

TRABALLO FIN DE GRAO GRAO EN ENXEÑARÍA INFORMÁTICA MENCIÓN EN COMPUTACIÓN

Aliñamento de imaxes oftalmolóxicas usando representacións neuronais implícitas

Estudante: Mateo Amado Ares

Dirección: José Rouco Maseda

Jorge Novo Buján

A Coruña, novembro de 2024.

Agradecementos

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Resumo

O aliñamento da imaxe oftalmolóxica é un campo moi relevante. Aliñar imaxes médicas é útil para, entre outras cousas, revisar o avance dunha enfermidade ao longo do tempo ou fusionar diferentes modalidades. O caso dos ollos é de particular importancia xa que permiten a observación in-vivo de tecido neuronal e vasos sanguíneos. Aliñar as imaxes manualmente é un proceso tedioso e complexo, polo que automatizar este proceso é moi beneficioso.

Neste traballo explórase o uso de redes de representación implícita, onde se parametriza a imaxe como unha función continua coas coordenadas como entrada e o valor do pixel como saída, como unha alternativa para o aliñamento de imaxes. Estas aportan vantaxes frente a representacións tradicionais discretas como a independencia de resolución e poder prescindir de grandes bases de datos xa que se adestran mediante un proceso de optimización para cada par de imaxes. Ademais, en lugar de usar funcións de activación estándar como RELU, adoitan empregar unha función de activación sinusoidal (SIREN), que pode axudar a eliminar o sesgo cara sinais de baixa frecuencia e mapear mellor deformación pequenas e detalladas.

Adaptando o traballo realizado por [1], valoraráse se este método é apto para a tarefa de aliñamento de imaxes oftalmolóxicas e como se compara con métodos convencionais.

Abstract

Ophthalmic image alignment is a highly relevant field. Aligning medical images is useful for, among other things, reviewing the progression of a disease over time or merging different modalities. The case of eyes is particularly important as they allow in-vivo observation of neuronal tissue and blood vessels. Manually aligning images is a tedious and complex process, so automating this process is beneficial.

This work explores the use of implicit representation networks, where the image is parameterized as a continuous function with coordinates as input and pixel value as output. This provides advantages over traditional discrete representations such as resolution independence and the ability to dispense with large databases since they are trained through an optimization process for each group of images. Furthermore, instead of using standard activation functions like RELU, they typically employ a sinusoidal activation function (SIREN), which can help eliminate bias towards low-frequency signals and better map small and detailed deformations.

Based on the work done by [1], this study will evaluate whether this method is suitable for the task of aligning ophthalmic images and how it compares to conventional methods.

Palabras chave:

- Imagen médica
- Imagen oftalmológica
- Aprendizaje profundo
- Registro de Imágenes
- Representaciones neuronales implícitas

Keywords:

- Medical imaging
- Ophthalmological imaging
- Deep learning
- Image Registration
- Implicit neural representations (INRs)

Índice Xeral

1	Intr	odución		1
	1.1	Motivación		1
	1.2	Obxectivos	. :	2
	1.3	Estructura	. :	2
2	Con	rexto	:	3
	2.1	Oftalmoloxía	. :	3
		2.1.1 Anatomía do ollo humano	. :	3
		2.1.2 Imaxe oftalmolóxica	. :	3
		2.1.3 Retinografía	. 4	4
	2.2	Rexistro de imaxes	. 4	4
		2.2.1 Métodos de aliñamento de imaxes automáticos	. 4	4
		2.2.2 Estado da arte	. !	5
		2.2.3 Métodos de aprendizaxe profunda	. !	5
		2.2.4 IDIR	. !	5
3	Met	odoloxía e planificación	•	9
	3.1	Metodoloxía do desenrrolo	. •	9
	3.2	Planificación do proxecto	. •	9
	3.3	Recursos utilizados	. •	9
		3.3.1 Software	. •	9
		3.3.2 Hardware	. 10	0
		3.3.3 Estimación de custos	. 10	0
4	Tral	allo Realizado	1:	1
	4.1	Vista Xeral	. 1	1
	4.2	Conxuntos de datos		1
		421 FIDE	1	1

ÍN	DICE 2	XERAL																Íı	ıdi	ce X	<u>Ceral</u>
	4.3 4.4	4.2.2 Avalia Discus	RFMI ción . sión										 								11
5	Exp	erimen	itos e r	esu]	ltad	dos	;														12
6	Con	clusiór	18																		13
7	Trak	oallo fu	ituro																		14

17

Bibliografía

Índice de Figuras

Índice de Táboas

3.1	Comparativa entre os servidores utilizados .									10
3.2	Estimación de custos dos recursos humanos									10

Introdución

N^Este primer capítulo expóñense as motivacións e obxetivos deste traballo. Ademais, detallarase a estrutura da memoria e os apartados que a conforman.

1.1 Motivación

A oftalmoloxía válese da análise de imaxes obtidas por diversos métodos para realizar diagnósticos e seguimentos precisos. Non obstante, dado que estas imaxes poden prover de distintas modalidades e foron tomadas en instantes separados no tempo, é preciso aliñalas para poder comparalas de xeito efectivo. O aliñamento de imaxes é un proceso que se leva a cabo para poder comparar imaxes dun mesmo paciente tomadas en distintos momentos, ou para comparar imaxes de diferentes pacientes. Consiste en deformar dúas ou máis imaxes de forma que as características de interese se atopen na mesma posición (superpostas). Este é un proceso tedioso e propenso a erros, polo que calquer mellora nel é de gran interese para os profesionais da saúde. Esta tarefa é axeitada para ser automatizada, xa que é non require dun xuízo clínico, senón que se basea na comparación de características visuais das imaxes. A automatización deste proceso permitiría aos profesionais da saúde dedicar máis tempo a tarefas máis relevantes.

Xa existen diversas técnicas para realizar aliñamento de imaxes automático, especialmente ca chegada do deep learning á visión por computador para imaxes médicas, onde unha aproximación habitual é o uso de redes neuronais convolucionais. Estos métodos, aínda que efectivos, teñen limitacións. Unha delas é que requiren dunha gran cantidade de datos para o seu adestramento, o que pode ser un problema en campos como a medicina, onde a obtención de datos é cara e complexa. Ademais, xeralmente teñen unha precisión menor ca métodos automáticos convencionais, pese a que si que son máis rápidos. Adaptando o traballo realizado por [1], preténdese aplicar redes de representación implícita para o aliñamento de imaxes oftalmolóxicas.

1.2 Obxectivos

Neste traballo explorarase o uso de redes de representación implícita para o aliñamento de imaxes oftalmolóxicas, para determinar se son aptas para esta tarefa e se poden superar as limitacións dos métodos anteriores. Para iso, os obxectivos específicos son:

- Adaptar o traballo de IDIR [1] para aplicalo a imaxes oftalmolóxicas.
- Comparar o rendemento do método proposto co de métodos automáticos convencionais nos datasets de FIRE [2] e RFMID [3].
- Analizar a influencia de distintos parámetros no rendemento do método proposto, en particular a influencia da función de activación SIREN.

1.3 Estructura

Nesta sección detallarase a estrutura da memoria e os apartados que a conforman.

- Capítulo 1: Introdución: neste capítulo introdúcese o traballo, explicando as motivacións e obxetivos do mesmo.
- Capítulo 2: Contexto: neste capítulo explicarase o contexto do traballo, introducindo conceptos básicos de visión por computador e imaxes médicas, así como o estado da arte en aliñamento de imaxes.
- Capítulo 3: Metodoloxía e planificación: neste capítulo explicarase a metodoloxía empregada e a planificación do traballo.
- Capítulo 4: Experimentos e resultados: neste capítulo presentaranse os experimentos realizados e os resultados obtidos.
- Capítulo 5: Traballo realizado: neste capítulo discutiranse os resultados e compararanse cos resultados de outros métodos.
- Capítulo 6: Conclusións: neste capítulo presentaranse as conclusións do traballo e as súas implicacións.
- Capítulo 7: Traballo futuro: neste capítulo propoñeranse liñas de traballo futuro.

Contexto

NESTE apartado introdúcense o contexto relevante a este traballo que provee os conceptos básicos necesarios para a súa comprensión. Para elo descríbese o campo da oftalmoloxía e a imaxe médica, así como o estado da arte en aliñamento de imaxes.

2.1 Oftalmoloxía

A oftalmoloxía é a especialidade médica que se encarga do estudo e tratamento do ollo e os seus trastornos. O ollo humano é un dos órganos dos que mais dependemos e maior cantidade de información sensorial aporta, e en consecuencia tamén é un dos mais complexos do noso corpo. Así mesmo, é unha das rexións que máis datos aporta sobre o estado de saúde do paciente, xa que permite observar directamente os vasos sanguíneos e o tecido neuronal "in-vivo". Isto permite a detección temprana de enfermidades, que poden ser diagnosticadas mediante a observación da retina.

2.1.1 Anatomía do ollo humano

O ollo encargase de captar a luz e transformala en impulsos eléctricos que se envían ao cerebro. Esta información é interpretada polo cerebro, que mediante mecanismos como a atención e a memoria, permite a percepción visual. ...

2.1.2 Imaxe oftalmolóxica

Existen diversas modalidades de imaxe médica que permiten observar o ollo, cada unha con diferentes propiedades e aplicacións. As mais utilizadas son a fotografía de fondo de ollo (retinografía), a tomografía de coherencia óptica (OCT) e a angiografía con fluoresceína.

2.1.3 Retinografía

Este traballo céntrase na retinografía xa que é a mais común. Isto é débese en gran parte á súa accesibilidade, requerindo equipo maís barato e menor entrenamento comparada cas outras modalidades Ademais, é unha técnica non invasiva e rápida de realizar, o que a fai preferible na maioría dos casos.

Para realizala utilízase unha cámara especial denominada retinógrafo, e xeralmente require da previa dilatación da pupila do paciente. Desta forma permítese maior entrada de luz nos ollos, o que provoca unha mellor visualización da retina e mellora a calidade da imaxe. Un especialista pode analizar a retinografía para detectar signos de enfermidades como a retinopatía diabética, a hipertensión ou a degeneración macular.

imagenFIRE

2.2 Rexistro de imaxes

O rexistro de imaxes é un proceso que consiste en, sobre dúas ou mais imaxes, determinar a correspondencia espacial entre elas e alinealas nun sistema de coordenadas común. Así conséguese que as características de interese se atopen na mesma posición. Este proceso pode empregarse para comparar imaxes dun mesmo paciente tomadas en distintos momentos, en distintas modelidades ou para comparar entre diferentes pacientes. Isto permite a revisión do avance dunha enfermidade ao longo do tempo, a fusión de imaxes de distintas modalidades ou a detección de patróns comúns en distintos individuos.

No caso de trabllar con dúas imaxes, a imaxe de referencia denomínase imaxe fixa (f) e a imaxe que se quere rexistrar imaxe móbil(m).

2.2.1 Métodos de aliñamento de imaxes automáticos

Existen diversos métodos para realizar aliñamento de imaxes, que poden estar automatizados en maior ou menor medida. Os métodos manuais requiren da intervención dun experto para realizar o aliñamento, o que os fai pouco prácticos para grandes volumes de imaxes.

Dependendo do tipo de transformación esta pode ser clasificada en ríxida, afín ou deformable.

A ríxida tan só permite rotación e traslación, mentres que a afín permite ademais escalado e cizallamento. Ámbas transformacións poden ser representadas por unha matriz de 2 dimensións xa que son deformacións lineais. Ao contrario, a transformación deformable é non lineal, polo que require dunha dimensión adicional ás da imaxe a rexistrar (unha imaxe de 2d require unha matriz 3d). Esta matriz denomínase campo de vectores de deformación (DFV), e permite representar deformacións locais na imaxe, facendoa moito mais flexible para representar transformacións complexas. ...

2.2.2 Estado da arte

Tradicionalmente impregáronse métodos iterativos baseádos na extracción de características seguido dun proceso de optimización entre cada par de imaxes. ...A principal desventaxa destes métodos é a súa lentitude.

2.2.3 Métodos de aprendizaxe profunda

Ca chegada dos métodos de aprendizaxe profunda á imaxe médica, comezaron a empregarse redes neuronais para realizar o aliñamento de imaxes. Estos métodos tenden a ser mais rápidos que os métodos convencionais, a custo de algo de precisión. Ademais, estos métodos requiren dunha gran cantidade de datos para ser adestrados, o que pode ser unha desventaxa xa que en moitos casos non se dispoñen de bases de datos anotadas do tamaño necesario.

Unha aproximación común é empregar estes conxuntos de datos para optimizar unha CNN que, dadas dúas imaxes novas e non vistas, predice o DFV correspondente.

Durante o proceso de entrenamento, a rede ten acceso aos DFVs ca deformación correcta, ou pódense obter indirectamente a través da optimización dunha métrica de similitude de imaxes [].

Existen moitas extensións a esta aproximación, como o uso de múltiples etapas ou o uso de redes adversarias durante o entrenamento.

Tamén se propuxeron métodos híbridos que combinan a optimización iterativa ca aprendizaxe profunda, entrenando unha CNN nova por cada parella de imaxes. Desta forma conséguese evitar a necesidade de grandes conxuntos de datos para o adestramento.

supervisados // no supervisados ...

[1] propuxeron un método de aliñamento de imaxes baseado en redes de representación implícita, que é no que se basa este traballo e descríbese en maior detalle na seguinte sección 2.2.4.

2.2.4 IDIR

IDIR (Implicit Deformable Image Registration) é un método de aliñamento de imaxes baseado en redes neuronais. A súa principal diferenza frente a unha rede convolucional tradicional é que, en lugar de predicir a transformación entre imaxes, optimízase unha rede para esta mesma represente esta transformación.

Representación Neuronais Implícitas

É común empregar redes convolucionais para o aliñamento de imaxes, tipicamente como un operador que mapea entre unha parella de imaxes e o DFV.

O que [1] propón é optimizar directamente o DFV facenda uso dunha representación implícita, de forma que a deformación está representada nos propios pesos dunha MLP.

Según o teorema de aproximación universal (Hornik et al., 1989), calquera función ben comportada pode ser descrita con precisión arbitrariamente alta por unha rede neuronal apropiada. Na nosa aplicación, a rede pode variar en profundidade ou ancho, pero sempre terá n entradas e n saídas para transformacións en espazo euclidiano n-dimensional.

No caso do aliñamento de imaxes, buscase optimizar a función que mapea cada localización x nunha imaxe a unha localización na outra.

Método

Sendo o obxetivo encontrar unha transformación espacial óptima entre a imaxe fixa e a imaxe móbil, é necesario obter a función de deformación $\Phi(x) = u(x) + x$ que mapea cada coordenada x na imaxe fixa a unha coordenada na imaxe móbil, de forma que a coordenada x na imaxe fixa corresponda anatomicamente á coordenada $\Phi(x)$ na imaxe móbil. Este problema pode ser formulado como un problema de optimización onde Ldata é unha métrica de similitude entre as imaxes fixa e móbil, Lreg é un termo de regularización na transformación Φ , e α é un termo de ponderación.

$$\hat{\Phi} = \underset{\Phi}{\operatorname{Arg\,min}} L_{data}(M \circ \Phi, F) + \alpha L_{reg}(\Phi) \tag{2.1}$$

A aportación clave é que a transformación Φ está implícitamente representada nunha rede neuronal.

Comparado cunha CNN tradicional, esta rede non recibe valores de intensidade de píxel como entrada, senón que recibe coordenadas espaciais (continuas) e devolve unha nova coordenada. Xa que os pesos da rede definen a transformación, estos poden ser optimizados directamente facendo uso dunha métrica de similitude como función de perda.

Parametrizar a función de deformación como unha INR dentro dun MLP ten varias vantaxes para o rexistro de imaxes. En primeiro lugar, a representación da transformación é continua e polo tanto independente da resolución da imaxe, grazas a iso o mesmo modelo poder ser empregado para imaxes de calquer tamaño, ao contrario dunha CNN tradicional que ten que ser adaptada para cada resolución.

Segundo, facelo desta forma permite aproveitar as capacidades de librerías como PyTorch para calcular os gradientes da transformación respecto das coordenadas. Isto permite obter gradientes máis precisos que as aproximacións por diferencias finitas e permite aproveitar unha gran cantidade de literatura sobre regularización eficientes en imaxes médicas.

Terceiro, pódese modificar a función de activación empregada na rede para axustala ás necesidades particulares da tarefa de rexistro de imaxes. Neural Tangent Kernel (NTK) es un

concepto que describe cómo un modelo de red neuronal responde a cambios en sus parámetros durante el entrenamiento, e dependendo da función de activación empregada, o NTK varía e a rede pode ser máis ou menos sensible a certas deformacións.

Finalmente, entrenaráse unha nova rede por cada parella de imaxes, sendo esta unha rede bastante pequena en comparación e precindindo así da necesidade de grandes conxuntos de datos para o seu adestramento.

Arquitectura

Función de activación

Unha elección estándar para a función de activación é ReLU: $\sigma(x) = \max(0, x)$. Sen embargo, as ReLUs teñen un sesgo cara a sinais de baixa frecuencia (Mildenhall et al., 2020; Tancik et al., 2020), o que significa que o modelo pode ter dificultades para representar pequenas deformacións locais no rexistro de imaxes.

Existen varias formas de superar este sesgo, como preprocesar as coordenadas de entrada con funcións de activación periódicas (Mildenhall et al., 2020; Tancik et al., 2020) ou substituír a función de activación ReLU por unha función de activación periódica (Sitzmann et al., 2020). Neste traballo escollemos a segunda opción, utilizando unha función de activación periódica para obter un modelo de tipo SIREN, $\sigma(x) = \sin(x)$. Unha vantaxe engadida das funcións de activación periódicas nas redes SIREN é que poden ser diferenciadas varias veces, o que expande substancialmente o conxunto de termos de regularización que se poden empregar na rede, como veremos na seguinte sección.

Termos de regularización

Debido a que el registro de imágenes deformables es un problema mal planteado (ill-posed problem**), es común regularizar el DVF para evitar deformaciones poco realistas. Los métodos de registro basados en redes neuronales convolucionales (CNN) representan los DVF como muestras en una cuadrícula de vóxeles, y por lo tanto, solo pueden aproximar gradientes espaciales mediante esquemas de diferencias finitas. Esto conlleva errores de discretización y pérdidas de precisión.

Facendo uso de representacións implícitas, todas as operación son diferenciables, e os gradientes poden ser computados de forma analítica en lugar de ter que aproximalos. Utilizando ReLU como función de activación, a rede é diferenciable unha vez, mentres que utilizando unha función de activación periódica (como SIREN), a rede é diferenciable varias veces. Desta forma, podemos calcular calquera número de termos de regularización e incluilos na optimización da rede.

Algúns exemplos de termos de regularización que se poden empregar son:

- Jacobian regularizer: O determinante Jacobiano da transformación (det ∇Φ) nunha localización x é un indicador de estiramento ou compresión local. Un determinante Jacobiano negativo indica que está a ocurrir folding e a transformación non será invertible. ...
- Hyperelastic regularizer Tamén se póden engadir restricións ao DVF con este termo
 proposto por (Burger et al., 2013). Consiste en tres termos, un termo de lonxitude,
 un termo de área e un termo de volumen co obxetivo de controlar variacións nestes
 aspectos. O termo de lonxitude penaliza a variación da lonxitude dos vectores do DVF
 e está controlado pola matriz do Jacobiano da transformación. A matriz de cofactores e
 o determinante da matriz do Jacobiano da transformación controlan a área e o volume
 respectivamente, penalizando o crecemento e a contracción por igual. ...
- Bending energy penalty Pódese impoñer a suavidade do DVF empregando esta penalización proposta en (Rueckert et al., 1999). Require que as segundas derivadas do DVF sexan pequenas en todo o dominio, polo que non pode ser utilizado nunha rede que utilice ReLU como función de activación (a segunda derivada de unha ReLU é sempre igual a 0). ...

Metodoloxía e planificación

NESTA sección explícase a metodoloxía de traballo empregada para o desenvolvemento do proxecto, así como a planificación do mesmo. Ademais, descríbense os recursos utilizados e faise unha estimación dos custos asociados ao proxecto.

3.1 Metodoloxía do desenrrolo

Ao ser un proxecto de investigación, a metodoloxía de traballo mais adecuada é unha metodoloxía iterativa e incremental.

Os requisitos evolucionan ao longo do proxecto, polo que é vital planificar para poder adaptarse a estes cambios.

3.2 Planificación do proxecto

Implementar IDIR orixinal e replicar resultados.

Implementar adptacións necesarias para o seu uso en imaxes oftalmolóxicas. - Imaxes de pulmón son 4d, imaxes oftalmolóxicas son 2d (ignoramos color non aporta moita información) Implmentar evaluación para FIRE e RFMID.

Experimentar para mellorar resultados.

Escribir memoria.

3.3 Recursos utilizados

3.3.1 Software

Xa que parte do traballo consiste en adaptar un traballo previo, decidíuse empregar moito do mesmo software ca o traballo orixinal para facilitar a implementación e reproducibilidade. O mais relvante é PyTorch, unha librería de código aberto para Python que facilita o desenrrolo

9

de redes neuronais. (version y CUDA). Tamén se empregan librerías de apoio como NumPy (para traballar con matrices), Matplotlib (visualización), OpenCV ou scikit-learn (manxo de imaxes). (versions y links).

Otro software empregado inclúe VSCode (IDE), Git (control de versións) e LaTeX (redacción de memoria).

3.3.2 Hardware

O proxecto foi desenrrolado nun ordenador portátil conectado por ssh a un servidor con GPU. Utilizáronse dous sevidores diferentes, un montado por min¹ e outro facilitado polo grupo de investigación VARPA (Visión Artificial y Reconocimiento de Patrones), que forma parte da infraestructura do CITIC (Centro de Investigación en Tecnologías de la Información y las Comunicaciones).

A gran parte dos experimentos foron realizado no primero, mais para poder executar o proxecto cas imáxenes na súa resolución orixinal foi necesario empregar o segundo debido ás limitacións de memoria da GPU.

Característica	Homelab	Servidor VARPA
Procesador	AMD Ryzen 9 5950X	AMD Ryzen Threadripper 3960X
GPU	NVIDIA 3090	NVIDIA RTX A6000

Táboa 3.1: Comparativa entre os servidores utilizados

3.3.3 Estimación de custos

Os costos do hardware son ignorados xa que xa estaba disponible antes da realización do proxecto. Os costos dos recursos humanos calcúlanse para un estudante e doús tutores, resultando nun coste estimado de PLACEHOLDER.

Recurso	Coste por hora	Horas estimadas	Coste total
Estudante			€
Titor 1			€
Titor 2			€

Táboa 3.2: Estimación de custos dos recursos humanos

¹https://blog.m19182.dev/writings/Building-my-Homelab

Traballo Realizado

Neste apartado presentarase o traballo realizado, comezando por unha vista xeral do proceso, seguido dunha explicación dos diferentes módulos desenvolvidos e a súa interacción, así como os conxuntos de datos empregados. Finalmete, presentaranse os resultados obtidos acompañados dunha análise dos mesmos.

- 4.1 Vista Xeral
- 4.2 Conxuntos de datos
- 4.2.1 FIRE
- 4.2.2 **RFMID**
- 4.3 Avaliación
- 4.4 Discusión

Experimentos e resultados

Neste capítulo presentaranse os experimentos realizados e os resultados obtidos. Para iso, comezarase presentando unha vista xeral do proceso de experimentación, A continuación, presentaranse os resultados obtidos cas diferentes configuracións probadas.

Conclusións

Traballo futuro

 T^{RAS} a finalización do proxecto, existen varias liñas de traballo futuro que se poden seguir para mellorar o sistema. A continuación, descríbense algunhas das posibles liñas de traballo futuro con maior potencial:

Apéndices

Bibliografía

- [1] J. M. Wolterink, J. C. Zwienenberg, and C. Brune, "Implicit neural representations for deformable image registration," in *Medical Imaging with Deep Learning 2022*, 2022.
- [2] C. Hernandez-Matas, X. Zabulis, A. Triantafyllou, P. Anyfanti, S. Douma, and A. A. Argyros, "Fire: Fundus image registration dataset," *Modeling and Artificial Intelligence in Ophthalmology*, vol. 1, no. 4, p. 16–28, Jul. 2017. [En liña]. Dispoñible en: https://www.maio-journal.com/index.php/MAIO/article/view/42
- [3] S. Pachade, P. Porwal, D. Thulkar, M. Kokare, G. Deshmukh, V. Sahasrabuddhe, L. Giancardo, G. Quellec, and F. Mériaudeau, "Retinal fundus multi-disease image dataset (rfmid): A dataset for multi-disease detection research," *Data*, vol. 6, no. 2, 2021. [En liña]. Dispoñible en: https://www.mdpi.com/2306-5729/6/2/14