PROBLEMĂ PROPUSĂ PENTRU CLASA A-XI-A

Fie $A,B\in M_3(C)$ și C=AB-BA. Dacă rang(C)=2 și $Tr(C^*)\neq 0$, să se calculeze $rang(C^2-Tr(C^*)\cdot I_3)$.

prelucrare, prof. Dumitrică Sorin Radu

Soluție : Fie $p \in C[X]$, polinomul caracteristic al matricei C , $p = (-1)^3 \det(C - X \cdot I_3)$ $\Rightarrow p = X^3 - Tr(C)X^2 + Tr(C^*)X - \det(C)$. Din $rang(C) = 2 \Rightarrow \det(C) = 0$, iar Tr(C) = Tr(AB - BA) = Tr(AB) - Tr(BA) = 0 . Din teorema Hamilton-Cayley obținem că $C^3 - Tr(C^*) \cdot C = O_3 \Rightarrow C(C^2 - Tr(C^*) \cdot I_3) = O_3$. Din inegalitatea lui Sylvester rezultă $0 = rang(C(C^2 - Tr(C^*) \cdot I_3)) \ge rang(C) + rang(C^2 - Tr(C^*) \cdot I_3) - 3$, de unde deducem că $rang(C^2 - Tr(C^*) \cdot I_3) \le 1$. Să presupunem că $rang(C^2 - Tr(C^*) \cdot I_3) = 0$. Atunci $C^2 - Tr(C^*) \cdot I_3 = O_3$, adică $C^2 = Tr(C^*) \cdot I_3 \Rightarrow \det^2(C) = Tr^3(C^*) \ne 0 \Rightarrow \det(C) \ne 0$, contradicție cu rang(C) = 2. În consecintă , $rang(C^2 - Tr(C^*) \cdot I_3) = 1$.