Congratulations! You passed!

Grade received 78.94% Latest Submission Grade 78.95% To pass 70% or higher

Go to next item

1. Which of the following issues does backlighting address when capturing binary images?

Object Occlusion

O Transparent Objects

Reflective Objects

Ocolor Variation on Objects

× Incorrect

2. How far is the point (1,10) from the line 4y=3x+2?

2 / 2 points

0 / 2 points

- 0 0
- 7
- O 2
- O 13
 - ✓ Correct

We know the perpendicular distance of a point (x,y) from a line ax+by+c=0 is $r=\left|rac{ax+by+c}{\sqrt{a^2+b^2}}\right|$

3. The axis of minimum second moment of the binary image of an object passes through the center (centroid) of its area.

1/1 point

- True
- False
- **⊘** Correct

Let the equation of the straight line corresponding to the axis of minimum second moment be $x\sin\theta-y\cos\theta+\rho=0$. If E is the second moment about the axis, by setting $\frac{\partial E}{\partial \rho}=0$, we get $A(\bar x\sin\theta-\bar y\cos\theta+\rho)=0$, where A is the area of the binary image of the object and $(\bar x,\bar y)$ is its centroid.

4. Let the origin of the coordinate frame of a binary image of an object be located at the centroid of the binary image. If *a* and *c* are the second moments of the binary image with respect to the *x* axis and *y* axis, and *b* is the product moment, the orientation of the object can be determined using:

2 / 2 points

- \bullet $\tan 2\theta = \frac{b}{a-c}$
- $\bigcirc \theta = a + b + c$
- $\bigcirc \sin \theta = a \cdot b \cdot c$
- $\bigcap \tan \theta = \frac{b}{a-c}$
- ✓ Correct

This is the expression obtained by setting $\frac{\partial E}{\partial \theta}=0$, where E is the second moment. The above expression has two solutions corresponding to the axes of minimum and maximum second moment.

5.

2 / 2 points

Consider the ring shown here. Its axis of minimum inertia is:

- \bigcirc The x axis
- \bigcirc The y axis
- \bigcirc The diagonal y=x
- Not unique
- **⊘** Correct

All axes passing through the center of the ring produce the same second moment. Therefore, there is an infinite number of solutions.

6. Which of the following equations correctly represents the second moment with respect to the center (a) as a function of the zeroth, first and second moments with respect to its origin $(A, \bar{x}, \bar{y}, a')$?

$$\bigcap a = a' - 3\bar{x}^2 A$$

$$\bigcirc \ a = a' + \bar{x}^2 + A$$

$$a = a' - \bar{x}^2 A$$

$$\bigcap a = a' - 3\bar{x}A$$

$$\begin{array}{l} a = \sum \sum (i - \bar{x})^2 b_{ij} \\ = \sum \sum (i^2 - 2i\bar{x} + \bar{x}^2) b_{ij} \\ = \sum \sum i^2 b_{ij} - 2\bar{x} \sum \sum i b_{ij} + \bar{x}^2 \sum \sum b_{ij} \\ = a' - 2\bar{x} (A\bar{x}) + \bar{x}^2 A \\ = a' - \bar{x}^2 A \end{array}$$

2 / 2 points

For the binary image above, which of the following statements about connectedness is false:

- O Under 8-Connectedness, there are 3 components
- O Under 4-Connectedness, there are 5 components
- Jordan's Curve Theorem is satisfied under 8-Connectedness
- O Jordan's Curve Theorem is violated under 4-Connectedness
- **⊘** Correct

Under 8-Connectedness, the component on top would form a connected ring, but the background inside that ring would still be considered to belong to the background outside of it, violating the theorem.

2 / 2 points

Which of the following equivalence tables is produced at the end of a sequential labelling algorithm on the binary image above?

•	Α
	В
	C≡F≡D
	E

0	А
	В
	C≡F≡D≡E

\circ	A≡B
	C≡F≡D
	E

⊘ Correct

Because of asymmetry, B is not equivalent to A and E is not equivalent to C, F or D

What is the Euler number of the binary image above?

O 3

-1

O 1

0

 \bigotimes Incorrect

10.

0 / 2 points

1 1	l	1	

If $a_{ij}=1$ when the neighborhood of pixel (i,j) is an element of the neighborhood set N_0 (Euler differential 0), b_{ij} is the current value of (i,j), and c_{ij} is the new value of (i,j), repeated application of the algorithm above will:

O Thin the object

O Duplicate the object

Grow the object

O Generate a wave

⊘ Correct

The algorithm converts all pixels just outside the object from 0 to 1, as long as the conversion does not create new bodies (change the Euler number). As a result, with each iteration, the object grows in size.