Singular values of covariance matrices under localization

Travis Harty

1 Optimal linear transform

We update our state $x \sim N(\mu, \mathbf{P})$ using observation $y = \mathbf{H}\mu + \epsilon$, where $\epsilon \sim N(0, \mathbf{R})$, dim $x = N_x$, and dim $y = N_y$. We will perform this update by first transforming our variables using linear transformations \mathbf{T}_x and \mathbf{T}_y for x and y respectively such that $\mathbf{T}_x x = \tilde{x} \sim N(\tilde{\mu}, \mathbf{I})$ and $\mathbf{T}_y y = \tilde{y} = \mathbf{\Sigma}\tilde{\mu} + \tilde{\epsilon}$, where $\mathbf{\Sigma}$ is diagonal, and $\tilde{\epsilon} \sim N(0, \mathbf{I})$. Take,

$$x' = \mathbf{P}^{-1/2}x$$
 and $y' = \mathbf{R}^{-1/2}y$.

We then have,

$$y = \mathbf{H}\mu + \epsilon$$

$$\mathbf{R}^{1/2}y' = \mathbf{H}\mathbf{P}^{1/2}\mu' + \epsilon$$

$$y' = \mathbf{R}^{-1/2}\mathbf{H}\mathbf{P}^{1/2}\mu' + \epsilon',$$

where $\epsilon \sim N(0, \mathbf{I})$. We can then take the singular value decomposition of $\mathbf{R}^{-1/2}\mathbf{HP}^{1/2}$ yielding,

$$y' = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \mu' + \epsilon'$$
$$\mathbf{U}^T y' = \mathbf{\Sigma} (\mathbf{V}^T \mu') + \tilde{\epsilon}$$
$$\tilde{y} = \mathbf{\Sigma} \tilde{\mu} + \tilde{\epsilon}$$

where Σ is diagonal and $\tilde{\epsilon} \sim N(0, \mathbf{I})$. We have $\mathbf{T}_x = \mathbf{V}^T \mathbf{P}^{-1/2}$ and $\mathbf{T}_y = \mathbf{U}^T \mathbf{R}^{-1/2}$.

2 Dimension reduction optimal linear transform

We again update our state $x \sim N(\mu, \mathbf{P})$ with observations $y = \mathbf{H}x + \epsilon$, where $\epsilon \sim N(0, \mathbf{R})$. We will now calculate

$$\mathbf{P} = \mathbf{Q}_x \mathbf{\Lambda}_x \mathbf{Q}_x^T$$
 and $\mathbf{R} = \mathbf{Q}_y \mathbf{\Lambda}_y \mathbf{Q}_y^T$

and choose N_{λ_x} and N_{λ_y} that are the number of eigenvalues to keep for P and R respectively such that,

$$\dim(\mathbf{Q}_x) = (N_x, N_{\lambda_x}); \dim(\mathbf{\Lambda}_x) = (N_{\lambda_x}, N_{\lambda_x})$$
 and
$$\dim(\mathbf{Q}_y) = (N_y, N_{\lambda_y}); \dim(\mathbf{\Lambda}_y) = (N_{\lambda_y}, N_{\lambda_y})$$

We can then repeat the above calculations while reducing the transformed variables' dimensions. Take,

$$x' = \mathbf{\Lambda}_x^{-1/2} \mathbf{Q}_x^T x$$
 and $y' = \mathbf{\Lambda}_y^{-1/2} \mathbf{Q}_y^T y$

Note that we have,

$$x \approx \mathbf{Q}_x \mathbf{\Lambda}_x^{1/2} x'$$
$$y \approx \mathbf{Q}_y \mathbf{\Lambda}_y^{1/2} y'$$

where there is equality when N_{λ_x} (N_{λ_y}) is the true rank of ${\bf P}$ $({\bf R})$.

Assuming that N_{λ_x} and N_{λ_y} are the ranks of P and R respectively, we have,

$$y = \mathbf{H}\mu + \epsilon$$
$$\mathbf{Q}_{y}\mathbf{\Lambda}_{y}^{1/2}y' = \mathbf{H}\mathbf{Q}_{x}\mathbf{\Lambda}_{x}^{1/2}\mu' + \epsilon$$
$$y' = \mathbf{\Lambda}_{y}^{-1/2}\mathbf{Q}_{y}^{T}\mathbf{H}\mathbf{Q}_{x}\mathbf{\Lambda}_{x}^{1/2}\mu' + \epsilon',$$

where $\epsilon' \sim N(0, \mathbf{I}_{N_{\lambda_y}})$. We can then take the singular value decomposition of $\mathbf{\Lambda}_y^{-1/2} \mathbf{Q}_y^T \mathbf{H} \mathbf{Q}_x \mathbf{\Lambda}_x^{1/2}$ yielding,

$$y' = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \mu' + \epsilon'$$
$$\mathbf{U}^T y' = \mathbf{\Sigma} (\mathbf{V}^T \mu') + \tilde{\epsilon}$$
$$\tilde{y} = \mathbf{\Sigma} \tilde{\mu} + \tilde{\epsilon}$$

where Σ is diagonal and $\tilde{\epsilon} \sim N(0, \mathbf{I}_{N_{\lambda_y}})$. We have $\mathbf{T}_x = \mathbf{V}^T \mathbf{\Lambda}_x^{-1/2} \mathbf{Q}_x^T$ and $\mathbf{T}_y = \mathbf{U}^T \mathbf{\Lambda}_y^{-1/2} \mathbf{Q}_y^T$. Note that we have,

$$\mathbf{T}_x \mathbf{T}_x^{-R} = \mathbf{V}^T \mathbf{\Lambda}_x^{-1/2} \mathbf{Q}_x^T \mathbf{Q}_x \mathbf{\Lambda}_x^{1/2} \mathbf{V} = \mathbf{I}_{N_{\lambda_x}},$$

but there is no left inverse. However, the right inverse is something like a left inverse in that

$$\mathbf{T}_x^{-R}\mathbf{T}_x = \mathbf{Q}_x \mathbf{\Lambda}_x^{1/2} \mathbf{V} \mathbf{V}^T \mathbf{\Lambda}_x^{-1/2} \mathbf{Q}_x^T$$
$$\mathbf{T}_x^{-R} \mathbf{T}_x = \mathbf{Q}_x \mathbf{Q}_x^T$$

which is equal to the identity matrix only if P is full rank, and all eigenvectors are kept. However, if μ is in the span of the columns of \mathbf{Q}_x , then we have,

$$\mathbf{T}_x^{-R}\mathbf{T}_x\mu = \mathbf{Q}_x\mathbf{Q}_x^T\mu = \mu$$

even if \mathbf{T}_x does not have a left inverse. Furthermore, if μ is not in the span of the columns of \mathbf{Q}_x , this is possible even if the range of \mathbf{P} and \mathbf{Q}_x are equal, then we have,

$$(\mathbf{T}_x^{-R}\mathbf{T}_x + \mathbf{I}_{N_x} - \mathbf{Q}_x\mathbf{Q}_x^T)\mu = \mathbf{Q}_x\mathbf{Q}_x^T\mu + \mu - \mathbf{Q}_x\mathbf{Q}_x^T\mu = \mu.$$

We can therefore always recover the parts of μ that are removed because of the representation of μ in the column space of \mathbf{Q}_x .

3 Equivalence to standard KF

Sticking with the above notation, we can calculate the standard Kalman filter update and the corresponding equations:

$$\mathbf{K} = \mathbf{P}\mathbf{H}^{T}(\mathbf{H}\mathbf{P}\mathbf{H}^{T} + \mathbf{R})^{-1},$$

$$\mu^{a} = \mu + \mathbf{K}(y - \mathbf{H}\mu),$$

$$\mathbf{P}^{a} = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}.$$

Alternatively, in terms of our transformed equations, we have:

$$\begin{split} \tilde{\mathbf{K}} &= \mathbf{I}_{N_{\lambda_x}} \mathbf{\Sigma}^T (\mathbf{\Sigma} \mathbf{I}_{N_{\lambda_x}} \mathbf{\Sigma}^T + \mathbf{I}_{N_{\lambda_y}})^{-1} = \mathbf{\Sigma}^T (\mathbf{\Sigma} \mathbf{\Sigma}^T + \mathbf{I}_{N_{\lambda_x}})^{-1} \\ \tilde{\mu}^a &= \tilde{\mu} + \tilde{\mathbf{K}} (\tilde{y} + \mathbf{\Sigma} \tilde{\mu}) \\ \tilde{\mathbf{P}}^a &= (\mathbf{I}_{N_{\lambda_x}} - \tilde{\mathbf{K}} \mathbf{\Sigma}) \tilde{\mathbf{P}}. \end{split}$$

We can then convert \tilde{x}^a and $\tilde{\mathbf{P}}^a$ back to the original x-space through,

$$\mu_1^a = \mathbf{T}_x^{-R} \tilde{\mu}^a$$

and

$$\mathbf{P}_{1}^{a} = \mathbf{T}_{x}^{-R} \tilde{\mathbf{P}}^{a} \left(\mathbf{T}_{x}^{-R}\right)^{T}.$$

Assuming that the ranks of ${f P}$ and ${f R}$ are N_{λ_x} and N_{λ_y} respectively,

$$\begin{split} \tilde{\mathbf{K}} &= \mathbf{\Sigma}^T (\mathbf{\Sigma} \mathbf{\Sigma}^T + \mathbf{I}_{N_{\lambda_x}})^{-1} \\ \tilde{\mathbf{K}} &= \mathbf{T}_x \mathbf{P} \mathbf{T}_x^T (\mathbf{T}_y \mathbf{H} \mathbf{T}_x^{-R})^T \left((\mathbf{T}_y \mathbf{H} \mathbf{T}_x^{-R}) (\mathbf{T}_y \mathbf{H} \mathbf{T}_x^{-R})^T + \mathbf{T}_y \mathbf{R} \mathbf{T}_y^T \right)^{-1} \\ \tilde{\mathbf{K}} &= \mathbf{T}_x \mathbf{P} \mathbf{T}_x^T \left(\mathbf{T}_x^{-R} \right)^T \mathbf{H}^T \mathbf{T}_y^T \left(\mathbf{T}_y \mathbf{H} \mathbf{T}_x^{-R} \left(\mathbf{T}_x^{-R} \right)^T \mathbf{H}^T \mathbf{T}_y^T + \mathbf{T}_y \mathbf{R} \mathbf{T}_y^T \right)^{-1} \\ \tilde{\mathbf{K}} &= \mathbf{T}_x \mathbf{P} \mathbf{Q}_x \mathbf{Q}_x^T \mathbf{H}^T \mathbf{T}_y^T \left(\mathbf{T}_y \left(\mathbf{H} \mathbf{Q}_x \boldsymbol{\Lambda}_x \mathbf{Q}_x^T \mathbf{H}^T + \mathbf{R} \right) \mathbf{T}_y^T \right)^{-1} \end{split}$$

If we assume that μ is in the span of \mathbf{Q}_x , we have,

$$x_1^a = \mathbf{T}_x^{-R} \tilde{x}^a$$

$$x_1^a = \mathbf{T}_x^{-R} \left(\tilde{x} + \tilde{K} \right)$$