

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
23 January 2003 (23.01.2003)

PCT

(10) International Publication Number
WO 03/007296 A1

(51) International Patent Classification⁷: **G11B 7/24**, C07C 251/20, C07D 231/38, C09B 11/02, C09D 11/18, C09B 11/18, 11/28

(74) Common Representative: **CIBA SPECIALTY CHEMICALS HOLDING INC.**; Patentabteilung, Klybeckstrasse 141, CH-4057 Basel (CH).

(21) International Application Number: **PCT/EP02/07434**

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(22) International Filing Date: 4 July 2002 (04.07.2002)

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English

Published:

(26) Publication Language: English

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(30) Priority Data:

2001 1297/01 13 July 2001 (13.07.2001) CH
2001 1516/01 17 August 2001 (17.08.2001) CH

(71) Applicant (*for all designated States except US*): **CIBA SPECIALTY CHEMICALS HOLDING INC.** [CH/CH]; Klybeckstrasse 141, CH-4057 Basel (CH).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: FAST-WRITABLE AND PRECISION-WRITABLE HIGH-CAPACITY OPTICAL STORAGE MEDIA

wherein R₁ and R₂, R₁ and R₁₃, R₂ and R₁₃, R₃ and R₄, R₄ and R₅, R₅ and R₆, R₆ and R₇, R₇ and R₈, R₈ and R₉, R₉ and R₁₀, R₁₀ and R₁₁, R₁₁ and R₁₂ and/or R₁₂ and R₁₃ can independently of one another be bonded to one another in pairs separately or, when they contain substitutable sites, via a direct bond or via a -CH₂- , -O-, -S-, -NH- or -NC₁-C₂₄alkyl-bridge in such a manner that, together with the atoms and bonds indicated in formula (I), five- or six-membered, saturated, unsaturated or aromatic, unsubstituted or G₁-substituted rings are formed, G₁ is any desired substituent, ⁷ x_m- is an inorganic, organic or organometallic anion, Yⁿ⁺ is a proton or a metal, ammonium or phosphonium cation, and m and n are each independently of the other a number from 1 to 5, and p and q are each independently of the other O or a number from 0.2 to 6, the ratio of p and q to one another, depending upon m and n and, as applicable, the number of charged G₁, being such that in formula (I) there is no excess positive or negative charge. Generally the optical recording medium according to the invention additionally comprises a reflecting layer. The recording media according to the invention exhibit high sensitivity and good playback characteristics, especially at high recording and playback speeds. The light stability is also excellent.

(57) Abstract: The invention relates to an optical recording medium, comprising a substrate and a recording layer, wherein the recording layer comprises a compound of formula (I), wherein R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₃ are each independently of the others hydrogen, G₁ or C₁-C₂₄alkyl, C₂-C₂₄alkenyl, C₂-C₂₄alkynyl, C₃-C₂₄cycloalkyl, C₃-C₂₄cycloalkenyl, C₇-C₂₄aralkyl, C₆-C₂₄aryl, C₄-C₁₂heteroaryl or C₁-C₁₂heterocycloalkyl, each unsubstituted or substituted by one or more identical or different substituents G₁,

- 1 -

Fast-writable and precision-writable high-capacity optical storage media

The field of the invention is the optical storage of information on write-once storage media, the information pits being differentiated by the different optical properties of a colorant at written and unwritten sites. This technology is usually termed "WORM" (for example "CD-R" or "DVD-R"); those terms have been retained herein.

Compact discs that are writable at a wavelength of from 770 to 830 nm are known from "Optical Data Storage 1989", Technical Digest Series, Vol. 1, 45 (1989). They are read at a reduced readout power. According to the Orange Book Standard, at the recording wavelength the medium must have a base reflectivity of 65% or more. As recording media it is possible to use, for example, cyanine dyes (JP-58/125246), phthalocyanines (EP-A-676 751, EP-A-712 904), azo dyes (US-5 441 844), double salts (US-4 626 496), dithioethene metal complexes (JP-A-63/288785, JP-A-63/288786), azo metal complexes (US-5 272 047, US-5 294 471, EP-A-649 133, EP-A-649 880) or mixtures thereof (EP-A-649 884).

By using more recent compact high-performance red diode lasers that emit in the range of from 600 to 700 nm it is possible in principle to achieve a 6- to 8-fold improvement in data packing density, in that the track spacing (distance between two turns of the information track) and the size of the pits as well as the redundancy can each be reduced to approximately half the value in comparison with conventional CDs.

This imposes extraordinarily high demands on the recording layer to be used, however, such as high refractive index, high light stability in daylight and under laser radiation of low power density (readout) with, at the same time, high sensitivity under laser radiation of high power density (writing), uniformity of script width at different length pulse durations and also high contrast. The known recording layers still do not possess these properties to an entirely satisfactory extent.

EP-A-0 805 441 describes an optical recording medium comprising xanthene dyes, which can be both recorded and read at from 600 to 700 nm. In the Examples, good results are achieved with a 10 mW laser diode of wavelength

635 nm. It has been found, however, that under practical conditions the results for the dyes disclosed in EP-A-0 805 441 are not able fully to satisfy the demands (which have increased in the interim) in respect of sensitivity, recording speed and mark accuracy and reproducibility, especially in the range from 640 to 680 nm.

US-3 781 711 discloses laser dye compositions comprising dyes having a rigid structure, including 9,9-dimethyl-2-dimethylamino-7H,9H-anthracene-7-dimethyliminium nitrate. Such compounds are used in high dilution.

WO-A-00/64986 describes carbopyronine fluorescent dyes and their use as marker groups in diagnostics. The absorption maxima and the fluorescent yield are not appreciably altered by coupling such compounds to carriers and biomolecules.

The aim of the invention is to provide an optical recording medium, the recording layer of which has high storage capacity combined with excellent other properties. The recording medium should be both writable and readable, with a minimum of errors, at the same wavelength in the range of from 600 to 700 nm (preferably from 630 to 690 nm) at high speed.

Very surprisingly, by the use of certain carbopyronine dyes as recording layer it has been possible to provide an optical recording medium having properties that are astonishingly better than those of recording media known hitherto.

The invention accordingly relates to an optical recording medium comprising a substrate and a recording layer, wherein the recording layer comprises a compound of formula (I)

wherein R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} are each independently of the others hydrogen, G_1 , or $C_1\text{-}C_{24}$ alkyl, $C_2\text{-}C_{24}$ alkenyl,

- 3 -

C₂-C₂₄alkynyl, C₃-C₂₄cycloalkyl, C₃-C₂₄cycloalkenyl, C₇-C₂₄aralkyl, C₆-C₂₄aryl, C₄-C₁₂heteroaryl or C₁-C₁₂heterocycloalkyl, each unsubstituted or substituted by one or more identical or different substituents G₁,

wherein R₁ and R₂, R₁ and R₁₃, R₂ and R₃, R₃ and R₄, R₄ and R₅, R₅ and R₆, R₆ and R₇, R₇ and R₈, R₈ and R₉, R₉ and R₁₀, R₁₀ and R₁₁, R₁₁ and R₁₂ and/or R₁₂ and R₁₃ can independently of one another be bonded to one another in pairs separately or, when they contain substitutable sites, *via* a direct bond or *via* a -CH₂-, -O-, -S-, -NH- or -NC₁-C₂₄alkyl- bridge in such a manner that, together with the atoms and bonds indicated in formula (I), five- or six-membered, saturated, unsaturated or aromatic, unsubstituted or G₁-substituted rings are formed,

G₁ is any desired substituent,

X^{m-} is an inorganic, organic or organometallic anion,

Yⁿ⁺ is a proton or a metal, ammonium or phosphonium cation, and

m and n are each independently of the other a number from 1 to 5, and p and q are each independently of the other 0 or a number from 0.2 to 6, the ratio of p and q to one another, depending upon m and n and, as applicable, the number of charged G₁ substituents, being such that in formula (I) there is no excess positive or negative charge.

Generally the optical recording medium according to the invention additionally comprises a reflecting layer, but this is not absolutely necessary *per se* and it can be omitted depending upon the type of detector.

Each G₁ is, where applicable independently of any other G₁, any desired substituent, for example halogen, -OH, -O⁻, -OA, =O, -SH, -S⁻, -SA, =S, -NO₂, -CN, -NH₂, -NHA, -N(A)₂, -N⁺H₃, -N⁺H₂A, -N⁺H(A₂), -N⁺(A)₃, -NHCOA, -N(A)COA, -CHO, -C(A)=O, -CH(OA)₂, -C(A)(OA)₂, -C(OA)₃, -CH=N·A, -C(A)=N·A, -N=CH·A, -N=C(A)₂, -N=N·A, -COO⁻, -COOH, -COOA, -CONH₂, -CONHA, -CON(A)₂, -NHCONH₂, -NHCONHA, -NHCON(A)₂, -N(A)CONH₂, -N(A)CONHA, -N(A)CON(A)₂, -SO₂A, -SO₃⁻, -SO₃H, -SO₃A, -PO₃⁻, -PO(OA)₂, -Si(A)₃, -OSi(A)₃, -Si(OA)₂(A) or -Si(OA)₃, each A being independently of the others alkyl, alkenyl,

alkynyl, cycloalkyl, cycloalkenyl, aralkyl, aryl or heteroaryl, each of which can be uninterrupted or interrupted by one or more hetero atoms, such as N, O, P and S, for example in the form of a polyalkylene glycol chain, pyrrolidinyl, piperidyl, piperazinyl, morpholinyl, oxybisphenylene or heteroaryl, such as pyridyl, furyl, thienyl or phenothiazinyl.

A is typically C₁-C₂₄alkyl, C₂-C₂₄alkenyl, C₂-C₂₄alkynyl, C₃-C₂₄cycloalkyl, C₃-C₂₄cycloalkenyl, C₇-C₂₄aralkyl, C₆-C₂₄aryl or C₄-C₁₂heteroaryl.

It will be understood that different As can also be combined, such as, for example, in chromanyl, phosphindolinyl or 1-phenyl-2-pyrazolinyl, that is to say, for example, in substituted form azo-3-methyl-5-oxo-1-phenyl-2-pyrazolin-(4)-yl. It is also possible for alkylene, arylene or aralkylene to be used in place of two As, for example morpholino in place of methyl-3-oxabutyl-amino or 4-methyl-piperidino in place of ethyl-3-azabutyl-amino.

When G₁ contains a radical A, that radical can be unsubstituted or substituted by from 1 to 5 identical or different substituents G₂, each G₂ being as defined for G₁, except that G₂ can only be unsubstituted or mono-substituted by G₃, where G₃ likewise is as defined for G₁, except that G₃ is not further substituted.

Especially the following substituents may be mentioned as G₁: -CH₂-CH₂-OH, -CH₂-O-CH₃, -CH₂-O-(CH₂)₇-CH₃, -CH₂-CH₂-O-CH₂-CH₃, -CH₂-CH(OCH₃)₂, -CH₂-CH₂-CH(OCH₃)₂, -CH₂-C(OCH₃)₂-CH₃, -CH₂-CH₂-O-CH₂-CH₂-O-CH₃, -(CH₂)₃-OH, -(CH₂)₆-OH, -(CH₂)₇-OH, -(CH₂)₈-OH, -(CH₂)₉-OH, -(CH₂)₁₀-OH, -(CH₂)₁₁-OH, -(CH₂)₁₂-OH, -CH₂-Si(CH₃)₃, -CH₂-CH₂-O-Si(CH₃)₂-C(CH₃)₃, -(CH₂)₃-O-Si(CH₃)₂-C(CH₃)₃, -(CH₂)₄-O-Si(C₆H₅)₂-C(CH₃)₃, -(CH₂)₅-O-Si(CH(CH₃)₂)₃, -CH₂-CH₂-CH(CH₃)-CH₂-CH₂-CH(OH)-C(CH₃)₂-OH, -CH₂-CH(CH₃)-CH₂-OH, -CH₂-C(CH₃)₂-CH₂-OH, -CH₂-C(CH₂-OH)₃, -CH₂-CH(OH)-CH₃, -CH₂-CH(OH)-CH₂-OH, -CH₂CH₂O- , -(CH₂)₃O- , -CH₂CH₂O- , -CH₂CH₂O- , -CH₂CH₂O- , -CH₂CH₂O- , -CH₂CH₂O-<img alt="cyclic ether structure" data-bbox

$C_3\text{-}C_{24}$ cycloalkyl, $C_3\text{-}C_{24}$ cycloalkenyl, $C_7\text{-}C_{24}$ aralkyl, $C_6\text{-}C_{24}$ aryl, $C_4\text{-}C_{12}$ heteroaryl or $C_1\text{-}C_{12}$ heterocycloalkyl, each unsubstituted or substituted by one or more identical or different substituents G_2 , or is a metal complex. When R_{14} is $C_1\text{-}C_{24}$ alkyl, it may be uninterrupted or interrupted by from 1 to 3 oxygen and/or silicon atoms. G_2 or G_3 may especially advantageously be alkyl unsubstituted or substituted by one or two hydroxy substituents or by a metallocenyl or azo metal complex radical. Such radicals G_1 are of very special importance as R_6 .

The compound of formula (I) may optionally also be a dimer of formula

wherein R_1' to R_{13}' have the same meanings as R_1 to R_{13} and an R substituent selected from R_1 to R_{13} is bonded to an R' substituent selected from R_1' to R_{13}' , for example *via* a direct bond, an alkylene group or a hetero atom, or an R' substituent selected from R_1' to R_{13}' is a direct bond to an R substituent selected from R_1 to R_{13} .

Great importance is attached especially to compounds of formula (II) wherein R_6 is bonded to R_6' , or R_6' is a direct bond to R_6 .

When the numbers p and q are not whole numbers, it is to be understood by formulae (I) and (II) that there is a mixture of a certain molar composition, the individual components of which may also have different stoichiometry.

Alkyl, alkenyl or alkynyl may be straight-chain or branched. Alkenyl is alkyl that is mono- or poly-unsaturated, wherein two or more double bonds may be isolated or conjugated. Alkynyl is alkyl or alkenyl that is double-unsaturated one or more times, wherein the triple bonds may be isolated or conjugated with one another or with double bonds. Cycloalkyl or cycloalkenyl is monocyclic or polycyclic alkyl or alkenyl, respectively.

C₁-C₂₄Alkyl can therefore be, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, 2-methyl-butyl, n-pentyl, 2-pentyl, 3-pentyl, 2,2-dimethylpropyl, n-hexyl, heptyl, n-octyl, 1,1,3,3-tetramethylbutyl, 2-ethylhexyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl or tetracosyl.

C₃-C₂₄Cycloalkyl can therefore be, for example, cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl-methyl, trimethylcyclohexyl, thujyl, norbornyl, bornyl, norcaryl, caryl, menthyl, norpinyl, pinyl, 1-adamantyl, 2-adamantyl, 5 α -gonyl or 5 ξ -pregnyl.

C₂-C₂₄Alkenyl is, for example, vinyl, allyl, 2-propen-2-yl, 2-buten-1-yl, 3-buten-1-yl, 1,3-butadien-2-yl, 2-penten-1-yl, 3-penten-2-yl, 2-methyl-1-buten-3-yl, 2-methyl-3-buten-2-yl, 3-methyl-2-buten-1-yl, 1,4-pentadien-3-yl, or any desired isomer of hexenyl, octenyl, nonenyl, decenyl, dodecenyl, tetradecenyl, hexadecenyl, octadecenyl, eicosenyl, heneicosenyl, docosenyl, tetracosenyl, hexadienyl, octadienyl, nonadienyl, decadienyl, dodecadienyl, tetradecadienyl, hexadecadienyl, octadecadienyl or eicosadienyl.

C₃-C₂₄Cycloalkenyl is, for example, 2-cyclobuten-1-yl, 2-cyclopenten-1-yl, 2-cyclohexen-1-yl, 3-cyclohexen-1-yl, 2,4-cyclohexadien-1-yl, 1-p-menthen-8-yl, 4(10)-thujen-10-yl, 2-norbornen-1-yl, 2,5-norbornadien-1-yl, 7,7-dimethyl-2,4-norcaradien-3-yl or camphenyl.

C₁-C₂₄Alkoxy is O—C₁-C₂₄alkyl, and C₁-C₂₄alkylthio is S—C₁-C₂₄alkyl.

C₂-C₂₄Alkynyl is, for example, 1-propyn-3-yl, 1-butyn-4-yl, 1-pentyn-5-yl, 2-methyl-3-butyn-2-yl, 1,4-pentadiyn-3-yl, 1,3-pentadiyn-5-yl, 1-hexyn-6-yl, cis-3-methyl-2-penten-4-yn-1-yl, trans-3-methyl-2-penten-4-yn-1-yl, 1,3-hexadiyn-5-yl, 1-octyn-8-yl, 1-nonyn-9-yl, 1-decyn-10-yl or 1-tetracosyn-24-yl.

C₇-C₂₄Aralkyl is, for example, benzyl, 2-benzyl-2-propyl, β -phenyl-ethyl, 9-fluorenyl, α,α -dimethylbenzyl, ω -phenyl-butyl, ω -phenyl-octyl, ω -phenyl-dodecyl or 3-methyl-5-(1',1',3',3'-tetramethyl-butyl)-benzyl. C₇-C₂₄Aralkyl can also be, for example, 2,4,6-tri-tert-butyl-benzyl or 1-(3,5-dibenzyl-phenyl)-3-methyl-2-propyl. When C₇-C₂₄aralkyl is substituted, either the alkyl moiety or

the aryl moiety of the aralkyl group can be substituted, the latter alternative being preferred.

C₆-C₂₄Aryl is, for example, phenyl, naphthyl, biphenylyl, 2-fluorenyl, phenanthryl, anthracenyl or terphenylyl.

Halogen is chlorine, bromine, fluorine or iodine, preferably chlorine or bromine.

C₄-C₁₂Heteroaryl is an unsaturated or aromatic radical having 4n+2 conjugated π -electrons, for example 2-thienyl, 2-furyl, 1-pyrazolyl, 2-pyridyl, 2-thiazolyl, 2-oxazolyl, 2-imidazolyl, isothiazolyl, triazolyl or any other ring system consisting of thiophene, furan, pyridine, thiazole, oxazole, imidazole, isothiazole, thiadiazole, triazole, pyridine and benzene rings and unsubstituted or substituted by from 1 to 6 ethyl, methyl, ethylene and/or methylene substituents.

Furthermore, aryl and aralkyl can also be aromatic groups bonded to a metal, for example in the form of metallocenes of transition metals known *per se*, more especially

wherein R₁₅ is CH₂OH, CH₂OA, COOH, COOA or COO⁻.

C₁-C₁₂Heterocycloalkyl is an unsaturated or partially unsaturated ring system radical, for example tetrazolyl, pyrrolidyl, piperidyl, piperazinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, morpholinyl, quinuclidinyl or another C₄-C₁₂heteroaryl that is mono- or poly-hydrogenated.

Yⁿ⁺ as a metal, ammonium or phosphonium cation is, for example, Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Cu²⁺, Ni²⁺, Fe²⁺, Co²⁺, Zn²⁺, Sn²⁺, Cr³⁺, La³⁺, methylammonium, ethylammonium, pentadecylammonium, isopropylammonium, dicyclohexylammonium, tetramethylammonium, tetraethylammonium, tetrabutylammonium, benzyltrimethylammonium, benzyltriethylammonium, methyltrioctylammonium, tridodecylmethylammonium, tetrabutylphosphonium, tetraphenylphosphonium, butyltriphenylphosphonium or ethyl-

triphenylphosphonium, or protonated Primen 81R™ or Rosin Amin D™.

X^{m-} as an inorganic, organic or organometallic anion is, for example, the anion of a mineral acid, the conjugate base of an organic acid or an organometal complex anion, for example fluoride, chloride, bromide, iodide, perchlorate, periodate, nitrate, $\frac{1}{2}$ carbonate, hydrogen carbonate, C₁-C₄alkyl sulfate, $\frac{1}{2}$ sulfate, hydrogen sulfate, $\frac{1}{3}$ phosphate, $\frac{1}{2}$ hydrogen phosphate, dihydrogen phosphate, $\frac{1}{2}$ C₁-C₄alkanephosphonate, C₁-C₄alkane-C₁-C₁₂alkyl-phosphonate, di-C₁-C₄alkylphosphinate, tetrafluoroborate, hexafluorophosphate, hexafluoro-antimonate, acetate, trifluoroacetate, heptafluorobutyrate, $\frac{1}{2}$ oxalate, methanesulfonate, trifluoromethanesulfonate, tosylate, benzenesulfonate, p-chlorobenzenesulfonate, p-nitrobenzenesulfonate, an alcoholate, phenolate (e.g. phenolate itself), carboxylate (also e.g. benzoate), sulfonate or phosphonate) or a negatively charged metal complex.

The person skilled in the art will readily recognise that it is also possible to use other anions with which he is familiar. It will be self-evident to him that $\frac{1}{x}$ of an inorganic, organic or organometallic anion having x negative charges, for example $\frac{1}{2} \cdot SO_4^{2-}$, is a multiply charged anion which neutralises several singly charged cations or a cation having x charges, as the case may be.

Phenolates or carboxylates are, for example, anions of C₁-C₁₂alkylated, especially tert-C₄-C₈alkylated, phenols or benzoic acids, such as

When X^{m-} is an organometallic anion, it is preferably a metal complex of formula $[(L_1)M_1(L_2)]^{m-}$ (III) or $[(L_3)M_2(L_4)]^-$ (IV), wherein M₁ and M₂ are a transition metal, preferably M₁ being Cr³⁺ or Co³⁺ and M₂ being Ni²⁺, Co²⁺ or Cu²⁺, m is a number from 1 to 6, L₁ and L₂ are each independently of the other a ligand of formula

. 9 .

and L₃ and L₄ are each independently of the other a ligand of formula

R₁₆, R₁₇, R₁₈, R₁₉, R₂₀ and R₂₁ are each independently of the others hydrogen, halogen, cyano, R₂₄, NO₂, NR₂₄R₂₅, NHCO-R₂₄, NHCOOR₂₄, SO₂-R₂₄, SO₂NH₂,

· 10 ·

$\text{SO}_2\text{NHR}_{24}$, $\text{SO}_2\text{NR}_{24}\text{R}_{25}$, SO_3^- or SO_3H , preferably hydrogen, chlorine; SO_2NH_2 or $\text{SO}_2\text{NHR}_{24}$, and R_{22} and R_{23} are each independently of the other CN, CONH_2 , CONHR_{24} , $\text{CONR}_{24}\text{R}_{25}$, COOR_{24} or COR_{24} , wherein R_{24} and R_{25} are each independently of the other $\text{C}_1\text{-C}_{12}\text{alkyl}$, $\text{C}_1\text{-C}_{12}\text{alkoxy-C}_2\text{-C}_{12}\text{alkyl}$, $\text{C}_7\text{-C}_{12}\text{aralkyl}$ or $\text{C}_6\text{-C}_{12}\text{aryl}$, preferably $\text{C}_1\text{-C}_4\text{alkyl}$, each unsubstituted or substituted by hydroxy, halogen, sulfato, $\text{C}_1\text{-C}_6\text{alkoxy}$, $\text{C}_1\text{-C}_6\text{alkylthio}$, $\text{C}_1\text{-C}_6\text{alkylamino}$ or by di- $\text{C}_1\text{-C}_6\text{alkylamino}$, or R_{24} and R_{25} together are $\text{C}_4\text{-C}_{10}\text{heterocycloalkyl}$; it also being possible for R_{16} and R_{17} , R_{18} and R_{19} , and/or R_{20} and R_{21} to be bonded together in pairs in such a manner that a 5- or 6-membered ring is formed.

Reference is made by way of illustration, but on no account as a limitation, to the individual compounds disclosed in US-5 219 707, US-6 168 843, US-6 242 067, WO-01/19923, WO-01/62853, EP-A-1 125 987, EP-A-1 132 902, JP-A-06/199045, JP-A-07/262604, JP-A-2000/190642 and JP-A-2000/198273.

It is also possible, however, to use any other known transition metal complex anion that contains, for example, a phenolic or phenylcarboxylic azo compound as ligand L_1 or L_2 .

Preference is given to compounds of formula (I) wherein R_1 , R_4 , R_5 , R_7 , R_8 and R_{11} are hydrogen; R_2 , R_3 , R_9 , R_{10} , R_{12} and R_{13} are each independently of the others methyl, ethyl or R_{14} , it being possible for R_2 and R_3 , R_9 and R_{10} , R_{12} and R_{13} and/or R_9 and R_{10} also to be bonded together in pairs via a direct bond, methylene, $-\text{O}-$ or $-\text{N}(\text{C}_1\text{-C}_4\text{alkyl})$; and R_6 is hydrogen or $\text{C}_1\text{-C}_{12}\text{alkyl}$, $\text{C}_6\text{-C}_{12}\text{aryl}$ or $\text{C}_7\text{-C}_{13}\text{aralkyl}$, each unsubstituted or mono- to tetra-substituted by halogen, $-\text{O}^-$, $-\text{OR}_{26}$, $-\text{CN}$, $-\text{NR}_{26}\text{R}_{27}$, $-\text{N}^+\text{R}_{26}\text{R}_{27}\text{R}_{28}$, $-\text{N}(\text{R}_{26})\text{COR}_{27}$, $-\text{COO}^-$, $-\text{COOR}_{26}$, $-\text{CONR}_{26}\text{R}_{27}$, R_{14} or by $-\text{N}(\text{R}_{26})\text{COR}_{27}\text{R}_{28}$, wherein R_{26} , R_{27} and R_{28} are each independently of the others $\text{C}_1\text{-C}_{12}\text{alkyl}$, $\text{C}_6\text{-C}_{12}\text{aryl}$ or $\text{C}_7\text{-C}_{13}\text{aralkyl}$;

all the bridging possibilities, limitations and definitions indicated above otherwise remaining unchanged.

When R_6 is unsubstituted or substituted $\text{C}_6\text{-C}_{12}\text{aryl}$, it is preferably

· 11 ·

wherein R₂₉, R₃₀ and R₃₁ are each independently of the others hydrogen, halogen, COOR₃₂, OR₃₂ or NR₃₂R₃₃, wherein R₃₂ and R₃₃ are each independently of the other hydrogen or C₁-C₁₂alkyl, C₂-C₁₂alkenyl, C₁-C₁₂cycloalkyl, C₂-C₁₂cycloalkenyl, C₆-C₁₂aryl or C₇-C₁₃aralkyl, each unsubstituted or substituted by one or two hydroxy substituents or by a metallocenyl or azo metal complex radical and uninterrupted or interrupted by 1, 2, 3, 4 or 5 oxygen and/or silicon atoms. R₂₉ is preferably hydrogen, carboxy or COO-C₁-C₈alkyl, R₃₀ is hydrogen or halogen, and R₃₁ is hydrogen, C₁-C₈alkoxy or di-C₁-C₈alkyl-amino.

Special preference is given to compounds of formula (I) wherein R₆ is , , , , , or R₃₇, and

R₃₄, R₃₅ and R₃₆ are each independently of the others hydrogen or R₃₇.

When R₆ is substituted by R₃₇, then it is preferably substituted by a single R₃₇. The total number of radicals R₃₇ in formula (I) is preferably 0, 1 or 2, especially 0 or 1. The total number of radicals R₃₇ in formula (II) is preferably 0, 1, 2, 3 or 4, especially 0 or 2.

R₃₇ is preferably alkyl uninterrupted or interrupted by from 1 to 3 oxygen and/or silicon atoms and unsubstituted or substituted by one or two hydroxy substituents or by a metallocenyl or azo metal complex radical, especially C₁-C₈alkyl, CH₂-CH₂-OH, -CH₂-O-CH₃, -CH₂-O-(CH₂)₇-CH₃, -CH₂-CH₂-O-CH₂-CH₂, -CH₂-CH(OCH₃)₂, -CH₂-CH₂-CH(OCH₃)₂, -CH₂-C(OCH₃)₂-CH₃, -CH₂-CH₂-O-CH₂-CH₂-O-CH₃, -(CH₂)₃-OH, -(CH₂)₆-OH, -(CH₂)₇-OH, -(CH₂)₈-OH, -(CH₂)₉-OH, -(CH₂)₁₀-OH, -(CH₂)₁₁-OH, -(CH₂)₁₂-OH, -CH₂-Si(CH₃)₃, -CH₂-CH₂-O-Si(CH₃)₂-C(CH₃)₃, -(CH₂)₃-O-Si(CH₃)₂-C(CH₃)₃, -(CH₂)₄-O-Si(C₆H₅)₂-C(CH₃)₃, -(CH₂)₅-O-Si(CH(CH₃)₂)₃, -CH₂-CH₂-CH(CH₃)-CH₂-CH₂-CH(OH)-C(CH₃)₂-OH, -CH₂-CH(CH₃)-CH₂-OH, -CH₂-C(CH₃)₂-CH₂-OH, -CH₂-C(CH₂-OH)₃, -CH₂-CH(OH)-CH₃, -CH₂-CH(OH)-CH₂-OH, -CH₂CH₂O, -(CH₂)₃O, -CH₂CH₂

- 12 -

Azo metal complex radicals have, for example, the formula $[(L_1)M_1(L_2)]^{m-}$.

Metallocenyl radicals preferably contain as metal Ni, Co, Cu, Ti or especially Fe. For example, R₃₇ in formula (I) or (II) as a metallocenyl radical may be

$[\cdot\text{C}_2\text{-C}_8\text{alkylene-SO}_2]_2\text{-}\emptyset\text{-}\check{S}$, $[\cdot\text{C}_2\text{-C}_8\text{alkylene-O-C}_2\text{-C}_8\text{alkylene-NHSO}_2]_2\text{-}\emptyset\text{-}\check{S}$,
 $[\cdot\text{C}_2\text{-C}_8\text{alkylene-NHSO}_2]_2\text{-}\emptyset\text{-}\check{S}$, $[\cdot\text{C}_2\text{-C}_8\text{alkylene-NH-C}_2\text{-C}_8\text{alkylene-SO}_2]_2\text{-}\emptyset\text{-}\check{S}$ or
 $[\cdot\text{C}_2\text{-C}_8\text{alkylene-N(C}_1\text{-C}_8\text{alkyl)-C}_2\text{-C}_8\text{alkylene-SO}_2]_2\text{-}\emptyset\text{-}\check{S}$; or in formula (II) as an azo metal complex radical may be $[\cdot\text{C}_2\text{-C}_8\text{alkylene-SO}_2]_2\text{-}\emptyset\text{-}\cdot$,
 $[\cdot\text{C}_2\text{-C}_8\text{alkylene-NHSO}_2]_2\text{-}\emptyset\text{-}\cdot$, $[\cdot\text{C}_2\text{-C}_8\text{alkylene-O-C}_2\text{-C}_8\text{alkylene-NHSO}_2]_2\text{-}\emptyset\text{-}\cdot$,
 $[\cdot\text{C}_2\text{-C}_8\text{alkylene-NH-C}_2\text{-C}_8\text{alkylene-SO}_2]_2\text{-}\emptyset\text{-}\cdot$ or
 $[\cdot\text{C}_2\text{-C}_8\text{alkylene-N(C}_1\text{-C}_8\text{alkyl)-C}_2\text{-C}_8\text{alkylene-SO}_2]_2\text{-}\emptyset\text{-}\cdot$, wherein \check{S} is SO_3^- ,
 $\text{SO}_2\text{-C}_1\text{-C}_8\text{alkyl}$, $\text{SO}_2\text{NR}_{39}\text{R}_{40}$, R_{39} and R_{40} are each independently of the other hydrogen or $\text{C}_1\text{-C}_{12}$ alkyl, $\text{C}_2\text{-C}_{12}$ alkenyl, $\text{C}_1\text{-C}_{12}$ cycloalkyl, $\text{C}_2\text{-C}_{12}$ cycloalkenyl, $\text{C}_6\text{-C}_{12}$ aryl or $\text{C}_7\text{-C}_{13}$ aralkyl, each uninterrupted or interrupted by from 1 to 5 oxygen and/or silicon atoms and unsubstituted or substituted by one or two hydroxy substituents, and \emptyset is the bivalent radical of an organometallic anion selected from the group consisting of

and those of the formulae Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15, Q16, Q17, Q18, Q19, Q20, Q21, Q22, Q23, Q24 and Q25 given hereinbelow.

-Alkylene-SO₂-Ø, -alkylene-NHSO₂-Ø, -alkylene-O-alkylene-NHSO₂-Ø,

- 14 -

-alkylene-NH-alkylene-SO₂-Ø or -alkylene-N(alkyl)-alkylene-SO₂-Ø are preferably -(CH₂)₂-SO₂-Ø, -(CH₂)₂-NHSO₂-Ø, -(CH₂)₂-O-(CH₂)₂-NHSO₂-Ø, -(CH₂)₂-NH-(CH₂)₂-SO₂-Ø, -(CH₂)₆-NHSO₂-Ø or -(CH₂)₂-N(C₄H₉)-(CH₂)₂-SO₂-Ø.

Of special interest are compounds of formula (I) substituted by azo metal

complex radicals such as, for example,

also compounds of formula (II) wherein two radicals of formula (I) are linked via

- 15 -

Those preferences apply to each of the sub-structures contained in formula (I) or (II), in each case independently of any other sub-structures which may be present, provided that the condition inherent in formula (I) or (II) is fulfilled,

i.e. that the resulting compound does not have an excess positive or negative charge. Sub-structures of formula (I) or (II) are to be understood as including their three components carbopyronine, $(X^m)_p$ and $(Y^{n+})_q$ that are not bonded to one another.

Special preference is given also to compounds of formula (I) or (II) wherein Y^{n+} is $[NH_2R_{38}R_{39}]^+$, R_{38} being hydrogen or $C_1\text{-}C_{12}$ alkyl and R_{39} being $C_1\text{-}C_{24}$ alkyl or $C_7\text{-}C_{24}$ aralkyl, and R_{38} and R_{39} together having from 8 to 25 carbon atoms.

Special preference is given also to compounds of formula (I) or (II) wherein m and n are each the number 1, p is a number from 1 to $2\frac{1}{2}$, and q is a number from 0 to $1\frac{1}{2}$, the sum of positive charges in formula (I) or (II) being equal to the sum of negative charges.

Very special preference is given to the compounds of formula $[G^+]_1 \cdot [Q^-]_1$ (V) or $[G^+]_1(F)_r(Cl)_s \cdot [Q^-]_1$ (VI), wherein G^+ is a cation selected from the group consisting of

- 17 -

(G35),

(G36),

(G37),

(G38),

(G39),

(G40),

(G41),

(G42),

(G43),

(G44),

and tautomers thereof, r is a number from 1 to 6, s is a number from 1 to 4, and Q⁻ is an organometallic anion selected from the group consisting of

23.

- 24 -

- 25 -

- 26 -

In formula (VI), preferably r is 0 and s is 1 or 2, or especially r is 1 and s is 0,

for example compounds wherein G⁺ is

The compounds of formulae (I) and (II) are in some cases known compounds which can be found, for example, in the prior art mentioned above. Some of them are new, but they can be prepared analogously to the known compounds by methods known *per se*, for example by methods disclosed in J. Chem. Soc. III 1963 / 2655-2662, J. Chem. Soc. (B) 1967 / 91-92, J. Chem. Soc. (B) 1969 / 1068-1071, J. Chem. Soc. (B) 1971 / 319-324, J. Chem. Soc. (B) 1971 / 1468-1471 or Heterocycles 21/1, 167-190 [1984]. The compounds used according to the invention can also be prepared from their leuco forms, some of which are known for photographic and electrophotographic applications, according to methods known to the person skilled in the art. Metal complexes, preferably those of formula (III), are well known from the specialist literature. In particular, they may be those metal complexes described in GB 1 599 812 or EP 450 421, and reference is made expressly to the teaching contained therein.

Compounds of formula (I) or their precursors are preferably prepared by

oxidation of a compound of formula

been found, most surprisingly, that liquid acids, for example acetic acid, are especially advantageous solvents and (meta)periodate is an especially advantageous oxidising agent, especially in combination. The reaction

proceeds more selectively and the compounds in question are obtained in better yield and better purity, which results in better application-related properties in optical storage media. Ammonium (meta)periodates, especially tetrabutylammonium (meta)periodate, and acetic acid, especially glacial acetic acid, are particularly advantageous.

The invention accordingly relates also to a process for the preparation of a compound of formula (I), wherein a compound of structure

is oxidised in the presence of a C₁-C₁₈carboxylic acid. The amount of C₁-C₁₈carboxylic acid is advantageously from 0.1 to 10 000 parts by weight, based on (X).

The carbopyronine dyes used according to the invention have in ethanolic solution a narrow absorption band having its maximum at from 540 to 640 nm. Very surprisingly, they also have a comparatively weak tendency towards agglomeration in the solid state, so that the absorption curve remains advantageously narrow also in the solid state. This is true especially in the presence of metal-containing anions (X^{m-})_p, for example the metal complex anions indicated above.

The carbopyronine dyes used according to the invention also have, in the form of a solid film, as used in optical storage media, at the longer wavelength flank of the absorption band a high refractive index which preferably achieves a peak value of from 2.0 to 3.0 in the range of from 600 to 700 nm, so that a medium having high reflectivity as well as high sensitivity and good playback characteristics in the desired spectral range is achieved.

The substrate, which functions as support for the layers applied thereto, is advantageously semi-transparent ($T \geq 10\%$) or preferably transparent ($T \geq 90\%$). The support can have a thickness of from 0.01 to 10 mm, preferably from 0.1

to 5 mm.

The recording layer is preferably arranged between the transparent substrate and the reflecting layer. The thickness of the recording layer is from 10 to 1000 nm, preferably from 30 to 300 nm, especially about 80 nm, for example from 60 to 120 nm. The absorption of the recording layer is typically from 0.1 to 1.0 at the absorption maximum. The layer thickness is very especially chosen in known manner depending upon the respective refractive indices in the non-written state and in the written state at the reading wavelength, so that in the non-written state constructive interference is obtained, but in the written state destructive interference is obtained, or vice versa.

The reflecting layer, the thickness of which can be from 10 to 150 nm, preferably has high reflectivity ($R \geq 45\%$, especially $R \geq 60\%$), coupled with low transparency ($T \leq 10\%$). In further embodiments, for example in the case of media having a plurality of recording layers, the reflector layer may likewise be semi-transparent, that is to say may have comparatively high transparency (for example $T \geq 50\%$) and low reflectivity (for example $R \leq 30\%$).

The uppermost layer, for example the reflective layer or the recording layer, depending upon the layer structure, is advantageously additionally provided with a protective layer having a thickness of from 0.1 to 1000 μm , preferably from 0.1 to 50 μm , especially from 0.5 to 15 μm . Such a protective layer can, if desired, serve also as adhesion promoter for a second substrate layer applied thereto, which is preferably from 0.1 to 5 mm thick and consists of the same material as the support substrate.

The reflectivity of the entire recording medium is preferably at least 15%, especially at least 40%.

The main features of the recording layer according to the invention are the very high initial reflectivity in the said wavelength range of the laser diodes, which can be modified with especially high sensitivity; the high refractive index; the narrow absorption band in the solid state; the good uniformity of the script width at different pulse durations; the good light stability; and the good solubility in polar solvents.

The recording medium according to the invention is neither writable nor readable using the infra-red laser diodes of customary CD apparatus in accordance with the requirements of the Orange Book Standard, because at 780 nm the refractive indices (n) characteristically lie between 1.4 and 1.9 and their imaginary components (k) between 0 and a maximum of 0.04. As a result, the risk of damage in the event of an erroneous attempt at writing using an apparatus not capable of high resolution is largely averted, which is of advantage. The use of dyes of formula (I) results in advantageously homogeneous, amorphous and low-scatter recording layers having a high refractive index, and the absorption edge is surprisingly especially steep even in the solid phase. Further advantages are high light stability in daylight and under laser radiation of low power density with, at the same time, high sensitivity under laser radiation of high power density, uniform script width, high contrast, and also good thermal stability and storage stability.

At a relatively high recording speed, the results obtained are surprisingly better than with previously known recording media. The marks are more precisely defined relative to the surrounding medium, and thermally induced deformations do not occur. The error rate (BLER) and the statistical variations in mark length (jitter) are also low both at normal recording speed and at relatively high recording speed, so that an error-free recording and playback can be achieved over a large speed range. There are virtually no rejects even at high recording speed, and the reading of written media is not slowed down by the correction of errors. The advantages are obtained in the entire range of from 600 to 700 nm (preferably from 630 to 690 nm), but are especially marked at from 640 to 680 nm, more especially from 650 to 670 nm, particularly at 658 ± 5 nm.

Suitable substrates are, for example, glass, minerals, ceramics and thermo-setting or thermoplastic plastics. Preferred supports are glass and homo- or co-polymeric plastics. Suitable plastics are, for example, thermoplastic polycarbonates, polyamides, polyesters, polyacrylates and polymethacrylates, polyurethanes, polyolefins, polyvinyl chloride, polyvinylidene fluoride, polyimides, thermosetting polyesters and epoxy resins. The substrate can be in pure form or may also comprise customary additives, for example UV absorbers or dyes, as proposed e.g. in JP 04/167 239 as light-stabilisers for

the recording layer. In the latter case it may be advantageous for the dye added to the support substrate to have an absorption maximum hypsochromically shifted relative to the dye of the recording layer by at least 10 nm, preferably by at least 20 nm.

The substrate is advantageously transparent over at least a portion of the range from 600 to 700 nm (preferably as indicated above), so that it is permeable to at least 90% of the incident light of the writing or readout wavelength. The substrate has preferably on the coating side a spiral guide groove having a groove depth of from 50 to 500 nm, a groove width of from 0.2 to 0.8 µm and a track spacing between two turns of from 0.4 to 1.6 µm, especially having a groove depth of from 100 to 200 nm, a groove width of 0.3 µm and a spacing between two turns of from 0.6 to 0.8 µm. The storage media according to the invention are therefore suitable especially advantageously for the optical recording of DVD media having the currently customary pit width of 0.4 µm and track spacing of 0.74 µm. The increased recording speed relative to known media allows synchronous recording or, for special effects, even accelerated recording of video sequences with excellent image quality.

The recording layer, instead of comprising a single compound of formula (I) or (II), may also comprise a mixture of such compounds having, for example, 2, 3, 4 or 5 carbopyronine dyes according to the invention. By the use of mixtures, for example mixtures of isomers or homologues as well as mixtures of different structures, the solubility can often be increased and/or the amorphous content improved. If desired, mixtures of ion pair compounds may have different anions, different cations or both different anions and different cations.

For a further increase in stability it is also possible, if desired, to add known stabilisers in customary amounts, for example a nickel dithiolate described in JP 04/025 493 as light stabiliser.

The recording layer comprises a compound of formula (I) or (II) or a mixture of such compounds advantageously in an amount sufficient to have a substantial influence on the refractive index, for example at least 30% by weight, preferably at least 60% by weight, especially at least 80% by weight. The recording layer can especially valuably comprise a compound of formula (I) or a mixture

of a plurality of such compounds as main component, or may consist exclusively or substantially of one or more compounds of formula (I).

Further customary constituents are possible, for example other chromophores (for example those disclosed in WO-01/75873, or others having an absorption maximum at from 300 to 1000 nm), stabilisers, $^1\text{O}_2$ -, triplet- or luminescence-quenchers, melting-point reducers, decomposition accelerators or any other additives that have already been described in optical recording media. Preferably, stabilisers or fluorescence-quenchers are added if desired.

When the recording layer comprises further chromophores, they may in principle be any dye that can be decomposed or modified by the laser radiation during the recording, or they may be inert towards the laser radiation. When the further chromophores are decomposed or modified by the laser radiation, this can take place directly by absorption of the laser radiation or can be induced indirectly by the decomposition of the compounds of formula (I) or (II) according to the invention, for example thermally.

Naturally, further chromophores or coloured stabilisers may influence the optical properties of the recording layer. It is therefore preferable to use further chromophores or coloured stabilisers, the optical properties of which conform as far as possible to those of the compounds formula (I) or (II) or are as different as possible, or the amount of further chromophores is kept small.

When further chromophores having optical properties that conform as far as possible to those of compounds formula (I) or (II) are used, preferably this should be the case in the range of the longest-wavelength absorption flank. Preferably the wavelengths of the inversion points of the further chromophores and of the compounds of formula (I) or (II) are a maximum of 20 nm, especially a maximum of 10 nm, apart. In that case the further chromophores and the compounds of formula (I) or (II) should exhibit similar behaviour in respect of the laser radiation, so that it is possible to use as further chromophores known recording agents the action of which is synergistically enhanced or heightened by the compounds of formula (I) or (II).

When further chromophores or coloured stabilisers having optical properties that are as different as possible from those of compounds of formula (I) or (II)

are used, they advantageously have an absorption maximum that is hypsochromically or bathochromically shifted relative to the dye of formula (I) or (II). In that case the absorption maxima are preferably at least 50 nm, especially at least 100 nm, apart. Examples thereof are UV absorbers that are hypsochromic to the dye of formula (I) or (II), or coloured stabilisers that are bathochromic to the dye of formula (I) or (II) and have absorption maxima lying, for example, in the NIR or IR range. Other dyes can also be added for the purpose of colour-coded identification, colour-masking ("diamond dyes") or enhancing the aesthetic appearance of the recording layer. In all those cases, the further chromophores or coloured stabilisers should preferably exhibit behaviour towards light and laser radiation that is as inert as possible.

When another dye is added in order to modify the optical properties of the compounds of formula (I) or (II), the amount thereof is dependent upon the optical properties to be achieved. The person skilled in the art will find little difficulty in varying the ratio of additional dye to compound of formula (I) or (II) until he obtains his desired result.

When chromophores or coloured stabilisers are used for other purposes, the amount thereof should preferably be small so that their contribution to the total absorption of the recording layer in the range of from 600 to 700 nm is a maximum of 20%, preferably a maximum of 10%. In such a case, the amount of additional dye or stabiliser is advantageously a maximum of 50% by weight, preferably a maximum of 10% by weight, based on the recording layer..

Most preferably, however, no additional chromophore is added, unless it is a coloured stabiliser.

Further chromophores that can be used in the recording layer in addition to the compounds of formula (I) or (II) are, for example, cyanines and cyanine metal complexes (US 5 958 650), styryl compounds (US-6 103 331), oxonol dyes (EP-A-833 314), azo dyes and azo metal complexes (JP-A-11/028865), phthalocyanines (EP-A-232 427, EP-A-337 209, EP-A-373 643, EP-A-463 550, EP-A-492 508, EP-A-509 423, EP-A-511 590, EP-A-513 370, EP-A-514 799, EP-A-518 213, EP-A-519 419, EP-A-519 423, EP-A-575 816, EP-A-600 427, EP-A-676 751, EP-A-712 904, WO-98/14520, WO-00/09522, PCT/EP-02/03945), porphyrins and azaporphyrins (EP-A-822 546, US-5 998 093),

dipyrromethene dyes and metal chelate compounds thereof (EP-A-822 544, EP-A-903 733), xanthene dyes and metal complex salts thereof (US-5 851 621) or quadratic acid compounds (EP-A-568 877), or oxazines, dioxazines, diaza-styryls, formazans, anthraquinones or phenothiazines; this list is on no account exhaustive and the person skilled in the art will interpret the list as including further known dyes.

Stabilisers, $^1\text{O}_2$ -, triplet- or luminescence-quenchers are, for example, metal complexes of N- or S-containing enolates, phenolates, bisphenolates, thiolates or bisthiolates or of azo, azomethine or formazan dyes, such as bis(4-dimethylaminodithiobenzil)nickel [CAS N° 38465-55-3], $^{\circ}\text{Irgalan Bordeaux EL}$, $^{\circ}\text{Cibafast N}$ or similar compounds, hindered phenols and derivatives thereof (optionally also as counter-ions X), such as $^{\circ}\text{Cibafast AO}$, o-hydroxyphenyl-triazoles or -triazines or other UV absorbers, such as $^{\circ}\text{Cibafast W}$ or $^{\circ}\text{Cibafast P}$ or hindered amines (TEMPO or HALS, also as nitroxides or NOR-HALS, optionally also as counter-ions X), and also as cations diimmonium, ParaquatTM or OrthoquatTM salts, such as $^{\circ}\text{Kayasorb IRG 022}$, $^{\circ}\text{Kayasorb IRG 040}$, optionally also as radical ions, such as N,N,N',N'-tetrakis(4-dibutylaminophenyl)-p-phenylene-amine-ammonium hexafluorophosphate, hexafluoroantimonate or perchlorate. The latter are available from Organica (Wolfen / DE); $^{\circ}\text{Kayasorb}$ brands are available from Nippon Kayaku Co. Ltd., and $^{\circ}\text{Irgalan}$ and $^{\circ}\text{Cibafast}$ brands are available from Ciba Spezialitätenchemie AG.

Many such structures are known, some of them also in connection with optical recording media, for example from US-5 219 707, JP-A-06/199045, JP-A-07/76169, JP-A-07/262604 or JP-A-2000/272241. They may be, for example, salts of the metal complex anions disclosed above with any desired cations, for example the cations disclosed above.

Also suitable are neutral metal complexes, for example those metal complexes disclosed in EP 0 822 544, EP 0 844 243, EP 0 903 733, EP 0 996 123, EP 1 056 078, EP 1 130 584 or US 6 162 520, for example

of the formula (L₃)M₂(L₅) (VII), (L₆)M₂(L₇) (VIII) or M₂(L₈) (IX), wherein L₅ is C₁-C₁₂alkyl-OH, C₆-C₁₂aryl-OH, C₇-C₁₂aralkyl-OH, C₁-C₁₂alkyl-SH, C₆-C₁₂aryl-SH, C₇-C₁₂aralkyl-SH, C₁-C₁₂alkyl-NH₂, C₆-C₁₂aryl-NH₂, C₇-C₁₂aralkyl-NH₂, di-C₁-C₁₂alkyl-NH, di-C₆-C₁₂aryl-NH, di-C₇-C₁₂aralkyl-NH, tri-C₁-C₁₂alkyl-N, tri-C₆-C₁₂aryl-N or tri-C₇-C₁₂aralkyl-N,

M₂ and R₁₆ to R₂₁ being as defined above.

A particular example of an additive of formula (IX) that may be mentioned is a

copper complex, illustrated e.g. by a compound of formula

A particular example of an additive of formula (VII) that may be mentioned is a nickel bisphenolate, illustrated e.g. by the compound of formula

The person skilled in the art will know from other optical information media, or will easily identify, which additives in which concentration are best suited to which purpose. Suitable concentrations of additives are, for example, from 0.001 to 1000% by weight, preferably from 1 to 50% by weight, based on the recording medium of formula (I) or (II).

The recording medium according to the invention, in addition to comprising compounds of formula (I) or (II), may additionally comprise salts, for example ammonium chloride, pentadecylammonium chloride, sodium chloride, sodium sulfate, sodium methyl sulfonate or sodium methyl sulfate, the ions of which may originate e.g. from the components used. The additional salts, if present, may be present preferably in amounts of up to 20% by weight, based on the total weight of the recording layer.

Reflecting materials suitable for the reflective layer include especially metals, which provide good reflection of the laser radiation used for recording and

playback, for example the metals of Main Groups III, IV and V and of the Sub-Groups of the Periodic Table of the Elements. Al, In, Sn, Pb, Sb, Bi, Cu, Ag, Au, Zn, Cd, Hg, Sc, Y, La, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu and alloys thereof are especially suitable. Special preference is given to a reflective layer of aluminium, silver, copper, gold or an alloy thereof, on account of their high reflectivity and ease of production.

Materials suitable for the protective layer include chiefly plastics, which are applied in a thin layer to the support or the uppermost layer either directly or with the aid of adhesive layers. It is advantageous to select mechanically and thermally stable plastics having good surface properties, which may be modified further, for example written. The plastics may be thermosetting plastics and thermoplastic plastics. Preference is given to radiation-cured (e.g. using UV radiation) protective layers, which are particularly simple and economical to produce. A wide variety of radiation-curable materials are known. Examples of radiation-curable monomers and oligomers are acrylates and methacrylates of diols, triols and tetrols, polyimides of aromatic tetracarboxylic acids and aromatic diamines having C₁-C₄alkyl groups in at least two ortho-positions of the amino groups, and oligomers with dialkylmaleinimidyl groups, e.g. dimethylmaleinimidyl groups.

The recording media according to the invention may also have additional layers, for example interference layers. It is also possible to construct recording media having a plurality of (for example two) recording layers. The structure and the use of such materials are known to the person skilled in the art. Preferred, if present, are interference layers that are arranged between the recording layer and the reflecting layer and/or between the recording layer and the substrate and consist of a dielectric material, for example as described in EP 353 393 of TiO₂, Si₃N₄, ZnS or silicone resins.

The recording media according to the invention can be produced by processes known *per se*, various methods of coating being employable depending upon the materials used and their function.

Suitable coating methods are, for example, immersion, pouring, brush-coating, blade-application and spin-coating, as well as vapour-deposition methods

carried out under a high vacuum. When pouring methods are used, for example, solutions in organic solvents are generally used. When solvents are employed, care should be taken that the supports used are insensitive to those solvents. Suitable coating methods and solvents are described, for example, in EP-A-401 791.

The recording layer is preferably applied by spin-coating with a dye solution, solvents that have proved satisfactory being especially alcohols, e.g. 2-methoxyethanol, n-propanol, isopropanol, isobutanol, n-butanol, amyl alcohol or 3-methyl-1-butanol or preferably fluorinated alcohols, e.g. 2,2,2-trifluoro-ethanol or 2,2,3,3-tetrafluoro-1-propanol, and mixtures thereof. It will be understood that other solvents or solvent mixtures can also be used, for example those solvent mixtures described in EP-A-511 598 and EP-A-833 316. Ethers (dibutyl ether), ketones (2,6-dimethyl-4-heptanone, 5-methyl-2-hexanone) or saturated or unsaturated hydrocarbons (toluene, xylene) can also be used, for example in the form of mixtures (e.g. dibutyl ether / 2,6-dimethyl-4-heptanone) or mixed components.

The person skilled in the art of spin-coating will in general routinely try out all the solvents with which he is familiar, as well as binary and ternary mixtures thereof, in order to discover the solvents or solvent mixtures which result in a high-quality and, at the same time, cost-effective recording layer containing the solid components of his choice. Known methods of process engineering can also be employed in such optimisation procedures, so that the number of experiments to be carried out can be kept to a minimum.

The invention therefore relates also to a method of producing an optical recording medium, wherein a solution of a compound of formula (I) in an organic solvent is applied to a substrate having pits. The application is preferably carried out by spin-coating.

The application of the metallic reflective layer is preferably effected by sputtering, vapour-deposition *in vacuo* or by chemical vapour deposition (CVD). The sputtering technique is especially preferred for the application of the metallic reflective layer on account of the high degree of adhesion to the support. Such techniques are known and are described in specialist literature (e.g. J.L. Vossen and W. Kern, "Thin Film Processes", Academic Press, 1978).

The structure of the recording medium according to the invention is governed primarily by the readout method; known function principles include the measurement of the change in the transmission or, preferably, in the reflection, but it is also known to measure, for example, the fluorescence instead of the transmission or reflection.

When the recording material is structured for a change in reflection, the following structures, for example, can be used: transparent support / recording layer (optionally multilayered) / reflective layer and, if expedient, protective layer (not necessarily transparent); or support (not necessarily transparent) / reflective layer / recording layer and, if expedient, transparent protective layer. In the first case, the light is incident from the support side, whereas in the latter case the radiation is incident from the recording layer side or, where applicable, from the protective layer side. In both cases the light detector is located on the same side as the light source. The first-mentioned structure of the recording material to be used according to the invention is generally preferred.

When the recording material is structured for a change in light transmission, the following different structure, for example, comes into consideration: transparent support/ recording layer (optionally multilayered) and, if expedient, transparent protective layer. The light for recording and for readout can be incident either from the support side or from the recording layer side or, where applicable, from the protective layer side, the light detector in this case always being located on the opposite side.

Suitable lasers are those having a wavelength of 600-700 nm, for example commercially available lasers having a wavelength of 602, 612, 633, 635, 647, 650, 670 or 680 nm, especially semi-conductor lasers, such as GaAsAl, InGaAlP or GaAs laser diodes having a wavelength especially of about 635, 650 or 658 nm. The recording is effected, for example, point for point in a manner known *per se*, by modulating the laser in accordance with the mark lengths and focussing its radiation onto the recording layer. It is known from the specialist literature that other methods are currently being developed which may also be suitable for use.

The process according to the invention allows the storage of information with

great reliability and stability, distinguished by very good mechanical and thermal stability and by high light stability and by sharp boundary zones of the pits. Special advantages include the high contrast, the low jitter and the surprisingly high signal/noise ratio, so that excellent readout is achieved. The high storage capacity is especially valuable in the field of video.

The readout of information is carried out according to methods known *per se* by registering the change in absorption or reflection using laser radiation, for example as described in "CD-Player und R-DAT Recorder" (Claus Biaesch-Wiepke, Vogel Buchverlag, Würzburg 1992).

The information-containing medium according to the invention is especially an optical information material of the WORM type. It may be used, for example, as a playable DVD (digital versatile disk), as storage material for a computer or as an identification and security card or for the production of diffractive optical elements, for example holograms.

The invention accordingly relates also to a method for the optical recording, storage and playback of information; wherein a recording medium according to the invention is used. The recording and the playback advantageously take place in a wavelength range of from 600 to 700 nm.

The following Examples illustrate the invention in greater detail:

Example 1 : 98.22 g of N-[7-(dimethylamino)-9,9-dimethyl-2(9H)-anthracenylidene]-N-methyl-perchlorate are dissolved in 25 litres of ethanol. Separately, 256.25 g of the sodium salt of the metal complex of formula Q20 (in each case based on dry weight) are then dissolved in 40 litres of ethanol, with heating to 65°C. After cooling to 23°C, the two solutions are combined (for example by pumping the second solution into the first), stirred for 30 minutes to complete the reaction and clarified by filtration. The solution is concentrated by evaporation under a low vacuum using a rotary evaporator with a water bath at a temperature of about 65°C, yielding 353.63 g of crude product. 15 litres of water are added to the crude product and the mixture is treated mechanically and/or by ultrasound for 30 minutes at 10-20°C in order to dissolve the inorganic salts. After filtration and washing with 10 litres of water, the filtration residue is dried at 80°C / $1.6 \cdot 10^3$ Pa , yielding 322.30 g of the

· 43 ·

product of formula

Example 2 : The procedure is as in Example 1, but instead of N-[7-(dimethylamino)-9,9-dimethyl-2(9H)-anthracenylidene]-N-methyl-perchlorate there is used an equimolar amount of the product of formula

Example 3 : The procedure is as in Example 1, but instead of N-[7-(dimethylamino)-9,9-dimethyl-2(9H)-anthracenylidene]-N-methyl-perchlorate there is used an equimolar amount of the product of formula

Example 4 : The procedure is as in Example 1, but instead of N-[7-(dimethylamino)-9,9-dimethyl-2(9H)-anthracenylidene]-N-methyl-perchlorate there is used an equimolar amount of the product of formula

· 44 ·

Example 5 : The procedure is as in Example 1, but instead of N-[7-(dimethylamino)-9,9-dimethyl-2(9H)-anthracenylidene]-N-methyl-perchlorate there is used an equimolar amount of the product of formula .

Example 6 : The procedure is as in Example 1, but instead of the metal complex of formula Q20 there is used an equimolar amount of the metal complex of formula Q3.

Example 7 : 2% by weight of the product according to Example 1 are dissolved in 2,2,3,3-tetrafluoro-1-propanol and the solution is filtered through a Teflon filter of pore size 0.2 µm and applied by spin-coating at 1000 rev/min to the surface of a 0.6 mm thick, grooved polycarbonate disc (groove depth: 170 nm, groove width: 350 nm, track spacing: 0.74 µm) of 120 mm diameter. The excess solution is spun off by increasing the rotational speed. On evaporation of the solvent, the dye remains behind in the form of a uniform, amorphous solid layer. After drying in a circulating-air oven at 70°C (10 min), the solid layer exhibits an absorption of 0.45 at 625 nm. In a vacuum coating apparatus (Twister™, Balzers Unaxis), a 60 nm thick silver layer is then applied to the recording layer by atomisation. Then a 6 µm thick protective layer of a UV-curable photopolymer (650-020, DSM) is applied thereto by means of spin-coating. The recording support exhibits a reflectivity of 47% at 658 nm. The optical constants (absorption maximum λ_{\max} , refractive index at 658 nm n_{658} ,

· 45 ·

absorption coefficient at 658 nm k_{658}) are determined reflectometrically (ETA-RT™, ETA-Optik Steag-Hamatech):

$$\lambda_{\max} = 624 \text{ nm} ; n_{658} = 2.29 ; k_{658} = 0.21 .$$

Using a commercial test apparatus (DVDT-R 650™, Expert Magnetics), marks are written into the active layer at a speed of 3.5 m/sec using a laser diode of wavelength 658 nm and laser power of 9.2 mW. Then, using the same test apparatus, the dynamic parameters are determined, there being obtained good measured values:

$$\text{DTC Jitter} = 8.8\% ; R14H = 47\% ; I14/I14H = 0.72 .$$

Example 8 : The procedure is as in Example 7, but the product according to Example 6 is used instead of the product according to Example 1. The optical constants are determined reflectometrically as in Example 7:

$$\lambda_{\max} = 626 \text{ nm} ; n_{658} = 2.55 ; k_{658} = 0.33 .$$

Comparison Example 9 : The procedure is as in Examples 7 and 8, but the product according to Example A8 of EP-A-0 805 441 is used instead of the products according to Examples 1 and 6. The optical constants are determined reflectometrically in the same way:

$$\lambda_{\max} = 581 \text{ nm} ; n_{658} = 1.94 ; k_{658} = 0.016 .$$

This disc cannot be written using commercial recording apparatus (Pioneer A03 DVD-R(G)) on account of insufficient sensitivity.

Examples 10-2094 : The procedure is as in Examples 7-9, but the following compounds of formula $[G^+] \cdot [X^-]$, which can be prepared analogously to Examples 1-6, are used:

Ex.	$[G^+]$	$[X^-]$
10	G1	Q2
11	G2	Q2
12	G3	Q2
13	G4	Q2
14	G5	Q2
15	G6	Q2
16	G7	Q2
17	G8	Q2
18	G9	Q2

19	G10	Q2
20	G11	Q2
21	G12	Q2
22	G13	Q2
23	G14	Q2
24	G15	Q2
25	G16	Q2
26	G17	Q2
27	G18	Q2
28	G19	Q2

29	G20	Q2
30	G21	Q2
31	G22	Q2
32	G23	Q2
33	G24	Q2
34	G25	Q2
35	G26	Q2
36	G27	Q2
37	G28	Q2
38	G29	Q2

39	G30	Q2
40	G31	Q2
41	G32	Q2
42	G33	Q2
43	G34	Q2
44	G35	Q2
45	G36	Q2
46	G37	Q2
47	G38	Q2
48	G39	Q2
49	G40	Q2
50	G41	Q2
51	G42	Q2
52	G43	Q2
53	G44	Q2
54	G45	Q2
55	G46	Q2
56	G47	Q2
57	G48	Q2
58	G49	Q2
59	G50	Q2
60	G51	Q2
61	G52	Q2
62	G53	Q2
63	G54	Q2
64	G55	Q2
65	G56	Q2
66	G57	Q2
67	G58	Q2
68	G59	Q2
69	G60	Q2
70	G61	Q2
71	G62	Q2
72	G63	Q2
73	G64	Q2
74	G65	Q2
75	G66	Q2
76	G67	Q2
77	G68	Q2
78	G69	Q2
79	G70	Q2
80	G71	Q2
81	G72	Q2

82	G73	Q2
83	G74	Q2
84	G75	Q2
85	G76	Q2
86	G77	Q2
87	G78	Q2
88	G79	Q2
89	G80	Q2
90	G81	Q2
91	G82	Q2
92	G83	Q2
93	G84	Q2
94	G85	Q2
95	G86	Q2
96	G87	Q2
97	G2	Q3
98	G3	Q3
99	G4	Q3
100	G5	Q3
101	G6	Q3
102	G7	Q3
103	G8	Q3
104	G9	Q3
105	G10	Q3
106	G11	Q3
107	G12	Q3
108	G13	Q3
109	G14	Q3
110	G15	Q3
111	G16	Q3
112	G17	Q3
113	G18	Q3
114	G19	Q3
115	G20	Q3
116	G21	Q3
117	G22	Q3
118	G23	Q3
119	G24	Q3
120	G25	Q3
121	G26	Q3
122	G27	Q3
123	G28	Q3
124	G29	Q3

125	G30	Q3
126	G31	Q3
127	G32	Q3
128	G33	Q3
129	G34	Q3
130	G35	Q3
131	G36	Q3
132	G37	Q3
133	G38	Q3
134	G39	Q3
135	G40	Q3
136	G41	Q3
137	G42	Q3
138	G43	Q3
139	G44	Q3
140	G45	Q3
141	G46	Q3
142	G47	Q3
143	G48	Q3
144	G49	Q3
145	G50	Q3
146	G51	Q3
147	G52	Q3
148	G53	Q3
149	G54	Q3
150	G55	Q3
151	G56	Q3
152	G57	Q3
153	G58	Q3
154	G59	Q3
155	G60	Q3
156	G61	Q3
157	G62	Q3
158	G63	Q3
159	G64	Q3
160	G65	Q3
161	G66	Q3
162	G67	Q3
163	G68	Q3
164	G69	Q3
165	G70	Q3
166	G71	Q3
167	G72	Q3

168	G73	Q3
169	G74	Q3
170	G75	Q3
171	G76	Q3
172	G77	Q3
173	G78	Q3
174	G79	Q3
175	G80	Q3
176	G81	Q3
177	G82	Q3
178	G83	Q3
179	G84	Q3
180	G85	Q3
181	G86	Q3
182	G87	Q3
183	G1	Q4
184	G2	Q4
185	G3	Q4
186	G4	Q4
187	G5	Q4
188	G6	Q4
189	G7	Q4
190	G8	Q4
191	G9	Q4
192	G10	Q4
193	G11	Q4
194	G12	Q4
195	G13	Q4
196	G14	Q4
197	G15	Q4
198	G16	Q4
199	G17	Q4
200	G18	Q4
201	G19	Q4
202	G20	Q4
203	G21	Q4
204	G22	Q4
205	G23	Q4
206	G24	Q4
207	G25	Q4
208	G26	Q4
209	G27	Q4
210	G28	Q4

211	G29	Q4
212	G30	Q4
213	G31	Q4
214	G32	Q4
215	G33	Q4
216	G34	Q4
217	G35	Q4
218	G36	Q4
219	G37	Q4
220	G38	Q4
221	G39	Q4
222	G40	Q4
223	G41	Q4
224	G42	Q4
225	G43	Q4
226	G44	Q4
227	G45	Q4
228	G46	Q4
229	G47	Q4
230	G48	Q4
231	G49	Q4
232	G50	Q4
233	G51	Q4
234	G52	Q4
235	G53	Q4
236	G54	Q4
237	G55	Q4
238	G56	Q4
239	G57	Q4
240	G58	Q4
241	G59	Q4
242	G60	Q4
243	G61	Q4
244	G62	Q4
245	G63	Q4
246	G64	Q4
247	G65	Q4
248	G66	Q4
249	G67	Q4
250	G68	Q4
251	G69	Q4
252	G70	Q4
253	G71	Q4

254	G72	Q4
255	G73	Q4
256	G74	Q4
257	G75	Q4
258	G76	Q4
259	G77	Q4
260	G78	Q4
261	G79	Q4
262	G80	Q4
263	G81	Q4
264	G82	Q4
265	G83	Q4
266	G84	Q4
267	G85	Q4
268	G86	Q4
269	G87	Q4
270	G1	Q5
271	G2	Q5
272	G3	Q5
273	G4	Q5
274	G5	Q5
275	G6	Q5
276	G7	Q5
277	G8	Q5
278	G9	Q5
279	G10	Q5
280	G11	Q5
281	G12	Q5
282	G13	Q5
283	G14	Q5
284	G15	Q5
285	G16	Q5
286	G17	Q5
287	G18	Q5
288	G19	Q5
289	G20	Q5
290	G21	Q5
291	G22	Q5
292	G23	Q5
293	G24	Q5
294	G25	Q5
295	G26	Q5
296	G27	Q5

297	G28	Q5
298	G29	Q5
299	G30	Q5
300	G31	Q5
301	G32	Q5
302	G33	Q5
303	G34	Q5
304	G35	Q5
305	G36	Q5
306	G37	Q5
307	G38	Q5
308	G39	Q5
309	G40	Q5
310	G41	Q5
311	G42	Q5
312	G43	Q5
313	G44	Q5
314	G45	Q5
315	G46	Q5
316	G47	Q5
317	G48	Q5
318	G49	Q5
319	G50	Q5
320	G51	Q5
321	G52	Q5
322	G53	Q5
323	G54	Q5
324	G55	Q5
325	G56	Q5
326	G57	Q5
327	G58	Q5
328	G59	Q5
329	G60	Q5
330	G61	Q5
331	G62	Q5
332	G63	Q5
333	G64	Q5
334	G65	Q5
335	G66	Q5
336	G67	Q5
337	G68	Q5
338	G69	Q5
339	G70	Q5

340	G71	Q5
341	G72	Q5
342	G73	Q5
343	G74	Q5
344	G75	Q5
345	G76	Q5
346	G77	Q5
347	G78	Q5
348	G79	Q5
349	G80	Q5
350	G81	Q5
351	G82	Q5
352	G83	Q5
353	G84	Q5
354	G85	Q5
355	G86	Q5
356	G87	Q5
357	G1	Q6
358	G2	Q6
359	G3	Q6
360	G4	Q6
361	G5	Q6
362	G6	Q6
363	G7	Q6
364	G8	Q6
365	G9	Q6
366	G10	Q6
367	G11	Q6
368	G12	Q6
369	G13	Q6
370	G14	Q6
371	G15	Q6
372	G16	Q6
373	G17	Q6
374	G18	Q6
375	G19	Q6
376	G20	Q6
377	G21	Q6
378	G22	Q6
379	G23	Q6
380	G24	Q6
381	G25	Q6
382	G26	Q6

383	G27	Q6
384	G28	Q6
385	G29	Q6
386	G30	Q6
387	G31	Q6
388	G32	Q6
389	G33	Q6
390	G34	Q6
391	G35	Q6
392	G36	Q6
393	G37	Q6
394	G38	Q6
395	G39	Q6
396	G40	Q6
397	G41	Q6
398	G42	Q6
399	G43	Q6
400	G44	Q6
401	G45	Q6
402	G46	Q6
403	G47	Q6
404	G48	Q6
405	G49	Q6
406	G50	Q6
407	G51	Q6
408	G52	Q6
409	G53	Q6
410	G54	Q6
411	G55	Q6
412	G56	Q6
413	G57	Q6
414	G58	Q6
415	G59	Q6
416	G60	Q6
417	G61	Q6
418	G62	Q6
419	G63	Q6
420	G64	Q6
421	G65	Q6
422	G66	Q6
423	G67	Q6
424	G68	Q6
425	G69	Q6

426	G70	Q6
427	G71	Q6
428	G72	Q6
429	G73	Q6
430	G74	Q6
431	G75	Q6
432	G76	Q6
433	G77	Q6
434	G78	Q6
435	G79	Q6
436	G80	Q6
437	G81	Q6
438	G82	Q6
439	G83	Q6
440	G84	Q6
441	G85	Q6
442	G86	Q6
443	G87	Q6
444	G1	Q7
445	G2	Q7
446	G3	Q7
447	G4	Q7
448	G5	Q7
449	G6	Q7
450	G7	Q7
451	G8	Q7
452	G9	Q7
453	G10	Q7
454	G11	Q7
455	G12	Q7
456	G13	Q7
457	G14	Q7
458	G15	Q7
459	G16	Q7
460	G17	Q7
461	G18	Q7
462	G19	Q7
463	G20	Q7
464	G21	Q7
465	G22	Q7
466	G23	Q7
467	G24	Q7
468	G25	Q7

469	G26	Q7
470	G27	Q7
471	G28	Q7
472	G29	Q7
473	G30	Q7
474	G31	Q7
475	G32	Q7
476	G33	Q7
477	G34	Q7
478	G35	Q7
479	G36	Q7
480	G37	Q7
481	G38	Q7
482	G39	Q7
483	G40	Q7
484	G41	Q7
485	G42	Q7
486	G43	Q7
487	G44	Q7
488	G45	Q7
489	G46	Q7
490	G47	Q7
491	G48	Q7
492	G49	Q7
493	G50	Q7
494	G51	Q7
495	G52	Q7
496	G53	Q7
497	G54	Q7
498	G55	Q7
499	G56	Q7
500	G57	Q7
501	G58	Q7
502	G59	Q7
503	G60	Q7
504	G61	Q7
505	G62	Q7
506	G63	Q7
507	G64	Q7
508	G65	Q7
509	G66	Q7
510	G67	Q7
511	G68	Q7

512	G69	Q7
513	G70	Q7
514	G71	Q7
515	G72	Q7
516	G73	Q7
517	G74	Q7
518	G75	Q7
519	G76	Q7
520	G77	Q7
521	G78	Q7
522	G79	Q7
523	G80	Q7
524	G81	Q7
525	G82	Q7
526	G83	Q7
527	G84	Q7
528	G85	Q7
529	G86	Q7
530	G87	Q7
531	G1	Q8
532	G2	Q8
533	G3	Q8
534	G4	Q8
535	G5	Q8
536	G6	Q8
537	G7	Q8
538	G8	Q8
539	G9	Q8
540	G10	Q8
541	G11	Q8
542	G12	Q8
543	G13	Q8
544	G14	Q8
545	G15	Q8
546	G16	Q8
547	G17	Q8
548	G18	Q8
549	G19	Q8
550	G20	Q8
551	G21	Q8
552	G22	Q8
553	G23	Q8
554	G24	Q8

555	G25	Q8
556	G26	Q8
557	G27	Q8
558	G28	Q8
559	G29	Q8
560	G30	Q8
561	G31	Q8
562	G32	Q8
563	G33	Q8
564	G34	Q8
565	G35	Q8
566	G36	Q8
567	G37	Q8
568	G38	Q8
569	G39	Q8
570	G40	Q8
571	G41	Q8
572	G42	Q8
573	G43	Q8
574	G44	Q8
575	G45	Q8
576	G46	Q8
577	G47	Q8
578	G48	Q8
579	G49	Q8
580	G50	Q8
581	G51	Q8
582	G52	Q8
583	G53	Q8
584	G54	Q8
585	G55	Q8
586	G56	Q8
587	G57	Q8
588	G58	Q8
589	G59	Q8
590	G60	Q8
591	G61	Q8
592	G62	Q8
593	G63	Q8
594	G64	Q8
595	G65	Q8
596	G66	Q8
597	G67	Q8

598	G68	Q8
599	G69	Q8
600	G70	Q8
601	G71	Q8
602	G72	Q8
603	G73	Q8
604	G74	Q8
605	G75	Q8
606	G76	Q8
607	G77	Q8
608	G78	Q8
609	G79	Q8
610	G80	Q8
611	G81	Q8
612	G82	Q8
613	G83	Q8
614	G84	Q8
615	G85	Q8
616	G86	Q8
617	G87	Q8
618	G1	Q9
619	G2	Q9
620	G3	Q9
621	G4	Q9
622	G5	Q9
623	G6	Q9
624	G7	Q9
625	G8	Q9
626	G9	Q9
627	G10	Q9
628	G11	Q9
629	G12	Q9
630	G13	Q9
631	G14	Q9
632	G15	Q9
633	G16	Q9
634	G17	Q9
635	G18	Q9
636	G19	Q9
637	G20	Q9
638	G21	Q9
639	G22	Q9
640	G23	Q9

641	G24	Q9
642	G25	Q9
643	G26	Q9
644	G27	Q9
645	G28	Q9
646	G29	Q9
647	G30	Q9
648	G31	Q9
649	G32	Q9
650	G33	Q9
651	G34	Q9
652	G35	Q9
653	G36	Q9
654	G37	Q9
655	G38	Q9
656	G39	Q9
657	G40	Q9
658	G41	Q9
659	G42	Q9
660	G43	Q9
661	G44	Q9
662	G45	Q9
663	G46	Q9
664	G47	Q9
665	G48	Q9
666	G49	Q9
667	G50	Q9
668	G51	Q9
669	G52	Q9
670	G53	Q9
671	G54	Q9
672	G55	Q9
673	G56	Q9
674	G57	Q9
675	G58	Q9
676	G59	Q9
677	G60	Q9
678	G61	Q9
679	G62	Q9
680	G63	Q9
681	G64	Q9
682	G65	Q9
683	G66	Q9

684	G67	Q9
685	G68	Q9
686	G69	Q9
687	G70	Q9
688	G71	Q9
689	G72	Q9
690	G73	Q9
691	G74	Q9
692	G75	Q9
693	G76	Q9
694	G77	Q9
695	G78	Q9
696	G79	Q9
697	G80	Q9
698	G81	Q9
699	G82	Q9
700	G83	Q9
701	G84	Q9
702	G85	Q9
703	G86	Q9
704	G87	Q9
705	G1	Q10
706	G2	Q10
707	G3	Q10
708	G4	Q10
709	G5	Q10
710	G6	Q10
711	G7	Q10
712	G8	Q10
713	G9	Q10
714	G10	Q10
715	G11	Q10
716	G12	Q10
717	G13	Q10
718	G14	Q10
719	G15	Q10
720	G16	Q10
721	G17	Q10
722	G18	Q10
723	G19	Q10
724	G20	Q10
725	G21	Q10
726	G22	Q10

727	G23	Q10
728	G24	Q10
729	G25	Q10
730	G26	Q10
731	G27	Q10
732	G28	Q10
733	G29	Q10
734	G30	Q10
735	G31	Q10
736	G32	Q10
737	G33	Q10
738	G34	Q10
739	G35	Q10
740	G36	Q10
741	G37	Q10
742	G38	Q10
743	G39	Q10
744	G40	Q10
745	G41	Q10
746	G42	Q10
747	G43	Q10
748	G44	Q10
749	G45	Q10
750	G46	Q10
751	G47	Q10
752	G48	Q10
753	G49	Q10
754	G50	Q10
755	G51	Q10
756	G52	Q10
757	G53	Q10
758	G54	Q10
759	G55	Q10
760	G56	Q10
761	G57	Q10
762	G58	Q10
763	G59	Q10
764	G60	Q10
765	G61	Q10
766	G62	Q10
767	G63	Q10
768	G64	Q10
769	G65	Q10

770	G66	Q10
771	G67	Q10
772	G68	Q10
773	G69	Q10
774	G70	Q10
775	G71	Q10
776	G72	Q10
777	G73	Q10
778	G74	Q10
779	G75	Q10
780	G76	Q10
781	G77	Q10
782	G78	Q10
783	G79	Q10
784	G80	Q10
785	G81	Q10
786	G82	Q10
787	G83	Q10
788	G84	Q10
789	G85	Q10
790	G86	Q10
791	G87	Q10
792	G1	Q11
793	G2	Q11
794	G3	Q11
795	G4	Q11
796	G5	Q11
797	G6	Q11
798	G7	Q11
799	G8	Q11
800	G9	Q11
801	G10	Q11
802	G11	Q11
803	G12	Q11
804	G13	Q11
805	G14	Q11
806	G15	Q11
807	G16	Q11
808	G17	Q11
809	G18	Q11
810	G19	Q11
811	G20	Q11
812	G21	Q11

813	G22	Q11
814	G23	Q11
815	G24	Q11
816	G25	Q11
817	G26	Q11
818	G27	Q11
819	G28	Q11
820	G29	Q11
821	G30	Q11
822	G31	Q11
823	G32	Q11
824	G33	Q11
825	G34	Q11
826	G35	Q11
827	G36	Q11
828	G37	Q11
829	G38	Q11
830	G39	Q11
831	G40	Q11
832	G41	Q11
833	G42	Q11
834	G43	Q11
835	G44	Q11
836	G45	Q11
837	G46	Q11
838	G47	Q11
839	G48	Q11
840	G49	Q11
841	G50	Q11
842	G51	Q11
843	G52	Q11
844	G53	Q11
845	G54	Q11
846	G55	Q11
847	G56	Q11
848	G57	Q11
849	G58	Q11
850	G59	Q11
851	G60	Q11
852	G61	Q11
853	G62	Q11
854	G63	Q11
855	G64	Q11

856	G65	Q11
857	G66	Q11
858	G67	Q11
859	G68	Q11
860	G69	Q11
861	G70	Q11
862	G71	Q11
863	G72	Q11
864	G73	Q11
865	G74	Q11
866	G75	Q11
867	G76	Q11
868	G77	Q11
869	G78	Q11
870	G79	Q11
871	G80	Q11
872	G81	Q11
873	G82	Q11
874	G83	Q11
875	G84	Q11
876	G85	Q11
877	G86	Q11
878	G87	Q11
879	G1	Q12
880	G2	Q12
881	G3	Q12
882	G4	Q12
883	G5	Q12
884	G6	Q12
885	G7	Q12
886	G8	Q12
887	G9	Q12
888	G10	Q12
889	G11	Q12
890	G12	Q12
891	G13	Q12
892	G14	Q12
893	G15	Q12
894	G16	Q12
895	G17	Q12
896	G18	Q12
897	G19	Q12
898	G20	Q12

899	G21	Q12
900	G22	Q12
901	G23	Q12
902	G24	Q12
903	G25	Q12
904	G26	Q12
905	G27	Q12
906	G28	Q12
907	G29	Q12
908	G30	Q12
909	G31	Q12
910	G32	Q12
911	G33	Q12
912	G34	Q12
913	G35	Q12
914	G36	Q12
915	G37	Q12
916	G38	Q12
917	G39	Q12
918	G40	Q12
919	G41	Q12
920	G42	Q12
921	G43	Q12
922	G44	Q12
923	G45	Q12
924	G46	Q12
925	G47	Q12
926	G48	Q12
927	G49	Q12
928	G50	Q12
929	G51	Q12
930	G52	Q12
931	G53	Q12
932	G54	Q12
933	G55	Q12
934	G56	Q12
935	G57	Q12
936	G58	Q12
937	G59	Q12
938	G60	Q12
939	G61	Q12
940	G62	Q12
941	G63	Q12

942	G64	Q12
943	G65	Q12
944	G66	Q12
945	G67	Q12
946	G68	Q12
947	G69	Q12
948	G70	Q12
949	G71	Q12
950	G72	Q12
951	G73	Q12
952	G74	Q12
953	G75	Q12
954	G76	Q12
955	G77	Q12
956	G78	Q12
957	G79	Q12
958	G80	Q12
959	G81	Q12
960	G82	Q12
961	G83	Q12
962	G84	Q12
963	G85	Q12
964	G86	Q12
965	G87	Q12
966	G1	Q13
967	G2	Q13
968	G3	Q13
969	G4	Q13
970	G5	Q13
971	G6	Q13
972	G7	Q13
973	G8	Q13
974	G9	Q13
975	G10	Q13
976	G11	Q13
977	G12	Q13
978	G13	Q13
979	G14	Q13
980	G15	Q13
981	G16	Q13
982	G17	Q13
983	G18	Q13
984	G19	Q13

985	G20	Q13
986	G21	Q13
987	G22	Q13
988	G23	Q13
989	G24	Q13
990	G25	Q13
991	G26	Q13
992	G27	Q13
993	G28	Q13
994	G29	Q13
995	G30	Q13
996	G31	Q13
997	G32	Q13
998	G33	Q13
999	G34	Q13
1000	G35	Q13
1001	G36	Q13
1002	G37	Q13
1003	G38	Q13
1004	G39	Q13
1005	G40	Q13
1006	G41	Q13
1007	G42	Q13
1008	G43	Q13
1009	G44	Q13
1010	G45	Q13
1011	G46	Q13
1012	G47	Q13
1013	G48	Q13
1014	G49	Q13
1015	G50	Q13
1016	G51	Q13
1017	G52	Q13
1018	G53	Q13
1019	G54	Q13
1020	G55	Q13
1021	G56	Q13
1022	G57	Q13
1023	G58	Q13
1024	G59	Q13
1025	G60	Q13
1026	G61	Q13
1027	G62	Q13

1028	G63	Q13
1029	G64	Q13
1030	G65	Q13
1031	G66	Q13
1032	G67	Q13
1033	G68	Q13
1034	G69	Q13
1035	G70	Q13
1036	G71	Q13
1037	G72	Q13
1038	G73	Q13
1039	G74	Q13
1040	G75	Q13
1041	G76	Q13
1042	G77	Q13
1043	G78	Q13
1044	G79	Q13
1045	G80	Q13
1046	G81	Q13
1047	G82	Q13
1048	G83	Q13
1049	G84	Q13
1050	G85	Q13
1051	G86	Q13
1052	G87	Q13
1053	G1	Q14
1054	G2	Q14
1055	G3	Q14
1056	G4	Q14
1057	G5	Q14
1058	G6	Q14
1059	G7	Q14
1060	G8	Q14
1061	G9	Q14
1062	G10	Q14
1063	G11	Q14
1064	G12	Q14
1065	G13	Q14
1066	G14	Q14
1067	G15	Q14
1068	G16	Q14
1069	G17	Q14
1070	G18	Q14

1071	G19	Q14
1072	G20	Q14
1073	G21	Q14
1074	G22	Q14
1075	G23	Q14
1076	G24	Q14
1077	G25	Q14
1078	G26	Q14
1079	G27	Q14
1080	G28	Q14
1081	G29	Q14
1082	G30	Q14
1083	G31	Q14
1084	G32	Q14
1085	G33	Q14
1086	G34	Q14
1087	G35	Q14
1088	G36	Q14
1089	G37	Q14
1090	G38	Q14
1091	G39	Q14
1092	G40	Q14
1093	G41	Q14
1094	G42	Q14
1095	G43	Q14
1096	G44	Q14
1097	G45	Q14
1098	G46	Q14
1099	G47	Q14
1100	G48	Q14
1101	G49	Q14
1102	G50	Q14
1103	G51	Q14
1104	G52	Q14
1105	G53	Q14
1106	G54	Q14
1107	G55	Q14
1108	G56	Q14
1109	G57	Q14
1110	G58	Q14
1111	G59	Q14
1112	G60	Q14
1113	G61	Q14

1114	G62	Q14
1115	G63	Q14
1116	G64	Q14
1117	G65	Q14
1118	G66	Q14
1119	G67	Q14
1120	G68	Q14
1121	G69	Q14
1122	G70	Q14
1123	G71	Q14
1124	G72	Q14
1125	G73	Q14
1126	G74	Q14
1127	G75	Q14
1128	G76	Q14
1129	G77	Q14
1130	G78	Q14
1131	G79	Q14
1132	G80	Q14
1133	G81	Q14
1134	G82	Q14
1135	G83	Q14
1136	G84	Q14
1137	G85	Q14
1138	G86	Q14
1139	G87	Q14
1140	G1	Q15
1141	G2	Q15
1142	G3	Q15
1143	G4	Q15
1144	G5	Q15
1145	G6	Q15
1146	G7	Q15
1147	G8	Q15
1148	G9	Q15
1149	G10	Q15
1150	G11	Q15
1151	G12	Q15
1152	G13	Q15
1153	G14	Q15
1154	G15	Q15
1155	G16	Q15
1156	G17	Q15

1157	G18	Q15
1158	G19	Q15
1159	G20	Q15
1160	G21	Q15
1161	G22	Q15
1162	G23	Q15
1163	G24	Q15
1164	G25	Q15
1165	G26	Q15
1166	G27	Q15
1167	G28	Q15
1168	G29	Q15
1169	G30	Q15
1170	G31	Q15
1171	G32	Q15
1172	G33	Q15
1173	G34	Q15
1174	G35	Q15
1175	G36	Q15
1176	G37	Q15
1177	G38	Q15
1178	G39	Q15
1179	G40	Q15
1180	G41	Q15
1181	G42	Q15
1182	G43	Q15
1183	G44	Q15
1184	G45	Q15
1185	G46	Q15
1186	G47	Q15
1187	G48	Q15
1188	G49	Q15
1189	G50	Q15
1190	G51	Q15
1191	G52	Q15
1192	G53	Q15
1193	G54	Q15
1194	G55	Q15
1195	G56	Q15
1196	G57	Q15
1197	G58	Q15
1198	G59	Q15
1199	G60	Q15

1200	G61	Q15
1201	G62	Q15
1202	G63	Q15
1203	G64	Q15
1204	G65	Q15
1205	G66	Q15
1206	G67	Q15
1207	G68	Q15
1208	G69	Q15
1209	G70	Q15
1210	G71	Q15
1211	G72	Q15
1212	G73	Q15
1213	G74	Q15
1214	G75	Q15
1215	G76	Q15
1216	G77	Q15
1217	G78	Q15
1218	G79	Q15
1219	G80	Q15
1220	G81	Q15
1221	G82	Q15
1222	G83	Q15
1223	G84	Q15
1224	G85	Q15
1225	G86	Q15
1226	G87	Q15
1227	G1	Q16
1228	G2	Q16
1229	G3	Q16
1230	G4	Q16
1231	G5	Q16
1232	G6	Q16
1233	G7	Q16
1234	G8	Q16
1235	G9	Q16
1236	G10	Q16
1237	G11	Q16
1238	G12	Q16
1239	G13	Q16
1240	G14	Q16
1241	G15	Q16
1242	G16	Q16

1243	G17	Q16
1244	G18	Q16
1245	G19	Q16
1246	G20	Q16
1247	G21	Q16
1248	G22	Q16
1249	G23	Q16
1250	G24	Q16
1251	G25	Q16
1252	G26	Q16
1253	G27	Q16
1254	G28	Q16
1255	G29	Q16
1256	G30	Q16
1257	G31	Q16
1258	G32	Q16
1259	G33	Q16
1260	G34	Q16
1261	G35	Q16
1262	G36	Q16
1263	G37	Q16
1264	G38	Q16
1265	G39	Q16
1266	G40	Q16
1267	G41	Q16
1268	G42	Q16
1269	G43	Q16
1270	G44	Q16
1271	G45	Q16
1272	G46	Q16
1273	G47	Q16
1274	G48	Q16
1275	G49	Q16
1276	G50	Q16
1277	G51	Q16
1278	G52	Q16
1279	G53	Q16
1280	G54	Q16
1281	G55	Q16
1282	G56	Q16
1283	G57	Q16
1284	G58	Q16
1285	G59	Q16

1286	G60	Q16
1287	G61	Q16
1288	G62	Q16
1289	G63	Q16
1290	G64	Q16
1291	G65	Q16
1292	G66	Q16
1293	G67	Q16
1294	G68	Q16
1295	G69	Q16
1296	G70	Q16
1297	G71	Q16
1298	G72	Q16
1299	G73	Q16
1300	G74	Q16
1301	G75	Q16
1302	G76	Q16
1303	G77	Q16
1304	G78	Q16
1305	G79	Q16
1306	G80	Q16
1307	G81	Q16
1308	G82	Q16
1309	G83	Q16
1310	G84	Q16
1311	G85	Q16
1312	G86	Q16
1313	G87	Q16
1314	G1	Q17
1315	G2	Q17
1316	G3	Q17
1317	G4	Q17
1318	G5	Q17
1319	G6	Q17
1320	G7	Q17
1321	G8	Q17
1322	G9	Q17
1323	G10	Q17
1324	G11	Q17
1325	G12	Q17
1326	G13	Q17
1327	G14	Q17
1328	G15	Q17

1329	G16	Q17
1330	G17	Q17
1331	G18	Q17
1332	G19	Q17
1333	G20	Q17
1334	G21	Q17
1335	G22	Q17
1336	G23	Q17
1337	G24	Q17
1338	G25	Q17
1339	G26	Q17
1340	G27	Q17
1341	G28	Q17
1342	G29	Q17
1343	G30	Q17
1344	G31	Q17
1345	G32	Q17
1346	G33	Q17
1347	G34	Q17
1348	G35	Q17
1349	G36	Q17
1350	G37	Q17
1351	G38	Q17
1352	G39	Q17
1353	G40	Q17
1354	G41	Q17
1355	G42	Q17
1356	G43	Q17
1357	G44	Q17
1358	G45	Q17
1359	G46	Q17
1360	G47	Q17
1361	G48	Q17
1362	G49	Q17
1363	G50	Q17
1364	G51	Q17
1365	G52	Q17
1366	G53	Q17
1367	G54	Q17
1368	G55	Q17
1369	G56	Q17
1370	G57	Q17
1371	G58	Q17

1372	G59	Q17
1373	G60	Q17
1374	G61	Q17
1375	G62	Q17
1376	G63	Q17
1377	G64	Q17
1378	G65	Q17
1379	G66	Q17
1380	G67	Q17
1381	G68	Q17
1382	G69	Q17
1383	G70	Q17
1384	G71	Q17
1385	G72	Q17
1386	G73	Q17
1387	G74	Q17
1388	G75	Q17
1389	G76	Q17
1390	G77	Q17
1391	G78	Q17
1392	G79	Q17
1393	G80	Q17
1394	G81	Q17
1395	G82	Q17
1396	G83	Q17
1397	G84	Q17
1398	G85	Q17
1399	G86	Q17
1400	G87	Q17
1401	G1	Q18
1402	G2	Q18
1403	G3	Q18
1404	G4	Q18
1405	G5	Q18
1406	G6	Q18
1407	G7	Q18
1408	G8	Q18
1409	G9	Q18
1410	G10	Q18
1411	G11	Q18
1412	G12	Q18
1413	G13	Q18
1414	G14	Q18

1415	G15	Q18
1416	G16	Q18
1417	G17	Q18
1418	G18	Q18
1419	G19	Q18
1420	G20	Q18
1421	G21	Q18
1422	G22	Q18
1423	G23	Q18
1424	G24	Q18
1425	G25	Q18
1426	G26	Q18
1427	G27	Q18
1428	G28	Q18
1429	G29	Q18
1430	G30	Q18
1431	G31	Q18
1432	G32	Q18
1433	G33	Q18
1434	G34	Q18
1435	G35	Q18
1436	G36	Q18
1437	G37	Q18
1438	G38	Q18
1439	G39	Q18
1440	G40	Q18
1441	G41	Q18
1442	G42	Q18
1443	G43	Q18
1444	G44	Q18
1445	G45	Q18
1446	G46	Q18
1447	G47	Q18
1448	G48	Q18
1449	G49	Q18
1450	G50	Q18
1451	G51	Q18
1452	G52	Q18
1453	G53	Q18
1454	G54	Q18
1455	G55	Q18
1456	G56	Q18
1457	G57	Q18

1458	G58	Q18
1459	G59	Q18
1460	G60	Q18
1461	G61	Q18
1462	G62	Q18
1463	G63	Q18
1464	G64	Q18
1465	G65	Q18
1466	G66	Q18
1467	G67	Q18
1468	G68	Q18
1469	G69	Q18
1470	G70	Q18
1471	G71	Q18
1472	G72	Q18
1473	G73	Q18
1474	G74	Q18
1475	G75	Q18
1476	G76	Q18
1477	G77	Q18
1478	G78	Q18
1479	G79	Q18
1480	G80	Q18
1481	G81	Q18
1482	G82	Q18
1483	G83	Q18
1484	G84	Q18
1485	G85	Q18
1486	G86	Q18
1487	G87	Q18
1488	G1	Q19
1489	G2	Q19
1490	G3	Q19
1491	G4	Q19
1492	G5	Q19
1493	G6	Q19
1494	G7	Q19
1495	G8	Q19
1496	G9	Q19
1497	G10	Q19
1498	G11	Q19
1499	G12	Q19
1500	G13	Q19

1501	G14	Q19
1502	G15	Q19
1503	G16	Q19
1504	G17	Q19
1505	G18	Q19
1506	G19	Q19
1507	G20	Q19
1508	G21	Q19
1509	G22	Q19
1510	G23	Q19
1511	G24	Q19
1512	G25	Q19
1513	G26	Q19
1514	G27	Q19
1515	G28	Q19
1516	G29	Q19
1517	G30	Q19
1518	G31	Q19
1519	G32	Q19
1520	G33	Q19
1521	G34	Q19
1522	G35	Q19
1523	G36	Q19
1524	G37	Q19
1525	G38	Q19
1526	G39	Q19
1527	G40	Q19
1528	G41	Q19
1529	G42	Q19
1530	G43	Q19
1531	G44	Q19
1532	G45	Q19
1533	G46	Q19
1534	G47	Q19
1535	G48	Q19
1536	G49	Q19
1537	G50	Q19
1538	G51	Q19
1539	G52	Q19
1540	G53	Q19
1541	G54	Q19
1542	G55	Q19
1543	G56	Q19

1544	G57	Q19
1545	G58	Q19
1546	G59	Q19
1547	G60	Q19
1548	G61	Q19
1549	G62	Q19
1550	G63	Q19
1551	G64	Q19
1552	G65	Q19
1553	G66	Q19
1554	G67	Q19
1555	G68	Q19
1556	G69	Q19
1557	G70	Q19
1558	G71	Q19
1559	G72	Q19
1560	G73	Q19
1561	G74	Q19
1562	G75	Q19
1563	G76	Q19
1564	G77	Q19
1565	G78	Q19
1566	G79	Q19
1567	G80	Q19
1568	G81	Q19
1569	G82	Q19
1570	G83	Q19
1571	G84	Q19
1572	G85	Q19
1573	G86	Q19
1574	G87	Q19
1575	G2	Q20
1576	G3	Q20
1577	G4	Q20
1578	G5	Q20
1579	G6	Q20
1580	G7	Q20
1581	G8	Q20
1582	G9	Q20
1583	G10	Q20
1584	G12	Q20
1585	G13	Q20
1586	G14	Q20

1587	G15	Q20
1588	G16	Q20
1589	G17	Q20
1590	G18	Q20
1591	G19	Q20
1592	G20	Q20
1593	G21	Q20
1594	G22	Q20
1595	G23	Q20
1596	G24	Q20
1597	G25	Q20
1598	G26	Q20
1599	G27	Q20
1600	G28	Q20
1601	G29	Q20
1602	G30	Q20
1603	G31	Q20
1604	G32	Q20
1605	G33	Q20
1606	G34	Q20
1607	G35	Q20
1608	G36	Q20
1609	G37	Q20
1610	G38	Q20
1611	G39	Q20
1612	G40	Q20
1613	G41	Q20
1614	G42	Q20
1615	G43	Q20
1616	G44	Q20
1617	G45	Q20
1618	G46	Q20
1619	G47	Q20
1620	G48	Q20
1621	G49	Q20
1622	G50	Q20
1623	G51	Q20
1624	G52	Q20
1625	G53	Q20
1626	G54	Q20
1627	G55	Q20
1628	G56	Q20
1629	G57	Q20

1630	G58	Q20
1631	G59	Q20
1632	G60	Q20
1633	G61	Q20
1634	G62	Q20
1635	G63	Q20
1636	G64	Q20
1637	G65	Q20
1638	G66	Q20
1639	G67	Q20
1640	G68	Q20
1641	G69	Q20
1642	G70	Q20
1643	G71	Q20
1644	G72	Q20
1645	G73	Q20
1646	G74	Q20
1647	G75	Q20
1648	G76	Q20
1649	G77	Q20
1650	G78	Q20
1651	G79	Q20
1652	G80	Q20
1653	G81	Q20
1654	G82	Q20
1655	G83	Q20
1656	G84	Q20
1657	G85	Q20
1658	G86	Q20
1659	G87	Q20
1660	G1	Q21
1661	G2	Q21
1662	G3	Q21
1663	G4	Q21
1664	G5	Q21
1665	G6	Q21
1666	G7	Q21
1667	G8	Q21
1668	G9	Q21
1669	G10	Q21
1670	G11	Q21
1671	G12	Q21
1672	G13	Q21

1673	G14	Q21
1674	G15	Q21
1675	G16	Q21
1676	G17	Q21
1677	G18	Q21
1678	G19	Q21
1679	G20	Q21
1680	G21	Q21
1681	G22	Q21
1682	G23	Q21
1683	G24	Q21
1684	G25	Q21
1685	G26	Q21
1686	G27	Q21
1687	G28	Q21
1688	G29	Q21
1689	G30	Q21
1690	G31	Q21
1691	G32	Q21
1692	G33	Q21
1693	G34	Q21
1694	G35	Q21
1695	G36	Q21
1696	G37	Q21
1697	G38	Q21
1698	G39	Q21
1699	G40	Q21
1700	G41	Q21
1701	G42	Q21
1702	G43	Q21
1703	G44	Q21
1704	G45	Q21
1705	G46	Q21
1706	G47	Q21
1707	G48	Q21
1708	G49	Q21
1709	G50	Q21
1710	G51	Q21
1711	G52	Q21
1712	G53	Q21
1713	G54	Q21
1714	G55	Q21
1715	G56	Q21

1716	G57	Q21
1717	G58	Q21
1718	G59	Q21
1719	G60	Q21
1720	G61	Q21
1721	G62	Q21
1722	G63	Q21
1723	G64	Q21
1724	G65	Q21
1725	G66	Q21
1726	G67	Q21
1727	G68	Q21
1728	G69	Q21
1729	G70	Q21
1730	G71	Q21
1731	G72	Q21
1732	G73	Q21
1733	G74	Q21
1734	G75	Q21
1735	G76	Q21
1736	G77	Q21
1737	G78	Q21
1738	G79	Q21
1739	G80	Q21
1740	G81	Q21
1741	G82	Q21
1742	G83	Q21
1743	G84	Q21
1744	G85	Q21
1745	G86	Q21
1746	G87	Q21
1747	G1	Q22
1748	G2	Q22
1749	G3	Q22
1750	G4	Q22
1751	G5	Q22
1752	G6	Q22
1753	G7	Q22
1754	G8	Q22
1755	G9	Q22
1756	G10	Q22
1757	G11	Q22
1758	G12	Q22

1759	G13	Q22
1760	G14	Q22
1761	G15	Q22
1762	G16	Q22
1763	G17	Q22
1764	G18	Q22
1765	G19	Q22
1766	G20	Q22
1767	G21	Q22
1768	G22	Q22
1769	G23	Q22
1770	G24	Q22
1771	G25	Q22
1772	G26	Q22
1773	G27	Q22
1774	G28	Q22
1775	G29	Q22
1776	G30	Q22
1777	G31	Q22
1778	G32	Q22
1779	G33	Q22
1780	G34	Q22
1781	G35	Q22
1782	G36	Q22
1783	G37	Q22
1784	G38	Q22
1785	G39	Q22
1786	G40	Q22
1787	G41	Q22
1788	G42	Q22
1789	G43	Q22
1790	G44	Q22
1791	G45	Q22
1792	G46	Q22
1793	G47	Q22
1794	G48	Q22
1795	G49	Q22
1796	G50	Q22
1797	G51	Q22
1798	G52	Q22
1799	G53	Q22
1800	G54	Q22
1801	G55	Q22

1802	G56	Q22
1803	G57	Q22
1804	G58	Q22
1805	G59	Q22
1806	G60	Q22
1807	G61	Q22
1808	G62	Q22
1809	G63	Q22
1810	G64	Q22
1811	G65	Q22
1812	G66	Q22
1813	G67	Q22
1814	G68	Q22
1815	G69	Q22
1816	G70	Q22
1817	G71	Q22
1818	G72	Q22
1819	G73	Q22
1820	G74	Q22
1821	G75	Q22
1822	G76	Q22
1823	G77	Q22
1824	G78	Q22
1825	G79	Q22
1826	G80	Q22
1827	G81	Q22
1828	G82	Q22
1829	G83	Q22
1830	G84	Q22
1831	G85	Q22
1832	G86	Q22
1833	G87	Q22
1834	G1	Q23
1835	G2	Q23
1836	G3	Q23
1837	G4	Q23
1838	G5	Q23
1839	G6	Q23
1840	G7	Q23
1841	G8	Q23
1842	G9	Q23
1843	G10	Q23
1844	G11	Q23

1845	G12	Q23
1846	G13	Q23
1847	G14	Q23
1848	G15	Q23
1849	G16	Q23
1850	G17	Q23
1851	G18	Q23
1852	G19	Q23
1853	G20	Q23
1854	G21	Q23
1855	G22	Q23
1856	G23	Q23
1857	G24	Q23
1858	G25	Q23
1859	G26	Q23
1860	G27	Q23
1861	G28	Q23
1862	G29	Q23
1863	G30	Q23
1864	G31	Q23
1865	G32	Q23
1866	G33	Q23
1867	G34	Q23
1868	G35	Q23
1869	G36	Q23
1870	G37	Q23
1871	G38	Q23
1872	G39	Q23
1873	G40	Q23
1874	G41	Q23
1875	G42	Q23
1876	G43	Q23
1877	G44	Q23
1878	G45	Q23
1879	G46	Q23
1880	G47	Q23
1881	G48	Q23
1882	G49	Q23
1883	G50	Q23
1884	G51	Q23
1885	G52	Q23
1886	G53	Q23
1887	G54	Q23

1888	G55	Q23
1889	G56	Q23
1890	G57	Q23
1891	G58	Q23
1892	G59	Q23
1893	G60	Q23
1894	G61	Q23
1895	G62	Q23
1896	G63	Q23
1897	G64	Q23
1898	G65	Q23
1899	G66	Q23
1900	G67	Q23
1901	G68	Q23
1902	G69	Q23
1903	G70	Q23
1904	G71	Q23
1905	G72	Q23
1906	G73	Q23
1907	G74	Q23
1908	G75	Q23
1909	G76	Q23
1910	G77	Q23
1911	G78	Q23
1912	G79	Q23
1913	G80	Q23
1914	G81	Q23
1915	G82	Q23
1916	G83	Q23
1917	G84	Q23
1918	G85	Q23
1919	G86	Q23
1920	G87	Q23
1921	G1	Q24
1922	G2	Q24
1923	G3	Q24
1924	G4	Q24
1925	G5	Q24
1926	G6	Q24
1927	G7	Q24
1928	G8	Q24
1929	G9	Q24
1930	G10	Q24

1931	G11	Q24
1932	G12	Q24
1933	G13	Q24
1934	G14	Q24
1935	G15	Q24
1936	G16	Q24
1937	G17	Q24
1938	G18	Q24
1939	G19	Q24
1940	G20	Q24
1941	G21	Q24
1942	G22	Q24
1943	G23	Q24
1944	G24	Q24
1945	G25	Q24
1946	G26	Q24
1947	G27	Q24
1948	G28	Q24
1949	G29	Q24
1950	G30	Q24
1951	G31	Q24
1952	G32	Q24
1953	G33	Q24
1954	G34	Q24
1955	G35	Q24
1956	G36	Q24
1957	G37	Q24
1958	G38	Q24
1959	G39	Q24
1960	G40	Q24
1961	G41	Q24
1962	G42	Q24
1963	G43	Q24
1964	G44	Q24
1965	G45	Q24
1966	G46	Q24
1967	G47	Q24
1968	G48	Q24
1969	G49	Q24
1970	G50	Q24
1971	G51	Q24
1972	G52	Q24
1973	G53	Q24

1974	G54	Q24
1975	G55	Q24
1976	G56	Q24
1977	G57	Q24
1978	G58	Q24
1979	G59	Q24
1980	G60	Q24
1981	G61	Q24
1982	G62	Q24
1983	G63	Q24
1984	G64	Q24
1985	G65	Q24
1986	G66	Q24
1987	G67	Q24
1988	G68	Q24
1989	G69	Q24
1990	G70	Q24
1991	G71	Q24
1992	G72	Q24
1993	G73	Q24
1994	G74	Q24
1995	G75	Q24
1996	G76	Q24
1997	G77	Q24
1998	G78	Q24
1999	G79	Q24
2000	G80	Q24
2001	G81	Q24
2002	G82	Q24
2003	G83	Q24
2004	G84	Q24
2005	G85	Q24
2006	G86	Q24
2007	G87	Q24
2008	G1	Q25
2009	G2	Q25
2010	G3	Q25
2011	G4	Q25
2012	G5	Q25
2013	G6	Q25
2014	G7	Q25

2015	G8	Q25
2016	G9	Q25
2017	G10	Q25
2018	G11	Q25
2019	G12	Q25
2020	G13	Q25
2021	G14	Q25
2022	G15	Q25
2023	G16	Q25
2024	G17	Q25
2025	G18	Q25
2026	G19	Q25
2027	G20	Q25
2028	G21	Q25
2029	G22	Q25
2030	G23	Q25
2031	G24	Q25
2032	G25	Q25
2033	G26	Q25
2034	G27	Q25
2035	G28	Q25
2036	G29	Q25
2037	G30	Q25
2038	G31	Q25
2039	G32	Q25
2040	G33	Q25
2041	G34	Q25
2042	G35	Q25
2043	G36	Q25
2044	G37	Q25
2045	G38	Q25
2046	G39	Q25
2047	G40	Q25
2048	G41	Q25
2049	G42	Q25
2050	G43	Q25
2051	G44	Q25
2052	G45	Q25
2053	G46	Q25
2054	G47	Q25
2055	G48	Q25

2056	G49	Q25
2057	G50	Q25
2058	G51	Q25
2059	G52	Q25
2060	G53	Q25
2061	G54	Q25
2062	G55	Q25
2063	G56	Q25
2064	G57	Q25
2065	G58	Q25
2066	G59	Q25
2067	G60	Q25
2068	G61	Q25
2069	G62	Q25
2070	G63	Q25
2071	G64	Q25
2072	G65	Q25
2073	G66	Q25
2074	G67	Q25
2075	G68	Q25
2076	G69	Q25
2077	G70	Q25
2078	G71	Q25
2079	G72	Q25
2080	G73	Q25
2081	G74	Q25
2082	G75	Q25
2083	G76	Q25
2084	G77	Q25
2085	G78	Q25
2086	G79	Q25
2087	G80	Q25
2088	G81	Q25
2089	G82	Q25
2090	G83	Q25
2091	G84	Q25
2092	G85	Q25
2093	G86	Q25
2094	G87	Q25

Examples 2095-2442 : The procedure is as in Examples 7-9, but the following compounds of formula $[G^+] \cdot [X^{m-}]_p \cdot [Y^{n+}]_q$ (XI), which can be prepared analogously to Examples 1-6, are used:

Ex.	G ⁺	X ^{m-}	p	Y ⁿ⁺	q
2095	G1	Q1	½		0
2096	G2	Q1	½		0
2097	G3	Q1	½		0
2098	G4	Q1	½		0
2099	G5	Q1	½		0
2100	G6	Q1	½		0
2101	G7	Q1	½		0
2102	G8	Q1	½		0
2103	G9	Q1	½		0
2104	G10	Q1	½		0
2105	G11	Q1	½		0
2106	G12	Q1	½		0
2107	G13	Q1	½		0
2108	G14	Q1	½		0
2109	G15	Q1	½		0
2110	G16	Q1	½		0
2111	G17	Q1	½		0
2112	G18	Q1	½		0
2113	G19	Q1	½		0
2114	G20	Q1	½		0
2115	G21	Q1	½		0
2116	G22	Q1	½		0
2117	G23	Q1	½		0
2118	G24	Q1	½		0
2119	G25	Q1	½		0
2120	G26	Q1	½		0
2121	G27	Q1	½		0
2122	G28	Q1	½		0
2123	G29	Q1	½		0
2124	G30	Q1	½		0
2125	G31	Q1	½		0
2126	G32	Q1	½		0
2127	G33	Q1	½		0
2128	G34	Q1	½		0
2129	G35	Q1	½		0
2130	G36	Q1	½		0

2131	G37	Q1	½		0
2132	G38	Q1	½		0
2133	G39	Q1	½		0
2134	G40	Q1	½		0
2135	G41	Q1	½		0
2136	G42	Q1	½		0
2137	G43	Q1	½		0
2138	G44	Q1	½		0
2139	G45	Q1	½		0
2140	G46	Q1	½		0
2141	G47	Q1	½		0
2142	G48	Q1	½		0
2143	G49	Q1	½		0
2144	G50	Q1	½		0
2145	G51	Q1	½		0
2146	G52	Q1	½		0
2147	G53	Q1	½		0
2148	G54	Q1	½		0
2149	G55	Q1	½		0
2150	G56	Q1	½		0
2151	G57	Q1	½		0
2152	G58	Q1	½		0
2153	G59	Q1	½		0
2154	G60	Q1	½		0
2155	G61	Q1	½		0
2156	G62	Q1	½		0
2157	G63	Q1	½		0
2158	G64	Q1	½		0
2159	G65	Q1	½		0
2160	G66	Q1	½		0
2161	G67	Q1	½		0
2162	G68	Q1	½		0
2163	G69	Q1	½		0
2164	G70	Q1	½		0
2165	G71	Q1	½		0
2166	G72	Q1	½		0
2167	G73	Q1	½		0

2168	G74	Q1	1/2		0		
2169	G75	Q1	1/2		0		
2170	G76	Q1	1/2		0		
2171	G77	Q1	1/2		0		
2172	G78	Q1	1/2		0		
2173	G79	Q1	1/2		0		
2174	G80	Q1	1/2		0		
2175	G81	Q1	1/2		0		
2176	G82	Q1	1/2		0		
2177	G83	Q1	1/2		0		
2178	G84	Q1	1/2		0		
2179	G85	Q1	1/2		0		
2180	G86	Q1	1/2		0		
2181	G87	Q1	1/2		0		
2182	G1	Q26	1/2		0		
2183	G2	Q26	1/2		0		
2184	G3	Q26	1/2		0		
2185	G4	Q26	1/2		0		
2186	G5	Q26	1/2		0		
2187	G6	Q26	1/2		0		
2188	G7	Q26	1/2		0		
2189	G8	Q26	1/2		0		
2190	G9	Q26	1/2		0		
2191	G10	Q26	1/2		0		
2192	G11	Q26	1/2		0		
2193	G12	Q26	1/2		0		
2194	G13	Q26	1/2		0		
2195	G14	Q26	1/2		0		
2196	G15	Q26	1/2		0		
2197	G16	Q26	1/2		0		
2198	G17	Q26	1/2		0		
2199	G18	Q26	1/2		0		
2200	G19	Q26	1/2		0		
2201	G20	Q26	1/2		0		
2202	G21	Q26	1/2		0		
2203	G22	Q26	1/2		0		
2204	G23	Q26	1/2		0		
2205	G24	Q26	1/2		0		
2206	G25	Q26	1/2		0		
2207	G26	Q26	1/2		0		
2208	G27	Q26	1/2		0		
2209	G28	Q26	1/2		0		
2210	G29	Q26	1/2		0		
2211	G30	Q26	1/2		0		
2212	G31	Q26	1/2		0		
2213	G32	Q26	1/2		0		
2214	G33	Q26	1/2		0		
2215	G34	Q26	1/2		0		
2216	G35	Q26	1/2		0		
2217	G36	Q26	1/2		0		
2218	G37	Q26	1/2		0		
2219	G38	Q26	1/2		0		
2220	G39	Q26	1/2		0		
2221	G40	Q26	1/2		0		
2222	G41	Q26	1/2		0		
2223	G42	Q26	1/2		0		
2224	G43	Q26	1/2		0		
2225	G44	Q26	1/2		0		
2226	G45	Q26	1/2		0		
2227	G46	Q26	1/2		0		
2228	G47	Q26	1/2		0		
2229	G48	Q26	1/2		0		
2230	G49	Q26	1/2		0		
2231	G50	Q26	1/2		0		
2232	G51	Q26	1/2		0		
2233	G52	Q26	1/2		0		
2234	G53	Q26	1/2		0		
2235	G54	Q26	1/2		0		
2236	G55	Q26	1/2		0		
2237	G56	Q26	1/2		0		
2238	G57	Q26	1/2		0		
2239	G58	Q26	1/2		0		
2240	G59	Q26	1/2		0		
2241	G60	Q26	1/2		0		
2242	G61	Q26	1/2		0		
2243	G62	Q26	1/2		0		
2244	G63	Q26	1/2		0		
2245	G64	Q26	1/2		0		
2246	G65	Q26	1/2		0		
2247	G66	Q26	1/2		0		
2248	G67	Q26	1/2		0		
2249	G68	Q26	1/2		0		
2250	G69	Q26	1/2		0		
2251	G70	Q26	1/2		0		
2252	G71	Q26	1/2		0		
2253	G72	Q26	1/2		0		

2254	G73	Q26	½		0		
2255	G74	Q26	½		0		
2256	G75	Q26	½		0		
2257	G76	Q26	½		0		
2258	G77	Q26	½		0		
2259	G78	Q26	½		0		
2260	G79	Q26	½		0		
2261	G80	Q26	½		0		
2262	G81	Q26	½		0		
2263	G82	Q26	½		0		
2264	G83	Q26	½		0		
2265	G84	Q26	½		0		
2266	G85	Q26	½		0		
2267	G86	Q26	½		0		
2268	G87	Q26	½		0		
2269	G1	Q1	1	NH ₄ ⁺	1		
2270	G2	Q1	1	NH ₄ ⁺	1		
2271	G3	Q1	1	NH ₄ ⁺	1		
2272	G4	Q1	1	NH ₄ ⁺	1		
2273	G5	Q1	1	NH ₄ ⁺	1		
2274	G6	Q1	1	NH ₄ ⁺	1		
2275	G7	Q1	1	NH ₄ ⁺	1		
2276	G8	Q1	1	NH ₄ ⁺	1		
2277	G9	Q1	1	NH ₄ ⁺	1		
2278	G10	Q1	1	NH ₄ ⁺	1		
2279	G11	Q1	1	NH ₄ ⁺	1		
2280	G12	Q1	1	NH ₄ ⁺	1		
2281	G13	Q1	1	NH ₄ ⁺	1		
2282	G14	Q1	1	NH ₄ ⁺	1		
2283	G15	Q1	1	NH ₄ ⁺	1		
2284	G16	Q1	1	NH ₄ ⁺	1		
2285	G17	Q1	1	NH ₄ ⁺	1		
2286	G18	Q1	1	NH ₄ ⁺	1		
2287	G19	Q1	1	NH ₄ ⁺	1		
2288	G20	Q1	1	NH ₄ ⁺	1		
2289	G21	Q1	1	NH ₄ ⁺	1		
2290	G22	Q1	1	NH ₄ ⁺	1		
2291	G23	Q1	1	NH ₄ ⁺	1		
2292	G24	Q1	1	NH ₄ ⁺	1		
2293	G25	Q1	1	NH ₄ ⁺	1		
2294	G26	Q1	1	NH ₄ ⁺	1		
2295	G27	Q1	1	NH ₄ ⁺	1		
2296	G28	Q1	1	NH ₄ ⁺	1		
2297	G29	Q1	1	NH ₄ ⁺	1		
2298	G30	Q1	1	NH ₄ ⁺	1		
2299	G31	Q1	1	NH ₄ ⁺	1		
2300	G32	Q1	1	NH ₄ ⁺	1		
2301	G33	Q1	1	NH ₄ ⁺	1		
2302	G34	Q1	1	NH ₄ ⁺	1		
2303	G35	Q1	1	NH ₄ ⁺	1		
2304	G36	Q1	1	NH ₄ ⁺	1		
2305	G37	Q1	1	NH ₄ ⁺	1		
2306	G38	Q1	1	NH ₄ ⁺	1		
2307	G39	Q1	1	NH ₄ ⁺	1		
2308	G40	Q1	1	NH ₄ ⁺	1		
2309	G41	Q1	1	NH ₄ ⁺	1		
2310	G42	Q1	1	NH ₄ ⁺	1		
2311	G43	Q1	1	NH ₄ ⁺	1		
2312	G44	Q1	1	NH ₄ ⁺	1		
2313	G45	Q1	1	NH ₄ ⁺	1		
2314	G46	Q1	1	NH ₄ ⁺	1		
2315	G47	Q1	1	NH ₄ ⁺	1		
2316	G48	Q1	1	NH ₄ ⁺	1		
2317	G49	Q1	1	NH ₄ ⁺	1		
2318	G50	Q1	1	NH ₄ ⁺	1		
2319	G51	Q1	1	NH ₄ ⁺	1		
2320	G52	Q1	1	NH ₄ ⁺	1		
2321	G53	Q1	1	NH ₄ ⁺	1		
2322	G54	Q1	1	NH ₄ ⁺	1		
2323	G55	Q1	1	NH ₄ ⁺	1		
2324	G56	Q1	1	NH ₄ ⁺	1		
2325	G57	Q1	1	NH ₄ ⁺	1		
2326	G58	Q1	1	NH ₄ ⁺	1		
2327	G59	Q1	1	NH ₄ ⁺	1		
2328	G60	Q1	1	NH ₄ ⁺	1		
2329	G61	Q1	1	NH ₄ ⁺	1		
2330	G62	Q1	1	NH ₄ ⁺	1		
2331	G63	Q1	1	NH ₄ ⁺	1		
2332	G64	Q1	1	NH ₄ ⁺	1		
2333	G65	Q1	1	NH ₄ ⁺	1		
2334	G66	Q1	1	NH ₄ ⁺	1		
2335	G67	Q1	1	NH ₄ ⁺	1		
2336	G68	Q1	1	NH ₄ ⁺	1		
2337	G69	Q1	1	NH ₄ ⁺	1		
2338	G70	Q1	1	NH ₄ ⁺	1		
2339	G71	Q1	1	NH ₄ ⁺	1		

2340	G72	Q1	1	NH ₄ ⁺	1
2341	G73	Q1	1	NH ₄ ⁺	1
2342	G74	Q1	1	NH ₄ ⁺	1
2343	G75	Q1	1	NH ₄ ⁺	1
2344	G76	Q1	1	NH ₄ ⁺	1
2345	G77	Q1	1	NH ₄ ⁺	1
2346	G78	Q1	1	NH ₄ ⁺	1
2347	G79	Q1	1	NH ₄ ⁺	1
2348	G80	Q1	1	NH ₄ ⁺	1
2349	G81	Q1	1	NH ₄ ⁺	1
2350	G82	Q1	1	NH ₄ ⁺	1
2351	G83	Q1	1	NH ₄ ⁺	1
2352	G84	Q1	1	NH ₄ ⁺	1
2353	G85	Q1	1	NH ₄ ⁺	1
2354	G86	Q1	1	NH ₄ ⁺	1
2355	G87	Q1	1	NH ₄ ⁺	1
2356	G1	Q26	1	NH ₄ ⁺	1
2357	G2	Q26	1	NH ₄ ⁺	1
2358	G3	Q26	1	NH ₄ ⁺	1
2359	G4	Q26	1	NH ₄ ⁺	1
2360	G5	Q26	1	NH ₄ ⁺	1
2361	G6	Q26	1	NH ₄ ⁺	1
2362	G7	Q26	1	NH ₄ ⁺	1
2363	G8	Q26	1	NH ₄ ⁺	1
2364	G9	Q26	1	NH ₄ ⁺	1
2365	G10	Q26	1	NH ₄ ⁺	1
2366	G11	Q26	1	NH ₄ ⁺	1
2367	G12	Q26	1	NH ₄ ⁺	1
2368	G13	Q26	1	NH ₄ ⁺	1
2369	G14	Q26	1	NH ₄ ⁺	1
2370	G15	Q26	1	NH ₄ ⁺	1
2371	G16	Q26	1	NH ₄ ⁺	1
2372	G17	Q26	1	NH ₄ ⁺	1
2373	G18	Q26	1	NH ₄ ⁺	1
2374	G19	Q26	1	NH ₄ ⁺	1
2375	G20	Q26	1	NH ₄ ⁺	1
2376	G21	Q26	1	NH ₄ ⁺	1
2377	G22	Q26	1	NH ₄ ⁺	1
2378	G23	Q26	1	NH ₄ ⁺	1
2379	G24	Q26	1	NH ₄ ⁺	1
2380	G25	Q26	1	NH ₄ ⁺	1
2381	G26	Q26	1	NH ₄ ⁺	1
2382	G27	Q26	1	NH ₄ ⁺	1

2383	G28	Q26	1	NH ₄ ⁺	1
2384	G29	Q26	1	NH ₄ ⁺	1
2385	G30	Q26	1	NH ₄ ⁺	1
2386	G31	Q26	1	NH ₄ ⁺	1
2387	G32	Q26	1	NH ₄ ⁺	1
2388	G33	Q26	1	NH ₄ ⁺	1
2389	G34	Q26	1	NH ₄ ⁺	1
2390	G35	Q26	1	NH ₄ ⁺	1
2391	G36	Q26	1	NH ₄ ⁺	1
2392	G37	Q26	1	NH ₄ ⁺	1
2393	G38	Q26	1	NH ₄ ⁺	1
2394	G39	Q26	1	NH ₄ ⁺	1
2395	G40	Q26	1	NH ₄ ⁺	1
2396	G41	Q26	1	NH ₄ ⁺	1
2397	G42	Q26	1	NH ₄ ⁺	1
2398	G43	Q26	1	NH ₄ ⁺	1
2399	G44	Q26	1	NH ₄ ⁺	1
2400	G45	Q26	1	NH ₄ ⁺	1
2401	G46	Q26	1	NH ₄ ⁺	1
2402	G47	Q26	1	NH ₄ ⁺	1
2403	G48	Q26	1	NH ₄ ⁺	1
2404	G49	Q26	1	NH ₄ ⁺	1
2405	G50	Q26	1	NH ₄ ⁺	1
2406	G51	Q26	1	NH ₄ ⁺	1
2407	G52	Q26	1	NH ₄ ⁺	1
2408	G53	Q26	1	NH ₄ ⁺	1
2409	G54	Q26	1	NH ₄ ⁺	1
2410	G55	Q26	1	NH ₄ ⁺	1
2411	G56	Q26	1	NH ₄ ⁺	1
2412	G57	Q26	1	NH ₄ ⁺	1
2413	G58	Q26	1	NH ₄ ⁺	1
2414	G59	Q26	1	NH ₄ ⁺	1
2415	G60	Q26	1	NH ₄ ⁺	1
2416	G61	Q26	1	NH ₄ ⁺	1
2417	G62	Q26	1	NH ₄ ⁺	1
2418	G63	Q26	1	NH ₄ ⁺	1
2419	G64	Q26	1	NH ₄ ⁺	1
2420	G65	Q26	1	NH ₄ ⁺	1
2421	G66	Q26	1	NH ₄ ⁺	1
2422	G67	Q26	1	NH ₄ ⁺	1
2423	G68	Q26	1	NH ₄ ⁺	1
2424	G69	Q26	1	NH ₄ ⁺	1
2425	G70	Q26	1	NH ₄ ⁺	1

2426	G71	Q26	1	NH ₄ ⁺	1
2427	G72	Q26	1	NH ₄ ⁺	1
2428	G73	Q26	1	NH ₄ ⁺	1
2429	G74	Q26	1	NH ₄ ⁺	1
2430	G75	Q26	1	NH ₄ ⁺	1
2431	G76	Q26	1	NH ₄ ⁺	1
2432	G77	Q26	1	NH ₄ ⁺	1
2433	G78	Q26	1	NH ₄ ⁺	1
2434	G79	Q26	1	NH ₄ ⁺	1

2435	G80	Q26	1	NH ₄ ⁺	1
2436	G81	Q26	1	NH ₄ ⁺	1
2437	G82	Q26	1	NH ₄ ⁺	1
2438	G83	Q26	1	NH ₄ ⁺	1
2439	G84	Q26	1	NH ₄ ⁺	1
2440	G85	Q26	1	NH ₄ ⁺	1
2441	G86	Q26	1	NH ₄ ⁺	1
2442	G87	Q26	1	NH ₄ ⁺	1

Example 2443 : The procedure is as in Examples 7-9, but the product of formula G89 according to Example 4 is used together with 20% by weight (based on the product according to Example G89) of the product of formula

Example 2444 : The procedure is as in Example 2443, but the product of formula G89 according to Example 4 is used together with 20% by weight (based on the product according to Example G89) of the product of formula

Example 2445 : The procedure is as in Example 2443, but the product of formula G89 according to Example 4 is used together with 20% by weight (based on the product according to Example G89) of the product of formula

Example 2446 : The procedure is as in Example 2443, but the product of formula G89 according to Example 4 is used together with 20% by weight (based on the product according to Example G89) of the product of formula

Example 2447 : The procedure is as in Example 2443, but the product of formula G89 according to Example 4 is used together with 20% by weight (based on the product according to Example G89) of the product of formula

Examples 2448-2452 : The procedure is as in Examples 2443-2447, but the product of formula G90 according to Example 5 is used instead of the product of formula G89 according to Example 4.

Example 2453 : 12.1 g of N-ethylaniline are stirred in 22 ml of 2-chloro-propionic acid ethyl ester in the presence of 10.6 ml of sodium carbonate and 0.2 g of potassium iodide until the N-ethylaniline can no longer be detected in thin-layer chromatography. The chloropropionic acid ester is distilled off, and the oil that remains is taken up in ethyl acetate and extracted with water until salt-free. The dried organic phase is concentrated, yielding 20 g of an oily mass of formula:

Example 2454 : 7.1 g of the compound according to Example 2453 are introduced into 20 ml of N,N-dimethylformamide and cooled in an ice bath. 3.2 ml of phosphorus oxytrichloride are then slowly added dropwise and the mixture is stirred first at 20°C, and then for a further 4 hours at 60°C. The cooled reaction mass is discharged into a small amount of ice-water and

neutralised with dilute sodium hydroxide solution. The resulting oil is taken up in ethyl acetate and washed with sodium chloride solution. The organic phase is dried and concentrated, yielding 6.7 g of the product of formula:

Example 2455 : 6.7 g of the compound according to Example 2454 are dissolved in 50 ml of methanol, and 0.43 g of sodium borohydride is added. After 30 minutes at 20°C, the starting material can no longer be detected. The reaction solution is freed of methanol by distillation and the residue is taken up in ethyl acetate and washed with concentrated sodium chloride solution. The dried ethyl acetate phase is concentrated by evaporation; yielding 4.6 g of an

oil of formula

Example 2456 : 4.25 g of the compound according to Example 2455 are dissolved in 25 ml of dichloromethane, and 2.6 ml of 3-isopropenyl-N,N-dimethylaniline are added. While cooling with an ice bath, 16 ml of a 1M boron trichloride solution in dichloromethane are added and the mixture is left to react overnight in the initial ice-bath to complete the reaction. Then, while cooling in an ice bath, 16 ml of concentrated sulfuric acid are added dropwise. The resulting reaction mixture is discharged onto ice, neutralised with sodium hydroxide solution and taken up in dichloromethane. After being washed, the organic phase is dried and the dichloromethane is distilled off, leaving behind 5.8 g of a blue-green, very oxygen-sensitive oil of formula

Example 2457 : 5.8 g of the compound according to Example 2456 are dissolved in 40 ml of 100% acetic acid, and 150 drops of 60% perchloric acid are added. 1.65 g of tetrabutylammonium (meta)periodate are added to the resulting mixture. Stirring is carried out for 3 hours at 40°C, and the reaction

mass is discharged into 250 ml of water and 25 g of sodium perchlorate monohydrate and the oily mass obtained is treated with a potassium perchlorate solution. After working up, 3.4 g of crude product are obtained. Repeated chromatographic purification of the crude product yields the analytically pure compound of the following formula:

Example 2458 : 1.33 g of analytically pure product according to Example 2457 are dissolved in acetone with 2.78 g of the cobalt complex of structure Q20 and the solution is concentrated by evaporation. The residue is taken up in methylene chloride, extracted by shaking repeatedly with deionised water and, without drying of the organic phase, concentrated to dryness without residue, yielding 3.13 g of compound of formula:

Example 2459: The procedure is as in Example 7, but instead of the product according to Example 1 there is used an equal amount of the product according to Example 2458. The absorption maximum of a recording support produced analogously to Example 7 is at 623 nm.

Example 2460 : 2.7 g of 4-fluorobenzaldehyde are stirred at 110°C in 20 ml of dimethyl sulfoxide with 3.74 g of morpholine and 3 g of potassium carbonate for 6 hours. Customary working-up yields 0.95 g of crystalline product of formula

That product is processed further analogously to Examples 2455 to 2458; yielding the compound of formula:

Example 2461 : The procedure is as in Example 7, but instead of the product according to Example 1 there is used an equal amount of the product according to Example 2460. The absorption maximum of a recording support produced analogously to Example 7 is at 626 nm.

Example 2462 : The procedure is as in Example 7, but instead of the product according to Example 1 there is used an equal amount of the product according to Example 3. The absorption maximum of the recording support is at 625 nm.

Example 2463 : The procedure is as in Example 3, but instead of the metal complex of formula Q20 there is used an equimolar amount of the metal complex of formula Q16. The absorption maximum of a recording support produced analogously to Example 7 is at 631 nm.

Example 2464 : The procedure is as in Example 1, but instead of the sodium salt of the metal complex of formula Q20 there is used the same amount of the product of formula . The absorption maximum of a recording support analogous to Example 7 is at about 630 nm.

· 71 ·

Examples 2465-2470 : Analogously to Example 7, recording supports are produced using the products of other Examples. The following absorption maxima are obtained:

Example	Recording support comprising product according to Example:	Absorption maximum
2465	98	623 nm
2466	183	636 nm
2467	1227	632 nm
2468	1576	621 nm
2469	1583	625 nm
2470	1921	633 nm

What is claimed is:

1. An optical recording medium, comprising a substrate and a recording layer, wherein the recording layer comprises a compound of formula (I)

wherein R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} are each independently of the others hydrogen, G_1 , or $\text{C}_1\text{-C}_{24}\text{alkyl}$, $\text{C}_2\text{-C}_{24}\text{alkenyl}$, $\text{C}_2\text{-C}_{24}\text{alkynyl}$, $\text{C}_3\text{-C}_{24}\text{cycloalkyl}$, $\text{C}_3\text{-C}_{24}\text{cycloalkenyl}$, $\text{C}_7\text{-C}_{24}\text{aralkyl}$, $\text{C}_6\text{-C}_{24}\text{aryl}$, $\text{C}_4\text{-C}_{12}\text{heteroaryl}$ or $\text{C}_1\text{-C}_{12}\text{heterocycloalkyl}$, each unsubstituted or substituted by one or more identical or different substituents G_1 ,

wherein R_1 and R_2 , R_1 and R_{13} , R_2 and R_3 , R_3 and R_4 , R_4 and R_5 , R_5 and R_6 , R_6 and R_7 , R_7 and R_8 , R_8 and R_9 , R_9 and R_{10} , R_{10} and R_{11} , R_{11} and R_{12} and/or R_{12} and R_{13} can independently of one another be bonded to one another in pairs separately or, when they contain substitutable sites, via a direct bond or via a $-\text{CH}_2-$, $-\text{O}-$, $-\text{S}-$, $-\text{NH}-$ or $-\text{NC}_1\text{-C}_{24}\text{alkyl}-$ bridge in such a manner that, together with the atoms and bonds indicated in formula (I), five- or six-membered, saturated, unsaturated or aromatic, unsubstituted or G_1 -substituted rings are formed,

G_1 is any desired substituent,

X^{m-} is an inorganic, organic or organometallic anion,

Y^{n+} is a proton or a metal, ammonium or phosphonium cation, and

m and n are each independently of the other a number from 1 to 5, and p and q are each independently of the other 0 or a number from 0.2 to 6, the ratio of p and q to one another, depending upon m and n and, as applicable, the number of charged G_1 , being such that in formula (I) there is no excess positive or negative charge.

2. A recording medium according to claim 1, which additionally comprises a reflecting layer.

3. A recording medium according to claim 1 or 2, wherein R₆ is

and R₂₉, R₃₀ and R₃₁ are each independently of the others hydrogen, halogen, COOR₃₂, OR₃₂ or NR₃₂R₃₃, wherein R₃₂ and R₃₃ are each independently of the other hydrogen or C₁-C₁₂alkyl, C₂-C₁₂alkenyl, C₁-C₁₂cycloalkyl, C₂-C₁₂cycloalkenyl, C₆-C₁₂aryl or C₇-C₁₃aralkyl, each unsubstituted or substituted by one or two hydroxy substituents or by a metallocenyl or azo metal complex radical and uninterrupted or interrupted by 1, 2, 3, 4 or 5 oxygen and/or silicon atoms.

4. A recording medium according to claim 1, 2 or 3, wherein R₁, R₄, R₅, R₇, R₈ and R₁₁ are hydrogen; R₂, R₃, R₉, R₁₀, R₁₂ and R₁₃ are each independently of the others methyl, ethyl or R₁₄, it being possible for R₂ and R₃, R₉ and R₁₀, R₁₂ and R₁₃ and/or R₉ and R₁₀ also to be bonded together in pairs via a direct bond, methylene, -O- or -N(C₁-C₄alkyl); and R₆ is hydrogen or C₁-C₁₂alkyl, C₆-C₁₂aryl or C₇-C₁₃aralkyl, each unsubstituted or mono- to tetra-substituted by halogen, -O-, -OR₂₆, -CN, -NR₂₆R₂₇, -N⁺R₂₆R₂₇R₂₈, -N(R₂₆)COR₂₇, -COO⁻, -COOR₂₆, -CONR₂₆R₂₇, R₁₄ or by -N(R₂₆)COR₂₇R₂₈, wherein R₂₆, R₂₇ and R₂₈ are each independently of the others C₁-C₁₂alkyl, C₆-C₁₂aryl or C₇-C₁₃aralkyl.

5. A recording medium according to claim 3 or 4, wherein R₆ is

R₃₄, R₃₅ and R₃₆ are each independently of the others hydrogen or R₃₇, R₃₇ being alkyl uninterrupted or interrupted by from 1 to 3 oxygen and/or silicon atoms and unsubstituted or substituted by one or two hydroxy substituents or by a metallocenyl or azo metal complex radical.

6. A recording medium according to claim 1, 2, 3, 4 or 5, wherein X^{m-} is a metal complex of formula [(L₁)M₁(L₂)]^{m-} (III) or [(L₃)M₂(L₄)]⁻ (IV), wherein M₁ and M₂ are a transition metal, preferably M₁ being Cr³⁺ or Co³⁺ and M₂ being

Ni^{2+} , Co^{2+} or Cu^{2+} , m is a number from 1 to 6, L_1 and L_2 are each independently of the other a ligand of formula

and L_3 and L_4 are each independently of the other a ligand of formula

wherein

R₁₆, R₁₇, R₁₈, R₁₉, R₂₀ and R₂₁ are each independently of the others hydrogen, halogen, cyano, R₂₄, NO₂, NR₂₄R₂₅, NHCO-R₂₄, NHCOOR₂₄, SO₂-R₂₄, SO₂NH₂, SO₂NHR₂₄, SO₂NR₂₄R₂₅, SO₃⁻ or SO₃H, preferably hydrogen, chlorine, SO₂NH₂ or SO₂NHR₂₄, and R₂₂ and R₂₃ are each independently of the others CN, CONH₂, CONHR₂₄, CONR₂₄R₂₅, COOR₂₄ or COR₂₄, wherein R₂₄ and R₂₅ are each independently of the other C₁-C₁₂alkyl, C₁-C₁₂alkoxy-C₂-C₁₂alkyl, C₇-C₁₂aralkyl or C₆-C₁₂aryl, preferably C₁-C₄alkyl, each unsubstituted or substituted by hydroxy, halogen, sulfato, C₁-C₆alkoxy, C₁-C₆alkylthio, C₁-C₆alkylamino or by di-C₁-C₆alkylamino, or R₂₄ and R₂₅ together are C₄-C₁₀heterocycloalkyl; it also being possible for R₁₆ and R₁₇, R₁₈ and R₁₉, and/or R₂₀ and R₂₁ to be bonded together in pairs in such a manner that a 5- or 6-membered ring is formed.

7. A recording medium according to claim 1, 2, 3, 4 or 5, wherein Yⁿ⁺ is [NH₂R₃₈R₃₉]⁺, R₃₈ being hydrogen or C₁-C₁₂alkyl and R₃₉ being C₁-C₂₄alkyl or C₇-C₂₄aralkyl, and R₃₈ and R₃₉ together having from 8 to 25 carbon atoms.
8. A recording medium according to claim 1, 2, 3, 4 or 5, wherein m and n are each the number 1, p is a number from 1 to 2½, and q is a number from 0 to 1½, the sum of positive charges in formula (I) or (II) being equal to the sum of negative charges.
9. A recording medium according to claim 1, 2, 3, 4 or 5, wherein the dye of formula (I) has an absorption maximum at from 540 to 640 nm in ethanolic solution and a refractive index of from 2.0 to 3.0 in the range of from 600 to 700 nm in the solid.
10. A recording medium according to claim 1, 2, 3, 4 or 5, wherein the substrate has a transparency of at least 90% and a thickness of from 0.01 to 10 mm, preferably from 0.1 to 5 mm.
11. A recording medium according to claim 1, 2, 3, 4 or 5, wherein the reflecting layer consists of aluminium, silver, copper, gold or an alloy thereof and has a reflectivity of at least 45% and thickness of from 10 to 150 nm.
12. A recording medium according to claim 1, 2, 3, 4 or 5, wherein the recording layer is located between the transparent substrate and the reflecting layer and has a thickness of from 10 to 1000 nm, preferably from 30 to

300 nm, especially from 60 to 120 nm..

13. A recording medium according to claim 1, 2, 3, 4 or 5, the uppermost layer of which is provided with an additional protective layer having a thickness of from 0.1 to 1000 µm, preferably from 0.1 to 50 µm, especially from 0.5 to 15 µm, to which there may be applied a second substrate layer that is preferably from 0.1 to 5 mm thick and consists of the same material as the support substrate.
14. A recording medium according to claim 1, 2, 3, 4 or 5, which has a reflectivity of at least 15%.
15. A recording medium according to claim 1, 2, 3, 4 or 5, wherein between the recording layer and the reflecting layer and/or between the recording layer and the substrate there is additionally arranged at least one interference layer consisting of a dielectric material.
16. A method for the optical recording, storage and playback of information, wherein a recording medium according to any one of claims 1 to 15 is used.
17. A method according to claim 16, wherein the recording and the playback take place in a wavelength range of from 600 to 700 nm..
18. A process for the production of an optical recording medium, wherein a solution of a compound of formula (I) according to any one of claims 1 to 15 in an organic solvent is applied to a substrate having pits.
19. A process according to claim 18, wherein the application is carried out by means of spin-coating.
20. A compound of formula (I) according to claim 1, provided it is not known at the priority date of this Application.
21. Use of a compound of formula (I) according to claim 20 in the production of an optical recording medium.
22. A process for the preparation of a compound of formula (I) according to claim 1, wherein a compound of structure

is oxidised in the presence of a C₁-C₁₈carboxylic acid.

23. A process according to claim 22, wherein (meta)periodate is used as oxidising agent.

24. Use of a compound of formula (I) prepared according to claim 22 in the production of an optical recording medium.

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP 02/07434

A. CLASSIFICATION OF SUBJECT MATTER					
IPC 7	G11B7/24	C07C251/20	C07D231/38	C09B11/02	C09D11/18

C09B11/18 C09B11/28

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G11B C07C C07D C09B C09D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

WPI Data, PAJ, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 301 145 A (A INOUE) 5 April 1994 (1994-04-05) column 5, line 48; claim 1 column 2, line 45 ---	1
A	EP 0 295 145 A (CANON) 14 December 1988 (1988-12-14) page 7, line 15 - line 16; claims 1,12 page 7, line 38 page 8, line 38 page 8, line 42 ---	1
A	PATENT ABSTRACTS OF JAPAN vol. 1998, no. 01, 30 January 1998 (1998-01-30). & JP 09 226250 A (HITACHI), 2 September 1997 (1997-09-02) abstract ---	1
-/-		

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the Invention
- *X* document of particular relevance; the claimed Invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed Invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- *&* document member of the same patent family

Date of the actual completion of the International search

Date of mailing of the International search report

1 November 2002

21/11/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3016

Authorized officer

Vanhecke, H

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 02/07434

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 851 621 A (H WOLLEB) 22 December 1998 (1998-12-22) cited in the application claims 1-23 -----	1
X	US 3 781 711 A (K DREXHAGE) 25 December 1973 (1973-12-25) cited in the application column 6, line 1 - line 10; claims 1,3,7 -----	20
X	DE 199 19 119 A (DREXHAGE) 2 November 2000 (2000-11-02) cited in the application claims 1-19 -----	20

INTERNATIONAL SEARCH REPORT

International application No.
PCT/EP 02/07434

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: 20, 22, 23 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple Inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the Invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 20,22,23

Present claims 20,22 and 23 relate to an extremely large number of possible compounds and methods. In fact, the claims contain so many options that a lack of clarity (and/or conciseness) within the meaning of Article 6 PCT arises to such an extent as to render a meaningful search of the claims impossible. Consequently, the search has been carried out for those parts of the application which do appear to be clear namely: those compounds comprising a metal complexing anion as recited in the examples

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 02/07434

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 5301145	A	05-04-1994	JP	1019532 A	23-01-1989
EP 295145	A	14-12-1988	JP	1091340 A	11-04-1989
			JP	2712030 B2	10-02-1998
			JP	1093395 A	12-04-1989
			JP	2524504 B2	14-08-1996
			DE	3855186 D1	15-05-1996
			DE	3855186 T2	05-09-1996
			EP	0295145 A2	14-12-1988
			US	4946261 A	07-08-1990
JP 09226250	A	02-09-1997	NONE		
US 5851621	A	22-12-1998	CA	2204209 A1	03-11-1997
			EP	0805441 A1	05-11-1997
			JP	10097732 A	14-04-1998
US 3781711	A	25-12-1973	DE	2351142 A1	02-05-1974
			FR	2202920 A1	10-05-1974
			JP	49074895 A	19-07-1974
DE 19919119	A	02-11-2000	DE	19919119 A1	02-11-2000
			AU	4297100 A	10-11-2000
			WO	0064986 A1	02-11-2000
			EP	1173519 A1	23-01-2002