Termos Ponderados e Modelo Vetorial

Prof. Dr. Leandro Balby Marinho http//www.dsc.ufcg.edu.br/~lbmarinho

Sistemas de Recuperação da Informação

(Slides Adaptados de Cristopher D. Manning)

Roteiro

- Recuperação baseada em Ranking
- Atribuição de pesos a documentos
- Frequência de termos
- Esquemas de pesos
- Modelo Vetorial de RI
- Pesos em espaço vetorial

Recuperação Baseada em Ranking

- Até agora lidamos com consultas Booleanas
 - Documentos casam ou não casam.
- Boa para usuários especialistas com um entendimento preciso das suas necessidades e da coleção
 - Boa para aplicações: aplicações podem facilmente processar milhares de resultados.
- Ruim para a maioria dos usuários
 - Incapazes de escrever consultas Booleanas (ou são, mas acham muito trabalhoso)
 - Não querem procurar em milhares de resultados
 - Principalmente quando se trata de busca na Web

Problemas da Busca Booleana

- Consultas Booleanas resultam ou em poucos (=0) ou em muitos (milhares) resultados
- Precisa-se de muita habilidade para produzir consultas que gerem um número razoável de resultados.
 - AND muito poucos; OR demais

Recuperação Baseada em Ranking

- Em modelos de RI baseados em ranking, o sistema retorna uma ordenação dos documentos na coleção em relação a uma consulta.
- Consultas em texto livre: Em vez de uma linguagem de consulta com operadores e expressões, a consulta é apenas uma ou duas palavras em linguagem natural.

Recuperação Baseada em Ranking

- O número de resultados não é problema
 - Apenas os k (\approx 10) resultados são mostrados
 - O usuário não é sobrecarregado
 - Premissa: O algoritmo de ranking funciona

Atribuição de pesos

- Queremos retornar, em ordem de relevância, os documentos mais prováveis de satisfazer uma consulta.
- Como podemos ordenar (ranquear) os documentos em uma coleção de acordo com uma consulta?
- Atribuindo um peso digamos em [0, 1] para cada documento.
- Esse peso mensura quão bem o documento casa com a consulta.

Atribuição de pesos

- Precisamos de uma forma de atribuir um peso para um par consulta/documento.
- Vamos começar com consultas de um-termo.
- Se o termo de consulta não ocorre no documento: peso deve ser 0.
- Quanto mais frequente o termo de consulta no documento, maior o peso.

Coeficiente Jaccard

- Uma forma comum de medir a interseção entre os conjuntos A e B.
- jaccard(A,B) = $|A \cap B| / |A \cup B|$
- jaccard(A,A)=1
- jaccard(A,B) = 0 se $A \cap B = 0$
- A e B não precisam ser do mesmo tamanho.
- Sempre atribui um número entre 0 e 1.

Atribuindo Pesos com Coeficiente de Jaccard

- Qual o peso que o coeficiente de Jaccard calcula para cada par consulta-documento abaixo?
- Consulta: idos de março
- Documento 1: césar morreu em março
- Documento 2: águas de março

Problemas com o coeficiente Jaccard

- Não considera frequência dos termos.
- Termos raros em uma coleção são mais informativos que termos frequentes.
- Precisamos de formas mais sofisticadas de normalizar o tamanho dos documentos.

Relembre a Matriz de Incidência Binária

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Cada documento é representado por um vetor binário ∈ {0,1}

Matriz de Frequencia termo-documento

- Considere o número de ocorrências de um termo em um documento:
 - Cada documento é um vetor de nr. de ocorrências de termos

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

O modelo "Bag of Words"

- Representação de vetores não considera a ordem das palavras em um documento.
- João é mais alto que Maria e Maria é mais alta que João possuem os mesmos vetores.
- Esse modelo é chamado de "bag of words".

Frequencia de termo tf

- A freq. do termo t no documento d, $tf_{t,d}$, é definida como o número de vezes que t ocorre em d.
- Podemos usar tf para calcular pesos para pares consulta-documento.
- Mas usar tf puro não é uma boa idéia:
 - Um doc. com 10 ocorrências de um termo é mais relevante que um documento com 1 ocorrência do termo.
 - Mas não 10 vezes mais relevante.
- Relevância não aumenta proporcionalmente com tf.
- Use o logaritmo de tf.

Peso Log-frequência

O peso logarítmico da freq. de t em d é dado por

$$w_{t,d} = \begin{cases} 1 + \log_{10} \operatorname{tf}_{t,d}, & \operatorname{setf}_{t,d} > 0 \\ 0, & \operatorname{de outra forma} \end{cases}$$

- $0 \to 0, 1 \to 1, 2 \to 1.3, 10 \to 2, 1000 \to 4, \text{ etc.}$
- Peso para um par consulta-documento: somatório sob os termos t em ambos q e d:

• Peso =
$$\sum_{t \in q \cap d} (1 + \log tf_{t,d})$$

 O peso é 0 se nenhum dos termos de consulta estiver presente no documento.

Frequência de Documentos

- Termos raros são mais informativos que termos frequentes
 - Lembre das stop words
- Considere um termo na consulta que seja raro na coleção (e.g., agorafobia).
- Um documento contendo esse termo é muito provável de ser relevante a consulta agorafobia.
- É razoável atribuir maior peso para termos raros como agorafobia.

Frequência de Documentos

- A frequencia dos termos não é um indicador certo de relevância.
- Queremos um esquema que atribua maior peso aos termos raros em detrimento dos termos frequentes.

Peso idf

- Seja df_t a freq. de <u>documento</u> para t: o número de documentos que contém t
 - df_t é uma medida inversa da informatividade de t
 - $df_t \leq N$
- O idf (inverse document frequency) de t é definido por

$$idf_t = N/df_t$$

Normalmente log (N/df_t) é usado

Exemplo idf: N=108

term	df_t	idf_t
calpurnia	1	
animal	100	
domingo	1,000	
mosca	10,000	
abaixo	100,000	
0	1,000,000	

$$idf_t = log_{10} (N/df_t)$$

Há um valor idf para cada termo t na coleção.

Freq. Coleção vs. Freq. Documento

- A frequencia de coleção de t é o número de ocorrências de t na coleção
- Exemplo:

Palavra	Frequencia da Coleção	Frequência de Documento
seguro	10440	3997
tentativa	10422	8760

• Qual palavra é um melhor termo de busca (e deveria obter um maior peso)?

Peso tf-idf

 O peso tf-idf de um termo é o produto do seu peso tf e seu peso idf.

$$w_{t,d} = tf_{t,d} \times idf_t$$

- O melhor esquema de pesos conhecido da RI
 - Nomes alternativos: tf.idf, tf x idf
- Aumenta com o número de ocorrências dentro de um documento.
- Aumenta com a raridade do termo na coleção.

Peso tf-idf para um Documento

$$\operatorname{Peso}(q,d) = \sum_{t \in q} \operatorname{tf}_{t,d} . \operatorname{idf}_{t}$$

Exercício

 Considere a tabela (a) de frequencias para os 3 documentos denotados por Doc1, Doc2, Doc3 abaixo. Calcule os pesos tfidf para os termos "car", "auto", "insurance" e "best", para cada documento, usando os valores de idf na tabela (b) abaixo.

	Doc1	Doc2	Doc3
car	27	4	24
auto	3	33	0
insurance	0	33	29
best	14	0	17

Tabela (a)

term	df_t	idf _t
car	18,165	1.65
auto	6723	2.08
insurance	19,241	1.62
best	25,235	1.5

Tabela (b)

Matriz de Pesos

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Cada documento é agora representado por um vetor de valores reais de pesos tf-idf $\in R^{|V|}$

Documentos como Vetores

- Termos e documentos s\u00e3o vetores em um espa\u00e7o vetorial |V|-dimensional.
- Termos são os eixos do espaço.
- Documentos são pontos ou vetores nesse espaço.
- Muitas dimensões: milhões de dimensões quando se trata da Web.
- Vetores esparsos maioria dos componentes é zero.

Consultas como Vetores

- Ideia-chave 1: Representar consultas como vetores no espaço.
- <u>Ideia-chave 2:</u> Ordenar os documentos de acordo com a sua proximidade com a consulta nesse espaço.
- proximidade = similaridade de vetores.
- proximidade ≈ inverso da distância.
- Lembrete: queremos nos livrar do modelo Booleano.
- Em vez disso: ranquear os documentos mais relevantes na frente dos não relevantes.

Proximidade entre vetores

- Primeira tentativa: distância entre dois pontos
 - (= distância entre os pontos finais dos dois vetores)
- Distância Euclidiana?
- Distância Euclidiana é uma má ideia . . .
- . . . porque a distância Euclidiana é grande para vetores de tamanhos diferentes.

Por que não distância Euclidiana

A distância Euclidiana entre q e d₂ é grande mesmo quando a distribuição de termos na consulta *q e* documento do são muito similares.

Ângulo em vez de distância

- Experimento mental: pegue um documento d e concatene-o a ele mesmo. Chame esse documento de d'.
- "Semanticamente" d e d' possuem o mesmo conteúdo.
- A distância Euclidiana entre os dois documentos pode ser grande mesmo assim.
- O ângulo entre os dois documentos é 0, correspondendo a similaridade máxima.
- Ideia-chave: ordenar documentos de acordo com o seu ângulo com a consulta.

De Ângulos a Cosenos

- As duas noções seguintes são equivalentes:
 - Ordene documentos em ordem <u>decrescente</u> do ângulo entre a consulta e os documentos
 - Ordene documentos em ordem <u>crescente</u> do coseno (consulta,documento)
- Coseno é uma função decrescente monotônica para o intervalo [0°, 180°].

De Ângulos a Cosenos

Normalização do Tamanho do Vetor

 O tamanho de um vetor pode ser normalizado dividindo seus componentes pelo seu tamanho – norma Euclidiana ou L₂:

$$\left\| \overrightarrow{x} \right\|_2 = \sqrt{\sum_i x_i^2}$$

- Dividindo um vetor por sua norma Euclidiana o torna um vetor unitário.
- Efeito nos dois documentos d e d' do slide 30: eles possuem vetores idênticos depois da normalização.
 - Documentos longos e curtos agora possuem pesos compatíveis

Coseno(consulta, documento)

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{n} q_i d_i}{\sqrt{\sum_{i=1}^{n} q_i^2} \sqrt{\sum_{i=1}^{n} d_i^2}}$$

 q_i é o peso (e.g. tf-idf) do termo i na consulta d_i é o peso (e.g. tf-idf) do termo i no document

cos(q,d) é a similaridade do coseno de q e d ... ou, equivalentemente, o coseno do ângulo entre q e d.

Similaridade do Coseno

Exemplo de Coseno entre 3 docs.

Quão similares são os documentos?

SaS: Sense and

Sensibility

PaP: Pride and

Prejudice, and

WH: Wuthering

Heights?

termo	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Freq. de termos

Exemplo cont.

Log-frequencia

term	SaS	PaP	WH
affection	3.06	2.76	2.30
jealous	2.00	1.85	2.04
gossip	1.30	0	1.78
wuthering	0	0	2.58

Depois da normalização

term	SaS	PaP	WH
affection	0.789	0.832	0.524
jealous	0.515	0.555	0.465
gossip	0.335	0	0.405
wuthering	0	0	0.588

```
cos(SaS,PaP) \approx 0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \approx 0.94

cos(SaS,WH) \approx 0.79

cos(PaP,WH) \approx 0.69
```

Algoritmo de Ranqueamento com Coseno

```
CosineScore(q)
     float Scores[N] = 0
  2 float Length[N]
 3 for each query term t
    do calculate w_{t,q} and fetch postings list for t
         for each pair(d, tf_{t,d}) in postings list
  5
         do Scores[d] + = w_{t,d} \times w_{t,a}
     Read the array Length
     for each d
     do Scores[d] = Scores[d]/Length[d]
     return Top K components of Scores[]
10
```

Outros Pesos

Term f	frequency	Docum	ent frequency	Nor	malization
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df_t}}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u
b (boolean)	$egin{cases} 1 & ext{if } \operatorname{tf}_{t,d} > 0 \ 0 & ext{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$
L (log ave)	$\frac{1 + \log(tf_{t,d})}{1 + \log(ave_{t \in d}(tf_{t,d}))}$				

Esquemas de Pesos

- Muitos motores de busca permitem esquemas de peso diferentes para consultas vs. documentos
- Notação SMART: denota a combinação em uso por um motor, no qual a notação ddd.qqq, usa os acrônimos da tabela prévia.
- Um esquema padrão é: Inc.ltc
- Documento: tf logarítmico, sem idf e normalização coseno
- Consulta: tf logarítmico tf , idf, sem normalização ...

Sumário da Aula de Hoje

- Representar a consulta como um vetor de pesos.
- Representar cada documento como um vetor de pesos de termos.
- Calcular a similaridade de coseno entre o vetor de consulta e cada documento.
- Ordenar os documentos de acordo com sua similidade com a consulta.
- Retornar os top K (e.g., K = 10) ao usuário