Intrinsic Plasticity and Batch Normalisation

Nolan Peter Shaw

2019-03-15

Section I: Intrinsic Plasticity

Computational Neuroscience

Agenda

- Introduce Intrinsic Plasticity (IP)
- Discuss the biological and computational benefits of IP
- Introduce batch normalisation (BN)
- Outline BN implementation
- Demonstrate the relation between IP and BN

Synaptic vs Intrinsic Plasticity in the Brain

Synaptic vs Intrinsic Plasticity in the Brain

Synaptic vs Intrinsic Plasticity in the Brain

Intrinsic Plasticity

Biological Benefits

- Human brain consumes calories
- Cost of a 0/1 in an ANN is identical

Triesch, Jochen. (2005). A Gradient Rule for the Plasticity of a Neuron's Intrinsic Excitability. Artificial Neural Networks: Biological Inspirations ICANN 2005.

Computational Benefits

Bell AJ, Sejnowski TJ (November 1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation

Implementation in ANNs

Biology • Sensitivity • Gain (Horizontal stretch) • Threshold • Bias (Horizontal translation)

Computational Benefits

Synaptic Plasticity

- Learn weights w.r.t. an error signal
- Minimise loss on some task

Intrinsic Plasticity

- Learn gains and biases w.r.t. local statistics
- Maximise information potential

Implementation in ANNs

Original Activation Function

Becomes

$$y = \theta(x)$$
 \longrightarrow $y = \theta(\alpha * x + k)$

Implementation in ANNs

Original Activation Function

Becomes

$$y = \theta(x)$$
 \longrightarrow $y = \theta(\alpha * x + k)$

Super simple (YAY!)

Issues

- Unstable
- ullet $\mathbf{E}[oldsymbol{u}oldsymbol{y}]$ may be ill-suited for adjusting the sensitivity/gain
- May homogenise inputs too much
- Competes with error-based learning of synaptic weights

Implementation in ANNs

Update rules

Gain: Bias:

$$\Delta \alpha = \frac{1}{\alpha} - 2 * \mathbf{E}[\mathbf{x}\mathbf{y}] \qquad \Delta k = -2 * \mathbf{E}[\mathbf{y}]$$

 Note that these update rules are still being studied and that there may be update rules that are better suited to learning

Section II: Batch Normalisation

Machine Learning

The Problem

- The "shape" of inputs to a layer may be radically different from one input to the next
- This slows down learning as hidden layers are required to learn representations and distributions as well as perform computation

Visualising Batch Normalisation

Image courtesy of: https://zaffnet.github.io/batch-normalization

The Problem

- The "shape" of inputs to a layer may be radically different from one input to the next
- This slows down learning as hidden layers are required to learn representations and distributions as well as perform computation

The Solution

- Normalise all inputs w.r.t. their distribution
 - (infeasible to do for an entire dataset so treat each batch as a sample of the population)
- De-normalise w.r.t. error
 - (prevents homogeneity and preserves computational properties of neurons)

Implementing Batch Normalisation

$$\begin{array}{ll} \text{Input: Values of } x \text{ over a mini-batch: } \mathcal{B} = \{x_{1...m}\}; \\ \text{Parameters to be learned: } \gamma, \beta \\ \text{Output: } \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\} \\ \\ \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \\ \\ \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \\ \\ \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \\ \\ y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \\ \end{array} \right. // \text{ scale and shift}$$

Step-by-step Walkthrough

Step-by-step Walkthrough

Step-by-step Walkthrough

Step-by-step Walkthrough

Section III: Unifying IP and BN

(or: How I Stopped Caring About Big Data and Learned to Love the Brain)

Equivalence of the two models

Intrinsic Plasticity:

$$y = \theta(\gamma * (\alpha * x + k) + \beta)$$

Equivalence of the two models

Intrinsic Plasticity:

$$y = \theta(\alpha * x + k)$$

Equivalence of the two models

Intrinsic Plasticity:

$$y = \theta(\gamma * (\alpha * x + k) + \beta)$$

Batch Normalisation:

$$y = \theta(\gamma * \left(\frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}}\right) + \beta)$$

Equivalence of the two models

Intrinsic Plasticity:

$$y = \theta(\gamma * (\alpha * x + k) + \beta)$$

Batch Normalisation:

$$y = \theta(\gamma * \left(\frac{1}{\sqrt{\sigma^2 + \epsilon}} * x + \frac{-\mu}{\sqrt{\sigma^2 + \epsilon}}\right) + \beta)$$

Equivalence of the two models

Intrinsic Plasticity:

$$y = \theta(\gamma * (\alpha * x + k) + \beta)$$

Batch Normalisation:

$$y = \theta(\gamma * \left(\frac{1}{\sqrt{\sigma^2 + \epsilon}} * x + \frac{-\mu}{\sqrt{\sigma^2 + \epsilon}}\right) + \beta)$$

Relation to the Vanishing Gradient Problem

Thank you!