Banco de Dados

ÁLGEBRA RELACIONAL - PARTE II

Bibliografia

ELMASRI, R.; SHAMKANT, B.N. *Sistemas de banco de dados.* 7º edição. São Paulo: Pearson, 2018.

- Capítulo 8: Álgebra e cálculo relacional

HEUSER, C.A. *Banco de dados relacional: conceitos, linguagens e administração.* 1º edição. Clube de Autores, 2019.

- Capítulo 3: Álgebra relacional I
- Capítulo 4: Álgebra relacional II

Introdução

- Na Parte I sobre Álgebra Relacional foram apresentados os operadores básicos desta linguagem:
 - Seleção
 - Projeção
 - Atribuição e renomear
 - União, interseção e diferença
 - Produto cartesiano.
- Agora, vamos estudar alguns operadores adicionais:
 - Junções:
 - Junções internas
 - Junções externas
 - Divisão
 - Projeção generalizada
 - Funções de agregação e agrupamento

- Em muitas consultas, o produto cartesiano é seguido de uma seleção que compara valores das linhas das tabelas que compõem o produto cartesiano.
 - Esta sequência de PRODUTO CARTESIANO seguida por SELEÇÃO é muito frequente na prática.
- Dessa forma, uma operação especial, chamada JUNÇÃO, foi criada para especificar essa sequência como uma única operação.
 - Operações de **JUNÇÃO** são usadas para combinar *tuplas relacionadas* de duas relações em uma única tupla "maior".
- Operações de **JUNÇÃO** são muito importantes para qualquer banco de dados relacional com mais de uma relação, porque nos permite processar associações entre as relações.

Junção interna

- A **junção interna** em inglês, **inner join** ou simplesmente **junção**, tem este nome para distingui-la das operações de **junção externa**.
 - As junções externas serão apresentadas mais a frente.

- Existem três tipos de junção interna:
 - Junção condicional
 - Equijunção
 - Junção natural

Junção interna

Junção condicional

• A junção condicional, também conhecida por junção theta, possui a seguinte sintaxe:

$$R_1 \bowtie_{condição} R_2$$

- A designação junção theta ou θ-junção vem do fato de que os primeiros autores sobre o assunto utilizavam a legra grega θ (theta) para representar os conectores lógicos de comparação (=, <, >, ≤, ...).
 - Neste contexto, o termo theta-junção servia para indicar o tipo de junção, na qual qualquer operador de comparação pode ser usado, diferentemente dos outros tipos de junções, como será mostrado a seguir.
 - Os demais tipos de junção são restritos a comparações de igualdade.

Junção interna

Junção condicional

• A **junção condicional**, também conhecida por *junção theta*, possui a seguinte sintaxe:

- A designação junção theta ou θ-junção vem do fato de que os primeiros autores sobre o assunto utilizavam a legra grega θ (theta) para representar os conectores lógicos de comparação (=, <, >, ≤, ...).
 - Neste contexto, o termo theta-junção servia para indicar o tipo de junção, na qual qualquer operador de comparação pode ser usado, diferentemente dos outros tipos de junções, como será mostrado a seguir.
 - Os demais tipos de junção são restritos a comparações de igualdade.

Junção interna

Junção condicional

• A junção condicional, também conhecida por junção theta, possui a seguinte sintaxe:

Do lado esquerdo e do lado direito do operador são especificadas as relações utilizadas na operação de junção.

A relação costuma ser uma **expressão da álgebra relacional**, cujo resultado é uma relação. A mais simples expressão desse tipo é apenas o nome de uma relação de banco de dados.

- A designação junção theta ou θ-junção vem do fato de que os primeiros autores sobre o assunto utilizavam a legra grega θ (theta) para representar os conectores lógicos de comparação (=, <, >, ≤, ...).
 - Neste contexto, o termo theta-junção servia para indicar o tipo de junção, na qual qualquer operador de comparação pode ser usado, diferentemente dos outros tipos de junções, como será mostrado a seguir.
 - Os demais tipos de junção são restritos a comparações de igualdade.

Junção interna

Junção condicional

• A junção condicional, também conhecida por junção theta, possui a seguinte sintaxe:

Uma condição da junção condicional é uma expressão lógica que relaciona os atributos de $\rm R_1$ aos atributos de $\rm R_2$.

A expressão lógica pode ser definida utilizando os operadores relacionais =, \neq , <, \leq , >, \geq , e, também, os operadores lógicos *AND*, *OR*, e *NOT*.

- A designação junção theta ou θ-junção vem do fato de que os primeiros autores sobre o assunto utilizavam a legra grega θ (theta) para representar os conectores lógicos de comparação (=, <, >, ≤, ...).
 - Neste contexto, o termo theta-junção servia para indicar o tipo de junção, na qual qualquer operador de comparação pode ser usado, diferentemente dos outros tipos de junções, como será mostrado a seguir.
 - Os demais tipos de junção são restritos a comparações de igualdade.

Junção interna

Junção condicional

• Exemplo de uso da operação JUNÇÃO CONDICIONAL:

Dadas as relações:

usuarios

<u>id</u>	nome		
1	Patrícia Figueiredo		
2	Cátia Varela		
3	Hélder Franca		
4	Ezequiel Souto		

livros

<u>id</u>	titulo		
1	A revolução dos bichos		
2	O mundo assombrado pelos demônios		
3	O andar do bêbado		
4	O guia do mochileiro das galáxias		

leituras

usuario id	livro id	<u>data leitura</u>
1	2	2021-01-13
1	3	2019-04-21
2	1	2020-07-06
2	2	2020-12-05
2	3	2021-06-21
4	3	2021-07-01

id	nome	usuario_id	livro_id	data_leitura
1	Patrícia Figueiredo	1	2	2021-01-13
1	Patrícia Figueiredo	1	3	2019-04-21
2	Cátia Varela	2	1	2020-07-06
2	Cátia Varela	2	2	2020-12-05
2	Cátia Varela	2	3	2021-06-21
4	Ezequiel Souto	4	3	2021-07-01

Junção interna

Junção condicional

• Exemplo de uso da operação JUNÇÃO CONDICIONAL:

Dadas as relações:

usuarios

<u>id</u>	nome		
1	Patrícia Figueiredo		
2	Cátia Varela		
3	Hélder Franca		
4	Ezequiel Souto		

livros

<u>id</u>	titulo		
1	A revolução dos bichos		
2	O mundo assombrado pelos demônios		
3	O andar do bêbado		
4	O guia do mochileiro das galáxias		

leituras

usuario id	livro id	<u>data leitura</u>
1	2	2021-01-13
1	3	2019-04-21
2	1	2020-07-06
2	2	2020-12-05
2	3	2021-06-21
4	3	2021-07-01

A operação **usuarios** ⋈ _{id = usuario id} **leituras** resulta em:

id	nome	usuario_id	livro_id	data_leitura
1	Patrícia Figueiredo	1	2	2021-01-13
1	Patrícia Figueiredo	1	3	2019-04-21
2	Cátia Varela	2	1	2020-07-06
2	Cátia Varela	2	2	2020-12-05
2	Cátia Varela	2	3	2021-06-21
4	Ezequiel Souto	4	3	2021-07-01

A operação de junção condicional corresponde a:

- 1. Executar o produto cartesiano das duas relações.
- 2. Sobre o resultado deste produto cartesiano, executar uma seleção usando a **condição de junção** como critério.

Junção interna

Junção condicional

• Exemplo de uso da operação JUNÇÃO CONDICIONAL:

Dadas as relações:

usuarios

<u>id</u>	nome		
1	Patrícia Figueiredo		
2	Cátia Varela		
3	Hélder Franca		
4	Ezequiel Souto		

livros

<u>id</u>	titulo		
1	A revolução dos bichos		
2	O mundo assombrado pelos demônios		
3	O andar do bêbado		
4	O guia do mochileiro das galáxias		

leituras

usuario id	<u>livro id</u>	<u>data leitura</u>
1	2	2021-01-13
1	3	2019-04-21
2	1	2020-07-06
2	2	2020-12-05
2	3	2021-06-21
4	3	2021-07-01

A operação **usuarios** ⋈ _{id = usuario} _{id} **leituras** resulta em:

id	nome	usuario_id	livro_id	data_leitura
1	Patrícia Figueiredo	1	2	2021-01-13
1	Patrícia Figueiredo	1	3	2019-04-21
2	Cátia Varela	2	1	2020-07-06
2	Cátia Varela	2	2	2020-12-05
2	Cátia Varela	2	3	2021-06-21
4	Ezequiel Souto	4	3	2021-07-01

A operação de junção condicional corresponde a:

- .. Executar o produto cartesiano das duas relações.
- 2. Sobre o resultado deste produto cartesiano, executar uma seleção usando a **condição de junção** como critério.

Mais precisamente, a operação de junção é equivalente à expressão:

$$\sigma_{condição} (R_1 \times R_2)$$

Ou seja,

usuarios ⋈ _{id = usuario id} leituras

equivale a:

 $\sigma_{id = usuario_{id}}$ (usuarios × leituras)

Junção interna

Junção condicional

- Algumas propriedades:
 - Uma junção $R \bowtie_{\text{condição}} S$ sobre as relações $R(A_1, A_2, ..., A_n)$ e $S(B_1, B_2, ..., B_m)$ resulta em uma relação Q com n+m atributos da forma $Q(A_1, A_2, ..., A_n, B_1, B_2, ..., B_m)$ nessa ordem.
 - Q terá uma tupla para cada combinação de tuplas (uma em R e uma em S) sempre que a combinação satisfazer a condição de junção.
 - A condição de junção é especificada sobre atributos das duas relações *R* e *S* e é avaliada para cada combinação de tuplas.
 - Cada combinação de tupla para a qual a condição de junção é avaliada com vedadeiro (*true*) é incluída na relação resultante *Q* como uma única tupla combinada.
 - As tuplas cujos atributos de junção são *NULL* ou dos quais a condição de junção é falsa (*false*) não aparecem no resultado.
 - Em uma junção, apenas combinações de tuplas que satisfaçam a condição de junção aparecem no resultado, ao passo que no produto cartesiano todas as combinações de tuplas são incluídas no resultado.

Junção interna

Junção condicional

- Algumas propriedades:
 - Dada uma junção $R \bowtie_{\text{condição}} S$ sobre as relações $R(A_1, A_2, ..., A_n)$ e $S(B_1, B_2, ..., B_m)$, uma condição de junção geral tem a forma:

<condição> AND <condição> AND ... AND <condição>

em que cada < condição > tem a forma $A_i \theta B_i$, sendo:

- A_i é um atributo de R;
- B_i é um atributo de S;
- e θ (*theta*) é um dos operadores de comparação {=, ≠, <, ≤, >, ≥}.
- Uma operação JUNÇÃO com essa condição de junção geral é chamada de JUNÇÃO THETA.

Junção interna

Junção condicional

- Algumas propriedades:
 - Se nenhuma combinação de tuplas satisfizer a condição de junção, o resultado será uma relação vazia com zero tupla.
 - Em geral, ser R tiver n_R tuplas e S tiver n_S tuplas, o resultado de uma operação de junção $R \bowtie_{\text{condição}} S$ terá entre zero e n_R . n_S tuplas.
 - O tamanho esperado do resultado da junção dividido pelo tamanho máximo n_R . n_S leva a uma razão chamada **seletividade de junção**, que é uma propriedade de cada condição de junção.
 - Se não houver condição de junção, todas as combinações de tuplas se qualificam e a junção se degenera em um **PRODUTO CARTESIANO**, também chamado de **PRODUTO CRUZADO** ou **JUNÇÃO CRUZADA**.

Junção interna

Junção condicional

- Às vezes, uma junção pode ser especificada entre uma relação e si mesma.
 - Exemplo:

Dada a relação abaixo:

funcionarios

id	nome	sobrenome	supervisor_id
1	Susana	Yao	
2	Ronaldo	Lima	1
3	José	Gonçalves	1
4	Barbara	Pires	
5	Ana	Tavares	4
6	Jonas	Wang	5
7	Ernesto	Gilberto	5
1			

Junção interna

Junção condicional

- Às vezes, uma junção pode ser especificada entre uma relação e si mesma.
 - Exemplo:

Dada a relação abaixo:

funcionarios

id	nome	sobrenome	supervisor_id
1	Susana	Yao	
2	Ronaldo	Lima	1
3	José	Gonçalves	1
4	Barbara	Pires	
5	Ana	Tavares	4
6	Jonas	Wang	5
7	Ernesto	Gilberto	5
†			

A junção **funcionarios** ⋈ _{supervisor_id = id} **funcionarios** resulta em:

id	nome	sobrenome	supervisor_id	id	nome	sobrenome	supervisor_id
2	Ronaldo	Lima	1	1	Susana	Yao	
3	José	Gonçalves	1	1	Susana	Yao	
5	Ana	Tavares	4	4	Barbara	Pires	
6	Jonas	Wang	5	5	Ana	Tavares	4
7	Ernesto	Gilberto	5	5	Ana	Tavares	4

Junção interna

Junção condicional

- Às vezes, uma junção pode ser especificada entre uma relação e si mesma.
 - Exemplo:

Dada a relação abaixo:

funcionarios

id	nome	sobrenome	supervisor_id
1	Susana	Yao	
2	Ronaldo	Lima	1
3	José	Gonçalves	1
4	Barbara	Pires	
5	Ana	Tavares	4
6	Jonas	Wang	5
7	Ernesto	Gilberto	5
1			

A junção **funcionarios** ⋈ _{supervisor_id = id} **funcionarios** resulta em:

id	nome	sobrenome	supervisor_id	id	nome	sobrenome	supervisor_id
2	Ronaldo	Lima	1	1	Susana	Yao	
3	José	Gonçalves	1	1	Susana	Yao	
5	Ana	Tavares	4	4	Barbara	Pires	
6	Jonas	Wang	5	5	Ana	Tavares	4
7	Ernesto	Gilberto	5	5	Ana	Tavares	4

Dados do funcionário supervisionado.

Dados do funcionário supervisor.

Junção interna

Junção condicional

- Às vezes, uma junção pode ser especificada entre uma relação e si mesma.
 - Exemplo:

Dada a relação abaixo:

funcionarios

id	nome	sobrenome	supervisor_id
1	Susana	Yao	
2	Ronaldo	Lima	1
3	José	Gonçalves	1
4	Barbara	Pires	
5	Ana	Tavares	4
6	Jonas	Wang	5
7	Ernesto	Gilberto	5
1			

Junção interna

Junção condicional

- Às vezes, uma junção pode ser especificada entre uma relação e si mesma.
 - Exemplo:

Dada a relação abaixo:

funcionarios

id	nome	sobrenome	supervisor_id
1	Susana	Yao	
2	Ronaldo	Lima	1
3	José	Gonçalves	1
4	Barbara	Pires	
5	Ana	Tavares	4
6	Jonas	Wang	5
7	Ernesto	Gilberto	5

A junção **funcionarios** ⋈ _{supervisor_id=id} **funcionarios** resulta em:

Junção interna

Junção condicional

- Em SQL, uma junção condicional pode ser realizada de diferentes formas.
 - Alternativa 1:

Especificar as duas tabelas na cláusula *FROM* e a condição de junção na cláusula *WHERE*.

• Exemplo:

A operação de junção a seguir:

usuarios ⋈ _{id = usuario id} leituras

Corresponde à seguinte consulta SQL:

```
SELECT *
FROM
   usuarios,
   leituras
WHERE
   usuarios.id = leituras.usuario_id;
```

Junção interna

Junção condicional

- Em SQL, uma junção condicional pode ser realizada de diferentes formas.
 - Alternativa 2:

Após especificar uma primeira tabela com a cláusula *FROM*, a tabela seguinte (utilizada na junção) é especificada com a cláusula *INNER JOIN*, com a condição de junção especificada na cláusula *ON*.

• Exemplo:

A operação de junção a seguir:

```
usuarios ⋈ <sub>id = usuario id</sub> leituras
```

Corresponde à seguinte consulta SQL:

```
SELECT *
FROM
   usuarios
   INNER JOIN leituras ON usuarios.id = leituras.usuarios_id;
```

Junção interna

Junção condicional

- Em SQL, uma junção condicional pode ser realizada de diferentes formas.
 - Alternativa 2:

Após especificar uma primeira tabela com a cláusula *FROM*, a tabela seguinte (utilizada na junção) é especificada com a cláusula *INNER JOIN*, com a condição de junção especificada na cláusula *ON*.

• Exemplo:

A operação de junção a seguir:

Junção interna

Equijunção

- O uso mais comum de JUNÇÃO envolve condições de junção apenas em comparações de igualdade.
 - Esse tipo de JUNÇÃO, em que o único operador de comparação usado é =, é chamado de EQUIJUNÇÃO.
- O exemplo apresentado anteriormente, e reproduzido abaixo, é de uma EQUIJUNÇÃO.

usuarios

<u>id</u>	nome
1	Patrícia Figueiredo
2	Cátia Varela
3	Hélder Franca
4	Ezequiel Souto

id = usuario_id

leituras

usuario id	<u>livro id</u>	<u>data leitura</u>
1	2	2021-01-13
1	3	2019-04-21
2	1	2020-07-06
2	2	2020-12-05
2	3	2021-06-21
4	3	2021-07-01

id	nome	usuario_id	livro_id	data_leitura
1	Patrícia Figueiredo	1	2	2021-01-13
1	Patrícia Figueiredo	1	3	2019-04-21
2	Cátia Varela	2	1	2020-07-06
2	Cátia Varela	2	2	2020-12-05
2	Cátia Varela	2	3	2021-06-21
4	Ezequiel Souto	4	3	2021-07-01

Junção interna

Equijunção

- O uso mais comum de JUNÇÃO envolve condições de junção apenas em comparações de igualdade.
 - Esse tipo de JUNÇÃO, em que o único operador de comparação usado é =, é chamado de EQUIJUNÇÃO.
- O exemplo apresentado anteriormente, e reproduzido abaixo, é de uma EQUIJUNÇÃO.

Junção interna

Equijunção

• Como as equijunções são junções condicionais onde as condições são limitadas a comparações de igualdade, podemos utilizar uma notação alternativa:

$$R_1 \bowtie_{(atributos de R_1), (atributos de R_2)} R_2$$

• Por exemplo, a equijunção:

é equivalente à junção condicional:

Junção interna

Junção natural

- No resultado de uma **EQUIJUNÇÃO**, sempre temos um ou mais pares de atributos que possuem valores idênticos em cada tupla.
 - Portanto, um de cada par de atributos com valores idênticos é supérfluo

Junção interna

Junção natural

- Devido ao resultado de uma **equijunção** sempre apresentar uma coluna redundante, uma nova operação, chamada **junção natural** (e representada pelo símbolo ★) foi criada.
- Diferentemente da equijunção, a junção natural elimina o segundo atributo (supérfluo) do resultado.
 - Uma junção natural é basicamente uma equijunção seguida pela remoção dos atributos supérfluos.
- A definição padrão de **junção natural** requer que os dois atributos de junção (ou cada par de atributos de junção) tenham o mesmo nome nas duas relações.
 - Se isso não acontecer, uma operação de renomeação deve ser aplicada primeiro.

Junção interna

Junção natural

• A junção natural possui a seguinte sintaxe:

$$R_1 \star R_2$$

• Em geral, a condição de junção para **JUNÇÃO NATURAL** é construída igualando-se cada par de atributos de junção que tem o mesmo nome nas duas relações e combinando essas condições com *AND*.

Junção interna

Junção natural

• A junção natural possui a seguinte sintaxe:

• Em geral, a condição de junção para JUNÇÃO NATURAL é construída igualando-se cada par de atributos de junção que tem o mesmo nome nas duas relações e combinando essas condições com AND.

Junção interna

Junção natural

• A junção natural possui a seguinte sintaxe:

Do lado esquerdo e do lado direito do operador são especificadas as relações utilizadas na operação de junção.

A relação costuma ser uma **expressão da álgebra relacional**, cujo resultado é uma relação. A mais simples expressão desse tipo é apenas o nome de uma relação de banco de dados.

• Em geral, a condição de junção para **JUNÇÃO NATURAL** é construída igualando-se cada par de atributos de junção que tem o mesmo nome nas duas relações e combinando essas condições com *AND*.

Junção interna

Junção natural

• Exemplo de uso da operação JUNÇÃO NATURAL:

Dadas as relações:

usuarios

<u>id</u>	nome
1	Patrícia Figueiredo
2	Cátia Varela
3	Hélder Franca
4	Ezequiel Souto

livros

<u>id</u>	titulo
1	A revolução dos bichos
2	O mundo assombrado pelos demônios
3	O andar do bêbado
4	O guia do mochileiro das galáxias

leituras

usuario id	livro id	<u>data leitura</u>
1	2	2021-01-13
1	3	2019-04-21
2	1	2020-07-06
2	2	2020-12-05
2	3	2021-06-21
4	3	2021-07-01

A operação $ho_{ ext{(usuario_id, nome)}}$ (usuarios) ightharpoonup leituras resulta em:

usuario_id	nome	livro_id	data_leitura
1	Patrícia Figueiredo	2	2021-01-13
1	Patrícia Figueiredo	3	2019-04-21
2	Cátia Varela	1	2020-07-06
2	Cátia Varela	2	2020-12-05
2	Cátia Varela	3	2021-06-21
4	Ezequiel Souto	3	2021-07-01

Junção interna

Junção natural

• Exemplo de uso da operação JUNÇÃO NATURAL:

Dadas as relações:

usuarios

<u>id</u>	nome	
1	Patrícia Figueiredo	
2	Cátia Varela	
3	Hélder Franca	
4	Ezequiel Souto	

livros

<u>id</u>	titulo		
1	A revolução dos bichos		
2	O mundo assombrado pelos demônios		
3	O andar do bêbado		
4	O guia do mochileiro das galáxias		

leituras

usuario id	<u>livro id</u>	<u>data leitura</u>
1	2	2021-01-13
1	3	2019-04-21
2	1	2020-07-06
2	2	2020-12-05
2	3	2021-06-21
4	3	2021-07-01

A operação ρ_(usuario_id, nome)(usuarios) ★ leituras resulta em:

usuario_id	nome	livro_id	data_leitura
1	Patrícia Figueiredo	2	2021-01-13
1	Patrícia Figueiredo	3	2019-04-21
2	Cátia Varela	1	2020-07-06
2	Cátia Varela	2	2020-12-05
2	Cátia Varela	3	2021-06-21
4	Ezequiel Souto	3	2021-07-01

Observe que primeiro renomeamos o atributo id da relação usuarios para usuario_id, de modo que as relações usuarios e leituras tenham os atributos com o mesmo nome para, então, realizar a operação de JUNÇÃO NATURAL.

Junção interna

Junção natural

• Exemplo de uso da operação JUNÇÃO NATURAL:

Dadas as relações:

usuarios

<u>id</u>	nome	
1	Patrícia Figueiredo	
2	Cátia Varela	
3	Hélder Franca	
4	Ezequiel Souto	

livros

<u>id</u>	titulo
1	A revolução dos bichos
2	O mundo assombrado pelos demônios
3	O andar do bêbado
4	O guia do mochileiro das galáxias

leituras

usuario id	livro id	data leitura	
1	2	2021-01-13	
1	3	2019-04-21	
2	1	2020-07-06	
2	2	2020-12-05	
2	3	2021-06-21	
4	3	2021-07-01	

A operação $ho_{ ext{(usuario_id, nome)}}$ (usuarios) ightharpoonup leituras resulta em:

usuario_id	nome	livro_id	data_leitura
1	Patrícia Figueiredo	2	2021-01-13
1	Patrícia Figueiredo	3	2019-04-21
2	Cátia Varela	1	2020-07-06
2	Cátia Varela	2	2020-12-05
2	Cátia Varela	3	2021-06-21
4	Ezequiel Souto	3	2021-07-01

Na relação resultante, **somente um** valor de atributo de junção é mantido.

Junção interna

Junção natural

- Em SQL, a operação de junção natural pode ser realizada através da cláusula NATURAL JOIN.
 - Exemplo:

A operação de junção natura a seguir:

```
ho_{\text{u(usuario\_id, nome)}}(usuarios) 
ightstar leituras
```

Corresponde à seguinte consulta SQL:

```
SELECT *
FROM
  (SELECT id AS usuario_id, nome) AS u
  NATURAL JOIN leituras;
```

Junção interna

Junção natural

- A junção natural possibilita a escrita de consultas mais sucintas que os outros tipos de junção.
 - Entretanto, o critério de junção não é explicitamente definido na consulta, mas definido implicitamente pelo esquema do banco de dados (atributos homônimos).
- Caso o esquema do banco de dados mude ao longo do tempo e novos atributos (colunas) homônimos sejam definidos nas relações (tabelas) operando de uma junção natural, esta passará a ter um comportamento diverso daquele que tinha quando executada sobre o esquema original do banco de dados.
 - O resultado da junção passa a ser diverso, mas nenhuma exceção é sinalizada, dificultando a identificação do problema.

Junção interna

Junção natural

- Na prática, uma forma de minimizar esse possível problema, pode-se usar uma sintaxe alternativa do INNER JOIN.
 - Ao invés de especificar a condição de junção com a cláusula ON, é especificado uma lista de colunas que deverão ser utilizadas como critério de junção com a cláusula USING.
 - Exemplo:

A operação de junção natura a seguir:

```
ho_{\text{u(usuario\_id, nome)}}(usuarios) 
ightstar leituras
```

Pode ser escrita como uma consulta SQL da seguinte forma:

```
SELECT *
FROM

(SELECT id AS usuario_id, nome) AS u
INNER JOIN leituras USING (usuario_id);
```

Junção interna

Junção natural

- Na prática, uma forma de minimizar esse possível problema, pode-se usar uma sintaxe alternativa do *INNER JOIN*.
 - Ao invés de especificar a condição de junção com a cláusula *ON*, é especificado uma lista de colunas que deverão ser utilizadas como critério de junção com a cláusula *USING*.
 - Exemplo:

A operação de junção natura a seguir:

```
\pmb{\rho}_{\text{u(usuario\_id, nome)}} \text{(usuarios)} \bigstar \text{leituras}
```

Pode ser escrita como uma consulta SQL da seguinte forma:

```
SELECT *
FROM

(SELECT id AS usuario id, nome) AS u
INNER JOIN leituras USING (usuario_id);
```

Caso mais de uma coluna seja necessária para a junção, elas devem ser separadas por vírgula.

Junção externa

- As operações de junção descritas anteriormente, ou seja, as **junções internas**, combinam tuplas que satisfazem uma condição de junção.
 - Exemplo: Dadas as relações abaixo:

funcionarios

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod
1	Patrícia	Figueiredo	
2	Cátia	Varela	ADM
3	Hélder	Franca	
4	Ezequiel	Souto	RH
5	Bárbara	Pires	RH

${\tt departamentos}$

cod	nome_departamento		
ADM	Administrativo		
FIN	Financeiro		
RH	Recursos Humanos		
COM	Comercial		

Junção externa

- As operações de junção descritas anteriormente, ou seja, as **junções internas**, combinam tuplas que satisfazem uma condição de junção.
 - Exemplo: Dadas as relações abaixo:

funcionarios

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod
1	Patrícia	Figueiredo	
2	Cátia	Varela	ADM
3	Hélder	Franca	
4	Ezequiel	Souto	RH
5	Bárbara	Pires	RH

departamentos

cod	nome_departamento		
ADM	Administrativo		
FIN	Financeiro		
RH	Recursos Humanos		
COM	Comercial		

Na operação de junção:

funcionarios ⋈ _{dept cod = cod} departamentos,

somente as tuplas de **funcionarios** que possuem tuplas combinando em **departamentos**, e vice-versa, aparecem no resultado:

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod	<u>cod</u>	nome_departamento
2	Cátia	Varela	ADM	ADM	Administrativo
4	Ezequiel	Souto	RH	RH	Recursos Humanos
5	Bárbara	Pires	RH	RH	Recursos Humanos

Junção externa

- As operações de junção descritas anteriormente, ou seja, as **junções internas**, combinam tuplas que satisfazem uma condição de junção.
 - Exemplo:
 Dadas as relações abaixo:

funcionarios

Na operação de junção:

funcionarios ⋈ _{dept cod = cod} departamentos,

somente as tuplas de **funcionarios** que possuem tuplas combinando em **departamentos**, e vice-versa, aparecem no resultado:

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod	<u>cod</u>	nome_departamento
2	Cátia	Varela	ADM	ADM	Administrativo
4	Ezequiel	Souto	RH	RH	Recursos Humanos
5	Bárbara	Pires	RH	RH	Recursos Humanos

Nas **junções internas**, as tuplas sem uma tupla **correspondente** (ou **relacionada**) são eliminadas do resultado da junção. As tuplas com valores *NULL* (vazio) nos atributos de junção também são eliminadas.

Junção externa

- Um conjunto de operações, chamadas **junções externas** em inglês, **outer joins** foi desenvolvido para o caso em que o usuário deseja manter todas as tuplas de uma das relações (ou das duas relações) utilizadas no resultado da junção, independentemente de elas possuírem ou não tuplas correspondentes na outra relação.
- As junções externas satisfazem a necessidade de consultas em que as tuplas das duas tabelas devem ser combinadas por linhas correspondentes, mas sem perda de quaisquer tuplas por falta de valores correspondentes.
 - Por exemplo, suponha que queiramos uma lista de todos os funcionários, bem como o nome dos departamentos que eles trabalham.
 - No resultado de uma junção interna, os funcionários que não estão lotados em nenhum departamento não aparecerão nos resultados.
- Existem três tipos de junções externas:
 - Junção externa à esquerda;
 - Junção externa à direita;
 - Junção externa completa.

Junção externa

Junção externa à esquerda

• A junção externa à esquerda – em inglês, left outer join – possui a seguinte sintaxe:

- A operação de **junção externa à esquerda**, R ⋈_{condição} S, entre as relações R e S, mantém cada tupla na primeira relação, R (ou seja, a relação da **esquerda**) mesmo que a tupla ela não possua nenhuma tupla correspondente na relação S.
 - Nos casos em que as tuplas de *R* não possuírem correspondentes em *S*, os atributos de *S* no resultado da junção são preenchidos com valor *NULL*.

Junção externa

Junção externa à esquerda

• A junção externa à esquerda – em inglês, *left outer join* – possui a seguinte sintaxe:

- A operação de **junção externa à esquerda**, R ⋈_{condição} S, entre as relações R e S, mantém cada tupla na primeira relação, R (ou seja, a relação da **esquerda**) mesmo que a tupla ela não possua nenhuma tupla correspondente na relação S.
 - Nos casos em que as tuplas de *R* não possuírem correspondentes em *S*, os atributos de *S* no resultado da junção são preenchidos com valor *NULL*.

Junção externa

Junção externa à esquerda

• A junção externa à esquerda – em inglês, *left outer join* – possui a seguinte sintaxe:

tipo é apenas o nome de uma relação de banco de dados.

- A operação de **junção externa à esquerda**, R ⋈_{condição} S, entre as relações R e S, mantém cada tupla na primeira relação, R (ou seja, a relação da **esquerda**) mesmo que a tupla ela não possua nenhuma tupla correspondente na relação S.
 - Nos casos em que as tuplas de *R* não possuírem correspondentes em *S*, os atributos de *S* no resultado da junção são preenchidos com valor *NULL*.

Junção externa

Junção externa à esquerda

• A junção externa à esquerda – em inglês, *left outer join* – possui a seguinte sintaxe:

Uma condição da junção é uma expressão lógica que relaciona os atributos de R aos atributos de S.

A expressão lógica pode ser definida utilizando os operadores relacionais =, \neq , <, \leq , >, \geq , e, também, os operadores lógicos *AND*, *OR*, e *NOT*.

- A operação de **junção externa à esquerda**, R ⋈_{condição} S, entre as relações R e S, mantém cada tupla na primeira relação, R (ou seja, a relação da **esquerda**) mesmo que a tupla ela não possua nenhuma tupla correspondente na relação S.
 - Nos casos em que as tuplas de *R* não possuírem correspondentes em *S*, os atributos de *S* no resultado da junção são preenchidos com valor *NULL*.

Junção externa

Junção externa à esquerda

• Exemplo de uso da operação de junção externa à esquerda:

Dadas as relações abaixo:

funcionarios

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod
1	Patrícia	Figueiredo	
2	Cátia	Varela	ADM
3	Hélder	Franca	
4	Ezequiel	Souto	RH
5	Bárbara	Pires	RH

${\tt departamentos}$

cod	nome_departamento		
ADM	Administrativo		
FIN	Financeiro		
RH	Recursos Humanos		
COM	Comercial		

Junção externa

Junção externa à esquerda

• Exemplo de uso da operação de junção externa à esquerda:

Dadas as relações abaixo:

funcionarios

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod
1	Patrícia	Figueiredo	
2	Cátia	Varela	ADM
3	Hélder	Franca	
4	Ezequiel	Souto	RH
5	Bárbara	Pires	RH

departamentos

cod	nome_departamento
ADM	Administrativo
FIN	Financeiro
RH	Recursos Humanos
COM	Comercial

A operação de junção externa à esquerda:

funcionarios → dept cod = cod departamentos

resulta em uma relação contendo *todos* os funcionários com seus respectivos departamentos:

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod	cod	nome_departamento
1	Patrícia	Figueiredo			
2	Cátia	Varela	ADM	ADM	Administrativo
3	Hélder	Franca			
4	Ezequiel	Souto	RH	RH	Recursos Humanos
5	Bárbara	Pires	RH	RH	Recursos Humanos

Junção externa

Junção externa à esquerda

• Exemplo de uso da operação de junção externa à esquerda:

Dadas as relações abaixo:

funcionarios

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod
1	Patrícia	Figueiredo	
2	Cátia	Varela	ADM
3	Hélder	Franca	
4	Ezequiel	Souto	RH
5	Bárbara	Pires	RH

${\tt departamentos}$

cod	nome_departamento
ADM	Administrativo
FIN	Financeiro
RH	Recursos Humanos
COM	Comercial

A operação de junção externa à esquerda:

funcionarios → dept_cod = cod departamentos

resulta em uma relação contendo *todos* os funcionários com seus respectivos departamentos:

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod	<u>cod</u>	nome_departamento
1	Patrícia	Figueiredo			
2	Cátia	Varela	ADM	ADM	Administrativo
3	Hélder	Franca			
4	Ezequiel	Souto	RH	RH	Recursos Humanos
5	Bárbara	Pires	RH	RH	Recursos Humanos

Todas as tuplas da relação à esquerda do operador, neste caso a relação **funcionarios**, estarão presentes no resultado, tendo uma tupla correspondente à relação a direita do operador ou não.

Junção externa

Junção externa à esquerda

• Exemplo de uso da operação de junção externa à esquerda:

Dadas as relações abaixo:

funcionarios

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod
1	Patrícia	Figueiredo	
2	Cátia	Varela	ADM
3	Hélder	Franca	
4	Ezequiel	Souto	RH
5	Bárbara	Pires	RH

departamentos

<u>cod</u>	nome_departamento		
ADM	Administrativo		
FIN	Financeiro]_	ì
RH	Recursos Humanos		\
COM	Comercial		J
		-	

A operação de junção externa à esquerda:

funcionarios → dept cod = cod departamentos

resulta em uma relação contendo *todos* os funcionários com seus respectivos departamentos:

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod	<u>cod</u>	nome_departamento
1	Patrícia	Figueiredo			
2	Cátia	Varela	ADM	ADM	Administrativo
3	Hélder	Franca			
4	Ezequiel	Souto	RH	RH	Recursos Humanos
5	Bárbara	Pires	RH	RH	Recursos Humanos

No tentanto, tuplas da relação à direita do operador, neste caso a relação **departamentos**, que não tem uma tupla correspondente na relação à esquerda ainda são eliminadas do resultado.

Todas as tuplas da relação à esquerda do operador, neste caso a relação **funcionarios**, estarão presentes no resultado, tendo uma tupla correspondente à relação a direita do operador ou não.

Junção externa

Junção externa à direita

• A junção externa à direita – em inglês, *right outer join* – possui a seguinte sintaxe:

- A operação de **junção externa à direita**, R ⋈_{condição} S, entre as relações R e S, mantém cada tupla na segunda relação, S (ou seja, a relação da **direita**) mesmo que a tupla não possua nenhuma tupla correspondente na relação R.
 - Nos casos em que as tuplas de *S* não possuírem correspondentes em *R*, os atributos de *R* no resultado da junção são preenchidos com valor *NULL*.

Junção externa

Junção externa à direita

• A junção externa à direita – em inglês, *right outer join* – possui a seguinte sintaxe:

- A operação de **junção externa à direita**, **R** ⋈_{condição} **S**, entre as relações **R** e **S**, mantém cada tupla na segunda relação, **S** (ou seja, a relação da **direita**) mesmo que a tupla não possua nenhuma tupla correspondente na relação **R**.
 - Nos casos em que as tuplas de *S* não possuírem correspondentes em *R*, os atributos de *R* no resultado da junção são preenchidos com valor *NULL*.

Junção externa

Junção externa à direita

• A junção externa à direita – em inglês, right outer join – possui a seguinte sintaxe:

A relação costuma ser uma **expressão da álgebra relacional**, cujo resultado é uma relação. A mais simples expressão desse tipo é apenas o nome de uma relação de banco de dados.

- A operação de **junção externa à direita**, R ⋈_{condição} S, entre as relações R e S, mantém cada tupla na segunda relação, S (ou seja, a relação da **direita**) mesmo que a tupla não possua nenhuma tupla correspondente na relação R.
 - Nos casos em que as tuplas de *S* não possuírem correspondentes em *R*, os atributos de *R* no resultado da junção são preenchidos com valor *NULL*.

Junção externa

Junção externa à direita

• A junção externa à direita – em inglês, right outer join – possui a seguinte sintaxe:

Uma condição da junção é uma expressão lógica que relaciona os atributos de R aos atributos de S.

A expressão lógica pode ser definida utilizando os operadores relacionais =, \neq , <, \leq , >, \geq , e, também, os operadores lógicos *AND*, *OR*, e *NOT*.

- A operação de **junção externa à direita**, R ⋈_{condição} S, entre as relações R e S, mantém cada tupla na segunda relação, S (ou seja, a relação da **direita**) mesmo que a tupla não possua nenhuma tupla correspondente na relação R.
 - Nos casos em que as tuplas de *S* não possuírem correspondentes em *R*, os atributos de *R* no resultado da junção são preenchidos com valor *NULL*.

Junção externa

Junção externa à direita

• Exemplo de uso da operação de junção externa à direita:

Dadas as relações abaixo:

funcionarios

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod
1	Patrícia	Figueiredo	
2	Cátia	Varela	ADM
3	Hélder	Franca	
4	Ezequiel	Souto	RH
5	Bárbara	Pires	RH

${\tt departamentos}$

cod	nome_departamento
ADM	Administrativo
FIN	Financeiro
RH	Recursos Humanos
COM	Comercial

Junção externa

Junção externa à direita

• Exemplo de uso da operação de junção externa à direita:

Dadas as relações abaixo:

funcionarios

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod
1	Patrícia	Figueiredo	
2	Cátia	Varela	ADM
3	Hélder	Franca	
4	Ezequiel	Souto	RH
5	Bárbara	Pires	RH

${\tt departamentos}$

cod	nome_departamento
ADM	Administrativo
FIN	Financeiro
RH	Recursos Humanos
COM	Comercial

A operação de junção externa à direta:

funcionarios ⋈ dept cod = cod departamentos

resulta em uma relação contendo com *todos* os departamentos aparecendo pelo menos uma vez, mesmo que ele não tenha nenhum funcionário lotado.

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod	<u>cod</u>	nome_departamento
2	Cátia	Varela	ADM	ADM	Administrativo
4	Ezequiel	Souto	RH	RH	Recursos Humanos
5	Bárbara	Pires	RH	RH	Recursos Humanos
				FIN	Financeiro
				COM	Comercial

Junção externa

Junção externa à direita

• Exemplo de uso da operação de junção externa à direita:

Dadas as relações abaixo:

funcionarios

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod
1	Patrícia	Figueiredo	
2	Cátia	Varela	ADM
3	Hélder	Franca	
4	Ezequiel	Souto	RH
5	Bárbara	Pires	RH

departamentos

<u>cod</u>	nome_departamento
ADM	Administrativo
FIN	Financeiro
RH	Recursos Humanos
COM	Comercial

A operação de junção externa à direta:

funcionarios ⋈ _{dept_cod = cod} departamentos

resulta em uma relação contendo com *todos* os departamentos aparecendo pelo menos uma vez, mesmo que ele não tenha nenhum funcionário lotado.

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod	<u>cod</u>	nome_departamento
2	Cátia	Varela	ADM	ADM	Administrativo
4	Ezequiel	Souto	RH	RH	Recursos Humanos
5	Bárbara	Pires	RH	RH	Recursos Humanos
				FIN	Financeiro
				COM	Comercial

Todas tuplas da relação à direita do operador, neste caso a relação **departamentos**, aparecem pelo menos uma vez no resultado. Até mesmo as tuplas sem uma tupla correspondente na relação à esquerda do operador.

Junção externa

Junção externa à direita

• Exemplo de uso da operação de junção externa à direita:

Dadas as relações abaixo:

A operação de junção externa à direta:

funcionarios

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod
1	Patrícia	Figueiredo	
2	Cátia	Varela	ADM
3	Hélder	Franca	
4	Ezequiel	Souto	RH
5	Bárbara	Pires	RH

		_	dept_cod
1	Patrícia	Figueiredo	
2	Cátia	Varela	ADM
3	Hélder	Franca	
4	Ezequiel	Souto	RH
5	Bárbara	Pires	RH

departamentos

<u>cod</u>	nome_departamento
ADM	Administrativo
FIN	Financeiro
RH	Recursos Humanos
COM	Comercial

funcionarios ⋈ _{dept cod = cod} departamentos

resulta em uma relação contendo com *todos* os departamentos aparecendo pelo menos uma vez, mesmo que ele não tenha nenhum funcionário lotado.

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod	<u>cod</u>	nome_departamento
2	Cátia	Varela	ADM	ADM	Administrativo
4	Ezequiel	Souto	RH	RH	Recursos Humanos
5	Bárbara	Pires	RH	RH	Recursos Humanos
				FIN	Financeiro
				COM	Comercial

No tentanto, tuplas da relação à esquerda do operador, neste caso a relação funcionarios, que não têm uma tupla correspondente na relação à direita ainda são eliminadas do resultado.

Todas tuplas da relação à direita do operador, neste caso a relação departamentos, aparecem pelo menos uma vez no resultado. Até mesmo as tuplas sem uma tupla correspondente na relação à esquerda do operador.

Junção externa

Junção externa completa

• A junção externa completa – em inglês, *full outer join* – possui a seguinte sintaxe:

- A operação de **junção externa completa**, R ⋈_{condição} S, entre as relações R e S, resultará em uma nova relação contendo:
 - Tuplas formadas por pares de R e S com correspondência entre elas;
 - Tuplas de *R* sem correspondência em *S*;
 - Tuplas de *S* sem correspondência em *R*.
- Nos casos em que as tuplas de *R* não possuírem correspondentes, os atributos de *S* são preenchidos com valor *NULL*.
- Nos casos em que as tuplas de *R* não possuírem correspondentes, os atributos de *S* são preenchidos com valor *NULL*.

Junção externa

Junção externa completa

• A junção externa completa – em inglês, *full outer join* – possui a seguinte sintaxe:

- A operação de **junção externa completa**, R ⋈_{condição} S, entre as relações R e S, resultará em uma nova relação contendo:
 - Tuplas formadas por pares de R e S com correspondência entre elas;
 - Tuplas de *R* sem correspondência em *S*;
 - Tuplas de *S* sem correspondência em *R*.
- Nos casos em que as tuplas de *R* não possuírem correspondentes, os atributos de *S* são preenchidos com valor *NULL*.
- Nos casos em que as tuplas de R não possuírem correspondentes, os atributos de S são preenchidos com valor NULL.

Junção externa

Junção externa completa

• A junção externa completa – em inglês, *full outer join* – possui a seguinte sintaxe:

Do lado esquerdo e do lado direito do operador são especificadas as relações utilizadas na operação de junção.

A relação costuma ser uma **expressão da álgebra relacional**, cujo resultado é uma relação. A mais simples expressão desse tipo é apenas o nome de uma relação de banco de dados.

- A operação de **junção externa completa**, R ⋈_{condição} S, entre as relações R e S, resultará em uma nova relação contendo:
 - Tuplas formadas por pares de R e S com correspondência entre elas;
 - Tuplas de *R* sem correspondência em *S*;
 - Tuplas de *S* sem correspondência em *R*.
- Nos casos em que as tuplas de *R* não possuírem correspondentes, os atributos de *S* são preenchidos com valor *NULL*.
- Nos casos em que as tuplas de R não possuírem correspondentes, os atributos de S são preenchidos com valor NULL.

Junção externa

Junção externa completa

• A junção externa completa – em inglês, *full outer join* – possui a seguinte sintaxe:

Uma condição da junção é uma expressão lógica que relaciona os atributos de *R* aos atributos de *S*.

A expressão lógica pode ser definida utilizando os operadores relacionais =, \neq , <, \leq , >, \geq , e, também, os operadores lógicos *AND*, *OR*, e *NOT*.

- A operação de **junção externa completa**, R ⋈_{condição} S, entre as relações R e S, resultará em uma nova relação contendo:
 - Tuplas formadas por pares de R e S com correspondência entre elas;
 - Tuplas de *R* sem correspondência em *S*;
 - Tuplas de *S* sem correspondência em *R*.
- Nos casos em que as tuplas de *R* não possuírem correspondentes, os atributos de *S* são preenchidos com valor *NULL*.
- Nos casos em que as tuplas de R não possuírem correspondentes, os atributos de S são preenchidos com valor NULL.

Junção externa

Junção externa completa

• Exemplo de uso da operação de junção externa completa:

Dadas as relações abaixo:

funcionarios

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod
1	Patrícia	Figueiredo	
2	Cátia	Varela	ADM
3	Hélder	Franca	
4	Ezequiel	Souto	RH
5	Bárbara	Pires	RH

departamentos

cod	nome_departamento
ADM	Administrativo
FIN	Financeiro
RH	Recursos Humanos
COM	Comercial

Junção externa

Junção externa completa

• Exemplo de uso da operação de junção externa completa:

Dadas as relações abaixo:

funcionarios

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod
1	Patrícia	Figueiredo	
2	Cátia	Varela	ADM
3	Hélder	Franca	
4	Ezequiel	Souto	RH
5	Bárbara	Pires	RH

departamentos

<u>cod</u>	nome_departamento
ADM	Administrativo
FIN	Financeiro
RH	Recursos Humanos
COM	Comercial

A operação de junção externa completa:

funcionarios ≥ dept_cod = cod departamentos

resulta em:

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod	<u>cod</u>	nome_departamento
1	Patrícia	Figueiredo			
2	Cátia	Varela	ADM	ADM	Administrativo
3	Hélder	Franca			
4	Ezequiel	Souto	RH	RH	Recursos Humanos
5	Bárbara	Pires	RH	RH	Recursos Humanos
				FIN	Financeiro
				COM	Comercial

Junção externa

Junção externa completa

• Exemplo de uso da operação de junção externa completa:

Dadas as relações abaixo:

funcionarios

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod
1	Patrícia	Figueiredo	
2	Cátia	Varela	ADM
3	Hélder	Franca	
4	Ezequiel	Souto	RH
5	Bárbara	Pires	RH

departamentos

cod	nome_departamento
ADM	Administrativo
FIN	Financeiro
RH	Recursos Humanos
COM	Comercial

A operação de junção externa completa:

funcionarios ≥ dept_cod = cod departamentos

resulta em:

Tuplas formadas por pares de **funcionarios** e **departamentos** que possuem correspondência.

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod	<u>cod</u>	nome_departamento
1	Patrícia	Figueiredo			
2	Cátia	Varela	ADM	ADM	Administrativo
3	Hélder	Franca			
4	Ezequiel	Souto	RH	RH	Recursos Humanos
5	Bárbara	Pires	RH	RH	Recursos Humanos
				FIN	Financeiro
				COM	Comercial

Junção externa

Junção externa completa

• Exemplo de uso da operação de junção externa completa:

Dadas as relações abaixo:

funcionarios

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod
1	Patrícia	Figueiredo	
2	Cátia	Varela	ADM
3	Hélder	Franca	
4	Ezequiel	Souto	RH
5	Bárbara	Pires	RH

departamentos

cod	nome_departamento
ADM	Administrativo
FIN	Financeiro
RH	Recursos Humanos
COM	Comercial

A operação de junção externa completa:

funcionarios ≥ dept_cod = cod departamentos

resulta em:

Tuplas em funcionarios sem

correspondentes em departamentos.

Tuplas formadas por pares de **funcionarios** e **departamentos** que possuem correspondência.

Junção externa

Junção externa completa

• Exemplo de uso da operação de junção externa completa:

Dadas as relações abaixo:

funcionarios

<u>id</u>	primeiro_nome	ultimo_nome	dept_cod
1	Patrícia	Figueiredo	
2	Cátia	Varela	ADM
3	Hélder	Franca	
4	Ezequiel	Souto	RH
5	Bárbara	Pires	RH

departamentos

<u>cod</u>	nome_departamento
ADM	Administrativo
FIN	Financeiro
RH	Recursos Humanos
COM	Comercial

A operação de junção externa completa:

funcionarios \bowtie dept_cod = cod departamentos

resulta em:

Tuplas em funcionarios sem

correspondentes em departamentos.

Tuplas formadas por pares de **funcionarios** e **departamentos** que possuem correspondência.

Junção externa

- Em SQL, as junções externas podem ser realizadas das seguintes formas:
 - Junção externa à esquerda:

A operação **funcionarios** ⋈ _{dept cod = cod} **departamentos** corresponde à seguinte consulta SQL:

```
SELECT *
FROM
funcionarios
LEFT OUTER JOIN departamentos ON funcionarios.dept_cod = departamentos.cod;
```

Junção externa à direita:

A operação **funcionarios** ⋈ _{dept_cod = cod} **departamentos** corresponde à seguinte consulta SQL:

```
SELECT *
FROM
funcionarios
RIGHT OUTER JOIN departamentos ON funcionarios.dept_cod = departamentos.cod;
```

Junção externa

- Em SQL, as junções externas podem ser realizadas das seguintes formas:
 - Junção externa à esquerda:

A operação **funcionarios** ⋈ _{dept_cod = cod} **departamentos** corresponde à seguinte consulta SQL:

```
SELECT *
FROM
funcionarios
LEFT OUTER JOIN departamentos ON funcionarios.dept_cod = departamentos.cod;
```

Junção externa à direita:

A operação **funcionarios** ⋈ _{dept_cod = cod} **departamentos** corresponde à seguinte consulta SQL:

```
SELECT *
FROM
funcionarios
RIGHT OUTER JOIN departamentos ON funcionarios.dept_cod = departamentos.cod;
```

A palavra **OUTER** é opcional.

Podemos usar apenas **LEFT JOIN** ou **RIGHT JOIN**.

Junção externa

- Em SQL, as junções externas podem ser realizadas das seguintes formas:
 - Junção externa completa:

A operação **funcionarios** ≥ dept cod = cod **departamentos** corresponde à seguinte consulta SQL:

```
SELECT *
FROM
funcionarios
FULL OUTER JOIN departamentos ON funcionarios.dept_cod = departamentos.cod;
```

- Entretanto, alguns SGBDs não dão suporte à operação de junção externa completa.
 - Nestes casos, um resultado equivalente pode ser obtido a partir da combinação dos resultados da junções externas à esquerda e à direita.
 Ou seja, R ⋈ condição S equivale a (R ⋈ condição S) U (R ⋈ condição S).

```
SELECT *
FROM
funcionarios
LEFT OUTER JOIN departamentos ON funcionarios.dept_cod = departamentos.cod
UNION
SELECT *
FROM
funcionarios
RIGHT OUTER JOIN departamentos ON funcionarios.dept_cod = departamentos.cod;
```

Junção externa

- Em SQL, as **junções externas** podem ser realizadas das seguintes formas:
 - Junção externa completa:

A operação **funcionarios** ≥ dept cod = cod **departamentos** corresponde à seguinte consulta SQL:

```
SELECT *
FROM
funcionarios
FULL OUTER JOIN departamentos ON funcionarios.dept_cod = departamentos.cod;
```

- Entretanto, alguns SGBDs não dão suporte à operação de junção externa completa.
 - Nestes casos, um resultado equivalente pode ser obtido a partir da combinação dos resultados da junções externas à esquerda e à direita.

Ou seja, $R\bowtie_{condição} S$ equivale a $(R\bowtie_{condição} S)$ \cup $(R\bowtie_{condição} S)$.

```
SELECT *

FROM

funcionarios

LEFT OUTER JOIN departamentos ON funcionarios.dept_cod = departamentos.cod

UNION

SELECT *

FROM

funcionarios

RIGHT OUTER JOIN departamentos ON funcionarios.dept_cod = departamentos.cod;
```

Esta consulta não produzirá nenhuma linha duplicada, pois estamos realizando a união das junções à esquerda e direita com o operador **UNION**.

Para que linhas duplicadas sejam mantidas, podemos utilizar o operador **UNION ALL**.

Resumindo os diferentes tipos de junção...

- Algumas solicitações comuns no banco de dados necessárias em aplicações comerciais para SGBDs relacionais – não podem ser realizadas com as operações da álgebra relacional descritas anteriormente.
- Dessa forma, é definido um conjunto de operações adicionais para expressar essas solicitações.
 - Essas operações melhoram o poder expressivo da álgebra relacional original.

Projeção generalizada

- A operação de projeção generalizada estende a operação de projeção, permitindo que as funções dos atributos sejam incluídas na lista de projeção.
- A forma generalizada pode ser expressa como:

$$\pi_{F1, F2, \dots, Fn}$$
 (R)

• Essa operação é útil quando se desenvolvem relatórios em que os valores calculados precisam ser produzidos nas colunas de um resultado da consulta.

Projeção generalizada

- A operação de projeção generalizada estende a operação de projeção, permitindo que as funções dos atributos sejam incluídas na lista de projeção.
- A forma generalizada pode ser expressa como:

• Essa operação é útil quando se desenvolvem relatórios em que os valores calculados precisam ser produzidos nas colunas de um resultado da consulta.

Projeção generalizada

• Exemplo de uso da **projeção generalizada**:

Dada a relação:

funcionarios

<u>id</u>	nome	salario	deducoes	anos_servico
1	Patrícia Figueiredo	5000	500	4
2	Cátia Varela	4200	400	3
3	Hélder Franca	3000	150	3

Um relatório que exibe, para cada funcionário, os valores de salário líquido (salario subtraído as deduções) e o bônus (R\$ 500 para cada ano em serviço), pode ser expresso como:

 π $_{id,\,nome,\,salario\,\text{-}\,deducoes,\,500\,\text{*}\,anos_servico}$ (funcionarios)

resultando em:

<u>id</u>	nome	salario - deducoes	500 * anos_servico
1	Patrícia Figueiredo	4500	2000
2	Cátia Varela	3800	1500
3	Hélder Franca	2850	1500

Projeção generalizada

• Exemplo de uso da **projeção generalizada**:

Dada a relação:

funcionarios

<u>id</u>	nome	salario	deducoes	anos_servico
1	Patrícia Figueiredo	5000	500	4
2	Cátia Varela	4200	400	3
3	Hélder Franca	3000	150	3

Um relatório que exibe, para cada funcionário, os valores de salário líquido (salario subtraído as deduções) e o bônus (R\$ 500 para cada ano em serviço), pode ser expresso como:

 π $_{id,\,nome,\,salario\,\text{-}\,deducoes,\,500\,\text{*}\,anos_servico}$ (funcionarios)

resultando em:

<u>id</u>	nome	salario - deducoes	500 * anos_servico
1	Patrícia Figueiredo	4500	2000
2	Cátia Varela	3800	1200
3	Hélder Franca	2850	450

Note que os nomes dos atributos na relação resultante são iguais às expressões projetadas.

Para uma melhor representação do relatório, podemos renomear os atributos da relação resultante usando a operação **RENOMEAR**.

Projeção generalizada

• Exemplo de uso da **projeção generalizada**:

Dada a relação:

funcionarios

<u>id</u>	nome	salario	deducoes	anos_servico
1	Patrícia Figueiredo	5000	500	4
2	Cátia Varela	4200	400	3
3	Hélder Franca	3000	150	3

Um relatório que exibe, para cada funcionário, os valores de salário líquido (salario subtraído as deduções) e o bônus (R\$ 500 para cada ano em serviço), pode ser expresso como:

 $\rho_{\text{ (id, nome, salario_liquido, bônus)}}(\pi_{\text{ id, nome, salario-deducoes, 500 * anos_servico}}(\text{funcionarios}))$

resultando em:

<u>id</u>	nome	salario_liquido	bonus
1	Patrícia Figueiredo	4500	2000
2	Cátia Varela	3800	1200
3	Hélder Franca	2850	450

Projeção generalizada

• Em SQL, podemos simplesmente escrever as expressões desejadas na consulta:

Por exemplo, a expressão:

```
\rho_{(id, nome, salario\_liquido, bônus)} (\pi_{id, nome, salario-deducoes, 500 * anos\_servico} (funcionarios))
```

corresponde à seguinte consulta SQL:

```
id,
nome,
salario - deducoes AS salario_liquido,
500 * anos_servido AS bonus

FROM funcionarios;
```

Funções de agregação e agrupamento

- Outro tipo de solicitação bastante comum em geração e relatórios e que pode ser expresso na álgebra relacional é a especificação de **funções de agregação**.
 - As funções de agregação são funções matemáticas sobre coleções de valores do banco de dados.
 - Alguns exemplos dessas funções incluem o cálculo de média, o somatório entre outras.
- As funções de agregação são frequentemente usadas em consultas estatísticas simples que resumem informações das tuplas do banco de dados.
- Funções comuns a aplicadas a coleções de valores numéricos são:
 - **SUM**: somatório dos valores.
 - AVG: média dos valores.
 - MAX: maior valor.
 - MIN: menor valor.
 - **COUNT**: usado para contar tuplas ou valores.

Funções de agregação e agrupamento

• Uma operação **FUNÇÃO AGREGADA** é indicada por:

 $\xi_{\text{ lista de funções}}$ (R)

Funções de agregação e agrupamento

• Uma operação **FUNÇÃO AGREGADA** é indicada por:

Funções de agregação e agrupamento

• Uma operação **FUNÇÃO AGREGADA** é indicada por:

Entre parênteses, é especificada uma relação R sobre a qual a operação será realizada.

A relação **R** costuma ser uma **expressão da álgebra relacional**, cujo resultado é uma relação. A mais simples expressão desse tipo é apenas o nome de uma relação de banco de dados.

Funções de agregação e agrupamento

• Uma operação **FUNÇÃO AGREGADA** é indicada por:

Funções de agregação e agrupamento

• Exemplo de uso da operação **FUNÇÃO AGREGADA**:

Dada a relação:

funcionarios

<u>id</u>	nome	salario	deducoes	anos_servico
1	Patrícia Figueiredo	5000	500	4
2	Cátia Varela	4200	400	3
3	Hélder Franca	3000	150	3

Um relatório que exibe a soma dos salários, a média de salário e a média de anos de serviço pode ser expressa como:

 $\xi_{\text{ SUM salario, AVG salario, AVG anos_servico}} \text{ (funcionarios)}$

resultando em:

SUM_salario	AVG_salario	AVG_anos_servico
12200	4066.67	3.33

Os nomes dos atributos na relação resultante serão formados pela concatenação do nome da função com o nome do atributo, na forma <função> <a tributo>.

Para uma melhor representação do relatório, podemos renomear os atributos da relação resultante usando a operação **RENOMEAR**.

Funções de agregação e agrupamento

• Exemplo de uso da operação **FUNÇÃO AGREGADA**:

Dada a relação:

funcionarios

<u>id</u>	nome	salario	deducoes	anos_servico
1	Patrícia Figueiredo	5000	500	4
2	Cátia Varela	4200	400	3
3	Hélder Franca	3000	150	3

Um relatório que exibe a soma dos salários, a média de salário e a média de anos de serviço pode ser expressa como:

 $\rho_{\text{ (soma_salarios, salario_medio, tempo_medio_servico)}} (\,\xi_{\text{ SUM salario, AVG salario, AVG anos_servico}} (\text{funcionarios})\,)$

resultando em:

soma_salarios	salario_medio	tempo_medio_servico
12200	4066.67	3.33

Funções de agregação e agrupamento

• Em SQL, podemos simplesmente escrever as expressões desejadas na consulta:

Por exemplo, a expressão:

```
\rho (soma_salarios, salario_medio, tempo_medio_servico) ( \xi SUM salario, AVG salario, AVG anos_servico (funcionarios) )
```

corresponde à seguinte consulta SQL:

```
SELECT
SUM(salario) AS soma_salarios,
AVG(salario) AS salario_medio,
AVG(anos_servico) AS tempo_medio_servico
FROM funcionarios;
```

Funções de agregação e agrupamento

- Outro tipo comum de solicitação envolve agrupar as tuplas em de uma relação pelo valor de alguns de seus atributos e, depois, aplicar uma função de agregação de forma *independente para cada grupo*.
- Um exemplo seria calcular, para cada departamento de uma empresa, o número de funcionários alocados ao departamento, a soma dos salários de seus funcionários e o salário médio pago no departamento.

funcionarios

<u>id</u>	nome	salario	deducoes	anos_servico
1	Patrícia Figueiredo	5000	500	4
2	Cátia Varela	4200	400	3
3	Hélder Franca	3000	150	3

• Para isso, é necessário agrupar as tuplas de uma relação *funcionario* pelo valor do atributo *dept_id*, de modo que cada grupo inclua as tuplas para os funcionários trabalhando no mesmo departamento.

Dúvidas?

André L. Maravilha

andre.maravilha@cefetmg.br https://andremaravilha.github.io/

