§31. Лабораторная работа № 8 Интерполяция функций сплайном третьего порядка.

Цельработы: изучить сплайн-интерполяцию различных порядков.

С о д е р ж а н и е р а б о т ы: на основании экспериментальных данных построить сплайн функцию, и найти значение функции в указанной точке,

Теоретический материал

Опишем сначала, что такое интерполяция и как эта задача решена в данном случае.

Пусть на некотором отрезке в точках x_0 , x_1 , x_2 , ... x_N нам известны значения некоторой функции f(x), а именно y_0 , y_1 , y_2 , ... y_N .

Требуется построить интерполирующую функцию F(x), такую, что она принимает в указанных точках те же значения, т.е. $F(x_0) = y_0$, $F(x_1) = y_1$, ... $F(x_N) = y_N$.

Геометрически это значит, что нужно найти кривую y = F(x) определенного типа, проходящую через систему заданных точек. В такой общей постановке задача может иметь бесчисленное множество решений или совсем не иметь решений. В случае интерполяции сплайном кривая F(x) состоит из кусочков, а именно, на каждом из отрезков $[x_{k-1}; x_k]$ функция F(x) является кубическим полиномом

$$F_k(x) = a_k + b_k(x-x_k) + c_k(x-x_k)^2 + d_k(x-x_k)^3$$

 $F = F_1$ на интервале $[x_0, x_1]$

 $F = F_2$ на интервале [x_1, x_2]

...

$$F = F_N$$
 на интервале [x_{N-1} , x_N]

При этом, на каждом из отрезков $[x_{k-1}; x_k]$ коэффициенты полинома a_k , b_k , c_k , d_k разные. Чтобы узнать эти коэффициенты, кроме условия непрерывности функции на полиномы налагают дополнительные условия, а именно непрерывности первой и второй производной функции F(x), а также равенства вторых производных функции на концах отрезка $[x_0; x_N]$, т.е.

$$F_{k-1}(x_{k-1}) = F_k(x_{k-1}),$$

$$F'_{k-1}(x_{k-1}) = F'_{k}(x_{k-1}),$$

$$F''_{k-1}(x_{k-1}) = F''_{k}(x_{k-1}),$$

при
$$k=2,3,..N$$

$$F''(x_0)=0, F''(x_N)=0.$$

Найдем выражения для производных функций F_k

$$F'_k(x) = b_k + 2c_k(x - x_k) + 3d_k(x - x_k)^2$$

$$F''_k(x) = 2c_k + 6 d_k(x-x_k)$$

Подставив их в условия непрерывности получим систему:

$$a_1 - b_1 h_1 + c_1 h_1^2 - d_1 h_1^3 = y_0$$

$$a_k = y_k, k=1,2,...N$$

$$a_{k-1} = a_k - b_k h_k + c_k h_k^2 - d_k h_k^3, k=2,3...N$$

$$b_{k-1} = b_k - 2c_k h_k + 3d_k h_k^2, k=2,3...N$$

$$c_{k-1} = c_k - 3d_k h_k, k=2,3...N$$

$$c_1 - 3d_1h_1 = 0$$

$$c_N = 0$$

Здесь введено обозначение $h_k = x_k$ - x_{k-1} , k=1,2,...N

Введем еще $l_k = (y_k - y_{k-1})/h_k$, k=1,2,...N, а также $c_0 = 0$.

Упомянутую выше систему уравнений можно решить с помощью некоторых преобразований. При этом используется так называемый метод прогонки.

Вводятся прогоночные коэффициенты

$$\delta_1 = -h_2/(2(h_1+h_2))$$

$$\lambda_1 = 3(l_2 - l_1)/(2(h_1 + h_2))$$

$$\delta_{k-1} = -h_k/(2h_{k-1}+2h_k+h_{k-1}\delta_{k-2}), k=3,4,...N$$

$$\lambda_{k-1} = (3l_k - 3l_{k-1} - h_{k-1}\lambda_{k-2})/(2h_{k-1} + 2h_k + h_{k-1}\delta_{k-2})$$

Далее следует найти коэффициенты с_к по формулам обратной прогонки

$$c_{k-1} = \delta_{k-1}c_k + \lambda_{k-1}, k = N, N-1, N-2, \dots 2$$

После нахождения c_k нужно найти b_k и d_k по формулам

$$b_k = l_k + (2c_k h_k + h_k c_{k-1})/3, k=1,2,...N$$

$$d_k = (c_k - c_{k-1})/(3h_k), k=1,2,...N$$

Алгоритм реализован в виде программы на языке С.

Приведем программу, где реализован этот алгоритм:

//Cubic spline interpolation program

//when we have two columns of data x and y in input file:

//

//x0 y0

//x1 v1

```
//...
//xn yn
//
//and we want to find such function f(x)
//where f(xi) = yi
//and f(x) is cubic function on every [x_k-1, x_k] segment
//and f(x), f'(x), f''(x) are continual
//the result is four columns of cubic polinom coefficients
#include <math.h>
#include <stdio.h>
#include <process.h>
float *x, *y, *h, *l, *delta, *lambda, *c, *d, *b;
int N;
char filename[256];
FILE* InFile=NULL;
void count_num_lines(){
 //count number of lines in input file - number of equations
                 //non empty line flag
  int nelf=0;
  do{
    nelf = 0;
    while(fgetc(InFile)!='\n' && !feof(InFile)) nelf=1;
    if(nelf) N++;
  }while(!feof(InFile));
  N---;
void readmatrix(){
  int i=0;
  //read matrixes a and b from input file
  for(i=0; i< N+1; i++)
    fscanf(InFile, "%f", &x[i]);
    fscanf(InFile, "%f", &y[i]);
```

```
}
}
void allocmatrix(){
 //allocate memory for matrixes
 x = new float[N+1];
 y = new float[N+1];
 h = new float[N+1];
 l = new float[N+1];
 delta = new float[N+1];
 lambda = new float[N+1];
 c = new float[N+1];
 d = new float[N+1];
 b = new float[N+1];
}
void freematrix(){
 delete [] x;
 delete [] y;
 delete [] h;
 delete [] 1;
 delete [] delta;
 delete [] lambda;
 delete [] c;
 delete [] d;
 delete [] b;
}
void printresult(){
 int k=0;
 printf("\nA[k]\tB[k]\tC[k]\tD[k]\n");
 for(k=1; k \le N; k++)
    printf("%f\t%f\t%f\n", y[k], b[k], c[k], d[k]);
```

```
}
}
void testresult(){
 float start = x[0];
 float end = x[N];
 float step = (end - start)/20;
 FILE* OutFile = fopen("test.txt", "wt");
 for(float s = start; s \le end; s = step)
    //find k, where s in [x_k-1; x_k]
    for(int k=1; k <= N; k++){
        if(s>=x[k-1] && s<=x[k]){
          break;
        }
    float F = y[k] + b[k]*(s-x[k]) + c[k]*pow(s-x[k], 2) + d[k]*pow(s-x[k], 3);
    fprintf(OutFile, "%f\t%f\n", s, F);
  }
 fclose(OutFile);
}
void cls(){
 for(int i=0; i<25; i++) printf("\n");
void main(){
 int k=0;
 cls();
 do{
    printf("\nInput filename: ");
    scanf("%s", filename);
    InFile = fopen(filename, "rt");
  }while(InFile==NULL);
 count_num_lines();
 rewind(InFile);
```

```
allocmatrix();
readmatrix();
for(k=1; k \le N; k++)
  h[k] = x[k] - x[k-1];
  if(h[k]==0){
      printf("\nError, x[\%d]=x[\%d]\n", k, k-1);
      return;
   }
  1[k] = (y[k] - y[k-1])/h[k];
delta[1] = -h[2]/(2*(h[1]+h[2]));
lambda[1] = 1.5*(l[2] - l[1])/(h[1] + h[2]);
for(k=3; k \le N; k++)
 delta[k-1] = -h[k]/(2*h[k-1] + 2*h[k] + h[k-1]*delta[k-2]);
 lambda[k-1] = (3*1[k] - 3*1[k-1] - h[k-1]*lambda[k-2]) /
             (2*h[k-1] + 2*h[k] + h[k-1]*delta[k-2]);
}
c[0] = 0;
c[N] = 0;
for(k=N; k>=2; k--)
 c[k-1] = delta[k-1]*c[k] + lambda[k-1];
}
for(k=1; k \le N; k++)
  d[k] = (c[k] - c[k-1])/(3*h[k]);
 b[k] = l[k] + (2*c[k]*h[k] + h[k]*c[k-1])/3;
}
printresult();
testresult();
freematrix();
```

Чтобы воспользоваться этой программой, нужно запустить скомпилированный исполняемый файл. В первую очередь программа спросит, откуда ей брать данные для

интерполяции. Создайте в любом текстовом редакторе (но только не в Word-е а, например в notepad-е) файл, где напишите значения x_k , y_k , построчно через пробел, приблизительно так:

x_0	уо
<i>X</i> 1	у1
<i>x</i> ₂	y 2
•••	
XN	yN

Например,

1	5
2	3
3	2.5
4	2
5	0

Этот файл необходимо создать в той директории, где лежит программа, иначе она его не найдет. В результате работы программы, она выдаст нечто вроде:

A[k]	B[k]	C[k]	D[k]
3.000000	-1.250000	1.125000	0.375000
2.500000	-0.125000	0.000000	-0.375000
2.000000	-1.250000	-1.125000	-0.375000
0.000000	-2.375000	0.000000	0.375000

Это и есть решение системы, т.е. набор коэффициентов a_k , b_k . c_k , d_k на четырех отрезках. Кроме того, программа создаст файл test.txt в котором запишет подсчитанные значения интерполирующей функции в 20-точках на отрезке $[x_0; x_N]$. Вы сможете убедиться, что значения интерполирующей функции плавно меняются от точки к точке, и в точках x_k совпадают со значениями y_k .

Коротко опишем, для чего служит такое большое количество подпрограмм в данной программе:

void count_num_lines() - подсчитывает количество точек, где задана функция void allocmatrix() - выделяет память для массивов b, c, d, x, y, delta, lambda

void readmatrix() - прочитывает из файла координаты x, y точек

void testresult() - на основании вычисленных коэффициентов a, b, c, d вычисляет значение интерполирующей функции в 20 точках на интервале [x_0 ; x_N] с равномерным шагом

void printresult() - распечатывает столбцы коэффициентов a, b, c, d void freematrix() - освобождает память, которая была выделена ранее void cls() - стирает экран в начале работы программы void main() - основная функция из которой последовательно вызываются все вышеперечисленные функции, и проходит процесс вычисления коэффициентов по формулам прямой и обратной прогонки.

Варианты заданий клабораторной работе № 8

Варианты № 1 – № 5

По приведенной ниже таблице значений функции требуется построить квадратичный сплайн, который в точке x=0.3 равен 2.67 и который в каждой данной точке имеет первую производную, равную результату численного дифференцирования данной функции в данной точке

X	0	0.3	0.6	0.9	1.2	1.5	1.8	2.1	2.4	2.7
f(x)	3.76	2.67	2.84	1.17	2.39	4.98	5.28	5.91	4.27	3.44

Ответ вывести в аналитическом и графическом вариантах.

Варианты № 6 – № 10

По приведенной ниже таблице значений функции требуется построить квадратичный сплайн, который в точке x=0.91 равен 4.12 и который в каждой данной точке имеет первую производную, равную результату численного дифференцирования данной функции в данной точке:

X	0	0.25	0.76	0.91	1.83	2.35	4.72	4.99	5.87	6.45
f(x)	-1.34	-3.14	3.83	4.12	-3.12	-2.43	-2.65	-1.23	0.76	1.28

Ответ вывести в аналитическом и графическом вариантах.

Варианты № 11 – № 15

По приведенной ниже таблице значений функции требуется построить квадратичный сплайн, который в точке x=1.67 равен -5.23 и который в каждой данной точке имеет первую производную, равную результату численного дифференцирования данной функции в данной точке:

X	1.23	1.67	2.04	2.34	2.56	2.99	3.34	4.54	4.87	5.11
f(x)	-3.21	-5.23	-0.23	-1.17	0.32	0.43	0.99	1.54	4.34	9.12

Ответ вывести в аналитическом и графическом вариантах.

Варианты № 16 – № 20

По приведенной ниже таблице значений функции требуется построить квадратичный сплайн, который в точке x=1.5 равен 0.43 и который в каждой данной точке имеет первую производную, равную результату численного дифференцирования данной функции в данной точке:

X	-1.2	-0.5	0.4	1.5	2.1	2.9	3.3	3.9	4.3	5.1
f(x)	-2.11	-2.33	-0.14	0.43	1.34	2.65	6.23	9.23	7.65	4.23

Ответ вывести в аналитическом и графическом вариантах.

Варианты № 21 – № 25

По приведенной ниже таблице значений функции требуется построить квадратичный сплайн, который в точке x=4.12 равен 1.23 и который в каждой данной точке имеет первую производную, равную результату численного дифференцирования данной функции в данной точке:

X	2.1	2.67	3.65	4.12	4.78	5.32	5.99	6.13	6.56	7.01
f(x)	-4.21	-1.23	-0.45	1.23	1.01	2.03	2.76	2.43	-3.34	4.12

Ответ вывести в аналитическом и графическом вариантах.

Варианты № 26 – № 30

По приведенной ниже таблице значений функции требуется построить квадратичный сплайн, который в точке x=1.67 равен -5.23 и который в каждой данной точке имеет первую производную, равную результату численного дифференцирования данной функции в данной точке:

X	1.23	1.67	2.04	2.34	2.56	2.99	3.34	4.54	4.87	5.11
f(x)	-3.21	-5.23	-0.23	-1.17	0.32	0.43	0.99	1.54	4.34	9.12

Ответ вывести в аналитическом и графическом вариантах.