มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

การสอบกลางภาคเรียนที่ 1 ประจำปีการศึกษา 2551

ชื่อ-สกุล	รหัสประจำตัว	เลขที่นั่งสอบ	
สอบวันที่ 22 กรกฎาคม พ.ศ. 2551		เวลา 13:00-16:00 น	
ข้อสอบวิชา ENE 210 Electronic Devices & Circuit Design I		นศ.วศ. อิเล็กทรอนิกส์ ชั้นปีที่ 2	

<u>ข้อปฏิบัติในการทำข้อสอบ</u>

- 1 ข้อสอบมีทั้งหมด 5 ข้อ จำนวน 7 หน้า รวมใบปะหน้าข้อสอบ
- 2 ให้ทำทุกข้อ โดยตอบลงในข้อสอบ
- 3 เขียนตอบให้ชัดเจน อ่านได้โดยง่าย เพื่อผลประโยชน์ของตัวนักศึกษาเอง
- 4 ห้ามนำเอกสารใค เข้าห้องสอบ
- 5 อนุญาตให้ใช้เครื่องคำนวณอิเล็กทรอนิกส์ตามระเบียบมหาวิทยาลัยฯ

<u>คำเตือน</u>

- 1 อย่าทำทุจริตในการสอบ เพราะเป็นเรื่องน่าละอายและมีโทษแรง อาจถึงขั้นหมคสภาพการเป็น นักศึกษา
- 2 ให้ระวังการนำสมุคคำตอบออกนอกห้องสอบโดยไม่ตั้งใจ ซึ่งอาจส่งผลให้ไม่พิจารณาตรวจให้ กะแนน

อ.ยุทธศักดิ์ รุ่งเรื่องพลางกูร

ผู้ออกข้อสอบ

ข้อสอบนี้ได้ผ่านการประเมินจากภาควิชาจิศาสรรมอิเล็กทรอนิกส์ฯ แล้ว

ผศ.คร. วุฒิชัย อัศวินชัยโชติ หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์ฯ

หน้า 2

ชื่อ-ส	กุล		.รหัส นศ	เลขที่นั่งส	อบ
1 9	เงตอบคำถามมาพอสังเขป	(20 คะแนน)			
1.1	พาหะในหลอดสุญญากาศ	์ คือ		เกิดขึ้นโดย	
	_				
1.2	Passive element คือ				
1.3	Reactive component คี				
1.0					
1.4	Drift คือ				
1.5	Thermal ionization คือ				
1.6	Mean life time คือ				
		•••••			
1.7	Concentration gradient	คือ			
1.0	วัตถุประสงค์หลักในการเ			င် သန်းများများ ရှိခ	
1.8	anifitta saarinatterit. 13.67	145 PM 1311/161,197,1	CINELL RALIFTING	CHIT FIR MARKET PIEC	

ขื่อ-ส	งกุลรหัส นศเลขที่นั่งสอบ
1.9	ปัจจุบันยังใช้ซิลิกอนยังเป็นสารกึ่งตัวนำหลัก เพราะว่า
1.10	Thermistor คือ
	หากต้องการให้กระแสไหลผ่านแท่งสารกึ่งอินทรินสิก ที่มีขนาดพื้นที่หน้าตัดเป็น 20 x 40 μm และยาว 5 mm 10 mA จะต้องใช้แรงดันเท่ากับเท่าใด และหากโด๊ปแท่งสารนี้ด้วย As โดยมี
I	Dosage level (1 : 10 ⁸ = As : Si) จงหาค่าความต้านทานของแท่งสารนี้ ทั้งหมดนี้ให้
	พิจารณาที่คณหภูมิ 300 K (20 คะแนน)

a	~	طا ٺ
ชื่อ-สกุล	รหัส นศ	เลขทนั้งสอบ

3 จงอธิบายปรากฏการณ์ที่เกิดขึ้นตรงบริเวณรอยต่อพีเอ็น นับตั้งแต่รอยต่อเริ่มเกิดขึ้น จนเข้าสู่ ภาวะสมดุล ให้เขียนรูปที่สามารถสื่อถึงสารกึ่งตัวนำและรอยต่อประกอบการอธิบายมาด้วย (20 คะแนน)

หน้า 5

d	-		ر ما
ขอ-ตกุ	ର	รพล นค	เลขทนงลอบ

- 4 ก) จงเขียน VI characteristic ขณะ forward biased ในช่วงกระแส 0 100 mA ของไดโอด ชนิดซิลิกอนตัวหนึ่งมีแรงดันคัตอิน (cut-in) 0.6 V และมี r_{ac} = 2 โอห์ม และหากทดสอบ ไดโอดตัวนี้ด้วยโอห์มมิเตอร์ ได้ค่าความต้านทาน (R_{DC}) = 10.57 โอห์ม ที่กระแส 70 mA จงให้ความเห็นว่าค่าความต้านทานที่วัดได้นี้ จะเข้ากับ VI characteristic ตามที่เขียนมา หรือไม่ จงอธิบาย (15 คะแนน)
 - ข) ปรากฏการณ์ breakdown ในไดโอดเกิดขึ้นได้อย่างไร จงอธิบาย (5 คะแนน)

ชื่อ-สก	ลรหัส นค	ฯเลขที่นั่งสอบ

- 5 ก) จงแสดงวงจร 2 input OR gate ด้วยการใช้ไดโอด พร้อมอธิบายการทำงาน (8 คะแนน)
 - ข) จงสร้างวงจรที่สามารถให้ความสัมพันธ์ ระหว่างแรงดันขาออกและแรงดันขาเข้า เป็นดังรูป ให้พิจารณาเป็นไดโอดอุดมคติ (12 คะแนน)

ชื่อ-สกุล	.รหัส นศ	เลขที่นั่งสอบ

ตาราง 1-1 คุณสมบัติของซิลิกอนบริสุทธิ์

ก่าจำเพาะ	ปริมาณ	หน่วย
ตัวเลขอะตอมมิล (Atomic number)	14	
น้ำหนักอะตอม (Atomic weigth)	28.1	
ความหนาแน่น (Density)	2.33	g/cm ³
เพอร์มิคติวิตีสัมพัทธ์ [Relative permittivity] (dielectric constant)	19.1	
จำนวนอะตอม /cm³ (Atoms / cm³)	5×10 ²²	
Energy gap EGO n 0 K	1.21	eV
Energy gap EG ที่ 300 K	1.21	eV
ความด้านทานจำเพาะ (Resistivity) ที่ 300 K	2.30×10 ⁵	Ω .cm
ความคล่องตัวของอิเล็กตรอน (Electron mobility) µ n ที่ 300 K	1500	cm ² /(V.s)
ความคล่องตัวของโฮล (Hole mobility) µp ที่ 300 K	475	$cm^2/(V.s)$
ความหนาแน่นอินทรินสิก (Intrinsic concentration) ที่ 300 K	1.45×10 ¹⁰	cm ⁻³
ค่าคงตัวการแพร่ของอิเล็กตรอน (Electron diffusion constant), $\mathbf{D_n}$ ที่	300 K 34	cm ² /s
ค่าคงตัวการแพร่ของโฮล (Hole diffusion constant) D, ที่ 300 K	13	cm ² /s