

ÁLGEBRA

Operaciones aritméticas

$$a(b+c) = ab + ac$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$$

$$\frac{a+c}{b} = \frac{a}{b} + \frac{c}{b}$$

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

Exponentes y radicales

$$x^m x^n = x^{m+n} \qquad \qquad \frac{x^m}{x^n} = x^{m-n}$$

$$(x^m)^n = x^{mn} x^{-n} = \frac{1}{x^n}$$

$$\left(xy\right)^n = x^n y^n \qquad \left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$$

$$x^{1/n} = \sqrt[n]{x}$$
 $x^{m/n} = \sqrt[n]{x^m} = (\sqrt[n]{x})^m$

$$\sqrt[n]{xy} = \sqrt[n]{x}\sqrt[n]{\frac{x}{y}} = \sqrt[n]{\frac{x}{y}}$$

Factorización de polinomios notables

$$x^2 - y^2 = (x + y)(x - y)$$

$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$

$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

Teorema del binomio

$$(x + y)^2 = x^2 + 2xy + y^2$$
 $(x - y)^2 = x^2 - 2xy + y^2$

$$(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$

$$(x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$$

$$(x + y)^n = x^n + nx^{n-1}y + \frac{n(n-1)}{2}x^{n-2}y^2$$

$$+\cdots+\binom{n}{k}x^{n-k}y^k+\cdots+nxy^{n-1}+y^n$$

donde
$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{1\cdot 2\cdot 3\cdot \cdots \cdot k}$$

Fórmula cuadrática

Si
$$ax^2 + bx + c = 0$$
, entonces $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Desigualdades y valor absoluto

Si
$$a < b$$
 y $b < c$, entonces $a < c$.

Si
$$a < b$$
, entonces $a + c < b + c$.

Si
$$a < b$$
 y $c > 0$, entonces $ca < cb$.

Si
$$a < b$$
 y $c < 0$, entonces $ca > cb$.

Si a > 0, entonces

$$|x| = a$$
 significa $x = a$ o $x = -a$

$$|x| < a$$
 significa $-a < x < a$

$$|x| > a$$
 significa $x > a$ o $x < -a$

GEOMETRÍA

Fórmulas geométricas

Fórmulas para área A, circunferencia C y volumen V:

Triángulo

$$A = \frac{1}{2}bh$$

$$A = \pi r^2$$

$$A = \frac{1}{2}r^2\theta$$

$$=\frac{1}{2}ab \operatorname{sen} \theta$$

$$C = 2\pi r$$

$$s = r\theta \ (\theta \text{ en radianes})$$

Esfera

$$V = \frac{4}{3} \pi r^3$$

Cilindro
$$V = \pi r^2 h$$

$$V = \frac{1}{3} \pi r$$

$$=\pi r^2h$$

$$V = \frac{1}{3} \pi r^2 h$$

Cono

$$A = \pi r \sqrt{r^2 + h^2}$$

Fórmulas de distancia y de punto medio

Distancia entre $P_1(x_1, y_1)$ y $P_2(x_2, y_2)$:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Punto medio de
$$\overline{P_1P_2}$$
: $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

Rectas

Pendiente de la recta que pasa por $P_1(x_1, y_1)$ y $P_2(x_2, y_2)$:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Ecuación de punto-pendiente de la recta que pasa por $P_1(x_1, y_1)$ con pendiente m:

$$y - y_1 = m(x - x_1)$$

Ecuación de intersección-pendiente de la recta con pendiente m e intersección b con el eje y:

$$y = mx + b$$

Círculos

Ecuación del círculo con centro (h, k) y radio r:

$$(x - h)^2 + (y - k)^2 = r^2$$

TRIGONOMETRÍA

Medida de un ángulo

 π radianes = 180°

$$1^{\circ} = \frac{\pi}{180}$$
 rad

$$1 \text{ rad} = \frac{180^{\circ}}{\pi}$$

$$s = r\theta$$

 $(\theta \text{ en radianes})$

Trigonometría de ángulo recto

$$sen \theta = \frac{op}{hip}$$

$$\csc \theta = \frac{\text{hip}}{\text{op}}$$

$$\cos \theta = \frac{\text{ady}}{\text{hip}}$$

$$\sec \theta = \frac{\text{hip}}{\text{ady}}$$

$$\tan \theta = \frac{\text{op}}{\text{ady}}$$

$$\cot \theta = \frac{\text{ady}}{\text{op}}$$

Funciones trigonométricas

$$sen \theta = \frac{y}{r}$$

$$\csc \theta = \frac{r}{v}$$

$$\cos \theta = \frac{x}{x}$$

$$\cos \theta = \frac{x}{r} \qquad \qquad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \qquad \cot \theta = \frac{x}{y}$$

$$\cot \theta = \frac{x}{y}$$

Gráficas de funciones trigonométricas

Funciones trigonométricas de ángulos importantes

θ	radianes	sen θ	$\cos \theta$	$\tan \theta$
0°	0	0	1	0
30°	$\pi/6$	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$
45°	$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	1
60°	$\pi/3$	$\sqrt{3}/2$	1/2	$\sqrt{3}$
90°	$\pi/2$	1	0	

Identidades fundamentales

$$\csc \theta = \frac{1}{\sec \theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

$$\mathrm{sen}^2\theta + \mathrm{cos}^2\theta = 1$$

$$1 + \tan^2\theta = \sec^2\theta$$

$$1 + \cot^2\theta = \csc^2\theta$$

$$sen(-\theta) = -sen \theta$$

$$\cos(-\theta) = \cos\,\theta$$

$$\tan(-\theta) = -\tan\,\theta$$

$$\operatorname{sen}\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$$

La ley de senos

$$\frac{\operatorname{sen} A}{a} = \frac{\operatorname{sen} B}{b} = \frac{\operatorname{sen} C}{c}$$

La ley de cosenos

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$b^2 = a^2 + c^2 - 2ac\cos B$$

$$c^2 = a^2 + b^2 - 2ab \cos C$$

Fórmulas de adición y sustracción

$$sen(x + y) = sen x cos y + cos x sen y$$

$$sen(x - y) = sen x cos y - cos x sen y$$

$$cos(x + y) = cos x cos y - sen x sen y$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y$$

$$\tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

Fórmulas de ángulo doble

$$sen 2x = 2 sen x cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$$

$$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$$

Fórmulas de semiángulo

$$\sin^2 x = \frac{1 - \cos 2x}{2} \qquad \cos^2 x = \frac{1 + \cos 2x}{2}$$

X

FUNCIONES ESPECIALES

Funciones de potencias $f(x) = x^a$

i) $f(x) = x^n$, *n* es entero positivo

ii) $f(x) = x^{1/n} = \sqrt[n]{x}$, n es entero positivo

$$f(x) = \sqrt[3]{x}$$

(1, 1)

Funciones trigonométricas inversas

$$\arcsin x = \sin^{-1} x = y \iff \sin y = x \quad y \quad -\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

$$\arccos x = \cos^{-1} x = y \iff \cos y = x \quad y \quad 0 \le y \le \pi$$

$$\arctan x = \tan^{-1} x = y \iff \tan y = x \quad y \quad -\frac{\pi}{2} < y < \frac{\pi}{2}$$

 $y = \tan^{-1} x = \arctan x$

$$\lim_{x \to -\infty} \tan^{-1} x = -\frac{\pi}{2}$$

$$\lim_{x \to \infty} \tan^{-1} x = \frac{\pi}{2}$$

FUNCIONES ESPECIALES

Funciones exponenciales y logarítmicas

$$\log_a x = y \iff a^y = x$$

$$\ln x = \log_e x, \quad \text{donde} \quad \ln e = 1$$

$$\ln x = y \iff e^y = x$$

Ecuaciones de cancelación

 $\log_a(a^x) = x \qquad a^{\log_a x} = x$

$$\ln(e^x) = x \qquad e^{\ln x} = x$$

Leyes de los logaritmos

$$1. \log_a(xy) = \log_a x + \log_a y$$

$$2. \log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

$$3. \log_a(x^r) = r \log_a x$$

$$\lim_{x \to -\infty} e^x = 0 \qquad \qquad \lim_{x \to \infty} e^x = \infty$$

$$\lim_{x \to 0^+} \ln x = -\infty \qquad \qquad \lim_{x \to \infty} \ln x = \infty$$

Funciones exponenciales

Funciones logarítmicas

Funciones hiperbólicas

$$senh x = \frac{e^x - e^{-x}}{2}$$

$$\operatorname{csch} x = \frac{1}{\operatorname{senh} x}$$

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$\operatorname{sech} x = \frac{1}{\cosh x}$$

$$\tanh x = \frac{\sinh x}{\cosh x}$$

$$\coth x = \frac{\cosh x}{\sinh x}$$

Funciones hiperbólicas inversas

$$y = \operatorname{senh}^{-1} x \iff \operatorname{senh} y = x$$

$$\operatorname{senh}^{-1} x = \ln(x + \sqrt{x^2 + 1})$$

$$y = \cosh^{-1}x \iff \cosh y = x \quad y \quad y \ge 0$$

$$\cosh^{-1}x = \ln(x + \sqrt{x^2 - 1})$$

$$y = \tanh^{-1}x \iff \tanh y = x$$

$$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$

X

REGLAS DE DIFERENCIACIÓN

Fórmulas generales

1.
$$\frac{d}{dx}(c) = 0$$

3.
$$\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$$

5.
$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$
 (regla del producto)

7.
$$\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)$$
 (regla de la cadena)

$$2. \frac{d}{dx}[cf(x)] = cf'(x)$$

4.
$$\frac{d}{dx}[f(x) - g(x)] = f'(x) - g'(x)$$

6.
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$$
 (regla del cociente)

8.
$$\frac{d}{dx}(x^n) = nx^{n-1}$$
 (regla de potencias)

Funciones exponenciales y logarítmicas

$$9. \ \frac{d}{dx}(e^x) = e^x$$

$$\mathbf{11.} \ \frac{d}{dx} \ln |x| = \frac{1}{x}$$

$$\mathbf{10.} \ \frac{d}{dx}(a^x) = a^x \ln a$$

Funciones trigonométricas

13.
$$\frac{d}{dx}(\sin x) = \cos x$$

14.
$$\frac{d}{dx}(\cos x) = -\sin x$$

15.
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

16.
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

17.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

18.
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

Funciones trigonométricas inversas

19.
$$\frac{d}{dx} (\text{sen}^{-1}x) = \frac{1}{\sqrt{1 - x^2}}$$

20.
$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$$

21.
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

22.
$$\frac{d}{dx}(\csc^{-1}x) = -\frac{1}{x\sqrt{x^2 - 1}}$$

23.
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2 - 1}}$$

24.
$$\frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}$$

Funciones hiperbólicas

25.
$$\frac{d}{dx}(\operatorname{senh} x) = \cosh x$$

26.
$$\frac{d}{dx}(\cosh x) = \sinh x$$

27.
$$\frac{d}{dx} (\tanh x) = \operatorname{sech}^2 x$$

28.
$$\frac{d}{dx}(\operatorname{csch} x) = -\operatorname{csch} x \operatorname{coth} x$$

29.
$$\frac{d}{dx}(\operatorname{sech} x) = -\operatorname{sech} x \tanh x$$

$$30. \frac{d}{dx} \left(\coth x \right) = -\operatorname{csch}^2 x$$

Funciones hiperbólicas inversas

31.
$$\frac{d}{dx} (\operatorname{senh}^{-1} x) = \frac{1}{\sqrt{1 + x^2}}$$

32.
$$\frac{d}{dx} \left(\cosh^{-1} x \right) = \frac{1}{\sqrt{x^2 - 1}}$$

33.
$$\frac{d}{dx} (\tanh^{-1} x) = \frac{1}{1 - x^2}$$

34.
$$\frac{d}{dx} \left(\operatorname{csch}^{-1} x \right) = -\frac{1}{|x| \sqrt{x^2 + 1}}$$

35.
$$\frac{d}{dx} (\operatorname{sech}^{-1} x) = -\frac{1}{x\sqrt{1-x^2}}$$

36.
$$\frac{d}{dx} \left(\coth^{-1} x \right) = \frac{1}{1 - x^2}$$

TABLA DE INTEGRALES

Formas básicas

$$1. \int u \, dv = uv - \int v \, du$$

2.
$$\int u^n du = \frac{u^{n+1}}{n+1} + C, \quad n \neq -1$$

3.
$$\int \frac{du}{u} = \ln|u| + C$$

$$\mathbf{4.} \int e^u \, du = e^u + C$$

$$5. \int a^u \, du = \frac{a^u}{\ln a} + C$$

$$\mathbf{6.} \int \sin u \, du = -\cos u + C$$

$$7. \int \cos u \, du = \sin u + C$$

$$8. \int \sec^2 u \, du = \tan u + C$$

$$\mathbf{9.} \int \csc^2 u \, du = -\cot u + C$$

$$10. \int \sec u \, \tan u \, du = \sec u + C$$

$$\mathbf{11.} \int \csc u \cot u \, du = -\csc u + C$$

$$12. \int \tan u \, du = \ln |\sec u| + C$$

$$\mathbf{13.} \int \cot u \, du = \ln |\sin u| + C$$

$$14. \int \sec u \, du = \ln |\sec u + \tan u| + C$$

$$15. \int \csc u \, du = \ln|\csc u - \cot u| + C$$

16.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \operatorname{sen}^{-1} \frac{u}{a} + C, \quad a > 0$$

17.
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \frac{u}{a} + C$$

18.
$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \sec^{-1} \frac{u}{a} + C$$

19.
$$\int \frac{du}{a^2 - u^2} = \frac{1}{2a} \ln \left| \frac{u + a}{u - a} \right| + C$$

20.
$$\int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| + C$$

Formas que involucran $\sqrt{a^2+u^2}$, a>0

21.
$$\int \sqrt{a^2 + u^2} \, du = \frac{u}{2} \sqrt{a^2 + u^2} + \frac{a^2}{2} \ln(u + \sqrt{a^2 + u^2}) + C$$

22.
$$\int u^2 \sqrt{a^2 + u^2} \, du = \frac{u}{8} (a^2 + 2u^2) \sqrt{a^2 + u^2} - \frac{a^4}{8} \ln(u + \sqrt{a^2 + u^2}) + C$$

23.
$$\int \frac{\sqrt{a^2 + u^2}}{u} du = \sqrt{a^2 + u^2} - a \ln \left| \frac{a + \sqrt{a^2 + u^2}}{u} \right| + C$$

24.
$$\int \frac{\sqrt{a^2 + u^2}}{u^2} du = -\frac{\sqrt{a^2 + u^2}}{u} + \ln(u + \sqrt{a^2 + u^2}) + C$$

25.
$$\int \frac{du}{\sqrt{a^2 + u^2}} = \ln(u + \sqrt{a^2 + u^2}) + C$$

26.
$$\int \frac{u^2 du}{\sqrt{a^2 + u^2}} = \frac{u}{2} \sqrt{a^2 + u^2} - \frac{a^2}{2} \ln(u + \sqrt{a^2 + u^2}) + C$$

27.
$$\int \frac{du}{u\sqrt{a^2 + u^2}} = -\frac{1}{a} \ln \left| \frac{\sqrt{a^2 + u^2} + a}{u} \right| + C$$

28.
$$\int \frac{du}{u^2 \sqrt{a^2 + u^2}} = -\frac{\sqrt{a^2 + u^2}}{a^2 u} + C$$

29.
$$\int \frac{du}{(a^2 + u^2)^{3/2}} = \frac{u}{a^2 \sqrt{a^2 + u^2}} + C$$

X

TABLA DE INTEGRALES

Formas que involucran $\sqrt{a^2-u^2}$, a>0

30.
$$\int \sqrt{a^2 - u^2} \, du = \frac{u}{2} \sqrt{a^2 - u^2} + \frac{a^2}{2} \operatorname{sen}^{-1} \frac{u}{a} + C$$

31.
$$\int u^2 \sqrt{a^2 - u^2} \, du = \frac{u}{8} (2u^2 - a^2) \sqrt{a^2 - u^2} + \frac{a^4}{8} \operatorname{sen}^{-1} \frac{u}{a} + C$$

32.
$$\int \frac{\sqrt{a^2 - u^2}}{u} du = \sqrt{a^2 - u^2} - a \ln \left| \frac{a + \sqrt{a^2 - u^2}}{u} \right| + C$$

33.
$$\int \frac{\sqrt{a^2 - u^2}}{u^2} du = -\frac{1}{u} \sqrt{a^2 - u^2} - \operatorname{sen}^{-1} \frac{u}{a} + C$$

34.
$$\int \frac{u^2 du}{\sqrt{a^2 - u^2}} = -\frac{u}{2} \sqrt{a^2 - u^2} + \frac{a^2}{2} \operatorname{sen}^{-1} \frac{u}{a} + C$$

35.
$$\int \frac{du}{u\sqrt{a^2 - u^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - u^2}}{u} \right| + C$$

36.
$$\int \frac{du}{u^2 \sqrt{a^2 - u^2}} = -\frac{1}{a^2 u} \sqrt{a^2 - u^2} + C$$

37.
$$\int (a^2 - u^2)^{3/2} du = -\frac{u}{8} (2u^2 - 5a^2) \sqrt{a^2 - u^2} + \frac{3a^4}{8} \operatorname{sen}^{-1} \frac{u}{a} + C$$

38.
$$\int \frac{du}{(a^2 - u^2)^{3/2}} = \frac{u}{a^2 \sqrt{a^2 - u^2}} + C$$

Formas que involucran $\sqrt{u^2-a^2}$, a>0

39.
$$\int \sqrt{u^2 - a^2} \, du = \frac{u}{2} \sqrt{u^2 - a^2} - \frac{a^2}{2} \ln \left| u + \sqrt{u^2 - a^2} \right| + C$$

40.
$$\int u^2 \sqrt{u^2 - a^2} \, du = \frac{u}{8} (2u^2 - a^2) \sqrt{u^2 - a^2} - \frac{a^4}{8} \ln \left| u + \sqrt{u^2 - a^2} \right| + C$$

41.
$$\int \frac{\sqrt{u^2 - a^2}}{u} du = \sqrt{u^2 - a^2} - a \cos^{-1} \frac{a}{|u|} + C$$

42.
$$\int \frac{\sqrt{u^2 - a^2}}{u^2} du = -\frac{\sqrt{u^2 - a^2}}{u} + \ln |u + \sqrt{u^2 - a^2}| + C$$

43.
$$\int \frac{du}{\sqrt{u^2 - a^2}} = \ln \left| u + \sqrt{u^2 - a^2} \right| + C$$

44.
$$\int \frac{u^2 du}{\sqrt{u^2 - a^2}} = \frac{u}{2} \sqrt{u^2 - a^2} + \frac{a^2}{2} \ln \left| u + \sqrt{u^2 - a^2} \right| + C$$

45.
$$\int \frac{du}{u^2 \sqrt{u^2 - a^2}} = \frac{\sqrt{u^2 - a^2}}{a^2 u} + C$$

46.
$$\int \frac{du}{(u^2 - a^2)^{3/2}} = -\frac{u}{a^2 \sqrt{u^2 - a^2}} + C$$

TABLA DE INTEGRALES

Formas que involucran a + bu

47.
$$\int \frac{u \, du}{a + bu} = \frac{1}{b^2} (a + bu - a \ln |a + bu|) + C$$

48.
$$\int \frac{u^2 du}{a + bu} = \frac{1}{2b^3} \left[(a + bu)^2 - 4a(a + bu) + 2a^2 \ln |a + bu| \right] + C$$

49.
$$\int \frac{du}{u(a+bu)} = \frac{1}{a} \ln \left| \frac{u}{a+bu} \right| + C$$

50.
$$\int \frac{du}{u^2(a+bu)} = -\frac{1}{au} + \frac{b}{a^2} \ln \left| \frac{a+bu}{u} \right| + C$$

51.
$$\int \frac{u \, du}{(a + bu)^2} = \frac{a}{b^2 (a + bu)} + \frac{1}{b^2} \ln |a + bu| + C$$

52.
$$\int \frac{du}{u(a+bu)^2} = \frac{1}{a(a+bu)} - \frac{1}{a^2} \ln \left| \frac{a+bu}{u} \right| + C$$

53.
$$\int \frac{u^2 du}{(a+bu)^2} = \frac{1}{b^3} \left(a + bu - \frac{a^2}{a+bu} - 2a \ln|a+bu| \right) + C$$

54.
$$\int u\sqrt{a + bu} \, du = \frac{2}{15b^2} (3bu - 2a)(a + bu)^{3/2} + C$$

55.
$$\int \frac{u \, du}{\sqrt{a + bu}} = \frac{2}{3b^2} (bu - 2a) \sqrt{a + bu} + C$$

56.
$$\int \frac{u^2 du}{\sqrt{a + bu}} = \frac{2}{15b^3} (8a^2 + 3b^2u^2 - 4abu) \sqrt{a + bu} + C$$

57.
$$\int \frac{du}{u\sqrt{a+bu}} = \frac{1}{\sqrt{a}} \ln \left| \frac{\sqrt{a+bu} - \sqrt{a}}{\sqrt{a+bu} + \sqrt{a}} \right| + C, \text{ si } a > 0$$
$$= \frac{2}{\sqrt{-a}} \tan^{-1} \sqrt{\frac{a+bu}{-a}} + C, \text{ si } a < 0$$

58.
$$\int \frac{\sqrt{a+bu}}{u} du = 2\sqrt{a+bu} + a \int \frac{du}{u\sqrt{a+bu}}$$

59.
$$\int \frac{\sqrt{a+bu}}{u^2} du = -\frac{\sqrt{a+bu}}{u} + \frac{b}{2} \int \frac{du}{u\sqrt{a+bu}}$$

60.
$$\int u^n \sqrt{a + bu} \, du = \frac{2}{b(2n+3)} \left[u^n (a + bu)^{3/2} - na \int u^{n-1} \sqrt{a + bu} \, du \right]$$

61.
$$\int \frac{u^n du}{\sqrt{a + bu}} = \frac{2u^n \sqrt{a + bu}}{b(2n + 1)} - \frac{2na}{b(2n + 1)} \int \frac{u^{n-1} du}{\sqrt{a + bu}}$$

62.
$$\int \frac{du}{u^n \sqrt{a+bu}} = -\frac{\sqrt{a+bu}}{a(n-1)u^{n-1}} - \frac{b(2n-3)}{2a(n-1)} \int \frac{du}{u^{n-1}\sqrt{a+bu}}$$

Y

TABLA DE INTEGRALES

Formas trigonométricas

63.
$$\int \sin^2 u \, du = \frac{1}{2}u - \frac{1}{4}\sin 2u + C$$

64.
$$\int \cos^2 u \, du = \frac{1}{2}u + \frac{1}{4} \sin 2u + C$$

$$\mathbf{65.} \int \tan^2 u \, du = \tan u - u + C$$

$$\mathbf{66.} \int \cot^2 u \, du = -\cot u - u + C$$

67.
$$\int \sin^3 u \ du = -\frac{1}{3}(2 + \sin^2 u) \cos u + C$$

68.
$$\int \cos^3 u \, du = \frac{1}{3}(2 + \cos^2 u) \sin u + C$$

69.
$$\int \tan^3 u \, du = \frac{1}{2} \tan^2 u + \ln|\cos u| + C$$

70.
$$\int \cot^3 u \ du = -\frac{1}{2} \cot^2 u - \ln|\sin u| + C$$

71.
$$\int \sec^3 u \, du = \frac{1}{2} \sec u \, \tan u + \frac{1}{2} \ln |\sec u + \tan u| + C$$

72.
$$\int \csc^3 u \, du = -\frac{1}{2} \csc u \cot u + \frac{1}{2} \ln |\csc u - \cot u| + C$$

73.
$$\int \operatorname{sen}^{n} u \, du = -\frac{1}{n} \operatorname{sen}^{n-1} u \cos u + \frac{n-1}{n} \int \operatorname{sen}^{n-2} u \, du$$

74.
$$\int \cos^n u \, du = \frac{1}{n} \cos^{n-1} u \, \sin u + \frac{n-1}{n} \int \cos^{n-2} u \, du$$

75.
$$\int \tan^n u \ du = \frac{1}{n-1} \tan^{n-1} u - \int \tan^{n-2} u \ du$$

Formas trigonométricas inversas

87.
$$\int \operatorname{sen}^{-1} u \, du = u \operatorname{sen}^{-1} u + \sqrt{1 - u^2} + C$$

88.
$$\int \cos^{-1} u \, du = u \cos^{-1} u - \sqrt{1 - u^2} + C$$

89.
$$\int \tan^{-1} u \, du = u \tan^{-1} u - \frac{1}{2} \ln(1 + u^2) + C$$

90.
$$\int u \, \text{sen}^{-1} u \, du = \frac{2u^2 - 1}{4} \, \text{sen}^{-1} u + \frac{u\sqrt{1 - u^2}}{4} + C$$

91.
$$\int u \cos^{-1} u \, du = \frac{2u^2 - 1}{4} \cos^{-1} u - \frac{u\sqrt{1 - u^2}}{4} + C$$

76.
$$\int \cot^n u \, du = \frac{-1}{n-1} \cot^{n-1} u - \int \cot^{n-2} u \, du$$

77.
$$\int \sec^n u \, du = \frac{1}{n-1} \tan u \sec^{n-2} u + \frac{n-2}{n-1} \int \sec^{n-2} u \, du$$

78.
$$\int \csc^n u \, du = \frac{-1}{n-1} \cot u \csc^{n-2} u + \frac{n-2}{n-1} \int \csc^{n-2} u \, du$$

79.
$$\int \sin au \, \sin bu \, du = \frac{\sin(a-b)u}{2(a-b)} - \frac{\sin(a+b)u}{2(a+b)} + C$$

80.
$$\int \cos au \cos bu \, du = \frac{\sin(a-b)u}{2(a-b)} + \frac{\sin(a+b)u}{2(a+b)} + C$$

81.
$$\int \operatorname{sen} au \, \cos bu \, du = -\frac{\cos(a-b)u}{2(a-b)} - \frac{\cos(a+b)u}{2(a+b)} + C$$

82.
$$\int u \sin u \, du = \sin u - u \cos u + C$$

$$83. \int u \cos u \, du = \cos u + u \sin u + C$$

84.
$$\int u^n \sin u \, du = -u^n \cos u + n \int u^{n-1} \cos u \, du$$

85.
$$\int u^n \cos u \, du = u^n \sin u - n \int u^{n-1} \sin u \, du$$

86.
$$\int \operatorname{sen}^{n} u \, \cos^{m} u \, du = -\frac{\operatorname{sen}^{n-1} u \, \cos^{m+1} u}{n+m} + \frac{n-1}{n+m} \int \operatorname{sen}^{n-2} u \, \cos^{m} u \, du$$
$$= \frac{\operatorname{sen}^{n+1} u \, \cos^{m-1} u}{n+m} + \frac{m-1}{n+m} \int \operatorname{sen}^{n} u \, \cos^{m-2} u \, du$$

92.
$$\int u \tan^{-1} u \, du = \frac{u^2 + 1}{2} \tan^{-1} u - \frac{u}{2} + C$$

93.
$$\int u^n \operatorname{sen}^{-1} u \, du = \frac{1}{n+1} \left[u^{n+1} \operatorname{sen}^{-1} u - \int \frac{u^{n+1} \, du}{\sqrt{1-u^2}} \right], \quad n \neq -1$$

94.
$$\int u^n \cos^{-1} u \, du = \frac{1}{n+1} \left[u^{n+1} \cos^{-1} u + \int \frac{u^{n+1} \, du}{\sqrt{1-u^2}} \right], \quad n \neq -1$$

95.
$$\int u^n \tan^{-1} u \, du = \frac{1}{n+1} \left[u^{n+1} \tan^{-1} u - \int \frac{u^{n+1} \, du}{1+u^2} \right], \quad n \neq -1$$

PÁGINA DE REFERENCIA 10

TABLA DE INTEGRALES

Formas exponenciales y logarítmicas

96.
$$\int ue^{au} du = \frac{1}{a^2} (au - 1)e^{au} + C$$

97.
$$\int u^n e^{au} du = \frac{1}{a} u^n e^{au} - \frac{n}{a} \int u^{n-1} e^{au} du$$

98.
$$\int e^{au} \sin bu \ du = \frac{e^{au}}{a^2 + b^2} (a \sin bu - b \cos bu) + C$$

99.
$$\int e^{au} \cos bu \, du = \frac{e^{au}}{a^2 + b^2} (a \cos bu + b \sin bu) + C$$

100.
$$\int \ln u \, du = u \ln u - u + C$$

101.
$$\int u^n \ln u \, du = \frac{u^{n+1}}{(n+1)^2} [(n+1) \ln u - 1] + C$$

102.
$$\int \frac{1}{u \ln u} du = \ln |\ln u| + C$$

Formas hiperbólicas

$$103. \int \operatorname{senh} u \, du = \cosh u + C$$

$$104. \int \cosh u \, du = \sinh u + C$$

$$105. \int \tanh u \, du = \ln \cosh u + C$$

$$106. \int \coth u \, du = \ln | \operatorname{senh} u | + C$$

107.
$$\int \operatorname{sech} u \, du = \tan^{-1} | \operatorname{senh} u | + C$$

$$108. \int \operatorname{csch} u \, du = \ln \left| \tanh \frac{1}{2} u \right| + C$$

$$109. \int \operatorname{sech}^2 u \, du = \tanh u + C$$

$$110. \int \operatorname{csch}^2 u \, du = -\coth u + C$$

111.
$$\int \operatorname{sech} u \, \tanh u \, du = -\operatorname{sech} u + C$$

112.
$$\int \operatorname{csch} u \, \coth u \, du = -\operatorname{csch} u + C$$

Formas que involucran $\sqrt{2au-u^2}$, a>0

113.
$$\int \sqrt{2au - u^2} \, du = \frac{u - a}{2} \sqrt{2au - u^2} + \frac{a^2}{2} \cos^{-1} \left(\frac{a - u}{a} \right) + C$$

114.
$$\int u\sqrt{2au-u^2}\,du = \frac{2u^2-au-3a^2}{6}\sqrt{2au-u^2} + \frac{a^3}{2}\cos^{-1}\left(\frac{a-u}{a}\right) + C$$

115.
$$\int \frac{\sqrt{2au - u^2}}{u} du = \sqrt{2au - u^2} + a \cos^{-1} \left(\frac{a - u}{a}\right) + C$$

116.
$$\int \frac{\sqrt{2au - u^2}}{u^2} du = -\frac{2\sqrt{2au - u^2}}{u} - \cos^{-1}\left(\frac{a - u}{a}\right) + C$$

117.
$$\int \frac{du}{\sqrt{2au - u^2}} = \cos^{-1}\left(\frac{a - u}{a}\right) + C$$

118.
$$\int \frac{u \, du}{\sqrt{2au - u^2}} = -\sqrt{2au - u^2} + a \cos^{-1} \left(\frac{a - u}{a}\right) + C$$

119.
$$\int \frac{u^2 du}{\sqrt{2au - u^2}} = -\frac{(u + 3a)}{2} \sqrt{2au - u^2} + \frac{3a^2}{2} \cos^{-1} \left(\frac{a - u}{a}\right) + C$$

120.
$$\int \frac{du}{u\sqrt{2au - u^2}} = -\frac{\sqrt{2au - u^2}}{au} + C$$