

Gaussian Process Regression

Richard Dirauf, M.Sc. Machine Learning and Data Analytics (MaD) Lab Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) **MLTS Exercise, 24.11.2022**

Short Recap - Bayesian Linear Regression

MLTS Exercise 04

Remember:

BLR provides a probabilistic way to find a distribution of parameters for our models.

Advantages

- Uncertainty
- Priors

Disadvantages

- Linear with respect to the weights
- Limits expressivity
- Uncertainty independent from "observations density"

MLTS Exercise 04

Let's take a look at stochastic processes

- → Random Walk
- Start somewhere at position **x**
- Measure distance d from x at point t in time

Let's take a look at stochastic processes

- → Random Walk
- Start somewhere at position x
- Measure distance d from x at point t in time

Gaussian Processes are distribution over functions

Defined by:

- Mean function m(x)
- Positive definite covariance function k(x, x')

$$f(x) \sim \mathcal{GP}(m(x), k(x, x'))$$

Gaussian Processes are distribution over functions

Defined by:

- Mean function m(x)
- Positive definite covariance function k(x, x')

$$f(x) \sim \mathcal{GP}(m(x), k(x, x'))$$

Sampling from a GPR \rightarrow Define m(x) and k(x, x'):

$$k(x_a,x_b) = \exp\left(-rac{1}{2\sigma^2}\|x_a-x_b\|^2
ight)$$

Suitable Kernel Functions?

Sampling from the prior

MLTS Exercise 04

Arbitrary set of points X:

$$X$$
: $\mathbf{y} = f(X)$

Sampling from a Gaussian Distribution:

$$\mathcal{N}(0,k(X,X))$$

5 different function realizations at 41 points sampled from a Gaussian process with exponentiated quadratic kernel

How does the covariance look like?

2D marginal: $y \sim \mathcal{N}(0, k(X, X))$

GP for Regression

MLTS Exercise 04

Bayes Rule:

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})}$$

GP Noisy Observations

MLTS Exercise 04

Noisy kernel function:

$$\Sigma_{11} = k(X_1,X_1) + \sigma_\epsilon^2 I$$

GP Noisy Observations

MLTS Exercise 04

Noisy kernel function:

$$\Sigma_{11} = k(X_1,X_1) + \sigma_\epsilon^2 I$$

5 different function realizations from posterior

MLTS Exercise 04

Exercise 5: 08.12.2023

No Exercise next Week (01.12.2023)!!!

References

MLTS Exercise 04

https://katbailey.github.io/post/gaussian-processes-for-dummies/

https://peterroelants.github.io/posts/gaussian-process-tutorial/

Practice Questions

- What is a prior in the context of GPR?
 - The probability of some event
 - The mean function
 - The covariance function
 - What are suitable kernel functions for this problem?
 - Linear
 - Exponential
 - Sinusoidal
 - Quadratic

Practice Questions

- How can you see that there are no observations after ~2006?
 - The black dots you plotted
 - The variance is increasing
 - 2030 is in the future and its unlikely that someone used a time-machine
 - The curve gets flatter
- What will you expect happens if we introduce some noise to the kernel function?
 - The uncertainty will increase for all points
 - The uncertainty will only increase where we have no observations
 - It depends on the data