Ejemplos Preguntas Aprendizaje Estadístico

Hoja 3 de ejercicios.

Hasta viernes 10 de Noviembre: ejercicios: 9, 10, 11, 13, 14, 15

De la hoja de ejercicios 1:

- 1. Busca un ejemplo de regresión donde la variable dependiente es cuantitativa. Elabora. ¿Qué es Y? ¿Qué es X? ¿Qué es f(X)? ¿Cómo estimarías f(X) por K nearest neighbours? ¿Cómo se interpretaría esta estimación f(X) en este caso? ¿Cómo lo estimarías con un modelo paramétrico? ¿Cómo se interpretaría esta estimación $\hat{f}(X)$ en este caso?
- 2. ¿Puedes construir datos de Y y X tal que el error irreducible = 0 y otros tal que es muy alto? ¿Cómo lo representarías en un gráfico? ¿Qué implicaría para la estimación?
- 3. Busca un ejemplo de un problema de clasificación donde la variable dependiente toma 2 valores. Elabora. ¿Qué es Y? ¿Qué es X? ¿Qué es p(X)? ¿Cómo estimarías p(X) y C(X) en este caso con el método de K nearest neighbours?
- 4. Busca un ejemplo de un problema de clasificación donde la variable dependiente toma más de 2 valores. Elabora.
- 5. Un amigo quiere visitarte en Noviembre en Palma. Pregunta por las fechas óptimas y te dice que le gusta el sol. ¿En qué sentido puede verse esto como un problema de clasificación? Elabora. ¿Cómo se podría estimar el problema?
- 6. Encuentra un ejemplo real de clasificación (simple) donde el error de Bayes es máximo. Y uno donde es mínimo. ¿Qué implica para la estimación?
- 7. En un problema de clasificación con 3 características describe como son las frontera de decisión de Bayes resultando de una estimación de K nearest neighbours. ¿Para qué sirven? ¿Cómo dependen del K?

Otras Preguntas

- 8. Explica el problema de "maldición de dimensión". ¿Qué implica?
- 9. Nos interesa estimar una regresión logística en la que queremos explicar una variable binomial (0,1) con una variable X. Por el problema de endogenidad, lo estimamos en 2 etapas. En la primera etapa en vez de regresar Y directamente sobre X, primero se hace una regresión de X sobre cualquier combinación de instrumentos posibles $\{Z_1, Z_2, Z_3\}$ y se guarda el valor ajustado \hat{X} , después se hace una regresión de la variable continua Y sobre \hat{X} .
 - (a) Explica cómo se utilizaría la validación cruzada para evaluar que combinación de instrumentos da los mejores resultados.

- (b) Explica cómo se utilizaría el bootstrap para calcular la desviación estándar del coeficiente de regresión de Y sobre X.
- 10. Dibuja el resultado de una predicción de 2 vecinos más cercanos de una regresión de los puntos en un examen sobre horas estudiadas. Como te parece la elección de K=2?
- 11. Analizamos 3 variables con la matriz de correlación dada por

$$\begin{pmatrix}
1 & 0.1 & -0.05 \\
0.1 & 1 & -0.1 \\
-0.05 & -0.1 & 1
\end{pmatrix}$$

- (a) ¿Tiene sentido hacer un análisis de componentes principales?
- (b) ¿Cuántos componentes principales crees que encontramos (elegimos)?
- (c) ¿Qué porcentaje de la varianza total explica aproximadamente cada componente principal?
- 12. Explíca el siguiente gráfico en el contexto de un análisis de componentes principales.

- 13. Te gustaría invertir dinero en acciones. Algún amigo comenta que acciones de tecnologia han crecido los últimos anos más rápidamente. Sin embargo quieres basar tu decisión en datos y comparas los rendimientos de acciones de tecnología con los demás. Encuentras que la diferencia es positiva y altamente significativa. Por eso inviertes. Te parece bien el análisis?
- 14. Algunos de los resultados de un análisis de componentes principales se muestran en las siguientes tablas. Valore e interprete los resultados obtenidos.

2

ANALISIS DE COMPONENTES PRINCIPALES SOBRE DATOS DE POLUCIÓN AÉREA

Los datos son observaciones de polución aérea en 80 ciudades americanas (año 1960). El ejemplo proviene de **Jobson**, 1992, <u>Applied Multivariate Data Analysis</u>, **Springer-Verlag** (data set V7). Las medidas de polución se han obtenido cada dos semanas en las 80 ciudades; las variables se definen como: **SMIN**: Nivel mínimo de sulfato (miligramos por metro cúbico x 10).

SMEAN: Media aritmética de las lecturas de los niveles de sulfato (miligramos por metro cúbico x 10).

SMAX: Nivel máximo de sulfato (miligramos por metro cúbico x 10).

PMIN: Cantidad mínima de partículas en el aire (miligramos por metro cúbico x 10).

PMEAN: Media aritmética de partículas suspendidas en el aire (miligramos por metro cúbico x 10).

PMAX: Cantidad máxima de partículas en el aire (miligramos por metro cúbico x 10).

				Univariat	e Statistic	cs			
	Variable		N Mean		Std Dev			mum	
	SMIN		80	47.1000	30.2184	1.000			
	SMEAN		80	99.6500	50.4276	26,000			
	SMAX		80 2	19.8750	120.0390			000	
	PMIN		80	44.5000	18.3806	3806 10.0000		000	
	PMEAN			16.7250	38.8375			247.0000	
	PMAX		80 27	75.5375	159,0990	117.000			
			Co	orrelation	Matrix				
		SMIN	SMEAN		XAM	PMIN	PMEAN	PMAX	
MIN		.0000	0.5740		0.	1804	0.1555	-0.0017	
MEAN		.5740	1.0000	0.00	320 0.	4481	0.5535	0.3386	
MAX MIN		.3024	0.8320			3402	0.5604	0.4738	
	0	.1804	0.4481			0000	0.6951	0.1596	
MEAN MAX		.1555	0.5535		0.0	6951	1.0000	0.6566	
MAX	-0	.0017	0.3386	0.47	'38 O.	1596	0.6566	1.0000	
				genvalues					
	Component PCR1		Eigenvalue						
	PCR2		3.2109			5352	0.5352		
	PUN2		1.1957		. 0.	1993	0.7344		
		Eige	envectors (CORR)		Dota			
	Variable		PCR1		R2 Var	ratt riable	ern Matrix	,	
	SMIN		0.2539				PCR1		
	SMEAN		0.4880			EAN	0.4549	-11100	
	SMAX		0.4687				0.8745		
	PMIN		0.3660				0.8399		
	PMEAN		0.4757				0.6559		
	PMAX		0.3427	-0.50			0.8524		
				0.00	FIVIS		0.6140	-0.5492	

15. Utiliza los datos, en el fichero "satisfacción" y haz un análisis de componentes principales.

FICHERO DATOS: pcegt-satisfacción.sav Recoge información sobre una encuesta a turistas que han realizado sus vacaciones en Baleares en agosto de 2003. Muestreo por cuotas de nacionalidad realizado en el aeropuerto al finalizar sus vacaciones. Tamaño muestral: 3477.

Se recoge información sobre el nivel de satisfacción global y el nivel de satisfacción de distintas componentes de la oferta turística. También se recoge información de algunas de las características del turista. Las variables de satisfacción se han medido en escala 1 (pésimo) a 10 (excelente).

Variables en el fichero:

RUIDO satisfacción respecto al ruido

SATISGLO satisfacción global PAISAJE satisfacción respecto al paisaje PLAYA satisfacción respecto a la playa CLIMA satisfacción respecto al clima CALALOJ satisfacción respecto a la calidad del alojamiento CALMEDIO satisfacción respecto a la calidad medioambiental CALURBAN satisfacción respecto a la calidad del entorno urbano LIMPIEZA satisfacción respecto a la limpieza PRCOMID satisfacción respecto al precio de las comidas PROCIO satisfacción respecto al precio de actividades de ocio PRCOMPRA satisfacción respecto al precio de compras comerciales TRATO satisfacción respecto al trato recibido como cliente HOSPIT satisfacción respecto a la hospitalidad de la gente SEGUR satisfacción respecto a la seguridad DIVERS satisfacción respecto a la diversión nocturna INFORM satisfacción respecto a la información satisfacción respecto a la señalización CULTURA satisfacción respecto a actividades y atractivos culturales TRANQUIL satisfacción respecto a la tranquilidad