## Probabilidade

Teoria de conjuntos II

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

### Slides e notebook em:

github.com/tetsufmbio/IMD0033/

# Relações e operações aplicadas em conjuntos

Relação entre números:

- =
- ≤ ou ≥
- ou >

Operações entre números:

- +
- •

Relação entre conjuntos:

- =
- ⊆ ou ⊇
- C ou ⊃

Operações entre conjuntos:

- União
- Subtração
- Interseção

#### Relação de igualdade

O conjunto A é dito **igual** ao conjunto B, se um contém os mesmos elementos que o outro.



### Relação de desigualdade

O conjunto A é dito **diferente** do conjunto B, se um contém pelo menos um elementos distinto do outro.

$$A = \{ 0, 1 \}, B = \{ 1, 2 \}; A \neq B$$



Pelo menos um deles não é Ø

#### Conjuntos disjuntos

A disjunção de A e B ocorre quando não há elementos elementos em comum entre A e B;

- $\{0, 1\} \cap \{2, 3\} = \emptyset$
- $[3, 4) \cap [4, 5] = \emptyset$



#### Subconjuntos (⊆)

Generalização da relação ≤;

Se todos os elementos de A pertencerem a B, então A é um subconjunto de B;

- $\{0\} \subseteq \{0, 1\}$
- $\{0\} \subseteq \{0\}$





### Superconjuntos (≥)

Generalização da relação ≥;

B é superconjunto de A se B contiver todos os elementos de A;

• B⊇A

- $\{0,1\} \supseteq \{0\}$
- $\{0\} \supseteq \{0\}$





#### Propriedades do subconjunto

- $\emptyset \subseteq A \subseteq A \subseteq \Omega$
- $A \subseteq B$ ,  $B \subseteq C$ , então  $A \subseteq C$  (transitividade)
- $A \subseteq B, B \subseteq A$ , então A = B





#### (Sub ou Super)conjuntos estritos (⊂)

Se A é subconjunto de B e A é diferente de B, então A é um subconjunto estrito de B;

A ⊂ B

Da mesma forma, B é superconjunto estrito de A;

• B⊃A

- {0} ⊂ {0,1}
- $\{0,1\}\supset\{0\}$





#### $\subseteq$ (pertence a) vs $\subseteq$ (contém)

- ∈ → relação entre um elemento e um conjunto;
  - $\circ$  x  $\in$  A  $\rightarrow$  elemento x pertence ao conjunto A;
  - $\circ$  0  $\in$  {0,1}
  - {0} ∉ {0, 1}

- ⊆ → relação entre dois conjuntos;
  - $\circ$  A  $\subseteq$  B  $\rightarrow$  o conjunto A é um subconjunto do conjunto B
  - $\circ \{0\} \subseteq \{0,1\}$
  - 0 ⊈ { 0, 1 }

# Relação entre conjuntos em Python (igualdade e disjunção)

# Relação entre conjuntos em Python (subconjunto e superconjunto)

```
set1 = { 0 }
set2 = set({ 0, 1 })
set3 = \{ 1, 0, 1 \}
\# \subseteq (\langle = ou \ issubset())  \# \subseteq (\langle )
set1 <= set2 # true
                  set1 < set2 # true
set2 >= set1 # true
                  set2 > set1 # true
```

#### Operações aplicadas em conjuntos

Operações entre números:

- +
- -

Operações entre conjuntos:

- União
- Subtração
- Interseção

#### Complemento

 $\Omega \rightarrow$  conjunto de todos os elementos possíveis;

Complemento do conjunto A (A<sup>c</sup>)  $\rightarrow$  todo elemento em  $\Omega$  que não está no A;

Em termos lógicos:  $A^c = \{ x \in \Omega \mid x \notin A \}$ 



$$Ω = { 0, 1}$$
 ${ 0 }^c = { 1 }$ 
 ${ 0, 1 }^c = \emptyset$ 
 ${ \emptyset }^c = Ω$ 

#### Propriedades do complemento

- A e A<sup>c</sup> são sempre disjuntos
- $(A^c)^c = A \rightarrow involução$



#### Interseção (∩)

A interseção de A e B é um conjunto de elementos que simultaneamente pertencem ao conjunto A e ao conjunto B;

Em termos lógicos: A  $\cap$  B = { x  $\in$   $\Omega$  | x  $\in$  A  $\wedge$  x  $\in$ 

B}

- $\{0, 1\} \cap \{1, 2\} = \{1\}$
- $[3, 4] \cap [2, 5] = [3, 4]$



#### União (U)

União dos conjuntos A e B corresponde a todos os elementos que pertencem aos conjuntos A e B.

ou

Em termos lógicos: A U B =  $\{x \in \Omega \mid x \in A \ \forall \ x \in B\}$ 

- $\{0, 1\} \cup \{1, 2\} = \{0, 1, 2\}$
- [3, 4] U [2, 5] = [2, 5]



### Propriedades (U e ∩)

Identidade

$$A \cap \Omega = A$$

$$A \cup \Omega = \Omega$$

Limite universal

$$A \cap \emptyset = \emptyset$$

$$A \cup \emptyset = A$$

Idempotente

$$A \cap A = A$$

$$A \cup A = A$$

Complemento

$$A \cap A^c = \emptyset$$

$$A \cup A^{c} = \Omega$$



#### U e ∩ em Python

### Subtração de conjuntos

Subtração do conjunto A por B (A - B) corresponde a todos os elementos em A que não estejam em B.

Em termos lógicos: A - B =  $\{x \in \Omega \mid x \in A \land x \notin B\}$ 

- $\bullet \quad \{ 0, 1 \} \{ 1 \} = \{ 0 \}$
- $[3, 4] [2, 5] = \emptyset$

$$A - B = A \cap B^c$$



#### Subtração simétrica (Δ)

Subtração simétrica de dois conjuntos correspondem aos elementos que ocorrem exatamente em um dos conjuntos.

Em termos lógicos: A  $\triangle$  B = {  $x \in \Omega \mid (x \in A \land x \notin B) \lor (x \notin A \land x \notin B)$ 

 $x \in B)$ 

- $\{0, 1\} \Delta \{1, 2\} = \{0, 2\}$
- $[0, 2] \triangle [1, 3] = [0, 1) \cup (2, 3]$

$$A \Delta B = (A-B) \cup (B-A)$$



## Diferença e diferença simétrica em Python

```
A = \{ 1, 2 \}

B = \{ 2, 3 \}
```

```
# Diferença

print(A - B)
{ 1 }

print(B.difference(A))
{ 3 }
```

```
# Dif. simétrica

print(A ^ B)
{ 1, 3 }

print(A.symmetric_difference(B))
{ 3, 1 }
```

### Exercícios do notebook

github.com/tetsufmbio/IMD0033/

#### Propriedades (U e ∩)

Comutativo  $A \cap B = B \cap A$   $A \cup B = B \cup A$ Associativo  $(A \cap B) \cap C = A \cap (B \cap C)$   $(A \cup B) \cup C = A \cup (B \cup C)$ Distributivo  $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ De Morgan  $(A \cap C)$   $(A \cap B)^c = A^c \cup B^c$   $(A \cap B)^c = A^c \cup B^c$ 

 $(A \cup B)^c = A^c \cap B^c$