AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently amended) A combination of a carrier and a complex comprising a nucleic acid molecule and a charged copolymer of the general formula I

wherein R is an amphiphilic polymer or a homo- or hetero-bifunctional derivative thereof,

and wherein X

- i) is an amino acid or an amino acid derivative, a peptide or a peptide derivative or a spermine or a spermidine derivative; or
 - ii) wherein X is

wherein

a is H or, optionally halogen- or dialkylamino-substituted, C1-C6 alkyl; and wherein

b, c and d are the same or different, optionally halogen- or dialkylamino-substituted, C_1 - C_6 alkylene; or

iii) wherein X is

wherein

a, b and c are the same or different, optionally halogen- or dialkylamino-substituted, C_1 - C_6 alkylene; or

iv) wherein X

is a substituted aromatic compound with three functional groupings $\underline{W_1, Y_1, Z_1} + \underline{W_1 Y_1 Z_1}$, wherein W, Y and Z have the meanings mentioned below;

wherein

W, Y or Z and W_1 , Y_1 , Z_1 are the same or different groups and selected from CO, NH, O or S or a linker grouping capable of reacting with SH, OH, NH or NH₂;

and wherein the effector molecule E

is a cationic or anionic peptide or peptide derivative or a spermine or spermidine derivative or a glycosaminoglycan or a non-peptidic oligo/polycation or -anion; wherein

m and n are independently of each other 0, 1 or 2; wherein

p preferably is 3 to 20; and wherein

 $\underline{\ell}$ [1] is 1 to 5.

- 2. (Previously presented) The combination according to claim 1, wherein the amphiphilic polymer is a polyalkylene oxide.
- 3. (Previously presented) The combination according to claim 2, wherein the amphiphilic polymer is a polyalkylene glycol.
- 4. (Previously presented) The combination according to any one of claims 1 to 3, wherein X or E is a charged peptide or peptide derivative.
- 5. (Previously presented) The combination according to claim 1, wherein a ligand for a higher eukaryotic cell is coupled to the copolymer.
- 6. (Previously presented) The combination according to any one of claims 1-3 and 5, wherein the nucleic acid molecule is condensed with an organic polycation or cationic lipid molecule and the complex formed thereby has a charged copolymer of the general formula I bound to its surface via ionic interaction.
- 7. (Previously presented) The combination according to any one of claims 1-3 and 5, containing a therapeutically effective nucleic acid molecule.
- 8. (Previously presented) The combination according to any one of claims 1-3 and 5, wherein the carrier consists of a biologically non-resorbable material.

	9.	(Previously presented) The combination according to any one of claims $1-3$ and
5.	wherein the	carrier consists of a biologically resorbable material.

- 10. (Original) The combination according to claim 9, wherein the biologically resorbable material is collagen.
- 11. (Original) The combination according to claim 10, wherein the carrier is a collagen sponge.
- 12. (Previously presented) The combination according to any one of claims 1-3 and 5, wherein the carrier is a carrier which is obtainable by cross-linkage of a copolymer as defined in claim 1.
- 13. (Previously presented) A method of transferring a nucleic acid molecule into a cell comprising using the combination according to any one of claims 1-3 and 5.
- 14. (Previously presented) A pharmaceutical composition comprising the combination according to any one of claims 1-3 and 5.
 - 15. (Canceled).
- 16. (Previously presented) A kit comprising a carrier and a copolymer or a complex as defined in claim 1.

17. (Currently amended) The combination according to claim 1, wherein $\underline{\ell}$ [I] is 1.