6. Derivate del secondo ordine

Se le derivate parziali $f_x(x; y)$ e $f_y(x; y)$ sono a loro volta derivabili le loro derivate fatte rispetto a x e a y si dicono derivate parziali seconde e si indicano con

$$f_{xx}$$
 f_{xy} f_{yy} f_{yx}

Esercizi

Per ognuna delle seguenti funzioni calcolare le derivate parziali seconde verificando che in questi casi risulta $f_{xy} = f_{yx}$:

1.
$$f(x; y) = x^3 - 3xy + y^2$$

2.
$$f(x; y) = 3x^4 - 4x^3y^2$$

3.
$$f(x;y) = 5x - 4x^2y^2 - 7y^3$$

4.
$$f(x; y) = x^3y - 4x^2y^4$$

5.
$$f(x;y) = \frac{1}{x} + \frac{1}{y}$$

6.
$$f(x; y) = \sqrt{x + 2y}$$

7.
$$f(x; y) = \sqrt{3x^2 + y}$$

8.
$$f(x; y) = 2^{x-4y}$$

9.
$$f(x;y) = e^{3x^2+y}$$

10.
$$f(x; y) = log(5x - 4y)$$

11.
$$f(x; y) = log(x^2 + y^2 - 7)$$

Soluzioni

1. S.
$$f_{xx} = 6x$$
; $f_{xy} = -3$; $f_{yy} = 2$; $f_{yx} = -3$;

2.
$$S. f_{xx}(x; y) = 36x^2 - 24xy^2$$
; $f_{yy}(x; y) = -8x^3$; $f_{xy}(x; y) = f_{yx}(x; y) = -24x^2y$;

3. S.
$$f_{xx} = -8y^2$$
; $f_{xy} = -16xy$; $f_{yy} = -8x^2 - 42y$; $f_{yx} = -16xy$;

4.
$$S. f_{xx}(x; y) = 6xy - 8y^4$$
; $f_{yy}(x; y) = -48x^2y^2$; $f_{xy}(x; y) = f_{yx}(x; y) = 3x^2 - 32xy^3$;

5. S.
$$f_{xx}(x;y) = \frac{2}{x^3}$$
; $f_{yy}(x;y) = \frac{2}{y^3}$; $f_{xy}(x;y) = f_{yx}(x;y) = 0$;

6. S.
$$f_{xx}(x;y) = -\frac{1}{4(x+2y)\sqrt{(x+2y)}}$$
; $f_{yy}(x;y) = -\frac{1}{(x+2y)\sqrt{(x+2y)}}$;

$$f_{xy}(x;y) = f_{yx}(x;y) = -\frac{1}{2(x+2y)\sqrt{(x+2y)}};$$

7. S.
$$f_{xx} = \frac{3y}{\sqrt{(3x^2 + y)^3}}$$
; $f_{xy} = -\frac{3x}{2\sqrt{(3x^2 + y)^3}}$; $f_{yy} = -\frac{1}{4\sqrt{(3x^2 + y)^3}}$; $f_{yx} = -\frac{3x}{2\sqrt{(3x^2 + y)^3}}$;

L. Mereu – A. Nanni Funzioni in due variabili

8. S. $f_{xx}(x;y) = 2^{x-4y} \cdot log^2 2$; $f_{yy}(x;y) = 16 \cdot 2^{x-4y} \cdot log^2 2$; $f_{xy}(x;y) = f_{yx}(x;y) = -4 \cdot 2^{x-4y} \cdot log^2 2$;

9. S.
$$f_{xx} = e^{3x^2 + y}(36x^2 + 6)$$
; $f_{yy} = e^{3x^2 + y}$; $f_{xy} = f_{yx} = 6xe^{3x^2 + y}$;

10. S.
$$f_{xx} = -\frac{25}{(5x-4y)^2}$$
; $f_{xy} = \frac{20}{(5x-4y)^2}$; $f_{yx} = \frac{20}{(5x-4y)^2}$; $f_{yy} = -\frac{16}{(5x-4y)^2}$;

11. S.
$$f_{xx}(x;y) = \frac{-2x^2 + 2y^2 - 14}{(x^2 + y^2 - 7)^2}$$
; $f_{yy}(x;y) = \frac{2x^2 - 2y^2 - 14}{(x^2 + y^2 - 7)^2}$; $f_{xy}(x;y) = f_{yx}(x;y) = -\frac{4xy}{(x^2 + y^2 - 7)^2}$.