Exponentially weighted forecasts

FORECASTING IN R

Rob J. Hyndman

Professor of Statistics at Monash University

Simple exponential smoothing

Forecasting Notation:

$$\hat{y}_{t+h|t} = \text{ point forecast of } \hat{y}_{t+h} \text{ given data } y_1, ..., y_t$$

Forecast Equation:

$$\hat{y}_{t+h|t} = \alpha y_t + \alpha (1-\alpha) y_{t-1} + \alpha (1-\alpha)^2 y_{t-2} + \dots$$

where
$$0 \le \alpha \le 1$$

Observation	$\alpha = 0.2$	$\alpha = 0.4$	$\alpha = 0.6$	$\alpha = 0.8$
y_t	0.2	0.4	0.6	0.8
y_{t-1}	0.16	0.24	0.24	0.16
y_{t-2}	0.128	0.144	0.096	0.032
y_{t-3}	0.1024	0.0864	0.0384	0.0064
y _{t−4}	(0.2)(0.8)4	(0.4)(0.6)4	(0.6)(0.4)4	(0.8)(0.2)4
<i>У</i> t−5	(0.2)(0.8)5	(0.4)(0.6)5	(0.6)(0.4)5	(0.8)(0.2)5

Simple exponential smoothing

Component form		
Forecast equation	$\hat{y}_{t+h t} = \ell_t$	
Smoothing equation	$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$	

- ullet ℓ_t is the level (or the smoothed value) of the series at time t
- We choose lpha and ℓ_0 by minimizing SSE:

$$SSE = \sum_{t=1}^T (y_t - \hat{y}_{t|t-1})^2$$

Example: oil production

```
oildata <- window(oil, start = 1996)  # Oil Data
fc <- ses(oildata, h = 5)  # Simple Exponential Smoothing
summary(fc)</pre>
```

```
Forecast method: Simple exponential smoothing
Model Information:
Simple exponential smoothing
Call:
ses(y = oildata, h = 5)
Smoothing parameters:
alpha = 0.8339
Initial states:
l = 446.5759
sigma: 28.12
*** Truncated due to space
```

Example: oil production

```
autoplot(fc) +
  ylab("Oil (millions of tonnes)") + xlab("Year")
```

Forecasts from Simple exponential smoothing

Let's practice!

FORECASTING IN R

Exponential smoothing methods with trend

FORECASTING IN R

Rob J. Hyndman
Professor of Statistics at Monash
University

Simple exponential smoothing		
Forecast	$\hat{y}_{t+h t} = \ell_t$	
Level	$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$	

Simple exponential smoothing		
Forecast	$\hat{y}_{t+h t} = \ell_t$	
Level	$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$	

Holt's linear trend		
Forecast	$\hat{y}_{t+h t} = \ell_t + hb_t$	
Level	$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$	
Trend	$b_t = eta^*(\ell_t - \ell_{t-1}) + (1 - eta^*)b_{t-1}$	

Simple exponential smoothing		
Forecast	$\hat{y}_{t+h t} = \ell_t$	
Level	$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$	

Holt's linear trend		
Forecast	$\hat{y}_{t+h t} = \ell_t + hb_t$	
Level	$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$	
Trend	$b_t = eta^*(\ell_t - \ell_{t-1}) + (1 - eta^*)b_{t-1}$	

Simple exponential smoothing		
Forecast	$\hat{y}_{t+h t} = \ell_t$	
Level	$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$	

Holt's linear trend		
Forecast	$\hat{y}_{t+h t} = \ell_t + hb_t$	
Level	$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$	
Trend	$b_t = eta^*(\ell_t - \ell_{t-1}) + (1 - eta^*)b_{t-1}$	

Simple exponential smoothing		
Forecast	$\hat{y}_{t+h t} = \ell_t$	
Level	$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$	

Holt's linear trend		
Forecast	$\hat{y}_{t+h t} = \ell_t + hb_t$	
Level	$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$	
Trend	$b_t = eta^*(\ell_t - \ell_{t-1}) + (1 - eta^*)b_{t-1}$	

Simple exponential smoothing		
Forecast	$\hat{y}_{t+h t} = \ell_t$	
Level	$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$	

Holt's linear trend				
Forecast	$\hat{y}_{t+h t} = \ell_t + hb_t$			
Level	$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$			
Trend	$b_t = eta^*(\ell_t - \ell_{t-1}) + (1 - eta^*)b_{t-1}$			

- Two smoothing parameters lpha and $eta^*(0 \leq lpha, eta^* \leq 1)$
- Choose $\alpha, \beta^*, \ell_0, b_0$ to minimize SSE

Holt's method in R

airpassengers %>% holt(h = 5) %>% autoplot

Damped trend method

Component form		
$\hat{y}_{t+h t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$		
$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$		
$b_t = eta^*(\ell_t - \ell_{t-1}) + (1 - eta^*)\phi b_{t-1}$		

- ullet Damping parameter $0<\phi<1$
- ullet If $\phi=1$, identical to Holt's linear trend
- Short-run forecasts trended, long-run forecasts constant

Example: Air passengers

```
fc1 <- holt(airpassengers, h = 15, PI = FALSE)
fc2 <- holt(airpassengers, damped = TRUE, h = 15, PI = FALSE)
autoplot(airpassengers) + xlab("Year") + ylab("millions") +
  autolayer(fc1, series="Linear trend") +
  autolayer(fc2, series="Damped trend")</pre>
```


Let's practice!

FORECASTING IN R

Exponential smoothing methods with trend and seasonality

FORECASTING IN R

Rob J. Hyndman

Professor of Statistics at Monash
University

Holt-Winters' additive method

Holt-Winters additive method $\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t-m+h_m^+}$ $\ell_t = \alpha(y_t - s_{t-m}) + (1-\alpha)(\ell_{t-1} + b_{t-1})$ $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)b_{t-1}$ $s_t = \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1-\gamma)s_{t-m}$

- $s_{t-m+h_m^+}$ = seasonal component from final year of data
- Smoothing parameters:

$$0 < \le \alpha \le 1, \ 0 \le \beta^* \le 1, \ 0 \le \gamma \le 1 - \alpha$$

- m = period of seasonality (e.g. m = 4 for quarterly data)
- seasonal component averages zero

Holt-Winters' multiplicative method

Holt-Winters multiplicative method $\hat{y}_{t+h|t} = (\ell_t + hb_t)s_{t-m+h_m^+}$ $\ell_t = \alpha \frac{y_t}{s_{t-m}} + (1-\alpha)(\ell_{t-1} + b_{t-1})$ $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)b_{t-1}$ $s_t = \gamma \frac{y_t}{(\ell_{t-1} + b_{t-1})} + (1-\gamma)s_{t-m}$

- $s_{t-m+h_m^+}$ = seasonal component from final year of data
- Smoothing parameters:

$$0 < \leq \alpha \leq 1, \ 0 \leq \beta^* \leq 1, \ 0 \leq \gamma \leq 1 - \alpha$$

- m = period of seasonality (e.g. m = 4 for quarterly data)
- seasonal component averages one

Example: Visitor Nights

```
aust <- window(austourists, start = 2005)
fc1 <- hw(aust, seasonal = "additive")
fc2 <- hw(aust, seasonal = "multiplicative")</pre>
```

International visitor night in Australia

Taxonomy of exponential smoothing methods

	Seasonal Component			
Trend Component	N (None)	A (Additive)	M (Multiplicative)	
N (None)	(N, N)	(N, A)	(N, M)	
A (Additive)	(A, N)	(A, A)	(A, M)	
A _d (Additive Damped)	(A _d , N)	(A _d , N)	(A _d , N)	

Taxonomy of exponential smoothing methods

	Seasonal Component			
Trend Component	N (None)	A (Additive)	M (Multiplicative)	
N (None)	(N, N)	(N, A)	(N, M)	
A (Additive)	(A, N)	(A, A)	(A, M)	
A _d (Additive Damped)	(A _d , N)	(A _d , N)	(A _d , N)	

(N, N)	Simple exponential smoothing	ses()
(A, N)	Holt's linear method	holt()
(A _d , N)	Additive damped trend method	hw()
(A, A)	Additive Holt-Winter's method	hw()
(A, M)	Multiplicative Holt-Winter's method	hw()
(A _d , M)	Damped multiplicative Holt-Winter's	hw()

Let's practice!

FORECASTING IN R

State space models for exponential smoothing

FORECASTING IN R

Rob J. Hyndman

Professor of Statistics at Monash
University

- Each exponential smoothing method can be written as an "innovations state space model"
 - Trend = $\{N, A, A_d\}$

- Each exponential smoothing method can be written as an "innovations state space model"
 - Trend = $\{N, A, A_d\}$
 - Seasonal = {N, A, M}

 Each exponential smoothing method can be written as an "innovations state space model"

Trend = {N, A, A_d}
 Seasonal = {N, A, M}
 3 x 3= 9 possible exponential smoothing methods

 Each exponential smoothing method can be written as an "innovations state space model"

- Trend = {N, A, A_d}
 Seasonal = {N, A, M}
 3 x 3= 9 possible exponential smoothing methods
- Error = $\{A, M\}$

 Each exponential smoothing method can be written as an "innovations state space model"

ETS models: Error, Trend, Seasonal

ETS models

- Parameters: estimated using the "likelihood", the probability of the data arising from the specified model
- For models with additive errors, this is equivalent to minimizing SSE
- Choose the best model by minimizing a corrected version of Akaike's Information Criterion (AIC_c)

Example: Australian air traffic

ets(ausair)

```
ETS(M,A,N)
Call:
ets(y = ausair)
 Smoothing parameters:
   alpha = 0.9999
   beta = 0.0176
 Initial states:
   l = 6.5242
   b = 0.7584
 sigma: 0.0729
    AIC AICC
                      BIC
234.5273 236.0273 243.6705
```

Example: Australian air traffic

ausair %>% ets() %>% forecast() %>% autoplot()

Example: Monthly cortecosteroid drug sales

ets(h02)

```
ETS(M,Ad,M)
Call:
ets(y = h02)
 Smoothing parameters:
   alpha = 0.2173
   beta = 2e-04
   gamma = 1e-04
   phi = 0.9756
  Initial states:
   l = 0.3996
   b = 0.0098
   s=0.8675 0.8259 0.7591 0.7748 0.6945 1.2838
          1.3366 1.1753 1.1545 1.0968 1.0482 0.983
  sigma: 0.0647
      AIC
                AICc
                            BIC
-123.21905 -119.52175 -63.49289
```

Example: Monthly cortecosteroid drug sales

h02 %>% ets() %>% forecast() %>% autoplot()

Let's practice!

FORECASTING IN R

