Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Anresentação

Introdução aos Sistemas Matemáticos

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Universidade de Aveiro 2019/2020

http://moodle.ua.pt

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

- 1 Apresentação
- 2 Introdução aos Sistemas Matemáticos

Programa da disciplina

Matemática Discreta

e Introdução aos Sistemas Matemáticos

Apresentação

Introdução aos Sistemas Matemáticos

- 1. Linguagem Matemática e Lógica Informal
 - 1.1 Lógica proposicional
 - 1.2 Conjuntos
 - 1.3 Relações
 - 1.4 Lógica de primeira ordem
- 2. Contextos e Estratégias de Demonstração
 - 2.1 Estratégias de demonstração da implicação
 - 2.2 Princípios de indução e de indução completa
 - 2.3 Princípio da gaiola dos pombos
- 3. Princípios de Enumeração Combinatória.
 - 3.1 Princípio da bijeção.
 - 3.2 Princípios da adição e da multiplicação.
 - 3.3 Princípio de inclusão-exclusão.
- 4. Permutações.

Programa da disciplina (cont.)

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

- 5. Agrupamentos e Identidades Combinatórias.
 - 5.1 Arranjos com repetição e arranjos e combinações simples.
 - 5.2 Combinações e permutações (com e sem repetição).
 - 5.3 Identidades combinatórias.
- 6. Recorrência e Funções geradoras.
 - 6.1 Relações de recorrência.
 - **6.2** Funções geradoras
- 7. Introdução aos números combinatórios.
 - 7.1 Factoriais e número binomiais.
 - 7.2 Números de Fibonacci e número de ouro.
 - 7.3 Outros números combinatórios.
- 8. Elementos de Teoria dos Grafos.
 - 8.1 Conceitos e Resultados Fundamentais
 - 8.2 Conexidade, caminhos e árvores.

Bibliografia principal

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Introdução aos Sistemas Matemáticos

- Matemática Discreta: combinatória, teoria dos grafos e algoritmos; D. M. Cardoso, J. Szymanski, M. Rostami; Escolar Editora, 2009.
- Noções de Lógica Matemática; D.M. Cardoso, P. Carvalho; Universidade de Aveiro; 2007 (disponível na página da disciplina).

Bibliografia complementar

Matemática <u>Discreta</u>

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

- Tópicos de Matemática Discreta; J.S. Pinto; Universidade de Aveiro; 1999 (disponível na página da disciplina).
- Discrete Mathematics; N.L. Biggs; Oxford University Press, 2nd Ed; 2002.
- Concrete Mathematics; R.L. Graham, D.E. Knuth, O. Patashnik; Addison-Wesley; 2nd Ed; 2005.
- A Walk Through Combinatorics an introduction to enumeration and graph theory; M. Bóna; World Scientific; 2003.
- Matemática Discreta: Tópicos de Combinatória; J. M.
 S. Simões Pereira; Editora Luz da Vida, 2006.
- Matemática Discreta: Grafos, Redes e Aplicações; J.
 M. S. Simões Pereira; Editora Luz da Vida, 2009.

Avaliação Discreta e Marcação de Faltas

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Introdução aos Sistemas Matemáticos

- O modelo de avaliação adotado é o modelo discreto, com exame final como alternativa. A avaliação discreta é constituída por dois testes, a realizar em
 - 1 17 de Abril de 2020 (sexta-feira);
 - 2 No dia e hora do exame final.

Por defeito todos os alunos estão inscritos em avaliação discreta.

- A matéria a abordar no primeiro teste será a lecionada até ao dia 03 de abril de 2020 e a abordar no segundo teste será a lecionada depois de 03 de abril.
- Há registo de faltas e os alunos que não sejam estudantes trabalhadores e que faltem injustificadamente a mais de 30% das aulas teórico-práticas reprovam automaticamente à UC, ficando impedidos de se apresentar a qualquer das épocas de exame.

Alfabeto grego

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

α	Α	alfa	ν	Ν	niu
β	В	beta	ξ	Ξ	xi
γ	Γ	gama	0	0	omicrom
δ	Δ	delta	π	П	pi
$\epsilon(arepsilon)$	Ε	epsilon	ho(arrho)	P	ró
ζ	Z	zeta	$\sigma(\varsigma)$	Σ	sigma
η	Η	eta	au	T	tau
$\theta(\vartheta)$	Θ	teta	v	Υ	upsilon
ι	1	iota	$\phi(arphi)$	Φ	fi
κ	K	kapa	χ	X	chi
λ	Λ	lambda	ψ	Ψ	psi
μ	Μ	miu	ω	Ω	ómega

Sistemas matemáticos

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Introdução aos Sistemas Matemáticos

- Proposição: afirmação que ou é verdadeira ou é falsa.
- Axioma: proposição evidente ou que, no contexto matemático em que se está a trabalhar, aceitamos como verdadeira.
- **Teorema**: proposição verdadeira que decorre dos axiomas por aplicação de certas regras, designadas por regras de inferência, ou dos desenvolvimentos determinados pela lógica.
- Lema: teorema "considerado" mais simples, que usualmente é utilizado para facilitar a demonstração de teoremas mais difíceis.
- Corolário: consequência de um ou vários teoremas.
- Teoria ou sistema matemático: conjunto de axiomas, regras de inferência e teoremas (onde se incluem lemas e corolários).

Exemplo de sistema matemático

Matemática <u>Discreta</u>

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Introdução aos Sistemas Matemáticos As proposições deste sistema matemático são palavras do alfabeto $\{x, y, z\}$

- Axioma: xyz.
- Regras de inferência:
 - 1 Proposições obtidas a partir de uma proposição verdadeira, substituindo *x* por *xyz*, são proposições verdadeiras.
 - Proposições obtidas a partir de uma proposição verdadeira, substituindo xyz por yxz são proposições verdadeiras.

Exercício

Mostrar que *yyxzz* é um teorema do sistema matemático considerado no exemplo anterior.

Propriedades dos sistemas de axiomas

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Introdução aos Sistemas Matemáticos Um sistema de axiomas deve ser consistente e independente:

Consistente: i.e. não permite a dedução de um teorema e a sua negação.

Independente: não inclui axiomas que são consequência de outros axiomas.

Saturado: a adição de um qualquer axioma que não é consequência dos axiomas do sistema, torna o sistema não consistente.

Completo: se para toda a proposição p, correctamente formulada no contexto desta teoria, "p" ou "não p" é um teorema. A teoria diz-se incompleta no caso contrário.

Exemplo de sistema saturado

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Introdução aos Sistemas Matemáticos

Axiomas da geometria euclidiana:

- 1 Dados dois pontos existe uma recta que os contém.
- 2 Todo o segmento de recta está contido numa recta.
- 3 Dado um ponto C e um real r > 0, existe uma única circunferência de centro C e raio r.
- 4 Todos os ângulos rectos são iguais.
- 5 Axioma das paralelas: dada uma recta e um ponto não pertencente a essa recta, existe uma única recta que contém o ponto e é paralela à recta dada.

Exemplo de sistema saturado (cont.)

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Introdução aos Sistemas Matemáticos

Axiomas da geometria euclidiana (noções comuns):

- 6 Duas quantidades iguais a uma terceira são iguais.
- 7 Se a quantidades iguais adicionarmos a mesma quantidade, as somas obtidas são iguais.
- 8 Se a quantidades iguais subtrairmos a mesma quantidade, as diferenças obtidas são iguais.
- 9 Objectos coincidentes são iguais.
- 10 O todo é maior do que a parte.

Exemplo de uma conjectura

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Introdução aos Sistemas Matemáticos Trata-se de uma afirmação não provada, para a qual existe a expectativa de se vir a encontrar uma prova.

Conjectura de Goldbach

Todo o inteiro par superior a 2 é a soma de dois primos

Por exemplo, 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7, ...

Referências bibliográficas

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Introdução aos Sistemas Matemáticos ■ Referência bibliográfica principal:

D. M. Cardoso, J. Szymanski e M. Rostami, Matemática Discreta: combinatória, teoria dos grafos e algoritmos, Escolar Editora, 2009.