Chapter 7

Transcendental Functions

7.1

Inverse Functions and Their Derivatives

DEFINITION One-to-One Function

A function f(x) is **one-to-one** on a domain D if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$ in D.

The Horizontal Line Test for One-to-One Functions

A function y = f(x) is one-to-one if and only if its graph intersects each horizontal line at most once.

One-to-one: Graph meets each horizontal line at most once.

Not one-to-one: Graph meets one or more horizontal lines more than once.

FIGURE 7.1 Using the horizontal line test, we see that $y = x^3$ and $y = \sqrt{x}$ are one-to-one on their domains $(-\infty, \infty)$ and $[0, \infty)$, but $y = x^2$ and $y = \sin x$ are not one-to-one on their domains $(-\infty, \infty)$.

DEFINITION Inverse Function

Suppose that f is a one-to-one function on a domain D with range R. The **inverse** function f^{-1} is defined by

$$f^{-1}(a) = b$$
 if $f(b) = a$.

The domain of f^{-1} is R and the range of f^{-1} is D.

(a) To find the value of f at x, we start at x, go up to the curve, and then over to the y-axis.

(b) The graph of f is already the graph of f^{-1} , but with x and y interchanged. To find the x that gave y, we start at y and go over to the curve and down to the x-axis. The domain of f^{-1} is the range of f. The range of f^{-1} is the domain of f.

(c) To draw the graph of f^{-1} in the more usual way, we reflect the system in the line y = x.

(d) Then we interchange the letters x and y. We now have a normal-looking graph of f^{-1} as a function of x.

FIGURE 7.2 Determining the graph of $y = f^{-1}(x)$ from the graph of y = f(x).

FIGURE 7.3 Graphing f(x) = (1/2)x + 1 and $f^{-1}(x) = 2x - 2$ together shows the graphs' symmetry with respect to the line y = x. The slopes are

reciprocals of each other (Example 2).

FIGURE 7.4 The functions $y = \sqrt{x}$ and $y = x^2, x \ge 0$, are inverses of one another (Example 3).

FIGURE 7.5 The slopes of nonvertical lines reflected through the line y = x are reciprocals of each other.

The slopes are reciprocal:
$$(f^{-1})'(b) = \frac{1}{f'(a)}$$
 or $(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}$

FIGURE 7.6 The graphs of inverse functions have reciprocal slopes at corresponding points.

THEOREM 1 The Derivative Rule for Inverses

If f has an interval I as domain and f'(x) exists and is never zero on I, then f^{-1} is differentiable at every point in its domain. The value of $(f^{-1})'$ at a point b in the domain of f^{-1} is the reciprocal of the value of f' at the point $a = f^{-1}(b)$:

$$(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}$$

or

$$\frac{df^{-1}}{dx}\Big|_{x=b} = \frac{1}{\frac{df}{dx}\Big|_{x=f^{-1}(b)}}$$
 (1)

FIGURE 7.7 The derivative of $f^{-1}(x) = \sqrt{x}$ at the point (4, 2) is the reciprocal of the derivative of $f(x) = x^2$ at (2, 4) (Example 4).

FIGURE 7.8 The derivative of $f(x) = x^3 - 2$ at x = 2 tells us the derivative of f^{-1} at x = 6 (Example 5).

7.2

Natural Logarithms

DEFINITION The Natural Logarithm Function

$$\ln x = \int_1^x \frac{1}{t} \, dt, \qquad x > 0$$

FIGURE 7.9 The graph of $y = \ln x$ and its relation to the function y = 1/x, x > 0. The graph of the logarithm rises above the x-axis as x moves from 1 to the right, and it falls below the axis as x moves from 1 to the left.

$$\ln x = \int_{1}^{x} \frac{1}{x} \, dx$$

TABLE 7.1	Typical 2-place
values of l	n <i>x</i>

x	ln x
0	undefined
0.05	-3.00
0.5	-0.69
1	0
2	0.69
3	1.10
4	1.39
0	2.30

DEFINITION The Number *e*

The number e is that number in the domain of the natural logarithm satisfying

$$ln(e) = 1$$

$$\frac{d}{dx}\ln x = \frac{1}{x}.$$

$$\frac{d}{dx}\ln u = \frac{1}{u}\frac{du}{dx}, \qquad u > 0 \tag{1}$$

THEOREM 2 Properties of Logarithms

For any numbers a > 0 and x > 0, the natural logarithm satisfies the following rules:

1. Product Rule:
$$\ln ax = \ln a + \ln x$$

2. Quotient Rule:
$$\ln \frac{a}{x} = \ln a - \ln x$$

3. Reciprocal Rule:
$$\ln \frac{1}{x} = -\ln x$$
 Rule 2 with $a = 1$

4. Power Rule:
$$\ln x^r = r \ln x$$
 rational

FIGURE 7.10 The rectangle of height y = 1/2 fits beneath the graph of y = 1/x for the interval $1 \le x \le 2$.

If u is a differentiable function that is never zero,

$$\int \frac{1}{u} du = \ln|u| + C. \tag{5}$$

$$\int \tan u \, du = -\ln|\cos u| + C = \ln|\sec u| + C$$

$$\int \cot u \, du = \ln|\sin u| + C = -\ln|\csc x| + C$$

EXAMPLE 6 Using Logarithmic Differentiation

Find dy/dx if

$$y = \frac{(x^2 + 1)(x + 3)^{1/2}}{x - 1}, \qquad x > 1.$$

Solution We take the natural logarithm of both sides and simplify the result with the properties of logarithms:

$$\ln y = \ln \frac{(x^2 + 1)(x + 3)^{1/2}}{x - 1}$$

$$= \ln ((x^2 + 1)(x + 3)^{1/2}) - \ln (x - 1)$$
Rule 2
$$= \ln (x^2 + 1) + \ln (x + 3)^{1/2} - \ln (x - 1)$$
Rule 1
$$= \ln (x^2 + 1) + \frac{1}{2} \ln (x + 3) - \ln (x - 1).$$
Rule 3

We then take derivatives of both sides with respect to x, using Equation (1) on the left:

$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{x^2 + 1} \cdot 2x + \frac{1}{2} \cdot \frac{1}{x + 3} - \frac{1}{x - 1}.$$

Next we solve for dy/dx:

$$\frac{dy}{dx} = y \left(\frac{2x}{x^2 + 1} + \frac{1}{2x + 6} - \frac{1}{x - 1} \right).$$

Finally, we substitute for *y*:

$$\frac{dy}{dx} = \frac{(x^2+1)(x+3)^{1/2}}{x-1} \left(\frac{2x}{x^2+1} + \frac{1}{2x+6} - \frac{1}{x-1} \right).$$

7.3

The Exponential Function

FIGURE 7.11 The graphs of $y = \ln x$ and $y = \ln^{-1} x = \exp x$. The number e is $\ln^{-1} 1 = \exp (1)$.

DEFINITION The Natural Exponential Function

For every real number x, $e^x = \ln^{-1} x = \exp x$.

Typical values of e^x

x	e ^x (rounded)
-1	0.37
0	1
1	2.72
2	7.39
10	22026
100	2.6881×10^{43}

Inverse Equations for e^x and $\ln x$

$$e^{\ln x} = x \qquad (\text{all } x > 0) \tag{2}$$

$$e^{\ln x} = x$$
 (all $x > 0$)
 $\ln (e^x) = x$ (all x) (2)

DEFINITION General Exponential Functions

For any numbers a > 0 and x, the exponential function with base a is

$$a^x = e^{x \ln a}.$$

THEOREM 3 Laws of Exponents for e^x

For all numbers x, x_1 , and x_2 , the natural exponential e^x obeys the following laws:

1.
$$e^{x_1} \cdot e^{x_2} = e^{x_1 + x_2}$$

2.
$$e^{-x} = \frac{1}{e^x}$$

$$3. \quad \frac{e^{x_1}}{e^{x_2}} = e^{x_1 - x_2}$$

4.
$$(e^{x_1})^{x_2} = e^{x_1x_2} = (e^{x_2})^{x_1}$$

$$\frac{d}{dx}e^x = e^x \tag{5}$$

If u is any differentiable function of x, then

$$\frac{d}{dx}e^u = e^u \frac{du}{dx}. (6)$$

$$\int e^u du = e^u + C.$$

THEOREM 4 The Number *e* as a Limit

The number e can be calculated as the limit

$$e = \lim_{x \to 0} (1 + x)^{1/x}.$$

Power Rule (General Form)

If u is a positive differentiable function of x and n is any real number, then u^n is a differentiable function of x and

$$\frac{d}{dx}u^n = nu^{n-1}\frac{du}{dx}.$$

7.4

ax and logax

If a > 0 and u is a differentiable function of x, then a^u is a differentiable function of x and

$$\frac{d}{dx}a^u = a^u \ln a \, \frac{du}{dx}.\tag{1}$$

FIGURE 7.12 Exponential functions decrease if 0 < a < 1 and increase if a > 1. As $x \to \infty$, we have $a^x \to 0$ if 0 < a < 1 and $a^x \to \infty$ if a > 1. As $x \to -\infty$, we have $a^x \to 0$ if a > 1. As $a \to -\infty$, we have $a^x \to \infty$ if a < 1 and $a^x \to 0$ if a > 1.

$$\int a^u \, du = \frac{a^u}{\ln a} + C. \tag{2}$$

DEFINITION $\log_a x$

For any positive number $a \neq 1$,

 $\log_a x$ is the inverse function of a^x .

Inverse Equations for a^x and $\log_a x$

$$a^{\log_a x} = x \qquad (x > 0) \tag{3}$$

$$a^{\log_a x} = x \qquad (x > 0)$$

$$\log_a (a^x) = x \qquad (\text{all } x)$$
(3)

FIGURE 7.13 The graph of 2^x and its inverse, $\log_2 x$.

$$\log_a x = \frac{1}{\ln a} \cdot \ln x = \frac{\ln x}{\ln a} \tag{5}$$

TABLE 7.2 Rules for base *a* logarithms

For any numbers x > 0 and y > 0,

- 1. Product Rule: $\log_a xy = \log_a x + \log_a y$
- 2. Quotient Rule:

$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

3. Reciprocal Rule:

$$\log_a \frac{1}{y} = -\log_a y$$

4. Power Rule: $\log_a x^y = y \log_a x$

$$\frac{d}{dx}(\log_a u) = \frac{1}{\ln a} \cdot \frac{1}{u} \frac{du}{dx}$$

7.5

Exponential Growth and Decay

The Law of Exponential Change

$$y = y_0 e^{kt} (2)$$

Growth: k > 0 Decay: k < 0

The number k is the **rate constant** of the equation.

$$A_t = A_0 \left(1 + \frac{r}{k} \right)^{kt}. \tag{5}$$

Interest paid according to this formula is called compounded interest rate.

$$\lim_{k \to \infty} A_t = \lim_{k \to \infty} A_0 \left(1 + \frac{r}{k} \right)^{kt}$$

$$= A_0 \lim_{k \to \infty} \left(1 + \frac{r}{k} \right)^{\frac{k}{r} \cdot rt}$$

$$= A_0 \left[\lim_{\frac{r}{k} \to 0} \left(1 + \frac{r}{k} \right)^{\frac{k}{r}} \right]^{rt} \qquad \text{As } k \to \infty, \frac{r}{k} \to 0$$

$$= A_0 \left[\lim_{x \to 0} (1 + x)^{1/x} \right]^{rt} \qquad \text{Substitute } x = \frac{r}{k}$$

$$= A_0 e^{rt} \qquad \text{Theorem 4}$$

The resulting formula for the amount of money in your account after t years is

$$A(t) = A_0 e^{rt}. (6)$$

Interest paid according to this formula is said to be **compounded continuously**. The number r is called the **continuous interest rate**. The amount of money after t years is calculated with the law of exponential change given in Equation (6).

$$y=y_0e^{-kt}, \qquad k>0$$

This formula calculates the radioactive decay still present at any time t.

$$H - H_S = (H_0 - H_S)e^{-kt},$$
 (9)

where H_0 is the temperature at t = 0.

This is the equation for Newton's Law of Cooling.

7.6

Relative Rates of Growth

FIGURE 7.14 The graphs of e^x , 2^x , and x^2 .

FIGURE 7.15 Scale drawings of the graphs of e^x and $\ln x$.

DEFINITION Rates of Growth as $x \to \infty$

Let f(x) and g(x) be positive for x sufficiently large.

1. f grows faster than g as $x \to \infty$ if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$$

or, equivalently, if

$$\lim_{x \to \infty} \frac{g(x)}{f(x)} = 0.$$

We also say that g grows slower than f as $x \to \infty$.

2. f and g grow at the same rate as $x \to \infty$ if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L$$

where *L* is finite and positive.

DEFINITION Little-oh

A function f is **of smaller order than** g as $x \to \infty$ if $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$. We indicate this by writing f = o(g) ("f is little-oh of g").

DEFINITION Big-oh

Let f(x) and g(x) be positive for x sufficiently large. Then f is of at most the order of g as $x \to \infty$ if there is a positive integer M for which

$$\frac{f(x)}{g(x)} \le M,$$

for x sufficiently large. We indicate this by writing f = O(g) ("f is big-oh of g").

7.7

Inverse Trigonometric Functions

FIGURE 7.16 The graph of $y = \sin^{-1} x$.

Domain:
$$-1 \le x \le 1$$

Range: $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

Domain:
$$-1 \le x \le 1$$

Range: $0 \le y \le \pi$

Domain:
$$-\infty < x < \infty$$

Range: $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Domain: $x \le -1$ or $x \ge 1$ Range: $0 \le y \le \pi, y \ne \frac{\pi}{2}$

Domain: $x \le -1$ or $x \ge 1$ Range: $-\frac{\pi}{2} \le y \le \frac{\pi}{2}, y \ne 0$

Domain: $-\infty < x < \infty$ Range: $0 < y < \pi$

FIGURE 7.17 Graphs of the six basic inverse trigonometric functions.

DEFINITION Arcsine and Arccosine Functions

 $y = \sin^{-1} x$ is the number in $[-\pi/2, \pi/2]$ for which $\sin y = x$.

 $y = \cos^{-1} x$ is the number in $[0, \pi]$ for which $\cos y = x$.

FIGURE 7.18 The graphs of (a) $y = \sin x$, $-\pi/2 \le x \le \pi/2$, and (b) its inverse, $y = \sin^{-1} x$. The graph of $\sin^{-1} x$, obtained by reflection across the line y = x, is a portion of the curve $x = \sin y$.

FIGURE 7.19 The graphs of (a) $y = \cos x$, $0 \le x \le \pi$, and (b) its inverse, $y = \cos^{-1} x$. The graph of $\cos^{-1} x$, obtained by reflection across the line y = x, is a portion of the curve $x = \cos y$.

The "Arc" in Arc Sine and Arc Cosine

The accompanying figure gives a geometric interpretation of $y = \sin^{-1} x$ and $y = \cos^{-1} x$ for radian angles in the first quadrant. For a unit circle, the equation $s = r\theta$ becomes $s = \theta$, so central angles and the arcs they subtend have the same measure. If $x = \sin y$, then, in addition to being the angle whose sine is x, y is also the length of arc on the unit circle that subtends an angle whose sine is x. So we call y "the arc whose sine is x."

x	$\sin^{-1} x$	x	$\cos^{-1} x$
$\sqrt{3}/2$	$\pi/3$	$\sqrt{3}/2$	$\pi/6$
$\sqrt{2}/2$	$\pi/4$	$\sqrt{2}/2$	$\pi/4$
1/2	$\pi/6$	1/2	$\pi/3$
-1/2	$-\pi/6$	-1/2	$2\pi/3$
$-\sqrt{2}/2$	$-\pi/4$	$-\sqrt{2}/2$	$3\pi/4$
$-\sqrt{3}/2$	$-\pi/3$	$-\sqrt{3}/2$	$5\pi/6$

FIGURE 7.20 $\cos^{-1} x$ and $\cos^{-1}(-x)$ are supplementary angles (so their sum is π).

EXAMPLE 1 Common Values of $\sin^{-1} x$

The angles come from the first and fourth quadrants because the range of $\sin^{-1} x$ is $[-\pi/2, \pi/2]$.

EXAMPLE 2 Common Values of $\cos^{-1} x$

The angles come from the first and second quadrants because the range of $\cos^{-1} x$ is $[0, \pi]$.

FIGURE 7.21 $\sin^{-1} x$ and $\cos^{-1} x$ are complementary angles (so their sum is $\pi/2$).

DEFINITION Arctangent and Arccotangent Functions

 $y = \tan^{-1} x$ is the number in $(-\pi/2, \pi/2)$ for which $\tan y = x$.

 $y = \cot^{-1} x$ is the number in $(0, \pi)$ for which $\cot y = x$.

FIGURE 7.22 The graph of $y = \tan^{-1} x$.

FIGURE 7.23 The graph of $y = \cot^{-1} x$.

$$y = \sec^{-1} x$$

Domain: $|x| \ge 1$

Range: $[0, \pi/2) \cup (\pi/2, \pi]$

FIGURE 7.24 The graph of $y = \sec^{-1} x$.

$$y = \csc^{-1} x$$

Domain: $|x| \ge 1$

Range: $[-\pi/2, 0) \cup (0, \pi/2]$

FIGURE 7.25 The graph of $y = \csc^{-1} x$.

 $|x| \ge 1$ $0 \le y \le \pi, y \ne \frac{\pi}{2}$ Domain: Range: В π $y = \sec^{-1} x$ $\rightarrow x$

FIGURE 7.26 There are several logical choices for the left-hand branch of $y = \sec^{-1} x$. With choice **A**, $\sec^{-1} x = \cos^{-1} (1/x)$, a useful identity employed by many calculators.

x	tan ⁻¹ x
$\sqrt{3}$	$\pi/3$
1	$\pi/4$
$\sqrt{3}/3$	$\pi/6$
$-\sqrt{3}/3$	$-\pi/6$
-1	$-\pi/4$
$-\sqrt{3}$	$-\pi/3$

EXAMPLE 3 Common Values of $tan^{-1}x$

The angles come from the first and fourth quadrants because the range of $\tan^{-1} x$ is $(-\pi/2, \pi/2)$.

FIGURE 7.27 If $\alpha = \sin^{-1}(2/3)$, then the values of the other basic trigonometric functions of α can be read from this triangle (Example 4).

EXAMPLE 5 Find sec $\left(\tan^{-1}\frac{x}{3}\right)$.

Solution We let $\theta = \tan^{-1}(x/3)$ (to give the angle a name) and picture θ in a right triangle with

$$\tan \theta = \text{opposite/adjacent} = x/3$$
.

The length of the triangle's hypotenuse is

$$\sqrt{x^2 + 3^2} = \sqrt{x^2 + 9}.$$

 $\sec \theta = \frac{\sqrt{x^2 + 9}}{3}$

Thus,

$$\sec\left(\tan^{-1}\frac{x}{3}\right) = \sec\theta$$

$$= \frac{\sqrt{x^2 + 9}}{3}. \qquad \sec\theta = \frac{\text{hypotenuse}}{\text{adjacent}}$$

FIGURE 7.28 Diagram for drift correction (Example 6), with distances rounded to the nearest mile (drawing not to scale).

FIGURE 7.29 The graph of $y = \sin^{-1} x$.

$$\frac{d}{dx}(\sin^{-1}u) = \frac{1}{\sqrt{1-u^2}}\frac{du}{dx}, \qquad |u| < 1.$$

$$\frac{d}{dx} \left(\tan^{-1} u \right) = \frac{1}{1 + u^2} \frac{du}{dx}.$$

FIGURE 7.30 The slope of the curve $y = \sec^{-1} x$ is positive for both x < -1 and x > 1.

$$\frac{d}{dx}(\sec^{-1}u) = \frac{1}{|u|\sqrt{u^2 - 1}}\frac{du}{dx}, \qquad |u| > 1.$$

Inverse Function–Inverse Cofunction Identities

$$\cos^{-1} x = \pi/2 - \sin^{-1} x$$

 $\cot^{-1} x = \pi/2 - \tan^{-1} x$
 $\csc^{-1} x = \pi/2 - \sec^{-1} x$

TABLE 7.3 Derivatives of the inverse trigonometric functions

1.
$$\frac{d(\sin^{-1}u)}{dx} = \frac{du/dx}{\sqrt{1-u^2}}, \quad |u| < 1$$

2.
$$\frac{d(\cos^{-1}u)}{dx} = -\frac{du/dx}{\sqrt{1-u^2}}, \quad |u| < 1$$

3.
$$\frac{d(\tan^{-1}u)}{dx} = \frac{du/dx}{1+u^2}$$

4.
$$\frac{d(\cot^{-1} u)}{dx} = -\frac{du/dx}{1 + u^2}$$

5.
$$\frac{d(\sec^{-1}u)}{dx} = \frac{du/dx}{|u|\sqrt{u^2-1}}, \quad |u| > 1$$

6.
$$\frac{d(\csc^{-1}u)}{dx} = \frac{-du/dx}{|u|\sqrt{u^2-1}}, \quad |u| > 1$$

TABLE 7.4 Integrals evaluated with inverse trigonometric functions

The following formulas hold for any constant $a \neq 0$.

1.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1}\left(\frac{u}{a}\right) + C \qquad \text{(Valid for } u^2 < a^2\text{)}$$

2.
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \left(\frac{u}{a} \right) + C$$
 (Valid for all u)

3.
$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \sec^{-1} \left| \frac{u}{a} \right| + C$$
 (Valid for $|u| > a > 0$)

7.8

Hyperbolic Functions

TABLE 7.6 Identities for hyperbolic functions

$$\cosh^{2} x - \sinh^{2} x = 1$$

$$\sinh 2x = 2 \sinh x \cosh x$$

$$\cosh 2x = \cosh^{2} x + \sinh^{2} x$$

$$\cosh^{2} x = \frac{\cosh 2x + 1}{2}$$

$$\sinh^{2} x = \frac{\cosh 2x - 1}{2}$$

$$\tanh^{2} x = 1 - \operatorname{sech}^{2} x$$

$$\coth^{2} x = 1 + \operatorname{csch}^{2} x$$

TABLE 7.7 Derivatives of hyperbolic functions

$$\frac{d}{dx}(\sinh u) = \cosh u \frac{du}{dx}$$

$$\frac{d}{dx}(\cosh u) = \sinh u \frac{du}{dx}$$

$$\frac{d}{dx}(\tanh u) = \operatorname{sech}^{2} u \frac{du}{dx}$$

$$\frac{d}{dx}(\coth u) = -\operatorname{csch}^{2} u \frac{du}{dx}$$

$$\frac{d}{dx}(\operatorname{sech} u) = -\operatorname{sech} u \tanh u \frac{du}{dx}$$

$$\frac{d}{dx}(\operatorname{csch} u) = -\operatorname{csch} u \coth u \frac{du}{dx}$$

TABLE 7.8 Integral formulas for hyperbolic functions

$$\int \sinh u \, du = \cosh u + C$$

$$\int \cosh u \, du = \sinh u + C$$

$$\int \operatorname{sech}^2 u \, du = \tanh u + C$$

$$\int \operatorname{csch}^2 u \, du = -\coth u + C$$

$$\int \operatorname{sech} u \tanh u \, du = -\operatorname{sech} u + C$$

$$\int \operatorname{csch} u \coth u \, du = -\operatorname{csch} u + C$$

FIGURE 7.32 The graphs of the inverse hyperbolic sine, cosine, and secant of x. Notice the symmetries about the line y = x.

FIGURE 7.33 The graphs of the inverse hyperbolic tangent, cotangent, and cosecant of x.

TABLE 7.9 Identities for inverse hyperbolic functions

$$\operatorname{sech}^{-1} x = \cosh^{-1} \frac{1}{x}$$

$$\operatorname{csch}^{-1} x = \sinh^{-1} \frac{1}{x}$$

$$\coth^{-1} x = \tanh^{-1} \frac{1}{x}$$

TABLE 7.10 Derivatives of inverse hyperbolic functions

$$\frac{d(\sinh^{-1}u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx}$$

$$\frac{d(\cosh^{-1}u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}, \qquad u > 1$$

$$\frac{d(\tanh^{-1} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx}, \qquad |u| < 1$$

$$\frac{d(\coth^{-1} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx}, \qquad |u| > 1$$

$$\frac{d(\operatorname{sech}^{-1} u)}{dx} = \frac{-du/dx}{u\sqrt{1 - u^2}}, \qquad 0 < u < 1$$

$$\frac{d(\operatorname{csch}^{-1} u)}{dx} = \frac{-du/dx}{|u|\sqrt{1+u^2}}, \qquad u \neq 0$$

TABLE 7.11 Integrals leading to inverse hyperbolic functions

1.
$$\int \frac{du}{\sqrt{a^2 + u^2}} = \sinh^{-1}\left(\frac{u}{a}\right) + C, \qquad a > 0$$

$$2. \int \frac{du}{\sqrt{u^2 - a^2}} = \cosh^{-1}\left(\frac{u}{a}\right) + C, \qquad u > a > 0$$

3.
$$\int \frac{du}{a^2 - u^2} = \begin{cases} \frac{1}{a} \tanh^{-1} \left(\frac{u}{a} \right) + C & \text{if } u^2 < a^2 \\ \frac{1}{a} \coth^{-1} \left(\frac{u}{a} \right) + C, & \text{if } u^2 > a^2 \end{cases}$$

4.
$$\int \frac{du}{u\sqrt{a^2 - u^2}} = -\frac{1}{a} \operatorname{sech}^{-1} \left(\frac{u}{a} \right) + C, \quad 0 < u < a$$

5.
$$\int \frac{du}{u^{3/a^{2}+u^{2}}} = -\frac{1}{a} \operatorname{csch}^{-1} \left| \frac{u}{a} \right| + C, \qquad u \neq 0 \text{ and } a > 0$$