Class14 RNASeq Mini-Project

Vanesa Fernandez

```
#/ message: false
library(DESeq2)
```

Import Data

We need two "Counts" and "Metadata" (what DESeq calls col
Data - as it describes the columns in COUNTS)

```
counts <- read.csv("GSE37704_featurecounts.csv", row.names=1)
metadata <- read.csv("GSE37704_metadata.csv")</pre>
```

Start with a wee peak

head(counts)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

We want the column in counts to match the rows in the metadata

colnames(counts)

- [1] "length" "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370"
- [7] "SRR493371"

metadata\$id

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"

We can get of rid of the first column in counts to make these match

```
countData <- counts[,-1]
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
colnames(countData) == metadata$id
```

[1] TRUE TRUE TRUE TRUE TRUE TRUE

```
## Are all these True?
all(c(T,T,T,T))
```

[1] TRUE

```
##and we can add it to the line above. Example:
##all(colnames(countData) == metadata$id)
## TRUE
```

Data CleanUp

Filter out zero counts

It is standard practice to remove any genes/transcripts we have no data for - i.e. zero counts in all columns. How do we do this? \rightarrow to keep inds function

```
to.keep.inds <- rowSums(countData) > 0
cleanCounts <- countData[to.keep.inds,]
head(cleanCounts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Setup for DESeq

##DESeq

```
dds <- DESeq(dds)
res <- results (dds)</pre>
```

##Inspect Results

```
head(res)
```

```
log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns
```

```
ENSG00000279457
                 29.9136
                              0.1792571 0.3248216
                                                    0.551863 5.81042e-01
ENSG00000187634 183.2296
                              0.4264571 0.1402658 3.040350 2.36304e-03
ENSG00000188976 1651.1881
                             -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961 209.6379
                              0.7297556 0.1318599
                                                    5.534326 3.12428e-08
ENSG00000187583
                 47.2551
                              0.0405765 0.2718928 0.149237 8.81366e-01
ENSG00000187642
                 11.9798
                              0.5428105 0.5215598 1.040744 2.97994e-01
                      padj
                  <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
```

tail(cleanCounts)

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000278198	0	3	0	1	1	0
ENSG00000273748	23	28	26	45	40	54
ENSG00000278817	3	1	4	1	2	4
ENSG00000278384	0	1	2	1	2	1
ENSG00000276345	72	73	91	55	67	87
ENSG00000271254	188	211	222	148	150	161

Data Viz

```
plot(res$log2FoldChange, - log(res$padj))
```


Pathway Analysis

##Annotation of genes 1st translate Ensemble IDs in res object to Entrez and gen symbol formats

```
library(AnnotationDbi)
library(org.Hs.eg.db)
```

columns(org.Hs.eg.db)

[1]	"ACCNUM"	"ALIAS"	"ENSEMBL"	"ENSEMBLPROT"	"ENSEMBLTRANS"
[6]	"ENTREZID"	"ENZYME"	"EVIDENCE"	"EVIDENCEALL"	"GENENAME"
[11]	"GENETYPE"	"GO"	"GOALL"	"IPI"	"MAP"
[16]	"OMIM"	"ONTOLOGY"	"ONTOLOGYALL"	"PATH"	"PFAM"
[21]	"PMID"	"PROSITE"	"REFSEQ"	"SYMBOL"	"UCSCKG"
[26]	"UNIPROT"				

Let's map "SYMBOL", "ENTREZID", "GENENAME" from our "ENSEMBL" ids

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 9 columns

	baseMean l	og2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215598	1.040744	2.97994e-01
	padj		genename	symbol	entrez
	<numeric></numeric>	<	character>	<character></character>	<pre><character></character></pre>
ENSG00000279457	6.86555e-01		NA	NA	NA NA
ENSG00000187634	5.15718e-03	sterile alpha	a motif	SAMD11	148398
ENSG00000188976	1.76549e-35	NOC2 like nuc	cleolar	NOC2I	26155
ENSG00000187961	1.13413e-07	kelch like fa	amily me	KLHL17	339451
ENSG00000187583	9.19031e-01	pleckstrin ho	omology	PLEKHN1	84069
ENSG00000187642	4.03379e-01	PPARGC1 and I	ESRR ind	PERM1	84808

Before moving on, let's focus in on a subset of "top" hits We can use as a starting point $\log 2FC$ of +2/-2 and adjusted p-value of less than 0.05. This is a way to start nailing down the data.

```
top.inds <- (abs(res$log2FoldChange) > 2) & (res$padj < 0.05)
top.inds[is.na(top.inds)] <- FALSE</pre>
```

Let's save our top genes to a CSV file...

```
top.genes <- res[top.inds,]
write.csv(top.genes, file = "top_geneset.csv")</pre>
```

Now we can do some pathway analysis

```
library(gage)
library(gageData)
library(pathview)

data(kegg.sets.hs)
data(sigmet.idx.hs)
```

```
# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
```

The **gage** function wants a vector of importance as input with gene names as labels - KEGG speaks Entrez

```
foldchanges <- res$log2FoldChange
names(foldchanges) <- res$entrez
head(foldchanges)</pre>
```

```
<NA> 148398 26155 339451 84069 84808
0.17925708 0.42645712 -0.69272046 0.72975561 0.04057653 0.54281049
```

```
keggres <- gage(foldchanges, gsets=kegg.sets.hs)</pre>
```

```
attributes(keggres)
```

```
$names
```

```
[1] "greater" "less" "stats"
```

Different KEGG pathways overlapping

head(keggres\$less)

```
p.val
                                        p.geomean stat.mean
hsa04110 Cell cycle
                                     8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                     9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                     1.246882e-03 -3.059466 1.246882e-03
hsa03440 Homologous recombination
                                     3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                     3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                           q.val set.size
                                                                  exp1
hsa04110 Cell cycle
                                     0.001448312
                                                     121 8.995727e-06
                                     0.007586381
hsa03030 DNA replication
                                                      36 9.424076e-05
hsa03013 RNA transport
                                     0.066915974
                                                    144 1.246882e-03
hsa03440 Homologous recombination
                                                     28 3.066756e-03
                                     0.121861535
hsa04114 Oocyte meiosis
                                     0.121861535
                                                    102 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                     53 8.961413e-03
```

hsa04110 Cell cycle

```
pathview(foldchanges, pathway.id = "hsa04110")
```

GO Gene Ontology

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gores <- gage(foldchanges, gsets=gobpsets)</pre>
```

head(gores\$less)

```
p.geomean stat.mean p.val
G0:0048285 organelle fission 1.536227e-15 -8.063910 1.536227e-15
G0:0000280 nuclear division 4.286961e-15 -7.939217 4.286961e-15
G0:0007067 mitosis 4.286961e-15 -7.939217 4.286961e-15
G0:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
G0:0007059 chromosome segregation 2.028624e-11 -6.878340 2.028624e-11
G0:0000236 mitotic prometaphase 1.729553e-10 -6.695966 1.729553e-10
```

		q.val	set.size	exp1
GO:0048285	organelle fission	5.841698e-12	376	1.536227e-15
GO:0000280	nuclear division	5.841698e-12	352	4.286961e-15
GD:0007067	mitosis	5.841698e-12	352	4.286961e-15
GD:0000087	${\tt M}$ phase of mitotic cell cycle	1.195672e-11	362	1.169934e-14
GD:0007059	chromosome segregation	1.658603e-08	142	2.028624e-11
GD:0000236	mitotic prometaphase	1.178402e-07	84	1.729553e-10

Reactome Analysis – building a website-like for better vis of results and even has been used in papers. ##https://reactome.org/user/guide

To run it online, we need to make a text file with a gene id per line

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
invisible(sig_genes)
```

Now we can take now the generated ("significant_genes.txt") file and upload it to: $\frac{\text{https:}}{\text{reactome.org/PathwayBrowser}}$

Figure 1: Taken from reactome, this is Mitotic Phase of my gene expression

Figure 2: Here, we can visualize the mitotic pathway in a tree way to visualize the gene intereaction. This is coming from our data