













Montrer que si le poids des arêtes sont tous distincts, il existe un unique arbre couvrant de poids minimum.

Il faut le démontrer par l'absurde. On considère 2 ACPM  $A_1$  et  $A_2$  sur G=(VE).

 $A_1 = (V, E_{A1}), E_{A1}$  inclus dans E.

 $A_2 = (V, E_{A2}), E_{A2}$  inclus dans E.

 $E_{A1}$  et  $E_{A2}$  sont différents.

Soit  $H = (E_{A1} \cup E_{A2}) \setminus (E_{A1} \text{ inter } E_{A2})$ 

H est l'ensemble des arêtes qui appartiennent à un seul des 2 arbres.

Soit e, l'arête de H avec le poids le plus petit, e est unique car le poids de chaque arête est unique. e appartient soit à  $E_{A1}$  soit à  $E_{A2}$ .

- On suppose que e appartient à E<sub>A1:</sub>

 $C = A_2 \cup \{e\}$ , contient alors n arêtes donc contient un cycle, C.

Il existe un e' qui appartient à  $\mathcal{C}$  tel que e' appartienne à  $E_{A2}$  et e' n'appartienne pas à  $E_{A2}$ . e' appartient à H et w( e ) < w( e' ) car e est de poids plus petit).

Alors  $A_2 \cup \{e\} \setminus \{e'\}$  est un ACPM, de poids strictement plus petit  $\rightarrow$  contradiction, d'où l'unicité.