NBA Player Performance Analysis

Project Proposal by Ian Sellers & Ryan Brown

Introduction

This project aims to analyze NBA player performance data from 2012 to the present, focusing on field goal percentage, 3-point percentage, free throw percentage, assists and rebounds.

Project Goals

Deeper Analysis of Offensive Efficiency:

- Explore the balance between scoring and playmaking by analyzing offensive contribution (PTS + AST) for top players and how it changes with minutes played and team dynamics.
- Investigate whether players with high offensive contribution are also efficient in terms of shooting accuracy and turnovers.

Team Dynamics and Offensive Strategies:

- Focus on high-scoring teams. Analyze what specific strategies or player roles
 make these teams consistently strong in scoring, rebounds, and assists.
- Use advanced metrics like pace, offensive rating, and defensive rating to understand how team dynamics lead to success.

Shooting Accuracy and Play Style:

- Study players with high shooting accuracy in more depth.
- Analyze three-point shooting specialists to see how their scoring patterns differ from players with more traditional shot selection.

Consistency of Top Performers:

 Investigate players who appear across multiple metrics (efficiency, scoring, assists). Analyze how they maintain their performance across seasons and what metrics consistently predict high performance.

Team Evolution Over Time:

 Study team synergy by looking at the correlation between assists and points for top teams.

Impact of 3-Point Shooting in Modern Basketball:

- Given the strong correlation between 3-pointers and points, explore how the rise
 of three-point shooting is changing basketball. Look at trends in 3-point
 attempt rates over the years and the impact on team success.
- Methodology

We will utilize the following Python libraries for data analysis and visualization:

- Pandas: For data manipulation and cleaning.
- **NumPy:** For numerical operations.
- Matplotlib/Seaborn/ggPlot: For data visualization.

Data Preparation and Exploration

To begin, we'll dive into the dataset by loading it into a Pandas DataFrame. This will provide a structured format for our analysis. We'll then conduct a thorough examination of the data, identifying and addressing any missing values that might skew our results. We'll calculate additional metrics such as win percentage, providing a more comprehensive view of team performance. With a clean and expanded dataset, we'll explore the data's characteristics using descriptive statistics, gaining insights into central tendencies and variability.

We will then focus on visualizing the distribution of shooting percentages, understanding how these values are spread across the league. We'll investigate the relationship between shooting accuracy and team success, exploring whether there's a correlation between these factors. To uncover trends and patterns, we'll examine how shooting performance has evolved over time. Finally, we'll dissect shooting performance based on player positions, searching for positional differences in shooting accuracy.

Scope

The project will focus on analyzing the provided dataset and deriving insights into the relationship between shooting accuracy and team success.

Expected Outcomes

- Visualizations that effectively communicate key findings.
- Potential identification of factors influencing shooting performance.
- A foundation for further exploration of NBA player performance metrics.

 Potentially predict player statistics for future seasons.- involves ML coding which is beyond the scope of the course.

Question 1: Group by teams and calculate average points & Top 10 players by points

```
Average Points by Team:
TEAM
ATL
     357.038339
BKN
     332.439628
BOS
     332.835655
     434.373913
CHA
     390.211321
CHI
CLE
     379.953488
     352.360759
DAL
DEN
     388.391304
     404.723849
DET
GSW
     389.580442
     373.990291
HOU
IND 368.388889
LAC
     351.793003
     391.738516
LAL
MEM 314.759760
MIA
     359.263804
MIL
     336.054131
MIN 410.857708
NOH
     459.647059
NOP
     406.161157
     396.583012
NYK
OKC
     371.555911
ORL
     395.247967
     352.461783
PHI
PHX 420.568702
POR
     362.545455
SAC
     477.239819
SAS 371.836667
     364.205047
TOR
UTA
     360.555172
WAS
     385.135714
Name: PTS, dtype: float64
Top 10 Players by Points for the last 10 years:
                    PLAYER PTS
               James Harden 2818
4204
677
              Kevin Durant 2593
         Russell Westbrook 2558
2753
              James Harden 2376
2062
2063
              Stephen Curry 2375
```

8049		Luka	Doncic	2370
2754		James	Harden	2356
4946		James	Harden	2335
0		Kevin	Durant	2280
8050	Shai	Gilgeous-Ale	exander	2254

Question 2

Identify the top scorers in different seasons and across all seasons.

```
Top Scorers by Season:

year PLAYER PTS

0 2012-13 Kevin Durant 2280

677 2013-14 Kevin Durant 2593

1362 2014-15 James Harden 2217

2062 2015-16 James Harden 2376

2753 2016-17 Russell Westbrook 2558

3454 2017-18 LeBron James 2251

4204 2018-19 James Harden 2818

4946 2019-20 James Harden 2335

5692 2020-21 Stephen Curry 2015

6471 2021-22 Trae Young 2155

7293 2022-23 Jayson Tatum 2225

8049 2023-24 Luka Doncic 2370
```

Top Scorer Across All Seasons:

year 2018-19
PLAYER James Harden
PTS 2818
Name: 4204, dtype: object

Question 3: Teams with the Highest Average Stats

```
Teams with Highest Average Stats: 2012-13
PTS REB AST

TEAM

OKC 107.414634 44.829268 21.353659

DEN 106.146341 45.036585 24.414634

MIL 105.182927 45.829268 24.890244

MIA 102.756098 38.451220 23.036585

SAS 102.609756 41.134146 24.987805

SAC 102.353659 40.390244 20.378049

LAL 102.207317 44.804878 22.170732

LAC 101.768293 41.682927 24.121951

BOS 101.658537 39.780488 24.292683

GSW 99.975610 44.439024 22.195122
```

```
Teams with Highest Average Stats: 2013-14
PTS REB AST

TEAM

LAC 116.597561 47.268293 25.707317
GSW 111.439024 47.158537 28.073171
OKC 110.719512 46.658537 22.560976
IND 109.804878 51.634146 23.073171
HOU 107.182927 46.024390 20.682927
MIN 106.841463 44.817073 24.121951
POR 106.743902 46.439024 23.219512
CLE 106.134146 47.878049 23.829268
PHX 105.231707 43.036585 19.060976
DAL 104.841463 40.902439 23.597561
```

Teams with Highest Average Stats: 2014-15 PTS REB AST

```
TEAM

OKC 116.512195 48.853659 22.109756

HOU 116.378049 49.512195 26.524390

POR 112.426829 47.097561 23.487805

CLE 111.987805 50.585366 24.121951

GSW 109.951220 44.719512 27.414634

LAC 108.280488 42.829268 25.512195

DAL 106.853659 44.804878 24.573171

TOR 104.170732 41.609756 20.841463

ATL 103.743902 41.256098 25.853659

BKN 102.512195 41.658537 21.621951
```

Teams	with	Highest	Average	Stats:	2015-16
		PTS	RE	В	AST
TEAM					
GSW	115.1	134146	46.64634	1 28.9	51220
WAS	114.4	151220	45.13414	6 26.3	17073
MIA	113.6	570732	47.98780	5 25.3	29268
OKC	112.2	219512	49.32926	8 23.5	24390
SAS	110.6	521951	45.39024	4 26.1	21951
LAC	107.7	707317	42.21951	2 22.8	17073
POR	107.2	231707	45.74390	2 22.1	82927
CLE	106.7	792683	45.32926	8 23.1	34146
SAC	106.5	585366	44.24390	2 24.5	00000
ATL	105.0	97561	43.98780	5 26.0	12195

Teams	with	Highest	Average	Stats:	2016-17
		PTS	REI	3	AST
TEAM					
HOU	125.4	102439	44.536585	5 26.50	00000
WAS	124.3	353659	46.902439	9 28.3	90244
GSW	120.7	780488	47.951220	32.1	46341
CLE	120.1	L70732	47.829268	3 26.78	80488
DEN	117.0	36585	50.170732	2 27.42	26829
TOR	115.2	243902	50.402439	9 19.5	73171
MIL	112.8	341463	45.219512	25.4	51220
OKC	112.2	268293	49.780488	3 20.9	14634
ATL	111.4	151220	48.341463	3 24.78	80488
LAC	108.6	570732	43.024390	22.5	36585

Teams	with	Highest PTS	Average REE		2017-18 AST
TEAM					
PHI	121.1	L21951	50.219512	28.6	16341
CLE	118.5	524390	43.560976	5 24.04	48780
LAC	116.4	163415	43.853659	22.32	29268
HOU	116.3	365854	45.487805	5 22.02	24390
NOP	115.5	548780	43.951220	26.83	17073
GSW	113.4	163415	43.512195	5 29.29	92683
TOR	112.6	546341	44.378049	24.4	75610
MIA	112.2	292683	46.573171	L 25.02	24390
OKC	110.2	268293	46.195122	21.84	41463
DEN	110.1	L70732	44.402439	24.6	70732

Teams	with	Highest	Average	Stats:	2018-19
		PTS	RE	В	AST
TEAM					
MIL	128.8	353659	54.60975	6 30.23	19512
PHI	128.3	390244	53.86585	4 28.08	85366
POR	125.5	573171	53.65853	7 24.39	90244
SAC	123.4	126829	47.84146	3 25.79	92683
OKC	118.8	390244	50.12195	1 24.18	82927
LAC	118.7	780488	47.47561	0 24.7	68293
LAL	117.8	378049	48.60975	6 27.03	12195
GSW	117.6	582927	46.18292	7 29.42	26829
TOR	117.6	546341	45.37804	9 28.52	24390
HOU	116.9	951220	43.06097	6 22.39	90244

Teams	with	Highest PTS	Average		2019-20 AST
TEAM		PTS	KLI	5	AST
TEAM					
DAL	112.4	175610	46.365854	23.91	L4634
PHI	111.1	L09756	44.219512	24.84	11463
LAC	109.5	512195	41.829268	21.01	L2195
HOU	108.7	731707	37.792683	19.53	36585
MIL	108.6	582927	47.109756	23.42	26829
SAC	106.0	148780	40.475610	21.96	53415
MIA	105.4	139024	42.975610	24.91	L4634
LAL	102.3	365854	41.268293	22.69	95122

```
NOP 101.719512 40.829268 23.560976 WAS 101.390244 37.548780 23.463415
```

Teams	with Highest	Average S	tats: 2020-21	
	PTS	REB	AST	
TEAM				
MIL	109.268293	44.353659	22.926829	
CHI	109.182927	44.536585	25.317073	
BKN	107.365854	39.207317	24.658537	
DEN	106.487805	41.573171	25.134146	
ATL	104.756098	40.463415	21.780488	
PHI	103.768293	40.621951	21.963415	
LAL	103.487805	43.378049	22.695122	
UTA	102.878049	42.512195	20.768293	
POR	102.317073	38.646341	18.329268	
SAC	101.914634	37.292683	23.256098	

Teams	with	Highest	Average	Stats:	2021-22
		PTS	REI	В	AST
TEAM					
CHA	121.5	597561	47.68292	7 28.1	70732
PHX	119.7	792683	46.792683	3 28.9	51220
DEN	118.8	378049	45.93902	4 28.4	63415
UTA	118.7	731707	47.804878	8 22.4	87805
SAC	118.1	158537	48.00000	0 23.5	60976
MIL	116.8	317073	47.146343	1 24.2	92683
MIN	116.5	512195	44.63414	6 25.7	56098
MEM	115.6	509756	49.14634	1 25.9	87805
CHI	114.0	060976	44.14634	1 24.0	36585
TOR	113.7	768293	47.18292	7 23.1	70732

Teams	with	Highest	Average	Stats:	2022-23
		PTS	REI	3	AST
TEAM					
LAC	133.5	585366	51.85365	9 31.6	09756
ATL	129.5	573171	48.85365	9 26.0	97561
LAL	127.9	951220	48.57317	1 26.3	65854
NYK	124.6	695122	52.91463	4 26.3	17073
PHI	122.9	902439	44.780488	3 26.4	02439

```
TOR 122.780488 49.097561 26.695122
DEN 121.560976 46.109756 29.707317
BOS 121.243902 47.024390 27.134146
SAC 120.890244 42.621951 27.304878
MEM 120.146341 47.585366 26.463415
```

Teams	with	Highest	Average	Stats:	2023-24
		PTS	REE	3	AST
TEAM					
LAL	127.4	187805	45.743902	2 32.9	63415
OKC	125.6	521951	46.231707	7 28.1	95122
DAL	123.7	707317	46.548780	26.1	70732
IND	123.5	585366	40.792683	30.63	34146
BOS	123.2	292683	48.146341	L 27.70	07317
MIL	122.3	353659	46.390244	27.6	21951
PHI	121.5	512195	43.500000	27.3	41463
NYK	120.2	231707	47.646341	L 25.6	46341
PHX	119.8	329268	45.963415	5 28.8	78049
ATL	117.8	390244	44.475610	26.50	00000

Question 4: Identify the most efficient players (with a minimum of a certain number of minutes played to ensure relevance)Most Efficient Players Based on Simplified PER (Regular Season):

	PLAYER	TEAM	year	PTS	REB	AST	STL	BLK	TOV	MIN	Efficiency
4949	Giannis Antetokounmpo	MIL	2019-20	1857	856	354	61	66	230	1917	1.546166
8096	Joel Embiid	PHI	2023-24	1353	430	219	46	66	150	1309	1.500382
7297	Giannis Antetokounmpo	MIL	2022-23	1959	742	359	52	51	246	2024	1.441206
2753	Russell Westbrook	OKC	2016-17	2558	864	840	132	31	438	2802	1.422912
6475	Nikola Jokic	DEN	2021-22	2004	1019	584	109	63	281	2476	1.412763
6476	Giannis Antetokounmpo	MIL	2021-22	2002	778	388	72	91	219	2204	1.411978
4210	Giannis Antetokounmpo	MIL	2018-19	1994	898	424	92	110	268	2358	1.378287
6473	Joel Embiid	PHI	2021-22	2079	796	284	77	99	214	2296	1.359321
8049	Luka Doncic	DAL	2023-24	2370	647	686	99	38	282	2624	1.355945
8053	Nikola Jokic	DEN	2023-24	2085	976	708	108	68	237	2737	1.354768

```
MIN Efficiency
4949 1917 1.546166
8096 1309 1.500382
7297 2024 1.441206
2753 2802 1.422912
6475 2476 1.412763
6476 2204 1.411978
4210 2358 1.378287
6473 2296 1.359321
```

Question 5: Identify the most efficient player for each year

Most Efficient Players for Each Year (Regular%20Season):

	PLAYER	TEAM	year	PTS	REB	AST	STL	BLK	TOV
\									
2	LeBron James	MIA	2012-13	2036	610	551	129	67	226
680	Kevin Love	MIN	2013-14	2010	963	341	59	35	196
1364	Russell Westbrook	OKC	2014-15	1886	488	574	140	14	293
2063	Stephen Curry	GSW	2015-16	2375	430	527	169	15	262
2753	Russell Westbrook	OKC	2016-17	2558	864	840	132	31	438
3455	James Harden	HOU	2017-18	2191	389	630	126	50	315
4210	Giannis Antetokounmpo	MIL	2018-19	1994	898	424	92	110	268
4949	Giannis Antetokounmpo	MIL	2019-20	1857	856	354	61	66	230
5697	Giannis Antetokounmpo	MIL	2020-21	1717	671	357	72	73	207
6475	Nikola Jokic	DEN	2021-22	2004	1019	584	109	63	281
7297	Giannis Antetokounmpo	MIL	2022-23	1959	742	359	52	51	246
8096	Joel Embiid	PHI	2023-24	1353	430	219	46	66	150

Question 6: Identify players with the highest shooting accuracy in each season (normalized for minutes played)

Players with the Highest Shooting Accuracy by Season (Field Goal Percentage):

year	PLAYER TEAM	FG_PC1
2012-13	DeAndre Jordan LAC	0.643
2013-14	DeAndre Jordan LAC	0.676
2014-15	DeAndre Jordan LAC	0.710
2015-16	DeAndre Jordan LAC	0.703
2016-17	DeAndre Jordan LAC	0.714
2017-18	Clint Capela HOU 0.0	652
2018-19	Rudy Gobert UTA 0.	669

```
    2019-20 Rudy Gobert UTA 0.693
    2020-21 Rudy Gobert UTA 0.675
    2021-22 Mitchell Robinson NYK 0.761
    2022-23 Walker Kessler UTA 0.720
    2023-24 Daniel Gafford DAL 0.725
```

Question 8:

Calculate the correlation matrix for the numeric columns

The heatmap displays the correlation matrix for the NBA metrics. Here's an analysis of the key observations:

Strong Positive Correlations (Values close to 1):

FGM (Field Goals Made) vs. PTS (Points): Correlation ~0.99. This is expected, as scoring more field goals directly leads to more points. FGA (Field Goals Attempted) vs. PTS (Points): Correlation ~0.99. Players who attempt more field goals tend to score more points.

REB (Total Rebounds) vs. OREB/DREB (Offensive/Defensive Rebounds): Correlation ~0.99. Total rebounds are almost perfectly correlated with offensive and defensive rebounds combined.

MIN (Minutes Played) vs. various stats (PTS, FGM, etc.): Players who spend more time on the court tend to accumulate more stats across different categories, such as points, field goals, and assists.

Strong Negative Correlations (Values close to -1):

There aren't many significant negative correlations, though some metrics are inversely related, but with weak correlation values.

Notable Medium-High Correlations (0.7 - 0.9):

AST (Assists) vs. PTS (Points): A relatively strong positive correlation (~0.79). Players with more assists are often involved in more scoring plays.

OREB/DREB (Offensive/Defensive Rebounds) vs. REB (Total Rebounds): As expected, these individual components contribute directly to the total rebounds.

Weak or No Correlations (Values close to 0):

TEAM_ID vs. all other stats: As expected, there's no significant correlation between team identifiers and player statistics.

PLAYER_ID vs. all other stats: This is a unique identifier and doesn't correlate with performance metrics.

Conclusion:

The most strongly correlated metrics are field goals attempted/made with points, as well as minutes played with performance metrics like points and assists. Rebounds also show strong internal correlation between offensive, defensive, and total rebounds. These correlations make sense in the context of basketball performance, where key performance indicators tend to cluster.

Question9: Calculate the correlation between 3-point field goals made and total points

Correlation between 3-point Field Goals Made (FG3M) and Points (PTS): 0.77

Top 10 Scorers and Their 3-Point Field Goals Made:

	PLAYER PTS FG3M
4204	James Harden 2818 378
677	Kevin Durant 2593 192
2753	Russell Westbrook 2558 200
2062	James Harden 2376 236
2063	Stephen Curry 2375 402
8049	Luka Doncic 2370 284
2754	James Harden 2356 262
4946	James Harden 2335 299
0	Kevin Durant 2280 139
8050	Shai Gilgeous-Alexander 2254 95

Scatter Plot Results

The scatter plot shows a clear positive trend: as the number of 3-point field goals made (FG3M) increases, the total points (PTS) also tend to increase. However, the spread of points indicates that some players score a significant number of points even without relying heavily on 3-pointers, while others who make a lot of 3-pointers also score a lot.

Top 10 Scorers:

James Harden appears multiple times in the top 10, making him one of the top scorers and also one of the top 3-point shooters, especially with 378 and 299 made 3-pointers in different seasons. Stephen Curry is a notable example with 402 made 3-pointers, showing that a significant portion of his points come from 3-point shooting. Other top scorers, like Shai Gilgeous-Alexander and Kevin Durant in one of the entries, score high points but have relatively fewer 3-point field goals made compared to others (95 and 139).

Conclusion:

There is a clear correlation between making 3-point field goals and scoring high points, but not all top scorers are necessarily the best 3-point shooters. Players like Shai Gilgeous-Alexander rely less on 3-pointers, while players like Stephen Curry and James Harden significantly contribute to their points through 3-pointers.

Question 10

To find out which players contribute the most to their team's offense by combining their points (PTS)

and assists (AST), we can create a new metric called "Offensive Contribution" (which is the sum of points

and assists) and then identify the top players.

Top 1	O Players with the	Highe	st Off	ensive	e Contribution	(Points +	Assists):
	PLAYER	TEAM	PTS	AST	Offensive_Cont	ribution	
4204	James Harden	HOU	2818	586		3404	
2753	Russell Westbrook	OKC	2558	840		3398	
2754	James Harden	HOU	2356	907		3263	
8049	Luka Doncic	DAL	2370	686		3056	
677	Kevin Durant	OKC	2593	445		3038	
3454	LeBron James	CLE	2251	747		2998	
2062	James Harden	HOU	2376	612		2988	
2063	Stephen Curry	GSW	2375	527		2902	
6471	Trae Young	ATL	2155	737		2892	
3457	Russell Westbrook	OKC	2028	820		2848	