

Nombre:			
Curso:	3º ESO A	Examen 7	
Fecha:	27 de Abril de 2017	3ª Evaluación	

- **1.-** En 40 g de agua se disuelven 5 g de ácido sulfhídrico. La densidad de la disolución formada es de $1,08 \text{ g/cm}^3$. Calcula el porcentaje en masa y la molaridad.
- **2.-** Se prepara una disolución con 5 g de hidróxido de sodio en 25 g de agua destilada. Si el volumen final es de 27,1 ml, calcula la concentración de la disolución en:
 - a) Porcentaje en masa
 - **b)** gramos por litro
 - c) Molaridad.
- **3.-** Calcula el volumen que ocuparía en condiciones normales una muestra de hidrógeno que ocupa un volumen de 4,5 litros a 950 mm Hg y 80 °C. ¿Qué pasa si enfriamos el hidrógeno mediante un proceso en el que se cumpla la ley de Gay-Lussac?

4.- Nombra los compuestos:

- **≰** Na₂O
- \bullet Br₂O₃
- **≰** SnO₂
- **≰** AuH
- **★** NH₃
- **≰** PbCl₄
- \bigstar As₂O₃
- **≰** Ca(OH)₂
- **★** NaCl
- \bullet Br₂O₇

5.- Formula los compuestos:

- ★ Hidruro de hierro (III)
- **★** Sulfuro de plata
- **Ś** Silano
- **★** Óxido de azufre (IV)
- **G** Bromuro de magnesio
- Ácido Yodídrico
- Hidróxido Ferroso
- ***** Tetracloruro de Carbono
- Trihidróxido de Níquel

1.- En 40 g de agua se disuelven 5 g de ácido sulfhídrico. La densidad de la disolución formada es de 1,08 g/cm³. Calcula el porcentaje en masa y la molaridad.

Para calcular el porcentaje en masa dividimos la masa del soluto entre la masa de la disolución y lo expresamos en porcentaje:

$$\%_p = \frac{m_{soluto}}{m_{Disolución}} \cdot 100 = \frac{5g}{(40+5)g} \cdot 100 = 11,11\%$$

Para calcular la molaridad dividimos el número de moles de soluto entre el volumen de disolución.

El número de moles viene dado por: $n = \frac{m}{Pm} = \frac{5g}{34g mol^{-1}} = 0,147 mol$

El volumen de la disolución lo calcularemos utilizando la densidad:

$$d = \frac{m}{V}$$
 \rightarrow $V = \frac{m}{d} = \frac{45g}{1,08g \cdot ml^{-1}} = 41,67ml = 4,17 \cdot 10^{-2}l$

Por tanto; la molaridad será:

$$M = \frac{n_{\text{soluto}}}{V_{\text{Disolución}}} = \frac{0.147 mol}{4.167 \cdot 10^{-2} \, l} = 3.528 mol \cdot l^{-1}$$

- 2.- Se prepara una disolución con 5 g de hidróxido de sodio en 25 g de agua destilada. Si el volumen final es de 27,1 ml, calcula la concentración de la disolución en:
 - a) Porcentaje en masa; b) gramos por litro; c) Molaridad.

Para calcular el porcentaje en masa dividimos la masa del soluto entre la masa de la disolución y lo expresamos en porcentaje:

$$\%_p = \frac{m_{\text{soluto}}}{m_{\text{Disolution}}} \cdot 100 = \frac{5g}{(25+5)g} \cdot 100 = 16,67\%$$

Para calcular la concentración en gramos por litro, dividiremos la masa de soluto entre el volumen de disolución en litros:

$$C_{g/l} = \frac{m_{\text{soluto}}}{V_{\text{Disolution}}} = \frac{5g}{27.1 \cdot 10^{-3} l} = 184.5 g \cdot l^{-1}$$

Para calcular la molaridad dividimos el número de moles de soluto entre el volumen de disolución.

El número de moles de NaOH viene dado por: $n = \frac{m}{Pm} = \frac{5g}{(23+1+16)g \cdot mol^{-1}} = 0,125mol$

Por tanto; la molaridad será:

$$M = \frac{n_{\text{soluto}}}{V_{\text{Displación}}} = \frac{0.125 mol}{27,110^{-3} l} = 4,61 mol \cdot l^{-1}$$

3.- Calcula el volumen que ocuparía en condiciones normales una muestra de hidrógeno que ocupa un volumen de 4,5 litros a 950 mm Hg y 80 °C. ¿Qué pasa si enfriamos el hidrógeno mediante un proceso en el que se cumpla la ley de Gay-Lussac?

Si utilizamos la ley combinada de los gases: $\frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2}$ y despejamos V_2 , tenemos:

$$V_2 = \frac{P_1 \cdot V_1 \cdot T_2}{P_2 \cdot T_1} = \frac{950 mm Hg \cdot 4, 5l \cdot 273 K}{760 mm Hg \cdot 353 K} = 4,351$$

Un proceso que cumpla la Ley de Gay-Lussac es aquel en el que el volumen permanece constante; por tanto:

 $\frac{P_1}{T_1} = \frac{P_2}{T_2}$ \rightarrow $P_1 \cdot T_2 = P_2 \cdot T_1$ \rightarrow P y T son directamente proporcionales, por tanto, si enfriamos (bajamos la temperatura) también **bajará la presión**.

Instrucciones: Utilizar las fórmulas con las letras y sustituir al final, poniendo todas las unidades. Cada ejercicio vale 2 puntos.

4.- Nombra los compuestos:

♦ Na₂O Monóxido de Disodio

S Br₂O₃ Trióxido de Dibromo

SnO₂ Dióxido de Estaño

& AuH **Hidruro** de oro (I)

♦ NH₃ Amoniaco

♦ PbCl₄ Cloruro de Plomo (IV)

≰ As₂O₃ **Ó**xido de Arsénico (III)

ば Ca(OH)₂ **Hidróxido Cálcico**

♦ NaCl Cloruro Sódico

 \bullet Br₂O₇ **Óxido Perbrómico**

5.- Formula los compuestos:

♦ Sulfuro de plata **Ag₂S**

★ Cloruro de sodio NaCl

≰ Silano **SiH**₄

♦ Óxido de azufre (IV) **SO₂**

≰ Bromuro de magnesio **MgBr**₂

★ Ácido YodídricoHI

★ Tetracloruro de Carbono **CCl**₄

Trihidróxido de Níquel Ni(OH)₃

Nombre:		
Curso:	3º ESO B	Examen 7
Fecha:	28 de Abril de 2017	3ª Evaluación

- 1.- La concentración de ácido clorhídrico del jugo gástrico es 0,15 M.
 - a) ¿Cuántos gramos de ácido hay en 100 mL de ese jugo?
 - b) ¿Cuál es su concentración en gramos por litro? (2 puntos)

Sol: a) 0,546 gramos; b) 5,46 g/l

- **2.-** Una disolución acuosa de ácido nítrico (HNO $_3$) 15 M tiene una densidad de 1,40 g/mL. Calcule:
 - a) La concentración de dicha disolución en tanto por ciento en masa.
 - b) El volumen de la misma que debemos tomar para preparar $1\,L$ de disolución de HNO_3 cuya concentración sea $0.5\,M.(2\,puntos)$

Sol: a) 67,5%; b) 33,33 ml

3.- Sabiendo que un mol de gas en c.n. (condiciones normales de presión y temperatura) ocupa un volumen de 22,4 litros. ¿Qué volumen ocupan 150 g de CO_2 a $100^{\circ}C$ de temperatura y 720 mm de Hg de presión? (1 punto + Bonus)

Sol: a) 76,36 l en c.n. y **110,13 l** en las otras condiciones.

Datos: Masas atómicas C=12; N=14; O=16; H=1; Cl=35,4

4 Nombra los compuestos: (2,5p)		5 Formula los compuestos:	(2,5 p)
₡ Na₂O	Óxido de Sodio	★ Hidruro de hierro (III)	FeH ₃
\bullet I_2O_3	Trióxido de diyodo	≰ Sulfuro de plata	Ag ₂ S
≰ SO ₂	Dióxido de Azufre	♠ Monocloruro de sodio	NaCl
₡ AgH	Hidruro de Plata	≰ Silano	SiH ₄
≰ PH ₃	Fosfano	₡ Óxido de azufre (IV)	SO ₂
₡ CCl₄	Cloruro Carbónico	Bromuro de Níquel (III)	NiBr ₃
\checkmark Sb ₂ O ₅	Pentaóxido de diantimonio	★ Ácido Yodhídrico	ні
₡ CaH₂	Hidruro de Calcio	 Trióxido de dihierro 	Fe_2O_3
# HCl	Ácido Clorhídrico	★ Tetracloruro de Carbono	CCl ₄
\bullet Br ₂ O ₇	Óxido de Bromo (VII)	 Pentóxido de dinitrógeno 	N_2O_5