Acceleració RT

Carlos Andujar
Desembre 2012

Continguts

- Control Adaptatiu de la Recursivitat
- Acceleració de la intersecció raig primari -escena
- Acceleració intersecció raig-escena
- Jerarquia de Volums Englobants
- Subdivisió uniforme
- Octrees
- Partició binaria de l'espai (BSP trees)

Control adaptatiu recursivitat

```
acció rayTracing
   per i en [0..w-1] fer
   per j en [0..h-1] fer
      raig:=calcularRaigPrimari(i, j, camera);
      color:=traçarRaig(raig, escena, μ, 0, 1);
      setPixel(i, j, color);
   fper
                                               Contribució
                                  Nivell
   fper
faccio
```


Control adaptatiu recursivitat

```
funció tracarRaig(raig, escena, µ, niv, contrib)
  si niv < NIVELL_MAX ^ contrib > MIN_CONTRIB llavors
    info:=calculaInterseccio(raig, escena)
    si info.hiHaInterseccio() llavors
      color:=calcularIF(info,escena);
      si esReflector(info.obj) llavors
          raigR:=calculaRaigReflectit(info, raig)
          color:=color+ K<sub>p</sub>·traçarRaig(raigR, escena, μ, niv+1, K<sub>p</sub>·contrib)
      fsi
      si esTransparent(info.obj) llavors
          raigT:=calculaRaigTransmès(info, raig)
          color:=color+ K<sub>T</sub>:tracarRaig(raigT, escena, info.µ, niv+1,K<sub>T</sub>:contrib)
      fsi
    sino color:=colorDeFons
    fsi
  sino color:=Color(0,0,0); // o colorDeFons
  fsi
  retorna color
ffunció
```


- Control Adaptatiu de la Recursivitat
- Acceleració de la intersecció raig primari
- Acceleració intersecció raig-escena
- Jerarquia de Volums Englobants
- Subdivisió uniforme
- Octrees
- Partició binaria de l'espai (BSP trees)

Acceleració intersecció raig primari

Continguts

- Control Adaptatiu de la Recursivitat
- Acceleració de la intersecció raig primari
- Acceleració intersecció raig-escena
- Jerarquia de Volums Englobants
- Subdivisió uniforme
- Octrees
- Partició binaria de l'espai (BSP trees)

Acceleració intersecció raig-escena

- L'algorisme bàsic d'intersecció raig-escena requereix comprobar la intersecció amb tots els objectes de l'escena → cost O(N)
- Hi ha una sèrie de tècniques que permeten assolir una búsqueda sublinial mitjançant algun tipus de subdivisió.

Tipus de subdivisions en gràfics

Subdivisió de l'espai

- ■Es particiona l'espai en subregions (cel·les)
- ■Un punt de l'espai pertany a una única cel·la fulla
- ■Un objecte pot ocupar més d'una cel·la fulla
- ■Exemples: Voxelització, octrees, BSP, kd-tree...

Subdivisió dels objectes

- ■Es particionen els objectes en grups; equivalent a agrupar objectes
- ■Un objecte pertany a una única fulla
- ■Un punt de l'espai pot estar en múltiples fulles
- ■Exemples: *jerarquies de volums englobants*

Exemple de subdivisió de l'espai

Exemple de subdivisió dels objectes

La geometria està repartida entre els nodes fulla de l'arbre

Acceleració intersecció raig-escena

Subdivisions més importants per Ray-tracing:

- Jerarquia de Volums Englobants (Bounding Volume Hierarchies)
- Subdivisió Uniforme de l'Espai (Uniform Space Subdivision)
- Arbres octals (Octrees)
- Partició Binaria de l'Espai (Binary Space Partition, BSP)

Continguts

- Control Adaptatiu de la Recursivitat
- Acceleració de la intersecció raig primari
- Acceleració intersecció raig-escena
- Jerarquia de Volums Englobants
- Subdivisió uniforme
- Octrees
- Partició binaria de l'espai (BSP trees)

Jerarquies de volums englobants

Bounding Volume Hierarchies (BVH)

- Associar un volum englobant a cada objecte individual ens permet descartar ràpidament els casos de nointersecció amb l'objecte.
- Si agrupem objects propers i calculem el volum englobant del grup, podrem descartar ràpidament casos de no-intersecció amb tot el grup.

Exemple de subdivisió dels objectes

Exemple de subdivisió dels objectes

Exemple 3D

Classificació de BVH

Segons el tipus de volum englobant:

Segons l'aritat de l'arbre (binari, n-ari...)

Representació de l'arbre

```
class Node : public Surface
{
  virtual bool hit(ray, λ<sub>min</sub>, λ<sub>max</sub>, hitRecord);
  ...
  Node *left, *right;
  Capsa capsa; // o qualsevol volum englobant vector<Surface*> objectes;
};
```


Si el raig no interseca el volum englobant d'un node, no cal comprovar la intersecció amb els fills

Propietats:

- Els volums associats als fills d'un node poden solapar-se.
- Si un objecte està dins el volum associat a un node no necessàriament pertany a un descendent del node.
- Si el raig interseca el node, cal comprovar la intersecció amb tots els fills.

Algorisme recursiu (arbre binari):

- Comprovar intersecció amb la capsa del node. Si no intersecta la capsa → el raig no intersecta el node
- Altrament, comprovar la intersecció amb el subarbre esquerra i el subarbre dret, i retorna la intersecció més propera (recursiu).


```
funció Node::hit(raig, \lambda_{min}, \lambda_{max}, infoHit) retorna booleà
 si capsa.hit(raig, \lambda_{min}, \lambda_{max}) llavors
    si ésTerminal() Ilavors
      <comprova intersecció amb les primitives>
    altrament
        hitLeft := left\rightarrowhit(ray, \lambda_{min}, \lambda_{max}, infoLeft)
        hitRight := right\rightarrowhit(ray, \lambda_{min}, \lambda_{max}, infoRight)
       <retorna la intersecció més propera de les dues>
 altrament retorna fals;
ffunció
```


Construcció jerarquia AABB

Un altre exemple

Continguts

- Control Adaptatiu de la Recursivitat
- Acceleració de la intersecció raig primari
- Acceleració intersecció raig-escena
- Jerarquia de Volums Englobants
- Subdivisió uniforme (voxelització)
- Octrees
- Partició binaria de l'espai (BSP trees)

Subdivisió uniforme (voxelització)

Recorregut dels voxels

Recorregut DDA

Recorregut DDA

Continguts

- Control Adaptatiu de la Recursivitat
- Acceleració de la intersecció raig primari
- Acceleració intersecció raig-escena
- Jerarquia de Volums Englobants
- Subdivisió uniforme (voxelització)
- Octrees
- Partició binaria de l'espai (BSP)

Octrees

Subdivisió de l'espai

Estructura de l'octree

Octrees: representació

Octrees: construcció

```
constructor OctreeNode(objectes, n, capsa)
 si #objectes < MAX OBJ ó n > MAX DEPTH llavors
        fills[0..7]:=NULL;
        obj := objectes;
 altrament
   per i en [0..7]
    vector<Surface*> objectesFill;
    objectesFill := <objectes que intersecten el node fill>
    fills[i] = new OctreeNode(objectesFill, n+1, octant(capsa,i))
  fper
fconstructor
```


INTERSECCIÓ TRIANGLE-CAPSA

Intersecció triangle-capsa

- Tomas Akenine-Möller, Fast 3D Triangle-Box Overlap Testing, Journal of Graphics Tools, 6(1), 2001
- Codi font: http://jgt.akpeters.com/papers/AkenineMoller01/tribox.html

Intersecció triangle-capsa

Entrada:

- Capsa: centre **c** i semiarestes hx, hy, hz
- Triangle: vèrtexs (u0, u1, u2)

Inicialització:

- Es trasllada el triangle per portar el centre de la capsa a l'origen
- Triangle transformat: (v0, v1,v2)

Separating Plane Theorem

■ Dos objectes convexos A, B, no s'intersecten ↔ existeix un pla separador Π tal que A està en un semiespai i B a l'altre semiespai.

Separating Axis Theorem

- Sigui Π un pla separador de A i B. Qualsevol recta perpendicular al pla s'anomena eix separador perquè les projeccions ortogonals de A i B sobre aquesta recta són disjuntes.
- Existeix un eix separador

 A i B no s'intersecten.

Exemple 2D (triangle-capsa)

SAT per poliedres convexos

- Dos poliedres convexos A i B són disjunts ↔ un d'aquests eixos és separador:
 - □ Normal d'una cara de A
 - □ Normal d'una cara de B
 - □ Producte vectorial d'una aresta de A amb una aresta de B

Intersecció triangle-capsa

- L'algorisme comprova tres tipus d'eixos (13 tests):
 - a) Les tres normals de les cares del cub: (1,0,0), (0,1,0), $(0,0,1) \rightarrow 3$ eixos
 - b) La normal del triangle $(n_x, n_v, n_z) \rightarrow 1 eix$
 - c) El producte vectorial d'una aresta del cub (els tres eixos coordenats) amb una aresta del triangle (tres direccions) → 9 eixos
- Si en algun moment es troba que l'eix és separador, l'algorisme retorna que no hi ha intersecció.

Test (a)

Pels eixos coordenats (1,0,0), (0,1,0), (0,0,1) n'hi ha prou amb considerar la capsa amb la capsa englobant del triangle.

Test (b)

Per la normal del triangle (n_x, n_y, n_z), el test equival a comprovar si el pla del triangle intersecta la capsa.

Test (b)

- Es tracta doncs d'un test d'intersecció pla-AABB.
- N'hi ha prou amb considerar els dos vèrtexs de la AABB (els de la diagonal més aliniada amb la normal del triangle). Si els vèrtexs pertanyen a semiespais diferents → el pla intersecta la capsa → l'eix no és separador

Test (c)

Pels nou eixos restants, els passos a fer són:

- Projectar els 3 vèrtexs del triangle sobre l'eix
- Obtenir el mínim i el màxim d'aquests valors
- Projectar els 8 vèrtexs de la capsa sobre l'eix
- Obtenir-ne el mínim i el màxim
- Comprovar el possible solapament dels dos intervals (1D, trivial)

Continguts

- Control Adaptatiu de la Recursivitat
- Acceleració de la intersecció raig primari
- Acceleració intersecció raig-escena
- Jerarquia de Volums Englobants
- Subdivisió uniforme (voxelització)
- Octrees
- Partició binaria de l'espai (BSP)

Partició Binaria de l'Espai (BSP)

Un arbre BSP és el resultat de subdividir l'espai de forma recursiva mitjançant plans.

Partició Binaria de l'Espai (BSP)

- Cada node interior de l'arbre conté un pla.
- El node arrel representa tot l'espai.
- Cada fill d'un node representa la intersecció de la regió del pare amb el semiespai positiu/negatiu del pla.
- Un BSP subdivideix l'espai en regions convexes.

BSP per RayTracing

- Per eficiència s'agafen plans aliniats amb els eixos.
- Els nodes fulla contenen apuntadors als objectes de la capsa associada al node.
- Un mateix objecte pot estar referenciat en molts nodes.

Representació BSP

```
class BSPNode : public Surface
{
    virtual bool hit(ray, λ<sub>min</sub>, λ<sub>max</sub>, hitRecord);
    ...
    Surface *left, *right; // apuntadors als fills/objectes
    Eix eix; // Orientació del pla (0=X, 1=Y, 2=Z)
    float d; // coeficient d del pla
};
```


Pla X=d Raig P+λ**v**

Cas A: $P.x < d^v.x < 0$

Cas A': P.x>d $^{v.x} > 0$

Cas B: $P.x < d^v.x > 0$

Cas B': P.x>d ^ v.x < 0

- Casos A i A': només cal comprovar la intersecció amb un dels dos fills (esquerra en A, dret en A').
- Casos B i B': hem de comprovar la intersecció amb el primer fill, i si no hi ha intersecció, amb el segon fill.


```
funció BSPNode::hit(P, v, \lambda_{min}, \lambda_{max}, hit)
 si Px < d llavors // casos A i B
                                                                               Cas B
   si vx < 0 llavors // cas A
     retorna (left!=NULL ^ left\rightarrowhit(raig, \lambda_{min}, \lambda_{max}, hit)
   fsi
   // cas B
   λ=<intersecció raig - pla>
   si \lambda > \lambda_{max} llavors // només cal comprobar amb un fill
     retorna (left!=NULL ^ left\rightarrowhit(raig, \lambda_{min}, \lambda_{max}, hit)
   // cal comprobar els dos fills
   si (left!=NULL ^{\prime} left\rightarrowhit(raig, \lambda_{min}, \lambda_{max}, hit) llavors retorna cert fsi
   retorna (right!=NULL ^ right\rightarrowhit(raig, \lambda_{min}, \lambda_{max}, hit)
 altrament // codi semblant pels casos A' i B'
 fsi
ffuncio
```

Cas B

Eix X

Pla X=d