Aufgabe 1 (Frühjahr 1985). Seien R ein kommutativer Integritätsring und $a,b \in R$ mit $b \neq 0$. Beweise die Äquivalenz folgender Aussagen:

- (a) Es gibt $c, d \in R$ mit $d \neq 0$, $\frac{a}{b} = \frac{c}{d}$ (im Quotientenkörper von R) und Rc + Rd = R.
- (b) Ra + Rb ist ein Hauptideal.

Aufgabe 2 (Herbst 1987). Man zeige: Der Körper Q enthält keinen echten Unterkörper.

Aufgabe 3. Sei $A = \left\{ \frac{m}{n} \; ; \; m \in \mathbb{Z}, n \in 2 \, \mathbb{N} + 1 \right\}$. Zeigen Sie, daß $(A, +, \cdot)$ ein Ring ist und bestimmen Sie seine invertierbaren Elemente.

Aufgabe 4 (Frühjahr 1997). Sei R ein Integritätsring mit Primring $\mathbb{Z}/(p), p > 0$. Zeigen Sie, daß die Abbildung

$$F: R \to R, x \mapsto x^p$$

ein Ringhomomorphismus ist (der Frobenius).

Aufgabe 5 (Herbs 1974). (a) Sei K ein Körper der Charakteristik $\neq 0$. Zeigen Sie, daß dann die additive Gruppe von K nie isomorph zur multiplikativen Gruppe K^{\times} sein kann.

(b) Sei K ein Körper der Charakteristik 0. Beweisen Sie, daß dann die additive Gruppe von K nie isomorph zur multiplikativen Gruppe K^{\times} sein kann.