

Modélisation de la propagation émotionnelle

P Isima

Projet de 2ème année d'école d'ingénieur Année 2022-2023

Projet et diaporama de :

Clara Lacourarie Lisa Georges Sous la supervision de :

Jean-Marie Favreau Jérémy Kalsron

Rapport en ligne: https://hal.uca.fr/hal-04036515v1

<u>Interdisciplinarité</u>

Modèle théorique :

ASCRIBE

Application :

Salle de classe, analyse motivation

Problématique:

Le modèle choisi est-il capable de **fournir des résultats réalistes** concernant l'évolution de la **motivation des élèves** lors d'un cours ? Si oui, quels **paramètres** favorisant la motivation pouvons-nous **identifier** ?

- **O1** Présentation du modèle
- O2 Cas d'application et extensions du modèle
- **03** Résultats obtenus

01

Présentation du modèle

A MULTI-AGENT MODEL FOR MUTUAL ABSORPTION OF EMOTIONS

Tibor Bosse¹, Rob Duell², Zulfiqar A. Memon¹, Jan Treur¹, and C. Natalie van der Wal^{1,2}

³Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
²Force Vision Lab, Barbara Strozzilaan 362a, 1083 HN Amsterdam, The Netherlands
{tbosse, rduell, zamemon, treur, cwt210}@@ew.vu.nl

KEYWORDS

Emotion Contagion, Social Simulation, Analysis.

ABSTRACT

In recent times researchers have initiated investigating emotion as a collective property of groups, emphasizing the influence of combined emotions among group members on group processes. Within groups humans recognize and react emotionally to expressions of emotions of other group members. This paper uses a multi-agent-based approach to formalize and simulates such emotion contagious within groups.

1. INTRODUCTION

Within psychology, emotion is often defined as a state or process that plays a role in various cognitive processes, among which decision making and action preparation. Emotions are elicited by a particular Conscientiousness reflects qualities of planning, persistence, and purposeful striving towards goals. Emotionality (or neuroticism) concerns the ease and frequency with which a person becomes upset and distressed. Intellect (or openness) reflects openness to experience and intelligence-related sub-traits such as intellect, creativity and curiosity. Personality dimensions have been linked to specific aspects of brain functioning. The functional approach considers two sets of structures in the brain, the behavioral approach system (BAS), and behavioral inhibition system (BIS) (Gray 1990). BAS causes animals and humans to move towards incentives: things they desire. Besides managing the approach, BAS also creates excitement and positive feelings (Carver, Scheier 2004). The system BIS can be thought of as a stopping system, a system responsive to threat. BIS is responsive to cues of nunishment and danger not incentives. The

$$\frac{dq_i}{dt} = \gamma_i (q_i^* - q_i)$$

Avec:

- **q**_i = motivation de l'agent i
- q_i* = moyenne pondérée de la motivation du groupe
- γ_i = coefficient propre de l'agent i

Paramètres caractérisant un agent :

- δ_i : tendance à être influencé

 $\delta_{\text{mouton}} \approx \eta_{\text{chien}} \approx 1$

- η_i : tendance à influencer

$$\delta_{\text{ane}} \approx \eta_{\text{homme}} \approx 0$$

Paramètre caractérisant un couple d'agents :

 $\alpha_{i,j}$: force du canal entre deux agents

$$\alpha_{i,j} \approx \alpha_{j,i} \approx 1$$

$$\alpha_{i,j} \approx \alpha_{j,i} \approx 0$$

Modèle ASCRIBE

Application

$$\frac{dq_i}{dt} = \gamma_i (q_i^* - q_i)$$

$$\times \delta_i \qquad w_{ji} = \frac{\eta_j \times \alpha_{ji}}{n-1}$$

Résultats

Conclusion

$$\gamma_{ji} = \eta_j \times \alpha_{ji} \times \delta_i$$

$$\gamma_i = \sum_{j=0, j \neq i}^{n-1} \gamma_{ji}$$

Intro

$$q_i^* = \sum_{0 < j < n-1, j \neq i} w_{ji} \times q_j$$

 $k=0, k\neq i$

 $\sum \eta_k \times \alpha_{ki}$

Résultats

Application

Propriétés:

Intro

Notion d'isolement émotionnel

Monotonie de q

Valeur d'équilibre

Conclusion

Évolution de la motivation de trois agents

Méthode d'Euler:

$$(q_i(n+1) - q_i(n))/h = \gamma_i(q_i^*(n) - q_i(n))$$

 $q_i(n+1) = q_i(n) + h \times \gamma_i(q_i^*(n) - q_i(n))$
 $q_i(0)$ fixé

Avec: **h** le pas de temps

Stabilité:
$$h = \frac{1}{|G| - 1}$$

Conclusion

Évolution de la motivation de deux agents

02

Cas d'application et extensions du modèle

Représentation des élèves : couleur selon motivation q

Paramètres à adapter :

- δ_i et η_i (caractéristiques personnelles)
- α_{ii} (caractéristiques interpersonnelles)
- q_i(0) (humeur initiale)

Exemple de Gaussienne

Proximité physique intégrée dans α_{ij} (α_{ij} : proximité émotionnelle + physique)

→ isolement émotionnel d'individus ou de groupes d'individus

Illustration de la limitation de la transmission par la distance

Gestion de la distance différente pour le professeur :

Principe de limitation de la transmission par la distance pour l'enseignant

Effet de cette modélisation : <u>Isolement brisé</u>.

Evolution de l'état émotionnel de deux groupes reliés par un individu

Analogie avec les graphes

Simulation	Graphe
Individus	Sommets du graphe
Canal non nul	Existence d'une arête
Groupe isolé d'individu	Composante connexe

Conditions suffisantes:

- 1) Aucun agent émotionnellement isolé
- 2) Graphe connexe

03

Résultats obtenus

Critères étudiés :

- Convergence et vitesse de convergence
- Influence d'un groupe à la motivation extrême
- Influence du professeur

Résultat final

Convergence lente

Classe initiale

Résultat final

Problème de modélisation

Résultat sans le professeur

Convergence locale rapide

Résultat avec le professeur

Convergence totale lente

Très légère baisse motivation globale

Résultat sans le professeur

Résultat avec le professeur

Clusters

Convergence lente

Résultat final

Résultat intermédiaire

Le modèle choisi est-il capable de fournir des résultats réalistes concernant l'évolution de la motivation des élèves lors d'un cours ?

Ce qui est fait

Améliorations possibles

Formation de classes en rangées, îlots et en U

Formation en U à revoir (convergence insatisfaisante)

Le modèle choisi est-il capable de fournir des résultats réalistes concernant l'évolution de la motivation des élèves lors d'un cours ?

Ce qui est fait

Améliorations possibles

Implémentation modèle + extensions

Influence de la distance à perfectionner, ajout aspect dynamique

Quels paramètres favorisant la motivation pouvons-nous identifier?

	Constat actuel	A tester
Influence d'un enseignant ou groupe d'élèves "extrême"	Influence faible de l'état émotionnel de base	Ajout surjeu de l'enthousiasme (enseignant)

Quels paramètres favorisant la motivation pouvons-nous identifier?

	Constats actuels	A tester
Comparaison îlots/rangées	Convergence très lente avec les îlots États émotionnels finaux peu influencés	Tester sur des cas précis

Lien du rapport : https://hal.uca.fr/hal-04036515v1

Mercil

CREDITS: This presentation template was created by Stidesgo, including icons by Flaticon, infographics & images by Freepik

Please keep this slide for attribution

Images (libres de droits) https://www.flickr.com/

