

ECE 5984 Model-Free Reinforcement Learning Temporal Difference Methods

Jason J. Xuan, Ph.D.

Department of Electrical & Computer Engineering
Virginia Tech

Temporal-Difference Learning

- TD methods learn directly from episodes of experience
- TD is *model-free*: no knowledge of MDP transitions / rewards
- TD learns from *incomplete* episodes, by *bootstrapping*
- TD updates a guess towards a guess

MC and TD

- Goal: learn v_{π} online from experience under policy π
- Incremental every-visit Monte-Carlo
 - Update value $V(S_t)$ toward actual return G_t

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$$

- Simplest temporal-difference learning algorithm: TD(0)
 - Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

- $Arr R_{t+1} + \gamma V(S_{t+1})$ is called the *TD target*
- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ is called the *TD error*

Example: Driving Home

Elapsed Time (minutes)	Predicted Time to Go	Predicted Total Time
0	30	30
5	35	40
20	15	35
30	10	40
40	3	43
43	0	43
	(minutes) 0 5 20 30 40	(minutes) Time to Go 0 30 5 35 20 15 30 10 40 3

Driving Home: MC vs TD

Changes recommended by Monte Carlo methods (α =1)

Changes recommended by TD methods (α =1)

Pros and Cons: MC vs TD

- TD can learn *before* knowing the final outcome
 - TD can learn online after every step
 - MC must wait until end of episode before return is known
- TD can learn without the final outcome
 - TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

Bias-Variance Tradeoff

- Return $G_t = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-1} R_T$ is unbiased estimate of $v_{\pi}(S_t)$
- True TD target $R_{t+1} + \gamma v_{\pi}(S_{t+1})$ is unbiased estimate of $v_{\pi}(S_t)$
- TD target $R_{t+1} + \gamma V(S_{t+1})$ is biased estimate of $v_{\pi}(S_t)$
- TD target is much lower variance than the return:
 - Return depends on *many* random actions, transitions, rewards
 - TD target depends on *one* random action, transition, reward

Bias-Variance Tradeoff (cont'd)

- MC has high variance, zero bias
 - Good convergence properties
 - Not very sensitive to initial value
 - Very simple to understand and use
- TD has low variance, some bias
 - Usually more efficient than MC
 - TD(0) converges to $v_{\pi}(s)$
 - More sensitive to initial value

Example: Random Walk

- All episodes start in the center state C
- proceed either left or right by one state on each step, with equal probability
- Episodes terminate either on the extreme left or the extreme right.
- When an episode terminates on the right a reward of 1 occurs; all other rewards are zero.
- Because this task is undiscounted and episodic, the true value of each state is the probability of terminating on the right if starting from that state.
- The true values of all the states, A through E, are 1/6, 2/6, 3/6, 4/6, 5/6

Example: Random Walk (cont'd)

Random Walk: MC vs TD

Certainty Equivalence

- MC converges to solution with minimum mean-squared error
 - Best fit to the observed returns

$$\sum_{k=1}^K \sum_{t=1}^{T_k} \left(G_t^k - V(s_t^k) \right)^2$$

- TD(0) converges to solution of max likelihood Markov model
 - Solution to the MDP $\langle \mathcal{S}, \mathcal{A}, \hat{\mathcal{P}}, \hat{\mathcal{R}}, \gamma \rangle$ that best fits the data

$$\hat{\mathcal{P}}_{s,s'}^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1}(s_t^k, a_t^k, s_{t+1}^k = s, a, s')$$

$$\hat{\mathcal{R}}_{s}^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_{k}} \mathbf{1}(s_{t}^{k}, a_{t}^{k} = s, a) r_{t}^{k}$$

Pros and Cons: MC and TD

- TD exploits Markov property
 - Usually more efficient in Markov environments
- MC does not exploit Markov property
 - Usually more effective in non-Markov environments

Monte-Carlo Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$$

TD backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

Dynamic Programming Backup

Bootstrapping and Sampling

- Bootstrapping: update involves an estimate
 - MC does not bootstrap
 - DP bootstraps
 - TD bootstraps
- Sampling: update samples an expectation
 - MC samples
 - DP does not sample
 - TD samples

Unified View of Reinforcement Learning

n-Step Prediction

■ Let TD target look *n* steps into the future

n-Step Return

■ Consider the following *n*-step returns for $n = 1, 2, \infty$:

$$n = 1 (TD) G_{t}^{(1)} = R_{t+1} + \gamma V(S_{t+1})$$

$$n = 2 G_{t}^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} V(S_{t+2})$$

$$\vdots \vdots$$

$$n = \infty (MC) G_{t}^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_{T}$$

■ Define the *n*-step return

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

n-step temporal-difference learning

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(n)} - V(S_t)\right)$$

Averaging n-Step Returns

- We can average n-step returns over different n
- e.g. average the 2-step and 4-step returns

$$\frac{1}{2}G^{(2)} + \frac{1}{2}G^{(4)}$$

- Combines information from two different time-steps
- Can we efficiently combine information from all time-steps?

λ-return

- The λ -return G_t^{λ} combines all n-step returns $G_t^{(n)}$
- Using weight $(1 \lambda)\lambda^{n-1}$

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

Forward-view $TD(\lambda)$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\lambda} - V(S_t)\right)$$

TD(λ) Weighting Function

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

Question

Comments are more than welcome!