Actividad 2

Cristopher Aldama Pérez

August 26, 2018

1 Realiza las siguientes demostraciones

1. Demuestre que si el triángulo XYZ de catetos x e y e hipotenusa z tiene de área $\frac{z^2}{4}$, entonces es isósceles.

 ${\it Proof.}$ Sea x=y ya que el triángulo es isósceles.

$$z^2 = x^2 + y^2$$
 Teorema de pitágoras $= 2x^2$ Sustituyendo $y = x$ $x^2 = \frac{z^2}{2}$ Despejando x^2 (Por otro lado) $A = \frac{xy}{2}$ Área de un triángulo $= \frac{x^2}{2}$ Sustituyendo $y = x$ $= \frac{z^2}{2 \times 2}$ Sustituyendo x^2 Sustituyendo x^2 $= \frac{z^2}{4}$

2. Demostrar que $1^3 + 2^3 + 3^3 + ... + n^3 = (1 + 2 + 3 + ... + n)^2$

Proof. Pasando las series a notación de sumatoria tenemos que:

$$\sum_{1}^{n} k^{3} = (\sum_{1}^{n} k)^{2}$$

Evaluando L(1), L(2) L(h) y L(h+1) tenemos que:

$$L(1) = \sum_{1}^{1} k^{3}$$

$$= 1$$

$$= (\sum_{1}^{1} k)^{2}$$

$$L(2) = \sum_{1}^{2} k^{3}$$

$$= (1 + 8)$$

$$= (1 + 2)^{2}$$

$$= (\sum_{1}^{2} k)^{2}$$

$$L(h) = \sum_{1}^{h} k^{3}$$

$$= (\sum_{1}^{h} k)^{2}$$
Suposición
$$L(h + 1) = \sum_{1}^{h+1} k^{3}$$

$$= \sum_{1}^{h} k^{3} + (h + 1)^{3}$$
Cambiando límite de sumatoria
$$= (\sum_{1}^{h} k)^{2} + (h + 1)^{3}$$
Inducción
$$= [\frac{h(h + 1)}{2}]^{2} + (h + 1)^{3}$$
Fórmula de Gauss
$$= \frac{1}{4}(h^{4} + 6h^{3} + 13h^{2} + 12h + 4)$$
Desarrollando potencias
$$= \frac{1}{4}(h^{2} + 3h + 2)^{2}$$
Reagrupando
$$= [\frac{(h + 1)(h + 1 + 1)}{2}]^{2}$$
Fórmula de Gauss
$$= (\sum_{1}^{h+1} k)^{2}$$
Fórmula de Gauss

3. Demuestra la negación del siguiente enunciado: la suma de dos números compuestos siempre es un número compuesto.

Proof. La negación es: la suma de dos números compuestos no siempre es

un número compuesto. Sean 4 y 9 dos números compuestos

$$4 = 2 \times 2$$

$$9 = 3 \times 3$$

$$4 + 9 = 13 \in \mathbb{P}$$
 \square

4. Demuestre que para cada entero n, que si 5n+3 es par, entonces n es impar.

Proof. Demostrando la contraposición, podemos reformular como: si n es par, etonces 5n+3 es impar.

$$n=2k$$
 Ya que n es par
$$5n+3=5(2k)+3$$
 Sustituyendo $n=2k$ Sustituyendo $h=5k$
$$=2(h+1)+1$$
 Refactorizando
$$=2j+1$$
 Sustituyendo $j=h+1$

5. Demuestre que si $n \in \mathbb{Z}$, entonces, $n^2 - 3$ es multíplo de 4.

Proof. Esta preposición es falsa y se puede demonstrar su falsedad con un contra ejemplo:

$$1 \in \mathbb{Z}$$
 $n=1$
$$n^2-3=2-3$$
 Sustituyendo n=1
$$=-1$$