LINEAR ALGEBRA

You vector: A = [a, az, az...,an] solumn vedir b= $\frac{1}{2}$ $\frac{b}{b}$ $\frac{1}{b}$ $\frac{b}{b}$ $\frac{1}{b}$ $\frac{b}{b}$ \frac Addition= a : [a]] length of a from on just

| lall | la $a \cdot b = a_1 b_1 + a_2 b_2 = ||a|| ||b|| \cos \theta$ $\int \frac{\partial}{\partial x} = \cos^{-1} \left\{ \frac{a_1 b_1 + a_2 b_2}{||a|| ||b||} \right\}$ $a \cdot b = ||a|| ||b|| \cos 90$ $a \cdot b = 0$ → 24 a.b = 0 a.b = 2 aibi = 0 = (a 1b)

APPLIED COURSE

Projection and Unit Vector

Projection

$$|a| = d = ||a|| \cos \theta - 1$$

$$|a| = d = ||a|| ||b||$$

$$|a| = ||a|| ||b||$$

Consdering case of n-dimentional

unit vecla $\hat{a} = \frac{a}{\|a\|}$ $\hat{a} = \frac{a}{\|a\|}$ 1) \hat{a} same direction as a

2) $\|\hat{a}\| = 1$

 Equation of a line (2-D), Plane(3-D) and Hyperplane (n-D), Plane Passing through origin, Normal to a Plane

Hyper plane representation

Note:

By default any vector is Column Vector.

Then
$$\omega \cdot x = 0$$
 $\omega = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \vdots \\ \omega_n \end{bmatrix}$
 $\omega = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \vdots \\ \lambda_n \end{bmatrix}$
 $\omega \cdot x = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \vdots \\ \lambda_n \end{bmatrix}$
 $\omega \cdot x = 0$
 $\omega \cdot x = 0$

Note: Normally we assume our planes passing through origin

Distance of a point from a Plane/Hyperplane, Half-Spaces

- Line separates 2D into half spaces n 3D divides plane into half spaces.
- Both distances will be in opposite direction

Equation of a Circle (2-D), Sphere (3-D) and Hypersphere (n-D)

Equation of ellipse, ellipsoid and Hyperellipsiod

2D - ellipse

3D - ellipsoid

Hyper Cube, Hyper Cuboid

