PROTOTYPING AND SYSTEMS ENGINEERING PRESENTATION

TEAM MEMBERS:

- Ø PISULA GURUGE
- Ø MEHEDI HASAN
- Ø MASRUR JAMIL PROCHCHHOD
- Ø JIBAN-UL AZAM CHOWDHURY SHAFIN

OVERVIEW

 Develop an autonomous vehicle that can drive autonomously on a given track.

[1]

SYSML DIAGRAMS AND UPPAAL MODEL

BLOCK DIAGRAM

REQUIRMENT DIAGRAM

Bdd of Autonomous Vehicle

SYSML DIAGRAMS AND UPPAAL MODEL

ACTIVITY DIAGRAM

SEQUENCE DIAGRAM

SYSML DIAGRAMS AND UPPAAL MODEL

STATE MACHINE DIAGRAM

UPPAAL MODEL

HARDWARE COMPONENTS

• Microcontroller - Arduino Uno

• Ultrasonic Sensor (HC-SR04)

• Line sensor (IR Sensor,ST1140)

HARDWARE COMPONENETS

• Colour Sensor (TCS3200)

• 2 DC Motors

Motor Driver

DESIGN & SCHEMATICS

DESIGN & SCHEMATICS TECHNOLOGIES USED

• TINKERCAD

Rhinoceros

Laser Cutting of Plywood

TINKERCAD & RHINOCEROS

DESIGN & SCHEMATICS

FINAL PROTOTYPE

1.Initialisation

CODE

```
// Define pins for motor driver
     const int in1Pin = 7;
     const int in2Pin = 4;
     const int in3Pin = 9;
     const int in4Pin = 8;
     const int enA = 5;
     const int enB = 6;
     // Define pins for ultrasonic sensor
     const int trigPin = 13;
10
11
     const int echoPin = 3;
12
     // Define pins for IR sensor
13
     const int irPin1 = 2;
14
15
     const int irPin2 = 10;
```


1.Track Following

- ❖ 2 IR Sensor
- IrSensor1 (left ir Sensor)
- IrSensor2(right ir Sensor)

Signal – HIGH When on White Path

- LOW When on Black Path

Vehicle Out of the track:- keeps moving forward using forward function until it finds the line again.

```
void forward() { // Moving Forward
  digitalWrite(in1Pin, LOW);
 digitalWrite(in2Pin, HIGH);
 digitalWrite(in3Pin, LOW);
 digitalWrite(in4Pin, HIGH);
void right() { // Moving right side of the track
  analogWrite(enA, 130);
 analogWrite(enB,160 );
 digitalWrite(in1Pin, LOW);
 digitalWrite(in2Pin, HIGH);
 digitalWrite(in3Pin, HIGH);
  digitalWrite(in4Pin, LOW);
  // Initialize IR sensor pin
 pinMode(irPin1, INPUT);
 pinMode(irPin2, INPUT);
void loop() {
 // Read IR sensor input
 int irSensorValue1 = digitalRead(irPin1);
 int irSensorValue2 = digitalRead(irPin2);
analogWrite(enA, 200);
 analogWrite(enB,200 );
  if (irSensorValue1 == 0 && irSensorValue2 == 0)
   forward();
  } else if (irSensorValue1 == 1 &&
irSensorValue2 == 0) {
   left();
 } else if (irSensorValue1 == 0 &&
irSensorValue2 == 1) {
    right();
                                                15
```

CODE

2. Obstacle detection

Ultrasonic sensor detects obstacles by sending sound waves.

- Trigger Pin Sends high frequency signal
- Echo Pin Receive the Signal

```
// Ultrasonic sensor code
digitalWrite(trigPin, LOW);
delayMicroseconds(2);
digitalWrite(trigPin, HIGH);
delayMicroseconds(7);
digitalWrite(trigPin, LOW);
duration = pulseIn(echoPin, HIGH);
distance = duration/34.2;
if(distance==0){
 distance=100;
```

2. Obstacle avoiding

movement sequence:

- left() turning left to avoid the obstacle
- forward() moving forward to pass the obstacle
- right() turning right to align with the original track
- forwardU() continuing forward after avoiding the obstacle

```
if(distance<10)
   left();
   delay(1000);
   forward();
   delay(1700);
   right();
   delay(1400);
   forwardU();
 irSensorValue1 = digitalRead(irPin1);
 irSensorValue2 = digitalRead(irPin2);
while(irSensorValue1 == 0 && irSensorValue2 == 0){
 irSensorValue1 = digitalRead(irPin1);
irSensorValue2 = digitalRead(irPin2);
 stop();
 delay(2000);
 forwardU();
 delay(100);
 irSensorValue2 = digitalRead(irPin2);
 turn();
 while(irSensorValue2 == 0){
 irSensorValue2 = digitalRead(irPin2);
```


#	Task	Short summary	Masrur		Shafin		Mehedi		Pisula	
			(to doo incl. Deadline)	(Done incl. Finishing date)	(<u>to</u> do incl. Deadline)	(Done incl. Finishing date)	Mehedi(to do incl. Deadline)	Mehedi(Done incl. Finishing date)	Guruge(to do incl. Deadline)	Guruge(Dor incl. Finishing date)
1	Task 1	SysML	Sequence Diagram 19/04/23	17th of April	Modified Activity diagram, internal Block Diagram. 19th April	15 th April	Block Diagram, User case diagram. 19th of April	16 th of April	Requirement Diagram & State Machine Diagram	16th of Ap
2	Task 2	system engineering model Simulation and developing prototype	Finalizing design 26th of April	23rd of April	Done the coding for line following and successfully done simulation of line following done in TinkerCad+updated SysML, 26th April	21th April	Done Coding and Simulation with Ultrasonic sensor, it, sensor LCD, and Motor Driver. 26th of April	25 th of April	Made the first prototype with LinkerCAD and updated my Sysml Diagrams	22 nd of April
3	Task 2	Final Systems Engineering model	3D and 2D design preparing for laser cutting, compiling the prototype and preparing prototype for test drive. 17th of May	9 th of May	First prototype of Dog file designed for Laser cutting prototype, Sketchimg baper prototype, Participating in finalising design and assembling hardware for test drive, also done the code using switch case instead of switch case. 10th May	17 th May	3D design And 2D design Evaluation Evaluation And Feedback 10th of May. compiling the prototype and preparing prototype for test drive.	9 th of May	Einalised and prepared the TimberCad design of the whole car and the chasis. Assembled hardware with all team members.	9 th of May

GITHUB AND TASK DISTRUBUTION

REFERENCES

- [2] https://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Logo-tinkercad-wordmark.svg.png
- [3] https://www.einscan.com/wp-content/uploads/2018/11/pressrel1.jpg
- [4] https://i.ytimg.com/vi/PrhFy8tD2t4/maxresdefault.jpg

RESULTS AND CONCLUSION

• Develop an autonomous vehicle that can drive autonomously on a given track.

• Being able to detect obstacles, avoid the obstacle and return back to the track.

• Optimize and maintain a constant speed.