A számításelmélet alapjai 2.

11. gyakorlat

Visszavezetés

Rekurzívan felsorolható nyelv:

Az L nyelv *rekurzívan felsorolható* ⇐⇒ ha létezik A algoritmus, mely az elemeit felsorolja. (Felsoroló algoritmus: Az A algoritmus outputjára szavakat állít elő, s így a nyelv összes szavát (és csak azokat) felsorolja.)

Parciálisan rekurzív nyelv:

Az L nyelv parciálisan rekurzív \iff létezik olyan A parciálisan eldöntő algoritmus, melynek inputjára tetszőleges szót helyezve eldönti, benne van-e a nyelvben (u \in L szó esetén igen válasszal áll le, míg u \notin L esetén nem terminál, vagy ha terminál, akkor nem választ ad).

RE = { $L \mid \exists M \text{ Turing gép, amelyre } L(M) = L$ }.

Rekurzív nyelv:

Az L nyelv *rekurzív* ⇐⇒ létezik olyan A eldöntő algoritmus, melynek inputjára egy tetszőleges u szót helyezve eldönti, benne van-e az L nyelvben (mindig terminál, igen a válasz, ha u eleme az L nyelvnek, és nem a válasz ellenkező esetben).

 $\mathbf{R} = \{ L \mid \exists \mathbf{M} \text{ minden inputra megálló Turing gép, amelyre L(M)} = L \}.$

Church-Turing tézis:

Minden formalizálható probléma, ami megoldható algoritmussal, az megoldható Turing géppel is (illetve bármilyen, a Turing géppel azonos számítási teljesítményű absztrakt modellel).

Tétel: $\mathcal{L}_0 \subseteq \mathcal{L}_{RekFel}$, $\mathcal{L}_0 \subseteq \mathcal{L}_{ParcRek}$, $\mathcal{L}_1 \subseteq \mathcal{L}_{Rek}$

Következmény: (ha a Church tézist elfogadjuk) $\mathcal{L}_0 = \mathcal{L}_{RekFel} = \mathcal{L}_{ParcRek}$

<u>Definíció:</u> Az $\mathbf{f}: \Sigma^* \to \Delta^*$ szófüggvény *kiszámítható*, ha van olyan Turing-gép, ami kiszámítja. (Lásd szófüggvényt kiszámító TG)

<u>Definíció:</u> $L_1 \subseteq \Sigma^*$ visszavezethető $L_2 \subseteq \Delta^*$ -ra, ha van olyan $f: \Sigma^* \to \Delta^*$ kiszámítható szófüggvény, hogy $\mathbf{w} \in \mathbf{L_1} \Leftarrow \Rightarrow \mathbf{f}(\mathbf{w}) \in \mathbf{L_2}$. Jelölés: $L_1 \leq L_2$

Tétel: Ha $L_1 \le L_2$ és $L_2 \in RE$, akkor $L_1 \in RE$.

Ha $L_1 \le L_2$ és $L_2 \in \mathbb{R}$, akkor $L_1 \in \mathbb{R}$.

Következmény: Ha $L_1 \le L_2$ és $L_1 \notin RE$, akkor $L_2 \notin RE$.

Ha $L_1 \le L_2$ és $L_1 \notin \mathbb{R}$, akkor $L_2 \notin \mathbb{R}$.

Bonyolultságelmélet

R-beli problémák megoldásának hatékonyságát vizsgálja.

Definíció:

```
TIME(f(n)) = \{L|L \text{ eldönthető } O(f(n)) \text{ időkorlátos determinisztikus TG-pel}\}
```

 $NTIME(f(n)) = \{L|L \text{ eldönthető } O(f(n)) \text{ időkorlátos NTG-pel}\}$

 $P=\bigcup_{k\geq 1}TIME(n^k)$

 $NP = \bigcup_{k>1} NTIME(n^k)$

<u>Definíció:</u> Az $\mathbf{f}: \Sigma^* \to \Delta^*$ szófüggvény *polinom időben kiszámítható*, ha van olyan polinom időkorlátos Turinggép, ami kiszámítja.

<u>Definíció:</u> $L_1 \subseteq \Sigma^*$ *polinom időben visszavezethető* $L_2 \subseteq \Delta^*$ -ra, ha van olyan $f: \Sigma^* \to \Delta^*$ polinom időben kiszámítható szófüggvény, hogy

 $\mathbf{w} \in \mathbf{L_1} \iff \mathbf{f(w)} \in \mathbf{L_2}$. Jelölés: $\mathbf{L_1} \leq_{\mathbf{p}} \mathbf{L_2}$

Tétel: Ha $L_1 \leq_p L_2$ és $L_2 \in P$, akkor $L_1 \in P$.

Ha $L_1 \leq_p L_2$ és $L_2 \in NP$, akkor $L_1 \in NP$.

<u>Definíció:</u> Legyen C egy bonyolultsági osztály. Egy L nyelv $\textbf{\textit{C-neh\'ez}}$ (a polinom idejű visszavezetésre nézve), ha $\forall L' \in C$ esetén $L' \leq_p L$.

<u>Definíció:</u> Legyen *C* egy bonyolultsági osztály. Egy L nyelv *C-teljes*, ha L∈*C* és L *C-nehéz*.

Tétel: Ha L NP-teljes, $L \leq_p L'$ és L' \in NP, akkor L' NP-teljes.

SAT probléma: Egy adott ábécé felet kódolt ítéletlogikai kielégíthető konjunktív normálformák halmaza.

Tétel: SAT probléma NP-teljes.

1. feladat: Legyen kSzin a következő probléma. Adott egy G = (V,E) irányítatlan gráf. Kérdés: kiszínezhetők-e G csúcsai k színnel úgy, hogy a szomszédos csúcsok különböző színűek?

Adja meg a 3Szin probléma egy polinom idejű visszavezetését a 6Szin problémára! Mit tudunk elmondani ezek alapján a 6Szin probléma bonyolultságáról, ha tudjuk, hogy 3Szin NP-teljes?

Megoldás: Legyen G egy tetszőleges gráf. A felveszünk három új csúcsot a G csúcsai mellé és ezeket összekötjük G minden csúcsával. Továbbá a három új csúcsot is összekötjük egymással. Legyen G' az így kapott gráf. Látható, hogy G pontosan akkor színezhető három színnel, ha G' színezhető hat színnel. Tehát a fenti konstrukció egy megfelelő polinom idejű visszavezetés. Ezek alapján 3Szin NP-teljessége implikálja 6Szin NP-nehézségét.

2. feladat: Legyen $L_{\exists halt} = \{ < M > \mid Van \text{ olyan bemenet amin } M \text{ megáll} \}$ és $L_{\exists accept} = \{ < M > \mid Van \text{ olyan bemenet amit } M \text{ elfogad} \}$. Vázolja $L_{\exists halt}$ egy lehetséges visszavezetését $L_{\exists accept}$ -re! Mit mondhatunk el ez alapján az $L_{\exists accept}$ eldönthetőségéről, ha tudjuk, hogy $L_{\exists halt}$ nem eldönthető?

 $\textit{Megold\'{a}s}$: Tetszőleges M Turing-géphez konstruáljuk meg M' a következő módon. M' annyiban különbözik M-től, hogy M q_n -be vezető átmeneteit q_i -be irányítjuk. Mivel így M akkor és csak akkor áll meg egy u szón, ha M' elfogadja u-t, kapjuk, hogy M pontosan akkor áll meg legalább egy szón, ha M' elfogad legalább egy szót. Azaz a fenti konstrukció egy megfelelő visszavezetés. Ezek alapján $L_{\exists halt}$ eldönthetetlensége implikálja $L_{\exists accept}$ eldönthetetlenségét.