INTRODUCTION TO MATRIX FACTORIZATION METHODS COLLABORATIVE FILTERING

USER RATINGS PREDICTION

Alex Lin
Senior Architect
Intelligent Mining

Outline

- Factor analysis
- Matrix decomposition
- Matrix Factorization Model
- Minimizing Cost Function
- Common Implementation

Factor Analysis

- A procedure can help identify the factors that might be used to explain the interrelationships among the variables
- Model based approach

Refresher: Matrix Decomposition

3 x 6 matrix										
	X									
	y									
	Z									

proprietary material

$$X_{32} = (a, b, c) \cdot (x, y, z) = a * x + b * y + c * z$$

Rating Prediction
$$\hat{r}_{ui} = q_i^T p_u$$
 User Preference Factor Vector

Movie Preference Factor Vector

Making Prediction as Filling Missing Value

Learn Factor Vectors

users														
		1	2	3	4	5	6	7	8	9	10		n	_
	1	5		4			4				3			
_ .	2							3		?				
items	3	3	?		5	?			2					
sn	4		3			3			4	3				
_				4				4						
$3 = U_{7-1} * I_{2-1} + U_{7-2} * I_{2-2} + U_{7-3} * I_{2-3} + U_{7-4} * I_{2-4}$														
] .	• • • •													
											*]	[₁₂₋₄		

Note: only train on known entries

$$\begin{cases} 2X + 3Y = 5 \\ 4X - 2Y = 2 \end{cases} \begin{cases} 2X + 3Y = 5 \\ 4X - 2Y = 2 \\ 3X - 2Y = 2 \end{cases}$$

Why not use standard SVD?

- Standard SVD assumes all missing entries are zero. This leads to bad prediction accuracy, especially when dataset is extremely sparse. (98% 99.9%)
- See Appendix for SVD
- In some published literatures, they call Matrix Factorization as SVD, but note it's NOT the same kind of classical low-rank SVD produced by sydlibc.

How to Learn Factor Vectors

- How do we learn preference factor vectors (a, b, c) and (x, y, z)?
- Minimize errors on the known ratings

Minimizing Cost Function (Least Squares Problem)

 r_{ui} : actual rating for user u on item I x_{ui} : predicted rating for user u on item I

Data Normalization

• Remove Global mean

	users												
		1	2	3	4	5	6	7	8	9	10		n
items	1	1.5		9			2				.49		
	2							.79		?			
	3	0.6	? :		.46	? :			4				
	4		.39			.82			.76	.69			
				.52				.8					
	m												

10

Factorization Model

Only Preference factors

$$\min_{q^*.p^*} \sum_{(u,i)\in k} (r_{ui} - \mu - q_i^T p_u)^2$$
To learn the factor vectors $(p_u \text{ and } q_i)$

 $\boldsymbol{r}_{ui}\!:\!$ actual rating of user u on item \boldsymbol{I}

u : training rating average

b_u: user u user bias

b_i: item i item bias

 q_i : latent factor array of item i p_u : later factor array of user u

11

Adding Item Bias and User Bias

Add Item bias and User bias as parameters

$$\min_{q^*.p^*} \sum_{(u,i)\in k} (r_{ui} - \mu - b_i - b_u - q_i^T p_u)^2$$
To learn Item bias and User bias

 $\boldsymbol{r}_{ui}\!:\!$ actual rating of user u on item \boldsymbol{I}

u: training rating average

b_u: user u user bias

b_i: item i item bias

 q_i : latent factor array of item i

 $\boldsymbol{p}_{\boldsymbol{u}}$: later factor array of user \boldsymbol{u}

Regularization

To prevent model overfitting

$$\min_{q^*.p^*} \sum_{(u,i)\in k} (r_{ui} - \mu - b_i - b_u - q_i^T p_u)^2 + \lambda (\|q_i\|^2 + \|p_u\|^2 + b_i^2 + b_u^2)$$

User Bias

Regularization to prevent overfitting

Rating = 4

Global Preference Factor

Item Bias

r_{ui}: actual rating of user u on item I

u: training rating average

b_u: user u user bias

b_i: item i item bias

 q_i : latent factor array of item i

 p_u : later factor array of user u

λ: regularization Parameters

proprietary material

Optimize Factor Vectors

- Find optimal factor vectors minimizing cost function
- Algorithms:
 - Stochastic gradient descent
 - Others: Alternating least squares etc..
- Most frequently use:
 - Stochastic gradient descent

Matrix Factorization Tuning

- Number of Factors in the Preference vectors
- Learning Rate of Gradient Descent
 - Best result usually coming from different learning rate for different parameter. Especially user/item bias terms.
- Parameters in Factorization Model
 - Time dependent parameters
 - Seasonality dependent parameters
- Many other considerations!

High-Level Implementation Steps

- Construct User-Item Matrix (sparse data structure!)
- Define factorization model Cost function
- Take out global mean
- Decide what parameters in the model. (bias, preference factor, anything else? SVD++)
- Minimizing cost function model fitting
 - Stochastic gradient descent
 - Alternating least squares
- Assemble the predictions
- Evaluate predictions (RMSE, MAE etc..)
- Continue to tune the model

Thank you

• Any question or comment?

Appendix

- Stochastic Gradient Descent
- Batch Gradient Descent
- Singular Value Decomposition (SVD)

Stochastic Gradient Descent

```
Repeat Until Convergence { for i=1 to m in random order { \theta_j \coloneqq \theta_j + \alpha(y^{(i)} - h_\theta(x^{(i)}))x_j^{(i)} \text{ (for every j)}} } partial derivative term }
```

Your code Here:

Batch Gradient Descent

Repeat Until Convergence {

$$\theta_{j} := \theta_{j} + \alpha \sum_{i=1}^{m} \underbrace{(y^{(i)} - h_{\theta}(x^{(i)}))x_{j}^{(i)}}_{\text{partial derivative term}} \text{ (for every j)}$$

Your code Here:

Singular Value Decomposition (SVD)

$$A = U \times S \times V^T$$

$$A_k = U_k \times S_k \times V_k^T$$