CSC236 winter 2020, week 2: complete induction See section 1.3 of course notes

Colin Morris colin@cs.toronto.edu

http://www.teach.cs.toronto.edu/~colin/236/W20/

January 13, 2020

Complete induction

Another flavour needed

Every natural number greater than 1 has a prime factorization. Try some examples
How does the factorization of 8 help with the factorization of 9?

More dominoes

$$(\forall n \in \mathbb{N}, [\forall k \in \mathbb{N}, k < n \implies P(k)] \Rightarrow P(n)) \Rightarrow \forall n \in \mathbb{N}, P(n)$$

If all the previous cases always imply the current case then all cases are true

What about the base case?

$$\forall n \in \mathbb{N}, [\forall k \in \mathbb{N}, k < n \implies P(k)] \implies P(n)$$

Outline of a complete induction proof

- 1. Define a predicate P(n)
- 2. Induction step
 - 2.1 Let $n \in \mathbb{N}$
 - 2.2 IH: Assume $\forall k \in \mathbb{N}, k < n \implies P(k)$
 - 2.3 Use IH to show P(n)

Lots of acceptable ways to write I.H.

- 1. Assume $\forall k \in \mathbb{N}, k < n \implies P(k)$
- 2. Assume P(k) holds for all k < n
- 3. Assume $P(0) \wedge P(1) \wedge \dots P(n-1)$
- 4. Assume $\bigwedge_{k=0}^{k=n-1} P(k)$
- 5. Assume our predicate holds for all natural numbers less than n.

Example: postage

Show that any postage amount greater than 7 cents can be formed by combining 3 and 5 cent stamps.

Example: postage

Show that any postage amount greater than 7 cents can be formed by combining 3 and 5 cent stamps.

Postage - separate base case

Another way to structure the same proof. Not necessarily better or worse.

$$P(n): \exists t, f \in \mathbb{N}, n = 3t + 5f$$

Base case:

- P(8) (t = 1, f = 1)
- P(9) (t = 3, f = 0)
- P(10) (t = 0, f = 2)

Inductive step: Let $n \in \mathbb{N}$, and assume n > 10

Assume $\forall k \in \mathbb{N}, 8 \leq k < n \implies P(k)$

P(n-3) (by IH). Let $t, f \in \mathbb{N}$, such that n-3=3t+5f

Then n = 3(t+1) + 5f, so P(n)

1. Assume our predicate holds for all natural numbers less than n.

So $\forall n \in \mathbb{N}, n > 7 \implies P(n)$

Prime factorization

Show that every natural number greater than 1 has a prime factorization.

What happens when we subtly tweak the structure?

Are these still valid proofs?

- 1. Let $n \in \mathbb{N}$ Assume $\forall k \in \mathbb{N}, k \leq n \Rightarrow P(k)$ Blah blah blah... Thus, P(n) Thus, by complete induction, $\forall n \in \mathbb{N}, P(n)$.
- 2. Let $n \in \mathbb{N}$ Assume $\forall k \in \mathbb{N}, k \leq n \Rightarrow P(k)$ Blah blah blah... Thus, P(n+1) Thus, by complete induction, $\forall n \in \mathbb{N}, P(n)$.

3. Let $n \in \mathbb{N}$ Assume $\forall k \in \mathbb{N}, k < n \Rightarrow P(k)$ Blah blah blah... Thus, P(n+1)Thus, by complete induction, $\forall n \in \mathbb{N}, P(n)$.

A mystery recurrence

$$f(n) = \begin{cases} 1 & n \leq 1 \\ [f(n//2)]^2 + 2f(n//2) & n > 1 \end{cases}$$

Note: In homage to Python, we'll use the notation $a /\!/ b$ to denote integer division:

$$a // b = q \iff \exists r \in \mathbb{N}, a = qb + r \land r < b$$

It can also be defined in terms of the floor function as $a/\!/b = \lfloor a/b \rfloor$.

Conjecture: f(n) is a multiple of 3, for n > 1

For all n > 1, f(n) is a multiple of 3?

Use the complete induction outline

Zero pair free binary strings

Denote by Z(n) the number of binary strings of length n that contain no pairs of adjacent zeros. What is Z(n) for the first few natural numbers n?

What is Z(n)?

Use the complete induction outline

What is Z(n)?

Use the complete induction outline

Does binary exist?

Prove that every natural number can be written as the sum of distinct powers of 2.

P(n): There exists a set of exponents $E \subset \mathbb{N}$ such that

$$n = \sum_{e \in E} 2^e$$