Fórmulas, Teoremas y Demostraciones Esenciales (Preparación para la universidad)

Carlos Salazar Castillo

Junio 2021

Índice

1.	Análisis Matemático I: Fundamentos	2
	1.1. Sucesiones de Números Reales	2
2.	Matemática Discreta y Algorítmica	3
	2.1. Complejidad Asintótica y Notación \mathcal{O}	
	2.2. Algoritmos de Búsqueda y Ordenación	ç

1. Análisis Matemático I: Fundamentos

1.1. Sucesiones de Números Reales

Definición 1.1. Límite de una Sucesión Decimos que un número $L \in \mathbb{R}$ es el límite de la sucesión $(a_n)_{n\in\mathbb{N}}$ si para todo $\varepsilon > 0$ existe un $N_0 \in \mathbb{N}$ tal que para todo $n \geq N_0$, se verifica:

$$|a_n - L| < \varepsilon$$

Se denota como $\lim_{n\to\infty} a_n = L$.

Teorema 1.1. Convergencia de Sucesiones Monótonas Toda sucesión (a_n) de números reales que es monótona creciente (es decir, $a_n \leq a_{n+1}$ para todo n) y está acotada superiormente converge a su supremo.

Demostración. Sea $S = \{a_n : n \in \mathbb{N}\}$ el conjunto de términos de la sucesión. Como (a_n) está acotada superiormente, por la propiedad del supremo en \mathbb{R} , existe sup $S = L \in \mathbb{R}$. **Objetivo:** Probar que $\lim_{n\to\infty} a_n = L$.

- 1. Sea $\varepsilon > 0$. Como $L = \sup S$, $L \varepsilon$ no es cota superior de S.
- 2. Por lo tanto, existe un término $a_{N_0} \in S$ tal que $L \varepsilon < a_{N_0}$.
- 3. Como (a_n) es creciente, para todo $n \geq N_0$, tenemos $a_{N_0} \leq a_n$.
- 4. Combinando, se tiene $L \varepsilon < a_{N_0} \le a_n$.
- 5. Además, como L es el supremo, $a_n \leq L < L + \varepsilon$.
- 6. De (4) y (5) se deduce que $L \varepsilon < a_n < L + \varepsilon$, lo que equivale a $|a_n L| < \varepsilon$.

Por definición, $\lim_{n\to\infty} a_n = L$.

Teorema 1.2. Criterio de Cauchy para Sucesiones Una sucesión (a_n) converge en \mathbb{R} si y solo si es una sucesión de Cauchy. Una sucesión es de Cauchy si para todo $\varepsilon > 0$ existe un $N_0 \in \mathbb{N}$ tal que para todo $m, n \geq N_0$, se verifica:

$$|a_m - a_n| < \varepsilon$$

2. Matemática Discreta y Algorítmica

2.1. Complejidad Asintótica y Notación \mathcal{O}

Definición 2.1. Notación \mathcal{O} (Cota Superior Asintótica) Dadas dos funciones f(n) y g(n), decimos que f(n) está en $\mathcal{O}(g(n))$, y lo denotamos $f(n) \in \mathcal{O}(g(n))$, si existen constantes positivas c y n_0 tales que para todo $n \geq n_0$, se cumple:

$$0 \le f(n) \le c \cdot g(n)$$

En informática, f(n) es el tiempo de ejecución y g(n) es la cota de complejidad.

Ejemplo 2.1. Probar que $f(n) = 3n^2 + 2n + 5 \in \mathcal{O}(n^2)$.

- 1. Necesitamos encontrar c > 0 y $n_0 \in \mathbb{N}$ tales que $3n^2 + 2n + 5 \le cn^2$ para $n \ge n_0$.
- 2. Para $n \ge 1$, se cumple que:

$$3n^2 + 2n + 5 \le 3n^2 + 2n^2 + 5n^2 = 10n^2$$

- 3. Tomando c = 10 y $n_0 = 1$, la desigualdad se cumple.
- 4. Por lo tanto, $3n^2 + 2n + 5 \in \mathcal{O}(n^2)$.

2.2. Algoritmos de Búsqueda y Ordenación

Proposición 2.1. Complejidad de Búsqueda Binaria La complejidad temporal del algoritmo de búsqueda binaria sobre un array ordenado de n elementos es $\mathcal{O}(\log_2 n)$.

Demostración. Sea n el tamaño del array. En cada paso de la búsqueda binaria, el tamaño del subproblema se reduce a la mitad.

Sea T(n) el tiempo de ejecución. Si n > 1, se realiza una comparación y se resuelve un subproblema de tamaño n/2.

$$T(n) = T(n/2) + c$$
 (donde c es una constante)

Expandiendo la recurrencia k veces:

$$T(n) = T(n/2^k) + c \cdot k$$

La recursión finaliza cuando $n/2^k=1$, es decir, $n=2^k$, o $k=\log_2 n$. Sustituyendo k:

$$T(n) = T(1) + c \log_2 n$$

Como T(1) es una constante, T(n) está acotada superiormente por un múltiplo de $\log_2 n$. Por lo tanto, $T(n) \in \mathcal{O}(\log_2 n)$.