TEST DI AUTOVALUTAZIONE UNO

- 1. Dati lo spazio vettoriale numerico \mathbb{R}^3 e l'insieme di vettori $S = \{(1,2,1), (1,3,0)\}$, quale dei seguenti vettori appartiene alla chiusura lineare di S?
 - (a) (0,0,2); (b) (0,1,-1); (c) (0,1,2); (d) (1,0,0);
- 2. Quale dei seguenti insiemi di vettori è una base dello spazio vettoriale numerico \mathbb{R}^2 ?
 - $\hbox{(a) } \{(1,0),(0,0)\}; \quad \hbox{(b) } \{(0,1),(1,-1)\}; \quad \hbox{(c) } \{(1,2)\}; \quad \hbox{(d) } \{(3,1),(1,1),(-1,1)\}.$
- 3. Sia $(\mathbb{R}[x], +, \cdot)$ lo spazio vettoriale dei polinomi in una variabile a coefficienti reali con le operazioni usuali. Dire quale dei seguenti insiemi è linearmente indipendente:
 - (a) $\{0, 1 + 4x^7\}$ (b) $\{1 + x, 2 + 2x\}$; (c) $\{1 + x, x + x^2\}$.
- 4. Quale dei seguenti insiemi è una base di $\mathbb{R}^3?$
 - (a) $\{(0,1,2),(0,1,0)\};$ (b) $\{(1,1,-1),(0,1,1),(1,0,0)\};$ (c) $\{(1,-2,2),(1,0,1),(0,-2,1)\};$ (d) $\{(1,0,0),(0,1,2),(0,1,1),(2,1,1)\}.$
- 5. Nello spazio vettoriale reale V dei vettori liberi della geometria elementare, siano u_1, u_2 due vettori linearmente indipendenti.
 - (a) Gli insiemi $\{u_1, u_1 + 3u_2\}$ e $\{u_1 u_2, u_2\}$ generano lo stesso sottospazio vettoriale? \circ Sì \circ No
 - (b) L'insieme $\{\alpha u_1 + u_2 : \alpha \in \mathbb{R}\}$ è un sottospazio vettoriale di \mathcal{V} ? \circ Sì \circ No
 - (c) I vettori u_1 e u_2 sono paralleli? \circ Sì \circ No
- 6. Qual è il vettore delle componenti di $u = 1 x x^2$ nella base ordinata $\mathcal{B} = (1 x, 2 + 2x + x^2, 1 + x)$ dello spazio vettoriale $\mathbb{R}^2[x]$ dei polinomi su \mathbb{R} in una variabile x di grado ≤ 2 ?

 (a) (0,1,1); (b) (1,2,0); (c) (1,-1,2).
- 7. Si consideri il riferimento $\mathcal{R} = ((1,1),(-2,1))$ di \mathbb{R}^2 . È vero che il vettore delle componenti di v = (1,-2) in \mathcal{R} è (1,1)? \circ Sì \circ No
- 8. Nello spazio vettoriale numerico \mathbb{R}^3 , quali delle seguenti somme di sottospazi è diretta?
 - (a) $\mathcal{L}((1,2,2)) + \mathcal{L}((0,1,1),(1,1,1))$ (b) $\mathcal{L}((1,-1,0)) + \mathcal{L}((2,0,1))$
 - (c) $\mathcal{L}((1,2,0)) + \mathcal{L}((0,1,1),(1,1,1))$
- 9. Si considerino i sottospazi vettoriali $W_1 = \mathcal{L}((1,1,0))$ e $W_2 = \mathcal{L}((0,1,1))$ di \mathbb{R}^3 . È vero che il vettore (2,1,1) appartiene a $W_1 \cap W_2$? \circ Sì \circ No
- 10. Si considerino i due sottospazi $U = \mathcal{L}((1, -2, 1))$ e $W = \mathcal{L}((0, 0, 0), (2, -1, 1))$ di \mathbb{R}^3 . È vero che il vettore v = (1, 1, 0) appartiene allo spazio somma U + W? \circ Sì \circ No
- 11. In uno spazio vettoriale V di dimensione 4 su un campo K siano W e U sottospazi tali che $\dim(W)=3$ e $\dim(U)=2$, è possibile che $U\cap W$ abbia dimensione 0? \circ Sì \circ No
- 12. Sia $S = \{v_1, \dots, v_t\}$ un sistema di generatori di uno spazio vettoriale V su un campo K. Quale delle seguenti affermazioni è vera?
 - (a) Un insieme linearmente dipendente contiene un numero di vettori maggiore di o uguale a t.
 - (b) Un insieme linearmente indipendente contiene un insieme di vettori minore di o uguale a t.
 - (c) S è una base di V.
- 13. Essendo la dimensione di uno spazio vettoriale V finitamente generato su un campo K la cardinalità di una sua qualsiasi base, è vero che essa coincide col massimo numero di vettori linearmente indipendenti in V? \circ Si \circ No