class07: Machine Learning I

Saba Heydari Seradj (A17002175)

Clustering

```
# make up data with clear groups using nnorm function
rnorm(10)
```

```
[1] 0.2385475 0.1899933 1.2053969 0.4026503 -0.1563063 -0.3672235
```

[7] -1.7222557 0.3805008 -2.3541861 1.6479814

```
# plot a histogram of 10k points data
hist(rnorm(10000))
```

Histogram of rnorm(10000)

Now, I'll make two groups with different peaks.

```
group_1 <- rnorm(10000, mean=-3)
group_2 <- rnorm(10000, mean=3)
hist(c(group_1, group_2))</pre>
```

Histogram of c(group_1, group_2)


```
n <- 30
x <- c(rnorm(n, -3), rnorm(n, +3))
hist(x)</pre>
```

Histogram of x


```
# Reverses version of its argument
y <- rev(x)
# Takes the x and y coordinates and
z <- cbind(x, y)
head(z)</pre>
```

```
x y

[1,] -3.1392927 -1.407388

[2,] -2.7063229 3.595184

[3,] -1.1740769 3.795043

[4,] -3.8716527 2.814295

[5,] -0.8525996 2.837387

[6,] -3.3708827 3.265837
```

plot(z)

K-means Clustering

```
km <- kmeans(z, centers = 2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

```
x y
1 -2.846333 3.194692
2 3.194692 -2.846333
```

Clustering vector:

Within cluster sum of squares by cluster: [1] 91.91902 91.91902

(between_SS / total_SS = 85.6 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

attributes(km)

\$names

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

\$class

[1] "kmeans"

What is the cluster size?

km\$size

[1] 30 30

Cluster assignment/membership?

km\$cluster

Cluster center?

km\$centers

```
x y
1 -2.846333 3.194692
```

2 3.194692 -2.846333

```
plot(z, col=km$cluster)
points(km$centers, col='blue', pch=15, cex=3)
```


Now let's try it with 4 clusters instead of 2.

```
km4 <- kmeans(z, centers=4)
plot(z, col=km4$cluster)
points(km4$centers, col='blue', pch=15, cex=3)</pre>
```


Hierarchical Clustering

Using hclust() function to run hierarchical clustering.

```
d <- dist(z)
hc <- hclust(d)</pre>
```

```
plot(hc)
abline(h=9, col='red')
```

Cluster Dendrogram

d hclust (*, "complete")

```
grps <- cutree(hc, h=9)
grps</pre>
```

```
plot(z, col=grps)
```



```
plot(hc)
abline(h=4, col='red')
```

Cluster Dendrogram

d hclust (*, "complete")

```
grps4 <- cutree(hc, h=4)
grps4</pre>
```

```
plot(z, col=grps4)
```


Importing and Checking UK Food Data

```
# saving input data file into project directory
fna.data <- 'UK_foods.csv'

# store as x.
# I like to set my first column to be the rownames while reading in the dataset
x <- read.csv(fna.data, row.names=1)</pre>
```

head(x)

	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

dim(x)

[1] 17 4

The dataset has 17 rows and 4 column. The columns are England, Wales, Scotland and Ireland. The rows are food items.

barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))

pairs(x, col=rainbow(10), pch=16)

This code provides a pairwise scatterplot matrix. Each dot represents one of the rows (foods) that are being compared pairwise for the different countries. Even with this small dataset, this is difficult to interpret.

PCA to the rescue

In R, PCA is performed mainly using prcomp() function.

```
# transposing the values and performing a pca on it
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

```
        PC1
        PC2
        PC3
        PC4

        Standard deviation
        324.1502
        212.7478
        73.87622
        2.921e-14

        Proportion of Variance
        0.6744
        0.2905
        0.03503
        0.000e+00

        Cumulative Proportion
        0.6744
        0.9650
        1.00000
        1.000e+00
```

We can see the results using summary(). We can see that PC1 captuers 67.44% of the variance in the data.

What is inside this pca object?

```
attributes(pca)
```

```
$names
[1] "sdev" "rotation" "center" "scale" "x"
$class
[1] "prcomp"
```

pca\$x

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -9.152022e-15
Wales -240.52915 -224.646925 -56.475555 5.560040e-13
Scotland -91.86934 286.081786 -44.415495 -6.638419e-13
N.Ireland 477.39164 -58.901862 -4.877895 1.329771e-13
```

Let's make a plot of pc2 vs. pc1.

```
plot(pca$x[,1],pca$x[,2],xlab = "PC1", ylab = "PC2")
text(pca$x[,1], pca$x[,2], colnames(x), col=c('black', 'red', 'blue', 'darkgreen'))
```



```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```

