Student Name: Rajashekar Mudigonda

CS 585 Spring 2024 Written Assignment #02

Due: Sunday, February 11, 2024, 11:59 PM CST

Points: 30

Objectives:

- 1. (10 points) Demonstrate your understanding of Minimum Edit Distance algorithm.
- 2. (10 points) Demonstrate your understanding of the N-gram language modeling.
- 3. (10 points) Demonstrate your understanding of an HMM POS tagger.

Problem 1 [10 pts]

What is the **Minimum Edit Distance** between words STALK and FABLE (assume that insertion / deletion cost is 1, substitution cost is 2)? Populate the table below to find the MED. Include back pointers.

K						
L						
Α						
Т						
S						
#						
	#	F	Α	В	L	E

Solution:

K	5	6	5	6	5	6
L	4	5	4	5	4	5
Α	3	4	3	4	5	6
Т	2	3	4	5	6	7
S	1	2	3	4	5	6
#	0	1	2	3	4	5
	#	F	Α	В	L	E

Minimum Edit Distance:		

Minimum Edit Distance = 6

Problem 2 [10 pts]

Your task is to calculate probabilities of selected sentences in English using a language model (based on Google Books N-gram corpus). Use the Google N-Gram Viewer website (https://books.google.com/ngrams) to collect all necessary data (NOTE: Google provides N-gram PERCENTAGES – those are NOT COUNTS! and not exactly probabilities!) and calculate sentence probability.

A) [5 pts] Probability of a sentence:

Today is a good day

```
Relevant bigram probabilities [1 pt]:

(<s>, today) - 0.25

(Today, is) - 0.00039373768/100 = 0.399376*10^-5

(is, a) - 0.0562696642/100 = 0.005626 = 0.562696642*10^-5

(a, good) - 0.013680092/100 = 13.6860092*10^-5

(Good, day) - 0.0002368249/100 = 0.2368249*10^-5

(day, </s>) - 0.25

Probability of a sentence formula [2 pt]:
```

```
P(<s>, Today) * P(Today, is) * P(is, a) * P(a, good) * P(Good, day) * P(day, </s)
```

Probability of a sentence (calculations and value) [2 pt]:

```
(250 * 0.3993768 * 56.2696642 * 13.6860092 * 0.2368249 * 250) *10^-5 = 4.552*10^-5
```

B) **[5 pts]** Probability of a sentence:

Today is a bad day

Relevant bigram probabilities [1 pt]:

```
(<s>, Today) = 0.25
```

(today, is) = 0.3993768*10^-5 (is, a) = 56.2696642*10^-5 (a, bad) = 1.963926*10^-5 (bad, day) = 0.0680989*10^-5

(day, </s>) = 0.25

Probability of a sentence <u>formula</u> [2 pt]:

P(<s>, Today) * P(Today, is) * P(is, a) * P(a, bad) * P(bad, day) * P(day, </s)

Probability of a sentence (calculations and value) [2 pt]:

(250 * 0.3993768 * 56.2696642*1.963926*0.0680989 *250) *10^-5

= 0.188*10^-5

Problem 3 [10 pts]

Given the following Hidden Markov model (transition probabilities shown; emission probabilities to be determined by you using corpus C data) based on corpus C:

And the following table of selected word counts from some corpus C:

Word/Tag	N	V	ART	Р	TOTAL
flies	21	23	0	0	44
fruit	49	5	1	0	55
like	10	30	0	21	61
а	1	0	201	0	202
the	1	0	300	2	303
flower	53	15	0	0	68
flowers	42	16	0	0	58
birds	64	1	0	0	65
others	592	210	56	284	1142
TOTAL	833	300	558	307	1998

Using the approach presented during the lecture, decide which sentence, S1:

birds like flower

٥r	52	

flies like fruit

is more likely to be labeled with a sequence of tags N, V, N. Show all your work.

Answer:

Second word is most likely to be labelled with sequence of tags because of the probability of 2^{nd} sentence is greater than probability of first sentence.

	257	ART	Now	Vab	Prep.
25>	0	0.71	0.29	o	0
<art></art>	0	0	1.3	*0	0
< Nan	0	0.66	0.13	0-43	0-44
Verb	0	0.65	035	0	.0
Prep	0	0.74	0.26	0	0
			1 . *	1	

Given sentinas

SI: birds like flowers

52: flies like fruit

required: P(birds, like, Hower | N,V,N)

we know
$$P(w_1, w_2, \dots) = \text{Tip}(w_i | C_i) * P(C_i | C_{i-1})$$

using (), calculating probability P(si)

$$= \left(\frac{64}{833} \times 0.1 \times \frac{53}{833}\right) \left(0.29 \times 0.43 \times 0.35\right)$$

7 (0.0768 x0.1 x 0.0636) of 6.29 x0.43 x0.35

Using 1) Calculating to 52.

=
$$\left(0.025 \times 0.1 \times 49\right) \left(0.29 \times 0.43 \times 0.35\right)$$

clearly P(31) > P(52). So there are St is the suitable sentence