Taller 2: Transformaciones y Preproceso

Técnicas de Inteligencia Artificial: Visión de Máquina

Prof. Flavio Prieto

email: faprietoo@unal.edu.co

Ingeniería Mecatrónica Facultad de Ingeniería Universidad Nacional de Colombia Sede Bogotá

29 de febrero de 2023

Redimensionamiento.1

Esta función permite cambiar el tamaño de una imagen:

cv.Resize(im-fuente, (width, height), Método de interpolación);

Metodos de Interpolación:

- Vecino más cercano (cv2.INTER_NN)
- Bilineal (cv2.INTER_LINEAR)
- Píxel área de re-muestreo (cv2.INTER_AREA)
- ▶ Bicúbica (cv2.INTER_CUBIC)

¹http://docs.opencv.org/2.4/modules/imgproc/doc/ qeometric transformations.html#resize

Ejemplo:

img = cv2.imread('fig/Notebook/Escudo_UN.png',0)
height, width = img.shape[:2]
img2 = cv2.resize(img, (2*width, height/2), interpolation =
cv2.INTER_CUBIC)

Conversión espacios de color.

Estas función permite la conversión entre diferentes espacios de color.

cv2.cvtColor(Img_Fuente, cv2.COLOR_BGR2RGB)

- ► Grises (8,16 bits)
- ► RGB
- XYZ
- HSV
- ► HLS
- ► LUV
- YCrCb

Conversion code	Meaning
CV_BGR2RGB CV_RGB2BGR CV_RGBA2BGRA CV_BGRA2RGBA	Convert between RGB and BGR color spaces (with or without alpha channel)
CV_RGB2RGBA CV_BGR2BGRA	Add alpha channel to RGB or BGR image
CV_RGBA2RGB CV_BGRA2BGR	Remove alpha channel from RGB or BGR image
CV_RGB2BGRA CV_RGBA2BGR CV_BGRA2RGB CV_BGR2RGBA	Convert RGB to BGR color spaces while adding or removing alpha channel
CV_RGB2GRAY CV_BGR2GRAY	Convert RGB or BGR color spaces to grayscale
CV_GRAY2RGB CV_GRAY2BGR CV_RGBA2GRAY CV_BGRA2GRAY	Convert grayscale to RGB or BGR color spaces (optionally removing alpha channel in the process) $ \\$
CV_GRAY2RGBA CV_GRAY2BGRA	Convert grayscale to RGB or BGR color spaces and add alpha channel
CV. RGB2BGR565 CV. BGR2BGR565 CV. BGR5652RGB CV. BGR5652BGR CV. RGBA2BGR565 CV. BGR5652RGB CV. BGR5652RGBA CV_BGR5652RGBA	Convert from RGB or BGR color space to BGR565 color representation with optional addition or removal of alpha channel (16-bit images)
CV_GRAY2BGR565 CV_BGR5652GRAY	Convert grayscale to BGR565 color representation or vice versa (16-bit images)

Conversion code	Meaning
CV RGB2BGR555 CV BGR5552AGB CV BGR5552AGB CV BGR5552BGR CV RGBA2BGR555 CV BGRA2BGR555 CV BGRA2BGR555 CV BGRA2BGR556 CV BGR5552AGBA CV BGR5552AGBA	Convert from RGB or BGR color space to BGRSSS color representation with optional addition or removal of alpha channel (16-bit images)
CV_GRAY2BGR555 CV_BGR5552GRAY	Convert grayscale to BGR555 color representation or vice versa (16-bit images)
CV_RGB2XYZ CV_BGR2XYZ CV_XYZ2RGB CV_XYZ28GR	Convert RGB or BGR image to CIE XYZ representation or vice versa (Rec 709 with D65 white point)
CV_RGB2YCrCb CV_BGR2YCrCb CV_YCrCb2RGB CV_YCrCb2BGR	Convert RGB or BGR image to luma-chroma (aka YCC) color representation
CV_RGB2HSV CV_BGR2HSV CV_HSV2RGB CV_HSV2BGR	Convert RGB or BGR image to HSV (hue saturation value) color representation or vice versa
CV_RGB2HLS CV_BGR2HLS CV_HLS2RGB CV_HLS2BGR	Convert RGB or BGR image to HLS (hue lightness saturation) color representation or vice versa
CV_RGB2Lab CV_BGR2Lab CV_Lab2RGB CV_Lab2BGR	Convert RGB or BGR image to CIE Lab color representation or vice versa
CV_RGB2Luv CV_BGR2Luv CV_Luv2RGB CV_Luv2BGR	Convert RGB or BGR image to CIE Luv color representation
CV. BayerBG2RGB CV. Bayer GB2RGB CV. Bayer RG2RGB CV. Bayer RG2RGB CV. Bayer GR2RGB CV. Bayer GR2RGC CV. Bayer GR2BGR CV. Bayer GR2BGR CV. Bayer GR2BGR CV. Bayer GR2BGR	Convert from Bayer pattern (single-channel) to RGB or BGR image

Ejemplo:

RGB a escala de grises.

img = cv2.imread('fig/Notebook/Escudo_UN.png',1) # Carga
imagen en color

img1 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

img2 = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY)

Umbralización.

Esta función permite umbralizar una imagen respecto a un valor determinado (umbral), en escala de grises.

cv2.threshold(im-fuente, umbral,max-valor,Tipo-umbralización))

Tipos de umbralización:

- cv2.THRESH_BINARY
- 2. cv2.THRESH_BINARY_INV
- 3. cv2.THRESH_TRUNC
- cv2.THRESH_TOZERO_INV
- 5. cv2.THRESH TOZERO

Tipos de Umbralización

Ejemplo:

Umbralización Binaria

Ejemplo:

Umbralización Imagen color- Umbral a cero

Umbral Adaptativo.

cv2.adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst])

Métodos ADP en OpenCV.

Existen dos métodos implementados en OpenCV para el cálculo del umbral de forma automática.

- Mediana: cv2.ADAPTIVE_THRESH_MEAN_C
- Gausiano: cv2.ADAPTIVE_THRESH_GAUSSIAN_C

blockSize.

Tamaño del vecindario de píxeles sobre los cuales se calcula el valor del umbral, puede ser 3, 5, 7, etc.

Ejemplo:

Sitio de interés:

```
http://docs.opencv.org/2.4/modules/imgproc/
doc/miscellaneous_transformations.html?
highlight=threshold
```

Filtros Lineales.

Este grupo de funciones nos permiten realizar operaciones como la convolución:

cv2.filter2D(im-Origen, ddepth, Máscara (Kernel))

- ddepth: cuando se fija en '-1'la imagen de salida tiene la misma profundidad (tipo de datos), que la imagen de entrada.
- Definición de la Máscara:
 - kernel1 = np.ones((5, 5)) / 25
 - kernel2 = np.array([[1, 1, 1], [0, 0, 0], [-1, -1, -1]])

Ejemplo:

Filtros de suavizado.

El suavizado permite reducción de ruido en la imagen.

- 1. cv2.blur(img, Skernel)
 - ► El tamaño del Kernel (SKernel) es de la forma: '(3,3) o (5,5), ...'
- 2. cv2.medianBlur(img, Skernel)
 - El tamaño del kernel es de la forma: 3 o 5 o 7,...)
- cv2.GaussianBlur(img, Skernel, Desv. est. X, Desv. est. Y)
 - ► El tamaño del Kernel (SKernel) es de la forma: '(3,3) o (5,5), ...'
 - Si Desv. est. Y = 0, se hace igual a Desv. est. X.
 - Si las dos desviaciones son cero, ellas se calculan del kernel.

- 4. cv2.bilateralFilter(img, d, sigmaColor, sigmaSpace)
 - d: Diámetro del vecindario al píxel que es usado durante el proceso de filtrado.
 - sigmaColor: Desviación estándar del filtro en el espacio de color.
 - sigmaColor: Desviación estándar del filtro en el espacio de coordenadas.

Los siguientes filtros resaltan el contorno de las imágenes.

- ► Sobel.
- Laplaciano.
- Canny.

Sobel.

cv2.Sobel(im-Fuente, tipo dato, Orden derivada X, Orden derivada Y, ksize=3);

Laplaciano

cv2.Laplacian(im-Fuente, Tipo de dato);

Canny.

cv2.Canny(im-Fuente, UmbralBajo, UmbralAlto);

TAREA.

- Implementar, como una función de OpenCV, el filtro de Prewitt de 8 direcciones.
- Estudiar, evaluar y discutir las funciones vistas en el taller, cuando son aplicadas a imágenes reales. Preferiblemente use imágenes del proyecto que está desarrollando para el curso, en caso de no tener aun estas imágenes use las imágenes del taller anterior.