WE CLAIM:

1	1. A single-die integrated circuit for switching among a plurality of
2	transmission ports and a plurality of receiver ports, comprising:
3	a transmitter switching section having a plurality of transmission ports,
4	transmitter control circuitry operable to switch a selected one of the plurality of
5	transmission ports to a transmission node; and
6	a receiver switching section having a plurality of receiver ports,
7	receiver control circuitry operable to switch a selected one of the plurality of receiver
8	ports to the transmission node.
1	2. The integrated circuit of Claim 1, wherein the receiver switching
2	section includes at least two cascaded stages, a first cascaded stage controllable to
3	switch the transmission node to a receiver node, a second cascaded stage controllable
4	to switch the receiver node to a selected one of the plurality of receiver ports.
1	3. The integrated circuit of Claim 1, and further comprising an antenna
2	port coupled to the transmission node.
1	4. The integrated circuit of Claim 1, wherein, for each transmission port,
2	the transmitter switching section includes a series field effect transistor (FET)
3	switching topology operable to couple the last said transmission port to the
4	transmission node.
1	5. The integrated circuit of Claim 4, wherein each series FET switching
2	topology comprises a plurality of FETs having current paths coupled in series with

~PHIL1 3636391 v4 11

3

each other.

1	6.	The integrated circuit of Claim 4, wherein at least one of the FET
2	switching top	ologies includes at least one FET having a plurality of contiguous source
3	regions interd	ligitated with a plurality of contiguous drain regions, a sinuous gate
4	formed to win	nd between the source regions and the drain regions.
1	7.	A single-die multiband switch for wireless communication,
2	comprising:	
3		an antenna port;
4		a plurality of transmitter ports, for each transmitter port a switching
5	topology oper	rable to switch the last said transmitter port to the antenna port; and
6		a plurality of receiver ports, for each receiver port a switching topology
7	operable to sv	witch the last said receiver port to the antenna port.
1	8.	The switch of Claim 7, wherein at least one of the switching topologies
2	comprises a p	durality of series-connected field effect transistors, a control signal for
3	said at least o	ne switching topology controlling said at least one switching topology to
4	selectively co	onnect or isolate a respective transmitter or receiver port from the antenna
5	port.	
1	9.	The switch of Claim 7, wherein at least one of the switching topologies
2	comprises at	least one interdigitated field effect transistor having a plurality of
3	elongated cor	ntiguous drain regions, a plurality of elongated contiguous source regions
4	interdigitated	with the drain regions, an elongated sinuous channel region spacing
5	apart the drai	n regions from the source regions, and a gate overlying the channel
6	region to swi	tch the interdigitated field effect transistor between an ON and an OFF

~PHIL1 3636391 v4 12

7

state.

1	10. The switch of Claim 7, wherein the die has an area, the transmitter port
2	switching topologies occupying an area on the die which is substantially larger than
3	the receiver port switching topologies.
1	11. The switch of Claim 7, and further including at least one multiple-
2	stage switching topology, a first stage of the multiple-stage switching topology
3	selectively connecting or isolating the antenna port from the multiple-stage switching
4	topology, a last stage of the multiple-stage switching topology selectively connecting
5	or isolating a plurality of other ports from the multiple-stage switching topology.
1	12. The switch of Claim 11, wherein said other ports are receiver ports.
1	13. The switch of Claim 12, wherein said last stage includes, for each
2	receiver port, a signal path FET having a current path controllable to connect the
3	receiver port to an intermediate node, said first stage operable to connect the
4	intermediate node to the antenna port.
1	14. A single-die transmitter/receiver integrated switching circuit,
2	comprising:
3	a plurality of transmitter ports;
4	a plurality of receiver ports;
5	at least one antenna port;
6	a plurality of integrated circuit switching elements controllable to
7	connect one of the transmitter ports or one of the receiver ports to the antenna port
8	while isolating the remaining ones of the transmitter and receiver ports from the
9	antenna port, at least one of the plurality of transmitter ports and the plurality of
10	receiver ports being at least three in number, at least some of the integrated circuit
11	switching elements arranged in cascaded fashion in order to reduce signal insertion

13

loss.

12

1	15. The integrated switching circuit of Claim 14, wherein there are at least
2	three receiver ports, any one receiver port selectably switched to be connected to the
3	antenna port through at least two cascaded stages of integrated circuit switching
4	elements.
1	16. The integrated switching circuit of Claim 14, wherein the integrated
2	circuit switching elements are field effect transistors.
1	17. A method of switching one of a plurality of transmitters and a plurality
2	of receivers to a transmitter/receiver antenna, comprising the steps of:
3	connecting each transmitter to a respective one of a plurality of
4	transmitter ports formed on a single integrated circuit die;
5	connecting each receiver to a respective one of a plurality of receiver
6	ports formed on the die;
7	controlling a selected one of a plurality of switching topologies each
8	associated with a respective one of the transmitter and receiver ports to connect a
9	respective selected one of the transmitter and receiver ports to an antenna port formed
10	on the die; and
11	controlling other ones of the switching topologies to isolate others of
12	the transmitter and receiver ports from the antenna port.
1	18. The method of Claim 17, and further including the steps of:
2	arranging at least some of the switching topologies in cascaded stages
3	including a first stage coupled to the antenna port and a last stage coupled to a
4	plurality of the transmitter or receiver ports;
5	connecting a selected one of the last said transmitter or receiver ports
6	to the antenna ports by switching on the first stage, and switching on a switch

~PHIL1:3636391 v4 14

7	associated with said selected one of the last said transmitter or receiver ports wherein
8	the last said switch is a portion of the last stage; and
9	switching off the remaining switching topologies and other switches in
10	the last stage.
1	19. The method of Claim 18, wherein said step of controlling a selected
2	one of the switching topologies includes the step of switching a plurality of series-
3	connected switching transistors to an ON state.
1	

15

~PHIL1 3636391 v4