Chapter-2 Complex Number

AI24BTECH11032 Shreyansh Sonkar

7. If $1,a_1,a_2,a_3....a_{n-1}$ are the n roots of unity, then show that $(1-a_1)(1-a_2)(1-a_3)....(1-a_{n-1})$ = n

(1984- 2 Marks).

8. Show that the area of the triangle on the Argand diagram formed by the complex numbers z, ιz & $z + \iota z$ is $\frac{1}{2} |z|^2$.

(1986-2 Marks).

- 9. Let $\mathbf{Z_1} = 10 + 6\iota$ and $\mathbf{Z_2} = 4 + 6\iota$. if \mathbf{Z} is any complex number such that the argument of $\frac{(Z-Z_1)}{(Z-Z_2)}$ is $\frac{\pi}{4}$ then prove that $Z 7 9\iota = 3\sqrt{2}$
 - is $\frac{\pi}{4}$ then prove that $Z I 9i = 3\sqrt{2}$ (1990-4 Marks).
- 10. if $iz^3 z^2 z + \iota = 0$ then show that |z| = 1 (1995-5 Marks).
- 11. If $|Z| \le 1$, $|W| \le 1$, show that $(Z W)^2 \le (|Z| |W|)^2 + (\arg Z \arg W)^2$ (1995-5 Marks).
- 12. Find all non-zero complex numbers \mathbf{Z} satisfying $\bar{Z} = \iota Z^2$

(1996-2 Marks).

13. Let \mathbf{z}_1 and \mathbf{z}_2 be roots of the equation $z^2+pz+q=0$, where the coefficients \mathbf{p} and \mathbf{q} may be complex numbers. Let \mathbf{A} and \mathbf{B} represent

 z_1 and z_2 in the complex plane . if $\angle \mathbf{ABC} = \alpha \neq 0$

and **OA=OB**,where **O** is the origin,prove that $p^2=4q\cos^2\left(\frac{\alpha}{2}\right)$.

(1997-5 Marks)

14. For complex number **z** and **w**,prove that $|z|^2 w - |w|^2 z = z - w$ if and only if z = w or $\bar{w} = 1$.

(1999-10 Marks).

15. Let a complex number α , $\alpha \neq 1$, be a root of the equation z^{p+q} - z^p - z^q +1=0, where **p**,**q** are the distinct primes. Show that either $1+\alpha+\alpha^2+...+\alpha^{p-1}=0$ or $1+\alpha+\alpha^2+...+\alpha^{q-1}=0$, but not both together.

(2002-5 Marks)

16. If $\mathbf{z_1}$ and $\mathbf{z_2}$ are two complex number such that $|z_1 < 1 < |z_2|$ then prove that $\left| \frac{1-z_1\bar{z}_2}{z_1-z_2} \right| < 1$.

(2003-2 Marks)

- 17. Prove that there exists no complex number **z** such that $|z|_{1}^{1}$ and $\sum_{r=1}^{n} a_{r} z^{r} = 1$ where $|a_{r}|_{1}^{2}$. (2003-2 Marks)
- 18. Find the centre and radius of circle given by $\left|\frac{z-\alpha}{\beta}\right| = k, k \neq 1$ where, $z = x + \iota, \alpha = \alpha_1 + \iota \alpha_2$, $\beta = \beta_1 + \iota \beta_2$.

(2004-2 Marks)

19. If one the vertices of the square circumscribing the circle $|z - 1| = \sqrt{2is2} + \sqrt{3}i$ find the other vertices of the square.

(2005-4 Marks)