Jiasen Yang

305 N. University St. West Lafayette, IN 47907

RESEARCH INTERESTS Machine learning, statistical network analysis, point processes, kernel and nonparametric methods, approximate Bayesian inference, randomized sketching methods

Phone: (765) 637-8398 Email: jiaseny@purdue.edu

Website: http://www.stat.purdue.edu/~yang768

EDUCATION

Purdue University

Ph.D., Statistics (GPA: 3.94/4.0)

2013 - 2019

Advisor: Jennifer Neville (Departments of Computer Science and Statistics)

M.S., Statistics and Computer Science (GPA: 4.0/4.0)

2013 - 2015

University of Science and Technology of China

B.S., Statistics (Special Class for the Gifted Young)

2009 - 2013

PROFESSIONAL EXPERIENCE

Research Assistant Purdue University

Aug. 2015 - Present

- Developed kernel-based nonparametric goodness-of-fit tests for discrete distributions and point processes with intractable normalization constants using Stein's method.
- Proposed latent space models for dynamic network data based on Poisson and Hawkes processes to capture homophily and reciprocity with network embeddings.
- Developed estimation methods with statistical guarantees for learning relational models from partial crawls of large-scale networks.
- Proposed iterative, sketching-based algorithms for high-dimensional ridge regression and linear discriminant analysis.

Quantitative Analyst Intern

Google, Mountain View

May – Aug. 2016

• Performed analysis of generalized linear mixed-effects models for display advertising.

Data Science Research Intern

The Nielsen Company, Chicago

May – Aug. 2015

• Developed statistical models and visualization tools for sales time series data.

Instructor & Teaching Assistant

Purdue University

Aug. 2013 - May 2015

• Delivered lectures; prepared homeworks and exams for undergraduate statistics courses.

REFEREED PUBLICATIONS

Changping Meng, **Jiasen Yang**, Bruno Ribeiro, and Jennifer Neville. HATS: A hierarchical sequence-attention framework for inductive set-of-sets embeddings. In *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)*, 2019. (Oral presentation)

Agniva Chowdhury, **Jiasen Yang**, and Petros Drineas. Randomized iterative algorithms for Fisher discriminant analysis. In *Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI)*, 2019. (Oral presentation)

Jiasen Yang, Vinayak Rao, and Jennifer Neville. A Stein–Papangelou goodness-of-fit test for point processes. In *Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS*), 2019. (Oral presentation)

Agniva Chowdhury*, **Jiasen Yang***, and Petros Drineas. Structural conditions for projection-cost preservation via randomized matrix multiplication. *Linear Algebra and its Applications*, 573, 144–165, 2019. (* Equal contribution)

Jiasen Yang, Qiang Liu, Vinayak Rao, and Jennifer Neville. Goodness-of-fit testing for discrete distributions via Stein discrepancy. In *Proceedings of the 35th International Conference on Machine Learning (ICML)*, 2018.

Agniva Chowdhury, **Jiasen Yang**, and Petros Drineas. An iterative, sketching-based framework for ridge regression. In *Proceedings of the 35th International Conference on Machine Learning (ICML)*, 2018.

Jiasen Yang, Vinayak Rao, and Jennifer Neville. Decoupling homophily and reciprocity with latent space network models. In *Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI)*, 2017. (Plenary presentation)

Jiasen Yang, Bruno Ribeiro, and Jennifer Neville. Stochastic gradient descent for relational logistic regression via partial network crawls. In *Proceedings of the 7th International Workshop on Statistical Relational AI (StarAI*), 2017. (Spotlight presentation)

Jiasen Yang, Bruno Ribeiro, and Jennifer Neville. Should we be confident in peer effects estimated from partial crawls of social networks? In *Proceedings of the 11th International AAAI Conference on Web and Social Media (ICWSM)*, 2017.

Honors	AND
AWARDS	

Fellowships and awards

 Bilsland Dissertation Fellowship 	Purdue University	2018
 Outstanding Bachelor's Thesis (Top 5%) 	Univ. Sci. & Tech. China	2013

Travel awards

- Intermetional Confessor on Machine Learning	Charles las Consider	2010
International Conference on Machine Learning	Stockholm, Sweden	2018
• Conference on Uncertainty in Artificial Intelligence	Sydney, Australia	2017
• International AAAI Conference on Web and Social Media	Montreal, Canada	2017
NSF-CBMS Conference on Topological Data Analysis	Austin, TX	2016
Amazon Graduate Research Symposium	Seattle, WA	2015

PRESENTATIONS

Oral presentations

- 35th International Conference on Machine Learning (ICML)

 Goodness-of-fit testing for discrete distributions via Stein discrepancy.

 Jul. 2018
- Purdue University Numerical Linear Algebra Group (PUNLAG) Seminar Apr. 2018 Goodness-of-fit testing for un-normalized probability distributions.
- 33rd Conference on Uncertainty in Artificial Intelligence (UAI) Aug. 2017

 Decoupling homophily and reciprocity with latent space network models.
- 7th International Workshop on Statistical Relational AI (StarAI) Aug. 2017 Stochastic gradient descent for relational logistic regression via partial network crawls.
- Purdue Statistics Graduate Student Seminar Mar. 2016 Exchangeable random graphs, graph limits, and graphons.

Poster presentations

- 9th International Purdue Symposium on Statistics

 Goodness-of-fit testing for discrete distributions via Stein discrepancy.

 Jun. 2018
- 11th International AAAI Conference on Web and Social Media (ICWSM) May 2017 Should we be confident in peer effects estimated from partial crawls of social networks?
- 3rd Amazon Graduate Research Symposium Dec. 2015

 Learning relational dependency networks from random walk crawls of large-scale networks.

TEACHING EXPERIENCE

Instructor

• Introduction to Probability Models (STAT 225) Fall 2014, Spring 2015

Teaching assistant

Statistics and Society (STAT 113)
 Elementary Statistical Methods (STAT 301)
 Fall 2013, Spring 2014

PROFESSIONAL SERVICE	Coordinator of Purdue Machine Learning and Applications Seminar	Fall 2015
	Conference reviewing/program committees	
	 International Conference on Machine Learning (ICML) 	2017–2019
	 Neural Information Processing Systems (NIPS) 	2017–2019
	 Artificial Intelligence and Statistics (AISTATS) 	2019
	Uncertainty in Artificial Intelligence (UAI)	2019
	 NIPS Workshop on Relational Representation Learning 	2018
	Journal reviewing	
	• IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)	2017-2019
	• Journal of Artificial Intelligence Research (JAIR)	2019
	Machine Learning Journal (MLJ)	2018
	• SIAM Journal on Scientific Computing (SISC)	2018
	 Applied and Computational Harmonic Analysis (ACHA) 	2018

TECHNICAL SKILLS Programming languages

 $\bullet\,$ Python, R, Matlab, C/C++, SQL, Mathematica, SAS, HTML, ŁTŁX