Листок 3

Листок можно сдать только целиком за один раз, при этом перед сдачей листка студент должен объявить номера задач, которые он умеет решать. (Каждый пункт оценивается отдельно, пункт со звездочкой считается с удвоенным весом. Задачи, успешно рассказанные у доски на семинаре, объявлять не надо, их отметит преподаватель семинара.) Сдача листка состоит в рассказе решений некоторых задач из этого списка на выбор преподавателя — листок считается сданным, если все решения рассказаны верно. Повторная попытка сдачи листка возможна, но не ранее, чем

на следующий день. Оценка за листок вычисляется по числу X объявленных задач по формуле X+4-2N+3k. Здесь N – номер недели, когда происходит сдача листка, k - количество рассказанных у доски на семинаре задач.

ВАЖНО: Задавайте вопросы преподавателям! Спрашивайте обо всем, в чем не уверены! На количество вопросов до сдачи листка нет ограничений.

Задача 1. Какие из приведенных ниже отношений являются отношениями частичного порядка на плоскости? А какие являются отношениями линейного прядка?

```
(x,y) \leq_1 (x',y') если одновременно x \leq x' и y \leq y';
```

- $(x,y) \leq_2 (x',y')$ если выполняется хотя бы одно из неравенств $x \leq x'$ и $y \leq y'$;
- $(x,y) \leq_3 (x',y')$ если $\max(x,y) \leq \min(x',y')$;
- $(x,y) \leq_4 (x',y')$ если $x + y \leq x' + y';$
- $(x,y) \prec_5 (x',y')$ если x < x', или x = x', но y < y', или же x = x' и y = y'.

Задача 2. Сколько различных отношений частичного порядка можно ввести на множестве из трех элементов? Нарисуйте их диаграммы Хассе.

Задача 3. Приведите три примера бинарных операций, каждая из которых удовлетворяет двум перечисленным условиям и не удовлетворяет третьему. Условия: коммутативность; ассоциативность; существование нейтрального элемента.

Задача 4. Пусть R — отношение эквивалентности на множестве X. Классом эквивалентности элемента $a \in X$ называется множество $\{x \in X, xRa\}$. Покажите, что любые два класса эквивалентности либо не пересекаюся, либо совпадают, и что тем самым отношение эквивалентности R задает представление множества X в виде объединения его непересекающихся подмножеств (классов эквивалентности). Множество классов эквивалентности называется фактор-множеством и обозначается X/R. Покажите что, наоборот, любое представление множества X в виде объединения его непересекающихся подмножеств задает отношение эквивалентности на X, определяемое тем, что два элемента множества X эквивалентны тогда и только тогда, когда они лежат в одном и том же подмножестве разбиения.

Задача 5. Пусть $f: X \to Y$ некоторое отображение. Введем на X отношение R так: aRb, если f(a) = f(b). Докажите, что R является отношением эквивалентности, и установите биекцию между X/R и образом f(X) отображения f.

Задача 6. Пусть на множестве X задана бинарная операция * и отношение эквивалентности \sim . Говорят, что операция * согласована с отношением эквивалентности \sim , если из $a \sim a'$ и $b \sim b'$ следует, что $a*b \sim a'*b'$. Покажите, что тогда на фактормножестве X/\sim можно определить бинарную операцию $\bar{*}$ следующим образом: если $A \subset X$ и $B \subset X$ — два класса эквивалентности, то $A\bar{*}B$ это класс эквивалентности, содержащий a*b, где a — какой-нибудь элемент класса A, а b — какой-нибудь элемент класса B. Покажите, что если операция * была коммутативной, ассоциативной или обладала нейтральным элементом, то тем же свойством будет обладать и операция $\bar{*}$ на X/\sim . Приведите два примера таких операций.

- **Задача 7.** Зададим отношение " \sim " на $\mathbb{N} \times \mathbb{N}$ следующим образом: $(a,b) \sim (a',b')$ если a+b'=a'+b. Докажите, что это отношение эквивалентности. Опишите фактор-множество. Докажите, что операция покоординатного сложения на $\mathbb{N} \times \mathbb{N}$ согласована с этим отношением эквивалентности. Покажите, что определенная в соответствии с задачей 6 операция сложения на фактор-множестве $(\mathbb{N} \times \mathbb{N})/\sim$ коммутативна, ассоциативна, обладает нейтральным элементом, и любой класс обладает противоположным. Опишите это фактор-множество.
- Задача 8. Пусть n > 1 натуральное число. Введем на множестве \mathbb{Z} отношение сравнимости по модулю n: $x \equiv y \mod n$ если x-y делится на n. Покажите, что операции сложения и умножения на \mathbb{Z} согласованы с этим отношением эквивалентности.
- **Задача 9.** Докажите, что на \mathbb{Z}_n нельзя ввести никакого нетривиального отношения частичного порядка, с которым была бы согласована операция сложения на \mathbb{Z}_n , то есть такого, что из $a \leq b$ следует, что $a+c \leq b+c$ для любого $c \in \mathbb{Z}_n$.
- Задача 10. Введем на множестве векторов в трехмерном пространстве отношение эквивалентности следующим образом: два вектора эквивалентны, если их разность параллельна оси OZ. Докажите, что это, действительно, отношение эквивалентности и операция сложения векторов согласована с этим отношением эквивалентности. Установите биекцию между фактор-множеством и множеством векторов плоскости.
- Задача 11. Изменим отношение эквивалентности из предыдущей задачи следующим образом: пусть теперь два вектора эквивалентны, если их разность параллельна плоскости XOY. Докажите, что операция сложения векторов согласована с этим отношением эквивалентности. Дайте описание фактор-множества, аналогичное приведенному в предыдущей задаче.
- **Задача 12.** Пусть $f: X \to X$ некоторое отображение. Рассмотрим на X следующее отношение: xRy, если для некоторого $k \ge 0$ $y = f^k(x)$.
- а) * Докажите, что если R является отношением эквивалентности, то f биекция. Верно ли обратное? Если нет, найдите и докажите достаточное условие.
- б) * Докажите, что если $\bigcap_{k=0}^{\infty} f^k(X) = \emptyset$, то R является отношением частичного порядка. Верно ли обратное? Если нет, найдите и докажите необходимое условие.
- Задача 13. Пусть X, Y некоторые множества. Введем отношение на множестве отображений Y^X следующим образом: если $f,g\in Y^X$, то fRg, если существуют такие две биекции $\varphi:X\to X$ и $\psi:Y\to Y$, что $\psi\circ f=g\circ \varphi$. Докажите, что это отношение эквивалентности. Покажите, что все отображения, у которых f(X) состоит из одного элемента, эквивалентны. Опишите классы эквивалентности тех отображений f, у которых |f(X)|=2. Сколько их, если X конечно и состоит из n элементов?
- **Задача 14.** На множестве \mathbb{R} действительных чисел введем отношение эквивалентности $x \sim y$, если $x-y \in \mathbb{Z}$. Обозначим соответствующее фактормножество \mathbb{R}/\mathbb{Z} . Постройте биекцию между \mathbb{R}/\mathbb{Z} и окружностью $S^1 = \{(x,y) : x^2 + y^2 = 1\}$. Отождествите функции на S^1 с периодическими функциями на \mathbb{R} .

Задача 15. * Отношение $\Gamma_1 \in \mathbb{R} \times \mathbb{R}$ - транспонированное к графику функции $x = 2\cos\varphi$: $\Gamma_1 = \{(2\cos\varphi,\varphi)|\varphi\in\mathbb{R}\}$, отношение $\Gamma_2 \in \mathbb{R} \times \mathbb{R}$ - график функции $y = 3\sin\varphi$: $\Gamma_2 = \{(\varphi,3\sin\varphi,)|\varphi\in\mathbb{R}\}$. Вычислите композицию $\Gamma_1 \circ \Gamma_2$ и опишите ее как подмножество плоскости \mathbb{R}^2 .

Задача 16. * Граф называется связным, если из любой вершины можно пройти в любую. Ребро графа называется *мостом*, если после удаления этого ребра граф перестает быть связным. Назовем две вершины эквивалентными, если из одной можно пройти в другую, не проходя по мостам. Докажите, что это отношение эквивалентности. Докажите, что если в графе k мостов, то классов эквивалентности будет ровно k+1. Докажите, что если из графа удалить все мосты, то каждый класс эквивалентности будет связным графом.

Задача 17. ** Пусть граф не имеет мостов. Назовем ребро такого графа рокадой, если при его удалении в графе появляется мост. Введем на множестве всех рокад данного графа отношение эквивалентности следующим образом: каждая рокада эквивалентна самой себе, а две различные рокады эквивалентны, если при их
удалении граф становится несвязным. Докажите, что это, действительно, отношение эквивалентности. Приведите примеры графов с как угодно большими классами
эквивалентности и любым наперед заданным числом классов эквивлентности. Докажите, что при удалении рокад из одного класса эквивалентности число связных
компонент получившегося графа рано числу удаленных рокад.