MÔN HỌC: CƠ SỞ TỰ ĐỘNG **BÀI TẬP CHƯƠNG 2**

Câu 1 : Cho hệ thống như hình dưới đây. Xác định hàm truyền tương đương $G_{td} = C/R$

Hướng Dẫn:

- Đường tiến : 2
- Vòng kín: 4
- Định thức :

$$\Delta$$
 = 1 - G1G5 + G2G6 - G3G7 + G4G5G6G7 + G1G3G5G7

$$\Delta_1 = 1 + G2G6$$

$$\Delta_2 = 1$$

• Hàm truyền tương đương:

$$G_{td} = \frac{C}{R} = \frac{G4(1 + G2G6) + G1G2G3}{1 - G1G5 + G2G6 - G3G7 + G4G5G6G7 + G1G3G5G7}$$

 $\mathbf{C\hat{a}u}\ \mathbf{2}$: Cho hệ thống như hình vẽ. Tìm các hàm truyền tương đương

Hướng Dẫn:

1/. Tính
$$\frac{C(s)}{R(s)}\Big|_{N=0}$$

- Đường tiến : 5
- Vòng kín: 8
- Định thức:

$$\Delta$$
 = 1 - (- DI + BH - BC - ABCDEJ - ABCJ - ABCGJ + ABHDEJ + ABHJ) - DIBH + DIBC + DIABCGJ

$$\Delta_1=1,$$
 $\Delta_2=1,$ $\Delta_3=1+\mathrm{DI},$ $\Delta_4=1,$ $\Delta_5=1$ 2/. Tính $\frac{C(s)}{N(s)}\bigg|_{R=0}$

• Đường tiến: 5 • Vòng kín: 8

• Định thức:

$$\Delta$$
 = 1 – (- DI + BH - BC - ABCDEJ - ABCJ - ABCGJ + ABHDEJ + ABHJ) - DIBH + DIBC + DIABCGJ

$$\Delta_1 = 1$$
, $\Delta_2 = 1$, $\Delta_3 = 1 + DI$, $\Delta_4 = 1$, $\Delta_5 = 1$

Câu 3: Tính hàm truyền tương đương của hệ thống có sơ đồ khối sau:

Hướng Dẫn:

• Đường tiến : 2

• Vòng kín: 5

• Định thức:

$$\Delta = 1 + G_1G_2 + G_3 - G_4G_5 + G_1G_3G_4 + G_1G_4 - G_1G_2G_4G_5 - G_3G_4G_5$$

$$\Delta_1 = 1; \ \Delta_2 = 1$$

• Hàm truyền tương đương:
$$G_{td}(s) = \frac{G_1 G_3 G_4 + G_1 G_4}{1 + G_1 G_2 + G_3 - G_4 G_5 - G_3 G_4 G_5 - G_1 G_2 G_4 G_5 + G_1 G_3 G_4 + G_1 G_4}$$

Câu 4: Cho mô hình hệ thống như Hình 2 với giá trị các tham số cho ở Bảng 1. Đặc tính động học của hệ thống được mô tả bởi ptvp (1), trong đó u : độ dịch chuyển ngõ vào, y : độ dịch chuyển ngõ ra. Hãy xác định phương trình trạng thái mô tả hệ thống.

$$m\frac{d^2y}{dt^2} + b\frac{dy}{dt} + ky = b\frac{du}{dt} + ku \tag{1}$$

Bảng 1. Giá trị tham số

Tham số	Giá trị	Đơn vị
m	100	kg
k	600	N/m
b	100	Ns/m

Hướng Dẫn:

Vế phải có đạo hàm

$$A = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -6 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} b/m \\ k/m - (b/m)^2 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Câu 5: Cho mô hình động cơ như Hình 1 với các giá trị tham số cho ở Bảng 1. Đặc tính động học của động cơ được mô tả bởi hệ phương trình vi phân bên dưới:

Bảng 1. Giá trị tham số

Tham số	Giá trị	Đơn vị
Ra	2.000	Ω
La	0.500	Н
Kb	0.015	
Ki	0.015	
B_m	0.200	Nms
Jm	0.020	kg.m ²

Xác định phương trình trạng thái mô tả hệ thống với các biến trạng thái : $x_1=\theta_m$, $x_2=\omega_m$, $x_3=i_a$ và ngỗ ra $y=\omega_m$.

Hướng Dẫn:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -\frac{B_m}{J_m} & \frac{K_i}{J_m} \\ 0 & -\frac{K_b}{L_a} & -\frac{R_a}{L_a} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{L_a} \end{bmatrix} v_a , \quad y = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Câu 6: Viết phương trình trạng thái mô tả hệ kín ở hình dưới đây với hai biến trạng thái $x_1(t)$ và $x_2(t)$ cho trên sơ đồ, biến $x_3(t)$ tự chọn.

Hướng Dẫn:

• Đặt : $x_3(t) = \dot{x}_2(t)$

$$\begin{cases}
\begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \\ \dot{x}_{3}(t) \end{bmatrix} = \begin{bmatrix} -5 & 2 & 0 \\ 0 & 0 & 1 \\ -1 & -3 & -2 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ x_{2}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} r(t) \\
y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ x_{2}(t) \end{bmatrix}$$

Câu 7: Cho hệ thống có sơ đồ khối như Hình 1.

7a. Viết PTTT mô tả hệ hở.

7b. Viết PTTT mô tả hệ kín.

Hướng Dẫn:

7a.

 \bullet Hệ thống hở, không có đường hồi tiếp từ đầu ra về đầu vào. Đường hồi tiếp từ $X_1(s)$ là đường hồi tiếp nội bộ, không là đường hồi tiếp của hệ thống nên không được bỏ.

7b.
$$\begin{cases}
\dot{x} = \begin{bmatrix} -2 & -2 \\ 3 & -3 \end{bmatrix} x + \begin{bmatrix} 2 \\ 0 \end{bmatrix} r \\
y = \begin{bmatrix} 0 & 1 \end{bmatrix} x
\end{cases}$$