Data Science for Scientists

The Data Science process

Gianluca Campanella 17th July 2018

High-level view

Business goal

 \downarrow

Testable hypothesis

1

Experimentation and modelling

High-level view

Research question

 \downarrow

Obtain \longleftrightarrow Explore \longleftrightarrow Model

1

Use it!

Which takes longer?

What people think of as the moment of discovery is really the discovery of the question.

— J. E. Salk

Define the research question

- Identify the problem and why it should be solved
- Frame it in the context of data collection

Define the research question

What to do

- Identify the problem and why it should be solved
- Frame it in the context of data collection

- Which metrics do I need to improve?
- What are possible actions to solve the problem?
- What is the benefit of solving the problem?

Obtain the data

- Measure the gap between ideal and available
- Think about assumptions and limitations

Obtain the data

What to do

- Measure the gap between ideal and available
- Think about assumptions and limitations

- Are there enough data?
- Are they relevant to the research question?
- Can they be trusted?

Explore the data

- Data dictionary and any other documentation
- Descriptive statistics and visualisations

Explore the data

What to do

- Data dictionary and any other documentation
- Descriptive statistics and visualisations

- What kind of simple visualisations can I use?
- Which data types and distributions?
- Are there missing values or outliers?

Model the data

- Model selection and fitting
- Feature engineering

Model the data

What to do

- Model selection and fitting
- Feature engineering

- Analysis-focused or building-focused?
- What is an appropriate model for the data?
- How can I evaluate and improve model performance?

Modelling misconceptions

Most well-executed Data Science projects don't...

- Use complicated tools
- Fit complicated models

Modelling misconceptions

Most well-executed Data Science projects don't...

- Use complicated tools
- Fit complicated models

Instead, they do...

- Focus on solving the problem
- Use appropriate not necessarily big! data
- Use relatively standard models

The 80—20 rule of modelling

• The first reasonable thing you can do goes 80% of the way

• Everything after that is to get the remaining 20%...

often at additional cost!

The 80—20 rule of modelling

• The first reasonable thing you can do goes 80% of the way

• Everything after that is to get the remaining 20%... often at additional cost!

Is it worth it?

Are we done?

Summarise the findings

- Storytelling and visual aids to interpretation
- Communicate assumptions and limitations

Summarise the findings

What to do

- Storytelling and visual aids to interpretation
- Communicate assumptions and limitations

- How can I communicate results effectively?
- What format should I adopt?
- Who are my audience?

Operationalise

- System integration
- Monitoring and maintenance

Operationalise

What to do

- System integration
- Monitoring and maintenance

- What (visual) outputs do I care about?
- How often does the model need retraining?
- Do we need to think about scalability?

Caveat

This process is non-linear and iterative