Math 54, Spring 2009, Sections 109 and 112 Worksheet 1: Lay 1.1 - 1.4

(1) Which of the following matrices are in an echelon form? Reduced echelon form? If the matrix is in an echelon form, identify the pivots.

(a)
$$\begin{pmatrix} \hat{1} & 0 & 1 & 4 \\ 0 & 0 & \hat{1} & 0 \\ 0 & 0 & 0 & \hat{1} \end{pmatrix}$$
 (b) $\begin{pmatrix} \hat{2} & 2 & 1 & -2 \\ 0 & 0 & \hat{1} & 3 \\ 0 & 0 & 0 & \hat{1} \end{pmatrix}$ (c) $\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
Echely from Echely form Neither, row of O 's at the $f_{0}p$

(2) (a) Does the following matrix equation have a solution?

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 2 & -4 \\ 1 & 1 & 1 \end{pmatrix} \vec{x} = \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}.$$

(b) Is (4,0,2) in Span $\{(1,4,1),(2,2,1),(3,-4,1)\}$? (Recall that for convenience we sometimes write vectors horizontally).

(a) Equation has solution if and only of
$$(x_1 + 2x_2 + 3x_3 = 1)$$
 has solution $(x_1 + 2x_2 - 4x_3 = 0)$ $(x_1 + x_2 + x_3 = 2)$

$$\begin{bmatrix}
1.234 \\
-R, +R_3-7R_3
\end{bmatrix}$$

$$\begin{bmatrix}
1.234 \\
0-6-16-16
\end{bmatrix}$$

$$\begin{bmatrix}
1.234 \\
-1R_2-7R_2
\end{bmatrix}$$

$$\begin{bmatrix}
0.234 \\
0.127
\end{bmatrix}$$

$$\begin{bmatrix}
0.234 \\
0.6-16-16
\end{bmatrix}$$

-2R₂+R₁-3R₁ \(10-10 \)

$$6R_14R_3-3R_3 \)

 $01 22$
 $00-4-4$
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 001
 $00$$$

(3) Consider the set of vectors

$$S = \left\{ \begin{bmatrix} 2x_2 - x_1 \\ \pi x_3 + \sqrt{2}x_1 - x_2 \\ x_1 + x_2 + x_3 \end{bmatrix} : x_1, x_2, x_3 \in \mathbb{R} \right\}.$$

Can you write S as the span of a collection of vectors?

$$\begin{bmatrix} 2\pi_2 - \chi \\ \pi \chi_3 + \sqrt{2}\chi_1 - \chi_2 \\ \chi + \chi_2 + \chi_3 \end{bmatrix} = \chi_1 \begin{bmatrix} -1 \\ \sqrt{2} \\ 1 \end{bmatrix} + \chi_2 \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} + \chi_3 \begin{bmatrix} 7 \\ \pi \end{bmatrix}$$

$$50 \quad 5 = 5 \text{ Pan } 3$$

$$\frac{3}{2} \text{ Later well } 5$$

(4) Suppose $\vec{v}_1, \ldots, \vec{v}_p$ are vectors in \mathbb{R}^n and let $V = \operatorname{Span}\{\vec{v}_1, \ldots, \vec{v}_p\}$. Prove that if $\vec{x} \in V$ there and $\vec{y} \in V$, then $\vec{x} + \vec{y} \in V$ as well.

Since
$$\dot{x} \in V$$
, then one numbers C_1 , C_p such that $x = C_1 \ddot{V_1} + ... + C_p \ddot{V_p}$. Similarly, three are van bers d_1 , d_p such that $\dot{y} = d_1 \ddot{V_1} + ... + d_p \ddot{V_p}$. So $\ddot{x} + \ddot{y} = (C_1 + d_1) \ddot{V_1} + ... + (C_p + d_p) \ddot{V_p}$. So by a effortion