ТРЯП 3

Ковалев Алексей

1. Построим сначала пополнение автомата, задающего язык L:

Тогда ДКА для \overline{L} имеет вид:

НКА для L^R :

2. Построим сначала ДКА, эквивалентный данному НКА:

Теперь будем сводить его к обобщенному НКА, чтобы получить эквивалентное ему РВ:

PB, эквивалентное данному HKA – $ba(a^+b|b^+a)^*(a^+|b^+|\varepsilon)|a(a|b)^*$.

3. Пусть \overline{B} – автомат, который принимает язык $\overline{L(B)}$. Тогда

$$L(A) \setminus L(B) = L(A) \cap \overline{L(B)} = L(A) \cap L(\overline{B})$$

То есть для того чтобы построить автомат, распознающий разность языков $L(A)\setminus L(B)$, нужно лишь построить автомат $A\times \overline{B}$.

Для автоматов A и B из условия $A \times \overline{B}$ имеет вид

4. Для того чтобы проверить, что языки L(A) и L(B) совпадают, достаточно проверить, что $L(A)\triangle L(B)=\varnothing$. При этом автомат для $L(A)\triangle L(B)$ может быть построен за полиномиальное время, так как

$$L(A) \triangle L(B) = (L(A) \setminus L(B)) \cup (L(B) \setminus L(A)) = (L(A) \cap L(\overline{B})) \cup (L(B) \cap L(\overline{A}))$$

где \overline{A} , \overline{B} – автоматы, принимающие языки $\overline{L(A)}$, $\overline{L(B)}$ соответственно. Пусть в автоматах A и B над алфавитом Σ не более n состояний в каждом. Тогда автоматы \overline{A} , \overline{B} могут быть построены за $O(n|\Sigma|)$, так как нужно пополнить автоматы A и B, добавив $O(n|\Sigma|)$ переходов, и изменить множество принимающих состояний за O(n). Затем нужно построить произведения $A \times \overline{B}$ и $\overline{A} \times B$, что также можно сделать за полномиальное время, так как оба эти автомата содержат $O(n^2)$ состояний и $O(n^2|\Sigma|)$ переходов. После этого нужно построить автомат, принимающий язык $L(A \times \overline{B}) \cup L(\overline{A} \times B)$, что можно сделать за O(1). Если в получившемся автомате принимающие состояния недостижимы из начального состояния автомата, то он принимает \varnothing , и языки L(A) и L(B) совпадают, иначе языки L(A) и L(B) не совпадают. Проверить, достижимы ли принимающие состояния из начального можно за линейное от размера получившегося автомата время с помощью поиска в глубину, то есть за $O(n^2|\Sigma|)$. Итоговая сложность алгоритма – $O(n^2|\Sigma|)$, где $n = \max(|Q_A|, |Q_B|)$.