Experimental observation of isolated large transverse energy electrons with associated missing energy at

$$\sqrt{s} = 540 \, \text{GeV}$$

Braden Moore

School of Physics The University of Melbourne

Advanced Seminar, 11 March 2016

Overview of the paper

ullet par p
ightarrow e
u events previously predicted to be mediated by W boson, as in:

$$p\bar{p} \rightarrow W^{\pm} \rightarrow e^{\pm} + \nu$$

- ullet $par{p}$ collision events at UA1 in the SPS at CERN investigated for $par{p} o e
 u$
- 6 events with high-energy electrons and a neutrino of equal and opposite transverse momenta found in $18\,\mathrm{nb}^{-1}$ data set; suggests two body decay $W\to e\nu$
- mass of W is determined experimentally as

$$m_W = \left(81^{+5}_{-5}\right) \text{GeV/c}^2$$

 experimental mass and cross-section found to be in excellent agreement with Weinberg-Salam predictions

Particle physics up to 1983

- 1897 electron discovered
- 1932 positron discovered
- 1937 muon discovered
- 1956 (electron) neutrino discovered
- 1962 muon neutrino discovered
- 1968 Glashow, Weinberg and Salam formulate unified electroweak theory
- 1969 partons observed
- 1975 tau discovered
- 1983 ???

Particle physics up to 1983

- 1897 electron discovered
- 1932 positron discovered
- 1937 muon discovered
- 1956 (electron) neutrino discovered
- 1962 muon neutrino discovered
- 1968 Glashow, Weinberg and Salam formulate unified electroweak theory
- 1969 partons observed
- 1975 tau discovered
- 1983 W and Z bosons discovered

Predictions of W mass + cross-section

$$m_W = (82 \pm 2.4) \text{ GeV/c}^2$$

$$\sigma(par{p}
ightarrow W^\pm
ightarrow e^\pm +
u) \simeq 0.4 imes 10^{-33} k \; \mathrm{cm}^2 = 0.4 k \; \mathrm{nb}$$

- k is an enhancement factor of ~ 1.5
- ullet in $18\,\mathrm{nb^{-1}}$ sample, would expect $\sim 18 imes 0.4 k = 7.2 k$ events

Super Proton Synchrotron (SPS) @ CERN

CERN Accelerators (not to scale)

- 1957 Synchrocyclotron starts up
- 1959 Proton Synchrotron starts up
- 1976 Super Proton Synchrotron starts up
- 1989 LEP first injection
- 1999 Antiproton Decelerator approved
- 2000 LEP final shutdown
- 2008 LHC starts up

- ran from 1981 until 1990
- moveable detector (see also UA2) custom built around SPS for $p\bar{p}$ collisions
- could be rolled back to allow fixed-target operation of SPS

- transverse dipole magnet produced uniform field of 0.7T over $7 \times 3.5 \times 3.5 \text{m}^3$
- central detector = six-chambered cylinder, 5.8 m length, 2.3 m diameter
- produced bubble-chamber quality pictures of each interaction

 48 barrel EM calorimeters, called 'gondolas'

 64 end-cap EM calorimeters, called 'bouchons'

- transverse energy E_T a very important variable; attenuation length of scintillators in calorimeter are arranged to match variation over $\sin \theta$
- from this $E_T = E \sin \theta$ can be directly measured

Electron/hadron separation

- electromagnetic showers identifed by characteristic transition curve
- 90% of electrons are detected

Neutrino identification

- emission of neutrinos signalled via missing energy
- calorimeters are completely hermetic down to 0.2° in forward regions

Data taking

- ullet proton and anti-protons collided at $\sqrt{s}=540\,\mathrm{GeV}$
- $18\,\mathrm{nb^{-1}}$ data set ($\sim 10^9$ collisions), collected at UA1
- recorded over 30 days during November and December 1982
- triggers were used to select events of interest

Triggers

- four initial event selections are performed:
 - (1) at least 10 GeV of E_T in 2 gondolas or 2 bouchons
- with three other specific triggers for electron events:
 - (2) jet trigger: $\geq 15 \,\text{GeV}$ of E_T in localised EM/hadron calorimeter
 - (3) global E_T trigger: > 40 GeV of total E_T ; $|\eta| < 1.4$
 - (4) muon trigger: at least one track with $|\eta| < 1.3$
- of 9.75×10^5 events trigger, 1.4×10^5 passed the above trigger selection, i.e. characterised by electron trigger flag

Offline selection

- number of events reduced to 27,000 after initial offline selection (using calorimeter)
 - $E_T > 15 \,\text{GeV}$ in two gondolas, or
 - $E_T > 15 \,\text{GeV}$ in two bouchons with valid position information
- again reduced with drift chamber reconstruction, requiring good quality, vertex-associated charged track of $p_T > 7 \, \text{GeV/c}$
 - 2,125 events remaining

Electron candidate selection

- from sample of 2,125 events, a final set of selections are applied to select for electrons
- three cuts are made in succession to reduce jet debris
 - 167 events remaining
- two cuts are made to optimise selection for electromagnetic properties
 - 39 events remaining

Electron candidate selection

- these 39 events are processed manually in Megatek and classified as:
 - (1) 5 events jetless
 - (2) 11 events jet opposite track within 30° angle of ϕ
 - (3) 23 events two jets (one containing electron candidate) or e^+e^- conversion pair
- events with jets show no missing energy; jetless events show missing transverse energy almost exactly back-to-back to electron candidate

An aside - Megatek

• Megatek examples (short movie) available at the CERN Document Server

Electron candidate selection

Energetic neutrino candidate selection

- from sample of 2,125 events, a different set of selections are applied to search for energetic neutrinos
- ullet based exclusively on presence of missing E_T
- two simple cuts are made to select high missing E_T and candidate track not part of jet
 - 70 events remaining
- remaining events are processed manually, and two more cuts are applied
 - 18 events remaining

Energetic neutrino candidate selection

Energetic neutrino candidate selection

- from E_c consideration, events with jets are deduced as hadronic events; the jetless events constitute an electron sample
- five of the seven jetless events match the jetless events from electron candidate selection

Detailed event description

Table 2
Main parameters of electron events with a large missing transverse energy.

		_	Properties of the electron track						Calorimeter information				General event topology								
ev	Run, vent	E _T	E (GeV)	p (GeV/c)	∆p a)	Q	dE/dx I/I ₀	y b)	Track No.	Length (m)	Sagitta (mm)	Electromagnetic energy deposition			Ehad	E _{tot}	Missing E _T	∆o c)	Charged	TIE-I	
												Sample 1 (GeV)	Sample 2 (GeV)	Sample 3 (GeV)	Sample 4 (GeV)	(GeV)	(GeV)	(GeV)	(deg.)	tracks	(GeV)
A	2958 1279	26	42	33.8	+6.3 -4.6	-	1.22 ±0.2	+1.1	36	1.36	1.7	4	35	3	0.2	0	278	24.4 ± 4.6	179	65	81
В	3522 214	17	46	47.5	+8.2 -6.1	-	1.37 ±0.16	+1.7	18	1.64	1.5	2	32	10	0.5	0	296	10.9 ± 4.0	219	49	60
с	3524 197	34	45	21.6	+21.8 -7.2	-	1.37 ±0.3	-0.8	26	1.25	2.11	1	30	14	0.2	0	367	41.3 ± 3.6	187	21	68
D	3610 760	38	40	33.4	+33.0 -11.1	-	1.64 ±0.34	+0.3	9	0.98	0.75	3	9	26	2.2	0.4	111	40.0 ± 2.0	181	10	47
E	3701 305	37	37	56.2	*121.3 -22.8	٠	1.54 ±0.28	-0.1	12	0.95	0.4	1	18	17	0.9	0	363	35.5 ± 4.3	173	39	87
F	4017 838	37	70	53.1	+6.6 -5.3	-	1.30 ±0.26	+1.4	3	2.01	2.0	19	48.	3	0.3	0	177	32.3 ± 2.4	179	14	49
G	3262 1108	40	40	6.7	+1.9	-	1.23 ±0.28	0.0	21	0.85	3.0	2	22	15	0.9	0	218	33.4 ±2.9	172	21	63

a) Including 200 μ m systematic error. b) y is defined as positive in the direction of the outgoing \tilde{p} .

c) Angle between electron and missing energy (neutrino).

Background evaluations

- possible backgrounds:
 - (1) high p_T π^\pm misidentified as an electron or overlapping with one or more π^0
 - (2) high p_T π^0 , η^0 or γ converted to e^+e^- pair with one side missed
 - (3) heavy quark production, with $Q_1 \to e(\nu X)$ and $Q_2 \to \nu(\ell X)$ and only the electron and neutrino being detected
- none of these background processes were shown to have occured; the final events are concluded to be high-energy electron events

A promising conclusion?

 presence of electron and neutrino of approximately equal and opposite transverse momenta suggests two body decay

$$ullet$$
 e.g. $W
ightarrow e +
u_e$

Determining W mass

• lower limit on m_W can be determined through $m_W \geq m_T$

$$m_T^2 = 2p_T^{(e)}p_T^{(\nu)}(1-\cos\phi_{
u e})$$
 $m_W > 73\,{
m GeV/c^2}$ at 90% CL

Table 3

Transverse mass and transverse momentum of a W decaying into an electron and a neutrino computed from the events of table 2.

	Run, event	p _T (e) of electron (GeV/c)	$p_{T}^{(\nu)} = missing E_{T}$ (GeV)	Transverse mass (GeV/c) ²	$p_{\mathrm{T}}^{(\mathbf{W})} = p_{\mathrm{T}}^{(\mathbf{c})} + p_{\mathrm{T}}^{(\nu)} $ (GeV)
	A 2958 1279	24 ± 0.6	24.4 ± 4.6	48.4 ± 4.6	0.6 ± 4.6
. 1	B 3522 214	17 ± 0.4	10.9 ± 4.0	26.5 ± 4.6	10.8 ± 4.0
•	C 3524 197	34 ± 0.8	41.3 ± 3.6	74.8 ± 3.4	8.6 ± 3.7
i	D 3610 760	38 ± 1.0	40.0 ± 2.0	78.0 ± 2.2	2.1 ± 2.2
1	E 3701 305	37 ± 1.0	35.5 ± 4.3	72.4 ± 4.5	4.7 ± 4.4
1	F 4017 838	36 ± 0.7	32.3 ± 2.4	68.2 ± 2.6	3.8 ± 2.5

Determining W mass

- final fit corrects for transverse W motion and uses Drell-Yan predictions with no smearing
- ullet mass given for fit on electron energy and angle and neutrino E_T is

$$m_W = \left(81^{+5}_{-5}\right) {
m GeV/c^2}$$

- ullet excellent agreement with Weinberg-Salam model expected mass $(m_W=(82\pm 2.4)~{
 m GeV/c^2})$
- number of observed events (6) consistent with cross-section estimates $(\sim 7.2k)$

End

- Thank you for your attention
- Questions?

