Диагностика эмиссионных спектров плазмы аргона в зависимости от концентрации загрязняющих примесей

Применение плазмы

- 1. Обработка материалов
- 2. Полупроводниковая промышленность
- 3. Производство микроэлектроники
- 4. Нанотехнологии

Плазменное травление

Плазменное травление – это эффективный метод удаления материала с поверхности, основанный на использовании плазмы.

Основные виды плазменного травления

1. Ионное травления

Материал удаляется путем физического распыления.

1. Реактивное ионное травления

Реактивные газы взаимодействуют с поверхностью вещества, в результате реакции образуются летучие соединения.

Параметры плазменного травления

- Состав газовой смеси
- Мощность плазмы
- Давление
- Анизотропность

Плазма аргона

Плотность (см ⁻³) (См/м)		Температура (К)	Электропроводность
• Аргон:	10 ¹¹ -10 ¹³	6000-12000	10 ¹⁰ -10 ¹²
Гелий:	10 ¹⁰ -10 ¹²	10000-20000	10 ¹⁰ -10 ¹²
• Неон:	10 ¹⁰ -10 ¹²	8000-15000	10 ¹⁰ -10 ¹²
• Азот:	10 ⁹ -10 ¹¹		10 ¹⁰ -10 ¹²
• Кислород	1: 10⁹-10 ¹¹		10 ¹⁰ -10 ¹²

Эмиссионная спектроскопия

Основное преимущество: данный метод позволяет проводить измерения вне реакционной камеры без вмешательства в химические процессы плазмы

Спектр плазмы CF₄-O₂

Примеси в плазме

Причины возникновения:

- Низкое качество газа
- Низкое качество материала
- Внешняя среда
- Загрязненность стенок камеры

Влияние на характеристики процесса:

- Температура плазмы
- Плотность плазмы
- Скорости травления
- Селективность
- Нежелательные реакции с газом и поверхностью

Диагностика линий спектра аргона

Наличие загрязняющих примесей можно определить с помощью диагностики линий спектра основного газа.

Спектр чистой плазмы аргона:

Детектирование конечной точки травления

Метод 1:

Наблюдении за линией эмиссии определенного химического элемента, который должен быть удален в конечном результате.

Метод 2:

Отслеживание соотношения интенсивностей двух линий эмиссии, связанных с исходным материалом и продуктом травления.