Description des données

Thibaut FABACHER

GMRC

1. Correction du devoir

- 1. Correction du devoir
- 2. Rappels

- 1. Correction du devoir
- 2. Rappels
- 3. Définitions

- 1. Correction du devoir
- 2. Rappels
- 3. Définitions
- 4. Statistiques descriptives

Correction du devoir

Éléments importants

Encodages de caractères

Application de fonction

```
# Executer une fonction

fonction(arg1 = ..., arg2 = ..., arg3 = ...)

# L'attribuer à un objet la sortie de la fonction
```

Rappels sur les statistiques

Moyennes, probabilités

Exemple: Notes d'un élève

11	8	9	10	11

- Moyennes, probabilités
- Espérance et variance ?

Exemple: Notes d'un élève

11	8	9	10	11

- Moyennes, probabilités
- Espérance et variance ?
- ► Loi Bernoulli / binomiale ?

Exemple: Notes d'un élève

11	8	9	10	11

- Moyennes, probabilités
- Espérance et variance ?
- ► Loi Bernoulli / binomiale ?

Exemple: Notes d'un élève

Notes d'un élève, relevées sur une année

11	8	9	10	11

- Moyennes, probabilités
- Espérance et variance ?
- Loi Bernoulli / binomiale ?

Exemple: Notes d'un élève

- Notes d'un élève, relevées sur une année
- Contrôle de biologie

11	8	9	10	11

- Moyennes, probabilités
- Espérance et variance ?
- Loi Bernoulli / binomiale ?

Exemple : Notes d'un élève

- Notes d'un élève, relevées sur une année
- ► Contrôle de biologie
- ▶ 5 notes sur le trimestre

11	8	9	10	11

- Moyennes, probabilités
- Espérance et variance ?
- Loi Bernoulli / binomiale ?

Exemple : Notes d'un élève

- Notes d'un élève, relevées sur une année
- Contrôle de biologie
- 5 notes sur le trimestre

11	8	9	10	11

Moy:
$$\frac{11+8+9+10+11}{5} = 9.8$$

- Moyennes, probabilités
- Espérance et variance ?
- Loi Bernoulli / binomiale ?

Exemple: Notes d'un élève

- Notes d'un élève, relevées sur une année
- Contrôle de biologie
- 5 notes sur le trimestre

11	8	9	10	11

- Moy: $\frac{11+8+9+10+11}{5} = 9.8$
- ▶ Bon indicateur d'un profil moyen

- Moyennes, probabilités
- Espérance et variance ?
- Loi Bernoulli / binomiale ?

Exemple: Notes d'un élève

- Notes d'un élève, relevées sur une année
- Contrôle de biologie
- 5 notes sur le trimestre

11	8	9	10	11

- Moy: $\frac{11+8+9+10+11}{5} = 9.8$
- ▶ Bon indicateur d'un profil moyen
- Pas de notion de régularité

- Moyennes, probabilités
- Espérance et variance ?
- Loi Bernoulli / binomiale ?

Exemple: Notes d'un élève

- Notes d'un élève, relevées sur une année
- Contrôle de biologie
- ▶ 5 notes sur le trimestre

11	8	9	10	11

- Moy: $\frac{11+8+9+10+11}{5} = 9.8$
- ▶ Bon indicateur d'un profil moyen
- Pas de notion de régularité

- Moyennes, probabilités
- Espérance et variance ?
- Loi Bernoulli / binomiale ?

Exemple: Notes d'un élève

- Notes d'un élève, relevées sur une année
- Contrôle de biologie
- ▶ 5 notes sur le trimestre

11	8	9	10	11

- Moy: $\frac{11+8+9+10+11}{5} = 9.8$
- ▶ Bon indicateur d'un profil moyen
- Pas de notion de régularité

La variabilité

La variabilité

La variabilité

La variabilité

Population et Échantillon

La population complète

 Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE

La population complète

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- ▶ Problème: Impossible de connaître TOUS les patients

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- ▶ Problème: Impossible de connaître TOUS les patients

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- Problème: Impossible de connaître TOUS les patients

Échantillon

Échantillon

Le plus grand possible !!!

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- Problème: Impossible de connaître TOUS les patients

Échantillon

- Le plus grand possible !!!
- La précision des estimations augmente avec la taille d'échantillon.

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- Problème: Impossible de connaître TOUS les patients

Échantillon

- Le plus grand possible !!!
- La précision des estimations augmente avec la taille d'échantillon.
- Exemple: Connaître le taux de vote pour un candidat aux présidentielles en interrogeant:

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- Problème: Impossible de connaître TOUS les patients

Échantillon

- Le plus grand possible !!!
- La précision des estimations augmente avec la taille d'échantillon.
- Exemple: Connaître le taux de vote pour un candidat aux présidentielles en interrogeant:
 - 4 personnes ?

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- Problème: Impossible de connaître TOUS les patients

Échantillon

- Le plus grand possible !!!
- La précision des estimations augmente avec la taille d'échantillon.
- Exemple: Connaître le taux de vote pour un candidat aux présidentielles en interrogeant:
 - ▶ 4 personnes ?
 - ▶ 4590 personnes ?

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- Problème: Impossible de connaître TOUS les patients

Échantillon

- Le plus grand possible !!!
- La précision des estimations augmente avec la taille d'échantillon.
- Exemple: Connaître le taux de vote pour un candidat aux présidentielles en interrogeant:
 - ▶ 4 personnes ?
 - ▶ 4590 personnes ?

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- Problème: Impossible de connaître TOUS les patients

Échantillon

- Le plus grand possible !!!
- La précision des estimations augmente avec la taille d'échantillon.
- Exemple: Connaître le taux de vote pour un candidat aux présidentielles en interrogeant:
 - ▶ 4 personnes ?
 - ▶ 4590 personnes ?

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- Problème: Impossible de connaître TOUS les patients

Échantillon

- Le plus grand possible !!!
- La précision des estimations augmente avec la taille d'échantillon.
- Exemple: Connaître le taux de vote pour un candidat aux présidentielles en interrogeant:
 - ▶ 4 personnes ?
 - ▶ 4590 personnes ?

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- Problème: Impossible de connaître TOUS les patients

Échantillon

- Le plus grand possible !!!
- La précision des estimations augmente avec la taille d'échantillon.
- Exemple: Connaître le taux de vote pour un candidat aux présidentielles en interrogeant:
 - ▶ 4 personnes ?
 - ▶ 4590 personnes ?

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- Problème: Impossible de connaître TOUS les patients

Échantillon

- Le plus grand possible !!!
- La précision des estimations augmente avec la taille d'échantillon.
- Exemple: Connaître le taux de vote pour un candidat aux présidentielles en interrogeant:
 - ▶ 4 personnes ?
 - ▶ 4590 personnes ?

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- Problème: Impossible de connaître TOUS les patients

Échantillon

- Le plus grand possible !!!
- La précision des estimations augmente avec la taille d'échantillon.
- Exemple: Connaître le taux de vote pour un candidat aux présidentielles en interrogeant:
 - ▶ 4 personnes ?
 - ▶ 4590 personnes ?

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- Problème: Impossible de connaître TOUS les patients

Échantillon

- Le plus grand possible !!!
- La précision des estimations augmente avec la taille d'échantillon.
- Exemple: Connaître le taux de vote pour un candidat aux présidentielles en interrogeant:
 - ▶ 4 personnes ?
 - ▶ 4590 personnes ?

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- Problème: Impossible de connaître TOUS les patients

Échantillon

- Le plus grand possible !!!
- La précision des estimations augmente avec la taille d'échantillon.
- Exemple: Connaître le taux de vote pour un candidat aux présidentielles en interrogeant:
 - ▶ 4 personnes ?
 - ▶ 4590 personnes ?

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- Problème: Impossible de connaître TOUS les patients

Échantillon

- Le plus grand possible !!!
- La précision des estimations augmente avec la taille d'échantillon.
- Exemple: Connaître le taux de vote pour un candidat aux présidentielles en interrogeant:
 - ▶ 4 personnes ?
 - ▶ 4590 personnes ?

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- Problème: Impossible de connaître TOUS les patients

Échantillon

- Le plus grand possible !!!
- La précision des estimations augmente avec la taille d'échantillon.
- Exemple: Connaître le taux de vote pour un candidat aux présidentielles en interrogeant:
 - ▶ 4 personnes ?
 - ▶ 4590 personnes ?

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- Problème: Impossible de connaître TOUS les patients

Échantillon

- Le plus grand possible !!!
- La précision des estimations augmente avec la taille d'échantillon.
- Exemple: Connaître le taux de vote pour un candidat aux présidentielles en interrogeant:
 - ▶ 4 personnes ?
 - ▶ 4590 personnes ?

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- Problème: Impossible de connaître TOUS les patients

Échantillon

- Le plus grand possible !!!
- La précision des estimations augmente avec la taille d'échantillon.
- Exemple: Connaître le taux de vote pour un candidat aux présidentielles en interrogeant:
 - ▶ 4 personnes ?
 - ▶ 4590 personnes ?

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- Problème: Impossible de connaître TOUS les patients

Échantillon

- Le plus grand possible !!!
- La précision des estimations augmente avec la taille d'échantillon.
- Exemple: Connaître le taux de vote pour un candidat aux présidentielles en interrogeant:
 - ▶ 4 personnes ?
 - ▶ 4590 personnes ?

- Dans l'idéal, les comparaisons sont effectuées sur la population TOTALE
- Problème: Impossible de connaître TOUS les patients

Échantillon

- Le plus grand possible !!!
- La précision des estimations augmente avec la taille d'échantillon.
- Exemple: Connaître le taux de vote pour un candidat aux présidentielles en interrogeant:
 - ▶ 4 personnes ?
 - ▶ 4590 personnes ?

Variable quantitative

Variable qu'il est possible de quantifier, de mesurer.

Variable quantitative

- Variable qu'il est possible de quantifier, de mesurer.
- Existe en deux formats: -continues: 12.4, 8.765, (Taille, Pression artérielle etc...)

Variable quantitative

- Variable qu'il est possible de quantifier, de mesurer.
- Existe en deux formats: -continues: 12.4, 8.765, (Taille, Pression artérielle etc...)
 - Discrètes : 2, 8, 14, 165 (Nombre de lésions, rechutes, accouchements, etc..)

- Variable qu'il est possible de quantifier, de mesurer.
- Existe en deux formats: -continues: 12.4, 8.765, (Taille, Pression artérielle etc...)
 - Discrètes : 2, 8, 14, 165 (Nombre de lésions, rechutes, accouchements, etc..)

Variable qualitative

► Variable **non dénombrable**

- Variable qu'il est possible de quantifier, de mesurer.
- Existe en deux formats: -continues: 12.4, 8.765, (Taille, Pression artérielle etc...)
 - Discrètes : 2, 8, 14, 165 (Nombre de lésions, rechutes, accouchements, etc..)

- Variable non dénombrable
- Les niveaux de la variable sont appelés modalités

- Variable qu'il est possible de quantifier, de mesurer.
- Existe en deux formats: -continues: 12.4, 8.765, (Taille, Pression artérielle etc...)
 - Discrètes : 2, 8, 14, 165 (Nombre de lésions, rechutes, accouchements, etc..)

- Variable non dénombrable
- Les niveaux de la variable sont appelés modalités
- Nominales / ordinales / binaires

- Variable qu'il est possible de quantifier, de mesurer.
- Existe en deux formats: -continues: 12.4, 8.765, (Taille, Pression artérielle etc...)
 - Discrètes : 2, 8, 14, 165 (Nombre de lésions, rechutes, accouchements, etc..)

- Variable non dénombrable
- Les niveaux de la variable sont appelés modalités
- ► Nominales / ordinales / binaires
- Exemples:

- Variable qu'il est possible de quantifier, de mesurer.
- Existe en deux formats: -continues: 12.4, 8.765, (Taille, Pression artérielle etc...)
 - Discrètes : 2, 8, 14, 165 (Nombre de lésions, rechutes, accouchements, etc..)

- ► Variable **non dénombrable**
- Les niveaux de la variable sont appelés modalités
- Nominales / ordinales / binaires
- Exemples:
 - OUI / NON

- Variable qu'il est possible de quantifier, de mesurer.
- Existe en deux formats: -continues: 12.4, 8.765, (Taille, Pression artérielle etc...)
 - Discrètes : 2, 8, 14, 165 (Nombre de lésions, rechutes, accouchements, etc..)

- ► Variable **non dénombrable**
- Les niveaux de la variable sont appelés modalités
- ► Nominales / ordinales / binaires
- Exemples:
 - ► OUI / NON
 - Un peu / beaucoup / passionnément /...

- Variable qu'il est possible de quantifier, de mesurer.
- Existe en deux formats: -continues: 12.4, 8.765, (Taille, Pression artérielle etc...)
 - Discrètes : 2, 8, 14, 165 (Nombre de lésions, rechutes, accouchements, etc..)

- Variable non dénombrable
- Les niveaux de la variable sont appelés modalités
- Nominales / ordinales / binaires
- Exemples:
 - ► OUI / NON
 - ▶ Un peu / beaucoup / passionnément /...
 - ▶ Bleu / Vert / Rouge

Variable quantitative

- Variable qu'il est possible de quantifier, de mesurer.
- Existe en deux formats: -continues: 12.4, 8.765, (Taille, Pression artérielle etc...)
 - Discrètes : 2, 8, 14, 165 (Nombre de lésions, rechutes, accouchements, etc..)

- ► Variable **non dénombrable**
- Les niveaux de la variable sont appelés modalités
- ▶ Nominales / ordinales / binaires
- Exemples:
 - ▶ OUI / NON
 - ▶ Un peu / beaucoup / passionnément /...
 - ▶ Bleu / Vert / Rouge
 - ► Homme / Femme

Variable quantitative

- Variable qu'il est possible de quantifier, de mesurer.
- Existe en deux formats: -continues: 12.4, 8.765, (Taille, Pression artérielle etc...)
 - Discrètes : 2, 8, 14, 165 (Nombre de lésions, rechutes, accouchements, etc..)

- Variable non dénombrable
- Les niveaux de la variable sont appelés modalités
- ▶ Nominales / ordinales / binaires
- Exemples:
 - ▶ OUI / NON
 - ▶ Un peu / beaucoup / passionnément /...
 - ▶ Bleu / Vert / Rouge
 - ► Homme / Femme

Variable quantitative

- Variable qu'il est possible de quantifier, de mesurer.
- Existe en deux formats: -continues: 12.4, 8.765, (Taille, Pression artérielle etc...)
 - Discrètes : 2, 8, 14, 165 (Nombre de lésions, rechutes, accouchements, etc..)

- Variable non dénombrable
- Les niveaux de la variable sont appelés modalités
- ▶ Nominales / ordinales / binaires
- Exemples:
 - ▶ OUI / NON
 - ▶ Un peu / beaucoup / passionnément /...
 - ▶ Bleu / Vert / Rouge
 - ► Homme / Femme

Variable quantitative

- Variable qu'il est possible de quantifier, de mesurer.
- Existe en deux formats: -continues: 12.4, 8.765, (Taille, Pression artérielle etc...)
 - Discrètes : 2, 8, 14, 165 (Nombre de lésions, rechutes, accouchements, etc..)

- Variable non dénombrable
- Les niveaux de la variable sont appelés modalités
- ▶ Nominales / ordinales / binaires
- Exemples:
 - ▶ OUI / NON
 - ▶ Un peu / beaucoup / passionnément /...
 - ▶ Bleu / Vert / Rouge
 - ► Homme / Femme

Variable quantitative

- Variable qu'il est possible de quantifier, de mesurer.
- Existe en deux formats: -continues: 12.4, 8.765, (Taille, Pression artérielle etc...)
 - Discrètes : 2, 8, 14, 165 (Nombre de lésions, rechutes, accouchements, etc..)

- Variable non dénombrable
- Les niveaux de la variable sont appelés modalités
- ▶ Nominales / ordinales / binaires
- Exemples:
 - ▶ OUI / NON
 - ▶ Un peu / beaucoup / passionnément /...
 - ▶ Bleu / Vert / Rouge
 - ► Homme / Femme

Variable quantitative

- Variable qu'il est possible de quantifier, de mesurer.
- Existe en deux formats: -continues: 12.4, 8.765, (Taille, Pression artérielle etc...)
 - Discrètes : 2, 8, 14, 165 (Nombre de lésions, rechutes, accouchements, etc..)

- Variable non dénombrable
- Les niveaux de la variable sont appelés modalités
- ▶ Nominales / ordinales / binaires
- Exemples:
 - ▶ OUI / NON
 - ▶ Un peu / beaucoup / passionnément /...
 - ▶ Bleu / Vert / Rouge
 - ► Homme / Femme

Variable quantitative

- Variable qu'il est possible de quantifier, de mesurer.
- Existe en deux formats: -continues: 12.4, 8.765, (Taille, Pression artérielle etc...)
 - Discrètes : 2, 8, 14, 165 (Nombre de lésions, rechutes, accouchements, etc..)

- Variable non dénombrable
- Les niveaux de la variable sont appelés modalités
- ▶ Nominales / ordinales / binaires
- Exemples:
 - ▶ OUI / NON
 - ▶ Un peu / beaucoup / passionnément /...
 - ▶ Bleu / Vert / Rouge
 - ► Homme / Femme

Variable quantitative

- Variable qu'il est possible de quantifier, de mesurer.
- Existe en deux formats: -continues: 12.4, 8.765, (Taille, Pression artérielle etc...)
 - Discrètes : 2, 8, 14, 165 (Nombre de lésions, rechutes, accouchements, etc..)

- Variable non dénombrable
- Les niveaux de la variable sont appelés modalités
- ▶ Nominales / ordinales / binaires
- Exemples:
 - ▶ OUI / NON
 - ▶ Un peu / beaucoup / passionnément /...
 - ▶ Bleu / Vert / Rouge
 - ► Homme / Femme

Variable quantitative

- Variable qu'il est possible de quantifier, de mesurer.
- Existe en deux formats: -continues: 12.4, 8.765, (Taille, Pression artérielle etc...)
 - Discrètes : 2, 8, 14, 165 (Nombre de lésions, rechutes, accouchements, etc..)

- Variable non dénombrable
- Les niveaux de la variable sont appelés modalités
- ▶ Nominales / ordinales / binaires
- Exemples:
 - ▶ OUI / NON
 - ▶ Un peu / beaucoup / passionnément /...
 - ▶ Bleu / Vert / Rouge
 - ► Homme / Femme

Variable quantitative

- Variable qu'il est possible de quantifier, de mesurer.
- Existe en deux formats: -continues: 12.4, 8.765, (Taille, Pression artérielle etc...)
 - Discrètes : 2, 8, 14, 165 (Nombre de lésions, rechutes, accouchements, etc..)

- Variable non dénombrable
- Les niveaux de la variable sont appelés modalités
- ▶ Nominales / ordinales / binaires
- Exemples:
 - ▶ OUI / NON
 - ▶ Un peu / beaucoup / passionnément /...
 - ▶ Bleu / Vert / Rouge
 - ► Homme / Femme

Variables qualitatives

Fréquences relatives

Fréquence relative: pour résumer une distribution : calculer les fréquences relatives des sujets porteurs de chaque modalité. Ces proportions comprises entre 0 et 1,

Variables qualitatives

Fréquences relatives

Fréquence relative: pour résumer une distribution : calculer les fréquences relatives des sujets porteurs de chaque modalité. Ces proportions comprises entre 0 et 1,

Variables qualitatives

Fréquences relatives

► Fréquence relative: pour résumer une distribution : calculer les fréquences relatives des sujets porteurs de chaque modalité. Ces proportions comprises entre 0 et 1,

Stade cancer	N	Pi (%)
1	88	54
2	29	17,8
3	34	20,9
4	12	7,4
Total	163	100

```
table(X)
prop.table(table(X))
```

Croisement entre les variables Quantitatives

Évaluation graphique (cf. cours suivant)

- Évaluation graphique (cf. cours suivant)
- Coefficient de corrélation linéaire de Bravais Pearson

- Évaluation graphique (cf. cours suivant)
- Coefficient de corrélation linéaire de Bravais Pearson

$$\rho = \frac{\sum [(x_i - \overline{x})(y_i - \overline{y})]}{\sqrt{(x_i - \overline{x})^2 * (y_i - \overline{y})^2}}$$

- Évaluation graphique (cf. cours suivant)
- Coefficient de corrélation linéaire de Bravais Pearson

$$-1 \le \rho \le 1$$

- Évaluation graphique (cf. cours suivant)
- Coefficient de corrélation linéaire de Bravais Pearson

$$-1 \le \rho \le 1$$

Croisement entre les variables Quantitatives

- Évaluation graphique (cf. cours suivant)
- ▶ Coefficient de corrélation linéaire de Bravais Pearson

$$-1 \le \rho \le 1$$

cor(X,Y)

Croisement entre les variables qualitatives

► Tableau de contingence

Croisement entre les variables qualitatives

► Tableau de contingence

Croisement entre les variables qualitatives

Tableau de contingence

age / Sexe	Н	F
0-5	4	4
5-10	2	8
1-18	4	11

Croisement Quanti/Quali

Mêmes éléments que description quanti mais par groupe

The data contains 150 observations, grouped by Species, of

- setosa (n = 50):
- Petal.Length: Mean = 1.46, SD = 0.17, range: [1, 1.90] - Petal.Width: Mean = 0.25, SD = 0.11, range: [0.10, 0.60
- versicolor (n = 50):