

Accelerating Metropolis-Hastings with Lightweight Inference Compilation

Feynman Liang¹, Nimar Arora², Nazanin Tehrani², Yucen Li², Michael Tingley², Erik Meijer²

¹UC Berkeley, ²Facebook

Summary

Accelerate lightweight Metropolis-Hastings [1] by using neural network approximations to Gibbs sampling distributions. Unlike prior work [2], lightweight inference compilation (LIC) leverages Markov blanket structure provided by its host probabilistic programming language (PPL) to inform its neural network architectures. As a result, LIC's proposers have less parameters, greater robustness to nuisance random variables, and improved posterior sampling in a Bayesian logistic regression and *n*-schools inference application

Intuition for inference compilation

Leverage generative sampling (i.e. running the probabilistic program) for amortized proposers $q(x;\phi(x,y))$

Figure 1:Generative samples $(x, y) \sim p(x, y)$ yield information about the posterior $p(x \mid y)$ for multiple values of y, enabling amortized inference

Presented at the 24th International Conference on Artificial Intelligence and Statistics (AISTATS) 2021, San Diego. Copyright 2021 by the author(s).

LIC's architecture and training

- Run probabilistic program forwards to generate n joint samples $(x,y) \sim p(x,y)$
- Minimize Monte-Carlo estimate of inclusive KL-divergence

$$\mathbb{E}_{y \sim p(y)} KL(p(x \mid y), q(x)) \approx \frac{1}{n} \sum_{i=1}^n \log \frac{p(x_i \mid y_i)}{q(x_i; \phi)} \propto \frac{1}{n} \sum_{i=1}^n \log \frac{p(x_i, y_i)}{q(x_i; \phi)}$$
Bayesian network for current world
$$\text{LIC network for } \mathbf{x}_1 \text{ proposer}$$

$$\text{node} = \mathbf{x}_1 \text{ and } \mathbf{x}_1 \text{ embedding net}$$

$$\mathbf{x}_1 \text{ embedding net}$$

$$\mathbf{x}_1 \text{ embedding net}$$

$$\mathbf{x}_2 \text{ embedding net}$$

$$\mathbf{x}_3 \text{ embedding net}$$

$$\mathbf{x}_4 \text{ embedding net}$$

$$\mathbf{x}_5 \text{ embedding net}$$

$$\mathbf{x}_7 \text{ embedding net}$$

$$\mathbf{x}_8 \text{ embedding net}$$

$$\mathbf{x}_9 \text{ embedding net}$$

Figure 2:LIC's architecture for a proposal distribution over latent x_i conditioned on y_i and with parent σ

Bayesian logistic regression and n-schools

Bayesian logistic regression (BLR)

$$\vec{\beta} \sim \mathcal{N}_{d+1}(\vec{0}_{d+1}, \operatorname{diag}(10, 2.5\vec{1}_d))$$

$$y_i \mid \vec{x}_i \stackrel{\text{iid}}{\sim} \operatorname{Bernoulli}(\sigma(\vec{\beta}^{\top}\vec{x}_i))$$

$$\sigma(t) = (1 + e^{-t})^{-1}$$

n-schools, a generalization of 8-schools [3] used for Bayesian meta-analysis at a large internet company

$$\beta_0 \sim \text{StudentT}(3, 0, 10)$$
 $\tau_i \sim \text{HalfCauchy}(\sigma_i) \quad \text{for } i \in [\text{district, state, type}]$
 $\beta_{i,j} \sim \mathcal{N}(0, \tau_i) \quad \text{for } i \in [\text{district, state, type}], j \in [n_i]$
 $y_k \sim \mathcal{N}(\beta_0 + \sum_i \beta_{i,j_k}, \sigma_k)$

Figure 3:Empirical results for Bayesian logistic regression (left) and n-schools (right), compile time (seconds, lower is better, only applicable to LIC and NUTS), inference time (seconds, lower is better), effective sample size (higher is better), and \hat{R} [4] (lower is better)

Robustness to nuisance parameters

A version of Program 1 from [5] illustrates LIC's improved robustness to nuisance parameters compared to [6]:

```
x = sample(Normal(0, 10))
for _ in range(100):
   nuisance = sample(Normal(0, 10))
y = sample(Normal(0, 10))
observe(obs**2,
   likelihood=Normal( x**2 + y**2, 0.1))
```

	# params	compile time	ESS
LIC	3,358	44 sec.	49.75
PyProb	21,952	472 sec.	10.99

References

- [1] Wingate et. al. Lightweight implementations of probabilistic programming languages via transformational compilation. In *AISTATS*, 2011.
- [2] Le et. al. Inference compilation and universal probabilistic programming. In *AISTATS*, 2017.
- [3] Rubin. Estimation in parallel randomized experiments. *Journal of Educational Statistics*, 1981.
- [4] Brooks et. al. General methods for monitoring convergence of iterative simulations. *Journal of computational and graphical statistics*, 1998.
- [5] Harvey et. al. Attention for inference compilation. arXiv preprint arXiv:1910.11961, 2019.
- [6] PyProb. https://github.com/pyprob/pyprob, 2020.

Acknowledgements

Feynman Liang is supported by a NPSC Graduate Fellowship. This work was done during an internship at Facebook.

Contact Information

- github.com/feynmanliang/lightweight-inference-compilation
- feynman@berkeley.edu