

$$\begin{aligned}
\lambda_1 &= |R_1| \int_{SC_1} \\
&= |R_1| \\
1 + |S_1| \int_{SC_2} \\
&= |R_2| \\
1 + |S_1| \int_{SC_2} \\
\end{aligned}$$

$$V_{in}(t): V_{2}$$

$$V_{1} \quad t=0 \quad t=T_{b} \quad (T_{b} \gg \beta_{1}(c_{1}), \beta_{2}(c_{2})$$

for t<0: (ircuit is at steady state with Vin=V1, C1, 62 are open

$$V_{\text{out}} = V_{1} + V_{2}$$

$$V_{1} = V_{1} + V_{2}$$

$$V_{2} = V_{1} - V_{2} = V_{1} - V_{1} + V_{2}$$

$$V_{1} = V_{1} - V_{1} + V_{2}$$

$$V_{2} = V_{1} - V_{1} + V_{2}$$

$$V_{(1)}(\overline{o}) = \frac{V_1R_1}{R_1 + R_2}$$

$$= \frac{1}{R_1} = \frac{V_{C1}}{R_1} = \frac{V_1}{R_1 + R_2}$$

$$I_{R_1} = \frac{V_{C2}}{R_2} = \frac{V_1}{R_1 + R_2}$$

for t=0+: Vin=V2

(A)

On assuming $V_{c_1}(\overline{o}) = V_{c_1}(\overline{o}^{\dagger})$, $V_{c_2}(\overline{o}^{\dagger}) = V_{c_2}(\overline{o}^{\dagger})$, solving KVL gives $V_{in} = V_{c_1} + V_{c_2}$

$$V_{\lambda} = \left(\frac{V_{1}R_{1}}{R_{1}+R_{2}}\right) + \left(\frac{V_{1}R_{2}}{R_{1}+R_{2}}\right)$$
 $V_{\lambda} = V_{1} \left[\text{continuition}\right]$

: Vc1(0+), V2(0+) will not be same as Vc1(0), Vc2(0-) respectively.

On applying change ansensation at off node:

$$\frac{1}{R_1 + R_2} \left(R_2 (2 - R_1 G) - 1 \right)$$

$$\frac{1}{R_1 + R_2} \left(R_2 (2 - R_1 G) - 1 \right)$$

$$\theta_{\text{final}} = -C_{1} \left(V_{C_{1}}(0^{+}) \right) + C_{2} \left(V_{C_{2}}(0^{+}) \right) \\
= -C_{1} \left[V_{1} - V_{C_{2}}(0^{+}) \right] + C_{2} \left(V_{C_{2}}(0^{+}) \right) \\
= -C_{1}V_{2} + \left(C_{1} + C_{2} \right) V_{C_{2}}(0^{+}) - C_{2}$$

$$V_{G}(0^{+}) = V_{2} - V_{C_{2}}(0^{+}) = \frac{C_{2}}{C_{1} + C_{2}} \cdot V_{2} + \frac{V_{1}}{(C_{1} + C_{2})(R_{1} + R_{2})} \left(R_{1}(1 - R_{12}(c_{2}) + C_{2}(R_{1} + R_{2}))\right)$$

$$I_{R_1}(0^{\dagger}) = V_{\underline{c_1(0^{\dagger})}}$$
, $I_{R_2}(0^{\dagger}) = V_{\underline{c_2(0^{\dagger})}}$

: Summony:

	Vc1(2) 4	Vcz	Tai	TP2
t=0	V1911/81+82	V1R2/R1+R2	VI/RITR2	V ₁ P ₁ + P ₂
t=0+	V2(2) + V1 (R1(1-R2(2)) (1+C2) (R1+R2)	$\frac{V_2C_1}{C_1+C_2} + \frac{V_1\left(R_2C_2-R_{K_1}\right)}{\left(C_1+C_2\right)\left(R_1+R_2\right)}$	Valle	Vc2/R2

if v1=0, thun

	VCI	۷۷	TRI	Ī _R ,
t=0	VIBI/R1+R2=0	0	0	0
E=0+	Val2 4+62	V&C1	V2(2 R1((1+(2)	V2 (1 P2 (4+62)

$$\begin{array}{c} (P_{2}) \quad Z_{1} = \underbrace{R_{11}}_{1+SR_{1}C_{1}} \qquad Z_{2} = \underbrace{R_{2}}_{1+SR_{2}C_{2}} \qquad V_{inl}(s) \\ V_{out}(s) = \underbrace{Z_{2}}_{Z_{1}+Z_{2}} \qquad V_{in}(s) \\ \hline V_{out}(s) = \underbrace{Z_{2}}_{Z_{1}+Z_{2}} = \underbrace{\frac{R_{1}}{1+SR_{1}C_{2}}}_{1+SR_{1}C_{2}} = \underbrace{\frac{R_{1}}{R_{1}+SR_{1}R_{1}}(1+SR_{1}C_{1})}_{R_{1}+SR_{1}R_{1}C_{2}+R_{2}+SR_{1}R_{1}C_{2}} \\ \hline \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ \hline P_{1} = \underbrace{R_{1}}_{1+SR_{1}C_{1}} \qquad \vdots \qquad \vdots \\ \hline P_{1} = \underbrace{R_{1}}_{R_{1}C_{1}} \qquad \vdots \\ \hline P_{$$