Kinetic

Team member:

Demuth Axel Geraldes Pereira Dorian

Supervisor:

Pierre Alliez Vincent Chabannes

- Introduction
- 2 Tools
- 3 Implementation
- Result

Introduction

Objectives

- Reading Process and Mesh Conversion: Convert data from stl file to ply and xyz file with normals on points
- Application of the Kinetic Algorithm
- Recovery of Material Labels
- Utilization on City Modeling

Challenges

• Generating point cloud from stl file

ACJasmin stl

ACJasmin point cloud

Parameter Optimization

Cgal

CGAL

- C++ library for geometric calcul
- Provides data structures and algorithms for:
 - Computational geometry
 - Mesh generation and processing
 - Geometry processing
 - Surface and volume manipulation
- For our usage Kinetic surface reparation algorithme, file reader

Kinetic Kinetic algorithm is an geometric algorithm to work on 3D mesh it uses geometric primitive with an energy based model to fit the primitives to the model.

Energy formule:

$$U(x) = w_f U_f(x) + w_s U_c(x) + w_c U_c(x)$$

to calculate the best primitive to fit the mesh. then we have a list of geometric operation on each primitive

- merging
- splitting
- transfer
- insertion
- exclusion

Here the speudo code of the application of geometric application :

Algorithm 1 Pseudo-code of the exploration mechanism

- 1: Initialize the primitive configuration x
- 2: repeat
- Initialize the priority queue Q
- while top operation i of Q decreases energy U do
- Update x by operation i
- 6: Update Q
- 7: end while
- 8: Update x by the global transfer operator
- 9: until no update modifies x any more

STL (STereoLithography)

- File format for 3D modeling
- Stock a collection of triangle composing the mesh without any other information

first result

First we can show you what KSR algorithm is capable of:

inria result

Figure: Visualization of results on a flame

first result

point cloud

cgal result

inria result

Figure: Visualization of results with a building

3zones example

3zones

3zones point cloud

result

3zones result with normal by Meshlab

3zones result with normal by Cgal

ACJasmin example

ACJasmin

ACJasmin point clouds

cgal kinetic result

ACJasmin primitives by Cgal

ACJasmin result with Cgal

INRIA kinetic result

ACJasmin primitives by INRIA

3zones result with INRIA

reference I

Mulin Yu, Florent Lafarge, Sven Oesau, and Bruno Hilaire. Repairing geometric errors in 3D urban models with kinetic data structures.

ISPRS Journal of Photogrammetry and Remote Sensing, 192, October 2022.

Jean-Philippe Bauchet and Florent Lafarge. Kinetic Shape Reconstruction. ACM Transactions on Graphics, 2020.

The CGAL Project.

CGAL User and Reference Manual.

CGAL Editorial Board, 5.6.1 edition, 2024.

reference II

Mulin Yu and Florent Lafarge.

Finding Good Configurations of Planar Primitives in Unorganized Point Clouds.

In CVPR 2022 - IEEE Conference on Computer Vision and Pattern Recognition, La Nouvelle-Orléans, United States, June 2022.

Ktirio - construction et immobilier.

Cloudcompare - 3d point cloud and mesh processing software.