

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Geometría III Examen IV

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2023-2024

Asignatura Geometría III.

Curso Académico 2023-24.

Grado en Matemáticas.

Grupo B.

Profesor José María Espinar García.

Descripción Parcial de los Temas 1 y 2.

Fecha 7 de noviembre de 2023.

Ejercicio 1. Sean R_1 y R_2 , $R_1 \cap R_2 = \emptyset$, dos rectas paralelas en un plano afín \mathcal{A} . Sean $a_i, b_i, c_i \in R_i$, i = 1, 2, tres puntos distintos en cada una de las rectas. Demostrar que si $R_{a_1b_2} \| R_{a_2b_1}$ y $R_{b_1c_2} \| R_{b_2c_1}$, entonces $R_{a_1c_2} \| R_{a_2c_1}$.

Ejercicio 2. Sea $T := \{a_1, a_2, a_3\}$ un triángulo en un plano afín \mathcal{A} . Denotemos por a'_i , i = 1, 2, 3, al punto medio del dado opuesto a a_i , es decir, $a'_i = a_j + \frac{1}{2} \overrightarrow{a_j a'_k}$, $i \neq j \neq k$ e $i, j, k \in \{1, 2, 3\}$. Demostrar que existe una homotecia $h : \mathcal{A} \to \mathcal{A}$ tal que $h(a_i) = a'_i$ para i = 1, 2, 3. Calcular el centro y la razón de dicha homotecia.

Ejercicio 3. Sean $S_1 := \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + z = -1\} \text{ y } S_2 = (1, 2, 0) + \mathcal{L}\{(-1, 1, 1), (0, 0, 1)\}.$

- 1. Calcula la intersección $I := S_1 \cap S_2$ y la suma.
- 2. Sea $\mathcal{R} := \{(1, -1, 0), (0, 0, 1), (1, 0, -1), (2, -2, 1)\}$. Demostrar que es un sistema de referencia en \mathbb{R}^3 .
- 3. Sea el plano afín $P := \{(\alpha, \beta, \gamma)_{\mathcal{R}^3} \mid \gamma = 1\}$ dado en coordenadas respecto de \mathcal{R} . Calcular, si es posible, el ángulo de intersección entre P e I. En caso de no ser posible, decir por qué.

Ejercicio 4. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la aplicación afín dada por:

$$f(-1,1,0) = {11/5, -2/5, 3}$$
 $f(0,0,1) = {18/5, -1/5, 4}$
 $f(1,0,-1) = {8/5, -6/5, 4}$ $f(2,-2,1) = (2,1,2)$

- 1. ¿Es f una isometría de \mathbb{R}^3 ?
- 2. Calcular el conjunto de puntosa fijos de f en el sistema de referencia usual.
- 3. Calcula las ecuaciones que representan a f respecto de los sistemas de referencia \mathcal{R} (en el dominio) y \mathcal{R}' (en el codominio); siendo:

$$\mathcal{R} = \{(1, -1, 0), (0, 0, 1), (1, 0, -1), (2, -2, 1)\}$$
$$\mathcal{R}' = \{(0, 0, 1), (1, -1, 0), (0, 0, 0), (-2, 0, 1)\}$$