Electronic Devices

Lecture 19
Field Effect Transistor
"MOSFFT"

Dr. Roaa Mubarak

MOSFET as an amplifier

Common gate amplifier

Common drain amplifier

Common source amplifier

Common Source Amplifier

$$\begin{split} v_{GS} &= V_{GS} + v_{gs} \\ i_D &= \frac{1}{2} k_n' \frac{W}{L} (V_{GS} + v_{gs} - V_t)^2 \\ &= \frac{1}{2} k_n' \frac{W}{L} (V_{GS} - V_t)^2 + k_n' \frac{W}{L} (V_{GS} - V_t) v_{gs} + \frac{1}{2} k_n' \frac{W}{L} v_{gs}^2 \end{split}$$

For small input signal that $\frac{1}{2}k'_n \frac{W}{r}v_{gs}^2 \ll k'_n \frac{W}{r}(V_{GS} - V_t)v_{gs}$

which results in

$$v_{gs} << 2(V_{GS} - V_t)$$

 $v_{gs} \ll 2(V_{GS} - V_t)$ $V_{gs} \ll 0.2(V_{GS} - V_t)$ is commonly required.

we obtain,
$$i_D = \underbrace{\frac{1}{2} k'_n \frac{W}{L} (V_{GS} - V_t)^2}_{I_D} + \underbrace{k'_n \frac{W}{L} (V_{GS} - V_t) v_{gs}}_{i_d}$$

Transconductance g_m

$$i_{D} = \underbrace{\frac{1}{2} k'_{n} \frac{W}{L} (V_{GS} - V_{t})^{2} + k'_{n} \frac{W}{L} (V_{GS} - V_{t}) v_{gS}}_{i_{d}}$$

$$\Rightarrow g_m = \frac{i_d}{v_{gs}} = k'_n \frac{W}{L} (V_{GS} - V_t)$$

Graphic interpretation:

MOSFET small signal model (Hybrid Model)

NMOS Hybrid π Model

• Small signal parameters:

Transconductance " g_m "

MOSFET works in saturation mode to act as an amplifier:

$$g_{m} = \left[\frac{\partial i_{D}}{\partial v_{GS}}\right] Q \ point$$

$$i_{D} = \frac{1}{2} K_{n} (V_{GS} - V_{th})^{2}$$

$$g_{m} = K_{n} (V_{GS} - V_{th}) = \frac{2I_{D}}{(V_{GS} - V_{th})}$$

$$K_{n} = \mu_{n} C_{ox} \left(\frac{W}{L}\right)$$

$$r_{o} = \frac{V_{A}}{I_{D}}$$

(replacing μ_n by μ_p for PMOS)

$$g_m \equiv \frac{\partial i_D}{\partial v_{GS}}\bigg|_{v_{GS} = V_{GS}} = \frac{i_d}{v_{gs}} = k'_n \frac{W}{L} (V_{GS} - V_t)$$

$$r_0 \equiv \left[\frac{\partial i_D}{\partial v_{DS}}\right]_{v_{CS} = V_{CS}}^{-1} = \frac{1 + \lambda V_{DS}}{\lambda I_D} \cong \frac{1}{\lambda I_D}$$

r_o is output resistance due to channel length modulation effect.

Common source Amplifier

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$

i.e.
$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2$$

But by KVL,

$$V_{DD}$$
- I_DR_D = V_{out}

:
$$V_{out} = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2 R_D$$

Differentiating this equation with respect to V_{in}

$$\frac{dV_{out}}{dV_{in}} = -\mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH}) R_D$$

Hence, The voltage gain $A_v = -g_m R_D$ $\left[: g_m = \mu_n C_{ox} \frac{W}{I} (V_{in} - V_{TH}) \right]$

$$\left[: g_m = \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH}) \right]$$

Common source Amplifier

By applying KVL

We get

$$V_{in}$$
- $V_{GS} = 0$

i.e.
$$V_{in}=V_{GS}$$

By applying KCL at node A

We get,

$$g_m V_{GS} + \frac{V_{out} - O}{r_o} + \frac{V_{out} - O}{R_D} = O$$

$$\therefore g_m V_{in} = -\left[\frac{V_{out}}{r_o} + \frac{V_{out}}{R_D}\right]$$

$$\therefore g_m V_{in} = -V_{out} \left(\frac{I}{r_o} + \frac{I}{R_D} \right)$$

$$\therefore \frac{V_{out}}{V_{in}} = A_v = \frac{-g_m}{\left(\frac{1}{r_o} + \frac{1}{R_D}\right)}$$

$$\therefore A_v = -g_m(r_o||R_D)$$

:. The voltage gain of CS amplifier is $-g_m(r_o||R_D)$

Common source Amplifier

Determine the output resistance and input resistance

$$[V_{GS} = V_{in} = 0]$$

Also, because of zero gate current the input impedance of CS amplifier is also infinite.

$$\therefore R_{in} = \infty$$

$$R_{out} = (ro || R_D)$$

Example

A discrete common source MOSFET amplifier utilizing the drain to gate feedback biasing arrangement. The input signal is coupled to the gate via a large capacitor, and the output signal at the drain is coupled to the load resistance via another large capacitor. Analyze the amplifier to determine its small signal voltage gain. The transistor has V_{th} = 1.5 V, K_n = 0.25 mA/ V^2 and V_A = 50 V.

Solution

First find I_D and V_D and then find g_m, r_o and A_v from the following equations.

$$I_D = \frac{1}{2} K'_n \left(\frac{W}{L}\right) (V_{GS} - V_t)^2 \qquad \text{(No gate current so } V_{GS} = V_D)$$

$$I_D = \frac{1}{2} * 0.25 * (V_D - 1.5)^2$$

$$V_D = V_{DD} - R_D I_D$$

$$g_m = K'_n \left(\frac{W}{L}\right) (V_{GS} - V_t)$$

