

CÉSAR VALLEJO

CÉSAR VALLEJO

CÉSAR VALLEJO

FÍSICA

Tema: ESTÁTICA - DINÁMICA

Docente: Plana de Física

Objetivos

- Reconocer el concepto de interacción, sus formas y su medida, además de la Tercera Ley de Newton.
- Aplicar la primera y segunda condiciones para el análisis y resolución de problemas de equilibrio.
- Diferenciar los conceptos de inercia y masa.
- Establecer la relación entre las fuerzas y la aceleración.

INTERACCIÓN Y TERCERA LEY DE NEWTON

INTERACCIÓN

Consideremos el boxeador golpea el saco.

El puño actúa sobre el saco y el saco sobre el puño.

Para graficar las fuerzas entre ellos realizaremos una separación imaginaria.

Fuerza del saco sobre el boxeador

Fuerza del boxeador sobre el saco

3RA LEY DE NEWTON

En toda interacción surgen dos fuerzas (acción y reacción) que cumplen las siguientes características:

- Siempre surgen en pares.
- Actúan sobre una misma línea de acción.
- > Presentan el mismo módulo (valor).
- > Tienen direcciones opuestas.
- Actúan sobre cuerpos diferentes, por lo que producen efectos físicos diferentes.

FUERZAS USUALES EN MECÁNICA

\overrightarrow{F}_g : fuerza de gravedad

Es la fuerza con la cual la Tierra atrae a los cuerpos que se encuentran en sus inmediaciones.

 $\frac{F_q = mg}{m}$ m: masa(kg)

\overrightarrow{T} : fuerza de tensión

Es aquella fuerza que surge en el interior de los cuerdas, cables, etc., y se manifiesta como una "resistencia" que estos ofrecen a ser estirados.

\vec{F}_E : fuerza elástica

Es una fuerza que surge en cuerpos elásticos; como ligas, resortes, etc. mediante el cual, estos tienden a recuperar su forma original al ser deformados (estirados o comprimidos).

Resorte sin deformar

$$F_E = Kx$$

K: Constante de rigidez
(N/m; N/cm)

x: Deformación(m; cm)

EQUILIBRIO DE TRASLACIÓN

Primera Condición del Equilibrio

Para todo cuerpo que se encuentra en equilibrio de traslación, se cumple que la suma vectorial de las fuerzas es NULA.

Ecuación vectorial

Ecuación escalar

$$\vec{F}_{Res} = \vec{0}$$

$$\Sigma F(\rightarrow) = \Sigma F(\leftarrow)$$

$$\Sigma F(\uparrow) = \Sigma F(\downarrow)$$

 Σ :Suma de los módulos de las fuerzas

Tres Fuerzas Paralelas

Si sobre un cuerpo en equilibrio actúan "3" fuerzas y "2" de estas son paralelas; entonces, la última fuerza debe ser también paralela a las anteriores.

Tres Fuerzas Concurrentes

Si sobre un cuerpo en equilibrio actúan tres fuerzas no paralelas, estas necesariamente serán concurrentes y formarán un triángulo.

La placa homogénea isósceles de 30 kg se encuentra en reposo sostenido por una persona. Calcule la deformación del resorte.

$$(K=25 \text{ N/cm}; g=10 \text{ m/s}^2)$$

FUERZA DE ROZAMIENTO ESTÁTICO (f_S)

Surge entre dos superficies rugosas en contacto y cuando entre ellas *hay tendencia a deslizar*.

$$f_{s_{MAX}} = \mu_s f_N$$

El bloque esta a punto de deslizar

$$\mu_s = \tan \varphi$$

 μ_s : coeficiente de rozamiento estático

 φ : Ángulo de rozamiento estático.

FUERZA DE ROZAMIENTO CINÉTICO (f_K)

Surge entre dos superficies rugosas en contacto, cuando ya existe deslizamiento relativo entre ellas.

Su módulo se determina como:

$$f_k = \mu_k f_N$$

 μ_k : coeficiente de rozamiento cinético

La fuerza de rozamiento (f_s y f_k), no siempre se oponen a la velocidad del cuerpo. Se oponen al deslizamiento o tendencia al deslizamiento relativo entre las superficies en contacto.

Del extremo P de la cuerda, una persona jala verticalmente hacia abajo con una fuerza de 40N y los bloques B y A se mueven con velocidad constante sobre el piso rugoso. Si la masa de B es de 16kg, calcule la masa de A. ($g = 10 \text{ m/s}^2$)

TORQUE DE UNA FUERZA ($\overrightarrow{M}_{o}^{F}$)

Es una magnitud vectorial que mide la capacidad que tiene una fuerza para provocar giro o rotación.

Para una fuerza constante:

$$M_O^F = Fd$$

Unidad en el S.I: (Nm)

O: centro de momento o eje de rotación.

d: distancia perpendicular del centro de momento a la línea de acción de la fuerza.

SEGUNDA CONDICIÓN DE EQUILIBRIO

Un cuerpo se encuentra en equilibrio de rotación si está en reposo o realiza MCU.

Ecuación vectorial

$$\overrightarrow{M}_{O}^{RES} = \overrightarrow{0}$$

$$\sum_{M} M = \sum_{M} M$$

EQUILIBRIO MECÁNICO

Un cuerpo o sistema se encuentra en equilibrio mecánico si se cumple la 1° y 2° condición de equilibrio.

EQUILIBRIO MECÁNICO
$$\overrightarrow{F}_R = \overrightarrow{0}$$

$$\overrightarrow{M}_O^{RES} = \overrightarrow{0}$$

La barra homogénea de 10 kg y de 12 m de longitud se encuentra en reposo. Calcule el módulo de la reacción en B. ($g=10 \text{ m/s}^2$).

PRIMERA LEY DE NEWTON

La inercia es una propiedad de los cuerpos que se manifiesta como una oposición a cambiar su estado de reposo o MRU. Esta propiedad se mide con la masa.

La primera Ley de Newton plantea lo siguiente:

"Todo cuerpo tiende a mantener un estado de movimiento natural: reposo o MRU, a menos que agentes externos (fuerzas) lo obligue a salir de dicho estado de movimiento"

SEGUNDA LEY DE NEWTON

Si sobre un cuerpo actúa una fuerza resultante ($\vec{F}_R \neq \vec{0}$), entonces el cuerpo experimentara cambios en su velocidad, es decir experimentará una ACELERACION (\vec{a}).

$$\begin{bmatrix} F_R = \sum F_{\left[\begin{array}{c} a \ favor \\ de \ la \\ aceleración \end{array}\right]} - \sum F_{\left[\begin{array}{c} en \ contra \\ de \ la \\ aceleración \end{array}\right]} = ma$$

La \vec{F}_R y la \vec{a} siempre tienen la misma dirección independientemente de la trayectoria que describe el cuerpo.

En el gráfico mostrado, los bloques A y B, de 4 kg y 6 kg, respectivamente, se encuentran en reposo. Si la persona deja en libertad al bloque B, estos empiezan a moverse. Calcule la rapidez que tendrá el bloque A luego de 0,5 s de iniciado el movimiento. ($g=10 \text{ m/s}^2$).

DINÁMICA CIRCUNFERENCIAL

Consideremos una esfera que realiza un movimiento circunferencial.

En el plano hay una \vec{F}_R dirigida hacia el centro de la trayectoria que se le denomina fuerza centrípeta (\vec{F}_{cp}) , y de acuerdo a la segunda ley de Newton, debe originar una aceleración también dirigida hacia el centro, a la cual se le denomina aceleración centrípeta (\vec{a}_{cp})

Según la 2da Ley de Newton, se tiene:

$$\vec{F}_{cp} = m\vec{a}_{cp}$$

 \vec{F}_{cp} : fuerza centrípeta

 \overrightarrow{a}_{cp} : aceleración centrípeta

m: masa

Su módulo:

$$F_{cp} = \sum F_{\substack{apuntan\\al\ centro}} - \sum F_{\substack{opuestas\\al\ centro}}$$

Respecto de la aceleración centrípeta

Su módulo:

$$a_{cp}=\frac{v^2}{r}=\omega^2 r$$

Donde:

v = rapidez lineal o tangencial (m/s)

 ω = rapidez angular (rad/s)

r = radio de la trayectoria (m)

En el instante mostrado, el bloque de 5 kg presenta una rapidez de 20 m/s. ¿Qué módulo tiene la reacción de la superficie sobre el bloque en dicho instante? ($g=10 \text{ m/s}^2$).

CÉSAR VALLEJO

- ACADEMIA -CÉSAR VALLEJO

GRACIAS

academiacesarvallejo.edu.pe