```
Statistics/Data Analysis
                                                           User: TianyuHW5 2
                                         Copyright 1985-2017 StataCorp LLC
                                         StataCorp
                                         4905 Lakeway Drive
        Special Edition
                                         College Station, Texas 77845 USA
                                         800-STATA-PC
                                                             http://www.stata.com
                                         979-696-4600
                                                             stata@stata.com
                                         979-696-4601 (fax)
   1150-user Stata network license expires 23 Jul 2019:
          Serial number: 401509213955
            Licensed to: cuitianyu706599183@163.com
                          personal
  Notes:
         1. Unicode is supported; see help unicode advice.
         2. Maximum number of variables is set to 5000; see help set maxvar.
         3. New update available; type -update all-
 1 . doedit "C:\Users\cuiti\Master Study\Second Semester\econometrics\TIANYUCUI\ps5\ps2.do"
 2 . do "C:\Users\cuiti\AppData\Local\Temp\STD3898 000000.tmp"
 3 . ***set up for work place****
 4 . clear all
 5 . set more off, perm
   (set more preference recorded)
 6 . set scrollbufsize 2000000
   (set scrollbufsize will take effect the next time you launch Stata)
 7 . ****set working directory***
 8 . cd "C:\Users\cuiti\Master Study\Second Semester\econometrics\TIANYUCUI\ps5"
  C:\Users\cuiti\Master Study\Second Semester\econometrics\TIANYUCUI\ps5
 9 . ***set the observation***
10 . set obs 10000
   number of observations ( N) was 0, now 10,000
11 . *****exercise1: generate the variables to prepare for the regression*****
12 . generate X1 = runiform(1,3)
13 . generate X2 = runiform(0,1)
14 . generate X3=rbinomial(10000,0.3)
15 . gen eps = rnormal(2,1)
16 . gen Y = 0.5 + 1.2*X1 + -0.9*X2 + 0.1*X3 + eps
```

- 17 . * Basic Summary Stats 18 . su Y

Variable	Obs	Mean	Std. Dev.	Min	Max
Y	10,000	304.4587	4.780371	283.3162	324.7488

- 19 . egen Y_mean = mean(Y)
- 20 . gen $Y_{dum} = (Y>Y_{mean})$
- 21 . tab Y_dum

Cum.	Percent	Freq.	Y_dum
50.44 100.00	50.44 49.56	5,044 4,956	0 1
	100.00	10,000	Total

- 23 . ****exercise 2: ols regression*****
- 24 . correlate Y X1 (obs=10,000)

	Y	X1
Y X1	1.0000 0.1470	1.0000

- 25 . *the correlation of Y and X is 0.1416 26 . display 0.1416-1.2
- - -1.0584
- 27 . ***do the regression 28 . reg Y X1 X2 X3

Source	SS	df	MS	Number of obs	=	10,000
Model	218184.148	3	72728.0493	F(3, 9996) Prob > F	=	70496.20 0.0000
Residual	10312.4644	9,996	1.03165911	R-squared Adj R-squared	=	0.9549 0.9549
Total	228496.612	9,999	22.8519464	Root MSE	=	1.0157

Y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
X1	1.186778	.0175235	67.72	0.000	1.152428	1.221128
X2	8714115	.0351358	-24.80	0.000	9402848	8025382
х3	.1001524	.0002204	454.36	0.000	.0997203	.1005845
_cons	2.055131	.6620921	3.10	0.002	.7572972	3.352965

```
question7result Tuesday April 16 10:50:19 2019 Page 3
```

29 .

30 .

31 . *****exercise 3&4: write the probit model and logit model****

32 .

Probit regression

Number of obs = 10,000 LR chi2(3) = 10802.59 Prob > chi2 = 0.0000 Pseudo R2 = 0.7793

Log likelihood = -1529.7912

Y_dum	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
X1	1.235118	.0520075	23.75	0.000	1.133185	1.337051
X2	7780938	.0895126	-8.69	0.000	9535353	6026523
X3	.0981449	.002319	42.32	0.000	.0935998	.1026901
_cons	-296.5425	7.003491	-42.34	0.000	-310.269	-282.8159

Note: 950 failures and 948 successes completely determined.

34 . logit Y dum X1 X2 X3

Logistic regression

Number of obs = 10,000 LR chi2(3) = 10796.49 Prob > chi2 = 0.0000 Pseudo R2 = 0.7788

Log likelihood = -1532.8404

Y_dum	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
X1	2.227785	.0972505	22.91	0.000	2.037178	2.418393
X2	-1.419549	.1621312	-8.76	0.000	-1.73732	-1.101777
X3	.1775505	.0046667	38.05	0.000	.1684038	.1866971
_cons	-536.4411	14.09405	-38.06	0.000	-564.0649	-508.8172

Note: 149 failures and 151 successes completely determined.

35.

36 . *****calculate the marginal effects of probit model and logit model****

37 . probit Y_dum X1 X2 X3

Probit regression

Number of obs = 10,000 LR chi2(3) = 10802.59 Prob > chi2 = 0.0000 Pseudo R2 = 0.7793

Log likelihood = -1529.7912

Y_dum	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
X1	1.235118	.0520075	23.75	0.000	1.133185	1.337051
X2	7780938	.0895126	-8.69	0.000	9535353	6026523
X3	.0981449	.002319	42.32	0.000	.0935998	.1026901
_cons	-296.5425	7.003491	-42.34	0.000	-310.269	-282.8159

Note: 950 failures and 948 successes completely determined.

38 . quietly probit \$ylist \$xlist

39 . margins, dydx(*) atmeans

Conditional marginal effects Number of obs = 10,000

Model VCE : OIM

Expression : Pr(Y_dum), predict()
dy/dx w.r.t. : X1 X2 X3

2.001611 (mean) at : X1 X2 = .5030039 (mean) = .5030033 (mean) = 3000.092 (mean) хЗ

		Delta-method Std. Err.	z	P> z	[95% Conf.	Interval]
X1	.492662	.0207467	23.75	0.000	.4519993	.5333248
X2	3103649	.0357046	-8.69	0.000	3803446	2403852
X3	.0391479	.0009249	42.32	0.000	.037335	.0409608

40 . margins, dydx(*)

Number of obs = 10,000 Average marginal effects

Model VCE : OIM

Expression : Pr(Y dum), predict()

dy/dx w.r.t. : **x1 x2 x3**

		Delta-method Std. Err.		P> z	[95% Conf.	Interval]
X1	.1049494	.0036532	28.73	0.000	.0977893	.1121096
X2	0661155	.0074482	-8.88	0.000	0807137	0515174
X3	.0083395	.0000116	717.99	0.000	.0083167	.0083623

42 . logit Y_dum X1 X2 X3

Iteration 0: log likelihood = -6931.0846 Iteration 1: log likelihood = -1538.5927 Iteration 2: log likelihood = -1532.8409 Iteration 3: log likelihood = -1532.8404 Iteration 4: log likelihood = -1532.8404

Number of obs = 10,000 LR chi2(3) = 10796.49 Prob > chi2 = 0.0000 Pseudo R2 = 0.7788 Logistic regression Log likelihood = -1532.8404

Y_dum	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
X1	2.227785	.0972505	22.91	0.000	2.037178	2.418393
X2	-1.419549	.1621312	-8.76	0.000	-1.73732	-1.101777
X3	.1775505	.0046667	38.05	0.000	.1684038	.1866971
cons	-536.4411	14.09405	-38.06	0.000	-564.0649	-508.8172

Note: 149 failures and 151 successes completely determined.

43 . quietly logit \$ylist \$xlist

44 . margins, dydx(*) atmeans

Conditional marginal effects Number of obs = 10,000

Model VCE : OIM

Expression : Pr(Y_dum), predict()
dy/dx w.r.t. : X1 X2 X3

= **2.001611** (mean) at : X1 = .5030039 (mean) = 3000.092 (mean) X2 х3

	dy/dx	Delta-method Std. Err.	Z	P> z	[95% Conf.	Interval]
X1	.5568354	.0243146	22.90	0.000	.5091796	.6044911
X2	3548164	.0405264	-8.76	0.000	4342466	2753862
X3	.0443788	.0011665	38.05	0.000	.0420926	.046665

45 . margins, dydx(*)

Average marginal effects Number of obs = 10,000

Model VCE : OIM

Expression : Pr(Y_dum), predict()
dy/dx w.r.t. : X1 X2 X3

	dy/dx	Delta-method Std. Err.	Z	P> z	[95% Conf.	Interval]
X1	.1045903	.0036465	28.68	0.000	.0974432	.1117374
X2	0666451	.0074084	-9.00	0.000	0811654	0521248
Х3	.0083357	.0000122	685.37	0.000	.0083118	.0083595

46. end of do-file

47 .