Aclaraciones sobre el uso de la resta en AR

Cuando usamos el patrón de diferencia, es importante determinar bien qué se resta. Veamos como ejemplo el ejercicio 16 de la relación 2:

• Entre los proyectos de Jaén, mostrar el que ha suministrado la pieza de mayor peso (puede haber más de uno).

Consideremos las siguientes instancias de pieza, proyecto y ventas:

CODPIE	NOMPIE	COLOR	PESO	CIUDAD
P1	Tornillo	Rojo	70	Granada
P2	Arandela	Gris	95	Madrid
Р3	Tuerca	Verde	20	Barcelona
P4	Tornillo	Gris	90	Madrid
P5	Alcayata	Gris	75	Granada
P6	Arandela	Negro	90	Granada

CODPJ	NOMPJ	CIUDAD
J1	Polaris I	Jaén
J2	Eureka	Madrid
J3	Mars	Jaén
J4	Alfa	Jaén

CODPRO	CODPIE	CODPJ	CANTIDAD
S1	Р3	J2	500
S1	P4	J1	300
S1	P5	J4	150
S2	P2	J2	200
S2	P5	J3	100
S2	P6	J1	300
S3	P1	J2	100
S3	P4	J4	200
S4	P1	J2	200
S4	P1	J3	180

Las piezas de mayor peso que aparecen en suministros de proyectos de Jaén (todos menos el J2), son la P4 y la P6, ambas con 90 de peso. La pieza P2 tiene un peso superior, pero no aparece en ventas relativas a proyectos de Jaén. La solución de la consulta, por lo tanto, son los proyectos J1 y J4.

Veamos cómo resolverla con AR.

Seleccionamos los proyectos de Jaén:

•
$$A = \pi_{codpj}(\sigma_{ciudad='Ja\acute{e}n'}(Proyecto))$$

CODPJ

J1

J3

J4

Reunimos con Ventas y la parte que nos interesa de Pieza, obteniendo ventas de proyectos de Jaén enriquecidas con el peso de la pieza correspondiente:

•
$$B = (Ventas \bowtie A) \bowtie \pi_{codpie, peso}(Pieza)$$

CODPRO	CODPIE	CODPJ	CANTIDAD	PESO
S1	P4	J1	300	90
S1	P5	J4	150	75
S2	P5	J3	100	75
S2	P6	J1	300	90
S3	P4	J4	200	90
S4	P1	J3	180	70

Proyectamos los datos que nos interesan:

•
$$C = \pi_{codpj, peso}(B)$$

CODPJ	PESO
J1	90
J3	70
J3	75
J4	75
J4	90

Hacemos el producto cartesiano de esa tabla por sí misma:

- D = C
- $E = C \times D$

С		D	
CODPJ	PESO	CODPJ	PESO
J1	90	J1	90
J1	90	J3	70
J1	90	J3	75
J1	90	J4	75
J1	90	J4	90
J3	70	J1	90
J3	70	J3	70
J3	70	J3	75
J3	70	J4	75
J3	70	J4	90
J3	75	J1	90
J3	75	J3	70
J3	75	J3	75
J3	75	J4	75
J3	75	J4	90
J4	75	J1	90
J4	75	J3	70
J4	75	J3	75
J4	75	J4	75
J4	75	J4	90
J4	90	J1	90
J4	90	J3	70
J4	90	J3	75
J4	90	J4	75
Ј4	90	J4	90

En rojo hemos resaltado las tuplas que nos aportan información relevante, por tener el peso de D mayor que el que viene de C. Nótese que esas tuplas no descartan al proyecto que viene de C, sino que descartan la pareja <codpj, peso> que viene de C. Las parejas en rojo, las hemos resaltado en otras tuplas con color morado. Para que un proyecto no salga en el resultado final, todas sus parejas <codpj, peso> deben estar en rojo (es lo que ocurre con el proyecto J3).

Filtramos con esa condición y proyectamos las parejas:

•
$$F = \pi_{C.codpj,C.peso}(\sigma_{C.peso < D.peso}(E))$$

CODPJ	PESO
J3	70
J3	75
J4	75

A todas las parejas <codpj, peso> (están en C) les quitamos las anteriores:

•
$$G = C - F$$

CODPJ	PESO
J1	90
J4	90

Finalmente, proyectamos el código del proyecto y tenemos la solución:

• Solución =
$$\pi_{codpj}(H)$$

CODPJ
---J1
J4

Si proyectamos antes de restar, el resultado no sería correcto (quitaríamos el J4):

•
$$F' = \pi_{C.codpj}(\sigma_{C.peso < D.peso}(E))$$

CODPJ ----J3 J4

• Solución incorrecta = $\pi_{codpj}(C) - F'$

CODPJ -----J1 Se obtiene un resultado correcto similar si mantenemos el código de la pieza en C y restamos parejas <codpj, codpie>, aunque manipulamos más tuplas:

Proyectamos los datos que nos interesan:

•
$$C' = \pi_{codpj, codpie, peso}(B)$$

CODPJ	CODPIE	PESO
J1	P4	90
J1	P6	90
J3	P1	70
J3	P5	75
J4	P4	90
J4	P5	75

Hacemos el producto cartesiano de esa tabla por sí misma:

- D' = C'
- $E' = C' \times D'$

C'			D'		
CODPJ	CODPIE	PESO	CODPJ	CODPIE	PESO
J1	P4	90	J1	P4	90
J1	P4	90	J1	P6	90
J1	P4	90	J3	P1	70
J1	P4	90	J3	P5	75
J1	P4	90	J4	P4	90
J1	P4	90	J4	P5	75
J1	P6	90	J1	P4	90
J1	P6	90	J1	P6	90
J1	P6	90	J3	P1	70
J1	P6	90	J3	P5	75
J1	P6	90	J4	P4	90
J1	P6	90	J4	P5	75
J3	P1	70	J1	P4	90
J3	P1	70	J1	P6	90
J3	P1	70	J3	P1	70
J3	P1	70	J3	P5	75
J3	P1	70	J4	P4	90
J3	P1	70	J4	P5	75
J3	P5	75	J1	P4	90

J3	P5	75	J1	P6	90
J3	P5	75	J3	P1	70
J3	P5	75	J3	P5	75
J3	P5	75	J4	P4	90
J3	P5	75	J4	P5	75
J4	P5	75	J1	P4	90
J4	P5	75	J1	P6	90
J4	P5	75	J3	P1	70
J4	P5	75	J3	P5	75
J4	P5	75	J4	P4	90
J4	P5	75	J4	P5	75
J4	P4	90	J1	P4	90
J4	P4	90	J1	P6	90
J4	P4	90	J3	P1	70
J4	P4	90	J3	P5	75
J4	P4	90	J4	P4	90
J4	P4	90	J4	P5	75

En rojo hemos resaltado las tuplas que nos aportan información relevante, por tener el peso de D mayor que el que viene de C. Esas tuplas descartan la pareja <codpj, codpie> (que hemos resaltado en morado en otras tuplas).

Filtramos con esa condición y proyectamos las parejas:

•
$$F'' = \pi_{C'.codpj,C'.codpie}(\sigma_{C'.peso < D'.peso}(E'))$$

CODPJ	CODPIE
J3	P1
J3	P5
J4	P5

Tomamos todas las parejas <codpj, codpie> (están en C'):

•
$$G' = \pi_{codpj,codpie}(C')$$

CODPJ	CODPIE
J1	P4
J1	P6
J3	P1
J3	P5
J4	P4
J4	P5

A todas las parejas, les quitamos las que no son de peso máximo:

•
$$H' = G' - F''$$

CODPJ CODPIE ----J1 P4 J1 P6 J4 P4

Finalmente, proyectamos el código del proyecto:

• Solución =
$$\pi_{codpj}(H')$$

```
CODPJ
----
J1
J4
```

Existen otras formas de resolver la consulta; aquí se ha querido ilustrar la importancia de determinar bien lo que se resta en este tipo de consultas con tres alternativas: dos que conducen a la solución correcta y una que no.

El ejercicio 11 de la relación 1 es parecido. Vehículos que han sufrido las reparaciones con la duración más alta. La siguiente expresión:

$$A = Repara$$

 $B = Repara$

```
\pi_{matricula}(Repara) \\ -\pi_{A.matricula}(\sigma_{A.n\'umero\_horas < B.n\'umero\_horas \land A.matricula <> B.matricula}(A \times B))
```

No conduce a una solución correcta. ¿Por qué? Descartaría vehículos por haber sufrido una reparación cuya duración sea inferior a la de otra reparación de otro vehículo (aunque en otra reparación sí tengan la duración más alta), y no es lo que interesa.

Sí lo haría, por ejemplo:

$$\pi_{matricula}(\pi_{matricula,n\'umero_horas}(Repara) \\ -\pi_{A.matricula,A.n\'umero_horas}(\sigma_{A.n\'umero_horas}(\sigma_{A.n\'umero_horas}(A\times B)))$$

En el ejercicio 15 de la relación 2, la expresión:

$$A = \sigma_{peso < 100}(Pieza)$$

$$B = A$$

$$\pi_{nompie}(A) - \pi_{A.nompie}(\sigma_{A.peso < B.peso}(A \times B))$$

no sería correcta. En este caso por utilizar el nombre de la pieza (que se puede repetir) y no el código para restar.