Academic Year: 2025-26

Subject: AI&ML in Healthcare

Name:	Jay Santosh Kore
Roll No & Branch:	58 - COMPS
Class/Sem:	BE/VII
Experiment No.:	01
Title:	Clean, Integrate and Transform Electronic Healthcare Records.
Date of	10-07-25
Performance:	
Date of Submission:	18-07-25
Marks:	
Sign of Faculty:	

Aim: To collect, clean, integrate and transform Electronic Healthcare Records.

Objective: To develop a robust and efficient data pipeline that collects, cleans, integrates, and transforms healthcare data from diverse sources, ensuring data accuracy, privacy compliance, and usability. This pipeline will facilitate comprehensive and reliable analyses, enabling informed decision-making and insights to drive improvements in healthcare delivery, patient outcomes, and research endeavors.

Theory: The Disease Symptoms and Patient Profile Dataset serves as a pivotal gateway to unraveling the intricate web of diseases. By meticulously intertwining symptomatology, patient demographics, and health metrics, this dataset presents an unprecedented opportunity to discern the concealed correlations within medical conditions. With symptoms such as fever, cough,

Department of Computer Science & Engineering (Data Science)

fatigue, and difficulty breathing interwoven alongside crucial variables like age, gender, blood pressure, and cholesterol levels, this dataset holds the promise of unearthing latent patterns. A transformative resource for medical researchers, healthcare professionals, and data enthusiasts alike, its exploration promises to unveil distinctive symptom profiles and initiate an enthralling expedition into the realm of ailments. As users navigate this treasure trove, a profound revolution in healthcare comprehension beckons, destined to reshape our understanding of medical intricacies and pave the way for enhanced diagnostics and treatment strategies.

At the heart of the Disease Symptoms and Patient Profile Dataset lies a reservoir of invaluable insights waiting to reshape the landscape of healthcare knowledge. This meticulously curated compilation of symptoms, patient characteristics, and health indicators offers an unprecedented vantage point into the complex interplay of factors underlying various diseases. As medical researchers delve into the depths of this dataset, they embark on a journey of discovery, unveiling hidden relationships that have the potential to redefine diagnostic paradigms and treatment approaches. By deciphering the intricate tapestry woven from fever, cough, fatigue, and difficulty breathing, intricately interwoven with age, gender, blood pressure, and cholesterol levels, a new era of personalized and targeted healthcare strategies is on the horizon. This dataset not only promises to revolutionize medical research but also empowers healthcare professionals to make informed decisions that can lead to improved patient outcomes and a brighter future for the field of medicine.

Program and output

import pandas as pd

from sklearn.preprocessing import LabelEncoder, StandardScaler

from sklearn.impute import SimpleImputer

1. Data Collection (Simulated for demonstration)

In a real-world scenario, you would load data from various sources (CSV, databases, APIs)

data = {

'PatientID': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],

TAVARO RE

Vidyavardhini's College of Engineering and Technology, Vasai

Department of Computer Science & Engineering (Data Science)

```
'Age': [45, 62, 30, 55, 70, 28, 50, 68, 35, 42],
  'Gender': ['Male', 'Female', 'Female', 'Male', 'Female', 'Male', 'Female', 'Male', 'Female', 'Male'],
  'Fever': ['Yes', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'No'],
  'Cough': ['Yes', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'No', 'Yes', 'No'],
  'Fatigue': ['No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes'],
  'DifficultyBreathing': ['No', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'No'],
  'BloodPressure': [120, 140, 110, 130, 150, 115, 125, 145, 118, 122],
  'Cholesterol': [200, 240, 180, 220, 260, 190, 210, 250, 185, 205],
  'Diagnosis': ['Flu', 'Pneumonia', 'Asthma', 'Bronchitis', 'Pneumonia', 'Flu', 'Asthma', 'Bronchitis', 'Flu',
'Asthma'],
  'Hospital Visit Date': ['2023-01-15', '2023-01-20', '2023-01-22', '2023-02-01', '2023-02-05',
'2023-02-10', '2023-02-12', '2023-02-18', '2023-02-20', '2023-02-25']
}
df = pd.DataFrame(data)
# Simulate a second source with some missing data and different column names
data source2 = {
  'ID': [11, 12, 13, 14, 15],
  'Age Years': [38, None, 65, 52, 48],
  'Sex': ['Female', 'Male', 'Female', 'Male', 'Female'],
  'Has Fever': [1, 0, 1, 0, 1],
  'BP Systolic': [128, 135, None, 130, 120],
```

'Cholesterol Level': [210, 230, 200, 225, None],

Vidyavardhini's College of Engineering and Technology, Vasai Department of Computer Science & Engineering (Data Science)

```
'Condition': ['Flu', 'Bronchitis', 'Pneumonia', 'Flu', 'Asthma']
}
df source2 = pd.DataFrame(data source2)
print("--- Original DataFrames ---")
print("DataFrame 1:")
print(df.head())
print("\nDataFrame 2:")
print(df source2.head())
print("-" * 30)
# 2. Data Cleaning
# Handle missing values
imputer age = SimpleImputer(strategy='mean')
df source2['Age Years'] = imputer age.fit transform(df source2[['Age Years']])
imputer bp = SimpleImputer(strategy='mean')
df source2['BP Systolic'] = imputer bp.fit transform(df source2[['BP Systolic']])
imputer cholesterol = SimpleImputer(strategy='mean')
df source2['Cholesterol Level'] = imputer cholesterol.fit transform(df source2[['Cholesterol Level']])
# Convert 'Yes'/'No' to numerical (0/1) for symptoms in df
for col in ['Fever', 'Cough', 'Fatigue', 'DifficultyBreathing']:
  df[col] = df[col].map({'Yes': 1, 'No': 0})
# Convert 'Has Fever' (0/1) to 'Fever' (0/1) in df source2
```

```
df source2['Fever'] = df source2['Has Fever']
df_source2.drop(columns=['Has_Fever'], inplace=True)
print("\n--- After Cleaning Missing Values and Initial Conversions ---")
print("DataFrame 1:")
print(df.head())
print("\nDataFrame 2:")
print(df source2.head())
print("-" * 30)
# 3. Data Integration
# Rename columns in df source2 to match df for integration
df source2 = df source2.rename(columns={
  'ID': 'PatientID',
  'Age Years': 'Age',
  'Sex': 'Gender',
  'BP Systolic': 'BloodPressure',
  'Cholesterol Level': 'Cholesterol',
  'Condition': 'Diagnosis'
})
# Add missing symptom columns to df source2 and fill with 0 (assuming absence if not explicitly stated)
for col in ['Cough', 'Fatigue', 'DifficultyBreathing']:
  if col not in df source2.columns:
```

Vidyavardhini's College of Engineering and Technology, Vasai Department of Computer Science & Engineering (Data Science)

```
df source2[col] = 0
# Select and reorder columns in df source2 to match df
df source2 = df source2[df.columns.tolist()]
# Concatenate the dataframes
integrated df = pd.concat([df, df source2], ignore index=True)
print("\n--- After Integration (Concatenation) ---")
print(integrated df.head(12))
print("-" * 30)
# 4. Data Transformation
# Convert categorical features to numerical using Label Encoding
label encoder gender = LabelEncoder()
integrated df['Gender Encoded'] = label encoder gender.fit_transform(integrated_df['Gender'])
label encoder diagnosis = LabelEncoder()
integrated df['Diagnosis Encoded'] = label_encoder_diagnosis.fit_transform(integrated_df['Diagnosis'])
# Feature Scaling for numerical features
scaler = StandardScaler()
numerical_cols = ['Age', 'BloodPressure', 'Cholesterol']
integrated_df[numerical_cols] = scaler.fit_transform(integrated_df[numerical_cols])
# Convert 'Hospital Visit Date' to datetime objects and extract features
integrated df['Hospital Visit Date'] = pd.to datetime(integrated df['Hospital Visit Date'])
integrated df['Visit Month'] = integrated df['Hospital Visit Date'].dt.month
```


integrated_df['Visit_DayOfWeek'] = integrated_df['Hospital_Visit_Date'].dt.dayofweek

Drop original categorical columns if encoded versions are preferred for modeling

transformed_df = integrated_df.drop(columns=['Gender', 'Diagnosis', 'Hospital_Visit_Date'])

print("\n--- After Transformation ---")

print(transformed_df.head(12))

print("\nDataFrame Info after Transformation:")

print(transformed_df.info())

print("\nUnique values for 'Gender_Encoded':", transformed_df['Gender_Encoded'].unique())

print("Unique values for 'Diagnosis_Encoded':", transformed_df['Diagnosis_Encoded'].unique())

print("\n--- Final Transformed Dataset Sample ---")

print(transformed_df.sample(5))

Output:

--- Original DataFrames ---

DataFrame 1:

PatientID Age Gender Fever Cough Fatigue DifficultyBreathing BloodPressure Cholesterol Diagnosis Hospital_Visit_Date

0	1 45 Male Yes Yes	No No	120	200	Flu	2023-01-15
1 2023	2 62 Female No Yes -01-20	Yes No	140	240	Pneumonia	
2 2023	3 30 Female Yes No -01-22	No Yes	110	180	Asthma	
3	4 55 Male No Yes	Yes No	130	220 E	Bronchitis	2023-02-01

Department of Computer Science & Engineering (Data Science)

4 5 70 Female Yes No No Yes 150 260 Pneumonia 2023-02-05

DataFrame 2:

ID Ag	e_Years Sex F	las_Fe	ver BP_Sys	stolic Cholesterol_Level Condition	n
0 11	38.0 Female	1	128.0	210.0 Flu	
1 12	NaN Male	0	135.0	230.0 Bronchitis	
2 13	65.0 Female	1	NaN	200.0 Pneumonia	
3 14	52.0 Male	0	130.0	225.0 Flu	
4 15	48.0 Female	1	120.0	NaN Asthma	

DataFrame 1:

PatientID Age Gender Fever Cough Fatigue DifficultyBreathing BloodPressure Cholesterol Diagnosis Hospital_Visit_Date

0	1	45	Male	1	1	0	0	120	200	Flu	2023-01-15
1 2023-0			Female	0	1	1	0	140	240	Pneumonia	
2	3	30	Female	1	0	0	1	110	180	Asthma	2023-01-22
3	4	55	Male	0	1	1	0	130	220 E	Bronchitis	2023-02-01
4 2023-0			Female	1	0	0	1	150	260	Pneumonia	

DataFrame 2:

ID Age_Years Sex BP_Systolic Cholesterol_Level Condition Fever

⁻⁻⁻ After Cleaning Missing Values and Initial Conversions ---

Department of Computer Science & Engineering (Data Science)

0 11	38.0 Female	128.0	210.0 Flu 1
1 12	49.4 Male	135.0	230.0 Bronchitis 0
2 13	65.0 Female	128.2	200.0 Pneumonia 1
3 14	52.0 Male	130.0	225.0 Flu 0
4 15	48.0 Female	120.0	216.2 Asthma 1

--- After Integration (Concatenation) ---

PatientID Age Gender Fever Cough Fatigue DifficultyBreathing BloodPressure Cholesterol Diagnosis Hospital_Visit_Date

	1 45.0 Ma 2 62.0 Fer 1-20							Flu Pneumonia	2023-01-15 a
2 2023-0	3 30.0 Fer 1-22	male 1	0	0	1	110.0	180.0	Asthma	
3 2023-0	4 55.0 M 2-01	lale 0	1	1	0	130.0	220.0 E	Bronchitis	
4 2023-0	5 70.0 Fer 2-05	male 1	0	0	1	150.0	260.0	Pneumonia	а
5	6 28.0 M	ale 0	1	1	0	115.0	190.0	Flu	2023-02-10
6 2023-0	7 50.0 Fer 2-12	male 1	1	0	1	125.0	210.0	Asthma	
7 2023-0	8 68.0 M 2-18	lale 0	0	1	0	145.0	250.0 E	Bronchitis	
8	9 35.0 Fer 20	male 1	1	0	1	118.0	185.0	Flu	2023-02-
9	10 42.0 M	Male C	0	1	0	122.0	205.0	Asthma	

Department of Computer Science & Engineering (Data Science)

2023-02-25

10	11 38.0 Female	1	0	0	0	128.0	210.0	Flu	NaT
11	12 49.4 Male	0	0	0	0	135.0	230.0 Bro	nchitis	NaT

--- After Transformation ---

PatientID Age Fever Cough Fatigue DifficultyBreathing BloodPressure Cholesterol Gender_Encoded Diagnosis_Encoded Visit_Month Visit_DayOfWeek

0 1.0	1 -0.347072 6.0	1	1	0	0	-0.671373	-0.575677	1	2
1 1.0	2 1.037466 4.0	0	1	1	0	0.999661	1.025345	0	3
2 1.0	3 -1.543592 6.0	1	0	0	1	-1.428906	-1.376189	0	0
3 2.0	4 0.395726 4.0	0	1	1	0	0.155127	0.224834	1	1
4 2.0	5 1.678732 0.0	1	0	0	1	1.844195	1.825857	0	3
5 2.0	6 -1.704258 5.0	0	1	1	0	-1.049440	-0.975933	1	2
6 2.0	7 0.084400 0.0	1	1	0	1	-0.251106	-0.175422	0	0
7 2.0	8 1.518065 5.0	0	0	1	0	1.424928	1.425599	1	1
8 2.0	9 -1.142099 3.0	1	1	0	1	-0.809289	-1.176061	0	2
9 2.0	10 -0.587905 5.0	0	0	1	0	-0.491263	-0.375550	1	0

Department of Computer Science & Engineering (Data Science)

10	11 -0.892900 NaN Na	0	0	0	-0.080599	-0.175422	0	2
11	12 -0.040004 NaN Na	0	0	0	0.490799	0.625090	1	1

DataFrame Info after Transformation:

<class 'pandas.core.frame.DataFrame'>

Non-Null Count Dtype

RangeIndex: 15 entries, 0 to 14

Data columns (total 12 columns):

Column

					•
				•	
0	PatientID	15	non-null	int6	4
1	Age	15 n	on-null	float6	64
2	Fever	15 n	on-null	int64	
3	Cough	15	non-null	int6	4
4	Fatigue	15 r	non-null	int64	4
5	DifficultyBreath	ning 1	15 non-nເ	ull ir	nt64
6	BloodPressure		15 non-n	ull f	loat64
7	Cholesterol	15	non-null	floa	at64
8	Gender_Encod	led	15 non	-null	int32
9	Diagnosis_End	oded	15 nor	า-null	int32
10	Visit_Month	10) non-nul	l flo	at64
11	Visit_DayOfWe	eek	10 non-	null	float64

dtypes: float64(5), int32(2), int64(5)

memory usage: 1.4 KB

Unique values for 'Gender_Encoded': [1 0]

Unique values for 'Diagnosis Encoded': [2 3 0 1]

--- Final Transformed Dataset Sample --- PatientID Age Fever Cough Fatigue DifficultyBreathing BloodPressure Cholesterol
Gender Encoded Diagnosis Encoded Visit Month Visit DayOfWeek

2 1.0	3 -1.543592 6.0	1	0	0	1	-1.428906	-1.376189	0	0
12 NaN	13 1.357400 NaN	1	0	0	0	0.000000	-0.575677	0	3
6 2.0	7 0.084400 0.0	1	1	0	1	-0.251106	-0.175422	0	0
11 NaN	12 -0.040004 NaN	0	0	0	0	0.490799	0.625090	1	1
9 2.0	10 -0.587905 5.0	0	0	1	0	-0.491263	-0.375550	1	0

Conclusion:

The Disease Symptoms and Patient Profile Dataset experiment has unveiled intricate connections between symptoms, demographics, and health indicators. This dataset offers a powerful lens into disease dynamics, enabling researchers to uncover hidden patterns and correlations. The integration of fever, cough, fatigue, difficulty breathing, age, gender, blood pressure, and cholesterol levels has provided profound insights for personalized healthcare strategies. This endeavor promises to advance diagnostic accuracy, treatment efficacy, and patient outcomes, revolutionizing medical research and practice. As a result, this dataset stands as a transformative

tool, paving the way for a more comprehensive understanding of diseases and ushering in a new era of informed healthcare decision-making.