1) Problem 2 (50 pts) - LQR: Consider a tracking sensor which in steady state tracks an object. Let θ(t) = the angle (in radians) between the direction the sensor is pointing and the direction of the object being tracked. If the sensor loses the track (i.e., θ(t) ≠ 0), in the absence of any feedback control to return the sensor to the object, the sensor will reorient itself to a given reference orientation. Assume this behavior may be modeled using:

$$\theta_{nc}(t+1) = 1.5 \ \theta_{nc}(t).$$

where "nc" means "no control."

We want to build a Linear Quadradic Regulator (LQR) that will optimally return the system to tracking an object given it has lost track. Note: the control input provides the correction required to bring the sensor back into track (e.g., from a Kalman Filter).

a) (4) Draw a schematic diagram of the system.

b) (4) Write down the dynamic equation for the control system $(\theta(t))$ that results when the control input (u(t)) is added.

```
i) x(k+1) = 1.5 X(k) + u(k)
ii) (Assume b = 1)
```

- c) (4) Write down the Linear Quadratic Regulator (LQR) cost function that formulates the above problem where the cost of output error is equal to the cost of control, i.e., Q = R = 1.
 - i) $J = X(N)^2 + \sum (X(k)^2 + u(k)^2)$
 - ii) Sum is over k = 0 to N-1
- d) (8) Write down the LQR equations to find the optimal control u(t).
 - i) Riccati Difference (Value) Equation:

$$(1) \ P(k) = 1 + 1.5^2 \ P(k+1) - 1.5^2 \ P2 \ (k+1) \ / \ (1 + P(k+1))$$

(a) Calculated backwards from P(k=N) = q

(b) =>
$$P(N-1) = 1 + 1.5^2 - 1.5^2 / 2$$

(c) ... to P(1)

ii) Feedback Gain:

$$(1) \ L(k) = 1.5 \ P(k+1) \ / \ [1 + P(k+1)]$$

$$(2) \Rightarrow L(N-1) = 1.5 / 2$$

iii) Optimum Control Input:

$$(1) u(k) = - L(k) X(k)$$

- e) (5) Write and submit a MATLAB program that will solve this this LQR problem where dt = 1 second that will:
 - i) Calculate P(t), L(t), Th(t) = $\theta_{nc}(t)$, and u(t)
 - ii) Plot Th(t) and u(t). Note that all graphs should be labeled.
- f) (5) Run the program for Th(0) = $\theta(0)$ = 0.2 radians and t = 0-10 seconds, and provide the results below.

$$u(N-1) = -1.5316e-04$$

 $X(N) = 1.5316e-04$

(2) Graphical Output:

- g) (4) What do you conclude from these plots?
 - i) The system returns to steady state in ~6 seconds
- h) (8) Run the program for each of the following test cases (excluding TC1) and provide the results below.

Test Case	Q	R
TC 1	1	1
TC 2	1	0.1
TC 3	1	10
TC 4	0.1	1
TC 5	10	1
TC 6	0.1	0.1
TC 7	10	10

- i) TC1 is provided in f) above.
- ii) TC2:

iii) TC3:

- iv) TC4: Same as TC3v) TC5: Same as TC2
- vi) TC6 & TC 7: Same as TC1

- i) (8) Explain the significance of each test case and behavior that results.
 - i) TC2 (& TC5) => If the cost of a deviation from steady state exceeds the cost of control, the system returns more quickly to steady state (and larger control is applied).
 - ii) TC3 (& TC4) => If the cost of a deviation from steady state is less than the cost of control, the system returns more slowly to steady state (and less control is applied).
 - iii) It is the ratio of R to Q that matters (not the specific values).