K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DIODE APPLICATIONS

Numerical 1

For the clipper circuit shown in figure 1. Plot

- a) Input $V_{in}(t)$ & Output $V_{out}(t)$ waveforms.
- b) VTC Curve

Given: $V_{in}(t) = 10V_{p-p}$ sinusoidal signal with frequency of 5000Hz. Use constant voltage model i.e. $V_{D_{ON}} = 0.7V$, $V_B = 1V \& R_1 = 1k\Omega$

Figure 1: Circuit For Numerical 1

Solution:

Assuming constant voltage model for the diode D_1 , bias voltage V_B reverse biases the diode D_1 .

There are two cases considering V_{in} :

Case 1: If
$$V_{in} < (-V_{D_{ON}} - V_B)$$

In this case diode D_1 is ON (i.e. Diode becomes short circuit).

The reduced circuit is shown in figure 2

Figure 2: When diode is ON

i.e.
$$V_{out} = -V_{D_{ON}} - V_B$$

$$V_{out} = -0.7V - 1V \qquad (\because V_{D_{ON}} = 0.7V \& V_B = 1V)$$

$$\therefore \mathbf{V_{out}} = -1.7\mathbf{V}$$

Case 2: If
$$V_{in} > (-V_{D_{ON}} - V_B)$$

In this case diode D_1 is OFF (i.e. Diode becomes open circuit). The reduced circuit is shown in figure 3

Figure 3: When diode is OFF

i.e.
$$V_{out} = V_{in}$$

Here, output follows input but with shift

$$(-V_{D_{ON}} - V_B) = (-0.7V - 1V) = -1.7V$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 4: Circuit Schematic

The input and ouput waveforms are shown in figure 5

Figure 5: Input & Output waveforms

The VTC curve for the following circuit is given below in figure 6

Figure 6: VTC Curve

Comparison between theoretical and simulated values is given below:

Parameters	Simulated Values	Theoretical Values
Level of clipped voltages	-1.64V	-1.7V

Table 1: Numerical 1

Numerical 2

For the clipper circuit shown in figure 7, plot the input & output waveforms.

Given: $V_{in}(t) = 16V_{p-p}$ sinusoidal signal with frequency of 1000Hz.

Figure 7: Circuit for Numerical 2

Solution:

Assuming constant voltage model for the diode D_1

There are two cases considering V_{in} :

Case 1: If
$$V_{in} < (V_{D_{ON}} + V_B)$$

In this case diode D_1 is OFF. The reduced circuit is shown in figure 9.

Figure 8: When diode is OFF

Here output follows input by the shift of $V_{D_{ON}} + V_B = 0.7V + 4V = 4.7V$

The circuit becomes open circuit because the cathode voltage is greater than anode voltage.

Case 2: If $V_{in} > (V_{D_{ON}} + V_B)$

In this case diode D_1 is ON. The reduced circuit is shown in figure 4.

Figure 9: When diode is ON

$$V_{out} = V_{D_{ON}} + V_B = (0.7V + 4V) = 4.7V$$
 (: $V_{D_{ON}} = 0.7V \& V_B = 4V$)

 $V_{D_{ON}} = 0.7V \& V_B = 4V$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 10: Circuit Schematic

The circuit given in the question is biased parallel positive clipper.

The input & output waveforms are shown below in figure 11.

Figure 11: Input & Output Waveforms

Comparison between theoretical and simulated values is given below:

Parameters	Simulated Values	Theoretical Values
Level of clipped voltages	4.604V	4.7V

Table 2: Numerical 2

Numerical 3

For the clamper circuit shown in figure 12, plot the input $V_{in}(t)$ & output $V_{out}(t)$ waveforms. Given: $V_{in}(t) = 10V_{p-p}$ square wave with frequency of 1000Hz, $C_1 = 10\mu F$, $R_1 = 10k\Omega$ & diode D_1 is Si diode i.e. $V_{D_{ON}} = 0.7V$

Figure 12: Circuit for Numerical 3

Solution:

Given: $V_{in} = 10V_{p-p}$ i.e. $V_m = 5V$.

Since the diode is Si, we will prefer constant voltage model.

Assumption: RC time constant is large enough to ensure that voltage across capacitor does not discharge significantly during the period the diode is ON.

Case 1: During negative half cycle, D_1 is ON $(:V_{in} < -V_{D_{ON}})$

The reduced circuit is shown in figure 13.

Figure 13: When diode is ON

During negative half cycle of input i.e. $V_{out} = -V_{D_{ON}} = -0.7V$

At the same time C_1 charges, the voltage across capacitor is V_C

By applying KVL to the circuit we get,

$$V_{in}+V_C+V_{D_{ON}}=0$$

$$V_C=-V_{in}-V_{D_{ON}}=-(-V_m)-0.7 \quad \text{(During negative half cycle } V_{in}=-V_m\text{)}$$

$$\mathbf{V_C}=\mathbf{4.3V}$$

Case 2: During positive half cycle, D_1 is OFF

The reduced circuit is shown in figure 14.

Figure 14: When diode is OFF

Applying KVL to the circuit we get

$$V_{in} + V_C - V_{out} = 0$$

$$V_{out} = V_{in} + V_C = V_m + V_C = 5 + 4.3$$

$$\therefore \mathbf{V_{out}} = 9.3V$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 15: Circuit Schematic

The input & output waveforms are shown below in figure 16.

Figure 16: Input & Output Waveforms

Comparison between theoretical and simulated values is given below:

Parameters	Simulated Values	Theoretical Values
Positive voltage level	9.417V	9.3V

Table 3: Numerical 3
