

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

CKE 2013	UZUF	PEŁNIA ZDAJĄCY	miejsce
0	KOD	PESEL	miejsce na naklejkę
graficzny			
Układ			

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 26 stron (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) zaznacz na karcie odpowiedzi, w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY		
Uprawnienia	zdającego do:	
	dostosowania kryteriów oceniania	
	nieprzenoszenia zaznaczeń na kartę	
	dostosowania w zw. z dyskalkulią	

7 MAJA 2018

Godzina rozpoczęcia: 9:00

Czas pracy: 170 minut

Liczba punktów do uzyskania: 50

MMA-P1 **1**P-182

ZADANIA ZAMKNIĘTE

W każdym z zadań od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (1 pkt)

Liczba 2log₃ 6 – log₃ 4 jest równa

A. 4

- **B.** 2
- C. $2\log_3 2$
- **D.** log₃ 8

Zadanie 2. (1 pkt)

Liczba $\sqrt[3]{\frac{7}{3}} \cdot \sqrt[3]{\frac{81}{56}}$ jest równa

- **A.** $\frac{\sqrt{3}}{2}$
- **B.** $\frac{3}{2\sqrt[3]{21}}$
- C. $\frac{3}{2}$
- **D.** $\frac{9}{4}$

Zadanie 3. (1 pkt)

Dane są liczby $a = 3, 6 \cdot 10^{-12}$ oraz $b = 2, 4 \cdot 10^{-20}$. Wtedy iloraz $\frac{a}{b}$ jest równy

- **A.** $8.64 \cdot 10^{-32}$
- **B.** $1.5 \cdot 10^{-8}$ **C.** $1.5 \cdot 10^{8}$
- **D.** $8.64 \cdot 10^{32}$

Zadanie 4. (1 pkt)

Cena roweru po obniżce o 15% była równa 850 zł. Przed tą obniżką rower ten kosztował

- **A.** 865,00 zł
- **B.** 850,15 zł
- **C.** 1000,00 zł
- **D.** 977,50 zł

Zadanie 5. (1 pkt)

Zbiorem wszystkich rozwiązań nierówności $\frac{1-2x}{2} > \frac{1}{3}$ jest przedział

- **A.** $\left(-\infty, \frac{1}{6}\right)$ **B.** $\left(-\infty, \frac{2}{3}\right)$ **C.** $\left(\frac{1}{6}, +\infty\right)$ **D.** $\left(\frac{2}{3}, +\infty\right)$

Zadanie 6. (1 pkt)

Funkcja kwadratowa określona jest wzorem f(x) = -2(x+3)(x-5). Liczby x_1 , x_2 są różnymi miejscami zerowymi funkcji f. Zatem

- **A.** $x_1 + x_2 = -8$ **B.** $x_1 + x_2 = -2$ **C.** $x_1 + x_2 = 2$ **D.** $x_1 + x_2 = 8$

Zadanie 7. (1 pkt)

Równanie
$$\frac{x^2 + 2x}{x^2 - 4} = 0$$

A. ma trzy rozwiązania: x = -2, x = 0, x = 2

B. ma dwa rozwiązania: x = 0, x = 2

C. ma dwa rozwiązania: x = -2, x = 2

D. ma jedno rozwiazanie: x = 0

Zadanie 8. (1 pkt)

Funkcja liniowa f określona jest wzorem $f(x) = \frac{1}{2}x - 1$, dla wszystkich liczb rzeczywistych x. Wskaż zdanie prawdziwe.

A. Funkcja f jest malejąca i jej wykres przecina oś Oy w punkcie $P = \left(0, \frac{1}{3}\right)$.

B. Funkcja f jest malejąca i jej wykres przecina oś Oy w punkcie P = (0,-1).

C. Funkcja f jest rosnąca i jej wykres przecina oś Oy w punkcie $P = \left(0, \frac{1}{3}\right)$.

D. Funkcja f jest rosnąca i jej wykres przecina oś Oy w punkcie P = (0, -1).

Zadanie 9. (1 pkt)

Wykresem funkcji kwadratowej $f(x) = x^2 - 6x - 3$ jest parabola, której wierzchołkiem jest punkt o współrzędnych

A.
$$(-6, -3)$$

C.
$$(3,-12)$$
 D. $(6,-3)$

D.
$$(6, -3)$$

Zadanie 10. *(1 pkt)*

Liczba 1 jest miejscem zerowym funkcji liniowej f(x) = ax + b, a punkt M = (3, -2) należy do wykresu tej funkcji. Współczynnik a we wzorze tej funkcji jest równy

B.
$$\frac{3}{2}$$

B.
$$\frac{3}{2}$$
 C. $-\frac{3}{2}$

Zadanie 11. *(1 pkt)*

Dany jest ciąg (a_n) jest określony wzorem $a_n = \frac{5-2n}{6}$ dla $n \ge 1$. Ciąg ten jest

A. arytmetyczny i jego różnica jest równa $r = -\frac{1}{2}$.

B. arytmetyczny i jego różnica jest równa r = -2.

C. geometryczny i jego iloraz jest równy $q = -\frac{1}{3}$.

D. geometryczny i jego iloraz jest równy $q = \frac{5}{4}$.

Zadanie 12. *(1 pkt)*

Dla ciągu arytmetycznego (a_n) , określonego dla $n \ge 1$, jest spełniony warunek $a_4 + a_5 + a_6 = 12$. Wtedy

A.
$$a_5 = 4$$

B.
$$a_5 = 3$$
 C. $a_5 = 6$ **D.** $a_5 = 5$

C.
$$a_5 = 6$$

D.
$$a_5 = 5$$

Zadanie 13. (1 pkt)

Dany jest ciąg geometryczny (a_n) , określony dla $n \ge 1$, w którym $a_1 = \sqrt{2}$, $a_2 = 2\sqrt{2}$, $a_3=4\sqrt{2}$. Wzór na n-tywyraz tego ciągu ma postać

$$\mathbf{A.} \quad a_n = \left(\sqrt{2}\right)^n$$

B.
$$a_n = \frac{2^n}{\sqrt{2}}$$

$$\mathbf{C.} \quad a_n = \left(\frac{\sqrt{2}}{2}\right)^n$$

$$\mathbf{D.} \quad a_n = \frac{\left(\sqrt{2}\right)^n}{2}$$

Zadanie 14. *(1 pkt)*

Przyprostokatna LM trójkata prostokatnego KLM ma długość 3, a przeciwprostokatna KL ma długość 8 (zobacz rysunek).

Wówczas miara α kąta ostrego *LMK* tego trójkąta spełnia warunek

A.
$$27^{\circ} < \alpha \le 30^{\circ}$$

B.
$$24^{\circ} < \alpha \le 27^{\circ}$$
 C. $21^{\circ} < \alpha \le 24^{\circ}$ **D.** $18^{\circ} < \alpha \le 21^{\circ}$

$$\mathbf{C.} \quad 21^{\circ} < \alpha \le 24^{\circ}$$

D.
$$18^{\circ} < \alpha \le 21^{\circ}$$

Zadanie 15. *(1 pkt)*

Dany jest trójkat o bokach długości: $2\sqrt{5}$, $3\sqrt{5}$, $4\sqrt{5}$. Trójkatem podobnym do tego trójkata jest trójkat, którego boki mają długości

C.
$$\sqrt{2}$$
, $\sqrt{3}$, $\sqrt{4}$

B. 20, 45, 80 **C.**
$$\sqrt{2}$$
, $\sqrt{3}$, $\sqrt{4}$ **D.** $\sqrt{5}$, $2\sqrt{5}$, $3\sqrt{5}$

Zadanie 16. *(1 pkt)*

Dany jest okrag o środku S. Punkty K, L i M leża na tym okregu. Na łuku KL tego okregu sa oparte kąty KSL i KML (zobacz rysunek), których miary α i β , spełniają warunek $\alpha + \beta = 111^{\circ}$. Wynika stąd, że

- A. $\alpha = 74^{\circ}$
- **B.** $\alpha = 76^{\circ}$
- C. $\alpha = 70^{\circ}$
- **D.** $\alpha = 72^{\circ}$

Zadanie 17. *(1 pkt)*

Dany jest trapez prostokatny KLMN, którego podstawy mają długości |KL| = a, |MN| = b, a > b. Kat KLM ma miarę 60° . Długość ramienia LM tego trapezu jest równa

- A. a-b
- **B.** 2(a-b) **C.** $a+\frac{1}{2}b$

Zadanie 18. *(1 pkt)*

Średnicą okręgu jest odcinek KL, gdzie K = (6,8), L = (-6,-8). Równanie tego okręgu ma postać

- **A.** $x^2 + y^2 = 200$ **B.** $x^2 + y^2 = 100$ **C.** $x^2 + y^2 = 400$ **D.** $x^2 + y^2 = 300$

Zadanie 19. *(1 pkt)*

Proste o równaniach y = (m+2)x+3 oraz y = (2m-1)x-3 są równoległe, gdy

- **A.** m = 2
- **B.** m = 3
- **C.** m = 0
- **D.** m = 1

Zadanie 20. (1 pkt)

Podstawa ostrosłupa jest kwadrat KLMN o boku długości 4. Wysokościa tego ostrosłupa jest krawędź NS, a jej długość też jest równa 4 (zobacz rysunek).

Kat α , jaki tworzą krawędzie KS i MS, spełnia warunek

A.
$$\alpha = 45^{\circ}$$

B.
$$45^{\circ} < \alpha < 60^{\circ}$$
 C. $\alpha > 60^{\circ}$ **D.** $\alpha = 60^{\circ}$

C.
$$\alpha > 60^{\circ}$$

D.
$$\alpha = 60^{\circ}$$

Zadanie 21. *(1 pkt)*

Podstawą graniastosłupa prostego jest prostokat o bokach długości 3 i 4. Kat α , jaki przekatna tego graniastosłupa tworzy z jego podstawą, jest równy 45° (zobacz rysunek).

Wysokość graniastosłupa jest równa

B.
$$3\sqrt{2}$$

C.
$$5\sqrt{2}$$

D.
$$\frac{5\sqrt{3}}{3}$$

Zadanie 22. (1 pkt)

Na rysunku przedstawiono bryłę zbudowaną z walca i półkuli. Wysokość walca jest równa ri jest taka sama jak promień półkuli oraz taka sama jak promień podstawy walca.

Objętość tej bryły jest równa

A.
$$\frac{5}{3}\pi r^3$$

B.
$$\frac{4}{3}\pi r^3$$

B.
$$\frac{4}{3}\pi r^3$$
 C. $\frac{2}{3}\pi r^3$

D.
$$\frac{1}{3}\pi r^3$$

Zadanie 23. (1 pkt)

W zestawie $\underbrace{2, 2, 2, ..., 2}_{m \text{ liczb}}, \underbrace{4, 4, 4, ..., 4}_{m \text{ liczb}}$ jest 2m liczb $(m \ge 1)$, w tym m liczb 2 i m liczb 4.

Odchylenie standardowe tego zestawu liczb jest równe

A. 2

B. 1

C. $\frac{1}{\sqrt{2}}$

D. $\sqrt{2}$

Zadanie 24. (1 pkt)

Ile jest wszystkich liczb naturalnych czterocyfrowych mniejszych niż 2018 i podzielnych przez 5?

A. 402

B. 403

C. 203

D. 204

Zadanie 25. (1 pkt)

W pudełku jest 50 kuponów, wśród których jest 15 kuponów przegrywających, a pozostałe kupony są wygrywające. Z tego pudełka w sposób losowy wyciągamy jeden kupon. Prawdopodobieństwo zdarzenia polegającego na tym, że wyciągniemy kupon wygrywający, jest równe

A. $\frac{15}{35}$

B. $\frac{1}{50}$

C. $\frac{15}{50}$

D. $\frac{35}{50}$

Zadanie 26. *(2 pkt)*

Rozwiąż nierówność $2x^2 - 3x > 5$.

Zadanie 27. *(2 pkt)*

Rozwiąż równanie $x^3 - 7x^2 - 4x + 28 = 0$.

	Nr zadania	26.	27.
Wypełnia egzaminator	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 28. *(2 pkt)*Udowodnij, że dla dowolnych liczb dodatnich *a, b* prawdziwa jest nierówność

$$\frac{1}{2a} + \frac{1}{2b} \ge \frac{2}{a+b}.$$

Zadanie 29. *(2 pkt)*

Okręgi o środkach odpowiednio *A* i *B* są styczne zewnętrznie i każdy z nich jest styczny do obu ramion danego kąta prostego (zobacz rysunek). Promień okręgu o środku *A* jest równy 2.

Uzasadnij, że promień okręgu o środku B jest mniejszy od $\sqrt{2}-1$.

	Nr zadania	28.	29.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 30. *(2 pkt)*

Do wykresu funkcji wykładniczej, określonej dla każdej liczby rzeczywistej x wzorem $f(x) = a^x$ (gdzie a > 0 i $a \ne 1$), należy punkt P = (2, 9). Oblicz a i zapisz zbiór wartości funkcji g, określonej wzorem g(x) = f(x) - 2.

Zadanie 31. *(2 pkt)*

Dwunasty wyraz ciągu arytmetycznego (a_n) , określonego dla $n \ge 1$, jest równy 30, a suma jego dwunastu początkowych wyrazów jest równa 162. Oblicz pierwszy wyraz tego ciągu.

Odpowiedź:

	Nr zadania	30.	31.
agzaminator	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 32. *(5 pkt)*

W układzie współrzędnych punkty A = (4,3) i B = (10,5) są wierzchołkami trójkąta ABC. Wierzchołek C leży na prostej o równaniu y = 2x + 3. Oblicz współrzędne punktu C, dla którego kąt ABC jest prosty.

_	Nr zadania	32.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 33. (4 pkt)

Dane są dwa zbiory: $A = \{100, 200, 300, 400, 500, 600, 700\}$ i $B = \{10, 11, 12, 13, 14, 15, 16\}$. Z każdego z nich losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie podzielna przez 3. Obliczone prawdopodobieństwo zapisz w postaci nieskracalnego ułamka zwykłego.

	Nr zadania	33.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 34. *(4 pkt)*

Dany jest graniastosłup prawidłowy trójkątny (zobacz rysunek). Pole powierzchni całkowitej tego graniastosłupa jest równe $45\sqrt{3}$. Pole podstawy graniastosłupa jest równe polu jednej ściany bocznej. Oblicz objętość tego graniastosłupa.

	Nr zadania	34.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	