Production of Ammonia

Submitted by : Mehakpreet Chopra _____

Selection of process

Energy Consumption and CO2 emissions for different feedstock

Energy source	Process	$\begin{array}{c} {\rm Energy} \\ {\rm GJ/ton~NH_3} \end{array}$	${ m CO_2}$ emissions ${ m t/ton~NH_3}$
Natural Gas	Steam reforming	28	1.6
Water	Electrolysis	34	0
Naphta	Steam reforming	35	2.5
Heavy Fuel Oil	Partial oxidation	38	3.0
Coal	Partial oxidation	42	3.8

Amount of feedstock and heating value for different feedstock.

Feedstock	Amount of feedstock	$_{\rm GJ/ton~NH_3}^{\rm HHV}$	Feedstock price NOK/ton NH ₃
Natural Gas	$353.18 \text{ kg/ton NH}_3$	-17.7	414.87
Electrolysis	7.69 MWh/ton NH ₃		2360.83
Nitrogen enriched air	0.160 MWh/ton NH ₃		49.12
Coal	528.89 kg/ton NH ₃	-17.35	282.31

Calculated Prices and profits for different feedstock

(With ammonia price of 2321 NOK/ton)

Feedstock	Price	Feedstock price NOK/ton NH ₃	Profit NOK/ton NH ₃
Natural Gas	1.175 NOK/kg [14]	414.87	1906.27
Electrolysis + NEA	0.307 NOK/kWh ^[8]	2409.95	-88.55
Coal	$0.534 \text{ NOK/kg}^{[2]}$	282.31	2038.83

- Based on energy consumption there is an advantage using methane which also has the lowest carbon emissions among the fossil feedstocks.
- electrolysis process is good for being the green alternative, but the huge requirement for electric power makes hydrogen from electrolysis non beneficial.
- The coal and heavier hydrocarbon feedstocks will be discarded due to high energy requirements and carbon emissions

Selected Process: Using Methane

Implementation of design using DWSIM

Design Method

Choose Components:

- 1. Methane
- 2. Water
- 3. Carbon monoxide
- 4. Carbon dioxide
- 5. Hydrogen
- 6. Nitrogen
- 7. Ammonia

Choose Fluid Package:

• Peng - Robinson

Reaction sets:

- Water gas shift reaction
- 2. Steam reforming reaction
- 3. Haber bosch process

Process Flow Diagram

Steam Reformer

Compound	Amount
Methane	0.52896287
Water	0.47103713
Hydrogen	0
Nitrogen	0
Ammonia	0
Carbon monoxide	0
Carbon dioxide	0
Methanol	0

Compound	Amount
Methane	0.040999116
Water	0.010543423
Hydrogen	0.7113431
Nitrogen	0
Ammonia	0
Carbon monoxide	0.23711437
Carbon dioxide	0
Methanol	0

Feed

Output

Shift Reactor

Compound	Amount
Methane	0.020177649
Water	0.51304053
Hydrogen	0.35008637
Nitrogen	0
Ammonia	0
Carbon monoxide	0.11669546
Carbon dioxide	0
Methanol	0

Compound	Amount	
Methane	0.020177649	
Water	0.39730362	
Hydrogen	0.46582327	
Nitrogen	0	
Ammonia	0	
Carbon monoxide	0.00095854784	
Carbon dioxide	0.11573691	
Methanol	0	

Feed

Output

Gas liquid Separator

Compound	Amount	
Methane	0.020177649	
Water	0.39730362	
Hydrogen	0.46582327	
Nitrogen	0	
Ammonia	0	
Carbon monoxide	0.00095854784	
Carbon dioxide	0.11573691	
Methanol	0	

Compound	Amount
Methane	0.033239382
Water	0.0079811988
Hydrogen	0.76736219
Nitrogen	0
Ammonia	0
Carbon monoxide	0.0015790467
Carbon dioxide	0.18983818
Methanol	0

Feed Output

Absorption Column

Compound	Amount
Methane	0.033239382
Water	0.0079811988
Hydrogen	0.76736219
Nitrogen	0
Ammonia	0
Carbon monoxide	0.0015790467
Carbon dioxide	0.18983818
Methanol	0

Compound	Amount
Methane	0.038720103
Water	0
Hydrogen	0.95931094
Nitrogen	0
Ammonia	0
Carbon monoxide	0.0019620031
Carbon dioxide	9.5053329E-17
Methanol	6.9587606E-06

Feed Output

PSA

Amount	
0.038720103	
0	
0.95931094	
0	
0	
0.0019620031	
9.5053329E-17	
6.9587606E-06	

Compound	Amount
Methane	1.5627823E-05
Water	0
Hydrogen	0.99998437
Nitrogen	0
Ammonia	0
Carbon monoxide	0
Carbon dioxide	0
Methanol	0

Feed Output

Ammonia Reactor

Compound	Amount
Methane	1.171824E-05
Water	0
Hydrogen	0.74982017
Nitrogen	0.25016812
Ammonia	0
Carbon monoxide	0
Carbon dioxide	0
Methanol	0

Compound	Amount
Methane	1.5082684E-05
Water	0
Hydrogen	0.53443477
Nitrogen	0.17843846
Ammonia	0.28711168
Carbon monoxide	0
Carbon dioxide	0
Methanol	0

Feed

Output

Flash Separator

Compound	Amount
Methane	1.5082684E-05
Water	0
Hydrogen	0.53443477
Nitrogen	0.17843846
Ammonia	0.28711168
Carbon monoxide	0
Carbon dioxide	0
Methanol	0

Compound	Amount
Methane	1,2579696E-06
Water	0
Hydrogen	0.0011353185
Nitrogen	0.00019854347
Ammonia	0.99866488
Carbon monoxide	0
Carbon dioxide	0
Methanol	0

Feed Output

Result

Name	Mass Flow (kg/h)	Temperature (C)	Pressure (bar)
De humidified feed	10574	50	14.9364
Reactor outlet	8650.29	425	199.964
MSTR-056	8650.29	-80	149.964
Synthesis feed	8650.29	199.805	25
Pressurised feed	8650.29	573.47	200
Syn feed	8650.29	425	200
Reformed feed	7200	1099.85	15
MSTR-012	7200	420	15
Feed	7200	1099.85	15
Pure N_2	7115.4	200	25
Pure H_2	1534.89	200	25
Tank outlet	3847.14	-80	149.964
Final ammonia	3847.14	-80	149.964
Methane	3600	1100	15
Steam	3600	1100	15
Washed feed	2072.48	-60.7467	25

Material Streams

Thank you!

