Introduction to Cryptography By Vipul Goyal

Digital vs Physical Money

- Bitcoin: purely digital currency
- But wait: don't we already have electronic banking?
 - Can transfer money online
 - Electronic payments using credit cards
- These systems are still tied to physical govt issued money
 - Can withdraw in physical format
 - If banks or govt wants, it can freeze your accounts

Bitcoin

- Bitcoin: first truly decentralized currency
 - No trusted party, no government control
- Researchers had been trying since 1990s, however all attempts failed to take off
- In 2008: an unknown guy (or girl?) comes along: Satoshi
 Nakamoto
- Whitepaper and code posted on Cyberpunks mailing list in 2008

Bitcoin Beginning

- Mining started in Jan 2009
- First real world transaction made using Bitcoin: sometime in mid-2010
 - A guy paid 10,000 Bitcoins to his friend to order him a Pizza
 - Probably world's most expensive pizza: ~100 million dollars
- Started taking off mainly as a currency for hacker, online criminal and so on. Bad name.
 - Anonymity and lack of govt control
- Ransomware in 2014: CryptoLocker. Millions extorted.
- Today situation has changed entirely: major tech companies and banks are investing in cryptocurrencies

Creating Digital Currency using Digital Signatures

- Say Alice wants to transfer money to Bob (say everyone knows Alice has 50 coins)
- Alice and Bob will each have a public key (verification key of a digital signature scheme)
- Alice can send a digital signed statement "I, Alice, transfer 50 coins to Bob"

Creating Digital Currency contd...

- Bob can then take this signed statement to anyone as a proof that Alice's coin are now his
- Bob can spend these coins further using digital signatures again

This process can continue

Double Spending Attacks

 Say Alice only has 50 dollars, but sends 50 to Bob and 50 to Charlie. What happens then?

Solution: Public Append only Public Ledger

- Public Ledger: public file which contains all transactions which ever took place
- Can only add entries, can never erase entries (append only)
- Anybody in the world can view this file (public) and check all records
- Say at any given point, Alice has 50 coins and Bob has 10.
 - Balance of each party can be computed from the transaction history

Money Transfer w/ Public Ledger

 Alice can publicly broadcast a digital signed statement "I, Alice, transfer 50 coins to Bob"

 This statement is added to the public ledger after verifying digital signature + verifying that Alice has 50 coins

Preventing Double Spending

 One of the two transactions will be first. It will be added. For the 2nd one: Alice will not have sufficient balance

Getting Started with Bitcoin

- Download software to create a Bitcoin wallet (see https://bitcoin.org/en/choose-your-wallet)
- The software creates public/private key pairs for you as needed.
- The wallet holds the private keys you use for digital signatures. Your public key = your bitcoin address.
- The wallet also contains software that allows you to send and receive bitcoins. Again: by process of digital signing.

Bitcoin Core Wallet (on first setup)

Send Money

Some Key Questions

- Who maintains the public ledger?
- Answer: everyone maintains it? But what about disagreements?
 - For example: one party says "Alice to Bob" transaction was first and should go into ledger. "Alice to Charlie" should be rejected
 - Other party might say "Alice to Charlie" was first and should be added, other rejected.
- Answer: disagreements are resolved using a type of "voting" or consensus algorithms. Several types:
 - Proof of work based voting: number of votes you have is proportional to your computing power
 - Proof of stake based voting: number of votes you have is proportional to the number of coins you have

Some Key Questions

- Coin transfer is fine. But how are the coins created in the first place?
- Public ledger is written 1 "blocks" at a time (or 1 page at time)
- There is a competition to write to the public ledger
- Whoever wins the competition: writes next block. Some new coins are created and given to that miner as a reward
- These coins can then be transfer by this party to anyone else.

Cryptographic Hash Functions

- Similar to one-way functions we studied earlier
- Intuition: a hash function H, on any input, gives a "random" output

$$X \longrightarrow H(x) = random$$

- Hard to find any pattern in the output
- If the output is random => output hides the input (one-way functions). Example: SHA-256.
 - Note that this is different from encryption: no keys, no decryption process

A Cryptographic Puzzle

You are given some string a, you need to find b s.t.

$$a \mid \mid b$$
 \longrightarrow 00 (20 times) 0^{****}

- That is: find b such that Hash output has 20 0's (followed by other values). || denotes concatenation.
- Now H(a||b) = random. Hence, for any b, probability of this happening = 2⁻²⁰
 - Hence, to solve it, you need to hash many times with different values of b (approx. 2²⁰ hash evaluations)

Bitcoin Mining

- For simplicity: assume a single miner with public key PK
- Genesis Block B₀ = "The Times 03/Jan/2009. Chancellor on brink of second bailout for banks"
- For mining block i
 - First collect the list of transaction to be written: t_i
 - Let previous block be B_{i-1}
 - Compute any number (nonce) r
 H(B_{i-1} || t_i || PK || r) = 0000 (k times) 0********
 - Now $B_i = H(B_{i-1} || t_i || PK || r)$
- New Bitcoins are created and given as reward to public key PK

Picture

- New block is created by hashing the previous block along with: transactions, public key and a nonce
- Hash output should have several 0's, hence computing it takes time

Multiple Miners

- Every miner tries to mine the new block: a race
- Think: many different miners trying many different values of r to get a hash output with several 0's
- Whoever succeeds first gets the reward
- Specialized mining hardware to do hashing quickly

Forking

 A fork can occur when two miners publish blocks simultaneously. Such blocks are in conflict. (they may have different transactions, different nonce, etc)

Problem: two different version of our public ledger

Forking Resolution

 Since it's a random process, one fork eventually becomes longer than the other one. The longer fork wins.

Forking Resolution

- It takes time to resolve conflicts. One of the forks is discarded with time.
- Effort spend on the smaller fork is wasted. All transaction in that fork are erased.

Transaction Confirmation

- A transaction is said to have received k confirmations if it has been published in a block that has been added to the blockchain, and k-1 more blocks have also been added.
- A transactions is typically considered "confirmed" once it has 6 confirmations.
 - This is to make sure its not erased because of some other fork becoming longer
- Newly minted Bitcoins are typically considered confirmed once they have received 100 confirmations. In practice: every merchant will accept them far sooner.

51 Percent Attack

- Say you have more computing power than all other miners combined.
- Take the discarded (pink) fork and keep extending it
- Since you can hash faster, it becomes the longest
- All transactions in green fork are erased!

Bitcoin Exchanges

- Use your US dollars or some other currency to buy Bitcoin from someone else
- Exchange is a trusted party which facilities this process
 - It will hold your dollars until the other party transfers their coin to you. Optional to use exchanges but simplifies the process.

Physical Bitcoin?

http://media.coindesk.com/2014/09/casascius-coins.jpg

- private key is embedded in coin and can be accessed (possibly electronically) only by physically breaking the coin
- trust creator to destroy any record of private key
- Having the physical coin = having the private key

Ongoing Research in Bitcoin/Blockchains

Some Burning Questions

- Scalability
- Usability
- Anonymity

. . .

Scalability / Speed

- Block size in Bitcoin = 1 MB. Can handle ~10 transactions per min
- Visa network: 5000 transactions per minute
- Further: transaction take up to 1 hour to "confirm"
- Can we do better? Many systems under development, many start-up companies.

Usability

Lost key?

Man accidentally threw away \$127 million in bitcoin and officials won't allow a search

Shawn M. Carter I @shawncarterm | 12:30 PM ET Wed, 20 Dec 2017

Sam Hodgson | Bloomberg | Getty Images

https://www.cnbc.com/2017/12/20/man-lost-127-million-worth-of-bitcoins-and-city-wont-let-him-look.html#

Usability

Stolen Key?

- Mt. Gox incident: \$450 million stolen
- Coincheck: \$530 million stolen
- DAO hack: \$50 million stolen, Ethereum hard fork
- Parity Technologies: \$421 million deleted
 - Earlier: \$123 million

Anonymity

- While you are doing transactions, people only see your public key (address), not your real identity
- As such, nobody knows who you are: government, banks, or even the party who performs transactions with you
- However based on transactions patterns: one may derive information. For example,
 - Suppose everyone knows Alice and Bob are friends.
 - Suppose know Bob's public key
 - They say another public key running a lot of transactions with Bob => must be Alice
- System with near perfect anonymity: Zcash
 - Relies on zero-knowledge proofs

