Lecture Notes (Lecture 10 - 2 Hours)

Duration: 2 hours

Factor 1	Factor 2	Measur e	Data Visualization	Implementation
Binary	Binary	Binary	Heatmap	Use seaborn.heatmap() to visualize a correlation matrix between binary variables. First, create a cross-tabulation (contingency table) and visualize it. sns.heatmap(pd.crosstab(df['factor1'], df['factor2']), annot=True, cmap='Blues')
Binary	Binary	Scale	Boxplot or Violin Plot	Use seaborn.boxplot() or sns.violinplot() to visualize the distribution of a continuous measure across two binary variables. sns.boxplot(x='factor1', y='measure', hue='factor2', data=df)
Binary	Nominal	Ordinal	Stacked Bar Chart	Use matplotlib's bar() function to create stacked bar charts that show the distribution of ordinal measures for binary variables split by nominal categories. plt.bar(df['factor1'], df['measure'])
Ordinal	Ordinal	Scale	Line Plot or Heatmap	Use plotly.express.line() or sns.heatmap() to visualize trends of a continuous variable between two ordinal variables.px.line(df, x='factor1', y='measure', color='factor2')

Nominal	Nominal	Binary	Stacked Bar Chart or Mosaic Plot	Use seaborn.countplot() or plotly.graph_objs.Bar() to create stacked bars showing counts or proportions of binary outcomes split by two nominal factors.sns.countplot(x='factor1', hue='factor2', data=df)
Nominal	Scale	Scale	Scatter Plot with Trendline	Use seaborn.scatterplot() or plotly.express.scatter() to create a scatter plot with a trendline showing the relationship between two continuous variables categorized by a nominal variable. sns.scatterplot(x='factor1', y='measure', data=df)
Ordinal	Nominal	Ordinal	Clustered Bar Plot	Use seaborn.barplot() to create clustered bar plots for ordinal measures across nominal categories. sns.barplot(x='factor1', y='measure', hue='factor2', data=df)
Scale	Scale	Scale	Pair Plot or 3D Scatter Plot	Use seaborn.pairplot() to visualize pairwise relationships between multiple continuous variables. For 3D scatter plots, use plotly.express.scatter_3d().sns.pairplot(df[['factor1', 'factor2', 'measure']])
Nominal	Ordinal	Scale	Violin Plot or Swarm Plot	Use seaborn.violinplot() or sns.swarmplot() to visualize the distribution of a continuous variable grouped by nominal and ordinal factors. sns.violinplot(x='factor1', y='measure', hue='factor2', data=df)
Binary	Ordinal	Scale	Boxplot or Bar Plot	Use seaborn.boxplot() or plotly.express.bar() to show the distribution of a scale variable based on binary and ordinal factors.

```
sns.boxplot(x='factor1',
y='measure', hue='factor2',
data=df)
```

Implementation Summary:

Heatmap: Use Seaborn's heatmap() for visualizing relationships or correlations in a matrix-like format.

python

Copy code

```
sns.heatmap(pd.crosstab(df['factor1'], \ df['factor2']), \ annot=True, \\ cmap='Blues')
```

1.

Boxplot/Violin Plot: Use Seaborn's boxplot() or violinplot() to show the distribution of data for different categories.

python

Copy code

```
sns.boxplot(x='factor1', y='measure', hue='factor2', data=df)
```

2.

Stacked Bar Chart: Use Matplotlib or Plotly for a stacked bar chart. Matplotlib is better for simple cases, while Plotly is interactive.

python

Copy code

```
plt.bar(df['factor1'], df['measure'])
```

3.

Line Plot: Use Plotly Express's line() or Seaborn's lineplot() to show trends between ordinal variables.

python

Copy code

```
px.line(df, x='factor1', y='measure', color='factor2')
```

4.

Scatter Plot: Use Seaborn or Plotly to visualize relationships between continuous variables. python

```
Copy code
```

```
sns.scatterplot(x='factor1', y='measure', hue='factor2', data=df)
```

5.

6. **Pair Plot**: Seaborn's pairplot() is useful for visualizing relationships between several variables at once.

```
python
Copy code
sns.pairplot(df[['factor1', 'factor2', 'measure']])
```