DA2

March 11, 2025

1 Name: Tufan Kundu

2 Reg no: 24MDT0184

- 3 DA2
- 4 PCA on Iris Dataset
- 4.0.1 Importing the necessary libraries

```
[2]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  from sklearn.decomposition import PCA
  from sklearn.preprocessing import StandardScaler
  from sklearn.datasets import load_iris
```

4.0.2 Loading the dataset

```
[3]: iris = load_iris()
  iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)
  iris_labels = iris.target
```

4.1 Scaling the dataset

```
[4]: # Standardize the dataset
scaler = StandardScaler()
iris_scaled = scaler.fit_transform(iris_df)
```

4.2 performing PCA

```
[5]: # Perform PCA with all components
pca_iris = PCA(n_components=4)
iris_pca_transformed = pca_iris.fit_transform(iris_scaled)
```

```
[9]: # Variance explained
iris_explained_variance = pca_iris.explained_variance_ratio_
print(iris_explained_variance)
iris_cumulative_variance = np.cumsum(iris_explained_variance)
print("Explained variance ratio for 4 components:")
print(iris_cumulative_variance)

[0.72962445 0.22850762 0.03668922 0.00517871]
Explained variance ratio for 4 components:
```

]

4.3 Scree plot to determine optimal components

[0.72962445 0.95813207 0.99482129 1.

```
plt.figure(figsize=(8, 5))
plt.plot(range(1, 5), iris_cumulative_variance, marker='o', linestyle='--',u
color='b')
plt.xlabel('Number of Principal Components')
plt.ylabel('Cumulative Explained Variance')
plt.title('Scree Plot for Iris Dataset')
plt.grid()
plt.show()
```


4.4 Finding the optimal number of components

```
[11]: # Determine optimal number of components (threshold ~95% variance)
    optimal_iris_components = np.argmax(iris_cumulative_variance >= 0.95) + 1
    print(f"Optimal Number of Components for Iris: {optimal_iris_components}")
```

Optimal Number of Components for Iris: 2

4.5 Performing PCA with optimal components

Explained Variance by 2 Principal Components: [0.72962445 0.22850762] Total Explained Variance: 0.9581320720000164

4.6 Conclusions and Interpretations:

- Scree Plot Result: The first 2 components explain $\sim 95\%$ of the variance.
- Optimal Components Chosen: 2
- Visualization: 2D PCA Scatter Plot
- The PCA scatter plot clearly separates the three species.
- PCA effectively reduces the dataset from 4D to 2D while retaining meaningful class separability.

5 PCA on wine dataset

```
[29]: from sklearn.datasets import load_wine
```

5.1 loading the dataset

```
[16]: wine = load_wine()
  wine_df = pd.DataFrame(wine.data, columns=wine.feature_names)
  wine_labels = wine.target
```

5.2 Standardizing the dataset

0.4

ż

4

```
[18]: scaler = StandardScaler()
      wine_scaled = scaler.fit_transform(wine_df)
[19]: # Perform PCA with all components
      pca_wine = PCA(n_components=13)
      wine_pca_transformed = pca_wine.fit_transform(wine_scaled)
[20]: # Explained variance analysis
      wine_explained_variance = pca_wine.explained_variance_ratio_
      wine_cumulative_variance = np.cumsum(wine_explained_variance)
[21]: # Scree plot to determine optimal components
      plt.figure(figsize=(8, 5))
      plt.plot(range(1, 14), wine_cumulative_variance, marker='o', linestyle='--',

color='r')

      plt.xlabel('Number of Principal Components')
      plt.ylabel('Cumulative Explained Variance')
      plt.title('Scree Plot for Wine Dataset')
      plt.grid()
      plt.show()
```


Scree Plot for Wine Dataset

6

8

Number of Principal Components

10

12

```
[22]: # Determine optimal number of components (threshold ~95% variance)
  optimal_wine_components = np.argmax(wine_cumulative_variance >= 0.95) + 1
  print(f"Optimal Number of Components for Wine: {optimal_wine_components}")
```

Optimal Number of Components for Wine: 10

```
[23]: # Perform PCA again with the optimal number of components

pca_wine_optimal = PCA(n_components=optimal_wine_components)

wine_pca_final = pca_wine_optimal.fit_transform(wine_scaled)
```

```
[24]: # Print explained variance

print(f"Explained Variance by {optimal_wine_components} Principal Components:",

pca_wine_optimal.explained_variance_ratio_)

print(f"Total Explained Variance: {sum(pca_wine_optimal.

pexplained_variance_ratio_)}\n")
```

```
Explained Variance by 10 Principal Components: [0.36198848 0.1920749 0.11123631 0.0706903 0.06563294 0.04935823 0.04238679 0.02680749 0.02222153 0.01930019]
Total Explained Variance: 0.9616971684450641
```

5.2.1 Since we can't plot with 10 components so we perform PCA with 2 components, check how much variance it can explain and plot a scatter plot

```
[27]: # Perform PCA with 2 components
pca_wine_2 = PCA(n_components=2)
wine_pca_2_transformed = pca_wine_2.fit_transform(wine_scaled)

explained_variance_2 = pca_wine_2.explained_variance_ratio_
total_variance_2 = sum(explained_variance_2)

print(f"Variance explained by the first 2 components: {explained_variance_2}")
print(f"Total variance explained by 2 components: {total_variance_2:.4f}")
```

Variance explained by the first 2 components: [0.36198848 0.1920749] Total variance explained by 2 components: 0.5541

5.3 Only 55.4% of total variance is explained by the 2 components, which is not effective

```
plt.figure(figsize=(8, 5))
sns.scatterplot(x=wine_pca_2_transformed[:, 0], y=wine_pca_2_transformed[:, 1],
hue=wine_labels, palette="coolwarm")
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.title(f"PCA (2 Components) of Wine Dataset\nTotal Variance Retained:

4{total_variance_2:.2%}")
```

```
plt.legend(title="Wine Class")
plt.grid()
plt.show()
```

PCA (2 Components) of Wine Dataset Total Variance Retained: 55.41%

5.4 Conclusion and interpretations:

- The scree plot analysis showed that 10 principal components retain ~95% of the variance.
- This means reducing the dataset from 13D to 10D preserves most of the information.
- PCA with Only 2 Components
 - Explained variance of the first 2 components: ~55.41%.
 - This means 44.59% of the information is lost, which could impact classification performance.
- Scatter Plot Insights (PCA with 2 Components)
 - The scatter plot shows some separation among the three wine classes.
 - However, overlapping is visible, indicating that two components are not sufficient for perfect class separability.
- The original dataset had 13 features, and reducing to 2 components loses important discriminatory features.

6 PCA on Breast Cancer Dataset

[30]: from sklearn.datasets import load_breast_cancer

6.0.1 Loading the dataset

```
[34]: cancer = load_breast_cancer()
  cancer_df = pd.DataFrame(cancer.data, columns=cancer.feature_names)
  cancer_labels = cancer.target # 0 = Malignant, 1 = Benign
  cancer_df
```

	cancer_df												
[34]:		mean	radius	mean	textu	re	mean	perimet	er	mean area	mean	smoothness	\
	0		17.99		10.3	38		122.	.80	1001.0		0.11840	
	1		20.57		17.	77		132.	90	1326.0		0.08474	
	2		19.69		21.	25		130.	.00	1203.0		0.10960	
	3		11.42		20.	38		77.	58	386.1		0.14250	
	4		20.29		14.	34		135.	.10	1297.0		0.10030	
			•••							•••			
	564		21.56		22.	39		142.	.00	1479.0		0.11100	
	565		20.13		28.	25		131.	20	1261.0		0.09780	
	566		16.60		28.	80		108.	.30	858.1		0.08455	
	567		20.60		29.3	33		140.	.10	1265.0		0.11780	
	568		7.76		24.	54		47.	92	181.0		0.05263	
		mean	compact	ness	mean	con	cavitv	mean	con	cave points	mear	symmetry	\
	0	mouri	_	27760	moun		.30010		0011	0.14710	moun	0.2419	`
	1			7864			.08690			0.07017		0.1812	
	2			5990			.19740			0.12790		0.2069	
	3			28390			.24140			0.10520		0.2597	
	4			3280			.19800			0.10430		0.1809	
				•••			•••			•••		•••	
	564		0.1	1590		0	.24390			0.13890		0.1726	
	565		0.1	0340		0	.14400			0.09791		0.1752	
	566		0.1	10230		0	.09251			0.05302		0.1590	
	567		0.2	27700		0	.35140			0.15200		0.2397	
	568		0.0)4362		0	.00000			0.00000		0.1587	
			£+ - 7					44			. \		
	0	mean	fractal		1810n 07871		worst	radius		orst texture			
	1				05667			24.990		23.41			
	2				05999			23.570		25.53			
	3				09744			14.910		26.50			
	4				05883			22.540		16.67			
				• • • • • • • • • • • • • • • • • • • •		•••			•				
	564			0.0	 05623			25.450)	26.40)		
	565				05533			23.690		38.25			
						-							

566 567 568		0.05648 0.07016 0.05884	18.980 25.740 9.456	34.12 39.42 30.37	
0 1 2 3 4 564 565 566 567 568	worst perimeter 184.60 158.80 152.50 98.87 152.20 166.10 155.00 126.70 184.60 59.16	2019.0 1956.0 1709.0 567.7 1575.0 2027.0 1731.0 1124.0 1821.0	worst smoothness 0.16220 0.12380 0.14440 0.20980 0.13740 0.14100 0.11660 0.11390 0.16500 0.08996)))	0.66560 0.18660 0.42450 0.86630 0.20500 0.21130 0.19220 0.30940 0.86810 0.06444
0 1 2 3 4	worst concavity 0.7119 0.2416 0.4504 0.6869 0.4000		ve points worst 0.2654 0.1860 0.2430 0.2575 0.1625	symmetry 0.4601 0.2750 0.3613 0.6638 0.2364	
564 565 566 567 568	0.4107 0.3215 0.3403 0.9387 0.0000		0.2216 0.1628 0.1418 0.2650 0.0000	0.2060 0.2572 0.2218 0.4087 0.2871	
0 1 2 3 4	worst fractal d	imension 0.11890 0.08902 0.08758 0.17300 0.07678			
564 565 566 567 568		0.07115 0.06637 0.07820 0.12400 0.07039			

[569 rows x 30 columns]

6.1 Standardizing the dataset

```
[33]: scaler = StandardScaler()
      cancer_scaled = scaler.fit_transform(cancer_df)
[35]: # Perform PCA with all components
      pca_cancer = PCA(n_components=cancer_df.shape[1])
      cancer_pca_transformed = pca_cancer.fit_transform(cancer_scaled)
[40]: # Explained variance analysis
      cancer_explained_variance = pca_cancer.explained_variance_ratio_
      cancer_cumulative_variance = np.cumsum(cancer_explained_variance)
[41]: # Scree plot to determine optimal components
      plt.figure(figsize=(8, 5))
      plt.plot(range(1, cancer_df.shape[1] + 1), cancer_cumulative_variance,__
       →marker='o', linestyle='--', color='g')
      plt.xlabel('Number of Principal Components')
      plt.ylabel('Cumulative Explained Variance')
      plt.title('Scree Plot for Breast Cancer Dataset')
      plt.grid()
      plt.show()
```



```
[42]: # Determine optimal number of components (threshold ~95% variance)
optimal_cancer_components = np.argmax(cancer_cumulative_variance >= 0.95) + 1
print(f"Optimal Number of Components for Breast Cancer:
Goptimal_cancer_components}")
```

Optimal Number of Components for Breast Cancer: 10

6.2 Performing PCA with 2 components

```
[43]: pca_cancer_2 = PCA(n_components=2)
    cancer_pca_2_transformed = pca_cancer_2.fit_transform(cancer_scaled)

# Get explained variance
    explained_variance_2 = pca_cancer_2.explained_variance_ratio_
    total_variance_2 = sum(explained_variance_2)

print(f"Variance explained by the first 2 components: {explained_variance_2}")
    print(f"Total variance explained by 2 components: {total_variance_2:.4f}")
```

Variance explained by the first 2 components: [0.44272026 0.18971182] Total variance explained by 2 components: 0.6324

6.3 Only 63.2% of total variance is explained by the 2 components, which is not effective

6.4 Conclusions and Interpretations:

- The scree plot shows that the first 10 components retain \sim 95% of the variance.
- This means reducing the dataset from 30D to 10D preserves most of the information.
- PCA with Only 2 Components
 - Explained variance of the first 2 components: $\sim 63\%$.
 - This means 37% of the information is lost, which could impact classification accuracy.
- The scatter plot shows almost clear separation with some overlapping points between malignant (0) and benign (1) tumors.