JEE Advanced 2017 Paper 2 Offline

54 Questions

Question 001 MCQ	
	QUESTION
	Pure water freezes at
	273
	K
	and
	1
	bar. The addition of
	34.5
	g
	of ethanol to
	500
	g
	of water changes the freezing point of the solution. Use the freezing point depression constant of water as
	2
	kg
	$mol^{-1}.$
	The figures shown below represent plots of vapor pressure
	(V.P.)

versus temperature

(T).

 $molecular weight of ethanolis \$\$46\$\$\$g\$\$\$mol^{-1}.\,\$\$$

Among the following, the option representing change in the freezing point is

CORRECT OPTION

SOURCE

Chemistry • solutions

EXPLANATION

Depression in freezing point is given by

 Δ

 $T_f = K_f m$

where

$$m = rac{1000 imes w_{solute}}{M_{solute} imes w_{solvent}}$$

Substituting the values, we get

$$\Delta T_f = 2 imes rac{1000 imes 34.5}{46 imes 500} = 3K$$

Therefore, $T_f = 270 \text{ K}$ and

$$T_f^o$$

= 273 K. Hence, option c indicates correct representation of the graph.

CORRECT OPTION

 N_2O_5

and

 HPO_3

SOURCE

Chemistry • p-block-elements

EXPLANATION

Reaction of P_4O_{10} with pure nitric acid $\left(HNO_3\right)$ gives dinitrogen pentaoxide $(N_2 O_5)$ and metaphosphoric acid (HPO_3)

$$\mathrm{P_4O_{10} + 4HNO_3} \rightarrow \mathrm{4HPO_3 + 2} \ \mathrm{N_2O_5}_{Y}$$

The compound Y is dinitrogen pentaoxide $\left(N_{2}O_{5}\right)$ and compound Z is metaphosphoric $acid (HPO_3)$.

Question 003 MCQ

QUESTION

The product

S

is

CORRECT OPTION

SOURCE

Chemistry • aldehydes-ketones-and-carboxylic-acids

EXPLANATION

i Compound P reacts with CH_3MgBr in excess in $(C_2H_5)_2O$ followed by addition of water to form alcohol derivative of the compound.

ii Compound Q undergoes dehydration in presence of $\mathrm{H_2SO_4}$ at $0^{\circ}\mathrm{C}$.

iii Compound R undergoes acylation of aromatic ring in presence of and anhydrous $AlCl_3$.

The substitution should take place at ortho or para position but due to steric crowding at ortho and occupancy of para position. Meta position is substituted with acetyl group.

Question 004 MCQ

 O_2

and

 $P_{4}O_{10}$

SOURCE

Chemistry • p-block-elements

EXPLANATION

i Potassium chlorate $(\mathrm{KClO_3})$ is decomposed in presence of $\mathrm{MnO_2}$ as catalyst to form potassium chloride and oxygen gas.

$$2\mathrm{KClO}_3(s) \stackrel{\Delta}{\underset{\mathrm{MnO}_2}{\longrightarrow}} 2\mathrm{KCl} + 3\mathrm{O}_2(g)$$

The gas (w) is oxygen.

ii Reaction of white phosphorous with excess of gas w $i.e., $O_2$$ gives P_4O_{10} adimerofphosphorouspentaoxide.

$$\mathrm{P_4}(s) + 5\mathrm{O_2}(g)
ightarrow \mathrm{P_4O_{10}}(s) \ ^{\mathrm{White}} \ ^{\mathrm{(excess)}} \ ^{\mathrm{(X)}}$$

phosphorous oxygen

The compound (X) is P_4O_{10} .

Question 005 MCQ

QUESTION

CORRECT OPTION

SOURCE

Chemistry • compounds-containing-nitrogen

EXPLANATION

 \boldsymbol{d} : Greater the electron density on nitrogen, more basic is the compound. Thus, order of basicity is :

|\| > | > || > |||

The conjugate acid of IV is stabilized by resonance with lone pairs on both

$$\ddot{N}H_2$$

groups.

The conjugate acid of I is stabilized by resonance with lone pair on

CORRECT OPTION SOURCE Chemistry • compounds-containing-nitrogen **EXPLANATION** Question 008 MCQ **QUESTION** For the following compounds, the correct statement \boldsymbol{s} with respect to nucleophilic substitution reaction is areΙ and Ι Ι Ι follow $S_N 1$ mechanism Ι

mechanism

SOURCE

Chemistry • basics-of-organic-chemistry

EXPLANATION

a I is a benzylic halide, thus, it undergoes S_N1 reaction easily as benzylic carbocation is resonance stabilized. III also follows $S_N 1$ mechanism as it is 3

alkyl halide.

b Compounds I and II are 1

alkyl halides, then they undergo S_N^2 mechanism.

c Correct. In ${\sf S_N1}$ reaction, the nucleophile approaches the substrate carbon from the back side with respect to the leaving group. Nucleophilic displacement of the leaving group in an $S_N 2$ reaction causes inversion of configuration at the substrate carbon.

d Stability of carbocations follows the order:

$$2^{\circ} \, benzylic > 3^{\circ} \, alkyl > 1^{\circ} \, benzylic \, \ _{(III)}$$

Question 009 MCQ

QUESTION

The options s with only amphoteric oxides is are

 Cr_2O_3, BeO, SnO, SnO_2

 Cr_2O_3, CrO, SnO, PbO

 NO, B_2O_3, PbO, SnO_2

 ZnO, Al_2O_3, PbO, PbO_2

CORRECT OPTION

 Cr_2O_3, BeO, SnO, SnO_2

SOURCE

Chemistry • d-and-f-block-elements

EXPLANATION

Compounds which dissolve in both acids and bases are known as amphoteric oxides.

Amphoteric oxides are:

 $\rm Cr_2O_3,\,BeO,\,SnO,\,SnO_2,\,ZnO,\,Al_2O_3$, PbO and PbO $_2$ Whereas, NO is a neutral oxide, $\mathrm{B}_2\mathrm{O}_3$ is an acidic oxide and CrO is a basic oxide.

Question 010 MCQ

QUESTION

Among the following, the correct statement s is are

$Al(CH_3)_3$

has the three-centre two-electron bonds in its dimeric structure

BH_3

has the three-center two-electron bonds in its dimeric structure

$AlCl_3$

has the three-center two-electron bonds in its dimeric structure

The Lewis acidity of

D

is greater than that of

 $AlCl_3$

CORRECT OPTION

$$Al(CH_3)_3$$

has the three-centre two-electron bonds in its dimeric structure

SOURCE

Chemistry • p-block-elements

EXPLANATION

Option *A*: Correct.

The aluminium compounds are unusual because they have dimeric structures, and appear to have three-centre bonds involving sp^3 hybrid orbitals on Al and C in Al-C-Al bridges.

Option B: Correct.

In diborane $(\mathrm{BH_3})$ there are 12 valency electrons, three from each B atom and six from the H atoms. An sp^3 hybrid orbital from each boron atom overlaps with the 1s orbital of the hydrogen. This gives a delocalised molecular orbital covering all three nuclei, containing one pair of electrons and making up one of the bridges. This is a three-centre two-electron bond (3c-2e).

Option D: Group 13 elements have only three valency electrons. When these are used to form three covalent bonds, the atom has a share in only six electrons. The compounds are therefore electron deficient. In $AlCl_3$, effective π overlap takes place between p orbitals of Al and Cl due to their comparable size while in BCl_3 , the π overlap is not effective as p orbital of boron is smaller than that of p orbital of chlorine, hence, the acidity of BCl_3 is greater than that of $AlCl_3$.

Question 011

QUESTION

In a bimolecular reaction, the steric factor

P

was experimentally determined to be

4.5.

The correct option s among the following is are

Since

the reaction will not proceed unless an effective catalyst is used

The value of frequency factor predicted by Arrhenius equation is higher than that determined experimentally

CORRECT OPTION

Experimentally determined value of frequency factor is higher than that predicted by arrhenius equation

SOURCE

Chemistry • chemical-kinetics-and-nuclear-chemistry

EXPLANATION

Arrhenius equation is

$$k=Ae^{-E_a/RT}$$

where, A = Frequency factor

Taking into account orientation factor,

$$k = P Z_{AB} e^{-E_a/RT}$$

where, P = steric factor, $Z_{AB} = collision frequency$

The value of steric factor lies between 0 and 1 predicted by Arrhenius equation. Thus, the experimentally determined value of frequency factor is higher than that predicted by Arrhenius equation.

The activation energy of the reaction does not depend upon the value of the steric factor.

If P is very small, then catalyst is required to carry out the reaction at measurable rate.

Question 012 MCQ

QUESTION

Which of the following combination will produce

 H_2

gas?

Fe metal and conc.

 HNO_3

Cu

B metal and conc.

 HNO_3

Zn

c metal and

NaOH(aq)

Au metal and

NaCN(aq)

in the presence of air

CORRECT OPTION

Zn

c metal and

NaOH(aq)

SOURCE

Chemistry • d-and-f-block-elements

EXPLANATION

a Conc. ${\rm HNO_3}$ makes iron passive. Cold relatively concentrated ${\rm HNO_3}$ will react with Fe.

$$Fe_{Iron} + 6HNO_3
ightarrow Fe(NO_3)_3 + 3NO_2 lpha_{Nitric\,acid} + 3H_2O lpha_{Iron\,nitrate} + Nitrogen\,dioxide + 3H_2O lpha_{Mater}$$

b

$$Cu _{Copper} + 4HNO_{3}(conc.)
ightarrow Cu(NO_{3})_{2} + 2NO_{2} _{Nitric\ acid} + 2H_{2}O _{Copper\ nitrate} + Nitrogen\ dioxide + Water$$

c

$$Zn + 2NaOH_{(aq)}
ightarrow Na_2ZnO_2 + H_2 \ Sodium\ hydroxide
ightarrow Sodium\ zincate + Hydrogen$$

d

$$\frac{4Au + 8NaCN}{\textit{Gold}} + \frac{O_2}{\textit{Sodium cyanide}} + \frac{2H_2O}{\textit{Oxygen}} + \frac{4Na[Au(CN)_2]}{\textit{Sodium dicyanoaurate}} + \frac{4NaOH}{\textit{Sodium hydroxide}}$$

Question 013 MCQ

QUESTION

The correct statement s about surface properties is $\ are$

Adsorption is accompanied by decrease in ethalpy and decrease in entropy of the system

The critical temperatures of ethane and nitrogen are

563

K

and

126

K

respectively. The adsorption of ethane will be more than that of nitrogen on same amount of activated charcoal at a given temperature

- Cloud is an emulsion type of colloid in which liquid is dispersed phase and gas is dispersion medium
- Brownian motion of colloidal particles does not depend on the size of the particles but depends on viscosity of the solution

CORRECT OPTION

Adsorption is accompanied by decrease in ethalpy and decrease in entropy of the system

SOURCE

Chemistry • surface-chemistry

EXPLANATION

Option A: Correct. Adsorption is a surface phenomenon in which the concentration of the adsorbate increases only on the surface. It is always accompanied by a decrease in the entropy $\$$\Delta\$$S$. Since adsorption is an exothermic process, the enthalpy change $\$$\Delta\$$H$ of the system is also negative.

Option B: Correct. Easily liquefiable gases, that is, gases with high critical temperatures, are more readily adsorbed because van der Waals forces are stronger near the critical temperature. Thus, the adsorption of ethane will be more than that of nitrogen.

Option C: Cloud is an aerosol in which liquid is dispersed phase and gas is dispersion medium. Whereas, emulsion is liquid in liquid colloidal system.

Option D: Incorrect. Brownian movement varies with the size of the particles and viscosity of the solution. Smaller particles with lower viscosity show faster movement.

Question 014 MCQ

QUESTION

For a reaction taking place in a container in equilibrium with its surroundings, the effect of temperature on its equilibrium constant

in terms of change in entropy is described by

With increase in temperature, the value of

K

for exothermic reaction decreases because the entropy change of the system is positive

With increase in temperature, the value of

K.

for endothermic reaction increases because unfavorable change in entropy of the surroundings decreases

With increase in temperature, the value of

K

for endothermic reaction increases because the entropy change of the system is negative

with increase in temperature, the value of

K

for exothermic reaction decreases because favorable change in entropy of the surroundings decreases

CORRECT OPTION

With increase in temperature, the value of

K.

for endothermic reaction increases because unfavorable change in entropy of the surroundings decreases

SOURCE

EXPLANATION

$$\Delta S_{surr} = -rac{\Delta H}{T_{surr}}$$

For endothermic, if T_{surr} increases, unfavourable change in entropy of the surroundings decreases.

For exothermic, if T_{surr} increases, favourable change in entropy of the surroundings decreases.

Question 015 MCQ

QUESTION

The order of the oxidation state of the phosphorous atom in

$$H_3PO_2, H_3PO_4, H_3PO_3$$

and

$$H_4P_2O_6$$

is

$$H_3PO_3 > H_3PO_2 > H_3PO_4 > H_4P_2O_6$$

$$H_3PO_4 > H_3PO_2 > H_3PO_3 > H_4P_2O_6$$

$$H_3PO_4 > H_4P_2O_6 > H_3PO_3 > H_3PO_2$$

D

$$H_3PO_2 > H_3PO_3 > H_4P_2O_6 > H_3PO_4$$

CORRECT OPTION

$$H_3PO_4 > H_4P_2O_6 > H_3PO_3 > H_3PO_2$$

SOURCE

Chemistry • redox-reactions

EXPLANATION

Let oxidation states of phosphorus in H_3PO_2 , H_3PO_4 , H_3PO_3 and $H_4P_2O_6$ be p, q, r and s respectively.

Oxidation state of hydrogen = + 1

Oxidation state of oxygen =

—

2

Thus, in H_3PO_2 :

3

X

+1 + p + 2

 \times

\$\$ - \$\$2 = 0

.

p = +1

In H_3PO_4 :

QUESTION

The standard state Gibbs free energies of formation of

C

graphite and

C

diamond at

$$T=298$$

K

are

$$\Delta_f G^0$$

\$\$C\$\$(graphite)

$$= 0kJmol^{-1}$$

$$\Delta_f G^0$$

SCS(diamond)

$$= 2.9 kJ mol^{-1}$$

The standard state means that the pressure should be

1

bar, and substance should be pure at a given temperature. The conversion of graphite

1450

bar

29001

bar

CORRECT OPTION

14501

Dai

SOURCE

Chemistry • thermodynamics

EXPLANATION

We have

 ${\tt C}\, graphite$

 \rightarrow

Cdiamond

For solid at constant temperature, Gibbs energy can be calculated as

$$dG = \Delta V dp$$

$$\int\limits_{\Delta G_1}^{\Delta G_2} d(\Delta G_T) = \int\limits_{p_1}^{p_2} \Delta V dp$$

$$\Delta G_2 - \Delta G_1 = \Delta V(p_2 - p_1)$$

$$(2.9 imes 10^3 - 0) = 2 imes 10^{-6} (p_2 - 1)$$

$$(p_2-1)=rac{2.9 imes 10^3}{2 imes 10^{-6}}$$

Pa

$$(p_2-1)=rac{2.9 imes 10^3}{2 imes 10^{-6} imes 10^5}$$

bar

 $p_2 = 14501 \text{ bar}$

Question 017 MCQ

QUESTION

For the following cell,

$$Zn\left(s
ight) \leftert ZnSO_{4}\left(aq
ight) \leftert \leftert CuSO_{4}\left(aq
ight) \leftert Cu\left(s
ight)
ight.$$

when the concentration of

$$Zn^{2+}$$

is

10

times the concentration of

$$Cu^{2+},$$

the expression for

 ΔG

 $in\$\$J\,mol^{-1}\$\$$ is

\$\$F\$\$isFaraday constant; \$\$R\$\$isgas constant; \$\$T\$\$istemperature; \$\$E

1.1F

В

2.303RT - 2.2F

C

2.303RT + 1.1F

D

-2.2F

CORRECT OPTION

В

2.303RT - 2.2F

SOURCE

Chemistry • electrochemistry

EXPLANATION

The reaction involved is

$$Zn(s)+Cu^{2+}(aq)$$
 $ightharpoonup Zn^{2+}(aq)+Cu(s)$
 $\Delta G=\Delta G^{\circ}+2.303RT\lograc{[Zn^{2+}]}{[Cu^{2+}]}$

..... 1

Substituting n = 2, E

0

= 1.1 and

$$[Zn^{2+}]=10$$

and

$$[Cu^{2+}]=1$$

in Eq. 1, we get

$$\Delta G = (-2 imes F imes 1.1) + 2.303RT\lograc{10}{1}$$

= 2.303 RT

2.2 F

Question 018 MCQ

QUESTION

The reactions,

Q

to

R

and

R

to

S,

Crafts acylation

SOURCE

Chemistry • aldehydes-ketones-and-carboxylic-acids

EXPLANATION

The reaction $Q \to R$ and $R \to S$ Friedel-Crafts alkylation and Friedel-Crafts alkylation is the introduction of alkyl group into benzene ring in presence of lewis acid catalyst such as anhydrous $\ AlCl_3$. Friedel Crafts acylation is the introduction of acyl group into benzene ring in presence of lewis acid catalyst such as anhydrous $AlCl_3$.

Question 019 MCQ

QUESTION

If f:R

 \rightarrow

R is a twice differentiable function such that f''x > 0 for all x

 \in

R, and

$$f\left(\frac{1}{2}\right) = \frac{1}{2}$$

, f1 = 1, then

f' 1

 \leq

0

B f1 > 1

0 < f 1

 $\frac{1}{2}$

< f' 1

 \leq

1

CORRECT OPTION

B f1 > 1

SOURCE

Mathematics • limits-continuity-and-differentiability

EXPLANATION

 ${\rm f'} \, x \, \hbox{ is increasing }$

For some x in

$$\left(\frac{1}{2},\,1\right)$$

f'x = 1

•••

f'1 > 1

Question 020 MCQ

QUESTION

If y = yx satisfies the differential equation

$$8\sqrt{x}\left(\sqrt{9+\sqrt{x}}
ight)\!dy = \left(\sqrt{4+\sqrt{9+\sqrt{x}}}
ight)^{-1}$$

dx, x > 0 and y0 =

$$\sqrt{7}$$

, then y 256 =

- 16
- 3
- 80

CORRECT OPTION

SOURCE

Mathematics • differential-equations

EXPLANATION

$$rac{dy}{dx} = rac{1}{8\sqrt{x} + \sqrt{9 + \sqrt{x}}\sqrt{4 + \sqrt{9 + \sqrt{x}}}}$$

$$\Rightarrow y = \sqrt{4 + \sqrt{+\sqrt{x}}} + c$$

Now,

$$y(0) = \sqrt{7} + c$$

$$\Rightarrow c = 0$$

$$y(256) = \sqrt{4 + \sqrt{9 + \sqrt{16}}} = \sqrt{4 + 5} = 3$$

QUESTION How many 3 \times 3 matrices M with entries from {0, 1, 2} are there, for which the sum of the diagonal entries of M^TM is 5? 198 162 126 135 **CORRECT OPTION** 198 SOURCE Mathematics • matrices-and-determinants **EXPLANATION** Sum of diagonal entries of $\mathbf{M}^\mathsf{T}\mathbf{M}$ is

Possibilities

I. 2, 1, 0, 0, 0, 0, 0, 0, which gives

matrices

II. 1, 1, 1, 1, 1, 0, 0, 0, 0, which gives

$$\frac{9!}{4! \times 5!}$$

matrices

Total matrices = 9

 \times

8 + 9

 \times

7

 \times

2 = 198

Question 022 MCQ

QUESTION

Three randomly chosen nonnegative integers x, y and z are found to satisfy the equation x + y + z = 10. Then the probability that z is even, is

 $\frac{1}{2}$

 $\frac{36}{55}$

 $\frac{6}{11}$

 $\frac{5}{11}$

CORRECT OPTION

 $\frac{6}{11}$

SOURCE

Mathematics • probability

EXPLANATION

To solve this problem, we need to find the total number of possible solutions to the equation x+y+z=10 where x,y, and z are nonnegative integers.

First, we employ the "stars and bars" method to determine the number of nonnegative integer solutions to this equation. This method states that the

number of ways to partition n identical items oursum into k distinct groups ourvariables is given by:

$$\binom{n+k-1}{k-1}$$

For $x+y+z=10\,,$ we have $n=10\,$ and $\,k=3\,.$ Plugging into the formula, we get:

$$\binom{10+3-1}{3-1} = \binom{12}{2}$$

We calculate the binomial coefficient:

$$\binom{12}{2} = \frac{12 \times 11}{2 \times 1} = 66$$

So, there are 66 possible solutions to the equation x+y+z=10.

Next, we need to find the number of solutions for which z is even. Let z=2k where k is a nonnegative integer. Then the equation becomes:

$$x + y + 2k = 10$$

Rearranging it, we get:

$$x + y = 10 - 2k$$

Here, 10-2k must be nonnegative, so k can take values 0,1,2,3,4,5 making total 6 possible values of k.

For each value of k, x+y must equal the corresponding 10-2k. The number of nonnegative integer solutions to x+y=m for any nonnegative integer m is given by:

$$\binom{m+1}{1} = m+1$$

We will sum the solutions for each valid k:

When k=0: x+y=10, the number of solutions is 11.

When k = 1: x + y = 8, the number of solutions is 9.

When k=2: x+y=6, the number of solutions is 7.

When k = 3: x + y = 4, the number of solutions is 5.

When k = 4: x + y = 2, the number of solutions is 3.

When k=5: x+y=0, the number of solutions is 1.

Summing these, we get:

$$11 + 9 + 7 + 5 + 3 + 1 = 36$$

Thus, there are 36 solutions where z is even out of a total of 66 solutions. Hence, the probability that z is even is given by:

$$\frac{36}{66} = \frac{6}{11}$$

Thus, the correct answer is:

Option C:

$$\frac{6}{11}$$

Question 023 MCQ

QUESTION

Let S = $\{1, 2, 3, \dots, 9\}$. For k = 1, 2,, 5, let N_k be the number of subsets of S, each containing five elements out of which exactly k are odd. Then $N_1 + N_2 + N_3 + N_4 + N_5 =$

- 210
- 252

125

CORRECT OPTION

126

SOURCE

Mathematics • functions

EXPLANATION

$$N_i={}^5C_k imes{}^4C_{5-k}$$

$$N_1=5 imes 1$$

$$N_2=10 imes 4$$

$$N_3=10 imes 6$$

$$N_4=5 imes 4$$

$$N_5 = 1$$

$$N_1 + N_2 + N_3 + N_4 + N_5 = 126$$

Question 024 MCQ

QUESTION

Let O be the origin and let PQR be an arbitrary triangle. The point S is such that

\overrightarrow{OS}
Then the triangle PQR has S as its
A centroid
B orthocentre
c incentre
D circumcentre
CORRECT OPTION B orthocentre
SOURCE Mathematics • vector-algebra
EXPLANATION
\overrightarrow{OP} .
\overrightarrow{OQ}
\overrightarrow{OR}

.

 $\stackrel{\displaystyle o}{OS}$

=

 $\stackrel{\longrightarrow}{OR}$

.

 \overrightarrow{OP}

+

 \overrightarrow{OQ}

.

 \overrightarrow{OS}

 \Rightarrow

 \overrightarrow{OP}

 $\$\$\overrightarrow{OQ}\$\$\$ - \$\$\$\overrightarrow{OR}\$\$ +$

 \overrightarrow{OS}

 $\$\$\overrightarrow{OR}\$\$\$\$ - \$\$\$\$\overrightarrow{OQ}\$\$ = 0$

 \Rightarrow

 $\$\$\overrightarrow{OP}\$\$\$\$ - \$\$\$\$\overrightarrow{OS}\$\$\$\$\overrightarrow{OQ}\$\$\$\$ - \$\$\$\$\overrightarrow{OR}\$\$ = 0$

 \Rightarrow

 \overrightarrow{SP} \overrightarrow{RQ} = 0 Similarly \overrightarrow{SR} \overrightarrow{PQ} = 0 and \overrightarrow{SQ} \overrightarrow{PR} = 0 $\therefore \overrightarrow{S}$ is orthocentre.

QUESTION

The equation of the plane passing through the point 1,1,1 and perpendicular to the planes 2x + y

Let the equation of plane be ax + by + cz = 1. Then
a + b + c = 1
2a + b
_
2c = 0
3a
— Gb
6b —
2c = 0
⇒ a = 7b
c = $15b$
$\frac{100}{2}$
b =
$\frac{2}{31}$
, a =
$\frac{14}{31}$
, c =
$\frac{10}{31}$

14x + 2y + 15z = 31

Question 026 MCQ

QUESTION

f:R

R is a differentiable function such that $f(x) \ge 2f(x)$ for all x

 \in

R, and f0 = 1 then

- A $fx > e^{2x} \text{ in } 0, \$\$ \infty \$\$$
- B f'x < e^{2x} in $0, $$ \infty $$$
- fx is increasing in $0,\$\$\infty\$\$$
- D fx is decreasing in $0,\$\$\infty\$\$$

CORRECT OPTION

 $fx > e^{2x} \text{ in } 0, \$\$ \infty \$\$$

SOURCE

EXPLANATION

$$f'(x) > 2f(x)$$

$$\Rightarrow rac{dy}{y} > 2dx$$

$$\Rightarrow \int_1^{f(x)} rac{dy}{y} > 2 \int_0^x dx$$

$$\ln(f(x)) > 2x$$

•••

$$f(x) > e^{2x}$$

Also, as

$$f'(x) > 2f(x)$$

.

$$f'(x) > 2c^{2x} > 0$$

QUESTION

lf

$$I = \sum_{k=1}^{98} \int_{k}^{k+1} rac{k+1}{x(x+1)} dx$$

, then

 $I>\log_e 99$

 $I < \mathrm{log}_e 99$

 $I<rac{49}{50}$

$$I>rac{49}{50}$$

CORRECT OPTION

$$I<{\rm log}_e99$$

SOURCE

Mathematics • definite-integration

EXPLANATION

$$I = \sum_{k=1}^{98} \int_{k}^{k+1} rac{(k+1)}{x(x+1)} dx$$

Clearly,

$$I = \sum_{k=1}^{98} \int_{k}^{k+1} rac{(k+1)}{x(x+1)^2} dx$$

$$\Rightarrow I > \sum_{k=1}^{98} \left(k+1
ight) \int_{k}^{k+1} rac{1}{\left(x+1
ight)^2} dx$$

$$A\Rightarrow I>\sum_{k=1}^{98}\left(-(k+1)
ight)\left[rac{1}{k+2}-rac{1}{k+1}
ight]$$

$$\Rightarrow I > \sum_{k=1}^{98} \frac{1}{k+2}$$

$$\Rightarrow I > \frac{1}{3} + \ldots + \frac{1}{100} > \frac{98}{100}$$

$$\Rightarrow I > \frac{49}{50}$$

Also,

$$I = \sum_{k=1}^{98} \int_k^{k+1} rac{(k+1)}{x(x+1)} dx$$

$$= \sum_{k=1}^{98} \left[\log_e(k+1) - \log_e k \right]$$

$$I < \log_e 99$$

Question 028 MCQ

QUESTION

If the line x =

 α

divides the area of region R = { x,y

 \in

 $R^2: x^3$

 \leq

 \leq

x, 0

 \leq

Х

 \leq

1) into two equal parts, then

2

 α

4

A

_

4

 α

² + 1 =0

 α

⁴ + 4

В

 α

_

1 =0

C

 $\frac{1}{2}<\alpha<1$

0 <

D

 α

 \leq

 $\frac{1}{2}$

CORRECT OPTION

2

 α

4

Α

_

4

 α

2
 + 1 = 0

SOURCE

Mathematics • application-of-integration

EXPLANATION

$$\int_0^1 (x - x^3) dx = 2 \int_0^\alpha x - x^3) dx$$

$$rac{1}{4}=2\left(rac{lpha^2}{2}-rac{lpha^2}{4}
ight)$$

$$2\alpha^2 - 4\alpha^2 + 1 = 0$$

$$\alpha^2 = \frac{4-\sqrt{16-8}}{4}$$

\$\$:: \$\$\$\$ α \$\$\$\$ \in \$\$(0,1)

$$\alpha^2 = 1 - \frac{1}{\sqrt{2}}$$

Question 029 MCQ

QUESTION

Let

 α

and

 β

be non zero real numbers such that

$$2(\cos\beta - \cos\alpha) + \cos\alpha\cos\beta = 1$$

. Then which of the following is/are true?

$$\sqrt{3} an\left(rac{lpha}{2}
ight)- an\left(rac{eta}{2}
ight)=2$$

$$an\left(rac{lpha}{2}
ight)-\sqrt{3} an\left(rac{eta}{2}
ight)=0$$

$$an\left(rac{lpha}{2}
ight)+\sqrt{3} an\left(rac{eta}{2}
ight)=0$$

$$\sqrt{3} an\left(rac{lpha}{2}
ight)+ an\left(rac{eta}{2}
ight)=2$$

CORRECT OPTION

$$an\left(rac{lpha}{2}
ight)-\sqrt{3} an\left(rac{eta}{2}
ight)=0$$

SOURCE

Mathematics • trigonometric-functions-and-equations

EXPLANATION

$$2(\cos\beta - \cos\alpha) + \cos\alpha\cos\beta = 1$$

or

$$4(\cos\beta-\cos\alpha)+2\cos\alpha\cos\beta=2$$

$$\Rightarrow 1 - \cos \alpha + \cos \beta - \cos \alpha \cos \beta$$

$$= 3 + 3\cos\alpha - 3\cos\beta - 3\cos\alpha\cos\beta$$

$$\Rightarrow (1 - \cos \alpha)(1 + \cos \beta)$$

$$=3(1+\cos\alpha)(1-\cos\beta)$$

$$\Rightarrow \frac{(1-\cos\alpha)}{(1+\cos\alpha)} = \frac{3(1-\cos\beta)}{1+\cos\beta}$$

$$\Rightarrow an^2rac{lpha}{2}=3 an^2rac{eta}{2}$$

$$\tan\frac{\alpha}{2}\pm\sqrt{3}\tan\frac{\beta}{2}=0$$

Question 030 MCQ

QUESTION

Let

$$f(x)=rac{1-x(1+|1-x|)}{|1-x|}\cos\left(rac{1}{1-x}
ight)$$

for x

 \neq

1. Then

= 0

$$\lim_{x o 1^+}f(x)$$

В

 $\lim_{x o 1^-}f(x)$

does not exist

C

 $\lim_{x o 1^-}f(x)$

= 0

D

 $\lim_{x o 1^+} f(x)$

does not exist

CORRECT OPTION

 $\lim_{x o 1^-}f(x)$

= 0

SOURCE

Mathematics • limits-continuity-and-differentiability

EXPLANATION

$$f(x)=rac{1-x(1+|1-x|)}{|1-x|}\cos\left(rac{1}{1-x}
ight)$$

Now,

$$\lim_{x o 1^-}f(x)$$

$$=\lim_{x o 1^-}rac{1-x(1+1-x)}{1-x}\cos\left(rac{1}{1-x}
ight)$$

$$=\lim_{x o 1^-}(1-x)\cos\left(rac{1}{1-x}
ight)=0$$

and

$$\lim_{x o 1^+}f(x)=\lim_{x o 1^+}$$

$$\frac{1-x(1+1-x)}{x-1}\cos\left(\frac{1}{1-x}\right)$$

$$=\lim_{x o 1^+} -(x+1). \cos\left(rac{1}{x+1}
ight)$$

, which does not exist.

Question 031 MCQ

QUESTION

lf

$$g(x) = \int_{\sin x}^{\sin(2x)} \sin^{-1}(t) dt$$

, then

A

$$g'\left(-rac{\pi}{2}
ight)=0$$

В

$$g'\left(-rac{\pi}{2}
ight)=-2\pi$$

C

$$g'\left(rac{\pi}{2}
ight)=2\pi$$

D

$$g'\left(rac{\pi}{2}
ight)=0$$

CORRECT OPTION

$$g'\left(-rac{\pi}{2}
ight)=0$$

SOURCE

Mathematics • differential-equations

EXPLANATION

$$g(x) = \int_{\sin x}^{\sin(2x)} \sin^{-1}(t) \, dt$$

 $g'x = 2\cos 2x \sin x$

 1sin2x

cos x sin

 $^{1}sinx$

$$g'\left(rac{\pi}{2}
ight) = -2\mathrm{sin}^{-1}(0) = 0$$

$$g'\left(-rac{\pi}{2}
ight)=-2\mathrm{sin}^{-1}(0)=0$$

No option is matching.

Question 032 MCQ

QUESTION

lf

$$f(x) = \begin{vmatrix} \cos 2x & \cos 2x & \sin 2x \\ -\cos x & \cos x & -\sin x \\ \sin x & \sin x & \cos x \end{vmatrix}$$

then

- A fx attains its minimum at x = 0
- \blacksquare fx attains its maximum at x = 0
- f'x = 0 at more than three points in $\$\$ \$\$\$ \pi \$\$, \$\$ \pi \$\$$
- f'x = 0 at exactly three points in $\$\$ \$\$\$\$\pi\$\$, \$\$\pi\$\$$

CORRECT OPTION

f B f x attains its maximum at x = 0

SOURCE

Mathematics • application-of-derivatives

EXPLANATION

$$f(x) = \begin{vmatrix} \cos 2x & \cos 2x & \sin 2x \\ -\cos x & \cos x & -\sin x \\ \sin x & \sin x & \cos x \end{vmatrix}$$

$$\cos2x(\cos^2x+\sin^2x)-\cos2x(-\cos^2x+\sin^2x)+\sin2x(-\sin2x)$$

$$=\cos 2x + \cos 4x$$

$$f'(x) = -2\sin 2x - 4\sin 4x$$

$$= -2\sin 2x(1+4\cos 2x)$$

At x = 0

f'x = 0 and fx = 2

Also, $f(x) = 0 \sin 2x = 0$ or

$$\cos 2x = \frac{-1}{4}$$

$$\Rightarrow x = rac{n\pi}{2}$$

or

$$\cos 2x = -\frac{1}{4}$$

Question 033 MCQ

QUESTION

If the triangle PQR varies, then the minimum value of $\cos P + Q \, + \cos Q + R$ + $\cos R + P$ is

A

 $-rac{3}{2}$

В

 $\frac{3}{2}$

C

 $\frac{5}{3}$

D

 $-\frac{5}{3}$

CORRECT OPTION

 $-\frac{3}{2}$

SOURCE

Mathematics • trigonometric-functions-and-equations

EXPLANATION

 $\cos P + Q \, + \cos Q + R \, + \cos R + P$

=

cosR + cosP + cosQ

Max. of cosP + cosQ + cosR =

$$\frac{3}{2}$$

Min. of
$$\cos P + Q + \cos Q + R + \cos R + P$$
 is =

$$-\frac{3}{2}$$

Question 034 MCQ

QUESTION

$$\overrightarrow{OX}$$

$$\rightarrow$$

$$\overrightarrow{OY}$$

|=?

 $oxed{\mathsf{B}} \hspace{0.1cm} \mathsf{sin} \hspace{0.1cm} P + R$

 $oldsymbol{\mathsf{C}}$ $\sin Q + R$

D sin2R

CORRECT OPTION

 $\sin P + Q$

SOURCE

Mathematics • vector-algebra

EXPLANATION

Now,

$$\overrightarrow{OX} = \frac{\overrightarrow{QR}}{QR}$$

and

$$\overrightarrow{OY} = \frac{\overrightarrow{RP}}{RP}$$

Therefore,

$$(\overrightarrow{OX} \times \overrightarrow{OY}) = \frac{\overrightarrow{QR}}{QR} \times \frac{\overrightarrow{RP}}{RP} = \frac{\overrightarrow{QR} \times \overrightarrow{RP}}{PQ}$$

$$= \frac{PQ \sin R}{PQ} = \sin R = \sin(\pi - (P + Q)) = \sin(P + Q))$$

Question 035 MCQ

QUESTION

$$a_{12} = ?$$

A a₁₁ + 2a₁₀

a₁₁

a₁₀

a₁₁ + a₁₀

CORRECT OPTION

 $a_{11} + a_{10}$

SOURCE

Mathematics • quadratic-equation-and-inequalities

EXPLANATION

 α

2 =

 α

+ 1

 β

2 =

 β

 $a_n = p$

 α

2

 $a_{12} = a_{11} + a_{10}$

Question 036 MCQ

QUESTION

If $a_4 = 28$, then p + 2q =

- C 21
- D 12

CORRECT OPTION

12

SOURCE

Mathematics • quadratic-equation-and-inequalities

EXPLANATION

$$\alpha = \frac{1 + \sqrt{5}}{2}$$

,

$$\beta = \frac{1 - \sqrt{5}}{2}$$

$$a_4 = a_3 + a_2$$

$$= 2a_2 + a_1$$

$$=3a_1+2a_0$$

$$28 = p(3\alpha+2) + q(3\beta+2)$$

$$28=(p+q)\left(rac{3}{2}+2
ight)+(p-q)\left(rac{3\sqrt{5}}{2}
ight)$$

•

р

q = 0

and

$$(p+q) imesrac{7}{2}=28$$

 \Rightarrow

p + q = 8

 \Rightarrow

p = q = 4

p + 2q = 12

Question 037 MCQ

QUESTION

A point charge

$$+Q$$

is placed just outside an imaginary hemispherical surface of radius

R

as shown in the figure. Which of the following statements is/are correct?

The electric flux passing through the curved surface of the hemisphere is

A

$$-\frac{Q}{2\varepsilon_0}$$

$$\left(1-rac{1}{\sqrt{2}}
ight)$$

Total flux through the curved and the flat surfaces is

В

$$rac{Q}{arepsilon_0}$$

- The component of the electric field normal to the flat surface is constant over the surface
- The circumference of the flat surface is an equipotential

CORRECT OPTION

The electric flux passing through the curved surface of the hemisphere is

A

$$-\frac{Q}{2\varepsilon_0}$$

$$\left(1-rac{1}{\sqrt{2}}
ight)$$

SOURCE

Physics • electrostatics

EXPLANATION

Since charge Q is outside the hemispherical surface, the net flux passing through the curved surface of hemispherical surface and flat surface is zero.

Therefore,

 ϕ

curved +

 ϕ

$$flat = 0 1$$

Hence, option $\,B\,$ is incorrect.

Now,

$$\phi_{flat} = \int \stackrel{
ightarrow}{E} . \ d\stackrel{
ightarrow}{A} = \int E dA \cos heta$$

and

$$E=rac{1}{4\piarepsilon_0}rac{Q}{\left(\sqrt{R^2+r^2}
ight)^2}=rac{1}{4\piarepsilon_0}rac{Q}{\left(R^2+r^2
ight)}$$

Also,

$$\cos heta = rac{R}{\sqrt{R^2 + r^2}}$$

and

$$A=2\pi r\Rightarrow dA=2\pi r dr$$

Therefore,

$$\phi_{flat} = \int\limits_0^R rac{1}{4\piarepsilon_0} rac{Q}{R^2+r^2} 2\pi r dr rac{R}{\sqrt{R^2+r^2}}$$

$$\phi_{flat} = rac{QR}{2arepsilon_0}\int\limits_0^Rrac{rdr}{(R^2+r^2)^{3/2}}$$

Substituting $R^2 + r^2 = t$, we get

$$2rdr = dt$$

$$\Rightarrow \phi_{flat} = rac{QR}{2arepsilon_0}\int\limits_0^Rrac{dt}{2}rac{1}{t^{3/2}} = rac{QR}{2arepsilon_0}iggl[rac{1}{2}rac{t^{-1/2}}{-1/2}iggr]_0^R$$

Substituting

$$t = R^2 + r^2$$

, we get

$$\begin{split} \phi_{flat} &= \frac{QR}{2\varepsilon_0} \left[\frac{1}{2} \frac{\left(R^2 + r^2\right)^{-1/2}}{-1/2} \right]_0^R \\ &= \frac{QR}{2\varepsilon_0} \left[\frac{-1}{\sqrt{R^2 + r^2}} \right]_0^R = \frac{QR}{2\varepsilon_0} \left(\frac{-1}{\sqrt{R^2 + R^2}} + \frac{1}{\sqrt{R^2}} \right) \\ &= \frac{QR}{2\varepsilon_0} \left(\frac{-1}{\sqrt{2R^2}} + \frac{1}{\sqrt{R^2}} \right) = \frac{QR}{2\varepsilon_0} \left(\frac{-1}{\sqrt{2}R} + \frac{1}{R} \right) \\ &= \frac{QR}{2\varepsilon_0} \frac{1}{R} \left(\frac{-1}{\sqrt{2}} + 1 \right) = \frac{Q}{2\varepsilon_0} \left(\frac{-1}{\sqrt{2}} + 1 \right) \end{split}$$

Using Eq. 1, we get

$$\phi_{curved} = -\phi_{flat} = -rac{Q}{2arepsilon_0} \left(rac{-1}{\sqrt{2}} + 1
ight) = -rac{Q}{2arepsilon_0} \left(1 - rac{1}{\sqrt{2}}
ight)$$

Hence, option A is correct.

The potential at any point on the circumference of the flat surface is

$$\frac{1}{4\pi\varepsilon_0} \frac{Q}{\sqrt{2}R}$$

Thus, the circumference of flat surface is equipotential.

QUESTION

Two coherent monochromatic point sources

 S_1

and

 S_2

of wavelength

$$\lambda = 600 \, nm$$

are placed symmetrically on either side of the center of the circle as shown. The sources are separated by a distance

$$d = 1.8$$

mm.

This arrangement produces interference fringes visible as alternate bright and dark spots on the circumference of the circle. The angular separation between two consecutive bright spots is

 $\Delta \theta$.

Which of the following options is/are correct?

- The angular separation between two consecutive bright spots decreases as we move from P_1 to P_2 along the first quadrant.
- At P₂ the order of the fringe will be maximum.
- A dark spot will be formed at the point P₂.

The total number of fringes produced between P_1 and P_2 in the first quadrant is close to 3000.

CORRECT OPTION

At P_2 the order of the fringe will be maximum.

SOURCE

Physics • wave-optics

EXPLANATION

At any point P on circumference, the path difference,

 Δ

 $x = d \sin$

 θ

At P₁,

 θ

= 0

0

 \Rightarrow

 Δ

x = 0

At P₂,

 θ

= 90

0

 \Rightarrow

 Δ x = dFor constructive interference, Δ x = n λ $n = rac{d}{\lambda} = rac{1.8 \, mm}{600 \, nm} = rac{1.8 imes 10^{-3} m}{600 imes 10^{-9} m} = 3000$ Since, n is integer, hence P₂ corresponds to bright spot and also it corresponds to maximum order of fringe. Now, Δ $x = d \sin$ θ Δ $x = d \cos$ θ θ or R λ = d cos θ d

$$d\theta \propto \frac{1}{\cos \theta}$$

Hence, as

 θ

increases, cos

 θ

decreases and consequently d

 θ

increases.

Question 039 MCQ

QUESTION

The instantaneous voltages at three terminals marked

and

Z

are given by

$$V_x = V_0 \sin \omega t,$$

$$V_Y = V_0 \, \sin$$

$$\left(\omega t+rac{2\pi}{3}
ight)$$

and

$$Vz=V_0\sin\left(\omega t+rac{4\pi}{3}
ight)$$

An ideal voltmeter is configured to read

rms

value of the potential difference between its terminals. It is connected between points

X

and

Y

and then between

Y

and

Z.

The reading s of the voltmeter will be

$$V_{xy}^{rms}=V_0\sqrt{rac{3}{2}}$$

$$V_{YZ}^{rms}=V_0\sqrt{rac{1}{2}}$$

C

$$V_{XY}^{rms} = V_0$$

CORRECT OPTION

$$V_{xy}^{rms}=V_0\sqrt{rac{3}{2}}$$

SOURCE

Physics • alternating-current

EXPLANATION

The potential difference between point X and Y is given by

$$V_{XY} = V_X$$

_

 V_{Y}

= $V_0 \sin \$\$ \omega \$\$ t$

 $\mathsf{V}_0 \sin\$\$\omega\$\$t + \$\$rac{2\pi}{3}\$\$$

= 2V_0 cos \$\$ ω \$\$ $t + \$ \frac{\pi}{3} \$$ sin \$\$ $- \$ \$ \$ \frac{\pi}{3} \$$ \$

=

 $\sqrt{3}$

 $V_0 \cos \$\$ \omega \$\$ t + \$\$ \frac{\pi}{3} \$\$ =$

 $\sqrt{3}$

 $V_0 \sin \$\$\omega\$\$t\$\$ - \$\$\$\$\frac{\pi}{6}\$\$$.

Similarly, the potential difference between point Y and Z is

$$V_{YZ} = V_{Y}$$

_

 V_{Z}

= V $_0$ sin $$$\omega$$t + $$rac{2\pi}{3}$$$

_

 $V_0 \sin \$ \omega \$ t + \$ \$ \frac{4\pi}{3} \$ \$$

= 2V_0 $\cos \$\$\omega \$\$t + \$\$\pi\$\$ \sin \$\$ - \$\$\$\$\frac{\pi}{3}\$\$$

=

 $\sqrt{3}$

 $V_0 \cos \$\$ \omega \$\$ t =$

 $\sqrt{3}$

 $\mathsf{V}_0 \sin\$\$\omega\$\$t + \$\$ frac{\pi}{2}\$\$$,

and the potential difference between point \boldsymbol{Z} and \boldsymbol{X} is

 $V_{ZX} = V_{Z}$

—

 V_X

= $V_0 \sin \$\$ \omega \$\$ t + \$\$ \frac{4\pi}{3} \$\$$

 $V_0 \sin \$\$ \omega \$ \$ t$

=

 $\sqrt{3}$

$$V_0 \cos \$\$ \omega \$\$ + \$\$ \frac{2\pi}{3} \$\$ =$$

$$\sqrt{3}$$

 $\mathsf{V_0}\sin\$\$\omega\$\$t + \$\$rac{7\pi}{6}\$\$$.

The rms value of the potential V = V $_0$ sin $\$\omega$ $\$t + \ϕ is given by V^{rms} = V $_0$

$$\sqrt{2}$$

. Thus, rms values of the potentials are

$$V_{XY}^{rms} = V_{YZ}^{rms} = V_{ZX}^{rms} = V_0 \sqrt{3/2}$$

. Hence, the reading of the voltmeter is independent of the two terminal i.e., reading is same whether it is connected across X-Y or Y-Z or Z-X.

Question 040 MCQ

QUESTION

A uniform magnetic field

B

exist in the region between

$$x = 0$$

and

$$x = \frac{3R}{2}$$

 $region\$\$2\$\$ in the figure \,$ pointing normally into the plane of the paper. A particle with charge

$$+Q$$

and momentum

p

directed along

 \boldsymbol{x}

-axis enters region

2

from region

1

 $atpoint\ P_{1}\left(y
ight) =-R).\$$ Which of the following option s is/are correct?

For

$$B>rac{2}{3}rac{p}{QR}$$

the particle well re-enter region

1

For

$$B = rac{8}{13} rac{p}{QR},$$

the particle will enter region

3

B thr

through the point

 P_2

on

 \boldsymbol{x}

-axis

When the particle re-enters region 1 through the longest possible path in region 2, the magnitude of the change in its linear momentum between point C P_1 and the farthest point from y-axis is $p/\sqrt{2}$ For a fixed B, particles of same charge Qand same velocity D v, the distance between the point P_1 and the point of re-entry into region 1 is inversely proportional to the mass of the particle

CORRECT OPTION

For

$$B>rac{2}{3}rac{p}{QR}$$

the particle well re-enter region

1

SOURCE

Physics • magnetism

EXPLANATION

As the magnetic field is perpendicular to motion of particle.

•

Particle will move in curved path of radius,

$$r = \frac{mv}{QB} = \frac{p}{QB}$$

\$\$:: \$\$p = mv

Particle will cross the region 2 if

$$r>\frac{3R}{2}\Rightarrow B<\frac{2p}{3QR}$$

and particle will re-enter region 1 if

$$r<\frac{3R}{2}\Rightarrow B>\frac{2p}{3QR}$$

Here a = 0, b = r\$\$ -\$\$R

Equation of trajectory,

$$(x-a)^2 + (y-b)^2 = r^2$$

.

To pass through region 2, at

$$P_2\left(\frac{3R}{2},0\right)$$

,

$$\left(rac{3R}{2}
ight)^2+(r-R)^2=r^2$$

or

$$rac{9}{4}R^2 + r^2 + R^2 - 2rR = r^2$$
 $rac{13}{4}R^2 = 2rR$

or

$$r = \frac{13}{8}R \Rightarrow \frac{p}{QB} = \frac{13}{8}R$$

or

$$B = \frac{8}{13} \frac{p}{QR}$$

Hence, for

$$B = \frac{8}{13} \frac{p}{QR}$$

particle will enter region 3 through P_2

For

$$r<rac{3R}{2}$$

, particle will re-enter region 1 through point P_3x,y .

$$y=(2r-R)=\left(rac{2mv}{QB}-R
ight)$$

. x = 0

 \propto

m

At farthest point from y-axis, the momentum is perpendicular to initial momentum.

$$\Delta p = \sqrt{2} m v = \sqrt{2} p$$

Question 041 MCQ

QUESTION

A person measures the depth of a well by measuring the time interval between dropping a stone and receiving the sound of impact with the bottom of the well. The error in his measurement of time is

$$\delta T = 0.01$$

seconds and he measures the depth of the well to be

$$L=20$$

meters. Take the acceleration due to gravity

$$g=10ms^{-2}$$

and the velocity of sound is

300

$$ms^{-1}$$

. Then the fractional error in the measurement,

$$\delta L/L$$
,

is closest to

0.2%

1%

5%

CORRECT OPTION

1%

SOURCE

Physics • units-and-measurements

EXPLANATION

Let the time taken by stone to reach bottom of will be \mathbf{t}_1 and time taken by sound to reach the observer be \mathbf{t}_2 then

$$t_1 = \sqrt{rac{2L}{g}}$$

.... Missing superscript or subscript argument

and

$$t_2=rac{L}{v_s}$$

2

Where L is depth of well

g is acceleration due to gravity

 v_s is velocity of sound

Total time taken,

$$T=t_1+t_2=rac{\sqrt{2L}}{g}+rac{L}{v_s}$$

..... 3

lf

 δ

L is error in depth of well measured and

δ

T is error is time measured then

$$T+\delta T=\sqrt{rac{2(L+\delta L)}{g}}+rac{(L+\delta L)}{v_s}$$

$$T+\delta T=\sqrt{rac{2L}{g}\left(1+rac{\delta L}{L}
ight)}+rac{L}{v_s}\left(1+rac{\delta L}{L}
ight)$$

expanding

$$\left(1+rac{\delta L}{L}
ight)^{1/2}$$

using binomial approximation

$$T+\delta T=\sqrt{rac{2L}{g}}\left(1+rac{1}{2}rac{\delta L}{L}
ight)+rac{L}{V_s}\left(1+rac{\delta L}{L}
ight)$$

$$=\sqrt{rac{2L}{g}}+\sqrt{rac{2L}{g}}\left(rac{1}{2}rac{\delta L}{L}
ight)+rac{L}{v_s}+rac{L}{v_s}rac{\delta L}{L}$$

$$=\sqrt{rac{2L}{g}}+rac{L}{v_s}+\left(rac{1}{2}\sqrt{rac{2L}{g}}+rac{L}{v_s}
ight)rac{\delta L}{L}$$

given, L = 20 m, g = 10 m/s, v_s = 300 m/s and using equation 3:

$$\sqrt{\frac{2L}{g}} + \frac{L}{v_s} = T$$

, above equation becomes

$$T+\delta T=T+\left(rac{1}{2}\sqrt{rac{2 imes20}{10}}+rac{20}{300}
ight)rac{\delta L}{L}$$

$$\Rightarrow \delta T = \left(rac{1}{2}\sqrt{4} + rac{1}{15}
ight)rac{\delta L}{L} = \left(1 + rac{1}{15}
ight)rac{\delta L}{L} = \left(rac{16}{15}
ight)rac{\delta L}{L}$$

$$\Rightarrow \frac{\delta L}{L} = \delta T \left(\frac{15}{16} \right)$$

It is given that

δ

T = 0.01 sec, therefore,

$$\left(rac{\delta L}{L}
ight) imes 100\% = rac{15}{16} imes rac{1}{100} imes 100\% = rac{15}{16}\%$$

error

$$\simeq 1\%$$

Answer B

Question 042 MCQ

QUESTION

A rocket is launched normal to the surface of the Earth, away from the sun, along the line joining the Sun and the Earth. The Sun is

$$3 \times 10^5$$

times heavier than the earth and is at a distance

$$2.5 imes 10^4$$

times larger than the radius of the Earth. The escape velocity from Earth's gravitational field is

 $V_c = 11.2 km \, s^{-1}$.

. The minimum initial velocity

 (v_s)

required for the rocket to be able to leave the sun-earth system is closest to Ignore the the rotation and revolution of the earth and the presence of any other states of the sun-earth system is closest to the sun-earth system in the sun-earth system is closest to the system in the sun-earth system is closest to the sun-earth system.

A

$$v_s = 22 \, km \, s^{-1}$$

В

$$v_s = 42 \, km \, s^{-1}$$

C

$$v_s=62km\,s^{-1}$$

D

$$v_s=72kms^{-1}$$

CORRECT OPTION

$$v_s = 42 \, km \, s^{-1}$$

SOURCE

Physics • gravitation

EXPLANATION

Given : Mass of the sun, $M_s = 3$

10⁵

 \times

mass of the earth = 3

 \times

 $10^5\,\mathrm{M_e}$

Distance between the sun and the earth,

d = 2.5

 \times

10⁴

 \times

radius of the earth = 2.5

 \times

 $10^4 R_e$

Escape speed, $v_e = 11.2 \text{ km s}$

_

1

· ·

 $v_e = \sqrt{rac{2GM_e}{R_e}} = 11.2$

km s

_

1

Minimum velocity required for the rocket to escape the given earth

_

sun system = v_s

Using energy conservation for the given situation, $rac{1}{2} m v_s^2 = rac{G M_e m}{R_e} + rac{G M_s m}{d + R_e} = rac{G M_e m}{R_e} + rac{G imes 3 imes 10^5 M_e m}{(2.5 imes 10^4 R_e + R_e)}$ $v_s^2 = rac{2GM_e}{R_e} + rac{24GM_e}{R_e}$ \times $\Rightarrow v_s^2 = v_e^2 + 12v_e^2 = 13v_e^2$ or $v_s=\sqrt{13}$ \approx

42 km s

_

1

Question 043 MCQ

QUESTION

$$\overrightarrow{S} = (1-b)\overrightarrow{P} + b\overrightarrow{Q}$$

$$\overrightarrow{S} = (b-1)\overrightarrow{P} + b\overrightarrow{Q}$$

$$\overrightarrow{S} = ig(1-b^2ig)\overrightarrow{P} + b\overrightarrow{Q}$$

$$\overrightarrow{S} = (1-b)\overrightarrow{P} + b^2\overrightarrow{Q}$$

CORRECT OPTION

$$\overrightarrow{S} = (1-b)\overrightarrow{P} + b\overrightarrow{Q}$$

SOURCE

Physics • motion

EXPLANATION

From figure we can write

$$\overrightarrow{P} = \overrightarrow{bR} = \overrightarrow{S}$$

It is given that

$$\overrightarrow{R} = \overrightarrow{Q} - \overrightarrow{P}$$

. Put in above equation we get

$$\overrightarrow{P} + b(\overrightarrow{Q} - \overrightarrow{P}) = \overrightarrow{S} \Rightarrow \overrightarrow{P} + b\overrightarrow{Q} - b\overrightarrow{P} = \overrightarrow{S}$$

$$\Rightarrow \overrightarrow{S} = \overrightarrow{P}(1 - \overrightarrow{b}) + b\overrightarrow{Q}$$

Question 044 MCQ

QUESTION

Consider regular polygons with number of sides

$$n=3,4,5...$$

as shown in the figure. The center of mass of all the polygons is at height

h

from the ground. They roll on a horizontal surface about the leading vertex without slipping and sliding as depicted. The maximum increase in height of the locus of the center of mass for each polygon is

Δ

. Then

Δ

depends on

n

and

h

as

$$\Delta = h \mathrm{sin}^2 \left(\frac{\pi}{n} \right)$$

В

$$\Delta = h \left(rac{1}{\cos\left(rac{\pi}{n}
ight)} - 1
ight)$$

C

$$\Delta = h \sin \left(rac{2\pi}{n}
ight)$$

D

$$\Delta = h an^2\left(rac{\pi}{2n}
ight)$$

CORRECT OPTION

$$\Delta = h \left(rac{1}{\cos \left(rac{\pi}{n}
ight)} - 1
ight)$$

SOURCE

Physics • rotational-motion

EXPLANATION

Let n be the number of sides of a regular polygon. By symmetry, its centre of mass O will be equidistant from each vertex i.e., it lies at the centre of the circumscribed circle. Let r be the radius of circumscribed circle and h be the perpendicular distance of O from any side seefigure. The angle subtended by any side on the centre O is 2

/n and

 \angle

PON =

 π

/n.

When polygon rolls about the vertex P withoutslippingorsliding, the point O moves in a circle of radius r centred at P. The point O reaches the maximum height pointO'inthe figure when PO' is perpendicular to PQ. Thus, the maximum increase in height of the locus of the centre of mass O is given by

$$\Delta = r - h = rac{h}{\cos(\pi/n)} - h = h\left(rac{1}{\cos(\pi/n)} - 1
ight)$$

Question 045 MCQ

QUESTION

A symmetric star shaped conducting wire loop is carrying a steady state current

Ι

as shown in the figure. The distance between the diametrically opposite vertices of the star is

4a.

The magnitude of the magnetic field at the center of the loop is

$$rac{\mu_0 1}{4\pi a} 6 \left[\sqrt{3} - 1
ight]$$

$$rac{\mu_0 1}{4\pi a} 6\left[\sqrt{3}+1
ight]$$

$$\frac{\mu_0 1}{4\pi a} 3 \left[\sqrt{3} - 1 \right]$$

$$rac{\mu_0 1}{4\pi a} 3 \left[2 - \sqrt{3}
ight]$$

CORRECT OPTION

$$rac{\mu_0 1}{4\pi a} 6 \left[\sqrt{3} - 1
ight]$$

SOURCE

Physics • magnetism

EXPLANATION

The star shape is composed of 12 wires. Thus, the total magnetic field at centre is 12 times of magnetic field due to one wire.

Let us first calculate the magnetic field due to element AB. Perpendicular distance of centre O from element AB, OP = a

Angle subtended by centre at element are

 θ

1 = 30

0

 θ

 $_2 = 60$

as shown in figure.

$$\overrightarrow{B} = rac{\mu_0 I}{4\pi a}(\cos 30^\circ - \cos 60^\circ)\odot$$

$$=\frac{\mu_0 I}{4\pi a}\left(\frac{\sqrt{3}}{2}-\frac{1}{2}\right)\odot=\frac{\mu_0 I}{8\pi a}(\sqrt{3}-1)\odot$$

Since the direction of magnetic field due to each element side is out of the paper

Net magnetic field at O

$$=12\times\frac{\mu_0I}{8\pi a}(\sqrt{3}-1)$$

$$=\frac{\mu_0I}{4\pi a}6(\sqrt{3}-1)$$

Question 046 MCQ

QUESTION

A photoelectric material having work-function

 ϕ_0

is illuminated with light of wavelength

$$\lambda\left(\lambda<rac{he}{\phi_0}
ight).$$

SOURCE

Physics • dual-nature-of-radiation

EXPLANATION

Here,

 λ

is the wavelength of incident light and

 λ

_d is the de Broglie wavelength of the fastest photoelectron. The fastest ejected photoelectron has the maximum kinetic energy which is given by

$$K_{
m max} = rac{hc}{\lambda} - \phi_0$$

.....1

The de Broglie wavelength of the photoelectron having kinetic energy

$$K_{ ext{max}} = rac{p^2}{2m}$$

is given by

$$\lambda_d = rac{h}{p} = rac{h}{\sqrt{2mK_{
m max}}}$$

.... 2

where m is the mass of the electron and p is its linear momentum. Eliminate ${\rm K}_{\rm max}$ from equations 1 and 2 to get

$$rac{h^2}{2m\lambda_d^2} = rac{hc}{\lambda} - \phi_0$$

..... 3

Differentiate equation 3 to get

$$(-2)rac{h^2}{2m\lambda_d^3}\Delta\lambda_d=(-1)rac{hc}{\lambda^2}\Delta\lambda$$

which gives

$$rac{\Delta \lambda_d}{\Delta \lambda} = rac{mc}{h} rac{\lambda_d^3}{\lambda^2}$$

Question 047 MCQ

QUESTION

Consider an expanding sphere of instantaneous radius R whose total mass remains constant. The expansion is such that the instantaneous density

 ρ

remains uniform throughout the volume. The rate of fractional change in density

$$\left(\frac{1}{\rho} \frac{d\rho}{dt}\right)$$

is constant. The velocity

v

of any point on the surface of the expanding sphere is proportional to

R

 R^3

C

 $\frac{1}{R}$

D

 $R^{2/3}$

CORRECT OPTION

R

SOURCE

Physics • motion

EXPLANATION

Density

$$ho = rac{mass\left(m
ight)}{volume\left(V
ight)}$$

Volume of sphere

$$=\frac{4}{3}\pi R^3\Rightarrow \rho=\frac{m}{\frac{4}{3}\pi R^3}=\frac{3m}{4\pi R^3}$$

Rearranging it we get

$$ho R^2 = rac{3}{4\pi} m$$

It is given that mas m remains constant. Let the constant be k. Therefore,

$$\rho R^3 = k$$

Differentiating it w.r.t. time, we get

$$\frac{d}{dt}(\rho R^3) = 0$$

Since, differentiation of constant is zero

$$R^3 \frac{d\rho}{dt} + 3R^2 \rho \frac{dR}{dt} = 0$$

Now

$$\frac{dR}{dt}$$

, that is, rate of change of radius is equal to velocity. Therefore,

$$R^3 \frac{d\rho}{dt} + 3R^2 \rho v = 0 \Rightarrow 3R^2 \rho v = -R^3 \frac{d\rho}{dt}$$

$$\Rightarrow v = \frac{-1}{3} \frac{R^3}{R^2} \frac{1}{\rho} \frac{d\rho}{dt} = \frac{-1R}{3} \frac{1}{\rho} \frac{d\rho}{dt}$$

It is given that rate of fractional change in density

$$\left(\frac{1}{\rho} \frac{d\rho}{dt}\right)$$

is constant. Thus,

 \propto

R

Thus velocity of any point on surface of expanding sphere is proportional to R.

Question 048 MCQ

QUESTION

A wheel of radius R and mass M is placed at the bottom of a fixed step of height R as shown in the figure. A constant force is continuously applied on the surface of the wheel so that it just climbs the step without slipping. Consider the torque

about an axis normal to the plane of the paper passing through the point Q. Which of the following options is/are correct?

If the force is applied normal to the circumference at point P, then

 τ

is zero

If the force is applied tangentially at point S, then

au

 \neq

0 but the wheel never climbs the step

If the force is applied at point P tangentially, then

au

decreases continuously as the wheel climbs

If the force is applied normal to the circumference at point X, then

au

is constant

CORRECT OPTION

If the force is applied normal to the circumference at point P, then

au

is zero

SOURCE

Physics • rotational-motion

EXPLANATION		
a If force is applied normal to surface at P, then line of action of force will pass from Q and thus		
au		
= 0.		
b Wheel can climb.		
c		
au		
= F $2Rcos\$\$\theta\$\$$		
_		
mgRcos		
heta		
\Rightarrow		
au		
\propto		
cos		
heta		
Hence, as		
heta		
increases,		
au		

decreases. So its correct. dau= Fr \perp mgcos θ auincreases with θ

Question 049 MCQ

QUESTION

A rigid uniform bar AB of length L is slipping from its vertical position on a frictionless floor as shown in the figure . At some instant of time, the angle made by the bar with the vertical is

 θ

. Which of the following statements about its motion is/are correct?

Instantaneous torque about the point in contact with the floor is proportional to sin

When the bar makes an angle

 θ

with the vertical, the displacement of its mid-point from the initial position is proportional to $1\$\$-\$\$cos\$\$\theta\$\$$

CORRECT OPTION

Instantaneous torque about the point in contact with the floor is proportional to sin

 θ

SOURCE

Physics • rotational-motion

EXPLANATION

We discuss the options as follows:

For option A: When the bar makes an angle

θ

with the floor, the height of the midpoint is

$$\frac{L}{2}\cos\theta$$

. this is height of centre of mass.

A force mg acts vertically downward. Thus, the midpoint of bar falls vertically downward. Hence, option $\,A\,$ is correct.

•

For option B: Here, we have

$$x = \frac{L}{2}\sin\theta$$

and

$$y = L\cos\theta$$

; therefore,

$$\sin\theta = \frac{x}{L/2}$$

and

$$\cos \theta = \frac{y}{L}$$

Using the condition

$$\sin^2\theta + \cos^2\theta = 1$$

, we get

$$rac{x^2}{(L/2)^2} + rac{y^2}{L^2} = 1$$

equation of ellipse

Thus, trajectory of point A is not parabola. Hence, option $\,B\,$ is incorrect.

For option $\,C\,$: The torque acting about the point of contact with floor, that is, at point B is

$$au = \overrightarrow{F} imes \overrightarrow{r} = mgrac{L}{2}\sin heta$$

Thus, the torque is proportional to sin

 θ

. Hence, option ${\it C}$ is correct.

For option $\,D\,$: The displacement of midpoint is

$$\frac{L}{2} - \frac{L}{2}\cos\theta = \frac{L}{2}(1 - \cos\theta)$$

That is,

Displacement

 \propto

 $1\$\$ - \$\$ cos\$\$ \theta\$\$$

Hence, option $\,D\,$ is correct.

QUESTION

A source of constant voltage V is connected to a resistance R and two ideal inductors L_1 and L_2 through a switch S as shown. There is no mutual inductance between the two inductors. The switch S is initially open. At t = 0, the switch is closed and current begins to flow. Which of the following options is/are correct?

After a long time, the current through L₁ will be

$$\frac{V}{R}\frac{L_2}{L_1 + L_2}$$

After a long time, the current through L₂ will be

$$\frac{V}{R}\frac{L_1}{L_1 + L_2}$$

At t = 0, the current through the resistance R is

$$\frac{V}{R}$$

CORRECT OPTION

After a long time, the current through L_1 will be

$$\frac{V}{R}\frac{L_2}{L_1+L_2}$$

SOURCE

EXPLANATION

Let i_1 be the current through L_1 , i_2 be the current through L_2 and i be the current through R.

The inductors L_1 and L_2 are connected in parallel. Therefore, the self-induced emf in L_1 and L_2 are equal, which can be expressed as:

$$arepsilon_1 = -L_1 rac{di_1}{dt} = arepsilon_2 = -L_2 rac{di_2}{dt}$$

Upon integrating this equation, we get :

$$L_1 i_1 = L_2 i_2 \dots 1$$

This indicates that the ratio of the currents through L_1 and L_2 is constant.

Using Kirchhoff's current law at junction A, we have :

$$i = i_1 + i_2 \dots 2$$

At the moment the switch is closed t=0, the inductors act as open circuits $since the inductive reactance \$X_L=\omega L\$ approaches in finity as \$\omega\to\infty\$$. Therefore, initially :

$$i = i_1 + i_2 = 0$$

and the current through the resistor is:

$$i = i_1 + i_2 = 0$$

After a long time, the inductive reactance of the inductors becomes zero. Applying Kirchhoff's loop law, the current through the resistor R is :

$$i = \frac{V}{R}$$

Substituting $i=rac{V}{R}$ into equation 2 and solving equations 1 and 2 , we find :

$$i_1=rac{V}{R}rac{L_2}{L_1+L_2}$$

$$i_2=rac{V}{R}rac{L_1}{L_1+L_2}$$

Question 051 MCQ

QUESTION

In Process 1, the energy stored in the capacitor E_C and heat dissipated across resistance E_D are related by

- $E_C = E_D \ln 2$
- $E_C = E_D$
- $E_C = 2E_D$

E_C =

 E_D

CORRECT OPTION

SOURCE

Physics • capacitor

EXPLANATION

Energy supplied to the circuit is CV	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	U
Energy stored in capacitor, E _C =	
	$\frac{1}{2}$
	2
CV	
	2 0
Therefore,	
Energy dissipated E ₀ = Energy supplied	
	_
Energy stored	
= CV	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	_
	$\frac{1}{2}$
	2
CV	
	2 0
=	
	$\frac{1}{2}$
	2
CV	

$$E_C = E_D$$

Question 052 MCQ

QUESTION

In Process 2, total energy dissipated across the resistance E_D is

$$E_D=rac{1}{3}\left(rac{1}{2}CV_0^2
ight)$$

$$E_D=3\left(rac{1}{2}CV_0^2
ight)$$

$$E_D = 3CV_0^2$$

$$E_D=rac{1}{2}CV_0^2$$

CORRECT OPTION

$$E_D=rac{1}{3}\left(rac{1}{2}CV_0^2
ight)$$

SOURCE

Physics • capacitor

EXPLANATION

Process 1:

Voltage is set to $V_0/3$

Charge supplied =

$$rac{CV_0}{3}$$

Energy supplied =

$$rac{V_0}{3} imesrac{CV_0}{3}=rac{CV_0^2}{9}$$

Process 2:

Voltage is raised to 2V₀/3

additional charge supplied =

$$\frac{2V_0C}{3} - \frac{V_0C}{3} = \frac{CV_0}{3}$$

Energy supplied =

$$rac{2V_0}{3} imes rac{CV_0}{3} = rac{2CV_0^2}{9}$$

Process 3:

Voltage is raised to V₀

additional charge supplied =

$$V_0C - \frac{2V_0C}{3} = \frac{CV_0}{3}$$

Energy supplied =

$$V_0 imesrac{CV_0}{3}=rac{CV_0^2}{3}$$

Total energy supplied to circuit =

$$rac{CV_0^2}{9} + rac{2CV_0^2}{9} + rac{CV_0^2}{3}$$

$$=\frac{6}{9}CV_0^2=\frac{2}{3}CV_0^2$$

Final energy stored in capacitor =

$$\frac{1}{2}CV_0^2$$

Therefore,

Energy dissipated E_D = Energy supplied

Energy stored

$$=rac{2}{3}CV_0^2-rac{1}{2}CV_0^2$$

$$=\frac{4CV_0^2-3CV_0^2}{6}=\frac{1}{6}CV_0^2$$

$$=\frac{1}{3}\left(\frac{1}{2}CV_0^2\right)$$

Question 053 MCQ

QUESTION

The total kinetic energy of the ring is

$$M\omega_0^2(R-r)^2$$

$$rac{1}{2}M\omega_0^2(R-r)^2$$

 $M\omega_0^2R^2$

$$\frac{1}{2}M\omega_0^2[(R-r)^2+R^2]$$

CORRECT OPTION

$$\frac{1}{2}M\omega_0^2[(R-r)^2+R^2]$$

SOURCE

Physics • rotational-motion

EXPLANATION

Let P be the contact point of the finger and the ring. The point P revolves with an angular velocity

 ω

 $_{0}$ in a circle of radius r centred at the point O see figure. The contact point P, the centre O and the centre of the ring C are in a straight line because P is common to both the circles i.e., circular trajectory and circular ring. Thus, the line CP will have same angular velocity as the line OP i.e., angular velocity of the line CP orthering is

 ω

0.

The velocity of the finger at the point P is

 ω

₀r tangential to the circle in which it revolves. The ring rolls without slipping. Thus, velocity of the ring at the point P is also

 ω

 $_{0}$ r tangential to the circle in which the finger revolves. Let velocity of C be v_{cm} . Since P and C lie on the ring arigidbody, the velocities of C and P are related by

$$\overrightarrow{v}_C = \overrightarrow{v}_P + \overrightarrow{\omega} imes \overrightarrow{PC}$$

which gives

 $v_{cm} =$

 ω

 $_{0}R$$ - $$r$

The ring rotates with an angular velocity

 ω

=

 ω

 $_{0}$ and its centre of mass translates with a velocity v_{cm} =

 ω

 $_0R\$\$-\$\r . Thus, kinetic energy of the ring is given by

$$K=rac{1}{2}Mv_{cm}^2+rac{1}{2}I_{cm}\omega^2$$

$$=rac{1}{2}M\omega_{0}^{2}(R-r)^{2}+rac{1}{2}MR^{2}\omega_{0}^{2}$$

$$= \frac{1}{2} M \omega_0^2 [(R-r)^2 + R^2]$$

Question 054 MCQ

QUESTION

The minimum value of

 ω

 $_{\rm 0}$ below which the ring will drop down is

$$\sqrt{rac{g}{2\mu(R-r)}}$$

$$\sqrt{rac{3g}{2\mu(R-r)}}$$

$$\sqrt{\frac{g}{\mu(R-r)}}$$

$$\sqrt{rac{2g}{\mu(R-r)}}$$

CORRECT OPTION

$$\sqrt{rac{g}{\mu(R-r)}}$$

SOURCE

Physics • rotational-motion

EXPLANATION

Let the ring makes an angle

 α

with the horizontal and the finger makes an angle

 β

with the vertical see figure. The forces acting on the ring are its weight mg at the centre C, normal reaction N and the frictional force f at the contact point P. Resolve the forces in the horizontal and the vertical directions. The centre of mass C rotates with an angular velocity

 ω

 $_{\mathrm{0}}$ in a horizontal circle of radius R\$\$-\$\$r \cos

 α

centred at O. Apply Newton's second law in the horizontal and the vertical directions to get

$$f\cos\beta - N\sin\beta - Mg = 0$$

..... 1

$$N\cos \beta + f\sin \beta = M\omega_0^2(R-r)\cos \alpha$$

.... 2

The minimum value of

 $_{\mathrm{0}}$ occurs when the frictional force attains its limiting value i.e.,

$$f=\mu N$$

..... 3

Eliminate f and N from equations 1 - 3 to get

$$\omega_{0,\, ext{min}} = \left[rac{(\coseta + \mu\sineta)g}{(\mu\coseta - \sineta)(R-r)\coslpha}
ight]^{1/2}$$

$$pprox \left[rac{g}{\mu(R-r)}
ight]^{1/2}$$

\$\$:: \$\$\$\$ α \$\$ = 0and\$\$ β \$\$ = 0.