Problem Set #5

Danny Edgel Econ 709: Economic Statistics and Econometrics I Fall 2020

October 8, 2020

Collaborated with Sarah Bass, Emily Case, Michael Nattinger, and Alex Von Hafften

Question 1

(a) For any $\varepsilon>0,$ let $N=1/\varepsilon.$ Then, $\frac{1}{n}<\varepsilon.$ Therefore,

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t } n \geq N \Rightarrow |a_n - 0| < \varepsilon$$

Thus, $a_n \to 0$ as $n \to \infty$

(b) We have already proven that $\frac{1}{n} \to \infty$. $\forall n, \sin(\frac{\pi n}{2}) \in [-1, 1]$, so if you let $N = 1/\varepsilon$, it will still be the case that, for any $\varepsilon > 0$, $n \ge N \Rightarrow |a_n - 0| < \varepsilon$

Question 2

Consider:

$$X_n = \begin{cases} -n, & \text{with probability } 1/n \\ 0, & \text{with probability } 1+2/n \\ n, & \text{with probability } 1/n \end{cases}$$

(a) X_n converges to zero in probability if, $\forall \varepsilon > 0$:

$$\lim_{n\to 0} P(|X_n - 0| < \varepsilon) = 0$$

From question 1 we know that $\frac{1}{n} \to 0$ as $n \to \infty$. This is true also of $\frac{2}{n}$, so as $n \to \infty$, $1 + \frac{2}{n} \to 1$. Thus, $P(X_n = 0) \to 1$ as $n \to \infty$. So X_n converges to zero in probability.

(b)

$$E(X_n) = P(X_n = -n)(-n) + P(X_n = 0)(0) + P(X_n = n)(n)$$

$$E(X_n) = \left(\frac{1}{n}\right)(-n) + 0 + \left(\frac{1}{n}\right)(n) = -1 + 1 = 0$$

(c)
$$Var(X_n) = E(X_n^2) - [E(X_n)]^2 = P(X_n = -n)(-n)^2 + P(X_n = 0)(0)^2 + P(X_n = n)(n)^2 - 0^2$$
$$Var(X_n) = \left(\frac{1}{n}\right)n^2 + 0 + \left(\frac{1}{n}\right)n^2 = n + n = 2n$$

(d)
$$E(X_n) = P(X_n = 0)(0) + P(X_n = n)(n) = 0 + \left(\frac{1}{n}\right)(n) = 1$$

(e) With the modified distribution from (d), X_n will still converge in probability to 0. Clearly, $X_n \to_p 0$ as $n \to 0$ is not sufficient for $E(X_n) \to_p 0$.

Question 3

Let $\overline{Y}^* = \frac{1}{n} \sum_{i=1}^n w_i Y_i$

(a)
$$E(\overline{Y}^*) = E(\frac{1}{n} \sum_{i=1}^n w_i Y_i) = \frac{1}{n} \sum_{i=1}^n w_i E(Y_i) = \mu \frac{1}{n} \sum_{i=1}^n w_i = \mu$$

(b) Letting σ^2 be the variance of Y_i ,

$$Var(\overline{Y}^*) = Var\left(\sum_{i=1}^n w_i Y_i\right) = \frac{1}{n^2} \sum_{i=1}^n w_i^2 Var(Y_i) = \left(\frac{1}{n^2} \sum_{i=1}^n w_i^2\right) \sigma^2$$

(c) Let $\sum_{i=1}^n w_i^2$ be represented by the constant k. Then, by Chebyshev's inequality, $\forall \varepsilon > 0$,

$$P(|\overline{Y}^* - \mu| \ge \varepsilon) \le \frac{Var(\overline{Y}^*)}{\varepsilon} = \frac{k\sigma^2}{\varepsilon n^2}$$

where $\frac{k\sigma^2}{\varepsilon n^2}$ is equal to some constant times $\frac{1}{n^2}$, which converges to zero as $n\to\infty$. Thus, $\overline{Y}^*\to_p \mu$.

(d) Another way of writing the probability from (c) is $\frac{\sigma^2}{\varepsilon} \sum_{i=1}^n \left(\frac{w_i}{n}\right)^2$. Thus, if we let $w^* = \max_{i < n} w_i$,

$$P(|\overline{Y}^* - \mu| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon} \sum_{i=1}^n \left(\frac{w^*}{n}\right)^2$$

So if $\left(\frac{w^*}{n}\right)^2 \to 0$, then this probability also converges to 0.

Question 4

Each of the following answers assumes that the moment in question exists.

- (a) $g(x) = x^2$ is continuous, so, under the continuous mapping theorem, $E(\frac{1}{n} \sum_{i=1}^n X_i^2) \to_p E(X^2)$ because $E(X_i) \to_p E(X)$
- (b) $g(x) = x^3$ is continuous, so, under the continuous mapping theorem, $E(\frac{1}{n} \sum_{i=1}^n X_i^3) \to_p E(X^3)$ because $E(X_i) \to_p E(X)$
- (c) $g(X_i) = \max_{i \leq n}(X_i)$ is not a continuous function, so the continuous mapping theorem and weak law of large numbers cannot tell us anything about this statistic's convergence in probability
- (d) This statistic is the same as (a), but minus a constant. Thus, $g(\cdot)$ is continuous and the statistic converges, by the continuous mapping theorem
- (e) We know that $\sum_{i=1}^{n} X_i$ converges to $n\mu$ and that $\sum_{i=1}^{n} X_i$ converges to $nE(X^2)$. Further, the function applied to X_i , g(x) = x, where x > 0, is continuous. So, by the continuous mapping theorem and weak law of large numbers, this statistic converges.
- (f) $\mathbb{1}(\cdot)$ is not a continuous function and we don't know anything about the distribution of X_i , so the weak law of large numbers and continuous mapping theorem cannot tell us anything about the convergence of this statistic.

Question 5

Since $\{X_1,...,X_n\}$ is a random sample, we know that $\frac{1}{n}\sum_{i=1}^n X_i \to_p E[X]$. Then, by the continuous mapping theorem, for some continuous function $g(\cdot)$, $\frac{1}{n}\sum_{i=1}^n g(X_i) \to_p g(E[X])$. Now, let g(x) = log(x). Then,

$$\log\left(\hat{\mu}\right) = \log\left(\left(\prod_{i=1}^{n} X_i\right)^{1/n}\right) = \frac{1}{n} \sum_{i=1}^{n} \log\left(X_i\right) \to_p E(\log\left(X\right))$$

And by the contraction mapping theorem, $g(X_i) \to_p g(X) \Rightarrow g^{-1}(X_i) \to g^{-1}(X)$. So we can conclude:

$$\hat{\mu} \to_p e^{E(\log(X))} = \mu$$

Question 6

(a) $\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$ is a consistent estimator of $\mu_k = E(X^k)$, according to the weak law of large numbers.

(b) Let σ be the variance of X^k . Then, $g(x) = \sigma x$ is a continuous function, so $X_i^k \to_d X^k \Rightarrow \sigma X_i^k \to_d \sigma X^k$. By the central limit theorem, since $\{X_i\}$ is an i.i.d. sample, then if $\sigma_{X^k}^2 < \infty$, $\frac{\sqrt{n}(\hat{\mu}_k - \mu_k)}{\sigma_{X^k}} \to_d \mathcal{N}(0,1)$. In the last assignment, we fount that $Var(X_k) = \mu_{2k} - \mu_k$. This value is clearly finite. Thus,

$$\sigma_{X^k}\sqrt{n}((\hat{\mu}_k - \mu_k)) \rightarrow_d \sigma_{X^k}\mathcal{N}(0,1) \sim \mathcal{N}(0,\mu_{2k} - \mu_k)$$

Question 7

- (a) Since g(x) = 1/k is a continuous function and $\hat{\mu}_k$ converges to μ_k , so $\hat{m}_k = \left(\frac{1}{n}\sum_{i=1}^n X_i^k\right)^{1/k}$ is a consistent estimator of $m_k = \left(E(X^k)\right)^{1/k}$ by the continuous mapping theorem.
- (b) Given the answer to 6(b), we know that $\sigma_{X^k}\sqrt{n}((\hat{\mu}_k \mu_k)) \to_d \mathcal{N}(0, \mu_{2k} \mu_k)$, where $m_k = h(\mu_k)$. Then, since $h(x) = x^{1/k}$ is continuously differentiable, we can use the delta method to derive:

$$\sqrt{n} \left(\hat{\mu}_k^{1/k} - \mu_k^{1/k} \right) \to_d \frac{1}{k} \mu_k^{\frac{k-1}{k}} \mathcal{N}(0, \mu_{2k} - \mu_k)) \sim \mathcal{N} \left(0, \frac{1}{k^2} \mu_k^{\frac{2k-2}{k}} (\mu_{2k} - \mu_k) \right)$$

Question 8

(a) $\sqrt{n}(\hat{\beta} - \beta) \to_d 2\mu \mathcal{N}(0, v^2) \sim \mathcal{N}(0, 4(\mu v)^2)$

- (b) If $\mu = 0$, then the variance of $\hat{\beta}'s$ distribution is zero, meaning that $\hat{\beta}$'s distribution is just a mass at 0, equal to 1.
- (c) If $\mu = 0$, then we know that $\sqrt{n}\hat{\mu} \to_d \mathcal{N}(0, v^2)$. Thus, we can use the continuous mapping theorem to calculate:

$$\frac{\sqrt{n}\hat{\mu}}{v} \to_d \mathcal{N}(0,1)$$
$$\left(\frac{\sqrt{n}\hat{\mu}}{v}\right)^2 \to_d \mathcal{N}(0,1)$$
$$n\beta \to_d \mathcal{N}(0,v^4)$$

(d) In part (a), $\hat{\beta}$ converged to its asymptotic distribution at a rate of \sqrt{n} , which had a variance that's proportionate to μ . In (c), we find that, when $\mu = 0$, $\hat{\beta}$ converges to its asymptotic distribution at a rate of n, and its variance is, intuitively, the square of $\hat{\mu}$'s variance. Unlike in (a), the variance does not depend on the value of μ itself.