Lecture2: Diode

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Diode

- Di(2) + ode(Electrode): Two-terminal device
 - There are many two-terminal devices.
 - Voltage source: $V_1 V_2 = V$
 - Current source: $I_1 = -I_2 = I$
 - Resistor: $I = \frac{V}{R}$
 - Capacitor: $I = C \frac{dV}{dt}$
 - Inductor: $V = L \frac{dI}{dt}$
 - How about the diode?

Forward/reverse

- A diode shows a strong polarity.
 - Does a resistor have a polarity?
 - In diodes, the following two cases are completely different.
- Forward bias
 - The voltage at the n-type side is higher than the p-type one.

- Reserve bias
 - The voltage at the p-type side is lower than the n-type one.

How to realize(/fabricate) it

- PN junction
 - Results of the process simulation are shown.

IV characteristics

- In forward bias,
 - The external voltage opposes the built-in potential, raising the diffusion currents substantially.
- In reverse bias,
 - The applied voltage enhances the field, prohibiting current flow.

$$I_D = I_S \left(\exp \frac{V_D}{V_T} - 1 \right)$$

Here, the "reverse saturation current" is given by

$$I_S = Aqn_i^2 \left(\frac{D_n}{N_A L_n} + \frac{D_p}{N_D L_p} \right)$$

- L_n and L_p are electron and hole "diffusion lengths," respectively.

An example

- Determine I_S .
 - The cross section of 100 μm²
 - L_n and L_p are 20 µm and 30 µm, respectively.
 - L_n and L_p are 20 µm and 30 µm, respectively.
- When $I_S = 1.77 \times 10^{-17} \text{ A}$,
 - Determine the forward bias current.
 - For $V_D = 300 \text{ mV}$, $I_S \left(\exp \frac{V_D}{V_T} 1 \right) = 3.63 \text{ pA}$
 - For $V_D = 800$ mV, 820 μ A

60 mV/dec, what is it?

- Calculate $V_T \ln 10$ at 300K.
 - Approximately 60 mV

GIST Lecture on March 7, 2018 (Internal use only)

A simple math

- An input voltage, $V_{in}(t) = \sin \omega t$
- A system

Another system

$$V_{in} \longrightarrow V_{out} = V_{in}^2 \longrightarrow V_{out}$$

Which is nonlinear?

Diode

Its symbol

Ideally, a perfect rectifier

Example 3.4

A diode-resistor combination

- Consider two cases, $V_A > 0$ and $V_A < 0$.
- ← Draw the IV curve.