Spectral Subsampling MCMC for Stationary Multivariate Time Series

Department of Statistics Stockholm University

Overview

- Background: Subsampling MCMC/HMC
- Spectral subsampling for multivariate time series
- Application to vector ARTFIMA

■ Slides: http://mattiasvillani.com/news (soon).

Joint work with some Aussies

- Robert Kohn, UNSW Sydney
- Matias Quiroz, UTS Sydney
- Robert Salomone, QUT Brisbane
- Other subsampling MCMC/HMC papers:
 - ► Minh-Ngoc Tran, Univ of Sydney
 - ► Khue-Dung Dang, Univ of Melbourne

Motivation

- Long time series are increasingly common:
 - high frequency financial transaction data
 - neuroimaging data with high temporal resolution
 - sensor data from robots
 - meteorological weather stations
 - GPS data used in urban traffic monitoring.
- Often multivariate observations.
- Automatic decision making under uncertainty.
- Bayesian decisions: maximize posterior expected utility.
- Posteriors by Markov Chain Monte Carlo (MCMC) simulation.
- MCMC is slow on large datasets.

The Metropolis-Hastings (MH) algorithm

Bayesian inference

$$p(\boldsymbol{\theta}|\mathbf{y}) \propto L(\boldsymbol{\theta})p(\boldsymbol{\theta})$$

- Initialize $\boldsymbol{\theta}^{(0)}$ and iterate for k = 1, 2, ..., N
 - **1** Sample $oldsymbol{ heta}_p \sim q\left(\cdot|oldsymbol{ heta}^{(k-1)}
 ight)$ (the proposal distribution)
 - **2** Accept θ_p with acceptance probability

$$\alpha = \min\left(1, \frac{L(\boldsymbol{\theta}_p)p(\boldsymbol{\theta}_p)}{L(\boldsymbol{\theta}^{(k-1)})p(\boldsymbol{\theta}^{(k-1)})} \frac{q(\boldsymbol{\theta}^{(k-1)}|\boldsymbol{\theta}_p)}{q(\boldsymbol{\theta}_p|\boldsymbol{\theta}^{(k-1)})}\right)$$

Costly to evaluate $L(\theta_p)$ when n is large. Big data.

Naive Subsampling MH

■ Independent data - log-likelihood is a sum

$$\ell(\boldsymbol{\theta}) \stackrel{\text{def}}{=} \log L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log \ell_i(\boldsymbol{\theta}), \text{ with } \ell_i(\boldsymbol{\theta}) \stackrel{\text{def}}{=} p(y_i|\boldsymbol{\theta})$$

■ Unbiased estimate of $\ell(\theta)$ from **subsample** of size $m \ll n$

$$\hat{\ell}(\boldsymbol{\theta}, \mathbf{u}) = \frac{n}{m} \sum_{i \in \mathbf{u}} \log \ell_i(\boldsymbol{\theta})$$

- Unbiased log-likelihood: $\mathbb{E}_{\mathbf{u}}[\hat{\ell}(\boldsymbol{\theta}, \mathbf{u})] = \ell(\boldsymbol{\theta})$.
- Run Pseudo-marginal MH with $\hat{L}(\boldsymbol{\theta}, \mathbf{u}) = \exp(\hat{\ell}(\boldsymbol{\theta}, \mathbf{u}))$.
- Initialize $(\boldsymbol{\theta}^{(0)}, \mathbf{u}^{(0)})$ and iterate for k = 1, 2, ..., N
 - **1** Sample $m{ heta}_p \sim q(\cdot|m{ heta}^{(k-1)})$ and subsample $\mathbf{u}_p \sim p(\mathbf{u})$
 - 2 Accept (θ_p, \mathbf{u}_p) with acceptance probability

$$\alpha = \min \left(1, \frac{\hat{\mathbf{L}}(\boldsymbol{\theta}_p, \mathbf{u}_p) p(\boldsymbol{\theta}_p)}{\hat{\mathbf{L}}(\boldsymbol{\theta}^{(k-1)}, \mathbf{u}^{(i-1)}) p(\boldsymbol{\theta}^{(k-1)})} \frac{q(\boldsymbol{\theta}^{(k-1)} | \boldsymbol{\theta}_p)}{q(\boldsymbol{\theta}_p | \boldsymbol{\theta}^{(k-1)})} \right)$$

Fixing Naive Subsampling MH - Bias

- If \hat{L} unbiased then samples are from $p(\theta|\mathbf{y})$ [1]
- Approximate bias correction of $\exp\left(\hat{\ell}(\boldsymbol{\theta}, \mathbf{u})\right)$ [2]

Theorem: Error in posterior approximation is $O\left(\frac{1}{m^2n}\right)$ [3]

■ Unbiased Block-Poisson estimator + Signed PMMH [4]

Fixing Naive Subsampling MH - Variance

- **Low** $\mathbb{V}\left(\hat{L}\left(\boldsymbol{\theta},\mathbf{u}\right)\right)$ is crucial for **efficient sampling**.
- Difference estimator with control variates [3]

$$\widehat{\ell}_{\mathrm{diff}}(\boldsymbol{\theta}, \mathbf{u}) := \sum_{k=1}^{n} q_{k}(\boldsymbol{\theta}) + \frac{n}{m} \sum_{i=1}^{m} \left(\ell_{u_{i}}(\boldsymbol{\theta}) - \frac{q_{u_{i}}(\boldsymbol{\theta})}{q_{u_{i}}(\boldsymbol{\theta})} \right)$$

- **Control variates** $q_{u_i}(\theta)$ by Taylor expansion around $\tilde{\theta}$. [3, 5]
- Optimal tuning of subsample size m [6, 3, 4]
- Blocking: only refresh part of the subsample [7, 8]
- Grouping observations for improved control variates [9]
- **High-dim** θ : Subsampling HMC. [10]

Beyond independent data

Subsampling methods assume the log-likelihood is a sum

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log p(y_i|\boldsymbol{\theta})$$

Estimating $\ell(\theta)$ is like estimating a population total

$$\hat{\ell}(\boldsymbol{\theta}, \mathbf{u}) = \frac{n}{m} \sum_{i \in \mathbf{u}} \log p(y_i | \boldsymbol{\theta})$$

- Log-likelihood is a sum:
 - for conditionally independent y_i
 - for longitudinal data when subjects are independent.
 - ▶ for special time series, e.g. AR processes. Sample (x_t, x_{t-1}) .
- General time series dependence? Spatial dependence?

Spectral density of a stationary process

Autocovariance function

$$\gamma(\tau) = \mathbb{E}\left[(x_t - \mu)(x_{t-\tau} - \mu)\right], \quad \tau = 0, 1, \dots$$

Spectral density

$$f(\omega) \equiv \frac{1}{2\pi} \sum_{\tau = -\infty}^{\infty} \gamma(\tau) \exp(-\mathrm{i}\omega\tau) \ \text{ for } \omega \in (-\pi,\pi].$$

AR(1) process: $x_t = \phi x_{t-1} + \varepsilon_t$, $\varepsilon_t \stackrel{iid}{\sim} N(0, \sigma_{\varepsilon}^2)$

Multivariate Fourier analysis

Autocovariance matrix function for time series $x_t \in \mathbb{R}^r$

$$\gamma_{\mathbf{x}}(\tau) = \operatorname{Cov}(\mathbf{x}_t, \mathbf{x}_{t-\tau}) = \left[\gamma_{jk}(\tau)\right]_{i,j=1,\dots,r}$$

■ Spectral density matrix

$$f_{\mathbf{x}}(\omega) = \frac{1}{2\pi} \sum_{\tau = -\infty}^{\infty} \gamma_{\mathbf{x}}(\tau) \exp(-i\omega\tau)$$

where off-diagonal elements are the cross-spectral densities

$$f_{jk}(\omega) = \sum_{\tau=-\infty}^{\infty} \gamma_{jk}(\tau) \exp(-i\omega\tau), \text{ for } \omega \in (-\pi, \pi]$$

■ Multivariate discrete Fourier transform (DFT)

$$J(\omega_k) = \sum_{t=0}^{n-1} \mathbf{x}_t \exp(-i\omega_k t)$$

Subsampling MCMC for multivariate time series

■ DFT are asymptotically independent complex normal [11]

$$\mathbf{n}^{-1/2} J(\omega_{\mathbf{k}}) \overset{\mathrm{indep}}{\sim} \mathrm{CN}(0, 2\pi f_{\mathbf{x}}(\omega_{\mathbf{k}})) \text{ as } \mathbf{n} \to \infty.$$

Multivariate periodogram is complex singular Wishart

$$I_{T}(\omega) = (2\pi n)^{-1} J(\omega) J_{T}(\omega)^{H} \sim CW(1, f_{\mathbf{x}}(\omega))$$

■ Multivariate Whittle log-likelihood [12]

$$\ell_{\mathcal{W}}(\boldsymbol{\theta}) = -\sum_{\omega_{k} \in \Omega_{n}} \left(\log |f_{\mathbf{x}}(\omega_{k})| + \operatorname{tr} \left[f_{\mathbf{x}}(\omega_{k})^{-1} I_{\mathcal{T}}(\omega) \right] \right)$$

- Whittle log-likelihood is a sum. Subsample frequencies!
- Whittle biased for small n
- ... but subsampling only relevant for large n.

Improved control variates by grouping

Difference estimator:

$$\widehat{\ell}_{\mathrm{diff}}(\boldsymbol{\theta}, \mathbf{u}) \coloneqq \sum_{k=1}^{n} q_{k}(\boldsymbol{\theta}) + \frac{n}{m} \sum_{j=1}^{m} \left(\ell_{u_{j}}(\boldsymbol{\theta}) - q_{u_{j}}(\boldsymbol{\theta}) \right)$$

- Need $q_i(\boldsymbol{\theta}) \approx \ell_i(\boldsymbol{\theta})$ to have small $Var(\widehat{\ell}_{\mathrm{diff}}(\boldsymbol{\theta}, \mathbf{u}))$.
- \blacksquare $q_i\left(oldsymbol{ heta}
 ight)$ by second order Taylor approximation of $\ell_i(oldsymbol{ heta})$.
- **Group observations**. Treat partial sum as a sampling unit: [9]

$$\ell(\boldsymbol{\theta}) = \underbrace{\ell_{\omega_1}(\boldsymbol{\theta}) + \ell_{\omega_2}(\boldsymbol{\theta}) + \dots \ell_{\omega_K}(\boldsymbol{\theta})}_{\text{group 1}} + \underbrace{\ell_{\omega_{K+1}}(\boldsymbol{\theta}) + \ell_{\omega_2}(\boldsymbol{\theta}) + \dots \ell_{\omega_{2K}}(\boldsymbol{\theta})}_{\text{group 2}} + \dots$$

- **Bernstein-von Mises**: partial sums quadratic as $K \to \infty$.
- Each group spans the whole spectral domain.

Blocking

What really matters for MH is the variance of

$$\log \frac{\hat{p}\big(\mathbf{y}|\theta_p,\mathbf{u}_p\big)}{\hat{p}\big(\mathbf{y}|\theta^{(i-1)},\mathbf{u}^{(i-1)}\big)}$$

- Blocking: [7]
 - partition the groups in blocks
 - update only a single block at each iteration.

Univariate ARTFIMA

ARFIMA(p, d, q) with fractional differencing d

$$\phi_p(L)(1-L)^{\frac{d}{d}}x_t = \theta_q(L)\varepsilon_t$$

Long memory. $\sum_{\tau=-\infty}^{\infty} |\gamma(\tau)| = \infty$. But stationary if |d| < 1/2.

$$(1-L)^d \stackrel{\text{def}}{=} \sum_{j=0}^{\infty} (-1)^j \frac{\Gamma(1+d)}{\Gamma(1+d-j)j!} L^j$$

ARTFIMA adds tempering parameter $\lambda \geq 0$ [13]

$$(1 - e^{-\lambda}L)^d x_t \stackrel{\text{def}}{=} \sum_{j=0}^{\infty} (-1)^j \frac{\Gamma(1+d)}{\Gamma(1+d-j)j!} e^{-\lambda j} x_{t-j}$$

- ightharpoonup long range dependence in $\gamma(\tau)$ for small τ
- ightharpoonup exponential decay for larger au
- ▶ Stationary for all d and $\lambda > 0$.

Vector ARTFIMA (p, d, λ, q)

Multivariate extension of ARTFIMA for r-dim $oldsymbol{x}_t$ [12]

$$\Phi_{p}(L)\Delta^{d,\lambda}(\mathbf{x}_{t}-\boldsymbol{\mu}) = \Theta_{q}(L)\boldsymbol{\varepsilon}_{t}, \quad \boldsymbol{\varepsilon}_{t} \stackrel{\text{iid}}{\sim} N(0,\Sigma_{\varepsilon})$$

where

$$\Delta^{d,\lambda} \equiv \operatorname{Diag}((1 - e^{-\lambda_1} L)^{d_1}, \dots, (1 - e^{-\lambda_r} L)^{d_r})$$

- VARTFIMA is stationary and causal for all d and $\lambda > 0$.
- Spectral density matrix

$$\begin{split} f_{\mathbf{x}}(\omega) &= \frac{1}{2\pi} \mathbf{B} \Phi_{\mathbf{p}}^{-1}(e^{-i\omega}) \Theta_{\mathbf{q}}(e^{-i\omega}) \Sigma_{\varepsilon} \Theta_{\mathbf{q}}(e^{-i\omega}) \Phi_{\mathbf{p}}^{-H}(e^{-i\omega})^{H} \mathbf{B}^{H} \\ \mathbf{B} &= \mathrm{Diag} \big((1 - e^{-(\lambda_{1} + i\omega)})^{-d_{1}}, \ldots, (1 - e^{-(\lambda_{r} + i\omega)})^{-d_{r}} \big). \end{split}$$

- Ansley-Kohn parametrization of both Φ and Θ to ensure stationarity and invertibility.
- Aim: joint posterior

$$p(\Phi, \Theta, \boldsymbol{d}, \boldsymbol{\lambda} | \boldsymbol{x}_{1:n})$$

Three datasets for evaluation

Swedish temperatures

- ▶ Three locations: Arlanda, Bromma and Landvetter.
- ▶ Hourly data from February 1, 2008 until May 1, 2022.

■ Water velocity

- Mean water velocity every 12th minute at two locations on opposite sides of Lake St Clair.
- ▶ 130,001 observations from Jan 3, 2016 until Dec 21, 2018.

Air pollution in Stockholm

- Nitrogen dioxide (NO2) and particulate matter (PM10) pollution at two streets in central Stockholm.
- ► Hourly data for the time period February 16, 2010 until October 31, 2015.
- Subsample: 1% of sample, using control variates for groups.

Water velocity data

Model selection via BIC approximation

		Water V	/elocity	Tempe	erature	Pollution	
AR	MA	No TFI	TFI	No TFI	TFI	No TFI	TFI
1	0	737079	759123	327097	334122	363760	366022
0	1	588297	759457	61320	332888	306068	365658
2	0	749650	761200	335201	335757	365522	366266
0	2	621765	761786	93256	333948	325717	366142
1	1	758838	761305	333582	335647	365762	366267

Computional times

■ Computational Time (CT)

 $CT = Inefficiency factor \times Compute time for single draw$

■ Relative Computational Time (RCT):

$$\mathsf{RCT} = \frac{\mathsf{CT}\;\mathsf{MCMC}\;\mathsf{full}\;\mathsf{data}\;\mathsf{sample}}{\mathsf{CT}\;\mathsf{Spectral}\;\mathsf{subsampling}\;\mathsf{MCMC}}$$

Dataset	Model	Min	Mean	Max
Water velocity	VARTFIMA(0,2)	87	98	125
Temperature	VARTFIMA(2,0)	68	89	114

Variance of log-likehood estimator is crucial

- Spectral subsampling can fail when $Var(\hat{\ell})$ is too large.
- VARTFIMA(2,0) for Swedish temperature data:

VARTFIMA(0,2) - Subsampling is accurate

VARMA(1,1) - Whittle is accurate

VARTFIMA(0,2) - good model fit

VARTFIMA(0,2) - coherence and delay (phase)

Swedish temperature data

Conclusions

- Whittle log-likelihood is fast to compute and is a sum.
- Whittle enables subsampling for time series.
- Subsampling of matrix periodogram data to speed up MCMC/HMC for multivariate time series.
- Very large speed-ups compared to regular MCMC/HMC.
- Future extensions:
 - **Better control variates for high-dim** θ
 - Spatial data
 - **▶** Better Whittle

References

- C. Andrieu and G. O. Roberts, "The pseudo-marginal approach for efficient Monte Carlo computations," *The Annals of Statistics*, pp. 697–725, 2009.
- D. Ceperley and M. Dewing, "The penalty method for random walks with uncertain energies," *The Journal of chemical physics*, vol. 110, no. 20, pp. 9812–9820, 1999.
- M. Quiroz, R. Kohn, M. Villani, and M.-N. Tran, "Speeding up mcmc by efficient data subsampling," *Journal of the American Statistical Association*, no. forthcoming, pp. 1–35, 2018.
- M. Quiroz, M.-N. Tran, M. Villani, R. Kohn, and K.-D. Dang, "The block-Poisson estimator for optimally tuned exact subsampling MCMC," arXiv preprint arXiv:1603.08232, 2018.
- R. Bardenet, A. Doucet, and C. Holmes, "On markov chain monte carlo methods for tall data," *The Journal of Machine Learning Research*, vol. 18, no. 1, pp. 1515–1557, 2017.

- M. K. Pitt, R. d. S. Silva, P. Giordani, and R. Kohn, "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," *Journal of Econometrics*, vol. 171, no. 2, pp. 134–151, 2012.
- M.-N. Tran, R. Kohn, M. Quiroz, and M. Villani, "Block-wise pseudo-marginal metropolis-hastings," *arXiv preprint* arXiv:1603.02485, 2016.
- G. Deligiannidis, A. Doucet, and M. K. Pitt, "The correlated pseudo-marginal method," *arXiv preprint arXiv:1511.04992*, 2015.
- R. Salomone, M. Quiroz, R. Kohn, M. Villani, and M.-N. Tran, "Spectral subsampling mcmc for stationary time series," *ICML2020 and arXiv:1910.13627.* 2020.
- K.-D. Dang, M. Quiroz, R. Kohn, M.-N. Tran, and M. Villani, "Hamiltonian monte carlo with energy conserving subsampling," *Journal of Machine Learning Research*, 2019, vol. 20, pp. 1–31, 2019.

- D. R. Brillinger, *Time series: data analysis and theory.* SIAM, 2001.
- M. Villani, M. Quiroz, R. Kohn, and R. Salomone, "Spectral subsampling mcmc for stationary multivariate time series with applications to vector artfima processes," *Econometrics and Statistics*, 2023.
- F. Sabzikar, A. I. McLeod, and M. M. Meerschaert, "Parameter estimation for ARTFIMA time series," *Journal of Statistical Planning and Inference*, vol. 200, pp. 129 145, 2019.