

工科数学分析

刘青青

§2.2 数列的极限

- ▶ 数列极限的概念
- ▶ 数列极限与函数极限的关系

▶ 数列:定义在自然数集合 № 上的函数.

▶ 数列: 定义在自然数集合 № 上的函数.

▶ 通项: 数列 $f: \mathbb{N} \to \mathbb{R}$ 在自然数n 处的取值 $a_n := f(n)$ 称为数列的通项. 一个数列通常表示为 $\{a_n\}$.

- ▶ 数列: 定义在自然数集合 № 上的函数.
- ▶ 通项: 数列 $f: \mathbb{N} \to \mathbb{R}$ 在自然数 n 处的取值 $a_n := f(n)$ 称为数列的通项. 一个数列通常表示为 $\{a_n\}$.
- ▶ 凡是数列,都有无穷多项.

- ▶ 数列: 定义在自然数集合 N 上的函数.
- ▶ 通项: 数列 $f: \mathbb{N} \to \mathbb{R}$ 在自然数n 处的取值 $a_n := f(n)$ 称为数列的通项. 一个数列通常表示为 $\{a_n\}$.
- ▶ 凡是数列,都有无穷多项.
- ▶ 数列与数集不同, 其中不同的项可以有相同的值.

- ▶ 数列: 定义在自然数集合 N 上的函数.
- ▶ 通项: 数列 $f: \mathbb{N} \to \mathbb{R}$ 在自然数n 处的取值 $a_n := f(n)$ 称为数列的通项. 一个数列通常表示为 $\{a_n\}$.
- ▶ 凡是数列,都有无穷多项.
- ▶ 数列与数集不同, 其中不同的项可以有相同的值.

数列的性质

设 $\{a_n\}$ 是一个数列.

▶ 递增数列: $\forall n \in \mathbb{N}$, 有 $a_n \leq a_{n+1}$.

数列的性质

设 $\{a_n\}$ 是一个数列.

▶ 递增数列: $\forall n \in \mathbb{N}$, 有 $a_n \leq a_{n+1}$.

▶ 递减数列: $\forall n \in \mathbb{N}$, 有 $a_n \geqslant a_{n+1}$.

数列的性质

设 $\{a_n\}$ 是一个数列.

▶ 递增数列: $\forall n \in \mathbb{N}$, 有 $a_n \leq a_{n+1}$.

▶ 递减数列: $\forall n \in \mathbb{N}$, 有 $a_n \geqslant a_{n+1}$.

▶ 有界数列: $\exists M > 0$, 使得 $\forall n \in \mathbb{N}$, 有 $|a_n| < M$.

数列极限的 $\varepsilon - N$ 定义

设 $\{a_n\}$ 是一个数列, a 为一个常数.

若 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, 使得当 n > N 时, 恒有

$$|a_n-a|<\varepsilon,$$

则称数列 $\{a_n\}$ 收敛, 极限为 a, 记作

$$\lim_{n\to\infty}a_n=a.$$

若数列没有极限,则称数列发散.

数列极限的 $\varepsilon - N$ 定义

设 $\{a_n\}$ 是一个数列,a为一个常数.

若 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, 使得当 n > N 时, 恒有

$$|a_n-a|<\varepsilon,$$

则称数列 $\{a_n\}$ 收敛, 极限为 a, 记作

$$\lim_{n\to\infty}a_n=a.$$

若数列没有极限,则称数列发散.

类似地, 可定义

$$\lim_{n\to\infty}a_n=+\infty,\quad \lim_{n\to\infty}a_n=-\infty,\quad \lim_{n\to\infty}a_n=\infty.$$

▶ 直观理解:

 a_n 随着 n 的增大与 a 靠近到任意程度.

▶ 直观理解:

 a_n 随着 n 的增大与 a 靠近到任意程度.

- ▶ ε 的任意性:
 - ε 刻画了 a_n 与a靠近的程度.

▶ 直观理解:

 a_n 随着 n 的增大与 a 靠近到任意程度.

 \triangleright ε 的任意性: ε 刻画了 a_n 与 a 靠近的程度.

▶ N 的存在性:

数列从某项开始,后面所有项都与 a_n 靠近到 ε 的程度. N 与 ε 有关. 一般来说, ε 越小,N 越大.

▶ 直观理解:

 a_n 随着 n 的增大与 a 靠近到任意程度.

 $\triangleright \varepsilon$ 的任意性: ε 刻画了 a_n 与 a 靠近的程度.

▶ N 的存在性: 数列从某项开始,后面所有项都与 a_n 靠近到 ε 的程度. N 与 ε 有关. 一般来说, ε 越小, N 越大.

► 数列的极限与开头的有限项无关, 主要充分靠后的无穷多项.

$\lim_{n\to\infty} a_n = a$ 有如下几何意义:

对于 a 任意 ε 领域 $(a-\varepsilon,a+\varepsilon)$,

数列 $\{a_n\}$ 中除有限项 a_1,\ldots,a_N 之外所有项都落于此邻域中.

例

例

- $\lim_{n \to \infty} \frac{n + (-1)^{n-1}}{n} = 1.$

例

- ightharpoonup 渡 a > 1,则 $\lim_{n \to \infty} \frac{a^n}{n!} = 0$.

例

利用定义证明数列极限的一般方法:

- ▶ 取定正数 € 充分小,
- ▶ 找出使得不等式 $|a_n a| < \varepsilon$ 成立的 n 的某个范围 n > N.

例

证明: $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

有证明如下:

 $\forall \varepsilon > 0$, 要使 $\sqrt[n]{n} < 1 + \varepsilon$, 只要 $\frac{1}{n} \ln n < \ln(1 + \varepsilon)$, 只要

$$\frac{1}{n} < \frac{\ln(1+\varepsilon)}{\ln n} \leqslant \frac{\ln(1+\varepsilon)}{\ln 2}.$$

取
$$N = \left\lceil \frac{\ln 2}{\ln(1+\varepsilon)} \right\rceil$$
, 则 当 $n > N$ 时, 有

$$1 - \varepsilon < 1 < \sqrt[n]{n} < 1 + \varepsilon.$$

因此,
$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$
.

问题: 上述证明是否正确?如何正确地证明?

关于 $\varepsilon - N$ 定义的说明

▶ 利用 ε – N 定义证明数列 $\{a_n\}$ 的极限需事先知道极限值 a, 要想利用 ε – N 定义来求数列的极限是非常困难的.

关于 $\varepsilon - N$ 定义的说明

- ▶ 利用 ε N 定义证明数列 $\{a_n\}$ 的极限需事先知道极限值 a, 要想利用 ε N 定义来求数列的极限是非常困难的.
- ► ε-N 定义通常是用来进行推理和证明的, 在计算数列的极限时需寻求其他更为有效的方法.

Heine 定理(归结原则)

设函数 f(x) 在 a 的某个空心邻域有定义. 则

$$\lim_{x \to a} f(x) = A \Leftrightarrow \quad \text{对任意以a为极限的数列}\{x_n\}, \\ x_n \neq a, \, \text{有} \lim_{n \to \infty} f(x_n) = A.$$

注:

此定理也适用于其他极限过程,包括

$$x \to a^+, \quad x \to a^-, \quad x \to \infty, \quad x \to +\infty, \quad x \to -\infty.$$

推论

► 若∃以 a 为极限的数列 $\{a_n\}$, $a_n \neq a$, 使得 $\lim_{n\to\infty} f(a_n)$ 不存在, 则 $\lim_{x\to a} f(x)$ 不存在.

推论

- ► 若∃以 a 为极限的数列 $\{a_n\}$, $a_n \neq a$, 使得 $\lim_{n\to\infty} f(a_n)$ 不存在, 则 $\lim_{x\to a} f(x)$ 不存在.
- ► 若 ∃ 两个以 a 为极限的数列 $\{a_n\}$ 和 $\{b_n\}$, $a_n \neq a$ 且 $b_n \neq a$, 使得

$$\lim_{n\to\infty} f(a_n) \neq \lim_{n\to\infty} f(b_n)$$

则 $\lim_{x\to a} f(x)$ 不存在.

推论

- ► 若∃以 a 为极限的数列 $\{a_n\}$, $a_n \neq a$, 使得 $\lim_{n\to\infty} f(a_n)$ 不存在, 则 $\lim_{x\to a} f(x)$ 不存在.
- ▶ 若∃两个以a 为极限的数列 $\{a_n\}$ 和 $\{b_n\}$, $a_n \neq a$ 且 $b_n \neq a$, 使得

$$\lim_{n\to\infty} f(a_n) \neq \lim_{n\to\infty} f(b_n)$$

则 $\lim_{x\to a} f(x)$ 不存在.

此推论常证明函数在某点处极限不存在.

例

证明极限 $\lim_{x\to 0} \cos \frac{1}{x}$ 不存在.

作业:

- ▶ 习题 2.2 (A)
 - 2. (1) (4).
 - 3. (2).
 - 5.
 - 习题 2.2 (B)
 - 1. (2) (3).
 - 2. (1) (2) (3).

