### A Gentle Introduction to Gaussian Processes

### John Joseph Valletta

University of Exeter, Penryn Campus, UK

#### Internal Maths Seminar: 20th October 2015





- Motivation
- The Gaussian Distribution
- Gaussian Process
- Gaussian Process Regression A Toy Example
- Gaussian Process Regression CO<sub>2</sub> Concentrations
- Modelling Gene Expression Time-Series

- Motivation
- The Gaussian Distribution
- Gaussian Process
- Gaussian Process Regression A Toy Example
- Gaussian Process Regression CO<sub>2</sub> Concentrations
- Modelling Gene Expression Time-Series

- Motivation
- The Gaussian Distribution
- Gaussian Process
- Gaussian Process Regression A Toy Example
- Gaussian Process Regression CO<sub>2</sub> Concentrations
- Modelling Gene Expression Time-Series

- Motivation
- The Gaussian Distribution
- Gaussian Process
- Gaussian Process Regression A Toy Example
- Gaussian Process Regression CO<sub>2</sub> Concentrations
- Modelling Gene Expression Time-Series

- Motivation
- The Gaussian Distribution
- Gaussian Process
- Gaussian Process Regression A Toy Example
- Gaussian Process Regression CO<sub>2</sub> Concentrations
- Modelling Gene Expression Time-Series

- Motivation
- The Gaussian Distribution
- Gaussian Process
- Gaussian Process Regression A Toy Example
- Gaussian Process Regression CO<sub>2</sub> Concentrations
- Modelling Gene Expression Time-Series

- Motivation
- The Gaussian Distribution
- Gaussian Process
- Gaussian Process Regression A Toy Example
- Gaussian Process Regression CO<sub>2</sub> Concentrations
- Modelling Gene Expression Time-Series

### Motivation



### Motivation



### Motivation



# The Data Modelling Task

- data:  $\mathbf{x} = \{x_1, \dots, x_N\}, \ \mathbf{y} = \{y_1, \dots, y_N\}$
- model:  $y = f(x) + \epsilon$
- $\bullet \ \ \mathbf{predictions} \colon \ y^* = f(x^*)$

# The Data Modelling Task

- data:  $\mathbf{x} = \{x_1, \dots, x_N\}, \ \mathbf{y} = \{y_1, \dots, y_N\}$
- model:  $y = f(x) + \epsilon$
- predictions:  $y^* = f(x^*)$



### The Gaussian Distribution



A draw from this distribution is a 1D vector e.g  $\boldsymbol{x} = [0.2]$ 

A draw from this distribution is a 2D vector e.g  $\mathbf{x} = \begin{bmatrix} 0.3 \\ -0.4 \end{bmatrix}$ 

### The Covariance Matrix



Isotropic

$$\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Diagonal

$$\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 0.5 \end{pmatrix}$$

### The Covariance Matrix



**General Form** 

$$\Sigma = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}$$

**General Form** 

$$\Sigma = \begin{pmatrix} 1 & -0.5 \\ -0.5 & 1 \end{pmatrix}$$

# Sampling from a Multivariate Gaussian

What does a single sample from a 100 dimensional Gaussian look like?

$$\mathbf{x} = \begin{bmatrix} 0.2 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ -0.6 \end{bmatrix}$$
 = 100  $\Longrightarrow$ 

# Sampling from a Multivariate Gaussian

What does a single sample from a 100 dimensional Gaussian look like?

$$\mathbf{x} = \begin{bmatrix} 0.2 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ -0.6 \end{bmatrix} = 100 \Longrightarrow \begin{bmatrix} 2 \\ 1 \\ -1 \\ -2 \\ 0 \end{bmatrix}$$

**Recall**: What we are after is y = f(x)

Trick: Think about a function as an infinitely-long vector

$$f(x) = \begin{bmatrix} f(x_1) \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ f(x_{\infty}) \end{bmatrix} = \infty \Longrightarrow$$

**Recall**: What we are after is y = f(x)

Trick: Think about a function as an infinitely-long vector





**Recall**: What we are after is y = f(x)

Trick: Think about a function as an infinitely-long vector

$$f(x) = \begin{bmatrix} f(x_1) \\ \vdots \\ \vdots \\ \vdots \\ f(x_\infty) \end{bmatrix} = \infty \Longrightarrow \begin{bmatrix} \frac{2}{2} \\ \frac{1}{2} \\ \frac{1}{2}$$

**Computational Madness**: Ask only for the properties of the function at a *finite* number of points

#### 3 dimensional Gaussian

Mean vector

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{pmatrix}$$

#### Covariance matrix

$$\Sigma = egin{pmatrix} \sigma_1^2 & \sigma_1\sigma_2 & \sigma_1\sigma_3 \end{pmatrix} \ \sigma_2\sigma_1 & \sigma_2^2 & \sigma_2\sigma_3 \ \sigma_3\sigma_1 & \sigma_3\sigma_2 & \sigma_3^2 \end{pmatrix}$$

#### ∞ dimensional Gaussian

Mean function

$$\mu = \begin{pmatrix} \mu_1 \\ \vdots \\ \vdots \\ \mu_{\infty} \end{pmatrix} = m(\mathbf{x})$$

Covariance function

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_1 \sigma_2 & \sigma_1 \sigma_3 \\ \sigma_2 \sigma_1 & \sigma_2^2 & \sigma_2 \sigma_3 \\ \sigma_3 \sigma_1 & \sigma_3 \sigma_2 & \sigma_3^2 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_1 \sigma_2 & \dots & \sigma_1 \sigma_\infty \\ \sigma_2 \sigma_1 & \sigma_2^2 & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \dots & \sigma_\infty^2 \end{pmatrix} = k(\mathbf{x}, \mathbf{x}')$$

### Gaussian Process

#### Definition

A Gaussian Process (GP) is an infinite collection of random variables, any finite number of which have a joint normal distribution.

Essentially an infinite dimension multivariate Gaussian distribution, characterised by a mean function  $m(\mathbf{x})$  and a covariance function  $k(\mathbf{x}, \mathbf{x}')$ 

#### <u>Rationale</u>

Instead of inferring the parameters of a fixed model structure  $(\beta_0, \beta_1, \ldots)$ , with GPs we model the *correlation* between inputs. That is, inputs  $(\mathbf{x})$  that are close/similar to each other are likely to give rise to a similar output  $(f(\mathbf{x}))$ 

$$f(\mathbf{x}) \sim \text{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

$$m(\mathbf{x}) = \text{E}[f(\mathbf{x})]$$

$$k(\mathbf{x}, \mathbf{x}') = \text{E}[(f(\mathbf{x}) - m(\mathbf{x})(f(\mathbf{x}') - m(\mathbf{x}'))]$$

- Vital ingredient in Gaussian Process<sup>1</sup>
- Encodes our assumptions about the function we wish to model (smooth, stationary, etc.)
- Quantifies the similarity between two data points; crucial for predicting a test point x\*
- Needs to satisfy a set of mathematical conditions (beyond the scope of this intro
- A very popular choice is the Squared Exponential

(also known as RBF, Gaussian and Exponentiated Quadratic Kernel Function)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2l^2}\right)$$

<sup>&</sup>lt;sup>1</sup>without much loss of generality we can assume that  $m(\mathbf{x}) \equiv 0$ 

- Vital ingredient in Gaussian Process<sup>1</sup>
- Encodes our assumptions about the function we wish to model (smooth, stationary, etc.)
- Quantifies the similarity between two data points; crucial for predicting a test point x\*
- Needs to satisfy a set of mathematical conditions (beyond the scope of this intro
- A very popular choice is the Squared Exponential:

  (also known as RBE Gaussian and Exponentiated Quadratic Kernel Function)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2l^2}\right)$$

<sup>&</sup>lt;sup>1</sup>without much loss of generality we can assume that  $m(\mathbf{x}) \equiv 0$ 

- Vital ingredient in Gaussian Process<sup>1</sup>
- Encodes our assumptions about the function we wish to model (smooth, stationary, etc.)
- Quantifies the similarity between two data points; crucial for predicting a test point x\*
- Needs to satisfy a set of mathematical conditions (beyond the scope of this intro
- A very popular choice is the Squared Exponential: (also known as RBF, Gaussian and Exponentiated Quadratic Kernel Function)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2l^2}\right)$$

<sup>&</sup>lt;sup>1</sup>without much loss of generality we can assume that  $m(\mathbf{x}) \equiv 0$ 

- Vital ingredient in Gaussian Process<sup>1</sup>
- Encodes our assumptions about the function we wish to model (smooth, stationary, etc.)
- Quantifies the similarity between two data points; crucial for predicting a test point x\*
- Needs to satisfy a set of mathematical conditions (beyond the scope of this intro)
- A very popular choice is the Squared Exponential: (also known as RBF, Gaussian and Exponentiated Quadratic Kernel Function)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2l^2}\right)$$

<sup>&</sup>lt;sup>1</sup>without much loss of generality we can assume that  $m(\mathbf{x}) \equiv 0$ 

- Vital ingredient in Gaussian Process<sup>1</sup>
- Encodes our assumptions about the function we wish to model (smooth, stationary, etc.)
- Quantifies the similarity between two data points; crucial for predicting a test point x\*
- Needs to satisfy a set of mathematical conditions (beyond the scope of this intro)
- A very popular choice is the Squared Exponential:

(also known as RBF, Gaussian and Exponentiated Quadratic Kernel Function)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2l^2}\right)$$

e.g if we set  $\alpha = 1$  and l = 1 then:

$$k(0,0) = e^0 = 1$$
,  $k(0,1) = e^{-\frac{1}{2}} = 0.6$ ,  $k(0,2) = e^{-2} = 0.14$ 

<sup>&</sup>lt;sup>1</sup>without much loss of generality we can assume that  $m(\mathbf{x}) \equiv 0$ 

- Shift the problem of inferring model parameters to choosing covariance function and its (hyper)parameters
- Choose  $m(\mathbf{x})$  and  $k(\mathbf{x}, \mathbf{x}')$  that reflect some prior belief
- This defines a prior on the function class itself; it is a prior on a function and not parameters of some fixed model structure
- Under a Bayesian framework this prior is "reshaped" by the observed data to obtain a posterior distribution on the function

- Shift the problem of inferring model parameters to choosing covariance function and its (hyper)parameters
- Choose  $m(\mathbf{x})$  and  $k(\mathbf{x}, \mathbf{x}')$  that reflect some prior belief
- This defines a prior on the function class itself; it is a prior on a function and not parameters of some fixed model structure
- Under a Bayesian framework this prior is "reshaped" by the observed data to obtain a posterior distribution on the function

- Shift the problem of inferring model parameters to choosing covariance function and its (hyper)parameters
- Choose  $m(\mathbf{x})$  and  $k(\mathbf{x}, \mathbf{x}')$  that reflect some prior belief
- This defines a prior on the function class itself; it is a prior on a function and not parameters of some fixed model structure
- Under a Bayesian framework this prior is "reshaped" by the observed data to obtain a posterior distribution on the function

- Shift the problem of inferring model parameters to choosing covariance function and its (hyper)parameters
- Choose  $m(\mathbf{x})$  and  $k(\mathbf{x}, \mathbf{x}')$  that reflect some prior belief
- This defines a prior on the function class itself; it is a prior on a function and not parameters of some fixed model structure
- Under a Bayesian framework this prior is "reshaped" by the observed data to obtain a posterior distribution on the function

















$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2l^2}\right)$$

- Choosing a covariance functions is akin to choosing a model structure; it dictates the class of functions that can be represented by the Gaussian Process<sup>2</sup>
- Misspecifying the covariance function and/or its (hyper)parameters has a detrimental effect on the model fit
- For the squared exponential case the lengthscale l dictates how much the function is allowed to bend

<sup>&</sup>lt;sup>2</sup>this class of functions however is typically wider than that offered by a parametric model

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2l^2}\right)$$

- Choosing a covariance functions is akin to choosing a model structure; it dictates the class of functions that can be represented by the Gaussian Process<sup>2</sup>
- Misspecifying the covariance function and/or its (hyper)parameters has a detrimental effect on the model fit
- For the squared exponential case the lengthscale l dictates how much the function is allowed to bend

 $<sup>^2</sup>$ this class of functions however is typically wider than that offered by a parametric model

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2l^2}\right)$$

- Choosing a covariance functions is akin to choosing a model structure; it dictates the class of functions that can be represented by the Gaussian Process<sup>2</sup>
- Misspecifying the covariance function and/or its (hyper)parameters has a detrimental effect on the model fit
- For the squared exponential case the lengthscale l dictates how much the function is allowed to bend

 $<sup>^2</sup>$ this class of functions however is typically wider than that offered by a parametric model

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2l^2}\right)$$

- Choosing a covariance functions is akin to choosing a model structure; it dictates the class of functions that can be represented by the Gaussian Process<sup>2</sup>
- Misspecifying the covariance function and/or its (hyper)parameters has a detrimental effect on the model fit
- ullet For the squared exponential case the lengthscale l dictates how much the function is allowed to bend

 $<sup>^2\</sup>mbox{this}$  class of functions however is typically wider than that offered by a parametric model

















- Let us define  $\theta$  as a vector containing all (hyper)parameters e.g  $\theta = \{\alpha, l, \sigma_n^2\}$
- We choose  $\theta$  that maximises the log marginal likelihood, that is

$$\ln p(y|\mathbf{x}, \theta) = -\frac{1}{2}y^{T}(k(\mathbf{x}, \mathbf{x}') + \sigma_{n}^{2}I)^{-1}y - \frac{1}{2}\ln|k(\mathbf{x}, \mathbf{x}') + \sigma_{n}^{2}I| - \frac{n}{2}\ln 2\pi$$

- Cannot guarantee a global optimum, try different initial conditions
- Constraint (hyper)parameters to some sensible limits
- Note: Choosing the right covariance function (e.g Squared Exponential, Matérn, Rational Quadratic, etc.) is not always easy and should be treated akin to a model selection problem

- Let us define  $\theta$  as a vector containing all (hyper)parameters e.g  $\theta = \{\alpha, l, \sigma_n^2\}$
- We choose  $\theta$  that maximises the log marginal likelihood, that is:

$$\ln p(y|\mathbf{x},\theta) = -\frac{1}{2}y^T(k(\mathbf{x},\mathbf{x}') + \sigma_n^2 I)^{-1}y - \frac{1}{2}\ln|k(\mathbf{x},\mathbf{x}') + \sigma_n^2 I| - \frac{n}{2}\ln 2\pi$$

- Cannot guarantee a global optimum, try different initial conditions
- Constraint (hyper)parameters to some sensible limits
- Note: Choosing the right covariance function (e.g Squared Exponential, Matérn, Rational Quadratic, etc.) is not always easy and should be treated akin to a model selection problem

- Let us define  $\theta$  as a vector containing all (hyper)parameters e.g  $\theta = \{\alpha, l, \sigma_n^2\}$
- We choose  $\theta$  that maximises the log marginal likelihood, that is:

$$\ln p(y|\mathbf{x}, \theta) = -\frac{1}{2}y^{T}(k(\mathbf{x}, \mathbf{x}') + \sigma_{n}^{2}I)^{-1}y - \frac{1}{2}\ln|k(\mathbf{x}, \mathbf{x}') + \sigma_{n}^{2}I| - \frac{n}{2}\ln 2\pi$$

- Cannot guarantee a global optimum, try different initial conditions
- Constraint (hyper)parameters to some sensible limits
- Note: Choosing the right covariance function (e.g Squared Exponential, Matérn, Rational Quadratic, etc.) is not always easy and should be treated akin to a model selection problem

- Let us define  $\theta$  as a vector containing all (hyper)parameters e.g  $\theta = \{\alpha, l, \sigma_n^2\}$
- We choose  $\theta$  that maximises the log marginal likelihood, that is:

$$\ln p(y|\mathbf{x}, \theta) = -\frac{1}{2}y^{T}(k(\mathbf{x}, \mathbf{x}') + \sigma_{n}^{2}I)^{-1}y - \frac{1}{2}\ln|k(\mathbf{x}, \mathbf{x}') + \sigma_{n}^{2}I| - \frac{n}{2}\ln 2\pi$$

- Cannot guarantee a global optimum, try different initial conditions
- Constraint (hyper)parameters to some sensible limits
- Note: Choosing the right covariance function (e.g Squared Exponential, Matérn, Rational Quadratic, etc.) is not always easy and should be treated akin to a model selection problem

- Let us define  $\theta$  as a vector containing all (hyper)parameters e.g  $\theta = \{\alpha, l, \sigma_n^2\}$
- We choose  $\theta$  that maximises the log marginal likelihood, that is:

$$\ln p(y|\mathbf{x}, \theta) = -\frac{1}{2}y^{T}(k(\mathbf{x}, \mathbf{x}') + \sigma_{n}^{2}I)^{-1}y - \frac{1}{2}\ln|k(\mathbf{x}, \mathbf{x}') + \sigma_{n}^{2}I| - \frac{n}{2}\ln 2\pi$$

- Cannot guarantee a global optimum, try different initial conditions
- Constraint (hyper)parameters to some sensible limits
- Note: Choosing the right covariance function (e.g Squared Exponential, Matérn, Rational Quadratic, etc.) is not always easy and should be treated akin to a model selection problem

### Modelling CO<sub>2</sub> Concentrations



### Modelling CO<sub>2</sub> Concentrations



### Modelling Gene Expression Time-Series



#### Modelling Gene Expression Time-Series



#### Modelling Gene Expression Time-Series



## Ranking Gene Expression Time-Series



### Clustering Gene Expression Time-Series



#### Gaussian Process Resources

Rasmussen and Williams book

#### **Gaussian Processes for Machine Learning**

Carl Edward Rasmussen and Christopher K. I. Williams The MIT Press, 2006. ISBN 0-262-18253-X.



- http://www.gaussianprocess.org/
- The GPy Python Module by Neil Lawrence's Sheffield Group: https://github.com/SheffieldML/GPy