1		Private em	Action Control of Control of Control	Admin	student l	Prof	TA	1
s Judent/	R	,	R					-
Prof	R W	R*	R W	R				
†A	R	Can deligate	-					
Admin	Read White Exec	R W E	R W E	R W E	Control	Control	Contract	
		g haddin y siid y com kaa kuha						
		amenin sonot e						

10

- 2. In a machine the logical address space is 32 bits, page size is 4KB, Physical address space is 20 bits. Now show,
 - · no of pages, no of frames and page table size.
 - Is it possible two keep it in one level paging? If not, then propose a solution. Show with
 calculation that your proposed solution is working properly.

LAS = 32 bit = 232 byte Ans; PAS = 20 bit = 220 byte page size = 4KB = 212 byte # of page = LAS = 232 = 220 15 1500 # of frame = $\frac{PAS}{PS} = \frac{2^{20}}{2!^2} = 2^8$ table size = # of page of one entry size = # of page * frame bit = 220 \$ 8 bit 200 220 × 1 byte = 220 byte page table size = 220 byte > frame size # of page in $PT = \frac{220}{212} = 28$

auten paal bist

.. New page table size = $2^8 \times 8$ bit = $2^8 \times 1$ byte = 2^8 byte 6^2 = frame size

works properly.