The 6th Competition on Syntax-Guided Synthesis

Rajeev Alur, Dana Fisman, Saswat Padhi, **Andrew Reynolds**, Rishabh Singh and Abhishek Udupa

SyGuS

Idea and Definition in a Nutshell

Program Synthesis

Recent Trends in Synthesis

Syntax Guided Synthesis - Idea

Motivation:

- Tractability
- Combines:

human expert insights with

computers exhaustiveness & efficiency

Benefit progress SAT & SMT Solvers

Syntax-Guided Synthesis (SyGuS) Problem

- Fix a background theory T: fixes types and operations
- Function to be synthesized: name f along with its type
 - General case: multiple functions to be synthesized
- Inputs to SyGuS problem:
 - Specification φ

Typed formula using symbols in T + symbol f

Context-free grammar G

Characterizing the set of allowed expressions [[G]] (in theory T)

Computational problem:

Find expression e in [[G]] such that $\varphi[f/e]$ is valid (in theory T)

SyGuS – The Vision

Program Optimization

Program Sketching

Programming by examples

Invariant Generation

>>>>>

SyGuS-Comp 2019

The 6th competition on Syntax Guided Synthesis

Solvers

- **CVC4** Andrew Reynolds (Univ. of Iowa), Haniel Barbosa (Univ. of Iowa), Andres Notzli (Stanford), Clark Barrett (Stanford) and Cesare Tinelli (Univ. of Iowa)
- DryadSynth KangJing Huang (Purdue Univ.), Xiaokang Qiu (Purdue Univ.), Qi Tian (Nanjing University), and Yanjun Wang (Purdue Univ.)
- LoopInvGen Saswat Padhi (UCLA) ,Todd Millstein (UCLA) and Rahul Sharma (MSR)
- OASIS Sahil Bhatia (MSR), Saswat Padhi (UCLA), Nagarajan Natarajan (MSR) and Rahul Sharma (MSR)

Solver Strategies

CVC4:

Counterexample-guided Quantifier Instantiation + Enumeration Strategies [Reynolds et al CAV'15]

CVC4-Fast, CVC4-Smart:

"Fast and Smart Term Enumeration for Syntax-Guided Synthesis" [Reynolds et al. CAV'19]

CVC4-su:

Pointwise-independent unification techniques [Barbosa et al. FMCAD'19]

DryadSynth:

Concolic CEGIS + Unification + Decidable fragments for CLIA & INV

LoopInvGen:

Data-driven invariant inference using automatic feature learning [Padhi et al. PLDI'16]

LoopInvGen-gplearn:

LoopInvGen parallelized over multiple integer grammars [Padhi et al. CAV'19]

OASIS:

• Invariant inference over integers by solving ILPs (integer linear programs)

Tracks

- Conditional Linear Arithmetic (CLIA)
 - No grammar restrictions, limited to logic of linear arithmetic
- Programming-by-examples (PBE) Strings
 - Limited to specifications in the form of I/O examples over strings
- PBE Bit Vectors
- Invariant Synthesis (INV)
 - Limited to invariant synthesis problems in linear integer arithmetic, no grammar restrictions
- General
 - Grammar restrictions, any SMT theory

Each track used a new input language, SyGuS IF version 2.0

- Consistent with SMT-LIB 2.6 standard for better compatibility with SMT solvers
- This year allowed solvers that accepted either version 1.0 or 2.0 format

Tracks Participation

	General	CLIA	INV	PBE_BV	PBE_SLIA
CVC4	\checkmark	\checkmark			
CVC4-Fast	\checkmark		\checkmark	\checkmark	\checkmark
CVC4-Smart	\checkmark		\checkmark	\checkmark	\checkmark
CVC4-su			\checkmark		
DryadSynth	\checkmark	\checkmark	\checkmark		
LoopInvGen			\checkmark		
LoopInvGen-gplearn			\checkmark		
OASIS			\checkmark		
Total	4	2	7	2	2

Scoring System

- Solvers are rewarded:
 - 5 points for each problem solved
 - 3 points for each problem solved fastest
 - Grouped into buckets [0,1), [1, 3), [3, 10), ...
 - 1 point for each problem solved with the smallest solution
 - Also grouped into buckets [1,10), [10, 30), [30, 100), ...

New Benchmarks

General (160)

```
from "Solving Quantified Bit-Vectors Using Invertibility Conditions" [Niemetz et al. CAV'18] submitted by Mathias Preiner (Stanford)
```

General (160)

```
from "Towards Bit-Width Independent Proofs in SMT Solvers" [Niemetz et al. CADE'19] submitted by Yoni Zohar (Stanford)
```

INV (276)

```
from "Learning Loop Invariants for Program Verification" [Si et al, NeurIPS'18] submitted by Xujie Si (Penn)
```

INV (455)

```
from Lustre Invariant Synthesis
submitted by Daniel Larraz (Univ. of Iowa)
```

PBE Strings (100) and General (16)

from "Accelerating Search-Based Program Synthesis using Learned Probabilistic Models" [Lee et al. PLDI'18]
submitted by Woosuk Lee (Penn)

SyGuS-Comp 2019

Results of Competition

CLIA Track (88)

Solver	Solved	Fastest	Smallest	Score
DryadSynth	87	77	37	703
CVC4	83	70	57	682

PBE: Strings (210)

Solver	Solved	Fastest	Smallest	Score
CVC4-Fast	204	203	141	1770
CVC4-Smart	180	85	151	1306

PBE: Bitvectors (753)

Solver	Solved	Fastest	Smallest	Score
CVC4-Fast	751	751	530	6538
CVC4-Smart	722	131	372	4375

Inv Track (829)

Solver	Solved	Fastest	Smallest	Score
CVC4-su	592	423	264	4493
LoopInvGen	512	442	364	4250
LoopInvGen-gplearn	511	411	349	4137
CVC4-Fast	522	319	243	3810
CVC4-Smart	539	283	260	3804
OASIS	538	20	317	3067
DryadSynth	277	161	39	1907

Inv Track (829)

Solver	Solved	Fastest	Smallest	Score
CVC4-su	592	423	264	4493
LoopInvGen	512	442	364	4250
LoopInvGen-gplearn	511	411	349	4137
CVC4-Fast	522	319	243	3810
CVC4-Smart	539	283	260	3804
OASIS	538	20	317	3067
DryadSynth	277	161	39	1907

Inv Track (829)

Solved per category:

Solver	#	XC	Lustre	From2018
CVC4-su	592	215	265	112
LoopInvGen	512	186	209	117
LoopInvGen-gplearn	511	185	209	117
CVC4-Fast	522	215	194	113
CVC4-Smart	539	201	227	111
OASIS	538	204	217	117
DryadSynth	277	160	0*	117

General Track (886)

Solver	Solved	Fastest	Smallest	Score
CVC4-Fast	670	620	643	5853
CVC4	696	474	568	5470
CVC4-Smart	649	360	523	4848
DryadSynth	143	121	93	1171

General Track (886)

Solver	Solved	Fastest	Smallest	Score
CVC4-Fast	670	620	643	5853
CVC4	696	474	568	5470
CVC4-Smart	649	360	523	4848
DryadSynth	143	121	93	1171

Concluding Remarks

In this year's competition:

- New submitted benchmarks (1167 in total)
 - Further use cases for SyGuS
- Continued Improved Performance in Solvers
 - More solved instances: PBE_BV 724 \rightarrow 751 (753), PBE_Strings 160 \rightarrow 204 (210)
 - Orthogonality: in particular in INV track

New extensions to the competition in the works:

Specialized tracks per logic, unrealizability, weighted grammars

Thanks!

- Co-organizers:
 - Rajeev Alur, Dana Fisman, Saswat Padhi, Rishabh Singh and Abhishek Udupa

Participants and benchmark submitters

- StarExec team
 - Aaron Stump

