



Machine Learning: Yoshinari Fujinuma University of Colorado Boulder

Slides adapted from Chenhao Tan, Jordan Boyd-Graber, Chris Ketelsen

#### Logistics

- HW1 grade will be released by Monday
- HW2 is due today
  - Please don't add new cells for the submitted version
- Next Monday will be the second hands on session using notebooks
- Next Wednesday will be in-class quizzes
- Final project team formulation due on March 1st

#### **Logistics: In-class Quizzes**

- Open notebook
- It will be available on Canvas
- Multiple choice questions + short answer questions
- Releasing sample questions on Monday
- This Zoom seesion will be open for Q&A

#### **Logistics: In-class Quizzes**

### Topics include

- Decision Trees
- Bias-Variance trade-off
- k-NN
- Perceptron
- Feature Engineering
- Logistic Regression
- Naive Bayes
- Gradient Descent and Stochastic Gradient Descent

### **Logistics: Final Project**

- Team formulation due date is March 1st
- 1 to 4 people per team
- Suggesting to form a team with 2+ people

### Logistics: Final Project Expectations (Subject to Change)

Depends on what your project is, but typically

- Reading and preprocessing data
- Implementing baseline (method to compare against)
- Implementing what is proposed in the proposal
- Quantitative comparison between the methods
- Analysis
  - Ablation study of features
  - Error Analysis

We will have more detailed announcement when the proposal due date apporaches

### Learning objectives

- Use binary classifiers for multi-class classifications
- A deep dive into regularization (bonus)

#### Classifiers

For classifiers that are basically binary

- Perceptron
- Logistic Regression

Is there anything that we can do?

### Reduction

# Two strategies

- One against all
- All pairs



- Colors represent separate 4 classes
- Break k-class problem into k binary problems and solve separately
- Evaluate with all *h*'s, hope exactly one is + (otherwise, take highest confidence)

|                       |               | •                     |   |                       |   |                       |   |                       |   |  |
|-----------------------|---------------|-----------------------|---|-----------------------|---|-----------------------|---|-----------------------|---|--|
| <i>x</i> <sub>1</sub> |               | <i>x</i> <sub>1</sub> | _ | <i>x</i> <sub>1</sub> | + | <i>x</i> <sub>1</sub> | _ | <i>x</i> <sub>1</sub> | _ |  |
| <i>x</i> <sub>2</sub> |               | <i>x</i> <sub>2</sub> | _ | <i>x</i> <sub>2</sub> | _ | <i>x</i> <sub>2</sub> | + | <i>x</i> <sub>2</sub> | _ |  |
| <i>X</i> 3            | $\Rightarrow$ | <i>X</i> 3            | _ | <i>X</i> 3            | _ | <i>X</i> 3            | _ | <i>X</i> 3            | + |  |
| <i>X</i> <sub>4</sub> |               | <i>X</i> <sub>4</sub> | _ | <i>X</i> <sub>4</sub> | + | <i>X</i> <sub>4</sub> | _ | <i>X</i> <sub>4</sub> | _ |  |
| <i>X</i> 5            |               | <i>X</i> 5            | + | <i>X</i> 5            | _ | <i>X</i> 5            | _ | <i>X</i> 5            | _ |  |
|                       |               | ↓                     |   | ₩                     |   | ↓                     |   | ↓                     |   |  |
|                       |               | $h_1$                 |   | $h_2$                 |   | h <sub>3</sub>        |   | h <sub>4</sub>        |   |  |

$$h(x) = \arg\max_{c \in C} h_c(\boldsymbol{x})$$

Build C binary classifiers of the form Class c vs Class  $\neg c$ 



Build C binary classifiers of the form Class c vs Class  $\neg c$  Black vs. not black



Build C binary classifiers of the form Class c vs Class  $\neg c$  Red vs. not red



Build C binary classifiers of the form Class c vs Class  $\neg c$  Yellow vs. not yellow



Build C binary classifiers of the form Class c vs Class  $\neg c$  Blue vs. not blue



Build C binary classifiers of the form Class c vs Class  $\neg c$  Predict class with highest confidence

- Predict green square
- Predict purple star



Can you see any pitfalls of the one-against-all method?

Can you see any pitfalls of the one-against-all method?

A big one is that if you start with a balanced training data, you immediately create imbalanced data.

### All pairs

|                       |               | vs.                   |   | ■ vs. ■               |   |
|-----------------------|---------------|-----------------------|---|-----------------------|---|-----------------------|---|-----------------------|---|-----------------------|---|-----------------------|---|
| <i>x</i> <sub>1</sub> |               | <i>x</i> <sub>1</sub> | _ |                       |   |                       |   | <i>x</i> <sub>1</sub> | _ |                       |   | <i>x</i> <sub>1</sub> | _ |
| <i>x</i> <sub>2</sub> |               |                       |   | <i>x</i> <sub>2</sub> | _ | <i>x</i> <sub>2</sub> | + |                       |   |                       |   | <i>x</i> <sub>2</sub> | + |
| <i>X</i> 3            | $\Rightarrow$ |                       |   |                       |   | <i>X</i> 3            | _ | <i>X</i> 3            | + | <i>x</i> <sub>3</sub> | _ |                       |   |
| <i>X</i> 4            |               | X4                    | _ |                       |   |                       |   | <i>X</i> 4            | _ |                       |   | X4                    | _ |
| <i>X</i> 5            |               | <i>x</i> <sub>5</sub> | + | <i>X</i> 5            | + |                       |   |                       |   | <i>x</i> <sub>5</sub> | + |                       |   |
|                       |               | ↓                     |   | ↓                     |   | ↓                     |   | ₩                     |   | #                     |   |                       | ļ |
|                       |               | $h_1$                 |   | h <sub>2</sub>        |   | h <sub>3</sub>        |   | h <sub>4</sub>        |   | $h_5$                 |   | <i>h</i> <sub>6</sub> |   |

- Break k-class problem into k(k-1)/2 binary problems and solve separately
- Combine predictions: evaluate all h's, take the one with highest sum confidence

### All pairs

|                       |               | ■ vs. ■               |   | ■ vs. ■               |   | ■ vs. ■               |   | ■ vs. ■               |   | ■ vs. ■               |   | ■ vs. ■               |   |
|-----------------------|---------------|-----------------------|---|-----------------------|---|-----------------------|---|-----------------------|---|-----------------------|---|-----------------------|---|
| <i>x</i> <sub>1</sub> |               | <i>x</i> <sub>1</sub> | _ |                       |   |                       |   | <i>x</i> <sub>1</sub> | _ |                       |   | <i>x</i> <sub>1</sub> | _ |
| <i>x</i> <sub>2</sub> |               |                       |   | <i>x</i> <sub>2</sub> | _ | <i>x</i> <sub>2</sub> | + |                       |   |                       |   | <i>x</i> <sub>2</sub> | + |
| <i>X</i> 3            | $\Rightarrow$ |                       |   |                       |   | <i>X</i> 3            | _ | <i>x</i> <sub>3</sub> | + | <i>x</i> <sub>3</sub> | _ |                       |   |
| <i>X</i> 4            |               | X4                    | _ |                       |   |                       |   | X4                    | _ |                       |   | X4                    | _ |
| <i>X</i> 5            |               | <i>x</i> <sub>5</sub> | + | <i>X</i> 5            | + |                       |   |                       |   | <i>x</i> <sub>5</sub> | + |                       |   |
|                       |               | ↓                     |   | ↓                     |   | ↓                     |   | ₩                     |   | . ↓                   |   | 1                     | ļ |
|                       |               | $h_1$                 |   | h <sub>2</sub>        |   | h <sub>3</sub>        |   | h <sub>4</sub>        |   | $h_5$                 |   | <i>h</i> <sub>6</sub> |   |

$$h(x) = \arg\max_{c \in C} \sum_{c' \neq c} h_{c'c}(\boldsymbol{x})$$

### **Time Comparison**

- One-against-all: Train/Test O(k) classifiers, each classifier trained on **all** examples
- All-pairs: Train/Test  $O(k^2)$  classifiers, each classifier trained on **subset** of examples
- One-against-all better for testing time
- All-pairs better for training
- All-pairs usually better for performance

Regularization (bonus)

### **Outline**

Regularization (bonus)

### Ridge vs. Lasso

Ridge Regression or  $\ell_2$ -Regularization:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} ||\mathbf{y} - \mathbf{X}\mathbf{w}||^2 + \lambda \sum_{k=1}^{D} w_k^2$$

Lasso Regression or  $\ell_1$ -Regularization:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} ||\mathbf{y} - \mathbf{X}\mathbf{w}||^2 + \lambda \sum_{k=1}^{D} |w_k|$$

Different penalty terms lead to different character of models

#### L1 vs. L2

### Coefficients shrink to zero faster in L1





Image from https://www.kaggle.com/amrmahmoud123/advanced-regularization

#### The constrained optimization explanation

Consider the minimizer of

$$\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2 + \lambda \sum_{k=1}^{D} w_k^2 \quad \text{or} \quad \min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2 + \lambda \sum_{k=1}^{D} |w_k|$$

For each objective function, can show that for a given  $\lambda$  there is an equivalent s such that the usual solution also solves

Ridge: 
$$\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2$$
 s.t.  $\sum_{k=1}^{D} w_k^2 \le s$ 

Lasso: 
$$\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2$$
 s.t.  $\sum_{k=1}^{D} |w_k| \le s$ 

#### The constrained optimization explanation

Think of the constraint as a budget on the size of the parameters For a given budget s (corresponding to a given  $\lambda$ ), find the  $\mathbf{w}$  that minimizes the loss while staying inside the constrained region Lasso Region for Two Features: Diamond

$$|w_1| + |w_2| \le s$$

Ridge Region for Two Features: Circle

$$w_1^2 + w^2 \le s$$

## The constrained optimization explanation

Minimum is more likely to be at point of diamond with Lasso, causing some feature weights to be set to zero.

