Tutorial 8: Polynomial-time reductions

1 Travelling Salesman

In the HAMCYCLE problem, we are given a graph G = (V, E) and we must determine whether there is a cycle in G that goes through every vertex in V.

In the decision version of the travelling salesman problem, that we will denote by TSP, we are given a weighted graph G = (V, E) with positive integer weights $w : E \to \{1, 2, ..., L\}$ and a positive integer t; we need to determine whether there is a cycle that goes through every vertex in V and has total weight (= sum of the weights of the edges in the cycle) at most t.

Prove that HamCycle $\leq_{\mathbf{P}}$ TSP.

1.1 Solution

Transform the input graph G = (V, E) into the triplet (G, w, n) with the weight function w(e) = 1 for each $e \in E$.

If G has Hamiltonian cycle then there exists a cycle in TSP with weight n, which is the Hamiltonian cycle itself.

If G, w has a tour of weight n then the tour is also a Hamiltonian cycle because every tour is a Hamiltonian cycle.

2 Longest Path

In the HAMPATH problem, we are given a graph G = (V, E) and we must determine whether there is a path in G that goes through every vertex in V exactly once.

In the LongestPath problem, we are given a graph G = (V, E) and a positive integer k, we must determine whether there is a simple path in G that goes through k edges.

Prove that HAMPATH $\leq_{\mathbf{P}}$ LONGESTPATH.

2.1 Solution

Transform G into (G, n-1).

If G has a Hamiltonian path then there is a simple path in G that goes through n-1 edges, which is the Hamiltinian path itself.

If G has a simple path of length n-1 then the path would cover all n vertices, hence it is a Hamiltonian path as well.

3 Hamiltonian paths and cycles

Prove that HamCycle $\leq_{\mathbf{P}}$ HamPath.

3.1 Solution

Let G = (V, E) be the given graph. Construct a graph G' by picking an arbitrary vertex $X \in V$ and creating a duplicate vertex X' (X' is connected to all the vertices X is connected to in G). Create two more vertices t_1 and t_2 and join t_1 to X and t_2 to X'. G' would be the input to the Hamiltonian path problem.

If G has a Hamiltonian cycle then G' has a Hamiltonian path. Let y_1 and y_2 be the vertices adjacent to X in the Hamiltonian cycle. The Hamiltonian path would start at t_1 go to X then y_1 and go along the Hamiltonian cycle till it reaches y_2 and then it goes to X' and t_2 .

If G' has a Hamiltonian path then G has a Hamiltonian cycle. The Hamiltonian path has to start with t_1 and end with t_2 as both have degree one. The Hamiltonian path would look like $t_1, X, y_i, \ldots, y_j, X', t_2$. The Hamiltonian cycle in the original graph would be X, y_i, \ldots, y_j, X , since from the construction we know that y_j is adjacent to X.

4 Set packing

In the INDEPSET problem we are given a graph G = (V, E) and a positive integer k and we must determine whether there is an independent set (=set of vertices that are all disconnected from each other) of size k in G.

In the SetPacking problem, we are given a collection of subsets of $\{1, 2, ..., m\}$ and we must determine whether there are k sets $S_1, ..., S_k$ in the collection that are all disjoint from each other.

Prove that INDEPSET $\leq_{\mathbf{P}}$ SETPACKING.

4.1 Solution

Assign label from 1 to m to each edge in the graph. For each vertex $v \in V$, create the set $S_v = \{i \leq m : v \text{ incident to edge } i\}$.

If G has an independent set of size k then the sets corresponding to the k vertices would be disjoint, as two sets would have an intersection if and only if there is an edge between the corresponding vertices.

If there are k sets that are disjoint then the k vertices corresponding to sets are independent, as two sets would have an intersection if and only if there is an edge between the corresponding vertices.