Suites numériques

Définitions

1.1 Définition d'une suite

Définition 1:

- Une **suite** est une application $u : \mathbb{N} \to \mathbb{R}$.
- Pour $n \in \mathbb{N}$, on note u(n) par u_n et on l'appelle n-ème **terme** ou **terme général** de la suite.

Remarque 1:

La suite est notée u, ou plus souvent $(u_n)_{n\in\mathbb{N}}$ ou simplement (u_n) . Il arrive fréquemment que l'on considère des suites définies à partir d'un certain entier naturel n_0 plus grand que 0, on note alors $(u_n)_{n \geqslant n_0}$.

1.2 Suite majorée, minorée, bornée

Définition 2:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

- $(u_n)_{n\in\mathbb{N}}$ est majorée si $\exists M\in\mathbb{R} \ \forall n\in\mathbb{N} \ u_n\leqslant M$.
- $(u_n)_{n\in\mathbb{N}}$ est **minorée** si $\exists m\in\mathbb{R} \ \forall n\in\mathbb{N} \ u_n\geqslant m$.
- $(u_n)_{n\in\mathbb{N}}$ est **bornée** si elle est majorée et minorée, ce qui revient à dire :

$$\exists M \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad |u_n| \leqslant M.$$

1.3 Suite croissante, décroissante

Définition 3:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

- $(u_n)_{n\in\mathbb{N}}$ est **croissante** si $\forall n\in\mathbb{N}$ $u_{n+1}\geqslant u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est strictement croissante si $\forall n\in\mathbb{N}$ $u_{n+1}>u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est décroissante si $\forall n\in\mathbb{N}$ $u_{n+1}\leqslant u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante si $\forall n\in\mathbb{N}$ $u_{n+1} < u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est **monotone** si elle est croissante ou décroissante.
- $(u_n)_{n\in\mathbb{N}}$ est **strictement monotone** si elle est strictement croissante ou strictement décroissante.

Remarque:

- $(u_n)_{n\in\mathbb{N}}$ est croissante si et seulement si $\forall n\in\mathbb{N} \quad u_{n+1}-u_n\geqslant 0$.
- Si $(u_n)_{n\in\mathbb{N}}$ est une suite à termes strictement positifs, elle est croissante si et seulement si $\forall n \in \mathbb{N} \quad \frac{u_{n+1}}{u_n} \geqslant 1.$

Limites

2.1 Limite finie, limite infinie

Définition 4:

La suite $(u_n)_{n\in\mathbb{N}}$ a pour limite $\ell\in\mathbb{R}$ si : pour tout $\epsilon>0$, il existe un entier naturel N tel que si $n \geqslant N$ alors $|u_n - \ell| \leqslant \epsilon$:

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad (n \geqslant N \Longrightarrow |u_n - \ell| \leqslant \epsilon)$$

Dans ce cas on dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **convergente**.

On dit aussi que la suite $(u_n)_{n\in\mathbb{N}}$ tend vers ℓ . Autrement dit : u_n est proche d'aussi près que l'on veut de ℓ , à partir d'un certain rang.

Exemple 1:

Soit la suite (u_n) définie par :

$$u_n = 2 + \frac{1000}{n^2}$$

1. Montrer que la suite (u_n) est convergente

$$\lim_{n\to+\infty}u_n=2$$

2. A partir de quel entier naturel n_0 a-t-on:

$$|u_{n_0}-2|<10^{-2}$$
?

On utilise la définition $|u_n-2|<10^{-2}$ ce qui donne $|\frac{1000}{n^2}|<10^{-2}$ et on prendra alors $n_0=E(\sqrt{\frac{10^3}{10^{-2}}})+1$

Proposition 1 :

Toute suite convergente est bornée.

Définition 5 :

1. La suite $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ si :

$$\forall A > 0 \quad \exists N \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad (n \geqslant N \Longrightarrow u_n \geqslant A)$$

2. La suite $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$ si :

$$\forall A > 0 \quad \exists N \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad (n \geqslant N \Longrightarrow u_n \leqslant -A)$$

Remarque 2 :

1. On note $\lim_{n \to +\infty} u_n = \ell$ ou parfois $u_n \xrightarrow[n \to +\infty]{} \ell$, et de même pour une limite $\pm \infty$.

2.
$$\lim_{n\to+\infty}u_n=-\infty\iff\lim_{n\to+\infty}-u_n=+\infty.$$

3. Si $\lim_{n \to +\infty} u_n = \pm \infty$ ou u_n n'admet pas de limite, alors on dit que la suite $(u_n)_{n \in \mathbb{N}}$ est **diver**gente.

2.2 Suite géométrique

Proposition 2 : Suite géométrique

On fixe un réel a. Soit $(u_n)_{n\in\mathbb{N}}$ la suite de terme général : $u_n=a^n$.

1. Si
$$a = 1$$
, on a pour tout $n \in \mathbb{N}$: $u_n = 1$.

2. Si
$$a > 1$$
, alors $\lim_{n \to +\infty} u_n = +\infty$.

3. Si
$$-1 < a < 1$$
, alors $\lim_{n \to +\infty} u_n = 0$.

4. Si $a \leq -1$, la suite $(u_n)_{n \in \mathbb{N}}$ diverge.

2.3 Opérations sur les limites

Soient (u_n) et (v_n) sont deux suites, et L et L' sont deux réels. Le point d'interrogation correspond à une forme indéterminée.

– Limite de la somme $u_n + v_n$

$\lim_{n\to+\infty}u_n=$	L	L	L	+∞	$-\infty$	+∞
$\lim_{n\to+\infty}v_n=$	L'	+∞	$-\infty$	+∞	$-\infty$	$-\infty$
$\lim_{n\to+\infty}u_n+v_n=$	L + L'	+∞	$-\infty$	+∞	$-\infty$	ş

– Limite du produit $u_n \times v_n$

$\lim_{n\to+\infty}u_n=$	L	$L \neq 0$	+∞ ou −∞	0
$\lim_{n\to+\infty}v_n=$	L'	+∞ ou −∞	+∞ ou −∞	+∞ ou −∞
		+∞ ou −∞	+∞ ou −∞	
$\lim_{n\to+\infty}u_n\times v_n=$	$L \times L'$	(règle des signes	(règle des signes	?
		du produit)	du produit)	

– Limite de l'inverse $\frac{1}{u_n}$

$\lim_{n\to+\infty}u_n=$	$L \neq 0$	0 par valeurs positives	0 par valeurs négatives	+∞ ou −∞
$\lim_{n\to+\infty}\frac{1}{u_n}=$	$\frac{1}{L}$	+∞	-∞	0

– Limite du quotient $\frac{u_n}{v_n}$

$\lim_{n\to+\infty}u_n=$	L	L	+∞ ou −∞	$L \neq 0$ ou $+\infty$ ou $-\infty$	0	+∞ ou −∞
$\lim_{n\to+\infty}v_n=$	$L' \neq 0$	+∞ ou −∞	$L' \neq 0$	0	0	+∞ ou −∞
$\lim_{n\to+\infty}u_n\times v_n=$	$\frac{L}{L'}$	0	+∞ ou −∞	$+\infty$ ou $-\infty$ (règle des signes du produit)	?	?

2.4 Autres théorèmes de convergence

2.4.1 Théorèmes de comparaison

Théorème 1 : Théorème des gendarmes pour les suites

1. Soit (u_n) , (v_n) et (w_n) trois suites telles que,

pour tout entier n, $v_n \leqslant u_n \leqslant w_n$.

Si de plus
$$\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} w_n = l$$
, alors $\lim_{n \to +\infty} u_n = l$.

- 2. Soit (u_n) et (v_n) deux suites telles que, pour tout entier $n, u_n \ge v_n$.
 - Si $\lim_{n \to +\infty} v_n = +\infty$, alors $\lim_{n \to +\infty} u_n = +\infty$.
 - Si $\lim_{n \to +\infty} u_n = -\infty$, alors $\lim_{n \to +\infty} v_n = -\infty$.

Exemple 2 :

1.
$$u_n = \frac{\cos(n)}{n+1}$$
.

On sait que $-1 \le \cos(n) \le 1$, il vient en multipliant ces inégalités par 1

$$\frac{-1}{n+1} \leqslant u_n = \frac{\cos(n)}{n+1} \leqslant \frac{1}{n+1}$$

Or $\frac{-1}{n+1} \longrightarrow 0$ et $\frac{1}{n+1} \longrightarrow 0$. Ainsi, d'après le théorème des gendarmes, on a donc

$$\lim_{n\to+\infty}u_n=0$$

2.
$$u_n = \frac{n + (-1)^n}{n^2 + 1}$$
.

On a $(-1)^n = 1$ lorsque n est pair, et $(-1)^n = -1$ lorsque n est impair. Ainsi, pour tout entier n, $-1 \le (-1)^n \le 1$, soit aussi $n-1 \le n+(-1)^n \le n+1$, puis, multipliant par $\frac{1}{n+1} > 1$ 0, on obtient $\frac{n-1}{n^2+1} \le u_n \le \frac{n+1}{n^2+1}$. Or $\frac{n-1}{n+1} \longrightarrow 0$ et $\frac{n+1}{n+1} \longrightarrow 0$. Ainsi, d'après le

$$\lim_{n\to+\infty}u_n=0$$

Définition 6: Relations d'équivalence

On dit que la suite u_n est équivalente à la suite v_n si

$$\lim_{n\to+\infty}\frac{u_n}{v_n}=1$$

On note alors

$$u_n \sim v_n$$

🥊 Théorème 2 :

Si deux suites sont équivalentes, alors l'une converge si et seulement si l'autre converge. Dans ce cas, leurs limites sont égales, c'est-à-dire :

$$\lim_{n\to+\infty}u_n=\lim_{n\to+\infty}v_n$$

Théorème 3 : Règles de calcul pour les équivalents

Soient u_n , v_n , x_n et y_n quatre suites. Alors on a :

- Si $u_n \sim v_n$ et $x_n \sim y_n$ alors $u_n x_n \sim v_n y_n$ et $\frac{u_n}{x_n} \sim \frac{v_n}{y_n}$,
- Si $u_n \sim v_n$ et $p \in \mathbb{Z}$ alors $u_n^p \sim v_n^p$.
- Attention: La relation d'équivalence n'est pas compatible ni avec l'addition ni avec la composition.
- En $\pm \infty$, un polynôme est équivalent à son terme de plus haut degré.
- En $\pm \infty$, une fraction rationnelle est équivalente au quotient des termes de plus haut degré de son numérateur et de son dénominateur.

Remarque 3 : Quelques équivalents usuels

Si $v_n \rightarrow 0$ alors

$$\sin v_n \sim v_n$$

$$\sin v_n \sim v_n$$
 $\ln(1+v_n) \sim v_n$

$$\cos v_n \sim 1 - \frac{v_n^2}{2} \qquad \qquad e^{v_n} \sim 1 + v_n$$

$$e^{v_n} \sim 1 + v_n$$

$$(1+\nu_n)^{\alpha}-1\sim \alpha \ \nu_n \qquad \qquad \frac{1}{1\pm\nu_k}\sim 1\pm\nu_k$$

$$\frac{1}{1+v_k} \sim 1 \pm v_k$$

Exemple 3 :

La suite
$$u_n = \sin\left(\frac{n}{n^2+1}\right) \sim \frac{n}{n^2+1} \operatorname{car} \lim_{n \to +\infty} \frac{n}{n^2+1} = 0$$

Théorème 4 :

- Toute suite croissante et majorée est convergente.
- Toute suite décroissante et minorée est convergente.
- Une suite croissante et qui n'est pas majorée tend vers $+\infty$.
- Une suite décroissante et qui n'est pas minorée tend vers $-\infty$.

Exemple 4:

Soit $(u_n)_{n\geqslant 1}$ la suite de terme général :

$$u_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{n^2}.$$

- La suite $(u_n)_{n\geqslant 1}$ est croissante : en effet $u_{n+1}-u_n=\frac{1}{(n+1)^2}>0$.
- Montrons par récurrence que pour tout entier naturel $n \ge 1$ on a $u_n \le 2 \frac{1}{n}$.
 - Pour n = 1, on a $u_1 = 1 \le 1 = 2 \frac{1}{1}$.
 - Fixons $n \geqslant 1$ pour lequel on suppose $u_n \leqslant 2 \frac{1}{n}$. Alors $u_{n+1} = u_n + \frac{1}{(n+1)^2} \leqslant 2 \frac{1}{n} + \frac{1}{(n+1)^2}$. Or $\frac{1}{(n+1)^2} \leqslant \frac{1}{n(n+1)} = \frac{1}{n} \frac{1}{n+1}$, donc $u_{n+1} \leqslant 2 \frac{1}{n+1}$, ce qui achève
- Donc la suite $(u_n)_{n\geqslant 1}$ est croissante et majorée par 2 : elle converge.

Théorème 5 : Point fixe

Soit une suite (u_n) définie par une relation de récurrence du type $u_{n+1} = f(u_n)$.

Si la suite (u_n) converge vers un réel l, alors, la limite l vérifie la relation f(l) = l.

 \boldsymbol{l} s'appelle un point fixe pour la fonction \boldsymbol{f} .

Exemple 5 :

Un biologiste s'intéresse à l'évolution de la population d'une espèce animale sur une île du Pacifique. Au début de l'année **2020**, cette population comptait **600** individus. On considère que l'espèce sera menacée d'extinction sur cette île si sa population devient inférieure ou égale à **20** individus.

Le biologiste modélise le nombre d'individus par la suite (u_n) définie par :

$$\begin{cases} u_0 = 0.6 \\ u_{n+1} = 0.75u_n(1-0.15u_n) \end{cases}$$

où pour tout entier naturel n, u_n désigne le nombre d'individus, en milliers, au début de l'année 2020 + n.

Soit \boldsymbol{f} la fonction définie sur l'intervalle $[\boldsymbol{0}\,;\,\boldsymbol{1}]$ par

$$f(x) = 0.75x(1-0.15x)$$
.

- 1. Montrer que la fonction f est croissante sur l'intervalle $[{\bf 0}\;;\;{\bf 1}]$ et dresser son tableau de variations.
- 2. Résoudre dans l'intervalle [0; 1] l'équation f(x) = x.

On remarquera pour la suite de l'exercice que, pour tout entier naturel n, $u_{n+1} = f(u_n)$.

- 3. (a) Démontrer par récurrence que pour tout entier naturel $n,\ 0 \le u_{n+1} \le u_n \le 1$.
 - (b) En déduire que la suite (u_n) est convergente.
 - (c) Déterminer la limite ℓ de la suite (u_n) .
- 4. Le biologiste a l'intuition que l'espèce sera tôt ou tard menacée d'extinction. Justifier que, selon ce modèle, le biologiste a raison.

Correction

1. f est une fonction polynôme dérivable sur $\mathbb R$, donc sur [0;1] et sur cet intervalle :

$$f'(x) = 0,75 - 0,225x$$

Or, sur $0 \le x \le 1$ on a

$$0,225x \le 0,225 \Longrightarrow -0,225 \le -0,225x \le 0 \Longrightarrow 0,75-0,225 \le 0,75-0,225x \le 0,75$$

Ainsi, $0.525 \le f'(x) \le 0.75$. Donc, sur [0; 1], f'(x) > 0, par conséquent f est strictement

croissante de f(0) = 0 à f(1) = 0,6375. D'où le tableau de variation

x	0	1
f'(x)	+	
f(x)	0	0.6375

2. Sur [0; 1], $f(x) = x \iff 0.75x(1-0.15x) = x \iff 0.75x(1-0.15x) - x = 0 \iff x[0.75(1-0.15x) - 1] = 0 \iff x(0.75-0.1125x - 1) = 0 \iff x(-0.25-0.1125x) = 0 \iff$

$$\begin{cases} x = 0 & \text{ou} \\ -0,25-0,1125x = 0 \end{cases} \iff \begin{cases} x = 0 \\ -\frac{0,25}{0,1125} = x \end{cases}$$

Or $-\frac{0.25}{0.1125}$ < **0** donc dans [0; 1], $S = \{0\}$.

On remarquera pour la suite de l'exercice que, pour tout entier naturel n, $u_{n+1} = f(u_n)$.

3. (a) Initialisation: on a vu que $0 \le 0,4095 \le 0,6 \le 1$, soit $0 \le u_1 \le u_0 \le 1$: la relation est vraie au rang 0;

Hérédité : Supposons que pour $n \in \mathbb{N}$, on ait :

 $0 \le u_{n+1} \le u_n \le 1$; la fonction f étant strictement croissante sur [0;1], on a donc :

$$f(0) \leq f(u_{n+1}) \leq f(u_n) \leq f(1)$$

soit puisque f(0) = 0 et $f(1) = 0.75 \times (1 - 0.15) = 0.6375 \le 1$:

$$0 \le u_{n+2} \le u_{n+1} \le 1$$

La relation est donc vraie au rang n + 1.

Conclusion : la relation est vraie au rang 0 et si elle est vraie au rang n naturel quelconque, elle est vraie au rang n+1 : d'après le principe de récurrence :

Pour tout entier naturel n, $0 \le u_{n+1} \le u_n \le 1$.

- (b) La suite (u_n) est d'après la question précédente décroissante et minorée par $\mathbf{0}$; elle est donc est convergente.
- (c) Le résultat précédent montre que la suite (u_n) converge vers un nombre $\ell \ge 0$ et ce nombre ℓ vérifie l'équation f(x) = x, dont on a vu à la question 2. qu'elle n'avait que 0 comme solution.

Conclusion: $\lim_{n\to+\infty} u_n = \ell = 0$.

4. L'étude précédente a montré que le nombre d'individus décroit, donc le biologiste a raison puisque la limite de la suite du nombre d'individus est égale à zéro.

TD Suites

Exercice 1 : Intérêt des suites

Pour un trajet au prix normal de 20 euros on achète une carte d'abonnement de train à 50 euros et on obtient chaque billet à 10 euros. La publicité affirme 50% de réduction. Qu'en pensez-vous?

Correction: Pour modéliser la situation en termes de suites, on pose pour un entier $n \ge 1$:

$$u_n = 20n$$

$$v_n = 10n + 50$$

 u_n est le prix payé au bout de n achats au tarif plein, et v_n celui au tarif réduit, y compris le prix de l'abonnement. La réduction est donc, en pourcentage :

$$1 - \frac{v_n}{u_n} = \frac{u_n - v_n}{u_n} = \frac{10n - 50}{20n} = 0, 5 - \frac{5}{2n} \xrightarrow[n \to +\infty]{} 0, 5$$

Il faut donc une infinité de trajets pour arriver à 50% de réduction !!!!!

Exercice 2 : Convergence et calcul de limites par théorèmes sur les limites et techniques connexes

Quelques équivalents usuels Si $v_n \rightarrow 0$ alors

$$\sin v_n \sim v_n$$
 $\ln(1+v_n) \sim v_n$

$$\ln(1+v_n)\sim v_n$$

$$\cos \nu_n \sim 1 - \frac{\nu_n^2}{2} \qquad \qquad e^{\nu_n} \sim 1 + \nu_n$$

$$e^{\nu_n} \sim 1 + \nu_n$$

$$(1+v_n)^{\alpha}-1\sim\alpha v_n.$$

Établir la convergence des suites :

$$u_n = \frac{2n^2 + 1}{n^3 + 2n + 6}$$

$$u_n = \frac{\sin(n)}{n}$$

$$u_n = \frac{2n^2 + 1}{n^3 + 2n + 6}$$
 $u_n = \frac{\sin(n)}{n}$ $u_n = \frac{n^2 - \cos(n)}{2(n^2 - 1)}$ $u_n = \frac{\sqrt{n^2 + 3n + 1}}{2n - 1}$

$$u_n = \frac{\sqrt{n^2 + 3n + 2n}}{2n - 1}$$

$$u_n = \ln(1 + \frac{a}{n}), a \in \mathbb{R}^*$$

$$u_n = \ln(1+\frac{a}{n}), a \in \mathbb{R}^*$$
 $u_n = \left(\frac{n+a}{n+b}\right)^n, (a,b) \in \mathbb{R}^2$ $u_n = \sqrt{n+1} - \sqrt{n}$

$$u_n = \sqrt{n+1} - \sqrt{n}$$

Exercice 3: Suites arithmético-géométriques

Soient $a, b \in \mathbb{R}$ avec $a \neq 1$ et u_n la suite définie par

$$u_{n+1} = au_n + b$$

- 1. Quelle est la seule limite possible ℓ de la suite u_n ?
- 2. Soit $v_n = u_n \ell$. Montrer que v_n est une suite géométrique, et en déduire la nature de la suite u_n

Correction:

- 1. Si u_n converge vers ℓ , alors ℓ est solution de $a\ell + b = \ell$, et donc $\ell = \frac{b}{1-a}$.
- 2. On a

$$v_{n+1} = u_{n+1} - \ell = au_n + b - \frac{b}{1-a} = au_n - \frac{ab}{1-a} = a\left(\underbrace{u_n - \frac{b}{1-a}}_{=v_n}\right) = av_n$$

La suite v_n est donc une suite géométrique de raison a. Ainsi :

$$u_n = v_n + \ell = v_0 a^n + \ell$$

Si |a| > 1, $|v_n| \longrightarrow +\infty$ et il en est de même de $|u_n|$ (sauf si $u_0 = \ell$ car auquel cas on aura $v_0 = 0$ et par donc la suite u_n est constante égale à ℓ). Si |a| < 1, alors v_n converge vers 0 et u_n converge vers ℓ . Enfin, si a = -1, v_n oscille entre deux valeurs suivant que n est pair ou impair, et u_n aussi.

Exercice 4: Suite homographique

Soit la suite réelle (u_n) définie par

$$u_0 = 3$$
 et $u_{n+1} = \frac{4u_n - 2}{u_n + 1}$.

Pour $x \neq -1$, on pose $f(x) = \frac{4x-2}{x+1}$.

- 1. Étudier les variations de f sur $[1, +\infty[$.
- 2. Démontrer que, pour tout $n \ge 0$, on a $u_n > 1$.
- 3. On définit une suite (v_n) à partir de (u_n) en posant, pour tout $n \in \mathbb{N}$,

$$v_n=\frac{u_n-2}{u_n-1}.$$

Démontrer que (v_n) est une suite géométrique, et donner l'expression de son terme général.

- 4. En déduire la valeur de u_n en fonction de n.
- 5. Justifier enfin que (u_n) converge et déterminer sa limite.

Correction:

1. Sur $[1, +\infty[$ on a $f'(x) = \frac{6}{(x+1)^2} > 0$. La fonction f est donc strictement croissante sur $[1, +\infty[$.

2. Pour $n \ge 0$, on note P(n) la propriété suivante : " $u_n > 1$ ". On va prouver par récurrence que P(n) est vraie pour tout entier $n \ge 0$.

Initialisation : on a $u_0 = 3$, P(0) est donc vraie.

<u>Hérédité</u>: soit $n \in \mathbb{N}$ tel que P(n) est vraie; on va prouver que P(n+1) est vraie. On sait que $u_n > 1$. Puisque la fonction f est croissante sur l'intervalle $[1, +\infty[$, on en déduit que $u_{n+1} = f(u_n) > f(1) = 1$. la propriété est vraie au rang n+1. Conclusion : par le principe de récurrence, P(n) est vraie pour tout entier n.

3. On a

$$v_{n+1} = \frac{\frac{4u_n - 2}{u_n + 1} - 2}{\frac{4u_n - 2}{u_n + 1} - 1}$$

$$= \frac{4u_n - 2 - 2u_n - 2}{4u_n - 2 - u_n - 1}$$

$$= \frac{2u_n - 4}{3u_n - 3}$$

$$= \frac{2}{3} \left(\frac{u_n - 2}{u_n - 1}\right)$$

$$= \frac{2}{3}v_n.$$

 v_n est donc une suite géométrique de raison $\frac{2}{3}$ et de premier terme $v_0 = \frac{1}{2}$. On en déduit que, pour tout n

$$\boldsymbol{v_n} = \left(\frac{2}{3}\right)^n \boldsymbol{v_0} = \frac{1}{2} \left(\frac{2}{3}\right)^n$$

4.

$$\frac{u_n - 2}{u_n - 1} = v_n \iff u_n - 2 = u_n v_n - v_n$$

$$\iff u_n (1 - v_n) = 2 - v_n$$

$$\iff u_n = \frac{2 - v_n}{1 - v_n}$$

</script> ce qui nous donne

$$u_n = \frac{2 - \frac{1}{2} \left(\frac{2}{3}\right)^n}{1 - \frac{1}{2} \left(\frac{2}{3}\right)^n}$$

5. Puisque $(2/3)^n$ tend vers **0**, on conclut que u_n converge vers **2**.

Exercice 5 : Suites monotones et bornées

Soit u_n la suite définie par $u_0 = -1$ et pour tout entier naturel n, $u_{n+1} = f(u_n)$ où f est la fonction définie sur $[-2, +\infty[$ par $f(x) = 2\sqrt{x+3}]$.

- 1. Étudier les variations de f sur $[-2, +\infty[$.
- 2. Démontrer par récurrence que la suite u_n est croissante, minorée par -1 et majorée par 6
- 3. Justifier que u_n converge vers un réel ℓ , puis déterminer ℓ .

Correction:

- 1. La fonction f est dérivable sur $[-2, +\infty[$ et sur cet intervalle, on a $f'(x) = \frac{1}{\sqrt{x+3}}$. Ainsi, f'(x) > 0 et f est croissante sur $[-2, +\infty[$.
- 2. Pour $n \ge 0$, on note P(n) la propriété suivante : " $-1 \le u_n \le u_{n+1} \le 6$ ". On va prouver par récurrence que P(n) est vraie pour tout entier $n \ge 0$.

Initialisation : on a $u_0 = -1$ et $u_1 = 2\sqrt{2}$ donc $-1 \le u_0 \le u_1 \le 6$: P(0) est vraie.

<u>Hérédité</u>: soit $n \in \mathbb{N}$ tel que P(n) est vraie; on va prouver que P(n+1) est vraie. On sait que $-1 \leqslant u_n \leqslant u_{n+1} \leqslant 6$. Puisque la fonction f est croissante sur l'intervalle [-2,6], on en déduit que $f(-1) \leqslant f(u_n) \leqslant f(u_{n+1}) \leqslant f(6)$. Ceci donne encore $2\sqrt{2} \leqslant u_{n+1} \leqslant u_{n+2} \leqslant 6$. Puisque -1 < 2, la propriété est vraie au rang n+1. Conclusion : par le principe de récurrence, P(n) est vraie pour tout entier n

3. La suite u_n est croissante et majorée par **6**. Elle converge donc vers un réel ℓ . Remarquons que l'on sait déjà que $\ell \in [-1,6]$. De plus, puisque f est continue sur [-1,6], ℓ est solution de l'équation $f(\ell) = \ell$, soit $2\sqrt{\ell+3} = \ell$. Mettant au carré, ceci implique que ℓ est solution de $4(\ell+3) = \ell^2$, donc les solutions sont $\ell = -2$ et $\ell = 6$. Puisque l'on savait déjà que $\ell \in [-1,6]$, on en déduit que $\ell = 6$: la suite u_n converge donc vers 6.