计算机系统安全参考答案(by lyd&zhy)

计算机系统安全参考答案(by lyd&zhy)

- 一、判断题 (每题 1分, 共 10分)
- 二、简答题 (每题5分,共30分)
 - 1. 请列举出 5 种 自主访问控制的实现方式。
 - 2. 简述特权对信息系统安全的危害, 那为什么还要提供特权?
 - 3. 信息系统安全审计有何作用?
 - 4. 说明数据库安全中,数据完整性的含义。
 - 5. 什么是 Linux 系统中的僵尸进程,僵尸进程有何危害?
 - 6. 信息安全风险评估中, 什么是残余风险, 如何对待残余风险?
- 三、分析、设计题(每题15分,共30分)
 - 1. 设计一种动态口令身份认证机制,说明口令的使用和验证过程,并分析其可以抵御哪些口令攻击?
 - 2. 叙述Windows操作系统中一种加密文件系统(例如EFS)的工作原理,分析其安全性。
- 四、计算题 (20分)
 - 1. 计算安全事件发生可能性;
 - (1) 构建安全事件发生可能性矩阵;
 - (2) 根据威胁发生频率值和脆弱性严重程度值在矩阵中进行对照,确定安全事件发生可能性值;
 - (3) 对计算得到的安全风险事件发生可能性进行等级划分。
 - 2. 计算安全事件造成的损失;
 - (1) 构建安全事件损失矩阵;
 - (2) 根据资产价值和脆弱性严重程度值在矩阵中进行对照,确定安全事件损失值;
 - (3) 对计算得到的安全事件损失进行等级划分。
 - 3. 计算风险值;
 - (1) 构建风险矩阵;
 - (2) 根据安全事件发生的可能性等级和安全事件损失在矩阵中进行对照,确定安全事件风险;
 - 4. 结果判定。
- 五、论述题 (10分)

一、判断题 (每题1分,共10分)

- 1. (√)
- 2. (√)
- 3. (×)
 - 主体:可导致信息在客体间流动,或使系统状态发生变化的主动实体。
- 4. (×)
 - 主体不能改变自己、自己所拥有客体、其他主体、以及其他所有客体的安全属性。
- 5. (√)
- 6. (√)
- 7. (√)
- 8. (×)
 - 。 用户通过身份认证后,登录进程会为其创建一个访问令牌,该令牌相当于用户访问系统资源的票证。
- 9. (√)
- 10. (×)

二、简答题 (每题 5 分, 共 30分)

1. 请列举出 5 种 自主访问控制的实现方式。

- 访问口令 (Passwords for Access)
- 访问控制矩阵 (Access Control Matrix)
- 访问能力表 (Access Capability List)
- 访问控制表 (Access Control List, ACL)
- 授权关系表 (Authorization Relations)
- 属主/同组用户/其他用户(Owner/Group/Other)

2. 简述特权对信息系统安全的危害,那为什么还要提供特权?

- 特权对信息系统安全的危害
 - 。 被滥用
 - o 被窃取
 - 。 被误用
- 特权存在的原因
 - 。 便于系统维护
 - 。 提高系统的可用性

3. 信息系统安全审计有何作用?

- 系统安全的最后防线,访问控制的必要补充。
- 重建事件
- 监测潜在的入侵,提供入侵检测所需的原始数据
- 故障监测
 - 。 定位安全问题
 - 。 帮助故障分析
- 发现系统不足
- 与其它安全机制联动

4. 说明数据库安全中,数据完整性的含义。

- 完整性
 - 。 防止对DBMS的非法访问和修改
 - 。 保护存储的数据、文件的安全性
- 数据的完整性
 - 。 物理数据库完整性
 - 整个数据库损毁
 - 保证数据能够物理读取
 - 。 逻辑数据库完整性
 - 保护数据库的结构
 - 。 元素完整性
 - 数据元素只能由授权用户改变

5. 什么是 Linux 系统中的僵尸进程,僵尸进程有何危害?

- 僵尸进程定义:
 - o 一个进程调用了exit后,并非马上消失,而是留下一个称为僵尸进程 (Zombie) 的数据结构。
 - 僵尸进程放弃了几乎所有内存空间,无任何可执行代码,也不能被调度,仅仅在进程表中保留一个位置,记载该进程的退出状态等信息供其他进程收集。
- 僵尸进程危害:
 - 。 Linux系统中进程数目是有限制的;
 - o 如果存在太多的僵尸进程,会占用内存资源,影响系统性能和新进程的产生,甚至导致系统瘫痪。

6. 信息安全风险评估中,什么是残余风险,如何对待残余风险?

- 残余风险定义:
 - 。 残余风险是指在实现了新的或增强的安全控制后还剩下的风险,实际上任何系统都是有风险的,并且也不是所有安全控制都能完全消除风险。
- 如何对待?
 - 。 没有必要采用所有的安全保护措施。因为这些措施要解决的风险可能并不存在,或者可以容忍和接受这些风险。
 - 没有必要防范和加固所有的安全弱点。这些弱点可能因为成本、知识、文化及法律等方面的因素,而没有人能利用它们。
 - 我们没有必要无限制地提高安全保护措施的强度。只需要将相应的风险降低到可接受的程度即可。供)对安全保护措施的选择还要考虑到成本和技术等因素的限制。

三、分析、设计题 (每题15分, 共30分)

- 1. 设计一种动态口令身份认证机制,说明口令的使用和验证过程,并分析其可以抵御哪些口令攻击?
 - 第二章PPT 攻击14~15页 使用和验证过程: 16页~20页
- 2. 叙述Windows操作系统中一种加密文件系统(例如EFS)的工作原理,分析其安全性。
 - EFS是通过对称和不对称两种方法来对文件及其相关内容进行加密的,对于文件内容本身EFS是采用对称算法进行加密的,加密的密钥是FEK,但若只采用这一种加密算法,显然是不够安全的,所以WINDOWS会利用一对公钥/私钥对FEK进行加解密,加密后的FEK和加密文件是存放在一起的,然后WINDOWS再利用称为主密钥的文件对私钥进行加密,最后再通过用户名和密码对主密钥进行加密
 - 公钥/私钥的加密算法虽然比对称加密算法安全,但若被加密的文件比较大,那么这种非对称加密算法的加密 速度是非常慢的,所以EFS的加密过程是整合了对称加密算法和非对称加密算法的优势,以此来实现速度和安 全两方面需求。

四、计算题 (20分)

假设有3个重要资产A1、A2和A3,资产所面临的威胁以及威胁可利用的资产的脆弱性见表1,括号内是其等级值。要求使用矩阵法计算资产的风险值及风险等级。矩阵的构建和等级划分表如表2—表7所示,写出详细的风险计算过程。

表 1	资产、	威胁、	脆弱性表

资产	威胁	脆弱性
	威胁 T1(5)	脆弱性 V1(3)
资产 A1 (3)	威胁 T2(2)	脆弱性 V2(2)
页/ A1 (3)		脆弱性 V3(5)
	威胁 T3(4)	脆弱性 V4(2)
资产 A2(4)	威胁 T4(3)	脆弱性 V5(3)
页/ A2(4)	威胁 T5(4)	脆弱性 V6(4)
资产 A3 (5)	 威胁 T6(1)	脆弱性 V7(4)
		脆弱性 V8(2)

1. 计算安全事件发生可能性;

(1) 构建安全事件发生可能性矩阵;

L(T,V) = L(威胁出现频率, 脆弱性)

表 2 安全事件发生可能性矩阵

	脆弱性 严重程度	1	2	3	4	5
威胁	1	2	4	7	11	14
	2	3	6	10	13	17
发生	3	5	9	12	16	20
频率	4	7	11	14	18	22
<i>勿</i> 火干	5	8	12	17	20	25

(2) 根据威胁发生频率值和脆弱性严重程度值在矩阵中进行对照,确定安全事件发生可能性值;

资产	威胁	脆弱性	可能性值	可能性等级
	威胁T1(5)	脆弱性V1(3)	17	4
资产A1(3)	 威胁T2(2)	脆弱性V2(2)	6	2
		脆弱性V3(5)	17	4
	威胁T3(4)	脆弱性V4(2)	11	2
资产A2(4)	威胁T4(3)	脆弱性V5(3)	12	3
页厂A2(4)	威胁T5(4)	脆弱性V6(4)	18	4
次立49 (5)	威胁T6(1)	脆弱性V7(4)	11	2
资产A3(5)	放加10(1)	脆弱性V8(2)	4	1

(3) 对计算得到的安全风险事件发生可能性进行等级划分。

表 3 安全事件可能性等级划分表

安全事件发生可能性值	1-5	6-11	12-16	17-21	22-25
发生可能性等级	1	2	3	4	5

2. 计算安全事件造成的损失;

(1) 构建安全事件损失矩阵;

F(Ia, Va) = F(资产价值, 脆弱性严重程度)

表 4 安全事件损失矩阵

	脆弱性 严重程度	1	2	3	4	5
	1	2	4	6	10	13
	2	3	5	9	12	16
资产价值	3	4	7	11	15	20
	4	5	8	14	19	22
	5	6	10	16	21	25

(2) 根据资产价值和脆弱性严重程度值在矩阵中进行对照,确定安全事件损失值;

资产	威胁	脆弱性	可能性值	可能性等级	损失值	损失等级
	威胁T1(5)		17	4	11	3
次立/1 (2)	资产A1(3) 威胁T2(2)	脆弱性V2(2)	6	2	7	2
页厂AI (3)		脆弱性V3(5)	17	4	20	4
	威胁T3(4)	脆弱性V4(2)	11	2	7	2
资产A2(4)	威胁T4(3)	脆弱性V5(3)	12	3	14	3
页厂A2(4)	威胁T5(4)	脆弱性V6(4)	18	4	19	4
资产A3 (5)	威胁T6(1)	脆弱性V7(4)	11	2	21	5
页) A3 (3)	一	脆弱性V8(2)	4	1	10	2

(3) 对计算得到的安全事件损失进行等级划分。

表 5 安全事件损失等级划分表

安全事件损失值	1-5	6-10	11-15	16-20	21-25
安全事件损失等级	1	2	3	4	5

3. 计算风险值;

(1) 构建风险矩阵;

R(A,T,V) = R(L,F) = R(安全事件的可能性,安全事件造成的损失)

表 6 风险矩阵

	可能性	1	2	3	4	5
	1	3	6	9	12	16
	2	5	8	11	15	18
ᄺ	3	6	9	13	17	21
损失	4	7	11	16	20	23
	5	9	14	20	23	25

(2) 根据安全事件发生的可能性等级和安全事件损失在矩阵中进行对照,确定安全事件风险;

资产	威胁	脆弱性	可能性值	可能性等级	损失值	损失等级	风险值
	威胁T1(5)	脆弱性V1(3)	17	4	11	3	17
资产A1(3)	ママハ1 (2)		6	2	7	2	8
页厂AI(3)	威胁T2(2)	脆弱性V3(5)	17	4	20	4	20
	威胁T3(4)		11	2	7	2	8
次立49 (4)	威胁T4(3)	脆弱性V5(3)	12	3	14	3	13
资产A2(4)	威胁T5(4)	脆弱性V6(4)	18	4	19	4	20
次文49 (5) 時間で(1)		脆弱性V7(4)	11	2	21	5	14
资产A3(5)	威胁T6(1)	脆弱性V8(2)	4	1	10	2	5

4. 结果判定。

表 7 风险等级划分表

风险值	1-6	7-12	13-18	19-23	24-25
风险等级	1	2	3	4	5

资产	威胁	脆弱性	可能性值	可能性等级	损失值	损失等级	风险值	风险等级
	威胁T1(5)	脆弱性V1(3)	17	4	11	3	17	3
资产A1 (3)	威胁T2(2)	脆弱性V2(2)	6	2	7	2	8	2
页厂AI (3)		脆弱性V3(5)	17	4	20	4	20	4
	威胁T3(4)	脆弱性V4(2)	11	2	7	2	8	2
资产A2 (4)	威胁T4(3)	脆弱性V5(3)	12	3	14	3	13	3
页) A2(4)	威胁T5(4)	脆弱性V6(4)	18	4	19	4	20	4
资产A3(5) 威胁T6(1)	脆弱性V7(4)	11	2	21	5	14	3	
页厂A3(3)		脆弱性V8(2)	4	1	10	2	5	1

五、论述题 (10分)

本次在线考试,利用学生的电脑、手机等设备在学生的家里搭建了在线考试环境(|系统),请利用学习的信息系统安全原理分析,这种在线考试环境能否从技术上保证学生无法作弊?

自由发挥叭