Concept of Bit Rate 'Rb' and Baud Rate 'Nb' Bit Rate Rb = No. of bits transmitted /sec Band Rate No = No. of symbols/levels transmitted/sec if each symbol consists of TWO bits: $N_b = \frac{R_b}{2}$ THREE " : No = Rb In General, Band Rate, Nb = Rb M M = No. of bits/symbol K Nb=Rb 1symbol = 1 bit Note: In Ask Sor I bit/symbol Rb=Nb. BT = (1+0) Rb \leftarrow Nb= Rb BT = (1+a) Nb. 1 symbol = 2 bits 2 bits/symbol that refers to a set of possible message points. - Constellation Diagram (signal-space Diagram): - Constellation diagram is a Symbol 1: $S_{11} = \sqrt{E_b}$ graphical representation of the complex symbol 0: $S_{21} = 0$ envelope of each possible symbol state. Decision Boundary - Region Z, -— Region Zo $\rightarrow \phi(t)$ Mexiage point corresponding to signal si(t) is located at si= 156 Mekage point 521

> Distance between two constellation points.

corresponding to K

signal solth at sol=0

is located

Decision region
$$Z_1 \approx \text{Symbol 1 } \Delta \left(\frac{\sqrt{E_b}}{2} \text{ to } + \infty \right)$$
Decision region $Z_0 \approx \text{Symbol 0} \approx \left(-\infty \text{ to } \frac{\sqrt{E_b}}{2} \right)$
Threshold value = $\frac{\sqrt{E_b}}{2}$

Demodulation of ASK ? - (Coherent Demodulator) Keceived Product 2,(t) | Tb(·)dt 22(t) Decision Demodulator

(t) = s(t) | Device Device Device Device Received ASIC A(t) = 2 Coswet Threshold y= 퍝 -> (Absence of Noise) r(t)=s(t)= (E) +(t) $\chi_1(t) = s(t)\phi(t)$ = JEn 62(+) $\chi_2(t) = \int_{-\infty}^{T_b} \chi_1^2(t) dt = \int_{-\infty}^{T_b} \int_{-\infty}^{\infty} \phi^2(t) dt = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi^2(t) dt$ Xa(t) = VEh unit energy bit 1 is received basic funn if x2(t)>1 bit o is received $x_2(t) \leq \lambda$ Y = 1

Non-Coherent Demodulater

Binary Frequency shift Keying (BFSK)

- The frequency of carrier signal (Analog carrier) is varied in accordance with the instantaneous values of the modulating signal (Binary Data).
- In FSK, it is the frequency of the carrier signal that is switched between two values, one representing bit '1' and other representing bit '0'.

Mark Frequency, $w_{c1} = w_c + \Omega$ space Frequency, $w_{c2} = w_c - \Omega$

$$S_{1}(t) = \sqrt{\frac{2E_{b}}{T_{b}}} \cos a\pi f c_{1}t$$

$$S_{2}(t) = \sqrt{\frac{2E_{b}}{T_{b}}} \cos a\pi f c_{2}t$$

$$\int cos a\pi f c_{3}t$$

$$\int cos a\pi f c_{4}t$$

$$\int cos a\pi f c_{3}t$$

$$\int cos a\pi f c_{4}t$$

 $\begin{array}{ll} \text{MF} \Rightarrow f_1 = f_C + \Delta f & f_1 = \frac{n_1}{T_b} & f_2 = \frac{n_2}{T_b} \\ \text{SF} \Rightarrow f_2 = f_C - \Delta f & \Rightarrow n_1 \text{ and } n_2 \text{ are integers.} \\ \text{freq. deviation} & \end{array}$

Applications: In telephone line modern to FSK is used to transmit 300 bps at two frequencies 1070 Hz and 1270 Hz.

Projection Si(t) on $\phi_j(t) \Rightarrow$ $Sij^2 = \int_0^{T_b} Si(t) \phi_j(t)$

$$S_{11} = \int_{0}^{T_{b}} S_{1}(t) \phi_{1}(t) dt = \int_{E_{b}}^{E_{b}} S_{22} = \int_{0}^{T_{b}} S_{2}(t) \phi_{2}(t) dt = \int_{E_{b}}^{E_{b}} S_{12} = \int_{0}^{T_{b}} S_{12}(t) \phi_{2}(t) dt = 0$$

$$S_{12} = \int_{0}^{T_{b}} S_{12}(t) \phi_{2}(t) dt = 0$$

$$S_{12} = \int_{0}^{T_{b}} S_{12}(t) \phi_{2}(t) dt = 0$$

$$S_{13} = \int_{0}^{T_{b}} S_{12}(t) \phi_{1}(t) dt = 0$$

$$S_{14} = \int_{0}^{T_{b}} S_{12}(t) \phi_{1}(t) dt = 0$$

$$S_{14} = \int_{0}^{T_{b}} S_{12}(t) \phi_{1}(t) dt = 0$$

constellation Diagram

BFSK Modulation

- When in a signalling interval, the input symbol is '1', '
 the upper local oscillator frequency f, is switched on
 and signal s,(t) is transmitted, while lower local oscillator
 is OFF.
- On the other hand, when the input symbol is 'o', the upper LO is OFF while the lower LO is switched ON and signal salt) is toansmitted.

BFSK Demodulation

"(coherent Demodutor)

Transmission Bandwidth of BFSK3-The spectours of BFSK may be viewed as the sum of

two Ask spectoa.

Ss(f)

$$2\Delta f = \frac{2}{T_b}$$
 $\Delta f = \frac{1}{T_b} = R_b$
 $(f_a - \frac{1}{T_b})$

Ideal:
$$B_T = (f_1 + \frac{1}{T_b}) - (f_2 - \frac{1}{T_b}) = f_1 - f_2 + \frac{2}{T_b}$$

$$B_T = 2\Delta f + \frac{2}{T_b} = 2\Delta f + 2R_b$$

$$2\Delta f = f_1 - f_2$$

Practical: - BT = (1+x) Rb + 2 Rb

For $\alpha=0 \Rightarrow (BT)_{min} = 3 Rb$ and for $\alpha=1 \Rightarrow (BT)_{max} = 4 Rb$