

Constituency Parsing

Natural Language Processing: Jordan Boyd-Graber University of Maryland

A pcfg

Assume the following grammar

			9					
s	\rightarrow	np	vp	1.0	V	\rightarrow	sleeps	0.4
vp	\rightarrow	٧	np	0.7	V	\rightarrow	saw	0.6
vp	\longrightarrow	vp	pp	0.2	nn	\rightarrow	man	0.1
vp	\longrightarrow	٧		0.1	nn	\longrightarrow	woman	0.1
np	\rightarrow	dt	nn	0.2	nn	\rightarrow	telescope	0.3
np	\rightarrow	np	pp	0.8	nn	\rightarrow	dog	0.5
рр	\rightarrow	р	np	1.0	dt	\rightarrow	the	1.0
					р	\rightarrow	with	0.6
					р	\longrightarrow	in	0.4

Evaluating the probability of a sentence

What is the probability of the parse

Evaluating the probability of a sentence

$$\underbrace{1.0}_{\text{det} \rightarrow \text{ the } n \rightarrow \text{dog } v \rightarrow \text{sleeps}} \underbrace{0.4}_{\text{vp} \rightarrow v} \underbrace{0.1}_{\text{np} \rightarrow \text{dt } n} \underbrace{1.0}_{\text{s} \rightarrow \text{np vp}} = 0.004$$

Parsing Sentence

What's the best parse for the sentence

Under the grammar

S	\rightarrow	np	vp	1.0	٧	\rightarrow	sleeps	0.4]
vp	\rightarrow	٧	np	0.7	V	\longrightarrow	saw	0.6	
vp	\rightarrow	vp	pp	0.2	nn	\longrightarrow	man	0.1	
vp	\rightarrow	٧		0.1	nn	\longrightarrow	woman	0.1	
np	\rightarrow	dt	nn	0.2	nn	\rightarrow	telescope	0.3	l
np	\rightarrow	np	pp	0.8	nn	\rightarrow	dog	0.5	l
pp	\rightarrow	р	np	1.0	dt	\longrightarrow	the	1.0	l
					р	\longrightarrow	with	0.6	
					р	\rightarrow	in	0.4	

First, do spans for single word (e.g., C[7,8,nn]).

Blank Chart

1.
$$C[7,8,nn] = ln(0.3) = -1.2$$

2.
$$C[6,7,dt] = ln(1.0) = 0.0$$

3.
$$C[5,6,p] = \ln(0.6) = -0.51$$

4.
$$C[4,5,nn] = ln(0.5) = -0.69$$

5.
$$C[3,4,dt] = ln(1.0) = 0.0$$

6.
$$C[2,3,v] = In(0.6) = -.51$$

7.
$$C[2,3,vp] = ln(0.6) + ln(0.1) = -2.8$$

8.
$$C[1,2,nn] = ln(0.1) = -2.3$$

9.
$$C[0, 1, dt] = ln(1.0) = 0.0$$

1.
$$C[0,2,np] = \underbrace{0.0}_{C[0,1,DT]} + \underbrace{-2.3}_{C[1,2,NN]} + \ln(\underbrace{0.2}_{np \to dt n}) = -2.3 + -1.6 = -3.9$$

1.
$$C[0,2,np] = \underbrace{0.0}_{C[0,1,DT]} + \underbrace{-2.3}_{C[1,2,NN]} + \ln(\underbrace{0.2}_{np \to dt n}) = -2.3 + -1.6 = -3.9$$

2.
$$C[3,5,np] = \underbrace{0.0}_{C[3,4,DT]} + \underbrace{-.69}_{C[4,5,NN]} + ln(\underbrace{0.2}_{np \to dt n}) = -0.69 + -1.6 = -2.3$$

1.
$$C[0,2,np] = \underbrace{0.0}_{C[0,1,DT]} + \underbrace{-2.3}_{C[1,2,NN]} + \ln(\underbrace{0.2}_{np \to dt n}) = -2.3 + -1.6 = -3.9$$

2.
$$C[3,5,np] = \underbrace{0.0}_{C[3,4,DT]} + \underbrace{-.69}_{C[4,5,NN]} + ln(\underbrace{0.2}_{np \to dt n}) = -0.69 + -1.6 = -2.3$$

3.
$$C[6,8,np] = \underbrace{0.0}_{C[6,7,DT]} + \underbrace{-1.2}_{C[7,8,NN]} + \ln(\underbrace{0.2}_{np \to dt n}) = -1.2 + -1.6 = -2.8$$

1.
$$C[0,3,s] = \underbrace{-3.9}_{C[0,2,NP]} + \underbrace{-2.8}_{C[2,3,VP]} + \ln(\underbrace{1.0}_{s \to np \ vp}) = -6.7$$

1.
$$C[0,3,s] = \underbrace{-3.9}_{C[0,2,NP]} + \underbrace{-2.8}_{C[2,3,VP]} + \ln(\underbrace{1.0}_{s \to np \ vp}) = -6.7$$

2.
$$C[2,5,vp] = \underbrace{-0.5}_{C[2,3,V]} + \underbrace{-2.3}_{C[3,5,NP]} + ln(\underbrace{0.7}_{vp \to v np}) = -2.8 - 0.36 = -3.2$$

1.
$$C[0,3,s] = \underbrace{-3.9}_{C[0,2,NP]} + \underbrace{-2.8}_{C[2,3,VP]} + \ln(\underbrace{1.0}_{s \to np \ vp}) = -6.7$$

2.
$$C[2,5,vp] = \underbrace{-0.5}_{C[2,3,V]} + \underbrace{-2.3}_{C[3,5,NP]} + \ln(\underbrace{0.7}_{vp \to v np}) = -2.8 - 0.36 = -3.2$$

3.
$$C[5,8,pp] = \underbrace{-0.51}_{C[5,6,P]} + \underbrace{-2.8}_{C[6,8,NP]} + ln(\underbrace{1.0}_{pp \to p np}) = -3.3 + -1.6 = -3.3$$

1.
$$C[0,5,s] = \underbrace{-3.9}_{C[0,2,NP]} + \underbrace{-3.2}_{C[2,5,VP]} + \ln(\underbrace{1.0}_{s \to np \ vp}) = -7.1$$

1.
$$C[0,5,s] = \underbrace{-3.9}_{C[0,2,NP]} + \underbrace{-3.2}_{C[2,5,VP]} + \ln(\underbrace{1.0}_{s \to np \ vp}) = -7.1$$

2. $C[3,8,np] = \underbrace{-2.3}_{C[3,5,NP]} + \underbrace{-3.3}_{C[5,8,PP]} + \ln(\underbrace{0.8}_{np \to np \ pp}) = -5.6 + -0.2 = -5.8$

$$C[2,8,vp] = \max($$

$$\underbrace{-3.2}_{C[2,5,VP]} + \underbrace{-3.3}_{C[5,8,PP]} + \underbrace{-1.6}_{vp \to vp pp}, \qquad (2)$$

$$\underbrace{-0.5}_{C[2,3,V]} + \underbrace{-5.8}_{C[3,8,NP]} + \underbrace{-.36}_{vp \to v np}$$
 (3)

$$= \max(-8.1, -6.7) = -6.7$$
 (4)

$$C[2,8,vp] = max($$
 (1)

$$\underbrace{-3.2}_{C[2,5,VP]} + \underbrace{-3.3}_{C[5,8,PP]} + \underbrace{-1.6}_{vp \to vp pp}, \qquad (2)$$

$$\underbrace{-0.5}_{\text{C[2,3,V]}} + \underbrace{-5.8}_{\text{C[3,8,NP]}} + \underbrace{-.36}_{\text{vp} \to \text{v np}})$$
 (3)

$$= \max(-8.1, -6.7) = -6.7$$
 (4)

Which is it? "dog through telescope" or "dog holding telescope"?

1.
$$C[0,8,s] = \underbrace{-3.9}_{C[0,2,NP]} + \underbrace{-6.7}_{C[2,8,VP]} = -10.6$$

