1987. Nested Segments

Time limit: 1.0 second Memory limit: 64 MB

You are given n segments on a straight line. For each pair of segments it is known that they either have no common points or all points of one segment belong to the second segment.

Then *m* queries follow. Each query represents a point on the line. For each query, your task is to find the segment of the minimum length, to which this point belongs.

Input

The first line contains an integer n that is the number of segments $(1 \le n \le 10^5)$. i'th of the next n lines contains integers a_i and b_i that are the coordinates of endpoints of the i'th segment $(1 \le a_i < b_i \le 10^9)$. The segments are ordered by non-decreasing a_i , and when $a_i = a_j$ they are ordered by decreasing length. All segments are distinct. The next line contains an integer m that is the number of queries $(1 \le m \le 10^5)$. j'th of the next m lines contains an integer c_j that is the coordinate of the point $(1 \le c_j \le 10^9)$. The queries are ordered by non-decreasing c_j .

Output

For each query output the number of the corresponding segment on a single line. If the point does not belong to any segment, output "-1". The segments are numbered from 1 to n in order they are given in the input.

Sample

input	output
3	-1
2 10	2
2 3	2
5 7	1
11	3
1	3
2	3
3	1
4	1
5	1
6	-1
7	
8	
9	
10	
11	

Problem Author: Mikhail Rubinchik, idea by Nikita Pervukhin

Problem Source: Open Ural FU Championship 2013