

Global United Technology Services Co., Ltd.

Report No: GTSE12050054201

FCC Report

Applicant: Dart Cheng Communication ., Ltd

Address of Applicant: Room 2133, 21st Floor, No.1 Block, China Phoenix Building,

No.2008 Shennan Road, Futian District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Bluetooth Headset

Model No.: BSH380, BSH016B, BSH370, BSH360, BSH350, BSH340,

BSH330, BSH320, BSH310, BSH303

FCC ID: YTCBSH380

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2010

Date of sample receipt: May 30, 2012

Date of Test: May 30-June 02, 2012

Date of report issued: June 04, 2012

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS International Electrical Approvals or testing done by GTS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by GTS International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

2 Version

Version No.	Date	Description
00	June 04, 2012	Original

	Reviewer	_		
Check By:	Hams. Hu	Date:	June 04, 2012	
	Project Engineer			
Prepared By:	Oscear. Li	Date:	June 04, 2012	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

3 Contents

		Page
1	COVER PAGE	1
2	2 VERSION	2
3	3 CONTENTS	3
4	TEST SUMMARY	4
5	5 GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	5
	5.2 GENERAL DESCRIPTION OF E.U.T	5
	5.3 Test mode	
	5.4 TEST FACILITY	
	5.5 TEST LOCATION	
	5.6 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.7 DESCRIPTION OF SUPPORT UNITS	
_		
6	TEST RESULTS AND MEASUREMENT DATA	9
	6.1 ANTENNA REQUIREMENT:	
	6.2 CONDUCTED EMISSIONS	
	6.3 CONDUCTED PEAK OUTPUT POWER	
	6.4 20DB EMISSION BANDWIDTH	
	6.5 CARRIER FREQUENCIES SEPARATION	
	6.6 HOPPING CHANNEL NUMBER	
	6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9 BAND EDGE	
	6.9.1 Conducted Emission Method	
	6.9.2 Radiated Emission Method	
	6.10 Spurious Emission	34
	6.10.1 Conducted Emission Method	
	6.10.2 Radiated Emission Method	37
7	7 TEST SETUP PHOTO	42
8	B EUT CONSTRUCTIONAL DETAILS	44
J	,	······································

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping	15.247(b)(4)&TCB Exclusion List	Door
Sequence	(7 July 2002)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 General Information

5.1 Client Information

Applicant:	Dart Cheng Communication ., Ltd
Address of Applicant:	Room 2133, 21st Floor, No.1 Block, China Phoenix Building, No.2008 Shennan Road, Futian District, Shenzhen, China
Manufacturer:	Dart Cheng Communication ., Ltd
Address of Manufacturer/	Room 2133, 21st Floor, No.1 Block, China Phoenix Building, No.2008 Shennan Road, Futian District, Shenzhen, China
Factory:	Dart Cheng Communication ., Ltd
Address of Factory:	Room 2133, 21st Floor, No.1 Block, China Phoenix Building, No.2008 Shennan Road, Futian District, Shenzhen, China

5.2 General Description of E.U.T.

Des des et Norman	District the line is a		
Product Name:	Bluetooth Headset		
Model No.:	BSH380, BSH016B, BSH370, BSH360, BSH350, BSH340, BSH330, BSH320,		
	BSH310, BSH303		
Operation Frequency:	2402MHz~2480MHz		
Channel numbers:	79		
Channel separation:	1MHz		
Modulation type:	GFSK, Pi/4QPSK, 8DPSK		
Antenna Type:	CERAMIC ANTENNA		
Antenna gain:	2dBi		
Power supply:	DC 3.7V recharge battery		
Remark:	Only the Model No. BSH380 was tested, since the electrical circuit design, PCB		
	layout, Electrical Parts and Figure are identical to the basic model, except the outer		
	decoration.		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE120500542RF

Page 5 of 46

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 6 of 46

Project No.: GTSE120500542RF

5.3 Test mode

Transmitting mode Keep the EUT in transmitting mode.

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission.

The acceptance letter from the FCC is maintained in out files. Registration 600491, July 20, 2010.

• Industry Canada (IC)

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-1.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Other Information Requested by the Customer

None.

5.7 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
IBM	Notebook	T42	GTS209	DoC
IBM	AC Adapter	92P1024	N/A	DoC

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 7 of 46

5.8 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 30 2011	Mar. 29 2013		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jul. 04 2011	Jul. 03 2012		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Feb. 25 2012	Feb. 24 2013		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 30 2011	June 29 2012		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2011	Mar. 29 2013		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	Mar. 31 2012	Mar. 30 2013		
9	Coaxial Cable	GTS	N/A	GTS211	Mar. 31 2012	Mar. 30 2013		
10	Coaxial cable	GTS	N/A	GTS210	Mar. 31 2012	Mar. 30 2013		
11	Coaxial Cable	GTS	N/A	GTS212	Mar. 31 2012	Mar. 30 2013		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jul. 04 2011	Jul. 03 2012		
13	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jul. 04 2011	Jul. 03 2012		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 30 2011	June 29 2012		
15	Band filter	Amindeon	82346	GTS219	Mar. 31 2012	Mar. 30 2013		

Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Sep. 08 2011	Sep. 07 2013	
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	Jul. 04 2011	Jul. 03 2012	
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	Jul. 04 2011	Jul. 03 2012	
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	Jul. 04 2011	Jul. 03 2012	
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	Jul. 04 2011	Jul. 03 2012	
6	Coaxial Cable	GTS	N/A	GTS227	Jul. 04 2011	Jul. 03 2012	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE120500542RF

Page 8 of 46

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is CERAMIC ANTENNA, the best case gain of the antenna is 2dBi

RF Antenna

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 9 of 46

6.2 Conducted Emissions

	- Conadota Emicolonia					
Test Requirement:	FCC Part15 C Section 15.207	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.4:2003	ANSI C63.4:2003				
Test Frequency Range:	150KHz to 30MHz	150KHz to 30MHz				
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, Swee	ep time=auto				
Limit:	Frequency range (MHz)	Limit (c	lBuV)			
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	* Decreases with the logarithm of	60	50			
Test setup:	Reference Plane					
	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line impedence Stabilization Network				
Test procedure:	impedance stabilization netwo coupling impedance for the median impedance for the median impedance for the median impedance for the peripheral devices are also that provides a 50ohm/50uH of (Please refer to the block dianguage). 3. Both sides of A.C. line are che order to find the maximum em	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 				
Test Instruments:	Refer to section 5.8 for details	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details	Refer to section 5.3 for details				
Test results:	Pass					

Measurement data:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 10 of 46

Line:

Condition : FCC PART15 CLASSB QP LISN(2011) LINE

Job No. : 542RF

Test Mode : Transmitting mode

Test Engineer: Osccar

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1	0.226	38.15	0.64	0.10	38.89	62.61	-23.72	QP
2 3	0.226	35.18	0.64	0.10	35.92	52.61	-16.69	Average
3	0.614	26.31	0.53	0.10	26.94	56.00	-29.06	QP
4	0.614	17.20	0.53	0.10	17.83	46.00	-28.17	Average
4 5	0.923	24.84	0.49	0.10	25.43	56.00	-30.57	QP
6 7	0.923	18.69	0.49	0.10	19.28	46.00	-26.72	Average
7	2.594	20.33	0.37	0.10	20.80	56.00	-35.20	QP
8 9	2.594	16.47	0.37	0.10	16.94	46.00	-29.06	Average
9	6.454	23.95	0.27	0.13	24.35	60.00	-35.65	QP
10	6.454	17.67	0.27	0.13	18.07	50.00	-31.93	Average
11	9.809	33.98	0.22	0.20	34.40	60.00	-25.60	QP _
12	9.809	28.10	0.22	0.20	28.52	50.00	-21.48	Average

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Neutral:

Condition : FCC PART15 CLASSB QP LISN(2011) NEUTRAL

Job No. : 542RF

Test Mode : Transmitting mode

Test Engineer: Osccar

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	dB	dB	dBuV	dBuV	dB	
1	0.227	36.85	0.64	0.10	37.59	62.57	-24.98	QP
2 3	0.227	33.45	0.64	0.10	34.19	52.57	-18.38	Average
3	0.614	27.20	0.53	0.10	27.83	56.00	-28.17	QP
4	0.614	19.18	0.53	0.10	19.81	46.00	-26.19	Average
4 5 6 7	0.914	23.91	0.49	0.10	24.50	56.00	-31.50	QP
6	0.914	17.87	0.49	0.10	18.46	46.00	-27.54	Average
7	4.647	18.88	0.31	0.10	19.29	56.00	-36.71	QP
8 9	4.647	11.69	0.31	0.10	12.10	46.00	-33.90	Average
9	9.757	29.52	0.22	0.20	29.94	60.00	-30.06	QP
10	9.757	25.47	0.22	0.20	25.89	50.00	-24.11	Average
11	15.970	31.96	0.17	0.20	32.33	60.00	-27.67	QP
12	15.970	25.37	0.17	0.20	25.74	50.00	-24.26	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6.3 Conducted Peak Output Power

Measurement Data

	GFSK mode						
Test channel	Test channel Peak Output Power (dBm)		Result				
Lowest	3.44						
Middle	3.69	30.00	Pass				
Highest	3.30						
	Pi/4QPSK mode						
Test channel	Test channel Peak Output Power (dBm)		Result				
Lowest	2.85	30.00					
Middle	2.96		Pass				
Highest	2.31						
	8DPSK mo	ode					
Test channel	Test channel Peak Output Power (dBm)		Result				
Lowest	Lowest 3.04						
Middle	3.25	30.00	Pass				
Highest	Highest 2.70						

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 13 of 46

Test mode: GFSK mode

Lowest channel

Middle channel

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode: Pi/4QPSK mode

Lowest channel

Middle channel

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode: 8DPSK mode

Lowest channel

Middle channel

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6.4 20dB Emission Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.4:2003			
Limit:	N/A			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Pass			

Measurement Data

To	at abancal	20dB	Decuit		
Test channel		GFSK	Pi/4QPSK	8DPSK	Result
	Lowest	1.098	1.407	1.373	
	Middle	1.099	1.402	1.377	Pass
	Highest	1.099	1.391	1.357	

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 17 of 46

Test mode: GFSK mode

Lowest channel

Middle channel

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode: Pi/4QPSK mode

Lowest channel

Middle channel

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode: 8DPSK mode

Lowest channel

Middle channel

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2003		
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 21 of 46

	GFSK mode						
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result				
Lowest	1000	732.6	Pass				
Middle	1010	732.6	Pass				
Highest	1010	732.6	Pass				
	Pi/4QPSK mode						
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result				
Lowest	Lowest 1010		Pass				
Middle	Middle 1000		Pass				
Highest 1003		938.0	Pass				
	8DPSK mode						
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result				
Lowest 1000		918.0	Pass				
Middle	1003	918.0	Pass				
Highest 1012		918.0	Pass				

Note: According to section 6.3

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	1099	732.6
PI/4QPSK	1407	938.0
8DPSK	1377	918.0

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 22 of 46

Modulation mode: GFSK

Lowest channel

Middle channel

Highest channel

Modulation mode: Pi/4QPSK

Lowest channel

Middle channel

Highest channel

Modulation mode: 8DPSK

Lowest channel

Middle channel

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	ANSI C63.4:2003 RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak			
Receiver setup:				
Limit:	15 channels			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details Refer to section 5.3 for details			
Test mode:				
Test results:	Pass			

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, Pi/4QPSK, 8DPSK	79	15	Pass

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 26 of 46

6.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2003		
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.13632		
GFSK	DH3	0.26880	0.4	Pass
	DH5	0.31296		
	2-DH1	0.13632	0.4	Pass
Pi/4QPSK	2-DH3	0.26880		
	2-DH5	0.31296		
	3-DH1	0.13632		
8DPSK	3-DH3	0.26880	0.4	Pass
	3-DH5	0.31296		

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

The lowest channel (2402MHz), middle channel (2441MHz), highest channel (2480MHz) as blow

DH1 time slot=0.426(ms)*(1600/ (2*79))*31.6=136.32 ms

DH3 time slot=1.680(ms)*(1600/ (4*79))*31.6=268.80ms

DH5 time slot=2.934(ms)*(1600/ (6*79))*31.6=312.96 ms

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 27 of 46

Modulation mode:

GFSK, Pi/4QPSK, 8DPSK

DH1, 2-DH1, 3-DH1

DH3, 2-DH3, 3-DH3

DH5, 2-DH5, 3-DH5

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9 1 = 511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003					
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					
Domarki						

Remark:

During the test, pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 30 of 46

No-hopping mode

Hopping mode

No-hopping mode

Hopping mode

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.4: 2003									
Test Frequency Range:	All restriction band have been tested, and 2.3GHz to 2.5GHz band is the worse case									
Test site:	Measurement Distance: 3m									
Receiver setup:	Frequency Detector RBW VBW Remark									
	Above 1GHz Peak 1MHz 3MHz Peak Value									
	Peak 1MHz 10Hz Average Value									
Limit:	Freque	ncy	Limit (dBuV/		Remark					
	Above 1	GHz	54.00 74.00		Average Value Peak Value					
Test setup:	ADOVE 1GHZ									
Test Procedure:	at a 3 meter carposition of the position of the 2. The EUT was was mounted 3. The antenna hadetermine the polarizations of 4. For each suspitation was turned fro 5. The test-receive Bandwidth with 6. If the emission specified, there had be reported. Or re-tested one in the suspicion of the position of	amber. The table highest radiation set 3 meters award on the top of a variety of the antenna are ected emission, the ast uned to heigh m 0 degrees to 3 ver system was son Maximum Hold at testing could be otherwise the emission of the EUT at testing could be of the wind and the system was son the s	was rotated 3 ay from the interiable-height of the field strees to make the EUT was at from 1 met 160 degrees to et to Peak De Mode. in peak mode stopped and ssions that dick, quasi-peak	erference-reantenna town to four meterength. Both I the measure arranged to iter to 4 metero find the materest Function e was 10dB I the peak valid not have 10	ceiving antenna, which er. ers above the ground to horizontal and vertical ement. ts worst case and then rs and the rota table ximum reading.					
Test Instruments:	Refer to section 5									
Test mode:	Refer to section 5	.3 for details								
Test results:	Pass									

Remark:

- 1. During the test, pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test channel:	Test channel: Lowest										
Peak value:											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
2390.00	45.35	27.58	3.81	34.83	41.91	74.00	-32.09	Horizontal			
2400.00	52.36	27.58	3.83	34.83	48.94	74.00	-25.06	Horizontal			
2390.00	60.35	27.58	3.81	34.83	56.91	74.00	-17.09	Vertical			
2400.00	62.23	27.58	3.83	34.83	58.81	74.00	-15.19	Vertical			
Average valu	ie:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
2390.00	36.35	27.58	3.81	34.83	32.91	54.00	-21.09	Horizontal			
2400.00	34.36	27.58	3.83	34.83	30.94	54.00	-23.06	Horizontal			
2390.00	40.29	27.58	3.81	34.83	36.85	54.00	-17.15	Vertical			
2400.00	39.67	27.58	3.83	34.83	36.25	54.00	-17.75	Vertical			
Test channel:				High	est						

Peak value:

reak value.								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	50.32	27.52	3.89	34.86	46.87	74.00	-27.13	Horizontal
2500.00	53.26	27.55	3.90	34.87	49.84	74.00	-24.16	Horizontal
2483.50	48.35	27.52	3.89	34.86	44.90	74.00	-29.10	Vertical
2500.00	52.06	27.55	3.90	34.87	48.64	74.00	-25.36	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	43.20	27.52	3.89	34.86	39.75	54.00	-14.25	Horizontal
2500.00	37.26	27.55	3.90	34.87	33.84	54.00	-20.16	Horizontal
2483.50	41.35	27.52	3.89	34.86	37.90	54.00	-16.10	Vertical
2500.00	34.62	27.55	3.90	34.87	31.20	54.00	-22.80	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2003						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.8 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

Remark:

During the test, pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test channel:

Lowest channel

30MHz~10GHz

10GHz~25GHz

Test channel:

Middle channel

30MHz~10GHz

10GHz~25GHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test channel:

Highest channel

30MHz~10GHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6.10.2 Radiated Emission Method

	FCC Part15 C Se	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.4: 200	ANSI C63.4: 2003							
Test Frequency Range:	30MHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Above 1GHz Peak 1MHz 3MHz Pea							
	Above 1GHz								
	Above Toriz	Peak 1MHz 10Hz Average Value							
Limit:	Freque	Frequency Limit (dBuV/m @3m) Remark							
	30MHz-8	30MHz-88MHz 40.0 Quasi-peak Val							
	88MHz-2	16MHz	43.5	5	Quasi-peak Value				
	216MHz-9	960MHz	46.0)	Quasi-peak Value				
	960MHz	-1GHz	54.0)	Quasi-peak Value				
	Above ²	1GHz	54.0)	Average Value				
	715676	10112	74.0)	Peak Value				
	EUT	▼ 1	L/	Ante	rch nna				
	Turn Table Ground Plane Above 1GHz	4m		RF Test Receiver					

Test Procedure:	The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

- 1. During the test, pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement data:

■ Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
77.87	56.80	11.26	0.42	31.83	36.65	40.00	-3.35	Vertical
129.92	47.08	9.03	0.56	31.86	24.81	43.50	-18.69	Vertical
181.92	52.93	9.84	0.67	32.17	31.27	43.50	-12.23	Vertical
207.85	55.48	10.81	0.74	32.27	34.76	43.50	-8.74	Vertical
234.17	52.54	11.83	0.85	32.28	32.94	46.00	-13.06	Vertical
260.14	43.88	12.16	0.95	32.29	24.70	46.00	-21.30	Vertical
77.87	56.90	11.26	0.42	31.83	36.75	40.00	-3.25	Horizontal
129.92	53.66	9.03	0.56	31.86	31.39	43.50	-12.11	Horizontal
181.92	56.50	9.84	0.67	32.17	34.84	43.50	-8.66	Horizontal
207.85	58.54	10.81	0.74	32.27	37.82	43.50	-5.68	Horizontal
234.17	60.70	11.83	0.85	32.28	41.10	46.00	-4.90	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 38 of 46

■ Above 1GHz

Test channel:	Lowest
---------------	--------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	46.60	31.53	5.87	35.46	48.54	74.00	-25.46	Vertical
7206.00	52.82	36.47	7.08	35.32	61.05	74.00	-12.95	Vertical
9608.00	45.20	38.10	9.01	35.72	56.59	74.00	-17.41	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	45.28	31.53	5.87	35.46	47.22	74.00	-26.78	Horizontal
7206.00	48.74	36.47	7.08	35.32	56.97	74.00	-17.03	Horizontal
9608.00	43.40	38.10	9.01	35.72	54.79	74.00	-19.21	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	26.35	31.53	5.87	35.46	28.29	54.00	-25.71	Vertical
7206.00	32.16	36.47	7.08	35.32	40.39	54.00	-13.61	Vertical
9608.00	29.38	38.10	9.01	35.72	40.77	54.00	-13.23	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	26.35	31.53	5.87	35.46	28.29	54.00	-25.71	Horizontal
7206.00	32.62	36.47	7.08	35.32	40.85	54.00	-13.15	Horizontal
9608.00	26.38	38.10	9.01	35.72	37.77	54.00	-16.23	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 39 of 46

Т	est channel:	Middle
	313	

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	45.44	31.58	5.91	35.48	47.45	74.00	-26.55	Vertical
7323.00	45.49	36.47	7.14	35.27	53.83	74.00	-20.17	Vertical
9764.00	46.97	38.45	9.06	35.75	58.73	74.00	-15.27	Vertical
12205.00	*					74.00		Vertical
14480.00	*					74.00		Vertical
4882.00	44.03	31.58	5.91	35.48	46.04	74.00	-27.96	Horizontal
7323.00	44.26	36.47	7.14	35.27	52.60	74.00	-21.40	Horizontal
9764.00	45.97	38.45	9.06	35.75	57.73	74.00	-16.27	Horizontal
12205.00	*					74.00		Horizontal
14480.00	*					74.00		Horizontal

Average value:

/ Totage value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	28.35	31.58	5.91	35.48	30.36	54.00	-23.64	Vertical
7323.00	29.57	36.47	7.14	35.27	37.91	54.00	-16.09	Vertical
9764.00	29.32	38.45	9.06	35.75	41.08	54.00	-12.92	Vertical
12205.00	*					54.00		Vertical
14480.00	*					54.00		Vertical
4882.00	26.35	31.58	5.91	35.48	28.36	54.00	-25.64	Horizontal
7323.00	27.32	36.47	7.14	35.27	35.66	54.00	-18.34	Horizontal
9764.00	31.25	38.45	9.06	35.75	43.01	54.00	-10.99	Horizontal
12205.00	*			_	_	54.00		Horizontal
14480.00	*			· · · · · · · · · · · · · · · · · · ·		54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 40 of 46

Test channel:	Highest
. 551 5115111511	gest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	45.68	31.69	5.97	35.49	47.85	74.00	-26.15	Vertical
7440.00	46.41	36.60	7.18	35.23	54.96	74.00	-19.04	Vertical
9920.00	45.61	38.66	9.11	35.78	57.60	74.00	-16.40	Vertical
12400.00	*					74.00		Vertical
14646.00	*					74.00		Vertical
4960.00	44.87	31.69	5.97	35.49	47.04	74.00	-26.96	Horizontal
7440.00	45.47	36.60	7.18	35.23	54.02	74.00	-19.98	Horizontal
9920.00	44.57	38.66	9.11	35.78	56.56	74.00	-17.44	Horizontal
12400.00	*					74.00		Horizontal
14646.00	*					74.00		Horizontal

Average value:

Attorage value.								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	28.16	31.69	5.97	35.49	30.33	54.00	-23.67	Vertical
7440.00	32.26	36.60	7.18	35.23	40.81	54.00	-13.19	Vertical
9920.00	29.46	38.66	9.11	35.78	41.45	54.00	-12.55	Vertical
12400.00	*					54.00		Vertical
14646.00	*					54.00		Vertical
4960.00	25.26	31.69	5.97	35.49	27.43	54.00	-26.57	Horizontal
7440.00	31.20	36.60	7.18	35.23	39.75	54.00	-14.25	Horizontal
9920.00	26.35	38.66	9.11	35.78	38.34	54.00	-15.66	Horizontal
12400.00	*					54.00		Horizontal
14646.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 41 of 46

7 Test Setup Photo

Radiated Emission

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Conducted Emission

8 EUT Constructional Details

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

-----End-----

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960