Isomorphism between general objects

Generalization of category theory

Shigeo Hattori

February 13, 2020

bayship.org@gmail.com

https://github.com/bayship-org/mathematics

Definition 1 1 **Axiom 1.1.** Take $\forall x, y$, then x has its identity written ID(x) such that x = y2 $\equiv ID(x) = ID(y).$ 3 4 **Definition 1.1** (Identity and point2). Define that: p is a point $2 \equiv p$ is an identity. 7 8 **Definition 1.2.** Take $\forall x$. 9 All topological space is said a topological space if all its points are points 2. The same holds for (topology, topology2). 11 **Definition 1.3** (Deep member). Take $\forall (c, x, y)$ such that: c is a chain of set membership. x is the maximum member of c. y is a member of c. Then y is said a deep member of x and you write as $y \in^{deep} x$. For example: 17 $m\in\ldots\in y\in\ldots\ldots\in x$ For example: 18 $\{y1, y2\} \in ^{deep} \{y1, y2\}$

$y \in ^{deep} \{1, \{2, y\}\}$	19
Definition 1.4. Take $\forall (x, D)$ such that: $(d \in D \rightarrow d \in deep \ x) \stackrel{\text{and}}{\wedge} (($	20
$\{d1, d2\} \subset D \stackrel{\text{and}}{\wedge} d1 \in^{deep} d2) \to d1 = d2$).	21
ID(D/x) denotes x replaced all members d of D with $ID(d)$.	22
	23
Take $\forall (X,T)$ as a topological space. We set a convention as that: You transform	2 4
(X,T) into a topological space as $(X,T) \to \mathrm{ID}(X/(X,T))$.	25
In the rest, you interpret (topology , topological space, point) as (topology2	26
topological2 space, point2) respectively.	27

2 Introduction

Prerequisites are only some first chapters of graduate level texts of general topology and graph theory; (1),(2). This article introduces a new fundamental language of mathematics which can be regarded as a generalization of category theory. As you know, two objects are regarded as equivalent if they are isomorphic.

28

41

46

47

For example, if $\{p_i\}_{i\in\{1,2,3\}}$ is a set of 3 objects pairwise isomorphic then (p_1,p_2) and (p_1,p_3) are isomorphic. Though (p_1,p_2) and (p_1,p_1) are not isomorphic

Analogously, assume that given two non-isomorphic objects, you may be able to abstracted the two by some rule to result isomorphic outputs. Then the original objects are regarded as equivalent for observations which accept the rule of abstraction. A new notion named "the identity of an object" will be used to abstract objects.

For example, $\{p_1, p_2\}$ and $\{\{p_1\}, \{p_3\}\}$ are not isomorphic whereas abstracting their members by their identities results isomorphic objects, namely $\{d_1, d_2\}$ and $\{D_1, D_3\}$ where d_i denotes the identity of p_i and D_i denotes the identity of $\{p_i\}$.

Take $\forall x$. Then x is said a **general objects** if it can be equivalently expressed as a nested graph. Blue texts indicate that the notions will be defined later.

This article defines when two given general objects, say (x, y), are said isomorphic, written $x \cong y$. For example, take $\forall (x, y)$ as numbers, then it will be defined that: $x \cong y \equiv x = y$. Contrary two points will be unconditionally said isomorphic.

A topological space X is a set of points defined the topology T. (X,T) also may be said a topological space.

Warning: Inside expressions of isomorphism, no convention implicitly relates X to T; X is just a set of points, no topology is implicitly accompanied.

Let us continue to enumerate more examples of isomorphism. It will be said: $(X,T,p,321)_1\cong (X,T,p,321)_2$ if $(X,T)_1$ and $(X,T)_2$ are homeomorphic by some homeomorphism $\exists f$ and $f(p_1)=p_2$. $(x,321)_1\ncong (x,123)_2$ even if $x_1\cong x_2$ because different numbers are not isomorphic. $\{x,y\}\ncong (x,y)$ because $(x,y):=\{\{x\},\{x,y\}\}$.

Needless to say, \cong can express more complex examples like $(X, T, F, k, p)_1 \cong (X, T, F, k, p)_2$ where $(X, T)_{\forall i}$ is a topological space, $F_{\forall i}$ is a set of some ambient isotopies on $X_i^*[0,1]$, $k_{\forall i}$ is an embedding into X_i and $p_{\forall i}$ is a point in X_i .

Moreover, \cong can express that two logical expressions containing general objects are isomorphic because all logical expressions can be expressed as nested graphs. Isomorphisms of general objects will be defined in words of elementary graph theory.

3 Isomorphism between general objects

Definition 3.1 (Deep). Take $\forall X$. 71 $Deep(X) := \{p \mid p \in P X \land p \text{ is an identity } \}.$ 72

Definition 3.2 (Nested graph). All nested graph (V, E) is a directed graph (V, E).

Take $\forall G$ as a nested graph. If no vertex v of G is a nested graph, then the nest number of G is defined to be 0. Otherwise the nest number of G is defined to be m+1 where m denotes the maximum nest number over all nested graphs which are its vertices. And it is exclusively defined that the nest number of G is decidable and finite.

Definition 3.3 (Isomorphism between vertices of nested graphs). Take $\forall (F, p_1, p_2)$ 82 such that: F is a bijection between sets of identities. (p_1, p_2) are vertices of 83 nested graphs.

Let $S_F := \overset{\text{ID}}{Deep}(\text{domain}(F) \cup \text{image}(F)).$ 85 Define that: $*1 \equiv (*2 \overset{\text{or}}{\vee} *3)$ 86 **1.** $p_1 \cong_F p_2$. 87 88 **2.** *a $\stackrel{\text{and}}{\wedge}$ (a1 $\stackrel{\text{or}}{\vee}$... $\stackrel{\text{or}}{\vee}$ *a3). 89 **a.** take $\forall i \in \{1,2\}$ $\stackrel{\text{and}}{\wedge} p_i$ is not a nested graph. 90 **a1.** $F(p_1) = p_2$ **a2.** $p_1 = p_2 \stackrel{\text{and}}{\wedge} \varnothing = \stackrel{\text{ID}}{Deep}(\{p_1, p_2\}) \cap S_F.$ **a3.** take $\forall i \in \{1,2\}$ $\overset{\text{and}}{\wedge} \varnothing \neq \overset{\text{ID}}{Deep}(p_i) \cap S_F$. **3.** *b1 ^{and} ∧ *b2. **b1.** take $\forall i \in \{1,2\} \stackrel{\text{and}}{\wedge} p_i$ is a nested graph. 95 **b2.** $p_1 \cong^{F} p_2$. $p_1 \cong^F p_2$, will be defined later. 98 99 **Proposition 1.** Take $\forall m :\in \mathbb{N}$. Let \mathbb{G}_m denote the set of all nested graphs 100 having nest numbers at most m. Then $*1 \rightarrow *2$. **1.** For \mathbb{G}_m : Proposition 2 holds true. **2.** For \mathbb{G}_m : $p1 \cong_F p2 \equiv p2 \cong_{F^{-1}} p1$. *Proof.* Let Def be an alias for Definition 3.3. Take $\forall (F, p1, p2)$ as a counterex- 105 ample. Hence (*2 $\overset{\text{or}}{\vee}$ *3) of Def holds for (F, p1, p2) in place of (F, p1, p2). **p1.** Assume *2 of Def holds for (F, p1, p2). It is clear that each term of (*a $\stackrel{\rm and}{\wedge}$ (*a1 $\stackrel{\rm or}{\vee}$... $\stackrel{\rm or}{\vee}$ *a3)) is logically neutral 108

in place of (F, p1, p2). A contradiction.

between (F, p1, p2) and $(F^{-1}, p2, p1)$. Hence each holds for $(F^{-1}, p2, p1)$ 109

- **p2.** Assume *3 of Def holds for (F, p1, p2). It is trivial that *b1 holds for 111 $(F^{-1}, p2, p1)$ in place of (F, p1, p2). And *1 of this proposition implies 112 that Proposition 2 holds for (F, p1, p2) in place of (F, G1, G2). Hence *b2 113 of Def holds for $(F^{-1}, p2, p1)$ too in place of (F, p1, p2). A contradiction. 114
- **Definition 3.4** (Isomorphism between nested graphs). Take $\forall F$ as a bijec- 116 tion between sets of identities. Take $\forall \{G_i\}_{i\in\{1,2\}}$ as a pair of nested graphs. 117 Decompose G_i as $\exists (V, E)_i$.

Then F is said an isomorphism from G_1 to G_2 if (*0 $\stackrel{\text{and}}{\wedge}$ *1). Define that: 119 (*0 $\stackrel{\text{and}}{\wedge}$ *1) \equiv *2. And define that: *2 \rightarrow *3.

- **0.** $\exists f$ as a graph isomorphism from G_1 to G_2 .
- 1. Take $\forall v :\in V_1$, then $v \cong_F f(v)$.
- **2.** $G_1 \cong^F G_2$.
- 3. $G_1 \cong G_2$.

Proposition 2. Take $\forall m :\in \mathbb{N}$. Let \mathbb{G}_m denote the set of all nested graphs 126 having nest numbers at most m.

For \mathbb{G}_m :

$$G_1 \cong^F G_2 \equiv G_2 \cong^{F^{-1}} G_1$$
 129

115

125

130

Proof. Let Def be an alias for Definition 3.4.

Take $\forall (m, G_1, G_2, F)$ as a minimum counterexample by m. Though at least 132 F^{-1} is a bijection between sets of identities. Hence the antecedent of Def holds 133 for (G_2, G_1, F^{-1}) in place of (G_1, G_2, F) except $(*0 \ \wedge \ *1)$ of Def. By the way, 134 f^{-1} is a graph isomorphism from G_2 to G_1 .

Hence *1 of Def fails for
$$(G_2, G_1, F^{-1}, f^{-1})$$
 in place of (G_1, G_2, F, f) .

q1. Hence:
$$\exists v :\in V_2 \stackrel{\text{and}}{\wedge} \neg (v \cong_{F^{-1}} f^{-1}(v)).$$
 137

q2. Though:
$$(G_1 \cong^F G_2) \to (f^{-1}(v) \cong_F f \circ f^{-1}(v)).$$
 138

	139
Let Prop be an alias for Proposition 1 together with its proof.	140
The right term of *q2 implies (*p1 $\overset{\text{or}}{\vee}$ *p2) of Prop.	141
If *p1 of Prop then (*q1 $\stackrel{\text{and}}{\wedge}$ *q2) is a contradiction.	142
Hence *p2 of Prop.	143
	144
Proposition 3. Take $\forall F, \forall (X,T)_{i \in \{1,2\}}$ such that: $(X,T)_{\forall i}$ is a topological	145
space. (X_1, X_2) are homeomorphic by F as a homeomorphism from X_1 to X_2 .	146
Then $(X,T)_1 \cong^F (X,T)_2$.	147
_	
	148
<i>Proof.</i> Let (DefV \mid DefG) be aliases for Definition (3.3 \mid 3.4) respectively. You	149
can equivalently express $(X,T)_i$ as a nested graph G_i as follows. I show that	150
the antecedent of DefG holds for (F, G_1, G_2) in place of (F, G_1, G_2) .	151
	152
As a prerequisite, define a function $toG(\forall S)$ to return a nested graph (V, E) as	153
follows. As a supplement, S is a deep member of some $(X,T)_{\exists i}$.	154
$V := \{ v \mid \exists d \in S \overset{\text{and}}{\wedge} \text{ if } d \text{ has some member then } v = \text{toG}(d) \text{ else } v = d \} \cup \{S\}.$	155
$E := \{ (d1, d2) \in V^2 \mid d1 \in d2 \}.$	156
	157
Let $(V, E)_i := \text{toG}(X_i)$.	158
Then $(V, E)_1 \cong^F (V, E)_2$.	159
As a proof, a graph isomorphism f can be defined as:	160
$f := F \cup \{(X_1, X_2)\}.$	161
It is trivial that f is a graph isomorphism from $(V, E)_1$ to $(V, E)_2$.	162
Consider (*a1, *a3) of DefV. Take $\forall v :\in V_1$, then $v \cong_F f(v)$.	163
	164
Let $T_{12} := \{(t1, t2) :\in T_1 * T_2 \mid t2 = image(F[t1]) \}.$	165
Take $\forall (t1, t2) :\in T_{12}$.	166
Then $toG(t_1) \cong^F toG(t_2)$.	167
It is clear that an analogous proof exists.	168
	169
Let $(V, E)_i := \text{toG}(T_i)$.	170
Then $(V, E)_1 \cong^F (V, E)_2$.	171
As a proof, a graph isomorphism f can be defined as:	172
Let $T_{g12} := \{ (\text{toG}(t1), \text{toG}(t2)) \mid (t1, t2) \in T_{12} \}$	173
$f := \{(T_1, T_2)\} \cup T_{g12}.$	174

It is trivial that f is a graph isomorphism from $(V, E)_1$ to $(V, E)_2$.	175
Consider (*a3, *b2) of DefV. Take $\forall v$, then $v \cong_F f(v)$.	176
	177
Let $(V, E)_i := \text{toG}((X, T)_i)$.	178
Then $(V, E)_1 \cong^F (V, E)_2$.	179
As a proof, a graph isomorphism f can be defined as:	180
$f := \{ (\ (X,T)_1,\ (X,T)_2\) \} \ \cup$	181
$\{(\text{ toG}(X_1), \text{toG}(X_2))\} \cup$	182
$\{(\text{ toG}(T_1), \text{toG}(T_2))\}.$	183
It is trivial that f is a graph isomorphism from $(V, E)_1$ to $(V, E)_2$.	184
Consider (*a3, *b2) of DefIsoV. Take $\forall v$, then $v \cong_F f(v)$.	185
	186
4 Applications in geometrical topology	187
4.1 Definition	188
Definition 4.1 (Product2 topology). Take $\forall (X_1, X_2)$ as a pair of topological	189
spaces.	190
A product 2 topology $X2_{1*2}$ for (X_1, X_2) is defined as follows.	191
Let X_{1*2} denote the product topology for $(X_1 * X_2)$.	192
$X2_{1*2} := ID((X_1 * X_2)/X_{1*2}), \text{ if } ID((X_1 * X_2)/X_{1*2}) \text{ is defined.}$	193
	194
In the rest, you interpret "product" as "product2".	195
4.2 Natural automorphism	196
Definition 4.2 (Netural automorphism)	107
Definition 4.2 (Natural automorphism).	197
Let $I:=[0,1]$, i.e., I is a unit interval.	198
As you know I is more than a topological space. It is defined a metric table, and decided	
which end point is said as 0. Let (V,T) denote the tenelogical space of I where V is the set of points and	200
Let (Y, T_Y) denote the topological space of I where Y is the set of points and T is the topology on Y . We use I as a bijective index set for Y .	
T_Y is the topology on Y. We use I as a bijective index set for Y.	202
Take $\forall X$ such that: X is a topological space defined the topology T_X . Let	203
Take $\forall X$ such that. X is a topological space defined the topology T_X . Let (P_{XY}, T_{XY}) denote the product space for $X * Y$. Take $\forall p :\in P_{XY}$, Write p as	
$[x,y]$. That is, $(x,y) = \mathrm{ID}^{-1}(p)$.	206
$[\omega, g]$. Find is, (ω, g) — if (p) .	400

	207
Take $\forall F$ as an injection from X^*Y to P_{XY} such that (*0 $\stackrel{\text{and}}{\wedge}$ $\stackrel{\text{and}}{\wedge}$ *2). Hence	208
F takes a pair of points as the input. Then F outputs a point which is the	
identity of a pair of points.	210
$0. \text{ Take } \forall (x_1, y) :\in X^*Y.$	211
1. $\exists x_2 :\in X \ \wedge^{\text{and}} F(x_1, y) = [x_2, y].$	212
2. $F(\forall x, 0) := [x, 0].$	213
	214
Let F_0 be a solution of F with (X, I) fixed such that: $F_0(\forall x, \forall y) := [x, y]$.	215
	216
Take $\forall F_i$ as a solution of F with (X, I) fixed such that: *1.	217
1. $(F_i, T_X, T_Y, T_{XY}) \cong (F_0, T_X, T_Y, T_{XY}).$	218
	219
Let A denote the set of all solutions of F_i with (X, I) fixed. Take $\forall F_i :\in A, \forall g$	220
such that g is a function on X as $g(\forall x) := ID^{-1} \circ F_i(x,1)$. Then g is said a	221
natural automorphism on X .	222
Definition 4.3 (Natural-automorphic).	223
Take $\forall X$ such that: X is a topological space. Take $\forall (s1, s2)$. Then $(s1, s2)$ are	
said X-natural-automorphic if: $\exists F$ as a super set of some natural automor-	
phism on $X \stackrel{\text{and}}{\wedge} s1 \cong^F s2$.	226
4.3 Ideal set of sub spaces	227
Definition 4.4 (Ideal set of sub spaces).	228
Take $\forall (X, S)$ such that: X is a topological space. S is a set of sub spaces of X.	229
S is said ideal if: $(*1 \stackrel{\text{and}}{\wedge} \dots \stackrel{\text{and}}{\wedge} *7)$.	230
1. Let S_P be the set to collect $\forall (s,p)$ such that $s \in S \stackrel{\text{and}}{\wedge} p \in s$.	231
2. $\exists B$ as an open basis to generate X .	232
Regard B as a subset of the power set of X .	233
3. Let $S_B := \{ S_b \mid \exists b \in B \ \land \ S_b = \{ (s, p) \in S_P \mid s \subset b \} \}.$	234
4. Let $S_P := \{ \mathrm{ID}((s,p)) \mid (s,p) \in S_P \}.$	235

5. Let $S_B := \{ S_b 1 \mid \exists S_b 2 \in S_B \overset{\text{and}}{\wedge} S_b 1 = \{ ID((s, p)) \mid (s, p) \in S_b 2 \} \}.$ **6.** S_B is an open basis on S_P . 7. Members of S_P are pairwise S_P -natural-automorphic. 238 239 Conjecture 4.1 (Ideal set of sub spaces and ambient isotopies). 240 Take $\forall (X, T, S, F, A)$ such that: S is an ideal set of sub spaces of (X, T) where 241 T is the topology. F is the set to collect: $\forall f: X^*[0,1] \to X$ such that f is an 242 ambient isotopy. A is the set to collect $\forall (g, S_1, S_2)$ such that: g is a natural 243 automorphism on $X \stackrel{\text{and}}{\wedge} (S1, S2)$ are subsets of $S \stackrel{\text{and}}{\wedge} (S_1, T) \cong^g (S_2, T)$. Then $(*1 \stackrel{\text{and}}{\wedge} \dots \stackrel{\text{and}}{\wedge} *4)$ holds. 245 **1.** take $\forall (g, S_1, S_2) :\in A$. **2.** $\exists f :\in F$ 247 **3.** take $\forall t :\in (0,1] \stackrel{\text{and}}{\wedge} \text{let } f_t(\forall x :\in X) := f(x,t).$ 248 **4.** $(f_t, S, S) \in A \stackrel{\text{and}}{\wedge} \text{if } t = 1 \text{ then } f_t = g.$ **250 Definition 4.5** (Prime topological space). Take $\forall X$ as a topological space. 251 Then X is said prime if *1. **1.** $\exists S$ as a set of sub spaces of $X \stackrel{\text{and}}{\wedge} S$ is ideal $\stackrel{\text{and}}{\wedge} S$ is an open basis to 253 generate X. 254 255 Conjecture 4.2 (Ideal set of sub spaces). Take $\forall (X, S)$ such that: X is a prime 256 topological space. S is a set of sub spaces of X. Then S is ideal if (*1 $\stackrel{\text{and}}{\wedge}$ *2). 257 1. Members of $\{S\}^*X$ are pairwise X-natural-automorphic. 258 **2.** Let $S_p := \{(s, p) \mid s \in S \overset{\text{and}}{\wedge} p \in s \}.$ 259 Members of $\{S\}^*S_p$ are pairwise X-natural-automorphic.

236

261

5 Abstract conjectures	262
5.1 Main abstract conjecture	26 3
Conjecture 5.1 (Abstract conjecture of ideal set and metric). Take $\forall (M, X, S1, f)$ such that *A. Consider (*B \rightarrow *C). It is independent from the topological class of members of $S1$ if f is enough general for topological classes of members of solutions of $S1$ with (M, X) fixed. The claim converges to true if generality approaches to the perfect.	
A. *1 $\stackrel{\text{and}}{\wedge}$ $\stackrel{\text{and}}{\wedge}$ *3.	270
 M is a metric table to define X as a topological space A X is prime. S1 is an ideal set of sub spaces of X. f is a function on S1. *1 A A A *3. Take ∀k1 :∈ S1 Let S2 := {k2 ∈ S1 f(k2) = f(k1) }. S2 is unique for (M, X). Unique?: For example, take ∀x :∈ Deep(X). If S2 is the set to collect ∀k :∈ S1 such that x ∈ Deep(k) then S2 is not unique for (M, X) in general because x 	271 272 273 274 275 276 277 278
is not unique for (M,X) in general. Instead $S2$ is unique for (M,X,x) .	280
C. $S2$ is ideal.	281 282
5.2 Application on knots	2 83
Let Conj be an alias for Conjecture 5.1. Let Def be an alias for the following Definition 5.1. The antecedent of Conj apparently holds for (M, X, K, K_f, f) of Def in place of $(M, X, S1, S2, f)$. And f is apparently enough general as required in Conj.	285
Definition 5.1 (A set of knots). Take $\forall (M, X, K, K_f)$ such that: M is a metric table to define X as a Euclidean space of 3-dimension. Take $\forall k_0$ as a knot and a subspace of X . K is the set to collect $\forall k$ such that: (k, k_0) are X -natural-automorphic.	288 289 290 291

$K_f := \{ k \in K \mid f(k) = f(k_0) \}.$	292
Definition of f :	293294
• $j1(\forall k :\in K) := \{j \mid j \text{ is an orthogonal } ^1\text{projection of } k \text{ onto some infinite plane } \}.$	295 296
• $j2(\forall k :\in K) := \{j \in j1(k) \mid \neg (\exists p \land p \in \text{image}(j) \land j^{-1}(p) \mid > 2) \}.$	297 298
• $j3(\forall k:\in K):=\{n\mid\exists j\overset{\mathrm{and}}{\wedge}j\in j2(k)\overset{\mathrm{and}}{\wedge}n\text{ is the number of 2double points on j}\}.$	299 300
• $f(\forall k :\in K) := \{m \mid m \text{ is the maximal member from } j3(k) \}.$	301 302
•	303
6 Notation	304
• take $\forall x \equiv \text{for } \forall x \equiv \forall x$.	305
In other words, "take" means nothing.	306
• $\forall x \text{ as a set} \equiv \forall x \text{ such that } x \text{ is a set.}$	307
• Assume y is dependent on z then:	308
$\forall x \text{ as a solution of } y \text{ with } z \text{ fixed} \equiv \forall x \text{ as a solution of } y.$	309
• $\{x \mid p(x)\} \equiv$ the set to collect $\forall x$ such that $p(x)$.	310
In definitions, I rarely write "if and only if". In stead I write "if" even if I know that "if and only if" can replace the "if".	311 312 313
References	314
[1] Glen E. Bredon, Topology and Geometry, Springer, ISBN 978-1-4419-3103-0	315
[2] Reinhard Diestel, Graph Theory, Springer-Verlag, ISBN 0-387-98976-5	316
1xx c c c	

¹Hence, j is a function from k to an infinite plane. ²Double point?: That is, the inverse image of a double point has exactly 2 distinct points of k; no matter the double point represents a crossing or a tangent point.