

SGM2267 0.4Ω Ultra Low ON-Resistance, Dual, SPDT Analog Switch

GENERAL DESCRIPTION

The SGM2267 is a dual single-pole/double-throw (SPDT) analog switch that is designed to operate from a single +1.8V to +4.2V power supply. Targeted applications include battery powered equipment that benefit from ultra low on-resistance (0.4Ω) and fast switching speeds.

SGM2267 features guaranteed on-resistance matching $(0.04\Omega\ TYP)$ between switches and guaranteed on-resistance flatness over the signal range $(0.08\Omega\ TYP)$, as well as high off-isolation and low crosstalk. This ensures excellent linearity and low distortion when switching audio signals.

The SGM2267 is a committed dual single-pole/double -throw (SPDT) that consist of two normally open (NO) and two normally close (NC) switches. This configuration can be used as a dual 2-to-1 multiplexer.

SGM2267 is available in Pb-free TQFN-10 (2.1mm ×1.6mm) package.

FEATURES

• Voltage Operation: +1.8V to +4.2V

Ultra Low On-Resistance: 0.4Ω (TYP) at +4.2V

On-Resistance Matching: 0.04Ω (TYP)
 On-Resistance Flatness: 0.08Ω (TYP)

• -3dB Bandwidth: 40MHz

High Off-Isolation: -78dB at 100kHz

• Low Crosstalk: -103dB at 100kHz

• Rail-to-Rail Input and Output Operation

• TTL/CMOS Compatible

Break-Before-Make Switching

Extended Industrial Temperature Range:
 -40°C to +85°C

• Lead (Pb) Free TQFN-10 (2.1mm×1.6mm) Package

APPLICATIONS

Portable Instrumentation
Battery-Operated Equipment
Computer Peripherals
Speaker and Earphone Switching
Medical Equipment
Audio and Video Switching

ORDERING INFORMATION

MODEL	PIN- PACKAGE	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKAGE OPTION
SGM2267	TQFN-10 (2.1mm×1.6mm)	-40℃ to +85℃	SGM2267YTQD10/TR	2267	Tape and Reel, 3000

ABSOLUTE MAXIMUM RATINGS

V+, IN to GND	0V to 4.6V
Analog, Digital voltage range (1)	
Continuous Current NO, NC, or COM	±250mA
Peak Current NO, NC, or COM	±350mA
Operating Temperature Range	40°C to +85°C
Junction Temperature	150°C

Storage Temperature	65°C to +150°C
Lead Temperature (soldering, 1	0s)260°C
ESD Susceptibility	
HBM	4000V
MM	400V

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

(1) Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PIN CONFIGURATION (TOP VIEW)

FUNCTION TABLE

LOGIC	NO	NC
0	OFF	ON
1	ON	OFF

Switches Shown For Logic "0" Input

PIN DESCRIPTION

PIN	NAME	FUNCTION
10	V_{+}	Power supply
5	GND	Ground
8,7	IN1, IN2	Digital control pin to connect the COM terminal to the NO or NC terminals
9,6	COM1, COM2	Common terminal
2,4	NO1, NO2	Normally-open terminal
1,3	NC1, NC2	Normally-closed terminal

Note: NO, NC and COM terminals may be an input or output.

SGM2267

ELECTRICAL CHARACTERISTICS

 $(V_{+} = +4.2V, GND = 0V, V_{IH} = +1.6V, V_{IL} = +0.6V, T_{A} = -40^{\circ}C$ to $+85^{\circ}C$. Typical values are at $V_{+} = +4.2V, T_{A} = +25^{\circ}C$, unless otherwise noted.)

noted.) PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCH								
Analog Signal Range	V _{NO} , V _{NC} , V _{COM}			-40°C to +85°C	0		V+	V
0 0 11	Б	V_{+} = 4.2V, 0V ≤ V_{NO} or V_{NC} ≤ V_{+} , I_{COM} = -100mA, Test Circuit 1		+25°C		0.4	0.65	Ω
On-Resistance	R _{ON}			-40°C to +85°C			0.75	Ω
On-Resistance Match		V_{+} = 4.2V, $0V \le V_{NO}$ or $V_{NC} \le V_{+}$, I_{COM} = -100mA, Test Circuit 1		+25°C		0.04	0.15	Ω
Between Channels	ΔR_{ON}			-40°C to +85°C			0.2	Ω
On-Resistance Flatness	Б	$V_+ = 4.2V$, $0V \le V_{NO}$ or $V_{NC} \le V_+$, $I_{COM} = -100$ mA, Test Circuit 1		+25°C		0.08	0.12	Ω
On-Resistance Flatness	R _{FLAT(ON)}			-40°C to +85°C			0.2	Ω
Source OFF Leakage Current	I _{NC(OFF)} , I _{NO(OFF)}	V ₊ = 4.2V, V _{NO} or V _{NC} = 3.3 V/0.3V, V _{COM} = 0.3V/ 3.3V		-40°C to +85°C			1	μΑ
Channel ON Leakage Current	I _{NC(ON)} , I _{NO(ON)} , I _{COM(ON)}	V_{+} = 4.2 V, V_{COM} = 0.3V/ 3.3V, V_{NO} or V_{NC} = 0.3V/ 3.3V, or floating		-40°C to +85°C			1	μΑ
DIGITAL INPUTS								
Input High Voltage	V _{INH}			-40°C to +85°C	1.6			V
Input Low Voltage	V _{INL}			-40°C to +85°C			0.5	V
Input Leakage Current	I _{IN}	V ₊ = 4.2V, V _{IN} = 0V or 4.2V		-40°C to +85°C			1	μA
DYNAMIC CHARACTERIS	STICS							
Turn-On Time	t _{ON}	$V_{IN} = 2.1V$ to 0V, $R_L = 50\Omega$, $C_L = 35pF$, V_{NO1} or $V_{NC1} = V_{NO2}$ or $V_{NC2} = 2.1V$, Test Circuit2		+25°C		96		ns
Turn-Off Time	t _{OFF}	V_{IN} = 2.1V to 0V, R_{L} = 50 Ω , C_{L} = 35pF, V_{NO1} or V_{NC1} = V_{NO2} or V_{NC2} = 2.1V, Test Circuit2		+25°C		16		ns
Break-Before-Make Time Delay	t _D	V_{IN} = 2.1V to 0V, R_{L} = 50 Ω , C_{L} = 35pF, V_{NO1} or V_{NC1} = V_{NO2} or V_{NC2} = 2.1V, Test Circuit3		+25°C		25		ns
Off loolation	0	$R_L = 50\Omega$, Signal = 0dBm,	100kHz	+25°C		-78		dB
Off Isolation	O _{ISO}	Test Circuit4	1MHz	+25°C		-58		dB
Channel-to-Channel	V	$R_L = 50\Omega$, Signal = 0dBm,	100kHz	+25°C		-103		dB
Crosstalk	X _{TALK}	Test Circuit5	1MHz	+25°C		-90		dB
-3dB Bandwidth	BW	R _L = 50Ω, Signal = 0dBm, Test Circuit6		+25°C		40.0		MHz
Charge Injection Select Input to Common I/O	Q	V_{NO1} or V_{NC1} = V_{NO2} or V_{NC2} = 0V, C_L = 1.0nF, R_s = 0 Ω ,Test Circuit7		+25°C		4.0		рС
Total Harmonic Distortion + Noise	THD+N	V _{COM} = 2V _{P-P} , f = 20Hz to 20kHz, Test Circuit8		+25°C		0.011		%
Channel ON Capacitance	C _{ON}			+25°C		106		pF
POWER REQUIREMENTS	3							
Power Supply Range	ge V+		-40°C to +85°C	1.8		4.2	V	
Power Supply Current	I ₊	$V_{+} = 4.2V$, $V_{IN} = 0V$ or V_{+}		-40°C to +85°C			1	μΑ

Specifications subject to changes without notice.

ELECTRICAL CHARACTERISTICS

 $(V_{+} = +2.7V \text{ to } +3.6V, \text{ GND} = 0V, V_{IH} = +1.6V, V_{IL} = +0.4V, T_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}. \text{ Typical values are at } V_{+} = +3.0V, T_{A} = +25^{\circ}\text{C}, \text{ unless otherwise noted.}$

PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCH	1							
Analog Signal Range	$V_{NO}, V_{NC}, \ V_{COM}$			-40°C to +85°C	0		V ₊	V
On-Resistance	R _{ON}	$V_{+} = 2.7V, \ 0V \le V_{NO} \ or \ V_{NC} \le V_{+},$		+25°C		0.5	0.7	Ω
On-inconstance	I _{COM} = -100mA, Test Circuit 1		-40°C to +85°C			0.8	Ω	
On-Resistance Match	ΔR_{ON}	$V_{+} = 2.7V, \ 0V \le V_{NO} \ or \ V_{NC} \le V_{+},$		+25°C		0.03	0.15	Ω
Between Channels	ΔΙΧΟΝ	I _{COM} = -100mA, Test Circuit	1	-40°C to +85°C			0.2	Ω
On-Resistance	D	V_+ = 2.7V, 0V \leq V _{NO} or V _{NC} \leq V ₊ , I_{COM} = -100mA, Test Circuit 1		+25°C		0.1	0.18	Ω
Flatness	R _{FLAT(ON)}			-40°C to +85°C			0.2	Ω
Source OFF Leakage Current	I _{NC(OFF)} , I _{NO(OFF)}	$V_{+} = 3.6V$, V_{NO} or $V_{NC} = 3.3V$ $V_{COM} = 0.3V/3.3V$	// 0.3V,	-40°C to +85°C			1	μΑ
Channel ON Leakage Current	I _{NC(ON)} , I _{NO(ON)} , I _{COM(ON)}	$V_{+} = 3.6V$, $V_{COM} = 0.3V/3.3V$, V_{NO} or $V_{NC} = 0.3V/3.3V$, or floating		-40°C to +85°C			1	μA
DIGITAL INPUTS						•		
Input High Voltage	V _{INH}			-40°C to +85°C	1.5			V
Input Low Voltage	V _{INL}			-40°C to +85°C			0.4	V
Input Leakage Current I_{IN} $V_{+} = 2.7V$, $V_{IN} = 0V$ or 2.7V		-40°C to +85°C			1	μA		
DYNAMIC CHARACTER	RISTICS					•		
Turn-On Time	t _{ON}	V_{IN} =1.5V to 0V, R_{L} = 50 Ω , C_{L} = 35pF, V_{NO1} or V_{NC1} = V_{NO2} or V_{NC2} = 1.5V, Test Circuit2		+25°C		100		ns
Turn-Off Time	t _{OFF}	V_{IN} = 1.5V to 0V, R_L = 50 Ω , C_L = 35pF, V_{NO1} or V_{NC1} = V_{NO2} or V_{NC2} = 1.5V, Test Circuit2		+25°C		25		ns
Break-Before-Make Time Delay	t _D	V_{IN} = 1.5V to 0V, R_L = 50 Ω , C_L = 35pF, V_{NO1} or V_{NC1} = V_{NO2} or V_{NC2} =1.5V, Test Circuit3		+25°C		28		ns
Off legistics	0	$R_L = 50\Omega$, Signal = 0dBm,	100kHz	+25°C		-78		dB
Off Isolation	O _{ISO}	Test Circuit4	1MHz	+25°C		-58		dB
Channel-to-Channel	V	$R_L = 50\Omega$, Signal = 0dBm,	100kHz	+25°C		-103		dB
Crosstalk	X _{TALK}	Test Circuit5	1MHz	+25°C		-90		dB
–3dB Bandwidth	BW	R _L = 50Ω, Signal = 0dBm, Test Circuit6		+25°C		40		MHz
Charge Injection Select Input to Common I/O	Q	V_{NO1} or V_{NC1} = V_{NO2} or V_{NC2} = 0V, C_L =1.0nF, R_S = 0 Ω , Test Circuit7		+25°C		4.0		pC
Total Harmonic Distortion + Noise	THD+N	V _{COM} =1.5V _{P-P} , f = 20Hz to 20kHz, Test Circuit8		+25°C		0.015		%
Channel ON Capacitance	C _{ON}			+25°C		106		pF

Specifications subject to changes without notice.

TYPICAL PERFORMANCE CHARACTERISTICS

TEST CIRCUITS

Test Circuit 1. On Resistance

Test Circuit 2. Switching Times ($t_{\text{ON}},\,t_{\text{OFF}}$)

Test Circuit 3. Break-Before-Make Time (t_D)

TEST CIRCUITS (Cont.)

Test Circuit 4. Off Isolation

Test Circuit 5. Channel-to-Channel Crosstalk

TEST CIRCUITS (Cont.)

Test Circuit 6. -3dB Bandwidth

Test Circuit 7. Charge Injection (Q)

Test Circuit 8. Total Harmonic Distortion

PACKAGE OUTLINE DIMENSIONS

TQFN-10 (2.1mm×1.6mm)

Note: All linear dimensions are in millimeters.

12/2008 REV. A

SGMICRO is dedicated to provide high quality and high performance analog IC products to customers. All SGMICRO products meet the highest industry standards with strict and comprehensive test and quality control systems to achieve world-class consistency and reliability.

For information regarding SGMICRO Corporation and its products, see $\underline{www.sg\text{-}micro.com}$

