Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. One approach popular for requirements analysis is Use Case analysis. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. Different programming languages support different styles of programming (called programming paradigms). Programming languages are essential for software development. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. Following a consistent programming style often helps readability. Programming languages are essential for software development. Integrated development environments (IDEs) aim to integrate all such help. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. Scripting and breakpointing is also part of this process. While these are sometimes considered programming, often the term software development is used for this larger overall process – with the terms programming, implementation, and coding reserved for the writing and editing of code per se. It affects the aspects of quality above, including portability, usability and most importantly maintainability. Different programming languages support different styles of programming (called programming paradigms). It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). Many applications use a mix of several languages in their construction and use. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs.