Laboratorium MATLA

Ćwiczenie 6 i 7 Mała aplikacja z GUI

Opracowali:

 dr inż. Beata Leśniak-Plewińska dr inż. Jakub Żmigrodzki

> Zakład Inżynierii Biomedycznej Instytut Metrologii i Inżynierii Biomedycznej Wydział Mechatroniki Politechniki Warszawskiej

Cel ćwiczenia

Celem ćwiczenia jest wykorzystanie dotychczas poznanej wiedzy i nabytych umiejętności do zaprojektowania i zaimplementowania małej aplikacji obliczeniowej z zapewnieniem jej obsługi w trybie tekstowym (w *Oknie Poleceń*) jak i za pomocą z GUI.

Literatura i inne źródła:

- 1. <u>Dokumentacja MATLAB'a (plik pdf) dotycząca projektowania aplikacji z graficznym interfejsem użytkownika</u> (wymaga konta w serwisie Mathworks)
- 2. Tworzenie w MATLAB'ieaplikacji korzystających z graficznego interfejsu użytkownika
- 3. Tworzenie prostej aplikacji z użyciem narzędzia GUIDE
- 4. Animacja wykresów w MATLAB'ie (dokumentacja html)
- 5. Animacja w MATLAB'ie (tutorial)
- 6. Automatyczne odświeżanie wykresu po zmianie danych
- 7. Wyświetlanie w GUI komunikatów o błędzie
- 8. Kilka praktycznych porad dotyczących projektowania i tworzenia GUI w MATLAB'ie

Ćwiczenie 5 2/8

Poniższy rysunek przedstawia prosty układ prostownika jedno-połówkowego z filtrem

Sinusoidalnie zmienne napięcie zasilające określone jest zależnością

$$v_s(t) = v_0 \sin(\omega t) \tag{1}$$

gdzie $\omega = 2\pi f$, a f jest częstotliwością napięcia zasilającego.

Działanie układu jest zilustrowane przebiegami napięć, przy czym linią przerywaną oznaczono przebieg napięcia zasilającego, natomiast linią ciągłą – przebieg napięcia na rezystorze R (obciążeniu). W początkowej fazie dioda jest włączona (spolaryzowana w kierunku przewodzenia) - od chwili t=0 do chwili $t=t_A$. W chwili t_A dioda zostaje wyłączona, a przez rezystor R płynie prąd powstały w procesie rozładowywania się kondensatora C. W chwili $t=t_B$ dioda ponownie zostaje włączona i pozostaje w takim stanie do chwili $t=t_D$. Ten cykl powtarza się wielokrotnie, tak długo jak długo pozostaje włączone źródło napięcia zasilającego v_S .

W uproszczonej analizie tego układu, dioda jest traktowana jako idealna, a kondensator C jako nieposiadający ładunku początkowego (w chili czasowej $t\!=\!0$). Kiedy dioda jest włączona, spadek napięcia na rezystorze R (v_R) i prąd płynący przez rezystor R (i_R) są określone zależnościami:

$$v_R(t) = v_0 \sin(\omega t) \tag{2}$$

i

$$i_R(t) = v_0 \sin(\omega t) / R \tag{3}$$

Prąd kondensatora C (i_C) określony jest zależnością:

$$i_C(t) = \omega C v_0 \cos(\omega t) \tag{3}$$

Kiedy dioda jest wyłączona, spadek napięcia na rezystorze R jest określony zależnością:

$$v_R(t) = v_0 \sin(\omega t_A) e^{\frac{t_A - t}{RC}}$$
(4)

Chwile czasowe, kiedy dioda jest wyłączana (t_A , t_D , itd.) są wyznaczane z warunku: $i_R + i_C \le 0$. Dioda jest włączana, kiedy napięcie źródła przekroczy wartość równą spadkowi napięcia na rezystorze $R: v_s \ge v_R$ (chwila t_B , t_E itd.).

Ćwiczenie 5 3/8

- 1. Napisz funkcję prostownik. Funkcja ta ma pobierać jako parametry wejściowe wartości parametrów dla elementów układu prostownika: rezystancji R, pojemności C, amplitudę sinusoidalnie zmiennego napięcia zasilającego v_0 , jego częstotliwości f, liczbę okresów napięcia zasilającego determinująca długość wyznaczanych wektorów napięć i prądów No_{cyl} oraz krok symulacji (okres próbkowania) Δt . Funkcja ta ma iteracyjnie wyznaczać i zwracać wektory wartości napięć v_S i v_R oraz prądów i_C , i_R i i_D , a także zwracać wektor czasu t oraz wartości czasu w chwilach t_A i t_D
- 2. Napisz skrypt skrypt_6, który będzie pobierał od użytkowania wartości niezbędnych parametrów i wykorzysta funkcję prostownik do wyznaczenia wektorów wartości napięć v_S i v_R oraz prądów i_C i i_R .

Następnie, skrypt utworzy w jednym oknie graficznym wykresy ilustrujące w jednym układzie osi przebiegi wartości napięć v_S i v_R oraz, w drugim układzie osi - przebiegi wartości prądów i_C i i_R w funkcji czasu t. Na wykresach powinny być zaznaczone chwile czasowe t_A i t_D . Zadbaj o właściwe opisy osi, tytuły i legendy.

Ponadto skrypt ma wyznaczać i wyświetlać w *Oknie Poleceń* informacje o wartościach następujących parametrów napięcia wyjściowego v_R :

- napięcie średnie $U_{\acute{s}r}$,
- amplitude tetnień U_t
- współczynnik tętnień $k_t = \frac{U_t}{U_{\text{sr}}}$

wyznaczonych dla przedziału czasu w zakresie od $t=t_A$ do $t=t_D$.

Jeśli to konieczne, w celu wyznaczenia wartości ww parametrów napięcia wyjściowego v_R utwórz odrębne funkcje.

Zapewnij kontrolę błędów.

3. Przetestuj działanie skryptu skrypt_6 i funkcji prostownik dla rezystancji $R\!=\!820\,\Omega$, dwóch wartości pojemności: $C\!=\!47\,\mu\,F$ i $C\!=\!10\,\mu\,F$, amplitudy zmiennego napięcia zasilającego $v_0\!=\!12\,V$ i jego częstotliwości $f\!=\!50\,H\!z$ oraz 3 pełnych okresów napięcia zasilającego $N\!o_{cyl}\!=\!3$ z krokiem $\Delta t\!=\!50\,\mu\,s$.

Wartości wyznaczonych parametrów zanotuj w odpowiednich rubrykach Sprawozdania.

4. Utwórz graficzny interfejs użytkownika (GUI), który będzie umożliwiał użytkownikowi komunikację z funkcją prostownik.

GUI ma umożliwiać użytkownikowi podawanie za pomocą wybranych komponentów wartości parametrów wejściowych funkcji prostownik, przy czym użytkownik może podawać wartości elementów biernych jedynie zgodnych z szeregiem głównym E12 (https://pl.wikipedia.org/wiki/Szereg_warto%C5%9Bci) dla 6-ciu kolejnych dekad: $10\div10^6\Omega$ oraz $10^{-3}\div10^3\mu$ F.

GUI ma również ilustrować w dwóch odrębnych układach współrzędnych (osiach) przebiegi napięć i prądów: w jednym układzie współrzędnych przebiegi wartości napięć v_S i v_R , w drugim - przebiegi wartości prądów i_C i i_R w funkcji czasu t. Na wykresach powinny być zaznaczone chwile czasowe t_A i t_D .

Ponadto GUI ma wyświetlać wartości parametrów napięcia wyjściowego v_R identycznych jak w p. 2 wyznaczone dla czasu w zakresie od $t=t_A$ do $t=t_D$. Jeśli to

Ćwiczenie 5 4/8

konieczne, w celu wyznaczenia wartości ww parametrów napięcia wyjściowego v_R utwórz odrębne funkcje lub wykorzystaj te utworzone w p. 2.

Zapewnij kontrolę błędów.

Przetestuj działanie GUI m.in. dla wartości parametrów identycznych jak w p. 3. Porównaj uzyskane wyniki z wynikami dla p. 3. Wartości parametrów napięcia wyjściowego v_R wyznaczone dla wartości parametrów symulacji identycznych jak w p. 3 zanotuj w odpowiednich rubrykach *Sprawozdania*.

UWAGA: W przypadku komunikacji użytkownika z programem za pośrednictwem interfejsu graficznego, do przekazywania użytkownikowi komunikatów np. informujących o statusie obliczeń czy o błędach, przydatne mogą być następujące funkcje (zależnie od sposobu implementacji interfejsu graficznego): dialog, msgbox, errordlg, helpdlg, questdlg, warndlg czy uialert oraz uiconfirm.

5. Zmodyfikuj GUI z p. 4 tak, aby raz rozpoczęta symulacja była realizowana aż do momentu jej zatrzymania za pomocą właściwego komponentu interfejsu. Po czym symulacja może zostać ponownie uruchomiona i zatrzymana. Ponownie uruchamiana symulacja powinna rozpoczynać się od chwili czasowej t=0.

Ponadto, zmienna No_{cyl} ma nadal determinować długość wektorów wyznaczanych napięć i prądów oraz ich przebiegów wyświetlanych w odpowiednich układach osi. Jednak wektory wyznaczanych napięć i prądów powinny być wykorzystane podobnie do szeregowoszeregowego rejestru przesuwającego w prawo (tzn. w przypadku gdy wartości napięć i prądów są wyznaczane dla chwili czasowej odpowiadającej indeksowi elementu wektora o wartości wykraczającej poza długość wektora wynikając z wartości parametrów tj. No_{cyl} , wartości te pojawiają się na początku odpowiedniego wektora, pozostałe wartości zapisane w tym wektorze są przesuwane w prawo, a dotychczas ostatni element wektora jest usuwany z pamięci).

Analogicznie powinny być wyświetlane przebiegi napięć i prądów. Zadbaj o wyróżnienie bieżących wartości w postaci przemieszczającego się znacznika (np. Rys. 1)

Nadal mają być wyznaczane i wyświetlane wartości parametrów napięcia wyjściowego v_R jak w p. 2 oraz p. 4. Jednak tu wartości te mają być wyznaczane dla całej długości wektora napięcia v_R i na bieżąco aktualizowane.

Ponadto, zmiana przez użytkownika w trakcie symulacji wartości parametrów dla elementów układu: rezystancji R, pojemności: C oraz amplitudy napięcia zasilającego v_0 , powinna być na bieżąco uwzględniana w obliczeniach i widoczna na wykresach przebiegów napięć i prądów (np. jak na Rys. 1). Jednocześnie, w trakcie symulacji zmiana wartości pozostałych parametrów symulacji, tzn. częstotliwości napięcia zasilania f, liczby okresów napięcia zasilającego No_{cyl} , determinująca długość wektory napięć i prądów oraz kroku symulacji Δt , ma być niemożliwa (zmiana wartości tych parametrów ma być możliwa jedynie przed uruchomieniem symulacji lub po jej zatrzymaniu).

Przetestuj działanie GUI m.in. dla wartości parametrów identycznych jak w p. 3. Porównaj uzyskane wyniki z wynikami dla p. 3. Wartości parametrów napięcia wyjściowego v_R wyznacz w chwili, gdy symulacja będzie obejmować co najmniej 3 pełne okresy rozładowania i ładowania kondensatora bez początkowego odcinka symulacji do pierwszej zmiany stanu przewodzenia diody (od chwili czasowej t=0 do chwili czasowej t_A). Wartości te zanotuj w odpowiednich rubrykach *Sprawozdania*.

Ćwiczenie 5 5/8

UWAGA: Odświeżanie wykresu w MATLAB'ie umożliwia kilka technik. Zostały one omówione m.in. w źródłach 4-6 wymienionych na liście zamieszczonej na początku tej instrukcji. Wybierz dowolną z tych technik, kierując się w pierwszej kolejności poprawnością działania aplikacji.

Rysunek 1: Wpływ zmiany wartości pojemności i rezystancji w symulowanym układzie prostownika jedno-połówkowego z filtrem na przebiegi wykresów napięć i prądów. (pionowa kropkowana linia reprezentuje kursor wskazujący na bieżącą pozycję w wyświetlanym przebiegu)

Ćwiczenie 5 6/8

Sprawozdanie

Ćwiczenie 6-7. Mała aplikacja z GUI

L.p.		Imię i nazwisko		Grupa		Data		
Punkt cw. / L. punktów		Realizacja/wynik					zyskana ounktów	Uwagi prowadzącego
		$R = 820 \Omega \qquad v_0 = 12 V$ $\Delta t = 50 \mu s$	f = 50 H	I_Z N	$o_{cyl}=3$			
		$C = 47 \mu F$						
		napięcie średnie	$U_{\acute{s}r}$	=	[]			
		amplitudę tętnień						
		współczynnik tętnień	$k_t = \frac{U_t}{U_{\dot{s}r}}$	=	[]			
1	2 / 2	chwile czasu:	t_A	=	[]			
1 ÷.	3 / 2		t_D	=	[]			
		$C=10\muF$						
		napięcie średnie amplitudę tętnień	$U_{\it \acute{s}r}$	=	[]			
		amplitudę tętnień	${U}_{\scriptscriptstyle t}$	=	[]			
		współczynnik tętnień	31					
		chwile czasu:	t_A	=				
			t_D	=	[]			
		$R=820 \Omega \qquad v_0=12 V$ $\Delta t=50 \mu s$	f = 50 H	Iz N	$o_{cyl}=3$			
		$C = 47 \muF$						
			$U_{\acute{s}r}$					
4 /	/ 5	amplitudę tętnień						
		współczynnik tętnień	$k_t = \frac{U_t}{U_{\dot{s}r}}$					
		chwile czasu:	t_A	=	[]			
			t_D	=	[]			
		I						

	$C=10 \mu F$							
	napięcie średnie	$U_{ec{s}r}$	=	[]				
	napięcie średnie amplitudę tętnień	${U}_{\scriptscriptstyle t}$	=	[]				
	współczynnik tętnień chwile czasu:	$k_t = \frac{U_t}{U_{\acute{s}r}}$	=	[]				
	chwile czasu:	$t_{\scriptscriptstyle A}$	=	[]				
		t_D	=	[]				
	$R = 820 \Omega$ $v_0 = 12 V$ $f = 50 Hz$ $\Delta t = 50 \mu s$							
	$C=47 \mu F$							
	napięcie średnie amplitudę tętnień	$U_{st r}$	=	[]				
	amplitudę tętnień	${U}_{\scriptscriptstyle t}$	=	[]				
5/3	współczynnik tętnień	$k_t = \frac{U_t}{U_{\dot{s}r}}$	=	[]				
	$C=10 \mu F$							
	napięcie średnie	$U_{ec sr}$	=	[]				
	amplitudę tętnień	${U}_{\scriptscriptstyle t}$	=	[]				
	napięcie średnie amplitudę tętnień współczynnik tętnień	$k_t = \frac{U_t}{U_{\dot{s}r}}$	=	[]				

Ćwiczenie 5 8/8