Voice-Activated Teaching Assistant in Persian

and Hindi

Project Advisor: Dr Vahid Behzadan

Team Members:

- Bahareh Arghavani Nobar
- Devnath Reddy Motati

Project Milestones

- -Project Proposal
- -Project Timeline

Model Training and Development Feb13-Feb26(2024)

- -Develop and Fine tune Xtts and Whisper for Persian
- -Develop and Fine tune Xtts and Whisper for Hindi

Deployment April1-April15(2024)

-Hugging Face Deployment using Gradio

-Data Collection

-Data Preparation

Data Collection and Preparation Feb6-Feb12(2024)

-Combine ASR, TTS and LLM components

-Test the Integrated Voice Assistant

Integration and System Testing

Feb27-March31(2024)

Performance Evaluation April16-April30(2024)

Data Collection

- In this week we planned to collect required dataset and do preprocessing. For Persian TTS 1- there is a available 30 hour female and male tts which you can find here "persian tts dataset".
- But the problem with this dataset is it has Afghan accent and note that this dataset is provided by Azure.
- The second Option for TTS and also for ASR is Common voice Persian which is 410 Hour dataset that you can find here at "https://commonvoice.mozilla.org/en/datasets" and the problem with this dataset for XTTS fine tuning is that the quality of voice is not good and lot of noise.

- For the Hindi Dataset there are lots of datasets available but the one we found to be good can be found here at "Summary of Hindi Data"
- The Hindi speech dataset is split into train and test sets with 95.05 hours and 5.55 hours of audio respectively.
- There are 4506 and 386 unique sentences taken from Hindi stories in the train and test sets, respectively, with no overlap of sentences.
- The train set contains utterances from a set of 59 speakers, and the test set contains speakers from a disjoint set of 19 speakers.
- The audio files are sampled at 8kHz, 16-bit encoding. The total vocabulary size of the train and test set is 6542.

Data Preprocessing

- So we decided to create new dataset by help of available audiobook in Persian in youtube channel.
- So by help of "yt-dlp" library we download .wav file and then pass it to google speech API and it clip the audio and create transcript .We made use of the free trial which is free for 90 days. But the duration of each clips are different so we wrote a python code to clip audio according to google speech start and end mili-second that is provided.
- For preprocessing we remove the 30 second start and end of each chapter because of music and noise so we can start training from next step.
- You can find the python code in the form of a python notebook at the following link"https://colab.research.google.com/drive/1alicWh-mbDi9-A7PbqTrtF-yFeNuWN7p?usp=sharing".

Retrieval Augmented Generation

- Retrieval Augmented Generation (RAG) is a pattern that works with pretrained Large Language Models (LLM) and your own data to generate responses.
- Traditionally, a base model is trained with point-in-time data to ensure its
 effectiveness in performing specific tasks and adapting to the desired
 domain. However, sometimes you need to work with newer or more current
 data. Two approaches can supplement the base model: fine-tuning or
 further training of the base model with new data.
- Fine-tuning is suitable for continuous domain adaptation, enabling significant improvements in model quality but often incurring higher costs. Conversely, RAG offers an alternative approach, allowing the use of the same model as a reasoning engine over new data provided in a prompt.

Technical overview

- Source data: this is where your data exists.
- Data chunking: The data in your source needs to be converted to plain text.
- Converting the text to vectors: called embeddings.
 Vectors are numerical representations of concepts converted to number sequences, which make it easy for computers to understand the relationships between those concepts.
- Links between source data and embeddings: this information is stored as metadata on the chunks created which are then used to assist the LLMs to generate citations while generating responses.

Week 1	Week 2	Week 3
		Data Collection and Dataset Creation
Preliminary Report on Project Focus	strategic planning and task delegation	
 Collaborated with Dr. Vahid 	 Developed a comprehensive timeline, 	Focused on data collection as a primary
Behzadan to identify a	detailing essential project milestones.	objective for the week.
challenging NLP problem.	 Assigned specific responsibilities to team 	Established a GitHub repository to streamline
Discussed potential project	members, focusing on crucial aspects such as	version control and collaborative development.
topics and their significance	data collection, data preparation, tool	Identified available datasets for Persian TTS
in the field.	selection, and model fine-tuning.	training, with a primary source being the
 Explored the landscape of 	 Recognized the importance of data collection 	"Persian TTS Kaggle" dataset provided by
NLP tasks, highlighting the	and outlined sources and methodologies to be	Azure.
absence of Persian TTS	employed.	 Acknowledged a minor Afghan accent issue in
support.	 Specified data preparation steps, ensuring the 	the Kaggle dataset, prompting the decision to
Noted the surprising lack of	quality and relevance of the collected data.	create a new dataset.
support for Persian TTS in	 Opted for Notion as our project management 	Utilized the "yt-dlp" library to download
major platforms like Google	tool to facilitate efficient tracking and	audiobooks from YouTube in WAV format.
Translation, Alexa, Siri, and	collaboration.	❖ Leveraged the Google Speech API, which offers
ChatGPT.	Decided to fine-tune the latest Cougi TTS	a 90-day free trial, for transcription and
Recognized the importance	model, aiming to enhance its support for the	identification of relevant audio clip start and
of addressing this gap and	Persian language and improve overall	end seconds
	accuracy.	
making a meaningful contribution to the field.		❖ Developed a code to automate the clipping of
VI. 11 (1) (1) (1) (1) (1) (1) (1) (1) (1)	❖ Planned the development of a pipeline (ASR	audio based on the provided start and end
❖ Discussed the potential use	> RAG> TTS) catering to both Hindi and	seconds from the Google Speech API results.
of an automated Mean	Persian languages.	Ensured removal of the initial and final 30
Opinion Score (MOS) as an	 Discussed the automation of the evaluation 	seconds of each chapter to eliminate music
innovative evaluation metric	system, with a focus on innovative Mean	and noise, resulting in a cleaner dataset.
for our project.	Opinion Score (MOS) metrics.	Prepared a 25-hour dataset with single-speaker
	 Outlined deployment strategies for the TTS 	audio, focusing on eliminating accents and
	system, considering real-world applications.	incorporating emotion.
	 Established clear communication channels 	 Considered the option of using the Common
	within Notion, promoting seamless	Voice dataset by Mozilla; however, dismissed it
	collaboration between advisors and team	due to concerns regarding the recording
	members.	quality

Upcoming week Plan

- Curate an NLP Knowledge Base and Format for Retrieval (Devnath Reddy Motati).
- Make requirement changes on XTTS architecture and tokenization to support Persian Language (Bahareh Arghavani Nobar)