Master in Innovation and Research in Informatics Algorithmic Methods For Mathematical Models Course Project Presentation

Roger Gili i Coscojuela roger.gili.i@estudiantat.upc.edu

Edgar Rodríguez de la calle edgar.rodriguez.de.la.calle@estudiantat.upc.edu

66

"Forget about Mr. Bond and forget about the door. This is a **TSP** problem".

Initial Information

- A set S that contains a fixed n number of codes.
- Each code is a sequence of m binary digits.

Inputs and Variables of the Model

Inputs

n: The number of codes.

m: The number of binary digits that each code has.

S: The set of n codes with m digits

Variables

f: Discrete variable -> Flips

d_{i,i}: Discrete variable ->Cost.

$$(0 \le i, j \le n)$$

y_{i,j}: Binary variable -> Path

$$(0 \le i, j < n)$$

x_{k,j}: Binary variable -> Subtour(1 ≤ k,j < n)

Objective Function & Constraints

Objective Function:

Minimize: f

Subject To:

1: Intended Meaning of $f \longrightarrow \sum_{i,j=0}^{\infty} d_{i,j} y_{i,j}$

Objective Function & Constraints

Subject To:

$$\sum_{j=1}^{\infty} x_{k,j} = 1$$

$$\sum_{k=1}^{\infty} x_{k,j} = 1$$

$$y_{0,j} = x_{1,j} : \forall j \ (1 \le j < n)$$

 $x_{k,i} + x_{(k+1),j} - y_{i,j} \le 1$

$$y_{j,0} = x_{(n-1),j} \ \forall j: (1 \le j < n)$$

$$\forall k: (1 \le k < n-2) \ \forall i,j: (1 \le i,j < n)$$

Greedy

GRASP

Algorithm 2 GRASP

- 1: function GraspSolver
- 2: Initialize N, the initial set of codes
- 3: $\omega \leftarrow \{\}$
- 4: Add to ω the first node in N
- 5: while ω is not a solution do
- 6: Candidates = getFeasibleLinks(ω)
- 7: $q_{min} \leftarrow min\{q(c) \mid c \in Candidates\}$
- 8: $q_{max} \leftarrow max\{q(c) \mid c \in Candidates\}$
- 9: $RCL_{min} \leftarrow \{c \in Candidates \mid q(c) \leq q_{min} + \alpha(q_{max} q_{min})\}$
- 10: Select $c \in RCL$ at random
- 11: Update ω with random selected node form RCL
- 12: end while
- 13: return ω
- 14: end function

Given α of 0.7:

$$RCL_{min} = 1+0.7(5-1) = 3.8$$

2 3 5

Local Search

Cplex solving time

- Our Cplex model time grows exponentially
- With more than 15 codes our model is time infeasible

Cplex Solving time

Algorithm comparison up to 15 codes

- Greedy algorithm gives good and fast solutions.
- After some tuning, lower α values give better results in GRASP.
- Combining Local Search with the Greedy and GRASP provides better results than his counterparts.

Algorithm comparison 25 and 99 codes

Conclusions & Future Work

Conclusions

Future work

- Grasp with increasing α value
- Try other local search algorithms (3-opt, Lin-Kernighan heuristic)
- Try other Cplex models

Thanks!

Any questions?

