

دانشگاه اصفهان

دانشكده مهندسي كامپيوتر

تمرین سوم هوش محاسباتی: شبکه های عصبی و کاربردها Neural Networks & Applications

نگارش

دانیال شفیعی مهدی مهدیه امیررضا نجفی

استاد راهنما

دكتر كارشناس

درس مبانی هوش محاسباتی صفحه ۲ از ۷

فهرست مطالب

٠ مقدمه
 ١ مفاهيم و حل مسئله
 ٢ کدزنی و پياده سازی

مقدمه ا

هدف از این تمرین آشنایی بیشتر با شبکه های عصبی و استفادهی بیشتر از آنها در کاربردهای عملی است.

۱ مفاهیم و حل مسئله

۱. بله، هر نورون در یک شبکهٔ عصبی حامل نوعی اطلاعات است؛ اما ماهیت و میزان «وضوح» این اطلاعات بسته به عمق
 لایه و ویژگیهای بنیادین شبکه متفاوت است.

چهار ویژگی بنیادی و سلسلهمراتبی بودن نمایش:

(آ) توابع غيرخطي (Nonlinearity)

- هر نورون پس از ترکیب خطی ورودیها (ضرب وزنها + بایاس) خروجی را از طریق تابعی مانند ReLU،
 ۱ sigmoid یا tanh عبور میدهد.
- بدون غیرخطیسازی، شبکه عملاً یک عملگر خطی بزرگ خواهد بود و قادر به تشخیص زیرویژگیهای پیچیده نست.
- تابع فعالسازی باعث می شود هر نورون تنها در صورت وقوع یک الگوی خاص «فعال» شود و در نتیجه به عنوان یک تشخیص دهندهٔ ساده عمل کند.

(ب) نمایش توزیعشده (Distributed Representation)

- برخلاف سیستمهای سمبلیک که هر مفهوم را با یک واحد منفرد نمایش میدهند، شبکههای عصبی مفاهیم
 را بهصورت همزمان در بردار فعالسازی تعداد زیادی نورون کدگذاری میکنند.
 - این پراکندگی اطلاعات باعث افزایش مقاومت شبکه در برابر نویز و آسیب به نورونهای منفرد می شود.
 - هر نورون سهم جزئی اما معنادار در تشخیص زیرویژگیهای ساده یا انتزاعی دارد.

(ج) یادگیری گرادیان محور (Gradient-based Learning)

- با استفاده از الگوریتم پسانتشار (Backpropagation)، وزنها و بایاس هر نورون بهروزرسانی می شود تا خطای خروجی به کمترین مقدار برسد.
- در طی آموزش، هر نورون به زیرویژگیهایی پاسخ میدهد که برای کاهش خطا در مسئلهٔ مشخص مفیدند.
- در پایان آموزش، وزنهای ورودی هر نورون تعیین میکنند که آن نورون به چه الگو یا ویژگی حساس باشد.

درس مبانی هوش محاسباتی صفحه ۳ از ۷

(د) سلسلهمراتب ویژگیها (Hierarchical Feature Learning)

- لایههای ابتدایی شبکههای عمیق معمولاً به زیرویژگیهای ساده مانند لبههای عمودی/افقی یا بافتها حساس اند.
 - لایههای میانی ترکیب این زیرویژگیها را انجام داده و الگوهای پیچیدهتر را میآموزند.
- در لایهٔ خروجی (مثلاً نورونهای softmax) احتمال تعلق هر ورودی به یک کلاس نهایی (مثلاً «گربه» یا «سگ») کدگذاری می شود.
- ۲. در شبکههای عصبی، «دانش» در قالب پارامترها (وزنها و بایاسها) ذخیره میشود و از طریق فرآیند آموزش شکل میگیرد؛ در ادامه، یک پاسخ یکپارچه و مرتبشده ارائه شده است:

(آ) شکلگیری دانش در شبکههای عصبی

- i. تعریف ساختار شبکه (Architecture): انتخاب تعداد لایهها (Input, Hidden, Output)، نوع آنها (fully-connected)، کانولوشن، بازگشتی و ...) و تعداد نورون در هر لایه.
- ii. مقداردهی اولیه پارامترها (Initialization): وزنها و بایاسها معمولاً با توزیعهای تصادفی (مثل Xavier) یا He) مقداردهی می شوند.
 - iii. انتشار رو به جلو (Forward Propagation): برای هر ورودی x، در هر لایه:

$$z^{(\ell)} = W^{(\ell)} a^{(\ell-1)} + b^{(\ell)}, \quad a^{(\ell)} = \sigma(z^{(\ell)})$$

در نهایت $a^{(L)}$ خروجی نهایی شبکه است.

- نیا محاسبه خطا (Loss Calculation): با تابع هزینه ($L(y_{\mathrm{pred}}, y_{\mathrm{true}})$ مانند iv. Cross–Entropy برای طبقه بندی.
 - v. پس انتشار خطا (Backpropagation): مشتق تابع هزینه را نسبت به پارامترها محاسبه می کنیم:

$$\frac{\partial L}{\partial W^{(\ell)}}, \quad \frac{\partial L}{\partial b^{(\ell)}}$$

.i. بهروزرساني پارامترها (Optimization): با الگوريتمهايي مثل Gradient Descent يا Adam يا vi.

$$W^{(\ell)} \leftarrow W^{(\ell)} - \eta \, \frac{\partial L}{\partial W^{(\ell)}}, \quad b^{(\ell)} \leftarrow b^{(\ell)} - \eta \, \frac{\partial L}{\partial b^{(\ell)}}$$

این چرخه تا رسیدن به همگرایی تکرار میشود.

(ب) فرمول بندی «معادل بودن» دو شبکه عصبی

 $M(x)=f_{\theta_N}(x)$ دو شبکه (Exact Functional Equivalence) دو شبکه i. معادل تابعی $f_{\theta_N}(x)=f_{\theta_N}(x)$ دقیقاً معادل اند اگر:

$$\forall x \in X, \quad N(x) = M(x).$$

نورونهای Dense، جابجایی نورونها نورونهای (Structural Equivalence) جابجایی نورونها نو

 $d(x) = \|N(x) - M(x)\|_p$ با فاصلهٔ خروجی (Approximate Equivalence) تقریب معادل iii.

$$\forall x \in X, \ d(x) < \epsilon \quad \text{i.} \quad \mathrm{KL}\big(N(x) \| M(x)\big) < \delta.$$

(ج) مثال ریاضی

 $\sigma(z)=z$ دو شبکه خطی با یک لایه پنهان و i.

$$N(x) = W_2(W_1 x + b_1) + b_2, \quad M(x) = W'_2(W'_1 x + b'_1) + b'_2.$$

آنها معادلاند اگر:

$$W_2W_1 = W_2'W_1', \quad W_2b_1 + b_2 = W_2'b_1' + b_2'.$$

ii. اشارهای به حالت غیرخطی: در شبکههای غیرخطی (مثلاً ReLU)، تبدیلات پیچیدهترند؛ اما با ادغام BatchNorm یا تبدیلات جبری می توان مشابهت رفتار را نشان داد.

٣. (آ) طراحي پرسيترون تکلايه

فرض کنیم می خواهیم الگوها را به صورت برچسب $t_1=-1$ برای $t_2=+1$ برای $t_2=+1$ برای کنیم. باید $w\in\mathbb{R}^3$ باید $w\in\mathbb{R}^3$ باید نیم می خواهیم الگوها را طوری بیابیم که

$$\begin{cases} \operatorname{sign}(w^{\top} P_1 + b) = -1, \\ \operatorname{sign}(w^{\top} P_2 + b) = +1. \end{cases}$$

این معادلات به صورت نابرابری های زیر نوشته می شوند:

$$w^{\mathsf{T}}(-1, -1, 1) + b < 0, \quad w^{\mathsf{T}}(+1, -1, 1) + b > 0.$$

به سادگی میتوانیم مثلاً وزنها را به صورت w=(1,0,0) ، و بایاس b=0 انتخاب کنیم:

$$w^{\mathsf{T}} P_1 + b = -1 < 0, \quad w^{\mathsf{T}} P_2 + b = +1 > 0.$$

لذا تابع تصميم $y = \mathrm{sign}(x_1)$ دو الگو را به درستي تفکيک ميکند.

(ت) طراحی شبکه Hamming

شبکه همینگ برای N الگو P_k به صورت زیر است:

$$\mathbf{W} = \begin{bmatrix} P_1^{\top} \\ P_2^{\top} \end{bmatrix}, \quad y = \arg\max_k (\mathbf{W} x)_k.$$

برای P_1, P_2 داریم:

$$\mathbf{W} = \begin{pmatrix} -1 & -1 & 1 \\ +1 & -1 & 1 \end{pmatrix}, \quad .\sum_i W_{k,i} x_i$$
انتخاب k با بیشینهی

(ج) طراحی شبکه Hopfield

شبکه هاپفیلد با الگوهای باینری ± 1 به کمک قاعده $T=\sum_k P_k P_k^{ op}$ ساخته می شود. اینجا داریم:

$$T = P_1 P_1^{\top} + P_2 P_2^{\top} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & -2 & 2 \end{pmatrix}.$$

سپس حالت نرونیها با قاعده $x_i \leftarrow \mathrm{sign} ig(\sum_j T_{ij} x_j ig)$ به سمت نزدیک ترین الگو جذب می شود.

۴. (آ) طراحی مرز تصمیم و شبکه پرسیترون تکلایه

با انتخاب وزنها و بایاس زیر:

$$\mathbf{w} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \quad b = \frac{1}{2}$$

تابع فعالسازي گام به اين صورت خواهد بود:

$$y = \begin{cases} 1, & \mathbf{w}^{\top} \mathbf{x} + b > 0, \\ 0, & \text{وگرنه}. \end{cases}$$

معادله مرز تصمیم:

$$-x_1 - x_2 + \frac{1}{2} = 0 \iff x_1 + x_2 = \frac{1}{2}.$$

ε نشخیص قابلیت جداسازی و تعیین بازه (ب

درس مبانی هوش محاسباتی صفحه ۶ از ۷

از نامعادلات زیر برای کلاس بندی استفاده میکنیم:

$$\begin{cases} -x_1 - x_2 + b > 0 & 1 \\ -x_1 - x_2 + b < 0 & 0 \end{cases}$$

نتیجه می شود که برای هر $\varepsilon \geq 0$ می توان $w_1 = w_2 = -1$ و $w_1 = w_2 = -1$ را انتخاب کرد و جداسازی خطی امکان پذیر است.

(ج) اجرای الگوریتم پرسپترون و نتایج نهایی

برای سه مقدار ε اجرای الگوریتم با نرخ یادگیری $\eta=1$ ، وزن و بایاس را از صفر مقداردهی کرده و تا خطای صفر تکرار میکنیم.

برنامهٔ ۱: پیادهسازی الگوریتم پرسپترون

```
import numpy as np
  def perceptron_train(P, t, lr=1, max_epochs=1000):
    w = np.zeros(2)
    b = 0.0
    epc = 0
    for epoch in range(max_epochs):
      errors = 0
      for x, target in zip(P, t):
        y = 1 if np.dot(w, x) + b > 0 else 0
        if y != target:
          errors += 1
          update = lr * (target - y)
          w += update * x
          b += update
۱۵
      if errors == 0:
        break
      epc = epoch
    return w, b, epc+1
  epsilons = [1, 2, 6]
  for eps in epsilons:
   P = [
      np.array([0,1]), np.array([1,-1]), np.array([-1,1]),
      np.array([1,eps]), np.array([1,0]), np.array([0,0])
    1
   t = [0,1,1,0,0,1]
    w, b, epochs = perceptron_train(P, t)
   print(f'' = \{eps\}: w = \{w\}, b = \{b\}, epochs = \{epochs\}'')
```

 $\varepsilon = 1$: $\mathbf{w} = (-1, -1), b = 1, \text{ epochs} = 2,$

 $\varepsilon = 2$: $\mathbf{w} = (-2, -2), b = 1, \text{ epochs} = 4,$

 $\varepsilon = 6$: $\mathbf{w} = (-3, -4), b = 3, \text{ epochs} = 4.$

(د) خلاصه نتایج

- $.x_1 + x_2 = \frac{1}{2}$ مرز تصمیم: •
- بازه $arepsilon: arepsilon \geq 0$ (تمام مقادیر غیرمنفی).
- وزنها و بایاس نهایی برای $\varepsilon = 1, 2, 6$ مطابق جدول فوق.
- الگوريتم پرسپترون حداكثر تا ۴ دور همگرا شده و خطاي صفر حاصل شد.

۲ کدزنی و پیاده سازی