Michelin Star Restaurants

Group 4
Elyssa Irizarry
Cody Gunter
Megan Adams
Markeis Williams

Introduction 2

What is a Michelin Star?

Global restaurant rating system of one, two, and three stars based upon quality of cuisine and the restaurant experience.

Started as a guide for motorists and now rates over 30,000 restaurants world wide.

Michelin Star Guide: https://guide.michelin.com/us/en/restaurants

» Information obtained from Kaggle but provided by Michelin Star Guide regarding 2018-2019 star recipients.

- » Three csv files provided for one, two, and three star
- » 2019 US Census data
- » Information included:
 - » Restaurant information: Name, URL, Cuisine, Price, Stars awarded
 - » Location information: Latitude, Longitude, Region, City, Zip Code
- » Information excluded: Michelin Star Restaurant Locations in Belgium, France, Germany, Italy, Japan, Germany, Italy, Japan, Luxembourg, Netherlands, Portugal, China, Spain, and Switzerland
- » Null data
 - » Zip Code
 - » Prices
 - » Inconsistency in region

What locations have the most Michelin Star Restaurants?

All Michelin Star Restaurants Worldwide

Western US regions - Concentrated in San Francisco and Los Angeles

Mid-Western US regions - Chicago only

Eastern US regions - Concentrated in New York City and Washington, DC

UK regions - Concentrated in London

European regions - Scandinavia and Eastern Europe

Asian regions - Scattered across the continent

Charts related to region

What proportion of restaurants are one, two or three stars?

Breakdown of Michelin Star Restaurants (International)

Breakdown of Michelin Star Restaurants (United States)

Average Michelin Star Count for Regions Worldwide

Average Price Rate versus Michelin Star Count

How do prices compare between location and star level?

Average Price Rating For each Region

International Average Price and Michelin Star Count of 10 most popular cuisines

US Region and Cuisine Breakdown

What are the most popular cuisines worldwide?

Danish
Moroccan
International
Market cuisine

Top Ten Michelin Star Cuisines Worldwide

Top Cuisines by Star Rating Worldwide

What are the most popular cuisines in the United States?

US Top Ten Cuisines

US Cuisine by Star Rating

Logistic Regression

Predicting categories in a classification problem

The Code - Includes Census Data

feature = mergedcensus_df[['Population', 'Median Age', 'Household Income', 'Per Capita Income', 'Poverty Count', 'Unemployment Count', 'Unemployment Rate', 'michelin_star_count']]

target = mergedcensus_df["price"]

reg = LogisticRegression()

reg.fit(np.array(feature), np.array(target))

predicted = reg.predict(feature)

actual = target

probs = reg.predict_proba(feature)

It is a predictive algorithm that is based off of binary categories, rather than a slope with numerical values.

Regression Cont. - Predicted

```
In [27]: predicted
Out[27]: array(['$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$',
                                         '$$$$', '$$$$', '$$$$',
                 '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$',
                 '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$',
                 '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$',
                 '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$',
                 '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$',
                 '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$',
                 '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$',
                 '$$'. '$$'. '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$',
                 '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$',
                 '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$',
                 '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$',
                 '$$$$', '$$$$', '$$$$', '$$$$', '$$$$',
                 '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$',
                 '$$$$', '$$$$', '$$$$', '$$$$',
                                                '$$$$', '$$$$',
                 '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$',
                 '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$',
                 '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$',
                 '$$$$', '$$$$', '$$$$', '$$$', '$$$$', '$$$$', '$$$$', '$$$$',
                 '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$', '$$$$',
                 '$$$$', '$$$$'], dtype=object)
```

Based on all the data brought in from the US census, the US restaurants are predicted at these price points.

It is predicting overwhelmingly 4\$ prices, which is inaccurate.

Regression Cont. - Actual

```
In [28]: actual
Out[28]: 0
                $$$$
                  $$$
                 $$$
                 $$$
                 $$$$
         175
                $$$$
         176
                $$$$
         177
                $$$$
         178
                 $$$$
         179
                $$$$
         Name: price, Length: 180, dtype: object
```

The actual price points of these restaurants is more varied than was predicted, with several 2\$ and 3\$ restaurants.

Regression Cont. - Probability

```
In [29]: probs
Out[29]: array([[0.07574935, 0.28126144, 0.6429892],
                 [0.03103115, 0.20415998, 0.76480887],
                 [0.13178075, 0.30858274, 0.55963651],
                 [0.07642574, 0.25900651, 0.66456776],
                 [0.09859288, 0.29648585, 0.60492127],
                 [0.11192692, 0.30738191, 0.58069117],
                 [0.2214439 , 0.35416454, 0.42439156],
                 [0.11995433, 0.34186283, 0.53818285],
                [0.26237597, 0.34147989, 0.39614414],
                 [0.26237597, 0.34147989, 0.39614414],
                [0.26237597, 0.34147989, 0.39614414],
                 [0.26237557, 0.34147866, 0.39614577],
                 [0.26237557, 0.34147866, 0.39614577],
                 [0.06833885, 0.20077151, 0.73088964],
                 [0.06833885, 0.20077151, 0.73088964],
                 [0.06833885, 0.20077151, 0.73088964],
                 [0.06833885, 0.20077151, 0.73088964],
                [0.01073561, 0.14847727, 0.84078712],
                 [0.01073551, 0.14847533, 0.84078916],
```

This compares the probability of the price point of each US restaurant.

There are only 2\$, 3\$, and 4\$ US restaurants, so that's all it's predicting (3 columns).

No 1\$ or 5\$ restaurants.

Regression - Confusion Matrix

The confusion matrix shows how inaccurate the regression is.

Only one 2\$ price point was accurately predicted, and no 3\$ price points were predicted correctly.

Almost everything was predicted to be 4\$.

Correlation Heatmap

Correlation Heatmap/Pairplot

ANOVA- Average Michelin Star by Per Capita Income - Violinplot

ANOVA stands for Analysis Of Variance. It tests the differences between two or more means.

This chart compares the average regional Per Capita Income versus the Michelin Star Count.

The average PCI is higher for 3-star restaurants. The average PCI for 1-star restaurants is around \$75k, 2-star is around \$83k, and 3-star is nearly \$100k.

Average PCI increases as star count increases.

ANOVA Cont. - Boxplot

The average PCI is much higher for 3-star restaurants than for 1-and 2-star restaurants.

There are no outliers for PCI based on Michelin star count.

Conclusions

The region with the most Michelin Star restaurants is the United Kingdom. Approximately, 79% of Michelin Star restaurants are one star. Average price increases with star count and per capita income in the United States. Higher star count also correlates to higher restaurant price worldwide.

References

https://www.kaggle.com/jackywang529/michelin-restaurants?select=one-star-michelin-restaurants.csv

https://www.kaggle.com/lunamcbride24/michelin-star-exploration-classification https://www.kaggle.com/thomaskonstantin/michelin-restaurants-eda-missing-price-prediction

https://www.census.gov/data/developers/data-sets.html

https://guide.michelin.com/us/en/restaurants

Colors reference image - #C9002A, #0C0948, #EDF2E8

