FORMALISING $det(e^A) = e^{tr(A)}$ IN LEAN

1. The non-formal proof

We list some facts that the proof follows from. The matrix A is assumed to have entries in \mathbb{C} and P is an invertible matrix with entries in \mathbb{C} .

- (1) For all A, P, we have $det(e^{PAP^{-1}}) = det(e^A)$.
- (2) For every matrix A, there is an invertible P such that $PAP^{-1}=U$, with U upper-triangular.
- (3) $\det(U) = \prod (U)_{(i,i)}$.
- (4) If U is upper-triangular, then $(e^U)_{(i,i)}=e^{(U)_{(i,i)}}$.
- (5) For complex numbers a and b, we have $e^{a+b} = e^a e^b$.
- (6) For all A, P, we have $tr(PAP^{-1}) = tr(A)$.

The proof now follows in the following argument:

Proof.

$$\det(e^A) = \det(e^{PAP^{-1}})$$
 by 1
$$= \det(e^U)$$
 by 2
$$= \prod_i e^{(U)_{(i,i)}}$$
 by 3 and 4
$$= e^{\sum U_{(i,i)}}$$
 by 5
$$= e^{\operatorname{tr}(U)}$$
 by definition of trace
$$= e^{\operatorname{tr}(PAP^{-1})}$$
 by 2 again
$$= e^{\operatorname{tr}(A)}$$
 by 6

We list the difficulties of the various parts.

- (1) This already exists in Lean, in Matrix.exp_conj
- (2) This will need proving (and might be hard)
- (3) This should follow from Matrix.det_succ_column
- (4) This will need proving
- (5) This exists somewhere (to do: find it!)
- (6) This should follow from Matrix.trace_mul_cycle