

Review: Gaussian Filter

Review: Derivative of Gaussian

Review: Derivative of Gaussian

Review: 2nd Derivative of Gaussian

1D Blobs

1D Blob and 2nd Derivative of Gaussian

1D Blob and 2nd Derivative of Gaussian

Increasing the sigma

1D Blob Detection Summary

Given: 1D signal f(x)

Compute: $\sigma^2 \frac{\partial^2 n_{\sigma}}{\partial x^2} * f(x)$ at many scales $(\sigma_0, \sigma_1, \sigma_2, ..., \sigma_k)$.

Find:
$$(x^*, \sigma^*) = \underset{(x,\sigma)}{\operatorname{arg max}} \left| \sigma^2 \frac{\partial^2 n_{\sigma}}{\partial x^2} * f(x) \right|$$

x*: Blob Position

 σ^* : Characteristic Scale (Blob Size)

2D Blob Detector

Normalized Laplacian of Gaussian (NLoG) is used as the 2D equivalent for Blob Detection.

Location of Blobs given by Local Extrema after applying Normalized Laplacian of Gaussian at many scales.

Scale-Space

Increasing σ , Higher Scale, Lower Resolution

Scale Space: Stack created by filtering an image with Gaussians of different sigma (σ)

$$S(x,y,\sigma) = n(x,y,\sigma) * I(x,y)$$

Blob Detection using Local Extrema

Blob Detection using Local Extrema

2D Blob Detection Summary

Given an image I(x, y)

Convolve the image using NLoG at many scales σ

Find:

$$(x^*, y^*, \sigma^*) = \underset{(x,y,\sigma)}{\operatorname{arg max}} |\sigma^2 \nabla^2 n_\sigma * I(x,y)|$$

 (x^*, y^*) : Position of the blob σ^* : Size of the blob