Method of Characteristics

Definitions

- [Cauchy-Lipschitz Theorem]
- [Characteristic Equations]
 - $\circ \dot{x}^{j}(s) = \partial_{p_{i}} F(x(s), z(s), p(s))$
 - $\circ \quad \dot{z}(s) = \sum_{j} \partial_{p_{j}} F\big(x(s), z(s), p(s)\big) p_{j}(s)$
 - $\circ \dot{p}_j(s) = -\partial_{x^j} F(x(s), z(s), p(s)) \partial_z F(x(s), z(s), p(s)) p_j(s)$
- [Noncharacteristic] A triple (x_0, z_0, p_0) where $x_0 \in \Gamma$ and $z_0 = u(x_0)$ is noncharacteristic if $\nabla_p F(x_0, z_0, p_0) \cdot \nu(x_0) \neq 0$

Special Cases

- [Linear] $F(x, u, Du) = b(x) \cdot Du + c(x)u f$
 - \circ $\dot{x} = b(x)$
 - \circ $\dot{z} = -c(x)z + f$
- [Quasilinear] $F(x, u, Du) = b(x, u) \cdot Du + c(x, u)$
 - $\circ \quad \dot{x} = b(x, z)$
 - \circ $\dot{z} = -c(x,z)$

Theorems

- Let $u \in C^2(U)$ be a solution to F(x, u, Du) = 0 in U, where $F \in C^1$. If x(s), which lies in U for $s \in I$, solves ODE $\dot{x}^j(s) = \partial_{p_j} F\big(x(s), z(s), p(s)\big)$, then $z(s) = u\big(x(s)\big)$ and $p_j\big(x(s)\big)$ obey the other two characteristic equations respectively.
- [Implicit Function Theorem] Let $F: \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}^n$ be a C_1 function, and $x_0 \in \mathbb{R}^d$, $y_0 \in \mathbb{R}^n$ satisfy $F(x_0, y_0) = 0$, $\det \partial_{y^j} F^k(x_0, y_0) \neq 0$. Then exists neighborhoods $U \ni x$ and $V \ni y$ and C^1 function $y: U \to V$ s.t. F(x, y(x)) = 0 and if $(x, y) \in U \times V$ satisfies F(x, y) = 0, then y = y(x)
- [Inverse Function Theorem]
- [Local Existence Theorem]

Hamilton-Jacobi Equations

Definitions

- [Initial Value Problem] Given Hamiltonian $H: \mathbb{R}^n \to \mathbb{R}$, initial value function $g: \mathbb{R}^n \to \mathbb{R}$
 - $\circ \quad u_t + H(\nabla u) = 0 \text{ in } \mathbb{R}^n \times (0, \infty)$
 - o u = g on $\mathbb{R}^n \times \{t = 0\}$
- [Lagrangian] The Lagrangian is a smooth function $L: \mathbb{R}^n_x \times \mathbb{R}^n_v \to \mathbb{R}$
- [Generalised Momentum] $p(s) := D_v L(x(s), v(s))$
- [Hamiltonian] The Hamiltonian *H* associated with Lagrangian *L* is:
 - $\circ H(x,p) \coloneqq p \cdot v(x,p) L(x,v(x,p))$
 - o where v(x,p) is the v such that $p = \nabla_v L(v,x)$
- [Hamilton ODEs]
 - $\circ \quad \dot{x}(s) = \nabla_p H(p(s), x(s))$
 - $\circ \quad \dot{p}(s) = -\nabla_x H(p(s), x(s))$
- [Legendre Transform] Let $L: \mathbb{R}^n_v \to \mathbb{R}$. The Legendre transform of L is:

$$L^*(p) = \sup_{v \in \mathbb{R}^n} \{ p \cdot v - L(v) \}$$

- [Lipschitz Continuous] A function $f: X \to Y$ is Lipschitz continuous if \exists constant $K \ge 0$ s.t. $\forall x_1, x_2 \in X, d_Y(f(x_1), f(x_2)) \le K \cdot d_X(x_1, x_2)$
- [Uniformly Convex] A C^2 convex function $H: \mathbb{R}^n \to \mathbb{R}$ is <u>uniformly convex</u> (with constant $\theta > 0$) if $\xi^T (\nabla^2 H(p)) \xi \ge \theta \|\xi\|_2^2 \ \forall p, \xi \in \mathbb{R}^n$
- [Semiconcave] A function g is <u>semiconcave</u> if \exists constant C s.t. $g(x+z) 2g(x) + g(x-z) \le C ||z||_2^2$ for all $x, z \in \mathbb{R}^n$.
 - o g is semiconcave if and only if the mapping $x \to g(x) \frac{c}{2} ||x||^2$ is concave for some constant C
- [Subdifferential] $m \in \partial f(x)$ if $f(y) \ge m(y x) + f(x) \ \forall y \in \mathbb{R}$
 - o $\partial f(x)$ collects all the gradients of hyperplanes that supports f at x. In the picture before, $\partial f(x) = [m_-, m_+]$

- o f is differentiable at v if and only if $\partial f(v)$ is a singleton
- Let $f: \mathbb{R} \to \mathbb{R}$ be convex with $\lim_{|v| \to \infty} \frac{f(v)}{|v|} = +\infty$. Then, f is differentiable on \mathbb{R} if and only if f^* is strictly convex

Results

- [Characteristic Equations]
 - $\circ \quad \dot{x} = \nabla_p H(p)$
 - $\circ \quad \dot{z} = p \cdot \nabla_p H(p) H(p)$
- [Duality of Hamiltonian and Lagrangian]
 - \circ $H = L^*$
 - \circ $L = H^*$

- $u(x,t) = \inf \left\{ \int_0^t L(\dot{w}(s)) ds + g(w(0)) : w(t) = x \right\}$
- [Hopf-Lax Formula] Let $x \in \mathbb{R}^n$ and t > 0. Then the solution u = u(x,t) of minimization problem is $u(x,t) = \min_{y \in \mathbb{R}^n} \left\{ tL\left(\frac{x-y}{t}\right) + g(y) \right\}$
 - This formula provides a reasonable weak solution of initial value problem for Hamilton-Jacobi equation
- [Rademacher] A Lipschitz function is differentiable almost everywhere
- [Finite Propagation Speed]
- [Bump Function] $\phi(x) = \begin{cases} Ce^{-\frac{1}{1-|x|^2}}, & |x| < 1 \\ 0, & |x| \ge 1 \end{cases}$ with vanishing derivatives at |x| = 1
- [Properties of Mollifiers]
 - o [Smooth] Let T be a distribution, then the sequence $(T_{\epsilon})_{\epsilon}$ by $T_{\epsilon} = T * \phi_{\epsilon}$ is a family of smooth functions.
 - o [Approximation to Identity] $\lim_{\epsilon \to 0} T_{\epsilon} = \lim_{\epsilon \to 0} T * \phi_{\epsilon} = T \in \mathcal{D}'(\mathbb{R}^n)$ in the sense of distributions
 - [Support] $\sup T_{\epsilon} = \sup(T * \phi_{\epsilon}) \subset \sup T + \sup \phi_{\epsilon}$
- [Cut-off Functions] χ_B

Distributions

Definitions

- [Support] Let $f \in C(U)$. The <u>support</u> of f is the closure of subset of U where f is non-zero i.e. supp $f = \{x \in U: f(x) \neq 0\}$
 - \circ [Compactly Supported] If supp f compact, then f is compactly supported.
- $[C_0^{\infty}]$ The space of all infinitely differentiable functions with compact support.
- [Convolution] Let f be a continuous function in U and $\phi \in C_0^{\infty}(U)$. Define:
 - $\circ (f * \phi)(x) = \int f(y)\phi(x y) dy$
- [Convergence of Test Functions] A sequence $\{\phi_n\}_n$ with $\phi_n \in C_0^\infty(U)$ converges to $\phi \in C_0^\infty(U)$ if:
 - [Support] \exists compact $K \subset U$ s.t. supp ϕ_n , supp $\phi \subset K$
 - $\circ \quad [\mathsf{Regularity}] \lim_{n \to \infty} \sup_{x \in K} \| \nabla^{\alpha} \phi_n(x) \nabla^{\alpha} \phi(x) \| = 0 \,\, \forall \,\, \mathsf{multi-index} \,\, \alpha$
 - i.e. I can find a compact set *K* containing the support of all functions s.t. there is uniform convergence for any multi-index gradient
 - $\forall \alpha, \forall \epsilon > 0, \exists N \text{ s.t. } n > N \Rightarrow \|\nabla^{\alpha} \phi_n(x) \nabla^{\alpha} \phi(x)\| < \epsilon \ \forall x \in U$
- [Distribution] A <u>distribution</u> $u: C_0^{\infty}(U) \to \mathbb{R}$ on U is a linear functional that is continuous in the following sense:
 - o For any sequence $\{\phi_j\}_{j}$, $\phi \in C_0^\infty(U)$ s.t. $\phi_j \to \phi$, we have $\lim_{n \to \infty} u(\phi_n) = u(\phi)$
 - [3.8] Equivalent definition: A linear functional $u: C_0^\infty(U) \to \mathbb{R}$ is a distribution if and only if it is bounded in the following sense: for any compact $K \subset U$, $\exists N, C_{N,K}$ s.t. $\forall \phi \in C_0^\infty(U)$ with $\operatorname{supp} \phi \subset K$, $|\langle u, \phi \rangle| \leq C_{N,K} \sum_{|\alpha| \leq N} \sup_{x \in U} |\nabla^{\alpha} \phi(x)|$
 - i.e. for every compact set, the range of the functional $\langle u, \cdot \rangle$ is bounded by sup of N multi derivatives is bounded
- $[\mathcal{D}'(U)] \mathcal{D}'(U)$ is the space of distributions on U
 - o $C_0^{\infty}(U)$ is dense in $\mathcal{D}'(U)$
 - o Given $u \in \mathcal{D}'(U)$, construct $u_n = (u\chi_n) * \phi_{\epsilon_n} \in C_0^{\infty}(U)$
- [Order] Let $u \in \mathcal{D}'(U)$. If $\exists N$ s.t. $\forall K \subset U$ compact, $\exists \ C_{N,K}$ constant s.t. $|\langle u, \phi \rangle| \le C_{N,K} \sum_{|\alpha| \le N} \sup_{x \in K} |\mathcal{D}^{\alpha} \phi(x)|$, then u has order $\le N$. Order of distribution u is smallest such N.
- [Vanishes] A distribution $u \in \mathcal{D}'(U)$ <u>vanishes</u> in an open subset $V \subset U$ if $\langle u, \phi \rangle = 0$ for every test function ϕ s.t. supp $\phi \subset V$.
- [Support of Distribution] The support of a distribution $u \in \mathcal{D}'(U)$ is supp $u = U \setminus V_{\text{max}} = U \cup \{V : V \subset U \text{ open, } u \text{ vanishes in } V\}$
- $[L^1_{loc}(U)]$ A function $u: U \to \mathbb{R}$ is <u>locally integrable</u> if it is measurable and absolutely integrable on every compact subset K of U with respect to the Lebesgue measure.
 - Absolutely integrable means $\int_{\kappa} |f| < \infty$
 - O Any locally integrable function u defines a distribution by $\langle u, \phi \rangle := \int u \phi \, dx$
 - Any such distribution has order 0
- [Delta Distribution] $\langle \delta_{\nu}, \phi \rangle = \phi(y)$
- [Adjoint Method] Let \mathcal{A} be an operator. We can compute the adjoint operator \mathcal{A}' where
 - $\circ \quad \int_{U} (\mathcal{A}u) \phi \, dx = \int_{U} u(\mathcal{A}'\phi) \, dx \, \forall \phi \in C_0^{\infty}(U), \, \forall u \in C^{\infty}(U)$
 - $\circ \langle \mathcal{A}u, \phi \rangle = \langle u, \mathcal{A}'\phi \rangle$
 - $\quad \text{o} \quad \text{If } \mathcal{P}u = \textstyle \sum_{\alpha: |\alpha| \leq k} a_{\alpha}(x) \nabla^{\alpha}u \text{, then } \mathcal{P}'v = \textstyle \sum_{\alpha: |\alpha| \leq k} (-1)^{|\alpha|} \nabla^{\alpha}(a_{\alpha}v)$
- [Adjoint Convolution] $(f *' \phi)(x) = \int_{\mathbb{R}^d} f(y x)\phi(y) dy = \int_{\mathbb{R}^d} f(y)\phi(x + y) dy$
- [Convergence of Distributions] A sequence $(u_n)_n$ converges to u with $u_n, u \in \mathcal{D}'(U)$ if $\lim_{n \to \infty} \langle u_n, \phi \rangle = \langle u, \phi \rangle \ \forall \phi \in C_0^{\infty}(U)$. Write $u_n \to u$.
 - $\circ \quad u_n \rightharpoonup u \Rightarrow \partial^{\alpha} u_n \rightharpoonup \partial^{\alpha} u$

- [Approximation Method] Let \mathcal{A} be an operator on $\mathcal{C}^{\infty}(U)$ and $u \in \mathcal{D}'(U)$ and $u_n \rightharpoonup u$ with $u_n\in C^\infty(U)$. Then, $\mathcal A$ can be extended to act on u via $\mathcal Au=\lim_{n\to\infty}\mathcal Au_n$
 - o i.e. if not sure what is $\langle \mathcal{A}u, \phi \rangle$, find sequence $(u_n)_n \to u$ and compute $\lim \langle \mathcal{A}u_n, \phi \rangle$
 - o Can take $u_n = (u\chi_n) * \phi_{\frac{1}{n}}$ for example
- [Principal Value Distribution]
- [Fundamental Solution] Let \mathcal{P} be an operator and $y \in \mathbb{R}^d$. The <u>fundamental solution</u> E_y for \mathcal{P} at y is a distribution $E_v \in \mathcal{D}'(U)$ satisfying $\mathcal{P}E_v = \delta_v$.
 - With this, can define $u = \int f(y)E_{\nu}(x)dy$ as the integral of point charges
- [Standard Mollifier] The standard mollifier is a smooth function $\phi: \mathbb{R}^n \to \mathbb{R}$ satisfying:
 - [Compact Support] $\phi \in C_0^{\infty}(\mathbb{R}^n)$
 - $\circ \int_{\mathbb{R}^n} \phi(x) \mathrm{d}x = 1$
 - $\circ \lim_{\epsilon \to 0} \phi_{\epsilon}(x) = \lim_{\epsilon \to 0} \frac{1}{\epsilon^n} \phi\left(\frac{x}{\epsilon}\right) = \delta(x)$ [Positive Mollifier] A mollifier is positive if $\phi \ge 0$ in \mathbb{R}^n
- [Symmetric Mollifier] A mollifier is symmetric if $\phi(x) = \psi(|x|)$ with $\psi \in C^{\infty}(\mathbb{R}_+)$
- Mollifier is a smooth function used to create a sequence of smooth functions approximating nonsmooth functions via convolution/
 - Intuitively, sharp features of nonsmooth functions are mollified

Properties

- [Properties of Convolution]
 - o [Commutativity] $f * \phi = \phi * f$
 - [Associativity] (f * g) * h = f * (g * h)
 - [Support] supp $f * \phi \subset \text{supp } f + \text{supp } \phi$
 - [Mollification] If one of $f, g \in C_0^{\infty}(\mathbb{R}^d)$, then $f * g \in C_0^{\infty}(\mathbb{R}^d)$
 - o [Differentiation] $\partial_{x_j}(f*g) = \partial_{x_j}f*g = f*\partial_{x_j}g$ assuming $f,g \in C^1_0(\mathbb{R}^d)$
- [Adjoint Properties]
 - $\circ \quad \langle fu, \phi \rangle = \langle u, f\phi \rangle \text{ for } f \in C^{\infty}(U)$
 - - Every distribution is differentiable
 - $\bigcirc \langle f * u, \phi \rangle = \langle u, f *' \phi \rangle \, \forall \phi \in C_0^{\infty}(U) \text{ where } f \in C_0^{\infty}(\mathbb{R}^d)$
- [Bump Function] $\psi(r) = e^{-\frac{1}{1-r^2}} \cdot 1\{|r| < 1\}$
- $\phi(x) = \begin{cases} e^{-\frac{1}{x}}, & x > 0 \\ 0, & x \le 0 \end{cases}$
- [Properties of Mollifiers]
 - $\circ \int \phi_{\epsilon} dx = 1$
 - Given $f \in L^1_{loc}(\mathbb{R}^n)$ and $\psi \in C_0(\mathbb{R}^n)$, then $f * \psi$ is continuous
 - o Given $f \in L^1_{loc}(\mathbb{R}^n)$ and $\psi \in C_0^{\infty}(\mathbb{R}^n)$, $\frac{\partial (f * \psi)}{\partial x_i}(x) = \left(f * \frac{\partial \psi}{\partial x_i}\right)(x)$
 - o Given $f \in L^1_{loc}(\mathbb{R}^n)$ and $\psi \in C_0^{\infty}(\mathbb{R}^n)$, $f * \psi \in C^{\infty}(\mathbb{R}^d)$
 - $\circ \quad \text{For } f \in L^1_{\text{loc}}(\mathbb{R}^n), \, \text{supp}(f * \phi_{\epsilon}) \subset \text{supp}(f) + \overline{B_{\epsilon}(0)} = \left\{ x + y : x \in \text{supp}(f), y \in \overline{B_{\epsilon}(0)} \right\}$ where ϕ_{ϵ} is the standard mollifier
 - o For any function $f \in \mathcal{C}(\mathbb{R}^n)$, $f_{\epsilon} = f * \phi_{\epsilon} \to f$ converges uniformly on all compact subsets of \mathbb{R}^n where ϕ_{ϵ} is the standard mollifier
 - For any $1 \le p < \infty$, $C_0^{\infty}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$
 - o For any function $f \in L^p(\mathbb{R}^n)$ with $1 \le p < \infty$, we have $||f * \phi_{\epsilon} f||_{L^p(\mathbb{R}^n)} \to 0$ as $\epsilon \to 0$ where ϕ_{ϵ} is the standard mollifier
 - o If $U \subset \mathbb{R}^n$ open and $K \subset U$ compact, then $\exists \psi \in C_0^{\infty}(\mathbb{R}^n)$ with $0 \le \psi \le 1$ s.t. $\psi = 1$ on a neighbourhood of *K*

> Given $U \subset \mathbb{R}^n$ open and $f \in L^1_{loc}(U)$, if $\int_U f \phi \, dx = 0 \, \forall \phi \in C_0^{\infty}(U)$, then f = 0almost everywhere in U

Propositions

- Any distribution is infinitely differentiable.
- Let $U \subset \mathbb{R}^d$ be open with \mathcal{C}^1 boundary. Then $\partial_i 1_U = -(\nu_{\partial U})_i dS_{\partial U}$ where $dS_{\partial U}$ is the Euclidean surface element on ∂U
- If $u, v \in C(U)$ with $\langle u, \phi \rangle = \langle v, \phi \rangle \ \forall \phi \in C_0^{\infty}(U)$, then u = v
- $C_0^{\infty}(U)$ is dense in $\mathcal{D}'(U)$
 - Given any $u \in \mathcal{D}'(U)$, $\exists (u_n)_n \in C_0^\infty(U)$ s.t. $u_n \rightharpoonup u$ i.e. you can approximate every distribution with "nice" functions
 - o For construction, $u_n = (u\chi_n) * \phi_{\epsilon_n} \in C_0^{\infty}(U)$
 - $\chi_n = \mathbb{1}_{K_n}$ where $(K_n)_n$ compact, $K_n \subset K_{n+1}$ and $\bigcup_n K_n = U$
 - $\langle u_n, \psi \rangle = \langle (u\chi_n) * \phi_{\epsilon_n}, \psi \rangle = \langle u\chi_n, \phi_{\epsilon_n} *' \psi \rangle = \langle u, \chi_n(\phi_{\epsilon_n} *' \psi) \rangle$
- [3.20] Let $\phi \in C_0^{\infty}(\mathbb{R}^d)$ satisfy $\int_{\mathbb{R}^d} \phi = 1$. For every $\delta > 0$, define $\phi_{\delta}(x) = \frac{1}{sd} \phi\left(\frac{x}{s}\right)$. Then $\phi_{\delta} * u \rightharpoonup u \text{ as } \delta \rightarrow 0.$
- [3.21] Let U be an open set, $u \in \mathcal{D}'(U)$ and $(K_n)_n$ be a sequence of compact subsets of Us.t. $K_n \subset \operatorname{int} K_{n+1}$ and $\bigcup_{n=1}^{\infty} K_n = U$. Define $\chi_n \in C_0^{\infty}(U)$ s.t. $\chi_n = 1$ on K_n and $\operatorname{supp} \chi_n \subset C_0^{\infty}(U)$ int K_{n+1} . Let $u_n = \phi_{\delta_n} * (\chi_n u)$, where $\phi_{\delta_n}(x) = \frac{1}{\delta_n^d} \phi\left(\frac{x}{\delta_n}\right)$. Then $u_n \to u$.
 - o $C_0^{\infty}(U)$ is dense in $\mathcal{D}'(U)$
 - \circ We approximated $u \in \mathcal{D}'(U)$ by smooth and compactly supported functions in
- [3.28] Let $u, v \in \mathcal{D}'(\mathbb{R}^d)$ s.t. at least one of them has compact support, then u * v is welldefined with:
 - $\circ u * v = v * u$
 - $\operatorname{supp}(u * v) \subset \operatorname{supp}(u) + \operatorname{supp}(v)$
 - $\circ \quad \delta_{\{x=0\}} * u = u * \delta_{\{x=0\}} = u$
- [3.30] Let \mathcal{P} be a constant coefficient partial differential operator on \mathbb{R}^d . Let E_0 be a fundamental solution for \mathcal{P} at 0 and f be a compactly supported distribution. Then u = $E_0 * f$ solves $\mathcal{P}u = 0$.
 - If *u* is a compactly supported distribution, then $u = E_0 * \mathcal{P}u$

Lemmas

- [3.4] Let $f \in C^k(\mathbb{R}^d)$, $k < \infty$. Let ϕ be smooth with $\operatorname{supp} \phi \subset \overline{B(0,1)}$ and $\int_{\mathbb{R}^d} \phi = 1$. Define $\phi_{\delta}(x) = \frac{1}{\delta^d} \phi\left(\frac{x}{\delta}\right)$ and $f_{\delta} = \phi_{\delta} * f$
 - \circ supp $\phi_{\delta} \subset \overline{B(0,\delta)}$
 - $\circ f_{\delta}(x) = \int_{\mathbb{R}^d} \frac{1}{\delta^d} \phi\left(\frac{x-y}{\delta}\right) f(y) dy = \int_{\overline{B(0,1)}} \phi(z) f(x-\delta z) dz$
 - $f_{\delta} \in C^{\infty}$, supp $f_{\delta} \subset \text{supp } f + B_{\delta}(0)$
 - o Let $|\alpha| \le k$, then $\partial^{\alpha} f_{\delta} \to \partial^{\alpha} f$ uniformly on each compact set K as $\delta \to 0$
 - $\forall \epsilon > 0, \exists D \text{ s.t. } \delta < D \Rightarrow |\partial^{\alpha} f_{\delta}(x) \partial^{\alpha} f(x)| < \epsilon \ \forall x \in K$
- $\lim_{\delta \to 0} \sup_{x \in K} |\partial^{\alpha} f_{\delta}(x) \partial^{\alpha} f(x)| = 0$ [3.4'] Let $f \in C_0(\mathbb{R}^d)$. Take $\phi_1 \in C_0^{\infty}(\mathbb{R}^d)$, supp $\phi_1 \subset \overline{B_1(0)}$ with $\int \phi \, \mathrm{d}x = 1$. Define $\phi_{\epsilon} = 0$ $\frac{1}{\epsilon^d}\phi\left(\frac{x}{\epsilon}\right)$. Then $f*\phi_\epsilon\to f$ uniformly.
 - $\circ \int \phi_{\epsilon} dx = 1$
- [3.11] Let $f \in C^{\infty}(\mathbb{R}^d)$ and $u \in \mathcal{D}'(U)$, then $f * u \in C^{\infty}(\mathbb{R}^d)$
 - o $D^{\alpha}(f * u)(x) = ((D^{\alpha}f) * u)(x)$ for any multi-index α
 - $\circ (f * u)(x) = \int f(x y)u(y)dy = \langle u, f(x \cdot) \rangle$
- [3.12] Let $f \in C^{\infty}(\mathbb{R}^d)$ and $u \in \mathcal{D}'(\mathbb{R}^d)$, then $\operatorname{supp}(f * u) \subset \operatorname{supp}(f) + \operatorname{supp}(u)$
- [3.17] If $u_n \rightharpoonup u$, then $D^{\alpha}u_n \rightharpoonup D^{\alpha}u$

[3.18] Let $u_n(x) \in L^1_{loc}(\mathbb{R})$ satisfies $\lim_{x \to \infty} u_n(x) = u(x)$. If $\exists v \in L^1_{loc}(\mathbb{R})$ s.t. $|u_n(x)| \le v(x)$ for almost every $x \in \mathbb{R}$, then $u_n \to u$.

- [3.19] Let $\phi \in C_0^{\infty}(\mathbb{R}^d)$ and $\phi_{\delta} = \frac{1}{\delta^d} \phi\left(\frac{x}{\delta}\right)$. Then $\phi_{\delta} \rightharpoonup (\int \phi(x) dx) \delta_0$ as $\delta \to 0$.
- [3.22] If $u \in \mathcal{D}'(U)$ s.t. $\partial_i u = 0$, then u is a constant
- If $f \in L^1_{loc}(\mathbb{R}^n)$ and $\psi \in C_0(\mathbb{R}^n)$, then $f * \psi$ is continuous.
- Given an open set U and $f \in L^1_{loc}(U)$ and $\int_U f \phi \, dx = 0 \, \forall \phi \in C_0^{\infty}(U)$, then $f \equiv 0$ everywhere in U

Theorems

- [3.16, Sequential Compactness] Let $(u_n)_n \in \mathcal{D}'(U)$ be a sequence with the following property: for each $\phi \in C_0^\infty(U)$, the sequence $\langle u_n, \phi \rangle$ converges as $n \to \infty$. Then $\exists u \in$ $\mathcal{D}'(U) \text{ characterised by } \langle u, \phi \rangle = \lim_{n \to \infty} \langle u_n, \phi \rangle \ \forall \phi \in C_0^\infty(U)$
 - \circ A corollary is that u is automatically continuous
 - For every $K \subset U$ compact, $\exists N, C$ (independent of n) s.t. $|\langle u_n, \phi \rangle|, |\langle u, \phi \rangle| \le$ $C \sum_{|\alpha| \le N} \sup_{x \in K} |D^{\alpha} \phi(x)|$ If $\phi_n \to \phi$ in $C_0^{\infty}(U)$, then $\lim_{n \to \infty} \langle u_n, \phi \rangle = \langle u, \phi \rangle$

 - To check that u is continuous, can instead try to check for existence of $\langle u_n, \phi \rangle$ for each $\phi \in C_0^{\infty}(U)$.
- $\circ \lim_{n \to \infty} \langle u_n, \phi_n \rangle = \langle \lim_{n \to \infty} u_n, \lim_{n \to \infty} \phi_n \rangle$ [Malgrange-Ehrenpreis] Every constant coefficient scalar linear partial differential operator has a fundamental solution.

Tricks

Given a good function h(x), consider $h_{\delta}(x) = h\left(\frac{x}{s}\right)$

Laplace Equation

Definitions

- [Laplace Equation] $-\Delta u = 0$
- [Fundamental Solution] Let \mathcal{P} be an operator and $y \in \mathbb{R}^d$. The <u>fundamental solution</u> E_y for \mathcal{P} at y is a distribution $E_y \in \mathcal{D}'(U)$ satisfying $\mathcal{P}E_y = \delta_y$.

Properties

- [Translation Invariance] $-\Delta(u(x-x_0)) = (-\Delta u)(x-x_0)$
- [Rotational Invariance] Given $O^TO = \mathbb{I}_d$, then $-\Delta(u(Ox)) = (-\Delta u)(Ox)$
- [Homogeneity] For $\lambda > 0$, $-\Delta(u(\lambda x)) = \lambda^2(-\Delta u)(\lambda x)$
- $f(x) = \lim_{\epsilon \to 0} \int f(y)\phi_{\epsilon}(x-y) dy = \lim_{\epsilon \to 0} (f * \phi_{\epsilon})(x)$

Results

- [Fundamental Solution] $E_0(r) = \begin{cases} -\frac{1}{2\pi}\log r, \ d=2\\ \frac{1}{d(d-2)\alpha(d)r^{d-2}}, \ d\geq 3 \end{cases}$
 - o $E_0(r)$ is locally integrable near 0 i.e. is a distribution
 - $\circ \quad -\Delta E_0 = \delta_0 \text{ in } \mathbb{R}^d$
- [Solution] A solution for $-\Delta u = f$ on \mathbb{R}^d is u = f * E
- [Uniqueness] If $u \in C_0^{\infty}(\mathbb{R}^d)$, then $u = (-\Delta u) * E$ i.e. u can be recovered from the Laplacian by convolving with the fundamental solution
- [Regularity] If $-\Delta u = 0$ and $u \in \mathcal{D}'(U)$, then u is smooth

Exam

Checks

- When using method of characteristics, make sure to specify the region, usually apparent from where you can invert $(y, s) \rightarrow (x, t)$
- Differentiate termwise i.e. $\frac{\partial f}{\partial p_j}$ for example instead of $\nabla_p f$
- [Jacobian] $J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$
- For test functions, consider Carathéodory functions.
- [Cutoff] For $\phi \in C_0^{\infty}(\mathbb{R})$, the cutoff function is $\chi(x) = \begin{cases} 1, & x \in \text{supp } \phi \\ 0, & x \notin \text{supp } \phi \end{cases}$
- [Fubini] If $\int_{\mathbb{R}^2} |f(x,y)| dx dy < \infty$, then $\int_{\mathbb{R}} \int_{\mathbb{R}} f(x,y) dx dy = \int_{\mathbb{R}} \int_{\mathbb{R}} f(x,y) dy dx$
- Check that the term defined is actually a distribution.
- Derivative of distribution is just the intuitive derivative with delta boosts
- Can you guess the solution?
- $\phi_n = \frac{1}{n^{2N}} \cos(2\pi n^2 x) \chi\left((n+1)^2 \left(x \frac{1}{n}\right)\right)$ $\circ \chi(x) = 1_{\left(-\frac{1}{2},\frac{3}{2}\right)}$ and 0 outside [-1,1] smooth cutoff
 - $\circ \sup_{\alpha:|\alpha| \le N} \chi\left((n+1)^2 \left(x \frac{1}{n}\right)\right) \subset \left(\frac{1}{n+1}, \frac{1}{n-1}\right)$ $\circ \sum_{\alpha:|\alpha| \le N} \sup_{x \in K} |\partial^{\alpha} \phi(x)| < C_N$