Biostat 602 Winter 2017

Lecture Set 16

Hypothesis Testing

Reading: CB Chapter 8

Hypothesis Testing

A hypothesis is a statement about a population parameter

Two complementary statements about θ :

- Null hypothesis : $H_0: \theta \in \Omega_0$
- Alternative hypothesis : $H_1: \theta \in \Omega_0^c$

$$\theta \in \Omega = \Omega \cup \Omega^c.$$

Simple and composite hypothesis

Simple hypothesis

Both H_0 and H_1 consist of only one parameter value.

- $H_0: \theta = \theta_0 \in \Omega_0$
- $H_1: \theta = \theta_1 \in \Omega_0^c$

Composite hypothesis

One or both of H_0 and H_1 consist more than one parameter values.

- One-sided hypothesis: $H_0: \theta \leq \theta_0 \text{ vs } H_1: \theta > \theta_0.$
- One-sided hypothesis: $H_0: \theta \ge \theta_0 \text{ vs } H_1: \theta < \theta_0.$
- Two-sided hypothesis: $H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0.$

An Example of Hypothesis

$$X_1, \cdots, X_n \ iid \ \mathcal{N}(\theta, 1)$$

Let X_i denote the change in blood pressure after a treatment.

$$H_0$$
: $\theta = 0$ (no effect)
 H_1 : $\theta \neq 0$ (some effect)

Two-sided composite hypothesis.

Another Example of Hypothesis

- Let θ denote the proportion of defective items from a machine.
- One may want the proportion to be less than a specified maximum acceptable proportion θ_0 .
- We want to test whether the products produced by the machine is acceptable.

$$H_0: \theta \leq \theta_0$$
 (acceptable)

$$H_1: \theta > \theta_0$$
 (unacceptable)

Hypothesis Testing Procedure

A hypothesis testing procedure is a rule that specifies:

- 1. For which sample points H_0 is accepted as true (the subset of the sample space for which H_0 is accepted is called the acceptable region).
- 2. For which sample points H_0 is rejected and H_1 is accepted as true (the subset of sample space for which H_0 is rejected is called the rejection region or critical region).

Rejection region (R) on a hypothesis is usually defined through a test statistic $W(\mathbf{X})$. For example,

$$R_1 = \{\mathbf{x} : W(\mathbf{x}) > c, \mathbf{x} \in \mathcal{X}\}$$

$$R_2 = \{\mathbf{x} : W(\mathbf{x}) \le c, \mathbf{x} \in \mathcal{X}\}$$

Example of hypothesis testing

 X_1, X_2, X_3 i.i.d. Bernoulli(p). Consider hypothesis tests

$$H_0 : p \le 0.5$$

$$H_1 : p > 0.5$$

- Test 1 : Reject H_0 if $\mathbf{x} \in \{(1,1,1)\}$
 - \iff rejection region = $\{(1,1,1)\}$
 - \iff rejection region = $\{\mathbf{x} : \sum x_i > 2\}$
- Test 2: Reject H_0 if $\mathbf{x} \in \{(1,1,0), (1,0,1), (0,1,1), (1,1,1)\}$
 - \iff rejection region = $\{(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)\}$
 - \iff rejection region = $\{\mathbf{x} : \sum x_i > 1\}$

Example Let X_1, \dots, X_n be change in blood pressure after a treatment.

 $H_0: \theta=0$

 $H_1: \theta \neq 0$

An example rejection region $R = \left\{ \mathbf{x} : \frac{\overline{x}}{s_{\mathbf{x}}/\sqrt{n}} > 3 \right\}$.

Decision

Truth H_0 Accept H_0 Reject H_0 H_1 Correct DecisionType I error H_1 Type II errorCorrect Decision

Type I and Type II error

Type I error

If $\theta \in \Omega_0$ (if the null hypothesis is true), the probability of making a type I error is

$$\Pr(\mathbf{X} \in R | \theta)$$

Type II error

If $\theta \in \Omega_0^c$ (if the alternative hypothesis is true), the probability of making a type II error is

$$\Pr(\mathbf{X} \notin R | \theta) = 1 - \Pr(\mathbf{X} \in R | \theta)$$

Power function

Definition: The power function of a hypothesis test with rejection region R is the function of θ defined by

$$\beta(\theta) = \Pr(\mathbf{X} \in R | \theta) = \Pr(\text{reject } H_0 | \theta)$$

If $\theta \in \Omega_0^c$ (alternative is true), the probability of rejecting H_0 is called the power of test for this particular value of θ .

- Probability of type I error = $\beta(\theta)$ if $\theta \in \Omega_0$.
- Probability of type II error = $1 \beta(\theta)$ if $\theta \in \Omega_0^c$.

An ideal test should have power function satisfying $\beta(\theta) = 0$ for all $\theta \in \Omega_0$, $\beta(\theta) = 1$ for all $\theta \in \Omega_0^c$, which is typically not possible in practice.

Example 1: Let X_1, X_2, \dots, X_n i.i.d. $Bernoulli(\theta)$ where n = 5.

$$H_0: \theta \leq 0.5$$

$$H_1 : \theta > 0.5$$

Test 1 rejects H_0 if and only if all "success" are observed. i.e.

$$R = \{\mathbf{x} : \mathbf{x} = (1, 1, 1, 1, 1)\}$$

$$= \{\mathbf{x} : \sum_{i=1}^{5} x_i = 5\}$$

- 1. Compute the power function
- 2. What is the maximum probability of making type I error?
- 3. What is the probability of making type II error if $\theta = 2/3$?

Solution for Test 1

$$\beta(\theta) = \Pr(\text{reject } H_0|\theta) = \Pr(\mathbf{X} \in R|\theta)$$

$$= \Pr\left(\sum X_i = 5|\theta\right)$$

Because $\sum X_i \sim Binomial(5, \theta), \ \beta(\theta) = \theta^5.$

Maximum type I error

When $\theta \in \Omega_0 = (0, 0.5]$, the power function $\beta(\theta)$ is Type I error.

$$\max_{\theta \in (0,0.5]} \beta(\theta) = \max_{\theta \in (0,0.5]} \theta^5 = 0.5^5 = 1/32 \approx 0.031$$

Type II error when $\theta = 2/3$

$$1 - \beta(\theta)|_{\theta = \frac{2}{3}} = 1 - \theta^5|_{\theta = \frac{2}{3}} = 1 - (2/3)^5 = 211/243 \approx 0.868$$

Another Example

Example 2: X_1, X_2, \dots, X_n i.i.d. $Bernoulli(\theta)$ where n = 5.

$$H_0: \theta \leq 0.5$$

$$H_1 : \theta > 0.5$$

Test 2 rejects H_0 if and only if 3 or more "success" are observed. i.e.

$$R = \{\mathbf{x} : \sum_{i=1}^{5} x_i \ge 3\}$$

- 1. Compute the power function
- 2. What is the maximum probability of making type I error?
- 3. What is the probability of making type II error if $\theta = 2/3$?

Solution for Test 2

Power function

$$\beta(\theta) = \Pr(\sum X_i \ge 3|\theta) = {5 \choose 3} \theta^3 (1-\theta)^2 + {5 \choose 4} \theta^4 (1-\theta) + {5 \choose 5} \theta^5$$
$$= \theta^3 (6\theta^2 - 15\theta + 10)$$

Maximum type I error

We need to find the maximum of $\beta(\theta)$ for $\theta \in \Omega_0 = (0, 0.5]$

$$\beta'(\theta) = 30\theta^2(\theta - 1)^2 > 0$$

 $\beta(\theta)$ is increasing in $\theta \in (0,1)$. Maximum type I error is $\beta(0.5) = 0.5$

Type II error when $\theta = 2/3$

$$1 - \beta(\theta)|_{\theta = \frac{2}{3}} = 1 - \theta^3 (6\theta^2 - 15\theta + 10)|_{\theta = \frac{2}{3}} \approx 0.21$$

Sizes and Levels of Tests

Size α test

A test with power function $\beta(\theta)$ is a size α test if

$$\sup_{\theta \in \Omega_0} \beta(\theta) = \alpha$$

In other words, the maximum probability of making a type I error is α .

Level α test

A test with power function $\beta(\theta)$ is a level α test if

$$\sup_{\theta \in \Omega_0} \beta(\theta) \le \alpha$$

In other words, the maximum probability of making a type I error is equal or less than α .

Any size α test is also a level α test

Revisiting Previous Examples Test 1

$$\sup_{\theta \in \Omega_0} \beta(\theta) = \sup_{\theta \in \Omega_0} \theta^5 = 0.5^5 = 0.03125$$

The size is 0.03125, and this is a level 0.05 test, or a level 0.1 test, but not a level 0.01 test.

Test 2

$$\sup_{\theta \in \Omega_0} \beta(\theta) = 0.5$$

The size is 0.5

Constructing a good test

- 1. Construct all the level α test.
- 2. Within this level of tests, we search for the test with Type II error probability as small as possible; equivalently, we want the test with the largest power if $\theta \in \Omega_0^c$.

Review on standard normal and t distribution

Quantile of standard normal distribution

Let $Z \sim \mathcal{N}(0,1)$ with pdf $f_Z(z)$ and cdf $F_Z(z)$. The α -th quantile z_{α} or $(1-\alpha)$ -th quantile $z_{1-\alpha}$ of the standard distribution satisfy

$$\Pr(Z \ge z_{\alpha}) = \alpha \text{ or } z_{\alpha} = F_Z^{-1}(1 - \alpha)$$

 $\Pr(Z \le z_{1-\alpha}) = \alpha \text{ or } z_{1-\alpha} = F_Z^{-1}(\alpha)$
 $z_{1-\alpha} = -z_{\alpha}$

Quantile of t distribution

Let $T \sim t_{n-1}$ with pdf $f_{T,n-1}(t)$ and cdf $F_{T,n-1}(t)$. The α -th quantile $t_{n-1,\alpha}$ or $(1-\alpha)$ -th quantile $t_{n-1,1-\alpha}$ of the standard distribution satisfy

$$\Pr(T \ge t_{n-1,\alpha}) = \alpha \text{ or } t_{n-1\alpha} = F_{T,n-1}^{-1}(1-\alpha)$$

$$\Pr(T \le t_{n-1,1-\alpha}) = \alpha \text{ or } t_{n-1,1-\alpha} = F_{T,n-1}^{-1}(\alpha)$$

$$t_{n-1,1-\alpha} = -t_{n-1,\alpha}$$

Likelihood Ratio Tests (LRT)

Definition Let $L(\theta|\mathbf{x})$ be the likelihood function of θ . The likelihood ratio test statistic for testing $H_0: \theta \in \Omega_0$ vs. $H_1: \theta \in \Omega_0^c$ is

$$\lambda(\mathbf{x}) = \frac{\sup_{\theta \in \Omega_0} L(\theta|\mathbf{x})}{\sup_{\theta \in \Omega} L(\theta|\mathbf{x})} = \frac{L(\hat{\theta}_0|\mathbf{x})}{L(\hat{\theta}|\mathbf{x})}$$

where $\hat{\theta}$ is the MLE of θ over $\theta \in \Omega$, and $\hat{\theta}_0$ is the MLE of θ over $\theta \in \Omega_0$ (restricted MLE).

The likelihood ratio test is a test that rejects H_0 if and only if $\lambda(\mathbf{x}) \leq c$ where $0 \leq c \leq 1$.

Example of LRT

Example 3: Consider X_1, \dots, X_n iid $\mathcal{N}(\theta, \sigma^2)$ where σ^2 is known.

$$H_0: \theta \leq \theta_0$$

$$H_1: \theta > \theta_0$$

Find the LRT test and its power function

Solution:

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x_i - \theta)^2}{2\sigma^2}\right]$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left[-\frac{\sum_{i=1}^{n} (x_i - \theta)^2}{2\sigma^2}\right]$$

We need to find MLE of θ over $\Omega = (-\infty, \infty)$ and $\Omega_0 = (-\infty, \theta_0]$.

MLE of θ over $\Omega = (-\infty, \infty)$

To maximize $L(\theta|\mathbf{x})$, we need to maximize $\exp\left[-\frac{\sum_{i=1}^{n}(x_i-\theta)^2}{2\sigma^2}\right]$, or equivalently to minimize $\sum_{i=1}^{n}(x_i-\theta)^2$.

$$\sum_{i=1}^{n} (x_i - \theta)^2 = \sum_{i=1}^{n} (x_i^2 + \theta^2 - 2\theta x_i)$$
$$= n\theta^2 - 2\theta \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} x_i^2$$

The equation above is minimized when $\theta = \hat{\theta} = \frac{\sum_{i=1}^{n} x_i}{n} = \overline{x}$.

- $L(\theta|\mathbf{x})$ is maximized at $\theta = \frac{\sum_{i=1}^{n} x_i}{n} = \overline{x}$ if $\overline{x} \leq \theta_0$.
- However, if $\overline{x} \geq \theta_0$, \overline{x} does not fall into a valid range of $\hat{\theta}_0$, and $\theta \leq \theta_0$, the likelihood function will be an increasing function. Therefore $\hat{\theta}_0 = \theta_0$.

To summarize,

$$\hat{\theta}_0 = \begin{cases} \overline{X} & \text{if } \overline{X} \le \theta_0 \\ \theta_0 & \text{if } \overline{X} > \theta_0 \end{cases}$$

$$\lambda(\mathbf{x}) = \frac{L(\hat{\theta}_0|\mathbf{x})}{L(\hat{\theta}|\mathbf{x})} = \begin{cases} 1 & \text{if } \overline{X} \leq \theta_0 \\ \frac{\exp\left[-\frac{\sum_{i=1}^n (x_i - \theta_0)^2}{2\sigma^2}\right]}{\exp\left[-\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{2\sigma^2}\right]} & \text{if } \overline{X} > \theta_0 \end{cases}$$
$$= \begin{cases} 1 & \text{if } \overline{X} \leq \theta_0 \\ \exp\left[-\frac{n(\overline{x} - \theta_0)^2}{2\sigma^2}\right] & \text{if } \overline{X} > \theta_0 \end{cases}$$

Therefore, the likelihood test rejects the null hypothesis if and only if

$$\exp\left[-\frac{n(\overline{x}-\theta_0)^2}{2\sigma^2}\right] \le c$$

and $\overline{x} \geq \theta_0$.

Specifying c

$$\exp\left[-\frac{n(\overline{x}-\theta_0)^2}{2\sigma^2}\right] \leq c$$

$$\iff -\frac{n(\overline{x}-\theta_0)^2}{2\sigma^2} \leq \log c$$

$$\iff (\overline{x}-\theta_0)^2 \geq -\frac{2\sigma^2 \log c}{n}$$

$$\iff \overline{x}-\theta_0 \geq \sqrt{-\frac{2\sigma^2 \log c}{n}} \qquad (\because \overline{x} > \theta_0)$$

So, LRT rejects H_0 if and only if

$$\overline{x} - \theta_0 \geq \sqrt{-\frac{2\sigma^2 \log c}{n}}$$

$$\iff \frac{\overline{x} - \theta_0}{\sigma/\sqrt{n}} \geq \frac{\sqrt{-\frac{2\sigma^2 \log c}{n}}}{\sigma/\sqrt{n}} = c^*$$

Therefore, the rejection region is

$$\left\{\mathbf{x}: \frac{\overline{x} - \theta_0}{\sigma / \sqrt{n}} \ge c^*\right\}$$

Power function

$$\beta(\theta) = \Pr\left(\text{reject } H_0\right) = \Pr\left(\frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} \ge c^*\right)$$

$$= \Pr\left(\frac{\overline{X} - \theta + \theta - \theta_0}{\sigma/\sqrt{n}} \ge c^*\right)$$

$$= \Pr\left(\frac{\overline{X} - \theta}{\sigma/\sqrt{n}} \ge \frac{\theta_0 - \theta}{\sigma/\sqrt{n}} + c^*\right)$$

Since X_1, \dots, X_n i.i.d. $\mathcal{N}(\theta, \sigma^2), \overline{X} \sim \mathcal{N}\left(\theta, \frac{\sigma^2}{n}\right)$. Therefore,

$$\frac{\overline{X} - \theta}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$$

$$\Longrightarrow \beta(\theta) = \Pr\left(Z \ge \frac{\theta_0 - \theta}{\sigma/\sqrt{n}} + c^*\right)$$

where $Z \sim \mathcal{N}(0, 1)$.

Making size α LRT

To make a size α test,

$$\sup_{\theta \in \Omega_0} \beta(\theta) = \alpha$$

$$\sup_{\theta \le \theta_0} \Pr\left(Z \ge \frac{\theta_0 - \theta}{\sigma / \sqrt{n}} + c^*\right) = \alpha$$

$$\Pr\left(Z \ge c^*\right) = \alpha$$

$$c^* = z_\alpha$$

Note that $\Pr\left(Z \geq \frac{\theta_0 - \theta}{\sigma/\sqrt{n}} + c^*\right)$ is maximized when θ is maximum (i.e. $\theta = \theta_0$).

Therefore, size α LRT test rejects H_0 if and only if $\frac{\overline{x}-\theta_0}{\sigma/\sqrt{n}} \geq z_{\alpha}$.

Another Example of LRT

Example 4: Let X_1, \dots, X_n i.i.d. from $f(x|\theta) = e^{-(x-\theta)}$ where $x \ge \theta$ and $-\infty < \theta < \infty$. Find a LRT testing the following one-sided hypothesis.

$$H_0: \theta \leq \theta_0$$

$$H_1: \theta > \theta_0$$

Solution:

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} e^{-(x_i - \theta)} I(x_i \ge \theta)$$
$$= e^{-\sum x_i + n\theta} I(\theta \le x_{(1)})$$

The likelihood function is a increasing function of θ , bounded by $\theta \leq x_{(1)}$. Therefore, when $\theta \in \Omega = \mathbb{R}$, $L(\theta|\mathbf{x})$ is maximized when $\theta = \hat{\theta} = x_{(1)}$.

When $\theta \in \Omega_0^c$, the likelihood is still an increasing function, but bounded by $\theta \leq \min(x_{(1)}, \theta_0)$. Therefore, the likelihood is maximized when $\theta = \hat{\theta}_0 = \min(x_{(1)}, \theta_0)$. The likelihood ratio test statistic is

$$\lambda(\mathbf{x}) = \begin{cases} \frac{e^{-\sum x_i + n\theta_0}}{e^{-\sum x_i + nx_{(1)}}} & \text{if } \theta_0 < x_{(1)} \\ 1 & \text{if } \theta_0 \ge x_{(1)} \end{cases}$$
$$= \begin{cases} e^{n(\theta_0 - x_{(1)})} & \text{if } \theta_0 < x_{(1)} \\ 1 & \text{if } \theta_0 \ge x_{(1)} \end{cases}$$

The LRT rejects H_0 if and only if

$$e^{n(\theta_0 - x_{(1)})} \le c \pmod{\theta_0 < x_{(1)}}$$

 $\iff \theta_0 - x_{(1)} \le \frac{\log c}{n} \iff x_{(1)} \ge \theta_0 - \frac{\log c}{n}$

So, LRT reject H_0 is $x_{(1)} \ge \theta_0 - \frac{\log c}{n}$ and $x_{(1)} > \theta_0$. The power function is

$$\beta(\theta) = \Pr\left(X_{(1)} \ge \theta_0 - \frac{\log c}{n} \land X_{(1)} > \theta_0\right)$$
$$= \Pr\left(X_{(1)} \ge \theta_0 - \frac{\log c}{n}\right)$$

To find size α test, we need to find c satisfying the condition

$$\sup_{\theta < \theta_0} \beta(\theta) = \alpha$$

Constructing size α test

$$\beta(\theta) = \Pr\left(X_{(1)} \ge \theta_0 - \frac{\log c}{n}\right) = \prod_{i=1}^n \Pr\left(X_i \ge \theta_0 - \frac{\log c}{n}\right)$$

$$= \prod_{i=1}^n \Pr\left(X_i - \theta \ge \theta_0 - \theta - \frac{\log c}{n}\right)$$

$$= \prod_{i=1}^n \exp\left[-\theta_0 + \theta + \frac{\log c}{n}\right] = \left[\exp\left(-\theta_0 + \theta + \frac{\log c}{n}\right)\right]^n$$

which is increasing in θ . Hence

$$\sup_{\theta \le \theta_0} \beta(\theta) = \left[\exp\left(\frac{\log c}{n}\right) \right]^n = \alpha$$

Therefore, $\frac{\log c}{n} = \frac{1}{n} \log \alpha$, and the rejection region of the size α test is

$$R = \left\{ \mathbf{X} : X_{(1)} \ge \theta_0 - \frac{1}{n} \log \alpha \right\}$$