Taller 1: Histograma

Técnicas de Inteligencia Artificial: Visión de Máquina

Prof. Flavio Prieto

email: faprietoo@unal.edu.co

Ingeniería Mecatrónica Facultad de Ingeniería Universidad Nacional de Colombia Sede Bogotá

3 de marzo de 2021

El histograma es una función de densidad de probabilidad de niveles de gris, la cual relaciona las abscisas operando con el rango posible de intensidades de gris, y las ordenadas operando con el número de píxeles para cada nivel de gris.

Ejemplo Histograma

Ejemplo Histograma

Ecualización Histograma

La ecualización del histograma de una imagen es una transformación que pretende obtener, para una imagen, un histograma con una **distribución uniforme**.

El resultado de la ecualización maximiza el contraste de una imagen sin perder información de tipo estructural, esto es, conservando su entropía (información).

Esquema:

cv2.equalizeHist(const CvArr* src);

http://docs.opencv.org/2.4/modules/imgproc/
doc/histograms.html

Ecualización Histograma

Ecualización Histograma

Comparación de Histogramas

Para comparar el valor de dos histogramas se utiliza la función **cvCompareHist**:

```
cv2.compareHist(
hist1,
hist2,
int method);
```

con el argumento **method**, se puede seleccionar la distancia estadística deseada:

- Correlación.
- Chi-cuadrado.
- Intersección.
- Distancia de Bhattacharyya.

Comparación de Histogramas.

Correlación

Es un índice estadístico que mide la relación lineal entre dos variables cuantitativas, su valor varía en el intervalo [-1, +1].

- 1, Coincidencia perfecta.
- -1, Divergencia máxima.
- 0, Indica que no hay correlación.

$$d_{correl}(H_1, H_2) = \frac{\sum_{i} \tilde{H}_1(i) \cdot \tilde{H}_2(i)}{\sqrt{\sum_{i} \tilde{H}_1^2(i) \cdot \tilde{H}_2^2(i)}},$$

donde \tilde{H} es

$$\tilde{H}_k(i) = H_k(i) - (1/N)(\sum_i H_k(j)),$$

N es el número de bins del histagrama.

Comparación de Histogramas.

Chi-cuadrado.

$$d_{chi-square} = \sum_{i} \frac{(H_1(i) - H_2(i))^2}{H_1(i) + H_2(i)}.$$

- Para valores bajos mayor similitud,
- 0 indica una combinación perfecta,
- Un desajuste total es ilimitado.

Comparación de Histogramas.

Intersección.

$$d_{intersection}(H_1, H_2) = \sum min(H_1(i), H_2(i)).$$

- Los valores altos indican similitud,
- Valores bajos indican baja similitud.
- Si los histogramas se normalizan la pareja perfecta en 1
- El desajuste total es 0.

Comparación de Histogramas.

Distancia de Bhattacharyya.

$$d_{Bhattacharyya} = \sqrt{1 - \sum_{i} \frac{\sqrt{H_1(i) \cdot H_2(i)}}{\sqrt{\sum_{i} H_1(i) \cdot \sum_{i} H_2(i)}}}.$$

- Los valores bajos indican buena similitud,
- Los valores altos indican mala similitud.
- Para una pareja perfecta el valor es 0,
- Un desajuste total es un 1.

Comparación de Histogramas

Histograms:	Matching measures:				
Model:	Correlation:	Chi square:	Interesction	Bhattacharyya:	EMD:
Exact match:	1.0	0.0	1.0	0.0	0.0
Half match:	0.7	0.67	0.5	0.55	0.5
Total mis-match:	-1.0	2.0	0.0	1.0	1.0

Comparación de Histogramas

Comparación de Histogramas

Comparación Histograma No Normalizado: Comparación Correlación: 1.000000, Comparación CHISQR: 0.000000, Comparación INTERSECT: 103950.000000, Comparación BHATTACHARYYA: 0.000000.

Comparación Histograma Normalizado: Comparación Correlación: 1.000000, Comparación CHISQR: 0.000000, Comparación INTERSECT: 1.000000,

Comparación BHATTACHARYYA: 0.000000.

Comparación de Histogramas

16

Comparación de Histogramas

Comparación Histograma No Normalizado: Comparación Correlación: 0.998897, Comparación CHISQR: 47731.354917, Comparación INTERSECT: 26075.000000, Comparación BHATTACHARYYA: 0.102689.

Comparación Histograma Normalizado: Comparación Correlación: 0.998897, Comparación CHISQR: 0.039298, Comparación INTERSECT: 0.941842,

Comparación BHATTACHARYYA: 0.102689.

Comparación de Histogramas

Comparación de Histogramas

Comparación Histograma No Normalizado: Comparación Correlación: 0.641100, Comparación CHISQR: 238857.471875,

Comparación INTERSECT: **37601.000000**, Comparación BHATTACHARYYA: **0.620373**.

Comparación Histograma Normalizado:

Comparación Correlación: **0.641100.**

Comparación CHISQR: 1.184339.

Comparación INTERSECT: 0.256404.

Comparación BHATTACHARYYA: 0.620373.

Normalización de Histogramas

Para todas las distancias estadísticas estudiadas, es recomendable normalizar los histogramas para que los resultados tengan sentido, a pesar de que las instrucciones permitan el cálculo sin normalizar.

Para normalizar un histograma se utiliza la función cvNormalizeHist

cv.NormalizeHist(hist, Normalization factor);

Umbralización de Histogramas

Para umbralizar un histograma con el umbral deseado, se utiliza la función **cvThreshHist**

cv.ThreshHist(hist, double factor);

Donde el segundo argumento indica el umbral deseado, todos los bins por debajo del umbral toman el valor de 0.

Tarea.

Desarrolle el ejercicio 2 del Capítulo 7 del libro (página 219): Learning OpenCV - G. Bradsky and A. Kaehler.

- Take three images of a hand in each of the three lighting conditions discussed in the text. Use cv::calcHist() to make an BGR histogram of the flesh color of one of the hands photographed indoors.
 - a. Try using just a few large bins (e.g., 2 per dimension), a medium number of bins (16 per dimension), and many bins (256 per dimension). Then run a matching routine (using all histogram matching methods) against the other indoor lighting images of hands. Describe what you find.
 - b. Now add 8 and then 32 bins per dimension and try matching across lighting conditions (train on indoor, test on outdoor). Describe the results.

En el ejercicio los tipos de iluminación son:

- Iluminación en interior.
- Iluminación en exterior un día con sombra.
- Iluminación en exterior un día con sol.

Considere las imágenes en niveles de gris y no en color (RGB).