ECE 120 Midterm 1

HKN Review Session

Exam Time: Tuesday, February 14 (7:00-8:30pm)

Logistics

Exam: Tuesday, February 14, 7pm-8:30pm

Conflict exam: 5pm-6:30pm

Location: Check Compass for room assignment

UA Review Session: Sunday, February 12, 2pm-4pm

Overview of Review Session

- o Abstraction
- o Binary Types & Hexadecimal & Overflow
- o Floating Point
- o Boolean Operators
- o C Programming
- o FALL 2015 EXAM QUESTIONS

Abstraction/Levels of Transformation

- Abstraction the means to simplify events without going into heavy specifics,
 reducing information to the essentials -> productivity enhancer
- Levels of Transformation (itself an example of abstraction!)
 - Problem Statement
 - Algorithm
 - Program (C)
 - Instruction Set Architecture (MIPS, LC-3 assembly language)
 - Microarchitecture (combinational/sequential logic circuits)
 - Logic gates (NOT AND OR)
 - Devices (CMOS)

Binary Types

Unsigned

- 1 Can only represent **nonnegative** integers
- K = number of bits
- \circ Total unique representations \rightarrow 2^k
- \circ Range \rightarrow 0 to (2^k-1) e.g. (10011) $_2$ \rightarrow (16+2+1) = 19 $_{10}$

Decimal - Binary conversion: represent both as a sum of 2's powerful numbers.

Signed - Magnitude (rarely used)

- 1 First bit determines if positive or negative \rightarrow 1 = negative, 0 = positive
- Rest of bits determine magnitude
- Range \rightarrow --(2^(k-1)-1) to (2^(k-1)-1) e.g. (10011) $_{2}$ \rightarrow (-1) \times (2+1) = -3 $_{10}$

Binary Types *

• 2's complement

- Positive numbers lead with "0", negative numbers lead with "1"
 - K bits → can represent 2^k total numbers, half being positive and half being negative
- \circ Can represent positive numbers from range --(2^(k-1)) to (2^(k-1)-1)
- \circ Positive numbers have the same representation as unsigned types (with the MSB being zero); for negative numbers, do the following two steps to find their 2's complement representations from unsigned representations: e.g. (-37) 10
 - Find the corresponding positive 2's complement value first (sign bit!)
 - FLIP ALL BITS & ADD 1

Positional Weighting method (IN HW2!): quick way from 2's complement to decimal!

- the kth bit of the number has the "weight" of 2 (k-1)
- ullet except for the leftmost bit (MSB) which has the "weight" of $-2^{(k-1)}$

Overflow in Operations

- 2 primary operations: addition and subtraction (essentially +)
- Checking for Overflow
- Unsigned operations
 - There is a nonzero carry bit (bit carries out of bit range)
- 2's Complement operations
 - Result has wrong sign if
 - 2 positive numbers sum to negative number
 - 2 negative numbers sum to positive number
 - NOTE: in 2's complement, a positive and negative number added never results in overflow
 - Quick Check- For MSB, does carry in bit = carry out bit (i.e. $C_n = C_{n-1}$)?
 - If not, overflow has occurred

Floating Point

- Use IEEE 754 standard (32 total bits)
 - 1 sign bit
 - 8 exponent bits
 23 mantissa bits
- Increased precision=> decreased range
- Conversion from floating point to decimal
- Conversion from decimal to floating point

Floating Point (cont.)

- Special Cases
 - Denormalized representation ■

Exponent = 0

- Mantissa takes any value
- Formula: (-1)^s * 0.Mantissa * 2⁻¹²⁶
- Exponent is all 1s
 - Mantissa = 0
- (-1)^s * infinity
 - Mantissa not equal to 0
- NaN

Exponent	Mantissa (Fraction)	Interpretation
1 ≤ exponent ≤ 254 (Normalized)	All values	$(-1)^{\text{sign}} \times (1.\text{mantissa}) \times 2^{\text{exponent}-127}$
exponent = 0 (Denormalized)	All values	$(-1)^{\text{sign}} \times (0.\text{mantissa}) \times 2^{-126}$
exponent = 255	0	(−1) ^{sign} ∞
(Overflow)	Non-zero	NaN (Not a Number)

Boolean Operators *

- NOT
- AND, NAND -

AND allows masking of bits

Mask: 00001111 Value: 01011100

Result: 00001100

- XOR, XNOR
 - 1 A XOR B = A (NOT B) + (NOT A) B
- OR, NOR Note:
 - 1 Order of precedence:
 - (), NOT, AND, OR

AND, NOT, and OR are logically complete

а	b	out
0	0	0
0	1	0
1	0	0
1	1	1

а	b	out
0	0	0
0	1	1
1	0	1
1	1	1

а	b	out
0	0	0
0	1	1
1	0	1
1	1	0

in	out
0	1
1	0

Hexadecimal *

- Base 16, Uses 0-9 and A-F
- Takes groups of 4 bits and represents them as symbols
 - 1 Ex: 0011 1101 0110 1110 \rightarrow 3 D 6 E
- To go from hex to binary, write out each hex value into 4 bit binary
 - 1 Ex: $4E7F \rightarrow 0100\ 1110\ 0111\ 1111$
- Shortens binary representation by a factor of 4

Octal Notation:

Base 8, Uses 0-7

Takes groups of 3 bits and represents them as numbers from 0-7

Binary	Hex	Decimal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	A	10
1011	В	11
1100	С	12
1101	D	13
1110	E	14
1111	F	15

C Programming

- Basic Characteristics
 - High level/independent (of ISA), procedural, expressive

```
#include <stdio.h>
#define pi = 3.1415926

int main() {
    int r = 10;
    float area;
    area = pi * r * r;
    return 0;
}
```

- Variables in C
 - ∘ Int, double, float, char
 - 1 Note that result is truncated during integer division!

Operators

- Order of precedence: *, /, % and then +, -
- O Assignment operator: =
- O Relational : ==, !=, >, <, >=, <=</pre>
- o Bitwise: &, |, ~, ^ (AND, OR, NOT, XOR)
- O Logical: &&, ||

• Basic I/O

```
int a = 1;

float b = 0.1;

printf("a=%d, b=%f\n", a, b);
```

o Conditional Constructs

```
int a = 5;
if (a < 10) {
    printf("a is less than 10\n")
}</pre>
```



```
int a = 5;
int b = 8;
if (a < 10) {
    printf("a < 10\n");
} else if (b < 10) {
    printf("b < 10\n");
} else {
    printf("b >= 10");
}
```

o Iterative Constructs

Note: do-while loop will be able to get into the loop for at least once

Flow Chart Components

Cheat Sheet: Recommendations

- Common powers of 2
- 2's Complement
 - 1 Procedure of converting between decimal & binary typesRepresentable range with K bits
- Floating Point
 - 1 Formula for general case Special cases
- Overflow Conditions (both unsigned and 2's complement)
- Harder boolean operators
 - 1 XNOR, XOR, NAND, NOR
- Basic C syntax

General Advice

- Use your Cheat Sheet! Don't memorize
- Read the directions carefully!!!!
- Don't be afraid to ask questions
- Relax and trust what you've learned :)