# Scattering theory for time-dependant central potentials

Lochlan Eastwood Supervisor: Jesse Gell-Redman

### Introduction

The central aim of scattering theory is to describe how a wavefront is scattered off a potential in  $\mathbb{R}^{n+1}_{x,t}$ .

Mathematically, this means studying the asymptotics of solutions to partial differential equations (PDE's) as  $t \to \pm \infty$ .

In doing so, we get information about how an incoming wave  $\varphi^p$  (p: past) scatters to an outgoing wave  $\varphi^f$  (f: future), and encode this information in a 'scattering map' S.

Here, our PDE-of-choice is the Klein-Gordon equation (KGE), a model for particles travelling with relativistic energies.

This poster aims to understand understand how S depends on incoming waves when a perturbing potential V is introduced. We do this by studying the *phase shifts* of S.

Work of this kind is novel, and here we focus on how to extend the well-documented results for a time-independent, spherically symmetric (called *central*) potential [1], to the lesser known case of a time-dependent one.

### Background

### Klein-Gordon equation

The Klein-Gordon equation is

$$(D_t^2 - \Delta_x - m^2)u(x,t) = 0,$$

where  $D_t=-i\partial_t, \Delta_x=\sum_{i=1}^n D_{x_i}^2$  is the 'positive' Laplacian on  $\mathbb{R}^n_x$  and m>0.

We perturb this equation by adding in a smooth potential  $V \in C^{\infty}(\mathbb{R}^{n+1}_{x,t})$ :

$$(\underbrace{D_t^2 - \Delta_x - V - m^2}_{=:P_V})u(x,t) = 0.$$

Here we consider the case of a time-dependent central potential V(r,t), that has compact support in the region  $\mathbb{R} \times [-\mathcal{T}, \mathcal{T}]$ , for some  $\mathcal{T}$ .

### The scattering map S

Given incoming waves  $\varphi_{\pm}^p \in C_c^{\infty}(\mathbb{R}^{n+1})$ ,  $\exists$  a unique u solving  $P_V u = 0$ , which encodes information about how these two waves scatter off V. This encoding comes from the asymptotics of u as  $t \to \pm \infty$ :



**Figure 1.** Link between the asymptotics of u as  $t \to \pm \infty$ , and S.

Where  $\gamma(x,t)$  is a smooth function for |x|<|t| (see 'The light cone').

As in the figure, the scattering map  ${\cal S}$  is defined by

$$\begin{pmatrix} \varphi_+^p \\ \varphi_-^p \end{pmatrix} \mapsto \begin{pmatrix} \varphi_+^f \\ \varphi_-^f \end{pmatrix}$$

### Simplifying things: spherical harmonics

To take advantage of the spherical symmetry of V, we use spherical harmonics. For a given l, write

$$u(t,x) = v(r,t)Y_l^{\kappa}(\theta),$$

where  $Y_l^{\kappa}$  is a function on the sphere  $\mathbb{S}^{n-1}$ . This separation of variables helps us deal with the Laplacian in the KGE—the only x-dependant operator—since we can write the Laplacian in spherical coordinates as

$$\Delta_x = \text{function in } r \text{ of } \partial_r + \frac{1}{r^2} \Delta_{\mathbb{S}^{n-1}}.$$

The  $Y_l^\kappa$  are eignenvectors of the operator  $\Delta_{\mathbb{S}^{n-1}}$ , hence pull through  $P_V u$ , leaving us to solve the much simpler PDE

$$P_V v(r,t) = 0.$$

#### The free case

We show that in the free case  $(V \equiv 0)$ , S = I.

Let  $\varphi^p_{\pm}$  be incoming waves

write  $u = v(r, t)Y_l^{\kappa}(\theta)$ , substitute into  $P_0u = 0$  and take the Fourier transform in time

$$(\tau^2 + \partial_r^2 + \frac{n-2}{r} - \frac{l(l+n-2)}{r^2} - m^2)\hat{v}(r,\tau) = 0$$

write 
$$w(r,\tau)r^{-(n-2)/2}=\hat{v}(r,\tau), E=\tau^2-m^2$$
 to get

$$\left(-\partial_r^2 - \frac{1}{r}\partial_r + \frac{(l + (n-2)/2)^2}{r^2} - E\right)w = 0.$$

This PDE has solutions which are the *Hankel functions*,  $H^{(1)}, H^{(2)}$ , defined in terms of Bessel functions [2]. We can then make the ansatz

$$w = \varphi_-^p H^{(1)}(r,\tau) + \varphi_+^p H^{(2)}(r,\tau)$$

take inverse Fourier transform:

$$v = \int_{\mathbb{R}} e^{it\tau} r^{-(n-2)/2} w d\tau. \tag{\dagger}$$

The asymptotics of the Hankel functions [2] and the method of stationary phase [3] gives us the asymptotics to this integral. Namely, as  $t \to \pm \infty$ 

$$\begin{split} v \sim &|t|^{-1/2} r^{-(n-1)/2} \\ &\times \left( \varphi_-^p(\gamma(r,|t|)) e^{-im\sqrt{t^2-r^2}} + \varphi_+^p(\gamma(r,|t|)) e^{im\sqrt{t^2-r^2}} \right). \end{split}$$
 Since these asymptotics are equal for  $t \to \pm \infty$ ,  $S = I$ .

**Interpretation:** When no potential is present, the waves have nothing to scatter off.

## **Open question and motivation**

Consider the following logical sequence for a timedependent central potential.

it's known S is unitary and decomposes as S=I+A, hence A is normal  $(A^*A=AA^*)$ 

Conjecture: 
$$A$$
 is compact,  $(*)$  if true

A is diagonalisable, i.e.,  $\exists \text{ basis } \{\varphi_j, \psi_j\}_{j=1}^\infty \text{ s.t. } A(\varphi_j, \psi_j) = \mu_j(\varphi_j, \psi_j)$  that diagonalises A

$$S(\varphi_j,\psi_j)=(1+\mu_j)(\varphi_j,\psi_j)$$
 i.e.,  $\varphi_j$  are eigenvectors of  $S$ 

$$S$$
 unitary gives  $|1 + \mu_i| = 1$ , hence  $1 + \mu_i = e^{i\theta_i}$ .

These  $\theta_j$  are called *phase-shifts*, and their name is derived from the following important corollary, implied by their existence:

**Corollary:** Given incoming data (basis vectors)  $\varphi_j(x), \psi_j(x), \exists u_{j,free}, u_j \text{ s.t. } P_0 u_{j,free} = 0 \text{ and } P_V u_j = 0,$  where as  $t \to -\infty$ :

$$u_j, u_{j,free} \sim t^{-n/2} \left( \varphi_j(\gamma(x,t)) e^{im\sqrt{t^2 - r^2}} + \psi_j(\gamma(x,t)) e^{-im\sqrt{t^2 - r^2}} \right)$$

and as  $t \to +\infty$ ,

$$u_j \sim t^{-n/2} e^{i\theta_j} \left( \varphi_j(\gamma(x,t)) e^{im\sqrt{t^2 - r^2}} + \psi_j(\gamma(x,t)) e^{-im\sqrt{t^2 - r^2}} \right)$$

The incoming data  $\varphi_j, \psi_j$  undergo a phase shift when scattered by V.

**Open question:** Do phase shifts exist for a time-dependent central potential?

Answering this requires proof of conjecture (\*).

**Motivation:** The existence of phase shifts is also the first step in demonstrating there is a meaningful connection between V and S — that under V, S depends continuously on its incoming data.

### The conjecture - forward propagators

To prove conjecture  $(\star)$ , and thus demonstrate the existence of phase shifts of S, we use forward propagators.

**Definition:**  $P_V$  has an associated operator called the *forward propagator*  $G_{for}$ , s.t.  $u = G_{for}(e)$  solves  $P_V u = 0$ , and when  $\sup e \subseteq \{t \ge T_0\}$  we have  $s \sup G_{for}(e) \subseteq \{t \ge T_0\}$ , for some  $T_0$  (see figure 2 below).



Figure 2.  $G_{for}$  propagating e forward in time.

### How to use $G_{for}$

Let  $u_{approx}=\chi_{-\infty}u_{free}(x,t)$ , where  $\chi_{-\infty}$  is a cut-off function to  $-\infty$  ( $\chi\equiv 1$  for t small enough, and  $t\equiv 1$  for t large enough) and  $u_{free}$  has incoming data  $\varphi^p_\pm$ .

Then  $e=P_Vu_{approx}$  is supported in  $\{t\geq T_0\}$  for some  $T_0$ , and  $u=u_{approx}-G_{for}e$  solves  $P_Vu=0$  and has incoming data  $\varphi_+^p$ .

### Showing A is compact

We need to understand the asymptotics of u as  $t \to +\infty$ , which we do by proving estimates for  $G_{for}$ , such as

$$||G_{for}e||_X \le C ||e||_Y$$

in appropriate spaces X,Y. This involves calculating weighted energy estimates:

$$E_t = \int t^{-p} \left( |Lv|^2 + |\partial_r v|^2 + |mv|^2 + |v/r|^2 \right) dt dx \quad (1)$$

for different operators L, such as  $L = \partial_t$ . Here  $t^{-p}$  is the weighting.

These estimates for  $||G_{for}e||$  tell us how under control  $G_{for}e$  is, and can allow one to conclude that A is compact. They should be a focus for future research.

### The light cone

Many of our results rely on  $\gamma(r,t)$  being smooth. However,  $\gamma(r,t)$  often looks like

$$\frac{tm}{\sqrt{t^2-r^2}},$$

which is problematic when r/t = 1.

To rectify this, we work in **timelike infinity**, a region where  $|r/t| < 1 - \epsilon$  (inside of the two cones in figure 3 below).



**Figure 3.** Diagram of a *lightcone*, with regions of timelike and null infinity.

### Acknowledgements

Thanks to my supervisor Jesse for your support throughout the project. Thanks also to the School of Maths & Stats for this opportunity, and to Wei, Brian and Roy.

### References

- [1] S. Dyatlov and M. Zworski. *Mathematical Theory of Scattering Resonances*. Graduate Studies in Mathematics. American Mathematical Society, 2019. ISBN 9781470443665. URL https://bookstore.ams.org/gsm-200/.
- [2] I.A. Stegun M. Abramowitz. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, chapter 9, pages 358–423. Applied mathematics series. U.S. Government Printing Office, 1964. URL https://books.google.com.au/books?id=mlAs1jYzI\_QC.
- [3] M. Zworski. Semiclassical Analysis. Graduate studies in mathematics. American Mathematical Society, 2012. ISBN 9780821883204. URL https://books.google.com.au/books?id=3Z0CAQAAQBAJ.