30,29

	J 12 4
(a);	First the pointwise argument; we see that
	for $0 \le x < \frac{\pi}{2}$, $s(n(x) < 1 \Rightarrow \lim_{n \to \infty} s(n^n(x) = 0)$
	thus the paintwiselimit is f(x) = 0. We can prove uniform convergence
	by showing that for n> Son e No we can make
	sin'(X) < som given E,
	To do this, we let Ma, a term grea we desire to be greater than
	To do this, we let Ma, a term great we desire to be greater the since AC OCMCL then
	$\lim_{n\to\infty} M^n = 0$
	We see that since let chaose some N such that
	n >N >> m ⁿ < E
	we have that
	Sin(x) < Sin(9) by line being strictly increasing on [0,17/2]
	then by making Marge proughy we can have that
	$S'in^n(X) < M^n = Sin^n(a) < \in$.

This argument of course does not apply for the range [0, #(2), since the pointwise limit jumps up discontinuasly at T/Z to 1, thus sinks) is not convergent uniformly at T/Z when we include ITT/Z.