Maximal amenability of the radial subalgebra of free quantum groups

Roland Vergnioux joint work with Xumin Wang (Seoul)

University of Normandy (France)

Quantum Groups Seminar, June 3rd, 2024

Outline

- f 1 The discrete quantum groups ${\mathbb F} O_N$
 - Orthogonal free quantum groups
 - The von Neumann algebra
 - Representation theory
- 2 Maximal amenability
 - The radial subalgebra
 - A classical analogy
 - The main Result
- About the Proof
 - Popa's strategy
 - The bimodule basis
 - The linear basis

Orthogonal free quantum groups

Definition (Wang)

S. Wang's algebra $A_o(N)$ is defined by generators and relations:

$$A_o(N) = \langle v_{ij}, 1 \leq i, j \leq N \mid v_{ij}^* = v_{ij}, v = (v_{ij})_{ij} \text{ unitary} \rangle$$

It is connected to classical groups via two natural quotient algebras:

$$A_o(N)/\langle v_{ij}, i \neq j \rangle \simeq C^*(\mathbb{Z}_2^{*N}),$$

 $A_o(N)/\langle [v_{ij}, v_{kl}] \rangle \simeq C(O_N).$

Moreover the formula $\Delta(v_{ij}) = \sum_k v_{ik} \otimes v_{kj}$ defines a coproduct Δ which turns $A_o(N)$ into a Woronowicz C^* -algebra.

We denote
$$A_o(N) = C(O_N^+) = C^*(\mathbb{F}O_N)$$
.

 O_N^+ is a compact quantum group and $\mathbb{F}O_N$ is a discrete quantum group.

There are "Q-deformations" O_Q^+ , $\mathbb{F}O_Q$ where $Q \in GL_N(\mathbb{C})$, $Q\bar{Q} = \pm I_N$. For N = 2 we have $\{O_Q^+, Q\bar{Q} = \pm I_2\} = \{SU_q(2), q \in [-1,1]\}$.

The von Neumann algebra

As a Woronowicz C^* -algebra, $C^*(\mathbb{F}O_N)$ has a canonical "Haar" state h.

- ightharpoonup GNS representation $\lambda: C^*(\mathbb{F}O_N) o B(\ell^2\mathbb{F}O_N)$
- \rightarrow von Neumann algebra $\mathscr{L}(\mathbb{F}O_N) = \lambda(C^*\mathbb{F}O_N)''$.

For $N \geq 3$, $\mathcal{L}(\mathbb{F}O_N)$ shares many properties with the **free group factors:**

• it is a full II_1 factor with Property AO,

[V., Vaes-V.]

it has the HAP and the CBAP,

- [Brannan, Freslon] [De Commer-Freslon-Yamashita]
- it is stronly solid hence has no regular MASA,
- [Isono, Fima-V.]

• it embeds in R^{ω} .

[Brannan-Collins-V.]

On the other hand:

• $\beta_1^{(2)}(\mathbb{F}O_N)=0$ for all N,

- [V., Kyed-Raum-Vaes-Valvekens]
- and in fact $\mathcal{L}(\mathbb{F}O_N) \not\simeq \mathcal{L}(F_M)$.

[Brannan-V. 2018]

Representation theory

Corepresentation of $\mathbb{F}O_N$:

$$u \in \mathscr{U}(B(H_u) \otimes \mathscr{L}(\mathbb{F}O_N))$$
 s.t. $(\mathrm{id} \otimes \Delta)(u) = u_{12}u_{13}$.

They form a rigid tensor C^* -category $Corep(\mathbb{F}O_N)$ with a canonical fiber functor to Hilbert spaces $(u \mapsto H_u)$.

[Banica 1996]: This category is the **Temperley-Lieb category** TL_N with generating object \bullet and generating morphism $\cap: 1 \to \bullet \otimes \bullet$. The fiber functor is determined by $F(\bullet) = H_{\bullet} = \mathbb{C}^N$, $F(\cap) = \sum_i e_i \otimes e_i$. In particular $\operatorname{Irr}(\mathbb{F}O_N) = \{v_k, k \in \mathbb{N}\}$, with $v_0 = 1, v_1 = \bullet = (v_{ii})_{ii}$ and $\forall k > 1 \quad v_k \otimes v_1 \simeq v_1 \otimes v_k \simeq v_{k-1} \oplus v_{k+1}$

From the category to the algebra: **coefficients**

 $u \in \operatorname{Corep}(\mathbb{F}), X \in B(H_u) \to u(X) = (\operatorname{Tr} \otimes \operatorname{id})[(X \otimes 1)u] \in \mathcal{L}(\mathbb{F}).$

 \rightarrow computations in $\mathcal{L}(\mathbb{F})$ using TL_N :

if
$$x = v_2(X), y = v_2(Y)$$
 then $h(xy) = X$

4 D F 4 M F 4 B F 4 B F B 5 / 13

Outline

- f 1 The discrete quantum groups ${\mathbb F} O_N$
 - Orthogonal free quantum groups
 - The von Neumann algebra
 - Representation theory
- Maximal amenability
 - The radial subalgebra
 - A classical analogy
 - The main Result
- About the Proof
 - Popa's strategy
 - The bimodule basis
 - The linear basis

The radial subalgebra

Definition

The radial subalgebra is $A = \chi_1'' \subset \mathcal{L}(\mathbb{F}O_N)$ where $\chi_1 = \sum_k \lambda(v_{kk})$.

One can also consider $\underline{\chi}_1 = \sum_k v_{kk}$, $\underline{A} = C^*(\underline{\chi}_1) \subset C^*(\mathbb{F}O_N)$.

Known facts:

- $\operatorname{Sp}(\underline{\chi}_1) = [-N, N]$ (the image of $\underline{\chi}_1$ in $C(O_N)$ is Tr_N).
- [HAP, Brannan] There is a cond. expectation $E: C^*(\mathbb{F}O_N) \to \underline{A}$. The positive forms $\operatorname{ev}_t \circ E$ are c_0 and converge to ε as $t \to N$.
- [Banica 1996] $\operatorname{Sp}(\chi_1) = [-2, 2]$ $\Rightarrow \mathbb{F}O_N$ not amenable, $\mathscr{L}(\mathbb{F}O_N)$ non injective.
- [Freslon-V. 2016] $A \subset \mathscr{L}(\mathbb{F}O_N)$ is maximal abelian and singular.
- [Krajczok-Wasilewski 2022] If Q is not unitary, $A \subset \mathcal{L}(\mathbb{F}O_Q)$ is not maximal abelian (and the inclusion is quasi-split).

A classical analogy

Why radial?

Analogy
$$\mathbb{F}O_N \longleftrightarrow F_N = \langle a_i \rangle$$

 $v = (v_{ij}) \longleftrightarrow a = \operatorname{diag}(a_i, a_i^{-1})$
 $\underline{\chi}_1 = \operatorname{Tr}(v) \longleftrightarrow \underline{\chi}_1 = \sum_i (a_i + a_i^{-1})$

In $\mathcal{L}(F_N)$, $A = \{ \sum f(|g|) \lambda(g) \in \mathcal{L}(F_N) \}$ where $|\cdot|$ is the word length.

Known facts for $A \subset \mathcal{L}(F_N)$:

- A is maximal abelian: $A' \cap M = A$,
- A is a singular MASA: $u \in \mathcal{U}(\mathcal{L}(F_N))$, $uAu^* \subset A \Rightarrow u \in A$,
- $\operatorname{Puk}(A) = \{\infty\}: \ \lambda(A)' \cap \rho(A)' \cap B(L^2(A)^{\perp}) \text{ is of type } I_{\infty},$
- A is maximal amenable: $A \subset B \subset \mathcal{L}(F_N)$, B amenable $\Rightarrow B = A$,
- A is absorbing amenable: B amenable, $A \cap B$ diffuse $\Rightarrow B \subset A$.

[Pytlik, Radulescu, Cameron-Fang-Ravichandran-White, Wen]

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

The main Result

Theorem

There exists $N_0 \ge 3$ such that, for all $N \ge N_0$, the radial subalgebra $A \subset \mathcal{L}(\mathbb{F}O_N)$ is absorbing amenable.

By work of Popa and Houdayer, it suffices to prove the following (strong) **Asymptotic Orthogonality Property** for $A \subset M$:

for every $y \in A^{\perp} \cap M$ and every bdd sequence $(z_r)_r \subset A^{\perp} \cap M$ s.t. $||[a, z_r]||_2 \to_{\omega} 0 \ \forall a \in A$, we have $(yz_r \mid z_r y) \to_{\omega} 0$.

For this we follow the strategy of **[Popa 1983]** which dealt with the case of the generator subalgebra $a_1'' \subset \mathcal{L}(F_N)$.

Open question: what about $v_{11}'' \subset \mathcal{L}(\mathbb{F}O_N)$?

Outline

- f 1 The discrete quantum groups ${\mathbb F} O_N$
 - Orthogonal free quantum groups
 - The von Neumann algebra
 - Representation theory
- 2 Maximal amenability
 - The radial subalgebra
 - A classical analogy
 - The main Result
- About the Proof
 - Popa's strategy
 - The bimodule basis
 - The linear basis

Strategy of the proof

Denote $A \subset \mathcal{L}(\mathbb{F}O_N) \subset B(H)$ the quantum radial subalgebra, $A_0 = a_1'' \subset \mathcal{L}(F_N) \subset B(H)$ the classical generator subalgebra. Work in the A, A-bimodule $H^{\circ} = A^{\perp} \cap H$.

Step 1. We find a convenient basis W of the A, A-bimodule H° . For each $x \in W$, we construct a basis $(x_{ii})_{ii}$ of AxA over \mathbb{C} . Case of A_0 : $W = \{$ words not starting, nor ending, with a_1 or $a_1^{-1} \}$. For $x \in W$ and $i, j \in \mathbb{Z}$, $x_{ii} = a_1^i x a_1^j$.

Strategy of the proof

Denote $A \subset \mathcal{L}(\mathbb{F}O_N) \subset B(H)$ the quantum radial subalgebra, $A_0 = a_1'' \subset \mathcal{L}(F_N) \subset B(H)$ the classical generator subalgebra. Work in the A, A-bimodule $H^{\circ} = A^{\perp} \cap H$.

Step 1. We find a convenient basis W of the A, A-bimodule H° . For each $x \in W$, we construct a basis $(x_{ij})_{ij}$ of AxA over \mathbb{C} . Case of A_0 : $W = \{$ words not starting, nor ending, with a_1 or $a_1^{-1} \}$. For $x \in W$ and $i, j \in \mathbb{Z}$, $x_{ii} = a_1^i x a_1^j$.

Step 2. Denote $V_m = \operatorname{Span}\{x_{ij}, x \in W, |i|, |j| \geq m\}$. We prove: For $y \in A^{\perp} \cap \mathbb{C}[\mathbb{F}O_N]$ and $\zeta_m \in V_m$, $\|\zeta_m\| = 1$, we have $(\zeta_m y \mid y\zeta_m) \to 0$. Case of A_0 : $V_m y \perp y V_m$ if y is supported on elements g with |g| < m.

4 D > 4 B > 4 E > 4 E > 9 Q P

Strategy of the proof

Denote $A \subset \mathcal{L}(\mathbb{F}O_N) \subset B(H)$ the quantum radial subalgebra, $A_0 = a_1'' \subset \mathcal{L}(F_N) \subset B(H)$ the classical generator subalgebra. Work in the A, A-bimodule $H^{\circ} = A^{\perp} \cap H$.

- **Step 1.** We find a convenient basis W of the A, A-bimodule H° . For each $x \in W$, we construct a basis $(x_{ij})_{ij}$ of AxA over \mathbb{C} . Case of A_0 : $W = \{$ words not starting, nor ending, with a_1 or $a_1^{-1} \}$. For $x \in W$ and $i, j \in \mathbb{Z}$, $x_{ii} = a_1^i x a_1^j$.
- **Step 2.** Denote $V_m = \operatorname{Span}\{x_{ij}, x \in W, |i|, |j| \geq m\}$. We prove: For $y \in A^{\perp} \cap \mathbb{C}[\mathbb{F}O_N]$ and $\zeta_m \in V_m$, $\|\zeta_m\| = 1$, we have $(\zeta_m y \mid y\zeta_m) \to 0$. Case of A_0 : $V_m y \perp y V_m$ if y is supported on elements g with |g| < m.
- **Step 3.** Denote F_m the projection onto $\operatorname{Span}\{x_{ii} \mid x \in Z, |i| < m, j\}$. Then for any $(u_i) \subset \mathcal{U}(A)$ converging weakly to 0, $||F_m u_i F_m|| \to i$ 0. Case of A_0 : ${}_AH^\circ \simeq {}_AL^2(A) \otimes K$, $F_m \simeq f_m \otimes \operatorname{id}$ with $\operatorname{rank}(f_m) < \infty$.

4 - 1 4 - 4 - 5 4 -

The bimodule basis

We compute using coefficients of $v^{\otimes k} = \cdots$:

$$X \in B(H_{\bullet}^{\otimes k}) \rightarrow v^{\otimes k}(X) \in \mathcal{L}(\mathbb{F}O_N) \subset H.$$

Consider the subspace $B_k \subset B(H_{\bullet}^{\otimes k})$ of elements X such that

$$X = 0 = X$$
 and $X = 0 = X$

 B_k is stable under the rotation map $\rho: B(H_{\bullet}^{\otimes k}) \to B(H_{\bullet}^{\otimes k})$:

$$\rho(X) = \begin{bmatrix} X \\ X \end{bmatrix}.$$

Let $W_k \subset B_k$ be an orthonormal basis of eigenvectors of ρ and $W = \{ v^{\otimes k}(X) \mid k \in \mathbb{N}^*, X \in \mathcal{W}_k \}.$

Proposition

We have $H^{\circ} = \operatorname{Span}(AWA)$ and $AxA \perp AyA$ for $x \neq y \in W$.

The linear basis

From $X \in B(H_{\bullet}^{\otimes k})$ one defines $X_{ij} \in B(H_{\bullet}^{\otimes i+k+j})$ using the Jones-Wenzl projections:

For
$$x = v^{\otimes k}(X) \in W$$
, put $x_{ij} = v^{\otimes i+k+k}(X_{ij})$.

Theorem

If N is large enough, $\{x_{ij}\}$ is a Riesz basis of \overline{AxA} , uniformly over $x \in W$.

Case of the classical generator MASA (Popa): $\{x_{ij}\}$ always orthogonal. Case of the classical radial MASA (Radulescu): $\{x_{ij}\}$ orthogonal if $k \neq 1$. Case of the quantum radial MASA : $\{x_{ij}\}$ never orthogonal. In fact "rapid off-diagonal decay" for the Gramm matrix and its inverse...

Open Problem: show that $N_0 = 3$ works!