Számításelmélet

12. előadás

előadó: Kolonits Gábor kolomax@inf.elte.hu

Első megközelítésben a tárigény a működés során felhasznált, pontosabban a fejek által meglátogatott cellák száma.

Első megközelítésben a tárigény a működés során felhasznált, pontosabban a fejek által meglátogatott cellák száma.

Probléma: Hiába "takarékoskodik" a felhasznált cellákkal a gép, az input hossza így mindig alsó korlát lesz a tárigényre.

Első megközelítésben a tárigény a működés során felhasznált, pontosabban a fejek által meglátogatott cellák száma.

Probléma: Hiába "takarékoskodik" a felhasznált cellákkal a gép, az input hossza így mindig alsó korlát lesz a tárigényre.

Egy megoldási javaslat: Bevezethetjük az többlet tárigény fogalmát, ami az **input tárolására használt cellákon felül** igénybevett cellák száma.

Első megközelítésben a tárigény a működés során felhasznált, pontosabban a fejek által meglátogatott cellák száma.

Probléma: Hiába "takarékoskodik" a felhasznált cellákkal a gép, az input hossza így mindig alsó korlát lesz a tárigényre.

Egy megoldási javaslat: Bevezethetjük az többlet tárigény fogalmát, ami az **input tárolására használt cellákon felül** igénybevett cellák száma.

Vannak olyan TG-ek, melyek csak az input területét használják, ám azt akár többször is átírják. Ezt beszámítsuk?

Első megközelítésben a tárigény a működés során felhasznált, pontosabban a fejek által meglátogatott cellák száma.

Probléma: Hiába "takarékoskodik" a felhasznált cellákkal a gép, az input hossza így mindig alsó korlát lesz a tárigényre.

Egy megoldási javaslat: Bevezethetjük az többlet tárigény fogalmát, ami az **input tárolására használt cellákon felül** igénybevett cellák száma.

Vannak olyan TG-ek, melyek csak az input területét használják, ám azt akár többször is átírják. Ezt beszámítsuk?

Eldöntési problémáknál beszámítjuk.

Számítási problémáknál viszont ne számítsanak bele a tárigénybe a csak a kimenet előállításához felhasznált cellák.

Definíció

Az offline Turing gép (OTG) egy olyan TG, melynek az első szalagja csak olvasható, a többi írható is. Első szalagját bemeneti szalagnak, további szalagjait munkaszalagoknak nevezzük.

Definíció

Az offline Turing gép (OTG) egy olyan TG, melynek az első szalagja csak olvasható, a többi írható is. Első szalagját bemeneti szalagnak, további szalagjait munkaszalagoknak nevezzük.

Megjegyzés: Egy k munkaszalaggal rendelkező OTG állapotátmenetfüggvénye tehát $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma^{k+1} \to Q \times \Gamma^k \times \{L, S, R\}^{k+1}.$

Definíció

Az offline Turing gép (OTG) egy olyan TG, melynek az első szalagja csak olvasható, a többi írható is. Első szalagját bemeneti szalagnak, további szalagjait munkaszalagoknak nevezzük.

Megjegyzés: Egy k munkaszalaggal rendelkező OTG állapotátmenetfüggvénye tehát $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma^{k+1} \to Q \times \Gamma^k \times \{L, S, R\}^{k+1}.$

Tétel

Minden TG-hez megadható vele ekvivalens offline TG.

Definíció

Az offline Turing gép (OTG) egy olyan TG, melynek az első szalagja csak olvasható, a többi írható is. Első szalagját bemeneti szalagnak, további szalagjait munkaszalagoknak nevezzük.

Megjegyzés: Egy k munkaszalaggal rendelkező OTG állapotátmenetfüggvénye tehát $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma^{k+1} \to Q \times \Gamma^k \times \{L, S, R\}^{k+1}.$

Tétel

Minden TG-hez megadható vele ekvivalens offline TG.

Bizonyítás: Legyen M tetszőleges k szalagos TG. Az M' OTG-nak legyen k+1 szalagja. M' másolja át az inputját a k+1. szalagra és utána működjön úgy a 2-(k+1). szalagján, mint M. A k+1. szalag felel meg M 1. szalagjának. Ekkor nyilván L(M') = L(M).

Definíció

Az offline Turing gép (OTG) egy olyan TG, melynek az első szalagja csak olvasható, a többi írható is. Első szalagját bemeneti szalagnak, további szalagjait munkaszalagoknak nevezzük.

Megjegyzés: Egy k munkaszalaggal rendelkező OTG állapotátmenetfüggvénye tehát $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma^{k+1} \to Q \times \Gamma^k \times \{L, S, R\}^{k+1}.$

Tétel

Minden TG-hez megadható vele ekvivalens offline TG.

Bizonyítás: Legyen M tetszőleges k szalagos TG. Az M' OTG-nak legyen k+1 szalagja. M' másolja át az inputját a k+1. szalagra és utána működjön úgy a 2-(k+1). szalagján, mint M. A k+1. szalag felel meg M 1. szalagjának. Ekkor nyilván L(M') = L(M).

Megjegyzés: Fordítva is igaz, az offline TG-ek speciális TG-ek.

Offline Turing gép verziók

Definíció

A nemdeterminisztikus offline Turing gép (NOTG) egy nemdeterminisztikusan működő offline Turing gép.

Offline Turing gép verziók

Definíció

A nemdeterminisztikus offline Turing gép (NOTG) egy nemdeterminisztikusan működő offline Turing gép.

Definíció

A számító offline Turing gép olyan legalább 2 szalagos számító Turing gép, amelynek az első szalagja csak olvasható, az utolsó szalagja csak írható. Az első szalagot bemeneti szalagnak, utolsó szalagot kimeneti szalagnak, a többi szalagot munkaszalagnak nevezzük.

Offline Turing gép verziók

Definíció

A nemdeterminisztikus offline Turing gép (NOTG) egy nemdeterminisztikusan működő offline Turing gép.

Definíció

A számító offline Turing gép olyan legalább 2 szalagos számító Turing gép, amelynek az első szalagja csak olvasható, az utolsó szalagja csak írható. Az első szalagot bemeneti szalagnak, utolsó szalagot kimeneti szalagnak, a többi szalagot munkaszalagnak nevezzük.

Megjegyzés: Egy k+2 szalagos, azaz k munkaszalaggal rendelkező OTG állaptotátmenetfüggvénye tehát $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma^{k+1} \to Q \times \Gamma^{k+1} \times \{L, S, R\}^{k+2}$.

A bal oldalon a Γ^{k+1} az 1-(k+1). szalagoknak, a jobboldalon 2-(k+2). szalagoknak felel meg.

Definíció

Egy offline TG **többlet tárigénye** egy adott inputra azon celláknak a száma, amelyeken a működés során valamelyik munkaszalag feje járt.

Definíció

Egy offline TG **többlet tárigénye** egy adott inputra azon celláknak a száma, amelyeken a működés során valamelyik munkaszalag feje járt.

Egy offline TG f(n) többlet tárkorlátos, ha bármely u inputra legfeljebb f(|u|) a többlet tárigénye.

Definíció

Egy offline TG **többlet tárigénye** egy adott inputra azon celláknak a száma, amelyeken a működés során valamelyik munkaszalag feje járt.

Egy offline TG f(n) többlet tárkorlátos, ha bármely u inputra legfeljebb f(|u|) a többlet tárigénye.

Számító OTG-re hasonlóan.

Definíció

Egy offline TG **többlet tárigénye** egy adott inputra azon celláknak a száma, amelyeken a működés során valamelyik munkaszalag feje járt.

Egy offline TG f(n) többlet tárkorlátos, ha bármely u inputra legfeljebb f(|u|) a többlet tárigénye.

Számító OTG-re hasonlóan.

Definíció

Egy nemdeterminisztikus offline TG **többlet tárigénye** egy adott inputra a legnagyobb többlet tárigényű számításának az többlet tárigénye.

Definíció

Egy offline TG **többlet tárigénye** egy adott inputra azon celláknak a száma, amelyeken a működés során valamelyik munkaszalag feje járt.

Egy offline TG f(n) többlet tárkorlátos, ha bármely u inputra legfeljebb f(|u|) a többlet tárigénye.

Számító OTG-re hasonlóan.

Definíció

Egy nemdeterminisztikus offline TG **többlet tárigénye** egy adott inputra a legnagyobb többlet tárigényű számításának az többlet tárigénye.

Egy nemdeterminisztikus offline TG f(n) többlet tárkorlátos, ha bármely u inputra legfeljebb f(|u|) az többlet tárigénye.

 $\mathsf{SPACE}\,(f(n)) := \{L \,|\, L \text{ eld\"onthet\'o} \ O(f(n)) \text{ t\"obblet t\'arkorl\'atos} \\ \text{determinisztikus offline TG-pel} \}$

- SPACE $(f(n)) := \{L \mid L \text{ eldönthető } O(f(n)) \text{ többlet tárkorlátos determinisztikus offline TG-pel} \}$
- $\mathsf{NSPACE}\left(f(n)\right) := \{L \,|\, L \text{ eldönthető } O(f(n)) \text{ többlet} \\ \text{tárkorlátos nemdeterminisztikus offline TG-pel} \}$

- $\mathsf{SPACE}\left(f(n)\right) := \{L \,|\, L \text{ eldönthető } O(f(n)) \text{ többlet tárkorlátos} \\ \text{determinisztikus offline TG-pel} \}$
- $\mathsf{NSPACE}\,(f(n)) := \{L \,|\, L \text{ eldönthető } O(f(n)) \text{ többlet} \\ \text{tárkorlátos nemdeterminisztikus offline TG-pel} \}$
- ▶ PSPACE:= $\bigcup_{k \ge 1}$ SPACE (n^k) .

- $\mathsf{SPACE}\left(f(n)\right) := \{L \,|\, L \text{ eldönthető } O(f(n)) \text{ többlet tárkorlátos} \\ \text{determinisztikus offline TG-pel} \}$
- NSPACE $(f(n)) := \{L \mid L \text{ eldönthető } O(f(n)) \text{ többlet }$ tárkorlátos nemdeterminisztikus offline TG-pel}
- ▶ PSPACE:= $\bigcup_{k \ge 1}$ SPACE (n^k) .
- ▶ NPSPACE:= $\bigcup_{k \ge 1}$ NSPACE (n^k) .

- SPACE $(f(n)) := \{L \mid L \text{ eldönthető } O(f(n)) \text{ többlet tárkorlátos determinisztikus offline TG-pel} \}$
- $\text{NSPACE} \left(f(n) \right) := \{ L \, | \, L \text{ eldönthető } O(f(n)) \text{ többlet} \\ \text{tárkorlátos nemdeterminisztikus offline TG-pel} \}$
- ▶ PSPACE:= $\bigcup_{k \ge 1}$ SPACE (n^k) .
- ▶ NPSPACE:= $\bigcup_{k \ge 1}$ NSPACE (n^k) .
- ▶ L:=SPACE (log *n*).

- $\mathsf{SPACE}\left(f(n)\right) := \{L \,|\, L \text{ eldönthető } O(f(n)) \text{ többlet tárkorlátos} \\ \text{determinisztikus offline TG-pel} \}$
- $\text{NSPACE} \left(f(n) \right) := \{ L \, | \, L \text{ eldönthető } O(f(n)) \text{ többlet} \\ \text{tárkorlátos nemdeterminisztikus offline TG-pel} \}$
- ▶ PSPACE:= $\bigcup_{k \ge 1}$ SPACE (n^k) .
- ▶ NPSPACE:= $\bigcup_{k \ge 1}$ NSPACE (n^k) .
- ▶ L:=SPACE (log *n*).
- ▶ NL:=NSPACE (log n).

- $\mathsf{SPACE}\left(f(n)\right) := \{L \,|\, L \text{ eldönthető } O(f(n)) \text{ többlet tárkorlátos} \\ \text{determinisztikus offline TG-pel} \}$
- $\begin{tabular}{ll} NSPACE\,(f(n)) := \{L\,|\,L \ \mbox{eldönthet} \ O(f(n)) \ \mbox{t\"obblet} \\ & \mbox{t\'arkorl\'atos nemdeterminisztikus offline TG-pel} \end{tabular}$
- ▶ PSPACE:= $\bigcup_{k \ge 1}$ SPACE (n^k) .
- ▶ NPSPACE:= $\bigcup_{k \ge 1}$ NSPACE (n^k) .
- ▶ L:=SPACE $(\log n)$.
- ▶ NL:=NSPACE (log n).

Megjegyzés: Így tehát az offline TG-pel szublineáris (lineáris alatti) tárbonyolultságot is mérhetünk. Legalább lineáris tárigények esetén nem lenne szükség az offline TG fogalmára, használhattuk volna az eredeti TG fogalmat is.

 $\texttt{EL\'er} = \{ \left< \, G, s, t \right> \, \big| \, \, \texttt{A} \, \, \, G \, \, \text{ir\'any\'itott gr\'afban van } s\text{-b\'ol } t\text{-be \'ut} \}.$

ELÉR = $\{\langle G, s, t \rangle \mid A \ G \text{ irányított gráfban van } s\text{-ből } t\text{-be út}\}.$ Algo 2-ből, tudjuk, hogy ELÉR P-ben van (szélességi bejárás).

ELÉR = $\{\langle G, s, t \rangle \mid A \ G \text{ irányított gráfban van } s\text{-ből } t\text{-be út}\}.$ Algo 2-ből, tudjuk, hogy ELÉR P-ben van (szélességi bejárás).

Tétel

ELÉR \in TIME (n^2) .

ELÉR = $\{\langle G, s, t \rangle \mid A \ G \text{ irányított gráfban van } s\text{-ből } t\text{-be út}\}.$ Algo 2-ből, tudjuk, hogy ELÉR P-ben van (szélességi bejárás).

Tétel

 $\mathrm{EL\acute{e}R}\in\mathrm{TIME}(n^2).$

Tétel

ELÉR \in SPACE($\log^2 n$).

ELÉR = $\{\langle G, s, t \rangle \mid A \ G \text{ irányított gráfban van } s\text{-ből } t\text{-be út}\}.$ Algo 2-ből, tudjuk, hogy ELÉR P-ben van (szélességi bejárás).

Tétel

 $\mathsf{EL\acute{e}R} \in \mathsf{TIME}(n^2).$

Tétel

 $\text{EL\'{e}R} \in \text{SPACE}(\log^2 n).$

Bizonyítás:

Rögzítsük a csúcsok egy tetszőleges sorrendjét.

ELÉR = $\{\langle G, s, t \rangle \mid A \ G \text{ irányított gráfban van } s\text{-ből } t\text{-be út}\}.$ Algo 2-ből, tudjuk, hogy ELÉR P-ben van (szélességi bejárás).

Tétel

 $\mathsf{EL\acute{e}R} \in \mathsf{TIME}(n^2).$

Tétel

 $\text{EL\'{e}R} \in \text{SPACE}(\log^2 n).$

- Rögzítsük a csúcsok egy tetszőleges sorrendjét.
- ÚT(x,y,i):=igaz, ha \exists x-ből y-ba legfeljebb 2^i hosszú út.

ELÉR = $\{\langle G, s, t \rangle \mid A \ G \text{ irányított gráfban van } s\text{-ből } t\text{-be út}\}.$ Algo 2-ből, tudjuk, hogy ELÉR P-ben van (szélességi bejárás).

Tétel

 $\mathsf{EL\acute{e}R} \in \mathsf{TIME}(n^2).$

Tétel

 $\text{EL\'{e}R} \in \text{SPACE}(\log^2 n).$

- Rögzítsük a csúcsok egy tetszőleges sorrendjét.
- ÚT(x, y, i) := igaz, ha $\exists x$ -ből y-ba legfeljebb 2^i hosszú út.
- s-ből van t-be út G-ben \iff $UT(s, t, \lceil \log_2 n \rceil) = igaz$.

ELÉR = $\{\langle G, s, t \rangle \mid A \ G \text{ irányított gráfban van } s\text{-ből } t\text{-be út}\}.$ Algo 2-ből, tudjuk, hogy ELÉR P-ben van (szélességi bejárás).

Tétel

 $\mathsf{EL\acute{e}R} \in \mathsf{TIME}(n^2).$

Tétel

 $\text{Elér} \in \text{SPACE}(\log^2 n).$

- Rögzítsük a csúcsok egy tetszőleges sorrendjét.
- ÚT(x, y, i) := igaz, ha $\exists x$ -ből y-ba legfeljebb 2^i hosszú út.
- ▶ s-ből van t-be út G-ben \iff ÚT(s, t, $\lceil \log_2 n \rceil$)=igaz.
- $UT(x, y, i) = igaz \iff \exists z (UT(x, z, i 1) = igaz \land UT(z, y, i 1) = igaz).$

ELÉR = $\{\langle G, s, t \rangle \mid A \ G \text{ irányított gráfban van } s\text{-ből } t\text{-be út}\}.$ Algo 2-ből, tudjuk, hogy ELÉR P-ben van (szélességi bejárás).

Tétel

ELÉR \in TIME (n^2) .

Tétel

 $\text{EL\'{e}R} \in \text{SPACE}(\log^2 n).$

- Rögzítsük a csúcsok egy tetszőleges sorrendjét.
- ÚT(x, y, i) := igaz, ha $\exists x$ -ből y-ba legfeljebb 2^i hosszú út.
- ▶ s-ből van t-be út G-ben \iff ÚT(s, t, $\lceil \log_2 n \rceil$)=igaz.
- $\operatorname{\acute{U}T}(x,y,i) = \operatorname{igaz} \iff \exists z (\operatorname{\acute{U}T}(x,z,i-1) = \operatorname{igaz} \land \operatorname{\acute{U}T}(z,y,i-1) = \operatorname{igaz}).$
- Ez alapján egy rekurzív algoritmust készítünk, melynek persze munkaszalagján tárolnia kell, hogy a felsőbb szinteken milyen (x,y,i)-kre létezik folyamatban lévő hívás.

ha i=0, akkor $2^0=1$ hosszú út kéne: ez az input alapján megválaszolható

- ha i=0, akkor $2^0=1$ hosszú út kéne: ez az input alapján megválaszolható
- A munkaszalagon (x, y, i) típusú hármasok egy legfeljebb [log₂ n] hosszú sorozata áll. A hármasok 3. attribútuma 1-esével csökkenő sorozatot alkot [log₂ n]-től.

- ha i=0, akkor $2^0=1$ hosszú út kéne: ez az input alapján megválaszolható
- A munkaszalagon (x, y, i) típusú hármasok egy legfeljebb [log₂ n] hosszú sorozata áll. A hármasok 3. attribútuma 1-esével csökkenő sorozatot alkot [log₂ n]-től.
- Az ÚT(x,y,i) függvény meghívásakor az utolsó hármas (x,y,i) a munkaszalagon. Az algoritmus felírja az (x,z,i-1) hármast a munkaszalagra az (x,y,i) utáni helyre majd kiszámítja ÚT(x,z,i-1) értékét.

- ha i=0, akkor $2^0=1$ hosszú út kéne: ez az input alapján megválaszolható
- A munkaszalagon (x, y, i) típusú hármasok egy legfeljebb [log₂ n] hosszú sorozata áll. A hármasok 3. attribútuma 1-esével csökkenő sorozatot alkot [log₂ n]-től.
- Az ÚT(x,y,i) függvény meghívásakor az utolsó hármas (x,y,i) a munkaszalagon. Az algoritmus felírja az (x,z,i-1) hármast a munkaszalagra az (x,y,i) utáni helyre majd kiszámítja ÚT(x,z,i-1) értékét.
- ▶ Ha hamis, akkor kitörli (x, z, i 1)-et és z értékét növeli.

- ha i=0, akkor $2^0=1$ hosszú út kéne: ez az input alapján megválaszolható
- A munkaszalagon (x, y, i) típusú hármasok egy legfeljebb [log₂ n] hosszú sorozata áll. A hármasok 3. attribútuma 1-esével csökkenő sorozatot alkot [log₂ n]-től.
- Az ÚT(x,y,i) függvény meghívásakor az utolsó hármas (x,y,i) a munkaszalagon. Az algoritmus felírja az (x,z,i-1) hármast a munkaszalagra az (x,y,i) utáni helyre majd kiszámítja ÚT(x,z,i-1) értékét.
- ▶ Ha hamis, akkor kitörli (x, z, i 1)-et és z értékét növeli.
- Ha igaz, akkor is kitörli (x, z, i-1)-et és (z, y, i-1)-et írja a helyére (y-t tudja az előző (x, y, i) hármasból).
 - Ha UT(z, y, i-1) igaz, akkor UT(x, y, i) igaz (ezt (x, y, i) és (z, y, i-1) 2. argumentumának egyezéséből látja)
 - Ha UT(z, y, i-1) hamis akkor kitörli a (z, y, i-1)-t és z értékét eggyel növelve UT(x, z, i-1)-en dolgozik tovább.

- ha i = 0, akkor $2^0 = 1$ hosszú út kéne: ez az input alapján megválaszolható
- A munkaszalagon (x, y, i) típusú hármasok egy legfeljebb [log₂ n] hosszú sorozata áll. A hármasok 3. attribútuma 1-esével csökkenő sorozatot alkot $\lceil \log_2 n \rceil$ -től.
- Az ÚT(x, y, i) függvény meghívásakor az utolsó hármas (x, y, i) a munkaszalagon. Az algoritmus felírja az (x, z, i - 1)hármast a munkaszalagra az (x, y, i) utáni helyre majd kiszámítja ÚT(x, z, i - 1) értékét.
- ▶ Ha hamis, akkor kitörli (x, z, i 1)-et és z értékét növeli.
- ▶ Ha igaz, akkor is kitörli (x, z, i 1)-et és (z, y, i 1)-et írja a helyére (y-t tudja az előző (x, y, i) hármasból).
 - Ha UT(z, y, i-1) igaz, akkor UT(x, y, i) igaz (ezt (x, y, i)és (z, y, i - 1) 2. argumentumának egyezéséből látja)
 - Ha ÚT(z, y, i-1) hamis akkor kitörli a (z, y, i-1)-t és z értékét eggyel növelve ÚT(x, z, i - 1)-en dolgozik tovább.
- ► Ha egyik z se volt jó, akkor ÚT(x, y, i) hamis.

A főprogram, tehát $(s,t,\lceil\log_2 n\rceil)$ feírásából és az ÚT $(s,t,\lceil\log n\rceil)$ függvény meghívásából áll. Pontosan akkor lesz igaz a kimenet, ha t elérhető s-ből.

Az algoritmus a munkaszalagján végig legfeljebb $\lceil \log_2 n \rceil$ darab rendezett hármast tárol.

Egy szám tárolásához legfeljebb a szám adott számrendszer alapú logaritmusa +1 darab számjegy szükséges.

Így a rendezett hármasokból mindvégig $O(\log n)$ van és egyenként $O(\log n)$ hosszúak, így $\text{EL\'er} \in \text{SPACE}(\log^2 n)$.

Konfigurációs gráf, elérhetőségi módszer

Definíció

Egy M NTG G_M konfigurációs gráfjának csúcsai M konfigurációi és $(C, C') \in E(G_M) \Leftrightarrow C \vdash_M C'$.

Konfigurációs gráf, elérhetőségi módszer

Definíció

Egy M NTG G_M konfigurációs gráfjának csúcsai M konfigurációi és $(C, C') \in E(G_M) \Leftrightarrow C \vdash_M C'$.

Elérhetőségi módszer: az ELÉR \in TIME (n^2) vagy ELÉR \in SPACE $(\log^2 n)$ tételek valamelyikét alkalmazva a konfigurációs gráfra (vagy annak egy részgráfjára) bonyolultsági osztályok közötti összefüggéseket lehet bizonyítani.

Lássunk erre egy példát!

Savitch tétele

Ha $f(n) \ge \log n$, akkor $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$.

Savitch tétele

Ha $f(n) \ge \log n$, akkor $NSPACE(f(n)) \subseteq SPACE(f^2(n))$.

Bizonyítás: Legyen M egy f(n) tárigényű NOTG és w az M egy n hosszú bemenete.

Savitch tétele

Ha $f(n) \ge \log n$, akkor $NSPACE(f(n)) \subseteq SPACE(f^2(n))$.

Bizonyítás: Legyen M egy f(n) tárigényű NOTG és w az M egy n hosszú bemenete. Kell egy vele ekvivalens, $O(f^2(n))$ táras OTG.

Savitch tétele

Ha $f(n) \ge \log n$, akkor $NSPACE(f(n)) \subseteq SPACE(f^2(n))$.

Bizonyítás: Legyen M egy f(n) tárigényű NOTG és w az M egy n hosszú bemenete. Kell egy vele ekvivalens, $O(f^2(n))$ táras OTG. M egy konfigurációját $O(f(n) + \log n)$ tárral eltárolhatjuk (aktuális állapot, a munkaszalagok tartalma, fejek pozíciója, az első szalag fejének pozíciója n féle lehet, ezért $\geqslant \log n$ tár kell ennek eltárolásához).

Savitch tétele

Ha $f(n) \ge \log n$, akkor $NSPACE(f(n)) \subseteq SPACE(f^2(n))$.

Bizonyítás: Legyen M egy f(n) tárigényű NOTG és w az M egy n hosszú bemenete. Kell egy vele ekvivalens, $O(f^2(n))$ táras OTG. M egy konfigurációját $O(f(n) + \log n)$ tárral eltárolhatjuk (aktuális állapot, a munkaszalagok tartalma, fejek pozíciója, az első szalag fejének pozíciója n féle lehet, ezért $\geqslant \log n$ tár kell ennek eltárolásához). Ha $f(n) \geqslant \log n$, akkor $O(f(n) + \log n) = O(f(n))$.

Savitch tétele

Ha $f(n) \ge \log n$, akkor $NSPACE(f(n)) \subseteq SPACE(f^2(n))$.

Bizonyítás: Legyen M egy f(n) tárigényű NOTG és w az M egy n hosszú bemenete. Kell egy vele ekvivalens, $O(f^2(n))$ táras OTG. M egy konfigurációját $O(f(n) + \log n)$ tárral eltárolhatjuk (aktuális állapot, a munkaszalagok tartalma, fejek pozíciója, az első szalag fejének pozíciója n féle lehet, ezért $\geqslant \log n$ tár kell ennek eltárolásához). Ha $f(n) \geqslant \log n$, akkor $O(f(n) + \log n) = O(f(n))$. Feltehető, hogy M-nek csak egyetlen $C_{\rm elf}$ elfogadó konfigurációja van.

Savitch tétele

Ha $f(n) \ge \log n$, akkor $NSPACE(f(n)) \subseteq SPACE(f^2(n))$.

Bizonyítás: Legyen M egy f(n) tárigényű NOTG és w az M egy n hosszú bemenete. Kell egy vele ekvivalens, $O(f^2(n))$ táras OTG. M egy konfigurációját $O(f(n) + \log n)$ tárral eltárolhatjuk (aktuális állapot, a munkaszalagok tartalma, fejek pozíciója, az első szalag fejének pozíciója n féle lehet, ezért $\geqslant \log n$ tár kell ennek eltárolásához). Ha $f(n) \geqslant \log n$, akkor $O(f(n) + \log n) = O(f(n))$. Feltehető, hogy M-nek csak egyetlen $C_{\rm elf}$ elfogadó konfigurációja van. (Törölje le a TG a munkaszalagjait, mielőtt q_i -be lép!)

Savitch tétele

Ha $f(n) \ge \log n$, akkor $NSPACE(f(n)) \subseteq SPACE(f^2(n))$.

Bizonyítás: Legyen M egy f(n) tárigényű NOTG és w az M egy nhosszú bemenete. Kell egy vele ekvivalens, $O(f^2(n))$ táras OTG. M egy konfigurációját $O(f(n) + \log n)$ tárral eltárolhatjuk (aktuális állapot, a munkaszalagok tartalma, fejek pozíciója, az első szalag fejének pozíciója n féle lehet, ezért $\geq \log n$ tár kell ennek eltárolásához). Ha $f(n) \ge \log n$, akkor $O(f(n) + \log n) = O(f(n))$. Feltehető, hogy M-nek csak egyetlen Colf elfogadó konfigurációja van. (Törölje le a TG a munkaszalagjait, mielőtt q_i -be lép!) A legfeljebb O(f(n)) méretű konfigurációkat tartalmazó konfigurációs gráf mérete $2^{d \cdot f(n)}$ valamely d > 0 konstansra.

Savitch tétele

Ha $f(n) \ge \log n$, akkor $NSPACE(f(n)) \subseteq SPACE(f^2(n))$.

Bizonyítás: Legyen M egy f(n) tárigényű NOTG és w az M egy nhosszú bemenete. Kell egy vele ekvivalens, $O(f^2(n))$ táras OTG. M egy konfigurációját $O(f(n) + \log n)$ tárral eltárolhatjuk (aktuális állapot, a munkaszalagok tartalma, fejek pozíciója, az első szalag fejének pozíciója n féle lehet, ezért $\geq \log n$ tár kell ennek eltárolásához). Ha $f(n) \ge \log n$, akkor $O(f(n) + \log n) = O(f(n))$. Feltehető, hogy M-nek csak egyetlen Colf elfogadó konfigurációja van. (Törölje le a TG a munkaszalagjait, mielőtt q_i -be lép!) A legfeljebb O(f(n)) méretű konfigurációkat tartalmazó konfigurációs gráf mérete $2^{d \cdot f(n)}$ valamely d > 0 konstansra. Így az előző tétel szerint van olyan M' determinisztikus OTG, ami $O(\log^2(2^{df(n)})) = O(f^2(n))$ tárral el tudia dönteni, hogy a kezdőkonfigurációból elérhető-e Colf.

Savitch tétele

Ha $f(n) \ge \log n$, akkor $NSPACE(f(n)) \subseteq SPACE(f^2(n))$.

Bizonyítás: Legyen M egy f(n) tárigényű NOTG és w az M egy nhosszú bemenete. Kell egy vele ekvivalens, $O(f^2(n))$ táras OTG. M egy konfigurációját $O(f(n) + \log n)$ tárral eltárolhatjuk (aktuális állapot, a munkaszalagok tartalma, fejek pozíciója, az első szalag fejének pozíciója n féle lehet, ezért $\geq \log n$ tár kell ennek eltárolásához). Ha $f(n) \ge \log n$, akkor $O(f(n) + \log n) = O(f(n))$. Feltehető, hogy M-nek csak egyetlen Celf elfogadó konfigurációja van. (Törölje le a TG a munkaszalagjait, mielőtt q_i -be lép!) A legfeljebb O(f(n)) méretű konfigurációkat tartalmazó konfigurációs gráf mérete $2^{d \cdot f(n)}$ valamely d > 0 konstansra. Így az előző tétel szerint van olyan M' determinisztikus OTG, ami $O(\log^2(2^{df(n)})) = O(f^2(n))$ tárral el tudia dönteni, hogy a kezdőkonfigurációból elérhető-e Celf. M' lépjen pontosan ekkor az elfogadó állapotába, így L(M') = L(M). 4ロト 4周ト 43ト 43ト 3 900

Következmény

PSPACE = NPSPACE

Következmény

PSPACE = NPSPACE

 $\textbf{Bizony\'it\'as:} \ \ L \in \mathsf{NSPACE}(n^k) \overset{\mathsf{Savitch}}{\Longrightarrow} \ L \in \mathsf{SPACE}(n^{2k}).$

Következmény

PSPACE = NPSPACE

Bizonyítás: $L \in \mathsf{NSPACE}(n^k) \overset{\mathsf{Savitch}}{\Longrightarrow} L \in \mathsf{SPACE}(n^{2k})$.

Tétel

 $NL \subseteq P$

Következmény

PSPACE = NPSPACE

Bizonyítás: $L \in \mathsf{NSPACE}(n^k) \overset{\mathsf{Savitch}}{\Longrightarrow} L \in \mathsf{SPACE}(n^{2k})$.

Tétel

 $NL \subseteq P$

Bizonyítás

Legyen $L \in NL$ és M L-et $f(n) = O(\log n)$ tárral eldöntő NOTG.

Következmény

PSPACE = NPSPACE

Bizonyítás: $L \in \mathsf{NSPACE}(n^k) \stackrel{\mathsf{Savitch}}{\Longrightarrow} L \in \mathsf{SPACE}(n^{2k})$.

Tétel

 $NL \subseteq P$

Bizonyítás

Legyen $L \in NL$ és M L-et $f(n) = O(\log n)$ tárral eldöntő NOTG. Meggondolható, hogy egy n méretű inputra M legfeljebb f(n) méretű szalagtartalmakat tartalmazó konfigurációinak a száma legfeljebb $cnd^{\log n}$ alkalmas c,d konstansokkal, ami egy p(n) polinommal felülről becsülhető.

Következmény

PSPACE = NPSPACE

Bizonyítás: $L \in \mathsf{NSPACE}(n^k) \stackrel{\mathsf{Savitch}}{\Longrightarrow} L \in \mathsf{SPACE}(n^{2k})$.

Tétel

 $NL \subseteq P$

Bizonyítás

Legyen $L \in \mathbb{NL}$ és M L-et $f(n) = O(\log n)$ tárral eldöntő NOTG. Meggondolható, hogy egy n méretű inputra M legfeljebb f(n) méretű szalagtartalmakat tartalmazó konfigurációinak a száma legfeljebb $cnd^{\log n}$ alkalmas c,d konstansokkal, ami egy p(n) polinommal felülről becsülhető. Így a G konfigurációs gráfnak legfeljebb p(n) csúcsa van. G polinom időben megkonstruálható.

Következmény

PSPACE = NPSPACE

Bizonyítás: $L \in \mathsf{NSPACE}(n^k) \stackrel{\mathsf{Savitch}}{\Longrightarrow} L \in \mathsf{SPACE}(n^{2k})$.

Tétel

 $NL \subseteq P$

Bizonyítás

Legyen $L \in \operatorname{NL}$ és M L-et $f(n) = O(\log n)$ tárral eldöntő NOTG. Meggondolható, hogy egy n méretű inputra M legfeljebb f(n) méretű szalagtartalmakat tartalmazó konfigurációinak a száma legfeljebb $cnd^{\log n}$ alkalmas c,d konstansokkal, ami egy p(n) polinommal felülről becsülhető. Így a G konfigurációs gráfnak legfeljebb p(n) csúcsa van. G polinom időben megkonstruálható. Feltehető, hogy G-ben egyetlen elfogadó konfiguráció van. G-ben a kezdőkonfigurációból az elfogadó konfiguráció elérhetősége $O(p^2(n))$ idejű determinisztikus TG-pel eldönthető, azaz $L \in P$.

Elér fontos szerepet tölt be az L $\stackrel{?}{=}$ NL kérdés vizsgálatában is.

Tétel

Elér ∈ NL

Elér fontos szerepet tölt be az L $\stackrel{?}{=}$ NL kérdés vizsgálatában is.

Tétel

Elér ∈ NL

Bizonyítás: Az M 3-szalagos NOTG a (G, s, t) inputra (n = |V(G)|) a következőt teszi:

ráírja s-t a második szalagra

Elér fontos szerepet tölt be az L $\stackrel{?}{=}$ NL kérdés vizsgálatában is.

Tétel

Elér ∈ NL

- ráírja s-t a második szalagra
- ráírja a 0-t a harmadik szalagra

Elér fontos szerepet tölt be az L $\stackrel{?}{=}$ NL kérdés vizsgálatában is.

Tétel

Elér ∈ NL

- ráírja s-t a második szalagra
- ráírja a 0-t a harmadik szalagra
- lacktriangle Amíg a harmadik szalagon n-nél kisebb szám áll

Elér fontos szerepet tölt be az L $\stackrel{?}{=}$ NL kérdés vizsgálatában is.

Tétel

Elér ∈ NL

- ráírja s-t a második szalagra
- ráírja a 0-t a harmadik szalagra
- \blacktriangleright Amíg a harmadik szalagon n-nél kisebb szám áll
 - Legyen \boldsymbol{u} a második szalagon lévő csúcs

Elér fontos szerepet tölt be az L $\stackrel{?}{=}$ NL kérdés vizsgálatában is.

Tétel

Elér ∈ NL

- \blacktriangleright ráírja s--ta második szalagra
- ráírja a 0-t a harmadik szalagra
- \blacktriangleright Amíg a harmadik szalagon n-nél kisebb szám áll
 - Legyen \boldsymbol{u} a második szalagon lévő csúcs
 - Nemdeterminisztikusan kiválasztja ν egy ki-szomszédját és felírja u helyére a második szalagra

Elér fontos szerepet tölt be az L $\stackrel{?}{=}$ NL kérdés vizsgálatában is.

Tétel

Elér ∈ NL

- ráírja s-t a második szalagra
- ráírja a 0-t a harmadik szalagra
- \blacktriangleright Amíg a harmadik szalagon n-nél kisebb szám áll
 - Legyen \boldsymbol{u} a második szalagon lévő csúcs
 - Nemdeterminisztikusan kiválasztja \boldsymbol{v} egy ki-szomszédját és felírja \boldsymbol{u} helyére a második szalagra
 - Ha v=t, akkor elfogadja a bemenetet, egyébként növeli a harmadik szalagon lévő számot (binárisan) eggyel

Elér fontos szerepet tölt be az L[?]NL kérdés vizsgálatában is.

Tétel

Elér ∈ NL

- ráírja s-t a második szalagra
- ráírja a 0-t a harmadik szalagra
- \blacktriangleright Amíg a harmadik szalagon n-nél kisebb szám áll
 - Legyen \boldsymbol{u} a második szalagon lévő csúcs
 - Nemdeterminisztikusan kiválasztja \boldsymbol{v} egy ki-szomszédját és felírja \boldsymbol{u} helyére a második szalagra
 - Ha v=t, akkor elfogadja a bemenetet, egyébként növeli a harmadik szalagon lévő számot (binárisan) eggyel
- \blacktriangleright Ha n-nél nagyobb szám áll a 3. szalagon, akkor elutasítja a bemenetet.

ELÉR fontos szerepet tölt be az L[?]NL kérdés vizsgálatában is.

Tétel

Elér ∈ NL

Bizonyítás: Az M 3-szalagos NOTG a (G, s, t) inputra (n = |V(G)|) a következőt teszi:

- ráírja s-t a második szalagra
- ráírja a 0-t a harmadik szalagra
- Amíg a harmadik szalagon n-nél kisebb szám áll
 - Legyen \boldsymbol{u} a második szalagon lévő csúcs
 - Nemdeterminisztikusan kiválasztja \boldsymbol{v} egy ki-szomszédját és felírja \boldsymbol{u} helyére a második szalagra
 - Ha v=t, akkor elfogadja a bemenetet, egyébként növeli a harmadik szalagon lévő számot (binárisan) eggyel
- \blacktriangleright Han-n'elnagyobb szám áll a 3. szalagon, akkor elutasítja a bemenetet.

Mindkét szalag tartalmát $O(\log n)$ bittel kódolhatjuk.

Logaritmikus táras visszavezetés, NL-teljesség

Definíció

Egy $L_1 \subseteq \Sigma^*$ nyelv **logaritmikus tárral visszavezethető** egy $L_2 \subseteq \Delta^*$ nyelvre, ha $L_1 \leqslant L_2$ és a visszavezetéshez használt függvény kiszámítható logaritmikus többlet tárkorlátos determinisztikus offline Turing géppel. Jelölése: $L_1 \leqslant_{\ell} L_2$.

Logaritmikus táras visszavezetés, NL-teljesség

Definíció

Egy $L_1 \subseteq \Sigma^*$ nyelv **logaritmikus tárral visszavezethető** egy $L_2 \subseteq \Delta^*$ nyelvre, ha $L_1 \leqslant L_2$ és a visszavezetéshez használt függvény kiszámítható logaritmikus többlet tárkorlátos determinisztikus offline Turing géppel. Jelölése: $L_1 \leqslant_{\ell} L_2$.

Definíció

Egy L nyelv NL-nehéz (a log. táras visszavezetésre nézve), ha minden $L' \in NL$ nyelvre, $L' \leq_{\ell} L$. Ha ezen felül $L \in NL$ is teljesül, akkor L NL-teljes (a log. táras visszavezetésre nézve)

Logaritmikus táras visszavezetés, NL-teljesség

Definíció

Egy $L_1 \subseteq \Sigma^*$ nyelv **logaritmikus tárral visszavezethető** egy $L_2 \subseteq \Delta^*$ nyelvre, ha $L_1 \leqslant L_2$ és a visszavezetéshez használt függvény kiszámítható logaritmikus többlet tárkorlátos determinisztikus offline Turing géppel. Jelölése: $L_1 \leqslant_\ell L_2$.

Definíció

Egy L nyelv NL-nehéz (a log. táras visszavezetésre nézve), ha minden $L' \in NL$ nyelvre, $L' \leq_{\ell} L$. Ha ezen felül $L \in NL$ is teljesül, akkor L NL-teljes (a log. táras visszavezetésre nézve)

Tétel

Az L osztály zárt a logaritmikus tárral való visszavezetésre nézve.

Logaritmikus táras visszavezetés, NL-teljesség

Definíció

Egy $L_1 \subseteq \Sigma^*$ nyelv **logaritmikus tárral visszavezethető** egy $L_2 \subseteq \Delta^*$ nyelvre, ha $L_1 \leqslant L_2$ és a visszavezetéshez használt függvény kiszámítható logaritmikus többlet tárkorlátos determinisztikus offline Turing géppel. Jelölése: $L_1 \leqslant_\ell L_2$.

Definíció

Egy L nyelv NL-nehéz (a log. táras visszavezetésre nézve), ha minden $L' \in NL$ nyelvre, $L' \leq_{\ell} L$. Ha ezen felül $L \in NL$ is teljesül, akkor L NL-teljes (a log. táras visszavezetésre nézve)

Tétel

Az L osztály zárt a logaritmikus tárral való visszavezetésre nézve.

Bizonyítás: Tegyük fel, hogy $L_1 \leq_{\ell} L_2$ és $L_2 \in L$.

Logaritmikus táras visszavezetés, NL-teljesség

Definíció

Egy $L_1 \subseteq \Sigma^*$ nyelv **logaritmikus tárral visszavezethető** egy $L_2 \subseteq \Delta^*$ nyelvre, ha $L_1 \leqslant L_2$ és a visszavezetéshez használt függvény kiszámítható logaritmikus többlet tárkorlátos determinisztikus offline Turing géppel. Jelölése: $L_1 \leqslant_{\ell} L_2$.

Definíció

Egy L nyelv NL-nehéz (a log. táras visszavezetésre nézve), ha minden $L' \in NL$ nyelvre, $L' \leq_{\ell} L$. Ha ezen felül $L \in NL$ is teljesül, akkor L NL-teljes (a log. táras visszavezetésre nézve)

Tétel

Az L osztály zárt a logaritmikus tárral való visszavezetésre nézve.

Bizonyítás: Tegyük fel, hogy $L_1 \leq_{\ell} L_2$ és $L_2 \in L$.

Legyen M_2 az L_2 -t eldöntő, M pedig a visszavezetésben használt f függvényt kiszámoló logaritmikus táras determinisztikus OTG.

Az M_1 OTG egy tetszőleges u szóra a következőképpen működik

A második szalagján egy bináris számlálóval nyomon követi, hogy M_2 feje hányadik betűjét olvassa az f(u) szónak; legyen ez a szám i (kezdetben 1)

- A második szalagján egy bináris számlálóval nyomon követi, hogy M_2 feje hányadik betűjét olvassa az f(u) szónak; legyen ez a szám i (kezdetben 1)
- Amikor M_2 lépne egyet, akkor M_1 az M-et szimulálva előállítja a harmadik szalagon f(u) i-ik betűjét (de csak ezt a betűt!!!)

- A második szalagján egy bináris számlálóval nyomon követi, hogy M_2 feje hányadik betűjét olvassa az f(u) szónak; legyen ez a szám i (kezdetben 1)
- Amikor M_2 lépne egyet, akkor M_1 az M-et szimulálva előállítja a harmadik szalagon f(u) i-ik betűjét (de csak ezt a betűt!!!)
- Ezután M_1 szimulálja M_2 aktuális lépését a harmadik szalagon lévő betű felhasználásával és aktualizálja a második szalagon M_2 fejének újabb pozícióját

- A második szalagján egy bináris számlálóval nyomon követi, hogy M_2 feje hányadik betűjét olvassa az f(u) szónak; legyen ez a szám i (kezdetben 1)
- Amikor M_2 lépne egyet, akkor M_1 az M-et szimulálva előállítja a harmadik szalagon f(u) i-ik betűjét (de csak ezt a betűt!!!)
- Ezután M_1 szimulálja M_2 aktuális lépését a harmadik szalagon lévő betű felhasználásával és aktualizálja a második szalagon M_2 fejének újabb pozícióját
- ▶ Ha M_2 elfogadó vagy elutasító állapotba lép, akkor M_1 lépjen a saját elfogadó vagy elutasító állapotába, egyébként folytassa a szimulációt a következő lépéssel

- A második szalagján egy bináris számlálóval nyomon követi, hogy M_2 feje hányadik betűjét olvassa az f(u) szónak; legyen ez a szám i (kezdetben 1)
- Amikor M_2 lépne egyet, akkor M_1 az M-et szimulálva előállítja a harmadik szalagon f(u) i-ik betűjét (de csak ezt a betűt!!!)
- Ezután M_1 szimulálja M_2 aktuális lépését a harmadik szalagon lévő betű felhasználásával és aktualizálja a második szalagon M_2 fejének újabb pozícióját
- ▶ Ha M_2 elfogadó vagy elutasító állapotba lép, akkor M_1 lépjen a saját elfogadó vagy elutasító állapotába, egyébként folytassa a szimulációt a következő lépéssel

Az M_1 OTG egy tetszőleges u szóra a következőképpen működik

- A második szalagján egy bináris számlálóval nyomon követi, hogy M_2 feje hányadik betűjét olvassa az f(u) szónak; legyen ez a szám i (kezdetben 1)
- Amikor M_2 lépne egyet, akkor M_1 az M-et szimulálva előállítja a harmadik szalagon f(u) i-ik betűjét (de csak ezt a betűt!!!)
- Ezután M_1 szimulálja M_2 aktuális lépését a harmadik szalagon lévő betű felhasználásával és aktualizálja a második szalagon M_2 fejének újabb pozícióját
- Ha M_2 elfogadó vagy elutasító állapotba lép, akkor M_1 lépjen a saját elfogadó vagy elutasító állapotába, egyébként folytassa a szimulációt a következő lépéssel

Belátható, hogy M_1 L_1 -et dönti el és a működése során csak logaritmikus méretű tárat használ, azaz $L_1 \in L$.

Következmény

Ha egy L nyelv NL-teljes és $L \in L$, akkor L = NL.

Következmény

Ha egy L nyelv NL-teljes és $L \in L$, akkor L = NL.

Bizonyítás: Legyen $L' \in \mathbb{NL}$ tetszőleges, ekkor L NL-teljessége miatt $L' \leq_{\ell} L$. $L \in L$, így L logaritmikus tárral való visszavezetésre való zártsága miatt $L' \in L$. Tehát $\mathbb{NL} \subseteq L$. A másik irány a definíciókból következik.

Következmény

Ha egy L nyelv NL-teljes és $L \in L$, akkor L = NL.

Bizonyítás: Legyen $L' \in \mathbb{NL}$ tetszőleges, ekkor L NL-teljessége miatt $L' \leq_{\ell} L$. $L \in L$, így L logaritmikus tárral való visszavezetésre való zártsága miatt $L' \in L$. Tehát $\mathbb{NL} \subseteq L$. A másik irány a definíciókból következik.

Tétel

ELÉR NL-teljes a logaritmikus tárral történő visszavezetésre nézve.

Következmény

Ha egy L nyelv NL-teljes és $L \in L$, akkor L = NL.

Bizonyítás: Legyen $L' \in \mathbb{NL}$ tetszőleges, ekkor L NL-teljessége miatt $L' \leq_{\ell} L$. $L \in L$, így L logaritmikus tárral való visszavezetésre való zártsága miatt $L' \in L$. Tehát $\mathbb{NL} \subseteq L$. A másik irány a definíciókból következik.

Tétel

ELÉR NL-teljes a logaritmikus tárral történő visszavezetésre nézve.

Bizonyítás:

► Korábban láttuk, hogy ELÉR ∈ NL

Következmény

Ha egy L nyelv NL-teljes és $L \in L$, akkor L = NL.

Bizonyítás: Legyen $L' \in \mathbb{NL}$ tetszőleges, ekkor L NL-teljessége miatt $L' \leq_{\ell} L$. $L \in L$, így L logaritmikus tárral való visszavezetésre való zártsága miatt $L' \in L$. Tehát $\mathbb{NL} \subseteq L$. A másik irány a definíciókból következik.

Tétel

ELÉR NL-teljes a logaritmikus tárral történő visszavezetésre nézve.

Bizonyítás:

- ▶ Korábban láttuk, hogy ELÉR ∈ NL
- ▶ Legyen $L \in NL$, megmutatjuk, hogy $L \leq_{\ell} E$ LÉR

Következmény

Ha egy L nyelv NL-teljes és $L \in L$, akkor L = NL.

Bizonyítás: Legyen $L' \in \mathsf{NL}$ tetszőleges, ekkor L NL-teljessége miatt $L' \leqslant_{\ell} L$. $L \in \mathsf{L}$, így L logaritmikus tárral való visszavezetésre való zártsága miatt $L' \in \mathsf{L}$. Tehát $\mathsf{NL} \subseteq \mathsf{L}$. A másik irány a definíciókból következik.

Tétel

ELÉR NL-teljes a logaritmikus tárral történő visszavezetésre nézve.

Bizonyítás:

- ▶ Korábban láttuk, hogy ELÉR ∈ NL
- ▶ Legyen $L \in$ NL, megmutatjuk, hogy $L \leq_{\ell}$ Elér
- Legyen M egy L-et eldöntő $O(\log n)$ táras NOTG és |u|=n

Következmény

Ha egy L nyelv NL-teljes és $L \in L$, akkor L = NL.

Bizonyítás: Legyen $L' \in \mathsf{NL}$ tetszőleges, ekkor L NL-teljessége miatt $L' \leqslant_{\ell} L$. $L \in \mathsf{L}$, így L logaritmikus tárral való visszavezetésre való zártsága miatt $L' \in \mathsf{L}$. Tehát $\mathsf{NL} \subseteq \mathsf{L}$. A másik irány a definíciókból következik.

Tétel

ELÉR NL-teljes a logaritmikus tárral történő visszavezetésre nézve.

Bizonyítás:

- ► Korábban láttuk, hogy ELÉR ∈ NL
- ▶ Legyen $L \in NL$, megmutatjuk, hogy $L \leq_{\ell} E$ LÉR
- Legyen M egy L-et eldöntő $O(\log n)$ táras NOTG és |u|=n
- Az $O(\log n)$ tárat használó konfigurációk $\leq c \cdot \log n$ hosszúak (alkalmas c-re)

• A G_M konfigurációs gráfban akkor és csak akkor lehet a kezdőkonfigurációból az elfogadóba jutni (feltehető, hogy csak egy ilyen van), ha $u \in L(M)$. Így $L \leq \text{ELÉR}$.

A G_M konfigurációs gráfban akkor és csak akkor lehet a kezdőkonfigurációból az elfogadóba jutni (feltehető, hogy csak egy ilyen van), ha $u \in L(M)$. Így $L \leq \text{ELÉR}$.

Kell még, hogy a visszavezetés log. tárat használ, azaz G_M megkonstruálható egy log. táras N determinisztikus OTG-pel:

A G_M konfigurációs gráfban akkor és csak akkor lehet a kezdőkonfigurációból az elfogadóba jutni (feltehető, hogy csak egy ilyen van), ha $u \in L(M)$. Így $L \leqslant \text{EL\'er}$.

Kell még, hogy a visszavezetés log. tárat használ, azaz G_M megkonstruálható egy log. táras N determinisztikus OTG-pel:

N sorolja fel a hossz-lexikografikus rendezés szerint az összes legfeljebb c · log n hosszú szót az egyik szalagján, majd tesztelje, hogy az legális konfigurációja-e M-nek, ha igen, akkor a szót írja ki a kimenetre

A G_M konfigurációs gráfban akkor és csak akkor lehet a kezdőkonfigurációból az elfogadóba jutni (feltehető, hogy csak egy ilyen van), ha $u \in L(M)$. Így $L \leq \text{EL\'{E}R}$.

Kell még, hogy a visszavezetés log. tárat használ, azaz G_M megkonstruálható egy log. táras N determinisztikus OTG-pel:

- N sorolja fel a hossz-lexikografikus rendezés szerint az összes legfeljebb c · log n hosszú szót az egyik szalagján, majd tesztelje, hogy az legális konfigurációja-e M-nek, ha igen, akkor a szót írja ki a kimenetre
- Az élek (konfiguráció párok) hasonlóképpen felsorolhatók, tesztelhetők és a kimenetre írhatók

A G_M konfigurációs gráfban akkor és csak akkor lehet a kezdőkonfigurációból az elfogadóba jutni (feltehető, hogy csak egy ilyen van), ha $u \in L(M)$. Így $L \leq \text{EL\'{E}R}$.

Kell még, hogy a visszavezetés log. tárat használ, azaz G_M megkonstruálható egy log. táras N determinisztikus OTG-pel:

- N sorolja fel a hossz-lexikografikus rendezés szerint az összes legfeljebb c · log n hosszú szót az egyik szalagján, majd tesztelje, hogy az legális konfigurációja-e M-nek, ha igen, akkor a szót írja ki a kimenetre
- Az élek (konfiguráció párok) hasonlóképpen felsorolhatók, tesztelhetők és a kimenetre írhatók

Immerman-Szelepcsényi tétel

NL = coNL

(bizonyítás nélkül)

EXPTIME:= $\bigcup_{k \in \mathbb{N}} \mathsf{TIME}(2^{n^k})$.

EXPTIME:=
$$\bigcup_{k \in \mathbb{N}} \mathsf{TIME}(2^{n^k})$$
.

Hierarchia tétel

(I) $NL \subset PSPACE$ és $P \subset EXPTIME$.

EXPTIME:= $\bigcup_{k \in \mathbb{N}} \mathsf{TIME}(2^{n^k})$.

- (I) $NL \subset PSPACE$ és $P \subset EXPTIME$.
- (II) $L \subseteq NL = coNL \subseteq P \subseteq NP \subseteq NPSPACE = PSPACE \subseteq EXPTIME$

EXPTIME:= $\bigcup_{k \in \mathbb{N}} \mathsf{TIME}(2^{n^k}).$

Hierarchia tétel

- (I) $NL \subset PSPACE$ és $P \subset EXPTIME$.
- (II) $L \subseteq NL = coNL \subseteq P \subseteq NP \subseteq NPSPACE = PSPACE \subseteq EXPTIME$

Sejtés: A fenti tartalmazási lánc minden tartalmazása valódi.

(I)-et nem bizonyítjuk.

- (I)-et nem bizonyítjuk.
- (II) bizonyítása:
- $\mathsf{L} \overset{(1)}{\subseteq} \mathsf{NL} \overset{(2)}{\subseteq} \mathsf{coNL} \overset{(3)}{\subseteq} \mathsf{P} \overset{(4)}{\subseteq} \mathsf{NP} \overset{(5)}{\subseteq} \mathsf{NPSPACE} \overset{(6)}{=} \mathsf{PSPACE} \overset{(7)}{\subseteq} \mathsf{EXPTIME}$
- (1) és (4): a nemdeterminisztikusság definíciójából következik

- (I)-et nem bizonyítjuk.
- (II) bizonyítása:
- $\mathsf{L} \overset{(1)}{\subseteq} \mathsf{NL} \overset{(2)}{\subseteq} \mathsf{coNL} \overset{(3)}{\subseteq} \mathsf{P} \overset{(4)}{\subseteq} \mathsf{NP} \overset{(5)}{\subseteq} \mathsf{NPSPACE} \overset{(6)}{=} \mathsf{PSPACE} \overset{(7)}{\subseteq} \mathsf{EXPTIME}$
- (1) és (4): a nemdeterminisztikusság definíciójából következik
- (2): Immerman- Szelepcsényi

- (I)-et nem bizonyítjuk.
- (II) bizonyítása:
- $\mathsf{L} \overset{(1)}{\subseteq} \mathsf{NL} \overset{(2)}{\subseteq} \mathsf{coNL} \overset{(3)}{\subseteq} \mathsf{P} \overset{(4)}{\subseteq} \mathsf{NP} \overset{(5)}{\subseteq} \mathsf{NPSPACE} \overset{(6)}{=} \mathsf{PSPACE} \overset{(7)}{\subseteq} \mathsf{EXPTIME}$
- (1) és (4): a nemdeterminisztikusság definíciójából következik
- (2): Immerman- Szelepcsényi
- (3),(6): előbb bizonyítottuk

- (I)-et nem bizonyítjuk.
- (II) bizonyítása:
- $\mathsf{L} \overset{(1)}{\subseteq} \mathsf{NL} \overset{(2)}{\subseteq} \mathsf{coNL} \overset{(3)}{\subseteq} \mathsf{P} \overset{(4)}{\subseteq} \mathsf{NP} \overset{(5)}{\subseteq} \mathsf{NPSPACE} \overset{(6)}{=} \mathsf{PSPACE} \overset{(7)}{\subseteq} \mathsf{EXPTIME}$
- (1) és (4): a nemdeterminisztikusság definíciójából következik
- (2): Immerman- Szelepcsényi
- (3),(6): előbb bizonyítottuk
- (5): Ha egy NTG egy számítására adott egy időkorlát, akkor ennél a korlátnál több új cellát nincs ideje egyik fejnek sem felfedezni.

- (I)-et nem bizonyítjuk.
- (II) bizonyítása:
- $\mathsf{L} \overset{(1)}{\subseteq} \mathsf{NL} \overset{(2)}{\subseteq} \mathsf{coNL} \overset{(3)}{\subseteq} \mathsf{P} \overset{(4)}{\subseteq} \mathsf{NP} \overset{(5)}{\subseteq} \mathsf{NPSPACE} \overset{(6)}{=} \mathsf{PSPACE} \overset{(7)}{\subseteq} \mathsf{EXPTIME}$
- (1) és (4): a nemdeterminisztikusság definíciójából következik
- (2): Immerman- Szelepcsényi
- (3),(6): előbb bizonyítottuk
- (5): Ha egy NTG egy számítására adott egy időkorlát, akkor ennél a korlátnál több új cellát nincs ideje egyik fejnek sem felfedezni. Így ez az időkorlát egyben tárkorlát is.

- (I)-et nem bizonyítjuk.
- (II) bizonyítása:
- $\mathsf{L} \overset{(1)}{\subseteq} \mathsf{NL} \overset{(2)}{\subseteq} \mathsf{coNL} \overset{(3)}{\subseteq} \mathsf{P} \overset{(4)}{\subseteq} \mathsf{NP} \overset{(5)}{\subseteq} \mathsf{NPSPACE} \overset{(6)}{=} \mathsf{PSPACE} \overset{(7)}{\subseteq} \mathsf{EXPTIME}$
- (1) és (4): a nemdeterminisztikusság definíciójából következik
- (2): Immerman- Szelepcsényi
- (3),(6): előbb bizonyítottuk
- (5): Ha egy NTG egy számítására adott egy időkorlát, akkor ennél a korlátnál több új cellát nincs ideje egyik fejnek sem felfedezni. Így ez az időkorlát egyben tárkorlát is.
- (7): Elérhetőségi módszerrel: a használt tár méretének exponenciális függvénye a konfigurációs gráf mérete.

- (I)-et nem bizonyítjuk.
- (II) bizonyítása:
- $\mathsf{L} \overset{(1)}{\subseteq} \mathsf{NL} \overset{(2)}{\subseteq} \mathsf{coNL} \overset{(3)}{\subseteq} \mathsf{P} \overset{(4)}{\subseteq} \mathsf{NP} \overset{(5)}{\subseteq} \mathsf{NPSPACE} \overset{(6)}{=} \mathsf{PSPACE} \overset{(7)}{\subseteq} \mathsf{EXPTIME}$
- (1) és (4): a nemdeterminisztikusság definíciójából következik
- (2): Immerman- Szelepcsényi
- (3),(6): előbb bizonyítottuk
- (5): Ha egy NTG egy számítására adott egy időkorlát, akkor ennél a korlátnál több új cellát nincs ideje egyik fejnek sem felfedezni. Így ez az időkorlát egyben tárkorlát is.
- (7): Elérhetőségi módszerrel: a használt tár méretének exponenciális függvénye a konfigurációs gráf mérete. A konfigurációs gráf méretében négyzetes (azaz összességében a tár méretében exponenciális) időben tudja egy determinisztikus TG az elérhetőséget tesztelni a kezdőkonfigurációból az elfogadó konfigurációba.

R szerkezete

R szerkezete (a tartalmazások valódisága nem mindenütt bizonyított) [ábra: Gazdag Zs. e-jegyzet]