Simplex

Parametrisation

The Simplex distribution has the following density

$$\pi(y) = \frac{\sqrt{(s\tau)}}{\sqrt{2\pi[y(1-y)]^3}} \exp\left\{\frac{-(s\tau)(y-\mu)^2}{2y(1-y)\mu^2(1-\mu)^2}\right\}$$

has has a continuously responses 0 < y < 1 where

 μ : is the mean,

 τ : is a precision parameter, and

s: is a fixed scaling, s > 0.

For the simplex distribution we have

$$E(y) = \mu$$

Link-function

The linear predictor η is linked to the mean μ using a default logit-link,

$$\mu = \frac{\exp\left(\eta\right)}{1 + \exp\left(\eta\right)}.$$

Hyperparameter

The hyperparameter is the precision parameter τ , which is represented as

$$\tau = \exp(\theta)$$

and the prior is defined on θ .

Specification

- family = simplex
- \bullet Required arguments: y.

Hyperparameter spesification and default values

Example

s = 0.3

In the following example we estimate the parameters in a simulated example.

```
## this library is found at
## http://www.commanster.eu/rcode.html
library(rmutil)

n = 1000
x = rnorm(n, sd = 0.2)
eta = 1 + x
mu = exp(eta)/(1+exp(eta))
```

Notes

None.