Data collection for machine design of novel antibiotics against ESKAPE bacteria

Liliya V. Frolova

Department of Chemistry

PURDUE UNIVERSITY Fort Wayne

Antibiotic Resistance Crisis

In 2019 more than 2.8 million antibiotic-resistant infections occurred in the U.S., and more than 35,000 people died

outbreaks. Note: penicillin was in limited use prior to widespread

population usage in 1943.

- 1. Old antibiotics are no longer working.
- 2. Antibiotics are no longer favorable investments.
 - a. Expensive to research.
 - b. Doctors are less likely to prescribe new antibiotics.
 - c. New antibiotics are dedicated to only treating severe infections or resistant infections.

Figure 3 Number of Antibacterial New Drug Application Approvals Versus Year Intervals

The number of new antibiotics developed and approved has decreased steadily over the past three decades (although four new drugs were approved in 2014), leaving fewer options to treat resistant bacteria.

^{*} Drugs are limited to systemic agents. Data courtesy of the CDC⁵ and the FDA Center for Drug Evaluation and Research.

ESKAPE Bacteria -Six Highly Antibiotic Resistance Bacterial Pathogens

Enterococcus faecium - gram-positive bacteria
Staphylococcus aureus - gram-positive bacteria
Klebsilla pneumoniae - gram-negative bacteria
Acinetobacter baumannii - gram-negative bacteria
Pseudomonas aeruginisa - gram-negative bacteria
Enterobacter - gram-negative bacteria

- 700,000 deaths per year are estimated to be caused by gram- negative bacteria world wide.
- Most hospital acquired infections are due to ESKAPE bacteria.

Examples of Natural Compounds and Drugs Containing Indole Core

Drug	Application	Drug Application		
Vincristine	Anticancer	Vincamine	Vasodilator	
Vinblastine	Anticancer	Roxindole Schizophrenia		
Reserpine	Antihypertensive	Delavirdine	Anti-HIV	
Vinorelbine	Anticancer	Peridopril	Antihypertensive	
Vindesine	Anticancer	Binedaline	Antidepressant	
Atevirdine	Anti-HIV	Zafirlukast	Anti-Asthmatic	
Mitraphylline	Anticancer	Amedalin	Antidepressant	
Cediranib	Anticancer	Oxypertine	Antipsychotic	

New Antibacterial Compounds Against Resistant Bacteria

Pd(OAc)₂/Cu(OAc)₂

DMF/DMSO 9:1

Ar

4 equiv

1 - 6

Ar =

$$Ar = 0$$
 $Ar = 0$
 A

Compound 1 eradicates MRSA (ATCC BAA 44) in the presence of light. A: Graph, showing a dose-dependent effect of 1 with and without a 2-minute irradiation with white light. B. Drip-streak plates utilized in the experiment illustrating the CFU counts. The data are derived from a single experiment performed in 3 replicates and serve as an example of 3 independent experiments producing similar results. The stars represent no observable colonies.

The antibacterial activities were determined using an optimized time kill method. The error bars represent technical triplicates in a representative biological replicate carried out at least three times

Design and Development of Next Generation Antibiotics Using Machine Learning Approach

Target identification and validation	Compound screening and lead discovery	Preclinical development
 Target identification and prioritization based on gene–disease associations Target draggability predictions Identification of alternative targets (splice variants) 	 Compound design with desirable properties Compound synthesis reaction plans Ligand-based compound screening 	 Tissue-specific biomarker identification Classification of cancer drug-response signatures Prediction of biomarkers of clinical end points
 Current data are highly heterogeneous: need standardized high-dimensional target—disease—drug association data sets Comprehensive omics data from disease and normal states High-confidence associations from the literature Metadata from successful and failed clinical trials 	 Large amounts of training data needed Models for compound reaction space and rules Gold standard ADME data Numerous protein structures 	 Biomarkers: reproducibility of models based on gene expression data Dimension reduction of single-cell data for cell type and biomarker identification Proteomic and transcriptomic data of high quality and quantity

First Results

Drug-like parameters and biological data were collected for about 40 indole derivatives.

A first library of novel potential antibiotics was synthesized.

Name of new compound								
Strain of bacteria	4-Aza-H	5-Aza-CN	5-Aza-Br	7-Aza-Gu	7-Aza-F	7-Aza-Br		
E. coli	+	-	+	-	-	-		
E. carotovora	+	+	+	+	+	-		
Klebsiella sp.	+	-	+	-	-	-		
S. epidermidis	-	-	+	-	-	-		
P. aeruginosa	+	-	+	+	+	+		
B. subtilis	+	-	+	-	-	-		

Acknowledgements

Dr. Igor Magedov

Dr. Snezna Rogelj

Dr. Alexander Kornienko

Dr. Tanya Soule

Dr. Alessandro Selvitella

Indranil Malik

Danielle Turner

Leslie Edwards

Jade Vigil

Sam Dick

Jenny Kievert

Kyle Zurbuch

Funding

National Institutes of Health (RR-16480, CA-99957 and CA-135579) Under BRIN/INBRE and AREA programs; NMT Presidential Research Support; Indiana Data Mining