* HSD-AI-Newsletter-2025.09.03

Exploring AI, ML, and Generative Technologies in Heliophysics

Introduction: What Is AI, ML, and Generative AI?

Artificial Intelligence (AI) is the broad field of building smart machines. Machine Learning (ML) is a subset focused on training models to learn patterns from data. Large Language Models (LLMs) like GPT-5 or Claude Opus 4.1 are a recent type of generative AI, capable of producing human-like text, code, and analysis. How do these technologies intersect with heliophysics research? Let's explore.

Weekly Highlights

Thursday, August 28 at 1pm ET

Andrés Muñoz-Jaramillo (SwRI), Madhulika Guhathakurta (NASA HQ), Daniel da Silva (UMBC/671) and the Surya team

Introduction to Surya: A Foundation Model in Heliophysics

This talk introduced *Surya*, a NASA-funded foundation model built with Solar Dynamics Observatory data. Unlike traditional AI tools designed for single tasks, Surya was developed as a large, multi-purpose model that could be fine-tuned for diverse heliophysics applications—from space weather forecasting to data analysis. The presenters shared preliminary results, validation strategies, and their vision for enabling the community to leverage Surya for scientific discovery.

Surya Model Paper: Model details

Attribute	Details
Name & Origin	"Surya" (Sanskrit for Sun); developed by NASA & IBM + partners
Architecture & Size	Spatiotemporal transformer; ~360–366M parameters
Training Data	~9 years (≈200 TB) of SDO imagery across AIA & HMI instruments
Key Capabilities	Zero-shot forecasting; fine-tunable for flare prediction, segmentation, solar wind, EUV spectral modeling
Performance Gains	~16% better than prior methods; up to 2-hour lead time for flares

Attribute	Details
Outputs	High-resolution visual forecasts, digital twin simulations
Availability	Open source on <u>Hugging Face</u> , <u>GitHub</u> , TerraTorch + dataset (SuryaBench)
Broader Impacts	Empowers space-weather defense; sets a template for scientific models

Key Terms of the Week

Term	Definition
LLM	A Large Language Model trained on massive text datasets. Designed to generate text based on the most probable response to input.
Generative AI	Al that creates content—text, code, images, audio, etc.
Temperature	Controls randomness in text generation (lower = more predictable).
Context Window	How much text the model can consider at once (measured in tokens).
Prompt Engineering	The craft of structuring inputs to get the best model output.
Token:	A <i>token</i> is a chunk of text—typically a word, part of a word, or even punctuation—that a language model reads and processes.

ChatGSFC AI Models Overview

Model	Standard Use	Example Use Cases	Best Pick For
claude-4- sonnet	Strategic analysis, quantitative reasoning, planning	Long-form reports, scenario planning, policy briefs	Data-driven strategy & structured analysis
claude-4- thinking	Deep, multi-step reasoning and problem- solving	Research synthesis, theoretical exploration, troubleshooting	Deep analysis & complex reasoning
claude- 3.7- sonnet	Balanced general- purpose reasoning and writing	Drafting, brainstorming, technical explanations	Everyday balanced assistant
claude- 3.7- thinking	Detailed, nuanced analysis	Academic reviews, multi- perspective debates, problem decomposition	Careful, step-by- step reasoning

Model	Standard Use	Example Use Cases	Best Pick For
claude- 3.5- sonnet-v2	Creative + precise communication, enhanced reasoning	Proposals, technical docs, polished presentations	Clear technical + creative communication
claude- 3.5- sonnet	Reliable all-rounder for professional writing & workflows	Emails, summaries, structured workflows	Professional productivity
claude- 3.5-haiku	Concise, elegant creative outputs	Poetry, taglines, social posts, compact summaries	Creative brevity
o3-mini	Fast, lightweight responses	Routine Q&A, quick clarifications, simple instructions	Speed & cost efficiency
01	General-purpose efficiency	Notes, summaries, conversational tasks	Everyday reliability
gpt-4o	Versatile, advanced comprehension & reasoning	Complex projects, cross- domain analysis, creative problem-solving	Default all-round powerhouse
gpt-4o- mini	Faster, lighter 4o	Email drafting, brainstorming, quick summaries	Fast everyday helper
gpt-4.1	Cutting-edge reasoning, long context handling	Research reports, technical analysis, code reviews	Extended reasoning & long-context tasks
gpt-4.1- mini	Efficient with moderate complexity	Team workflows, recurring reports, mid- level content	Balanced efficiency
gpt-4.1- nano	Maximum speed & efficiency	Automations, embedded apps, lightweight pipelines	Embedded use & automation

Model Decision Matrix by Task Type

Task Type	Best Models	Why
Deep Analysis / Research	claude-4-thinking, claude-4-sonnet, gpt- 4.1	Handle multi-step reasoning, long contexts, and nuanced problem-solving
General Writing (emails, notes, docs)	claude-3.5-sonnet, claude-3.7-sonnet, gpt-4o-mini, o1	Reliable balance of clarity, speed, and cost efficiency

Task Type	Best Models	Why
Creative Writing (stories, poetry, brainstorming)	claude-3.5-haiku, claude-3.5-sonnet-v2, gpt-4o	Strong creative flair with precise or imaginative language
Technical / Coding Tasks	gpt-4.1, gpt-4o, claude-4-sonnet	Strongest for debugging, documentation, and long-form technical reasoning
Summarization (compact)	claude-3.5-haiku, o3- mini, gpt-4.1-mini	Quick, concise outputs optimized for brevity
Brainstorming / Ideation	claude-3.7-sonnet, claude-3.5-sonnet-v2, gpt-4o	Balance of creativity and structured reasoning
Routine Queries / Q&A	o3-mini, gpt-4o-mini, claude-3.5-sonnet	Fast, cost-effective, straightforward answers
Automation / Embedded Use	gpt-4.1-nano, o3-mini	Optimized for lightweight, high- speed integration

Mathematical Methods How to use this matrix:

- If you need depth & reasoning, lean on Claude-4 or GPT-4.1.
- If you need **creativity**, pick **Claude-3.5** (Haiku/Sonnet v2) or GPT-4o.
- If you need **speed**, use **mini/nano/o3-mini**.
- If you need an everyday assistant, use Claude-3.7 Sonnet or GPT-4o-mini.

Tips & Tricks

- Use System Prompts Wisely: Define the assistant's tone or role at the start.
- Chunk Long Inputs: Break text into smaller blocks to help with long documents.
- Try Multi-Step Prompts: Ask for step-by-step reasoning or summaries.
- Leverage LLMs for data cleaning and CSV parsing.
- Use system prompts for setting tone/role
- Chain multiple tasks into one prompt
- Use Temperature ~0.3 for factual work; ~0.7 for creative drafting
- Ask the model to explain code, fix bugs, or translate formats
- Test multiple models side-by-side for comparison

Common Uses in Heliophysics

- Literature summarization (e.g., from NASA ADS or arXiv)
- Experimental pipeline planning (e.g., solar flare prediction models)
- Zode explanation and refactoring for legacy Fortran/Python
- Metadata extraction from satellite or simulation datasets

Trafting reports, proposals, or code documentation

- Hallucinations: Always verify factual outputs from LLMs.
- Data Leakage: Don't share sensitive or proprietary data with public models.
- Model Bias: LLMs may reflect unintended social or scientific biases.
- Reproducibility: Outputs can vary across sessions—log your prompts and versions.

Resources

Internal GSFC/HSD Resources

- NASA Goddard Al Center of Excellence
- ChatGSFC
- Goddard Code Assistant

External Tools

- OpenAl Playground
- Anthropic Console
- Google Gemini
- HuggingFace Spaces

Think like a physicist. Prototype like a hacker. Document like a scientist.

Questions or tips to share?

Email <u>c.alex.young@nasa.gov</u>, <u>barbara.j.thompson@nasa.gov</u>, <u>christopher.bard@nasa.gov</u>