

Course Syllabus Part I DSC 630 Predictive Analytics

3 Credit Hours

Course Description

This course assembles topics covered in previous courses into an applied project. Students have the opportunity to find, clean, analyze, and report on a project they define. Advanced methods of analysis using Python and R allow students to delve deeper into their projects.

Course Prerequisites

DSC 540 or equivalent and recommend DSC 550

Course Objectives

Students who successfully complete this course should be able to:

- Solve real-world problems by adapting and applying statistical learning methods to large, complex datasets.
- Analyze datasets with supervised learning methods for functional approximation, classification, and forecasting.
- Analyze datasets with unsupervised learning methods for dimensionality reduction and clustering.
- Compose a comprehensive project report.
- Assess various statistical learning methods and models for solving a specified real-world problem, comparing their advantages and disadvantages.

Grading Scale

93 – 100% = A	87 - 89% = B+	77 – 79% = C+	67 – 69% = D+
90 - 92% = A-	83 - 86% = B	73 – 76% = C	63 - 66% = D
	80 – 82% = B-	70 – 72% = C-	60 - 62% = D-
			0 - 59% = F

Topic Outline

- I. Overview of Predictive Analytics
 - a. History
 - b. Predictive Analytics Application in Business
 - c. Challenges and Opportunities
 - d. Future

- II. Data Understanding
 - a. Data Visualization
 - b. Histograms
 - c. Single and Multiple Variable Summaries
 - d. Data Audit
- III. Data Preparation
 - a. Variable Cleaning
 - b. Feature Creation
- IV. Descriptive Modeling
 - a. Data Preparation Issue
 - b. Principle Component Analysis
 - c. Clustering Algorithms
- V. Interpreting Descriptive Models
 - a. Standard Cluster Model
- VI. Predictive Modeling
 - a. Decision Trees
 - b. Logistic Regression
 - c. Naïve Bays
 - d. Regression Models
 - e. Linear Regression
- VII. Assessing Predictive Models
 - a. Batch Approach
 - b. Assessing Regression Models
- VIII. Model Ensembles
 - a. Bagging
 - b. Boosting
 - c. Occam's Razor
 - d. Interpreting Model Ensembles
- IX. Text Mining
 - a. Structured vs Unstructured Data
 - b. Text Mining Features
 - c. Modeling
 - d. Regular Expressions
 - e. Challenges and Opportunities
- X. Course Project
 - a. Project proposal
 - b. Preliminary analysis
 - c. Project Report
 - d. Presentation