Atividade 3 - Aprendizado de Máquina

AUTHOR Rennan Dalla Guimarães

1.1 Setup e carregamento

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer

# Carrega o dataset
data = load_breast_cancer()
df = pd.DataFrame(data.data, columns=data.feature_names)
df["diagnosis"] = data.target # 0 = maligno, 1 = benigno

df.head()
```

								mean	
	mean	mean	mean	mean	mean	mean	mean	concave	mean
	radius	texture	perimeter	area	smoothness	compactness	concavity	points	symmetry
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809

5 rows × 31 columns

1.2 Gráfico de dispersão

Observação: lesões malignas concentram-se em raios ≥ **15 mm** e texturas ≥ **20**, sugerindo forte poder discriminatório desses atributos.

1.3 Histograma sobreposto - mean area

```
fig, ax = plt.subplots(figsize=(6,4))
bins = 20
ax.hist(df[df["diagnosis"]==0]["mean area"], bins=bins, alpha=0.7, labax.hist(df[df["diagnosis"]==1]["mean area"], bins=bins, alpha=0.7, labax.set_xlabel("Mean Area (px²)")
ax.set_ylabel("Frequência")
ax.set_title("Histograma: distribuição de Mean Area")
ax.legend()
plt.show()
```


Observação: a distribuição é bimodal; **mean area** separa bem as classes (malignos têm áreas muito maiores).

1.4 Violin plot – mean smoothness

```
fig, ax = plt.subplots(figsize=(6,4))
data_violin = [
    df[df["diagnosis"]==0]["mean smoothness"],
    df[df["diagnosis"]==1]["mean smoothness"],
]
ax.violinplot(data_violin, showmeans=True)
ax.set_xticks([1,2])
ax.set_xticklabels(["Maligno","Benigno"])
ax.set_ylabel("Mean Smoothness")
ax.set_title("Violin plot: Mean Smoothness por diagnóstico")
plt.show()
```


2 Resumo – Python Data Visualization Essentials Guide (Capítulos 1–3)

2.1 Capítulo 1 – Introduction to Data Visualization

Este primeiro capítulo funciona como um "por que estamos fazendo tudo isso?". O autor mostra que a visualização de dados não é enfeite, mas sim uma ponte entre números brutos e decisões de negócio.

Alguns pontos que me marcaram:

- Visualização como linguagem universal. Diferentes áreas (estatística, design e storytelling) se cruzam aqui. É quase como aprender um novo idioma: em vez de conjugar verbos, combinamos cores, formas e posições.
- **Pirâmide de prioridades.** Gostei muito da lógica *Precisão → Clareza → Estética*. É tentador começar escolhendo a paleta de cores, mas se o gráfico não for fiel aos

- dados nem fizer sentido de relance, a beleza não salva.
- **Processo iterativo.** O livro defende prototipar cedo, coletar feedback rápido e refinar. Isso me lembrou da metodologia ágil no desenvolvimento de software: falhar rápido para acertar mais cedo.

2.2 Capítulo 2 - Why Data Visualization?

Aqui o autor responde à pergunta que muita gente faz: "Por que perder tempo fazendo gráfico se eu posso simplesmente mandar uma tabela em Excel?".

Os argumentos são convincentes:

- Velocidade de compreensão. Estudos citados mostram que o cérebro reconhece padrões visuais em milissegundos, enquanto interpretar números crus leva segundos ou minutos.
- 2. **Retenção de informação.** Gráficos bem feitos ficam na memória. Estatística do livro: 65% de retenção de imagens depois de 72h contra 10% de texto puro ou seja, se quero que meu chefe lembre da análise na reunião de terça, é melhor caprichar na visual.
- 3. **Casos reais.** Gosto quando o autor apresenta exemplos do "mundo real": detecção de fraude em cartão a partir de scatter plots, dashboards que economizam milhões em logística. Dá senso de urgência e mostra que não é só teoria.

Um detalhe ético importante: gráficos podem persuadir, mas também manipular. Usar eixo truncado ou cores enganosas pode levar a conclusões erradas. O livro bate bastante nessa tecla de responsabilidade.

2.3 Capítulo 3 – Various Data Visualization Elements and Tools

Depois de entender o porquê, este capítulo entra no como.

- Match gráfico-pergunta. O autor sugere sempre começar pela pergunta ("Quero mostrar correlação, distribuição ou tendência temporal?") e só depois escolher o tipo de gráfico. Isso evita modinha ("todo mundo usando treemap, então vou usar também").
- **Hierarquia perceptual.** Posição é o canal visual mais preciso, seguida de comprimento. Área e cor vêm depois. Ótima regra para lembrar quando fico em dúvida entre usar bubble chart ou scatter simples.
- Panorama do ecossistema Python.
 - o Matplotlib canivete suíço; faz de tudo, mas exige mais código.
 - Seaborn camada estatística que simplifica correlações e distribuições.
 - Plotly/Bokeh quando interatividade importa (ex.: dashboards).
 - o Altair abordagem declarativa; ótima para prototipar rápido.

O capítulo fecha com dicas práticas: versionar scripts, separar dados de estilização e automatizar gráficos recorrentes. São conselhos valiosos para evitar aquele clássico "onde salvei a última versão do gráfico?".

Conexão com o trabalho prático:

Depois de ler esses capítulos, ficou claro por que os atributos de área e raio foram tão eficazes na análise exploratória do câncer de mama. Eles atendem aos

princípios de posição/comparação discutidos pelo autor, permitindo que diferenças saltem aos olhos sem truques visuais.