INTRODUÇÃO À CIÊNCIA DE DADOS

KDD e Análise de Dados

PROCESSO DS

 Compreensão do todo! Mas vamos ver primeiro a análise exploratória para depois estudar processamento dos dados.

Fonte: Shutt, R. and O'Neil, C.; Doing Data Science, 2014

- KDD ou "Processo de Descoberta de Conhecimento", segundo Fayyad, Piatetsky-Shapiro e Smyth, é um processo de várias etapas, não trivial, interativo e iterativo, para identificação de padrões compreensíveis, válidos, novos e potencialmente úteis a partir de conjuntos de dados.
- A característica "não trivial" diz respeito à complexidade existente na execução e manutenção dos processos de KDD; "interativo" representa a relevância de possuir um elemento que controle o processo; "iterativo" indica a possibilidade de repetições em qualquer uma das etapas do processo; e "conhecimento útil" aponta para a indicação de que o objetivo foi alcançado.

 Geralmente é dividido em 5 fases: Seleção, Pré-Processamento, Transformação, Data Mining e Interpretação.

5 Fases:

- Seleção: consiste em selecionar um conjunto ou subconjunto de dados que farão parte da análise. As fontes de dados podem ser variadas (planilhas, bancos de dados, data warehouses) e possuir dados com formatos diferentes (estruturados, semiestruturados e não-estruturados).
- Pré-Processamento: consiste em fazer a verificação da qualidade dos dados. Exceções e ruídos são removidos. Limpeza, correção, remoção de dados inconsistentes, identificação de dados ausentes, incompletos ou não íntegros são parte do processo.

- 5 Fases:
 - Transformação: consiste em aplicar técnicas de transformação como: normalização, agregação, criação de novos atributos, redução e sintetização dos dados. Busca-se identificar atributos úteis nos dados para alcançar os objetivos pretendidos.
 - Mineração de Dados: consiste na aplicação de algoritmos e técnicas para identificar padrões nos dados e verificar hipóteses. Geralmente as descobertas podem ser descritivas ou preditivas, com os seguintes objetivos: regressão (uma função que faça o mapeamento dos dados), clusterização (identificar um conjunto finito de categorias ou clusters), sumarização (buscar descrição compacta para subconjunto dos dados), dependências ou associações (identificar dependências significativas entre as variáveis) e divergências (identificar alterações significativas a partir dos valores medidos).

• 5 Fases:

 Interpretação: consiste em avaliar o desempenho do modelo, ocorrendo a consolidação do conhecimento descoberto. A validação pode ser feita baseada em análise de profissionais ou mesmo em comparação com dados coletados anteriormente.

AED (Análise Exploratória de Dados)

- A Análise Exploratória de Dados é um termo bastante usado por profissionais de DS. A AED tem como finalidade principal examinar os dados previamente à aplicação de qualquer técnica estatística. Desta forma o analista consegue um entendimento básico de seus dados e das relações existentes entre as variáveis analisadas.
- Na AED é muito comum a análise descritiva, que de forma detalhada permite ao cientista de dados familiarizar-se com os dados, organizá-los e sintetizá-los de forma a obter as informações necessárias do conjunto de dados para responder as questões que o problema de DS está tentando resolver.
- A AED pode ser comparada com as três primeiras fases do KDD, e pode ser entendida como a primeira e importantíssima observação sobre os dados!

AED (Análise Exploratória de Dados)

 Para realizar a análise exploratória é determinante conhecer tecnicamente o que seus dados representam e como eles são classificados. Veja a tabela apresentada:

Tabela 2.1 Conjunto de dados hospital com seus atributos									
ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38,0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	М	92	Espalhadas	38,0	2	RS	Saudável
1920	José	18	М	43	Inexistentes	38,5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37,6	1	PE	Saudável
2301	Ana	22	F	72	Inexistentes	38,0	3	RJ	Doente

QUANTIDADE DE VARIÁVEIS

- Dados unidimensionais (univariados) são dados nos quais você tem apenas uma coleção de números, por exemplo a temperatura de pessoas de uma ala (como na tabela do slide anterior), a quantidade de gols que seu time fez por jogo no campeonato ou a média de minutos diários que você usa olhando seu instagram.
- Um primeiro passo inevitável é computar alguma estatística, saber o dia que gastou mais minutos no instagram, que gastou menos, a média de minutos, a soma deles.

QUANTIDADE DE VARIÁVEIS

- Agora imagine que seus dados possam ter mais de uma dimensão (mutidimensionais ou multivariados), por exemplo o sexo, a idade, o peso (como na tabela já vista), os gols feitos e os gols sofridos pelo seu time, ou então a quantidade de minutos no instagram e também a quantidade de posts realizados.
- Em muitos casos é importante conhecer cada dimensão individualmente, mas também é necessário dispersar os dados e entender a relação entre eles, se elas existirem.

TIPO

O tipo define se o atributo representa quantidades, sendo então chamado de quantitativo ou numérico, ou qualidades, quando é chamado de qualitativo, simbólico ou categórico, pois os valores podem ser associados às categorias.

Dados qualitativos: { pequeno, médio, grande}. Eles podem ter seus valores ordenados, mas nunca podem receber operações aritméticas.

Dados quantitativos são valores numéricos, que podem ser ordenados e usados em operações aritméticas.

Obs: Às vezes vai escutar que um dado é escalar (dado único), que representa um dado que não é um array (vetor ou matriz) ou objeto (dict)!

QUANTITATIVOS

As variáveis quantitativas podem ser contínuas ou discretas:

- Variáveis discretas: normalmente são representadas por valores que contêm um número finito ou infinito contável de valores. Casos de atributos contáveis são valores (0/1), idade, número de peças com defeito.
- Variáveis contínuas: normalmente são representadas por valores que podem assumir um número infinito de valores. Geralmente resultados de medidas (por instrumento). Atributos que representam peso, tamanho, distância.

QUANTITATIVOS

As variáveis quantitativas também podem ser categorizadas como intervalar (valores dentro de um intervalo, sem zero absoluto) e racional (com zero absoluto).

Exemplos são:

- Intervalar: temperatura, datas de um calendário.
- Racional: quantidade de vezes que uma pessoa foi ao hospital (o zero é parâmetro)

QUALITATIVOS

As variáveis qualitativas podem ser nominais ou ordinais:

- Variáveis nominais: os valores são nomes diferentes, carregando a menor quantidade de informação possível. Não existe relação de ordem entre seus valores. Exemplos como CPF, RG, cor dos olhos, sexo.
- Variáveis ordinais: os valores refletem uma ordem das categorias representadas, desta forma operadores de comparação (maior, menor) podem ser utilizados. Exemplos: escolaridade, patente militar, classificação no campeonato.

EXPLORAÇÃO

- Uma grande quantidade de informações úteis pode ser extraída a partir do conhecimento sobre tipos de dados e, principalmente, sobre a exploração de um conjunto de dados.
- A estatística descritiva resume de forma quantitativa as principais características de um conjunto de dados.

DICA!

- Geralmente, partir de um tipo de análise quando se tem o conhecimento sobre o tipo de dado é algo muito interessante para se identificar características dos dados.
- Na tabela a seguir apresentamos uma sugestão de possíveis representações para cada tipo de dados.

Escala	Representação	Medida de Tendência Central		
Nominal	Diagramas de barras, linhas e pizza	Moda		
Ordinal	Boxplot	Mediana		
Intervalar	Histograma e polígonos de frequência	Média		
Racional		Média Geométrica		

DICA 2!

 Vamos demonstrar rapidamente algumas ideias sobre análise exploratória.

Demonstração

FINALIZANDO

- KDD (que ainda seguiremos compreendendo nas próximas aulas) e AED são processos fundamentais para que o cientista de dados seja capaz de compreender o conjunto de dados que estão disponíveis e, principalmente, ser capaz de determinar os tipos de análises que são possíveis.
- É por meio da Análise Exploratória que se compreende o caminho para responder às questões de um projeto de DS.

REFERÊNCIAS

Grande parte do conteúdo dessa aula é baseado no livro:

CARVALHO, André Carlos Ponce de Leon Ferreira et al. *Inteligência Artificial* - Uma Abordagem de Aprendizado de Máquina. Disponível em: Minha Biblioteca, (2nd edição). Grupo GEN, 2021.

INTRODUÇÃO À CIÊNCIA DE DADOS

KDD e Análise de Dados