

Module Overview

- The TCP/IP Protocol Suite
- Protocols in the TCP/IP Suite
- TCP/IP Applications
- What Is a Socket?

Lesson 1:Overview of TCP/IP

- The TCP/IP Protocol Suite
- Protocols in the TCP/IP Suite
- TCP/IP Applications
- What Is a Socket?

The TCP/IP Protocol Suite

Protocols in the TCP/IP Suite

OSI	TCP/IP	TCP/IP Protocol Suite		
Application resentation Session	Application	HTTP DNS FTP POP3 SMTP SNMP		
Transport	Transport	TCP UDP		
Network	Internet	ARP IPv4 IGMP IPv6		
Data Link Physical	Network Interface	Ethernet Wi-Fi broadband		

TCP/IP Applications

Some common application layer protocols:

- HTTP
- HTTPS
- FTP
- RDP
- SMB
- SMTP
- POP3

What Is a Socket?

A socket is a combination of an IP address, a transport protocol, and a port

Lesson 2: Understanding IPv4 Addressing

- IPv4 Addressing
- Public and Private IPv4 Addresses
- How Dotted Decimal Notation Relates to Binary Numbers
- Simple IPv4 Implementations
- More Complex IPv4 Implementations

IPv4 Addressing

- Each networked computer must be assigned a unique IPv4 address
- Network communication for a computer is directed to the IPv4 address of the computer
- Each IPv4 address contains: Network ID, identifying the network Host ID, identifying the computer
- The subnet mask identifies which part of the IPv4 address is the network ID (255) and the host ID (0)

IP address	172	16	0	10
Subnet mask	255	255	0	0
Network ID	172	16	0	0
Host ID	0	0	0	10

IPv4 Addressing

An IPv4 configuration identifies a computer to other computers on a network

Dotted decimal representation of the address and subnet mask

IPv4 Addressing

An IPv4 configuration identifies a computer to other computers on a network

Public and Private IPv4 Addresses

Public

- Required by devices and hosts that connect directly to the Internet
- Must be globally unique
- Routable on the Internet
- Must be assigned by IANA/RIR

Private

- Not routable on the Internet
 - 10.0.0.0/8
 - 172.16.0.0/12
 - 192.168.0.0./16
- Can be assigned locally by organization
- Must be translated to access the Internet

How Dotted Decimal Notation Relates to Binary Numbers

Dotted decimal notation is based on the decimal number system, but computers use IP addresses in binary

- Within an 8-bit octet, each bit position has a decimal value
 - A bit that is set to 0 always has a zero value
 - A bit that is set to 1 can be converted to a decimal value
 - The low-order bit represents a decimal value of 1
 - The high-order bit represents a decimal value of 128
- If all bits in an octet are set to 1, then the octet's decimal value is 255, the highest possible value of an octet:
- 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1

How Dotted Decimal Notation Relates to Binary Numbers

