Data Mining Lecture 13: Learning to Rank

Jo Houghton

ECS Southampton

May 10, 2019

What is "Learning to Rank"?

Definitions:

- Any machine learning used for ranking problem broad
- ► Machine learning for ranking of *objects* given *subject* narrow

I will use the second definition

Much of this talk is based on tutorials Hang Li ACML 2009 and Tie-Yan Liu WWW 2009

Why rank?

- Document Search
- ► Recommender Systems
- ► Machine Translation
- Essay Scoring

Why rank?

- Document Search
- Recommender Systems
- Machine Translation
- Essay Scoring

Any task where you need an ordering over items in a collection

Rank or sort objects given a feature vector

Like classification, goal is to assign one of k labels to a new instance. However, absolute class is not needed

Like regression, the k labels have order, so you are assigning a value. However this value is not absolute

In general:

Information Retrieval: ranking documents in order of *relevance*, *importance* and *preference* given a query

Information Retrieval

In this case, the feature vectors correspond to features of a *query-document* pair, the subject is the query and the object is the document

There are many possible features:

- Number of query terms in document Relevance
- PageRank Importance
- ▶ BM25 Relevance

Features are functions of both the query and the document

Problem Formulation Given:

- ▶ Set of input vectors $\{x_i\}_{i=1}^n$
- ▶ Labels $\{y_i\}_{i=1}^n$ where $Y = \{1, 2, ..., N\}$ specifying an order

Find function f to give the ranking, minimising some cost C

There are a good number of possible cost functions.

- DCG Discounted Cumulative Gain
- NDCG Normalised DCG
- ► MAP Mean Average Precision
- MRR Mean Reciprocal Rank
- WTA Winner Takes All
- Kendall's Tau

The cost function chosen will depend on what you are trying to rank.

DCG - Discounted Cumulative Gain

$$DCG_i = \sum_{i=1}^m c_i y_i$$

Where c_i is a predefined sequence of non-increasing non-negative discount factors, $c=1/\log(i+1)$ when i>k and c=0 otherwise 1

Focusses on quality of ranking at the top of the list.

¹Jarvelin and Kekalainen, 2002

NDCG - Normalised Discounted Cumulative Gain

$$NDCG = \frac{DCG}{IDCG}$$
 $DCG_j = \sum_{i=1}^{j} \frac{2^{r_i} - 1}{\log_2(i+1)}$

i	True Order	True r_i	DCG_j	$NDCG_i$	\bar{r}_i	DCG_i	$NDCG_i$
1	d_4	3	7.0	1	2	3.0	0.43

NDCG - Normalised Discounted Cumulative Gain

$$NDCG = \frac{DCG}{IDCG}$$
 $DCG_j = \sum_{i=1}^{j} \frac{2^{r_i} - 1}{\log_2(i+1)}$

i	True Order	True r_i	DCG_j	$NDCG_i$	\bar{r}_i	DCG_i	$NDCG_i$
1	d_4	3	7.0	1	2	3.0	0.43
2	d_3	3	11.4	1	3	7.4	0.65

NDCG - Normalised Discounted Cumulative Gain

$$NDCG = \frac{DCG}{IDCG}$$
 $DCG_j = \sum_{i=1}^{j} \frac{2^{r_i} - 1}{\log_2(i+1)}$

i	True Order	True r_i	DCG_j	$NDCG_i$	\bar{r}_i	DCG_i	$NDCG_i$
1	d_4	3	7.0	1	2	3.0	0.43
2	d_3	3	11.4	1	3	7.4	0.65
3	d_2	2	12.9	1	2	8.9	0.69

NDCG - Normalised Discounted Cumulative Gain

$$NDCG = \frac{DCG}{IDCG}$$
 $DCG_j = \sum_{i=1}^{j} \frac{2^{r_i} - 1}{\log_2(i+1)}$

i	True Order	True r_i	DCG_j	$NDCG_i$	\bar{r}_i	DCG_i	$NDCG_i$
1	d_4	3	7.0	1	2	3.0	0.43
2	d_3	3	11.4	1	3	7.4	0.65
3	d_2	2	12.9	1	2	8.9	0.69
4	d_1	2	14.2	1	3	11.9	0.84

MAP - Mean Average Precision. Only looks at top j results.

Precision at position j for query q:

$$P_j = \frac{\text{number relevant docs in top } j \text{ results}}{j}$$

Average precision for query q

$$AP_q = \frac{\sum_j P_j.rel(j)}{\text{number relevant docs}}$$

E.g. for a query giving the top 5 results 1, 0, 1, 0, 1

$$AP = \frac{(\frac{1}{1} + \frac{2}{3} + \frac{3}{5})}{3} \approx 0.76$$

MAP - average precision for each query averaged over all Q queries

$$MAP = \frac{\sum_{q}^{Q} AP_{q}}{Q}$$

MRR - Mean Reciprocal Rank Considers only rank position of first relevant document. Reciprocal rank for query q RR_q :

$$RR_q = \frac{1}{K}$$

Mean Reciprocal Rank:

$$MRR_q = \frac{\sum_q^Q}{Q}$$

Learning to Rank - Types of Ranking

Machine learning ranking algorithms are categorised by how they are judged

Pointwise - treats each object in isolation
 Can use Regression, Classification

Learning to Rank - Types of Ranking

Machine learning ranking algorithms are categorised by how they are judged

- Pointwise treats each object in isolation
 Can use Regression, Classification
- Pairwise treats objects in pairs
 RankNet, Frank, RankBoost, Ranking SVM

Learning to Rank - Types of Ranking

Machine learning ranking algorithms are categorised by how they are judged

- Pointwise treats each object in isolation
 Can use Regression, Classification
- Pairwise treats objects in pairs
 RankNet, Frank, RankBoost, Ranking SVM
- Listwise assesses the ordering of the whole list at once
 Tries to directly optimise the ranking metric

Task: Learn a ranking function to give an absolute score

	Regression	Classification	Ordinal Regression
Input	x	X	X

Task: Learn a ranking function to give an absolute score

	Regression	Classification	Ordinal Regression
Input	x	X	x
Model	f(x)	f(x)	f(x)

Task: Learn a ranking function to give an absolute score

	Regression	Classification	Ordinal Regression
Input	x	x	x
Model	f(x)	f(x)	f(x)
Output	Real Number	Category	Ordered Category
Output	$y = f(\mathbf{x})$	y = sign(f(x))	y = thresh(f(x))

A simple example in 1D, minimising error. Cossock and Zhang, COLT 2006: use least squares difference between relevance degree and estimated relevance degree to learn ranking function

Also:

- ► McRank, Li *et al* NIPS2007 Multi class classification to learn ranking, combine outputs of classifiers
- Pranking, Krammer and Singer, NIPS 2002 Perceptron ranking, ordinal regression
- Ranking with Large Margin Principles Shashua and Levin NIPS 2002, SVM

Perceptron Ranking

Failed to converge;

Algorithm 1: Perceptron Algorithm

```
Data: X, y, runs, \eta, N
w = rand vector dependent of X feature vector length;
i = 0:
for i = 1 to runs do
    \hat{\mathbf{y}} = X.w;
    err = count(\hat{\boldsymbol{y}}.\boldsymbol{y} > 0);
    if err = 0 then
         return w;
    end
     r_{idx} = randint(0, N);
    if \hat{\mathbf{y}}[r_{idx}] \times \mathbf{y}[r_{idx}] < 0 then
       w = w + \eta y[r_{idx}]X[r_{idx}]
    end
end
```

Movie showing mechanics of perceptron algorithm

The Model:

- ▶ Input: Feature vectors X, ranks y where $y \in \{1, 2, ..., k\}$
- ▶ Output: $f(X) = f(w.X, b) \sim N \in \{1, 2, ..., k\}$ Where:
 - ▶ w is a weights vector
 - **b** is ranking thresholds, $b_1 \leq b_2 \leq ... \leq b_k = \infty$
 - ▶ f(w.X, b) takes the form $\min_{r \in \{1, 2, ..., k\}} \{r : w.X b_r < 0\}$
- ▶ Loss: $\sum_{t=1}^{T} |\hat{\mathbf{y}}^t \mathbf{y}|$ for run t of T runs

Update Rule:

- ▶ Given X_i and y_i input, $f(\mathbf{w}.X_i, \mathbf{b}) = y_i$ if:
 - $\forall r \in \{1, ..., y_i 1\}, \mathbf{w}. X_i > b_r$
 - ▶ $\forall r \in \{y_i, ..., k-1\}, \mathbf{w}.X_i < b_r$
- ▶ So *True* ranking vector is +1 if $r < y_i$ otherwise −1, i.e. $\{y_1, ..., y_i, y_{i+1}, ..., y_k\}$ gives $\{+1, ..., +1, -1, ..., -1\}$
- ▶ If $\exists r : y_r.(\mathbf{w}X_i b_r) \leq 0$ then move values of $\mathbf{w}X_i$ and b_r towards each other:
 - $b_r = b_r y_r$
 - $\mathbf{w} = \mathbf{w} + \left(\sum_{r: y_r, \hat{y}_r \leq 0} y_r\right) X_i$, i.e. only sum over the ranks where there was an error

Perceptron Ranking

Algorithm 2: Perceptron Ranking Algorithm

```
Data: X, y, T, N, k
\mathbf{w} = rand vector dependent of \mathbf{X} feature vector length;
b_1, ..., b_{k-1} = 0, b_k = \infty:
for t = 1 to T do
    i = randint(0, N);
    \hat{y}_i = \min_{r \in \{1,2,...,k\}} \{r : \mathbf{w}.X_i - b_r < 0\};
    if \hat{y}_i \neq y_i then
         for r = 1 to k - 1 do if y_i < r then trv_r = -1;
         else trv_r = +1:
         for r = 1 to k do if (\mathbf{w}.X_i - b_r)trv_r \leq 0 then
          \tau_r = trv_r else \tau_r = 0:
         \mathbf{w} = \mathbf{w} + (\sum_r \tau_r) X_i;
         for r = 1 to k - 1 do b_r = b_r - \tau_r;
    end
```

To update w: shift towards actual rank

$$\mathbf{w} = \mathbf{w} + (\sum_{r} \tau_{r}) X_{i}$$

calc. rank updated

To update w: shift towards actual rank

$$\mathbf{w} = \mathbf{w} + (\sum_{r} \tau_{r}) X_{i}$$

calc. rank updated

To update b: move those intervals to make the actual rank closer

$$b_r = b_r - trv_r$$
 where rank is incorrect

Example Perceptron Ranking:

Sample data:

Rank	<i>x</i> ₁	<i>x</i> ₂
2	0.4	0.9
2	0.3	8.0
3	0.2	0.7
3	0.3	0.6
1	0.5	1.0
2	0.3	0.9
1	0.6	1.0
4	0.1	0.5
4	0.0	0.6
1	0.5	0.9

Movie showing mechanics of pranking algorithm

Advantages:

- Simple to implement
- Low complexity

Disadvantages:

- Error from all the actual ranks is minimised
 This is not necessary, we only need relative order
- ► In IR, some queries have more matches than those with less This means the loss function can be dominated by queries with many matches
- Position of document in list is not visible to loss functions here There may be too much emphasis on irrelevant documents

	Learning	Ranking
Input	vector pair $\{\pmb{x_i}, \pmb{x_j}\}$	vector x_k
Model	f(x)	f(x)
Output	$y_{ij} = sign(f(\mathbf{x}_i, \mathbf{x}_j))$	$\mathbf{y} = sort(\{f(\mathbf{x}_k)\}_{i=1}^n)$

Minimises misranking of pairs of feature vectors.

The model learns to rank pairs of vectors, any binary classifier can be used

Transforming data in to vector pairs

Sample data:

#	Rank	x_1	x_2
а	2	0.41	0.92
b	2	0.28	0.83
С	3	0.25	0.73
d	3	0.31	0.62
е	1	0.57	0.96
f	2	0.29	0.91
g	1	0.59	0.97
h	4	0.15	0.53
i	4	0.03	0.58
j	1	0.56	0.84

Transforming data in to vector pairs

Sample data:

Pair	Comp. Rank	<i>x</i> ₁	<i>x</i> ₂
a - b	0	0.13	0.09
a - c	1	0.16	0.19
a - d	1	0.10	0.30
a - e	-1	-0.16	-0.04
a - f	0	0.12	0.01
a - g	-1	-0.18	-0.05
a - h	1	0.26	0.39
a - i	1	0.38	0.34
a - j	-1	-0.15	80.0
b - a	0	-0.13	-0.09
:	÷	÷	:

Half the comparisons are redundant, as they are the opposite of the other.

We can just take cases where the comparative rank is 1 as half of the pair comparisons are duplicates of the other half.

The aim to to combine a set of ranking features such that the comparison $f(x_i) > f(x_j)$ means x_i is higher rank than x_j .

The function f() is a linear function w.X

Bradley-Terry-Luce model

Assumes that there is an underlying parameter p_i that determines the ranking for item x_i

$$P(\mathbf{x_i} > \mathbf{x_j}) = \frac{p_i}{p_i + p_j}$$

 p_i could be skill for game rankings, relevance for information retrieval e.t.c.

Thurstone (1929) stated that comparisons are made by drawing a variable with the intrinsic value as the mean and a normal distribution

Bradley-Terry-Luce model

Iterative rank aggregation algorithm: finds underlying scores from pairwise comparisons

n items of interest, represented as $[n] = \{1, 2, ..., n\}$ Assume for each item $i \in [n]$ there is an associated score $w_i \in \mathbb{R}_+$. Vector $w \in \mathbb{R}_+$ is associated weight vector of all items.

Given a pair of items i and j $Y_i^Ij=1$ if i is preferred over j, and 0 otherwise during the I^{th} comparison for $1 \le l \le k$ where k is the total number of comparisons

$$P(Y_{ij}^l=1)=\frac{w_i}{w_i+w_j}$$

i is compared to *j* with probability $\frac{d}{n}$

Random Walk approach a_{ij} is fraction of times i preferred to j

$$a_{ij} = \frac{1}{k} \sum_{l=1}^{k} Y_{ij}^{l}$$

A random walk on a directed graph G=([n],E,A) where a pair i,j have an edge if they have been compared. Edge weights A are given by $A_{ij}=\frac{a_{ij}}{a_{ij}+a_{ij}}$

The random walk is represented by the transition matrix P where $P_{ij} = P(X_{t+1} = j | X_t = i)$

Rows and columns are normalised, so edge weights are scaled by $1/d_{max}$ where d_{max} is the maximum out-degree of a node.

$$P_{ij} = \begin{cases} \frac{1}{d_{max}} A_{ij} & \text{if } i \neq j \\ 1 - \frac{1}{d_{max}} \sum_{k \neq i} & \text{if } i = j \end{cases}$$

From an arbitrary starting distribution p_o (where $(p_o(i)) \in \mathbb{R}_+^n$) over [n] the transition matrix is repeatedly applied

$$p_{t+1}^T = p_t^T P$$

The rank is then calculated by finding the stationary distribution $\pi = \lim_{t \to \infty} p_t$, which will converge to the top left eigenvector of P The stationary distribution of the random walk is a fixed point of:

$$\pi(i) = \sum_{i} \pi(j) \frac{A_{ji}}{\sum_{l} A_{il}}$$

Item is high rank if preferred to many items, or other high rank items

Advantages:

- Better performance than pointwise
- Gives relative rank

Disadvantages:

- Does not optimise cost function normally used
- Ranking items at the top often more important than lower down

Other pairwise approaches:

- RankBoost (Freund et al JMLR 2003)
- RankingSVM (Herbrich et al 2000)
- ► FRank (Tsai et al SIGIR 2007)
- RankNet (Burges et al ICML 2005)
- Learning to Order (Cohen et al NIPS 1998)

Two approaches:

- Directly optimise the metric used
- ▶ Minimise loss for the permutation of the list

	Minimise Loss	Direct Optimisation
Input	Docs Set $X = \{x_j\}_{j=1}^m$	Docs Set $X = \{x_j\}_{j=1}^m$
Model	sort $f(\boldsymbol{X})$	$f(\boldsymbol{X})$
Output	Permutation π_y	Ordered categories $\mathbf{y} = \{y_j\}_{j=1}^m$

Direct optimisation:

e.g. for information retrieval could be NDCG, or MAP Unfortunately these measures are non-continuous, so not differentiable, so no gradient descent.

Approaches used so far:

- make cost function smooth SoftRank
- optimise only smooth upper bound of metric SVM-MAP
- use an algorithm that can deal with discontinuous metrics -AdaRank, RankGP

Listwise loss minimisation:

Non-Trivial!

e.g.

- ListNet (Cao et al ICML 2007)
 Minimises KL divergence between permutation probability distributions, using a NN model and gradient descent
- ListMLE (Xia et al ICML 2008)
 uses MLE algorithm with NN model and SGD to maximise
 likelihood of permutation

Advantages:

- rank position is visible to loss function
- uses all documents

Disadvantages:

- very high complexity, not practical
- position information is sometimes insufficient

Learning to Rank - Summary

Pointwise:

- Relatively simple
- Can give good results for easier problems
- ► But:
- Does more than necessary
- Gives absolute score when we only need a rank

Learning to Rank - Summary

Pointwise:

- Relatively simple
- Can give good results for easier problems
- ► But:
- Does more than necessary
- Gives absolute score when we only need a rank

Pairwise:

- Good Performance
- Solves the right problem
- ► But..
- Can be high complexity
- Sometimes need more than just rank

Learning to Rank - Summary

Pointwise:

- Relatively simple
- Can give good results for easier problems
- ► But:
- Does more than necessary
- Gives absolute score when we only need a rank

Pairwise:

- Good Performance
- Solves the right problem
- ► But..
- Can be high complexity
- Sometimes need more than just rank

Listwise:

- ► Better performance
- ► But..
- Very high complexity