BATTERY OPERATIONS IN ELECTRICITY MARKETS: STRATEGIC BEHAVIOR AND DISTORTIONS

Jerry Anunrojwong*

Columbia Business School

^{*}with Santiago R. Balseiro, Omar Besbes, and Bolun Xu

THE GROWTH OF BATTERIES IN CALIFORNIA

THE GROWTH OF BATTERIES IN CALIFORNIA

THE GROWTH OF BATTERIES IN CALIFORNIA

 $\underbrace{\mathsf{net}\;\mathsf{demand}}_{\mathsf{(constant)}} - \underbrace{\underbrace{\mathsf{renewables}}_{\mathsf{(increasing)}}} = \mathsf{conventional}\;\mathsf{generators}$

 ${\sf net\ demand} = \underbrace{{\sf system\ demand}}_{({\sf constant})} - \underbrace{{\sf renewables}}_{({\sf increasing})} = {\sf conventional\ generators}$

 ${\sf net\ demand} = \underbrace{{\sf system\ demand}}_{({\sf constant})} - \underbrace{{\sf renewables}}_{({\sf increasing})} = {\sf conventional\ generators}$

 ${\sf net\ demand} = \underbrace{{\sf system\ demand}}_{({\sf constant})} - \underbrace{{\sf renewables}}_{({\sf increasing})} = {\sf conventional\ generators}$

RESEARCH QUESTIONS

Batteries are no longer price takers, so ...

How do batteries operate in electricity markets?

How does the strategic behavior of decentralized batteries distort decisions compared to centralized batteries?

Electricity markets are highly complex

Our contribution: a **tractable analytical model** = economic intuition + rich enough to capture salient features.

RESEARCH QUESTIONS

Batteries are no longer price takers, so ...

How do batteries operate in electricity markets?

How does the strategic behavior of decentralized batteries distort decisions compared to centralized batteries?

Electricity markets are highly complex.

Our contribution: a tractable analytical model

= economic intuition + rich enough to capture salient features.

THREE OPERATING REGIMES

No Battery (NB)

"Status quo" benchmark.

Centralized Battery (CN)

Minimizing generation cost.

Decentralized Battery (DCN)

Maximizing battery profit.

ELECTRICITY MARKETS CLEAR IN TWO STAGES

Day-Ahead Market (DA)

based on forecast

- (1) forward market reduces uncertainty
- (2) slow generators take time to start and ramp up

Real-Time Market (RT)

based on realized demand

demand must equal supply at all times

ELECTRICITY MARKETS CLEAR IN TWO STAGES

Day-Ahead Market (DA)

Real-Time Market (RT)

based on forecast

based on realized demand

(1) forward market reduces uncertainty

demand must equal supply

(2) slow generators take time to start and ramp up

ELECTRICITY MARKETS CLEAR IN TWO STAGES

Day-Ahead Market (DA)

based on forecast

- (1) forward market reduces uncertainty
- (2) slow generators take time to start and ramp up

Real-Time Market (RT)

based on realized demand

demand must equal supply at all times

THE BATTERY DECIDES DISCHARGES z IN DA AND RT

Day-Ahead Market (DA)

Real-Time Market (RT)

T periods

demand

$$\mathbb{E}[D_1], \dots, \mathbb{E}[D_T]$$

DA demand (forecast)

decisions

$$z_1^{DA}, \dots, z_T^{DA}$$

$$\underbrace{D_1 - \mathbb{E}[D_1], \dots, D_T - \mathbb{E}[D_T]}_{\mathbf{Z} = \mathbf{Z} = \mathbf{$$

RT residual demand

$$z_1^{RT}(\cdot), \dots, z_T^{RT}(\cdot)$$

depending on realized demand history

Discharge (z > 0) or charge (z < 0)

Constraints: net discharge is zero. $\sum_t z_t^{DA} = \sum_t z_t^{RT} = 0$

THE BATTERY DECIDES DISCHARGES z IN DA AND RT

Day-Ahead Market (DA)

Real-Time Market (RT)

T periods

demand

$$\mathbb{E}[D_1], \dots, \mathbb{E}[D_T]$$

DA demand (forecast)

decisions

$$z_1^{DA}, \dots, z_T^{DA}$$

$$\underbrace{D_1 - \mathbb{E}[D_1], \dots, D_T - \mathbb{E}[D_T]}_{}$$

RT residual demand

$$z_1^{RT}(\cdot), \dots, z_T^{RT}(\cdot)$$

depending on realized demand history

Discharge (z > 0) or charge (z < 0)

Constraints: net discharge is zero. $\sum_t z_t^{DA} = \sum_t z_t^{RT} = 0$.

T=2 Periods Captures the Duck Curve

 $(D_{\mathsf{peak}}, D_{\mathsf{off}}) \sim \pi$

Let $p^{DA} = \mathsf{DA}$ price, $p^{RT} = \mathsf{RT}$ price.

Assume **two types** of generators:

cost CDF (mass of gens w/ cost
$$\leq p$$
)

"fast" (DA
$$+$$
 RT, e.g. gas)

$$C_{s}(p) = l_{s} C(p)$$

$$k_f \equiv$$
 fraction of fast generators

For each time period t,

$$G_s(p_t^{DA})$$

$$+G_f(p_t)$$
 $+G_s(p_t)$

$$\mathbb{E}[D_t] - z_t$$

$$-z_t^{DA}$$
 (DA)

Let $p^{DA} = \mathsf{DA}$ price, $p^{RT} = \mathsf{RT}$ price.

Assume two types of generators:

"fast" (DA
$$+$$
 RT, e.g. gas)

cost CDF (mass of gens w/ cost $\leq p$

$$G_s(p) = (1 - k_f)G(p)$$

$$G_f(p) = k_f G(p)$$

 $k_f \equiv$ fraction of fast generators

For each time period t,

$$G_s(p_t^{DA}) + G_f(p_t^{DA})$$

$$G_s(p_t^{DA}) + G_f(p_t^{RT})$$

supply from "slow" supply from "f

$$\mathbb{E}[D_t] - z_t^{DA} \tag{DA}$$

$$z D_t - z_t^{DA} - z_t^{RT}(\cdot)$$
 (RT)

net demand — battery discharge

Let $p^{DA} = \mathsf{DA}$ price, $p^{RT} = \mathsf{RT}$ price.

Assume two types of generators:

cost CDF (mass of gens w/ cost
$$\leq p$$
)

"fast" (DA
$$+$$
 RT, e.g. gas)

$$G_s(p) = (1 - k_f)G(p)$$

$$G_f(p) = k_f G(p)$$

 $k_f \equiv$ fraction of fast generators

For each time period t

$$G_s(p_t^{DA}) + G_f(p_t^{DA})$$

$$G_s(p_t^{DA}) + G_f(p_t^{RT})$$

supply from "slow"

upply from "fast"

$$\mathbb{E}[D_t] - z_t^{DA} \tag{DA}$$

$$P_t - z_t^{DA} - z_t^{RT}(\cdot)$$
 (RT)

net demand — battery discharge

Let $p^{DA} = \mathsf{DA}$ price, $p^{RT} = \mathsf{RT}$ price.

Assume two types of generators:

cost CDF (mass of gens w/ cost
$$\leq p$$
)

"fast" (DA
$$+$$
 RT, e.g. gas)

$$G_s(p) = (1 - k_f)G(p)$$

$$G_f(p) = k_f G(p)$$

 $k_f \equiv$ fraction of fast generators

For each time period t,

$$G_s(p_t^{DA}) + G_f(p_t^{DA})$$

$$+G_f(p_t^{RT})$$

$$= \mathbb{E}[D_t] - z_t^{DA}$$

$$=D_t-z_t^{DA}-z_t^{RI}\left(\cdot\right)$$

supply from "slow"

supply from "fast"

net demand — battery discharge

Let $p^{DA} = \mathsf{DA}$ price, $p^{RT} = \mathsf{RT}$ price.

Assume two types of generators:

cost CDF (mass of gens w/ cost
$$\leq p$$
)

"fast" (DA
$$+$$
 RT, e.g. gas)

$$G_s(p) = (1 - k_f)G(p)$$

$$G_f(p) = k_f G(p)$$

 $k_f \equiv$ fraction of fast generators

For each time period t,

$$G_s(p_t^{DA})$$
 $G_s(p_t^{DA})$

$$+G_f(p_t)$$

 $+G_s(n_t^{RT})$

$$\mathbb{E}[D_t] - z_t^{DA}$$

This gives prices p_t^{DA} , p_t^{RT} in terms of battery decisions $z_t^{DA}, z_t^{RT}(\cdot)$.

(RT)

Let $p^{DA} = \mathsf{DA}$ price, $p^{RT} = \mathsf{RT}$ price.

Assume **two types** of generators:

cost CDF (mass of gens w/ cost
$$\leq p$$
)

"fast" (DA
$$+$$
 RT, e.g. gas)

$$G_s(p) = (1 - k_f)G(p)$$

$$G_f(p) = k_f G(p)$$

 $k_f \equiv$ fraction of fast generators

For each time period t,

$$G_s(p_t^{DA}) + G_f(p_t^{RT}) + G_f(p_t^{RT})$$

$$= \mathbb{E}[D_t] - z_t^{DA} \tag{}$$

$$= D_t - z_t^{DA} - z_t^{RT}(\cdot) \qquad (RT)$$

supply from "slow"

supply from "fast"

net demand — battery discharge

Let $p^{DA} = \mathsf{DA}$ price, $p^{RT} = \mathsf{RT}$ price.

Assume two types of generators:

cost CDF (mass of gens w/ cost
$$\leq p$$
)

"slow" (DA only, e.g. coal & nuclear)
$$G_s(p) = (1-k_f)G(p)$$

"fast" (DA
$$+$$
 RT, e.g. gas)

$$G_f(p) = k_f G(p)$$

 $k_f \equiv \,$ fraction of fast generators

For each time period t,

$$G_s(p_t^{DA})$$
 + $G_f(p_t^{DA})$ = $\mathbb{E}[D_t] - z_t^{DA}$ (DA)

$$G_s(p_t^{DA}) + G_f(p_t^{RT}) = D_t - z_t^{DA} - z_t^{RT}(\cdot)$$
 (RT)

supply from "slow"

supply from "fast"

 ${\sf net\ demand-battery\ discharge}$

Let $p^{DA} = DA$ price, $p^{RT} = RT$ price.

Assume **two types** of generators:

cost CDF (mass of gens w/ cost
$$\leq p$$
)

"slow" (DA only, e.g. coal & nuclear)
$$G_s(p) = (1 - k_f)G(p)$$

$$G_f(p) = k_f G(p)$$

 $k_f \equiv$ fraction of fast generators

For each time period t,

$$G_s(p_t^{DA}) + G_f(p_t^{DA}) = \mathbb{E}[D_t] - z_t^{DA}$$

$$G_s(p_t^{DA}) + G_f(p_t^{RT}) = D_t - z_t^{DA} - z_t^{RT}(\cdot)$$
(RT)

supply from "slow" supply from "fast" net demand — battery discharge

GENERATION COST FROM DA+RT SUPPLY CURVES

Slow generators clear in DA at price p_t^{DA} .

Fast generators clear in RT at price p_t^{RT} .

$$\text{generation cost} = \sum_t \left(\int_{p \leq p_t^{DA}} p dG_s(p) + \mathbb{E}\left[\int_{p \leq p_t^{RT}} p dG_f(p) \right] \right)$$

Centralized battery chooses $z^{DA}, z^{RT}(\cdot)$ to minimize this cost

GENERATION COST FROM DA+RT SUPPLY CURVES

Slow generators clear in DA at price p_t^{DA} .

Fast generators clear in RT at price p_t^{RT} .

$$\text{generation cost} = \sum_t \left(\int_{p \leq p_t^{DA}} p dG_s(p) + \mathbb{E}\left[\int_{p \leq p_t^{RT}} p dG_f(p) \right] \right)$$

Centralized battery chooses $z^{DA}, z^{RT}(\cdot)$ to minimize this cost

GENERATION COST FROM DA+RT SUPPLY CURVES

Slow generators clear in DA at price p_t^{DA} .

Fast generators clear in RT at price p_t^{RT} .

$$\text{generation cost} = \sum_t \left(\int_{p \leq p_t^{DA}} p dG_s(p) + \mathbb{E}\left[\int_{p \leq p_t^{RT}} p dG_f(p) \right] \right)$$

Centralized battery chooses $z^{DA}, z^{RT}(\cdot)$ to minimize this cost.

BATTERY PROFIT - FROM ENERGY ARBITRAGE

Decentralized battery chooses $z^{DA}, z^{RT}(\cdot)$ to maximize profit:

$$\text{profit} = p_{\text{peak}}^{DA} \, z_{\text{peak}}^{DA} + p_{\text{off}}^{DA} \, z_{\text{off}}^{DA} + \mathbb{E} \left[p_{\text{peak}}^{RT} \, z_{\text{peak}}^{RT} + p_{\text{off}}^{RT} \, z_{\text{off}}^{RT} \right]$$

- forward markets
 - Allaz and Vila (1993), Ito and Reguant (2016), You et al. (2019)
- batteries and renewables operations
 - investments, locations, intermittency, ownership models, ...
 - Sioshansi (2010, 2014), Kaps et al. (2023), Peng et al. (2021),
 Peura and Bunn (2021), Acemoglu et al. (2017), Wu et al. (2023), ...
- flexible resources smoothing demand
 - Agrawal and Yücel (2022), Gao et al. (2024), Fattahi et al. (2023)
 - EVs Wu et al. (2022), Perakis and Thayaparan (2023)
- empirical work on batteries
 - Karaduman (2023), Butters et al. (2023

- forward markets
 - Allaz and Vila (1993), Ito and Reguant (2016), You et al. (2019)
- batteries and renewables operations
 - investments, locations, intermittency, ownership models, ...
 - Sioshansi (2010, 2014), Kaps et al. (2023), Peng et al. (2021),
 Peura and Bunn (2021), Acemoglu et al. (2017), Wu et al. (2023), ...
- flexible resources smoothing demand
 - Agrawal and Yücel (2022), Gao et al. (2024), Fattahi et al. (2023)
 - EVs Wu et al. (2022), Perakis and Thayaparan (2023)
- empirical work on batteries
 - Karaduman (2023), Butters et al. (2023

- forward markets
 - Allaz and Vila (1993), Ito and Reguant (2016), You et al. (2019)
- batteries and renewables operations
 - investments, locations, intermittency, ownership models, ...
 - Sioshansi (2010, 2014), Kaps et al. (2023), Peng et al. (2021),
 Peura and Bunn (2021), Acemoglu et al. (2017), Wu et al. (2023), ...
- flexible resources smoothing demand
 - Agrawal and Yücel (2022), Gao et al. (2024), Fattahi et al. (2023)
 - EVs Wu et al. (2022), Perakis and Thayaparan (2023)
- empirical work on batteries
 - Karaduman (2023), Butters et al. (2023

- forward markets
 - Allaz and Vila (1993), Ito and Reguant (2016), You et al. (2019)
- batteries and renewables operations
 - investments, locations, intermittency, ownership models, ...
 - Sioshansi (2010, 2014), Kaps et al. (2023), Peng et al. (2021),
 Peura and Bunn (2021), Acemoglu et al. (2017), Wu et al. (2023), ...
- flexible resources smoothing demand
 - Agrawal and Yücel (2022), Gao et al. (2024), Fattahi et al. (2023)
 - EVs Wu et al. (2022), Perakis and Thayaparan (2023)
- empirical work on batteries
 - Karaduman (2023), Butters et al. (2023)

RESULTS: BATTERY BEHAVIOR

Both the centralized and decentralized problems are quadratic infinite-dimensional problems.

We prove that both problems are **convex** and solve them in **closed-form**.

The DCN solution shows 3 types of distortions from the CN solution:

- quantity withholding
- shift from day-ahead to real-time
- reduction in real-time responsiveness

We quantify each as a function of k_f , the share of fast generators.

RESULTS: BATTERY BEHAVIOR

Both the centralized and decentralized problems are quadratic infinite-dimensional problems.

We prove that both problems are convex and solve them in closed-form.

The DCN solution shows 3 types of distortions from the CN solution:

- quantity withholding
- shift from day-ahead to real-time
- reduction in real-time responsiveness

We quantify each as a function of k_f , the share of fast generators.

RESULTS: BATTERY BEHAVIOR

quantity withholding , shift to real-time, reduction in RT responsiveness.

Centralized Battery Discharge

$$\begin{split} z_{\rm peak}^{DA} &= \boxed{\frac{1}{2}(\mu_{\rm peak} - \mu_{\rm off})} \\ z_{\rm peak}^{RT}(D_{\rm peak}) &= \frac{1}{2}(D_{\rm peak} - \mu_{\rm peak}) - \frac{1}{2}(\mu_{\rm off}|_{D_{\rm peak}} - \mu_{\rm off}) \end{split}$$

Decentralized Battery Discharge

$$\begin{split} z_{\text{peak}}^{DA} &= \left\lfloor \frac{(2-k_f)}{2(4-k_f)} (\mu_{\text{peak}} - \mu_{\text{off}}) \right\rfloor \\ z_{\text{peak}}^{RT}(D_{\text{peak}}) &= \left\lfloor \frac{k_f}{2(4-k_f)} (\mu_{\text{peak}} - \mu_{\text{off}}) \right\rfloor + \frac{1}{4} (D_{\text{peak}} - \mu_{\text{peak}}) - \frac{1}{4} (\mu_{2|D_{\text{peak}}} - \mu_{\text{off}}) \end{split}$$

DISTORTION 1: QUANTITY WITHHOLDING

DISTORTION 1: QUANTITY WITHHOLDING

DISTORTION 2: SHIFT FROM DAY-AHEAD TO REAL-TIME

Structural consequence of **sequential market clearing**.

Simplest case: no randomness, identical markets with price function $P(\cdot)$.

$$\label{eq:maximize_profit} \text{Maximize profit} = z^{DA}P(z^{DA}) + z^{RT}P(z^{DA} + z^{RT})$$

DISTORTION 2: SHIFT FROM DAY-AHEAD TO REAL-TIME

Structural consequence of **sequential market clearing**.

Simplest case: no randomness, identical markets with price function $P(\cdot)$.

$$\label{eq:maximize_profit} \text{Maximize profit} = z^{DA}P(z^{DA}) + z^{RT}P(z^{DA} + z^{RT}).$$

DISTORTION 2: SHIFT FROM DAY-AHEAD TO REAL-TIME

Structural consequence of **sequential market clearing**.

Simplest case: no randomness, identical markets with price function $P(\cdot)$.

$$\label{eq:maximize_profit} \text{Maximize profit} = z^{DA}P(z^{DA}) + z^{RT}P(z^{DA} + z^{RT}).$$

DISTORTION 3: REDUCTION IN REAL-TIME RESPONSIVENESS

Same kind of tension between **centralized** and **decentralized** regimes, except the "quantity withholding" is on *real-time residual demand*.

RESULTS: GENERATION COSTS

Define the Price of Anarchy (PoA) as an incentive misalignment metric:

$$\mathsf{PoA} = \frac{\mathsf{GenCost}(\mathsf{NoBattery}) - \mathsf{GenCost}(\mathsf{Centralized})}{\mathsf{GenCost}(\mathsf{NoBattery}) - \mathsf{GenCost}(\mathsf{Decentralized})}$$

 $PoA \ge 1$. Lower PoA means better alignment.

Theorem

Assume the demand is jointly normal, then

- PoA \in [9/8,4/3] for every market parameter. (12.5% to 33.3%)
- PoA is decreasing in k_f .

RESULTS: GENERATION COSTS

Define the Price of Anarchy (PoA) as an incentive misalignment metric:

$$\mathsf{PoA} = \frac{\mathsf{GenCost}(\mathsf{NoBattery}) - \mathsf{GenCost}(\mathsf{Centralized})}{\mathsf{GenCost}(\mathsf{NoBattery}) - \mathsf{GenCost}(\mathsf{Decentralized})}$$

 $PoA \ge 1$. Lower PoA means better alignment.

Theorem

Assume the demand is jointly normal, then

- PoA \in [9/8,4/3] for every market parameter. (12.5% to 33.3%)
- PoA is decreasing in k_f .

		distortion types		
	PoA	quantity	shift from	reduction in
	104	withholding	DA to RT	RT responsiveness
Los Angeles	15%	35%	47%	50%
Houston	25%	40%	33%	50%

$$\mathsf{PoA} = \frac{\mathsf{GenCost}(\mathsf{NoBattery}) - \mathsf{GenCost}(\mathsf{CN})}{\mathsf{GenCost}(\mathsf{NoBattery}) - \mathsf{GenCost}(\mathsf{DCN})} - 1$$

		distortion types		
	PoA	quantity	shift from	reduction in
	FOA	withholding	DA to RT	RT responsiveness
Los Angeles	15%	35%	47%	50%
Houston	25%	40%	33%	50%

$$\mbox{quantity withholding} = 1 - \frac{\mbox{total DCN discharge}}{\mbox{total CN discharge}}$$

		distortion types		
	PoA	quantity	shift from	reduction in
	FOA	withholding	DA to RT	RT responsiveness
Los Angeles	15%	35%	47%	50%
Houston	25%	40%	33%	50%

shift from DA to RT =
$$\frac{\text{RT DCN discharge}}{\text{total (DA+RT) DCN discharge}}$$

If a battery achieves local monopoly, distortions can be significant! e.g. Los Angeles batteries (Apr'24): **355 MW**, 40 MW, fringe \sim 27 MW

		distortion types		
	PoA	quantity	shift from	reduction in
	POA	withholding	DA to RT	RT responsiveness
Los Angeles	15%	35%	47%	50%
Houston	25%	40%	33%	50%

 $\mbox{reduction in RT responsiveness} = 1 - \frac{\mbox{RT "random" DCN discharge}}{\mbox{RT "random" CN discharge}}$

		distortion types		
	PoA	quantity	shift from	reduction in
		withholding	DA to RT	RT responsiveness
Los Angeles	15%	35%	47%	50%
Houston	25%	40%	33%	50%

- We develop a **tractable analytical model** quantifying different forms of battery behavior in terms of market fundamentals.
- Incentive misalignment (PoA) from 3 forms of distortions
 - quantity withholding
 - shift from day-ahead to real-time
 - reduction in real-time responsiveness
- We calibrate the model to Los Angeles and Houston and show that incentive misalignment is practically significant.
- Our model is parsimonious = **building block** for future work.

- We develop a **tractable analytical model** quantifying different forms of battery behavior in terms of market fundamentals.
- Incentive misalignment (PoA) from 3 forms of distortions
 - quantity withholding
 - shift from day-ahead to real-time
 - reduction in real-time responsiveness
- We calibrate the model to Los Angeles and Houston and show that incentive misalignment is practically significant.
- Our model is parsimonious = **building block** for future work.

- We develop a **tractable analytical model** quantifying different forms of battery behavior in terms of market fundamentals.
- Incentive misalignment (PoA) from 3 forms of distortions
 - quantity withholding
 - shift from day-ahead to real-time
 - reduction in real-time responsiveness
- We **calibrate** the model to Los Angeles and Houston and show that *incentive misalignment* is **practically significant**.
- Our model is parsimonious = building block for future work.

- We develop a **tractable analytical model** quantifying different forms of battery behavior in terms of market fundamentals.
- Incentive misalignment (PoA) from 3 forms of distortions
 - quantity withholding
 - shift from day-ahead to real-time
 - reduction in real-time responsiveness
- We calibrate the model to Los Angeles and Houston and show that incentive misalignment is practically significant.
- Our model is parsimonious = **building block** for future work.