Digital Signal Processing for Music Part 27: Denoising

alexander lerch

intro •o

Georgia Center for Music Tech Techology College of Design

problem: signal y is noisy

$$y(i) = x(i) + n(i)$$

- assumptions:
 - noise is uncorrelate
 - noise is stationary
- **objective**: estimate \hat{x} which minimizes the error

$$e(i) = x(i) - \hat{x}(i)$$

approach: filter the noisy signal

$$\hat{x}(i) = \sum_{i=0}^{\mathcal{O}-1} w(j) \cdot y(i-j)$$

problem: signal y is noisy

$$y(i) = x(i) + n(i)$$

- assumptions:
 - noise is uncorrelated
 - noise is stationary
- **objective**: estimate \hat{x} which minimizes the error

$$e(i) = x(i) - \hat{x}(i)$$

approach: filter the noisy signal

$$\hat{x}(i) = \sum_{i=0}^{\mathcal{O}-1} w(j) \cdot y(i-j)$$

Georgia Center for Music Technology

• **problem**: signal y is noisy

$$y(i) = x(i) + n(i)$$

- assumptions:
 - noise is uncorrelated
 - noise is stationary
- **objective**: estimate \hat{x} which minimizes the error

$$e(i) = x(i) - \hat{x}(i)$$

approach: filter the noisy signal

$$\hat{x}(i) = \sum_{i=0}^{\mathcal{O}-1} w(j) \cdot y(i-j)$$

problem: signal y is noisy

$$y(i) = x(i) + n(i)$$

- assumptions:
 - noise is uncorrelated
 - noise is stationary
- **objective**: estimate \hat{x} which minimizes the error

$$e(i) = x(i) - \hat{x}(i)$$

• approach: filter the noisy signal

$$\hat{x}(i) = \sum_{j=0}^{\mathcal{O}-1} w(j) \cdot y(i-j)$$

here: only presenting the simplest approach to noise reduction

the Wiener Filter

Wiener filter

here: only presenting the simplest approach to noise reduction

the Wiener Filter

denoising Wiener filter 1/2

Georgia Center for Music Tech College of Design

$$\hat{x}(i) = \sum_{j=0}^{\mathcal{O}-1} w(j) \cdot y(i-j)$$

$$\hat{X}(j\omega) = W(j\omega) \cdot Y(j\omega)$$

$$E(j\omega) = X(j\omega) - W(j\omega) \cdot Y(j\omega)$$

$$\frac{\partial \mathcal{E}\{|E(j\omega)|^{r}\}}{\partial W(j\omega)} = 0$$

$$\frac{\partial \mathcal{E}\{(X(j\omega) - W(j\omega) \cdot Y(j\omega))^{*}(X(j\omega) - W(j\omega) \cdot Y(j\omega))\}}{\partial W(j\omega)} = 0$$

$$2W(j\omega)S_{YY}(j\omega) - 2S_{XY}(j\omega) = 0$$

$$\Rightarrow W(j\omega) = \frac{S_{XY}(j\omega)}{S_{YY}(j\omega)}$$

Wiener filter 1/2

Georgia | Center for Music Tech | Technology College of Design

$$\hat{X}(i) = \sum_{j=0}^{\mathcal{O}-1} w(j) \cdot y(i-j)
\hat{X}(j\omega) = W(j\omega) \cdot Y(j\omega)
E(j\omega) = X(j\omega) - W(j\omega) \cdot Y(j\omega)$$

$$\frac{\partial \mathcal{E}\{|E(j\omega)|^{2}\}}{\partial W(j\omega)} = 0$$

$$\frac{\partial \mathcal{E}\{(X(j\omega) - W(j\omega) \cdot Y(j\omega))^{*}(X(j\omega) - W(j\omega) \cdot Y(j\omega))\}}{\partial W(j\omega)} = 0$$

$$2W(j\omega)S_{YY}(j\omega) - 2S_{XY}(j\omega) = 0$$

$$\Rightarrow W(j\omega) = \frac{S_{XY}(j\omega)}{S_{YY}(j\omega)}$$

denoising Wiener filter 1/2

Georgia | Center for Music Tech | Technology College of Design

$$\hat{x}(i) = \sum_{j=0}^{\mathcal{O}-1} w(j) \cdot y(i-j)
\hat{X}(j\omega) = W(j\omega) \cdot Y(j\omega)
E(j\omega) = X(j\omega) - W(j\omega) \cdot Y(j\omega)$$

$$\frac{\partial \mathcal{E}\{|E(j\omega)|^2\}}{\partial W(j\omega)} = 0$$

$$\frac{\partial \mathcal{E}\{(X(j\omega) - W(j\omega) \cdot Y(j\omega))^*(X(j\omega) - W(j\omega) \cdot Y(j\omega))\}}{\partial W(j\omega)} = 0$$

$$2W(j\omega)S_{YY}(j\omega) - 2S_{XY}(j\omega) = 0$$

$$\Rightarrow W(j\omega) = \frac{S_{XY}(j\omega)}{S_{YY}(j\omega)}$$

denoising Wiener filter 1/2

Georgia Center for Music Tech Tech College of Design

$$\hat{x}(i) = \sum_{j=0}^{\mathcal{O}-1} w(j) \cdot y(i-j)
\hat{X}(j\omega) = W(j\omega) \cdot Y(j\omega)
E(j\omega) = X(j\omega) - W(j\omega) \cdot Y(j\omega)$$

$$\frac{\partial \mathcal{E}\{|E(j\omega)|^2\}}{\partial W(j\omega)} = 0$$

$$\frac{\partial \mathcal{E}\{(X(j\omega) - W(j\omega) \cdot Y(j\omega))^*(X(j\omega) - W(j\omega) \cdot Y(j\omega))\}}{\partial W(j\omega)} = 0$$

$$2W(j\omega)S_{YY}(j\omega) - 2S_{XY}(j\omega) = 0$$

$$\Rightarrow W(j\omega) = \frac{S_{XY}(j\omega)}{S_{YY}(j\omega)}$$

denoising Wiener filter 2/2

Georgia | Center for Music Tech | Technology College of Design

reminder: signal and noise are uncorrelated $\rightarrow r_{\rm XN}(i) = 0$

$$R_{YY} = R_{XX} + R_{NN}$$

$$r_{XY} = r_{XX}$$

$$\Rightarrow S_{YY}(j\omega) = S_{XX}(j\omega) + S_{NN}(j\omega)$$

$$\Rightarrow S_{XY}(j\omega) = S_{XX}(j\omega)$$

$$\Rightarrow W(j\omega) = \frac{S_{XX}(j\omega)}{S_{XX}(j\omega) + S_{NN}(j\omega)}$$

$$= \frac{S_{YY}(j\omega) - S_{NN}(j\omega)}{S_{YY}(j\omega)}$$

denoising Wiener filter 2/2

Georgia | Center for Music Tech | Technology College of Design

reminder: signal and noise are uncorrelated $\rightarrow r_{\rm XN}(i) = 0$

$$R_{YY} = R_{XX} + R_{NN}$$

$$r_{XY} = r_{XX}$$

$$\Rightarrow S_{YY}(j\omega) = S_{XX}(j\omega) + S_{NN}(j\omega)$$

$$\Rightarrow S_{XY}(j\omega) = S_{XX}(j\omega)$$

$$\Rightarrow W(j\omega) = \frac{S_{XX}(j\omega)}{S_{XX}(j\omega) + S_{NN}(j\omega)}$$

$$= \frac{S_{YY}(j\omega) - S_{NN}(j\omega)}{S_{YY}(j\omega)}$$

denoising Wiener filter 2/2

Georgia | Center for Music Tech | Technology College of Design

reminder: signal and noise are uncorrelated $\rightarrow r_{\rm XN}(i) = 0$

$$egin{array}{lll} m{R}_{
m YY} &=& m{R}_{
m XX} + m{R}_{
m NN} \\ m{r}_{
m XY} &=& m{r}_{
m XX} \\ \Rightarrow m{S}_{
m YY}(\mathrm{j}\omega) &=& m{S}_{
m XX}(\mathrm{j}\omega) + m{S}_{
m NN}(\mathrm{j}\omega) \\ \Rightarrow m{S}_{
m XY}(\mathrm{j}\omega) &=& m{S}_{
m XX}(\mathrm{j}\omega) \\ \Rightarrow m{W}(\mathrm{j}\omega) &=& m{S}_{
m XX}(\mathrm{j}\omega) + m{S}_{
m NN}(\mathrm{j}\omega) \\ &=& m{S}_{
m YY}(\mathrm{j}\omega) - m{S}_{
m NN}(\mathrm{j}\omega) \\ \hline m{S}_{
m YY}(\mathrm{j}\omega) &=& m{S}_{
m YY}(\mathrm{j}\omega) \end{array}$$

denoising Wiener filter discussion 1/2

Georgia Center for Music Tech Technology College of Design

cussion
$$1/$$

$$W(j\omega) = \frac{S_{XX}(j\omega)}{S_{XX}(j\omega) + S_{NN}(j\omega)}$$

denoising Wiener filter discussion 1/2

Georgia **Center for Music** Tech | Technology College of Design

$$W(j\omega) = \frac{S_{XX}(j\omega)}{S_{XX}(j\omega) + S_{NN}(j\omega)}$$
$$= \frac{SNR(\omega)}{SNR(\omega) + 1}$$

⇒ attenuates noisy components in proportion to SNR

Wiener filter discussion 2/2

Georgia Center for Music Tech College of Design

Spectral Subtraction

$$egin{array}{ll} W(\mathrm{j}\omega) &=& rac{S_{\mathrm{XX}}(\mathrm{j}\omega)}{S_{\mathrm{XX}}(\mathrm{j}\omega) + S_{\mathrm{NN}}(\mathrm{j}\omega)} \ &=& rac{SNR(\omega)}{SNR(\omega) + 1} \end{array}$$

$$0 \leq W(j\omega) \leq 1$$

limiting case 1: noise free

$$SNR(\omega) = \infty$$

 $\Rightarrow W(j\omega) \rightarrow 1$

limiting case 2: extr. noisy

Wiener filter discussion 2/2

Georgia Center for Music Tech College of Design

Spectral Subtraction

$$W(j\omega) = \frac{S_{XX}(j\omega)}{S_{XX}(j\omega) + S_{NN}(j\omega)}$$
$$= \frac{SNR(\omega)}{SNR(\omega) + 1}$$

$$0 \leq W(j\omega) \leq 1$$

limiting case 1: noise free

$$SNR(\omega) = \infty$$

 $\Rightarrow W(j\omega) \rightarrow 1$

limiting case 2: extr. noisv

Wiener filter discussion 2/2

Georgia Center for Music Tech College of Design

$$W(j\omega) = \frac{S_{XX}(j\omega)}{S_{XX}(j\omega) + S_{NN}(j\omega)}$$
$$= \frac{SNR(\omega)}{SNR(\omega) + 1}$$

$$0 \leq W(j\omega) \leq 1$$

• limiting case 1: noise free

$$SNR(\omega) = \infty$$

 $\Rightarrow W(i\omega) \rightarrow 1$

limiting case 2: extr. noisy

$$SNR(\omega) = \infty$$
 $\Rightarrow W(j\omega) \rightarrow 1$
 $E: extr. noisy$
 $SNR(\omega) = 0$

denoising Wiener filter discussion 2/2

Georgia Center for Music Tech College of Design

$$egin{array}{lcl} W(\mathrm{j}\omega) &=& rac{S_{\mathrm{XX}}(\mathrm{j}\omega)}{S_{\mathrm{XX}}(\mathrm{j}\omega)+S_{\mathrm{NN}}(\mathrm{j}\omega)} \ &=& rac{SNR(\omega)}{SNR(\omega)+1} \end{array}$$

$$0 \leq W(\mathrm{j}\omega) \leq 1$$

limiting case 1: noise free

$$egin{array}{lcl} {\sf SNR}(\omega) &=& \infty \ \Rightarrow {\sf W}({
m j}\omega) &
ightarrow & 1 \end{array}$$

limiting case 2: extr. noisy

denoising Wiener filter question

Georgia Center for Music Tech Technology

How to estimate the noise spectrum

Wiener filter question

Georgia Center for Music Tech College of Pesign

How to estimate the noise spectrum

- user input: noise fingerprint
- estimate from signal through, e.g.,
 - non-real-time: pause detection and automatic noise fingerprint selection
 - real-time: prediction error with smoothing constraints

idea: Why not subtract the noise spectrum from the signal spectrum?

$$|\hat{X}(j\omega)|^2 = |Y(j\omega)|^2 - |N(j\omega)|^2$$
$$= H(j\omega) \cdot |Y(j\omega)|^2$$

denoising Spectral Subtraction

Georgia Center for Music Tech Technology

idea: Why not subtract the noise spectrum from the signal spectrum?

$$|\hat{X}(j\omega)|^2 = |Y(j\omega)|^2 - |N(j\omega)|^2$$
$$= H(j\omega) \cdot |Y(j\omega)|^2$$

$$\Rightarrow H = 1 - \frac{|N(j\omega)|^2}{|Y(j\omega)|^2}$$
$$= \frac{|Y(j\omega)|^2 - |N(j\omega)|^2}{|Y(j\omega)|^2}$$

denoising Spectral Subtraction Georgia Center for Music Tech Technology College of Design

idea: Why not subtract the noise spectrum from the signal spectrum?

$$|\hat{X}(j\omega)|^2 = |Y(j\omega)|^2 - |N(j\omega)|^2$$
$$= H(j\omega) \cdot |Y(j\omega)|^2$$

$$\Rightarrow H = 1 - \frac{|N(j\omega)|^2}{|Y(j\omega)|^2}$$
$$= \frac{|Y(j\omega)|^2 - |N(j\omega)|^2}{|Y(j\omega)|^2}$$

spectral subtraction identical to Wiener filter when the power density spectrum estimates approach the ensemble means