BİM448-VERİ MADENCİLİĞİ VE BİLGİ KEŞFİ YILİÇİ SINAVI

Yrd.Doc.Dr. Songül ALBAYRAK

5 Mayıs 2009

Smav Süresi: 90 dakika

Öğrencinin Adı ve Soyadı:

Öğrenci No:

SORULAR

1-[35puan] Aşağıda verilen 8 örnek ve 3 özellikten oluşan küçük veriseti için pozitif ve negatif sınıfları belirlemek için bir karar ağacı oluşturunuz. Karar ağacını oluşturmak için entropy ve bilgi kazancını hesaplayınız.

T veriseti

Hair	Weight	Lotion	Result	
blonde	light	no	sunburned (positive	
blonde	avėrage	yes	none (negative)	
brown	average	yes	none	
blonde	average	no	sunburned	
red	heavy	no	sunburned	
brown	heavy	no	none	
brown	heavy	no	none	
blonde	light	yes	none	

Entropy
$$(T) = \frac{4}{8} \left(-\frac{2}{4} \log_2 \frac{2}{4} - \frac{2}{4} \log_2 \frac{2}{4} \right)$$
 Blandez 4 $\{2+, 2-\}$
 $+\frac{3}{8} \left(-\frac{3}{3} \log_2 \frac{3}{3} - 0 \right)$ Red = 1 $\{1+3\}$
 $+\frac{1}{8} \left(-\frac{1}{8} \log_2 \frac{1}{3} \right) = 0,5$

Entropy weight
$$=\frac{2}{8}\left(\frac{-1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2}\right)$$
 Light $=\frac{2}{3}$ $\frac{51+1-3}{1-3}$ $+\frac{3}{8}\left(-\frac{2}{3}\log_2\frac{2}{3} - \frac{1}{3}\log_2\frac{1}{3}\right)$ Heavy $=\frac{3}{3}$ $\frac{51+1-3}{1+2-3}$ $+\frac{5}{8}\left(-\frac{1}{3}\log_2\frac{1}{3} - \frac{2}{3}\log_2\frac{2}{3}\right) = 0,94$

Entropy
$$(T) = \frac{5}{8} \left(-\frac{3}{5} \log_2 \frac{3}{5} - \frac{2}{5} \log_2 \frac{2}{5} \right)$$
 $100 = 5$ $\frac{3}{3} + \frac{3}{2} - \frac{3}{5} \log_2 \frac{3}{5} - \frac{2}{5} \log_2 \frac{2}{5} \right)$ $100 = 5$ $\frac{3}{3} + \frac{3}{3} - \frac{3}{3} \log_2 \frac{3}{3} - \frac{3}{5} = 0$

2-[30 puan] Verisetinde iki boyutlu uzayda verilmiş 4 adet örnek bulunmaktadır. $X1 = \{1,0\}$, $X2 = \{0,1\}$, $X3 = \{2,1\}$, $X4 = \{3,3\}$

K-ortalamalı kümeleme yöntemine göre verisetini iki kümeye bölmek için başlangıç küme merkezleri X1 ve X4 olarak seçilmiş olsun. Algoritmanın ilk iki adımı için küme elemanlarını ve yeni küme merkezlerini hesaplayınız. Hesaplamada Eucledean mesafesi kullanınız.

$$C_{1} = (1,0) \quad \text{ve} \quad C_{2} = (3,3) \quad \text{ise}$$

$$X_{1} \text{ isin} \quad d(X_{11},C_{1}) = \emptyset \qquad d(X_{11},C_{2}) = \emptyset$$

$$X_{2} \text{ isin} \quad d(X_{2},C_{1}) = \emptyset \qquad d(X_{21},C_{2}) = \emptyset$$

$$X_{3} \text{ isin} \quad d(X_{3},C_{1}) = \emptyset \qquad d(X_{41},C_{2}) = \emptyset$$

$$X_{4} \text{ isin} \quad d(X_{41},C_{1}) = \emptyset \qquad d(X_{41},C_{2}) = \emptyset$$

$$C_{4} \text{ termesinin Gyeleri} \quad \begin{cases} X_{41} & X_{2} & 1 \times_{3} \end{cases} \Rightarrow \text{ yeri terme merhead}$$

$$C_{2} \text{ termesinin Gyeleri} \quad \begin{cases} X_{41} & X_{2} & 1 \times_{3} \end{cases} \Rightarrow \text{ yeri terme merhead}$$

$$C_{2} \text{ termesinin Gyeleri} \quad \begin{cases} X_{41} & X_{2} & 1 \times_{3} \end{cases} \Rightarrow \text{ yeri terme merhead}$$

$$C_{2} = (1, \frac{2}{3}) \qquad C_{2} = (3, 3)$$

$$C_{1} = (1, \frac{2}{3}) \qquad C_{2} = (3, 3)$$

$$X_{4} \text{ isin} \quad d(X_{41}, C_{1}) = 20$$

$$d(X_{41}, C_{2}) = 103$$

$$d(X_{41}, C_{2}) = 103$$

$$d(X_{41}, C_{2}) = 103$$

$$d(X_{41}, C_{2}) = 103$$

$$d(X_{41}, C_{2}) = 103$$

$$d(X_{41}, C_{2}) = 103$$

$$d(X_{41}, C_{2}) = 103$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{2}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 10$$

$$d(X_{41}, C_{4}) = 1095 \qquad d(X_{41}, C_{4}) = 1$$

3-[35 puan] Aşağıdaki tabloda verilen 10 örnek ve 3 özellikten oluşan verisetini eğitim veriseti olarak kullanarak Naive-Bayes sınıflayıcı modeli geliştirilecektir. Bu verisetinde 10 otomobilin rengi, modeli ve üretilidiği yer(yerli veya ithal) özelliklerine göre çalınma riski(var veya yok şeklinde) belirtilmiştir. Hangi sınıfa ait olduğu bilinmeyen (Red Domestic SUV) otomobilin çalınma riskini Naive Bayes sınıflayıcı kullanarak belirleyiniz.

Example No:	Color	Type	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes v
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes '
6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes •
- 8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes +

5 YES 5 MO

$$P(R,D,SUV|Yes) = P(R|Yes) P(D|Yes) P(SUV|Yes) \times P(Yes)$$

$$= \frac{3}{5} \cdot \frac{2}{5} \cdot \frac{1}{8} \cdot \frac{5}{10} = \frac{6}{150}$$

$$P(R,D,SUV|No) = P(R|No) P(D|No) P(SUV|No) *P(No)$$

= $\frac{2}{5} \cdot \frac{3}{5} \cdot \frac{3}{5} \cdot \frac{3}{10} = \frac{18}{250}$

MO > YES STOLEN = MO