7.2 用Pandas模块读写常见格式文件

•

- Python的模块函数分三个层次:
- 一.内置函数
- 不用import语句引入,它里面的函数可直接调用。
- 二.标准模块函数
- 用import语句引入后再调用,但不必安装。如math库。
- 三.第三方模块函数
- 需先安装,再用import语句引入模块后才能调用里面
- 的函数,如Pandas模块。

第三方库安装

- 打开网页: https://pypi.org/
- ◎ 输入模块名,就可查到模块的详细说明

pip命令

● c:\>pip install pandas 安装pandas模块

pip <command> [options] Commands: install Install packages. download Download packages. uninstall Uninstall packages. freeze Output installed packages in requirements format. list List installed packages. show Show information about installed packages. config Manage local and global configuration. Search PyPI for packages. search wheel Build wheels from your requirements. hash Compute hashes of package archives. A helper command used for command completion. completion help Show help for commands.

Pandas模块

- Pandas是python的一个数据分析包,
- Pandas最初被作为金融数据分析工具而开发出来,Pandas为时间序列分析 提供了很好的支持。
- Pandas是基于NumPy 的一种工具。
- Pandas 纳入了大量函数和一些标准的数据模型,提供了高效操作大型数据 集所需的工具,提供了大量能使我们快速便捷地处理数据的函数和方法,让 Python成为强大而高效的数据分析环境。

Plotly模块

- Plotly是一个基于JavaScript的动态绘图模块。Plotly的绘图效果与我们在网页上看到的动态交互式绘图结果是一样的,其默认的绘图结果是一个HTML网页文件,通过浏览器就可以查看。
- Plotly有着强大又丰富的绘图库,支持各种类型的绘图方案。
- Plotly是基于JavaScript的绘图库,所以其绘图结果可以与web应用无缝集成。
- Plotly最初是一款商业化的绘图软件,自plotly.js开源之后, 我们可以使用本地的离线模式进行绘图,不依赖于官方的 服务器,使得绘图速度更快,而效果与在线绘图一样。

DataFrame数据类型

DataFrame是Pandas库的一种数据类型。DataFrame是一个行和列都具有标签的表格,它与Excel电子表格并无不同。

DataFrame使用非常方便,当你在处理二维表格数据时,都应该使用它们。 DataFrame可由元组、列表、字典或另一个DataFrame构造出来

用列表产生DataFrame变量data

- from plotly.offline import plot
- from plotly import figure_factory as FF
- import pandas as pd
- data=pd.DataFrame([["2050921018","詹延峰","计算数学",65,85,76], ["2050921036","李小鹏","金融学类",86,95,85], ["2050921039","裴凡法","经济学类",86,95,65], ["2040912116","茅舒瑶","社会保障",90,95,100], ["2050912017","陈见影","化学工程",62,75,92], ["2050912064","梅 钦钦","材料科学",87,95,80], ["2050109153","王影平"," 大 气科学",86,89,72], ["2050151003","韩平医","化学工程",82,99,60]], columns=("学号","姓名","专业","笔试","平时","实验"))
- table = FF.create_table(data) #用plotly产生输出表格
- plot(table, show_link=False)

	锷	姳	铔	뙓	翀	雞
	2050921018	急延峰	计算数学	65	85	76
Į	2050921036	李小鹏	金融学类	86	95	85
	2050921039	裴凡法	经济学类	86	95	65
	2040912116	茅舒延	社会保障	90	95	100
	2050912017	陈见影	化学工程	62	75	92
<u>7</u>	2050912064	梅钦钦	材料科学	87	95	80
	2050109153	王影平	大气科学	86	89	72
Ĭ	2050151003	韩平医	化学工程	82	99	60

用DataFrame计算总评分

- from plotly.offline import plot
- from plotly import figure_factory as FF
- import pandas as pd
- data=pd.DataFrame([["2050921018","詹延峰","计算数学",65,85,76], ["2050921036","李小鹏","金融学类",86,95,85], ["2050921039","裴凡法","经济学类",86,95,65], ["2040912116","茅舒瑶","社会保障",90,95,100], ["2050912017","陈见影","化学工程",62,75,92], ["2050912064","梅钦钦","材料科学",87,95,80], ["2050109153","王影平","大气科学",86,89,72], ["2050151003","韩平医","化学工程",82,99,60]], columns=("学号","姓名","专业","笔试","平时","实验"))
- #data变量中增加一列
- data["总评成绩 "]=data["笔试"]*0.5+data["平时 "]*0.25+data["实验"]*0.25
- table = FF.create_table(data)
- plot(table, show_link=False)

锷	姳	铔	뙓	꽴	雞	总评成绩
2050921018	 色延峰	计算数学	65	85	76	72.75
2050921036	李小鹏	金融学类	86	95	85	88.0
2050921039	表R法	经济学类	86	95	65	83.0
2040912116	茅舒延	社会保障	90	95	100	93.75
2050912017	陈见影	化学工程	62	75	92	72.75
2050912064	梅钦钦	材料科学	87	95	80	87.25
2050109153	王影平	大气科学	86	89	72	83.25
2050151003	韩平医	化学工程	82	99	60	80.75

用pandas读写各种类型文件

o read_csv

to_csv

读写csv 文件

read_excel

to_excel

读写excel 文件

read_json

to_json

读写json 文件

读取CSV文件

- from plotly.offline import plot
- from plotly import figure_factory as FF
- import pandas as pd

- o data = pd.read_csv("score.csv",encoding="GBK")
- table = FF.create_table(data) #产生表格
- o plot(table, show_link=False)
- "GB2312"、"GBK"和"CP936"都是用两个字节表示中文的编码。"GB2312" 是国标码,"GBK"是"GB2312"的扩展,
- "CP936"是在"GB2312"基础上开发的汉字编码。

写网页文件

●产生网页文件'score.html'

- from plotly.offline import plot
- from plotly import figure_factory as FF
- import pandas as pd
- o data = pd.read_csv("score.csv",encoding="GBK")
- table = FF.create_table(data) #产生表格
- plot(table, filename='score.html',show_link=False)

读写Excel 文件

- 要装xlrd模块
- 读score.xlsx文件
- 写入scoregp.xlsx文件
- import pandas as pd
- o data = pd.read_excel("score.xlsx")
- data["总评"]=data["笔试"]*0.5+data["平时"]*0.25+data["实验"]*0.25
- o data.to_excel("scoregp.xlsx",index=0)

JSON 文件读写

- JSON文件主要有两种结构:
- "键/值"对的集合:不同的语言中,它被理解为对象,纪录,结构,字典, 哈希表,有键列表,或者关联数组。Python中对应字典类型。
- ◎ 值的有序列表:在大部分语言中,它被理解为数组。Python中对应列表类型。

to_json和read_json

- 读取Excel 文件"score.xlsx", 用to_json函数产生JSON 文件data.json, 最后用read_json读JSON 文件"data.json"
- import pandas as pd
- o data = pd.read_excel("score.xlsx")
- # force_ascii=False 有中文时不要用ASCII编码
- o data.to_json("data.json",force_ascii=False)
- jsondata=pd.read_json("data.json")
- o print(jsondata)

数据库文件读写

- example.db 是sqlite数据库 sqlalchemy模块
- from sqlalchemy import create_engine
- import pandas as pd
- from plotly import figure_factory as FF
- from plotly.offline import plot
- engine = create_engine('sqlite:///example.db')
- data=pd.read_sql('select 图书书目表.id,类别名,书名,作者
- from 图书书目表,类别表
- ◉ where 类别表.id=图书书目表.类别',engine)
- table = FF.create_table(data) #用plotly产生输出表格
- plot(table, show_link=False)

类别	id	书名	作者	价格
过滤	过滤	过滤	过滤	过滤
G	1	高中物理典型…	余建丽	¥19.80
G	2	高中语文基础…	李洪达	¥14.90
G	3	英语学习技法…	夏惠敏	¥19.80
I	4	忠诚卫士	贺梦凡、邓原	¥22.80
I	5	破晓	冀夫	¥19.00
I	6	皖南事变	黎汝清	¥32.00
R	7	健康要素	江国生	¥16.00
R	8	病理学	朗志峰	¥30.00
R	9	家庭用药手册	张晓友、董淑华	¥40.00
TP	10	数据库应用技…	黄志球、李清	¥27.00
TP	11	数据库系统及…	崔巍	¥28.40
R	12	健康快乐100岁	洪昭光	¥8.00
I	13	围城	钱钟书	¥15.20

id	类别名
过滤	过滤
G	教辅
I	文学
R	医药健康
TP	计算机技术与…

程序运行结果

id	类别名	书名	作者
1	教辅	高中物理典型错误诊疗大全	余建丽
2	教辅	高中语文基础知识大全	李洪达
3	教辅	英语学习技法大全	夏惠敏
4	文学	忠诚卫士	贺梦凡、邓原
5	文学	破晓	冀夫
6	文学	皖南事变	黎汝清
7	医药健康	健康要素	江国生
8	医药健康	病理学	朗志峰
9	医药健康	家庭用药手册	张晓友、董淑华
10	计算机技术与科学	数据库应用技术基础	黄志球、李清
11	计算机技术与科学	数据库系统及应用	崔巍
12	医药健康	健康快乐100岁	洪昭光
13	文学	围城	钱钟书

访问DataFrame元素

- import pandas as pd
- data=pd.DataFrame([["China",2000,3700,70.0],
- ["China",2001,3980,70.3],
- columns=("country","year","pppgdp","life-exp"))
- o print(data)
- print()
- print(data.iloc[0,2]) #第一行第三列,取单个元素
- print()
- print(data.iloc[1:3,2:4]) #第二,三行,第三,四列, 取多个元素
- print()
- print([name for name in data]) #由列名组成的列表

- country year ppp-gdp life-exp
- 0 China 2000 3700 70.0
- 1 China 2001 3980 70.3
- 2 China 2002 4320 70.7
- 3700
- ppp-gdp life-exp
- 1 3980 70.3
- 2 4320 70.7
- ['country', 'year', 'ppp-gdp', 'life-exp']

用Pandas作数据 整理

import pandas as pd

1	A	В	C	D	E	F	G	H
1	country	2000	2001	2002	2003	2004	2005	2006
2	China	3700	3980	4320	4720	5170	5720	6410

- o data=pd.read_excel("gdp.xlsx")
- columnname=[name for name in data] #由列名组成的列表
- #创建空的dataframe
- result=pd.DataFrame(columns=("country","year","ppp-gdp"))
- for i in range(len(columnname)-1):
- ◉ # result.loc[i]表示第i行
- result.loc[i]=[data.iloc[0,0],columnname[i+1],data.iloc[0,i+1]]

nrint	/roci	. 14
PHILL	(resu	III

pd.to_excel("ppp-gdp.xlsx")

J	K	L
country	year	ppp-gdp
China	2000	3700
China	2001	3980
China	2002	4320
China	2003	4720
China	2004	5170
China	2005	5720
China	2006	6410

表格拼接

- import pandas as pd
- o data=pd.read_excel("ppp-gdp.xlsx")
- print(data)
- o data1=pd.read_excel("life-exp.xlsx")
- o print(data1)
- data2=data1[["year","life-exp"]] #取两列
- data3=pd.merge(data,data2,on="year",how='left') #合并re
- print(data3)

0	ountry	year p	pp-gdp		countr	y year	ppp-qdp	life-exp
0	China	2000	3700	0	China	2000	3700	70.0
1	China	2001	3980	1	China	2001	3980	70.3
2	China	2002	4320	2	China	2002	4320	70.7
3	China	2003	4720	3	China	2003	4720	NaN
4	China	2004	5170	4	China	2004	5170	71.9
5	China	2005	5720	5	China	2005	5720	72.4
6	China	2006	6410	6	China	2006	6410	73.0

(country	year	lite-exp
0	China	2006	73.0
1	China	2001	70.3
2	China	2002	70.7
3	China	2004	71.9
4	China	2005	72.4
5	China	2000	70.0

hon程序设计 19

Excel电子表格合并

Excel电子表格合并程序

- import pandas as pd
- startyear=int(input())
- #人均期望寿命
- o dataset=pd.read_excel("life.xlsx")
- a=pd.DataFrame(columns=("country","li fe-exp","year"))
- for i in range(startyear,2019):
- b=dataset[['country',i]].copy()
- b['year']=i
- b.columns=['country','life-exp','year']
- c=a.append(b)
- a=c

- #人均收入,以PPP计算
- dataset=pd.read_excel("income.xlsx")
- x=pd.DataFrame(columns=("country",'i ncome',"year"))
- for i in range(startyear,2019):
- y=dataset[['country',i]].copy()
- y['year']=i
- y.columns=['country','income','year']
- z=x.append(y)
- X=Z
- o data=pd.merge(a,x)
- data.to_excel(f"{startyear}到2018人均 GDP和人均寿命.xlsx")