AMENDED CLAIMS

[received by the International Bureau on 20 May 2005 (20.05.2005); original claims 1-5 replaced by amended claims 1-8 (2 pages)]

- 1. A method of making epoxyorganoalkoxysilanes comprising reacting an olefin epoxide with an hydridoalkoxysilane in the presence of RhCl(di-tert-butylsulfide)₂ catalyst, the reaction being free of the presence of a stabilizing agent, the reaction being carried out at a temperature in the range of 70-75 °C, and the olefin epoxide being present in the reaction in a molar excess of 5-25 percent over the stoichiometric amount necessary to react with the hydridoalkoxysilane.
- 2. The method according to Claim 6 in which the olefin epoxide is a composition selected from the group consisting of limonene oxide, 4-vinylcyclohexene monoxide, allyl glycidyl ether, glycidyl acrylate, vinyl norborene monoxide, dicyclopentadiene monoxide, and 1-methyl-4-isopropenyl cyclohexene monoxide.
- 3. The method according to Claim 6 in which the hydridoalkoxysilane is a composition selected from the group consisting of trimethoxysilane HSi(OCH₃)₃, triethoxysilane HSi(OC₂H₅)₃, tri-n-propoxysilane HSi(OC₃H₇)₃, tri-isopropoxysilane HSi[(OCH(CH₃)₂]₃, methyldimethoxysilane (CH₃)HSi(OCH₃)₂, methyldiethoxysilane (CH₃)HSi(OC₂H₅)₂, dimethylmethoxysilane (CH₃)₂HSi(OCH₃), dimethylethoxysilane (CH₃)₂HSi(OC₂H₅), and phenyldiethoxysilane (C₆H₅)HSi(OC₂H₅)₂.
 - 4. The method according to Claim 6 in which the olefin epoxide is 4-vinylcyclohexene monoxide and the hydridoalkoxysilane is trimethoxysilane HSi(OCH₃)₃.

25

5

30

- 5. A method of making epoxyorganoalkoxysilanes comprising reacting an olefin epoxide with an hydridoalkoxysilane in the presence of RhCl(di-tert-butylsulfide)₂ catalyst, the reaction being free of the presence of a stabilizing agent, the reaction being carried out at a temperature in the range of 65-95 °C, and the olefin epoxide being present in the reaction in a molar excess of 5-25 percent over the stoichiometric amount necessary to react with the hydridoalkoxysilane; the olefin epoxide being selected from the group consisting of limonene oxide, 4-vinylcyclohexene monoxide, allyl glycidyl ether, glycidyl acrylate, vinyl norborene monoxide, dicyclopentadiene monoxide, and 1-methyl-4-isopropenyl cyclohexene monoxide.
- 6. The method according to Claim 10 in which the reaction temperature is in the range of 70-75 °C, and the olefin epoxide is present in the reaction in a molar excess of 10 percent over the stoichiometric amount necessary to react with the hydridoalkoxysilane.
- 7. The method according to Claim 10 in which the hydridoalkoxysilane is a composition selected from the group consisting of trimethoxysilane HSi(OCH₃)₃, triethoxysilane HSi(OC₂H₅)₃, tri-n-propoxysilane HSi(OC₃H₇)₃, tri-isopropoxysilane HSi[(OCH(CH₃)₂]₃, methyldimethoxysilane (CH₃)HSi(OCH₃)₂, methyldiethoxysilane (CH₃)HSi(OC₂H₅)₂, dimethylmethoxysilane (CH₃)₂HSi(OCH₃), dimethylethoxysilane (CH₃)₂HSi(OC₂H₅), and phenyldiethoxysilane (C₆H₅)HSi(OC₂H₅)₂.

20

5

8. The method according to Claim 10 in which the olefin epoxide is 4-vinylcyclohexene monoxide and the hydridoalkoxysilane is trimethoxysilane HSi(OCH₃)₃.