True/False from my quizzes

1. Consider the R \ {0} of non-zero real number with the usual division. Every element of R \ {0} is invertible

False, for every element of a set to be invertible, it must have an identity but R \ {0} doesn't have an identity.

- 2. Every vector space with a non-zero vector has at least two distinct subspaces

 True, recall every vector space has the zero vector and the set with just the zero

 vector is a subspace. And a vector space V is a subspace of itself.
- 3. Let V be a vector space. Consider the set $X = \{v1, v2, ... vn\}$. Suppose that every vector in V is unique linear combination of vectors in X. Then is a basis for V.

True, this is another definition of basis for V

4. Let V and W be vector spaces. For every vector c in W, the function $T_c: V \to W$ defined by $T_c(v) = c$ for all v in V is a linear transformation.

False, doesn't hold if c is a non-zero vector

- 5. Let B, B', B'' be ordered bases for the vector space V then $C_{B \to B''} = C_{B' \to B''} C_{B \to B'}$
- 6. Suppose A and C are n by n matrices. Suppose further that C is invertible. Let v be an eigenvector of A. Then $C^{-1}v$ and Cv are eigenvectors of $C^{-1}AC$ and CAC^{-1} respectively

True, recall the definition of eigenvector $Av = \lambda v$, so show $C^{-1}AC(C^{-1}v) = \lambda(C^{-1}v)$

7. Let V be a vector space. Let <,> be an inner product in V. For any k in R, define <,>' by < u, v > ' = k < u, v > Then <,>' is also an inner product

False, let k=0, then the inner product violates property (3), positive definite

8. Every non-trivial subspace of \mathbb{R}^n has an orthonormal basis.

True, every subspace has a basis B, we can apply gram-smith on this to get an orthonormal basis.

Past Graded Homework Questions

A is 7 × 7, A + I has nullity 3, (A + I)^k has nullity 5 for k ≥ 2; A + iI has nullity 1, (A + iI)^j has nullity 2 for j ≥ 2.

. Since A+I has nullity 3, it annihilates three Jordan basis vectors, say $\mathbf{b_1}$, $\mathbf{b_2}$, and $\mathbf{b_4}$:

$$b_1 \to 0, b_2 \to 0, b_4 \to 0.$$

Since $(A-3I)^2$ has nullity 5, it annihilates two more Jordan basis vector, starting strings of length 2, say $\mathbf{b}_3 \to \mathbf{b}_2 \to \mathbf{0}, \ \mathbf{b}_5 \to \mathbf{b}_4 \to \mathbf{0}, \ \mathbf{b}_1 \to \mathbf{0}.$

Since A+iI has nullity 1, it annihilates one Jordan basis vector, say $\mathbf{b}_6\colon \ \mathbf{b}_6 \to \mathbf{0}$.

Since $(A+iI)^j$ has nullity 2 for $j\geq 2$, these powers of the matrix annihilate one more Jordan basis vector, which starts a string of length 2, say $b_7 \rightarrow b_6 \rightarrow 0$. Since n=7, and we

have found the string structure for 7 vectors in a Jordan basis, we find that a Jordan canonocal form for A is

$$J = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -i & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -i \end{bmatrix}.$$

Problem 3. Let $A \in M_9(\mathbb{C})$, with eigenvalues λ, α and γ with algebraic multiplicity 4, 2 and 3 and geometric multiplicities 2, 1 and 1 respectively.

- (1) We say two Jordan forms are equivalent if they only differ by the order of the Jordan blocks. Give all possible nonequivalent Jordan canonical forms for A with the given information.
- (2) Moreover suppose we know rank $(A \lambda I)^3 = \operatorname{rank}(A \lambda I)^4$ and rank $(A \lambda I)^2 \neq \operatorname{rank}(A \lambda I)^3$. Give all nonequivalent possible Jordan canonical forms for A with the given information.
- (3) Suppose a Jordan canonical form of a linear transformation T, written in the Jordan basis $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_5\}$ is

$$J = \begin{bmatrix} \gamma & 1 & & & \\ & \gamma & & & \\ & & \alpha & 1 & \\ & & & \alpha & \\ & & & & \gamma \end{bmatrix},$$

where γ and α are distinct scalars. Which of the sets below is a linearly independent subset of \mathbb{C}^5 ? Justify.

- (a) $\{T(\vec{b}_4), T(\vec{b}_3), \vec{b}_2\}$
- (b) $\{\vec{b}_4, T(\vec{b}_4), \vec{b}_5\}$
- (c) $\{\vec{b}_4, T(\vec{b}_4), \vec{b}_3\}$

(1) Since the geometric multiplicity of γ is 1, therefore it has 1 Jordan block which is 3×3 , 3 being the algebraic multiplicity of γ . Likewise, α has 1 Jordan block of size 2×2 . λ has 2 Jordan blocks, and the sizes must add to 4, so they are either 3×3 and 1×1 , or both are 2×2 . This creates two possibilities for the Jordan form, ignoring order, which are: (1) The matrix

with block diagonals
$$\begin{bmatrix} \gamma & 1 & 0 \\ 0 & \gamma & 1 \\ 0 & 0 & \gamma \end{bmatrix}$$
, $\begin{bmatrix} \alpha & 1 \\ 0 & \alpha \end{bmatrix}$, $\begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}$, $[\lambda]$, or (2) $\begin{bmatrix} \gamma & 1 & 0 \\ 0 & \gamma & 1 \\ 0 & 0 & \gamma \end{bmatrix}$, $\begin{bmatrix} \alpha & 1 \\ 0 & \alpha \end{bmatrix}$, $\begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$, $[\lambda]$

- $\begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}.$
- (2) Let $\rho_i = \operatorname{rank}(A \lambda I)^{i-1} \operatorname{rank}(A \lambda I)^i$, which is the number of linearly independent generalized eigenvectors associated to λ of rank i. Then, $\rho_3 = \operatorname{rank}(A \lambda I)^2 \operatorname{rank}(A \lambda I)^3 \neq 0$,
 - so there exists a generalized eigenvector of rank 3, i.e. there exists a Jordan chain of size 3, i.e. there exists a Jordan block of size 3. Note that we are using that $\rho_4 = 0$ to conclude this. Since there is a 3×3 Jordan block associated to λ , as noted earlier, the second and final Jordan block associated to λ must be $[\lambda]$. This means, with this information, there is precisely one Jordan form, which is (1) in the part above.
- (3) First, we identify the Jordan chains. There are 3 Jordan blocks. The first is 2×2 and hence corresponds to a Jordan chain (written in reverse order) of the form $((T \gamma id)\vec{v}, \vec{v})$. Here, $\vec{v} = \vec{b}_2$, so it is actually of the form $((T \gamma id)\vec{b}_2, \vec{b}_2)$. Moreover, $(T \gamma id)^2\vec{b}_2 = \vec{0}$ by property of Jordan chains. Likewise, the second Jordan block has chain, in reverse order, $((T \alpha id)\vec{b}_4, \vec{b}_4)$ and $(T \alpha id)^2\vec{b}_4 = \vec{0}$, and the third Jordan block has chain (\vec{b}_5) . Hence, $(\vec{b}_1, \ldots, \vec{b}_5) = ((T \gamma id)\vec{b}_2, \vec{b}_2, (T \alpha id)\vec{b}_4, \vec{b}_4, \vec{b}_5)$.
 - (a) Earlier work shows that $\vec{b}_3 = (T \alpha id)\vec{b}_4$, so that $T(\vec{b}_4) = \vec{b}_3 + \alpha \vec{b}_4$. Also, $(T \alpha id)^2 \vec{b}_4 = \vec{0}$ can be rewritten as $(T \alpha id)\vec{b}_3 = \vec{0}$, so that $T(\vec{b}_3) = \alpha \vec{b}_3$. Hence, the set in question equals $\{\vec{b}_3 + \alpha \vec{b}_4, \alpha \vec{b}_3, \vec{b}_2\}$. So, if $\alpha = 0$, this set is dependent, and otherwise the independence of $\{\vec{b}_1, \ldots, \vec{b}_5\}$ implies the independence of this set.
 - (b) The work above shows that this set equals $\{\vec{b}_4, \vec{b}_3 + \alpha \vec{b}_4, \vec{b}_5\}$, which is again linearly independent by the same argument.
 - (c) Likewise, the set equals $\{\vec{b}_4, \vec{b}_3 + \alpha \vec{b}_4, \vec{b}_3\}$. There is the dependence relation $-\alpha \vec{b}_4 + (\vec{b}_3 + \alpha \vec{b}_4) \vec{b}_3 = \vec{0}$, so this set is dependent.

Problem 3. Prove that for any $m \times n$ matrix A with real entries, there is an orthonormal basis $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_n\}$ of \mathbb{R}^n such that the vectors $A\vec{v}_1, \dots, A\vec{v}_n$ are orthogonal. Note that some of the vectors $A\vec{v}_i$ may be $\vec{0}$.

Solution. Let A be an $m \times n$ matrix. Then A^TA is symmetric, and therefore is orthogonally diagonalizable by the spectral theorem. Let $\mathcal{B} = (\vec{v}_1, \dots, \vec{v}_n)$ be an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A^TA , say $A^TA\vec{v}_i = \lambda_i\vec{v}_i$ for each $1 \le i \le n$. Then for all $1 \le i \ne j \le n$,

$$A\vec{v}_i \cdot A\vec{v}_j = \vec{v}_i^T A^T A\vec{v}_j = \vec{v}_i^T \lambda_j \vec{v}_j = \lambda_j (\vec{v}_i \cdot \vec{v}_j) = 0.$$

This shows that $\{A\vec{v}_1, \dots, A\vec{v}_n\}$ is an orthogonal set, as desired.

Problem 2. An $n \times n$ matrix A is orthogonal if $A^T A = I_n$, idempotent if $A^2 = A$, nilpotent if $A^k = 0$ for some positive integer k, and skew-symmetric if $A^T = -A$. Let A be an $n \times n$ matrix. Making sure to justify your claims, find all possible values of det A if A is:

- (1) orthogonal;
- idempotent;
- (3) nilpotent;
- (4) skew-symmetric, assuming n is odd;
- (5) skew-symmetric, assuming n = 2.

Solution.

(1) Suppose A is an $n \times n$ orthogonal matrix, so $A^TA = I_n$. Then

$$\det(A^T A) = \det(A) \det(A^T) = \det(A)^2 = \det(I_n) = 1,$$

which shows that $det(A) = \pm 1$.

(2) Suppose A is an $n \times n$ idempotent matrix, so $A^2 = A$. Then

$$\det(A) = \det(A^2) = \det(A)^2,$$

which shows that det(A) = 0 or det(A) = 1.

(3) Suppose A is an $n \times n$ nilpotent matrix, and let k be a positive integer such that $A^k = 0$. Then

$$0 = \det(0) = \det(A^k) = (\det A)^k,$$

which shows that det(A) = 0.

(4) Suppose A is an $n \times n$ skew-symmetric matrix where n is odd, so $A^T = -A$. Then

$$\det(A) = \det(A^T) = \det(-A) = (-1)^n \det(A) = -\det(A),$$

which shows that det(A) = 0.

(5) If A is a 2×2 skew-symmetric matrix, then by the definition of skew-symmetric we see that $A = \begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix}$ for some $b \in \mathbb{R}$, which means $\det(A) = 0 - b(-b) = b^2$. Thus given $d \in \mathbb{R}$, we have that d is the determinant of some 2×2 skew-symmetric matrix if and only if $d \ge 0$.

Problem 3. Let $n \geq 2$, and let A be the $n \times n$ matrix whose jth column is \vec{e}_{j+1} for j < n and whose last column has entries $-c_0, \ldots, -c_{n-1}$, as pictured below:

$$A = \begin{bmatrix} 0 & 0 & \cdots & 0 & -c_0 \\ 1 & 0 & \cdots & 0 & -c_1 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -c_{n-1} \end{bmatrix}.$$

Viewing t as a variable, show that $\det(A - tI_n) = (-1)^n(c_0 + c_1t + \cdots + c_{n-1}t^{n-1} + t^n)$.

Remark: The determinant of the matrix $A - tI_n$ is the characteristic polynomial of A, and its roots are the eigenvalues of A. So this problem shows how we can find, for any polynomial p with leading coefficient 1, a matrix whose characteristic polynomial is p or -p.

Solution. We prove the claim for all matrices of the given form by induction on the size of the matrix. For the induction base n = 2, we have

$$\det\begin{bmatrix} -t & -c_0 \\ 1 & -c_1 - t \end{bmatrix} = (-t)(-c_1 - t) - 1(-c_0) = (-1)^2(c_0 + c_1t + t^2).$$

Now let n > 2 be arbitrary, suppose the claim has been proven for all matrices of the given form of size n - 1, and let A be as given. Then using a Laplace expansion along the first row, together with the induction hypothesis, we have

$$\det A = -t(-1)^{n-1}(c_1 + c_2t + \dots + c_{n-1}t^{n-2} + t^{n-1}) + (-1)^{n-1}(-c_0)\det B,$$

where B is the $(n-1) \times (n-1)$ matrix obtained from A by deleting the first row and last column of A. Since B is an upper triangular matrix with 1s along the main diagonal, we have $\det B = 1$ and thus

$$\det A = (-1)^{n-1} \left(-c_0 - c_1 t - c_2 t^2 - \dots - c_{n-1} t^{n-1} - t^n \right)$$

$$= (-1)^n (c_0 + c_1 t + \dots + c_{n-1} t^{n-1} + t^n)$$

as desired, completing the induction.

Problem 4. Let (\vec{v}, \vec{w}) be a linearly independent pair of vectors in \mathbb{R}^3 . Define the map $T: \mathbb{R}^3 \to \mathbb{R}^2$ by

$$T(\vec{x}) \; = \; \begin{bmatrix} \det \left(\begin{bmatrix} \vec{v} & \vec{w} & \vec{x} \end{bmatrix} \right) \\ \det \left(\begin{bmatrix} \vec{w} & \vec{v} & \vec{x} \end{bmatrix} \right) \end{bmatrix} \; \in \; \mathbb{R}^2.$$

- (1) Show that T is a linear transformation.
- (2) Find a basis of ker(T). Briefly justify your answer.
- (3) Find a basis of im(T). Briefly justify your answer.
- (4) Show that if $\vec{v} \cdot \vec{w} = \vec{v} \cdot \vec{x} = \vec{w} \cdot \vec{x} = 0$, then $||T(\vec{x})|| = \sqrt{2} ||\vec{v}|| ||\vec{w}|| ||\vec{x}||$.

Solution.

(1) Using the multilinearity property of determinants, for all $\vec{x}, \vec{y} \in \mathbb{R}^3$ and $c \in \mathbb{R}$ we have

$$\begin{split} T(\vec{x} + \vec{y}) &= \begin{bmatrix} \det \left(\begin{bmatrix} \vec{v} & \vec{w} & \vec{x} + \vec{y} \end{bmatrix} \right) \\ \det \left(\begin{bmatrix} \vec{w} & \vec{v} & \vec{x} + \vec{y} \end{bmatrix} \right) \end{bmatrix} = \begin{bmatrix} \det \left(\begin{bmatrix} \vec{v} & \vec{w} & \vec{x} \end{bmatrix} \right) + \det \left(\begin{bmatrix} \vec{v} & \vec{w} & \vec{y} \end{bmatrix} \right) \\ \det \left(\begin{bmatrix} \vec{w} & \vec{v} & \vec{x} \end{bmatrix} \right) + \det \left(\begin{bmatrix} \vec{w} & \vec{v} & \vec{y} \end{bmatrix} \right) \end{bmatrix} \\ &= \begin{bmatrix} \det \left(\begin{bmatrix} \vec{v} & \vec{w} & \vec{x} \end{bmatrix} \right) \end{bmatrix} + \begin{bmatrix} \det \left(\begin{bmatrix} \vec{v} & \vec{w} & \vec{y} \end{bmatrix} \right) \\ \det \left(\begin{bmatrix} \vec{w} & \vec{v} & \vec{y} \end{bmatrix} \right) \end{bmatrix} = T(\vec{x}) + T(\vec{y}) \end{split}$$

and

$$T(c\vec{x}) = \begin{bmatrix} \det\left(\begin{bmatrix} \vec{v} & \vec{w} & c\vec{x} \end{bmatrix} \right) \\ \det\left(\begin{bmatrix} \vec{w} & \vec{v} & c\vec{x} \end{bmatrix} \right) \end{bmatrix} = \begin{bmatrix} c \det\left(\begin{bmatrix} \vec{v} & \vec{w} & \vec{x} \end{bmatrix} \right) \\ c \det\left(\begin{bmatrix} \vec{w} & \vec{v} & \vec{x} \end{bmatrix} \right) \end{bmatrix}$$
$$= c \begin{bmatrix} \det\left(\begin{bmatrix} \vec{v} & \vec{w} & \vec{x} \end{bmatrix} \right) \\ \det\left(\begin{bmatrix} \vec{w} & \vec{v} & \vec{x} \end{bmatrix} \right) \end{bmatrix} = cT(\vec{x}).$$

This shows that T is a linear transformation

- (2) $\{\vec{v}, \vec{w}\}$ is a basis of $\ker(T)$. To see this, first note that $T(\vec{v}) = T(\vec{w}) = \vec{0}$, since the determinant of a matrix with repeated columns is zero. On the other hand, if $T(\vec{x}) = 0$ then $\det\left[\vec{v}\ \vec{w}\ \vec{x}\right] = 0$, which implies that $\{\vec{v}, \vec{w}, \vec{x}\}$ is linearly dependent and thus $\vec{x} \in Span(\vec{v}, \vec{w})$, since $\{\vec{v}, \vec{w}\}$ is linearly independent. It follows that $\{\vec{v}, \vec{w}\}$ is a basis of $\ker(T)$.
- (3) By the rank-nullity theorem and part (b), we know that $\dim \operatorname{im}(T) = 1$, so it will suffice to find a single non-zero vector in $\operatorname{im}(T)$. Since $\det \begin{bmatrix} \vec{v} & \vec{w} & \vec{x} \end{bmatrix} = -\det \begin{bmatrix} \vec{w} & \vec{v} & \vec{x} \end{bmatrix}$ for all \vec{x} , every vector in $\operatorname{im}(T)$ will have the form $\begin{bmatrix} a \\ -a \end{bmatrix}$, where $a \in \mathbb{R}$. Thus $\left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$ is a basis of $\operatorname{im}(T)$.
- (4) First note that if $\vec{x} = \vec{0}$, then the claim is trivially true, so assume $\vec{x} \neq \vec{0}$. Write $A = \begin{bmatrix} \vec{v} & \vec{w} & \vec{x} \end{bmatrix}$ and $Q = \begin{bmatrix} \frac{\vec{v}}{\|\vec{v}\|} & \frac{\vec{w}}{\|\vec{w}\|} & \frac{\vec{x}}{\|\vec{x}\|} \end{bmatrix}$, so $T(\vec{x}) = \begin{bmatrix} \det A \\ -\det A \end{bmatrix}$ and $\det A = \|\vec{v}\| \|\vec{w}\| \|\vec{x}\| \det Q$. Since \vec{v} , \vec{w} , and \vec{x} are mutually orthogonal, Q has orthonormal columns and hence is an orthogonal matrix, so $\det Q = \pm 1$. Thus

$$||T(\vec{x})||^2 = (\det A)^2 + (-\det A)^2 = 2(\det A)^2 = 2(||\vec{v}|| ||\vec{w}|| ||\vec{x}|| \det Q)^2,$$
so $||T(\vec{x})|| = \sqrt{2}||\vec{v}|| ||\vec{w}|| ||\vec{x}|| \det Q| = \sqrt{2}||\vec{v}|| ||\vec{w}|| ||\vec{x}||.$

We know that $|\det [\vec{v} \ \vec{w} \ \vec{x}]|$ is the volume of the parallelepiped determined by $\vec{v}, \vec{w}, \vec{x}$. Since these vectors are mutually orthogonal, this parallelepiped is just a box, with volume

$$length \times width \times height = ||\vec{v}|| ||\vec{w}|| ||\vec{x}||.$$

Therefore,

$$||T(\vec{x})||^2 = \left(\det\left[\vec{v}\ \vec{w}\ \vec{x}\right]\right)^2 + \left(\det\left[\vec{w}\ \vec{v}\ \vec{x}\right]\right)^2 = \left(\det\left[\vec{v}\ \vec{w}\ \vec{x}\right]\right)^2 + \left(-\det\left[\vec{v}\ \vec{w}\ \vec{x}\right]\right)^2 = 2\left(\det\left[\vec{v}\ \vec{w}\ \vec{x}\right]\right)^2 = 2\left(\det\left[\vec{v}\ \vec{w}\ \vec{x}\right]\right)^2 = 2\left(\|\vec{v}\|\|\vec{w}\|\|\vec{x}\|\right)^2.$$

Taking square roots completes the argument.

Other possible solutions include using QR-factorization.

Problem 3. In Homework 7 question 4 you proved that by choosing a basis $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$, we can associate a symmetric matrix B to a finite dimensional inner product space V such that for all $\vec{v}, \vec{w} \in V$

$$\langle \vec{v}, \vec{w} \rangle = [\vec{v}]_{\mathcal{B}}^T B[\vec{w}]_{\mathcal{B}}$$

Further more you showed that the ij-th entry of B is $\langle \vec{b}_i, \vec{b}_j \rangle$.

Suppose that $A = (\vec{a}_1, ..., \vec{a}_n)$ is another basis of V, and let A be the corresponding matrix whose ij-entry is $\langle \vec{a}_i, \vec{a}_j \rangle$. Show that $B = C^T A C$, where $C = C_{\mathcal{B} \to \mathcal{A}}$ is the change of coordinates matrix from \mathcal{B} to \mathcal{A} .

Solution. Let C be the change of basis matrix $C_{\mathcal{B}\to\mathcal{A}}$. Then $\langle \vec{x}, \vec{y} \rangle = [\vec{x}]_{\mathcal{A}}^T A [\vec{y}]_{\mathcal{A}}$. Substitute $C[\vec{x}]_{\mathcal{B}} = [\vec{x}]_{\mathcal{A}}$ and $C[\vec{y}]_{\mathcal{B}} = [\vec{y}]_{\mathcal{A}}$ to get

$$\langle \vec{x}, \vec{y} \rangle = \left[C[\vec{x}]_{\mathcal{B}} \right]^T A \left[C[\vec{y}]_{\mathcal{B}} \right] = [\vec{x}]_{\mathcal{B}}^T C^T A C \left[\vec{y} \right]_{\mathcal{B}}.$$

As noted in the problem statement (i.e. GH7 #4), it must then be that the ij-th entry of $C^T A C$ is equal to $\langle \vec{b}_i, \vec{b}_j \rangle$, which is the ij-th entry of B. That is, $C^T A C = B$.

Problem 4. Let A be an $n \times d$ matrix.

- Use the formula (im A)[⊥] = ker A^T to prove that rank(A) = rank(A^T).
- (2) Prove that rank(A) = rank(A^TA).
- (3) Prove or disprove: $rank(A^TA) = rank(AA^T)$.

- (1) We want to show that im A and im A^T have the same dimension. Let's use Rank-Nullity on the matrix A^T to compute its rank. The matrix A is n × d so its source has dimension d. This means rank A + dim ker A = d and rank A^T + dim ker A^T = n . We know im A[⊥] = ker A^T, so this formula becomes rank A^T + dim(im A[⊥]) = n. We know that any subspace and its orthogonal complement have dimensions summing to the dimension of the ambient space. Applying this to im A, which is a subspace of Rⁿ, we see that dim im A + dim(im A)[⊥] = n. So both rank A and rank A^T equal n dim(im A)[⊥]. So rank A = rank A^T.
- (2) Use rank nullity. Both A and A^TA have source of dimension d. Recall that (im A)[⊥] = ker A^T. Let \(\vec{x} \) ∈ ker(A^TA), so that \(\vec{x} \) ∈ \(\mathbb{R}^d \) and \(A^T A \vec{x} \) = \(\vec{0} \). This is equivalent to saying that \(A \vec{x} \) ∈ ker \(A^T \), which as noted is equivalent to \(A \vec{x} \) ∈ (im \(A \))[⊥]. But, im \(A \) ∩ (im \(A \))[⊥] = \(\vec{0} \), so the last statement is equivalent to \(A \vec{x} \) = \(\vec{0} \), i.e. \(\vec{x} \) ∈ ker \(A \). This shows that \(\kappa (A^T A) \) = ker \(A \), and hence \(A \) and \(A^T A \) have the same nullity. By rank nullity, both matrices have the same rank.
- (3) From (2) and (1), we know $\operatorname{rank}(A^T A) = \operatorname{rank} A = \operatorname{rank} A^T = \operatorname{rank}(A^T)^T A^T = \operatorname{rank} A A^T$.

Problem 5 (Bonus 2 points). Characterize all the orthogonal linear transformation from \mathbb{R}^2 to \mathbb{R}^2 (with respect to the dot product).

Solution. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be an orthogonal linear transformation (with respect to the dot product). Recall (e.g. TUT8) that, by being orthogonal, T maps the standard basis $\mathcal{E} = (\vec{e_1}, \vec{e_2})$ of \mathbb{R}^2 to an orthonormal basis $\mathcal{B} = (T(\vec{e_1}), T(\vec{e_2}))$ of \mathbb{R}^2 . Recall that, if we let $T(\vec{e_1}) = [a, b]$ and $T(\vec{e_2}) = [c, d]$, then $[T]_{\mathcal{E}} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$. Since \mathcal{B} is orthonormal, therefore in particular ||[a, b]|| = 1, so $a^2 + b^2 = 1$. This means that (a, b) lies on the circle of radius 1 centred at (0, 0). Consequently, there exists an angle θ such that $a = \cos \theta$ and $b = \sin \theta$. Next, again since \mathcal{B} is orthonormal, therefore (c, d) lies on the same circle and moreover [a, b] and [c, d] are perpendicular. This means that (c, d) is a rotation of $\pi/2$ either counter-clockwise or clockwise from (a, b) on the circle. That is, either $[c, d] = [\cos(\theta + \pi/2), \sin(\theta + \pi/2)] = [-\sin \theta, \cos \theta]$, or $[c, d] = [\cos(\theta - \pi/2), \sin(\theta - \pi/2)] = [\sin \theta, -\cos \theta]$. Consequently, all such orthogonal linear transformations T satisfy either $[T]_{\mathcal{E}} = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$.

Problem 3. Recall from Section 3.1 exercise 15 that the set of complex numbers together with the standard complex number addition and real scalar multiplication is a real vector space. Consider the map that associates to each pair (z, w) of complex numbers the real number

$$(3.1) \langle z, w \rangle = \frac{\overline{z}w + z\overline{w}}{2},$$

where for any complex number z=x+iy, the notation \overline{z} denotes the complex conjugate $\overline{z}=x-iy$.

- What is the dimension of the real vector space C? Justify your answer.
- (2) Show that (3.1) defines an inner product on C.
- (3) Find a basis of C that is orthonormal with respect to this inner product.
- (4) Let ⟨-,-⟩ be the inner product on C defined above, and let · be the usual dot product on R². Prove that (C, ⟨-,-⟩) and (R², ·) are isomorphic as inner product spaces. This means that there is an isomorphism T: R² → C such that for all \(\vec{x}, \vec{y} ∈ R²\),

$$\vec{x} \cdot \vec{y} = \langle T(\vec{x}), T(\vec{y}) \rangle$$
.

- As a real vector space, note that C = sp{1, i} and that this set is linearly independent, so the dimension is 2. To prove linear independence, assume that r + si = 0. Then, -r = si, so
- squaring yields $r^2 = -s^2$, implying $r^2 = s^2 = 0$ since r, s are real, and hence r = s = 0.

 (2) We verify linearity: $\langle z + z', w \rangle = \frac{\overline{(z+z')}w + (z+z')\overline{w}}{2} = \frac{\overline{z}w + \overline{z'}w + z\overline{w} + z\overline{w}}{2} = \frac{\overline{z}w + z\overline{w}}{2} + \frac{\overline{z'}w + z\overline{w}}{2} = \langle z, w \rangle + \langle z', w \rangle$. Also $\langle kz, w \rangle = \frac{\overline{kzw} + kz\overline{w}}{2} = \frac{k(\overline{z}w + z\overline{w})}{2} = k\langle z, w \rangle$. We verify symmetry: $\langle z, w \rangle = \frac{\overline{z}w + z\overline{w}}{2} = \frac{w\overline{z} + w\overline{z}}{2} = \langle w, z \rangle$. And positive definiteness: $\langle z, z \rangle = \frac{\overline{z}z + z\overline{z}}{2} = z\overline{z} = x^2 + y^2 \ge 0$, and equals θ iff $x^2 = y^2 = 0$, i.e. x = y = 0, i.e. z = 0.
- (3) The vector space is two dimensional. It is easy to check that {1,i} is an orthonormal basis.
- (4) Define T: R² → C by T([a b]^T) = a + bi. Then T is a isomorphism, and for all x̄ = [x₁ x₂]^T $\vec{y} = [y_1 \ y_2]^T \in \mathbb{R}^2$ we have

$$\langle T(\vec{x}), T(\vec{y}) \rangle = \langle x_1 + x_2 i, y_1 + y_2 i \rangle = \frac{(x_1 - x_2 i)(y_1 + y_2 i) + (x_1 + x_2 i))(y_1 - y_2 i)}{2}$$

= $x_1 y_1 + x_2 y_2 = \vec{x} \cdot \vec{y}$.

Problem 4. In this problem you will prove the following theorem:

Theorem: Let V be a finite dimensional inner product space with basis $\mathcal{B} = \{\vec{b}_1, \cdots \vec{b}_n\}$ and an inner product denoted by \langle , \rangle_V . Then there exists a symmetric matrix B such that for all vectors $\vec{v}, \vec{w} \in V$,

$$\langle \vec{v}, \vec{w} \rangle_V = [\vec{v}]_B^T B [\vec{w}]_B.$$

The matrix $B = I_n$ if and only if B is orthonormal.

- (1) Let $T_B: V \to \mathbb{R}^n$ be the coordinate isomorphism with respect to the basis B. Define the map $\langle \;,\; \rangle_{\mathbb{R}^n} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \text{ by } \langle \vec{x}, \vec{y} \rangle_{\mathbb{R}^n} := \langle T_{\mathcal{B}}^{-1}(\vec{x}), T_{\mathcal{B}}^{-1}(\vec{y}) \rangle_V. \text{ Prove that } \langle \;,\; \rangle_{\mathbb{R}^n} \text{ is an inner product on } \mathcal{C}$
- (2) Show that there exists a symmetric matrix B such that for all vectors $\vec{v}, \vec{w} \in V$,

$$\langle \vec{v}, \vec{w} \rangle_V = [\vec{v}]_{\mathcal{B}}^T B [\vec{w}]_{\mathcal{B}}^2$$

- (3) What is the ij-th entry of B in terms of the inner product of the vectors in B.
- (4) Prove that ⟨v, w⟩_V = [v]_B · [w]_B if and only if B is an orthonormal basis.

- (1) Using linearity of $T_{\mathcal{B}}^{-1}$ and that $\langle \cdot, \cdot \rangle_{V}$ is an inner product, $\langle \vec{x} + r\vec{y}, \vec{z} \rangle_{\mathbb{R}^{n}} = \langle T_{\mathcal{B}}^{-1}(\vec{x} + r\vec{y}), T_{\mathcal{B}}^{-1}(\vec{z}) \rangle_{V} = \langle T_{\mathcal{B}}^{-1}(\vec{x}) + rT_{\mathcal{B}}^{-1}(\vec{y}), T_{\mathcal{B}}^{-1}(\vec{z}) \rangle_{V} = \langle T_{\mathcal{B}}^{-1}(\vec{x}), T_{\mathcal{B}}^{-1}(\vec{z}) \rangle_{V} + r\langle T_{\mathcal{B}}^{-1}(\vec{y}), T_{\mathcal{B}}^{-1}(\vec{z}) \rangle_{V} = \langle \vec{x}, \vec{z} \rangle_{\mathbb{R}^{n}} + r\langle \vec{y}, \vec{z} \rangle_{\mathbb{R}^{n}}.$ For symmetry, $\langle \vec{x}, \vec{y} \rangle_{\mathbb{R}^{n}} = \langle T_{\mathcal{B}}^{-1}(\vec{x}), T_{\mathcal{B}}^{-1}(\vec{y}) \rangle_{V} = \langle T_{\mathcal{B}}^{-1}(\vec{y}), T_{\mathcal{B}}^{-1}(\vec{x}) \rangle_{V} = \langle \vec{y}, \vec{x} \rangle_{\mathbb{R}^{n}}.$ For positive-definiteness, $\langle \vec{x}, \vec{x} \rangle_{\mathbb{R}^{n}} = \langle T_{\mathcal{B}}^{-1}(\vec{x}), T_{\mathcal{B}}^{-1}(\vec{x}) \rangle_{V} \geq 0$, and equals 0 iff $T_{\mathcal{B}}^{-1}(\vec{x}) = \vec{0}$, i.e. $\vec{x} = \vec{0}$.
- (2) From GH6 we know that there exists a symmetric matrix B such that for all $\vec{x}, \vec{y} \in \mathbb{R}^n$, $\langle \vec{x}, \vec{y} \rangle_{\mathbb{R}^n} = \vec{x}^T B \vec{y}$. Hence, $\langle T_B^{-1}(\vec{x}), T_B^{-1}(\vec{y}) \rangle_V = \vec{x}^T B \vec{y}$. Since this formula holds for all $\vec{x}, \vec{y} \in \mathbb{R}^n$, replace \vec{x} with $T_B(\vec{v}) = [\vec{v}]_B$ and \vec{y} with $T_B(\vec{w}) = [\vec{w}]_B$. Then, the last equation becomes $\langle \vec{v}, \vec{w} \rangle_V = \langle T_B^{-1}(T(\vec{v})), T_B^{-1}(T(\vec{w})) \rangle_V = T(\vec{v})^T B T(\vec{w}) = [\vec{v}]_B^T B[\vec{w}]_B$.
- (3) From GH6 we know that $B_{ij} = \langle \vec{e_i}, \vec{e_j} \rangle_{\mathbb{R}^n} = \langle T_{\mathcal{B}}^{-1}(\vec{e_i}), T_{\mathcal{B}}^{-1}(\vec{e_j}) \rangle_V = \langle \vec{b_i}, \vec{b_j} \rangle_V$, since $T_{\mathcal{B}}(\vec{b_i}) = [\vec{b_i}]_{\mathcal{B}} = \vec{e_i}$.
- (4) First suppose that ⟨v, w⟩_V = [v]_B · [w]_B for all v, w ∈ V. Then, in particular, ⟨b̄_i, b̄_j⟩_V = [b̄_i]_B · [b̄_j]_B = ē_i · ē_j which is 0 if i ≠ j and is 1 if i = j, thereby showing that B is orthonormal. Coversely, suppose that B is orthonormal. Let v = r₁b̄₁ + ··· + r_nb̄_n and w = t₁b̄₁ + ··· + t_nb̄_n. Then, using linearity in both arguments of the inner product, ⟨v̄, w̄⟩_V = ∑_{i=1}ⁿ ∑_{j=1}ⁿ r_it_j⟨b̄_i, b̄_j⟩_V. Using that B is orthonormal shows that for each 1 ≤ i ≤ n, the only nonzero term r_it_j⟨b̄_i, b̄_j⟩_V is when j = i. Hence, the sum equals ∑_{i=1}ⁿ r_it_i⟨b̄_i, b̄_j⟩_V = ∑_{i=1}ⁿ r_it_i · 1 = [r₁, ..., r_n] · [t₁, ..., t_n] = [v̄]_B · [w̄]_B.

Problem 5 (Bonus 1 points). Show that the distance between two orthonornal vectors is $\sqrt{2}$ in any inner product space.

Solution. Let \vec{v}, \vec{w} be two orthonormal vectors, so that $\langle \vec{v}, \vec{w} \rangle = 0$ and $||\vec{v}|| = 1 = ||\vec{w}||$. Then, $||\vec{v} - \vec{w}||^2 = \langle \vec{v} - \vec{w}, \vec{v} - \vec{w} \rangle$. Using linearity in both arguments, this equals $\langle \vec{v}, \vec{v} \rangle - \langle \vec{v}, \vec{w} \rangle - \langle \vec{w}, \vec{v} \rangle + \langle \vec{w}, \vec{w} \rangle$. Using symmetry and \vec{v}, \vec{w} being orthonormal, this sum equals $||\vec{v}||^2 - 0 - 0 + ||\vec{w}||^2 = 1 + 1 = 2$. Hence, $||\vec{v} - \vec{w}||^2 = 2$, and taking square roots yields $||\vec{v} - \vec{w}|| = \sqrt{2}$.

Problem 3. Let $\langle \cdot, \cdot \rangle$ be an inner product on \mathbb{R}^n . In this question you will show that there exists a $n \times n$ matrix A such that

$$(3.1) \langle \vec{x}, \vec{y} \rangle = \vec{x}^T A \vec{y}$$

for all $\vec{x}, \vec{y} \in \mathbb{R}^n$. Further you will show that A must be symmetric.

- Suppose that such a matrix exists. That is suppose that there exists a n × n matrix A = (a_{ij}) for which (3.1) holds. Calculate (\$\vec{e}_i\$, \$\vec{e}_i\$) in terms of entries of A.
- (2) Describe A in terms of $(\vec{e_i}, \vec{e_j})$ $1 \le i, j \le n$.
- (3) Prove that there exists an n × n matrix A for which (3.1) holds.
- (4) Show that A in (3.1) is symmetric, i.e., A^T = A.
- (5) Classify all the inner products in ℝ².²

$$(1) \ \langle \vec{e_i}, \vec{e_j} \rangle = \vec{e_i}^T A \vec{e_j} = \vec{e_i}^T \begin{bmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{bmatrix} = a_{ij}.$$

- (2) From (1), $A = (a_{ij}) = (\langle \vec{e}_i, \vec{e}_j \rangle)$.
- (3) From (1), (2) we see that any such matrix A must equal (⟨ē_i, ē_j⟩). Hence, it remains to show that this choice of matrix satisfies (3.1). Recall that inner products satisfy ⟨ū + v̄, w̄⟩ = ⟨ū, w̄⟩ + ⟨v̄, w̄⟩ and ⟨rv̄, w̄⟩ = r⟨v̄, w̄⟩, and likewise ⟨ū, v̄ + w̄⟩ = ⟨ū, v̄⟩ + ⟨ū, w̄⟩ and ⟨v̄, rw̄⟩ = r⟨v̄, w̄⟩ (e.g. we use symmetry of (real) inner products on linearity to get the last two). First, note that ⟨x̄, ȳ⟩ = ⟨∑ⁿ_{i=1} x_iē_i, ∑ⁿ_{j=1} y_jē_j⟩. Linearity in the first argument shows the latter equals ∑ⁿ_{i=1} x_i⟨ē_i, ∑ⁿ_{j=1} y_jē_j⟩, and linearity in the second argument shows this equals ∑ⁿ_{i=1} x_i∑ⁿ_{j=1} y_j⟨e_i, e_j⟩. It remains to show that x̄^TAȳ equals this. Note that

$$\vec{x}^T A \vec{y} = \vec{x}^T \begin{bmatrix} \sum_{j=1}^n y_j \langle \vec{e}_1, \vec{e}_j \rangle \\ \vdots \\ \sum_{j=1}^n y_j \langle \vec{e}_n, \vec{e}_j \rangle \end{bmatrix} = \sum_{i=1}^n x_i \sum_{j=1}^n y_j \langle \vec{e}_i, \vec{e}_j \rangle, \text{ as desired.}$$

- (4) Since the inner product is symmetric, therefore, if we let $B = A^T = (b_{ij}), b_{ij} = a_{ji} = \langle \vec{e}_j, \vec{e}_i \rangle = \langle \vec{e}_i, \vec{e}_j \rangle = a_{ij}$. Since $b_{ij} = a_{ij}$ for all i, j, therefore $A^T = B = A$.
- (5) From (1) through (4), we know that an inner product on R² is of the form (3.1) for a symmetric matrix A. If we show that given a symmetric matrix A, with the additional property that A is positive-definite, i.e. that x̄^T Ax̄ > 0 whenever x̄ ≠ 0̄, then we have shown that the classification is that any inner product ⟨⟨⟩ on R² is of the form ⟨⟨x̄, ȳ⟩ = x̄^T Aȳ for some symmetric positive-definite matrix A. Let's show this. Note that ⟨⟨x̄ + ȳ, z̄⟩ = (⟨x̄ + ȳ)^T Az̄ = (⟨x̄^T + ȳ^T) Az̄ = ⟨⟨x̄, z̄⟩ + ⟨ȳ, z̄⟩, and that ⟨⟨x̄, ȳ⟩ = (⟨x̄)^T Aȳ = (⟨x̄^T Aȳ) = (⟨x̄, ȳ⟩). The remaining work will be for general n (i.e. instead of just n = 2, i.e. R²) because the argument is the same. The work in (3) almost immediately shows that ⟨⟨x̄, ȳ⟩ = ∑_{i=1}ⁿ x_i∑_{j=1}ⁿ x_ja_{ij}. Using the fact that we can change the order of summation for any finite sum, and using that A is symmetric, we have the latter equaling ∑_{i=1}ⁿ ∑_{j=1}ⁿ x_iy_ja_{ij} = ∑_{j=1}ⁿ ∑_{i=1}ⁿ x_iy_ja_{ij} = ∑_{j=1}ⁿ y_j∑_{i=1}ⁿ x_ia_{ji} = ⟨ȳ, x̄⟩, thereby showing symmetry of the proposed inner product. The last property, positive-definiteness, holds due to positive-definiteness of A: ⟨x̄, x̄⟩ = x̄^T Ax̄ = 0 iff x̄ = 0̄.

Problem 4. Let V be an inner product space of dimension n, and let U and W be two m-dimensional subspaces of V. Assume that $\vec{u} \perp W$ for some $\vec{u} \in U$, where $\vec{u} \neq \vec{0}$ (that is $\langle \vec{u}, \vec{w} \rangle = 0$ for all $\vec{w} \in W$). Prove that $\vec{w} \perp U$ for some $\vec{0} \neq \vec{w} \in W$.

Solution. Let $\{v_1, \ldots, v_m\}$ and $\{w_1, \ldots, w_m\}$ be bases for U and W, respectively. By hypothesis, there exists a vector $\mathbf{u} \in U$ that is orthogonal to every element in the basis for W. Suppose that $\mathbf{u} = c_1 \mathbf{v}_1 + \cdots + c_m \mathbf{v}_m$, so that for every $1 \le i \le m$, we have

$$\langle (c_1 \mathbf{v}_1 + \dots + c_m \mathbf{v}_m), \mathbf{w}_i \rangle = \langle c_1(\mathbf{v}_1, \mathbf{w}_i) \rangle + \dots + \langle c_m(\mathbf{v}_m, \mathbf{w}_i) \rangle = 0.$$

Consider the following $m \times m$ matrix

$$A = \begin{bmatrix} \langle v_1, w_1 \rangle & \langle v_2, w_1 \rangle & \cdots & \langle v_m, w_1 \rangle \\ \langle v_1, w_2 \rangle & \langle v_2, w_2 \rangle & \cdots & \langle v_m, w_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle v_1, w_m \rangle & \langle v_2, w_m \rangle & \cdots & \langle v_m, w_m \rangle \end{bmatrix},$$

and observe that $[c_1, c_2, \ldots, c_m]^T \in NulA$ by the observations above. In particular, the Invertible Matrix Theorem $(A_{n \times n} \text{ in invertible if and only if it has a trivial null space })$ applies to say that A is not invertible as its kernel is not trivial, and so neither is A^T . Taking transposes yields

$$A^T = \begin{bmatrix} \langle \boldsymbol{v}_1, \boldsymbol{w}_1 \rangle & \langle \boldsymbol{v}_1, \boldsymbol{w}_2 \rangle & \cdots & \langle \boldsymbol{v}_1, \boldsymbol{w}_m \rangle \\ \langle \boldsymbol{v}_2, \boldsymbol{w}_1 \rangle & \rangle \boldsymbol{v}_2, \boldsymbol{w}_2 \rangle & \cdots & \langle \boldsymbol{v}_2, \boldsymbol{w}_m \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \boldsymbol{v}_m, \boldsymbol{w}_1 \rangle & \langle \boldsymbol{v}_m, \boldsymbol{w}_2 \rangle & \cdots & \langle \boldsymbol{v}_m, \boldsymbol{w}_m \rangle \end{bmatrix} = \begin{bmatrix} \langle \boldsymbol{w}_1, \boldsymbol{v}_1 \rangle & \langle \boldsymbol{w}_2, \boldsymbol{v}_1 \rangle & \cdots & \langle \boldsymbol{w}_m, \boldsymbol{v}_1 \rangle \\ \langle \boldsymbol{w}_1, \boldsymbol{v}_2 \rangle & \langle \boldsymbol{w}_2, \boldsymbol{v}_2 \rangle & \cdots & \langle \boldsymbol{w}_m, \boldsymbol{v}_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \boldsymbol{w}_1, \boldsymbol{v}_m \rangle & \langle \boldsymbol{w}_2, \boldsymbol{v}_m \rangle & \cdots & \langle \boldsymbol{w}_m, \boldsymbol{v}_m \rangle \end{bmatrix}.$$

By the Invertible Matrix Theorem, there is a non-zero vector in $NulA^T$, say $[d_1, d_2, \ldots, d_m]^T$. Thus, for all $1 \le i \le m$, we have

$$d_1\langle w_1, v_i \rangle + \cdots + d_m\langle w_m, v_i \rangle = \langle (d_1w_1 + \cdots + d_mw_m), v_i \rangle = 0.$$

Therefore, the vector $\mathbf{w} = d_1 \mathbf{w}_1 + \cdots + d_m \mathbf{w}_m$ is orthogonal to every element in the basis for U.