Applied Linear Algebra

by **Dr.Dinesh Naik**(B.E, M.Tech, Ph.D)

Assistant Professor, Dept. of Information Technology National Institute of Technology Karnataka, Surathkal

April 14, 2023

Acknowledgement

- I would like to express my sincere gratitude Stephen Boyd, Department of Electrical Engineering Stanford University
- I also thank Lieven Vandenberghe Department of Electrical and Computer Engineering University of California, Los Angeles

Flop counts

- computers store (real) numbers in floating-point format
- basic arithmetic operations (addition, multiplication, ...) are called floating point operations or flops
- complexity of an algorithm or operation: total number of flops needed, as function of the input dimension(s)
- this can be very grossly approximated
- crude approximation of time to execute: (flops needed)/(computer speed)
- current computers are around 1Gflop/sec (10⁹ flops/sec)
- but this can vary by factor of 100

Complexity of vector addition, inner product

- x + y needs n additions, so: n flops
- x^Ty needs n multiplications, n-1 additions so: 2n-1 flops
- we simplify this to 2n (or even n) flops for x^Ty
- and much less when x or y is sparse

Superposition and linear functions

- ▶ $f: \mathbb{R}^n \to \mathbb{R}$ means f is a function mapping n-vectors to numbers
- f satisfies the superposition property if

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

holds for all numbers α , β , and all n-vectors x, y

- be sure to parse this very carefully!
- a function that satisfies superposition is called linear

The inner product function

with a an n-vector, the function

$$f(x) = a^{T}x = a_1x_1 + a_2x_2 + \dots + a_nx_n$$

is the inner product function

- f(x) is a weighted sum of the entries of x
- the inner product function is linear:

$$f(\alpha x + \beta y) = a^{T}(\alpha x + \beta y)$$

$$= a^{T}(\alpha x) + a^{T}(\beta y)$$

$$= \alpha (a^{T}x) + \beta (a^{T}y)$$

$$= \alpha f(x) + \beta f(y)$$

...and all linear functions are inner products

- ▶ suppose $f: \mathbf{R}^n \to \mathbf{R}$ is linear
- ▶ then it can be expressed as $f(x) = a^T x$ for some a
- specifically: $a_i = f(e_i)$
- ▶ follows from

$$f(x) = f(x_1e_1 + x_2e_2 + \dots + x_ne_n)$$

= $x_1f(e_1) + x_2f(e_2) + \dots + x_nf(e_n)$

Affine functions

- a function that is linear plus a constant is called affine
- general form is $f(x) = a^T x + b$, with a an n-vector and b a scalar
- ▶ a function $f: \mathbf{R}^n \to \mathbf{R}$ is affine if and only if

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

holds for all α , β with $\alpha + \beta = 1$, and all *n*-vectors x, y

sometimes (ignorant) people refer to affine functions as linear

Linear versus affine functions

First-order Taylor approximation

- ▶ suppose $f : \mathbf{R}^n \to \mathbf{R}$
- first-order Taylor approximation of f, near point z:

$$\hat{f}(x) = f(z) + \frac{\partial f}{\partial x_1}(z)(x_1 - z_1) + \dots + \frac{\partial f}{\partial x_n}(z)(x_n - z_n)$$

- $\hat{f}(x)$ is very close to f(x) when x_i are all near z_i
- \hat{f} is an affine function of x
- can write using inner product as

$$\hat{f}(x) = f(z) + \nabla f(z)^T (x - z)$$

where *n*-vector $\nabla f(z)$ is the *gradient* of f at z,

$$\nabla f(z) = \left(\frac{\partial f}{\partial x_1}(z), \dots, \frac{\partial f}{\partial x_n}(z)\right)$$

Example

Regression model

regression model is (the affine function of x)

$$\hat{y} = x^T \beta + v$$

- \triangleright x is a feature vector; its elements x_i are called *regressors*
- n-vector β is the weight vector
- scalar v is the offset
- scalar ŷ is the prediction
 (of some actual outcome or dependent variable, denoted y)

Example

- ▶ y is selling price of house in \$1000 (in some location, over some period)
- regressor is

$$x = (house area, # bedrooms)$$

(house area in 1000 sq.ft.)

regression model weight vector and offset are

$$\beta = (148.73, -18.85), \quad v = 54.40$$

• we'll see later how to guess β and ν from sales data

Example

House	x ₁ (area)	x_2 (beds)	y (price)	\hat{y} (prediction)
1	0.846	1	115.00	161.37
2	1.324	2	234.50	213.61
3	1.150	3	198.00	168.88
4	3.037	4	528.00	430.67
5	3.984	5	572.50	552.66

Norm

▶ the Euclidean norm (or just norm) of an n-vector x is

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^T x}$$

- used to measure the size of a vector
- reduces to absolute value for n = 1

Properties

for any *n*-vectors x and y, and any scalar β

- ▶ homogeneity: $\|\beta x\| = |\beta| \|x\|$
- ▶ triangle inequality: $||x + y|| \le ||x|| + ||y||$
- ▶ nonnegativity: $||x|| \ge 0$
- *definiteness:* ||x|| = 0 only if x = 0

easy to show except triangle inequality, which we show later

RMS value

mean-square value of n-vector x is

$$\frac{x_1^2 + \dots + x_n^2}{n} = \frac{\|x\|^2}{n}$$

root-mean-square value (RMS value) is

rms(x) =
$$\sqrt{\frac{x_1^2 + \dots + x_n^2}{n}} = \frac{||x||}{\sqrt{n}}$$

- **rms**(x) gives 'typical' value of $|x_i|$
- e.g., rms(1) = 1 (independent of n)
- RMS value useful for comparing sizes of vectors of different lengths

Norm of block vectors

- ightharpoonup suppose a,b,c are vectors
- $\|(a,b,c)\|^2 = a^T a + b^T b + c^T c = \|a\|^2 + \|b\|^2 + \|c\|^2$
- so we have

$$\|(a,b,c)\| = \sqrt{\|a\|^2 + \|b\|^2 + \|c\|^2} = \|(\|a\|,\|b\|,\|c\|)\|$$

(parse RHS very carefully!)

we'll use these ideas later

Chebyshev inequality

- ▶ suppose that *k* of the numbers $|x_1|, \ldots, |x_n|$ are $\geq a$
- ▶ then *k* of the numbers x_1^2, \ldots, x_n^2 are $\geq a^2$
- so $||x||^2 = x_1^2 + \dots + x_n^2 \ge ka^2$
- ▶ so we have $k \le ||x||^2/a^2$
- ▶ number of x_i with $|x_i| \ge a$ is no more than $||x||^2/a^2$
- this is the Chebyshev inequality
- in terms of RMS value:

fraction of entries with
$$|x_i| \ge a$$
 is no more than $\left(\frac{\mathbf{rms}(x)}{a}\right)^2$

• example: no more than 4% of entries can satisfy $|x_i| \ge 5 \text{ rms}(x)$

Distance

► (Euclidean) distance between n-vectors a and b is

$$\mathbf{dist}(a,b) = \|a - b\|$$

▶ agrees with ordinary distance for n = 1, 2, 3

▶ $\mathbf{rms}(a - b)$ is the *RMS deviation* between a and b

Triangle inequality

- triangle with vertices at positions a, b, c
- edge lengths are ||a-b||, ||b-c||, ||a-c||
- by triangle inequality

$$||a-c|| = ||(a-b) + (b-c)|| \le ||a-b|| + ||b-c||$$

i.e., third edge length is no longer than sum of other two

Feature distance and nearest neighbors

- if x and y are feature vectors for two entities, ||x y|| is the feature distance
- if z_1, \ldots, z_m is a list of vectors, z_i is the *nearest neighbor* of x if

$$||x - z_j|| \le ||x - z_i||, \quad i = 1, \dots, m$$

▶ these simple ideas are very widely used

Document dissimilarity

- 5 Wikipedia articles: 'Veterans Day', 'Memorial Day', 'Academy Awards', 'Golden Globe Awards', 'Super Bowl'
- word count histograms, dictionary of 4423 words
- pairwise distances shown below

	Veterans Day	Memorial Day	Academy Awards	Golden Globe Awards	Super Bowl
Veterans Day	0	0.095	0.130	0.153	0.170
Memorial Day	0.095	0	0.122	0.147	0.164
Academy A.	0.130	0.122	0	0.108	0.164
Golden Globe A.	0.153	0.147	0.108	0	0.181
Super Bowl	0.170	0.164	0.164	0.181	0

Standard deviation

- for *n*-vector x, $\mathbf{avg}(x) = \mathbf{1}^T x/n$
- de-meaned vector is $\tilde{x} = x \mathbf{avg}(x)\mathbf{1}$ (so $\mathbf{avg}(\tilde{x}) = 0$)
- standard deviation of x is

$$\mathbf{std}(x) = \mathbf{rms}(\tilde{x}) = \frac{\|x - (\mathbf{1}^T x/n)\mathbf{1}\|}{\sqrt{n}}$$

- **std**(x) gives 'typical' amount x_i vary from $\mathbf{avg}(x)$
- ▶ $\mathbf{std}(x) = 0$ only if $x = \alpha \mathbf{1}$ for some α
- greek letters μ , σ commonly used for mean, standard deviation
- a basic formula:

$$rms(x)^2 = avg(x)^2 + std(x)^2$$

Mean return and risk

- x is time series of returns (say, in %) on some investment or asset over some period
- $\mathbf{avg}(x)$ is the mean return over the period, usually just called *return*
- std(x) measures how variable the return is over the period, and is called the risk
- multiple investments (with different return time series) are often compared in terms of return and risk
- often plotted on a risk-return plot

Risk-return example

Chebyshev inequality for standard deviation

- x is an n-vector with mean $\mathbf{avg}(x)$, standard deviation $\mathbf{std}(x)$
- rough idea: most entries of x are not too far from the mean
- by Chebyshev inequality, fraction of entries of x with

$$|x_i - \mathbf{avg}(x)| \ge \alpha \ \mathbf{std}(x)$$

is no more than $1/\alpha^2$ (for $\alpha > 1$)

▶ for return time series with mean 8% and standard deviation 3%, loss $(x_i \le 0)$ can occur in no more than $(3/8)^2 = 14.1\%$ of periods

Cauchy-Schwarz inequality

- for two *n*-vectors *a* and *b*, $|a^Tb| \le ||a|| ||b||$
- written out,

$$|a_1b_1 + \dots + a_nb_n| \le (a_1^2 + \dots + a_n^2)^{1/2} (b_1^2 + \dots + b_n^2)^{1/2}$$

now we can show triangle inequality:

$$||a+b||^2 = ||a||^2 + 2a^Tb + ||b||^2$$

$$\leq ||a||^2 + 2||a|| ||b|| + ||b||^2$$

$$= (||a|| + ||b||)^2$$

Derivation of Cauchy-Schwarz inequality

- ▶ it's clearly true if either *a* or *b* is 0
- so assume $\alpha = ||a||$ and $\beta = ||b||$ are nonzero
- we have

$$0 \le \|\beta a - \alpha b\|^{2}$$

$$= \|\beta a\|^{2} - 2(\beta a)^{T}(\alpha b) + \|\alpha b\|^{2}$$

$$= \beta^{2} \|a\|^{2} - 2\beta \alpha (a^{T}b) + \alpha^{2} \|b\|^{2}$$

$$= 2\|a\|^{2} \|b\|^{2} - 2\|a\| \|b\| (a^{T}b)$$

- divide by $2||a|| \, ||b||$ to get $a^T b \le ||a|| \, ||b||$
- ▶ apply to -a, b to get other half of Cauchy–Schwarz inequality

Angle

angle between two nonzero vectors a, b defined as

$$\angle(a,b) = \arccos\left(\frac{a^T b}{\|a\| \|b\|}\right)$$

 \blacktriangleright $\angle(a,b)$ is the number in $[0,\pi]$ that satisfies

$$a^T b = ||a|| \, ||b|| \cos\left(\angle(a, b)\right)$$

coincides with ordinary angle between vectors in 2-D and 3-D

Classification of angles

$$\theta = \angle(a,b)$$

- $\theta = \pi/2 = 90^{\circ}$: a and b are orthogonal, written $a \perp b \ (a^{T}b = 0)$
- $\theta = 0$: a and b are aligned $(a^T b = ||a|| ||b||)$
- $\theta = \pi = 180^{\circ}$: a and b are anti-aligned $(a^T b = -||a|| ||b||)$
- $\theta \le \pi/2 = 90^\circ$: a and b make an acute angle $(a^T b \ge 0)$
- $\theta \ge \pi/2 = 90^\circ$: a and b make an obtuse angle $(a^T b \le 0)$

Spherical distance

if a, b are on sphere of radius R, distance along the sphere is $R \angle (a,b)$

Document dissimilarity by angles

- measure dissimilarity by angle of word count histogram vectors
- pairwise angles (in degrees) for 5 Wikipedia pages shown below

	Veterans Day	Memorial Day	Academy Awards	Golden Globe Awards	Super Bowl
Veterans Day	0	60.6	85.7	87.0	87.7
Memorial Day	60.6	0	85.6	87.5	87.5
Academy A.	85.7	85.6	0	58.7	85.7
Golden Globe A.	. 87.0	87.5	58.7	0	86.0
Super Bowl	87.7	87.5	86.1	86.0	0

Correlation coefficient

vectors a and b, and de-meaned vectors

$$\tilde{a} = a - \operatorname{avg}(a)\mathbf{1}, \qquad \tilde{b} = b - \operatorname{avg}(b)\mathbf{1}$$

• correlation coefficient (between a and b, with $\tilde{a} \neq 0$, $\tilde{b} \neq 0$)

$$\rho = \frac{\tilde{a}^T \tilde{b}}{\|\tilde{a}\| \|\tilde{b}\|}$$

- $\rho = \cos \angle (\tilde{a}, \tilde{b})$
 - $-\rho = 0$: a and b are uncorrelated
 - $-\rho > 0.8$ (or so): a and b are highly correlated
 - $-\rho < -0.8$ (or so): a and b are highly anti-correlated
- very roughly: highly correlated means a_i and b_i are typically both above (below) their means together

Examples

$$\rho = -99\%$$

$$\rho = 0.4\%$$

Examples

- highly correlated vectors:
 - rainfall time series at nearby locations
 - daily returns of similar companies in same industry
 - word count vectors of closely related documents (e.g., same author, topic, ...)
 - sales of shoes and socks (at different locations or periods)
- approximately uncorrelated vectors
 - unrelated vectors
 - audio signals (even different tracks in multi-track recording)
- (somewhat) negatively correlated vectors
 - daily temperatures in Palo Alto and Melbourne

Clustering

- given N n-vectors x_1, \ldots, x_N
- goal: partition (divide, cluster) into k groups
- want vectors in the same group to be close to one another

Example settings

- topic discovery and document classification
 - x_i is word count histogram for document i
- patient clustering
 - x_i are patient attributes, test results, symptoms
- customer market segmentation
 - x_i is purchase history and other attributes of customer i
- color compression of images
 - x_i are RGB pixel values
- financial sectors
 - x_i are n-vectors of financial attributes of company i

Clustering objective

- ▶ $G_j \subset \{1, ..., N\}$ is group j, for j = 1, ..., k
- ▶ c_i is group that x_i is in: $i \in G_{c_i}$
- ▶ group representatives: n-vectors z₁,...,z_k
- clustering objective is

$$J^{\text{clust}} = \frac{1}{N} \sum_{i=1}^{N} ||x_i - z_{c_i}||^2$$

mean square distance from vectors to associated representative

- ► J^{clust} small means good clustering
- goal: choose clustering c_i and representatives z_j to minimize J^{clust}

Partitioning the vectors given the representatives

- ▶ suppose representatives z_1, \ldots, z_k are given
- ▶ how do we assign the vectors to groups, *i.e.*, choose c_1, \ldots, c_N ?

- c_i only appears in term $||x_i z_{c_i}||^2$ in J^{clust}
- ▶ to minimize over c_i , choose c_i so $||x_i z_{c_i}||^2 = \min_i ||x_i z_i||^2$
- i.e., assign each vector to its nearest representative

Choosing representatives given the partition

- ▶ given the partition G_1, \ldots, G_k , how do we choose representatives z_1, \ldots, z_k to minimize J^{clust} ?
- J^{clust} splits into a sum of k sums, one for each z_i:

$$J^{\text{clust}} = J_1 + \dots + J_k, \qquad J_j = (1/N) \sum_{i \in G_j} ||x_i - z_j||^2$$

- so we choose z_j to minimize mean square distance to the points in its partition
- ▶ this is the mean (or average or centroid) of the points in the partition:

$$z_j = (1/|G_j|) \sum_{i \in G_j} x_i$$

k-means algorithm

- alternate between updating the partition, then the representatives
- ▶ a famous algorithm called *k-means*
- ightharpoonup objective $J^{
 m clust}$ decreases in each step

given
$$x_1, \ldots, x_N \in \mathbf{R}^n$$
 and $z_1, \ldots, z_k \in \mathbf{R}^n$ repeat

Update partition: assign i to G_j , $j = \operatorname{argmin}_{j'} ||x_i - z_{j'}||^2$ Update centroids: $z_j = \frac{1}{|G_i|} \sum_{i \in G_i} x_i$

until z_1, \ldots, z_k stop changing

Convergence of *k*-means algorithm

- ▶ J^{clust} goes down in each step, until the z_i 's stop changing
- but (in general) the k-means algorithm does not find the partition that minimizes J^{clust}
- k-means is a heuristic: it is not guaranteed to find the smallest possible value of J^{clust}
- the final partition (and its value of J^{clust}) can depend on the initial representatives
- common approach:
 - run k-means 10 times, with different (often random) initial representatives
 - take as final partition the one with the smallest value of J^{clust}

Linear dependence

▶ set of *n*-vectors $\{a_1, \ldots, a_k\}$ (with $k \ge 1$) is *linearly dependent* if

$$\beta_1 a_1 + \cdots + \beta_k a_k = 0$$

holds for some β_1, \ldots, β_k , that are not all zero

- \triangleright equivalent to: at least one a_i is a linear combination of the others
- we say ' a_1, \ldots, a_k are linearly dependent'
- $\{a_1\}$ is linearly dependent only if $a_1 = 0$
- $\{a_1, a_2\}$ is linearly dependent only if one a_i is a multiple of the other
- for more than two vectors, there is no simple to state condition

Example

the vectors

$$a_1 = \begin{bmatrix} 0.2 \\ -7 \\ 8.6 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} -0.1 \\ 2 \\ -1 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} 0 \\ -1 \\ 2.2 \end{bmatrix}$$

are linearly dependent, since $a_1 + 2a_2 - 3a_3 = 0$

can express any of them as linear combination of the other two, e.g.,

$$a_2 = (-1/2)a_1 + (3/2)a_3$$

Linear independence

▶ set of *n*-vectors $\{a_1, \ldots, a_k\}$ (with $k \ge 1$) is *linearly independent* if it is not linearly dependent, *i.e.*,

$$\beta_1 a_1 + \cdots + \beta_k a_k = 0$$

holds only when $\beta_1 = \cdots = \beta_k = 0$

- we say ' a_1, \ldots, a_k are linearly independent'
- equivalent to: no a_i is a linear combination of the others

• example: the unit *n*-vectors e_1, \ldots, e_n are linearly independent

Linear combinations of linearly independent vectors

▶ suppose x is linear combination of linearly independent vectors a_1, \ldots, a_k :

$$x = \beta_1 a_1 + \cdots + \beta_k a_k$$

▶ the coefficients β_1, \ldots, β_k are unique, i.e., if

$$x = \gamma_1 a_1 + \cdots + \gamma_k a_k$$

then $\beta_i = \gamma_i$ for $i = 1, \dots, k$

- this means that (in principle) we can deduce the coefficients from x
- to see why, note that

$$(\beta_1 - \gamma_1)a_1 + \dots + (\beta_k - \gamma_k)a_k = 0$$

and so (by linear independence) $\beta_1 - \gamma_1 = \cdots = \beta_k - \gamma_k = 0$

Independence-dimension inequality

- ▶ a linearly independent set of *n*-vectors can have at most *n* elements
- ▶ put another way: any set of n + 1 or more n-vectors is linearly dependent

Basis

- ▶ a set of n linearly independent n-vectors a_1, \ldots, a_n is called a *basis*
- ▶ any *n*-vector *b* can be expressed as a linear combination of them:

$$b = \beta_1 a_1 + \dots + \beta_n a_n$$

for some β_1, \ldots, β_n

- ▶ and these coefficients are unique
- formula above is called *expansion of* b *in the* a_1, \ldots, a_n *basis*
- example: e_1, \ldots, e_n is a basis, expansion of b is

$$b = b_1 e_1 + \dots + b_n e_n$$

Orthonormal vectors

- ▶ set of *n*-vectors a_1, \ldots, a_k are (mutually) orthogonal if $a_i \perp a_j$ for $i \neq j$
- ▶ they are *normalized* if $||a_i|| = 1$ for i = 1, ..., k
- they are orthonormal if both hold
- can be expressed using inner products as

$$a_i^T a_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

- orthonormal sets of vectors are linearly independent
- ▶ by independence-dimension inequality, must have $k \le n$
- when $k = n, a_1, \dots, a_n$ are an *orthonormal basis*

Examples of orthonormal bases

- standard unit n-vectors e₁,...,e_n
- the 3-vectors

$$\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}, \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

▶ the 2-vectors shown below

Orthonormal expansion

• if a_1, \ldots, a_n is an orthonormal basis, we have for any *n*-vector x

$$x = (a_1^T x)a_1 + \dots + (a_n^T x)a_n$$

- called orthonormal expansion of x (in the orthonormal basis)
- to verify formula, take inner product of both sides with a_i

Gram-Schmidt (orthogonalization) algorithm

▶ an algorithm to check if a_1, \ldots, a_k are linearly independent

Gram-Schmidt algorithm

given *n*-vectors a_1, \ldots, a_k

for $i = 1, \ldots, k$

- 1. Orthogonalization: $\tilde{q}_i = a_i (q_1^T a_i)q_1 \cdots (q_{i-1}^T a_i)q_{i-1}$
- 2. Test for linear dependence: if $\tilde{q}_i = 0$, quit
- 3. Normalization: $q_i = \tilde{q}_i / \|\tilde{q}_i\|$

- if G–S does not stop early (in step 2), a_1, \ldots, a_k are linearly independent
- if G–S stops early in iteration i = j, then a_i is a linear combination of a_1, \ldots, a_{i-1} (so a_1, \ldots, a_k are linearly dependent)