گروه آموزشی :	(P)	نام و نام خانوادگی :
تاريخ : 🖊 🖊	دارنجا چسندی تا برود	شماره دانشجویی :
وقت : دقيقه		نام مدرس :
(، درس : دیفرانسیل (امتحان ميان تره
	نیمسال (اول / سا ۱۳ – ۱۳	

توجه: مطالب صفحه اول پاسخنامه را به دقت مطالعه نمایید.

سوال ۱ – معادله دیفرانسیل دسته منحنیهای
$$y=ax^{\mathsf{r}}+be^{-x}$$
 را بنویسید.

سوال ۲ – با اعمال تغییر متغیر
$$z = \sin y$$
 معادله دیفرانسیل زیر را حل کنید. $z = \sin y$ معادله دیفرانسیل زیر $(x - \tau \sin y + \tau) dx + (\tau x - \tau \sin y - \tau) \cos y dy = \cdot$

سوال ۳ – معادله مرتبه اول
$$y' = \frac{y}{x^{\mathsf{T}}y^{\mathsf{T}} \ln y - x}$$
 را حل کنید.

. دارد.
$$\mu=x^my^n$$
 معادله $\mu=x^my^n$ یک عامل انتگرالساز به صورت $y(xxy-1)dx+x(1-xy)dy=0$ دارد. با یافتن این عامل انتگرالساز، معادله را حل کنید.

سوال ۵ - جواب عمومی معادله دیفرانسیل مرتبه دوم زیر را با استفاده از روش ضرایب نامعین بیابید.
$$y'' + fy = f\cos Tx + \Lambda x^{T} - \Lambda$$

پاسخ سوالات امتحان میان ترم درس معادلات دیفرانسیل (۱۶ گروه هماهنگ) نیمسال دوم ۹۲–۱۳۹۱

 $y'' = 7a + be^{-x}$ و $y' = 7ax - be^{-x}$. روش اول : از طرفین رابطه دو بار مشتق می گیریم. $y'' = \frac{y'' + y'}{x + 1}x - be^{-x}$ و از تساوی اول داریم $a = \frac{y'' + y'}{7(x + 1)}$: y'' + y' = 7a(x + 1) و از تساوی اول داریم از جمع طرفین دو تساوی داریم $a = \frac{y''' - y'}{7(x + 1)}$: $a = \frac{xy''' - y'}{(x + 1)e^{-x}}$: $a = \frac{xy''' - y'}{(x + 1)e^{-x}}$: $a = \frac{y''' + y'}{7(x + 1)}x^7 + \frac{xy'' - y'}{(x + 1)e^{-x}}e^{-x}$: $a = \frac{y''' + y'}{7(x + 1)}x^7 + \frac{xy''' - y'}{(x + 1)e^{-x}}e^{-x}$: $a = \frac{y''' + y'}{7(x + 1)}x^7 + \frac{xy''' - y'}{7(x + 1)}e^{-x}$: $a = \frac{y'' + y'}{7(x + 1)}x^7 + \frac{y'' - y'}{7(x + 1)}e^{-x}$: $a = \frac{y'' + y'}{7(x + 1)}e^{-x}$: $a = \frac{y''$

جواب سوال ۲: اگر $z = \sin y$ آنگاه $z = \cos y dy$ و معادله به صورت $z = \sin y$ در می آید. $z = \sin y$ کر می آید. $z = \sin y$ کر می آید. اکنون داریم $z = \sin y$ با تغییر متغیر $z = \sin y$ داریم $z = \sin y$ در می آید. اکنون داریم $z = \cos y dy$ با تغییر متغیر $z = \sin y$ در می آید. اکنون داریم $z = \cos y dy$ با تغییر متغیر $z = \sin y$ در می آید. اکنون داریم $z = \cos y dy$ با تغییر متغیر $z = \sin y$ در می آید. اکنون داریم $z = \cos y dy$ در می آید. اکنون داریم $z = \cos y dy$ در می آید. اکنون داریم $z = \cos y dy$ در می آید. اکنون داریم $z = \cos y dy$ در می آید. اکنون داریم $z = \cos y dy$ در می آید. اکنون داریم $z = \cos y dy$ در می آید. اکنون داریم $z = \cos y dy$ در می آید. اکنون داریم $z = \cos y dy$ در می آید. اکنون داریم $z = \cos y dy$ در می آید. اکنون داریم $z = \cos y dy$ در می آید. اکنون داریم $z = \cos y dy$ در می آید. اکنون داریم $z = \cos y dy$ در می آید. اکنون داریم $z = \cos y dy$ در می آید. اکنون داریم $z = \cos y dy$ در می آید. اکنون داریم $z = \cos y dy$ در می آید. اکانون داریم $z = \cos y dy$ در می آید. اکانون داریم $z = \cos y dy$ در می آید. اکانون داریم $z = \cos y dy$ در می آید. اکانون داریم $z = \cos y dy$ در می آید. اکانون داریم $z = \cos y dy$ در می آید. اکانون داریم $z = \cos y dy$ در می آید. اکانون داریم $z = \cos y dy$ در می آید. اکانون داریم $z = \cos y dy$ در می آید. اکانون داریم $z = \cos y dy$ در می آید. اکانون داریم $z = \cos y dy$ در می آید. اکانون داریم $z = \cos y dy$ در می آید. اکانون داریم $z = \cos y dy$ در می آید. این در می آید. اکانون داریم $z = \cos y dy$ در می آید. این در می این در می آید. این در می آید. این در می آید. این در می آید. این د

پاسخ سوالات امتحان میان ترم درس معادلات دیفرانسیل (۱۶ گروه هماهنگ) نیمسال دوم ۹۲–۱۳۹۱

جواب سوال $\mu = x^m y^n$ در معادله را در $\mu = x^m y^n$ ضرب می کنیم:

$$(rx^{m+1}y^{n+1} - x^my^{n+1})dx + (x^{m+1}y^n - x^{m+1}y^{n+1})dy = .$$

$$M_{v} = \Upsilon(n+1)x^{m+1}y^{n+1} - (n+1)x^{m}y^{n}$$
, $N_{x} = (m+1)x^{m}y^{n} - (m+1)x^{m+1}y^{n+1}$

$$\mathbf{r}(n+\mathbf{r}) = -(m+\mathbf{r})$$
 , $-(n+\mathbf{r}) = m+\mathbf{r}$ \rightarrow : باید داشته باشیم

$$m=1$$
 , $n=-\pi$ و یا : $m+\pi n=-\Lambda$, $m+n=-1$

$$(\frac{\mathbf{x}^{\mathsf{x}^{\mathsf{y}}}}{y} - \frac{x}{y^{\mathsf{y}}})dx + (\frac{x^{\mathsf{y}}}{y^{\mathsf{y}}} - \frac{x^{\mathsf{y}}}{y^{\mathsf{y}}})dy = \cdot$$
 بنابر این $\mu = \frac{x}{y^{\mathsf{y}}}$ و با ضرب این عامل انتگرالساز در طرفین معادله داریم

$$x^{r}(xxy-1)=xcy^{r}:$$
 و یا $\frac{x^{r}}{y}-\frac{x^{r}}{y^{r}}=c:$ که یک معادله کامل است و جواب آن عبارت است از

$$y'' + fy = f\cos fx + Ax^{f} - A : \Delta$$
 جواب سوال

معادله مشخصه معادله همگن عبارت است از $m=\pm i$ که دو ریشه مختلط $m=\pm i$ دارد

 $y_h = A \sin \tau x + B \cos \tau x$: یعنی جواب معادله همگن برابر است با

 $y_{p_{1}}=cx^{2}+dx+e$ برای یافتن جواب خصوصی به کمک روش ضرایب نامعین فرض می کنیم $y_{p_{1}}''=x(a\sin tx+b\cos tx)$ و داریم بازی $y_{p_{2}}''=-\epsilon x(a\sin tx+b\cos tx)+\epsilon(a\cos tx-b\sin tx)$

$$y = y_{p_0} \rightarrow f(a\cos x - b\sin x) = f\cos x \rightarrow a = 1, b = 0 \rightarrow y_{p_0} = x\sin x$$

$$y = y_{p_r} \rightarrow fcx^r + fdx + fe + fc = \Lambda x^r - \Lambda \rightarrow c = f, d = \cdot, e = -r \rightarrow y_{p_r} = fx^r - r$$

 $y_g = y_h + y_{p_1} + y_{p_2} = A\sin tx + B\cos tx + x\sin tx + tx^t - \pi$: و جواب عمومی معادله برابر است با

سیدر ضا موسوی