Tarea1

Benjamin Rivera

September 6, 2020

Contents

1	Ejei	CC1C10 1	3
	1.1	Calcular el valor del épsilon de la máquina	3
	1.2	Dar la representación en notación cientifica (mantisa base 2, multipli-	
		cada por 2 elevda al exponente correspondiente) del número 5	3
	1.3	Dar la representación científica del número consecutico a 5 en la com-	
		putadora. Escribir la distancia d_c entre 5 y su consecutivo. Expresar	
		d_c en términos del épslon de la máquina	3
	1.4	Tenemos que el consecutivo de 5 es expresable como $5 + d_c$. Si ten-	
		emos un x real tal que $x \in (5, 5 + d_c)$ entonces la computadora repre-	
		sentara a x como $fl(x) = 5$ o $fl(x) = 5 + d_c$. Escribir una cota para el	
		error relativo para las dos posibles represetnaciones de x	4
	1.5	Explique si los siguientes números tienen respresentación exacta en la	
		computadora, es decir, si $fl(a_i) = a_i \dots \dots \dots \dots$	5
	1.6	De una cota para el error relativo de las restas 4 y 5 respecto al ver-	
		dader valor. Suponga que $fl(x)$ se obtiene por redondeo hacia abajo	
		(truncamiento)	6
2	Fior	rcicio 2	9

Tarea 1

Tarea 1 de *Benjamín Rivera* para el curso de **Métodos Numéricos** impartido por *Joaquín Peña Acevedo*. Fecha limite de entrega **6 de Septiembre de 2020**.

Como ejecutar

Requerimientos Este programa se ejecuto en mi computadora con la version de **Python 3.8.2** y con estos requerimientos

Jupyter

En caso de tener acceso a un *servidor jupyter*, con los requerimientos antes mencionados, unicamente basta con ejecutar todas las celdas de este *notebook*. Probablemente no todas las celdas de *markdown* produzcan el mismo resultado por las *Nbextensions*.

Consola

Habrá archivos e instrucciones para poder ejecutar cada uno de los ejercicios desde la consola.

Si todo sale mal

En caso de que todo salga mal, tratare de dejar una copia disponible en **GoogleColab** que se pueda ejecutar con la versión de **Python** de *GoogleColab*

1 Ejercicio 1

Supongamos que una computadora tiene 8 dígitos para representar la parte fraccionaria de un número de punto flotante.

1.1 Calcular el valor del épsilon de la máquina

En clase vimos que si conocemos la cantidad de bits *p* para representar la parte fraccionaria de la mantisa, entonces

$$\epsilon_m = (1.0)_2 \times 2^{-p} \tag{1}$$

Dado que sabemos que la máquina de este ejercicio usara 8bits para representar la parte fraccionaria entonces, por 1, el ϵ_m para este ejercicio es

$$\epsilon_m = (1.0)_2 \times 2^{-8} = 3.90625 \times 10^{-3}$$

0.00390625

1.2 Dar la representación en notación cientifica (mantisa base 2, multiplicada por 2 elevda al exponente correspondiente) del número 5.

Sabemos que el número 5 se representa en binario como $(101)_2$. Como los números se prefieren normalizados entonces debemos representar $(1.01)_2$ en la notación solicitada. Por lo que

$$5 = (101)_2 \times 2^0 = (1.01)_2 \times 2^2 = 1.25 \times 2^2$$

1.3 Dar la representación científica del número consecutico a 5 en la computadora. Escribir la distancia d_c entre 5 y su consecutivo. Expresar d_c en términos del épslon de la máquina.

Sabemos que el número consecutivo (5_c) a 5 en esta computadora es $5 + \epsilon_m$. Si extendemos toda la mantisa de 5 este se ve (1.01000000). Y sumar ϵ_m implica sumar 1 a la mantisa, enspecificamente en esta computadora, al *bit*8 de la mantisa. De manera que

$$5_c = 5 + \epsilon_m = (1.01)_2 \times 2^2 + (1.0)_2 \times 2^{2-8}$$

$$= ((1.01000000)_2 + (0.00000001)_2) \times 2^2$$

$$= (1.01000001)_2 \times 2^2$$

$$= 5.015625$$

por lo que la distancia entre 5 y su consecutivo $5 + \epsilon_m$ es

$$d_c = (5 + \epsilon_m) - 5 = \epsilon_m \times 2^2 = (0.00000001)_2 \times 2^2 = 0.015625$$

1.4 Tenemos que el consecutivo de 5 es expresable como $5+d_c$. Si tenemos un x real tal que $x \in (5,5+d_c)$ entonces la computadora representara a x como fl(x)=5 o $fl(x)=5+d_c$. Escribir una cota para el error relativo para las dos posibles represetnaciones de x

Error relativo

$$\left| \frac{fl(x) - x}{x} \right|$$

Sabemos que las dos posibles representaciones son el *truncamiento* y el *redondeo* ,para dar la cota se deben calcular los valores minimos y maximos del error relativo. En general trabajaremos con

$$\left| \frac{fl(x) - x}{x} \right| = \left| \frac{fl(x)}{x} - 1 \right| \tag{2}$$

Antes de continuar es importante notar lo siguiente. Sabemos que, para ambos casos, el dominio de la función sera $[5,5+d_c]$. Además, notemos que el rango de $\frac{fl(x)}{x}$, para nuestro dominio y los dos valores que puede tomar fl(x), es $\left[\frac{5}{5+d_c},\frac{5+d_c}{5}\right]$. Por ultimo, sabemos que $\frac{fl(x)}{x}$ es descendente para x>0.

Truncamiento Para el truncamiento fl(x) = 5 por lo que debemos calcular la cota para

$$Er_{-} = \left| \frac{5}{x} - 1 \right|$$

En este caso, el rango de $\frac{fl(x)}{x} = \frac{5}{x}$ es $\left[\frac{5}{5+d_c}, \frac{5}{5} = 1\right]$ por lo que el rango de Er_{-} es $\left[0, \left|\frac{5}{5+d_c} - 1\right|\right]$. Por iluminación divina, suponemos que esta función es ascendente, y por lo tanto $Er_{-}(5) < Er_{-}(5+dc)$. Primero evaluamos la función en estos puntos

$$Er_{-}(5) = \left| \frac{5}{5} - 1 \right| = 0$$
 $Er_{-}(5 + d_c) = \left| \frac{5}{5 + d_c} - 1 \right| \sim 0.00311$

Por lo que, usando el truncamiento, esta **función esta acotada** por $[Er_{-}(5), Er_{-}(5+d_c)]$

Redondeo Procedemos de manera similar al anterior. Para el redondeo tenemos que $fl(x) = 5 + d_c$, esto nos da la expresion

$$Er_{+} = \left| \frac{5 + d_c}{x} - 1 \right|$$

Y de manera similar al anterior podemos ver que esta función es descendente, por lo que $Er_+(5+d_c) < Er_+(d_c)$

$$Er_{+}(5+d_c) = \left| \frac{5+d_c}{5+d_c} - 1 \right| = 0$$
 $Er_{+}(5) = \left| \frac{5+d_c}{5} - 1 \right| \sim 0.00312$

De manera que esta función queda acotada por $[Er_+(5+d_c), Er_+(5)]$

1.5 Explique si los siguientes números tienen respresentación exacta en la computadora, es decir, si $fl(a_i) = a_i$

• $a_1 = \epsilon/2$ Sabemos que en el sistema de este ejercicio (8bits parte flotante) $\epsilon_m = (1.0)_2 \times 2^{-8}$, de manera que,

$$\epsilon_m/2 = \frac{(1.0)_2 \times 2^{-8}}{2} = (1.0)_2 \times 2^{-9}$$

por lo que, mientras que el rango del exponente sea suficiente (dado que el ejercicio solo da información del tamaño de la *matisa*), este número **es representable** en el sistema.

• $a_2 = 1 + \epsilon/2$ De manera que a_2 se expresa como

$$a_2 = (1.0)_2 + \epsilon/2 = (1.0)_2 + (1.0)_2 \times 2^{-9} = (1.000000001)_2$$

pero como este sistema solo usa 8bits para la mantisa entonces, para este sistema

$$a_2 = (1.0)_2 + \epsilon/2 = (1.000000001)_2 = (1.0)_2$$

por lo que este número **no tiene representación** en este sistema.

• $a_3 = 1 - \epsilon$ Este número se escribe como

$$a_3 = 1 - \epsilon$$
 = $(1.0)_2 - (1.0)_2 \times 2^{-8}$
 = $(1.00000000)_2 - (0.00000001)_2$
 = $(0.11111111)_2$
 = $(1.1111111)_2 \times 2^{-1}$

por lo que este número si tiene una representación en este sistema.

• $a_4 = 1 - \epsilon/2$ Como con los anteriores, esta operación se expresa como

$$a_4 = 1 - \epsilon/2 = (1.0)_2 - (1.0)_2 \times 2^{-9}$$

= $(1.00000000)_2 - (0.000000001)_2$
= $(0.111111111)_2$
= $(1.11111111)_2 \times 2^{-1}$

el cual si tiene respresentación en el sistema de este ejercicio.

• $a_5 = 1 - \epsilon/4$ En este inciso primero calcularemos $\epsilon/4$, para el cual expandimos lo siguiente

$$\epsilon/4 = \frac{(1.0)_2 \times 2^{-8}}{2^2} = (1.0)_2 \times 2^{-10}$$

el cual, mientras el exponente alcance, si es representable en el sistema. Por otro lado, el numero de este inciso nos da

$$a_5 = 1 - \epsilon/4 = (1.0)_2 - (1.0)_2 \times 2^{-10}$$

= $(1.00000000)_2 - (0.0000000001)_2$
= $(0.1111111111)_2$
= $(1.111111111)_2 \times 2^{-1}$

pero este número tiene una mantisa de 9bits, por lo cual, **no tiene representación** en el sistema.

• $a_6 = \epsilon^2$ Para este inciso

$$a_6 = \epsilon^2 = ((1.0)_2 \times 2^{-8})_2^2 = (1.0)_2 \times 2^{-16}$$
 (3)

el cual **si tiene represetación** en el sistema.

- $a_7 = 0.125$ Primero pasamos de el número de decimal a binario, de manera que $(0.125)_{10} = (0.001)_2$. Luego hay que normalizarlo, por lo que $(0.001)_2 = (1.0)_2 \times 2^{-3}$. Por lo que este numero **si tiene respresentacion** en el sistema.
- $a_8 = 2^{-10}$ Y por 'ultimo, tenemos que

$$a_8 = 2^{-10} = ((10.0)_2)^{-10} = ((1.0)_2 \times 2^1)^{-10} = (1.0)_2 \times 2^{-10}$$

1.6 De una cota para el error relativo de las restas 4 y 5 respecto al verdader valor. Suponga que fl(x) se obtiene por redondeo hacia abajo (truncamiento)

$$fl(0.9) - fl(0.5)$$
 (4)

$$fl(0.9) - fl(0.895)$$
 (5)

Para este ejercicio, dado que nos pide usar el *truncamiento*, definimos a la **unidad de redondeo** como $u = \epsilon_m/2$. Esto tambien nos define a $fl(x) = x(1+\delta)$ y $|\delta| \le u$. Adem'as, siguiendo las notas, podemos usar la cota que ah'i se proporciona y sustituir u.

$$|\delta_{x-y}| \le \frac{\epsilon}{2} \frac{|x| + |y|}{|x - y|} \tag{6}$$

Y antes de continuar calculamos $\epsilon_m/2$ para poder usarlo mas adelante. De manera que

$$\epsilon_m/2 = \frac{(1.0)_2 \times 2^{-8}}{2} = (1.0)_2 \times 2^{-9}$$

Y, como tambien lo usaremos, es bueno tener en cuenta.

$$\delta_{x-y} = \frac{fl(x) - fl(y) - (x-y)}{x - y}$$

Empezamos por la operaci'on 4, de donde obtenemos x = 0.9 y y = 0.5. Primero calculamos los valores de maquina de estos.

$$fl(x) = fl(0.9) = (1.1100(1100))_2 \times 2^{-1}$$

= $(1.11001100)_2 \times 2^{-1}$ (Truncamiento (no cabe))
 ~ 0.8984375

$$fl(y) = fl(0.5) = (1.0)_2 \times 2^{-1}$$

= $(1.00000000)_2 \times 2^{-1}$ (Truncamiento (si cabe))
= 0.5

De manera que, como ya conocemos ϵ_m , los valores de la operación y sus representaciones en el sistema, procedemos a encontrar la cota. Dado que usamos la cota de las notas, unicamente queda sustituir, de esto obtenemos que:

$$\delta_{x-y} \sim -0.00390625$$

$$\frac{\epsilon}{2} \frac{|x| + |y|}{|x - y|} = 0.00683593$$

Por lo que, siguiendo la cota de la ecuaci'on 6, podemos decir que esta operaci'on esta acotada por

$$|\delta_{x-y}| \sim 0.00390625 \le 0.00683593 \sim \frac{\epsilon}{2} \frac{|x| + |y|}{|x-y|}$$

De manera similar, para la operaci'on 5, tenemos que x=0.9 y y=0.895. Calculamos los redondondeos de la computadora.

$$fl(x) = fl(0.9) = (1.1100(1100))_2 \times 2^{-1}$$

= $(1.11001100)_2 \times 2^{-1}$ (Truncamiento (no cabe))
 ~ 0.8984375

$$fl(y) = fl(0.895) = (1.1100101000111101)_2 \times 2^{-1}$$

= $(1.11001010)_2 \times 2^{-1}$ (Truncamiento (no cabe))
= 0.89453125

Ahora procedemos a calcular los limites de la cota, por lo que

$$\delta_{x-y} \sim -0.21875$$

$$\frac{\epsilon}{2} \frac{|x| + |y|}{|x - y|} = 0.70117187$$

Y por 'ultimo, seg'un la cota 6, acotamos esta operaci'on por

$$|\delta_{x-y}| \sim -0.21875 \le 0.70117187 \sim \frac{\epsilon}{2} \frac{|x| + |y|}{|x-y|}$$

2 Ejercicio 2

Programe la función epsilonFloat que devuelve el épsilon de la máquina ϵ_m para números de simple precisión y la función epsilonDouble para números de doble precisión.

```
epsilon = 1.0
unidad = 1.0
valor = unidad + epsilon
while valor > unidad
    epsilon = epsilon/2
    valor = end + epsilon
end while
epsilon = epsilon*2
```

Usar el algoritmo visto en clase.

```
[3]: # Primera parte del ejercicio 1
     import numpy as np
     def epsilonMaquina(tipoDato):
         """ Funcion que trata de calcular el epsilon
         de la maquina mediante el algoritmo antes pre_
         sentado.
         Input:
             tipoDato := esta pensado para ser uno de
                 los tipos proporcionados por la li_
                 breria numpy.
         Output:
             Regresa el epsilon de la maquina calcula_
                 do con el tipo de dato especificado.
         11 11 11
         return epsilon*2
     def epsilonFloat():
         """ Calculamos el epsilon de la maquina con
         precision de 32bits
         return epsilonMaquina(np.float32)
     def epsilonDouble():
         """ Calculamos el epsilon de la maquina con
         precision de 64 bits
             A pesar de que el flotante de python ya
         tiene esta precision, creo que es convenien_
         te especificarlo.
         11 11 11
         return epsilonMaquina(np.float64)
     # Epsilons calculados
     eF = np.float32(epsilonFloat())
```

```
eD = np.float64(epsilonDouble())
     # Imprimir en pantalla
    print(...)
    Se calculairon los epsilons
            eF=1.1920929e-07 y
            eD=2.220446049250313e-16
    para 32 y 64 bits correspondientemente.
[4]: # Segunda parte del ejercicio 1
     def respuesta(res):
         """ Funcion para formatear la respuesta. """
         return "iguales" if res else "diferentes"
     def comparacion(epsilon):
         """ Esta funcion resivira el epsilon a eva_
         luar y el tipo de dato al que este correspon_
         de para hacer las comparaciones solicitadas
         en el ejercicio.
         Input:
             epsilon a considerar en la comparacion
         Output:
             Las respuestas son procesadas por la
             funcion respuesta para obtener el for_
             mato solicitado
         # Comprobaciones
        print(f'{respuesta( tD(1 + epsilon ) == 1 ) =}')
         print(f'{respuesta( tD( epsilon/2 ) == 0 ) =}')
        print(f'{respuesta( tD(1 + epsilon/2 ) == 1 ) =}')
        print(f'{respuesta( tD(1 - epsilon/2 ) == 1 ) =}')
        print(f'{respuesta( tD(1 - epsilon/4 ) == 1 ) =}')
        print(f'{respuesta( tD( epsilon**2 ) == 0 ) =}')
        print(f'{respuesta(epsilon + tD(epsilon**2) == epsilon) =}')
        print(f'{respuesta(epsilon - tD(epsilon**2) == epsilon) =}')
     # Hacemos la comparacion para 32bits
     comparacion(eF)
     # y para 64
     comparacion(eD)
    Con epsilon=1.1920929e-07 y tipo de dato = <class 'numpy.float32'> se_
     →da que
    respuesta( tD(1 + epsilon )
                                  == 1 ) ='diferentes'
    respuesta(tD(epsilon/2)
                                  == 0 ) ='diferentes'
    respuesta( tD(1 + epsilon/2 ) == 1 ) ='iguales'
    respuesta( tD(1 - epsilon/2 ) == 1 ) ='diferentes'
    respuesta( tD(1 - epsilon/4 ) == 1 ) ='iguales'
    respuesta(tD(epsilon**2)
                                  == 0 ) ='diferentes'
    respuesta(epsilon + tD(epsilon**2) == epsilon) ='diferentes'
```

De manera que el programa calculo que el *epsilon de la maquina* es {{eF}} y {{eD}} para las precisiones de 32 y 64 bits correspondientemente, y repecto a las comparaciones unicamente se encontraron **dos igualdades** cuando se uso preciosion de 64bits.

Como ejecutar GoogleColab

Para ejecutar este ejercicio en **consola** es importante ubicarse en la misma carpeta del archivo T1. py y ejecutar el siguiente comando en consola

```
python3 T1.py
```

Este programa no espera recibir argumento alguno. La salida debe ser similar a la siguiente imagen