Runxuan (Jerry) Wang

+1 (217) 991 2027 runxuan@seas.upenn.edu Website Linkedin Github

EDUCATION

University of Pennsylvania

Master of Science in Engineering, Robotics

University of Illinois Urbana Champaign

Bachelor of Science in Computer Engineering

Philadelphia, Pennsylvania

May 2026

Urbana, Illinois

May 2024

TECHNICAL SKILLS

Programming: Python, C, C++, MATLAB, x86 Assembly, SystemVerilog

Libraries and Tools: PyTorch, Robot Operating System (ROS), NVIDIA Isaac Lab/Sim, OpenCV, KiCAD, RTOS, Git, GDB, OpenCCD

Other Skills: Computer Aided Design (CAD), 3D Printing, PCB Design, FPGA Design

PUBLICATIONS

Gotta Scoop 'Em All: Sim-and-Real Co-Training of Graph-based Neural Dynamics for Long-Horizon Scooping Kaiwen Hong, Haonan Chen*, <u>Runxuan Wang</u>*, Kaylan Wang*, Mingtong Zhang, Shuijing Liu, Yunzhu Li, and Katherine Driggs-Campbell Under Review

DRAGON: A Dialogue-Based Robot for Assistive Navigation with Visual Language Grounding

Shuijing Liu, Aamir Hasan, Kaiwen Hong, <u>Runxuan Wang</u>, Peixin Chang, Zachery Mizrachi, Justin Lin, D. Livingston McPherson, Wendy A. Rogers, and Katherine Driggs-Campbell

IEEE Robotics and Automation Letters (RA-L), 2024

Website Paper Videos Code

EXPERIENCES

Amazon Robotics, Innovation Lab

Applied Scientist Intern, advised by Prof. Taskin Padir

Worcester, Massachusetts

July 2025 - Present

- Developing a modular reinforcement learning framework for **sequential multi-object grasping** with a dexterous robotic hand, emphasizing **policy generalization** and **sim-to-real transfer**.
- Designed a curriculum-based reinforcement learning pipeline in *NVIDIA Isaac Lab*, leveraging **staged environment progression** and **teacher-student policy distillation** to accelerate convergence, enhance grasp stability across diverse object geometries, and verified policy transfer in *NVIDIA Isaac Sim* under domain-randomized physical conditions.
- Built a **mixed-reality teleoperation system** using *Apple Vision Pro*, integrating a *UR10e arm* and *16-DOF robotic hand* with real-time **optimization-based motion retargeting** from human to robot hand, enabling rapid collection of high-quality demonstration data.

Janus Intelligent Robots Lab (JIRL)

Research Assistant, advised by Prof. Antonio Loquercio

University of Pennsylvania

August 2024 - June 2025

- Developed a **zero-shot**, **long-horizon multi-target semantic navigation system** in Habitat Sim to address the *DARPA TIAMAT Challenge* task of locating required objects from high-level language prompts in minimal time.
- Designed a hierarchical navigation strategy that adaptively selects the next target based on **3D memory**, scene observations, and semantic priors, enabling efficient sequential object search and task completion.
- Integrated *BLIP-2* for **2D** semantic value mapping, combined *YOLO* and *GroundingDINO* for multi-object detection and grounding, and utilized *MobileSAM* for segmentation-based **3D** reconstruction.
- Built a **3D** spatial memory module to dynamically store, query, and update segmented point clouds, enhancing spatial reasoning and long-horizon consistency across navigation episodes.

Robotic Perception, Interaction, and Learning Lab (RoboPIL)

University of Illinois Urbana Champaign

Undergraduate Research Assistant, advised by Prof. Yunzhu Li

June 2023 - July 2024

- Developed a **sim-to-real framework** on a Kinova Gen3 robotic arm for **long-horizon granular object manipulation**, leveraging a **Graph Neural Network (GNN)-based dynamics model** trained in simulation and adapted to real-world scenarios.
- Designed **parameterized behavior primitives** for efficient granular object manipulation, forming a skill library that enables a **Monte Carlo Tree Search (MCTS)**-based planner to empty filled containers completely.
- Developed a **perception pipeline** that processes RGB-D data from four *OAK-D Pro Cameras*, using **colored-ICP** to accurately align pre-scanned container meshes with real-world point clouds.
- Performed **approximate convex decomposition** on container and tool meshes to enhance physical environment accuracy in Issac Gym, minimizing the sim-to-real gap between simulated and real-world data.
- Designed and implemented both hardware and software components for a **16-DOF robotic hand teleoperation system**, optimizing data collection for dexterous manipulation tasks.

Human-Centered Autonomy Lab (HCA Lab)

University of Illinois Urbana Champaign

Undergraduate Research Assistant, advised by Prof. Katie Driggs-Campbell

May 2022 - May 2023

• Developed a **dialogue-based wayfinding robot** for assisting visually impaired users in navigating complex indoor environments using **open-vocabulary** voice commands, with **real-time** performance on an *NVIDIA Jetson Nano*.

- Fine-tuned a **Contrastive Language-Image Pre-training (CLIP)** model with a custom dataset to interpret **free-form commands** and overcome camera limitations such as low mounting angles, achieving **100% success** in **landmark recognition** during real-world trials.
- Conducted extensive user studies, demonstrating a 32% improvement in overall user experience compared to baseline navigation
 methods. Participants consistently reported enhanced system responsiveness, accurate intent recognition, and more intuitive
 dialogue-based interaction.
- Implemented a **body pose-estimation system** using a D435i depth camera based on the *TensorFlow BodyPix* model, enabling accurate motion tracking.

Illini RoboMaster Robotics Team

Urbana, Illinois

Embedded Systems Team Lead Code

Aug 2021 - Aug 2023

- Developed a leader–follower teleoperation framework for a custom-built **6-DOF robotic arm** with **gravity compensation**, implemented on an **STM32F4** microcontroller running **FreeRTOS**, enabling precise and intuitive end-effector control.
- Developed and maintained reliable motor driver firmware utilizing CAN and RS485 protocols via the STM32 HAL library, ensuring robust control of the robot's chassis and gimbal systems.
- Designed and deployed gimbal stabilization algorithms across multiple robotic platforms using feedforward PD control, enhancing
 motion smoothness and orientation accuracy.
- Mentored new team members on hands-on projects, facilitating their learning in communication protocols, feedback control algorithms, STM32 development, and git version control, fostering a collaborative and knowledge-rich team environment.
- Played a pivotal role in securing the 2nd place in the 2022 RoboMaster ICRA Challenge, and 3rd and 2nd place in the 2022 and 2023 RoboMaster University League Northern America rounds respectively.

PROJECTS

Reinforcement Learning-based High-Speed Drone Racing Code

Python, PyTorch, NVIDIA Isaac Sim

- Developed a **high-speed drone racing framework** in *OmniDrones* and *NVIDIA Isaac Sim*, implementing a **PPO-based reinforcement learning policy** capable of agile trajectory tracking, rapid gate traversal, and precise attitude control under high-speed dynamics.
- Designed multi-objective reward functions that jointly optimize speed, flight stability, and gate traversal accuracy, enabling stable end-to-end policy learning and consistent recovery from off-course or unstable flight conditions.
- Achieved a **40.7% success rate** and an average velocity of **7.94 m/s** on a 127 m racetrack, demonstrating strong **policy generalization** and robustness across **procedurally generated track layouts** and variable aerodynamic conditions.

Autonomous "Sentry" Robot for RoboMaster Competition Code

ROS, Python, C++

- Developed the complete software stack for an **autonomous omnidirectional robot**, integrating **ROS** on an NVIDIA Orin Nano board and **FreeRTOS** on an STM32F4 board. Enabled smooth navigation across diverse environments, including slopes and dynamic obstacles.
- Implemented a robust navigation system based on FAST-LIO SLAM, utilizing a MID360 3D LiDAR for precise mapping and localization.
- Utilized the PCL library to process raw point clouds by estimating surface normals and applying filters based on gradient, height, and
 proximity to the robot to enhance path planning.
- Engineered the embedded software for the robot, enabling low-latency communication between the **Jetson Orin** and **STM32** board via a **custom UART protocol**.

Wheeled-Legged Balancing Robot - Senior Design "Best Overall Project" Code C, C++, MATLAB, KiCAD

- Led the development of a versatile wheeled-legged balancing robot, capable of balancing, load-carrying, and jumping.
- · Designed a custom development board based on the STM32F103 MCU, with support for CAN, SPI, and UART communication.
- Developed low-level drivers for device communication based on STM32 HAL, with task management implemented via FreeRTOS.
- Integrated a Mahony filter to fuse accelerometer and gyroscope data for precise attitude and orientation estimation from the IMU.

'MentOS' Multi-terminal Linux-like Operating System

C, x86 assembly

- Developed a multi-terminal operating system from scratch, supporting up to 6 terminals with independent processes.
- Expanded the functionality of the system by integrating support for 10 essential system calls including **execute**, **halt**, **open**, **close**, **read** and write.
- Engineered virtual memory management through assignment of page tables and directories.
- Implemented a robust file system supporting data reads across multiple blocks, alongside creating intuitive APIs facilitating data retrieval based on file name and inode number.
- Integrated round-robin scheduling to permit concurrent execution of up to 6 programs across multiple terminals.

FPGA Double Player Street Fighter

C, System Verilog

- Developed a dynamic 2-player crossover fighting game housed on a system-on-chip on FPGA, leveraging C and System Verilog.
- Integrated a NIOS II processor to facilitate seamless USB keyboard control and efficient management of On-Chip Memory and SDRAM.
- Enhanced the gaming experience by optimizing the storage of sprites and images, characterized by specific dimensions and color depth attributes.

AWARDS

Fall 2023 Senior Design (Wheel-Legged Balancing Robot): Grainger Best Overall Project Award

2024 RoboMaster University Championship: Third Prize

2023 RoboMaster University League North America 1v1 Confrontation: 2nd Place (Top 10%)

2023 RoboMaster University Championship: Third Prize

2022 RoboMaster University League North America 1v1 Confrontation: 2nd Place (Top 10%)

2022 RoboMaster University League North America 3v3 Confrontation: 3rd Place (Top 15%)

2022 RoboMaster ICRA Challenge: 2nd Place