学院专业_	班	年级	学号	姓名	共4页	第 1 页

2017年工程硕士考试试卷

《工程数学基础》(共4页)

(考试时间: 2018年 1月 14日)

题号	1	1 1	111	四	五	六	七	八	九	+	成绩
得分											

一、判断题(每小题1分,共8分)

- 1、由全体无理数构成的集合P是可数的.
- 2、设 $A \in \mathbb{C}^{n \times n}$,且 $f(\lambda) = \det(\lambda E A)$,则f(A) = O.
- 3、若 $A \in \mathbb{R}^{n \times n}$ 严格对角占优,则求解线性方程组 Ax = b 的 Jacobi 迭代格式收敛.
- 4、 $\forall A \in \mathbb{C}^{n \times n}, x \in \mathbb{C}^n$,若 A 可逆且 $x \neq 0$,则 $x^H A^H Ax > 0$.
- 5、在赋范线性空间中,绝对收敛的级数一定是收敛的.
- 6、设 $A \in \mathbb{C}^{n \times n}$,则 $(e^A)^{-1} = e^{A^{-1}}$.
- 7、若 A 是酉矩阵,则 A 的特征值只能为 1 或者-1.
- 8、n+1个求积节点的插值型求积公式的代数精度m满足不等式 $n \le m \le 2n+1$.

二、填空题(每小题2分,共12分)

- 1、设 $x = (i,-1,1-i)^T \in \mathbb{C}^3$,则 $\|x\|_2 = \underline{\hspace{1cm}}$.
- 3、设 $A(t) = \begin{bmatrix} t^2 & e^t \\ \sin t & t \end{bmatrix}$,则 $\int_0^1 A(t) dt = \underline{\qquad}$

4、设 $\{l_k(x)\}_{k=0}^n$ 是[a,b]上的以 $a \le x_0 < x_1 < \cdots < x_n \le b$ 为节点的 Lagrange 插值基函数,则

$$\sum_{k=0}^{n} l_k(x) = \underline{\qquad}.$$

$$\begin{bmatrix} & & 1 \\ & & 3 \end{bmatrix} \in \mathbb{C}^{n \times n}, \ \text{则 cond}_{\infty} A = \underline{\qquad}.$$

[] 三、(10分)设
$$A = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 0 & -5 \\ 0 & 1 & 4 \end{bmatrix}$$
, (1) 求 $\lambda E - A$ 的初等因子组; (2) 求 A 的 Jordan 标准形 J .

 年级______学号

共4页 第2页

四、**(12 分)**设 $A = \begin{bmatrix} 7 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 7 & 4 \end{bmatrix}$, (1) 求 $\lambda E - A$ 的行列式因子、不变因子;

(2) 求 $\lambda E - A$ 的 Smith 标准形; (3) 求A的有理标准形C.

五、(10 分) 写出求解线性方程组 Ax=b 的 Gauss—Seidel 迭代格式以及迭代矩阵 M ,并判断所写格式的收敛性,其中

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 0 \\ 3 & 0 & 9 \end{bmatrix}, \quad b = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}.$$

姓名

天津大学试卷专用纸

六、(12分) 已知函数 y = f(x)的数值表如下

х	2.1	2.2	2.3	2.4	2.5
У	0.86321	0.80850	0.74571	0.67546	0.59847

七、(13 分)设 $A = \begin{bmatrix} 3 & 0 & 6 \\ 1 & 5 & 6 \\ 0 & 0 & 9 \end{bmatrix}$,求(1)矩阵A的最小多项式 $\varphi(\lambda)$;(2)方阵函数 e^{At} .

用三次插值多项式求 f(2.24) 的近似值(计算过程与结果均保留至小数点后第 5 位).

天津大学试卷专用纸

学院专业	班	年级	学号		共 4 页 第 4 页
------	---	----	----	--	-------------

八、(10 分)用 Romberg 算法求积分 $\int_0^1 \frac{1}{1+x^2} dx$ 的近似值,并将计算结果列于下表(数据保留 十、证明题(5 分) 在线性空间 \mathbf{R}^n 中,对于 $x = (x_1, x_2, \dots, x_n) \in \mathbf{R}^n$ 定义

至小数点后第6位).

k	T_{2^k}	S_{2^k}	C_{2^k}	R_{2^k}
0				
1				
2				
3				
4				

九、计算题 (8分) 设
$$A = \begin{bmatrix} i & 0 & -4 \\ 1-i & 2i & 3+4i \\ 6 & 0 & -i \end{bmatrix}$$
, 求 $\|A\|_F$, $\|A\|_I$, $\|A\|_\infty$, $\rho(A)$.

 $||x||_1 = \sum_{i=1}^n |x_i|, ||x||_{\infty} = \max_{1 \le i \le n} |x_i|.$

证明: $\|x\|_1$ 和 $\|x\|_\infty$ 是 \mathbf{R}^n 上的范数.