1、实验名称及目的

软件在环仿真实验: 熟悉 Simulink 控制器与仿真平台,该例程提供了一套基于 Simulink/Rfiysim3D 的较为逼真的仿真环境例程。

2、实验效果

实现在 Simulink 中直接控制四旋翼无人机飞行,在 RflySim3D 中显示飞行效果。

3、文件目录

文件夹/文件名称		说明
icon	Init.m	模型初始化参数文件。
	MavLinkStruct.mat	MAVLink 结构体数据文件。
	pixhawk.png	Pixhawk 硬件图片。
	readme.pdf	机架类型修改说明文件。
	UE_Logo.jpg	RflySim3D 软件图片。
	F450.png	F450 飞机模型图片。
CopterSim3DEnvironment.slx		Simulink 仿真模型文件。
Init_control.m		控制器初始化参数文件。

4、运行环境

序号	软件要求	硬件要求	
11. 4	从□安 本	名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版		
3	MATLAB 2017B 及以上		

①: 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html

5、实验步骤

Step 1:

打开 MATLAB 软件,在 MATLAB 中打开 Init_control.m 文件,点击运行,自动打开 C opterSim3DEnvironment.slx 文件。

Step 2:

打开 RflySim3D 软件。

Step 3:

在 Simulink 中,点击运行。可看到在 RflySim3D 中加载出一个四旋翼模型。

Step 4:

在 Simulink 运行过程中,操作左侧 CH1、CH2、CH3、CH4 的 Slider 模块。观察 RflyS im3D 中四旋翼的飞行效果。

