Projektaufgabe 2

WPF-Modul Cluster Computing

Zusammenhängende Komponenten

Ausgangspunkt ist ein matrixförmiger Pixelbereich P mit m Zeilen und n Spalten. Jedes Pixel p des Bereichs soll genau eine der Eigenschaften schwarz (c(p) = 1) oder $wei\beta$ (c(p) = 0) aufweisen und über eine Zeilenkoordinate i mit $0 \le i \le m - 1$ und eine Spaltenkoordinate j mit $0 \le j \le n - 1$ identifizierbar sein: p(i,j).

Für $p(i,j) \in P$ wird eine Nachbarschaft N(p) wie folgt definiert:

$$N(p(i,j)) = \{ p(k,l) : |k-i| \le l \land |l-j| \le l \land 0 \le k \le m-l \land 0 \le l \le n-l \} \setminus \{ p(i,j) \}$$

Damit werden für jedes nicht an einem Rand von P liegende Pixel 8 Nachbarn bestimmt.

Zusammenhängende schwarze Komponenten

Eine nichtleere Pixelmenge $Z \subseteq P$ heißt zusammenhängende schwarze Komponente genau dann, wenn folgende Eigenschaften erfüllt sind:

- Für alle $p \in Z$ gilt c(p) = 1
- Für beliebige $p, p' \in Z$ mit $p \neq p'$ gilt: Es gibt eine Folge $(p_1, ..., p_r)$ von Pixeln aus Z mit $p_1 = p, p_r = p'$ und $p_{i+1} \in N(p_i)$ für $1 \le i \le r - 1$

Maximale zusammenhängende schwarze Komponenten

Eine zusammenhängende schwarze Komponente Z heißt maximal genau dann, wenn es kein Pixel $p \in Z$ gibt, in dessen Nachbarschaft N(p) sich ein schwarzes Pixel $q \in P \setminus Z$ befindet.

1

Die Abbildung zeigt 6 maximale zusammenhängende schwarze Komponenten mit jeweils 5, 27, 2, 5, 3 und 10 Pixeln (in der Reihenfolge der Komponentennummerierung).

Aufgabenstellung:

Entwickeln Sie einen parallelen Ansatz zur Identifizierung aller maximalen zusammenhängenden schwarzen Komponenten eines Pixelbereichs *P* und setzen Sie diesen Ansatz in einem C-Programm unter Einsatz von MPI um. Als Resultat des Programms soll

- die Anzahl dieser Komponenten
- die Anzahl der Pixel je Komponente und
- ein Pixel als Repräsentant für jede Komponente

ausgegeben werden. Schreiben Sie einen Generator, der Test-Pixelbereiche erzeugt. Sehen Sie Möglichkeiten zur Generierung von Pixelmustern vor, die auch für große Pixelbereiche eine einfache Überprüfung der Resultate Ihres Programms gestatten.

Analysieren Sie das Laufzeitverhalten Ihres Programmes!