Formale Semantik 07. Getypte höherstufige L-Sprachen

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

Folien in Überarbeitung. Englische Teile (ab Woche 7) sind noch von 2007!

Stets aktuelle Fassungen: https://github.com/rsling/VL-Semantik

Inhalt

- 1 Einfachere Semantik
- 2 Getypte Sprachen

- 3 λ -Sprachen
- 4 Ausblick auf Quantifikation bei Montague

Wie unterscheidet sich Montagues System von GB-Semantik?

Wie unterscheidet sich Montagues System von GB-Semantik?
Welche Rolle spielen Typen?

Wie unterscheidet sich Montagues System von GB-Semantik?

Welche Rolle spielen Typen?

Was sind λ -Sprachen?
Ind woher kennen Sie den λ -Operator eigent

Und woher kennen Sie den λ -Operator eigentlich schon?

Wie unterscheidet sich Montagues System von GB-Semantik?
Welche Rolle spielen Typen?

Was sind λ -Sprachen? Und woher kennen Sie den λ -Operator eigentlich schon?

Text für heute: Dowty u. a. (1981: Kapitel 4) | Chierchia & McConnell-Ginet 2000: Kapitel 7

Es geht wie immer auch ohne Bewegung.

• Chierchia | auf Grundlage von GB-Syntax

- Chierchia | auf Grundlage von GB-Syntax
 - Syntax und Semantik in Phrasenstrukturen

- Chierchia | auf Grundlage von GB-Syntax
 - Syntax und Semantik in Phrasenstrukturen
 - Sprache wird zu Logik durch unsichtbare Bewegung.

- Chierchia | auf Grundlage von GB-Syntax
 - Syntax und Semantik in Phrasenstrukturen
 - Sprache wird zu Logik durch unsichtbare Bewegung.
 - ► Semantik als eigene Repräsentationsebene

- Chierchia | auf Grundlage von GB-Syntax
 - Syntax und Semantik in Phrasenstrukturen
 - Sprache wird zu Logik durch unsichtbare Bewegung.
 - ▶ Semantik als eigene Repräsentationsebene
- Montague | Sprache ist Logik!

- Chierchia | auf Grundlage von GB-Syntax
 - Syntax und Semantik in Phrasenstrukturen
 - Sprache wird zu Logik durch unsichtbare Bewegung.
 - ▶ Semantik als eigene Repräsentationsebene
- Montague | Sprache ist Logik!
 - Direkte Interpretation von Zeichen als logische Symbole

- Chierchia | auf Grundlage von GB-Syntax
 - Syntax und Semantik in Phrasenstrukturen
 - Sprache wird zu Logik durch unsichtbare Bewegung.
 - Semantik als eigene Repräsentationsebene
- Montague | Sprache ist Logik!
 - Direkte Interpretation von Zeichen als logische Symbole
 - Logische Form (lf) als Sichtbarmachen logischer Eigenschaften

- Chierchia | auf Grundlage von GB-Syntax
 - Syntax und Semantik in Phrasenstrukturen
 - Sprache wird zu Logik durch unsichtbare Bewegung.
 - Semantik als eigene Repräsentationsebene
- Montague | Sprache ist Logik!
 - Direkte Interpretation von Zeichen als logische Symbole
 - Logische Form (lf) als Sichtbarmachen logischer Eigenschaften
 - Keine Überseztung

Mengen, über Funktionen definiert

• Große Bedeutung von Mengen in formaler Semantik

- Große Bedeutung von Mengen in formaler Semantik
- Charakteristische Funktion von Mengen S(a) = 1 iff $a \in S$, else 0

- Große Bedeutung von Mengen in formaler Semantik
- Charakteristische Funktion von Mengen S(a) = 1 iff $a \in S$, else 0
- CF als Einsortierung in ihre Menge

- Große Bedeutung von Mengen in formaler Semantik
- Charakteristische Funktion von Mengen S(a) = 1 iff $a \in S$, else 0
- CF als Einsortierung in ihre Menge
- CF in Mengendefinitionen

$$S = \{x : x \mod 2 = 0\}$$

$$\mathcal{S} = \mathbf{f}(\mathbf{x})[\mathbf{x} \bmod 2 = 0]$$

Mengen, über Funktionen definiert

- Große Bedeutung von Mengen in formaler Semantik
- Charakteristische Funktion von Mengen S(a) = 1 iff $a \in S$, else 0
- CF als Einsortierung in ihre Menge
- CF in Mengendefinitionen

$$S = \{x : x \mod 2 = 0\}$$

 $S = f(x)[x \mod 2 = 0]$

• Äquivalenz von Mengendenotation und CF-Dontation

Funktionsapplikation als allgemeiner Kompositionsmechanismus

• Etwas umständliche Interpretation mit T-Sätzen $[\![SNPVP]\!]^{\mathcal{M},g} = 1$ iff $[\![NP]\!]^{\mathcal{M},g} \in [\![VP]\!]^{\mathcal{M},g}$

- Etwas umständliche Interpretation mit T-Sätzen $[\![SNPVP]\!]^{\mathcal{M},g} = 1$ iff $[\![NP]\!]^{\mathcal{M},g} \in [\![VP]\!]^{\mathcal{M},g}$
- CF statt Mengen | Funktion appliziert direkt!

- Etwas umständliche Interpretation mit T-Sätzen $[\![SNPVP]\!]^{\mathcal{M},g} = 1$ iff $[\![NP]\!]^{\mathcal{M},g} \in [\![VP]\!]^{\mathcal{M},g}$
- CF statt Mengen | Funktion appliziert direkt!
 - $[Mary]^{\mathcal{M},g} = Mary in \mathcal{M}$

- Etwas umständliche Interpretation mit T-Sätzen $[\![SNPVP]\!]^{\mathcal{M},g} = 1$ iff $[\![NP]\!]^{\mathcal{M},g} \in [\![VP]\!]^{\mathcal{M},g}$
- CF statt Mengen | Funktion appliziert direkt!
 - $\llbracket \mathsf{Mary} \rrbracket^{\mathcal{M},g} = \mathsf{Mary} \ \mathsf{in} \ \mathcal{M}$
 - [sleeps] $^{\mathcal{M},g}$ be the CF of the set of sleepers in \mathcal{M}

- Etwas umständliche Interpretation mit T-Sätzen $|| [SNPVP]||^{\mathcal{M},g} = 1$ iff $|| [NP]|^{\mathcal{M},g} \in || [VP]|^{\mathcal{M},g}$
- CF statt Mengen | Funktion appliziert direkt!
 - $\llbracket \mathsf{Mary}
 rbracket^{\mathcal{M},g} = \mathsf{Mary} \ \mathsf{in} \ \mathcal{M}$
 - $[sleeps]^{\mathcal{M},g}$ be the CF of the set of sleepers in \mathcal{M}
 - $\qquad \qquad \mathbb{\llbracket} \mathsf{S} \mathbb{\rrbracket}^{\mathcal{M},g} = \mathbb{\llbracket} \mathsf{sleeps} \mathbb{\rrbracket}^{\mathcal{M},g} (\mathbb{\llbracket} \mathsf{Mary} \mathbb{\rrbracket}^{\mathcal{M},g})$

- Etwas umständliche Interpretation mit T-Sätzen $[\![SNPVP]\!]^{\mathcal{M},g} = 1$ iff $[\![NP]\!]^{\mathcal{M},g} \in [\![VP]\!]^{\mathcal{M},g}$
- CF statt Mengen | Funktion appliziert direkt!
 - $\llbracket \mathsf{Mary}
 rbracket^{\mathcal{M},g} = \mathsf{Mary} \ \mathsf{in} \ \mathcal{M}$
 - $[sleeps]^{\mathcal{M},g}$ be the CF of the set of sleepers in \mathcal{M}

 - ► Kein Bedarf an T-Sätzen

Vorbemerkung | Funktionen von Mengen zu Mengen

Vorbemerkung | Funktionen von Mengen zu Mengen

Funktionen von Mengen von (Tupeln von) Individuen zu Ausdrücken usw.

Vorbemerkung | Funktionen von Mengen zu Mengen

Funktionen von Mengen von (Tupeln von) Individuen zu Ausdrücken usw.

• Funktionen Definitionsbereich $S_1 \to \text{Wertebereich } S_2 \mid S_2^{S_1} \mid \text{Die Menge aller Funktionen von } S_1 \text{ zu } S_2$

- Funktionen Definitionsbereich $S_1 \to \text{Wertebereich } S_2 \mid S_2^{S_1} \mid \text{Die Menge aller Funktionen von } S_1 \text{ zu } S_2$
- Beispiel | Einstellige und Zweistellige Prädikate

- Funktionen Definitionsbereich $S_1 \to \text{Wertebereich } S_2 \mid S_2^{S_1} \mid \text{Die Menge aller Funktionen von } S_1 \text{ zu } S_2$
- Beispiel | Einstellige und Zweistellige Prädikate
 - $ightharpoonup T = \{0,1\}$ | Wahrheitswerte

- Funktionen Definitionsbereich $S_1 \to \text{Wertebereich } S_2 \mid S_2^{S_1} \mid \text{Die Menge aller Funktionen von } S_1 \text{ zu } S_2$
- Beispiel | Einstellige und Zweistellige Prädikate
 - $ightharpoonup T = \{0,1\}$ | Wahrheitswerte
 - ▶ D | Diskursuniversum (Menge aller Individuen)

- Funktionen Definitionsbereich $S_1 \to \text{Wertebereich } S_2 \mid S_2^{S_1} \mid S_2^{S_1} \mid \text{Die Menge aller Funktionen von } S_1 \text{ zu } S_2$
- Beispiel | Einstellige und Zweistellige Prädikate
 - $ightharpoonup T = \{0,1\}$ | Wahrheitswerte
 - ▶ D | Diskursuniversum (Menge aller Individuen)
 - ▶ $D \times D$ | Menge aller 2-Tupel von Individuen

- Funktionen Definitionsbereich $S_1 \to \text{Wertebereich } S_2 \mid S_2^{S_1} \mid \text{Die Menge aller Funktionen von } S_1 \text{ zu } S_2$
- Beispiel | Einstellige und Zweistellige Prädikate
 - $ightharpoonup T = \{0,1\}$ | Wahrheitswerte
 - ▶ D | Diskursuniversum (Menge aller Individuen)
 - ▶ $D \times D$ | Menge aller 2-Tupel von Individuen
 - T^D | Menge aller Funktionen von Individuen zu Wahrheitswerten Menge der CFs aller einstelligen Prädikate

- Funktionen Definitionsbereich $S_1 \to \text{Wertebereich } S_2 \mid S_2^{S_1} \mid \text{Die Menge aller Funktionen von } S_1 \text{ zu } S_2$
- Beispiel | Einstellige und Zweistellige Prädikate
 - $ightharpoonup T = \{0,1\}$ | Wahrheitswerte
 - ▶ D | Diskursuniversum (Menge aller Individuen)
 - ▶ $D \times D$ | Menge aller 2-Tupel von Individuen
 - ► T^D | Menge aller Funktionen von Individuen zu Wahrheitswerten Menge der CFs aller einstelligen Prädikate
 - ► T^{D×D} | Menge aller Funktionen von 2-Tupeln von Individuen zu Wahrheitswerten Menge der CFs aller zweistelligen Prädikate

Logik hat bereits Typensysteme, um Syntax zu strukturieren!

• L_{Type} | Prädikatenlogik L_1 plus Typen

- L_{Type} | Prädikatenlogik L_1 plus Typen
- Typen | Semantisch fundierte Klassen von Ausdrücken

- L_{Type} | Prädikatenlogik L_1 plus Typen
- Typen | Semantisch fundierte Klassen von Ausdrücken
- Einfache Typen

- L_{Type} | Prädikatenlogik L_1 plus Typen
- Typen | Semantisch fundierte Klassen von Ausdrücken
- Einfache Typen
 - **▶** Terme | ⟨*e*⟩

- L_{Type} | Prädikatenlogik L_1 plus Typen
- Typen | Semantisch fundierte Klassen von Ausdrücken
- Einfache Typen
 - **▶** Terme | ⟨*e*⟩
 - ightharpoonup Wffs/Formeln | $\langle t \rangle$ | Ersetzt Startsymbol S der PSG!

- L_{Type} | Prädikatenlogik L_1 plus Typen
- Typen | Semantisch fundierte Klassen von Ausdrücken
- Einfache Typen
 - ► Terme | ⟨e⟩
 - ▶ Wffs/Formeln | $\langle t \rangle$ | Ersetzt Startsymbol S der PSG!
- Komplexe/funktionale Typen

- L_{Type} | Prädikatenlogik L_1 plus Typen
- Typen | Semantisch fundierte Klassen von Ausdrücken
- Einfache Typen
 - ► Terme | ⟨e⟩
 - ▶ Wffs/Formeln | $\langle t \rangle$ | Ersetzt Startsymbol S der PSG!
- Komplexe/funktionale Typen
 - Einstellige Prädikate | $\langle e, t \rangle$

- L_{Type} | Prädikatenlogik L_1 plus Typen
- Typen | Semantisch fundierte Klassen von Ausdrücken
- Einfache Typen
 - ► Terme | ⟨e⟩
 - ▶ Wffs/Formeln | $\langle t \rangle$ | Ersetzt Startsymbol S der PSG!
- Komplexe/funktionale Typen
 - Einstellige Prädikate $|\langle e, t \rangle|$
 - **Zweistellige Prädikate** $|\langle e, \langle e, t \rangle\rangle$

- L_{Type} | Prädikatenlogik L_1 plus Typen
- Typen | Semantisch fundierte Klassen von Ausdrücken
- Einfache Typen
 - ► Terme | ⟨e⟩
 - ▶ Wffs/Formeln | $\langle t \rangle$ | Ersetzt Startsymbol S der PSG!
- Komplexe/funktionale Typen
 - ▶ Einstellige Prädikate | ⟨e, t⟩
 - ▶ Zweistellige Prädikate $|\langle e, \langle e, t \rangle\rangle$
- Allgemein | $\langle \sigma, \tau \rangle$ -Ausdrücke denotieren Funktionen von Denotaten von $\langle \sigma \rangle$ -Ausdrücken zu Denotaten von $\langle \tau \rangle$ -Ausdrücken.

Homogenes Diskursuniversum D (auch U und bei Dowty u. a. 1981 A)

ullet Allgemein ${\it D}_{lpha}$ | Menge von Denotaten von Ausdrücken des Typs lpha

- ullet Allgemein ${\it D}_{lpha}$ | Menge von Denotaten von Ausdrücken des Typs lpha
- Einfache Typen

- ullet Allgemein ${\it D}_{lpha}$ | Menge von Denotaten von Ausdrücken des Typs lpha
- Einfache Typen
 - $ightharpoonup D_{\langle e \rangle} = U$

- Allgemein D_{α} | Menge von Denotaten von Ausdrücken des Typs α
- Einfache Typen

 - $\begin{array}{ll} \blacktriangleright & D_{\langle \pmb{e} \rangle} = \pmb{U} \\ \blacktriangleright & D_{\langle \pmb{t} \rangle} = \{0,1\} \end{array}$

- ullet Allgemein ${\it D}_{lpha}$ | Menge von Denotaten von Ausdrücken des Typs lpha
- Einfache Typen
 - $ightharpoonup D_{\langle e \rangle} = U$
 - $D_{\langle t \rangle} = \{0, 1\}$
- Komplexe Typen | Rekursiv definierte Denotate

Homogenes Diskursuniversum D (auch U und bei Dowty u. a. 1981 A)

- ullet Allgemein ${\it D}_{lpha}$ | Menge von Denotaten von Ausdrücken des Typs lpha
- Einfache Typen
- Komplexe Typen | Rekursiv definierte Denotate

Þ

- ullet Allgemein ${\it D}_{lpha}$ | Menge von Denotaten von Ausdrücken des Typs lpha
- Einfache Typen
 - $D_{\langle e \rangle} = U$
- Komplexe Typen | Rekursiv definierte Denotate
 - •
 - lacksquare Allgemein | $D_{\langle lpha, eta
 angle} = D_{\langle eta
 angle}^{D_{\langle lpha
 angle}}$

- ullet Allgemein ${\it D}_{lpha}$ | Menge von Denotaten von Ausdrücken des Typs lpha
- Einfache Typen
 - $ightharpoonup D_{\langle e \rangle} = U$
- Komplexe Typen | Rekursiv definierte Denotate

 - ▶ Allgemein | $D_{\langle \alpha, \beta \rangle} = D_{\langle \beta \rangle}^{D_{\langle \alpha \rangle}}$
 - ullet Einstelliuge Prädikate | $D_{\langle e,t
 angle} = D_{\langle t
 angle}^{D_{\langle e
 angle}}$

- ullet Allgemein ${\it D}_{lpha}$ | Menge von Denotaten von Ausdrücken des Typs lpha
- Einfache Typen
 - $ightharpoonup D_{\langle e \rangle} = U$
- Komplexe Typen | Rekursiv definierte Denotate

 - ▶ Allgemein | $D_{\langle \alpha, \beta \rangle} = D_{\langle \beta \rangle}^{D_{\langle \alpha \rangle}}$
 - lacktriangle Einstelliuge Prädikate | $D_{\langle e,t
 angle}=D_{\langle t
 angle}^{D_{\langle e
 angle}}$
 - ightharpoonup Zweistellige Prädikate | $D_{\langle e,\langle e,t \rangle \rangle} = (D_{\langle t \rangle}^{D_{\langle e \rangle}})^{D_{\langle e \rangle}}$

- ullet Allgemein ${\it D}_{lpha}$ | Menge von Denotaten von Ausdrücken des Typs lpha
- Einfache Typen
 - $ightharpoonup D_{\langle e \rangle} = U$
- Komplexe Typen | Rekursiv definierte Denotate
 - •
 - Allgemein | $D_{\langle \alpha, \beta \rangle} = D_{\langle \beta \rangle}^{D_{\langle \alpha \rangle}}$
 - lacktriangle Einstelliuge Prädikate | $D_{\langle e,t
 angle}=D_{\langle t
 angle}^{D_{\langle e
 angle}}$
 - lacktriangle Zweistellige Prädikate | $D_{\langle e,\langle e,t
 angle
 angle}=\left(D_{\langle t
 angle}^{D_{\langle e
 angle}}
 ight)^{^{D_{\langle e
 angle}}}$
- Interpretation weiterhin durch V, g

 $\langle \sigma \rangle$ -Ausdrücke saturieren $\langle \sigma, \tau \rangle$ -Ausdrücke zu $\langle \tau \rangle$ -Ausdrücken.

 $\langle \sigma \rangle$ -Ausdrücke saturieren $\langle \sigma, \tau \rangle$ -Ausdrücke zu $\langle \tau \rangle$ -Ausdrücken.

• Beispiel für Saturierung durch Funktionsapplikation (FA)

 $\langle \sigma \rangle$ -Ausdrücke saturieren $\langle \sigma, \tau \rangle$ -Ausdrücke zu $\langle \tau \rangle$ -Ausdrücken.

- Beispiel für Saturierung durch Funktionsapplikation (FA)
 - ▶ Wenn *P* vom Typ $\langle e, \langle e, t \rangle \rangle$, *Q* vom Typ $\langle e, t \rangle$ und *x*, *y* vom Typ $\langle e \rangle$

 $\langle \sigma \rangle$ -Ausdrücke saturieren $\langle \sigma, \tau \rangle$ -Ausdrücke zu $\langle \tau \rangle$ -Ausdrücken.

- Beispiel für Saturierung durch Funktionsapplikation (FA)
 - ▶ Wenn P vom Typ $\langle e, \langle e, t \rangle \rangle$, Q vom Typ $\langle e, t \rangle$ und x, y vom Typ $\langle e \rangle$
 - ▶ dann ist Q(x) vom Typ $\langle t \rangle$

 $\langle\sigma\rangle$ -Ausdrücke saturieren $\langle\sigma,\tau\rangle$ -Ausdrücke zu $\langle\tau\rangle$ -Ausdrücken.

- Beispiel für Saturierung durch Funktionsapplikation (FA)
 - ▶ Wenn P vom Typ $\langle e, \langle e, t \rangle \rangle$, Q vom Typ $\langle e, t \rangle$ und x, y vom Typ $\langle e \rangle$
 - ▶ dann ist Q(x) vom Typ $\langle t \rangle$
 - ▶ und P(x) vom Typ $\langle e, t \rangle$ sowie P(x)(y) vom Typ $\langle t \rangle$

Komplexe Typen für Funktionen und FA

 $\langle \sigma \rangle$ -Ausdrücke saturieren $\langle \sigma, \tau \rangle$ -Ausdrücke zu $\langle \tau \rangle$ -Ausdrücken.

- Beispiel f
 ür Saturierung durch Funktionsapplikation (FA)
 - ▶ Wenn P vom Typ $\langle e, \langle e, t \rangle \rangle$, Q vom Typ $\langle e, t \rangle$ und x, y vom Typ $\langle e \rangle$
 - ▶ dann ist Q(x) vom Typ $\langle t \rangle$
 - ▶ und P(x) vom Typ $\langle e, t \rangle$ sowie P(x)(y) vom Typ $\langle t \rangle$
- Funktionale Typen von Funktoren

Komplexe Typen für Funktionen und FA

 $\langle \sigma \rangle$ -Ausdrücke saturieren $\langle \sigma, \tau \rangle$ -Ausdrücke zu $\langle \tau \rangle$ -Ausdrücken.

- Beispiel f
 ür Saturierung durch Funktionsapplikation (FA)
 - ▶ Wenn P vom Typ $\langle e, \langle e, t \rangle \rangle$, Q vom Typ $\langle e, t \rangle$ und x, y vom Typ $\langle e \rangle$
 - ▶ dann ist Q(x) vom Typ $\langle t \rangle$
 - ▶ und P(x) vom Typ $\langle e, t \rangle$ sowie P(x)(y) vom Typ $\langle t \rangle$
- Funktionale Typen von Funktoren
 - ▶ Negation \neg | Typ $\langle t, t \rangle$

Komplexe Typen für Funktionen und FA

 $\langle \sigma \rangle$ -Ausdrücke saturieren $\langle \sigma, \tau \rangle$ -Ausdrücke zu $\langle \tau \rangle$ -Ausdrücken.

- Beispiel f
 ür Saturierung durch Funktionsapplikation (FA)
 - ▶ Wenn P vom Typ $\langle e, \langle e, t \rangle \rangle$, Q vom Typ $\langle e, t \rangle$ und x, y vom Typ $\langle e \rangle$
 - ▶ dann ist Q(x) vom Typ $\langle t \rangle$
 - ▶ und P(x) vom Typ $\langle e, t \rangle$ sowie P(x)(y) vom Typ $\langle t \rangle$
- Funktionale Typen von Funktoren
 - ▶ Negation \neg | Typ $\langle t, t \rangle$
 - ▶ Andere Funktoren $\land, \lor, \rightarrow, \leftrightarrow$ | Typ $\langle t, \langle t, t \rangle \rangle$

Wirklich keine T-Sätze mehr!

Wirklich keine T-Sätze mehr!

Semantik für \(\lapha \rangle \)-Typen (Terme)

$$[a_n]^{\mathcal{M},g} = V(a_n)$$

 $[x_n]^{\mathcal{M},g} = g(x_n)$

Wirklich keine T-Sätze mehr!

Semantik für (e)-Typen (Terme)

$$\llbracket a_n
bracket^{\mathcal{M},g} = V(a_n)$$

 $\llbracket x_n
bracket^{\mathcal{M},g} = g(x_n)$

Ansonsten nur FA

$$\llbracket \delta(\alpha) \rrbracket^{\mathcal{M}, \mathbf{g}} = \llbracket \delta \rrbracket^{\mathcal{M}, \mathbf{g}} (\llbracket \alpha \rrbracket^{\mathcal{M}, \mathbf{g}})$$

Sprache höherer Ordnung = Sprache mit Variablen über höhere Typen $\langle \sigma, \tau \rangle$

• *Type* ist die Menge aller Typen

- *Type* ist die Menge aller Typen
 - ▶ $\langle e \rangle, \langle t \rangle \in Type$

- Type ist die Menge aller Typen
 - $ightharpoonup \langle e \rangle, \langle t \rangle \in Type$
 - ▶ Wenn $\langle \sigma \rangle, \langle \tau \rangle \in \mathit{Type}$, dann $\langle \sigma, \tau \rangle \in \mathit{Type}$

- Type ist die Menge aller Typen
 - $ightharpoonup \langle e \rangle, \langle t \rangle \in Type$
 - ▶ Wenn $\langle \sigma \rangle, \langle \tau \rangle \in \textit{Type}$, dann $\langle \sigma, \tau \rangle \in \textit{Type}$
 - Nichts sonst ist in Type.

- Type ist die Menge aller Typen
 - \triangleright $\langle e \rangle, \langle t \rangle \in Type$
 - ▶ Wenn $\langle \sigma \rangle$, $\langle \tau \rangle$ ∈ Type, dann $\langle \sigma, \tau \rangle$ ∈ Type
 - Nichts sonst ist in Type.
- ME ist die Menge aller bedeutungsvollen Ausdrücke

- Type ist die Menge aller Typen
 - \triangleright $\langle e \rangle, \langle t \rangle \in Type$
 - ▶ Wenn $\langle \sigma \rangle$, $\langle \tau \rangle$ ∈ Type, dann $\langle \sigma, \tau \rangle$ ∈ Type
 - Nichts sonst ist in Type.
- ME ist die Menge aller bedeutungsvollen Ausdrücke
 - lacktriangleright ME_σ ist die Menge der Ausdrücke vom Typ $\sigma \mid ME = \bigcup ME_\sigma$ mit $\sigma \in Type$

- Type ist die Menge aller Typen
 - \triangleright $\langle e \rangle, \langle t \rangle \in Type$
 - ▶ Wenn $\langle \sigma \rangle$, $\langle \tau \rangle \in Type$, dann $\langle \sigma, \tau \rangle \in Type$
 - Nichts sonst ist in Type.
- ME ist die Menge aller bedeutungsvollen Ausdrücke
 - ▶ ME_{σ} ist die Menge der Ausdrücke vom Typ $\sigma \mid ME = \bigcup ME_{\sigma}$ mit $\sigma \in Type$
 - lacktriangle Ty ist eine Funktion von Ausdrücken zu ihren Typen | Ty $(a)=\sigma$ iff $a\in ME_\sigma$

- Type ist die Menge aller Typen
 - \triangleright $\langle e \rangle, \langle t \rangle \in Type$
 - ▶ Wenn $\langle \sigma \rangle$, $\langle \tau \rangle$ ∈ Type, dann $\langle \sigma, \tau \rangle$ ∈ Type
 - Nichts sonst ist in Type.
- ME ist die Menge aller bedeutungsvollen Ausdrücke
 - ▶ ME_{σ} ist die Menge der Ausdrücke vom Typ $\sigma \mid ME = \bigcup ME_{\sigma}$ mit $\sigma \in Type$
 - lacktriangle Ty ist eine Funktion von Ausdrücken zu ihren Typen | Ty $(a)=\sigma$ iff $a\in \mathsf{ME}_\sigma$
- Höhere Ordnung | Variablen über Ausdrücke von funktionalen Typen

- Type ist die Menge aller Typen
 - ▶ $\langle e \rangle, \langle t \rangle \in Type$
 - ▶ Wenn $\langle \sigma \rangle, \langle \tau \rangle \in \textit{Type}$, dann $\langle \sigma, \tau \rangle \in \textit{Type}$
 - Nichts sonst ist in Type.
- ME ist die Menge aller bedeutungsvollen Ausdrücke
 - ▶ ME_{σ} ist die Menge der Ausdrücke vom Typ $\sigma \mid ME = \bigcup ME_{\sigma}$ mit $\sigma \in Type$
 - lacktriangle Ty ist eine Funktion von Ausdrücken zu ihren Typen | Ty $(a)=\sigma$ iff $a\in ME_{\sigma}$
- Höhere Ordnung | Variablen über Ausdrücke von funktionalen Typen
 - ightarrow $P_{\langle e,t \rangle}$ und $Q_{\langle e,\langle e,t \rangle \rangle}$ | Bekannte Konstanten höherer (=funktionaler) Typen

- Type ist die Menge aller Typen
 - $ightharpoonup \langle e \rangle, \langle t \rangle \in Type$
 - ▶ Wenn $\langle \sigma \rangle, \langle \tau \rangle \in \textit{Type}$, dann $\langle \sigma, \tau \rangle \in \textit{Type}$
 - Nichts sonst ist in Type.
- ME ist die Menge aller bedeutungsvollen Ausdrücke
 - ▶ ME_{σ} ist die Menge der Ausdrücke vom Typ $\sigma \mid ME = \bigcup ME_{\sigma}$ mit $\sigma \in Type$
 - lacktriangle Ty ist eine Funktion von Ausdrücken zu ihren Typen | Ty $(a)=\sigma$ iff $a\in ME_{\sigma}$
- Höhere Ordnung | Variablen über Ausdrücke von funktionalen Typen
 - $ightharpoonup P_{\langle e,t \rangle}$ und $Q_{\langle e,\langle e,t \rangle\rangle}$ | Bekannte Konstanten höherer (=funktionaler) Typen
 - ightharpoonup Parallel $v_{n_{\langle e,t \rangle}}$ | Die n-te Variable über einstellige Prädikate

- Type ist die Menge aller Typen
 - $ightharpoonup \langle e \rangle, \langle t \rangle \in Type$
 - ▶ Wenn $\langle \sigma \rangle, \langle \tau \rangle \in \textit{Type}$, dann $\langle \sigma, \tau \rangle \in \textit{Type}$
 - Nichts sonst ist in Type.
- ME ist die Menge aller bedeutungsvollen Ausdrücke
 - ▶ ME_{σ} ist die Menge der Ausdrücke vom Typ $\sigma \mid ME = \bigcup ME_{\sigma}$ mit $\sigma \in Type$
 - lacktriangle Ty ist eine Funktion von Ausdrücken zu ihren Typen | Ty $(a)=\sigma$ iff $a\in \mathsf{ME}_\sigma$
- Höhere Ordnung | Variablen über Ausdrücke von funktionalen Typen
 - $ightharpoonup P_{\langle e,t \rangle}$ und $Q_{\langle e,\langle e,t \rangle\rangle}$ | Bekannte Konstanten höherer (=funktionaler) Typen
 - ightharpoonup Parallel $v_{n_{\langle e,t\rangle}}$ | Die n-te Variable über einstellige Prädikate
 - Damit möglich M = {v_{1(e,t)} : [[v_{1(e,t)} (m)]] = 1}
 Wenn [[m]] = Maria, dann ist M die Menge von Marias Eigenschaften!

Zusammenfassung | Die Semantik reduziert sich auf FA und Variablenauswertung.

• Interpretation von Termen und Funktionsausdrücken

- Interpretation von Termen und Funktionsausdrücken
 - ▶ Nicht-logische Konstanten | α : $\llbracket \alpha \rrbracket^{\mathcal{M},g} = V(\alpha)$

- Interpretation von Termen und Funktionsausdrücken
 - ▶ Nicht-logische Konstanten | α : $\llbracket \alpha \rrbracket^{\mathcal{M},g} = V(\alpha)$
 - ▶ Variablen | α : $\llbracket \alpha \rrbracket^{\mathcal{M},g} = V(\alpha)$

- Interpretation von Termen und Funktionsausdrücken
 - ▶ Nicht-logische Konstanten | α : $\llbracket \alpha \rrbracket^{\mathcal{M},g} = V(\alpha)$

 - ▶ Wenn $\alpha \in \langle a, b \rangle$ und $\beta \in a$ dann $[\![\alpha(\beta)]\!]^{\mathcal{M},g} = [\![\alpha]\!]^{\mathcal{M},g} ([\![\beta]\!]^{\mathcal{M},g})$

- Interpretation von Termen und Funktionsausdrücken
 - ▶ Nicht-logische Konstanten | α : $\llbracket \alpha \rrbracket^{\mathcal{M},g} = V(\alpha)$

 - ▶ Wenn $\alpha \in \langle a, b \rangle$ und $\beta \in a$ dann $[\![\alpha(\beta)]\!]^{\mathcal{M},g} = [\![\alpha]\!]^{\mathcal{M},g} ([\![\beta]\!]^{\mathcal{M},g})$
- Logische Konstanten (Typen $\langle t, t \rangle$ und $\langle t, \langle t, t \rangle \rangle$) denotieren Funktionen in $\{0, 1\}$.

- Interpretation von Termen und Funktionsausdrücken
 - ▶ Nicht-logische Konstanten | α : $\llbracket \alpha \rrbracket^{\mathcal{M},g} = V(\alpha)$
 - ▶ Variablen | α : $\llbracket \alpha \rrbracket^{\mathcal{M},g} = V(\alpha)$
 - ▶ Wenn $\alpha \in \langle a, b \rangle$ und $\beta \in a$ dann $[\alpha(\beta)]^{\mathcal{M},g} = [\alpha]^{\mathcal{M},g}([\beta]^{\mathcal{M},g})$
- Logische Konstanten (Typen $\langle t, t \rangle$ und $\langle t, \langle t, t \rangle \rangle$) denotieren Funktionen in $\{0, 1\}$.
- Quantoren

- Interpretation von Termen und Funktionsausdrücken
 - ▶ Nicht-logische Konstanten | α : $\llbracket \alpha \rrbracket^{\mathcal{M},g} = V(\alpha)$
 - ▶ Variablen | α : $\llbracket \alpha \rrbracket^{\mathcal{M},g} = V(\alpha)$
 - ▶ Wenn $\alpha \in \langle a, b \rangle$ und $\beta \in a$ dann $[\alpha(\beta)]^{\mathcal{M},g} = [\alpha]^{\mathcal{M},g}([\beta]^{\mathcal{M},g})$
- Logische Konstanten (Typen $\langle t, t \rangle$ und $\langle t, \langle t, t \rangle \rangle$) denotieren Funktionen in $\{0, 1\}$.
- Quantoren
 - ▶ Für Variable $\mathbf{v}_{1_{\langle \alpha \rangle}}$ und Wff $\phi \in \mathit{ME}_t$ ist $\llbracket (\forall v_1) \phi \rrbracket^{\mathcal{M},g} = 1$ gdw

- Interpretation von Termen und Funktionsausdrücken
 - ▶ Nicht-logische Konstanten | α : $\llbracket \alpha \rrbracket^{\mathcal{M},g} = V(\alpha)$
 - ▶ Variablen | α : $\llbracket \alpha \rrbracket^{\mathcal{M},g} = V(\alpha)$
 - ▶ Wenn $\alpha \in \langle a, b \rangle$ und $\beta \in a$ dann $\llbracket \alpha(\beta) \rrbracket^{\mathcal{M},g} = \llbracket \alpha \rrbracket^{\mathcal{M},g} (\llbracket \beta \rrbracket^{\mathcal{M},g})$
- Logische Konstanten (Typen $\langle t, t \rangle$ und $\langle t, \langle t, t \rangle \rangle$) denotieren Funktionen in $\{0, 1\}$.
- Quantoren
 - Für Variable $\mathbf{v}_{1_{\langle \alpha \rangle}}$ und Wff $\phi \in \mathit{ME}_t$ ist $[\![(\forall \mathsf{v}_1)\phi]\!]^{\mathcal{M},g} = 1$ gdw für alle $a \in \mathit{D}_{\alpha}$ $[\![\phi]\!]^{\mathcal{M},g[a/\mathsf{v}_1]} = 1$

- Interpretation von Termen und Funktionsausdrücken
 - ▶ Nicht-logische Konstanten | α : $\llbracket \alpha \rrbracket^{\mathcal{M},g} = V(\alpha)$
 - ▶ Variablen | α : $\llbracket \alpha \rrbracket^{\mathcal{M},g} = V(\alpha)$
 - ▶ Wenn $\alpha \in \langle a, b \rangle$ und $\beta \in a$ dann $\llbracket \alpha(\beta) \rrbracket^{\mathcal{M},g} = \llbracket \alpha \rrbracket^{\mathcal{M},g} (\llbracket \beta \rrbracket^{\mathcal{M},g})$
- Logische Konstanten (Typen $\langle t, t \rangle$ und $\langle t, \langle t, t \rangle \rangle$) denotieren Funktionen in $\{0, 1\}$.
- Quantoren
 - Für Variable $\mathbf{v}_{1_{\langle \alpha \rangle}}$ und Wff $\phi \in \mathit{ME}_t$ ist $[\![(\forall \mathbf{v}_1)\phi]\!]^{\mathcal{M},g} = 1$ gdw für alle $a \in \mathcal{D}_{\alpha} [\![\phi]\!]^{\mathcal{M},g[a/\mathbf{v}_1]} = 1$
 - Für Variable $v_{1_{\langle lpha
 angle}}$ und Wff $\phi \in \mathit{ME}_t$ ist $[\![(\exists v_1)\phi]\!]^{\mathcal{M},g} = 1$ gdw

- Interpretation von Termen und Funktionsausdrücken
 - ▶ Nicht-logische Konstanten | α : $\llbracket \alpha \rrbracket^{\mathcal{M},g} = V(\alpha)$
 - ▶ Variablen | α : $\llbracket \alpha \rrbracket^{\mathcal{M},g} = V(\alpha)$
 - ▶ Wenn $\alpha \in \langle a, b \rangle$ und $\beta \in a$ dann $\llbracket \alpha(\beta) \rrbracket^{\mathcal{M},g} = \llbracket \alpha \rrbracket^{\mathcal{M},g} (\llbracket \beta \rrbracket^{\mathcal{M},g})$
- Logische Konstanten (Typen $\langle t, t \rangle$ und $\langle t, \langle t, t \rangle \rangle$) denotieren Funktionen in $\{0, 1\}$.
- Quantoren
 - Für Variable $\mathbf{v}_{1_{\langle \alpha \rangle}}$ und Wff $\phi \in \mathit{ME}_t$ ist $[\![(\forall \mathbf{v}_1)\phi]\!]^{\mathcal{M},g} = 1$ gdw für alle $a \in \mathit{D}_{\alpha} \ [\![\phi]\!]^{\mathcal{M},g[a/\mathbf{v}_1]} = 1$
 - Für Variable $\mathbf{v}_{1_{\langle \alpha \rangle}}$ und Wff $\phi \in \mathit{ME}_t$ ist $[\![(\exists \mathtt{v}_1)\phi]\!]^{\mathcal{M},g} = 1$ gdw für mindestens ein $a \in \mathit{D}_{\alpha}$ $[\![\phi]\!]^{\mathcal{M},g[a/\mathtt{v}_1]} = 1$

$$\forall \mathbf{v}_{0_{\langle \mathbf{e}, t \rangle}} \left[\mathbf{v}_{0_{\langle \mathbf{e}, t \rangle}}(\mathbf{j}) \rightarrow \mathbf{v}_{0_{\langle \mathbf{e}, t \rangle}}(\mathbf{d}) \right]$$

$$\forall \mathsf{v}_{0_{\langle e,t \rangle}} \left[\mathsf{v}_{0_{\langle e,t \rangle}}(j)
ightarrow \mathsf{v}_{0_{\langle e,t
angle}}(d)
ight]$$

ullet Eine quantifizierbare Variable vom Typ $\langle e,t
angle \mid v_{0_{\langle e,t
angle}}$

$$\forall \mathsf{v}_{0_{\langle e,t \rangle}} \left[\mathsf{v}_{0_{\langle e,t \rangle}}(j) \rightarrow \mathsf{v}_{0_{\langle e,t \rangle}}(d) \right]$$

- Eine quantifizierbare Variable vom Typ $\langle e,t \rangle$ | $v_{0_{\langle e,t \rangle}}$
- Zwei Individuenkonstanten | $j,d \in ME_{\langle e \rangle}$ z.B. John und Dorothy

$$\forall \mathsf{v}_{0_{\langle e,t \rangle}} \left[\mathsf{v}_{0_{\langle e,t \rangle}}(j) \rightarrow \mathsf{v}_{0_{\langle e,t \rangle}}(d) \right]$$

- ullet Eine quantifizierbare Variable vom Typ $\langle e,t
 angle$ | $v_{0_{\langle e,t
 angle}}$
- ullet Zwei Individuenkonstanten | $j,d\in \mathit{ME}_{\langle e
 angle}$ z.B. John und Dorothy
- Für alle einstelligen Prädikate gilt: Wenn j die vom Prädikat beschriebene Eigenschaft hat, hat d auch diese Eigenschaft.

$$\forall \mathsf{v}_{0_{\langle e,t \rangle}} \left[\mathsf{v}_{0_{\langle e,t \rangle}}(j) \rightarrow \mathsf{v}_{0_{\langle e,t \rangle}}(d) \right]$$

- ullet Eine quantifizierbare Variable vom Typ $\langle e,t
 angle$ | $v_{0_{\langle e,t
 angle}}$
- Zwei Individuenkonstanten $|j,d \in ME_{\langle e \rangle}|$ z. B. John und Dorothy
- Für alle einstelligen Prädikate gilt: Wenn j die vom Prädikat beschriebene Eigenschaft hat, hat d auch diese Eigenschaft.
- Wann ist diese Wff wahr?

$$\forall \mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}} \left[\mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}(\mathbf{j}) \rightarrow \mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}(\mathbf{d}) \right]$$

- ullet Eine quantifizierbare Variable vom Typ $\langle e,t
 angle$ | $v_{0_{\langle e,t
 angle}}$
- ullet Zwei Individuenkonstanten | $j,d\in \mathit{ME}_{\langle e
 angle}$ z.B. John und Dorothy
- Für alle einstelligen Prädikate gilt: Wenn j die vom Prädikat beschriebene Eigenschaft hat, hat d auch diese Eigenschaft.
- Wann ist diese Wff wahr?
 - ▶ Wenn *j* und *d* alle benennbaren Eigenschaften teilen?

$$\forall \mathsf{v}_{0_{\langle e,t \rangle}} \left[\mathsf{v}_{0_{\langle e,t \rangle}}(j)
ightarrow \mathsf{v}_{0_{\langle e,t \rangle}}(d)
ight]$$

- ullet Eine quantifizierbare Variable vom Typ $\langle e,t
 angle$ | $v_{0_{\langle e,t
 angle}}$
- Zwei Individuenkonstanten $\mid j,d \in \mathit{ME}_{\langle e \rangle}$ z.B. John und Dorothy
- Für alle einstelligen Prädikate gilt: Wenn j die vom Prädikat beschriebene Eigenschaft hat, hat d auch diese Eigenschaft.
- Wann ist diese Wff wahr?
 - Wenn j und d alle benennbaren Eigenschaften teilen?
 - Eine Eigenschaft jedes Objekts | CF der Menge {x : x is the sole member of this set} (union set)

$$\forall \mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}} \left[\mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}(\mathbf{j}) \rightarrow \mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}(\mathbf{d}) \right]$$

- ullet Eine quantifizierbare Variable vom Typ $\langle e,t
 angle\mid v_{0_{\langle e,t
 angle}}$
- Zwei Individuenkonstanten | $j, d \in ME_{\langle e \rangle}$ z. B. John und Dorothy
- Für alle einstelligen Prädikate gilt: Wenn j die vom Prädikat beschriebene Eigenschaft hat, hat d auch diese Eigenschaft.
- Wann ist diese Wff wahr?
 - Wenn j und d alle benennbaren Eigenschaften teilen?
 - Eine Eigenschaft jedes Objekts | CF der Menge {x : x is the sole member of this set} (union set)
 - Einzige Möglichkeit für Wahrheit der Wff also j=d

non in Sätzen wie This function is non-continuous.

• Produktives Suffix im Englischen, wie *nicht-* im Deutschen

- Produktives Suffix im Englischen, wie nicht- im Deutschen
- Bedeutungsbeitrag | Invertiert die CF eines Adjektivs

- Produktives Suffix im Englischen, wie nicht- im Deutschen
- Bedeutungsbeitrag | Invertiert die CF eines Adjektivs
- ullet Komplementbildung der Ursprungsmenge in $D_{\langle e,t
 angle}$

- Produktives Suffix im Englischen, wie nicht- im Deutschen
- Bedeutungsbeitrag | Invertiert die CF eines Adjektivs
- ullet Komplementbildung der Ursprungsmenge in $D_{\langle e,t
 angle}$
- Syntax und Semantik von non

- Produktives Suffix im Englischen, wie nicht- im Deutschen
- Bedeutungsbeitrag | Invertiert die CF eines Adjektivs
- ullet Komplementbildung der Ursprungsmenge in $D_{\langle e,t
 angle}$
- Syntax und Semantik von non
 - Adjektiv continuous | Typ \(\left(e, t \rangle \)

- Produktives Suffix im Englischen, wie nicht- im Deutschen
- Bedeutungsbeitrag | Invertiert die CF eines Adjektivs
- ullet Komplementbildung der Ursprungsmenge in $D_{\langle e,t
 angle}$
- Syntax und Semantik von non
 - Adjektiv continuous | Typ \(\langle e, t \rangle \)
 - ▶ Typ von *non* | In: Adjektiv /Out: Adjektiv | $\langle \langle e,t \rangle, \langle e,t \rangle \rangle$

- Produktives Suffix im Englischen, wie nicht- im Deutschen
- Bedeutungsbeitrag | Invertiert die CF eines Adjektivs
- ullet Komplementbildung der Ursprungsmenge in $D_{\langle oldsymbol{e},t
 angle}$
- Syntax und Semantik von non
 - Adjektiv continuous | Typ \(\langle e, t \rangle
 - ▶ Typ von *non* | In: Adjektiv / Out: Adjektiv | $\langle \langle e, t \rangle, \langle e, t \rangle \rangle$
 - ▶ $[non]^{\mathcal{M},g} = h \text{ s. t. } h \in D_{\langle\langle e,t\rangle,\langle e,t\rangle\rangle}$ and for every $k \in D_{\langle e,t\rangle}$ and every $d \in D_{\langle e\rangle}$ (h(k))(d) = 1 iff k(d) = 0 and (h(k))(d) = 0 iff k(d) = 1

Optionale Argumente wie in I eat. oder Vanity kills.

• Zweistellige Verben wie eat in $ME_{\langle e,\langle e,t\rangle\rangle}$

- Zweistellige Verben wie eat in $ME_{\langle e,\langle e,t\rangle\rangle_l}$
- Aus einem zweistelligen Verb ein einstelliges machen

- Zweistellige Verben wie eat in $ME_{\langle e,\langle e,t\rangle\rangle}$
- Aus einem zweistelligen Verb ein einstelliges machen
 - ▶ Phonologisch leere lexikalische Konstante | $R_0 \in ME_{\langle\langle e, \langle e, t \rangle\rangle, \langle e, t \rangle\rangle}$ Ähnlich wie lexikalische Regeln in HPSG

- Zweistellige Verben wie eat in $ME_{\langle e,\langle e,t\rangle\rangle}$
- Aus einem zweistelligen Verb ein einstelliges machen
 - ▶ Phonologisch leere lexikalische Konstante | $R_0 \in ME_{\langle\langle e, \langle e, t \rangle\rangle, \langle e, t \rangle\rangle}$ Ähnlich wie lexikalische Regeln in HPSG
 - Semantik | $[R_0]^{\mathcal{M},g} = h$ s.t. $h \in D_{\langle\langle e,\langle e,t \rangle\rangle,\langle e,t \rangle\rangle}$ and for all $k \in D_{\langle e,\langle e,t \rangle\rangle}$ and all $d \in D_{\langle e \rangle}$ (h(k))(d) = 1 iff there is some $d' \in D_{\langle e \rangle}$ s.t. k(d')(d) = 1

Was bedeutet
$$f(x) = 3x^2 + 5x + 8$$
 ?

Was bedeutet
$$f(x) = 3x^2 + 5x + 8$$
 ?

Was bedeutet
$$f(x) = 3x^2 + 5x + 8$$
 ?

• $3x^2 + 5x + 8$ ist eine Wff mit einer ungebundenen Variable.

Was bedeutet
$$f(x) = 3x^2 + 5x + 8$$
 ?

- $3x^2 + 5x + 8$ ist eine Wff mit einer ungebundenen Variable.
- Die Variable wird gebunden und die Wff wird damit zur Funktion
 x wird zur Eingabevariable und muss bei Anwendung durch Eingabewert ersetzt werden.

Was bedeutet
$$f(x) = 3x^2 + 5x + 8$$
 ?

- $3x^2 + 5x + 8$ ist eine Wff mit einer ungebundenen Variable.
- Die Variable wird gebunden und die Wff wird damit zur Funktion x wird zur Eingabevariable und muss bei Anwendung durch Eingabewert ersetzt werden.
- Außerdem wird die Funktion f genannt.

Was bedeutet
$$f(x) = 3x^2 + 5x + 8$$
 ?

- $3x^2 + 5x + 8$ ist eine Wff mit einer ungebundenen Variable.
- Die Variable wird gebunden und die Wff wird damit zur Funktion
 x wird zur Eingabevariable und muss bei Anwendung durch Eingabewert ersetzt werden.
- Außerdem wird die Funktion f genannt.

In
$$\lambda$$
-Notation: $f \stackrel{def}{=} \lambda x \left[3x^2 + 5x + 8 \right]$

Mit λ bildet man ad hoc anonyme Funktionen.

Abstraktion über Wffs beliebiger Komplexität

- Abstraktion über Wffs beliebiger Komplexität
- ullet λ -Bindung der Variable | Gebundene Variable als Eingabevariable der Funktion

- Abstraktion über Wffs beliebiger Komplexität
- λ -Bindung der Variable | Gebundene Variable als Eingabevariable der Funktion
- Sehr ähnlich wie Listendefinition

- Abstraktion über Wffs beliebiger Komplexität
- ullet λ -Bindung der Variable | Gebundene Variable als Eingabevariable der Funktion
- Sehr ähnlich wie Listendefinition
 - ▶ Menge | $\{x : x \mod 2 = 0\}$ | allgemein $\{x : \phi\}$

- Abstraktion über Wffs beliebiger Komplexität
- ullet λ -Bindung der Variable | Gebundene Variable als Eingabevariable der Funktion
- Sehr ähnlich wie Listendefinition
 - ▶ Menge | $\{x : x \mod 2 = 0\}$ | allgemein $\{x : \phi\}$
 - ▶ CF dieser Menge | $\lambda x [x \bmod 2 = 0]$ | allgemein $\lambda x [\phi]$

Formale Erweiterung von L_{Type}

Nur wenige Erweiterungen in L_{Type}

• Für jede Wff ϕ mit $Ty(\phi) = \langle t \rangle$ und jede $x \in Var$ und jede $a \in Con$

- Für jede Wff ϕ mit $Ty(\phi) = \langle t \rangle$ und jede $x \in Var$ und jede $a \in Con$
 - ▶ Abstraktion | $\phi \implies \lambda x \left[\phi^{[a/x]}\right]$ Definition $\phi^{[a/x]}$ | Wff ϕ in der alle a durch x getauscht wurden

- Für jede Wff ϕ mit $Ty(\phi) = \langle t \rangle$ und jede $x \in Var$ und jede $a \in Con$
 - ▶ Abstraktion $| \phi \implies \lambda x \left[\phi^{[a/x]} \right]$ Definition $\phi^{[a/x]}$ | Wff ϕ in der alle a durch x getauscht wurden
 - Anwendung der Funktion (λ -Konversion) | $\lambda x \left[\phi^{[a/x]}\right](a) = \phi$

Formale Erweiterung von L_{Type}

- Für jede Wff ϕ mit $Ty(\phi) = \langle t \rangle$ und jede $x \in Var$ und jede $a \in Con$
 - ▶ Abstraktion $| \phi \implies \lambda x \left[\phi^{[a/x]} \right]$ Definition $\phi^{[a/x]}$ | Wff ϕ in der alle a durch x getauscht wurden
 - Anwendung der Funktion (λ -Konversion) | $\lambda \times \left[\phi^{[a/\lambda]}\right]$ (a) = ϕ
- Es gilt $\lambda x\left[\phi^{a/x}\right](a)\equiv\phi$ für jede Wff ϕ , jede $a\in \mathit{Con}$ und jede $x\in \mathit{Var}$

Formale Erweiterung von L_{Type}

- Für jede Wff ϕ mit $Ty(\phi) = \langle t \rangle$ und jede $x \in Var$ und jede $a \in Con$
 - ▶ Abstraktion $| \phi \implies \lambda x \left[\phi^{[a/x]} \right]$ Definition $\phi^{[a/x]}$ | Wff ϕ in der alle a durch x getauscht wurden
 - Anwendung der Funktion (λ -Konversion) | $\lambda \times \left[\phi^{[a/\lambda]}\right](a) = \phi$
- Es gilt $\lambda x \left[\phi^{a/x}\right](a) \equiv \phi$ für jede Wff ϕ , jede $a \in Con$ und jede $x \in Var$
- x kann von einem beliebigen Typ σ sein.

Formale Erweiterung von L_{Type}

- Für jede Wff ϕ mit $Ty(\phi) = \langle t \rangle$ und jede $x \in Var$ und jede $a \in Con$
 - ▶ Abstraktion $| \phi \implies \lambda x \left[\phi^{[a/x]} \right]$ Definition $\phi^{[a/x]}$ | Wff ϕ in der alle a durch x getauscht wurden
 - Anwendung der Funktion (λ -Konversion) | $\lambda \times \left[\phi^{[a/\lambda]}\right]$ (a) = ϕ
- Es gilt $\lambda x \left[\phi^{a/x}\right](a) \equiv \phi$ für jede Wff ϕ , jede $a \in Con$ und jede $x \in Var$
- x kann von einem beliebigen Typ σ sein.
- Es gilt für $\lambda x [\phi]$ mit $x \in ME_{\langle \sigma \rangle}$ stets $\phi \in ME_{\langle t \rangle}$ sowie $\lambda x [\phi] \in ME_{\langle \sigma, t \rangle}$

Abstraktion über Individuenvariable und Prädikatsvariable

ullet Individuenvariable $x_{\langle e
angle}$ alternativ $v_{1_{\langle e
angle}}$

- ullet Individuenvariable $x_{\langle e
 angle}$ alternativ $v_{1_{\langle e
 angle}}$
 - $ightharpoonup \lambda x_{\langle e \rangle} [L(x)]$

- ullet Individuenvariable $x_{\langle e
 angle}$ alternativ $v_{1_{\langle e
 angle}}$
 - $\rightarrow \lambda x_{\langle e \rangle} [L(x)]$
 - ► Mit L z. B. für laughs

- ullet Individuenvariable $x_{\langle e
 angle}$ alternativ $v_{1_{\langle e
 angle}}$
 - $\rightarrow \lambda x_{\langle e \rangle} [L(x)]$
 - ▶ Mit L z. B. für laughs
 - lacktriangle Die CF der Menge von Individuen $d\in D_{\langle e
 angle}$ mit die Eigenschaft L (alle Lachenden)

- Individuenvariable $x_{\langle e \rangle}$ alternativ $v_{1_{\langle e \rangle}}$
 - $\rightarrow \lambda x_{\langle e \rangle} [L(x)]$
 - ► Mit L z. B. für laughs
 - ▶ Die CF der Menge von Individuen $d \in D_{(e)}$ mit die Eigenschaft L (alle Lachenden)
 - ▶ Mengendefinition dazu $\{x : L(x)\}$

- Individuenvariable $x_{\langle e \rangle}$ alternativ $v_{1_{\langle e \rangle}}$
 - $\rightarrow \lambda x_{\langle e \rangle} [L(x)]$
 - ▶ Mit L z. B. für laughs
 - ▶ Die CF der Menge von Individuen $d \in D_{\langle e \rangle}$ mit die Eigenschaft L (alle Lachenden)
 - ▶ Mengendefinition dazu $\{x : L(x)\}$
- Prädikatsvariable $P_{\langle e,t
 angle}$ alternativ $v_{1_{\langle e,t
 angle}}$

- Individuenvariable $x_{\langle e \rangle}$ alternativ $v_{1_{\langle e \rangle}}$
 - $\rightarrow \lambda x_{\langle e \rangle} [L(x)]$
 - ► Mit L z. B. für laughs
 - ▶ Die CF der Menge von Individuen $d \in D_{(e)}$ mit die Eigenschaft L (alle Lachenden)
 - ▶ Mengendefinition dazu $\{x : L(x)\}$
- Prädikatsvariable $P_{\langle e,t \rangle}$ alternativ $v_{1_{\langle e,t \rangle}}$
 - $ightharpoonup \lambda P_{\langle e,t\rangle} \left[P(l)\right]$

- Individuenvariable $x_{\langle e \rangle}$ alternativ $v_{1_{\langle e \rangle}}$
 - $\rightarrow \lambda x_{\langle e \rangle} [L(x)]$
 - ► Mit L z. B. für laughs
 - ▶ Die CF der Menge von Individuen $d \in D_{\langle e \rangle}$ mit die Eigenschaft L (alle Lachenden)
 - ▶ Mengendefinition dazu $\{x : L(x)\}$
- Prädikatsvariable $\overline{P_{\langle e,t \rangle}}$ alternativ $v_{1_{\langle e,t \rangle}}$
 - $ightharpoonup \lambda P_{\langle e,t\rangle} [P(l)]$
 - Mit l z. B. für Horst Lichter

- Individuenvariable $x_{\langle e \rangle}$ alternativ $v_{1_{\langle e \rangle}}$
 - $\rightarrow \lambda x_{\langle e \rangle} [L(x)]$
 - ► Mit L z. B. für laughs
 - ▶ Die CF der Menge von Individuen $d \in D_{\langle e \rangle}$ mit die Eigenschaft L (alle Lachenden)
 - ▶ Mengendefinition dazu $\{x : L(x)\}$
- Prädikatsvariable $\overline{P_{\langle e,t \rangle}}$ alternativ $v_{1_{\langle e,t \rangle}}$
 - $ightharpoonup \lambda P_{\langle e,t\rangle} [P(l)]$
 - Mit l z. B. für Horst Lichter
 - lacktriangle Die CF aller Eigenschaften $k \in D_{\langle e,t \rangle}$ von l (alle Eigenschaften Horst Lichters)

- Individuenvariable $x_{\langle e \rangle}$ alternativ $v_{1_{\langle e \rangle}}$
 - $\rightarrow \lambda x_{\langle e \rangle} [L(x)]$
 - ► Mit L z. B. für laughs
 - ▶ Die CF der Menge von Individuen $d \in D_{\langle e \rangle}$ mit die Eigenschaft L (alle Lachenden)
 - ▶ Mengendefinition dazu $\{x : L(x)\}$
- Prädikatsvariable $\overline{P_{\langle e,t \rangle}}$ alternativ $v_{1_{\langle e,t \rangle}}$
 - $ightharpoonup \lambda P_{\langle e,t\rangle} [P(l)]$
 - Mit l z. B. für Horst Lichter
 - ▶ Die CF aller Eigenschaften $k \in D_{\langle e,t \rangle}$ von l (alle Eigenschaften Horst Lichters)
 - ► Mengendefinition dazu {*P* : *P*(*l*)}

Die vollen Regeln aus Dowty u. a. (1981: 102) (Syn C.10 and Sem 10)

Die vollen Regeln aus Dowty u. a. (1981: 102) (Syn C.10 and Sem 10)

• If $\alpha \in ME_{\alpha}$ and $u \in Var_b$, then $\lambda u[\alpha] \in ME_{\langle b,a \rangle}$.

Die vollen Regeln aus Dowty u. a. (1981: 102) (Syn C.10 and Sem 10)

- If $\alpha \in ME_{\alpha}$ and $u \in Var_b$, then $\lambda u[\alpha] \in ME_{\langle b,a \rangle}$.
- If $\alpha \in ME_a$ and $u \in Var_b$ then $[\![\lambda u \ [\alpha]\!]]^{\mathcal{M},g}$ is that function h from D_b into D_a $(h \in D_a^{D_b})$ s. t. for all objects k in D_b , h(k) is equal to $[\![\alpha]\!]^{\mathcal{M},g[k/u]}$.

Konversionen/Reduktionen | Arten, λ -Ausdrücke umzuschreiben

• α -Konversion | Umbenennung von Variablen

- α -Konversion | Umbenennung von Variablen
 - $ightharpoonup \lambda x [\phi] \stackrel{lpha}{\equiv} \lambda y \left[\phi^{[x/y]}\right]$ gdw y in ϕ nicht vorkommt

- α -Konversion | Umbenennung von Variablen
 - $ightharpoonup \lambda x [\phi] \stackrel{\alpha}{\equiv} \lambda y [\phi^{[x/y]}] \text{ gdw } y \text{ in } \phi \text{ nicht vorkommt}$
- β -Reduktion | Funktionsapplikation

- α -Konversion | Umbenennung von Variablen
 - $\rightarrow \lambda x [\phi] \stackrel{\alpha}{=} \lambda y [\phi^{[x/y]}]$ gdw y in ϕ nicht vorkommt
- β -Reduktion | Funktionsapplikation
 - $\lambda \mathbf{x} \left[\phi \right] \left(\mathbf{a} \right) \stackrel{\beta}{\equiv} \phi^{\left[\mathbf{x} / \mathbf{a} \right]}$

- α -Konversion | Umbenennung von Variablen
 - $ightharpoonup \lambda x [\phi] \stackrel{lpha}{\equiv} \lambda y [\phi^{[x/y]}]$ gdw y in ϕ nicht vorkommt
- β -Reduktion | Funktionsapplikation
 - $\lambda x [\phi] (a) \stackrel{\beta}{=} \phi^{[x/a]}$
 - ▶ Ausdrucke mit nicht realisierten, aber möglichen β -Reduktionen: β -Redex

- ullet lpha-Konversion | Umbenennung von Variablen
 - $ightharpoonup \lambda x [\phi] \stackrel{lpha}{\equiv} \lambda y [\phi^{[x/y]}]$ gdw y in ϕ nicht vorkommt
- β -Reduktion | Funktionsapplikation
 - $\lambda x [\phi] (a) \stackrel{\beta}{=} \phi^{[x/a]}$
 - Ausdrucke mit nicht realisierten, aber möglichen β -Reduktionen: β -Redex
- ullet η -Reduktion | Entfernen von leeren Abstraktionen

- α -Konversion | Umbenennung von Variablen
 - $\rightarrow \lambda x [\phi] \stackrel{\alpha}{\equiv} \lambda y [\phi^{[x/y]}]$ gdw y in ϕ nicht vorkommt
- β -Reduktion | Funktionsapplikation
 - $\lambda x [\phi] (a) \stackrel{\beta}{=} \phi^{[x/a]}$
 - ▶ Ausdrucke mit nicht realisierten, aber möglichen β -Reduktionen: β -Redex
- η -Reduktion | Entfernen von leeren Abstraktionen
 - ► $\lambda x [F(x)] \stackrel{\eta}{=} F \text{ gdw } Ty(F) = Ty(\lambda x [F(x)]) \text{ (und } x \text{ nicht frei in F ist)}$

- α -Konversion | Umbenennung von Variablen
 - $ightharpoonup \lambda x [\phi] \stackrel{lpha}{\equiv} \lambda y [\phi^{[x/y]}]$ gdw y in ϕ nicht vorkommt
- β -Reduktion | Funktionsapplikation
 - $\lambda x [\phi] (a) \stackrel{\beta}{=} \phi^{[x/a]}$
 - Ausdrucke mit nicht realisierten, aber möglichen β -Reduktionen: β -Redex
- η -Reduktion | Entfernen von leeren Abstraktionen
 - $\rightarrow \lambda x [F(x)] \stackrel{\eta}{\equiv} F \text{ gdw } Ty(F) = Ty(\lambda x [F(x)]) \text{ (und } x \text{ nicht frei in F ist)}$
 - Ausdruck mit nicht realisierten, aber möglichen η -Reduktionen: η -Redex

- α -Konversion | Umbenennung von Variablen
 - $ightharpoonup \lambda x [\phi] \stackrel{\alpha}{\equiv} \lambda y [\phi^{[x/y]}] \text{ gdw } y \text{ in } \phi \text{ nicht vorkommt}$
- β -Reduktion | Funktionsapplikation
 - $\lambda x [\phi] (a) \stackrel{\beta}{=} \phi^{[x/a]}$
 - Ausdrucke mit nicht realisierten, aber möglichen β -Reduktionen: β -Redex
- η -Reduktion | Entfernen von leeren Abstraktionen
 - $\rightarrow \lambda x [F(x)] \stackrel{\eta}{\equiv} F \text{ gdw } Ty(F) = Ty(\lambda x [F(x)]) \text{ (und } x \text{ nicht frei in F ist)}$
 - Ausdruck mit nicht realisierten, aber möglichen η -Reduktionen: η -Redex
 - ▶ Mäßige Semantiker | η -Redex-Fetisch mit $\lambda x \lambda y \lambda z [gibt'(x, y, z)]$ usw.

The *non* example revised (Dowty et al., 104)

 $\bullet \ \forall x \forall v_{0^{\langle e,t \rangle}} \left[(\mathbf{non}(v_{0_{\langle e,t \rangle}}))(x) \leftrightarrow \neg (v_{0_{\langle e,t \rangle}}(x)) \right]$

The non example revised (Dowty et al., 104)

- $\bullet \ \forall \mathbf{X} \forall \mathbf{V}_{0^{\langle \mathbf{e}, \mathbf{t} \rangle}} \left[(\mathbf{non}(\mathbf{V}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}))(\mathbf{X}) \leftrightarrow \neg (\mathbf{V}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}(\mathbf{X})) \right]$
- $\bullet \ \forall \mathbf{v}_{0_{\langle e,t\rangle}} \left[\lambda \mathbf{x} \left[(\mathbf{non}(\mathbf{v}_{0_{\langle e,t\rangle}}))(\mathbf{x}) \right] = \lambda \mathbf{x} \left[\neg (\mathbf{v}_{0_{\langle e,t\rangle}}(\mathbf{x})) \right] \right]$

The non example revised (Dowty et al., 104)

- $\bullet \ \forall \mathbf{X} \forall \mathbf{V}_{0^{\langle \mathbf{e}, \mathbf{t} \rangle}} \left[(\mathbf{non}(\mathbf{V}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}))(\mathbf{X}) \leftrightarrow \neg(\mathbf{V}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}(\mathbf{X})) \right]$
- $\bullet \ \forall \mathbf{v}_{0_{\langle e,t\rangle}} \left[\lambda \mathbf{x} \left[(\mathbf{non}(\mathbf{v}_{0_{\langle e,t\rangle}}))(\mathbf{x}) \right] = \lambda \mathbf{x} \left[\neg (\mathbf{v}_{0_{\langle e,t\rangle}}(\mathbf{x})) \right] \right]$
- $\forall \mathsf{V}_{0_{\langle e,t\rangle}}\left[\mathbf{non}(\mathsf{V}_{0_{\langle e,t\rangle}}) = \lambda \mathsf{X}\left[\neg(\mathsf{V}_{0_{\langle e,t\rangle}}(\mathsf{X}))\right]\right]$ (since $\lambda \mathsf{X}\left[\mathbf{non}(\mathsf{V})(\mathsf{X})\right]$ is unnecessarily abstract/ η reduction)

The non example revised (Dowty et al., 104)

- $\bullet \ \forall \mathbf{X} \forall \mathbf{V}_{0^{\langle \mathbf{e}, \mathbf{t} \rangle}} \left[(\mathbf{non}(\mathbf{V}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}))(\mathbf{X}) \leftrightarrow \neg(\mathbf{V}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}(\mathbf{X})) \right]$
- $\bullet \ \forall \mathbf{V_0}_{\langle e,t\rangle} \left[\lambda \mathbf{X} \left[(\mathbf{non}(\mathbf{V_0}_{\langle e,t\rangle}))(\mathbf{X}) \right] = \lambda \mathbf{X} \left[\neg (\mathbf{V_0}_{\langle e,t\rangle}(\mathbf{X})) \right] \right]$
- $\forall \mathbf{V}_{0_{\langle e,t\rangle}}\left[\mathbf{non}(\mathbf{V}_{0_{\langle e,t\rangle}}) = \lambda \mathbf{X}\left[\neg(\mathbf{V}_{0_{\langle e,t\rangle}}(\mathbf{X}))\right]\right]$ (since $\lambda \mathbf{X}\left[\mathbf{non}(\mathbf{V})(\mathbf{X})\right]$ is unnecessarily abstract/ η reduction)
- $\bullet \ \lambda \mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}} \left[\mathbf{non}(\mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}) = \lambda \mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}} \left[\lambda \mathbf{x} \left[\neg (\mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}(\mathbf{x})) \right] \right] \right]$

The non example revised (Dowty et al., 104)

- $\bullet \ \, \forall \mathbf{X} \forall \mathbf{V}_{0^{\langle \mathbf{e}, \mathbf{t} \rangle}} \left[(\mathbf{non}(\mathbf{V}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}))(\mathbf{X}) \leftrightarrow \neg (\mathbf{V}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}(\mathbf{X})) \right]$
- $\bullet \ \forall \mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}} \left[\lambda \mathbf{x} \left[(\mathbf{non}(\mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}))(\mathbf{x}) \right] = \lambda \mathbf{x} \left[\neg (\mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}(\mathbf{x})) \right] \right]$
- $\forall \mathsf{V}_{0_{\langle e,t\rangle}}\left[\mathsf{non}(\mathsf{V}_{0_{\langle e,t\rangle}}) = \lambda \mathsf{X}\left[\neg(\mathsf{V}_{0_{\langle e,t\rangle}}(\mathsf{X}))\right]\right]$ (since $\lambda \mathsf{x}\left[\mathsf{non}(\mathsf{v})(\mathsf{x})\right]$ is unnecessarily abstract/ η reduction)
- $\bullet \ \lambda \mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}} \left[\mathbf{non}(\mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}) = \lambda \mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}} \left[\lambda \mathbf{x} \left[\neg (\mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}(\mathbf{x})) \right] \right] \right]$
- and since that is about all assignments for $\lambda v_{0_{\langle e,t \rangle}}$: $\mathbf{non} = \lambda \mathbf{V}_{0_{\langle e,t \rangle}} \left[\lambda \mathbf{X} \left[\neg \mathbf{V}_{0_{\langle e,t \rangle}}(\mathbf{X}) \right] \right]$

Mary is non-adjacent.

(translate 'adjacent' as $c_{0_{\langle e,t \rangle}}$, 'Mary' as $c_{0_{\langle e \rangle}}$, ignore the copula)

• syntactically like referential NPs

- syntactically like referential NPs
- semantically like PC quantifiers

- syntactically like referential NPs
- semantically like PC quantifiers
- Every student walks.: $\forall \mathsf{v}_{0_{\langle e \rangle}} \left[\mathsf{c}_{0_{\langle e, \mathsf{t} \rangle}}(\mathsf{v}_{0_{\langle e \rangle}}) o \mathsf{c}_{1_{\langle e, \mathsf{t} \rangle}}(\mathsf{v}_{0_{\langle e \rangle}}) \right]$

- syntactically like referential NPs
- semantically like PC quantifiers
- $\bullet \ \ \textit{Every student walks.:} \ \forall \textit{v}_{0_{\langle \textit{e} \rangle}} \left[\textit{c}_{0_{\langle \textit{e}, \textit{t} \rangle}}(\textit{v}_{0_{\langle \textit{e} \rangle}}) \rightarrow \textit{c}_{1_{\langle \textit{e}, \textit{t} \rangle}}(\textit{v}_{0_{\langle \textit{e} \rangle}}) \right]$
- $\bullet \ \ \text{Some student walks.:} \ \forall \mathbf{v}_{0_{\langle \mathbf{e} \rangle}} \left[\mathbf{c}_{0_{\langle \mathbf{e}, t \rangle}}(\mathbf{v}_{0_{\langle \mathbf{e} \rangle}}) \wedge \mathbf{c}_{1_{\langle \mathbf{e}, t \rangle}}(\mathbf{v}_{0_{\langle \mathbf{e} \rangle}}) \right]$

- syntactically like referential NPs
- semantically like PC quantifiers
- $\bullet \ \ \textit{Every student walks.:} \ \forall \textit{v}_{0_{\langle \textit{e} \rangle}} \left[\textit{c}_{0_{\langle \textit{e},\textit{t} \rangle}}(\textit{v}_{0_{\langle \textit{e} \rangle}}) \rightarrow \textit{c}_{1_{\langle \textit{e},\textit{t} \rangle}}(\textit{v}_{0_{\langle \textit{e} \rangle}}) \right]$
- Some student walks.: $\forall \mathsf{v}_{0_{\langle e \rangle}} \left[\mathsf{c}_{0_{\langle e, t \rangle}}(\mathsf{v}_{0_{\langle e \rangle}}) \wedge \mathsf{c}_{1_{\langle e, t \rangle}}(\mathsf{v}_{0_{\langle e \rangle}}) \right]$
- making referential NPs and QNPs the same type?

 $\quad \lambda v_{0_{\langle e,t\rangle}} \forall v_{0_{\langle e\rangle}} \left[c_{0_{\langle e,t\rangle}}(v_{0_{\langle e\rangle}}) \rightarrow v_{0_{\langle e,t\rangle}}(v_{0_{\langle e\rangle}}) \right]$

- $\bullet \ \lambda {\mathsf{v}_0}_{\langle e,t\rangle} \forall {\mathsf{v}_0}_{\langle e\rangle} \left[{\mathsf{c}_0}_{\langle e,t\rangle} ({\mathsf{v}_0}_{\langle e\rangle}) \to {\mathsf{v}_0}_{\langle e,t\rangle} ({\mathsf{v}_0}_{\langle e\rangle}) \right]$
- a second order function

$$\bullet \ \lambda \mathbf{v}_{0_{\langle e,t\rangle}} \forall \mathbf{v}_{0_{\langle e\rangle}} \left[\mathbf{c}_{0_{\langle e,t\rangle}}(\mathbf{v}_{0_{\langle e\rangle}}) \rightarrow \mathbf{v}_{0_{\langle e,t\rangle}}(\mathbf{v}_{0_{\langle e\rangle}}) \right]$$

- a second order function
- characterizes the set of all predicates true of every student

- $\bullet \ \lambda \mathbf{v_{0}}_{\langle e,t\rangle} \forall \mathbf{v_{0}}_{\langle e\rangle} \left[\mathbf{c_{0}}_{\langle e,t\rangle} (\mathbf{v_{0}}_{\langle e\rangle}) \rightarrow \mathbf{v_{0}}_{\langle e,t\rangle} (\mathbf{v_{0}}_{\langle e\rangle}) \right]$
- a second order function
- characterizes the set of all predicates true of every student
- equally: $\lambda v_{0_{\langle e,t\rangle}} \exists v_{0_{\langle e\rangle}} \left[c_{0_{\langle e,t\rangle}}(v_{0_{\langle e\rangle}}) \wedge v_{0_{\langle e,t\rangle}}(v_{0_{\langle e\rangle}}) \right]$

Combining with some predicate

Aufgaben I

Aufgaben I

• Wie kann man Passiv in L_{Type} modellieren?

Literatur I

Chierchia, Gennaro & Sally McConnell-Ginet. 2000. Meaning and grammar: An introduction to semantics. 2. Aufl. Cambridge, MA: MIT Press.

Dowty, David R., Robert E. Wall & Stanley Peters. 1981. Introduction to Montague semantics. Dordrecht: Kluwer.

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.netroland.schaefer@uni-jena.de

Lizenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.