Homework Assignment 4 – MA 637-OV Graph Theory and Combinatorics

Due: Round 1, July 3, Final due date: Round 2, July 14

1. Let q be an integer in $\{2, 3, ...\}$ and let $\mathcal{C}_n = \{0, ..., q-1\}^n$ for each $n \in \{1, 2, ...\}$. Define \mathcal{C}_0 to be the set $\{\emptyset\}$: it is the set containing only one element, and that element is itself the empty set. For $n \in \{1, 2, ...\}$, let us take $A_n \subset \mathcal{C}_n$ to be the set

$$A_n = \mathcal{C}_n \setminus \{(0, \dots, 0)\}. \tag{1}$$

Explain why all of the $q^n - 1$ elements (x_1, \ldots, x_n) remaining in A_n necessarily have a largest element of the set $\{k \in \{1, \ldots, n\} : x_k \neq 0\}$.

2. Continuing with problem 1, let (x_1, \ldots, x_n) be an element of A_n and let r be the largest element of the set $\{k \in \{1, \ldots, n\} : x_k \neq 0\}$. Let $\rho(x_1, \ldots, x_n)$ be equal to this r. Define $\phi: A_n \to \{1, \ldots, q-1\}$ by the formula

$$\phi(x_1, \dots, x_n) = x_{\rho(x_1, \dots, n)}. \tag{2}$$

Now, for each $r \in \{1, ..., n\}$, let $B_n(r)$ denote the set

$$B_{n,r} = \{(x_1, \dots, x_n) \in A_n : \rho(x_1, \dots, x_n) = r\}.$$
(3)

For $r \in \{2, ..., n\}$, define $\Psi_r : B_{n,r} \to \mathcal{C}_{r-1}$ to be the mapping such that

$$\Psi_r(x_1, \dots, x_n) = (x_1, \dots, x_{\rho(x_1, \dots, x_n) - 1}). \tag{4}$$

For the special case of r = 1, define $\Psi_1 : B_{n,1} \to \mathcal{C}_0$ to just be $\Psi(x_1, \dots, x_n) = \emptyset$. Explain why $|B_n(r)| = (q-1)q^{n-1}$.

- **3.** Why does problem 2 imply that $q^n 1$ is equal to (q 1)-times- $\sum_{k=0}^{n-1} q^k$? (Show your work.)
- 4. Adapt the computer program from class to find a (random) closed Eulerian trail from 1 to 7 in the following graph

