EQUIVALENCE PDA AND CFG

IF 2124 TEORI BAHASA FORMAL OTOMATA

Judhi S.

Equivalence of PDA's and CFG's

A language is

generated by a CFG

if and only if it is

accepted by a PDA by empty stack

if and only if it is

accepted by a PDA by final state

We already know how to go between null stack and final state.

From CFG's to PDA's

Given G, we construct a PDA that simulates $\stackrel{*}{\underset{lm}{\rightleftharpoons}}$.

We write left-sentential forms as

$$xA\alpha$$

where A is the leftmost variable in the form. For instance,

$$\underbrace{(a+\underbrace{E}_{x}\underbrace{\lambda}_{\alpha})}_{\text{tail}}$$

Let $xA\alpha \underset{lm}{\Rightarrow} x\beta\alpha$. This corresponds to the PDA first having consumed x and having $A\alpha$ on the stack, and then on ϵ it pops A and pushes β .

More fomally, let y, s.t. w = xy. Then the PDA goes non-deterministically from configuration $(q, y, A\alpha)$ to configuration $(q, y, \beta\alpha)$.

At $(q, y, \beta \alpha)$ the PDA behaves as before, unless there are terminals in the prefix of β . In that case, the PDA pops them, provided it can consume matching input.

If all guesses are right, the PDA ends up with empty stack and input.

Formally, let G=(V,T,Q,S) be a CFG. Define P_G as

$$(\{q\}, T, V \cup T, \delta, q, S),$$

where

$$\delta(q, \epsilon, A) = \{(q, \beta) : A \to \beta \in Q\},\$$

for $A \in V$, and

$$\delta(q, a, a) = \{(q, \epsilon)\},\$$

for $a \in T$.

Example: On blackboard in class.

Theorem 6.13: $N(P_G) = L(G)$.

Proof:

 $(\supseteq$ -direction.) Let $w \in L(G)$. Then

$$S = \gamma_1 \underset{lm}{\Rightarrow} \gamma_2 \underset{lm}{\Rightarrow} \cdots \underset{lm}{\Rightarrow} \gamma_n = w$$

Let $\gamma_i = x_i \alpha_i$. We show by induction on i that if

$$S \stackrel{*}{\underset{lm}{\Rightarrow}} \gamma_i$$
,

then

$$(q, w, S) \stackrel{*}{\vdash} (q, y_i, \alpha_i),$$

where $w = x_i y_i$.

Basis: For $i=1, \gamma_1=S$. Thus $x_1=\epsilon$, and $y_1=w$. Clearly $(q,w,S) \stackrel{*}{\vdash} (q,w,S)$.

Induction: IH is $(q, w, S) \vdash^* (q, y_i, \alpha_i)$. We have to show that

$$(q, y_i, \alpha_i) \vdash (q, y_{i+1}, \alpha_{i+1})$$

Now α_i begins with a variable A, and we have the form

$$\underbrace{x_i A \chi}_{\gamma_i} \Rightarrow \underbrace{x_{i+1} \beta \chi}_{\gamma_{i+1}}$$

By IH $A\chi$ is on the stack, and y_i is unconsumed. From the construction of P_G is follows that we can make the move

$$(q, y_i, \chi) \vdash (q, y_i, \beta \chi).$$

If β has a prefix of terminals, we can pop them with matching terminals in a prefix of y_i , ending up in configuration (q,y_{i+1},α_{i+1}) , where $\alpha_{i+1}=\beta\chi$, which is the tail of the sentential $x_i\beta\chi=\gamma_{i+1}$.

Finally, since $\gamma_n = w$, we have $\alpha_n = \epsilon$, and $y_n = \epsilon$, and thus $(q, w, S) \vdash (q, \epsilon, \epsilon)$, i.e. $w \in N(P_G)$

(\subseteq -direction.) We shall show by an induction on the length of $\stackrel{*}{\vdash}$, that

(4) If
$$(q, x, A) \stackrel{*}{\vdash} (q, \epsilon, \epsilon)$$
, then $A \stackrel{*}{\Rightarrow} x$.

Basis: Length 1. Then it must be that $A \to \epsilon$ is in G, and we have $(q, \epsilon) \in \delta(q, \epsilon, A)$. Thus $A \stackrel{*}{\Rightarrow} \epsilon$.

Induction: Length is n > 1, and the IH holds for lengths < n.

Since A is a variable, we must have

$$(q, x, A) \vdash (q, x, Y_1 Y_2 \cdots Y_k) \vdash \cdots \vdash (q, \epsilon, \epsilon)$$

where $A \to Y_1 Y_2 \cdots Y_k$ is in G.

We can now write x as $x_1x_2\cdots x_n$, according to the figure below, where $Y_1=B, Y_2=a$, and $Y_3=C$.

Now we can conclude that

$$(q, x_i x_{i+1} \cdots x_k, Y_i) \stackrel{*}{\vdash} (q, x_{i+1} \cdots x_k, \epsilon)$$

is less than n steps, for all $i \in \{1, \ldots, k\}$. If Y_i is a variable we have by the IH and Theorem 6.6 that

$$Y_i \stackrel{*}{\Rightarrow} x_i$$

If Y_i is a terminal, we have $|x_i| = 1$, and $Y_i = x_i$. Thus $Y_i \stackrel{*}{\Rightarrow} x_i$ by the reflexivity of $\stackrel{*}{\Rightarrow}$.

The claim of the theorem now follows by choosing A=S, and x=w. Suppose $w\in N(P)$. Then $(q,w,S)\stackrel{*}{\vdash} (q,\epsilon,\epsilon)$, and by (\clubsuit) , we have $S\stackrel{*}{\Rightarrow} w$, meaning $w\in L(G)$.

From PDA's to CFG's

Let's look at how a PDA can consume $x = x_1x_2\cdots x_k$ and empty the stack.

We shall define a grammar with variables of the form $[p_{i-1}Y_ip_i]$ representing going from p_{i-1} to p_i with net effect of popping Y_i .

```
Formally, let P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0) be a PDA. Define G=(V,\Sigma,R,S), where V=\{[pXq]:\{p,q\}\subseteq Q,X\in\Gamma\}\cup\{S\} R=\{S\to [q_0Z_0p]:p\in Q\}\cup\{[qXr_k]\to a[\mathbf{r}Y_1r_1]\cdots[r_{k-1}Y_kr_k]: a\in\Sigma\cup\{\epsilon\}, \{r_1,\ldots,r_k\}\subseteq Q, (\mathbf{r},Y_1Y_2\cdots Y_k)\in\delta(\mathbf{q},a,X)\}
```

Example: Let's convert

$$P_N = (\{q\}, \{i, e\}, \{Z\}, \delta_N, q, Z),$$

where $\delta_N(q,i,Z)=\{(q,ZZ)\}$, and $\delta_N(q,e,Z)=\{(q,\epsilon)\}$ to a grammar

$$G = (V, \{i, e\}, R, S),$$

where $V=\{[qZq],S\}$, and $R=\{[qZq]\rightarrow i[qZq],[qZq],[qZq]\rightarrow e\}$.

If we replace [qZq] by A we get the productions $S \to A$ and $A \to iAA|e$.

Example: Let $P=(\{p,q\},\{0,1\},\{X,Z_0\},\delta,q,Z_0)$, where δ is given by

1.
$$\delta(q, 1, Z_0) = \{(q, XZ_0)\}$$

2.
$$\delta(q, 1, X) = \{(q, XX)\}$$

3.
$$\delta(q, 0, X) = \{(p, X)\}$$

4.
$$\delta(q, \epsilon, X) = \{(q, \epsilon)\}$$

5.
$$\delta(p, 1, X) = \{(p, \epsilon)\}$$

6.
$$\delta(p, 0, Z_0) = \{(q, Z_0)\}$$

to a CFG.

We get $G = (V, \{0, 1\}, R, S)$, where

$$V = \{[pXp], [pXq], [pZ_0p], [pZ_0q], S\}$$

and the productions in R are

$$S \rightarrow [qZ_0q]|[qZ_0p]$$

From rule (1):

$$[qZ_0q] \rightarrow 1[qXq][qZ_0q]$$

$$[qZ_0q] \rightarrow 1[qXp][pZ_0q]$$

$$[qZ_0p] \rightarrow 1[qXq][qZ_0p]$$

$$[qZ_0p] \rightarrow 1[qXp][pZ_0p]$$

From rule (2):

$$[qXq] \rightarrow 1[qXq][qXq]$$

$$[qXq] \rightarrow \mathbf{1}[qXp][pXq]$$

$$[qXp] \rightarrow 1[qXq][qXp]$$

$$[qXp] \rightarrow \mathbf{1}[qXp][pXp]$$

From rule (3):

$$[qXq] \to 0[pXq]$$
$$[qXp] \to 0[pXp]$$

From rule (4):

$$[qXq] \to \epsilon$$

From rule (5):

$$[pXp] \rightarrow 1$$

From rule (6):

$$[pZ_0q] \to 0[qZ_0q]$$
$$[pZ_0p] \to 0[qZ_0p]$$

Theorem 6.14: Let G be constructed from a PDA P as above. Then L(G) = N(P)

Proof:

 $(\supseteq$ -direction.) We shall show by an induction on the length of the sequence \vdash * that

 $(\spadesuit) \text{ If } (q, w, X) \stackrel{*}{\vdash} (p, \epsilon, \epsilon) \text{ then } [qXp] \stackrel{*}{\Rightarrow} w.$

Basis: Length 1. Then w is an a or ϵ , and $(p,\epsilon)\in\delta(q,w,X)$. By the construction of G we have $[qXp]\to w$ and thus $[qXp]\stackrel{*}{\Rightarrow}w$.

Induction: Length is n > 1, and \spadesuit holds for lengths < n. We must have

$$(q, w, X) \vdash (r_0, x, Y_1 Y_2 \cdots Y_k) \vdash \cdots \vdash (p, \epsilon, \epsilon),$$

where w=ax or $w=\epsilon x$. It follows that $(r_0,Y_1Y_2\cdots Y_k)\in \delta(q,a,X)$. Then we have a production

$$[qXr_k] \to a[r_0Y_1r_1] \cdots [r_{k-1}Y_kr_k],$$

for all $\{r_1,\ldots,r_k\}\subset Q$.

We may now choose r_i to be the state in the sequence $\stackrel{*}{\vdash}$ when Y_i is popped. Let $w=w_1w_2\cdots w_k$, where w_i is consumed while Y_i is popped. Then

$$(r_{i-1}, w_i, Y_i) \stackrel{*}{\vdash} (r_i, \epsilon, \epsilon).$$

By the IH we get

$$[r_{i-1}, Y, r_i] \stackrel{*}{\Rightarrow} w_i$$

We then get the following derivation sequence:

$$[qXr_k] \Rightarrow a[r_0Y_1r_1] \cdots [r_{k-1}Y_kr_k] \stackrel{*}{\Rightarrow}$$

$$aw_1[r_1Y_2r_2][r_2Y_3r_3] \cdots [r_{k-1}Y_kr_k] \stackrel{*}{\Rightarrow}$$

$$aw_1w_2[r_2Y_3r_3] \cdots [r_{k-1}Y_kr_k] \stackrel{*}{\Rightarrow}$$

$$\cdots$$

$$aw_1w_2 \cdots w_k = w$$

 $(\supseteq$ -direction.) We shall show by an induction on the length of the derivation $\stackrel{*}{\Rightarrow}$ that

$$(\heartsuit)$$
 If $[qXp] \stackrel{*}{\Rightarrow} w$ then $(q, w, X) \vdash^{*} (p, \epsilon, \epsilon)$

Basis: One step. Then we have a production $[qXp] \to w$. From the construction of G it follows that $(p,\epsilon) \in \delta(q,a,X)$, where w=a. But then $(q,w,X) \stackrel{*}{\vdash} (p,\epsilon,\epsilon)$.

Induction: Length of $\stackrel{*}{\Rightarrow}$ is n > 1, and \heartsuit holds for lengths < n. Then we must have

$$[qXr_k] \Rightarrow a[r_0Y_1r_1][r_1Y_2r_2]\cdots[r_{k-1}Y_kr_k] \stackrel{*}{\Rightarrow} w$$

We can break w into $aw_2 \cdots w_k$ such that $[r_{i-1}Y_ir_i] \stackrel{*}{\Rightarrow} w_i$. From the IH we get

$$(r_{i-1}, w_i, Y_i) \stackrel{*}{\vdash} (r_i, \epsilon, \epsilon)$$

From Theorem 6.5 we get

$$(r_{i-1}, w_i w_{i+1} \cdots w_k, Y_i Y_{i+1} \cdots Y_k) \vdash^* (r_i, w_{i+1} \cdots w_k, Y_{i+1} \cdots Y_k)$$

Since this holds for all $i \in \{1, \dots, k\}$, we get $(q, aw_1w_2 \cdots w_k, X) \vdash (r_0, w_1w_2 \cdots w_k, Y_1Y_2 \cdots Y_k) \vdash^* (r_1, w_2 \cdots w_k, Y_2 \cdots Y_k) \vdash^* (r_2, w_3 \cdots w_k, Y_3 \cdots Y_k) \vdash^* (p, \epsilon, \epsilon).$

Deterministic PDA's

A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is deterministic iff

- 1. $\delta(q, a, X)$ is always empty or a singleton.
- 2. If $\delta(q, a, X)$ is nonempty, then $\delta(q, \epsilon, X)$ must be empty.

Example: Let us define

$$L_{wcwr} = \{wcw^R : w \in \{0, 1\}^*\}$$

Then L_{wcwr} is recognized by the following DPDA

We'll show that Regular $\subset L(\mathsf{DPDA}) \subset \mathsf{CFL}$

Theorem 6.17: If L is regular, then L = L(P) for some DPDA P.

Proof: Since L is regular there is a DFA A s.t. L = L(A). Let

$$A = (Q, \Sigma, \delta_A, q_0, F)$$

We define the DPDA

$$P = (Q, \Sigma, \{Z_0\}, \delta_P, q_0, Z_0, F),$$

where

$$\delta_P(q, a, Z_0) = \{(\delta_A(q, a), Z_0)\},\$$

for all $p, q \in Q$, and $a \in \Sigma$.

An easy induction (do it!) on |w| gives

$$(q_0, w, Z_0) \stackrel{*}{\vdash} (p, \epsilon, Z_0) \Leftrightarrow \widehat{\delta_A}(q_0, w) = p$$

The theorem then follows (why?)

What about DPDA's that accept by null stack?

They can recognize only CFL's with the prefix property.

A language L has the *prefix property* if there are no two distinct strings in L, such that one is a prefix of the other.

Example: L_{wcwr} has the prefix property.

Example: $\{0\}^*$ does not have the prefix property.

Theorem 6.19: L is N(P) for some DPDA P if and only if L has the prefix property and L is L(P') for some DPDA P'.

Proof: Homework

- We have seen that Regular $\subseteq L(DPDA)$.
- $L_{wcwr} \in L(DPDA) \setminus Regular$
- Are there languages in CFL $\setminus L(DPDA)$.

Yes, for example L_{wwr} .

What about DPDA's and Ambiguous Grammars?

 L_{wwr} has unamb. grammar $S \to 0S0|1S1|\epsilon$ but is not $L(\mathsf{DPDA})$.

For the converse we have

Theorem 6.20: If L = N(P) for some DPDA P, then L has an unambiguous CFG.

Proof: By inspecting the proof of Theorem 6.14 we see that if the construction is applied to a DPDA the result is a CFG with unique leftmost derivations.

Theorem 6.20 can actually be strengthen as follows

Theorem 6.21: If L = L(P) for some DPDA P, then L has an unambiguous CFG.

Proof: Let \$ be a symbol outside the alphabet of L, and let L' = L\$.

It is easy to see that L' has the prefix property. By Theorem 6.20 we have L' = N(P') for some

DPDA P'.

By Theorem 6.20 $N(P^\prime)$ can be generated by an unambiguous CFG G^\prime

Modify G' into G, s.t. L(G) = L, by adding the production

$$\$ \rightarrow \epsilon$$

Since G^\prime has unique leftmost derivations, G^\prime also has unique lm's, since the only new thing we're doing is adding derivations

$$w\$ \Rightarrow w$$

to the end.