

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

LTH7R. (文件编号: S&CIC1679)

座充充电管理 IC

一、 概述

LTH7R.是恒流/恒压座充充电器芯片,主要应用于单节锂电池充电。无需外接检测电阻,其内部为 MOSFET 结构, 因此无需外接反向二极管。

LTH7R.在大功率和高环境温度下可以自动调节充电电流以限制芯片温度。它的充电电压固定在 4.2V, 充电电 流可以通过外置一个电阻器进行调节。当达到浮充电压并且充电电流下降到设定电路的 1/10 时, LTH7R.自动终止 充电过程。当输入电压移开之后,LTH7R.自动进入低电流模式,从电池吸取少于 2uA 的电流。当 LTH7R.进入待 机模式时,供电电流小于 25uA。

LTH7R.还可以监控充电电流,具有电压检测、自动循环充电的特性,并且具有一个指示管脚指示充电终止状 态和输入电压状态。

二、特性

- 可达 500mA 的可编程充电电流
- 无需外接 MOSFET、检测电阻、反向二极管
- 恒流/恒压模式操作,具有热保护功能
- 可通过 USB 端口为锂电池充电
- 具有 1%精度的预设充电电压
- 待机模式下电流为 20uA
- 2.9V 涓流充电电压
- 软启动限制了浪涌电流
- 采用 SOT23-5 封装

三、产品应用

- 手机、掌上电脑、MP3 播放器
- 蓝牙耳机

四、 应用线路

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

LTH7R. (文件编号: S&CIC1679)

座充充电管理 IC

五、 管脚图及功能说明

六、 绝对最大额定值

参数	符号	额定值	单位
输入电源电压	Vcc	7	V
PROG 电压	V_{PROG}	VCC+0.3	V
BAT 电压	V_{BAT}	7	V
CHRG 电压	V _{CHRG}	7	V
BAT 短路		Continuous	
热阻	$ heta_{JA}$	250	°C/W
BAT 电流	I _{BAT}	500	mA
PROG 电流	I _{PROG}	800	μA
最高结温	TJ	110	$^{\circ}$ C
储藏温度	Ts	-65 to +125 ℃	
焊接温度(不超过 10 秒)		260	$^{\circ}$ C

充电电流外部编程: PROG (引脚 5): 恒流充电电流设置和充电电流监测端。从 PROG 管脚连接一个外部电 阻到地端可以对充电电流进行编程。在预充电阶段,此管脚的电压被调制在 0.1V; 在恒流充电阶段,此管脚 的电压被固定在 1V。在充电状态的所有模式,测量该管脚的电压都可以根据下面的公式来估算充电电流:

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

LTH7R. (文件编号: S&CIC1679)

座充充电管理 IC

Rprog电阻和充电电流Ibat对应表

Rprog	Ibat				
Ibat=1000/Rprog					
10K	100mA				
5K	200mA				
3.3K	300mA				
2.5K	400mA				
2K	500mA				

七、电气特性(V_{IN}=5V: T_J=25℃, 除非另有说明)

符号	参数	条件	最小值	典型值	最大值	单位
Vcc	输入电源电压		4.5	5.0	5.5	V
Icc		充电模式 ⁽³⁾ ,R _{PROG} =10K		170	500	μA
	输入电源电流	待机模式(充电终止)		70		μA
	制入电源电弧 	关断模式(R _{PROG} 未连接,		38	50	μA
		$V_{CC} < V_{BAT}, V_{CC} < V_{UV}$				
V_{FLOAT}	可调输出(浮充)电压	I _{BAT} =30 mA, I _{CHRG} =5 mA	4.16	4.20	4.28	V
	り 四 棚 山 (行 光) 电 上	A: 4.16-4.24V; B: 4.2-4.28V	4.10			
I _{BAT}		R _{PROG} = 10k,电流模式	90	110	130	mA
		R _{PROG} = 2k,电流模式	465	500	535	mA
	BAT 端电流	VBAT=4.2V,待机模式	0	+/-1	+/-5	μA
		关断模式, RPROG 未连接		+/-0.5	+/-5	μA
		休眠模式,VCC=0V		+/-1	+/-5	μA
I _{TRIKL}	涓流充电电流	V _{BAT} < V _{TRIKL} , R _{PROG} = 10k		15		mA
V_{TRIKL}	涓流充电阈值电压	$R_{PROG} = 10k$, V_{BAT} Rising	2.8	2.9	3.0	V
V_{UV}	VCC 欠压锁定阈值			3.4		V
V _{UVHYS}	VCC 欠压锁定滞后	From VCC Low to High		100		mV
V _{ASD}	VCC-VBAT 阈值电压	VCC 从低到高		100		mV
		VCC 从高到低		30		mV
I _{TERM}	C/10Z 终止电流阈值	$R_{PROG} = 10k^{(4)}$		0.1		mA/mA
		R _{PROG} = 2k		0.1		mA/mA
V _{PROG}	PROG 端电压	R _{PROG} = 10k,电流模式	0.9	1.03	1.1	V
ΔV_{RECHRG}	电池阈值电压	V _{FLOAT} - V _{RECHRG}		100		mV
T _{LIM}	热保护温度			130		$^{\circ}$

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

LTH7R. (文件编号: S&CIC1679)

座充充电管理 IC

t _{SS}	软启动时间	I _{BAT} = 0 to 1000V/R _{PROG}	100	μs
t _{RECHRGE}	再充电比较器过滤时间	V _{BAT} High to Low	1	ms
t _{TERM}	终止比较器过滤时间	I _{BAT} Falling Below I _{CHG} /10	1000	μs

注:

- 1、 超出最大工作范围可能会损坏芯片。
- 2、 超出器件工作参数极限,不保证其正常功能。
- 3、 电源电流包括 PROG 端电流(大约 100uA),不包括通过 BAT 端传输到电池的其他电流 。
- 4、 充电终止电流一般是设定充电电流的 0.1 倍。

八、 波形图

浮动电压 VS 电源电压

充电电流 VS 电源电压

涓流充电电流 VS 电源电压

浮动电压 VS 温度

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

LTH7R. (文件编号: S&CIC1679)

座充充电管理 IC

九、 封装尺寸图

SOT23-5

规格 ····································					
尺寸	英寸		毫米		
	最小值	最大值	最小值	最大值	
Α	0.110	0.120	2.80	3.05	
В	0.059	0.070	1.50	1.75	
С	0.036	0.051	0.90	1.30	
D	0.014	0.020	0.35	0.50	
E	_	0.037		0.95	
F	_	0.075	_	1.90	
Н	_	0.006		0.15	
J	0.0035	0.008	0.090	0.20	
K	0.102	0.118	2.60	3.00	