Adatbázisrendszerek

A funkcionális függés és jellemzői

Tegyük fel, hogy a relációs adatbázissémánknak n attribútuma van: A_1 , A_2 , ... A_n ;

és gondoljunk az egész adatbázisunkra úgy, hogy azt egyetlen univerzális $R = \{A_1, A_2, ... A_n\}$ relációsémával írjuk le.

Milyen problémákat találunk az alábbi relációban?

Neptun_kód	Név	Kurzuskód	Kurzusnév	dátum	vizsgaszám	Jelentkezés_ideje
ABC123	Kis Kanál	ICK1234_04	Adatkezelés	2020.jan.5	1	2019.dec.3
XZY987	Nem Fél	NGK534_02	Matek	2020.jan.7	2	2019.dec.1
ABC123	Kis Fáni	ICK1234_04	Adatkezelés	2019.dec.18	1	2019.dec.1
XZY987	Nem Fél	ICK1234_04	Gépelés	2020.jan.14	1	2019.dec.15

Funkcionális függés (functional dependency, FD)

A funkcionális függés egy olyan megszorítás, amely az adatbázis két attribútumhalmaza között áll fenn.

Tegyük fel, hogy a relációs adatbázissémánknak n attribútuma van:

 A_1 , A_2 , ... A_n ; és gondoljunk az egész adatbázisunkra úgy, hogy azt egyetlen univerzális $R = \{A_1, A_2, ... A_n\}$ relációsémával írjuk le.

Az R séma két attribútumhalmaza, X és Y között, $X \rightarrow Y$ -nal jelölt funkcionális függés előírja az alábbi megszorítást azokra a lehetséges rekordokra, amelyek egy R fölötti r relációt alkothatnak: bármely két, r -beli t_1 és t_2 rekord esetén, amelyekre $t_1[X] = t_2[X]$ teljesül, teljesülnie kell $t_1[Y] = t_2[Y]$ -nak is.

Funkcionális függés

Más szavakkal: egy R relációsémában X akkor és csak akkor határozza meg funkcionálisan Y-t, ha valahányszor r (R) két rekordja megegyezik az X értékeken, szükségszerűen megegyezik az Y értékeken is.

Megjegyzés

Ha egy R-re előírt megszorítás szerint bármely r (R) relációpéldányban nem szerepelhet több, mint egy rekord egy adott X attribútumhalmaz értékeiként – azaz X egy szuperkulcsa R-nek –, következik X \rightarrow Y az R attribútumainak bármely Y részhalmazára (mivel a kulcsmegszorításból következik, hogy egyetlen legális r (R) állapotban sem lehet két olyan rekord, amelyeknek azonosak lennének az X értékeik).

Ha X \rightarrow Y teljesül R-ben, még semmit sem tudunk mondani arról, hogy Y \rightarrow X is teljesül-e R-ben. Ha mind X \rightarrow Y, mind Y \rightarrow X teljesül R-ben, akkor kölcsönös funkcionális függésről beszélünk.

Ha sem $X \rightarrow Y$, sem $Y \rightarrow X$ nem teljesül, akkor azt mondjuk, hogy X és Y funkcionálisan független attribútumhalmazok.

Funkcionális függés

Jelölés

Funkcionális függések felírásakor a halmazt jelölő nyitó és záró zárójelek, valamint a halmaz elemeit elválasztó vesszők megállapodás szerint elhagyhatók, ha az attribútumokat egybetűs nevekkel azonosítjuk.

(Egyelemű halmazok esetén általában egyébként is elhagyjuk a halmazt jelölő zárójeleket.)

Pl.:
$$\{A,B\} \rightarrow \{C\} \text{ helyett } AB \rightarrow C$$

 $\{A,B,C\} \rightarrow \{D,E\} \text{ helyett } ABC \rightarrow DE$

Ha X és Y attribútumhalmazokat jelölnek, akkor a funkcionális függések mindkét oldalán alkalmazható az XY egyszerűsítés a két attribútumhalmaz uniójának jelölésére.

$$X \cup Y \rightarrow Z$$
 helyett $XY \rightarrow Z$

A funkcionális függések tulajdonságai

- 1 a reflexivitás szabálya: Ha $X \supseteq Y$, akkor $X \to Y$.
- 2 az augmentivitás szabálya: $\{X \rightarrow Y\} \models XZ \rightarrow YZ$.
- 3 a tranzitivitás szabálya: $\{X \rightarrow Y, Y \rightarrow Z\} \models X \rightarrow Z$.
- 4 a dekompozíció szabálya: $\{X \rightarrow YZ\} \models X \rightarrow Y$.
- **5** az additivitás szabálya: $\{X \rightarrow Y, X \rightarrow Z\} \models X \rightarrow YZ$.
- 6 a pszeudotranzitivitás szabálya: $\{X \rightarrow Y, WY \rightarrow Z\} \models WX \rightarrow Z$.

Egy X \rightarrow Y funkcionális függés triviális ha X \supseteq Y, egyébként nemtriviális.

Megjegyzés

Bár X \rightarrow A és X \rightarrow B az additivitás szabálya miatt implikálja X \rightarrow AB-t, azonban sem X \rightarrow A-ból, sem Y \rightarrow B-ből nem következik, hogy XY \rightarrow AB. Mint ahogy XY \rightarrow A sem implikálja szükségképpen sem X \rightarrow A-t, sem Y \rightarrow A-t.

A funkcionális függések tulajdonságai

- 1. A reflexivitás szabálya szerint egy attribútumhalmaz mindig meghatározza önmagát, vagy saját maga bármilyen részhalmazát.
- Az augmentivitás szabálya szerint egy funkcionális függés mindkét oldalának ugyanazzal az attribútumhalmazzal történő bővítése újabb érvényes funkcionális függést eredményez.
- 3. A tranzitivitás szabálya szerint a funkcionális függések tranzitívak.
- A dekompozíció szabálya azt mondja, hogy egy funkcionális függés jobb oldaláról eltávolíthatunk attribútumokat.
- 5. Az additivitás szabálya szerint funkcionális függések egy

$$\{X \rightarrow A_1, X \rightarrow A_2, ..., X \rightarrow A_n\}$$

halmazát összevonhatjuk egyetlen

$$X \rightarrow \{A_1, A2, ..., A_n\}$$

funkcionális függéssé.

A reflexivitás bizonyítása

Ha $X \supseteq Y$, akkor $X \to Y$

Tegyük fel, hogy $X \supseteq Y$, és hogy léteznek t_1 és t_2 rekordok R valamely r relációjában úgy, hogy $t_1[X] = t_2[X]$.

Ekkor

 $t_1[Y] = t_2[Y]$, mivel $X \supseteq Y$; ezért $X \rightarrow Y$ -nak teljesülnie kell r-ben.

Az augmentivitás bizonyítása (indirekt módon)

$$\{X \rightarrow Y\} \models XZ \rightarrow YZ$$

Tegyük fel, hogy $X \to Y$ fennáll R egy r relációjában, de $XZ \to YZ$ nem áll fenn. Ekkor léteznie kell t_1 és t_2 rekordoknak úgy, hogy

- 1 $t_1[X] = t_2[X],$
- 2 $t_1[Y] = t_2[Y],$
- 3 $t_1[XZ] = t_2[XZ]$ és
- 4 $t_1[YZ] \neq t_2[YZ]$.

Ez nem lehetséges, mert (3)-ból kapjuk, hogy

5 $t_1[Z] = t_2[Z],$

míg (2)-ből és (5)-ből kapjuk, hogy

6 $t_1[YZ] = t_2[YZ],$

ami ellentmond (4)-nek.

A tranzitivitás bizonyítása

$$\{X \to Y, Y \to Z\} \models X \to Z$$

Tegyük fel, hogy

- 1 $X \rightarrow Y$ és
- $2 Y \rightarrow Z$

fennáll egy r relációban. Ekkor tetszőleges t_1 és t_2 r-beli rekordokra, melyekre igaz, hogy $t_1[X] = t_2[X]$, (1) miatt kapjuk, hogy

3 $t_1[Y] = t_2[Y];$

így (3)-ból és a (2)-es feltevésünkből azt is kapnunk kell, hogy

4 $t_1[Z] = t_2[Z];$

ezért $X \rightarrow Z$ -nek fenn kell állnia r-ben.

A dekompozíció bizonyítása

$$\{X \rightarrow YZ\} \models X \rightarrow Y$$

- 1 $X \rightarrow YZ$ adott.
- 2 YZ → Y, felhasználva a reflexivitás szabályát, és tudva, hogy YZ ⊇ Y.
- 3 X → Y, alkalmazva a tranzitivitás szabályát (1)-re és (2)-re.

Az additivitás bizonyítása

$$\{X \rightarrow Y, X \rightarrow Z\} \models X \rightarrow YZ.$$

- $1 X \rightarrow Y$ adott.
- $2 X \rightarrow Z$ adott.
- 3 $X \rightarrow XY$, alkalmazva az augmentivitás szabályát (1)-re, azt X-szel bővítve; megjegyezve, hogy XX = X.
- 4 XY → YZ, alkalmazva az augmentivitás szabályát (2)-re, azt Y-nal bővítve.
- 5 X → YZ, alkalmazva a tranzitivitás szabályát (3)-ra és (4)-re.

A pszeudotranzitivitás bizonyítása

$$\{X \rightarrow Y, WY \rightarrow Z\} \models WX \rightarrow Z.$$

- 1 $X \rightarrow Y$ adott.
- 2 $WY \rightarrow Z$ adott.
- 3 WX → WY, alkalmazva az augmentivitás szabályát (1)-re, azt W-vel bővítve.
- WX → Z, alkalmazva a tranzitivitás szabályát (3)-ra és
 (2)-re.

Az Armstrong-axiómák

- William Ward Armstrong 1974-ben bizonyította be, hogy a reflexivitás, az augmentivitás és a tranzitivitás szabálya együtt helyes és teljes.
- Helyesség alatt azt értjük, hogy ha adott egy R relációsémán fennálló funkcionális függéseknek egy F halmaza, akkor bármilyen függés, amely levezethető F-ből a három szabály segítségével, fenn fog állni R minden olyan r relációjában, amely kielégíti az F-beli függéseket.
- Teljesség alatt azt értjük, hogy a három szabályt mindaddig ismételten alkalmazva, míg már nem kapunk újabb függéseket, előállítható az F-ből levezethető összes lehetséges függés teljes halmaza. Más szavakkal, F-ből kiindulva kizárólag a három szabály alkalmazásával meghatározható az F+ függések halmaza, amit F lezártjának hívunk.
- A reflexivitás, az augmentivitás és a tranzitivitás szabályait együtt Armstrong-axiómáknak nevezzük.