CNN Layer Sizing & Parameter-Count Report

This report summarizes the key formulas and procedures you need to:

- 1. Compute output feature-map dimensions
- 2. Compute learnable parameter counts

for convolutional, pooling, and fully-connected layers in any standard CNN.

1. Convolutional Layers

1.1. Definitions

• Input feature-map:

width = $W_{\rm in}$, height = $H_{\rm in}$,

depth (channels) = $D_{\rm in}$.

• Kernel (filter): size $F \times F$.

• Number of filters: *K*.

• Stride: *S*.

• Padding: P

• "same" padding $ightarrow P = \lfloor F/2
floor$

• "valid" padding $\rightarrow P = 0$

1.2. Output Dimensions

The output width $W_{
m out}$ and height $H_{
m out}$ are

$$W_{
m out} = \left \lfloor rac{W_{
m in} - F + 2P}{S} \,
ight ert + 1, H_{
m out} = \left \lfloor rac{H_{
m in} - F + 2P}{S} \,
ight ert + 1.$$

The output **depth** is simply the number of filters:

$$D_{\mathrm{out}} = K$$
.

1.3. Parameter Count (Revised)

Each convolutional layer has **one bias per filter**, so:

• Weights per filter: $F imes F imes D_{
m in}$

Biases per filter: 1Number of filters: K

Total parameters for the layer

Factored form (emphasizes "per-filter" cost):

$$\mathrm{Params}_{\mathrm{conv}} = K(F^2 \cdot D_{\mathrm{in}} + 1).$$

• **Expanded form** (separates weights vs. biases):

$$\mathrm{Params}_{\mathrm{conv}} = K \cdot F^2 \cdot D_{\mathrm{in}} + K$$

2. Pooling Layers (Max- or Avg-pool)

2.1. Definitions

Input feature-map:

width = $W_{\rm in}$,

height = $H_{\rm in}$,

depth = $D_{\rm in}$.

• Pool window: size $F_p \times F_p$.

• Stride: S_p .

• **Padding**: usually $P_p = 0$ (no padding).

2.2. Output Dimensions

$$egin{align} W_{
m out} &= \left\lfloor rac{W_{
m in} - F_p + 2P_p}{S_p}
ight
floor + 1 \ & \ H_{
m out} &= \left\lfloor rac{H_{
m in} - F_p + 2P_p}{S_p}
ight
floor + 1 \ & \ D_{
m out} &= D_{
m in}. \end{align}$$

2.3. Parameter Count

Pooling layers have no learnable parameters:

$$Params_{pool} = 0.$$

3. Fully-Connected (Dense) Layers

3.1. Definitions

• Flattened input length: $N_{
m in}$.

• Number of neurons: $N_{
m out}$.

3.2. Parameter Count

$$\mathrm{Params}_{\mathrm{FC}} = N_{\mathrm{in}} imes N_{\mathrm{out}} + N_{\mathrm{out}}.$$

4. Putting It All Together

1. **Start** with your input size (W_0, H_0, D_0) .

2. For each convolutional layer:

- Compute (W_i, H_i, D_i) via the conv formula.
- Compute its parameter count via Params_{conv}.

3. For each pooling layer:

- Compute (W_i, H_i) via the pooling formula.
- (No parameters.)
- 4. Repeat over all conv/pool blocks.
- 5. **Flatten** final (W_f, H_f, D_f) into:

$$N_{
m in} = W_f imes H_f imes D_f.$$

 $W_{
m out} = \lfloor (224 - 7 + 2 \cdot 3)/2 \rfloor + 1 = 112$

6. For each FC layer:

- Apply the FC parameter count formula.
- 7. **Sum** all layer-wise parameter counts \rightarrow total model parameters.

Example Workflow

Given an input
$$224 \times 224 \times 3$$
, conv($K = 64, F = 7, S = 2, \text{same}$), pool($F_p = 3, S_p = 2$), conv($K = 128, F = 3, S = 1, \text{same}$), ...

1. Conv1

•
$$F = 7$$
, $S = 2$, $P = \lfloor 7/2 \rfloor = 3$

$$m{W}_{
m out} = 112,\, D_{
m out} = 64$$

• Params =
$$64 \times (7^2 \times 3 + 1) = 9,472$$

2. Pool1

•
$$F_p = 3$$
, $S_p = 2$, $P_p = 0$

$$ullet$$
 $H_{
m out}=55$, $D_{
m out}=64$

• Params = 0

3. **Conv2**

$$ullet$$
 $F=3$, $S=1$, $P=\lfloor 3/2
floor=1$

$$ullet$$
 $W_{
m out}=55$, $H_{
m out}=55$, $D_{
m out}=128$

 $\bullet \ \ \mathsf{Params} = 128 \times (3^2 \times 64 + 1) = 73{,}856$

...and so on.

 $W_{
m out} = \lfloor (112-3)/2
floor + 1 = 55$