Feuille de travaux dirigés nº 1 Représentation de l'information

Bases et représentations des entiers

Exercice 1.1

Donner les représentations binaires (sur 8 et 16 bits) et hexadécimales de 251 et 358.

Exercice 1.2 (Changement de base)

Compléter la table suivante :

Base 2	Base 8	Base 10	Base 16
11001012			
10101112			
	238		
	418		
		4310	
		10210	
			AA ₁₆
			2F ₁₆

Exercice 1.3 (Représentation des entiers signés)

Calculer le complément à 2 des nombres suivants sur 8 bits :

$$10001_2$$
 1_2 0_2 11111111_2 1101101_2 10000000_2 111111111_2

Exercice 1.4

Donner la représentation binaire en complément à 2 sur 8 et 16 bits des nombres 51, 512, -1, -51 et -512.

Exercice 1.5

Représenter les nombres ci-dessous en décimal codé binaire et en binaire. Comparer les résultats. Que peut-on dire ?

$$54_{10}$$
 8991_{10} 35410993_{10}

Exercice 1.6 (Base factorielle)

On souhaite manipuler des nombres en base factorielle f:

$$x = (c_n c_{n-1} c_{n-2} \dots c_2 c_1 . c_{-2} c_{-3} \dots c_{-m})_f$$
$$= \left(\sum_{i=1}^n c_i \times i! + \sum_{i=2}^m c_{-i} \times \frac{1}{i!}\right)_{10}$$

Base factorielle	Base décimale	
4321_{f}		
	13510	
826.12_{f}		

Remplir le tableau ci-contre :

Exercice 1.7 (Décodage de la mémoire)

La figure ci-dessous représente une portion de la mémoire d'un ordinateur. Décoder cette portion dans les cas suivants :

- 1. 8 entiers non-signés sur 8 bits;
- 2. 2 entiers signés en complément à 2 sur 8 bits, 1 entier signé en complément à 1 sur 16 bits, 2 entiers signés en signe+magnitude sur 8 bits et 2 entiers signés par excès à 127 sur 8 bits;

Si l'on considère que la portion visible correspond à un tableau de caractères codés en ASCII étendu (sur 8 bits), quel est le premier caractère du tableau ? (Note : le code de 'A' est 65).

Exercice 1.8 (Entiers signés)

Compléter le tableau ci-dessous :

Octet	codage en signe+valeur	codage en complément à 2
100010012		
101100102		
	-10_{10}	
	-127_{10}	
		-50_{10}
		-128_{10}

Calcul binaire sur les entiers

Exercice 1.9

Réaliser les additions binaires suivantes :

Exercice 1.10

Effectuer les calculs suivants directement en binaire :

Additions	Soustractions	Multiplications	Divisions
1011010 + 1110101	1010011 - 1111	111×1111	$100110 \div 110$
111010 + 110110	110101 - 1001	1010×11001	$110101 \div 1010$
11111111 + 1010	100010 - 101	10001×10100	$110010 \div 111$

Exercice 1.11

Un ordinateur de type ix86 possède les quatre indicateurs suivants pouvant prendre les valeurs 0 ou 1 en fonction du résultat de la dernière opération entière :

SF (Sign Flag): positionné si le résultat est négatif;

CF (*Carry Flag*) : positionné en cas de présence d'une retenue finale (bit sur-numéraire) ;

ZF (*Zero Flag*) : positionné si le résultat est nul ;

OF (Overflow Flag) : positionné en cas de changement anormal de signe.

Donner la valeur des indicateurs après chacune des opérations suivantes :

10001010 + 01101001	01110100 + 01011101
10001000 + 11100101	11101000 + 00111010
01001001 + 00100010	111111111 + 00100101

Interpréter les résultats et indiquer les indicateurs pertinents dans les deux cas suivants :

- 1. Les opérandes sont des entiers non-signés;
- 2. Les opérandes sont des entiers signés, codés en complément à 2.

Exercice 1.12

Effectuer en binaire (sur 4 bits) les suites d'opérations suivantes :

-7+5+(-6)

-3+(-4)+(-8)+6

Calcul sur les nombres flottants

Exercice 1.13

Dans la suite, on considère le format tiny (1,2,2) vu en cours.

- 1. Représenter 2.5 et 0.25 dans le format tiny. Faire la somme de ces deux nombres (en binaire). Que se passe t'il?
- 2. Faire la somme de 1.5 et 1.75 dans le format tiny. Que se passe t'il? Donner les différents résultats possibles.
- 3. Étant donnés deux nombres x et y au format tiny, que peut-on dire de la relation $x=y \iff x-y=0$ en l'absence des nombres dénormalisés? Donner les avantages et inconvénients de la représentation normalisée;
- 4. Donner un exemple illustrant la non-associativité de l'addition et de la multiplication pour les calculs en nombres flottants exprimés dans le format tiny (hors dépassement de capacité). On considérera que tous les calculs sont arrondis par troncation.

Exercice 1.14

Donner la représentation binaire en flottant simple précision (1,8,23) des nombres suivants (On utilisera un arrondi par troncation si nécessaire).

$$30.5 \quad -0.5625 \quad \frac{1}{3} \quad 0.85$$

Exercice 1.15

Déterminer les nombres représentés en flottant simple précision (1,8,23) donnés par les chaînes suivantes :

Exercice 1.16

 Représenter les nombres 12.5859375, 108.5, 9.1 en notation scientifique binaire normalisée avec une mantisse de 8 bits; - En utilisant les représentations binaires obtenues à la question précédente, effectuer les opérations ci-dessous :

$$12.5859375 + 108.5 \quad 108.5 - 9.1 \quad 12.5859375 \times 9.1$$

Exercice 1.17

Indiquer la représentation binaire en flottant simple précision des nombres suivants. On utilisera un arrondi au plus proche pair si nécessaire :

- -0.0625
- 1/3