

## November 2003

## GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

## MARK SCHEME

**MAXIMUM MARK: 40** 

SYLLABUS/COMPONENT: 9702/06

PHYSICS Paper 6 (Options (A2))

| Page 1 | Mark Scheme                         | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | A/AS LEVEL EXAMINATIONS - JUNE 2003 | 9702     | 06    |

### **Categorisation of marks**

The marking scheme categorises marks on the MACB scheme.

B marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are <u>method</u> marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or <u>answer</u> marks which either depend on an M-mark, or allow a C-mark to be scored.

#### Conventions within the marking scheme

#### **BRACKETS**

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

#### **UNDERLINING**

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

| Page 2 | Mark Scheme                         | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | A/AS LEVEL EXAMINATIONS - JUNE 2003 | 9702     | 06    |

# Option A – Astrophysics and Cosmology

| 1 | (a)   |         | galaxy very distant<br>light (reaching Earth) very faint<br>light absorption in Earth's atmosphere (do not allow refraction)<br>light pollution |                      |     |
|---|-------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|
|   |       |         | light scattered (1 each, any 4)                                                                                                                 | . B4                 | [4] |
|   | (b)   |         | 1 arc sec at $6.9 \times 10^5$ pc corresponds to $6.9 \times 10^5$ AU                                                                           | . C1                 |     |
|   |       |         | hence distance = 11 light-years                                                                                                                 | . A1                 | [3] |
| 2 | (a)   |         | If Universe is (static and) infiniteevery line of sight would end on a starentire sky would be equally bright                                   | .M1                  | [3] |
|   | (b)   |         | shows infinite (static) Universe to be incorrect (allow back-credit to (a) for initial supposition                                              |                      | [O] |
|   |       |         | does not 'prove' Big Bang model                                                                                                                 |                      | [2] |
| 3 | (a)   | (i)     | electromagnetic radiationeither characteristic of black body at 3 K or isotropic                                                                |                      | [2] |
|   |       | (ii)    | finite age for Universeindicated by cooling Universeany further detail e.g. irregularities required for galaxy                                  |                      | [3] |
|   | (b)   |         | formation radiation takes millions of years to reach Earth provides evidence for higher temperature in the past                                 | . B1<br>. B1         |     |
|   |       |         | (Universe is cooling) as it expands                                                                                                             | . Б І                | [3] |
| 0 | ption | F – The | Physics of Fluids                                                                                                                               |                      |     |
| 4 | (a)   |         | point where line of action of the upthrust or vertical line through centre of buoyancy meets centre line of ship                                | . B1                 | [2] |
|   | (b)   |         | (when submarine surfaces), water replaced by air in tanks centre of mass and centre of buoyancy will move                                       | . M1                 | [3] |
| 5 | (a)   |         | (Bernoulli:) higher speed, lower pressureso A at higher pressure                                                                                |                      | [2] |
|   | (b)   |         | $Av = A_N v_N$ or statement (e.g. incompressible)                                                                                               | . B1                 | [2] |
|   | (c)   |         | $p_1 - p_2 = \Delta p = \frac{1}{2}p(v_2^2 = v_1^2)$<br>740 = $\frac{1}{2}$ x 990 x (81 $v^2 - v^2$ )<br>$v = 0.14 \text{ m s}^{-1}$            | . C1<br>. C1<br>. A1 | [3] |
| 6 | (a)   | (i)     | upthrust = 4/3 x $\pi r^3 \rho_F g$                                                                                                             | . B1                 |     |
|   |       | (ii)    | resultant downward force = $4/3 \times \pi r^3 (\rho_S - \rho_F)g$                                                                              |                      | FO- |
|   |       |         | or $4/3 \times \pi r^3 (\rho_s - \rho_r)q = viscous force$                                                                                      | R1                   | [2] |

| P  | age 3  |             | Mark Scheme                                                                                                                       | Syllabus       | Paper |
|----|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------|-------|
|    |        |             | A/AS LEVEL EXAMINATIONS - JUNE 2003                                                                                               | 9702           | 06    |
|    | (b)    |             | $6\pi r \eta v_t = 4/3 \times \pi r^3 (\rho_S - \rho_F)g.$ hence, $v_t = kr^2$ constant $k$ discussed                             | A0<br>A1       | [2]   |
|    |        | (i)<br>(ii) | e.g. find speed near 'top' and near 'bottom' of tube using equally spaced markers (or other detail) oil flowing past wall of tube | A1<br>B1       |       |
|    |        |             | would cause extra drag                                                                                                            | B1             | [4]   |
| Ор | tion N | 1 – Ме      | dical Physics                                                                                                                     |                |       |
| 7  |        |             | large uniform magnetic field                                                                                                      | B1<br>B1<br>B1 |       |
| 8  | (a)    | (i)         | r.f. pulse detected and processed                                                                                                 |                | [6]   |
|    |        | (ii)        | least distance of distinct vision = 25 cm (allow 20 cm $\rightarrow$ power = 1/0.25 + 1/(17 x 10 <sup>-3</sup> ) power = 62.8 D   | ,              | [5]   |
|    | (b)    | (i)         | change = 6.0 D N.b. answer is (i) – (ii)                                                                                          | B1             |       |
|    |        | (ii)        | focal length = 16.7 cmconvex/converging lens                                                                                      |                | [3]   |
| 9  | (a)    | (i)         | lower limit of frequency range correct (15 to 40 Hz)upper limit of frequency range correct (13 to 20 kHz)                         |                |       |
|    |        | (ii)        | intensity 1.0 x 10 <sup>-12</sup> W m <sup>-2</sup> at about 2 kHz (allow 1 kHz → 3 kHz)                                          |                | [4]   |
|    | (b)    |             | line 'above' that already drawnboth frequency limits showing more limited range                                                   |                | [2]   |

| Page 4 | Mark Scheme                         | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | A/AS LEVEL EXAMINATIONS - JUNE 2003 | 9702     | 06    |

# Option P – Environmental Physics

| -  |        |       | •                       |                                                    |      |
|----|--------|-------|-------------------------|----------------------------------------------------|------|
| 10 | (a)    |       | source of (useful       | ) energy B1                                        | [1]  |
|    | (b)    |       | e.g. less pollution     | 1                                                  |      |
|    | ` ,    |       | finite reserve          |                                                    |      |
|    |        |       | chemical fee            | edstock etc(1 each, max 3)B3                       | [3]  |
| 11 | (a)    |       | dam <u>across</u> river | mouth/estuaryB1                                    |      |
|    |        |       |                         | s tide goes outB1                                  |      |
|    |        |       |                         | r is releasedB1                                    | - 43 |
|    |        |       | through turbines        | B1                                                 | [4]  |
|    | (b)    |       |                         | : 8.0 x 200 x 10 <sup>6</sup> x 1000 kg            |      |
|    |        |       | change in p.e =         | = 1.6 x 10 <sup>12</sup> x 9.8 x 4                 |      |
|    |        |       | =                       | : 6.27 x 10 <sup>13</sup> J                        |      |
|    |        |       | power = 6.27 x 1        | 0 <sup>13</sup> /(3 x 3600)<br>) <sup>9</sup> W A1 | [0]  |
|    |        |       | = 5.8 X 10              | O VVA1                                             | [3]  |
|    | (c)    |       | e.g. silting up         |                                                    |      |
|    |        |       | feeding grou            | nds of birds etc(1 each, max 2) B2                 | [2]  |
| 12 | (a)    |       | open c                  | elosed                                             |      |
| 12 | (a)    |       | •                       | losed                                              |      |
|    |        |       |                         | losed                                              |      |
|    |        |       | closed                  | pen(-1 each error or omission) B2                  | [2]  |
|    | (b)    | (i)   | at end of compre        | ession stroke or at beginning of power stroke B1   |      |
|    |        | (ii)  | at moment when          | exhaust valve opensB1                              |      |
|    |        | . ,   | (and during) exh        | aust strokeB1                                      | [3]  |
|    | (c)    |       | efficient mixing w      | vith air or increase surface area B1               |      |
|    | (0)    |       |                         | B1                                                 | [2]  |
|    |        |       | J                       |                                                    |      |
| Op | tion T | – Tel | ecommunications         | S                                                  |      |
| 40 |        |       |                         |                                                    | 541  |
| 13 | (a)    |       | multiple reflection     | ns with $i = r$ B1                                 | [1]  |
|    | (b)    |       |                         | ame path length/prevent (multipath) dispersion     | [4]  |
|    |        |       | OR easier to stor       | re/handleB1                                        | [1]  |
|    | (c)    |       | e.g. greater ban        | ndwidth                                            |      |
|    | ` ,    |       | no cross-ta             | lk or reduced noise                                |      |
|    |        |       |                         | e and weight                                       |      |
|    |        |       | cheaper<br>             |                                                    |      |
|    |        |       | security                | gital transmission (1 each, max 3)A3               | [3]  |
|    |        |       | รนแฮน เป นเ             | gitai transmission (1 each, max 3)A3               | [3]  |
| 14 | (a)    |       |                         | ier wave variesM1                                  |      |
|    |        |       | in synchrony with       | (displacement of information) signal               | [2]  |
|    | (b)    |       | three vertical line     | sB1                                                |      |
|    | (~)    |       |                         | smaller sidebands                                  |      |
|    |        |       | •                       | ), 75 and 80 kHzB1                                 | [3]  |
|    |        |       |                         |                                                    |      |

| [3] |
|-----|
| [3] |
| [3] |
|     |

**Syllabus** 

Paper

Mark Scheme

Page 5