Neuron Sandbox Assessment 1

https://www.cs.cmu.edu/~dst/NeuronSandbox

1. Fill in the activation value and the current output value for each row of the table.

x ₁	puts x ₂	$\mathbf{x_1} \stackrel{\mathbf{w_1}}{=} -2$	Activation Σ	Current Output Σ>-1
0	0	$\sum >-1$ \longrightarrow y		
0	1	Activation Threshold Output		
1	0	$\mathbf{X_2} \mathbf{w_2} = 2$	19	
1	1			

2. Fill in the weight values w_1 and w_2 to produce the activations shown. Then fill in the threshold value to produce the outputs shown.

3. A restaurant table is "available" if the table is **not** occupied and the table top is clean. Select the correct output value to indicate if a table is available for each combination of inputs by filling in one of the two circles.

Inputs		
Occupied	Top is Clean	
0	0	
0	1	
1	0	
1	1	

Predicted Output (0=No, 1=Yes)
○ 0 ○ 1
○ 0 ○ 1
○ 0 ○ 1
○ 0 ○ 1

4. Now fill in the weights and threshold value to make the neuron determine whether a restaurant table is available.

