Math 106-350/550 - Analytic Geometry & Calculus I Summary of Differentiation Rules for the Gateway Exam

1st Semester, '06-'07

General Rules k is a constant, u, v and f, g are functions of x.

(1) If k is a constant, then $\frac{d}{dx}k = 0$.

(2) If n is a real number, then $\frac{dx^n}{dx} = nx^{n-1}$.

(3) $\frac{d(ku)}{dx} = k\frac{du}{dx}.$

 $(4) \frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}.$

(5) (Product rule) $\frac{d(u \cdot v)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$.

(6) (Quotient rule) $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$.

(7) (Chain rule) $\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$.

Specific Functions

• For a constant, $\frac{da^x}{dx} = \ln a \cdot a^x$. In particular $\frac{de^x}{dx} = e^x$.

• $\frac{d}{dx}\sin x = \cos x$, $\frac{d}{dx}\cos x = -\sin x$, $\frac{d}{dx}\tan x = \sec^2 x$.

 $\bullet \ \frac{d}{dx} \ln x = \frac{1}{x}.$

• $\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1-x^2}}, \qquad \frac{d}{dx} \arctan x = \frac{1}{1+x^2}.$