

L14 ANSWER 2 OF 14 CAPLUS COPYRIGHT 2004 ACS ON STN
AN 1993:602987 CAPLUS
DN 119:202987

TI Preparation of lower aliphatic alcohol mixtures from synthesis gas
IN Kotowski, Włodzimierz; Gorski, Ryszard; Klimiec, Jacek
PA Instytut Ciezkich Syntez Organicznej "Blaachownia", Pol.
SO Pol., 8 pp. Abstracted and indexed from the unexamined application.
CODEN: POXXA7

DT Patent
LA Polish
FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PL 157499	A1	19920630	PL 1988-271272	19880316
PRAI PL 1988-271272		19880316		

AB A process is provided for preparation of mixts. of aliphatic C1-4 alcs., with
MeOH

and isobutanol predominating, from a mixture of CO, H₂, and CO₂ (synthesis
gas) by contact with a catalyst Cu_xZr_yMn_zN_v (x, y, z, v = mol
fraction; x = 0.377-0.566, y = 0.243-0.446, z = 0.204-0.422, v =
0.010-0.169; A - alkali metal, preferably K) prepared from the
corresponding metal oxides: 30.45 weight% CuO, 32.55 weight% ZrO₂, 14.5-25

weight%

MnO and 0.5-8.0 weight% alkali metal oxide. The catalyst
is reduced directly by synthesis gas at pressures up to 5 MPa at
160-200°, whereas the process to prepare aliphatic alcs. is carried out
at 250-400° under 10-30 MPa pressure and 5000-20000 h⁻¹ syn gas
loading.

BEST AVAILABLE COPY

受信時刻 10月26日 6時11分

RZECZPOSPOLITA
POLSKA

⑬ OPIS PATENTOWY ⑭ PL ⑮ 157499

⑯ B1

⑰ Numer zgłoszenia: 271272

⑱ IntCl:

C07C 29/154
C07C 31/02Urząd Patentowy
Rzeczypospolitej Polskiej

⑲ Data zgłoszenia: 16.03.1988

⑳

Sposób wytwarzania mieszaniny niskich alkoholi alifatycznych z gazu syntezowego

㉑

Zgłoszenie ogłoszone:
18.09.1989 BUP 19/89

㉒

Uprawniony z patentu:
Instytut Ciężkiej Syntezy Organicznej
"Blażownia", Kędzierzyn-Koźle, PL

㉓

O udzieleniu patentu ogłoszone:
30.06.1992 WUP 06/92

㉔

Twórcy wynalazku:
Włodzimierz Kotowski, Kędzierzyn-Koźle, PL
Ryszard Góralski, Katowice, PL
Jacek Klimiec, Kędzierzyn-Koźle, PL

㉕

1. Sposób wytwarzania mieszaniny niskich alkoholi alifatycznej z gazu syntezowego, w obecności katalizatora zawierającego miedź, mangan i metal alkaliczny, znamienny tym, że tlenek węgla, wodór i dwutlenek węgla, będące składnikami gazu syntezowego kontaktuje się z katalizatorem o składzie $Cu_xZr_yMn_zA_v$, gdzie A oznacza metal alkaliczny, x, y, z, v oznaczają udziały molowe poszczególnych metali, przy czym $x = 0,377-0,566$, $y = 0,243-0,446$, $z = 0,204-0,422$, $v = 0,010-0,169$, co w przeliczeniu na tlenki metali wynosi odpowiednio 40% wagowych, 30-45 CuO, 32-55 ZrO₂, 14,5-25 MnO i 0,5-8,0 tlenku metalu alkalicznego, przy czym użyty w procesie katalizator poddaje się uprzednio redukcji gazem syntezowym pod ciśnieniem do 5 MPa, w temperaturze 160-280°C, a proces wytwarzania alkoholi alifatycznych prowadzi się w temperaturze 250-400°C i pod ciśnieniem 10-30 MPa i przy obciążeniu objętościowym gazem syntezowym katalizatora wynoszącym 5000-20000 godz.

PL 157499 B1

**SPÓSOB WYTWARZANIA MIESZANINY NIŻSZYCH ALKOHOLI
ALIFATYCZNYCH Z GAZU SYNTESOWEGO**

Z A S T R Z E Z I E p a t e n t o w e

1. Sposób wytwarzania mieszaniny niższych alkoholi alifatycznych z gazu syntezowego, w obecności katalizatora zawierającego miedź, mangan i metal alkaliczny, z n-a s i e n n y t y m, że tlenek węgla, wodor i dwutlenek węgla, będąc składnikami gazu syntezowego, kontaktuje się z katalizatorem o składzie $Cu_x Zr_y Mn_z A_v$, gdzie A oznacza metal alkaliczny x,y,z,v, oznaczając udziały molowe poszczególnych metali, przy czym $x = 0,377 - 0,568$, $y = 0,243 - 0,446$, $z = 0,204 - 0,422$, $v = 0,010 - 0,168$, co w przeliczeniu na tlenki metali wynosi odpowiednio 40% wagowych, 30-45 CuO, 32-56 ZrO₂, 14,5 - 25 MnO i 0,5-8,0 tlenku metalu alkalicznego, przy czym użyty w procesie katalizator poddaje się uprzednio redukcji gazem syntezowym pod ciśnieniem do 5 MPa, w temperaturze 160 - 280°C, a proces wytwarzania alkoholi alifatycznych prowadzi się w temperaturze 250 - 400°C i pod ciśnieniem 10-30 MPa i przy obciążeniu objętościowym gazem syntezowym katalizatora wynoszącym 5000 - 20000 godz⁻¹.

2. Sposób według zastrz.1, z n-a n i e n n y t y m, że stosuje się katalizator zawierający potas jako metal alkaliczny.

* * *

Przedmiotem wynalezku jest sposób wytwarzania mieszaniny alkoholi, zawierających jeden do czterech atomów węgla w cząstecce z przewagą etanolu i izobutanolu z gazu syntezowego, zawierającego tlenek węgla, wodor i dwutlenek węgla, w obecności katalizatora miedziowo-cyrkelowo-manganowego z dodatkiem metalu alkalicznego. Reakcja przebiega według następujących równań:

Proces wytwarzania mieszaniny alkoholi z gazu syntezowego znany jest od wielu lat. W latach 1920 - 1940 w Niemczech opatentowano sposoby otrzymywania alkoholi, głównie z zastosowaniem alkalicznych katalizatorów żelazowych - niemieckie opisy patentowe nr nr 411 218 i 610 302. W obecności tego typu katalizatorów uzyskiwano mieszaninę zawierającą obok alkoholi, zawierających od jednego do dziesięciu atomów węgla inne związków tlenowe, wody i węglowodory, co stwarzało szereg trudności technicznych związanych z ich rozdzieleniem. Stosowano również alkaliczne katalizatory chromowo-cynkowe jak to opisano w opisach patentowych niemieckich nr nr 644 668, 665 309 i brytyjskim nr 323 240, otrzymując mieszaninę alkoholi zawierających od jednego do sześciu atomów węgla w cząstecce pod ciśnieniem 29 MPa w temperaturze 400°C. W niemieckich opisach patentowych nr 628 557 i 626 787 przedstawiono proces wytwarzania alkoholi alifatycznych, gdzie zastosowano alkaliczne katalizatory miedziowo-wolframowe.

W polskim opisie patentowym nr 107 649 podano, że przy ciśnieniu 2,0 - 25,0 MPa w temperaturze 180 - 400°C i zastosowaniu katalizatora zawierającego miedź, kobalt i metale, którymi może być Cr, Fe, V lub Mn oraz w obecności metalu alkalicznego, korzystnie litu, sodu, potasu, otrzymuje się z wydajnością powyżej 100 kg etanolu z 1 m³ katalizatora w ciągu godziny. Zgodnie z polskim opisem patentowym nr 130 236 mieszaninę alkoholi od etanolu do

heksanolu otrzymywano w temperaturze $180 - 240^{\circ}\text{C}$ pod ciśnieniem $5 \sim 18 \text{ MPa}$, stosując katalizator zawierający miedź, cynk, glinkę, mangan i metale alkaliczny. Natomiast zgodnie z połaskimi opisami patentowymi nr nc 135 730 i 145 849 w procesie wytwarzania alkoholi, zawierających od pięciu atomów węgla w cząsteczkach, stosowane katalizatory alkaliczowane Cu-Zn-Zn₃V₂O₈ z dodatkiem Al₂O₃ lub Mn₂O₃. Z 1 m³ katalizatora otrzymywano do 200 kg mieszaniny tych alkoholi.

Istota wynalazku polega na tym, że tlenek węgla, dwutlenek węgla i wodór, wchodzące w skład gazu syntezowego, kontaktuje się w temperaturze $260 - 400^{\circ}\text{C}$ i pod ciśnieniem $10 - 30 \text{ MPa}$ z katalizatorem o następującym składzie: Cu_xZr_yMn_zA_v gdzie A = metale alkaliczne, x,y,z,v = udziały molowe metali; x = 0,377 - 0,065, y = 0,243 - 0,445, z = 0,204 - 0,422, v = 0,010 - 0,168.

W przeliczeniu na tlenki metali wchodzących w skład katalizatora udziały wagowe przedstawiają się następująco: 30 - 45% wagowych CuO, 32 - 55% wagowych ZrO₂, 14,5 - 25% wagowych MnO i 0,5 - 8% wagowych tlenku metalu alkalicznego, korzystnie K₂O. Katalizator poddaje się uprzednio redukcji gazem syntezowym pod ciśnieniem do 5 MPa w temperaturze $160-280^{\circ}\text{C}$.

Zastosowanie sposobu według wynalazku pozwala na otrzymanie mieszaniny alkoholi alifatycznych o zawartości jednego do czterech atomów węgla w cząsteczkach, z wysoką selektywnością. Mieszanina posiada zarówno zawiera tylko kilka procent wody. Reakcja przebiega według równań 1 - 4, przy czym wytworzona w reakcji woda powoduje przereagowanie CO do CO₂, zgodnie z reakcją 4. Pozwala to na zwiększenie ilości otrzymywanych alkoholi alifatycznych z jednostki katalizatora rzędu 500 - 1400 kg z 1 m³ katalizatora w ciągu godziny. Natomiast w gazie wylotowym praktycznie nie stwierdza się obecności węglowodorów.

P r z y k l a d I. Katalizator A. Do reaktora ciśnieniowego o średnicy wewnętrznej 16 mm, zaopatrzonego w zewnętrzny elektryczny blok grzewczy, założono 100 cm³ katalizatora o składzie 30% wagowych CuO, 32% wagowych ZrO₂, 14,5% wagowych MnO i 5% K₂O, co odpowiada udziałom molowym poszczególnych metali w składzie katalizatora: Cu_{0,377}, Zr_{0,280}, Mn_{0,422}, K_{0,168}. Następnie reaktor przedmuchano szotem i rozpoczęto redukcję katalizatora gazem syntezowym o składzie: 5,0% objętościowych CO₂, 22,0% objętościowych CO, 68,5% objętościowych H₂, 1,0% objętościowych CH₄ i 2,5% objętościowych N₂, sposobem podanym poniżej. W ciągu 12 godzin przy przepływie gazu syntezowego 500 NL/godz. przy ciśnieniu 1,0 MPa podniesiono temperaturę do 180°C z szybkością $15-20^{\circ}/\text{godzina}$, a następnie do 280°C z szybkością $10^{\circ}/\text{godzina}$. Po osiągnięciu temperatury 280°C podwyższono ciśnienie do 5,0 MPa z szybkością 0,5 MPa/godzina. Redukcję katalizatora prowadzono w osiągniętych parametrach przez 10 godzin. Syntezę alkoholi alifatycznych o częstotliwości zawierającej jeden do czterech atomów węgla z tlenku węgla, wodoru i dwutlenku węgla prowadzono w następujący sposób. Do reaktora w sposób ciągły wprowadzono gaz syntezowy zawierający H₂ i CO w stosunku molowym 1:1 oraz 0,5% objętościowych CO₂ i 20% objętościowych azotu. W reaktorze utrzymywano złożoną temperaturę, ciśnienie procesu oraz obciążenie objętościowe gazem katalizatora. Gaz po reakcji kierowano do chłodnic wodnych, następnie do separatora, gdzie oddzielano produkty ciekłe i gazowe. Produkty ciekłe poddano analizie chromatograficznej. Wydajność poszczególnych alkoholi alifatycznych i wody uzyskanych z 1 m³ katalizatora w ciągu godziny syntezы przedstawiono w tabeli 1.

P r z y k l a d II. Katalizator B. Do reaktora analogicznego, jak w przykładzie I założono 100 cm³ katalizatora, składającego się z 30% wagowych CuO, 55% wagowych ZrO₂, 14,5% wagowych MnO i 0,5% wagowych K₂O, co odpowiada udziałom molowym metali Cu_{0,377}, Zr_{0,445}, Mn_{0,424}, K_{0,010}. Następnie katalizator zredukowano analogicznie jak w przykładzie I, a następnie prowadzono proces katalitycznej syntezы alkoholi według sposobu podanego w przykładzie I, stosując gaz syntezowy zawierający CO i H₂ w stosunku molowym CO/H₂ = 1/1 oraz 5% objętościowych CO₂ i 10% objętościowych azotu. Parametry procesu oraz wydajność poszczególnych alkoholi alifatycznych i wody podano w tabeli 1.

P r z y k l a d III. Katalizator C. Do reaktora analogicznego jak w przykładzie I założono 100 cm³ katalizatora, zawierającego 40% wagowych CuO, 30% wagowych ZrO₂, 22%

4

167 400

wagowych MnO i 5% wagowych K_2O , co odpowiada udzieleniu moliowemu poszczególnych metali $Cu_{0,888}$, $Zr_{0,243}$, $Mn_{0,310}$, $K_{0,054}$. Następnie katalizator zredukowano analogicznie jak w przykładzie I, a następnie prowadzono proces syntezы alkoholi, stosując gaz syntezowy zawierający CO i H_2 w stosunku moliowym 1:1 oraz 10% objętościowych CO_2 i 10% objętościowych azotu. Parametry procesu oraz wydajność poszczególnych alkoholi podano w tabeli 1.

P r z y k z a d 4 V. Katalizator D. Do reaktora analogicznego jak w przykładzie I założono 100 cm³ katalizatora zawierającego 30% wagowych CuO , 40% wagowych ZrO_2 , 25% wagowych MnO i 5% wagowych K_2O , co odpowiada udzieleniu moliowemu poszczególnych metali $Cu_{0,377}$, $Zr_{0,328}$, $Mn_{0,302}$, $K_{0,108}$. Następnie katalizator zredukowano analogicznie jak w przykładzie I i prowadzono proces syntezы alkoholi, stosując gaz syntezowy zawierający CO i H_2 w stosunku moliowym 1:1 oraz 10% objętościowych CO_2 i 10% objętościowych azotu. Parametry procesu oraz uzyskana wydajność podano w tabeli 1.

T a b e l a 1 .

Parametry syntezы alkoholi zawierających 1:4 atomów węgla w cząsteczkach z gazu syntezowego.

Katalizator	Ciśnienie, MPa	Temperatura, °C	Obieganie, min ⁻¹ /m ³	Objętość, m ³ /h	Wydajność poszczególnych alkoholi w kg z m ³ katalizatora na godzinę				
					metanol	etanol	stanol	n-propylizobutyliden	alkoholi neutralni
A	10	250	8000	300	50	30	120	180	500
	25	320	16000	550	95	80	380	90	1080
B	25	350	10000	480	90	70	280	80	830
	15	320	15000	400	80	60	140	180	850
C	22	350	20000	780	120	100	480	60	1480
	30	400	20000	600	100	80	200	100	960
D	22	380	18000	650	100	85	300	180	1435
	30	300	20000	480	80	80	150	90	810

Zakład Wydawnictw UP RP. Nakład 90 egz.
Cena 5000 zł.

受信時刻 10月26日 6時11分

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.