Algoritmos y Estructuras de Datos II

Trabajo Práctico 1

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

El diseño contraataca

La cosa se pone compleja

Integrante	LU	Correo electrónico
Church, Alonso	1/20	alonso@iglesia.com
Lovelace, Ada	10/19	ada_de_los_dientes@tatooine.com
Null, Linda	100/18	null@null.null
Turing, Alan	314/16	halting@problem.com
asd	232	2323

Reservado para la cátedra

Instancia	Docente	Nota
Primera entrega		
Segunda entrega		

1. Introducción

Esta es la introducción en LATEX.

2. Desarrollo

2.1. Parte 1

TAD CASILLERO

```
 \begin{array}{ll} \textbf{extiende} & & \text{Tupla(nat, nat)} \\ \\ \textbf{g\'eneros} & & \text{casillero} \end{array}
```

otras operaciones

- ullet + ullet : casillero imes casillero \longrightarrow casillero
- $\bullet \bullet (c_1, c_2) : \text{casillero} \times \text{casillero} \longrightarrow \text{casillero}$

axiomas

$$\begin{split} \pi_1(c1+c2) &\equiv \pi_1(c_1) + \pi_1(c_2) \\ \pi_2(c1+c2) &\equiv \pi_2(c_1) + \pi_2(c_2) \\ \pi_1(c1-c2) &\equiv \max\{\pi_1(c_1) - \pi_1(c_2), \, 0\} \\ \pi_2(c1-c2) &\equiv \max\{\pi_2(c_1) - \pi_2(c_2), \, 0\} \end{split}$$

Fin TAD

```
TAD MAPA
```

```
Nat, Casillero
usa
                  observadores, operación adicional
exporta
géneros
                  mapa
observadores básicos
   fantasmas : mapa \longrightarrow conj(casillero)
   paredes : mapa \longrightarrow conj(casillero)
   dimensiones : mapa \longrightarrow tupla(nat,nat)
   casillero<br/>Inicial : mapa \longrightarrow casillero
   casilleroDeLlegada : mapa \longrightarrow casillero
   aDistanciaMenosDeN : mapa \times casillero \times nat \longrightarrow conj(casillero)
generadores
   nuevoMapa: tupla(nat;nat) d \times \text{casillero } inicio \times \text{casillero } fin \times \text{conj(casillero)} fs \times \text{conj(casillero)} ps \longrightarrow \text{mapa}
                                                                                            \begin{cases} \emptyset?(fs \cap ps) \land \\ \emptyset?(\text{aDistanciaMenosDeN}(inicio, 3) \cap fs) \land \\ (inicio \neq fin) \land \\ (\forall f \in fs)(\pi_1(f) \leq \pi_1(d) \land \pi_2(f) \leq \pi_2(d)) \land \\ (\forall p \in ps)(\pi_1(p) \leq \pi_1(d) \land \pi_2(p) \leq \pi_2(d)) \end{cases}
otras operaciones
   casillerosLibres : mapa \longrightarrow conj(casillero)
axiomas
   fantasmas(nuevoMapa(dimension, inicio, fin, fs, ps)) \equiv fs
   paredes(nuevoMapa(dimension, inicio, fin, fs, ps)) \equiv ps
   dimensiones(nuevoMapa(dimension, inicio, fin, fs, ps)) \equiv dimension
   casilleroInicial(nuevoMapa(dimension, inicio, fin, fs, ps)) \equiv inicio
   casilleroDeLlegada(nuevoMapa(dimension, inicio, fin, fs, ps)) \equiv casilleroDeLlegada
   aDistanciaMenosDeN(m, c, n) \equiv \text{if } n=0? then
                                                        \{c\}
                                                   else
                                                        (aDistanciaMenosDeN(c + \langle 1,0 \rangle, n-1) \cup
                                                        aDistanciaMenosDeN(c - \langle 1,0 \rangle, n-1) \cup
                                                        aDistanciaMenosDeN(c + \langle 0,1 \rangle, n-1) \cup
                                                        aDistanciaMenosDeN(c - \langle 0,1 \rangle, n-1)
                                                        \cap casillerosLibres(m)
   casillerosLibres(m) \equiv \{ (c : casillero) \}
                                   (\pi_1(c) \leq \pi_1(\text{dimensiones}(m)) \land
                                   \pi_2(c) \leq \pi_2(\operatorname{dimensiones}(m))) \} - (\operatorname{fantasmas}(m) \cup \operatorname{paredes}(m))
```

Fin TAD

TAD PACMAN

géneros Pacman usa mapa

igualdad observacional

$$(\forall p_1, p_2 : \text{Pacman}) \left(p_1 =_{\text{obs}} p_2 \iff \left(\begin{array}{c} \text{VerMapa}(p_1) = \text{VerMapa}(p_2) \land \\ \text{Trayectoria}(p_1) = \text{Trayectoria}(p_2) \end{array} \right) \right)$$

observadores básicos

VerMapa : Pacman \longrightarrow mapa Trayectoria : Pacman \longrightarrow sec(Casilla)

generadores

Inicializar Juego : mapa m \longrightarrow p

Derecha : Pacman p \longrightarrow p {Derecha \in DirectionesPosibles(p) $\land \neg$ Ganó?(p) $\land \neg$ Perdió?(p)}

Izquierda : Pacman p \longrightarrow p {Izquierda \in DireccionesPosibles(p) $\land \neg$ Ganó?(p) $\land \neg$ Perdió?(p)}

otras operaciones

 $DireccionesPosibles : Pacman p \longrightarrow conj(Direccion)$

Perdió? : Pacman p \longrightarrow Bool Ganó? : Pacman p \longrightarrow Bool PosicionActual : Pacman p \longrightarrow Casilla

axiomas

 $VerMapa(InicializarJuego m) \equiv m$

 $VerMapa(Arriba(p)) \equiv VerMapa(p)$

 $VerMapa(Abajo(p)) \equiv VerMapa(p)$

 $VerMapa(Izquierda(p)) \equiv VerMapa(p)$

 $VerMapa(Derecha(p)) \equiv VerMapa(p)$

AdistanciaN(p,n) \equiv if n=0 then

 $\{PosicionActual(p)\}$

else

AdistanciaMenosDeN(p,n)-AdistanciaMenosDeN(p,n-1)

fi

 $Trayectoria(Inicializar Juego m) \equiv Casilla Inicial(m) \bullet \langle \rangle$

 $Trayectoria(Arriba(p)) \equiv \langle \pi_1(PosicionActual(p)), suc(\pi_2(PosicionActual(p))) \rangle \bullet Trayectoria(p)$

Trayectoria(Abajo(p)) $\equiv \langle \pi_1(PosicionActual(p)), pred(\pi_2(PosicionActual(p))) \rangle \bullet Trayectoria(p)$

Trayectoria(Izquierda(p)) $\equiv \langle \operatorname{pred}(\pi_1(\operatorname{PosicionActual}(p))), \pi_2(\operatorname{PosicionActual}(p)) \rangle \bullet \operatorname{Trayectoria}(p)$

 $Trayectoria(Derecha(p)) \equiv \langle suc(\pi_1(PosicionActual(p))), \pi_2(PosicionActual(p)) \rangle \bullet Trayectoria(p)$

 $\text{Perdi\'o?(p)} \qquad \qquad \equiv \ \exists \ (\text{f} \in \text{fantasmas}(\text{VerMapa}(\text{p}))) (\text{f} \in \text{ADistanciaMenosDeN}(\text{p,3}))$

Gan'o?(p) \equiv PosicionActual(p)=casilleroFin(VerMapa(p))

 $PosicionActual(p) \equiv prim(Trayectoria(p))$

```
\equiv (if \langle \operatorname{suc}(\pi_1(\operatorname{PosicionActual}(p))), \pi_2(\operatorname{PosicionActual}(p)) \rangle \in \operatorname{casillerosLi-}
DirectionesPosibles(p)
                                                                        bres(VerMapa(p)) then
                                                                              {Derecha}
                                                                        else
                                                                        \mathbf{fi}) \cup (\mathbf{if} \ \langle \ \mathrm{pred}(\pi_1(\mathrm{PosicionActual}(p))), \pi_2(\mathrm{PosicionActual}(p))) \rangle \in \mathrm{casille-}
                                                                        rosLibres(VerMapa(p)) then
                                                                              \{Izquierda\}
                                                                        else
                                                                        \mathbf{fi})\cup(\mathbf{if} \langle \pi_1(\operatorname{PosicionActual}(p)), \operatorname{suc}(\pi_2(\operatorname{PosicionActual}(p))) \rangle \in \operatorname{casille-}
                                                                        rosLibres(VerMapa(p)) then
                                                                              \{Arriba\}
                                                                        else
                                                                        \mathbf{fi}) \cup (\mathbf{if} \ \langle \pi_1(\operatorname{PosicionActual}(p)), \operatorname{pred}(\pi_2(\operatorname{PosicionActual}(p))) \rangle \in \operatorname{casille-}
                                                                        rosLibres(VerMapa(p)) \ \ \mathbf{then}
                                                                              \{Abajo\}
                                                                        else
                                                                        fi
```

Fin TAD