6. Convert the decimal numbers to binary

a) 111

mod	2			,			
Quotients	111	55	27	13	6	3	1
Remainders	ı	t	1	PAF	0	1	1
(''')	=	(11)	1111)			

b) 2137

	Mod:	2										_
Quotients	2137	1068	534	267	133	66	33	16	8	4	2	1
Remainders	1	0	0			0	ł	0	0	0	0	1
(2137)	= (10000	10110	01)2			73					

c) 32333

	Mod	2					cos	252	126	63
Quotient Remainder	32333	16166	8083	1	0	0	1	0	0	1
Rootient	31	15	7		3				pp_	
Remainder	. tarmal	141.231	12 -	-	1000			71	3.4	
	3 2 3 3 3)10	= (1111111	001	00 11	01)2			601	

d) 93

Mod		1. 1	23	11	5	2	1
9.	3	46		1 2	X Ha		
votient Remainder		0	1	1	i	0	A.,

The result is 80

duscard + 9944
$$=$$
 9944 $=$ 9944 $=$ 9955 $=$ 9966 $=$ 9966

The result is 966

The result is 57

$$\begin{array}{r}
2122 \\
+ 9877 \\
\hline
01999 \\
+ 1 \\
\hline
carry 4 \\
\hline
2000
\end{array}$$

The result is 2000

- 8) De umal number to 8-bit 2's complement
 - a) -111 $\frac{(111)}{10} = (01101111)_{2}$ $\frac{(111)}{10} = \frac{15 \cdot \text{complement of III}}{2^{15} \cdot \text{complement of III}} = (10010000)_{2}$ $\frac{2^{15} \cdot \text{complement of III}}{2^{15} \cdot \text{complement of III}} = (10010001)_{2}$

b) -31
$$(31)_{10} = (00011111)_{2}$$

$$(-31)_{10} = 1^{5} complement of 31 = (11100000)_{2}$$

$$2^{5} complement of 31 = (11100001)_{2}$$

$$(-31)_{10} = (11100001)_{2}$$

c) -124
$$(124)_{10} = (01111100)_{2}$$

$$(-124)_{10} = 1^{5} \text{ complement of } 124 = (10000011)_{2}$$

$$2^{5} \text{ complement of } 124 = (100000100)_{2}$$

$$1^{5} (-124)_{10} = (10000100)_{2}$$

Since the number is not -ve, with a binary representation is
the only possible representation | 125 1

$$(125)_{10} = (01111101)_2$$

1125	1
62	0
31	1
15	1
7	1
3	1
2	- -

Since the number is not a negative number, the binary representation is the only possible representation. Thus is also equal to -(-(63))

$$(63)_{10} = (00111111)_{2} \qquad \begin{array}{c} 2 & 63 & 1 \\ 2 & 31 & 1 \\ 2 & 15 & 1 \\ 2 & 7 & 1 \\ 2 & 3 & 1 \end{array}$$

Prove by Induction that for radix-r the largest number that can be represented with No digits is 2N-1

For N= 1

The maximum number possible is 91-1 which is true.

Let us assume that

for N = n-1

the max number $k = n^{n-1} - 1$

For N= n

the max number combe all masser (r-1) at each digit

Hence Proved.

For radio - reddention, the early bills are o or 1

The max digit in a rradix system is 9-1

So, 4 we sum 2 r-1 values, the sum is 2r-2 which is less a than 2r

Since the value is less than 27, the coorty bits are always o or 1.