Definition. $\Gamma_{\mathcal{U}} := construct \ it \ s.t. \ \Gamma_{\mathcal{U}} \subset \mathcal{U} \ and, \ for \ a \ function \ g, \ g(\Gamma_{\mathcal{U}}) = \mathcal{U}.$

Definition. $\gamma: \mathcal{P}(\mathcal{P}(\mathbb{N})) \to \mathcal{P}(\mathcal{P}(\mathbb{N}))$, such that it generates the ultrafilter from its generator.

Lemma. $g(\Gamma_{\mathcal{U}}) = \mathcal{U}$

Proof. Prove it.

Definition. $\overline{\mathcal{U}} := g(\overline{\Gamma_{\mathcal{U}}})$

Lemma. $\overline{\mathcal{U}}$ is an ultrafilter on \mathbb{N} .

Proof. Properties to check are: (a): $\emptyset \not\in \overline{\mathcal{U}}$, (b): $\forall_{X \in \overline{\mathcal{U}}} \forall_{Y \subseteq \mathbb{N}} X \subseteq Y \to Y \in \overline{\mathcal{U}}$, (c): $\forall_{X,Y \in \overline{\mathcal{U}}} X \cap Y \in \overline{\mathcal{U}}$, (d): $\forall_{X \subseteq \mathbb{N}} X \in \overline{\mathcal{U}} \vee \overline{X} \in \overline{\mathcal{U}}$.

Prove it.

Definition. $\overline{\mathfrak{U}}:=\prod_{i\in\mathbb{N}}\mathfrak{A}_i/\overline{\mathcal{U}}$

Corollary. For $\varphi \in \mathcal{L}_{\epsilon}$, $\exists_{j \in \mathbb{N}} \mathfrak{A}_j \models \neg \varphi \Rightarrow (\mathfrak{U} \models \varphi \Rightarrow \overline{\mathfrak{U}} \models \neg \varphi)$

Proof. Change the claim according to intuition and then prove it.