CHAPITRE EA2

Diodes : caractéristiques et applications

SOMMAIRE

- 1. Caractéristiques la jonction P-N
- 2. Applications

1. CARACTÉRISTIQUES — La diode P-N

- Diode = jonction de deux matériaux semi-conducteurs dopés P et N
- La cathode qui correspond a la zone dopée N est figurée sur certains boitiers par un anneau ou une barre de couleur

1. CARACTÉRISTIQUES DIRECTE ET INVERSE — Modèle simple

• 2 polarisations possibles :

Directe : Anode connectée à une tension plus élevée que la cathode

Inverse :
Anode connectée à une tension plus faible que la cathode

1. CARACTÉRISTIQUES DIRECTE ET INVERSE — Modèle simple

• Caractéristique courant-tension:

Conventionnellement : tension seuil = tension pour laquelle $I_D = 1mA$

On en déduit : diode == composant unidirectionnel

- sens direct : état passant

- sens inverse : état bloquant

1. CARACTÉRISTIQUES DIRECTE ET INVERSE — Modèle simple

Modélisation d'une diode

Polarisation inverse = la diode est assimilée à un circuit ouvert : le courant est considéré nul Polarisation directe = présence d'un court-circuit

1. CARACTÉRISTIQUES DIRECTE ET INVERSE — Modèle évolué

La physique des semi-conducteurs donnent la relation suivante :

$$I_D = I_S \left(\exp \frac{V_D}{nV_T} - 1 \right)$$

 I_S : courant de saturation

 $V_T = \frac{kT}{q}$: énergie thermique

n : coefficient de non idéalité. $n{\sim}1$ pour les diodes intégrées

 $n\sim2$ pour les diode discrètes

1. CARACTÉRISTIQUES DIRECTE ET INVERSE — Modèle évolué

Polarisation directe:

Lorsque V_D devient grand devant V_T :

$$I_D \approx I_S \exp \frac{V_D}{nV_T}$$

Variation de la tension

$$\Delta V_D = V_{D_2} - V_{D_1} = nV_T \ln \frac{I_{D_2}}{I_{D_1}}$$

Résistance série parasite R_S

Polarisation inverse:

Courant constant égal au courant de saturation $-I_S$ Courant inverse augmente rapidement avec la température

1. CARACTÉRISTIQUES DIRECTE ET INVERSE — Limites pratiques

Redressement : Source alternative -> tension (et donc un courant) dont la polarité est constante Exemple transformateur permettant de passer de la tension secteur à une basse tension.

$$V_{avg} = \frac{V_{pk}}{\pi}$$

$$V_{pk}$$

$$V_{rms} = \frac{V_{pk}}{2}$$

La simplicité du circuit a pour inconvénient un mauvais rendement

Montage 2 diodes

Transmet la puissance à la charge sur la totalité de la période Inconvénient : nécessite un transformateur à deux enroulements secondaires

$$V_{avg} = \frac{2V_{pk}}{\pi}$$
$$V_{rms} = \frac{V_{pk}}{\sqrt{2}}$$

Zoom au voisinage de zéro : zone « morte » durant la transition

Montage pont de Graetz

Montage le plus utilisé

2. Applications – Filtrage de la tension redressée

Filtrage : lissage des variations de tension

 $t_0 \rightarrow T/4$: charge de C

t > T/4, V_1 décroît -> $V_2 > V_1$ => diode en inverse le condensateur se décharge dans R_L

 $t > t_1 : V_1 > V_1$, la diode se remet à conduire

2. APPLICATIONS – Filtrage de la tension redressée

But du filtrage : minimiser dV_2 => on peut donc négliger dV_2 devant la valeur moyenne de V_2

$$-> t_1 \approx T + \frac{T}{4} => \text{temps de décharge } \sim T$$

->
$$I_{RL}$$
 constant : décharge linéaire : $I_{RL} = C \frac{dV_2}{T}$

$$-> C = T \frac{I_{RL}}{dV_2}$$

2. APPLICATIONS — Commutation

