

Twistings and Hopf Galois Extensions¹

Margaret Beattie

Department of Mathematics and Computer Science, Mount Allison University, Sackville, N.B. E4L 1E6, Canada E-mail: mbeattie@mta.ca

and

Blas Torrecillas

Department of Algebra and Analysis, University of Almería, 04071 Almeria, Spain E-mail: btorreci@ualm.es

Communicated by Susan Montgomery

Received October 4, 1999

Let k be a commutative ring, let H be a k-Hopf algebra, and let A be a right *H*-comodule algebra. A twisting of A is a map τ : $H \otimes A \to A$ such that $(A, *_{\tau}, \rho_A)$ is also an *H*-comodule algebra, where the product $*_{\tau}$ is defined by $a*_{\tau}b =$ $\sum a_0 \tau(a_1 \otimes b)$. In this note, we observe that there is a map of pointed sets from the twistings of A to the H-measurings from A^{coH} to A and study the set of twistings that map to the trivial measuring. If A/A^{coH} is Galois and H is finitely generated projective, then the twistings that map to the trivial measuring can be described as a set of invertible twisted cocycles: φ : $H \otimes H \to A$. An equivalence relation on the set of twisted cocycles corresponds to isomorphism classes of Galois extensions. © 2000 Academic Press

INTRODUCTION

If H is a finitely generated projective cocommutative Hopf algebra over a commutative ring k, then it is well known that the isomorphism classes of Galois H-objects A/k with A isomorphic to H as an H-comodule form an Abelian group via the cotensor product, and, furthermore, this group is isomorphic to the second Sweedler cohomology group $H^2(H, k)$

¹ M. Beattie is supported by NSERC RGP9137; B. Torrecillas is supported by DGES PB95-1068. M. Beattie's visit to U. Almería was funded by NATO CRG 971543. She thanks U. Almeria for their kind hospitality and warm sunshine.

[12]. In [6] the inclusion of this subgroup in Sal(H, k), the group of isomorphism classes of all Galois H-objects A/k, is shown to be the beginning of an exact sequence. Caenepeel [3] generalized this sequence to the situation when H is cocommutative and faithfully flat over k but not finitely generated.

In this paper, we consider Galois H-objects $A/A^{co\,H}$ where H is finitely generated projective over k, but we do not assume H is cocommutative, $A^{co\,H}$ is commutative, or $A \cong A^{co\,H} \otimes H$ as H-comodules. The possible Galois structures on the H-comodule algebra A correspond to the twistings of A in the sense of [1], and any twisting of A induces an H-measuring of $A^{co\,H}$ to A. Therefore, we may use the idea of twistings to describe the Galois H-objects $C = (A, \times, \rho_A)$ corresponding to the trivial measuring in terms of a set of "twisted cocycles." If the image of a twisted cocycle lies in Z(A), the centre of A, then the twisted cocycle is a Sweedler cocycle with trivial weak action and satisfying a condition on the coaction.

1. PRELIMINARIES

We work over a commutative ring k and assume that all maps are k-linear. Throughout, H will denote a k-Hopf algebra with bijective antipode S. The composition inverse of S is denoted \overline{S} . Until the final section, we do not assume that H is finitely generated.

Let A be a right H-comodule algebra; i.e., A is an algebra in the category \mathcal{M}^H of right H-comodules. We denote by ρ_A (or just ρ if the context makes the meaning clear) the comodule structure map from A to $A \otimes H$.

For C a coalgebra and A an algebra, $\operatorname{Hom}(C, A)$ is an algebra with the convolution product *. We write $\operatorname{Reg}(C, A)$ for the convolution invertible elements in $\operatorname{Hom}(C, A)$.

Definition of $\mathcal{T}(A)$, the Set of Twistings of A

Let τ be a map from $H \otimes A$ to A satisfying the normality conditions

$$\tau(1 \otimes a) = a, \qquad \tau(h \otimes 1) = \epsilon(h)1_A$$
 (1.1)

for all $a \in A$, $h \in H$. Then A^{τ} is defined to be the *H*-comodule *A* with (possibly nonassociative) multiplication $*_{\tau}$ defined by

$$a *_{\tau} b = \sum a_0 \tau(a_1 \otimes b)$$

for $a,b\in A$. The normality conditions (1.1) ensure that 1_A is a multiplicative identity for $*_{\tau}$. Also, if $M\in \mathscr{M}_A^H$, then M^{τ} is defined to be the

H-comodule M together with the map $M \otimes A \to M$ defined by $m \otimes a \mapsto m *_{\tau} a = \sum m_0 \tau(m_1 \otimes a)$. We often will omit the subscript τ when the meaning is clear. If F_{τ} defined by $F_{\tau}(M) = M^{\tau}$, $F_{\tau}(f) = f$, is a functor from \mathcal{M}_A^H to $\mathcal{M}_{A^{\tau}}^H$ then τ is called a twisting map. Then $(A^{\tau}, *_{\tau}, \rho_A)$ is an H-comodule algebra and A^{τ} is called a twisting of A.

There is also a left version of the twistings described above. Suppose ν : $H \otimes A \to A$ satisfies (1.1) and let ${}^{\nu}\!A$ denote the H-comodule A with (possibly nonassociative) multiplication $*_{\nu}$ defined by

$$a *_{\nu} b = \sum \nu(b_1 \otimes a)b_0.$$

Also for $M \in_{\mathcal{A}} \mathcal{M}^H$, let ${}^{\nu}M$ be the H-comodule M together with the map from $A \otimes M \to M$ given by $a \otimes m \mapsto \sum \nu(m_1 \otimes a)m_0 = a *_{\nu} m$. If $(A, *_{\nu}, \rho_A)$ is an H-comodule algebra and $F_{\nu} :_{A} \mathcal{M}^H \to_{\nu_A} \mathcal{M}^H$, $F_{\nu}(M) = {}^{\nu}M$, F(f) = f, is a functor, then ν is called a left twisting of A.

PROPOSITION 1.1. (i) A map τ : $H \otimes A \to A$ satisfying (1.1) is a twisting if and only if for all $h \in H$, $a, b \in A$;

$$\sum (1 \otimes h_1) \rho(\tau(h_2 \otimes a)) = \sum \tau(h_1 \otimes a_0) \otimes h_2 a_1; \qquad (1.2)$$

$$\tau(h \otimes a *_{\tau} b) = \sum \tau(h_1 \otimes a_0) \tau(h_2 a_1 \otimes b). \tag{1.3}$$

(ii) A map ν : $H \otimes A \to A$ satisfying (1.1) is a left twisting if and only if for all $h \in H$, $a, b \in A$,

$$\sum \rho(\nu(h_2 \otimes a))(1 \otimes h_1) = \sum \nu(h_1 \otimes a_0) \otimes a_1 h_2; \qquad (1.4)$$

$$\nu(h \otimes a *_{\nu} b) = \sum \nu(b_1 h_2 \otimes a) \nu(h_1 \otimes b_0). \tag{1.5}$$

Proof. This is proved in [1, Theorem 1.1 and Proposition 2.1].

It is straightforward to verify that for τ a twisting of A, and for ν a left twisting of A,

$$\rho_{A}\left(\sum \tau(\overline{S}(a_{1}) \otimes a_{0})\right) = \sum \tau(\overline{S}(a_{1}) \otimes a_{0}) \otimes a_{2}; \tag{1.6}$$

$$\rho_{A}\left(\sum \nu(S(a_{1})\otimes a_{0})\right) = \sum \nu(S(a_{1})\otimes a_{0})\otimes a_{2}. \tag{1.7}$$

These equations will be useful later.

EXAMPLE 1.2. Let $u(h \otimes a) = \epsilon(h)a$ for all $a \in A$, $h \in H$. This map u is a twisting and $a *_u b = \sum a_0 \epsilon(a_1)b = ab$, so that $A^u = A$. Similarly u is a left twisting and ${}^uA = A$. We call $u = \epsilon \otimes$ id the identity twisting.

In [1], a twisting is viewed as a map from H to End(A). If $\tau: H \otimes A \to A$ is a twisting, we define $\tau' \in \text{Hom}(H, \text{End}(A))$ by $\tau'(h)a = \tau(h \otimes a)$.

DEFINITION 1.3. Let τ be a (left) twisting of A. If $\tau' \in \text{Reg}(H, \text{End}(A))$, then τ is called an invertible (left) twisting.

Note that if τ is an invertible twisting with λ' the convolution inverse to τ' , then λ is a twisting of A^{τ} , not of A. However, (1.2) and (1.6) still hold for λ .

Recall from [1] that if τ is an invertible (left) twisting, then the functor F_{τ} from \mathcal{M}_A^H to $\mathcal{M}_{A^{\tau}}^H$ (F_{τ} from $_A\mathcal{M}^H$ to $_{\tau_A}\mathcal{M}^H$) is an isomorphism of categories.

For a given right H-comodule algebra A, let $\mathcal{T}(A)$ denote the set of twistings on A and $\mathcal{L}(A)$ the set of left twistings on A. Let $\mathcal{U}(\mathcal{T}(A))$ and $\mathcal{U}(\mathcal{L}(A))$ be the sets of invertible twistings and invertible left twistings on A. Since A has a bijective antipode, the following lemma shows that there is a bijection of pointed sets between $\mathcal{U}(\mathcal{T}(A))$ and $\mathcal{U}(\mathcal{L}(A))$.

LEMMA 1.4. For $\tau \in \mathcal{U}(\mathcal{T}(A))$, with λ' the convolution inverse to τ' , define $l(\tau)$: $H \otimes A \to A$ by

$$l(\tau)(h \otimes a) = \sum \tau' (\overline{S}(a_2h)) \lambda' (\overline{S}(a_1)) (a_0).$$

For $\nu \in \mathcal{U}(\mathcal{L}(A))$, with μ' the convolution inverse to ν' , define $r(\nu)$: $H \otimes A \to A$ by

$$r(\nu)(h\otimes a)=\sum \nu'(S(ha_2))\big(\mu'(S(a_1))(a_0)\big).$$

Then $l(\tau) \in \mathcal{U}(\mathcal{L}(A))$, $r(\nu) \in \mathcal{U}(\mathcal{T}(A))$, $r(l(\tau)) = \tau$, and $l(r(\nu)) = \nu$. Furthermore, for $\tau \in \mathcal{U}(\mathcal{T}(A))$, the H-comodule algebras A^{τ} and $l(\tau)^{-1}A$ are isomorphic. For u the identity twisting, r(u) = l(u) = u.

Proof. It is shown in the proof of [1, Theorem 2.3] that $l(\tau) \in \mathcal{U}(\mathcal{L}(A))$ with the convolution inverse to $l(\tau)'$ being μ' defined by

$$\mu'(h)(a) = \sum \tau' (\overline{S}(a_2 h_3 \overline{S}(h_1))) \lambda' (\overline{S}(a_1 h_2))(a_0).$$

Therefore,

$$r(l(\tau))(h \otimes a)$$

$$= \sum l(\tau)'(S(ha_2))(\mu'(S(a_1))(a_0))$$

$$= \sum l(\tau)'(S(ha_6))\tau'(\overline{S}(a_2S(a_3)\overline{S}S(a_5)))\lambda'(\overline{S}(a_1S(a_4)))(a_0)$$

$$= \sum l(\tau)'(S(ha_4))\tau'(\overline{S}(a_3))\lambda'(\overline{S}(a_1S(a_2)))(a_0)$$

$$= \sum l(\tau)'(S(ha_2))(\tau'(\overline{S}(a_1))(a_0))$$

$$= \sum \tau'(\overline{S}(a_3S(ha_4)))\lambda'(\overline{S}(a_2))\tau'(\overline{S}(a_1))(a_0) \quad \text{by (1.6)}$$

$$= \sum \tau'(ha_2\overline{S}(a_1))(a_0) \quad \text{since } \lambda', \tau' \text{ are inverse}$$

$$= \sum \tau'(h)(a) = \tau(h \otimes a).$$

Also, in [1, Theorem 2.3], it is shown that for $\nu \in \mathcal{U}(\mathcal{L}(A))$, with μ' the convolution inverse to ν' , $r(\nu)$ is a twisting. It is straightforward to verify that the convolution inverse to $r(\nu)'$ is given by λ' ,

$$\lambda'(h)(a) = \sum \nu'(S(S(h_1)h_3a_2))(\mu'(S(h_2a_1))(a_0)).$$

Then

$$\begin{split} &l(r(\nu))(h\otimes a)\\ &=\sum r(\nu)'\big(\overline{S}(a_2h)\big)\lambda'\big(\overline{S}(a_1)\big)(a_0)\\ &=\sum r(\nu)'\big(\overline{S}(a_6h)\big)\nu'\big(S\big(S\big(\overline{S}(a_5)\big)\overline{S}(a_3)a_2\big)\big)\mu'\big(S\big(\overline{S}(a_4)a_1\big)\big)(a_0)\\ &=\sum r(\nu)'\big(\overline{S}(a_2h)\big)\big(\nu'(S(a_1))(a_0)\big)\\ &=\sum \nu'\big(S\big(\overline{S}(a_4h)a_3\big)\big)\mu'(S(a_2))\big(\nu'(S(a_1))(a_0)\big)\\ &=\sum \nu'\big(S(a_1)a_2h\big)(a_0) \qquad \text{since } \mu',\,\nu' \text{ are inverse}\\ &=\nu(h\otimes a). \end{split}$$

The isomorphism from $^{l(\tau)}A$ to A^{τ} is found in [1, Theorem 2.3] and the final statement is clear.

For more detail on twistings of H-comodule algebras, see the definitions and basic results in [1]. The motivating paper for [1] was [13] where H is a group or a semigroup algebra. The literature contains many different definitions of twisted objects; a discussion of these various concepts can be found in [7].

Smash Products #(H, A) and $\#^{op}(H, A)$

In [8], a twisting is regarded as a map from A to $\operatorname{Hom}(H,A)$. For τ : $H \otimes A \to A$, we define $\tau'' \in \operatorname{Hom}(A,\operatorname{Hom}(H,A))$ by $\tau''(a) = \tau_a$ where $\tau_a(h) = \tau(h \otimes a)$. It will be convenient to think of a twisting as τ, τ' , or τ'' depending on the context. Besides the convolution product, $\operatorname{Hom}(H,A)$ is an algebra via a smash product or opposite smash product.

Denote by #(H, A) the k-module Hom(H, A) with associative multiplication given by

$$(f \cdot g)(h) = \sum f(g(h_2)_1 h_1) g(h_2)_0$$
 (1.8)

for $f,g\in \mathrm{Hom}(H,A),\ h\in H.$ Also $\#^{\mathrm{op}}(H,A)$ is the k-module $\mathrm{Hom}(H,A)$ with associative multiplication

$$(f \cdot g)(h) = \sum f(h_2)_0 g(h_1 f(h_2)_1). \tag{1.9}$$

(We denote multiplication in both #(H,A) and $\#^{op}(H,A)$ by \cdot ; the meaning will be clear from the context.) The map $h \mapsto \epsilon(h)1_A$ is the identity in both $\#^{op}(H,A)$ and #(H,A), and A embeds as a subalgebra of either #(H,A) or $\#^{op}(H,A)$ by

$$\alpha_A: A \to \operatorname{Hom}(H, A), \qquad \alpha_A(a)(h) = \epsilon(h)a.$$
 (1.10)

Also H^* embeds as an algebra in #(H, A) and $H^{* \text{ op}}$ embeds in $\#^{\text{ op}}(H, A)$ by regarding maps from H to k as maps from H to A; i.e.,

$$\gamma : \operatorname{Hom}(H, k) \to \operatorname{Hom}(H, A), \quad \gamma(h^*)(h) = h^*(h)1_A. \quad (1.11)$$

Finally, ev, evaluation at 1_H , maps either #(H,A) or $\#^{op}(H,A)$ to A by

$$ev: \operatorname{Hom}(H, A) \to A, \quad ev(f) = f(1).$$
 (1.12)

Let \leftarrow denote the usual right action of H on H^* , namely $(h^* \leftarrow h)(l) = h^*(hl)$. Note that the smash product $A\#H^*$ with multiplication $(a\#h^*)(b\#l^*) = \sum ab_0\#(h^* \leftarrow b_1)l^*$ is the subalgebra of #(H,A) generated by $\alpha(A)$ and $\gamma(H^*)$. If H is finitely generated projective over k, then $\#(H,A) = A\#H^*$. For more detail on these maps, see [8].

H-Galois Objects and Crossed Products

Finally, recall that $A/A^{\operatorname{co} H}$ is called an H-Galois object if the canonical map can: $A \otimes_{A^{\operatorname{co} H}} A \to A \otimes H$ defined by $\operatorname{can}(a \otimes b) = \sum ab_0 \otimes b_1$ is a bijection. Since H has bijective antipode, can is bijective if and only if can': $A \otimes_{A^{\operatorname{co} H}} A \to A \otimes H$, defined by $\operatorname{can}'(a \otimes b) = \sum a_0 b \otimes a_1$, is bijective.

Crossed products $A=B\#_{\sigma}H$ are well-known examples of H-comodule algebras with $\rho_A=1\otimes \Delta$ and, if σ is invertible, they are H-Galois objects. Given a weak action \cdot of H on B (i.e., an H-measuring from B to B) and a map $\sigma\in \operatorname{Hom}(H\otimes H,B)$ such that for all $h,k,m\in H,b\in B$,

$$\sum h_1 \cdot (k_1 \cdot b) \, \sigma(h_2, k_2) = \sum \sigma(h_1, k_1) (h_2 k_2) \cdot b \tag{1.13}$$

and

$$\sum h_1 \cdot \sigma(k_1, m_1) \sigma(h_2, k_2 m_2) = \sum \sigma(h_1, k_1) \sigma(h_2 k_2, m), \quad (1.14)$$

then one may form the crossed product $B\#_{\sigma}H$. We will call the map σ a Sweedler cocycle relative to the given weak action. The set of (convolution invertible) Sweedler cocycles will be denoted $Z^2(H,B)$ (respectively $\mathscr{U}(Z^2(H,B))$). Then $B\#_{\sigma}H$ is the k-module $B\otimes H$ with associative multiplication given by

$$(b\#h)(c\#l) = \sum b(h_1 \cdot c) \sigma(h_2, l_1) \#h_3 l_2.$$

Crossed products with σ invertible are precisely the cleft extensions of B (see [2, 5, 10]), i.e., the right H-comodule algebras A such that $A^{\operatorname{co} H} = B$, and there is a right H-comodule convolution invertible map γ : $H \to A$. Here $\gamma(h) = 1\#h$. Then $\sigma(h,k) = \Sigma \gamma(h_1)\gamma(k_1)\gamma^{-1}(h_2k_2)$ and $h \cdot b = \Sigma \gamma(h_1)b\gamma^{-1}(h_2)$ for all $h, k \in H$, $b \in B$. For more detail on Hopf Galois extensions and crossed products, see [10, Chaps. 7 and 8].

2. THE SET OF TWISTINGS OF AN H-COMODULE ALGEBRA

Now let A be a right H-comodule algebra with ring of coinvariants $B = A^{\operatorname{co} H} = \{a \in A \mid \rho(a) = a \otimes 1\}$ and let τ be a twisting of A. Then, since $A = A^{\tau}$ as H-comodules, $(A^{\tau})^{\operatorname{co} H}$ is also the k-algebra B. Let $\operatorname{Meas}_H(B,A)$ denote the set of H-measurings from B to A.

LEMMA 2.1. For A a right H-comodule algebra with twisting τ , the following is a commutative diagram where τ'' is an algebra map from B to the convolution algebra Hom(H, A) and from B to $\#^{op}(H, A)$:

$$B \xrightarrow{\tau''} (\operatorname{Hom}(H, A), *)$$

$$\operatorname{Id} \downarrow \qquad \qquad \downarrow \operatorname{Id}$$

$$B \xrightarrow{\tau''} (\#^{\operatorname{op}}(H, A), \cdot)$$

Proof. Let $a, b \in B$ and $h \in H$. Then, writing τ_a for $\tau''(a)$, we have

$$(\tau_a * \tau_b)(h) = \sum \tau_a(h_1)\tau_b(h_2)$$

$$= \sum \tau(h_1 \otimes a)\tau(h_2 \otimes b)$$

$$= \tau(h \otimes a *_{\tau} b) \quad \text{by (1.3)}$$

$$= \tau(h \otimes ab) = \tau_{ab}(h).$$

Similarly,

$$(\tau_a \cdot \tau_b)(h) = \sum \tau_a(h_2)_0 \tau_b(h_1 \tau_a(h_2)_1) \quad \text{by (1.9)}$$

$$= \sum \tau(h_3 \otimes a) \tau(h_1 S(h_2) h_4 \otimes b)$$

$$= \sum \tau(h_1 \otimes a) \tau(h_2 \otimes b) = \tau_{ab}(h)$$

as above. Also $\tau_1(h) = \tau(h \otimes 1) = \epsilon(h)1_A$ by (1.1). Commutativity of the diagram is obvious.

Thus, for every twisting τ of A, $\tau'' \in \operatorname{Meas}_H(B,A) = \operatorname{Alg}(B,\operatorname{Hom}(H,A))$, and $\tau'' \in \operatorname{Alg}(B,\#^{\operatorname{op}}(H,A))$. If u is the identity twisting of Example 1.2, then u'' is the restriction of α_A (see (1.10)) to B. We write α_B to denote this restriction.

For $\mathcal{T}(A)$ the set of twistings of A, let Ω be the map from $\mathcal{T}(A)$ to Meas_H(B, A) taking τ to $\tau''|_B$. Then $\Omega(\tau) = \alpha_B$ if and only if τ restricted to $B \otimes H$ is the identity twisting. We call the set of such twistings $K(\Omega)$.

Lemma 2.2. $K(\Omega) = \{ \tau \in \mathcal{F}(A) \mid \Omega(\tau) = \tau''|_B = \alpha_B \} = \{ \tau \in \mathcal{F}(A) \mid \tau'(h) \in \operatorname{End}(A_B) \text{ for all } h \in H \}.$

Proof. Suppose $\tau \in K(\Omega)$ so that $a *_{\tau} b = ab$ for $a \in A$, $b \in B$. Then by (1.3),

$$\tau(h\otimes ab)=\sum \tau(h_1\otimes a_0)\tau(h_2a_1\otimes b)=\tau(h\otimes a)b,$$

so that $\tau'(h) \in \operatorname{End}(A_B)$ for all $h \in H$. Conversely if $\tau' \colon H \to \operatorname{End}(A_B)$, then for $b \in B$, $\tau(h \otimes b) = \tau(h \otimes 1)b = \epsilon(h)b$ by (1.1).

We now define some non-identity twistings in $K(\Omega)$.

DEFINITION 2.3. We call φ : $H \otimes H \to A$ a twisted cocycle if, for all $g, h \in H, a \in A$,

- (i) $\varphi(1,h) = \varphi(h,1) = \epsilon(h)1_A$;
- (ii) $\rho_A(\varphi(g,h)) = \sum \varphi(g_2,h_2) \otimes S(g_1)g_3h_3\overline{S}(h_1);$
- (iii) $\sum \varphi(g_1, a_1) a_0 \varphi(g_2 a_2, h) = \sum \varphi(g_1, a_2 h_2) a_0 \varphi(a_1, h_1).$

Remark 2.4. (i) If $b \in B = A^{\operatorname{co} H}$ then Definition 2.3(i) and (iii) imply that $b\varphi(g,h) = \varphi(g,h)b$; i.e., $\varphi \colon H \otimes H \to C_A(B)$, the centralizer of B in A.

- (ii) If H is cocommutative, then Definition 2.3(ii) is equivalent to saying that φ maps $H \otimes H$ to B, and so by the preceding remark, to Z(B) the centre of B.
- (iii) If $\varphi: H \otimes H \to Z(A)$, the centre of A, and A/B is H-Galois, then Definition 2.3(iii) is equivalent to

$$\sum \varphi(g_1, t_1) \varphi(g_2 t_2, h) = \sum \varphi(t_1, h_1) \varphi(g, t_2 h_2)$$

for all $t, g, h \in H$. This follows from the fact that since can is onto, $1 \otimes t = \sum c_k b_{k_0} \otimes b_{k_1}$ for some $c_k, b_k \in A$. Thus, here, twisted cocycles satisfy the Sweedler cocycle condition with trivial weak action.

PROPOSITION 2.5. Let A be a right H-comodule algebra with $B = A^{\operatorname{co} H}$. If $\varphi \colon H \otimes H \to A$ is a twisted cocycle, then the map $\tau_{\varphi} = \tau$, $\tau \colon H \otimes A \to A$ defined by $\tau(h \otimes a) = \sum \varphi(h, a_1)a_0$ is a twisting of A. Furthermore $\tau'(H) \subseteq \operatorname{End}(A_B)$ and so $\Omega(\tau) = \alpha_B$.

Proof. Since $\tau(1 \otimes a) = \sum \varphi(1, a_1)a_0 = a$ and $\tau(h \otimes 1) = \varphi(h, 1) = \epsilon(h)$, the normality conditions (1.1) are satisfied. To verify (1.2), note that

$$\rho(\tau(h \otimes a))$$

$$= \rho(\sum \varphi(h, a_1)a_0)$$

$$= \sum \varphi(h_2, a_3)a_0 \otimes S(h_1)h_3a_4\bar{S}(a_2)a_1 \quad \text{by Definition 2.3(ii)}$$

$$= \sum \tau(h_2 \otimes a_0) \otimes S(h_1)h_3a_1 \quad \text{as required.}$$

Also (1.3) holds because

$$\tau(h \otimes a *_{\tau} b) = \sum \varphi(h, a_1 b_1) a_0 *_{\tau} b_0 = \sum \varphi(h, a_2 b_2) a_0 \varphi(a_1, b_1) b_0$$

while

$$\sum \tau(h_1 \otimes a_0) \tau(h_2 a_1 \otimes b) = \sum \varphi(h_1, a_1) a_0 \varphi(h_2 a_2, b_1) b_0,$$

and these expressions are equal to Definition 2.3(iii). The last statement is easy to verify. ■

Let $Z^2_{\mathrm{tw}}(H,A)$ denote the set of twisted cocycles from $H \otimes H$ to A. Then Γ , the map from $Z^2_{\mathrm{tw}}(H,A)$ to $\mathscr{F}(A)$ defined by $\Gamma(\varphi) = \tau_{\varphi}$, maps $Z^2_{\mathrm{tw}}(H,A)$ to $K(\Omega)$.

DEFINITION 2.6. We call a twisted cocycle $\varphi: H \otimes H \to A$ invertible if $\varphi' \in \text{Reg}(H, \#(H, A))$, where $\varphi'(h)(g) = \varphi(h, g)$.

Note that in general $\varphi' \in \text{Reg}(H, \#(H, A))$ is not equivalent to $\varphi \in \text{Reg}(H \otimes H, A)$.

Remark 2.7. Let φ be a map from $H \otimes H$ to $B = A^{coH}$ and define φ' from H to #(H, B) as above. Then since for all $h, g \in H$, $\lambda \in \operatorname{Hom}(H \otimes H, B)$,

$$\sum \varphi'(h_1) \cdot \lambda'(h_2)(g) = \sum \varphi(h_1 \otimes g_1) \lambda(h_2 \otimes g_2),$$

 $\varphi \in \text{Reg}(H \otimes H, B)$ if and only if $\varphi' \in \text{Reg}(H, \#(H, B))$.

The map Γ maps invertible cocycles to invertible twistings.

PROPOSITION 2.8. Let $\varphi \in Z^2_{tw}(H, A)$. If $\varphi' \in \text{Reg}(H, \#(H, A))$, then $\tau'_{\varphi} \in \text{Reg}(H, \text{End}(A))$, so that τ_{φ} is an invertible twisting.

Proof. Let λ : $H \to \#(H, A)$ be the convolution inverse for φ' . Then, for all $h \in H$, in #(H, A),

$$\sum \varphi'(h_1) \cdot \lambda(h_2) = \sum \lambda(h_1) \cdot \varphi'(h_2) = \epsilon(h) \epsilon.$$

Define λ' : $H \to \text{End}(A)$ by $\lambda'(h)(a) = \sum \lambda(h)(a_1)a_0$; we claim that λ' is the convolution inverse to τ'_{φ} in Hom(H, End(A)), i.e., that

$$\sum \tau_{\varphi}'(h_1)\big(\lambda'(h_2)(a)\big) = \sum \lambda'(h_1)\big(\tau_{\varphi}'(h_2)(a)\big) = \epsilon(h)a$$

for all $a \in A$.

First we check that

$$\sum \lambda'(h_1) \left(\tau'_{\varphi}(h_2)(a) \right) = \sum \lambda'(h_1) \left(\varphi(h_2, a_1) a_0 \right)$$

$$= \sum \lambda(h_1) \left(S(h_2) h_4 a_4 \overline{S}(a_2) a_1 \right) \varphi(h_3, a_3) a_0$$

$$= \sum \left(\lambda(h_1) \cdot \varphi'(h_2) \right) (a_1) a_0 \quad \text{by (1.8)}$$

$$= \epsilon(h) a.$$

Also

$$\begin{split} \sum \tau_{\varphi}'(h_{1}) \big(\lambda'(h_{2})(a) \big) &= \sum \tau_{\varphi}'(h_{1}) \big(\lambda(h_{2})(a_{1})a_{0} \big) \\ &= \sum \varphi'(h_{1}) \big(\big(\lambda(h_{2})(a_{2}) \big)_{1} a_{1} \big) \big(\lambda(h_{2})(a_{2}) \big)_{0} a_{0} \\ &= \sum \big(\varphi'(h_{1}) \cdot \lambda(h_{2}) \big) (a_{1}) a_{0} \\ &= \epsilon(h) a. \end{split}$$

Thus we have shown that for A an H-comodule algebra with $B = A^{\operatorname{co} H}$, and with $\mathscr{U}(Z_{\operatorname{tw}}^2(H,A))$ and $\mathscr{U}(\mathscr{T}(A))$ the sets of invertible twisted cocycles and invertible twistings, respectively, there are sequences

$$Z^{2}_{\mathsf{tw}}(H,A) \xrightarrow{\Gamma} K(\Omega) \xrightarrow{\mathsf{Id}} \mathscr{T}(A) \xrightarrow{\Omega} \mathsf{Meas}_{H}(B,A),$$

$$\mathscr{U}(Z^{2}_{\mathsf{tw}}(H,A)) \xrightarrow{\Gamma} K(\Omega) \cap \mathscr{U}(\mathscr{T}(A)) \xrightarrow{\mathsf{Id}} \mathscr{U}(\mathscr{T}(A)) \xrightarrow{\Omega} \mathsf{Meas}_{H}(B,A).$$

To end this section, we give a sufficient condition for A^{τ} and A^{λ} to be isomorphic, where $\tau, \lambda \in \mathcal{T}(A)$.

PROPOSITION 2.9. Let τ and λ be twistings of A. Let $v \in \text{Hom}(H, A)$ such that for all $h \in H$, $a \in A$,

- (i) $v(1_H) = 1_A;$
- (ii) $\rho_A(v(h)) = \sum v(h_2) \otimes S(h_1)h_3;$
- (iii) $\sum \lambda(h_1 \otimes a_0) v(h_2 a_1) = \sum v(h_1) \tau(h_2 \otimes a_0 v(a_1)).$

Then $\psi: A^{\lambda} \to A^{\tau}$ defined by $\psi(a) = \sum a_0 v(a_1)$ is a left B-module right H-comodule algebra map which is the identity on B. If $v \in \text{Reg}(H, A)$, then ψ is an isomorphism.

Proof. Clearly ψ is a left *B*-module map, is the identity on *B*, and by (ii), is an *H*-comodule map. We check that ψ preserves multiplication. For $a, b \in A$,

$$\psi(a *_{\lambda} b) = \sum (a_{0} *_{\lambda} b_{0}) v(a_{1} b_{1})
= \sum a_{0} \lambda(a_{1} \otimes b_{0}) v(a_{2} b_{1})
= \sum a_{0} v(a_{1}) \tau(a_{2} \otimes b_{0} v(b_{1})) \quad \text{by (iii)}
= \sum (a_{0} v(a_{1})) *_{\tau} (b_{0} v(b_{1})) = \psi(a) *_{\tau} \psi(b).$$

Note that if $v \in \text{Reg}(H, A)$, then v^{-1} , the convolution inverse to v, also satisfies (i) and (ii) above and thus the map $\psi^{-1} \in \text{End}(A)$ defined by $\psi^{-1}(a) = \sum a_0 v^{-1}(a_1)$ is inverse to ψ .

DEFINITION 2.10. (i) For τ , $\lambda \in \mathcal{F}(A)$, define $\tau \sim \lambda$ if and only if there exists $v \in \text{Reg}(H, A)$ satisfying the conditions in Proposition 2.9. Then \sim is an equivalence relation on $\mathcal{F}(A)$.

(ii) For $\alpha, \beta \in \text{Meas}_H(B, A)$, define $\alpha \sim \beta$ if there is $v \in \text{Reg}(H, A)$ such that for all $h \in H$, $b \in B$,

$$\alpha(h)(b) = \sum v(h_1)\beta(h_2)(b)v^{-1}(h_3).$$

Then \sim is an equivalence on Meas_H(B, A).

LEMMA 2.11. Suppose $\lambda, \tau \in \mathcal{F}(A)$ and $\lambda \sim \tau$.

- (i) If τ is an invertible twisting, so is λ .
- (ii) The measurings $\Omega(\lambda)$ and $\Omega(\tau)$ are equivalent.

Proof. (i) Let $v \in \text{Reg}(H, A)$ satisfy the conditions of Proposition 2.9 and let $\psi \colon A^{\lambda} \to A^{\tau}$ be the algebra isomorphism $\psi(a) = \sum a_0 v(a_1)$. Let τ'^{-1} be the convolution inverse to τ' and define $\omega \colon H \to \text{End}(A)$ by

$$\omega(h)(a) = \psi^{-1} \Big\{ \sum \tau'^{-1}(h_1) \big(v^{-1}(h_2) a_0 v(h_3 a_1) \big) \Big\}.$$

Then for all $h \in H$, $a \in A$, we have

$$\sum \omega(h_1) (\lambda(h_2 \otimes a)) = \psi^{-1} \sum \{ \tau'^{-1}(h_1) (v^{-1}(h_2) c_0 v(h_3 c_1)) \},$$

where $c = \lambda(h_4 \otimes a)$ so that

$$\sum c_0 \otimes c_1 = \sum v(h_5) \tau \big(h_6 \otimes \psi(a_0) \big) v^{-1}(h_7 a_1) \otimes S(h_4) h_8 a_2.$$

Then $\sum \omega(h_1)(\lambda(h_2 \otimes a)) = \psi^{-1} \sum \{\tau'^{-1}(h_1)\tau'(h_2)(\psi(a))\} = \epsilon(h)a$.

Similarly $\sum \lambda'(h_1)(\omega(h_2)(a)) = \sum v(h_1)\tau(h_2 \otimes \psi(c_0))v^{-1}(h_3c_1)$, where

$$\sum c_0 \otimes c_1 = \rho(\omega(h_4)(a)) = \sum \psi^{-1} \{ \tau'^{-1}(h_5) (v^{-1}(h_6) a_0 v(h_7 a_1)) \}$$
$$\otimes S(h_4) h_8 a_2$$

so that

$$\sum \lambda'(h_1)(\omega(h_2)(a))$$

$$= \sum v(h_1)\tau'(h_2) \{\tau'^{-1}(h_3)[v^{-1}(h_4)a_0v(h_5a_1)]\} v^{-1}(h_6a_2)$$

$$= \epsilon(h)a.$$

(ii) Since $\lambda \sim \tau$ implies the existence of $v \in \text{Reg}(H, A)$ satisfying the conditions of Proposition 2.9, this statement is clear.

In general, it is not known whether $A^{\tau} \cong A^{\lambda}$ implies that $\tau \sim \lambda$.

3. CROSSED PRODUCTS

In this section, as an example, we study the twistings of the H-comodule algebra $A = B \otimes H$ with $\rho_A = 1 \otimes \Delta_H$. Except for the usual assumption that H has bijective antipode, H is arbitrary. By [1, Theorem 3.4], $\mathcal{F}(A)$, the set of twistings on A, can be identified with the set of crossed products $B\#_{\sigma}H$ and $\mathcal{U}(\mathcal{F}(A))$ with those crossed products where σ is invertible, i.e., the cleft extensions. We will always assume that $\sigma(1,h) = \sigma(h,1) = \epsilon(h)$ for all $h \in H$.

If $B\#_{\sigma}H$ is a crossed product then the corresponding twisting is given by

$$\tau(h \otimes (b \otimes g)) = \sum (h_2 \cdot b) \sigma(h_3, g_1) \otimes S(h_1) h_4 g_2, \quad (3.15)$$

and if τ is a twisting of $B \otimes H$, then $(B \otimes H)^{\tau} = B \#_{\sigma} H$ where the weak action from $H \otimes B \to B$ and the cocycle $\sigma \colon H \otimes H \to B$ are defined by

$$h \cdot b = (1 \otimes \epsilon) \tau (h \otimes (b \otimes 1))$$
 and $\sigma(h,g) = (1 \otimes \epsilon) \tau (h \otimes (1 \otimes g)).$ (3.16)

PROPOSITION 3.1. There is a bijection between the set $Z^2_{tw}(H, B \otimes H)$ of twisted cocycles from $H \otimes H$ to $A = B \otimes H$ and $Z^2(H, B)$, the set of Sweedler cocycles from $H \otimes H$ to B with trivial weak action. Invertible twisted cocycles correspond to invertible Sweedler cocycles under this map.

Proof. If $\varphi \in Z^2_{tw}(H, A)$, let $\sigma_{\varphi} = (1 \otimes \epsilon) \cdot \varphi \colon H \otimes H \to Z(B)$. Then it is easy to see that σ_{φ} is normal and satisfies (1.14) with trivial weak action. Conversely, let $\sigma \in Z^2(H, B)$. Define $\varphi_{\sigma} = \varphi \colon H \otimes H \to B \otimes H$ by

Conversely, let $\sigma \in Z^2(H, B)$. Define $\varphi_{\sigma} = \varphi$: $H \otimes H \to B \otimes H$ by $\varphi(h, g) = \sum \sigma(h_2, g_2) \otimes S(h_1)h_3g_3\overline{S}(g_1)$. Since σ is normal, we have $\varphi(h, 1) = \varphi(1, h) = \epsilon(h) \otimes 1$. Also we have

$$\rho_{A}(\varphi(h,g)) = \sum \sigma(h_{3},g_{3}) \otimes S(h_{2})h_{4}g_{4}\overline{S}(g_{2}) \otimes S(h_{1})h_{5}g_{5}\overline{S}(g_{1})$$
$$= \sum \varphi(h_{2},g_{2}) \otimes S(h_{1})h_{3}g_{3}\overline{S}(g_{1}),$$

so that Definition 2.3(i) and (ii) hold.

Since σ is associated with the trivial weak action, we have by (1.13) that $\sigma(h, g) \in Z(B)$ for all $h, g \in H$. Then for $b \in B$, $l, g, h \in H$, we have

$$\sum \varphi(g_{1}, l_{2})(b \otimes l_{1}) \varphi(g_{2}l_{3}, h)
= \sum \sigma(g_{2}, l_{1}) \sigma(g_{3}l_{2}, h_{2}) b \otimes S(g_{1}) g_{4}l_{3}h_{3}\overline{S}(h_{1}),
\sum \varphi(g, l_{3}h_{2})(b \otimes l_{1}) \varphi(l_{2}, h_{1})
= \sum \sigma(l_{1}, h_{2}) \sigma(g_{2}, l_{2}h_{3}) b \otimes S(g_{1}) g_{3}l_{3}h_{4}\overline{S}(h_{1}).$$

These two expressions are equal by (1.14), and Definition 2.3(iii) is verified. Thus $\varphi \colon H \otimes H \to A$ is a twisted cocycle. It is straightforward to see that $\varphi_{\sigma_{\alpha}} = \varphi$ and $\sigma_{\varphi_{\alpha}} = \sigma$.

Since $\Gamma(\varphi_{\sigma}) = \tau_{\varphi_{\sigma}}$ is the twisting associated with σ , then by Proposition 2.8 if φ_{σ} is invertible, $\tau_{\varphi_{\sigma}}$ is an invertible twisting and thus σ is an invertible Sweedler cocycle.

Conversely suppose $\sigma \in Z^2(H,B)$ is invertible with trivial weak action. We must show that $\varphi = \varphi_\sigma$, defined by $\varphi(h,g) = \Sigma \sigma(h_2,g_2) \otimes S(h_1)h_3g_3\overline{S}(g_1)$, lies in $\mathscr{U}(Z_{\mathrm{tw}}^2(H,A))$; i.e., $\varphi' \colon H \to \#(H,A)$ is convolution invertible. We need a map $\lambda \colon H \to \#(H,A)$ such that $\Sigma \varphi'(h_1) \cdot \lambda(h_2)(g) = \Sigma \lambda(h_1) \cdot \varphi'(h_2)(g) = \epsilon(h)\epsilon(g)$ for all $h,g \in H$. Since $B\#_\sigma H$ is a cleft extension, then $\sigma(g,h) = \Sigma \phi(g_1)\phi(h_1)\phi^{-1}(g_2h_2)$ and $h \cdot b = \Sigma \phi(h_1)b\phi^{-1}(h_2)$ where $\phi \colon H \to B\#_\sigma H$ is the convolution invertible H-comodule map defined by $\phi(h) = 1\#_\sigma h$. Note that $\rho_A(\phi^{-1}(h)) = \Sigma \phi^{-1}(h_2) \otimes S(h_1)$. Now define $\psi \colon H \to \#(H,A)$ by

$$\psi(l)(m) = \sum \phi^{-1}(l_3)\phi(l_4m_2)\phi^{-1}(S(l_2)l_5m_3) \otimes S(l_1)l_6m_4\overline{S}(m_1).$$

By the above observation, the first tensorand does indeed lie in B. Also $\phi(h)$ and $\phi^{-1}(h)$ lie in $C_A(B)$.

Then for
$$h, g \in H$$
, in $\#(H, A)$,

$$\begin{split} &\sum (\psi(h_1) \cdot \varphi'(h_2))(g) \\ &= \sum \psi(h_1) \big[S(h_2) h_4 g_2 \big] \varphi(h_3, g_1) \\ &= \sum \big[\phi^{-1}(h_3) \phi(h_4 m_2) \phi^{-1}(S(h_2) h_5 m_3) \otimes S(h_1) h_6 m_4 \overline{S}(m_1) \big] \\ &\times \varphi(h_8, g_1) \quad \text{where } m = S(h_7) h_9 g_2 \\ &= \sum \big[\phi^{-1}(h_3) \phi(h_7 g_3) \phi^{-1}(S(h_2) h_8 g_4) \\ &\otimes S(h_1) h_9 g_5 \overline{S}(g_2) \overline{S}(h_6) h_4 \big] \varphi(h_5, g_1) \\ &= \sum \phi^{-1}(h_3) \phi(h_{10} g_6) \phi^{-1}(S(h_2) h_{11} g_7) \phi(h_6) \phi(g_2) \phi^{-1}(h_7 g_3) \\ &\otimes S(h_1) h_{12} g_8 \overline{S}(g_5) \overline{S}(h_9) h_4 S(h_5) h_8 g_4 \overline{S}(g_1) \\ &= \sum \phi^{-1}(h_3) \phi(h_4) \phi(g_2) \phi^{-1}(h_5 g_3) \phi(h_6 g_4) \phi^{-1}(S(h_2) h_7 g_5) \\ &\otimes S(h_1) h_8 g_6 \overline{S}(g_1) \quad \text{since } \big[\phi(h_4) \phi(g_2) \phi^{-1}(h_5 g_3) \big] \in B \\ &= \sum \phi(g_2) \phi^{-1}(S(h_2) h_3 g_3) \otimes S(h_1) h_4 g_4 \overline{S}(g_1) = \epsilon(h) \epsilon(g) \otimes 1. \end{split}$$

Similarly,

$$\begin{split} & \sum \varphi'(h_1) \cdot \psi(h_2)(g) \\ & = \sum \left[\varphi'(h_1) \big(S(h_2) h_9 g_5 \big) \right] \left[\phi^{-1}(h_5) \phi(h_6 g_2) \phi^{-1} \big(S(h_4) h_7 g_3 \big) \\ & \qquad \qquad \otimes S(h_3) h_8 g_4 \overline{S}(g_1) \right] \\ & = \sum \phi(h_2) \phi(m_2) \phi^{-1}(h_3 m_3) \phi^{-1}(h_8) \phi(h_9 g_2) \phi^{-1} \big(S(h_7) h_{10} g_3 \big) \\ & \qquad \qquad \otimes S(h_1) h_4 m_4 \overline{S}(m_1) S(h_6) h_{11} g_4 \overline{S}(g_1) \quad \text{where } m = S(h_5) h_{12} g_5 \\ & = \sum \phi(h_2) \phi(S(h_3) h_8 g_4) \phi^{-1}(h_9 g_5) \phi^{-1}(h_5) \\ & \qquad \qquad \times \phi(h_6 g_2) \phi^{-1} \big(S(h_4) h_7 g_3 \big) \otimes S(h_1) h_{10} g_6 \overline{S}(g_1). \end{split}$$

Now use the fact that $\phi^{-1}(h_5)\phi(h_6g_2)\phi^{-1}(S(h_4)h_7g_3) \in B$ and then straightforward calculation yields that this expression is $\epsilon(h)\epsilon(g) \otimes 1$.

Now let $\Omega' \colon \mathcal{T}(A) \to \operatorname{Meas}_H(B,B)$ be defined by $\Omega' = (1 \otimes \epsilon)\Omega$. Then Ω' is a map of pointed sets and clearly $K(\Omega) \subseteq K(\Omega') = \{\tau \mid (1 \otimes \epsilon)\tau(h \otimes (b \otimes 1)) = \epsilon(h)b \otimes 1\}$. In fact $K(\Omega) = K(\Omega')$. Suppose $\tau \in K(\Omega')$, and let $(B \otimes H)^\tau = B\#_\sigma H$ as in (3.15) and (3.16). Then, for all $b \in B$, $h \in H$, we have $h \cdot b = \epsilon(h)b$, and thus $\tau(h \otimes (b \otimes 1)) = \sum b\sigma(h_2, 1) \otimes S(h_1)h_3 = b\epsilon(h) \otimes 1$ and $\tau \in K(\Omega)$.

Recall that an *H*-measuring γ of *B* is called *C*-inner if $B \subseteq C$ as algebras and $\gamma(h \otimes b) = \sum u(h_1)bu^{-1}(h_2) \in B$ for some $u \in \text{Reg}(H, C)$. Let Inn Meas_H(B, B) denote the set of inner measurings of B which are *C*-inner for some extension C of B.

THEOREM 3.2. For $A = B \otimes H$, there are exact sequences of pointed sets

$$1 \to Z^2_{\mathrm{tw}}(H, A) \stackrel{\Gamma}{\to} \mathscr{T}(A) \stackrel{\Omega'}{\to} \mathrm{Meas}_H(B, B)$$

and

$$1 \to \mathscr{U}\big(Z^2_{\mathrm{tw}}(H,A)\big) \overset{\Gamma}{\to} \mathscr{U}(\mathscr{T}(A)) \overset{\Omega'}{\to} \mathrm{Inn}\, \mathrm{Meas}_H(B,B).$$

Proof. First we note that Γ is injective. Suppose that for $\varphi, \lambda \in Z^2_{\mathrm{tw}}(H,A)$, $\tau_{\varphi} = \tau_{\lambda}$. Applying both twistings to $h \otimes (1 \otimes g)$, we obtain $\Sigma \varphi(h,g_2)(1 \otimes g_1) = \Sigma \lambda(h,g_2)(1 \otimes g_1)$ for all h,g, so that $\varphi(h,g) = \Sigma \varphi(h,g_3)(1 \otimes g_2)(1 \otimes \overline{S}(g_1)) = \Sigma \lambda(h,g_3)(1 \otimes g_2)(1 \otimes \overline{S}(g_1)) = \lambda(h,g)$. The proof now follows from Proposition 3.1.

Finally, we note the correspondence between the equivalence relation \sim on $\mathcal{T}(A)$ of Definition 2.10 and the equivalence of crossed systems in [4]. Recall that crossed systems (\cdot, σ) and (\cdot', σ') are defined in [4] to be equivalent if there exists $\bar{v} \in \text{Reg}(H, B)$ with inverse \bar{w} such that $\bar{v}(1) = 1$, and for all $h, g \in H$, $b \in B$,

$$h \cdot b = \sum \overline{v}(h_1)(h_2 \cdot b)\overline{w}(h_3), \qquad (3.17)$$

$$\sigma'(h,g) = \sum \overline{v}(h_1)(h_2 \cdot \overline{v}(g_1))\sigma(h_3, g_2)\overline{w}(h_4g_3). \tag{3.18}$$

PROPOSITION 3.3. For $A = B \otimes H$, and $\tau, \lambda \in \mathcal{F}(A)$, $\tau \sim \lambda$ if and only if the crossed systems (\cdot, σ) and (\cdot', σ') corresponding to τ and λ , respectively, are equivalent in the sense of Doi.

Proof. Suppose first that $\tau \sim \lambda$ and let $\overline{v} = (1 \otimes \epsilon) \cdot v \in \text{Reg}(H, B)$. Applying $1 \otimes \epsilon$ to Proposition 2.9(iii) with $a \in B$ yields (3.17). To obtain (3.18), first note that by Proposition 2.9(iii), for $h, g \in H$, we have

$$\lambda(h \otimes (1 \otimes g)) = \sum v(h_1)\tau(h_2 \otimes (1 \otimes g_1)v(g_2))v^{-1}(h_3g_3).$$

Applying $1 \otimes \epsilon$ to both sides, we obtain

$$\sigma'(h,g) = \sum \overline{v}(h_1)(1 \otimes \epsilon) \big(\tau(h_2 \otimes (1 \otimes g_1)v(g_2))\big) \overline{w}(h_3g_3).$$

But $\Sigma(1 \otimes g_1)v(g_2) \otimes g_3 = \sum \rho_A((1 \otimes g_1)v(g_2)) = (\text{Id} \otimes \Delta_H)(\Sigma(1 \otimes g_1)v(g_2))$, and applying $\text{Id} \otimes \epsilon \otimes \text{Id}$ yields $\Sigma \overline{v}(g_1) \otimes g_2 = \Sigma(1 \otimes g_1)v(g_2)$, so that by (3.15), Eq. (3.18) holds.

Conversely, let (\cdot, σ) and (\cdot', σ') be Doi-equivalent. Define $v \in \text{Reg}(H, A)$ by $v(h) = \sum \bar{v}(h_2) \otimes S(h_1)h_3$. Clearly (i) and (ii) of Proposition 2.9 hold and we must verify (iii). For $a = b \otimes g$,

$$\lambda(h \otimes a) = \sum (h_2 \cdot b) \sigma'(h_3, g_1) \otimes S(h_1) h_4 g_2 \quad \text{by (3.15)}$$

$$= \sum \overline{v}(h_2)(h_3 \cdot b)(h_4 \cdot \overline{v}(g_1)) \sigma(h_5, g_2) \overline{w}(h_6 g_3)$$

$$\otimes S(h_1) h_7 g_4 \quad \text{by (3.17), (3.18)}$$

$$= \sum v(h_1) \{ (h_3 \cdot b)(h_4 \cdot \overline{v}(g_1)) \sigma(h_5, g_2)$$

$$\otimes S(h_2) h_6 g_3 \} v^{-1}(h_7 g_4).$$

Here $\sum a_0 v(a_1) = \sum (b \otimes g_1)(\overline{v}(g_3) \otimes S(g_2)g_4) = \sum b\overline{v}(g_1) \otimes g_2$, so now it follows easily that $\lambda(h \otimes a) = \sum v(h_1)\tau(h_2 \otimes a_0v(a_1))v^{-1}(h_3a_2)$.

COROLLARY 3.4. For $A = B \otimes H$ and $\tau, \lambda \in \mathcal{U}(\mathcal{F}(A))$, then $\tau \sim \lambda$ if and only if $A^{\tau} \cong A^{\lambda}$ as algebras in ${}_{B}\mathcal{M}^{H}$.

Proof. This follows directly from Proposition 2.9, Proposition 3.3, and [4]. \blacksquare

4. TWISTINGS OF AN H-GALOIS OBJECT

In this section we study the set of H-Galois structures on a given H-Galois extension $A/A^{\operatorname{co} H}$. First we note that if τ is an invertible twisting, then if $A/A^{\operatorname{co} H}$ is H-Galois, so is $A^{\tau}/A^{\operatorname{co} H}$. No flatness or finiteness assumptions are needed for this argument. As usual, let $B = A^{\operatorname{co} H}$.

PROPOSITION 4.1. Let A be an H-comodule algebra and let $\tau \in \mathcal{U}(\mathcal{T}(A))$. Then A^{τ}/B is H-Galois if and only if A/B is H-Galois.

Proof. Let λ : $H \to \operatorname{End}(A)$ be the convolution inverse to τ' . Denote by $\operatorname{can}'_{\tau}$ the canonical map from $A^{\tau} \otimes_{B} A^{\tau}$ to $A^{\tau} \otimes H$, $a \otimes b \mapsto \sum a_{0} *_{\tau} b \otimes a_{1}$. We show that $\operatorname{can}'_{\tau}$ is bijective if and only if can' is.

Note first that $f: A \otimes H \to A \otimes H$, $f(a \otimes b) = \Sigma \tau'(\overline{S}(h_1))(a) \otimes h_2$ is a bijection with inverse f^{-1} defined by $f^{-1}(a \otimes b) = \Sigma \lambda(\overline{S}(h_1))(a) \otimes h_2$. Also $g: A \otimes_B A \to A \otimes_B A$ defined by $g(a \otimes b) = \Sigma \tau'(\overline{S}(a_1))(a_0) \otimes b$ is bijective with inverse g^{-1} defined by $g^{-1}(a \otimes b) = \Sigma \lambda(\overline{S}(a_1))(a_0) \otimes b$. To check that g and g^{-1} are inverses, use (1.6).

Now it is straightforward to check that the diagram

$$\begin{array}{ccc}
A \otimes_{B} & A \xrightarrow{\operatorname{can'}_{\tau}} A \otimes H \\
\downarrow g & & \downarrow f \\
A \otimes_{B} & A \xrightarrow{\operatorname{can'}} A \otimes H
\end{array}$$

commutes, since

$$f(\operatorname{can}'_{\tau}(a \otimes b)) = f(\sum a_0 *_{\tau} b \otimes a_1)$$

$$= \sum \tau'(\overline{S}(a_1))(a_0 *_{\tau} b) \otimes a_2$$

$$= \sum \tau'(\overline{S}(a_3))(a_0)\tau'(\overline{S}(a_2)a_1)(b) \otimes a_4 \quad \text{by (1.3)}$$

$$= \sum \tau'(\overline{S}(a_1))(a_0)b \otimes a_2$$

$$= \operatorname{can}'(\sum \tau'(\overline{S}(a_1))(a_0) \otimes b) \quad \text{by (1.6)}$$

$$= \operatorname{can}'(g(a \otimes b)).$$

Thus can'_{τ} is a bijection if and only if can' is.

COROLLARY 4.2. If A/B is H-Galois and $\nu \in \mathcal{U}(\mathcal{L}(A))$ then $^{\nu}A/B$ is also H-Galois.

Proof. This follows immediately from Lemma 1.4 and the proposition.

The next theorem is the left hand version of [8, Theorem 2.3] but we provide most of the details for completeness.

Theorem 4.3. Let A be a right H-comodule algebra (with multiplication written as juxtaposition) and suppose H is k-projective. Let $C = (A, \times, \rho_A)$ be the H-comodule A but with a different associative multiplication \times . Suppose there is an algebra map ϕ : $\#(H,C) \to \#(H,A)$ such that the diagram

$$H^* \xrightarrow{\gamma} \#(H,C) \xleftarrow{\alpha_C} C$$

$$\parallel \qquad \qquad \downarrow^{\phi} \qquad \parallel$$

$$H^* \xrightarrow{\gamma} \#(H,A) \xrightarrow{ev} A$$

commutes where γ , α , ev are as in (1.10)–(1.12). Then there is a left twisting ν such that $C = {}^{\nu}A$.

Proof. Define ν'' : $A \to \#(H, A)$ by $\nu'' = \phi \circ \alpha_C$, so that $\nu(h \otimes a) = \phi(\alpha_C(a))(h)$. We check that ν is a left hand twisting. For the normality

conditions (1.1), we note that from the commutativity of the diagram, $1_A = 1_C$, and

$$\nu(1 \otimes a) = \phi(\alpha_C(a))(1) = ev \circ \phi \circ \alpha_C(a) = a,$$

and since ϕ is an algebra map, $\phi(\epsilon) = \epsilon$, and so

$$\nu(h \otimes 1) = \phi(\alpha_C(1))(h) = \phi(\epsilon)(h) = \epsilon(h).$$

Also, in $C\#H^* \subseteq \#(H,C)$, we have that for all $h^* \in H^*$, $a \in C$,

$$\alpha_{C}(a)\gamma_{C}(h^{*}) = a\#h^{*} = \sum (1\#h^{*} \leftarrow \overline{S}(a_{1}))(a_{0}\#\epsilon)$$
$$= \sum \gamma(h^{*} \leftarrow \overline{S}(a_{1}))\alpha_{C}(a_{0}).$$

Applying ϕ to both sides, we obtain that in #(H, A)

$$(\phi\alpha_{C}(a))\cdot(\phi\gamma_{C}(h^{*}))=\sum(\phi\gamma(h^{*}-\bar{S}(a_{1})))\cdot(\phi\alpha_{C}(a_{0})),$$

and evaluating at $h \in H$, we have

$$\sum \nu(a \otimes h_1)h^*(h_2) = \sum h^*(\bar{S}(a_1)(\nu(a_0 \otimes h_2))_1h_1)\nu(a_0 \otimes h_2)_0.$$

Since this equality holds for all $h^* \in H^*$ and H is projective, we have

$$\sum \nu(a \otimes h_1) \otimes h_2 = \sum \nu(a_0 \otimes h_2)_0 \otimes \overline{S}(a_1) \nu(a_0 \otimes h_2)_1 h_1,$$

or equivalently, (1.4); i.e.,

$$\rho\big(\nu\big(a\otimes h\big)\big) = \sum \nu\big(a_0\otimes h_2\big)\otimes a_1h_3\overline{S}(h_1).$$

Also, we see that $(C, \times, \rho_A) = ({}^{\nu}A, *_{\nu}, \rho_A)$ since for $a, b \in C$, we have

$$a \times b = \nu''(a \times b)(1) = (\nu''(a) \cdot \nu''(b))(1)$$
$$= \sum \nu''(a)(\nu''(b)(1)_1)\nu''(b)(1)_0$$
$$= \sum \nu(b_1 \otimes a)b_0 = a *_{\nu} b.$$

Now $\nu''(a *_{\nu} b)(h) = (\nu''(a) \cdot \nu''(b))(h)$ in #(H, A) together with (1.4) implies (1.5).

THEOREM 4.4. Suppose A and C are H-Galois objects, and A = C as objects in \mathcal{M}_B^H . Also suppose H is finitely generated projective over k. Then $C = {}^{\nu}\!A$ for an invertible left twisting ν .

Proof. If A = C as H-comodules, $A^{\operatorname{co} H} = C^{\operatorname{co} H} = B$ and so $1_A = 1_C$. Since H is finitely generated projective, $\#(H,A) = A\#H^*$ and $\#(H,C) = C\#H^*$. Also since A and C are Galois, the map π_A : $A\#H^* \to \operatorname{End}(A_B)$ is an algebra isomorphism by [9] (or see [10, Chap. 8]) where $\pi_A(a\#h^*)(b) = \sum ab_0h^*(b_1)$. Similarly π_C is an algebra isomorphism and we claim that $\phi = \pi_A^{-1} \circ \pi_C$ makes the diagram in Theorem 4.3 commute.

Since $\pi_A(1\#h^*) = \pi_C(1\#h^*)$ for all $h^* \in H^*$, the left hand side of the diagram commutes. Also, for $a \in C$, $(ev \circ \phi \circ \alpha_C)(a) = [(\pi_A^{-1} \circ \pi_C)(a\#\epsilon)]$ (1). Suppose $\pi_C(a\#\epsilon) = \pi_A(\sum b_i\#h_i^*)$. Then $\sum b_ih_i^*(1) = a$, and the right hand side commutes also.

Thus by Theorem 4.3, $C = {}^{\nu}A$ for some left twisting ν . Similarly $A = {}^{\lambda}C$ for a left twisting λ , and we claim that ν is invertible with λ' the convolution inverse to ν' in $\operatorname{Hom}(H,\operatorname{End}(A))$. For any $a,b\in A$, since $A = {}^{\lambda}({}^{\nu}A)$,

$$ab = \sum \lambda(b_1 \otimes a) *_{\nu} b_0 = \sum \nu(b_1 \otimes \lambda(b_2 \otimes a))b_0$$
$$= \sum \nu'(b_1)(\lambda'(b_2)(a))b_0.$$

For $h \in H$, since A is H-Galois, there exist $b_i, c_i \in A$ such that $\sum b_{i_0} c_i \otimes b_{i_1} = 1 \otimes h$. Then for any $a \in A$,

$$\sum \nu'(h_1) (\lambda'(h_2)(a)) = \sum \nu'(b_{i_1}) (\lambda'(b_{i_2})(a)) b_{i_0} c_i = a \sum b_i c_i = a \epsilon(h).$$

Similarly
$$\sum \lambda'(h_1) \circ \nu'(h_2)(a) = \epsilon(h)a$$
, and so ν is invertible.

Now, for A/B H-Galois and H finitely generated projective over k, the above implies that there is a bijection between the set $\mathcal{U}(\mathcal{L}(A))$ of invertible left twistings of A and the set $\mathcal{L}(A)$ of Galois objects C/B with C = A in \mathcal{M}_B^H , for ν in $\mathcal{U}(\mathcal{L}(A))$ corresponds to $\mathcal{L}(A)$ in $\mathcal{L}(A)$. If $\mathcal{L}(A) = A$, then $\mathcal{L}(A) = A$ where $\mathcal{L}(A) = A$ is the convolution inverse to $\mathcal{L}(A) = A$, and then the proof of Theorem 4.4. shows that $\mathcal{L}(A) = A$ and $\mathcal{L}(A) = A$. Thus we have:

THEOREM 4.5. For H finitely generated projective over k, the sets $\mathcal{G}al(A)$, $\mathcal{U}(\mathcal{L}(A))$, and $\mathcal{U}(\mathcal{T}(A))$ are in bijective correspondence. The twisting u corresponds to A in $\mathcal{G}al(A)$.

Now we note that for any H, the map $\Gamma: Z_{tw}^2(H, A) \to K(\Omega)$, defined in Section 2, is injective if A/A^{coH} is H-Galois.

Remark 4.6. If A is H-Galois then Γ is injective. For if for all h, a we have $\tau_{\varphi}(h \otimes a) = \sum \varphi(h, a_1)a_0 = \tau_{\lambda}(h \otimes a)$ and if $1 \otimes g = \sum a_{i_0}c_i \otimes a_{i_1}$, then $\varphi(h, g) = \sum \varphi(h, a_{i_1})a_{i_0}c_i = \sum \lambda(h, a_{i_1})a_{i_0}c_i = \lambda(h, g)$, so that $\varphi = \lambda$. Here it is not necessary that H be finite.

THEOREM 4.7. For A/B H-Galois and H finitely generated projective over k, there is an exact sequence of pointed sets

$$1 \to \mathcal{U}(Z_{tw}^2(H,A)) \xrightarrow{\Gamma} \mathcal{U}(\mathcal{T}(A)) \xrightarrow{\Omega} \operatorname{Meas}_H(B,A)$$

and thus an exact sequence of pointed sets

$$1 \to \mathcal{U}(Z_{tw}^2(H, A)) \to \mathcal{G}al(A) \to \text{Meas}_H(B, A).$$

Proof. Since A/B is H-Galois, π : $A\#H^* \to \operatorname{End}(A_B)$, defined by $\pi(a\#h^*)(c) = \sum ac_0h^*(c_1)$, is an algebra isomorphism. Suppose $\tau \in K(\Omega)$; i.e., $\tau'(h) \in \operatorname{End}(A_B)$ for all $h \in H$.

Define $\varphi: H \otimes H \to A$ by $\varphi(h, g) = \pi^{-1}(\tau'(h))(g)$; i.e., if $\pi^{-1}(\tau'(h)) = \sum a_i^h \# f_i^h$, so that $\tau'(h)(a) = \sum a_i^h f_i^h(a_1)a_0$, then

$$\varphi(h,g) = \sum a_i^h f_i^h(g).$$

Now $\Gamma(\varphi)(h\otimes a)=\Sigma\varphi(h,a_1)a_0=\Sigma a_i^hf_i^h(a_1)a_0=\tau(h\otimes a)$ and it remains to show that φ is an invertible cocycle. Proving normality is straightforward, since $\varphi(h,1)=\Sigma a_i^hf_i^h(1)=\tau'(h)(1)=\epsilon(h)1_A$, and since $\Sigma a_i^1\#f_i^1=1\#\epsilon$, if $1\otimes g=\Sigma c_{j_0}d_j\otimes c_{j_1}$, $\varphi(1,g)=\Sigma\epsilon(c_{j_1})c_{j_0}d_j=\epsilon(g)1_A$.

Now we check the coaction of H on $\varphi(g, h)$. By (1.2), since $\tau(h \otimes a) = \sum a_i^h f_i^h(a_1) a_0$, we have for all $a \in A$,

$$\sum a_{i_0}^h f_i^h(a_2) a_0 \otimes a_{i_1}^h a_1 = \sum a_{i_0}^{h_2} f_i^{h_2}(a_1) a_0 \otimes S(h_1) h_3 a_2.$$

Now suppose $1 \otimes g = \sum c_{i_0} d_i \otimes c_{i_1}$. Then by the equation above,

$$\sum a_{i_0}^h f_i^h(c_{j_2}) c_{j_0} d_j \otimes a_{i_1}^h c_{j_1} = \sum a_{i_2}^{h_2} f_{i_2}^{h_2}(c_{j_1}) c_{j_0} d_j \otimes S(h_1) h_3 c_{j_2},$$

so that

$$\sum a_{i_0}^h f_i^h(g) \otimes a_{i_1}^h = \sum a_{i_1}^{h_2} f_i^{h_2}(g_2) \otimes S(h_1) h_3 g_3 \overline{S}(g_1),$$

in other words,

$$\rho(\varphi(h,g)) = \sum \varphi(h_2,g_2) \otimes S(h_1)h_3g_3\overline{S}(g_1).$$

Now we must verify 2.3(iii). From (1.3), since $\rho(a*_{\tau}b) = \sum a_0*_{\tau}b_0 \otimes a_1b_1$, we have

$$\sum a_i^h f_i^h(a_1 b_1) (a_0 *_{\tau} b_0) = \sum (a_i^{h_1} f_i^{h_1}(a_1) a_0) (a_i^{h_2 a_2} f_i^{h_2 a_2}(b_1) b_0);$$

i.e.,

$$\sum a_i^h f_i^h(a_2 b_2) a_0 a_j^{a_1} f_j^{a_1}(b_1) b_0 = \sum a_i^{h_1} f_i^{h_1}(a_1) a_0 a_j^{h_2 a_2} f_j^{h_2 a_2}(b_1) b_0.$$

Suppose $1 \otimes g = \sum b_{k_0} c_k \otimes b_{k_1}$. Then, as in previous computations,

$$\sum a_i^h f_i^h(a_2 g_2) a_0 a_j^{a_1} f_j^{a_1}(g_1) = \sum a_i^{h_1} f_i^{h_1}(a_1) a_0 a_j^{h_2 a_2} f_j^{h_2 a_2}(g);$$

i.e.,

$$\sum \varphi(h, a_2 g_2) a_0 \varphi(a_1, g_1) = \sum \varphi(h_1, a_1) a_0 \varphi(h_2 a_2, g).$$

Finally, we show that φ is invertible, i.e., that φ' : $H \to \#(H, A)$, $\varphi'(h)(g) = \varphi(h, g)$, is convolution invertible. Let λ' be the convolution inverse to τ' in $\operatorname{Hom}(H, \operatorname{End}(A))$ and let λ : $H \otimes A \to A$ be $\lambda(h \otimes a) = \lambda'(h)(a)$. Then, for $b \in B$, since $\epsilon(h)b = \sum \lambda'(h_1)(\tau'(h_2)(b)) = \sum \lambda'(h_1)\epsilon(h_2)b = \lambda'(h)(b)$, we have that λ restricted to $H \otimes B$ is the identity twisting. The map λ is a twisting, not of A, but of A^{τ} , so that (1.3) holds for λ in the algebra A^{τ} . Then for $a \in A$, $b \in B$, $h \in H$,

$$\lambda'(h)(ab) = \lambda'(h)(a *_{\lambda} b) \quad \text{since } \lambda|_{H \otimes B} \text{ is the identity twisting}$$

$$= \sum \lambda'(h_1)(a_0) *_{\tau} \lambda'(h_2 a_1)(b) \quad \text{by (1.3) for } \lambda \text{ and } A^{\tau}$$

$$= \sum \lambda'(h)(a) *_{\tau} b = \lambda'(h)(a)b,$$

so that $\lambda'(h) \in \operatorname{End}(A_B)$ for all $h \in H$. Define $\omega : H \otimes H \to A$ by $\omega(h, g) = \pi^{-1}(\lambda'(h))(g)$. We are required to show that $\Sigma(\varphi'(h_1) \cdot \omega'(h_2))(g) = \Sigma(\omega'(h_1) \cdot \varphi'(h_2))(g) = \epsilon(h)\epsilon(g)$ for all h, g. If we denote $\pi^{-1}(\lambda'(h)) = \Sigma b_k^h \# l_k^h \in A \# H^*$, then

$$\begin{split} \sum (\varphi'(h_1) \cdot \omega'(h_2))(g) &= \sum \varphi'(h_1) \big[\, \omega'(h_2)(g_2)_1 g_1 \big] \, \omega'(h_2)(g_2)_0 \\ &= \sum \varphi'(h_1) \big(b_{i_1}^{h_2} g_1 \big) b_{i_0}^{h_2} l_i^{h_2}(g_2) \\ &= \sum a_j^{h_1} f_j^{h_1} \big(b_{i_1}^{h_2} g_1 \big) b_{i_0}^{h_2} l_i^{h_2}(g_2) \\ &= \sum \big(a_j^{h_1} b_{i_0}^{h_2} \# \big(f_j^{h_1} \leftarrow b_{i_1}^{h_2} \big) \big(l_i^{h_2} \big) \big)(g) \\ &= \sum \big(a_j^{h_1} \# f_j^{h_1} \big) \big(b_i^{h_2} \# l_i^{h_2} \big)(g) \\ &= \sum \pi^{-1} \big(\tau'(h_1) \big) \pi^{-1} \big(\lambda'(h_2) \big)(g) \\ &= (\epsilon(h) \# \epsilon)(g) = \epsilon(h) \epsilon(g). \end{split}$$

Similarly $\Sigma(\omega'(h_1) \cdot \varphi'(h_2))(g) = \epsilon(h)\epsilon(g)$. Thus $\Gamma(\mathcal{U}(Z_{tw}^2(H, A))) = K(\Omega)$, and the sequence is exact.

EXAMPLE 4.8. (i) Suppose $A^{\operatorname{co} H} = B = k$ so that by Lemma 2.2, $K(\Omega) = \mathcal{F}(A)$. If H is finitely generated projective over k and A/k is H-Galois, then Γ is a bijection of pointed sets from $\mathcal{U}(Z_{\operatorname{tw}}^2(H,A))$ to $\mathcal{U}(\mathcal{F}(A))$.

- (ii) If B = k and A is commutative, then by Remark 2.4(iii), $\mathcal{G}al(A)$ is in bijective correspondence with the set of invertible Sweedler cocycles $\mathcal{U}(Z^2(H, A))$ with trivial weak action which satisfy 2.3(ii).
- (iii) If, as well, H is cocommutative, then $\mathcal{U}(Z^2(H,A))$ is an abelian group under convolution and so $\mathcal{U}(\mathcal{F}(A))$, $\mathcal{U}(\mathcal{L}(A))$, and $\mathcal{L}(A)$ have induced abelian group structures also. Suppose φ , $\lambda \in \mathcal{U}(Z^2(H,A))$. Then

$$\tau'_{\varphi} * \tau'_{\lambda}(h)(a) = \sum_{\alpha} \tau'_{\varphi}(h_{1}) [\lambda(h_{2}, a_{1}) a_{0}] = \sum_{\alpha} \varphi(h_{1}, a_{1}) \lambda(h_{2}, a_{2}) a_{0}
= \tau'_{\alpha * \lambda}(h)(a)$$

and so twistings in $\mathscr{U}(\mathscr{T}(A))$ multiply by $\tau_{\varphi} \diamondsuit \tau_{\lambda}(h \otimes a) = \sum_{\varphi} (h_1, a_1) \lambda(h_2, a_2) a_0$. Then in $\mathscr{G}al(A)$, $A^{\tau} \bigstar A^{\mu} = A^{\tau \diamondsuit \mu}$. Here A acts as the identity element and the inverse to A^{τ} is $A^{\tau^{-1}}$.

Finally, we show that for A/B Galois, the equivalence classes of twistings in $\mathscr{U}(\mathcal{T}(A))$ correspond to the isomorphism classes of twisted algebras A^{τ} . Here no finiteness restriction is imposed on H but if H is not finitely generated projective then we have not proved that every Galois H-object $C = (A, \times, \rho_A)$ is A^{τ} for some τ .

THEOREM 4.9. Suppose A/B is H-Galois, $\tau, \lambda \in \mathcal{F}(A)$, and there is a left B-module right H-comodule algebra homomorphism ψ from A^{λ} to A^{τ} . Then there is a map $v: H \to A$ satisfying the conditions of Proposition 2.9. If ψ is an isomorphism, then $v \in \text{Reg}(H, A)$.

Proof. We imitate the notation of [11] and denote $\operatorname{can}^{-1}(1 \otimes h)$ by $\sum l_i(h) \otimes_B r_i(h) \in A \otimes_B A$, so that $1 \otimes h = \sum l_i(h)r_i(h)_0 \otimes r_i(h)_1$. Note that juxtaposition denotes multiplication in A and $*_{\tau}$, $*_{\lambda}$ denote multiplication in A^{τ} and A^{λ} , respectively. For $h \in H$, define

$$v(h) = \sum l_i(h) \psi(r_i(h)).$$

Since ψ is a left *B*-module map $v \colon H \to A$ is well defined, and clearly $v(1_H) = 1_A$.

For $a \in A$, from [11] or by just applying can to both sides of this equation, we see that

$$\sum a_0 l_i(a_1) \, \otimes_{\!{\scriptscriptstyle B}} \, r_i(a_1) = 1 \, \otimes_{\!{\scriptscriptstyle B}} \, a \in A \, \otimes_{\!{\scriptscriptstyle B}} \, A.$$

Thus

$$\sum a_0 v(a_1) = \sum a_0 l_i(a_1) \psi(r_i(a_1)) = \psi(a).$$

Since ψ is an H-comodule map, for all $a \in A$, we have $\Sigma \psi(a_0) \otimes a_1 = \Sigma \psi(a)_0 \otimes \psi(a)_1$ and thus $\Sigma a_0 v(a_1) \otimes a_2 = \Sigma a_0 v(a_2)_0 \otimes a_1 v(a_2)_1$. Then,

using the standard argument since can' is an isomorphism, we have that

$$\sum v(h_1) \otimes h_2 = \sum v(h_2)_0 \otimes h_1 v(h_2)_1.$$

Condition (ii) of Proposition 2.9 follows immediately, and it remains to check condition (iii). For $b, c \in A$, since ψ is an algebra map, we have $\psi(b *_{\lambda} c) = \psi(b) *_{\tau} \psi(c)$ which yields

$$\sum b_0 \lambda(b_1 \otimes c_0) v(b_2 c_1) = \sum b_0 v(b_1) \tau(b_2 \otimes c_0 v(c_1)).$$

Once again using the bijectivity of can', we obtain (iii).

Now suppose that ψ is an isomorphism so that ψ^{-1} is a left *B*-module right *H*-comodule algebra map from A^{τ} to A^{λ} . Then there is a map w: $H \to A$ satisfying (i), (ii), and (iii) of Proposition 2.9 such that $\psi^{-1}(a) = \sum a_0 w(a_1)$ for all $a \in A$. Then for all $a \in A$ we have that $a = \sum a_0 v(a_1) w(a_2) = \sum a_0 w(a_1) v(a_2)$ and, again using the fact that A is Galois, we see that w and v are convolution inverses.

EXAMPLE 4.10. Suppose H is cocommutative and A/k is a commutative Galois H-object. Then it is easy to see that cocycles φ and ω are cohomologous; i.e., there is $u \in \text{Reg}(H, A)$ such that for all $h, g \in H$,

$$\varphi(h,g) = \sum u(h_1)u(g_1)\omega(h_2,g_2)u^{-1}(h_3g_3),$$

if and only if $\tau_{\varphi} \sim \tau_{\omega}$. Then the group of isomorphism classes of algebras in $\mathscr{G}al(A)$ is isomorphic to the second Sweedler cohomology group $H^2(H,B)$.

ACKNOWLEDGMENT

Thanks to P. Schauenburg for pointing out an error in the original version of Remark 2.4.

REFERENCES

- M. Beattie, C.-Y. Chen, and J. J. Zhang, Twisted Hopf comodule algebras, Comm. Algebra 24 (1996), 1759–1775.
- R. J. Blattner and S. Montgomery, Crossed products and Galois extensions of Hopf algebras, Pacific J. Math. 137 (1989), 37–54.
- S. Caenepeel, A variation of Sweedler's complex and the group of Galois objects of an infinite Hopf algebra, Comm. Algebra 24 (1996), 2991–3015.
- Y. Doi, Equivalent crossed products for a Hopf algebra, Comm. Algebra 17 (1989), 3053–3085.
- Y. Doi and M. Tacheuchi, Cleft comodule algebras for a bialgebra, Comm. Algebra 14 (1986), 801–818.

- T. E. Early and H. F. Kreimer, Galois algebras and Harrison cohomology, J. Algebra 58 (1979), 136–147.
- W. R. Ferrer Santos and B. Torrecillas, Twisting products in algebras II, K-Theory 350 (1998), 1–17.
- 8. M. Koppinen, On twisting of comodule algebras, Comm. Algebra 25 (1997), 2009-2027.
- 9. H. F. Kreimer and M. Takeuchi, Hopf algebras and Galois extensions of an algebra, *Indiana Math. J.* **30** (1981), 675–692.
- S. Montgomery, "Hopf Algebras and Their Actions on Rings," CBMS Regional Conference Series in Mathematics 82, Am. Math. Soc., Providence, 1993.
- 11. H.-J. Schneider, Representation theory of Hopf-Galois extensions, *Israel J. Math.* **72** (1990), 196–231.
- 12. M. Sweedler, Cohomology of algebras over Hopf algebras, *Trans. Amer. Math. Soc.* 133 (1968), 205–239.
- 13. J. J. Zhang, Twisted graded algebras and equivalences of graded categories, *Proc. London Math. Soc.* **72** (1996), 281–311.