Definición formal: Λ

 Aunque no es estrictamente necesario, es conveniente, a veces, considerar la relación Λ (lambda mayúscula) sobre el conjunto de estados, definida de la siguiente manera

$$\forall p,q \in Q$$
 $p \land q \Leftrightarrow (\text{def.}) \delta(p,\lambda) = q$

Gráficamente:

Definición formal: Λ

- Esta relación facilita los desarrollos teóricos y prácticos
- Las transiciones λ mencionadas explícitamente en las transiciones de un autómata, inducen otras:
 - De

• Que sugieren el interés de Λ^+ , cierre transitivo de Λ , que se define como

 $p\Lambda^+q \Leftrightarrow$ "si q es accesible desde p por medio sólo de transiciones con λ , es decir, sin consumir ningún símbolo de entrada "

• Y que se puede calcular de la siguiente forma $\Lambda^+ = \bigcup_{i=1}^{\infty} \Lambda_i$

Definición formal: Λ

 Y, estrictamente hablando, por definición, cualquier autómata permanece en el mismo estado sin consumir símbolos de entrada. Por lo que se cumpliría

$$\forall \ A = (Q, \ \Sigma, \ \delta, \ q_0, \ F) \ \text{automata finito y} \ \forall \ q_i \in Q$$

• Que sugiere el interés de Λ^* , cierre transitivo y reflexivo de Λ , que se puede calcular como

$$\Lambda^* = \bigcup_{i=0}^{\infty} \Lambda^i$$

Por conveniencia, si se necesita, se asociará con Λ también el siguiente significado:

$$\forall p \in Q \qquad \Lambda(p) = \{ q \in Q \mid p\Lambda q \} = \{ q \in Q \mid \delta(p,\lambda) = q \}$$

• Es decir, $\Lambda(p)$ es el conjunto de estados para los que hay una transición lambda directa desde p.

Representaciones

- Para la función de transición de los autómatas finitos no deterministas suelen utilizarse las mismas representaciones que para los deterministas:
 - Tablas de transición
 - Diagramas de transición
- A continuación se muestran algunos ejemplos:

Ejemplo 1

Considérese el siguiente autómata finito no determinista:

$$A = (Q = \{q_0, q_1, q_2\}, \Sigma = \{0,1\}, \delta, q_0, F = \{q_2\})$$

• Donde el diagrama de transiciones de δ es el siguiente:

Ejemplo 1

Que también se puede representar mediante la siguiente tabla de transiciones:

	0	1	λ
$\rightarrow q_0$	$\{q_0, q_1\}$	$\{q_0\}$	Ф
q_1	Ф	$\{*q_2\}$	Ф
$*q_{2}$	Ф	Ф	Ф

• De cuya última columna resulta claro que no hay transiciones λ por lo que

$$\Lambda = \Lambda^+ = \Lambda^* = \mathbf{0}$$

Donde 0 representa la matriz que consta sólo de 0's.

Ejemplo 2

Considérese el siguiente autómata finito no determinista:

$$A = (Q = \{p,q,r,s\}, \Sigma = \{a,b\}, \delta, p, F = \{p,s\})$$

• Donde el diagrama de transiciones de δ es el siguiente:

Ejemplo 2

Que también se puede representar mediante la siguiente tabla de transiciones:

	а	b	λ
→ *p	$\{q\}$	Ф	Φ
q	$\{*p,r,*s\}$	{* <i>p</i> , <i>r</i> }	{ *s }
r	Ф	$\{*p,*s\}$	$\{r, *s\}$
*5	Ф	Ф	{r}

Ejemplo 2

Y que define la siguiente relación Λ:

	p	q	r	S
p	0	0	0	0
q	0	0	0	1
r	0	0	1	1
S	0	0	1	0

Se puede calcular la siguiente relación Λ⁺:

$$\Lambda^2$$

	p	q	r	S
p	0	0	0	0
q	0	0	1	0
r	0	0	1	1
S	0	0	1	1

			_	
	p	q	r	S
p	0	0	0	0
q	0	0	0	1
r	0	0	1	1
S	0	0	1	0

Ejemplo 2

Y que define la siguiente relación Λ:

	p	q	r	S
p	0	0	0	0
q	0	0	0	1
r	0	0	1	1
S	0	0	1	0

Se puede calcular la siguiente relación Λ⁺:

$$\Lambda^2$$

$\Lambda \cup \Lambda^2$

	p	q	r	S
p	0	0	0	0
q	0	0	1	1
r	0	0	1	1
S	0	0	1	1

Ejemplo 2

Y que define la siguiente relación Λ:

	p	q	r	S
p	0	0	0	0
q	0	0	0	1
r	0	0	1	1
S	0	0	1	0

Se puede calcular la siguiente relación Λ+:

$$\Lambda^2$$

$$\Lambda^3$$

0

$\Lambda \cup \Lambda^2 \cup \Lambda^3$

	p	q	r	S
p	0	0	0	0
q	0	0	1	1
r	0	0	1	1
S	0	0	1	1

S

0

Ejemplo 2

Y que define la siguiente relación Λ:

	p	q	r	S
p	0	0	0	0
q	0	0	0	1
r	0	0	1	1
S	0	0	1	0

Se puede calcular la siguiente relación Λ⁺:

$$\Lambda^2$$

$$\Lambda^3 = \Lambda^4$$

	p	q	r	S
p	0	0	0	0
q	0	0	1	0
r	0	0	1	1
S	0	0	1	1

$\Lambda \cup \Lambda^2 \cup \Lambda^3 \cup \Lambda^2$	1
--	---

	p	q	r	S
p	0	0	0	0
q	0	0	1	1
r	0	0	1	1
S	0	0	1	1

Ejemplo 2

Y que define la siguiente relación Λ:

	p	q	r	S
p	0	0	0	0
q	0	0	0	1
r	0	0	1	1
S	0	0	1	0

Se puede calcular la siguiente relación Λ+:

$$\Lambda^2$$

$$\Lambda^3 = \Lambda^4$$

$$\Lambda \cup \Lambda^2 \cup \Lambda^3 \cup \Lambda^4 = \Lambda^+$$

	p	q	r	S
p	0	0	0	0
q	0	0	1	0
r	0	0	1	1
S	0	0	1	1

	p	q	r	S
p	0	0	0	0
q	0	0	1	1
r	0	0	1	1
S	0	0	1	1

Ejemplo 2

Y que define la siguiente relación Λ:

	p	q	<i>r</i>	<u>S</u>
p	0	0	0	0
q	0	0	0	1
r	0	0	1	1
S	0	0	1	0

• Se puede calcular la siguiente relación Λ^+ y también Λ^* (donde *I* representa la matriz identidad cuyos únicos 1's están en la diagonal derecha):

$$\Lambda^+$$

$$\Lambda^*$$

	p	q	r	S
p	0	0	0	0
q	0	0	1	1
r	0	0	1	1
S	0	0	1	1

$$\Lambda^* = \bigcup_{i=0}^{\infty} \Lambda^i = \Lambda^0 \cup \bigcup_{i=0}^{\infty} \Lambda^i = I \cup \Lambda^+ \square$$

	p	q	r	S
p	1	0	0	0
q	0	1	1	1
r	0	0	1	1
S	0	0	1	1

Ejemplo 2

Y se puede concluir que

$$\Lambda(p)=\Phi,$$
 $\Lambda(q)=\{s\},$
 $\Lambda(r)=\{r,s\},$
 $\Lambda(s)=\{r\},$

$$\Lambda^{+}(p) = \Phi,$$
 $\Lambda^{+}(q) = \{r, s\},$
 $\Lambda^{+}(r) = \{r, s\},$
 $\Lambda^{+}(s) = \{r, s\},$

$$\Lambda^*(p) = \{p\},\$$
 $\Lambda^*(q) = \{q,r,s\},\$
 $\Lambda^*(r) = \{r,s\},\$
 $\Lambda^*(r) = \{r,s\}$

	Λ					
	p	q	r	S		
p	0	0	0	0		
q	0	0	0	1		
r	0	0	1	1		
S	0	0	1	0		

	Λ^*				
	p	q	r	S	
p	1	0	0	0	
q	0	1	1	1	
r	0	0	1	1	
S	0	0	1	1	

Ejemplo 3

Considérese el siguiente autómata finito no determinista:

$$A = (Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}, \Sigma = \{0,1,...,9,+,-,.\}, \delta, q_0, F = \{q_5\})$$

• Donde el diagrama de transiciones de δ es el siguiente:

Ejemplo 2

 Que también se puede representar mediante la siguiente tabla de transiciones (obsérvese que se han agrupado en una sola columna varias que serían idénticas; el nombre de la columna acumula todos los nombres como en +,- y 0,1,...,9, la tabla real tiene 14 columnas):

	+,-	0,1,,9	•	λ
$\rightarrow q_0$	$\{q_I\}$	Φ	Φ	$\{q_1\}$
q_1	Φ	$\{q_1, q_4\}$	$\{q_2\}$	Φ
q_2	Ф	$\{q_3\}$	Ф	Φ
q_3	Ф	$\{q_3\}$	Ф	$\{*q_5\}$
q_4	Ф	Ф	$\{q_3\}$	Φ
$*q_5$	Ф	Ф	Ф	Ф

Ejemplo 3

• La función de transición define la siguiente matriz Λ que resulta ser también Λ^+ , por lo que Λ^* queda como se muestra a continuación:

	$\Lambda = \Lambda^+$					
	q_0	q_1	q_2	q_3	q_4	q_5
q_0	0	1	0	0	0	0
q_1	0	0	0	0	0	0
q_2	0	0	0	0	0	0
q_3	0	0	0	0	0	1
q_4	0	0	0	0	0	0
q_5	0	0	0	0	0	0

			1	1 *		
ı	q_0	q_1	q_2	q_3	q_4	q_5
q_0	1	1	0	0	0	0
q_1	0	1	0	0	0	0
q_2	0	0	1	0	0	0
q_3	0	0	0	1	0	1
q_4	0	0	0	0	1	0
q_5	0	0	0	0	0	1

Ejemplo 4

Y concluir que

$$\Lambda(q_0) = \Lambda^+(q_0) = \{q_1\},$$
 $\Lambda(q_1) = \Lambda^+(q_0) = \Phi,$
 $\Lambda(q_2) = \Lambda^+(q_2) = \Phi,$
 $\Lambda(q_3) = \Lambda^+(q_3) = \{q_5\},$
 $\Lambda(q_4) = \Lambda^+(q_4) = \Phi,$
 $\Lambda(q_5) = \Lambda^+(q_5) = \Phi,$

$$\Lambda^*(q_0) = \{q_0, q_1\},\$$

$$\Lambda^*(q_1) = \{q_1\},\$$

$$\Lambda^*(q_2) = \{q_2\},\$$

$$\Lambda^*(q_3) = \{q_3, q_5\},\$$

$$\Lambda^*(q_4) = \{q_4\},\$$

$$\Lambda^*(q_5) = \{q_5\}$$

		q_0	q_1	q_2	q_3	q_4	q_5
	q_0	1	1	0	0	0	0
$oldsymbol{\Lambda}^*$	q_1	0	1	0	0	0	0
/\	q_2	0	0	1	0	0	0
	q_3	0	0	0	1	0	1
	q_4	0	0	0	0	1	0
	q_5	0	0	0	0	0	1

Ejemplo 4

Considérese el siguiente autómata finito no determinista:

$$A = (Q = \{1, 2, 3, 4, 5, 6, 7\}, \Sigma = \{a, b\}, \delta, 1, F = \Phi)$$

• Donde el diagrama de transiciones de δ es el siguiente:

Ejemplo 4

Que también se puede representar mediante la siguiente tabla de transiciones:

	а	b	λ
$\rightarrow 1$	Ф	Ф	{2,4}
2	Ф	Ф	{3}
3	Ф	Ф	{6}
4	{5}	Ф	Ф
5	Ф	{6}	{7}
6	Ф	Ф	Ф
7	Ф	Ф	Ф

Ejemplo 4

• La función de transición define la siguiente matriz Λ . También se muestran Λ^2 y Λ^3 . Ocurre que Λ^4 =0.

				Λ			
	1	2	3	4	5	6	7
1	0	1	0	1	0	0	0
2	0	0	1	0	0	0	0
3	0	0	0	0	0	1	0
4	0	0	0	0	0	0	0
5	0	0	0	0	0	0	1
6	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0

		Λ^2										
	1	2	3	4	5	6	7					
1	0	0	1	0	0	0	0					
2	0	0	0	0	0	1	0					
3	0	0	0	0	0	0	0					
4	0	0	0	0	0	0	0					
5	0	0	0	0	0	0	0					
6	0	0	0	0	0	0	0					
7	0	0	0	0	0	0	0					

	Λ^3										
	1	2	3	4	5	6	7				
1	0	0	0	1	0	1	0				
2	0	0	0	0	0	0	0				
3	0	0	0	0	0	0	0				
4	0	0	0	0	0	0	0				
5	0	0	0	0	0	0	1				
6	0	0	0	0	0	0	0				
7	0	0	0	0	0	0	0				

Ejemplo 4

• Por lo que ya se pueden calcular Λ^+ y Λ^* :

	Λ^+										
	1	2	3	4	5	6	7				
1	0	1	1	1	0	1	0				
2	0	0	1	0	0	1	0				
3	0	0	0	0	0	1	0				
4	0	0	0	0	0	0	0				
5	0	0	0	0	0	0	1				
6	0	0	0	0	0	0	0				
7	0	0	0	0	0	0	0				

	Λ^*										
	1	2	3	4	5	6	7				
1	1	1	1	1	0	1	0				
2	0	1	1	0	0	1	0				
3	0	0	1	0	0	1	0				
4	0	0	0	1	0	0	0				
5	0	0	0	0	1	0	1				
6	0	0	0	0	0	1	0				
7	0	0	0	0	0	0	1				

Ejemplo 4

Y concluir que

$$\Lambda(1)=\{2,4\},$$

$$\Lambda(2)=\{3\},$$

$$\Lambda(3) = \{6\},\$$

$$\Lambda(5) = \{7\},\$$

$$\Lambda(4)=\Lambda(6)=\Lambda(7)=\Phi$$
,

$$\Lambda^{+}(1)=\{2,3,4,6\},\$$

$$\Lambda^{+}(2)=\{3,6\},$$

$$\Lambda^{+}(3) = \{6\},\$$

$$\Lambda^{+}(5)=\{7\},$$

$$\Lambda^+(4)=\Lambda^+(6)=\Lambda^+(7)=\Phi$$
,

$$\Lambda^*(1) = \{1,2,3,4,6\},\$$

$$\Lambda^*(2)=\{2,3,6\},$$

$$\Lambda^*(3) = \{3,6\},\$$

$$\Lambda^*(4) = \{4\}, \Lambda^*(5) = \{5,7\},$$

$$\Lambda^*(6) = \{6\}, \Lambda^*(7) = \{7\}$$

$$\Lambda_1$$
 2 3 4 5 6 7

1	0	1	0	1	0	0	0
2	0	0	1	0	0	0	0
3	0	0	0	0	0	1	0

4	0	0	0	0	0	0	0
5	0	0	0	0	0	0	1
6	0	0	0	0	0	0	0

0

1	0	1	1	1	0	1	0
2	0	0	1	0	0	1	0
2	\bigcap		\cap	\bigcap	\cap	1	\cap

2	0	0	1	0	0	1	0
3	0	0	0	0	0	1	0
4	0	0	0	0	0	0	0
5	0	0	0	0	0	0	1
6	0	0	0	0	0	0	0
7			\cap	\cap	\overline{O}		\cap

2	3	4	5	6	7	Λ^{\cdot}	* 1	2	3	4	5	6
1	1	1	0	1	0	1	1	1	1	1	0	1
0	1	0	0	1	0	2	0	1	1	0	0	1

2	0	1	1	0	0	1	0
3	0	0	1	0	0	1	0
4	0	0	0	1	0	0	0
5	0	0	0	0	1	0	1
6	0	0	0	0	0	1	0
7	0	0	0	0	0	0	1
D \							