Energy and Power in Digital Circuits

Lecture 14 November 9th, 2018

Jae W. Lee (<u>jaewlee@snu.ac.kr</u>)
Computer Science and Engineering
Seoul National University

Slide credits: Prof. Soonhoi Ha (SNU CSE)

Outline

Textbook: 11.1, 11.2, 11.3, 11.5

- Power and Energy Relations for Simple RC Curcuit
- Average Power in an RC Circuit
- Power Dissipation in Logic Gates
- CMOS Logic

Power/Energy for Simple RC Circuit

Power delivered to a two-terminal element at any given instant of time t

$$p(t) = \nu(t)i(t)$$

- i(t) is positive if the current enters into (+) terminal of the element
- e.g., if both v(t) and i(t) are positive:
 - A resistor dissipates energy.
 - A capacitor stores energy.

Power/Energy for Simple RC Circuit

Energy supplied by the voltage source over an interval of time 0 → T:

$$w = \int_0^T p(t)dt.$$

■ Example: if $p(t) = (V^2/R)^*e^{-t/RC}$, total energy supplied over time $t=0 \rightarrow \infty$:

$$w = \int_{t=0}^{t=\infty} \frac{V^2}{R} e^{\frac{-t}{RC}} dt$$
$$= -\frac{V^2}{R} R C e^{\frac{-t}{RC}} \Big|_{t=0}^{t=\infty}$$
$$= CV^2.$$

■ Half of the energy dissipated by resistor; the other half stored in capacitor (½CV²).

Outline

Textbook: 11.1, 11.2, 11.3, 11.5

- Power and Energy Relations for Simple RC Circuit
- Average Power in an RC Circuit
- Power Dissipation in Logic Gates
- CMOS Logic

RC Circuit with a Switch

Find energy dissipated in each cycle Find the average power.

RC Circuit with a Switch

During T1

assume

RC Circuit with a Switch

Energy Consumption: Total energy provided by the source during T1

$$E = \int_{0}^{T_{1}} V_{S} i \, dt = \int_{0}^{T_{1}} V_{S} \frac{V_{S}}{R_{1}} e^{-\frac{t}{R_{1}C}} \, dt = CV_{S}^{2} (1 - e^{-\frac{T_{1}}{R_{1}C}})$$

$$\approx CV_{S}^{2} \quad if \quad T_{1} >> R_{1}C$$

Energy stored in the capacitor:

$$E_C = \frac{1}{2}CV_S^2$$

Energy dissipated in the resistor:

$$E_1 = \frac{1}{2}CV_S^2$$

Independent of R

RC Circuit with a Switch

During T2

Initially, $v_C = V_S$ (recall $T_I >> R_I C$)

If we assume $T_2 >> R_2C$

Capacitor energy is fully discharged = Energy dissipated by the resister: $E_2 = \frac{1}{2}CV_S^2$ - (again) independent of R

Putting Together

Energy dissipated in each cycle

$$E = E_1 + E_2 = CV_s^2$$

- assuming that capacitor is fully charged and discharged during the period.
- Average power

$$\overline{P} = \frac{E}{T} = CV_S^2 f$$

Outline

Textbook: 11.1, 11.2, 11.3, 11.5

- Power and Energy Relations for Simple RC Circuit
- Average Power in an RC Circuit
- Power Dissipation in Logic Gates
- CMOS Logic

Power Dissipation of Inverter

Power Dissipation of Inverter

During input is high

Assuming initial voltage on capacitor is 0:

$$\nu_C = V_{TH} + (V_S - V_{TH})e^{\frac{-t}{R_{TH}C_L}}$$

Thus, if T >> $R_{TH}C_L$, the energy consumption w_1

$$w_1 = \frac{V_S^2}{R_L + R_{\text{ON}}} T_1 + \frac{V_S^2 R_L^2 C_L}{2(R_L + R_{\text{ON}})^2}.$$

Power Dissipation of Inverter

During input is low

Assuming initial voltage on capacitor is V_{TH} and final voltage of V_S :

$$\nu_{C} = V_{TH} + (V_{S} - V_{TH}) \left(1 - e^{\frac{-t}{R_{L}C_{L}}}\right)$$

Thus, if $T >> R_L C_L$, the energy consumption w_2

$$w_2 = \frac{V_S^2 R_L^2 C_L}{2(R_L + R_{ON})^2}.$$

Power Dissipation of Inverter

- Average power = static power + dynamic power
 - Static power: independent of the frequency
 - Power loss due to the static or continuous current drawn from the power supply
 - Dynamic power: dependent on the frequency
 - Power loss due to switching currents to charge and discharge capacitors

Power Dissipation of Inverter

Average Power

$$\overline{P} = \frac{{V_S}^2}{2(R_L + R_{ON})} + C{V_S}^2 f \frac{{R_L}^2}{(R_L + R_{ON})^2} \xrightarrow{R_L >> R_{ON}} \frac{{V_S}^2}{2R_L} + C{V_S}^2 f$$
Static power + dynamic power

- ✓ Static power: Independent of the switching frequency.
- ✓ Dynamic power: related to switching capacitor

$$\frac{P_{static}}{P_{dvnamic}} = \frac{R_L + R_{ON}}{R_L} \times \frac{T}{2R_L C_L}$$

Worst Static Power Dissipation

Example 11.1

$$R_L = 100k\Omega$$
, $R_{ON} = 10k\Omega$

Dynamic vs. Static Power

Example

a chip with 10⁶ gates clocking

at 100 MHZ

$$\frac{P_{static}}{P_{dynamic}} = \frac{R_L + R_{ON}}{R_L} \times \frac{T}{2R_L C_L}$$

$$R_L = 10 \text{ ks 2}$$

$$f = 100 \times 10^6$$

$$V_L = 5 V$$

$$C = 1f F$$

$$R_L = 10 k\Omega$$

$$f = 100 \times 10$$

 $V_s = 5V$

Power Minimization

Dynamic power

- Reduce the supply voltage (5V -> 1.5V)
 - Change the voltage on need
- Reduce the capacitance
- Reduce the frequency
 - Turn off clock when not in use

Static power

CMOS logic

Outline

Textbook: 11.1, 11.2, 11.3, 11.5

- Power and Energy Relations for Simple RC Circuit
- Average Power in an RC Circuit
- Power Dissipation in Logic Gates
- CMOS Logic

PMOS

CMOS Inverter

$$v_{I} = 5V \quad \text{(input high)} \qquad v_{I} = 0V \quad \text{(input low)}$$

$$V_{S} = 5V \quad \text{(input low)}$$

$$R_{ON_{p}} \quad \text{(input low)}$$

$$V_{I} = 5V \quad \text{(input low)}$$

$$R_{ON_{p}} \quad \text{(input low)}$$

$$V_{I} = 0V \quad \text{(input low)}$$

No static power!

- No direct path from the supply to ground

Dynamic Power of CMOS

$$\overline{P} = CV_S^2 f$$

Static Power of CMOS

- Leakage power
- Transient current

Examples

- ✓ Example 11.6: Processor SA27E
 - # of gates = 3M, 25% activity

$$C_L = 30 fF$$
, $V_S = 1.5V$, $f = 425 MHz$

$$P_{dynamic} = (Fraction\ switching) \times (\#\ gates) \times fC_L V_S^2$$

Examples

- Exercise: Estimate the power of the following processor
 - # of gates = 25M, 25% activity

$$C_L = 1 fF$$
, $V_S = 1.5 V$, $f = 3 GHz$

Summary

- Total power = static power + dynamic power
- CMOS does not exhibit static loss
- Dynamic power

$$P_{dynamic} = (Fraction\ switching) \times (\#\ gates) \times fC_L V_S^2$$

- Reduce the supply voltage
- Reduce the switching activities
- Turn off the logic not in use (clock gating)