Algorithms 06 CS201

Kaustuv Nag

- Suppose we have a set $S = \{a_1, a_2, \dots, a_n\}$ of *n* proposed activities that wish to use a resource, such as a lecture hall, which can serve only one activity at a time.
- ▶ Each activity a_i has a start time s_i and a finish time f_i , where $0 \le s_i < f_i < \infty$.
- ▶ If selected, activity a_i takes place during the half-open time interval $[s_i, f_i)$.
- Activities a_i and a_j are compatible if the intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap. That is, a_i and a_j are compatible if $s_i \ge f_j$ or $s_j \ge f_i$. In the activity-selection problem, we wish to select a maximum-size subset of mutually compatible activities.

An Example

Assume that the activities are sorted in monotonically increasing order of finish time:

$$f_1 \le f_2 \le f_3 \le \dots \le f_{n-1} \le f_n \tag{1}$$

consider the following set S of activities:

i	1	2	3	4	5	6	7	8	9 8 12	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

- ▶ The subset $\{a_3, a_9, a_{11}\}$ consists of mutually compatible activities.
- ▶ $\{a_1, a_4, a_8, a_{11}\}$ is a largest subset of mutually compatible activities; another largest subset is $\{a_2, a_4, a_9, a_{11}\}$.

Optimal Substructure

- Let S_{ij} be the set of activities that start after activity a_i finishes and that finish before activity a_j starts.
- A maximum set of mutually compatible activities in S_{ij} is A_{ij} , which includes some activity a_k .
- ▶ By including a_k in an optimal solution, we are left with two subproblems: finding mutually compatible activities in the set S_{ik} and in the set S_{kj} .
- Let $A_{ik} = A_{ij} \cap S_{ik}$ and $A_{kj} = A_{ij} \cap S_{kj}$, so that A_{ik} contains the activities in A_{ij} that finish before a_k starts and A_{kj} contains the activities in A_{ij} that start after a_k finishes.
- Thus $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$, and so the maximum-size set A_{ij} of mutually compatible activities in S_{ij} consists of $|A_{ij}| = |A_{ik}| + |A_{kj}| + 1$ activities.

Optimal Substructure

- ▶ If we could find a set A'_{kj} of mutually compatible activities in S_{kj} where $A'_{kj} > A_{kj}$, then we could use A'_{kj} , rather than A_{kj} , in a solution to the subproblem for S_{ij} .
- We would have constructed a set of $|A'_{ik}| + |A_{kj}| + 1 > |A_{ik}| + |A_{kj}| + 1 = |A_{ij}|$ mutually compatible activities, which contradicts the assumption that A_{ij} is an optimal solution. A symmetric argument applies to the activities in S_{ik} .

Recurrence Relation

If we denote the size of an optimal solution for the set S_{ij} by c[i,j], then we would have the recurrence

$$c[i,j] = c[i,k] + c[k,j] + 1$$

ightharpoonup To find a_k , we need to check all activities in S_{ii} . Thus, we obtain

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$

Now, we may use dynamic programming to solve this problem.

Greedy Algorithms

- ▶ Need to make a sequence of choices to achieve a global optimum.
- ▶ At rach stage, make the next choice based on some local criterion.
 - ▶ Drastically reduces space to search for solutions.
- ▶ Never go back and revise an earlier decision.
- How to prove that local choices achieve global optimum?

Greedy Algorithms

Activity Selection Problem

- ▶ Pick the next activity to allot based on a local strategy.
- ▶ Remove all activities that overlap with this slot.
- Argue that this sequence will maximize the number of the subset of mutually compatible activities.

Greedy Approach - I

- ► Choose the activity whose start time is the earliest.
- ► Counterexmaple:

Greedy Approach - II

- ► Choose the activity whose interval is the shortest.
- ► Counterexmaple:

Greedy Approach - III

- ▶ Choose the activity that overlaps with the minimum number of activities.
- ► Counterexmaple:

Greedy Approach - IV

- ► Choose the activity whose filnish time is earliest.
- ► Counterexamples?
- ► Proof?

Greedy Approach - IV: Algorithm

- Let S be the set of activites.
- Let *A* be the set of selected activities, initially empty.
- ▶ While *S* is not empty repeat the following:
 - ightharpoonup Select $a \in S$ with the smallest finish time.
 - ightharpoonup Add a to A.
 - Remove all activities from *S* that overlaps with *a*.

- ightharpoonup Our algorithm produces a solution A.
- Let *O* be any optimal solution.
- ► A and O need not be identical.
 - ► There may be multiple optimal solutions of the same size.
- We need to show that |A| = |O|.

- ► Let $A = \{a_{i_1}, a_{i_2}, \dots, a_{i_k}\}.$
 - Assume sorted: $f_{i_1} \leq s_{i_2}, f_{i_2} \leq s_{i_3}$.
- ► Let $O = \{a_{j_1}, a_{j_2}, \dots, a_{j_m}\}.$
 - Assume sorted: $f_{j_1} \leq s_{j_2}, f_{j_2} \leq s_{j_3}$.
- ▶ We need to show k = m.

- ► Claim: For each $r \le k$, $f_{i_r} \le f_{j_r}$
 - ► The greedy solution "stays ahead" of *O*.
- Proof: By induction on r
 - ightharpoonup r = 1: Our approach chooses activity a_{i_1} with earliest overall finish time.
 - ▶ r > 1: Assume by induction that $f_{i_{r-1}} \le f_{j_{r-1}}$.
 - ▶ Then, it must be the case $f_{i_r} \leq f_{j_r}$.
 - ▶ If not, algorithm would choose j_r rather than i_r .

- ightharpoonup Suppose m > k
- ▶ We know that $f_{i_k} \leq f_{j_k}$
- ► Consider activity $a_{j_{k+1}} \in O$
 - ► Greedy algorithm terminates when *S* is empty.
 - ▶ Since $f_{i_k} \le f_{j_k} \le s_{j_{k+1}}$, this activity is compatible with $A = \{a_{i_1}, a_{i_2}, \dots, a_{i_k}\}$.
 - After selecting i_k , S still contains $a_{j_{k+1}}$.
 - This is a contradiction.

Greedy Algorithms

Procedure for Designing a Greedy Algorithm

- ► Identify optimal substructure.
- ► Cast the problem as a greedy algorithm with the greedy choice property.
- Write a simple iterative algorithm.

Greedy Algorithms: Activity Selection Problem

Greedy Choice Property

- Let S_k be a nonempty subproblem containing the set of activities that finish after activity a_k .
- \blacktriangleright Let a_m be an activity in S_k with the earliest finish time.
- ▶ Then a_m is included in some maximum-size subset of mutually compatible activities of S_k .

► Proof:

- Let A_k be a maximum-size subset of mutually compatible activities in S_k and a_j be the activity in A_k with the earliest finish time.
- If $a_j = a_m$, we are done, since we have shown that a_m is in some maximum-size subset of mutually compatible activities of S_k .
- ▶ If $a_j \neq a_m$, let the set $A'_k = A_k \{a_j\} \cup \{a_m\}$.
- The activities in A'_k are disjoint, because (i) the activities in A_k are disjoint, (ii) a_j is the first activity in A_k to finish, and (iii) $f_m \le f_j$.
- Since $|A'_k| = |A_k|$, we conclude that A'_k is a maximum-size subset of mutually compatible activities of S_k , and it includes a_m .

Greedy Approach: Recursive

```
RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)

1 m = k + 1

2 while m \le n and s[m] < f[k] // find the first activity in S_k to finish

3 m = m + 1

4 if m \le n

5 return \{a_m\} \cup \text{RECURSIVE-ACTIVITY-SELECTOR}(s, f, m, n)

6 else return \emptyset
```

Greedy Approach: Iterative

```
GREEDY-ACTIVITY-SELECTOR (s, f)

1  n = s.length

2  A = \{a_1\}

3  k = 1

4  \mathbf{for} \ m = 2 \ \mathbf{to} \ n

5  \mathbf{if} \ s[m] \ge f[k]

6  A = A \cup \{a_m\}

7  k = m

8  \mathbf{return} \ A
```

Knapsack Problem

▶ Given a knapsack which holds W pounds of stuff and a list of n items:

Item (i)	1	2		n
Value (v_i)	v_1	v_2		v_n
Weight (w_i)	w_1	w_2	• • •	w_n
$\left(\frac{v_i}{w_i}\right)$	$\left(\frac{v_1}{w_1}\right)$	$\left(\frac{v_2}{w_2}\right)$		$\left(\frac{v_n}{w_n}\right)$

fill the knapsack with the most profitable items.

- ► Two variants:
 - ► Integral knapsack: Take an item or leave it.

 Fractional knapsack: Can take a fraction of an item (infinitely divisible).
- ▶ Both fractional and integral knapsack have optimal substructure.
- ▶ Only fractional knapsack has the greedy choice property.

Greedy Algorithms: Fractional Knapsack

Greedy Choice Property

Let j be the item with maximum v_i/w_i . Then there exists an optimal solution in which you take as much of item *j* as possible.

► Proof:

- ► Suppose, there exists an optimal solution that didn't take as much of item j as possible.
- ▶ If the knapsack is not full, add some more of item j, and you have a higher value solution. [Contradiction].
- ▶ If the knapsack is full, there must exist some item $k \neq j$ with $v_k/w_k < v_j/w_i$ that is in the knapsack.
- We also must have that not all of *j* is in the knapsack.
- We can therefore take a piece of k, with ε weight, out of the knapsack, and put a piece of *i* with ε weight in.
- This increases the knapsacks value by

$$\varepsilon\left(\frac{v_j}{w_j}\right) - \varepsilon\left(\frac{v_k}{w_k}\right) > 0$$

This is a contradition to the original solution being optimal.

Greedy Algorithms: Fractional Knapsack

Greedy Algorithm

- ► Sort items by $\left(\frac{v_j}{w_i}\right)$, renumber.
- **For** i = 1 to n
 - Add as much of item *i* as possible.

White Board

White Board