ΕΘΝΙΚΌ ΜΕΤΣΌΒΙΟ ΠΟΛΥΤΕΧΝΕΊΟ ΣΧΟΛΉ ΗΛΕΚΤΡΟΛΌΓΩΝ ΜΗΧΑΝΙΚΏΝ ΚΑΙ ΜΗΧΑΝΙΚΏΝ ΥΠΟΛΟΓΙΣΤΏΝ

$\underline{\Sigma Y \Sigma T H M A T A A N A M O N H \Sigma}$

(2019-2020)

5η ΕΡΓΑΣΤΗΡΙΑΚΉ ΑΝΑΦΟΡΆ

Ονοματεπώνυμο: Χρήστος Τσούφης - 03117176

Εκτέλεση Εργαστηρίου: 01/06/2020

5η Ομάδα Ασκήσεων

Δίκτυο με εναλλακτική δρομολόγηση

Θεωρείστε ένα απλό δίκτυο με δύο κόμβους που συνδέονται μεταζύ τους με δύο παράλληλους συνδέσμους (γραμμές), όπως φαίνεται στο ακόλουθο σχήμα. Ροή πακέτων με ρυθμό $\lambda=10\times10^3$ πακέτα/sec (10 Kpps) πρόκειται να δρομολογηθεί από τον κόμβο 1 στον κόμβο 2 (προς μία κατεύθυνση μόνο). Το μέσο μήκος πακέτου είναι 128 bytes. Οι χωρητικότητες των δύο παράλληλων συνδέσμων (γραμμών) είναι $C_1=15$ Mbps και $C_2=12$ Mbps, αντίστοιχα. Υποθέστε ότι το ποσοστό α των πακέτων δρομολογείται από τη γραμμή 1, και το ποσοστό (1-α) δρομολογείται από τη γραμμή 2.

1) Να αναφέρετε τις απαραίτητες παραδοχές ώστε οι σύνδεσμοι (γραμμές) να μπορούν να μοντελοποιηθούν σαν Μ/Μ/Ι ουρές.

Αρχικά, από τα δεδομένα προκύπτει ότι:

- ο Η ροή πακέτων είναι $\lambda = 10 \times 10^3$ πακέτα/sec = 10 Kpps
- ο Το μέσο μήκος πακέτου είναι 128 bytes = 128 * (8 bits) = 1.024 bits.
- ο Για την γραμμή 1, θα μοντελοποιηθεί μια ουρά M/M/1 με εκθετικό ρυθμό αφίξεων $\lambda \times \alpha \times 1.024$ bits και εκθετικό χρόνο εξυπηρέτησης C_1 .
- ο Για την γραμμή 2, θα μοντελοποιηθεί μια ουρά M/M/1 με εκθετικό ρυθμό αφίξεων $\lambda \times (1-2)\alpha \times 1.024$ bits και εκθετικό χρόνο εξυπηρέτησης C_2 .
- ο Οι χωρητικότητες των γραμμών είναι $C_1 = 15$ Mbps και $C_2 = 12$ Mbps οπότε, το μ της κάθε γραμμής είναι:

$$μ_1 = \frac{C_1}{μέσο μήκος πακέτου} = \frac{15 Mbps}{1.024 bits} = 15 \text{ Kpps και } μ_2 = \frac{C_2}{μέσο μήκος πακέτου} = \frac{12 Mbps}{1.024 bits} = 12 \text{ Kpps}$$

ο Το λ παίρνει τις εξής τιμές:

$$\lambda_1 = \alpha \times \lambda = 10^4 \times \alpha \text{ kai } \lambda_2 = (1 - \alpha) \times \lambda = 10^4 \times (1 - \alpha)$$

ο Το ρ παίρνει τις εξής τιμές:

$$\rho_1 = \frac{\lambda_1}{\mu_1} = \frac{\alpha \times \lambda}{\mu_1} = \alpha \times \frac{10}{15} = \alpha \times \frac{2}{3}$$
 Erlang και $\rho_2 = \frac{\lambda_2}{\mu_2} = \frac{(1-\alpha)\times\lambda}{\mu_2} = (1-\alpha)\times\frac{10}{12} = (1-\alpha)\times\frac{5}{6}$ Erlang

Οπότε, οι απαραίτητες παραδοχές ώστε οι σύνδεσμοι (γραμμές) να μπορούν να μοντελοποιηθούν σαν Μ/Μ/1 ουρές είναι οι εξής:

- Ο χρόνος εξυπηρέτησης των κόμβων του δικτύου να είναι εκθετικός με ρυθμό μ₁ και μ₂ αντίστοιχα.
- Οι αφίξεις των πελατών στους συνδέσμους να ακολουθούν κατανομή Poisson με μέσο ρυθμό άφιξης λ₁ και λ₂ (σε πακέτα/sec) αντίστοιχα.
- Η παραδοχή ανεξαρτησίας του Kleinrock: ο χρόνος εξυπηρέτησης των πελατών όπως διαπερνούν το δίκτυο δεν διατηρούν την τιμή τους αλλά εξαρτώνται από την κατανομή των εξυπηρετητών του συστήματος.
- Ο Η εσωτερική δρομολόγηση να γίνεται με τυχαίο τρόπο, δηλαδή η επιλογή ουράς από το σύστημα να είναι τυχαία βάσει των ορισμένων πιθανοτήτων.
- ο Τα πακέτα να εξυπηρετούνται με πολιτική FCFS σε κάθε ουρά.
- 2) Με τις ανωτέρω παραδοχές και χρησιμοποιώντας το Octave για τιμές του α = 0.001:0.001:0.999 να κάνετε το διάγραμμα του μέσου χρόνου καθυστέρησης Ε(T) ενός τυχαίου πακέτου στο σύστημα συναρτήσει του α. Στη συνέχεια, υπολογίστε με το Octave την τιμή του α που ελαχιστοποιεί το Ε(T), καθώς και τον ελάχιστο χρόνο καθυστέρησης Ε(T).

Ο υπολογισμός του Μέσου Χρόνου Καθυστέρησης Ε(Τ) προκύπτει ως εξής από την θεωρία:

Ο Η συνολική καθυστέρηση του συστήματος είναι ίση με το άθροισμα των καθυστερήσεων στις δύο ουρές: $E(T) = \frac{\frac{1}{\mu_1}}{1-\rho_1} + \frac{\frac{1}{\mu_2}}{1-\rho_2}$

Εναλλακτικά, υπολογίζεται και ως εξής:

- $O \ \ M\'esoς ρυθμός πακέτων στο δίκτυο είναι: \\ E(n) = \frac{\rho_1}{1-\rho_1} + \frac{\rho_2}{1-\rho_2} = \frac{\alpha \times \frac{2}{3}}{1-\alpha \times \frac{2}{3}} + \frac{(1-\alpha) \times \frac{5}{6}}{1-(1-\alpha) \times \frac{5}{6}} = \frac{2 \times \alpha}{3-2 \times \alpha} + \frac{5-5 \times \alpha}{1+5 \times \alpha} = \frac{20\alpha^2-23\alpha+15}{-10\alpha^2-13\alpha+3}$
- ο Η Συνολική Εξωγενής Ροή είναι: $\gamma = \lambda = 10$ Kpps
- ο Η Μέση Καθυστέρηση τυχαίου πακέτου στο σύστημα είναι: $E(T) = \frac{E(n)}{\gamma} = \frac{\frac{20\alpha^2 23\alpha + 15}{-10\alpha^2 13\alpha + 3}}{10.000 \ Kpps}$

Παρακάτω φαίνεται η τιμή του α που ελαχιστοποιεί το E(T) καθώς και ο ελάχιστος χρόνος καθυστέρησης E(T).

The vlaue of a that minimizes E(T) is a= 0.603
Minimum Average Time E(T)= 0.00011666

Ακολουθεί το διάγραμμα του Μέσου Χρόνου Καθυστέρησης Ε(Τ) ενός τυχαίου πακέτου στο σύστημα συναρτήσει του α.

Ανοιχτό δίκτυο ουρών αναμονής

Το παρακάτω σχήμα αναπαριστά ένα ανοιχτό δίκτυο ουρών αναμονής. Όλες οι αφίζεις ακολουθούν την κατανομή Poisson με παραμέτρους λi , i=1,2 και οι εξυπηρετήσεις είναι εκθετικά κατανεμημένες με ρυθμούς μi , i=1,2,3,4,5.

1) Ποιες είναι οι απαραίτητες παραδοχές ώστε το παραπάνω δίκτυο να μπορεί να μελετηθεί ως ένα ανοιχτό δίκτυο με το θεώρημα Jackson;

Οι απαραίτητες παραδοχές ώστε το παραπάνω δίκτυο να μπορεί να μελετηθεί ως ένα ανοιχτό δίκτυο με το θεώρημα Jackson είναι οι εξής:

- Οι αναχωρήσεις (οι κόμβοι εξυπηρέτησης) από κάθε ουρά Q_i (με i=1,2,3,4,5) M/M/1, να αποτελούν διαδικασία Poisson με εκθετικούς ρυθμούς εξυπηρέτησης μ_i .
- ο Οι αφίξεις των πελατών στις ουρές Q_i του δικτυακού κορμού από εξωτερικές πηγές ακολουθούν ανεξάρτητες κατανομές Poisson με μέσο ρυθμό άφιξης λ_i των οποίων το άθροισμα θα ισούται με το άθροισμα των αφίξεων των εξωτερικών πηγών του δικτύου.
- Ο Η παραδοχή ανεξαρτησίας του Kleinrock (ιδιοτότητα έλλειψης μνήμης): οι χρόνοι εξυπηρέτησης των πελατών όπως διαπερνούν το δίκτυο δεν διατηρούν την τιμή τους αλλά εξαρτώνται από την κατανομή των εξυπηρετητών του συστήματος.
- Η εσωτερική δρομολόγηση να γίνεται με τυχαίο τρόπο και επομένως να προκύπτουν διαδικασίες Poisson.
- ο Οι πελάτες να εξυπηρετούνται με πολιτική FCFS σε κάθε ουρά (χωρίς αυτό να είναι δεσμευτικό) και οι ουρές είναι άπειρης χωρητικότητας οπότε $\gamma = \lambda$.
- 2) Να προσδιορίσετε την ένταση του φορτίου ρi, i=1,2,3,4,5 που δέχεται η κάθε ουρά του δικτύου συναρτήσει των παραμέτρων λi , i=1,2 και μi , i=1,2,3,4,5. Στη συνέχεια, να υλοποιήσετε σε Octave τη συνάρτηση **intensities**, η οποία θα υπολογίζει τις τιμές ρi, i=1,2,3,4,5. Η συνάρτησή σας θα δέχεται ως όρισμα τις παραμέτρους λi , i=1,2 και μi , i=1,2,3,4,5 και θα επιστρέφει (α) τις τιμές ρi, i=1,2,3,4,5 και (β) την ακέραια τιμή 1, εάν το σύστημά σας είναι εργοδικό ή 0, εάν παραβιάζεται η συνθήκη της εργοδικότητας σε κάποια ουρά. Παράλληλα, η συνάρτησή σας θα πρέπει να εμφανίζει τις τιμές ρi, i=1,2,3,4,5.

Η κάθε ουρά του δικτύου, δέχεται ένταση του φορτίου ρί συναρτήσει των παραμέτρων μί, λί ως εξής:

$$\begin{split} \rho_1 = & \frac{\lambda_1}{\mu_1} \;,\; \rho_2 = \frac{\frac{2}{7}\lambda_1 + \lambda_2}{\mu_2} \;,\; \rho_3 = \frac{\frac{4}{7}\lambda_1}{\mu_3} \;,\; \rho_4 = \frac{\frac{1}{7}\lambda_1 + \frac{1}{2} \times \frac{4}{7}\lambda_1}{\mu_4} = \frac{\frac{3}{7}\lambda_1}{\mu_4} \;,\; \rho_5 = \frac{(\lambda_2 + \frac{2}{7}\lambda_1) + (\frac{1}{2} \times \frac{4}{7}\lambda_1)}{\mu_5} = \frac{\frac{4}{7}\lambda_1 + \lambda_2}{\mu_2} \\ O \; \text{this is a beta solution} \; \text{This is a beat solution} \; \text{This is a beta solution} \; \text{This is a beta solu$$

3) Με τη βοήθεια της συνάρτησης του προηγούμενου ερωτήματος, να γράψετε σε Octave τη συνάρτηση mean_clients, η οποία θα δέχεται ως ορίσματα (παραμέτρους) τις τιμές λi, i = 1, 2 και μi, i = 1, 2, 3, 4, 5 και θα επιστρέφει ένα διάνυσμα με τους μέσους αριθμούς πελατών των Qi, i = 1, 2, 3, 4, 5.

Για τους Μέσους Αριθμούς Πελατών ισχύει:
$$E(n_i) = \frac{\rho_i}{1-\rho_i}$$
 Ο πηγαίος κώδικας βρίσκεται στο αρχείο lab5.m .

- 4) Για τις τιμές των παραμέτρων $\lambda_1 = 4$, $\lambda_2 = 1$, $\mu_1 = 6$, $\mu_2 = 5$, $\mu_3 = 8$, $\mu_4 = 7$, $\mu_5 = 6$ (σε πελάτες/sec) να υπολογίσετε χρησιμοποιώντας τις προηγούμενες συναρτήσεις (α) την ένταση του φορτίου που δέχεται η κάθε ουρά και (β) το μέσο χρόνο καθυστέρησης ενός πελάτη από άκρο σε άκρο του δικτύου.
 - Ο Μέσος Χρόνος Καθυστέρησης ενός πελάτη από άκρο σε άκρο του δικτύου προκύπτει ως το άθροισμα των Μέσων Χρόνων Καθυστέρησης όλων των ουρών διαιρεμένο με το άθροισμα όλων των λ_i:

```
The network is ergodic
Intensity (ri) 1 = 0.666667
Intensity (ri) 2 = 0.428571
Intensity (ri) 3 = 0.285714
Intensity (ri) 4 = 0.244898
Intensity (ri) 5 = 0.547619
Intensities of the system:

IntensityTable =

0.66667 0.42857 0.28571 0.24490 0.54762

Average Time Delay from edge to edge, is E(T) = 0.93697
```

5) Να προσδιορίσετε ποια ουρά είναι η στενωπός (bottleneck) του δικτύου. Με βάση αυτήν την ουρά, να υπολογίσετε την μέγιστη τιμή της παραμέτρου λ₁ ώστε το σύστημα να παραμένει εργοδικό.

Στενωπός ενός συστήματος λέγεται το πιο επίφοβο σημείο στο οποίο μπορεί να παραβιαστεί η συνθήκη της εργοδικότητας (εκεί που υπάρχει μεγάλη πιθανότητα να «σκάσει» το σύστημα) και σε μια ουρά θεωρείται εκείνο με το μεγαλύτερο ρ. Η μεγαλύτερη τιμή του ρ είναι το 1. Εδώ, η στενωπός του δικτύου είναι η ουρά 1 καθώς έχει την μεγαλύτερη ένταση αλλά και χρήση εφόσον δεν υπάρχουν απώλειες πακέτων. Η έντασή της υπολογίζεται ως εξής: $ρ_1 = \frac{\lambda_1}{\mu_1}$ Για να παραμείνει η ουρά 1 εργοδική, πρέπει: $ρ_1 < 1 \rightarrow \lambda_1 < \mu_1 \rightarrow \lambda_1 < 6$. Συνεπώς, όσο $λ_1 < 6$, η ουρά 1 θα είναι εργοδική και άρα όλο το σύστημα θα είναι εργοδικό.

6) Για τις τιμές των παραμέτρων του ερωτήματος (4) και για λ₁ από 0.1 έως 0.99 της μεγίστης τιμής, να κάνετε το διάγραμμα του μέσου χρόνου καθυστέρησης ενός πελάτη από άκρο σε άκρο του δικτύου.

Ο Μέσος Χρόνος Καθυστέρησης προκύπτει ως το άθροισμα των Μέσω Αριθμών Πελατών σε κάθε ουρά διαιρεμένο με το άθροισμα των ρυθμών εξωτερικών αφίξεων. Επειδή δεν υπάρχουν απώλειες, εδώ $\gamma = \lambda$.

