

BIKE SHARING SYSTEM

63	↓ 11	Dhruv Singal	0.37011	6	Sat, 11 Apr 2015 23:34:25 (-9.1d)		
-		a.karwan	0.37040	-	Tue, 21 Jul 2015 20:24:47 Post-Deadline		
Post-Deadline Entry If you would have submitted this entry during the competition, you would have been around here on the leaderboard.							
64	↓11	prashkr	0.37041	6	Thu, 09 Apr 2015 20:53:07 (-23.1h)		

final result 0.3704 that is 64 place out of 3252

adam.karwan@gmail.com

Warsaw, 22 July 2015

Table of Contents

Tabl	e of Contents	2
Task	description	3
Data	Set Description	3
Data	Fields with Description	4
Data	Analysis	5
Time	2	5
	Hour	5
	Day	5
	Month, Year	5
	Hour & Day	6
	Weekday & Hour	6
	Weather	7
	Temperature	7
	Humidity	7
	Correlations	8
New	Attributes	9
	dp_reg	9
	dp_cas	9
	temp_reg	9
	temp_cas	9
	day_type	9
	year_part	9
Fina	Solution	10
	R Model	10
	Python Model	10
Link	5	11

Task description

[https://www.kaggle.com/c/bike-sharing-demand]

[http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset]

You are provided hourly rental data spanning two years. For this competition, the **training set** is comprised of the **first 19 days of each month**, while the **test set** is the **20th to the end of the month**. You must predict the total count of bikes rented during each hour covered by the test set, using only information available prior to the rental period.

The data generated by these systems makes them attractive for researchers because the *duration of travel*, *departure location*, *arrival location*, and *time elapsed* is explicitly recorded. Bike sharing systems therefore function as a **sensor network**, which can be used for studying **mobility in a city**. In this competition, participants are asked to combine historical usage patterns with weather data in order to forecast bike rental demand in the Capital Bikeshare program in Washington, D.C.

Data Set Description

Name	Capacity
Train Set Observation	10886
Test Set Observation	6493
Number of Attributes	12

No empty data

Data Fields with Description

No Attribute Description

		•		
1	datetime	hourly date +timestamp		
2	coccn	4 anaton		
2	season	1 = spring		
		2 = summer		
		3 = fall		
		4 = winter		
3	holiday	whether the day is considered a holiday (0; 1)		
_				
4	workingday	whether the day is neither a weekend nor holiday (0; 1)		
5	weather	1: Clear, Few clouds, Partly cloudy, Partly cloudy		
		2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist		
		3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain		
		+ Scattered clouds		
		4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog		
6	temp	temperature in Celsius		
-	·			
7	atemp	"feels like" temperature in Celsius		
8	humidity	relative humidity		
9	windspeed	wind speed		
•	mmuopoou.	mma opoda		
10	casual	number of non-registered user rentals initiated		
11	registered	number of registered user rentals initiated		
46				
12	count	number of total rentals		

Count = Casual + Registered

Data Analysis

Time

Hour

Day

Month, Year

Hour & Day

Weekday & Hour

Weather

Temperature

On workdays, most bikes are rented on warm mornings and evenings

Humidity

On workingdays, any deducible effect of humidity, by any chance...? (taking the bike to work no matter what, but dry if back home...?)

Correlations

	train.registered	train.casual	train.count	train.temp	train.humidity	train.atemp	train.windspeed
train.registered	1.00	0.50	0.97	0.32	-0.27	0.31	0.09
train.casual	0.50	1.00	0.69	0.47	-0.35	0.46	0.09
train.count	0.97	0.69	1.00	0.39	-0.32	0.39	0.10
train.temp	0.32	0.47	0.39	1.00	-0.06	0.98	-0.02
train.humidity	-0.27	-0.35	-0.32	-0.06	1.00	-0.04	-0.32
train.atemp	0.31	0.46	0.39	0.98	-0.04	1.00	-0.06
train.windspeed	0.09	0.09	0.10	-0.02	-0.32	-0.06	1.00

New Attributes

dp_reg

dp_cas

temp_reg

temp_cas

day_type

- Holiday [holiday=0 and workingday=0]
- Weekend [holiday=1]
- Working Day [holiday=0 and workingday=1]

year_part

- 1 to 8 (from first quarter of 2011 till fourth of 2012)

Final Solution

Final solution Is average of results from two models.

First one was computed in **R** and second in **Python**.

R Model

R model bases on two separately computed Random Forests for *casual* and *registered* users. And final result is a sum of predicted values daily. Due to differences in *count* of users *hourly* we use logarithm to normalize values. Moreover each model was trained on 250 trees. In first model we estimate number of registered users therefore *dp_reg* and *temp_reg* are used, analogously *dp_cas* and *temp_cas* for second one. Rest attributes used: *hour, day, day_type, holiday, season, year, year_part, weekend, workingday, atemp, humidity, weather, windspeed.*

Python Model

Python model bases on a combination of RF (Random Forrest) and GBDT (Gradient Boosting Decision Trees). Twelve attributes are used: *hour, day, holiday, season, weekday, workingday, year, atemp, temp, humidity, weather, windspeed.* Year is normalized by substraction 2011. GBDT is computed on 100 and RF on 1000 trees. Before computing final result we compute average regression of two instances for each approach RF and GBDT. For estimated variables logarithm is used to normalize results.

Links

- 1. http://www.analyticsvidhya.com/blog/2015/06/solution-kaggle-competition-bike-sharing-demand
- 2. https://github.com/adityashrm21/Kaggle/blob/master/Bike Sharing Demand.R
- 3. http://brandonharris.io/kaggle-bike-sharing
- 4. https://github.com/namebrandon/kaggle-bike-sharing
- 5. https://cran.r-project.org/web/packages/gbm/gbm.pdf
- 6. https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
- 7. https://rstudio-pubs-static.s3.amazonaws.com/25177_bd95e70bb6bf4b26a2cc2d4ad1cb3c33.html
- 8. http://www.analyticsvidhya.com/blog/2015/07/guide-data-visualization-r
- 9. https://www.kaggle.com/c/bike-sharing-demand/forums/t/12809/python-scikit-learn-averaging-gbrt-and-random-forest-0-37108
- 10. https://github.com/dirtysalt/tomb/blob/master/kaggle/bike-sharing-demand/pub0.py
- 11. http://scikit-learn.org/stable/index.html