BSCMA1001: Activity Questions Week-12 Graphs

Contents

1	Lecture-12.1	2
2	Lecture-12.2	2
3	Lecture-12.3	3
4	Lecture-12.4	5
5	Lecture-12.5	10
6	Lecture-12.6	14
7	Lecture-12.7	17

- 1. Which of the following statements is (are) correct?
 - O If a graph has a negative cycle, shortest paths are not defined.
 - A negative cycle is one which has only negative edge weights.
 - O In a weighted graph, the adjacency matrix records the weight where ever there is an edge and 0 if there is no edge.
 - Shortest path in a weighted graph need not be minimum in terms of number of edges.

2 Lecture-12.2

Use the following information for questions 1, 2 and 3.

The Ministry of Earth Sciences (MoES) gave flood warning to the cities A, B, C, D, E, F and G which are very near to the foothills of Himalaya. At time 0 minutes, city B was completely flooded. In the graph (Figure AQ-12.1), vertices represent cities and edges represent how cities are connected.

Note: The weight of each edge indicates the time in minutes by which water reaches different cities.

Figure AQ-12.1

- 1. At what time, will city G start flooding?
 - 8 min
 - () 15 min
 - \bigcirc 14 min
 - \bigcirc 6 min
- 2. What is the shortest path to reach city D from the source of flood (B)?
 - $\bigcirc B \longrightarrow A \longrightarrow D.$

- $\bigcirc B \longrightarrow C \longrightarrow A \longrightarrow F \longrightarrow D.$
- $\bigcirc B \longrightarrow C \longrightarrow A \longrightarrow D.$
- $\bigcirc B \longrightarrow A \longrightarrow F \longrightarrow D.$
- 3. At what time will all the cities be flooded?
 - 15 min
 - 14 min
 - \bigcirc 8 min
 - 9 min

Use the following information for questions 1, and 2.

While using Bellman-Ford Algorithm for the graph shown below, let D(v) be the shortest distance of vertex v from the source vertex after 7 iterations.

Figure AQ-12.2

- 1. Suppose the source vertex is 0. Which of the following options is (are) correct?
 - $\bigcirc D(5) = D(6) = 1$
 - \bigcirc D(3) = 5
 - \bigcirc D(4) = 2
 - $\bigcirc D(4) = 5$

- 2. If the source vertex is changed from vertex 0 to vertex 4, then which of the following options is (are) correct?
 - O Bellman-Ford algorithm stabilizes after the first iteration.
 - O Bellman-Ford algorithm will not be applicable.
 - \bigcirc D(v) is finite for some vertex v other than the source vertex.
 - O None of the above.
- 3. For what values of x can we use the Bellman-Ford algorithm to find the shortest path from a source vertex 0 to every other vertex in the graph given below?

Figure AQ-12.3

- \bigcirc (-6,\infty)
- \bigcirc (-14, ∞)
- \bigcirc (-7, ∞)
- \bigcirc (-21, ∞)

- 1. Which of the following is (are) matched correctly?
 - (a) For transitive closure Warshall algorithm.
 - (b) For all pair shortest path Floyd-Warshall algorithm.
 - (c) For single source shortest distance for non-negative edge weights Dijkstra's algorithm.
 - (d) For single source shortest distance for negative or non-negative edge weights Bellman-Ford algorithm.

Use the graph (Figure AQ-12.4) for questions 2, 3, 4 and 5. (Hint: Use Floyd-Warshall Algorithm.)

Figure AQ-12.4

2. Which of the following matrices represents SP^0 ? Ans: option(b)

SP^0	0	1	2	3	4
0	∞	1	∞	∞	∞
1	∞	∞	∞	2	-1
2	-4	3	∞	∞	∞
3	∞	∞	-4	∞	∞
4	∞	∞	4	3	∞

(a)

SP^0	0	1	2	3	4
0	∞	1	∞	∞	∞
1	∞	∞	∞	2	-1
2	-4	3	∞	∞	∞
3	∞	∞	∞	∞	∞
4	∞	∞	4	3	∞

(b)

SP^0	0	1	2	3	1
DI	U	1		0	4
0	∞	∞	-4	∞	∞
1	1	∞	3	∞	∞
2	∞	∞	∞	∞	4
3	∞	2	∞	∞	3
4	∞	-1	∞	∞	∞

(c)

SP^0	0	1	2	3	4
0	∞	1	∞	∞	∞
1	∞	∞	∞	2	-1
2	-4	3	∞	∞	∞
3	∞	∞	∞	∞	∞
4	∞	∞	3	4	∞

3. Which of the following matrices represents SP^3 ? Ans: option(a)

SP^3	0	1	2	3	4
0	∞	1	∞	3	0
1	∞	∞	∞	2	-1
2	-4	-3	∞	-1	-4
3	∞	∞	∞	∞	∞
4	0	1	4	3	0

(a)

SP^3	0	1	2	3	4
0	∞	1	∞	∞	∞
1	∞	∞	∞	2	-1
2	-4	-3	∞	-1	-4
3	∞	∞	∞	∞	∞
4	∞	1	4	3	∞

(b)

SP^3	0	1	2	3	4
0	∞	1	∞	∞	∞
1	∞	∞	∞	2	-1
2	-4	-3	∞	-1	-4
3	∞	∞	∞	∞	∞
4	0	1	4	3	∞

(c)

SP^3	0	1	2	3	4
0	∞	1	∞	∞	∞
1	∞	∞	∞	2	-1
2	-4	-3	∞	∞	-4
3	∞	∞	∞	∞	∞
4	∞	1	4	3	0

4. Which of the following matrices represents SP^5 ? Ans: option(c)

SP^5	0	1	2	4	3
0	0	1	4	3	0
1	-1	0	3	2	-1
2	-4	-3	0	-1	-4
3	∞	∞	-4	∞	∞
4	0	1	4	3	0

(a)

SP^5	0	1	2	3	4
0	0	1	4	3	0
1	-1	0	3	2	-1
2	-4	-3	0	-1	-4
3	∞	∞	-4	∞	∞
4	0	1	4	3	0

(b)

SP^5	0	1	2	3	4
0	0	1	4	3	0
1	-1	0	3	2	-1
2	-4	-3	0	-1	-4
3	∞	∞	∞	∞	∞
4	0	1	4	3	0

(c)

SP^5	0	1	2	3	4
0	0	1	4	3	0
1	∞	∞	∞	2	-1
2	-4	3	∞	∞	∞
3	∞	∞	∞	∞	∞
4	∞	∞	3	4	∞

- 5. If $SP^i=SP^j$, for some $i,j\in\{0,1,2...5\}$, then which of the following may be the values of i and j?
 - (a) i = 4 and j = 3
 - (b) i = 3 and j = 4
 - (c) i = 2 and j = 3
 - (d) i = 3 and j = 2

- 1. Which of the following is (are) correct with respect to the spanning tree G?
 - (a) G is connected.
 - (b) G is acyclic.
 - (c) G has n edges.
 - (d) Among the different spanning trees, one with minimum cost is minimum cost spanning tree.

Use the graph (Figure AQ-12.5) for questions 2 and 3.

Figure AQ-12.5

2. Which of the following graphs is not a spanning tree of the graph given in Figure AQ-12.5? [Option: c]

(a)

(b)

(c)

(d)

3. How many spanning trees are possible for the graph shown in Figure AQ-12.5? Answer: 16

4. Suppose the graph shown in Figure AQ-12.6 is a spanning tree of a graph G.

Figure AQ-12.6

Which of the following graphs may represent G?

[option: d]

(a)

(b)

(c)

Use the following information for questions 1, 2 and 3: An undirected weighted graph G is given in Figure AQ-12.7.

Figure AQ-12.7

1. If we perform Prim's algorithm on G, then which of the following options may represent a minimum cost spanning tree? [Options: a,d]

(a)

(b)

(c)

- 2. Which of the following is the order in which edges are added to the minimum cost spanning tree? [Option: a]
 - (a) (e, f), (a, e), (e, d), (b, d), (b, c)
 - (b) (e, f), (b, d), (a, e), (a, b), (b, c)
 - (c) (e, f), (a, e), (b, d), (e, d), (b, c)

(d)
$$(e, f), (e, d), (b, d), (a, b), (b, c)$$

3. What is the weight of the minimum cost spanning tree? [answer: -9]

Use the following information for questions 1, 2 and 3: An undirected weighted graph G is given in Figure AQ-12.8.

Figure AQ-12.8

1. If we perform Kruskal's algorithm on G (Figure AQ-12.8), then which of the following options may represent the minimum cost spanning tree? [option: b]

(a)

(b)

(c)

- 2. Which of the following options is (are) correct w.r.t the graph G (Figure AQ-12.8)? [Options: a,c,d]
 - (a) The minimum cost spanning tree of the graph G is unique.
 - (b) There can be more than one minimum cost spanning tree of the graph G because there are some edges with equal weights.
 - (c) The weight of the minimum cost spanning tree of the graph G is 18.
 - (d) The order in which the edges are added to the minimum cost spanning tree is not unique.
- 3. Find the number of edges that are removed from the graph G (Figure AQ-12.8) to obtain the minimum cost spanning tree. [Answer: 4]
- 4. Suppose Prim's algorithm and Kruskal's algorithm are performed on a graph G separately to find the minimum cost spanning tree. Which of the following options will always be same for both the algorithms? [Options: a,c,d]
 - (a) The weight of the minimum cost spanning tree of the graph G.
 - (b) The order in which the edges are added to the minimum cost spanning tree.
 - (c) Number of edges in the minimum cost spanning tree.
 - (d) The minimum weight edge in the minimum cost spanning tree.