Esercizi di tipo D, E

Esercizio D0. Modificare la function newton in modo da costruire l'immagine relativa a un quadrato del piano complesso formato da $(2*m+1)\times(2*m+1)$ punti centrato nel numero complesso z_0 di semilato ℓ .

Modificare l'assegnazione del colore ai pixel usando una sola matrice $(2m + 1) \times (2m + 1)$ con la tavola di colori default costituita da 64 colori, e assegnando il colore numero k al pixel (i,j) se al passo k risulta $|Z(i,j) - W(i,j)| \le 10^{-4}|Z(i,j)|$ dove W(i,j) = g(Z(i,j)).

Scrivere la versione vettoriale della function e applicarla al polinomio z^{10} + $(4z-1)^3$ prima con centro 0 e semilato 3, poi con centro 0 e semilato 2, poi con centro 1/4 e semilato 1/10, 1/100

Scrivere un documento LaTeX in cui si descrive l'esperimento, si riportano le function usate e le immagini ottenute. Fare l'upload della versione pdf del documento.

Esercizio D1. Modificare la function newton in modo da costruire l'immagine relativa a un quadrato del piano complesso formato da $(2*m+1)\times(2*m+1)$ punti centrato nel numero complesso z_0 di semilato ℓ .

Applicare la function al polinomio $p(z) = z^4 + (100z - 1)^2$ con la seguente colorazione. Calcolare gli zeri di p(x) col comando roots, siano essi x_1, x_2, x_3, x_4 . Assegnare colore rosso, verde, blu o giallo al pixel (i, j) a seconda che $|Z(i, j) - x_k| \le 1.e - 4|x_k|$, se rispettivamente k = 1, k = 2, k = 3, o k = 4.

Dare una intensità alle 4 colorazioni in base al più piccolo numero di passi che sono stati sufficienti a soddisfare la condizione di arresto.

Creare le immagini in cui il centro è 0 e il semilato è 5×10^6 , il centro è 1/100 e il semilato è 10^{-3} , 10^{-4} , 10^{-5} .

Dare la versione vettoriale della funzione.

Scrivere un documento LaTeX in cui si descrive l'esperimento, si riportano le function usate e le immagini ottenute. Fare l'upload della versione pdf del documento.

Esercizio D2. Procedere come nell'esercizio D1, ma applicando la function alla funzione razionale $z^2 + (100 - 1/z)^2$, che ha gli stessi zeri del polinomio $z^4 + (100z - 1)^2$, e tracciare le immagini di centro 1/100 e semilato $10^6, 10^4, 1, 10^{-1}$. Dare la versione vettoriale della funzione. Scrivere un documento LaTeX in cui si descrive l'esperimento, si riportano le function usate e le immagini ottenute. Fare l'upload della versione pdf del documento.

Esercizio D3. Procedere come nell'esercizio D1, ma applicando la function alla funzione razionale $z + (1/z)(100 - 1/z)^2$, che ha gli stessi zeri del polinomio $z^4 + (100z - 1)^2$ e tracciare le immagini di centro 1/100 e semilato $0.05, 10^{-2}, 10^{-4}, 10^{-5}, 10^{-6}$. Dare la versione vettoriale della funzione. Scrivere un documento LaTeX in cui si descrive l'esperimento, si riportano le function usate e le immagini ottenute. Fare l'upload della versione pdf del documento.

Esercizio D4. Modificare la function newton in modo da costruire l'immagine relativa a un quadrato del piano complesso formato da $(2*m+1) \times (2*m+1)$ punti centrato nel numero complesso z_0 di semilato ℓ . Dare in input alla function il vettore p con i coefficienti di un polinomio p(x) di grado d. Calcolare gli zeri x_1, \ldots, x_d di p(x) col comando $\mathbf{x} = \mathbf{roots}(\mathbf{p})$;. Assegnare un colore diverso al generico pixel (i,j) a seconda che $|Z(i,j) - x_k| \leq 1.e - 4|x_k|$, per $k = 1, 2, \ldots, d$, dove Z(i,j) è il valore nel punto (i,j) dell'iterazione di Newton applicata al polinomio al generico passo.

Scegliere un polinomio casuale di grado 5 e tracciare l'immagine con centro 0 e valori diversi del semilato. Scegliere poi un punto di interesse dove ingrandire l'immagine. (Si suggerisce di usare il comando y = polyval(p,x) per valutare il valore y che il polinomio di coefficienti p assume in x).

Dare la versione vettoriale della funzione.

Scrivere un documento LaTeX in cui si descrive l'esperimento, si riportano le function usate e le immagini ottenute. Fare l'upload della versione pdf del documento.

Esercizio E0. Si scriva una function in Octave che, dati $p \in \mathbb{C}$, $\ell > 0$, $m \in \mathbb{N}$, disegna la porzione della figura di Mandelbrot in un quadrato di centro p e semilato ℓ , come immagine di $(2m+1) \times (2m+1)$ pixel, nel seguente modo: si usa la mappa dei colori default, si svolgono q = 63 iterazioni e per ogni coppia (i,j) si calcola il numero di passi k che occorrono affinché z_k abbia modulo maggiore di 2; si colora il pixel di posto (i,j), corrispondente al valore di c col k-esimo colore della tavola dei colori; se dopo q iterazioni il modulo di x_q è minore di 2 si colora il pixel (i,j) col colore q-esimo della tavola dei colori. Dare una versione vettorizzata della function. Applicare la function con i valori p = -1.5, $\ell = 2$, e con $p = \varphi - 2 + \mathbf{i}(\varphi - 1)$ dove $\varphi = (1 + \sqrt{5})/2$ è la sezione aurea, $\ell = 0.5, 0.1, 0.01$.

Esercizio E1. Scrivere una function che, dati $c, p \in \mathbb{C}$, $\ell > 0$, $m \in \mathbb{N}$, costruisce un'immagine $(2m+1) \times (2m+1)$ relativa alla porzione del piano complesso di centro p e semilato ℓ procedendo in modo analogo all'esercizio E0. La differenza è che il valore di c è fissato e dato in input alla function, mentre varia in funzione della coppia di indici (i,j) il valore iniziale di z_0 e la colorazione del pixel in posizione (i,j) avviene in relazione al primo valore k per cui $|z_k| > 2$.

Si applichi la function con i valori $c = \varphi - 2 + \mathbf{i}(\varphi - 1)$ dove $\varphi = (1 + \sqrt{5})/2$ è la sezione aurea, con centro 0 e semilato $\ell = 2, 1$. Per la colorazione, si usi la mappa dei colori default.