

Model Development Phase Template

Date	15 july 2024
Team ID	739952
Project Title	Prediction and Analysis of Liver Patient Data Using Machine Learning
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Logistic Regression

```
# LogisticRegression
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(x_train, y_train)
y_pred_lr = lr.predict(x_test)
y_pred_lr
```

KNeighborsClassifier

```
#KNeighborsClassifier
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(x_train, y_train)
ypred_knn = knn.predict(x_test)
```


SVC

```
#SVC()
from sklearn.svm import SVC
svm = SVC()
svm.fit(x_train, y_train)
y_pred_svm = svm.predict(x_test)
```

RandomForestClassifier

```
from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier()
rfc.fit(x_train, y_train)
ypred_rfc = rfc.predict(x_test)
```

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
Logistic			
Regression	3 8.45 8.32 9.27 accuracy 8.60 8.55 6.55	es 28 47 Tr. arc v accuracy score(y poed, y test) 75 16 arc v accuracy score(y poed, y test) 75 25 9.52	connecteronfusion matrix(y test,y pred) print(connect) [[117 11] [36 9]]
K neighbors		İ	
Classifier	<pre>grint(classification_magnetly_fact,ypend_bon)) grecision result fluores ages</pre>		
	1 6.81 0.00 6.00 1		confusion_matrix(y_test,ypred_knn)
		kon_acc = accuracy_score(ypred_ine, y_text) print(ken_acc)	array([[87, 22], [21, 16]], dtype=int6d)

Random Forest							
Classifier	print(classif) 1 2 According to the control of t	0.30 0.40 0.71	9.85 9.57	FL-score 8.82 8.41		Ht_But = Buttony_store(spred_ft, g_(ast) printffs Act) 8.77691776917765	<pre>confusion_matrix(y_test,ypred_rfc) array([74, 13],</pre>
SVC	printiclassifi	cation rep	ortic test	ay gred w	=()		
		rection		61-10(mg			
	1 2	9.74 9.00	1.00	0.05 0.00	87 50		confusion matrix(y_test,y_pred_svm)
	accuracy nacto and estatroit and	8.17 8.35	9.50 9.74	0.74	5.24	occuracy_score(y_pred_svm, y_test) 0.7435897435897436	array([[87, 0], [38, 8]], dkype=Int54)