Machine Learning Excercise

SP

29 december 2018

Introduction

In this exercise a dataset is studied related to personal activities measured by accelerometers at several bodyparts. The goal is to find a model that could predict whether or not the exercise was performed in the right way

Load and preprocessing of the data

At first the data should be retrieved and pre-processed.

```
pml.training <- read.csv(url("https://urldefense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloud pml.testing <- read.csv(url("https://urldefense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpoint.com/v2/url?u=https-3A_d396qusza40orc.cloudfense.proofpo
```

Reviewing the data shows that the pml.training set and pml.test set has both 160 variables and respectively 19622 and 20 observations. Analyzing the data in more detail show that there are a couple of columns in the dataset that don't have any relations with the accelerometers. For instance, 'x', 'user_name' and 'raw_timestamp_part_1'.

colnames(pml.training)

```
[1] "X"
##
                                      "user_name"
##
     [3] "raw_timestamp_part_1"
                                      "raw_timestamp_part_2"
##
     [5] "cvtd_timestamp"
                                      "new_window"
                                      "roll_belt"
##
     [7] "num_window"
##
     [9] "pitch_belt"
                                      "yaw belt"
##
    [11] "total_accel_belt"
                                      "kurtosis_roll_belt"
##
    [13] "kurtosis_picth_belt"
                                      "kurtosis_yaw_belt"
##
    [15] "skewness_roll_belt"
                                      "skewness_roll_belt.1"
   [17] "skewness_yaw_belt"
                                      "max_roll_belt"
                                      "max_yaw_belt"
    [19] "max_picth_belt"
##
##
   [21] "min_roll_belt"
                                      "min_pitch_belt"
##
   [23] "min_yaw_belt"
                                      "amplitude_roll_belt"
   [25] "amplitude_pitch_belt"
                                      "amplitude_yaw_belt"
    [27] "var_total_accel_belt"
                                      "avg_roll_belt"
##
##
   [29] "stddev_roll_belt"
                                      "var_roll_belt"
                                      "stddev_pitch_belt"
##
   [31] "avg_pitch_belt"
   [33] "var_pitch_belt"
                                      "avg_yaw_belt"
##
##
    [35] "stddev_yaw_belt"
                                      "var_yaw_belt"
                                      "gyros_belt_y"
##
    [37] "gyros_belt_x"
    [39] "gyros_belt_z"
                                      "accel_belt_x"
   [41] "accel_belt_y"
                                      "accel_belt_z"
##
##
    [43] "magnet_belt_x"
                                      "magnet_belt_y"
##
   [45] "magnet_belt_z"
                                      "roll_arm"
   [47] "pitch arm"
                                      "yaw_arm"
   [49] "total_accel_arm"
                                      "var_accel_arm"
```

```
[51] "avg_roll_arm"
                                     "stddev roll arm"
    [53] "var_roll_arm"
                                     "avg_pitch_arm"
##
##
    [55] "stddev pitch arm"
                                     "var pitch arm"
##
    [57] "avg_yaw_arm"
                                     "stddev_yaw_arm"
##
    [59] "var_yaw_arm"
                                     "gyros_arm_x"
##
    [61] "gyros arm y"
                                     "gyros arm z"
    [63] "accel arm x"
                                     "accel arm y"
                                     "magnet_arm_x"
##
    [65] "accel arm z"
    [67] "magnet_arm_y"
##
                                     "magnet arm z"
##
    [69] "kurtosis_roll_arm"
                                     "kurtosis_picth_arm"
    [71] "kurtosis_yaw_arm"
                                     "skewness_roll_arm"
                                     "skewness_yaw_arm"
##
    [73] "skewness_pitch_arm"
##
    [75] "max_roll_arm"
                                     "max_picth_arm"
##
                                     "min_roll_arm"
   [77] "max_yaw_arm"
##
   [79] "min_pitch_arm"
                                     "min_yaw_arm"
##
    [81] "amplitude_roll_arm"
                                     "amplitude_pitch_arm"
##
                                     "roll_dumbbell"
    [83] "amplitude_yaw_arm"
##
    [85] "pitch dumbbell"
                                     "vaw dumbbell"
##
   [87] "kurtosis_roll_dumbbell"
                                     "kurtosis_picth_dumbbell"
##
    [89] "kurtosis_yaw_dumbbell"
                                     "skewness roll dumbbell"
##
  [91] "skewness_pitch_dumbbell"
                                     "skewness_yaw_dumbbell"
  [93] "max roll dumbbell"
                                     "max picth dumbbell"
                                     "min_roll_dumbbell"
##
  [95] "max_yaw_dumbbell"
    [97] "min pitch dumbbell"
                                     "min yaw dumbbell"
##
  [99] "amplitude_roll_dumbbell"
                                     "amplitude_pitch_dumbbell"
## [101] "amplitude_yaw_dumbbell"
                                     "total_accel_dumbbell"
## [103] "var_accel_dumbbell"
                                     "avg_roll_dumbbell"
## [105] "stddev_roll_dumbbell"
                                     "var_roll_dumbbell"
                                     "stddev_pitch_dumbbell"
## [107] "avg_pitch_dumbbell"
## [109] "var_pitch_dumbbell"
                                     "avg_yaw_dumbbell"
## [111] "stddev_yaw_dumbbell"
                                     "var_yaw_dumbbell"
## [113] "gyros_dumbbell_x"
                                     "gyros_dumbbell_y"
## [115] "gyros_dumbbell_z"
                                     "accel_dumbbell_x"
## [117] "accel_dumbbell_y"
                                     "accel_dumbbell_z"
## [119] "magnet dumbbell x"
                                     "magnet dumbbell v"
## [121] "magnet_dumbbell_z"
                                     "roll forearm"
## [123] "pitch forearm"
                                     "yaw forearm"
## [125] "kurtosis_roll_forearm"
                                     "kurtosis_picth_forearm"
## [127] "kurtosis_yaw_forearm"
                                     "skewness_roll_forearm"
## [129] "skewness_pitch_forearm"
                                     "skewness_yaw_forearm"
## [131] "max roll forearm"
                                     "max picth forearm"
## [133] "max_yaw_forearm"
                                     "min roll forearm"
## [135] "min_pitch_forearm"
                                     "min_yaw_forearm"
## [137] "amplitude_roll_forearm"
                                     "amplitude_pitch_forearm"
                                     "total_accel_forearm"
## [139] "amplitude_yaw_forearm"
                                     "avg_roll_forearm"
## [141] "var_accel_forearm"
## [143] "stddev_roll_forearm"
                                     "var_roll_forearm"
## [145] "avg_pitch_forearm"
                                     "stddev_pitch_forearm"
## [147] "var_pitch_forearm"
                                     "avg_yaw_forearm"
                                     "var_yaw_forearm"
## [149] "stddev_yaw_forearm"
## [151] "gyros_forearm_x"
                                     "gyros_forearm_y"
                                     "accel_forearm_x"
## [153] "gyros_forearm_z"
## [155] "accel_forearm_y"
                                     "accel_forearm_z"
## [157] "magnet_forearm_x"
                                     "magnet_forearm_y"
```

```
## [159] "magnet_forearm_z" "classe"
```

Since the code above show the first 7 columns are not related to the goal of predicting, they are removed.

```
pml.testing <- pml.testing[,8:160]
pml.training <- pml.training[,8:160]</pre>
```

Scrolling through the dataset reveals also a lot of columns that have plenty of NA's in it.

```
NA_training <- sapply(pml.training, function(x) sum(is.na(x)))
NA_testing <- sapply(pml.testing, function(x) sum(is.na(x)))
col_nummer <- seq(1:153)
NA_df <- data.frame(as.data.frame(NA_training), as.data.frame(NA_testing), as.data.frame(col_nummer))
print(NA_df)</pre>
```

##		NA_training	NA_testing	col_nummer
##	roll_belt	0	0	1
##	pitch_belt	0	0	2
##	yaw_belt	0	0	3
##	total_accel_belt	0	0	4
##	kurtosis_roll_belt	0	20	5
##	kurtosis_picth_belt	0	20	6
##	kurtosis_yaw_belt	0	20	7
##	skewness_roll_belt	0	20	8
##	skewness_roll_belt.1	0	20	9
##	skewness_yaw_belt	0	20	10
##	max_roll_belt	19216	20	11
##	max_picth_belt	19216	20	12
##	max_yaw_belt	0	20	13
##	min_roll_belt	19216	20	14
##	min_pitch_belt	19216	20	15
##	min_yaw_belt	0	20	16
	amplitude_roll_belt	19216	20	17
	amplitude_pitch_belt	19216	20	18
	amplitude_yaw_belt	0	20	19
##	var_total_accel_belt	19216	20	20
##	avg_roll_belt	19216	20	21
##	stddev_roll_belt	19216	20	22
##	var_roll_belt	19216	20	23
##	avg_pitch_belt	19216	20	24
	stddev_pitch_belt	19216	20	25
	var_pitch_belt	19216	20	26
	avg_yaw_belt	19216	20	27
	stddev_yaw_belt	19216	20	28
	var_yaw_belt	19216	20	29
	gyros_belt_x	0	0	30
	gyros_belt_y	0	0	31
##	gyros_belt_z	0	0	32
##		0	0	33
##	accel_belt_y	0	0	34
##	accel_belt_z	0	0	35
##	magnet_belt_x	0	0	36
##	magnet_belt_y	0	0	37

шш		0	0	20
	magnet_belt_z	0	0	38 39
	roll_arm pitch_arm	0	0	40
	yaw_arm	0	0	40
	total_accel_arm	0	0	42
	var_accel_arm	19216	20	43
		19216	20	43
	avg_roll_arm	19216	20	45
	stddev_roll_arm	19216	20	45
	var_roll_arm	19216	20	46
	avg_pitch_arm	19216	20	48
	stddev_pitch_arm	19216	20	49
	var_pitch_arm			
	avg_yaw_arm	19216	20	50
	stddev_yaw_arm	19216	20	51
	var_yaw_arm	19216	20	52
	gyros_arm_x	0	0	53
	gyros_arm_y	0	0	54
	gyros_arm_z	0	0	55
	accel_arm_x	0	0	56
	accel_arm_y	0	0	57
	accel_arm_z	0	0	58
	magnet_arm_x	0	0	59
	magnet_arm_y	0	0	60
	magnet_arm_z	0	0	61
	kurtosis_roll_arm	0	20	62
	kurtosis_picth_arm	0	20	63
	kurtosis_yaw_arm	0	20	64
	skewness_roll_arm	0	20	65
	skewness_pitch_arm	0	20	66
	skewness_yaw_arm	0	20	67
	max_roll_arm	19216	20	68
	max_picth_arm	19216	20	69
	max_yaw_arm	19216	20	70
	min_roll_arm	19216	20	71
	min_pitch_arm	19216	20	72
	min_yaw_arm	19216	20	73
	amplitude_roll_arm	19216	20	74
##	amplitude_pitch_arm	19216	20	75
##	amplitude_yaw_arm	19216	20	76
##	roll_dumbbell	0	0	77
##	pitch_dumbbell	0	0	78
##	yaw_dumbbell	0	0	79
##		0	20	80
##	-1 -	0	20	81
##	=3 =	0	20	82
##		0	20	83
##	_1 _	0	20	84
##	skewness_yaw_dumbbell	0	20	85
##	max_roll_dumbbell	19216	20	86
##	max_picth_dumbbell	19216	20	87
##		0	20	88
##		19216	20	89
##	min_pitch_dumbbell	19216	20	90
##	min_yaw_dumbbell	0	20	91

##	amplitude_roll_dumbbell	19216	20	92
##	amplitude_pitch_dumbbell	19216	20	93
##	amplitude_yaw_dumbbell	0	20	94
##	total_accel_dumbbell	0	0	95
##	var_accel_dumbbell	19216	20	96
##	avg_roll_dumbbell	19216	20	97
##	stddev_roll_dumbbell	19216	20	98
##	var_roll_dumbbell	19216	20	99
##	avg_pitch_dumbbell	19216	20	100
##	stddev_pitch_dumbbell	19216	20	101
##	var_pitch_dumbbell	19216	20	102
##	avg_yaw_dumbbell	19216	20	103
##	stddev_yaw_dumbbell	19216	20	104
##	var_yaw_dumbbell	19216	20	105
##	<pre>gyros_dumbbell_x</pre>	0	0	106
##	<pre>gyros_dumbbell_y</pre>	0	0	107
##	<pre>gyros_dumbbell_z</pre>	0	0	108
##	accel_dumbbell_x	0	0	109
##	accel_dumbbell_y	0	0	110
##	accel_dumbbell_z	0	0	111
##	magnet_dumbbell_x	0	0	112
##	magnet_dumbbell_y	0	0	113
##	magnet_dumbbell_z	0	0	114
##	roll_forearm	0	0	115
##	pitch_forearm	0	0	116
##	yaw_forearm	0	0	117
##	kurtosis_roll_forearm	0	20	118
##	kurtosis_picth_forearm	0	20	119
##	kurtosis_yaw_forearm	0	20	120
##	skewness_roll_forearm	0	20	121
##	skewness_pitch_forearm	0	20	122
##	skewness_yaw_forearm	0	20	123
##	max_roll_forearm	19216	20	124
##	max_picth_forearm	19216	20	125
##	max_yaw_forearm	0	20	126
##	min_roll_forearm	19216	20	127
##	min_pitch_forearm	19216	20	128
##	min_yaw_forearm	0	20	129
##	amplitude_roll_forearm	19216	20	130
##	amplitude_pitch_forearm	19216	20	131
##	amplitude_yaw_forearm	0	20	132
##	total_accel_forearm	0	0	133
##	var_accel_forearm	19216	20	134
##	avg_roll_forearm	19216	20	135
##	stddev_roll_forearm	19216	20	136
##	var_roll_forearm	19216	20	137
##	avg_pitch_forearm	19216	20	138
##	stddev_pitch_forearm	19216	20	139
##	var_pitch_forearm	19216	20	140
##	avg_yaw_forearm	19216	20	141
	stddev_yaw_forearm	19216	20	142
	var_yaw_forearm	19216	20	143
##	gyros_forearm_x	0	0	144
##		0	0	145
		v	· ·	

```
## gyros_forearm_z
                                        0
                                                    0
                                                              146
## accel_forearm_x
                                        0
                                                              147
                                                    0
## accel forearm y
                                        0
                                                    0
                                                              148
## accel_forearm_z
                                        0
                                                    Λ
                                                              149
## magnet_forearm_x
                                        0
                                                    0
                                                              150
## magnet_forearm_y
                                        0
                                                    0
                                                              151
## magnet forearm z
                                        0
                                                    0
                                                              152
## classe
                                                    0
                                                              153
```

Since 19216 of the 19622 observations in those columns are missing (\sim 98%) or the 20 testcases have all NA on those columns, so they can be removed to reduce computation difficulties

```
pml.training <- pml.training[c(1:4, 30:42, 53, 61, 77:79, 95, 106:117, 133, 144:153)]
pml.testing <- pml.testing[c(1:4, 30:42, 53, 61, 77:79, 95, 106:117, 133, 144:153)]</pre>
```

This reduces the number of columns from 153 columns to 46.

Setting up a training and testing set for model selection

To select a model, first the training dataset should be converted to a training part and validation part. To make the results comparable after serveral runs of the script a seed is set.

```
library(caret)

## Warning: package 'caret' was built under R version 3.4.4

## Loading required package: lattice

## Loading required package: ggplot2

## Warning: package 'ggplot2' was built under R version 3.4.4

set.seed(5678)

Trainpart = createDataPartition(pml.training$classe, p = 0.3)[[1]]

training = pml.training[Trainpart,]
validation = pml.training[-Trainpart,]
```

Model creation

Two different prediction models are explored: Recursive Partitioning and Random Forest. After fitting a prediction model, the accuracy will be validated on the validation dataset.

```
rpart_mod <- train(classe~., method="rpart", data=training)

rf_mod <- train(classe~., method="rf", data=training)</pre>
```

Now the models are created the validation of the models can be done by running the models on the validation dataset.

```
predict_rpart <- predict(rpart_mod, validation)</pre>
confusionMatrix(predict_rpart, validation$classe)
## Confusion Matrix and Statistics
##
##
             Reference
                 Α
                      В
                           С
                                 D
                                      Ε
## Prediction
##
            A 2378
                    414
                           66
                              111
                                     39
                                    596
##
            B 421 1524
                         113
                               320
##
            С
               826
                    596 1883 1189
                                    589
                                   142
            D
               270
                    123
                         333
##
                               631
            F.
##
                11
                      0
                            0
                                 0 1158
##
## Overall Statistics
##
                  Accuracy: 0.5515
##
##
                    95% CI: (0.5432, 0.5599)
##
       No Information Rate: 0.2844
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.4378
##
  Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
                        Class: A Class: B Class: C Class: D Class: E
##
                                  0.5736
                                             0.7862 0.28032 0.45880
## Sensitivity
                          0.6088
## Specificity
                          0.9359
                                    0.8691
                                             0.7178 0.92440
                                                               0.99902
## Pos Pred Value
                          0.7906
                                  0.5124
                                             0.3705 0.42095
                                                               0.99059
## Neg Pred Value
                          0.8575
                                   0.8947
                                             0.9408 0.86758
                                                               0.89128
## Prevalence
                                   0.1935
                                                     0.16391
                          0.2844
                                             0.1744
                                                               0.18379
## Detection Rate
                          0.1732
                                   0.1110
                                             0.1371 0.04595
                                                               0.08432
## Detection Prevalence
                          0.2190
                                    0.2166
                                             0.3701 0.10915
                                                               0.08512
## Balanced Accuracy
                          0.7723
                                   0.7213
                                             0.7520 0.60236 0.72891
predict_rf <- predict(rf_mod, validation)</pre>
confusionMatrix(predict_rf, validation$classe)
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction
                            C
                      В
                                 D
                                      Ε
                     47
##
            A 3879
                            0
                                 0
                                      0
                18 2580
##
            В
                           43
                                 1
                                      5
##
            С
                 5
                     28 2339
                                56
                                     15
##
            D
                 3
                      1
                           12 2194
                                     18
##
            Ε
                      1
                           1
                                 0 2486
                 1
##
## Overall Statistics
##
##
                  Accuracy : 0.9814
```

95% CI: (0.979, 0.9836)

##

```
##
       No Information Rate: 0.2844
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                      Kappa: 0.9765
##
    Mcnemar's Test P-Value : 2.646e-14
##
## Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                                                       0.9747
                                                                 0.9849
                           0.9931
                                    0.9710
                                              0.9766
## Specificity
                           0.9952
                                    0.9940
                                              0.9908
                                                       0.9970
                                                                 0.9997
## Pos Pred Value
                                              0.9574
                                                       0.9847
                           0.9880
                                    0.9747
                                                                 0.9988
## Neg Pred Value
                                                       0.9950
                                                                 0.9966
                           0.9972
                                    0.9931
                                              0.9950
## Prevalence
                           0.2844
                                    0.1935
                                              0.1744
                                                       0.1639
                                                                 0.1838
## Detection Rate
                           0.2825
                                    0.1879
                                              0.1703
                                                       0.1598
                                                                 0.1810
## Detection Prevalence
                           0.2859
                                    0.1927
                                              0.1779
                                                       0.1622
                                                                 0.1812
## Balanced Accuracy
                           0.9942
                                    0.9825
                                              0.9837
                                                       0.9859
                                                                 0.9923
```

Evaluating the accuracy of all models the random forest model has the highest accuracy.

Conclusion

Since the accuracy of the random forest model is the highest, this model will be choosen to make the predicitons for the quiz related to this course.