Feuille de TD Mat201: Chapitre 5

1 Vrai ou faux

Exercice 1.1 Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses, et pourquoi?

- 1. Si un système a plus d'inconnues que d'équations, alors il a une infinité de solutions.
- 2. Si un système a plus d'équations que d'inconnues, alors il a au plus une solution.
- 3. Si le rang d'un système est égal au nombre d'équations, et strictement inférieur au nombre d'inconnues, alors le système a une infinité de solutions.
- 4. Si un système a une solution unique, alors il a autant d'équations que d'inconnues.
- 5. Si un système a une solution unique, alors son rang est égal au nombre d'inconnues.
- 6. Si un système n'a pas de solution, alors son second membre est non nul.
- 7. Si un système a un second membre nul et si son rang est égal au nombre d'équations, alors sa solution est unique.
- 8. Si un système de deux équations à deux inconnues n'a pas de solution, alors les deux équations sont celles de deux droites parallèles dans le plan.
- 9. Si un système de deux équations à trois inconnues n'a pas de solution, alors les deux équations sont celles de deux droites parallèles dans l'espace.

Exercice 1.2 Soit (S) un système linéaire et (H) le système homogène associé (système sans second membre). Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi ?

- 1. Si (S) n'a pas de solution alors (H) n'a pas de solution.
- 2. Si (S) n'a pas de solution alors (H) a une solution unique.
- 3. (S) a une solution unique si et seulement si (H) a une solution unique.
- 4. Si (S) a une solution unique alors (H) a une solution unique.
- 5. Si (S) a une infinité de solutions, alors (H) a une infinité de solutions.
- 6. Si s_0 et s_1 sont deux solutions de (S) alors $s_0 + s_1$ est solution de (H)
- 7. Si s_0 et s_1 sont deux solutions de (S) alors $2(s_0 s_1)$ est solution de (H)
- 8. Si s_0 et s_1 sont deux solutions de (S) alors $2(s_0 s_1)$ est solution de (S)
- 9. Si s_0 et s_1 sont deux solutions de (S) alors $-s_0 + 2s_1$ est solution de (S)

Exercice 1.3 Soit (S) un système, que l'on résout par la méthode de Gauss. On note (S_E) le système sous forme échelonnée. Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi ?

- 1. Si au moins un des pivots est nul, le système est impossible.
- 2. Si (S) a une solution unique, alors dans (S_E) , aucune équation n'a son premier membre nul.
- 3. Si (S) a plus d'équations que d'inconnues, alors dans (S_E) , au moins une équation a son premier membre nul.
- 4. Si (S) a moins d'équations que d'inconnues, alors dans (S_E) aucune équation n'a son premier membre nul.
- 5. Si dans (S_E) une équation a ses deux membres nuls, alors (S) a une infinité de solutions.
- 6. Si (S) a moins d'équations que d'inconnues, et si dans (S_E) toute équation dont le premier membre est nul a un second membre nul, alors le système a une infinité de solutions
- 7. Si le système a une infinité de solutions alors il a moins d'équations que d'inconnues, ou bien au moins une équation dans (S_E) a un premier membre nul.
- 8. Si le système est impossible alors dans (S_E) aucune équation n'a un second membre nul.

Exercice 1.4 Soient a et b deux paramètres réels. On considère le système :

$$(S) \qquad \left\{ \begin{array}{rcl} x & -2y & = & a \\ -2x & +4y & = & b \end{array} \right.$$

Soit S l'ensemble des solutions de (S). Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi ?

- 1. Pour tout couple (a, b), S est un singleton.
- 2. Il existe (a, b) tel que S soit un singleton.
- 3. Si a = b alors S est l'ensemble vide.
- 4. Si b = -2a alors S est l'ensemble vide.
- 5. Si b = -2a alors S est une droite affine.

Exercice 1.5 Soient a et b deux paramètres réels. On considère le système :

$$(S) \qquad \left\{ \begin{array}{rcl} x & +ay & = & 1 \\ 2x & +by & = & 2 \end{array} \right.$$

Soit S l'ensemble des solutions de (S). Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi ?

- 1. Pour tout couple (a, b), S est une droite affine.
- 2. Il existe (a, b) tel que S soit une droite affine.
- 3. Il existe (a, b) tel que S soit l'ensemble vide.
- 4. Si b = 2a alors S est l'ensemble vide.

5. Si b = 2a alors S est une droite affine.

Exercice 1.6 Soient a et b deux paramètres réels. On considère le système :

(S)
$$\begin{cases} x & -y + z = 1 \\ -ax + ay - z = -1 \\ bz = 1. \end{cases}$$

Soit S l'ensemble des solutions de (S).

- 1. Pour tout a, S est non vide.
- 2. Si $b \neq 0$, alors pour tout a, S est un singleton.
- 3. Si (a, b) = (1, 1), alors S est une droite affine.
- 4. Si $(a,b) \neq (1,1)$, alors S a au plus un élément.
- 5. Si $(0,0,1) \in S$, alors b = 1.

2 Entraînement

Exercice 2.1 Déterminer le rang des matrices suivantes :

$$A_{1} = \begin{pmatrix} 2 & -3 & -4 \\ 3 & 1 & 5 \\ -1 & 0 & -1 \\ 0 & 2 & 4 \end{pmatrix}, \quad A_{2} = \begin{pmatrix} 1 & -2 & -2 & 0 \\ 1 & 0 & -2 & 2 \\ 1 & 2 & 2 & -2 \\ 1 & -3 & -6 & 5 \end{pmatrix},$$

$$A_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & -1 & 3 & 1 & -2 \\ 1 & 2 & 4 & -1 & 5 \\ 3 & 9 & 11 & -2 & 19 \end{pmatrix}, \quad A_{4} = \begin{pmatrix} 1 & \cos\theta & \cos 2\theta \\ \cos\theta & \cos 2\theta & \cos 3\theta \\ \cos 2\theta & \cos 3\theta & \cos 4\theta \end{pmatrix}.$$

Exercice 2.2 Inverser, lorsque c'est possible les matrices suivantes :

$$A_{1} = \begin{pmatrix} -1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}, \quad A_{2} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix},$$

$$A_{3} = \begin{pmatrix} 1 & i & -i \\ -i & 1 & i \\ i & -i & 1 \end{pmatrix}, \quad A_{4} = \begin{pmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{pmatrix}$$

Exercice 2.3 Déterminer, selon les valeurs du paramètre réel a, l'ensemble des solutions des systèmes suivants.

$$\begin{cases} x & -2y = 2 \\ x & -ay = a \end{cases} \begin{cases} ax & +y = 2 \\ x & +ay = 2 \end{cases}$$

$$\begin{cases} ax & +(1-a)y = 1 \\ (1-a)x & -ay = a \end{cases} \begin{cases} ax & +(1-a)y = a \\ ax & +ay = a \end{cases}$$

Exercice 2.4 Résoudre les systèmes linéaires suivants.

$$\begin{cases} x & -2y & +3z & = 5 \\ 2x & -4y & +z & = 5 \\ 3x & -5y & +2z & = 8 \end{cases} \qquad \begin{cases} x & +2y & -z & = 5 \\ 2x & +y & +z & = 10 \\ x & & +2z & = 0 \end{cases}$$

$$\begin{cases} x & -y & +3z & = & 2 \\ -x & +4y & +z & = & -1 \\ 3x & -2y & -3z & = & 4 \end{cases} \begin{cases} 2x & +y & -z & = & 3 \\ x & -y & +z & = & 2 \\ x & +y & +2z & = & 0 \end{cases}$$

Exercice 2.5 Résoudre les systèmes linéaires suivants.

$$\begin{cases} x & -y & -z & -t = 3 \\ 2x & -z & +3t = 9 \\ 3x & +3y & +2z & = 4 \\ -x & -2y & +z & -t = 0 \end{cases} \qquad \begin{cases} x & -y & +z & -t = 1 \\ x & +y & -z & -t = -1 \\ x & +y & +z & -t = 0 \\ x & -y & -z & +t = 2 \end{cases}$$
$$\begin{cases} 3x & +4y & +z & +2t = 3 \\ 6x & +8y & +2z & +5t = 7 \\ 9x & +12y & +3z & +10t = 13 \end{cases} \qquad \begin{cases} x & -2y & +z & +t = -2 \\ 2x & -y & -z & -t = -1 \\ x & +y & +z & +t = -8 \end{cases}$$

Exercice 2.6 Déterminer, selon les valeurs du paramètre réel a, l'ensemble des solutions des systèmes linéaires suivants.

$$\begin{cases} 2x + 3y - 2z = 5 \\ x - 2y + 3z = 2 \\ 4x - y + 4z = a \end{cases} \begin{cases} x - y + az = a \\ x + ay - z = -1 \\ x + y + z = 2 \end{cases}$$

$$\begin{cases} x + y + (2a - 1)z = 1 \\ ax + y + z = 1 \\ x + ay + z = 3(a + 1) \end{cases} \begin{cases} 3ax + (3a - 7)y + (a - 5)z = a - 1 \\ (2a - 1)x + (4a - 1)y + 2az = a + 1 \\ 4ax + (5a - 7)y + (2a - 5)z = a - 1 \end{cases}$$

Exercice 2.7 Déterminer, selon les valeurs des paramètres réels a et b, l'ensemble des solutions des systèmes linéaires suivants.

$$\begin{cases} 3x + y - z = 1 \\ 5x + 2y - 2z = a \\ 4x + y - z = b \end{cases} \begin{cases} ax + (b-1)y + 2z = 1 \\ ax + (2b-3)y + 3z = 1 \\ ax + (b-1)y + (b+2)z = 2b-3 \end{cases}$$

$$\begin{cases} 2x + y - z = 2 \\ x - y + z = 4 \\ 3x + 3y - z = 4a \\ (2-a)x + 2y - 2z = -2b \end{cases} \begin{cases} ax + y + z + t = 1 \\ x + ay + z + t = b \\ x + y + az + t = b^2 \\ x + y + z + at = b^3 \end{cases}$$

Exercice 2.8 Résoudre les systèmes linéaires suivants dans \mathbb{C} .

$$\begin{cases} x - iy = 1 \\ ix - y = 1 \end{cases} \begin{cases} ix - iy = 1 + i \\ ix + y = 1 - i \end{cases}$$

$$\begin{cases} (1+2i)x - iy = 1 \\ ix - (1+i)y = 1 + 3i \end{cases} \begin{cases} (1+i)x - iy = 1 \\ ix + (1-i)y = -1 \end{cases}$$

3 Exercices théoriques et applications

Exercice 3.1 Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$ définie par : $a_{ij} = 1$ si i = j et $a_{ij} = a$ si $i \neq j$. Déterminer le rang de A en discutant suivant les valeurs de a et n.

Exercice 3.2 Résoudre le système suivant

$$\begin{cases} x + my &= -3 \\ mx + 4y &= 6 \end{cases}$$

Quelle interprétation géométrique du résultat faites-vous?

Exercice 3.3 Déterminer un polynôme P(X) de degré 3 tel que

$$P(X+1) - P(X) = X^2$$
.

En déduire que

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$

Exercice 3.4 Une course de montagne dure 6h (sans pause au sommet). A l'aller on monte à 3 km/h. Puis au retour on descend à 5 km/h (par le même chemin). La course commence à 8h. A quelle heure est on au sommet?

Exercice 3.5 Ma soeur a autant de frères que de soeurs et mon frère, lui, a deux fois plus de soeurs que de frères. Combien y a-t-il d'enfants dans la fratrie?