

Eine quadratische Drahtspule mit der Seitenlänge $d=456~\mathrm{cm}$ enthält N=457 Schleifen und befindet sich entsprechend der obigen Abbildung senkrecht zu einem homogenen Magnetfeld mit der Flussdichte $B=628~\mathrm{mT}$, wobei \vec{B} in die Darstellungsebene hinein zeigt. Die Spule wird schnell und gleichmässig nach rechts vollständig aus dem Feld heraus in einen Bereich gezogen, in dem B abrupt auf null fällt (die Bewegungsrichtung ist senkrecht zu \vec{B}). Zum Zeitpunkt t=0 befindet sich die rechte Seite der Spule am rechten Rand des Magnetfelds. Es dauert $\Delta t=1440~\mathrm{ms}$, bis sich die gesamte Spule im feldfreien Bereich befindet. Bestimmen Sie die absolute Änderungsrate $|\Delta\Phi/\Delta t|$ des Flusses.

 $|rac{\Delta\Phi}{\Delta t}|=$

Berechnen Sie nun die induzierte Spannung U_{ind} während des Herausziehens:

 $U_{\mathrm{ind}} =$

Bestimmen Sie auch die Stärke des induzierten Stroms $I_{
m ind}$ während des Herausziehens . Der Widerstand der Spule sein $R=499\,\Omega$.

 $I_{
m ind}$

Wie gross ist die in der Spule verbrauchte Energie W.

W =

Wie gross ist der Betrag der zum Herausziehen benötigte Kraft F?

F =

457 x(456×10-2)2x 628×10-3 = 4144.22 Wbs-1 PEND Uind = 4144.22V =8.305A $V^2 = (6599.08)^2$ 499

· |F|= 23.78N

Ein zu einem Rechteck gebogener Leiter L wird dem Bild entsprechend mit der Geschwindigkeit $v=rac{900\,\mathrm{mm}}{\mathrm{s}}$ senkrecht zu einem Magnetfeld der Flussdichte $B=200\,\mathrm{mT}$ bewegt. Der magnetische Fluss verteilt sich auf der Fläche eines gleichschenkligen Dreiecks mit der Grundlinie $a=4.3\,\mathrm{m}$ und der Höhe $h=3.1\,\mathrm{m}$.

