"REPLACEMENT SHEET"

2H7scFv-Ig cDNA and predicted amino acid sequence:

	HindIII	•	Leader Fept	•	
1		M D F CATGGATTT	Q V Q TCAAGTGCAG	I F S F ATTTCAGCT TCC	L L I S A S TGCTAAT CAGTGCTTCA
61		R G Ó			A I L S A S CAATCCT GTCTGCATCT
121				A S S S GCCAGCTCAA GTG	V S Y M H W TAAGTTA CATGCACTGG
		BamHI	Sr Au		
					A P S N L A CCCCATC CAACCTGGCT
241					S Y S L T I CTTACTC TCTCACAATC
301					Q W S F N P AGTGGAG TTTTAACCCA
361				L K G G	er), Linker G G S G G G GTGGCTC GGGCGGTGGT
			287		
421					S G A E L V CTGGGGC TGAGCTGGTG
481					Y T F T S Y ACACATT TACCAGTTAC
541					W I G A I Y GGATTGG AGCTATTTAT
601					K A T L T V AGGCCAC ACTGACTGTA
661					T S E D S A CATCTGA AGACTCTGCG
721			GGTGTACTAT		W Y F D V W GGTACTT CGATGTCTGG

"REPLACEMENT SHEET"

		Bcll			
			human		
781	G T G T T V T V S GGCACAGGGA CCACGGTCAC CGTCTC				
1 (3)	Caronymagai Ammaga Caro Saro S	~ X \2.C.X.X	choomecoun.	23(7.1.2.2.23)	CONTRACT CONTR
27. 4. 4	TCPPCPAPE				
841	ACATECCCAC CETECCCAGC ACCTE	ACTC	CTGGGGGGGAC	CGTCAGTCTT	CETETICCE
	PKPK DT L M)	E S	RTFE	V T C	v v v
901	CCAAAACCCA AGGACACCCT CATGAI	rcrec	cggaccccrg .	AGGTCACATG	Cetegregre
		2 172	77 N2 P.T. N2	TT D &	52 TO 55
961	D V S H E D P E \ GACGTGAGCC ACGAAGACCC TGAGGT				
201	STORY MASS PROMISE NOW LOCKED	CVERENO	a a wanaya waa .	220020001000	
	H N A K T K P R E				
1021	CATAATGCCA AGACAAAGCC GCGGGA	AGGAG	CAGTACAACA	GCACGTACCG	TGTGGTCAGC
	V L T V L H O D V	e t.	NGKE	YKC	K V S
1081	GTCCTCACCG TCCTGCACCA GGACTC				
1141	N K A L P A P I E AACAAAGCCC TCCCAGCCCC CATCGA				
77347	AACAAAGCCC 100CAGCCC CA1CGA	37303033	MUNICILLA.	MANAGE STANGO	EUROCCCES.
	E F Q V Y T L P I				•••
1201	GAACCACAGG TGTACACCCT GCCCCC	CATCC	CGGGATGAGC	TGACCAAGAA	CCAGGTCAGC
	LTCLVKGF	v D	2 7 7 2	V E W	E S N
1261	CTGACCTGCC TGGTCAAAGG CTTCT				
1321	G Q P E N N Y K 1 GGGCAGCCGG AGAACAACTA CAAGAC				
ಮನಾಪತ	Manager and American Canada	التأميكونيام	FF100003780	TOOMLICCOM	Chacteette
	FLYSKLT VI	K	S R W Q	Q G N	V F S
1381	TTCCTCTACA GCAAGCTCAC CGTGG	ACAAG	AGCAGGTGGC .	AGCAGGGGAA	CGTCTTCTCA
	C S V M H E A L E	J 3.7	u v m n	w × r	s L s
1441					
	XbaI				
	P G K *				
1501	CCGGGTAAAT GATCTAGA				

Fig. 1 (continued)

Production Levels of 2H7 scFvlg by Stable CHO Lines 2H7scFvlg Standard Curve

Cione	LFE @ 1:50 Estimated Concentration (µg/mi)	
02	26,156	******
	25.755	
IVA3	28.681	
Spentbulk	29.664	

Fig. 2

SDS-PAGE Analysis of 2H7 scFvIGG1 (SSS-S)H WCH2 WCH3 Protein.

Fig. 3

Complement Mediated B Cell Killing After Binding of CD20-targeted 2H7 scFvIGG1 (SSS-S) H WCKH2 WCKH3:

2H7scFv-lg Concentration	RAMOS # live cells/total cells			BJAB # live cells/total cells		
2H/SCFV-IG Concentration						
20 µg/ml + complement	~	0.16	-	0.07		
5 μg/ml + complement	~	0.2	~	N.D.		
1.25 µg/ml + complement	~	0.32	~	0.1		
Complement alone	-	0.98	-	0.94		

^{*}Viability was determined by trypan blue exclusion and is tabulated as the fraction of viable cells out of the total number of cells counted.

Fig. 4A

Antibody-dependent cellular cytotoxicity (ADCC) mediated by 2H7scFv-lgG1 (SSS-S)H WCH2 WCH3:

Fig. 4B

^{**}N.D. (not determined).

Effects of Crosslinking of CD20 and CD40 Cell Surface Receptors on B Cell Proliferation:

Fig. 5

Effect of Simultaneous ligation of CD20 and CD40 on CD95 and apoptosis.

"REPLACEMENT SHEET"

2H7-CD154 L2 cDNA and predicted amino acid sequence:

	**
	HindIII Ncol 2H7 V ₁ Leader Peptide →
	M D F Q V Q I F S F L L I S A
1.	AAGCTTGCCG CC ATGGATTT TCAAGTGCAG ATTTTCAGCT TCCTGCTAAT CAGTGCTTCA
	267 V _E →
	VIIARGQI"VL SQSPAIL SAS
61	GTCATAATTG CCAGAGGACA AATTGTTCTC TCCCAGTCTC CAGCAATCCT GTCTGCATCT
	PGEKVTM TCRASSSVSY M H W
121	CCAGGGGAGA AGGTCACAAT GACTTGCAGG GCCAGCTCAA GTGTAAGTTA CATGCACTGG
	BamHI
101	Y Q Q K P G S S P K P W I Y A P S N L A
181	TACCAGCAGA AGCCAGGATC CTCCCCCAAA CCCTGGATTT ATGCCCCATC CAACCTGGCT
	S G V P A R F S G S G S G T S Y S L T I
241	TCTGGAGTCC CTGCTCGCTT CAGTGGCAGT GGGTCTGGGA CCTCTTACTC TCTCACAATC

	SRVE AED AAT YYCQ QWS FNP
301	AGCAGAGTGG AGGCTGAAGA TGCTGCCACT TATTACTGCC AGCAGTGGAG TTTTAACCCA
	(Gly ₄ Ser), Linker →
0.63	PTFGAGTKLELKGGGGGGG
301.	CCCACGTTCG GTGCTGGGAC CAAGCTGGAG CTGAAAGGTG GCGGTGGCTC GGGCGGTGGT
	2H7 V ₈ →
421	GGATCTGGAG GAGGTGGGAG CTCTCÄGGCT TATCTACÄGC AGTCTGGGGC TGAGCTGGTG
	RPGASVK MSCKASG YTF TSY
481	AGGCCTGGGG CCTCAGTGAA GATGTCCTGC AAGGCTTCTG GCTACACATT TACCAGTTAC
m	NMHWVKQTPRQGLEWIGAIY
541	AATATECACT GGGTAAAGCA GACACCTAGA CAGGGCCTGG AATGGATTGG AGCTATTTAT
	P G N G D T S Y N Q K F K G K A T L T V
601	CCAGGAAATG GTGATACTTC CTACAATCAG AAGTTCAAGG GCAAGGCCAC ACTGACTGTA
-2 10 10.	The second secon
	DKSSSTAYMQLSSLTSEDSA
661	GACAAATCCT CCAGCACAGC CTACATGCAG CTCAGCAGCC TGACATCTGA AGACTCTGCG
	V Y F C A R V V Y Y S N S Y W Y F D V W
723	GTCTATTTCT GTGCAAGAGT GGTGTACTAT AGTAACTCTT ACTGGTACTT CGATGTCTGG

Serial No. 10/566,409 Docket No. 910180.40102USPC

Inventor(s): Jeffrey A. Ledbetter et al.

"REPLACEMENT SHEET"

1441

|human CD154/amino acid 48→

	Bcl/Bam hybrid site							
781		V S D P R R L D K I E D E CGTCTC TGAT <i>CC</i>AGGAAGGT AGAAGATGA						
841		V F M K T I Q R C N T G E IGTATTCATG AAAACGATAC AGAGATGCAA CACAGGAGA						
901		C E E I K S Q F E G F V K CTGTGAGGAG ATTAAAAGCC AGTTTGAAGG CTTTGTGAA						
961		Bcl E T K K E N S F E M Q K G GGAGACGAAG AAAGAAAACA GCTTTGAAAT GCAAAAAGG						
	Boli D O N P O I A	AHVISEASSK TTS						
1021		GGCACATGTC ATAAGTGAGG CCAGCAGTAA AACAACATC						
1081	V L Q W A E K GTGTTACAGT GGGCTGAAAA A	G Y Y T M S N N L V T L E AGGATACTAC ACCATGAGCA ACAACTTGGT AACCCTGGA						
1141		K R Q G L Y Y I Y A Q V T FAAAAGACAA GGACTCTATT ATATCTATGC CCAAGTCAC						
	HindII							
1201	FCSNREA	S S Q A P F I A S L C L K TTCGAGTCAA GCTCCATTA TAGCCAGCCT CTGCCTAAA						
1261		I L L R A A N T H S S A K AATCTTACTC AGAGCTGCAA ATACCCACAG TTCCGCCAA						
1321	- -	H L G G V F E L Q P G A S FCACTTGGGA GGAGTATTTG AATTGCAACC AGGTGCTTC						
		NcoI						
1381		PSQVSHGTGFTSF TCCAAGCCAAGTGAGCCATGGCTTCACGTCCTT						
	XhoI	XbaI						
	G L L K L E *	*						

Fig. 7A (continued)

GGCTTACTCA AACTCGAGTG ATAATCTAGA

Serial No. 10/566,409 Docket No. 910180.40102USPC

Inventor(s): Jeffrey A. Ledbetter et al.

"REPLACEMENT SHEET"

2H7scFv-CD154 S4 cDNA and predicted amino acid sequence:

	HindIII Ncol
1	\mathring{M} D F Q V Q I F S F L L I S A S ABGCTTGCCG CC ATGGATTT TCAAGTGCAG ATTTTCAGCT TCCTGCTAAT CAGTGCTTCA
61	2H7 V_{b} \Rightarrow V I I A R G Q I V L S Q S P A I L S A S GTCATAATTG CCAGAGGACA AATTGTTCTC TCCCAGTCTC CAGCAATCCT GTCTGCATCT
121	P G E K V T M T C R A S S S V S Y M H W CCAGGGGAGA AGGTCACAAT GACTTGCAGG GCCAGCTCAA GTGTAAGTTA CATGCACTGG
	Bamfi
181	Y Q Q K P G S S P K P W I Y A P S N L A TACCAGCAGA AGCCAGGATC CTCCCCCAAA CCCTGGATTT ATGCCCCATC CAACCTGGCT
241	S G V P A R F S G S G S G T S Y S L T I TCTGGAGTCC CTGCTCGCTT CAGTGGCAGT GGGTCTGGGA CCTCTTACTC TCTCACAATC
301	S R V E A E D A A T Y Y C Q Q W S F N P AGCAGAGTGG AGGCTGAAGA TGCTGCCACT TATTACTGCC AGCAGTGGAG TTTTAACCCA
361	(Gly ₄ Ser); Linker → P T F G A G T K L E L K G G G G G G G CCCACGTTCG GTGCTGGGAC CAAGCTGGAG CTGAAAGGTG GCGGTGGCTC GGGCGGTGGT
361 421	PTFGAGTKLELKGGGGSGG
	PTFGAGTKLELKGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
421	P T F G A G T K L E L K G G G G S G G G CCCACGTTCG GTGCTGGGAC CAAGCTGGAG CTGAAAGGTG GCGGTGGCTC GGGCGGTGGT 2H7 V ₈ → G S G G G S S Q A Y L Q Q S G A E L V GGATCTGGAG GAGGTGGGAG CTCTCAGGCT TATCTACAGC AGTCTGGGGC TGAGCTGGTG R P G A S V K M S C K A S G Y T F T S Y
421 481	P T F G A G T K L E L K G G G G S G G G CCCACGTTCG GTGCTGGGAC CAAGCTGGAG CTGAAAGGTG GCGGTGGCTC GGGCGGTGGT 2H7 V ₈ -> G S G G G S S Q A Y L Q Q S G A E L V GGATCTGGAG GAGGTGGGAG CTCTCAGGCT TATCTACAGC AGTCTGGGGC TGAGCTGGTG R P G A S V K M S C K A S G Y T F T S Y AGGCCTGGGG CCTCAGTGAA GATGTCCTGC AAGGCTTCTG GCTACACATT TACCAGTTAC N M H W V K Q T P R Q G L E W I G A I Y
421 481 541	P T F G A G T K L E L K G G G G S G G G CCCACGTTCG GTGCTGGGAC CAAGCTGGAG CTGAAAGGTG GCGGTGGCTC GGGCGGTGGT 2H7 V ₈ →

1261 GGCTTACTCA AACTCGAGTG ATAATCTAGA

|human CD154/amino acid 108 → Bcl/Bam hybrid site G T G T T V T V S D P E N S F E M Q K G 781 GGCACAGGGA CCACGGTCAC CGTCTCTGAT CCAGAAAACA GCTTTGAAAT GCAAAAAGGT Boll Section Section DONPOIA ARVISEA S S K T T S 841 GATCAGAATC CTCAAATTGC GGCACATGTC ATAAGTGAGG CCAGCAGTAA AACAACATCT V L Q W A E K G Y Y T M S N N L V T L E 901 GTGTTACAGT GGGCTGAAAA AGGATACTAC ACCATGAGCA ACAACTTGGT AACCCTGGAA NGKQLTVKRQGLYYIYA Q V T 961 AATGGGAAAC AGCTGACCGT TAAAAGACAA GGACTCTATT ATATCTATGC CCAAGTCACC HindIII Mario Mario Arrio Arrio REASSQAPFIASECEK F C S N 1021 TTCTGTTCCA ATCGGGAAGC TTCGAGTCAA GCTCCATTTA TAGCCAGCCT CTGCCTAAAG SPGRFERILL RAAN THS SAK 1081 TCCCCCGGTA GATTCGAGAG AATCTTACTC AGAGCTGCAA ATACCCACAG TTCCGCCAAA PCGQQSIHLGGVFELQPGAS 1141 CCTTGCGGGC AACAATCCAT TCACTTGGGA GGAGTATTTG AATTGCAACC AGGTGCTTCG Ncol V F V N V T D P S Q V S H G T G F T S F 1201 GTGTTTGTCA ATGTGACTGA TCCAAGCCAA GTGAGCCATG GCACTGGCTT CACGTCCTTT XhoI XbaI no no no se se se L E * G L L K

Fig. 7B (continued)

Simultaneous Binding of 2H7scFv-CD154 Fusion Proteins to CD20 and CD40

Control Fusion Protein

2H7scFv-CD154 Construct I.2

CD20 CHO cell targets + (control or fusion protein) + Biotin-CD40Ig + PE-SA

Fig. 8

Induction of Apoptosis Measured by Binding of Annexin V after incubation with 2H7scFv-CD154

Fig. 9

Proliferation of T51 B Cell Line After Incubation with 2H7-CD154 S4 or 2H7 scFv-CD154 L2 constructs

Fig. 10

Schematic Representation of 2H7 scFvlg fusion proteins

2H7 scFvlgG (SSS-S)H WCH2 WCH3
OR 2H7 scFvlgG1 (SSS-S)H P238SCH2 WCH3:

Fig. 11

Fig. 12

Fig. 13

CDC of Cytox B (2H7 scFvlg) Constructs

Fig. 14

2H7 (anti-CD20) scFv IgG1 (SSS-S)H WCH2 WCH3 In Vivo Half Life

Anti-CD20 2H7 scFV IgG1 (SSS-S)H WCH2 WCH3 Standard Curve

Macaque A99314

	Day	Binding intensity At 1:50 dilution of serum	estimated concentration (0g/ml)
	-7	0.213	<0.1
Injection #1	0	0.227	<0.1
	1	7.79	25.1
	3	5.51	15.6
Injection #2	7	3.37	9,4
	8	11.33	41.7
	10	5.45	15.4
	14	0.27	<0.1

Macaque F98081

	Day	Binding intensity At 1:50 dilution of serum	estimated concentration (∜g/ml)
	-7	0.208	<0.1
Injection#1	0	0.219	<0.1
~~~~~	1	6.73	21.9
	3	6.14	19.3
Injection #2	7	3.04	8.7
	8	9.83	33.8
	10	4.77	14.4
	14	0.231	<0.1

Fig. 15

# B Cell Depletion in macaques mediated by Cytox B20 (2H7 scFv IgG1 (SSS-S)H WCH2 WCH3) Construct



- CytoxB20 injections of 6mg/kg yields 3 week B-cell depletion
- 3-4 day half-life in vivo
- · CD20 saturation in lymph node B-cells at d14
- No first dose effects
- · No anti-chimeric antibody development

Fig. 16

# Production Levels of HD37 scFvlg by CHO Cell Lines Standard Curve of HD37 scFvlg Derivative Binding to B Cells



Clone/Isolate	Mean LFE at 1:100	Estimated Concentration
BulkHD37scFv		
IgAWH IgG1 WCH2 W	CH3 11.2	> 60 ug/ml
1B2	10.4	>50 ug/ml
6C5	10.5	>50 ug/ml
4B1	8.6	>40 ug/ml
Bulk HD37 scFv		
IgG1 (SSS-S)HWCH2	WCH3 10.9	> 50 ug/ml
2G8	10.6	> 50 ug/ml
3F3	8.3	>40 ug/ml
3D9	11.1	> 60 ug/ml

Fig. 17

#### Production of L6 scFvlg by CHO Cells



Construct	Mean LFE 1:20	Estimated Concentration		
L6scFv IgA WH				
IgG1 WCH2 WCH3 unamplified CHO sup	51.1	6.25 ug/ml		
L6scFv lgG1 (SSS-S)H WCH2 WCH3 unamplified CHO sup	23.0	3.2 ug/ml		

Fig. 18

# ADCC Activity of 2H7 scFvIG, G28-1 scFvIg, and HKD37 scFvIg Constructs ADCC Activity of scFvs Targeted to B Cell Antigens

A. 2H7 (anti-CD20) scFv Derivatives



#### B. G28-1 (anti-CD37) scFv Derivatives



#### C. HD37 (anti-CD19) scFv Derivatives



#### ADCC Activity of L6 scFv Ig Constructs





Fig. 20

# SDS-PAGE Analysis of L6 and 2H7 scFvIg Fusion Proteins.



Fig. 21

# SDS-PAGE Analysis of G28-1 and HD37 scFvIg Fusion Proteins.



Fig. 22

"REPLACEMENT SHEET"

# Sequence alignment of human and llama Fc regions

PAPELLGGPSVELFPPKPTDMISRTPEVTCVVVDVSHEDPEVKFNWYVDG ---CICEOC DOEPKTPKPQPQPQPQPNPTTESKCPKC --HTCPPC DOEPKSCDKT-------EPHGG---IgG2: IdG1: IgG1: IgG3:

---SKCPKC

--AHHSEDPT---

Llama Llama

Human Llama

PAPELLGGPSVFIFPPKPKDVLSISGRPEVTCVVVDVGQEDPEVSFWWYIDG PAPELPGGPSVFVFPPKEVLSISGRPEVTCVVVDVGKEDPEVNFNWYIDG PGPELLGGPTVFIFPPKAKDVLSITRKPEVTCLWWTWVKKTLRSSSWSVDD

vevhnaktkpreegynstyrvvsvlivlhodmingkeykckvsnkalpapiektiskakgoprepgvytlppskdelfkngvslt Taevrantrpkeeqfnstyrvvsvlpiqhqdmligkefkckvnnkalpapiektiskakgqtrepqvytlaphreelakdtvsvt VEVRTANTKPKEEQFNSTYRVVSVLPIQHQDWLFGKEFKCKVNNKALPAPIERTISKAKGQTREPQVYTLAPHREFLAKDTVSVT TEVHTAETKPKEEQFNSTYRVVSVLPIQHQDWLFGKEFKCKVNNKALPAPIERTISKAKGQFREPQVYTLAPHREELAKDTVSVT

CLVKGFYPSDIAVEMESNGQPEN---NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK CLVKGFYPPDINVEWORNGOPESKGTYATTPPOLDNDGTYFLXSKXSVGKNTWQQGETFTCVVMHEALHNHYTOKSITQSSGK CLVKGFYPADINVEWORNGOPESEGTYANTPPOLDNDGTYFLYSRLSVGKNTWORGETLTGVVMHEALHNHYTOKSITOSSGK CLVKGFFPADINVEWQRNGQPESEGTYANTPPQLDNDGTYFLYSKLSVGKNTWQQGEVFTCVVMHEALHNHSTQKSITQSSGK

	Non-Reduced				Reduced			
Molecular Weight (kDa) (Invitrogen)	M. Scrift (flams)(g(3))	M-scry (dama)lges2	H servillamanigóss VH WCH: WCHS	Riterimab	ZHT skitkillama)ligidi VVII VVCII Z VVCIIS	YE SCRY(II ama)YK(2) VYE VYCHI VYCHI	H-scradamaliges VH-WCH2 WCH3	Rituximab
188								
9*→								
52→								
33								

Fig. 24

#### Llama Tails Binding Assay with CD20 CHO Cells



Fig. 25

#### 2H7 scFvlg Llama Tails binding Assay with CD20 CHO Cells



Fig. 26

# ADCC Assay with BJAB Targets and Human PBMC Effectors



**Effector: Target Ratio** 



Fig. 27

# ADCC Assay with BJAB Cells And Llama PBMC Effectors



—⋆— 2H7 scFv llama IgG1 WH WCH2 WCH3

→ 2H7 scFv llama IgG2 WH WCH2 WCH3

-*- 2H7 scFv llama IgG3 WH WCH2 WCH3

Fig. 28



Fig. 29

#### ADCC Activity of Cell Surface Expressed ScFvlg Constructs



Fig. 30

#### Ig Constructs and Nomenclature:

Name Identifier	Hinge Sequence	CH2 Sequence	CH3 Sequence
hIgG1 (CCC-P)H WCH2 WCH3	IgG1 WTHinge (CCC-P)	Wild Type CH2	Wild Type CH3
hIgG1 (SSS-S)H WCH2 WCH3	1gG1 Mutant Hinge (SSS-S)	Wild type CH2 (IgG1)	Wild type CH3 (IgG1)
VH L11S hIgG1 (SSS-S)H WCH2 WCH3	IgG1 Mutant Hinge (SSS-S)	Wild type CH2 (IgG1)	Wild type CH3 (IgG1)
IgG1 (SSC-S)H WCH2 WCH3	1gG1 Mutant Hinge (SSC-S)	Wild type CH2 (IgG1)	Wild type CH3 (IgG1)
IgG1 (SCS-S)H WCH2 WCH3	IgG1 Mutant Hinge (SCS-S)	Wild type CH2 (IgG1)	Wild type CH3 (IgG1)
IgG1 (CSS-S)H WCH2 WCH3	IgG1 Mutant Hinge (CSS-S)	Wild type CH2 (IgG1)	Wild type CH3 (IgG1)
IgG1 (SSS-S)H P238S CH2 WCH3	IgG1 Mutant Hinge (SSS)	Mutant CH2 (IgG1) Pro→Ser 238	Wild type CH3 (IgG1)
IgA WH hIgG1 WCH2 WCH3	IgA Hinge	Wild type CH2 (IgG1)	Wild type CH3 (IgG1)
IgA WH IgA WCH2 WCH3	IgA Hinge	Wild type CH2 (IgA)	Wild type CH3 (IgA)
IgA WH IgA WCH2 T4CH3	IgA Hinge	Wild type CH2 (IgA)	Truncated CH3 (IgA) Missing 3 aa at COOH

Fig. 31

#### CDC Activity of CTLA4Ig Fusion Proteins against Reh and Reh CD80 Transfected Cells



Fig. 32



Fig. 33





- +2H7 scFv hlgG1 (CCC-P)H WCH2 WCH3
- +2H7 scFv hlgG1 (CSS-S)H WCH2 WCH3
- → 2H7 scFv hlgG1 (SCS-S)H WCH2 WCH3
- -x-2H7 scFv HigG1 (SSC-S)H WCH2 WCH3
- -2H7 scFv VH L11S hlgG1 (CCC-P)H WCH2 WCH3

Fig. 34

# Immunoblot Analysis of protein immunoprecipitates from COS transfections of 2H7 scFvlg Constructs



Fig. 35

#### Binding to CD20 CHO cells by constructs That link anti-CD20 scFv to IgA Fc Domains



Fig. 36



Fig. 37

#### ADCC ASSAY OF ANTI-CD20 CONSTRUCTS WITH ALTERNATIVE TAILS (WHOLE BLOOD EFFECTORS/BJAB TARGETS)



- -- 2H7 scFv IgA WH WCH2 T4CH3
- 2H7 scFV hlgG1 (SCS-S)H WCH2 WCH3
- * 2H7 wcFv hlgG1 (CCC-P)H WCH2 WCH3
- -*- Effectors Only

Fig. 38

#### ADCC Assay of Anti-CD20 scFvIG Constructs Using Different Effector Populations Against BJAB Targets



Fig. 39

## Immunoblot of 2H7 scFv Ig constructs from COS Transfections (1 µl/well) compared to a Concentration Standard



Fig. 40





Fig. 42

Mixtures of K1735-WT and K1735-1D8 transfected tumor lines inhibit tumor outgrowth in C3H mice



Fig. 43

Events

#### Expression of anti-mouse CD137 (1D8) scFv-hlgG1 (SSS-S)H P238SCH2 WCH3 On the surface of panned Ag104-1D8 Transfected Tumor Cells



Fig. 44

42.3

32.2

#### Coomassie Stained SDS-PAGE Gel of 2H7 scFv lg Constructs



Fig. 45

# ADCC mediated by 2H7 scFvIg derivatives by human PBMC effector cells against Bjab targets



Fig. 46

Cell surface expression of anti-human CD3 G19-4 scFv hlgG1 (SSS-S)H P238SCH2 WCH3-hCD80TM/CT on Reh and T51 Cells.

Reh anti-CD3 (G19-4) scFv hlgG1 (SSS-S)H P238SCH2 WCH3-hCD80TM/CT



T51 G19-4 scFv hlgG1 (SSS-S)H P238SCH2 WCH3-hCD80TM/CT:



Fig. 47

## Targeting of Cytotoxicity to Transfected Cell Lines by Surface expression of CD3 scFvlg

Cytotoxic activity of resting PBMC towards transfected Reh cells





Fig. 48

# Binding of 5B9, a mouse anti-human CD137 scFv hlgG1 (SSS-H) WCH2 WCH3 to stimulated human PBMC



- Goat anti-human IgG FITC
- 5B9 Hybridoma supernatant + GAM IgG- FITC
- 5B9scFv hIgG1 (SSS-S)H WCH2 WCH3 COS supernatant+ GAH IgG FITC

Fig. 49

#### Effect of V_HL11S Mutation on CytoxB20 2H7 scFv hlgG1 (SSS-S)H WCH2 WCH3 Protein Expression A. Standard Curve: 2H7VH-L11S-lgG1 (SSS-S)H WCH2 WCH3



B. CHO supernatant Brightness and Estimation of Protein concentrations from Standard Curve:

CHO clone name					
	<u>4F2</u>	4F5	3E5	6B11A	2B8A
Mean LFE	***************************************				
1/100	71.7	40.6	31.5	99.7	101.5
1/500	27.1	12.4	11.2	40.8	43
approx conc. μg/ml	600	225	125	1000	1250

Fig. 50

#### Production Levels of 2H7scFV VH L11S hlgG1 (SSS-S)H WCH2 WCH3 from CHO Clone Culture Supernatants



Fig. 51

Effect of VHL11S Mutation on G28-1 scFvlg Construct Protein Production from COS cells



Fig. 52

#### Immunoblot of G28-1 scFvlg Derivatives

Purified G28-1 (11/6/01) scFv lgG1 (SSS-S)H WCH2 WCH3 WCH2 WCHC3

G28-1 scFv hlgG1 (SSS-S)H 1 ul/well

Purified G28-1 scFv hlgG1 (SSS-S)H WCH2 WCH3 WCH2 WCH3

G28-1VHL11S (11/6/01) scFv hlgG1 (SSS-S)H 1 ul/well

80ng 40ng 20ng 10ng ABCDE



80ng 2 4 6 D E 2 C D E 4 C D E



Fig. 53A

Fig. 53B





- —■— 2H7 scFv hlgG1 (SSS-S)H WCH2 Y407ACH3
- → 2H7 scFv hlgG1 (SSS-S)H WCH2 WCH3
- —X— 2H7 scFv hlgG1 (CSS-S)H WCH2 WCH3
- -- * -- 2H7 scFv hlgG1 (CCC-P)H WCH2 WCH3
- --◆-- 2H7 scFv hlgG1 (SCS-S)H WCH2 WCH3
- -+- 2H7 scFv hlgG1 (CSC-S)H WCH2 WCH3

Fig. 54

# ADCC Activity of 2H7 scFvIg Constructs Against BJAB Targets and PBMC Effectors



- → 2H7 scFv higG1 (CCC-P)H WCH2 WCH3
- -e-2H7 scFv hlgG1 (CSS-S)H WCH2 WCH3
- → 2H7 scFv hlgG1 (SCS-S)H WCH2 WCH3
- -D-2H7 scFv hlgG1 (CSC-S)H WCH2 WCH3
- -*- 2H7 hlgG1 scFv (SSS-S)H WCH2 WCH3
- → 2H7 scFv hlgG1 (SSS-S)H WCH2 Y407A CH3
- -C-2H7 scFv hlgA WH WCH2 WCH3
- → Natural Killing

Fig. 55

# Complement Activity of 2H7 scFvlg Constructs with Ramos Target Cells



Fig. 56

#### Binding of 2H7 scFvlg Derivatives to CD20CHO Cells

- A. No fusion protein
- B. 2H7 scFv hlgE CH2CH3CH4
- C. 2H7 scFv hlgA WH WCH2 WCH3
- D. 2H7 scFv hlgG (SSS-S)H WCH2 WCH3





Fig. 57

## A. 2H7 scFv VHL11S human IgE (WCH2 WCH3 WCH4) Binding to CD20 CHO at 30 ug/ml



B. ADCC Activity of 2H7 VHL11S IgE (WCH2 WCH3 WCH4) Protein Fractions with **PBMC** Effectors and Bjab Targets



- 2H7 scFv VHL11S hlgE (WCH2 WCH3 WCH4) peak 3, pH 4.0
- -----2H7 scFv VHL11S hlgE (WCH2 WCH3 WCH4) 'peak' 4, pH 3.5
- × Natural Killing

Fig. 58

# Binding Data for COS derived α-CD20 (2H7) scFv VHL11S mlg E (WCH2 WCH3 WCH4) and mlgA (WH WCH2 WCH3) Tailed Molecules



Fig. 59





Fig. 61



# Binding of Purified Proteins from COS Supernatants To CD20 CHO cells: Differential Effects of CH3 Mutations on Binding



Fig. 63

# Binding of FITC conjugated 2H7 scFv VHL11S hlg Proteins to CD20 CH0 Cells



Fig. 64

# Nonreducing SDS-PAGE on Protein A-Purified Lots of 2H7 scFv VHL11S hlg Constructs (10 ug/lane)



Fig. 65

# Alterations in Human IgG Fc sequence that differentially change effector function efficiency



FRVVVSVLTVLHODWINGKEYKCKVSNKALPAPIEKTISKTKGOPREPOVYTLPPSREEMTKNOVSLTCLVKGFYPSDIAM FRVVSVLTVVHODWINGKEYKCKVSNKGLPAPIEKTISKTRGOPREPOVYTLPPSREEMTRNOVSLTCLVKGFYPSDIAV /RVVSVLTVLHQDWLXGKEYKCKVSXKGIPSSIEKTISXAXGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAV FRVVSAIPIQHQDWMSGKEFKCKVNNKALPSPIEKTISKPKGLVRKPQVYVMGPPTEQLTEQTVSLTCLTSGFLPNDIGV YRVVSVLTVLHQDWINGKEYKCKVSNKALPAPIEKTISKAKGOPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAV 340 4339P hIgG3 higga higgi rIg62b hIqG2



Fig. 66

### ADCC Activity of 2H7 scFv VHL11S hlgG1 (CSC-S)H WCH2 WCH3 from CHO and Lec13-CHO transient transfections



--◆--2H7 scFv VH L11S hlgG1 (CSC-S)H WCH2 WCH3 CHODG44
---■---2H7 scFv VH L11S hlgG1 (CSC-S)H WCH2 WCH3 Lec13CH0
-----Natural Killing

Fig. 67

CD16(ED) hlgG1 (SSS-S)H P238S CH2 WCH3 high and Low affinity alleles expressed as soluble molecules



Fig. 68

Binding of soluble CD16-FITC high and low affinity fusion proteins to 2H7 scFV VHL11S hIgG1 (CSC-S)H WCH2WCH3 or (SSS-S)H (P238S)CH2WCH3 on CD20CHO Targets



→ 2H7 scFv VH L11S hlgG1 (CSC-S)H WCH2 WCH3 + (high)

----- 2H7 VHL11S hlgG1 (SSS-S)H P238SCH2 WCH3 + (high)

-*- 2H7 scFv VH L11S hIG1 (SSS-S)H P238SCH2 WCH3 + (low)

Fig. 69

Binding of FITC Labeled, Recombinant Human CD16(ED) extracellular domain -lg Fusion Protein to CytoxB Derivatives on CD20 CHO Cells



Expression of surface displayed SMIPs links modified cDNAs with the altered fusion proteins



"REPLACEMENT SHEET"

# CD37 mAbs and scFvIg Induce Apoptosis

~ ~	E.	بإوا	~
· .	₽ .	VH	3

Bjab Staining	Annexin V Positive	
No scFvlg	17.5	
2H7 MH	27	
G28-1 MH	30.6	
G28-1 lgAH	28.9	
HD37 MH	29.1	
(2H7+G28-1)MH	41	
(2H7+HD37) MH	37.1	
(G28-1+HD37) MH	35.3	
}		
		plus GAM
Ramos	AnnexinV Positive	plus GAM AnnexinV positive
Ramos cells alone	AnnexinV Positive	
<u> </u>		AnnexinV positive
cells alone	3	AnnexinV positive 3.3
cells alone 2H7 Mab	3 1.4	AnnexinV positive 3.3 3.1
cells alone 2H7 Mab G28-1 Mab	3 1.4 18.3	AnnexinV positive 3.3 3.1 8.7
cells alone 2H7 Mab G28-1 Mab HD37 Mab	3 1.4 18.3 3.7	AnnexinV positive 3.3 3.1 8.7 3.1
cells alone 2H7 Mab G28-1 Mab HD37 Mab G28-5	3 1.4 18.3 3.7 3.9	AnnexinV positive 3.3 3.1 8.7 3.1 8.3
cells alone 2H7 Mab G28-1 Mab HD37 Mab G28-5 2H7+G28-1	3 1.4 18.3 3.7 3.9 32.3	AnnexinV positive 3.3 3.1 8.7 3.1 8.3 35.7
cells alone 2H7 Mab G28-1 Mab HD37 Mab G28-5 2H7+G28-1 2H7+HD37	3 1.4 18.3 3.7 3.9 32.3 5	AnnexinV positive 3.3 3.1 8.7 3.1 8.3 35.7 10.5
cells alone 2H7 Mab G28-1 Mab HD37 Mab G28-5 2H7+G28-1 2H7+HD37 2H7+G28-5	3 1.4 18.3 3.7 3.9 32.3 5 5	AnnexinV positive 3.3 3.1 8.7 3.1 8.3 35.7 10.5 19.4

mAbs

Fig. 71

Caspase 3 Activity in Ramos Cells after 4 Hour Incubation with CytoxB20G SMIP



Fig. 72



Fig. 73



% Specific Killing

Binding of soluble FITC-CD16 to CytoxB20G on CD20 CHO Cells



Fig. 75

CytoxB20G and CytoxB20G P238S SMIPS bind to U937 Cells Expressing FcyRI High Affinity FcR



Fig. 76



Fig. 77



Fig. 78

#### Binding of CytoxB37G SMIPs to B Cell Lymphoma Cell Lines





Fig. 79

#### AnnexinV-PI Staining of Ramos Cells Incubated 24 hours with CD37 SMIPS







# Thymidine Incorporation (Growth Inhibition) in Ramos B-cells after a 48 Hour Incubation with anti-CD37 SMIPS



Fig. 81

The Induction of Apoptosis in Ramos B-cells after a 20 hour incubation with



Fig. 82

## Complement Mediated Killing of Ramos Cells by CD37 SMIPs



Fig. 83

## ADCC Activity of CD37 SMIPs Against Ramos Targets



Fig. 84