21

복소주파수와 회로망함수

21.1 복소주파수

21.4 회로망함수

21.2 e^{st} 형식의 전원에 대한 강제응답 21.5 극-영점과 주파수응답

연습문제

21.3 일반화 임피던스

회로이론에서 지극히 중요한 자리를 차지하는 지수함수 e^{st} (s 는 일반적으로 복소수)에서 s 를 **복소주파수**라고 한다. s의 실수부, 허수부의 값에 따라 e^{st} 는 DC파, 사인파, 지수적으로 변하는 파, 진폭이 지수적으로 변하는 진동파 등 여러 가지를 대표한다. 따라서 이 모든 파형을 따로 따로 취급할 필요없이 e^{st} 하나로 대표시켜 취급할 수 있다. 그래서 이 장에서는 지수적 시간함수 e^{st} 에 기초를 둔 회로해석을 배운다.

선형회로가 e^{st} 로 구동될 때 응답도 e^{st} 의 형식을 갖는다. 이때 출력/입력, 즉회로망함수는 교류회로 이론에서와 비슷하게 $R \to R$, $L \to sL$, $C \to 1/sC$ 의 대치와 임피던스 개념의 확장으로써 쉽게 구할 수 있다. 회로망함수는 s의 유리함수가 되며 그 분모=0의 근을 **국**(pole), 분자=0의 근을 **영점**(zero)이라고 한다. 극은 앞장에서 배운 자연주파수(특성근)와 일치하며, 따라서 극을 알면 회로의 자연응답을 알 수 있다. 극과 영점은 회로망함수를 완전히 특징지어 주며, s 평면상에서의 극과 영점의 위치로부터 회로망함수의 주파수응답곡선의 개형을 도

식적으로 쉽게 구할 수 있다.

21.1 복소주파수

지수적 시간함수 e^{st} 를 우리는 이제까지 자주 취급하였다. 첫 번째는 사인파를 페이저로 표시할 때 $e^{j\omega t}$ 를 생각하였으며($s=j\omega$ 의 경우), 다음에는 앞장에서 회로의 자연응답이 Ke^{st} 의 형식이 된다는 것을 배웠다(s는 경우에 따라 실수, 복소수, 순허수 등 여러 가지가 될 수 있었다). 또 선형회로의 입력이 e^{st} 일 때 강제응답이 e^{st} 의 형식을 갖는다는 것을 알았다(표 20.1). 곧 알게 되겠지만 e^{st} 는 복소수 s의 값에 따라 회로해석에서의 여러 가지 기본적 파형을 대표할 수 있다.

먼저 e^{st} 의 s를 복소수라고 생각하여 다음과 같이 표기하자.

$$s = \sigma + j\omega \tag{21.1}$$

여기서 ω 는 보통의 각주파수이다. 이 s 를 **복소주파수**라고 한다. 복소주파수 s 의 실수부, 허수부의 값에 따라 e^{st} 는 여러 가지 파형을 대표할 수 있다.

- (1) $\omega = 0$; $e^{st} = e^{\sigma t}$ 가 되며 $\sigma > 0$ 일 때에는 지수적으로 증가하는 파형, $\sigma < 0$ 일 때에는 지수적으로 감소하는 파형, $\sigma = 0$ 일 때에는 일정한 DC 파형을 나타낸다(그림 21.1).
- (2) $\sigma = 0$; $e^{st} = e^{j\omega t}$ 가 되며, 잘 아는 바와 같이 $Re(e^{j\omega t}) = \cos \omega t$, $Im(e^{j\omega t}) \sin \omega t$ 가 되므로 사인파를 대표한다(그림 21.2).
- (3) $\sigma \neq 0$, $\omega \neq 0$; $e^{st} = e^{\sigma t}e^{j\omega t} = e^{\sigma t}(\cos \omega t + j\sin \omega t)$ 이므로

$$Re(e^{st}) = e^{\sigma t} \cos \omega t$$

$$Im(e^{st}) = e^{\sigma t} \sin \omega t$$
(21.2)

그림 21.1 $e^{\sigma t}$ 의 파형

그림 21.2 $e^{j\omega t}$ 가 대표하는 파형

그림 21.3 $e^{\sigma+j\omega t}$ 가 대표하는 파형

따라서 $\sigma > 0$ ($\sigma < 0$)일 때에는 진폭이 지수적으로 증가(감소)하는 진동파를 대표한다(그림 21.3).

이 모든 파형을 따로따로 취급할 필요가 없고 모두 e^{st} 로 대표시킬 수 있다. 그럼으로써 이 모든 파형의 전원에 대한 강제응답(20.4절) 해석이 통일된다.

특히
$$v(t) = V_m e^{\sigma t} \sin(\omega t + \theta)$$

$$v(t) = V_m e^{\sigma t} \cos(\omega t + \theta)$$
 (21.3a)

는 각각 다음과 같이 쓸 수 있다.

$$v(t) = Im\left[V_m e^{\sigma t} e^{j(\omega t + \theta)}\right] = Im\left[V_m e^{j\theta} e^{(\sigma + j\omega)t}\right] = Im\left(\mathbf{V}e^{st}\right)$$

$$v(t) = Re\left[V_m e^{\sigma t} e^{j(\omega t + \theta)}\right] = Re\left[V_m e^{j\theta} e^{(\sigma + j\omega)t}\right] = Re\left(\mathbf{V}e^{st}\right) \quad (21.3b)$$

단,
$$V = V_m e^{j\theta} = V_m / \underline{\theta}$$
 (복소진폭), $s = \sigma + j\omega$ (복소주파수) (21.4)

따라서
$$v(t) \leftrightarrow Ve^{st}$$
 (21.5)

와 같은 대응관계를 생각할 수 있다. 페이저를 이용한 교류해석에서처럼 일일이 Re 또는 Im 을 붙일 필요는 없고, 해로해석 후 필요에 따라 이것을 고려하면 된다. 다만 Re, Im 어느 한쪽으로 통일해서 써야 한다. 우리는 페이저와 마찬가지로 Im을 쓰기로 한다.

표 21.1에는 위에서 고찰한 여러 가지 파형에 대한 시간함수로서의 표현과 복소진폭과 복소주파수에 의한 표현 사이의 상호변환 관계를 일괄하였다.

식 (21.2)에 $e^{\sigma t}$ 는 사인파의 진폭을 시간에 따라 지수적으로 변화시킨다고 보면 동식의 순간치는 그림 21.4에 표시한 것처럼 크기가 시간에 따라 $e^{\sigma t}$ 로 감쇠 $(\sigma < 0)$ 또는 증가 $(\sigma > 0)$ 하면서 ω 의 각속도로 반시계방향으로 회전하는 선분의 수평투영 또는 수직투영과 같다고 생각할 수 있다.

표 21.1

v(t)		$ extbf{\emph{V}}e^{st}$
	<u></u> 복소진폭 <i>V</i>	복소주파수 s
$V_m \sin(\omega t + \theta)$	$V_m / \!\! heta$	$j\omega$
$V_m e^{\sigma t} \sin(\omega t + \theta)$	$V_m / \!\! heta$	$\sigma + j \omega$
$V_m e^{\sigma t}$	$V_m /0$	σ
$V_m(\mathrm{DC})$	$V_m / 0$	0

[주] 위에서 보는 바와 같이 복소진폭은 페이저와 같다고 할 수 있다.

그림 21.4 나선적으로 변하는 페이저

예제 21.1

- (a) v(t)가 다음과 같이 주어졌을 때 이것을 복소진폭 ${\it V}$ 와 복소주파수 s를 구하라.
 - ① $6\sin/(2t + \pi/4)$

② $6e^{-3}\sin(2t+10^{\circ})$

 $36e^{-t}$

- 4 6(DC)
- (b) 복소진폭 I와 복소주파수 s가 다음과 같이 주어졌을 때 이에 대응하는 시간함수 i(t)을 써라.
 - ① $I = 10/-\pi/3$, s = -4 + j5
- ② $I = 10/-30^{\circ}, s = j5$

③ I = 10, s = -5

4 I = 10, s = 0

풀이

- (a) ① $V = 6/\pi/4$, s = j2
- ② $V = 6/10^{\circ}$, s = -3 + j2

③ V = 6, s = -1

- ① v = 6, s = 0
- (b) $10e^{-4}\sin(5t \pi/3)$
- ② $10\sin(5t-30^{\circ})$

 $(3) 10e^{-5t}$

④ 10(DC)

$21.2 \quad e^{st}$ 형식의 전원에 대한 강제응답

 e^{st} 로 표시되는 전원에 대한 회로의 <u>장제응답</u>을 구해 보자. 우선 R, L, C 1 개만에 대하여 생각한다. 전압, 전류의 극성은 그림 21.5와 같이 정한다.

그림 21.5 v, i의 극성

(1) R : 저항 R에 $i = \mathbf{I}e^{st}$ 로 표시되는 전류가 흐를 때 양단의 전압 v는

$$v = R\mathbf{i} = R\mathbf{I}e^{st} = \mathbf{V}e^{st}$$

단, $\mathbf{V} = R\mathbf{I}$ (21.6)

(2) L : 인덕턴스 L에 $i=\mathbf{I}e^{st}$ 로 표시되는 전류가 흐를 때 양단전압 v는

$$v = L \frac{di}{dt} = L \frac{d}{dt} (\mathbf{I}e^{st}) = sL\mathbf{I}e^{st} = \mathbf{V}e^{st}$$
 단, $V = sL\mathbf{I}$ (21.7)

(3) C : 커패시턴스 C에 $v = Ve^{st}$ 로 표시되는 전압이 인가될 때 흐르는 전류 i는

$$i = C \frac{dv}{dt} = C \frac{d}{dt} (\mathbf{V}e^{st}) = s C \mathbf{V}e^{st} = \mathbf{I}e^{st}$$
 단, $\mathbf{I} = s C \mathbf{V}$ (21.8)

이 각각에서 \underline{v} , i 중 한쪽이 e^{st} 의 형식을 가지면 다른 쪽도 같은 형식을 가 짐을 볼 수 있다.

다음에 R-L-C 직렬회로에 $i=\mathbf{I}e^{st}$ 로 표시되는 전류전원이 인가될 때 전원 양단의 전압 v는

$$\begin{split} \boldsymbol{v} &= \boldsymbol{v}_R + \boldsymbol{v}_L + \boldsymbol{v}_C \\ &= R \boldsymbol{I} e^{st} + sL \boldsymbol{I} e^{st} + \frac{1}{sC} \boldsymbol{I} e^{st} \\ &= \left(R + sL + \frac{1}{sC} \right) \boldsymbol{I} e^{st} = \ \boldsymbol{V} e^{st} \end{split}$$

단,
$$V = \left(R + sL + \frac{1}{sC}\right)I$$
 (21.9)

이 경우에도 v는 e^{st} 의 형식을 갖는다. 이 사실은 이 회로뿐만 아니라 어떠한 선형회로에서도 성립되는 것으로 전원이 e^{st} 이면 입력단자뿐만 아니라 회로 내의 모든 전압, 전류의 강제응답은 복소진폭이 다를 뿐 동일한 e^{st} (s는 전원의 복소주파수)의 형식으로 표시된다.

예제 21.2

그림 21.6의 회로에서 다음과 같은 전압전원 $v_g(t)$ 가 인가될 때 각 경우에 대한 강제응답 i(t)를 구하라.

(a) 10 V (DC)

(b) $5e^{-t} V$

(c) $20\sin\left(2t + \frac{\pi}{6}\right)$ V

(d) $5e^{-t}\sin\left(2t+\frac{\pi}{6}\right)V$

그림 21.6 예제 21.2의 회로

푹 이

이 모든 전원함수가 $V\!e^{st}$ 의 형식으로 표현될 수 있으므로 따로따로 취급하지 말고 강제응답을 일괄적으로 $I\!e^{st}$ 의 형식으로 구한 다음 각 경우에 대하여 생각하자. 지금 $v_q = V\!e^{st}$ 라 하면

$$Ri + L\frac{di}{dt} = Ve^{st}$$

여기에 $i = \mathbf{I}e^{st}$ 를 대입하면

$$(R+sL) \mathbf{I} e^{st} = \mathbf{V} e^{st}$$

$$\therefore \mathbf{I} = \frac{\mathbf{V}}{R+sL}$$
(21.10)

(a) $V = 10/0^{\circ}$, s = 0을 식 (21.10)에 대입하면

$$I = \frac{10}{2} = 5 \,\mathrm{A}(\mathrm{DC})$$

(b) **V**=5/0°, s=-1을 식 (21.10)에 대입하면

$$I = \frac{5}{2-1} = 5$$
, $\therefore i(t) = 5e^{-t} A$

(c) $V = 20/\pi/6$, s = j2를 식 (21.10)에 대입하면

$$I = \frac{20/\pi/6}{2+j2} = 5\sqrt{2}/-\pi/12$$

:.
$$i(t) = 5\sqrt{2} \sin(2t - \pi/12) A$$

(d) $V=5/\pi/6$, s=-1+j2를 식 (21.10)에 대입하면

$$I = \frac{5/\pi/6}{2 + (-1+j2)} = \sqrt{5}/\pi/6 - \tan^{-1}2$$

$$\therefore i(t) = \sqrt{5} e^{-t} \sin\left(2t - \frac{\pi}{6} - \tan^{-1}2\right) A$$

이상의 결과들은 예제 20.8에서 미방을 직접 풀어서 얻은 결과들과 일치함을 볼수 있는데, 이 절에서 우리는 전원이 e^{st} 의 형식을 가질 때 7 강력한 또 하나의 방법을 배운 셈이다.

21.3 일반화 임피던스

앞절에서 본 바와 같이 전원이 e^{st} 의 형식을 가질 때 입력단자의 전류와 전압은 Ve^{st} , Ie^{st} 와 같은 형식으로 표시된다. 여기서 V, I는 복소진폭이며 이 양자의 비를 Z(s)로 표시한다.

$$\frac{V}{I} = Z(s) \tag{21.11}$$

이 Z(s)를 **일반화 임피던스**라고 한다. 이것은 일반적으로 <u>전원의 복소주파수 s</u>의 함수이다. "일반화"라고 하는 것은 사인파의 경우 $(s=j\omega)$ 의 임피던스 개념을 확장한 것이기 때문이다.

이 장을 통하여 특별한 언급이 없는 한 전원은 e^{st} 의 형식을 갖는다고 가정한 $\underline{\Gamma}$. 정의에 의하여 R,L,C의 일반화 임피던스는 식 (21.6),(21.7),(21.8)로부터 각각 R,sL,1/sC이 되고, R-L-C 직렬회로의 임피던스는 식 (21.9)로부터 R+sL+1/sC이 된다. 그러므로 $\underline{Z}(s)$ 는 사인파 정상상태의 경우의 복소임 피던스에서 $j\omega \to s$ 로 대치하면 얻어지고, 반대로 일반화 임피던스 $\underline{Z}(s)$ 에서

그림 21.7 입력임피던스의 계산

 $s=j\omega$ 라 놓으면 사인파 정상상태의 복소임피던스가 얻어진다는 것을 쉽게 알수 있다. Z(s)의 역수를 Y(s)라 표시하고 **일반화 어드미턴스**라고 한다. 좀 복잡한 회로에서의 Z(s) 또는 Y(s)의 계산은 교류회로 이론과 유사하게 $R \to R, L \to sL, C \to 1/sC$ 로 변환한 다음, 저항회로처럼 취급하면 된다. 예컨대 그림 21.7 (a)의 회로에서 단자쌍 1-1'에서 본 일반화 임피던스는 그림 (b)의 변환회로로부터 다음과 같이 구해진다.

$$Z(s) = \frac{(R+sL) \times \frac{1}{sC}}{(R+sL) + \frac{1}{sC}} = \frac{sL+R}{LCs^2 + RCs + 1}$$
(21.12)

앞으로 단순히 임피던스, 어드미턴스라는 말을 쓸 것이다. 교류회로에서와 같이 이들을 합쳐서 이미턴스(immittance), 구동점이미턴스 또는 입력이미턴스 등 여러 가지로 부른다.

앞으로 제 23 장에서 라플라스변환을 배울 때까지는 s 영역에서 회로를 다룰때에는

- (1) 모든 전원이 동일복소주파수의 e^{st} 의 형식을 가져야 하며
- (2) 응답 V, I 등은 <u>장제응답</u>(초기조건이 사라진 정상상태응답)의 <u>복소진폭</u>을 나타낸다는 것을 명심해야 한다.
- (3) 그리고 기술의 편의상 흔히 복소수인 전류, 전압, 이미턴스를 I, V, Z, Y와 같이 보통활자로 표시하는데 우리도 앞으로는 이 관례에 따르기도 하겠다 이것들이 전원의 복소주파수 s의 함수라는 것을 강조하기 위하여 I(s), V(s), Z(s), Y(s)라고 표시하기도 한다. 다만, $s=j\omega$ 인 특수한 경우, 즉사인파 정상상태해석에서는 종전대로 I, V, Z, Y와 같이 볼드체를 쓸 때가 있을 것이다.

21.4 회로망함수

그림 21.8과 같은 두 단자쌍(terminal-pairs)을 갖는 회로(2포트회로)에서의 전류, 전압들의 비를 전달함수(transfer function)라고 하며 다음 네 가지가 있다.

 V_2/V_1 : 전달전압비 V_2/I_1 : 전달임피던스 I_2/I_1 : 전달전류비

 I_2/V_1 : 전달어드미턴스

입력이미턴스함수와 전달함수를 총칭하여 **회로망함수**라 한다.

그림 21.8 전달함수의 정의

입력이미턴스함수와 마찬가지로 회로의 전달함수도 변환회로에서 쉽게 구할 수 있다. 예컨대 그림 21.9~(a)의 회로에서 전압전달비 V_2/V_1 은 그림 (b)의 변환회로로부터

$$\frac{V_2}{V_1} = \frac{\frac{1}{2s}}{\frac{1}{1+s} + \frac{1}{2s}} = \frac{(s+1)}{3s+1} = \frac{1}{3} \frac{s+1}{s+\frac{1}{3}}$$
(21.13)

미분방정식과 회로망함수 사이에는 밀접한 관계가 있다. 예컨대

그림 21.9 전달함수를 구하는 방법[(c)는 이 전달함수의 극-영점도]

$$a_3 \frac{d^3 w}{dt^3} + a_2 \frac{d^2 w}{dt^2} + a_1 \frac{dw}{dt} + a_0 w = b_2 \frac{d^2 v}{dt^2} + b_1 \frac{dv}{dt} + b_0 v$$
 (21.14)

에서 전원함수가 $v(t) = Ve^{st}$ 의 형식을 가지면 이에 의한 강제응답도 w(t) = We^{st} 의 형식을 가지므로 이것을 윗식에 대입하면

$$(a_3 s^3 + a_2 s^2 + a_1 s + a_0) W = (b_2 s^2 + b_1 s + b_0) V$$
(21.15)

따라서 회로망함수는

$$\frac{W}{V} = \frac{b_2 s^2 + b_1 s + b_0}{a_3 s^3 + a_2 s^2 + a_1 s + a_0} \equiv H(s)$$
 (21.16)

식 $(21.14) \leftrightarrow$ 식 (21.15), 따라서 식 $(21.14) \leftrightarrow$ (21.16)의 상호변환은 $w(t) \leftrightarrow$ $W, v(t) \leftrightarrow V, d/dt \leftrightarrow s, d^2/dt^2 \leftrightarrow s^2$, … 로부터 쉽게 얻어진다. 독자는 이 상호변환에 익숙해야 한다. 예컨대 그림 21.9 (a)의 회로에서 $v_2(t)$ 에 관한 미방은식 (21.13)으로부터 다음과 같이 구해진다.

$$3\frac{dv_2}{dt} + v_2 = \frac{dv_1}{dt} + v_1 \tag{21.17}$$

이 <u>미방의 특성방정식(3s+1=0)의</u> 근, 즉 특성근은 회로망함수[식 (21.13)]의 분모=0의 근과 일치함을 볼 수 있다.

또 식 (21.16)으로부터

$$We^{st} = H(s) Ve^{st} (21.18)$$

말로 표현하면 s 영역에서

실시간 함수로서의 강제응답은

$$w(t) = Im[We^{st}] = Im[H(s)Ve^{st}]$$

로서 구해진다.

주의할 것은 미방 (21.14)에서 전원함수가 임의의 시간함수라도 무방하지만

회로망함수의 정의에서는 e^{st} 형식의 전원함수를 가정한다는 것이다[이 제한은 전원함수 및 강제응답의 라플라스변환(제 23 장)을 생각하면 불필요하다].

식 (21.12), (21.13)에서 보듯이 회로망함수는 전원의 복소주파수 s의 유리함수가 되며 그 분모, 분자의 계수는 회로상수에 의해서 정해지는 실수이다——이 것은 일반적으로 성립되는 사실이다.

즉, 일반적으로 회로망함수를 H(s)라 할 때

$$H(s) = \frac{a_m s^m + a_{m-1} s^{m-1} + \dots + a_1 s + a_0}{s^n + b_{n-1} s^{n-1} + \dots + b_1 s + b_0}$$
(21.20)

여기서 이미턴스함수에 대해서는 $m \le n+1$, 전달함수에 대해서는 $m \le n$ 이라는 것이 알려져 있다. 분모=0의 근을 그 회로망함수의 극(pole)이라고 하며 분자=0의 근을 **영점**(zero)이라고 한다. 예컨대 식 (21.16)에서 전달함수의 분모를 D(s)라 하면 식 (21.14)의 특성방정식은 D(s)=0이 되고, 그 근이 곧 회로의 특성근(자연주파수라고 한다)이다. 따라서 <u>회로망함수의 극은 특성근와 같은</u> 것이다. 극과 영점은 일정계수를 제외하고는 회로망함수를 완전히 규정한다.

극과 영점은 전원의 복소주파수 s의 특수한 값으로서 기하학적으로 하나의 복소평면 — 복소주파수평면 또는 단순히 s 평면이라고 한다 — 위에 표시한다. 이때 극은 \times , 영점은 \bigcirc 로서 그 위치를 명시한다. 그림 21.9 (c)에는 전달함수의 극과 영점을 s 평면상에 표시하였다. 이와 같은 표시를 극-영점도(pole-zero diagram)라고 한다.

상술한 바와 같이 선형회로를 기술하는 미방의 특성근(자연주파수)은 대응하는 회로망함수의 극과 일치한다. 이것은 일반적인 사실로서 자연응답은 회로망함수의 극을 알면 구할 수 있다. 즉, 극이 s_1, s_2, \cdots 이면 자연응답은 일반적으로 $K_1e^{s_1t}+K_2e^{s_2t}+\cdots$ 와 같이 된다. 또 회로망함수의 극-영점도로부터 기하학적으로 그 함수의 주파수응답의 개형을 쉽게 그릴 수 있는데, 이것은 다음 절에서 자세히 고찰한다.

예제 21 3

그림 21.10 (a)의 회로에서 i_q 는 e^{st} 의 형식을 갖는 전원이다.

- (a) 전달전류비 I/I_g 를 구하고 극-영점도를 그려라. 단, I_g , I는 각각 i_g , i의 복소진폭이다.
- (b) i에 관한 미분방정식을 써라.

- (c) $i_q = 2e^{-5t}$ A일 때 i의 강제응답 i_f 를 구하라.
- (d) i의 완전응답의 형식을 써라.

그림 21.10 예제 21.3의 회로

풀 이

(a) 그림 21.10 (b)의 변환회로에서 병렬회로에서의 전류분배의 법칙을 이용하여

$$I = I_g \frac{s/4}{1 + s/4 + 1/(4 + 2s)} = I_g \frac{s(s+2)}{s^2 + 6s + 10}$$

$$\therefore \frac{I}{I_g} = \frac{s(s+2)}{s^2 + 6s + 10}$$
(21.21)

극은 $-3\pm j1$, 영점은 0, -2. 따라서 극-영점도는 그림 (c)와 같다.

(b) 식 (21.21)로부터

$$\frac{d^{2}i}{dt^{2}} + 6\frac{di}{dt} + 10i = \frac{d^{2}i_{g}}{dt^{2}} + 2\frac{di_{g}}{dt}$$

(c) $I_q = 2/0^{\circ}$ A, s = -5이므로 식 (21.21)로부터

$$I = \frac{s(s+2)}{s^2 + 6s + 10} \Big|_{s=-5} \times 2\underline{/0^{\circ}} = 6\underline{/0^{\circ}}$$

$$\therefore$$
 강제응답 $i_f = 6e^{-5t}$ A

21.5 극-영점과 주파수응답

제 6 장에서 우리는 특히 공진회로의 주파수응답에 대해서 많이 배웠다. 이것은 사인파전원으로 구동되는 정상상태의 회로에서 전원의 주파수가 0에서 ∞ 까지 변할 때(0폭은 일정) 다른 페이저의 크기와 상대적 위상각이 어떻게 변하는가 하는 것이었다. 회로망함수 H(s)에서 s는 전원의 복소주파수이고, 특히 사

그림 21.11 R-C 회로의 전압전달비의 주파수특성

인파 정상상태의 경우에는 $s=j\omega$ 라 놓으면 되므로 주파수응답은 다음과 같이 구하면 될 것이다.

주화수응답
$$H(s)|_{s=j\omega} = H(j\omega) = |H(j\omega)|/H(j\omega)$$
의 각 (21.23)

 ω 의 여러 값에 대하여 일일이 크기와 각을 계산하는 대신 이하에서 우리는 H(s)의 극-영점도를 이용하여 기하학적으로 대체적인 응답을 손쉽게 구하는 방법을 배운다.

1. 우선 간단한 예로서 그림 21.11 (a)의 회로에서 전압전달비 V_2/V_1 의 주파수응답을 생각하자.

$$H(s) = \frac{\frac{1}{sC}}{R + \frac{1}{sC}} = \frac{1}{RC} \frac{1}{\left(s + \frac{1}{RC}\right)}$$
이므로
$$H(j\omega) = \frac{1}{RC} \frac{1}{(j\omega - s_1)}, \quad 단 s_1 = -\frac{1}{RC} : H(s) 의 극$$
(21.24)

와 같이 표현하면 $j\omega-s_1$ 은 그림 (b)에서 보듯이 극 s_1 에서 원점에 이르는 벡터 $-s_1$ 과 원점에서 고려하는 ω 에 대응하는 허축상의 일점 $j\omega$ 에 이르는 벡터를 합한 것이므로, $|j\omega-s_1|$ 는 이 벡터의 길이 M과 같고 $j\omega-s_1$ 의 각은 이 벡터가

점 s_1 에서 양의 방향의 실축과 이루는 각 θ 와 같다. 따라서

$$|\mathbf{H}(j\omega)| = \frac{1}{RC} \frac{1}{M}, \qquad \mathbf{H}(j\omega) \stackrel{\text{def}}{=} 2 \stackrel{\text{def}}{=} -\theta$$
 (21.25)

 ω 가 0에서 ∞ 까지 변하는 동안 이 두 양이 어떻게 변하는가를 그림 (b)에서 살펴보자. ω 가 커짐에 따라 M과 θ 는 계속 증가한다. 특히

$$\begin{split} &\omega=0 & : \quad M=\frac{1}{RC}, & \theta=0 \ (\phi=0) \\ &\omega=\frac{1}{RC} \ : \quad M=\sqrt{2}\,\frac{1}{RC}, & \theta=45^\circ \ (\phi=-45^\circ) \\ &\omega=\infty \quad : \quad M=\infty, & \theta=90^\circ \ (\phi=-90^\circ) \end{split}$$

따라서 그림 21.11의 (c), (d)와 같은 대체적인 주파수응답을 그릴 수 있고, 이회로가 저역통과의 특성을 가짐을 쉽게 알 수 있다. (이것은 14.1절에서 얻은 결과와 일치한다)

2. 좀더 복잡한 예로서 그림 21.12 (a)의 회로의 주파수특성 $|V_2/V_1(j\omega)|$ 를 구해 보자.

$$H(s) = \frac{V_2}{V_1} = \frac{Z}{R+Z} = \frac{1}{RY+1} = \frac{1}{\frac{1}{2}\left(s + \frac{26}{s}\right) + 1}$$
$$= \frac{2s}{s^2 + 2s + 26} = \frac{2s}{(s+1-i5)(s+1+i5)}$$
(21.26)

그림 21.12
$$Z(s) = \frac{2s}{s^2 + 2s + 26}$$
의 주파수특성

예컨대 $\omega = 3$ 인 경우 그림 (b)를 참고로

$$H(j3) = 2 \frac{j3}{(j3 - s_1)(j3 - s_2)} = 2 \frac{M_1 / \theta_1}{M_2 M_3 / \theta_2 + \theta_3}$$

$$= 2 \frac{M_1}{M_2 M_3} \phi, \quad \phi = \theta_1 - (\theta_2 + \theta_3)$$
(21.28)

|H|의 주파수특성만 고려하자.

$$M_1$$
= 3, $M_2\simeq 2.2$ (정확하게는 $\sqrt{1^2+2^2}=2.236$), $M_3\simeq 8$
 : $|\pmb{H}(j3)|\simeq 2\frac{3}{2.2\times 8}\simeq 0.34$

따라서 그림 (c)에서 $\omega=3$ 에 대응하는 응답곡선상의 점을 얻는다. ω 의 여러 값에 대하여 위의 계산을 되풀이하면 되겠으나, 이 방법의 이점이 여기에 있는 것이 아니라, 극과 영점의 위치로부터 <u>대체로의</u> 응답곡선을 쉽게 그릴 수 있다는 데 있다.

먼저 진폭응답곡선부터 생각하자. $\omega=0$ 에서 $M_1=$ 최소, $M_2=M_3$ 이다. ω 의 증가에 따라 $M_1\nearrow$, $M_2\searrow$, $M_3\nearrow$, 그러나 $|\pmb{H}|=2\frac{M_1}{M_2M_3}$ 에 미치는 영향은 M_2 의 변화가 지배적이므로 $|\pmb{H}|\nearrow$. ω 가 증가하여 허수축 위에서 s_1 점 부근, 즉 $\omega=5$ 를 지날 때 $M_2=$ 최소, $|\pmb{H}|\simeq$ 최대. 이 점을 지난 후부터는 $M_2\nearrow$ 의 영향이가장 커서 $|\pmb{H}|$ 는 계속 \searrow . $\omega\to\infty$ 에 따라 $M_1\simeq M_2\simeq M_3\to\infty$, 따라서 $|\pmb{H}|\to 0$. 그러므로 결국 진폭응답곡선은 그림 21.12 (c)와 같이 된다. 특히 $\omega=0$, $\omega=5$ 에서의 $|\pmb{H}|$ 의 값에 관심이 있을 것이므로 위의 기하학적 방법으로 구해 보면 각각 0, 약 1이 된다. 피크를 지난 또 하나의 점, 예컨대 $\omega=10$ 에 대한 응답을 위와 같은 약산으로 구한다면 $\left(\simeq 2 \cdot \frac{10}{5\times 15} \simeq 0.27\right)$ 상당히 정확한 곡선이 얻어지게 된다. 이 곡선으로부터 식 (21.26)이 대역통과특성을 가짐을 알 수 있다.

극 $\underline{s_1}$ 이 허축에 가까울수록 $\omega=5$ 에서의 M_2 가 작아지고 따라서 $|\pmb{H}|$ 의 피크가 커진다. 이것은 이 공진회로의 Q가 크다는 것을 의미한다. [참고로 식 (21.26) 의 Q는 식 (20.16)으로부터 $\sqrt{26}/2\simeq 2.55$]

연/습/문/제

- **21.1** i(t)가 다음과 같이 주어졌을 때 복소진폭 I와 복소주파수 s를 구하라.
 - (a) i(t) = 5 A(DC)
- (b) $i(t) = 5e^{-3t}$
- (c) $i(t) = 5\sin\left(4t \frac{\pi}{3}\right)$
- (d) $i(t) = 5e^{-3t} \sin(4t 60^{\circ})$
- **21.2** 복소진폭 V와 복소주파수 s가 다음과 같이 주어졌을 때 대응되는 시간함수 v(t)를 구하라.
 - (a) $V = 10/0^{\circ}, s = -5$
- (b) $V = 4/-20^{\circ}$, s = j5
- (c) $V = 4/\pi/3$, s = -3+j5 (d) V = j5, s = j5
- **21.3** $R=1\Omega$, C=2F의 병렬회로에 전류전원 $i=\mathbf{L}e^{st}$ 를 인가할 때 강제응답 $i_{\mathcal{C}}(t)\,(\mathit{C}$ 를 흐르는 전류)의 표시식을 써라. 이 결과를 이용하여 i가 각각 위 문제 21.1과 같을 때의 $i_C(t)$ 를 구하라.
- 21.4 그림 p 21.4의 회로가 주어졌을 때
 - (a) s 영역에서 변환회로를 그려라.
 - (b) 이것을 이용하여 회로망함수 I_L/V 및 V_C/V 를 구하라. 두 함수의 극이 동일한가?

- **21.5** 위 문제 21.4의 결과를 이용하여 그림 p 21.4에서
 - (a) 사인파 정상상태에서의 입력어드미턴스 $m{Y}_{
 m in}(j\omega) = rac{m{I}_L(j\omega)}{m{V}(j\omega)}$ 를 구하라.
 - (b) 특히 $v(t) = Ve^{-2t}$ V 및 $v(t) = V\sin 2t$ V일 때의 v_C 의 강제응답을 구하라.
- 21.6 그림 p 21.6의 회로에서
 - (a) 자연주파수를 회로망함수, 특히 입력어드미턴스 함수로부터 구하라.
 - (b) 이 회로의 자연응답을 구하라.

- (c) $v = 2e^{-t}$ 일 때의 i의 강제응답을 구하라.
- (d) (b), (c)의 결과를 이용하여 $v = 2e^{-t}$ 일 때의 i의 완전응답의 형식을 써라.
- **21.7** 그림 p 21.7의 회로에서
 - (a) 전압전달비 $H(s) = V_2/V_1$ 를 구하고 복소주파수평면에 극과 영점을 표시하라.
 - (b) 국-영점도를 이용하여 $H(j\omega)$ 의 주파수응답곡선의 개형을 그려라.
- **21.8** 위 문제 21.6에서 구한 Y(s)에 대하여
 - (a) 복소주파수 평면에 극과 영점을 표시하라.
 - (b) 국-영점도를 이용하여 $Y(j\omega)$ 의 주파수응답곡선의 개형을 그려라.
- **21.9** 그림 p 21.9와 같은 극과 영점을 갖는 전달함수를 쓰고 21.5절의 방법에 따라 그 주파수응답곡선의 개형을 그려라.

(힌트 : 실수극에 의한 주파수특성과 영점 및 복소극에 의한 주파수특성으로 나누어 생각하는 것이 쉽다)

