# DEVELOPMENT OF MEMS BASED MICROPUMPS FOR MEDICAL APPLICATIONS

BY

SHIRSHENDU CHATTERJEE(T91/ECE/184068)

UNDER SUPERVISION OF DR. ANIRBAN BHATTACHARYYA



INSTITUTE OF RADIO PHYSICS AND ELECTRONICS UNIVERSITY OF CALCUTTA

### CONTENTS

- Introduction
- Wound Therapy
- Glaucoma
- > Target of the Project
- Design of MEMS based Wound therapy system
- Design of MEMS based device for glaucoma treatment
- Work Done
- Design of Micropumps
- i. Structure Schematic
- ii. Working Principle
- COMSOL Simulation
- Results
- i. Piezoelectric Actuator Simulation
- ii. Fluid Transport Simulation
- iii. Piezoelectric Pressure Sensor
- iv. Peristaltic Micropump
- Future Considerations
- i. Fabrication of structures
- ii. Design Improvement
- iii. System Integration
- Application Ranges

### INTRODUCTION

- MEMS is termed as Micro-Electro-Mechanical Systems.
- MEMS have been an important aspect in different domains of technological advancements.
- Application of MEMS in medical domain has been elevated in recent years for sensing and actuation purposes.
- But, there has been a dearth of MEMS based devices for fast and effective treatment of wounds and also for real time treatment of glaucoma.



http://www.eeherald.com/section/design-guide/mems\_medical.html



Figure 2: Lab on a pill

Abba, Ibrahim A.. "Role of Microelectromechanical Devices in Improving Human Health." (2015).

## WOUND THERAPY

- Vacuum Assisted Closure or Negative-pressure wound therapy.
- How does it work?
- i. Device decreases air pressure on the wound. The gases in the air around us put pressure over the area of the wound.
- ii. Induce mechanical stress to tissues and stimulate the division of cell (Mitosis)
- iii. Speed of the growth of new blood vessels can be enhanced by removing excess exudates and wound will be drawn closed toward the center point.





Polyurethane film

Foam creating a closed moist environment for wound healing

Negative pressure
Wound contraction (arrows)

Silicone based dressing protecting arterial reconstruction

Exposed blood vessels

Figure: NPWT Wound Types and treatment. Credit: https://www.smith-nephew.com/

MEMS based micropumps

21 June 2022

Figure: Operation of NPWT
Credit: S. Andersson, C. Monsen, S. Acosta, Outcome and
Complications Using Negative Pressure Wound Therapy in the
Groin for Perivascular Surgical Site Infections after Vascular
Surgery, 2017

#### GLAUCOMA

Drainage Canals

Open Angle

Cornea

Drainage

- ▶ Worldwide 6 9% blindness is caused by glaucoma.
- In 2020, 76 million people to 111.8 million in 2040 can be affected
- Normal range of IOP ~ 18-21 mm Hg for human eye
- Increased IOP damages optic nerves.
- ► Two types of glaucoma open-angle glaucoma, angle-closure glaucoma
- Implantation open-angle in between cornea and Iris, angle-closure in between Iris and Lens



Trabecular Meshwork, Schlemm's Canal, Episcleral Veins (75%)



Figure: trabecular meshwork path Credit: Aqueous Humor Dynamics Manik Goel

Posterior Chamber(lens and Iris)

Pupillary Openings

Anterior Chamber(Cornea and Iris)

Uveoscleral Path(25%)



Figure: Uveoscleral path

Credit: Aqueous Humor Dynamics Manik Goel

Figure: Open Angle and Closed angle Glaucoma

Lens

Fluid Flow

Credit: http://www.glaucoma.org/glaucoma/.

## TARGET OF THE PROJECT

- ► There are no devices to mitigate or heal the wounds inside the body.
- There are **no devices** to measure real time pressure and self actuate to pump out intraocular fluid to relieve IOP causing Glaucoma.
- ► To strike the problem of in-vivo wounds a micropump is to be designed, which will remove the exudates and to keep the wound clean and help fast healing of the wound.
- A sensor will also be incorporated to check the real-time vitals of the patient.
- ► For Glaucoma, micropump with integrated pressure sensor to be designed which self-actuates.
- ► The micropumps should be of compact size in the order of millimetres to centimetres.
- ► Fabrication of the devices will be done to be ready for implementation.

## DESIGN OF MEMS BASED WOUND THERAPY SYSTEM

- ▶ The schematic of the design of MEMS based wound therapy system is shown.
- A power source is applied to the system. The whole pumping mechanism is controlled by a control system.
- After pumping the exudates are taken out of the system for further operations.



Figure: overall design of the system

21 June 2022

## DESIGN OF NOZZLE DIFFUSER MICROPUMP

#### **Structure Schematic**

- The structure shows two conical diffuser elements with fully developed in let chamber.
- ▶ The fluid goes in the inlet, through the chamber and gets pumped out through the outlet
- ► The chamber is covered by a actuator which changes the pressure inside the chamber thus actuating the pumping action.
- The designed micropump is shown below.
- ► The micropump is of size 1.2cm\*0.6cm.



Figure: Design of the micropump

MEMS based micropumps 21 June 2022

21 June 2022

#### NOZZLE DIFFUSER MICROPUMP

#### **Working Principle**

- There are two modes of operation of the pump-expansion mode, contraction mode.
- In Expansion mode, the volume of the pumping section increases more fluid enters the pumping chamber from the diffuser than the nozzle.
- In the Contraction mode, more fluid goes out of the element on the left which now acts as a diffuser, while the element on the right acts as a nozzle.

#### **Theoretical Analysis**

- To analyze the working of the diffuser element, pressure loss coefficient, flow rectification efficiency and diffuser efficiency was taken in consideration.
- ► The pressure loss coefficient is defined-
- $K_{\rm d} = 1 \frac{d_{\rm a}^4}{d_{\rm b}^4} C_p \qquad K_{\rm n} = \frac{\Delta p_{\rm t}}{\rho v_{\rm b}^2}$
- The flow rectification efficiency (E) is given by-  $\varepsilon = \frac{Q_+ Q_-}{Q_+ + Q_-}$
- The nozzle efficiency of the diffuser is  $\eta = \frac{K_{\rm n,l}}{K_{\rm d,t}}$
- Diffuser angle should be of 9°.
- ▶ Less the K<sub>d</sub>, more is the efficiency.



Figure: Modes of operation







Figure: pressure loss coefficient with half angle

## DEVICE FOR GLAUCOMA TREATMENT

The device can be segregated in two part- Piezoelectric Pressure Sensor and Peristaltic Micropump.

#### Peristaltic Micropump

- Dimension of the micropump is 3mm \* 0.25mm.
- Consists of three pumping cells, Microchannels, moving membrane and electrodes.
- Electrostatic force pulls down the diaphragm.
- Fluid chamber expands and fluid starts to flow.
- Piezoelectric Pressure Sensor-
- Consists of Stacked layers.
- Size of device is 350μm\*100μm\*1.3μm



Figure: Piezoelectric laminate beamlayer





Figure: working of peristaltic micropump
Credit: MSppt

Figure: Bimorph Piezoelectric Sensor

Credit: M. Liu et al., "Piezoelectric Microcantilevers with Two PZT Thin-Film Elements for Microsensors and Microactuators," 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2006, pp. 775-778.

## DESIGN OF MEMS BASED DEVICE FOR GLAUCOMA TREATMENT

▶ The schematic and flow chart of working of the device is given.

- ► The device self actuates by the output voltage of the piezoelectric sensor.
- ► A logic circuit applies voltage sequentially to the different electrodes for operation.
- How to know the pump will actuate after the pressure increases than a certain range?
- The output voltage of sensor for 25mm Hg and also the threshold voltage of membrane known.
- We thus modulate the output voltage to be greater than the threshold voltage when the pressure increases from the normal limit.



#### Actuation Principles

Special crystals were subject to mechanical tension, they became electrically polarized and the polarization was proportional to the extension - direct piezoelectric effect.

► The same phenomenon occurs when an electrical voltage is applied, the material gets deformed - inverse piezoelectric effect.

▶ This serves as the main actuating phenomenon for the pumping mechanism for the

micropump.



Thorsén, Anders. (1998). Valveless Diffuser Micropumps.

#### Piezoelectric Actuator

| Description                                  | Value         |
|----------------------------------------------|---------------|
| Diameter and thickness of the Diaphragm      | 6mm,<br>100μm |
| Diameter and thickness of Brass              | 6mm,<br>100μm |
| Diameter and thickness of the Piezo Material | 4mm,<br>100μm |



Figure : Design of actuator

| Description            | Material Used |
|------------------------|---------------|
| Diaphragm              | PDMS          |
| Piezoelectric Actuator | PZT-5H        |
| Substrate              | Brass         |



#### Fluid Transport Geometry

| Description                             | Value |
|-----------------------------------------|-------|
| Length of the inlet chamber( $l_1$ )    | 1mm   |
| Length of the diffuser(l <sub>2</sub> ) | 1mm   |
| Chamber Diameter(D)                     | 5mm   |
| Actuator Diameter                       | 3mm   |
| Neck width(l <sub>3</sub> )             | 100µm |
| Neck width-outflow(l <sub>4</sub> )     | 260µm |
| Width of chamber                        | 300µm |
| Top plate thickness                     | 100µm |



Figure: Design of Fully Developed Nozzle/Diffuser Micropump

Credit: COMSOLmultiphysics

**Problem formation** (Design variable and performance characteristics)

**Computational formulation** (Pump modeling using pzd and fsi module, governing equations and boundary

constraints)

Simulation and parametric studies (study of influence of different design parameters on net flow rate)

**Optimal design** (Identification of optimal designed parameters)

Characterization of micropump

(Flow characteristics)

21 June 2022

14



Figure: Mesh formation Credit: COMSOL Multiphysics

Figure: Swept mesh
Credit: COMSOL Multiphysics

Boundary Conditions

The side walls of the diaphragm, membrane and the Piezo disc were fixed.

For inlet/outlet we have used pressure inlets as boundary conditions.



Figure: work / symmetric planes Credit: COMSOL Multiphysics

#### Peristaltic Pump 2D Geometry

| Description                     | Value |
|---------------------------------|-------|
| Thickness of Actuation Membrane | 2µm   |
| Height of Actuation gap         | 4µm   |
| Thickness of Electrodes         | 0.5µm |
| Inlet/Outlet Length             | 20µm  |
| Height of Microchannel          | 6µm   |

#### ► Piezoelectric Sensor

| Material              | Thickness |
|-----------------------|-----------|
| SiO2                  | 0.5µm     |
| Aluminum              | 0.1µm     |
| PZT                   | 0.5µm     |
| Si3N4                 | 0.1 μm    |
| Length of the sensor  | 350µm     |
| Breadth of the sensor | 100µm     |



Figure: Piezoelectric Sensor

#### Piezoelectric Simulation-

- Applying +10volt to the actuator forms a concave surface and bends upwards.
- Applying -10volt the actuator bends inwards as shown.
- The graph shows a linear curve, thus depicting linear lncrease of the diaphragm with the change in voltage.



Figure: Piezoelectric actuator simulation

Credit: COMSOLmultiphysics



Figure: von-mises stress due to deformation

Credit: COMSOLmultiphysics



Figure: Diaphragm displacement(m) with voltage(V) plot

Credit: COMSOLmultiphysics

17

#### Fluid Transport Simulation-

- Inflow characteristics-
- I. It is observed a maximum velocity of 1.43x 10-5m/s near the neck of the diffuser element. The inflow of the fluid is shown.
- Outflow characteristics
  - i. As the top plate is pressed down, the fluid ejecting out of the chamber with a maximum velocity of 1.54x 10-5m/s.



Figure: Simulation of inflow of fluid transport

Credit: COMSOLmultiphysics software

#### Fluid Streamlines and velocity fields



Figure: streamline at time 0.05s (inflow)

Credit: COMSOL Multiphysics



Figure: Flow velocity at time 0.05s (inflow)

Credit: COMSOL Multiphysics



Figure: streamline at time 0.075s (outflow)

Credit: COMSOL Multiphysics



Figure: Flow velocity at time 0.075s (outflow)

Credit: COMSOL Multiphysics

MEMS based micropumps



Figure: Accumulated flow volume(µl) vs. time(s) for diffuser length 0.9mm [COMSOL Multiphysics]



Figure: Accumulated flow volume(µl) vs. time(s) for diffuser length 1.1mm [COMSOL Multiphysics]



Figure: Accumulated flow volume(µl) vs. time(s) for diffuser angle 8° [COMSOL Multiphysics]



Figure: Accumulated flow volume(µl) vs. time(s) for diffuser length 1.3mm [COMSOL Multiphysics]



Figure: Accumulated flow volume(µl) vs. time(s) for diffuser length 1.5mm [COMSOL Multiphysics]



Figure: Accumulated flow volume(µl)vs time(s) for diffuser angle 9° [COMSOL Multiphysics]



Figure: flow rate( $\mu$ l/min) with diffuser

length(mm) plot for blood

Credit: Origin



Figure: inlet velocity(m/s) with time(s)

Credit: Origin



Figure: flow rate(µl/min) with diffuser angle(°) plot for blood Credit: Origin





Figure: flow rate(ul/min) of different

fluids for optimal geometry

Credit: Origin

Figure: outlet velocity(m/s) with time(s)

Credit: Origin

- Piezoelectric Sensor
- ► The stacked pressure sensor was simulated and characteristics were studied for PZT-5H.
- Output voltage vs. applied pressure characteristics were measured.
- Peristaltic pump
- ► The most important part of the pump is the moving diaphragm as actuation depends on its threshold voltage.
- ► The threshold voltage of the membrane was seen at 18.5V, thus voltage of 20 V was applied on top electrode.



## FUTURE CONSIDERATIONS

- Design Improvement
- As we finish designing a single micropump, the design of such can be extended for modifications to increase the flow rate of the pump.
  - One such design modification is shown.
- Fabrication of Structures
- ► The process flow of the fabrication of the MEMS micropump can be given as-
- Firstly, the a 300µm silicon wafer is patterned in the shape of the micropump with the corresponding chamber and two diffuser, inletoutlet channels using photolithography.
- Then, it was etched out to form the required geometry. Isotropic
  etching is to be done for the conical diffusers and the chamber and the
  inlet boundary will be anisotropically etched.
- Then, the PDMS diaphragm was deposited on the wafer and patterned to give the specific shape.
- Then, the piezoelectric actuator with the brass base plate was kept on the diaphragm and joined with epoxy/glue resin.



Figure: Design of alternating action micropump



21 June 2022

Figure: Masks for fabrication Credit: Autocad

## APPLICATION RANGES

#### Nozzle/Diffuser Micropump

- ► The whole system can have several application in medical domain including wounds on outside and inside human body.
- This device can be attached with the front of the imaging probe for endoscopy, and can attach to cuts inside the body after taking samples.
- ► For laparoscopy, cuts of 1-1.5cm is made. Our device's dimension is sufficient enough to mitigate the cut for such purpose.

#### Peristaltic Micropump with Pressure sensor

- The integrated device can be used to lower down the intraocular pressure thus reducing the chance of glaucoma.
- The peristaltic micropump alone can also be used for drug delivery purpose specially for glaucoma treatment.

#### REFERENCES

- Singhal, Vishal & Garimella, Suresh & Murthy, Jayathi. (2004). Low Reynolds Number Flow through Nozzle-Diffuser Elements in a Valveless Micropumps. Sensors and Actuators A: Physical. 113. 226-235. 10.1016/j.sna.2004.03.002.
- Yunas, Jumril & Johari, Juliana & Hamzah, Azlan & Gebeshuber, Ille & Majlis, Burhanuddin. (2010). Design and Fabrication of MEMS Micropumps using Double Sided Etching. Journal of Microelectronics and Electronic Packaging. 7. 44-47. 10.4071/1551-4897-7.1.44.
- ▶ Bin Fan, Gangbing Song, Fazle Hussain, "Simulation of a piezoelectrically actuated valveless micropump," Proc. SPIE 5389, Smart Structures and Materials 2004: Smart Electronics, MEMS, BioMEMS, and Nanotechnology, (29 July 2004); <a href="https://doi.org/10.1117/12.544172">https://doi.org/10.1117/12.544172</a>
- ► Gidde, R.R., Pawar, P.M. & Dhamgaye, V.P. Fully coupled modeling and design of a piezoelectric actuation based valveless micropump for drug delivery application. *Microsyst Technol* **26**, 633-645 (2020). https://doi.org/10.1007/s00542-019-04535-8
- Komatsuzaki, Hiroki & Suzuki, Kenta & Liu, Yingwei & Kosugi, Tatsuya & Ikoma, Ryuta & Youn, Sung-Won & Takahashi, Masaharu & Maeda, Ryutaro & Nishioka, Yasushiro. (2011). Flexible Polyimide Micropump Fabricated Using Hot Embossing. Japanese Journal of Applied Physics. 50. 10.1143/JJAP.50.06GM09.

MEMS based micropumps 21 June 2022 25

#### REFERENCES

- Jr-Hung Tsai and Liwei Lin, "A thermal-bubble-actuated micronozzle-diffuser pump," in Journal of Microelectromechanical Systems, vol. 11, no. 6, pp. 665-671, Dec. 2002, doi: 10.1109/JMEMS.2002.802909.
- Kalra, Shifali & Nabi, Mashuq. (2017). Implantable Bio-MEMS applications: A review. 131-136. 10.1109/RDCAPE.2017.8358254.
- S. Bhattacharjee, R. B. Mishra, D. Devendra and A. M. Hussain, "Simulation and Fabrication of Piezoelectrically Actuated Nozzle/Diffuser Micropump," 2019 IEEE SENSORS, 2019, pp. 1-4, doi: 10.1109/SENSORS43011.2019.8956550.
- ► Thorsén, Anders. (1998). Valveless Diffuser Micropumps.
- Santhya, Mohith & P, Navin & Kulkarni, S.. (2020). Performance analysis of valveless micropump with disposable chamber actuated through Amplified Piezo Actuator (APA) for biomedical application. Mechatronics. 67. 102347. 10.1016/j.mechatronics.2020.102347.
- T. Wang et al., "Numerical and Experimental Study of Valve-Less Micropump Using Dynamic Multiphysics Model," 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 2018, pp. 300-303, doi: 10.1109/NEMS.2018.8557014.
- Chandrasekaran, Arvind & Packirisamy, Muthukumaran. (2012). Experimental investigation of cavitation behavior in valveless micropumps. Journal of Micromechanics and Microengineering, 22. 125019. 10.1088/0960-1317/22/12/125019.

MEMS based micropumps 21 June 2022 26

## Thank You

MEMS based micropumps 21 June 2022