Devoir sur table (2 heures)

Le soin et la rédaction seront pris en compte dans la notation. Faites des phrases claires et précises. Le barème est approximatif.

Exercice 1 : Etude d'une boîte de transmission

10 points

Figure 1 -

Dans cet exercice, les valeurs notées N_i représentent la vitesse de rotation de la pièce i en tr/min

- 1 pt 1. Exprimer litéralement puis calculer le rapport de transmission du sous-ensemble $A: r_{2/1} = \frac{N_2}{N_1}$
 - 2. Dans cette question, nous allons déterminer le rapport de transmission du sous-ensemble ${\cal B}$
- 1 pt (a) Donner les repères (numéros) des roues **menantes**.
- 1 pt (b) Donner les repères des roues **menées**.
- 1 pt (c) Exprimer littéralement le rapport de transmission $r_{6/3} = \frac{N_6}{N_3}$ en fonction des caractéristiques adéquates.
- 0.5 pt (d) Calculer le rapport de transmission $r_{6/3}$
- 1,5 pt 3. Exprimer litéralement puis calculer le rapport de transmission du sous-ensemble C : $r_{8/7}$.
- 0.5 pt 4. Donner le nombre de contacts extérieurs entre les roues 8 et 3.
- 0,5 pt 5. En déduire le sens de rotation de 8 par rapport à 3 (inverse ou identique).
 - 1 pt 6. Exprimer litéralement le rappor de transmission global $r_{8/1}$ en fonction de $r_{2/1}$, $r_{6/3}$ et $r_{8/7}$.
 - 7. Dans cette question, on considèrera $r_{8/1} = 200$. Exprimer litéralement la vitesse de rotation de l'arbre de sortie N_8 en fonction de $N_1 (= N_M)$ et $r_{8/1}$.
- 0.5 pt 8. Calculer la vitesse de rotation angulaire ω_8 (en rad/s). On rappelle $1 \text{ tr/min} = 2\pi \text{ rad/s}$
- 0,5 pt 9. Exprimer litéralement puis calculer le couple C_8 disponible sur l'arbre de sortie en fonction de la puissance P et de la vitesse de rotation ω_8 .

1 STI 2 20 janvier 2019

Exercice 2: Etude du moteur d'un TGV

10 points

Le TGV Méditerranée fonctionne avec un moteur à courant continu alimenté sous une tension de $1100\,\mathrm{V}$ et un courant de $480\,\mathrm{A}$.

La puissance mécanique utile P_U développée par ce moteur en régime nominal est de $P=490\,\mathrm{kW}.$

En plus des pertes par effet Joule P_J , il apparaît d'autres pertes appelées pertes internes dues essentiellement aux frottements et notées P_M . On admettra ici que $P_J = P_M$.

- 2 pts 1. Donner l'expression litérale puis calculer la puissance électrique P_E fournie au moteur.
- 2 pts 2. Faites un bilan des puissances pour ce moteur
- 2 pts 3. En utilisant la loi d'Ohm et la loi des mailles, déterminer la résistance interne du moteur.
- 1 pt 4. Déterminez la puissance électromagnétique du moteur.
- 1 pt 5. Déterminez la force électromotrice (tension) du moteur.
- 2 pts 6. On considère que lors du trajet Paris/Marseille le TGV Méditerranée fonctionne en régime nominal pendant une durée de 3 heures. Calculez l'énergie consommée par le moteur durant ce trajet, en exprimant votre résultat en Watt heure puis en Joule.