Fundamentos da Computação

1ª edição: Outubro/2001

RICARDO J. MACHADO

Email: rmac@dsi.uminho.pt
URL: http://www.dsi.uminho.pt/~rmac

Universidade do Minho

Departamento de Sistemas de Informação

Sumário

- 1. Bases Matemáticas
- 2. Modelos de Computação
- 3. Gramáticas e Linguagens
- 4. Processamento de Linguagens

3 RMAC X-2001

1. Bases Matemáticas (1/34)

- Lógica -

■ Proposição

- é uma frase que pode ser apenas ou verdadeira ou falsa
 - Dez é menor do que sete.

(proposição falsa)

Como vai você?

(pergunta, logo, não é uma proposição)

Ela é muito talentosa!

(frase com uma variável, logo, não é uma proposição)

Existem formas de vida noutros planetas.

(proposição, mesmo que não saibamos qual a resposta)

■ Valores lógicos ou Booleanos

- os valores que pode tomar uma proposição
 - verdadeiro representa-se por "V", "T" ou "1"
 - falso representa-se por "F" ou "0"
 - nota: uma proposição sempre verdadeira é designada de tautologia
 uma proposição sempre falsa é designada de contradição

- 3

1. Bases Matemáticas (2/34)

- Lógica -

■ Operadores lógicos ou Booleanos

- negação de uma proposição (não)
 - representa-se por "A' ", "Ā", "¬ A", "~ A" ou "not A"
 - lê-se "não A", "A é falso" ou "A não é verdade"
 - não quer dizer que "¬ A" tenha sempre um valor lógico falso, mas sim que o valor lógico de "¬ A" é o contrário de "A"
 - tabela de verdade de F(A) = ¬ A

A	F
0	1
1	0

exemplo:

- se A = "Amanhã vai chover.", então - A = "Amanhã não vai chover."

4

RMAC X-2001

1. Bases Matemáticas (3/34)

- Lógica -

- **■** Operadores lógicos ou Booleanos
 - conjunção de duas proposições (e)
 - representa-se por "A ∧ B", "A × B", "A · B", "A * B" ou "A and B"
 - lê-se "A *e* B"
 - tabela de verdade de de F(A, B) = A ∧ B

A	В	F
0	0	0
0	1	0
1	0	0
1	1	1

- exemplo:
 - "Os elefantes são grandes e as bolas são redondas."

4

1. Bases Matemáticas (4/34)

- Lógica -

- **■** Operadores lógicos ou Booleanos
 - disjunção inclusiva de duas proposições (ou)
 - representa-se por "A v B", "A + B" ou "A or B"
 - lê-se "A ou B"
 - tabela de verdade de F(A, B) = A v B

A	В	F
0	0	0
0	1	1
1	0	1
1	1	1

100 X 2001

- exemplo:
 - "A Joana detesta manteiga ou adora nata."

1. Bases Matemáticas (5/34)

- Lógica -

- **■** Operadores lógicos ou Booleanos
 - disjunção exclusiva de duas proposições (ou ou)
 - representa-se por "A ⊕ B" ou "A xor B"
 - lê-se "ou A ou B"
 - nota: $A \oplus B = (\neg A \land B) \lor (A \land \neg B)$
 - tabela de verdade de F(A, B) = A ⊕ B

A	В	F
0	0	0
0	1	1
1	0	1
1	1	0

RMAC X-200]

- exemplo
 - "A Joana ou detesta manteiga ou adora nata."

7

1. Bases Matemáticas (6/34)

- Lógica -

- Operadores lógicos ou Booleanos
 - implicação entre duas proposições (se então)
 - representa-se por "A ⇒ B "
 - lê-se "A implica B" ou "se A então B"
 - nota: A ⇒ B = ¬ B ∨ A
 - exemplo:
 - "Se a chuva continuar, então o rio vai transbordar."
 - equivalência entre duas proposições (se e só se)
 - representa-se por "A ⇔ B"
 - lê-se "A se e só se B"
 - nota: $A \Leftrightarrow B = (A \Rightarrow B) \land (B \Rightarrow A)$
 - exemplo:
 - "O rio vai transbordar se e só se a chuva continuar."

1. Bases Matemáticas (7/34)

- Lógica -

■ Prioridades dos operadores

```
1a: proposições dentro de parêntesis, dos mais internos para os mais externos

2a: negação ¬

3a: conjunção ∧

4a: disjunção inclusiva ∨

5a: disjunção exclusiva ⊕

6a: implicação ⇒

7a: equivalência ⇔

■ exemplo:

¬ A ⇒ B ∧ A ∨ C ⇔ A ⇒ D ⊕ B

=

((¬ A) ⇒ ((B ∧ A) ∨ C)) ⇔ (A ⇒ (D ⊕ B))
```

1. Bases Matemáticas (8/34)

- Lógica -

■ Propriedades (Álgebra de Boole)

© RMAC X-2001

```
- envolvimento: ¬¬¬ A = A
- elemento neutro: A ∨ F = A A ∧ T = A
- elemento absorvente: A ∨ T = T A ∧ F = F
- idempotência: A ∨ A = A A ∧ A = A
- terceiro excluído: A ∨ ¬ A = T A ∧ ¬ A = F
- comutativa: A ∨ B = B ∨ A A ∧ B = B ∧ A
- associativa: A ∨ B ∨ C = A ∨ (B ∨ C) = (A ∨ B) ∨ C
- A ∧ B ∧ C = A ∧ (B ∧ C) = (A ∧ B) ∧ C
- distributiva: A ∨ B ∧ C = (A ∨ B) ∧ (A ∨ C)
- A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C)
- absorção: A ∨ A ∧ B = A A ∧ (A ∨ B) = A
- A ∨ ¬ A ∧ B = A ∨ B A ∧ (¬ A ∨ B) = A ∧ B
- terceiro incluído: A ∧ B ∨ B ∧ C ∨ ¬ A ∧ C = A ∧ B ∨ ¬ A ∧ C
- (A ∨ B) ∧ (B ∨ C) ∧ (¬ A ∨ C) = (A ∨ B) ∧ (B ∨ C) ∧ (¬ A ∨ C)
- De Morgan: ¬ (A ∨ B) = ¬ A ∧ ¬ B ¬ (A ∧ B) = ¬ A ∨ ¬ B
```

1. Bases Matemáticas (9/34)

- Lógica -

- Demonstração de propriedades (tabela de verdade)
 - ¬ (A ^ B) = ¬ A v ¬ B

VARIÁVEIS		VALORES INTERMÉDIOS			VERIFICAÇÃ '')	
VARIA	AVEIS	VALORES INTERMÉDIOS			1.º Membro	2.º Membro
A	В	A_B	Ā	B	A . B	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1
0	1	0	1	0	1	1 .
1	0	0	0	1	1	1
1	1	1	0	0	0	.0

RMAC X-200

11

1. Bases Matemáticas (10/34)

- Lógica -

■ Demonstração de propriedades (diagrama de Venn)

00C A 200

1. Bases Matemáticas (11/34)

- Lógica -

■ Quantificadores

- universal
 - representa-se por "∀"
 - lê-se "para todo", "para todos" ou "para qualquer"
- existencial
 - representa-se por "3"
 - lê-se "existe um", "para pelo menos um" ou "para algum"
 - exemplo: $(\forall n \in N) (\exists m \in N) [m > n]$

RMAC X-200

13

1. Bases Matemáticas (12/34)

- Conjuntos -

■ Conjunto

- definição
 - uma colecção não ordenada de objectos não repetidos
 - normalmente, todos os elementos de um conjunto possuem uma mesma propriedade, para além de pertencerem ao mesmo conjunto
 - $\blacksquare \;$ um conjunto vazio não possui nenhum elemento e representa-se por " \varnothing "
- representação
 - o conjunto representa-se com maiúsculas "A"
 - um elemento representa-se com minúsculas "a"
 - exemplo: a ∈ A
 - a enumeração dos elementos do conjunto exige a utilização de chavetas
 - exemplo: S = {1, 2, 3}

1. Bases Matemáticas (13/34)

- Conjuntos -

■ Operadores relacionais

15

1. Bases Matemáticas (14/34)

- Conjuntos -

Outros exemplos

- um elemento é diferente de um conjunto formado por esse elemento, ou seja: 1 ≠ {1}
- o conjunto vazio é diferente de um conjunto que contém somente o elemento conjunto vazio, ou seja: Ø ≠ {Ø}
- num conjunto não há repetições a sua ordem de surgimento os elementos é irrelevante: {1, 2, 3, 3, 2, 1} = {1, 2, 3} = {2, 1, 3} ...
- um conjunto pode ser descrito por extensão ou por compreensão $N = \{0, 1, 2, ...\}$ ou $N = \{n \mid n \in \mathbb{Z} \land n \ge 0\}$

RMAC X-2001

1. Bases Matemáticas (15/34)

- Conjuntos -

- **■** Operações em conjuntos
 - intersecção ∩

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

- nota: $A \cap B = \emptyset \Rightarrow A \in B$ disjuntos
- união ∪

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

- complemento / '

$$/A = A' = \{x \mid x \in U \land x \notin A\}$$

- diferença -

$$A - B = \{x \mid x \in A \land x \notin B\} = \{x \mid x \in A \land x \in B\} = A \cap B$$

■ nota: A – Ø = A

17

1. Bases Matemáticas (16/34)

- Conjuntos -

- **■** Subconjunto de um conjunto
 - A é um subconjunto de B se e só se todos os elementos pertencentes a A forem elementos de B, ou seja:

$$A \subseteq B \Leftrightarrow (\forall x) (x \in A \Rightarrow x \in B)$$

■ nota:
$$A \subseteq B \Rightarrow (A \cap B = A) \land (A \cup B = B) \land (A - B = \emptyset)$$

 A é um subconjunto próprio de B se e só se existe pelo menos um elemento de B que não é elemento de A, ou seja:

$$A \subset B \Leftrightarrow (\exists y) (y \in B \land y \notin A) \land (\forall x \neq y) (x \in A \Rightarrow x \in B)$$

- **■** Igualdade entre conjuntos
 - dois conjuntos são iguais se e só se contêm os mesmos elementos, ou seja:

$$A = B \Leftrightarrow (\forall x) [(x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)] \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$$

18

PMAC X-2001

1. Bases Matemáticas (17/34)

- Conjuntos -

■ Conjunto potência

- o conjunto potência de A (ou conjunto de partes de A) é composto por todos os subconjuntos de A, pelo que conterá, pelo menos, Ø e o próprio A, ou seja: P(A) = 2^A = {x | x ⊆ A}
 - exemplo: $A = \{a, b\}$ $P(A) = \{\emptyset, \{a\}, \{b\}, A\}$

■ Cardinalidade e tamanho de um conjunto

- o número de elementos distintos de um conjunto finito A denotase "#(A)" e designa-se "tamanho de A"
- quando o conjunto A é infinito, #(A) designa-se "cardinalidade de A"

■ exemplos: $A = \{1, 1, 2, 3\}$ #(A) = 3 #(Ø) = 0 #(Z) = #(Q) < #(R)

■ nota: #(2^A) = 2^{#(A)}

19

1. Bases Matemáticas (18/34)

- Conjuntos -

■ Partição de um conjunto

 é uma família de subconjuntos de A, não vazios e disjuntos par a par, cuja união é igual a A, ou seja:

$$\Pi(A) = \{S_1, S_2, ...\}, \quad \text{com} \quad S_i \cap S_j = \emptyset \quad e \quad US_j = A$$

■ Túplo ordenado

- num túplo ordenado "(x, y)", "x" é a primeira componente e "y" é a segunda
- quando o túplo possui unicamente 2 componentes designa-se de "par"
- num par ordenado a ordem das componentes é relevante

exemplos: (a, b) (a, c, d) (r, f, g, a)
 (a, b) ≠ (b, a) se a ≠ b

20

© RMAC X-2001

1. Bases Matemáticas (19/34)

- Conjuntos -

■ Produto cartesiano

- o produto cartesiano de dois conjuntos A e B é o conjuntos de todos os pares ordenados cujas primeiras componentes pertençam a A e as segundas a B, ou seja:

 $A \times B = \{(x, y) \mid x \in A \land y \in B\}$

- $A \times A = A^2$
- Aⁿ é o conjunto de todas as *n*-uplas (x₁, x₂, ..., x_n) de elementos de A
- $N \times N = N^2$ é o conjunto de todos os pares de inteiros
- N × {vermelho, amarelo, verde} é o conjunto de todos os pares cuja primeira componente é um número natural e a segunda uma cor (ou vermelho, ou amarelo ou verde)

21

1. Bases Matemáticas (20/34)

- Conjuntos -

■ Teoremas

envolvimento: // A = A

identidade: $A \cup \emptyset = A$ $A \cap U = A$

absorção: $A \cup U = U$ $A \cap \emptyset = \emptyset$

- idempotência: A∪A=A A∩A=A

complemento: $A \cup /A = U$ $A \cap /A = \emptyset$

comutativa: $A \cup B = B \cup A$ $A \cap B = B \cap A$

associativa: $A \cup B \cup C = A \cup (B \cup C) = (A \cup B) \cup C$

 $A \cap B \cap C = A \cap (B \cap C) = (A \cap B) \cap C$

distributiva: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 $(\forall A) (\emptyset \subseteq A)$

- $(A \subseteq B) \land (B \subseteq U) \Rightarrow A \subseteq U$

- $(A \subseteq B)$ ∧ $(B \subset U) \Rightarrow A \subset U$

- $(A \subset B)$ ∧ $(B \subset U) \Rightarrow A \subset U$

1. Bases Matemáticas (21/34)

- Sequências -

■ Sequência

- definição
 - uma lista de objectos enumerados segundo uma ordenação
 - uma lista pode ser definida
 - por enumeração t = <a, b, c>
 - recursivamente I[1] = 2 ∧ I[n] = 2 × I[n-1] para n ≥ 2
- representação
 - a sequência representa-se com os sinais de maior e menor "<...>"
 - "lista[k]" designa o k-ésimo objecto da sequência
 - exemplos: <a, b> ≠ <b, a> <a, b> ≠ <a, b, b> I = <a, b, c> I[2] = b

RMAC X-200

23

1. Bases Matemáticas (22/34)

- Sequências -

■ Operadores

- comprimento len
 - exemplos: len (<>) = 0 len (<b, a, t>) = 3
- indices inds
 - exemplos: inds (<>) = Ø inds (I) = {1, ..., len (I)}
- elementos *elems*
 - elems (I) = $\{I[i] \mid i \in inds (I)\}$
 - exemplo: elems (<1, 2, 1>) = {1, 2}
- concatenação
 - exemplo: <a, b, c> ^ <a, b> = <a, b, c, a, b>

© RMAC X-2001

1. Bases Matemáticas (23/34)

- Sequências -

■ Operadores

- inserção *cons*
 - exemplo: cons (7, <1, 2, 1>) = <7, 1, 2, 1>
- cabeça head
 - head (cons (a, l)) = a
 - exemplo: I = <1, 5, 3, 9> head (I) = 1
- cauda tail
 - tail (cons (a, l)) = l
 - exemplo: I = <1, 5, 3, 9> tail (I) = <5, 3, 9>

BMAC X-200

25

1. Bases Matemáticas (24/34)

- Funções -

■ Função

- definição
 - sejam S e T conjuntos
 - uma função (ou aplicação) f de S em T, "f: S → T", é um subconjunto de S × T, onde cada elemento de S aparece exactamente uma única vez como primeiro componente de um par ordenado "(s, t)"
 - Séo domínio e Téo contradomínio da função
 - se (s, t) pertence à função, então
 - a variável dependente t é a imagem, "t = f (s)", de s por f
 - a variável independente s é o objecto de t por f

MAC X-2001

1. Bases Matemáticas (25/34)

- Funções -

■ Propriedades

- sobrejectividade
 - o conjunto I = $\{f(s) \mid s \in S\}$, ou I = f(s), de todas as imagens de $f: S \rightarrow T$ é o *conjunto imagem* da função f
 - genericamente, I ⊆ T
 - lacktriangle quando I = T, o conjunto imagem é igual ao contradomínio e função f é chamada sobrejectiva

27

1. Bases Matemáticas (26/34)

- Funções -

■ Propriedades

- injectividade
 - uma função f: S → T é injectiva (ou um-para-um), se nenhum dos elementos de T for imagem por f de dois, ou mais, elementos distintos de S
- bijectividade
 - uma função f: S → T é bijectiva, se for, simultaneamente, sobrejectiva e injectiva
- conjuntos equivalentes
 - o conjunto S é equivalente ao conjunto T se existir uma bijecção $f \colon S \to T$
 - dois conjuntos equivalentes possuem a mesma cardinalidade
- teorema de Cantor
 - para qualquer conjunto A, A e P(A) não são equivalentes

1. Bases Matemáticas (27/34)

- Funções -

■ Propriedades

- composição de funções
 - seja $f: S \rightarrow T e g: T \rightarrow U$
 - a função composta g of é uma função de S em U definida por $(g \circ f)$ (s) = g (f (s))

RMAC X-2001

- teorema de composição de bijecções
 - a composição de duas bijecções é uma bijecção

29

1. Bases Matemáticas (28/34)

- Funções -

■ Propriedades

- função inversa
 - seja f uma função f: $S \rightarrow T$
 - se existir uma função g: $T \rightarrow S$, tal que gof = i_S e fog = i_T , então g é chamada de função inversa de f e denotada uma função de f-1

1001

- teorema de sobre bijecções e funções inversas
 - seja $f: S \rightarrow T$

1. Bases Matemáticas (29/34)

- Funções -

■ Representação/descrição

RMAC X-200

"Seja S o conjunto de todas as cadeias de caracteres de tamanho fixo. Então a associação que relaciona a cada cadeia o número de caracteres que contém é uma função de domínio S e contradomínio N (é permitida a 'cadeia vazia', cujo número de caracteres é zero.)"

31

1. Bases Matemáticas (30/34)

- Funções -

■ Generalidades

somatório

$$\sum_{i=1\atop P(i)}^{n} f(i)$$
 ex.:
$$\sum_{i=1}^{5} i = 1 + 2 + 3$$

 $\sum_{i=1}^{5} i = 1 + 3 + 5 = 9$

produtório

$$\prod_{\stackrel{i=1}{P(i)}}^n f(i)$$

ex.

$$\prod_{i=1}^{5} i = 1 \times 2 \times 3 \times 4 \times 5 = 120$$

$$\prod_{i=1}^{5} i = 2 \times 4 = 8$$

1. Bases Matemáticas (31/34)

- Funções -

■ Generalidades

- logarítmo

Seja
$$b \neq 1$$
 e $x \in IR^+$

$$log_b x = y \Leftrightarrow b^y = x$$

Propriedades

$$log_a$$
 (xy) = log_a x + log_a y

$$log_a x^y = y log_a x$$

$$log_a x = log_b x / log_b a$$

- operador módulo

Seja $m \ge 0$ e n > 0 inteiros

$$m \mod n = m - n \times (m \operatorname{div} n)$$
 (div é a divisão inteira)

33

1. Bases Matemáticas (32/34)

- Funções -

■ Generalidades

valor absoluto

$$x \in IR$$

$$|x| = \begin{cases} x \Leftarrow x \ge 0 \\ -x \Leftarrow x < 0 \end{cases}$$

- factorial

Seja
$$n \in IN^+$$

$$n! = \prod_{i=1}^{n} i$$

C-X JAN

1. Bases Matemáticas (33/34)

- Funções -

- Operadores (para funções com S e T discretos)
 - imagem () • exemplo: $m = [a \mapsto 1, c \mapsto 3, d \mapsto 1]$ m(d) = 1 $n = [b \mapsto 4, c \mapsto 5]$ n(b) = 4
 - conjunto dos objectos dom
 - exemplo: dom (m) = {a, c, d} dom [] = Ø
 - conjunto das imagens ran
 - exemplo: ran (m) = $\{1, 3\}$ ran [] = \emptyset

BMAC X-200

35

1. Bases Matemáticas (34/34)

- Funções -

- Operadores (para funções com S e T discretos)
 - overwrite † $m + n = [a \mapsto 1, b \mapsto 4, c \mapsto 5, d \mapsto 1]$ $n + m = [a \mapsto 1, b \mapsto 4, c \mapsto 3, d \mapsto 1]$
 - restrição |
 - exemplo: $\{a, d, e\} \mid m = [a \mapsto 1, d \mapsto 1]$
 - remoção -
 - exemplo: $\{a, d, e\} m = [c \mapsto 3]$

RMAC X-2001

exercícios

I - Lógica

- 1. Negue a seguinte proposição:
 - "A Joana detesta manteiga ou adora nata."
- 2. Construa a tabela de verdade do operador lógico implicação.
- 3. Construa a tabela de verdade do operador lógico equivalência.
- 4. Sejam A, B e C as seguintes proposições:
 - A: As rosas são vermelhas.
 - B: As violetas são azuis.
 - C: O açúcar é doce.

Traduza as seguintes proposições compostas para notação simbólica:

- a) As rosas são vermelhas e ou as violetas são azuis ou o açúcar é doce.
- b) Sempre que as violetas são azuis, as rosas são vermelhas e o açúcar é doce.
- c) As rosas são vermelhas apenas se as violetas não forem azuis e se o açúcar for azedo.
- d) As rosas são vermelhas e se o açúcar for azedo, então as violetas não são azuis ou o açúcar é doce.

37

exercícios

II - Conjuntos

- 5. Utilize diagramas de Venn para demonstrar as seguintes equivalências:
 - a) $A \cap (B \cap C) = (A \cap B) \cap C$
 - b) $A \cup (B \cup C) = (A \cup B) \cup C$
- 6. Utilize transformações para demonstrar as seguintes equivalências:
 - a) $A \cup (B \cup A) = A \cup B$
 - b) $A \cup (B \cap C \cap A) = A$
- 7. Descreva cada um dos conjuntos:
 - a) A = $\{x \mid x \in \mathbb{N} \land (\forall y)(y \in \{2, 3, 4, 5\} \Rightarrow x \ge y)\}$
 - b) B = $\{x \mid (\exists y)(\exists z)(y \in \{1, 2\} \land z \in \{2, 3\} \land x = y + z)\}$
- 8. Para A = {1, 2, 3}, defina P(A).

DMAC V 2001

exercícios

III - Sequências

- Sejam I e k duas sequências, com I = <t, c, a> e k = <33, 2, 50, 9, 9>.
 Complete as seguintes alíneas de modo a transformá-las em proposições verdadeiras:
 - a) len (k) = ...
 - b) inds (l) ... inds (k)
 - c) I[...] = t
 - d) elems (k) = ...
 - e) I ^ k = ...
 - f) cons (a, <cons (t, <t, c, a>)>) = ...
 - g) head (k) = ...
 - h) tail (l) = ...

BMAC X-2001

39

exercícios

III - Funções

- 10. Sejam f e g duas funções, com f = [1 →abc, 2 →bcd, 3 →cde] e [5 →1, 2 →20, 9 →bcd]. Complete as seguintes alíneas de modo a transformá-las em proposições verdadeiras:
 - $\mathsf{a)}\,f\,(\ldots)=g\,(\ldots)$
 - b) dom (f) = ...
 - c) ran (g) = ...
 - d) $f \dagger g = ...$
 - e) $(g \dagger f) \dagger g = ...$
 - f) dom (g) | f = ...
 - g) \emptyset g = ...

© RMAC X-2001

2. Modelos de Computação (1/24)

- autómato de estados finitos -

■ Máquinas computacionais

- uma descrição formal de uma máquina de processamento de informação deve ser independente da implementação física (hardware)
- deve existir somente uma descrição do tipo de operações internas realizadas pela máquina quando esta processa várias classes de informação recebida
- a abstracção das características de operação das máquinas de processamento permite obter um modelo que é, genericamente, chamado de modelo computacional ou modelo de computação

RMAC X-200

41

2. Modelos de Computação (2/24)

- autómato de estados finitos -

■ O exemplo da máquina de selos

- uma máquina distribuidora de selos de \$20 aceita moedas de
 - \$5 (designada simbolicamente por "c")
 - \$10 ("d")
 - \$20 ("v")
- a máquina dispõe de uma portinhola que, quando activada (aberta), entrega o selo desejado ao utilizador
- a portinhola abre quando, pelo menos, \$20 são inseridos na máquina
- as moedas são inseridas na máquina pelo utilizador segundo uma certa sequência (m; é a i-ésima moeda inserida)

;

2. Modelos de Computação (3/24)

- autómato de estados finitos -

- Algoritmo da máquina de selos
 - ler m₁; se m₁ = c, então ir para 2, senão se m₁ = d, então ir para 3, senão se m₁ = v, então ir para 5
 - 2. ler m₂; se m₂ = c, então ir para 3, senão se m₂ = d, então ir para 4, senão se m₂ = v, então ir para 5
 - 3. ler m₃; se m₃ = c, então ir para 4, senão se m₃ = d ou se m₃ = v, então ir para 5
 - 4. ler m_4 ; se m_4 = c ou se m_4 = d ou se m_4 = v, então ir para 5
 - 5. se portinhola fechada, então abrir portinhola (fornecer selo)

43

2. Modelos de Computação (4/24)

- autómato de estados finitos -

- Algoritmo da máquina de selos (cont.)
 - cada passo do algoritmo representa uma dada configuração interna da máquina e que determina o tipo de operação a efectuar:
 - no passo 2, a máquina está à espera de receber mais \$15
 - no passo 5, a máquina fornece, finalmente, um selo
 - o algoritmo apresentado não está completo, ou seja, não prevê todas as situações
 - não verifica a utilização de moedas diferentes de \$5, \$15 e \$20
 - não procede ao reinício da máquina para realizar a venda de um novo selo

RMAC X-2001

2. Modelos de Computação (5/24)

- autómato de estados finitos -

■ Diagrama de estados

- cada passo do algoritmo corresponde a um estado de computação ou estado da máquina
- o algoritmo como um todo (e, portanto, o funcionamento da máquina) pode ser descrito por uma sequência de estados computacionais representada por um diagrama de estados

RMAC X-2001

45

2. Modelos de Computação (6/24)

- autómato de estados finitos -

■ Características da máquina de selos

- o algoritmo da máquina de selos possui leitura e saída de dados, teste de condições e saltos
- os dados de entrada são usados imediatamente depois de lidos
- a máquina não possui
 - memória, pelo que não dispõe de uma operação de atribuição (no passo 2, por exemplo, não é possível reutilizar o valor de m₁)
 - operação de paragem
- este modelo de computação é designado de autómato de estados finitos ou autómato finito determinístico (finite-state machine: FSM)

2. Modelos de Computação (7/24)

- autómato de estados finitos -

■ Definição de FSM

- $M = [S, I, O, f_s, f_o]$ é uma FSM se
 - S for um conjunto finito de estados (s₀ denota o estado inicial)
 - I for um conjunto finito de símbolos de entrada (o alfabeto de entrada)
 - O for o conjunto finito de símbolos de saída (o alfabeto de saída)
 - $f_s e f_o forem funções onde$
 - f_s : $S \times I \rightarrow S$ é a função do próximo estado
 - f₀: S → O é a função de saída
 - exemplo da máquina de selos:
 - S = {1, 2, 3, 4, 5}
 - I = {c, d, v}

 - $-0 = \{abre_portinhola\}$ $-f_s = [(1, c) \rightarrow 2, (1, d) \rightarrow 3, (1, v) \rightarrow 5, (2, c) \rightarrow 3, ...]$ $-f_o = [5 \rightarrow abre_portinhola]$

47

2. Modelos de Computação (8/24)

- autómato de estados finitos -

■ Reconhecimento por FSMs

- a sequência de operações de uma FSM corresponde a um processo computável
- a computação de uma FSM tanto pode ser vista como o resultado (valor) obtido no estado final, como a classe de sequências de entrada aceites pela máquina
- uma FSM M com alfabeto de entrada I reconhece ou aceita um subconjunto S de I^* se M, começando no estado s_0 e processando uma sequência de entrada α , terminar num estado final em que $\alpha \in S$
 - nota: I* denota o conjunto de todas as cadeias de comprimento finito sobre o alfabeto de entrada I:
 - a sequência vazia (sequência sem símbolos), λ, pertence a I*
 - qualquer elemento de I pertence a I*
 - x^y pertence a I*, se x e y forem sequências em I*

2. Modelos de Computação (9/24)

- autómato de estados finitos -

■ O exemplo do reconhecedor de $a^i b^i$, com $i \le n$

- o diagrama seguinte retracta a FSM que aceita expressões regulares do tipo aⁱ bⁱ, com i ≤ n, onde aⁱ denota a repetição i vezes do símbolo a
- o comprimento das sequências é limitado (i ≤ n) pelo número de estados da máquina (2.n+1)

RMAC X-200

49

2. Modelos de Computação (10/24)

- autómato de estados finitos -

■ Expressão regular

- expressões regulares sobre I são
 - o símbolo Ø (define a linguagem vazia)
 - o símbolo λ (frase nula $\{\lambda\}$)
 - lacksquare o símbolo i, \forall i \in I
 - se A e B forem expressões regulares, então também
 - a sequência AB (o mesmo que A^B)
 - a sequência A+B
 - a sequência A*
 - Exemplos de expressões regulares para I= {0, 1}:
 - 1*0(01)* representa qualquer número (incluindo nenhum) de 1s, seguido por um único 0, seguido por qualquer número (incluindo nenhum) de pares 01
 - 0+1* representa um único 0 ou qualquer número de 1s
 - 11((10)*11)*(00*) representa uma sequência não vazia de pares de 1s intercalados por qualquer número de pares 10, seguido por, pelo menos, um 0

50

DMAC V 2001

2. Modelos de Computação (11/24)

- autómato de estados finitos -

■ Conjunto Regular

- qualquer conjunto representado por uma expressão regular de acordo com as regras seguintes é chamado de conjunto regular:
 - Ø representa o conjunto vazio
 - λ representa o conjunto {λ} contendo a sequência vazia
 - i representa {i}
 - para as expressões regulares A e B
 - AB representa o conjunto de todos os elementos da forma concatenada $\alpha\beta$, com $\alpha\in A$ e $\beta\in B$
 - A+B representa a união dos conjuntos A e B
 - A* representa o conjunto de todas as concatenações dos elementos do conjunto A

© RMAC X-2001

51

2. Modelos de Computação (12/24)

- autómato de estados finitos -

■ Teorema de Kleene

- qualquer conjunto reconhecido por uma FSM é regular e qualquer conjunto regular pode ser reconhecido por uma FSM
- Notas:
 - o teorema de Kleene estabelece as limitações, bem como as capacidades das FSMs, pois nem todos os conjuntos são regulares e esses outros possuem elementos não reconhecíveis por FSMs
 - por exemplo, S = { 0ⁱ1ⁱ | i ≥ 0} não é regular, pelo que, pelo teorema de Kleene, não existe nenhuma FSM capaz de reconhecer o conjunto S

PMAC X-2001

2. Modelos de Computação (13/24)

- autómato de pilha -

O PDA como extensão das FSMs

- as capacidades das FSMs podem ser estendidas, se for lhes for adicionada memória que permita guardar leituras para operar num estado posterior
- esta extensão possui uma capacidade ilimitada de memória, gerida segundo o princípio FILO (*first in, last out*), ou seja, o primeiro símbolo guardado na memória é o último a sair
- esta memória é designada de pilha (stack) e é operada por duas instruções:
 - PUSH, que guarda um símbolo no topo da pilha
 - POP, que retira um símbolo do topo da pilha
- este modelo de computação é designado de autómato de pilha determinístico ou máquina de stack (push-down automaton: PDA)

53

2. Modelos de Computação (14/24)

- autómato de pilha -

■ Definição de PDA

- $M = [S, I, \Gamma, O, f_s, f_o]$ é um PDA se
 - S for um conjunto finito de estados (s_0 denota o estado inicial)
 - I for o alfabeto de entrada
 - $\Gamma \subset I$ for o conjunto finito de símbolos da pilha (alfabeto da pilha)
 - O for o alfabeto de saída
 - $= f_s e f_o$ forem funções onde
 - $-f_s$: S × I × Γ → S × {↓, ↑, \blacksquare } é a função do próximo estado
 - f_o: S → O é a função de saída
 - a computação de um PDA começa no estado inicial com a pilha vazia
 - uma sequência de entrada é aceite, se a máquina termina num estado final com a pilha vazia
 - se a pilha está vazia, o seu topo está ocupado com λ

54

BMAC X-2001

2. Modelos de Computação (15/24)

- autómato de pilha -

■ Actuação sobre a pilha

- com $(q_i \land q_i) \in S \land x \in I \land (y \land z) \in \Gamma$:
 - $f_s(q_i, x, y) = (q_j, z\downarrow)$ significa que no estado q_i com a entrada x e com o topo de pilha y, o PDA transita para o estado q_i e faz PUSH de z
 - $f_s(q_i, x, y) = (q_j, y \uparrow)$ significa que no estado q_i com a entrada x e com o topo de pilha y, o PDA transita para o estado q_i e faz POP de y
 - f_s (q_i , x, y) = (q_j , =) significa que no estado q_i , com a entrada x e com o topo de pilha y, o PDA transita para o estado q_j e deixa a pilha inalterada

© RMAC X-2001

55

2. Modelos de Computação (16/24)

- autómato de pilha -

■ O exemplo do reconhecedor de $a^i b^i$, com $i \ge 0$

$$\begin{array}{lll} - & S = \{q_0, \, q_1, \, q_2\} & I = \{a, \, b\} & \Gamma = \{a\} & O = \{a\} \\ - & f_S = [(q_0, \, a, \, \lambda) \mapsto (q_0, \, a\downarrow), \, (q_0, \, a, \, a) \mapsto (q_0, \, a\downarrow), \\ & & (q_0, \, b, \, \lambda) \mapsto (q_2, \, =), \, (q_0, \, b, \, a) \mapsto (q_1, \, a\uparrow), \\ & & (q_1, \, a, \, \lambda) \mapsto (q_2, \, =), \, (q_1, \, a, \, a) \mapsto (q_2, \, a\uparrow), \\ & & (q_1, \, b, \, \lambda) \mapsto (q_2, \, =), \, (q_1, \, b, \, a) \mapsto (q_1, \, a\uparrow)] \end{array}$$

PMAC X-2001

2. Modelos de Computação (17/24)

- máquina de Turing -

- O modelo computacional MT (proposto por Alan Turing em 1936)
 - para representar computacionalmente procedimentos algorítmicos mais gerais do que aqueles que podem ser modelados por FSMs e PDAs deve recorrer-se ao modelo computacional das máquinas de Turing (*Turing machines: MT*)
 - uma MT é essencialmente uma FSM com
 - a habilidade de ler as suas entradas mais do que uma vez
 - a habilidade de apagar ou substituir os valores das suas entradas
 - uma memória auxiliar ilimitada
 - uma MT com estas características consegue superar as limitações dos modelos computacionais precedentes (FSM e PDA), tornando-o no modelo que esteve por trás do projecto e desenvolvimento do "computador digital de programa armazenado" ainda utilizado actualmente

57

2. Modelos de Computação (18/24)

- máquina de Turing -

- O modelo computacional MT (cont.)
 - uma MT pode ser vista como um processador P acoplado a uma cabeça de leitura/escrita de símbolos numa fita que se estende infinitamente numa direcção (por exemplo, para a direita, tal como surge na figura)
 - a memória é representada pela fita
 - a deslocação da cabeça sobre a fita é efectuada mediante a indicação do sentido do movimento L (de *left*) ou R (de *right*)

BMAC X-2001

2. Modelos de Computação (19/24)

- máquina de Turing -

■ Definição de MT

- $M = [S, I, \Gamma, f_s]$ é uma MT se
 - S for um conjunto finito de estados (s_0 denota o estado inicial)
 - $I \subset \Gamma \{\lambda\}$ for o alfabeto de entrada
 - lacktriangle Γ for um conjunto finito de símbolos da fita (alfabeto da memória)
 - f_s for uma função f_s : $S \times \Gamma \to S \times \Gamma \times \{L, R, H\}$
 - o funcionamento de uma MT (transição da MT) é especificável fornecendo indicações para 3 acções
 - a passagem ao novo estado
 - a escrita de um símbolo
 - o deslocamento da cabeça
 - a transição de uma MT é caracterizada por instanciando valores a f_s $(q_i, x) = (q_j, z, op)$ com $(q_i \land q_j) \in S \land (x \land z) \in \Gamma \land op \in \{L, R, H\}$
 - exemplo
 - na figura b) anterior efectuou-se f_s (q_1 , a) = (q_2 , b, R), ou simplesmente (q_1 , a, q_2 , b, R)

59

2. Modelos de Computação (20/24)

- máquina de Turing -

O exemplo do somador de dois números

q _i . x	q	Z	ор	Comentário	0111/211/01/11/211/00/
q ₀ o	qo	0	R	move →	n1 n2
q ₀ 1	q,	Ť	R	sobre n1	0.000 0.000 0.000
q 1 1	q ₁	1	R	até 0;	0/0R 1/1R 1/1L
91 0	\mathfrak{q}_2	1	L	substitui por 1	$\begin{pmatrix} q_0 \end{pmatrix} \xrightarrow{1/1R} \begin{pmatrix} q_1 \end{pmatrix} \xrightarrow{0/1L} \begin{pmatrix} q_2 \end{pmatrix}$
q_2 1	q ₂	1	L	e move ←	
\mathfrak{q}_2 o	q_3	0	R	até início.	1/0H 0/0R
9 3 1	q _O	0	Н	Remove 1 e pára	(03)

MAC X-2001

2. Modelos de Computação (21/24)

- máquina de Turing -

■ O modelo computacional MT revisitado

- é possível demonstrar que as várias extensões possíveis de uma MT (não-determinismo, transições expontâneas, vároas fitas, etc.) não aumentam as suas capacidades computacionais
- foram desenvolvidos procedimentos específicos com vista a "construir" máquinas complexas à custa de MTs elementares
- tais máquinas, capazes de realizar computações já longe da trivialidade, têm contudo um equivalente MT satisfazendo a definição inicial
- neste contexto e perante um vasto conjunto de resultados teóricos, a comunidade científica aceita actualmente a chamada tese de Church-Turing (Church, 1936)

61

2. Modelos de Computação (22/24)

- máquina de Turing -

■ Tese de Church-Turing

 qualquer problema é resolúvel por um processo algorítmico se e só se for também resolúvel por uma máquina de Turing

■ Computabilidade

- uma função diz-se computável se puder ser avaliada numa MT para quaisquer dados válidos com um número finito de passos
- é possível mostrar que uma vastíssima classe de funções numéricas (designadas de recursivas) são computáveis
- a computacionalidade destas funções permite, na prática, a computação de qualquer problema algoritmizável, desde que previamente convertido num problema numérico através de codificação conveniente

62

RMAC X-2001

2. Modelos de Computação (23/24)

- máquina de Turing -

■ MT universal

- a definição anteriormente apresentada para uma MT pressupõe uma computação fixa definida através da função f_s
- contudo, a tabela de transição de estados pode ser codificada e o código resultante (programa) constituir uma fita suplementar (fita #2) de uma MT
- neste cenário, num dado estado q_i a MT
 - lê os dados x da fita #1 (memória de dados)
 - lê o próximo estado q_i da fita #2 (memória de programa)
- esta MT programável e com duas fitas é designada por máquina de Turing universal e pode ser convertida numa MT convencional de uma só fita

convencional de uma so i

63

2. Modelos de Computação (24/24)

- máquina de Turing -

■ MT universal (cont.)

 a MT universal constitui o modelo abstracto de computação que vai suportar toda a abordagem aos algoritmos e à programação seguida na disciplina de Programação Estruturada

0C-X-20

exercícios

- 1. Considere uma FSM que realiza a soma de módulo 4:
 - a) Arbitre os elementos pertencentes a \boldsymbol{I}
 - b) Caracterize o conjunto S
 - c) Caracterize a função $f_{\rm s}$
 - d) Desenhe o diagrama de estados da FSM
- 2. Construa uma FSM que calcule x+1, onde x é dado na forma binária, com o bit LBS primeiro.
- 3. Diga se as sequências pertencem aos conjuntos regulares apresentados.
 - a) $011101111 \in (1*01)*(11+0*)$?
 - b) 11100111 ∈ [(1*0)*+0*11]*?
 - c) 011100101 ∈ 01*10*(11*0)* ?
 - d) $1000011 \in (10*+11)*(0*1)*$?
- 4. Caracterize uma máquina de Turing que substitua, na fita, por 1s todos os 0s e por 0s todos os 1s, de uma sequência constituída por 0s e 1s.

3. Linguagens e Gramáticas (1/25)

■ Considerações sobre linguagens

- uma linguagem não admite todas as combinações possíveis dos vocábulos (símbolos do seu alfabeto)
- apenas certas combinações é que dão origem a frases válidas
- a linguagem é vulgarmente um conjunto infinito, o que torna a sua enumeração impossível
- para definir uma linguagem é necessário
 - estabelecer qual o alfabeto a usar
 - indicar as regras que restringem as combinações possíveis àquelas que, de facto, serão frases correctas e que se dividem, tipicamente, em dois conjuntos: as regras sintácticas e as semânticas

67

3. Linguagens e Gramáticas (2/25)

■ Regras sintácticas

- definem as formas correctas, estabelecendo as combinações, ou agrupamentos, de símbolos possíveis
- preocupam-se com a estrutura das frases, actuando ao nível das intenções
- indicam, por exemplo, que símbolos devem ser usados e porque ordem devem ser escritos, quando, num programa para computador, se quer
 - atribuir o valor de uma expressão a uma variável
 - ordenar a repetição de um bloco de instruções

BMAC X-2001

3. Linguagens e Gramáticas (3/25)

■ Regras semânticas

- definem as condições que têm que ser respeitadas pelos símbolos para que as frases sintacticamente correctas façam sentido, i.e., para que seja possível interpretá-las (compreender e executar a sua mensagem)
- preocupam-se com o significado das frases (o seu conteúdo semântico), indicando como é que essas frases serão interpretadas, trabalhando ao nível dos valores intrínsecos dos símbolos ou aferíveis a partir deles
- o significado é a informação contida numa frase e é aquilo que realmente interessa conhecer para que a comunicação entre dois agentes tenha algum efeito prático

© RMAC X-200

69

3. Linguagens e Gramáticas (4/25)

■ Sintaxe vs. semântica

- "Os carneiros falam muito alto."
 - o significado pode surpreender, uma vez que a sua semântica parece pouco adequada (os carneiros não falam!)
 - a forma é perfeitamente aceitável, uma vez que a sua sintaxe é válida na língua portuguesa, ou seja, as várias partes que a compõem (substantivos, verbos, etc.) estão encadeados de maneira correcta
- "Alto carneiro os falam."
 - o significado é incompreensível, uma vez que a forma como a frase foi escrita viola as regras sintácticas
 - a violação de sintaxe, por combinação "ilegal" das palavras que a compõem (mas também poderia ter sido por utilização de palavras inexistentes), põe em causa a compreensão do seu significado (semântica)

70

PMAC X-2001

3. Linguagens e Gramáticas (5/25)

■ Linguagens naturais

- nas linguagens naturais (línguas faladas no dia-a-dia pelos povos) as frases pertencem à linguagem por razões de facto, i.e., porque as pessoas as usam assim mesmo na sua comunicação quotidiana
- as regras surgem, então, posteriormente com o intuito de sistematizar e ensinar futuramente a linguagem e organizar (estruturar) essas frases
- é frequente ter de se recorrer à enumeração de excepções para cobrir toda a linguagem natural

RMAC X-200

71

3. Linguagens e Gramáticas (6/25)

■ Linguagens artificiais

- nas linguagens artificiais (aquelas que são criadas com o propósito de suportar a comunicação homem/máquina) só começam a ser usadas depois de o vocabulário ter sido escolhido e de as regras sintácticas e semânticas terem sido estabelecidas
- quando essas regras são apresentadas rigorosamente, através do recurso a formalismos apropriados, a linguagem artificial diz-se formal
- as regras que definem as linguagens artificiais são pensadas de modo a garantir a não ambiguidade dessas linguagens, ou seja, a existência de uma única interpretação possível para cada frase válida

MAC X-2001

3. Linguagens e Gramáticas (7/25)

■ Definição de alfabeto

- um alfabeto A é um conjunto finito não vazio de símbolos
 - nota: uma palavra sobre A é uma sequência de comprimento finito de símbolos de A, vulgarmente designada por cadeia de caracteres (string)

exemplos:

- o conjunto de palavras da língua portuguesa listadas num dicionário constitui o alfabeto da língua portuguesa
- o conjunto A = {0, 1} constitui o alfabeto binário

© RMAC X-2001

73

3. Linguagens e Gramáticas (8/25)

■ Definição de frase

- uma frase é uma sequência finita de palavras de um alfabeto A, ou seja, é uma cadeia de caracteres composta
- exemplos:
 - os palavras "processadores", "de" e "linguagens" fazem parte do alfabeto da língua portuguesa
 - "processadores de linguagens" é uma frase à luz do alfabeto da língua portuguesa

■ Definição de linguagem

- uma linguagem L sobre A é um qualquer subconjunto de A*
- L ⊂ A*

 nota: A* denota o conjunto de todas as cadeias de caracteres compostas (frases) que se podem construir com o alfabeto A

74

© RMAC X-2001

3. Linguagens e Gramáticas (9/25)

■ Gramática

- as cadeias de caracteres compostas (frases) da linguagem L obedecem a um certo conjunto de regras que constituem a gramática da linguagem
 - **Exemplo:**

```
<frase> → <sujeito>   <sujeito> → <determinante> <substantivo>     <advérbio>
```

<frase> → <sujeito> <predicado>

- → <determinante> <substantivo> <predicado>
- → Os <substantivo> <predicado>
- → Os carneiros os
- → Os carneiros <verbo> <advérbio>
- → Os carneiros falam <advérbio>
- → Os carneiros falam alto

75

3. Linguagens e Gramáticas (10/25)

■ Definição de gramática

- $G = [V_T, V_N, S, P]$ é uma gramática se
 - V_T for um conjunto finito, não vazio, de símbolos designados de terminais (ou palavras) que constituem o alfabeto da linguagem (V_T também é designado de *léxico* da linguagem)
 - V_N for um conjunto finito, não vazio, de símbolos designados de *não-terminais* que representam classes de elementos de V_T (classes sintácticas) não pertencentes a V_T , ou seja, $V_T \cap V_N = \emptyset$
 - $-\,$ os não-terminais são, tipicamente, representados ou em maiúsculas, ou em negrito (*bold*), ou entre "<" e ">"
 - $V = V_T \cup V_N$ é chamado *vocabulário* da linguagem L
 - lacksquare $S \in V_N$, sendo designado de *símbolo inicial*

76

BMAC X-2001

3. Linguagens e Gramáticas (11/25)

- Definição de gramática (cont.)
 - $G = [V_T, V_N, S, P]$ é uma gramática se
 - P for um conjunto finito de pares (α, β) designados de regras de produção (ou regras de reescrita, ou regras sintácticas) representados na forma $\alpha \to \beta$, com $\alpha \in V^+ \land \beta \in V^*$ e significando que numa sequência de símbolos em que apareça α pode substituir-se α por β
 - $\ \alpha \to \beta$ lê-se " α produz β'' , ou " α pode ser substituído por β'' , ou β deriva de α''
 - Notas:
 - um elemento $v \in V^*$ derivável de S por aplicação das regras de produção P chama-se forma sentencial
 - uma linguagem L com gramática G denota-se L(G) e constitui o conjunto de todas as formas sentenciais deriváveis por G

77

3. Linguagens e Gramáticas (12/25)

- **■** Exemplo da gramática *G1*
 - $V_T = \{o, a, Luís, Carlos, cão, canção, canta, segura, bem, mal\}$
 - V_N = {<frase>, <sujeito>, , <determinante>, <substantivo>, <verbo>, <advérbio>}
 - *S* = <frase>
 - P = {<frase> → <sujeito> <
 - "cão segura o canção bem" ∈ L(G1), mas semanticamente inaceitável (sem sentido)

78

2 M A C X - 2001

3. Linguagens e Gramáticas (13/25)

- Exemplo da gramática G2
 - $V_T = \{(,), i, j, +, *\}$
 - $V_N = \{E, T\}$
 - S = E
 - $\blacksquare P = \{E \rightarrow T \mid E + T \mid E * T, T \rightarrow (E) \mid i \mid j\}$
 - nota: " $\alpha \rightarrow \beta_1 \mid \beta_2 \mid ... \mid \beta n''$ significa " $\alpha \rightarrow \beta_1, \ \alpha \rightarrow \beta_2, ..., \ \alpha \rightarrow \beta_n''$ o símbolo " \mid " lê-se "ou"
 - G2 é recursiva, porque possui um mesmo não-terminal em ambos os membros de uma produção
 - uma gramática com produções recursivas dá origem a uma linguagem infinita, i.e., possui um número ilimitado de frases
 - $\bullet (i * j + i) * i \in L(G2)$
 - $i * (j + (+ i + j)) \notin L(G2)$

79

3. Linguagens e Gramáticas (14/25)

- **■** Exemplo da gramática *G3*
 - $V_T = \{a, b, c\}$
 - $V_N = \{S, A, B\}$
 - *S* = S
 - \blacksquare $P = \{S \rightarrow Ac \mid aB, A \rightarrow ab, B \rightarrow bc\}$
 - a cadeia de caracteres "abc" pode ser gerada de dois modos distintos:
 - S → Ac
 - → abc

ou

S → aB

→ abo

■ G3 é uma gramática ambígua

3. Linguagens e Gramáticas (15/25)

- Linguagem gerada por uma gramática
 - seja G uma gramática $G = [V_{77} \ V_{N7} \ S, P]$ e sejam w_1 e w_2 palavras sobre V
 - se $\alpha \rightarrow \beta$ for uma produção de G, se w_1 contiver uma cópia de α e se w_2 for obtido de w_1 através da substituição de α por β , então w_1 gera (deriva) directamente w_2 , denotando-se $w_1 \Rightarrow w_2$
 - se w_1 , w_2 , ..., w_n forem palavras sobre V e se $w_1 \Rightarrow w_2 \land w_2 \Rightarrow w_3 \land ...$ $\land w_{n-1} \Rightarrow w_n$, então w_1 gera (deriva) w_n , denotando-se $w_1 * \Rightarrow w_n$
 - por convenção, w₁ *⇒ w₁
 - dada uma gramática G, a linguagem L gerada por G, denotada L(G), é o conjunto $L = \{ w \in V_T^* | S^* \Rightarrow w \}$, ou seja, L é o conjunto de todas as cadeias de terminais geradas a partir do símbolo inicial

81

3. Linguagens e Gramáticas (16/25)

- **■** Hierarquia de Chomsky
 - é possível obter vários tipos de gramáticas tendo em conta as restrições impostas às regras de produção
 - as linguagens podem ser igualmente catalogadas, tendo em conta o tipo de gramática que as geram

82

MAC X-2001

3. Linguagens e Gramáticas (17/25)

■ Tipo 0: gramáticas irrestritas

- as gramáticas do tipo 0 correspondem à definição de gramática apresentada anteriormente
- as linguagens geradas por gramáticas do tipo 0 correspondem a classes de sequências aceites por máquinas de Turing
- para cada gramática de tipo 0 é possível encontrar uma MT que implementa a gramática, no sentido em que aceita as frases da linguagem por ela gerada

© RMAC X-200

83

3. Linguagens e Gramáticas (18/25)

■ Tipo 1: gramáticas sensíveis ao contexto

- as gramáticas do tipo 1, relativamente às tipo 0, possuem a seguinte restrição α → β , com α , β ∈ V^{+} ∧ $|\alpha| ≤ |\beta|$
- as produções de uma gramática do tipo 1 geram sequências de comprimento não decrescente
- as regras de produção são da forma α aβ → α νβ, com a ∈ V_N ∧ α , β ∈ V^* ∧ ν ∈ V^+
- a é substituível por v no contexto αβ
- as linguagens geradas por gramáticas do tipo 1 são reconhecidas por autómatos linearmente limitados (linear bounded automaton: LBA) que são máquinas de Turing que aceitam o conjunto de todas as entradas para as quais existe alguma sequência de movimentos que as façam parar em algum estado

84

DMAC V 2001

3. Linguagens e Gramáticas (19/25)

- Tipo 2: gramáticas independentes de contexto
 - as gramáticas do tipo 2, relativamente às tipo 0, possuem a seguinte restrição α → β , com α ∈ V_N ∧ β ∈ V^*
 - no lado esquerdo das regras de produção só aparecem não-terminais, ou seja, a substituição de um não-terminal não depende do contexto
 - as linguagens geradas por gramáticas do tipo 2 são reconhecidas por autómatos de pilha
 - as linguagens do tipo 2 são importantes por 3 razões
 - são de relativa simplicidade, uma vez que só permitem a substituição de um símbolo de cada vez
 - diversas linguagens de programação podem ser descritas através de gramáticas do tipo 2
 - as sequências de produções podem ser representadas graficamente recorrendo a uma árvore sintáctica ou de análise (parsing tree)

85

3. Linguagens e Gramáticas (20/25)

- **Exemplo de gramática do tipo 2**
 - a geração de identificadores numa linguagem de programação pode ser representada por uma gramática do tipo 2

```
<identificador> \rightarrow <|etra> <|dentificador> \rightarrow <|dentificador> <|etra> <|dentificador> \rightarrow <|dentificador> <|digito> <|etra> \rightarrow a <|etra> \rightarrow b ... <|etra> \rightarrow z <|digito> \rightarrow 0 <|digito> \rightarrow 1 ... <|digito> \rightarrow 9
```

86

3. Linguagens e Gramáticas (21/25)

- **■** Exemplo de gramática do tipo 2 (cont.)
 - a palavra "d2q" pode ser derivada da seguinte maneira

<identificador> → <identificador> <letra>

- → <identificador> <dígito> <letra>
- → <letra> <dígito> <letra>
- → d <dígito> <letra>
- → d 2 <letra>
- $\rightarrow d2q$
- esta derivação pode ser representada recorrendo a uma parsing tree
 - é um gráfico orientado em que cada nodo representa uma forma sentencial a partir da qual se obtém, de cima para baixo, as formas sentenciais derivadas
 - a raiz é o símbolo inicial

87

3. Linguagens e Gramáticas (22/25)

■ Exemplo de gramática do tipo 2 (cont.)

2MAC X-2001

3. Linguagens e Gramáticas (23/25)

- Tipo 3: gramáticas regulares
 - as gramáticas do tipo 3, relativamente às tipo 0, possuem a seguinte restrição α → a β | a | λ , com α , β ∈ V_N λ a ∈ V_T
 - as formas sentenciais nas gramáticas do tipo 3 contêm, no máximo, um só não-terminal do lado direito da produção
 - cada regra de produção contribui para juntar um terminal
 - as linguagens geradas por gramáticas do tipo 3 são reconhecidas por autómatos de estados finitos

RMAC X-200

89

3. Linguagens e Gramáticas (24/25)

- A meta-linguagem BNF (Backus Naur Form)
 - nas descrições anteriores de gramáticas, utilizaram-se vários símbolos e algumas convenções/regras que constituem uma linguagem para descrever linguagens, ou seja, uma metalinguagem
 - a descrição da linguagem Algol60 foi realizada por John Bakus e por Peter Naur, em 1959, recorrendo a notações especiais de descrição que, mais tarde, vieram a designar-se formas de Backus Naur, ou formas normais de Bakus, ou simplesmente notação BNF
 - Exemplo:

RMAC X-200

```
<identificador> ::= <|etra> | <|dentificador> <|etra> | <|dentificador> <|digito> <|etra> ::= a \mid b \mid \dots \mid z <|digito> ::= 0 \mid 1 \mid \dots \mid 9
```

3. Linguagens e Gramáticas (25/25)

■ Regras BNF

- ::= é o símbolo de produção
- | é o símbolo de alternativa
- < string> designa um não-terminal

■ Regras EBNF (extended BNF) ou ABNF (augmented BNF)

- () permite a factorização
 - <identificador> ::= <letra> | <identificador> (<letra> | <dígito>)
- { } permite a iteração de zero ou mais vezes
 - <identificador> ::= <letra> { <letra> | <dígito> }
- [] permite especificar opcionalidade
 - <a> ::= ST | SBT | SZT é equivalente a <a> ::= S [B | Z] T

91

exercícios

I - Gramáticas

- 1. Considere um gramática G com $V_T = \{0, 1\}$, $V_N = \{S\}$ e $P = \{S \rightarrow 0S, S \rightarrow 1\}$. Mostre que 00S * \Rightarrow 00000S.
- 2. Seja $L = \{a^nb^nc^n; n \ge 1\}$. Uma possível gramática G que gera L possui $V_T = \{a, b, c\}, V_N = \{S, B, C\}$ e $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$. Derive $a^2b^2c^2$.
- 3. Considere as seguintes três gramáticas:
 - G1 com $V_T = \{0\}, V_N = \{S, A, B\} \in P = \{S \to \lambda, S \to ABA, AB \to 00, 0A \to 000A, A \to 0\}$
 - $G2 \text{ com } V_T = \{0\}, V_N = \{S, A\} \in P = \{S \to \lambda, S \to 00A, A \to 00A, A \to 0\}$
 - $G3 \text{ com } V_T = \{0\}, V_N = \{S, A, B, C\} \in P = \{S \to \lambda, S \to 0A, A \to 0B, B \to 0, B \to 0C, B \to 0B\}$

a) Mostre que as três gramáticas são capazes de gerar a linguagem L que consiste numa cadeia vazia λ , juntamente com o conjunto de todas as cadeias compostas por um número ímpar n de 0s, com $n \ge 3$.

b) Mostre que, apesar das três linguagens serem equivalentes, pertencem a classes distintas, uma vez que G1 é do tipo 1, G2 é do tipo 2 e G3 é do tipo 3.

exercícios

II - BNF

4. Considere o seguinte conjunto de produções em BNF:

- 5. Recorrendo ao operador de iteração do BNF estendido escreva a produção de a) constantes inteiras.
 - b) expressões aritméticas simples.
- Recorrendo ao operador de opcionalidade do BNF estendido escreva a produção de um endereço postal.

© RMAC X-2001

93

- 5. a) <constante> ::= <dígito> { <dígito> }
 - <digito> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
- 5. b) <expr> ::= <termo> {+ <termo> | <termo> }
 - <termo> ::= <factor> {* <factor> }
 - <factor> ::= <constante> | (<expr>)
 - <constante> ::= <dígito> { <dígito> }
 - <digito> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
- 6. <endereco_postal> ::= <nome> <rua> <codigo_postal> [<país>]
 - <nome> ::= <nome_proprio> <apelido> | <nome_proprio> <nome>
 - <nome_proprio> ::= <nome> | <inicial>
 - <rua> ::= <nome_da_rua> <numero_de_policia> [<andar>]
- <codigo_postal> ::= <codigo> <localidade>

© RMAC X-2001

4. Processamento de Linguagens (1/15)

■ Processador para uma linguagem

- seja L(G) a linguagem gerada por uma gramática G; um processador para essa linguagem P[L(G)] é um programa que, tendo conhecimento da gramática G
 - lê um texto (sequência de caracteres)
 - verifica se esse texto é uma frase válida de L(G)
 - executa uma acção qualquer em função do significado da frase reconhecida
- esta definição é muito genérica, no entanto, todos os programas que sejam considerados processadores de linguagens são constituídos por dois módulos:
 - o módulo de análise que executa o reconhecimento do significado do texto fonte
 - o módulo de síntese que reage ao significado identificado, produzindo um determinado resultado

95

4. Processamento de Linguagens (2/15)

■ Módulo de análise

- análise léxica, responsável pela leitura sequencial dos caracteres que formam o texto fonte, pela sua separação em palavras e pelo reconhecimento dos vocábulos (símbolos terminais) representados por cada palavra
- análise sintáctica, encarregue de agrupar os símbolos terminais, verificando se formam uma frase sintacticamente correcta, i.e., composta de acordo com as regras sintácticas da linguagem
- análise semântica, destinada a verificar se as regras semânticas da linguagem são satisfeitas e a calcular os valores aos símbolos, de modo a poder conhecer-se o significado completo da frase

 nota: os erros lexicais e sintácticos ("bohr-errors") são imediatamente detectados durante a tradução (compile time), enquanto que os erros semânticos ("heisen-errors") só são conhecidos durante a execução do programa (run time)

96

MAC X-2001

4. Processamento de Linguagens (3/15)

■ Exemplos de processadores de linguagens

- assembladores (assemblers), que traduzem linguagens de programação de baixo nível formadas por menmónicas (linguagem assembly) para código máquina (binário)
- compiladores (compilers), que traduzem linguagens de programação de alto nível para código máquina
- interpretadores (*interpreters*), que executam os programas logo após o seu reconhecimento, i.e., em vez traduzirem os programas para uma linguagem de baixo nível, realizam acções
- tradutores em geral, que transformam textos escritos numa linguagem qualquer para outra linguagem qualquer

RMAC X-200

97

4. Processamento de Linguagens (4/15)

■ Exemplos de processadores de linguagens (cont.)

- carregadores (*loaders*), que reconhecem descrições de dados e carregam essa informação para bases de dados, ou para estruturas de dados em memória central
- pesquisadores, que reconhecem questões e pesquisam em bases de dados para mostrarem as respostas encontradas
- filtros, que reproduzem à saída o texto que receberam à entrada, depois de lhe retirarem, expandirem ou transformarem certas palavras (ou blocos)
- processadores de documentos, usados para diversos tipos de manipulações, tais como a formatação ou a extracção de conhecimento em documentos anotados

98

MAC X-2001

4. Processamento de Linguagens (5/15)

■ Compiladores

- processadores de linguagens construídos propositadamente para reconhecer programas escritos numa linguagem de alto nível para os traduzir para código máquina (ou código binário), que é uma linguagem de baixo nível directamente reconhecida e executada por um determinado processador
- no caso particular em que o compilador aceita um texto escrito numa linguagem de alto nível e produz um texto escrito noutra linguagem de alto nível, o compilador é designado de transcompilador (cross-compiler)
- tipicamente, os primeiros compiladores de linguagens de alto nível costumam ser implementados através de tradutores (transcompiladores) para outras linguagens de alto nível para os quais já existem compiladores
 - \blacksquare o primeiro compilador de C^{++} era um transcompilador para C

00

4. Processamento de Linguagens (6/15)

■ Compiladores (cont.)

- um compilador é específico de um determinado processador, ou seja, produz código máquina que varia com a marca do processador em que se pretende correr o programa depois de compilado
- as linguagens de programação de alto nível (texto fonte) são independentes da máquina alvo (processador em que o programa vai correr), enquanto que a linguagem de baixo nível (texto alvo) é específica para cada máquina

RMAC X-2001

4. Processamento de Linguagens (7/15)

■ Compiladores (cont.)

 existe um grande desnível entre a complexidade das instruções na linguagem de alto nível e de baixo nível que "obriga" os compiladores a realizarem a geração de código em duas fases, recorrendo a código intermédio para facilitar a tarefa de compilação

4. Processamento de Linguagens (8/15)

Assembladores

- são funcionalmente muito parecidos com os compiladores, uma vez que traduzem um programa fonte para código máquina
- a diferença reside no facto de que o texto fonte, no caso dos assembladores (assemblers), não é escrito numa linguagem de alto nível, mas sim numa linguagem de menmónicas (assembly) estruturalmente tão simples quanto um programa em código máquina
- desta forma, o reconhecimento das frases é muito fácil, os esquemas de tradução são simples e o processo de tradução é directo

 os assembladores são praticamente iguais aos módulos de geração de código final dos compiladores

102

4. Processamento de Linguagens (9/15)

■ Interpretadores

- os interpretadores são processadores de linguagens que não geram texto alvo, uma vez que executam as instruções do programa fonte, logo que o reconhecem
- a execução é feita sobre a representação intermédia
- os interpretadores processam, geralmente, linguagens menos ricas estruturalmente do que os compiladores
 - os exemplos típicos são as linguagens Basic e Prolog

103

4. Processamento de Linguagens (10/15)

■ Linguagem de alto nível

```
VOID EXPORTAPI DrawBox(HDC hdc)
{
   // hdc is a value used by Windows to identify a
   // window to draw in.

   // The numbers represent coordinates in the window.
        MoveTo(hdc, 50,50);
        LineTo(hdc, 100,50);
        LineTo(hdc, 100,100);
        LineTo(hdc, 50,100);
        LineTo(hdc, 50,50);
}
```

4. Processamento de Linguagens (11/15)

■ Linguagem de baixo nível: assembly

```
push OFFSET 100
push OFFSET 100
DrawBox:
  mov ax, SEG con0
                                 call FAR PTR LineTo
  enter OFFSET L08041, OFFSET 0
                                  push WORD PTR 6[bp]
push OFFSET 50
  push si
  push di
                                  push OFFSET 100
  push ds
  mov ds,ax
                                  call FAR PTR LineTo
  push WORD PTR 6[bp]
                                         WORD PTR 6[bp]
                                 push OFFSET 50
  push OFFSET 50
                                 push OFFSET 50
call FAR PTR LineTo
  push OFFSET 50
  call FAR PTR MoveTo
  push WORD PTR 6[bp]
                                 pop
                                          di
  push OFFSET 100
                                 pop
  push OFFSET 50
                                  pop
                                          si
  call FAR PTR LineTo
                                  leave
                                          OFFSET 2
  push WORD PTR 6[bp]
                                 ret
```

4. Processamento de Linguagens (12/15)

■ Linguagem de baixo nível: código máquina

```
B8 87 55
                           9A 96 OE OF 05
C8 02 00 00
                           FF 76 06
56
57
                           6A 32
1E
                           9A 96 0E 0F 05
8E D8
                           FF 76 06
6A 32
                           6A 32
6A 32
                           6A 32
                           9A 96 0E 0F 05
9A AA 0E 0F 05
                           E9 00 00
FF 76 06
6A 64
6A 32
9A 96 0E 0F 05
FF 76 06
                           CA 02 00
```

106

4. Processamento de Linguagens (13/15)

■ Tratamento de erros

- no contexto de processamento de linguagens, entende-se por tratamento de erros o processo que é desencadeado pelo reconhecedor logo após a detecção de um erro na frase que está a ser analisada
- a reacção compreende duas grandes tarefas
 - a sinalização do erro (ou notificação) a enviar ao utilizador (programador) para o alertar para o facto ter sido encontrada uma violação a uma das regras que fazem da sequência de símbolos uma frase da linguagem
 - a correcção/recuperação que permite superar a falta detectada e prosseguir a análise até à aceitação da frase ou até à detecção de um novo erro

107

4. Processamento de Linguagens (14/15)

■ Detecção de erros

- a detecção de um erro é uma tarefa inerente à análise, ou seja, indissociável do reconhecimento
- quando um processador está a analisar uma frase, tentando verificar se ela foi correctamente escrita, de acordo com a gramática da linguagem em causa, são duas as razões que podem levar à detecção de um erro
 - erro léxico, quando surgem caracteres inválidos que impedem a identificação de qualquer símbolo terminal que pertence ao alfabeto da linguagem
 - erro sintáctico, quando existe a combinação inválida de símbolos terminais válidos, impedindo o reconhecimento de uma subfrase aceitável

4. Processamento de Linguagens (15/15)

■ Sinalização de erros

- a sinalização do erro é de importância crucial para que o programador possa localizar o foco de problemas, interpretá-los e corrigi-los definitivamente
- a mensagem enviada ao programador para assinalar um erro deveria, no mínimo, indicar
 - a posição (linha e coluna do programa fonte) onde o símbolo de erro foi encontrado
 - o símbolo de erro
 - a causa provável que justifica esse erro (diagnóstico), podendo indicar-se os símbolos de que o processador de linguagens estava à espera, ou a concordância que era pretendida

© RMAC X-200