Chapter 11: Computations in a functor context III Monad transformers

Sergei Winitzki

Academy by the Bay

2019-01-05

Computations within a functor context: Combining monads

Programs often need to combine monadic effects

- "Effect" \equiv what else happens in $A \Rightarrow M^B$ besides computing B from A
- Examples of effects for some standard monads:
 - Option computation will have no result or a single result
 - ▶ List computation will have zero, one, or multiple results
 - ► Either computation may fail to obtain its result, reports error
 - ▶ Reader computation needs to read an external context value
 - ▶ Writer some value will be appended to a (monoidal) accumulator
 - ► Future computation will be scheduled to run later
- How to combine several effects in the same functor block (for/yield)?

- The code will work if we "unify" all effects in a new, larger monad
- Need to compute the type of new monad that contains all given effects

Combining monadic effects I. Trial and error

There are several ways of combining two monads into a new monad:

- If M_1^A and M_2^A are monads then $M_1^A \times M_2^A$ is also a monad
 - lacktriangle But $M_1^A imes M_2^A$ describes two separate values with two separate effects
- ullet If M_1^A and M_2^A are monads then $M_1^A+M_2^A$ is usually not a monad
 - ▶ If it worked, it would be a choice between two different values / effects
- ullet If M_1^A and M_2^A are monads then one of $M_1^{M_2^A}$ or $M_2^{M_1^A}$ is often a monad
- Examples and counterexamples for functor composition:
 - ▶ Combine $Z \Rightarrow A$ and List^A as $Z \Rightarrow List^A$
 - ► Combine Future[A] and Option[A] as Future[Option[A]]
 - ▶ But Either[Z, Future[A]] and Option[Z ⇒ A] are not monads
 - ▶ Neither Future[State[A]] nor State[Future[A]] are monads
- The order of effects matters when composition works both ways:
 - ▶ Combine Either $(M_1^A = Z + A)$ and Writer $(M_2^A = W \times A)$
 - * as $Z + W \times A$ either compute result and write a message, or all fails
 - * as $(Z + A) \times W$ message is always written, but computation may fail
- Find a general way of defining a new monad with combined effects
- Derive properties required for the new monad

Combining monadic effects II. Lifting into a larger monad

If a "big monad" BigM[A] somehow combines all the needed effects:

```
// This could be valid Scala...

val result: BigM[Int] = for {
    i \leftarrow lift<sub>1</sub>(1 to n)
    j \leftarrow lift<sub>2</sub>(Future{ q(i) })
    k \leftarrow lift<sub>3</sub>(maybeError(j))
} vield f(k)

// If we define the various

// required "lifting" functions:

def lift<sub>1</sub>[A]: Seq[A] \Rightarrow BigM[A] = ???

def lift<sub>2</sub>[A]: Future[A] \Rightarrow BigM[A] = ???

def lift<sub>3</sub>[A]: Try[A] \Rightarrow BigM[A] = ???
```

• Example 1: combining as BigM[A] = Future[Option[A]] with liftings:

```
\begin{array}{lll} \text{def lift}_1[A]\colon \text{Option}[A] \ \Rightarrow \ \text{Future}[\text{Option}[A]] \ = \ \text{Future}.\text{successful}(\_) \\ \text{def lift}_2[A]\colon \text{Future}[A] \ \Rightarrow \ \text{Future}[\text{Option}[A]] \ = \ \_.\text{map}(x \ \Rightarrow \ \text{Some}(x)) \end{array}
```

• Example 2: combining as BigM[A] = List[Try[A]] with liftings:

```
\begin{array}{l} \text{def lift}_1[A]\colon \text{Try}[A] \ \Rightarrow \ \text{List}[\text{Try}[A]] \ = \ x \ \Rightarrow \ \text{List}(x) \\ \text{def lift}_2[A]\colon \text{List}[A] \ \Rightarrow \ \text{List}[\text{Try}[A]] \ = \ \_.\text{map}(x \ \Rightarrow \ \text{Success}(x)) \end{array}
```

Remains to be understood:

- Finding suitable laws for the liftings; checking that the laws hold
- Building a "big monad" out of "smaller" ones, with lawful liftings
 - ▶ Is this always possible? Unique? Are there alternative solutions?
- Ways of reducing the complexity of code; make liftings automatic

Laws for monad liftings I. Identity laws

Whatever identities we expect to hold for monadic programs must continue to hold after lifting M_1 or M_2 values into the "big monad" BigM

- We assume that M_1 , M_2 , and BigM already satisfy all the monad laws Consider the various functor block constructions containing the liftings:
- Left identity law after lift₁
 // Anywhere inside a for/yield: // Must be equivalent to...
 i ← lift₁(M₁.pure(x))
 j ← bigM(i) // Any BigM value.
 lift₁(M₁.pure(x)).flatMap(b) = b(x) in terms of Kleisli composition (◊):
 (pure_{M₁}; lift₁) (x→BigM^X ◊ b: x→BigM^Y = b with f: x→M^Y ◊ g: y→M^Z ≡ x ⇒ f(x).flatMap(g)
 - Right identity law after lift₁

 $b.flatMap(M_1.pure andThen lift_1) = b - in terms of Kleisli composition:$

$$b^{:X\Rightarrow \mathsf{BigM}^Y} \diamond \left(\mathsf{pure}_{M_1} \circ \mathsf{lift}_1\right)^{:Y\Rightarrow \mathsf{BigM}^Y} = b$$

The same identity laws must hold for M2 and lift2 as well

Laws for monad liftings II. Simplifying the laws

 $(\mathsf{pure}_{M_1}^{}, \mathsf{lift}_1)$ is a unit for the Kleisli composition \diamond in the monad \mathtt{BigM}

- But the monad BigM already has a unit element: pureBigM
- The two-sided unit element is always unique: $id = id \diamond id' = id'$
- So the two identity laws for $(pure_{M_1}, lift_1)$ can be reduced to one law:

$$\mathsf{pure}_{\mathit{M}_{\mathbf{1}}} \circ \mathsf{lift}_{\mathbf{1}} = \mathsf{pure}_{\mathsf{BigM}}$$

Refactoring a portion of a monadic program under lift1 gives another law:

```
// Anywhere inside a for/yield: // Must be equivalent to...

i \leftarrow lift_1(p) // Any M_1 value. pq = p.flatMap(q) // In M_1.

j \leftarrow lift_1(q(i)) // Any M_1 value. j \leftarrow lift_1(pq) // Now lift it.
```

```
lift_1(p).flatMap(q andThen lift_1) = lift_1(p flatMap q)
```

- Rewritten equivalently through $\mathsf{flm}_M: (A\Rightarrow M^B) \Rightarrow M^A \Rightarrow M^B$ as $\mathsf{lift_1} \circ \mathsf{flm}_{\mathsf{BigM}} (q \circ \mathsf{lift_1}) = \mathsf{flm}_{\mathsf{M_1}} q \circ \mathsf{lift_1}$
- Rewritten in terms of Kleisli composition:

$$(b^{:X\Rightarrow M_1^Y}; \mathsf{lift_1}) \diamond (c^{:Y\Rightarrow M_1^Z}; \mathsf{lift_1}) = (b \diamond c); \mathsf{lift_1}$$

- ullet Liftings lift₁ and lift₂ must obey an identity law and a composition law
- The laws say that the liftings **commute with** the monads' operations

Laws for monad liftings III. The naturality law

Show that $lift_1 : M_1^A \Rightarrow BigM^A$ is a natural transformation

- It maps $pure_{M_1}$ to $pure_{BigM}$ and flm_{M_1} to flm_{BigM}
 - ▶ lift₁ is a **monadic morphism** between monads M_1^{\bullet} and BigM[•]

The (functor) naturality law:

$$\begin{split} \mathsf{lift}_1 \circ \mathsf{fmap}_B f^{:X \Rightarrow Y} &= \mathsf{fmap}_{M_1} f^{:X \Rightarrow Y} \circ \mathsf{lift}_1 \\ M_1^X & \xrightarrow{\mathsf{lift}_1} \to \mathsf{BigM}^X \\ \mathsf{fmap}_{M_1} f^{:X \Rightarrow Y} \middle\downarrow & \bigvee_{\mathsf{fmapBigM}} f^{:X \Rightarrow Y} \\ M_1^Y & \xrightarrow{\mathsf{lift}_1} \to \mathsf{BigM}^Y \end{split}$$

Derivation of the naturality law:

- Express fmap as fmap_M $f = \text{flm}_M(f, \text{pure}_M)$ for both monads
- Given $f^{:X\Rightarrow Y}$, use the law $\mathsf{flm}_{M_1}q_{\circ}\mathsf{lift}_1 = \mathsf{lift}_1_{\circ}\mathsf{flm}_{\mathsf{BigM}}(q_{\circ}\mathsf{lift}_1)$ to compute $\mathsf{flm}_{M_1}(f_{\circ}\mathsf{pure}_{M_1})_{\circ}\mathsf{lift}_1 = \mathsf{lift}_1_{\circ}\mathsf{flm}(f_{\circ}\mathsf{pure}_{M_1})_{\circ}\mathsf{lift}_1) = \mathsf{lift}_1_{\circ}\mathsf{flm}(f_{\circ}\mathsf{pure}_{\mathsf{BigM}}) = \mathsf{lift}_1_{\circ}\mathsf{fmap}_{\mathsf{BigM}}f$

A monadic morphism is always also a natural transformation of the functors

Monad transformers I: Motivation

- Combine $Z \Rightarrow A$ and 1 + A: only $Z \Rightarrow 1 + A$ works, not $1 + (Z \Rightarrow A)$
 - ▶ It is not possible to combine monads via a natural bifunctor B^{M_1,M_2}
 - It is not possible to combine arbitrary monads as $M_1^{M_2^{ullet}}$ or $M_2^{M_1^{ullet}}$
- The trick: for a fixed base monad L^{\bullet} , let M^{\bullet} (foreign monad) vary
- Call the desired result the "L's monad transformer", $T_L^{M,\bullet}$
 - ► In Scala: LT[M[_]: Monad, A] e.g. ReaderT, StateT, etc.
- $T_L^{M,\bullet}$ is generic in M but not in L
 - ▶ No general formula for monad transformers seems to exist
 - ▶ For each base monad *L*, a different construction is needed
 - ▶ Some monads *L* do not seem to have a transformer!
- To combine 3 or more monads, compose the transformers: $T_{L_1}^{T_{L_2}^{M,\bullet}}$
 - ► Example in Scala: StateT[S, ListT[Reader[R, ?], ?], A]
- This is called a "monad stack" but may not be functor composition
 - ▶ because e.g. State[S, List[Reader[R, A]]] is not a monad

Monad transformers II: The requirements

A monad transformer for a base monad L^{\bullet} is a type constructor $T_L^{M, \bullet}$ parameterized by a monad M^{\bullet} , such that for all monads M^{\bullet}

- $T_L^{M,\bullet}$ is a monad (the monad M transformed with T_L)
- "Lifting" a monadic morphism lift $_L^M:M^A \leadsto T_L^{M,A}$, natural in M^{ullet}
- "Base lifting" a monadic morphism blift : $L^A \sim T_L^{M,A}$
 - lacktriangle The "base lifting" could not possibly be natural in L^ullet
- ullet Transformed identity monad (Id) must be L, i.e. $T_L^{\operatorname{Id},ullet}\cong L^ullet$
- $T_I^{M,\bullet}$ is monadically natural in M^{\bullet}
 - $T_L^{M,\bullet}$ is natural w.r.t. a monadic functor M^{\bullet} as a type parameter
 - For any monad N^{\bullet} and a monadic morphism $f: M^{\bullet} \leadsto N^{\bullet}$ we need to have a monadic morphism $T_L^{M, \bullet} \leadsto T_L^{N, \bullet}$ for the transformed monads
 - \star If we implement $\mathcal{T}_L^{M,ullet}$ only via M's monad methods, naturality will hold
 - ▶ Cf. traverse: $L^A \Rightarrow (A \Rightarrow F^B) \Rightarrow F^{L^B}$ natural w.r.t. applicative F^{\bullet}

Monad transformers III: First examples

Recall these monad constructions:

- If M^A is a monad then $R \Rightarrow M^A$ is also a monad (for a fixed type R)
- If M^A is a monad then $M^{Z+A\times W}$ is also a monad (for fixed W, Z)

This gives the monad transformers for Reader, Writer, Either base monads:

```
type ReaderT[R, M[], A] = R \Rightarrow M[A] type EitherT[Z, M[], A] = M[Either[Z, A]] type WriterT[W, M[], A] = M[(W, A)]
```

- ReaderT wraps the foreign monad from the outside
- EitherT and WriterT require the foreign monad to wrap them outside

Remaining questions:

- What are transformers for other standard monads (List, State, Cont)?
 - …in fact, these monads do not compose as either "inside" or "outside"!
- How to derive a monad transformer for an arbitrary given monad?
 - For monads obtained via known monad constructions?
 - ▶ For monads constructed via other monad transformers?
 - ▶ Is it always possible? (Probably not.)
- For a given monad, is the corresponding monad transformer unique?

Monad transformers IV: The zoology

Need to select the correct monad transformer construction, per monad:

- "Inside" transformers: base monad inside foreign monad, $T_L^{M,A} = M^{L^A}$
 - Examples: OptionT, WriterT, EitherT
- "Outside" transformers: base monad is outside, $T_L^{M,A} = L^{M^A}$
 - Examples: ReaderT
 - ▶ More generally: rigid monads
- Constructions: product, contrafunctor projection
- "Recursive": interleaves the base monad and the foreign monad
 - ► Examples: ListT, FreeMonadT
- "Irregular": none of the above constructions apply
 - Examples: StateT, ContT, "codensity"

Exercises

- **3** Show that the method pure: $A \Rightarrow M^A$ is a monadic morphism between monads $\operatorname{Id}^A \equiv A$ and M^A .
- ② Show that $M_1^A + M_2^A$ is *not* a monad when $M_1^A \equiv 1 + A$ and $M_2^A \equiv Z \Rightarrow A$.