ECON 613: Applied Econometrics Methods

January 24, 2019

Overview: Linear Models

- ▶ Study the relationship between an outcome variable *y* and a set of regressors *x*.
 - Conditional Prediction.
 - Causal inference.
 - Example: propensity to consume.
- Loss function approach

$$L(e) = L(y - \hat{y})$$

where $\hat{y} = E(y \mid x)$ is a predictor of y, and the error $e = y - \hat{y}$

Squared Loss Function

- ▶ Squared error loss: $L(e) = e^2$
- Optimization problem

$$\min_{\beta} \sum_{i}^{N} (y_i - f(x_i, \beta))^2$$

Linear Prediction

$$\blacktriangleright$$
 $E[y \mid x] = x'\beta$

OLS

$$y = x\beta + e$$

Derivation

$$L(\beta) = (y - x\beta)'(y - x\beta)$$

= $y'y - 2y'x\beta + \beta'X'X\beta$

Then

$$\frac{\partial L(\beta)}{\partial \beta} = -2x'y + 2x'x\beta = 0$$

Formula

$$\hat{\beta} = (x'x)^{-1}x'y$$

Properties

see 4.4.4 and 4.4.5.

Properties of an estimator

- ▶ Unbiasedness: $E(\hat{\theta}) = \theta$.
- ▶ Consistency: $plim\hat{\theta}_n = \theta$.
- ▶ Efficiency: Reach Cramer-Rao lower bound asymptotically.

Codes

```
///R
fitR = lm(Y~X)

////Matlab
fitM = fitlm(X,Y,'linear')

////Stata
fitM = reg Y X
```

Codes

```
///R
#### define X matrix and y vector
X = as.matrix(cbind(1,X))
y = as.matrix(Y)

#### estimate the coeficients beta
#### beta = ((X'X)^(-1))X'y
beta = solve(t(X)%*%X)%*%t(X)%*%y
```

Maximum Likelihood

GMM

Numerical Optimization

Inference

Introduction to MLE

Consider a parametric model in which the joint distribution of $Y=(Y_1,\ldots,Y_n)$ has a density $\ell(y,\theta)$ with respect to a measure μ . Then consider $P_\theta=\ell(y,\theta)\mu$ where $\theta\in\Theta\in\mathbb{R}^p$. Once $y=(y_1,\ldots,y_n)$ is observed, the maximum likelihood method consists of estimating the parameter θ a value $\hat{\theta}(y)$ that maximizes the likelihood function $\theta\to\ell(y,\theta)$. Formally, a maximum likelihood estimator of θ is a solution to the maximization problem

$$\max_{\theta} \ell(Y;\theta)$$

or

$$\max_{\theta} \log(\ell(Y;\theta))$$

Feasible examples: Poisson distribution

Consider a dependent variable that takes only non negative integer values $0, 1, 2, \ldots$, and one assumes that the dependent variable follows a Poisson distribution, and we wishes to estimate the Poisson parameter.

• Given
$$y_i \sim f(\lambda, y_i) = \frac{\exp(-\lambda)\lambda^{y_i}}{y_i!}$$

► Likelihood
$$\mathcal{L}(y; \lambda) = \prod_{i=1}^{N} \frac{\exp(-\lambda)\lambda^{y_i}}{y_i!} = \frac{\exp(-N\lambda)\lambda^{\sum_{i=1}^{N} y_i!}}{\prod_{i=1}^{N} y_i!}$$

▶ Log likelihood
$$\log \mathcal{L}(y; \lambda) = -N\lambda + \sum_{i=1}^{N} y_{i} \log(\lambda) - \sum_{i=1}^{N} \log(y_{i}!)$$

Estimate

$$\frac{\partial \log \mathcal{L}(y; \lambda)}{\partial \lambda} = 0 \Longrightarrow \widehat{\lambda} = \frac{\sum_{i}^{N} y_{i}}{N}$$

Feasible examples: Least Squares

- ▶ Normality assumption $e \sim \mathbb{N}(0, \sigma^2)$, then $y \sim \mathbb{N}(x\beta, \sigma^2)$.
- Likelihood $L(\beta) = (2\pi\sigma^2)^{-\frac{N}{2}} \exp(-0.5\sigma^{-2}(y-x\beta)'(y-x\beta))$
- ▶ log likelihood log $L(\beta) = -\frac{N}{2} \log \sigma^2 \frac{1}{2\sigma^2} (y x\beta)'(y x\beta)$
- $\beta = (x'x)^{-1}x'y$

Some difficulties

- Non-uniqueness of the Likelihood Function
- ▶ Non-existence of a solution to the Maximization Problem
- Multiple Solutions to the Maximization Problem

Asymptotic Properties (1): Convergence

Definition

Under a set of regularity conditions, there exists a sequence of maximum likelihood estimators converging almost surely to the true parameter value θ_0

- ► The variables $Y_i, i = 1, 2, ...$ are independent and identically distributed with density $f(y; \theta), \theta \in \Theta \in \mathbb{R}^p$
- The parameter space Θ is compact.
- ▶ The log likelihood function $\mathcal{L}(y,\theta)$ is continuous in θ and is a measurable function of y.
- ► The log-likelihood function is such that $(1/n)\mathcal{L}_n(y,\theta)$ converges surely to $E_{\theta_0}log(f(Y_i;\theta))$ uniformly in $\theta \in \Theta$. $E_{\theta_0}log(f(Y_i;\theta))$ exists.

Asymptotic Properties (2): Asymptotic Normality

- ► The log likelihood function $\mathcal{L}_n(\theta)$ is twice continuously differentiable in an open neighborhood of θ_0
- ► The matrix (Fisher Information Matrix)

$$\mathcal{I}_1(\theta_0) = E_{\theta_0} \left(-\frac{\partial^2 \log f(Y_1; \theta_0)}{\partial \theta \partial \theta'} \right)$$

Definition

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \to \mathbb{N}(0, \mathcal{I}_1(\theta_0)^{-1}).$$

Concentrated Likelihood Function

Definition

Let the parameter set $\theta=(\alpha,\beta)$. The solutions $\hat{\theta}=(\hat{\alpha},\hat{\beta})$ to the mazimization problem $\max_{\alpha,\beta}\log\mathcal{L}(y;\alpha,\beta)$ can be obtained via the following two-step procedure:

a) Maximize the log-likelihood function with respect α given β . The maximum value is attained for values of α in a set $A(\beta)$ depending on the parameter β . Thus, if $\alpha \in A(\beta)$, the log-likelihood value is

$$\log \mathcal{L}_c(y;\beta) = \max_{\alpha} \log \mathcal{L}(y;\alpha,\beta)$$

The mapping $\log \mathcal{L}_c$ is called the concentrated (in α) log likelihood function.

b) In a second step, maximize the concentrated log-likelihood function with respect to β .

Application

Consider the likelihood

$$\mathcal{L}(y,\beta,\sigma) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \sigma^2 - \frac{1}{2\sigma^2}(y-x\beta)'(y-x\beta)$$

First step

$$\frac{\partial \mathcal{L}(y;\beta,\sigma)}{\partial \sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^3} (y - x\beta)'(y - x\beta) = 0$$

Then

$$\sigma^2(\beta) = \frac{1}{n}(y - x\beta)'(y - x\beta)$$

• Substituting $\sigma^2(\beta)$ into the likelihood

$$\mathcal{L}_c(y,\beta,\sigma) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \frac{1}{n}(y-x\beta)'(y-x\beta) - \frac{n}{2}$$

Hypothesis Testing

Three procedures to do tests

Likelihood Ratio

► The likelihood ratio statistic is

$$LR = 2(\ell(\theta) - \ell(\tilde{\theta}))$$

where $\hat{\theta}$ and $\tilde{\theta}$ are the restricted and unrestricted maximum likelihood estimates of $\theta.$

Wilk's theorem shows that

$$LR \sim \chi^2(r)$$

where r is the number of restrictions.

Additional Tests

- ▶ Wald Test
- ► LM test

We will see in GMM.

In practice

- ► The regularity conditions are strong.
- ▶ What happens if we weaken them?

Number of parameters increases with the number of observations

- Convergence holds
- Estimates may be biased

True parameter value θ_0 does not belong to Θ : The model is misspecified

► Convergence holds to a parameter that is not the true parameter.

Correlated Observations

► Convergence does not hold.

Discontinuity of the likelihood function

▶ Numerical problems.

Known parameter space

► Constrained Optimization

Maximum Likelihood

GMM

Numerical Optimization

Inference

Method of Moments

Orthogonality condition in Linear Models

$$E(x(y'-x)) = 0 (1)$$

Moment Condition

$$\frac{1}{N}\sum_{i}x_{i}(y_{i}-x'\beta)\tag{2}$$

Moment Estimator

$$\hat{\beta}_{MM} = (\sum_{i} x_{i} x_{i}')^{-1} (\sum_{i} x_{i} y_{i})$$
 (3)

Nonlinear Model

Consider

$$Y_i = g(X_i, b_0) + u_i$$

Orthogonality Condition

$$E[X'(y-g(X,b_0))]=0$$

Moments condition

$$E_0h(Y,X,a_0)=0$$

► The function *h* is H-dimensional and the parameter *a* is of size *K*.

Formal Idea

Definition

The basic idea of generalized method of moments is to choose a value for a such that the sample mean is closest to zero.

$$\frac{1}{n}\sum_{i=1}^n h(Y_i,X_i,a)$$

Formal Definition

Definition

Let \mathbb{S}_n be an $(H \times H)$ symmetric positive definite matrix that may depend on the observations. The generalized method of moments (GMM) estimator associated with \mathbb{S}_n is a solution $\tilde{a}_n(\mathbb{S}_n)$ to the problem

$$min_a \left[\sum_{i=1}^n h(Y_i, X_i, a)\right]' \mathbb{S}_n \left[\sum_{i=1}^n h(Y_i, X_i, a)\right]$$

Assumptions

- H1 The variables (Y_i, X_i) are independent and identically distributed.
- H2 The expectation $E_0h(Y,X,a)$ exists and is zero when a is equal to the true value a_0 of the parameter of interest.
- H3 The matrix \mathbb{S}_n converges almost surely to a nonrandom matrix \mathbb{S}_0
 - H4 The parameter a_0 is identified from the equality constraints, i.e. $E_0h(Y,X,a)'\mathbb{S}_0E_0h(Y,X,a)=0$
 - H5 The parameter value a_0 is known to belong to a compact set \mathcal{A}
- H6 The quantity $(1/n)\sum_{i=1}^{n} h(Y_i, X_i, a)$ converges almost surely and uniformly in a to $E_0 h(Y, X, a)$
- H7 The function h(Y, X, a) is continuous in a
- H8 The matrix $\left[E_0 \frac{h(Y,X,a)}{\partial a}\right]' \mathbb{S}_0 \left[E_0 \frac{h(Y,X,a)}{\partial a'}\right]$ is nonsingular, which implies $H \geq K$.

Asymptotic Normality

Under the assumptions, we have

$$\sqrt{n}(\tilde{a}_n(\mathbb{S}_n) - a_0) \sim \mathbb{N}(0, \Sigma(\mathbb{S}_0))$$

where

$$\Sigma(\mathbb{S}_0) = \left(\left[E_0 \frac{h(Y, X, a)}{\partial a} \right]' \mathbb{S}_0 \left[E_0 \frac{h(Y, X, a)}{\partial a'} \right] \right)^{-1}$$

$$\left(\left[E_0 \frac{h(Y, X, a)}{\partial a} \right]' \mathbb{S}_0 V_0 (h(Y, X, a_0)) \mathbb{S}_0 \left[E_0 \frac{h(Y, X, a)}{\partial a'} \right] \right)^{-1}$$

$$\left(\left[E_0 \frac{h(Y, X, a)}{\partial a} \right]' \mathbb{S}_0 \left[E_0 \frac{h(Y, X, a)}{\partial a'} \right] \right)^{-1}$$

Optimal GMM

- $ightharpoonup \mathbb{S}_0$ is not known.
- ► Two-step procedure
 - Estimate

$$min_a \left[\sum_{i=1}^n h(Y_i, X_i, a) \right]' I \left[\sum_{i=1}^n h(Y_i, X_i, a) \right]$$

where I is the identity matrix, and recover \hat{a} .

Matrix of variance/covariance

$$\hat{\mathbb{S}} = \frac{1}{N} \sum_{i=1}^{n} h(Y_i, X_i, \hat{a}) h(Y_i, X_i, \hat{a})'$$

Relationship to IV.

▶ Nonlinear 2SLS is a very good application of GMM.

Inference

Over identification test see iv section.

Applications

- ► Matrix of variance/covariance in practice
- ► Indirect Inference
- Simulated method of moments

Maximum Likelihood

GMM

Numerical Optimization

Inference

Numerical Optimization

Most maximum likelihood estimates require numerical optimization.

Primer on optimization

Definition

$$\min_{x} f(x)$$

- $\mathbf{x} \in \mathbb{R}^n$
- f is a smooth function.

Existence: Weierstrass theorem

A point or a vector x^* is a global minimizer if $f(x^*) \leq f(x) \forall x$.

Maximization Vs Minimization

Let -f denote the function whose value at any x is -f(x). Then,

- 1. x is the maximum of f if and only if x is a minimum of -f
- 2. z is a minimum of f if and only if z is a maximum of -f

Necessary conditions

- 1. If x^* is local minimizer and f is continuously differentiable in an open neighborhood of x^* , then $\nabla f(x^*) = 0$
- 2. If x^* is local minimizer and $\nabla^2 f$ exists and is continuous in an open neighborhood of x^* , then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) = 0$

Likelihood setup

The likelihood function is defined by:

$$\mathcal{L}_n(\theta) = \prod_{i=1}^n f(X_i; \theta)$$

The necessary conditions for optimization yield the regularity conditions

Unfeasible example:

Any nonlinear model

Numerical optimization

- ► Local optimization: the best minimum/maximum in a vicinity
 - usually defined by a convergence criteria.
- Global optimization: Best of all local minimas/maximas.

Numerical optimization - Local Optimization

Overview

- 1. **Line Search**: Starting from an initial value, choose a direction and search along this direction to find a new iterate
- 2. Trust region: Use previous estimates of the objective function, to construct a synthetic or model function whose behavior near the current point is similar to the objective function, and search only over a region, trust region, with the underlying idea that the model function is a good approximate over the trust region.

Line Search

Idea:

$$x_{k+1} = x_k + \alpha_k d_k$$

where d_k is a direction to be evaluated, and α_k a scaling parameter.

The variants of numerical optimization

- 1. Steepest descent: $d_k = -\nabla f(x_k)$
- 2. Newton direction: $d_k = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$
- 3. Quasi-Newton direction: $d_k = -(B(x_k))^{-1}\nabla f(x_k)$
- 4. Derivative free.

Properties

- Robustness: Perform well for various problems and starting values.
- Efficiency:
- Accuracy: Identify a solution with precision, not sensitive to starting values

One parameter optimization

- Bissection
- Secant Method

Codes

```
bisection <- function(f, a, b, n , tol ) {</pre>
  # Check the signs of the function.
  if (!(f(a) < 0) && (f(b) > 0)) {
    stop()} else if ((f(a) > 0) && (f(b) < 0)) {
    stop()}
  for (i in 1:n) {
    c <- (a + b) / 2 # Calculate midpoint</pre>
    # If the function equals 0 at the midpoint
    if ((f(c) == 0) || ((b - a) / 2) < tol) {
      return(c) }
    # If another iteration is required,
    # check the signs of the function
    ifelse(sign(f(c)) == sign(f(a)),
           a <- c,
           b < -c)
  # If the max number of iterations is reached
  print('Too_many_iterations')
```

Recover the scaling parameter

▶ Solve the function $\phi(\alpha) = f(x_k + \alpha d_k)$

Quasi-Newton methods

How to approximate the hessian such that:

- Reduce the computation time (Use only gradient instead of hessian)
- Increase convergence rate

Conjugate Gradient- FR

- ► Given x0
- Evaluate $f_0 = f(x_0)$, $\nabla f_0 = \nabla f(x_0)$
- ▶ Set $d_0 = -\nabla f_0$, k = 0
- ▶ While $\nabla f_k \neq 0$

 - Evaluate ∇f_{k+1} , then:

$$\beta_{k+1}^{FR} = \frac{\nabla f_{k+1}' \nabla f_{k+1}}{\nabla f_{k}' \nabla f_{k}}$$

- $d_{k+1} = -\nabla f_{k+1} + \beta_{k+1}^{FR} d_k$
- ▶ k = k + 1
- end(while)

BFGS

- Given x0
- ▶ Evaluate $f_0 = f(x_0)$, $\nabla f_0 = \nabla f(x_0)$, $H_0 = I$
- ▶ Set *k* = 0
- While $||\nabla f_k|| > \epsilon$
 - ▶ Compute direction $d_k = -H_k \nabla f_k$

 - ▶ Evaluate ∇f_{k+1} , then:
 - set $s_k = x_{k+1} x_k$, $y_k = \nabla f_{k+1} \nabla f_k$ and $\rho_k = \frac{1}{y_k' s_k}$
 - ▶ Update $H_{k+1} = (I \rho_k s_k y_k') H_k (I \rho_k y_k s_k') + \rho_k s_k' s_k'$
- end(while)

Problems

- non differentiable functions
- disconnected and non-convex feasible space
- discrete feasible space
- large dimensionality
- multiple local minimas

Derivative Free

- Nelder-Mead
- Simulated annealing
- Divided Rectangles Method
- Genetic Algorithms
- Particle Optimization

Maximum Likelihood

GMN

Numerical Optimization

Inference

How to get standard error

- ► Fisher Information Matrix
- ► Sandwich formula

Introduction to Bootstrap

- Inference for small samples basically...
- Inference for unknown distribution...
- ► Computer intensive resampling method...
 - Using data to generate new data

Applications: Inference in estimation

- Bootstrap samples
- ► Parallel implementation

Applications: Inference post estimation

- Bootstrap samples
- Marginal effects

Applications: Testing

- ► Bootstrap samples
- Approach to testing

Applications: Choosing the number of R

- Objectives and Constraints
- ► R=49,99,199,499,999,9999....

Delta Method

- ▶ Consider $X \sim \mathbb{N}(\mu, sigma^2)$, and assume you are interested in E(g(X)) and Var(g(X))
- Approximation

$$g(x) = g(\mu) + g'(\mu)(x - \mu)$$
 (4)

and then

$$E(g(x)) \approx g(E(x))$$
 (5)

$$Var(g(x)) \approx g'(E(x))^2 Var(x)$$
 (6)

Usage?