Penurunan Model (Underfitting)

Misal dimiliki identifikasi model awal adalah ARIMA(2,1,1), maka dilakukan *underfitting* dan diperoleh model:

р	d	q	c/tc	
2	1	1	c	
2	1	0	c	
1	1	1	c	
1	1	0	c	
0	1	1	c	
2	1	1	tc	
2	1	0	tc	
1	1	1	tc	
1	1	0	tc	
0	1	1	tc	

Yakni, diperoleh 10 model dengan keterangan:

- ARIMA (2,1,1) dengan konstan
- ARIMA (2,1,0) dengan konstan
- ARIMA (1,1,1) dengan konstan
- ARIMA (1,1,0) dengan konstan
- ARIMA (0,1,1) dengan konstan
- ARIMA (2,1,1) tanpa konstan
- ARIMA (2,1,0) tanpa konstan
- ARIMA (1,1,1) tanpa konstan
- ARIMA (1,1,0) tanpa konstan
- ARIMA (0,1,1) tanpa konstan

Penulisan dan Interpretasi Model ARIMA

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.030872	0.006063	5.091542	0.0000
AR(1)	0.311597	0.144684	2.153632	0.0349
MA(1)	-0.876210	0.069621	-12.58551	0.0000
R-squared	0.272469	Mean dependent var		0.038813
Adjusted R-squared	0.250752	S.D. dependent var		0.267436
S.E. of regression	0.231490	Akaike info criterion		-0.046644
Sum squared resid	3.590385	Schwarz criterion		0.049720
Log likelihood	4.632556	Hannan-Quinn criter.		-0.008367
F-statistic	12.54614	Durbin-Watson stat		1.930229
Prob(F-statistic)	0.000024			
Inverted AR Roots	.31			-
Inverted MA Roots	.88			

$$(1 - a_1B - a_2B^2 - \dots - a_pB^p)(1 - B)^d X_t = \mu + (1 + b_1B + b_2B^2 + \dots + b_pB^q)\varepsilon_t$$

$$(1 - 0.311597B)(1 - B)^1 X_t = 0.030872 + (1 - 0.876210B)\varepsilon_t$$

$$(1 - 1.311597B + 0.311597B^2)X_t = 0.030872 + \varepsilon_t - 0.876210\varepsilon_{t-1}$$

$$X_t - 1.311597X_{t-1} + 0.311597X_{t-2} = 0.030872 + \varepsilon_t - 0.876210\varepsilon_{t-1}$$

$$X_t = 0.030872 + \varepsilon_t - 0.876210\varepsilon_{t-1} + 1.311597X_{t-1} - 0.311597X_{t-2}$$

Interpretasi

- Setiap kenaikan satu satuan data pada 1 periode yang lalu akan berakibat pada kenaikan data ramalan sebesar 1.311597 satuan dengan menganggap variabel lain konstan.
- Setiap kenaikan satu satuan data pada 2 periode yang lalu akan berakibat pada penurunan data ramalan sebesar 0.311597 satuan dengan menganggap variabel lain konstan.
- Setiap kenaikan satu satuan galat atau *error* pada 1 periode yang lalu akan berakibat pada penurunan data ramalan sebesar 0.876210 satuan dengan menganggap variabel lain konstan.