

ADOUT MEDS://ica.cnrs.fr/en/author/jmorlier/

• 6 PhDs, 3 MsCs

Digital fabrication

EcoOptimization

https://github.com/SMTorg/SMT

Sustainable Aerostructures

Interactions

Procedia CIRP Volume 109, 2022, Pages 454-459

Cleaner Environmental Systems Volume 9, June 2023, 100114

Ecodesign with topology optimization

Edouard Duriez a , Joseph Morlier a, Catherine Azzaro-Pantel b, Miguel Charlotte a

Show more V

Share 55 Cite

https://doi.org/10.1016/j.procir.2022.05.278

Under a Creative Commons license

Get rights and content

Open access

A fast method of material, design and process eco-selection via topology optimization, for additive manufactured structures

Edouard Duriez ^a Q M, Catherine Azzaro-Pantel ^b, Joseph Morlier ^a, Miguel Charlotte ^a

Show more V

+ Add to Mendeley & Share 55 Cite

https://doi.org/10.1016/j.cesys.2023.100114 **

Get rights and content a

LCA & Eco Selection as a MDO discipline

https://github.com/mid2SUPAERO/ECODD

LCA & eco selection

- Material
- Process
- from cradle to grave

.

Water withdrawal

Generation of waste

Use recycled: Fibers Resin Metals

Reuse & Repair

Carbon Footprint

Energy requirement

First try;)

https://arxiv.org/abs/2208.13710 https://github.com/mid2SUPAERO/ecoHALE

(a) Objective function: total CO2 emitted:

(b) Material density for skins and spars:

HALE MULTIDISCIPLINARY ECODESIGN OPTIMIZATION WITH MATERIAL SELECTION

Edouard Duriez

ICA, Université de Toulouse, ISAE-SUPAERO, MINES ALBI, UPS, INSA, CNRS 3 Rue Caroline Aigle 31400 Toulouse (France) edouard.duriez@isae-supaero.fr

Víctor Manuel Guadaño Martín

Université de Toulouse, ISAE-SUPAERO, 10 avenue edouard Belin 31400 Toulouse (France) edouard.duriez@isae-supaero.fr

Joseph Morlier

ICA, Université de Toulouse, ISAE-SUPAERO, MINES ALBI, UPS, INSA, CNRS
3 Rue Caroline Aigle
31400 Toulouse (France)
edouard.duriez@isae-supaero.fr

CAD model of the optimal HALE obtained

Second try;)

https://hal.science/hal-03888108/

Objective function: GLOW

Design variables : X_{eng} , m_{pl} , X_{traj} , d_{stage}

Constraints : $\Delta V_{final} \geq 0$

73rd International Astronautical Congress (IAC) 2022 – Paris, France Copyright 2022 by Mr. Thomas Bellier. Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-22,D2,IPB,26,x71719

Impact of Life Cycle Assessment Considerations on Launch Vehicle Design

Thomas Bellier^{1, 2, *}, Annafederica Urbano¹, Joseph Morlier¹, Cees Bil², and Adrian Pudsey²

¹ Institut Supérieur de l'Aéronautique et de l'Espace SUPAERO, Université de Toulouse, Toulouse, France
² Royal Melbourne Institute of Technology (RMIT), Melbourne, Australia

*Corresponding author Email: thomas.bellier@isae-supaero.fr

X^* and LCA (X^*)

Early LCA results demonstrate that manufacturing take into account 20% of Global Warming Potential (wrt 1% in Aircraft)

Summary

- 1. Eco-design, LCA & MDAO
- 2. A simple Toy problem: Sellar problem
- 3. A more advanced problem using OpenConcept for Hybrid Aircraft
- 4. Opensource code LCA4MDAO

Summary

1. Eco-design, LCA & MDAO

- 2. A simple Toy problem: Sellar problem
- 3. A more advanced problem using OpenConcept for Hybrid Aircraft
- 4. Opensource code LCA4MDAO

Life Cycle Assessment

Eco-design and MDAO

MDAO

- Custom code or software
- Many simulations on low amounts of variables
- Engineering teams

<u>Life Cycle Assessment (LCA)</u>

- Independent software (OpenLCA, Simapro, etc...)
- Single calls on large external databases (*Ecoinvent*, *ILCD*, etc...)
- Dedicated teams or consultancies

Our python tool

Proposed solution: LCA4MDAO tool

- OpenMDAO and Brightway2: all in Python
- Direct linkage between *OpenMDAO* variables and *Brightway2* database entries
- LCA computation optimisation to help with repetitive calculation

With XDSM

Summary

1. Eco-design, LCA & MDAO

2. A simple Toy problem: Sellar problem

- 3. A more advanced problem using OpenConcept for Hybrid Aircraft
- 4. Opensource code LCA4MDAO

Sellar Problem

- Simplest OpenMDAO test problem
- No physical representation

- y1 → steel
- $y2 \rightarrow wood$

SP Results

https://pymoo.org

- Multi-objective optimisation using NSGA-2 (pymoo)
- Sellar f versus GWP
- Many more possibilities:
 - Single objective with environmental constraints
 - Injection of environmental parameters into a custom function
 - Multiple environmental objectives

•

A (non physical) proof of concept

Summary

- 1. Eco-design, LCA & MDAO
- 2. A simple Toy problem: Sellar problem

3. A more advanced problem using OpenConcept for Hybrid Aircraft

4. Opensource code LCA4MDAO

Hybrid Aircraft Problem (MDOlab)

- Hybridised King Air C90GT from OpenConcept, built in OpenMDAO format
- Four disciplines:
 - Aero (wing geometry)
 - Propulsion (with hybrid system)
 - Structure
 - Trajectory simulation
- 6 variables converted into LCA database entries

Model parameter	Ecoinvent entry
Battery weight	battery cell production, Li-ion
Motor weight	electric motor production, vehicle
Engine weight	internal combustion engine production, passenger car
Empty weight	aluminium production, primary, ingot
Fuel used	market for kerosene
Electricity used	market group for electricity, low voltage

Benjamin J. Brelje and Joaquim R. R. A. Martins, "Development of a Conceptual Design Model for Aircraft Electric Propulsion with Efficient Gradients", 2018 AIAA/IEEE Electric Aircraft Technologies Symposium, AIAA Propulsion and Energy Forum, (AIAA 2018-4979) DOI: 10.2514/6.2018-4979

Design Variables

Table 3 presents the design variables values and results after optimisation for this problem, with the range fixed at 400NM and using the GWP as the sole objective, using COBYLA [41]. Figure 6 presents the resulting trajectory and energy consumption for this 400 nautical miles range solution.

Table 3: Example of hybrid aircraft optimisation for a range of $400\,NM$

variable	min	init	max	value	units
MTOW	4000	5000	5700	5700	kg
wing surface	15	25	40	34	m ²
engine power	0	1000	3000	298	kW
motor power	450	1000	3000	652	kW
battery weight	20	1000	3000	1607	kg
fuel capacity	500	1000	3000	500	kg
cruise hybridisation	0	0.5	1	0.71	
climb hybridisation	0	1	1	0.785	
descent hybridisation	0	0.5	1	0.337	
GWP				0.712	kgCO ₂ eq/km

Figure 6: Optimal trajectory and energy utilisation for a hybrid aircraft with 400 nautical miles range

Results

- LCA scope include building the aircraft and flying 1000 cycles at max range with fuel and electricity
- Functional unit is a kilometre flown
- Multi-objective optimisation
- Range and GWP as objectives

Results (link to physics of AD)

For the design variables, reducing the range:

- increases the hybridization
- reduces the engine size
- increases the battery weight

variable	value	units
MTOW	5700	kg
wing surface	34	m ²
engine power	298	kW
motor power	652	kW
battery weight	1607	kg
fuel capacity	500	kg
cruise hybridisation	0.71	
climb hybridisation	0.785	
descent hybridisation	0.337	
GWP	0.712	kgCO ₂ eq/km

Summary

- 1. Eco-design, LCA & MDAO
- 2. A simple Toy problem: Sellar problem
- 3. A more advanced problem using MDOlab OpenConcept for Hybrid Aircraft

4. Opensource code LCA4MDAO

LCA4MDAO

• LCA4MDAO

https://github.com/mid2SUPAERO/LCA4MDAO

• Brightway2

• OpenMDAO

Challenges

- Performance penalties during optimisation due to the large databases used for LCA
- Requires efficient communication or common understanding between the technical parameters and the LCA inventory
- LCA usually carries large uncertainties difficult to account for in MDAO

Conclusion

- Integrating LCA in MDAO opens possibilities for better eco-optimisation and a better understanding of the environmental performance of a concept
- The availability of Python tools for LCA and MDAO will help to discuss between two fields of science
- There is still a gap between the two disciplines which is difficult to bridge

Future Works

In Aircraft Design:

min {mass} is proportional to min {CO2PP}

Manufacturing < 1% of total aircraft emissions

But what about others flying vehicules?

https://smt.readthedocs.io/en/latest/

linkedin.com/company

Thank you for your attention!

Do you have any question?

↓ you can still check LCA4MDAO on github ↓

SMT the Surrogate Modeling Toolbox 105 abonnés

We are pleased to inform you that SMT 2.0 has been released !!!

It's a major release of the open source Surrogate Modeling Toolbox with handling of hierarchical and mixed variables for kriging-based surrogates.

Just visit our web pages and subscribe on our new linkedin account!

code: https://lnkd.in/eE3GWwja doc: https://lnkd.in/ebBBqeEN

new paper (preprint): https://lnkd.in/e-K-7qF2 notebooks: https://lnkd.in/eC9AmR_Z

Special thanks to Paul Saves, Jasper Bussemaker and Rémi Lafage Under the supervision of Nathalie Bartoli, Thierry Lefebvre, Youssef Diouane, joseph morlier, Joaquim R. R. A. Martins, and John Hwang

A great collaborative project with ONERA - The French Aerospace Lab, Institut Supérieur de l'Aéronautique et de l'Espace, Polytechnique Montréal, Institut Clément Ader (ICA) CNRS UMR 5312, CNRS - Centre national de la recherche scientifique, University of Michigan, University of Michigan MDO Lab, and participation of UC San Diego Jacobs School of Engineering, NASA Glenn Research Center

#aerospaceengineering #AI #artificialintelligenceforengineering #opensource

Voir la traduction

SMT: Surrogate Modeling Toolbox ¶

smt.readthedocs.io · Lecture de 1 min

The surrogate modeling toolbox (SMT) is an open-source Python package consisting of...