Allman feedback.

Homework #4

Dummit and Foote Chapter 13 Selected Exercises

§13.5 #2 Find all irreducible polynomials of degree 1, 2, and 4 over \mathbb{F}_2 and prove that their product is $x^{16} - x$.

Solution: The only irreducible polynomials of degree 1 over \mathbb{F}_2 are the two linear polynomials x and x+1. Note that $x^2+1=x^2-1$ in $\mathbb{F}_2[x]$, and is therefore reducible. Clearly, x^2 is reducible, leaving x^2+x+1 as the only possible irreducible polynomial. By checking x=0 and x=1, we see that x^2+x+1 has no roots in \mathbb{F}_2 , and as it has degree less than or equal to 3, this means that x^2+x+1 is irreducible.

Let us consider polynomials of degree 4. If f(x) is a polynomial in $\mathbb{F}_2[x]$ with an even number of terms, then x=1 is a root, and f(x) is reducible. If f(x) is a reducible polynomial of degree 4 with no roots over \mathbb{F}_2 , then f must be the product of two irreducible quadratic polynomials. However, there is only one irreducible quadratic, so the only reducible polynomial of degree 4 with no roots is $(x^2+x+1)^2=x^4+x^2+1$. Thus, the irreducible polynomials of degree 4 over \mathbb{F}_2 are x^4+x^3+1 , x^4+x+1 , and $x^4+x^3+x^2+x+1$.

Finally, we multiply all these polynomials together, to see that

$$f(x) = (x)(x+1)(x^2+x+1)(x^4+x+1)(x^4+x^3+1)(x^4+x^3+x^2+x+1)$$

$$= (x^4+x)(x^4+x+1)(x^4+x^3+1)(x^4+x^3+x^2+x+1)$$

$$= (x^8+x^4+x^2+x)(x^8+x^4+x^2+x+1)$$

$$= x^{16}+x$$

$$= x^{16}-x$$

§13.5 #3 Prove that d divides n if and only if x^d-1 divides x^n-1 . [Note that if n=qd+r then $x^n-1=(x^{qd+r}-x^r)+(x^r-1)$.]

Proof. First, suppose $d \mid n$. Then n = qd for some $q \in \mathbb{Z}$. By dividing $x^{qd} - 1$ by $x^d - 1$ using polynomial long division, we see that

$$x^{qd} - 1 = (x^d - 1)(x^{qd-d} + x^{qd-2d} + \dots + x^d + 1), \quad \mathbf{v}$$

and as $x^{qd-d} + x^{qd-2d} + \cdots + x^d + 1$ is a polynomial with each monomial having coefficient 1, we have that $x^d - 1$ divides $x^n - 1$.

Next, suppose $x^{n} - 1$ divides $x^{n} - 1$. We know that by the division algorithm, there exist $r, q \in \mathbb{Z}^{\geq 0}$ such that n = qd + r with either r = 0 or r < d. Then

$$x^{n} - 1 = (x^{qd+r} - x^{r}) + (x^{r} - 1)$$

$$= x^{r}(x^{qd} - 1) + (x^{r} - 1)$$

$$= x^{r}(x^{d} - 1)(x^{qd-d} + x^{qd-2d} + \dots + x^{d} + 1) + (x^{r} - 1).$$

Because a polynomial ring is a UFD, and $x^d - 1$ divides $x^n - 1$ and $x^r(x^d - 1)$ $1)(x^{qd-d}+x^{qd-2d}+\cdots+x^d+1)$, we must have that x^d-1 divides x^r-1 . However, this is impossible for $r \neq 0$, as r < d. Thus, r = 0 and $d \mid n$.

§13.5 #4 Let a > 1 be an integer. Prove for any positive integers n, d that d divides nif and only if $a^d - 1$ divides $a^n - 1$ (cf. the previous exercise). Conclude in particular that $\mathbb{F}_{p^d} \subseteq \mathbb{F}_{p^n}$ if and only if d divides n.

> *Proof.* First, suppose that $d \mid n$. Then by the previous problem, $x^d - 1 \mid x^n - 1$. Letting x = a gives us the immediate result that $a^d - 1 \mid a^n - 1$.

> On the other hand, suppose $a^d - 1 | a^n - 1$. Then by the division algorithm, there exist $r, q \in \mathbb{Z}^{\geq 0}$ such that n = qd + r, where r = 0 or r < d. Then as in the previous exercise,

$$a^{n} - 1 = a^{r}(a^{d} - 1)(a^{qd-d} + a^{qd-2d} + \dots + a^{d} + 1) + (a^{r} - 1).$$

Observe that $a^{qd-d} + a^{qd-2d} + \cdots + a^d + 1$ is an integer. Because $\mathbb Z$ is a UFD and a^d-1 divides a^n-1 and $a^r(a^d-1)(a^{qd-d}+a^{qd-2d}+\cdots+a^d+1)$, we must have that $a^d - 1$ divides $a^r - 1$. However, because r < d and a > 1, we have that $a^r < a^d$, so $a^r - 1 < a^d - 1$, and if $r \neq 0$, we cannot have that $a^d - 1$ dividing $a^r - 1$. Thus, r = 0 and $d \mid n$.

Note that if we view the nonzero elements of \mathbb{F}_{p^d} as a multiplicative group, then as a finite multiplicative subgroup of a field, $\mathbb{F}_{n^d}^{\times}$ is cyclic. Moreover, it has p^d-1 elements, so every element of $\mathbb{F}_{p^d}^{\times}$ has multiplicative order dividing p^d-1 .

Suppose $d \mid n$. By the result above, $p^d - 1 \mid p^n - 1$. Choose $0 \neq \alpha \in \mathbb{F}_{p^d}$. Then

$$\alpha^{p^n} - \alpha = (\alpha^{p^n - 1} - 1)\alpha = (\alpha^{q(p^d - 1)} - 1)\alpha = (1^q - 1)\alpha = 0,$$

so as α is a root of $x^{p^n} - x$, $\alpha \in \mathbb{F}_{p^n}$, and as 0 is clearly in both fields, we have that $\mathbb{F}_{p^d} \subseteq \mathbb{F}_{p^n}$.

Next, suppose $d \nmid n$. Then $p^d - 1 \nmid p^n - 1$, so $p^n - 1 = q(p^d - 1) + r$, where $0 < r < p^d - 1$. Because $\mathbb{F}_{p^d}^{\times}$ is cyclic, there exists an element $\alpha \in \mathbb{F}_{p^d}^{\times}$ with multiplicative order exactly $p^d - 1$. Therefore,

$$\alpha^{p^n} - \alpha = (\alpha^{p^n - 1} - 1)\alpha = (\alpha^{q(p^d - 1) + r} - 1)\alpha = (\alpha^r - 1)\alpha.$$

Because r is less than the order of α , p^d-1 , we have that $\alpha^r-1\neq 0$. As $\alpha\neq 0$ and $\overline{\mathbb{F}_p}$ is an integral domain, $\alpha^{p^n} - \alpha \neq 0$, and $\alpha \notin \mathbb{F}_{p^n}$, so $\mathbb{F}_{p^d} \not\subseteq \mathbb{F}_{p^n}$.

Good.

§13.5 #6 Prove that $x^{p^n-1} - 1 = \prod_{\alpha \in \mathbb{F}_{p^n}^{\times}} (x - \alpha)$. Conclude that $\prod_{\alpha \in \mathbb{F}_{p^n}^{\times}} \alpha = (-1)^{p^n}$ so the product of the nonzero elements of a finite field is +1 if p = 2 and -1 is p is odd. For p odd and n = 1 derive Wilson's Theorem: $(p-1)! = -1 \mod p$.

Proof. Recall that \mathbb{F}_{p^n} is defined as the splitting field for the polynomial $x^{p^n} - x = (x^{p^n-1} - 1)x \in \mathbb{F}_p[x]$. Thus, the $p^n - 1$ non-zero elements of \mathbb{F}_{p^n} correspond to the $p^n - 1$ distinct roots of $x^{p^n-1} - 1$. Thus,

$$x^{p^n-1} - 1 = \prod_{\alpha \in \mathbb{F}_{p^n}^{\times}} (x - \alpha).$$

Plugging in x = 0 to the above equation, we obtain the relation

$$-1 = \prod_{\alpha \in \mathbb{F}_{p^n}^{\times}} (-\alpha) = (-1)^{p^n - 1} \prod_{\alpha \in \mathbb{F}_{p^n}^{\times}} \alpha,$$

so $\prod_{\alpha \in \mathbb{F}_{p^n}^{\times}} \alpha = (-1)^{p^n}$. Therefore, the product of all the nonzero elements of a finite field of order p^n is +1 if p=2 (since 2^n is even for any $n \neq 0$) and -1 if p is odd (as p^n is odd for any n).

Finally, we will derive Wilson's Theorem. Observe that the nonzero elements of the field \mathbb{F}_p are the numbers $1, 2, 3, \ldots, p-1$, so $\prod_{\alpha \in \mathbb{F}_p^{\times}} \alpha = (p-1)!$. However, as p is odd, we have that (p-1)! = -1 in the field \mathbb{F}_p , i.e., $(p-1)! \equiv -1 \mod p$.

§13.6 #1 Suppose m and n are relatively prime positive integers. Let ζ_m be a primitive m^{th} root of unity and let ζ_n be a primitive n^{th} root of unity. Prove that $\zeta_m \zeta_n$ is a primitive mn^{th} root of unity.

Proof. First, $(\zeta_m \zeta_n)^{mn} = \zeta_m^{mn} \zeta_n^{mn} = 1^n 1^m = 1$, so $\zeta_m \zeta_n$ is a mn^{th} root of unity. In the cyclic group μ_{mn} , the element ζ_m has order m and the element ζ_n has order n. Because m and n are relatively prime, the element $\zeta_m \zeta_n$ has order mn, and thus generates μ_{mn} . Therefore, $\zeta_m \zeta_n$ is a primitive mn^{th} root of unity. \square

13.6.2 Let γ_n be a primitive n^{th} root of unity and let d be a divisor of n. Prove that γ_n^d is a primitive $(n/d)^{\text{th}}$ root of unity.

Proof. Note that $(\gamma_n^d)^{\frac{n}{d}} = \gamma_n^n = 1$ so γ_n^d is a $\frac{n}{d}$ root of unity. Suppose then that there is a $0 < k < \frac{n}{d}$ such that $(\gamma_n^d)^k = 1$. Then n|dk but dk < n and thus γ_n^d is a primite $\frac{n}{d}$ -th root of unity.

13.6.3 Prove that if a field contains the n^{th} roots of unity for n odd then it also contains the $2n^{\text{th}}$ roots of unity.

Proof. Suppose F is a field contains the n^{th} roots of unity for n odd and suppose γ_{2n} is a 2n-th root of unity. Note that $\gamma_{2n}^{2n} = 1$ so $\gamma_{2n}^{2n} - 1 = (\gamma_{2n}^n)^2 - 1 = 0$ and γ_{2n}^n is a root of $x^2 - 1$. Since the roots of $x^2 - 1$ are ± 1 we see that either $\gamma_{2n}^n = 1$ and $\gamma_{2n} \in F$ or $\gamma_{2n}^n = -1$. In the case where $\gamma_{2n}^n = -1$ then $1 = \gamma_{2n}^{2n} = \gamma_{2n}^n \gamma_{2n}^n = (-1)^n \gamma_{2n}^n = (-\gamma_{2n})^n$ so $-\gamma_{2n} \in F$ and since F is a field, $\gamma_{2n} \in F$ as well. Thus if a field contains the n^{th} roots of unity for n odd then it also contains the $2n^{\text{th}}$ roots of unity.

13.6.5 Prove there are only a finite number of roots of unity in any finite extension K

Proof. Suppose K is a finite extension of \mathbb{Q} with degree d and assume for contradiction that K contains infinitely many roots of unity. Let S be the set of all $m \in \mathbb{Z}$ such that K contains a primitive m^{th} root of unity. Note that S must be infinite since for each m there are only finitely many m^{th} roots of unity (and every nonprimitive k^{th} root of unity is a primitive root of unity for some $l|k\rangle$. Let $n\in\mathbb{Z}$ such that $\phi(n)>d$ and note that since S is infinite, we may choose an $m \in S$ such that m > n. But then K contains the field extension L generated by a primitive m^{th} root which has degree $\phi(m)$ and this implies that the order of K is greater than $\phi(m)$ which is greater than d and we see a contradiction since the order of K was d. Thus there are only a finite number of roots of unity in any finite extension K of \mathbb{O} .

13.6.6 Prove that for n odd, n > 1, $\Phi_{2n}(x) = \Phi_n(-x)$.

Proof. By 13.6.1 if (n + m) = 1 then x = 1.

Proof. By 13.6.1, if (n, m) = 1 then $\gamma_n \gamma_n = \gamma_{nm}$. Then note that since n is odd, (2, n) = 1 and $\gamma_2 \gamma_n = \gamma_{2n}$? But $\gamma_2 = -1$ so $\gamma_2 \gamma_n = -\gamma_n$. But then $\gamma_{2n} = -\gamma_n$ Noting that $-\gamma_n$ is a root of $\Phi_n(-x)$, we see that $\Phi_{2n}(x)$ and γ_n $\Phi_n(-x)$ share their roots (since every root of $\Phi_{2n}(x)$ is a 2n-th root of unity) and thus $\Phi_{2n}(x) = \Phi_n(-x)$.

unity, but

13.6.10 Let ψ denote the Frobenius map $x \mapsto x^p$ on the finite field \mathbb{F}_{p^n} . Prove that ψ gives an isomorphism of \mathbb{F}_{p^n} to itself (such an isomorphism is called an automorphism). Prove that ψ^n is the identity map and no lower power of ψ is the identity.

it does not tell you which one

Proof. Let $a, b \in \mathbb{F}_{p^n}$ and note that $\psi(a+b) = (a+b)^p = a^p + b^p = \psi(a) + \psi(b)$ since \mathbb{F}_{p^n} has characteristic p. Further, $\psi(ab) = (ab)^p = a^p b^p = \psi(a)\psi(b)$ so we see that ψ is a ring homomorphism. Suppose for some x that $\psi(x) = 0$. Then $0 = x^p$ and since \mathbb{F}_{p^n} is a field, there are no zero divisors and x = 0. From this we see that the kernal is trivial and thus that this homomorphism is 1-1! Further, since \mathbb{F}_{p^n} is finite it follows that if ψ is 1-1 then ψ is also onto and we where

> 8mn is a primitive mn-The root of unity.

4

note that ψ is a bijection and thus an isomorphism from \mathbb{F}_{p^n} to \mathbb{F}_{p^n} . I.e., ψ is an automorphism.

Let $x \in \mathbb{F}_{p^n}^{\times}$ and note that $x^{p^n} = x$ (ref 13.5.6). It follows that $\psi^n(x) = (x^p)^n = x^{pn} = x$ so ψ^n is the identity map.

Suppose for contradition that there is a 0 < k < n such that ψ^k is the identity. Then $\psi^k(x) = (x^p)^k = x^{pk} = x$ so $x^{pk} - x = 0$ and every element of \mathbb{F}_{p^n} is a root of $x^{pk} - x$ so by 13.5.3 we see that n|k so $n \le k$ and n is the smallest integer such that ψ^n is the identity map.

for many