Brief Information Retrieval Tutorial (with application in Software Engineering)

Traceability Link Recovery

Concept Location Impact Analysis


```
Private Function CleanUp Line(ByVal sLine As String) As String
  Dim 10uoteCount As Long
  Dim lcount
                   As Long
  Dim sChar
                   As String
  Dim sPrevChar As String
   ' Starts with Rem it is a comment
  sline = Trim(sline)
 -If Left (sLine, 3) = "Rem" Then
      CleanUpLine = ""
     Exit Function
  ' Starts with ' it is a comment
 -If Left(sline, 1) = "'" Then
     CleanUpLine =
      Exit Function
 -End If
   ' Contains ' may end in a comment, so test if it is a comment or in the
   ' body of a string
                     "") > 0 Then
 -If InStr(sLine, "
sPrevChar = " "
     1QuoteCount = 0
     For lcount = 1 To Len(sLine)
        sChar = Mid(sLine, lcount, 1)
         ' If we found " '" then an even number of " characters in front
         ' means it is the start of a comment, and odd number means it is
         ' part of a string
        -If sChar = "'" And sPrevChar = " " Then
           -If 10uoteCount Mod 2 = 0 Then
               sline = Trim(Left(sline, lcount - 1))
               Exit For
           -End If
        -ElseIf sChar = """ Then
           1QuoteCount = 1QuoteCount + 1
        -End If
        sPrevChar = sChar
     Next lcount
  -Rnd If
  CleanUpLine = sLine
End Function
```

```
synchronized void print(TestResult result,
                long runTime) throws IOException
          //standard header format
          printHeader(runTime);
(AST)
Parser
          printErrors(result);
          printFailures(result);
          printFooter(result);
      synchronized void printHeader(long runTime)
                     throws IOException
```


Remove Special Characters

```
synchronized void print(TestResult
result, long runTime) throws
IOException
    //standard header format
    printHeader(runTime);
    printErrors(result);
    printFailures(result);
    printFooter(result);
synchronized void printHeader(long
runTime) throws IOException
```

synchronized void print TestResult
result long runTime throws
IOException

standard header format
printHeader runTime

printErrors result
printFailures result
printFooter result

synchronized void printHeader long
runTime
throws IOException

synchronized void print TestResult
result long runTime throws
IOException

standard header format
printHeader runTime

printErrors result
printFailures result
printFooter result

synchronized void printHeader long
runTime
throws IOException

synchronized void print test result
result long run time throws
io exception

standard header format print header run time

print errors result
print failures result
print footer result

synchronized void print header long
run time
throws io exception

Original Identifier

userld

setGID

print_file2device

SSLCertificate

MINstring

USERID

currentsize

tolocale

imitating

DEFMASKBit

Original Identifier	Camel Case
userId	user Id
setGID	set GID
print_file2device	print file 2 device
SSLCertificate	SSL Certificate
MINstring	MI Nstring
USERID	USERID
currentsize	currentsize
tolocale	tolocale
imitating	imitating
DEFMASKBit	DEFMASK Bit

Original Identifier	Camel Case	
userld	user Id	Handles underscore
setGID	set GID	and digits
print_file2device	print file 2 device	
SSLCertificate	SSL Certificate	
MINstring	MI Nstring	Fails at mixed cases
USERID	USERID	
currentsize	currentsize —	Fails at same case identifiers
tolocale	tolocale	
imitating	imitating	
DEFMASKBit	DEFMASK Bit	

Original Identifier	Camel Case	Samurai*
userld	user Id	user Id
setGID	set GID	set GID
print_file2device	print file 2 device	print file 2 device
SSLCertificate	SSL Certificate	SSL Certificate
MINstring	MI Nstring	MIN string
USERID	USERID	USER ID
currentsize	currentsize	current size
tolocale	tolocale	tol ocal e
imitating	imitating	imi ta ting
DEFMASKBit	DEFMASK Bit	DEF MASK Bit

Original Identifier	Camel Case	Samurai*	
userId	user Id	user Id	Splits some case
setGID	set GID	set GID	that CamelCase
print_file2device	print file 2 device	print file 2 c	cannot
SSLCertificate	SSL Certificate	SSL Certific	alte
MINstring	MI Nstring	MIN string	
USERID	USERID	USER ID	
currentsize	currentsize	current size	
tolocale	tolocale	tol ocal e	
imitating	imitating	imi ta ting	Oversplits
DEFMASKBit	DEFMASK Bit	DEF MASK	

Original Identifier	Camel Case	Samurai*	
userld	user Id	user Id	Splits some cases
setGID	set GID	set GID	that CamelCase

Choose meaningful identifier names

Improves code readability

Use consistent naming conventions

- promotes shared code ownership (XP)
- Improves search results

synchronized void print TestResult
result long runTime throws
IOException

standard header format
printHeader runTime

printErrors result
printFailures result
printFooter result

synchronized void printHeader long
runTime
throws IOException

synchronized void print test result
result long run time throws
io exception

standard header format print header run time

print errors result
print failures result
print footer result

synchronized void print header long
run time
throws io exception

synchronized void print test result
result long run time throws
io exception

standard header format print header run time

print errors result
print failures result
print footer result

print test result
result run time
io exception

standard header format print header run time

print errors result
print failures result
print footer result

synchronized void print header long
run time
throws io exception

print header
run time
io exception

Split Identifiers

Remove Stop Words

Stem

print test result result run time io exception

standard header format print header run time

print errors result print failures result print footer result

print test result result run time io exception

standard head format print head run time

print error result print fail result print foot result

print header run time io exception print head run time io exception

Stemming Errors

- If stemmer is too aggressive
 - ■organization ⇒ organ
 - police ⇒ policy
 - ■army ⇒ arm
 - executive ⇒ execute

Summary of Preprocessing (Extract only the "meaningful" words from the documents in the corpus)

```
print test result
synchronized void print(TestResult result,
                                                        result run time
          long runTime) throws IOException
                                                        io exception
   //standard header format
                                                        standard head format
   printHeader(runTime);
                                                        print head run time
   printErrors(result);
                                                        print error result
   printFailures(result);
                                                        print fail result
   printFooter(result);
                                                        print foot result
synchronized void printHeader(long runTime)
                                                        print head
               throws IOException
                                                        run time
                                                        io exception
```


 m_1 : print test result result run time io exception

standard head format print head run time

print error result
print fail result
print foot result

 m_2 : print head run time io exception

Term-by-Document Matrix

 m_1 : print test result result run time io exception

standard head format print head run time

print error result
print fail result
print foot result

m₂: print head
 run time
 io exception

Term-by-Document Matrix

 m_1 : print test result result run time io exception

standard head format print head run time

print error result
print fail result
print foot result

m₂: print head
 run time
 io exception

Each document is represented as a vector of terms

Term-by-Document Matrix

	print	test	result	
m_1	5	1	3	
m_2	1	0	0	

tf-entropy

0.45

 m_2

0

0

• • •

1

0

 m_2

0

• • •

Each term in the document vector is "weighted" based on its "importance" to the document (method) and corpus (collection of documents).

Why?

Each term in the document vector is "weighted" based on its "importance" to the document (method) and corpus (collection of documents).

In different contexts, some terms are more important than others

Each term in the document vector is "weighted" based on its "importance" to the document (method) and corpus (collection of documents).

In different contexts, some terms are more important than others

Term Weights

Term Frequency (TF)

+

Inverse Document Frequency (IDF)

TF-IDF

Assumption for Using Term Weights...

Terms that appear in many different documents are

Assumption for Using Term Weights...

- Terms that appear in many different documents are
 - less indicative of the overall topic
 - carry less "meaning"

Term weights represent an indication of a term's <u>discriminative</u> power

_		

■ In a corpus of 10,000 documents

Doc_1	aaa	
Doc_2		
Doc_3	a a	
	a a	
	aaa	
	a	
	a	
	a a	
	<u>a a a</u>	
	<u>a a a</u>	
	_a	
	<u>a a</u>	
	<u>a a</u>	
	<u>a a a</u>	
	_a	
	<u>a a a</u>	
	_a	
Doc_{10I}	γ a	

10,000 documents

■ In a corpus of 10,000 documents

■ Term <u>a</u>:

- Appears in 10,000 documents (it can appear multiple times in the same document)
- Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{10,000}\right) = 0$$

D	
Doc_1	<u>a a a </u>
Doc_2	<u>a</u>
Doc_3	
•••	a a
	a a a
	a
	a
	a a
	a a a
	a a a
	<u>a</u>
	a a
	a a
	a a a
	a
	a a a
	а
Doc_{10K}	r a

- In a corpus of 10,000 documents
- Term <u>a</u>:
 - Appears in 10,000 documents (it can appear multiple times in the same document)
 - Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{10,000}\right) = 0$$

Doc_1	aaa	b b	
Doc_2	a		
Doc_3		b	
	a a		
	a a a	bbbb	
	a		
	a	b b	
	a a		
	aaa	b	
	aaa		
	а	b b b	
	a a		
	a a	b b	
	aaa		
	а	bbbb	
	aaa		
	a	b b	
Doc_{10K}	l de la companya de		

- In a corpus of 10,000 documents
- Term <u>a</u>:
 - Appears in 10,000 documents (it can appear multiple times in the same document)
 - Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{10,000}\right) = 0$$

Doc_1	a a a	b b	
Doc_2			
Doc_3		b	
	a a		
	a a a	bbbb	
	а		
	а	b b	
	a a		
	aaa	b	
	aaa		
	a	b b b	
	a a		
	a a	b b	
	aaa		
	a	bbbb	
	aaa		
	a	b b	
Doc_{10K}			
1		•	-

- In a corpus of 10,000 documents
- Term <u>a</u>:
 - Appears in 10,000 documents (it can appear multiple times in the same document)
 - Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{10,000}\right) = 0$$

$$idf_b = log\left(\frac{10,000}{5,000}\right) = 0.69$$

Dog	2.2.2	h h		
Doc_1	d d d	b b		
Doc_2	а			
Doc_3	a a	b		
	a a			
	aaa	b b b b		
	а			
	а	b b		
	a a			
	aaa	b		
	aaa			
	а	b b b		
	аа			
	аа	b b		
	ааа			
	а	b b b b		
	ааа			
	a	b b		
Doc_{10K} a				

- In a corpus of 10,000 documents
- Term <u>a</u>:
 - Appears in 10,000 documents (it can appear multiple times in the same document)
 - Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{10,000}\right) = 0$$

$$idf_b = log\left(\frac{10,000}{5,000}\right) = 0.69$$

■ Term <u>c</u> (appears in 20 documents)

Doc_1	a a a	b b	СС	
Doc_2	a			
Doc_3	a a	b	С	
	a a			
	a a a	bbbb		
	a			
	a	b b	ссс	
	a a			
	aaa	b		
	a a a			
	a	b b b		
	a a		сссс	
	a a	b b		
	a a a			
	a	b b b b		
	a a a			
	a	b b		
Doc_{10K}			С	
			•	•

- In a corpus of 10,000 documents
- Term <u>a</u>:
 - Appears in 10,000 documents (it can appear multiple times in the same document)
 - Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{10,000}\right) = 0$$

■ Term <u>b</u> (appears in 5,000 documents)

$$idf_b = log\left(\frac{10,000}{5,000}\right) = 0.69$$

Doc_1	a a a	b b	сс	
Doc_2	a			
Doc_3		b	С	
	a a			
	a a a	bbbb		
	a			
	a	b b	ссс	
	a a			
	a a a	b		
	aaa			
	a	b b b		
	a a		сссс	
	a a	b b		
	aaa			
	a	bbbb		
	aaa			
	a	b b		
Doc_{10K}	<u>r</u> a		С	
				•

- In a corpus of 10,000 documents
- Term <u>a</u>:
 - Appears in 10,000 documents (it can appear multiple times in the same document)
 - Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{10,000}\right) = 0$$

■ Term <u>b</u> (appears in 5,000 documents)

$$idf_b = log\left(\frac{10,000}{5,000}\right) = 0.69$$

$$idf_c = log\left(\frac{10,000}{20}\right) = 6.21$$

Doc_1	a a a	b b	СС	
Doc_2	a			
Doc_3	a a	b	С	

- ... <u>a a</u> ... a a a b b b b
- ... <u>a</u>
- ... a bb ccc
- ... <u>aaa</u> b
- ... <u>a a a</u> ... a b b b
- ... aa cccc
- ... <u>a a</u> b b
- ... <u>a a a</u>
- ... <u>a bbbb</u>
- ··· <u>a a a a</u>
- ... <u>a bb</u> Doc_{10K} a c _____

- In a corpus of 10,000 documents
- Term <u>a</u>:
 - Appears in 10,000 documents (it can appear multiple times in the same document)
 - Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{10,000}\right) = 0$$

■ Term <u>b</u> (appears in 5,000 documents)

$$idf_b = log\left(\frac{10,000}{5,000}\right) = 0.69$$

■ Term <u>c</u> (appears in 20 documents)

$$idf_c = log\left(\frac{10,000}{20}\right) = 6.21$$

Doc_1	a a a	b b	СС	
Doc_2				d d d
Doc_3		b	С	
	a a			
	a a a	b b b b		
	а			
	а	b b	ссс	
	a a			
	a a a	b		
	a a a			
	a	b b b		
	аа		сссс	
	аа	b b		
	aaa			
	а	b b b b		
	aaa			
	a	b b		
_				

C

 Doc_{10K} a

- In a corpus of 10,000 documents
- Term <u>a</u>:
 - Appears in 10,000 documents (it can appear multiple times in the same document)
 - Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{10,000}\right) = 0$$

■ Term <u>b</u> (appears in 5,000 documents)

$$idf_b = log\left(\frac{10,000}{5,000}\right) = 0.69$$

■ Term <u>c</u> (appears in 20 documents)

$$idf_c = log\left(\frac{10,000}{20}\right) = 6.21$$

Doc_1	aaa	b b	СС	
Doc_2	а			d d d
Doc_3	a a	b	С	
	a a			
	aaa	b b b b		
	a			
	a	b b	ссс	
	a a			
	aaa	b		
	aaa			
	<u>a</u>	b b b		
	a a		сссс	

b b

b b

C

bbbb

a a

a

 Doc_{10K} a

a a a

a a a

- In a corpus of 10,000 documents
- Term <u>a</u>:
 - Appears in 10,000 documents (it can appear multiple times in the same document)
 - Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{10,000}\right) = 0$$

■ Term <u>b</u> (appears in 5,000 documents)

$$idf_b = log\left(\frac{10,000}{5,000}\right) = 0.69$$

■ Term <u>c</u> (appears in 20 documents)

$$idf_c = log\left(\frac{10,000}{20}\right) = 6.21$$

$$idf_d = log\left(\frac{10,000}{1}\right) = 9.21$$

- ... <u>a a</u>
- ... <u>aaa bbbb</u>
- ... <u>a</u>
- ... <u>a bb ccc</u>

a a

... <u>aaa</u> b

- In a corpus of 10,000 documents
- Term <u>a</u>:
 - Appears in 10,000 documents (it can appear multiple times in the same document)
 - Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{10,000}\right) = 0$$

Inverse Document Frequency (IDF) provides:

- low values for common words and
- high values for rare words (with discriminative power)

... a bb
$$Doc_{10K}$$
 a c

$$idf_d = log\left(\frac{10,000}{1}\right) = 9.21$$

Computing TF-IDF: An Example

Doc_1			
Doc_2			
Doc_3			
· ··			
····			
•••			
···			
Doc_{10K}			

■ In a corpus of 10,000 documents

Doc_1	a a a	b b	С
Doc_2			
Doc_3			
Doc_{10K}	•		

■ In a corpus of 10,000 documents

*Doc*₁ has only 6 terms...

Doc_1	a a a	b b	С
Doc_2			
Doc_3			
••			
••			
••			
••			
••			
••			
••			
••			
••			
••			
••			
Doc_{10K}	• -		

- In a corpus of 10,000 documents
- Term <u>a</u>

		• •	
Doc_1	<u>a a a</u>	b b	С
Doc_2		3 times	in <i>Doc</i> ₁
Doc_3			
•••			
•••			
•••			
•••			
•••			
•••			
•••			
•••			
•••			
Doce			

- In a corpus of 10,000 documents
- Term <u>a</u>
 - Appears 3 times in Doc_1

- In a corpus of 10,000 documents
- Term <u>a</u>
 - Appears 3 times in Doc_1

Appears in 50 documents

■ In a corpus of 10,000 documents

■ Term <u>a</u>

- Appears 3 times in Doc_1
- Its normalized term frequency (TF) in Doc_1 is:

$$tf_{Doc_1,a} = \frac{3}{3} = 1$$

Appears in 50 documents

In a corpus of 10,000 documents

■ Term <u>a</u>

- Appears 3 times in Doc_1
- Its normalized term frequency (TF) in Doc_1 is:

$$tf_{Doc_1,a} = \frac{3}{3} = 1$$

- Appears in 50 documents
- Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{50}\right) = 5.29$$

- In a corpus of 10,000 documents
- Term <u>a</u>
 - Appears 3 times in Doc_1
 - Its normalized term frequency (TF) in Doc_1 is:

$$tf_{Doc_1,a} = \frac{3}{3} = 1$$

- Appears in 50 documents
- Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{50}\right) = 5.29$$

• $tfidf_{Doc_1,a} = tf_{Doc_1,a} * idf_a = 1 * 5.29 = 5.29$

"weight" ("importance") of term a in Doc_1 is 5.29 (i.e., the tf-idf)

- In a corpus of 10,000 documents
- Term <u>a</u>
 - Appears 3 times in Doc_1
 - Its normalized term frequency (TF) in Doc_1 is:

$$tf_{Doc_1,a} = \frac{3}{3} = 1$$

- Appears in 50 documents
- Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{50}\right) = 5.29$$

• $tfidf_{Doc_1,a} = tf_{Doc_1,a} * idf_a = 1 * 5.29 = 5.29$

"weight" ("importance") of term a in Doc_1 is 5.29 (i.e., the tf-idf)

	а	b	С	
Doc_1	5.29	1.36	1.22	
Doc_2	•••	•••	•••	

Weighted Term-by-Document Matrix

	aaa	b b	С
Doc_2			
Doc_3			
	aaa		
	а		
	a a		
•••			
•••			
Doc_{10K}	-		

- In a corpus of 10,000 documents
- Term <u>a</u>
 - Appears 3 times in Doc_1
 - Its normalized term frequency (TF) in Doc_1 is:

$$tf_{Doc_1,a} = \frac{3}{3} = 1$$

- Appears in 50 documents
- Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{50}\right) = 5.29$$

- $tfidf_{Doc_1,a} = tf_{Doc_1,a} * idf_a = 1 * 5.29 = 5.29$
- Term <u>b</u>

Doc_1	a a a b b c
Doc_2	
Doc_3	
	a a a
	a
	a a

 $Doc_{10K_{-}}$

- In a corpus of 10,000 documents
- Term <u>a</u>
 - Appears 3 times in Doc_1
 - Its normalized term frequency (TF) in Doc_1 is:

$$tf_{Doc_1,a} = \frac{3}{3} = 1$$

- Appears in 50 documents
- Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{50}\right) = 5.29$$

• $tfidf_{Doc_1,a} = tf_{Doc_1,a} * idf_a = 1 * 5.29 = 5.29$

■ Term <u>*b*</u>

• Appears 2 times in $Doc_1 \Rightarrow tf_{Doc_1,b} = \frac{2}{3} = 0.66$

	2 times		!
Doc_1	a a a	b b	С
Doc_2		b b b	
Doc_3		b	
	aaa	bbbb	
		b	
	а	b b	
		b b b	
		b	
		b b b	
	a a		
		b b	
		b b b	
		b b b b	
		b	
		b b	
Doc_{10K}			
1,300 documents			ents
1,300 000011161113			

- In a corpus of 10,000 documents
- Term <u>a</u>
 - Appears 3 times in Doc_1
 - Its normalized term frequency (TF) in Doc_1 is:

$$tf_{Doc_1,a} = \frac{3}{3} = 1$$

- Appears in 50 documents
- Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{50}\right) = 5.29$$

- $tfidf_{Doc_1,a} = tf_{Doc_1,a} * idf_a = 1 * 5.29 = 5.29$
- Term <u>*b*</u>
 - Appears 2 times in $Doc_1 \Rightarrow tf_{Doc_1,b} = \frac{2}{3} = 0.66$
 - Appears in 1,300 documents $\Rightarrow idf_b = log(\frac{10,000}{1,300}) = 2.04$

Ъ	2 times	b b	
Doc_1	<u>a a a</u>	b b	С
Doc_2		b b b	
Doc_3		b	
	a a a	bbbb	
		b	
	a	b b	
		b b b	
		b	
		b b b	
	a a		
		b b	
		b b b	
		bbbb	
		b	
		b b	
Doc_{10K}	<u></u>		
		L	

1,300 documents

In a corpus of 10,000 documents

■ Term <u>a</u>

- Appears 3 times in Doc_1
- Its normalized term frequency (TF) in Doc_1 is:

$$tf_{Doc_1,a} = \frac{3}{3} = 1$$

- Appears in 50 documents
- Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{50}\right) = 5.29$$

• $tfidf_{Doc_1,a} = tf_{Doc_1,a} * idf_a = 1 * 5.29 = 5.29$

■ Term <u>*b*</u>

- Appears 2 times in $Doc_1 \Rightarrow tf_{Doc_1,b} = \frac{2}{3} = 0.66$
- Appears in 1,300 documents $\Rightarrow idf_b = log(\frac{10,000}{1,300}) = 2.04$
- $tfidf_{Doc_1,b} = tf_{Doc_1,b} * idf_b = 0.66 * 2.04 = 1.36$

Doc_1	a a a	b b	С
Doc_2		b b b	
Doc_3		b	
	222	hhhh	

... b b
$$Doc_{10K}$$

- In a corpus of 10,000 documents
- Term <u>a</u>
 - Appears 3 times in Doc_1
 - Its normalized term frequency (TF) in Doc_1 is:

$$tf_{Doc_1,a} = \frac{3}{3} = 1$$

- Appears in 50 documents
- Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{50}\right) = 5.29$$

- $tfidf_{Doc_1,a} = tf_{Doc_1,a} * idf_a = 1 * 5.29 = 5.29$
- Term <u>*b*</u>
 - Appears 2 times in $Doc_1 \Rightarrow tf_{Doc_1,b} = \frac{2}{3} = 0.66$
 - Appears in 1,300 documents $\Rightarrow idf_b = log(\frac{10,000}{1,300}) = 2.04$
 - $tfidf_{Doc_1,b} = tf_{Doc_1,b} * idf_b = 0.66 * 2.04 = 1.36$
- Term <u>c</u>

Doc_1	a a a	b b	С	
Doc_2		b b b		_
Doc_3		b		

... b b
$$Doc_{10K}$$

- In a corpus of 10,000 documents
- Term <u>a</u>
 - Appears 3 times in Doc_1
 - Its normalized term frequency (TF) in Doc_1 is:

$$tf_{Doc_1,a} = \frac{3}{3} = 1$$

- Appears in 50 documents
- Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{50}\right) = 5.29$$

- $tfidf_{Doc_1,a} = tf_{Doc_1,a} * idf_a = 1 * 5.29 = 5.29$
- Term <u>*b*</u>
 - Appears 2 times in $Doc_1 \Rightarrow tf_{Doc_1,b} = \frac{2}{3} = 0.66$
 - Appears in 1,300 documents $\Rightarrow idf_b = log(\frac{10,000}{1,300}) = 2.04$
 - $tfidf_{Doc_1,b} = tf_{Doc_1,b} * idf_b = 0.66 * 2.04 = 1.36$
- Term <u>c</u>
 - Appears 1 time in $Doc_1 \Rightarrow tf_{Doc_1,c} = \frac{1}{3} = 0.33$

		1 time	
Doc_1	a a a	b b	С
Doc_2		b b b	
Doc_3		b	ссс
			сс
	a a a	b b b b	
		b	
	a	b b	ссс
		b b b	
		b	
			СС
		b b b	
	a a		cccc
		b b	
		b b b	
		b b b b	
		b	

b b

250 documents

 Doc_{10K}

- In a corpus of 10,000 documents
- Term <u>a</u>
 - Appears 3 times in Doc_1
 - Its normalized term frequency (TF) in Doc_1 is:

$$tf_{Doc_1,a} = \frac{3}{3} = 1$$

- Appears in 50 documents
- Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{50}\right) = 5.29$$

- $tfidf_{Doc_1,a} = tf_{Doc_1,a} * idf_a = 1 * 5.29 = 5.29$
- Term <u>*b*</u>
 - Appears 2 times in $Doc_1 \Rightarrow tf_{Doc_1,b} = \frac{2}{3} = 0.66$
 - Appears in 1,300 documents $\Rightarrow idf_b = log(\frac{10,000}{1,300}) = 2.04$
 - $tfidf_{Doc_1,b} = tf_{Doc_1,b} * idf_b = 0.66 * 2.04 = 1.36$
- Term <u>c</u>
 - Appears 1 time in $Doc_1 \Rightarrow tf_{Doc_1,c} = \frac{1}{3} = 0.33$
 - Appears in 250 documents $\Rightarrow idf_c = log\left(\frac{10,000}{250}\right) = 3.68$

		1 time	,
Doc_1	a a a	b b	С
Doc_2		b b b	
Doc_3		b	ссс
			сс
	aaa	b b b b	
		b	
	а	b b	ссс
		b b b	
		b	
			СС
		b b b	
	a a		сссс
		b b	

... b b
$$Doc_{10K}$$
 c

250 documents

- In a corpus of 10,000 documents
- Term <u>a</u>
 - Appears 3 times in Doc_1
 - Its normalized term frequency (TF) in Doc_1 is:

$$tf_{Doc_1,a} = \frac{3}{3} = 1$$

- Appears in 50 documents
- Its discriminative power (IDF) will be

$$idf_a = log\left(\frac{10,000}{50}\right) = 5.29$$

- $tfidf_{Doc_1,a} = tf_{Doc_1,a} * idf_a = 1 * 5.29 = 5.29$
- Term <u>*b*</u>
 - Appears 2 times in $Doc_1 \Rightarrow tf_{Doc_1,b} = \frac{2}{3} = 0.66$
 - Appears in 1,300 documents $\Rightarrow idf_b = log(\frac{10,000}{1,300}) = 2.04$
 - $tfidf_{Doc_1,b} = tf_{Doc_1,b} * idf_b = 0.66 * 2.04 = 1.36$
- Term <u>c</u>
 - Appears 1 time in $Doc_1 \Rightarrow tf_{Doc_1,c} = \frac{1}{3} = 0.33$
 - Appears in 250 documents $\Rightarrow idf_c = log\left(\frac{10,000}{250}\right) = 3.68$
 - $tfidf_{Doc_1,c} = tf_{Doc_1,c} * idf_c = 0.33 * 3.68 = 1.22$

Doc_1	a a a	b b	С
Doc_2		b b b	
Doc_3		b	ссс
			СС
	aaa	bbbb	
		b	
	a	b b	ССС

- In a corpus of 10,000 documents
- Term <u>a</u>
 - Appears 3 times in Doc_1
 - Its normalized term frequency (TF) in Doc_1 is:

$$tf_{Doc_1,a} = \frac{3}{3} = 1$$

- Appears in 50 documents
- Its discriminative power (IDF) will be

Higher discriminating power is given to terms that

- appear a lot in the same document, but
- few times in the entire corpus

A word that appears in every document is basically meaningless

... b b
$$Doc_{10K}$$
 C

- Term <u>c</u>
 - Appears 1 time in $Doc_1 \Rightarrow tf_{Doc_1,c} = \frac{1}{3} = 0.33$
 - Appears in 250 documents $\Rightarrow idf_c = log\left(\frac{10,000}{250}\right) = 3.68$
 - $tfidf_{Doc_1,c} = tf_{Doc_1,c} * idf_c = 0.33 * 3.68 = 1.22$

04

IDF Formulas

(FYI – Not Required for exams)

- df_i = "document frequency" of term i = number of documents containing term i
- N =total number of documents in the corpus

$$idf_i = log_2\left(\frac{N}{df_i}\right)$$

= inverse document frequency of term i

Log used to dampen the effect relative to TF

TF-IDF Formulas

(FYI – Not Required for exams)

$$w_{ik} = tf_{ik} * idf_k = tf_{ik} * \log\left(\frac{N}{n_k}\right)$$

 $w_{ik} =$ "weight" ("importance") of term k in doc. D_i $T_k = \text{term } k \text{ in document } D_i$

 tf_{ik} = (normalized) frequency of term T_k in doc. D_i idf_k = inverse document frequency of term T_k $=\log\left(\frac{N}{n}\right)$

$$=\log\left(\frac{N}{n_k}\right)$$

N =total number of documents in the corpus n_k = the number of documents in the corpus that contain T_k

Vector Space Model
Latent Semantic Indexing
Latent Dirichlet Allocation
Relational Topic Model

The choice of IR techniques and their configuration matters (i.e., affects the results)

Latent Dirichlet Allocation (LDA)*

Topic model that generates the distribution of latent topics from textual documents

Latent Dirichlet Allocation (LDA)

Topic model that generates the distribution of latent topics from textual documents

Example of Topics

To	pic 1
Image	0.09
Player	0.09
Path	0.07
Data	0.04
Audio	0.03
•••	•••

Topic 2		
android	0.13	
activity	0.09	
intent	0.08	
thread	0.05	
runtime	0.03	
	•••	

Topi	ic 3
database	0.11
string	0.11
table	0.07
sqllite	0.05
id	0.03

Software Artifacts

6 documents

6 documents

Vector Space Model Latent Semantic Indexing Latent Dirichlet Allocation Relational Topic Model

Graphic Representation Vector Space Model

Graphic Representation Vector Space Model

Example:

$$D_1 = 2T_1 + 3T_2 + 5T_3$$

$$D_2 = 3T_1 + 7T_2 + T_3$$

$$Q = 0T_1 + 0T_2 + 2T_3$$

Graphic Representation Vector Space Model

Graphic Representation Vector Space Model

Example:

$$D_1 = 2T_1 + 3T_2 + 5T_3$$

$$D_2 = 3T_1 + 7T_2 + T_3$$

$$Q = 0T_1 + 0T_2 + 2T_3$$

- Is D_1 or D_2 more similar to Q?
- How to measure the degree of similarity? Distance? Angle? Projection?

 $T_3 T_3$

$$D_{1} = 2T_{1} + 3T_{2} + 5T_{3}$$

$$Q = 0T_{1} + 0T_{2} + 2T_{3}$$

$$T_{1}$$

$$D_{2} = 3T_{1} + 7T_{2} + T_{3}$$

$$D_{1} : T_{1} T_{1} \qquad T_{2}T_{2}T_{2} \qquad T_{3} T_{3} T_{3} T_{3} T_{3} T_{3}$$

$$D_{2} : T_{1} T_{1} T_{1} \qquad T_{2} T_{2} T_{2} T_{2} T_{2} T_{2} T_{2} T_{3}$$

Search query Q:

How to measure degree of similarity? Use cosine similarity

$$sim(Q, D_i) = \frac{\sum_{j=1}^{t} w_{qj} * w_{d_{ij}}}{\sqrt{\sum_{j=1}^{t} (w_{qj})^2 * \sum_{j=1}^{t} (w_{d_{ij}})^2}}$$

MATLAB Scripts

function [cosineSimilarity] = calculateCosineSimilarity(vectorX, vectorY)

cosineSimilarity=sum(vectorX.*vectorY)/sqrt(sum(vectorX.^2)*sum(vectorY.^2));

end

$$sim(Q, D_i) = \frac{\sum_{j=1}^{t} w_{qj} * w_{d_{ij}}}{\sqrt{\sum_{j=1}^{t} (w_{qj})^2 * \sum_{j=1}^{t} (w_{d_{ij}})^2}}$$

MATLAB Scripts

```
function [cosineSimilarity] = calculateCosineSimilarity(vectorX, vectorY)
    cosineSimilarity=sum(vectorX.*vectorY)/sqrt(sum(vectorX.^2)*sum(vectorY.^2));
end
>> D1=[2 3 5]
D1 =
     2
>> D2=[3 7 1]
D2 =
     3
>> Q=[0 \ 0 \ 2]
\bigcirc =
           0
     0
>> calculateCosineSimilarity(Q,D1)
ans =
    0.8111
>> calculateCosineSimilarity(Q,D2)
ans =
```

0.1302

$$cos(Q,D1)=0.8111$$
 //D1 is more similar to Q $cos(Q,D2)=0.1302$

Example:

$$D_1 = 2T_1 + 3T_2 + 5T_3$$

$$D_2 = 3T_1 + 7T_2 + T_3$$

$$Q = 0T_1 + 0T_2 + 2T_3$$

- Is D_1 or D_2 more similar to Q?
- How to measure the degree of similarity? Distance? Angle? Projection?

 $T_3 T_3$

$$D_{1} = 2T_{1} + 3T_{2} + 5T_{3}$$

$$Q = 0T_{1} + 0T_{2} + 2T_{3}$$

$$T_{1}$$

$$D_{2} = 3T_{1} + 7T_{2} + T_{3}$$

$$D_{1}: T_{1} T_{1} \qquad T_{2}T_{2}T_{2} \qquad T_{3} T_{3} T_{3} T_{3} T_{3} T_{3}$$

$$D_{2}: T_{1} T_{1} T_{1} \qquad T_{2} T_{2} T_{2} T_{2} T_{2} T_{2} T_{2} T_{3}$$

Search query Q:

Another VSM Model (2D)

Vector Space with Term Weights and Cosine Matching

Vector Space with Term Weights and Cosine Matching

- •Which document is most similar to *Q*?
 - ■Which document is \mathbf{most} similar to \mathbf{Q} ?

Computing Relevance Scores

Ex: Query vector Q = (0.4, 0.8)

Also, document $D_2 = (0.2, 0.7)$

What does their similarity comparison yield?

$$sim(Q, D_i) = \frac{\sum_{j=1}^{t} w_{qj} * w_{d_{ij}}}{\sqrt{\sum_{j=1}^{t} (w_{qj})^2 * \sum_{j=1}^{t} (w_{d_{ij}})^2}}$$

$$sim(Q, D_2) = \frac{(0.4 * 0.2) + (0.8 * 0.7)}{\sqrt{(0.4)^2 + (0.8)^2} * \sqrt{(0.2)^2 + (0.7)^2}}$$

$$= \frac{0.64}{\sqrt{0.42}} = 0.98$$

Vector Space with Term Weights and Cosine Matching

Term B

$$sim(Q, D_i) = \frac{\sum_{j=1}^{t} w_{q_j} w_{d_{ij}}}{\sqrt{\sum_{j=1}^{t} (w_{q_j})^2 \sum_{j=1}^{t} (w_{d_{ij}})^2}}$$

$$sim(Q, D2) = \frac{(0.4 \cdot 0.2) + (0.8 \cdot 0.7)}{\sqrt{[(0.4)^2 + (0.8)^2] \cdot [(0.2)^2 + (0.7)^2]}}$$

$$= \frac{0.64}{\sqrt{0.42}} = 0.98$$

$$sim(Q, D_1) = \frac{.56}{\sqrt{0.58}} = 0.74$$

Vector Space Model

Latent Semantic Indexing

Latent Dirichlet Allocation

Relational Topic Model

Why Latent Semantic Indexing (LSI)?

- Some problems for retrieval methods are based on term matching
 - vector-space similarity approach works only if the terms of the query are explicitly present in the relevant documents
- Rich expressive power of natural language
 - often queries contain terms that express concepts related to text to be retrieved

Why Latent Semantic Indexing (LSI)?

- With the vector space model, we are assuming independence among terms in a document
 - ... however we know this is not true!!

Why Latent Semantic Indexing (LSI)?

With the vector space model, we are assuming independence among terms in a document

... however we know this is not true!!

Two Problems – Synonyms

- •The same concept can be expressed using different sets of terms (synonyms), e.g.,:
 - True, right, correct
 - right place vs. correct position
 - window vs. frame
 - sort vs. order

Negatively affects recall

Two Problems – Homonyms

- •Identical terms can be used in very different semantic contexts (homonyms), e.g.,:
 - bank (financial establishment vs. land near body of water)
 - chip
 - ■str, id, token

Negatively affects precision

LSI Idea

•Idea (Deerwester et al.):

"We would like a representation in which a set of terms, which by itself is incomplete and unreliable evidence of the relevance of a given document, is replaced by some other set of entities which are more reliable indicants. We take advantage of the implicit higher-order (or latent) structure in the association of terms and documents to reveal such relationships."

Using SVD

- LSI uses linear algebra technique called singular value decomposition (SVD)
 - attempts to estimate the hidden structure
 - discovers the most important associative patterns between words and concepts
- ■In other words...
 - The analysis is moved from the space of terms to the space of concepts/topics

Basically...

•Instead of representing documents as a set of correlated factors (terms), we represent documents as set of uncorrelated factors (concepts)

SVD: Dimensionality Reduction

LSI Example

•Given a collection of documents (corpus):

```
d1:
       Indian government goes for open-source software
d2:
       Debian 3.0 Woody released
       Wine 2.0 released with fixes for Gentoo 1.4 and Debian 3.0
d3:
       gnuPOD released: iPOD on Linux... with GPLed software
d4:
       Gentoo servers running at open-source mySQL database
d5:
d6:
       Dolly the sheep not totally identical clone
       DNA news: introduced low-cost human genome DNA chip
d7:
       Malaria-parasite genome database on the Web
d8:
d9:
       UK sets up genome bank to protect rare sheep breeds
d10:
       Dolly's DNA damaged
```

LSI Example

•Given a collection of documents (corpus):

```
d1:
       Indian government goes for open-source software
d2:
       <u>Debian</u> 3.0 Woody <u>released</u>
d3:
       Wine 2.0 released with fixes for Gentoo 1.4 and Debian 3.0
d4:
       gnuPOD released: iPOD on Linux... with GPLed software
       Gentoo servers running at open-source mySQL database
d5:
d6:
       Dolly the sheep not totally identical clone
d7:
       DNA news: introduced low-cost human genome DNA chip
d8:
       Malaria-parasite genome database on the Web
d9:
       UK sets up genome bank to protect rare sheep breeds
d10:
       Dolly's DNA damaged
```

d3 is about (open source) Linux versions... d8 is about (DNA) manipulation...

	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10
open-source	1	0	0	0	1	0	0	0	0	0
software	1	0	0	1	0	0	0	0	0	0
Linux	0	0	0	1	0	0	0	0	0	0
released	0	1	1	1	0	0	0	0	0	0
Debian	0	1	1	0	0	0	0	0	0	0
Gentoo	0	0	1	0	1	0	0	0	0	0
database	0	0	0	0	1	0	0	1	0	0
Dolly	0	0	0	0	0	1	0	0	0	1
sheep	0	0	0	0	0	1	0	0	0	0
genome	0	0	0	0	0	0	1	1	1	0
DNA	0	0	0	0	0	0	2	0	0	1

	/>												
	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10			
open-source	1	0	0	0	1	alc		hou	14 / 0	10.010			
software	1	0	0	1	0	<u> </u>		abou	•	pen			
Linux	0	0	0	1	0	source) Linux							
released	0	1	1	1	0	versions, but							
Debian	0	1	1	0	0								
Gentoo	0	0	1	0	1								
database	0	0	0	0	1								
Dolly	0	0	0	0	0								
sheep	0	0	0	0	0								
genome	0	0	0	0	0								
DNA	0	0	0	0	0	0	2	0	0	1			

	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10			
open-source	1	0	0	0	1	alc			.4 / _				
software	1	0	0	1	0	<mark> </mark>		abou	•	pen			
Linux	0	0	0	1	0	source) Linux							
released	0	1	1	1	0	versions, but							
Debian	0	1	1	0	0	731313113, 831111							
Gentoo	0	0	1	0	1	_							
database	0	0	0	0	1	Sir	m(dୀ	1,d3)=0				
Dolly	0	0	0	0	0	sim(d1,d5)=0.7							
sheep	0	0	0	0	0		()	.,	,	-			
genome	0	0	0	0	0								
DNA	0	0	0	0	0	0	2	0	0	1			

d1	d2	d3	d4	d5	d6	d7	d8	d9	d10
1					0	0	0	0	0
	d8 is	s ah	Out	(DN	A)	0	0	0	0
				•	, , ,	0	0	0	0
		•	allo	Π,		0	0	0	0
	but.					0	0	0	0
						0	0	0	0
	oim/	/ do /	۲۷ <i>۷/</i>	0		0	1	0	0
		•	*			0	0	0	1
	sim((d7,0)	d10)	=0.6	53 /	0	0	0	0
0		ı			0	1	1	1	0
0	0	0	0	0	0	2	0	0	1
	1	d8 is man but.	d8 is ab manipul but sim(d8,0) sim(d7,0)	d8 is about manipulation but sim(d8,d10) sim(d7,d10)	d8 is about (DN manipulation, but sim(d8,d10)=0 sim(d7,d10)=0.6	d8 is about (DNA) manipulation, but sim(d8,d10)=0 sim(d7,d10)=0.63	d8 is about (DNA) manipulation, but sim(d8,d10)=0 sim(d7,d10)=0.63	d8 is about (DNA) manipulation, but sim(d8,d10)=0 sim(d7,d10)=0.63	d8 is about (DNA) manipulation, but sim(d8,d10)=0 sim(d7,d10)=0.63

Reconstructed

Term-Document Matrix from the decomposed SVD matrices (k=2)

$$X' = U' * \Sigma' * V'^T$$

	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10
open-source	0.119	0.253	0.346	0.26	0.188	0.002	0.05	0.062	0.02	0.017
software	0.149	0.319	0.435	0.328	0.23	-0.01	-0.02	0.054	0.005	-0.02
Linux	0.102	0.22	0.299	0.226	0.158	-0	-0.02	0.035	0.002	-0.02
released	0.337	0.724	0.986	0.744	0.522	-0.01	-0.06	0.118	0.008	-0.05
Debian	0.235	0.505	0.687	0.519	0.364	-0.01	-0.04	0.083	0.006	-0.03
Gentoo	0.208	0.445	0.606	0.457	0.326	-0	0.028	0.092	0.021	0.002
database	0.092	0.187	0.259	0.193	0.159	0.025	0.258	0.111	0.067	0.117
Dolly	-0	-0.02	-0.02	-0.02	0.022	0.044	0.419	0.12	0.098	0.198
sheep	-0	-0	-0.01	-0	0.003	0.008	0.077	0.022	0.018	0.036
genome	0.025	0.014	0.034	0.014	0.107	0.116	1.107	0.329	0.262	0.521
DNA	0.002	-0.06	-0.06	-0.06	0.114	0.19	1.795	0.518	0.422	0.846

Reconstructed

Term-Document Matrix from the decomposed SVD matrices (k=2)

$$X' = U' * \Sigma' * V'^T$$

	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	
open-source	0.119	0.253	0.346	0.26	0.188	0.002	0.05	0.062	0.02	0.017	
software	0.149	0.319	0.435	0.328	0.23	-0.01	-0.02	0.054	0.005	-0.02	
Linux	0.102	0.22	0.299	0.226	0.158	-0	-0.02	0.035	0.002	-0.02	
released	0.337	0.724	0.986	0.744	0.522	-0.01	-0.06	0.118	0.008	-0.05	
Debian	0.235	d3 is related to open-source									
Gentoo	0.208		d8 is related to DNA								
database	0.092	uo									
Dolly	-0	-0.02	-0.02	-0.02	0.022	0.044	0.419	0.12	0.098	0.198	
sheep	-0	-0	-0.01	-0	0.003	0.008	0.077	0.022	0.018	0.036	
genome	0.025	0.014	0.034	0.014	0.107	0.116	1.107	0.329	0.262	0.521	
DNA	0.002	-0.06	-0.06	-0.06	0.114	0.19	1.795	0.518	0.422	0.846	

LSI: Pros and Cons

- + Able to deal with synonymy and homonymy
- + Stemming could be avoided (but works better with stemming!)
- + Increases similarity between documents of the same cluster
- + Decreases similarity between documents of different clusters
- More expensive than traditional Vector Space Models (SVD computation)
- Difficult to add new documents
- Determining the optimal k is a crucial issue
- Often needs a large document corpus

Concept Location

Impact Analysis

Incremental Change [Rajlich'04]

Change Request Concept Location Impact Analysis Implementation Testing Delivery

Bug Report Task

Bug Report Task

Bug Report

Change Request

Concept Location

Impact Analysis

Implementation

Testing

Delivery

Extremely challenging tasks:

- Millions of Lines of Code
- Absence of original developer
- Missing or outdated documentation
- · etc.

Source Code

Concept (Feature) Location "Definition"*

Source Code

The activity of identifying an initial location in the source code that corresponds to a specific functionality is known as concept (or feature) location

Concept (Feature) Location

 Concept location is needed whenever a change is to be made

- Change requests are most often formulated in terms of domain concepts
 - example: "Correct error that arises when trying to paste a text"
 - the programmer must find in the code the locations where concept "paste" is located
 - this is the start of the change

Impact Analysis "Definition"*

- The activity of:
 - estimating what needs to be modified to accomplish a change, or
 - •identifying the potential consequences of a change

Strategies for Concept Location

Strategies for Concept Location: Familiarize with the software

User manual/documentation

Domain knowledge artifacts (e.g., medical process)

Design documents and diagrams

Strategies for Concept Location: Software Structure Comprehension

- Developer resources/wiki
- Prerequisites/dependencies
- Development workflow
- Code organization/structure and architecture
- Testing infrastructure
- Feedback channels
- Style guidelines
- APIs
- etc.

Strategies for Concept Location: Software Build/Run

Build/compile/resolve dependencies

- Execute the software
 - Try different scenarios/features

Examine log files (if any)

Strategies for Concept Location: Examine Source Code

- Search for concepts/features
- Read existing code
 - Build a mental model of the software
- Navigate dependencies
- Browse and examine code in specific locations
- Use traceability links
- Ask existing developers familiar with the code