

Application No.: 10/053396Case No.: 56313US009**Amendments****Amendments to the Claims:**

The following Listing of Claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

1. (Original) A fluorochemical composition comprising a major amount of organic solvent and 0.05% by weight to 5% by weight of fluorochemical oligomer dispersed or dissolved in said organic solvent and said fluorochemical oligomer being represented by the general formula:

whercin X represents the residue of an initiator or hydrogen; M^f represents units derived from fluorinated monomers; M^h represents units derived from a non-fluorinated monomers; M^a represents units having a silyl group represented by the formula:

wherein each of Y⁴, Y⁵ and Y⁶ independently represents an alkyl group, an aryl group or a hydrolyzable group; G is a monovalent organic group comprising the residue of a chain transfer agent; n represents a value of 1 to 100; m represents a value of 0 to 100; r represents a value of 0 to 100; and n+m+r is at least 2; with the proviso that at least one of the following conditions is fulfilled: (a) G is a monovalent organic group that contains a silyl group of the formula:

Application No.: 10/053396Case No.: 56313US009

wherein Y¹, Y² and Y³ each independently represents an alkyl group, an aryl group or a hydrolyzable group with at least one of Y¹, Y² and Y³ representing a hydrolyzable group; or (b) r is at least 1 and at least one of Y⁴, Y⁵ and Y⁶ represents a hydrolyzable group.

2. (Currently Amended) Fluorochemical composition according to claim 1 wherein at least one of Y¹, Y² and Y³ and/or at least one of Y⁴, Y⁵ and Y⁶ is a hydrolyzable group selected from the group consisting of halogen, an alkoxy group, an acyloxy group, an acyl group, and an aryloxy group.

3. (Original) Fluorochemical composition according to claim 1 wherein said monovalent organic group G corresponds to the general formula:

wherein Y¹, Y², Y³ have the meaning as defined in claim 1 or 2 and wherein Q¹ represents an organic divalent linking group.

4. (Original) Fluorochemical composition according to claim 1 wherein M^f comprises a unit derived from a fluorinated monomer of the formula:

wherein E¹ represents a free radical polymerizable group and Q² represents an organic divalent linking group.

5. (Currently Amended) Fluorochemical composition according to claim 1 wherein M^a is a unit derived corresponding to the formula:

Application No.: 10/053396

Case No.: 56313US009

wherein R^1 , R^2 and R^3 each independently represents hydrogen, an alkyl group, an aryl group or halogen, Q^3 represents an organic divalent linking group, Q^4 represents an organic divalent linking group, T represents O or NR with R being hydrogen, an aryl or a C_1 - C_4 alkyl group, and Y^4 , Y^5 and Y^6 have the meaning as defined in claim 1.

6. (Original) Fluorochemical composition according to claim 1 wherein G corresponds to the formula:

wherein Q^1 and Q^5 each independently represents an organic divalent linking group, T^2 represents O or NR with R being hydrogen, an aryl or a C_1 - C_4 alkyl group, and Y^1 , Y^2 and Y^3 have the meaning as defined in claim 1.

7. (Original) Fluorochemical composition according to claim 1 wherein the composition is a homogeneous composition further comprising water and an organic or inorganic acid.

8. (Currently Amended) Fluorochemical composition according to claim 1 wherein the units derived from non-fluorinated monomers are units derived from non-fluorinated monomers corresponding to the general formula:

Application No.: 10/053396Case No.: 56313US009

wherein R^b represents a hydrocarbon group, Q⁶ is a divalent linking group, s is 0 or 1 and E³ is a free radical polymerizable group.

9. (Original) Method of treating a substrate comprising applying to said substrate a composition according to claim 1.

10. (Original) Method of treating a substrate comprising applying to said substrate a composition according to claim 1 and exposing a thus obtained coated substrate to water and an organic or inorganic acid.

11. (Original) Method of treating a substrate according to claim 9 further comprising the step of exposing the coated substrate to an elevated temperature of 60°C to 300°C.

12. (Currently Amended) Method according to claim 9 wherein said substrate is selected from the group consisting of plastics, ceramics, and glass.

13. (Currently Amended) Substrate comprising a coating derivable from the coating composition of any of claim 1 wherein the substrate is selected from the group consisting of plastics, ceramics, and glass.

14. (Original) Fluorochemical oligomer corresponding to the formula:

wherein X represents the residue of an initiator or hydrogen;

M^f represents units derived from fluorinated monomers having the formula:

wherein E¹ represents a free radical polymerizable group and Q² represents an organic divalent linking group; M^h represents units derived from non-fluorinated monomers; M^a represents units having a silyl group represented by the formula:

Application No.: 10/053396Case No.: 56313US009

wherein each of Y^4 , Y^5 and Y^6 independently represents an alkyl group, an aryl group or a hydrolyzable group, with the proviso that at least one of Y^4 , Y^5 and Y^6 represents a hydrolyzable group; G represents a monovalent organic group comprising the residue of a chain transfer agent; n represents an integer of 1 to 100; m represents an integer of 0 to 100; r represents an integer of 0 to 100; and $n+m+r$ is at least 2;

with the proviso that at least one of the following conditions is fulfilled: (a) G is a monovalent organic group that contains a silyl group of the formula:

wherein Y^1 , Y^2 and Y^3 each independently represents an alkyl group, an aryl group or a hydrolyzable group with at least one of Y^1 , Y^2 and Y^3 representing a hydrolyzable group; or (b) r is at least 1 and at least one of Y^4 , Y^5 and Y^6 represents a hydrolyzable group.

15. (Currently Amended) Fluorochemical oligomer having the formula:

wherein X represents the residue of an initiator or hydrogen; M^f represents units derived from fluorinated monomers; M^h represents units derived from non-fluorinated monomers; M^a represents units having the formula:

Application No.: 10/053396Case No.: 56313US009

wherein R¹, R² and R³ each independently represents hydrogen, an alkyl group, an aryl group or halogen, Q³ represents an organic divalent linking group, Q⁴ represents an organic divalent linking group, T represents O or NR with R being hydrogen, an aryl or a C₁-C₄ alkyl group, and wherein each of Y⁴, Y⁵ and Y⁶ independently represents an alkyl group, an aryl group or a hydrolyzable group, with the proviso that at least one of Y⁴, Y⁵ and Y⁶ represents a hydrolyzable group; G represents a monovalent organic group comprising the residue of a chain transfer agent; n represents an integer of 1 to 100; m represents an integer of 0 to 100; r represents an integer of 1 to 100; and n+m+r is at least 2.

16. (Original) Fluorochemical oligomer according to claim 15 wherein G corresponds to the formula:

wherein Q¹ and Q⁵ each independently represents an organic divalent linking group, T² represents O or NR with R being hydrogen, an aryl or a C₁-C₄ alkyl group, and Y¹, Y² and Y³ each independently represents an alkyl group, an aryl group or a hydrolyzable group with at least one of Y¹, Y² and Y³ representing a hydrolyzable group.

17. (Original) Fluorochemical oligomer having the formula:

Application No.: 10/053396

Case No.: 56313US009

wherein X represents the residue of an initiator or hydrogen; M^f represents units derived from fluorinated monomers; M^h represents units derived from a non-fluorinated monomers; M^s represents units having a silyl group represented by the formula:

wherein each of Y⁴, Y⁵ and Y⁶ independently represents an alkyl group, an aryl group or a hydrolyzable group, with the proviso that at least one of Y⁴, Y⁵ and Y⁶ represents a hydrolyzable group; G corresponds to the formula:

wherein Q¹ and Q⁵ each independently represents an organic divalent linking group, T² represents O or NR with R being hydrogen, an aryl or a C₁-C₄ alkyl group, and Y¹, Y² and Y³ each independently represents an alkyl group, an aryl group or a hydrolyzable group with at least one of Y¹, Y² and Y³ representing a hydrolyzable group; n represents an integer of 1 to 100; m represents an integer of 0 to 100; r represents an integer of 0 to 100; and n+m+r is at least 2.

Application No.: 10/053396Case No.: 56313US009

Respectfully submitted,

Oct 4, 2005
Date

By: Robert H. Jordan
Robert H. Jordan Reg. No.: 31,973
Telephone No.: 651-733-6866

Office of Intellectual Property Counsel
3M Innovative Properties Company
Facsimile No.: 651-736-3833