Data Manipulation and Visualization in Python

Slides by:

Joseph E. Gonzalez

jegonzal@cs.berkeley.edu

Last week Professor Hellerstein said: "Computers like rectangular data"

& People

16.99	1.01	2.0
-------	------	-----

10.34 1.66 3.0

20.01	3.50	3.0
-------	------	-----

23.68		3.31		2.0
-------	--	------	--	-----

Matrix

sex	fare	alive
male	7.25	no
female	71.2833	yes
female	7.925	yes
female	53.1	yes

Table

Matrix Data

- > Single type
 - > typically numbers
 - > Others?
 - > not always same **meaning** ...

- 16.99 1.01 2.0
- 10.34 | 1.66 | 3.0
- 20.01 | 3.50 | 3.0
- 23.68 3.31 2.0
- > Indexed/Slice by row and column location
 - may take transpose or permute rows and columns
 - Need to be careful!
- > Algebraic operations (+, *) are key to analytics routines
- > Software/hardware heavily optimized for matrices
 - BLAS: Basic Linear Algebra Subprograms
 - SIMD SSE & AVX hardware vector processors

import numpy as np

The most widely used library for multi-dimensional and linear algebra in python.

... review notebook ...

Matrices are Awesome

Why would I want anything else?

Limitations of Matrices (Ndarrays)

- > Real data often has **multiple types**: Text, Numbers, Dates ...
 - Could store in separate arrays ...
- > Aligning separate arrays is error prone and cumbersome
 - zip(name[age > 3 & state[state_index] == CA],
 email[age > 3 & state[state_index] == CA])
- Location based row indexing is error prone
 - > zip(sort(pay), name[argsort(pay)])
- Many computations don't naturally map to Linear Algebra
 - > e.g., grouping

Tabular Data

- Most widely used data format
- > Named columns of different types
 - > Each column has a single type
 - Columns are indexed by name

sex	fare	alive
male	71.25	no
female	71.2833	yes
female	7.925	yes
female	53.1	yes

- > Unordered rows correspond to records
 - Indexed by keys, (e.g., last-name + first-name)
 - > **Filtered** by predicates (e.g., fare > 70)
- Relationships may span multiple tables
 - Joins connect data across tables

How do we compute with/on tables?

- > SQL Language (Relational Algebra) [Next Week]
 - Most widely used language for manipulating data
 - > **Declarative** specification of what we want
 - > "Make a table with these columns containing records which satisfy these properties constructed from these other tables"
- DataFrames APIs [Today]
 - Hybrid between tables and matrices
 - Integrates well with imperative languages (e.g., Python)
 - > Do this and then do that
 - Often layered over matrix and relational frameworks
- Data Scientists use both!

The Data Frame Table Abstraction

- Introduced along with the S (S-Plus & R) statistical programming languages
 - > John Chambers while at Bell labs in the early 90s
- > Provides an efficient & flexible table abstraction for
 - Data manipulation
 - > Statistical analysis
- Widely adopted in many other analytics tools
 - > Python, Julia, Spark
 - increasingly backed by relational (SQL) data systems

Pandas: Python Data Frames

- Developed by Wes McKinney while at AQR Capital Management in 2008
 - Initially designed for fast time-series and data analysis
 - ➤ Does a lot more → steep learning curve (too many features!)

> Features

- > Relies on NumPy and native optimizations -> relatively efficient
- > Row and column indexes -> reduces transformation errors
- Specialized functions for handling: missing values, dates, strings, and plotting

> Integrates with common python data science tools

Scikit-Learn (Machine Learning), Matplotlib & Seaborn (Plotting),

. . .

import pandas as pd

Python DataFrames

... review notebook ...

Visualization in Python

- > Matplotlib: visualization library based on MATLAB
 - most widely used python visualization library
 - Bad defaults, cumbersome/dated API
- > Seaborn: runs on-top of matplotlib
 - > Improves defaults and appearance
 - Provides additional functionality for common visualizations
- > Bokeh: grammar of graphics based web visualizations
 - Not designed for print and limited statistical support
- > Others: Plot.ly, GGPlot

import seaborn as sns

Improved visualization

... review notebook ...

Summary

- > Explored matrices and tables in python
- Advantages of computing on rectangular data
- > Limitations of working with arrays
- > Tables as a way to get around many of the limitations
 - Covered a lot of useful syntax (read the python notebook)
- More advanced tools for visualization
 - Simplify stratified analysis
 - Combine statistical inference and visualization