This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

02-265738

(43) Date of publication of application: 30.10.1990

(51)Int.CI.

B32B 9/00

(21)Application number: 01-089366

(71)Applicant: TORAY IND INC

(22)Date of filing:

06.04.1989

(72)Inventor: TANAKA YOSHIO

OKA TETSUO

(54) TRANSPARENT GAS BARRIER FILM

(57)Abstract:

PURPOSE: To obtain a transparent gas barrier film with few pinholes, being capable of decreasing electric conductivity and with excellent gas barrier characteristics for steam, oxygen, etc., by constituting a gas barrier layer of the transparent gas barrier film of an oxide layer of a metal consisting of In and/or Sn and incorporating a specified fluorine in said oxide layer. CONSTITUTION: A gas barrier layer 2 is laminated on one face of a base consisting of a plastic film 1 such as polyethylene and polyester. This gas barrier layer is a metal oxide of a single metal such as In or Sn or an alloy thereof and this oxide layer is bound with 0.05-1 atom of fluorine to an atom of the metal. Surface electric resistance can be made higher with this fluorine without spoiling gas barrier characteristics. In addition, if necessary, a thermoplastic adhesive layer 3 is laminated on one face of the transparent gas barrier film. The gas barrier layer 2 is formed by means of a vacuum thin film forming method such as sputtering. A package film for

food packagings, drugs, electronic parts, etc., for moisture proofing an oxidation-proofing can be obtd. thereby.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

@ 公 開 特 許 公 報 (A) 平2-265738

 識別記号 庁内整理番号 A 7310-4F ❸公開 平成2年(1990)10月30日

B 32 B 9/00

6/Z## +#X2+(1930)10/13/01

審査請求 未請求 請求項の数 3 (全8頁)

❷発明の名称 透明ガスパリアフイルム

②特 願 平1-89366

20出 願 平1(1989)4月6日

②発 明 者 田 中 善 善 雄 滋賀県大津市園山1丁目1番1号 東レ株式会社滋賀事業

場内

砂発明者 岡 哲 雄 滋賀県大津市園山1丁目1番1号 東レ株式会社滋賀事業

場内

⑪出 願 人 東 レ 株 式 会 社 東京都中央区日本橋室町2丁目2番1号

明細會

1. 発明の名称

透明ガスパリアフィルム

2. 特許請求の範囲

1 プラスチックフィルムから成る基体の少なくとも片面に、ガスパリア層を積層した透明ガスパリアフィルムにおいて、該ガスパリア層は1n および/またはSnからなる金属の酸化物層であって、かつ該金属酸化物層が金属1原子に対し0.05~1.0原子のフッ素を含むことを特徴とする透明ガスパリアフィルム。

- 2 表面電気抵抗値が1×10°Ω/□以上である請求項1記載の透明ガスパリアフィルム。
- 3 金鳳酸化物層がスパッタリングにより形成されてなる請求項1記載の透明ガスパリアフィル
- 3. 発明の詳細な説明

[産業上の利用分野]

本発明は、透明ガスパリア.フィルムに関する。 更に詳しくは、透明性を有し、かつ、水蒸気や酸 素等の気体の透過率が小さい透明ガスパリアプラスチックフィルムに関するもので、特に電子部品、 食品および薬品等に好適に使用される透明ガスパ リアフィルムに関する。

[従来の技術]

世来、透明ガスバリアフィルムとしては、例えば電界発光素子 (エレクトロルミネッセンス発光 素子) 用として、次のようなものが知られている。

- (1) 防湿性の優れたプラスチックフィルム、例えば、1塩化3 弗化エチレン(以下PCTFEと略す)を用いる方法。
- ② 2 暦のボリオレフィンフィルムの間に酸化 珪素の蒸着層を設けたもの(実公昭 6 1 - 4 2 3 1 9)。
- (3) 透明樹脂フィルムに酸化珪素や窒化珪素のスパッタ膜を設けたもの(実公昭62-2495 9)。
- (4) 本発明者らが先に提案した、プラスチックフィルムにIn、Sn、Znなどの金属酸化物層を稅層したもの(特開昭63-237940)。

{発明が解決じようとする課題}

しかし、かかる従来のガスパリアフィルムには、 次のような問題点があった。

(1)のプラスチックフィルムを用いた場合には、防湿性が十分でないため厚いフィルムを用いる必要があり、可能性が劣る。防湿性に優れたPCTFEフィルムの場合でも200μm以上の厚さが必要である。また、プラスチックフィルムは、高温での防湿性能が劣るため、高温で使用すると電界発光素子の弱命が短くなる。

②や(3)の酸化珪素や窒化珪素を蒸替やスパッタしたものは、高い防湿性能を得るためには厚さを300人以上、実用的には500人以上と厚くする必要があり、可撓性がなくなり、亀裂や剥離が生ずる。また、酸化珪素や窒化珪素の膜厚が厚くなるに伴い、透明性が低下してくるため発光輝度が小さくなる。

(4)は(1)~(3)の問題点を改善したものであるが、 ピンホールが存在し、ガスパリア性を改善する余 地がある。またガスパリア暦は透明導電膜として

提供するものである。

ここでファ素の含有比率はElectron Spectroscopy for Chemical Analysis (ESCA)分析による広帯域スペクトルから、その原子数比(相対積分強度/光イオン化断面積)より算出したものである。すなわち、ファ素を含む酸化インジウム以際においてはインジウム1原子に対するファ素原子数の比で示したものである。またファ素を含むインジウムと錫の原子数の比で示けるのとする。。

以下本発明の詳細を図面を用いて説明する。

第1図は本発明の透明ガスパリアフィルムの1 例を示すもので、1はプラスチックフィルム、2 は該フィルム1の片面に積層されたガスパリア層で、「nまたはSnの単一金属あるいはこれらの 合金からなる金属の酸化物層であって、特定量の 使用されているものであり、表面抵抗値で10Ω /□~10° Ω/□程度の導電性がある。しかしながら、この範囲の導電性を有する場合、例えば 第4図に示すように発光素子内部より引き出し電 極を引き出そうした場合、引き出し電極と導電性 のガスパリア層の端部とが接触し、短絡する問題 が生ずるおそれがあった。

本発明者らは、かかる問題点を解決するため、 鋭意検討した結果、ピンホールが少なく、かつ 離性を低下可能であるとともに、水落気や酸素等 の気体のガスパリア性に優れた透明ガスパリアフィルムを見出し、本発明に到達したものである。 [問題点を解決するための手段]

すなわち、本発明は、プラスチックフィルムから成る基体の少なくとも片面に、ガスバリア層を 積層した透明ガスバリアフィルムにおいて、抜ガ スバリア層は In および/または Sn からなる金 顔の酸化物層であって、かつ該金属酸化物層が金 四1 原子に対し 0.05~1.0原子のフッ案を 含むことを特徴とする透明ガスパリアフィルムを

フッ素原子を含んでなるものである。

第1図のものは本発明の透明ガスバリアフィルムの基本構成を示すもので、必要に応じてヒートシール可能な熱可塑性樹脂接着層を積層したり、第1図の基本構成を複数層積層して使用することもできる。また基体の両面にガスバリア層を設けるごともできる。

第2図は第1図の透明ガスパリアフィルムのガスパリア隔2の上にさらにヒートシール可能な熱可数性接着層3を設けた例を示したものであり、また第3図は、第1図に示す基本構成を有機薄膜層4を介して積層せしめるとともに端面に接着層3を形成せしめたものである。

第4図は本発明の透明ガスバリアフィルムを用いた電界発光素子の1例を示すもので、5はポリエステルフィルムなどのプラスチックフィルムにアルミニウム箔や鋼箔などを接着したり、鋼、酸化インジウム、アルミニウムなどを真空折出させて形成した電極層、6はチタン酸バリウムやチタン酸ストロンチウムなどの高騰電率粉末を、ジメ

チルホルムアミドなどの溶媒とともに、シアノエ チルセルロース、シュクロース、グリセロールプ ルラン、グリセロールシュクロースなどの高調電 串パインダー中に分散した塗料を、電極層上にス クリーン印刷して乾燥した高誘電率層、7は銅や アルミニウム、マンガンなどをドープした硫化亜 鉛やセレン化亜鉛、硫化カドミウムなどの蛍光体 を、溶媒とともにシアノエチルセルロース、シュ クロースなどの高誘電率パインダー中に分散した 逸料を、高誘電車層上にスクリーン印刷して乾燥 した発光層、8はポリエステルフィルムなどの片 面に、酸化錫、酸化インジウム、酸化インジウム 一酸化錫複合酸化物などからなる透明電極層であ り、加熱プレスなどの方法で透明導電面が発光層 と額層される。9は本発明の遺明ガスパリアフィ ルムであり、透明ガスパリアフィルムのヒートシ ール可能な熱可塑性接着層側を対向させ、図示の ように電感層、高誘電率層、発光層および透明電 極層からなる電界発光体全体を密封状に包むよう に接着積層される。10は電極層5および透明導

取合体であっても良く、他の有機取合体を含有するものであっても良い。これらの有機取合体に公 知の添加剤、例えば、帯電防止剤、紫外線吸収剤、 可塑剤、滑剤、脊色剤などが添加されていても良い。

本発明のプラスチックフィルムの光線透過率は、 包装内容物の視認性と美観のため重要であり、白 色光線での全光線透過率が少なくとも60%以上、 好ましくは、80%以上であることが望ましい。 着色剤など公知の添加剤は、この範囲内で添加かされるのが良い。本発明のプラスチックフィルムは、フッ衆を含む金属酸化物層のスパッタリングに先立ち、コロナ放電処理、プラズマ処理などの表面を 電処理、逆スパッタ処理、粗面化処理などの表面 処理や、公知のアンカーコート処理が施されても 良く、また、印刷が施されていても良い。

本発明のプラスチックフィルムの厚さは、特に 制限を受けないが、包装材料としての選性から3 ~400μmの範囲が望ましい。機械的特性や可 とう性の点では、更に好ましくは、25~200 電面8からの引き山し電極である。

電界発光素子の内部には、必要に応じてポリア ミドフィルムなどの抗水層が含まれていても良い。 本発明でいうプラスチックフィルムからなる基 体とは、次の代表的有機重合体を溶融または、溶 解抑出しし、必要に応じて長手方向および/また は幅方向に延伸したものである。有機重合体とし ては、ポリエチレン、ポリプロピレンなどのポリ オレフィン、ポリエチレンテレフタシート、ポリ エチレン-2,6- ナフタレートなどのポリエステル、 ナイロン6、ナイロン12などのポリアミド、塩 化ビニル、塩化ビニリデン、ポリピニルアルコー ル、芳香族ポリアミド、ポリアミドイミド、ポリ イミド、ポリエーテルイミド、ポリサルフォン、 ポリエーテルサルフォン、ポリエーテルエーテル ケトン、ポリアリレート、ポリフェニレンサルフ ァィド、ポリフェニレンオキサイド、テトラフル オロエチレン、1塩化3.弗化エチレン、非素化エ チレンプロピレン共重合体などが挙げられる。ま た、これらの共重合体や、他の有機重合体との共

μπの範囲であることが望ましい。

本発明におけるガスパリア圏は、inまたは S.nからなる単一金属あるいはこれらの合金のフッ 素を含む金属酸化物であり、inと Snのフッ素 を含む混合酸化物や複合酸化物膜も含まれる。

これらのファ案を含む金属酸化物層は金属1原子に対し、ファ素が 0.05~1原子結合していることが重要であり、さらに好ましくは金属1原子に対し、ファ紫が 0.2~0.8原子結合しているものがよい。ファ紫が金属1原子に対し、0.5原子未満の場合には、電気導電性が発現し、例えば第4図に示すごとき電界発光素子の防電用フィルムに使用した場合、引き出し電極との間で短絡の発生のおそれがある。またファ紫が金属1原子に対し、1原子を超えて含まれる場合には、基体とファ紫を含む金属酸化物層との接着性が悪くなり、ガスバリア性が扱われるため好ましくない。

金属酸化物層中には、上記の金属原子以外の元 素、例えば、Ti、Zr、Zn、Fe, Sb, C. Mo..W. Cu, Al, Si, Niなどが、微量 含まれていても良い。

フッ素を含む金属酸化物層の厚さとしては、防 温性と可とう性の点で、30~300人の範囲が 好ましい。これらのフッ素を含む金属酸化物層は、 30人以上でガスバリア性が発現し、50人以上 の膜厚で十分なガスバリア性が得られる。また、 必要以上に膜厚を厚くしても、これらのフッ素を 含む金属酸化物層の場合にはガスバリア性能が向 上せず、300人を超えるとかえって透明性や可 とう性が低下する。さらに好ましくは70~25 0人である。

またガスパリア暦を形成した本発明の透明ガスパリアフィルムは、その表面抵抗値が 1 × 1 0 7 Ω / □以上であることが好ましく、これにより例えば電界発光素子などに用いる場合でも、透明ガスパリアフィルムの強部と引き出し電極との間の短絡を確実に防止できる。

本発明においては、ガスパリア層に金属酸化物 が金属1原子に対し、0.05~1原子のフッ素

じて熱可塑性接着層が積層される。熱可塑性接着 層は、プラスチックフィルム側でも、金属酸化物 層側であってもよいが、好ましくは金属酸化物層 側に形成するのがよい。

本発明でいう熱可塑性接着層とは、加熱および 加圧により接着が可能な高分子層をいい、その代 衷的な例としては、次のようなものがある。

ポリエチレン、ポリプロピレン、エチレンープロピレン共重合体などのポリオレフィン、ポリエステル、ポリアミド、アイオノマー、エチレン酢ピ共重合体、アクリル酸エステル、メタアクリル酸エステルなどのアグリル樹脂、ポリピニルアセタール、フェノール、変成エポキシ樹脂などおよび、これらの共重合体や、混合物なとが挙げられる。

このうち、ポリオレフィン、ポリエステル、ポ リアミド、アイオノマー、エチレン酢ビ共重合体 が望ましい。

ヒートシール可能な熱可塑性接着層の厚さは、 接着力の点で、10~200μmの範囲が好まし を含むことでガスバリア性を損わずに表面電気抵 抗値を高くできる点で有効である。

またプラスチックフィルム上に、2 暦以上のフッ素を含む金属酸化物層を積層すると、ガスバリア性がさらに向上する。この際、それぞれのフッ素を含む金属酸化物層が有機薄膜層によって隔でられていることが好ましい。このため、プラスチックフィルム上にフッ素を含む金属酸化物層上にすられて後、このフッ素を含む金属酸化物層と形成する方法をとることが銀ましい。

有機薄膜層として用いられる樹脂としては、ポリエステル樹脂、アクリル樹脂、エポキシ樹脂、ピニル樹脂、メラミン樹脂、ウレタン樹脂、アイオノマー、ポリカーボネートなどが挙げられる。 有機薄膜層の厚さとしては、0.1~10μmの範囲が好ましく、さらに好ましくは0.3~2μmである。

かかる透明ガスパリアフィルム片面に必要に応

·く、30~100µmがより好ましい。

透明ガスバリアフィルムの片面に熱可塑性接着層を積層する方法としては、熱可塑性接着層の成分を有機溶剤に溶解してコーティングする方法や、熱可塑性接着層の成分を溶融し、抑出しラミネートする方法、あるいは、あらかじめ熱可塑性接着層のシートを作製し、これをドライラミネートなどにより接着積層する方法などの公知の方法が採用できる。

熱可塑性接着層のヒートシール温度は、使用する熱可塑性接着層の特性に合せて適宜、選択することができるが、80℃~180℃の温度でヒートシールできるものであることが好ましい。

本発明のガスパリア層は、いわゆる真空蒸篭、 スパッタリングなどの真空薄膜形成法で形成でき るが、防湿効果を十分に発揮させるためには、ス パッタリングで形成することが好ましい。

本発明でいうスパッタリングとは、直流 2 極ス パッタ、高周波 2 極スパッタ、直流マグネトロン スパッタ、高周波マグネトロンスパッタなどの、 公知のスパッタリング法が、全て含まれる。 また、スパッタリングの際、酸素などの反応性ガスを導入する、いわゆる反応性スパッタリングも含まれる。

なかでも、プラスチックフィルムを基体として 用いた本発明の場合には、InまたはSn、ある いはこれらの合金の金属ターゲットを使用し、ア ルゴンガス、酸素ガスおよびフロロアルカン系ガ ス等からなる混合ガスを真空槽内に導入して行う、 いわゆる、反応性スパッタリングが望ましく、更 に、反応性直旋マグネトロンスパッタ、反応性高 周波マグネトロンスパッタが、金属酸化物層の均 一性、生産性の点で最も好ましい。

反応性スパッタリングの際の真空装置内の圧力は、金属酸化物層の透明性やガスパリア性に大きく影響し、好ましくは、 $8\times10^{3}\sim8\times10^{3}$ トール、さらに好ましくは、 $2\times10^{4}\sim5\times10^{3}$ トール、最も好ましくは、 $5\times10^{4}\sim1\times10^{4}$ トールの範囲が望ましい。

反応性スパッタリングの際に使用するガス組成

は、使用するターゲット材料や投入電力に応じて、 適宜、選択される。

混合ガスとしてアルゴン、酸素およびフロロアルカンガスを使用する場合は、アルゴンに対する酸素の割合は1~50容量%の範囲が好ましく、ガスパリア性を増すためには20~50容量%がより好ましい。酸アルゴンと酸素の混合ガスに対するフロロアルカンガスの割合は1~30容量%の範囲が好ましく、高抵抗とするためには5~30容量%がさらに好ましい。

フロロアルガンガスとしては特に限定されないが、透明性を向上させるために C_2 F_6 、 C_3 F_6 、 C_4 F_8 などのパーフルオロアルカン、C H_4 H_2 などのフロロアルカンを使用することが好ましく、中でも C_2 H_4 H_6 などのパーフルオロアルカンがより好ましい。

本発明の透明ガスパリアフィルムは、湿気を娘 う電子部品の包装、湿気および酸化を防ぐための 食品包装、医薬品の包装などとして広く用いるこ

とができる。中でも電界発光素子などの電子部品 の防温用フィルムとして有用である。

[発明の効果]

本発明の透明ガスパリア性フィルムは、上述の ごとく構成したので、以下のような優れた効果を 有する。

- (1) 高抵抗のため発光素子等に用いる場合、引き出し電極との間で短絡のおそれがない。
- (2) ピンホールが少なく水蒸気、酸素等の気体のガスパリア性に優れる。
 - (3)可とう性に優れる。
 - (4) 高温での防湿性に優れる。
 - ⑤ 透明性に優れている。
 - 69 薄膜化できる。

[実施例]

以下、実施例について説明する。

本発明における特性の測定には、次の方法を用いた。

(イ) 光線透過率

分光光度計(日立製作所购、自記分光光度計3

2 3 型)にて、分光光線透過率を測定し、波長 5 5 0 n m での透過率を光線透過率とした。

(口) 透湿度

第2図に示される構成の透明ガスパリアフィルムから10cm角の大きさ2枚を切り出し、ヒートシーラーで内寸法7cm×7cmの袋とした。この袋の中には粒状の乾燥シリカゲル5~10gを充填した。この袋を40℃、90%RHの恒温恒温槽に入れ、24時間後の袋全体の重異W。(g)と98時間後の重量W、を測定し、次式か

 $(W_1 - W_0) / (3 \times 0.07^2 \times 2)$

単位 : [g/m· 14kr]

(ハ) ピンホールテスト

ら40℃での透湿度を計算した。

第2図に示される構成の透明ガスパリアフィルムを10cm×6cmの大きさで2枚切り出し、この2枚のフィルムの間に8cm×4cmの大きさの清浄な銅を真空蒸着したプラスチックフィルムをラミネーターを用いて熱圧着し、密閉した。この試料を硫化水素ガスを充満したデシケータに

72時間放置し、2枚の透明ガスパリアフィルム の内部に密閉された銅蒸澄フィルム面1cm2あ たりの腐食点の数をピンホールの数とした。

(二) 表面電気抵抗値

三菱油化(株)製の表面電気抵抗函定器 (Mo del HT-210)を用いてフッ素を含んだ 金鼠酸化物層の表面電気抵抗値を測定した。

(ホ) フッ素の含有率測定法

VG Scientific社製、X線電子分 光測定装置「ESCALAB5」により、インジ ウム、観とファ素の原子数比を測定した。 実施例1~5. 比較例1

二軸延伸ポリエチレンテレフタレートフィルム (摩さ50 µm) を幅300mm、長さ500m のロール状とし、巻取式直流マグネトロンスパッ タリング装置に装着した。ターゲットはインジヴ ム金属板 (純度99.9%) を使用し、真空容器 を5×10^ゃトール以下に真空排気した後、アル ゴン・酸素混合ガス (混合比 70:30 体積%) を0.228/minとC2Foで示されるパー

比較例1~5

実施例1~5において、C2 Fe ガスを混合せ ず、アルゴンと酸素の混合ガスのみにして、実施 例1~5と同様の条件でスパッタリングを行って、 、酸化インジウム層を作製し、実施例1~5と同様 に未延伸ポリプロピレンフィルムをドライラミネ ートしたものをそれぞれ、比較例1、2,3、4 および5とする。測定結果をを表1に示す。

実施例6~10

二軸延伸ポリエチレンテレフタレートフィルム (厚さ50 µm)を基体として、この上に反応性 直流マグネトロンスパッタ法により、フッ素を含 む酸化インジウムと酸化錫からなる複合酸化物膜 を形成した。

ターゲットはインジウムと錫の合金板(インジ ウムと蝎の組成比 90:10重量%、サイズ5 インチ×12インチ)を使用し、5×10⁴トー ル以下に真空排気した後、アルゴン・酸素混合ガ ス (混合比 70:30体積%)を0.271/ minとCs Fs で示されるパーフロロアルカン

フロロアルカンガス0.05ℓ/minを導入し、 圧力を6×10×トールとして、ガスパリア層を 形成した。投入電力を2KWに設定して、フィル ム速度により、フッ素を含む酸化インジウム層の 膜厚をそれぞれ500点、250点、100点、 70人、50人のものを作製した。

次いで、これらのスパッタしたフィルムのフッ **業を含む金属酸化物が形成された側に、ポリエス** テル系接着剤(東洋モートン(株)製"アドコー ト" AD-578) を乾燥後の厚みが約3μmと なるよう堕布して、ドライラミネート法により未 延伸ポリプロピレンフィルム(厚さ50μm)を 接着した。

ファ素を含む酸化インジウムの厚さが、500 A. 250 A. 100 A. 70 A. 50 A のもの をそれぞれ、実施例1、2、3、4および5とす

実施例1~5のインジウム1原子に対するフッ 素原子の割合は 0. 58であった。測定結果を表 1に示す。

ガス O. 05 l/minを導入し、圧力を 8×1 0~トールとして、スパッタリグを行った。投入 電力を2KW一定にして、フィルム速度により、 フッ索を含む酸化インジウムと酸化錫からなる複 合酸化膜の膜厚をそれぞれ500点。250点。 100人, 70人, 50人のものを作製した。

次いで、これらのスパッタしたフィルムのフッ 素を含む金属酸化物が形成された側に、ポリエス テル系接着剤(東洋モートン(株)製 "アドコー ト* AD-578) を乾燥後の厚みが約3μmと となるように塗布して、ドライラミネート法によ り、 5 0 μ m の未延伸ポリプロピレンフィルムを 接着した。

フッ素を含む酸化インジウム一酸化錫複合酸化 物膜の厚さが、500人, 250人, 100人, 70A. 50Aのものを、それぞれ実施例6、7、 8、9および10とする。

実施例6~10のガスパリア層であるフッ素を 含む複合酸化物膜中のフッ素原子は、インジウム と蝎の原子数比の和(1原子)に対し0.71で

表 1

	光線透過平	表面電気抵抗値	透湿度	ピンホール
	(%)	(12 ∕ □)	(g/m² day)	個/(1)2
実施例1	77	.8 × 1 07	0. 25	20
~ 2	82	1. 5×10	0. 15	21
. ~ 3	87	>2×10*	0.15	23
" 4	88	>2×10*	0. 2	28
" 5	8.8	>2×10°	0. 3	32
~ 6	77	5×10'	0. 25	23
7 7	8 2	1×10*	0. 2	22
~ 8	87	>2×10*	0. 2	21
~ 9	88	>2×10*	0. 2	25
W 16	8.8	>2×10*	0. 3	33
比較例1	75	4×10 ²	0. 4	8 5
" 2	80	4×10°	0.35	70
~ 3	86	8×10 ²	0.35	68
" 4	87	4×103	0. 4	8 2
~ 5	88	3×104	0.5	91
~ 6	7.5	2. 5×10 ²	0.4	6.5
~ 7	80	6×10 ²	0. 35	56
7 8	8 6	3×103	0. 35	59
" 9	87	2×104	0. 4	7 2
- 1	88 0	1×10°.	0.6	98

片面に、酸化インジウム一酸化錫の透明導電膜とアルミニウム箔の引き出し電極を形成した二軸延伸ポリエチレンテレフタレートフィルム(厚さ75μm)の透明導電隔上に、スクリーン印刷法で、シアノエチルセルロース(40部)、銅をドープした硫化亜鉛粉末(60部)、DMF(100部)の混合溶液を塗布乾燥して、80μmの発光層を形成した。

この発光層の上に、スクリーン印刷法で、シア ノエチルセルロース(50部)、チタン酸パリウム粉末(50部)、DMF(100部)の混合溶 液を塗布乾燥して、100μmの高誘電率層を形成した。

次いで、二軸延伸ポリエチレンテレフタレートフィルム(厚さ 5 0 μm)の片面に、アルミニウム箔(厚さ 3 5 μm)と引き出し電極を積層した電極層のアルミニウム箔面と、前記の高誘電率層面とを重ね合せ、150℃で加熱接着し、切断して、100×100mmのサイズの電界発光体を得た。

あった。湖定結果を表1に示す。 比較例6~10

実施例6~10において、導入混合ガスのうち C 1 F 8 ガスを導入せず、アルゴン・酸素(混合比70:30)のみを導入し、実施例6~10と同様の条件でスパッタリングして得られた酸化インジウム一酸化錫複合酸化物膜に未延伸ポリプロピレンフィルムをドライラミネート法により接着したものをそれぞれ比較例6、7、8、9および10とする。測定結果を表1に示す。

表1に記載された光線透過率、表面電気抵抗、 透湿度およびピンホールの値から明らかなように、 本発明を満足する実施例1~10の透明ガスバリ アフィルムは透明性が優れ、表面電気抵抗が高い。 またピンホールが少なくなり優れたガスバリア性 を示す防湿フィルムであった。一方、比較例1~ 10はピンホールが多く、表面電気抵抗値の低い ものであった。

実施例11

(電界発光体の作製)

(透明ガスパリアフィルムの作製)

二軸延伸ポリエチレンテレフタレートフィルム (厚さ50μm、幅300mm、長さ200m) の片面に、反応性スパッタ法でフッ素を含む酸化 インジウムの膜を形成した。

反応性スパッタは、巻取式マグネトロンスパッタ装置を使用し、インジウム板(厚さ5mm、1150×350mm)をターゲットとして、アルゴン・酸素混合ガス(混合比70:30容量%)を0.224/minとC2F6で示されるパーフロロアルカンガス0.058/minとをガスミキサーにより混合した後、真空槽内に導入し、圧力6.0×10⁴トールとし、巻取速度を調整して膜厚が100人のファ素を含む酸化インジウム膜を得た。得られたファ素を含む酸化インジウム膜の表面抵抗は10°Ω/□以上であった。

次いで、このフッ素を含む酸化インジウム吸の 上に、押出しラミネート法により、厚さ 5 0 μm のエチレン一酢ビ共重合樹脂からなるヒートシー ル層を積磨し、透明ガスパリアフィルムを作製し

持開平2-265738(8)

た。得られた透明ガスパリアフィルムのガスパリア層のインジウムとファ素の組成比はインジウム 1.原子に対しファ素が 0.58原子であった。この透明ガスパリアフィルムを実施例11とする。 (電界発光素子の作製)

前記の透明ガスパリアフィルムを2枚、ヒートシール暦が互いに内側になるようにして重ね、この間に前記の電界発光体を挿入して、加熱プレスにより150℃で接着して電界発光索子を得た。

次に、実施例11において、透明ガスパリアフィルムの作製時に、C2Faガスを導入せず、アルゴン・酸素の混合ガス(混合比60-40容量%)を0.228/mlnとした以外は実施例11と同様にして透明ガスパリアフィルムを作製した。この透明ガスパリアフィルムを比較例11とする。

比較例11のファ素を含んでいない酸化インジ ウム層の表面抵抗は4×10°Ω/□であった。

実施例11と比較例11を用いた電界発光素子を各々50個作製し、これらについてそれぞれ各

素子の引き出し電極に400Hz、100Vの電圧を印加し短絡テストを行った。

比較例11については50個中23個が短絡により発光しないか、著しく輝度が低下した。一方、本発明を満足する実施例11は短絡不良は全く生じなかった。

4. 図面の簡単な説明

第1図~第3図はそれぞれ本発明の透明ガスバリアフィルムの1例を示す概略断面図、第4図は本発明の透明ガスバリアフィルムを用いた電界発光素子の1例を示す概略断面図である。

1はプラスチックフィルム、2はガスパリア層、 3は接着層、4は有機薄膜層、5は電極層、6は 誘電率層、7は発光層、8は透明電極層である。

特許出願人 東レ株式会社

第1図

第2図

第3図

第4図