Theory of Computing:

6. Context Free Grammars

Professor Imed Bouchrika

National Higher School of Artificial Intelligence imed.bouchrika@ensia.edu.dz

Outline:

- Regular and Non-regular languages
 - Pumping Lemma
 - Closure Properties
 - Examples
- Context-Free Grammars
 - Reading grammars
 - Creating grammars
- Derivation Trees
- Chomsky Normal Form

- Encoding Problems into a Language...
 - There are decisional problems that we need to automate the way to solve them
 - We encode them as a language
 - We create the Automaton for the language that we have created.
 - To solve an instance of the problem,
 - Encode the instance as a word
 - The machine will automatically recognize the word in the language or not in the language

• Encoding Problems into a Language...

- Calculator: how to validate it is a valid format?
- 0 1+2=
- 0 1/2=
- 0 +-2+++1=
- o *1+1=
- -1+1=

- Encoding Problems into a Language...
 - Calculator: how to validate it is a valid format?
 - 0 1+2=
 - 0 1/2=
 - o +-2+++1=
 - o *1+1=
 - -1+1=

$$(+|-|\epsilon)[0-9]^{+}(+|-|/(-|\epsilon)|x(-|\epsilon))[0-9]^{+}=$$

- Calculator: how to validate it is a valid format?
- 0 1+2=
- 0 1/2=
- o +-2+++1=
- o *1+1=
- -1+1=

This is a regular language

- Calculator: how to validate it is a valid format? Scientific or advanced?
- 0 (1+2)=
- o (4*(2+3))/2=

- Regular Languages.
 - Is the set of languages which can be represented by a deterministic finite automaton (or NFA or RegEx)

- Proving that a Language is Regular.
 - o Pumping Lemma?

- Proving that a Language is Regular.
 - Either by Creating:
 - DFA
 - NFA
 - RegEx

Pumping Lemma can be never be used to prove that a language is regular

- Proving that a Lan
 - L = { w | w is a p
 - We assume it i
 - We take s=xyz
 - We can take
 - We can take
 - Now, let's try to pump by repeating Y: (Let's assume |y|=k)
 - $xy^2z \rightarrow 1^{P+k}1^P$ (it is in language)
 - $xy^3z \rightarrow 1^{P+k+k}1^P$ (it is also in language)
 - $xy^iz \rightarrow 1^{P+ik}1^P$ (it is also in language for any y and at any i)

Does it mean that the language is regular?

- Proving that a Language is Regular.
 - L = { w | w is a palindrome }
 - We assume it is regular
 - We take $s=xyz = 1^{P_1P}$ and |xy| <= P
 - We can take xy must contain only 1s,
 - Now, let's try to pump by repeating Y: (Let's assume |y|=k)
 - $xy^2z \rightarrow 1^{P+k}1^P$ (it is in language)
 - $xy^3z \rightarrow 1^{P+k+k}1^P$ (it is also in language)
 - $xy^iz \rightarrow 1^{P+ik}1^P$ (it is also in language for any y and at any i)

Pumping Lemma can be never be used to prove that a language is regular

Prov

C

 $\overline{}$

_

If you find a repeating pattern, it is because for another different regular language which is a subset in the first language .

1* is a subset of palindromes.

• $xy^iz \rightarrow 1^{P+ik}1^P$ (it is also in language for any y and at any i)

- Proving that a language is non-regular
 - Must be infinite
 - Because every finite language is regular since we can construct the regex: word1 | word2 | word3 Wordn
 - We use the pumping lemma where we assume that the language is regular
 - There must be a **loop / pumping mechanism** to generate infinite number of words **in the language**
 - We arrive that there is no such mechanism → Contradiction to our assumption → We conclude that the language is non-regular

Pumping Words

- Given a finite state machine of N states (suppose N=5):
 - We can generate:
 - bbaa
 - s=xyz = bba**ba**aa
 - s=xyyz =xy²z = bba**baba**aa
 - s= xy³z = bba**bababa**aa
 - s= xy⁴z = bba**bababa**aa
 - s= xyⁱz =bba**bababababa....**
 - Infinite number + infinite length

Proving that a language is non-regular

- For a language to be infinite and regular there must be a pumping mechanism
- And if we take s=xyz, we can pump y to generate more words.
- O ...

Proving that a language is non-regular

- Proving that a language is non-regular
 - Blindly assume that the language $0^{100}11^n$ is not regular (for n>=0)
 - We use the pumping lemma to do so:
 - \blacksquare S=0¹⁰⁰1^p = XYZ,
 - If we assume that P=10, |xy| <=10,
 - xy must be in the first 10 zeros and y Should be zeros.

- If we pump y, we will increase the number of zeros and exceed **100**
- Therefore, the words generated are not in the language

Pro

0

?

We have used the pumping lemma incorrectly by fixing the value of P to prove regular as non-regular

Yes, there is no pumping mechanism before P=100, but there is after

■ Therefore, the words generated are not in the language

Non-Regular Languages Closure Property

- Using property of Regular Languages:
 - Closure Property for Non-regular Languages :
 - $D = \{w \mid w = a^m b^n, m \neq n\}$ (Non-regular)
 - B = { $a^nb^n : n \ge 0$ } (Non-regular)
 - $M = \{a^nb^{2n} : n \ge 0\}$ (Non-regular)
 - \blacksquare DUB = a*b* (Regular)
 - Regular U Regular ⇒ Must be regular :
 - Non-regular U Regular \Rightarrow We don't know ({ $a^nb^n : n \ge 0$ } U (a|b)*?)
 - Non-regular U Non-regular ⇒ We don't know
 - $\{w \mid w = a^m b^n, m \neq n\} \cup \{a^n b^n : n \geq 0\} = a^* b^* \Rightarrow Regular$
 - $\{a^nb^n: n \ge 0\} \cup \{a^nb^{2n}: n \ge 0\} \Rightarrow Non-Regular$

Quiz Questions

- Say whether the following languages are regular or non-regular
 - L = $\{xww^R y \mid x, y \in \Sigma * \text{ and } |w|, |x|, |y| \ge 1\}$
 - L = $\{xww^R y \mid x, y \in \Sigma * \text{ and } |w|, |x|, |y| \ge 1\}$

Quiz Questions

- Say whether the following languages are regular or non-regular
 - L = $\{xww^R y \mid x, y \in \Sigma * \text{ and } |w|, |x|, |y| \ge 1\}$
 - $(\Sigma*00\Sigma*)|(\Sigma*11\Sigma*)$ (There is x and y to absorb letters)
 - L = $\{xww^R \mid x, y \in \Sigma * \text{ and } |w|, |x|, |y| \ge 1\}$
 - No DFA, no RegEx, it is non-regular
 - ⇒ use the pumping lemma:
 - \Rightarrow s= 00^P10^P |xy|<=P ... Pump Y \rightarrow always more zeros on the left side \rightarrow word not in the language

In contrast to the first example:

If you pump, you get always words in the language (though, don't use pumping lemma to prove that a language is regular)

Say whether the following languages are regular or non-regular

- L = $\{xww^R y \mid x, y \in \Sigma * \text{ and } |w|, |x|, |y| \ge 1\}$
 - $(\Sigma*00\Sigma*) | (\Sigma*11\Sigma*)$ (There is x and y to absorb letters)
- L = $\{xww^R \mid x, y \in \Sigma * \text{ and } |w|, |x|, |y| \ge 1\}$
 - No DFA, no RegEx, it is non-regular
 - → use the pumping lemma:
 - \Rightarrow s= $00^P 10^P$ |xy|<=P ... Pump Y \rightarrow always more zeros on the left side \rightarrow word not in the language

Examples from Non-regular languages

- Representing a language
 - Given the following language, are they regular?
 - L = { w | contains an equal number of 1s and 0s }
 - Can we create a finite state machine?
 - Can we create a regular expression ?
 - Better to use one of the techniques to prove the language is non regular: Pumping Lemma, fooling sets or closure properties.

Examples from Non-regular languages

- Representing a language
 - Given the following language, are they regular?
 - L = { w | contains an equal number of 1s and 0s }
 - The language is non regular
 - Mainly due to the limitation of the finite state machine
 - What's next?

Definitions

- Alphabet:
- Language:
- o Abstract Machine or Computational Model:
- **Grammar**:

Definitions

- Alphabet:
- Language:
- Abstract Machine or Computational Model:
- Grammar: is a set of rules for combining symbols from the alphabet to create strings that belong to a specific language.

Grammar consists of:

- A set of variables (also called nonterminals),
 - one of which is designated the start variable;
 - It is customary to use **UPPER-CASE** letters for variables
- a set of terminals (from the alphabet)
- a list of productions (also called rules or substitution rules).

- \circ S \rightarrow oS
- \circ $S \rightarrow \epsilon$
 - **Start variable**: S, it is the only variable
 - o is a terminal symbol
 - There are two productions.
 - S produces oS ⇒ we keep substituting recursively until we reach the word we are after.
- What's the language for this grammar?

- \circ S \rightarrow oS
- \circ S \rightarrow ϵ
 - What's the language for this grammar?
 - Let's generate some words:
 - 0,00,000,0000,0000,....

- \circ S \rightarrow 0S
- \circ S \rightarrow ϵ
 - What's the language for this grammar?
 - Let's generate some words:
 - **&**, 0, 00, 000, 0000, 0000,

- \circ S \rightarrow T11T
- \circ T \rightarrow OT | 1T | ϵ
 - : means or
 - What's the language for this grammar?

- \circ S \rightarrow T11T
- \circ T \rightarrow OT | 1T | ϵ
 - : means or
 - What's the language for this grammar?
 - 0 11
 - 0101011001

- \circ S \rightarrow 0S1
- \circ S \rightarrow ϵ
 - What's the language for this grammar?
 - S is the only variable.
 - The terminals are 0 and 1.
 - There are two production rules.

- \circ S \rightarrow 0S1
- \circ $S \rightarrow \epsilon$
 - What's the language for this grammar?
 - 8
 - 01
 - 0011
 - 000111
 - 00001111

- \circ S \rightarrow 0S1
- \circ S \rightarrow ϵ
 - What's the language for this grammar?
 - For language L = { 0ⁿ1ⁿ | n >=0 }

- Reading Grammar
 - \circ S \rightarrow aSa | bSb | a | b | ϵ
 - What's the language for this grammar?

- Reading Grammar
 - \circ S \rightarrow aSa | bSb | a | b | ϵ
 - What's the language for this grammar?
 - Let's try to generate some words:
 - o a, b, aa, bb, aba, bab, abba, abaaba.....

- Reading Grammar
 - \circ S \rightarrow aSa | bSb | a | b | ϵ
 - What's the language for this grammar?
 - For the language L = { w | w=w^R } palindromes over {a,b}

- Deriving a String from a Grammar
 - The sequence of substitutions to obtain a string is called a derivation
 - \circ S \rightarrow aSa | bSb | a | b | ϵ
 - Let's drive the word : abababa
 - $S \Rightarrow aSa$ [rule $S \rightarrow aSa$]
 - \Rightarrow a**bSb**a [rule $S \rightarrow bSb$]
 - \Rightarrow abaSaba [rule $S \rightarrow aSa$]
 - \Rightarrow aba**b**aba [rule $S \rightarrow b$]

- Deriving a String from a Grammar
 - The sequence of substitutions or steps to obtain a string is called a derivation
 - A leftmost derivation is where at each stage one replaces the leftmost variable.
 - A rightmost derivation is defined similarly

- Deriving a String from a Grammar
 - Important Notation:

language of the grammar is
$$\{w \in \Sigma^* | S \stackrel{*}{\Rightarrow} w\}$$
.

It reads: S yields or generates w (w as a word)

Creating Grammar

DESIGNING CONTEXT-FREE GRAMMARS

As with the design of finite automata, discussed in Section 1.1 (page 41), the design of context-free grammars requires creativity. Indeed, context-free grammars are even trickier to construct than finite automata because we are more

- Given the following Regular Expression :
 - **■** 00 *11 *
- Produce the grammar for it

- Given the following Regular Expression :
 - a
- Produce the grammar for it

- Given the following Regular Expression :
 - a
- Produce the grammar for it
 - \blacksquare S \rightarrow a

- Given the following Regular Expression :
 - **■** 00 *11 *
- Produce the grammar for it
 - \blacksquare S \rightarrow

Creating Grammar

- Given the following Regular Expression :
 - **■** 00 *11 *
- Produce the grammar for it
 - \blacksquare S \rightarrow CD

C for 00* D for 11*

Creating Grammar

- Given the following Regular Expression :
 - **OO *11 ***
- Produce the grammar for it
 - \blacksquare S \rightarrow CD
 - \blacksquare C \rightarrow O ?
 - D → 1?

C for 00* D for 11*

Creating Grammar

- Given the following Regular Expression :
 - **OO *11 ***
- Produce the grammar for it
 - \blacksquare S \rightarrow CD
 - \blacksquare C \rightarrow oC | o
 - $D \rightarrow 1D \mid 1$

Recursion is important

- Given the following Regular Expression :
 - **■** (0 | 1)*
- Produce the grammar for it

- Given the following Regular Expression :
 - **■** (0 | 1)*
- Produce the grammar for it
 - $S \rightarrow 0S |1S|\epsilon$

- Given the following Regular Expression :
 - (0 | 1)* 00 (0 | 1)*
- Produce the grammar for it

- Given the following Regular Expression :
 - (0 | 1)* 00 (0 | 1)*
- Produce the grammar for it
 - \blacksquare S \rightarrow A 00 A
 - \blacksquare $A \rightarrow$

- Given the following Regular Expression :
 - (0 | 1)* 00 (0 | 1)*
- Produce the grammar for it
 - \blacksquare S \rightarrow A 00 A
 - $A \rightarrow OA \mid 1A \mid \epsilon$

- Given the following Regular Expression :
 - **■** (11 | 00) *11
- Produce the grammar for it

- Given the following Regular Expression :
 - **(11 | 00) *11**
- Produce the grammar for it
 - \blacksquare S \rightarrow TU
 - \blacksquare T \rightarrow VT | e
 - $V \rightarrow 00 \mid 11$
 - U → 11

- Given the following Regular Expression :
 - 110(01)* | (01 | 10* 1)* 10.
- Produce the grammar for it

- Given the following Regular Expression :
 - 110(01)* | (01 | 10* 1)* 10
- Produce the grammar for it
 - $S \rightarrow \text{anything} \mid \text{anything}$

Creating Grammar

- Given the following Regular Expression :
 - 110(01)* | (01 | 10* 1)* 10
- Produce the grammar for it
 - \blacksquare S \rightarrow A | B

A for 110(01)*
B for (01 | 10* 1)* 10

Creating Grammar

- Given the following Regular Expression :
 - 110(01)* | (01 | 10* 1)* 10
- Produce the grammar for it
 - \blacksquare S \rightarrow A | B
 - \blacksquare A \rightarrow 110 ?

How to represent (01)*

Creating Grammar

- \circ Given the following Regular Expression :
 - 110(01)* | (01 | 10* 1)* 10
- Produce the grammar for it
 - \blacksquare S \rightarrow A | B
 - A → 110 C
 - $C \rightarrow \epsilon \mid 01C$

How to represent (01)*

Next:B?

Creating Grammar

- Given the following Regular Expression :
 - 110(01)* | (01 | 10* 1)* 10
- Produce the grammar for it
 - \blacksquare S \rightarrow A | B
 - A → 110 C
 - $C \rightarrow \epsilon \mid 01C$
 - B → D 10
 - $D \rightarrow 01D \mid E1 \mid \epsilon$

How to represent (01)*

Next:B?

- Given the following Regular Expression :
 - 110(01)* | (01 | 10* 1)* 10
- Produce the grammar for it
 - \blacksquare S \rightarrow A | B
 - A → 110 C
 - \blacksquare C $\rightarrow \epsilon$ | O1C
 - B → D 10
 - D \rightarrow 01D | E1D | ϵ
 - $E \rightarrow 10E \mid ε$

- Given the following language:
 - $L = \{ w \mid n_a(w) = n_b(w) \}$
- Produce the grammar for it

- Given the following language:
 - \blacksquare L = {w | n_a (w) = n_b (w) }
- Produce the grammar for it
 - \blacksquare S \rightarrow

Creating Grammar

- Given the following language:
 - \blacksquare L = {w | n_0 (w) = n_1 (w) }
- Produce the grammar for it
 - = $S \rightarrow \epsilon$

Start always with the obvious cases

Creating Grammar

- Given the following language:
 - \blacksquare L = {w | n_0 (w) = n_1 (w) }
- Produce the grammar for it
 - $S \rightarrow \epsilon$ | SoS1S | S1S0S

S is like the * operator

Creating Grammar

- Given the following language:
 - \blacksquare L = {w | n₀ (w) = n₁ (w) }
- o Produce the grammar for it
 - $S \rightarrow \epsilon$ | SoS1S | S1SoS
- Let's test :
 - Acceptance : 0011, 1100, 1001
 - Rejection: 0001, 110

Test your grammar for Acceptance and Rejection

- Given the following language:
 - $L = \{ w \mid n_0(w) = n_1(w) \}$
- o Produce the grammar for it
 - $S \rightarrow \epsilon$ | SoS1S | S1SoS
- What about the following grammars? do they represent the language?
 - $S \rightarrow oS1S \mid 1SoS \mid \epsilon$
 - $S \rightarrow OS1 \mid 1SO \mid SS \mid \epsilon$

- Given the following language:
 - **■** {ε}
- o Produce the grammar for it

- Given the following language:
 - Alternating 0 and 1
- Produce the grammar for it

- Given the following language:
 - { } (Phi)
- Produce the grammar for it

Creating Grammar

Given the following language represented by a DFA:

Produce the grammar for it

Creating Grammar

- Given the following language represented by a DFA:
- Produce the grammar for it
 - $S \rightarrow aS \mid bA$

Use

- states as Variables
- Transition as terminal symbols

Creating Grammar

- Given the following language represented by a DFA:
- Produce the grammar for it
 - $S \rightarrow aS \mid bA$
 - A → bA | aB

Use

- states as Variables
- Transition as terminal symbols

Creating Grammar

- Given the following language represented by a DFA:
- Produce the grammar for it
 - $S \rightarrow aS \mid bA$
 - $A \rightarrow bA \mid aB$
 - $B \rightarrow bA \mid aS \mid \epsilon$

Note: only one terminal in addition to one variable.

Creating Grammar

- Given the following language represented by a DFA:
- Produce the grammar for it
 - $S \rightarrow aS \mid bA$
 - $A \rightarrow bA \mid aB$
 - $B \rightarrow bA \mid aS \mid \epsilon$

Why Epsilon?

- Given the following language :
 All binary strings with an even number of a
- Produce the grammar for it

- Given the following language :
 All binary strings with an even number of a
- Produce the grammar for it
 - $S \rightarrow aXaS \mid \epsilon$

- Given the following language represented by a DFA:
 All binary strings with an even number of a
- Produce the grammar for it
 - $S \rightarrow aXaS \mid \epsilon$
 - $X \rightarrow bX \mid \epsilon$

Creating Grammar

- Given the following language represented by a DFA:
 All binary strings with an even number of a
- Produce the grammar for it
 - $S \rightarrow aXaS \mid \varepsilon$
 - $X \rightarrow bX \mid \epsilon$

What about the word: baa

Creating Grammar

- Given the following language represented by a DFA:
 All binary strings with an even number of a
- Produce the grammar for it
 - $S \rightarrow aXaS \mid \epsilon \mid bS$
 - $X \rightarrow bX \mid \epsilon$

What about the word: baa

- Given the following language represented by a DFA:
 All binary strings with an even number of a
- o Produce the grammar for it
 - $S \rightarrow aXaS \mid \epsilon \mid bS$
 - $X \rightarrow bX \mid \epsilon$
- o Or:
 - $S \rightarrow bS | aT | \epsilon$
 - \blacksquare T \rightarrow bT | aS

- Given the following language :
 All binary strings with both an even number of a and an even number of b.
- Produce the grammar for it
 - $S \rightarrow \epsilon$?

- Given the following language :
 All binary strings with both an even number of a and an even number of b.
- Produce the grammar for it
 - $S \rightarrow \epsilon \mid aX \mid bY$

- Given the following language :
 All binary strings with both an even number of a and an even number of b.
- Produce the grammar for it
 - $S \rightarrow \epsilon \mid aX \mid bY$
 - \blacksquare X \rightarrow aS | b Z
 - \blacksquare Y \rightarrow bS | aZ
 - \blacksquare Z \rightarrow aY | bX

• Regular Grammar:

- used to describe regular language.
- Is a special type of context-free grammar
- It can be strictly either:
 - right-linear grammar
 - Left-linear grammar.
- The only form for the grammar that production rules can take (right-linear grammar) (= few restrictions)
 - \bullet A \rightarrow a
 - $A \rightarrow aB$
 - \bullet $A \rightarrow \epsilon$

Derivation Tree

Construction of a Tree

- Root
 - is the start variable,
- all internal nodes:
 - are labeled with variables
 - The children of an internal node are labeled from left to right with the right-hand side of the production rule used.
- all leaves :
 - are labeled with terminals including the empty string.

Derivation Tree

Construction of a Tree : Example

- Grammar: $S \rightarrow 0S1S \mid 1S0S \mid \epsilon$
- o Derivation for: **011100**
- Derivation Process:

$$S \Rightarrow 0S1S \Rightarrow 01S \Rightarrow 011S0S$$

- ⇒ 0111S0S0S ⇒ 01110S0S
- ⇒ 011100S ⇒ 011100

Definition

- A grammar is unambiguous if there is a unique leftmost derivation for each string in the language.
 - Equivalently, for each string there is a unique derivation tree.
- Inversely: Ambiguous Grammar is defined as the grammar where there is a given word (even a single word) that can have more than one derivation tree.

- Example : E → E+E | E×E | (E) | n
 - \circ Word: $n + n \times n$
 - LMD 1: E \Rightarrow E + E \Rightarrow n + E \Rightarrow n + E \times E \Rightarrow n + n \times E \Rightarrow n+n×n
 - LMD 2: $E \Rightarrow E \times E \Rightarrow E + E \times E \Rightarrow n + E \times E \Rightarrow n + n \times E \Rightarrow n + n \times n$

- Example : E → E+E | E×E | (E) | n
 - \circ Word: n + n + n
 - LMD 1: $E \Rightarrow E + E \Rightarrow n + E \Rightarrow n + E + E \Rightarrow n + n + E \Rightarrow n + n + E$
 - LMD 2: $E \Rightarrow E + E \Rightarrow E + E + E \Rightarrow n + E + E \Rightarrow n + n + E \Rightarrow n$

- C++ Program :
 - Is it ambiguous?
 - What's the output ?

```
#include <iostream>
using namespace std;
int main()
   if (true)
       if (false)
   else
       cout << "Hi!";
   return 0;
```

- C++ Program :
 - o Is it ambiguous?
 - What's the output ?
 - The output is: **Hi!**

```
#include <iostream>
using namespace std;
int main()
   if (true)
       if (false)
   else
       cout << "Hi!";
   return 0;
```

- C++ Program :
 - o Is it ambiguous?
 - What's the output ?
 - The output is: **Hi!**
 - ? else? belong to which if?

```
#include <iostream>
using namespace std;
int main()
   if (true)
       if (false)
   else
       cout << "Hi!";
   return 0;
```

Definition

- A context-free grammar is said to be in **Chomsky normal form** (CNF) if every production is of one of these three types:
 - \blacksquare S \rightarrow BC
 - \blacksquare S \rightarrow a
 - \blacksquare $S \rightarrow \epsilon$

• Why:

To avoid the ambiguity problem during parsing

Rules to convert CFG to CNF

- Step 1: Start nonterminal must not appear on RHS
- Step 2 : Remove ε productions
- Step 3: Remove unit productions
- Step 4 : Convert to CNF

- Rules to convert CFG to CNF
 - Step 1: Start nonterminal must not appear on RHS
 - Example:
 - $S \rightarrow ASA \mid aB$
 - A→B | **S**
 - $B \rightarrow b \mid \epsilon$

- Rules to convert CFG to CNF
 - Step 1: Start nonterminal must not appear on RHS
 - Example:
 - **S** → ASA | aB
 - A→B | **S**
 - B→b | ε
 - It would be:
 - $S_0 \rightarrow S$
 - $S \rightarrow ASA \mid aB$
 - A →B |S
 - $B \rightarrow b \mid \epsilon$

- Rules to convert CFG to CNF
 - Step 2 : Remove ε productions
 - Example:
 - $\bullet \quad \mathsf{S}_{\mathsf{O}} \to \mathsf{S}$
 - $S \rightarrow ASA \mid aB$
 - A→B | S
 - B→b | ε

We need to remove:

 $B\rightarrow b \mid \epsilon$

- Rules to convert CFG to CNF
 - Step 2 : Remove ε productions
 - Example:
 - $\bullet \quad \mathsf{S}_{\mathsf{O}} \to \mathsf{S}$
 - $S \rightarrow ASA \mid aB$
 - \bullet A \rightarrow B | S
 - B→b | ε

We need to remove:

 $B\rightarrow b \mid \epsilon$

- Rules to convert CFG to CNF
 - Step 2 : Remove ε productions
 - Example:
 - \bullet $S_0 \rightarrow S$
 - $S \rightarrow ASA \mid aB$
 - \bullet A \rightarrow B | S
 - $B \rightarrow b \mid \epsilon$

It would be :

$$\bullet \quad S_0 \to S$$

•
$$S \rightarrow ASA \mid aB \mid a$$

•
$$A \rightarrow B \mid S \mid \epsilon$$

We need to remove ϵ for A which came from B

- Rules to convert CFG to CNF
 - Step 2 : Remove ε productions
 - Example:
 - \bullet $S_0 \rightarrow S$
 - $S \rightarrow ASA \mid aB$
 - A→ **B** | S
 - B→b | ε

ASA can be when considering ε: AS or SA or ASA

- It would be :
 - $\bullet \quad \mathsf{S}_{\mathsf{O}} \to \mathsf{S}$
 - $S \rightarrow ASA \mid aB \mid a$
 - $A \rightarrow B \mid S \mid \epsilon$
 - B→ b

- Rules to convert CFG to CNF
 - Step 2 : Remove ε productions
 - Example:
 - \bullet $S_0 \rightarrow S$
 - $S \rightarrow ASA \mid aB$
 - \bullet A \rightarrow B | S
 - B→b | ε

- It would be :
 - $\bullet \quad \mathsf{S}_{\mathsf{O}} \to \mathsf{S}$
 - S → **ASA | AS | SA | S** | a B | **a**
 - \bullet A \rightarrow B | S
 - B→ b

ASA can be when considering ϵ : AS or SA or ASA

- Rules to convert CFG to CNF
 - Step 3: Remove Unit Productions in the form of A
 - Example:
 - $S_0 \rightarrow S$
 - $S \rightarrow ASA \mid AS \mid SA \mid S \mid aB \mid a$
 - A→B | S
 - \bullet B \rightarrow b

- Rules to convert CFG to CNF
 - Step 3: Remove Unit Productions
 - Example:
 - \bullet $S_0 \rightarrow S$

 - A→B | S
 - \bullet B \rightarrow b

It would be:

- $\bullet \quad \mathsf{S}_0 \to \mathsf{S}$
- $S \rightarrow ASA \mid AS \mid SA \mid S \mid aB \mid a$ $S \rightarrow ASA \mid AS \mid SA \mid S \mid aB \mid a$
 - $A \rightarrow b \mid S$
 - \bullet B \rightarrow b

Any other Unit production in the form

$$A \rightarrow Y$$

- Rules to convert CFG to CNF
 - Step 3: Remove Unit Productions
 - Example:
 - $\bullet \quad \mathsf{S}_{\mathsf{O}} \to \mathsf{S}$
 - $S \rightarrow ASA \mid AS \mid SA \mid S \mid aB \mid a$ $S \rightarrow ASA \mid AS \mid SA \mid aB \mid a$
 - A→B | S
 - \bullet B \rightarrow b

- It would be:
 - $\bullet \quad \mathsf{S}_0 \to \mathsf{S}$

 - $A \rightarrow b \mid S$
 - \bullet B \rightarrow b

We remove $S \rightarrow S$: Anything to do? do nothing

Rules to convert CFG to CNF

- Step 3: Remove Unit Productions
 - Example:
 - $S_0 \rightarrow S$
 - $S \rightarrow ASA \mid AS \mid SA \mid S \mid aB \mid a$
 - A→B | S
 - B→ b

- It would be :
 - $S_0 \rightarrow S$
 - $S \rightarrow ASA \mid AS \mid SA \mid aB \mid a$
 - A→b | ASA | AS | SA | a B | a
 - \bullet B \rightarrow b

We remove $A \rightarrow S$

Rules to convert CFG to CNF

- Step 3: Remove Unit Productions
 - Example:
 - $S_0 \rightarrow S$
 - $S \rightarrow ASA \mid AS \mid SA \mid S \mid aB \mid a$
 - A→B | S
 - \bullet B \rightarrow b

- It would be:
 - $S_0 \rightarrow ASA \mid SA \mid AS \mid aB \mid a$
 - $S \rightarrow ASA \mid AS \mid SA \mid aB \mid a$
 - A→b | ASA | AS | SA | a B | a
 - B→ b

We remove $S_0 \rightarrow S$

Rules to convert CFG to CNF

- Step 4: Converting by removing cases of ABC
 - Example:
 - $S_0 \rightarrow ASA | SA | AS | aB | a$
 - $S \rightarrow ASA \mid AS \mid SA \mid S \mid aB \mid a$
 - $A \rightarrow b \mid ASA \mid AS \mid SA \mid aB \mid a$
 - \bullet B \rightarrow b

• S -> A

- $S_0 \rightarrow AA_1 | SA | AS | aB | a$
- $\bullet \quad \mathsf{A_1} \to \mathsf{SA}$

It would be:

- $S \rightarrow AA_1 \mid AS \mid SA \mid S \mid aB \mid a$
- $A \rightarrow b \mid AA_1 \mid AS \mid SA \mid aB \mid a$
- B→ b

Converting ASA → AA₁

- Rules to convert CFG to CNF
 - Step 4 : Converting by removing cases of ABC
 - Example:
 - $S_0 \rightarrow AA_1 | SA | AS | aB | a$
 - $\bullet \quad \mathsf{A_{_1}} \to \mathsf{SA}$
 - $S \rightarrow AA_1 \mid AS \mid SA \mid S \mid aB \mid a$
 - $A \rightarrow b \mid AA_1 \mid AS \mid SA \mid aB \mid a$
 - B→ b

 $S \rightarrow aB$ is not accepted by CNF

- Rules to convert CFG to CNF
 - Step 4 : Converting by removing cases of ABC
 - Example:
 - $S_0 \rightarrow AA_1 | SA | AS | aB | a$
 - $\bullet \quad \mathsf{A_{_1}} \to \mathsf{SA}$
 - $S \rightarrow AA_1 \mid AS \mid SA \mid S \mid aB \mid a$
 - $A \rightarrow b \mid AA_1 \mid AS \mid SA \mid aB \mid a$
 - \bullet B \rightarrow h

 $S \rightarrow aB$ is not accepted by CNF

 $S \rightarrow aB$ can be converted to : $S \rightarrow A_2B$ $A_2 \rightarrow a$

- Rules to convert CFG to CNF
 - Step 4 : Converting by removing cases of ABC
 - Example:
 - $S_0 \rightarrow AA_1 | SA | AS | aB | a$
 - $\bullet \quad A_{_{1}} \to SA$
 - $S \rightarrow AA_1 \mid AS \mid SA \mid S \mid \mathbf{a} \mathbf{B} \mid a$
 - $A \rightarrow b \mid AA_1 \mid AS \mid SA \mid \mathbf{a} \mathbf{B} \mid a$
 - B→ b

It would be :

- $S_0 \rightarrow AA_1 | SA | AS | A_2B | a$
- $\bullet \quad A_1 \to SA$
- $S \rightarrow AA_1 \mid AS \mid SA \mid A_2B \mid a$
 - $A \rightarrow b \mid AA_1 \mid AS \mid SA \mid A_2B \mid a$
 - \bullet B \rightarrow b
 - $A_2 \rightarrow a$

Questions

Why it is called "Context-Free"

0

Exercise 1

- The language of all strings containing exactly two a's. b*ab*ab*
- \circ The language of all strings containing at least two a's. $\Sigma^* a \Sigma^* a \Sigma^*$
- The language of all strings that do not end with ab.
 ((a|b)*(a|bb)) | b | e
- \circ The language of all strings that begin or end with aa or bb. (aa|bb) $\Sigma *$ | $\Sigma * (aa|bb)$
- The language of all strings in which every a is followed immediately by bb. (b|abb)* OR b*(abb)*b*
- \circ The language of all strings containing both bb and aba as substrings. $\Sigma*$
- \circ $\;$ The language of all strings in which the number of a's is even. $\Sigma*$
- The language of all strings not containing the substring aa. $b*(abb*)*(\epsilon|a)$ OR $(\epsilon|a)(a|ba)*) | ((b|ab)*(\epsilon|a))$
- The language of all strings containing no more than one occurrence of the string aa. (The string aaa should be viewed as containing two occurrences of aa.)

• Exercise 2

```
0  (0 U 1)* 000(0 U 1)*
0  (((00)* (11)) U 01)*
0  Ø*
0  (0 U 1+ )0+ 1+
```


• Exercise 3

1. Make new Start State S and new Final State F

2. From 1 and 2, we can write them as **a** | **b**

3. We drop the state 1 and compensate for the missing transitions

4. Optimize: two outgoing transitions from a state ⇒ I

a,b 2 a b b

• Exercise 3

5. State 2 is dropped

6. We drop state 3

7. Two outgoing transition from a single state \Rightarrow

