

Master in Data Science

D5: NN-based DDI

Mining Unstructured Data

Year **2023/24**

Date

Team members Alícia Chimeno Sarabia and Gabriel Vayá Abad

1 Introduction

This task revolves around **relation extraction**, aiming to extract relations between entities expressed in the text. Specifically, the objective is to extract relationships between drugs from biomedical texts, known as **drug_interaction(drug,drug)**.

This task also pursues a classification task of each drug-drug interaction according to one of the four following types: **advise**, **effect**, **mechanism**, **int**. Accordingly, the challenge called for a five-way classification of sentences for each drug-pair:

- Advise: the sentence notes a recommendation or advice related to the concomitant use of the two drugs. Ex: UROXATRAL should NOT be used in combination with other alphablockers.
- Effect: the sentence states the effect of the drug interaction, including pharmacodynamic effect or mechanism of interaction. Ex: Quinolones may enhance the effects of the oral anticoagulant, warfarin.
- Mechanism: the sentence describes a pharmacokinetic mechanism. Ex: Grepafloxacin is a competitive inhibitor of the metabolism of theophylline.
- Int: the sentence mentions a drug interaction but doesn't provide any additional information. Ex: "The interaction of omeprazole and ketoconazole has been established.").
- None: the sentence does not show an interaction between the two drugs.

To achieve accurate relation extraction and classification, we employ neural networks, exploring various architectures and configurations. By experimenting with different models and hyperparameters, we aim to determine the optimal setup that maximizes the performance of relation extraction from biomedical texts.

2 Experiments description

2.1 Experimented Architectures and Hyperparameters

2.1.1 Embedding Dimension

We experimented with different embedding dimensions to evaluate their impact on the model's performance.

2.1.2 Max Length and Suffix Length Values

Different maximum length and suffix length values were experimented with to determine the optimal configuration for input sequences.

2.2 Experimented Input Information

2.2.1 Number of LSTM Units

We experimented with different numbers of LSTM units (e.g., 30, 64, 128) to identify the best configuration for capturing sequential dependencies.

2.2.2 Used Optimizer

Various optimizers such as Adam, RMSprop, and SGD were tested to find the most effective optimization strategy for training the model.

2.2.3 Number and Kind of Layers or Activation Functions

The number and types of layers (e.g., LSTM, Conv1D) and activation functions were varied to explore different architectural configurations.

2.3 Combining LSTM and CNN Layers

We experimented with combinations of LSTM and Conv1D layers, adjusting parameters like the number of filters and kernel size to potentially capture more complex patterns.

2.4 Adding Dropout

Dropout layers with different rates were added to prevent overfitting and improve the generalization capability of the model.

2.5 Evaluation Metrics

The performance of different configurations was evaluated using precision, recall, and F1-score to ensure a comprehensive assessment of the models.

3 Code Description

3.1 Best Network Model

```
1 from tensorflow.keras.layers import Input, Embedding, Conv1D, GlobalMaxPooling1D,
      Bidirectional, LSTM, concatenate, Dropout, Dense
  from tensorflow.keras.models import Model
  def build_network(codes):
      # sizes
      n_words = codes.get_n_words()
      max_len = codes.maxlen
      n_labels = codes.get_n_labels()
      # Input Layer
10
      inpt = Input(shape=(max_len,))
      emb = Embedding(input_dim=n_words, output_dim=300, input_length=max_len)(inpt)
12
13
      # Convolutional Layers
      conv1 = Conv1D(filters=128, kernel_size=5, activation='relu')(emb)
15
      conv2 = Conv1D(filters=128, kernel_size=5, activation='relu')(conv1)
16
      pool = GlobalMaxPooling1D()(conv2)
17
18
      # Bidirectional LSTM Layer
19
      lstm = Bidirectional(LSTM(units=128, return_sequences=True))(emb)
20
      lstm = Bidirectional(LSTM(units=128, return_sequences=False))(lstm)
21
22
      # Feature Combination
23
24
      combined = concatenate([pool, lstm])
      dropout = Dropout(0.5)(combined)
26
      # Additional Dense Layer
27
      dense = Dense(256, activation='relu')(dropout)
28
29
      # Output Layer
30
      out = Dense(n_labels, activation='softmax')(dense)
31
32
      model = Model(inputs=inpt, outputs=out)
      model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['
34
      accuracy'])
35
      return model
```

Listing 1: Best Network Model Code

3.1.1 Explanation

The final model architecture consists of the following components:

- Input Layer: The input layer expects sequences of a maximum length (max_len).
- Embedding Layer: Converts input tokens into dense vectors of fixed size (300).
- Convolutional Layers: Two Conv1D layers with 128 filters and a kernel size of 5, both using the ReLU activation function, followed by a GlobalMaxPooling1D layer to reduce the dimensionality of the output.
- Bidirectional LSTM Layers: Two Bidirectional LSTM layers with 128 units each. The first LSTM layer returns sequences, while the second does not.
- Feature Combination: The outputs from the convolutional and LSTM layers are concatenated.
- **Dropout Layer**: A dropout layer with a dropout rate of 0.5 to prevent overfitting.

- Dense Layer: A dense layer with 256 units and ReLU activation.
- Output Layer: A dense layer with a number of units equal to the number of labels (n_labels) using the softmax activation function to output probability distributions over the classes.

The model is compiled using categorical cross-entropy loss and the Adam optimizer, with accuracy as the evaluation metric.

4 Experiments and results

To determine the optimal model, it's essential to assess both the machine learning algorithm and the capabilities of the feature extractor. Our evaluation of experiments will focus on key metrics such as **precision**, **recall**, and **F-1 score**.

4.1 Initial state

	tp	fp	fn #	pred#	#exp P	R F	1
brand	47	2	327	49 3	374 95.9%	12.6%	 22.2%
drug	1561	123	345 16	684 19	906 92.7%	81.9%	87.0%
drug_n	7	43	38	50	45 14.0%	15.6%	14.7%
group	530	98	157	628 6	84.4%	77.1%	80.6%
M.avg					71.8% 46	.8% 51	. 1%
m.avg	2145	266	867 24	411 30	012 89.0%	71.2%	79.1%
m.avg(no class)	2220	191	792 24	411 30	012 92.1%	73.7%	81.9%

Figure 1: Initial state

4.2 Embedding dimension

4.2.1 50

	tp f	p fn	#pre	ed #ex	exp P R F1
advise	 72	34	 69	106	
effect	134	69	178	203	3 312 66.0% 42.9% 52.0%
int	14	3	14	17	28 82.4% 50.0% 62.2%
mechanism	82	77	179	159	261 51.6% 31.4% 39.0%
M.avg		 -67.0%	43.9	% 52.	2.9%
m.avg	302	183	440	485	5 742 62.3% 40.7% 49.2%
m.avg(no class)	329	156	413	485	5 742 67.8% 44.3% 53.6%

4.2.2 300

tp fp fn #pred #exp P R F1

advise	84	56	57	140	141	60.0%	59.6%	59.8%		
effect	155	130	157	285	312	54.4%	49.7%	51.9%		
int	15	2	13	17	28	88.2%	53.6%	66.7%		
mechanism	82	71	179	153	261	53.6%	31.4%	39.6%		
M.avg		64.1%	48.6	% 54.	5%					
m.avg	336	259	406	595	742	56.5%	45.3%	50.3%		
<pre>m.avg(no class)</pre>	387	208	355	595	742	65.0%	52.2%	57.9%		

Embedding Dimension	Precision	Recall	F1 Score
150	71.8%	46.8%	51.1%
50	67.0%	43.9%	52.9%
300	64.1%	48.6%	54.5%

Table 1: Embedding Dimension

4.3 Max length and sufix length values

4.3.1 50

tp fp	fn #pre	d #exp P R F	°1
advise	72	39 69 111	141 64.9% 51.1% 57.1%
effect	139	66 173 205	312 67.8% 44.6% 53.8%
int	14	4 14 18	3 28 77.8% 50.0% 60.9%
mechanism	82 1	.09 179 191	261 42.9% 31.4% 36.3%
M.avg	63	3.3% 44.3% 52	2.0%
m.avg	307 2		 5 742 58.5% 41.4% 48.5%
m.avg(no class)	328 1	97 414 525	742 62.5% 44.2% 51.8%

4.3.2 300

tp fp	fn #p	red #	exp P	R F1					
advise	79	43	62	122	141	64.8%	56.0%	60.1%	
effect	162	105	150	267	312	60.7%	51.9%	56.0%	
int	14	2	14	16	28	87.5%	50.0%	63.6%	
mechanism	83	68	178	151	261	55.0%	31.8%	40.3%	
M.avg		 67.0%	47.4	% 55.	 0%				
m.avg	338	218	404	556	742	60.8%	45.6%	52.1%	
m.avg(no class)	372	184	370	556	742	66.9%	50.1%	57.3%	

Max Length	Precision	Recall	F1 Score
150	71.8%	46.8%	51.1%
50	63.3%	44.3%	52.0%
300	67.0%	47.4%	55.0%

Table 2: Max Length

4.4 Conv1D Layer

Increased the **number of filters** and **kernel size** to potentially capture more complex patterns.

4.5 Number of LSTM units

We experimented with different numbers of LSTM units (30, 64, 128).

LSTM layer w 128 units

tp fp fr	ı #pre	d #ex	p P R	k F1				
advise	71	52	70	123	141 57.7	% 50.4%	53.8%	
effect	177	109	135	286	312 61.9	% 56.7%	59.2%	
int	17	7	11	24	28 70.8	% 60.7%	65.4%	
mechanism	118	66	143	184	261 64.1	% 45.2%	53.0%	
M.avg		63.6%	53.3	8% 57.	9%			
m.avg	383	234	359	617	742 62.1	~ % 51.6%	56.4%	
m.avg(no class)								
Add a LSTM layer w 64 units								
tp	fp	fn #	pred	#exp	P R F1			
advise	100	93	41	193	141 51.8	 % 70.9%	59.9%	
effect	207	202	105	409	312 50.6	66.3%	57.4%	
int	18	2	10	20	28 90.0	% 64.3%	75.0%	
mechanism	166	153	95	319	261 52.0	% 63.6%	57.2%	
M.avg		61.1%	66.3	8% 62.	4%			
m.avg	491	450	251	941	742 52.2		58.3%	
_								
<pre>m.avg(no class)</pre>	583	358	159	941	742 62.0	% 78.6%	69.3%	

Add a LSTM layer w 30 units

	tp	fp	fn	#pred	l #exp	PR	F1						
advise effect int mechanism			205 17	155 7	107 11	360 24	312 28	54.0% 56.9% 70.8% 70.8%	65.7% 60.7%	61.0% 65.4%			
M.avg			6	3.1%	58.1%	6 59.6	5%						
m.avg m.avg(no o	class)							59.9% 69.1%			_	_	

LSTM Units	Precision	Recall	F1 Score
128	63.6%	53.3%	57.9%
64	61.1%	66.3%	62.4%
30	63.1%	58.1%	59.6%

Table 3: Number of LSTM Units

4.6 Combinations of LSTM and CNN layers

30 ,30

tp fp fn	#pre	d #ex	рРБ	RF1					
advise	93	 63	48	156	141	59.6%	66.0%	62.6	 %
effect	199	129	113	328	312	60.7%	63.8%	62.2	%
int	18	1	10	19		94.7%			
mechanism	128 	90	133	218	261	58.7%	49.0%	53.4	%
M.avg		68.4%	60.8	8% 62.	.7%				
m.avg	438	283	304	721	742	60.7%	59.0%	59.9	%
<pre>m.avg(no class)</pre>	510	211	232	721	742	70.7%	68.7%	69.7	%
60 - 60									
tp	fp	fn #	pred	#exp	P R l	F1			
advise	83	53	58	136	141	61.0%	58.9%	59.9	%
effect	171	69	141	240		71.2%			
int	16	3		19		84.2%			
mechanism	99	48	162	147	261	67.3%	37.9%	48.5	%
M.avg		71.0%	52.2	2% 59.	.6%				
m.avg	369	173	373	542	742	68.1%	49.7%	57.5	%
<pre>m.avg(no class)</pre>	423	119	319	542	742	78.0%	57.0%	65.9	%
16-16									
tp fp	fn #	pred	#exp	PRI	71				
advise	 95	80	 46	175	141	54.3%	67.4%	60.1	 %
effect	169	109	143	278	312	60.8%	54.2%	57.3	%
int	17	2	11	19	28	89.5%	60.7%	72.3	%
mechanism	108	61	153	169	261	63.9%	41.4%	50.2	%
M.avg		67.1%	55.9	9% 60.	. 0%				
m.avg	 389	252	353	641	742	60.7%	52.4%	56.3	 %
m.avg(no class)	450	191				70.2%			
Adding dropout	of 0.1								
tp fp fn	#pre	d #ex	р Р F	R F1					
advise	 69	 53	 72	122	141	56.6%	48.9%	52.5	 %
effect	197	144	115	341	312	57.8%	63.1%	60.3	%
int	16	9	12	25	28	64.0%	57.1%	60.4	%

mechanism	92	85	169	177	261	52.0%	35.2%	42.0%		
M.avg		 57.6%	51.1	% 53.	8%				 	
m.avg m.avg(no class)						56.2% 67.4%				
kernel=5										

Combination	Precision	Recall	F1 Score
30, 30	68.2%	60.8%	62.7%
64, 64	71.0%	52.2%	59.6%
16, 16	67.1%	55.9%	60.0%
30, 30 + Dropout 0.1	57.6%	51.1%	53.8%

Table 4: Combining LSTM and CNN Layers

4.7 Final model

The final model insights are described in the section 3.1.1. The network starts with an input layer for DDI sentences, followed by embedding and convolutional layers extracting features. Bidirectional LSTM layers capture context, and a dropout layer prevents overfitting. Concatenation and dense layers process features, with softmax output providing interaction category probabilities. This architecture effectively combines convolutional and recurrent layers for accurate drug-drug interaction classification.

tp fp	fn #p	red #	exp P	R F1				
advise	 96	 81	45	177	141	54.2%	68.1%	60.4%
effect	178	76	134	254	312	70.1%	57.1%	62.9%
int	21	9	7	30	28	70.0%	75.0%	72.4%
mechanism	105	64	156	169	261	62.1%	40.2%	48.8%
M.avg	 	 64.1% 	60.1	% 63.	1%			
m.avg	400	230	342	630	742	63.5%	53.9%	58.3%
<pre>m.avg(no class)</pre>	467	163	275	630	742	74.1%	62.9%	68.1%

4.8 Test

After training our final model, we evaluated its performance on the test dataset. The table below summarizes the results:

tp	o fp	fn	#pred	#exp	P R	F1					
advise		116	 59	93	175	209	66.3%	55.5%	60.4%	 	
effect		168	104	118	272	286	61.8%	58.7%	60.2%		
int		6	8	19	14	25	42.9%	24.0%	30.8%		
${\tt mechanism}$		171	114	169	285	340	60.0%	50.3%	54.7%		
M.avg57.7% 47.1% 51.5%											
<pre>m.avg m.avg(no cl</pre>	.ass)	461 531					61.8% 71.2%				

4.9 Conclusions

In summary, our project centered on developing a neural network-based approach for classifying drug-drug interactions (DDIs) from biomedical texts. After conducting a series of experiments and optimizations, we designed an advanced model that combines convolutional and recurrent layers. This model effectively captures both local and contextual information, yielding promising results across precision, recall, and F1-score metrics for various interaction categories. By leveraging deep learning techniques, our approach demonstrates the potential of neural networks in accurately extracting and classifying DDIs from unstructured biomedical data, contributing significantly to pharmacovigilance and drug safety research.