

d)
$$V = \frac{1}{\pi} \left[\frac{1}{\pi} \left[-\frac{1}{\pi} \left(\frac{1}{\pi} \right) \right] \right] \frac{1}{\pi}$$

$$V = \frac{1}{7} \left(\frac{1}{2} - \cos 2x \right) dx$$

$$= \frac{1}{7} \left(\frac{1}{2} - \cos 2x \right) dx$$

$$= \frac{1}{7} \left(\frac{1}{2} - \cos 2x \right) dx$$

$$= \frac{1}{7} \left(\frac{1}{2} - \cos 2x \right) dx$$

$$= \frac{1}{7} \left(\frac{1}{2} - \cos 2x \right) dx$$

$$= \frac{1}{7} \left(\frac{1}{2} - \cos 2x \right) dx$$

$$= \frac{1}{7} \left(\frac{1}{2} - \cos 2x \right) dx$$

truction: jour BC

1= 90° (angle an servicule)

1= 90° (angle an servicule)

1= 90° (angle sum g/
$$\Delta$$
)

1= 90° (angle sum g/ Δ)

2= x (angle un alt regiment)

3= x (angle un alt regiment)

40-x (angle sum g/ Δ)

2= x (angle un alt regiment)

3= x (angle un alt regiment)

40-x (angle sum g/ Δ)

Austran 2

$$x \neq 0$$
,

 $x \neq 0$,

 $x \neq$

Ilmits when x=0, u=0 when x=3, u=0 $\chi \sqrt{q-x^2}.dx = -1 \sqrt{\frac{0}{\mu}} du$ $\lambda = 9 - x^{2}$ $\frac{d\lambda_{1}}{dx} = -2x$ $\frac{dx}{dx} = x^{2}dx$

$$\int_{0}^{1} f(x) = (x-3)(x^{2}+6x+8)$$

$$f(x) = (x-3)(x+2)(x+4)$$

$$\int_{0}^{3} \frac{dx}{\sqrt{q-x^{2}}} = \left[\sin^{-1} \frac{x}{3} \right]^{3}$$

$$= \sin^{-1} (1-\sin^{-1} 0)$$

$$= \frac{\pi}{2}$$

$$\frac{3}{5} \frac{1}{4} \frac{2000}{5}$$

$$\frac{3}{8(4,4)} \frac{2}{8(4,3)} = \frac{1}{4(11)} =$$

$$\frac{3x + 3(-5)}{(-5/12)} \frac{3}{8(4,4)} P(x,y)$$

$$\frac{3x + 3(-5)}{5} , q = 3y + 2(12)$$

$$\frac{3x - 10}{5} \frac{45 = 3y}{5} + 24$$

$$\frac{3x - 10}{3} \frac{45 = 3y + 2(12)}{4}$$

$$\frac{3x - 10}{1 + m \cdot m_{1}} \frac{45 = 3y + 2(12)}{2}$$

$$P = \left(10, 7\right)$$

$$\frac{1}{1 + 8} \frac{2}{4}$$

$$\frac{1}{1 + m \cdot m_{1}} \frac{1}{1 + m \cdot m_{1}}$$

$$\frac{1}{1 + 8} \frac{2 - 4y}{1 + m \cdot m_{1}}$$

$$\frac{1}{1 + 8} \frac{2 - 4y}{1 + m \cdot m_{1}}$$

$$\frac{1}{1 + 8} \frac{2 - 4y}{1 + m \cdot m_{1}}$$

$$\frac{1}{1 + 8} \frac{2 - 4y}{1 + 2y}$$

$$\frac{1}{1 + 8} \frac{3x^{2} - 10x - 24}{3y^{2} + 3x^{2} - 10x - 24}$$

$$\frac{3}{10} \frac{x}{x} \frac{x^{2} + 6x + 8}{5x - 10x}$$

$$\frac{x^{2} + 6x + 8}{5x - 10x}$$

	$\int_{\gamma} f(x) = (x - \frac{1}{2})$	(d) (3 dx	Jo 19-x			W I	<i>*</i> °		Construction	LABC= 90°.	Let L EAG =	7 4 5 8 × 7	L CAB=	. L (AB=			
1 Trial July 2000	S (8)	(5,11) B(4,13)	$\frac{3x+3(-5)}{5}$, $q=\frac{3y+2(12)}{5}$	3x - 10 $45 = 34 + 24$	"	P= (10,7)	=2, m2 = 4.	12 x = M1 - 1M2 1 + m.m2	= 2-4	1 × 10	x = 12" 32"	(x)= x3+3x2-10x-24	(3)= 27+27-30-24 =0	3) 4 a factor x2+6x+8 x2+6x+8 x2+3 x3+3x2-102-24	-32,	6x'-18x	~

V2 9 (26-0)	3426 man = 242 + 2/1 = 242 + 2/1 = 242 + 2/2 = 242 + 2/2 = 242 + 2/2 = 2/2	c) $x = a \cos (3t + \alpha)$ $\dot{x} = -3a \sin (3t + \alpha)$ $\dot{x} = -9a \cos (3t + \alpha)$	$\dot{x} = -9(a\cos(3t+ay))$ $\dot{x} = -9x$ $\dot{x} = -9x$ $\dot{x} = -9x$	when $t=0$ and $x=\varepsilon$ Wring ε $S=a\cos \varepsilon$	wing (2) 3 = -30 sin & -1 = 0.81 n &	3 + (+) = 2 + 1 = c	(iii) Mux speed at centre from (1) 0 = $(2b \cos (3t - 0))$ $(x = -3bb \sin (3(0.85) - 0))$
V 2-	and 22x+y=1	$2^{2x-4} = 2^{3x+3y}$ $2x-4 = 3x+3y$ (equating induces) $-x-3y=4$ $2^{2x+3}=7$. (C) (equating induces)	solving On 2 (2) => -2x+6y=8 + 3x+y=7		b) l= x-cost y= xt + xsmt dol= +smt dol= x + xcost dr - dr dt	of of da = 2+drost sint	where $ast = \frac{1}{1+t^2}$ $sut = \frac{2t}{1+t^2}$ $dy = \frac{2+2(\frac{1-t}{1+t^2})}{2t}$
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$a_2 = 3.3 - \frac{4(3.3)}{2.669}$ $= 3.3 - 0.369$ $= 3.16$					
	sn3 $s(x-x) = 3\cos x + 4\sin x$ $scx + Asinesing = 3\cos x + 4sin x$ $t\cos x = 3$. 0 $\sin x = 4$. 0	tank = $\frac{1}{13}$ $\alpha = 53^{\circ}$ A $\frac{1}{12}$ A $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$	ux + 4sin x = 5cos(x-53°) $scos(x-53°) = -3$	$\cos(x_1 - 53^\circ) = -3/5$ $x - 53^\circ = 127^\circ$, 233° $x = 180^\circ$, 286°	יארצ, ל BoYs. * * * * *	×	2 × × 5 × 3 × × 5 × 5 × 5 × 5 × 5 × 5 × 5

