

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑯ Offenlegungsschrift
⑯ DE 198 12 195 A 1

⑯ Int. Cl. 6:
A 61 L 27/00
C 08 G 18/10
C 08 G 18/32
C 08 J 9/26
C 08 J 9/32
A 61 K 38/27
// (C08G 18/10,
101:00)

⑯ Anmelder:
Storch, Uwe, 45133 Essen, DE

⑯ Vertreter:
Haft, von Puttkamer, Berngruber, Czybulka, 81669
München

⑯ Erfinder:
gleich Anmelder

⑯ Entgegenhaltungen:

DE	1 96 10 715 C1
DE	36 44 588 C1
DE	35 25 731 A1
US	57 28 157
US	57 18 916
US	55 20 923
US	54 66 462

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

⑯ Stoffzusammensetzung zur Gewebebildung

⑯ Eine Stoffzusammensetzung zur Gewebebildung im
menschlichen und tierischen Körper polymerisiert als
Schaum mit offenen Poren aus, in die das sich bildende
Gewebe hineinwächst.

DE 198 12 195 A 1

DE 198 12 195 A 1

Beschreibung

Die Erfindung bezieht sich auf eine polymerisierbare Stoffzusammensetzung zur Gewebehildung im menschlichen und tierischen Körper.

Eine solche Stoffzusammensetzung, die zu einem biodegradierbaren Polyurethan auspolymerisiert, ist bekannt (EP 0 531 487 B1). Mit ihr wird ein Implantat hergestellt, das insbesondere zur Auffüllung parodontaler Knochentaschen, Augmentation am Kieferknochen, als endodontische Füllung und zur Beseitigung von Knochendefekten verwendet wird. Dazu enthält es Hydroxylapatit als Füllstoff.

Die Wirkungsweise des Implantats beruht darauf, daß das Polyurethan-Implantat mit der Zeit hydrolysiert und resorbiert wird, so daß das Knochengewebe entsprechend nachwachsen kann. Demgemäß sollte die Resorptionsgeschwindigkeit des Implantats möglichst der Proliferationsgeschwindigkeit des Knochengewebes entsprechen. Tatsächlich weist Polyurethan jedoch eine erheblich langsamere Resorptionsgeschwindigkeit auf. Es sind zwar die verschiedensten Anstrengungen unternommen worden, die Resorptionsgeschwindigkeit des Polyurethan-Implantats zu erhöhen, von einer der Gewebeproliferation entsprechenden Resorptionsgeschwindigkeit ist man jedoch noch weit entfernt.

Aufgabe der Erfindung ist es, ein medizinisches Implantat bereitzustellen, das die Gewebehildung nicht wesentlich behindert.

Dies wird erfindungsgemäß mit der im Anspruch 1 gekennzeichneten Stoffzusammensetzung erreicht. In den Ansprüchen 12, 16, 18 und 19 sind vorteilhafte Ausgestaltungen der erfindungsgemäßen Stoffzusammensetzung wiedergegeben. In den Ansprüchen 13 bis 15 sowie 17 und 20 sind bevorzugte Verwendungen der erfindungsgemäßen Stoffzusammensetzung angegeben.

Mit erfindungsgemäßer Stoffzusammensetzung wird ein Implantat gebildet, das aus einem offenzelligen Schaum besteht, also einem Polymerisat mit interkonnektierten, d. h. miteinander kommunizierenden Poren und dergleichen Hohlräumen. Diese Hohlräume werden vom Gewebe des Implantationsortes entsprechend der Turnover- oder Proliferationsrate des Gewebes durchwachsen.

Der durch die Erfindung erzielte Vorteil liegt also einerseits in der plastischen Implantation der polymerisierbare Stoffzusammensetzung und in der dadurch erleichterten Anpassung an den Implantationsort, und andererseits darin, daß der hochgradig interkonnektierende Schaum sofort vom Gewebe durchwachsen werden kann.

Der offenporige Schaum besteht vorzugsweise aus einem biologisch degradierbaren Kunststoff. Er wird damit insbesondere von den Hohlräumen her abgebaut. Durch die große innere Oberfläche, die durch die Hohlräume gebildet wird, erfolgt eine so rasche Resorption des Kunststoffs, dass die Gewebehildung praktisch nicht behindert wird.

Als biologisch abbaubarer, offenzelliger Schaum wird vorzugsweise Polyurethan-Schaum verwendet.

Die Hydrolysebeständigkeit und Abbaurate des Polyurethan-Schaums hängt von der verwendeten Polyol-Komponente ab. Versuche hierzu haben folgende Rangfolge in der Hydrolysesstabilität ergeben:

Polyether > Polycarprolacione > Polyester

Der hydrolytische Zerfall der Estergruppen wird durch saures Milieu begünstigt und verläuft wie folgt:

Dadurch, daß beim Hydrolysevorgang endständige Carbonsäuregruppen entstehen, ist der Vorgang autokatalytisch. Bei Polyetherurethanen wird vorwiegend die Urethangruppe selbst hydrolysiert. Dabei entstehen zwei kürzere Ketten. Die eine besitzt eine endständige Hydroxylgruppe, die andere endet aminofunktionell.

Durch den Zerfall von beigefügtem Polyactid-Oligomer werden in Abhängigkeit von der Kettenlänge desselben und seines Massenanteiles diese Prozesse beschleunigt. Gleichermaßen gilt allgemein für die Freisetzung von Säuren, z. B. Phosphorsäure aus Hydroxylapatit. Durch oben beschriebenen Mechanismen sowie Vernetzungsgrad, Kristallinität, Porengröße und Polymerisationsgrad ist die Degradationsgeschwindigkeit des Werkstoffes einstellbar.

Da aromatische Gruppen eine karzinogene Wirkung besitzen können, werden erfindungsgemäß vorzugsweise zur Herstellung des Polyurethan-Schaums nur solche Polyol- oder Polyamin-Komponenten sowie nur solche Polyisocyanat-Komponenten verwendet, die keine aromatischen Gruppen aufweisen.

Als Polyol-Komponenten werden vorzugsweise langketige aliphatische Verbindungen mit zwei oder drei Hydroxylgruppen mit einem Molekulargewicht zwischen 200 und 600 eingesetzt, insbesondere Diolester, ferner vorzugsweise Ricinusöl oder Castoröl. Dabei zeichnen sich Polyurethane, die unter Verwendung von Castoröl hergestellt werden, durch eine starke Gewebsadhäsion aus, also durch Ortsständigkeit des Implantationsmaterials, was in Abhängigkeit des Implantationsortes unter chirurgischen Aspekten wünschenswert ist.

Die Isocyanatgruppen des Polyisocyanats sind vorzugsweise durch wenigstens drei Methylengruppen voneinander getrennt. So hat sich Trimethylendiisocyanat als geeignet erwiesen. Ferner Diisocyanatcarbonsäuren, beispielsweise 2,6-Diisocyanathexansäure, die aus Lysin herstellbar ist.

Das Polyurethan wird aus einem Präpolymer aus der Polyol- bzw. Polyamin-Komponente einerseits und der Polyisocyanat-Komponente andererseits erhalten. Sowohl die Präpolymerisation wie die anschließende Polymerisation des Präpolymeren zum Polyurethan erfolgen in Masse, also ohne Verwendung von (toxischen) Lösungsmitteln.

Die Polymerisation des Präpolymeren kann chemisch oder durch Bestrahlung initiiert werden. Zur chemischen Initiierung kann beispielsweise Wasserstoffperoxid verwendet werden.

Nach Initiierung der Polymerisation des Präpolymeren wird das Polyurethan bildende Gemisch plastisch implantiert. Um die Offenporigkeit des plastisch implantierten Polyurethans zu erhalten, kann die Polyisocyanat-Komponente in einem solchen Überschuß eingesetzt werden, daß während der Polymerisation des Polyurethans Kohlendioxid freigesetzt wird, das die Poren des Polyurethan-Schaums bildet. Das Molverhältnis der Isocyanatgruppen der Polyisocyanat-Komponente zu den Hydroxylgruppen der Polyol-Komponente (oder gegebenenfalls zu den Aminogruppen der Polyamin-Komponente) beträgt deshalb vorzugsweise mehr als zwei. Statt eines Polyisocyanat-Überschusses kann zur Porenbildung auch ein Schäummittel verwendet werden,

das während der Polymerisation des Polyurethans Kohlendioxid oder ein anderes nicht toxisches Gas bildet.

Um einen steiferen Polyurethan-Schaum zu erhalten, hat es sich als vorteilhaft erwiesen, dem Präpolymer vor dessen Polymerisation ein aliphatisches Diisocyanat mit wenigstens drei Methylengruppen zwischen den beiden Isocyanatgruppen zuzusetzen, insbesondere die erwähnte 2,6-Diisocyanathexansäure. Ein steifer Schaum ist beispielsweise bei einem Knochenaufbau, etwa einer Augmentation im Kieferknochen, erwünscht.

Zur Porenbildung werden der polymerisierbaren Stoffzusammensetzung ferner vorzugsweise wasserlösliche Feststoffpartikel zugesetzt, insbesondere Salze, wie Alkali- oder Erdalkali-Chloride oder Sulfate, wie Glucose. Die Feststoffpartikel werden aus dem implantierten Polymerisat herausgelöst. Die wasserlöslichen Feststoffpartikel dienen insbesondere zur Verbindung der Blasen innerhalb des Polymerisat, die durch das Gas gebildet werden, das während der Polymerisation entsteht. Die Menge der wasserlöslichen Feststoffpartikel kann beispielsweise 10 bis 60 Vol.-% des Implantats betragen.

Das Porenvolumen des Schaumes sollte einerseits groß genug sein, um die Gewebeproliferation nicht zu beeinträchtigen, andererseits muß der Schaum eine hinreichende Festigkeit besitzen. Demgemäß sollte das Porenvolumen des Schaums mindestens 30 Vol.-%, insbesondere mindestens 50 Vol.-% betragen. Die durchschnittliche Porengröße kann 200 bis 600 μm betragen, insbesondere 350 bis 450 μm .

Die Porengröße kann unterschiedlich sein. Falls das Gewebe ein Knochengewebe ist, kann die Porengröße ähnlich der Eröffnungszone des hyalinen Knorpels bei der enchondralen Ossifikation beispielsweise 200 bis 600 μm betragen, während die Zwischenverbindungen der Poren entsprechend dem Querschnitt der Osteoklasten und Osteoblasten einen Durchmesser von weniger als 400 μm besitzen sollen.

Falls ein Gewebe mit langsamer Proliferationsgeschwindigkeit, z. B. Knochengewebe gebildet werden soll, das an ein Gewebe mit hoher Proliferationsgeschwindigkeit, beispielsweise Bindegewebe angrenzt, muß verhindert werden, daß das Bindegewebe in den Schaum hineinwachsen kann. Dies wird vorzugsweise dadurch erreicht, daß der offene Schaum auf der von dem zu regenerierende Gewebe abgewandten Seite eine geschlossene Haut bildet. Eine solche Haut bildet sich häufig von selbst an der freien Oberfläche der implantierten Stoffzusammensetzung während der Polymerisation. Sie kann jedoch auch beispielsweise durch mechanisches Glätten der freien Oberfläche während der Polymerisation erzeugt werden.

Wenn mit dem erfindungsgemäßen Implantat ein Knochengewebe gebildet werden soll, kann die polymerisierbare Stoffzusammensetzung ein Knochenersatz-Material als Füllstoff erhalten, insbesondere Hydroxylapatit, Tricalciumphosphat, Aluminiumoxid-Keramiken, aber auch sogenanntes Bioglas.

Ein wichtiger Aspekt des erfindungsgemäßen Implantats besteht darin, daß es als Wirkstoff-Carrier verwendet werden kann. Dazu werden der polymerisierbaren Stoffzusammensetzung Hohlkügelchen zugesetzt, die den Wirkstoff enthalten. Der Wirkstoff wird damit ortständig verteilt. Die Wirkstoffe oder Botenstoffe können aber auch in die vorstehend beschriebenen wasserlöslichen Feststoffpartikel eingeschlossen und durch deren Auflösung freigesetzt werden.

Die Hohlkügelchen müssen einerseits eine hinreichende chemische Stabilität besitzen, damit sie bei der Polymerisation nicht zerstört werden. Falls ein Polyurethan-Schaum gebildet wird, ist dies insbesondere bei Wirkstoffen von Bedeutung, die Amin- oder dergleichen Gruppen besitzen, die mit der Polyisocyanat-Komponente reagieren können. Zum

anderen müssen die Hohlkügelchen resorbier- bzw. biodegradierbar sein, damit der Wirkstoff freigesetzt werden kann. Dazu können die Hohlkügelchen beispielsweise aus Polyhydroxybuttersäure, Polylactid aber auch aus biodegradierbarem Polyurethan bestehen.

Der Wirkstoff kann ein klassisches Arzneimittel, beispielsweise ein Antibiotikum, wie Tetracyclin, ein Corticoid oder dergleichen sein.

Um die Gewebebildung zu beschleunigen, wird als Wirkstoff jedoch vorzugsweise ein Gewebehormon verwendet, insbesondere von der Gruppe der Amelogene sowie BM(bone morphogenetic)-Proteine. Das Hauptproblem der klinischen Anwendung der Gewebehormone, das in deren Ortsständigkeit bzw. Plazierung beruht, wird durch das erfindungsgemäße Implantat gelöst.

Denn das erfindungsgemäße Implantat kann, wenn es zur Knochenbildung eingesetzt wird, insbesondere zur Auffüllung parodontaler Knochentaschen, Augmentation an Kieferknochen, zur endodontischen Füllung und zur Beseitigung von Knochendefekten verwendet werden. Auch kann das erfindungsgemäße Implantat zur Osteoporose-Behandlung eingesetzt werden, insbesondere können die Wirbelsäulen der Osteoporose-Patienten mit der erfindungsgemäßen, zu einem Schaum polymerisierbaren Stoffzusammensetzung gefüllt werden, wobei die Zusammensetzung, wie vorstehend erwähnt, in biodegradierbare Hohlkügelchen oder in die besagten wasserlöslichen Feststoffpartikel eingeschlossene Gewebehormone enthalten kann.

Die erfindungsgemäße Stoffzusammensetzung ist jedoch nicht nur zur Herstellung von Implantaten zur Regeneration bzw. Bildung von Knochengewebe geeignet. Sie kann beispielsweise auch als Verband verwendet werden, insbesondere für Brandverletzungen der Haut. Durch die Brandverletzung der Haut wird nämlich dem darunterliegenden Gewebe Wasser entzogen. Durch Auftragen der erfindungsgemäßen Stoffzusammensetzung auf die Haut wird dieser Wasserentzug gestoppt. Zudem kann sich die Haut durch Einwachsen in den Schaum schnell regenerieren.

Eine weitere Anwendungsmöglichkeit der erfindungsgemäßen Stoffzusammensetzung sind Implantate zur Tumorbearbeitung. Dazu wird nach Entfernung des Tumorgewebes die erfindungsgemäße Zusammensetzung implantiert, wobei sie als Carrier zur Abgabe des Tumornekrose-Faktors ausgebildet ist, also biodegradierbare Hohlkügelchen enthalten, die Tumornekrose-Faktor enthalten.

Wenn die Hohlkügelchen oder wasserlöslichen Feststoffpartikel Neurotransmitter enthalten, kann die erfindungsgemäße Stoffzusammensetzung ferner auch für diesen Wirkstoff als Carrier verwendet werden. Damit kann Nervengewebe regeneriert werden. So kann beispielsweise durch mikroinvasive Chirurgie die erfindungsgemäße Stoffzusammensetzung an den betreffenden Stellen im Gehirn implantiert werden, z. B. um Epilepsie zu behandeln. Zudem kann die Stoffzusammensetzung zu einem elektrisch leitfähigem Schaum bzw. Kunststoff auspolymerisieren, der nur bedingt abbaubar ist.

Beispiel 1

- 60 10 Gewichtsteile Castoröl
- 26 Gewichtsteile eines Diolesters (mittleres Molekulargewicht etwa 400)
- 80 Gewichtsteile Trimethylendiisocyanat
- 15 Gewichtsteile Hydroxylapatit (Marke "Bio-Oss" der Firma Geistlich)
- 5 Gewichtsteile Hohlkügelchen aus Polymilchsäure, die Amelogene (Handelsname "Endogain") oder BMP enthalten

50 Gewichtsteile Kaliumchlorid

werden in einem Wasserbad bei etwa 40°C vermischt, um ein Polyurethan-Prepolymeres zu bilden.

Zu etwa 2 g des so hergestellten Prepolymeren Gemischs werden zwei Tropfen 30%iges wässriges Wasserstoffperoxid gegeben, um die Polymerisation des Prepolymeren zu initiieren. Das Gemisch nimmt eine hochviskose, honigartige Konsistenz an und kann damit gut implantiert werden.

Beispiel 2

Auffüllung parontaler Knochentaschen

Die parontale Knochentasche entsteht im Rahmen fortgeschrittener parontaler Erkrankung als Folge einer wiederkehrenden bakteriellen Infektion. Sie liegt im Grenzbe- 15
reich zwischen Zahnwurzelzement, desmodontalem Fas-
zapparat, Knochen und dem angehefteten Bindegewebe der
Gingiva. Die operative Behandlung beginnt mit der Entfer-
nung der pathogenen Keime, deren Konkrementen und des
Granulationsgewebes. Die Regenerationsfähigkeit aller einzelnen o. g. Gewebe ist durch unterschiedliche Verfahren
medizinisch nachgewiesen. Nach operativer Darstellung fin- 20
den sich Parontaldefekte unterschiedlichster Gestalt. Diese
werden mit der polymerisierenden Stoffzusammensetzung
honigartiger Konsistenz nach dem Beispiel 1 aufgefüllt.
Während dem Auspolymerisieren am Implantationsort wird
die Zusammensetzung aufgrund des hohen Polyisocyanat- 25
Überschusses beim Auspolymerisieren aufgeschäumt. Der
gebildete Polyurethanschaum weist an seiner freien Oberflä-
che eine geschlossene Haut auf.

Die Knochengewebsregeneration wird durch die Offen- 30
zelligkeit gerichtet, wobei die gebildete Haut eine Abschir-
nung gegenüber dem angrenzenden Gewindegewebe dar-
stellt und somit eine gerichtete Regeneration des Knochen-
gewebes erlaubt. Das Material ist resorbierbar.

Durch die Hohlkugelchen in dem Schaum wird das Am- 35
elogen oder BMP in der Polyurethanmatrix ortsfestgebunden.
Des Weiteren entwickelt die Polyurethanmatrix eine starke
Adhäsion an die Umgebung, welche auf die Verwendung
des Castoröls zurückzuführen ist. Die adhäsiven Eigen- 40
schaften ermöglichen eine gute Stabilisierung des marginalen
Fibrinokogels, sowie eine Anheftung des Mukoperiost-
lappens.

Damit werden komplikationslose Heilungsvorgänge er- 45
reicht. Die bioaktive Oberfläche sorgt für die Ausbildung
funktionell ausgerichteter desmodontaler Faserbündel.

Als Heilungsergebnisse finden sich des Weiteren eine 50
Osteoneogenese, Zementbildung und eine Anheftung des
marginalen Parodonts.

Beispiel 3

Augmentation am Kieferknochen

Der Verlust des Alveolarfortsatzes bei längerer Zahnlö- 55
sigkeit macht eine suffiziente Prothetik unmöglich und er-
fordert eine Augmentation am oder eine Implantation in den
Knochen. Neben den bisher beschriebenen Eigenschaften ist
eine Langzeitstabilität der Matrix erforderlich, da der neu- 60
gebildete Knochen alleine wieder starken Resorptionspro-
zessen ausgesetzt ist. Bei der endossealen Implantation bestehen
oft Platzprobleme. Hier kann die erfundungsgemäße Stoffzu-
sammensetzung im Sinne einer gerichteten Knochenregen-
eration-OP (GBR) eingesetzt werden. Der Polyurethan-An- 65
teil dient auch hier dem Zweck, als Matrixsubstanz die Füll-
stoffpartikel des Zahnersatzmaterials zu verbinden und zu

halten. Die adhäsiven Eigenschaften fixieren das aufgetra-
gene Material. Es erfolgt eine langsame Degradation des Polyurethans und ein sukzessiver Aufbau ortsständigen Kno-
chengewebes durch gesteuerte Knochenregeneration.

Patentansprüche

1. Polymerisierbare Stoffzusammensetzung zur Ge-
webebildung im menschlichen und tierischen Körper,
dadurch gekennzeichnet, dass sie zu einem Schaum
mit offenen Poren auspolymerisiert, in die das sich bil-
dende Gewebe hineinwächst.
2. Stoffzusammensetzung nach Anspruch 1, dadurch
gekennzeichnet, dass der offenporige Schaum auf der
von dem sich bildenden Gewebe abgewandten Seite
eine geschlossene Haut bildet.
3. Stoffzusammensetzung nach Anspruch 1 oder 2, da-
durch gekennzeichnet, dass sie Hohlkugelchen aus ei-
nem resorbierbaren Material oder wasserlösliche Fest-
stoffpartikel enthält, die einen Wirkstoff enthalten.
4. Stoffzusammensetzung nach einem der vorstehen-
den Ansprüche, dadurch gekennzeichnet, dass sie zur
Bildung wenigstens eines Teils der Poren oder zur Ver-
bindung der Poren wasserlösliche Feststoffpartikel ent-
hält.
5. Stoffzusammensetzung nach einem der vorstehen-
den Ansprüche, dadurch gekennzeichnet, dass die Po-
lymerisation in Masse erfolgt.
6. Stoffzusammensetzung nach einem der vorstehen-
den Ansprüche, dadurch gekennzeichnet, dass sie ein
medizinisches Implantat bildet.
7. Stoffzusammensetzung nach einem der vorstehen-
den Ansprüche, dadurch gekennzeichnet, dass sie zu
einem offenporigen Polyurethanschaum auspolymeri-
siert.
8. Stoffzusammensetzung nach Anspruch 7, dadurch
gekennzeichnet, dass die Polyolkomponente des Poly-
urethans eine aliphatische Verbindung mit zwei oder
drei Hydroxylgruppen und einem Molekulargewicht
zwischen 100 und 600 ist.
9. Stoffzusammensetzung nach Anspruch 7 oder 8, da-
durch gekennzeichnet, dass die Polyisocyanat-Kompo-
nente eine aliphatische Verbindung mit wenigstens
zwei durch mindestens drei Methylengruppen getrenn-
ten Isocyanatgruppen ist.
10. Stoffzusammensetzung nach einem der Ansprüche
7 bis 9, dadurch gekennzeichnet, dass das Molverhältnis
der Isocyanatgruppen der Polyisocyanat-Kompo-
nente zu den Hydroxylgruppen der Polyolkomponente
mindestens 2 beträgt.
11. Stoffzusammensetzung nach Anspruch 3, dadurch
gekennzeichnet, dass der in den Hohlkugelchen enthal-
tene Wirkstoff ein Gewebehormon ist.
12. Stoffzusammensetzung nach einem der vorstehen-
den Ansprüche, dadurch gekennzeichnet, dass sie ein
Knochenersatzmaterial enthält.
13. Verwendung der Stoffzusammensetzung nach ei-
nem der vorstehenden Ansprüche zur Bildung von
Knochengewebe.
14. Verwendung der Stoffzusammensetzung nach An-
spruch 13 zur Auffüllung parontaler Knochentaschen,
Augmentation am Kieferknochen, als endodontische
Füllung, sowie zur Beseitigung von Knochendefekten und zur Osteoporose-Behandlung.
15. Verwendung der Stoffzusammensetzung nach ei-
nem der Ansprüche 1 bis 11 zur Regeneration der Haut.
16. Stoffzusammensetzung nach Anspruch 3, dadurch
gekennzeichnet, dass die Hohlkugelchen als Wirkstoff

Tumornekrose-Faktor enthalten.

17. Verwendung der Stoffzusammensetzung nach Anspruch 16 zur Tumorbehandlung.

18. Stoffzusammensetzung nach Anspruch 3, dadurch gekennzeichnet, dass die Hohlkugelchen als Wirkstoff 5 Neurotransmitter enthalten.

19. Stoffzusammensetzung nach Anspruch 1, dadurch gekennzeichnet, dass sie einen elektrisch leitfähigen Schaum bildet.

20. Verwendung der Stoffzusammensetzung nach Anspruch 18 zur Regeneration von Nervengewebe. 10

15

20

25

30

35

40

45

50

55

60

65