

Aprendizagem 2023

Lab 1: Univariate Data Analysis

Prof. Rui Henriques

Practical exercises

1. Approximate y1 distribution using a histogram using 4 bins in [-1,1]. Using the histogram, approximate the probability density function.

$${p(-1 \le v_1 \le -0.5) = 0.1, p(-0.5 < v_1 \le 0) = 0.3, p(0 < v_1 \le 0.5) = 0.4, p(v_1 \ge 0.5) = 0.2}$$

2. Compute the boxplot of y1 variable. Are there any outliers?

Please note that there are many variants for computing quantiles¹. One possibility:

$$u = 0.07, median = q_n(50) = 0.15, q_n(25) = -0.3, q_n(75) = 0.2,$$

 $IQR = 0.5, bounds = [-1.05, 0.95]$

According to the computed quartiles, there are no outliers falling outside the IQR-based bounds.

3. Are y1 and y2 variables correlated? Compare Pearson and Spearman coefficients.

$$\frac{\sqrt{1}}{\sqrt{1}} = \frac{0.2 \pm 0.1 \pm ...}{10} = 0.07$$

$$\frac{\sqrt{1}}{\sqrt{1}} = \frac{0.2 \pm 0.1 \pm ...}{\sqrt{1}} = 0.07$$

$$\frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = 0.09$$

$$\sqrt{1} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = 0.09$$

$$\sqrt{1} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = 0.09$$

$$\sqrt{1} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = 0.09$$

In the presence of ranking ties, classic Spearman is generally replaced by the PCC of the ranks. Let us compute both:

$$F(y_1) = \frac{f+S+f+...}{10} = Spearman(y_1, y_2) = PCC([7,5,7,10,2.5,4,1,7,9,2.5], [8.5,2,4.5,10,6,3,4.5,8.5,1,7]) = 0.198$$

¹ https://en.wikipedia.org/wiki/Quantile

Variables y1 and y2 are loose-to-moderately correlated. Rank correlation (under Spearman coefficient) is higher than linear correlation (under Pearson correlation), suggesting stronger correlation in order than magnitude.

4. Identify the probability mass function of y3.

$${p(y_3 = A) = 0.3, p(y_3 = B) = 0.3, p(y_3 = C) = 0.4}$$

II. Data preprocessing

Consid

ider the following dataset:							7, = = 0.167
		y_1	y_2	y_3	y_4	y_{out}	6 224 2 4
	x_1	0.2	0.5 ዓ	Α	Α	A 1.5	$\overline{y}_1 = \frac{6.2 \pm 0.11 \pm}{6.2 \pm 0.167} = 0.167$
	x_2	0.1 3	-0.4 ไ	Α	Α	A 1. S	5 (1) 712 5 (102 021) (02 021) }
	x_3	ربا 0.2	ک 0.6	Α	В	C 5.5	$\text{Var}(y_1) = \frac{\sum (y_1 - \overline{y_1})^2}{\sum (0.2 - 0.16)^2 / (0.1 - 0.16)^2 /} = \frac{\sum ((0.2 - 0.16)^2 / (0.1 - 0.16)^2 /)}{2} = \frac{\nu}{2}$
	χ_4	0.9 6	ط 0.8	В	В	C S.S	στ (η) = = 0.759
	x_5	-0.3 1	0.3 }	В	В	B 3.5	6
	X 6	-0.1 <u>)</u>	-0.2 \(\)	В	В	В 35	\br(\frac{y}{2}) = 0.786

- 0.5-0.4 to.6+...

where y_1 and y_2 are numeric variables in [-1,1], y_3 and y_4 are nominal, and y_{out} is ordinal

5. On unsupervised feature importance:

a) Considering standard deviation, which numeric variable is less relevant?

 $Variable \ y_1 \ has \ lower \ variability \ than \ y_2 \ therefore \ should \ be \ removed.$ $E(y_3) = 1, \qquad E(y_4) = 0.918 - 2$ $Variable \ y_4 \ has \ lower \ entropy \ than \ y_3, \ therefore \ should \ be \ removed.$ $= -\left(\frac{1}{3}\log_2\frac{1}{3} + \frac{2}{3}\log_2\frac{2}{3}\right) = -\left(\frac{1}{3}(2.585) + \frac{2}{3}(0.585)\right)$

6. On supervised feature importance:

a) According to Spearman, which numeric variable is less relevant?

$$Spearman(y_1, y_{out}) < Spearman(y_2, y_{out})$$

Variable y_1 is less correlated with the output variable, therefore is less relevant (candidate to be removed)

b) According to information gain, which nominal variable is less relevant? $H(Y_{04k}|Y_{i_k}=A)=-(I_{0y})=0$

According to information gain, which nominal variable is less relevant?
$$H(Y_{\text{out}} | Y_4 = A) = -\left(\frac{1}{3} \log \frac{1}{3} + \frac{1}{3} \log \frac{1}{3}\right) = 0.418$$

$$IG(y_{out} | y_j) = E(y_{out}) - E(y_{out} | y_j)$$

$$H(Y_{\text{out}} | Y_4 = B) = -\left(\frac{1}{3} \log \frac{1}{3} + \frac{1}{3} \log \frac{1}{3}\right) = 1.585$$

$$H(Y_{\text{out}} | Y_3 = B) = 0.918$$

$$E(y_{out}) = -\frac{1}{3} \log \left(\frac{1}{3}\right) - \frac{1}{3} \log \left(\frac{1}{3}\right) = 1.585$$

$$H(Y_{\text{out}} | Y_4) = \frac{1}{6} \times 0 + \frac{1}{6} \times 1 = \frac{4}{6}$$

$$IG(y_{out} | y_3) = 1.585 - 0.918 = 0.667,$$

$$IG(y_{out} | y_4) = 1.585 - \frac{4}{6} = 0.918$$

$$Variable y_3 \text{ has lower information gain, therefore should be removed.}$$

7. Normalize y_2 using min-max scaling and standardization. Compare the results

Considering min-max scaling,
$$\frac{a_{ij}-min}{max-min}$$
: $y'_2 = (0.75 \ 0 \ 0.833 \ 1 \ 0.583 \ 0.167)$

Adjusting y_2 to a standard Gaussian, $\frac{a_{ij}-\mu}{\sigma}$: $y'_2 = (0.49) \ -1.413 \ 0.706 \ 1.130 \ 0.071 \ -0.989)$

$$\lim_{N \to \infty} z = 0.4 \qquad 0.5 \Rightarrow \frac{0.5 - (-0.4)}{0.8 - (-0.4)} = 0.75$$

$$\lim_{N \to \infty} z = 0.8$$

$$\lim_{N \to \infty} y_2 = 0.267 \qquad 0.5 \Rightarrow \frac{0.5 - 6.267}{0.472} = 0.494$$

$$\lim_{N \to \infty} y_2 = 0.267 \qquad 0.5 \Rightarrow \frac{0.5 - 6.267}{0.472} = 0.494$$