

RÚT TRÍCH THÔNG TIN

Nội dung

- ☐ Kiến trúc hệ thống rút trích thông tin
- □ Nhận diện thực thể có tên (NER)
- □ Rút trích quan hệ không giám sát
- ☐ Giám sát từ xa
- Phân giải đồng tham chiếu

- Rút trích thông tin là quá trình tìm kiếm các thực thể và mối quan hệ giữa các thực thể này trong văn bản
- Rút trích thông tin phục vụ khai phá văn bản ở mức chính xác và cô đọng hơn các tác vụ như phân loại văn bản hay gán nhãn văn bản
- Các loại thực thể và quan hệ được định nghĩa trước

- Các giả thiết của rút trích thông tin
 - Thông tin được thể hiện một cách tường minh và không yêu cầu suy diễn
 - Một số lượng nhỏ khuôn mẫu có thể tóm tắt được nội dung của văn bản
 - Thông tin cần thiết xuất hiện cục bộ trong văn bản

- Các loại thông tin được rút trích
 - Thực thể: Con người, tổ chức, địa điểm,...
 - Thuộc tính (của thực thể): Chức danh, tuổi, loại tổ chức...
 - **Thực tế:** quan hệ giữa nhân viên và công ty, quan hệ giữa virus và bênh,...
 - Sự kiện: hai công ty sát nhập, động đất, khủng bố,...

Phát hiện các thực tể có tên trong văn bản và phân loại vào các lớp được định nghĩa trước

[Forbes]org: [Việt Nam]Loc có 4 tỷ phú

Phân cụm: Phát hiện các cụm từ trong câu

Trong đó, <u>Việt Nam</u> có <u>4 đại diện</u> là <u>Chủ tịch Vingroup</u> <u>Phạm Nhật Vượng</u>, <u>CEO VietJet Air</u> <u>Nguyễn Thị Phương Thảo</u>, <u>Chủ tịch Thaco Trần Bá Dương</u> và <u>Chủ tịch Techcombank</u> <u>Hồ Hùng Anh</u>.

Rút trích quan hệ: Rút trích các quan hệ giữa các thực thể (thuộc tính, thực tế, sự kiện)

Aikido là một môn võ thuật Nhật Bản hiện đại

Phân giải đồng tham chiếu: Phát hiện sự xuất hiện của cùng một thực thể dưới dạng các tham chiếu khác nhau

Aikido₁ là một môn võ thuật Nhật Bản hiện đại được phát triển bởi <u>Ueshiba Morihei</u>₂ như một sự tổng hợp các nghiên cứu võ học, triết học và tín ngưỡng tôn giáo của <u>ông</u>₂. <u>Aikido</u>₁ thường được dịch là "con đường hợp thông (với) năng lượng cuộc sống "hoặc" con đường của tinh thần hài hòa". Mục tiêu của <u>Ueshiba</u>₂ là tạo ra một nghệ thuật₁ mà <u>các môn sinh</u>₃ có thể sử dụng để tự bảo vệ <u>mình</u>₃ trong khi vẫn bảo vệ <u>người tấn công</u>₄ khỏi bị thương. Các kĩ thuật của <u>Aikido</u>₁ bao gồm: irimi (nhập thân), chuyển động xoay hướng (tenkan - chuyển hướng đà tấn công của <u>đối phương</u>₄), các loại động tác ném và khóa khớp khác nhau.

Dựa trên từ điển:

- Có thể phát hiện được các thực thể phổ biến
- Yêu cầu xây dựng từ điển tên riêng
- Không xử lý được nhập nhằng

Dựa trên biểu thức chính quy

- Sử dụng kiến thức chuyên gia
- Có thể phát hiện được các mẫu phổ biến

Dựa trên học máy:

- Yêu cầu dữ liệu huấn luyện
- Độ chính xác không thay đổi nhiều giữa các lĩnh vực
- Quy về bài toán gán nhãn chuỗi BIO
- Đầu vào là một câu
- Đầu ra là nhãn của mỗi từ trong câu

Gán nhãn chuỗi BIO:

B: Begin

I: Inside

O: Outside

- Tập đặc trưng
 - \square Các từ trong cửa sổ [-k, k] (k=2, 3)
 - Hình thái từ:
 - Viết hoa, viết thường
 - Chữ số
 - Dấu câu
 - Loại từ: Đầu ra của bài toán gán nhãn từ loại
 - Phạm vi từ: Đầu ra của bài toán phân cụm

Dánh giá kết quả

Table 4. Accuracy of our NER system with default and generated PoS, chunking tags; and without PoS and chunking tags

Setting	Precision	Recall	F_1
Default PoS and chunking tags	93.87	93.99	93.93
PoS and chunking tags generated by NNVLP [7]	90.21	86.72	88.43
PoS and chunking tags generated by Underthesea	90.28	88.35	89.3
Without PoS, chunking tags	89.91	90.15	90.03

Table 5. Proposed NER systems without chunking tag-based features. We compare default PoS with PoS generated by other tools.

Setting	Precision	Recall	F_1
Default PoS tags	90.13	90.55	90.34
PoS by NNVLP 7	90.05	85.65	88.31
PoS by Underthesea	90.27	88.58	89.42
PoS by Pyvi	90.16	88.72	89.43
PoS by Vtik	89.62	86.42	87.99
PoS by VnMarMoT 19	90.51	89.15	89.83
Without PoS, chunking tags	89.91	90.15	90.03

Dánh giá kết quả

Table 6. Accuracy of NER system with default and generated word segmentation. We did not use features based on PoS, chunking tags here.

Setting	Precision	Recall	F_1
Default Word segmentation	89.91	90.15	90.03
Word segmentation generated by UETSegmenter	87.67	84.95	86.29
Word segmentation generated by RDRsegmenter	89.05	84.98	86.97

Table 7. Accuracy of NER system with syllable-based and word-based model. We do not use features based on PoS and chunking tags. "ws" stands for word segmentation

Setting	Precision	Recall	F_1
Syllable-based model	88.78	82.94	85.76
Word-based model with gold ws	89.91	90.15	90.03
Word-based model with ws generated by RDRsegmenter	89.05	84.98	86.97

Dánh giá kết quả

- ☐ Word: Các từ trong cửa sổ
- Word shapes: Hình thái từ
- w2v: Biểu diễn từ nhúng
- ☐ Cluster: Biểu diễn phân cụm Brown

Table 8. Impact of word representation-based features. w2v denotes features based on word embeddings. "cluster" denotes cluster-based features.

Setting	Precision	Recall	F_1
(1) = all features with default PoS, Chunk	93.87	93.99	93.93
(2) = (1) - cluster - w2v	91.66	92.02	91.84
(4) = word + word shapes + default PoS	88.01	87.95	87.98
(5) = word + word shapes + cluster + w2v	89.91	90.15	90.03
(6) = word + word-shapes	88.17	88.08	88.13
(7) = word + word-shapes + w2v	88.69	88.72	88.70
(8) = word + word-shapes + cluster	88.96	89.99	89.97

NER dựa trên RNN

NER dựa trên RNN

Học biểu diễn ký tự

NER dựa trên RNN

Dánh giá kết quả

Method	P	R	F1	F1 (w.o char)
Feature-rich CRFs 25	93.87	93.99	93.93	-
NNVLP 7	92.76	93.07	92.91	-
BiLSTM-CRFs	90.97	87.52	89.21	76.43
BiLSTM-CRFs + POS	90.90	90.39	90.64	86.06
BiLSTM-CRFs + Chunk	95.24	92.16	93.67	87.13
BiLSTM-CRFs + POS + Chunk	95.44	94.33	94.88	91.36

NER dựa trên RNN

Dánh giá kết quả

Method	P	R	F1	F1 (w.o char)
Feature-rich CRFs 25	93.87	93.99	93.93	-
NNVLP 7	92.76	93.07	92.91	-
BiLSTM-CRFs	90.97	87.52	89.21	76.43
BiLSTM-CRFs + POS	90.90	90.39	90.64	86.06
BiLSTM-CRFs + Chunk	95.24	92.16	93.67	87.13
BiLSTM-CRFs + POS + Chunk	95.44	94.33	94.88	91.36

- Học có giám sát có độ chính xác cao nhưng đòi hỏi DL huấn luyện
- Học không giám sát tận dụng được lượng DL lớn nhưng có độ chính xác thấp hơn
- Giám sát từ xa tận dụng được cơ sở tri thức và cải thiện độ chính xác so với học không giám sát

Các ví dụ mẫu

Do người dùng cung cấp, sau đó hệ thống tự động rút trích ra từ văn bản. Ví dụ: Quan hệ <tập đoàn, trụ sở>

- <Microsoft, Redmond>
- <Exxon, Irving>
- <IBM, Armonk>

Tìm các ví dụ mẫu trong văn bản

- "Máy chủ của Microsoft nằm ở trụ sở chính Redmon"
- "Tin đồn rút nhân viên khỏi Iraq đến từ trụ sở chính của Exxon, Irving..."
- "... vừa nhận được email từ trụ sở chính của Boeing ở Seattle."

Gán nhãn thực thể

- "Máy chủ của <ORG> nằm ở trụ sở chính <LOC>"
- "Tin đồn rút nhân viên khỏi Iraq đến từ trụ sở chính của <ORG>, <LOC>..."
- "... vừa nhận được email từ trụ sở chính của <ORG> ở <LOC>."

Sinh mẫu rút trích

Mô hình 5-tuple:

<trái, thẻ 1, giữa, thẻ 2, phải>

Sinh mẫu rút trích:

- ☐ Cho 2 5-tuple có cùng tag1và tag2:
 - t= {I, tag1, m, tag2, r}
 - t'= {l', tag1, m', tag2, r'}
- Dộ tương đồng:

```
match(t, t') = |*|' + m*m' + r*r'
```

- Phân cụm các 5-tuple dựa trên độ tương đồng
- Lấy centroid của c làm mẫu rút trích:

```
p = \{lc, tag1, mc, tag2, rc\}
```

```
Algorithm GenerateTuples(tập mẫu)
     foreach đoạn ∈ tập văn bản do
           \{\langle o, l \rangle, \langle l_s, t_1, m_s, t_2, r_s \rangle\} = CreateOccurrence(doan);
2.
3.
         Tc = <0, l>;
           Sim_{Best} = 0;
4.
           foreach p ∈ tập mẫu
5.
6.
                 sim = Match(< l_s, t_1, m_s, t_2, r_s>, p);
                 if (sim ≥ Tsim) then
7.
8.
                        UpdatePatternSelectivity(p, Tc);
                        if(sim ≥ Sim<sub>Best</sub>) then
9.
10.
                             SimBest = sim;
11.
                             P<sub>Best</sub>= p;
12.
                       endif
13.
                 endif
14.
           endfor
15.
           if(Sim<sub>Best</sub>≥ T<sub>sim</sub>) then
16.
                 CandidateTuples[Tc].Patterns[PBest] = SimBest;
           endif
17.
18. endfor
return CandidateTuples;
```

Đánh giá mẫu:

- Với mỗi ví dụ <org, loc>, phân loại:
 - Positive nếu đã tồn tại ví dụ mẫu
 - Negative néu tồn tại ví dụ mẫu <org, loc'>
 - Unknown nếu <org, *> chưa tồn tại
- Dộ tin tưởng của mẫu P:

$$conf(P) = \frac{P. positive}{P. positive + P. negative}$$

- P.positive: số ví dụ positive khớp với P
- P.negative: số ví dụ negative khớp với P

Đánh giá ví dụ:

Độ tin tưởng của ví dụ T = {org, loc}

$$Conf(T) = 1 - \prod_{i=0}^{|P|} \left(1 - (Conf(P_i) \cdot Match(C_i, P_i))\right)$$

- P = {Pi} là tập các mẫu sinh ra ví dụ T
- Ci là 5-tuple ứng với đoạn văn bản khớp với Pi với độ tương tự Match(Ci, Pi)
- Tập ví dụ mẫu = {T| Conf(T) > *T*t}

Ưu điểm:

- Tận dụng được dữ liệu không có nhãn
- Chỉ cần một số ít ví dụ mẫu gốc

Nhược điểm:

- Vẫn yêu cầu gán nhãn thủ công từ người dùng
- Quá trình lặp dẫn đến suy giảm chất lượng

4. Giám sát từ xa

- Freebase là cơ sở tri thức lớn và có chất lượng về quan hệ giữa các thực thể
- Freebase được xây dựng từ Wikipedia
- Giám sát từ xa:
 - Freebase giám sát quá trình rút trích từ văn bản
 - Freebase + corpus = dữ liệu có nhãn

4. Giám sát từ xa

BỘ PHÂN LOẠI ĐA LỚP f: {relation1, relation2, ..., relationm}

4. Giám sát từ xa

Quan hệ phụ thuộc

5. Phân giải đồng tham chiếu

- Là quá trình phát hiện một cặp từ hay cụm từ trong văn bản chỉ đến cùng một thực thể
- Đồng tham chiếu là hiện tượng phổ biến trong ngôn ngữ
- Có vai trò quan trọng với các ứng dụng khai phá văn bản

5.1. Các loại đồng tham chiếu

- Đại từ làm chủ ngữ: "Cô ta đang học trực tuyến"
- Đại từ làm tân ngữ: "Hãy liên lạc với anh ấy ngay"
- Dại từ sở hữu: "Lịch trình của chúng ta đã được thống nhất"
- Tên riêng: "Thủ tướng Nguyễn Xuân Phúc tuyên bố giãn cách xã hội."
- Apposition: "Phạm Nhật Vượng, Chủ tịch Vingroup là một trong số các tỉ phú được Forbes nêu tên."
- Động từ 'là': "Park Hang Seo là HLV trưởng đội tuyển bóng đá nam Viêt Nam."

5.1. Các loại đồng tham chiếu

- Nhóm người: "Mây Trắng tuyên bố tái hợp. Nhóm dự định ra mắt album mới đầu năm sau."
- Thuộc tính giá trị: "Giá cổ phiếu VIC là 94.800 VND"
- Thứ tự: "IBM và Microsoft là những ứng cử viên cuối cùng, nhưng đại diện nhà đầu tư ưu tiên ứng cử viên thứ hai."
- Bộ phận toàn thể: "Vinfast mới ra mắt dòng xe mới. Bộ truyền động sử dụng công nghệ CVT vô cấp tiên tiến."

5.2. Các phương pháp truyền thống

- Tập trung vào đại từ là loại xuất hiện phổ biến nhất
- Dùng thông tin ngôn ngữ để phát hiện các ứng cử viên phía trước
- Loại bỏ các ứng cử viên dựa trên tính chất như giới tính, số ít số nhiều, ...
- Tính điểm các ứng cử viên
 - So khớp
 - Luật
 - Học máy

5.3. Phương pháp dựa trên neural network

- Hạn chế sử dụng các đặc trưng phức tạp
- Hạn chế sử dụng phân tích cú pháp
- Tận dụng biểu diễn học trước
- Thách thức:
 - Sử dụng thông tin thay thế cho thông tin cú pháp
 - Biểu diễn cụm từ, ngữ cảnh
 - Phân giải đồng tham chiếu bản chất là một bài toán phân cụm cứng trong phạm vi văn bản

5.3. Phương pháp dựa trên neural network

- Kiến trúc mô hình
- □ Biểu diễn đoạn: $g_i = [x^*_{START(i)}, x^*_{END(i)}, \hat{x}_i, \Phi(i)]$
- **Diểm mention**: $s_m(i) = w_m * FFNN_m(g_i)$
- **Diểm tương đồng:** $s_a(i, j) = w_a * FFNN_a([g_i, g_j, g_i \circ g_j, \Phi(i, j)])$

5.3. Phương pháp dựa trên neural network

Dánh giá kết quả

	Avg. F1	Δ
Our model (ensemble)	69.0	+1.3
Our model (single)	67.7	
 distance and width features 	63.9	-3.8
 GloVe embeddings 	65.3	-2.4
- speaker and genre metadata	66.3	-1.4
 head-finding attention 	66.4	-1.3
– character CNN	66.8	-0.9
 Turian embeddings 	66.9	-0.8

Tài liệu tham khảo

- Zdravko Markov and Daniel T. Larose. Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage, Wiley, 2007, ISBN: 978-0-471-66655-4.
- Web Mining, ĐHBK Hà Nội.

Thank you!

Q&A