

Master of Science in Analytics

Introduction

Machine Learning 1

What you will need to know...

- Supervised Learning
 - Regression
 - Quantitative (target is a number)
 - Example: how much will my apartment cost in 5 years?
 - Classification
 - Qualitative (target is a category)
 - Example: is this email spam?
- Unsupervised Learning
 - Principal Components Analysis*
 - Clustering
 - Example: Do these things belong to the same category?
- Other topics (time permitting)
 - Neural Networks
 - Deep Learning

Example (regression)

Data for 80 males -- height vs. length of hand | foot:

Source: http://www.stat.ufl.edu/~winner/datasets.html

What you will be able to do...

Prediction

Given already seen data, predict some unseen event

Inference

- Given already seen data, explain what led to a particular outcome
- For example: what can you measure to determine an outcome?
- Or for example: what is the relationship between outcomes and what's measurable?

Basic (regression) concept & terminology

- Given data $(n \times p)$, learn best functions & parameters
- Form of function:

$$Y = f(x) + \epsilon$$

Learn function:

$$\hat{Y} = \hat{f}(x)$$

- *Y* = outcome | { *dependent* | *response* | *output* } variable
- X = predictor(s) | independent variable(s) | feature(s)
- ϵ = error term

Approaches for estimating f

- Parametric
 - Assumption: X and Y have a linear relationship, ala

$$Y \approx \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p$$

- \circ Estimate parameters β_i
- Non-parametric
 - Generates a (thin / rough) spline with no assumptions about relationship between X and Y

Flexibility vs. interpretability

Errors

- Always present (a/k/a "noise")
- Types
 - Reducible Can be improved by choosing better f(x) / parameters
 - Irreducible Cannot be improved (due to natural variation in data?)
- Can be quantified?

$$E(Y - \hat{Y})^{2} = E[f(X) + \epsilon - \hat{f}(X)]^{2}$$

$$= \underbrace{[f(X) - \hat{f}(X)]^{2}}_{\text{Reducible}} + \underbrace{\text{Var}(\epsilon)}_{\text{Irreducible}}$$

- Overfitting
 - Function follows data (including errors) too closely

Set aside data for estimating performance

Popular metrics for quantifying model efficacy

- Regression → MSE
 - Mean squared error (on the test set)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

- o (Average squared) difference between prediction and ground truth
- Classification
 - Misclassification rate / classification error rate (what fraction are incorrect?)

$$\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$$

- Inverse of accuracy
- Clustering?

Bias-variance trade-off

- Different $\hat{f}(x_i)$ can fit data
- Closer to fit to data?
 - Decrease in bias
 - o Increase in flexibility and in variance
- Choosing the flexibility is a trade-off between bias and variance