

Подобие треугольников

Два треугольника называются **подобными**, если их углы соответственно равны, а стороны одного треугольника пропорциональны соответственным сторонам другого.

Коэффициентом подобия называют число k, равное отношению сходственных сторон подобных треугольников.

Признаки подобия треугольников

I признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

II признак подобия треугольников

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

III признак подобия треугольников

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

Признаки подобия треугольников

- Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
- Отношение периметров подобных треугольников равно коэффициенту подобия.

Средняя линия треугольника

Отрезок, который соединяет середины двух сторон треугольника, называется его **средней линией.**

KL — средняя линия треугольника ABC

K — середина стороны AB o AK = KB

L — середина стороны $BC \rightarrow BL = LC$

Свойство средней линии треугольника:

Средняя линия треугольника параллельна одной из его сторон (которую не пересекает) и в два раза меньше этой стороны.

 $K\!L$ параллельна AC

$$KL = \frac{1}{2}AC$$

Теорема:

Медианы треугольника пересекаются в одной точке и делятся ею в отношении, считая от вершины треугольника.

$$\frac{BO}{B_1O} = \frac{AO}{A_1O} = \frac{CO}{C_1O} = \frac{2}{1}$$

Площади треугольников

$$S = rac{1}{2} a \cdot h_a \hspace{1cm} S = rac{1}{2} ab \cdot siny$$

$$S = \sqrt{p(p-a)(p-b)(p-c)} \; -$$
формула Герона $\left(p = rac{a+b+c}{2}
ight)$

$$S=rac{abc}{4R}$$
 , где R — радиус описанной окружности.

 $S=r\cdot p$, где r — радиус описанной окружности.

Правильный треугольник

$$S=rac{a^2\sqrt{3}}{4}$$

Прямоугольный треугольник

$$S = \frac{1}{2}ab$$

$$S = rac{1}{2}bc \cdot sinA$$

$$S = \frac{1}{2}c \cdot h_a$$

Описанная и вписанная окружности правильного треугольника

$$R=rac{a\sqrt{3}}{3}$$

$$S=rac{a^2\sqrt{3}}{4}$$

$$r = rac{a\sqrt{3}}{6}$$

$$h = \frac{a\sqrt{3}}{2}$$

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

$$rac{a}{sinA} = rac{b}{sinB} = rac{c}{sinC} = 2R,$$

где R — радиус описанной окружности

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон минус их удвоенное произведение на косинус угла между ними.

$$a^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot cos A$$

Свойство биссектрисы

CD - биссектриса угла С. Биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные двум другим сторонам:

$$rac{AC}{BC} = rac{AD}{BD}$$
 или $rac{AC}{AD} = rac{BC}{BD}$.

Теорема Фалеса

Обобщение т. Фалеса:

Параллельные прямые отсекают на секущих пропорциональные отрезки.

$$\frac{A_1 A_2}{B_1 B_2} = \frac{A_2 A_3}{B_2 B_3} = \frac{A_1 A_3}{B_1 B_3}$$

