NLO QCD with Massive Quarks

An extension of the NSC subtraction scheme Bachelor Degree in Physics

Leonardo Cerasi (11410A)

date-not-known

Evidence for Beyond-Standard-Model physics

Main BSM evidence

- dark matter and dark energy
- matter-antimatter asymmetry
- neutrino masses

Figure from Clowe et al. 2006. Offset between the observed baryonic mass distribution and the gravitational potential in the Bullet Cluster (1E 0657-56).

BSM constraints and shift in research paradigm

Main BSM proposals

- supersymmetric models (MSSM, ...)
- dark matter models (WIMPs, axions, ...)
- extended gauge sectors (SO(10), ...)
- SM Effective Field Theory (SMEFT)

Figure from ATLAS PUB Note 2023–025. Exclusion limits in the $\tilde{g}-\tilde{\chi}_1^0$ mass plane for various models for the decay of the gluino to the lightest supersymmetric particle.

3/26

Factorization theorem and perturbative QCD

Figures from Höche 2015 (left) and Asteriadis 2021 (right).

Hadronization of jets produced in hadronic scattering and detail of the underlying hard partonic scattering.

Factorization theorem and perturbative QCD

Hadronic and partonic physics decouple in hard scattering processes, and we can formulate a factorization theorem:

$$\begin{split} \mathrm{d}\sigma_{h_1,h_2}(P_1,P_2) &= \sum_{a,b} \int_{[0,1]^2} \frac{\mathrm{d}\xi_1}{\xi_1} \frac{\mathrm{d}\xi_2}{\xi_2} f_a^{(h_1)}(\xi_1,\mu_{\mathrm{F}}^2) f_b^{(h_2)}(\xi_2,\mu_{\mathrm{F}}^2) \times \\ & \times \mathrm{d}\hat{\sigma}_{a,b}(\xi_1 P_1,\xi_2 P_2,\alpha_{\mathrm{s}},\mu_{\mathrm{R}}^2,\mu_{\mathrm{F}}^2) \left[1 + o\left(\frac{\Lambda_{\mathrm{QCD}}^n}{\mathit{Q}^n}\right) \right] \end{split}$$

Asymptotic freedom allows for a perturbative analysis of the hard partonic scattering:

$$\mathrm{d}\hat{\sigma}_{a,b}(p_1,p_2) = \sum_{n \in \mathbb{N}_0} \mathrm{d}\hat{\sigma}_{a,b}^{(n)}(p_1,p_2)$$

 $n \ge 1$ are denoted by NⁿLO QCD corrections.

Radiative corrections to partonic processes

Our focus is on NLO QCD corrections. Consider e.g. the Drell-Yan process:

LO process

Radiative corrections to partonic processes

Our focus is on NLO QCD corrections. Consider e.g. the Drell-Yan process:

Real correction

Radiative corrections to partonic processes

Our focus is on NLO QCD corrections. Consider e.g. the Drell-Yan process:

Virtual correction

Infrared singularities of scattering amplitudes

Main difficulty: infrared singularities in particular kinematic regimes. Example in real corrections:

Infrared singularities of scattering amplitudes

Main difficulty: infrared singularities in particular kinematic regimes. Example in real corrections:

Soft singularity: $E_k \rightarrow 0$

Infrared singularities of scattering amplitudes

Main difficulty: infrared singularities in particular kinematic regimes. Example in real corrections:

Collinear singularity: $\theta \to 0$

Dimensional regularization

The key idea to regularize IR divergences is dimensional regularization:

$$d=4-2\epsilon$$
 , $\epsilon\in\mathbb{C}:\Re\epsilon<0$

Then, soft and collinear singularities are expressed as poles in ϵ :

$$\int rac{\mathrm{d}^{d-1}k}{(2\pi)^{d-1}2E_k} \left|\mathcal{A}(p_k)
ight|^2 \sim \int_0^{\mathcal{E}} rac{\mathrm{d}E_k}{E_k^{5-d}} \int_0^{\pi} \mathrm{d} heta rac{\sin^{d-3} heta}{1-\cos heta} \left|\mathcal{A}_0
ight|^2$$

Dimensional regularization

The key idea to regularize IR divergences is dimensional regularization:

$$d=4-2\epsilon$$
 , $\epsilon \in \mathbb{C}: \Re \epsilon < 0$

Then, soft and collinear singularities are expressed as poles in ϵ :

$$\int \frac{\mathrm{d}^{d-1}k}{(2\pi)^{d-1}2E_k} |\mathcal{A}(p_k)|^2 \sim \int_0^{\mathcal{E}} \frac{\mathrm{d}E_k}{E_k^{5-d}} \int_0^{\pi} \mathrm{d}\theta \frac{\sin^{d-3}\theta}{1-\cos\theta} |\mathcal{A}_0|^2$$

$$= -\frac{\mathcal{E}^{-2\epsilon}}{2\epsilon}$$

Dimensional regularization

The key idea to regularize IR divergences is dimensional regularization:

$$d=4-2\epsilon$$
 , $\epsilon \in \mathbb{C}: \Re \epsilon < 0$

Then, soft and collinear singularities are expressed as poles in ϵ :

$$\int \frac{\mathrm{d}^{d-1}k}{(2\pi)^{d-1}2E_k} |\mathcal{A}(p_k)|^2 \sim \int_0^{\mathcal{E}} \frac{\mathrm{d}E_k}{E_k^{5-d}} \int_0^{\pi} \mathrm{d}\theta \frac{\sin^{d-3}\theta}{1-\cos\theta} |\mathcal{A}_0|^2$$
soft singularity
collinear singularity
$$= -\frac{\mathcal{E}^{-2\epsilon}}{2\epsilon} = -\frac{2^{-2+\epsilon}}{\epsilon}$$

Subtraction schemes

 ϵ -poles can be extracted from partonic cross-sections via subtraction methods. General idea using a regular function f(x):

$$I = \int_0^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} f(x) = \int_0^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} \left[f(x) - f(0) \right] + f(0) \int_0^1 \frac{\mathrm{d}x}{x^{1+\epsilon}}$$

- $\frac{f(x)-f(0)}{x^{1+\epsilon}}$ regular at x=0, so it can be numerically integrated with $\epsilon\to 0$;
- f(0) $\int_0^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} = -\frac{f(0)}{\epsilon}$ contains the explicit ϵ -pole.

Our aim is finding the most general subtraction terms f(0) for partonic scattering.

Sequential extraction of singularities

The Nested Soft-Collinear (NSC) Subtraction Scheme (SS) at NLO is modular and local:

• singular limits extracted by operators: S_i soft limit $E_i \to 0$, C_{ij} collinear limit $\theta_{ij} \to 0$;

Sequential extraction of singularities

The Nested Soft-Collinear (NSC) Subtraction Scheme (SS) at NLO is modular and local:

- singular limits extracted by operators: S_i soft limit $E_i \to 0$, C_{ij} collinear limit $\theta_{ij} \to 0$;
- potentially-unresolved partons isolated by clever partitions of unity Δ^i and ω^{ij} ;

Sequential extraction of singularities

The Nested Soft-Collinear (NSC) Subtraction Scheme (SS) at NLO is modular and local:

- singular limits extracted by operators: S_i soft limit $E_i \to 0$, C_{ij} collinear limit $\theta_{ij} \to 0$;
- potentially-unresolved partons isolated by clever partitions of unity Δ^i and ω^{ij} ;
- first soft singularities removed applying $\overline{S}_{\mathfrak{m}} \equiv \mathrm{id} S_{\mathfrak{m}}$, then collinear ones removed using $\overline{C}_{i\mathfrak{m}} \equiv \mathrm{id} C_{i\mathfrak{m}}$, with \mathfrak{m} unresolved parton;

Sequential extraction of singularities

The Nested Soft-Collinear (NSC) Subtraction Scheme (SS) at NLO is modular and local:

- singular limits extracted by operators: S_i soft limit $E_i \to 0$, C_{ij} collinear limit $\theta_{ij} \to 0$;
- potentially-unresolved partons isolated by clever partitions of unity Δ^i and ω^{ij} ;
- first soft singularities removed applying $\overline{S}_{\mathfrak{m}} \equiv \mathrm{id} S_{\mathfrak{m}}$, then collinear ones removed using $\overline{C}_{i\mathfrak{m}} \equiv \mathrm{id} C_{i\mathfrak{m}}$, with \mathfrak{m} unresolved parton;
- IR-safe part of cross-section extracted by:

$$O_{\mathsf{NLO}}^{\mathfrak{m}} := \sum_{i \in \mathcal{H}_{m,0}^{n}} \overline{\mathsf{S}}_{\mathfrak{m}} \overline{\mathsf{C}}_{i\mathfrak{m}} \omega^{\mathfrak{m}i}$$

Sequential extraction of singularities

The Nested Soft-Collinear (NSC) Subtraction Scheme (SS) at NLO is modular and local:

- singular limits extracted by operators: S_i soft limit $E_i \to 0$, C_{ij} collinear limit $\theta_{ij} \to 0$;
- potentially-unresolved partons isolated by clever partitions of unity Δ^i and ω^{ij} ;
- first soft singularities removed applying $\overline{S}_{\mathfrak{m}} \equiv \mathrm{id} S_{\mathfrak{m}}$, then collinear ones removed using $\overline{C}_{i\mathfrak{m}} \equiv \mathrm{id} C_{i\mathfrak{m}}$, with \mathfrak{m} unresolved parton;
- IR-safe part of cross-section extracted by:

$$\mathsf{O}^{\mathfrak{m}}_{\mathsf{NLO}} \coloneqq \sum_{i \in \mathcal{H}^{n}_{m,0}} \overline{\mathsf{S}}_{\mathfrak{m}} \overline{\mathsf{C}}_{i\mathfrak{m}} \omega^{\mathfrak{m}i}$$

• counterterms contain the IR divergences.

IR-safe cross-section

$$\begin{split} \mathrm{d}\hat{\sigma}_{a,b}^{(1)} &= \mathrm{d}\hat{\sigma}_{a,b}^{\mathsf{NLO,reg}} + \frac{1}{2\hat{s}} \sum_{n \in \mathcal{G}_m} \left[\frac{\alpha_{\mathsf{s}}(\mu_{\mathsf{R}}^2)}{2\pi} \left\langle I_{\mathsf{T}}^{(0)} \mathcal{F}_{a,b}[\mathcal{X}_m^n] \right\rangle + \left\langle \mathcal{F}_{a,b}^{\mathsf{fin}}[\mathcal{X}_m^n] \right\rangle \right] \\ &\quad + \frac{\alpha_{\mathsf{s}}(\mu_{\mathsf{R}}^2)}{2\pi} \sum_{c} \left[P_{fc,fa}^{\mathsf{gen}} \otimes \mathrm{d}\hat{\sigma}_{c,b}^{(0)} + P_{fc,fb}^{\mathsf{gen}} \otimes \mathrm{d}\hat{\sigma}_{a,c}^{(0)} \right] \end{split}$$

IR-safe cross-section

The total ϵ -finite NLO cross-section can be written as:

$$\begin{split} \mathrm{d}\hat{\sigma}_{a,b}^{(1)} &= \mathrm{d}\hat{\sigma}_{a,b}^{\mathsf{NLO,reg}} + \frac{1}{2\hat{s}} \sum_{n \in \mathcal{G}_m} \left[\frac{\alpha_{\mathsf{S}}(\mu_{\mathsf{R}}^2)}{2\pi} \left\langle \mathbf{I}_{\mathsf{T}}^{(0)} \mathcal{F}_{a,b}[\mathcal{X}_m^n] \right\rangle + \left\langle \mathcal{F}_{a,b}^{\mathsf{fin}}[\mathcal{X}_m^n] \right\rangle \right] \\ &\quad + \frac{\alpha_{\mathsf{S}}(\mu_{\mathsf{R}}^2)}{2\pi} \sum_{c} \left[P_{fc,fa}^{\mathsf{gen}} \otimes \mathrm{d}\hat{\sigma}_{c,b}^{(0)} + P_{fc,fb}^{\mathsf{gen}} \otimes \mathrm{d}\hat{\sigma}_{a,c}^{(0)} \right] \end{split}$$

• NLO final reminder, defined using O_{NLO};

IR-safe cross-section

$$\begin{split} \mathrm{d}\hat{\sigma}_{a,b}^{(1)} &= \mathrm{d}\hat{\sigma}_{a,b}^{\mathsf{NLO,reg}} + \frac{1}{2\hat{s}} \sum_{n \in \mathcal{G}_m} \left[\frac{\alpha_{\mathsf{s}}(\mu_{\mathsf{R}}^2)}{2\pi} \left\langle \mathbf{I}_{\mathsf{T}}^{(0)} \mathcal{F}_{a,b}[\mathcal{X}_m^n] \right\rangle + \left\langle \mathcal{F}_{a,b}^{\mathsf{fin}}[\mathcal{X}_m^n] \right\rangle \right] \\ &\quad + \frac{\alpha_{\mathsf{s}}(\mu_{\mathsf{R}}^2)}{2\pi} \sum_{c} \left[P_{f_c,f_a}^{\mathsf{gen}} \otimes \mathrm{d}\hat{\sigma}_{c,b}^{(0)} + P_{f_c,f_b}^{\mathsf{gen}} \otimes \mathrm{d}\hat{\sigma}_{a,c}^{(0)} \right] \end{split}$$

- NLO final reminder, defined using O_{NLO};
- finite counterterm from virtual corrections;

IR-safe cross-section

$$\begin{split} \mathrm{d}\hat{\sigma}_{a,b}^{(1)} &= \mathrm{d}\hat{\sigma}_{a,b}^{\mathsf{NLO,reg}} + \frac{1}{2\hat{s}} \sum_{n \in \mathcal{G}_m} \left[\frac{\alpha_{\mathsf{s}}(\mu_{\mathsf{R}}^2)}{2\pi} \left\langle \mathbf{I}_{\mathsf{T}}^{(0)} \mathcal{F}_{a,b}[\mathcal{X}_m^n] \right\rangle + \left\langle \mathcal{F}_{a,b}^{\mathsf{fin}}[\mathcal{X}_m^n] \right\rangle \right] \\ &\quad + \frac{\alpha_{\mathsf{s}}(\mu_{\mathsf{R}}^2)}{2\pi} \sum_{c} \left[P_{f_c,f_a}^{\mathsf{gen}} \otimes \mathrm{d}\hat{\sigma}_{c,b}^{(0)} + P_{f_c,f_b}^{\mathsf{gen}} \otimes \mathrm{d}\hat{\sigma}_{a,c}^{(0)} \right] \end{split}$$

- NLO final reminder, defined using O_{NLO};
- finite counterterm from virtual corrections;
- finite counterterm from PDF renormalization;

IR-safe cross-section

$$\begin{split} \mathrm{d}\hat{\sigma}_{a,b}^{(1)} &= \mathrm{d}\hat{\sigma}_{a,b}^{\mathsf{NLO,reg}} + \frac{1}{2\hat{s}} \sum_{n \in \mathcal{G}_m} \left[\frac{\alpha_{\mathsf{s}}(\mu_{\mathsf{R}}^2)}{2\pi} \left\langle \mathbf{I}_{\mathsf{T}}^{(0)} \mathcal{F}_{a,b}[\mathcal{X}_m^n] \right\rangle + \left\langle \mathcal{F}_{a,b}^{\mathsf{fin}}[\mathcal{X}_m^n] \right\rangle \right] \\ &\quad + \frac{\alpha_{\mathsf{s}}(\mu_{\mathsf{R}}^2)}{2\pi} \sum_{c} \left[P_{f_c,f_a}^{\mathsf{gen}} \otimes \mathrm{d}\hat{\sigma}_{c,b}^{(0)} + P_{f_c,f_b}^{\mathsf{gen}} \otimes \mathrm{d}\hat{\sigma}_{a,c}^{(0)} \right] \end{split}$$

- NLO final reminder, defined using O_{NLO};
- finite counterterm from virtual corrections;
- finite counterterm from PDF renormalization;
- counterterm we are interested in.

Pole extraction through operators

Soft singularities

$$\left\langle \mathsf{S}_{\mathsf{m}} \Delta^{\mathsf{m}} \middle| \begin{matrix} a \\ \vdots \\ b \end{matrix} \right| \stackrel{\vdots}{\underset{\mathsf{line}}{\underset{\mathsf{m}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}{\overset{\mathsf{m}}{\overset{\mathsf{m}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}{\overset{\mathsf{m}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{m}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}}{\overset{\mathsf{m}}}{\overset{\mathsf{$$

$$I_{\mathsf{S}}(\epsilon) := -\frac{1}{\epsilon^2} \left(\frac{2\mathcal{E}}{\mu} \right)^{-2\epsilon} \frac{\Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)} \sum_{i \neq j \in \mathcal{X}_{m-0}^n} \eta_{ij} (\mathbf{T}_i \cdot \mathbf{T}_j) \,_2 F_1(1, 1, 1-\epsilon, 1-\eta_{ij})$$

Pole extraction through operators

Hard-collinear singularities

$$\sum_{\rho=1}^{2n_{\!f}+1}\sum_{i\in\mathcal{H}^n_{m,0}(\mathfrak{m}_\rho)}\left\langle \overline{\mathsf{S}}_{\mathfrak{m}}\mathsf{C}_{i\mathfrak{m}_\rho}\Delta^{\mathfrak{m}_\rho} \left| \begin{array}{c} a \\ b \end{array} \right| \stackrel{\vdots}{\underset{i}{\longleftarrow}} n_\rho \\ b \end{array} \right|^2 \right\rangle \sim \left[\alpha_{\mathsf{s}}\right]\left\langle I_{\mathsf{C}}(\epsilon) \cdot \left| \begin{array}{c} a \\ b \end{array} \right| \stackrel{\vdots}{\underset{i}{\longleftarrow}} [i\mathfrak{m}_\rho] \right|^2 \right\rangle$$

$$I_{\mathsf{C}}(\epsilon) := \sum_{i \in \mathcal{H}_{m,0}^n} rac{\Gamma_{i,f_i}}{\epsilon} = rac{1}{\epsilon} \sum_{i \in \mathcal{H}_{m,0}^n} \left[\gamma_i + 2\mathbf{T}_i^2 \log rac{\mathcal{E}}{E_i}
ight] + o(\epsilon^0)$$

Pole extraction through operators

Virtual singularities

$$\left\langle 2\Re \left\langle \begin{array}{c} a \\ b \end{array} \right\rangle \right\rangle = \left[\alpha_{\rm S}\right] \left\langle I_{\rm V}(\epsilon) \cdot \left| \begin{array}{c} a \\ b \end{array} \right| \right\rangle \right\rangle$$

$$I_{\mathsf{V}}(\epsilon) \equiv \sum_{i \neq j \in \mathcal{X}_{i}^{n}} \left(\mathbf{T}_{i} \cdot \mathbf{T}_{j}\right) \left(rac{\mu^{2}}{2p_{i} \cdot p_{j}}\right)^{\epsilon} \cos\left(\lambda_{ij}\pi\epsilon\right) \left[rac{1}{\epsilon^{2}} + rac{1}{\mathbf{T}_{i}^{2}} rac{\gamma_{i}}{\epsilon}
ight]$$

Pole cancellation: $I_{S}(\epsilon) + I_{V}(\epsilon)$

$$\begin{split} I_{\mathsf{S+V}} &= \sum_{i \neq j \in \mathcal{X}_{m,0}^n} (\mathbf{T}_i \cdot \mathbf{T}_j) \left[-\frac{1}{\epsilon^2} \left(\frac{2\mathcal{E}}{\mu} \right)^{-2\epsilon} \mathbf{K}_{ij} + \left(\frac{\mu^2}{2p_i \cdot p_j} \right)^{\epsilon} \cos\left(\lambda_{ij} \pi \epsilon\right) \left(\frac{1}{\epsilon^2} + \frac{1}{\mathbf{T}_i^2} \frac{\gamma_i}{\epsilon} \right) \right] \\ &= \frac{\Gamma^2 (1 - \epsilon)}{\Gamma (1 - 2\epsilon)} \eta_{ij} \,_2 \mathbf{F}_1 (1, 1, 1 - \epsilon, 1 - \eta_{ij}) = 1 - \epsilon \log \eta_{ij} + o(\epsilon^2) \\ &= \sum_{i \neq j \in \mathcal{X}_{m,0}^n} (\mathbf{T}_i \cdot \mathbf{T}_j) \frac{1}{\epsilon^2} \left(\frac{2\mathcal{E}}{\mu} \right)^{-2\epsilon} \left[-\mathbf{1} + \epsilon \log \eta_{ij} + \left(\frac{\mathcal{E}^2}{E_i E_j} \right)^{\epsilon} \eta_{ij}^{-\epsilon} \cos\left(\lambda_{ij} \pi \epsilon\right) \left(\mathbf{1} + \epsilon \frac{\gamma_i}{\mathbf{T}_i^2} \right) \right] \\ &= \frac{1}{\epsilon} \sum_{i \neq j \in \mathcal{X}_{m,0}^n} (\mathbf{T}_i \cdot \mathbf{T}_j) \left(L_i + L_j + \frac{\gamma_i}{\mathbf{T}_i^2} \right) + o(\epsilon^0) = -\frac{1}{\epsilon} \sum_{i \in \mathcal{H}_{m,0}^n} \left(\gamma_i + 2\mathbf{T}_i^2 L_i \right) + o(\epsilon^0) \end{split}$$

Pole cancellation: $I_{\mathsf{T}}(\epsilon)$

Compare:

$$\begin{split} I_{\mathsf{S}+\mathsf{V}}(\epsilon) &= -\frac{1}{\epsilon} \sum_{i \in \mathcal{H}^n_{m,0}} \left(\gamma_i + 2 \mathbf{T}_i^2 L_i \right) + I_{\mathsf{S}+\mathsf{V}}^{(0)} + o(\epsilon) \\ I_{\mathsf{C}}(\epsilon) &= +\frac{1}{\epsilon} \sum_{i \in \mathcal{H}^n_{m,0}} \left(\gamma_i + 2 \mathbf{T}_i^2 L_i \right) + I_{\mathsf{C}}^{(0)} + o(\epsilon) \end{split}$$

Hence:

$$I_{\mathsf{T}}(\epsilon) \equiv I_{\mathsf{S}}(\epsilon) + I_{\mathsf{C}}(\epsilon) + I_{\mathsf{V}}(\epsilon) = I_{\mathsf{T}}^{(0)} + o(\epsilon)$$

Mass-regualtion of soft and collinear limits

Massive partons do not determine soft or collinear singularities:

Clearly, no more collinear singularities as $E_k \neq |\mathbf{k}|$ for $m \neq 0$. The soft limit is non-singular even in the massless case.

Generalized soft operator

$$I_{S}(\epsilon) = \frac{1}{2\epsilon} \left(\frac{2\mathcal{E}}{\mu} \right)^{-2\epsilon} \frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2\epsilon)} \sum_{i,j \in \mathcal{X}_{m,0}^{n}} (\mathbf{T}_{i} \cdot \mathbf{T}_{j}) I_{i,j}(\epsilon)$$

Generalized soft operator

• In presence of final-state massive partons, $I_{S}(\epsilon)$ becomes:

$$I_{S}(\epsilon) = \frac{1}{2\epsilon} \left(\frac{2\mathcal{E}}{\mu} \right)^{-2\epsilon} \frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2\epsilon)} \sum_{i,j \in \mathcal{X}_{m,0}^{n}} (\mathbf{T}_{i} \cdot \mathbf{T}_{j}) I_{i,j}(\epsilon)$$

• $I_{i,j}(\epsilon)$ depends on the nature (massive or massless) of partons i and j;

Generalized soft operator

$$I_{S}(\epsilon) = \frac{1}{2\epsilon} \left(\frac{2\mathcal{E}}{\mu} \right)^{-2\epsilon} \frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2\epsilon)} \sum_{i,j \in \mathcal{X}_{m,0}^{n}} (\mathbf{T}_{i} \cdot \mathbf{T}_{j}) I_{i,j}(\epsilon)$$

- $I_{i,j}(\epsilon)$ depends on the nature (massive or massless) of partons i and j;
- $I_{i,j}(\epsilon)$ is singular as $\sim \epsilon^{-1}$ if at least one parton is massless, otherwise it is ϵ -finite;

Generalized soft operator

$$I_{S}(\epsilon) = \frac{1}{2\epsilon} \left(\frac{2\mathcal{E}}{\mu} \right)^{-2\epsilon} \frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2\epsilon)} \sum_{i,j \in \mathcal{X}_{m,0}^{n}} (\mathbf{T}_{i} \cdot \mathbf{T}_{j}) I_{i,j}(\epsilon)$$

- $I_{i,j}(\epsilon)$ depends on the nature (massive or massless) of partons i and j;
- $I_{i,j}(\epsilon)$ is singular as $\sim \epsilon^{-1}$ if at least one parton is massless, otherwise it is ϵ -finite;
- ϵ^{-2} -poles of $I_S(\epsilon)$ are determined only by massless partons.

Generalized virtual operator

$$I_{\mathsf{V}}(\epsilon) := \Re I_{1}(\epsilon) = \sum_{i \neq j \in \mathcal{X}_{m,0}^{n}} (\mathbf{T}_{i} \cdot \mathbf{T}_{j}) \left(\frac{\mu^{2}}{|s_{ij}|} \right)^{\epsilon} \left[\mathcal{V}_{i,j}(\epsilon) - \frac{1}{\mathsf{v}_{ij}} \frac{\pi^{2}}{2} \theta(s_{ij}) \right] - \sum_{i \in \mathcal{X}_{m,0}^{n}} \Gamma_{i}(\epsilon)$$

Generalized virtual operator

• In presence of final-state massive partons, $I_{S}(\epsilon)$ becomes:

$$I_{\mathsf{V}}(\epsilon) := \Re I_{1}(\epsilon) = \sum_{i \neq j \in \mathcal{X}_{m,0}^{n}} (\mathbf{T}_{i} \cdot \mathbf{T}_{j}) \left(\frac{\mu^{2}}{|s_{ij}|} \right)^{\epsilon} \left[\mathcal{V}_{i,j}(\epsilon) - \frac{1}{\nu_{ij}} \frac{\pi^{2}}{2} \theta(s_{ij}) \right] - \sum_{i \in \mathcal{X}_{m,0}^{n}} \Gamma_{i}(\epsilon)$$

• $V_{i,j}(\epsilon)$ depends on the nature (massive or massless) of partons i and j;

Generalized virtual operator

$$I_{\mathsf{V}}(\epsilon) := \Re I_{1}(\epsilon) = \sum_{i \neq j \in \mathcal{X}_{m,0}^{n}} (\mathbf{T}_{i} \cdot \mathbf{T}_{j}) \left(\frac{\mu^{2}}{|s_{ij}|} \right)^{\epsilon} \left[\mathcal{V}_{i,j}(\epsilon) - \frac{1}{\mathsf{v}_{ij}} \frac{\pi^{2}}{2} \theta(s_{ij}) \right] - \sum_{i \in \mathcal{X}_{m,0}^{n}} \Gamma_{i}(\epsilon)$$

- $V_{i,j}(\epsilon)$ depends on the nature (massive or massless) of partons *i* and *j*;
- $I_{i,j}(\epsilon)$ is ϵ^{-2} -singular if at least one parton is massless, otherwise it is ϵ^{-1} -singular;

Generalized virtual operator

$$I_{\mathsf{V}}(\epsilon) := \Re I_{1}(\epsilon) = \sum_{i \neq j \in \mathcal{X}_{m,0}^{n}} (\mathbf{T}_{i} \cdot \mathbf{T}_{j}) \left(\frac{\mu^{2}}{|s_{ij}|} \right)^{\epsilon} \left[\mathcal{V}_{i,j}(\epsilon) - \frac{1}{\mathsf{v}_{ij}} \frac{\pi^{2}}{2} \theta(s_{ij}) \right] - \sum_{i \in \mathcal{X}_{m,0}^{n}} \Gamma_{i}(\epsilon)$$

- $V_{i,j}(\epsilon)$ depends on the nature (massive or massless) of partons i and j;
- $I_{i,j}(\epsilon)$ is ϵ^{-2} -singular if at least one parton is massless, otherwise it is ϵ^{-1} -singular;
- $\Gamma_i(\epsilon)$ is ϵ^{-1} -singular;

Generalized virtual operator

$$I_{\mathsf{V}}(\epsilon) := \Re I_{1}(\epsilon) = \sum_{i \neq j \in \mathcal{X}_{m,0}^{n}} (\mathbf{T}_{i} \cdot \mathbf{T}_{j}) \left(\frac{\mu^{2}}{|s_{ij}|} \right)^{\epsilon} \left[\mathcal{V}_{i,j}(\epsilon) - \frac{1}{\mathsf{v}_{ij}} \frac{\pi^{2}}{2} \theta(s_{ij}) \right] - \sum_{i \in \mathcal{X}_{m,0}^{n}} \Gamma_{i}(\epsilon)$$

- $V_{i,j}(\epsilon)$ depends on the nature (massive or massless) of partons i and j;
- $I_{i,j}(\epsilon)$ is ϵ^{-2} -singular if at least one parton is massless, otherwise it is ϵ^{-1} -singular;
- $\Gamma_i(\epsilon)$ is ϵ^{-1} -singular;
- ϵ^{-2} -poles of $I_V(\epsilon)$ are determined only by massless partons.

Pole cancellation: generalized pole terms in $I_{S}(\epsilon) + I_{V}(\epsilon)$

It is convenient to group summations as follows:

$$\begin{split} I_{\mathsf{S}+\mathsf{V}}(\epsilon) &= \sum_{i,j \in \mathcal{X}_{m,0}^n} I_\mathsf{S}^{i,j}(\epsilon) + \sum_{i \neq j \in \mathcal{X}_{m,0}^n} \widetilde{I}_\mathsf{V}^{i,j}(\epsilon) - \sum_{i \in \mathcal{X}_{m,0}^n} \Gamma_i(\epsilon) \\ &= \sum_{i \neq j \in \mathcal{X}_{m,0}^n} \left[I_\mathsf{S}^{i,j}(\epsilon) + \widetilde{I}_\mathsf{V}^{i,j}(\epsilon) \right] + \sum_{i \in \mathcal{X}_{m,m}^n} \left[I_\mathsf{S}^{i,i}(\epsilon) - \Gamma_i(\epsilon) \right] - \sum_{i \in \mathcal{H}_{m,0}^n} \Gamma_i(\epsilon) \end{split}$$

Then, ϵ^{-2} -singularities are only present in the first sum:

$$I_{\mathsf{S}}^{i,j}(\epsilon) + \tilde{I}_{\mathsf{V}}^{i,j}(\epsilon) = \chi_{i,j} + \mathbf{x}_{i,j} + o(\epsilon)$$

Pole cancellation: generalized pole terms in $I_{S}(\epsilon) + I_{V}(\epsilon)$

It is convenient to group summations as follows:

$$\begin{split} I_{\mathsf{S}+\mathsf{V}}(\epsilon) &= \sum_{i,j \in \mathcal{X}_{m,0}^n} I_{\mathsf{S}}^{i,j}(\epsilon) + \sum_{i \neq j \in \mathcal{X}_{m,0}^n} \tilde{I}_{\mathsf{V}}^{i,j}(\epsilon) - \sum_{i \in \mathcal{X}_{m,0}^n} \Gamma_i(\epsilon) \\ &= \sum_{i \neq j \in \mathcal{X}_{m,0}^n} \left[I_{\mathsf{S}}^{i,j}(\epsilon) + \tilde{I}_{\mathsf{V}}^{i,j}(\epsilon) \right] + \sum_{i \in \mathcal{X}_{m,m}^n} \left[I_{\mathsf{S}}^{i,i}(\epsilon) - \Gamma_i(\epsilon) \right] - \sum_{i \in \mathcal{H}_{m,0}^n} \Gamma_i(\epsilon) \end{split}$$

Then, ϵ^{-2} -singularities are only present in the first sum:

$$I_{\mathsf{S}}^{i,j}(\epsilon) + \tilde{I}_{\mathsf{V}}^{i,j}(\epsilon) = \chi_{i,j} + \mathbf{x}_{i,j} + o(\epsilon)$$

Laurent expansion: pole terms and ϵ -finite finite reminder.

Pole cancellation: quadratic pole terms

Quadratic pole terms have a complex general form:

$$\chi_{i,j} \equiv \frac{1}{\epsilon^2} \left(\frac{1}{2} I_{i,j}^{(-1)} + \mathcal{V}_{i,j}^{(-2)} \right) + \frac{1}{\epsilon} \left(\frac{1}{2} I_{i,j}^{(0)} + \mathcal{V}_{i,j}^{(-1)} - \mathscr{L}_{\mathsf{m}} I_{i,j}^{(-1)} + \mathcal{V}_{i,j}^{(-2)} \log \frac{\mu^2}{\left| \mathbf{s}_{ij} \right|} \right)$$

However, with further manipulation, the explicit structure is simple:

$$\chi_{i,j} = egin{cases} 0 & i,j ext{ massive} \ rac{1}{\epsilon} L_j & i ext{ massive}, j ext{ massless} \ rac{1}{\epsilon} L_i & i ext{ massless}, j ext{ massive} \ rac{1}{\epsilon} \left(L_i + L_j
ight) & i,j ext{ massless} \end{cases}$$
 $L_k \equiv \log rac{\mathcal{E}}{E_k}$

Pole cancellation: Catani's anomalous dimensions

The sum over $\mathcal{X}_{m,m}^n$ in $I_{S+V}(\epsilon)$ is manifestly ϵ -finite:

$$egin{aligned} \sum_{i \in \mathcal{X}_{m, \mathsf{m}}^n} \left[I_{\mathsf{S}}^{i,i}(\epsilon) - \Gamma_i(\epsilon)
ight] &= \sum_{i \in \mathcal{X}_{m, \mathsf{m}}^n} \left[\mathcal{C}_{\mathsf{F}} \left(rac{1}{\epsilon} - rac{1}{\kappa_i} \log rac{1 - \kappa_i}{1 + \kappa_i} - 2 \mathscr{L}_{\mathsf{m}}
ight)
ight. \ &- \mathcal{C}_{\mathsf{F}} \left(rac{1}{\epsilon} + rac{1}{2} \log rac{m_{Q_i}^2}{\mu^2} - 2
ight)
ight] \equiv \sum_{i \in \mathcal{X}_{m, \mathsf{m}}^n} \pi_i . \end{aligned}$$

Finally, the poles in Catani's generalized anomalous dimensions are isolated by definition:

$$\sum_{\mathbf{i} \in \mathcal{H}_{m,0}^n} \Gamma_{\mathbf{i}}(\epsilon) = \sum_{\mathbf{i} \in \mathcal{H}_{m,0}^n} \left(\frac{1}{\epsilon} \gamma_{\mathbf{i}} + \mathbf{I}_{\mathbf{i}} \right) \qquad \qquad \mathbf{I}_{\mathbf{i}} \equiv -\delta_{f_{\mathbf{i}},g} \frac{2}{3} T_{\mathsf{R}} \sum_{\rho=1}^{n_F} \log \frac{m_{Q_{\rho}}^2}{\mu^2}$$

Pole cancellation: generalized integrated counterterms

Puttin geverything together, using colour-conservation we find:

$$\begin{split} I_{\mathsf{S}+\mathsf{V}}(\epsilon) &= -\frac{1}{\epsilon} \sum_{i \in \mathcal{H}^n_{m,0}} \left(\gamma_i + 2 \mathbf{T}_i^2 L_i \right) + I_{\mathsf{S}+\mathsf{V}}^{(0)} + o(\epsilon) \\ I_{\mathsf{C}}(\epsilon) &= +\frac{1}{\epsilon} \sum_{i \in \mathcal{H}^n_{m,0}} \left(\gamma_i + 2 \mathbf{T}_i^2 L_i \right) + I_{\mathsf{C}}^{(0)} + o(\epsilon) \end{split}$$

The total operator $I_T \equiv I_S + I_C + I_V$ is the ϵ -finite, and the integrated counterterms read:

$$\begin{split} I_{\mathsf{T}}^{(0)} &= \sum_{i \neq j \in \mathcal{X}_{m,0}^n} (\mathbf{T}_i \cdot \mathbf{T}_j) \mathbf{x}_{i,j} + \sum_{i \in \mathcal{X}_{m,m}^n} \mathbf{I}_i - \sum_{i \in \mathcal{H}_{m,0}^n} \mathbf{I}_i - \sum_{i \in \mathcal{H}_{m,0}^n} \left[2 \mathscr{L}_i \left(\gamma_i + 2 \mathbf{T}_i^2 L_i \right) + 2 \mathbf{T}_i^2 L_i^2 \right] \\ &+ \left(N_q + N_{\bar{q}} \right) \frac{\mathcal{C}_{\mathsf{F}}}{6} \left(39 - 4 \pi^2 \right) + N_g \left[\frac{\mathcal{C}_{\mathsf{A}}}{9} \left(67 - 6 \pi^2 \right) - \frac{23}{9} T_{\mathsf{R}} \textit{n}_f \right] \end{split}$$

Conclusions

Results and future developments

Main results

- proof of IR-poles cancellation even with generic massive final-state partons
- computation of generalized integrated counterterms

Figure from CMS Report CERN-EP 2025-025. Example Feynman diagram of non-resonant mono-t production at tree-level mediated by a spin-1 boson M, which decays directly into a dark-matter pair $\chi\bar{\chi}$.

Future developments

- extension to NNLO in the NSC SS
- inclusion of initial-state massive partons
- resummation of massive logarithms
- application to heavy-quark processes

