

Edexcel GCSE Chemistry

Acids

Contents

- * Acids & Bases
- ★ Hydrogen Ions & pH
- * Core Practical: Investigating pH
- * Acid Strength & Concentration
- ***** Bases
- * Reactions of Acids
- * Test for Hydrogen & Carbon Dioxide
- * Core Practical: Preparing Copper Sulfate
- * Prepare a Salt by Titration
- * Solubility Rules
- * Preparing an Insoluble Salt

Acids & Bases

Your notes

Defining Acids & Bases

- When acids are added to water, they form positively charged hydrogen ions (H⁺)
- The presence of H⁺ ions is what makes a solution acidic
- When alkalis are added to water, they form negative hydroxide ions (OH⁻)
- The presence of the OH⁻ ions is what makes the aqueous solution an alkali
- The pH scale is a numerical scale which is used to show how **acidic** or **alkaline** a solution is, in other words it is a measure of the amount of the ions present in solution

The pH Scale

- The pH scale goes from 0 14 (extremely acidic substances can have values of below 0)
- All acids have pH values of **below** 7, all alkalis have pH values of **above** 7
- The lower the pH then the more acidic the solution is
- The **higher** the pH then the **more alkaline** the solution is
- A solution of pH7 is described as being neutral

The pH scale showing acidity, neutrality and alkalinity

Indicators

• Two colour indicators are used to distinguish between acids and alkalis

 Many plants contain substances that can act as indicators and the most common one is **litmus** which is extracted from lichens

- Synthetic indicators are organic compounds that are sensitive to changes in acidity and appear different colours in acids and alkalis
- Phenolphthalein and methyl orange are synthetic indicators frequently used in acid-alkali titrations
 Two Colour Indicators Table

Indicator	Colour in acid Colour in al	
Litmus	red	blue
Phenolphthalein	colourless	pink
Methyl orange	red	yellow

Copyright © Save My Exams. All Rights Reserved

- Synthetic indicators are used to show the endpoint in titrations as they have a very sharp change of colour when an acid has been neutralised by an alkali and vice-versa
- Litmus is not suitable for titrations as the colour change is not sharp and it goes through a purple transition colour in neutral solutions making it difficult to determine an endpoint
- Litmus is very useful as an an indicator paper and comes in red and blue versions, for dipping into solutions or testing gases

Hydrogen Ions & pH

Your notes

Hydrogen Ions & pH

- We have already seen that acids are substances that contain hydrogen ions in solution
- The more hydrogen ions the stronger the acid, but the lower the pH
- The higher the concentration of hydroxide ions in a solution the higher the pH
- So pH is a measure of the concentration of H⁺ ions in solution, but they have an inverse relationship

The pH scale is logarithmic so that each change in pH is a tenfold change in hydrogen ion concentration

- The pH scale is **logarithmic**, meaning that each change of 1 on the scale represents a change in concentration by a **factor** of **10**
- Therefore an acid with a pH of 3 has ten times the concentration of H+ ions than an acid of pH 4

- An acid with a pH of 2 has 10 x 10 = 100 times the concentration of H+ ions than an acid with a pH of 4
- From this we can summarize that for two acids of **equal concentration**, where one is **strong** and the other is **weak**, then the strong acid will have a lower pH due to its capacity to dissociate more and hence put more H+ ions into solution than the weak acid

Examiner Tips and Tricks

Acid strength is reflected in how many hydrogen ions are in solution. The more hydrogen ions the lower the pH and vice-versa.

Core Practical: Investigating pH

Your notes

Core Practical: Investigating pH

Aim:

 To investigate the changes in pH of a fixed volume of dilute HCl on addition of varying amounts of a solid base

Materials:

- Dilute HCI (0.5M or 1M), solid base such as CaO or Ca(OH)₂
- Conical flask, 25 cm³ or 50 cm³ volumetric pipette, glass rod
- Spatula and weighing boat
- pH probe or Universal Indicator paper

Method:

- Use a pipette to measure a fixed volume of dilute HC/ into a conical flask
- Add one spatula of calcium oxide or calcium hydroxide to the flask and swirl
- When all the base has reacted record the pH of the solution
- If using U.I. paper use the glass rod to extract a sample from the flask
- Repeat for different numbers of spatula (1-10) of solid but the same volume of HCI
- Record your results neatly in table format

Analysis of results:

- Plot a graph of the amount of the base on the X-axis against the pH recorded on the Y-axis
- The resulting graph should look something like the one below

Number of spatulas added

Investigating the change in pH during neutralisation of an acid

Conclusion:

- The graph indicates a sudden change in pH which corresponds to the vertical section of the graph
- This indicates that the more solid base is added the higher the pH, therefore the base is neutralising the acid
- From the sample graph it can be seen that 6 spatulas of the base are required to completely neutralise the acid

Hazards, risks and precautions

Hazard symbols to show substances that are corrosive, harmful to health and hazardous to the environment

- Copper(II) oxide can cause serious eye irritation and is a skin irritant. It is harmful if swallowed or inhaled and is toxic to aquatic life
- Dilute hydrochloric acid is not classified as hazardous at the concentrations typically used in this practical, however it may still cause harm to the eyes or the skin
- For both substances, avoid contact with the skin and use safety goggles
- For copper(II) oxide, care should be taken not to inhale the powder

Acid Strength & Concentration

Your notes

Acid Strength & Concentration

Strong & Weak

- Acids can be either strong or weak, depending on how many ions they produce when they dissolve in water
- When added to water, acids ionise or **dissociate** to produce H⁺ ions:

Hydrochloric acid: HCl → H⁺ + Cl⁻

Nitric acid: $HNO_3 \rightarrow H^+ + NO_3^-$

- Strong acids such as HCl and H₂SO₄ dissociate completely in water, producing solutions with a high concentration of H⁺ ions and thus a very low pH
- Weak acids such as ethanoic acid, CH₃COOH and hydrofluoric acid, HF only partially ionize in water, producing solutions of pH values between 4 – 6
- This data is summarized in the table below:

Strong & Weak Acids Table

	High Concentration of H ⁺	Low Concentration of H ⁺
pН	Low pH	Higher pH (but still under 7)

Copyright © Save My Exams. All Rights Reserved

- For weak acids there is an **equilibrium** set-up between the molecules and their ions once they have been added to water
- Propanoic acid for example dissociates as follows:

$$CH_3CH_2COOH \Rightarrow H^+ + CH_3CH_2COO^-$$

- The = symbol indicates that the process is reversible, as the products can react together forming the original reactants
- The equilibrium lies to the **left**, meaning there is a high concentration of intact acid molecules and therefore a low concentration of ions in solution, hence the pH is that of a weak acid and closer to 7 than a strong acid

Concentrated & Dilute

- A solution is formed when a solute is dissolved in a solvent
- A dilute solution contains a small amount of solute in a given volume of solution
- A concentrated solution contains a large amount of solute in a given volume of solution
- A concentrated solution of either an acid or a base is one that contains a high number of acid or base molecules per dm³ of solution
- A dilute acid or base solution is therefore one that has much fewer acid or base molecules per dm³ of solution

Diagram illustrating how the concentration of a solution increases as more solute is added

Examiner Tips and Tricks

The terms strong and weak refer to the ability to dissociate and not concentration. A dilute solution of a strong acid can have a lower pH than a concentrated solution of a weak acid, due to the stronger acid undergoing complete dissociation.

Bases

Your notes

Bases

What makes a base act like a base?

- Bases are substances which can neutralise an acid, forming a salt and water
- The term **base** and **alkali** are not the same
- A base which is water-soluble is referred to as an alkali
 - So, all alkalis are bases, but not all bases are alkalis
- Alkalis have pH values of above 7
- In basic (alkaline) conditions red litmus paper turns blue
- Bases are usually oxides, hydroxides or carbonates of metals
- $\,\blacksquare\,$ The presence of the OH^- ions is what makes the aqueous solution an alkali
- One unusual base is ammonia solution
 - When ammonia reacts with water it produces hydroxide ions

Some Common Alkalis and the lons they Contain

Name of alkali	Formula	lons formed in water
Sodium hydroxide	NaOH	Na+ + OH ⁻
Potassium hydroxide	КОН	K+ + OH-
Aqueous ammonia	NH ₃ (+ H ₂ O)	NH ₄ + OH ⁻

Copyright © Save My Exams. All Rights Reserved

Examiner Tips and Tricks

Aqueous ammonia and ammonium hydroxide are the same thing. When ammonia gas dissolves in water it forms ammonium hydroxide. Be careful to use the correct terminology: **ammonia** is the gas, NH_3 , **ammonium** is the ion present in ammonium compounds, NH_4 ⁺

Reactions of Acids

Your notes

Reactions of Acids

Reactions of acids with metals

- Only metals above hydrogen in the reactivity series will react with dilute acids
- The more reactive the metal then the more vigorous the reaction will be
- Metals that are placed high on the reactivity series such as potassium and sodium are very dangerous and react explosively with acids
- When acids react with metals they form a **salt** and **hydrogen gas**:
- The general equation is:

metal + acid → salt + hydrogen

• Some examples of metal-acid reactions and their equations are given below:

Acid-Metals Reactions Table

Acid	Sulfuric Acid	Hydrochloric Acid
Magnesium	$Mg + H_2SO_4 \longrightarrow MgSO_4 + H_2$	$Mg + 2HCl \longrightarrow MgCl_2 + H_2$
Zinc	$Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2$	$Zn + 2HCl \longrightarrow ZnCl_2 + H_2$
Iron	$Fe + H_2SO_4 \longrightarrow FeSO_4 + H_2$	$Fe + 2HCl \longrightarrow FeCl_2 + H_2$

Copyright © Save My Exams. All Rights Reserved

• In general, we can summarise the reaction of a metal that forms a + 2 ion as follows:

Acids-Metals Summary Table

Acid	Name of products	Equation for reaction	
Hydrochloric acid	Metal chloride and hydrogen	$M + 2HCl \longrightarrow MCl_2 + H_2$	
Sulfuric acid	Metal sulfate and hydrogen	$M + H_2SO_4 \longrightarrow MSO_4 + H_2$	

Copyright © Save My Exams. All Rights Reserved

Reaction of acids with oxides & hydroxides

- When an acid reacts with an oxide or hydroxide, a **neutralisation** reaction occurs
- Metal oxides and metal hydroxides act as bases
- In all acid-base neutralisation reactions, a **salt** and **water** are produced:

- The identity of the salt produced depends on the acid used and the positive ions in the base
- Hydrochloric acid produces chlorides, sulfuric acid produces sulfate salts and nitric acid produces nitrates
- The following are some specific examples of reactions between acids and metal oxides / hydroxides:

$$2HCI + CuO \rightarrow CuCI_2 + H_2O$$
 $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$
 $HNO_3 + KOH \rightarrow KNO_3 + H_2O$

• In general, we can summarise the reaction of metals and bases as follows:

Acids and Metals Oxides or Hydroxides Summary Table

Acid	Name of Products	Equation for Reaction
Hydrochloric Acid	Metal Chloride and Water	MOH + HCl → MCl + H₂O
Sulfuric Acid	Metal Sulfate and Water	$MO + H_2SO_4 \longrightarrow MSO_4 + H_2O$
Nitric Acid	Metal Nitrate and Water	$MO + HNO_3 \longrightarrow MNO_3 + H_2O$

Copyright © Save My Exams, All Rights Reserved

Reactions of Acids with Metal Carbonates

- Acids will react with metal carbonates to form the corresponding metal salt, carbon dioxide and water
- These reactions are easily distinguishable from acid metal oxide/hydroxide reactions due to the presence of **effervescence** caused by the carbon dioxide gas

Acids & Metal Carbonates Reactions Table

Acid	Name of Products	Equation for Reaction
Hydrochloric Acid	Metal Chloride, Carbon Dioxide and Water	$MCO_3 + 2HCl \longrightarrow MCl_2 + CO_2 + H_2O$
Sulfuric Acid	Metal Sulfate, Carbon Dioxide and Water	$MCO_3 + H_2SO_4 \longrightarrow MSO_4 + CO_2 + H_2O$
Nitric Acid	Metal Nitrate, Carbon Dioxide and Water	$MCO_3 + 2HNO_3 \longrightarrow M(NO_3)_2 + CO_2 + H_2O$

Copyright © Save My Exams, All Rights Reserved

• The following are some specific examples of reactions between acids and metal carbonates:

$$2HCI + Na_2CO_3 \rightarrow 2NaCI + H_2O + CO_2$$

$$H_2SO_4 + CaCO_3 \rightarrow CaSO_4 + H_2O + CO_2$$

Examiner Tips and Tricks

If in an acid-base reaction there is effervescence produced then the base must be a metal carbonate which produces carbon dioxide gas.

Neutralisation

- The chemistry of neutralisation reactions can be explained using ionic equations
- Ionic equations are used to show only the particles that chemically participate in a reaction
- The other ions present are not involved and are called spectator ions
- For example the neutralisation reaction between hydrochloric acid and sodium hydroxide:

$$HCI + NaOH \rightarrow NaCI + H_2O$$

• If we write out all of the **ions** present in the equation we get:

$$H^+ + Cl^- + Na^+ + OH^- \rightarrow Na^+ + Cl^- + H_2O$$

- The **spectator** ions are thus Na⁺ and C*I*⁻.
- Removing these from the previous equation leaves the overall net ionic equation:

$$H^+ + OH^- \rightarrow H_2O$$

- The H⁺ ions come from the acid and the OH⁻ ions come from the base, both combine to form the product water molecules
- This ionic equation is the same for all acid-base neutralisation

Examiner Tips and Tricks

Remember that although acids react with metals to form salts, that reaction is not neutralisation, but it counts as a redox reaction.

Hazards

HARMFUL TO HEALTH

CORROSIVE

OXIDISING

Hazard symbols you may see in relation to acids

- The hazards associated with acids depend on the type and concentration of the acid
- Most dilute acids either require no hazard symbol or they are an irritant, so require the symbol to show they are harmful to health
 - Eye protection should be worn when handling
- Moderately concentrated acids are often corrosive
 - In addition to eye protection, gloves should also be worn
- Some concentrated acids, e.g. nitric acid, are oxidising which can cause or intensify a fire in contact with combustible materials
 - Eye protection and gloves are necessary when handling concentrated acids and the use of a fume cupboard is often required

Test for Hydrogen & Carbon Dioxide

Your notes

Test for Hydrogen & Carbon Dioxide

Testing Hydrogen

- The test for hydrogen consists of holding a **burning splint** held at the open end of a test tube of gas
- If the gas is hydrogen it burns with a loud "**squeaky pop**" which is the result of the rapid combustion of hydrogen with oxygen to produce water
- Be sure not to insert the splint right into the tube, just at the mouth, as the gas needs air to burn

Diagram showing the test for hydrogen gas

Examiner Tips and Tricks

It is easy to confuse the tests for hydrogen and oxygen. Try to remember that a lig \mathbf{H} ted splint has a \mathbf{H} for \mathbf{H} ydrogen, while a gl \mathbf{O} wing splint has an \mathbf{O} for \mathbf{O} xygen.

Testing Carbon Dioxide

- The test for carbon dioxide involves bubbling the gas through an aqueous solution of calcium hydroxide (limewater)
- If the gas is carbon dioxide, the limewater turns milky or cloudy

Diagram showing the test for carbon dioxide gas

Examiner Tips and Tricks

Sometimes students think that extinguishing a burning splint indicates carbon dioxide gas. However, while it is a property of carbon dioxide, other gases, such as nitrogen, will also do this, so the test is not definitive and should not be quoted in an exam answer.

Core Practical: Preparing Copper Sulfate

Your notes

Core Practical: Preparing Copper Sulfate

Aim:

To prepare a pure, dry sample of hydrated copper(II) sulfate crystals

Materials:

- 1.0 mol / dm³ dilute sulfuric acid
- Copper(II) oxide
- Spatula & glass rod
- Measuring cylinder & 100 cm³ beaker
- Bunsen burner
- Tripod, gauze & heatproof mat
- Filter funnel & paper, conical flask
- Evaporating basin and dish.

1 HEAT ACID UNTIL WARM, THEN ADD
METAL/BASE/CARBONATE, STIRRING CONSTANTLY
UNTIL IT STOPS DISAPPEARING

2 FILTER MIXTURE TO REMOVE EXCESS BASE, TRANSFER SOLUTION TO EVAPORATING BASIN.

Page 22 of 35

Your notes

The preparation of copper(II) sulfate by the insoluble base method

Practical Tip:

The base is added in excess to use up all of the acid, which would become dangerously concentrated during the evaporation and crystallisation stages

Method:

 $1.\,\mathsf{Add}\,\mathsf{50}\,\mathsf{cm}^3\,\mathsf{dilute}\,\mathsf{acid}\,\mathsf{into}\,\mathsf{a}\,\mathsf{beaker}\,\mathsf{and}\,\mathsf{warm}\,\mathsf{gently}\,\mathsf{using}\,\mathsf{a}\,\mathsf{Bunsen}\,\mathsf{burner}$

- 2. Add the copper(II) oxide slowly to the hot dilute acid and stir until the base is in excess (i.e. until the base stops dissolving and a suspension of the base forms in the acid)
- 3. Filter the mixture into an evaporating basin to remove the excess base
- 4. Gently heat the solution in a water bath or with an electric heater to evaporate the water and to make the solution saturated
- 5. Check the solution is saturated by dipping a cold glass rod into the solution and seeing if crystals form on the end
- 6. Leave the filtrate in a warm place to dry and crystallise
- 7. Decant excess solution and allow the crystals to dry

Results:

Hydrated copper(II) sulfate crystals should be bright blue and regularly shaped

Examiner Tips and Tricks

Make sure you learn the names of all the laboratory apparatus used in the preparation of salts.

Hazards, risks and precautions

Hazard symbols to show substances that are corrosive, harmful to health and hazardous to the environment

- Copper(II) oxide and solid copper(II) sulfate can cause serious eye irritation and is a skin irritant. It is harmful if swallowed or inhaled and is toxic to aquatic life
- For all substances, avoid contact with the skin and use safety goggles
- For copper(II) oxide, care should be taken not to breathe in the powder

Prepare a Salt by Titration

Your notes

Prepare a Salt by Titration

- If salts are prepared from an acid and a soluble reactant then a **titration technique** must be used
- In a titration, the exact volume of acid and soluble reactant are mixed in the correct proportions so that all that remains is the salt and water

Preparing a Salt by Titration

Aim:

To prepare a sample of a dry salt starting from an acid and an alkali

Diagram:

1 ADD ALKALI + INDICATOR TO CONICAL FLASK USING A PIPETTE

2 ADD ACID TO BURETTE, NOTING THE STARTING VOLUME

TRANSFER SOLUTION TO AN EVAPORATING BASIN, HEAT TO PARTIALLY EVAPORATE WATER.

5 REMOVE EVAPORATING BASIN FROM HEAT AND ALLOW FILTRATE TO DRY AND CRYSTALIZE

Diagram showing the apparatus needed to prepare a salt by titration

Method:

- Use a pipette to measure the alkali into a conical flask and add a few drops of indicator (phenolphthalein or methyl orange)
- Add the acid into the burette and note the starting volume
- Add the acid very slowly from the burette to the conical flask until the indicator changes to appropriate colour
- Note and record the final volume of acid in burette and calculate the volume of acid added (starting volume of acid final volume of acid)
- Add this same volume of acid into the same volume of alkali without the indicator

- Heat to partially evaporate, leaving a saturated solution
- Leave to crystallise decant excess solution and allow crystals to dry

Results:

A dry sample of a salt is obtained

Examiner Tips and Tricks

When evaporating the solution some water is left behind to allow for water of crystallisation in some salts and also to prevent the salt from overheating and decomposing.

Solubility Rules

Your notes

Solubility Rules

- lonic compounds are generally soluble in water compared to covalent substances, but there are exceptions
- A knowledge of the solubility of ionic compounds helps us to determine the most appropriate method for the preparation of salts
- The solubility of common ionic compounds is shown below:

Solubility of the common salts

Salts	Soluble	Insoluble
Sodium, potassium and ammonium	All	None
Nitrates	All	None
Chlorides	Most are soluble	Silver and lead(II)
Sulfates	Most are soluble	Barium, calcium and lead(II)
Carbonates	Carbonates of sodium, potassium and ammonium	Most are insoluble
Hydroxides	Hydroxides of sodium potassium and ammonium (calcium hydroxide is sparingly soluble)	Most are insoluble

Note that calcium hydroxide is slightly soluble in water

Examiner Tips and Tricks

Calcium hydroxide solution is more commonly know as limewater and is used to test for carbon dioxide.

Predicting Precipitates

- Some salts can be extracted by mining but others need to be prepared in the laboratory
- How the salt is made in the laboratory depends on whether the salt being formed is soluble or insoluble in water
- To do this the balanced equation is written down to determine the identify of the salt product
- Then check the solubility of the salt using the **solubility** table
- If it is **soluble** in water, then it can be prepared by **titration**
- If it is insoluble then it can be prepared by precipitation
- For example a silver nitrate solution is mixed with a sodium chloride solution:

$$AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$$

• From the table both AgNO₃ and NaCl are water soluble but AgCl, silver chloride, is not and hence forms a **precipitate**

Examiner Tips and Tricks

The precipitation reaction by combining two soluble salts is also known as a double decomposition or double displacement reaction.

Preparing an Insoluble Salt

Your notes

Preparing an Insoluble Salt

Aim:

To prepare a dry sample of an insoluble salt, lead(II) sulfate

Diagram:

2 | FILTER TO REMOVE PRECIPITATE FROM THE MIXTURE

3

WASH THE PRECIPITATE WITH DISTILLED WATER TO REMOVE TRACES OF SOLUTION

Copyright © Save My Exams. All Rights Reserved

The preparation of lead(II) sulfate by precipitation from two soluble salts

Method:

- Measure out 25 cm³ of 0.5 mol dm³ lead(II) nitrate solution and add it to a small beaker
- Measure out 25 cm³ of 0.5 mol dm³ of potassium sulfate add it to the beaker and mix together using a stirring rod
- Filter to remove the precipitate from mixture
- Wash the filtrate with distilled water to remove traces of other solutions
- Leave in an oven to dry

Soluble salt 1 = lead(II) nitrate Soluble salt 2 = potassium sulfate

Equation for the reaction:

$$Pb(NO_3)_2$$
 (aq) + K_2SO_4 (aq) $\rightarrow PbSO_4$ (s) + $2KNO_3$ (aq)

lead(II) nitrate + potassium sulfate \rightarrow lead(II) sulfate + potassium nitrate

Examiner Tips and Tricks

Care should be taken with handling lead salts as they are toxic.