PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-147673

(43)Date of publication of application: 29.05.2001

(51)Int.Cl.

G09G 3/36 G02F

1/133 G09G 3/20

(21)Application number : 11-331222

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

22.11.1999

(72)Inventor: MATSUMOTO KEIZO

NOZAKI HIDEKI

(54) LIQUID CRYSTAL DISPLAY DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a liquid crystal display device that has made the largeness of a visual angle to be chageable, if necessary, only by signal processing and has made possible to secretly hide the display contents or optimize the visible direction, etc.. without using the means such as a special liquid crystal cell for visual angle control, optical lens seat control, and optical characteristic variation of a back-light. SOLUTION: This liquid crystal display device comprises a signal control means for processing an input video signal in contrast, brightness, or the like individually for RGB, and a visual angle interlocking control means which has γ -conversion circuits, individually for RGB, for converting processed signal data into such impression voltages as provide a TV characteristic of a liquid crystal panel with a desired visual characteristic and controls to change over the plural γ -data according to prescribed pixel patterns to obtain the desired visual angle characteristic. Moreover, the visual angle

interlocking control means performs the control to the signal control means and the γ conversion circuits by interlocking adaptive control so as to effectively control the visual angle according to the feature information obtained from a video feature detection means for extracting features of the input video signal.

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1]A liquid crystal display characterized by comprising the following in a drive circuit and a back light system of an active-matrix drive type liquid crystal display element.

A signal-control means to perform video-signal processing to an inputted video signal. gamma conversion processing which considers said signal processing data as an input, and changes it into liquid crystal impressed electromotive force to an input value — RGB each — a RGB independent gamma conversion means which can be independently set up in several different characteristics.

An angle-of-visibility gang control means which controls each gamma data setting and its change pattern to said RGB independent gamma conversion means to become a desired view angle characteristic.

An image feature detection means to perform feature extraction of an inputted video signal and to output image characteristic information to said angle-of-visibility gang control means.

[Claim 2] The liquid crystal display according to claim 1 provided with a back light control means which controls backlight luminance of a liquid crystal panel by an angle-of-visibility gang control means.

[Claim 3]An angle-of-visibility gang control means by image characteristic information acquired from an image feature detection means. So that a display picture may be made to optimize and angle-of-visibility control may be performed effectively each gamma data setting, its change pattern control, and back light control of said signal-control means and said RGB independent gamma conversion means. The liquid crystal display according to claim 1 or 2 interlocking respectively and carrying out adaptive control dynamically.

[Claim 4]A signal-control means shall perform contrast adjustment and brightness adjustment. So that the maximum and the minimum of luminosity of a video signal may be obtained for every screen by an image feature detection means and the largest dynamic range of the gamma characteristic can be taken according to a luminance range of an input signal in 1 screen, and a desired view angle characteristic, Or the liquid crystal display according to claim 1, 2, or 3 characterized by performing contrast and brightness control so that angle-of-visibility control can be performed most efficiently.

[Claim 5] a signal-control means — RGB each — the liquid crystal display according to claim 4 are independently controllable and amending a gap between RGB of the gamma characteristic corresponding to said RGB independent gamma conversion means and the couple 1.

[Claim 6] A switching pattern and each gamma data of two or more gamma characteristic which

[Claim 6]A switching pattern and each gamma data of two or more gamma characteristic which are performed to a RGB independent gamma conversion means in an angle-of-visibility gang control means. One screen is horizontal or for every vertical pixel out of a symmetrical or alternation asymmetrically pattern. The liquid crystal display according to any one of claims 1 to 5 performing control combined so that it might choose according to image characteristic information and angle-of-visibility setting out which were obtained from an image feature detection means and might become the optimal about gamma data.

[Claim 7]A switching pattern and each gamma data of two or more gamma characteristic which

are performed to a RGB independent gamma conversion means in an angle-of-visibility gang control means, To the direction of the field, out of a symmetrical or alternation asymmetrically pattern. The liquid crystal display according to any one of claims 1 to 5 performing control combined so that it might choose according to image characteristic information and angle-of-visibility setting out which were obtained from an image feature detection means and might become the optimal about gamma data.

[Claim 8]By an image feature detection means, acquire average value of luminosity of a video signal for every screen, and back light control, a change big in order to make it change to a desired view angle characteristic in said signal-control means and said RGB independent gamma conversion means to light transmittance of each pixel of a liquid crystal element — **** — the liquid crystal display according to claim 3 controlling to compensate luminosity, taking said average value into consideration to a case.

[Claim 9]An image feature detection means, a signal-control means, said RGB independent gamma conversion means, and an angle-of-visibility gang control means, The liquid crystal display according to any one of claims 1 to 8 characterized by a view angle characteristic being individually controllable respectively for every display screen even if it is a case where have a means to control individually for every display area of a picture, and the simultaneous display of two or more screens is carried out all over 1 screen.

[Claim 10]Back light control to a back light control means, As opposed to any in said two or more display screens, or display screens other than an object which shall carry out to one and performs said back light control, The liquid crystal display according to claim 9 generating amendment data from back-light-control data by the side of a controlled object, and controlling a signal-control means of a display screen outside a controlled object to cancel the control effect of a back light.

[Claim 11] The liquid crystal display according to claim 6, wherein a pattern of one screen which is horizontal or is set up by turns symmetrically or asymmetrically for every vertical pixel is determined according to pixel size of a liquid crystal panel, or an aspect ratio of a display screen.

[Claim 12]A pattern of one screen which is horizontal or is set up by turns symmetrically or asymmetrically for every vertical pixel, and a pattern set up by turns symmetrically or asymmetrically to the direction of the field, The liquid crystal display according to claim 6 or 7 characterized by what it opts for according to scanning-line-conversion processing in sequential scanning of an inputted video signal, interlaced scanning, or signal processing.

[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Field of the Invention] Especially this invention relates to signal processing of the video signal inputted into the drive circuit of the liquid crystal display of a TN liquid crystal (twisted pneumatic liquid crystal) and a back light device, and a liquid crystal display. Especially according to the condition of use and the visual recognition direction of a liquid crystal display, it is related with the control circuit of the liquid crystal display system which can control an angle of visibility suitably.

[0002]

[Description of the Prior Art]The TN liquid crystal method currently mostly used in liquid crystal TV etc., By the refractive index anisotropy which a liquid crystal has, torsion orientation, etc., the light which passes a liquid crystal layer receives various birefringence effects with the direction and angle, and complicated view angle dependence is shown, For example, generally, in an above viewing angle, the whole screen becomes whitish, and the whole screen becomes dark in a down viewing angle, and the phenomenon in which light and darkness will be reversed in the low-intensity part of a picture occurs.

[0003]Many art which carries out wide-field-of-view cornification about luminosity, hue, a contrast characteristic, a gradation characteristic, etc. by various methods about such a view angle characteristic is developed. Although there are very many improvement to the liquid crystal panel itself and things using an optical member and many are common as such art, Neither a TFT process nor a liquid crystal panel process becomes complicated, but the art of attaining wide-field-of-view cornification only by signal processing of an external circuit is also shown as a method which does not cause a fall or cost escalation of the yield. This uses the visual angle dependency of the transmissivity characteristic (following and V-T characteristic and notation) over the impressed electromotive force of a liquid crystal cell, By driving a liquid crystal, preparing two or more gradation voltage transfer characteristics (the following, gamma characteristics, and notation) over an input signal, and performing this change control at the predetermined intervals, two or more characteristics are compounded visually, and it is the art of raising a view angle characteristic, for example, is shown in JP,7-121144,A "liquid crystal display", JP,9-90910,A "drive method of a liquid crystal display, and liquid crystal display", etc. (The conventional example [such an example] 1 is written hereafter) The example of the widefield-of-view cornification liquid crystal display by such conventional external signal processing is shown in drawing 11. The gamma conversion circuit gamma 1 and gamma 2 which have several mutually different gamma characteristics considering an RGB image signal as an input in drawing 11, It is what made the liquid crystal drive according to the output of gamma conversion method including a means to switch and control these gamma characteristics for every (n is a natural number) n frame of a picture signal, as a change pattern of gamma characteristics, it is shown in drawing 12 -- as -- a pixel unit -- alternation -- and the display voltage corresponding to the gamma characteristics same to the corresponding picture elements of the continuous n frame -and it constitutes so that the status signal voltage from which polarity differs mutually may be

impressed. gamma 1 is optimized in 10 degrees of the top-view fields so that the angle of visibility from which two gamma characteristics differ may become the optimal view here, gamma 2 is optimized within 10 degrees of lower views, and gamma characteristics are things of making it operate so that about 10 degrees of upper and lower sides may extend the optimal gradation characteristic by fixing and becoming irregular by said change pattern.

[0004]In the purposes, such as optimization to the visual recognition direction when needing neither the purpose of display secrecy as privacy protection in a note type personal computer, nor a large angle of visibility as a trial which, on the other hand, used this view angle dependence effectively conversely, The applied proposal to narrowing, returning or moving an angle of visibility has been made. An angle of visibility is narrowed or it extends (it is not a thing [spreading extending from usual like the conventional example 1] here, and). As art of performing control in the meaning of returning what was narrowed to extend and to optimize, otherwise, Although what provided the liquid crystal cell which controls the amount of back lights in addition to the liquid crystal cell which displays a picture, controls this liquid crystal cell, and devised the light guide plate of the back light is proposed plentifully, As art of aiming at control of a view angle characteristic only by signal processing of an external circuit like the conventional example 1, there are some which are shown in JP,10-319373,A "liquid crystal display and liquid crystal display system", for example. (The conventional example [such an example J 2 is written hereafter) The example of the angle-of-visibility control liquid crystal display system by such conventional external signal processing is shown in drawing 14. The gradation signal voltage generating circuit which generates two or more gradation reference voltages to the TN liquid crystal panel in which this performed optimization of a rubbing direction, and optimization of the deflection plate twist angle. The preset value switching circuit which switches the preset value according to desired view angle characteristic setting out is provided, and the optimal gradation reference voltage is impressed, Or an angle of visibility is changed by the optimal reference voltage and the method of if possible changing an indicative data by the simple gain control by bit processing in an indicative-data switching circuit (amendment).

[0005]thus, although the method which modulates two or more gamma transfer characteristics set up fixed in the purpose of extending an angle of visibility, as art of aiming at control of a view angle characteristic, only by signal processing of the external circuit is shown by conventional technology, Switching so that the liquid crystal panel which performed orientation treatment may be used, it may become the set-up view angle characteristic about extensive ***** of an angle of visibility and gradation signal voltage may be optimized is indicated as a technique.

[0006]

[Problem(s) to be Solved by the Invention]However, since the place made into the purpose in the conventional example 1 is wide-field-of-view cornification, The gamma characteristics of the different characteristic of the plurality set up in order to extend an angle of visibility themselves are used fixed to a direction with a narrow angle of visibility (for example, sliding direction), and the concept which controls two or more gamma characteristics themselves is not included. It is not clearly written at all about the optimization or adaptive control to the video state of an inputted video signal, the gamma characteristics according to RGB individual, control, etc. [0007]Although the place made into the purpose in the conventional example 2 is extensive ****** of an angle of visibility, the gamma characteristics themselves are immobilization for every angle-of-visibility setting out made into the purpose, and there is no abnormal-conditions concept like the conventional example 1. It is not clearly written here at all about the optimization or adaptive control to the video state of an inputted video signal, the gamma characteristics according to RGB individual, control, etc. Both conventional examples are not touched at all about the back light.

[0008] Therefore, even when it applies to the purposes, such as extensive ***** of an angle of visibility, and optimization, in the conventional example 1. Two or more gamma characteristics for extending a view angle characteristic, as shown in <u>drawing 13</u> for example, in the case of the characteristic which lapped mostly in high-intensity region sections, In the case where a signal which was almost concentrated on high-intensity region sections as an inputted video signal is

inputted. since there is almost no effect that an angle of visibility spreads, and the difference of gamma becomes large when a signal which was conversely concentrated on the low luminance area part is inputted, it is possible to also become a cause of generating of a flicker etc. with some change pattern by the trade-off with an angle-of-visibility improvement effect.

[0009]Generally in the case of an input signal like the screen of a personal computer, or a car navigation screen, The dynamic range of an input signal is large, depending on the case where incline toward high-intensity or low-intensity comparatively in many cases, and it is concentrating on intermediate color conversely in video signals, such as TV, and an image scene, are concentrating on high-intensity, it is concentrating on low-intensity, or the signal component is various. By optimizing gamma characteristics like the conventional example 1 using the difference in VT characteristic by a viewing angle, and performing control according to the signal inputted in the case of the fundamental concept of controlling an angle of visibility, image quality deterioration by carrying out angle-of-visibility control, such as luminosity and a fall of a contrast feeling, can be suppressed, and it can be made to act effectively about the angle-of-visibility control effect itself — it thinks.

[0010]By the conventional examples 1 and 2, in mounted TV of 2 screen-display system, etc., systematically from the purposes, such as a safety aspect. Angle-of-visibility control of displaying a car navigation picture on a drivers side, and displaying TV image on a passenger side cannot be performed, and also in the case where it is the combination of such a signal source, since the characteristics on an image differ greatly as mentioned above, good angle-of-visibility control becomes difficult.

[0011] Since it is impossible to extend an angle of visibility from usual itself and also it cannot perform control by the state of a video signal like the case of the conventional example 1 in the technique of the conventional example 2, With the composition of the conventional example 2, such control is impossible for setting out of gamma characteristics for the place which can originally use the loose stable portion of inclination and is performed effectively in the case of the image which the input signal concentrated on the halftone area comparatively like [in the case of being general of a television signal].

[0012] Since they are not if gamma characteristics of ideal gamma characteristics correspond in a whole floor tone between RGB codes, but they have the color shift characteristic from the characteristic of the light filter of a liquid crystal display, a back light, etc., In order to suppress generating of a hue change etc. and to perform angle-of-visibility control, even if the gamma characteristics of RGB respond to gradation further separately, it is necessary to set them as an optimum value.

[0013]On the other hand, since the light volume of a back light serves as a big factor to luminance property as everyone knows in the case of a transmission type liquid crystal display system, it has influence not a little to the luminosity and the contrast feeling of a display image, but the consideration about this point is not specified in particular in a conventional example, either.

[0014] This invention is what was made in view of solving the above problems in the art of aiming at control of a view angle characteristic, only by signal processing of such an external circuit, According to the state of the video signal inputted as the view angle characteristic of the specified request, the control performed so that it may become the view angle characteristic of the set-up request, Give the more nearly optimal impressed electromotive force to a liquid crystal panel, and to be able to perform angle-of-visibility control more effectively, accommodative, interlock and the change pattern of video-signal processing, gamma characteristics, and gamma characteristics is controlled, And it controls by interlocking also about a back light, and aims at realizing more nearly optimal angle-of-visibility control. [0015]

[Means for Solving the Problem]In order to solve such a technical problem a liquid crystal display of this invention, A signal-control means to perform contrast, brightness processing, etc. to RGB independence to an inputted video signal, It has gamma conversion circuit changed into impressed electromotive force which serves as the view angle characteristic of a request [characteristic / of a liquid crystal panel / VT] of processed video signal data in RGB

independence, It has an angle-of-visibility gang control means which performs switching control for two or more gamma data set up according to a RGB individual become a desired view angle characteristic with a predetermined pixel pattern. As opposed to a TN liquid crystal panel which performed orientation control management so that view angle dependence to a predetermined direction might become large by this, Gradation voltage of two or more of said gamma characteristics is inputted for every pixel, realizes variable [of a view angle characteristic] by composition of the perceptual characteristic, and here in an angle-of-visibility gang control means. By image characteristic information acquired from an image feature detection means to perform feature extraction of an inputted video signal. It is considered as a system configuration which operates so that adaptive control may be performed also to a back light control means and back light control may be performed at the same time it interlocks control to said signal-control means and the aforementioned gamma conversion circuit and controls accommodative to perform angle-of-visibility control effectively.

[0016]In a system which aims at control of a view angle characteristic by signal processing of an external circuit by this, Suppressing image quality deterioration, such as luminosity, contrast, and a hue change, more effectively according to a state of an inputted video signal. A system which performs request angle-of-visibility control of narrowing a view angle characteristic, extending, moving, optimizing, or carrying out the mask of the display to one way is easily realizable by comparatively easy circuitry.

[0017]

[Embodiment of the Invention]An invention given in claims 1 and 3 of this invention is a liquid crystal display controller in the drive circuit and back light system of an active-matrix drive type liquid crystal display element, A signal-control means to perform video-signal processing to an inputted video signal, and the gamma conversion processing which considers said signal processing data as an input, and changes it into liquid crystal impressed electromotive force to an input value, RGB each -- with the RGB independent gamma conversion means which can be independently set up in several different characteristics. Said RGB independent gamma conversion means is received so that it may become a desired view angle characteristic, Each gamma data setting and the angle-of-visibility gang control means which controls the change pattern, It is considered as a liquid crystal display provided with an image feature detection means to perform feature extraction of an inputted video signal and to output image characteristic information to said angle-of-visibility gang control means, So that the more nearly optimal impressed electromotive force may be given to a liquid crystal panel and angle-ofvisibility control can be more effectively performed according to the state of the video signal inputted as the view angle characteristic of the specified request in the control performed so that it may become the view angle characteristic of the set-up request, Accommodative, it interlocks, the change pattern of video-signal processing, gamma characteristics, and gamma characteristics is controlled, and it has the operation of realizing optimal angle-of-visibility control that suppressed image quality deterioration.

[0018]Claim 2 of this invention, and an invention given in 3 and 8, A signal-control means to be a liquid crystal display controller in the drive circuit and back light system of an active-matrix drive type liquid crystal display element, and to perform video-signal processing to an inputted video signal, the gamma conversion processing which considers said signal processing data as an input, and changes it into liquid crystal impressed electromotive force to an input value — RGB each — with the RGB independent gamma conversion means which can be independently set up in several different characteristics. Said RGB independent gamma conversion means is received so that it may become a desired view angle characteristic, Each gamma data setting and the angle-of-visibility gang control means which controls the change pattern, An image feature detection means to perform feature extraction of an inputted video signal and to output image characteristic information to said angle-of-visibility gang control means, It is considered as a liquid crystal display provided with the back light control means which controls the backlight luminance of a liquid crystal panel by said angle-of-visibility gang control means, So that the more nearly optimal impressed electromotive force may be given to a liquid crystal panel and angle-of-visibility control can be more effectively performed according to the state of the video

signal inputted as the view angle characteristic of the specified request in the control performed so that it may become the view angle characteristic of the set-up request, Accommodative, it interlocks, and the change pattern of video-signal processing, gamma characteristics, and gamma characteristics is controlled, and it controls by interlocking also about a back light, and has the operation of realizing optimal angle-of-visibility control that suppressed image quality deterioration

[0019]As for the invention of a statement, said signal-control means shall perform contrast adjustment (amplitude adjustment of a video signal) and brightness adjustment (DC-levels adjustment) of a video signal to claims 4 and 5 of this invention. So that the maximum and the minimum of luminosity of a video signal shall be obtained for every screen by said image feature detection means and the largest dynamic range of the gamma characteristic can be taken according to the luminance range of the input signal in 1 screen, and a desired view angle characteristic, Or it is considered as a liquid crystal display given in three from claim 1 performing contrast and brightness control so that angle-of-visibility control can be performed most efficiently. From the relation between the view angle characteristic of the specified request, the angle-of-visibility control value out of which it cheats, and the variable range of the luminosity of an inputted video signal. Contrast control and gamma-characteristics setting out are performed so that angle-of-visibility control can be performed most efficiently and the optimal luminosity may be obtained, and it has the operation of realizing little angle-of-visibility control of image quality deterioration, such as a contrast drop, by controlling an angle of visibility.

[0020]The invention of a statement to claims 6 and 11 of this invention, The switching pattern and each gamma data of two or more gamma characteristic which are performed to said RGB independent gamma conversion means in said angle-of-visibility gang control means, One screen is horizontal or for every vertical pixel out of a symmetrical or alternation asymmetrically pattern. The image characteristic information and angle-of-visibility setting out which were obtained from said image feature detection means perform optimal selection suitably, And it is considered as a liquid crystal display given in five from claim 1 performing control which combined gamma data so that it might become the optimal, After taking into consideration the pixel size of a liquid crystal panel, the aspect ratio of a display screen, or the characteristic of a liquid crystal panel, By choosing gamma change pattern according to the state and signal source of a gamma-characteristics preset value and a video signal so that it may become desired angle-of-visibility setting out, it has the operation of realizing little angle-of-visibility control of the image quality deterioration which stopped a fall and flicker of luminosity.

[0021]The invention of a statement to claims 7 and 12 of this invention, The switching pattern and each gamma data of two or more gamma characteristic which are performed to said RGB independent gamma conversion means in said angle-of-visibility gang control means. To the direction of the field, out of a symmetrical or alternation asymmetrically pattern. The image characteristic information and angle-of-visibility setting out which were obtained from said image feature detection means perform optimal selection suitably, And it is considered as a liquid crystal display given in five from claim 1 performing control which combined gamma data so that it might become the optimal, According to the state of the time base direction of a gamma—characteristics preset value and a video signal, a signal source or the scanning line form of a video signal, or scanning-line-conversion processing, by choosing gamma change pattern of the direction of the field so that it may become desired angle-of-visibility setting out, It has the operation of realizing little angle-of-visibility control of the image quality deterioration which stopped a fall and flicker of luminosity.

[0022] The invention of a statement to claims 9 and 10 of this invention, In the liquid crystal display of a statement, claims 1-8 are received at said image feature detection means, said signal-control means, said RGB independent gamma conversion method, and said angle-of-visibility gang control means, Even if it is made to have become according to the display area of a picture controllable individually and is a case where the simultaneous display of two or more screens is carried out all over 1 screen, In [consider it as the liquid crystal display characterized by enabling it to control a view angle characteristic individually for every display screen

respectively, and] mount TV with 2 screen-display functions, etc., As it said that TV display and a car navigation display were optimized in the separate angle-of-visibility direction, it has the operation that the angle-of-visibility direction is independently controllable for every display screen.

[0023]Hereafter, an embodiment of the invention is described using a drawing. [0024](Embodiment 1) <u>Drawing 1</u> shows the block diagram of the liquid crystal display in the embodiment of the invention 1, and in <u>drawing 1</u> this liquid crystal display, as opposed to an inputted video signal — contrast and brightness processing — RGB — with the signal—control means 1 which can be processed by independent setting out. the RGB independent gamma conversion circuit 2 (RGB independent gamma conversion method) which changes the processed video signal data into impressed electromotive force more nearly required than the VT characteristic of a liquid crystal panel — RGB — it having independently and, It has the angle—of—visibility gang control means 3 which performs switching control for two or more gamma data set up according to the RGB individual become a desired view angle characteristic with a predetermined pixel pattern. It is constituted so that the image characteristic information acquired by forming an image feature detection means 4 to perform feature extraction of an inputted video signal may be inputted into the angle—of—visibility gang control means 3. It is premised on using that by which orientation control is carried out so that view angle dependence may become large to the direction of desired with a TN liquid crystal about a liquid crystal panel.

[0025] About the liquid crystal display constituted as mentioned above, the operation is explained using drawing 1 and drawing 3, drawing 4, drawing 5, drawing 6, drawing 7, and drawing 8. [0026]First, an inputted video signal is inputted into the signal-control means 1 and the image feature detection means 4. Here, the signal-control means 1 is a circuit which performs control of the contrast of a signal, and brightness to RGB independence, and is a circuit which has composition which the gain which shall consider a RGB code as an input and controls contrast, and the offset value which controls brightness can set as RGB independence. The signal range as the image characteristic information, i.e., the input signal, of the maximum (the following, MAX, and notation) of luminosity and the minimum (the following, MIN, and notation) can be computing the image feature detection means 4 by an operation for every screen of a video signal. [0027]The video signal amended in the signal-control means 1 is inputted into the RGB independent gamma conversion circuit 2. The RGB independent gamma conversion circuit 2 has the composition that the circuit which performs gamma conversion process with a computing type with a parameter can perform each setting out of gamma1 and gamma2 to RGB of each, as for those with three RGB, and a parameter, and it has further the selector which switches the gamma1 characteristic and the gamma2 characteristic as a gamma conversion process. About gamma conversion, it can be considered as gamma conversion circuit which could perform partial curve-ization of gamma characteristics and raised accuracy further from the case of only straight-line approximation by an operation with a parameter by combining with a ROM table method selectively. The signal outputted from the RGB independent gamma conversion circuit is inputted into the source driver of a liquid crystal panel through the inversion circuit (in the case of the liquid crystal panel of analog IF composition, a DA converter, video amplifier, etc. are included) etc. which are not illustrated, and liquid crystal picture elements drive it. [0028]The angle-of-visibility gang control means 3 performs each processing described below by image characteristic information, such as MAX/MIN obtained by angle-of-visibility setting out of the request set up from the exterior, and the image feature detection means 4. The gamma characteristics of gamma1 and gamma2 are set up to RGB of each so that a desired view angle characteristic can be realized to the 1st. Although the case where each characteristic and combination of gamma1 and gamma2 can be set up easily, and a desired view angle characteristic may be hard to be acquired with the view angle characteristic for which it asks, influence on image quality has little one as much as possible where two gamma characteristics have the nearer characteristic. In consideration of the characteristic, a MAX/MIN value, etc. of gamma 1 and gamma 2, optimal contrast setting out and brightness setting out are performed to the 2nd to the signal-control means 1. Details are explained to Embodiment 3 about the details

of control by the signal-control means 1. The most effective pattern is chosen as the 3rd and the change pattern of gamma1 and gamma2 is controlled to it. Details are explained to Embodiments 4 and 5 about this change pattern. Effective angle-of-visibility control in consideration of the state of the video signal can be performed by interlocking in total and carrying out the adaptive control of three processings described above.

[0029]Below, a drawing is used and explained about the outline of an example of the abovementioned main 3 processings. Drawing 5 is a figure showing an example of setting out of gamma transfer characteristic. Those with a thing and drawing 5 (b) in which an example of gammacharacteristics setting out the case where an angle of visibility is extended by signal processing in this example, and in case [although the control which narrows or moves is explained,] drawing 5 (a) extends an angle of visibility was shown are an example in the case of narrowing an angle of visibility, or moving or optimizing. About desired angle-of-visibility control directions. since the direction and dependence degree which enlarge view angle dependence by orientation control of a TN liquid crystal panel fundamentally can control to some extent, what was processed a priori according to the use is used. The view angle dependence by orientation control is shown in JP,10-319373,A "liquid crystal display and liquid crystal display system" explained by the conventional example 2, for example. If the example (example by which orientation control was carried out so that view angle dependence might become large to the sliding direction of a screen) which controls an angle of visibility perpendicularly is explained here, according to the orientation control state of a liquid crystal panel, VT characteristic for every visual angle direction will be obtained like drawing 3, but. By being referred to as gamma 1 the top-view angle of 45 degrees was made to optimize, and gamma 2 the lower viewing angle of 30 degrees was made to optimize from this, wide-field-of-view cornification can be perceptually attained by compounding by the pattern control which mentions this later, gamma 1 made to optimize near the lower viewing angle of 30 degrees as shown in drawing 5 (b), and gamma 2 which changed the characteristic with gamma 1 selectively about the intermediate color portion etc. can perform fundamental gamma control of view all directions-oriented movement or optimization. Gamma-characteristics ******* and not less than about 45 degrees of lower visual angle directions which the top-view angle of 45 degrees is made to optimize as conversely shown in drawing 4 as such control can be mostly made into black (value near minimum luminance), and can carry out the mask (blackout) of the visual recognition from a certain direction. The mask by whiteout is possible similarly. Drawing 6 and drawing 7 are what showed an example of the change pattern of gamma transfer characteristic, and show the pattern by which time modulation is carried out in gamma1 and gamma2 which were set up by the purpose of control, and the desired visual angle direction as mentioned above per field like spatial modulation and drawing 7 for every pixel like drawing 6. It can be considered as more effective angle-of-visibility control by choosing the optimal pattern from the video state present on display out of such an abnormal-conditions pattern, or angle-of-visibility setting out, and switching gamma1 and gamma2. Although Embodiments 4 and 5 explain details about these contents, such control becomes realizable by having had composition controllable in total by the angle-of-visibility gang control means 3.

[0030] Drawing 8 is a mimetic diagram showing an example of the control of contrast and brightness performed by the signal-control means 1, Because a dynamic range is utilized enough and it is made to perform gamma conversion process by expanding amplitude according to a contrast gain when the signal range of an input signal is narrow, and performing brightness adjustment by offset control. It is controllable to maintain gradation display accuracy enough, even when performing angle-of-visibility control. Thus, since it can interlock and can be considered as the optimal processing by interlocking in the angle-of-visibility gang control means 3, and carrying out the adaptive control of three above fundamental processings according to image characteristic information, more effective angle-of-visibility control can be performed in a form also including video-signal processing.

[0031]Although the signal-control means 1 was considered only as brightness control with contrast in this embodiment, As the example which specified the top-view angle optimization gamma by this embodiment explained, when carrying out the blackout of the viewing angle from

one way, also in a front view angle or a top-view angle, luminosity serves as a low dark picture at the whole, but. In such a case, it is also effective that the effect as signal processing is acquired and gang control, such as setting up more noise reduction processings to a video signal, or strengthening the gain of aperture processing, also includes such a digital disposal circuit. [0032]Although this embodiment and subsequent embodiments explain as two kinds of changes, gamma1 and gamma2, as gamma characteristics, it is possible similarly to switch three or more gamma characteristics, and it is effective.

L0033]By having composition which interlocked according to the state of the video signal extracted by the image feature detection means 4, and made controllable fundamental three-stage processing in the above-mentioned angle-of-visibility control accommodative, as explained above, Angle-of-visibility control of the mask to extensive ** or one way of an angle of visibility, etc. is realizable, suppressing image quality deterioration, such as luminosity, contrast, and a hue change, more effectively.

[0034](Embodiment 2) <u>Drawing 2</u> shows the block diagram of the liquid crystal display in the embodiment of the invention 2, and in <u>drawing 2</u> this liquid crystal display, as opposed to an inputted video signal — contrast and brightness processing — RGB — with the signal—control means 1 which can be processed by independent setting out. It had the gamma conversion circuit 2 which changes the processed video signal data into impressed electromotive force more nearly required than the VT characteristic of a liquid crystal panel in RGB independence, and has the angle—of—visibility gang control means 3 which performs switching control for two or more gamma data set up according to the RGB individual become a desired view angle characteristic with a predetermined pixel pattern. It has the back light control means 9 which can control backlight luminance to the back light 8 in addition to it. It is constituted so that the image characteristic information acquired by forming an image feature detection means 4 to perform feature extraction of an inputted video signal may be inputted into the angle—of—visibility gang control means 3. It is premised on using that by which orientation control is carried out so that view angle dependence may become large to the direction of desired with a TN liquid crystal about a liquid crystal panel.

[0035]The liquid crystal display constituted as mentioned above has the composition of having applied the back-light-control function to the composition explained by Embodiment 1, and explains the operation only about a different portion from Embodiment 1 using drawing 2 and drawing 3, and drawing 4. First, in addition to MAX and MIN of luminosity, each image characteristic information of the average value (the following, APL, and notation) of luminosity can be computing the image feature detection means 4 by an operation for every screen of a video signal. This adds to the interlocking adaptive control of three processings explained by Embodiment 1 in the angle-of-visibility gang control means 3, APL is also put in by consideration and to the back light control means 9 control of backlight luminance, It is made to operate so that optimal processing may be suitably performed according to the state of an inputted video signal, and angle-of-visibility setting out as said controlling the brightness lowering of the liquid crystal display which happens to a visual recognition direction by angle-of-visibility control to compensate, or controlling to suppress reduction of a contrast feeling.

[0036] For example, in an example which carries out the mask (blackout) of the display to the lower visual angle direction shown in <u>drawing 4</u>, each of gamma-characteristics setting out gamma 1 and gamma 2 comes to be outputted in the voltage range where output voltage is high on the whole (when it is a no Moray white type TN liquid crystal) — a result — a state dark as a whole also about a front view angle or a top-view corner section — becoming. By controlling to a back light control means to become high about backlight luminance in such a case, and making it operate so that the fall of luminosity may be compensated, since in other words it will be in the state where transmissivity is low, generally, To the front view angle and top-view angle which should be recognized visually, the fall of luminosity can be suppressed from the case of <u>drawing</u> 4

[0037]On the contrary, when it is the whiteout that luminosity becomes high as a whole, the place which becomes a whitish picture at the whole also to the visual recognition direction along which you usually pass, and which you originally want to display can be reduced by reducing and

using backlight luminance. In this case, it is effective also from the meaning of the power consumption reduction of a back light. According to the value of the contrast and brightness control which are processed by the signal-control means 1 in other than control of such angle-of-visibility restrictions, and APL, For example, in an example like drawing 8, a changed part of APL can be absorbed, and the luminosity of a back light can be reduced so that APL on the vision of an inputted video signal and an output signal may become equivalent. In the in the static characteristic of the gamma transfer characteristic gamma 1 and gamma2 themselves itself, the case so that a change pattern may become unsymmetrical in area at gamma1 and gamma2, etc. In order to make it change to a desired view angle characteristic, also when the light transmittance of each pixel of a liquid crystal element has a big change, flexible control can be performed by controlling backlight luminance, also taking into consideration the trade-off with the angle-of-visibility control effect in consideration of APL.

[0038] About the relation between APL and the amount of back light control. For example, although the average time and gamma carry out in the direction to which the case from high transmissivity will lower backlight luminance if APL is high and the control methods, like gamma performs control to the direction from which the case from low transmittance will raise backlight luminance if the value of APL is high are mentioned as an example, gamma, Various control is also plentifully considered by the case.

[0039]. Are set up by the angle-of-visibility gang control means 3 reflecting the image characteristic information detected by the image feature detection means 4. About the amount of back light control, or the contrast and the brightness controlled variable to the signal-control means 1. The scene discrimination information on the image acquired by carrying out the statistical work of the image characteristic information extracted by the image feature detection means 4 with a predetermined time interval is computed. The IIR type filter which had a damping time constant to the controlled variable can be made into the adaptive control taken into consideration also to the time direction of a video signal by the method of adjusting this damping time constant from through and said scene discrimination information, and much more effective control can be realized.

[0040]Each processing which added control of backlight luminance to three fundamental processings in the angle-of-visibility control explained by Embodiment 1 like the above explanation according to the state of the video signal extracted by the image feature detection means 4. Not raising backlight luminance more than needed, but stopping the power consumption of a back light without dropping a contrast feeling, even if it performs angle-of-visibility control by having composition which it interlocked and was made controllable accommodative. Angle-of-visibility control of the mask to extensive ** or one way of an angle of visibility which compensated brightness lowering, etc. is realizable.

[0041](Embodiment 3) The gang control of contrast adjustment by the signal-control means 1 of the liquid crystal display in Embodiment 3, brightness adjustment, and gamma-characteristics setting out is explained using drawing 3, drawing 8, and drawing 9.

[0042] First, the fundamental control method of the contrast adjustment by this embodiment and brightness adjustment is explained. By the image feature detection means 4, MAX and MIN of luminosity of an inputted video signal are computed by an operation for every screen, and, thereby, it is called for for every screen which hit the luminance range of a video signal is in all the ranges on signal processing which can be processed. In <u>drawing 8</u>, when it is the range of MIN and MAX which an input signal illustrates, in order to open the dynamic range as signal processing, as gain control is performed and it is shown in the contrast control of <u>drawing 8</u>, amplitude is expanded. Since a signal is the MIN side slippage and the signal-processing possible range is exceeded the way things stand in this example at the MIN side, it can adjust so that offset control may be carried out like brightness control of the figure and a dynamic range may serve as the maximum. As control of contrast, as an example figure of the contrast control characteristic is shown in <u>drawing 9</u>, natural contrast control can be performed by performing contrast control which has gain characteristics as shown in a figure to the difference of MAX and MIN.

[0043]In angle-of-visibility control, as Embodiments 1 and 2 explained, set up the optimal gamma

characteristics like <u>drawing 5</u> become close to a desired view angle characteristic according to VT characteristic as shown in <u>drawing 3</u>, but actually. Although the horizontal axis of <u>drawing 5</u> (a) and <u>drawing 5</u> (b) shows input voltage here, In order to harness effectively gamma characteristics as shown in <u>drawing 5</u>, to utilize change of transmissivity for the maximum and to carry out angle-of-visibility control when an angle-of-visibility controlled variable is large since it is amendment data from the signal-control means 1 actually, It is more advantageous for the output data of the signal-control means 1 to have obtained the amplitude greatest in the signal-processing possible range.

L0044JIn saying that an angle-of-visibility controlled variable uses an angle of visibility small only in a narrow viewing angle range as good as **20 degrees with a near [a front view angle] of 0 degree, Since desired VT characteristic is the characteristic near the characteristic with a good front view angle, the display with the sufficient gradation characteristic also as the gamma transfer characteristic which uses only a portion with a good gradation characteristic is possible for it. Depending on thus, the contents and the controlled variable of angle-of-visibility control. Since the optimum control of how to make the input equivalent to the horizontal axis of drawing $\underline{5}$ correspond to the variable range of a signal becomes a different thing, according to the state of a video signal, it turns out that there are contrast and a predominance of doubling and controlling brightness control and gamma-characteristics setting out in this way. [0045] However, if priority is given only to angle-of-visibility control, contrast and brightness are adjusted at an excessive or too much short interval and gamma transfer characteristic is set up, the original video state of an inputted video signal will be changed remarkably, and it may not become a good image. On the other hand about the image feature of the video signal displayed on a liquid crystal panel. There are many high signals of contrast which generally depend on a signal source and in which it is [however] large, for example, pictures, such as a personal computer and car navigation, have a large dynamic range, and there are many intermediate color signal components about video signals, such as TV.

[0046] Therefore, if the above points are taken into consideration, effective control is realizable by setting up the controlled variable in the signal-control means 1, and the combination of gamma transfer characteristic in general according to the sauce of such a video signal, and tuning finely by acquiring a actual video state by the image feature detection means 4. [0047] As Embodiment 2 explained, about the contrast and the brightness controlled variable to the signal-control means 1. The scene discrimination information on the image acquired by carrying out the statistical work of the image characteristic information extracted by the image feature detection means 4 with a predetermined time interval is computed, The IIR type filter which had a damping time constant to controlled variables, such as a contrast gain, brightness, a gamma parameter, by the method of adjusting this damping time constant from through and said scene discrimination information. It can be considered as the adaptive control taken into consideration also to change (scene change) of the time direction of a video signal. [0048] As explained above, from the relation between the angle-of-visibility control content and controlled variable which were specified, and the variable range of the luminosity of an inputted video signal. Little angle-of-visibility control of image quality deterioration, such as a contrast drop by controlling an angle of visibility, is realizable by performing contrast control and gammacharacteristics setting out so that angle-of-visibility control can be performed efficiently and the optimal luminosity may be obtained on it.

[0049](Embodiment 4) In the angle-of-visibility gang control means 3 of the liquid crystal display in Embodiment 4, the change pattern control in 1 screen of two or more Characteristicgamma performed to a RGB independent gamma conversion circuit is explained using drawing 6. [0050]As drawing 6 is what showed an example of the change pattern of gamma transfer characteristic and Embodiments 1 and 2 also explained, It is a change pattern explanatory view of the pixel unit for one screen (1 field) in this technique of controlling an angle of visibility by setting up several gamma characteristics which are different so that it may become the view angle characteristic of a request of a view angle characteristic, and switching this for every predetermined pixel. Drawing 6 (a) as a unit gamma1 and gamma2 in the direction of a horizontal picture element for a RGB trio by turns, It is an example which switches gamma1 and gamma2

also perpendicularly in checkers by turns, and <u>drawing 6</u> (b) is an example switched to the vertical stripe shape which carried out gamma1 and gamma2 in the direction of a horizontal picture element by turns, and made the sequence the same perpendicularly, <u>Drawing 6</u> (c) is an example switched to the horizontal stripe shape which set to single gamma of gamma 1 or gamma 2 in the direction of a horizontal picture element, and carried out gamma1 and gamma2 perpendicularly by turns between scanning lines. Although each of these is setting the RGB trio to gamma same as a lot, even if the object gamma 1 for R, the object gamma 1 for G, the object gamma 1 for B or the object gamma 2 for R, the object gamma 2 for G, and the object gamma 2 for B are the gamma 1 [same] and gamma 2, as Embodiments 1, 2, and 3 explained, they differ respectively.

[0051]It is just going to use the point by which it is characterized [1st] in this spatial modulation here in this invention suitably also about the pattern which switched a pattern like three examples of above-mentioned drawing 6 (a), drawing 6 (b), and drawing 6 (c) like drawing 6 (d) so that gamma1 and gamma2 might become unsymmetrical. In drawing 6 (d), it is not alternation about gamma1 and gamma2 considering a RGB trio as a 1-pixel unit at the direction of a horizontal picture element, It is an irregular example switched in checkers as 2 pixels and gamma 2 are switched for gamma 1 by turns at 1 pixel and 1 pixel and gamma 2 are perpendicularly switched for gamma 1 by turns at 2 pixels with the following scanning line conversely. Also in this case, gamma 1 differs from gamma 2 by RGB respectively. In this example, although it is irregular, since it is checkered, become equivalent [the frequency of occurrence of gamma1 and gamma2 in 1 screen], but. The example etc. which make a scanning line unsymmetrical [instead of alternation] in a perpendicular direction in the unsymmetrical change pattern and the Drawing d in stripe shape like drawing 6 (b) and drawing 6 (c) although not illustrated. The example made unsymmetrical also about the frequency of occurrence (area in one screen (gamma1 pixel and gamma2 pixel)) of gamma1 and gamma2 in 1 screen is also considered. Although when considering it as a not much irregular pattern can be considered [the influence of evils, such as a flicker,], since it is dependent on the characteristic and the input signal state of gamma1 and gamma2 which are switched so that it may explain below, by choosing such combination well, evil does not become but is not necessarily effective in many

[0052]In a capacitive coupling pixel split plot experiment as the place which these patterns mean shown in JP,8-201777,A "liquid crystal display", The surface ratio and the voltage ratio of the main pixel and sub-picture element which can serve as optimal view angle characteristic so that it can just be going to understand easily also from the example which is asymmetry (for example, 2:1), The ratio which can control a view angle characteristic most effectively from a relation with the characteristic (difference) of the gamma characteristics gamma1 and gamma2 set up is because surface ratio is not necessarily 1:1. For example, when the voltage ratio of gamma1 and gamma2 is about 2:1 in the case of a no Moray white's TN liquid crystal, the optimal surface ratio also has the example of becoming about 7:3, with the above-mentioned capacitive coupling pixel split plot experiment.

[0053] Thus, the point by which it is characterized [1st] in the spatial modulation of this embodiment is one of the points which control a pattern by an unsymmetrical pixel unit. It is premised on the case where there is a pixel number more than a wide VGA class as a pixel number, about the angle-of-visibility control shown by this example.

[0054] Next, the point by which it is characterized [2nd] in the spatial modulation of this embodiment, It is in controlling to the optimal change pattern and gamma characteristics suitably according to this switching pattern and the gamma characteristics gamma 1 to switch, and the angle-of-visibility control content which sets gamma 2 as the video state of an input signal, or its purpose in the angle-of-visibility gang control means 3.

[0055]For example, in the image feature detection means 4, detect the frequency of occurrence of the high frequency component of an inputted video signal for every screen, and with the fineness of the image of an input signal. The selection according to the feature of the inputted video signal is possible by choosing drawing 6 (a) as a pattern in the image which needs resolution, and switching to the pattern of drawing 6 (d) in the image which does not need

resolution.

[0056]It may switch according to the sauce of an inputted video signal as the pattern of <u>drawing 6</u> (a) is chosen and the example of <u>drawing 6</u> (d) is chosen according to the sauce of an inputted video signal in TV image etc., for example about the screen and car navigation screen of a personal computer as a simple means.

[0057] The pixel number of not only the state of the video signal inputted but the liquid crystal panel to be used and the size of 1 pixel (are they a square or a rectangle?), Or also in the aspect ratio of the screen modes (screen sizes at the time of the wide aspect display especially in the liquid crystal display of wide screen size, or 2 screen display, etc., etc.) of a display screen, it may be suitably chosen as the optimal change pattern for every screen. According to the scanning line form and scanning—line—conversion processing which the video signal inputted is in an interlace signal or a non-interlaced signal, it may be suitably chosen as the optimal change pattern.

[0058] As explained above, about the pattern of one screen which is horizontal or is switched for every vertical pixel, and what is called a spatial modulation pattern. By considering it not only as the pattern made into alternation for every pixel but as an unsymmetrical form, it can contribute to the area effect that gamma1 and gamma2 should be given, and can be considered as the optimal abnormal—conditions pattern by the combination effect with the difference in gamma characteristics.

[0059] By considering it as the pattern abnormal conditions taken into consideration to the total to the state of the video signal into which this is inputted in the angle-of-visibility gang control means 3, an input source or screen constitution, and the liquid crystal panel composition to display. Things will be made, if natural abnormal conditions are visually possible, it is always the optimal and evil realizes angle-of-visibility control which suppressed image quality deterioration, such as brightness lowering, few.

[0060](Embodiment 5) In the angle-of-visibility gang control means 3 of the liquid crystal display in Embodiment 5, the change pattern control to the direction of the field of two or more Characteristicgamma performed to the RGB independent gamma conversion circuit 2 (time base direction) is explained using drawing 6 and drawing 7. Although drawing 7 was what showed an example of the change pattern to the time base direction of gamma transfer characteristic and the spatial modulation pattern explained by Embodiment 4 was a change pattern of the pixel of one screen (a part for the 1 field), It is an explanatory view about the change method of the pattern between the fields which extended this also to the time base direction. Drawing 7 shows the change pattern from the n-th field to the n+5th fields about the pattern of drawing 6 (d), In the n+1st fields of drawing 7 (b), the same pattern as the n-th field of drawing 7 (a) is continued. The n+2nd fields of drawing 7 (c) make only the 1 field gamma characteristics with the n-th reverse field of drawing 7 (a), and it repeats again that it is by the same pattern as the n-th field in the n+3rd [of drawing 7 (d) and drawing 7 (e)], and n+4th fields. Although each of these is setting the RGB trio to gamma same as a lot, even if the object gamma 1 for R, the object gamma 1 for G, the object gamma 1 for B or the object gamma 2 for R, the object gamma 2 for G, and the object gamma 2 for B are the gamma 1 [same] and gamma 2, as Embodiment 4 explained, they differ respectively.

[0061]It is just going to use the point by which it is characterized [1st] in these time-axis abnormal conditions here in this invention suitably also about the pattern switched so that it might become unsymmetrical per field like the example of <u>drawing 7</u> explained above. The place which these irregular patterns mean is the same, and is one of the places which can expect the effect to angle-of-visibility control on balance with the speed of response of each gamma characteristics and liquid crystal panel, etc. as Embodiment 4 explained according to the storage effect of the pixel used as the pixel used as gamma 1, and gamma 2.

[0062] About reversal of gamma1 and gamma2 in the direction of the field explained by <u>drawing 7</u>, it is necessary to consider it as the change pattern for which it depends on the speed of response of a liquid crystal panel in respect of the effect of an image quality side or angle-of-visibility control, etc. and which size-came however, hurt and took this into consideration. When considering it as a not much irregular pattern also about the abnormal conditions to a time base

deterioration, such as brightness lowering, few.

direction, can consider the influence of evils, such as a flicker, but. In the image on which evil cannot be easily conspicuous, the angle-of-visibility control signal processing which made evil the minimum is possible by changing adaptive control into the state of a video signal, such as giving priority to angle-of-visibility control, so that it may explain below. Thus, the point by which it is characterized [1st] in the time modulation of this invention is one of the points which control a pattern by an unsymmetrical field unit. It is premised on the case where there is a pixel number more than a wide VGA class as a pixel number, also about the angle-of-visibility control shown by this embodiment. Next, the point by which it is characterized [2nd] in the time modulation of this embodiment, It is in controlling to the optimal change pattern and gamma characteristics suitably according to this switching pattern and the gamma characteristics gamma 1 to switch, and the angle-of-visibility control content which sets gamma 2 as the video state of an input signal, the scanning line form of a video signal, or scanning-line-conversion processing or its purpose in the angle-of-visibility gang control means 3. [0063] For example, in the image feature detection means 4, perform motion detection of an inputted video signal, detect the speed and quantity of a motion of a video signal, and by the numerousness of the movement quantity of the image of an input signal. In a still picture or the image almost near a still picture, It may also be effective to shorten slightly, and for influence of a flicker etc. to be unable to be easily conspicuous about the interval of reversal in the intense image of a motion as a pattern symmetrical with the direction of the field, conversely for reduction of a flicker, and to choose a pattern like the example of drawing 7. As for these, since the speed of response of the liquid crystal panel to be used has a close relation, it is effective to choose a pattern flexibly according to the state of an input image in this way. [0064]According to the scanning line form that the video signal inputted is in an interlace signal or a non-interlaced signal, and the scanning-line-conversion processing processed by a video signal processing section according to it, it may be suitably chosen as the optimal change pattern. It is thought that an asymmetric pattern like drawing 7 is effective, and there is the necessity for selection of a pattern suitably as an example according to the contents of processing in an interlace signal input when the progressive conversion process is carried out by the video signal processing section. As a simple means, according to the sauce of an inputted video signal, about the screen and car navigation screen of a personal computer. It may switch

processing which turned to the animation in TV image etc. is performed. [0065]About the pattern which the gamma characteristics to the direction of the field (time base direction) switch, and what is called a time modulation pattern, like the above explanation. Not only the pattern made into alternation for every field of a predetermined interval but by considering it as an unsymmetrical form suitably, the area effect that gamma1 and gamma2 should be given can be extended in three dimensions, and it can be perceptually considered as the optimal abnormal-conditions pattern with combination with the difference in gamma characteristics according to the storage effect. By performing the pattern abnormal conditions taken into consideration to the total to the state of the video signal into which this is inputted in the angle-of-visibility gang control means 3, an input source, scanning line composition, scanning-line-conversion processing or screen constitution, and the liquid crystal panel composition to display, Things will be made, if natural abnormal conditions are visually possible, it is always the optimal and evil realizes angle-of-visibility control which suppressed image quality

according to the sauce of an inputted video signal as processing which was considered to be a state comparatively near a still picture, and turned to the above still pictures is performed and

[0066](Embodiment 6) <u>Drawing 10</u> shows the configuration block figure of the liquid crystal display in the embodiment of the invention 6, and in <u>drawing 10</u> this liquid crystal display, Each circuit of the signal-control means 1, the image feature detection means 4, the angle-of-visibility gang control means 3, and a RGB independent gamma conversion circuit, ** which can perform angle-of-visibility gang control according to display area as a whole by inputting into each circuit the signal which constitutes so that individual operation can be performed for every display area of an input signal, respectively, and identifies the display area of an inputted video signal — it is constituted like.

[0067] About the liquid crystal display constituted as mentioned above, the operation is explained using drawing 10.

[0068]Here, the case of two screen display of a main screen and a sub-screen is explained. First, the image feature detection means 4 classified by display area has the composition of calculating each characteristic quantity independently, with the signal (a following and main-sub area selection signal and the notation) which identifies the area of the video signal of 2 circuit rice cakes, and main/** for the circuit which calculates the image features, such as the maximum of a video signal, the minimum, and average value. The RGB independent signal-control means 1 according to display area and the RGB independent [classified by display area] gamma conversion circuit 2, ****** which it has two kinds of each parameter set value which calculates contrast, brightness, the gamma characteristics of each plurality [RGB], etc. the object for main screens, and for sub-screens, and the operation switches with a main-sub area selection signal — it is like. Also about the angle-of-visibility gang control means 3 classified by display area, the gang control explained by Embodiments 1 and 2 by performing individual control with a main-sub area selection signal, Operation to each circuit is carried out so that it may become set-up different liquid crystal display of a view angle characteristic for every image area the object for main screens, and for sub-screens.

[0069]It not only performs the control same about back light control as Embodiment 2 explained, but, When average value differs greatly as an image feature of a main screen and a sub-screen (when it is a bright picture and a dark picture etc.), Back light control shall be performed to which image of a main screen or a sub-screen. As opposed to the screen (sub-screen when [for example,] performing back light control to a main screen image) besides a controlled object, By generating amendment data from the back-light-control data by the side of a controlled object, and being made to perform contrast of the screen outside a controlled object, and brightness adjustment so that the control effect of a back light may be canceled, Even if it is a case where a luminosity state is a greatly different picture between a main screen and a sub-screen, the influence of the back light control accompanying angle-of-visibility control can be prevented from appearing on the screen of another side.

[0070]Although this embodiment explained the example in the case of two screen display of main/**, Even if it is a case of the multi screen of three or more screens, similarly the image feature detection means 4 Required-number circuit rice cake, A view angle characteristic is individually controllable for every display screen respectively by having composition in which parameter setting is possible for every display area, and switching them with a display area selection signal to the signal-control means 1, the angle-of-visibility gang control means 3, and the RGB independent gamma conversion circuit 2.

[0071]In the use of optimizing TV display and a car navigation display in the separate angle-of-visibility direction in mount TV with 2 screen-display functions, etc., Application of attaining safing on road traffic by carrying out the mask of the screen of mounted TV from the driver side to a visual angle direction during a run etc. is also possible by using this function.

[0072]Like the above explanation, even if it is a case where two or more screens are displayed all over two screen display, multi-picture features, and 1 screen called PinP, it is realizable to control a view angle characteristic individually for every display screen.
[0073]

[Effect of the Invention] According to this invention, so that clearly from the above explanation use the special liquid crystal cell for angle-of-visibility control, or, In the liquid crystal display system which performs angle-of-visibility control only in an external digital disposal circuit without using a means to control an optical lens sheet or to change the optical characteristic of a back light, By performing optimal gang control suitably according to the operating condition of the case where it is in the conditions limited in respect of the angle of visibility etc., an input source signal, a video-signal gestalt, the contents of a display picture, etc., The optimal angle-of-visibility control that controlled image quality deterioration and secrecy of display information, or optimization of a visual recognition direction is realizable.

[0074]By considering it as the adaptive control which interlocked each processing by the image characteristic information of the video signal especially, Viewing-angle control, such as extensive

** of an angle of visibility, movement, masking to a specific direction, and visual recognition direction optimization, can be performed effectively, suppressing image quality deterioration, such as a fall of the luminosity by performing angle-of-visibility control, or a contrast feeling, a flicker, and a hue change. While being able to perform effective angle-of-visibility control, without reducing a contrast feeling and luminosity by considering it as adaptive control also about a back light, it is also possible to suppress the efficiency-for-light-utilization fall of a back light, and to reduce power consumption.

[0075]Furthermore in systematic application, it can have optimal composition in the use of optimizing TV display and the car navigation display in mount TV with 2 screen-display functions, etc. to a separate visual angle direction.

[Translation done.]

* NOTICES *

JPO and INP!T are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] The block diagram showing the composition of the liquid crystal display by the embodiment of the invention 1

[Drawing 2] The block diagram showing the composition of the liquid crystal display by the embodiment of the invention 2

[Drawing 3]The characteristic figure showing an example of the VT characteristic of a TN liquid crystal display

[Drawing 4] The characteristic figure showing an example of the luminance property by setting out of the gamma transfer characteristic of the liquid crystal display by the embodiments of the invention 1 and 2

[Drawing 5] The characteristic figure showing an example of gamma transfer characteristic setting out of the liquid crystal display by the embodiments of the invention 1 and 2

[Drawing 6]The figure showing an example of gamma change pattern in 1 screen in gamma conversion circuit of the liquid crystal display by the embodiments of the invention 1-5

[Drawing 7] The figure showing an example of gamma change pattern of the direction of the field in gamma conversion circuit of the liquid crystal display by the embodiments of the invention 1–5 [Drawing 8] The mimetic diagram showing an example of the contrast in the signal-control means of the liquid crystal display by the embodiments of the invention 1–3, and brightness processing [Drawing 9] The characteristic figure showing an example of the contrast control characteristic in the signal-control means of the liquid crystal display by the embodiment of the invention 3

[Drawing 10] The block diagram showing the composition of the liquid crystal display by the embodiment of the invention 6

[Drawing 11] The block diagram showing the composition of the liquid crystal display of the conventional example 1

[Drawing 12] The mimetic diagram explaining gamma change pattern shown by the conventional example

[Drawing 13] The characteristic figure showing an example of gamma-characteristics setting out shown by the conventional example 1

[Drawing 14] The block diagram showing the composition of the liquid crystal display of the conventional example 2

[Description of Notations]

- 1 RGB independent signal-control means
- 2 RGB independent gamma conversion circuit
- 3 Angle-of-visibility gang control means
- 4 Image feature detection means
- 5 Gate drive circuit
- 6 Orientation direction control liquid crystal panel
- 7 Source driving circuit
- 8 Back light
- 9 Back light control means

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開2001-147673 (P2001-147673A)

(43)公開日 平成13年5月29日(2001.5.29)

(51) Int.Cl.7		微別記号	ΡĪ		.	テーマコード(参考)
G09G	3/36		G 0 9 G	3/36		2H093
G02F	1/133	535	G 0 2 F	1/133	535	5C006
		550			550	5 C 0 8 0
G 0 9 G	3/20	641	G 0 9 G	3/20	641Q	

審査請求 有 請求項の数12 OL (全 15 頁)

(21)出職番号	特顯平 11-331222	(71) 出職人 000005821
		松下電器産業株式会社
(22)出顧日	平成11年11月22日(1999, 11, 22)	大阪府門真市大字門真1006番地
		(72)発明者 松本 惠三
		大阪府門真市大字門真1006番地 松下電器
		産業株式会社内
		(72)発明者 野崎 秀樹
		大阪府門真市大字門真1006番埠 松下電器
		京業株式会社内
		(74)代理人 100097445
		弁理士 岩橋 文雄 (外2名)

最終頁に続く

(54) 【発明の名称】 液晶表示装置

(57)【要約】

【課題】 特別な視野角制御用の液晶セル、光学的なレンズシート制御やバックライトの光学特性変更等の手段を用いずに、信号処理のみにより視野角の広狭を適宜変更し、表示内容の秘匿あるいは視認方向の最適化等を図ることを可能にした液晶表示装置を提供する。

【解決手段】 入力映像信号に対してコントラスト、ブライトネス処理等をRGB独立に施す信号制御手段と、処理された信号データを液晶バネルのVT特性より所望の視野角特性となる様な印加電圧に変換するγ変換回路をRGB独立にもち、所望の視野角特性になるよう複数のγデータを所定の画素バターンで切替え制御を行う視野角連動制御手段をもつ。また視野角連動制御手段は、入力映像信号の特徴抽出を行う映像特徴検出手段から得られた特徴情報により、視野角制御を効果的に行うよう前記信号制御手段と前記γ変換回路に対する制御を連動適応制御で行う。

【特許請求の範囲】

【請求項1】 アクティブマトリックス駆動型液晶表示 素子の駆動回路およびパックライトシステムにおける液 晶表示装置であって、入力映像信号に対して映像信号処 理を施す信号制御手段と、前記信号処理データを入力と し入力値に対し液晶印加電圧に変換するガンマ変換処理 をRGB各々独立に複数の異なる特性で設定することの できるRGB独立ガンマ変換手段と、所望の視野角特性 となるよう前記RGB独立ガンマ変換手段に対して各ガ ンマデータ設定とその切替えバターンを制御する視野角 10 均値を考慮しながら輝度を補償するよう制御を行うとと 連動制御手段と、入力映像信号の特徴抽出を行い映像特 徴情報を前記視野角連動制御手段に対して出力する映像 特徴検出手段とを備えたことを特徴とする液晶表示装 置.

【請求項2】 視野角連動制御手段により液晶パネルの バックライト輝度を制御するバックライト制御手段を備 えたことを特徴とする請求項1に記載の液晶表示装置。 【請求項3】 視野角連動制御手段は、映像特徴検出手 段から得られた映像特徴情報により、表示映像に最適化 させて効果的に視野角制御を行うよう、前記信号制御手 20 段および前記RGB独立ガンマ変換手段の各ガンマデー タ設定とその切替えバターン制御およびバックライト制 御を、各々連動して動的に適応制御することを特徴とす

【請求項4】 信号制御手段は、コントラスト調整とブ ライトネス調整を行うものとし、映像特徴検出手段で 1 画面毎に映像信号の輝度の最大値および最小値を得て、 1画面中の入力信号の輝度範囲と所望の視野角特性に応 じて、ガンマ特性のダイナミックレンジを最も広く取れ るように、もしくは視野角制御を最も効率的に行えるよ うに、コントラストおよびブライトネス制御を行うこと を特徴とする請求項1、2または3に記載の液晶表示装 蓍.

る請求項1または2に記載の液晶表示装置。

【請求項5】 信号制御手段は、RGB各々独立に制御 可能であり、前記RGB独立ガンマ変換手段と一対一に 対応してガンマ特性のRGB間のずれを補正することを 特徴とする請求項4に記載の液晶表示装置。

【請求項6】 視野角連動制御手段においてRGB独立 ガンマ変換手段に対して行う複数ガンマ特性の切換えバ ターンおよび各ガンマデータは、1画面の水平方向もし 40 くは垂直方向の画素毎に対称あるいは非対称に交互なバ ターンの中から、映像特徴検出手段から得られた映像特 徽情報と視野角設定に応じて選択し、かつガンマデータ を最適となるよう組合わせた制御を行うことを特徴とす る請求項1から請求項5のいずれかに記載の液晶表示装

【請求項7】 視野角連動制御手段においてRGB独立 ガンマ変換手段に対して行う、複数ガンマ特性の切換え パターンおよび各ガンマデータは、フィールド方向に対 特徴検出手段から得られた映像特徴情報と視野角設定に 応じて選択し、かつガンマデータを最適となるよう組合 わせた制御を行うことを特徴とする請求項1から請求項 5のいずれかに記載の液晶表示装置。

【請求項8】 映像特徴検出手段で1画面毎に映像信号 の輝度の平均値を得て、バックライト制御は、前記信号 制御手段および前記RGB独立ガンマ変換手段におい て、所望の視野角特性に変化せしめるために液晶素子の 各画素の光透過率に大きな変動がおきた場合に、前記平 を特徴とする請求項3に記載の液晶表示装置。

【請求項9】 映像特徵検出手段、信号制御手段、前記 RGB独立ガンマ変換手段および視野角連動制御手段 は、画像の表示エリア毎に個別に制御する手段を有し、 1画面中に複数の画面を同時表示する場合であっても、 各々表示画面毎に視野角特性を個別に制御できることを 特徴とする請求項1から請求項8のいずれかに記載の液 晶表示装置。

【請求項10】 バックライト制御手段に対するバック ライト制御は、前記複数の表示画面中の何れか一つに対 して行うものとし、前記バックライト制御を行う対象以 外の表示画面に対しては、バックライトの制御効果をキ ャンセルするように、制御対象側のバックライト制御デ ータから補正データを生成し、制御対象外表示画面の信 号制御手段を制御することを特徴とする請求項9に記載 の液晶表示装置。

【請求項11】 1画面の水平方向もしくは垂直方向の 画素毎に対称あるいは非対称に交互に設定されるパター ンは、液晶パネルの画素サイズもしくは表示画面のアス 30 ベクト比に応じて決定されることを特徴とする請求項6 に記載の液晶表示装置。

【請求項12】 1画面の水平方向もしくは垂直方向の 画素毎に対称あるいは非対称に交互に設定されるパター ン、およびフィールド方向に対し対称あるいは非対称に 交互に設定されるバターンは、入力映像信号の順次走査 か飛び越し走査、あるいは信号処理における走査線変換 処理に応じて決定されることを特徴とする請求項6また は7に記載の液晶表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、特にTN液晶(ツ イスティッドネマティック液晶)の液晶表示装置の駆動 回路およびバックライト装置と、液晶表示装置に入力す る映像信号の信号処理に関するものであり、特に液晶表 示装置の使用状態や視認方向に応じて、適宜視野角を制 御することのできる液晶表示システムの制御回路に関す るものである。

[0002]

【従来の技術】液晶TV等において多く使用されている し対称あるいは非対称に交互なバターンの中から、映像 50 TN液晶方式は、液晶のもつ屈折率異方性や捻じり配向 等により、液晶層を通過する光はその方向や角度により さまざまな復屈折効果を受け複雑な視野角依存性を示 し、例えば一般的には上方向視角では画面全体が白っぽ くなり、下方向視角では画面全体が暗くなり、かつ画像 の低輝度部で明暗が反転してしまうという現象が発生す る。

【0003】この様な視野角特性については、さまざま な方法により輝度、色相、コントラスト特性、階調特性 等について広視野角化する技術が数多く開発されてい る。このような技術としては、多くは液晶パネルそのも のに対する改良や、光学的部材を用いるものが非常に多 く一般的であるが、TFT工程や液晶パネル工程が複雑 とならず、歩留まりの低下やコスト増大を引き起こさな い方法として、外部回路の信号処理のみで広視野角化を 図る技術についても示されている。これは、液晶セルの 印加電圧に対する透過率特性(以下、V-T特性と表 記)の視角依存性を利用し、入力信号に対する階調電圧 変換特性(以下、γ特性と表記)を、複数用意し所定の 間隔でこの切換え制御を行いながら液晶を駆動すること 上させるという技術であり、例えば特開平7-1211 44号公報「液晶表示装置」、特開平9-90910号 公報「液晶表示装置の駆動方法および液晶表示装置」等 に示されている。(以下、とのような例を従来例1と表 記する)とのような従来の外部信号処理による広視野角 化液晶表示装置の例を図11に示す。図11では、RG B画像信号を入力として互いに異なる複数のγ特性を有 する γ 変換回路 γ 1、 γ 2と、この γ 特性を画像信号の nフレーム毎(nは自然数)に切換え制御する手段とを 含み、γ変換手段の出力に応じて液晶駆動をなすように 30 したもので、7特性の切替えパターンとしては図12に 示すように画素単位に交互にかつ、連続するnフレーム の対応画素には同一のヶ特性に対応した表示電圧でかつ 互いに極性が異なる表示信号電圧を印加するように構成 したものである。ことで、二つのヶ特性は異なる視野角 が最適視野になるよう例えば71は上視野10°に最適 化し、γ2は下視野10°に最適化してγ特性は固定 し、前記切替えバターンで変調することにより上下10 * 程度最適階調特性を広げるよう動作させるというもの である。

【0004】一方、この視野角依存性を逆に有効に利用 した試みとして、ノート型パーソナルコンピュータにお けるプライバシー保護としての表示秘匿の目的や、広い 視野角を必要としない場合の視認方向への最適化等の目 的において、視野角を狭めたり戻したり移動したりする 事への応用の提案がなされてきている。視野角を狭めた り広げたり (ここでの広げるとは従来例1のように通常 より広めることではなく、狭めたものを戻すという意味 での広げる) 最適化したりする制御を行う技術としては

量を制御する液晶セルを設け、この液晶セルを制御する ものであるとか、バックライトの導光板を工夫したもの なども多々提案されているが、従来例1と同様に外部回 路の信号処理のみで視野角特性の制御を図る技術として は、例えば、特開平10-319373号公報「液晶表 示装置及び液晶表示システム」に示されているものがあ る。(以下、このような例を従来例2と表記する)この ような従来の外部信号処理による視野角制御液晶表示シ ステムの例を図14に示す。これは、ラビング方向の最 適化と偏向板ツイスト角の最適化を施したTN液晶パネ ルに対し、複数の階調参照電圧を生成する階調信号電圧 生成回路と、所望の視野角特性設定に応じてその設定値 を切換える設定値切替え回路を設け、最適な階調参照電 圧を印加すること、あるいは最適な参照電圧となるべく 表示データ切替え回路にて表示データをビット処理によ る単純なゲイン制御で変換(補正)する方法により、視

【0005】とのように従来技術では、外部回路の信号 処理のみで視野角特性の制御を図る技術としては、視野 により、複数の特性が視覚的に合成され視野角特性を向 20 角を広げる目的においては、固定的に設定された複数の 広狭制御に関しては、配向処理を施した液晶パネルを使 用し、設定された視野角特性となるよう階調信号電圧を 最適化するよう切換えるととが手法として開示されてい る。

野角を変更するようにしたものである。

[0006]

【発明が解決しようとする課題】しかしながら、従来例 1においてはその目的とするところが広視野角化である ため、視野角の狭い方向(例えば、上下方向)に対し て、視野角を広げる為に設定した複数の異なる特性ので 特性自体は固定的に使用するものであり、複数のヶ特性 自体を制御する概念は含まれていない。また、入力映像 信号の映像状態への最適化や適応制御、あるいはRGB 個別のヶ特性や制御等については何ら明記されていな Ļ١,

【0007】また、従来例2においてはその目的とする ところは視野角の広狭制御であるが、ヶ特性自体は目的 とする視野角設定毎に固定であり、従来例1のような変 調概念はない。また、こちらも入力映像信号の映像状態 40 への最適化や適応制御、あるいはRGB個別のヶ特性や 制御等については何ら明記されていない。さらに、両従 来例ともバックライトに関しては何ら触れられていな

【0008】従って、従来例1において視野角の広狭制 御や最適化等の目的に応用した場合でも、図13に示す. ように視野角特性を広げるための複数のヶ特性が例えば 高輝度領域部でほぼ重なったような特性の場合に、入力 映像信号として殆ど高輝度領域部に集中したような信号 が入力された場合では、視野角が広がる効果が殆どな

他にも、画像を表示する液晶セル以外にバックライト光 50 く、逆に低輝度領域部に集中したような信号が入力され

た場合には、イの差が大きくなるため視野角改善効果と のトレードオフで、切替えパターンによってはフリッカ 等の発生の原因にもなることが考えられる。

【0009】一般的に、パーソナルコンピュータの画面 やカーナビゲーション画面のような入力信号の場合は、 入力信号のダイナミックレンジが大きく、信号成分は比 較的高輝度もしくは低輝度に偏っていることが多く、T V等の映像信号では逆に中間調に集中している場合や、 映像シーンによっては高輝度に集中していたり低輝度に 集中していたり様々である。従来例1のように視角によ 10 るVT特性の違いを利用してγ特性を最適化して視野角 を制御するという基本概念の場合、入力される信号に応 じた制御を行うことにより、視野角制御を実施すること による輝度やコントラスト感の低下等の画質劣化を抑え ることができ、また視野角制御効果そのものについても 有効に作用させることができる考えられる。

【0010】尚、システム的には従来例1、2では、2 画面表示システムの車載TV等において安全面等の目的 から、カーナビゲーション画像を運転席側へ表示し、T V映像を助手席側へ表示するといった視野角制御を行う ととができないうえ、この様な信号ソースの組合わせの 場合では前記のように映像上の特性が大きく異なるため 良好な視野角制御が困難となる。

【0011】また、従来例2の手法では、視野角を通常 より広げること自体は不可能であるうえ、従来例1の場 合と同様に映像信号の状態による制御が行えないため、 入力信号がTV信号の一般的な場合のように比較的中間 調領域に集中した映像の場合等では、本来、ヶ特性の設 定は傾きの緩やかな安定した部分が使用でき効果的に行 が不可能である。

【0012】さらに、理想的な γ 特性は、液晶表示装置 のカラーフィルタやバックライト等の特性から、RGB 信号間で全階調でγ特性が一致してはおらず色シフト特 性を持っているため、色相変化等の発生を抑えて視野角 制御を行うには、RGBのヶ特性は個々に、さらには階 調に応じても最適値に設定する必要がある。

【0013】一方、周知のとおり透過型液晶表示システ ムの場合、バックライトの光量が輝度特性に対し大きな ファクターとなるため、表示画像の輝度やコントラスト 感に対し少なからず影響をもつが、従来例ではこの点に ついての考慮も特に明記されていない。

【0014】本発明は、このような外部回路の信号処理 のみで視野角特性の制御を図る技術において、上記のよ うな問題を改善するととを鑑みてなされたもので、設定 された所望の視野角特性となるよう行う制御を、指定さ れた所望の視野角特性と入力される映像信号の状態に応 じて、より最適な印加電圧を液晶パネルに与え、視野角 制御をより効果的に行えられるよう適応的に映像信号処 し、かつバックライトに関しても連動して制御を行い、 より最適な視野角制御を実現することを目的とするもの

[0015]

【課題を解決するための手段】とのような課題を解決す るために本発明の液晶表示装置は、入力映像信号に対し てコントラスト、ブライトネス処理等をRGB独立に施 す信号制御手段と、処理された映像信号データを液晶バ ネルのVT特性より所望の視野角特性となる様な印加電 圧に変換するγ変換回路をRGB独立にもち、所望の視 野角特性になるようRGB個別に設定された複数のァデ ータを所定の画素パターンで切替え制御を行う視野角連 動制御手段をもつ。とれにより所定の方向への視野角依 存性が大きくなるよう配向制御処理を施したTN型液晶 バネルに対し、前記複数のヶ特性の階調電圧が画素毎に 入力され、知覚的な特性の合成により視野角特性の可変 を実現するものであり、ここで、視野角連動制御手段で は、入力映像信号の特徴抽出を行う映像特徴検出手段か ら得られた映像特徴情報により、視野角制御を効果的に 20 行うよう前記信号制御手段と前記ィ変換回路に対する制 御を連動して適応的に制御を行うと同時に、バックライ ト制御手段に対しても適応制御を行いバックライト制御 を行うように動作するシステム構成としたものである。 【0016】とれにより、外部回路の信号処理で視野角 特性の制御を図るシステムにおいて、入力映像信号の状 態に応じて、より効果的に輝度、コントラスト、色相変 化等の画質劣化を抑えながら、視野角特性を、狭めたり 広げたり移動したり最適化したり、あるいは一方向に対 する表示をマスクしたりという所望視野角制御を行うシ えるべきところが、従来例2の構成ではそのような制御 30 ステムを、比較的簡単な回路構成で容易に実現するとと ができる。

[0017]

【発明の実施の形態】本発明の請求項1および3に記載 の発明は、アクティブマトリックス駆動型液晶表示素子 の駆動回路およびバックライトシステムにおける液晶表 示制御装置であって、入力映像信号に対して映像信号処 理を施す信号制御手段と、前記信号処理データを入力と し入力値に対し液晶印加電圧に変換するガンマ変換処理 を、RGB各々独立に複数の異なる特性で設定すること のできるRGB独立ガンマ変換手段と、所望の視野角特 性となるよう前記RGB独立ガンマ変換手段に対して、 各ガンマデータ設定とその切替えバターンを制御する視 野角連動制御手段と、入力映像信号の特徴抽出を行い映 像特徴情報を前記視野角連動制御手段に対して出力する 映像特徴検出手段とを備えたことを特徴とする液晶表示 装置としたものであり、設定された所望の視野角特性と なるよう行う制御を、指定された所望の視野角特性と入 力される映像信号の状態に応じて、より最適な印加電圧 を液晶パネルに与え視野角制御をより効果的に行えられ 理とγ特性とγ特性の切替えバターンとを連動して制御 50 るよう、適応的に映像信号処理とγ特性とγ特性の切替

20

30

えパターンとを連動して制御し、画質劣化を抑えた最適 な視野角制御を実現するという作用を有する。

【0018】本発明の請求項2および3および8に記載 の発明は、アクティブマトリックス駆動型液晶表示素子 の駆動回路およびバックライトシステムにおける液晶表 示制御装置であって、入力映像信号に対して映像信号処 理を施す信号制御手段と、前記信号処理データを入力と し入力値に対し液晶印加電圧に変換するガンマ変換処理 を、RGB各々独立に複数の異なる特性で設定すること のできるRGB独立ガンマ変換手段と、所望の視野角特 10 性となるよう前記RGB独立ガンマ変換手段に対して、 各ガンマデータ設定とその切替えバターンを制御する視 野角連動制御手段と、入力映像信号の特徴抽出を行い映 像特徽情報を前記視野角連動制御手段に対して出力する 映像特徴検出手段と、前記視野角連動制御手段により液 晶バネルのバックライト輝度を制御するバックライト制 御手段とを備えたことを特徴とする液晶表示装置とした ものであり、設定された所望の視野角特性となるよう行 う制御を、指定された所望の視野角特性と入力される映 像信号の状態に応じて、より最適な印加電圧を液晶パネ ルに与え視野角制御をより効果的に行えられるよう、適 応的に映像信号処理とで特性とで特性の切替えバターン とを連動して制御しかつ、バックライトに関しても連動 して制御を行い、画質劣化を抑えた最適な視野角制御を 実現するという作用を有する。

【0019】本発明の請求項4および5に記載の発明 は、前記信号制御手段は映像信号のコントラスト調整

(映像信号の振幅調整) とブライトネス調整 (DCレベ ル調整)とを行うものとし、前記映像特徴検出手段では 1 画面毎に映像信号の輝度の最大値および最小値を得る ものとし、1画面中の入力信号の輝度範囲と所望の視野 角特性に応じて、ガンマ特性のダイナミックレンジを最 も広く取れるように、もしくは視野角制御を最も効率的 に行えるように、コントラストおよびブライトネス制御 を行うことを特徴とする請求項1から3記載の液晶表示 装置としたものであり、指定された所望の視野角特性と せしめる視野角制御値と入力映像信号の輝度の可変範囲 との関係から、最も効率的に視野角制御が行えかつ最適 な輝度が得られるようにコントラスト制御およびヶ特性 設定を行い、視野角を制御することによりコントラスト 低下等の画賞劣化の少ない視野角制御を実現するという 作用を有する。

【0020】本発明の請求項6および11に記載の発明 は、前記視野角連動制御手段において前記RGB独立ガ ンマ変換手段に対して行う、複数ガンマ特性の切換えバ ターンおよび各ガンマデータは、1画面の水平方向もし くは垂直方向の画素毎に対称あるいは非対称に交互なバ ターンの中から、前記映像特徴検出手段から得られた映 像特徴情報と視野角設定により適宜最適な選択を行い、

うことを特徴とする請求項1から5記載の液晶表示装置 としたものであり、液晶バネルの画素サイズもしくは表 示画面のアスペクト比あるいは液晶パネルの特性等を考 慮した上で、所望の視野角設定となるようで特性設定値 と映像信号の状態や信号ソースに応じて7切替えパター ンを選択することにより、輝度の低下やフリッカを抑え た画質劣化の少ない視野角制御を実現するという作用を 有する。

【0021】本発明の請求項7および12に記載の発明 は、前記視野角連動制御手段において前記RGB独立ガ ンマ変換手段に対して行う、複数ガンマ特性の切換えバ ターンおよび各ガンマデータは、フィールド方向に対し 対称あるいは非対称に交互なバターンの中から、前記映 像特徴検出手段から得られた映像特徴情報と視野角設定 により適宜最適な選択を行い、かつガンマデータを最適 となるよう組合わせた制御を行うことを特徴とする請求 項1から5記載の液晶表示装置としたものであり、所望 の視野角設定となるようγ特性設定値と映像信号の時間 軸方向の状態や信号ソースあるいは映像信号の走査線形 式や走査線変換処理に応じて、フィールド方向ので切替 えバターンを選択することにより、輝度の低下やフリッ 力を抑えた画質劣化の少ない視野角制御を実現するとい う作用を有する。

【0022】本発明の請求項9および10に記載の発明 は、請求項1から8に記載の液晶表示装置において、前 記映像特徴検出手段と前記信号制御手段と前記RGB独 立γ変換手段と前記視野角連動制御手段に対し、画像の 表示エリア別に個別に制御が可能となるようにしてあ り、1画面中に複数の画面を同時表示する場合であって も、各々表示画面毎に視野角特性を個別に制御すること ができるようにしたことを特徴とする液晶表示装置とし たものであり、2画面表示機能付き車載TV等におい て、TV表示とカーナビゲーション表示を別々の視野角 方向に最適化するといった様に、表示画面毎に独立に視 野角方向を制御できるという作用を有する。

【0023】以下、本発明の実施の形態について図面を 用いて説明する。

【0024】(実施の形態1)図1は本発明の実施の形 態1における液晶表示装置のブロック図を示し、図1に 40 おいて本液晶表示装置は、入力映像信号に対してコント ラスト、ブライトネス処理をRGB独立な設定で処理す ることのできる信号制御手段1と、処理された映像信号 データを液晶パネルのVT特性より必要な印加電圧に変 換するRGB独立γ変換回路2(RGB独立γ変換手 段)をRGB独立にもち、所望の視野角特性になるよう RGB個別に設定された複数のケデータを所定の画素バ ターンで切替え制御を行う視野角連動制御手段3を備え ている。さらに、入力映像信号の特徴抽出を行う映像特 徴検出手段4を設け、得られた映像特徴情報を視野角連 かつガンマデータを最適となるよう組合わせた制御を行 50 動制御手段3に入力するように構成されている。尚、液 晶パネルについてはTN液晶で所望の方向に対し視野角 依存性が大きくなるよう配向制御されているものを使用 することを前提とする。

【0025】以上のように構成された液晶表示装置について、図1 および図3、図4、図5、図6、図7、図8を用いてその動作を説明する。

【0026】まず、入力映像信号は信号制御手段1と映像特徴検出手段4に入力される。ここで、信号制御手段1はRGB独立に信号のコントラストとブライトネスの制御を行う回路であり、RGB信号を入力とするものとし、コントラストを制御するゲインとブライトネスを制御するオフセット値がRGB独立に設定できる構成となっている回路である。また、映像特徴検出手段4は、映像信号の1画面毎に輝度の最大値(以下、MAXと表記)と最小値(以下、MINと表記)の映像特徴情報つまり入力信号としての信号範囲が、演算により算出できるものとなっている。

【0027】信号制御手段1において補正された映像信号はRGB独立 ア変換回路2に入力される。RGB独立 ア変換回路2は、パラメータによる演算方式によりア変 20 換処理を行う回路がRGB3系統あり、パラメータはRGB各々に対して1とア2の各設定を行える構成となっており、さらに、ア変換処理としてア1特性とア2特性を切換えるセレクタを備えている。尚、ア変換については部分的にROMテーブル方式と組み合わせることにより、ア特性の部分的な曲線化が行えパラメータによる演算での直線近似だけの場合より更に精度を高めたア変換回路とすることができる。RGB独立ア変換回路より出力された信号は、図示しない極性反転回路等(アナログ1F構成の液晶パネルの場合はDA変換器、ビデオアン 30 ブ等も含む)を通して液晶パネルのソースドライバーへ入力され液晶画素が駆動される。

【0028】視野角連動制御手段3は、外部より設定さ れた所望の視野角設定と映像特徴検出手段4で得られた MAX/MIN等の映像特徴情報により、以下に述べる 各処理を施す。第1に所望の視野角特性が実現できるよ $5\gamma1$ と $\gamma2$ の γ 特性をRGB各々に対し設定する。尚 所望される視野角特性によって、 71と72の個々の特 性や組合わせは容易に設定できる場合と、所望の視野角 特性が得られてくい場合があるが、できるだけ二つので 特性は特性が近い方が画質に対する影響は少ない。第2 に信号制御手段1に対してγ1、γ2の特性とMAX/ MIN値等を考慮して、最適なコントラスト設定とブラ イトネス設定を行う。信号制御手段1での制御の詳細に ついては、実施の形態3に詳細を説明する。第3に71 と 72の切替えパターンを最も効果的なパターンを選択 し制御する。この切換パターンについては、実施の形態 4 および5 に詳細を説明する。以上述べた3 つの処理 を、トータル的に連動し適応制御することにより、映像 信号の状態を考慮した効果的な視野角制御が行える。

【0029】以下に、上記の主な3処理の一例の概要に ついて図面を用いて説明する。図5は7変換特性の設定 の一例を示した図である。本実施例においては、信号処 理により視野角を広げる場合と、狭めたり移動したりす る制御について説明しているが、図5 (a)は視野角を 広げる場合の7特性設定の一例を示したものあり、図5 (b) は視野角を狭めたり移動もしくは最適化する場合 の一例である。所望の視野角制御方向については、基本 的にTN液晶パネルの配向制御により視野角依存性を大 きくする方向と依存度合いが、ある程度制御できるた め、用途に応じて事前に処理されたものを使用する。配 向制御による視野角依存性については、例えば、従来例 2で説明した特開平10-319373号公報「液晶表 示装置及び液晶表示システム」にも示されている。とと では、垂直方向に視野角を制御する例(画面の上下方向 に対し視野角依存性が大きくなるように配向制御された 例) について説明すると、液晶パネルの配向制御状態に 応じて各視角方向毎のVT特性が例えば図3のように得 られるが、これより例えば上視角45°に最適化させた γ1と下視角30°に最適化させたγ2とすることによ り、これを後述するバターン制御で合成することにより 知覚的に広視野角化を図ることができる。また、図5 (b) に示すように例えば下視角30°付近に最適化さ せた71と、中間調部分等について部分的に71と特性 を異ならせたγ2により、視野各方向の移動や最適化の 基本的なヶ制御を行うことができる。このような制御と しては逆に、図4に示すように例えば上視角45°に最 適化させるようなγ特性与えれば、下視角方向45°程 度以上は、ほぼ黒(最低輝度に近い値)とすることがで き、ある方向からの視認をマスク(ブラックアウト)す ることができる。同様にホワイトアウトによるマスクも 可能である。図6、図7は、γ変換特性の切替えバター ンの一例を示したもので、上記のように制御の目的と所 望の視角方向によって設定された71と72を、図6の ように画素毎に空間変調および図7のようにフィールド 単位に時間変調されるパターンを示している。このよう な変調バターンの中から、現在表示中の映像状態や視野 角設定から最適なバターンを選択して1とて2を切換え ることにより、より効果的な視野角制御とすることがで きる。この内容については実施の形態4および5で詳細 を説明するが、視野角連動制御手段3でトータル的に制 御可能な構成としたことにより、このような制御が実現

【0030】図8は、信号制御手段1で行われるコントラストとブライトネスの制御の一例を示した模式図であり、入力信号の信号範囲が狭い場合コントラストゲインにより振幅を広げ、オフセット制御によりブライトネス調整を行うことにより、ア変換処理をダイナミックレンジを充分活用して行うようにすることで、視野角制御を50行り場合でも階調表示精度を充分保つように制御するこ

可能となる。

とができる。このように、以上のような基本的な3つの 処理を、視野角連動制御手段3において連動して、映像 特徴情報に応じて適応制御することにより、連動して最 適処理とすることができるため、より効果的な視野角制 御を映像信号処理も含めた形で行うことができる。

【0031】尚、本実施の形態では、信号制御手段1は コントラストとブライトネス制御のみとしたが、本実施 の形態で上視角最適化ヶを指定した例で説明したように 一方向からの視角をブラックアウトするような場合は、 正面視角あるいは上視角においても全体に輝度が低い暗 10 な処理を行うように動作させるものである。 い画像となるが、このような場合に映像信号に対するノ イズリダクション処理を多めに設定するようにしたり、 アバーチャー処理のゲインを強めるなどの連動制御も信 号処理としての効果が得られ、この様な信号処理回路を 含むことも有効である。

【0032】なお、本実施の形態および以降の実施の形 態ではγ特性としてγ1とγ2の2種類のみの切換えと して説明しているが、3つ以上のヶ特性を切換えること も同様に可能であり有効である。

【0033】以上説明したように、上記の視野角制御に 20 おける基本的な3段階処理を、映像特徴検出手段4によ り抽出した映像信号の状態により連動して適応的に制御 可能とした構成とすることにより、より効果的に輝度、 コントラスト、色相変化等の画質劣化を抑えながら、視 野角の広狭あるいは一方向へのマスク等の視野角制御を 実現することができる。

【0034】(実施の形態2)図2は本発明の実施の形 態2における液晶表示装置のブロック図を示し、図2に おいて本液晶表示装置は、入力映像信号に対してコント ラスト、ブライトネス処理をRGB独立な設定で処理す ることのできる信号制御手段1と、処理された映像信号。 データを液晶パネルのVT特性より必要な印加電圧に変 換するγ変換回路2をRGB独立にもち、所望の視野角 特性になるようRGB個別に設定された複数のャデータ を所定の画素パターンで切替え制御を行う視野角連動制 御手段3を備えている。また、それに加えてバックライ ト8に対してバックライト輝度を制御することのできる バックライト制御手段9を備えている。さらに、入力映 像信号の特徴抽出を行う映像特徴検出手段4を設け、得 られた映像特徴情報を視野角連動制御手段3に入力する 40 できる。 ように構成されている。尚、液晶パネルについては、T N液晶で所望の方向に対し視野角依存性が大きくなるよ う配向制御されているものを使用することを前提とす る。

【0035】以上のように構成された液晶表示装置は、 実施の形態1で説明した構成に対しバックライト制御機 能を加えた構成となっており、実施の形態1と異なる部 分についてのみ、図2および図3、図4を用いてその動 作を説明する。まず、映像特徴検出手段4は、映像信号 の1画面毎に輝度のMAXとMINに加えて、輝度の平 50 れる、バックライト制御量や信号制御手段1に対するコ

均値(以下、APLと表記)の各映像特徴情報が演算に より算出できるものとなっている。これにより、視野角 連動制御手段3では、実施の形態1で説明した3つの処 理の連動適応制御に加えて、APLも考慮に入れられ、 バックライト制御手段9に対しバックライト輝度の制御 を、視野角制御により視認方向に対して起こる液晶表示 の輝度低下を、補うように制御したり、あるいはコント ラスト感の低減を抑えるように制御したりといったよう に、入力映像信号の状態と視野角設定に応じて適宜最適

【0036】例えば、図4に示した下視角方向に対して 表示をマスク(ブラックアウト)するような例では、ア 特性設定 γ 1、 γ 2 はいずれも全体的に出力電圧が高い 電圧範囲(ノーマリーホワイト型TN液晶の場合)で出 力されるようになり、結果正面視角や上視角部分につい ても全体として暗い状態となる。いいかえれば全般的に 透過率の低い状態となるため、この様な場合にはバック ライト輝度を高くなるようバックライト制御手段に対し 制御を行い、輝度の低下を補償するように動作をさせる - ことにより、視認されるべき正面視角や上視角に対して は、図4の場合より輝度の低下を抑えることができる。 【0037】逆に、全体として輝度が高くなる様なホワ イトアウトの場合には、バックライト輝度を低減して使 用することにより、本来通常通り表示させたい視認方向 に対しても全体に白っぽい画像になってしまうところを 低減することができる。この場合は、バックライトの消 費電力削減の意味からも有効である。また、このような 視野角制限の制御以外の場合においても、信号制御手段 1で処理されるコントラストおよびブライトネス制御と 30 APLの値に応じて、例えば、図8の様な例ではAPL の変動分を吸収し、入力映像信号と出力信号の視覚上の APLが同等となるようにバックライトの輝度を低減さ せることができる。さらに、 γ 変換特性 γ 1 および γ 2 そのものの静的な特性自体や、切替えバターンが71と γ2で面積的に非対称となるような場合など、所望の視 野角特性に変化せしめる為に液晶素子の各画素の光透過 率に大きな変動がある場合にも、APLを考慮し視野角 制御効果とのトレードオフも考慮しながら、バックライ ト輝度を制御することにより、柔軟な制御を行うことが

【0038】APLとバックライト制御量の関係につい ては、例えば、γが平均的な時やγが高透過率よりの場 合はAPLが高ければバックライト輝度を下げる方向に し、アが低透過率よりの場合はAPLの値が高ければバ ックライト輝度を上げる方向への制御を行うなどの制御 方法が一例として挙げられるが、場合によっていろいろ な制御も多々考えられる。

【0039】尚、映像特徴検出手段4により検出される 映像特徴情報を反映して視野角連動制御手段3で設定さ

ントラストおよびブライトネス制御量については、映像 特徽検出手段4により抽出された映像特徽情報を所定の 時間間隔で統計処理することにより得られる映像のシー ン判別情報を算出し、制御量に対して時定数をもった! IR型フィルターを通し、前記シーン判別情報から該時 定数を調整するなどの方法により、映像信号の時間方向 に対しても考慮した適応制御とすることができ一層効果 的な制御を実現できる。

13

【0040】以上の説明のように、実施の形態1で説明 した視野角制御における基本的な3つの処理にバックラ イト輝度の制御を加えた各処理を、映像特徴検出手段4 により抽出した映像信号の状態により、連動して適応的 に制御可能とした構成とすることにより、視野角制御を 行ってもコントラスト感を落とすこと無く、必要以上に パックライト輝度をあげずバックライトの消費電力を抑 えながら、輝度低下を補償した視野角の広狭あるいは一 方向へのマスク等の視野角制御を実現することができ る。

【0041】(実施の形態3)実施の形態3における液 びブライトネス調整およびヶ特性設定の運動制御につい て、図3、図8、図9を用いて説明する。

【0042】まず、本実施の形態でのコントラスト調整 およびブライトネス調整の基本的制御方法について説明 する。映像特徴検出手段4では1画面毎に入力映像信号 の輝度のMAXとMINを演算により算出するようにな っており、これにより、1画面毎に映像信号の輝度範囲 が信号処理上の全処理可能範囲の中でどのあたりである かが求められる。図8において、入力信号が図示するM イナミックレンジを広げる為にゲイン制御を行い図8の コントラスト制御に示すように振幅を拡大する。この例 では信号がMIN側寄りであるため、とのままではMI N側で信号処理可能範囲を超えてしまうので、同図のブ ライトネス制御のようにオフセット制御してダイナミッ クレンジが最大となるように調整することができる。コ ントラストの制御としては、図9にコントラスト制御特 性の一例図を示すように、MAXとMINの差分に対し 図のようなゲイン特性をもつコントラスト制御を行うこ とにより、自然なコントラスト制御を行うことができ

【0043】実際に視野角制御においては、実施の形態 1、2で説明したように、図3に示すようなVT特性に 応じて所望の視野角特性に近くなるよう最適なイ特性を 図5のように設定するが、ととで図5 (a) および図5 (b)の横軸は入力電圧を示しているが、実際には信号 制御手段1からの補正データであるから、視野角制御量 の大きい場合に図5に示すようなヶ特性を有効に活かし 透過率の変化を最大限に活用して視野角制御するために は、信号制御手段1の出力データは信号処理可能範囲で 50 【0050】図6はγ変換特性の切替えパターンの一例

最大の振幅を得るようにした方が有利である。

【0044】また、視野角制御量が小さく例えば視野角 を正面視角付近0°±20°といった良好な狭い視角範 囲でのみ使用するというような場合には、所望のVT特 性は正面視角の良好な特性に近い特性であるから、階調 特性の良好な部分のみを使用するようなγ変換特性とし ても、階調特性のよい表示が可能である。このように、 視野角制御の内容や制御量によっては、図5の横軸に相 当する入力を信号の可変範囲に対してどのように対応さ せるかの最適制御は異なるものとなるため、このように 映像信号の状態に応じてコントラスト、ブライトネス制 御とヶ特性設定を合わせて制御することの優位性がある ことがわかる。

【0045】しかし、視野角制御のみを優先して、過度 にあるいはあまりに短い間隔でコントラストやブライト ネスを調整してγ変換特性を設定すると、入力映像信号 の本来の映像状態を著しく変えることとなり良好な映像 とはならない場合がある。一方、液晶パネルに表示する 映像信号の映像特徴については、一般に信号ソースに依 晶表示装置の信号制御手段1でのコントラスト調整およ 20 るところが大きく、例えばパーソナルコンピュータやカ ーナビゲーション等の画像はダイナミックレンジが大き くコントラストの高い信号が多く、TV等の映像信号に ついては中間調信号成分が多い。

> 【0046】従って以上のような点を考慮すれば、との ような映像信号のソースに応じて信号制御手段1での制 御量とγ変換特性の組み合せを概ね設定しておき、実際 の映像状態を映像特徴検出手段4により得て微調整を行 うことにより有効な制御を実現することができる。

【0047】さらに、実施の形態2で説明したように、 INとMAXの範囲であった場合、信号処理としてのダ 30 信号制御手段1に対するコントラストおよびブライトネ ス制御量については、映像特徴検出手段4により抽出さ れた映像特徴情報を所定の時間間隔で統計処理すること により得られる映像のシーン判別情報を算出し、コント ラストゲインやブライトネス、ガンマパラメータ等の制 御量に対して時定数をもった「IR型フィルターを通 し、前記シーン判別情報から該時定数を調整するなどの 方法により、映像信号の時間方向の変化(シーン変化) に対しても考慮した適応制御とすることができる。

> 【0048】以上説明したように、指定された視野角制 40 御内容および制御量と入力映像信号の輝度の可変範囲と の関係から、効率的に視野角制御が行えかつ、その上で 最適な輝度が得られるようにコントラスト制御およびァ 特性設定を行うことにより、視野角を制御することによ るコントラスト低下等の画質劣化の少ない視野角制御を 実現することができる。

【0049】(実施の形態4)実施の形態4における液 晶表示装置の視野角連動制御手段3において、RGB独 立γ変換回路に対して行われる複数γ特性の1画面内の 切替えバターン制御について、図6を用いて説明する。

を示したもので、実施の形態1および2でも説明したよ うに、視野角特性を所望の視野角特性となるように異な る複数のγ特性を設定し、これを所定の画素毎に切換え ることにより視野角を制御する本手法における、1画面 (1フィールド) 分の画素単位の切換パターン説明図で ある。図6(a)はRGBトリオを単位として水平画素 方向にγ1とγ2を交互に、また垂直方向にもγ1とγ 2を交互に市松状に切換える例であり、図6(b)は水 平画素方向にイ1とイ2を交互にし垂直方向には列を同 じとした縦ストライプ状に切換える例であり、図6 (c)は、水平画素方向にはγ1もしくはγ2の単一γ とし垂直方向に走査線間でィ1とィ2を交互にした横ス トライブ状に切換える例である。これらはいずれもRG Bトリオを一組として同一のγとしているが、R用γ1 とG用~1とB用~1あるいはR用~2とG用~2とB 用 γ 2は同じ γ 1、 γ 2であっても実施の形態1、2、

3で説明したように各々異なったものである。 【0051】ととで、本発明においてとの空間変調にお ける第1の特徴とする点は、図6(d)のように上記図 6(a)、図6(b)、図6(c)の3例のようなパタ 20 が可能である。 ーンをγ1とγ2が非対称になるよう切換えるようにし たバターンについても適宜使用するところである。図6 (d)では、RGBトリオを1画素の単位として、水平 画素方向に γ 1と γ 2を交互ではなく、 γ 1を2画素と γ2を1 画素で交互に切換え、また垂直方向には逆に次 走査線では71を1画素と72を2画素で交互に切換え るというように変則的な市松状に切換える例である。こ の場合も γ 1、 γ 2は各 γ RGBで異なったものであ る。この例では、変則的ではあるものの市松状であるた め、1画面中における 1 と 2 の出現頻度は同等とな 30 るが、図示しないが図6(b)、図6(c)のようなス トライブ状における非対称切換バターンや同図dにおい て垂直方向において走査線を交互でなく非対称とする例 など、1画面中における~1と~2の出現頻度(1画面 における ~ 1 画素と ~ 2 画素の面積) についても非対称 とする例も考えられる。あまり変則的なパターンとする 場合は、フリッカ等の弊害の影響が考えられるが、以下 に説明するように切換える~1と~2の特性と入力信号 状態に依存するため、これらの組み合わせをうまく選ぶ ことにより必ずしも弊害とはならず有効な場合も多い。 【0052】これらのパターンの意図するところは、特 開平8-201777号公報「液晶表示装置」に示され ているような容量結合画素分割法において、最適な視野 角特性となりうる主画素と副画素の面積比と電圧比は非 対称(例えば、2:1)である例からも容易に理解でき るところであるように、設定されるヶ特性ャ1と ~2の 特性(差異)との関係から、最も効果的に視野角特性を 制御できる比率は、面積比が1:1とは限らないためで ある。例えば、ノーマリーホワイトのTN液晶の場合ヶ $1 と \gamma 2$ の電圧比がほぼ2:1であった場合、前述の容 50 る。

量結合画素分割法で最適な面積比は7:3程度になるという例もある。

【0053】このように本実施の形態の空間変調における第1の特徴とする点は、パターンを非対称な画素単位で制御する点にある。なお、本実施例で示している視野角制御に関しては、画素数としてワイドVGAクラス以上の画素数がある場合を前提としている。

【0054】次に、本実施の形態の空間変調における第 2の特徴とする点は、この切換えバターンおよび切換え 10 るヶ特性 r 1、 r 2 を視野角連動制御手段 3 において、 入力信号の映像状態やその目的とする視野角制御内容に 応じて、適宜最適な切換バターンおよび r 特性に制御す ることにある。

【0055】例えば、映像特徴検出手段4において、1 画面毎に入力映像信号の高周波成分の出現頻度を検出し 入力信号の映像の細かさによって、解像度の必要な映像 においてはバターンとして図6(a)を選択し、解像度 を必要としない映像においては図6(d)のバターンに 切換えることにより、入力映像信号の特徴に応じた選択 が可能である

【0056】尚、簡易的な手段としては入力映像信号のソース別に、例えばパーソナルコンピュータの画面やカーナビゲーション画面については、図6(a)のパターンを選択し、TV映像等においては図6(d)の例を選択するというように、入力映像信号のソース別に切換えても良い。

【0057】さらに、入力される映像信号の状態のみでなく、使用する液晶パネルの画素数や1画素のサイズ(正方形か長方形か)、あるいは表示画面の画面モード(特にワイド画面サイズの液晶表示装置における、ワイドアスペクト表示や2画面表示時等の画面サイズ等)のアスペクト比においても、画面毎に適宜最適な切換パターンに選択しても良い。また、入力される映像信号がインターレース信号かアンインターレース信号かであるといった走査線形式や走査線変換処理に応じて適宜最適な切換パターンに選択しても良い。

【0058】以上説明したように、1画面の水平方向もしくは垂直方向の画素毎に切換えるバターン、いわゆる空間変調バターンについては、画素毎に交互とするバターンのみでなく、非対称な形とすることにより、71と72を与えるべき面積的な効果に寄与し、7特性の差異との組合わせ効果により最適な変調バターンとすることができる

【0059】さらに、とれを視野角連動制御手段3において入力される映像信号の状態や、入力ソースあるいは 画面構成、表示する液晶パネル構成までトータルに考慮 したパターン変調とすることにより、視覚的に自然な変 調が可能であり、常に最適で弊害が少なく輝度低下等の 画質劣化を抑えた視野角制御を実現するとことができ

【0060】(実施の形態5)実施の形態5における液 晶表示装置の視野角連動制御手段3において、RGB独 立ィ変換回路2に対して行われる複数ヶ特性のフィール ド方向(時間軸方向)への切替えバターン制御につい て、図6、図7を用いて説明する。図7はγ変換特性の 時間軸方向への切替えバターンの一例を示したもので、 実施の形態4で説明した空間変調バターンは1画面(1 フィールド分)の画素の切換パターンであったが、これ を時間軸方向へも拡張したフィールド間でのパターンの 切換方法についての説明図である。図7では、図6 (d) のバターンについて第nフィールドから第n+5 フィールドまでの切換パターンを示したものであり、図 7 (b) の第n + 1 フィールドでは図7 (a) の第n フ ィールドと同一パターンを続け、図7(c)の第n+2 フィールドは図7(a)の第nフィールドとは逆のァ特 性を1フィールドのみとし、図7(d)、図7(e)の 第n+3、第n+4フィールドではまた第nフィールド と同一バターンでと繰り返すものである。これらはいず

【0061】ととで、本発明においてこの時間軸変調に おける第1の特徴とする点は、上記に説明した図7の例 のようにフィールド単位で非対称になるよう切換えるよ ろにしたパターンについても適宜使用するところであ る。これらの変則的バターンの意図するところは、実施 の形態4で説明したのと同様で、 γ1となる画素と γ2 となる画素の積分効果により、各々のヶ特性と液晶パネ ルの応答速度等との兼ね合いで視野角制御への効果が期 30 待できるところにある。

れもRGBトリオを一組として同一の~としているが、

γ2とB用γ2は同じγ1、γ2であっても実施の形態

4 で説明したように各々異なったものである。

【0062】図7で説明したフィールド方向でのγ1と γ2の反転に関しては、画質面あるいは視野角制御の効 果等の面で液晶パネルの応答速度に依存するところが大 きいため、これを考慮した切換パターンとする必要があ る。時間軸方向への変調に関しても、あまり変則的なパ ターンとする場合は、フリッカ等の弊害の影響が考えら れるが、以下に説明するように、弊害の目立ちにくい映 像においては、視野角制御を優先するなど映像信号の状 態に適応制御することにより、弊害を最小限とした視野 40 角制御信号処理が可能である。このように本発明の時間 変調における第1の特徴とする点は、バターンを非対称 なフィールド単位で制御する点にある。なお、本実施の 形態で示している視野角制御に関しても、画素数として ワイドVGAクラス以上の画素数がある場合を前提とし ている。次に、本実施の形態の時間変調における第2の 特徴とする点は、この切換えパターンおよび切換えるヶ 特性γ1、γ2を視野角連動制御手段3において、入力 信号の映像状態や映像信号の走査線形式や走査線変換処 理あるいはその目的とする視野角制御内容に応じて、適 50 り、入力映像信号の表示エリアを識別する信号を各回路

官最適な切換パターンおよびヶ特性に制御することにあ

【0063】例えば、映像特徴検出手段4において入力 映像信号の動き検出を行い、映像信号の動きの速さや量 を検出し入力信号の映像の動き量の多さによって、静止 画あるいはほぼ静止画に近い映像においては、フリッカ の低減のためフィールド方向に対称なパターンとして、 かつ反転の間隔についても短めにし、逆に動きの激しい 映像においては、フリッカ等の影響が目立ちにくい場合 10 もあり、図7の例のようなパターンを選択することも効 果的である場合がある。これらは使用する液晶パネルの 応答速度とも密接な関係があるため、このように入力映 像の状態に応じて柔軟にバターンを選択することが有効 である。

【0064】また、入力される映像信号がインターレー ス信号かノンインターレース信号かであるといった走査 線形式や、それに応じて映像信号処理部で処理される走 査線変換処理に応じて適宜最適な切換バターンに選択し ても良い。一例としては、インターレース信号入力の場 合は図7のような非対称パターンが有効であり、映像信 R用γ1とG用γ1とB用γ1あるいはR用γ2とG用 20 号処理部でプログレッシブ変換処理がされている場合は その処理内容に応じて適宜バターンの選択の必要がある と考えられる。尚、簡易的な手段としては、入力映像信 号のソース別に例えば、パーソナルコンピュータの画面 やカーナビゲーション画面については、比較的静止画に 近い状態と考えられ上記のような静止画に向いた処理を 行い、TV映像等においては動画に向いた処理を行うと いうように、入力映像信号のソース別に切換えても良 LA.

> 【0065】以上の説明のように、フィールド方向(時 間軸方向)に対してのヶ特性の切換えるパターン、いわ ゆる時間変調パターンについては、所定の間隔のフィー ルド毎に交互とするパターンのみでなく、適宜非対称な 形とすることにより、γ1とγ2を与えるべき面積的な 効果を3次元的に拡張でき積分効果により、知覚的には ヶ特性の差異との組合わせにより最適な変調バターンと することができる。さらに、これを視野角連動制御手段 3において入力される映像信号の状態や、入力ソースや 走査線構成と走査線変換処理あるいは画面構成、表示す る液晶パネル構成までトータルに考慮したパターン変調 を行うことにより、視覚的に自然な変調が可能であり、 常に最適で弊害が少なく輝度低下等の画質劣化を抑えた 視野角制御を実現するとことができる。

> 【0066】(実施の形態6)図10は本発明の実施の 形態6における液晶表示装置の構成ブロック図を示し、 図10において本液晶表示装置は、信号制御手段1およ び映像特徴検出手段4 および視野角連動制御手段3 およ びRGB独立γ変換回路の各回路を、それぞれ入力信号 の表示エリア毎に個別の動作ができるように構成してあ

19 に入力することにより、全体として表示エリア別の視野 角連動制御ができるるように構成されている。

【0067】以上のように構成された液晶表示装置について、図10を用いてその動作を説明する。

【0068】ととでは、主画面と副画面の2画面表示の 場合を説明する。まず、表示エリア別映像特徴検出手段 4は、映像信号の最大値、最小値、平均値等の映像特徴 を演算する回路を2回路もち、主/副の映像信号のエリ アを識別する信号(以下、主副エリア選択信号と表記) により、独立して各特徴量を演算する構成となってい る。また、表示エリア別RGB独立信号制御手段1およ び表示エリア別RGB独立ィ変換回路2は、コントラス ト、ブライトネス、RGB各複数のヶ特性等の演算を行 う各パラメータ設定値を主画面用と副画面用の2種類も ち、主副エリア選択信号によりその動作が切換えるられ るようになっている。表示エリア別視野角連動制御手段 3についても、実施の形態1、2で説明した連動制御 を、主副エリア選択信号により個別の制御を行うことに より、主画面用と副画面用の映像エリア毎に、設定され た異なる視野角特性の液晶表示となるよう、各回路への 20 動作をするものである。

【0069】また、バックライト制御については、実施の形態2で説明したのと同様な制御を行うだけでなく、主画面と副画面の映像特徴として平均値が大きく異なるような場合(明るい画像と暗い画像の場合など)は、バックライト制御を主画面もしくは副画面の何れかの映像に対して行うものとし、制御対象外の画面(例えばバックライト制御を主画面映像に対して行う場合は副画面)に対しては、バックライトの制御効果をキャンセルするように、制御対象側のバックライト制御データから補正 30 データを生成し、制御対象外画面のコントラスト、ブライトネス調整を行うようにすることにより、主画面と副画面の間で輝度状態が大きく異なる画像の場合であっても、視野角制御に伴うバックライト制御の影響が、他方の画面に現れないようにすることができる。

【図 示の場合の例を説明したが、3 画面以上のマルチ画面の 図 場合であっても、同様に映像特徴検出手段4を必要数回 図 図 場合であっても、同様に映像特徴検出手段4を必要数回 図 図 路もち、信号制御手段1 および視野角連動制御手段3 およびRGB独立γ変換回路2に対し、表示エリア毎にバ 40 性図ラメータ設定可能な構成としておき、表示エリア選択信 写によりそれらを切換えることにより、各々表示画面毎 に視野角特性を個別に制御することができる。 【図

【0071】尚、2画面表示機能付き車載TV等においてTV表示とカーナビゲーション表示を別々の視野角方向に最適化するといった用途においては、本機能を使用することにより走行中にはドライバー側からの視角方向へは車載TVの画面をマスクする等により、道路交通上の安全化を図るといった応用も可能である。

【0072】以上の説明のように、2画面表示、マルチ 50 置の信号制御手段におけるコントラストおよびブライト

画面表示、PinPといった1画面中に複数の画面を表示する場合であっても、各々の表示画面毎に視野角特性を個別に制御することが実現できる。

[0073]

【発明の効果】以上の説明から明らかなように本発明によれば、特別な視野角制御用の液晶セルを用いたり、光学的なレンズシートを制御したり、バックライトの光学的特性を変えるといった手段を用いることなく、外部の信号処理回路のみで視野角制御を行う液晶表示システムにおいて、視野角の面で限られた条件にある場合などといった使用状況や入力ソース信号、映像信号形態、表示映像内容等に応じて適宜最適な連動制御を行うことにより、画質劣化を抑制した最適な視野角制御および表示内容の秘匿あるいは視認方向の最適化等を実現することができるものである。

[0074]特に、映像信号の映像特徴情報により各処理を連動した適応制御とすることにより、視野角制御を行うことによる輝度やコントラスト感の低下、フリッカ、色相変化等の画質劣化を抑えながら、視野角の広狭、移動、特定方向へのマスキング、視認方向最適化といった視角制御を効果的に行うことができる。また、バックライトについても適応制御とすることにより、コントラスト感や輝度を低下させることなく効果的な視野角制御が行えるとともに、バックライトの光利用効率低下を抑えて消費電力の低減を行うことも可能である。

【0075】さらにシステム的応用においては、2画面表示機能付き車載TV等におけるTV表示とカーナビゲーション表示とを別々の視角方向に最適化するといった様な用途において、最適な構成とすることができるものである。

【図面の簡単な説明】

【図1】本発明の実施の形態1による液晶表示装置の構成を示すブロック図

【図2】本発明の実施の形態2による液晶表示装置の構成を示すブロック図

【図3】TN液晶表示装置のVT特性の一例を示す特性 図

【図4】本発明の実施の形態1および2による液晶表示 装置の7変換特性の設定による輝度特性の一例を示す特性図

【図5】本発明の実施の形態1および2による液晶表示 装置のγ変換特性設定の一例を示す特性図

【図6】本発明の実施の形態1から5による液晶表示装置のγ変換回路における1画面内のγ切換パターンの一例を示す図

【図7】本発明の実施の形態1から5による液晶表示装置のγ変換回路におけるフィールド方向のγ切換パターンの一例を示す図

【図8】本発明の実施の形態1から3による液晶表示装 圏の信息制御手段にわけるコントラフトなどがブライト

ネス処理の一例を示す模式図

【図9】本発明の実施の形態3による液晶表示装置の信号制御手段におけるコントラスト制御特性の一例を示す 特性図

21

【図10】本発明の実施の形態6による液晶表示装置の 構成を示すブロック図

【図11】従来例1の液晶表示装置の構成を示すブロッ ^{ク図}

【図12】従来例1で示されているγ切換パターンを説明する模式図

【図13】従来例1で示されているγ特性設定の一例を示す特性図

*【図14】従来例2の液晶表示装置の構成を示すブロック図

【符号の説明】

- 1 RGB独立信号制御手段
- 2 RGB独立γ変換回路
- 3 視野角連動制御手段
- 4 映像特徵検出手段
- 5 ゲート駆動回路
- 6 配向方向制御液晶パネル
- 10 7 ソース駆動回路
 - 8 バックライト
 - 9 バックライト制御手段

[図1]

[図2]

[図8]

エルラストグライトネス制御機会の一例

【図9】

コントラスト制御特性間の一種

【図3】

【図4】

ブラックアウト制御の一例

【図13】

供承候―1の7替性間

【図5】

* 玄操特性教室の一領

【図6】

γ変性特性の1面面内保管えバターンの一例

(a) 1	FB 状					(6) 概ストライプ状						
R	G	В	R G B R G B									
71	*1	71	72	72	72	71	71	r.1	72	9	7	
y 2	72	72	71	71	71	71	71	7	¥2	72	Pa }	
¥4	71	71	72	72	72	y 1	¥ 1	¥1	y 2	+2	¥2	
								_			72	
72	72	72	71	1.72	71	<u></u>	F7	71	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	72	<u> </u>	
-	₇₂ (ストライ		<u> </u>	1.72	71	(d) (f	r) Rapata	市松林	Y × -	<u> </u>	<u> </u>	
,-			[<u>* 1</u>	<u> </u>	<u> 71 </u>	(d) (f	r) Rga	市松林 RGB	RGB	RGB	ROB	
(0)	ストライ	プ状	R 71	<u> </u>					<u> </u>			
(a) E	ストライ	プ状	R 71 72	71 71 72	8			RGB	RGB	RGB	RGB	
(a) E	ストライ	プ状	R 71 72 71	7-1	B			RGB 72	RGB	RGB 71	RGB 72	

【図7】

r 支装等性の時間能方向研修えパターンの一個

(e) nブ・	(a) nフィールド								(b) n+1フィールド						
	2GB	RGB_	RGB	RGB	RGB	R	<u> </u>	RGB	RGB	RGB	RGB	RGB			
71	71	72	71	y 1	+2		• 1	#1	72	1	1	r 2			
72	μŽ	* 1	72	¥ 2	γl		- 2	45	7	72	72	p 1			
71	7 1	72	. T1	₩1°	18		· 1	. 11	è	71	P 1	y 2			
72	, 2	2 1	7 ž	y 2	7		. 2	72	7	72	72	7			
4-5-1	<u>~~</u>	- u L*					- 46	1+374	-11-12						
(e) n+ RGB 8	27/-	RGB	RGB	RGB	60		GB	ROB	RGB	RGB	RCB	RGE			
		LEGID		B13B	TO THE			-							
72	72	71	72	7 2			<u> </u>	71	72	71	97				
71	7,	72	7.1	71	72		2	72	7	72	72	* 7			
72	78	Y 1	y 2	72	71		<u>, 1</u>	71	72	+1	71	72			
71	71	72	71	71	72		/#	y 2	-	72	71				
	_														
(e) n+	474	ールド					(fl n+5フィールド								
ROBE	RGB	RGB	RGB	RGB	RGB	6	GB.	RGB	RCB	RGB	RGB	RGB_			
77	-1	7.0	7.1	71	7.5	1 5	7 2	72	#1	72	ž	7 1			
	72	71	78	72	71	1 🗆	į	71	R	71	7	72			
+1	#1	72	Ϋ́T	¥1	72	1 🗀	- 2	72	71	72	72	1			
	72	+1	72	72	7.1	1 🗆	71	71	72	+1	7	72			

【図10】

【図11】

佐生制-1の雑成業

【図12】

従来例-1の構成で示されている物質なパターン

【図14】

従来例―2の構成器

フロントページの続き

Fターム(参考) 2H093 NA16 NA51 NC42 NC52 ND03

ND07 ND10 ND13 ND39 ND60

NF05

5C006 AA22 AC02 AF23 AF63 BB16

BC03 BC06 BC13 EA01 EC09

FA22 FA23

5C080 AA10 CC03 DD03 DD06 DD30

EE28 EE32 JJ02 JJ05 KK02

KK20