

Circuitos Digitais I - 6878

Nardênio Almeida Martins

Universidade Estadual de Maringá Departamento de Informática

Bacharelado em Ciência da Computação

Aula de Hoje

Roteiro

- o Revisão
 - o Obter a tabela verdade a partir da expressão
 - o Obter a expressão a partir da tabela verdade
- o Equivalência entre Portas Lógicas
- o Simplificação de Expressões Booleanas

Revisão

• Expressões Booleanas:

- o Obter a tabela verdade a partir da expressão
- o Obter a expressão a partir da tabela verdade

Obter a Tabela Verdade a partir da Expressão

Procedimentos:

- 1. Monta-se todas as combinações possíveis das entradas
- 2. Monta-se as colunas de cada parte da expressão com seus resultados
- 3. Monta-se a coluna de saída final (5)

Exemplo

Obter a TV a partir da expressão: S=A+B+A.B.C

Segue os três passos de montagem da tabela A expressão pode ser vista como três termos, chamados de S₁,S₂ $e S_3$

$$S=S_1+S_2+S_3=\overline{A}+B+A.\overline{B}.\overline{C}$$

Exemplo

Obter a TV a partir da expressão: $S = \overline{A} + B + A \cdot \overline{B} \cdot \overline{C}$

A	В	С	A	В	C	A.B.C	S
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

Exemplo

$$S=\overline{A}+B+A.\overline{B}.\overline{C}$$

A	В	С	A	В	C	A.B.C	S
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

Exemplo

Obter a TV a partir da expressão: $S = \overline{A} + B + A \cdot \overline{B} \cdot \overline{C}$

A	В	С	A	В	C	A.B.C	S
0	0	0	1				
0	0	1	1				
0	1	0	1				
0	1	1	1				
1	0	0	0				
1	0	1	0				
1	1	0	0				
1	1	1	0				

Exemplo

A	В	С	A	В	C	A.B.C	S
0	0	0	1				
0	0	1	1				
0	1	0	1				
0	1	1	1				
1	0	0	0				
1	0	1	0				
1	1	0	0				
1	1	1	0				

Exemplo

$$S=\overline{A}+B+A.\overline{B}.\overline{C}$$

A	В	C	A	B	C	A.B.C	5
0	0	0	1	1			
0	0	1	1	1			
0	1	0	1	0			
0	1	1	1	0			
1	0	0	0	1			
1	0	1	0	1			
1	1	0	0	0			
1	1	1	0	0			

Exemplo

Obter a TV a partir da expressão: S=A+B+A.B.C

Α	В	C	A	В	\overline{c}	$A.\overline{B}.\overline{C}$	S
0	0	Ó	1	1	À		
0	0	1	1	1			
0	1	0	1	0			
0	1	1	1	0			
1	0	0	0	1			
1	0	1	0	1			
1	1	0	0	0			
1	1	1	0	0			

Exemplo

$$S=A+B+A.\overline{B}.C$$

A	В	C	A	B	C	A.B.C	S
0	0	Ó	1	1	Î		
0	0	1	1	1	0		
0	1	0	1	0	1		
0	1	1	1	0	0		
1	0	0	0	1	1		
1	0	1	0	1	0		
1	1	0	0	0	1		
1	1	1	0	0	0		

Exemplo

A	В	С	A	B	C	A.B.C	S
0	0	0	1	1	1		
0	0	1	1	1	0		
0	1	0	1	0	1		
0	1	1	1	0	0		
1	0	0	0	1	1		
1	0	1	0	1	0		
1	1	0	0	0	1		
1	1	1	0	0	0		

Exemplo

A	В	С	A	B	C	A.B.C	5
A	В	C	A		C	A.B.C	3
0	0	0	1	1	1	0	
0	0	1	1	1	0	0	
0	1	0	1	0	1	0	
0	1	1	1	0	0	0	
1	0	0	0	1	1	1	
1	0	1	0	1	0	0	
1	1	0	0	0	1	0	
1	1	1	0	0	0	0	

Exemplo

Obter a TV a partir da expressão: $S = \overline{A} + B + A \cdot \overline{B} \cdot \overline{C}$

A	В	С	A	В	C	AB.	5
0	0	0	1	1	1	0	
0	0	1	1	1	0	0	
0	1	0	1	0	1	0	
0	1	1	1	0	0	0	
1	0	0	0	1	1	1	
1	0	1	0	1	0	0	
1	1	0	0	0	1	0	
1	1	1	0	0	0	0	

Saída da Expressão

Exemplo

Obter a TV a partir da expressão: $S = \overline{A} + B + A \cdot \overline{B} \cdot \overline{C}$

A	В	С	A	В	C	AB.	5
0	0	0	1	1	1	0	1
0	0	1	1	1	0	0	1
0	1	0	1	0	1	0	1
0	1	1	1	0	0	0	1
1	0	0	0	1	1	1	1
1	0	1	0	1	0	0	0
1	1	0	0	0	1	0	1
1	1	1	0	0	0	0	1

Saída da Expressão

- Obter a Expressão a partir da Tabela Verdade

Obter a Expressão a partir da Tabela Verdade

Exemplo:

	A	В	5	$ \rightarrow S = S_1 + S_2 + S_3 + S_4$
Caso 1:	0	0	1	S ₁ Quando a expressão S é verdadeira?
Caso 2:	0	1	0	S ₂ Quando S = 1?
Caso 3:	1	0	1	S ₃
Caso 4:	1	1	1	S ₄

Obter a Expressão a partir da Tabela Verdade

Exemplo:

	A	В	5	
Caso 1:	0	0	1	S ₁
Caso 2:	0	1	0	S ₂
Caso 3:	1	0	1	S ₃
Caso 4:	1	1	1	54

$$S = S_1 + S_2 + S_3 + S_4$$

Resposta

<u>S=1:</u>

- •Quando $S_1 = 1$, OU
- •Quando $S_2 = 1$, OU
- •Quando $S_3 = 1$, OU
- •Quando $S_4 = 1$

Obter a Expressão a partir da Tabela Verdade

S₁

S₂

Exemplo:

A	В	5

Caso 1:

0	1	0

$S = S_1 + S_2 + S_3 + S_4$

Resposta

S=1 quando:

·Caso 1:
$$A=0 E B=0 \Rightarrow S_1=1 \Rightarrow \overline{A}.\overline{B}$$

OU

·Caso 3:
$$A=1$$
 E $B=0 \Rightarrow S_3=1 \Rightarrow A.\overline{B}$

OU

·Caso 4:
$$A=1$$
 E $B=1 \Rightarrow S_4=1 \Rightarrow A.B$

Soma de Produtos

$$S=\overline{A}.\overline{B}+A.\overline{B}+A.B$$

Cada produto isolado é capaz de gerar S=1

Obter a Expressão a partir da Tabela Verdade

Exemplo:

	A	В	S	
Caso 1:	0	0	1	S ₁
Caso 2:	0	1	0	S ₂
Caso 3:	1	0	0	S ₃
Caso 4:	1	1	1	S ₄

Quando a expressão 5 é falsa?

Quando S = 0?

Obter a Expressão a partir da Tabela Verdade

Exemplo:

	A	В	5	
Caso 1:	0	0	1	S ₁
Caso 2:	0	1	0	S ₂
Caso 3:	1	0	0	S ₃
Caso 4:	1	1	1	54

Resposta

<u>S=0:</u>

- •Quando $S_2 = 0$
- •Quando $S_3 = 0$

Obter a Expressão a partir da Tabela Verdade

Exemplo:

| Caso 1: | 0 | 0 | 1 | | S₁

Caso 2: 0 1 0

Caso 3: 1 0 0 S₃

Caso 4: 1 1 1 | S₄

Resposta

S=0 quando:

·Caso 2: A=0 OU $B=1 \Rightarrow S_2=0 \Rightarrow A+\overline{B}$

E

S₂

•Caso 3: A=1 OU B=0 \Rightarrow S₃=0 \Rightarrow \overline{A} +B

Produto de Somas

 $S=(A+\overline{B}).(\overline{A}+B)$

Cada soma isolada é capaz de gerar S=0

Aula de Hoje

- o Equivalência entre portas lógicas
- O Simplificação de expressões booleanas

Equivalência entre Portas Lógicas

Motivação:

- 1. Otimização na utilização dos circuitos integrados
- 2. Redução do número de componentes
- 3. Minimização de custos

Considere a expressão a seguir:

$$S = [A + (B.C)] \cdot A$$

Como é o circuito dessa expressão?

Circuito da Expressão

$$S = [A + (B.C)] \cdot A$$

Circuito da Expressão

$$S = [A + (B.C)] . A$$

Equivalência entre Portas Lógicas

1. Inversor a partir de uma Porta NAND:

Ligando as entradas A e B em

curto-circuito ⇒ A=B sempre

⇒ corresponde a um <u>INVERSOR</u>

Equivalência entre Portas Lógicas

1. Inversor a partir de uma Porta NAND:

Circuito da Expressão

$$S = [A + (B.C)] \cdot A$$

Usando a equivalência entre NOT e NAND pode-se eliminar o CI da porta NOT

Equivalência entre Portas Lógicas

2. <u>Inversor a partir de uma Porta NOR:</u>

Equivalência entre Portas Lógicas

2. Inversor a partir de uma Porta NOR:

Equivalência entre Portas Lógicas

3. Porta NOR a partir de AND e INVERSORES:

Equivalência entre Portas Lógicas

4. Porta OR a partir de NAND e INVERSORES:

Modificando 2º Teorema de DeMorgan $\Rightarrow A+B = A.B$

$$\overline{A+B} = \overline{A}.\overline{B}$$

$$\overline{A+B} = \overline{A}.\overline{B}$$

$$A+B = \overline{A}.\overline{B}$$

$$A+B = \overline{A}.\overline{B}$$

$$A+B = \overline{A}.\overline{B}$$

$$A+B = \overline{A}.\overline{B}$$

Equivalência entre Portas Lógicas

5. Porta NAND a partir de OR e INVERSORES:

Equivalência entre Portas Lógicas

6. Porta AND a partir de NOR e INVERSORES:

Modificando 1º Teorema de DeMorgan $\Rightarrow \overline{A.B} = \overline{A+B}$

$$\overline{A.B} = \overline{A+B}$$

$$\overline{A.B} = \overline{A+B}$$

$$A.B = \overline{A+B}$$

$$A.B = \overline{A+B}$$

$$A.B = \overline{A+B}$$

Exercícios

1. Desenhe o circuito usando apenas Portas NAND:

1. Desenhe o circuito usando apenas Portas NAND:

Solução:

Equivalências entre Portas Lógicas

$$\frac{A}{S} \equiv \frac{A}{B} = \frac{S}{S}$$

$$\frac{A}{B}$$
 $\equiv \frac{A}{B}$

$$\frac{A}{B} = \frac{A}{B} = \frac{A}$$

1. Desenhe o circuito usando apenas Portas NAND:

<u>Solução:</u>

Equivalências entre Portas Lógicas_

Circuito com Equivalência de Portas Lógicas

1. Desenhe o circuito usando apenas Portas NAND: Solução:

Equivalências entre Portas Lógicas

Simplificação de Portas Lógicas

1. Desenhe o circuito usando apenas Portas NAND:

Solução:

Equivalências entre Portas Lógicas

Circuito Final com Equivalência de Portas Lógicas

Exercícios

- 2.1. Obtenha a expressão a partir da TV por soma de produtos.
- 2.2. Use a expressão para fazer o diagrama do circuito.
- 2.3. Substitua as portas lógicas do circuito usando apenas portas NOR.

A	В	5
0	0	0
0	1	1
1	0	1
1	1	0

- 2.1. Obtenha a expressão a partir da TV por soma de produtos.
- 2.2. Use a expressão para fazer o diagrama do circuito.
- 2.3. Substitua as portas lógicas do circuito usando apenas portas NOR.

A	В	S	
0	0	0	
0	1	1	S=A.B+A.B
1	0	1	S=A.B+A.B
1	1	0	

- 2.1. Obtenha a expressão a partir da TV por soma de produtos.
- 2.2. Use a expressão para fazer o diagrama do circuito.
- 2.3. Substitua as portas lógicas do circuito usando apenas portas NOR.

Circuito que executa a expressão $S=\overline{A}.B+A.\overline{B}$

- 2.1. Obtenha a expressão a partir da TV por soma de produtos.
- 2.2. Use a expressão para fazer o diagrama do circuito.
- 2.3. Substitua as portas lógicas do circuito usando apenas portas NOR.

Substituindo as Portas do circuito por Portas NOR

$$\frac{A}{S} \equiv \frac{A}{B}$$

$$\frac{A}{B} = \frac{A}{B} = \frac{A}$$

$$\frac{A}{B}$$
 $\equiv \frac{A}{B}$

- 2.1. Obtenha a expressão a partir da TV por soma de produtos.
- 2.2. Use a expressão para fazer o diagrama do circuito.
- 2.3. Substitua as portas lógicas do circuito usando apenas portas NOR.

Substituindo as Portas do circuito por Portas NOR

- 2.1. Obtenha a expressão a partir da TV por soma de produtos.
- 2.2. Use a expressão para fazer o diagrama do circuito.
- 2.3. Substitua as portas lógicas do circuito usando apenas portas NOR.

Substituindo as Portas do circuito por Portas NOR

- 2.1. Obtenha a expressão a partir da TV por soma de produtos.
- 2.2. Use a expressão para fazer o diagrama do circuito.
- 2.3. Substitua as portas lógicas do circuito usando apenas portas NOR.

Circuito Final com Portas NOR

Simplificação de Expressões Booleanas

Exemplo:

Simplificar a expressão: $S = A.B.C+A.\overline{C}+A.\overline{B}$

Simplificação de Expressões Booleanas

Exemplo:

Simplificar a expressão: $S = A.B.C+A.\overline{C}+A.\overline{B}$

Solução:

Simplificação de Expressões Booleanas

Exemplo:

Simplificar a expressão: $S = A.B.C+A.\overline{C}+A.\overline{B}$

Ou outra solução:

$$S=A.B.C+A.\overline{C}+A.\overline{B}$$
 $S=A.(B.C+C+B)$
 $S=A.[B.C+(B+C)]$
 $S=A.[B.C+(B+C)]$
 $S=A.[B.C+(B+C)]$
 $S=A.[B.C+(B.C)]$
 $S=A.[B.C+(B.C)]$
 $S=A.[B.C+(B.C)]$

Simplificação de Expressões Booleanas

Exemplo:

Simplificar a expressão: $S = A.B.C+A.\overline{C}+A.\overline{B}$

S=A.[B.C.(B.C)]

Ou outra solução:

$$S=A.[B.C+(B.C)]$$
 $S=A.[B.C+(B.C)]$
 $S=A.[B.C+(B+C)]$
 $S=A.[B.C.(B+C)]$
 $S=A.[B.C.(B+C)]$

$$S=A.[(B+C).(B.C)]$$
 $S=A.[B.B.C+B.C.C]$
 ψ
 0
 0
 0
 0
 0

Simplificação de Expressões Booleanas

Exemplo:

Simplificar a expressão: $S = A.B.C+A.\overline{C}+A.\overline{B}$

Circuito correspondente à expressão simplificada (1 fio)

Exercícios

Simplifique as expressões:

1. $S=\overline{A}.\overline{B}.\overline{C}+\overline{A}.B.\overline{C}+A.\overline{B}.C$

2.
$$S=\overline{A}.\overline{B}.\overline{C}+\overline{A}.B.C+\overline{A}.B.\overline{C}+A.\overline{B}.\overline{C}+A.B.\overline{C}$$

3.
$$S=(A+B+C).(\overline{A}+\overline{B}+C)$$

4.
$$S=[(\overline{A.C})+B+D]+C.(\overline{A.C.D})$$

Soluções na próxima aula

Resumo da Aula de Hoje

Tópicos mais importantes:

- o Equivalência entre Portas Lógicas
- O Simplificação de Expressões Booleanas

Equivalências entre Portas Lógicas

Bloco Lógico	Propriedades	Blocos Lógicos Equivalentes
- } ∞⁴	Análise da tabela verdade das portas lógicas NAND e NOR	
⊅ ∞	2° Teorema de DeMorgan $\overline{A+B} = \overline{A} \cdot \overline{B}$	
D	2° Teorema de DeMorgan Modificado $\overline{\overline{A+B}} = \overline{\overline{A} \cdot \overline{B}}$	
	1° Teorema de DeMorgan $\overline{A.B} = \overline{A} + \overline{B}$	
D	1° Teorema de DeMorgan Modificado $\overline{\overline{A.B}} = \overline{\overline{A}} + \overline{B}$	

Próxima Aula

- Resolução de Exercícios de Simplificação
- o Formas de Onda
- o Mapa de Karnaugh
- Simplificação de Expressões Booleanas por Mapa de Karnaugh

