Termodinamica

Primo principio Calore e cap. termica: $Q = C \cdot \Delta T$

Calore latente di trasf.: $L_t = Q/m$ Lavoro <u>sul</u> sistema: dW = -pdV

En. interna: $\Delta U = \begin{cases} Q + W_{\text{sulsistema}} \\ Q - W_{\text{delsistema}} \end{cases}$ Entropia: $\Delta S_{AB} = \int_A^B \frac{dQ_{REV}}{T}$

Calore specifico

Per unità di massa: c = C/mPer mole: $c_m = C/n$

Per i solidi: $c_m \approx 3R$

Gas perfetto: $c_p - c_V = R$ monoatom. $\begin{vmatrix} c_V & c_p \\ \frac{3}{2}R & \frac{5}{2}R \\ \text{biatomico} & \frac{5}{2}R & \frac{7}{2}R \end{vmatrix}$

Gas perfetti

Eq. stato: $pV = nRT = Nk_bT$

Energia interna: $\Delta U = nc_V \Delta T$ Entropia: $\Delta S = nc_V \ln \frac{T_f}{T_i} + nR \ln \frac{V_f}{V_i}$

Isocora ($\Delta V = 0$):

 $W = 0 ; Q = nc_v \Delta T$ <u>Isobara</u> ($\Delta p = 0$):

 $W = -p\Delta V \; ; \; Q = nc_p \Delta T$ <u>Isoterma</u> ($\Delta T = 0$):

 $W = -Q = -nRT \ln \frac{V_f}{V_i}$ Adiabatica (Q = 0): $pV^{\gamma} = \cos t$. $TV^{\gamma-1} = \cos t$.; $p^{1-\gamma}T^{\gamma} = \cos t$.

 $W = \Delta U = \frac{1}{\alpha - 1} (P_f V_f - P_i V_i)$

Macchine termiche

Efficienza: $\eta = \frac{W}{Q_H} = 1 - \frac{Q_C}{Q_H}$

C.O.P. frigorifero = $\frac{Q_C}{W}$ C.O.P. pompa di calore $\frac{Q_H}{W}$ Eff. di Carnot: $\eta_{REV} = 1 - \frac{1}{2}$

Teorema di Carnot: $\eta \leq \eta_{REV}$

Espansione termica dei solidi

Esp. lineare: $\Delta L/L_i = \alpha \Delta T$

Esp. volumica: $\Delta V/V_i = \beta \Delta T$ Coefficienti: $\beta = 3\alpha$

 β gas perfetto, p costante: $\beta = 1/T$

Conduzione e irraggiamento Corrente termica:

 $\mathcal{P} = \frac{\Delta Q}{\Delta t} = \frac{\Delta T}{R} = \frac{kA}{\Delta x} \Delta T$