SOLUTIONS – pm group

1) Derive the spectrum efficiency equations based E_b/N_0 and Shannon capacity.

[8 marks]

Answer:

$$\frac{E_b}{N_o} = \frac{5}{N_o \cdot R} = \frac{5}{N_o \cdot R} \cdot \frac{N - N_o \cdot B_T}{N_o \cdot R} \cdot \frac{SNR}{N_o \cdot R} = \frac{S \cdot log_* (1 + 5NR) b \cdot t / s}{N_o \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{B \cdot log_* (1 + 5NR) b \cdot t / s}{C \cdot R} \cdot \frac{E_b}{N_o} = \frac{E_b}{N_o} \cdot \frac{E_$$

2) The following table illustrates the operation of an FHSS system for one complete period of the PN sequence.

Time	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Input data	0	1	1	1	1	1	1	0	0	0	1	0	0	1	1	1	1	0	1	0
Frequency	f_1	f ₂₁	f ₁₁	f_3	f_3	f ₃	f ₂₂	f ₁₀	f_0	f_0	f_1	f ₂₂	f_9	f_1	f_3	f_3	f ₂₂	f ₁₁	f_3	f_3
PN Sequence	001	110	011	001	001	001	110	011	001	001	001	110	011	001	001	001	110	011	001	001

To determine:

- i) What is the period of the PN sequence?
- ii) The system makes use of a form of FSK. What form of FSK is it?
- iii) What is the number of bits per symbol?
- iv) What is the number of FSK frequencies?
- v) What is the length of a PN sequence per hop?
- vi) Is this a slow or fast FH system?
- vii) What is the total number of possible hops?
- viii) Show the variation of the dehopped frequency with time.

[8 marks]

Answer:

i) Period of the PN sequence is 15 [1 mark]

ii) MFSK [1 mark]

iii) L = 2 [1 mark]

iv) $M = 2^L = 4$ [1 mark]

v) k = 3 [1 mark]

vi) fast FHSS [1 mark]

vii) $2^k = 8$ [1 mark]

 $\mathbf{viii}) 2^n = 8 \qquad [1 \text{ mark}]$ $\mathbf{viii}) \qquad [1 \text{ mark}]$

Time	0	1	2	3	4	5	6	7	8	9	10	11
Input data	0	1	1	1	1	1	1	0	0	0	1	0
Frequency	f_1		f_3		f_3		f ₂		f_0		f ₂	

Time	12	13	14	15	16	17	18	19	
Input data	0	1	1	1	1	0	1	0	
Frequency	f_1		f	3	f	2	f_2		