Q.3. Find the differential equation of the form y'' + ay' + by = 0, where a and b are constants for which the following functions are solutions:

(i)
$$e^{-2x}$$
, 1

Solution space here is spanned by $e^{2\pi}$ and $e^{0\pi}$. Thus, the character polynomial is (m+2)(m-6). Expanding, we get $m^2 + 2m$.
Thus, the corresponding $\cos E$ is

 $y^{(2)} + 2 y^{(1)} = 0.$

Find a, b s.t. the solutions to $a^2y'' + axy' + by = 0$ are spanned by $\{x^2, 1^4\}$. Exercise:

Q.6. Solve the following:

(i)
$$y'' - 4y' + 3y = 0$$
, $y(0) = 1, y'(0) = -5$;

Constant coefficients opt.

y = emn gives us the characteristic polynomial

 $m^2 - 4m + 3 = (m-3)(m-1).$

Thus, the general solution is $y = ae^{3\pi} + be^{3\pi}$

Now, we used the initial data. $y(0) = 1 \implies 1 = a + b \implies 1$ $y'(0) = -5 \implies -5 = 3a + b \implies 3$

Solving gives us: a = -3, b = 4.

Thus, the solution is $y(x) = -3e^{3x} + 4e^{x}.$

det $\lambda_1, \lambda_2, \ldots, \lambda_n$ (Vardermonde) $\lambda_1, \lambda_2, \ldots, \lambda_n$

 $= \prod_{1 \leq i < j \leq n} (\lambda_j - \lambda_i).$

Q.7. Solve the following initial value problems.

(ii)
$$(D+1)^2y = 0$$
, $y(0) = 1, y'(0) = 2$

$$(D+1)^{2}f = (D+1)[(D+1)f]$$

= $f'' + 2f' + f$
= $(D^{2} + 2D+1)f$.

Q:
$$(D+1)(D+1) = D^2 + D\cdot 1 + 1\cdot D + 1\cdot 1$$

= $D^2 + 2D + 1$.

Aside:
$$(xD)f = xf'$$

 $(Dx)f = D(xf) = xf' + f$
 $= (xD+1)f$.

$$2D \neq D2$$
. $(20)^2 \neq 2^2 D$.

$$2D(2D-1) = 2^2D^2$$

 $2D(2D-1)(2D-2) = 28D^3$...

Back to the question:
$$(D+1)^2 y = 0$$
, $y(0) = 1$, $y'(0) = 2$.

Directly, the char poly is
$$(m+1)^2 - 3 - 1$$
 is repeated with multiplicity 2 .

Thus, the operal solution is

$$y(0) = 1 = 0$$
 $y'(0) = 2 = 0$
 $y'(0) = 0$

Thus, the solution is
$$y(n) = e^{-2x} + 3x e^{-2x}$$

= $(1 + 3x) e^{-2x}$.

Q.8. Solve the following initial value problems.

(ii)
$$(4x^2D^2 + 4xD - 1)y = 0, y(4) = 2, y'(4) = -1/4$$

$$y = x^{m}$$
: $4m(m-1) + 4m - 1 = 0$

$$=) 4m^{2} -1 = 0 \Rightarrow m^{2} - 4y = 0$$

$$=) (m - 1/2)(m + 1/2) = 0.$$

Thus, the general solution is
$$y = a x^{1/2} + b x^{1/2}$$

$$y(4) = 2 \Rightarrow 2 = 2a + b/2$$

 $y'(4) = -4 = 4a - b$

Thus,
$$a = 0$$
, $b = 4$.

Thus,
$$y(x) = 4x^{-1/2}$$

= $4/\sqrt{5}x$.

Q.12.

25 May 2022 09:17

Q.12. Solve the Cauchy-Euler equations: (ii) $x^2y'' + 2xy' - 6y = 0$.

(ii)
$$x^2y'' + 2xy' - 6y = 0$$
.

Again, we get the auxillary equation as

$$m(m-1) + 2m - 6 = 0.$$

=)
$$m^2 + m - 6 = 0$$

=) $(m + 3)(m - 2) = 0$

$$y(n) = \alpha x^3 + bx^2.$$

Q.13. Find the solution of $x^2y''-xy'-3y=0$ satisfying y(1)=1 and $y(x)\longrightarrow 0$ as $x\longrightarrow \infty.$

$$m(m-1) - m - 3 = 0$$

$$= \frac{m^2 - 2m - 3}{m^2} = 0$$

$$= \frac{m^2 - 2m - 3}{m^2} = 0$$

$$y = a/x + b x^3.$$

$$y(n) = y_x$$