

AD-A061 771

PHOENIX CORP MCLEAN VA  
OPTIMIZED, POST-MISSION DETERMINATION OF THE DEFLECTION OF THE --ETC(U)  
OCT 78

F/G 17/7

DAAK70-78-C-0069

NL

UNCLASSIFIED

ETL-0164

| OF |  
AD A061771



END  
DATE  
FILED  
2 79

DDC





Destroy this report when no longer needed.  
Do not return it to the originator.

The findings in this report are not to be construed as an official  
Department of the Army position unless so designated by other  
authorized documents.

The citation in this report of trade names of commercially available  
products does not constitute official endorsement or approval of the  
use of such products.

## **DISCLAIMER NOTICE**

**THIS DOCUMENT IS BEST QUALITY  
PRACTICABLE. THE COPY FURNISHED  
TO DDC CONTAINED A SIGNIFICANT  
NUMBER OF PAGES WHICH DO NOT  
REPRODUCE LEGIBLY.**

① LEVEL II

AD A061771

DDC FILE COPY

⑥ Optimized, Post-Mission  
Determination of the Deflection of  
the Vertical Using RGSS Data,

⑦ Final Report.

⑧ DDP.

Prepared by

Phoenix Corporation  
1600 Anderson Road  
McLean, Virginia 22102

⑨ October 1978

Approved For Public Release  
Distribution Unlimited

for

U.S. Army Engineer Topographic Laboratories  
Research Institute  
Fort Belvoir, Virginia 22060

⑩ Under Contract No. DAAK70-78-C-0069

D D C  
RECORDED  
DEC 1 1978  
RECORDED  
OF B

78 11 28 045  
409911 B

**UNCLASSIFIED**

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | READ INSTRUCTIONS BEFORE COMPLETING FORM                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------|
| 1. REPORT NUMBER<br><br>ETL-0164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER                                |
| 4. TITLE (and Subtitle)<br><br>OPTIMIZED, POST-MISSION DETERMINATION OF THE DEFLECTION OF THE VERTICAL USING RGSS DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | 5. TYPE OF REPORT & PERIOD COVERED<br><br>Contract Report    |
| 7. AUTHOR(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | 6. PERFORMING ORG. REPORT NUMBER<br><br>DAAK70-78-C-0069 New |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br><br>Phoenix Corporation<br>1600 Anderson Road<br>McLean, Virginia 22102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS  |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br><br>U.S. Army Engineer Topographic Laboratories<br>Fort Belvoir, Virginia 22060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 12. REPORT DATE<br><br>October 1978                          |
| 14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 13. NUMBER OF PAGES<br><br>65                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 15. SECURITY CLASS. (of this report)<br><br>Unclassified     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE                   |
| 16. DISTRIBUTION STATEMENT (of this Report)<br><br>Approved for public release; distribution unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                                                              |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                              |
| 18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                                                              |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                                              |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br><br>This report is a continuation of an earlier report on a potentially optimal method of recovering deflections of the vertical from RGSS data. In this report, the implementation of the method and estimates of the errors associated with the method are described. In the first section, an optimal weighting technique is derived. This technique also leads directly to a priori error estimates. Next, the results from using the method on hypothetical traverses are described. From these data, it appears that the optimal method can lead to a significant reduction in the errors in estimating the deflections of the vertical. A final appendix gives instructions for the use of the associated computer program. |                       |                                                              |

## CONTENTS

|                                                      | <u>Page</u> |
|------------------------------------------------------|-------------|
| Introduction . . . . .                               | 1           |
| Error sources and optimal weighting . . . . .        | 2           |
| Error estimate for derived quantities . . . . .      | 8           |
| Results and discussion . . . . .                     | 10          |
| References . . . . .                                 | 18          |
| Appendix 1 The optimized reduction program . . . . . | A-1         |

Appendix Not Necessary For  
Understanding Of Report

|     |     |     |
|-----|-----|-----|
| 1   | 2   | 3   |
| 4   | 5   | 6   |
| 7   | 8   | 9   |
| 10  | 11  | 12  |
| 13  | 14  | 15  |
| 16  | 17  | 18  |
| 19  | 20  | 21  |
| 22  | 23  | 24  |
| 25  | 26  | 27  |
| 28  | 29  | 30  |
| 31  | 32  | 33  |
| 34  | 35  | 36  |
| 37  | 38  | 39  |
| 40  | 41  | 42  |
| 43  | 44  | 45  |
| 46  | 47  | 48  |
| 49  | 50  | 51  |
| 52  | 53  | 54  |
| 55  | 56  | 57  |
| 58  | 59  | 60  |
| 61  | 62  | 63  |
| 64  | 65  | 66  |
| 67  | 68  | 69  |
| 70  | 71  | 72  |
| 73  | 74  | 75  |
| 76  | 77  | 78  |
| 79  | 80  | 81  |
| 82  | 83  | 84  |
| 85  | 86  | 87  |
| 88  | 89  | 90  |
| 91  | 92  | 93  |
| 94  | 95  | 96  |
| 97  | 98  | 99  |
| 100 | 101 | 102 |
| 103 | 104 | 105 |
| 106 | 107 | 108 |
| 109 | 110 | 111 |
| 112 | 113 | 114 |
| 115 | 116 | 117 |
| 118 | 119 | 120 |
| 121 | 122 | 123 |
| 124 | 125 | 126 |
| 127 | 128 | 129 |
| 130 | 131 | 132 |
| 133 | 134 | 135 |
| 136 | 137 | 138 |
| 139 | 140 | 141 |
| 142 | 143 | 144 |
| 145 | 146 | 147 |
| 148 | 149 | 150 |
| 151 | 152 | 153 |
| 154 | 155 | 156 |
| 157 | 158 | 159 |
| 160 | 161 | 162 |
| 163 | 164 | 165 |
| 166 | 167 | 168 |
| 169 | 170 | 171 |
| 172 | 173 | 174 |
| 175 | 176 | 177 |
| 178 | 179 | 180 |
| 181 | 182 | 183 |
| 184 | 185 | 186 |
| 187 | 188 | 189 |
| 190 | 191 | 192 |
| 193 | 194 | 195 |
| 196 | 197 | 198 |
| 199 | 200 | 201 |
| 202 | 203 | 204 |
| 205 | 206 | 207 |
| 208 | 209 | 210 |
| 211 | 212 | 213 |
| 214 | 215 | 216 |
| 217 | 218 | 219 |
| 220 | 221 | 222 |
| 223 | 224 | 225 |
| 226 | 227 | 228 |
| 229 | 230 | 231 |
| 232 | 233 | 234 |
| 235 | 236 | 237 |
| 238 | 239 | 240 |
| 241 | 242 | 243 |
| 244 | 245 | 246 |
| 247 | 248 | 249 |
| 250 | 251 | 252 |
| 253 | 254 | 255 |
| 256 | 257 | 258 |
| 259 | 260 | 261 |
| 262 | 263 | 264 |
| 265 | 266 | 267 |
| 268 | 269 | 270 |
| 271 | 272 | 273 |
| 274 | 275 | 276 |
| 277 | 278 | 279 |
| 280 | 281 | 282 |
| 283 | 284 | 285 |
| 286 | 287 | 288 |
| 289 | 290 | 291 |
| 292 | 293 | 294 |
| 295 | 296 | 297 |
| 298 | 299 | 300 |
| 301 | 302 | 303 |
| 304 | 305 | 306 |
| 307 | 308 | 309 |
| 310 | 311 | 312 |
| 313 | 314 | 315 |
| 316 | 317 | 318 |
| 319 | 320 | 321 |
| 322 | 323 | 324 |
| 325 | 326 | 327 |
| 328 | 329 | 330 |
| 331 | 332 | 333 |
| 334 | 335 | 336 |
| 337 | 338 | 339 |
| 340 | 341 | 342 |
| 343 | 344 | 345 |
| 346 | 347 | 348 |
| 349 | 350 | 351 |
| 352 | 353 | 354 |
| 355 | 356 | 357 |
| 358 | 359 | 360 |
| 361 | 362 | 363 |
| 364 | 365 | 366 |
| 367 | 368 | 369 |
| 370 | 371 | 372 |
| 373 | 374 | 375 |
| 376 | 377 | 378 |
| 379 | 380 | 381 |
| 382 | 383 | 384 |
| 385 | 386 | 387 |
| 388 | 389 | 390 |
| 391 | 392 | 393 |
| 394 | 395 | 396 |
| 397 | 398 | 399 |
| 400 | 401 | 402 |
| 403 | 404 | 405 |
| 406 | 407 | 408 |
| 409 | 410 | 411 |
| 412 | 413 | 414 |
| 415 | 416 | 417 |
| 418 | 419 | 420 |
| 421 | 422 | 423 |
| 424 | 425 | 426 |
| 427 | 428 | 429 |
| 430 | 431 | 432 |
| 433 | 434 | 435 |
| 436 | 437 | 438 |
| 439 | 440 | 441 |
| 442 | 443 | 444 |
| 445 | 446 | 447 |
| 448 | 449 | 450 |
| 451 | 452 | 453 |
| 454 | 455 | 456 |
| 457 | 458 | 459 |
| 460 | 461 | 462 |
| 463 | 464 | 465 |
| 466 | 467 | 468 |
| 469 | 470 | 471 |
| 472 | 473 | 474 |
| 475 | 476 | 477 |
| 478 | 479 | 480 |
| 481 | 482 | 483 |
| 484 | 485 | 486 |
| 487 | 488 | 489 |
| 490 | 491 | 492 |
| 493 | 494 | 495 |
| 496 | 497 | 498 |
| 499 | 500 | 501 |
| 502 | 503 | 504 |
| 505 | 506 | 507 |
| 508 | 509 | 510 |
| 511 | 512 | 513 |
| 514 | 515 | 516 |
| 517 | 518 | 519 |
| 520 | 521 | 522 |
| 523 | 524 | 525 |
| 526 | 527 | 528 |
| 529 | 530 | 531 |
| 532 | 533 | 534 |
| 535 | 536 | 537 |
| 538 | 539 | 540 |
| 541 | 542 | 543 |
| 544 | 545 | 546 |
| 547 | 548 | 549 |
| 550 | 551 | 552 |
| 553 | 554 | 555 |
| 556 | 557 | 558 |
| 559 | 560 | 561 |
| 562 | 563 | 564 |
| 565 | 566 | 567 |
| 568 | 569 | 570 |
| 571 | 572 | 573 |
| 574 | 575 | 576 |
| 577 | 578 | 579 |
| 580 | 581 | 582 |
| 583 | 584 | 585 |
| 586 | 587 | 588 |
| 589 | 590 | 591 |
| 592 | 593 | 594 |
| 595 | 596 | 597 |
| 598 | 599 | 600 |
| 601 | 602 | 603 |
| 604 | 605 | 606 |
| 607 | 608 | 609 |
| 610 | 611 | 612 |
| 613 | 614 | 615 |
| 616 | 617 | 618 |
| 619 | 620 | 621 |
| 622 | 623 | 624 |
| 625 | 626 | 627 |
| 628 | 629 | 630 |
| 631 | 632 | 633 |
| 634 | 635 | 636 |
| 637 | 638 | 639 |
| 640 | 641 | 642 |
| 643 | 644 | 645 |
| 646 | 647 | 648 |
| 649 | 650 | 651 |
| 652 | 653 | 654 |
| 655 | 656 | 657 |
| 658 | 659 | 660 |
| 661 | 662 | 663 |
| 664 | 665 | 666 |
| 667 | 668 | 669 |
| 670 | 671 | 672 |
| 673 | 674 | 675 |
| 676 | 677 | 678 |
| 679 | 680 | 681 |
| 682 | 683 | 684 |
| 685 | 686 | 687 |
| 688 | 689 | 690 |
| 691 | 692 | 693 |
| 694 | 695 | 696 |
| 697 | 698 | 699 |
| 700 | 701 | 702 |
| 703 | 704 | 705 |
| 706 | 707 | 708 |
| 709 | 710 | 711 |
| 712 | 713 | 714 |
| 715 | 716 | 717 |
| 718 | 719 | 720 |
| 721 | 722 | 723 |
| 724 | 725 | 726 |
| 727 | 728 | 729 |
| 730 | 731 | 732 |
| 733 | 734 | 735 |
| 736 | 737 | 738 |
| 739 | 740 | 741 |
| 742 | 743 | 744 |
| 745 | 746 | 747 |
| 748 | 749 | 750 |
| 751 | 752 | 753 |
| 754 | 755 | 756 |
| 757 | 758 | 759 |
| 760 | 761 | 762 |
| 763 | 764 | 765 |
| 766 | 767 | 768 |
| 769 | 770 | 771 |
| 772 | 773 | 774 |
| 775 | 776 | 777 |
| 778 | 779 | 780 |
| 781 | 782 | 783 |
| 784 | 785 | 786 |
| 787 | 788 | 789 |
| 790 | 791 | 792 |
| 793 | 794 | 795 |
| 796 | 797 | 798 |
| 799 | 800 | 801 |
| 802 | 803 | 804 |
| 805 | 806 | 807 |
| 808 | 809 | 810 |
| 811 | 812 | 813 |
| 814 | 815 | 816 |
| 817 | 818 | 819 |
| 820 | 821 | 822 |
| 823 | 824 | 825 |
| 826 | 827 | 828 |
| 829 | 830 | 831 |
| 832 | 833 | 834 |
| 835 | 836 | 837 |
| 838 | 839 | 840 |
| 841 | 842 | 843 |
| 844 | 845 | 846 |
| 847 | 848 | 849 |
| 850 | 851 | 852 |
| 853 | 854 | 855 |
| 856 | 857 | 858 |
| 859 | 860 | 861 |
| 862 | 863 | 864 |
| 865 | 866 | 867 |
| 868 | 869 | 870 |
| 871 | 872 | 873 |
| 874 | 875 | 876 |
| 877 | 878 | 879 |
| 880 | 881 | 882 |
| 883 | 884 | 885 |
| 886 | 887 | 888 |
| 889 | 890 | 891 |
| 892 | 893 | 894 |
| 895 | 896 | 897 |
| 898 | 899 | 900 |
| 901 | 902 | 903 |
| 904 | 905 | 906 |
| 907 | 908 | 909 |
| 910 | 911 | 912 |
| 913 | 914 | 915 |
| 916 | 917 | 918 |
| 919 | 920 | 921 |
| 922 | 923 | 924 |
| 925 | 926 | 927 |
| 928 | 929 | 930 |
| 931 | 932 | 933 |
| 934 | 935 | 936 |
| 937 | 938 | 939 |
| 940 | 941 | 942 |
| 943 | 944 | 945 |
| 946 | 947 | 948 |
| 949 | 950 | 951 |
| 952 | 953 | 954 |
| 955 | 956 | 957 |
| 958 | 959 | 960 |
| 961 | 962 | 963 |
| 964 | 965 | 966 |
| 967 | 968 | 969 |
| 970 | 971 | 972 |
| 973 | 974 | 975 |
| 976 | 977 | 978 |
| 979 | 980 | 981 |
| 982 | 983 | 984 |
| 985 | 986 | 987 |
| 988 | 989 | 990 |
| 991 | 992 | 993 |
| 994 | 995 | 996 |
| 997 | 998 | 999 |
| 999 | 999 | 999 |

## TABLE

| <u>Table Number</u> |                                                                | <u>Page</u> |
|---------------------|----------------------------------------------------------------|-------------|
| 1                   | Error parameters used for deflection error estimates . . . . . | 3           |

## FIGURES

| <u>Figure Number</u> |                                                                                                          | <u>Page</u> |
|----------------------|----------------------------------------------------------------------------------------------------------|-------------|
| 1                    | Hypothetical traverse courses . . . . .                                                                  | 11          |
| 2                    | Estimated variances in north channel over 25 km traverse . . . . .                                       | 12          |
| 3                    | Estimated errors in north deflection ( $\xi$ ) for 20 step straight traverse weighted solution . . . . . | 14          |
| 4                    | Differences in north deflection ( $\xi$ ) error estimates . . . . .                                      | 17          |

## INTRODUCTION

In an earlier report (Lyon et al., 1977), a potentially optimal method of recovering deflections of the vertical from RGSS data was described. This report continues that work — describing the implementation of the method and estimates of the errors associated with the method. In the first section of the report an optimal weighting technique is derived. This technique also leads directly to a priori error estimates. The second section describes the results from use of the method on hypothetical traverses. From these data it appears that the optimal method can indeed lead to a significant reduction in the errors in estimating the deflections of the vertical. A final appendix gives instructions for the use of the associated computer program.

## ERROR SOURCES AND OPTIMAL WEIGHTING

There are three sources of error which will be considered in this report.

These are

- 1) correlated gyroscope errors
- 2) correlated accelerometer errors
- 3) errors due to the colocation determination of the deflections during each leg - colocation error.

We assume that the gyro and accelerometer errors follow a Langevin equation (first order Markovian)

$$\frac{d\alpha}{dt} + v\alpha = A(t) \quad (1)$$

where  $v$  is the inverse of the correlation time and  $A(t)$  is Gaussian white noise. This leads to a covariance (Papoulis, 1965)

$$\langle \alpha(t_1) \alpha(t_2) \rangle = \alpha_0^2 \exp(-v|t_2 - t_1|) \quad (2)$$

where  $\alpha_0^2$  is  $\langle \alpha(t) \alpha(t) \rangle$ , the variance of  $\alpha$ . Table 1 gives the values for  $\alpha_0^2$  and  $v$  used for this report. The assumption of eq. (1) is not strictly true. In particular, the purpose of the reduction scheme outlined here and in the previous report is to estimate gyro drift rates. The deviations,  $\delta\alpha$ , from this estimate,  $\bar{\alpha}$ , say, will not be distributed as equation (1). However, it is clear that if the total covariance is given by equation (2), then the maximum value that the variance about the mean may attain is

$$\text{Var } (\alpha - \bar{\alpha}) \leq \alpha_0^2 (1 - \exp(-vT))$$

where  $T$  is the length of the mission. Similarly, the correlation time for values about the mean,  $\tau$ , must be  $\tau \leq T$ . Thus, even though equation (1) does not strictly apply to variations about  $\bar{\alpha}$ , we will assume that that variation holds and the  $\delta\alpha(\text{gyro})$  are

$$\langle \delta\alpha(t_1) \delta\alpha(t_2) \rangle = \alpha_0^2 (1 - \exp(-vT)) \exp(-|t_1 - t_2|/T) \quad (2a)$$

Table 1  
Error Parameters Used for Deflection Error Estimates

| <u>Source</u>  | <u>RMS Value</u>                       | <u>Correlation Time</u> |
|----------------|----------------------------------------|-------------------------|
| Accelerometers | 10 microg's (all axes)                 | 40 minutes              |
| Gyros          | $2.5 \times 10^{-3}$ °/hr (horizontal) | 2 hours                 |
|                | $2.0 \times 10^{-3}$ °/hr (vertical)   |                         |

The accelerometers have appreciable white noise in addition to the correlated noise. This may be handled approximately by increasing the accelerometer variances and decreasing the correlation time. The values in Table 1 are based on the data given by Huddle and Maughmer (1972) suitably modified in accordance with the discussion given above.

The colocation errors may be estimated in a straightforward fashion. We assume that the actual deflection covariance function is the second order Markovian given by Kasper (1971). The colocation variance is

$$\langle (r_i - r_i^e)(r_j - r_m^e) \rangle = \langle r_i r_j \rangle - \langle r_i^e r_j^e \rangle \quad (3)$$

where the  $r$  notation for the deflections was introduced in the first report.  $r_j$  is either a north or east deflection depending on whether  $j$  is odd or even. The  $e$  superscript denotes the estimated value. Equation (3) may be reduced to

$$\langle (r_i - r_i^e)(r_j - r_j^e) \rangle = \langle r_i r_j \rangle - \langle r_i \tilde{r}_k \rangle \langle r_j \tilde{r}_l \rangle \langle \tilde{r}_l \tilde{r}_k \rangle^{-1} \quad (4)$$

where the tilde denotes deflections belonging to the basis set from which the others are estimated.

The basic data available relate to  $u^n$  and  $v^n$ , the north and east velocity errors, respectively, at the end of the  $n$ -th leg of the mission. For convenience, introduce the notation

$$w_1^n = u^n \quad (5)$$

$$w_2^n = v^n$$

Then the basic equation for the error velocities, equation (40) of the original report can be written as

$$w_\ell^n - A_{\ell k}^n \mu_k^0 + \sum_{j=0}^{n-1} B_{\ell k j}^n \psi_k^j \equiv F_\ell^n \quad (6)$$

where A and B are matrices defined in the first report.  $\mu_k^0$  are the initial conditions of the solution.  $\psi_k^j$  is the inhomogeneous driving term. If there are no errors  $F_\ell^n$  should be identically zero. If errors are present  $F_\ell^n$  will, in general, be non-zero. To estimate the errors, we square equation (6) to obtain

$$(F_\ell^n)^2 = (w_\ell^n - A_{\ell k}^n \mu_k^0)^2 + 2(w_\ell^n - A_{\ell k}^n \mu_k^0) \sum_{j=0}^{n-1} B_{\ell k j}^n \psi_k^j + \sum_{j=0}^{n-1} \sum_{m=0}^{n-1} B_{\ell k j}^n B_{\ell m}^n \psi_k^j \psi_m^0 \quad (7)$$

We assume no errors in  $(w_\ell^n - A_{\ell k}^n \mu_k^0)$  and that the expectation value of the errors in  $\psi_k^n$ ,  $\langle \psi_k^n \rangle = 0$ . Taking the expectation value of equation (7) gives

$$\langle F_\ell^n \rangle^2 = \sum_{j=0}^{n-1} \sum_{m=0}^{n-1} B_{\ell k j}^n B_{\ell m}^n \langle \delta \psi_k^j \delta \psi_m^0 \rangle \quad (8)$$

where  $\delta \psi_k^j = \psi_k^j$  (assumed) -  $\psi_k^j$  (true).  $\langle F_\ell^n \rangle^2$  is, of course, the variance of the observed data point. It remains only to evaluate  $\langle \delta \psi_k^j \delta \psi_m^0 \rangle$ .

We use the ordering of  $\psi$  of the first report, i.e.,

$$\psi^n = \begin{pmatrix} -g\xi^n \\ g\eta^n \\ 0 \\ \alpha^n \\ \beta^n \\ \gamma^n \end{pmatrix} \quad \text{and, then } \delta\psi^n = \begin{pmatrix} -g\delta\xi^n + \delta a_N^n \\ g\delta\eta^n + \delta a_E^n \\ 0 \\ \delta\alpha^n \\ \delta\beta^n \\ \delta\gamma^n \end{pmatrix} \quad (9)$$

with  $\delta\xi^n = \xi^n - \xi^{n(e)}$ ,  $\delta a_N^n$  and  $\delta a_E^n$  the north and east accelerometer errors, respectively, and  $\delta\alpha^n$ ,  $\delta\beta^n$ ,  $\delta\gamma^n$  the correlated gyro errors for Z, N, and E axes, respectively. Neglecting zero cross-correlations, the error covariance matrix in equation (8) becomes

(Equation 10 on following page) (10)

Equations (8) and (10) then give an estimate of the errors associated with the measurement of  $W_\ell^n$ . Furthermore  $1/\langle F_\ell^n \rangle^2$  is the optimal weighting for the least squares solution (Brownlee, 1962 ).

$$\begin{aligned}
& g^2 \langle \delta r^{2j-1} \delta r^{2m-1} \rangle - g^2 \langle \delta r^{2j-1} \delta r^{2m} \rangle \\
& + \langle \delta a_N^j \delta a_N^m \rangle \\
& - g^2 \langle \delta r^{2j} \delta r^{2m-1} \rangle - g^2 \langle \delta r^{2j} \delta r^{2m} \rangle \\
& + \langle \delta a_E^j \delta a_E^m \rangle \\
& 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\
& 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\
& 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\
& 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\
& 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0
\end{aligned}
\tag{10}$$

where  $\delta r^j = r^j(e) - r^j$

### ERROR ESTIMATE FOR DERIVED QUANTITIES

We need now to derive error estimates for the derived quantities in the least squares solution. We rewrite equation (42) of the original report as

$$F_{\ell}^n = W_{\ell}^n - A_{\ell \kappa}^n \mu_{\kappa}^0 - D_{\ell m}^n h_m \quad (11)$$

where the  $h_m$  are the quantities in which we are interested, i.e., the calculated deflections and gyro drift rates. Change the notation slightly by replacing the double index  $(n, \ell)$  by  $j = 2(n-1) + \ell$  and rewrite equation (11) as

$$F_j = a_j - D_{jm} h_m \quad (12)$$

where  $a_j = W_j - A_{jk} \mu_k^0$ . The matrix equation for the least squares solution for  $h$  is

$$E_{ij} h_j - b_i = 0 \quad (13)$$

where

$$E_{ij} = \sum_{\kappa} (D_{\kappa i} - \bar{D}_i)(D_{\kappa j} - \bar{D}_j) W_{\kappa} \quad (14)$$

$$b_i = \sum_{\kappa} (a_{\kappa} - \bar{a})(D_{\kappa i} - \bar{D}_i) W_{\kappa} \quad (15)$$

and

$$\bar{D}_i = \frac{1}{N} \sum_{\kappa=1}^N D_{\kappa i} W_{\kappa} \quad \bar{a} = \frac{1}{N} \sum_{\kappa=1}^N a_{\kappa} W_{\kappa} \quad (16)$$

with  $W_{\kappa} = 1/\sigma_{\kappa}^2$ , the optimal weighting discussed in the previous section. Writing the normal equation (13) as we have leads to a number of advantages (Brownlee, 1962). The solution of equation (13) is

$$h_j = E_{ji}^{-1} b_i \quad (17)$$

The inverse  $\underline{E}^{-1}$  has special properties. If  $\bar{\sigma}^2$  is the mean variance of the observed error velocity, i.e.,  $\frac{1}{N} \sum_{\kappa=1}^N \sigma_{\kappa}^2$ , then

$$\text{Var } h_j = E_{jj}^{-1} \bar{\sigma}^2 \quad (18)$$

Thus, we have an error estimate of the derived quantities. Further, if we wish to throw out one of the solved for quantities,  $h_{\mu}$ , say, then

$$h_j' = h_j - \frac{E_{j\mu}^{-1} h_{\mu}}{E_{\mu\mu}^{-1}} \quad j \neq \mu \quad (19)$$

and

$$E_{jk}^{-1'} = E_{jk}^{-1} - \frac{E_{j\mu}^{-1} E_{k\mu}^{-1}}{E_{\mu\mu}^{-1}} \quad j, k \neq \mu \quad (20)$$

where the ' denotes quantities where the assumed dependence on  $h_{\mu}$  has been removed. Thus, if we wish to remove the gyro drift rates, for example, from the least squares solution and see how much the deflections are affected, it can be done trivially.

As will be discussed in the results section, we follow a somewhat different procedure in eliminating variables from the least squares solution. Equation (20) holds if no weighting is used, or if the weighting is unchanged after removing a variable from the fit. Since we remove variables that do affect the weighting, we use the more laborious method of starting from scratch with new weights. It is important to note, however, that equation (18) still holds and provides an estimate of the errors involved in the fit.

## RESULTS AND DISCUSSION

Two hypothetical traverses were used to find estimated errors for the outlined reduction method. The courses are sketched in Figure 1. The first traverse is a straight line to the northeast covering 25 km. The second is polygonal - also covering 25 km. The assumed vehicle speed was 25 km/hr - so that total travel time was one hour, not counting stops. Deflections of the vertical were determined at 10 points evenly spaced along the traverses. The vehicle was assumed to stop either 20 or 40 times on a mission. This made the least squares system well overdetermined. It also helped produce an answer to the question of whether fewer or more stops is preferable. Solutions were generated for cases including all the gyro drifts as fitted variables, including just the horizontal axes, and including none of the gyros.

Figure 2 shows the estimated variance in the north velocity channel over the course of a 20 stop straight line traverse. There are only two significant contributors to the total variance - the north accelerometer and the east axis gyro. Their contributions are plotted separately in Figure 2. The accelerometer error is more or less constant over the course of the mission. The gyro drift becomes the dominant contribution early on in the traverse and is constantly increasing. The value for the gyro variance used for Figure 2 is that assuming a constant drift rate is removed. Without the removal of the average drift, the gyro-related variance would be about a factor of two bigger. The form of the equivalent curves for the 40 stop traverse is nearly identical. However, the individual variances are about half what they are for the 20 stop case. This is just a reflection of the fact the errors at individual stops appear to accumulate as individual random events. Half the time then implies half the accumulated variance.

The results for the polygonal course are, once again, nearly identical to that for the straight line traverse. This is a direct consequence of the fact that the estimated errors introduced from collocation are negligible in comparison with those from the gyros and accelerometers. According to the model used here these significant error sources are almost independent of the direction in which the vehicle travels. Hence, the results from the polygonal and straight traverses are almost identical.



a) Straight Course



b) Polygonal Course

Figure 1. Hypothetical Traverse Courses



Figure 2. Estimated Variances in North Channel Over 25 km Traverse

Figure 3 shows the estimated errors (standard deviation) for the derived north deflection of the vertical using 20 stops and an optimally weighted solution. The first point to note is the terrible performance of the fitted solution when all three gyro drifts are included. Maximum errors are almost 200". This behavior occurs only in the north direction. In the east direction, the solution is as well behaved as the other two curves in Figure 3. The reason for this strange behavior can be found by considering the equations for the east gyro error, the vertical gyro error, and the error velocity. Taking those equations (7, 10, and 12 from the first report), we find

$$\frac{d^2 \phi_E}{dt^2} = -r_s^2 \phi_E + r_s^2 \xi - r \cos \phi \alpha + \dots \quad (21)$$

where  $\phi_E$  is the east gyro error,  $r_s$  the Schuler frequency,  $r$  the terrestrial rotation rate,  $\xi$  the north deflection,  $\phi$  the latitude, and  $\alpha$  the vertical gyro drift rate. The point to note is that  $\xi$  and  $\alpha$  come into equation (21) in the same way. Thus, in a least squares solution,  $\xi$  and  $\alpha$  are to some extent interchangeable. Since there is no vertical channel information, there is no real way to separate the effects of  $\alpha$  from  $\xi$ . The east deflection is well behaved because there is no comparable coupling of the vertical gyro drift rate to the east deflection.

A significant improvement is made by removing the vertical gyro drift from the solution, as can be seen from Figure 3. The results are still somewhat puzzling as the estimated errors are virtually the same in the case where the horizontal gyro drift rates are included in the solution as when they are not. This is in spite of the fact that the assumed variances of the error velocities is about a factor two smaller when gyro drifts are included in the solution. Unfortunately, inspection of the error covariance matrix, eq. (18-20), shows that  $\xi$  and  $\gamma$  (the east gyro drift rate) are strongly anti-correlated, i.e. have a large negative covariance in the structure of the least square solution. This implies that the situation is similar to that discussed with respect to the vertical gyro. That is, with the given information, the least squares solution has difficulty telling the difference between an east gyro drift rate



Figure 3. Estimated Errors in North Deflection ( $\xi$ ) for 20 Step Straight Traverse Weighted Solution

and a north deflection of the vertical. This, on reflection, should not be terribly surprising. We can write an equation similar to equation (21) for the error velocity in the north direction. Keeping just the largest terms, this looks like

$$\frac{d^2 u}{dt^2} = - r_s^2 u + \gamma \quad (22)$$

where  $u$  is the north error velocity and  $\gamma$  is the east gyro drift rate. The north deflection,  $\xi$ , enters equation (22) only through the boundary conditions. Another way of looking at the problem is that equation (22) describes a sinusoidal variation whose phase and amplitude depends on the relative sizes of  $\zeta$  and  $\gamma$ . In effect, the phase and amplitude must both be determined by one number - the error velocity. What is needed to help is information about, for example, the acceleration error at a stop. This would serve to disentangle the two quantities.

Actually, the situation is not nearly so bleak as has been painted. The values for the variation of the gyro drift rate about the mission mean are quite conservative. The actual variance could easily be a factor of two lower than what we have used. In this case the solution including the gyro rates would clearly be superior. It is interesting to note that at the beginning of the mission when accelerometer errors dominate the variance, the two solutions are almost identical. This implies that the accelerometer errors give a limit to the accuracy of the recovery of the deflection in the neighborhood of 2-3" for the 20 stop case and the accelerometer parameters used.

Somewhat better results are obtained by using 40 stops. The gain is essentially by the square root of the number of stops. Thus, a 40 stop case gives errors about a factor  $\sqrt{2}$  better than the 20 stop case, all other things being equal.

Since the major sources of error have essentially just a time dependence and not a position or velocity dependence, speeding up the rate of traverse also increases the accuracy. The increase in accuracy is roughly proportional to the square root of the velocity. This, of course, has a limit when the vehicle velocity becomes high enough to make the neglect of velocity dependent terms in the error propagation equations (first report: eq. (1) - (6)) serious.

So far the results discussed have dealt with weighted least squares solutions. Figure 4 shows a comparison of error estimates for the derived north deflections. Inherent in an unweighted solution is a single assumed variance for all the error velocities. This is in contrast to the increasing - as a function of time - variances in the weighted solution. It is not surprising, then, that the deflection error estimates for the unweighted solution tend to be more uniform than those of the weighted solution. If the error model used is reasonable then the errors derived from the weighted solution should be more accurate. In practice, the derived deflections do not seem to be greatly affected by the choice of either a weighted or unweighted solution. Thus, the weighted solution appears to be slightly preferable.

The results presented in Figure 3 are comparable to those presented by Huddle (1973) in his discussion of the Position and Azimuth Determining System (PADS).

We have argued above that a factor two improvement on Figure 3 is easily attainable without system improvement. This would be superior to the PADS results. If more information can be obtained from the inertial system - i.e., acceleration errors in addition to velocity errors at each of the stops - the accuracy of the system should be determined by the accuracy of the accelerometers, and deflections of the vertical with accuracies of 1 - 1.5" should be attainable.



Figure 4. Differences in North deflection ( $\ell$ ) Error Estimates

#### REFERENCES

- Brownlee, R. B., 1962, Statistical Methods for Scientists and Engineers, Prentice Hall, New York.
- Huddle, J. R., 1973, "A Study and Analysis of the Position and Azimuth Determining System (PADS) for Mapping, Charting, and Geodesy Applications", Litton Report No. 402215.
- Huddle, J. R. and Maughmer, R. W., 1972, "The Application of Error Control Techniques in the Design of an Advanced Augmented Inertial Surveying System", Litton Publication No. 11678 A.
- Kasper, J. F., 1971, Journal of Geophysical Research, 76, 7844.
- Lyon, J., Mader, G. L., and Heuring, F. T., 1977, "Optimized Method for the Derivation of the Deflection of the Vertical from RGSS Data", Phoenix Corporation, Final Report.
- Papoulis, A., 1965, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York.

APPENDIX 1  
THE OPTIMIZED REDUCTION PROGRAM

A listing of the FORTRAN Program used to determine deflections, and error estimates is given below. The input data are described in the comment cards at the beginning of the program and should be self-explanatory with two exceptions: 1) all input data are cgs and angles are in radians, and 2) the program is set up to handle a traverse with known deflections at the start and stop. To use only known deflections at the beginning three things must be done. First, add a dummy finishing stop to the data with the position of the finish equal to the start. Second, set XIFIN and ETAFIN equal to XI $\phi$  and ETA $\phi$ , respectively. Third, set IDEFL = 1.

The output format is also shown below. Solutions are given for cases with all gyro rates, horizontal gyro rates only, and no gyro rates in turn. Before the actual solution the estimated variances of the error velocities is given both in total and from the individual sources. The solved-for quantities are each presented with error estimates (standard deviations). Finally, for each case, the actual deviation of the solution from the data is given.

NO ASSIFIED

UNCLASSIFIED

UNCLASSIFIED

PROGRAM GUIDE

72774 OPT=1

FTN 4.6+420

1

PROGRAM SUBROUTINE, OUTPUT, JUGS=OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT)

NAMING

CALLED

PROGRAM FOR THE OPTIMIZED, POST-MISSION DETERMINATION OF  
THE DEFLECTION OF THE VERTICAL USING RGSS DATA  
PROGRAM PRODUCED BY PHOENIX CORPORATION

COMMON CPMX,SP1,TPH1  
COMMON/ZDTCTR/COVAC,COVY  
DOUBLE PRECISION PSI,XL  
DOUBLE PRECISION DUM1Y,DUM2Y,DUM3,DUM4  
DOUBLE PRECISION DUMAT,SUMAT  
DIMENSION K(57)  
DIMENSION TSTOP(51),U(51),V(51),XX(51),YY(51),XHAT(51),  
YHAT(51),X(50),Y(50),START(6),STEM(6)  
DIMENSION PS1(50,6,6),XL(50,6,6),DUMMY(6,6),DUMT(6,6),  
DUM(6,6)  
DIMENSION COEF(60,24),CFL(60,8),COVAR(87,24)  
DIMENSION COFAN(24),CONT(67,80),TIME(+1),COGY(8,40,40)  
DIMENSION MARY(3),TAUGY(3),GYVAR(3,60,+1),GYRO(3,80),VARCO(80)  
DIMENSION ADVAT(80),WATE(80),COVAC(2,40,+1),HOSIG(4),ACTAV(2)  
DIMENSION TAU(3),TAUTY(3)  
DATA G/3.8066027/  
SEIN(T,J) = 1. - 2.\* AND(FLOAT(T+J),2.)

INPUT DATA

M1 = # OF POINTS AT WHICH A POSITION IS SPECIFIED  
THE FIRST AND LAST POINTS BEING THE START AND STOP  
OF THE VEHICLE & THE REMAINDER THE POINTS AT WHICH THE  
DEFLECTION IS TO BE DETERMINED.

MSTOP = NUMBER OF VEHICLE STOPS IN A GIVEN MISSION

TG0(I) = TIME SPENT TRAVELLING ON I-TH LEG

TS0(I) = TIME SPENT STOPPED ON I-TH LEG

ME(I) = MAXIMUM VELOCITY ERROR AT END OF I-TH LEG

V(I) = BASE OR Y VELOCITY ERROR AT END OF I-TH LEG

READ(5,1)MSTOP,N1

N2 = 2 \* M1

N2 = 2 \* MSTOP

NC = MSTOP + 1

READ(5,2)(X0(I),Y0(I),TG0(I),TS0(I),U(I),V(I),XX(I),YY(I),I=1,M1)

2 FORMAT(T10.6,F10.4)

WRITE(6,1F1)(1,I=0(1),TG0(I),TS0(I),U(I),V(I),XX(I),YY(I),I=1,M1)

101 FORMAT(1X,TB,B10.4)

READ(5,3)ME(I),XHAT(1),YHAT(1),I=1,N1

3 FORMAT(T10.6,F10.4)

WRITE(6,2F2)(XHAT(I),YHAT(I),I=1,N1)

102 FORMAT(1H1,(10.2F4.4))

READ(5,4)TAI,X10,ETA0,XIFIN,ETAFIN

WRITE(6,3)TAI,X10,ETA0,XIFIN,ETAFIN

UNCLASSIFIED

PROGRAM GUIDE

73774

UNCLASSIFIED

LPT=1

UNCLASSIFIED

FTN 4.0+420

21

```
READ(6,7)(START(I),I=1,5)
WRITE(6,7)(START(I),I=1,5)
READ(6,2) IINATE
WRITE(6,11) IINATE
4 FORMAT(6e12.4)
READ(5,8) (ACCL(I),ACTAV(I),I=1,2)
WRITE(6,9) (ACTS(I),ACTAV(I),I=1,2)
READ(5,8) (TAUFGY(I),TAUTY(I),I=1,5)
WRITE(6,10) (TAUFGY(I),TAUTY(I),I=1,5)
C      CHAI = COOS(FLAT)
C      CHHI = COS(FLAT)
C      SPHI = OSIN(FLAT)
C      TPRI = SPHI/CHHI
CALL ADVANCE(X,Y,Z,X1,Y1,Z1,X2,Y2)
DO 100 I=1,12
DO 100 J=1,42
150 DFL(I,J) = 0.
DO 200 I = 1,MSTOP
      X(I) = (XX(I+1) + XX(I))/2.
200 Y(I) = (YY(I+1) + YY(I))/2.
DO 300 I = 1,MSTOP
CALL TIME(X(TGOF1),TGIF1,Psi1,XL,I,XX,YY)
300 CONTINUE
DO 1000 I=1,MSTOP
CALL DQUIV(I,Psi1,DUMMY)
DO 1010 NK = 1,6
      STEM(KK) = 0.
      DO 1010 L = 1,6
1010 STEM(KK) = STEM(KK) + DUMMY(L,I) * START(L)
      DO 1020 L = 1,6
1020 START(L) = STEM(L)
      DDFL(2*I-1,NP) = U(I) + START(1)
      DDFL(2*I,NP) = V(I) + START(2)
1000 CONTINUE
```

C

C

C

DETERMINATION OF THE TERMS IN THE DDFL MATRIX WHICH DEPEND  
ON THE DEFLECTIONS OF THE VERTICAL

C

C

C

FIRST STEP: DEFINE A MATRIX = DFL = WHICH GIVES THE VARA  
FIRST STEP: DEFINE A MATRIX = DFL = WHICH GIVES THE DEPENDENCE  
OF THE VELOCITY ERRORS ON THE VALUES OF THE  
DEFLECTIONS AT EACH OF THE MIDPOINTS OF EACH TRAVEL LEG  
DEFLECTIONS AT EACH OF THE MIDPOINTS OF EACH TRAVEL LEG

C

C

C

```
DO 1100 I = 1,MSTOP
CALL DQUIV(I,XL,DUMMY)
DFL(L+I-1,L+I) = DUMMY(1,1)
DFL(L+I-1,L+I) = DUMMY(1,2)
DFL(2*I,2*I-1) = DUMMY(2,1)
DFL(2*I,2*I) = DUMMY(2,2)
IF VI.EQ.U,MSTOP1 DO 10 1100
```

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED



CLASSIFIED  
PROGRAM OUTUP

73/74      3\*T=1

UNCLASSIFIED

UNCLASSIFIED  
FTN 4.0+420

CALL DSEQUIV(I,PSI,DUMM)  
CALL DSEQUIV(T,XL,DUMM)  
CALL DMAT(DUM2,DUMM1,DUM4,5,6,6)  
CALL DAOD(DUM4,DUM2,DUMM1)  
DO 1220 N = 1,3  
5 COEF(2 \* I - 1,N2 - 4 + N) = DUMM1(1,3 + N)  
1220 COEF(2\*I,N2+N) = DUMM1(2,3+N)  
1240 CONTINUE

C      NAM = M2 - 1

C      DETERMINING VARIANCE FROM REPRESENTATION ERRORS

DO 1250 T=1,M2  
5 VAR00(T) = 0.  
ACVAK(I) = 0.  
DO 1250 L=1,M2  
DO 1250 K=1,M2  
DIRTY = DIRTY(I,L) + DFPL(I,K)  
1250 VAROUT(I) = VAR00(I) + 6\*\*2 \* DIRTY \* COVL(L,K) + SEIN(L,K)

C      FIND VARIANCE DUE TO CORRELATED GYRO ERRORS.

C      TTME(I) = 0.  
5 DO 1252 I=1,MSTDR  
1252 TIME(I+1) = TIME(I) + TSTOP(I) + TDD(I)  
TFIN = TIME(MSTDR+1)  
DO 1253 I=1,MSTDR  
1253 TIME(I) = 0.5 \* (TIME(I) + TIME(I+1))

C      FIND VARIANCE DUE TO ACCELEROMETER ERRORS

C      UFDT = 0  
DO 1261 I=1,2  
DO 1261 L=1,MOTDR  
DO 1261 K=1,MSTDR  
1261 COVAK(I,L,K) = 4\*SIG(1)\* EXP(-ABS(TIME(L)-TIME(K))/ACTAV(I))  
DO 1262 I = 1,2  
1262 TAUGY(I) = 2.5\*TFIN  
1266 VARGY(I) = TAUGY(I)\*(1.-LYF(-TFIN/TAUGY(I)))  
NFATC(6,3)(VARGY(I),TAUGY(I),I=1,8)  
1266 CONTINUE  
DO 1266 I=1,8  
DO 1266 J=1,MSTDR  
DO 1266 K=1,MSTDR  
1266 COG(Y(I,J,K)) = VARGY(I) \* EXP(-ABS(TIME(J)-TIME(K))/TAUGY(I))  
IF(JTEST.NE.0) GO TO 1270  
DO 1270 T=1,8  
DO 1270 J=1,MSTDR

C      CALL DSEQUIV(J,XL,DUMM)

UNCLASSIFIED  
PROGRAM GUIDE

7/7/74

UNCLASSIFIED

OPT=1

UNCLASSIFIED  
FTN 4.0+420

127

C GYVAR(1,2\*K-1,J) = DUMMY(1,I+3)  
GYVAR(1,2\*K,J) = DUMMY(2,I+3)  
C  
C JPLUS = J + 1  
C  
DO 1267 K = JPLUS,MSTOP  
CALL DTRQIV(K,PUI,DUM2)  
CALL DMAT(DUM2,DUMMY,6013,6,6,6)  
CALL DLQAL(DUM2,DUMMY)  
C  
1264 GYVAR(I,2\*K-1,J) = DUMMY(1,I+3)  
1264 GYVAR(I,2\*K,J) = DUMMY(2,I+3)  
1270 CONTINUE  
DO 1262 I=1,M2  
AVAR(I) = 0.  
DO 1262 L=1,M2  
DO 1262 K=1,M2  
IF (I00(L+K,2).NE.0) GO TO 1262  
L1 =(L+1)/2  
K1 =(K+1)/2  
MSR = L - MOD(L,2)  
AVAR(I) = AVAR(I) + COVAC(MSR,L1,K1) \* DEFU(I,L1) \* DEFU(I,K1)  
1262 CONTINUE  
116 FORMAT('10MVAU')  
1479 CONTINUE  
DO 1260 I=1,2  
DO 1260 J=1,M2  
GYR(I,J) = 0.  
C  
DO 1260 K=1,MSTOP  
DO 1260 L=1,MSTOP  
1260 GYR(I,J) = GYR(I,J) + GYVAR(I,J,K) \* GYVAR(1,J,L) \* GOGY(I,K,L)  
C  
C DEFINING THE MATRIX = SUMAT = WHICH SOLVED GIVES THE DESIRED  
C LEAST SQUARES SOLUTION FOR THE DEFLECTIONS OF THE  
C VERTICAL AND THE GYRO SHIFT RATES.  
C  
C THE BULK OF SUMAT IS THEN THE ERROR COVARIANCE MATRIX  
C  
DO 1282 I=1,M2  
WATE(I) = AVAR(I) + VARGU(I)  
DO 1283 K=1,2  
1283 WATE(I) = WATE(I) + GYR(K,I)  
1282 CONTINUE  
TOTSIG = 0.  
SUMWT = 0.  
DO 1284 J=1,M2  
TOTSIG = TOTSIG + WATE(J)  
1284 SUMWT = SUMWT + 1./WATE(J)  
SIGHT = SUMWT/FLUTION2  
WRITE(6,122) TOTSIG,N2,SUMWT  
122 FORMAT(1H1,'VARIANCES OF INDIVIDUAL POINTS',//,1H1'TOTAL VARIANCES ='  
\*,119.0,/\* NUMBER OF POINTS =',14,/,1H1'SUMWT = ',119.7)  
WRITE(6,123)

CLASSIFIED  
PROGRAM GUIDE

UNCLASSIFIED  
73/74 OCT-71

UNCLASSIFIED  
FTN 4.6+420

11

```
123 FORMAT(7/7/73, 'STEP', T14, 'AU.VARIANCE', T57, 'COL.VARIANCE',
      7/55, 'VERTICAL', T79, 'NORTH', T99, 'EAST', T113, 'TOTAL VARIANCE')
      DO 1280 J=1,M2
1280 WRITE(6,1291) J, AVAR(J), VARU(J), (GYRO(I,J), I=1,3), RATE(J)
1291 FORMAT(13.6,2I3,3I)
1292 FORMAT(1X,1I14.4)
1293 FORMAT('GYRO JUNK')
      DO 1295 J=1,M2
1295 IF(RATE.EQ.0) RATE(J) = 1.0
      IF(RATE.EQ.0) SUMMT = FLOAT(42)
      DO 1296 I=1,N2
      SUMTAN(I) = 0.
      DO 1298 J=1,M2
1298 COMAN(I) = COMTAN(I) + COLF(I,J) / RATE(J)
1299 COMAN(I) = COMAN(I)/SUMMT
      N2M2 = N2M
      N2 = N2
      IF(JTEST.EQ.2) N2D = N2 - 2
      IF(JTEST.EQ.2) N2M2 = N2M-2
      DO 1300 I = 1,N2M2
      DO 1300 J = 1,M2
      SQMAT(I,J) = 0.
      DO 1300 N = 1,M2
1300 SQMAT(I,J) = SQMAT(I,J) + (COLF(N,I)-COMAN(I))* (CUEF(N,J)
      + COMAN(N) / RATE(N))
      IF(JTEST.EQ.0) GO TO 1302
      IF(JTEST.EQ.2) GO TO 1303
      N2M2 = N2M-1
      N2 = N2 - 1
      DO 1304 J=1,2
      DO 1304 I=1,N2
1304 SQMAT(I,J+N2) = SQMAT(I,J+N2+1)
      DO 1305 I=1,2
      DO 1305 J=1,4N
1305 SQMAT(I+N2,J) = SQMAT(I,J+N2)
      DO 1306 I=1,2
      DO 1306 J=1,2
1306 SQMAT(I+N1,J+N2) = SQMAT(I+N1,J+N2+1)
1307 CONTINUE
      DO 1308 I=1,N2M
      SQMAT(I,N2)=0.
      DO 1309 J=1,M2
1309 SQMAT(I,N2)= SQMAT(I,N2)+ (COLF(J,I)-COMAN(I))* (CUEF(J,N2)
      + COMAN(N2)/RATE(J))
      IF(JTEST.EQ.2) GO TO 1302
      SQMAT(NN+1,N2)= SQMAT(NN+2,N2)
      SQMAT(NN+2,N2)= SQMAT(NN+3,N2)
1302 CONTINUE
```

C  
C AFTER SUBROUTINE SOLVE, SQMAT(\*,2\*N) CONTAINS THE SOLUTION  
C VECTOR. THE LAST THREE ARE THE GYRO RATES AND THE  
C REST ARE THE DEFLECTIONS OF THE VERTICAL.

CLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

100 100 100 100 100

UNCLASSIFIED  
73/74 221st

UNCLASSIFIED  
STU 4-342

10

```

      WRITE(6,12) SQMAT
12  FORMAT(91$0M4T = *,/(IX,0F12.7))
      CALL SOLVE(SQMAT,N21AT,N22,N2M2,SQMAT)
      DO 175 J=1,N22
175  WRITE(6,12) (SQMAT(I,J),I=1,N21B)
      181 FORMAT(91$0M4T = *,/(0F12.7))
      WRITE(6,12) SQMAT
      DO 140 I=1,N2P
      F(I)=0.

```

```

      DO 1440 J = 1,N2**2
1440 F(J) = F(J) + COEF(I,J)*SUMAT(J)
      SUMSQ=0.
      DO 1450 J = 1,M2
1450 VARI(J) = (F(J) - COEF(I,N2))**2
      SUMSQ = SUMSQ + VARI(J)
      SIGMA = SQRT(SUMSQ/FLOAT(M2-1))
      N2 = N2 + 1
      DO 1460 I = 1,NN
1460 SUMAT(I) = SUMAT(I)/N2

```

OUTPUT THE FINAL REQUEST

```

10000 JUTEST=0
* WRITE(6,110) SOMAT(NN+1), SUMAT(NN+2), SOMAT(NN+3)
110 FORMAT(1H1,' FINAL RESULTS //',1X,'GYRO DRIFT RATES,   ALPHAT',E12.4,5X
2X,BETAT,E12.4,5X,*GAMMAT,E12.4//1X,'DEFLECTIONS OF VERT/1X KIT'
3X,17X,TOTAT,E17X,NORTH POS*,17X,*EAST POS*/1X)
111 THU(JUTEST,100,2)YHAT(6,171)D01AT(NN+1),D04AT(NN+2)
112 D05AT(NN+1,* RESULTS WITHOUT VERTICAL GYRO DRIFT//1X
113 * GYRO DRIFT RATES,   BETAT,E12.4,5X,*GAMMAT,E12.4//1X
114 * DEFLECTIONS OF VERT//1X X17,17X,*BETAT,E17X,*NORTH POS*,17X,
115 * EAST POS//1X
116 JUTEST=ED.21NRATE(6,130)
      NN=NN+1
11700 WHITL(3,111) X10,Y10,XHAT(1),YHAT(1)
      WHITL(3,111) (SUMAT(2*I-3),SUMAT(2*I-2),XHAT(1),YHAT(1),I=2,411)
      WHITL(3,111) X1F1,XCATIN,XHAT(1),YHAT(1)
118 D05AT(1A,4)D25D0,4*X2)
      WHITL(6,142)SUM0,SIGMA,(I,VAK(I)),I = 1,12)
119 D05AT(1A,*VARARG GR SOLUTION*,E12.4,5Y,*SIGMA*,E12.4/
120 * VARARG GR SOLUTION*,E12.4,5Y,*SIGMA*,E12.4)
121 JUTEST=1
122 D05AT(1A,110)D01AT(1X,T5,2X,E12.4)
123 JUTEST=0
124 TARGY(1)=TARGY(1)
125 TAUGY(1)=TAUGY(1)
126 GO TO 1254
1274 JUTEST=2

```

CLASSIFIED

#### UNCA ASSISTED

UNCLASSIFIED

LA SIFTED  
25 GRAM GUIDE

UNCLASSIFIED  
7377-2 PTF-1

UNCLASSIFIED  
PTF 4.6+42L

4

DO 4504 1=2,\*  
VARY(1) = TARGY(1)  
1002 TAGY(1) = FAUTY(1)  
17. FORMAT(1H1.4 RESULTS WITHOUT GYRO DRIFTS\*\*\*  
\* \* \*REFLECTIONS OF VEREY XTE,17X,CTA\*,17X,\* NORTH POST,11X,  
\* \* EAST POS\*\*\*  
IF JTEST.NE.0 GO TO 4504  
1057 CONTINUE  
STOP  
END

LA SIFTED

UNCLASSIFIED

UNCLASSIFIED

CLASSIFIED  
EXECUTIVE SOURCE

UNCLASSIFIED

7/17/74 087-1

UNCLASSIFIED

ETM 4.04420

11

EXECUTIVE SOURCE (A, N1, COVAR, X, Y, XHAT, YHAT, COV1)

This subroutine produces a matrix & COVAR + that produces values for the deflection of the vertical at points, I, from the values of the deflections at other points, J. This is done by statistical collocation.

For a derivation of the method see the Phoenix Corp. report.

```
COMMON/COV1/COV1, COINV, COV2, FILL(48)
DIMENSION COV1(24,24), COINV(24,24), COV2(30,80), COVAR(30,24), L2(24),
          A(30), I(50), XHAT(50), YHAT(50), M1(24)
DIMENSION COV1(50,50)
DIMENSION COV2(50,72)
COV1=SIGMA(1,1)*#2
COV2=SIGMA(1,1)*#2
SIGMA=SIGMA(1,1)*#2
```

DERIVING THE COVARIANCES BETWEEN THE DEFLECTIONS AT THE ACTIVE POINTS, THE INICS DENOTE XI VALUES, EVEN INDEXES ETA VALUES. THE COVARIANCES ARE DERIVED UNDER THE ASSUMPTION OF ISOTROPIC, HOMOGENEOUS COVARIANCE OF THE GRAVITY ANOMALY.

```
DO 500 I = 1, M1
DO 500 J = 1, M1
  P = SIGMA(XHAT(I)-XHAT(J))**2 + (YHAT(I) - YHAT(J))**2
  IF (P .GT. 0.001, 500, 498)
    WHITL(6,4,29) = YHAT(I), YHAT(J), YHAT(I), YHAT(J)
  498 FORMAT(1E7,5E12.5)
  STH = (YHAT(I) - YHAT(J))/P
  CTH = (XHAT(I) - XHAT(J))/P
  499 IF (P .NE. 0.001, 500, 498)
    COV1(I,I+1,J,J) = SIGMA*(FHIG(1,R)/SIGMA + (STH**2+CTH**2)*F0(1,R))
  501 COV1(I,I+1,J,J) = SIGMA*(FHIG(1,R)/SIGMA + (CTH**2+STH**2)*F0(1,R))
  COV1(I,I+1,J,J) = COV1(I,I+1,J,J)
  502 CONTINUE
  490 FORMAT(1E7,1G15.7,1G14.6)
```

INVERSION OF THE COV1 MATRIX IS FOUND IN COINV

```
M2 = 0.001
LENTH = N1 + N2 + M2
N12 = 2 * M1
DO 491 J=1,M12
  DO 492 I=1,N12
    491 COV1(I*(J-1)+I2) = COV1(I,J)
    CALL MINV(COV1,V,N12,L,L2,M1,LENTH)
  492 FORMAT(1E15,1E15,1E14.5)
```

CLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

ROUTINE COLLOC

UNCLASSIFIED

73/74 DPT=1

UNCLASSIFIED

FTN 4,6+42)

14

DO 430 J=1,N12  
DO 430 I=1,N12  
407 GVAL(I,J) = GVAL(I,J) + (X(I) - X(J))  
DU 434 I=1,N12  
DU 434 J=1,N12  
434 GVAL(I,J) = GVAL(I,J)  
436 FORMAT (\*100I AND INVERSE TEST PRODUCT\*,/1X,8E10.5))  
DO 436 K = 1,M

C COMPUTATION OF THE COVARIANCE OF THE BASIS SET AND  
C THE SET OF POINTS DETERMINED BY THE MASSON LEGS.

DO 500 I=1,N12  
P = SQRT(F(I) + XHAT(I))\*\*2 + (Y(I) - YHAT(I))\*\*2  
IF (P.EQ.0.) GO TO 500  
STH = (Y(I) - YHAT(I))/P  
CTH = (X(I) - XHAT(I))/P  
IF (CTH.EQ.0.) GO TO 500  
IF (P.EQ.0.) GO TO 500  
GVAL(K,I+1) = SIGMA2 \* (PHIG2(1.,P)/SIGG2 + (CTH\*\*2 + CTH\*\*2))  
\* FC(1.,P)  
GVAL(K,2\*I) = SIGMA2 \* (PHIG2(1.,P)/SIGG2 + (CTH\*\*2 + CTH\*\*2))  
\* FC(1.,P)  
GVAL(2\*K+1,2\*I) = -2.\*SIGMA2\*SIH\*UTH\*FC(1.,P)  
GVAL(2\*K+1,I+1) = GVAL(C\*I+1,I+1)  
500 CONTINUE  
N2 = 2\*M1  
N2 = 2\*M

C COMPUTATION OF THE COVAR MATRIX BY MULTIPLICATION OF GVAL BY  
C GVAL

DO 700 L = 1,M2  
DO 700 K = 1,M2  
COVAKLT,K) = 0.  
DO 600 J = 1,N2  
600 COVAKPL(L,K) = COVAK(L,K) + GVAL(L,1)\*GVAL(L,K)  
700 IF (K.LT.1) GO TO 700  
COVAK(L,K) = -COVAK(L,K)  
DO 320 K=1,M  
DO 320 I=1,M  
K = SQRT((X(K) - X(I))\*\*2 + (Y(K) - Y(I))\*\*2)  
IF (P.EQ.0.) GO TO 320  
STH = (Y(K) - Y(I))/P  
UTH = (X(K) - X(I))/P  
IF (UTH.EQ.0.) GO TO 320  
320 CTH = UTH  
CTH = 0.  
320 COVLT(2\*K+1,2\*I+1) = SIGMA2 \* (PHIG2(1.,P)/SIGG2  
\* (1. + CTH\*\*2 + CTH\*\*2) \* FC(1.,P))  
COVLT(2\*K+2\*I+1) = SIGMA2 \* (PHIG2(1.,P)/SIGG2  
\* (1. + CTH\*\*2 + CTH\*\*2) \* FC(1.,P))  
COVLT(2\*K+1,2\*I) = -2.\*SIGMA2 \* STH \* CTH \* FC(1.,P)  
COVLT(2\*K,2\*I+1) = COVLT(2\*K+1,2\*I)

CLASSIFIED

REF ID: A6774

UNCLASSIFIED

OPT=1

UNCLASSIFIED

FTH 4.6#420

REM CONTINUE

DO 300 LZ = 1,N2

DO 304 LZ = 1,M2

DO 305 K = 1,N2

SIGN = 1.

IF(MOD(LZ,2).NE.0) SIGN = -1.

REM CONT(L1,LZ) = CONT(L1,LZ) + GVE(L1,K) \* COVAR(LZ,K) \* SIGN

END DO

100 FORMAT(1H COVAR = 1.0E12,1H,L1,L2,F1)

END

CLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

CLASSIFIED

FUNCTION SIGMA

UNCLASSIFIED

1374

OPR-1

UNCLASSIFIED

FTN 4.6+421

FUNCTION SIGMAX, R

THIS FUNCTION AND ITS CHIPIPS GIVE THE NECESSARY VALUES FOR  
THE COMPUTATION OF THE DEFLECTION COVARIANCES.  
CURRENTLY, THE FUNCTION ASSUMES A SECOND ORDER MARKOVIAN  
STRUCTURE FOR THE ANGULAR COVARIANCE. VAR IS THE  
VARIANCE OF THE ANGULAR AND R IS THE CORRELATION  
LENGTH.

DATA VAR,D,G,ROUTEVT,ROUTEZ,4.E6,8.E0,605L2,1.414217  
SIGMA = VAR  
RETURN  
ENTRY SIGD  
ENTRY SIGZ  
ENTRY SIGMAX,R  
SIGMA= VAR\*D/G\*ROUTE  
RETURN  
ENTRY PROG1(Y,R)  
ROUTE= RTG  
ENTRY PROG2  
Q = R\*D  
SIGMA = VAR\*R2\* EXP(-Q)\* (1.+Q)  
RETURN  
ENTRY PG (Y,R)  
ROUTE= PG  
ENTRY PG  
IF (PG < 2.0) GO TO 10  
Q = PG  
SIGMA = Q\*/Q\*\*2 + EXP(-Q)\* (Q+1. + 6.74\*E2 + 6.74)  
RETURN  
SIGMA = Q  
RETURN  
END

CLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

CLASSIFIED

ROUTINE ADVANCING

UNCLASSIFIED

UNCLASSIFIED

FTN 4.6+4.8

1.

IMPROVING ADVANTAGE, PSI, KLN, KRUS, YRDS)

THIS SUBROUTINE PROVIDED THE VALUES OF THE NECESSARY TIME  
SHIFTS AND PECOS.THIS ENTRY INITIALIZES THE VALUES OF THE NECESSARY  
CONVERGENCE MATRIXES.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DOUBLE PRECISION LAM,LA(7),PBCDF(6,6),PBCDI(6,6)

REAL T(7),X(7),YRDS,PHI1,SPH11,SPH11,TPHI1

REAL SQR

REAL ROL

DIMENSION X(7),T(7),PBCDF(6,6)

COMPLEX Z

COMPLEX Z1

COMPLEX Z1EM

COMPLEX ZEXP

COMPLEX ZLAM

COMPLEX ZTM1,ZR

COMPLEX ZV1(7,7)

COMMON CPH11,SPH11,TPH11

COMPLEX T(1,2),C(1),C(2),D(1),D(2),S(6,6),SINV(6,6),T(3,3),

2.TINV(3,3),PH(6,6),PH(5,6),VL(5,6),VLI(5,6),PU(7,3),VP(5,3)

3.ME120,ME100,ME110,ME120,PHR(6,6),PHM(6,6),PHR(6,6),PHM(6,6),

4.VC(6,6),U1(6,6),VLL(6,6),VLI(6,6)

5.VRHE(6,6),S1(6,6),SP(6,6),SINV(6,6),SINV(6,6)

6.DIMENTION PR(6),AL(6),UR(6),CI(6)

7.DIMENTION HPH(6,6),HVI(6,6),PPU(6,6),RIP(6,6),RFD(6,6),

CPVPO(6,6),

8.COMM(6,6),BNDL(6,6),FGL(6,6,6),XL(6,6,6)

DATA G,LA-TH,UMGA/G,UB-UD,G,B,SP-SPB,B,SP1-SPB,7,29210-5/

NAMELIST/DIAG/PR,AL,CI,UMGA,G,B,SP

NAMELIST/SPUGZB,SP1M,A,B,G,RFAKTH

NAMELIST/SPUGZB,SP1M,A,B,G,RFAKTH

NAMELIST/SPUGZB,SP1M,A,B,G,RFAKTH

OMEGA = SPUGZB

TPH1 = SPH1/TPH11

SPH1 = SPH1/TPH11

DO 201 T = 1,6

DO 202 J = 1,6

KVEQT(J,J) = 0

DO 203 KPH(1,J) = 0

DO 204 T = 1,6

DO 205 RPHQT(J,J) = 0

PRINT \*, 'EFFECT FOR THE TIME WHEN THE VEHICLE IS IN MOTION'

PRINT \*, 'IN THE FORM OF A MATRIX'

2. CONTAINS THE ROOTS OF THE SINGULAR EQUATION

OMEGA2 = OMGA + OMEGA

CLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

CLASSIFIED

BELLING ADVANT

75774 04761

UNCLASSIFIED

UNCLASSIFIED

FM 4.6+420

11

$$\begin{aligned}
 & \text{CPH12} = \text{CPH1} * \text{CPH1} \\
 & \text{CPH12} = \text{S0P1} * \text{S0P1} \\
 & \text{R}(1) = (\text{L} + \text{A1}) * \text{OMEGAS} \\
 & \text{R}(2) = \text{R}(1) \\
 & \text{A1} = \text{OMEGAS}^2 + \text{OMEGAS}^4 \\
 & \text{S1} = \text{S0P1}(\text{OMEGAS}^4 + \text{OMEGAS}^2 * \text{OMEGAS}^2 * \text{CPH12}) \\
 & \text{S1} = \text{S0P1}(\text{OMEGAS}^4 + \text{OMEGAS}^4 + \text{OMEGAS}^2 * \text{OMEGAS}^2 * \text{CPH12}) \\
 & \text{R}(3) = (\text{L} + \text{A1}) * \text{S0P1}(\text{L} + \text{A1} + \text{A2} * \text{S1}) \\
 & \text{R}(4) = (\text{L} + \text{A1}) * \text{S0P1}(\text{L} + \text{A1} + \text{A2} * \text{S1}) \\
 & \text{R}(5) = (\text{L} + \text{A1}) * \text{S0P1}(\text{L} + \text{A1} + \text{A2} * \text{A1}) \\
 & \text{R}(6) = -\text{R}(5)
 \end{aligned}$$

C

$$\begin{aligned}
 & \text{R}(1) = \text{L} \\
 & \text{R}(6) = \text{OMEGAS}
 \end{aligned}$$

C

$$\begin{aligned}
 & \text{R}(2) = \text{L} \\
 & \text{R}(4) = \text{OMEGAS} * (-\text{A1})
 \end{aligned}$$

C

$$\begin{aligned}
 & \text{R}(3) = \text{L} \\
 & \text{R}(5) = \text{S0P1}(\text{L} + \text{A1} + \text{A2} * \text{S1}) \\
 & \text{R}(6) = \text{S0P1}(\text{L} + \text{A1} + \text{A2} * \text{A1})
 \end{aligned}$$

C

$$\begin{aligned}
 & \text{R}(1) = \text{L} \\
 & \text{R}(2) = -\text{R}(1) \\
 & \text{R}(5) = \text{S0P1}(\text{L} + \text{A2} * \text{S1} + \text{A1}) \\
 & \text{R}(6) = \text{S0P1}(\text{L} + \text{A2} * \text{S1} + \text{A1})
 \end{aligned}$$

C

$$\begin{aligned}
 & \text{R}(3) = -\text{R}(1) \\
 & \text{R}(4) = \text{L}
 \end{aligned}$$

C

FILL IN THE VALUES FOR THE TRANSFORMATION MATRIX, S, AND ITS INVERSE, SINV

C

$$\begin{aligned}
 & \text{DO 500 I} = 1 \text{ TO } 6 \\
 & \text{LAM1} = \text{R}(1) * \text{R}(1) \\
 & \text{LAM2} = \text{L} \\
 & \text{A} = (\text{OMEGAS}^2 + \text{OMEGAS}^4) \\
 & \text{AT} = \text{L} \\
 & \text{B} = \text{OMEGAS} * \text{OMEGAS} * \text{CPH1} * (-\text{S1} * \text{LAM2}^2 + \text{LAM1} * \text{LAM2} * \\
 & \text{LAM2} * (\text{L} * \text{OMEGAS} * \text{OMEGAS} + \text{OMEGAS}^2) + \text{LAM2} * (\text{OMEGAS}^4 + \text{OMEGAS}^2) \\
 & \text{C} = \text{OMEGAS} * \text{CPH1} * (-\text{S1} * \text{OMEGAS}^4 * \text{OMEGAS} * \text{CPH12}) \\
 & \text{D} = \text{LAM1} * \text{LAM2} * \text{R}(1), \text{R}(1), \text{R}(1), \text{LAM2}, \text{LAM2} \\
 & \text{E} = \text{OMEGAS} * \text{OMEGAS} * \text{LAM2} \\
 & \text{AT} = \text{L} \\
 & \text{S}(1,1) = \text{R}(1) * \text{OMEGAS} * \text{CPH1} * (-\text{OMEGAS}^2 * \text{CPH12} + \text{LAM2}) \\
 & \text{S}(1,2) = \text{LAM2} * \text{OMEGAS} * \text{OMEGAS} * \text{OMEGAS} * \text{LAM2} \\
 & \text{S}(1,3) = \text{OMEGAS} * \text{OMEGAS} * \text{OMEGAS} * \text{CPH12} \\
 & \text{S}(1,4) = -\text{LAM2} * \text{OMEGAS} * \text{OMEGAS} * \text{CPH1} * \text{CPH12} \\
 & \text{S}(1,5) = \text{R}(1) * \text{LAM2} * \text{R}(1) * \text{OMEGAS} * \text{CPH1} * \text{CPH12} \\
 & \text{S}(1,6) = \text{R}(1) * \text{R}(1) * (\text{LAM2} * \text{OMEGAS} * \text{OMEGAS}) * \text{OMEGAS} * \\
 & \text{LAM2} * \text{CPH12} * \text{LAM2} * (\text{OMEGAS} * \text{OMEGAS} * \text{LAM2}))
 \end{aligned}$$

CLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

SUBROUTINE ADVANS

73/74

UNCLASSIFIED

OPT=1

UNCLASSIFIED

FTN 4.6+420

```

SI(I,J) = - RARTH * LAM2 + LAM2 * OMEGA * SPHI
SINV(1,T) = G*R(I)
SINV(2,I) = G*OMEGA*SPHI
SINV(3,T) = G*R(I)**2
SINV(4,I) = -(A**2 + R(I)*OMEGA*SPHI)**2/(R(I)*OMEGA*SPHI)
SINV(5,T) = -R(I) * OMEGA*SPHI
SINV(6,T) = A

CONST = OMEGA * SPHI2 + (-OMEGA2 * SPHI2 + LAM2)

SR(I,1) = R(I) * CONST
SI(I,1) = R(I) * CONST

SI(I,-1) = LAM2 * (OMEGAS + OMEGAS * OMEGAS + LAM2)
1 = OMEGAS * OMEGAS * OMEGAS * SPHI2
SI(I,2) = 0.
SR(I,3) = -LAM2 * OMEGA2 * OMEGA * SPHI * SPHI2
SI(I,3) = 0.

SR(I,4) = RARTH * LAM2 * RR(I) + OMEGA2 * SPHI * SPHI
SI(I,4) = RARTH * LAM2 * RT(I) * OMEGA2 * SPHI * SPHI
SR(I,5) = RARTH * RR(I) * ((LAM2 - OMEGAS * OMEGAS) * OMEGA2 *
1 - SPHI2 + LAM2 * (OMEGAS * OMEGAS + LAM2))
SI(I,5) = RARTH * RT(I) * ((LAM2 - OMEGAS * OMEGAS) * OMEGA2 *
1 - SPHI2 + LAM2 * (OMEGAS * OMEGAS + LAM2))
SR(I,6) = -RARTH * LAM2 * LAM2 * OMEGA * SPHI
SI(I,6) = 0.
SINVR(1,I) = G*A
CALL DIVIDE(SINVR(1,I),J,B,RR(I),RT(I),SINVR(1,I),SINV(1,I))

SINVR(2,T) = G * OMEGA * SPHI
SINV(2,I) = 0.

SINVR(3,I) = G * A / LAM2
SINV(3,I) = 0.

SINVR(4,I) = OMEGA * SPHI * RT(I)
SINV(4,I) = OMEGA * SPHI * RT(I)
CALL TIMES(SINVR(4,I),SINV(4,I),SINVR(4,I),SINV(4,I),
1 SINVR(4,I),SINV(4,I))
SINVR(4,I) = -(SINVR(4,I) + A*A )
DTEMPR = RR(I) * OMEGA * SPHI
DTEMPI = RT(I) * OMEGA * SPHI
CALL DIVIDE(SINVR(4,I),SINV(4,I),DTEMPR,DTEMPI,SINVR(4,I),
1 SINVR(4,I))

SINV(5,I) = - RR(I) * OMEGA * SPHI
SINV(5,I) = -RT(I) * OMEGA * SPHI

SINVR(6,T) = A
SINV(6,T) = J.

BR = 0.

```

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

ROUTINE ADVANC

73774

OMT=1

FTN 4.0+424

127

```

      D = 0.
      D = D + K
      AMAZ = 0.
      DO 491 K=1,5
      AX = D3001*(R(1,K)**2 + SI(1,K)**2)
 491 AMAZ = MAX1(AX,AMAZ)
      DO 493 K=1,5
      CALL DIV1C(SR(1,K),SI(1,K),AMAZ,0,D001,SH(1,K),SI(1,K))
 493 S(1,K) = SH(1,K)/AMAZ
      DO 499 K=1,5
      CALL TAN1(SINVR(1,K),SINVOK,IF,SR(1,K),SI(1,K),UTENPR,DTENPI)
      S1 = S1 + DTENPR
      S1 = S1 + DTENPT
      C14P = SINV(S1,K) + S(1,K)
      S = S + C14P
 499 CONTINUE
      SINV(1,I) = SINV(1,I)/S
      SINV(2,I) = SINV(2,I)/S
      SINV(3,I) = SINV(3,I)/S
      SINV(4,I) = SINV(4,I)/S
      SINV(5,I) = SINV(5,I)/S
      SINV(6,I) = SINV(6,I)/S
      CALL DIV1C(SINVR(1,I),SINV(1,I),SR,BI,SINVR(1,I),SINV(1,I))
      CALL DIV1C(SINVR(2,I),SINV(2,I),SR,BI,SINVR(2,I),SINV(2,I))
      CALL DIV1C(SINVR(3,I),SINV(3,I),SR,BI,SINVR(3,I),SINV(3,I))
      CALL DIV1C(SINVR(4,I),SINV(4,I),SR,BI,SINVR(4,I),SINV(4,I))
      CALL DIV1C(SINVR(5,I),SINV(5,I),SR,BI,SINVR(5,I),SINV(5,I))
      CALL DIV1C(SINVR(6,I),SINV(6,I),SR,BI,SINVR(6,I),SINV(6,I))
 501 FORMAT(//1H )
 495 FORMAT(1X,LT4,10X,4.14E7)
      CALL OXIMAT(C,SINV,TENPI,6)
      CALL OXIMAT(SINV,S,TENPI,6)
      CALL COMPUTE(SR,SI,SINV,R,SINV1,PRUDL,6,6,6)
      CALL COMPUTE(SR,SI,SINV1,SR,SI,PRUDR,PRUDL,6,6,6)

```

10H OR THE SAME FOR WHEN THE VEHICLE IS STOPPED

```

P(1) = C*1.E-8*UMTGA
P(2) = -P(1)
A1 = 1./ZD001(1,1)
T(1,1) = -SP41 * A1
T(1,2) = SP41 * A1
T(1,3) = C*1.E-8*A1
T(2,1) = T(1,1)
T(2,2) = -T(1,2)
T(2,3) = SP41
T(3,1) = SP41
T(3,2) = C*
TINV(1,1) = -SP41 * A1
TINV(1,2) = T(1,1)
TINV(1,3) = SP41

```

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

CLASSIFIED

CHUTINE ALVANS

UNCLASSIFIED

OPT=1

UNCLASSIFIED

FTN 4.6+420

127

```

      TINV(2,1) = SPHT * A1
      TINV(2,2) = TINV(2,1)
      TINV(2,3) = SPHT
      TINV(3,1) = -C11 * A1
      TINV(3,2) = -TINV(3,1)
      TINV(3,3) = 1.

501 FORMAT(1F7.4,1X,1E12.4)
502 FORMAT(1X,1E12.4)
CALL XAMTAT(TINV,TSTY,0)
CALL XMMAT(T,TINV,TSTY,0)
CALL XMMAT(TINV,T,TSTY,0)
507 FORMAT(MAT AND TINV PRODUCT = 1E12.4)
RETURN
ENTRY TIME
ENTRY TIMEY
ENTRY TIMEX(T1,T2,PSI,XU,YA,POT,YPOS)
```

C THIS ENTRY AUTOMATICALLY CALCULATES THE TIME SHIFT MATRICES  
 C T1 IS THE TIME THE VEHICLE IS MOVING  
 C T2 IS THE TIME STOPPED  
 C THE DERIVATION OF THE VARIOUS OPERATIONS PERFORMED  
 C HERE TO BE FOUND IN THE PHOENIX JCPB REPORT

```

DT = T1 - T2
DO 600 K = 1,3
  DTMPK = PK(K) * DT
  DTEMPI = PI(K) * DT
  CP(K) = DEXP(DTAK) * DCON(DTEMPI)
  DTAK = DEXP(DTAKPK) * DCON(DTEMPI)
  CALL TIME(CP(K),DTEK,DTK(K),DT(K),D2R(K),D2I(K))

  UK(K) = DTAK(-K) * SNGL(DT)
  U2(K) = UK(K) * D(K)

507 CONTINUE
DO 700 I = 1,3
  DO 700 J = 1,3
    PIR(I,J) = 0.
    PHR(I,J) = 0.
    PHR(I,J) = 0.
    PHR(I,J) = 0.
    VCR(I,J) = 0.
    VLC(I,J) = 0.
    VLC(I,J) = 0.
    VLC(I,J) = 0.
    PH(I,J) = (0.,0.)
    PHC(I,J) = (0.,0.)
    VLC(I,J) = (0.,0.)
    VLC(I,J) = (0.,0.)
  DO 700 K = 1,3
```

CLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

SAC-2001-12



CLASSIFIED  
NTINC ADVANC

UNCLASSIFIED  
23/74 DPT=1

UNCLASSIFIED  
FTN 4.6+420

117

500 VLT(2,I) = VLIT(2,I) + VL(4,I)\*XPOS(N+1) - XPOS(N))  
501 PH(1,I) = PH(1,I) + PH(4,I)\*(YPOS(N+1)-YPOS(N))  
502 PH(2,I) = PH(2,I) + PH(4,I)\*(XPOS(N+1)-XPOS(N))  
503 VL(4,I) = VLIT(4,I) + VL(4,I)\*(YPOS(N+1)-YPOS(N))  
504 VL(2,I) = VLIT(2,I) + VL(4,I)\*(XPOS(N+1)-XPOS(N))  
505 FORMAT(\*1VL = \*1X,1ZT11,\*)  
506 FORMAT(\*1VL = \*1X,1ZT11,\*)  
507 FORMAT(\*1PH = \*1X,1ZT11,\*)  
508 DO 310 I = 1,6  
509 DO 310 J = 1,6  
510 RPH(I,J) = RP42(PH(I,J))  
511 PH(4,I) = PH(4,I)  
512 VL(1,I) = REAL(VLIT(I,J))  
513 VLIT(1,I) = VLIN(T,I)  
514 T(1) = 0.5\*P(1) + T2  
515 T(2) = 0.5\*P(2) + T2  
516 DO 310 T = 1,6  
517 DO 310 J = 1,6  
518 U(1,I,J) = P(1)\*TINV(T,I)\*T(1,J) + P(2)\*TINV(T,I)\*T(2,J)  
519 + TINV(T,I,J)\*T(3,J)  
520 VR(1,J) = (U(1,J)+1./P(1)\*TINV(T,I)\*T(1,J)  
521 + U(2,J)+1./P(2)\*TINV(T,I)\*T(2,J) + T2\*TINV(T,I)\*T(3,J))  
522 DO 310 T = 1,6  
523 DO 310 J = 1,6  
524 RPU(I,J) = RP41(PU(I,J))  
525 PU(1,I) = PU(1,I)  
526 DO 320 I = 1,6  
527 DO 320 J = 1,6  
528 RPH(3+I,J) = -OMEGA\*UPHIZ\*LAETH\*RPU(I,J)  
529 DO 320 J = 1,6  
530 RPH(3+I,3+J) = RPU(I,J)  
531 RPH(3+I,3+J) = RPH(I,J)  
532 CALL DYNAL(RPH1,RPH2,DUMM1,6,6,6)  
533 CALL DQUIN(RPU1,RPU2,DUMM1)  
534 DO 330 I = 1,6  
535 DO 330 J = 1,6  
536 PSI(N,I,J) = 0.  
537 CALL DABAT(RPH1,RPU1,DUMM1,6,6,6)  
538 CALL DADD(RPU1,DUMM1,DUMM2)  
539 CALL DQUIN(XL,DUMM2)  
540 RETURN  
541 END

1000 PREFERENCE (PAR (P=0))

1000 PREFERENCE  
1000 1 25  
1000 227 360

CLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

CLASSIFIED

ITLINE SOLVE

73474 081#1

UNCLASSIFIED

UNCLASSIFIED

FTN 4.6442

11

```

SUBROUTINE SOLVE (SQMAT,N,M,SMAT)
DOUBLE PRECISION D,SQMAT,DUM1M,DUM2,SMAT
DIMENSION SQMAT(10,24),I,SMAT(24)
DIMENSION DUM1(23)+L(23),I(23)+COLUMN(23),DUM2(629)+DUM2(23,23)
DO 10 I=1,N2M
DO 10 J=1,N2M
20 DUM1(I+J-1)*N2M = SQMAT(I,J)
DO 25 I=1,N2M
30 COLUMN(I) = SQMAT(I,N2M)
TUMTH = ION + N2M
CALL QINIV(DUM1M,N2M,D,L,M,TUMTH)
DO 35 I=1,N2M
40 COL2(I,J) = 0,
DO 250 J=1,N2M
400 COL2(I) = COL2(I) + DUM1(I+(J-1)*N2M)*COLUMN(J)
DO 370 I=1,N2M
450 SUMAT(I,J) = DUM1(I+(J-1)*N2M)
IX = 23
IY = 24
500 CALL QXNATE(SQMAT,DUM1M,DUM2,N2M,IX,IY)
550 I=1,N2M
600 FORMAT('100 MAT = ',/1A,2L15,8F)
650 ITIT76,7033MT
700 FORMAT(' PRODUCT OF SMAT AND INVERSE = ',/1X,5E16,8F)
RETURN
END

```

CLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

CLASSIFIED  
CENTRAL INTELLIGENCE AGENCY

UNCLASSIFIED  
73/74 02181

UNCLASSIFIED  
FTN 4-6420

1

C SUBROUTINE DTRMM (A,B)

C COMPUTES ONE OF THE FOLLOWING: A := B \* A, A := B \* A \* B,  
C A := A \* B, A := A \* B \* B, WHERE A IS AN N BY N MATRIX AND B  
C IS AN N BY M MATRIX.

SUBROUTINE DTRMM (A,B)  
DOUBLE PRECISION A,B  
DIMENSION A(1:N,1:M),B(1:N,1:M)  
DO 210 I = 1,N  
DO 210 J = 1,M  
210 B(I,J) = A(I,J)  
RETURN  
END

SUBROUTINE DTRMV (A,B)  
DOUBLE PRECISION A,B  
DIMENSION A(1:N,1:N),B(1:N,1:M)  
DO 210 I = 1,N  
DO 210 J = 1,M  
210 B(I,J) = A(I,J)  
RETURN  
END

SUBROUTINE DTRML (A,B)  
DOUBLE PRECISION A,B  
DIMENSION A(1:N,1:N),B(1:N,1:M)  
DO 210 I = 1,N  
DO 210 J = 1,M  
210 B(I,J) = A(I,J)  
RETURN  
END

SUBROUTINE DTRMR (A,B)  
DOUBLE PRECISION A,B  
DIMENSION A(1:N,1:N),B(1:N,1:M)  
DO 210 I = 1,N  
DO 210 J = 1,M  
210 B(I,J) = A(I,J)  
RETURN  
END

UNCLASSIFIED

SUBROUTINE SUMMA(A,N,M)

UNCLASSIFIED

75774 28151

UNCLASSIFIED

RTN 4.6+42J

```
SUBROUTINE SUMMAT(A,C,D,I,J,K)
COMPLEX A(I,N),C(N,I),D(N,N)
DO 220 I = 1,N
  DO 220 J = 1,N
    C(I,J) = (A,I,J)
  DO 220 K = 1,N
    C(I,J) = C(I,J) + A(I,K) * D(K,J)
  RETURN
END
```

```
SUBROUTINE SUMM(B,N,I,J)
DOUBLE PRECISION A,B,C
DIMENSION A(1:N),B(1:N),C(1:N)
DO 220 I = 1,N
  DO 220 J = 1,N
    C(I,J) = A(I,J) + B(I,J)
  RETURN
END
```

```
SUBROUTINE SADD(A,B,C)
DOUBLE PRECISION A,B,C
DIMENSION A(1:N),B(1:N),C(1:N)
DO 220 I = 1,N
  DO 220 J = 1,N
    C(I,J) = A(I,J) + B(I,J)
  RETURN
END
```

```
SUBROUTINE CK45T(A,B,C,D,E,F)
DOUBLE PRECISION A,B,C,D,E,F
DIMENSION A(1:N),B(1:N),C(1:N),D(1:N)
DO 220 I = 1,N
  DO 220 J = 1,N
    C(I,J) = 0,
    DO 220 K = 1,N
      C(I,J) = C(I,J) + A(I,K) * B(K,J)
    RETURN
END
```

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED  
10/74 021-1

UNCLASSIFIED  
FTN 4.64420

11

SUBROUTINE DMINV

PURPOSE

INVERSE A MATRIX

USAGE

CALL DMINV(A,N,D,L,W)

DESCRIPTION OF PARAMETERS

A = INPUT MATRIX, DESTROYED IN COMPUTATION AND REPLACED BY  
RESULANT INVERSE.  
N = ORDER OF MATRIX A  
D = RESULANT DETERMINANT  
L = WORK VECTOR OF LENGTH N  
W = WORK VECTOR OF LENGTH N

NOTES

MATRIX A MUST BE A GENERAL MATRIX

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED

NUMS, ABS, DSQRT

METHOD

THE STANDARD GAUSS-JORDAN METHOD IS USED. THE DETERMINANT  
IS ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES THAT  
THE MATRIX IS SINGULAR.

\*\*\*\*\*  
SUBROUTINE DMINV(A,N,D,L,W,IUNIT)  
DIMENSION A(1),L(1),W(1)  
DIMENSION D(1),IUNIT,L(1),W(N)

\*\*\*\*\*  
IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE  
C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION  
STATEMENT WHICH FOLLOWS.

DOUBLE PRECISION ABS,DSQRT,MOD

THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS  
APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS  
ROUTINE.

THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO  
CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. ABS IN STATEMENT  
10 MUST BE CHANGED TO DBABS.

\*\*\*\*\*  
SEARCH FOR LARGEST ELEMENT

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNIVERSITY

UNCLASSIFIED

P. 14 - 10 + 20

10

CLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

~~CLASSIFIED~~

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED  
FTV 4-04420

KUE=AM  
DO 70 J=1,N  
KJ=J+1  
1F (J-K) 71,75,77  
75 A(KJ)=A(KJ)/SIGA  
79 COMPUTME

三  
六  
七  
八

AT&T=1.0/2104  
at CONTINUE

CLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

CLASSIFIED

ROUTINE ORIGIN

7777+

UNCLASSIFIED

08T+1

UNCLASSIFIED

FTN 4.6+420

1000 RULG=5 (K1)  
J7=CT-NFJ  
A(NT)=A(J7)  
140 A(J7)=HOLD  
GO TO 140  
120 RETURN

CLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

CLASSIFIED

UNCLASSIFIED

70674 OPT=1

UNCLASSIFIED

FTI 4.6#420

11

SUBROUTINE ATINV

PURPOSE  
INVERT A MATRIX

USAGE  
CALL ATINV(A,N,P,L,B)

DESCRIPTION OF PARAMETERS

- A = INPUT MATRIX, DESTROYED IN COMPUTATION AND REPLACED BY RESULTANT INVERSE.
- N = ORDER OF MATRIX A
- P = RESULTANT DETERMINANT
- L = WORK VECTOR OF LENGTH N
- B = WORK VEC FOR LENGTH N

REMARKS

MATRIX A MUST be A GENERAL MATRIX

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED  
None

METHOD

THE STANDARD GAUSS-JORDAN METHOD IS USED. THE DETERMINANT IS ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES THAT THE MATRIX IS SINGULAR.

\*\*\*\*\*  
SUBROUTINE ATINV(A,N,P,L,B,TINTH)

DIMENSION A(1),L(1),B(1)

DIMENSION P(1),TINTH,L(1),N(N)

\*\*\*\*\*

If a double precision version of this routine is desired, the \$1 in column 1 should be removed from the double precision statement which follows.

DOUBLE PRECISION A,B,DGA,HOLD

The \$1 must also be removed from double precision statements appearing in other routines used in conjunction with this subroutine.

The double precision version of this subroutine must also contain double precision FORTRAN FUNCTIONS. ADD IN STATEMENT 20 must be changed to 7000.

\*\*\*\*\*  
SEARCH FOR LARGEST ELEMENT

CLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED  
EX-1 4-542

140

CLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

201 TIME STEP

75474 08181

UNCLASSIFIED

ETM 4.6+42.0

11.

C  
C  
C

REDUCE MATRIX

DO 65 I=1,N  
IF(I,I,I)  
HOLD=A(IK)  
J=I+1  
DO 67 J=I+1,N  
IF(J,J,J)  
TH(1:N)=B(1:N),B(1:N)  
67 TH(J)=A(KJ)+HOLD\*A(JK)  
68 K=I+1+K  
A(IJ)=HOLD\*A(KJ)+A(IJ)  
69 CONTINUE

C  
C  
C

DIVIDE FOR L1 PIVOT

KJ=K+N  
DO 75 J=1,N  
KJ=KJ+J  
IF(J=K) 70,75,77  
70 A(KJ)=A(KJ)/3125  
75 CONTINUE

C  
C  
C

PRODUCT OF PIVOTS

C  
C  
C

UNPRINTGA

C  
C  
C

REPLACE PIVOT BY REVERSE OF

C  
C  
C

A(KK)=1.0\*PIGA

C  
C  
C

COMMITMENT

C  
C  
C

FINAL ROW AND COLUMN INTERCHANGES

K=N  
101 K=N+1  
102 IF(K)=153,154,175  
103 I=L(K)  
104 IF(I=K) 120,121,119  
105 J=I+1\*(K+1)  
106 JP=I+\*(J+1)  
107 DO 120 J=1,N  
108 JN=J-K+J  
109 HOLD=A(JK)  
110 JI=JP+J  
111 A(IK)=-A(JI)  
112 A(JI)=HOLD  
113 J=M(K)  
114 IF(J=K) 101,103,125  
115 KT=N+K  
116 DO 130 I=1,N  
117 KI=KI+N

CLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

CLASSIFIED

UNROUTING MINW

73774

UNCLASSIFIED

UNCLASSIFIED

SI

2P1#1

FTN 4.0+420

HOLD FOR R&D  
SI-KT-K41  
A(KT)-H41  
130 AUG 1 1968  
GO TO 100  
150 RETURN  
END

CLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED  
ROUTINE TIMES

UNCLASSIFIED  
75/74 OPT=1

UNCLASSIFIED  
FTN 4.6+420

```
1      SUBROUTINE TIMES(AR,AI,BR,BI,CR,CI)
2      IMPLICIT REAL*8 (A-H,O-Z)
3      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
4      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
5
6      THIS ROUTINE PERFORMS MULTIPLICATION A * B = C IN COMPLEX MODE.
7
8      CR = AR * BR + AI * BI
9      CI = AR * BI + AI * BR
10
11     RETURN
12     END
```

  

```
1      SUBROUTINE DIVIDE(AR,AI,BR,BI,CR,CI)
2      IMPLICIT REAL*8 (A-H,O-Z)
3      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
4      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
5
6      THIS ROUTINE PERFORMS DIVISION A/B = C IN COMPLEX MODE.
7
8      CR = (AR * BR + AI * BI) / (BR * BR + BI * BI)
9      CI = (CR * AI - AR * BI) / (BR * BR + BI * BI)
10
11     RETURN
12     END
```

UNCLASSIFIED  
SUBROUTINE COMPRD

UNCLASSIFIED  
7/3/74 OPT=1

UNCLASSIFIED  
FTN 4.6+420

SUBROUTINE COMPRD(A,AL,B,BL,R,RA,N,M,L)  
IMPLICIT DOUBLE PRECISION (A-H,O-Z)  
IMPLICIT REAL\*8 (A-H,O-Z)  
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

SIMULATE COMPLEX MATRIX MULTIPLICATION WITH REAL ARRAYS

```
DIMENSION A(36),B(36),R(36),AI(36),BI(36),RA(36)
IR = 0
IK = -M
DO 10 K=1,L
  IK = IK + M
  DO 10 J=1,N
    IR = IR + 1
    JI = J - M
    IR = IK
    R (IR) = 0.
    S (IR) = 0.
    DO 10 I = 1,M
      JI = JI + N
      IR = IR + 1
      CALL FINTS(A (JI),AI (JI),B (IB),BI (IB),DTEMPR,DTEMPI)
      R (IR) = R (IR) + DTEMPR
      10 R (IR) = R (IR) + DTEMPI
      RETURN
      END
```

```
SUBROUTINE ADD(A,B,C)
DIMENSION A(6,6),B(6,6),C(6,6)
DO 200 I = 1,6
  DO 200 J = 1,6
    200 C(I,J) = A(I,J) + B(I,J)
    RETURN
    END
```

```
SUBROUTINE XMATE(A,I,C,N)
DIMENSION A(N,N),C(N,N)
DO 200 I = 1,N
  DO 200 J = 1,N
    C(I,J) = 0.
    DO 200 K = 1,N
      200 C(I,J) = C(I,J) + A(I,K) * B(K,J)
    RETURN
    END
```

UNCLASSIFIED  
VARIANCES OF APPROXIMATE FUND

UNCLASSIFIED

UNCLASSIFIED

TOTAL VARIANCE = 1.9168174473  
NUMBER OF VARIANCES = 47  
SUM = 1.4269481661

| STEP | APP VARIANCE    | APP VARIANCE    | VARIANCE        |
|------|-----------------|-----------------|-----------------|
| 1    | .6344435412     | .613982414734   | .642002130115   |
| 2    | .720763864401   | .725072842902   | .75793786513    |
| 3    | .625235038472   | .6580394937470  | .838742316414   |
| 4    | .6002964724402  | .685772407738   | .136534231478   |
| 5    | .7201720577412  | .4543618415774  | .237215457607   |
| 6    | .62814121201474 | .182551647742   | .317391934637   |
| 7    | .6271453714602  | .625965862746   | .632530218742   |
| 8    | .6271743501474  | .6003423737473  | .146973746108   |
| 9    | .6232223472401  | .460741347814   | .163121851570   |
| 10   | .6283912101474  | .4360217042730  | .576575683735   |
| 11   | .6256145077402  | .5477670791734  | .737214461637   |
| 12   | .6252747301474  | .131856127743   | .178277517703   |
| 13   | .6253352954402  | .117110087347   | .64152772573    |
| 14   | .6263735819472  | .6094380937474  | .284428271070   |
| 15   | .6263842032472  | .2427136387473  | .142313244674   |
| 16   | .62446058472473 | .7274625515764  | .737277061805   |
| 17   | .62443038567402 | .1153731724653  | .450065535742   |
| 18   | .6244632431474  | .74165312274    | .26233308160    |
| 19   | .6267284957402  | .4137737177463  | .83321772574    |
| 20   | .6281439114741  | .772370303074   | .719647797534   |
| 21   | .6284409381474  | .244343835977   | .740579281504   |
| 22   | .6284272714741  | .3342756179474  | .575723912654   |
| 23   | .6284273477472  | .4159615127473  | .45824894574    |
| 24   | .6284296327474  | .410427804173   | .703956534074   |
| 25   | .62842964751473 | .4374231337472  | .62235770747    |
| 26   | .62842964751473 | .6343385819472  | .33743334787    |
| 27   | .62842964751473 | .4593231679473  | .31171271571    |
| 28   | .62842964751473 | .6924294152473  | .241545021470   |
| 29   | .62842964751473 | .4278461917473  | .143321301774   |
| 30   | .62842964751473 | .6237610477472  | .737582936173   |
| 31   | .62842964751473 | .61028571167473 | .139345650748   |
| 32   | .62842964751473 | .4192470177473  | .52843744417    |
| 33   | .62842964751473 | .4093707277473  | .4252194742473  |
| 34   | .62842964751473 | .40283747307473 | .71034224637    |
| 35   | .62842964751473 | .41026012747473 | .104087272473   |
| 36   | .62842964751473 | .8486340136173  | .4916012127473  |
| 37   | .62842964751473 | .6105339177473  | .64384057057473 |
| 38   | .62842964751473 | .6141010747473  | .13721247417473 |
| 39   | .62842964751473 | .61028571167473 | .27743975917473 |
| 40   | .62842964751473 | .6268647037473  | .27802438177473 |

UNCLASSIFIED

UNCLASSIFIED

| MUPT4          | 24ST          | TOTAL VARIANCE |
|----------------|---------------|----------------|
| +123039195405  | +643394720+01 | +31293130E+01  |
| +64745934E+01  | +22474545E+15 | +31303059E+01  |
| +443103692E+04 | +45782259E+00 | +33373144E+01  |
| +40269027E+02  | +43245450E+04 | +33374603E+01  |
| +28720693E+03  | +12327745E+01 | +38163354E+01  |
| +10134660E+01  | +67102105E+03 | +38172459E+01  |
| +27784650E+03  | +18159214E+01 | +45215392E+01  |
| +18072501E+01  | +92165109E+03 | +45220558E+01  |
| +24590765E+02  | +27772819E+01 | +54111647E+01  |
| +27814663E+01  | +22347310E+02 | +54122052E+01  |
| +51505029E+02  | +38382105E+01 | +64502642E+01  |
| +36892093E+01  | +41249675E+02 | +64519950E+01  |
| +94029632E+02  | +30345210E+01 | +70137867E+01  |
| +51085011E+01  | +85772001E+02 | +76127026E+01  |
| +10364533E+01  | +63837526E+01 | +8861417E+01   |
| +64146840E+01  | +14183372E+01 | +88659417E+01  |
| +23161470E+01  | +77339278E+01 | +10182158E+02  |
| +77338231E+01  | +81861427E+01 | +10190189E+02  |
| +37234044E+01  | +31214694E+01 | +11523570E+02  |
| +91336090E+01  | +32021550E+01 | +11565129E+02  |
| +57154266E+01  | +10631759E+02 | +12064409E+02  |
| +20580014E+02  | +44364307E+01 | +12977243E+02  |
| +77136468E+01  | +11021049E+02 | +14393398E+02  |
| +12628953E+02  | +51380373E+01 | +14409465E+02  |
| +97438513E+01  | +13860109E+02 | +198355603E+02 |
| +184749144E+02 | +73867105E+01 | +19859377E+02  |
| +12762831E+00  | +14773490E+02 | +17273310E+02  |
| +14339512E+02  | +18205166E+00 | +17290103E+02  |
| +16216723E+00  | +16157287E+02 | +18704413E+02  |
| +15314374E+02  | +12796731E+02 | +18720354E+02  |
| +20308548E+02  | +27242738E+02 | +20103752E+02  |
| +17705976E+02  | +15752370E+02 | +20175133E+02  |
| +25034594E+02  | +13337323E+02 | +21515935E+02  |
| +19166823E+02  | +29070417E+02 | +21527073E+02  |
| +37423460E+02  | +47123529E+02 | +22639329E+02  |
| +203796489E+02 | +22781730E+02 | +22691365E+02  |
| +36520848E+02  | +24307001E+02 | +24232737E+02  |
| +221035764E+02 | +26306319E+02 | +24219112E+02  |
| +45336727E+02  | +22071561E+02 | +26545649E+02  |
| +22906730E+02  | +31285740E+00 | +29519366E+02  |

UNCLASSIFIED

UNCLASSIFIED

五



UNCLASSIFIED  
VALIDATION OF INDIVIDUAL POINTSTOTAL VARIANCE = 1218.0714  
NUMBER OF POINTS = 40  
SUMIT = 14422.64872

| STEP | POINT NUMBER | POINT X       | POINT Y       | POINT Z       | POINT TOTL |
|------|--------------|---------------|---------------|---------------|------------|
| 1    | 1            | 104.219 + 0.0 | 117.629 - 0.0 | 179.367 + 0.0 | 401.176    |
| 2    | 2            | 107.745 + 0.0 | 112.736 - 0.0 | 182.324 + 0.0 | 402.805    |
| 3    | 3            | 102.225 + 0.0 | 115.502 - 0.0 | 178.777 + 0.0 | 406.500    |
| 4    | 4            | 105.342 + 0.0 | 113.523 - 0.0 | 181.104 + 0.0 | 400.965    |
| 5    | 5            | 101.121 + 0.0 | 118.135 - 0.0 | 181.135 + 0.0 | 400.386    |
| 6    | 6            | 104.073 + 0.0 | 112.006 - 0.0 | 178.006 + 0.0 | 404.085    |
| 7    | 7            | 107.212 + 0.0 | 110.813 - 0.0 | 179.513 + 0.0 | 405.535    |
| 8    | 8            | 100.277 + 0.0 | 116.347 - 0.0 | 176.341 + 0.0 | 403.964    |
| 9    | 9            | 105.092 + 0.0 | 111.782 - 0.0 | 177.021 + 0.0 | 403.803    |
| 10   | 10           | 107.562 + 0.0 | 112.716 - 0.0 | 177.216 + 0.0 | 407.494    |
| 11   | 11           | 105.707 + 0.0 | 113.912 - 0.0 | 177.412 + 0.0 | 406.031    |
| 12   | 12           | 103.763 + 0.0 | 114.387 - 0.0 | 177.863 + 0.0 | 405.930    |
| 13   | 13           | 106.925 + 0.0 | 115.744 - 0.0 | 177.925 + 0.0 | 409.654    |
| 14   | 14           | 104.750 + 0.0 | 117.474 - 0.0 | 178.320 + 0.0 | 406.444    |
| 15   | 15           | 108.242 + 0.0 | 113.267 - 0.0 | 177.474 + 0.0 | 409.983    |
| 16   | 16           | 105.507 + 0.0 | 118.747 - 0.0 | 177.507 + 0.0 | 407.754    |
| 17   | 17           | 103.737 + 0.0 | 115.374 - 0.0 | 177.737 + 0.0 | 406.844    |
| 18   | 18           | 107.077 + 0.0 | 111.845 - 0.0 | 177.077 + 0.0 | 405.997    |
| 19   | 19           | 104.709 + 0.0 | 117.719 - 0.0 | 177.709 + 0.0 | 406.428    |
| 20   | 20           | 108.493 + 0.0 | 113.505 - 0.0 | 178.493 + 0.0 | 410.493    |
| 21   | 21           | 106.127 + 0.0 | 118.277 - 0.0 | 177.127 + 0.0 | 409.527    |
| 22   | 22           | 104.361 + 0.0 | 114.931 - 0.0 | 177.361 + 0.0 | 407.692    |
| 23   | 23           | 107.627 + 0.0 | 112.627 - 0.0 | 177.627 + 0.0 | 409.876    |
| 24   | 24           | 105.863 + 0.0 | 117.242 - 0.0 | 177.863 + 0.0 | 408.996    |
| 25   | 25           | 103.515 + 0.0 | 119.777 - 0.0 | 178.515 + 0.0 | 407.702    |
| 26   | 26           | 107.182 + 0.0 | 114.307 - 0.0 | 177.182 + 0.0 | 409.602    |
| 27   | 27           | 104.420 + 0.0 | 119.837 - 0.0 | 177.420 + 0.0 | 408.667    |
| 28   | 28           | 106.621 + 0.0 | 112.110 - 0.0 | 176.621 + 0.0 | 409.352    |
| 29   | 29           | 103.821 + 0.0 | 117.581 - 0.0 | 177.821 + 0.0 | 407.222    |
| 30   | 30           | 107.367 + 0.0 | 110.857 - 0.0 | 177.367 + 0.0 | 409.594    |
| 31   | 31           | 105.592 + 0.0 | 116.222 - 0.0 | 177.592 + 0.0 | 408.306    |
| 32   | 32           | 103.821 + 0.0 | 118.592 - 0.0 | 177.821 + 0.0 | 407.243    |
| 33   | 33           | 106.456 + 0.0 | 113.866 - 0.0 | 176.456 + 0.0 | 409.792    |
| 34   | 34           | 104.687 + 0.0 | 119.336 - 0.0 | 177.687 + 0.0 | 408.663    |
| 35   | 35           | 107.226 + 0.0 | 115.006 - 0.0 | 177.226 + 0.0 | 409.452    |
| 36   | 36           | 105.459 + 0.0 | 111.376 - 0.0 | 177.459 + 0.0 | 408.234    |
| 37   | 37           | 103.685 + 0.0 | 116.745 - 0.0 | 177.685 + 0.0 | 407.110    |
| 38   | 38           | 106.323 + 0.0 | 113.115 - 0.0 | 176.323 + 0.0 | 409.743    |
| 39   | 39           | 104.556 + 0.0 | 118.485 - 0.0 | 177.556 + 0.0 | 408.556    |
| 40   | 40           | 107.193 + 0.0 | 114.855 - 0.0 | 177.193 + 0.0 | 409.645    |

UNCLASSIFIED

UNCLASSIFIED

| NORTH         | EAST          | TOTAL VARIANCE |
|---------------|---------------|----------------|
| +12503300E+05 | +64039472E+01 | +31298200E+01  |
| +920E+01      | +12047464E+01 | +3130053E+01   |
| +170E+01      | +40761259E+00 | +33373381E+01  |
| +470E+01      | +43245450E+01 | +33374639E+01  |
| +7200E+03     | +10033455E+03 | +38169647E+04  |
| +100E+01      | +27462063E+03 | +38170459E+01  |
| +170E+01      | +18159214E+01 | +45220736E+01  |
| +230E+01      | +92138199E+03 | +45221553E+01  |
| +340E+01      | +27772319E+01 | +54122700E+01  |
| +420E+01      | +22947312E+02 | +54122753E+01  |
| +510E+01      | +38332165E+01 | +54526162E+01  |
| +580E+01      | +47248673E+02 | +64519972E+01  |
| +650E+01      | +60945310E+01 | +73131619E+01  |
| +720E+01      | +89772091E+02 | +76127035E+01  |
| +790E+01      | +63363526E+01 | +88675302E+01  |
| +860E+01      | +14183072E+01 | +88659456E+01  |
| +930E+01      | +77330789E+01 | +10194300E+02  |
| +1000E+01     | +21331427E+01 | +10197139E+02  |
| +1070E+01     | +91214694E+01 | +11574110E+02  |
| +1140E+01     | +42021550E+01 | +11566149E+02  |
| +1210E+01     | +10531759E+02 | +129911273E+02 |
| +1280E+01     | +44034917E+01 | +12977237E+02  |
| +1350E+01     | +11951049E+02 | +14432020E+02  |
| +1420E+01     | +60681373E+01 | +14439534E+02  |
| +1490E+01     | +13069399E+02 | +15837215E+02  |
| +1560E+01     | +79067180E+01 | +16858958E+02  |
| +1630E+01     | +14773490E+02 | +17342217E+02  |
| +1700E+01     | +10205088E+00 | +17230291E+02  |
| +1770E+01     | +16157287E+02 | +18794325E+02  |
| +1840E+01     | +12795731E+00 | +18721137E+02  |
| +1910E+01     | +17313738E+02 | +20235830E+02  |
| +1980E+01     | +19752370E+00 | +20135547E+02  |
| +2050E+01     | +10337329E+02 | +21651734E+02  |
| +2120E+01     | +19079417E+01 | +21527662E+02  |
| +2190E+01     | +20127629E+02 | +23068336E+02  |
| +2260E+01     | +20761780E+00 | +22892684E+02  |
| +2330E+01     | +21308551E+02 | +24452611E+02  |
| +2400E+01     | +26836519E+00 | +24220287E+02  |
| +2460E+01     | +22570581E+02 | +25812347E+02  |
| +2530E+01     | +31235740E+00 | +25519924E+02  |

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

MNGI-3-SIELO

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

| PT10A          | NORTH         | EAST          | TOTAL VARIANCE |
|----------------|---------------|---------------|----------------|
| .537970377E+01 | .19780893E+05 | .15178355E+00 | .31672648E+01  |
| .13930662E+10  | .10179377E+00 | .19358792E+05 | .31674544E+01  |
| .62400147E+04  | .71833172E+04 | .65378015E+00 | .35894627E+01  |
| .21754442E+08  | .69842205E+00 | .69310386E+04 | .35896386E+01  |
| .33247766E+03  | .46154672E+03 | .16514413E+01 | .44655495E+01  |
| .35646936E+17  | .16521511E+01 | .44112063E+03 | .44659012E+01  |
| .11932727E+02  | .16131943E+02 | .30211515E+01 | .57379507E+01  |
| .26010371E+08  | .30234026E+01 | .15215627E+02 | .57387991E+01  |
| .27372394E+02  | .41291193E+02 | .47177894E+01 | .73544369E+01  |
| .94869592E+06  | .47232106E+01 | .38376503E+02 | .73563538E+01  |
| .87242250E+02  | .87440936E+02 | .66346981E+01 | .92675773E+01  |
| .29509162E+05  | .87157405E+01 | .60024766E+02 | .92714171E+01  |
| .13433893E+01  | .15207543E+01 | .69097296E+01 | .11435165E+02  |
| .38041995E+05  | .89308165E+01 | .14707150E+01 | .11443149E+02  |
| .17810344E+01  | .27682029E+01 | .11323657E+02 | .13817713E+02  |
| .11281711E+04  | .11358154E+02 | .24612070E+01 | .13829344E+02  |
| .26335961E+01  | .43957935E+01 | .13001571E+02 | .16380395E+02  |
| .126042041E+04 | .13954644E+02 | .38434787E+01 | .16398163E+02  |
| .142461379E+01 | .66151831E+01 | .16611913E+02 | .19093412E+02  |
| .52647846E+14  | .16689369E+02 | .56655985E+01 | .19116753E+02  |
| .61131695E+01  | .95319071E+01 | .19425321E+02 | .21927401E+02  |
| .96869278E+04  | .10534437E+02 | .80369532E+01 | .21957415E+02  |
| .184976523E+01 | .17256685E+00 | .22017441E+02 | .24857843E+02  |
| .16610376E+03  | .22464737E+02 | .11017047E+00 | .24894306E+02  |
| .11588731E+00  | .17845639E+00 | .25266194E+02 | .27865330E+02  |
| .21267321E+03  | .25468927E+02 | .14657936E+00 | .27319553E+02  |
| .15007766E+00  | .23504525E+00 | .28246354E+02 | .33923098E+02  |
| .42963438E+03  | .26491210E+02 | .18325453E+00 | .30963193E+02  |
| .19352813E+00  | .31297267E+00 | .31241679E+02 | .34019533E+02  |
| .187931044E+03 | .31556892E+02 | .23977243E+00 | .34069459E+02  |
| .24431439E+00  | .38729671E+00 | .34205683E+02 | .37137991E+02  |
| .52243459E+03  | .34612934E+02 | .29314510E+00 | .37189127E+02  |
| .130489239E+03 | .47704139E+00 | .37210803E+02 | .40264955E+02  |
| .12273238E+02  | .37681086E+02 | .30470476E+00 | .40313833E+02  |
| .37400462E+00  | .35319620E+00 | .40163200E+02 | .43388669E+02  |
| .17842764E+02  | .40724740E+02 | .43971725E+00 | .43430864E+02  |
| .45349117E+00  | .70307441E+00 | .43071464E+02 | .40499341E+02  |
| .24961300E+02  | .45727616E+02 | .52290358E+00 | .46516078E+02  |
| .54295150E+00  | .8488639E+00  | .45931182E+02 | .49583468E+02  |
| .32845354E+02  | .46701689E+02 | .61529966E+00 | .49585276E+02  |

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED  
VARIANCE OF SOLUTION .11697+01  
INDIVIDUAL SCORED ROPPS

UNCLASSIFIED  
SIGMA .17326+00

1 .2449E-02  
2 .1301E+00  
3 .+5007E-01  
4 .4393E+01  
5 .6219E-01  
6 .6200E-02  
7 .7009E-01  
8 .1876E-01  
9 .1908E-01  
10 .1017E-01  
11 .2810E-01  
12 .-5995E-02  
13 .0796E-01  
14 .7513E-04  
15 .2326E-01  
16 .4030E+03  
17 .1863E-01  
18 .1422E-02  
19 .1216E-01  
20 .5805E-02  
21 .1953E-01  
22 .1200E-01  
23 .1825E-01  
24 .1738E-01  
25 .1507E-01  
26 .2327E-01  
27 .1709E-01  
28 .3483E-01  
29 .1717E-01  
30 .4869E-01  
31 .1800E-01  
32 .7037E-01  
33 .1055E-01  
34 .6579E-01  
35 .1712E-01  
36 .7983E-01  
37 .1745E-01  
38 .0773E-01  
39 .1011E-01  
40 .1047E+00

NO PLO O

UNCLASSIFIED  
RESULTS WITHOUT VERTICAL GYRO DRIFT

GYRO DRIFT RATES. BETA .4973E-09

DEFLECTIONS OF MGR

XI BETA

UNCLASSIFIED

GAMMA -.3002E-09

UNCLASSIFIED

NORTH POS

EAST POS

.270650E+04  
.217271E+04  
.211341E+04  
.212694E+04  
.210354E+04  
.249314E+04  
.207576E+04  
.203745E+04  
.203271E+04  
.201513E+04  
.200071E+04

0.  
.166610E+05  
.103933E+05  
.143512E+05  
.799941E+06  
.710322E+06  
.522017E+06  
.373144E+06  
.245447E+06  
.110776E+06  
0.

0.  
0.  
0.  
.216500E+06  
.433910E+06  
.649510E+06  
.111101E+07  
.123650E+07  
.136450E+07  
.114490E+07

0.  
.250001E+06  
.500000E+06  
.750000E+06  
.875000E+06  
.100000E+07  
.112500E+07  
.358430E+06  
.591990E+06  
.754820E+06  
.750490E+06

UNCLASSIFIED  
VARIANCE OF SOLUTION .2688E+01  
INDIVIDUALSQUARES

UNCLASSIFIED  
SIGMA .8724E-01

UNCLASSIFIED

1 .1094E-07  
2 .1072E+00  
3 .5756E-02  
4 .2379E-02  
5 .6917E-02  
6 .7130E-03  
7 .4639E-02  
8 .4287E-02  
9 .3103E-02  
10 .1372E-01  
11 .4102E-02  
12 .4917E-02  
13 .6241E-02  
14 .1028E-02  
15 .5155E-02  
16 .3366E-02  
17 .3633E-02  
18 .6453E-02  
19 .4728E-02  
20 .5129E-02  
21 .5291E-02  
22 .3914E-02  
23 .5379E-02  
24 .5175E-02  
25 .3571E-02  
26 .5003E-02  
27 .4911E-02  
28 .4727E-02  
29 .5212E-02  
30 .3356E-02  
31 .5577E-02  
32 .2448E-02  
33 .3305E-02  
34 .5055E-02  
35 .3485E-02  
36 .1206E-01  
37 .2945E-02  
38 .4191E-02  
39 .9270E-02  
40 .2843E-02

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

REF ID: A

UNCLASSIFIED  
RESULTS WITHOUT GYRO DATA'S

UNCLASSIFIED

UNCLASSIFIED

DEFLECTIONS OF VERT

XI

ETA

NORTH POS

EAST POS

|             |              |             |             |
|-------------|--------------|-------------|-------------|
| .200000E+04 | 0.           | 0.          | 0.          |
| .248152E+04 | .289741E+05  | 0.          | .250000E+06 |
| .206181E+04 | .141701E+05  | 0.          | .500000E+06 |
| .206493E+04 | .141298E+05  | 0.          | .750000E+06 |
| .255701E+04 | .646298E+05  | .642651E+06 | .375000E+06 |
| .205264E+04 | .032630E+06  | .433010E+06 | .100000E+07 |
| .204302E+04 | .251607E+06  | .649509E+06 | .112500E+07 |
| .205483E+04 | .200503E+06  | .111429E+07 | .908496E+06 |
| .201307E+04 | .567273E+06  | .123052E+07 | .691992E+06 |
| .200126E+04 | .-117044E+06 | .436152E+07 | .475480E+06 |
| .200700E+04 | 0.           | .124459E+07 | .350480E+06 |