

FORMATO PARA LA ELABORACIÓN DE DISEÑOS ELÉCTRICOS	PS - 010		
FECHA: 01 – 08 – 2020	Versión:	1	

MEMORIAS DE CÁLCULO SISTEMA SOLAR FOTOVOLTAICO ON – GRID 9 kWp 24 PANELES DE 375Wp

Diseñador,

Ángel Arias

Ingeniero eléctrico NS205-124911

Barrancabermeja, Santander 2021

ELABORÓ	REVISÓ	APROBÓ
Bryam Galvis	ÁNGEL ARIAS	
	MP NS205-124911	

PROYECTO P108					
VERSIÓN	DESCRIPCIÓN DEL CAMBIO				
0	24 – 09 – 2021	ENTREGA			

Contenido

INTRODUCCIÓN	3
NORMAS APLICABLES	3
RESUMEN GENERAL DEL PROYECTO	3
LOCALIZACIÓN DEL PROYECTO	4
RADIACIÓN ELECTROMAGNÉTICA	4
COMPONENTES DEL SISTEMA SOLAR FOTOVOLTAICO	5
Inclinación de los módulos	5
Inversor DC/AC	6
Arreglo fotovoltaico	6
1. Cálculo económico de conductores, teniendo en cuenta todos los factores de	
pérdidas, las cargas resultantes y los costos de la energía.	7
2. Cálculos de canalizaciones (tubo, ductos, canaletas y electroductos) y volume	n de
encerramientos (cajas, tableros, conduletas, etc.).	8
3. Clasificación de áreas.	8
4. Elaboración de diagramas unifilares.	9
5. Elaboración de planos y esquemas eléctricos para construcción.	9
6. Especificaciones de construcción complementarias a los planos, incluyendo la	as de
tipo técnico de equipos y materiales y sus condiciones particulares.	9
7. Establecer las distancias de seguridad requeridas.	9
 Distancias Mínimas de Seguridad en Zonas con Construcciones. 	10
8. Justificación técnica de desviación de la NTC 2050 cuando sea permitido, sie	mpre
y cuando no comprometa la seguridad de las personas o de la instalación.	12
9. Los demás estudios que el tipo de instalación requiera para su correcta y seg	ura
operación, tales como condiciones sísmicas, acústicas, mecánicas o térmicas.	12
Figura 1. Localización del proyecto.	4
Figura 2. Distancias de seguridad en zonas con construcciones	
Figura 3. Distancias d1 y d en cruce y recorridos de vías	
Tabla 1. Resumen componentes.	3
Tabla 2. Ubicación geográfica.	
Tabla 3. Irradiación solar global horizontal.	4
Tabla 4. Irradiación global horizontal mensual.	5
Tabla 5. Data Sheet Módulo solar fotovoltaico	
Tabla 6. Inclinación de módulos.	
Tabla 7. DataSheet Inversor.	
Tabla 8. Arreglos en serie y paralelo	
Tabla 9. Cálculo económico del conductor.	
Tabla 10. Cálculo de canalizaciones.	8

INTRODUCCIÓN

En el siguiente documento se encuentran plasmados los criterios técnicos y normativos para el diseño, instalación y puesta en marcha del sistema Hibrido planteado para suplir las necesidades energéticas en las instalaciones de Casa 19 pico del águila RUITOQUE, Floridablanca Santander y convertirse en AGPE.

NORMAS APLICABLES

En la realización del presente diseño se tendrán en cuenta los criterios aplicables contenidos en los siguientes documentos:

- Reglamento Técnico de Instalaciones Eléctricas RETIE
- Código Eléctrico Colombiano Norma NTC 2050
- Resolución CREG 030 de 2018
- Ley 1715 de 2014
- Norma RUITOQUE

RESUMEN GENERAL DEL PROYECTO

Las instalaciones del proyecto a desarrollar es un sistema **RESIDENCIAL** Híbrido que suple en su totalidad el consumo diario de energía eléctrica demandado.

Los componentes del sistema solar fotovoltaico son:

ÍTEM	DESCRIPCIÓN	MARCA	REFERENCIA	CNT.	РОТ.	P.TOTAL
1	Módulo solar fotovoltaico	Trina Solar	TSM 375 DEG17MC.20(II)	24	375 Wp	9 KWP
2	Inversor Híbrido DC/AC	Enphase	IQ7	24	295 W	7.08KW
3	Medidor bidireccional	ISKRA	MT-174D2	1	15KW	15KW

Tabla 1. Resumen componentes.

LOCALIZACIÓN DEL PROYECTO

El proyecto se localiza en la ciudad de Acacías, Meta, Casa 19 pico del águila RUITOQUE, Las coordenadas geográficas son las siguientes:

UBICACIÓN GEOGRÁFICA					
LATITUD LONGITUD ALTURA					
7.029010	-73.081209	498 m			

Tabla 2. Ubicación geográfica.

Figura 1. Localización del proyecto.

RADIACIÓN ELECTROMAGNÉTICA

La localización del proyecto tiene las siguientes características de irradiación global horizontal anual según las coordenadas geográficas mencionadas anteriormente. A continuación, se extrae el promedio mensual de irradiación según el IDEAM en la plataforma **Atlas Solar.**

IRRADIAC	IRRADIACIÓN GLOBAL HORIZONTAL		UBICACIÓN:	RUITOQUE	SANTANDER
ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO
4,62	4,16	3,30	3,09	3,67	3,80
JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
4,12	4,07	3,75	3,36	3,32	4,15
MÍNIMO	ANUAL	MÁXIMO ANUAL		PROMEDIO ANUAL	
3,	09	4,62		3,	78

Tabla 3. Irradiación solar global horizontal.

Tabla 4. Irradiación global horizontal mensual.

COMPONENTES DEL SISTEMA SOLAR FOTOVOLTAICO

Módulos fotovoltaicos

Los módulos fotovoltaicos empleados son Monocristalinos de 375 Wp marca Trina SOLAR que se encargará de captar la radiación electromagnética del sol y convertirlo en energía eléctrica en Corriente Directa (DC).

TSM- 340	TSM- 345	TSM- 350	TSM- 355	TSM- 360	TSM- 365	TSM- 370	TSM- 375
340	345	350	355	360	365	370	375
0/+5	0/+5	0/+5	0/+5	0/+5	0/+5	0/+5	0/+5
38,2	38,5	38,7	38,8	39,0	39,3	39,7	40,0
8,90	8,96	9,04	9,14	9,24	9,30	9,33	9,37
46,2	46,7	47,0	47,4	47,7	48,0	48,3	48,5
9,50	9,55	9,60	9,65	9,70	9,77	9,83	9,88
17,5	17,7	18,0	18,3	18,5	18,8	19,0	19.3
	340 340 0/+5 38,2 8,90 46,2 9,50	340 345 340 345 0/+5 0/+5 38,2 38,5 8,90 8,96 46,2 46,7 9,50 9,55	340 345 350 340 345 350 0/+5 0/+5 0/+5 38,2 38,5 38,7 8,90 8,96 9,04 46,2 46,7 47,0 9,50 9,55 9,60	340 345 350 355 340 345 350 355 0/+5 0/+5 0/+5 0/+5 38,2 38,5 38,7 38,8 8,90 8,96 9,04 9,14 46,2 46,7 47,0 47,4 9,50 9,55 9,60 9,65	340 345 350 355 360 340 345 350 355 360 0/+5 0/+5 0/+5 0/+5 0/+5 38,2 38,5 38,7 38,8 39,0 8,90 8,96 9,04 9,14 9,24 46,2 46,7 47,0 47,4 47,7 9,50 9,55 9,60 9,65 9,70	340 345 350 355 360 365 340 345 350 355 360 365 0/+5 0/+5 0/+5 0/+5 0/+5 0/+5 38,2 38,5 38,7 38,8 39,0 39,3 8,90 8,96 9,04 9,14 9,24 9,30 46,2 46,7 47,0 47,4 47,7 48,0 9,50 9,55 9,60 9,65 9,70 9,77	340 345 350 355 360 365 370 340 345 350 355 360 365 370 0/+5 0/+5 0/+5 0/+5 0/+5 0/+5 0/+5 38,2 38,5 38,7 38,8 39,0 39,3 39,7 8,90 8,96 9,04 9,14 9,24 9,30 9,33 46,2 46,7 47,0 47,4 47,7 48,0 48,3 9,50 9,55 9,60 9,65 9,70 9,77 9,83

Tabla 5. Data Sheet Módulo solar fotovoltaico.

• Inclinación de los módulos

La inclinación deber ser entre 5º y 15º con respecto a la horizontal y con orientación al sur para optimizar su generación solar fotovoltaica anualmente. La inclinación ideal según fórmula obtenida del manual de instalaciones solares fotovoltaicas de Herranz, inclinación respecto al sur.

INCLINACIÓN DE MÓDULOS							
β(opt):	3,7	+	0,69	Х	ΙφΙ		
β(opt):	3,7	+	0,69	Х	7,029010		
β(opt):	3,7	+	4,85				
β(opt):				8,55			

Tabla 6. Inclinación de módulos.

Inversor DC/AC

El equipo inversor de corriente directa se encarga de convertir la corriente directa generada por los módulos solares y convertirla en corriente alterna para su uso final con la señal de tensión y frecuencia que requieren las cargas eléctricas. El inversor seleccionado cumple con los estándares de prueba de la IEEE 1547, y de conformidad con el alcance de la UL 1741. La certificación será presentada al Operador de Red (OR) como requisito para la conexión del sistema de generación al SIN.

El/los equipo(s) empleado(s) fue(ron) 24 inversor(es) de 0.295 kW marca Enphase referencia PIQ7PLUS-72-2-uso con rango de tensión de salida auto – regulada 120V

DATOS DE ENTRADA (CC)	107-60-2-US		IQ7PLUS-72-2	-US	107X-96-2-U	S
Combinaciones de módulos recomendadas¹	235 W-350 W +	-	235 W-440 W +		320 W - 460 W	
Compatibilidad del módulo	Solo módulos t		Módulos fotovoltaicos de 60			
o mpanomada do modalo	de 60 celdas		v 72 celdas			1010101141000
Tensión máxima de CC de entrada	48 V		60 V		79.5 V	
Tensión máxima de registro de corriente	27 V-37 V		27 V-45 V		53 V - 64 V	
Intervalo de funcionamiento	16 V-48 V		16 V-60 V		25 V - 79.5 V	
Tensión de arranque mínima/máxima	22 V/48 V		22 V/60 V		33 V / 79.5 V	
Corriente de cortocircuito de CC máxima (módulo Isc)	15 A		15 A		10 A	
Puerto de CC de clase sobretensión	II		П		II	
Corriente de retroalimentación del puerto de CC	0 A		0 A		0 A	
Configuración de panel fotovoltaico	Panel sin tierra de 1 x 1; No s		necesita protección adicional		ıl de la CC lateral; La	
	protección de CA lateral requ		ere un máximo de 20 A por circ		duito de ramal	
DATOS DE SALIDA (CA)	IQ 7		IQ 7+		IQ 7X	
Potencia máxima de salida	250 VA		295 VA		320 VA	
Potencia de salida continua máxima	240 VA		290 VA		315 VA	
Tensión/intervalo² nominales (L-L)	240 V/ 211-264 V	208 V/ 183-229 V	240 V/ 211-264 V	208 V/ 183-229 V	240 V/ 211-264 V	208 V/ 183-229 V
Corriente de salida continua máxima	1,0 A (240 VAC)	1,15 A (208 VAC)	1,21 A (240 VAC)	1,39 A (208 VAC)	1.31 A (240 VAC)	1.51 A (208 VAC)
Frecuencia nominal	60 Hz	(====,	60 Hz	(60 Hz	(
Intervalo de frecuencia extendido	47-68 Hz		47-68 Hz		47-68 Hz	
AC corta el circuito por fallo en la corriente en 3 ciclos	5.8 Arms		5.8 Arms		5,8 Arms	
Unidades máximas por circuito derivado de 20 A (L-L)3	16 (240 VAC)	13 (208 VAC)	13 (240 VAC)	11 (208 VAC)		10 (208 VAC)
Puerto de CA de clase sobretensión	III `		III `	` ′	III ` ´	, ,
Corriente de retroalimentación del puerto de CA	0 A		0 A		18 mA	
Configuración del factor de potencia	1,0		1,0		1,0	
Factor de potencia (ajustable)	0,85 adelantado retrasado	0,85	0,85 adelantado retrasado	0,85	0,85 adelantad retrasado	lo 0,85

Tabla 7. DataSheet Inversor.

• Arreglo fotovoltaico

Una vez conocidas las características técnicas de los equipos principales del sistema a desarrollar se procede a realizar el cálculo de las configuraciones límites de generación fotovoltaica.

ARREGLO SOLAR EN SERIE							
Número	Vmax Inverso	Vmax Inversor		Voc panel			
máximo de	Vmax Inverso	r	/	Voc panel			
paneles en	1000,0V		/	49,3V			
serie:		20					
Número	Vmin Inversor	-	<	Voc panel			
mínimo de	Vmin Inversor	•	/	Voc panel			
paneles en	325,0V		/	49,3V			
serie:		7					
AR	REGLO SOLAR EN P	ARA	LELC)			
Número	Imax Inversor	>	Isc	en paralelo			
máximo de	Imax Inversor	/	Isc	en paralelo			
paneles en paralelo por	50,0A	/		11,3A			
MPPT		4					

Tabla 8. Arreglos en serie y paralelo.

1. Cálculo económico de conductores, teniendo en cuenta todos los factores de pérdidas, las cargas resultantes y los costos de la energía.

El cálculo económico de conductores es un estudio que se realiza con el fin de establecer en términos de dinero las pérdidas de energía debidas a la resistencia propia de cada conductor. Dichas pérdidas son calculadas mediante la siguiente ecuación:

$$E = R * Imax^2 * \Delta t$$

Donde,

E: Energía disipada por el conductor,

R: resistencia propia del conductor (ver ficha técnica del conductor)

Imax: corriente máxima que pasará por el conductor

Δt: es el intervalo de tiempo

En la siguiente tabla se demuestra la comparación entre el conductor seleccionado para cada sistema y el conductor anterior.

ECUACIÓN						
$E = R * Imax^2 * \Delta t$						
Sistema	INVERSOR	ENPHASE	TOTAL			
Sistema	MPPT1	AC	AC			
I max (A)	0,375	0,295	24,560			
Delta t (h)	8	8	8			
Calibre seleccionado	12 AWG	12 AWG	12 AWG			
Resistencia (Ω/km)	6,56	6,56	6,56			
Distancia (km)	0,02	0,02	0,02			
Energía disipada (Wh/km)	0,0001	0,0001	0,6331			
Valor kWh (\$600)	\$ 0,09	\$ 0,05	\$ 379,87			
Calibre anterior	14 AWG	14 AWG	14 AWG			
Resistencia (Ω/km)	10,17	10,17	10,17			
Energía disipada (Wh)	0,00	0,00	0,98			
Valor kWh (\$600)	\$ 0,14	\$ 0,08	\$ 588,91			
Pérdida COP\$	-\$ 0,05	-\$ 0,03	-\$ 209,04			

Tabla 9. Cálculo económico del conductor.

2. Cálculos de canalizaciones (tubo, ductos, canaletas y electroductos) y volumen de encerramientos (cajas, tableros, conduletas, etc.).

Sistema AC							
Salida de inve	Salida de inversores a tablero protecciones AC						
Conductores							
Cable Cantidad Diametro Sección Ocupación Área conduit transv. mm2 mm2 mm2							
12 AWG	9	3,36	8,87	79,80	199,5		
12 AWG	3	3,36	8,87	26,60	66,5		
Conduit							
Coraza liquid tight	Cantidad	Diametro interior mm	Diametro externo mm	Sección transv. mm2	Ocupación de conductores		
1/2"	3	15,8		588,20	18%		

Tablero de protecciones AC a tablero de distribución secundario									
Conductores	Conductores								
Cable Solar	Cantidad	Diametro exterior mm	Sección transv. mm2	Ocupación mm2	Área conduit mm2				
10 AWG	4	4,21	13,92	55,68	139,2				
10 AWG	1	4,21	13,92	13,92	34,8				
Conduit	Conduit								
Coraza liquid tight	Cantidad	Diametro interior mm	Diametro externo mm	Sección transv. mm2	Ocupación de conductores				
1/2"	1	15,8		196,07	35%				

tablero de distribución secundario a tablero de distribución primario								
Conductores	Conductores							
Cable Solar	Cable Solar Cantidad Diametro Sección Ocupación Área condumenta transv. mm2 mm2 mm2							
8 AWG	4	5,53	24,02	96,07	240,2			
6 AWG	1	6,47	32,88	32,88	82,2			
Conduit								
Coraza liquid tight	Cantidad	Diametro interior mm	Diametro externo mm	Sección transv. mm2	Ocupación de conductores			
1"	1	25		490,87	26%			

Tabla 10. Cálculo de canalizaciones.

3. Clasificación de áreas.

Instalaciones especiales, según RETIE 2013, Art. 28.3: Son aquellas instalaciones que por estar localizadas en ambientes clasificados como peligrosos, o por alimentar equipos o sistemas complejos, presentan mayor probabilidad de riesgo que una instalación básica, y, por tanto, requieren de medidas especiales para mitigar o eliminar tales riesgos. Para el presente proyecto no aplica el proyecto como área de atmósfera peligrosa o área clasificada.

4. Elaboración de diagramas unifilares.

Ver plano anexo

5. Elaboración de planos y esquemas eléctricos para construcción.

Ver plano anexo

6. Especificaciones de construcción complementarias a los planos, incluyendo las de tipo técnico de equipos y materiales y sus condiciones particulares.

Ver plano anexo

7. Establecer las distancias de seguridad requeridas.

En el presente proyecto solar se encuentran cables aislados tipo **SOLAR** por lo que no deben cumplir con las distancias de seguridad.

Para el presente proyecto se tendrán en cuenta las distancias de seguridad señaladas en el Capítulo 13 del Reglamento Técnico de Instalaciones Eléctricas — RETIE puesto que su incumplimiento es fuente de riesgos que afectarán la integridad de las personas y sus bienes.

Teniendo en cuenta que la red de media tensión utiliza conductores desnudos, las distancias verticales se toman siempre desde el punto energizado más cercano al lugar de posible contacto.

Figura 2. Distancias de seguridad en zonas con construcciones

La distancia horizontal "b" se toma desde la parte energizada más cercana al sitio de posible contacto, es decir, trazando un círculo desde la parte energizada, teniendo en cuenta la posibilidad real de expansión vertical que tenga la edificación y que en ningún momento la red quede encima de la construcción.

Si se tiene un tendido aéreo con cable aislado y con pantalla no se aplican estas distancias; tampoco se aplica para conductores aislados para baja tensión.

Distancias Mínimas de Seguridad en Zonas con Construcciones.

DISTANCIAS MÍNIMAS DE SEGURIDAD EN ZONAS CON CONSTRUCCIONES						
Descripción	Tensión nominal entre fases (kV)	Distancia (m)				
Distancia vertical "a" sobre techos y proyecciones, aplicable solamente a	44/34,5/33	3,8				
zonas de muy difícil acceso a personas y siempre que el propietario o tenedor de la instalación eléctrica tenga absoluto control tanto de la	13,8/13,2/11,4/7,6	3,8				
instalación como de la edificación (Figura 13.1).	<1	0,45				
	66/57,5	2,5				
Distancia horizontal " b " a muros, balcones, salientes, ventanas y diferentes áreas independientemente de la facilidad de accesibilidad de personas.	44/34,5/33	2,3				
(Figura 13.1)	13,8/13,2/11,4/7,6	2,3				
	<1	1,7				
Distancia vertical "c" sobre o debajo de balcones o techos de fácil acceso a	44/34,5/33	4,1				
personas, y sobre techos accesibles a vehículos de máximo 2,45 m de	13,8/13,2/11,4/7,6	4,1				
altura. (Figura 13.1)	<1	3,5				
	115/110	6,1				
Distancia vertical "d" a carreteras, calles, callejones, zonas peatonales,	66/57,5	5,8				
áreas sujetas a tráfico vehicular. (Figura 13.1) para vehículos de más de 2,45	44/34,5/33	5,6				
m de altura.	13,8/13,2/11,4/7,6	5,6				
	<1	5				

Las distancias mínimas de seguridad que deben guardar las partes energizadas respecto de las construcciones se muestran en la siguiente tabla.

Tabla 30. Distancias mínimas de seguridad en zonas con construcciones

No se deben instalar conductores de redes o líneas del servicio público, por encima de edificaciones donde se tenga presencia de personas

Figura 3. Distancias d1 y d en cruce y recorridos de vías.

En los tendidos de la red de distribución se debe tener en cuenta que las alturas de los conductores **d1** y **d** con respecto al piso o de la vía no podrán ser inferiores a las distancias que se muestran a continuación.

Descripción	ensión nominal entre fases (kV)	Distancia (m)
	500 230/220	11,5 8,5
Distancia mínima al suelo " d " en cruces con carreteras, calles, callejones, zonas peatonales, áreas sujetas a tráfico vehicular (Figura 13.2).	115/110 66/57,5 44/34,5/33	6,1 5,8 5,6
	13,8/13,2/11,4/7,6 <1	5,6 5,0
Cruce de líneas aéreas de baja tensión en grandes avenidas.	<1	5,6
Distancia mínima al suelo " d1 " desde líneas que recorren avenidas, carreteras y calles (Figura 13.2).	500 230/220 115/110	11,5 8,0 6,1

	66/57,5	5,8
	44/34,5/33	5,6
	13,8/13,2/11,4/7,6	5,6
	13,8/13,2/11,4/7,0 <1	5.0
	500	8,6
	230/220	6,8
Distancia mínima al suelo "d" en zonas de bosques de arbustos, áreas cultivadas,		
pastos, huertos, etc. Siempre que se tenga el control de la altura máxima que	115/110	6,1
	66/57,5	5,8
pueden alcanzar las copas de los arbustos o huertos, localizados en la zonas de	44/34,5/33	5,6
servidumbre (Figura 13.2).	13,8/13,2/11,4/7,6	5,6
	<1	5,0
En áreas de bosques y huertos donde se dificulta el control absoluto del	500	11,1
• •	230/220	9,3
crecimiento de estas plantas y sus copas puedan ocasionar acercamientos	115/110	8,6
peligrosos, se requiera el uso de maquinaria agrícola de gran altura o en cruces de	00/37,3	8,3
ferrocarriles sin electrificar, se debe aplicar como distancia "e" estos valores	44/34,5/33	8,1
(5) 42.239	13,8/13,2/11,4/7,6	8,1
(Figura 13.3) ⁹	<1	7,5
	500	4,8
	230/220	3,0
	115/110	2,3
Distancia mínima vertical en el cruce " \mathbf{f} " a los conductores alimentadores de	66/57,5	2,0
ferrocarriles electrificados, teleféricos, tranvías y trole-buses (Figura 13.4)	44/34,5/33	1,8
	13,8/13,2/11,4/7,6	1,8
	13,0/13,2/11, 1 //,0 <1	1,2
	500	12.9
	230/220	11,3
Distancia mínima vertical respecto del máximo nivel del agua "g" en cruce con ríos		10,6
,		10,4
canales navegables o flotantes adecuados para embarcaciones con altura superior	44/34,5/33	10,4
a 2 m y menor de 7 m (Figura 13.4)	13,8/13,2/11,4/7,6	10,2
	13,8/13,2/11,4/7,0 <1	9,6
	500	7,9
	230/220	
Distancia mínima vertical respecto del máximo nivel del agua "g" en cruce con ríos		6,3
		5,6
canales navegables o flotantes, no adecuadas para embarcaciones con altura	66/57,5	5,4
mayor a 2 m. (Figura 13.4)	44/34,5/33	5,2
	13,8/13,2/11,4/7,6	5,2
	<1	4,6
	500	14,6
Distancia mínima vertical al piso en cruce por espacios usados como campos	230/220	12,8
deportivos abiertos, sin infraestructura en la zona de servidumbre, tales como	115/110	12
•	66/57,5	12
graderías, casetas o cualquier tipo de edificaciones ubicadas debajo de los	44/34,5/33	12
conductores.	13,8/13,2/11,4/7,6	12
	<1	12
	500	11,1
	230/220	9.3
	115/110	7,0
Distancia mínima horizontal en cruce cercano a campos deportivos que incluyan		
		7,0
infraestructura, tales como graderías, casetas o cualquier tipo de edificación	66/57,5	7,0

Para el caso de cruces o recorridos paralelos de distintas líneas, se deben tener en cuenta las siguientes distancias mínimas.

				DISTA	NCIAS EN	METROS				
	500	4,8	4,2	4,2	4,2	4,3	4,3	4,6	5,3	7,1
	230/220	3,0	2,4	2,4	2,4	2,5	2,6	2,9	3,6	
	115/110	2,3	1,7	1,7	1,7	1,8	1,9	2,2		
Tensión	66	2,0	1,4	1,4	1,4	1,5	1,5			
nominal (kV) entre fases de	57,5	1,9	1,3	1,3	1,3	1,4				
la línea	44/34,5/33	1,8	1,2	1,2	1,3					
superior	13,8/13,2/11,4/7,6	1,8	1,2	0,6						
	<1	1,2	0,6							
	Comunicaciones	0,6								
				13,8/	44/			115/	230/	
		Comunicación	<1	13,2/	34,5/	57,5	66			500
		Comunicación	,1	11,4/ 7,6	33	57,5	50	110	220	300
		Tensión nominal (kV) entre fases de la línea inferior								

Tabla 31. Distancias verticales mínimas en vanos con líneas de diferentes tensiones.

Los conductores sobre apoyos fijos, deben tener distancias horizontales y verticales entre cada uno, no menores que el valor que se muestra en la siguiente tabla.

CLASE DE CIRCUITO Y TENSIÓN ENTRE LOS CONDUCTORES CONSIDERADOS	DISTANCIAS HORIZONTALES DE SEGURIDAD (cm)
Conductores de comunicación expuestos	15 (1) 7,5 (2)
Alimentadores de vías férreas 0 a 750 V (4/0 AWG o mayor calibre). 0 a 50 V (calibre menor de 4/0 AWG). Entre 750 V y 8,7 kV.	15 30 30
Conductores de suministro del mismo circuito. 0 a 8,7 kV Entre 8,7 y 50 kV Más de 50 kV	30 30 más 1 cm por kV sobre 8,7 kV Debe atender normas internacionales
Conductores de suministro de diferente circuito ⁽³⁾ 0 a 8,7 kV Entre 8,7 y 50 kV Entre 50 kV y 814 kV	30 30 más 1 cm por kV sobre 8,7 kV 71,5 más 1 cm por kV sobre 50 kV

Tabla 32. Distancia horizontal entre conductores soportados en la misma estructura.

- 8. Justificación técnica de desviación de la NTC 2050 cuando sea permitido, siempre y cuando no comprometa la seguridad de las personas o de la instalación.
- 9. Los demás estudios que el tipo de instalación requiera para su correcta y segura operación, tales como condiciones sísmicas, acústicas, mecánicas o térmicas.

Los anteriores numerales no aplican para este tipo de proyecto.