

Seminar class

Optimization Technique for Turbomachinery

Student: Duc-Anh Nguyen

Campus: Korea Institute of Industrial Technology (KITECH)

Advisor: Prof. Jin-Hyuk Kim

1. Review

2. Result Analysis

3. Conclusion and Achievement

1. Review

2. Result Analysis

3. Conclusion and Achievement

Why optimization? Motivation!

z-Anh Nguyen, UST

Research Process

1. Review

2. Result Analysis

3. Conclusion and Achievement

Prediction and Pareto Optimal Solution

Multi-objective Function $\uparrow Efficiency \rightarrow \downarrow Head$ $\uparrow Head \rightarrow \downarrow Efficiency$

ic-Anh Nauhen. UST

Prediction and Pareto Optimal Solution

	Design variables				Predicted values		CFD Calculation		Predicted error (%)		Increment (%)	
	L_s	L_h	ζm	$eta_{I,m}$	η/η_{d}	H/H _d	η/η_d	H/H _d	η_t	H _t	η _t	H_{t}
Case 1	+5.447	-5.461	-0.217	+0.226	1.032	1.064	1.026	1.066	0.618	0.120	2.606	6.554
Case 2	+4.925	-1.289	-2.749	-1.616	1.018	1.198	1.013	1.196	0.514	0.155	1.270	19.627
Case 3	+5.831	-5.377	-3.665	+2.89	0.996	1.284	1.006	1.215	0.991	5.436	0.603	21.457

Changing values of design valuable

⇒ Different impeller geometry

Impeller Blade

> Pressure distribution in impeller

cc-Anh Nguyện, UST

> Velocity axial distributions at impeller outlet

> Pressure distribution at 50% span

> Comparison energy performance curves

12

1. Review

2. Result Analysis

3. Conclusion and Achievement

Conclusions

- > The impeller geometry of an axial flow pump were optimized by multi-objective optimization.
- > The objective functions were the total efficiency and total head.
- \triangleright The main influencing factors were screened through a 2^k factorial design analysis (DOE).
- > The design points were then created in the design space using Latin Hypercube Sampling (LHS).
- > The approximation model uses a radial basis neural network (RBNN).
- > The optimal design was found using Non-dominated Sorting Genetic Algorithm (NSGA-II).
- The optimum model is increased the total efficiency and total pressure head by 0.974% and 21.028%, respectively, from those of the original model.
- The hydraulic performance was significantly enhanced by redistribution of the velocity field at the outlet and low-pressure suppression in front of the impeller.

Achievement

Journal of Mechanical Science and Technology 37 (3) 2023

Original Article

DOI 10.1007/s12206-022-1217-0

Keywords:

- · Axial flow pump
- · Diffuser vane
- · Impeller
- · Multi-objective optimization
- · Optimization design

Correspondence to:

Jin-Hyuk Kim jinhyuk@kitech.re.kr

Hydrodynamic optimization of the impeller and diffuser vane of an axial-flow pump

Duc-Anh Nguyen^{1,2}, Sang-Bum Ma², Sung Kim² and Jin-Hyuk Kim^{1,2}

¹Convergence Manufacturing System Engineering (Green Process and Energy System Engineering), University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon 34113, Korea, ²Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology, 89 Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si, Chungcheongnam-do 31056, Korea

Thank You For Listening Optimization Technique for Turbomachinery

Student: Duc-Anh Nguyen

Campus: Korea Institute of Industrial Technology (KITECH)

Advisor: Prof. Jin-Hyuk Kim

