Lógica para Computação

Profa. Dra. Viviane Menezes

vivianemenezes@ufc.br

Valoração de Fórmulas

■ Valoração na Lógica Proposicional.

Valoração de Fórmulas

- Valoração na Lógica Proposicional.
- Valoração na Lógica de Predicados depende:

Valoração de Fórmulas

- Valoração na Lógica Proposicional.
- Valoração na Lógica de Predicados depende:
 - dos objetos;
 - dos símbolos funcionais e;
 - dos predicados.

Valoração de Fórmulas

- Valoração da fórmula $\exists x P(x)$:
 - \blacksquare é \lor se P(x) for \lor para algum valor de x.
 - \blacksquare é F se P(x) for F para todo valor de x.

Exemplo

- $\blacksquare \exists x (Simpson(x) \land AdoraDuff(x))$
- $\blacksquare \exists x (Simpson(x) \land \neg PeleAmarela(x))$

Valoração de Fórmulas

- Valoração da fórmula $\forall x P(x)$:
 - \blacksquare é \lor se P(x) for \lor para todos os valores de x.
 - \blacksquare é F se P(x) for F para algum valor de x.

Exemplo

- $\forall x(Simpson(x) \rightarrow PeleAmarela(x))$
- \blacksquare $\forall x (Simpson(x) \rightarrow AdoraDuff(x))$

Modelos

O que é um modelo na lógica proposicional?

Modelos

Sejam \mathcal{F} um conjunto de símbolos funcionais e \mathcal{P} um conjunto de predicados. Um **modelo** \mathcal{M} do par $(\mathcal{F}, \mathcal{P})$ consiste em:

- Um conjunto de objetos A;
- Para cada símbolo funcional $f(t_1, \dots, t_n) \in \mathcal{F}$, uma função $f^{\mathcal{M}}: A^n \to A$.
- Para cada predicado $P(t_1, \dots, t_n) \in \mathcal{P}$, um subconjunto $\mathcal{P}^{\mathcal{M}} \subseteq A^n$ de n-tuplas de elementos de A.

Exercício - O Domínio Familiar

Elabore um modelo \mathcal{M} para $(\mathcal{F}, \mathcal{P})$ tal que:

- o conjunto de objetos A contém valores referentes aos personagens da família Simpson;
- $\blacksquare \mathcal{F} = \{\}.$
- $\blacksquare \mathcal{P} = \{Irmaos(x, y)\}.$

Exercícios - O Domínio do Mundo dos Blocos

- Considere o modelo \mathcal{M} para $(\mathcal{F}, \mathcal{P})$ em que:
 - A é o conjunto de valores referentes aos objetos do Mundo dos Blocos;
 - \blacksquare $\mathcal{F} = \{cor(x)\}$ e;
 - $\mathcal{P} = \{Maior(x, y), Sobre(x, y), Bloco(x), Mesa(x)\}.$

Exercícios - O Domínio da Carona

- Ana e Ray moram em Juazeiro, Bia mora em Maranguape, Edu mora no Crato, Gil mora em Caucaia e Eva mora em Pacatuba.
- Juazeiro e Crato ficam na região do Cariri e Maranguape, Caucaia e Pacatuba ficam na Região Metropolitana de Fortaleza.
- Ana e Gil têm carro.
- Uma pessoa pode dar carona a outra se ela tem carro e ambas moram em cidades que ficam na mesma região.
- Elabore um modelo \mathcal{M} para $(\mathcal{F}, \mathcal{P})$ em que:
 - A contém valores referentes às pessoas e aos lugares;
 - $\blacksquare \mathcal{F} = \{\} e;$
 - $\mathcal{P} = \{Cidade(x), Pessoa(x), temCarro(x), podeDarCarona(x, y), moraEm(x, y), ficaNaRegiao(x, y)\}.$

Exercícios - O Dominio da Coloração de Mapas

Como colorir um mapa de modo que regiões adjacentes tenham cores distintas?

Exercícios - O Dominio da Coloração de Mapas

- Elabore um modelo \mathcal{M} para $(\mathcal{F}, \mathcal{P})$ em que:
 - A contém valores referentes às cores e às região do mapa;
 - $\blacksquare \mathcal{F} = \{\} e;$
 - $\blacksquare \mathcal{P} = \{Região(x), Adjacente(x, y), Cor(x)\}.$

Verifique se as fórmulas são verdadeiras no modelo

- ∃y Irmaos(homer,y);
- ¬Irmaos(marge,lisa);
- $\blacksquare \forall x \forall y \ Irmaos(x, y) \rightarrow Irmaos(y, x);$
- \blacksquare $\forall x \exists y \ Irmaos(y, x).$

Dado um modelo \mathcal{M} para um par $(\mathcal{F}, \mathcal{P})$, a relação $\mathcal{M} \models \varphi$ é dada como a seguir:

Dado um modelo \mathcal{M} para um par $(\mathcal{F}, \mathcal{P})$, a relação $\mathcal{M} \models \varphi$ é dada como a seguir:

■ 1. P: Se φ é da forma $P(t_1, t_2, \dots, t_n)$ substituímos os termos no conjunto A. Então, $\mathcal{M} \models P(t_1, t_2, \dots, t_n)$ é verdade sss $(a_1, a_2, \dots, a_n) \in P^{\mathcal{M}}$;

Dado um modelo \mathcal{M} para um par $(\mathcal{F}, \mathcal{P})$, a relação $\mathcal{M} \models \varphi$ é dada como a seguir:

- 1. P: Se φ é da forma $P(t_1, t_2, \dots, t_n)$ substituímos os termos no conjunto A. Então, $\mathcal{M} \models P(t_1, t_2, \dots, t_n)$ é verdade sss $(a_1, a_2, \dots, a_n) \in P^{\mathcal{M}}$;
- 2. $\forall x \varphi$: $\mathcal{M} \models \varphi$ é verdade sss $\mathcal{M} \models \varphi$ for verdade **para todo** $a \in A$

Dado um modelo \mathcal{M} para um par $(\mathcal{F}, \mathcal{P})$, a relação $\mathcal{M} \models \varphi$ é dada como a seguir:

- 1. P: Se φ é da forma $P(t_1, t_2, \dots, t_n)$ substituímos os termos no conjunto A. Então, $\mathcal{M} \models P(t_1, t_2, \dots, t_n)$ é verdade sss $(a_1, a_2, \dots, a_n) \in P^{\mathcal{M}}$;
- 2. $\forall x \varphi$: $\mathcal{M} \models \varphi$ é verdade sss $\mathcal{M} \models \varphi$ for verdade **para todo** $a \in A$
- 3. $\exists x \varphi$: $\mathcal{M} \models \varphi$ é verdade sss $\mathcal{M} \models \varphi$ é verdade para algum $a \in \mathcal{A}$

Dado um modelo $\mathcal M$ para um par $(\mathcal F,\mathcal P)$, a relação $\mathcal M \models \varphi$ é dada como a seguir:

- 1. P: Se φ é da forma $P(t_1, t_2, \dots, t_n)$ substituímos os termos no conjunto A. Então, $\mathcal{M} \models P(t_1, t_2, \dots, t_n)$ é verdade sss $(a_1, a_2, \dots, a_n) \in P^{\mathcal{M}}$;
- 2. $\forall x \varphi$: $\mathcal{M} \models \varphi$ é verdade sss $\mathcal{M} \models \varphi$ for verdade para todo $a \in A$
- 3. $\exists x \varphi$: $\mathcal{M} \models \varphi$ é verdade sss $\mathcal{M} \models \varphi$ é verdade para algum $a \in A$

continua...

Dado um modelo $\mathcal M$ para um par $(\mathcal F,\mathcal P)$, a relação de satisfação $\mathcal M \models \varphi$ é dada como a seguir:

Dado um modelo $\mathcal M$ para um par $(\mathcal F,\mathcal P)$, a relação de satisfação $\mathcal M \models \varphi$ é dada como a seguir:

■ 4. $\neg \varphi$: $\mathcal{M} \models \neg \psi$ é verdade sss $\mathcal{M} \models \psi$ não é verdade.

Dado um modelo \mathcal{M} para um par $(\mathcal{F}, \mathcal{P})$, a relação de satisfação $\mathcal{M} \models \varphi$ é dada como a seguir:

- 4. $\neg \varphi$: $\mathcal{M} \models \neg \psi$ é verdade sss $\mathcal{M} \models \psi$ não é verdade.
- 5. $\varphi_1 \vee \varphi_2$: $\mathcal{M} \models \varphi_1 \vee \varphi_2$ é verdade sss $\mathcal{M} \models \varphi_1$ ou $\mathcal{M} \models \varphi_2$ é verdade.

Dado um modelo \mathcal{M} para um par $(\mathcal{F}, \mathcal{P})$, a relação de satisfação $\mathcal{M} \models \varphi$ é dada como a seguir:

- 4. $\neg \varphi$: $\mathcal{M} \models \neg \psi$ é verdade sss $\mathcal{M} \models \psi$ não é verdade.
- 5. $\varphi_1 \vee \varphi_2$: $\mathcal{M} \models \varphi_1 \vee \varphi_2$ é verdade sss $\mathcal{M} \models \varphi_1$ ou $\mathcal{M} \models \varphi_2$ é verdade.
- 6. $\varphi_1 \land \varphi_2$: $\mathcal{M} \models \psi_1 \land \varphi_2$ é verdade sss $\mathcal{M} \models \varphi_1$ e $\mathcal{M} \models \varphi_2$ são ambas verdadeiras.

Dado um modelo \mathcal{M} para um par $(\mathcal{F}, \mathcal{P})$, a relação de satisfação $\mathcal{M} \models \varphi$ é dada como a seguir:

- 4. $\neg \varphi$: $\mathcal{M} \models \neg \psi$ é verdade sss $\mathcal{M} \models \psi$ não é verdade.
- 5. $\varphi_1 \vee \varphi_2$: $\mathcal{M} \models \varphi_1 \vee \varphi_2$ é verdade sss $\mathcal{M} \models \varphi_1$ ou $\mathcal{M} \models \varphi_2$ é verdade.
- 6. $\varphi_1 \land \varphi_2$: $\mathcal{M} \models \psi_1 \land \varphi_2$ é verdade sss $\mathcal{M} \models \varphi_1$ e $\mathcal{M} \models \varphi_2$ são ambas verdadeiras.
- 7. $\varphi_1 \rightarrow \varphi_2$: $\mathcal{M} \models \varphi_1 \rightarrow \varphi_2$ é verdade sss $\mathcal{M} \models \varphi_2$ é verdade sempre que $\mathcal{M} \models \varphi_1$ for verdade.

Exercício 1

Verifique se $\mathcal{M} \models \varphi$ em que \mathcal{M} é o modelo da família *Simpsons* e φ é cada uma das fórmulas:

- ∃*y Irmaos*(homer,*y*);
- ¬Irmaos(marge,lisa);
- $\blacksquare \forall x \forall y \ Irmaos(x, y) \rightarrow Irmaos(y, x);$
- $\forall x \exists y \ Irmaos(y, x)$.

Justifique utilizando a semântica da lógica de predicados.

Exercício 2

- Considere o modelo \mathcal{M} para $(\mathcal{F}, \mathcal{P})$ em que:
 - A é o conjunto de valores referentes aos objetos do Mundo dos Blocos;
 - $\blacksquare \mathcal{F} = \{cor(x)\} e;$
 - \blacksquare $\mathcal{P} = \{Maior(x), Sobre(x, y), Bloco(x), Mesa(x)\}.$

Satisfação - Exercício 2

Verifique se $\mathcal{M} \models \varphi$ em que \mathcal{M} é o modelo do domínio do *Mundo dos Blocos* e φ é cada uma das fórmulas:

- ∃y Mesa(y);
- \blacksquare $\forall x \ Bloco(cor(x));$
- $\forall x \; Maior(x,y) \rightarrow \neg Maior(y,x)$;
- \blacksquare $\forall x \exists y \ Sobre(y, x).$

Justifique utilizando a semântica da lógica de predicados.

Satisfação - Exercício 3

Seja φ a fórmula $\forall x \forall y \exists z (R(x,y) \rightarrow R(y,z))$, onde R é um predicado binário.

Seja $A = \{a, b, c, d\}$ e $R^{\mathcal{M}} = \{(b, c), (b, b), (b, a)\}$. Verifique se $\mathcal{M} \models \varphi$. Justifique sua resposta de acordo com a semântica da Lógica de Predicados.

Consequência Lógica

Seja Γ uma teoria e ψ uma fórmula da lógica de predicados.

■ A consequência lógica $\Gamma \models \psi$ ocorre se para todos os modelos \mathcal{M} sempre que

$$\mathcal{M} \models \phi$$

para toda fórmula $\phi \in \Gamma$, então

$$\mathcal{M} \models \psi$$
.

Satisfazibilidade

Seja ψ uma fórmula na lógica de predicados.

 \blacksquare ψ pode ser **satisfeita** sss existe algum modelo \mathcal{M} tal que:

$$\mathcal{M} \models \psi$$

é verdade.

Validade

Seja ψ uma fórmula da lógica de predicados.

■ \(\psi \) é válida sss

$$\mathcal{M} \models \psi$$

é verdade para todos os modelos \mathcal{M} .

Limitações Computacionais

Limitações Computacionais

■ $\mathcal{M} \models \phi$: impossível de executar em um conputador quando A for infinito.

Limitações Computacionais

- $\mathcal{M} \models \phi$: impossível de executar em um conputador quando A for infinito.
- $\phi_1, \phi_2, \dots, \phi_n \models \psi$: verificar a consequência lógica *para todos* os modelos possíveis.

Indecidibilidade

Problema de Decisão - Validade em lógica de predicados

Dada uma fórmula φ da lógica de predicados, $\models \varphi$ é verdade, sim ou $n\~ao$?

Indecidibilidade

Problema de Decisão - Validade em lógica de predicados

Dada uma fórmula φ da lógica de predicados, $\models \varphi$ é verdade, sim ou $n\tilde{a}o$?

■ Este é um problema INDECIDÍVEL.

Indecidibilidade

Problema de Decisão - Validade em lógica de predicados

Dada uma fórmula φ da lógica de predicados, $\models \varphi$ é verdade, sim ou $n\tilde{ao}$?

- Este é um problema INDECIDÍVEL.
- Não existe **nenhum algoritmo** que **receba** uma fórmula φ da lógica de predicados como entrada e **decida** se $\models \varphi$.

"They're still findin' out what logics can do."

A logic named Joe, Murray Leinster, 1946