

MultiMedia Systems Laboratory

CHAPTER 3

Functions(ch5)

· Functions是模組化的一大特色,將一個大的應用程式切割為數Functions(副程式或函式),每個Function都有特定的功能。

- · Functions(函式與副程式)的特性
 - 將程式結構化(structure)
 - 使程式碼更容易閱讀
 - 將程式碼模組化(module)與物件化(object)
 - 提高程式碼重複使用率
 - 將程式碼抽象化 (abstraction)
 - 設計師只需知道如何使用程式碼,不需要知道程式內容,可快速完成程式
 - 提高程式設計效率, 容易設計、維修、 擴充、交流

- · 將一個大的主程式切割為數Functions,當主程式呼叫Functions時
 - Step 1: 程式的控制權將會轉移到相對應的函式開頭處,然後執行函式中的程式碼
 - Step 2: 函式的程式碼執行完畢後,程式控制權將重新回到主程式碼 (呼叫敘述)的下一個敘述,繼續往下執行
 - 這之間的控制權轉換必須記憶下一個敘述在記憶體中的位址,而編譯器在編譯函式呼叫時,會以系統堆疊來存放該位址,程式設計師不用為此特別撰寫程式碼。

- 在C語言中,呼叫函式的語法如下
 - 語法1(函式無回傳值):

函式名稱(傳入引數串列);

void compute_area(float r ,float pi)

- 語法2(函式有回傳值):

變數=函式名稱(傳入引數串列);

float compute_area(float | r | ,float | pi |)

int compute_area(float | r | ,float | pi |)

· Functions(函式與副程式)的宣告語法如下:

```
函式回傳值型態 函式名稱(資料型態[參數1],資料型態[參數2],.....);
```

- Fx: int square(int y);
 - · 輸入整數y 透過square副程式運算,得到函式輸出結果為整數
- Functions(函式與副程式)經過宣告後,代表編譯器得知該程式中存在一個這樣的函式,如果我們是使用使用者自訂的模組函式,我們必須再定義函式的內容(也就是該函式要執行的程式碼),如此才能成為程式中一個完整可用的函式。

- · 函式呼叫者(Calling Program)必須與函式(Called Program)名稱相同,但兩者之引數與參數名稱可以不同。
- · 若呼叫者(Calling Program)有資料要傳遞給被呼叫者(Called Program),則必須藉由傳入引數串列將資料傳遞給函式的參數,並且『傳入引數串列』的傳入變數會由『函式定義的參數串列』的相對參數來接收,其順序、個數必須相同,但引數名稱可以與參數名稱不同。如下圖示意:

7

· Functions(函式與副程式)宣告範例

宣告函式範例	解說
void func1();	func1函式無回傳值,呼叫時也不必輸入引數。
float func2(int a);	func2函式的回傳值為float資料型態,並且呼叫時需要一個整數
	型態的輸入引數。
int func3(int a,char b);	func3函式的回傳值為int資料型態,並且呼叫時需要有兩個輸入
	引數,分別傳送給整數型態的a,和字元型態的b。
int func4(int,char);	同func3,但省略宣告參數名稱(參數資料型態不可省略)。

- 參數在函式主體內屬於合法的資料變數,也就是說,我們不用在函式主體內重複宣告這些 參數,就可以直接將這些參數當作已宣告的變數使用。
- 具有回傳值的函式,在函式主體內應該包含至少一個return敘述,以便傳回資料。不具回傳 值的函式則可以沒有return敘述

函式定義範例	解說
void ShowWelcome(int print_times)	(1)您可以在函式主體內使用參數print_times。
{	(2)函式無回傳值。//沒有 return
int a;	
for(a=1;a<=print_times;a++)	
printf("您好,歡迎光臨\n");	
}	

· 使用者自訂的模組函式 (function)宣告範例

函式定義範例	解說
int Mul(int a,int b)	(1)您可以在函式主體內使用參數a,b。
{	(2)函式回傳值的資料型態為int。
int result;	(3)使用return回傳資料,result為Mul函式的回傳值。
result = a*b;	(4)return敘述執行完畢,控制權將立刻返回原呼叫函式的下
return result;	一個敘述。
}	
double Add(double a,double b)	(1)您可以在函式主體內使用參數a,b。
{	(2)函式回傳值的資料型態為double。
return (a+b);	(3)使用return回傳資料,(a+b)運算式的結果為Add函式的回
}	傳值。
	(4)執行完畢return敘述,控制權將立刻返回原呼叫函式的下
	一個敘述。

• [正確] 函式P可計算x2+2x+1, 其中x屬於整數。

• [正確]函式Q可計算x2y+2z,其中x,y,z屬於浮點數。

• [錯誤] 在R函式宣告中,已經宣告該函式無回傳值(void),但在R函式定義中卻指定為整數回傳值型態(int),因此,編譯器會找不到符合宣告格式的函式定義,而發生錯誤。

NTUT MMS LAB

MMS Lab

- · Functions(函式與副程式)主要有兩種
 - 1. 使用者自訂的模組函式 (function)
 - 2. C標準函式庫 (C standard library) 事先寫好的函式程式
 - ,C標準函式庫提供了包羅萬象的函式,包括以下幾類
 - 輸入/輸出(#include<stdio.h>):printf, scanf
 - 數學運算(#include<math.h>): sqrt(x), log(x)
 - 字串處理
 - 字元處理
 - 以及許多其他有用的功能
 - http://www.cplusplus.com/reference/clibrary/

MMS Lab

- · 使用者自訂的模組函式 (function)
- 問題: 設計平方副程式
 - int square(int y);
 - 輸入整數**y**
 - · 透過square副程式運算
 - · 得到輸出結果為整數×

```
■ D:\HD\test_C\ch3-10\Debug\ch3-10.exe

1 4 9 16 25 36 49 64 81 100
請按任意,鍵繼續 - - -
```

```
∃#include <stdio.h>
     #include <stdlib.h>
     int square(int y);
   ∃int main(void)
         int x;
10
         for(x=1; x \le 10; x++)
11
             printf("%d ",square(x));
12
13
         printf("\n");
14
15
         system("pause");
16
         return 0;
17
18
19 ∃int square(int y)
20
21
         return y*y;
22
```


- · 使用者自訂的模組函式 (function)
- 問題:計算x的n次方, double Power (double x ,int n);

```
1 ∃#include <stdio.h>
     #include <stdlib.h>
 3
 4
     double Power(double, int);
   ∃void main(void)
 6
      {
 7
          int k; double Ans;
 8 9
          printf("計算3.5的k次方?請輸入k=");
          scanf("%d",&k); Ans=Power(3.5,k);
10
          printf("3.5的%d次方=%f\n",k,Ans);
11
          system("pause");
12
13
   ⊟double Power(double X,int n)
15
16
         int i; double PowerXn=1;
17
         for(i=1;i<=n;i++)
18
            PowerXn=PowerXn*X:
19
         return PowerXn;
20
```

執行結果

```
■ C:\Users\Andy\Desktop\ch3-11.exe
計算3.5的k次方?請輸入k=5
3.5的5次方=525.218750
請按任意鍵繼續 - - - ■
```

```
Ex: k=5
Power(3.5, 5)
X=3.5, n=5
PowerXn = 1 x3.5
PowerXn = 3.5x3.5
PowerXn = 3.5x3.5x3.5
PowerXn = 3.5x3.5x3.5x3.5
PowerXn = 3.5x3.5x3.5x3.5x3.5
```


- · 使用者自訂的模組函式 (function)
- · 計算x的n次方, Power (x, n)函式呼叫之引數傳遞與回傳值如下圖

MMS Lab

- · 使用者自訂的模組函式 (function)
- 使用者輸入三個整數,輸出三個整數的最大值

```
1 = #include <stdio.h>
     #include <stdlib.h>
3
 4
     int maximum(int x, int y, int z);
 5
   ∃int main(void)
7
 8
         int number1;
 9
         int number2;
10
         int number3;
11
         printf("Enter three integers:");
12
         scanf("%d %d %d",&number1,&number2,&number3);
13
         printf("Maximum is: %d\n", maximum(number1, number2, number3));
14
         system("pause");
15
         return 0;
16
```

```
17
18 ☐ int maximum(int x, int y, int z)
19
20
         int max=x;
21
         if(y>max)
23
24
              max=y;
25
26
27
         if(z>max)
28
29
              max=z;
30
31
32
          return max;
33
```

```
■ C:\Users\Andy\Desktop\ch3-13.exe

Enter three integers:22 85 17

Maximum is: 85

請按任意鍵繼續 - - - ■
```

```
■ C:\Users\Andy\Desktop\ch3-13.exe
Enter three integers:85 22 17
Maximum is: 85
請按任意,鍵繼續 - - -
```

```
■ C:\Users\Andy\Desktop\ch3-13.exe
Enter three integers:22 17 85
Maximum is: 85
請按任意,鍵繼續 - - -
```


- 使用C標準函式庫 (C standard library) 事先寫好的函式
- · 問題: 從數學函式庫(#include <math.h>), 使用內建的開平方根(sqrt(x))副程式
 - double a = sqrt(900); // a = 30.0

```
∃#include <stdio.h>
     #include <stdlib.h>
 2 3 4
                                        D:\HD\test_C\ch3-14\Debug\ch3-14.exe
     #include <math.h>
                                         .00 1.41 1.73 2.00 2.24 2.45 2.65 2.83 3.00 3.16
                                        請按任意鍵繼續...
 56789
   ∃int main(void)
          int x;
          for(x=1; x \le 10; x++)
10
11
              printf("%.2f ",sqrt(x));
12
13
          printf("\n");
14
          system("pause");
15
          return 0;
```


· C的常用數學函式庫(#include <math.h>)函式,在此表格中變數×和y的型別都是double。

应式	說明	範例
sqrt(x)	x的平方根	sqrt(900.0) is 30.0 sqrt(9.0) is 3.0
exp(x)	指數函式e×	exp(1.0) is 2.718282 exp(2.0) is 7.389056
log(x)	x的自然對數 (底爲 e)	log(2,718282) is 1,0 log(7.389056) is 2.0
log10(x)	x的對數 (底爲 10)	log10(1.0) is 0.0 log10(10.0) is 1.0 log10(100.0) is 2.0
fabs(x)	x的絕對値	fabs(13.5) is 13.5 fabs(0.0) is 0.0 fabs(-13.5) is 13.5
ceil(x)	不小於 x 的最小整數	ceil(9,2) is 10,0 ceil(-9.8) is -9.0
floor(x)	不大於 x 的最大整數	floor(9.2) is 9.0 floor(-9.8) is -10.0
pow(x,y)	x的 y 次方 (x))	pow(2, 7) is 128.0 pow(9, .5) is 3.0
fmod(x, y)	x/y的浮點餘數	fmod(13,657, 2,333) is 1,992
sin(x)	x的正弦值 (x的單位爲弧度)	sin(0.0) is 0.0
cos(x)	x的餘弦值(x的單位爲弧度)	cos(0.0) is 1.0
tan(x)	x的正切值(x的單位爲弧度)	tan(0.0) is 0.0

- 使用C標準函式庫 (C standard library) 事先寫好的函式
- 問題: 從字串處理函式庫(#include <string.h>), 使用內建strcpy(string2,string1)和 strlen(string2)副程式
 - strcpy(string2,string1); //呼叫strcpy函式, 將string1內容複製到string2之中
 - len=strlen(string2); //呼叫strlen函式,計算string2的長度

```
1 = #include <stdio.h>
    #include <stdlib.h>
 3
    #include <string.h>
4
   ⊡void main(void)
 6
 7
         char string1[60]="Welcome";
 8
         char string2[60];
 9
10
        int len;
11
12
         strcpy(string2,string1);
13
         printf("string2=%s\n", string2);
14
15
         len=strlen(string2);
16
         printf("字串長度為%d\n",len);
17
18
         system("pause");
19
         return 0:
20
```


- 使用呼叫**strcpy()**其實有一個**char *資料型態的回傳值**,但我們並未指定變數來接收這個回傳值。
- 使用呼叫strlen()的回傳值為字串長度(size_t的回傳值是整數資料int型態),所以我們利用len整數資料變數來儲存這個回傳值。

- 設計擲有六面的骰子
 - 使用rand()的函式原型在<stdlib.h>
 - rand() 會產生一個介於0 to RAND_MAX的整數
 - rand()%6 會產生一個介於0 to 5的整數
 - 1 + (rand()%6)會產生一個介於1 to 6的整數

```
1 ⊟#include <stdio.h>
2
     #include <stdlib.h>
 3
4 □ int main(void)
 5
 6
         int i;
 7
 8
         for (i=1;i<=20;i++)
9
10
              printf("%10d",1+(rand()%6));
11
              if(i\%5==0)
12
13
                  printf("\n");
                                              C:\c_code\ch3-18\Debug\ch3-18.exe
14
                                                                            5
                                                                                      5
15
         }
                                                                  1
                                                                            1
                                                                                      5
16
                                                                  6
17
         system("pause");
                                                                  2
                                                                            3
                                                                                      4
18
         return 0;
19
```


- 設計擲有六面的骰子
 - 呼叫rand() 函式所產的數列,看起來也是隨機的,但事實上每次都會出現相同的數列
 - 需要事先使用 **srand()** 函式並且**unsigned**一個整數引數,提供**rand()**函式提一個種子 **(seed)**,讓**rand ()**函式能夠在每次執行時產生不同順序的亂數。

```
1 ∃#include <stdio.h>
     #include <stdlib.h>
 3 □ int main(void)
 4
 5
         int i;
 6
         unsigned seed;
 7
 8
         printf("Enter seed:");
         scanf("%u", &seed);
 9
10
11
         srand(seed);
12
13
         for(i=1;i \le 10;i++)
14
15
             printf("%10d",1+(rand()%6));
16
             if(i\%5==0)
17
18
                 printf("\n");
19
20
21
         system("pause");
22
         return 0;
23
```


MMS Lab

- · 設計"crap"的擲骰子遊戲,遊戲規則如下:
- 1) 玩家獨自投擲兩顆骰子,計算兩顆骰子總和(sum)。
- 2) 如果玩家第一次投擲總和(sum)為7點或11點,那麼判定玩家贏。
- 3) 如果玩家第一次投擲總和(sum)為2點、3點或12點 (這些點數稱為crap),那麼則是玩家輸。
- 4) 如果玩家第一次投擲總和(sum) 4點、5點、6點、8點、9點或10點,則這個點數成為玩家的目標點數(my point)。玩家需要一直繼續投擲這兩顆骰子,直到出現目標點數(my point)或是7點,若先出現目標點數,則是玩家贏。但先出現7點,則判定玩家輸。
- 演算法
- if (sum == 7 or 11), then won
- if (sum == 2 or 3 or 12), then lost
- if (sum == 4 or 5 or 6 or 8 or 9 or 10),
 - then (mypoint = sum) and continue until sum = mypoint or 7
 - if (sum == mypoint), then won
 - if (sum == 7), then lost


```
if (sum == 7 or 11), then won
if (sum == 2 or 3 or 12), then lost
if (sum == 4 or 5 or 6 or 8 or 9 or 10),
then (mypoint = sum) and
continue until sum = mypoint or 7
```

```
1 ∃#include <stdio.h>
                                                                               41
                                                                                                                       if (sum == mypoint), then won
    #include <stdlib.h>
                                                                               42
                                                                                             if (sum == myPoint)
                                                                                                                       if (sum =7), then lost
     #include <time.h>
                                                                               43
 4
                                                                               44
                                                                                                 gameStatus=WON;
     enum Status {CONTINUE, WON, LOST};
                                                                               45
   □int rollDice (void);
                                                                                             else
                                                                               46
 7
                                                                               47
   ∃int main(void)
                                                                               48
                                                                                                 if (sum == 7)
 9
                                                                               49
10
         int sum;
                                                                               50
                                                                                                     gameStatus=LOST;
11
         int myPoint;
                                                                               51
12
                                                                               52
13
         enum Status gameStatus;
                                                                               53
                                                                                         }
14
                                                                               54
15
         srand(time(NULL))
                                                                               55
                                                                                         if (gameStatus == WON)
16
         sum=rollDice();
                                                                                56
17
                                                                               57
                                                                                             printf("Player wins\n");
18
         switch (sum)
                                                                               58
19
                                                                                59
                                                                                         else
20
         case 7:
                                                                                60
21
         case 11:
                                                                                             printf("Player loses\n");
                                                                                61
22
             gameStatus=WON;
                                                                               62
23
             break;
                                                                                63
24
                                                                                64
                                                                                         system("pause");
25
         case 2:
                                                                                         return 0;
                                                                                65
26
         case 3:
                                                                               66
27
         case 12:
                                                                                67
28
             gameStatus=LOST;
                                                                               68 ☐ int rollDice(void)
29
             break;
                                                                               69 {
30
                                                                                70
                                                                                         int die1;
31
         default:
                                                                                         int die2;
                                                                                71
32
             gameStatus=CONTINUE;
                                                                               72
                                                                                         int workSum;
33
             myPoint=sum;
                                                                               73
34
             printf("Point is %d\n", myPoint);
                                                                                74
                                                                                         die1=1+(rand()%6);
35
             break:
                                                                                         die2=1+(rand()%6);
                                                                                75
36
         }
                                                                                         workSum=die1+die2;
                                                                                76
37
                                                                               77
38
         while (gameStatus == CONTINUE)
                                                                               78
                                                                                         printf("Player rolled %d + %d = %d\n", die1, die2, workSum);
39
                                                                                79
                                                                                         return workSum:
                                                   NTUT MMS LAB
             sum=rollDice();
40
                                                                               80 }
```



```
ж
C:\c_code\ch3-21\Debug\ch3-21.exe
Player rolled 5 + 6 = 11
Player wins
請按任意鍵繼續...
                                                                X
C:\c_code\ch3-21\Debug\ch3-21.exe
Player rolled 4 + 1 = 5
Point is 5
Player rolled 4 + 4 = 8
Player rolled 3 + 6 = 9
Player rolled 4 + 3 = 7
Player loses
請按任意鍵繼續...
                                                                - -
C:\c_code\ch3-21\Debug\ch3-21.exe
Player rolled 1 + 1 = 2
Player loses
請按任意鍵繼續...
                                                                0
                                                                        X
C:\c_code\ch3-21\Debug\ch3-21.exe
Player rolled 5 + 5 = 10
Point is 10
Player rolled 6 + 1 = 7
Player loses
請按任意鍵繼續...
```

MMS Lab

- int rollDice (void)
 - Function: 自己設計rollDice function 來投擲骰子,並計算 印出骰子的點數和回傳總和
- enum Status (CONTINUS, WON, LOST)
 - 為增加程式的可讀性,使用列舉 (enum)自己定義型別 (CONTINUS, WON, LOST),目前定義常數CONTINUE 的值是0,WON的值是1,以及LOST的值是2
- enum Status gameStatus;
 - gameStatus = WON (程式容易閱讀)
 - gameStatus = 1 (程式不容易閱讀)
- srand (time(NULL)) and rand()
 - 隨機產生變數

- recursive function
 - 自己呼叫自己,一直做重複的事情,當結果已完成即可結束
- 階乘函式的遞迴定義,可以經由觀察下列關係而得: $n! = n \cdot (n-1)!$

圖 5.13 5! 的號迴式求值法

· 階乘函式的n!遞迴

```
1 □#include <stdio.h>
     #include <stdlib.h>
 2
 3
 4
     long factorial(long number);
 5
 6
   □int main(void)
 7
 8
         int i;
         for (i=0;i<=10;i++)
 9
10
11
             printf("%2d! = %1d\n", i, factorial(i));
12
13
         system("pause");
14
         return 0;
15
    }
16
17 □ long factorial (long number)
18
    {
19
         if (number <= 1)
20
21
             return 1;
22
23
         else
24
25
             return (number * factorial(number-1));
26
         }
27
```

```
C:\c_code\ch3-25\Debug\ch3-25.exe

0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 362880
請按任意鍵繼續 - - -
```

· 製作三個函式(Odd、Even、TotalSum函式),功能分別為計算奇數和、 偶數和、整數和。(其中的整數和請使用奇數和與偶數和之函式)

```
1 = #include <stdio.h>
234
    #include <stdlib.h>
    int Odd(int U);
 5
    int Even(int U);
    int TotalSum(int U);
 7
                             1+2+...+n=?請輸入n=10
8
  ∃int main(void)
                             請問要做奇數和<0>,偶數和<E>,還是整數和<I>?請選擇:I
 9
    {
                               合為55
10
        int n, Sum;
11
        char AddChoice;
12
        printf("1+2+...+n=?請輸入n=");
13
        scanf("%d",&n);
14
        fflush(stdin);
15
        printf("請問要做奇數和(0),偶數和(E),還是整數和(I)?請選擇:");
16
        scanf("%c", &AddChoice);
17
18
        switch(AddChoice)
19
```

```
20
         case 'O':
21
             Sum=Odd(n);
22
             break;
23
         case 'E':
24
             Sum=Even(n);
25
             break;
26
         case 'I':
27
             Sum=TotalSum(n);
28
             break;
29
         default:
30
             printf("選擇錯誤\n");
31
             return -1;
32
33
34
         printf("總合為%d\n",Sum);
35
         system("pause");
36
         return 0;
37
38
39 ☐ int Odd(int U)
40
41
         int i, total=0;
42
         for (i=1;i<=U;i++)
43
             if (i\%2 == 1)
44
                 total=total+i;
45
         return total;
46
```

```
1+2+...+n=?請輸入n=10
請問要做奇數和(0),偶數和(E),還是整數和(I)?請選擇:I
總合為55
```

Odd函式的定義,用來計算1+3+...+U 的奇數和。(total是回傳值)

```
47
   ∃int Even(int U)
49
     {
                                         Even函式的定義,用來計
50
          int i, total=0;
                                           算2+4+...+U的偶數和。
51
          for (i=1; i \leftarrow U; i \leftrightarrow)
                                             (total是回傳值)
52
              if (i\%2 == 0)
53
                   total=total+i;
54
          return total;
55
56
   ⊟int TotalSum (int U)
58
59
          return Odd(U)+Even(U);
60
```

- 執行結果:

```
1+2+...+n=?請輸入n=10
請問要做奇數和(0),偶數和(E),還是整數和(I)?請選擇:I
總合為55
```

• 製作階層函式(factorial函式),功能為計算某一正整數的階層 $\mathbf{k}!$ 。並利用該函式求出 的值, \mathbf{m} 、 \mathbf{n} 為任意正整數 $C_n^m = \frac{m!}{n!(m-n)!}$

```
1 □ #include <stdio.h>
                                          22
                                                    ans=a/(b*c);
 2
     #include <stdlib.h>
                                           23
                                                    printf("C(\%d,\%d)=\%d\n", m, n, ans);
 3
                                           24
 4
     long int factorial(int p);
                                          25
                                                    system("pause");
 5
                                           26
   □void main(void)
                                          27
 7
                                          28 □ long int factorial(int p)
 8
         int m,n;
                                          29
                                               {
 9
         long int ans;
                                           30
                                                    int Count;
10
         long int a, b, c;
                                           31
                                                    long int result=1;
11
                                           32
12
         printf("求排列組合C(m,n)\n");
                                           33
                                                    for (count=1;count<=p;count++)</pre>
13
         printf("m=");
                                           34
14
         scanf("%d",&m);
                                           35
                                                        result=result*count;
15
         printf("n=");
                                           36
16
         scanf("%d",&n);
                                           37
                                                    return result;
17
                                           38
                                                              求排列組合C(m,n)
18
         a=factorial(m);
19
         b=factorial(n);
                                                              m=10
20
         c=factorial(m-n);
                                                              n = 8
                                                              C(10,8)=45
```