EXAMPLE E.7 WT COMPRESSION MEMBER WITHOUT SLENDER ELEMENTS

Given:

Select an ASTM A992 nonslender WT-shape compression member with a length of 20 ft to support a dead load of 20 kips and live load of 60 kips in axial compression. The ends are pinned.

$P_D = 20 \text{ kips}$ $P_L = 60 \text{ kips}$ $P_L = 7$

Solution:

From AISC Manual Table 2-4, the material properties are as follows:

ASTM A992

$$F_y = 50 \text{ ksi}$$

 $F_u = 65 \text{ ksi}$

From Chapter 2 of ASCE/SEI 7, the required compressive strength is:

LRFD	ASD
$P_u = 1.2(20 \text{ kips}) + 1.6(60 \text{ kips})$	$P_a = 20 \text{ kips} + 60 \text{ kips}$
= 120 kips	= 80.0 kips

Table Solution

From AISC Specification Commentary Table C-A-7.1, for a pinned-pinned condition, K = 1.0.

Therefore,
$$(KL)_x = (KL)_y = 20.0$$
 ft.

Select the lightest nonslender member from AISC Manual Table 4-7 with sufficient available strength about both the x-x axis (upper portion of the table) and the y-y axis (lower portion of the table) to support the required strength.

Try a WT7×34.

The available strength in compression is:

LRFD	ASD			
$\phi_c P_{nx} = 128 \text{ kips} > 120 \text{ kips}$ controls o.k	$\frac{P_{nx}}{\Omega_c} = 85.5 \text{ kips} > 80.0 \text{ kips}$ controls o.k.			
$\phi_c P_{ny} = 221 \text{ kips} > 120 \text{ kips}$	$\frac{P_{ny}}{\Omega_c} = 147 \text{ kips} > 80.0 \text{ kips}$ o.k.			

The available strength can be easily determined by using the tables of the AISC *Manual*. Available strength values can be verified by hand calculations, as follows.

Calculation Solution

From AISC Manual Table 1-8, the geometric properties are as follows.

WT7×34

F_y = 50 ksi

Table 4-7 (continued) Available Strength in Axial Compression, kips WT Shapes

;	Shape							W1	7 ×					
Wt/ft		37		34		30.5°		26.5°		24 ^c		21.5 ^c		
		P_n/Ω_c	ф _сР _п	P_n/Ω_c	ф <i>сР</i> п	P_n/Ω_c	$\phi_c P_n$	P_n/Ω_c	$\phi_c P_n$	P_n/Ω_c	ф с Р _п	P_n/Ω_c	ф _сР _п	
l	Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
		0	326	490	299	450	261	392	223	336	187	281	147	220
		10	237	356	217	326	190	285	168	253	143	2 16	116	174
		12	206	310	188	283	165	248	148	223	128	192	104	157
		14	175	262	159	239	140	210	128	192	111	167	92.5	139
		16	144	217	131	197	116	174	108	162	95.0	143	80.3	121
	S	18	116	174	105	158	93.2	140	88.8	133	79.4	119	68.5	103
	X-X Axis	20	93.9	141	85.2	128	75.5	113	72.0	108	64.9	97.5	57.3	86.
is	×	22	77.6	117	70.4	106	62.4	93.7	59.5	89.4	53.6	80.6	47.3	71.
â		24	65.2	98.0	59.2	88. 9	52.4	78.8	50.0	75.1	45.1	67.7	39.8	59.
ate		26	55.6	83.5	50.4	75.8	44.7	67.1	42.6	64.0	38.4	57.7	33.9	50.9
gic		28	47.9	72.0	43.5	65.3	38.5	57.9	36.7	55.2	33.1	49.8	29.2	43.9
to ⊑		30	41.7	62.7	37.9	56.9	33.5	50.4	3 2. 0	48.1	28 .8	43.3	25.4	38.
pect														
Effective length KL (ft) with respect to indicated axis		0	326	490	299	450	261	392	223	336	187	281	147	220
ĭ¥ (10	26 9	404	245	368	212	318	166	250	140	211	112	169
₩.		12	250	375	227	342	199	299	148	222	126	189	102	154
λſ		14	229	344	208	313	183	275	128	193	111	166	91.3	137
ngt		16	207	311	188	283	165	249	109	164	95.0	143	79.8	120
e le		18	184	277	168	252	147	222	90.8	136	79.9	120	68.4	103
ctiv	<u>.v</u>	20	162	244	147	221	130	195	74.1	111	65.8	98.9	57.6	86.
<u>:</u>	Y-Y Axis	22	141	211	128	192	112	169	61.4	92.3	54.6	82.0	47.8	71.
_	₹	24	120	180	109	164	9 5.9	144	51.7	77.7	46.0	69.1	40.3	60.
		26	1 0 2	154	9 2.9	140	81.9	123	44. 1	66.3	39.3	59.0	34.4	5 1 .
		28	88.5	133	80.2	121	70.8	106	38.1	57.3	33.9	50. 9	29.7	4 4.
		30	77.1	116	69.9	105	61.7	92.8	33.2	49.9	29.6	44.4	25.9	39.
		32	67.8	102	61.5	92.4	54.3	81.6	29.2	43.9				
		34	60.1	90.4	54.5	81.9	48 .2	72.4						
		36	53.6	80.6	48.7	73.1	43.0	64.6						
		40	43.5	65.4	39.4	59.3	34.9	52.4						
							Proper							
A_g (in.2)		10.9		9.99		8.96		7.80		7.07		6.31		
r_{x}^{-} (in.)			1.82 2.48		1.81		1.80 2.45		1.88		1.88		1.8 6 1.8 9	
<u>y</u> (in.					2.46 2.45 1.92 1.91 c Shape is slender for compression with $F_v = 50$ ksi.					וס	١.	U J		
	ASD		LRF		Note: He	eavy line	indicates	<i>Kl/r</i> equa	to or gre	ater than	200.			
Ω_{c}	= 1.6	7	$\Phi_c = 0$	0.90		-								

$$A_g = 10.0 \text{ in.}^2$$

 $r_x = 1.81 \text{ in.}$
 $r_y = 2.46 \text{ in.}$
 $J = 1.50 \text{ in.}^4$
 $\overline{y} = 1.29 \text{ in.}$
 $I_x = 32.6 \text{ in.}^4$
 $I_y = 60.7 \text{ in.}^4$
 $d = 7.02 \text{ in.}$
 $t_w = 0.415 \text{ in.}$
 $b_f = 10.0 \text{ in.}$
 $t_f = 0.720 \text{ in.}$

Stem Slenderness Check

$$\lambda = \frac{d}{t_w}$$

$$= \frac{7.02 \text{ in.}}{0.415 \text{ in}}$$

$$= 16.9$$

Determine the stem limiting slenderness ratio, λ_r , from AISC Specification Table B4.1a Case 4

$$\lambda_r = 0.75 \sqrt{\frac{E}{F_y}}$$

$$= 0.75 \sqrt{\frac{29,000 \text{ ksi}}{50 \text{ ksi}}}$$

$$= 18.1$$

	1	ı		
4	Stems of tees	d/t	$0.75\sqrt{\frac{E}{F_y}}$	t_d
		-		

 $\lambda < \lambda_r$; therefore, the stem is not slender

Flange Slenderness Check

$$\lambda = \frac{b_f}{2t_f}$$
= $\frac{10 \text{ in.}}{2(0.720 \text{ in.})}$
= 6.94

Flanges of rolled I-shaped sections, plates projecting from rolled I-shaped sections, outstanding legs of pairs of angles connected with continuous contact, flanges of channels, and flanges of tees

Determine the flange limiting slenderness ratio, λ_r , from AISC Specification Table B4.1a Case 1

$$\lambda_r = 0.56 \sqrt{\frac{E}{F_y}}$$
= 0.56 \sqrt{\frac{29,000 \text{ ksi}}{50 \text{ ksi}}}
= 13.5

 $\lambda < \lambda_r$; therefore, the flange is not slender

There are no slender elements.

For compression members without slender elements, AISC *Specification* Sections E3 and E4 apply. The nominal compressive strength, P_n , shall be determined based on the limit states of flexural, torsional and flexural-torsional buckling.

Flexural Buckling About the x-x Axis

$$\frac{KL}{r_x} = \frac{1.0(20.0 \text{ ft})(12 \text{ in./ft})}{1.81 \text{ in.}}$$
$$= 133$$

$$4.71\sqrt{\frac{E}{F_y}} = 4.71\sqrt{\frac{29,000 \text{ ksi}}{50 \text{ ksi}}}$$

= 113 < 133, therefore, AISC Specification Equation E3-3 applies

$$F_e = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$$

$$= \frac{\pi^2 (29,000 \text{ ksi})}{(133)^2}$$

$$= 16.2 \text{ ksi}$$
(Spec. Eq. E3-4)

$$F_{cr} = 0.877 F_e$$
 (Spec. Eq. E3-3)
= 0.877(16.2 ksi)
= 14.2 ksi controls

Torsional and Flexural-Torsional Buckling

Because the WT7×34 section does not have any slender elements, AISC *Specification* Section E4 will be applicable for torsional and flexural-torsional buckling. F_{cr} will be calculated using AISC *Specification* Equation E4-2.

Calculate F_{crv} .

 F_{cry} is taken as F_{cr} from AISC Specification Section E3, where $KL/r = KL/r_y$.

$$\frac{KL}{r_y} = \frac{1.0(20.0 \text{ ft})(12 \text{ in./ft})}{2.46 \text{ in.}}$$
= 97.6 \le 113, therefore, AISC Specification Equation E3-2 applies

$$F_e = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$$

$$= \frac{\pi^2 (29,000 \text{ ksi})}{(97.6)^2}$$

$$= 30.0 \text{ ksi}$$

$$F_{cry} = F_{cr} = \left[0.658^{\frac{F_y}{F_c}}\right] F_y$$

$$= \left[0.658^{\frac{50.0 \,\text{ksi}}{30.0 \,\text{ksi}}}\right] 50.0 \,\text{ksi}$$

$$= 24.9 \,\text{ksi}$$
(Spec. Eq. E3-2)

The shear center for a T-shaped section is located on the axis of symmetry at the mid-depth of the flange.

$$x_o = 0.0 \text{ in.}$$

$$y_o = \overline{y} - \frac{t_f}{2}$$

= 1.29 in. $-\frac{0.720 \text{ in.}}{2}$
= 0.930 in.

$$\overline{r_o}^2 = x_o^2 + y_o^2 + \frac{I_x + I_y}{A_g}$$

$$= (0.0 \text{ in.})^2 + (0.930 \text{ in.})^2 + \frac{32.6 \text{ in.}^4 + 60.7 \text{ in.}^4}{10.0 \text{ in.}^2}$$

$$= 10.2 \text{ in.}^2$$
(Spec. Eq. E4-11)

$$\overline{r}_o = \sqrt{\overline{r}_o^2}$$

$$= \sqrt{10.2 \text{ in.}^2}$$

$$= 3.19 \text{ in.}$$

$$H = 1 - \frac{x_o^2 + y_o^2}{\overline{r_o}^2}$$

$$= 1 - \frac{(0.0 \text{ in.})^2 + (0.930 \text{ in.})^2}{10.2 \text{ in.}^2}$$

$$= 0.915$$
(Spec. Eq. E4-10)

$$F_{crz} = \frac{GJ}{A_g \overline{r_o}^2}$$

$$= \frac{(11,200 \text{ ksi})(1.50 \text{ in.}^4)}{(10.0 \text{ in.}^2)(10.2 \text{ in.}^2)}$$

$$= 165 \text{ ksi}$$
(Spec. Eq. E4-3)

$$F_{cr} = \left(\frac{F_{cry} + F_{crz}}{2H}\right) \left[1 - \sqrt{1 - \frac{4F_{cry}F_{crz}H}{\left(F_{cry} + F_{crz}\right)^2}}\right]$$
(Spec. Eq. E4-2)

$$= \left(\frac{24.9 \text{ ksi} + 165 \text{ ksi}}{2(0.915)}\right) \left[1 - \sqrt{1 - \frac{4(24.9 \text{ ksi})(165 \text{ ksi})(0.915)}{(24.9 \text{ ksi} + 165 \text{ ksi})^2}}\right]$$

x-x axis flexural buckling governs, therefore,

$$P_n = F_{cr} A_g$$

= 14.2 ksi(10.0 in.²)
= 142 kips

From AISC Specification Section E1, the available compressive strength is:

LRFD	ASD			
$\phi_c P_n = 0.90 (142 \mathrm{kips})$	$\frac{P_n}{\Omega} = \frac{142 \text{ kips}}{1.67}$			
= 128 kips > 120 kips o.k.	Ω_c 1.67 = 85.0 kips > 80.0 kips o.k.			