1. Solution

The sample size, *n*, is 18. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	[0.25 × 18]	5	61.4
Q2	$\lceil 0.5 \times 18 \rceil$	9	61.54
Q3	$\lceil 0.75 imes 18 \rceil$	14	61.65

We determine the IQR.

$$IQR = Q3 - Q1$$

= 61.65 - 61.4
= 0.25

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= 61.4 $- 1.5 \times 0.25$
= 61.025
upper boundary = Q3 + 1.5 $\times IQR$
= 61.65 + 1.5 \times 0.25
= 62.025

We determine the outliers.

outliers =
$$\{62.04\}$$

We identify the ends of the whiskers: 61.24 and 61.98. We plot the boxplot.

2. Solution

The sample size, *n*, is 21. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 21 \rceil$	6	54.65
Q2	$\lceil 0.5 \times 21 \rceil$	11	56.93
Q3	$\lceil 0.75 \times 21 \rceil$	16	58.48

We determine the IQR.

$$IQR = Q3 - Q1$$

= $58.48 - 54.65$
= 3.83

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $54.65 - 1.5 \times 3.83$
= 48.905
upper boundary = Q3 + $1.5 \times IQR$
= $58.48 + 1.5 \times 3.83$
= 64.225

We determine the outliers.

outliers =
$$\{47.51, 47.59, 48.22\}$$

We identify the ends of the whiskers: 49.77 and 59.47. We plot the boxplot.

