

OFFICE OF NAVAL RESEARCH Contract N00014-77-C-0231 Task No. NR 053-640

TECHNICAL REPOT, NO. 12

Electrically Conductive Macromolecules Via
Cofacial Assembly Techniques

Carl R. Kannewurf Tobin J. Marks

(14) TR-12/

Prepared for Publication

in
Polymer Preprints 12 12

Northwestern University Department of Chemistry Evanston, Illinois 60201

July 17, 1980

SELECTE AUG 6 1980

D

(11)17 Jul 98 /

Reproduction in whole or in part is permitted for any purpose of the United States Government

(15) NOOØ14-77-C-0237

*This document has been approved for public release and sale; its distribution is unlimited

*This statement should also appear in Item 10 of Document Control Data - DD Form 1473. Copies of form available from cognizant contract administrator.

DR FILE COPY

80 8 4 151 All

260805

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
, ,	3. RECIPIENT'S CATALOG NUMBER
Technical Report No. 12 $Ah-A087$	K54
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
Electrically Conductive Macromolecules Via	Interim, 1980
Cofacial Assembly Techniques	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(+)
Carl W. Dirk, Joseph W. Lyding, Karl F.	NO0014-77-C-0231
Schoch, Jr., Carl R. Kannewurf, and Tobin J.	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Northwestern University	AREA & WORK ON!! NUMBERS
Chemistry Department	NR-053-640
Evanston, Illinois 60201	12. REPORT DATE
CONTROLLING OFFICE NAME AND ADDRESS	July 17, 1980
	13. NUMBER OF PAGES 6
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	154. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	<u> </u>
Approved for public release; distribution unlin	micea
	•
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different fro	m Report)
,	
18. SUPPLEMENTARY NOTES	
	ì
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
Phthalocyanine Conductive polymen	
Conductive polymer Face-to-face polymer	
race-to-race polymer	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	

The properties of low-dimensional mixed valence material consisting of molecular stacks are critically dependent on the rather capricious and unpredictable intermolecular forces that dictate whether stacks form, whether the stacks are segregated, the orientation of donor with respect to acceptor, the relative orientation of units within a stack, and the stacking repeat distance Discussed in this lecture are rational approaches to overcome such problems

€ COM

LCHHITY CLASSIFICATION OF THIS PAGE(When Date Entered)

by combining polymer chemistry with recently developed methodology for synthesizing stacked, partially exidized metallomacrocycles and for measuring the degree of incomplete charge transfer. New results on the chemical, structural, and electronic properties of highly conductive macromolecules prepared by covalently linking metallomacrocycles in a rigid, face-to-face configuration as shown below, followed by doping, are presented We examine in detail the response of the solid state properties to systematic variation of M, X, and dopant.

$$M$$
 X M X M

Acces	ion for	
NTIS DDC TA	VB	A
	ication	,
Ву		
Distri	bution/	,
Avail	ability	Codes
Dist.	Avail an speci	•

ELECTRICALLY CONDUCTIVE MACROMOLECULES VIA COFACIAL ASSEMBLY TECHNIQUES

Carl W. Dirk, Joseph W. Lyding, Karl F. Schoch, Jr., Carl R. Kannewurf, and Tobin J. Marks,

Department of Chemistry, Department of Electrical Engineering and Computer Science, and the Materials Research Center Northwestern University Evanston, Illinois 60201

INTRODUCTION

There is currently great interest among chemists and physicists in the design and properties of synthetic molecular materials with the characteristics of metals (1). Recognized prerequisites for high electrical conductivity in organic and metal-organic solids include certain essential spacial and electronic relationships between component molecules. In particular, at least one set of the molecular constituents must be arrayed in close proximity and in crystallographically similar environments. In addition, this species must be in a formal fractional oxidation state, commonly referred to as "mixed valence," "incomplete" charge transfer," or "partial oxidation." The combination of these features provides both a structural pathway for charge conduction and an electronic environment that reduces bandwidth, band-filling, and coulombic impediments to carrier mobility. A successful, first-generation synthetic strategy for the construction of such mixed valent lattices has involved the cocrystallization of planar, conjugated metallomacrocyclic donor molecules with halogen electron acceptors (2). In optimum cases, the result has been crystal structures composed of segregated, partially oxidized donor stacks and off-axis arrays of halide or polyhalide counterions. Furthermore, the degree of partial oxidation can be readily determined from the stoichiometry and resonance Raman/iodine Mössbauer characterization of the form(s) of the halogen present (2,3).

Although straightforward and sometimes successful, the cocrystallization strategy provides minimal flexibility in terms of acceptor selection and offers little control over stacking architecture. Both donor-donor and donor-acceptor interactions are completely at the mercy of largely unpredictable and uncontrollable intermolecular forces. We recently reported a new, successful approach to control of molecular stacking and lattice architecture in low-dimensional mixed valence materials (4). It involves the assembly of well-characterized metallomacrocyclic subunits into cofacial arrays, followed by partial oxidation using techniques we have previously developed (2,3). The general approach is schematized below. Such structures offer the excit-

Department of Chemistry

^{*}Department of Electrical Engineering and Computer Science *Camille and Henry Dreyfus Teacher-Scholar

ing possibility of assembling a wide variety of new conductive polymers with stringent control over primary and secondary structure as well as over performance and processing characteristics. Furthermore, such macromolecules offer a unique opportunity to experiment with bandwidth, acceptor identity, cohesive forces, and lattice dynamics in a low-dimensional material. In this contribution we elaborate upon our intial results involving Group IV phthalocyanines (Pc) (M = Si, Ge, Sn; X = O; A = I) and begin to examine the aforementioned parameters by introducing a variety of new dopants (A) and bridging functionalities (X).

EXPERIMENTAL

The precursor compounds $M(Pc)Cl_2$, $M \approx Si$, Ge, Sn, were prepared as described elsewhere (4). These were converted into the corresponding $[M(Pc)O]_n$ polymers by hydrolysis and then dehydration at 400° C/ 10^{-3} mm (4,5). The $[M(Pc)ORO]_n$ polymers were prepared by reaction of the MPcCl₂ compounds with HOROH diols in pyridine (6). Doping was carried out by reacting the powdered polymers with solutions of the appropriate dopant (4,7). Potassium was introduced by heating the polymer with potassium metal in a sealed, evacuated Pyrex tube. This material was handled under inert atmosphere at all times. Stoichiometries of the doped polymers were established by elemental analysis.

Electrical conductivity measurements were performed on compressed polycrystalline samples using four-probe ac or dc van der Pauw techniques. Data were acquired with a computer-controlled transport analysis system (8). X-ray powder diffraction studies were carried out with a Picker 6147 diffractometer using CrK_{α} radiation. Resonance Raman spectra were acquired on spinning solid samples using $Ar^+(5145\text{\AA})$ excitation. Magnetic susceptibility studies were carried out with a Faraday balance.

RESULTS AND DISCUSSION

Condensation of dihydroxy silicon, germanium, and tin phthalocyanines yields polymers in which the phthalocyanine macrocycles are rigidly held in a face-to-face orientation (eq.(1)). Doping with iodine produces, as indi-

$$nM(Pc)(OH)_2 \xrightarrow{} [M(Pc)O]_n + nH_2O$$
 (1)

cated by resonance Raman spectroscopy (Figure 1), materials of formal stoichiometry $\{M(Pc)^{TX} \ 0\}(I_3)_X\}_n$ for $x \lesssim 1$. Oxidation is accompanied by large increases in electrical conductivity (Table I) with the general trend for the doped materials being $\sigma_{S1} \gtrsim \sigma_{Ge} >> \sigma_{Sn}$, i.e., correlating inversely with Pc-Pc

TABLE I. ELECTRICAL CONDUCTIVITY DATA FOR POLYCRYSTALLINE SAMPLES OF HALOGEN-DOPED [M(Pc)O] MATERIALS.

Compound	$\sigma(\Omega^{-1} cm^{-1})300^{\circ} K$	Activation Energy (eV)	Interplanar <u>Spacing(Å)</u>
[Si(Pc)0] _n	3 x 10 ⁻⁸		3.33(2)
{[Si(Pc)0]I _{0.50} } n	2×10^{-2}		
[[S1(Pc)0]] _{1,5} } n [[S1(Pc)0]] _{4,6} } n	1.4	0.04 ± 0.001	3.33(2)
{[S1(Pc)0] I 🚜 👸 🖷	1×10^{-2}		
{[S1(Pc)0]Bruo} n	6×10^{-2}		
[Ge(Pc)0]	<10 ⁻⁸		3.51(2)
{[Ge(Pc)0]I ₁₈₀ }	3×10^{-2}	0.08±0.006	3.51(2)
{[Ge(Pc)0] I 1.00} ,	5×10^{-2}	0.06±0.003	
([Ge(Pc)0] I မ ကို n {[Ge(Pc)0] I မ ရှိ n	6×10^{-2}	0.05±0.007	
[[Ge(Pc)0]I20]n	1×10^{-1}		
[Sn(Pc)0]_	<10 ⁻⁸		3.95(2)
$ \begin{bmatrix} Sn(Pc)0 \end{bmatrix}_{n} \\ \{ [Sn(Pc)0] I_{1,2} \}_{n} $	1 × 10 ⁻⁶		3.95(2)
{[Sn(Pc)0]Iss} n	2×10^{-4}	0.68±0.01	

interplanar spacings determined from X-ray powder diffraction and structures of model compounds (9). The temperature dependence of the conductivity (Figure 2) can be fit approximately to a thermally activated model (eq.(2))

$$\sigma = \sigma_0 e^{-\Delta/kT} \tag{2}$$

with the activation energies (Table I) following the general trend $\Delta_{S_i} < \Delta_{G_e} < < \Delta_{S_n}$. The conductivity parameters for the $\left\{ [S_i(P_c)_0]_{I_x} \right\}_n$ polymers are comparable to those for pressed pellets of the "molecular metal" Ni(Pc)I (10), suggesting that the partially oxidized siloxane and possibly germyloxane polymers are also "metal-like" in the chain direction. Further support for this contention is derived from static susceptibility measurements on the doped polymers, which reveal weak, nearly temperature independent paramagnetism.

The cofacially connected macromolecules provide an informative environment for testing the characterisits of various dopants, since the uncertainty as to whether or not stacking occurs has been virtually eliminated. Oxidizing quinones form conductive solids with a variety of organic donors, but curiously not with metallophthalocyanines (11). Since there is reason to believe that the latter donors form integrated stack structures (DADADA) with these large, planar acceptors, doping experiments were carried out with the locked-stack cofacial polymers; the result is a broad new class of conductive macromolecules (Table II, Figures 3 and 4). The preliminary conductivity

TABLE II. ELECTRICAL CONDUCTIVITY DATA FOR POLYCRYSTALLINE SAMPLES OF COFACIAL POLYMERS WITH VARIOUS DOPANTS

Dopant	Empirical Formula	σ (Ω^{-1} cm $^{-1}$)300°K	Activation Energy (eV)
undoped	[Si(Pc)0] _n	3×10^{-8}	
I	{[Si(Pc)0]I _{1.55} } _n	1.4	$0.04 \pm .001$
Br	{[Si(Pc)0]Br _{1.00} } n	6×10^{-2}	
K	{[Si(Pc)0]K _{b0} }	2×10^{-5}	
F1r	([Si(Pc)0]Flo23) n	7.2×10^{-4}	$0.13 \pm .001$
Ch1	{[Si(Pc)0]Ch1037} n	6.9×10^{-4}	$0.13 \pm .002$
Brl	{Si(Pc)0]Brlos 3 n	5.8×10^{-4}	$0.15 \pm .001$
DDQ	{[Si(Pc)0]DDQ _{0,40} } n	2.1×10^{-2}	$0.08 \pm .001$
DHB	([Si(Pc)0]DHB _{0.13} }	3.8×10^{-5}	$0.19 \pm .005$
CIA	([S1(Pc)0]ClA _{0.1}),	1.8×10^{-3}	$0.14 \pm .001$

Fir = fluoranil; CH1 = choranil; Brl = bromanil; DDQ = dichlorodicyanoquinone; CIA = chloranilic acid.

data roughly parallel the oxidizing strengths of the organic acceptors. In principle, doping with electron donors could also lead to high conductivity, and although alkali metal doping of metallophthalocyanines yields insulators (11), the first result with $[Si(Pc)0]_n$ and potassium indicates a significant increase in conductivity upon doping (Table II).

In an effort to modify the stacking architecture and bandwidth, polymers were prepared with organic bridging groups (eq. (3)). These functionalities

$$nsi(Pe)Cl_2 + n/2 \text{ HOROH} \longrightarrow [Si(Pe)ORO]_n + 2nHCl$$
 (3)
 $R = -CH_2CH_2 - , p_{-C_6H_4}, -(CH_2)_{10} - , -CH_2C(CH_3)_2CH_2 -$

increase the interplanar spacing while still maintaining a continuous molecular array. In all cases the polymers can be doped with iodine, and Raman

spectroscopy indicates that oxidation occurs (Figure 1). In most cases, I₅ is the predominant polyiodide present. As can be seen in Table III, the electrical conductivity roughly parallels the inverse of the interplanar

TABLE III. ELECTRICAL CONDUCTIVITY DATA FOR POLYCRYSTALLINE SAMPLES OF COFACIAL POLYMERS WITH VARIOUS BRIDGING GROUPS

Compound	Bridging Group	$\sigma(\Omega^{-1} \text{ cm}^{-1})300^{\circ}\text{K}$
{[S1(Pc)0]I _{1.55} }	-0-	1.4
{[S1(Pc)OCH2CH2O]IL48}	-OCH 2 CH 2 O-	1.5 x 10 ⁻³
{[Si(Pc)OCH2C(CH3)2CH2O]I4,14},	-OCH ₂ C(CH ₃) ₂ CH ₂ O-	2.7×10^{-6}
{[Si(Pc)O(p-C,H4)O]Ios}	-0-(0)-0-	1.0×10^{-9}
{[Si(Pc)O(CH ₂) ₁₀ O]I _{3,3} } _n	-0(CH ₂) ₁₀ 0-	1.7×10^{-10}

spacing. The temperature dependence of the charge transport for the -OCH₂CH₂O- bridged material is illustrated in Figure 2.

These preliminary results and recent data on isoelectronic $\{[M(Pc)F]I_{\chi}\}_{n}$ Group IIIA analogues (12) underscore the potential of the cofacially assembled metallomacrocycle polymers for delving into the factors which stabilize and accentuate the molecular metallic state. They also suggest ways to tailor new materials for optimum performance and processing characteristics.

ACKNOWLEDGMENTS

This work was generously supported by the Office of Naval Research and by the NSF-MRL program through the Materials Research Center of Northwestern University (grant DMR76-80847).

REFERENCES

- 1. a. J.T. Devreese, R.P. Evrard, V.E. van Doren, eds., 'Highly Conducting One-Dimensional Solids," Plenum Press, New York, 1979.
 - b. J.S. Miller and A.J. Epstein, eds., "Synthesis and Properties of Low-Dimensional Materials," Ann. N.Y. Acad. Sci., 313, (1978).
 - c. J.B. Torrance, Accts. Chem. Res., 12, 79, (1979).
 - d. H.J. Keller, ed. "Chemistry and Physics of One-Dimensional Metals," Plenum Press, New York, 1979.
- 2. T.J. Marks, in reference 1b, p. 594.
- 3. a. T.J. Marks and D.W. Kalina in "Extended Linear Chain Compounds," J.S. Miller, ed., in press.
 - b. R.C. Teitelbaum, S.L. Ruby, and T.J. Marks, J. Amer. Chem. Soc., <u>101</u>, 7568 (1979).
 - c. D.W. Kalina, M.S. McClure, C.R. Kannewurf, and T.J. Marks, J. Amer. Chem. Soc., in press.
- 4. a. K.F. Schoch, Jr., T.J. Marks, B.R. Kundalkar, L.S. Lin, and R.C. Teitelbaum, Bull. Amer. Phys. Soc., 24, 326 (1979).
 - b. K.F. Schoch, Jr., B.R. Kundalkar, and T.J. Marks, J. Amer. Chem. Soc., 101, 7071 (1979).
 - c. T.J. Marks, K.F. Schoch, Jr., and B.R. Kundalkar, Synthetic Metals, in press.
 - d. C.W. Dirk, K.F. Schoch, Jr., T.J. Marks, manuscript in preparation.
- 5. a. R.D. Joyner and M.E. Kenney, Inorg. Chem., 82, 5790 (1960).
 - b. J.B. Davison and K.J. Wynne, Macromolecules, 11, 186 (1978).
- a. C.W. Dirk and T.J. Marks, Bull. Amer. Phys. Soc., <u>25</u>, 315 (1980).
 b. G. Meyer and D. Wöhrle, Makromol. Chem., <u>175</u>, 714 (1974).
- 7. K.F. Schoch, Jr. and T.J. Marks, Bull. Amer. Phys. Soc., 25, 315 (1980).

- 8. J.W. Lyding and C.R. Kannewurf, manuscript in preparation.
- 9. a. D.R. Swift, Ph.D. Thesis, Case Western Reserve University, 1970. b. C. Glidewell and D.C. Liles, J. Organometal. Chem., 174, 275 (1979).
- 10. a. C.S. Schramm, D.R. Stojakovic, B.M. Hoffman, and T.J. Marks, Science, 200, 47 (1978).
 - b. J.L. Petersen, C.S. Schramm, D.R. Stojakovic, B.M. Hoffman and T.J. Marks, J. Amer. Chem. Soc., 99, 286 (1977).
 - c. C.S. Schramm, R.P. Scaringe, D.R. Stojakovic, B.M. Hoffman, J.A. Ibers, and T.J. Marks, submitted for publication.
- 11. K.F. Schoch, Jr., D.R. Stojakovic, and T.J. Marks, unpublished results.
- 12. P.M. Kuznesof, K.J. Wynne, R.S. Nohr, and M.E. Kenney, J.C.S. Chem. Comm. 121 (1980).

IODINE RESONANCE RAMAN SPECTRA

Figure 1. Resonance Raman spectra (V_=5145) of iodine doped polymers.

Figure 2. Variable temperature conductivity data for iodine doped polymers.

Figure 3. Variable temperature conductivity data for quinone doped polymers. Abbreviations are explained in Table II.

Figure 4. Variable temperature conductivity data for quinone doped polymers. Abbreviations are explained in Table II.

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	No. Copies		No. Copie
Office of Naval Research		U.S. Army Research Office	
Attn: Code 472		Attm: CRD-AA-IP	
800 North Quincy Street		P.O. Box 1211	
Arlington, Virginia 22217	2	Research Triangle Park, N.C. 27709	1
ONR Branch Office		Naval Ocean Systems Center	
Attn: Dr. George Sandoz		Attn: Mr. Joe McCartney	
536 S. Clark Street		San Diego, California 92152	1
Chicago, Illinois 60605	1		
		Naval Weapons Center	
ONR Branch Office		Attn: Dr. A. B. Amster,	
Attn: Scientific Dept.		Chemistry Division	
715 Broadway		China Lake, California 93555	1
New York, New York 10003	1		
		Naval Civil Engineering Laboratory	•
ONR Branch Office		Attn: Dr. R. W. Drisko	
1030 East Green Street	_	Port Hueneme, California 93401	1
Pasadena, California 91106	1		
		Department of Physics & Chemistry	
ONR Branch Office		Naval Postgraduate School	
Attn: Dr. L. H. Peebles		Monterey, California 93940	1
Building 114, Section D		A	
666 Summer Street	•	Dr. A. L. Slafkosky	
Boston, Massachusetts 02210	1	Scientific Advisor	
. Manager Manager Manager Colores		Commandant of the Marine Corps	
Director, Naval Research Laboratory		(Code RD-1)	•
Attn: Code 6100	•	Washington, D.C. 20380	1
Washington, D.C. 20390	1	Office of Naval Research	
The Academan Comments		Attn: Dr. Richard S. Miller	
The Assistant Secretary		800 N. Quincy Street	
of the Navy (R,ESS) Department of the Navy		Arlington, Virginia 22217	1
Room 4E736, Pentagon		meanguru, vargause acti	•
Washington, D.C. 20350	1	Naval Ship Research and Development	
meaning tou, bros. 2000	•	Center	
Commander, Naval Air Systems Command		Attn: Dr. G. Bosmajian, Applied	
Attn: Code 310C (H. Rosenwasser)		Chemistry Division	
Department of the Navy		Annapolis, Maryland 21401	ı
Washington, D.C. 20360	1	•	
		Naval Ocean Systems Center	
Defense Documentation Center		Attn: Dr. S. Yamamoto, Marine	
Building 5, Cameron Station		Sciences Division	
Alexandria, Virginia 22314	12	San Diego, California 91232	1
Dr. Fred Saalfeld		Mr. John Boyla	
Chemistry Division		Materials Branch	
Maval Research Laboratory	_	Naval Ship Engineering Center	_
Washington, D.C. 20375	ı	Philadelphia, Pennsylvania 19112	1

TECHNICAL REPORT DISTRIBUTION LIST, GEN

No. Copies

Dr. Rudolph J. Marcus
Office of Naval Research
Sciencific Liaison Group
American Embassy
APO San Francisco 96503

Mr. James Kelley
DTNSRDC Code 2803
Annapolis, Maryland 21402

TECHNICAL REPORT DISTRIBUTION LIST, 053

	No. Copies		No. Copies
Dr. R. N. Grimes University of Virginia		Dr. M. H. Chisholm Department of Chemistry	
Department of Chemistry Charlottesville, Virginia 22901	1	Indiana University Bloomington, Indiana 47401	1
Dr. M. Tsutsui		Dr. B. Foxman	·
Texas A&M University		Brandeis University	
Department of Chemistry College Station, Texas 77843	1	Department of Chemistry	•
Total orderen, read //043	•	Waltham, Massachusetts 02154	1
Dr. M. F. Hawthorne		Dr. T. Marks	
University of California		Northwestern University	
Department of Chemistry Los Angeles, California 90024	1	Department of Chemistry	
nos unberga, certifofure 10054	•	Evanstop, Illinois 60201	1
Dr. D. B. Brown		D= C Coeffee	
University of Vermont		Dr. G. Geoffrey Pennsylvania State University	
Department of Chemistry Burlington, Vermont 05401	1.	Department of Chemistry	
Sollington, Fermont 03-01	•	University Park, Pennsylvania 16802	1
Dr. W. B. Fox	•		
Naval Research Laboratory		Dr. J. Zuckerman	
Chemistry Division Code 6130		University of Oklahoma	
Washington, D.C. 20375	1	Department of Chemistry Norman, Oklahoma 73019	1
	_		-
Dr. J. Adcock		Professor O. T. Beachley	
University of Tennessee		Department of Chemistry	
Department of Chemistry Knoxville, Tennessee 37916	1	State University of New York	
	-	Buffalo, New York 14214	1
Dr. A. Cowley		Professor P. S. Skell	
University of Texas		Department of Chemistry	
Department of Chemistry Austin, Texas 78712	1	The Pennsylvania State University	
	•	University Fark, Pennsylvania 16802	1
Dr. W. Hatfield		Professor K. M. Nicholas	
University of North Carolina		Department of Chemistry	
Department of Chemistry Chapel Hill, North Carolina 27514	1	Boston College	
Chapel Hill, Horth Carolina 2/314	•	Chestnut Hill, Massachusetts 02167	1
Dr. D. Seyferth		Backson B. W. J.L.	
Massachusetts Institute of		Professor R. Neilson Department of Chemistry	
Technology		Texas Christian University	
Department of Chemistry	1	Fort Worth, Texas 76129	1
Cambridge, Massachusetts 02139	1		
Professor H. Abrahamson		Professor M. Newcomb	
University of Oklahoma		Texas A&M University	
Department of Chemistry		Department of Chemistry College Station, Texas 77843	1
Norman, Oklahoma 73019	1		•