SBML Model Report

Model name: "Topp2000_BetaCellMass_Diabetes"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by Ishan Ajmera¹ at July seventh 2011 at 3:51 p.m. and last time modified at October tenth 2014 at 10:28 a.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	3
events	0	constraints	0
reactions	0	function definitions	0
global parameters	9	unit definitions	0
rules	3	initial assignments	0

Model Notes

This model is from the article:

A model of beta-cell mass, insulin, and glucose kinetics: pathways to diabetes.

Topp R. Bramielovy K. de Vrige G. Miura P.M. Finagood D.T. I. Theor Riel 2000 Oct 21:

Topp B, Promislow K, deVries G, Miura RM, Finegood DT. <u>J Theor Biol.</u>2000 Oct 21;206(4):605-19. 11013117,

Abstract:

 $^{^1\}mathrm{EMBL}\text{-}\mathrm{EBI}$, ajmera@ebi.ac.uk

Diabetes is a disease of the glucose regulatory system that is associated with increased morbidity and early mortality. The primary variables of this system are beta-cell mass, plasma insulin concentrations, and plasma glucose concentrations. Existing mathematical models of glucose regulation incorporate only glucose and/or insulin dynamics. Here we develop a novel model of beta -cell mass, insulin, and glucose dynamics, which consists of a system of three nonlinear ordinary differential equations, where glucose and insulin dynamics are fast relative to beta-cell mass dynamics. For normal parameter values, the model has two stable fixed points (representing physiological and pathological steady states), separated on a slow manifold by a saddle point. Mild hyperglycemia leads to the growth of the beta-cell mass (negative feedback) while extreme hyperglycemia leads to the reduction of the beta-cell mass (positive feedback). The model predicts that there are three pathways in prolonged hyperglycemia: (1) the physiological fixed point can be shifted to a hyperglycemic level (regulated hyperglycemia), (2) the physiological and saddle points can be eliminated (bifurcation), and (3) progressive defects in glucose and/or insulin dynamics can drive glucose levels up at a rate faster than the adaptation of the beta -cell mass which can drive glucose levels down (dynamical hyperglycemia).

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

 $\mbox{\bf Notes}\,$ Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cell	cell		3	1	litre	Ø	

3.1 Compartment cell

This is a three dimensional compartment with a constant size of one litre.

Name cell

4 Species

This model contains three species. The boundary condition of three of these species is set to true so that these species' amount cannot be changed by any reaction. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
G I B	glucose insulin Mass	cell cell cell	$\begin{array}{c} \operatorname{mol} \cdot \mathbf{l}^{-1} \\ \operatorname{mol} \cdot \mathbf{l}^{-1} \\ \operatorname{mol} \cdot \mathbf{l}^{-1} \end{array}$		Z Z

5 Parameters

This model contains nine global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
si	si	0000009	0.720		\overline{Z}
Eg0	Eg0	0000009	1.440		$\overline{\mathbf{Z}}$
RO	R0	0000393	864.000		$\overline{\mathbf{Z}}$
sigma	sigma	0000009	43.200		$\overline{\mathbf{Z}}$
alpha	alpha	0000009	20000.000		$\overline{\mathbf{Z}}$
k	k	0000009	432.000		$\overline{\mathbf{Z}}$
d0	d0	0000179	0.060		$\overline{\mathbf{Z}}$
r1	r1	0000009	$8.4 \cdot 10^{-4}$		$\overline{\mathbf{Z}}$
r2	r2	0000009	$2.4\cdot10^{-6}$		\mathbf{Z}

6 Rules

This is an overview of three rules.

6.1 Rule G

Rule G is a rate rule for species G:

$$\frac{\mathrm{d}}{\mathrm{d}t}G = R0 - (Eg0 + \mathrm{si} \cdot [\mathrm{I}]) \cdot [\mathrm{G}] \tag{1}$$

6.2 Rule I

Rule I is a rate rule for species I:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{I} = \frac{[\mathbf{B}] \cdot \mathrm{sigma} \cdot [\mathbf{G}]^2}{\mathrm{alpha} + [\mathbf{G}]^2} - \mathbf{k} \cdot [\mathbf{I}]$$
 (2)

6.3 Rule B

Rule B is a rate rule for species B:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{B} = \left(\mathrm{d}0 + \mathbf{r}1 \cdot [\mathbf{G}] - \mathbf{r}2 \cdot [\mathbf{G}]^2\right) \cdot [\mathbf{B}] \tag{3}$$

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

7.1 Species G

Name glucose

SBO:0000247 simple chemical

Initial concentration $250 \text{ mol} \cdot l^{-1}$

Involved in rule G

One rule determines the species' quantity.

7.2 Species I

Name insulin

SBO:0000252 polypeptide chain

Initial concentration $2.8 \text{ mol} \cdot l^{-1}$

Involved in rule I

One rule determines the species' quantity.

7.3 Species B

Name Mass

SBO:0000240 material entity

Initial concentration $37 \text{ mol} \cdot l^{-1}$

Involved in rule B

One rule determines the species' quantity.

A Glossary of Systems Biology Ontology Terms

SBO:000009 kinetic constant: Numerical parameter that quantifies the velocity of a chemical reaction

SBO:0000179 degradation: Complete disappearance of a physical entity

SBO:0000240 material entity: A real thing that is defined by its physico-chemical structure.

SBO:0000247 simple chemical: Simple, non-repetitive chemical entity

SBO:0000252 polypeptide chain: Naturally occurring macromolecule formed by the repetition of amino-acid residues linked by peptidic bonds. A polypeptide chain is synthesized by the ribosome. CHEBI:1654

SBO:0000393 production: Generation of a material or conceptual entity.

 $\mathfrak{BML2}^{AT}$ EX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany