FORMULAS FOR THE NUMBER OF BINOMIAL COEFFICIENTS DIVISIBLE BY A FIXED POWER OF A PRIME

F. T. HOWARD

ABSTRACT. Define $\theta_j(n)$ as the number of binomial coefficients $\binom{n}{2}$ divisible by exactly p^j . A formula for $\theta_2(n)$ is found, for all n, and formulas for $\theta_j(n)$ for $n=ap^k+bp^r$ and $n=c_1p^{k_1}+\cdots+c_mp^{k_m}$ $(k_1\geq j, k_{i+1}-k_i\geq j \text{ for } i=1, \cdots, m-1)$ are derived.

1. Introduction. Let p be a fixed prime and let $\theta_j(n)$ denote the number of binomial coefficients $\binom{n}{s}$ $(s=0, 1, \dots, n)$ divisible by exactly p^j . If we put

$$(1.1) n = c_0 + c_1 p + \dots + c_r p^r (0 \le c_i < p)$$

it is well known [3] that

$$\theta_0(n) = (c_0 + 1)(c_1 + 1) \cdot \cdot \cdot (c_n + 1).$$

The evaluation of $\theta_j(n)$ for arbitrary j appears to be more difficult, however. Carlitz [1] has proved that

$$\theta_1(n) = \sum_{k=0}^{\tau-1} (c_0 + 1) \cdots (c_{k-1} + 1)(p - c_k - 1)c_{k+1}(c_{k+2} + 1) \cdots (c_{\tau} + 1)$$

and he has found formulas for $\theta_i(n)$ for the following values of n:

$$ap^{r} + bp^{r+1}$$
 $(0 \le a < p, 0 \le b < p),$
 $b + ap + ap^{2} + \dots + ap^{r+j}$ $(0 < a < p, b = a \text{ or } a - 1).$

The writer [4] has considered this problem for p=2 and has found formulas for $\theta_j(n)$, $1 \le j \le 4$, and for arbitrary j has evaluated $\theta_j(n)$ for a number of special values of n. These formulas are valid only for p=2, however.

In this paper we find formulas for $\theta_2(n)$ for all n and for $\theta_j(n)$ for the following values of n:

$$ap^k + bp^r$$
 $(0 < a < p, 0 < b < p, k < r),$
 $c_1p^{k_1} + \cdots + c_mp^{k_m}$ $(0 < c_i < p, j \le k_1, j < k_{i+1} - k_i).$

Received by the editors August 2, 1971.

AMS (MOS) subject classifications (1970). Primary 05A10, 05A15.

Key words and phrases. Binomial coefficient, prime number.

© American Mathematical Society 1973

We shall use the following rule, which was proved by Kummer [2, p. 70]. Put

$$(1.2) s = a_0 + a_1 p + \dots + a_r p^r (0 \le a_i < p),$$

(1.3)
$$n - s = b_0 + b_1 p + \dots + b_r p^r \qquad (0 \le b_i < p),$$

$$a_0 + b_0 = c_0 + \varepsilon_0 p, \ \varepsilon_0 + a_1 + b_1 = c_1 + \varepsilon_1 p, \cdots,$$

$$\varepsilon_{r-1} + a_r + b_r = c_r + \varepsilon_r p,$$

where each $\varepsilon_i = 0$ or 1. Let N be the exponent of the highest power of p that divides $\binom{n}{s}$. Then we have $N = \varepsilon_0 + \varepsilon_1 + \cdots + \varepsilon_r$.

2. Evaluation of $\theta_2(n)$. If n is given by (1.1) and s and n-s are given by (1.2) and (1.3), it is clear that N=2 if and only if exactly two of the ε 's are equal to 1, and $\varepsilon_r=0$. There are two possibilities. Either $\varepsilon_k=\varepsilon_{k+1}=1$ for some $0 \le k \le r-2$ and all other ε 's=0 or $\varepsilon_k=1$, $\varepsilon_m=1$ for some $0 \le k \le r-3$, $k+2 \le m \le r-1$ and all other ε 's=0. In the first case we can take

$$a_k = c_k + 1, \dots, p - 1;$$
 $a_{k+1} = c_{k+1}, \dots, p - 1;$ $a_{k+2} = 0, \dots, c_{k+2} - 1.$

So we have $(p-c_k-1)(p-c_{k+1})c_{k+2}$ choices and the remaining a's can be chosen in A_k ways, where

(2.1)
$$A_k = \left[\prod_{i=0}^r (c_i + 1) \right] / [(c_k + 1)(c_{k+1} + 1)(c_{k+2} + 1)].$$

In the second case, we can take

$$a_k = c_k + 1, \dots, p - 1;$$
 $a_{k+1} = 0, \dots, c_{k+1} - 1,$
 $a_m = c_m + 1, \dots, p - 1;$ $a_{m+1} = 0, \dots, c_{m+1} - 1,$

so there are $(p-c_k-1)c_{k+1}(p-c_m-1)c_{m+1}$ choices. The remaining a's can be selected in $B_{k,m}$ ways, where

$$(2.2) \quad B_{k,m} = \left[\prod_{i=0}^{r} (c_i + 1) \right] / \left[(c_k + 1)(c_{k+1} + 1)(c_m + 1)(c_{m+1} + 1) \right].$$

Thus we have

(2.3)
$$\theta_{2}(n) = \sum_{k=0}^{r-2} (p - c_{k} - 1)(p - c_{k+1})c_{k+2}A_{k} + \sum_{m=k+2}^{r-1} \sum_{k=0}^{r-3} (p - c_{k} - 1)c_{k+1}(p - c_{m} - 1)c_{m+1}B_{k,m},$$

where A_k and $B_{k,m}$ are defined by (2.1) and (2.2) respectively.

For example,

$$\theta_2(a+bp+cp^2) = (p-a-1)(p-b)c,$$

$$\theta_2(a+bp+cp^2+dp^3) = (p-a-1)(p-b)c(d+1)$$

$$+ (a+1)(p-b-1)(p-c)d$$

$$+ (p-a-1)b(p-c-1)d.$$

This method does not appear to be very practical for evaluating $\theta_j(n)$ for j>2.

- 3. **Special evaluations.** We can use Kummer's theorem to evaluate $\theta_j(ap^k+bp^r)$, where r>k, 0< a< p, 0< b< p. Suppose $k \ge j$ and r-k>j. Then there are three ways to have exactly j of the ε 's equal to 1:
 - (1) $\varepsilon_{r-i} = \varepsilon_{r-i+1} = \cdots = \varepsilon_{r-1} = 1$, all other ε 's=0;
 - (2) $\varepsilon_{k-i} = \varepsilon_{k-i+1} = \cdots = \varepsilon_{k-1} = 1$, all other ε 's=0;
- (3) $\varepsilon_{k-m} = \varepsilon_{k-m+1} = \cdots = \varepsilon_{k-1} = 1$, $\varepsilon_{r-h} = \cdots = \varepsilon_{r-1} = 1$, $1 \le m \le j-1$, h = j-m, all other ε 's = 0.

If s is given by (1.2), in the first case we can take

$$a_{r-j} = 1, \dots, p-1;$$
 $a_i = 0, \dots, p-1$ $(r-j+1 \le i \le r-1);$ $a_r = 0, \dots, b-1;$ $a_k = 0, \dots, a,$

so there are $(p-1)p^{j-1}(a+1)b$ choices. Using similar reasoning in the other two cases, we have

$$\theta_{j}(ap^{k} + bp^{r}) = (p-1)p^{j-1}(a+1)b$$

$$+ (p-1)p^{j-1}a(b+1) + (j-1)(p-1)^{2}p^{j-2}ab$$

$$(k \ge j, r > k+j).$$

Similarly we have

(3.2)
$$\theta_{j}(ap^{k} + bp^{r}) = (p-1)p^{j-1}(a+1)b + k(p-1)^{2}p^{j-2}ab \quad (k < j, r > k+j),$$

$$(3.3) = (p-a-1)p^{j-1}b + k(p-1)^2p^{j-2}ab \qquad (k < j, r = k+j),$$

(3.4)
$$= (p-1)p^{j-1}a(b+1) + (p-1)p^{j-2}(p-a)b + (r-k-1)(p-1)^2p^{j-2}ab (k \ge j, r < k+j),$$

$$(3.6) = (p-1)p^{j-2}(p-a)b + (r-j)(p-1)^2p^{j-2}ab (k < j, r < k+j, r \ge j).$$

We next evaluate $\theta_i(n)$ for

$$(3.7) \quad n = c_1 p^{k_1} + c_2 p^{k_2} + \cdots + c_m p^{k_m} \qquad (k_1 \ge j, k_{i+1} - k_i > j).$$

Using Kummer's theorem, we need to determine the number of ways we can have exactly j of the ε 's equal to 1. Let $1 \le u \le m$ and choose u of the c_i 's. Call them c_{i_1}, \dots, c_{i_u} . Assign to each c_{i_w} a number t_w , $1 \le t_w$, such that $t_1 + t_2 + \dots + t_u = j$. This can be done in $\binom{j-1}{u-1}$ ways, since there are $\binom{j-1}{u-1}$ different ways of distributing j nondistinct objects into u distinct cells with no cell left empty. We wish to have $\varepsilon_v = 1$ $(v = i_w - h, 1 \le h \le t_w, 1 \le w \le u)$ and all other ε 's equal to 0. If s is given by (1.2) we can take

$$a_v = 1, \dots, p-1$$
 $(v = i_w - t_w, 1 \le w \le u),$
= $0, \dots, p-1$ $(v = i_w - h, 1 \le h \le t_w - 1, 1 \le w \le u),$
= $0, \dots, c_v - 1$ $(v = i_w, 1 \le w \le u).$

Thus for a given u and a given selection i_1, \dots, i_u , there are

$$\binom{j-1}{u-1} (p-1)^u p^{j-u} c_{i_1} \cdots c_{i_u} (c_1+1) \cdots (c_m+1) / (c_{i_1}+1) \cdots (c_{i_u}+1)$$

different ways to have j of the ε 's equal to 1. Therefore

(3.8)
$$\theta_{j}(n) = \sum_{n=1}^{m} {j-1 \choose u-1} (p-1)^{u} p^{j-u} E_{u}$$

where n is given by (3.7) and

(3.9)
$$E_u = \sum c_{i_1} \cdots c_{i_u}(c_1+1) \cdots (c_m+1)/[(c_{i_1}+1) \cdots (c_{i_u}+1)],$$
 the sum being over all subsets $\{i_1, \dots, i_u\}$ of $\{1, \dots, m\}$ such that $i_1 < i_2 < \dots < i_u$.

For example, if $n=ap^{k_1}+bp^{k_2}+cp^{k_3}$, $k_1 \ge j$, $k_2-k_1 > j$, $k_3-k_2 > j$, then

$$\begin{aligned} \theta_{j}(n) &= (p-1)p^{j-1}[a(b+1)(c+1) + (a+1)b(c+1) + (a+1)(b+1)c] \\ &+ (j-1)(p-1)^{2}p^{j-2}[ab(c+1) + a(b+1)c + (a+1)bc] \\ &+ \binom{j-1}{2}(p-1)^{3}p^{j-3}abc. \end{aligned}$$

If *n* is given by (3.7) and $c_1 = c_2 = \cdots = c_k \equiv a$, then (3.8) becomes

(3.10)
$$\theta_{j}(n) = \sum_{u=1}^{m} {j-1 \choose u-1} {m \choose u} (p-1)^{u} p^{j-u} (a+1)^{m-u} a^{u}.$$

If *n* is given by (3.7), except that $k_1=j-1$ and $k_{i+1}-k_i=j$, we have, by an argument similar to the one above,

(3.11)
$$\theta_{j}(n) = p^{j-1}F + \sum_{u=2}^{m} {j-1 \choose u-1} (p-1)^{u} p^{j-u} E_{u},$$

where E_u is defined by (3.9) and

$$F = \sum_{i=1}^{m-1} (p - c_i - 1)c_{i+1}(c_1 + 1) \cdots (c_m + 1)/[(c_i + 1)(c_{i+1} + 1)].$$

If $k_1 \ge j$ and $k_{i+1} - k_i = j$, then

(3.12)
$$\theta_{j}(n) = (p-1)p^{j-1}c_{1}(c_{2}+1)\cdots(c_{m}+1) + p^{j-1}F + \sum_{u=2}^{m} {j-1 \choose u-1}(p-1)^{u}p^{j-u}E_{u}.$$

If $k_1 = 0$, $k_{i+1} - k_i > i$, then

(3.13)
$$\theta_{j}(n) = \sum_{u=1}^{m} {j-1 \choose u-1} (p-1)^{u} p^{j-u} G_{u},$$

where

$$G_u = \sum c_{i_1} \cdots c_{i_u}(c_1+1) \cdots (c_m+1)/[(c_{i_1}+1) \cdots (c_{i_u}+1)],$$

the sum being over all subsets $\{i_1, \dots, i_u\}$ of $\{2, \dots, m\}$ such that $i_1 < i_2 < \dots < i_u$.

If n is given by (3.7) and $c_1=c_2=\cdots=c_m=a$, then (3.11) becomes

(3.14)
$$\theta_{j}(n) = (m-1)a(p-a-1)p^{j-1}(a+1)^{m-2} + \sum_{i=1}^{m} {j-1 \choose i-1} {m \choose i} (p-1)^{u} p^{j-u}(a+1)^{m-u} a^{u};$$

(3.12) becomes

$$\theta_{j}(n) = (p-1)p^{j-1}a(a+1)^{m-1} + (m-1)(p-a-1)a(a+1)^{m-2}p^{j-1} + \sum_{i=0}^{m} {j-1 \choose u-1} {m \choose u} (p-1)^{u}p^{j-u}(a+1)^{m-u}a^{u};$$

(3.13) becomes

(3.16)
$$\theta_{j}(n) = \sum_{u=1}^{m-1} {j-1 \choose u-1} {m-1 \choose u} (p-1)^{u} p^{j-u} (a+1)^{m-u} a^{u}.$$

REFERENCES

- 1. L. Carlitz, The number of binomial coefficients divisible by a fixed power of a prime, Rend. Circ. Mat. Palermo (2) 16 (1967), 299-320. MR 40 #2554.
- 2. L. E. Dickson, *History of the theory of numbers*. Vol. 1, Publication no. 256, Carnegie Institution of Washington, Washington, D.C., 1919.
- 3. N. J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947), 589-592. MR 9, 331.
- 4. F. T. Howard, The number of binomial coefficients divisible by a fixed power of 2, Proc. Amer. Math. Soc. 29 (1971), 236-242.

DEPARTMENT OF MATHEMATICS, WAKE FOREST UNIVERSITY, WINSTON-SALEM, NORTH CAROLINA 27109