

INTRO TO FDTD (3)

Flexcompute Inc.

Period: $a = 1\mu m$

Radius: 0.2a

Thickness: 0.55a

Permittivity: $\epsilon = 12$

Transmission computed from FDTD

S. Fan, W. Suh and J. D. Joannopoulos, Journal of the Optical Society of America A 20, 569 (2003).

Period: $a = 1\mu m$

Radius: 0.2a

Thickness: 0.55a

Permittivity: $\epsilon = 12$

Computational domain

Periodic boundary condition

$$E(L_x, y) = E(0, y),$$

$$E(x,0) = E(x,L_y)$$

Compute the transmission near the frequency of 100THz, corresponding to the free space wavelength of $\lambda \approx 3 \mu m$

Discretization:
$$\Delta x = \frac{\lambda_{max}}{n}/30 = 20nm$$

Pulsed source

Spectrum of the source

Time evolution of the field on a monitor point

For resonant structures, it is important to choose a sufficiently long run time, such that the resonant field completely decays away.

Obtained spectrum for 0.56ps simulation time

One can selectively excite one resonance with the use of a narrow band source

