

Datasheet

VL103
DP Alt-mode & PD 3.0 Controller
with Auto-Standby for USB-C Devices

August 4th, 2017 Revision 0.80

Revision History

Rev	Date	Note	Initial
0.80	08/04/2017	Preliminary release	НС

Contents

Revision History	
Contents	3
List of Figures	3
List of Tables	3
Product Features	
VL103 System Overview	
Typical Applications	
Pinout	8
Pin List	
Pin Descriptions	11
Signal Type Definition	
USB-C Interface	11
USB Billboard Interface	11
USB2.0 Interface	11
DP Alt-mode Interface	11
SPI Interface	11
Analog Command Block	12
General Purpose I/O and Miscellaneous	12
Test Pin	12
Power and Ground	12
Electrical Specification	13
Package Mechanical Specifications	15
Package Top Side Marking	17
Ordering Information	17

List of Figures

Figure 1 – VL103 Block Diagram	5
Figure 2 – Generic VL103 USB-C Video Adapters	6
Figure 3 – VL103 USB-C Video Adapters with Hub and PD Charging-Thru	7
Figure 4 - VL103R USB-C Multi-function Dock	7
Figure 5 – VL103 QFN-48 Pin Diagram	8
Figure 6 – VL103 QFN-32 Pin Diagram	9
Figure 7 – QFN 48L 6x6x0.85 mm Mechanical Specification	15
Figure 8 – QFN 32L 5x5x0.85 mm Mechanical Specification	16
Figure 9 - VI 103 Package Top Side Marking	17

List of Tables

\				
Table	1 _	\/I 1N3	QFN-48 Pin List	10
Table	7 –	· VI 103	OFN-32 Pin List	10

Product Features

VL103

DisplayPort Alt-mode & PD 3.0 Controller with Auto-Standby for USB-C Devices

■CC Logic & PD 3.0 Engine supporting one charging UFP and one DRP

- Compliant to USB Type-C Cable and Connector Specification Revision 1.2
- Compliant to USB Power Delivery Specification Revision 3.0 Version 1.0a
- Integrated Type-C transceivers, supporting one charging UFP and one DRP
- Built-in pull-up/pull down resistors, including Rp, Rd, and Ra
- Built-in Vconn power switch

■DP Alt-mode Configuration

- Compliant to VESA DisplayPort Alt Mode on USB Type-C Standard Version 1.0a
- DP mode Discovery/Enter/Exit
- DP configure, status update, source/sink connection detection
- Built-in Aux_CH switch

■USB-C Charging UFP Capability

- Charging connected PD hosts once external power is available
- Support Provider and Consumer roles
- Support PD Power Rule up to 100W
- Support dead battery charging and Fast Role Swap

■USB-C DRP Capability

- Support Provider and Consumer roles
- Support PD Power Rule up to 100W as Sink and 15W as Source
- Built-in D+/D- Charging ePHY for chargers using D+/D- as protocol handshake
- Built-in USB HS data switch

■USB Billboard Device

- Compliant to USB Device Class Definition for Billboard Devices Revision 1.1
- Integrated in-house USB2.0 Full-speed PHY

■Fast 8051 Macro cell 80C32-Compatible Microcontroller

- Standard 1T 8051 instruction set
- Embedded Mask ROM and SRAM
- Support external SPI flash or sharing SPI flash with VLI Hub controller for firmware upgrade

■Built-in Oscillator, Voltage Regulators, Voltage Detector, and Current Detector

- Built-in trimmed RC oscillator
- 5.0V-to-3.3V LDO and 3.3V-to-1.8V LDO
- Auto power source selection between Vbus and Vconn
- Vbus Voltage Detector and Vbus Current Detector for monitoring power safety

■Smart Auto-standby

- Automatically entering deep power saving mode when connected interface are in idle state

■GPIOs for Special Function and Control

- 11 GPIOs in QFN48 and 7 GPIOs in QFN32 for application customization and one I²C master interface

■Physica

- OFN 48 green package (6x6x0.85 mm) for VL103-Q4, VL103R-Q4, and VL103S-Q4; pin-to-pin compatible to VL102-Q4
- QFN 32 green package (5x5x0.85 mm) for VL103-Q3; pin-to-pin compatible to VL100-Q3

■Certification

- PD Certification TID: TBD

■Applications

- USB-C video adapters
- USB-C Multi-function docks

VL103 System Overview

VIA Lab's VL103 is a highly integrated power-saving single chip DisplayPort Alt-mode and Power Delivery 3.0 controller for USB-C devices that designed for applications like USB-C video adapters and USB-C multi-function docking stations. Integrated USB-C charging UFP, VL103 can perform DP alt-mode video output functionality and simultaneously charging connected PD host once external power is detected. Integrated second USB-C DRP can either connect to USB-C power adapter to charge PD host or connect to USB-C devices to access data transfer. A D+/D- charging ePHY is integrated to support chargers using D+/D-pins to do protocol handshake. VL103's Device Policy Manager could negotiate power rules between its DRP and UFP then enable power charging-through. Charging a host under dead battery mode and PD3.0 fast role swap are supported. SBU1/SBU2 switch is built-in to support USB-C cable flipping feature. USB Billboard device function is implemented to meet "VESA DP Alt-Mode on USB Type-C" spec. VL103 also support smart auto-standby that automatically entering deep power saving mode when connected interface are in idle state which is suitable for smart phone accessories.

Built-in trimmed RC oscillator, linear voltage regulators, Vbus voltage detector, and Vbus current detector, VL103 can work perfectly with power input either from Vconn power or from Vbus power and can monitor abnormal power behavior. Up to 11 GPIO pins are available for power discharge control, power switch control, data switch control, or other special application usage. The SPI interface can support external SPI flash or sharing SPI flash with VLI Hub controller for firmware upgrade. VL103 is available in QFN 48L (6x6x0.85 mm) that pin-to-pin compatible to VL102-Q4 and QFN 32L (5x5x0.85 mm) that pin-to-pin compatible to VL100-Q3.

Figure 1 - VL103 Block Diagram

Typical Applications

Figure 2 - Generic VL103 USB-C Video Adapters

Figure 3 - VL103 USB-C Video Adapters with Hub and PD Charging-Thru

Figure 4 - VL103R USB-C Multi-function Dock

Pinout

Figure 5 - VL103 QFN-48 Pin Diagram

Figure 6 - VL103 QFN-32 Pin Diagram

Pin List

Table 1 - VL103 QFN-48 Pin List

Pin	Pin Name	Pin	Pin Name
1	VDD5IN	25	DM_IN
2	CC1_D	26	DM_OUT
3	CC2_D	27	DP_OUT
4	ODV5DP	28	DM_U
5	AUXP	29	DP_U
6	AUXN	30	VCC33
7	HPD	31	GPIO9
8	SBU1	32	GPIO8
9	SBU2	33	GPIO7
10	CC2_U	34	GPIO6
11	CC1_U	35	GPIO5
12	VBUS_DET2	36	GPIO3
13	VBUS_DET1	37	VDD5V
14	REXT	38	VCC33
15	VCONNIN33	39	GPIO4
16	LDOVDD5	40	DVCC18
17	LDOVDD330	41	GPIO1
18	OSCVDD180	42	GPIO2
19	GPIO11	43	RESET_
20	GPIO10	44	TESTEN
21	BOOST_VTRL	45	SPI_CS_
22	CS_N	46	SPI_Q
23	CS_P	47	SPI_CLK
24	DP_IN	48	SPI_D

Table 2 - VL103 QFN-32 Pin List

Pin	Pin Name	Pin	Pin Name
1	LDOVDD330	17	DP_U
2	AUXP	18	DM_U
3	AUXN	19	VCCU
4	SBU1	20	GPIO7
5	SBU2	21	GPIO6
6	HPD	22	GPIO3
7	CC2_U	23	GPIO2
8	CC1_U	24	GPIO1
9	REXT	25	VCC33
10	VCONNIN33	26	RESET_
11	LDOVDD5	27	TESTEN
12	LDOVDD330	28	DVCC18
13	LDOVDD180	29	SPI_CS_
14	OSCVDD18	30	SPI_Q
15	GPIO11	31	SPI_CLK
16	GPIO10	32	SPI_D

Pin Descriptions

Signal Type Definition

Name	Туре	Signal Description				
Input	I	A standard input-only signal				
Output	0	A standard active driver				
Input/ Output	I/O	A bi-directional signal				
Analog bias	A _{BIAS}	Analog bias or reference signal. Must be tied to external resistor and/or capacitor bias network				
Power	PWR	A power pin				
Ground	GND	A ground pin				

USB-C Interface

Pin Name	QFN48	QFN32	I/O	Signal Description
CC1_U	11	8	I/O	Charging UFP Configuration Channel 1
CC2_U	10	7	I/O	Charging UFP Configuration Channel 2
CC1_D	2	_	I/O	DRP Port Configuration Channel 1
CC2_D	3	_	I/O	DRP Port Configuration Channel 2
SBU1	8	4	I/O	Sideband Use 1
SBU2	9	5	I/O	Sideband Use 2

USB Billboard Interface

Pin Name	QFN48	QFN32	I/O	Signal Description
DP_U	29	17	I/O	D+ Data Line to USB Billboard Device
DM_U	28	18	I/O	D- Data Line to USB Billboard Device

USB2.0 Interface

Pin Name	QFN48	QFN32	1/0	Signal Description
DP_IN	24		I/O	D+ Data Line Connect to Downstream Facing Port
DM_IN	25	-	I/O	D- Data Line Connect to Downstream Facing Port
DP_OUT	27	7	I/O	D+ Data Line Connect to Upstream Facing Port
DM_OUT	26	_	I/O	D- Data Line Connect to Upstream Facing Port

DP Alt-mode Interface

Pin Name	QFN48	QFN32	I/O	Signal Description
AUXP	5	2	I/O	DP AUX Channel Positive
AUXN	6	3	I/O	DP AUX Channel Negative
HPD	7	6	I	DP Hot Plug Detect

SPI Interface

Pin Name	QFN48	QFN32	I/O	Signal Description
SPI_CS_	45	29	0	Serial Flash Chip Enable
SPI_D	48	32	0	Serial Flash Data Input
SPI_Q	46	30	I	Serial Flash Data Output
SPI_CLK	47	31	0	Serial Flash Clock

Analog Command Block

Pin Name	QFN48	QFN32	I/O	Signal Description
REXT	14	9	A_{BIAS}	Connect to External Resistor (20.5K ohm, +/- 1% accuracy)
LDOVDD5	16	11	PWR	5V Input for 5V-to-3.3V LDO
LDOVDD330	17	12, 1	PWR	3.3V Output Pin for 5V-to-3.3V LDO
LDOVDD180	_	13	PWR	Analog 1.8V Power Output
OSCVDD180	18	_	PWR	Analog 1.8V Power Output
OSCVDD18	_	14	PWR	Oscillator Analog 1.8V Power Input
VCONNIN33	15	10	PWR	3.3V Vconn Power Input
VBUS_DET1	13	_	I	USB-C Charging UFP VBus Voltage Detector
VBUS_DET2	12	_	I	USB-C DRP Vbus Voltage Detector
CS_P	23	_	I	Current Sensing Positive Input
CS_N	22	_	I	Current Sensing Negative Input
BOOST_VTRL	21	_	I	Boost Voltage Control Input
VDD5IN	1	_	PWR	5V Power Input for Vconn Power Output
ODV5DP	4	_	0	Open-Drain IO for 5V Video Power Control

General Purpose I/O and Miscellaneous

Pin Name	QFN48	QFN32	I/O	Signal Description
RESET_	43	26	I	External Chip Reset
GPIO1	41	24	I/O	General Purpose I/O
GPIO2	42	23	I/O	General Purpose I/O
GPIO3	36	22	I/O	General Purpose I/O
GPIO4	39	-	I/O	General Purpose I/O
GPIO5	35	7	I/O	General Purpose I/O
GPIO6	34	21	I/O	General Purpose I/O
GPIO7	33	20	I/O	General Purpose I/O
GPIO8	32		I/O	General Purpose I/O
GPIO9	31		I/O	General Purpose I/O
GPIO10	20	16	I/O	General Purpose I/O
GPIO11	19	15	I/O	General Purpose I/O

Test Pin

Pin Name	QFN48	QFN32	I/O	Signal Description
TESTEN	44	27	I	Test Mode Enable; Internal pull down Do not connect for normal operation.

Power and Ground

Pin Name	QFN48	QFN32	I/O	Signal Description
VDD5V	37	_	PWR	E-fuse Power Input, Connecting to 3.3V in Normal Use
VCC33	30, 38	25	PWR	Digital 3.3V IO Power Input
VCCU	_	19	PWR	Analog 3.3V Power Input
DVCC18	40	28	PWR Digital 1.8V Core Power Input	

Electrical Specification

Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Note
T _{STG}	Storage Temperature	-55	125	°C	_
V _{DD33}	3.3V Power Input Voltage	-0.5	3.69	V	_
V _{DD50}	5V Power Input Voltage	-0.5	5.5	V	_
Vo	Output Voltage at any output	-0.5	VCC+ 0.5	V	_
V _{ESD}	Electrostatic Discharge	-2	2	kV	Human Body Model

Note: Stress above conditions may cause permanent damage to the device.

Functional operation of this device should be restricted to the conditions described.

Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit
LDOVDD5	5V to 3.3V LDO 5V Power Input	4.5	5	5.5	V
VCONNIN33	3.3V Vconn power input	3.0	3.3	3.6	V
V _{CC33}	Digital IO power 3.3V	3.0	3.3	3.6	V
DV _{CC18}	Digital Core power 1.8V	1.62	1.8	1.98	V
DGND	Ground	_	0	1	V
T _A	Ambient Temperature	0		70	°C

General IO DC Characteristics

Symbol	Parameter	Min		Max	Unit	Note
V _{IL}	Input Low Voltage	-0.30		0.8	V	-
V _{IH}	Input High Voltage	2.0	•	3.6	V	-
V _{OL}	Output Low Volt <mark>age</mark>			0.4	V	IOL=15.8mA
V _{OH}	Output High Voltage	2.4		_	V	IOH=26.5mA
I _{IL}	Input Leakage Current	V -		+/-10	μΑ	0 <vin<vcc< td=""></vin<vcc<>
I _{OZ}	Tristate Leakage Current	_		+/-10	μA	0 <vout<vcc< td=""></vout<vcc<>

Internal 3.3V to 1.8V LDO Regulator

Parameter	Min	Тур.	Max	Unit	Note
Input Voltage	3.0	3.3	3.6	V	
Output Voltage	1.71	1.8	1.89	V	
Max. Output Current			100	mA	
Output Voltage Tolerance		+/- 5%			

Internal 5V to 3.3V LDO Regulator

Parameter	Min	Тур.	Max	Unit	Note
Input Voltage	4.5	5.0	5.5	V	
Output Voltage	3.135	3.3	3.465	V	
Max. Output Current			100	mA	
Output Voltage Tolerance		+/- 5%			

PD BMC DC/AC Characteristics

Symbol	Parameter	Min	Max	Unit	Note	
V _{BMCSWING}	Voltage Swing	1.05	1.2	V		
Z _{BMCDRV}	Drive Output Resistance	33	75	Ω		
T _{BMCR}	Rise Time	300		ns	+	
T _{BMCF}	Fall Time	300		ns		

USB Full Speed DC/AC Characteristics

Symbol	Parameter	Min	Max	Unit	Note	
V_{IH}	High state input level	2.0		V	_	
V_{IHZ}	High-z state input level	2.7	3.6	V	_	
V_{IL}	Low state input level		0.8	V	_	
V_{DI}	Differential input sensitivity	0.2		V	_	
V_{CM}	Differential common mode	0.8	2.5	V	_	
V_{OL}	Low state output level	0.0	0.3	V	_	
V _{OH}	High state output level	2.8	3.6	V	_	
V_{CRS}	Output signal crossover voltage	1.3	2.0	V	_	
R _{PU}	Bus pull-up resistor	1.425	1.575	ΚΩ	_	
Z_{DRV}	Driver output resistance	28	44	Ω	_	
T _{FR}	Full-speed Rise Time	4	20	ns	_	
T _{FF}	Full-speed Fall Time	4	20	ns	_	

Package Mechanical Specifications

QFN-48 Pb-free Maximum Temperature for IR Reflow

Parameter	Value	Unit
Maximum Temperature Tp	250	°C
Max Time within 5°C of Tp	30	seconds

Figure 7 - QFN 48L 6x6x0.85 mm Mechanical Specification

QFN-32 Pb-free Maximum Temperature for IR Reflow

Parameter	Value	Unit
Maximum Temperature Tp	250	°C
Max Time within 5°C of Tp	30	Seconds

Figure 8 - QFN 32L 5x5x0.85 mm Mechanical Specification

Package Top Side Marking

Figure 9 - VL103 Package Top Side Marking

Ordering Information

Part Number	Description	Package
VL103-Q4	USB-C Charging-Through w/ Captive Cable (One charging UFP and one DRP; UFP CC2 bonding to Ra)	48-pin QFN (6x6mm)
VL103R-Q4	USB-C Charging-Through w/ USB-C Receptacle (One charging UFP and one DRP; UFP CC2 bonding to Rd)	48-pin QFN (6x6mm)
VL103S-Q4	Self-powered USB-C Charging-Through (One charging UFP and one DRP; UFP CC1/CC2 floating to resistor)	48-pin QFN (6x6mm)
VL103-Q3	One charging UFP only; UFP CC2 bonding to Ra)	32-pin QFN (5x5mm)

www.via-labs.com

7F, 529-1, Zhongzheng Rd.,

Xindian District, New Taipei City 23148 Taiwan

Tel: (886-2) 2218-1838 Fax: (886-2) 2218-2553

Email: sales@via-labs.com.tw

Copyright © 2017 VIA Labs, Inc. All Rights Reserved.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Labs, Inc. The material in this document is for information only and is subject to change without notice. VIA Labs, Inc. reserves the right to make changes in the product design without reservation and without notice to its users.

All trademarks are the properties of their respective owners.

No license is granted, implied or otherwise, under any patent or patent rights of VIA Labs, Inc. VIA Labs, Inc. makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable as of the publication date of this document. However, VIA Labs, Inc. assumes no responsibility for any errors in this document. Furthermore, VIA Labs, Inc. assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.