Equations of Continuity

Differential Mass Balance

Mass balance:
$$\begin{pmatrix} \text{Rate of} \\ \text{accumulation} \end{pmatrix} = \begin{pmatrix} \text{Rate of} \\ \text{mass in} \end{pmatrix} - \begin{pmatrix} \text{Rate of} \\ \text{mass out} \end{pmatrix}$$

$$\begin{pmatrix} \text{Rate of mass} \\ \text{accumulation} \end{pmatrix} = \frac{\partial \rho}{\partial t} \Delta x \Delta y \Delta z$$

$$\begin{pmatrix} \text{Rate of} \\ \text{mass in} \end{pmatrix} = (\rho u)_x \Delta y \Delta z + (\rho v)_y \Delta x \Delta z + (\rho w)_z \Delta x \Delta y$$

$$\begin{pmatrix}
\text{Rate of} \\
\text{mass out}
\end{pmatrix} = (\rho u)_{x+\Delta x} \Delta y \Delta z + (\rho v)_{y+\Delta y} \Delta x \Delta z + (\rho w)_{z+\Delta z} \Delta x \Delta y$$

Differential Mass Balance

Substituting:

$$\frac{\partial \rho}{\partial t} \Delta x \Delta y \Delta z = \left[(\rho u)_x \Delta y \Delta z + (\rho v)_y \Delta x \Delta z + (\rho w)_z \Delta x \Delta y \right]$$
$$- \left[(\rho u)_{x + \Delta x} \Delta y \Delta z + (\rho v)_{y + \Delta y} \Delta x \Delta z + (\rho w)_{z + \Delta z} \Delta x \Delta y \right]$$

Rearranging:
$$\frac{\partial \rho}{\partial t} \Delta x \Delta y \Delta z = \left[\left(\rho u \right)_{x} - \left(\rho u \right)_{x+\Delta x} \right] \Delta y \Delta z$$
$$+ \left[\left(\rho v \right)_{y} - \left(\rho v \right)_{y+\Delta y} \right] \Delta x \Delta z$$
$$+ \left[\left(\rho w \right)_{z} - \left(\rho w \right)_{z+\Delta z} \right] \Delta x \Delta y$$

Dividing everything by ΔV :

$$\frac{\partial \rho}{\partial t} = -\left[\frac{\left(\rho u\right)_{x+\Delta x} - \left(\rho u\right)_{x}}{\Delta x} + \frac{\left(\rho v\right)_{y+\Delta y} - \left(\rho v\right)_{y}}{\Delta y} + \frac{\left(\rho w\right)_{z+\Delta z} - \left(\rho w\right)_{z}}{\Delta z} \right]$$

Taking the limit as Δx , Δy and $\Delta z \rightarrow 0$:

$$\frac{\partial \rho}{\partial t} = -\left[\frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} \right]$$

$$\frac{\partial \rho}{\partial t} = -\left[\frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z}\right] = -\nabla \cdot (\rho \vec{V})$$

divergence of mass velocity vector $ho ec{V}$

Partial differentiation:

$$\frac{\partial \rho}{\partial t} = -\rho \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) - \left(u \frac{\partial \rho}{\partial x} + v \frac{\partial \rho}{\partial y} + w \frac{\partial \rho}{\partial z} \right)$$

Rearranging:

$$\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + v \frac{\partial \rho}{\partial y} + w \frac{\partial \rho}{\partial z} = -\rho \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right)$$

substantial time derivative

$$\frac{D\rho}{Dt} = -\rho \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) = -\rho \left(\nabla \cdot \vec{V} \right)$$

If fluid is incompressible: $\nabla \cdot \vec{V} = 0$

In cylindrical coordinates:

$$\frac{d\rho}{dt} + \frac{1}{r} \frac{\partial(\rho r v_r)}{\partial r} + \frac{1}{r} \frac{\partial(\rho v_\theta)}{\partial \theta} + \frac{\partial(\rho v_z)}{\partial z} = 0$$

Derivation Using an Infinitesimal Control Volume

Control Volume

Consider the x-component of the momentum transport:

Rate of accumulation of momentum in
$$\int_{x}^{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{momentum out} \end{array} \right)_{x} + \left(\begin{array}{c} \text{Sum of forces} \\ \text{acting in} \\ \text{the system} \end{array} \right)_{x}$$

$$\left(\begin{array}{c} \text{Rate of} \\ \text{momentum in} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{momentum out} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{momentum in} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{momentum out} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{momentum out} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{momentum out} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{momentum out} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{momentum out} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{momentum out} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{momentum out} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{momentum out} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{momentum out} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{momentum out} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{momentum out} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{momentum out} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{momentum out} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{momentum out} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{momentum out} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{momentum out} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{momentum out} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\ \text{Rate of} \end{array} \right)_{x} - \left(\begin{array}{c} \text{Rate of} \\$$

Due to convective transport:

Origin at the centre of the cubic element

Surface Force:
$$\left(\sum F_{s}
ight)_{\!\scriptscriptstyle \mathcal{X}}$$

Surface Force:
$$\left(\sum F_s\right)_x \qquad \left(\sum F_s\right)_x = \left[\left(\sigma_{xx}\right)_{x+\Delta x/2} - \left(\sigma_{xx}\right)_{x-\Delta x/2}\right] \Delta y \Delta z$$

Origin at the centre of the cubic element

$$+ \left[\left(\sigma_{yx} \right)_{y + \Delta y/2} - \left(\sigma_{yx} \right)_{y - \Delta y/2} \right] \Delta x \Delta z$$

$$+ \left[\left(\sigma_{zx} \right)_{z + \Delta z/2} - \left(\sigma_{zx} \right)_{z - \Delta z/2} \right] \Delta x \Delta y$$

Consider the x-component of the momentum transport:

$$\begin{pmatrix}
\text{Rate of} \\
\text{accumulation}
\end{pmatrix}_{x} = \begin{pmatrix}
\text{Rate of} \\
\text{momentum in}
\end{pmatrix}_{x} - \begin{pmatrix}
\text{Rate of} \\
\text{momentum out}
\end{pmatrix}_{x} + \begin{pmatrix}
\text{Sum of forces} \\
\text{acting in} \\
\text{the system}
\end{pmatrix}$$

Sum of forces acting in the system
$$= \left(\sum F_B + \sum F_s\right)_x$$

= Sum of body forces + Sum of surface forces

$$\vec{g} = \hat{i}g_x + \hat{j}g_y + \hat{k}g_z$$

$$\left(\sum_{B} F_B\right)_x = \rho g_x \Delta x \Delta y \Delta z$$

Consider the x-component of the momentum transport:

Rate of accumulation
$$=$$
 Rate of momentum in $=$ Rate of momentum out $=$ Rate of accing in the system $=$ the system

$$\begin{pmatrix} \text{Rate of} \\ \text{accumulation} \end{pmatrix}_{x} = \frac{\partial (\rho u)}{\partial t} \Delta x \Delta y \Delta z$$

Differential Momentum Balance

Substituting:

$$\sigma_{ij} = -p\delta_{ij} + \tau_{ij}$$

$$\frac{\partial (\rho u)}{\partial t} \Delta x \Delta y \Delta z = \left[(\rho u u)_{x - \Delta x/2} - (\rho u u)_{x + \Delta x/2} \right] \Delta y \Delta z$$

$$+ \left[\left(\rho v u \right)_{y-\Delta y/2} - \left(\rho v u \right)_{y+\Delta y/2} \right] \Delta x \Delta z$$

$$+ \left[\left(\rho w u \right)_{z-\Delta z/2} - \left(\rho w u \right)_{z+\Delta z/2} \right] \Delta x \Delta y$$

$$+ \left[\left(\tau_{xx} \right)_{x+\Delta x/2} - \left(\tau_{xx} \right)_{x-\Delta x/2} \right] \Delta y \Delta z \quad positive x-direction$$

$$+ \left[\left(\tau_{yx} \right)_{y+\Delta y/2} - \left(\tau_{yx} \right)_{y-\Delta y/2} \right] \Delta x \Delta z$$

$$+ \left[\left(\tau_{zx} \right)_{z+\Delta z/2} - \left(\tau_{zx} \right)_{z-\Delta z/2} \right] \Delta x \Delta y$$

$$+ \left(\rho_{x-\Delta x/2} - \rho_{x+\Delta x/2} \right) \Delta y \Delta z + \rho g_x \Delta x \Delta y \Delta z$$

Differential Momentum Balance

Dividing everything by $\Delta V (= \Delta x \Delta y \Delta z)$:

$$\frac{\partial(\rho u)}{\partial t} = \frac{\left[\left(\rho u u\right)_{x-\Delta x/2} - \left(\rho u u\right)_{x+\Delta x/2}\right]}{\Delta x} + \frac{\left[\left(\rho v u\right)_{y-\Delta y/2} - \left(\rho v u\right)_{y+\Delta y/2}\right]}{\Delta y} + \frac{\left[\left(\rho w u\right)_{z-\Delta z/2} - \left(\rho w u\right)_{z+\Delta z/2}\right]}{\Delta z} + \frac{\left[\left(\tau_{xx}\right)_{x+\Delta x/2} - \left(\tau_{xx}\right)_{x-\Delta x/2}\right]}{\Delta x} + \frac{\left[\left(\tau_{yx}\right)_{y+\Delta y/2} - \left(\tau_{yx}\right)_{y-\Delta y/2}\right]}{\Delta y} + \frac{\left[\left(\tau_{zx}\right)_{z+\Delta y/2} - \left(\tau_{zx}\right)_{z-\Delta z/2}\right]}{\Delta z} + \frac{\left(\rho_{x-\Delta x/2} - \rho_{x+\Delta x/2}\right)}{\Delta x} + \rho g_{x}$$

Taking the limit as Δx , Δy and $\Delta z \rightarrow 0$:

$$\frac{\partial(\rho u)}{\partial t} = -\frac{\partial(\rho uu)}{\partial x} - \frac{\partial(\rho vu)}{\partial y} - \frac{\partial(\rho wu)}{\partial z} + \frac{\partial(\rho wu)}{\partial z} + \frac{\partial(\sigma vu)}{\partial z} + \frac{\partial(\sigma vu)}$$

Rearranging:

$$\frac{\partial(\rho u)}{\partial t} + \frac{\partial(\rho uu)}{\partial x} + \frac{\partial(\rho vu)}{\partial y} + \frac{\partial(\rho wu)}{\partial z} =$$

$$+ \frac{\partial(\tau_{xx})}{\partial x} + \frac{\partial(\tau_{yx})}{\partial y} + \frac{\partial(\tau_{yx})}{\partial z} - \frac{\partial p}{\partial x} + \rho g_x$$

Differential Momentum Balance

For the convective terms:

$$\frac{\partial(\rho uu)}{\partial x} + \frac{\partial(\rho vu)}{\partial y} + \frac{\partial(\rho wu)}{\partial z}
= \rho \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right) + u \left[\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} + \frac{\partial(\rho w)}{\partial z} \right]$$

For the accumulation term:

From continuity

$$\frac{\partial(\rho u)}{\partial t} = \rho \frac{\partial u}{\partial t} + u \frac{\partial \rho}{\partial t} \left[\frac{\frac{\partial \rho}{\partial t}}{\partial t} + \nabla \cdot (\rho \vec{V}) = 0 \right] \Rightarrow \frac{\partial \rho}{\partial t} + \rho (\nabla \cdot \vec{V}) + (\nabla \cdot \vec{V}) \rho = 0$$

$$= \rho \frac{\partial u}{\partial t} - u \left[\rho \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) + \left(u \frac{\partial \rho}{\partial x} + v \frac{\partial \rho}{\partial y} + w \frac{\partial \rho}{\partial z} \right) \right]$$

Substituting:

$$\rho \frac{\partial u}{\partial t} - u \left[\rho \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) + \left(\frac{\partial \rho}{\partial x} + \frac{\partial \rho}{\partial y} + w \frac{\partial \rho}{\partial z} \right) \right]$$

$$+ \rho \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right)$$

$$+ u \left[\frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} \right]$$

$$= \left[\frac{\partial (\tau_{xx})}{\partial x} + \frac{\partial (\tau_{yx})}{\partial y} + \frac{\partial (\tau_{zx})}{\partial z} \right] - \frac{\partial \rho}{\partial x} + \rho g_x$$

Substituting:

$$\rho \frac{\partial u}{\partial t} + \rho \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right)$$

$$= \left[\frac{\partial \left(\tau_{xx} \right)}{\partial x} + \frac{\partial \left(\tau_{yx} \right)}{\partial y} + \frac{\partial \left(\tau_{zx} \right)}{\partial z} \right] - \frac{\partial p}{\partial x} + \rho g_{x}$$

EQUATION OF MOTION FOR THE x-COMPONENT

$$\rho \frac{\partial v}{\partial t} + \rho \left(u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right)$$

$$= \left[\frac{\partial \left(\tau_{xy} \right)}{\partial x} + \frac{\partial \left(\tau_{yy} \right)}{\partial y} + \frac{\partial \left(\tau_{zy} \right)}{\partial z} \right] - \frac{\partial p}{\partial y} + \rho g_{y}$$

EQUATION OF MOTION FOR THE y-COMPONENT

$$\rho \frac{\partial w}{\partial t} + \rho \left(u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right)$$

$$= \left[\frac{\partial \left(\tau_{xz} \right)}{\partial x} + \frac{\partial \left(\tau_{yz} \right)}{\partial y} + \frac{\partial \left(\tau_{zz} \right)}{\partial z} \right] - \frac{\partial p}{\partial z} + \rho g_{z}$$

EQUATION OF MOTION FOR THE z-COMPONENT

Substantial time derivatives:

$$\rho \frac{Du}{Dt} = \left[\frac{\partial (\tau_{xx})}{\partial x} + \frac{\partial (\tau_{yx})}{\partial y} + \frac{\partial (\tau_{zx})}{\partial z} \right] - \frac{\partial p}{\partial x} + \rho g_x$$

$$\rho \frac{Dv}{Dt} = \left[\frac{\partial \left(\tau_{xy} \right)}{\partial x} + \frac{\partial \left(\tau_{yy} \right)}{\partial y} + \frac{\partial \left(\tau_{zy} \right)}{\partial z} \right] - \frac{\partial p}{\partial y} + \rho g_{y}$$

$$\rho \frac{Dw}{Dt} = \left[\frac{\partial (\tau_{xz})}{\partial x} + \frac{\partial (\tau_{yz})}{\partial y} + \frac{\partial (\tau_{zz})}{\partial z} \right] - \frac{\partial p}{\partial z} + \rho g_z$$

In vector-matrix notation:

n vector-matrix notation:
$$\rho \frac{D}{Dt} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} \frac{\partial (\tau_{xx})}{\partial x} & \frac{\partial (\tau_{yx})}{\partial y} & \frac{\partial (\tau_{zx})}{\partial z} \\ \frac{\partial (\tau_{xy})}{\partial x} & \frac{\partial (\tau_{yy})}{\partial y} & \frac{\partial (\tau_{zy})}{\partial z} \\ \frac{\partial (\tau_{xz})}{\partial x} & \frac{\partial (\tau_{yz})}{\partial y} & \frac{\partial (\tau_{zz})}{\partial z} \end{bmatrix} - \begin{bmatrix} \frac{\partial p}{\partial x} \\ \frac{\partial p}{\partial y} \\ \frac{\partial p}{\partial z} \end{bmatrix} + \rho \begin{bmatrix} g_x \\ g_y \\ g_z \end{bmatrix}$$

$$\rho \frac{D\vec{V}}{Dt} = (\nabla \cdot \vec{\tau}) - \nabla p + \rho \vec{g}$$

$$\rho \frac{D\vec{V}}{Dt} = (\nabla \cdot \vec{\tau}) - \nabla p + \rho \vec{g}$$

Cauchy momentum equation

- Equation of motion for a pure fluid
- Valid for any continuous medium (Eulerian)
- In order to determine velocity distributions, shear stress must be expressed in terms of velocity gradients and fluid properties (e.g. Newton's law)

Cauchy Stress Tensor

Stress distribution:

$$\left. egin{array}{l} au_{xx} \\ au_{yy} \\ au_{zz} \end{array}
ight\} ext{ normal stresses}$$

$$\left. egin{aligned} au_{xy} &= au_{yx} \ au_{xz} &= au_{zx} \ au_{yz} &= au_{zy} \end{aligned}
ight\} ext{ shear stresses}$$

Cauchy Stress Tensor

Stokes relations (based on Stokes' hypothesis)

$$\tau_{xx} = 2\mu \frac{\partial u}{\partial x} - \frac{2}{3}\mu \left(\nabla \cdot \vec{V}\right) \qquad \tau_{xy} = \tau_{yx} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)$$

$$\tau_{yy} = 2\mu \frac{\partial v}{\partial y} - \frac{2}{3}\mu \left(\nabla \cdot \vec{V}\right) \qquad \tau_{xz} = \tau_{zx} = \mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right)$$

$$\tau_{zz} = 2\mu \frac{\partial w}{\partial z} - \frac{2}{3}\mu \left(\nabla \cdot \vec{V}\right) \qquad \tau_{yz} = \tau_{zy} = \mu \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}\right)$$
where $\nabla \cdot \vec{V} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \qquad \text{and} \quad \sigma_{ij} = -p\delta_{ij} + \tau_{ij}$

Navier-Stokes Equations

Assumptions

- Newtonian fluid
- 2. Obeys Stokes' hypothesis
- 3. Continuum
- 4. Isotropic viscosity
- 5. Constant density

Divergence of the stream velocity is zero (incompressible)

Navier-Stokes Equations

Applying the Stokes relations per component:

$$\frac{\partial(\tau_{xx})}{\partial x} + \frac{\partial(\tau_{yx})}{\partial y} + \frac{\partial(\tau_{zx})}{\partial z} = \mu \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial z^{2}} \right)$$

$$\frac{\partial(\tau_{xy})}{\partial x} + \frac{\partial(\tau_{yy})}{\partial y} + \frac{\partial(\tau_{zy})}{\partial z} = \mu \left(\frac{\partial^{2} v}{\partial x^{2}} + \frac{\partial^{2} v}{\partial y^{2}} + \frac{\partial^{2} v}{\partial z^{2}} \right)$$

$$\frac{\partial(\tau_{xz})}{\partial x} + \frac{\partial(\tau_{yz})}{\partial y} + \frac{\partial(\tau_{zz})}{\partial z} = \mu \left(\frac{\partial^{2} w}{\partial x^{2}} + \frac{\partial^{2} w}{\partial y^{2}} + \frac{\partial^{2} w}{\partial z^{2}} \right)$$

Navier-Stokes Equations

Navier-Stokes equations in rectangular coordinates

$$\rho \frac{Du}{Dt} = \mu \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial z^{2}} \right) - \frac{\partial p}{\partial x} + \rho g_{x}$$

$$\rho \frac{Dv}{Dt} = \mu \left(\frac{\partial^{2} v}{\partial x^{2}} + \frac{\partial^{2} v}{\partial y^{2}} + \frac{\partial^{2} v}{\partial z^{2}} \right) - \frac{\partial p}{\partial y} + \rho g_{y}$$

$$\rho \frac{Dw}{Dt} = \mu \left(\frac{\partial^{2} w}{\partial x^{2}} + \frac{\partial^{2} w}{\partial y^{2}} + \frac{\partial^{2} w}{\partial z^{2}} \right) - \frac{\partial p}{\partial z} + \rho g_{z}$$

$$\rho \frac{D\vec{v}}{Dt} = -\nabla p + \rho \vec{g} + \mu \nabla^{2} \vec{v}$$

Cylindrical Coordinates

$$au_{ij} = egin{pmatrix} au_{rr} & au_{r heta} & au_{rz} \ au_{ heta r} & au_{ heta heta} & au_{ heta z} \ au_{zr} & au_{z heta} & au_{zz} \end{pmatrix}$$

$$= \begin{pmatrix} 2\mu \frac{\partial u_r}{\partial r} \\ \mu \left[r \frac{\partial}{\partial r} \left(\frac{u_\theta}{r} \right) + \frac{1}{r} \frac{\partial u_r}{\partial \theta} \right] \\ \mu \left(\frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r} \right) \end{pmatrix}$$

$$\vec{e}_{\theta}$$
 $\vec{e}_{r_{1}}$
 \vec{e}_{θ}
 $\vec{e}_{r_{1}}$
 $\vec{e}_{r_{1}}$

$$= \begin{pmatrix} 2\mu \frac{\partial u_r}{\partial r} & \mu \left[r \frac{\partial}{\partial_r} \left(\frac{u_\theta}{r} \right) + \frac{1}{r} \frac{\partial u_r}{\partial \theta} \right] & \mu \left(\frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r} \right) \\ \mu \left[r \frac{\partial}{\partial r} \left(\frac{u_\theta}{r} \right) + \frac{1}{r} \frac{\partial u_r}{\partial \theta} \right] & 2\mu \left(\frac{1}{r} \frac{\partial u_\theta}{\partial \theta} + \frac{u_r}{r} \right) & \mu \left(\frac{\partial u_\theta}{\partial z} + \frac{1}{r} \frac{\partial u_z}{\partial \theta} \right) \\ \mu \left(\frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r} \right) & \mu \left(\frac{\partial u_\theta}{\partial z} + \frac{1}{r} \frac{\partial u_z}{\partial \theta} \right) & 2\mu \frac{\partial u_z}{\partial z} \end{pmatrix}$$

Cylindrical Coordinates

$$\begin{split} \rho \bigg(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} - \frac{v_\theta^2}{r} + v_z \frac{\partial v_r}{\partial z} \bigg) \\ &= -\frac{\partial p}{\partial r} + \rho g_r + \mu \bigg[\frac{1}{r} \frac{\partial}{\partial r} \bigg(r \frac{\partial v_r}{\partial r} \bigg) - \frac{v_r}{r^2} + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} - \frac{2}{r^2} \bigg(\frac{\partial v_\theta}{\partial \theta} \bigg) + \frac{\partial^2 v_r}{\partial z^2} \bigg] \\ \rho \bigg(\frac{\partial v_\theta}{\partial t} + v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{v_r v_\theta}{r} + v_z \frac{\partial v_\theta}{\partial z} \bigg) \\ &= -\frac{1}{r} \frac{\partial p}{\partial \theta} + \rho g_\theta + \mu \bigg[\frac{1}{r} \frac{\partial}{\partial r} \bigg(r \frac{\partial v_\theta}{\partial r} \bigg) - \frac{v_\theta}{r^2} + \frac{1}{r^2} \frac{\partial^2 v_\theta}{\partial \theta^2} + \frac{2}{r^2} \bigg(\frac{\partial v_\theta}{\partial \theta} \bigg) + \frac{\partial^2 v_\theta}{\partial z^2} \bigg] \\ \rho \bigg(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} \bigg) \\ &= -\frac{\partial p}{\partial z} + \rho g_z + \mu \bigg[\frac{1}{r} \frac{\partial}{\partial r} \bigg(r \frac{\partial v_z}{\partial r} \bigg) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2} \bigg] \end{split}$$

Applications of Navier-Stokes Equations

Exact Solutions of the Continuity and Navier-Stokes Equations

- Step 1: Set up the problem and geometry (sketches are helpful), identifying all relevant dimensions and parameters.
- Step 2: List all appropriate assumptions, approximations, simplifications, and boundary conditions.
- Step 3: Simplify the differential equations of motion (continuity and Navier–Stokes) as much as possible.
- Step 4: Integrate the equations, leading to one or more constants of integration.
- Step 5: Apply boundary conditions to solve for the constants of integration.
- Step 6: Verify your results.

$$\overrightarrow{V}_{
m A} = \overrightarrow{V}_{
m B}$$
 and $au_{s,\,
m A} = au_{s,\,
m B}$

$$au_{s, A} = au_{s, 1}$$

$$\mu_{w} = 50 \mu_{a}$$

Boundary conditions at water—air interface:

$$u_{\text{water}} = u_{\text{air}}$$
 and $\tau_{s, \text{ water}} = \mu_{\text{water}} \frac{\partial u}{\partial y} \Big|_{\text{water}} = \tau_{s, \text{ air}} = \mu_{\text{air}} \frac{\partial u}{\partial y} \Big|_{\text{air}}$

Free-surface boundary conditions: $P_{\text{liquid}} = P_{\text{gas}}$

$$P_{\text{liquid}} = P_{\text{gas}}$$

$$\tau_{s, \text{ liquid}} \cong 0$$

Symmetry boundary conditions

$$\frac{\partial u}{\partial y} = 0 \quad \text{and} \quad v = 0$$

Euler Equation to Bernoulli Equation

The momentum equation for frictionless flow (Eq. 6.1) can be written (with \vec{g} in the negative z direction) as

$$\frac{D\vec{V}}{Dt} = -\frac{1}{\rho}\nabla p - g\hat{k} \tag{1}$$

Equation (1) is a vector equation. It can be converted to a scalar equation by taking the dot product with $d\vec{s}$, where $d\vec{s}$ is an element of distance along a streamline. Thus

$$\frac{D\vec{V}}{Dt} \cdot d\vec{s} = \frac{DV}{Dt} ds = V \frac{\partial V}{\partial s} ds + \frac{\partial V}{\partial t} ds = -\frac{1}{\rho} \nabla p \cdot d\vec{s} - g\hat{k} \cdot d\vec{s}$$
 (2)

Examining the terms in Eq. (2) we note that

$$\frac{\partial V}{\partial s} ds = dV \qquad \text{(the change in } V \text{ along } s\text{)}$$

$$\nabla p \cdot d\vec{s} = dp \qquad \text{(the change in pressure along } s\text{)}$$

$$\hat{k}.d\vec{s} = dz \qquad \text{(the change in } z \text{ along } s\text{)}$$

Substituting into Eq. (2), we obtain

$$V dV + \frac{\partial V}{\partial t} ds = -\frac{dp}{\rho} - g dz$$
 (3)

Integrating along a streamline from point 1 to point 2 yields

$$\int_{1}^{2} \frac{dp}{\rho} + \frac{V_{2}^{2} - V_{1}^{2}}{2} + g(z_{2} - z_{1}) + \int_{1}^{2} \frac{\partial V}{\partial t} ds = 0$$
 (4)

For incompressible flow, the density is constant. For this special case, Eq. (4) becomes

$$\frac{p_1}{\rho} + \frac{V_1^2}{2} + gz_1 = \frac{p_2}{\rho} + \frac{V_2^2}{2} + gz_2 + \int_1^2 \frac{\partial V}{\partial t} \, ds \tag{5}$$

Couette Flow with pressure gradient

$$P^* = \frac{h^2}{\mu U} \left(\frac{dp}{dx}\right)$$
 and is negative of what is taught