Advances in Morphological Neural Networks: Training, Pruning and Enforcing Shape Constraints

Nikolaos Dimitriadis and Petros Maragos

École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
 School of ECE, National Technical University of Athens (NTUA), Athens, Greece
 ¹nikolaos.dimitriadis@epfl.ch , ²maraqos@cs.ntua.gr

2021 IEEE International Conference on Acoustics, Speech and Signal Processing 6-11 June 2021 – Toronto, Ontario, Canada

Contributions

Table of Contents

Background Concepts

Training Morphological Neural Networks

Pruning Morphological Neural Networks

Enforcing Shape Constraints

Morphological Operators for Vectors

Dilation:
$$\delta_{\rm w}({\bf x}) = w_0 \vee \left(\bigvee w_i + x_i\right)$$

Erosion:
$$\varepsilon_{\rm m}(\mathbf{x}) = m_0 \wedge \left(\bigwedge m_i + x_i \right)$$

Softmax and Softmin scalar operations via Maslov Dequantization¹

(h > 0: temperature parameter)

max:
$$x \lor y \longrightarrow x \lor_h y = h \log(e^{x/h} + e^{y/h})$$
: softmax

min:
$$x \wedge y \longrightarrow x \wedge_h y = -h \log(e^{-x/h} + e^{-y/h})$$
: softmin

Morphological Operators for Vectors \searrow

Softened Morphological operators

Softmax and Softmin scalar operations \nearrow

¹Litvinov, G. L. "Maslov dequantization, idempotent and tropical mathematics: A brief introduction". In: *Journal of Mathematical Sciences* 140.3 (2007), pp. 426–444.

Figure: Effect of temperature parameter h

Table of Contents

Background Concepts

Training Morphological Neural Networks

Pruning Morphological Neural Networks

Enforcing Shape Constraints

Dilation-Erosion Perceptron (DEP)

Convex combination of one dilation and one erosion neuron:

$$y = f(\mathbf{x}) = \lambda \delta_{\mathsf{w}}(\mathbf{x}) + (1 - \lambda)\varepsilon_{\mathsf{m}}(\mathbf{x})$$

Dilation-Erosion Perceptron (DEP) [cont.]

$$\begin{aligned} y &= f(\mathbf{x}) = \lambda \delta_{\mathsf{w}}(\mathbf{x}) + (1 - \lambda)\epsilon_{\mathsf{m}}(\mathbf{x}) = \lambda \delta_{\mathsf{w}}(\mathbf{x}) - (1 - \lambda)[-\epsilon_{\mathsf{m}}(\mathbf{x})] \\ &= \mathsf{convex} - (-\mathsf{concave}) \\ &= \mathsf{convex} - (\mathsf{convex}) \end{aligned}$$

Training as Difference-of-Convex Program^{1,2,3}

minimize
$$\sum_{i=1}^{N} v_i \max\{0, \xi_i\}$$
 subject to
$$\lambda \delta_{\mathrm{w}}(\mathbf{x}_i) + (1 - \lambda)\varepsilon_{\mathrm{m}}(\mathbf{x}_i) \geq -\xi_i \quad \forall \mathbf{x}_i \in \mathcal{P},$$

$$\lambda \delta_{\mathrm{w}}(\mathbf{x}_i) + (1 - \lambda)\varepsilon_{\mathrm{m}}(\mathbf{x}_i) \leq +\xi_i \quad \forall \mathbf{x}_i \in \mathcal{N}$$

¹Charisopoulos, V. and Maragos, P. "Morphological Perceptrons: Geometry and Training Algorithms". In: Mathematical Morphology and Its Applications to Signal and Image Processing (Proc. ISMM 2017). Vol. 10225. LNCS. Springer, 2017, pp. 3–15. ISBN: 978-3-319-57240-6.

²Yuille, A. L. and Rangarajan, A. "The Concave-Convex Procedure". In: Neural computation 15.4 (2003), pp. 915–936.

³Lipp, T. and Boyd, S. "Variations and extension of the convex–concave procedure". In: *Optimization and Engineering* 17.2 (2016), pp. 263–287.

What is the effect of $\mathcal{N} \rightleftharpoons \mathcal{P}$?

Figure: Double Moons example¹.

Reduced Ordering:

Let R be a nonempty set, \mathcal{L} be a complete lattice and $\rho: R \to \mathcal{L}$ be a surjective mapping. A reduced ordering is defined as: $\mathbf{x} \leq_{\rho} \mathbf{y} \Leftrightarrow \rho(\mathbf{x}) \leq \rho(\mathbf{y}), \forall \mathbf{x}, \mathbf{y} \in R$.

¹Valle, M. E. "Reduced Dilation-Erosion Perceptron for Binary Classification". In: *Mathematics* 8.4 (2020). ISSN: 2227-7390.

Extending to multiclass problems

one-versus-the-rest

- ightharpoonup positive class \mathcal{C}_k , negative class \mathcal{C}_{-k}
- ▶ imbalance: $|\mathcal{C}_k| \simeq \frac{N}{K} \ll |\mathcal{C}_{-k}| \simeq \frac{(K-1)N}{K}$

one-versus-one

- $ightharpoonup \frac{K(K-1)}{2}$ distinct classifiers must be trained
- majority (hard) vote of all classifiers

Method

Use a bagging classifier for n Radial Basis Function (RBF) kernel estimators.

Results

	MNIST	FashionMNIST
n = 5	$\textbf{97.72} \pm \textbf{0.01}$	$\textbf{88.21} \pm \textbf{0.01}$
n = 10	$\textbf{97.72} \pm \textbf{0.01}$	88.07 ± 0.01
n = 15	97.67 ± 0.01	88.11 ± 0.01
n = 20	97.64 ± 0.01	88.12 ± 0.01

Table: Results of Bagging multiclass r-DEP with n RBF kernels.

Performance similar achitectures trained via Gradient Descent

CCP training is very robust

Table of Contents

Background Concepts

Training Morphological Neural Networks

Pruning Morphological Neural Networks

Enforcing Shape Constraints

Figure: Dense Morphological Network with 2 hidden layers¹

Focus is on sparsity. Apply ℓ_1 pruning.

¹Mondal, R., Santra, S., and Chanda, B. "Dense Morphological Network: An Universal Function Approximator". In: arXiv (2019). URL: http://arxiv.org/abs/1901.00109.

		Adaptive Momentum Estimation			Stochastic Gradient Descent				
	p	δ	ε	(δ, ε)	FF-ReLU	δ	ε	(δ, ε)	FF-ReLU
MNIST	100%	97.62	96.17	97.95	98.13	94.86	93.36	96.07	98.16
	75%	97.62	96.18	97.93	98.15	94.86	93.36	96.07	98.12
	50%	97.62	96.22	97.90	98.17	94.86	93.37	96.07	98.08
	25%	97.62	96.09	97.87	97.51	94.86	93.40	96.06	98.01
	10%	97.62	95.78	97.74	93.38	94.86	93.38	96.09	96.67
	7.5%	97.62	95.42	97.76	90.17	94.86	93.38	96.10	95.56
	5%	97.62	94.51	97.66	83.39	94.86	93.40	96.10	92.96
	2.5%	97.62	93.43	97.37	68.93	94.86	93.39	96.09	80.48
	1%	97.62	91.17	97.08	44.22	94.86	93.38	96.08	58.07
FashionMNIST	100%	86.31	86.82	88.32	88.82	82.06	85.23	86.21	87.79
	75%	86.30	86.81	88.30	88.88	82.00	85.23	86.21	87.75
	50%	86.22	86.80	88.33	88.18	82.05	85.25	86.20	87.19
	25%	85.95	86.85	88.31	82.15	81.90	85.26	86.28	84.35
	10%	85.58	86.27	88.05	65.89	81.67	85.27	86.23	73.22
	7.5%	85.47	86.15	87.99	57.93	81.63	85.27	86.21	63.95
	5%	85.37	85.81	87.76	49.12	81.52	85.24	86.22	47.73
	2.5%	84.91	85.47	87.56	42.48	81.14	85.26	86.22	38.84
	1%	81.14	84.86	86.85	28.13	80.68	85.27	86.18	35.46

Table: Accuracy of pruned networks on the MNIST and FashionMNIST datasets.

Models: $\delta \to \text{only dilation neurons}$, $\varepsilon \to \text{only erosion}$, $(\delta, \varepsilon) \to \text{split equally, FF-ReLU} \to \text{FeedForward NN with ReLU}$.

shades of red showcase the degree of (severe) deterioration in accuracy green indicates the absence of performance loss

Qualitative Perspective

Figure: Examples of hidden layer activations for various models (MNIST dataset).

Table of Contents

Background Concepts

Training Morphological Neural Networks

Pruning Morphological Neural Networks

Enforcing Shape Constraints

Monotonic Network architecture

Figure: Monotonic network by Sill¹. The gray edges correspond to nonnegative weights.

¹Sill, J. "Monotonic Networks". In: Adv. in NeurIPS. 1998.

Characteristics

$$y = f(\mathbf{x}) = \bigwedge_{k \in [K]} \bigvee_{j \in [J]} \{ \mathbf{w}_{k,j}^{\top} \mathbf{x} + b_{k,j} \}$$

- neither convex nor concave
- ▶ Monotonicity constraints \longrightarrow **w** \in $\mathbb{R}^n_{>0}$
- corresponds to morphological closing
- ▶ invertible for positive weights → morphological opening

$$x = f^{-1}(y) = \bigvee_{k \in [K]} \bigwedge_{j \in [J]} \{ w_{k,j}^{-1}(y - b_{k,j}) \}$$

Details

- Used softened morphological operators
- ightharpoonup Active group: affine term that determines the output for pattern $\mathbf{x} \in \mathbb{R}^n$
- lacktriangle "Hard" operators ightarrow 1-1 correspondence between active group and output
 - → only active hyperplane gets updated
 - \rightarrow a small fraction of hyperplanes dominate the training
- ► "Soft" operators alleviate undifferentiability → better approximation

Experiment Description

- ▶ strictly increasing function $f(x) = x^3 + x + \sin x, x \in [-4, 4]$
- ightharpoonup scale both the domain and the image of f to [-1, 1]
- ▶ 100 observations uniformly and corrupt them with additive i.i.d zero-mean Gaussian noise $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
- ▶ Glorot uniform initialization¹ for all network parameters

¹Glorot, X. and Bengio, Y. "Understanding the difficulty of training deep feedforward neural networks". In: *Proc. 13th Int'l Conf. Artificial Intelligence & Statistics*. 2010.

Results

σ	0.05	0.1	0.15	0.2
Linear Reg. Isotonic Reg. ¹ Sill Net ² Smooth Sill Net [ours]	0.0236	0.03077	0.04827	0.0505
Isotonic Reg. ¹	0.0042	0.01112	0.02557	0.0417
Sill Net ²	0.00305	0.01107	0.02401	0.0390
Smooth Sill Net [ours]	0.00294	0.00938	0.02302	0.0386

Table: RMS error of monotonic regression methods with noise $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

¹Barlow, R. E. and Brunk, H. D. "The Isotonic Regression Problem and its Dual". In: *J. Amer. Stat. Assoc.* 67.337 (1972), pp. 140–147.

²Sill, J. "Monotonic Networks". In: *Adv. in NeurIPS*. 1998.

Nikolaos Dimitriadis and Petros Maragos

Results

Figure: Comparison of monotonic regression methods
Smooth Monotonic is ours.

Conclusion

- Extended Binary Morphological Classifiers trained via CCP to multiclass problems
- Studied the sparsity of Morphological Neural Nets and showed their superior compression ability compared to their linear counterparts
- ► Improved convergence and accuracy of monotonic regression with softened morphological operators based on Maslov Dequantization

For a complete list of references please see the paper.

Thank you for your attention!