## 目录

| 第13章 | Cortex-M4-实时时钟           | 2  |
|------|--------------------------|----|
| 13.1 | 实时时钟概述                   | 2  |
|      | 13.1.1 实时时钟介绍            | 2  |
|      | 13.1.2 常用的实时时钟芯片         | 2  |
| 13.2 | 2 stm32 内部实时时钟介绍         | 2  |
|      | 13.2.1 STM32 内部实时时钟特点    | 2  |
|      | 13.2.2 RTC 的电源部分         | 3  |
|      | 13.2.3 STM32 内部实时时钟的功能介绍 | 7  |
| 13.3 | 3 stm32 内部实时时钟框架         |    |
| 13.4 | 4 RTC 基本日历功能框架分析         |    |
|      | 13.4.1 RTC 初始化注意事项       |    |
|      | 13.4.2 RTC 基本日历功能实验      | 10 |
| 13.5 | 5 RTC 自动唤醒功能             | 10 |
|      | 13.5.1 自动唤醒功能框图分析        | 10 |
|      | 13.5.2 自动唤醒功能相关寄存器       | 11 |
|      | 13.5.3 自动唤醒中断配置方法        |    |
|      | 13.5.4 自动唤醒配置流程          | 12 |
| 13.6 | 6 RTC 闹钟功能               | 13 |
|      | 13.6.1 RTC 闹钟功能框图分析      |    |
|      | 13.6.2 RTC 闹钟功能相关寄存器     |    |
|      | 13.6.3 RTC 闹钟中断配置方法      |    |
|      | 13.6.4 配置流程              | 15 |

# 第13章 Cortex-M4-实时时钟

#### 13.1 实时时钟概述

### 13.1.1 实时时钟介绍

英文缩写: RTC。显示年、月、日、时、分、秒、星期,自动计算闰年,能够区分每个月的天数。

RTC 特点: 能从 RTC 获取到具体的日期时间, 断掉后再开机时间仍然准确。

RTC 模块分为两种,一种集成在芯片内部,另外一种是外接 RTC 芯片。

### 13.1.2 常用的实时时钟芯片

常见实时时钟芯片: DS1302、DS1307、PCF8563 等。 显示年、月、日、时、分、秒、星期,自动计算闰年,能够区分每个月的天数。

### 13.2 stm32 内部实时时钟介绍

### 13.2.1 STM32 内部实时时钟特点

BCD 码 → 二进制码十进制数 Bin Change Dec

实时时钟 (RTC) 是一个独立的 BCD 定时器/计数器。RTC 提供一个日历时钟、两个可编程闹钟中断,以及一个具有中断功能的周期性可编程唤醒标志。RTC 还包含用于管理低功耗模式的自动唤醒单元。

两个 32 位寄存器包含二进码十进数格式 (BCD) 的秒、分钟、小时(12 或 24 小时制)、星期几、日期、 月份和年份。此外,还可提供二进制格式的亚秒值。

系统可以自动将月份的天数补偿为 28、29(闰年)、30 和31 天。并且还可以进行夏令时补偿。

其它 32 位寄存器还包含可编程的闹钟亚秒、 秒、分钟、小时、星期几和日期。

此外,还可以使用数字校准功能对晶振精度的偏差进行补偿。

上电复位后,所有 RTC 寄存器都会受到保护,以防止可能的非正常写访问。无论器件状态如何(运行模式、低功耗模式或处于复位状态),只要电源电压保持在工作范围内, RTC 便不会停止工作。



#### 13.2.2 RTC 的电源部分



## 13.2.3 STM32 内部实时时钟的功能介绍

RTC 单元的主要特性如下

- 包含亚秒、秒、分钟、小时(12/24 小时制)、星期几、日期、月份和年份的<mark>日历</mark>。
- 軟件可编程的夏令时补偿。
- 两个具有中断功能的可编程闹钟。可通过任意日历字段的组合驱动闹钟。
- 自动唤醒单元,可周期性地生成标志以触发自动唤醒中断。
- 参考时钟检测:可使用更加精确的第二时钟源(50 Hz 或 60 Hz)来提高日历的精确度。
- 利用亚秒级移位特性与外部时钟实现精确同步。

信盈达教育 源自深圳始于 2008 全国直营 深圳北京上海广州 南京郑州成都武汉 济南南宁 10+城市 12 家直营中心官网: www.edu118.com 全国免费电话:400-8788-909 质量监督电话:0755-26457584 信盈达科技 版权所有 侵权必究

3 页 共 16 页

紙

- 可屏蔽中断/事件:
- 闹钟 A
- 闹钟 B
- 一 唤醒中断
- 一 时间戳
- 一 入侵检测
- 数字校准电路(周期性计数器调整)
- 精度为 5 ppm
- 一 精度为 0.95 ppm, 在数秒钟的校准窗口中获得
- 用于事件保存的时间戳功能(1 个事件)
- 入侵检测:
- 一 2 个带可配置过滤器和内部上拉的入侵事件
- 20 个备份寄存器(80 字节)。发生入侵检测事件时,将复位备份寄存器。

### 13.3 stm32 内部实时时钟框架



#### 13.4 RTC 基本日历功能框架分析

基本日历功能主要就是让日历模块正常工作(1 秒 1 秒地计数),我们从日历时间读取出当前实时时间日期。 也就是说,日历的工作频率就是 1HZ。



LSE(32.768Khz)-->RTCCLK(32.768khz)-->异步预分频器(128 分频)-->ck\_apre(256hz)--->同步预分频器(256 分频)-->ck spre(1hz)-->给到日历(1 秒 1 秒地计数)

### 13.4.1 RTC 初始化注意事项

### 13.4.1.1 RTC 寄存器写保护

系统复位后,可通过 PWR 电源控制寄存器 (PWR\_CR) 的 DBP 位保护 RTC 寄存器以防止非正常的写访问。必须将 DBP 位置 1 才能使能 RTC 寄存器的写访问。

- 访问 RTC 和 RTC 备份寄存器
- 1. 将 RCC\_APB1ENR 寄存器中的 PWREN 位置 1,使能电源接口时钟(分别参见*第 6.3.15 节*和*第 6.3.16 节*了解 STM32F405xx/07xx 和 STM32F415xx/17xx 和 STM32F42xxx 和 STM32F43xxx)
- 2. 将*用于 STM32F405xx/07xx 和 STM32F415xx/17xx 的 PWR 电源控制寄存器 (PWR* 和 *用于STM32F42xxx 和 STM32F43xxx 的 PWR 电源控制寄存器 (PWR\_CR)* 中的位置 **1**,使能对备份域的访问
- 3. 选择 RTC 时钟源:参见*第 6.2.8 节: RTC/AWU 时钟*
- 4. 通过对 *RCC 备份域控制寄存器 (RCC\_BDCR)* 中的 RTCEN [15] 位进行编程, RTC 时钟\_\_\_\_\_\_
- 位 8 DBP: 禁止备份域写保护 (Disable backup domain write protection)

在复位状态下,RCC\_BDCR 寄存器、RTC 寄存器(包括备份寄存器)以及 PWR\_CSR 寄存器的 BRE 位均受到写访问保护。必须将此位置 1 才能使能对这些寄存器的写访问。

- 0: 禁止对 RTC、RTC 备份寄存器和备份 SRAM 的访问
- 1) 使能对 RTC、RTC 备份寄存器和备份 SRAM 的访问

上电复位后,所有 RTC 寄存器均受到写保护。通过向写保护寄存器 (RTC\_WPR) 写入一个密钥来使能对 RTC 寄存器的写操作。

要解锁所有 RTC 寄存器 (RTC\_ISR[13:8]、 RTC\_TAFCR 和 RTC\_BKPxR 除外) 的写保护,需要执行以下步骤:

- 1. 将 "0xCA" 写入 RTC WPR 寄存器。
- 2. 将"0x53"写入 RTC WPR 寄存器。

写入一个错误的关键字会再次激活写保护。

信盈达教育 源自深圳始于 2008 全国直营 深圳北京上海广州 南京郑州成都武汉 济南南宁 10+城市 12 家直营中心官网: www.edu118.com 全国免费电话:400-8788-909 质量监督电话:0755-26457584 信盈达科技 版权所有 侵权必究

公共聊天

助教聊天

保护机制不受系统复位影响。

取消 RTC 寄存器写保护:

RTC->WPR=0xCA;

RTC->WPR=0x53;

后面就可以对 RTC 所有的寄存器进行写操作

激活 RTC 寄存器写保护:RTC->WPR=0xFF:

### 13.4.1.2 RTC 进入初始化模式(设置日历寄存器要注意)

要编程包括时间格式和预分频器配置在内的初始时间和日期日历值,需按照以下顺序操作:

1. 将 RTC\_ISR 寄存器中的 INIT 位置 1 以<mark>进入初始化模式</mark>。在此模式下,<mark>日历计数器将停止工作</mark>并且其值可 更新。

(初始化模式,用于编程时间和日期寄存器(RTC\_TR 和 RTC\_DR)以及预分频器寄存器(RTC\_PRER)。计数器停止计数, 当 INIT 被复位后,计数器从新值开始计数。)

- 2. 轮询 RTC\_ISR 寄存器中的 INITF 位。当 INITF 置 1 时进入初始化阶段模式。大约需要 2 个 RTCCLK 时钟周期(由于时钟同步)。
- 3. 要为日历计数器生成 1 Hz 时钟,应首先编程 RTC\_PRER 寄存器中的同步预分频系数,然后编程异步预分频系数。即使只需要更改这两个字段中之一,也必须对 RTC PRER 寄存器执行两次单独的写访问。
- 4. 在影子寄存器(RTC\_TR 和 RTC\_DR)中加载初始时间和日期值,然后通过 RTC\_CR 寄存器中的 FMT 位配置时间格式(12 或 24 小时制)。(RTC TR 和 RTC DR 是影子寄存器)
- 5. 通过清零 INIT 位<mark>退出初始化模式</mark>。随后,自动加载实际日历计数器值,在 4 个 RTCCLK 时钟周期后<mark>重新</mark> 开始计数。

当初始化序列完成之后, 日历开始计数。

### 13.4.1.3 RTC 同步(读取日历值要注意)

每次将日历寄存器中的值<mark>复制到</mark> RTC\_SSR、 RTC\_TR 和 RTC\_DR 影子寄存器时, RTC\_ISR 寄存器中的 RSF 位都会置 1(日历影子寄存器已同步 )。 每两个 RTCCLK 周期执行一次复制。为确保这 3 个值来自同一时 刻点,读取 RTC\_SSR 或 RTC\_TR 时会锁定高阶日历影子寄存器中的值,直到读取 RTC\_DR。为避免软件对日 历执行读访问的时间间隔小于 2 个 RTCCLK 周期:第一次读取日历之后必须通过软件将 RSF 清零,并且软件 必须等待到 RSF 置 1 之后才可再次读取 RTC\_SSR、 RTC\_TR 和 RTC\_DR 寄存器。

如何读取日历值

清除 RSF

等待 RSF 由硬件置 1(日历影子寄存器已同步)

读取日历值(RTC TR、RTC DR)

### 13.4.1.4 STM32 内部实时时钟寄存器说明

■ 23.6.2 RTC 日期寄存器 (RTC\_DR)

- 23.6.3 RTC 控制寄存器 (RTC\_CR)

📗 23.6.5 RTC 预分频器寄存器 (RTC\_PRER)

信盈达教育 源自深圳始于 2008 全国直营 深圳北京上海广州 南京郑州成都武汉 济南南宁 10+城市 12 家直营中心官网: www.edu118.com 全国免费电话:400-8788-909 质量监督电话:0755-26457584 信盈达科技 版权所有 侵权必究

き6页共16页

# -1

### 23.6.10 RTC 写保护寄存器 (RTC WPR)

补充:

BCD 编码格式:二进码十进数格式

用 4 位二进制数表示一个十进制数 0000 - 1001 0-9

用 4 位二进制数表示一个十六进制数

1010 a

1100 c

14:53:20

小时: 00<mark>010100</mark> 分钟: 0<mark>1010011</mark> 秒: 00100000

RTC 时间寄存器 (RTC\_TR)



RTC TR 是日历时间影子寄存器。 只能在初始化模式下对该寄存器执行写操作。请参见 第 576 页的日历初始化和配置和第 577 页的读取日历。

偏移地址: 0x00

上电复位值: 0x0000 0000

系统复位: 当 BYPSHAD = 0 时为 0x0000 0000; 当 BYPSHAD = 1 时不受影响。

| 31     | 30 | 29       | 28 | 27       | 26  | 25     | 24 | 23     | 22 | 21      | 20   | 19 | 18 | 17    | 16 |
|--------|----|----------|----|----------|-----|--------|----|--------|----|---------|------|----|----|-------|----|
|        |    |          |    | Reserved |     |        |    |        | PM | НТ[     | 1:0] |    | HU | [3:0] |    |
|        |    |          |    | neserveu |     |        |    |        | rw | rw      | rw   | rw | rw | rw    | rw |
| 15     | 14 | 13       | 12 | 11       | 10  | 9      | 8  | 7      | 6  | 5       | 4    | 3  | 2  | 1     | 0  |
| Reserv |    | MNT[2:0] |    |          | MNU | J[3:0] |    | Reserv |    | ST[2:0] |      |    | SU | [3:0] |    |
| ed     | rw | rw       | rw | rw       | rw  | rw     | rw | ed     | rw | rw      | rw   | rw | rw | rw    | rw |

- 位 22 PM: AM/PM 符号 (AM/PM notation)
- 0: AM 或 24 小时制
- 1: PM
- 位 21:20 HT[1:0]: 小时的十位 (BCD 格式) (Hour tens in BCD format)
- 位 16:16 HU[3:0]: 小时的个位(BCD 格式) (Hour units in BCD format)
- 位 15 保留,必须保持复位值。
- 位 14:12 MNT[2:0]: 分钟的十位(BCD 格式) (Minute tens in BCD format)
- 位 11:8 MNU[3:0]: 分钟的个位(BCD 格式) (Minute units in BCD format)
- 位 7 保留,必须保持复位值。
- 位 6:4 ST[2:0]: 秒的十位 (BCD 格式) (Second tens in BCD format)
- 位 3:0 SU[3:0]: 秒的个位 (BCD 格式) (Second units in BCD format)

RTC 日期寄存器 (RTC DR)

RTC\_DR 是日历日期影子寄存器。只能在初始化模式下对该寄存器执行写操作

| 31 | 30       | 29 | 28   | 27   | 26 | 25    | 24 | 23   | 22    | 21   | 20    | 19 | 18 | 17    | 16 |
|----|----------|----|------|------|----|-------|----|------|-------|------|-------|----|----|-------|----|
|    |          |    | Rese | ryed |    |       |    |      | YT[   | 3:0] |       |    | YU | [3:0] |    |
|    |          |    | nese | rveu |    |       |    | rw   | rw    | rw   | rw    | rw | rw | rw    | rw |
| 15 | 14       | 13 | 12   | 11   | 10 | 9     | 8  | 7    | 6     | 5    | 4     | 3  | 2  | 1     | 0  |
|    | WDU[2:0] | l  | MT   |      | MU | [3:0] |    | Rese | nrod. | DT[  | [1:0] |    | DU | [3:0] |    |
| rw | rw       | rw | rw   | rw   | rw | rw    | rw | nese | a veu | rw   | rw    | rw | rw | rw    | rw |

- 位 23:20 YT[3:0]: 年份的十位(BCD 格式) (Year tens in BCD format)
- 位 19:16 YU[3:0]: 年份的个位 (BCD 格式) (Year units in BCD format)
- 位 15:13 WDU[2:0]: 星期几的个位 (Week day units)

000: 禁止 001: 星期一

...

111: 星期日

- 位 12 MT: 月份的十位(BCD 格式) (Month tens in BCD format)
- 位 11:8 MU: 月份的个位 (BCD 格式) (Month units in BCD format)
- 位 7:6 保留, 必须保持复位值。
- 位 5:4 DT[1:0]: 日期的十位(BCD 格式) (Date tens in BCD format)
- 位 3:0 DU[3:0]: 日期的个位 (BCD 格式) (Date units in BCD format)

### RTC 控制寄存器 (RTC CR)

| 31   | 30    | 29    | 28     | 27   | 26   | 25    | 24    | 23  | 22  | 21          | 20      | 19     | 18  | 17      | 16    |
|------|-------|-------|--------|------|------|-------|-------|-----|-----|-------------|---------|--------|-----|---------|-------|
|      |       |       | Rese   | nyed |      |       |       | COE | OSE | L[1:0]      | POL     | COSEL  | BKP | SUB1H   | ADD1H |
|      |       |       | nese   | IVeu |      |       |       | rw  | rw  | rw          | rw      | rw     | rw  | w       | w     |
| 15   | 14    | 13    | 12     | 11   | 10   | 9     | 8     | 7   | 6   | 5           | 4       | 3      | 2   | 1       | 0     |
| TSIE | WUTIE | ALRBE | ALRAIE | TSE  | WUTE | ALRBE | ALRAE | DCE | FMT | BYPS<br>HAD | REFCKON | TSEDGE | V   | UCKSEL[ | 2:0]  |
| rw   | rw    | rw    | rw     | rw   | rw   | rw    | rw    | rw  | rw  | rw          | rw      | rw     | rw  | rw      | rw    |

- 位 6 FMT: 小时格式 (Hour format)
- 0: 24 小时/天格式
- 1: AM/PM 小时格式
- 位 5 BYPSHAD: 旁路影子寄存器 (Bypass the shadow registers)
- 0: 日历值(从 RTC\_SSR、 RTC\_TR 和 RTC\_DR 读取时)取自影子寄存器,该影子寄存器每两个 RTCCLK 周期更新一次。
- 1: 日历值(从 RTC\_SSR、 RTC\_TR 和 RTC\_DR 读取时)直接取自日历计数器。
- 注意: 如果 APB1 时钟的频率低于 7 倍的 RTCCLK 频率,则必须将 BYPSHAD 置"1"。

RTC 初始化和状态寄存器 (RTC\_ISR)

### 系统复位值:不受影响(INIT、INITF和RSF除外,它们在复位时被清零)。

| 31   | 30         | 29         | 28    | 27    | 26    | 25    | 24       | 23   | 22    | 21    | 20    | 19    | 18        | 17         | 16          |
|------|------------|------------|-------|-------|-------|-------|----------|------|-------|-------|-------|-------|-----------|------------|-------------|
|      |            |            |       |       |       |       | Reserved | l    |       |       |       |       |           |            | RECAL<br>PF |
|      |            |            |       |       |       |       |          |      |       |       |       |       |           |            | r           |
| 15   | 14         | 13         | 12    | 11    | 10    | 9     | 8        | 7    | 6     | 5     | 4     | 3     | 2         | 1          | 0           |
| Res. | TAMP<br>2F | TAMP<br>1F | TSOVF | TSF   | WUTF  | ALRBF | ALRAF    | INIT | INITF | RSF   | INITS | SHPF  | WUT<br>WF | ALRB<br>WF | ALRA<br>WF  |
|      | rc_w0      | rc_w0      | rc_w0 | rc_w0 | rc_w0 | rc_w0 | rc_w0    | rw   | r     | rc_w0 | r     | rc_w0 | r         | r          | r           |

### 位 7 INIT: 初始化模式 (Initialization mode)

- 0: 自由运行模式。
- 1: 初始化模式,用于编程时间和日期寄存器(RTC\_TR 和 RTC\_DR)以及预分频器寄存器 (RTC PRER)。计数器停止计数,当 INIT 被复位后,计数器从新值开始计数。
- 位 6 INITF: 初始化标志 (Initialization flag)

当此位置 1 时, RTC 处于初始化状态,此时可更新事件、日期和预分频器寄存器。

0: 不允许更新日历寄存器。

1: 允许更新日历寄存器。

### 位 5 RSF: 寄存器同步标志 (Registers synchronization flag)

每次将日历寄存器的值复制到影子寄存器(RTC\_SSRx、 RTC\_TRx 和 RTC\_DRx)时,都会由硬件将此位置 1。在初始化模式下、平移操作挂起时 (SHPF=1) 或在旁路影子寄存器模式 (BYPSHAD=1) 下,该位由硬件清零。该位还可由软件清零。

0: 日历影子寄存器尚未同步

1: 日历影子寄存器已同步

### RTC 预分频器寄存器 (RTC PRER)

| 31   | 30 | 29 | 28 | 27        | 26 | 25 | 24  | 23       | 22   | 21 | 20 | 19       | 18   | 17 | 16 |
|------|----|----|----|-----------|----|----|-----|----------|------|----|----|----------|------|----|----|
|      |    |    |    | Reserved  | ı  |    |     |          |      |    | PR | EDIV_A[6 | 6:0] |    |    |
|      |    |    |    | nesei veu |    |    |     |          | rw   | rw | rw | rw       | rw   | rw | rw |
| 15   | 14 | 13 | 12 | 11        | 10 | 9  | 8   | 7        | 6    | 5  | 4  | 3        | 2    | 1  | 0  |
| Res. |    |    |    |           |    |    | PRE | EDIV_S[1 | 4:0] |    |    |          |      |    |    |
| nes. | rw | rw | rw | rw        | rw | rw | rw  | rw       | rw   | rw | rw | rw       | rw   | rw | rw |

### 位 22:16 PREDIV\_A[6:0]: 异步预分频系数 (Asynchronous prescaler factor)

下面是异步分频系数的公式:

ck apre 频率 = RTCCLK 频率/(PREDIV A+1)

注意: PREDIV A [6:0]= 000000 为禁用值。

位 15 保留,必须保持复位值。

位 14:0 PREDIV S[14:0]: 同步预分频系数 (Synchronous prescaler factor)

下面是同步分频系数的公式:

ck\_spre 频率 = ck\_apre 频率/(PREDIV\_S+1)

RTC 写保护寄存器 (RTC WPR)

第9页共16

页

| 31 | 30 | 29 | 28   | 27    | 26 | 25 | 24   | 23    | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|------|-------|----|----|------|-------|----|----|----|----|----|----|----|
|    |    |    |      |       |    |    | Rese | erved |    |    |    |    |    |    |    |
| 15 | 14 | 13 | 12   | 11    | 10 | 9  | 8    | 7     | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |    |    | Ross | erved |    |    |      |       |    |    | KE | ΞY |    |    |    |
|    |    |    | nese | erveu |    |    |      | w     | w  | w  | w  | w  | w  | w  | w  |

# 位 7:0 KEY: 写保护关键字 (Write protection key)

可通过软件对该字节执行写操作。

读取该字节时,始终返回 0x00。

有关如何解锁 RTC 寄存器写保护的介绍,请参见 RTC 寄存器写保护。

### 13.4.2 RTC 基本日历功能实验

### 13.4.2.1 软件设计

选择 LSE 作为 RTC 时钟源(打开 LSE,等待 LSE 就绪,选择选择 LSE 作为 RTC 时钟源) 使能对 RTC、 RTC 备份寄存器和备份 SRAM 的访问

取消 RTC 寄存器写保护

进入初始化模式(关闭日历计数器)

设置分频值(异步分频和同步分频)

设置 RTC DR 和 RTC TR

退出初始化模式(日历计数器重新开始计数)

激活写保护

### 13.5 RTC 自动唤醒功能

通过设定一个时间周期,当时间到了的时候,就会产生一些标志/中断,通过 IO 口将当前标志输出出去,产生外部中断。

一般自动唤醒都是设定一秒产生一次中断,在中断中获取 RTC 时间。

要使能 RTC 唤醒中断,需按照以下顺序操作:

- 1. 将 EXTI 线 22 配置为中断模式并将其使能,然后选择上升沿有效。
- 2. 配置 NVIC 中的 RTC WKUP IRQ 通道并将其使能。
- 3. 配置 RTC 以生成 RTC 唤醒定时器事件。

### 13.5.1 自动唤醒功能框图分析



### 13.5.2 自动唤醒功能相关寄存器

## 13.5.2.1 RTC 控制寄存器 (RTC\_CR)

| 31   | 30    | 29    | 28     | 27   | 26   | 25    | 24    | 23  | 22  | 21          | 20      | 19     | 18  | 17      | 16    |
|------|-------|-------|--------|------|------|-------|-------|-----|-----|-------------|---------|--------|-----|---------|-------|
|      |       |       | Rese   | nund |      |       |       | COE | OSE | L[1:0]      | POL     | COSEL  | BKP | SUB1H   | ADD1H |
|      |       |       | nese   | rveu |      |       |       | rw  | rw  | rw          | rw      | rw     | rw  | w       | w     |
| 15   | 14    | 13    | 12     | 11   | 10   | 9     | 8     | 7   | 6   | 5           | 4       | 3      | 2   | 1       | 0     |
| TSIE | WUTIE | ALRBE | ALRAIE | TSE  | WUTE | ALRBE | ALRAE | DCE | FMT | BYPS<br>HAD | REFCKON | TSEDGE | W   | UCKSEL[ | 2:0]  |
| rw   | rw    | rw    | rw     | rw   | rw   | rw    | rw    | rw  | rw  | rw          | rw      | rw     | rw  | rw      | rw    |

### 位 14 WUTIE: 使能唤醒定时器使能 (Wakeup timer interrupt enable)

- 0: 禁止唤醒定时器中断
- 1: 使能唤醒定时器中断

位 10 WUTE: 唤醒定时器使能 (Wakeup timer enable)

- 0: 禁止唤醒定时器(禁止唤醒定时器才能对唤醒寄存器写操作)
- 1: 使能唤醒定时器

位 2:0 WUCKSEL[2:0]: 唤醒时钟选择 (Wakeup clock selection)

000: 选择 RTC/16 时钟

001: 选择 RTC/8 时钟

010: 选择 RTC/4 时钟

011: 选择 RTC/2 时钟

10x: 选择 ck spre 时钟 (通常为 1 Hz)

11x: 选择 ck spre 时钟(通常为 1 Hz)并将 WUT 计数器值增加 216(见下面的注释)

## 13.5.2.2 RTC 初始化和状态寄存器 (RTC\_ISR)

| 31   | 30         | 29         | 28    | 27    | 26    | 25    | 24       | 23   | 22    | 21    | 20    | 19    | 18        | 17         | 16          |
|------|------------|------------|-------|-------|-------|-------|----------|------|-------|-------|-------|-------|-----------|------------|-------------|
|      |            |            |       |       |       |       | Reserved |      |       |       |       |       |           |            | RECAL<br>PF |
|      |            |            |       |       |       |       |          |      |       |       |       |       |           |            | r           |
| 15   | 14         | 13         | 12    | 11    | 10    | 9     | 8        | 7    | 6     | 5     | 4     | 3     | 2         | 1          | 0           |
| Res. | TAMP<br>2F | TAMP<br>1F | TSOVF | TSF   | WUTF  | ALRBF | ALRAF    | INIT | INITF | RSF   | INITS | SHPF  | WUT<br>WF | ALRB<br>WF | ALRA<br>WF  |
|      | rc_w0      | rc_w0      | rc_w0 | rc_w0 | rc_w0 | rc_w0 | rc_w0    | rw   | r     | rc_w0 | r     | rc_w0 | r         | r          | r           |

## 位 10 WUTF: 唤醒定时器标志 (Wakeup timer flag)

当唤醒自动重载计数器计数到 0 时,由硬件将此标志置 1。

该标志由软件写零清除。

软件必须在 WUTF 再次置 1 的 1.5 个 RTCCLK 周期之前将该标志清零。

### 位 2 WUTWF: 唤醒定时器写标志 (Wakeup timer write flag)

在 RTC CR 寄存器中的 WUTE 位置 0 后,当唤醒定时器值可更改时,由硬件将该位置 1。

- 0: 不允许更新唤醒定时器配置
- 1: 允许更新唤醒定时器配置

第11页共16页

### 13.5.2.3 RTC 唤醒定时器寄存器 (RTC\_WUTR)

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24   | 23     | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|------|--------|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    | Rese | erved  |    |    |    |    |    |    |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8    | 7      | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |    |    |    |    |    |    | WUT  | [15:0] |    |    |    |    |    |    |    |
| rw   | rw     | rw | rw | rw | rw | rw | rw | rw |

位 15:0 WUT[15:0]: 唤醒自动重载值位 (Wakeup auto-reload value bit)

当使能唤醒定时器时(WUTE 置 1),每 (WUT[15:0])+ 1) 个 ck\_wut 周期将 WUTF 标志置 1 一次。ck\_wut 周期通过 RTC\_CR 寄存器的 WUCKSEL[2:0] 位进行选择。

当 WUCKSEL[2] = 1 时,唤醒定时器变为 17 位,WUCKSEL[1] 等效为 WUT[16],即要重载到定时器的最高有效位。

注意: WUTF 第一次置 1 发生在 WUTE 置 1 之后 (WUT+1) 个 ck\_wut 周期。禁止在 WUCKSEL[2:0]=011(RTCCLK/2) 时将 WUT[15:0] 设置为 0x0000。

### 13.5.3 自动唤醒中断配置方法

要使用自动唤醒中断,单单使能 RTC 的自动唤醒中断功能是不行的,除了使能 RTC 的自动唤醒中断功能外还需要配置外部中断线 22 中断

另外七根 EXTI 线连接方式如下:

- EXTI 线 16 连接到 PVD 输出
- EXTI 线 17 连接到 RTC 闹钟事件
- EXTI 线 18 连接到 USB OTG FS 唤醒事件
- EXTI 线 19 连接到以太网唤醒事件
- EXTI 线 20 连接到 USB OTG HS (在 FS 中配置) 唤醒事件
- EXTI 线 21 连接到 RTC 入侵和时间戳事件
- EXTI 线 22 连接到 RTC 唤醒事件

#### 23.5 RTC 中断

所有 RTC 中断均与 EXTI 控制器相连。

要使能 RTC 闹钟中断,需按照以下顺序操作:

- 1. 将 EXTI 线 17 配置为中断模式并将其使能,然后选择上升沿有效。
- 2. 配置 NVIC 中的 RTC\_Alarm IRQ 通道并将其使能。
- 3. 配置 RTC 以生成 RTC 闹钟 (闹钟 A 或闹钟 B)。

要使能 RTC 唤醒中断,需按照以下顺序操作:

- 1. 将 EXTI 线 22 配置为中断模式并将其使能,然后选择上升沿有效。
- 2. 配置 NVIC 中的 RTC\_WKUP IRQ 通道并将其使能。
- 3. 配置 RTC 以生成 RTC 唤醒定时器事件。

要使能 RTC 入侵中断,需按照以下顺序操作:

- 1. 将 EXTI 线 21 配置为中断模式并将其使能,然后选择上升沿有效。
- 2. 配置 NVIC 中的 TAMP\_STAMP IRQ 通道并将其使能。
- 3. 配置 RTC 以检测 RTC 入侵事件。

要使能 RTC 时间戳中断,需按照以下顺序操作:

- 1. 将 EXTI 线 21 配置为中断模式并将其使能,然后选择上升沿有效。
- 2. 配置 NVIC 中的 TAMP\_STAMP IRQ 通道并将其使能。
- 3. 配置 RTC 以检测 RTC 时间戳事件。

所以,要使用 RTC 自动唤醒中断就需要开启当前 RTC 唤醒中断和外部中断线 22 中断。

#### 13.5.4 自动唤醒配置流程

前提:得到 ck spre 频率为 1hz

取消 RTC 写保护

禁止唤醒定时器,等待允许更新唤醒定时器配置

第12页共16

页

选择 ck spre 作为唤醒定时器时钟源

设置唤醒定时器重载值

使能唤醒中断 (模块级中断)

配置外部中断线 22 (选择外部中断线 22 作为输入线,上升沿触发,屏蔽软件、事件,使能外部中断线 22 中断,配置 NVIC)

开启唤醒定时器

编写中断服务函数 (清两处标志)

### 13.6 RTC 闹钟功能

RTC 单元提供两个可编程闹钟,即闹钟 A 和闹钟 B。

可通过将 RTC\_CR 寄存器中的 ALRAE 和 ALRBE 位置 1 来使能可编程闹钟功能。如果日历亚秒、秒、分钟、小时、日期或日分别与闹钟寄存器 RTC\_ALRMASSR/RTC\_ALRMAR 和 RTC\_ALRMBSSR/RTC\_ALRMBR 中编程的值相匹配,则 ALRAF 和 ALRBF 标志会被置为 1。可通过 RTC\_ALRMAR 和 RTC\_ALRMBR 寄存器的 MSKx 位以及 RTC\_ALRMASSR 和 RTC\_ALRMBSSR 寄存器的 MASKSSx 位单独选择各日历字段。可通过 RTC CR 寄存器中的 ALRAIE 和 ALRBIE 位使能闹钟中断。

闹钟 A 和闹钟 B(如果已通过 RTC\_CR 寄存器中的位 OSEL[0:1] 使能)可连接到 RTC\_ALARM 输出。 可通过 RTC CR 寄存器的 POL 位配置 RTC ALARM 极性。

### 13.6.1 RTC 闹钟功能框图分析



## 13.6.2 RTC 闹钟功能相关寄存器

### 13.6.2.1 RTC 控制寄存器 (RTC\_CR)

| 31   | 30    | 29    | 28     | 27   | 26   | 25    | 24    | 23  | 22  | 21          | 20      | 19     | 18  | 17      | 16    |
|------|-------|-------|--------|------|------|-------|-------|-----|-----|-------------|---------|--------|-----|---------|-------|
|      |       |       | Rese   | rued |      |       |       | COE | OSE | L[1:0]      | POL     | COSEL  | BKP | SUB1H   | ADD1H |
|      |       |       | nese   | iveu |      |       |       | rw  | rw  | rw          | rw      | rw     | rw  | w       | w     |
| 15   | 14    | 13    | 12     | 11   | 10   | 9     | 8     | 7   | 6   | 5           | 4       | 3      | 2   | 1       | 0     |
| TSIE | WUTIE | ALRBE | ALRAIE | TSE  | WUTE | ALRBE | ALRAE | DCE | FMT | BYPS<br>HAD | REFCKON | TSEDGE | W   | UCKSEL[ | 2:0]  |
| rw   | rw    | rw    | rw     | rw   | rw   | rw    | rw    | rw  | rw  | rw          | rw      | rw     | rw  | rw      | rw    |

第13 以共10 以

### 位 13 ALRBIE: 闹钟 B 中断使能 (Alarm B interrupt enable)

- 0: 闹钟 B 中断禁止
- 1: 闹钟 B 中断使能

### 位 12 ALRAIE: 闹钟 A 中断使能 (Alarm A interrupt enable)

- 0: 禁止闹钟 A 中断
- 1: 使能闹钟 A 中断

位 9ALRBE: 闹钟 B 使能 (Alarm B enable)

- 0: 禁止闹钟 B□
- 1: 使能闹钟 B

位 8 ALRAE: 闹钟 A 使能 (Alarm A enable)

- 0: 禁止闹钟 A□
- 1: 使能闹钟 A

# 13.6.2.2 RTC 初始化和状态寄存器 (RTC\_ISR)

|      |            |            |       |       |       |       |          |      |       |       |       | _     |           |            |             |
|------|------------|------------|-------|-------|-------|-------|----------|------|-------|-------|-------|-------|-----------|------------|-------------|
| 31   | 30         | 29         | 28    | 27    | 26    | 25    | 24       | 23   | 22    | 21    | 20    | 19    | 18        | 17         | 16          |
|      |            |            |       |       |       |       | Reserved | i    |       |       |       |       |           |            | RECAL<br>PF |
|      |            |            |       |       |       |       |          |      |       |       |       |       |           |            | r           |
| 15   | 14         | 13         | 12    | 11    | 10    | 9     | 8        | 7    | 6     | 5     | 4     | 3     | 2         | 1          | 0           |
| Res. | TAMP<br>2F | TAMP<br>1F | TSOVF | TSF   | WUTF  | ALRBF | ALRAF    | INIT | INITF | RSF   | INITS | SHPF  | WUT<br>WF | ALRB<br>WF | ALRA<br>WF  |
|      | rc_w0      | rc_w0      | rc_w0 | rc_w0 | rc_w0 | rc_w0 | rc_w0    | rw   | r     | rc_w0 | r     | rc_w0 | r         | r          | r           |

### 位 9ALRBF: 闹钟 B 标志 (Alarm B flag)

当时间/日期寄存器(RTC\_TR 和 RTC\_DR)与闹钟 B 寄存器 (RTC\_ALRMBR) 匹配时,由硬件将该标志置 1。

该标志由软件写零清除。

#### 位 8 ALRAF: 闹钟 A 标志 (Alarm A flag)

当时间/日期寄存器(RTC\_TR 和 RTC\_DR)与闹钟 A 寄存器 (RTC\_ALRMAR) 匹配时,由硬件将该标志置 1。

该标志由软件写零清除。

### 位 1 ALRBWF: 闹钟 B 写标志 (Alarm B write flag)

在 RTC\_CR 寄存器中的 ALRBIE 位置 0 之后,当闹钟 B 的值可更改时,由硬件将该位置 1。该位在初始化模式下由硬件清零。

- 0: 不允许更新闹钟 B
- 1: 允许更新闹钟 B

### 位 0 ALRAWF: 闹钟 A 写标志 (Alarm A write flag)

在 RTC\_CR 寄存器中的 ALRAE 位置 0 后,当闹钟 A 的值可更改时,由硬件将该位置 1。 该位在初始化模式下由硬件清零。

- 0: 不允许更新闹钟 A□
- 1: 允许更新闹钟 A

### 13.6.2.3 RTC 闹钟 A 寄存器 (RTC\_ALRMAR)

| 31   | 30       | 29      | 28 | 27       | 26 | 25 | 24 | 23   | 22      | 21      | 20 | 19      | 18 | 17 | 16 |
|------|----------|---------|----|----------|----|----|----|------|---------|---------|----|---------|----|----|----|
| MSK4 | WDSEL    | DT[1:0] |    | DU[3:0]  |    |    |    | MSK3 | PM      | HT[1:0] |    | HU[3:0] |    |    |    |
| rw   | rw       | rw      | rw | rw       | rw | rw | rw | rw   | rw      | rw      | rw | rw      | rw | rw | rw |
| 15   | 14       | 13      | 12 | 11       | 10 | 9  | 8  | 7    | 6       | 5       | 4  | 3       | 2  | 1  | 0  |
| MSK2 | MNT[2:0] |         |    | MNU[3:0] |    |    |    | MSK1 | ST[2:0] |         |    | SU[3:0] |    |    |    |
| rw   | rw       | rw      | rw | rw       | rw | rw | rw | rw   | rw      | rw      | rw | rw      | rw | rw | rw |

## 13.6.2.4 RTC 闹钟 B 寄存器 (RTC\_ALRMBR)

| 31   | 30       | 29      | 28 | 27       | 26 | 25 | 24 | 23   | 22      | 21 | 20    | 19      | 18      | 17 | 16 |  |
|------|----------|---------|----|----------|----|----|----|------|---------|----|-------|---------|---------|----|----|--|
| MSK4 | WDSEL    | DT[1:0] |    | DU[3:0]  |    |    |    | MSK3 | PM      | нт | [1:0] |         | HU[3:0] |    |    |  |
| rw   | rw       | rw      | rw | rw       | rw | rw | rw | rw   | rw      | rw | rw    | rw      | rw      | rw | rw |  |
|      |          |         |    |          |    |    |    |      |         |    |       |         |         |    |    |  |
| 15   | 14       | 13      | 12 | 11       | 10 | 9  | 8  | 7    | 6       | 5  | 4     | 3       | 2       | 1  | 0  |  |
| MSK2 | MNT[2:0] |         |    | MNU[3:0] |    |    |    | MSK1 | ST[2:0] |    |       | SU[3:0] |         |    |    |  |
| rw   | rw       | rw      | rw | rw       | rw | rw | rw | rw   | rw      | rw | rw    | rw      | rw      | rw | rw |  |

## 13.6.3 RTC 闹钟中断配置方法

要使用自动唤醒中断,单单使能 RTC 的闹钟中断功能是不行的,除了使能 RTC 的闹钟中断功能外还需要配置外部中断线 17 中断

另外七根 EXTI 线连接方式如下:

- EXTI 线 16 连接到 PVD 输出
- EXTI 线 17 连接到 RTC 闹钟事件
- EXTI 线 18 连接到 USB OTG FS 唤醒事件
- EXTI 线 19 连接到以太网唤醒事件
- EXTI 线 20 连接到 USB OTG HS (在 FS 中配置) 唤醒事件
- EXTI 线 21 连接到 RTC 入侵和时间戳事件
- EXTI 线 22 连接到 RTC 唤醒事件

#### 23.5 RTC 中断

#### 所有 RTC 中断均与 EXTI 控制器相连。

要使能 RTC 闹钟中断,需按照以下顺序操作:

- 1. 将 EXTI 线 17 配置为中断模式并将其使能,然后选择上升沿有效。
- 2. 配置 NVIC 中的 RTC\_Alarm IRQ 通道并将其使能。
- 3. 配置 RTC 以生成 RTC 闹钟(闹钟 A 或闹钟 B)。

要使能 RTC 唤醒中断,需按照以下顺序操作:

- 1. 将 EXTI 线 22 配置为中断模式并将其使能,然后选择上升沿有效。
- 2. 配置 NVIC 中的 RTC\_WKUP IRQ 通道并将其使能。
- 3. 配置 RTC 以生成 RTC 唤醒定时器事件。

要使能 RTC 入侵中断,需按照以下顺序操作:

- 1. 将 EXTI 线 21 配置为中断模式并将其使能,然后选择上升沿有效。
- 2. 配置 NVIC 中的 TAMP\_STAMP IRQ 通道并将其使能。
- 3. 配置 RTC 以检测 RTC 入侵事件。

要使能 RTC 时间戳中断,需按照以下顺序操作:

- 1. 将 EXTI 线 21 配置为中断模式并将其使能,然后选择上升沿有效。
- 2. 配置 NVIC 中的 TAMP\_STAMP IRQ 通道并将其使能。
- 3. 配置 RTC 以检测 RTC 时间戳事件。

#### 13.6.4 配置流程

闹钟 A 每分钟第 3 秒产生闹钟中断---匹配项只有秒

第15页共16

页

前提: 日历功能要配置完成

取消 RTC 写保护

禁止闹钟 A, 等待允许更新闹钟 A

设定闹钟 A 的时间/日期(只匹配秒)

清除一次闹钟 A 标志 (防止初始化时标志为 1)

使能闹钟 A 中断

配置外部中断线 17

使能闹钟 A

激活写保护

编写中断服务函数 (清两处标志)

**育16页共16页**