Analysis of Bobbleheads & Baseball Attendance

Louis Bailey

Contents

- 1. Introduction
- 2. Libraries & Data
- 3. Variable Encoding
- 4. Correlations

Bobbleheads

- 1. Bobblehead Plots
- 2. Bobblehead Normality
- 3. Welch's t-test and Hedge's g

Day of the Week

- 1. Day of the Week Plot
- 2. Day of the Week Normality, Homogeneity of Variance & Tukey's HSD

Bobbleheads and Day of the Week Plot

- 1. Bobbleheads and Day of Week Plot
- 2. Conclusion

1 | Introduction

- In this notebook I will be using data on the Los Angeles Dodgers Major League Baseball team. The data will be explored with the goal of finding insights which can inform management on how to improve attendance.
- To keep this notebook from being overly long, this will be a partial analysis focused on only two variables related to attendance: bobbleheads and day of the week
- The dataset was already checked, and it appears no cleaning is necessary.

2 | Libraries & Data

```
In [1]: import pandas as pd
import numpy as np

import seaborn as sns
import matplotlib.pyplot as plt

from scipy import stats
from scipy.stats import skew
from scipy.stats import shapiro
import statsmodels.stats.multicomp as multi

In [2]: data = pd.read_csv('dodgers-2022.csv')
print(f'Shape:{data.shape}')
data.head()

Shape:(81, 12)
```

Out[2]:		month	day	attend	day_of_week	opponent	temp	skies	day_night	сар	shirt	fireworks	bobblehead
	0	APR	10	56000	Tuesday	Pirates	67	Clear	Day	NO	NO	NO	NO
	1	APR	11	29729	Wednesday	Pirates	58	Cloudy	Night	NO	NO	NO	NO
	2	APR	12	28328	Thursday	Pirates	57	Cloudy	Night	NO	NO	NO	NO
	3	APR	13	31601	Friday	Padres	54	Cloudy	Night	NO	NO	YES	NO
	4	APR	14	46549	Saturdav	Padres	57	Cloudy	Niaht	NO	NO	NO	NO

3 | Variable Encoding

To determine correlation, the ordinal variables 'month' and 'day_of_week' need to be encoded

```
In [3]: encodings = {
    "month": {'APR':4, 'MAY':5, 'JUN':6, 'JUL':7, 'AUG':8, 'SEP':9, 'OCT':10},
    "day_of_week": {'Monday':1,'Tuesday':2, 'Wednesday':3, 'Thursday':4, 'Friday':5, 'Saturday':6, 'Sunday':7},
}
In [4]: pd.set_option("future.no_silent_downcasting", True) #silence future warning
    data = data.replace(encodings)
```

The nominal variables need be transformed into dummy vaiables

4 | Correltions

```
In [6]: #
    corr_data = data.loc[:,~data.columns.str.startswith('opponent')]
    plt.figure(figsize=(14,8))
    mask = np.triu(np.ones_like(corr_data.corr()))
    sns.heatmap(corr_data.corr(), annot=True,mask=mask, cmap='BuPu')
    plt.title('Correlation Heatmap')
    plt.show()
```


From the correlation heatmap, there does not appear to be any redundant/collinear variables. Regarding attendance, bobblehead has the strongest correlation. Also of possible linear importance are shirts, skies, day of the week, and temp.

> Bobbleheads <

5 | Bobblehead Plots

```
In [7]: #groups
bobblehead = data[data.bobblehead_YES].attend
no_bobblehead = data[data.bobblehead_NO].attend

In [8]: len(bobblehead)

Out[8]: 
In [9]: #
    fig, (ax1, ax2) = plt.subplots(1,2, figsize=(10,5))
    sns.histplot(bobblehead, ax=ax1, color='cadetblue', kde=True)
    ax1.set_title('Attendence: Bobblehead')
    sns.histplot(no_bobblehead, ax=ax2, color='cadetblue', kde=True)
    ax2.set_title('Attendence: No Bobblehead')
    plt.show()
```


It appears there is a difference in attendance when bobbleheads are sold. To check whether this difference is significant, and how large that difference is, Welch's t-test and Hedge's g will be used. Welch's t-test is being used because the two groups do not have equal variance.

Before that, these distributions need to be checked for normality.

6 | Bobblehead Normality

6.1 | Shapiro-Wilk Test

In [10]:

```
Bobblehead Shapiro p-value: 0.037406764924526215

No Bobblehead Shapiro p-value: 0.5448899865150452
```

For the No_Bobblehead distribution, we fail to reject the null hypothesis, but for the Bobblehead distribution we reject the null hypothesis.

The Bobblehead distibution will be checked for outliers, which if dropped may make the distribution normal.

6.2 | Checking for Outliers in Bobblehead

```
In [11]: #

plt.figure(facecolor='#87B1B0', figsize=(8,5))
plt.boxplot(bobblehead)
plt.show()
```


Next these distributions will be tested again using the Shapiro Wilk test

6.3 | Shapiro-Wilk Test Again

```
In [14]: print(f'Bobblehead Shapiro:\n{shapiro(bobblehead)[1]}')
    print(f'\nNo Bobblehead Shapiro:\n{shapiro(no_bobblehead)[1]}')

Bobblehead Shapiro:
    0.07290858030319214

No Bobblehead Shapiro:
    0.5448899865150452
```

For both the Bobblehead and No_Bobblehead distributions, since the p-value is greater than the chosen alpha of 0.05, we fail to reject the null hypothesis and assume the distributions are not significantly different from a normal distribution.

7 | Welch's t-test and Hedge's g

7.1 | Defining Functions

```
In [18]:

def t_test(group1, group2):
    t_stat, p_value = stats.ttest_ind(group1, group2, equal_var=False)
    print(f'The p-value is {p_value}')

def Hedges_g(group1, group2):
    diff = group1.mean() - group2.mean()
    var1 = group1.var()
    var2 = group2.var()
    avg_std = np.sqrt((var1 + var2) / 2)
    g = diff / avg_std
    return g
```

7.2 | Running Tests

```
In [19]: t_test(bobblehead, no_bobblehead)
    print(f"\nHedge's g: {Hedges_g(bobblehead, no_bobblehead)}")
The p-value is 4.513292312776158e-17
Hedge's g: 2.7530915168819803
```

7.3 | Results

```
t-test
p-value ~ 0

Hedge's g
~ 2.75
```

Given that the p-value is less than the chosen alpha of 0.05, we reject the null hypothesis and conclude that there is a statistically significant difference between the means of the two groups.

A Hedge's g of 2.75 is very large. It indicates that the mean attendance at games where bobbleheads are sold is 2.75 standard deviations higher than the mean attendance at games where bobbleheads are not sold. That works out to an average of around 22,818 more attendees when bobbleheads are sold.

Since the lowest value (the outlier) of the Bobblehead distribution was dropped to meet the reqirements of normality, this estimation may be a little high.

```
In [17]: round(data.attend.std()*2.75,0)
Out[17]: 22818.0
```

>Day of the Week<

8 | Day of the Week Plot

```
In [18]: #
    plt.figure(figsize=(10,5))
    plt.bar(x=['1','2','3','4','5','6','7'], height=data.groupby('day_of_week').attend.mean(), color='cadetblue')
    plt.xlabel('Day of Week')
    plt.ylabel('Attendees')
    plt.title('Mean Number of Attendees by Day of the Week')
    plt.show()
```


It appears there are differences in mean attendence by day of the week. To check whether any of these differences are significant, Tukey's HSD test will be used. Before that, the Attendance by Day of the Week distributions need to be checked for homogeneity of variance and normality.

9 | Day of the Week Homogeneity of Variance, Normality & Tukey's HSD

9.1 | Levene's Test

```
In [20]: stats.levene(monday, tuesday, wednesday, thursday, friday, saturday, sunday)
Out[20]: LeveneResult(statistic=1.392112258774036, pvalue=0.22915168342167477)
```

Since the p-value is greater than the chosen alpha of 0.05 we fail to reject the null hypothesis of equal variances. This suggests that the assumption of homogeneity of variance is met for these groups.

9.2 | Shapiro-Wilk Test

```
In [21]: print(shapiro(monday))
    print(shapiro(tuesday))
    print(shapiro(wednesday))
    print(shapiro(thursday))
    print(shapiro(friday))
    print(shapiro(saturday))

ShapiroResult(statistic=0.9197006225585938, pvalue=0.2834431529045105)
    ShapiroResult(statistic=0.8718740940093994, pvalue=0.05541668087244034)
    ShapiroResult(statistic=0.9552205204963684, pvalue=0.7140557169914246)
    ShapiroResult(statistic=0.8962111473083496, pvalue=0.38930022716522217)
    ShapiroResult(statistic=0.9818068146705627, pvalue=0.9871065616607666)
    ShapiroResult(statistic=0.9463753700256348, pvalue=0.5445184707641602)
```

For all of the distributions, the p-value is greater than the chosen alpha of 0.05, so we fail to reject the null hypothesis and assume the distributions are not significantly different from a normal distribution.

9.3 | Tukey's HSD test

```
In [22]: f_value, p_value = stats.f_oneway(monday, tuesday, wednesday, thursday, friday, saturday, sunday)
    print(f'f-value: {f_value}, p-value: {p_value}')

if p_value < 0.05:</pre>
```

```
mc = multi.MultiComparison(data.attend, data.day_of_week)
result = mc.tukeyhsd()

print(result)
print(mc.groupsunique)
```

f-value: 3.6440323261932344, p-value: 0.0031850342326589344 Multiple Comparison of Means - Tukey HSD, FWER=0.05

=======================================										
group1	group2	meandiff	p-adj	lower	upper	reject				
1	2	12775.5641	0.0013	3578.4993	21972.6289	True				
1	3	2619.5	0.979	-6759.7025	11998.7025	False				
1	4	5441.7333	0.8265	-6787.2506	17670.7173	False				
1	5	5151.2564	0.6198	-4045.8084	14348.3212	False				
1	6	8107.2564	0.1202	-1089.8084	17304.3212	False				
1	7	7303.1795	0.2105	-1893.8853	16500.2442	False				
2	3	-10156.0641	0.021	-19353.1289	-958.9993	True				
2	4	-7333.8308	0.5269	-19423.6864	4756.0248	False				
2	5	-7624.3077	0.1522	-16635.554	1386.9386	False				
2	6	-4668.3077	0.7014	-13679.554	4342.9386	False				
2	7	-5472.3846	0.5256	-14483.6309	3538.8617	False				
3	4	2822.2333	0.9922	-9406.7506	15051.2173	False				
3	5	2531.7564	0.9805	-6665.3084	11728.8212	False				
3	6	5487.7564	0.5467	-3709.3084	14684.8212	False				
3	7	4683.6795	0.7178	-4513.3853	13880.7442	False				
4	5	-290.4769	1.0	-12380.3325	11799.3787	False				
4	6	2665.5231	0.9939	-9424.3325	14755.3787	False				
4	7	1861.4462	0.9992	-10228.4094	13951.3018	False				
5	6	2956.0	0.9537	-6055.2463	11967.2463	False				
5	7	2151.9231	0.9907	-6859.3232	11163.1694	False				
6	7	-804.0769	1.0	-9815.3232	8207.1694	False				

[1 2 3 4 5 6 7]

9.4 | Resuls

From the adjusted p values, it appears there is a significant difference between Tuesday and Monday, and Tuesday and Wednesday.

On average there are about 12,775 more attendees on Tuesday than on Monday.

10 | Bobbleheads and Day of the Week Plot

```
In [23]: #
bobblehead_day_of_week = data[data.bobblehead_YES==True].day_of_week

plt.figure(figsize=(10,5))
sns.histplot(bobblehead_day_of_week, color='cadetblue', discrete=True)
plt.title('Occurences of Bobbleheads by Day of the Week')
plt.show()
```


It appears that bobbleheads have mostly been sold on Tuesdays, and never on Mondays or Wednesdays. This could explain Tuesdays having significantly more attendees than Mondays and Wednesdays.

11 | Conclusion

- In the analysis above statistically significant differences in attendance were found between what day of the week a game falls on and whether bobbleheads are sold.
- From the results it appears that selling bobbleheads dramatically increases the number of attendees on average.
- Furthermore, it appears that attendance is on average significantly higher on Tuesdays than on Mondays or Wednesdays.
- Finally, it was observed that bobbleheads have mostly been sold on Tuesdays, and never on Mondays or Wednesdays which could explain the significant difference in attendance.
- My tentative recommendation to management is to try selling bobbleheads on lower attendance days Monday and Wednesday to increase attendance. I would need to explore this dataset more before settling on recommendations.
- For example, one could check whether the other promotional items: fireworks, shirts and caps have a significant impact on attendance. Additionally, attendance numbers could be analyzed in relation to 'month', 'day', 'day of the week', 'opponent', 'temp', and 'skies'.