$\underline{Assignment-3}$

Q-1 find the frequent item sets and generate the association rules using the Apriori algorithm:

TID	ITEMSETS
T1	А, В
T2	B, D
Т3	В, С
T4	A, B, D
T5	A, C
T6	B, C
T7	A, C
T8	A, B, C, E
Т9	A, B, C

Given: Minimum Support= 2, Minimum Confidence= 50%

Answer:

Items	Support
A	6
В	7
С	6
D	2
Е	1

 $\overline{\text{Items selected}} => (A,B,C,D)$

Items	Support
A,B	4
A,C	4
A,D	1
В,С	4
B,D	2
C,D	0

Items selected => (AB,AC,BC,BD)

Items	Support
A,B,C	1
A,B,D	2
A,B,C,D	0
B,C,D	0

3170724 | Machine Learning

Items selected \Rightarrow (A,B,D)

Rules	Support	Confidence
(A^B) → C	2	50%
(A^C) → B	2	50%
(B^C) → A	2	50%
$A \rightarrow (B^{\wedge}C)$	2	33%
$B \rightarrow (A^{\wedge}C)$	2	28%
$C \rightarrow (A^B)$	2	33%

Association rules:

 $(A^B) \rightarrow C$

 $(A^{C}) \rightarrow B$

 $(B^{\wedge}C) \rightarrow A$

Q-2 Support threshold=50%, Confidence= 60%

TABLE-1

Transaction	List of items
T1	I1,I2,I3
T2	I2,I3,I4
T3	I4,I5
T4	I1,I2,I4
T5	I1,I2,I3,I5
T6	I1,I2,I3,I4

Find the frequent itemsets and generate the association rules using the Apriori algorithm:

Answer:

Items	Support
I1	66%
I2	83%
I3	66%
I4	66%
I5	33%

Items selected \Rightarrow (I1,I2,I3,I4)

Items	Support
I1,I2	66%
I1,I3	50%
I1,I4	33%
I2,I3	66%
I2,I4	50%
I3,I4	66%

Items selected => (I1I2, I1I3, I2I3, I2I4)

Items	Support
I1,I2,I3	50%
I1,I2,I4	33%
I1,I2,I3,I4	16%
I2,I3,I4	33%

Items selected \Rightarrow (I1,I2,I3)

Rules	Support	Confidence
(I1^I2) → I3	50%	75%
(I1^I3) → I2	50%	100%
(I2^I3) → I1	50%	75%
I1 → (I2^I3)	50%	75%
I2 → (I1^I3)	50%	60%
I3 → (I1^I2)	50%	75%

3170724 | Machine Learning

Association rules:

 $(I1^I2) \rightarrow I3$

 $(I1^I3) \rightarrow I2$

 $(I2^I3) \rightarrow I1$

I1 **→** (I2^I3)

 $I2 \rightarrow (I1^{13})$

 $I3 \rightarrow (I1^{12})$

Using FP Growth algorithm:

Items	Support
I1	4
I2	5
I3	4
I4	4
I5	2

Thus we remove the I5th transaction and arrange the items in descending order based on their support count.

Items	Support
I2	5
I1	4
I3	4
I4	4

Now, we re-arrange the transactions based on the priority.

Transaction	List of items
T1	I2,I1,I3
T2	I2,I3,I4
T3	I4
T4	I2,I1,I4
T5	I2,I1,I3,I5
T6	I2,I1,I3,I4

The FP Growth tree of frequent item set is:

Q-3 Find the frequent itemsets and generate association rules on this. Assume that minimum support threshold (s=33.33%) and minimum confident threshold (c=60%)

Transaction ID	Items	
T1	Hot Dogs, Buns, Ketchup	
T2	Hot Dogs, Buns	
Т3	Hot Dogs, Coke, Chips	
T4	Chips, Coke	
T5	Chips, Ketchup	
Т6	Hot Dogs, Coke, Chips	

Answer:

Hot Dogs = HD

Buns = B

Ketchup = K

Chips = CH

Coke = CO

Items	Support
HD	66%
В	33.33%
K	33.33%
СН	50%
СО	66%

Items selected => (HD,B,K,CH,CO)

Items	Support	
HD,B	33.33%	
HD,K	16%	
HD,CH	33.33%	
HD,CO	33.33%	
B,K	16%	
В,СН	0	
B,CO	0	
K,CH	0	
K,CO	16%	
CH,CO	50%	

Items selected => (HD B, HD CO, HD CH, CO CH)

Items	Support
HD,B,CO	0
HD,B,CH	0
HD,B,CO,CH	0
HD,CO,CH	33.33%

Items selected => (HD, CO, CH)

3170724 | Machine Learning

Rules	Support	Confidence
(HD^CO) → CH	33.33%	100%
(HD^CH) → CO	33.33%	100%
(CO^CH) → HD	33.33%	66.66%
HD → (CO^CH)	33.33%	50%
CO → (HD^CH)	33.33%	66.66%
CH → (HD^CO)	33.33%	50%

Association rules:

 $(HD^{CO}) \rightarrow CH$

 $(\mathsf{HD^{\wedge}CH)} \xrightarrow{\hspace*{1em}} \mathsf{CO}$

 $(CO^CH) \rightarrow HD$

 $CO \rightarrow (HD^{\wedge}CH)$

Q4. Draw decision tree.

•		1	•		•
1	Sunny	Hot	High	Weak	No
2	Cloudy	Hot	High	Weak	Yes
3	Sunny	Mild	Normal	Strong	Yes
4	Cloudy	Mild	High	Strong	Yes
5	Rainy	Mild	High	Strong	No
6	Rainy	Cool	Normal	Strong	No
7	Rainy	Mild	High	Weak	Yes
8	Sunny	Hot	High	Strong	No
9	Cloudy	Hot	Normal	Weak	Yes
10	Rainy	Mild	High	Strong	No

Answer:

Q5. Construct decision tree.

Age	Education	Income	Marital Status	Purchase?
36-55	master's	high	single	will buy
18-35	high school	low	single	won't buy
36-55	master's	low	single	will buy
18-35	bachelor's	high	single	won't buy
< 18	high school	low	single	will buy
18-35	bachelor's	high	married	won't buy
36-55	bachelor's	low	married	won't buy
> 55	bachelor's	high	single	will buy
36-55	master's	low	married	won't buy
> 55	master's	low	married	will buy
36-55	master's	high	single	will buy
> 55	master's	high	single	will buy
< 18	high school	high	single	won't buy
36-55	master's	low	single	will buy
36-55	high school	low	single	will buy
< 18	high school	low	married	will buy
18-35	bachelor's	high	married	won't buy
> 55	high school	high	married	will buy
> 55	bachelor's	low	single	will buy
36-55	high school	high	married	won't buy

Answer:

