

Représentation surfaciques, polyèdres et quadriques

Corentin Le Bihan Gautier

Plan

- Introduction
- Rappel de trigonométrie
- Représentation polyédrique ≠ continue
- Quadriques

Introduction

- Représentation surfacique :
 - le modèle est défini par sa surface extérieure

Comment représenter la surface d'un objet ??

• Propriétés du triangle rectangle :

- Triangle ABC rectangle en A
- BC est l'hypoténuse
- \triangleright Pythagore : BC² = AC² + AB²
- Pour l'angle \widehat{ABC} , entre les vecteurs \overrightarrow{BA} et \overrightarrow{BC} :
 - Cos(ABC) = BA/BC : adjacent/hypoténuse
 - Sin(ABC) = AC/BC : opposé/hypoténuse
 - Tan(ABC) = AC/BA : opposé/adjacent

• Angles et cercle trigonométrique :

$$\triangleright$$
 Cos (0) = 1 Cos(π) = -1

$$ightharpoonup$$
 Cos($\pi/2$) = 0 Cos($\pi/3$) = 1/2

$$ightharpoonup$$
 Sin $(\pi/2) = 1$ Sin $(-\pi/2) = -1$

> Sin(0) = 0 Sin($\pi/6$) = $\frac{1}{2}$

• Coordonnées sphériques :

 \triangleright Soit M(x, y, z) un point de l'espace.

 \triangleright Soit r la distance entre M et O(0, 0, 0).

Soit ϕ l'angle entre l'axe Z et le vecteur \overrightarrow{OM} qui est compris entre 0 et π .

➤ Soit P(x, y, 0) la projection orthogonale de M sur le plan xOy.

Soit θ l'angle entre l'axe X et le vecteur \overrightarrow{OP} qui est compris entre 0 et 2π .

 \triangleright Le triplet (r, θ, φ) constitue les coordonnées sphériques de M.

Coordonnées sphériques :

Polyèdre ≠ Surface continue

- Définir une surface de manière finie.
- Un polyèdre est défini par :
 - ➤ Par un ensemble de points de IR³ appelés sommets du polyèdres.
 - ➤ Par un ensemble de faces définies chacune par une suite de sommets.

Polyèdre ≠ Surface continue

Exemple du cube :

```
>L'ensemble de sommet :
\{SO(-5,-5,-5); S1(-5,-5,5); S2(-5,5,-5),
S3(5,-5,-5); S4(5,5,-5); S5(5,-5,5)
S6(-5,5,5); S7(5,5,5)}
>L'ensemble de face :
{F0(S0,S1,S5,S3); F1(S5,S7,S4,S3);
 F2(S7,S4,S2,S6); F3(S6,S2,S0,S1);
 F4(S1,S5,S7,S6); F5(S0,S3,S4,S2) }
```


Polyèdre ≠ Surface continue

• Définir une surface de manière continue :

La surface est décrite par une équation

Exemple : une sphère est définie par :

(X-Xcentre)²+(Y-Ycentre)²+(Z-Zcentre)²

= Rayon²

➤On peut ainsi définir la surface par autant de point que l'on veut et n'importe où sur la surface

contrairement au polyèdre

Quadriques

- La classe de surfaces quadriques contient les cylindres, les cônes, les sphères, les ellipsoïdes, les paraboloïdes, les hyperbolïdes ...
- Une quadrique a une équation implicite de degré 2 de la forme F(x,y,z)=0 avec : F(x,y,z)= Ax²+2Bxy+2Cxz+2Dx+Ey²+2Fyz+2Gy+Hz²+2Iz+J

Sphère
$$\rightarrow$$
 $(X-Xc)^2 + (Y-Yc)^2 + (Z-Zc)^2 = rayon^2$

$$X^2-2XXC+Y^2-2YYC+Z^2-2ZZC+Xc^2+Yc^2+Zc^2-r^2=0$$

$$\rightarrow$$
On retrouve F(x,y,z) avec A=1, E=1, H=1,

D=Xc , G=Yc, I=Zc
et
$$J = Xc^2+Yc^2+Zc^2-r^2$$

• Un cylindre est défini:

- > par une droite et un rayon,
- ➢ le cylindre de révolution d'axe D et de rayon r est constitué de l'ensemble des points de IR³ qui sont situés à distance r de la droite D.

Le cylindre qui coïncide avec l'axe Oz :

- \triangleright a pour équation $x^2 + y^2 = r^2$
- > sa hauteur est défini par un nombre réel positif : h,

Méridiens d'un cylindre :

Les *méridiens* sur un cylindre de révolution de rayon r et de hauteur h sont les segments de droites contenus dans le h corps du cylindre, de longueur h, parallèles à l'axe du cylindre.

Facettisation d'un cylindre :

- Etant donné un nombre de méridien m, nous allons considérer des méridiens M_i d'angle θ_i , pour i=0,...,m régulièrement disposé sur le corps du cylindre.
- Construire ensuite des facettes rectangulaires entre les méridiens M_i et M_{i+1}, pour i=0, ... m-1.
- Construire ensuite deux facettes pour les faces du haut et du bas du cylindre.

- Création du polyèdre correspondant (sommets):
 - Les sommets peuvent être utilisés par plusieurs polyèdres, mais aussi par les plans limites.
 - Pour les construire : on étudie chaque méridien dont les angles varient entre 0 et 2π tel que θ_i = 2π i/m avec i=0,, m-1.

Soit M_i le méridien d'angle θ_i : on définit deux sommets :

Coordonnées cartésiennes de P_i (en -h/2)

```
\circ x = rCos(\theta_i)
```

$$\circ$$
 y = rSin(θ_i)

$$\circ$$
 z = -h/2

Coordonnées cartésiennes de P'_i(en h/2)

```
\circ x = rCos(\theta_i)
```

$$\circ$$
 y = rSin(θ_i)

$$\circ$$
 z = h/2

- Création du polyèdre correspondant (facettes):
 - > Facettes entre les méridiens:

Pour i=0....,m-1 la facette numéro i est composée des 2 sommets du méridien M_i et de ceux du méridien M_{i+1} Facette i = P_i , P'_i , P'_{i+1} , P_{i+1}

Facette du bas :

Une face
$$\rightarrow$$
 P_0 , P_1 , ..., P_{m-1}

Facette du haut :

Une face
$$\rightarrow$$
 P'_{m-1} , ..., P'_{1} , P'_{0}

(Ordre d'énumération inversé pour garder une orientation cohérente).

Quadriques: cônes

• Un cône est défini:

par un ensemble de droite passant toutes par un sommet (sommet du cône) et s'appuyant sur une courbe (base),

> dans le cas d'un cylindre de révolution, la base est un cercle.

Equation du cône d'axe Z :

- ➤ le sommet S (0, 0, Zsommet),
- ➢ le cercle de rayon r est centré en O et appartient au plan xOy,
- > il a pour équation :

$$(z-z_{sommet})^2 = z_{sommet}^2/r^2*(x^2+y^2)$$

Sommet

Quadriques: cônes

• Facettisation d'un cône :

- >À partir des méridiens définis par Θ_i,
- >2m sommets sont nécessaires,
- ➢ leur construction est identique à celle de la construction des sommets du cylindres,
- > on construit des faces trapézoïdales entre les méridiens,
- construction de 2 faces pour les plans limites.

• Une sphère est définie :

> par un centre et un rayon,

> elle est constituée d'un ensemble de points à distance r du centre.

• Equation de la sphère de centre O :

- ➤ le sommet O (0, 0, 0),
- > elle a pour équation :

$$x_m^2 + y_m^2 + z_m^2 = r^2$$

• Les méridiens :

- Un *méridien* sur la sphère S_r est un demi- cercle formé de l'ensemble des points M de coordonnées sphériques (r, ϕ_m , θ_m) tels que l'angle θ_m soit fixé égal à une certaine valeur.
- Soit $\theta_i \in [0,2\pi[$, le méridien i de S_r d'angle θ_i est constitué de l'ensemble des points M tels que $\theta_m = \theta_i$.

21

• Les parallèles :

Etant donné $\phi_i \in]0,\pi[$, le *parallèle* d'angle ϕ_i de la sphère S_r est le cercle constitué de l'ensemble des points M $(r, \phi_{m_i}, \theta_m)$ de S_r tels que $\phi_m = \phi_i$.

Facettisation de la sphère :

 on découpe la sphère en m méridiens et p parallèles,

➤avec m≥3 et p≥2

►N=(0,0,r) est appelé le *pôle nord*

➤S=(0,0,-r) est appelé le *pôle sud*

des faces à 3 ou 4 sommets sont créées.

Conclusion

Représentation surfacique :

- soit de manière continue,
- > soit de manière polyédrique.

Passage continue facettisation :

- a partir de l'équation d'une surface, on peut construire une facettisation de la surface,
- l'équation mathématique sous-jacente peut permettre de faire varier la résolution du modèle facettisé.