## Training ASMPT

Program session 2

Anton J.M. Montagne

Perscitec BV

April 19, 2021

# Program session 2

- Q & A
- Poster session: noise
- Examples: Budgeting of noise (hand calculations)
- Examples: Budgeting and verification of noise (SLiCAP and LTspice)
- Objective to a product of the pro
- Momework:
  - Exercises similar as examples
  - Book chapter 2 and 7

### Poster presentation



#### Noise Figure



A signal (voltage) source with a source impedance  $R_s$  is terminated with a resisor with resistance  $R_p$ .

- Give an expression for the noise figure for this arrangement.
- ② Does such termination increase or decrease the total output voltage noise?
- Verify your answer with SLiCAP.
- Use LTspice for numerical verification with  $R_s = 600\Omega$  and  $R_p = 1$ k $\Omega$ .

#### Noise Figure



A signal (voltage) source with a source impedance  $R_s$  is connected to an amplifier. The noise performance of this amplifier is modeled with its input-referred noise  $v_n$  (voltage noise) and  $i_n$  (current noise) with spectral densities  $S_{v_n} \left[ \frac{V^2}{Hz} \right]$  and  $S_{i_n} \left[ \frac{A^2}{Hz} \right]$ , respectively.

- Give an expression for the noise figure for this arrangement.
- Verify your answer with SLiCAP.
- Use LTspice for numerical verification with  $R_s=600\Omega,\ \sqrt{S_{\nu_n}}=2\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}\ \mathrm{and}\ \sqrt{S_{i_n}}=3\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}.$

#### Coupling capacitor



A coupling capacitor is used to connect a signal (voltage) source with a source impedance of  $600\Omega$  to an amplifier. The input resistance of the amplifier is  $100 \mathrm{k}\Omega$ . The noise performance of the amplifier is modeled with its input-referred noise  $v_n$  (voltage noise) and  $i_n$  (current noise) with spectral densities  $\sqrt{S_{v_n}} = 2\frac{\mathrm{nV}}{\mathrm{VHz}}$  and  $\sqrt{S_{i_n}} = 3\frac{\mathrm{pA}}{\mathrm{VHz}}$ , respectively.

Propose a value for the coupling capacitance if this arrangement should have a low-noise transfer from 10Hz to 100kHz.

#### Low-noise current driver



A current driver consists of a high-gain, low-noise, high-power voltage amplifier with output current feedback.

A current sense resitor with resistance  $R_s$  converts the output current into a voltage. This voltage is amplified by a differential voltage amplifier and compared with the setpoint provided by a DAC. The noise performance of the differential amplifier is modeled with its input-referred noise  $v_n$  (voltage noise) and  $i_n$  (current noise) with spectral densities  $S_{v_n} \left[ \frac{V^2}{Hz} \right]$  and  $S_{i_n} \left[ \frac{A^2}{Hz} \right]$ , respectively.

- Give an expression for motor current noise of this arrangement.
- Verify your answer with SLiCAP.

### Homework 1

#### Noise Figure



A resistor with resistance  $R_{se}$  is paced in series with a signal (current) source with a source impedance  $R_s$ .

- Give an expression for the noise figure for this arrangement.
- ② Does such termination increase or decrease the total output current noise?
- Verify your answer with SLiCAP.
- ① Use LTspice for numerical verification with  $R_s e = 600\Omega$  and  $R_s = 1$ kΩ.

### Homework 2

#### Low-noise supply



A signal (voltage) source with a source impedance  $R_s$  is connected to an amplifier. A low-noise regulator consists of a low noise voltage reference and a power amplifier. The output voltage can be adjusted with a resistive divider. The noise performance of the power amplifier is modeled with its input-referred noise  $v_n$  (voltage noise) and  $i_n$  (current noise) with spectral densities  $S_{v_n}\left[\frac{V^2}{Hz}\right]$  and  $S_{i_n}\left[\frac{A^2}{Hz}\right]$ , respectively.

- Give an expression for the output voltage noise of this arrangement.
- Verify your answer with SLiCAP.
- Propose a method to obtain a low output noise, independent of the values of the feedback resistors.

### Homework 3

#### Low-noise current driver



A current driver consists of a high-gain, low-noise, high-power voltage amplifier with output current feedback.

A current sense resitor with resistance  $R_s$  converts the output current into a voltage. This voltage is amplified by a differential voltage amplifier and compared with the setpoint provided by a DAC. The noise performance of the differential amplifier is modeled with its input-referred noise  $v_n$  (voltage noise) and  $i_n$  (current noise) with spectral densities  $S_{v_n} \left[ \frac{V^2}{Hz} \right]$  and  $S_{i_n} \left[ \frac{A^2}{Hz} \right]$ , respectively.

- Give an expression for motor current noise of this arrangement.
- Verify your answer with SLiCAP.
- Propose a method to reduce the contribution of the resistors of the differential amplifier to the motor noise current.

### Next Week

#### Preliminary program

- Q & A (Homework)
- Poster session: Modeling and characterization of the ideal behavior of amplifiers and design of negative feedback amplifier configurations.
- Modeling and characterization of port isolation errors
- Modeling and characterization of inaccuracy and nonlinearity
- Oster session: Modeling and characterization of dynamic behavior / Estimation of poles and zeros
- Modeling and characterization of operational amplifiers
- Guided Exercise: Modeling of individual performance apsects of OpAmps