4. Gradienter og stasjonære punkter

$$\int = \int (x,y)$$

$$\partial f \quad \partial f \quad$$

 ∇ f points in the direction where f decreases fastest ∇ f points in the direction where f decreases fastest

EXI
$$7g = [x^2 - 4, y^2 - 9] = [0, 0]$$

 $x^2 - 4 = 0$
 $x^2 = 4$
 $y^2 = 9 = 0$
 $x = \frac{1}{2}$
 $y = \frac{1}{2}$
FIRE STAS FUNARE: (2,3), (2,-3), (-2,3)

$$f(x,y)=(1/3)x^3-4x+(1/3)\ y^3-9y$$
 Så vi har 4 stasjonære punkter (2,3) (2,-3) (-2,3) (-2,-3) Hvordan kan vi vite hvilke av de er min, maks , eller sadel? Hesse-Matrise

df / dx

$$d^{2}f / dy^{2}$$

$$d^{2}f / dx dy$$

$$2y$$

$$d^{2}f / dx dy$$

$$0$$
For et gitt punkt (x1,y1)

Hvis delta > 0 og $d^{2}f / dx^{2} > 0$ (x1,y1) er Min

Hvis delta > 0 og $d^{2}f / dx^{2} < 0$ (x1,y1) er Max

(x1,y1) er sadel

??

Eks: la oss sjekke en av de 4 stasjonære punkter (2,3)

delta er 24 > 0 og d^2f/dx^2 er 4>0 så (2,3) er local Minimum

Hvis vi antar at vi ikke vet hva minimum punketet er, og vi begynner med et tilfeldig punkt (-1,1), Hvordan kan vi går mot minimum punktet?

Hvis

Hvis

Hvis

Gradient decent:

$$x1 = x0 - learningRate * df/dx$$

delta < 0

delta = 0

og

Х	у	$df/dx = x^2 - 4$	$df/dy = y^2 - 9$	learning rate	delta x = 0.1 * df/dx	delta y = 0.1 * df/dy
-1	1	-3	-8	0.25	-0.75	-2
-0.25	3	-3.9375	0		-0.984375	0
0.734375	3	-3.460693359	0		-0.8651733398	0
1.59954834	3	-1.441445109	0		-0.3603612771	0
1.959909617	3	-0.1587542933	0		-0.03968857333	0
1.99959819	3	-0.00160707736	0		-0.0004017693401	0
1.99999996	3	-0.0000001614510357	0		-0.00000004036275891	0
2	3	0	0		0	0
2	3	0	0		0	0
2	3	0	0		0	0
2	3	0	0		0	0
2	3	0	0		0	0
	The yellow	cells are the only changable cells				
tice that the lear	ningRate 0.25 is be	st for the point (-1,1) it takes 7 or 8 ite	ration to reach the local min	imum point		