Introduction

•000

GB21802 - Programming Challenges Week 0 - Introduction

Claus Aranha

caranha@cs.tsukuba.ac.jp

Department of Computer Science

2015/4/10

(last updated: April 9, 2015)

What is this course about?

Course Goal

Improve programming abilities and familiarity with algorithms and techniques.

Course Method

Every week you have to solve many hard, difficult Programming Challenges

In short: Learn by Practice!

Important Notice: Languages

This course uses both English and Japanese. This year we will try the following division:

Japanese

Introduction

- Friday's Classes (Problem Review)
- Questions (Any classes)
- Mail Communication

English

- Monday Classes (Algorithm Review)
- Lecture Notes

Programming Language for Assignments

C. C++. Java and Pascal

Important Notice 2: This document

This presentation is available online on the MANABA page:

https://manaba.tsukuba.ac.jp/ct/course 427760

You can register to the course using the code:

1962775

Introduction

Resources

Outline

Two classes per week

- Each week has a theme (see Manaba Syllabus)
- Monday Class: Theme Explanation (English)
- Friday Class: Problem Solving and Q&A (Japanese)

Solving Problems

- Every week there are four programming assignments;
- · Assignments follow the weekly theme;
- Automatic Submission and Evaluation System;
- Deadline is Sunday 23:59

Outline

Introduce new concept:

- Eg: Sorting
- 4 problems related to this concept

Try to solve the problems:

- Is my algorithm correct?
- Is my algorithm efficient?
- Can I explain my algorithm?

Submit the final Version

- Automatic Robot Judge

Discuss the problems in Class

- Ask questions
- Explain your algorithm
- Exchange ideas

Short (but sometimes hard) problem involving algorithms

Components

- Problem Outline
- Example Data
- Example Result
- Hidden Data
- Judge Result

Start with an integer n. If n is even, divide by 2. If n is odd, multiply by 3 and add 1. Repeat this process with the new value of n, terminating when n = 1. For example:

22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

In the example above, the cycle length of 22 is 16. Given any two numbers i and j, you are to determine the maximum cycle length over all numbers between i and j, including both endpoints.

Short (but sometimes hard) problem involving algorithms

Components

Introduction

- Problem Outline
- Example Data
- Example Result
- Hidden Data
- Judge Result

Input

The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.

Output

For each pair of input integers i and j, output i, j in the same order in which they appeared in the input and then the maximum cycle length for integers between and including i and j.

Short (but sometimes hard) problem involving algorithms

Components

- Problem Outline
- Example Data
- Example Result
- Hidden Data
- Judge Result

Sample Input

1 10 100 200

201 210

201 210

900 1000

Sample Output

1 10 20

100 200 125

201 210 89

900 1000 174

Short (but sometimes hard) problem involving algorithms

Components

- Problem Outline
- Example Data
- Example Result
- Hidden Data
- Judge Result

Sample Input

1 10 100 200

201 210

900 1000

Sample Output

1 10 20

100 200 125

201 210 89

900 1000 174

Short (but sometimes hard) problem involving algorithms

Components

- Problem Outline
- Example Data
- Example Result
- Hidden Data
- Judge Result

Accepted

Rejected

Time Limited Exceeded (TLE)

Evaluation and Grading (1)

Evaluation Criteria: Problems solved and Participation

Evaluation Base

Introduction

- C: One problem per class;
- B: Two problems per class, or One problem per class and 21 problems total;
- A: Three problems per class, or One problem per class and 30 problems total;

Evaluation and Grading (2)

A Bonus or Penalty will be added to the base grade.

- Bonus: Change grade one step up (C->B, A->A+)
- Penalty: Change grade one step down (A+->A, B->C, C->C

Assignment System

Bonus: Grade Up

Good participation in class and good Comments in code.

Penalty: Grade Down

More than 8 late problems.

How to submit problems – 1

Problem submission and evaluation will be done throught the Programming Challenges website.

Access it at

http://www.programming-challenges.com/

Resources

How to submit problems – 2

- Make an account at http://www.programming-challenges.com;
- Send your ID to me:
 - Manaba Form or
 - e-mail (caranha@cs.tsukuba.ac.jp) send your student number, name and ID
- You will be added to the classroom Tsukuba Programming Challenges 2015:

How to submit problems – 3

- Click "Joined Classrooms", select Tsukuba Programming Challenges 2015;
- 6 Click the name of the problem for a description, then "Submit" to send your code.
- 6 Choose the language; upload a file or paste your code.

000 00000

How to submit problems – 4

Some notes about writing programs:

Input and Output

Input comes from the STDIN, output comes from the STDOUT.

Good Comment

```
/**
```

Introduction

- * I used quicksort to solve this problem.
- \star I sorted the age of the persons in the input.
- * To make it faster, people with the same age were
- * removed from the data.

*/

Bad Comment

```
/**
```

- * Quicksort.
- */

How to submit problems – 5

A warning about Java

Introduction

- Very high number of runtime problems beware!
- Main class MUST be named "Main"
- Read the example code at:

http://www.programming-challenges.com/pg. php?page=javainfo

Accepted

Congratulations!

Wrong Answei

Is your answer EXACTLY the same as expected?

Assignment System

Check worst-case scenarios!

Time Limited Exceeded

You need a more efficient algorithm.

Compilation Error, Runtime Error

Check your Code!

Very Important!

The assignments are individual. Use your own strength to solve the programs.

- Do not copy solutions from the internet;
- Do not copy solutions from your friends;
- It is okay to use for ideas from others or online;
- If you use an idea from someone else, make sure to give proper attribution in the program comments

Plagiarism leads to course failure

Resources

Useful Links

Introduction

• Manaba:

https://manaba.tsukuba.ac.jp/ct/course_427760

Manaba Code: 1962775

- Lecture Notes: https://github.com/caranha/ ProgrammingChallengesLectureNotes Feel free to fork/pull!
- Professor Page:

http://conclave.cs.tsukuba.ac.jp/?page_id=128
Lecture notes and Announcements (please use manaba)

Submission System:

http://www.programming-challenges.com/pg.php?page=showclassroom&classid=1474

Reference Books

- "Programming Challenges", Steven S. Skiena, Miguel A. Revilla
- "Competitive Programming"
- "Ant Book"

(I will add more information in manaba page later)

Contact Information

• E-mail: caranha@cs.tsukuba.ac.jp

• twitter: caranha

Feel free to contact me in English or Japanese!