What is |2 + i|?

A. 1

B. $\sqrt{3}$

C. 5

D. $\sqrt{5}$

E. Something else!

What is
$$(1 + i)^2/(1 - i)$$
?

A. $e^{i\pi/4}$ B. $\sqrt{2}e^{i\pi/4}$

C. $e^{i3\pi/4}$

D. $\sqrt{2}e^{i3\pi/4}$

E. Something else!

Which point below best represents $4e^{i3\pi/4}$ on the complex plane?

What is
$$Re\left[\frac{e^{i\omega t}}{1+i}\right]$$
?

A.
$$\frac{1}{\sqrt{2}}\cos(\omega t + \pi/4)$$

A.
$$\frac{1}{\sqrt{2}}\cos(\omega t + \pi/4)$$

B. $\frac{1}{\sqrt{2}}\cos(\omega t - \pi/4)$
C. $\frac{1}{2}\cos(\omega t + \pi/4)$
D. $\frac{1}{2}\cos(\omega t - \pi/4)$

C.
$$\frac{1}{2}\cos(\omega t + \pi/4)$$

D.
$$\frac{1}{2}\cos(\omega t - \pi/4)$$

E. Something else

A resistor (R) and an inductor (L) are in parallel. What is the effective impedance, Z_{eff} across these elements?

$$A.R+L$$

B.
$$R + i\omega L$$

C.
$$1/(R + i\omega L)$$

D.
$$\frac{1}{1/R - i/(\omega L)}$$

E. Something else?

What is the total impedance of this circuit, Z_{total} ?

A.
$$R+i\left(\omega L+\frac{1}{\omega C}\right)$$

B. $R+i\left(\omega L-\frac{1}{\omega C}\right)$
C. $\frac{1}{R}+\frac{1}{i\omega L}+i\omega C$

B.
$$R + i \left(\omega L - \frac{1}{\omega C}\right)$$

C.
$$\frac{1}{R} + \frac{1}{i\omega L} + i\omega C$$

D.
$$\frac{1}{\frac{1}{R} + \frac{1}{i\omega L} + i\omega C}$$

E. None of these

AC voltage V and current I vs time t are as shown:

The graph shows that..

- A. I leads V (I peaks before V peaks)
- B. I lags V (I peaks after V peaks)
- C. Neither