Diziler

Donem Hak. Bilg.

- diziler olmadan seriler olmaz.
- kuvvet serileri cok onemli.
- kisa baslik: parametrik denklemler.
- Kutupsal koord zormus.
- vektorler cartcurt carpimlar filan. Uzayda dogrular uzerinde duracagiz.
- o vektor degerli mat1e dayali.
- o cok degiskenli fonklar uzun soluklu. farkli ve zormus.
 - limit turev cartcurt mat1 iste.
- katli integreler. araliklari kartezyen carpimlari zartzurt. dikdortgen veren integraller vs. hacim ve alan hesaplari
- Kaynak ayni.

Sonsuz Dizi

o **Tanim:** pozitif dogal sayilar uzerinde tanimlanmis fonk.

$$b_n = \frac{1}{n-1} \Longrightarrow \{b_n\}_{n=2}^{\infty} = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n-1}, \dots\right\}$$

$$b_n=rac{1}{n-1} \implies \left\{b_n
ight\}_{n=2}^{\infty}=\left\{1,rac{1}{2},rac{1}{3},\cdots,rac{1}{n-1},\,\cdots
ight\}$$

- Dizinin butun elemanlari bir sayidan kucukse ustten sinirli.
 tam tersi ise alttan sinirli. ikisi de soz konusu ise sinirli denir.
- dizilerin yakinsakligi: sonsuza limiti alinir ve ona gore yakinsakligi hespalanir. 0'e yaklasir cartcurt.
- latex
- o dizinin tekligi: limiti varsa tektir.
- yakinsakligi: limit varsa yakinsaktir. (limit yok demek +-sonsuz ya da sureksiz demek)

Onemli limitler:

$$r>0$$
 ise, $\lim_{n o\infty}r^{1/n}=\ 1$

$$r>1$$
ise, $\lim_{n o\infty}r^n=\infty$

$$|r| < 1$$
ise, $\lim_{n o \infty} r^n = 0$

$$\lim_{n\to\infty} \left(\sqrt[n]{n}\right) = 1$$

- o Limit teoremleri:
 - dizinin limitini alinirken diziyi fonksiyon gibi dusunup onun limiti alinir. (istisna var)
 - usttekinin tersi dogru degil. Diziden fonka gecemeyiz.
- Yakinsak iki dizinin toplami ve farki yakinsak. (bi zahmet). iraksakta dogru degildir.
 Asagidaki ornek iki iraksak fonkun topalmi yakinsak oldugnu gosterir

$$\lim_{n o\infty}(a_n-b_n)=\lim_{n o\infty}\left(\sqrt{n^2+2n}-n
ight)=\lim_{n o\infty}rac{2n}{\sqrt{n^2+2n}+n}=1$$

Diziler sikistirma kurali.

$$\lim_{n \to \infty} \frac{n!}{n^n} = 0$$
 gosterelim,

$$n \ge 1$$
 icin $n = 1 \cdot 2 \cdot 3 \cdot \cdot n < 1 \cdot \dots n \cdot \cdot n = n^{n-1}$

$$0 < \frac{n!}{n^n} < \frac{n^{n-1}}{n^n} = \frac{1}{n}$$

$$n \to \infty$$
 durumunda,

$$\lim_{n o \infty} rac{n!}{n^n} = 0$$

o icine alma kurali: fonk surekliyse icine limit alinabilir. (triglar loglar vs.)

• Monoton Diziler: daima artan veya azalan dizilere denir. an - an+1 ya da turevi alinir.

Seriler

- Sonsuz Seriler.
- Bir dizinin terimlerinin toplamidir.

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + \dots + a_n + \dots$$

- Bu toplami bir terimda sonlandirirsak artik elimizde yepyeni bir dizi olmus olur. (kismi toplamlar dizisi.)
- o Bu dizinin karakteri de serinin karakterini de verecek.
- Kismi toplamlar dizisinin limiti varsa yakinsak oldugu soylenir. Ve toplami bulunabilir.
- Seri, bir dizinin toplami.
- Karakteri irksagi ve yakinsakligi.
- Sonsuz toplam yerine sonlu toplam yapip yorum yapacagiz.
- Kismi toplamlar dizisi bir limite sahipse yakinsak.
- · Yakinsak bir serinin toplami farki yakinsaktir.
- Yakinsak bir serinin bir sayiyla carpimi yakinsaktir.
- Teleskopik seri: Bu yontem ozellikle ardisik gelenler icin kullanilir.

$$\sum_{k=1}^{\infty}(a_{k-1}-a_k)=a_0-\lim_{n o\infty}a_n$$

$$\sum (a_k)$$

serisi yakinsak ise

$$\lim_{k\to\infty}a_k=0$$

Bu teoremin tersi dogru degildir. Yani, bir dizinin limiti 0 ise ondan olusan bir seri yakinsak olabildigi gibi iraksak da olabilir.

NOT: Bir serinin genel teriminin limiti mevcut ise ve 0 degilse o dizi iraksaktir. 0 cikarsa bir test uygulayip durumu degerlendirecegiz.

Harmonik ve Geometrik Seri

- HARMONIK SERI IRAKSAKTIR !!
- Harmonik serileri iraksaktir. Payin derecesi paydanin derecesinden 1 kucuk olan serilere harmonik seri denir.

$$\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \dots$$

- Geometrik seri sinavda her zaman cikar.
- Geometrik serinin ilk teriminin r'nin kuvveti 0 olacak. Olmazsa ona gore ayarlariz.

$$\sum_{k=1}^{\infty}ar^{k-1}=a+ar+ar^2+\ldots$$

• |r| < 1 iken a/(1-r) sayisina yakinsar, |r| >= 1 ise iraksar.

Integral testi

Surekli azalan ve pozitif bir fonk icin kullanilir.

- Importoper integralin bir sayi ise o sayi serinin toplamini ifade etmez. Sadece serinin karakterini belirler.
- Bir serinin impropern integralinin karakteri ve kendisnin karakteri aynidir.

p-serisi

p pozitif bir reel sayi olmakla beraber,

$$\sum_{k=1}^{\infty} \frac{1}{k^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots$$

• p 1den buyuk oldugu zaman sadece yakinsaktir.

Mukayese Testi

- Eger bir serinin genel terimini baska bir serinin genel terimiyle mukayese edebiliyorsaniz ve o serinin
 - karakterini biliyorsaniz mukayese testi elverislidir.
- Orjinial serimiz a_k olsun obur serimiz ise b_k olsun.
 - Eger a_k nin butun terimleri b_k ninkinden **kucuk** kaliyorsa ve b_k serisinin karakteri yakinsaksa a_k da yakinsaktir.
 - Eger a_k nin butun terimleri b_k ninkinden buyuk kaliyorsa ve b_k serisinin karakteri iraksaksa a_k da iraksaktir.

Limit Mukayese Testi:

$$\lim_{k o\infty}rac{a_k}{b_k}=L$$

- Eger L > 0 ise her iki seri de yakinsar ya da iraksar.
- Eger L = 0 ise ve b k yakinsak ise, a k serisi de yakinsaktir.
- Eger L = sonsuz ise ve b_k iraksak ise, a_k serisi de iraksaktir.

Alterne Serilerde Yakinsaklik:

- Bir alterne serinin multak degerini alinca (-1)^n terimi kalkar. Bu durumda, a_n kalir ve bu seri de yakinsak ise mutlak yakinsak denir.
- Ustteki teset basarisiz ise ve alttak sartlari sagliyorsa:
 - Seri azalandir.
 - Serinin her bir eleman pozitiftir.
 - Genel terim limiti Odir.
 sartli yakinsaktir.

Kuvvet Serileri

 $\sum a_k x^k$

dizisi icin sifirdan farkli c sayisi icin yakinsak ise

saglayan butun x'ler icin yakinsaktir.

Yakinsaklik yaricapi ve araligi:

$$ho = \lim_{k o\infty}\left|rac{a_k}{a_{k+1}}
ight|$$

$$ho=0$$
 , $x=x_0$ icin yakinsar

$$ho = c$$
 , $|x| < |c|$ icin yakinsar

$$ho = \infty$$
 , $x = R$ icin yakinsar

• bulunan araliklarin uc noktalari ayrica kontrol edilmelidir.

Kuvvet serileri ve fonksiyonlar.

$$rac{1}{1-x}=\sum_{x=1}^{\infty}x^k$$
 $|x|<1$

verilen denklemi bu formata gore ayarlayip geometrik serinin ozelliklerinden faydalanacagiz.
 `NOT: Bir serinin p gibi bir yakinsaklik yaricapina sahipse, bu fonksiyonun turevi de integrali de ayni p'ye sahiptir. (aralik degisebilir)

Serinin Turevi ve integrali.

 Her ne kadar bir serinin yakinsadigi aralik turev veya integral alininca degismese de uc noktalar kontrol edilmelidir.

Kutupsal Koordinatlar

- cos iceren kardoitler kutup eksenine , yani x-ekseni, gore simetriktirler.
- sin iceren kardoitler normal eksene, yani y-ekseni, gore simetriktirler.
- Bazi kesisim noktalari denklemden gorulemedigi icin gradige bakarak daha iyi yorum yapabiliriz.

$$x = r\cos(\theta)$$
 $y = r\sin(\theta)$

 Ustteki formulu kullanrak bir egrinin kutupsal koordinattaki egimini bulabilecegiz. bu da kesisen noktalari ogrenmekte epeyce faydali olacaktir.

$$A=\int_{0}^{eta}rac{1}{2}[f(heta)]^{2}d heta$$

• Ustteki formulu kullanip kutbu bakis acisina alarak alan hesabi yapacagiz.

$$L = \int_{lpha}^{eta} \sqrt{[f(heta)]^2 + [f'(heta)]^2} \ d heta$$

• Ustteki formulu kullanip kutupsal koordinatlarda olan bir yayin uzunulugunu bulacagiz.

Vektorler

`Konum Vektoru:' Orjinden baslayip belli bir yere kadar giden vekotre konum vektoru denir.

Paralel Vektorler:

$$a = \lambda b$$

click me

02:32:42 / 02:54:55

Uzayda Dogrular

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

$$x = x_0 + at$$
 $y = y_0 + bt$ $z = z_0 + ct$

$$\mathbf{v} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

- v ile gosterilen vektor bizim icin cok onemlidir.
- Eger iki dogru birbirinin paraleli ise bu yon vektorlerinin paralel oldugunu gosterir.
- ustte verilen a, b ve c nin herhangi birisinin O olmasi durumunda denklem simetrik olamaz.
- Bunlardan herhangi birisinin 0 gelmesi durumunda tabana 0 yazmayacagiz. Tavani 0'a esitleyeceigiz. Bu durum
 bizi 0/0 tanimsizligina qoturur.

Duzlemler

- Sunu hayal edelim, elimizde iki nokta var: p ve p_0. Bu iki noktayi birlestirerek bir vektor cizelim.
- Cizilen bu vektor oyle bir n vektoruyle noktasal carpilsin ki sonuc 0 versin.
- Bu n vektorune normal vektor adini verecegiz.

$$\mathbf{n} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$

$$ax + by + cz + d = 0$$

- Nasil dogrularda v degeri cok onemli ise duzlemlerde normal dogru da n o kadar da onemli.
- Eger iki duzlemin normal dogrulari birbirine dikse, n_1 . $n_2 = 0$ ise bo iki duzelem birbirine diktir.
- Eger iki duzlemin normal dogrulari paralelse, n_1 x n_2 = 0 ise bo iki duzelem birbirine paraleldir.

$$cos heta = rac{\mathbf{n_1.n_2}}{||n_1||\;||n_2||}$$

- ustteki formulun yardimiyla aradaki aciyi bulabiliriz.
- ullet Eger bir dogrunun yonlu vektoru ullet ve bir duzlemin ullet normal dogrusu birbirine dikse o dogru ve duzlem

biribirine paraleldir.

ullet Eger bir dogrunun yonlu vektoru ullet ve bir duzlemin ullet normal dogrusu birbirine paralelse o dogru ve duzlem

biribirine diktir.

 Bir dogru boyunca kesisen duzlemler ailesine duzlemler demeti denir. Duzlemlerin genel terimleri 0 esitlenir.

ve birisi bir katsayi ile carpilip digeri ile toplanir.

• Birlikte turevleri sifir olmayan egriye duzgun egri denir.

$$L = \int_a^b \{ [x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2 \}^{rac{1}{2}} dt$$

Ustteki formul yardimiyla yay uzunlugunu bulabilecegiz.