Problem of Symmetric Cryptography Algorithm

- Symmetric schemes require both parties to share a common/same secret key.
- Issue is how to securely distribute this key.
- So some mechanism is required for secure transmission of key is known as *key distribution*.
- often *secure system fails due to a break* in the key distribution scheme.

Key Management

- 1. Authentication of the users of the key.
- 2. Generation of key.
- 3. Distribution of key.
- 4. Storage of key.

- Given parties A and B have various key distribution alternatives:
 - 1. A can select key and *physically deliver* to B.
 - 2. Third party can select & deliver key to A & B.
 - 3. If A & B have *communicated previously* can use *previous key* to encrypt a new key
 - 4. If A & B have secure communications with a third party C, C can *relay key* between A & B

Session key:

 Data encrypted with a one-time session key. At the conclusion of the session the key is destroyed.

Permanent key:

 Used between entities for the purpose of distributing session keys.

Automatic Key Distribution

- Session Key
 - Used for duration of one logical connection
 - Destroyed at end of session
 - Used for user data
- Permanent key
 - Used for distribution of keys
- Key distribution center
 - Determines which systems may communicate
 - Provides one session key for that connection
- Front end processor
 - Performs end to end encryption
 - Obtains keys for host

Figure 2.10 Automatic Key Distribution for Connection-Oriented Protocol

Key Distribution in Public key

Crypto

- Following are the 4 ways
- 1. Public Announcement
- 2. Publicly available directory
- 3. Public key Authority
- 4. Public key Certificate

1. Public Announcement

- Broadcasted by the owner of the key.
- Limitation:=
 - I. Forge key
 - II. Misuse it
 - III. No Control on accessing of the key

2. Publicly Available Directory

- Directory of Keys is maintained by third party
- Directory is Password protected
- Only Registered User can access it

Name	Public Key
A	115
В	215

• Hacking:=

Password of the Directory being steal

Henric Johnson

10

3. Public Key Authority(PKA)

- Public key of the user can only be accessed by decrypting reply message of PKA.
- Private key of PKA used for encryption purpose & vice-versa.
- Limitation:=
 - Reuse of public key by either party in future.
 - II. System slow down due too overhead.

- T1 & T2 time of request
- N1 & N2 random number called as nounce.
- IDA network address of Initiator A for communication
- Step 7- Initiator A confirm the Request by replying back.

Figure 14.11 Public-Key Distribution Scenario

3. Public Key Certificate(PKC)

- Suggested by Kohnfelder.
- Initiator sends name & his public key.
- Public keys are exchanged by means of certificates.
- Private key of PKC used for encryption purpose & vice-versa.
- Certificate contains information such as time of the request, network address & public key of the user who made the request.

PKC Overview

Key Distribution Issues

- Hierarchies of KDC's required for large networks, but must trust each other
- Session key lifetimes should be limited for greater security
- Use of automatic key distribution on behalf of users, but must trust system
- Use of decentralized key distribution
- Controlling purposes keys are used for

Summary

- have considered:
 - use of symmetric encryption to protect confidentiality
 - need for good key distribution
 - use of trusted third party KDC's

Figure 2.9 Encryption Across a Packet-Switching Network

Recommended Reading

- Stallings, W. Cryptography and Network Security: Principles and Practice, 2nd edition. Prentice Hall, 1999
- Scneier, B. Applied Cryptography, New York: Wiley, 1996
- Mel, H.X. Baker, D. Cryptography Decrypted.
 Addison Wesley, 2001

Henric Johnson

18