

概率论与数理统计试题(A)

姓名	学号	班级	
$m \sim \sim$	7	444 4744	
4(T/T		111.414	
	J J		

题号	_	_	11]	四	五	六	七	总分
得分								

一、 选择题(20%)1. 如果()成立,则事件。	A 与 B 万 为对 立
(A) $AB = \Phi$	(B) $A \cup B = \Omega$
(C) $AB = \Phi \coprod A \cup B = \Omega$	(D) <i>A</i> 与 <i>B</i> 互不相容
2. 每次试验的成功率为 <i>p</i> (0 < <i>p</i> <	1),则在3次重复试验中至少失败一次
概率为()。	
(A) $(1-p)^2$	(B) $1-p^2$
(C) $3(1-p)$	(D) 以上都不对
3. 设随机变量 X 的密度函数 $p(x)$	$=\frac{k}{1+x^2}(-\infty < x < +\infty), 则 k 的值是()$
$(\mathbf{A}) \frac{1}{\pi}$	(B) $\frac{2}{\pi}$
(C) $\frac{1}{\sqrt{\pi}}$	(D) $\frac{2}{\sqrt{\pi}}$
4. 设 X_1, X_2, \dots, X_n 是来自总体 X	的样本则()
(A) X_1, X_2, \dots, X_n 同分布	(B) X_1, X_2, \dots, X_n 与 X 同分布
(C) X_1, X_2, \cdots, X_n 独立同分布	(D) X_1, X_2, \dots, X_n 与 X 同分布且独立
5. 总体未知参数 $ heta$ 的估计量 $\hat{ heta}$ 是()
(A) 随机变量 (C) <i>θ</i>	(B) 总体 (D) 均值
二、填空题(20%)	
1. A,B 事件,则 $AB \cup AB =$	o
2. 己知 $P(A) = 0.1$, $p(B) = 0.2$, 且.	A,B相互独立,则 $p(AB) =;$
$p(\overline{AB}) = \underline{\hspace{1cm}}$	
3. 设二维随机变量的联合密度函	数为 $p(x) = \begin{cases} 4xy & ,0 < x < 1, & 0 < y < 1 \\ 0 & , & other \end{cases}$,

	则	p(0 <	X < 0.	5) =								
	4. 设力	总体 <i>X</i>	的密度	函数为	p(x)	X_1 ,	X_2, \dots, X_n	X_n 是来	自总体	X X	的样本,	则
	X_{1}	$,X_{2},\cdots$	$,X_n$ 的	联合密	度函数	7为			o			
	5. 是		假	设	检	验	所	依	据	的。	原	则
求耳	三、袋	中有组		白色球	各15	、每次	欠任取	1 只球,			抽样 3 ឱ	
率。	四、生(12%)		包的合构	各率为	0.6, \$	 	00 个灯	泡中台	食格数在	E 5800)~6200 自	内概
	五、一	一台机员	末有 1 自	的时间加	加工零	件 A,	其余的	的时间力	加工零化	‡В,	加工零件	牛 A
时,	(1)	求这台	是 0.3, 含机床体 序机了,	亨机的	概率;							
	六、假	定初生學	婴儿的体	重服从	正态分	布 N(ι, 3΄	75 ²), [迶机抽 取	又12名	新生婴儿	,测
得体	重(直	单位:克	() 为	3	3100	2520	3000	3000	3600	3160)	
试才	 於新生學	婴儿体	重的置	信度为					2600	340	0 254	0
	七、i	己知 <i>总</i> 1	体 <i>X</i> ~	N(4.55	, 0	.108 ²)	,现从	.总体 <i>X</i>	抽取	5 个个	体,得数	汝据
为 化。	(12%		4.40	4.42	4.35	4.3	37 。若	· 方差不	下变, 问	可总体	均値有う	尼 变
		姓名_		学	号	,	班级		_ <i>得分_</i>			
				概率	密论与	数型	里统计	划试	* 卷 (B))		
		-	一、填	真空:(20%)							
			()	1) (1)	设 X	服从	参 数	为λ	的泊	松分布	ĵ,
				P((X=n)) =						
			EX	<i>T</i> =	,1	DX =		, EX ²	2 =	:	;	

(2)设X服从正态分布 $N(\mu,\sigma^2)$,则其密度函数,

三、设连续型随机变量
$$X$$
 的密度函数 $f(x) = \begin{cases} ax^2, 0 \le x \le 1 \\ 0, 其它 \end{cases}$

求: (i) a

- (ii) EX,DX (iii) 分布函数 F(x)

(12%)

四、设甲袋中有三个红球及一个白球, 乙袋中有四个红球及二个 白球,

甲袋中任取一个球(不看颜色)放到乙袋子后,再从乙袋子中任 取一个球。

试用全概率公式求最后取得红球的概率。 (12%)

- 五、设有四个球,其中标有数字1,2的球各有2个现依次(不 放回)从中任取二球,设第 i 次取到球上的数字为 X_i (i = 1,2), 求:
 - (i) (*X*₁, *X*₂)的分布律,
 - (ii) X_1, X_2 ,的边缘分布律,

(iii)
$$X_1, X_2$$
 是否相互独立,为什么? (11%)

六、设 X_1, \dots, X_n 为来自于总体X的样本,总体X的密度函数为

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, 0 \le x, & \text{ 试求参数 } \theta \text{ 的矩估计量} \hat{\theta} \text{ .} \end{cases}$$
 (11%)

七、 二维随机变量(X,Y)服从区域 D: $0 \le x \le 1, 0 \le y \le 2$ 上 的均匀分布,试求: (i) X,Y 的联合密度函数 f(x),

(ii) X,Y 的边缘密度函数 $f_x(x), f_y(y)$,

(iii)
$$E(XY)$$
 \circ (11%)

八、 设某厂生产的 100 瓦灯泡的使用寿命 $X \sim N(\mu,100^2)$ (单 位:小时)。现从某批灯泡中抽取5只,测得使用寿命如下: 1455, 1502, 0370, 1610, 1430

试求这批灯泡平均使用寿命的置信度为 0.95 的置信区间(已 $\mathrm{H}\,u_{0.05} = 1.64, u_{0.025} = 1.96\,)\,(11\%\,)$

图表 1