Semantic Perceptual Image Compression

Using Deep Convolutional Networks

> Aaditya Prakash, Nick Moran, Solomon Garber, Antonella DiLillo and James Storer

> > **Brandeis University**

Perceptual Image Compression

JPEG treats all blocks as equally important

Perceptual Image Compression

Humans perceive some regions as more important

Perceptual Image Compression

We use neural networks to identify salient regions

Our work

- Develop novel CNN architecture to find all salient objects
- Specifically designed towards compression applications
- Achieve higher visual quality for the same PSNR and compressed size
- Final image is encoded as standard JPEG
- Use any off-the-shelf JPEG decoder to decode

Convolutional Neural Network

CNN filter response

Higher activations -> Object Location

CNN filter response

- Higher activations -> Object Location

- Problem: Does not capture object structure

- Class activation map is the obtained by taking the output of GAP and learning weights that maximize the discriminative activations for a given class.
- Problem: Identifies only one object.

Class activation maps of top 5 predictions

Class activation maps for one object class

Our work

Multi-Structure Region of Interest (MSROI)

Perform weak localization like CAM, but detect multiple salient objects.

- Add one more dimension to feature maps - classes.

- Add one more dimension to feature maps classes.
- Learns class invariant feature maps.

- Add one more dimension to feature maps classes.
- Learns class invariant feature maps.
- For training, replace softmax with sigmoid in order to prevent "squeezing" of the probabilities of classes that are not 'ground-truth'.

MSROI - No Free Lunch

For L layers, where each layer l contains d_l features, k is the max pooling stride size. an image of size $n \times n$, and with C classes

$$\sum_{l \in \mathbf{L}} d_l \times \mathbf{C} \times \frac{n}{k^l} \times \frac{n}{k^l}$$

- For a color image of decent size and with many filters per layer and several layers deep, this number is huge.

MSROI - No Free Lunch

For L layers, where each layer l contains d_l features, k is the max pooling stride size. an image of size $n \times n$, and with C classes

$$\sum_{l \in \mathbf{L}} d_l \times \mathbf{C} \times \frac{n}{k^l} \times \frac{n}{k^l}$$

- For a color image of decent size and with many filters per layer and several layers deep, this number is huge.

Solution

- Make number of classes very small by using Synsets hierarchy of classes in Imagenet
- Share feature maps across classes to jointly learn lower level features

MSROI - Fine-grained is overkill

- Most CNN models, including CAM, are trained on Imagenet, which has 1000 classes.
- Some of the classes are fine-grained like different breeds of dog.

MSROI - Fine-grained is overkill

- Most CNN models, including CAM, are trained on Imagenet, which has 1000 classes.
- Some of the classes are fine-grained like different breeds of dog.
- Intuition, they will have similar "semantic" map, because of similar object structure.

Where do we look?

Class Activation Map (CAM)

CAM

$$M_c(x,y) = \sum_{d \in \mathbf{D}} w_d^c f_d(x,y)$$

where w_d^c is learned for every class c and for layer 'd'

$$P(c) = \frac{\exp(\sum_{xy} M_c(x, y))}{\sum_{c} \exp(\sum_{xy} M_c(x, y))}$$

Z^c, denotes threshold which signifies 'presence' of a class

CAM

$$M_c(x,y) = \sum_{d \in \mathbf{D}} w_d^c f_d(x,y)$$

where w_d^c is learned for every class c and for layer 'd'

$$P(c) = \frac{\exp(\sum_{xy} M_c(x, y))}{\sum_{c} \exp(\sum_{xy} M_c(x, y))}$$

MSROI Map

$$Z_l^c = \sum_{d \in \mathbf{D}} \sum_{x,y} f_d^c(x,y)$$

MSROI - Details

- Z^c denotes threshold which signifies 'presence' of a class
- M_hat denotes Multi-structure map generated using MSROI. Compare this with CAM map (M)
- It is sum over all classes with total activations Z_I^c beyond some threshold.

CAM

$$M_c(x,y) = \sum_{d \in \mathbf{D}} w_d^c f_d(x,y)$$

where w_d^c is learned for every class c and for layer 'd'

$$P(c) = \frac{\exp(\sum_{xy} M_c(x, y))}{\sum_c \exp(\sum_{xy} M_c(x, y))}$$

MSROI Map

$$Z_l^c = \sum_{d \in \mathbf{D}} \sum_{x,y} f_d^c(x,y)$$

$$\widehat{M}(x,y) = \sum_{c \in \mathbf{c}} \begin{cases} \sum_{d} f_{d}^{c}(x,y), & \text{if } Z_{l}^{c} > T \\ 0 & \text{otherwise} \end{cases}$$

MSROI - Details

- Z^c₁ denotes threshold which signifies 'presence' of a class
- M_hat denotes Multi-structure map generated using MSROI. Compare this with CAM map (M)
- It is sum over all classes with total activations Z_l^c beyond some threshold.
- For training use sigmoid instead of softmax to prevent losing information about 'other objects'

CAM

$$M_c(x,y) = \sum_{d \in \mathbf{D}} w_d^c f_d(x,y)$$

where w_d^c is learned for every class c and for layer 'd'

$$P(c) = \frac{\exp(\sum_{xy} M_c(x, y))}{\sum_c \exp(\sum_{xy} M_c(x, y))}$$

MSROI Map

$$Z_l^c = \sum_{d \in \mathbf{D}} \sum_{x,y} f_d^c(x,y)$$

$$\widehat{M}(x,y) = \sum_{c \in \mathbf{c}} \begin{cases} \sum_{d} f_{d}^{c}(x,y), & \text{if } Z_{l}^{c} > T \\ 0 & \text{otherwise} \end{cases}$$

$$P(c) = \frac{1}{1 + \exp(Z_l^c)}$$

MSROI - More examples

JPEG

 Traditional JPEG coders apply a fixed scaling factor to the Quantization matrices.

- Our method employs a variable scaling factor.

Variable 'Q' JPEG

Train a MSROI model - only once!

Train a MSROI model - only once! For each encoding:

Use the MSROI to obtain the 'heatmap' of all salient objects.

Train a MSROI model - only once! For each encoding:

- Use the MSROI to obtain the 'heatmap' of all salient objects.
- Encode the 'hot' areas with higher Q value (means lower quantization), and encode the 'cold' areas (which denotes background) with low Q value.

Train a MSROI model - only once! For each encoding:

- Use the MSROI to obtain the 'heatmap' of all salient objects.
- Encode the 'hot' areas with higher Q value (means lower quantization), and encode the 'cold' areas (which denotes background) with low Q value.
- Decode these blocks and arrange them in the same position from where they were extracted.

Train a MSROI model - only once! For each encoding:

- Use the MSROI to obtain the 'heatmap' of all salient objects.
- Encode the 'hot' areas with higher Q value (means lower quantization), and encode the 'cold' areas (which denotes background) with low Q value.
- Decode these blocks and arrange them in the same position from where they were extracted.
- Encode this using standard JPEG at a uniform Q level.

Results

PSNR-S is the PSNR of the 'salient' regions as identified by MSROI

	PSNR-S	PSNR	PSNR-HVS	PSNR-HVSM	SSIM	MS-SSIM	VIFP
			Kodak Pho	toCD [24 images]			
Std JPEG	33.91	34.70	34.92	42.19	0.969	0.991	0.626
Our model	39.16	34.82	35.05	42.33	0.969	0.991	0.629
	MIT Sa	aliency Ben	chmark [Outde	oor Man-made +	Natural, 2	00 images]	
Std JPEG	36.9	31.84	35.91	45.37	0.893	0.982	0.521
Our model	40.8	32.16	36.32	45.62	0.917	0.990	0.529
	R	e-sized ima	ges of a very l	arge image, see fi	ig: 4 [20 im	ages]	
Std JPEG	35.4	27.46	33.12	43.26	0.912	0.988	0.494
Our model	39.6	28.67	34.63	44.89	0.915	0.991	0.522

- For all these experiments - size of images is same (±1%) on both methods

Results

PSNR-S is the PSNR of the 'salient' regions as identified by MSROI

	PSNR-S	PSNR	PSNR-HVS	PSNR-HVSM	SSIM	MS-SSIM	VIFP
			Kodak Pho	toCD [24 images]			
Std JPEG	33.91	34.70	34.92	42.19	0.969	0.991	0.626
Our model	39.16	34.82	35.05	42.33	0.969	0.991	0.629
	MIT Sa	aliency Ben	chmark [Outdo	oor Man-made +	Natural, 2	200 images]	
Std JPEG	36.9	31.84	35.91	45.37	0.893	0.982	0.521
Our model	40.8	32.16	36.32	45.62	0.917	0.990	0.529
	R	e-sized ima	ges of a very l	arge image, see fi	ig: 4 [20 im	ages]	
Std JPEG	35.4	27.46	33.12	43.26	0.912	0.988	0.494
Our model	39.6	28.67	34.63	44.89	0.915	0.991	0.522

- For all these experiments size of images is same (±1%) on both methods
- Our model always maintains the PSNR and other perceptual metrics

Results

PSNR-S is the PSNR of the 'salient' regions as identified by MSROI

	PSNR-S	PSNR	PSNR-HVS	PSNR-HVSM	SSIM	MS-SSIM	VIFP
			Kodak Pho	toCD [24 images			
Std JPEG	33.91	34.70	34.92	42.19	0.969	0.991	0.626
Our model	39.16	34.82	35.05	42.33	0.969	0.991	0.629
	MIT Sa	aliency Ben	chmark [Outdo	oor Man-made +	Natural, 2	00 images]	
Std JPEG	36.9	31.84	35.91	45.37	0.893	0.982	0.521
Our model	40.8	32.16	36.32	45.62	0.917	0.990	0.529
	R	e-sized ima	ges of a very l	arge image, see f	ig: 4 [20 im	ages]	
Std JPEG	35.4	27.46	33.12	43.26	0.912	0.988	0.494
Our model	39.6	28.67	34.63	44.89	0.915	0.991	0.522

- For all these experiments size of images is same (±1%) on both methods
- Our model always maintains the PSNR and other perceptual metrics
- Effective on images much different than the training set

Results - comparison of different categories

Text in the bar represents categories of object represented in the image

Results - comparison of different categories

Text in the bar represents categories of object represented in the image

PSNR-HVS of Our model minus standard JPEG Positive values (blue color) means our model is better.

Performs better on all 'categories' except 'Pattern'

Results - comparison of different categories

Text in the bar represents categories of object represented in the image

- Performs better on all 'categories' except 'Pattern'
- Patterns have no semantic content and thus model is not able to determine any 'regions-of-interest'.

Results - comparison of different resolutions

Numbers in the bar represents resolution of image (height x width)

Results - comparison of different resolutions

Numbers in the bar represents resolution of image (height x width)

- Performs equally well on different size images and with many objects.
- This signifies that our model is able to extract object at different scales.

Summary

- MSROI: A new CNN design for salient region detection:
 Avoids precise object location (not needed for compression applications).
 Is able to detect multiple salient regions.
- Encoding is slower than standard JPEG but reasonable (90 images/sec on GPU).
- Decoding employs standard off-the-shelf decoder, thus there is no added cost.
- Technique is agnostic to the kind of 'encoder-decoder' used. Thus can be expanded to JPEG-2000.

 Thankyou

Correspondence: aprakash@brandeis.edu