

Samuel J. Gurr | University of Rhode Island

Principal Investigators: Hollie Putnam (URI), Steven Roberts (UW) & Brent Vadopalas (UW)

Pacific geoduck Panopea generosa

- Large and long lived infauna clam
 - longest recorded as 168 years of age

- Native range from Alaska Baja, California
 - intertidal to 100+ m depth

 Cultural and economic importance for tribal and coastal communities of PNW

Sustainable production

Geoduck aquaculture

- Prevents overexploitation of wild populations
- Satisfy growing demand in recent decades for international trade

- approx. 90% global geoduck produced from WA state
 - annual revenue > 24 million USD year-1
 - \$14 pound⁻¹ (as of 2015)

Sustainable production

HATCHERY

- Broodstock spawned
- Reared for approx. 4-5 months

OUTPLANT

Grown on mudflat for ~4-5 years
 until adults are harvested

Bottleneck of hatchery rearing

- Early-life stage bivalves are highly susceptible to stress
- Biotic and abiotic challenges limit hatchery production:
 - pathogens
- harmful algae

- diet

- temperature
- pH / Ωarag.
- salinity

Threat to aquaculture

- records of **pH-induced mass mortality** at shellfish hatcheries (Barton et al. 2012)

Undisputed **sub-lethal effects** important for commercial production:

- metabolism
- shell growth
- development

How can we enhance resilience and increase hatchery production?

What is "stress conditioning"?

Priming organisms with sub-lethal exposure to increase stress-resilience and performance under a **subsequent encounter**

Level of stress exposure

Response model under initial exposure...

Level of stress exposure

Negative linear or threshold response

Response model under <u>initial exposure</u>...

Positive effect on performance

Negative linear or threshold response

Level of stress exposure

Response model under **subsequent exposure**...

"Hormetic priming"
prior stress exposure
increases performance
under a <u>subsequent</u>
encounter

Level of stress exposure

Is hormetic priming a viable enhancement strategy for aquaculture?

Level of stress exposure

<u>Intragenerational exposure</u> – targets stress-acclimation **within** a generation

- a.) Acute
- b). Long-term

<u>Intragenerational exposure</u> – targets stress-acclimation **within** a generation

- a.) Acute relatively simple to integrate in hatchery practice; coastal/estuarine dynamics
- b). Long-term costly and labor intensive; seasonal or future acidification scenarios

<u>Intragenerational exposure</u> – targets stress-acclimation within a generation

a.) Acute - relatively simple to integrate in hatchery practice; coastal/estuarine dynamics

- Acid-base status / ion regulation
- Development & morphology
- Ingestion rate
- Regulation of gene expression

<u>Intragenerational exposure</u> – targets stress-acclimation within a generation

a.) Acute – relatively simple to integrate in hatchery practice; coastal/estuarine dynamics

- Acid-base status / ion regulation
- Development & morphology
- Ingestion rate
- Regulation of gene expression

Responses particularly relevant for commercial production

Stress conditioning in a commercial hatchery

Q1: How do juvenile geoduck respond metabolically under repeated exposure to acidification?

Q2: How is shell growth affected by repeated encounters?

Animal collection and exposure treatments

• Site: Jamestown Point Whitney Shellfish Hatchery - Brinnon, WA

Hatchery-reared juveniles

5 months post-spawn 5 mm shell length

Animal collection and exposure treatments

Site: Jamestown Point Whitney Shellfish Hatchery - Brinnon, WA

Hatchery-reared juveniles

5 months post-spawn 5 mm shell length

Experimental approach

8 heath trays (n = 30 geoduck per tray)

Target treatments

V.

Ambient pCO_2 pCO_2 = 570pH= 7.9 Ω aragonite= 1.4

Elevated pCO₂

 pCO_2 = **2400** pH = 7.3 Ω aragonite = 0.4

250 L conicals

Elevated

Ambient

Constants:

Total alkalinity: approx. 2050 µmol kg⁻¹ Diet: 5×10⁷ live algae cells d⁻¹ ind⁻¹

Temperature:15.4 ± 1.1°C Salinity: 28.9 ± 0.2 psu Flow rate: 480 mL min⁻¹

Animal collection and exposure treatments

Site: Jamestown Point Whitney Shellfish Hatchery - Brinnon, WA

Hatchery-reared juveniles

5 months post-spawn 5 mm shell length

Experimental approach

8 heath trays (n = 30 geoduck per tray)

Target treatments

V.

Ambient	pC	CO 2
pCO ₂	=	570
рН	=	7.9
Ω aragonite	=	1.4

Elevated pCO₂

 pCO_2 = **2400** pH = 7.3 Ω aragonite = 0.4

Animals in an isolated dish for physiological assessment

Constants:

Total alkalinity: approx. 2050 µmol kg⁻¹ Diet: 5×10⁷ live algae cells d⁻¹ ind⁻¹

Temperature:15.4 ± 1.1°C Salinity: 28.9 ± 0.2 psu Flow rate: 480 mL min⁻¹

- Initial exposure (10 days)
 n = 4 trays treatment⁻¹
- Ambient common garden
- Secondary exposure (6 days)
 n = 2 trays treatment⁻¹
- 5 months post-exposure
 n = 2 trays treatment⁻¹

Ambient pCO₂

pH = 7.9

Elevated pCO₂

pH = 7.3

Initial exposure (10 days)
 n = 4 trays treatment⁻¹

- Secondary exposure (6 days)
 n = 2 trays treatment⁻¹
- 5 months post-exposure
 n = 2 trays treatment⁻¹

Ambient pCO_2 pH = 7.9

Elevated pCO_2 pH = 7.3

- Initial exposure (10 days) n = 4 trays treatment⁻¹
- Ambient common garden
 - Secondary exposure (6 days)
 n = 2 trays treatment⁻¹
- 5 months post-exposure
 n = 2 trays treatment⁻¹

Ambient pCO₂

pH = 7.9

Elevated pCO₂

pH = 7.3

~5 months post-exposure

- Initial exposure (10 days)
 n = 4 trays treatment⁻¹
- Ambient common garden
- Secondary exposure (6 days)
 n = 2 trays treatment⁻¹

5 months post-exposure n = 2 trays treatment⁻¹

Ambient pCO_2 pH = 7.9

Elevated pCO_2 pH = 7.3

Physiology

- Geoduck removed periodically during exposure to measure:
- Metabolic rate: μg hr⁻¹ mm⁻¹
- Shell growth: mm length

Statistical approach

		df	SS	MS	F	P
Initial exposure	Two-way ANOVA					
Respiration rate	time	3	0.0323	0.011	0.822	0.485
	$p\operatorname{CO}_2$	1	0.0983	0.098	7.512	0.007
	$p CO_2 \times time$	3	0.0475	0.016	1.210	0.311

Metabolic rate:

df SSMS \boldsymbol{F} P **Initial exposure** Two-way ANOVA Respiration rate 0.822 time 0.0323 0.011 0.485 $p CO_2$ 0.0983 0.098 7.512 0.007 $p \, \text{CO}_2 \times \text{time}$ 0.0475 0.016 1.210 0.311

14 days in ambient

Secondary

Initial

pre

Metabolic rate:

 25% reduction in respiration rate under elevated pCO₂

		df	SS	MS	F	P
Initial exposure	Two-way ANOVA					
Respiration rate	time	3	0.0323	0.011	0.822	0.485
	$p \mathrm{CO}_2$	1	0.0983	0.098	7.512	0.007
	$p \operatorname{CO}_2 \times \operatorname{time}$	3	0.0475	0.016	1.210	0.311

Metabolic rate:

25% reduction in respiration rate

under elevate

INITIAL EXPOSURE: METABOLIC RATE

Suppressed metabolic state under a short-term period (10 days)

pre 0 2 4 6 8 10 14 days in ambient Secondary 0 2 4 6

		df	SS	MS	F	P
Initial exposure	Two-way ANOVA					
Shell length	time	3	4.250	1.415	3.392	0.018
	$p\operatorname{CO}_2$	1	0	0.0005	0.0012	0.973
	$p \operatorname{CO}_2 \times \operatorname{time}$	3	0.170	0.058	0.138	0.937

Shell length:

No response under elevated pCO₂

		df	SS	MS	F	P
Initial exposure	Two-way ANOVA					
Shell length	time	3	4.250	1.415	3.392	0.018
	$p\operatorname{CO}_2$	1	0	0.0005	0.0012	0.973
	$p \mathrm{CO}_2 \times \mathrm{time}$	3	0.170	0.058	0.138	0.937

Shell length:

• No response under elevated nCO2

INITIAL EXPOSURE: SHELL GROWTH

No observed effect of short-term metabolic suppression on shell growth (10 days)

Pacific geoduck under short-term acidification

- Suppressed metabolic activity
- Shell growth not affected

Metabolic rate:

 Continued metabolic suppression prior to exposure

Initial

14 days in ambient

Secondary

		df	SS	MS	F	P
Secondary exposure	Three-way ANOVA					
Respiration rate	time	2	0.068	0.034	3.137	0.051
	$p\operatorname{CO}_{2 ext{ initial}}$	1	0.021	0.021	1.916	0.171
	$p\operatorname{CO}_{2 ext{ secondary}}$	1	0.032	0.032	2.926	0.092
	$p \mathrm{CO}_{2 \mathrm{initial}} {}^{ imes} p \mathrm{CO}_{2 \mathrm{secondary}}$	1	0.023	0.023	2.080	0.154
	$p \mathrm{CO}_{2 \mathrm{initial}} imes \mathrm{time}$	2	0.016	0.008	0.724	0.489
	$p \mathrm{CO}_{2 \mathrm{secondary}} imes \mathrm{time}$	2	0.002	0.001	0.103	0.903
nter	$p CO_2$ initial $\times p CO_2$ cocordary \times time	2	0.035	0.017	1.608	0.209

Metabolic rate:

 No effect of treatment, metabolic <u>recovery</u> under subsequent encounter

ated × Elevated

b

		df	SS	MS	F	P
Secondary exposure	Three-way ANOVA					
Respiration rate	time	2	0.068	0.034	3.137	0.051
	$p\operatorname{CO}_{2 ext{ initial}}$	1	0.021	0.021	1.916	0.171
	$p \mathrm{CO}_2$ secondary	1	0.032	0.032	2.926	0.092
	$p\operatorname{CO}_2$ initial $^ imes p\operatorname{CO}_2$ secondary	1	0.023	0.023	2.080	0.154
	$p \operatorname{CO}_{2 \text{ initial}} imes ext{time}$	2	0.016	0.008	0.724	0.489
	$p \mathrm{CO}_{2 \mathrm{secondary}} imes \mathrm{time}$	2	0.002	0.001	0.103	0.903
10"	·			0.017	1.608	0.209

Metabolic rate:

No effect of treatment,

metabolic reg

SECONDARY EXPOSURE

Elevated *p*CO2 did not affect respiration rate metabolic recovery

14 days in ambient

Secondary

Shell length:

No treatment effect prior to exposure

Shell length:

Initial and secondary treatment effects

		df	SS	MS	F	P
Secondary exposure	Three-way ANOVA					
Shell length	time	2	0.190	0.095	0.152	0.859
	$p\operatorname{CO}_{2 ext{ initial}}$	1	9.910	9.910	15.821	< 0.001
	$p\operatorname{CO}_{2 ext{ secondary}}$	1	6.210	6.212	9.917	0.002
	$p\operatorname{CO}_{2 ext{ initial}} imes p\operatorname{CO}_{2 ext{ secondary}}$	1	0.060	0.063	0.100	0.752
	$p\operatorname{CO}_{2 ext{ initial}} imes ext{time}$	2	0	0.001	0.002	0.998
	$p \mathrm{CO}_{2 \; \mathrm{secondary}} imes \mathrm{time}$	2	0.460	0.231	0.368	0.692
	$p \mathrm{CO}_2$ initial $\times p \mathrm{CO}_2$ secondary $ imes$ time	2	0.100	0.048	0.076	0.927

Shell length:

- Initial and secondary treatment effects
- <u>Initial treatment</u>:
 - 4.02% (mm length) smaller shells under elevated

0.460

0.100

0.231

0.048

0.368

0.076

0.692

0.927

 $p \, \mathrm{CO}_{2 \, \mathrm{secondary}} \times \mathrm{time}$

 $p \, \mathrm{CO}_2$ initial $\times p \, \mathrm{CO}_2$ secondary \times time

Shell length:

- Initial and secondary treatment effects
- Second treatment:
 - 3.20% (mm length) smaller shells under elevated

0.100

0.002

0.368

0.076

0.998

0.692

0.927

0.001

0.231

0.048

0.460

0.100

 $p \, \mathrm{CO}_2$ initial $\times p \, \mathrm{CO}_2$ secondary

 $p \, \mathrm{CO}_2$ initial $\times p \, \mathrm{CO}_2$ secondary \times time

 $p \, \mathrm{CO}_2$ initial \times time

 $p \, \mathrm{CO}_{2 \, \mathrm{secondary}} \times \mathrm{time}$

Shell length:

Initial and secondary treatment offects.

Second treat
 3.20% (mm let)

SECONDARY EXPOSURE

Secondary exposure

Shell length

Shell growth **negatively affected** by elevated pCO2

- carry over from initial exposure
- potential age or treatment effect

Three-way ANOVA

time

p CO_{2 initial}

p CO_{2 secondary}

 $p CO_{2 \text{ initial}} \times \text{time}$

 $p \, \mathrm{CO}_{2 \, \text{initial}} \times p \, \mathrm{CO}_{2 \, \text{secondary}}$

df

SS

0.190

9.910

6.210

0.060

MS

0.095

9.910

6.212

0.063

0.001

0.231

0.048

F

0.152

15.821

9.917

0.100

0.002

0.368

0.076

0.859

< 0.001

0.002

0.752

0.998

0.692

0.927

		df	SS	MS	F	P
157 days post	Two-way ANOVA					
Respiration rate	$p \operatorname{CO}_{2 \text{ initial}}$	1	0.003	0.002	0.011	0.919
	p CO _{2 secondary}	1	3.037	3.037	13.008	0.001
	$p \operatorname{CO}_2$ initial $\times p \operatorname{CO}_2$ secondary	1	0.050	0.050	0.212	0.648
Shell length	p CO _{2 initial}	1	10.600	10.597	5.228	0.023
	p CO _{2 secondary}	1	0.210	0.214	0.105	0.746
	$p \operatorname{CO}_{2 \text{ initial}} \times p \operatorname{CO}_{2 \text{ secondary}}$	1	3.510	3.507	1.730	0.190

Shell length:

Initial treatment:

Metabolic rate:

Secondary treatment:

		df	SS	MS	F	P
157 days post	Two-way ANOVA					
Respiration rate	p CO _{2 initial}	1	0.003	0.002	0.011	0.919
	p CO _{2 secondary}	1	3.037	3.037	13.008	0.001
	$p\operatorname{CO}_{2 \text{ initial}} \times p\operatorname{CO}_{2 \text{ secondary}}$	1	0.050	0.050	0.212	0.648
Shell length	p CO _{2 initial}	1	10.600	10.597	5.228	0.023
	$p \operatorname{CO}_2$ secondary	1	0.210	0.214	0.105	0.746
	$p \mathrm{CO}_2$ initial $\times p \mathrm{CO}_2$ secondary	1	3.510	3.507	1.730	0.190

Shell length:

Initial treatment:
 5.80% (mm length) larger size in animals with prior exposure to elevated pCO₂

Metabolic rate:

Secondary treatment:
 52.4% greater respiration rate in animals with prior exposure to elevated pCO₂

Initial × Secondary treatment

		df	SS	MS	F	P
157 days post	Two-way ANOVA					
Respiration rate	p CO _{2 initial}	1	0.003	0.002	0.011	0.919
	$\begin{array}{l} p\operatorname{CO}_2 \text{ secondary} \\ p\operatorname{CO}_2 \text{ initial} \times p\operatorname{CO}_2 \text{ secondary} \end{array}$	1	3.037 0.050	3.037 0.050	13.008 0.212	0.001 0.648
Shell length	$p \operatorname{CO}_{2 \text{ initial}}$	1	10.600	10.597	5.228	0.023
	p CO _{2 secondary}	1	0.210	0.214	0.105	0.746
	$p \operatorname{CO}_{2 \text{ initial}} \times p \operatorname{CO}_{2 \text{ secondary}}$	1	3.510	3.507	1.730	0.190

Conclusions

Metabolic resilience

- Suppressed metabolic state
 under initial exposure to elevated pCO₂
- Metabolic recovery & increased rates
 under subsequent exposure to elevated pCO₂
 & after ambient grow-out

Compensatory shell growth

- Slowed shell growth under repeated short-term exposure elevated pCO₂
- <u>Compensatory response</u> increased shell length after **ambient grow-out**

Conclusions

Metabolic resilience

- Suppressed metabolic state
 under initial exposure to elevated pCO₂
- Metabolic recovery & increased rates
 under subsequent exposure to elevated pCO₂
 & after ambient grow-out

Compensatory shell growth

- Slowed shell growth under repeated short-term exposure elevated *p*CO₂
- <u>Compensatory response</u> increased shell length after ambient grow-out

Take-home message for Pacific geoduck production..

- (1) Short-term exposure to moderate *p*CO2 stress may acclimatize juvenile geoduck and <u>elicit benefits for performance</u>
- (2) Stress conditioning must account for:
 - life-stage/age dependence
 - sensitivity to stress intensity

Future research

- Need a holistic baseline response under acidification to determine life stages critical for environmental priming
- What are costs and drivers of metabolic alterations (i.e. suppression/recovery) under long-term acidification?
- Can parental conditioning enhance reproductive performance and offspring fitness?

Use complex network of stress responses

Genetics

Acknowledgements

Hollie Putnam, PhD (PI) Emma Strand Maddie Sherman

Steven Roberts, PhD (PI)
Brent Vadopalas, PhD (PI)
Kaitlyn Mitchell

Kurt Grinnell
Matt Henderson
Josh Valley
Clara Duncan
Jim Parsons, PhD

Carb chemistry tables

			Flow rate	pH, Total	CO_2	$p\operatorname{CO}_2$	HCO_3	CO_3	DIC	Total Alkalinity	Aragonite Saturation
Treatment	Temperature	Salinity	L min ⁻¹	Scale	μmol kg ⁻¹	μatm	μmol kg ⁻¹	μmol kg ⁻¹	μmol kg ⁻¹	μmol kg ⁻¹	state
Ambient	14.82 ± 0.12	29 ± 0.03	496 ± 139	7.86 ± 0.01	24 ± 0.46	608 ± 11	1842 ± 4	86 ± 1	1952 ± 3	2056 ± 1	1.35 ± 0.02
Low	14.91 ± 0.12	29 ± 0.04	486 ± 153	7.31 ± 0.004	91 ± 1	2345 ± 20	1992 ± 1	26 ± 0.20	2108 ± 1	2056 ± 1	0.41 ± 0.003

Secondary exposure											
			Flow rate	pH, Total	CO_2	$p \mathrm{CO}_2$	HCO_3	CO_3	DIC	Total Alkalinity	Aragonite Saturation
Treatment	Temperature	Salinity	L min ⁻¹	Scale	μmol kg ⁻¹	μatm	μmol kg ⁻¹	μmol kg ⁻¹	μmol kg ⁻¹	μmol kg ⁻¹	state
Ambient	16.33 ± 0.22	28.67 ± 0.03	495 ± 143	7.93 ± 0.004	19 ± 0.3	506 ± 5	1781 ± 5	102 ± 1	1902 ± 4	2033 ± 2	1.60 ± 0.02
Low	16.40 ± 0.22	28.67 ± 0.04	472 ± 87	7.27 ± 0.007	95 ± 1	2551 ± 42	1972 ± 3	25 ± 0.3	2091 ± 3	2033 ± 3	0.39 ± 0.004

Feely et al. 2010

