HW2

Matteo Piergiovanni

27 April 2016

1 Exercise 1

We can construct a function f which on input $\langle M, w \rangle$ returns $\langle M', w \rangle$, such that:

 $\langle M, w \rangle \in HALT_{TM}$ iff $\langle M', w \rangle \in A_{TM}$ The idea is to modify M into M' such that M' accepts w iff M halted on w.

The following M_f computes the function f.

 M_f : On input $\langle M, w \rangle$:

- 1) Construct M' such that: Run M in the input and if M accepts or reject, then M' accepts.
- 2) Output $\langle M', w \rangle$.

So: M_f computes the function f so $HALT_{TM} \leq_m A_{TM}$. Therefore since $HALT_{TM}$ is undecidable also A_{TM} is undecidable.

2 Exercise 2

No, this is not true.

For example, we can define 2 languages:

$$A = \{0^n 1^n | n > 0\}$$

$$B = \{0\}$$

We can define a function f such that:

$$f(w) = \begin{cases} 0 & w \in A \\ 1 & w \notin A \end{cases}$$

Since A is a context-free language it's also Turing-decidable, therefore f exists.

Also, $w \in A$ iff f(w) = 0 which is true iff $f(w) \in B$.

Therefore A \leq_m B. But Language A is nonregular and B it's regular.