h e g

Haute école de gestion de Genève
Geneva School of Business Administration

## Distributions continues

Dr Sacha Varone

o e O

Objectifs

Loi normale (Rappel)

Loi de Student  $\mathcal{T}_n$ 

Loi du  $\chi^2$ 

Savoir reconnaître et utiliser

- lacksquare une loi normale  ${\mathcal N}$
- lacksquare une loi du  $\chi^2$
- lacksquare une loi de Student  $\mathcal{T}_n$

ь Б

# Loi normale (Rappel)

Probabilités

Table

Définition

Transformation

Loi de Student  $\mathcal{T}_n$ 

Loi du  $\chi^2$ 

Loi normale (Rappel)

Φ

0

\_

Loi normale (Rappel)

Probabilités

Table

Définition

Transformation

Loi de Student  $\mathcal{T}_n$ 

Loi du  $\chi^2$ 





$$X \sim \mathcal{N}(\mu, \sigma^2)$$

 $\sigma^2$  détermine la largeur de la courbe. Plus sa valeur est élevée, plus la courbe sera large et aplatie.  $\mu$  détermine la position de la moyenne.

\_

Loi normale (Rappel)

#### Probabilités

Table
Définition
Transformation

Loi de Student  $\mathcal{T}_n$ 

Loi du  $\chi^2$ 

Probabilité  $\to$  aire sous la courbe de densité f(x). Par symétrie  $P(X \le \mu) = P(X \ge \mu) = 0.5$  Donc  $P(X \le x) = 1 - P(X \ge x)$ 

Distribution normale avec  $\mu = 0$ ,  $\sigma = 1$ 



7

### Table de la loi normale

Loi normale (Rappel)

Probabilités

Table

Définition
Transformation

Loi de Student  $\mathcal{T}_n$ 

Loi du  $\chi^2$ 

La table de la loi normale donne les probabilités d'occurrence jusqu'à la z-valeur considérée. La ligne donne la valeur de Z jusqu'au dixième, et la colonne donne la valeur au centième.

| z   | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   |  |
|-----|--------|--------|--------|--------|--------|--|
|     |        |        |        |        |        |  |
| 0   | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 |  |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 |  |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 |  |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 |  |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 |  |
|     |        |        |        |        |        |  |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 |  |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 |  |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 |  |
| 8.0 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 |  |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 |  |
|     |        |        |        |        |        |  |

Loi normale (Rappel)

Probabilités Table

#### Définition

Transformation

Loi de Student  $\mathcal{T}_n$ 

Loi du  $\chi^2$ 

Une loi normale de moyenne nulle et d'écart type 1, écrite  $\mathcal{N}(0,1)$ , est dite *loi normale centrée réduite*. La fonction de densité est alors

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

ත ර

Φ

\_

Loi normale (Rappel)

Probabilités Table Définition

Transformation

Loi de Student  $\mathcal{T}_n$ 

Loi du  $\chi^2$ 

$$X \sim \mathcal{N}(\mu, \sigma^2) \quad \Rightarrow \quad Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

Les probabilités suivantes sont alors équivalentes

$$X \le x \quad \Rightarrow \quad Z \le \frac{x - \mu}{\sigma}$$

$$P(X \le x) = P(Z \le \frac{x - \mu}{\sigma})$$

Inversement, on a

$$Z \sim \mathcal{N}(0,1) \quad \Rightarrow \quad X = \mu + Z\sigma \sim \mathcal{N}(\mu, \sigma^2)$$

\_

Loi normale (Rappel)

Probabilités Table Définition

Transformation

Loi de Student  $\mathcal{T}_n$ 

Loi du  $\chi^2$ 

Soit X est une variable aléatoire suivant une loi normale de centre  $\mu=100$  et d'écart type  $\sigma=50$ , *i.e.* 

$$X \sim \mathcal{N}(100, 2500)$$
  $Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$ 



Si 
$$X=200$$
 alors  $Z=\frac{200-100}{50}=2$  Et donc  $\mu+Z\sigma=100+2\cdot 50=200=X$ 

р О

Loi normale (Rappel)

#### Loi de Student $\mathcal{T}_r$

Distribution

Propriétés

Table de Student

Exemple

Théorème

Loi du  $\chi^2$ 

Loi de Student  $\mathcal{T}_n$ 

William Gosset

e G

2

Loi normale (Rappel)

Loi de Student  $\mathcal{T}_n$ 

Distribution Propriétés

Table de Student

Exemple

Théorème

Loi du  $\chi^2$ 



\_

Loi normale (Rappel)

Loi de Student  $\mathcal{T}_n$ 

#### Distribution

Propriétés Table de Student Exemple Théorème

Loi du  $\chi^2$ 

Loi de Student à n degrés de liberté

- Distribution de Student (t-distribution) = famille de distribution en forme de cloche et symétrique.
- Caractéristique : nombre de degrés de liberté



0

Φ

\_

Loi normale (Rappel)

Loi de Student  $\mathcal{T}_n$ Distribution

#### Propriétés

Table de Student Exemple Théorème

Loi du  $\chi^2$ 

Propriétés

$$\blacksquare E(\mathcal{T}_n) = 0, \quad n > 1$$

Espérance n'existe pas lorsque n=1.

Symétrie autour de 0.

Variance infinie pour  $n \leq 2$ 

**Remarque**. Lorsque le nombre de degrés de liberté n tend vers l'infini, la loi de Student tend vers la loi normale  $\mathcal{N}(0,1)$ .

7

### William Gosset

Loi normale (Rappel)

Loi de Student  $\mathcal{T}_n$ Distribution

#### Propriétés

Table de Student Exemple Théorème

Loi du  $\chi^2$ 

MAKING THE ASSUMPTION THAT THE ORIGINAL POPULATION DISTRIBUTION WAS NORMAL, OR NEARLY NORMAL, "STUDENT" WAS ABLE TO CONCLUDE:



source: "The Cartoon Guide to Statistics", L. Gonick & W. Smith

Loi normale (Rappel)

Loi de Student  $\mathcal{T}_n$ 

Distribution Propriétés

Table de Student

Exemple Théorème

Loi du  $\chi^2$ 

La distribution de Student est tabulée, tout comme la loi normale.

- lacktriangle Ligne nombre de degrés de liberté n
- Colonne une erreur de première espèce  $\alpha$ .
- Intersection ligne/colonne  $t_{\alpha,n}$

$$P(\mathcal{T}_n > t_{\alpha,n}) = \alpha$$
 et  $P(\mathcal{T}_n \le t_{\alpha,n}) = p$ 

La relation entre p et  $\alpha$  est  $p = 1 - \alpha$ .

Loi normale (Rappel)

Loi de Student  $\mathcal{T}_n$ Distribution
Propriétés
Table de Student

### Exemple

Théorème

Loi du  $\chi^2$ 

| $P(\mathcal{T}_{10} \le t_{\alpha,10}) = 0.95$ | $\implies t_{0.05,10} = 1.8125$ |
|------------------------------------------------|---------------------------------|
|------------------------------------------------|---------------------------------|

| t  | Valeurs de $\alpha$ |        |        |         |         |         |
|----|---------------------|--------|--------|---------|---------|---------|
|    | 0.2                 | 0.1    | 0.05   | 0.025   | 0.01    | 0.005   |
| dl |                     |        |        |         |         |         |
| 1  | 1.3764              | 3.0777 | 6.3138 | 12.7062 | 31.8205 | 63.6567 |
| 2  | 1.0607              | 1.8856 | 2.9200 | 4.3027  | 6.9646  | 9.9248  |
| 3  | 0.9785              | 1.6377 | 2.3534 | 3.1824  | 4.5407  | 5.8409  |
| 4  | 0.9410              | 1.5332 | 2.1318 | 2.7764  | 3.7469  | 4.6041  |
| 5  | 0.9195              | 1.4759 | 2.0150 | 2.5706  | 3.3649  | 4.0321  |
| 6  | 0.9057              | 1.4398 | 1.9432 | 2.4469  | 3.1427  | 3.7074  |
| 7  | 0.8960              | 1.4149 | 1.8946 | 2.3646  | 2.9980  | 3.4995  |
| 8  | 0.8889              | 1.3968 | 1.8595 | 2.3060  | 2.8965  | 3.3554  |
| 9  | 0.8834              | 1.3830 | 1.8331 | 2.2622  | 2.8214  | 3.2498  |
| 10 | 0.8791              | 1.3722 | 1.8125 | 2.2281  | 2.7638  | 3.1693  |
| :  | :                   | ·<br>· | :      | :       | :       | :       |

Loi normale (Rappel)

Loi de Student  $\mathcal{T}_n$ 

Distribution Propriétés Table de Student Exemple

Théorème

Loi du  $\chi^2$ 

Soit un échantillon aléatoire de taille n, de moyenne  $\bar{x}$  et de variance  $s^2$ , issu d'une loi normale  $\mathcal{N}(\mu, \sigma^2)$ . Alors

$$\frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} \sim \mathcal{T}_{n-1}$$

Utilité : inférence sur la moyenne d'une population suivant une loi normale de moyenne  $\mu$  et de variance  $\sigma^2$  inconnue.

h e

Loi normale (Rappel)

Loi de Student  $\mathcal{T}_n$ 

Loi du  $v^2$ 

Définition et propriétés Illustration

Loi du  $\chi^2$ 

\_

Loi normale (Rappel)

Loi de Student  $\mathcal{T}_n$ 

Loi du  $\chi^2$ 

Définition et propriétés

Illustration

Soit n variables aléatoires normales centrées-réduites  $Z_i$ , indépendantes les unes des autres et identiquement distribuées :  $Z_i \overset{i.i.d.}{\sim} \mathcal{N}(0,1), \ i=1,2,\ldots,n.$  Alors la variable formée de la somme des carrés de ces variables

$$Q_n = \sum_{i=1}^n Z_i^2 \sim \chi^2$$

suit une loi du  $\chi^2$  à n degrés de liberté, ce que l'on note souvent  $\chi^2(n)$  ou  $\chi^2_n$ .

Remarque : les valeurs sont forcément positives.

Propriétés :

- Son espérance vaut  $E(Q_n) = n$
- Sa variance vaut  $Var(Q_n) = 2n$

ຽງ Illustration

Loi normale (Rappel)

Loi de Student  $\mathcal{T}_n$ 

\_

Loi du  $\chi^2$ Définition et

propriétés Illustration



 $\boldsymbol{\mathsf{L}}$ 

Loi normale (Rappel)

Loi de Student  $\mathcal{T}_n$ 

Loi du 
$$\chi^2$$

Définition et propriétés Illustration

Soit 
$$Q_n \sim \chi_n^2$$
 
$$P(Q_n \leq q_{\alpha,n}) = p \quad \text{ et } \quad P(Q_n > q_{\alpha,n}) = \alpha$$

$$p = 1 - \alpha$$



avec

Loi normale (Rappel)

Loi de Student  $\mathcal{T}_n$ 

Loi du  $\chi^2$ Définition et

propriétés
Illustration

| $P(Q_7 \le q_0)$        | $_{\alpha,7}) = 0.95$  |
|-------------------------|------------------------|
| ${\sf Alors}  \alpha =$ | 1 - 0.95 = 0.05        |
| Et donc                 | $q_{0.05,7} = 14.0671$ |

|    | Valeurs de $\alpha$ |        |        |        |         |         |
|----|---------------------|--------|--------|--------|---------|---------|
|    | 0.99                | 0.975  | 0.95   | 0.9    | 0.1     | 0.05    |
| dl |                     |        |        |        |         |         |
| 1  | 0.0002              | 0.0010 | 0.0039 | 0.0158 | 2.7055  | 3.8415  |
| 2  | 0.0201              | 0.0506 | 0.1026 | 0.2107 | 4.6052  | 5.9915  |
| 3  | 0.1148              | 0.2158 | 0.3518 | 0.5844 | 6.2514  | 7.8147  |
| 4  | 0.2971              | 0.4844 | 0.7107 | 1.0636 | 7.7794  | 9.4877  |
| 5  | 0.5543              | 0.8312 | 1.1455 | 1.6103 | 9.2364  | 11.0705 |
| 6  | 0.8721              | 1.2373 | 1.6354 | 2.2041 | 10.6446 | 12.5916 |
| 7  | 1.2390              | 1.6899 | 2.1673 | 2.8331 | 12.0170 | 14.0671 |
| 8  | 1.6465              | 2.1797 | 2.7326 | 3.4895 | 13.3616 | 15.5073 |
| 9  | 2.0879              | 2.7004 | 3.3251 | 4.1682 | 14.6837 | 16.9190 |
| 10 | 2.5582              | 3.2470 | 3.9403 | 4.8652 | 15.9872 | 18.3070 |
|    | :                   | :      | :      | :      | :       | :       |
|    |                     |        |        |        |         |         |

Loi normale (Rappel)

Loi de Student  $\mathcal{T}_n$ 

Loi du 
$$\chi^2$$

Définition et propriétés Illustration

La statistique  $\chi^2$  à n-1 degrés de liberté vaut

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

 $\begin{array}{ccc} \text{où} & & & \\ \chi^2 & = & \text{variable chi-2 standard} \\ s^2 & = & \text{variance de l'échantillon} \end{array}$ 

 $\sigma^2$  = variance de la population

taille de l'échantillon

Utilité : inférence sur la variance d'une population