

Die Informationsmanager

ST35: Statistische Geheimhaltung in Tabellen

Bernhard Meindl, Matthias Templ

Content

- Notwendigkeit statistischer Geheimhaltung
- 2 Methoden zur Geheimhaltung tabellarischer Daten
- 3 Identifizierung schützenswerter Zellen
- 4 Verfahren zum Schutz sensibler Zellen
- Software
- 6 Zusammenfassung

 unterschiedliche Gründe statistische Geheimhaltung (auch) in Tabellen zu betreiben

- unterschiedliche Gründe statistische Geheimhaltung (auch) in Tabellen zu betreiben
 - gesetzliche Vorgaben
 - Respondentenschutz

- unterschiedliche Gründe statistische Geheimhaltung (auch) in Tabellen zu betreiben
 - gesetzliche Vorgaben
 - Respondentenschutz
- Data privacy ist ein wichtiges Thema

- unterschiedliche Gründe statistische Geheimhaltung (auch) in Tabellen zu betreiben
 - gesetzliche Vorgaben
 - Respondentenschutz
- Data privacy ist ein wichtiges Thema
 - wem "gehören" meine Daten
 - kann ich mich sicher sein, dass Information nicht zu meinem Nachteil verwendet wird

- unterschiedliche Gründe statistische Geheimhaltung (auch) in Tabellen zu betreiben
 - gesetzliche Vorgaben
 - Respondentenschutz
- Data privacy ist ein wichtiges Thema
 - wem "gehören" meine Daten
 - kann ich mich sicher sein, dass Information nicht zu meinem Nachteil verwendet wird
- Kursziele:
 - Bewusst machen, wie Angreifer vorgehen
 - welche Möglichkeiten gibt es, (tabellarische) Daten zu schützen

 als Disclosure versteht man, wenn aus veröffentlichten Daten Information über eine einzelne, spezifische statistische Einheit abgeleitet ("gelernt") werden kann.

- als Disclosure versteht man, wenn aus veröffentlichten Daten Information über eine einzelne, spezifische statistische Einheit abgeleitet ("gelernt") werden kann.
- Beispiel 1: (Ort = Gemeinde x; Fußballinteresse x Geschlecht) :

	männlich	weiblich	Gesamt
Fußballfan	12	10	22
kein Fußballfan	93	85	178
Gesamt	105	95	200

- als Disclosure versteht man, wenn aus veröffentlichten Daten Information über eine einzelne, spezifische statistische Einheit abgeleitet ("gelernt") werden kann.
- Beispiel 1: (Ort = Gemeinde x; Fußballinteresse x Geschlecht) :

	männlich	weiblich	Gesamt
Fußballfan	12	10	22
kein Fußballfan	93	85	178
Gesamt	105	95	200

 Beispiel 1 (cont.): (Ort = Gemeinde x; Vereinspräferenz x Geschlecht):

	männlich	weiblich	Gesamt
Sk Rapid Wien	12	4	16
Sturm Graz	0	3	3
SV Ried	0	3	3
Gesamt	12	10	22

- als Disclosure versteht man, wenn aus veröffentlichten Daten Information über eine einzelne, spezifische statistische Einheit abgeleitet ("gelernt") werden kann.
- Beispiel 2: (Ort = Gemeinde x; Bildung x Geschlecht) :

	männlich	weiblich	Gesamt
keine/Pflichtschule	49	53	102
Lehre	34	23	56
AHS/BHS	22	14	37
Universitäre Bildung	0	5	5
Gesamt	105	95	200

- als Disclosure versteht man, wenn aus veröffentlichten Daten Information über eine einzelne, spezifische statistische Einheit abgeleitet ("gelernt") werden kann.
- Beispiel 2: (Ort = Gemeinde x; Bildung x Geschlecht) :

	männlich	weiblich	Gesamt
keine/Pflichtschule	49	53	102
Lehre	34	23	56
AHS/BHS	22	14	37
Universitäre Bildung	0	5	5
Gesamt	105	95	200

• man unterscheidet verschiedene Arten von Disclosure, z.B:

- als Disclosure versteht man, wenn aus veröffentlichten Daten Information über eine einzelne, spezifische statistische Einheit abgeleitet ("gelernt") werden kann.
- Beispiel 2: (Ort = Gemeinde x; Bildung x Geschlecht) :

	männlich	weiblich	Gesamt
keine/Pflichtschule	49	53	102
Lehre	34	23	56
AHS/BHS	22	14	37
Universitäre Bildung	0	5	5
Gesamt	105	95	200

- man unterscheidet verschiedene Arten von Disclosure, z.B:
 - Group disclosure (Beispiel 1)
 - (Negative) attribute disclosure (Beispiel 2)
 - spontane Erkennung (z.B bei Personen mit seltenen Merkmalskombinationen)

• Grundlage für alle Tabellen sind: Mikrodaten

- Grundlage für alle Tabellen sind: Mikrodaten
- Unterscheidung von Wertetabellen und Häufigkeitstabellen

- Grundlage für alle Tabellen sind: Mikrodaten
- Unterscheidung von Wertetabellen und Häufigkeitstabellen
 - Häufigkeitstabelle: Anzahl der beitragenden Einheiten für jeder Zelle der Tabelle wird ausgewiesen.

- Grundlage f
 ür alle Tabellen sind: Mikrodaten
- Unterscheidung von Wertetabellen und Häufigkeitstabellen
 - **Häufigkeitstabelle:** Anzahl der beitragenden Einheiten für jeder Zelle der Tabelle wird ausgewiesen.
 - Wertetabelle: Für eine erhobene Variable wird die Summe dieser Variable über alle beitragenden Einheiten in jeder Zelle der Tabelle ausgewiesen.

- Grundlage f
 ür alle Tabellen sind: Mikrodaten
- Unterscheidung von Wertetabellen und Häufigkeitstabellen
 - **Häufigkeitstabelle:** Anzahl der beitragenden Einheiten für jeder Zelle der Tabelle wird ausgewiesen.
 - Wertetabelle: Für eine erhobene Variable wird die Summe dieser Variable über alle beitragenden Einheiten in jeder Zelle der Tabelle ausgewiesen.
- Grundsätzlich...
 - sind Tabellen gekennzeichnet durch lineare Abhängigkeiten zwischen Zellen.

- Grundlage f
 ür alle Tabellen sind: Mikrodaten
- Unterscheidung von Wertetabellen und Häufigkeitstabellen
 - **Häufigkeitstabelle:** Anzahl der beitragenden Einheiten für jeder Zelle der Tabelle wird ausgewiesen.
 - Wertetabelle: Für eine erhobene Variable wird die Summe dieser Variable über alle beitragenden Einheiten in jeder Zelle der Tabelle ausgewiesen.
- Grundsätzlich...
 - sind Tabellen gekennzeichnet durch lineare Abhängigkeiten zwischen Zellen.
 - können statistische Tabellen ein- oder mehrdimensional, hierarchisch und/oder verlinkt sein.

Aufbau einer Tabelle

ID	DIM1	DIM2	WERT
1	I	Α	5
2	I	Α	7
3	I	Α	4
4	I	Α	4
5	I	В	13
6	I	В	5

ID	DIM1	DIM2	WERT
1	I	Α	5
2	I	Α	7
3	I	Α	4
4	I	Α	4
5	I	В	13
6	I	В	5

Н	Α	В	С	Total
I	h_1	h ₂	h ₃	h ₄
Ш	h_5	h_6	h_7	h ₈
Ш	h ₉	h_{10}	h_{11}	h ₁₂
Total	h ₁₃	h ₁₄	h ₁₅	h ₁₆

ID	DIM1	DIM2	WERT
1	I	Α	5
2	I	Α	7
3	I	Α	4
4	I	Α	4
5	I	В	13
6	I	В	5

Н	Α	В	С	Total
I	h_1	h_2	h_3	h ₄
Ш	h_5	h_6	h_7	h ₈
Ш	<i>h</i> ₉	h_{10}	h_{11}	h ₁₂
Total	h ₁₃	h ₁₄	h ₁₅	h ₁₆

W	Α	В	С	Total
I	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	y 4
Ш	<i>y</i> 5	<i>y</i> 6	<i>y</i> 7	y 8
Ш	<i>y</i> 9	<i>y</i> 10	<i>y</i> 11	y 12
Total	У 13	y 14	y 15	y 16

ID	DIM1	DIM2	WERT
1	I	Α	5
2	I	Α	7
3	I	Α	4
4	I	Α	4
5	I	В	13
6	I	В	5

Н	Α	В	C	Total
ı	h_1	h_2	h ₃	h ₄
Ш	h_5	h_6	h_7	h ₈
Ш	<i>h</i> ₉	h_{10}	h_{11}	h ₁₂
Total	h ₁₃	h ₁₄	h ₁₅	h ₁₆

W	Α	В	С	Total
I	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	y 4
Ш	<i>y</i> 5	<i>y</i> 6	<i>y</i> 7	y 8
Ш	<i>y</i> 9	<i>y</i> 10	<i>y</i> 11	y 12
Total	У 13	y 14	y 15	y 16

ID	DIM1	DIM2	WERT
1	I	Α	5
2	I	Α	7
3	I	Α	4
4	I	Α	4
5	I	В	13
6	I	В	5

Н	Α	В	С	Total
I	h_1	h_2	h_3	h ₄
Ш	h_5	h_6	h_7	h ₈
Ш	<i>h</i> 9	h_{10}	h_{11}	h ₁₂
Total	h ₁₃	h ₁₄	h ₁₅	h ₁₆

W	Α	В	С	Total
I	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	У 4
ll.	<i>y</i> ₅	<i>y</i> 6	<i>y</i> 7	у 8
Ш	<i>y</i> 9	<i>y</i> 10	<i>y</i> 11	y 12
Total	У 13	y 14	y 15	У16

ID	DIM1	DIM2	WERT
1	1	А	5
2	1	Α	7
3	1	Α	4
4	- 1	Α	4
5	I	В	13
6	I	В	5

Н	Α	В	С	Total
ı	h_1	h ₂	h ₃	h ₄
Ш	h_5	h_6	h_7	h ₈
Ш	<i>h</i> 9	h_{10}	h_{11}	h ₁₂
Total	h ₁₃	h ₁₄	h ₁₅	h ₁₆

W	Α	В	C	Total
I	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	y 4
Ш	<i>y</i> ₅	<i>y</i> 6	<i>y</i> 7	y 8
Ш	<i>y</i> 9	<i>y</i> 10	<i>y</i> 11	y 12
Total	У13	y 14	У 15	У16

ID	DIM1	DIM2	WERT
1	1	А	5
2	1	Α	7
3	1	Α	4
4	- 1	Α	4
5	I	В	13
6	I	В	5

Н	Α	В	C	Total
- 1	4	h_2	h_3	h ₄
Ш	h_5	h_6	h_7	h ₈
III	<i>h</i> 9	h_{10}	h_{11}	h ₁₂
Total	h ₁₃	h ₁₄	h ₁₅	h ₁₆

W	Α	В	С	Total
I	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	y 4
Ш	<i>y</i> 5	<i>y</i> 6	<i>y</i> 7	y 8
Ш	<i>y</i> 9	<i>y</i> 10	<i>y</i> 11	y 12
Total	У 13	У 14	y 15	У 16

ID	DIM1	DIM2	WERT
1	1	А	5
2	1	Α	7
3	- 1	Α	4
4	- 1	Α	4
5	I	В	13
6	I	В	5
		•	

Н	Α	В	С	Total
I	4	h_2	h_3	h ₄
Ш	h_5	h_6	h_7	h ₈
Ш	<i>h</i> 9	h_{10}	h_{11}	h ₁₂
Total	h ₁₃	h ₁₄	h ₁₅	h ₁₆

W	Α	В	C	Total
I	20	<i>y</i> ₂	<i>y</i> 3	y 4
Ш	<i>y</i> 5	<i>y</i> 6	<i>y</i> 7	y 8
Ш	<i>y</i> 9	<i>y</i> 10	<i>y</i> 11	y 12
Total	У 13	y 14	y 15	y 16

• **Wiederholung** dieser Prozedur für alle Ausprägungskombinationen der Dimensionsvariablen.

Н	Α	В	С	Total
I	4	6	3	h ₄
Ш	2	5	7	h ₈
Ш	4	5	3	h ₄ h ₈ h ₁₂
Total	h ₁₃	h ₁₄	h ₁₅	h ₁₆

Н	Α	В	С	Total
	20	50	10	У4
ll.	8	19	22	у8
Ш	17	32	12	y 12
Total	У 13	y 14	y 15	y 16

• **Wiederholung** dieser Prozedur für alle Ausprägungskombinationen der Dimensionsvariablen.

Н	Α	В	С	Total
I	4	6	3	h ₄
Ш	2	5	7	h ₈
Ш	4	5	3	h ₄ h ₈ h ₁₂
Total	h ₁₃	h ₁₄	h ₁₅	h ₁₆

Н	Α	В	С	Total
	20	50	10	У 4
ll.	8	19	22	у8
Ш	17	32	12	y 12
Total	У13	У 14	y 15	y 16

• Randsummen entstehen durch Auflösen der linearen Abhängigkeiten in der Tabelle.

• **Wiederholung** dieser Prozedur für alle Ausprägungskombinationen der Dimensionsvariablen.

Н	Α	В	С	Total
I	4	6	3	h ₄
ll.	2	5	7	h ₈
Ш	4	5	3	h ₄ h ₈ h ₁₂
Total	h ₁₃	h ₁₄	h ₁₅	h ₁₆

Н	Α	В	С	Total
	20	50	10	У 4
Ш	8	19	22	у8
Ш	17	32	12	y 12
Total	У13	У 14	У 15	y 16

- Randsummen entstehen durch Auflösen der linearen Abhängigkeiten in der Tabelle.
- im 2-dimensionalen Fall handelt es sich dabei um Zeilen- bzw.
 Spaltensummen.

Н	Α	В	C	Total
ı	4	6	3	h ₄
Ш	2	5	7	h ₈
Ш	4	5	3	h ₁₂
Total	h ₁₃	h ₁₄	h ₁₅	h ₁₆

W	Α	В	С	Total
I	20	50	10	У 4
Ш	8	19	22	У8
Ш	17	32	12	y 12
Total	У 13	y 14	y 15	y 16

Н	Α	В	C	Total
I	4	6	3	h ₄
Ш	2	5	7	h ₈
Ш	4	5	3	h ₁₂
Total	h ₁₃	h ₁₄	h ₁₅	h ₁₆

W	Α	В	С	Total
I	20	50	10	У 4
ll ll	8	19	22	У8
Ш	17	32	12	y 12
Total	У 13	y 14	y 15	y 16

$$\begin{array}{rcl} \mathbf{h_4} & = & h_1(4) + h_2(6) + h_3(3) = \mathbf{13} \\ \mathbf{h_8} & = & h_5(2) + h_6(5) + h_7(7) = \mathbf{14} \\ \mathbf{h_{12}} & = & h_9(4) + h_{10}(5) + h_{11}(3) = \mathbf{12} \end{array}$$

$$y_4 = y_1(20) + y_2(50) + y_3(10) = 80$$

 $y_8 = y_5(8) + y_6(19) + y_7(22) = 49$
 $y_{12} = y_9(17) + y_{10}(32) + y_{11}(12) = 61$

Н	Α	В	С	Total
I	4	6	3	13
Ш	2	5	7	14
Ш	4	5	3	12
Total	h ₁₃	h ₁₄	h ₁₅	h ₁₆

W	Α	В	С	Total
I	20	50	10	80
ll ll	8	19	22	49
Ш	17	32	12	61
Total	У 13	y 14	y 15	У16

$$\begin{array}{rcl} \mathbf{h_4} & = & h_1(4) + h_2(6) + h_3(3) = \mathbf{13} \\ \mathbf{h_8} & = & h_5(2) + h_6(5) + h_7(7) = \mathbf{14} \\ \mathbf{h_{12}} & = & h_9(4) + h_{10}(5) + h_{11}(3) = \mathbf{12} \end{array}$$

$$y_4 = y_1(20) + y_2(50) + y_3(10) = 80$$

 $y_8 = y_5(8) + y_6(19) + y_7(22) = 49$
 $y_{12} = y_9(17) + y_{10}(32) + y_{11}(12) = 61$

Н	Α	В	C	Total
ı	4	6	3	13
II	2	5	7	14
Ш	4	5	3	12
Total	h ₁₃	h ₁₄	h ₁₅	h ₁₆

W	Α	В	С	Total
1	20	50	10	80
H.	8	19	22	49
Ш	17	32	12	61
Total	y 13	y 14	y 15	y 16

$$\begin{array}{rcl} \mathbf{h_4} & = & h_1(4) + h_2(6) + h_3(3) = \mathbf{13} \\ \mathbf{h_8} & = & h_5(2) + h_6(5) + h_7(7) = \mathbf{14} \\ \mathbf{h_{12}} & = & h_9(4) + h_{10}(5) + h_{11}(3) = \mathbf{12} \end{array}$$

$$y_4 = y_1(20) + y_2(50) + y_3(10) = 80$$

 $y_8 = y_5(8) + y_6(19) + y_7(22) = 49$
 $y_{12} = y_9(17) + y_{10}(32) + y_{11}(12) = 61$

Н	Α	В	С	Total
I	4	6	3	13
Ш	2	5	7	14
Ш	4	5	3	12
Total	h ₁₃	h ₁₄	h ₁₅	h ₁₆

W	Α	В	С	Total
I	20	50	10	80
ll.	8	19	22	49
Ш	17	32	12	61
Total	y 13	У 14	y 15	y 16

$$\begin{array}{llll} \mathbf{h_4} &=& h_1(4) + h_2(6) + h_3(3) = \mathbf{13} \\ \mathbf{h_8} &=& h_5(2) + h_6(5) + h_7(7) = \mathbf{14} \\ \mathbf{h_{12}} &=& h_9(4) + h_{10}(5) + h_{11}(3) = \mathbf{12} \\ \mathbf{h_{13}} &=& h_1(4) + h_5(2) + h_9(4) = \mathbf{10} \\ \mathbf{h_{14}} &=& h_2(6) + h_6(5) + h_{10}(5) = \mathbf{16} \\ \mathbf{h_{15}} &=& h_3(3) + h_7(7) + h_{11}(3) = \mathbf{13} \\ \end{array} \begin{array}{lll} \mathbf{y_4} &=& y_1(20) + y_2(50) + y_3(10) = \mathbf{80} \\ \mathbf{y_8} &=& y_5(8) + y_6(19) + y_7(22) = \mathbf{49} \\ \mathbf{y_{12}} &=& y_9(17) + y_{10}(32) + y_{11}(12) = \mathbf{6} \\ \mathbf{y_{13}} &=& y_1(20) + y_5(8) + y_9(17) = \mathbf{45} \\ \mathbf{y_{14}} &=& y_2(50) + y_6(19) + y_{32}(5) = \mathbf{10} \\ \mathbf{y_{15}} &=& y_3(10) + y_7(22) + y_{12}(3) = \mathbf{44} \\ \end{array}$$

$$y_4 = y_1(20) + y_2(50) + y_3(10) = 80$$

$$y_8 = y_5(8) + y_6(19) + y_7(22) = 49$$

$$y_{12} = y_9(17) + y_{10}(32) + y_{11}(12) = 61$$

$$y_{13} = y_1(20) + y_5(8) + y_9(17) = 45$$

$$y_{14} = y_2(50) + y_6(19) + y_{32}(5) = 101$$

Н	Α	В	C	Total
I	4	6	3	13
Ш	2	5	7	14
Ш	4	5	3	12
Total	10	16	13	h ₁₆

W	Α	В	С	Total
ı	20	50	10	80
Ш	8	19	22	49
Ш	17	32	12	61
Total	45	101	44	y 16

$$\begin{array}{rcl} \mathbf{h_4} & = & h_1(4) + h_2(6) + h_3(3) = \mathbf{13} \\ \mathbf{h_8} & = & h_5(2) + h_6(5) + h_7(7) = \mathbf{14} \\ \mathbf{h_{12}} & = & h_9(4) + h_{10}(5) + h_{11}(3) = \mathbf{12} \\ \mathbf{h_{13}} & = & h_1(4) + h_5(2) + h_9(4) = \mathbf{10} \\ \mathbf{h_{14}} & = & h_2(6) + h_6(5) + h_{10}(5) = \mathbf{16} \\ \mathbf{h_{15}} & = & h_3(3) + h_7(7) + h_{11}(3) = \mathbf{13} \end{array}$$

$$y_4 = y_1(20) + y_2(50) + y_3(10) = 80$$

$$y_8 = y_5(8) + y_6(19) + y_7(22) = 49$$

$$y_{12} = y_9(17) + y_{10}(32) + y_{11}(12) = 61$$

$$y_{13} = y_1(20) + y_5(8) + y_9(17) = 45$$

$$y_{14} = y_2(50) + y_6(19) + y_{32}(5) = 101$$

 $= v_3(10) + v_7(22) + v_{12}(3) = 44$

V15

Н	Α	В	С	Total
I	4	6	3	13
Ш	2	5	7	14
Ш	4	5	3	12
Total	10	16	13	h ₁₆

W	Α	В	С	Total
	20	50	10	80
ll.	8	19	22	49
Ш	17	32	12	61
Total	45	101	44	У16

$$\begin{array}{llll} \mathbf{h_4} &=& h_1(4) + h_2(6) + h_3(3) = \mathbf{13} \\ \mathbf{h_8} &=& h_5(2) + h_6(5) + h_7(7) = \mathbf{14} \\ \mathbf{h_{12}} &=& h_9(4) + h_{10}(5) + h_{11}(3) = \mathbf{12} \\ \mathbf{h_{13}} &=& h_1(4) + h_5(2) + h_9(4) = \mathbf{10} \\ \mathbf{h_{14}} &=& h_2(6) + h_6(5) + h_{10}(5) = \mathbf{16} \\ \mathbf{h_{15}} &=& h_3(3) + h_7(7) + h_{11}(3) = \mathbf{13} \end{array} \qquad \begin{array}{lll} \mathbf{y_4} &=& y_1(20) + y_2(50) + y_3(10) = \mathbf{80} \\ \mathbf{y_8} &=& y_5(8) + y_6(19) + y_7(22) = \mathbf{49} \\ \mathbf{y_{12}} &=& y_9(17) + y_{10}(32) + y_{11}(12) = \mathbf{61} \\ \mathbf{y_{13}} &=& y_1(20) + y_5(8) + y_9(17) = \mathbf{45} \\ \mathbf{y_{14}} &=& y_2(50) + y_6(19) + y_{32}(5) = \mathbf{101} \\ \mathbf{y_{15}} &=& y_3(10) + y_7(22) + y_{12}(3) = \mathbf{44} \end{array}$$

Н	Α	В	C	Total
I	4	6	3	13
Ш	2	5	7	14
Ш	4	5	3	12
Total	10	16	13	h ₁₆

W	Α	В	С	Total
	20	50	10	80
ll.	8	19	22	49
Ш	17	32	12	61
Total	45	101	44	У16

Н	Α	В	С	Total
I	4	6	3	13
H	2	5	7	14
Ш	4	5	3	12
Total	10	16	13	39

W	Α	В	С	Total
	20	50	10	80
H.	8	19	22	49
Ш	17	32	12	61
Total	45	101	44	190

Н	Α	В	C	Total
ı	4	6	3	13
Ш	2	5	7	14
Ш	4	5	3	12
Total	10	16	13	39

W	Α	В	С	Total
	20	50	10	80
H.	8	19	22	49
Ш	17	32	12	61
Total	45	101	44	190

• **Verallgemeinerung:** Eine (mehrdimensionale, hierarchische) Tabelle ist gegeben durch:

- **Verallgemeinerung:** Eine (mehrdimensionale, hierarchische) Tabelle ist gegeben durch:
 - einen Datenvektor: $a = [a_1, \dots, a_n]$

- **Verallgemeinerung:** Eine (mehrdimensionale, hierarchische) Tabelle ist gegeben durch:
 - einen Datenvektor: $a = [a_1, \dots, a_n]$
 - lineare Einschränkungen/Constraints der Form: Ma = b

- Verallgemeinerung: Eine (mehrdimensionale, hierarchische) Tabelle ist gegeben durch:
 - einen Datenvektor: $a = [a_1, \dots, a_n]$
 - lineare Einschränkungen/Constraints der Form: Ma = b
- Bemerkungen:
 - M ist eine Matrix mit $M_{ij} \in \{-1,0,1\}$ und b ist ein Vektor mit lauter 0ern

- Verallgemeinerung: Eine (mehrdimensionale, hierarchische) Tabelle ist gegeben durch:
 - einen Datenvektor: $a = [a_1, \dots, a_n]$
 - lineare Einschränkungen/Constraints der Form: Ma = b
- Bemerkungen:
 - M ist eine Matrix mit $M_{ij} \in \{-1,0,1\}$ und b ist ein Vektor mit lauter 0ern

- Verallgemeinerung: Eine (mehrdimensionale, hierarchische) Tabelle ist gegeben durch:
 - einen Datenvektor: $a = [a_1, \dots, a_n]$
 - lineare Einschränkungen/Constraints der Form: Ma = b
- Bemerkungen:
 - M ist eine Matrix mit $M_{ij} \in \{-1,0,1\}$ und b ist ein Vektor mit lauter 0ern

• Jede Zeile des Gleichungssystems M a = b entspricht hier der Einschränkung einer Zeilen-/ oder Spaltensumme.

- Verallgemeinerung: Eine (mehrdimensionale, hierarchische) Tabelle ist gegeben durch:
 - einen Datenvektor: $a = [a_1, \dots, a_n]$
 - lineare Einschränkungen/Constraints der Form: Ma = b
- Bemerkungen:
 - M ist eine Matrix mit $M_{ij} \in \{-1,0,1\}$ und b ist ein Vektor mit lauter 0ern

- Jede Zeile des Gleichungssystems M a = b entspricht hier der Einschränkung einer Zeilen-/ oder Spaltensumme.
- die Zellen einer Tabelle sind festgelegt durch ihren (Spalten)Index: i = 1, ..., n

 Zur Beurteilung, ob eine Tabellenzelle als "unsicher" (und daher schützenswert) gelten soll, kann eine der folgenden Regeln herangezogen werden:

- Zur Beurteilung, ob eine Tabellenzelle als "unsicher" (und daher schützenswert) gelten soll, kann eine der folgenden Regeln herangezogen werden:
 - Fallzahlregel:

Die Anzahl der zu einer Zelle beitragenden Einheiten ist < einem festgesetzten Wert (oftmals 3 oder 4)

- Zur Beurteilung, ob eine Tabellenzelle als "unsicher" (und daher schützenswert) gelten soll, kann eine der folgenden Regeln herangezogen werden:
 - Fallzahlregel:

Die Anzahl der zu einer Zelle beitragenden Einheiten ist < einem festgesetzten Wert (oftmals 3 oder 4)

• (n,k)-Dominanzregel:

Eine Zelle muss geschützt werden, wenn der Gesamtwert der n größten Beitragenden k% des gesamten Zellwertes überschreitet.

- Zur Beurteilung, ob eine Tabellenzelle als "unsicher" (und daher schützenswert) gelten soll, kann eine der folgenden Regeln herangezogen werden:
 - Fallzahlregel:

Die Anzahl der zu einer Zelle beitragenden Einheiten ist < einem festgesetzten Wert (oftmals 3 oder 4)

- (n,k)-Dominanzregel: Eine Zelle muss geschützt werden, wenn der Gesamtwert der *n* größten
- Beitragenden k% des gesamten Zellwertes überschreitet.

 p-% Regel:

 Der Totalwert minus der 2 größten Beitragenden ist geringer als p%
 - Der Totalwert minus der 2 größten Beitragenden ist geringer als p% des größten Beitrages.

- **Zusammenhang** zwischen (n,k)-Dominanzregel und p-%-Regel:
 - Nach beiden Dominanzregeln müssen Zellwerte geschützt werden, wenn ein oberer Schätztwert für den Wert des größten Beitragenden konstruiert werden kann, der den wahren Wert nicht genug überschätzt.

- **Zusammenhang** zwischen (n,k)-Dominanzregel und p-%-Regel:
 - Nach beiden Dominanzregeln müssen Zellwerte geschützt werden, wenn ein oberer Schätztwert für den Wert des größten Beitragenden konstruiert werden kann, der den wahren Wert nicht genug überschätzt.
 - Nach der p-%-Regel wird das "nicht genug" als Rate (p%) am wahren Wert der größten beitragenden Einheit gemessen.

- **Zusammenhang** zwischen (n,k)-Dominanzregel und p-%-Regel:
 - Nach beiden Dominanzregeln müssen Zellwerte geschützt werden, wenn ein oberer Schätztwert für den Wert des größten Beitragenden konstruiert werden kann, der den wahren Wert nicht genug überschätzt.
 - Nach der p-%-Regel wird das "nicht genug" als Rate (p%) am wahren Wert der größten beitragenden Einheit gemessen.
 - nach der (n,k)-Dominanzregel wird das "nicht genug" als Rate (100 k)% am Zellwert gemessen.

- **Zusammenhang** zwischen (n,k)-Dominanzregel und p-%-Regel:
 - Nach beiden Dominanzregeln müssen Zellwerte geschützt werden, wenn ein oberer Schätztwert für den Wert des größten Beitragenden konstruiert werden kann, der den wahren Wert nicht genug überschätzt.
 - Nach der p-%-Regel wird das "nicht genug" als Rate (p%) am wahren Wert der größten beitragenden Einheit gemessen.
 - nach der (n,k)-Dominanzregel wird das "nicht genug" als Rate (100-k)% am Zellwert gemessen.
 - Ausserdem gilt:
 - jeder Zellwert, der nach der (2,k)-Regel als "sicher" gilt, ist auch "sicher" nach der p%-Regel.

- **Zusammenhang** zwischen (n,k)-Dominanzregel und p-%-Regel:
 - Nach beiden Dominanzregeln müssen Zellwerte geschützt werden, wenn ein oberer Schätztwert für den Wert des größten Beitragenden konstruiert werden kann, der den wahren Wert nicht genug überschätzt.
 - Nach der p-%-Regel wird das "nicht genug" als Rate (p%) am wahren Wert der größten beitragenden Einheit gemessen.
 - nach der (n,k)-Dominanzregel wird das "nicht genug" als Rate (100 k)% am Zellwert gemessen.
 - Ausserdém gilt:
 - jeder Zellwert, der nach der (2,k)-Regel als "sicher" gilt, ist auch "sicher" nach der p%-Regel.
 - nicht jeder Zellwert, der nach der p%-Regel als "sicher" gilt ist auch "sicher" nach der (2,k)-Dominanzregel.

- **Zusammenhang** zwischen (n,k)-Dominanzregel und p-%-Regel:
 - Nach beiden Dominanzregeln müssen Zellwerte geschützt werden, wenn ein oberer Schätztwert für den Wert des größten Beitragenden konstruiert werden kann, der den wahren Wert nicht genug überschätzt.
 - Nach der p-%-Regel wird das "nicht genug" als Rate (p%) am wahren Wert der größten beitragenden Einheit gemessen.
 - nach der (n,k)-Dominanzregel wird das "nicht genug" als Rate (100 k)% am Zellwert gemessen.
 - Ausserdem gilt:
 - jeder Zellwert, der nach der (2,k)-Regel als "sicher" gilt, ist auch "sicher" nach der p%-Regel.
 - nicht jeder Zellwert, der nach der p%-Regel als "sicher" gilt ist auch "sicher" nach der (2,k)-Dominanzregel.
 - Es gilt für den Zusammenhang zwischen p%-Regel und (2,k)-Regel: $p = 100 \cdot \frac{100 k}{k}$

• **Beispiel:** Der Gesamtwert T einer Tabellenzelle sei 1000. Der Wert des größten Einzelbeitrages sei $B_1 = 500$. Der zweitgrößte Einzelbeitrag sei $B_2 = 400$.

- **Beispiel:** Der Gesamtwert T einer Tabellenzelle sei 1000. Der Wert des größten Einzelbeitrages sei $B_1 = 500$. Der zweitgrößte Einzelbeitrag sei $B_2 = 400$.
- Ist die Zelle nach Anwendung der (2,80)-Dominanzregel geheimzuhalten?

- Beispiel: Der Gesamtwert T einer Tabellenzelle sei 1000.
 Der Wert des größten Einzelbeitrages sei B₁ = 500.
 Der zweitgrößte Einzelbeitrag sei B₂ = 400.
- Ist die Zelle nach Anwendung der (2,80)-Dominanzregel geheimzuhalten?

$$\longrightarrow$$
 Ja. $B_1 + B_2 > \frac{80}{100} \cdot T \iff 900 > 800$

- Beispiel: Der Gesamtwert T einer Tabellenzelle sei 1000.
 Der Wert des größten Einzelbeitrages sei B₁ = 500.
 Der zweitgrößte Einzelbeitrag sei B₂ = 400.
- Ist die Zelle nach Anwendung der (2,80)-Dominanzregel geheimzuhalten?

$$\longrightarrow$$
 Ja. $B_1 + B_2 > \frac{80}{100} \cdot T \iff 900 > 800$

• welchem p entspricht die (2,80)-Dominanzregel?

- **Beispiel:** Der Gesamtwert T einer Tabellenzelle sei 1000. Der Wert des größten Einzelbeitrages sei $B_1 = 500$. Der zweitgrößte Einzelbeitrag sei $B_2 = 400$.
- Ist die Zelle nach Anwendung der (2,80)-Dominanzregel geheimzuhalten?

$$\longrightarrow$$
 Ja. $B_1 + B_2 > \frac{80}{100} \cdot T \iff 900 > 800$

• welchem p entspricht die (2,80)-Dominanzregel? $\rightarrow p = 100 \cdot \frac{100-80}{80} = 25$

- **Beispiel:** Der Gesamtwert T einer Tabellenzelle sei 1000. Der Wert des größten Einzelbeitrages sei $B_1 = 500$. Der zweitgrößte Einzelbeitrag sei $B_2 = 400$.
- Ist die Zelle nach Anwendung der (2,80)-Dominanzregel geheimzuhalten?

$$\longrightarrow$$
 Ja. $B_1 + B_2 > \frac{80}{100} \cdot T \iff 900 > 800$

- welchem p entspricht die (2,80)-Dominanzregel? $\longrightarrow p = 100 \cdot \frac{100-80}{80} = 25$
- sei p=25. Ist die Zelle bei Anwendung der 25%-Regel zu schützen?

- **Beispiel:** Der Gesamtwert T einer Tabellenzelle sei 1000. Der Wert des größten Einzelbeitrages sei $B_1 = 500$. Der zweitgrößte Einzelbeitrag sei $B_2 = 400$.
- Ist die Zelle nach Anwendung der (2,80)-Dominanzregel geheimzuhalten?

→ Ja.
$$B_1 + B_2 > \frac{80}{100} \cdot T \iff 900 > 800$$

- welchem p entspricht die (2,80)-Dominanzregel? $\longrightarrow p = 100 \cdot \frac{100-80}{80} = 25$
- sei p=25. Ist die Zelle bei Anwendung der 25%-Regel zu schützen? \longrightarrow Ja. $T-B_1-B_2<\frac{25}{100}\cdot B_1 \Longleftrightarrow 100<125$

- **Beispiel:** Der Gesamtwert T einer Tabellenzelle sei 1000. Der Wert des größten Einzelbeitrages sei $B_1 = 500$. Der zweitgrößte Einzelbeitrag sei $B_2 = 400$.
- Ist die Zelle nach Anwendung der (2,80)-Dominanzregel geheimzuhalten?

→ Ja.
$$B_1 + B_2 > \frac{80}{100} \cdot T \iff 900 > 800$$

- welchem p entspricht die (2,80)-Dominanzregel? $\longrightarrow p = 100 \cdot \frac{100-80}{80} = 25$
- sei p=25. Ist die Zelle bei Anwendung der 25%-Regel zu schützen? \longrightarrow Ja. $T-B_1-B_2<\frac{25}{100}\cdot B_1 \Longleftrightarrow 100<125$

• **Wiederholung:** Eine (mehrdimensionale, hierarchische) Tabelle ist gegeben durch:

- **Wiederholung:** Eine (mehrdimensionale, hierarchische) Tabelle ist gegeben durch:
 - einen Datenvektor: $a = [a_1, \dots, a_n]$

- **Wiederholung:** Eine (mehrdimensionale, hierarchische) Tabelle ist gegeben durch:
 - einen Datenvektor: $a = [a_1, \dots, a_n]$
 - lineare Einschränkungen/Constraints der Form: My = b

- **Wiederholung:** Eine (mehrdimensionale, hierarchische) Tabelle ist gegeben durch:
 - einen Datenvektor: $a = [a_1, \dots, a_n]$
 - lineare Einschränkungen/Constraints der Form: My = b
 - obere und untere Grenzen für jeden Tabellenwert, die einem Angreifer bekannt sind (zb. nicht-Negativität): $lb_i \le a_i \le ub_i$

- Wiederholung: Eine (mehrdimensionale, hierarchische) Tabelle ist gegeben durch:
 - einen Datenvektor: $a = [a_1, \dots, a_n]$
 - lineare Einschränkungen/Constraints der Form: My = b
 - obere und untere Grenzen für jeden Tabellenwert, die einem Angreifer bekannt sind (zb. nicht-Negativität): $lb_i \le a_i \le ub_i$
 - Die Zelle einer Tabelle ist festgelegt durch ihren Index: i = 1, ..., n

- **Wiederholung:** Eine (mehrdimensionale, hierarchische) Tabelle ist gegeben durch:
 - einen Datenvektor: $a = [a_1, \dots, a_n]$
 - lineare Einschränkungen/Constraints der Form: My = b
 - obere und untere Grenzen für jeden Tabellenwert, die einem Angreifer bekannt sind (zb. nicht-Negativität): $lb_i \le a_i \le ub_i$
 - Die Zelle einer Tabelle ist festgelegt durch ihren Index: i = 1, ..., n
- Ausserdem:
 - gegeben sind p Primärsperrungungen: $PS = \{i_1, \dots, i_p\}$

- **Wiederholung:** Eine (mehrdimensionale, hierarchische) Tabelle ist gegeben durch:
 - einen Datenvektor: $a = [a_1, \dots, a_n]$
 - lineare Einschränkungen/Constraints der Form: My = b
 - obere und untere Grenzen für jeden Tabellenwert, die einem Angreifer bekannt sind (zb. nicht-Negativität): $lb_i \le a_i \le ub_i$
 - Die Zelle einer Tabelle ist festgelegt durch ihren Index: i = 1, ..., n
- Ausserdem:
 - gegeben sind p Primärsperrungungen: $PS = \{i_1, \dots, i_p\}$
- Frage: Wie schützt man primär gesperrte Zellen?

Schützen sensibler Zellen

• Beispiel:

W	Α	В	С	Total
ı	20	50	10	80
Ш	8	19	22	49
Ш	17	32	12	61
Total	45	101	44	190

Schützen sensibler Zellen

W	Α	В	С	Total
ı	20	50	10	80
Ш	8	19	22	49
III	17	32	12	61
Total	45	101	44	190

- Sei Zelle II/C ($PS = \{7\}$) sensibel und muss geschützt werden.
- Verschiedene Möglichkeiten um den Wert zu schützen. z.B:
 - Zellsperrung/-unterdrückung
 - Runden
 - Zellanpassung

W	Α	В	С	Total
1	20	50	10	80
Ш	8	19	NA	49
Ш	17	32	12	61
Total	45	101	44	190

- Zellunterdrückung ist eine sehr häufig verwendete Methode.
- Aber: Wegen linearer Zusammenhänge ist es nicht ausreichend, nur geheimzuhaltende Zellen alleine zu unterdrücken (Primärsperrung).

W	Α	В	С	Total
1	20	50	10	80
Ш	8	19	NA	49
Ш	17	32	12	61
Total	45	101	44	190

- Zellunterdrückung ist eine sehr häufig verwendete Methode.
- Aber: Wegen linearer Zusammenhänge ist es nicht ausreichend, nur geheimzuhaltende Zellen alleine zu unterdrücken (Primärsperrung).
- Man sieht: 44 10 12 = 22 bzw. 49 8 19 = 22. kein ausreichender Schutz für die primär gesperrte Zelle.

W	Α	В	С	Total
1	20	50	10	80
Ш	8	19	NA	49
Ш	17	32	12	61
Total	45	101	44	190

- Zellunterdrückung ist eine sehr häufig verwendete Methode.
- **Aber:** Wegen linearer Zusammenhänge ist es nicht ausreichend, nur geheimzuhaltende Zellen alleine zu unterdrücken (Primärsperrung).
- Man sieht: 44 10 12 = 22 bzw. 49 8 19 = 22. kein ausreichender Schutz für die primär gesperrte Zelle.
- --> sekundäre Unterdrückung: zusätzliche Zellen müssen zum Schutz der primär gesperrten Zelle unterdrückt werden.

W	Α	В	С	Total
1	20	50	10	80
Ш	S	19	NA	49
Ш	S	32	S	61
Total	45	101	44	190

W	Α	В	С	Total
1	20	50	10	80
Ш	S	19	NA	49
Ш	S	32	S	61
Total	45	101	44	190

W	Α	В	С	Total
I	S	50	S	80
Ш	S	19	NA	49 61
Ш	17	32	12	61
Total	45	101	44	190

• Beispiel: alternative Sperrmuster

W	Α	В	С	Total
1	20	50	10	80
Ш	S	19	NA	49
Ш	S	32	S	61
Total	45	101	44	190

W	Α	В	С	Total
I	S	50	S	80
Ш	S	19	NA	49
Ш	17	32	12	61
Total	45	101	44	190

• Was ist ein ausreichendes Sperrmuster?

W	Α	В	С	Total
I	20	50	10	80
Ш	S	19	NA	49
111	S	32	S	61
Total	45	101	44	190

W	Α	В	С	Total
I	S	50	S	80
Ш	S	19	NA	49
Ш	17	32	12	61
Total	45	101	44	190

- Was ist ein ausreichendes Sperrmuster?
- Gibt es optimale Sperrmuster und wenn ja, was charakterisiert ein optimales Muster?

W	Α	В	С	Total
1	20	50	10	80
Ш	S	19	NA	49
Ш	S	32	S	61
Total	45	101	44	190

W	Α	В	С	Total
I	S	50	S	80
Ш	S	19	NA	49
Ш	17	32	12	61
Total	45	101	44	190

- Was ist ein ausreichendes Sperrmuster?
- Gibt es optimale Sperrmuster und wenn ja, was charakterisiert ein optimales Muster?
- **Grundsätzlich:** Problem der sekundären Unterdrückung wird NP-hard bei hierarchischen, multidimensionalen bzw. verlinkten Tabellen

• **gute Nachricht:** es existieren optimale Algorithmen für das sekundäre Zellunterdrückungsproblem.

- gute Nachricht: es existieren optimale Algorithmen für das sekundäre Zellunterdrückungsproblem.
- schlechte Nachricht: Der optimale Algorithmus ist in der Praxis kaum (nicht) verwendbar.

- gute Nachricht: es existieren optimale Algorithmen für das sekundäre Zellunterdrückungsproblem.
- schlechte Nachricht: Der optimale Algorithmus ist in der Praxis kaum (nicht) verwendbar.
- Optimale Algorithmen basieren auf Linearer Optimierung

- gute Nachricht: es existieren optimale Algorithmen für das sekundäre Zellunterdrückungsproblem.
- schlechte Nachricht: Der optimale Algorithmus ist in der Praxis kaum (nicht) verwendbar.
- Optimale Algorithmen basieren auf Linearer Optimierung
 - Ziel ist es, ein Sperrmuster zu finden, das entweder die Anzahl der zusätzlich zu unterdrückenden Zellen oder die Summe der zusätzlich zu unterdrückenden Tabellenzellen minimiert und gleichzeitig ausreichenden Schutz gewährleistet.

- gute Nachricht: es existieren optimale Algorithmen für das sekundäre Zellunterdrückungsproblem.
- schlechte Nachricht: Der optimale Algorithmus ist in der Praxis kaum (nicht) verwendbar.
- Optimale Algorithmen basieren auf Linearer Optimierung
 - Ziel ist es, ein Sperrmuster zu finden, das entweder die Anzahl der zusätzlich zu unterdrückenden Zellen oder die Summe der zusätzlich zu unterdrückenden Tabellenzellen minimiert und gleichzeitig ausreichenden Schutz gewährleistet.
 - ausreichender Schutz: Eine primär zu sichernde Zelle gilt aus ausreichend geschützt, wenn der unterdrückte Wert nicht innerhalb eines zu definierenden Intervals einzuschränken ist.

- gute Nachricht: es existieren optimale Algorithmen für das sekundäre Zellunterdrückungsproblem.
- schlechte Nachricht: Der optimale Algorithmus ist in der Praxis kaum (nicht) verwendbar.
- Optimale Algorithmen basieren auf Linearer Optimierung
 - Ziel ist es, ein Sperrmuster zu finden, das entweder die Anzahl der zusätzlich zu unterdrückenden Zellen oder die Summe der zusätzlich zu unterdrückenden Tabellenzellen minimiert und gleichzeitig ausreichenden Schutz gewährleistet.
 - ausreichender Schutz: Eine primär zu sichernde Zelle gilt aus ausreichend geschützt, wenn der unterdrückte Wert nicht innerhalb eines zu definierenden Intervals einzuschränken ist.
- Attackers Problem: Für ein gegebenes Sperrmuster *SUP* berechnet sich der Angreifer systematisch untere und obere (mögliche) Grenzen für die gesperrten Zellen.

• Beispiel: Attackers Problem

- Beispiel: Attackers Problem
- Angreifer: kennt das Sperrmuster $SUP = \{5, 7, 9, 11\}$, die gesicherte Tabelle, My = b; $lb_i \le y_i \le ub_i \ \forall i \in SUP$; $y_i = a_i \ \forall i \notin SUP$

W	Α	В	С	Total
- 1	20	50	10	80
ll ll	<i>y</i> 5	19	<i>y</i> 7	49
III	<i>y</i> 9	32	<i>y</i> 11	61
Total	45	101	44	190

- Beispiel: Attackers Problem
- Angreifer: kennt das Sperrmuster $SUP = \{5, 7, 9, 11\}$, die gesicherte Tabelle, My = b; $lb_i \le y_i \le ub_i \ \forall i \in SUP$; $y_i = a_i \ \forall i \notin SUP$

W	Α	В	С	Total
- 1	20	50	10	80
H H	<i>y</i> 5	19	<i>y</i> 7	49
III	<i>y</i> 9	32	<i>y</i> 11	61
Total	45	101	44	190

• **Lp-Problem:** $min/max \ y_i \ \forall i \in SUP$ unter obigen NB:

- Beispiel: Attackers Problem
- Angreifer: kennt das Sperrmuster $SUP = \{5, 7, 9, 11\}$, die gesicherte Tabelle, My = b; $lb_i \le y_i \le ub_i \ \forall i \in SUP$; $y_i = a_i \ \forall i \notin SUP$

W	Α	В	С	Total
I	20	50	10	80
Ш	<i>y</i> 5	19	<i>y</i> 7	49
III	<i>y</i> 9	32	<i>y</i> 11	61
Total	45	101	44	190

• **Lp-Problem:** $min/max \ y_i \ \forall i \in SUP$ unter obigen NB:

W	Α	В	С	Total
	20	50	10	80
H.	[0:25]	19	[5:30]	49
III	[0:25]	32	[4:29]	61
Total	45	101	44	190

- Beispiel: Attackers Problem
- Angreifer: kennt das Sperrmuster $SUP = \{5, 7, 9, 11\}$, die gesicherte Tabelle, My = b; $lb_i \le y_i \le ub_i \ \forall i \in SUP$; $y_i = a_i \ \forall i \notin SUP$

W	Α	В	С	Total
- 1	20	50	10	80
ll ll	<i>y</i> 5	19	<i>y</i> 7	49
III	<i>y</i> 9	32	<i>y</i> 11	61
Total	45	101	44	190

• **Lp-Problem:** $min/max \ y_i \ \forall i \in SUP$ unter obigen NB:

W	Α	В	С	Total
	20	50	10	80
H II	[0:25]	19	[5:30]	49
Ш	[0:25]	32	[4:29]	61
Total	45	101	44	190

• der primär gesperrte Wert y₇ ist im Intervall [5 : 30] geschützt.

• Beispiel: Attackers Problem

- Beispiel: Attackers Problem
- Angreifer: kennt das Sperrmuster $SUP = \{1, 3, 5, 7\}$, die gesicherte Tabelle, My = b; $lb_i \le y_i \le ub_i \ \forall i \in SUP$; $y_i = a_i \ \forall i \notin SUP$

W	Α	В	С	Total
- 1	<i>y</i> ₁	50	<i>y</i> 3	80
H II	<i>y</i> 5	19	<i>y</i> 7	49
III	17	32	12	61
Total	45	101	44	190

- Beispiel: Attackers Problem
- Angreifer: kennt das Sperrmuster $SUP = \{1, 3, 5, 7\}$, die gesicherte Tabelle, My = b; $lb_i \le y_i \le ub_i \ \forall i \in SUP$; $y_i = a_i \ \forall i \notin SUP$

W	Α	В	С	Total
I	<i>y</i> 1	50	<i>y</i> 3	80
ll II	<i>y</i> 5	19	<i>y</i> 7	49
III	17	32	12	61
Total	45	101	44	190

• **Lp-Problem:** $min/max \ y_i \ \forall i \in SUP$ unter obigen NB:

- Beispiel: Attackers Problem
- Angreifer: kennt das Sperrmuster $SUP = \{1, 3, 5, 7\}$, die gesicherte Tabelle, My = b; $lb_i \le y_i \le ub_i \ \forall i \in SUP$; $y_i = a_i \ \forall i \notin SUP$

W	Α	В	С	Total
I	<i>y</i> ₁	50	<i>y</i> 3	80
H H	<i>y</i> 5	19	<i>y</i> 7	49
III	17	32	12	61
Total	45	101	44	190

• **Lp-Problem:** $min/max \ y_i \ \forall i \in SUP$ unter obigen NB:

W	Α	В	С	Total
	[0:28]	50	[2:30]	80
H II	[0:28]	19	[2:30]	49
Ш	17	32	12	61
Total	45	101	44	190

- Beispiel: Attackers Problem
- Angreifer: kennt das Sperrmuster $SUP = \{1, 3, 5, 7\}$, die gesicherte Tabelle, My = b; $lb_i \le y_i \le ub_i \ \forall i \in SUP$; $y_i = a_i \ \forall i \notin SUP$

W	Α	В	С	Total
I	<i>y</i> 1	50	<i>y</i> 3	80
ll ll	<i>y</i> 5	19	<i>y</i> 7	49
III	17	32	12	61
Total	45	101	44	190

• **Lp-Problem:** $min/max \ y_i \ \forall i \in SUP$ unter obigen NB:

W	Α	В	С	Total
I	[0:28]	50	[2:30]	80
II	[0:28]	19	[2:30]	49
Ш	17	32	12	61
Total	45	101	44	190

• der primär gesperrte Wert y₇ ist im Intervall [2 : 30] geschützt.

 Bemerkung: Zellunterdrückung ist in Wahrheit eine Form von Intervallpublikation.

- Bemerkung: Zellunterdrückung ist in Wahrheit eine Form von Intervallpublikation.
- Ausreichender Schutz: Es bleibt die Frage zu klären, ab wann eine Zelle ausreichend geschützt ist. Im Normalfall werden für ausreichende obere und untere Grenzen Prozentwerte des Original-Zellwerts verwendet.

- Bemerkung: Zellunterdrückung ist in Wahrheit eine Form von Intervallpublikation.
- Ausreichender Schutz: Es bleibt die Frage zu klären, ab wann eine Zelle ausreichend geschützt ist. Im Normalfall werden für ausreichende obere und untere Grenzen Prozentwerte des Original-Zellwerts verwendet.
- **Beispiel:** der Angreifer darf keinen primär unsicheren Zellwert auf $\pm 10\%$ genau berechnen können.

- Bemerkung: Zellunterdrückung ist in Wahrheit eine Form von Intervallpublikation.
- Ausreichender Schutz: Es bleibt die Frage zu klären, ab wann eine Zelle ausreichend geschützt ist. Im Normalfall werden für ausreichende obere und untere Grenzen Prozentwerte des Original-Zellwerts verwendet.
- **Beispiel:** der Angreifer darf keinen primär unsicheren Zellwert auf $\pm 10\%$ genau berechnen können.
- Informationsverlust: Zellunterdrückung bewirkt Informationsverlust, der durch ein optimales Unterdrückungsschema mittels einer Verlustfunktion minimiert werden soll.

- Bemerkung: Zellunterdrückung ist in Wahrheit eine Form von Intervallpublikation.
- Ausreichender Schutz: Es bleibt die Frage zu klären, ab wann eine Zelle ausreichend geschützt ist. Im Normalfall werden für ausreichende obere und untere Grenzen Prozentwerte des Original-Zellwerts verwendet.
- **Beispiel:** der Angreifer darf keinen primär unsicheren Zellwert auf $\pm 10\%$ genau berechnen können.
- Informationsverlust: Zellunterdrückung bewirkt Informationsverlust, der durch ein optimales Unterdrückungsschema mittels einer Verlustfunktion minimiert werden soll.
- Wir zeigen das mathematische Modell für optimale Zellunterdrückung:

 Wir nehmen an, dass ein Angreifer für jeden Zellwert ai eine untere und obere Grenze (lbi bzw. ubi) kennt, mit:

$$\textit{Ib}_i \leq a_i \leq \textit{ub}_i \ \forall i = 1, \dots, n$$

 Wir nehmen an, dass ein Angreifer für jeden Zellwert ai eine untere und obere Grenze (lbi bzw. ubi) kennt, mit:

$$lb_i \leq a_i \leq ub_i \ \forall i = 1, \dots, n$$

• Man definiert relative äussere Grenzen für jede Zelle:

$$LB_i := a_i - Ib_i \ge 0 \ \forall i = 1, \dots, n$$

$$UB_i := ub_i - a_i \ge 0 \ \forall i = 1, \dots, n$$

 Wir nehmen an, dass ein Angreifer für jeden Zellwert ai eine untere und obere Grenze (lbi bzw. ubi) kennt, mit:

$$lb_i \leq a_i \leq ub_i \ \forall i = 1, \dots, n$$

• Man definiert relative äussere Grenzen für jede Zelle:

$$LB_i := a_i - Ib_i \ge 0 \ \forall i = 1, \dots, n$$

$$UB_i := ub_i - a_i \ge 0 \ \forall i = 1, \dots, n$$

Für alle sensible Zellen werden untere (LPL_i) und obere (UPL_i)
 Protection Levels definiert, sodass für die vom Angreifer berechneten Intervalle gilt:

$$min(y_i) \le a_i - LPL_i \ \forall i \in PS$$

 $max(y_i) \ge a_i + UPL_i \ \forall i \in PS$

 Wir nehmen an, dass ein Angreifer für jeden Zellwert ai eine untere und obere Grenze (lbi bzw. ubi) kennt, mit:

$$lb_i \leq a_i \leq ub_i \ \forall i = 1, \dots, n$$

• Man definiert relative äussere Grenzen für jede Zelle:

$$LB_i := a_i - Ib_i \ge 0 \ \forall i = 1, \dots, n$$

$$UB_i := ub_i - a_i \ge 0 \ \forall i = 1, \dots, n$$

• Für alle sensible Zellen werden untere (*LPL_i*) und obere (*UPL_i*) Protection Levels definiert, sodass für die vom Angreifer berechneten Intervalle gilt:

$$min(y_i) \le a_i - LPL_i \ \forall i \in PS$$

 $max(y_i) \ge a_i + UPL_i \ \forall i \in PS$

• Wir führen binäre Variablen x_i , i = 1, ..., n ein, für die gelten soll:

$$x_i = 0 \ \forall i \notin SUP$$

 $x_i = 1 \ \forall i \in SUP$

Zellunterdrückung - Modellannahmen (2)

• Wir definieren für jede Zelle a_i ein Gewicht w_i , das in die Zielfunktion einfließt, z.B:

$$w_i = a_i$$

$$w_i = 1$$

$$w_i = log(1 + a_i)$$

Zellunterdrückung - Modellannahmen (2)

 Wir definieren für jede Zelle a_i ein Gewicht w_i, das in die Zielfunktion einfließt, z.B:

$$w_i = a_i$$

$$w_i = 1$$

$$w_i = log(1 + a_i)$$

• Die Zielfunktion des Optimierungsproblems ist gegeben als:

$$min \sum_{i=1}^{n} w_i \cdot x_i$$

Zellunterdrückung - Modellannahmen (2)

 Wir definieren für jede Zelle a_i ein Gewicht w_i, das in die Zielfunktion einfließt, z.B:

$$w_i = a_i$$

$$w_i = 1$$

$$w_i = log(1 + a_i)$$

• Die Zielfunktion des Optimierungsproblems ist gegeben als:

$$min\sum_{i=1}^n w_i \cdot x_i$$

unter folgenden Nebenbedingungen:

• Optimiere: $min \sum_{i=1}^{n} w_i \cdot x_i$ unter

• Optimiere: $min \sum_{i=1}^{n} w_i \cdot x_i$ unter

$$Mf = b$$
 $Mg = b$ (1)

$$f_i \ge a_i - LB_i \cdot x_i \ \forall i = 1, \dots, n \quad g_i \ge a_i - LB_i \cdot x_i \forall i = 1, \dots, n$$
 (2)

$$f_i \le a_i + UB_i \cdot x_i \ \forall i = 1, \dots, n \quad g_i \le a_i + UB_i \cdot x_i \forall i = 1, \dots, n$$
 (3)

$$f_i \le a_i - LPL_i \ \forall i \in PS$$
 $g_i \ge a_i + UPL_i \ \forall i \in PS$ (4)

• Optimiere: $min \sum_{i=1}^{n} w_i \cdot x_i$ unter

$$Mf = b$$
 $Mg = b$ (1)

$$f_i \ge a_i - LB_i \cdot x_i \ \forall i = 1, \dots, n \quad g_i \ge a_i - LB_i \cdot x_i \forall i = 1, \dots, n$$
 (2)

$$f_i \leq a_i + UB_i \cdot x_i \ \forall i = 1, \dots, n \quad g_i \leq a_i + UB_i \cdot x_i \forall i = 1, \dots, n$$
 (3)

$$f_i \le a_i - LPL_i \ \forall i \in PS$$
 $g_i \ge a_i + UPL_i \ \forall i \in PS$ (4)

• Es werden zwei mögliche Tabellen $f = (f_1, ..., f_n)$ sowie $g = (g_1, ..., g_n)$ gesucht.

• Optimiere: $min \sum_{i=1}^{n} w_i \cdot x_i$ unter

$$Mf = b$$
 $Mg = b$ (1)

$$f_i \ge a_i - LB_i \cdot x_i \ \forall i = 1, \dots, n \quad g_i \ge a_i - LB_i \cdot x_i \forall i = 1, \dots, n$$
 (2)

$$f_i \le a_i + UB_i \cdot x_i \ \forall i = 1, \dots, n \quad g_i \le a_i + UB_i \cdot x_i \forall i = 1, \dots, n$$
 (3)

$$f_i \le a_i - LPL_i \ \forall i \in PS$$
 $g_i \ge a_i + UPL_i \ \forall i \in PS$ (4)

- Es werden zwei mögliche Tabellen $f = (f_1, ..., f_n)$ sowie $g = (g_1, ..., g_n)$ gesucht.
- Die NB (1, 2, 3) stellen sicher, dass für f und g alle linearen Abhängigkeiten erfüllt sind und dass gilt:

• Optimiere: $min \sum_{i=1}^{n} w_i \cdot x_i$ unter

$$Mf = b$$
 $Mg = b$ (1)

$$f_i \ge a_i - LB_i \cdot x_i \ \forall i = 1, \dots, n \quad g_i \ge a_i - LB_i \cdot x_i \forall i = 1, \dots, n$$
 (2)

$$f_i \le a_i + UB_i \cdot x_i \ \forall i = 1, \dots, n \quad g_i \le a_i + UB_i \cdot x_i \forall i = 1, \dots, n$$
 (3)

$$f_i \le a_i - LPL_i \ \forall i \in PS$$
 $g_i \ge a_i + UPL_i \ \forall i \in PS$ (4)

- Es werden zwei mögliche Tabellen $f = (f_1, \dots, f_n)$ sowie $g = (g_1, \dots, g_n)$ gesucht.
- Die NB (1, 2, 3) stellen sicher, dass für f und g alle linearen Abhängigkeiten erfüllt sind und dass gilt:

$$f_i = g_i = a_i \ \forall i \notin SUPP \tag{5}$$

$$lb_i \le f_i, g_i \le ub_i \ \forall i \in SUPP$$
 (6)

• Optimiere: $min \sum_{i=1}^{n} w_i \cdot x_i$ unter

$$Mf = b$$
 $Mg = b$ (1)

$$f_i \ge a_i - LB_i \cdot x_i \ \forall i = 1, \dots, n \quad g_i \ge a_i - LB_i \cdot x_i \forall i = 1, \dots, n$$
 (2)

$$f_i \le a_i + UB_i \cdot x_i \ \forall i = 1, \dots, n \quad g_i \le a_i + UB_i \cdot x_i \forall i = 1, \dots, n$$
 (3)

$$f_i \le a_i - LPL_i \ \forall i \in PS$$
 $g_i \ge a_i + UPL_i \ \forall i \in PS$ (4)

- Es werden zwei mögliche Tabellen $f = (f_1, ..., f_n)$ sowie $g = (g_1, ..., g_n)$ gesucht.
- Die NB (1, 2, 3) stellen sicher, dass für f und g alle linearen Abhängigkeiten erfüllt sind und dass gilt:

$$f_i = g_i = a_i \ \forall i \notin SUPP \tag{5}$$

$$lb_i \le f_i, g_i \le ub_i \ \forall i \in SUPP \tag{6}$$

 die Nebenbedingungen (4) erzwingen die Einhaltung der Protection Levels für alle primär-gesperrten Zellen.

- Das Modell liefert ein optimales Sperrmuster in Bezug auf die Zielfunktion.
- Aber: In der **Praxis** (in dieser Form) **nicht einsetzbar**, da die Anzahl der Hilfsvariablen (f_i, g_i, x_i) und die Anzahl der Nebenbedingungen sehr schnell, sehr groß wird.

- Das Modell liefert ein optimales Sperrmuster in Bezug auf die Zielfunktion.
- Aber: In der **Praxis** (in dieser Form) **nicht einsetzbar**, da die Anzahl der Hilfsvariablen (f_i, g_i, x_i) und die Anzahl der Nebenbedingungen sehr schnell, sehr groß wird.
- Es ist möglich, die Anzahl der für das Modell notwendigen Variablen zu verringern, indem man das Dualitätsprinzip jedes lineares Problems ausnützt.

- Das Modell liefert ein optimales Sperrmuster in Bezug auf die Zielfunktion.
- Aber: In der **Praxis** (in dieser Form) **nicht einsetzbar**, da die Anzahl der Hilfsvariablen (f_i, g_i, x_i) und die Anzahl der Nebenbedingungen sehr schnell, sehr groß wird.
- Es ist möglich, die Anzahl der für das Modell notwendigen Variablen zu verringern, indem man das Dualitätsprinzip jedes lineares Problems ausnützt.
- Das Modell wird nur mehr mittels der binären Variablen xi formuliert.

- Das Modell liefert ein optimales Sperrmuster in Bezug auf die Zielfunktion.
- Aber: In der **Praxis** (in dieser Form) **nicht einsetzbar**, da die Anzahl der Hilfsvariablen (f_i, g_i, x_i) und die Anzahl der Nebenbedingungen sehr schnell, sehr groß wird.
- Es ist möglich, die Anzahl der für das Modell notwendigen Variablen zu verringern, indem man das Dualitätsprinzip jedes lineares Problems ausnützt.
- Das Modell wird nur mehr mittels der binären Variablen xi formuliert.
- Es werden **schrittweise zusätzliche Nebenbedingungen** ins Modell aufgenommen, die aber nur mehr von x_i abhängen.

- Das Modell liefert ein optimales Sperrmuster in Bezug auf die Zielfunktion.
- Aber: In der **Praxis** (in dieser Form) **nicht einsetzbar**, da die Anzahl der Hilfsvariablen (f_i, g_i, x_i) und die Anzahl der Nebenbedingungen sehr schnell, sehr groß wird.
- Es ist möglich, die Anzahl der für das Modell notwendigen Variablen zu verringern, indem man das **Dualitätsprinzip** jedes lineares Problems ausnützt.
- Das Modell wird nur mehr mittels der binären Variablen xi formuliert.
- Es werden **schrittweise zusätzliche Nebenbedingungen** ins Modell aufgenommen, die aber nur mehr von x_i abhängen.
- Es ergibt sich ein iterativer Algorithmus, in dem zwar mehr lineare Probleme gelöst werden müssen, die aber weniger komplex und umfangreich sind.

• Gegeben sei folgende Tabelle:

• Gegeben sei folgende Tabelle:

	R1	R2	R3	Total
55.1	20	50	10	80
55.2	8	19	22	49
55.3	17	32	12	61
55	45	101	44	190
56.11	9	28	5	42
56.12	4	7	6	17
56.13	27	15	9	51
56.1	40	50	20	110
56.2	2	20	18	40
56.3	20	30	25	75
56	62	100	53	225
Total	107	201	97	415

• Schützenswerte Zellen seien identifiziert und gelöscht:

	R1	R2	R3	Total
55.1	20	50	10	80
55.2	8	19	NA	49
55.3	17	32	12	61
55	45	101	44	190
56.11	9	28	5	42
56.12	NA	NA	6	NA
56.13	27	15	9	51
56.1	40	NA	20	110
56.2	NA	20	18	40
56.3	20	30	25	75
56	62	100	53	225
Total	107	201	97	415

 Aufgabe: Auffinden eines gültigen Sperrmusters gegen exakte Rückrechenbarkeit mit minimaler Anzahl von Sekundärsperrungen:

	R1	R2	R3	Total
55.1	20	50	10	80
55.2	8	19	NA	49
55.3	17	32	12	61
55	45	101	44	190
56.11	9	28	5	42
56.12	NA	NA	6	NA
56.13	27	15	9	51
56.1	40	NA	20	110
56.2	NA	20	18	40
56.3	20	30	25	75
56	62	100	53	225
Total	107	201	97	415

• Aufgabe: Auffinden eines gültigen Sperrmusters gegen exakte Rückrechenbarkeit mit minimaler Anzahl von Sekundärsperrungen:

	R1	R2	R3	Total
55.1	20	50	S	S
55.2	8	19	NA	S
55.3	17	32	12	61
55	45	101	44	190
56.11	S	S	5	S
56.12	NA	NA	6	S
56.13	27	15	9	51
56.1	S	NA	20	S
56.2	NA	S	18	S
56.3	S	S	25	75
56	62	100	53	225
Total	107	201	97	415

• Aufgabe: Auffinden eines gültigen Sperrmusters gegen exakte Rückrechenbarkeit mit minimaler Anzahl von Sekundärsperrungen:

	R1	R2	R3	Total
55.1	20	50	S	S
55.2	8	19	NA	S
55.3	17	32	12	61
55	45	101	44	190
56.11	S	S	5	S
56.12	NA	NA	6	S
56.13	27	15	9	51
56.1	S	NA	20	S
56.2	NA	S	18	S
56.3	S	S	25	75
56	62	100	53	225
Total	107	201	97	415

• Wir mussten insgesamt 13 zusätzliche Zellen sperren.

• Aufgabe: Auffinden eines gültigen Sperrmusters gegen exakte Rückrechenbarkeit mit minimaler Anzahl von Sekundärsperrungen:

	R1	R2	R3	Total
55.1	20	50	S	S
55.2	8	19	NA	S
55.3	17	32	12	61
55	45	101	44	190
56.11	S	S	5	S
56.12	NA	NA	6	S
56.13	27	15	9	51
56.1	S	NA	20	S
56.2	NA	S	18	S
56.3	S	S	25	75
56	62	100	53	225
Total	107	201	97	415

- Wir mussten insgesamt 13 zusätzliche Zellen sperren.
- Der Informationsverlust der Sekundärsperrungen beträgt 485.

 Aufgabe: Auffinden eines gültigen Sperrmusters gegen exakte Rückrechenbarkeit mit minimaler Anzahl von Sekundärsperrungen:

	R1	R2	R3	Total
55.1	20	50	S	S
55.2	8	19	NA	S
55.3	17	32	12	61
55	45	101	44	190
56.11	S	S	5	S
56.12	NA	NA	6	S
56.13	27	15	9	51
56.1	S	NA	20	S
56.2	NA	S	18	S
56.3	S	S	25	75
56	62	100	53	225
Total	107	201	97	415

- Wir mussten insgesamt 13 zusätzliche Zellen sperren.
- Der Informationsverlust der Sekundärsperrungen beträgt 485.
- Gibt es bessere/alternative Sperrmuster?

• Lösung: es gibt bessere Sperrmuster, z.B das optimale

	R1	R2	R3	Total
55.1	20	50	10	80
55.2	S	19	NA	49
55.3	S	32	S	61
55	45	101	44	190
56.11	S	28	5	S
56.12	NA	NA	6	S
56.13	27	15	9	51
56.1	S	NA	20	110
56.2	NA	S	18	40
56.3	20	30	25	75
56	62	100	53	225
Total	107	201	97	415

• Lösung: es gibt bessere Sperrmuster, z.B das optimale

	R1	R2	R3	Total
55.1	20	50	10	80
55.2	S	19	NA	49
55.3	S	32	S	61
55	45	101	44	190
56.11	S	28	5	S
56.12	NA	NA	6	S
56.13	27	15	9	51
56.1	S	NA	20	110
56.2	NA	S	18	40
56.3	20	30	25	75
56	62	100	53	225
Total	107	201	97	415

• Wir mussten insgesamt 7 zusätzliche Zellen sperren.

• Lösung: es gibt bessere Sperrmuster, z.B das optimale

	R1	R2	R3	Total
55.1	20	50	10	80
55.2	S	19	NA	49
55.3	S	32	S	61
55	45	101	44	190
56.11	S	28	5	S
56.12	NA	NA	6	S
56.13	27	15	9	51
56.1	S	NA	20	110
56.2	NA	S	18	40
56.3	20	30	25	75
56	62	100	53	225
Total	107	201	97	415

- Wir mussten insgesamt 7 zusätzliche Zellen sperren.
- Der Informationsverlust der Sekundärsperrungen beträgt 148.

• Lösung: es gibt bessere Sperrmuster, z.B das optimale

	R1	R2	R3	Total
55.1	20	50	10	80
55.2	S	19	NA	49
55.3	S	32	S	61
55	45	101	44	190
56.11	S	28	5	S
56.12	NA	NA	6	S
56.13	27	15	9	51
56.1	S	NA	20	110
56.2	NA	S	18	40
56.3	20	30	25	75
56	62	100	53	225
Total	107	201	97	415

- Wir mussten insgesamt 7 zusätzliche Zellen sperren.
- Der Informationsverlust der Sekundärsperrungen beträgt 148.

• **Hierarchische Tabellen:** Dimensionsvariablen (z.B NACE, NUTS,...) sind hierarchisch gegliedert. Es ist komplex, die linearen Abhängigkeiten (My = b) (automatisch) zu modellieren.

- **Hierarchische Tabellen:** Dimensionsvariablen (z.B NACE, NUTS,...) sind hierarchisch gegliedert. Es ist komplex, die linearen Abhängigkeiten (My = b) (automatisch) zu modellieren.
- verlinkte Tabellen: Man spricht von verlinkten Tabellen, wenn einzelne Zellen in unterschiedlichen Tabellen auftreten. Wird eine solche Zelle (sekundär) gesperrt, muss in allen Tabellen die Rückrechenbarkeit überprüft werden.

- **Hierarchische Tabellen:** Dimensionsvariablen (z.B NACE, NUTS,...) sind hierarchisch gegliedert. Es ist komplex, die linearen Abhängigkeiten (My = b) (automatisch) zu modellieren.
- verlinkte Tabellen: Man spricht von verlinkten Tabellen, wenn einzelne Zellen in unterschiedlichen Tabellen auftreten. Wird eine solche Zelle (sekundär) gesperrt, muss in allen Tabellen die Rückrechenbarkeit überprüft werden.
- Rechenzeit: das Optimierungsproblem ist hochgradig komplex und führt oft zu langen Rechenzeiten.

- **Hierarchische Tabellen:** Dimensionsvariablen (z.B NACE, NUTS,...) sind hierarchisch gegliedert. Es ist komplex, die linearen Abhängigkeiten (My = b) (automatisch) zu modellieren.
- verlinkte Tabellen: Man spricht von verlinkten Tabellen, wenn einzelne Zellen in unterschiedlichen Tabellen auftreten. Wird eine solche Zelle (sekundär) gesperrt, muss in allen Tabellen die Rückrechenbarkeit überprüft werden.
- Rechenzeit: das Optimierungsproblem ist hochgradig komplex und führt oft zu langen Rechenzeiten.
- **Heuristiken:** es ist notwendig, Heuristiken zu entwickeln/verwenden, die quasi/optimale Lösungen liefern.

- **Hierarchische Tabellen:** Dimensionsvariablen (z.B NACE, NUTS,...) sind hierarchisch gegliedert. Es ist komplex, die linearen Abhängigkeiten (My = b) (automatisch) zu modellieren.
- verlinkte Tabellen: Man spricht von verlinkten Tabellen, wenn einzelne Zellen in unterschiedlichen Tabellen auftreten. Wird eine solche Zelle (sekundär) gesperrt, muss in allen Tabellen die Rückrechenbarkeit überprüft werden.
- Rechenzeit: das Optimierungsproblem ist hochgradig komplex und führt oft zu langen Rechenzeiten.
- **Heuristiken:** es ist notwendig, Heuristiken zu entwickeln/verwenden, die quasi/optimale Lösungen liefern.
 - HITAS: Umwandlung von hierarchisch gegliederten Tabellen in einfache, 2-dimensionale Tabellen. Zellsperrung in 2-dimensionalen Tabellen nach einer gewissen Reihenfolge.

- **Hierarchische Tabellen:** Dimensionsvariablen (z.B NACE, NUTS,...) sind hierarchisch gegliedert. Es ist komplex, die linearen Abhängigkeiten (My = b) (automatisch) zu modellieren.
- verlinkte Tabellen: Man spricht von verlinkten Tabellen, wenn einzelne Zellen in unterschiedlichen Tabellen auftreten. Wird eine solche Zelle (sekundär) gesperrt, muss in allen Tabellen die Rückrechenbarkeit überprüft werden.
- Rechenzeit: das Optimierungsproblem ist hochgradig komplex und führt oft zu langen Rechenzeiten.
- Heuristiken: es ist notwendig, Heuristiken zu entwickeln/verwenden, die quasi/optimale Lösungen liefern.
 - HITAS: Umwandlung von hierarchisch gegliederten Tabellen in einfache, 2-dimensionale Tabellen. Zellsperrung in 2-dimensionalen Tabellen nach einer gewissen Reihenfolge.
 - Quaderverfahren: Algorithmus zum Aufsuchen "geometrischer"
 Sperrmuster

• Runden ist eine Alternative zur Zellunterdrückung.

- Runden ist eine Alternative zur Zellunterdrückung.
- Varianten: Es gibt verschiedene Varianten zum Runden von Tabellen:

- Runden ist eine Alternative zur Zellunterdrückung.
- Varianten: Es gibt verschiedene Varianten zum Runden von Tabellen:
 - normales Runden:
 - zufälliges Runden
 - kontrolliertes Runden

- Runden ist eine Alternative zur Zellunterdrückung.
- Varianten: Es gibt verschiedene Varianten zum Runden von Tabellen:
 - normales Runden:
 - zufälliges Runden
 - kontrolliertes Runden
- Bei allen Varianten muss eine **Rundungsbasis** (oft 3 oder 5) gewählt werden.

Runden

- Runden ist eine Alternative zur Zellunterdrückung.
- Varianten: Es gibt verschiedene Varianten zum Runden von Tabellen:
 - normales Runden:
 - zufälliges Runden
 - kontrolliertes Runden
- Bei allen Varianten muss eine Rundungsbasis (oft 3 oder 5) gewählt werden.
- normales Runden (Runden des Zellwertes zum n\u00e4chsten Vielfachen der Basis) bringt etwas Schutz, aber nicht genug
 - \rightarrow wir vernachlässigen diese Variante.

 Idee: jeder Zellwert wird in einer zufälligen Art und Weise unabhängig von allen anderen Zellen - zu einem Vielfachen der Basis auf- oder abgerundet.

- Idee: jeder Zellwert wird in einer zufälligen Art und Weise unabhängig von allen anderen Zellen - zu einem Vielfachen der Basis auf- oder abgerundet.
- Vielfache der Basis werden nicht verändert.

- Idee: jeder Zellwert wird in einer zufälligen Art und Weise unabhängig von allen anderen Zellen - zu einem Vielfachen der Basis auf- oder abgerundet.
- Vielfache der Basis werden nicht verändert.
- Randsummen werden üblicherweise getrennt von den inneren Tabellenzellen behandelt.

- Idee: jeder Zellwert wird in einer zufälligen Art und Weise unabhängig von allen anderen Zellen - zu einem Vielfachen der Basis auf- oder abgerundet.
- Vielfache der Basis werden nicht verändert.
- Randsummen werden üblicherweise getrennt von den inneren Tabellenzellen behandelt.
- Wichtig: unterschiedliche Gewichtungsschemata sind möglich, jedoch soll keine Tendenz zum Auf- oder Abrunden durch das Gewichtungsschema implizit gegeben werden.

- Idee: jeder Zellwert wird in einer zufälligen Art und Weise unabhängig von allen anderen Zellen - zu einem Vielfachen der Basis auf- oder abgerundet.
- Vielfache der Basis werden nicht verändert.
- Randsummen werden üblicherweise getrennt von den inneren Tabellenzellen behandelt.
- Wichtig: unterschiedliche Gewichtungsschemata sind möglich, jedoch soll keine Tendenz zum Auf- oder Abrunden durch das Gewichtungsschema implizit gegeben werden.
- Nachteil: Tabellen sind möglicherweise (wahrscheinlich) nicht mehr additiv.

Н	Α	В	С	Total
I	4	6	3	13
ll ll	2	5	7	14
III	4	5	3	12
Total	10	16	13	39

Н	Α	В	С	Total
1	4	6	3	13
H H	2	5	7	14
III	4	5	3	12
Total	10	16	13	39

Н	Α	В	С	Total
I	4	6	3	13
ll ll	2	5	7	14
Ш	4	5	3	12
Total	10	16	13	39

_					
	Н	Α	В	С	Total
	I	1	0	0	1
	II.	1	2	1	2
	III	1	2	0	0
	Total	1	1	1	0

Н	Α	В	С	Total
I	4	6	3	13
ll ll	2	5	7	14
III	4	5	3	12
Total	10	16	13	39

 Basis: Wir wählen 3 und berechnen die Reste der Division der Zellwerte durch die Basis:

Н	Α	В	С	Total
ı	1	0	0	1
ll ll	1	2	1	2
III	1	2	0	0
Total	1	1	1	0

• Gewichtungsschema: Wir wählen folgendes Gewichtungsschema:

Н	Α	В	С	Total
- 1	4	6	3	13
ll ll	2	5	7	14
III	4	5	3	12
Total	10	16	13	39

Н	Α	В	С	Total
I	1	0	0	1
ll ll	1	2	1	2
III	1	2	0	0
Total	1	1	1	0

- Gewichtungsschema: Wir wählen folgendes Gewichtungsschema:
 - Divisionsrest = 0: Tabellenwert wird nicht verändert.

Н	Α	В	С	Total
I	4	6	3	13
ll ll	2	5	7	14
III	4	5	3	12
Total	10	16	13	39

Н	Α	В	С	Total
I	1	0	0	1
ll ll	1	2	1	2
III	1	2	0	0
Total	1	1	1	0

- Gewichtungsschema: Wir wählen folgendes Gewichtungsschema:
 - Divisionsrest = 0: Tabellenwert wird nicht verändert.
 - Divisionsrest = 1: mit Wahrscheinlichkeit $\frac{1}{3}$ wird aufgerundet, mit Wahrscheinlichkeit $\frac{2}{3}$ abgerundet.

Н	Α	В	С	Total
I	4	6	3	13
ll ll	2	5	7	14
III	4	5	3	12
Total	10	16	13	39

Н	Α	В	C	Total
I	1	0	0	1
ll ll	1	2	1	2
III	1	2	0	0
Total	1	1	1	0

- Gewichtungsschema: Wir wählen folgendes Gewichtungsschema:
 - Divisionsrest = 0: Tabellenwert wird nicht verändert.
 - Divisionsrest = 1: mit Wahrscheinlichkeit $\frac{1}{3}$ wird aufgerundet, mit Wahrscheinlichkeit $\frac{2}{3}$ abgerundet.
 - Divisionsrest = 2: mit Wahrscheinlichkeit $\frac{2}{3}$ wird aufgerundet, mit Wahrscheinlichkeit $\frac{1}{3}$ abgerundet.

• Es ergibt sich z.B folgende Tabelle:

Н	Α	В	С	Total
	6	6	3	15
H.	3	3	6	12
III	3	6	3	12
Total	9	15	15	39

• Es ergibt sich z.B folgende Tabelle:

Н	Α	В	С	Total
I	6	6	3	15
ll II	3	3	6	12
III	3	6	3	12
Total	9	15	15	39

• Additivität in Spalten 1 und 3 stimmt nicht mehr.

• Es ergibt sich z.B folgende Tabelle:

Н	Α	В	С	Total
I	6	6	3	15
H H	3	3	6	12
III	3	6	3	12
Total	9	15	15	39

- Additivität in Spalten 1 und 3 stimmt nicht mehr.
- andere Möglichkeit:

• Es ergibt sich z.B folgende Tabelle:

Н	Α	В	С	Total
I	6	6	3	15
H H	3	3	6	12
III	3	6	3	12
Total	9	15	15	39

- Additivität in Spalten 1 und 3 stimmt nicht mehr.
- andere Möglichkeit:

Н	Α	В	С	Total
	3	6	3	15
ll ll	0	6	6	15
III	3	3	3	12
Total	12	15	15	39

• Es ergibt sich z.B folgende Tabelle:

Н	Α	В	С	Total
1	6	6	3	15
ll II	3	3	6	12
III	3	6	3	12
Total	9	15	15	39

- Additivität in Spalten 1 und 3 stimmt nicht mehr.
- andere Möglichkeit:

Н	Α	В	С	Total
I	3	6	3	15
ll ll	0	6	6	15
III	3	3	3	12
Total	12	15	15	39

• z.B: Additivität in Spalte 1,3 und 4 sowie Zeile 1-4 stimmt nicht mehr.

• Es ergibt sich z.B folgende Tabelle:

Н	Α	В	С	Total
1	6	6	3	15
ll II	3	3	6	12
III	3	6	3	12
Total	9	15	15	39

- Additivität in Spalten 1 und 3 stimmt nicht mehr.
- andere Möglichkeit:

Н	Α	В	С	Total
- 1	3	6	3	15
II	0	6	6	15
111	3	3	3	12
Total	12	15	15	39

- z.B: Additivität in Spalte 1,3 und 4 sowie Zeile 1-4 stimmt nicht mehr.
- **Achtung:** Problem wenn die gleiche Zelle in verlinkten Tabellen unterschiedlich gerundet wird.

• Idee: jeder Zellwert wird in einer Art und Weise zu einem Vielfachen der Basis auf- oder abgerundet, sodass die Additivität der Tabelle gewahrt bleibt.

- Idee: jeder Zellwert wird in einer Art und Weise zu einem Vielfachen der Basis auf- oder abgerundet, sodass die Additivität der Tabelle gewahrt bleibt.
- Vielfache der Basis werden (grundsätzlich) nicht verändert.

- Idee: jeder Zellwert wird in einer Art und Weise zu einem Vielfachen der Basis auf- oder abgerundet, sodass die Additivität der Tabelle gewahrt bleibt.
- Vielfache der Basis werden (grundsätzlich) nicht verändert.
- Wichtig: unterschiedliche Gewichtungsschemata sind möglich, jedoch soll keine Tendenz zum Auf- oder Abrunden durch das Gewichtungsschema implizit gegeben werden.

- Idee: jeder Zellwert wird in einer Art und Weise zu einem Vielfachen der Basis auf- oder abgerundet, sodass die Additivität der Tabelle gewahrt bleibt.
- Vielfache der Basis werden (grundsätzlich) nicht verändert.
- Wichtig: unterschiedliche Gewichtungsschemata sind möglich, jedoch soll keine Tendenz zum Auf- oder Abrunden durch das Gewichtungsschema implizit gegeben werden.
- Vorteil: Tabellen sind additiv.

- Idee: jeder Zellwert wird in einer Art und Weise zu einem Vielfachen der Basis auf- oder abgerundet, sodass die Additivität der Tabelle gewahrt bleibt.
- Vielfache der Basis werden (grundsätzlich) nicht verändert.
- Wichtig: unterschiedliche Gewichtungsschemata sind möglich, jedoch soll keine Tendenz zum Auf- oder Abrunden durch das Gewichtungsschema implizit gegeben werden.
- Vorteil: Tabellen sind additiv.
- Nachteil: bei kontrolliertem Runden handelt es sich um ein (komplexes) lineares Problem das möglicherweise unlösbar ist.

Kontrolliertes Runden - Beispiel

• ursprüngliche Tabelle:

Н	Α	В	С	Total
I	4	6	3	13
ll ll	2	5	7	14
III	4	5	3	12
Total	10	16	13	39

Kontrolliertes Runden - Beispiel

• ursprüngliche Tabelle:

Н	Α	В	С	Total
I	4	6	3	13
ll ll	2	5	7	14
III	4	5	3	12
Total	10	16	13	39

• Tabelle nach kontrolliertem Runden:

Н	Α	В	С	Total
- 1	3	6	3	12
ll ll	3	3	9	15
Ш	3	6	3	12
Total	9	15	15	39

Kontrolliertes Runden - Beispiel

• ursprüngliche Tabelle:

Н	Α	В	С	Total
I	4	6	3	13
ll ll	2	5	7	14
III	4	5	3	12
Total	10	16	13	39

Tabelle nach kontrolliertem Runden:

Н	Α	В	С	Total
	3	6	3	12
H H	3	3	9	15
III	3	6	3	12
Total	9	15	15	39

Alle Randsummen stimmen, die Tabelle ist additiv.

- 1) jeder primär gesperrte Zellwert wird durch einen "sicheren" Wert am oberen oder unteren Rand des vorgegebenen Sicherheitsintervals ersetzt.
- 2) Alle anderen Zellen werden so adjustiert, dass wiederum eine additive Tabelle entsteht.

- 1) jeder primär gesperrte Zellwert wird durch einen "sicheren" Wert am oberen oder unteren Rand des vorgegebenen Sicherheitsintervals ersetzt.
- 2) Alle anderen Zellen werden so adjustiert, dass wiederum eine additive Tabelle entsteht.
- Vorteil: es entstehen im Gegensatz zu Zellunterdrückung keine lückenhaften Tabellen, ausserdem sind die Anpassungen der nicht primär sensiblen Zellen meist gering.

- 1) jeder primär gesperrte Zellwert wird durch einen "sicheren" Wert am oberen oder unteren Rand des vorgegebenen Sicherheitsintervals ersetzt.
- 2) Alle anderen Zellen werden so adjustiert, dass wiederum eine additive Tabelle entsteht.
- Vorteil: es entstehen im Gegensatz zu Zellunterdrückung keine lückenhaften Tabellen, ausserdem sind die Anpassungen der nicht primär sensiblen Zellen meist gering.
- weiterer Vorteil: optimale Algorithmen existieren.

- 1) jeder primär gesperrte Zellwert wird durch einen "sicheren" Wert am oberen oder unteren Rand des vorgegebenen Sicherheitsintervals ersetzt.
- 2) Alle anderen Zellen werden so adjustiert, dass wiederum eine additive Tabelle entsteht.
- Vorteil: es entstehen im Gegensatz zu Zellunterdrückung keine lückenhaften Tabellen, ausserdem sind die Anpassungen der nicht primär sensiblen Zellen meist gering.
- weiterer Vorteil: optimale Algorithmen existieren.
- Nachteile: optimale Algorithmen nur brauchbar für sehr kleine Tabellen, Heuristiken existieren, garantieren aber keine Lösung.

• ursprüngliche Tabelle:

Н	Α	В	С	Total
I	74	17 [0:37]	85	176
H H	71	51	30	152
III	1[0,21]	9[0,29]	36	46
Total	146	77	151	374

• ursprüngliche Tabelle:

Н	Α	В	С	Total
1	74	17 [0:37]	85	176
H H	71	51	30	152
III	1[0,21]	9[0,29]	36	46
Total	146	77	151	374

• Fixieren der Werte für die sensitiven Zellen

• ursprüngliche Tabelle:

Н	Α	В	С	Total
	74	17 [0:37]	85	176
H.	71	51	30	152
III	1[0,21]	9[0,29]	36	46
Total	146	77	151	374

• Fixieren der Werte für die sensitiven Zellen

Н	Α	В	С	Total
- 1		0*		
H H				
III	0*	29*		
Total				

• ursprüngliche Tabelle:

Н	Α	В	С	Total
1	74	17 [0:37]	85	176
H H	71	51	30	152
III	1[0,21]	9[0,29]	36	46
Total	146	77	151	374

• Anpassung der nicht sensitiven Zellen

Н	Α	В	С	Total
- 1	75*	0*		
H II			_	
III	0*	29*		
Total				

• ursprüngliche Tabelle:

Н	Α	В	С	Total
1	74	17 [0:37]	85	176
H H	71	51	30	152
III	1[0,21]	9[0,29]	36	46
Total	146	77	151	374

• Anpassung der nicht sensitiven Zellen

Н	Α	В	С	Total
- 1	75*	0*	85	
H II				
III	0*	29*		
Total				

• ursprüngliche Tabelle:

Н	Α	В	С	Total
I	74	17 [0:37]	85	176
ll II	71	51	30	152
III	1[0,21]	9[0,29]	36	46
Total	146	77	151	374

Н	Α	В	С	Total
- 1	75*	0*	85	160*
H II			-	
Ш	0*	29*		
Total				

• ursprüngliche Tabelle:

Н	Α	В	С	Total
I	74	17 [0:37]	85	176
H.	71	51	30	152
III	1[0,21]	9[0,29]	36	46
Total	146	77	151	374

Н	Α	В	С	Total
- 1	75*	0*	85	160*
H II	71		-	
III	0*	29*		
Total				

• ursprüngliche Tabelle:

Н	Α	В	С	Total
I	74	17 [0:37]	85	176
H.	71	51	30	152
III	1[0,21]	9[0,29]	36	46
Total	146	77	151	374

Н	Α	В	С	Total
1	75*	0*	85	160*
H II	71	51	_	
III	0*	29*		
Total				

• ursprüngliche Tabelle:

Н	Α	В	С	Total
I	74	17 [0:37]	85	176
ll II	71	51	30	152
III	1[0,21]	9[0,29]	36	46
Total	146	77	151	374

Н	Α	В	С	Total
- 1	75*	0*	85	160*
H II	71	51	30	
III	0*	29*		
Total				

• ursprüngliche Tabelle:

Н	Α	В	С	Total
I	74	17 [0:37]	85	176
ll II	71	51	30	152
III	1[0,21]	9[0,29]	36	46
Total	146	77	151	374

Н	Α	В	С	Total
- 1	75*	0*	85	160*
H II	71	51	30	152
III	0*	29*		
Total				

• ursprüngliche Tabelle:

Н	Α	В	С	Total
I	74	17 [0:37]	85	176
ll II	71	51	30	152
III	1[0,21]	9[0,29]	36	46
Total	146	77	151	374

Н	Α	В	С	Total
- 1	75*	0*	85	160*
H II	71	51	30	152
III	0*	29*	36	
Total				

• ursprüngliche Tabelle:

Н	Α	В	С	Total
I	74	17 [0:37]	85	176
l II	71	51	30	152
III	1[0,21]	9[0,29]	36	46
Total	146	77	151	374

Н	Α	В	С	Total
- 1	75*	0*	85	160*
H II	71	51	30	152
Ш	0*	29*	36	65*
Total				

• ursprüngliche Tabelle:

Н	Α	В	С	Total
I	74	17 [0:37]	85	176
l II	71	51	30	152
III	1[0,21]	9[0,29]	36	46
Total	146	77	151	374

Н	Α	В	С	Total
- 1	75*	0*	85	160*
H II	71	51	30	152
Ш	0*	29*	36	65*
Total	146			

• ursprüngliche Tabelle:

Н	Α	В	С	Total
	74	17 [0:37]	85	176
H H	71	51	30	152
III	1[0,21]	9[0,29]	36	46
Total	146	77	151	374

Н	Α	В	С	Total
- 1	75*	0*	85	160*
H II	71	51	30	152
III	0*	29*	36	65*
Total	146	80*		

• ursprüngliche Tabelle:

Н	Α	В	С	Total
I	74	17 [0:37]	85	176
H.	71	51	30	152
III	1[0,21]	9[0,29]	36	46
Total	146	77	151	374

Н	Α	В	С	Total
I	75*	0*	85	160*
H II	71	51	30	152
III	0*	29*	36	65*
Total	146	80*	151	

• ursprüngliche Tabelle:

Н	Α	В	С	Total
I	74	17 [0:37]	85	176
ll II	71	51	30	152
III	1[0,21]	9[0,29]	36	46
Total	146	77	151	374

Н	Α	В	С	Total
I	75*	0*	85	160*
H II	71	51	30	152
III	0*	29*	36	65*
Total	146	80*	151	377*

• ursprüngliche Tabelle:

Н	Α	В	С	Total
- 1	74	17 [0:37]	85	176
ll ll	71	51	30	152
III	1[0,21]	9[0,29]	36	46
Total	146	77	151	374

• Tabelle nach Zellanpassung:

Н	Α	В	С	Total
I	75*	0*	85	160*
II.	71	51	30	152
III	0*	29*	36	65*
Total	146	80*	151	377*

• Implementation ist wiederum basierend auf linearer Optimierung (komplexes Formelwerk).

• die vom **ABS** (Australian Bureau of Statistics) entwickelte Methode ist ein Spezialfall der **Tabellenverschmutzung**

- die vom ABS (Australian Bureau of Statistics) entwickelte Methode ist ein Spezialfall der Tabellenverschmutzung
- Idee: Konsistente, aber zufällige Verschmutzung von Tabellenzellen basierend auf
 - Record-Keys
 - Cell-Keys
 - LookUp-Tabelle

- die vom ABS (Australian Bureau of Statistics) entwickelte Methode ist ein Spezialfall der Tabellenverschmutzung
- Idee: Konsistente, aber zufällige Verschmutzung von Tabellenzellen basierend auf
 - Record-Keys
 - Cell-Keys
 - LookUp-Tabelle
- Vorteil: Konsistenz

- die vom ABS (Australian Bureau of Statistics) entwickelte Methode ist ein Spezialfall der Tabellenverschmutzung
- Idee: Konsistente, aber zufällige Verschmutzung von Tabellenzellen basierend auf
 - Record-Keys
 - Cell-Keys
 - LookUp-Tabelle
- Vorteil: Konsistenz
- Nachteil: fehlende Tabellenadditivität

- die vom ABS (Australian Bureau of Statistics) entwickelte Methode ist ein Spezialfall der Tabellenverschmutzung
- Idee: Konsistente, aber zufällige Verschmutzung von Tabellenzellen basierend auf
 - Record-Keys
 - Cell-Keys
 - LookUp-Tabelle
- Vorteil: Konsistenz
- Nachteil: fehlende Tabellenadditivität

- τ -Argus:
 - \bullet au-Argus ist das Produkt eines Europäischen Research-Projektes im Bereich Statistischer Geheimhaltung

- τ -Argus:
 - \bullet au-Argus ist das Produkt eines Europäischen Research-Projektes im Bereich Statistischer Geheimhaltung
 - ullet Code wurde erst nach pprox 15 Jahren Entwicklung in 2015 (teilweise) veröffentlicht

- τ -Argus:
 - \bullet au-Argus ist das Produkt eines Europäischen Research-Projektes im Bereich Statistischer Geheimhaltung
 - ullet Code wurde erst nach pprox 15 Jahren Entwicklung in 2015 (teilweise) veröffentlicht
 - großer Funktionsumfang mit graphischer Oberfläche

- τ -Argus:
 - \bullet au-Argus ist das Produkt eines Europäischen Research-Projektes im Bereich Statistischer Geheimhaltung
 - \bullet Code wurde erst nach ≈ 15 Jahren Entwicklung in 2015 (teilweise) veröffentlicht
 - großer Funktionsumfang mit graphischer Oberfläche
- sdcTable:
 - freie Implementierung von Algorithmen (vor allem) der Sekundärsperrung in R

- τ -Argus:
 - \bullet au-Argus ist das Produkt eines Europäischen Research-Projektes im Bereich Statistischer Geheimhaltung
 - ullet Code wurde erst nach pprox 15 Jahren Entwicklung in 2015 (teilweise) veröffentlicht
 - großer Funktionsumfang mit graphischer Oberfläche
- sdcTable:
 - freie Implementierung von Algorithmen (vor allem) der Sekundärsperrung in R
 - Code ist frei verfügbar, modifizierbar,...

- τ -Argus:
 - \bullet au-Argus ist das Produkt eines Europäischen Research-Projektes im Bereich Statistischer Geheimhaltung
 - ullet Code wurde erst nach pprox 15 Jahren Entwicklung in 2015 (teilweise) veröffentlicht
 - großer Funktionsumfang mit graphischer Oberfläche
- sdcTable:
 - freie Implementierung von Algorithmen (vor allem) der Sekundärsperrung in R
 - Code ist frei verfügbar, modifizierbar,...
 - kleinerer Funktionsumfang ohne graphischer Oberfläche

- τ -Argus:
 - \bullet au-Argus ist das Produkt eines Europäischen Research-Projektes im Bereich Statistischer Geheimhaltung
 - ullet Code wurde erst nach pprox 15 Jahren Entwicklung in 2015 (teilweise) veröffentlicht
 - großer Funktionsumfang mit graphischer Oberfläche
- sdcTable:
 - freie Implementierung von Algorithmen (vor allem) der Sekundärsperrung in R
 - Code ist frei verfügbar, modifizierbar,...
 - kleinerer Funktionsumfang ohne graphischer Oberfläche
 - gut adaptierbar, flexibel anpassbar an aktuelle Problemstellungen

- τ -Argus:
 - \bullet au-Argus ist das Produkt eines Europäischen Research-Projektes im Bereich Statistischer Geheimhaltung
 - ullet Code wurde erst nach pprox 15 Jahren Entwicklung in 2015 (teilweise) veröffentlicht
 - großer Funktionsumfang mit graphischer Oberfläche
- sdcTable:
 - freie Implementierung von Algorithmen (vor allem) der Sekundärsperrung in R
 - Code ist frei verfügbar, modifizierbar,...
 - kleinerer Funktionsumfang ohne graphischer Oberfläche
 - gut adaptierbar, flexibel anpassbar an aktuelle Problemstellungen
 - wird von der Methodik entwickelt und gewartet.

Weitere Informationen

über statistische Geheimhaltung finden Sie etwa bei:

- Allgemeines über SDC: http://neon.vb.cbs.nl/casc
- Handbuch: http://neon.vb.cbs.nl/casc/SDC_Handbook.pdf
- R-Paket zur Geheimhaltung (hierarchischer) Tabellen: http://cran.r-project.org/web/packages/sdcTable
- oder natürlich auch unter der Klappe 7988 (fast immer)

 Geheimhaltung von tabellarischen Daten ist ein sehr komplexer Prozess.

- Geheimhaltung von tabellarischen Daten ist ein sehr komplexer Prozess.
- Varianten für Geheimhaltung von Tabellen sind:

- Geheimhaltung von tabellarischen Daten ist ein sehr komplexer Prozess.
- Varianten für Geheimhaltung von Tabellen sind:
 - Zellunterdrückung
 - Runden
 - Zellanpassung

- Geheimhaltung von tabellarischen Daten ist ein sehr komplexer Prozess.
- Varianten f
 ür Geheimhaltung von Tabellen sind:
 - Zellunterdrückung
 - Runden
 - Zellanpassung
- alle vorgestellten Methoden besitzen sowohl für den Anwender als auch für den Datenproduzenten Vor- und Nachteile.

- Geheimhaltung von tabellarischen Daten ist ein sehr komplexer Prozess.
- Varianten für Geheimhaltung von Tabellen sind:
 - Zellunterdrückung
 - Runden
 - Zellanpassung
- alle vorgestellten Methoden besitzen sowohl für den Anwender als auch für den Datenproduzenten Vor- und Nachteile.
- noch keine (brauchbaren) und flexiblen Lösungen für komplexe, verlinkte Tabellen vorhanden.