Zusammenfassung Logik für Informatiker

(C) (BY) Tim Baumann, http://timbaumann.info/uni-spicker

Prädikatenlogik erster Stufe

Notation. Sei $\beta: \{x_0, x_1, ...\} \rightarrow D_I$ eine Belegung zu einer Interpretation I, x eine Variable und $d \in D_I$. Dann setze

$$\beta_x^d : \{x_0, x_1, ...\} \to D_I, \quad y \mapsto \begin{cases} d, & \text{falls } x = y \\ \beta(y), & \text{sonst} \end{cases}$$

Def. Eine Interpretation I und eine Belegung β erfüllen eine eine Formel F, geschrieben $I, \beta \models F$, falls

$$I, \beta \vDash (t_1 = t_2) \qquad :\iff (t_1)_{I,\beta} = (t_2)_{I,\beta}$$

$$I, \beta \vDash P(t_1, ..., t_n) \qquad :\iff P^I((t_1)_{I,\beta}, ..., (t_n)_{I,\beta})$$

$$I, \beta \vDash \neg A \qquad :\iff I, \beta \not\vDash A$$

$$I, \beta \vDash A \land B \qquad :\iff (I, \beta \vDash A) \land (I, \beta \vDash B)$$

$$I, \beta \vDash A \lor B \qquad :\iff (I, \beta \not\vDash A) \lor (I, \beta \vDash B)$$

$$I, \beta \vDash A \to B \qquad :\iff (I, \beta \not\vDash A) \lor (I, \beta \vDash B)$$

$$I, \beta \vDash A \leftrightarrow B \qquad :\iff ((I, \beta \not\vDash A) \land (I, \beta \not\vDash B))$$

$$\lor ((I, \beta \vDash A) \land (I, \beta \vDash B))$$

$$I, \beta \vDash \forall x : A \qquad :\iff \forall d \in D_I : I, \beta_x^d \vDash A$$

$$I, \beta \vDash \exists x : A \qquad :\iff \exists d \in D_I : I, \beta_x^d \vDash A$$

Proposition. Es gilt für alle Interpretationen I, Belegungen β und Formeln A, B:

$$\begin{split} I,\beta &\vDash A & \iff I,\beta \not \models \neg A \iff I,\beta \vDash \neg \neg A \\ I,\beta &\vDash A \land B & \iff I,\beta \vDash \neg (A \to \neg B) \\ I,\beta &\vDash A \lor B & \iff I,\beta \vDash \neg A \to B \\ I,\beta &\vDash A \leftrightarrow B & \iff I,\beta \vDash (A \to B) \land (B \to A) \\ I,\beta &\vDash \exists x : A \iff I,\beta \vDash \neg \forall x : \neg A \end{split}$$

Def. Seien $A \in \text{For}$, $M \subseteq \text{For}$ und I eine Interpretation. Dann heißt Iein Modell von A bzw. M, falls

$$\begin{split} I \vDash A &:\iff \text{für alle Belegungen } \beta \text{ gilt } I, \beta \vDash A, \\ I \vDash M &:\iff \forall \, F \in M : I \vDash F. \end{split}$$

Notation. Für $M \subset For$, eine Interpretation I und eine Belegung β schreiben wir:

$$I, \beta \vDash M : \iff \forall F \in M : I, \beta \vDash F$$

Def. Seien $A, B \subset For$. Man sagt, B folgt aus A (geschrieben $A \models B$), falls für alle Interpretationen I und Belegungen β gilt:

$$I, \beta \models A \implies I, \beta \models B.$$

Falls $A \models B$ und $B \models A$ gilt, so heißen A und B logisch äquivalent, geschrieben A = B.

Notation.
$$A_1, ..., A_n \models A :\iff \{A_1, ..., A_n\} \models A$$

Satz. Für alle Interpretationen I und $n \in \mathbb{N}$ gilt:

$$I \vDash \{A_1, ..., A_n\} \iff I \vDash A_1 \land ... \land A_n$$

Satz. Für alle $A, B \in \text{For und } M \subset \text{For gilt:}$

$$M \vDash A \to B \iff M \cup \{A\} \vDash B$$

Def. Eine Formel $A \in For$ heißt Tautologie oder (allgemein-) **gültig** (geschrieben $\models A$), falls $I \models A$ für alle Interpretationen I gilt.

Def. Eine Formel $A \in \text{For heißt } \mathbf{erf\ddot{u}llbar}$, wenn es eine Interpretation I und eine Belegung β mit $I, \beta \models A$ gibt. Falls es dies nicht gibt, so heißt A unerfüllbar.

Satz. Für $A \in \text{For gilt}$:

$$\bullet \models A \implies A \text{ ist erfüllbar} \quad \bullet \models A \iff \varnothing \models A$$

Satz. Sei $A \in \text{For und } M \subset \text{For. Dann gilt } M \models A \text{ genau dann, wenn}$ $M \cup \{\neg A\}$ unerfüllbar ist. Insbesondere ist A genau dann gültig, wenn $\{\neg A\}$ unerfüllbar ist.

Def. Universelle Formeln sind Formeln, die sich nach den folgenden Regeln herleiten lassen:

Proposition. Sei I eine Teil-Interpretation zu J, β eine Belegung zu I und A eine universelle Formel. Dann gilt:

$$J, \beta \models A \implies I, \beta \models A.$$

Aussagenlogik

Def. Für $p \in \mathcal{P}^0$ heißen die Ausdrücke p und $\neg p$ Literale. Eine Disjunktion von Literalen heißt Klausel. Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine Konjunktion von Klauseln ist.

Problem (SAT). Gegeben sei eine Formel in konjunktiver Normalform. Frage: Ist diese Formel erfüllbar?

Def. Eine Formel ist in Negationsnormalform (NNF), wenn Negationen nur unmittelbar vor Atomen stehen.

Def. Der Hilbert-Kalkül besteht aus den Axiomen

$$Ax_1 := \{A \to (B \to A) \mid A, B \in For\}$$

$$Ax_2 := \{(A \to (B \to C)) \to ((A \to B) \to (A \to C)) \mid A, B, C \in For\}$$

$$Ax_3 := \{(A \to (B \to C)) \to ((A \to B) \to (A \to C)) \mid A, B, C \in For\}$$

und der Schlussregel Modus Ponens (MP)

$$A \longrightarrow B$$

Def. Eine Formel $F \in \text{For ist aus } M \subset \text{For } \mathbf{H\text{-}herleitbar}$, notiert $M \vdash_H A$, wenn es eine Folge $A_1, ..., A_n$ in For gibt mit $A_n = A$, sodass für alle $i \in \{1, ..., n\}$ gilt:

$$A_i \in Ax_1 \cup Ax_2 \cup Ax_3 \cup M$$
 oder $\exists j, k < i : A_i = A_k \rightarrow A_i$.

Def. $A \in \text{For heißt } \text{herleitbar}$, notiert $\vdash A$, falls $\emptyset \vdash A$ gilt.

Beobachtung. Präfixe und Verkettungen von Herleitungen sind ebenfalls Herleitungen.

Proposition. • Aus $M \vdash A$ und $M \vdash A \rightarrow B$ folgt $M \vdash B$.

• Aus $M \vdash \neg A \rightarrow \neg B$ folgt $M \vdash B \rightarrow A$.

Satz (Deduktionstheorem). $M \vdash A \rightarrow B \iff M \cup \{A\} \vdash B$

Satz. Für alle $A, B, C \in \text{For gilt}$:

•
$$\vdash (A \to B) \to ((B \to C) \to (A \to C))$$
 • $\vdash \neg A \to (A \to B)$

$$\bullet \vdash (A \to B) \to ((B \to C) \to (A \to C)) \\
\bullet \vdash \neg \neg A \to A \\
\bullet \vdash A \to \neg \neg A$$

$$\bullet \vdash (\neg A \to B) \\
\bullet \vdash (\neg A \to A) \to A$$

Proposition. Es gilt:

$$\begin{array}{ccc}
A \to B & B \to C \\
\hline
A \to C & A
\end{array}$$

Satz (Korrektheitssatz). Sei $A \in \text{For und } M \subset \text{For. Dann gilt}$

$$M \vdash A \implies M \vDash A$$
.

Def. $M \subset \text{For heißt konsistent}$, wenn für kein $A \in \text{For zugleich}$ $M \vdash A \text{ und } M \vdash \neg A \text{ gilt.}$

Lemma. • Ist M inkonsistent, so gilt $M \vdash B$ für alle $B \in For$.

• Für $A \in \text{For gilt: } M \not\vdash A \implies M \cup \{A\} \text{ ist konsistent.}$

Lemma (Modell-Lemma). Jede konsistente Menge ist erfüllbar, d. h. sie besitzt ein Modell.

Satz (Vollständigkeitssatz). Sei $A \in \text{For und } M \subset \text{For. Dann gilt}$

$$M \vDash A \implies M \vdash A$$
.

Proposition. Sei $M \subset For$. Dann ist M genau dann erfüllbar, wenn M konsistent ist.

Satz (Endlichkeits- bzw. Kompaktheitssatz). Sei $A \in \text{For}$, $M \subseteq \text{For}$.

- Dann gilt $M \models A$ genau dann, wenn es eine endliche Teilmenge $M' \subset M$ mit $M' \models A$ gibt.
- \bullet Dann ist M genau dann erfüllbar, wenn jede endliche Teilmenge von M erfüllbar ist.

Hilbert-Kalkül für Prädikatenlogik

Proposition. Es gilt für alle $A \in \text{For}$, $M \subset \text{For}$:

$$M \models A \implies (\forall \text{ Interpretationen } I : I \models M \implies I \models A)$$

Achtung. Die Umkehrung gilt nicht!

Proposition. Sei $A \in \text{For. Dann gilt:}$

•
$$\forall x : A \models A$$
 • $A \models \forall x : A \text{ nicht (i. A.)}$

Def. Sei $A \in \text{For. Dann bezeichnet } FV(A)$ die Menge der freien Variablen und BV(A) die Menge der **gebundenen** Variablen in A.

Def. Eine Formel $A \in \text{For heißt } \mathbf{geschlossen}$, falls $\mathrm{FV}(A) = \emptyset$.

Def. • $\forall x : A \text{ heißt } \mathbf{Generalisierung} \text{ von } A \in \mathbf{For}.$

• Ist $FV(A) = \{y_1, ..., y_n\}$, so heißt jede der n! Formeln $\forall y_1 : \forall y_2 : ... \forall y_n : A$ ein **universeller Abschluss** von A.

Satz (Koinzidenzlemma). Seien $A, B \in \text{For}$, I eine Interpretation und β_1, β_2 Belegungen mit $\beta_1|_{FV(A)} = \beta_2|_{FV(A)}$. Dann gilt

$$I, \beta_1 \vDash A \iff I, \beta_2 \vDash A.$$

Korollar. Seien A, M geschlossen und β_1, β_2 Belegungen. Dann gilt

- $I, \beta_1 \models M \iff I, \beta_2 \models M$ $I, \beta_1 \models M \iff I \models M$
- M ist erfüllbar $\iff M$ hat ein Modell
- $M \models A \iff (\forall \text{ Interpretationen } I : I \models M \iff I \models A)$

Proposition. • $I \models A \iff I \models \forall x : A$ • $\models A \iff \models \forall x : A$

Def. Sei x eine Variable und $t \in \text{Term}$ ein Term. Dann ist die Substitution $\lceil t/x \rceil$ für Terme und Formeln folgendermaßen definiert:

$$\begin{split} y[t/x] \coloneqq \begin{cases} t, & \text{falls } y = x \\ y, & \text{sonst} \end{cases} \\ f(t_1, ..., t_n)[t/x] \coloneqq f(t_1[t/x], ..., t_n[t/x]) & \text{für } f \in \mathcal{F}^n \\ P(t_1, ..., t_n)[t/x] \coloneqq P(t_1[t/x], ..., t_n[t/x]) & \text{für } P \in \mathcal{P}^n \end{cases} \\ (t_1 = t_2)[t/x] \coloneqq (t_1[t/x] = t_2[t/x]) \\ (\neg A)[t/x] \coloneqq \neg (A[t/x]) \\ (A \to B)[t/x] \coloneqq A[t/x] \to A[t/x] \end{cases} \\ (\forall y : A)[t/x] \coloneqq \begin{cases} \forall y : A, & \text{falls } x = y \\ \forall y : (A[t/x]), & \text{sonst und falls } y \notin \text{FV}(t) \\ \forall z : (A[t/x]), & \text{sonst} \end{cases} \end{split}$$

Im letzten Fall ist z eine frische Variable, d. h. $z \notin FV(t) \cup FV(A)$.

Def. Der **Hilbert-Kalkül** für Prädikatenlogik hat als Axiome für alle $A, B, C \in$ For und $t \in$ Term alle Generalisierungen von

$$\begin{array}{ll} \operatorname{Ax}_1:A\to(B\to A) \\ \operatorname{Ax}_2:(A\to(B\to C))\to((A\to B)\to(A\to C)) \\ \operatorname{Ax}_3:(\neg B\to \neg A)\to(A\to B) \\ \operatorname{Ax}_4:(\forall\,x:A)\to A[t/x] \\ \operatorname{Ax}_5:A\to\forall\,x:A, \quad \text{falls }x\notin\operatorname{FV}(A) \\ \operatorname{Ax}_6:(\forall\,x:A\to B)\to((\forall\,x:A)\to(\forall\,x:B)) \text{ (Distr. Allquantor)} \\ \operatorname{Ax}_7:x=x \\ \operatorname{Ax}_8:(x=y)\to(A\to A') \\ \end{array}$$

wobei bei der letzten Regel A quantorenfrei ist und A' aus A durch Ersetzen eines oder mehrerer Vorkommen von x durch y entsteht. Außerdem gilt die Schlussregel Modus Ponens.

Satz (Deduktionstheorem). Wir beim Hilbert-Kalkül der Aussagenlogik gilt für $M \subset For$ und $A, B \in For$:

$$M \vdash A \to B \iff M \cup \{A\} \vdash B$$

Satz (Generalisierungstheorem). Sei $M \subset \text{For und } A \in \text{For}$. Angenommen, es gilt $\forall B \in M : x \notin \text{FV}(B)$. Dann gilt $M \vdash \forall x : A$.

Korollar. $\vdash A \Longrightarrow \vdash \forall x : A$

Proposition (α -Konversion). Sei $y \in FV(\forall x : A)$. Dann gilt

$$\vdash (\forall x : A) \to (\forall y : A[y/x]).$$

Satz (Korrektheit). Es gilt für alle $M \subset For$ und $A \in For$:

$$M \vdash A \implies M \vDash A$$
.

Lemma. Für $M \subset \text{For und } A \in \text{For gilt:}$

- $M \not\vdash A \implies M \cup \{A\}$ ist konsistent.
- $M \not\vdash \forall x : A \Longrightarrow M \cup \{\neg \forall x : A, \neg A[c/x]\}$ ist konsisten für jede Variable c, die nicht in M und A vorkommt.

Lemma (Modell-Lemma), konsistent ⇔ erfüllbar

 ${\bf Satz}$ (Löwenheim-Skolem). Jede erfüllbare Menge Mgeschlossener Formeln hat ein höchstens abzählbares Modell bzw. im Falle von Logik ohne Gleichheit ein abzählbar unendliches Modell.

Satz (Vollständigkeit). Es gilt für alle $M \subset \text{For}$ und $A \in \text{For}$:

$$M \vDash A \implies M \vdash A$$
.

 ${\bf Satz}$ (Endlichkeits- bzw. Kompaktheitssatz der Prädikatenlogik). Sei $A\in {\rm For},\ M\subset {\rm For}.$

- Dann gilt M ⊨ A genau dann, wenn es eine endliche Teilmenge M' ⊂ M mit M' ⊨ A gibt.
- Dann ist M genau dann erfüllbar, wenn jede endliche Teilmenge von M erfüllbar ist.

Bemerkung. Die Menge der gültigen Formeln ist aufzählbar bzw. semi-entscheidbar.

 ${\bf Satz}$ (Church). Das Gültigkeitsproblem der Prädikatenlogik erster Stufe ist unentscheidbar.

Korollar. Es gibt kein $A \in For mit$

- $I \models A \iff D_I$ ist endlich.
- Bei Logik ohne Gleichheit: $I = A \iff |D_I| = n$ für ein festes $n \in \mathbb{N}$. unerfüllbar, wenn $\emptyset \in \text{Res}^*(A)$.

Weitere Beweisverfahren

Def. Im Gentzen-Kalkül (\vdash_G) gelten die folgenden Schlussregeln:

rechts links
$$\frac{M \cup \{A\} \vdash_G B}{M \vdash_A \to_B} \qquad \text{Imp} \qquad \frac{M \cup \{\neg C\} \vdash_G A \quad M \cup \{B\} \vdash_G C}{M \cup \{A \to B\} \vdash_G C}$$

$$\frac{M \cup \{A\} \vdash_G \neg B}{M \cup \{B\} \vdash_G \neg A} \qquad \text{Neg} \qquad \frac{M \cup \{\neg B\} \vdash_G A}{M \cup \{\neg A\} \vdash_G B}$$

$$\frac{M \vdash_G A \quad M \vdash_G B}{M \vdash_G A \land_B} \qquad \text{Kon} \qquad \frac{M \cup \{A, B\} \vdash_G C}{M \cup \{A \land B\} \vdash_G C}$$

$$\frac{M \cup \{\neg B\} \vdash_G A}{M \vdash_G A \lor_B} \qquad \text{Dis} \qquad \frac{M \cup \{A\} \vdash_G C \quad M \cup \{B\} \vdash_G C}{M \cup \{A \lor_B\} \vdash_G C}$$

$$M \cup \{A\} \vdash_G A$$
 (Axiom)

Satz (Korrektheit, Vollständigkeit). Es gilt für alle $A \in$ For und $M \subset$ For: $M \vdash_G A \iff M \vDash A$.

Notation. Für ein Literal l bezeichnet \bar{l} das negierte Literal, also

$$\overline{p} \coloneqq \neg p, \quad \overline{\neg p} \coloneqq p.$$

Def. Sei A eine Formel in KNF mit Klauseln K und K', sodass ein Literal l existiert mit $l \in K$ und $\bar{l} \in K'$. Dann heißt

$$R = (K \setminus \{l\}) \cup (K' \setminus \{\bar{l}\})$$
 Resolvente von K und K' .

Def. Ein Resolutionsschritt fügt eine Resolvente einer Formel in KNF der Formel hinzu. Die Formel, die aus einer Formel A durch mehrere Resolutionsschritte entsteht, sodass keine weiteren Resolutionsschritte möglich sind, wird mit Res $^*(A)$ bezeichnet.

Lemma. Sei A eine Formel in KNF mit Klauseln K und K' und einer Resolvente $R = (K \setminus \{l\}) \cup (K' \setminus \{\bar{l}\})$. Dann ist A genau dann erfüllbar, wenn $A \cup R$ es ist.

Satz (Resolutionssatz). Eine KNF-Formel A ist genau dann unerfüllbar, wenn $\emptyset \in \operatorname{Res}^*(A)$.

Zusicherungskalkül

Def. Ein Hoare-Tripel hat die Form

$${A}S{B},$$

wobei A und B prädikatenlogische Formeln, sogenannte **Zusicherungen**, und S eine Programmanweisung ist.

- **Def.** Ein Hoare-Tripel $\{A\}S\{B\}$ gilt schwach, wenn B nach Ausführung von S unter der Vorbedingung A gilt, falls S ohne Fehlerabbruch terminiert.
- Gilt das Hoare-Tripel schwach und sichert die Vorbedingung A die Terminierung ohne Fehler von S, so gilt das Tripel streng.

 $\bf Def.$ Im $\bf Zusicherungskalkül \mbox{ (Hoare-Kalkül)}$ gelten folgende Schlussregeln:

$$\overline{\{B[E/x]\}\ x = E;\ \{B\}}$$
 (=p) $\overline{\{D_E \land B[E/x]\}\ x = E;\ \{B\}}$ (=t)

$$\frac{A\Rightarrow B\quad \{B\}\ S\ \{C\}\quad C\Rightarrow D}{\{A\}\ S\ \{D\}}\quad \text{(K)} \quad \frac{\{A\}\ S\ \{B\}\ \{B\}\ T\ \{C\}}{\{A\}\ S;T\ \{C\}}\quad \text{(sK)}$$

$$\frac{\{A \land B\} \ S \ \{C\} \quad \{A \land \neg B\} \ T \ \{C\}}{\{A\} \ \text{if } (B) \ \text{then } S \ \text{else} \ T \ \{C\}} \quad \text{(if)}$$

$$\frac{\{A \land B\} \ S \ \{A\}}{\{A\} \ \text{while } (B) \text{ do } S \ \{A \land \neg B\}} \quad \text{(Wp)}$$

$$\frac{\forall z \in \mathbb{Z} : \{A \land B \land t = z\} \ S \ \{A \land t < z\} \quad A \land B \Longrightarrow t \ge 0}{\{A\} \text{ while } (B) \text{ do } S \ \{A \land \neg B\}}$$
 (Wt)

Temporale Logik

Def. Ein Ablauf $\pi = s_0, s_1, ...$ ist eine unendliche Folge von Zuständen aus einer Menge S mit einer Bewertung $L: S \to \mathfrak{P}(\mathcal{P})$.

Notation. $\pi^j := s_i, s_{i+1}, \dots$ heißt j-tes Suffix von π .

Def. Sei $\pi = s_0, s_1, ...$ ein Ablauf. Eine Formel $A \in \text{TFor gilt für } \pi$ (π erfüllt $A, \pi \models A$), falls gilt:

$$\pi \vDash p \qquad :\iff p \in L(s_0)$$

$$\pi \vDash \neg A \qquad :\iff \pi \neg \vDash A$$

$$\pi \vDash A \lor \qquad :\iff (\pi \vDash A) \lor (\pi \vDash B)$$

$$\pi \vDash \mathbf{X}A \qquad :\iff \pi^1 \vDash A$$

$$\pi \vDash \mathbf{G}A \qquad :\iff \forall j \in \mathbb{N}_0 : \pi^j \vDash A$$

$$\pi \vDash \mathbf{F}A \qquad :\iff \exists j \in \mathbb{N}_0 : \pi^j \vDash A$$

$$\pi \vDash A \cup B :\iff \exists j \in \mathbb{N}_0 : \pi^j \vDash B \land (\forall i < j : \pi^i \vDash A)$$

Def. Eine Formel $A \in T$ For heißt **gültig** / **erfüllbar**, falls alle Abläufe / ein Ablauf A erfüllt.

Proposition. Für alle $A \in TFor$ gilt:

- $\mathbf{F}A = \neg \mathbf{F} \neg A$ $\mathbf{F}A = true \mathbf{U} A$
- $A \mathbf{U} B = \neg((\neg B) \mathbf{U} (\neg A \land \neg B)) \land \mathbf{F} B$

Satz. Für alle $A, B \in TFor$ gilt:

- $\bullet \models \mathbf{G}(A \to B) \to (\mathbf{G}A \to \mathbf{G}B) \quad \bullet \models \mathbf{X}\mathbf{G}A \leftrightarrow \mathbf{G}\mathbf{X}A$
- $\models (A \land \mathbf{G}(A \to \mathbf{X}A)) \to \mathbf{G}A$ $\models \mathbf{X}\mathbf{F}A \to \mathbf{F}A$

Def. Eine Kripke-Struktur $K = (S, \rightarrow, L, s_0)$ besteht aus einer Menge S von Zuständen mit Startzustand s_0 , einer Bewertung $L: S \rightarrow \mathfrak{P}(\mathcal{P})$ und einer Transitionsrelation $\rightarrow \subset S \times S$, sodass $\forall \, s \in S: \, \exists \, s' \in S: \, s \rightarrow s' \, \text{gilt}.$

Def. Ein **Ablauf** π von K ist eine unendliche Folge von Zuständen beginnend mit s_0 , also $\pi = s_0, s_1, s_2, \dots$ mit $\forall i \in \mathbb{N}_0 s_i \to s_{i+1}$. Die Zustände eines solchen Ablaufs heißen **erreichbar**.

Def. Eine Kripke-Struktur K erfüllt $A \in TFor$, falls für alle Abläufe π von K gilt $\pi \models A$.

Def. Sei K eine Kripke-Struktur, s ein Zustand. Eine Formel $A \in \text{CTFor } \operatorname{\mathbf{gilt}}$ für (K, s), falls (koinduktive Definition)

```
K, s \models p
                                  :\iff p\in L(s)
K, s \vDash \neg A
                                 :\iff K, s \neg \models A
                                  :\iff (K, s \models A) \lor (K, s \models B)
K, s \models A \lor
                                  :\iff \forall s' \in S : (s \to s') \implies K, s' \models B
K, s \models \mathbf{AX}B
K, s \models \mathbf{EX}B
                                  :\iff \exists s' \in S : (s \to s') \land (K, s' \models B)
                                  :\iff K, s \models B \land \forall s' \in S : (s \rightarrow s') \implies K, s' \models \mathbf{AG}B
K, s \models \mathbf{AG}B
                                  :\iff K, s \models B \land \exists s' \in S : (s \rightarrow s') \land (K, s' \models \mathbf{EG}B)
K, s \models \mathbf{EG}B
K, s \models \mathbf{AF}B
                                 :\iff \forall \text{ Abläufe } \pi = s_0, s_1, s_2, \dots \text{ von } K \text{ mit } s_0 = s :
                                            \exists i \in \mathbb{N}_0 : K, s_i \models B
K, s \models \mathbf{EF}B
                                 :\iff \exists \text{ Ablauf } \pi = s_0, s_1, s_2, \dots \text{ von } K \text{ mit } s_0 = s :
                                            \exists j \in \mathbb{N}_0 : K, s_i \models B
K, s \models \mathbf{A}(B \cup C) :\iff \forall \text{ Abläufe } \pi = s_0, s_1, s_2, \dots \text{ von } K \text{ mit } s_0 = s :
                                            \exists j \in \mathbb{N}_0 : (K, s_i \models C) \land (\forall i < j : K, s_i \models B)
K, s \models \mathbf{E}(B \cup C) : \iff \exists \text{Ablauf } \pi = s_0, s_1, s_2, \dots \text{ von } K \text{ mit } s_0 = s :
                                            \exists i \in \mathbb{N}_0 : (K, s_i \models C) \land (\forall i < i : K, s_i \models B)
```

Notation. $K \models A :\iff K, s_0 \models A$, wobei s_0 Startzustand von K.

Def. Eine Formel $A \in \text{CTFor}$ heißt **gültig** / **erfüllbar**, wenn alle Kripke-Strukturen / eine Kripke-Struktur A erfüllen / erfüllt.

Satz. Für alle $B, C \in CTFor$ gilt:

- $\models (B \land \mathbf{AG}(B \to \mathbf{AX}B)) \to \mathbf{AG}B$
- $\models \mathbf{AX}(B \to C) \land \mathbf{AX}B \to \mathbf{AX}C$

Satz. Für alle $A, B \in \text{CTFor gilt}$:

- $\mathbf{AG}B = -\mathbf{EF} B$ $\mathbf{EG}B = -\mathbf{AF} B$
- $\mathbf{EF}B = \mathbf{E}(true \mathbf{U}B)$ $\mathbf{AF}B = \mathbf{A}(true \mathbf{U}B)$
- $\mathbf{A}\mathbf{X}B = -\mathbf{E}\mathbf{X}\neg B$ $\mathbf{A}(B\mathbf{U}C) = -\mathbf{E}(\neg C\mathbf{U}(\neg C \land \neg B)) \land \mathbf{AF}C$

Modale Logik