COM6115:

Text Processing

Introduction to Information Extraction

Chenghua Lin

Department of Computer Science University of Sheffield

Overview of Lectures on IE

- Introduction to Information Extraction
 - Definition + Contrast with IR
 - Example Applications
 - Overview of Tasks and Approaches
 - Evaluation + Shared Task Challenges
 - A Brief History of IE
- Named Entity Recognition
 - Task
 - Approaches: Rule-based; Supervised Learning
 - Entity Linking
- Relation Extraction
 - Task
 - Approaches: Rule-based; Supervised learning; Bootstrapping; Distant Supervision

Introduction to Information Extraction: Outline

- Definition + Contrast with IR
- Example Applications
- Overview of Tasks
- Overview of Approaches
- Evaluation + Shared Task Challenges
- A Brief History of IE

Definition

- Definition: the Information Extraction (IE) task:
 - From each text in a set of unstructured natural language texts identify information about predefined classes of entities, relationships or events and record this information in a structured form by either:
 - Annotating the source text, e.g. using XML tags; or
 - Filling in a data structure separate from the text, e.g a template or database record or "stand-off annotation"
- For example: from financial newswire stories identify those dealing with management succession events and from these extract details of organisations and persons, the post being assumed or vacated, etc.

Definition (cont)

- IE may also be described as:
 - The activity of populating a structured information repository (database) from an unstructured, or free text, information source
 - The activity of creating a semantically annotated text collection (cf. "The Semantic Web")
- The <u>resulting structured data source</u> is then used for some other purpose:
 - searching or analysis using conventional database queries;
 - data-mining;
 - generating a summary (perhaps in another language);

Who's News: @ Burns Fry Ltd. 04/13/94

WALL STREET JOURNAL (J), PAGE B10 (CO)

BURNS FRY Ltd. (Toronto) – Donald Wright, 46 years old, was named executive vice president and director of fixed income at this brokerage firm. Mr. Wright resigned as president of Merrill Lynch Canada Inc., a unit of Merrill Lynch & Co., to succeed Mark Kassirer, 48, who left Burns Fry last month. A Merrill Lynch spokeswoman said it hasn't named a successor to Mr. Wright, who is expected to begin his new position by the end of the month.

Who's News: @ Burns Fry Ltd. 04/13/94 WALL STREET JOURNAL (J), PAGE B10 $\langle CO \rangle$ BURNS FRY Ltd. (Toronto) – Donald Wright, 46 years old, was named executive vice president and director of fixed income at this brokerage firm. Mr. Wright resigned as president of Merrill Lynch Canada Inc., a unit of Merrill Lynch & Co., to succeed Mark Kassirer, 48, who left Burns Fry last month. A Merrill Lynch spokeswoman said it hasn't named a successor to Mr. Wright, who is expected to begin his new position by the end of the month.

identify persons (red)

```
Who's News: @ Burns Fry Ltd. 04/13/94
WALL STREET JOURNAL (J), PAGE B10 〈CO〉
BURNS FRY Ltd. (Toronto) – Donald Wright, 46 years old, was named executive vice president and director of fixed income at this brokerage firm.
Mr. Wright resigned as president of Merrill Lynch Canada Inc., a unit of Merrill Lynch & Co., to succeed Mark Kassirer, 48, who left Burns Fry last month. A Merrill Lynch spokeswoman said it hasn't named a successor to Mr. Wright, who is expected to begin his new position by the end of the month.
```

- identify persons (red)
- identify organisations (blue)

Who's News: @ Burns Fry Ltd.
04/13/94
WALL STREET JOURNAL (J), PAGE B10 〈CO〉
BURNS FRY Ltd. (Toronto) – Donald Wright, 46 years old, was named executive vice president and director of fixed income at this brokerage firm.
Mr. Wright resigned as president of Merrill Lynch Canada Inc., a unit of Merrill Lynch & Co., to succeed Mark Kassirer, 48, who left Burns Fry last month. A Merrill Lynch spokeswoman said it hasn't named a successor to Mr. Wright, who is expected to begin his new position by the end of the month.

- identify persons (red)
- identify organisations (blue)
- identify locations (green)

Who's News: @ Burns Fry Ltd.

04/13/94

WALL STREET JOURNAL (J), PAGE B10 (CO)

BURNS FRY Ltd. (Toronto) – Donald Wright, 46 years old, was named executive vice president and director of fixed income at this brokerage firm.

Mr. Wright resigned as president of Merrill Lynch Canada Inc., a unit of Merrill Lynch & Co., to succeed Mark Kassirer, 48, who left Burns Fry last month. A Merrill Lynch spokeswoman said it hasn't named a successor to Mr. Wright, who is expected to begin his new position by the end of the month.

- identify persons (red)
- identify organisations (blue)
- identify locations (green)
- identify times (cyan)

month.

Who's News: @ Burns Fry Ltd.

04/13/94

WALL STREET JOURNAL (J), PAGE B10 (CO)

BURNS FRY Ltd. (Toronto) – Donald Wright, 46 years old, was named executive vice president and director of fixed income at this brokerage firm.

Mr. Wright resigned as president of Merrill Lynch Canada Inc., a unit of Merrill Lynch & Co., to succeed Mark Kassirer, 48, who left Burns Fry last

month. A Merrill Lynch spokeswoman said it hasn't named a successor to Mr. Wright, who is expected to begin his new position by the end of the

- identify persons (red)
- identify organisations (blue)
- identify locations (green)
- identify times (cyan)
- identify company positions (purple)

Who's News: @ Burns Fry Ltd. 04/13/94 WALL STREET JOURNAL (J), PAGE B10 $\langle CO \rangle$

BURNS FRY Ltd. (Toronto) – Donald Wright, 46 years old, was named executive vice president and director of fixed income at this brokerage firm. Mr. Wright resigned as president of Merrill Lynch Canada Inc., a unit of Merrill Lynch & Co., to succeed Mark Kassirer, 48, who left Burns Fry last month. A Merrill Lynch spokeswoman said it hasn't named a successor to Mr. Wright, who is expected to begin his new position by the end of the month.

- identify persons (red)
- identify organisations (blue)
- identify locations (green)
- identify times (cyan)
- identify company positions (purple)

 identify succession events (underlined)

Example: Filled Template

```
<TEMPLATE-9404130062> :=
  DOC NR: "9404130062"
 CONTENT: <SUCCESSION EVENT-1>
<SUCCESSION EVENT-1> :=
  SUCCESSION ORG: <ORGANIZATION-1> ¬
  POST: "executive vice president"
 IN_AND_OUT: <IN_AND_OUT-1> <IN_AND_OUT-2>
 VACANCY REASON: OTH UNK
<IN AND OUT-1>:=
                                      <IN AND OUT-2> :=
 IO PERSON: <PERSON-1>
                                        IO PERSON: <PERSON-2>
  NEW STATUS: OUT
                                        NEW STATUS: IN
 ON THE JOB: NO
                                        ON THE JOB: NO
                                       OTHER_ORG: <ORGANIZATION-2>
                                       REL OTHER ORG: OUTSIDE ORG
<ORGANIZATION-1> :=
                                      <ORGANIZATION-2> :=
 ORG NAME: "Burns Frv Ltd."
                                         ORG_NAME: "Merrill Lynch Canada Inc."
 ORG ALIAS: "Burns Frv"
                                         ORG ALIAS: "Merrill Lynch"
 ORG_DESCRIPTOR: "this brokerage firm"
                                         ORG_DESCRIPTOR: "a unit of Merrill Lyrch & Co."
 ORG TYPE: COMPANY
                                         ORG TYPE: COMPANY
 ORG LOCALE: Toronto CITY
 ORG COUNTRY: Canada
<PERSON-1> :=
                                      <PERSON-2> :=
  PER NAME: "Mark Kassirer"
                                          PER_NAME: "Donald Wright"
```

Contrast with Information Retrieval

Information Retrieval

- Task:
 - Given: a document collection and a user query
 - Return: a (ranked) list of documents relevant to the user query
- Strengths:
 - Can search huge document collections very rapidly
 - Insensitive to genre and domain of the texts
 - Relatively straightforward to implement
 - challenges scaling to huge, dynamic document collections, e.g. the Web
- Weaknesses
 - Documents are returned not information/answers, so
 - user must further read texts to extract information
 - output is unstructured so limited possibilities for direct data mining/further processing

Contrast with Information Retrieval

Information Extraction

- Task:
 - Given: a document collection and a predefined set of entities, relations and/or events
 - Return: <u>a structured representation of all mentions of the specified</u> entities, relations and/or events
- Strengths:
 - Extracts facts from texts, not just texts from text collections
 - Can <u>feed other powerful applications</u> (databases, semantic indexing engines, data mining tools)
- Weaknesses
 - Systems tend to be genre/domain specific and porting to new genres and domains can be time-consuming/requires expertise
 - Limited accuracy
 - Computationally demanding, so performance issues on very large collections

Example Applications

- Scrapping web pages to build structured databases of job postings, apartment rentals, seminar announcements, etc.
- Assisting biomedical database curators by extracting biomedical entities and relations from the scientific literature prior to entry in a <u>human-maintained database</u> (e.g. Flybase)
- Assisting companies in competitor intelligence gathering, e.g. management or researcher succession events, new product or project annoucements, etc.

Introduction to Information Extraction: Outline

- Definition + Contrast with IR
- Example Applications
- Overview of Tasks
- Overview of Approaches
- Evaluation + Shared Task Challenges
- A Brief History of IE

Overview of Tasks: Entity Extraction

Entity Extraction/Named Entity Recognition

 Task: for each textual mention of an entity of one of a fixed set of types identify its extent and its type

- Types of entities which have been addressed by IE systems include:
 - Named individuals
 - Organisations, persons, locations, books, films, ships, restaurants . . .
 - Named Kinds
 - Proteins, chemical compounds/drugs, diseases, aircraft components . . .
 - Times
 - temporal expressions dates, times of day
 - Measures
 - monetary expressions, distances/sizes, weights . . .

Overview of Tasks: Entity Extraction – Coreference

- Multiple references to the same entity in a text are rarely made using the same string:
 - ♦ Pronouns Tony Blair ... he
 - ♦ Names/definite descriptions Tony Blair . . . the Prime Minister
 - ♦ Abbreviated forms Theresa May ... May; United Nations ... UN
 - \diamond Orthographic variants alpha helix ... alpha-helix ... α -helix ... a-helix
- Different textual expressions that refer to the same real world entity are said to corefer.
- Clearly IE systems are more useful if they can recognise which text mentions are coreferential.
- Coreference Task: link together all textual references to the same real world entity, regardless of whether the surface form is a name or not

Overview of Tasks: Relation Extraction

Relation Extraction

- Task: identify all assertions of relations, usually binary, between entities identified in entity extraction
- May be divided into two subtasks:
 - <u>Relation detection</u>: find pairs of entities between which a relation holds
 - <u>Relation classification</u>: for pairs of entities between which a relation holds, determine what the relation is
- Examples
 - ♦ LOCATION_OF holding between
 - ORGANISATION and GEOPOLITICAL_LOCATION
 - medical INVESTIGATION and BODY_PART
 - ♦ EMPLOYEE_OF holding between PERSON and ORGANISATION
 - ♦ PRODUCT_OF holding between ARTIFACT and ORGANISATION
 - ♦ INTERACTION holding between PROTEIN and PROTEIN

Overview of Tasks: Relation Extraction

Relation Extraction is challenging for several reasons:

- The same relation may be expressed in many different ways:
 - \diamond Synonyms: [Microsoft]_{ORG} is based/headquartered in [Redmond]_{LOC}
 - Syntactic variations:
 - [Microsoft]_{ORG}, the software giant and ..., is based in [Redmond]_{LOC}
 - [Redmond]_{LOC}-based [Microsoft]_{ORG} ...
 - $[Redmond]_{LOC}$'s $[Microsoft]_{ORG}$...; $[Microsoft]_{ORG}$ of $[Redmond]_{LOC}$
 - [Redmond]_{LOC} software giant [Microsoft]_{ORG} ...
- Discovering relations frequently depends upon being able to follow coreference links.
 - <u>Dirk Ruthless</u> of MegaCorp made a stunning announcement today. In September <u>he</u> will be stepping down as Chief Executive Officer to spend more time with his pet piranhas.
 - To determine the corporate position of Dirk Ruthless we must correctly resolve the pronominal anaphor "he" in the second sentence with "Dirk Ruthless" in the first

Overview of Tasks: Event Detection

Event Extraction

- Task: identify all reports of event instances, typically of a small set of classes
- May be divided into two subtasks:
 - Event detection: find mentions of events in text
 - ◆ **Event classification**: assign detected events to one of a set of classes
- Examples
 - ♦ Rocket/missile launches
 - Management succession events
 - ♦ Joint venture/product announcements
 - ♦ Terrorist attacks
- Events may be simply viewed as relations. However they are typically complex relations that
 - Are temporally situated and often of relatively short duration
 - ♦ Involve multiple role players (frequently > 2)
 - Are often expressed across multiple sentences

Introduction to Information Extraction: Outline

- Definition + Contrast with IR
- Example Applications
- Overview of Tasks
- Overview of Approaches
- Evaluation + Shared Task Challenges
- A Brief History of IE

Overview of Approaches:

Approaches to IE may be placed into four categories:

- Knowledge Engineering Approaches
- Supervised Learning Approaches
- Bootstrapping Approaches
- Distant Supervision Approaches

Knowledge Engineering Approaches

Person Position Organization

Mr. Wright, executive vice president of Merrill Lynch Canada Inc.,

is-employed-by

- Such systems use manually authored rules and can be divided into
 - "deep" linguistically inspired "language understanding" systems
 - "shallow" systems engineered to the IE task, typically using pattern-action rules

Pattern: ''Mr. \$Uppercase-initial-word''

Action: add-entity(person("Mr. \$Uppercase-initial-word))

Pattern: \\$Person, \$Position of \$Organization"

Action: add-relation(is-employed-by(\$Person,\$Organization))

Supervised learning approaches

- Systems are given texts with manually annotated entities + relations
- For each entity/relation create a training instance
 - k words either side of an entity mention
 - k words to the left of entity 1 and to the right of entity 2 plus the words in between
- Training instances represented in terms of features
 - words, parts of speech, orthographic characteristics, syntactic info
- Systems may learn
 - patterns that match extraction targets
 - Classifiers that classify tokens as beginning/inside/outside a tag type
- Learning techniques include: covering algorithms, HMMs, SVMs

Bootstrapping Approaches

- A technique for relation extraction that requires only minimal supervision
- Systems are given
 - seed tuples (e.g. \(\) Microsoft, Redmond \(\))
 - \diamond seed patterns (e.g. [X]_{ORG} is located in [Y]_{LOC}) or both.
- System searches in large corpus for
 - occurences of seed tuples and then extracts a pattern that matches the context of the seed tuple
 - matches of seed patterns from which it harvests new tuples
- New tuples are assumed to stand in the required relation and are added to the tuple store
- Process iterates until convergence
- See later lecture

Distant Supervision Approaches

- Sometimes also called <u>"weakly labelled"</u> approaches
- Assumes a (semi-)structured data source, such as
 - ♦ Wikipedia infoboxes (e.g. PERSON BORN_IN LOCATION/DATE)
 - Freebase or Wikidata
 - ♦ Flybase or the Yeast Protein Database, (e.g. PROTEIN IS_LOCATED_IN SUBCELLULAR_LOCATION)

which contains tuples of entities standing in the relation of interest and, ideally, a pointer to a source text

- Tuples from data source are used to label
 - the text with which they are associated, if available
 - documents from the web, if not
- Labelled data is used to train a standard supervised named entity or relation extraction system
- See later lecture

Introduction to Information Extraction: Outline

- Definition + Contrast with IR
- Example Applications
- Overview of Tasks
- Overview of Approaches
- Evaluation + Shared Task Challenges
- A Brief History of IE

Evaluation

- Correct answers, called keys, are produced manually for each extraction task (filled templates or SGML annotated texts)
- Scoring of system results, called responses, against keys is done automatically.
- At least some portion of the answer keys are multiply produced by different <u>humans so that interannotator agreement figures</u> can be computed.
- Principal metrics borrowed from information retrieval are:
 - Precision (how much of what system returns is correct)
 - Recall (how much of what is correct system returns)
 - ♦ F-measure (a weighted combination of precision and recall)

Shared Task Challenges

- Shared Task challenges are community wide exercises in which groups of researchers engage in a friendly competition to build systems to address a common task
- Key elements are:
 - an agreed task definition
 - annotated text resources for training and testing
 - agreed metrics for evaluation
 - an agreed schedule for release of resources, system development, system evaluation and a conference to discuss results
- Shared task challenges in IE have included: MUC, ACE, TAC, BioCreative
- Define the core methodology of the field and have led to significant progress

Introduction to Information Extraction: Outline

- Definition + Contrast with IR
- Example Applications
- Overview of Tasks
- Overview of Approaches
- Evaluation + Shared Task Challenges
- A Brief History of IE

A Brief History of IE

- 1960s The first published work on information extraction (though it was not called this at the time)
- 1970s A significant precursor was the psychologist Roger Schank's work on scripts and story understanding
- 1980s Saw the emergence of some commercial systems targetted at financial transactions and newswires

 Message Understanding Conference 1 (MUC-1) in 1987
- 1990s MUC ran 7 times until 1998 and significantly advanced the field.

 Machine learning approaches to IE began to appear
- 2000s ACE (Automatic Content Extraction) the successor programme to MUC ran 1999-2008; succeeded by TAC (Text Analytics Conference) (2008-present); BioCreative (IE in the biomedical domain) began (2004-present); work on IE in other languages began (e.g. Spanish, Japanese, Chinese, Arabic)
- 2010s TAC is going, particularly the knowledge base population track

 Currently there are a number of IE systems on the market and a large and on-going research effort in the field