Задача 1. Процесът P и няколко копия на процесът Q изпълняват поредица от 3 инструкции:

process P	process Q
p_1	q_1
p_2	q_2
p_3	q_3

Осигурете чрез семафори синхронизация на P и копията на Q така, че инструкцията p_1 да се изпълни преди инструкцията q_2 на всяко копие на Q. Освен това искаме след изпълнението на p_1 , всички копия на Q да завършат изпълнението си.

Решение. За синхронизацията ще използваме семефор ${f t}$, който ще инициализираме с блокиращо начално състояние:

Добавяме в кода на процеса P и всички копия на процесът Q синхронизиращи инструкции:

$$\begin{array}{ccc} \operatorname{process} P & \operatorname{process} Q \\ p_1 & q_1 \\ \mathbf{t}.\operatorname{signal()} & \mathbf{t}.\operatorname{wait()} \\ & \mathbf{t}.\operatorname{signal()} \\ p_2 & q_2 \\ p_3 & q_3 \end{array}$$

Когато даден проците Q започнат да изпълнява инструкциите си, те ще се блокират след като изпълнят инструкцията си q_1 и ще изчакат първо процесът P да изпълни инструкцията си p_1 , след което ще се подаде сигнал, че някой от процесите Q може да изпълни инструкцията си q_2 и каскадно след това всеки процес Q ще позволява на още един процес Q да си продължи изпълнението след инструкцията q_1 . По този начин ще гарантираме, че първо ще се изпълни инструкцията p_1 на P, след което всеки един процес Q ще завърши изпълнението си и рано или късно.

Задача 2. Всеки от процесите P, Q и R изпълнява поредица от 3 инструкции:

process P	process ${\it Q}$	process R
p_1	q_1	r_1
p_2	q_2	r_2
p_3	q_3	r_3

Осигурете чрез семафори синхронизация на $P,\,Q$ и R така, че да се изпълнят следните изисквания:

- (a) Инструкция p_1 да се изпълни преди q_2 и r_2 ;
- (б) Ако q_2 се изпълни преди r_2 , то и q_3 да се изпълни преди r_2 ;
- (в) Ако r_2 се изпълни преди q_2 , то и r_3 да се изпълни преди q_2 .

Решение. За синхронизацията ще използваме семафор \mathbf{t} , който ще инициализираме с блокиращо начално състояние:

Добавяме в кода на процесите P, Q и R синхронизиращи инструкции:

process P	process ${\it Q}$	process R
p_1	q_1	r_1
${f t}$. signal()	${f t}$. wait()	$oldsymbol{t}$. wait()
p_2	q_2	r_2
p_3	q_3	r_3
	$oldsymbol{t}$. signal()	${f t}$. signal()

Всяка от инструкциите q_2 и r_2 може да се изпълни след като броячът на семафора ${\bf t}$ стане положителен.

Това се случва за първи път след изпълнението на ред \mathbf{t} . signal() в процеса P, който следва инструкция p_1 . Така гарантираме изпълнението на изискване (а).

След като броячът на семафора стане 1, един от процесите Q и R ще достигне пръв до ред \mathbf{t} . wait() и ще го нулира отново.

Ако процесът Q пръв достигне инструкцията ${\bf t}$. wait(), той ще изпълни инструкции q_2 и q_3 , а процесът R ще чака ново увеличение на брояча на семафора, което се случва след изпълнението на последния ред ${\bf t}$. signal() в процеса Q. Така гарантираме изпълнението на изискване (б).

Ако процесът R пръв достигне инструкцията ${\bf t}$. wait(), той ще изпълни инструкции r_2 и r_3 , а процесът Q ще чака ново увеличение на брояча на семафора, което се случва след изпълнението на последния ред ${\bf t}$. signal() в процеса R. Така гарантираме изпълнението на изискване (в).

Задача 3. Всеки от процесите P и Q изпълнява поредица от 3 инструкции:

process P	process Q
p_1	q_1
p_2	q_2
p_3	q_3

Осигурете чрез семафори синхронизация на P и Q така, че p_1 да се изпълни преди q_2 , а q_2 да се изпълни преди p_3 .

Решение. За синхронизацията ще използваме семафори ${f t}$ и ${f r}$, които ще инициализираме с блокиращи начални състояния:

semaphore \mathbf{t} , semaphore \mathbf{r}

$$\begin{array}{ccc} \mathbf{t}.\mathsf{init}(0), \ \mathbf{r}.\mathsf{init}(0) \\ \\ \mathsf{process} \ P & \mathsf{process} \ Q \\ p_1 & q_1 \\ \mathbf{t}.\mathsf{signal}() & \mathbf{t}.\mathsf{wait}() \\ p_2 & q_2 \\ \mathbf{r}.\mathsf{wait}() & \mathbf{r}.\mathsf{signal}() \end{array}$$

 q_3

 p_3

Когато процесът Q се опита да изпълни инструкцията си q_2 , семафорът ${\bf t}$ ще се блокира и ще се освободи едва когато инструкцията p_1 се изпълни. По този начин гарантираме изпълнението на p_1 преди изпълнението на q_2 . Дуално, когато P се опита да изпълни инструкцията си p_3 , семафорът ${\bf r}$ ще се блокира и ще се освободи едва когато инструкцията q_2 се изпълни. По този начин гарантираме изпълнението на q_2 преди изпълнението на p_3 .

Задача 4. Всеки от процесите P, Q и R изпълнява поредица от 3 инструкции:

process P	process ${\it Q}$	process R
p_1	q_1	r_1
p_2	q_2	r_2
p_3	q_3	r_3

Осигурете чрез семафори синхронизация на $P,\,Q$ и R така, че да се изпълнят следните изисквания:

- (a) Инструкция p_1 да се изпълни преди инструкция q_2 и инструкция q_2 да се изпълни преди инструкция r_3 ;
- (б) Инструкция q_1 да се изпълни преди инструкция r_2 ;
- (в) Инструкция r_1 да се изпълни преди инструкция p_2 и инструкция p_2 да се изпълни преди инструкция r_3 .

Решение. Искаме да са удовлетворени следните неравенства във времето на изпълнение на инструкциите:

- (a) $p_1 < q_2 < r_3$;
- (б) $q_1 < r_2$;
- (B) $r_1 < p_2 < r_3$.

За синхронизацията ще използваме семафори $s,\,t,\,u,\,v$ и $w,\,$ които ще инициализираме с блокиращи начални състояния:

semaphore s, semaphore t, semaphore u, semaphore v, semaphore w s.init(0), t.init(0), u.init(0), v.init(0), v.init(0)

process P	process Q	process R
p_1	q_1	r_1
${f s}$. signal()	${f t}$. signal()	u . signal()
${f u}$. wait()	s . wait()	$oldsymbol{t}$. wait()
p_2	q_2	r_2
v . signal()	\mathbf{w} . signal()	v . wait()
		w.wait()
p_3	q_3	r_3

Когато процесът Q се опита да изпълни инструкция q_2 преди инструкция p_1 на процеса P, Q ще се блокира от ${\bf s}$. wait() и ще изчака изпълнението на инструкцията p_1 да му подаде сигнал за събуждане. Аналогично, когато процеса R се опита да изпълни инструкция r_3 преди инструкция q_2 на про процеса Q, R ще се блокира от ${\bf w}$. wait() и ще изчака изпълнението на инструкцията q_2 да му подаде сигнал за събуждане. По този начин чрез семафорите ${\bf s}$ и ${\bf w}$ осигоряваме изпълнението на условие (а). Чрез аналогични разсъждения проследяваме осигоряването на условие (б) чрез семафор ${\bf t}$ и осигуряването на условие (в) чрез останалите два семафора ${\bf u}$ и ${\bf v}$.

Задача 5. Няколко копия на процесът P и няколко копия на процесът Q изпълняват поредица от 2 инструкции:

$$\begin{array}{ccc} \operatorname{process} P & \operatorname{process} Q \\ p_1 & q_1 \\ p_2 & q_2 \end{array}$$

Осигурете чрез семафори синхронизация на процесите P и Q така, че да се изпълни поне 3 пъти инструкция p_1 преди да се изпълни първата инструкция q_2 .

Решение. За синхронизацията ще използваме семефор ${f t}$, който ще инициализираме с блокиращо начално състояние и мутекс ${f m}$, който да пази брояча от прекомерно използване (предпазва от race condition):

semaphore **t t** . init(0)

$$\mathbf{cnt} = \mathbf{0}$$

$$process P \qquad process Q$$

$$p_1 \qquad q_1$$

$$\mathbf{m} \cdot \text{wait()} \qquad \mathbf{t} \cdot \text{wait()}$$

$$\mathbf{if} \ (\mathbf{cnt} < 4) \ \mathbf{then}$$

$$\mathbf{cnt} = \mathbf{cnt} + 1$$

$$\mathbf{if} \ (\mathbf{cnt} == 3) \ \mathbf{then}$$

$$\mathbf{t} \cdot \text{signal()}$$

$$\mathbf{cnt} = \mathbf{cnt} + 1$$

$$\mathbf{m} \cdot \text{signal()}$$

 p_2

Преди първата инструкция q_2 да се изпълни, семафорът ${\bf t}$ ще приспи процеса Q, който е опитал да изпълни q_2 . Копията на процеса P ще изпълняват инструкциите си и след 3-тото изпълнение на инструкция p_1 , броячът ${\bf cnt}$ ще е равен на 3 и ще се подаде сигнал на ${\bf t}$. Така първата инструкция q_1 ще се изпълни и каскадно ще позволи на други инструкции q_1 да се изпълняват. Освен това, броячът ${\bf cnt}$ ще се инкрементира още веднъж и ще стане равен на 4, което ще направи така, че да не се влиза в нито една от условните конструкции. Брояча е защитен чрез мутекс от прекомерна употреба.

 q_2