MAT0122 ÁLGEBRA LINEAR I FOLHA DE SOLUÇÃO

Nome:Beatriz Viana Costa Número USP: 13673214

Assinatura

Beatriz Viana Costa

Sua assinatura atesta a autenticidade e originalidade de seu trabalho e que você se compromete a seguir o código de ética da USP em suas atividades acadêmicas, incluindo esta atividade.

Exercício: E51 Data: 20/10/2022

SOLUÇÃO

Dados do exercício:

- $v_1, ..., v_N \in \{-1, 1\}^N$;
- N colunas de H_n , de forma que $H_n = [v_1|...|v_n], n \ge 1$;

Objetivo:

Provar que v_i forma uma base de \mathbb{F}^N para $\mathbb{F} = \mathbb{R}$ e $\mathbb{F} = \mathbb{C}$, ou seja, que geram \mathbb{F}^N e que são linearmente independentes sobre \mathbb{F} . É base sobre $GF(2)^N$?

Utilizando os resultados obtidos a partir do exercício anterior (E50.iii)), temos que $H_n^2 = \operatorname{Id}_H * 2^n$.

Temos que qualquer vetor a presente na base canônica A pode ser escrito como uma combinação linear dos vetores colunas presentes em H_N ao serem multiplicados por um parâmetro alpha:

$$a \in A = \sum_{i=1}^{N} \alpha_i v_i$$

i) Para F=R:

Temos a afirmação da combinação linear anterior, sendo que $\alpha_i \in \mathbb{R}$, pois assim conseguimos chegar todo o espaço \mathbb{R} .

ii) Para F=C:

Utilizaremos o que já foi dito no item i), acrescido de que em \mathbb{C} o parâmetro α_i pode assumir tanto valores reais como complexos.

Sabemos também que a cardinalidade de uma base em GF(2) pode ser descrita por 2_n , sendo n qualquer. Este é o mesmo resultado obtido no exercício 50.iii), ou seja, ambos os conjuntos

possuem a mesma cardinalidade, o que pode ser utilizado para mostrar que os vetores que pertencem à H_n formam uma base em $\mathbb{F} = GF(2)^N$.