

## ESTRUCTURA ATOMICA

2.° ESO - 3.° ESO

Rodrigo Alcaraz de la Osa



#### Teoria atómica de Dalton

En 1808, John Dalton retoma las ideas <u>atomistas</u> de Leucipo y su discípulo Demócrito. Su **teoría** se basa en:

- La **materia** está **formada** por partículas muy pequeñas e indivisibles, llamadas **átomos**.
- Los **átomos** de un **mismo elemento químico** son todos **iguales** entre sí, y distintos de los de otro elemento químico.
- Los **compuestos químicos** se forman por la **unión** de dos o más **átomos** según una relación numérica sencilla y constante.

#### Elátomo

En la actualidad sabemos que los átomos se dividen en dos zonas:

Espacio del núcleo Donde se encuentran:

Protones Sistemas de partículas con
carga eléctrica positiva.

Neutrones Sistemas de partículas
neutras (sin carga eléctrica).

Espacio orbital Donde es probable encontrar los electrones (partículas elementales con carga eléctrica negativa).

| Partícula | <b>Masa</b> /kg         | Carga/C                  |
|-----------|-------------------------|--------------------------|
|           | $1.673 \times 10^{-27}$ | $1.602 \times 10^{-19}$  |
| Neutrón   | $1.675 \times 10^{-27}$ | 0                        |
| Electrón  | $9.109 \times 10^{-31}$ | $-1.602 \times 10^{-19}$ |

$$m_{\mathrm{prot\acute{o}n}} \simeq m_{\mathrm{neutr\acute{o}n}} \sim 2000 m_{\mathrm{electr\acute{o}n}}$$
 $q_{\mathrm{prot\acute{o}n}} = -q_{\mathrm{electr\acute{o}n}}$ 

# espacio del núcleo

Distinción cualitativa de las dos áreas mediante una ilustración tipográfica del modelo atómico.

### Número atómico Z

El **número atómico**, Z, es el número de **protones** que tiene un átomo en su núcleo.

Todos los átomos de un mismo elemento químico tienen el mismo número de protones en su núcleo y por tanto el mismo número atómico Z.

#### Número másico A

El número másico, A, es la suma de protones y neutrones, cumpliéndose por tanto:

$$A = Z + N$$
,

donde N = A - Z es el número de neutrones. En general un átomo se representa con la siguiente **notación**:



donde A es el número másico, Z es el número atómico, X es el símbolo del elemento químico y c es la carga eléctrica del átomo (se omite en caso de ser cero —átomo neutro).

#### Modelos atómicos

#### Modelo de Thomson

En 1897, **Thomson descubre** la existencia del **electrón**, la partícula elemental con **carga** eléctrica **negativa**. Postula un modelo que se conoce como el modelo del <u>pastel de pasas</u>:

- El **átomo** está formado por una <u>nube</u> esférica con **carga positiva**.
- Los electrones, con carga negativa, se encuentran incrustados por toda la esfera, como las pasas en un pastel.
- El número total de electrones es tal que la carga neta del átomo es cero (átomo neutro).



Modelo de Thomson, también conocido como modelo del <u>pastel de pasas</u>.

#### Modelo de Rutherford

En 1911 **Rutherford** lleva a cabo un experimento histórico en el que **descubre** la existencia del **núcleo** atómico:



Experimento de Geiger-Marsden. Las partículas alfa (α), procedentes de radio (Ra) radiactivo y con carga positiva, se aceleran y se hacen incidir sobre una lámina de oro muy delgada. Tras atravesar la lámina, las partículas α chocan contra una pantalla fluorescente (ZnS), produciéndose un destello.

Traducida y adaptada de
https://commons.wikimedia.org/wiki/File:
Geiger-Marsden\_experiment.svg.

#### Resultados del experimento:

- La mayoría de las partículas atravesaban la lámina de oro sin desviarse.
- Muy pocas (1/10 000 aproximadamente) se desviaban un ángulo mayor de unos 10°.
- Algunas partículas (poquísimas) incluso rebotaban.





#### Interpretación de Rutherford:

- Si el modelo propuesto por Thomson fuera cierto, no deberían observarse desviaciones ni rebotes de las partículas incidentes.
- Las partículas se desvían al encontrar en su trayectoria una zona muy pequeña (núcleo) cargada positivamente, donde se concentra la mayor parte de la masa del átomo.

#### Modelos atómicos (cont.)

#### Modelo de Rutherford (cont.)

- El átomo está formado por un **núcleo**, muy pequeño comparado con el tamaño del átomo, con **carga positiva** y donde se concentra casi toda su **masa**.
- Los **electrones**, con carga negativa, **giran alrededor** del **núcleo** como lo hacen los planetas alrededor del Sol.



Modelo de Rutherford, también conocido como modelo planetario.

#### lones e isótopos

#### Iones

Un **ión** es un **átomo cargado** eléctricamente. Según su carga eléctrica sea positiva o negativa, distinguimos:

Catión Átomo que ha perdido/cedido electrones, adquiriendo carga eléctrica positiva al tener menos electrones que protones.

Anión Átomo que ha ganado/captado electrones, adquiriendo **carga** eléctrica **negativa** al tener más electrones que protones.

#### Isótopos

Concepto introducido en 1913 por el químico inglés Frederick Soddy, se trata de **átomos** del **mismo elemento químico** con **distinto número** de **neutrones** en su núcleo, y por tanto **distinto número másico** A.

Los llamados **isótopos radiactivos** son aquellos isótopos que son **inestables** y tienden a **desintegrarse** espontáneamente, **emitiendo radiación** y/o **materia**, transformándose en isótopos estables de otros elementos químicos.

#### Masa atómica

La **masa** de los **átomos** es **extremadamente pequeña** comparada con las masas de los objetos cotidianos. Es por eso que utilizamos una unidad especial, llamada **unidad de masa atómica**, u, la cual se define como:

La unidad de masa atómica, u, se define como la doceava parte de la masa de un átomo de <sup>12</sup>C, y es igual a:

$$1 u = 1.661 \times 10^{-27} \text{ kg}$$

De esta forma el isótopo <sup>12</sup>C tiene una masa de 12 u.

La masa atómica que encontramos en las tablas periódicas es la media **ponderada** de las masas de los isótopos naturales de cada elemento, teniendo en cuenta su **abundancia**.