University of Victoria

CENG 241

DIGITAL DESIGN I

Lab 7: RAM System

Instructor:

Dr. Amirali Baniasadi

Teaching Assistant:

 $Grace\ Hui$

Yves SÉNÉCHAL V00213837 Tyler STEPHEN V00812021 A01 - B03

July 27, 2015

1 Introduction

2 Discussion

Description of how the RAM read and write operations are implemented in the system of Fig. 1.

Figure 1: RAM controller and memory system

2.1 Timing considerations

 $Explanation\ of\ the\ read\ and\ write\ timing\ diagrams$

Figure 2: Timing diagram for the RAM read operation

Figure 3: Timing diagram for the RAM write operation

S_2	S_1	S_0	\overline{OE}	\overline{WE}	Load	\overline{Read}	Incr
0	0	0	1	1	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	1	1	1	0
0	1	1	1	1	0	X	1
1	0	0	X	0	0	0	0
1	0	1	X	0	0	0	0
1	1	0	_	-	-	-	-
1	1	1	_	_	_	_	_

Table 1: State output

3 RAM controller design process

3.1 State diagram

State diagram of the controller

3.2 Controller logic

The logic design of the controller using D-FF

$$S_{2}^{+} = S_{2}S'_{0} + S'_{1}S'_{0} \text{ Go } R/\overline{W}$$

 $S_{1}^{+} = S_{1} \text{ XOR } S_{0}$
 $S_{0}^{+} = S_{2} + S_{1}S'_{0} + S'_{0} \text{ Go } R/\overline{W}$

				S_2	S_1	S_0	Go	R/\overline{W}	S_2^+	S_{1}^{+}	S_{0}^{+}
				0	0	0	0	0	0	0	0
				0	0	0	0	1	0	0	0
				0	0	0	1	0	1	0	0
				0	0	0	1	1	0	0	1
				0	0	1	0	0	0	1	0
				0	0	1	0	1	0	1	0
				0	0	1	1	0	0	1	0
				0	0	1	1	1	0	1	0
				0	1	0	0	0	0	1	1
				0	1	0	0	1	0	1	1
				0	1	0	1	0	0	1	1
State	S_2	S_1	S_0	0	1	0	1	1	0	1	1
\overline{a}	0	0	0	0	1	1	0	0	0	0	0
b	0	0	1	0	1	1	0	1	0	0	0
c	0	1	0	0	1	1	1	0	0	0	0
d	0	1	1	0	1	1	1	1	0	0	0
e	1	0	0	1	0	0	0	0	1	0	1
f	1	0	1	1	0	0	0	1	1	0	1
-	1	1	0	1	0	0	1	0	1	0	1
-	1	1	1	1	0	0	1	1	1	0	1
(a) Sta	1	0	1	0	0	0	1	1			
				1	0	1	0	1	0	1	1
				1	0	1	1	0	0	1	1
				1	0	1	1	1	0	1	1
				1	1	0	0	0	-	-	-
				1	1	0	0	1	-	-	-
				1	1	0	1	0	-	-	-
				1	1	0	1	1	-	-	-
				1	1	1	0	0	_	-	-
				1	1	1	0	1	-	-	-
				1	1	1	1	0	_	-	-
				1	1	1	1	1	_	-	-
				(b) Next state							

Figure 4: Transition tables for the Moore machine

$$\overline{OE} = S_1' S_0' + S_1 S_0$$

$$\overline{WE} = S_2'$$

$$Load = S_1 S_0'$$

$$\overline{Read} = S_1 + S_2' S_0$$

$$Incr = S_1 S_0$$

4 Conclusion