Lecture 6

Neurotransmission

Varieties of Neurotransmitters

- Over 50 different kinds identified
- Some are inhibitory at one location and excitatory at another
- More than one neurotransmitter may be active at a single synapse
- No simple one-to-one relationship between a single neurotransmitter and a single behavior

Small-Molecule Transmitters

- Class of quick-acting neurotransmitters
- Synthesized from dietary nutrients and packaged ready for use in axon terminals
- Examples:
 - Acetylcholine (ACh)
 - Amines
 - Norepinephrine (NE)
 - Epinephrine (EP)
 - Serotonin (5-HT)
 - Amino Acids
 - Glutamate (Glu)

- Gamma-aminobutyric (GABA)
- Glycine (Gly)

Glutamate and GABA

- Most important neurotransmitters for information transmission in the CNS
- Glutamate
 - Usually excitatory
- GABA
 - Usually inhibitory

Peptide Transmitters

- Act as hormones that respond to stress
- Enable a mother to bond with her infant
- Regulate eating, drinking, pleasure and pain
- Contribute to learning
- Opiates such as morphine and heroin mimic the actions of natural brain peptides

Transmitter Gases

- Neither stored in synaptic vesicles nor released from them
- Synthesized in cell, as needed
- Easily crosses cell membrane
- E.g., Nitric Oxide (NO)
 - Viagra enhances the effects of this neurotransmitter in the blood vessels in the penis

Postsynaptic Neuron

- Interprets the chemical message
- On postsynaptic side, a neurotransmitter may
 - Depolarize the postsynaptic membrane
 - Causing excitatory action on the postsynaptic neuron
 - EPSP (Excitatory PostSynaptic Potential)
 - Hyperpolarize the post synaptic membrane
 - Causing inhibitory action on the post synaptic neuron
 - IPSP (Inhibitory PostSynaptic Potential)
 - Initiate other chemical reactions that
 - Modulate either the excitatory or inhibitory effect or
 - Influence other functions of the receiving neuron

Receptors

- Receptor proteins recognize transmitters and their mimics
- Two basic kinds of neurotransmitter receptors

Ionotropic	Metabotropic
Fast	Slow
Quickly change shape	When activated they alter chemical reactions in the cell
Open or close an ion channel when the transmitter molecule binds	Use a system of second messengers to open ion channels
Ion Neurotransmitter	G protein

Learning: Changes in Synapses

- Presynaptic Neuron
 - Increased axonal transport
 - o Increase size or area of terminal
 - o Increase in number of synaptic vesicles
 - Increase in density of contact zones
 - Change in size of synaptic cleft

- Postsynaptic Neuron
 - Increase in size or area of spine
 - o Change in stem length and width
 - Increase in protein transport for spine construction

Activating Systems in the CNS

Cholinergic System

- Acetylcholine
- Produced in the Basal forebrain nuclei and Midbrain nuclei
- Active in maintaining attention
- Important for learning and memory, specially in adults
- A decrease in cholinergic activity is seen in Alzheimer's Disease

Noradrenergic System

- Noradrenaline (Norepinephrine)
- Produced in the Locus coeruleus
- Plays a role in learning memory (particularly in adults)
- Important in emotional processing
- Has been implied in different neurological disorders
 - Depression (less)
 - ADHD (less)
 - o Mania (excess)

Dopaminergic Systems

Nigrostriatal Dopaminergic System

- Produced in the Substantia nigra
- Involved in movement
- Related to Parkisonism

Mesolimbic Dopaminergic System

- Produced in the Ventral Tegmentum Area (VTA)
- Important in reward processing
- Has been linked to addiction and schitzophrenia

6-Hydroxydopamine (6-OHDA)

- Neurotoxin
- Destroys dopaminergic neurons

Lesions of the Ascending Dopaminergic pathways

- Results in behavioral deficits
- Animals show
 - Sensory neglect
 - Little attention to the environment
 - Motivational deficits
 - Little interest in eating food or drinking water
 - Motor impairments
 - Difficulty initiating voluntary movements
 - Similar to Parkinson's

Drug Abuse

- Drugs that are abused increase mesolimbic dopamine activity, either directly or indirectly
- Drugs that blunt abuse and addiction decrease mesolimbic dopamine activity

Serotonergic System

- Serotonin
- Plays a role in
 - Wakefulness
 - Learning
 - Mood
- Might be related to OCD and schitzophrenia

Parkinson's

- First described in 1817 by James Parkinson
- It is a hypokinetic movement disorder
- Symptoms arise due to the loss of nigrostriatal dopaminergic neurons
- As a result, the inhibitory output of the basal ganglia is abnormally high
- Incorrect coordination of movement
- Symptoms
 - Diminished facial expressions

- Lack of smooth movements
- Movement initiation is difficult (akinesia)
- Reduced velocity and amplitude of movements (bradykinesia)
- Tremor at rest.
- Impaired balance

The Frozen Addicts

- 1982: Several young drug addicts were admitted to a hospital with symptoms resembling parkinson's
- Their symptoms responded to L-DOPA
- The heroin they consumer was contaminated with MPTP
- Injection of MPTP to rats and nice had no effect but in monkeys it resulted in "parkinson's"

Causes

- While the symptoms arise from the death of the dopaminergic neurons, it is not known what causes this
- Recently it has been suggested that it could present a genetic component
 - Mutations in 3 genes have been implicated in rare forms of the disease but this doesn't account for most of the cases of PD
- These genes could be therapeutic targets in the future

Treatments

- Administration of L-DOPA
 - A dopamine precursor

- Caveat: The dose had to be constantly increased and it becomes ineffective after ~5 years
- Surgical lesioning
 - Lesioning of specific areas of the basal ganglia can increase the ability of the person to move
- Deep brain stimulation
- Stem cells