Reference 1

Lex Nederbragt

February 3, 2023

Table of contents

ain text	1
xplanation	1
able	2
gure	2
ath	2
otting with Python	3
eferences	4

Plain text

Here is some plain text.

Now we add a citation: a Langtangen book [1]. And a paper [2].

Explanation

Let's explain some of this code (setting the code to be unexecutable):

The for loop:

```
for number in range(10):
   total = total + (number + 1)
```

Goes through numbers 0 to 9 and adds 1 more than each number to the total variable.

Table

The data on exponential growth can be found in the table below.

time	count
60	10000
90	25587
120	76327
150	212715
180	619511
210	1940838
240	4240760
270	13993730
300	38971086
330	105614040

Figure

See figure Figure 1 for an illustration that explains the Python dictionary concept.

Figure 1: Data structure concept of a dictionary in Python. From [3].

Math

Now we add some mathematical formula for logistic growth (Equation 1):

$$K_{n} = rwTK_{n-1}\left(1 - \frac{K_{n-1}}{H}\right) - K_{n-1}. \tag{1}$$

Figure 2: Python logo

Plotting with Python

This is a cell that generates a plot, leading to Figure 3:

```
from pylab import *
x = linspace(0, 10, 100)
plot(x, x*x)
show()
```


Figure 3: $y = x^2$

References

- 1. Cai X, Langtangen HP. Parallelizing PDE solvers using the Python programming language. In: Bruaset AM, Tveito A, editors. Numerical solution of partial differential equations on parallel computers. Springer; 2006. pp. 295–325.
- 2. Chorin AJ. Numerical solution of the Navier-Stokes equations. Math Comp. 1968;22: 745-762.
- 3. Data structure concept of a dictionary in Python. Available: https://commons.wikimedia.org/wiki/File:GooglePythonClass_Day1_Part3_Pic.jpg