Name of the Student :									
Register No. :	R	A							

SRM Institute of Science and Technology College of Engineering and Technology DEPARTMENT OF MATHEMATICS

SRM Nagar, Kattankulathur - 603203, Chengalpattu District, Tamilnadu Academic Year: 2023-2024 (EVEN)

SLOT-C1 (SET-A) MCQ

Test: FT-3 Course Code & Title: 21MAB203T-Probability and Stochastic Processes Duration: 1 hr 40 min

Max. Marks: 50

Date: 19/03/2024

4.

Jensen's

(A) convex

inequality

(B) inverse

- Note: Part A should be answered in the Question paper itself within the first 5 minutes and the same should be handed over to the hall invigilator at the end of the 5th minute
 - Only A/B/C/D have to be mentioned as an answer for MCQ in the space provided in the Question paper.
 - Any striking (or) overwriting (or) using whitener in the answer (A/B/C/D) under Part-A will not be accepted. No marks will be awarded for that question.
 - Part B and Part C should be answered in the answer booklet.

At the	end of the course, student will be able to				Pr	ograr	n Oı	ıtcome	es (F	20)			
	e Outcomes (CO)	1	2	3	4	5	6	7	8	9	10	11	12
COI	Evaluate the characteristics of discrete and continuous random variables	3	3										
CO2	Explain the model and analyze systems using two-dimensional random variables Engineering	3	3										F
CO3	Classify limit theorems and evaluate upper bounds using various inequalities	3	3						21				di
CO4	Analyze the characteristics of random processes	3	3			hol							
CO5	Examine problems in spectral density functions and linear	3	3		The state of	4							
	time-invariant systems						4.				Valid		
	Part-A $(4 \times 1 = 4)$	Ma	rks)									
	Answer ALL the o	ques	tion	S									
Q.No.	Question				150	nswe B/C/	Section 1	Mark	S	BL	CO	PO	0
1.	For two random variables X and Y , $E(X) = 5$, $E(XY) = 75$, $E(X^2) = 4$ and $E(Y^2) = 149$, $C(X) = 149$, C	(Y) $OV($ 10	= XY	10,) is				1		1	4	1,	2
2.	The joint probability distribution of two continuous rand X and Y is given by $f_{XY}(x,y) = e^{-(x+x)}$ $x,y < \infty$ The marginal probability distribution of X	y),	0	≤				1		2	4	1,	2
	(A) e^{-y} (B) e^{-2y} (C) e^{-x} (D) e^{-x}	-2x								Estation		1,	97.6

applied

(C) decreasing

function

(D) increasing

2

Register No.:

					and makes the	-				2		
Г	All and the					1	1		- 6	 1		
Ł	D	A		4							. 1	
ì	1	/ 1	1 1						 		. 1	
ı							1			1	. 1	
l							1					
1							1		 			_

SRM Institute of Science and Technology College of Engineering and Technology SRM Nagar, Kattankulathur - 603203, Chengalpattu District, Tamilnadu

SET-B **MCQ**

C1-Slot

Academic Year: 2023-2024 (EVEN)

Date: 19/03/2024

Duration: 1 hr 40 Minutes. Course Code & Title: 21MAB203T-Probability and Stochastic Processes

Max. Marks: 50 Year / Sem: II/IV

ALI	he end of this course, learners will be able to:						Pro	gram	Out	ome	s (PC)		
* 5 80000	e Outcomes (CO)	Learning Bloom's Level	1	2	3	4	5	6	7	8	9	10	11	12
COI	Evaluate the characteristics of discrete and continuous random variables	4	3	3										
CO2	Explain the model and analyze systems using two-dimensional random variables	4	3	3						·				-
CO3	Classify limit theorems and evaluate upper bounds using various inequalities	4	3	3						_				_
CO4	Analyze the characteristics of random processes	4	3	3						_				
CO5	Examine problems in spectral density functions and linear time-invariant systems	4	3	3										

Note:

Only A/B/C/D have to be mentioned as an answer for MCQ in the space provided in the Question paper.

Any striking (or) overwriting (or) using whitener in the answer (A/B/C/D) under Part-A will not be (ii)

accepted. No marks will be awarded for that question.

Part - B and Part - C should be answered in the answer booklet. (iii)

Part-A (1 x 4 = 4 Marks)

	Answer ALL the Questions					
Q. No	Question	An sw er	Ma rks	B L	CO	PO
1.	Let $X \in \{0,1\}$ and $Y \in \{0,1\}$ be two independent binary random variables. If $P(X = 0) = p$ and $P(Y = 0) = q$, then $P(X + Y) < 1$ is equal to		1	2	2	1,2
	(A) pq (B) $pq + (1-p)(1-q)$ (C) $p(1-q)$ (D) $1-pq$					
2.	If the joint pdf of the RV (X,Y) is given by $f(x,y) = kx$ in the region $0 \le x \le 2$ and $0 \le y \le 2$, then $k = (A) k = 1$ (B) $k = 1/4$ (C) $k = 1/2$ (D) $k = 1/8$		1	2	2	1,2
3.	Consider $S = X_1 + X_2 + \cdots + X_n$ where X_1, X_2, \dots, X_n be a sequence of independent and identically distributed RV's each having finite mean $E(X_l) = \mu$. Then for any $\epsilon > 0$, weak law of large numbers states (A) $P\left(\left \frac{S}{n} - \mu\right \ge \epsilon\right) \to 0$ as $n \to \infty$ (B) $P\left(\left \frac{S}{n} - \mu\right < \epsilon\right) \to 0$ as $n \to \infty$ (C) $P\left(\left \frac{S}{n} - \mu\right \ge \epsilon\right) \to 0$ as $n \to \infty$		1	1	3	1,2
4.	Let X is a RV with $E(X) = \mu$ and $Var(X) = \sigma^2$, then for some $a > 0$, which of the following equation denotes Tchebycheff inequality? (A) $P(X - \mu \ge a) \le \frac{\mu}{a}$ (B) $P(X - \mu \ge a) \le \frac{\sigma^2}{a}$ (C) $P(X - \mu \ge a) \le \frac{\sigma^2}{a^2}$ (D) $P(X - \mu \ge a) \le \frac{\mu^2}{a^2}$		1	1	3	1,2

SRM Institute of Science and Technology College of Engineering and Technology SRM Nagar, Kattankulathur - 603203, Chengalpattu District, Tamilnadu Academic Year: 2023-2024 (EVEN)

C1-Slot SET-B Part-B&C

Test: FT3

Course Code & Title: 21MAB203T-Probability and Stochastic Processes

Year / Sem: II/IV

Date: 19/03/2024 Duration: 1 hr 40 Minutes. Max. Marks: 50

	$Part - B (8 \times 2 = 16 \text{ Marks})$				
5.	The joint probability Answer any two questions				
	The joint probability mass function of X and Y is given by $p(x,y) = k(3x + 2y)$, where $x = 1,2,3,4$; $y = 0,1,2,3$. Find the value of k , marginal distributions, $P(X+Y>3)$.	8	4	2	1,2
6.	A discrete random variable Y takes the audit and a discrete random variable random v				
	A discrete random variable X takes the values -1,0,1 with probability 1/8, $\frac{3}{4}$,1/8 respectively. Evaluate $P\{ X - \mu \ge 2\sigma\}$ using Tchebycheff's inequality and	8	4	3	1,2
7(i).	Two random variables X and Y are distributed according to				
	$f_{X,Y}(x,y) = \begin{cases} \frac{1}{4}xy & 0 \le x \le 2 & 0 \le y \le 2 \\ 0 & otherwise \end{cases}$ Find the marginal distributions	4	3	2	1,2
	Find the marginal distributions.				
7(ii).	Suppose that the average grade on the M. it				
-	bound on the proportion of students who score at least 85%.	4	3	3	1,2

8.	Part - C (15 x 2 = 30 Marks) Answer any two question The joint pdf of (X, Y) is given by $f(x)$				
9.	The joint pdf of (X, Y) is given by $f(x, y) = 24xy$; $x > 0, y > 0, x + y \le 1$ and $f(x, y) = 0$, elsewhere. Find the covariance of X and Y . If $X_1, X_2,, X_n$ are Poisson variates with parameters $\lambda = 2$, use the central limit theorem to estimate $P(120 \le S_n \le 160)$ and $P(130 \le S_n \le 160)$.	15	4	2	1,2
)(i).	$\int_{0}^{1} = X_{1}, X_{2}, \dots X_{n}$ and $n = 7r$	15	4	3	1,2
(-).	If the joint pdf of (X, Y) is given by $f_{XY}(x, y) = x^2 + 2y^2$; where $0 \le x \le 1$	(0)			
)(ii).	Let X be a positive random variable with E(V)	8	3	2	1,2
	$e^{\frac{1}{x+1}}$ is a convex function in $(0, \infty)$. And then estimate the value of	7	3	3	1,2

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Name of the Student :	Trans.			lace of	M	7017	311		
Register No. :	R	A							

SRM Institute of Science and Technology College of Engineering and Technology DEPARTMENT OF MATHEMATICS

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu Academic Year: 2023-2024 (EVEN) SLOT-C1 (SET-A) Part – B & C

Test: FT-3

Course Code & Title: 21MAB203T-Probability and Stochastic Processes

Date: 19/03/2024

Date: 19/03/2024

Duration: 1 hr 40 min

Max. Marks: 50

	Part-B ($2 \times 8 = 16$ Marks)				
	Answer any TWO questions				
Q.No.	Question	Marks	BL	СО	PO
5.	The joint probability mass function of X and Y is given by $p(x, y) = k(x + 3y)$, where $x = 1, 2, 3, 4$; $y = 1, 2, 3, 4$. Find the value of k , marginal distributions, $P(X + Y > 3)$.	8	3	2	1,2
6.	A random variable is exponentially distributed with parameter 1. Use Tchebycheff's inequality to find the lower bound for $P(-1 \le X \le 3)$. Also find the actual probability.	8	3	3 .	1,2
7 a.	Two random variables X and Y have joint distribution $f_{XY}(x,y) = 9x^2y^2, 0 < x, y < 1$. Find the marginal distributions.	4	2	2	1,2
7 b.	Let X and Y are two random variables with mean and variance of X as 6 and 2, respectively and mean and variance of Y as 4 and 1 respectively, Find the maximum possible value of $E[XY]$.	4	2	3	1,2
	Part-C $(2 \times 15 = 30 \text{ Marks})$				
	Answer any TWO questions				
Q.No.	Question	Marks	BL	СО	PO
8.	Given the joint pdf of (X, Y) as $f(x, y) = k(2 - x - y), 0 < x, y < 1$. Find k and covariance.	15	4	4	1,2
9.	The life time of a certain brand of tube light may be considered as a random variable with mean 1200 hours and S.D. 250 hours. Using CLT, find the probability that the average life time of 60 lights (i) exceeds 1250 hours (ii) between 1100 and 1250 hours (iii) less than 1100 hours	15	4	4	1,2
10 a.	If X and Y each follow an exponential distribution with parameter 1 and are independent, find the joint pdf $g_{UV}(u, v)$ where $U = X - Y$.	8	4	4	1,2
10 b.	Let Z be standard normal variate with MGF $M_Z(t) = e^{t^2/2}$. Using Chernoff bounds, find an upper bound for $P[Z \ge a]$.	7	4	4	1,2