CWRU DSCI353-353M-453: Class 03a Predictive Analytics

Profs: R. H. French, L. S. Bruckman, P. Leu, K. Davis, S. Cirlos

TAs: W. Oltjen, K. Hernandez, M. Li, M. Li, D. Colvin

31 January, 2023

Contents

3.1.2.1 Class Re	eadings, Assignments, Syllabus Topics
3.1.2.1.1	Reading, Lab Exercises, SemProjects
3.1.2.1.2	Textbooks
3.1.2.2 Syllabus	
3.1.2.2.1	Tidyverse Cheatsheets, Functions and Reading Your Code 2
3.1.2.3 What is	Statistical (and Machine) Learning
3.1.2.4 Supervis	sed and Unsupervised Learning
3.1.2.4.1	Unsupervised learning
3.1.2.4.2	Supervised learning
3.1.2.5 Classific	ation and Regression Problems
3.1.2.5.1	Classification
3.1.2.5.2	Regression
3.1.2.6 The crit	ical role of domain knowledge
3.1.2.7 Caveat:	For Predictive Analytics
3.1.2.7.1	No: Lets think about this
3.1.2.7.2	The code is provided here,
3.1.2.7.3	Bonferroni Correction for multiple comparisons
3.1.2.8 Overfitt	ing: The need for Trainging and Testing Datasets
3.1.2.9 Citation	s

3.1.2.1 Class Readings, Assignments, Syllabus Topics

3.1.2.1.1 Reading, Lab Exercises, SemProjects

- Readings:
 - For today: DL03, ISLR3
 - For next class: DL04, DL05
- Laboratory Exercises:
 - LE1 is **Due Saturday at Midnight**
 - LE2 will be given out Thursday Feb. 2nd
 - * LE2 is due Tuesday Feb. 14th
- Office Hours: (Class Canvas Calendar for Zoom Link)
 - Wednesdays @ 4:00 PM to 5:00 PM
 - Saturdays @ 3:00 PM to 4:00 PM
 - Office Hours are on Zoom, and recorded
- Semester Projects
 - Office Hours for SemProjs: Mondays at 4pm on Zoom
 - DSCI 453 Students Biweekly Updates Due

- * Update #1 is Due ** This Friday **
- DSCI 453 Students
 - * Next Report Out #1 is Due ** Feb. '17th **
- All DSCI 353/353M/453, E1453/2453 Students:
 - * Peer Grading of Report Out #1 is Due ** **
- Exams
 - * MidTerm: Thursday March 9th, in class or remote, 11:30 12:45 PM
 - * Final: Thursday May 4th, 2023, 12:00PM 3:00PM, Nord 356 or remote

3.1.2.1.2 Textbooks

- Introduction to R and Data Science
 - For R, Coding, Inferential Statistics
 - * Peng: R Programming for Data Science
 - * Peng: Exploratory Data Analysis with R

Textbooks for this class

- OIS = Diez, Barr, Çetinkaya-Runde: Open Intro Stat v4
- R4DS = Wickham, Grolemund: R for Data Science

Textbooks for DSCI353/353M/453, And in your Repo now

- ISLR2 = James, Witten, Hastie, Tibshirani: Intro to Statistical Learning with R, 2nd Ed.
- ESL = Trevor Hastie, Tibshirani, Friedman: Elements of Statistical Learning
- DLwR = Chollet, Allaire: Deep Learning with R, 2nd Ed.

Magazine Articles about Deep Learning

• DL1 to DL6 are "Deep Learning" articles in 3-readings/2-articles/

3.1.2.2 Syllabus

3.1.2.2.1 Tidyverse Cheatsheets, Functions and Reading Your Code

- Look at the Tidyverse Cheatsheet
 - Tidyverse For Beginners Cheatsheet
 - * In the Git/20s-dsci353-353m-453-prof/3-readings/3-CheatSheets/ folder
 - Data Wrangling with dplyr and tidyr Cheatsheet

Tidyverse Functions & Conventions

- The pipe operator %>%
- Use dplyr::filter() to subset data row-wise.
- Use dplyr::arrange() to sort the observations in a data frame
- Use dplyr::mutate() to update or create new columns of a data frame
- Use dplyr::summarize() to turn many observations into a single data point
- Use dplyr::arrange() to change the ordering of the rows of a data frame
- Use dplyr::select() to choose variables from a tibble,
 - * keeps only variables you mention
- Use dplyr::rename() keeps all the variables and renames variables
 - * rename(iris, petal_length = Petal.Length)
- These can be combined using dplyr::group_by()
 - * which lets you perform operations "by group".
- The %in% matches conditions provided by a vector using the c() function
- The forcats package has tidyverse functions
 - * for factors (categorical variables)

Day:Date	Foundation	Practicum	Readings(optional)	Due(optional)
w01a:Tu:1/17/23	Markov Cluster	R, Rstudio IDE, Git		(LE0)
w01b:Th:1/19/23	Stat. Learning, Approach	Bash, Git, Class Repo	ISLR1,2 (R4DS-1-3)	
w02a:Tu:1/24/23	Lin. Regr. Bias-Var.	SemProjs; Regr. Ovrvw	ISLR3,(R4DS-4-6)	(LE0:Due) LE1
w02b:Th:1/26/23 w02Pr:Fr:1/27/23	Train/Test, Bias vs. Vari. ADD DROP	Tidyverse Review DEADLINE	DL01 DL02 (R4DS-7,8)	453 Update 1
w03a:Tu:1/31/23	Logistic Regr. Classif	Pred. Analytics, Regr.	DL03,ISLR4	
w03b:Th:2/2/23	LDA/QDA	ggPlot2, Code Expect.	DL04, DL05	LE1:Due, LE2
w03:Sa:2/4/23	, -		,	LE1:Due
w04a:Tu:2/7/23	Resample Cross-Valid.	Multilevel Mod.	ISLR5	
w04b:Th:2/9/23	Bootstrap	Mixed Effects		
w04Pr:Fr:2/10/23	-			453 Update 2
w05a:Tu:2/14/23	Subset Selec., Shrink.	Bootstrap	ISLR6 (R4DS9-16)	LE2:Due, LE3
w05b:Th:2/16/23	Mod. Selec. Dim. Red.	Clustering, ggplot2	DL06	
w05Pr:Fr:2/17/23				453 Rep. Out 1
w06a:Tu:2/21/23	Beyond Linear Modls	Feature Select., Caret	ISLR7, DL07	
w06b:Th:2/23/23	PCA, PCR, FA	Tidy Modeling	ISLR10(R4DS22-25)	LE3:Due, LE4
w06Pr:Fr:2/24/23				453 Update 3
w07a:Tu:2/28/23	Dec. Trees, Rand. For- est.	Machine Learning	ISLR8, DL08,09	
w07b:Th:3/2/23	MidTerm Review, SVM	SVM, SVR, ROC	ISLR9 (R4DS26-30)	Peer Review 1
w08a:Tu:3/7/23	R-Keras/TensorFlow2	Perceptron, Neural Nets	ISLR10	
w08b:Th:3/9/23	MIDTERM EXAM		DL10,11	LE4:Due LE5
w08Pr:Fr:3/10/23				453 Update 4
Tu:3/14/23	SPRING	BREAK	ISLR10	
Th:3/16/23	SPRING	BREAK	DL12,13	
w09a:Tu:3/21/23	Deep Learning	TF2 Keras Intro	Pocket Perceptron	ISLR10, DLR3
w09b:Th:3/23/23	Computer Vision, CNN	CNN w/TF2, Overfit	DLR4	
w09Pr:Fr:3/24/23				453 Rep. Out 2
w10a:Tu:3/28/23	Deep Learn Intro	NN Types	DLR5	
w10b:Th:3/30/23	DL CNN,RNN ImageNet	NN Types, CNN wTF2	Hinton ImageNet	
w10Pr:Fr:3/31/23 Sa:4/1/23				453 Upd.5 & PrRev 2 LE5:Due LE6
w11a:Tu:4/4/23	Fitting NNs	AUC,Prec,Recall Fruit		
w11a.1u.4/4/23 w11b:Th:4/6/23	NLP, Graphs & ML	110 O,1 100,1000an 110n	LeCun DL Rev. 2015	
w12a:Tu:4/11/23			DIDA	i i
	Graphs & ML	NLP with sequences	DLR6	
w12b:Th:4/13/23	Graphs & ML NLP w attention	NLP with sequences Graph Repr Proc Wrk- flw	DLR6	LE6:Due LE7
	-	Graph Repr Proc Wrk-	DLR6	LE6:Due LE7
w12b:Th:4/13/23	NLP w attention	Graph Repr Proc Wrk- flw	Deep Dream	LE6:Due LE7
w12b:Th:4/13/23 w13a:Tu:4/18/23	NLP w attention DL Frameworks	Graph Repr Proc Wrk- flw Explaining DL w Lime		LE6:Due LE7 453 Rep. Out 3 Due
w12b:Th:4/13/23 w13a:Tu:4/18/23 w13b:Th:4/20/23	NLP w attention DL Frameworks Linux Distros XGBoost Tranformers	Graph Repr Proc Wrk-flw Explaining DL w Lime Explain Preds		453 Rep. Out 3 Due
w12b:Th:4/13/23 w13a:Tu:4/18/23 w13b:Th:4/20/23 w13Pr:Fr:4/21/23 w14a:Tu:4/25/23 w14b:Th:4/27/23	NLP w attention DL Frameworks Linux Distros XGBoost	Graph Repr Proc Wrk- flw Explaining DL w Lime		453 Rep. Out 3 Due LE7:Due
w12b:Th:4/13/23 w13a:Tu:4/18/23 w13b:Th:4/20/23 w13Pr:Fr:4/21/23 w14a:Tu:4/25/23	NLP w attention DL Frameworks Linux Distros XGBoost Tranformers Final Exam Review	Graph Repr Proc Wrk-flw Explaining DL w Lime Explain Preds	Deep Dream	453 Rep. Out 3 Due
w12b:Th:4/13/23 w13a:Tu:4/18/23 w13b:Th:4/20/23 w13Pr:Fr:4/21/23 w14a:Tu:4/25/23 w14b:Th:4/27/23	NLP w attention DL Frameworks Linux Distros XGBoost Tranformers	Graph Repr Proc Wrk-flw Explaining DL w Lime Explain Preds		453 Rep. Out 3 Due LE7:Due

Figure 1: Modeling, Prediction and Machine Learning Syllabus

The readr package has tidyverse functions
* to read_..., melt_... col_..., parse_... data and objects

Reading Your Code: Whenever you see

- The assignment operator <-, think "gets"
- The pipe operator, %>%, think "then"

3.1.2.3 What is Statistical (and Machine) Learning

- We will go far beyond classical inferential statistical methods,
 - such as linear regression.

As computing power has increased over the last 20 years

- many new, highly computational, regression, or "Statistical Learning",
- methods have been developed.

In particular the last decade has seen a significant expansion

• of the number of possible approaches.

Here we will provide a very applied overview to such modern non-linear methods as

- Generalized Additive Models,
- Decision (or Regression) Trees,
- Boosting,
- Bagging and
- Support Vector Machines

As well as more classical linear approaches such as

- Logistic Regression,
- Linear Discriminant Analysis,
- K-Means Clustering and Nearest Neighbors.

At the end of this course you should have

- a basic understanding of how all of these methods work
- and be able to apply them in real data analyses.

With the explosion of "Big Data" problems,

• statistical learning has become a very hot field in many areas.

People with statistical learning skills are in high demand!

To this end, approximately one third of the class time

- is dedicated to in lab exercises
- $\bullet\,$ where the students will work through
- the latest methods we have covered,
- on their Open Data Science VDI.

These labs will ensure that every student

- has a full understanding of the
- practical and theoretical, aspects of each method.

3.1.2.4 Supervised and Unsupervised Learning

- Two broad families of algorithms will be covered:
 - Unsupervised learning algorithms

- Supervised learning algorithms

3.1.2.4.1 Unsupervised learning

- In unsupervised learning,
 - the algorithm will seek to find the structure that organizes unlabeled data.

3.1.2.4.2 Supervised learning

- In supervised learning,
 - we know the class or the level of some observations of a given target attribute.

3.1.2.5 Classification and Regresssion Problems

- There are basically two types of problems that predictive modeling deals with:
 - Classification problems
 - Regression problems

3.1.2.5.1 Classification

- In some cases,
 - we want to predict which group an observation is part of.

Here, we are dealing with a quality of the observation.

3.1.2.5.2 Regression

- In other cases,
 - we want to predict an observation's level on an attribute.

Here, we are dealing with a quantity, and this is a regression problem.

3.1.2.6 The critical role of domain knowledge

• in modeling and prediction

Domain knowledge informs and is informed by data understanding.

- The understanding of the data
 - then informs how the data has to be prepared.

The next step is data modeling,

• which can also lead to further data preparation.

Data models have to be evaluated,

- and this evaluation can be informed by field knowledge,
 - which is also updated through the data mining process.

Finally,

- if the evaluation is satisfactory,
 - the models are deployed for prediction.

3.1.2.7 Caveat: For Predictive Analytics

- Of course, predictions are not always accurate,
 - and some have written about the caveats of data science.

What do you think about the relationship between

• the attributes titled Predictor and Outcome on the following plot?

Figure 2: Relationship between Predictor & Outcome

It seems like there is a relationship between the two.

- For the statistically inclined,
 - I tested its significance:
 - * r = 0.4195, p = .0024.
- The value p is the probability of obtaining a relationship of this strength or stronger
 - if there is actually no relationship between the attributes.
- (This is the p-value of hypothesis testing, if p<0.05
 - typically we assert we can reject the null hypothesis)
- $\bullet~$ We could conclude that the relationship between these variables
 - in the population they come from is quite reliable,

- right?

3.1.2.7.1 No: Lets think about this

- Believe it or not,
 - the population these observations come from
 - * is that of randomly generated numbers.
 - We generated a data frame of 50 columns
 - * of 50 randomly generated numbers.
 - We then examined all the correlations (manually)
 - * and generated a scatterplot of the two attributes
 - * with the largest correlation we found.

3.1.2.7.2 The code is provided here,

- We'll use runif()
 - help(runif)
 - * The Uniform Distribution
 - * Description

These functions provide information about the uniform distribution

- on the interval from min to max.
 - dunif gives the density,
 - punif gives the distribution function
 - qunif gives the quantile function and
 - runif generates random deviates.

```
set.seed(1)
DF <- data.frame(matrix(nrow = 50, ncol = 50))</pre>
for (i in 1:50)
  DF[, i] <- runif(50)</pre>
plot(DF[[2]], DF[[16]], xlab = "Predictor", ylab = "Outcome")
abline(lm(DF[[2]] ~ DF[[16]]))
```



```
cor.test(DF[[2]], DF[[16]])
##
##
```

Pearson's product-moment correlation ##

```
## t = 3.2023, df = 48, p-value = 0.002421
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1598919 0.6249314
## sample estimates:
## cor
## 0.4195666
```

In case you want to check it yourself

- line 1 sets the seed so that you find the same results as we did,
- line 2 generates to the data frame,
- line 3 fills it with random numbers, column by column,
- line 4 generates the scatterplot,
- line 5 fits the regression line, and
- line 6 tests the significance of the correlation:

Normally we reject the null with a p-value of < 0.05

- i.e. we'll be wrong 5% of the time
 - in a set of 20 trials

Here we did 50 trials

- And cherry picked the best correlation
 - But its all randomly generated numbers
 - There is no predictive or causal relationship
- And we'd only recognize this if we consider
 - That our p-value

3.1.2.7.3 Bonferroni Correction for multiple comparisons

- How could this relationship happen given that the odds were 2.4 in 1000?
 - Well, think of it;
 - * we correlated all 50 attributes 2 x 2,
 - * which resulted in 2,450 tests
 - * (not considering the correlation of each attribute with itself).
 - Such spurious correlation was quite expectable.

The usual p-value threshold below which

• we consider a relationship significant is p = 0.05.

This means that we expect to be wrong once in 20 times.

- You would be right to suspect that there are other significant correlations
 - in the generated data frame (there should be approximately 125 of them in total).
- This is the reason why we should always correct the number of tests.
- In our example,
 - as we performed 2,450 tests,
 - our threshold for significance
 - should be 0.0000204 (0.05 / 2450).
- This is called the Bonferroni correction.

3.1.2.8 Overfitting: The need for Trainging and Testing Datasets

- Spurious correlations are always a possibility in data analysis
 - and this should be kept in mind at all times.

A related concept is that of overfitting.

- Overfitting happens, for instance,
 - when a weak classifier bases its prediction on the noise in data.
- We will discuss overfitting when discussing
 - Training datasets for fit a model to
 - Testing datasets for evaluating the goodness of fit
 - * when using various types of cross-validation
 - And when evaluating $Predictive, Adjusted, R^2$

3.1.2.9 Citations

- 1. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2014. http://www.R-project.org/.
- 2. G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning: 2nd Ed., with Applications in R, 2nd ed. 2021 edition. New York: Springer, 2021.
- 3. Diez, David M., Christopher D. Barr, and Mine Çetinkaya-Rundel. OpenIntro Statistics: Third Edition. 3 edition. S.l.: OpenIntro, Inc., 2015.
- 4. Al Sharif, IOM 530 Applied Modern Statistical Learning Methods, USC
- 5. Mayor, Eric. Learning Predictive Analytics with R. Packt Publishing ebooks Account, 2015.