,k$ לכל $n o\infty$ כאשר $x_i^{(n)} o x_i$ אם ורק אם $x_i^{(n)} o x_i$ כאשר $x_i^{(n)} o x_i$
 - משפט: לכל סדרה חסומה של תת־סדרה מתכנסת.
- אם $\lim_{(x,y)\to(a,b)}f\left(x,y\right)=L$ מוגדרת בסביבה מנוקבת של $f\left(x,y\right)$. אזי נרשום $f\left(x,y\right)$ מוגדרת בסביבה מנוקבת של $f\left(x,y\right)-L$ מתקיים $f\left(x,y\right)+L$ מתקיים $f\left(x,y\right)+L$ באופן שקול, אם לכל $f\left(x,y\right)+L$ מתקיים $f\left(x,y\right)+L$ מתקיים $f\left(x,y\right)+L$ באופן שקול, אם לכל $f\left(x,y\right)+L$ מתקיים $f\left(x,y\right)+L$ מתקיים $f\left(x,y\right)+L$
- משפט: אם קיים לLלאורך ל $\lim_{(x,y)\to(a,b)}f\left(x,y\right)=L$ משפט: פונקציה שואף $\lim_{(x,y)\to(a,b)}f\left(x,y\right)=L$ לי
 - . נקראים גבולות נשנים $\lim_{y \to b} (\lim_{x \to a} f\left(x,y\right))$ ו־ $\lim_{x \to a} (\lim_{y \to b} f\left(x,y\right))$ הגדרה:
 - . משפט: אם קיים, אז הם הווים. $\lim_{(x,y)\to(a,b)}f\left(x,y\right)$ אם שווים. משפט: אם אם פיים, אז הם שווים.
- $\lim_{r o 0^+} F\left(r
 ight) = 0$ משפט: תהי G וד $f\left(r\cos heta,r\sin heta
 ight) = F\left(r
 ight)G\left(heta
 ight)$, כאשר $\lim_{(x,y) o(0,0)} f\left(x,y
 ight) = 0$ איי
 - $\lim_{(x,y)\to(a,b)}f\left(x,y
 ight)=f\left(a,b
 ight)$ אם (a,b) רציפה ב־ f רציפה f
- משפט ויירשטראס: תהי $f:K \to \mathbb{R}$ רציפה בקומפקטית אזי אזי חסומה והיא מקבלת מקסימום פומנימום שם.
 - עה"ב. אם את מקיימת אז היא קשירה אז רציפה בקבוצה רציפה את עה"ב. •

תרגילים:

. בדוק ש־ אקסיומות את אקסיומת את גע, א $< x,y>=\sum x_jy_j$. בדוק בדוק .1 פתרון:

ע"י בדיקה ישירה פשוטה מאוד.

2. אי־שיוויון קושי־שוורץ:

:לכל $x,y\in\mathbb{R}^k$ מתקיים

$$|\langle x, y \rangle| \le |x| |y|$$

הוכחה:

צריך להוכיח ש־

$$\left| \sum x_j y_j \right| \le \sqrt{\sum x_j^2} \cdot \sqrt{\sum y_j^2}$$

עבור $p\left(t
ight)\geq0$ ברור ש־ $p\left(t
ight)=\left|xt+y
ight|^{2}$ וגם $p\left(t
ight)=t^{2}\left|x\right|^{2}+2< x,y>t+\left|y\right|^{2}$

מכאן, הדיסקרימיננטה של p אי־חיובית.

3. אי־שיוויון המשולש:

:לכל $x,y\in\mathbb{R}^k$ מתקיים

$$|x+y| \le |x| + |y|$$

הוכחה:

נבחיץ ש־
$$|x+y|^2=< x+y, x+y>$$
 לכן . $|z|=d\left(z,0
ight)=\sqrt{< z,z>}$ נבחיץ ש־ $|x+y|^2=|x|^2+2< x, y>+|y|^2\leq |x|^2+2\,|x|\,|y|+|y|^2=\left(|x|+|y|\right)^2$

.4 אקסיומות הנורמה את מקיימת $\|x\| = \sqrt{\sum x_j^2}$.4

<u>פתרון:</u>

החלק הקשה נובע מתרגיל 3.

 $d: \|\cdot\|$,<,> : ו־ $d: \|\cdot\|$.5 מה הקרש בין

$$||x|| = \sqrt{\langle x, x \rangle}$$

$$d\left(x,y\right) = \left\|x - y\right\|$$

.6 הראו ש־ ל $d\left(x,y\right) = \sqrt{\sum_{j=1}^{k}\left|x_{j}-y_{j}\right|^{2}}$ מקיימת את המטריקה. .6 פתרון:

החלק הקשה, שזה אי שיוויון המשולש,נובע מתרגל 3 ותרגיל 4, אכן

$$||x - y|| = ||x - z + z - y|| \le ||x - z|| + ||z - y||$$

- . יהי r > 0 יהי .7
- $E(x,\rho)\subseteq B(x,r)$ א. קיים 0>0 כך שי
- $B(x,\rho)\subseteq E(x,r)$ ב. קיים $\rho>0$ כך ש

הוכחה:

 $.B\left(x,r\right)\subseteq E\left(x,r\right)$ ו ד $E\left(x,\frac{r}{\sqrt{k}}\right)\subseteq B\left(x,r\right)$ שירות מהעובדה שי נובע ישירות נובע ישירות

- $x\in\overline{A}$ אזי א מתכנסת ל־ x_n כך ש־ x_n מתכנסת ל־ 8. א. הוכיחו כי אם x_n
 - xב. הוכיחו ש־ \overline{A} אם ורק אם קיימת סדרה ב־ \overline{A} המתכנסת ל־
- A ב- אזי גבולה נמצא ב- A המתכנסת, אזי גבולה נמצא ב- A

הוכחה:

- $x_n\in B\left(x,r
 ight)$ אינ כך ש־ $B\left(x,r
 ight)\cap A=\emptyset$ כך ש־ r>0 איז קיים אזי איז קיים אזי פחירה מחירה
- ב. כיוון אחד נובע מהסעיף הקודם. כיוון שני, נניח $x\in A$ אם $x\in A$ סיימנו, אחרת הקודם. כיוון שני, נניח $x\in A$ קיים $x\in A$ קיים $x\in A$ קיים $x\in A$
 - $A=\overline{A}$ אם ורק אם $\partial A\subseteq A$ אם ורק אם גג. A
 - A בי מתכנסת מתכנסת בי A יש תת־סדרה מתכנסת פיסית. הוכיחו שלכל סדרה בי $A\subseteq\mathbb{R}^n$

<u>הוכחה:</u>

 $a\in A$ אזי $a_n\in A$ סגורה לכן של לה תת־סדרה מתכנסת, אזי $a_n\in A$ סגורה לכן תהי לכן אזי $a_n\in A$ אזי מקרימת את התכונה: "לכל סדרה ב־ A יש תת־סדרה מתכנסת ב־ A" נקראת הערה: קבוצה A

הערה: קבוצה A שמקיימונ אונ הונכונה: "ככל סדרה ב"A יש זנונ סדרה מונכנסונ ב"A קומפקטית סדרתית. מתברר שזה שקול לקומפטקיות ב־" \mathbb{R}^n .

 $\overline{\mathbb{Q}^k} = \mathbb{R}^k$ הוכיחו ש- 10.

פתרון:

 $|x_j-q_j|< r$ כך ש־ $q_j\in\mathbb{Q}$ קיים $j\in\{1,2,\ldots,k\}$ יהי x>0 יהי יהי $x\in\overline{\mathbb{Q}^k}$ נוכיח ש־ $x\in\mathbb{R}^k$ יהי יהי יהי $q=(q_1,q_2,\ldots,q_k)$ ואז, לכל ניקח עם אותפת עם יש סדרה ב־ $q=(q_1,q_2,\ldots,q_k)$ המתכנסת ל־ $q=(q_1,q_2,\ldots,q_k)$ לכן ברור שיש סדרה ב־ $q=(q_1,q_2,\ldots,q_k)$

בו. תהי $\mathbb{R}^n\setminus\{0\} o f:\mathbb{R}^n\setminus\{0\}$ כך שלכל $f:\mathbb{R}^n\setminus\{0\}$ ולכל t>0 מתקיים $f:\mathbb{R}^n\setminus\{0\} o f$. הראו שקיים אם ורק אם f קבועה. $\lim_{x\to 0} f(x)$

הוכחה:

מי זה פיים, אז מי זה פיים, אז $f\left(tx\right)=f\left(x\right)$ ואז $x\in S^{n-1}$ שני, ניקח שהגבול קיים, אז $x\in S^{n-1}$ שני, ניקח ,xב את לוי בי $f\left(x\right)$ מפרט עבור מהסלול קיים $\lim_{t\rightarrow0^{+}}f\left(tx\right)$ קיים קיים $\left\{ tx\right\} _{t>0}$ לא תלוי מפרט עבור מהסלול f את אומרת f קבועה.

12. תהי נתונה הפונקציה

$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

?רציפה בראשית f

פתרון:

נשים לב כי לכל $(x,y) \neq (0,0)$ מתקיים

... זה לא נכון, רק קרוב לראשית.. $|f(x,y)| \le |x| + |y|$

לכן, לכל $\epsilon>0$ ניקח $\delta=rac{\epsilon}{2}$, ואז אם $\delta=|x|<\delta$ אם $|x|<\delta$ אם העומרת, $(x,y)\in R$ ניקח $\epsilon>0$ לכן, לכל 0 לכן f רציף ב־ . $|f(x,y)| < \epsilon$

 $\lim_{(x,y)\to(0,0)}f\left(x,y
ight)=0$ הערה: בהמשך אנחנו פשוט נגיד שלי כלל סנדוויץ' מתקיים ש

13. תהי נתונה הפונקציה

$$f(x,y) = \begin{cases} \frac{x^2y}{x^6 + 2y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

?רציפה בראשית f

פתרון:

נשים לב ש־

$$f\left(x, x^3\right) = \frac{1}{3x}$$

לכן על המסלול (x,x^3) אין גבול ל־ f כאשר x o 0 כאשר x o 0 כאשר $(x,y) \to (0,0)$

14. חשבו את

$$\lim_{(x,y)\to(2,1)} \frac{\tan(y-1)\sin^2(x-2y)}{(x-2)^2+(y-1)^2}$$

, ואז להצדיק את זה עם סנדוויץ?tan(x) אפשר להגיד שtan(x)לחזור על התרגול של טיילור!

:פתרון

את נשחב את .x-2y o 0 כש־ $\sin{(x-2y)} \sim (x-2y)$,y o 1 כש־ $\tan{(y-1)} \sim y-1$

$$\lim_{(x,y)\to(2,1)} \frac{(y-1)(x-2y)^2}{(x-2)^2+(y-1)^2}$$

ונקבל (r,θ) ונקבל ומכאן ומכאן

$$\frac{(y-1)(x-2y)^2}{(x-2)^2 + (y-1)^2} = r \cdot \sin \theta (\cos \theta - 2\sin \theta)^2$$

לכן הגבול הוא 0.

15. האם הפונקציה

$$f(x,y) = \begin{cases} \frac{xy^3 + xy\sin(2015x + 2016y)}{(x^2 + y^2)e^{x^2 - y^2}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

(0,0) רציפה ב־

פתרון:

עם א $|xy| \leq rac{x^2}{2} + rac{y^2}{2} : p = q = 2$ עם Hölder עייפ אי שיוויון

$$|f(x,y)| \le \frac{1}{2} \cdot \frac{(y^2 + \sin(2015x + 2016y))}{e^{x^2 - y^2}} \to 0$$

(0,0) לכן f רציף ב־

 $\lim_{y\to 0} \left(\lim_{x\to 0} \frac{x-y}{x+y}\right)$ ואת $\lim_{x\to 0} \left(\lim_{y\to 0} \frac{x-y}{x+y}\right)$ 16. חשבו את הגבולות

פתרון:

$$\lim_{x\to 0} \left(\lim_{y\to 0} \frac{x-y}{x+y}\right) = \lim_{y\to 0} \frac{x-y}{x+y} = \frac{x}{x} = 1$$
 יהי $x \neq 0$ יהי : $\lim_{x\to 0} \left(\lim_{y\to 0} \frac{x-y}{x+y}\right)$ לכן כושב את $\lim_{x\to 0} \left(\lim_{y\to 0} \frac{x-y}{x+y}\right)$ יהי : $\lim_{x\to 0} \left(\lim_{y\to 0} \frac{x-y}{x+y}\right)$

$$\lim_{y \to 0} \left(\lim_{x \to 0} \frac{x-y}{x+y}\right) = \lim_{x \to 0} \frac{x-y}{x+y} = \frac{-y}{y} = -1$$
 אזי $y \neq 0$ אזי $\lim_{y \to 0} \left(\lim_{x \to 0} \frac{x-y}{x+y}\right)$ לחשב את $\lim_{x \to 0} \left(\lim_{x \to 0} \frac{x-y}{x+y}\right)$ להי היי

17. תהי נתונה הפונקציה

$$f(x,y) = \begin{cases} \frac{yx^2}{(x^2+y^2)^{\alpha}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

(0,0) בור f מספר ממשי. קבעו עבור איזה ערכים של lpha הפונקציה lpha רציפה ב

:פתרון

 $.(r,\theta)$ נעבור למישור

$$f(r\cos\theta, r\sin\theta) = r^{3-2\alpha}\sin\theta\cos^2\theta$$

לכן $G\left(\theta\right)=\sin\theta\cos^{2}\theta$ ו־ $F\left(r\right)=r^{3-2lpha}$ כאשר לכן f=FG לכן הגבול קיים ושווה $F\left(r\right)=r^{3-2lpha}$ כאשר לכן 3-2lpha>0

. אם $2\alpha > 0$ נובע מהמשפט המוכר לנו מההרצאה.

 $\theta=0$ אם f=G, נבחר למשל , קבועה של הקרנות היוצאות מהראשית, כי עכשיו ל $f:3-2\alpha=0$ אם $\theta=0$ וד $\theta=1$ ווא

$$f\left(r,0\right) = 0$$

$$f(r\cos 1, r\sin 1) = \sin 1\cos^2 1$$

לכן אין גבול ל־0 ב־(0,0). שים לב שהמסלול השני כבר עונה על השאלה כי ביקשו לבדוק רציפות.

אם $f\left(r\cos 1,r\sin 1
ight)=rac{1}{r^{2lpha-3}}\sin 1\cos^2 1$ וברור שזה לא קיים :3-2lpha<0 אם $r o 0^+$ אם $r o 0^+$

הערה: מפתה עכשיו להכליל את המשפט שהוכחת בהרצאה.

18. תהי נתונה הפונקציה

$$f(x,y) = \begin{cases} \frac{\sin(xy)}{xy} & x, y \neq 0\\ \frac{\sin x}{x} & x \neq 0, y = 0\\ \frac{\sin y}{y} & y \neq 0, x = 0\\ 1 & x = y = 0 \end{cases}$$

 ${}^2\mathbb{R}^2$ ראיפה בי f

פתרון:

.(באמדו עד כדי עד כדי לאמר: עד (באמדו באמדו באמדו לקרוא לקרוא לקרוא לקרוא כדי תת־סדרה).

תת־סדרה א: $a_n=0$, אזי

$$f\left(a_n, b_n\right) = \frac{\sin b_n}{b_n}$$

 $f\left(a_n,b_n
ight)
ightarrow 1$ לכן

תת־סדרה ב: $a_n \neq 0$, אזי

$$f(a_n, b_n) = \frac{\sin(a_n b_n)}{a_n b_n}$$

 $f\left(a_n,b_n
ight)
ightarrow 1$ לכן שוב

 $f\left(a_n,b_n
ight)
ightarrow 1$ לכן

כנ"ל לגבי שאר המקרים.