Analízis alkalmazásai

1. gyakorlat

Szabó Krisztián

Tartalom

1	Emlékeztető																	2
	1.1 Paraméteres integrál																	2

1 Emlékeztető

1.1 Paraméteres integrál

Valamilyen kompakt [a, b] intervallum $(a, b \in \mathbb{R}, a < b)$ és $\emptyset \neq U \subset \mathbb{R}^n$ $(1 \leq n \in \mathbb{N})$ nyílt halmaz esetén tekintsük az

$$f: U \times [a, b] \to \mathbb{R}$$

függvényt. Ha $x \in U$, akkor legyen $f_x : [a, b] \to \mathbb{R}$ az a függvény, amire

$$f_x(t) := f(x, t) \quad (t \in [a, b]).$$

Tegyük fel, hogy minden $x \in U$ esetén az f_x függvény Riemann-integrálható: $f_x \in R[a, b]$, legyen ekkor

$$F(x) := \int_{a}^{b} f(x, t) dt := \int_{a}^{b} f_{x} \quad (x \in U).$$

Tétel. Tegyük fel, hogy adott az [a, b] $(a, b \in \mathbb{R}, a < b)$ kompakt intervallum, $1 \le n \in \mathbb{N}$, és $\emptyset \ne U \subset \mathbb{R}^n$ nyílt halmaz. Ekkor tetszőleges folytonos

$$f: U \times [a, b] \to \mathbb{R}$$

függvény esetén az

$$F(x) := \int_{a}^{b} f(x, t) dt \quad (x \in U)$$

paraméteres integrálra az alábbiak igazak:

- 1. az F függvény folytonos;
- 2. ha valamilyen $i=1,\ldots,n$ indexre létezik és folytonos a $\partial_i f$ parciális deriváltfüggvény, akkor létezik a $\partial_i F$ parciális deriváltfüggvény is, és

$$\partial_i F(x) = \int_a^b \partial_i f(x, t) dt \quad (x \in U);$$

3. amennyiben az f folytonosan differenciálható, azaz $f \in C^1$, akkor $F \in C^1$.

Bizonyítás. Az F függvény valamely $x \in U$ pontbeli folytonosságához az

$$F(x) - F(y) = \int_{a}^{b} \left(f(x, t) - f(y, t) \right) \quad (y \in U)$$

különbséget, azaz az

$$f(x, t) - f(y, t) \quad (t \in [a, b])$$

megváltozoást kell "kezelni". Legyen ehhez tehát adotot az $x \in U$ vektor, ekkor az U halmaz nyíltsága miatt egy alkalmas r>0 számmal

$$G_r := \{ y \in U : ||x - y|| \le r \} \subset U.$$

A G_r halmaz könnyen láthatóan zárt, ezért az

$$A := G_r \times [a, b] (\subset U \times [a, b] = \mathcal{D}_f)$$

halmaz is zárt. Mivel az A nyilván korlátos is, így kompakt. A Heine-tétel alapján az $f_{|A}$ leszűkítés egyenletesen folytonos, tehát tetszőleges $\varepsilon>0$ számhoz van olyan $\delta>0$, hogy

$$|f(\xi) - f(\zeta)| < \varepsilon \quad (\xi, \zeta \in A, ||\xi - \zeta|| < \delta).$$

