Notação

- $P(a_1, \ldots, a_n) \uparrow$ denota que $P(a_1, \ldots, a_n)$ não termina (i.e. a execução de P a partir da configuração inicial a_1, \ldots, a_n diverge);
- $P(a_1,\ldots,a_n)\downarrow$ denota que $P(a_1,\ldots,a_n)$ termina em algum momento (i.e. a execução de P a partir da configuração inicial a_1,\ldots,a_n converge);
- $P(a_1,\ldots,a_n)\downarrow b,b\in\mathbb{N}_0$ denota que $P(a_1,\ldots,a_n)$ termina em algum momento e na configuração o registo R_1 contém o número b (i.e. a execução de P a partir da configuração inicial a_1,\ldots,a_n converge para b);
- f(x) = significa que f não está definida em x, i.e. $x \not\in Dom(f)$.

Notação 1

Execução de um programa URM

Seja P um programa URM.

- 1. A máquina URM executa P[1];
- 2. A execução da instrução P[x], com $1 \leq x \leq \#P$ processa-se da seguinte maneira:
 - a. P[x]=Z(i): a máquina URM coloca o valor 0 no registo R_i e executa a instrução P[x+1];
 - b. P[x]=S(i): a máquina URM incrementa o valor contido em R_i em uma unidade e executa a instrução P[x+1];
 - c. P[x] = T(i,j): copia o valor contigo em R_i para R_j e executa a instrução P[x+1];
 - d. P[x] = J(i,j,k):
 - i. Se $r_i =_r j$, a máquina URm executa a instrução P[k];
 - ii. Caso contrário, executa a instrução P[x+1].
 - e. Quando a próxima instrução não existe (i.e. $P[x] \ {\rm com} \ x>\#P$), a máquina URM termina a execução de P.

Função Computável

Seja $f:\mathbb{N}_0^n
ot \rightarrow \mathbb{N}_0, n\geq 1.$

- a. Um programa URM P calcula a *função* f, se e só se, para quaisquer $a_1,\ldots,a_n,b\in\mathbb{N}_0$ se tem que:
 - i. $P(a_1,\ldots,a_n)\downarrow b$, se e só se, $(a_1,\ldots,a_n)\in Dom(f)$ e $f(a_1,\ldots,a_n)=b$.
 - ii. $P(a_1,\ldots,a_n)\uparrow$, se e só se, $f(a_1,\ldots,a_n)=-$ (i.e. $(a_1,\ldots,a_n)
 ot\in Dom(f)$).
- b. A $\mathit{função}\ f$ é URM-computável, se e só se, existe um programa URm que calcula f.
- Denotamos por $\mathcal C$ a classe das funções parciais URM-computáveis e por $\mathcal C_n$ a classe das funções parciais n-árias URM-computáveis;
- "Computável" é uma abrevitura de "URM-computável".

Função Computável 1

Funções Calculadas por Programa URM

Definição

Qualquer programa URM calcula apenas uma função (parcial) de cada aridade $n\geq 1$.

Seja P um programa URM e $n\in\mathbb{N}_1$. A única função n-ária calculada por P é denotada por $f_p^{(n)}$, definida da seguinte maneira:

$$P ext{ara quaisquer } x_1,\ldots,x_n \in \mathbb{N}_0 \ f_P^{(n)}(x_1,\ldots,x_n) = egin{cases} -, & P(x_1,\ldots,x_n) \uparrow \ y, & P(x_1,\ldots,x_n) \downarrow y \end{cases}$$

Exemplo

Seja P o programa URM (J(2,3,5),S(1),S(3),J(1,1,1)). Vamos determinar as funções, de cada aridade, calculadas por P.

- $f_p^{(1)}$:
 - o Para qualquer $x\in\mathbb{N}$, a execução de P a partir da configuração inicial $(x,0,0,\dots)$ termina sem fazer qualquer alteração:

Instrução	r_1	r_2	r_3	r_4	r_5
1	3	0	0	0	0
STOP	3	0	0	0	0

 \circ Logo, $f_p^{(1)}$ é a função definida da seguinte maneira:

$$f_P^{(1)}: \qquad \mathbb{N}_0
ot \rightarrow \mathbb{N}_0 \ x \mapsto f_P^{(1)}(x) = x$$

- $f_p^{(2)}$:
 - \circ Para quaisquer $x,y\in\mathbb{N}$, a execução de P a partir da configuração inicial $(x,y,0,\dots)$ termina com a configuração final $(x+y,y,y,0,\dots)$:

Instruction	r_1	r_2	r_3	r_4	r_5
1	1	2	0	0	0
2	1	2	0	0	0
3	2	2	0	0	0
4	2	2	1	0	0
1	2	2	1	0	0
2	2	2	1	0	0
3	3	2	1	0	0
4	3	2	2	0	0
1	3	2	2	0	0
STOP	3	2	2	0	0

- Logo, $f_p^{(2)}$ é a função definida da seguinte maneira:

$$f_P^{(2)}: \qquad \mathbb{N}_0
ot \to \mathbb{N}_0 \ (x,y) \mapsto f_P^{(2)}(x,y) = x+y$$

Problemas, Predicados e Propriedades Decidíveis

Definição

Seja $M(x_1,\ldots,x_n)$ um predicado n-ário. A função caraterística do predicado M é a função:

$$C_M: egin{aligned} \mathbb{N}_0{}^n & o \mathbb{N}_0 \ &(x_1,\ldots,x_n) &\mapsto C_M(x_1,\ldots,x_n) &= egin{cases} 1, & M(x_1,\ldots,x_n) \ 0, &
eg M(x_1,\ldots,x_n) \end{cases} \end{aligned}$$

- O predicado $M(x_1, \ldots, x_n)$ é decidível se a sua função caraterística é computável:
 - Uma função caraterística é uma função total.

Exemplo

Seja M o predicado "x=0".

$$C_M: \qquad \mathbb{N}_0{}^n o \mathbb{N}_0 \ x \mapsto C_M(x) = egin{cases} 1, & x=0 \ 0, & x
eq 0 \end{cases}$$

Para mostrar que M é decidível, basta mostrar que C_M é computável. Para mostrar este último facto, basta apresentar um programa que calcule esta função, como por exemplo:

•
$$x = 1, C_M(1, 0, 0, ...)$$

Instrução	r_1	r_2	r_3	r_4	r_5
1	1	0	0	0	0
2	1	0	0	0	0
3	0	0	0	0	0
STOP	0	0	0	0	0

•
$$x=0$$
, $C_M(0,0,0,\ldots)$

Instrução	r_1	r_2	r_3	r_4	r_5
1	0	0	0	0	0
4	0	0	0	0	0
STOP	1	0	0	0	0

Construção de Programas a Partir de Outros Programas

Definição: Forma Padrão

Um programa P está na forma padrão se, para qualquer instrução de salto J(m,n,q) em P, se tem que $q\leq \#P+1$.

Definição: Programa P*

Seja P um programa URM. Denotamos por P^{\ast} o programa definido da seguinte forma:

a.
$$\#P^*=\#P$$

b. Para cada $I \in \{1,\ldots,\#P\}$:

$$P^*[I] = egin{cases} J(m,n,\#P+1), & P[I] = J(m,n,k), \ & ext{com k} > \#P+1 \ \ P[I], & ext{caso contrário} \end{cases}$$

• Exemplo:

Seja P=(J(2,1,9),S(2),J(1,1,1)). De acordo com a definição acima, P^* é definido da seguinte maneira:

a.
$$\#P^* = \#P = 3$$

b.
$$P^* = (J(2,1,4),S(2),J(1,1,1))$$

P não está na forma padrão pois contém a instrução J(2,1,9) e $9>\#P+1\equiv 9>4$. Por outro lado, P^* está na forma padrão.

Definição: Programas Equivalentes

Dois programas P_1 e P_2 são equivalentes se, para qualquer configuração inicial se tem que:

i.
$$P_1(a_1,a_2,a_3,\dots)\downarrow$$
 se $P_2(a_1,a_2,a_3,\dots)\downarrow$ e;

ii. Se ambas as execuções terminam, as configurações finais da máquina URM resultante de cada uma destas execuções são idênticas.

Resultado: Programa na Forma Padrão

Seja P um programa URM. O programa P^{\ast} está na forma padrão e é equivalente a P.

Junção de Programas

Definição

Sejam P e Q dois programas URM. A junção de P e Q, denotado por P;Q é o programa URm definido da seguinte forma:

a.
$$\#(P;Q) = \#P + \#Q$$

b. Para cada
$$I \in \{1,\ldots,\#P\}, (P;Q)[I] = P^*[I]$$

c. Para cada $k \in \{1, \dots, \#Q\}$:

$$(P;Q)[\#P+k] = egin{cases} Q[k], & Q[k] ext{ n\~ao\'e instru\~c\~ao}\ J \ J(m,n,r+\#P), & Q[k] = J(m,n,r) \end{cases}$$

• Exemplo:

Sejam
$$P$$
 e Q dois programas URM definidos por $egin{array}{ccc} J(1,2,9) & J(3,2,5) \\ S(2) & S(3) \\ J(1,1,1) & J(1,1,1) \end{array}$,

respetivamente.

A junção P;Q de P e Q resulta no programa URM:

$$J(1,2,4)$$

 $S(2)$
 $J(1,1,1)$
 $J(3,2,8)$
 $S(1)$
 $S(3)$
 $J(1,1,4)$

Utilização de Subprogramas na Máquina URM

Definição: Registo Máximo

Seja P um programa URM. $\rho(P)$ é o máximo do conjunto formado pelos índices dos registos que são mencionados no programa P.

Programa URM Generalizado

Definição: Programa Generalizado

Um programa URM generalizado Q é uma sequência finita de instruções URM generalizadas $(I_1,\ldots,I_k), k\geq 1$, onde cada instrução generalizada $I_r,r\in\{1,\ldots,k\}$ ou é uma instrução URM padrão ou uma instrução de um dos dois tipos seguintes:

i. CallP;

ii.
$$CallP[i_1,\ldots,i_n o j];$$

onde $n,j\geq 1$ e $i_1,\ldots,i_n>n$ e P é um programa URM onde não ocorrem instruções que chamem o programa Q nem instruções que chamem outros programas que chamem Q.

Geração de Funções URMcomputáveis: Funções Primitivas e Funções Parciais Recursivas

Funções Básicas

As seguintes funções são básicas:

- a. zero: $zero = \lambda_x \cdot 0$;
- b. sucessor: $suc = \lambda_x \cdot x + 1$;
- c. Para cada $n\in\mathbb{N}$ e cada $i\in\{1,\ldots,n\}$, a função projeção: $U_i^n=\lambda_{x_1,\ldots,x_n}\cdot x_i.$

As funções básicas são computáveis.

Composição de Funções

Técnica da Substituição

· Exemplo:

Seja
$$f=\lambda_x\cdot 2x$$
 .

Verifica-se que f se obtém por substituição à custa de $som a = \lambda_{x,y} \cdot x + y$ pois, para qualquer $x \in \mathbb{N}_0$, f(x) = som a(x,x).

A função soma é computável, logo a função f é computável.

O método de substituição para definição de novas funções preserva a computabilidade.

Técnica da Recursão

- · Resultado:
 - 1. Definição recursiva de uma função de vários argumentos:

Seja $n\in\mathbb{N}_1$ e sejam $f:\mathbb{N}_0^n o \mathbb{N}_0$ e $g:\mathbb{N}_0^{n+2} o \mathbb{N}_0$ funções. Existe uma e só uma função $h:\mathbb{N}_0^{n+1} o \mathbb{N}_0$ que satisfaz as seguitnes equações de recursão:

1.
$$h(x_1, \ldots, x_n, 0) = f(x_1, \ldots, x_n)$$

2.
$$h(x_1, \ldots, x_n, y+1) = g(x_1, \ldots, x_n, y, h(x_1, \ldots, x_n, y))$$

A função h obtém-se por recursão a partir das funções f e g.

2. Definição recursiva de uma função unária:

Seja $a \in \mathbb{N}_0$ e seja $g: \mathbb{N}_0^2 \not \to \mathbb{N}_0$ uma função. Existe uma e só uma função $h: \mathbb{N}_0 \not \to \mathbb{N}_0$ que satisfaz as equações de recursão:

1.
$$h(0) = a$$

2.
$$h(y+1) = g(y,h(y))$$

A função h obtém-se por recursão a partir da constante a e da função g.

O método de recursão para definição de novas funções preserva a computabilidade.

· Exemplo:

Vamos mostrar como se pode definir recursivamente a função $fact=\lambda_x\cdot x!$.

De acordo com a definição em (2), temos de mostrar que existem $a\in\mathbb{N}_0$ e $g:\mathbb{N}_0^2\mapsto\mathbb{N}_0$ tais que:

1.
$$fact(0) = a$$

2.
$$fact(y+1) = g(y, fact(y))$$

Temos que:

a.
$$fact(0)=1$$
 (por convenção)

b.
$$fact(y+1) = (y+1) \cdot fact(y) = prod(suc(y), fact(y))$$

· Exemplo:

Vamos mostrar como se pode definir recursivamente a função $som a = \lambda_{x,y} \cdot x + y$.

De acordo com a definição em (1), temos de mostrar que existem duas funções $f:\mathbb{N}_0 \not\to \mathbb{N}_0$ e $g:\mathbb{N}_0^3 \not\to \mathbb{N}_0$ tais que as seguintes equações de recursão são satisfeitas:

1.
$$soma(x,0) = f(x)$$

2.
$$soma(x, y + 1) = g(x, y, soma(x, y))$$

Temos que:

a.
$$soma(x,0) = x = U_1^1(x)$$

b.
$$soma(x, y + 1) = x + (y + 1) = (x + y) + 1 = suc(soma(x, y))$$

Logo, podemos concluir que as equações (1) e (2) são satisfeitas quando f é a função $U_1^1(x)$ e g é a função

$$egin{array}{lll} g:& \mathbb{N}_0^3 &
ightarrow & \mathbb{N}_0 \ & (a,b,c) & \mapsto & g(a,b,c) = suc(c) \end{array}$$

Função Recursiva Primitiva

- a. Uma função recursiva primitiva, função \mathcal{RP} é uma função que pode ser obtida por substituição e recursão a partir das funções básicas;
- b. Um predicado recursivo primitivo é um predicaod cuja função caraterística C_M é uma função \mathcal{RP} ;
- As funções básicas são computáveis;
- O método da substituição preserva a computabilidade;
- O método da recursão preserva a computabilidade.

Toda a função \mathcal{RP} é uma função computável.

Logo, para mostrar que uma função f é computável, basta mostrar que essa função é \mathcal{RP} , não havendo necessidade de formular um programa que a calcule.

Toda a função \mathcal{RP} é uma função total.

- · Exemplo:
 - a. $som a = \lambda_{x,y} \cdot x + y$

Tem-se que:

i.
$$soma(0,x)=x=U_1^1(x)$$

ii.
$$soma(x, y + 1) = x + (y + 1) = (x + y) + 1 = suc(soma(x, y))$$

Portanto, soma obtém-se por recursão e substituição à custa das funções básicas U_1^1 e suc. Logo, soma é \mathcal{RP} .

b.
$$sg=\lambda_x\cdot egin{cases} 0, & x=0 \ 1, & x>0 \end{cases}$$

Tem-se que:

i.
$$sg(0) = 0$$

ii.
$$sg(y+1)=1=1^{(2)}(y,sg(y))$$

Portanto, sg obtém-se por recursão e substituição à custa da constante $0 \in \mathbb{N}_0$ e da função constante $1^{(2)}$. Como as funções constantes podem ser definidas através de funções básicas, $1^{(2)} \in \mathcal{RP}$. Portanto, sg é uma função \mathcal{RP} .

c.
$$\overline{sg}=\lambda_x\cdot egin{cases} 1, & x=0 \ 0, & x>0 \end{cases}$$

Tem-se que:

i.
$$\overline{sg}(0) = 1^{(1)}(x)$$

ii.
$$\overline{sg}(y+1)=0^{(2)}(y,sg(y))$$

Portanto, \overline{sg} obtém-se por recursão e substituição à custa da constante $0\in\mathbb{N}_0$ e da função constante $1^{(2)}$. Como as funções constantes podem ser definidas através de funções básicas, $1^{(2)}\in\mathcal{RP}$. Portanto, \overline{sg} é uma função \mathcal{RP} .

d.
$$moddif = \lambda_{x,y} \cdot |x-y|$$

Tem-se que:

$$egin{aligned} moddif(x,y) \ &= (\dot{x-y}) + (\dot{y-x}) \ &= soma(dif(x,y), dif(y,x)) \end{aligned}$$

Logo, moddif obtém-se por substituição e recursão à custa das funções \mathcal{RP} soma e dif.

Álgebra da Decidibilidade (de Predicados) E Definição (de Funções) por Casos

Sejam $M(x_1,\ldots,x_n)$ e $Q(x_1,\ldots,x_n)$ predicados n-ários e sejam $C_M,\ C_Q,\ C_{\neg M},\ C_{M\wedge Q},\ C_{M\vee Q}$ as funções caraterísticas dos respetivos predicados em subscrito.

- a. As funções $C_{\neg M},\ C_{M\wedge Q}$ e $C_{M\vee Q}$ podem ser obtidas por substituição a partir das funções C_M,C_Q e de funções \mathcal{RP} ;
- b. Se os predicados M e Q são decidíveis, então os predicados $\neg M,\ M \land Q$ e $M \lor Q$ também são decidíveis;
- c. Se M e Q são predicados \mathcal{RP} , então $\neg M,\ M \land Q,\ M \lor Q$ também são predicados \mathcal{RP} .

Soma Limitada

Sejam $n \in \mathbb{N}_0$ e $f: \mathbb{N}_0^{n+1}
ot \rightarrow \mathbb{N}_0$.

A soma limitada de f, sl_f , é a seguinte função:

onde $\sum_{y < k} f(x_1, \dots, x_n, y)$ é dada por:

$$egin{cases} 0, & k=0 \ f(x_1,\ldots,x_n,0)+\cdots+f(x_1,\ldots,x_n,k-1), & k>0 \end{cases}$$

Se
$$f$$
 é recursiva primitiva recursiva primitiva computável , então sl_f é total recursiva primitiva total .

Produto Limitado

Sejam $n \in \mathbb{N}_0$ e $f: \mathbb{N}_0^{n+1}
ot \rightarrow \mathbb{N}_0$.

O produto limitado de f, pl_f , é a seguinte função:

$$egin{array}{cccc} pl_f:&\mathbb{N}_0^{n+1}&
ot&&\mathbb{N}_0\ &(x_1,\ldots,x_n,k)&\mapsto&pl_f(x_1,\ldots,x_n,k)=\prod_{y< k}f(x_1,\ldots,x_n,y) \end{array}$$

onde $\prod_{y < k} f(x_1, \dots, x_n, y)$ é dado por:

$$egin{cases} 1, & k=0 \ f(x_1,\ldots,x_n,0) imes\cdots imes f(x_1,\ldots,x_n,k-1), & k>0 \end{cases}$$

Se
$$f$$
 é recursiva primitiva , então pl_f é computável , então pl_f é total recursiva primitiva computável .

Minimização Limitada

Sejam $n\in\mathbb{N}_0$ e $f:\mathbb{N}_0^{n+1}\to\mathbb{N}_0$. A minimização limitada de f, ml_f , é a seguinte função:

$$egin{array}{lll} ml_f:& \mathbb{N}_0^{n+1} &
ightarrow & \mathbb{N}_0 \ & (x_1,\ldots,x_n,k) & \mapsto & ml_f(x_1,\ldots,x_n,k) = \mu_{y < k}(f(x_1,\ldots,x_n,y) = 0) \end{array}$$

onde $\mu_{y < k}(f(x_1, \ldots, x_n, y) = 0)$ é dado por:

$$egin{cases} ext{menor } y < k ext{ tal que } f(x_1, \dots, x_n, y) = 0, & ext{se tal y existe} \ k, & ext{c.c.} \end{cases}$$

Se
$$f$$
 é $\left| egin{array}{ll} {
m recursiva\ primitiva} \\ {
m computável} \end{array}
ight.$, então pl_f é $\left| egin{array}{ll} {
m recursiva\ primitiva} \\ {
m computável\ (e\ total)} \end{array}
ight.$

· Exemplo:

Seja $f: \mathbb{N}_0^1 \to \mathbb{N}_0$ tal que:

$$f(1,0) = 1$$
 $f(1,1) = 5$ $f(1,2) = 4$
 $f(1,3) = 0$ $f(1,4) = 0$ $f(1,5) = 1$

De acordo com a definição acima:

•
$$ml_f(1,2) = \mu_{y<2}(f(1,y) = 0) = 2$$

•
$$ml_f(1,5) = \mu_{y<5}(f(1,y)=0) = 3$$

Minimização Limitada de um Predicado

Sejam $n \in \mathbb{N}_0$ e $R(x_1, \dots, x_n, y)$ um predicado de n+1 argumentos. A minimização limitada de R, ml_R , é a seguinte função:

$$egin{array}{lll} ml_R:& \mathbb{N}_0^{n+1} &
ightarrow & \mathbb{N}_0 \ (x_1,\ldots,x_n,k) & \mapsto & ml_R(x_1,\ldots,x_n,k) = \mu_{y < k}(R(x_1,\ldots,x_n,y) = 0) \end{array}$$

onde $\mu_{y < k}(f(x_1, \dots, x_n, y) = 0)$ é dado por:

$$egin{cases} ext{menor } y < k ext{ tal que } R(x_1, \dots, x_n, y), & ext{se tal y existe} \ k, & ext{c.c.} \end{cases}$$

Minimização Ilimitada

Sejam $n \in \mathbb{N}_0$ e $f: \mathbb{N}_0^{n+1} \not\to \mathbb{N}_0$. A minimização ilimitada de f, m_f , é a seguinte função:

$$egin{array}{lll} m_f:& \mathbb{N}_0^n &
ightarrow & \mathbb{N}_0 \ (x_1,\ldots,x_n) & \mapsto & m_f(x_1,\ldots,x_n) = \mu_y(f(x_1,\ldots,x_n,y)=0) \end{array}$$

onde $\mu_{y}(f(x_{1},\ldots,x_{n},y)=0)$ é dado por:

$$egin{cases} ext{menor } y \in \mathbb{N}_0 ext{ tal que} \ ext{i. } f(x_1,\ldots,x_n,z) ext{ está definido para qualquer } z \leq y \ ext{ii. } f(x_1,\ldots,x_n,y) = 0, & ext{se um tal } y ext{ existe} \ -, & ext{c.c.} \end{cases}$$

· Exemplo:

Seja $f:\mathbb{N}_0^2 \to \mathbb{N}_0$ tal que:

$$f(1,0) = 1$$
 $f(1,1) = 5$ $f(1,2) = 4$
 $f(1,3) = 0$ $f(1,4) = 0$ $f(1,5) = 1$

Então, pela definição acima:

$$m_f(1) = \mu_y(f(1,y) = 0) = 3$$

Seja $g: \mathbb{N}_0^2 \to \mathbb{N}_0$ tal que:

$$g(1,0) = 1$$
 $g(1,1) = g(1,2) = 4$
 $g(1,3) = 0$ $g(1,4) = 0$ $g(1,5) = 1$

Então, pela definição:

$$m_g(1) = \mu_y(f(1,y) = 0) = -$$

pois g(1,3)=0, mas g(1,1) não está definido como necessário em (i) na <u>definição</u>.

O método da minimização para definição de novas funções preserva a computabilidade.

Minimização Ilimitada de um Predicado

Sejam $n \in \mathbb{N}_0$ e $R(x_1, \ldots, x_n, y)$ um predicado de n+1 argumentos. A minimização ilimitada de R, m_R , é a seguinte função:

$$egin{array}{cccc} m_R:&\mathbb{N}_0^n& o&\mathbb{N}_0\ &(x_1,\dots,x_n)&\mapsto&m_f(x_1,\dots,x_n)=\mu_y(R(x_1,\dots,x_n,y)) \end{array}$$

onde $\mu_y(R(x_1,\ldots,x_n,y))$ é dado por:

$$\begin{cases} \text{menor } y \text{ tal que } R(x_1, \dots, x_n, y), & \text{se um tal } y \text{ existe} \\ -, & \text{c.c.} \end{cases}$$

Exemplo:

Consideremos a função

$$egin{array}{cccc} RaizInt: & \mathbb{N}_0 &
ot & \mathbb{N}_0 \ x & \mapsto & RaizInt(x) = [\sqrt{x}] \end{array}$$

onde [x] denota o maior natural cujo quadrado é menor ou igual a $x \in \mathbb{N}_0$.

Pode-se obter RaizInt através da minimização de um predicado. Para qualquer $x \in \mathbb{N}_0$,

$$RaizInt(x) = u_y((y+1)^2 > x) = m_R(x)$$

onde R é o predicado binário

$$R(x,y) = (y+1)^2 > x$$

De acordo com o <u>resultado</u>, para mostrar que RaizInt é computável, basta mostrar que R é decidível.

Seja, então, $C_R: \mathbb{N}_0^2 \to 0$. Tem-se que $\forall_{(x,y)} \in \mathbb{N}_0^2$,

$$C_R(x,y)=C_>((y+1)^2,x)=C>(prod(suc(y),suc(y)),x)$$

 C_R obtém-se por substituição a partir das funções $C_>$, prod e suc. Todas estas funções são computáveis, e visto que o método da substituição preserva a computabilidade, C_R é computável. Logo, R é decidível, e como $RaizInt=m_R$, RaizInt é computável.

Funções Parciais Recursivas

- \circ \mathcal{C} : classe das funções parciais URM-computáveis;
- \circ \mathcal{RP} : classe das funções recursivas primitivas (funções geradas a partir das funções básicas usando as técnicas da substituição e recursão):
 - Estas funções são totais porque as funções básicas e as (novas) funções que são definidas por substituição e/ou recursão a partir de funções totais são também totais.
- \mathcal{R} : classe das funções funções parciais recursivas:

- ullet Uma função $f\in\mathcal{R}$ é uma função que pode ser obtida a partir das funções básicas usando as técnicas da substituição, recursão e minimização ilimitada.
- \circ $\mathcal{R}_{\mathcal{T}}$: classe das funções totais recursivas:
 - lacksquare Uma função $f\in\mathcal{R}_{\mathcal{T}}$ é uma função de \mathcal{R} que e total.

Resultado: Inclusão de Conjuntos

$$\mathcal{RP} \subseteq \mathcal{R}_{\mathcal{T}} \subseteq \mathcal{R} \subseteq \mathcal{C}$$

$$\mathcal{RT}\subset\mathcal{R}$$

Resultado: Igualdade $\mathcal{R}=\mathcal{C}$

$$\mathcal{R} = \mathcal{C}$$

| 遺産

Uma qualquer função é computável se e só se é uma função parcial recursiva.

Máquina de Turing e Funções Turing-computáveis

Máquinas de Turing

- Uma máquina de Turing Mrealiza operações sobre uma fita de papel infinita em ambas as direções e está dividida em células ao longo de todo o seu comprimento.
- Em qualquer instante, uma célula da fita está em branco (i.e. preenchida com o **símbolo** β) ou contém um único símbolo de um conjunto finito de símbolos $\{s_0, s_1, \ldots, s_n\}$ (alfabeto de M).

Instruções

- a. Escrever um símbolo do seu alfabeto na célula que está a ser lida;
- b. Mover a cabeça de leitura uma célula para a direita daquela que está a ser lida.
- c. Mover a cabeça de leitura uma célula para a esquerda daquela que está a ser lida.

Em cada momento, M está num certo estado de conjunto finito de estados, representados por $\{q_1, q_2, \ldots, q_n\}$.

A ação a ser executada por M depende do estado atual de Me do símbolo que está a ser lido no momento.

Um quádruplo q_i s_j α q_l (onde $\alpha \in \{s_k, R, L\}$) em Q (conjunto finito de quadruplos) **especifica** a ação a ser **executada** por M quando está **no estado** q_i e a ler o símbolo s_i :

- 1. Executar a seguinte operação na fita:
 - a. Se $lpha=s_k$, apagar s_j e escrever s_k na célula que está a ser lida no momento;
 - b. Se lpha=R, mover a cabeça de leitura uma célula para a direita;
 - c. Se $\alpha = L$, mover a cabeça de leitura uma célula para a esquerda;
- 2. Mudar o estado para q_l .

Convenção

- ullet Dada uma máquina de Turing M e uma fita de papel infinita:
 - M inicia a sua execução no estado q_1 ;
 - o A cabeça de leitura está na célula não em branco (i.e. para a i-ésima célula mais à esquerda, $s_i \neq \beta$);

Exemplo de Execução

Seja Q a seguinte especificação:

$$egin{array}{l} q_1 \ a \ b \ q_2 \ q_1 \ b \ a \ q_2 \ q_2 \ a \ R \ q_1 \ q_2 \ b \ R \ q_1 \end{array}$$

A configuração inicial é a seguinte:

$$\dots \mid \beta \mid \beta \mid 'a' \mid b \mid b \mid \beta \mid \beta \mid \dots$$

A execução é a seguinte (${}'s'_i$ representa a posição da cabeçade leitura da máquina URM):

$$... \mid \beta \mid \beta \mid 'b'[q_2] \mid b \mid b \mid \beta \mid \beta \mid ...$$

$$... \mid \beta \mid \beta \mid b \mid 'b'[q_1] \mid b \mid \beta \mid \beta \mid ...$$

$$... \mid \beta \mid \beta \mid b \mid 'a'[q_2] \mid b \mid \beta \mid \beta \mid ...$$

$$... \mid \beta \mid \beta \mid b \mid a \mid 'b'[q_1] \mid \beta \mid \beta \mid ...$$

$$... \mid \beta \mid \beta \mid b \mid a \mid 'a'[q_2] \mid \beta \mid \beta \mid ...$$

$$... \mid \beta \mid \beta \mid b \mid a \mid a \mid '\beta'[q_1] \mid \beta \mid ...$$
 STOP

• A execução da máquina M termina porque não existe, na especificação Q, nenhum quadruplo $q_1 \; \beta \; \{s_k,R,L\} \; q_l$

Funções Turing-computáveis

Representação de Números

Número	Representação
0	\beta 1 \beta
1	$\dots \mid \beta \mid 1 \mid 1 \mid \beta \mid \dots$
2	$\dots \mid \beta \mid 1 \mid 1 \mid 1 \mid \beta \mid \dots$
x	$ \beta \underbrace{x \dots x}_{x+1 \text{ vezes}} \beta \dots $

Cálculo de Função Unária

Seja
$$f: \mathbb{N}_0 o \mathbb{N}_0$$
.

Consideremos a execução de uma máquina ${\cal M}$ sobre uma fita com a seguinte configuração inicial:

$$\dots \mid \beta \mid '1' \mid \dots \mid 1 \mid \beta \mid \dots$$

Esta configuração tem exatamente x+1 células consecutivas com o símbolo 1 e todos as restantes células estão em branco. M inicia-se no estado q_1 na célula contendo o 1 mais à esquerda. Então,

$$f(x) = \begin{cases} \text{número total de ocorrências} \\ \text{do símbolo 1 na configuração final,} & \text{se a execução termina} \\ -, & \text{caso contrário} \end{cases}$$

Exemplo de Execução

Seja M uma máquina de Turing e seja $f:\mathbb{N}_0 o \mathbb{N}_0$ a função unária calculada por M. Se a execução de M inicia com configuração inicial

$$\dots \mid \beta \mid '1' \mid 1 \mid 1 \mid \beta \mid \dots$$

e termina com a configuração final

$$\dots \mid \beta \mid 1 \mid \beta \mid 1 \mid 1 \mid \beta \mid 1 \mid \beta \dots$$

então tem-se que f(2)=4.

Cálculo de Função n-ária

• Um n-uplo $(x_1, \ldots, x_n) \in \mathbb{N}_0^n$ é representado numa fita pelas sequencias de 1s consecutivos que representam cada uma das componentes de (x_1, \ldots, x_n) , estando duas dessas sequencias separadas, **exatamente**, por uma célula em branco (e.g. preenchida com β):

$$\ldots \mid \beta \mid 1 \mid \ldots \mid 1 \mid \beta \mid 1 \mid \ldots \mid 1 \mid \beta \mid 1 \mid \ldots \mid 1 \mid \beta \mid \ldots$$

- Exemplo:
 - \circ O triplo (1,0,2) representa-se:

$$\ldots \mid \beta \mid 1 \mid 1 \mid \beta \mid 1 \mid \beta \mid 1 \mid 1 \mid 1 \mid \beta \mid \ldots$$

Exemplo de Execução

Seja M uma máquina de Turing e seja $f:\mathbb{N}_0^2 o \mathbb{N}_0$ a função calculada por M. Se a execução de M a partir da configuração inicial

$$\ldots \mid \beta \mid '1' \mid 1 \mid 1 \mid \beta \mid 1 \mid 1 \mid \beta \mid \ldots$$

termina com a configuração final

$$\ldots \mid \beta \mid 1 \mid \beta \mid 1 \mid 1 \mid \beta \mid 1 \mid \beta \mid 1 \mid \beta \mid \ldots$$

então f(2,1)=5.

Função Turing-computável

Uma função $f: \mathbb{N}_0^n \not \to \mathbb{N}_0$, com $n \geq 1$, é Turing-computável ($f \in \mathcal{T}$) se e só se existe uma máquina de Turing que calcula f.

Resultado Fundamental

Três formas de formalizar a noção de função computável:

- Funções URM-computáveis, C;
- Funções parcias recursivas, \mathcal{R} ;
- Funções Turing-computáveis, \mathcal{T} .

Todas as formalizações para caraterizar a noção de uma função computável, até hoje propostas,. originam na mesma classe de funções. Logo,

$$\mathcal{C} = \mathcal{R} = \mathcal{T} = \dots$$