Introduction to Provable Security

Bart Mennink KU Leuven (Belgium)

IACR School on Design and Security of Cryptographic Algorithms and Devices

October 20, 2015

What is Provable Security?

Hash

Keyed Constructions

Keyed Blockcipher

• Blockcipher: a family of permutations indexed by key

Keyed Blockcipher

- Blockcipher: a family of permutations indexed by key
- ullet E_k for secret k should behave like permutation π

ullet Two oracles: E_k (for secret random key k) and π

- ullet Two oracles: E_k (for secret random key k) and π
- ullet Distinguisher ${\cal D}$ has query access to either E_k or π

- Two oracles: E_k (for secret random key k) and π
- ullet Distinguisher ${\mathcal D}$ has query access to either E_k or π
 - Forward query: $m \longrightarrow E_k(m)$ or $\pi(m)$
 - Inverse query: $c \longrightarrow E_k^{-1}(c)$ or $\pi^{-1}(c)$

- Two oracles: E_k (for secret random key k) and π
- ullet Distinguisher ${\mathcal D}$ has query access to either E_k or π
 - Forward query: $m \longrightarrow E_k(m)$ or $\pi(m)$
 - Inverse query: $c \longrightarrow E_k^{-1}(c)$ or $\pi^{-1}(c)$
- ullet ${\cal D}$ can also make "offline" evaluations of E

- ullet Two oracles: E_k (for secret random key k) and π
- ullet Distinguisher ${\cal D}$ has query access to either E_k or π
 - Forward query: $m \longrightarrow E_k(m)$ or $\pi(m)$
 - Inverse query: $c \longrightarrow E_k^{-1}(c)$ or $\pi^{-1}(c)$
- ullet ${\cal D}$ can also make "offline" evaluations of E
- ullet ${\cal D}$ tries to determine which oracle it communicates with

Definition

E is a (strong) pseudorandom permutation if

$$\mathbf{Adv}_E^{(\mathrm{s)prp}}(\mathcal{D}) = \left| \mathbf{Pr} \left[\mathcal{D}^{E_k^{(\pm)}} = 1 \right] - \mathbf{Pr} \left[\mathcal{D}^{\pi^{(\pm)}} = 1 \right] \right|$$

is small. \mathcal{D} is parametrized by: ullet Q online queries

• T offline evaluations

Keyed Tweakable Blockcipher

- Tweak: flexibility to the cipher
- Each key and tweak gives a different permutation

Keyed Tweakable Blockcipher

- Tweak: flexibility to the cipher
- Each key and tweak gives a different permutation
- \widetilde{E}_k for secret k should behave like tweakable permutation $\widetilde{\pi}$

Keyed Tweakable Blockcipher

- Tweak: flexibility to the cipher
- Each key and tweak gives a different permutation
- \widetilde{E}_k for secret k should behave like tweakable permutation $\widetilde{\pi}$

Definition

 \widetilde{E} is a (strong) tweakable pseudorandom permutation if

$$\mathbf{Adv}_{\widetilde{E}}^{(\mathrm{s)tprp}}(\mathcal{D}) = \left| \mathbf{Pr} \left[\mathcal{D}^{\widetilde{E}_k^{(\pm)}} = 1 \right] - \mathbf{Pr} \left[\mathcal{D}^{\widetilde{\pi}^{(\pm)}} = 1 \right] \right|$$

is small. $\mathcal D$ is parametrized by: ullet Q online queries

• T offline evaluations

Keyed One-Way Function

 Keyed one-way function (could be compressing)

Keyed One-Way Function

- Keyed one-way function (could be compressing)
- F_k for secret k should behave like random function \$

Keyed One-Way Function

- Keyed one-way function (could be compressing)
- F_k for secret k should behave like random function \$

Definition

F is a pseudorandom function if

$$\mathbf{Adv}_F^{\mathrm{prf}}(\mathcal{D}) = \left| \mathbf{Pr} \left[\mathcal{D}^{F_k} = 1 \right] - \mathbf{Pr} \left[\mathcal{D}^{\$} = 1 \right] \right|$$

is small. $\mathcal D$ is parametrized by: ullet Q online queries of length ℓ

T offline evaluations

Indistinguishability

Generalization: Indistinguishability of Random Systems

$$\mathbf{Adv}^{\mathrm{ind}}(\mathcal{D}) = \left| \mathbf{Pr} \left[\mathcal{D}^{\mathcal{O}} = 1 \right] - \mathbf{Pr} \left[\mathcal{D}^{\mathcal{P}} = 1 \right] \right| = \Delta_{\mathcal{D}}(\mathcal{O} \; ; \; \mathcal{P})$$

Indistinguishability

Generalization: Indistinguishability of Random Systems

$$\mathbf{Adv}^{\mathrm{ind}}(\mathcal{D}) = \left| \mathbf{Pr} \left[\mathcal{D}^{\mathcal{O}} = 1 \right] - \mathbf{Pr} \left[\mathcal{D}^{\mathcal{P}} = 1 \right] \right| = \Delta_{\mathcal{D}}(\mathcal{O}; \mathcal{P})$$

How to Prove that $Adv^{ind}(\mathcal{D})$ is Small?

Indistinguishability

Generalization: Indistinguishability of Random Systems

$$\mathbf{Adv}^{\mathrm{ind}}(\mathcal{D}) = \left| \mathbf{Pr} \left[\mathcal{D}^{\mathcal{O}} = 1 \right] - \mathbf{Pr} \left[\mathcal{D}^{\mathcal{P}} = 1 \right] \right| = \Delta_{\mathcal{D}}(\mathcal{O}; \mathcal{P})$$

How to Prove that $Adv^{ind}(\mathcal{D})$ is Small?

- Game-playing technique
- H-coefficient technique

- Bellare and Rogaway [BR06]
- Similar to Maurer's methodology [Mau02]

- Bellare and Rogaway [BR06]
- Similar to Maurer's methodology [Mau02]

- Bellare and Rogaway [BR06]
- Similar to Maurer's methodology [Mau02]

- Basic idea:
 - ullet From ${\mathcal O}$ to ${\mathcal P}$ in small steps

- Bellare and Rogaway [BR06]
- Similar to Maurer's methodology [Mau02]

- Basic idea:
 - ullet From ${\mathcal O}$ to ${\mathcal P}$ in small steps
 - Intermediate steps (presumably) easy to analyze

Triangle Inequality

Fundamental Lemma

Triangle Inequality

$$\Delta(\mathcal{O};\mathcal{P}) \leq \Delta(\mathcal{O};\mathcal{R}) + \Delta(\mathcal{R};\mathcal{P})$$

Fundamental Lemma

Triangle Inequality

$$\Delta(\mathcal{O}; \mathcal{P}) \le \Delta(\mathcal{O}; \mathcal{R}) + \Delta(\mathcal{R}; \mathcal{P})$$

Fundamental Lemma

If \mathcal{O} and \mathcal{P} are identical until bad, then:

$$\Delta(\mathcal{O}; \mathcal{P}) \leq \mathbf{Pr} \left[\mathcal{P} \text{ sets bad} \right]$$

Theorem

For any distinguisher $\mathcal D$ making Q queries to $E_k/\$$ and T offline evaluations

$$\Delta_{\mathcal{D}}(E_k;\$) \leq \mathbf{Adv}_E^{\mathrm{prp}}(\mathcal{D}) + \frac{\binom{Q}{2}}{2^n}$$

 $\Delta_{\mathcal{D}}(E_k;\$)$

Step 1. "Replace" E_k by Random Permutation π

 $\Delta_{\mathcal{D}}(E_k;\$)$

Step 1. "Replace" E_k by Random Permutation π

• Triangle inequality:

$$\Delta_{\mathcal{D}}(E_k;\$) \leq \Delta_{\mathcal{D}}(E_k;\pi) + \Delta_{\mathcal{D}}(\pi;\$)$$

Step 1. "Replace" E_k by Random Permutation π

Triangle inequality:

$$\Delta_{\mathcal{D}}(E_k;\$) \leq \Delta_{\mathcal{D}}(E_k;\pi) + \Delta_{\mathcal{D}}(\pi;\$)$$

• $\Delta_{\mathcal{D}}(E_k; \pi) = \mathbf{Adv}_E^{\mathrm{prp}}(\mathcal{D})$ by definition

Step 1. "Replace" E_k by Random Permutation π

• Triangle inequality:

$$\Delta_{\mathcal{D}}(E_k;\$) \leq \Delta_{\mathcal{D}}(E_k;\pi) + \Delta_{\mathcal{D}}(\pi;\$)$$

- $\Delta_{\mathcal{D}}(E_k; \pi) = \mathbf{Adv}_E^{\mathrm{prp}}(\mathcal{D})$ by definition
- $\Delta_{\mathcal{D}}(\pi;\$)$
 - ${\cal D}$ is parametrized by Q queries to $\pi/\$$

Step 2. Random Permutation to Random Function

- Consider lazily sampled π and \$
 - ullet Initially empty list of responses ${\cal L}$
 - Randomly generated response for every new query

Step 2. Random Permutation to Random Function

- Consider lazily sampled π and \$
 - ullet Initially empty list of responses ${\cal L}$
 - Randomly generated response for every new query

Oracle π

$$y \xleftarrow{\$} \{0,1\}^n \backslash \mathcal{L}$$

$$\mathcal{L} \xleftarrow{\cup} y$$
 return y

Step 2. Random Permutation to Random Function

- Consider lazily sampled π and \$
 - ullet Initially empty list of responses ${\cal L}$
 - Randomly generated response for every new query

Oracle π	Oracle \$
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$
$\mathcal{L} \xleftarrow{\cup} y$	
return y	return y

Step 2. Random Permutation to Random Function

- Consider lazily sampled π and \$
 - ullet Initially empty list of responses ${\cal L}$
 - Randomly generated response for every new query

Oracle π	Oracle π'	Oracle \$
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \overset{\$}{\leftarrow} \{0,1\}^n$ if $y \in \mathcal{L}$ $y \overset{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$ bad	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$
$\mathcal{L} \xleftarrow{\cup} y$	$\mathcal{L} \xleftarrow{\cup} y$	
return \boldsymbol{y}	return y	return y

Oracle π	Oracle π'	Oracle \$
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \overset{\$}{\leftarrow} \{0,1\}^n$ if $y \in \mathcal{L}$ $y \overset{\$}{\leftarrow} \{0,1\}^n ackslash \mathcal{L}$ bad	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$
$\mathcal{L} \xleftarrow{\cup} y$ return y	$\mathcal{L} \stackrel{\cup}{\longleftarrow} y$ return y	return y

$$\Delta_{\mathcal{D}}(\pi;\$)$$

Oracle π
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$
$\mathcal{L} \xleftarrow{\cup} y$
$\mathcal{L} \leftarrow y$
return y

Oracle
$$\pi'$$

$$y \overset{\$}{\leftarrow} \{0,1\}^n$$
 if $y \in \mathcal{L}$
$$y \overset{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$$
 bad
$$\mathcal{L} \overset{\cup}{\leftarrow} y$$
 return y

Oracle \$
$$y \overset{\$}{\leftarrow} \{0,1\}^n$$
 return y

Triangle inequality:

$$\Delta_{\mathcal{D}}(\pi;\$) \leq \Delta_{\mathcal{D}}(\pi;\pi') + \Delta_{\mathcal{D}}(\pi';\$)$$

Oracle π	Oracle π'	Oracle \$
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \overset{\$}{\leftarrow} \{0,1\}^n$ if $y \in \mathcal{L}$ $y \overset{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$
	$egin{array}{c} bad \ \mathcal{L} \stackrel{igstyle }{\leftarrow} y \ return \ y \end{array}$	return y

• Triangle inequality:

$$\Delta_{\mathcal{D}}(\pi;\$) \leq \Delta_{\mathcal{D}}(\pi;\pi') + \Delta_{\mathcal{D}}(\pi';\$)$$

$$\leq 0 +$$

Oracle π	Oracle π'	Oracle \$
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$
	if $y \in \mathcal{L}_{_{_{\!$	
	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$	$\setminus \mathcal{L}$
	bad	
$\mathcal{L} \xleftarrow{\cup} y$	$\mathcal{L} \xleftarrow{\cup} y$	
return y	return y	return y
ider	ntical ide	ntical until bad

Triangle inequality:

$$\begin{split} \Delta_{\mathcal{D}}(\pi;\$) &\leq \ \Delta_{\mathcal{D}}(\pi;\pi') \ + \ \Delta_{\mathcal{D}}(\pi';\$) \\ &\leq \ 0 \ + \ \mathbf{Pr} \left[\pi' \text{ sets bad}\right] \end{split}$$

Oracle π	Oracle π'		Oracle \$
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \stackrel{\$}{\leftarrow} \{0,1\}^r$	n	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$
	if $y \in \mathcal{L}$		
	$y \stackrel{\$}{\leftarrow} \{0$	$[0,1]^n \setminus \mathcal{L}$	
	bad		
$\mathcal{L} \xleftarrow{\cup} y$	$\mathcal{L} \xleftarrow{\cup} y$		
return y	return y		return y
iden	tical	identical	until bad

• Triangle inequality:

$$\begin{array}{lll} \Delta_{\mathcal{D}}(\pi;\$) \leq & \Delta_{\mathcal{D}}(\pi;\pi') \; + \; \Delta_{\mathcal{D}}(\pi';\$) \\ & \leq & 0 & + \; \mathbf{Pr}\left[\pi' \; \mathsf{sets} \; \mathsf{bad}\right] \leq \frac{\binom{Q}{2}}{2^n} \end{array}$$

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to "Strong Interpolation Technique" [Ber05]

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to "Strong Interpolation Technique" [Ber05]

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to "Strong Interpolation Technique" [Ber05]

- Basic idea:
 - ullet Each conversation defines a transcript au

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to "Strong Interpolation Technique" [Ber05]

- Basic idea:
 - Each conversation defines a transcript au
 - $\mathcal{O} \approx \mathcal{P}$ for most of the transcripts

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to "Strong Interpolation Technique" [Ber05]

- Basic idea:
 - Each conversation defines a transcript au
 - $\mathcal{O} \approx \mathcal{P}$ for most of the transcripts
 - Remaining transcripts occur with small probability

- ullet ${\cal D}$ is computationally unbounded and deterministic
- ullet Each conversation defines a transcript au

- ullet D is computationally unbounded and deterministic
- ullet Each conversation defines a transcript au
- Consider good and bad transcripts

- ullet D is computationally unbounded and deterministic
- ullet Each conversation defines a transcript au
- Consider good and bad transcripts

Lemma

Let $\varepsilon > 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathcal{O} \text{ gives } \tau\right]}{\mathbf{Pr}\left[\mathcal{P} \text{ gives } \tau\right]} \geq 1 - \varepsilon$$

Then, $\Delta_{\mathcal{D}}(\mathcal{O}; P) \leq \varepsilon + \mathbf{Pr} \left[\mathsf{bad} \right]$ transcript for \mathcal{P}

- ullet D is computationally unbounded and deterministic
- ullet Each conversation defines a transcript au
- Consider good and bad transcripts

Lemma

Let $\varepsilon > 0$ be such that for all good transcripts τ :

$$\frac{\Pr\left[\mathcal{O} \text{ gives } \tau\right]}{\Pr\left[\mathcal{P} \text{ gives } \tau\right]} \geq 1 - \varepsilon$$

Then, $\Delta_{\mathcal{D}}(\mathcal{O}; P) \leq \varepsilon + \mathbf{Pr}\left[\mathsf{bad} \text{ transcript for } \mathcal{P}\right]$

Trade-off: define bad transcripts smartly!

Example: Even-Mansour (1/10)

 $E_k(m) = P(m \oplus k) \oplus k$

Example: Even-Mansour (2/10)

Slightly Different Security Model

Slightly Different Security Model

Underlying permutation

- Underlying permutation randomized
- ullet Information-theoretic distinguisher ${\cal D}$
 - ullet Q construction queries
 - T offline evaluations pprox T primitive queries

- Underlying permutation randomized
- ullet Information-theoretic distinguisher ${\cal D}$
 - ullet Q construction queries
 - T offline evaluations pprox T primitive queries
 - Unbounded computational power

- Without loss of generality, \mathcal{D} is deterministic
 - No random choices

- Without loss of generality, \mathcal{D} is deterministic
 - No random choices
- Reason: at the end we maximize over all distinguishers

Theorem

For any deterministic distinguisher $\mathcal D$ making Q queries to $E_k/\$$ and T primitive queries

$$\mathbf{Adv}_{E}^{\mathrm{sprp}}(\mathcal{D}) = \Delta_{\mathcal{D}}(E_{k}^{\pm}, P^{\pm}; \pi^{\pm}, P^{\pm}) \le \frac{2QT}{2^{n}}$$

- Step 1. Define how transcripts look like
- Step 2. Define good and bad transcripts
- Step 3. Upper bound $\mathbf{Pr}\left[\mathsf{bad}\right.$ transcript for $(\pi^{\pm},P^{\pm})]$
- Step 4. Lower bound $\frac{\mathbf{Pr}\left[(E_k^{\pm},P^{\pm}) \text{ gives } \tau\right]}{\mathbf{Pr}\left[(\pi^{\pm},P^{\pm}) \text{ gives } \tau\right]} \geq 1 \varepsilon \ (\forall \text{ good } \tau)$

1. Define how transcripts look like

• Construction queries:

$$\tau_E = \{(m_1, c_1), \dots, (m_Q, c_Q)\}$$

$$\tau_P = \{(x_1, y_1), \dots, (x_T, y_T)\}$$

1. Define how transcripts look like

• Construction queries:

$$\tau_E = \{(m_1, c_1), \dots, (m_Q, c_Q)\}$$

$$\tau_P = \{(x_1, y_1), \dots, (x_T, y_T)\}\$$

- Unordered lists (ordering not needed in current proof)
- ullet 1-to-1 correspondence between any ${\cal D}$ and any (au_E, au_P)

1. Define how transcripts look like

Construction queries:

$$\tau_E = \{(m_1, c_1), \dots, (m_Q, c_Q)\}$$

$$\tau_P = \{(x_1, y_1), \dots, (x_T, y_T)\}\$$

- Unordered lists (ordering not needed in current proof)
- ullet 1-to-1 correspondence between any ${\cal D}$ and any (au_E, au_P)
- Bonus information!
 - After interaction of \mathcal{D} with oracles: reveal the key

1. Define how transcripts look like

Construction queries:

$$\tau_E = \{(m_1, c_1), \dots, (m_Q, c_Q)\}$$

$$\tau_P = \{(x_1, y_1), \dots, (x_T, y_T)\}\$$

- Unordered lists (ordering not needed in current proof)
- ullet 1-to-1 correspondence between any ${\cal D}$ and any (au_E, au_P)
- Bonus information!
 - ullet After interaction of ${\mathcal D}$ with oracles: reveal the key
 - Real world (E_k^\pm, P^\pm) : key used for encryption

1. Define how transcripts look like

• Construction queries:

$$\tau_E = \{(m_1, c_1), \dots, (m_Q, c_Q)\}$$

$$\tau_P = \{(x_1, y_1), \dots, (x_T, y_T)\}\$$

- Unordered lists (ordering not needed in current proof)
- ullet 1-to-1 correspondence between any ${\cal D}$ and any (au_E, au_P)
- Bonus information!

- Real world (E_k^{\pm}, P^{\pm}) : key used for encryption
- Ideal world (π^{\pm}, P^{\pm}) : dummy key $k \xleftarrow{\$} \{0, 1\}^n$

- 2. Define good and bad transcripts
 - Intuition:

2. Define good and bad transcripts

- Intuition:
 - $(m,c) \in \tau_E$ "defines" P-query $(m \oplus k, c \oplus k)$

2. Define good and bad transcripts

- Intuition:
 - $(m,c) \in \tau_E$ "defines" P-query $(m \oplus k, c \oplus k)$
 - Should not collide with any $(x,y) \in \tau_P$

2. Define good and bad transcripts

- Intuition:
 - $(m,c) \in \tau_E$ "defines" P-query $(m \oplus k, c \oplus k)$
 - Should not collide with any $(x,y) \in \tau_P$
- Transcript $au = (au_E, au_P, k)$ is bad if

 $\exists (m,c) \in au_E, (x,y) \in au_P \text{ such that } m \oplus k = x \text{ or } c \oplus k = y$

2. Define good and bad transcripts

- Intuition:
 - $(m,c) \in \tau_E$ "defines" P-query $(m \oplus k, c \oplus k)$
 - Should not collide with any $(x,y) \in \tau_P$
- Transcript $au = (au_E, au_P, k)$ is bad if

 $\exists (m,c) \in au_E, (x,y) \in au_P \text{ such that } m \oplus k = x \text{ or } c \oplus k = y$

ullet Note: no internal collisions in au_E and au_P

- 3. Upper bound $\Pr[\mathsf{bad} \; \mathsf{transcript} \; \mathsf{for} \; (\pi^\pm, P^\pm)]$
 - Transcript $au = (au_E, au_P, k)$ is bad if

$$\exists (m,c) \in au_E, (x,y) \in au_P \text{ such that } m \oplus k = x \text{ or } c \oplus k = y$$

3. Upper bound $\Pr[\mathsf{bad} \; \mathsf{transcript} \; \mathsf{for} \; (\pi^\pm, P^\pm)]$

• Transcript $au = (au_E, au_P, k)$ is bad if

$$\exists (m,c) \in \tau_E, (x,y) \in \tau_P \text{ such that } m \oplus k = x \text{ or } c \oplus k = y$$

$$k \in \{m \oplus x, c \oplus y \mid (m, c) \in \tau_E, (x, y) \in \tau_P\}$$

- 3. Upper bound $\Pr[\mathsf{bad} \; \mathsf{transcript} \; \mathsf{for} \; (\pi^\pm, P^\pm)]$
 - Transcript $au = (au_E, au_P, k)$ is bad if

$$\exists (m,c) \in \tau_E, (x,y) \in \tau_P \text{ such that } m \oplus k = x \text{ or } c \oplus k = y$$

$$\downarrow \\ k \in \underbrace{\{m \oplus x, c \oplus y \mid (m,c) \in \tau_E, (x,y) \in \tau_P\}}_{\text{of size} \leq 2QT}$$

3. Upper bound $\Pr[\mathsf{bad} \; \mathsf{transcript} \; \mathsf{for} \; (\pi^\pm, P^\pm)]$

• Transcript $\tau = (\tau_E, \tau_P, k)$ is bad if

$$\exists (m,c) \in \tau_E, (x,y) \in \tau_P \text{ such that } m \oplus k = x \text{ or } c \oplus k = y$$

$$\downarrow \\ k \in \underbrace{\{m \oplus x, c \oplus y \mid (m,c) \in \tau_E, (x,y) \in \tau_P\}}_{\text{of size} \leq 2QT}$$
 independently generated $n\text{-bit}$ dummy key

3. Upper bound $\Pr[\mathsf{bad} \; \mathsf{transcript} \; \mathsf{for} \; (\pi^\pm, P^\pm)]$

• Transcript $\tau = (\tau_E, \tau_P, k)$ is bad if

independently generated n-bit dummy key

$$\mathbf{Pr}\left[\mathsf{bad} \text{ transcript for } (\pi^{\pm}, P^{\pm})\right] \leq \frac{2QT}{2^n}$$

 $\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(\pi^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 - \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$

$$\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(\pi^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 - \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$$

• Counting "compatible" oracles (modulo details):

$$\mathbf{Pr}\left[\mathcal{O} \text{ gives } \tau\right] = \frac{\left|\text{oracles } \mathcal{O} \text{ that could give } \tau\right|}{\left|\text{oracles } \mathcal{O}\right|}$$

$$\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(\pi^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 - \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$$

• Counting "compatible" oracles (modulo details):

$$\mathbf{Pr}\left[\mathcal{O} \text{ gives } au
ight] = rac{\left| ext{oracles } \mathcal{O} \text{ that could give } au
ight|}{\left| ext{oracles } \mathcal{O}
ight|}$$

• For real world (E_k^{\pm}, P^{\pm}) :

$$\mathbf{Pr}\left[(E_k^{\pm}, P^{\pm}) \text{ gives } \tau\right] =$$

- $\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(\pi^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$
 - Counting "compatible" oracles (modulo details):

$$\mathbf{Pr}\left[\mathcal{O} \text{ gives } \tau\right] = \frac{\left|\text{oracles } \mathcal{O} \text{ that could give } \tau\right|}{\left|\text{oracles } \mathcal{O}\right|}$$

• For real world (E_k^{\pm}, P^{\pm}) :

$$\mathbf{Pr}\left[(E_k^\pm,P^\pm) \text{ gives } \tau\right] = \frac{}{2^n \cdot 2^n!}$$

- $\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(\pi^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$
 - Counting "compatible" oracles (modulo details):

$$\mathbf{Pr}\left[\mathcal{O} \text{ gives } \tau\right] = \frac{\left|\text{oracles } \mathcal{O} \text{ that could give } \tau\right|}{\left|\text{oracles } \mathcal{O}\right|}$$

• For real world (E_k^{\pm}, P^{\pm}) :

$$\mathbf{Pr}\left[(E_k^\pm,P^\pm) \text{ gives } \tau\right] = \frac{(2^n-Q-T)!}{2^n\cdot 2^n!}$$

- $\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm, P^\pm) \text{ gives } \tau\right]}{\Pr\left[(\pi^\pm, P^\pm) \text{ gives } \tau\right]} \geq 1 \varepsilon \text{ (}\forall \text{ good } \tau\text{)}$
 - Counting "compatible" oracles (modulo details):

$$\mathbf{Pr}\left[\mathcal{O} \text{ gives } au
ight] = rac{\left| ext{oracles } \mathcal{O} \text{ that could give } au
ight|}{\left| ext{oracles } \mathcal{O}
ight|}$$

• For real world (E_k^{\pm}, P^{\pm}) :

$$\mathbf{Pr}\left[(E_k^{\pm},P^{\pm}) \text{ gives } \tau\right] = \frac{(2^n-Q-T)!}{2^n\cdot 2^n!}$$

• For ideal world (π^{\pm}, P^{\pm}) :

$$\mathbf{Pr}\left[(\pi^{\pm},P^{\pm}) \text{ gives } \tau\right] = \frac{(2^n-Q)!(2^n-T)!}{2^n\cdot(2^n!)^2}$$

$$\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(\pi^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 - \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$$

• Putting things together:

$$\begin{split} \frac{\mathbf{Pr}\left[(E_k^{\pm}, P^{\pm}) \text{ gives } \tau\right]}{\mathbf{Pr}\left[(\pi^{\pm}, P^{\pm}) \text{ gives } \tau\right]} &= \frac{\frac{(2^n - Q - T)!}{2^n \cdot 2^n!}}{\frac{(2^n - Q)!(2^n - T)!}{2^n \cdot (2^n!)^2}} \\ &= \frac{(2^n - Q - T)!2^n!}{(2^n - Q)!(2^n - T)!} \end{split}$$

$$\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(\pi^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 - \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$$

• Putting things together:

$$\begin{split} \frac{\mathbf{Pr}\left[(E_k^{\pm}, P^{\pm}) \text{ gives } \tau\right]}{\mathbf{Pr}\left[(\pi^{\pm}, P^{\pm}) \text{ gives } \tau\right]} &= \frac{\frac{(2^n - Q - T)!}{2^n \cdot 2^n!}}{\frac{(2^n - Q)!(2^n - T)!}{2^n \cdot (2^n!)^2}} \\ &= \frac{(2^n - Q - T)!2^n!}{(2^n - Q)!(2^n - T)!} \\ &\geq 1 \end{split}$$

$$\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(\pi^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 - \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$$

• Putting things together:

$$\begin{split} \frac{\mathbf{Pr}\left[(E_k^{\pm}, P^{\pm}) \text{ gives } \tau\right]}{\mathbf{Pr}\left[(\pi^{\pm}, P^{\pm}) \text{ gives } \tau\right]} &= \frac{\frac{(2^n - Q - T)!}{2^n \cdot 2^n!}}{\frac{(2^n - Q)!(2^n - T)!}{2^n \cdot (2^n!)^2}} \\ &= \frac{(2^n - Q - T)!2^n!}{(2^n - Q)!(2^n - T)!} \\ &\geq 1 \end{split}$$

 $\bullet \ \ {\rm We \ put} \ \varepsilon = 0$

$$\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(\pi^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 - \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$$

• Putting things together:

$$\begin{split} \frac{\mathbf{Pr}\left[(E_k^{\pm}, P^{\pm}) \text{ gives } \tau\right]}{\mathbf{Pr}\left[(\pi^{\pm}, P^{\pm}) \text{ gives } \tau\right]} &= \frac{\frac{(2^n - Q - T)!}{2^n \cdot 2^n!}}{\frac{(2^n - Q)!(2^n - T)!}{2^n \cdot (2^n!)^2}} \\ &= \frac{(2^n - Q - T)!2^n!}{(2^n - Q)!(2^n - T)!} \\ &\geq 1 \end{split}$$

- $\bullet \ \ {\rm We \ put} \ \varepsilon = 0$
- Conclusion:

$$\mathbf{Adv}_{E}^{\mathrm{sprp}}(\mathcal{D}) = \Delta_{\mathcal{D}}(E_{k}^{\pm}, P^{\pm}; \pi^{\pm}, P^{\pm}) \le \frac{2QT}{2^{n}} + 0$$

Keyed Authenticated Encryption

Keyed Authenticated Encryption

Keyed Authenticated Encryption

- \bullet Confidentiality: c should always look random
- Authenticity: t is "hard to forge"
- (AE_k, AD_k) for secret k should behave like $(\$, \bot)$

Keyed Authenticated Encryption: AE Security

Definition

(AE,AD) is a secure authenticated encryption scheme ${\sf if}^1$

$$\mathbf{Adv}_{AE}^{\mathrm{ae}}(\mathcal{D}) = \left| \mathbf{Pr} \left[\mathcal{D}^{AE_k, AD_k} = 1 \right] - \mathbf{Pr} \left[\mathcal{D}^{\$, \perp} = 1 \right] \right|$$

is small. $\mathcal D$ is parametrized by: ullet Q online queries of length ℓ (nonce-respecting/misusing)

• T offline evaluations

¹ Also known as CCA3 security

• Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]

$$\Delta_{\mathcal{D}}(AE_k, AD_k; \$, \bot)$$

- Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
- ullet Internally based on tweakable blockcipher \widetilde{E}
 - ullet Tweak (N, tweak) is unique for every evaluation

$$\Delta_{\mathcal{D}}(AE_k^{\underline{\widetilde{E}_k}}, AD_k^{\underline{\widetilde{E}_k}}; \$, \bot)$$

- Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
- ullet Internally based on tweakable blockcipher \widetilde{E}
 - ullet Tweak (N, tweak) is unique for every evaluation
- Triangle inequality:

$$\Delta_{\mathcal{D}}(AE_k^{\widetilde{E}_k}, AD_k^{\widetilde{E}_k}; \$, \bot) \leq \Delta_{\mathcal{D}}(AE^{\widetilde{\pi}}, AD^{\widetilde{\pi}}; \$, \bot) + \Delta_{\mathcal{D}'}(\widetilde{E}_k^{\pm}; \widetilde{\pi}^{\pm})$$

- Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
- ullet Internally based on tweakable blockcipher \widetilde{E}
 - Tweak (N, tweak) is unique for every evaluation
- Triangle inequality:

$$\Delta_{\mathcal{D}}(AE_k^{\widetilde{E}_k},AD_k^{\widetilde{E}_k};\$,\bot) \leq \Delta_{\mathcal{D}}(AE^{\widetilde{\pi}},AD^{\widetilde{\pi}};\$,\bot) + \Delta_{\mathcal{D}'}(\widetilde{E}_k^{\pm};\widetilde{\pi}^{\pm})$$
 STPRP security of \widetilde{E}

$$\Delta_{\mathcal{D}}(AE^{\widetilde{\pi}},AD^{\widetilde{\pi}};\$,\bot)$$

• Nonce uniqueness \Rightarrow tweak uniqueness

$$\Delta_{\mathcal{D}}(AE^{\widetilde{\pi}},AD^{\widetilde{\pi}};\$,\bot)$$

- Nonce uniqueness ⇒ tweak uniqueness
- Encryption calls behave like random functions: $AE^{\widetilde{\pi}}=\$$

$$\Delta_{\mathcal{D}}(AE^{\widetilde{\pi}},AD^{\widetilde{\pi}};\$,\bot)$$

- Nonce uniqueness ⇒ tweak uniqueness
- Encryption calls behave like random functions: $AE^{\widetilde{\pi}}=\$$
- Authentication behaves like random function

$$\Delta_{\mathcal{D}}(AE^{\widetilde{\pi}}, AD^{\widetilde{\pi}}; \$, \bot)$$

- Nonce uniqueness ⇒ tweak uniqueness
- Encryption calls behave like random functions: $AE^{\widetilde{\pi}} = \$$
- Authentication behaves like random function
 - ullet Tag forged with probability at most $1/(2^n-1)$

$$\Delta_{\mathcal{D}}(AE^{\widetilde{\pi}}, \underline{AD}^{\widetilde{\pi}}; \$, \bot)$$

- Nonce uniqueness ⇒ tweak uniqueness
- Encryption calls behave like random functions: $AE^{\widetilde{\pi}}=\$$
- Authentication behaves like random function
 - \bullet Tag forged with probability at most $1/(2^n-1)$

$$\Delta_{\mathcal{D}}(AE^{\widetilde{\pi}}, AD^{\widetilde{\pi}}; \$, \bot) \le 1/(2^n - 1)$$

Tomorrow's Talk

Keyless Constructions

Hash Functions

Hash Functions: Classical Security Requirements

Find $M \neq M'$

Application: 2012 Flame virus

Preimage

Given h, find M

Application: passphrase protection

Second Preimage

Given M, find $M' \neq M$

Application: data integrity

Hash Functions from Compression Functions

Merkle-Damgård with Strengthening

- Damgård [Dam89] and Merkle [Mer89]
- ullet Consecutive evaluation of compression function F
- Length encoding at the end

Hash Functions from Compression Functions

Security of Merkle-Damgård

ullet ${\cal H}$ and ${\cal F}$ have same security models

Hash Functions from Compression Functions

Security of Merkle-Damgård

- ullet ${\cal H}$ and F have same security models
- Ideally, we want:

F is col/sec/pre secure $\Longrightarrow \mathcal{H}$ is col/sec/pre secure

• Suppose we are given a collision $\mathcal{H}(M) = \mathcal{H}(M')$

• Then, $F(h_k, \operatorname{len}(M)) = F(h'_{k'}, \operatorname{len}(M'))$

- Then, $F(h_k, \text{len}(M)) = F(h'_{k'}, \text{len}(M'))$
 - If $(h_k, \operatorname{len}(M)) \neq (h'_{k'}, \operatorname{len}(M'))$: this is an F-collision

- Then, $F(h_k, \text{len}(M)) = F(h'_{k'}, \text{len}(M'))$
 - If $(h_k, \operatorname{len}(M)) \neq (h'_{k'}, \operatorname{len}(M'))$: this is an F-collision
 - Else,

- Then, $F(h_k, \text{len}(M)) = F(h'_{k'}, \text{len}(M'))$
 - If $(h_k, \operatorname{len}(M)) \neq (h'_{k'}, \operatorname{len}(M'))$: this is an F-collision
 - Else,

- Then, $F(h_k, \text{len}(M)) = F(h'_{k'}, \text{len}(M'))$
 - If $(h_k, \operatorname{len}(M)) \neq (h'_{k'}, \operatorname{len}(M'))$: this is an F-collision
 - Else,

- Then, $F(h_k, \text{len}(M)) = F(h'_{k'}, \text{len}(M'))$
 - If $(h_k, \operatorname{len}(M)) \neq (h'_{k'}, \operatorname{len}(M'))$: this is an F-collision
 - Else, $F(h_{k-1}, M_k) = F(h'_{k-1}, M'_k)$

• Suppose we are given a collision $\mathcal{H}(M)=\mathcal{H}(M')$

- Then, $F(h_k, \text{len}(M)) = F(h'_{k'}, \text{len}(M'))$
 - If $(h_k, \operatorname{len}(M)) \neq (h'_{k'}, \operatorname{len}(M'))$: this is an F-collision
 - Else, $F(h_{k-1}, M_k) = F(h'_{k-1}, M'_k)$

• ..

• Suppose we are given a collision $\mathcal{H}(M) = \mathcal{H}(M')$

- Then, $F(h_k, \text{len}(M)) = F(h'_{k'}, \text{len}(M'))$
 - If $(h_k, \operatorname{len}(M)) \neq (h'_{k'}, \operatorname{len}(M'))$: this is an F-collision
 - Else, $F(h_{k-1}, M_k) = F(h'_{k-1}, M'_k)$

• . .

- Then, $F(h_k, \text{len}(M)) = F(h'_{k'}, \text{len}(M'))$
 - If $(h_k, \operatorname{len}(M)) \neq (h'_{k'}, \operatorname{len}(M'))$: this is an F-collision
 - Else, $F(h_{k-1}, M_k) = F(h'_{k-1}, M'_k)$
 - •
- We can find F-collision

- Let h be any range value
- ullet Suppose we are given a preimage $\mathcal{H}(M)=h$

- Let h be any range value
- \bullet Suppose we are given a preimage $\mathcal{H}(M)=h$

• Then, $F(h_k, \operatorname{len}(M)) = h$

- Let h be any range value
- ullet Suppose we are given a preimage $\mathcal{H}(M)=h$

- Then, $F(h_k, \operatorname{len}(M)) = h$
- ullet We can find $F ext{-preimage}$ for h

- \bullet Second preimage for ${\cal H}:$ easier than for F
- Kelsey and Schneier [KS05]

- ullet Second preimage for ${\cal H}$: easier than for F
- Kelsey and Schneier [KS05]
 - Assume F is an ideal function
 - ullet Let M be any preimage for ${\mathcal H}$ (forget about ${\rm len}(M)$)

- ullet Second preimage for ${\mathcal H}$: easier than for F
- Kelsey and Schneier [KS05]
 - Assume F is an ideal function
 - Let M be any preimage for \mathcal{H} (forget about $\operatorname{len}(M)$)
 - Second preimage attack complexity $\approx 2^n/k$

- ullet Second preimage for ${\cal H}$: easier than for F
- Kelsey and Schneier [KS05]
 - Assume F is an ideal function
 - Let M be any preimage for \mathcal{H} (forget about len(M))
 - Second preimage attack complexity $\approx 2^n/k$
 - ullet Work-around trick if $\operatorname{len}(M)$ is included

Compression Functions from Blockciphers/Permutations

Blockcipher Based

Permutation Based

Compression Functions from Blockciphers/Permutations

Blockcipher Based

Permutation Based

- Proofs in ideal model
 - E or P assumed to be uniformly random primitives
 - Proof via combinatorics and probability theory

- Classical approach
- PGV compression functions [PGV93]
- Used in MD5, SHA-1/2, ...

- Classical approach
- PGV compression functions [PGV93]
- Used in MD5, SHA-1/2, ...

- Classical approach
- PGV compression functions [PGV93]

- Black et al. [BRS02]
- ullet Assume that E is an ideal cipher

- Black et al. [BRS02]
- Assume that E is an ideal cipher
- ullet Adversary ${\mathcal A}$ makes Q queries to E
 - Forward query $(k, x) \rightarrow y$
 - Inverse query (k,y) o x

- Black et al. [BRS02]
- Assume that E is an ideal cipher
- ullet Adversary ${\mathcal A}$ makes Q queries to E
 - Forward query $(k, x) \rightarrow y$
 - Inverse query $(k, y) \rightarrow x$
- ullet Query (k,x,y) corresponds to $\mathsf{DM}(x,k)=x\oplus y$

- Black et al. [BRS02]
- Assume that E is an ideal cipher
- ullet Adversary ${\mathcal A}$ makes Q queries to E
 - Forward query $(k, x) \rightarrow y$
 - Inverse query $(k, y) \rightarrow x$
- Query (k, x, y) corresponds to $\mathsf{DM}(x, k) = x \oplus y$
- A must make the required queries for the attack

Collision Resistance

• Consider ith query (k, x, y) (forward or inverse)

- Consider ith query (k, x, y) (forward or inverse)
 - Response is random from set of size at least $2^n (i-1)$

- Consider *i*th query (k, x, y) (forward or inverse)
 - Response is random from set of size at least $2^n (i-1)$
 - Renders collision if $x \oplus y = x' \oplus y'$ for any earlier (k', x', y')

- Consider *i*th query (k, x, y) (forward or inverse)
 - Response is random from set of size at least $2^n (i-1)$
 - Renders collision if $x \oplus y = x' \oplus y'$ for any earlier (k', x', y')
 - There are i-1 earlier queries (k', x', y')

- Consider *i*th query (k, x, y) (forward or inverse)
 - Response is random from set of size at least $2^n (i-1)$
 - Renders collision if $x \oplus y = x' \oplus y'$ for any earlier (k', x', y')
 - There are i-1 earlier queries (k', x', y')

$$\mathbf{Pr}\left[\mathsf{collision} \ \mathsf{for} \ \mathsf{DM} \right] \leq \sum_{i=1}^{Q} \frac{i-1}{2^n - (i-1)}$$

- Consider ith query (k, x, y) (forward or inverse)
 - Response is random from set of size at least $2^n (i-1)$
 - Renders collision if $x \oplus y = x' \oplus y'$ for any earlier (k', x', y')
 - There are i-1 earlier queries (k', x', y')

$$\mathbf{Pr}\left[\text{collision for DM}\right] \leq \sum_{i=1}^{Q} \frac{i-1}{2^n - (i-1)} \leq \frac{\binom{Q}{2}}{2^n - Q}$$

Preimage Resistance

- ullet Consider any fixed target value h
- Consider ith query (k, x, y) (forward or inverse)

Preimage Resistance

- Consider any fixed target value h
- Consider ith query (k, x, y) (forward or inverse)
 - Response is random from set of size at least $2^n (i-1)$
 - Renders preimage if $x \oplus y = h$

Preimage Resistance

- Consider any fixed target value h
- Consider ith query (k, x, y) (forward or inverse)
 - Response is random from set of size at least $2^n (i-1)$
 - Renders preimage if $x \oplus y = h$

$$\mathbf{Pr}\left[\text{preimage for DM}\right] \leq \sum_{i=1}^{Q} \frac{1}{2^n - (i-1)} \leq \frac{Q}{2^n - Q}$$

- Can we prove security if E is not ideal?
- What if E is SPRP?

- Can we prove security if *E* is **not** ideal?
- What if E is SPRP?
 - Even-Mansour is SPRP

- Can we prove security if E is not ideal?
- What if E is SPRP?
 - Even-Mansour is SPRP
 - But $\mathsf{DM}^{\mathsf{EM}}(h_{\mathrm{in}}, M) = \mathsf{DM}^{\mathsf{EM}}(h_{\mathrm{in}} \oplus \delta, M \oplus \delta)$

- Can we prove security if E is not ideal?
- What if E is SPRP?
 - Even-Mansour is SPRP
 - But $\mathsf{DM}^{\mathsf{EM}}(h_{\mathsf{in}}, M) = \mathsf{DM}^{\mathsf{EM}}(h_{\mathsf{in}} \oplus \delta, M \oplus \delta)$
 - ullet E is used as keyless primitive

- Can we prove security if E is not ideal?
- What if E is SPRP?
 - Even-Mansour is SPRP
 - But $\mathsf{DM}^{\mathsf{EM}}(h_{\mathsf{in}}, M) = \mathsf{DM}^{\mathsf{EM}}(h_{\mathsf{in}} \oplus \delta, M \oplus \delta)$
 - E is used as keyless primitive
- Bottom line:
 - Be careful with choice of security model
 - Be careful with instantiation of the construction

• Similar ideas for other PGVs

- Similar ideas for other PGVs
- Additional proof tricks for double length functions

- Similar ideas for other PGVs
- Additional proof tricks for double length functions
 - "Wish lists" [LSS10]
 - "Free super queries" [LSS11]
 - Many case distinctions (up to ≈ 40 in worst case)

• Blockcipher calls require re-keying

- Blockcipher calls require re-keying
- Instead use fixed-key blockciphers, or permutations

- Blockcipher calls require re-keying
- Instead use fixed-key blockciphers, or permutations
 - Formalized by Black et al. [BCS05]

- Blockcipher calls require re-keying
- Instead use fixed-key blockciphers, or permutations
 - Formalized by Black et al. [BCS05]

- Blockcipher calls require re-keying
- Instead use fixed-key blockciphers, or permutations
 - Formalized by Black et al. [BCS05]

- Blockcipher calls require re-keying
- Instead use fixed-key blockciphers, or permutations
 - Formalized by Black et al. [BCS05]

collision: 1 query preimage: 1 query

collision: $2^{n/4}$ queries preimage: $2^{n/2}$ queries

collision: $2^{n/2}$ queries preimage: $2^{2n/3}$ queries

- Blockcipher calls require re-keying
- Instead use fixed-key blockciphers, or permutations
 - Formalized by Black et al. [BCS05]
 - More primitive calls needed
 - Similar proof techniques but more cases

collision: $2^{n/4}$ queries preimage: $2^{n/2}$ queries

collision: $2^{n/2}$ queries

preimage: $2^{2n/3}$ queries

- Blockcipher calls require re-keying
- Instead use fixed-key blockciphers, or permutations
 - Formalized by Black et al. [BCS05]
 - More primitive calls needed
 - Similar proof techniques but more cases

are the Sponges insecure?

- Blockcipher calls require re-keying
- Instead use fixed-key blockciphers, or permutations
 - Formalized by Black et al. [BCS05]
 - More primitive calls needed
 - Similar proof techniques but more cases

are the Sponges insecure? No ©!

Security of Sponge

Security of Sponge

Security of Sponge

Security of Sponge

ullet Should behave like random oracle \mathcal{RO}

- \mathcal{H} should behave like random oracle \mathcal{RO}
- Indistinguishability of random systems:

- ullet Should behave like random oracle \mathcal{RO}
- Indistinguishability of random systems:

- ullet But ${\cal H}$ is not a random system
- Distinguisher succeeds with probability 1

- ullet Should behave like random oracle \mathcal{RO}
- Indistinguishability of random systems:

- ullet But ${\cal H}$ is not a random system
- Distinguisher succeeds with probability 1
- Solution: indifferentiability

• Maurer et al. [MRH04]

- Maurer et al. [MRH04]
- \mathcal{H} is indifferentiable from \mathcal{RO} if for some simulator \mathcal{S} :

$$\Delta_{\mathcal{D}}(\mathcal{H},\mathsf{P};\mathcal{RO},\mathcal{S})$$
 is small

- Maurer et al. [MRH04]
- \mathcal{H} is indifferentiable from \mathcal{RO} if for some simulator \mathcal{S} :

$$\Delta_{\mathcal{D}}(\mathcal{H}, \mathsf{P}; \mathcal{RO}, \mathcal{S})$$
 is small

Proof idea:

Step 1. Construct a clever simulator ${\cal S}$

Step 2. Use game-playing or H-coefficient technique

- \mathcal{H} can replace \mathcal{RO} in certain scenarios
 - Single-stage only, Ristenpart et al. [RSS11]

- \mathcal{H} can replace \mathcal{RO} in certain scenarios
 - Single-stage only, Ristenpart et al. [RSS11]
- ullet Indifferentiability \Longrightarrow coll/pre/sec security

Indifferentiability of Sponge

Bertoni et al. [BDPA07]

Indifferentiability of Sponge

- Bertoni et al. [BDPA07]
- Sponge indifferentiable from random oracle

$$\Delta_{\mathcal{D}}(\mathsf{Sponge}, P; \mathcal{RO}, \mathcal{S}) \leq rac{Q^2}{2^c}$$

(with Q the total complexity)

Indifferentiability of Sponge

- Bertoni et al. [BDPA07]
- Sponge indifferentiable from random oracle

$$\Delta_{\mathcal{D}}(\mathsf{Sponge}, P; \mathcal{RO}, \mathcal{S}) \leq rac{Q^2}{2^c}$$

(with Q the total complexity)

ullet Optimal collision, preimage, second preimage security (if $c \geq 2n$)

- Similar model for keyless blockciphers
- Blockcipher behaves like ideal cipher
- Can be plugged into PGV compression functions

- Similar model for keyless blockciphers
- Blockcipher behaves like ideal cipher
- Can be plugged into PGV compression functions
- Much (!!) harder to prove

Feist el	bound	remark
Coron et al. '08 Holenstein et al. '10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 rnd (flawed) 14 rnd
Guo and Lin '15	$2^{222}q^{30}/2^n$	21 rnd (alter. key)
Dachman-Soled et al. '15	$2^{51} q^{12}/2^n$	10 rnd
Dai and Steinberger '15	$2^{23} q^8 / 2^n$	10 rnd

Feist el	bound	remark
Coron et al. '08 Holenstein et al. '10 Guo and Lin '15 Dachman-Soled et al. '15 Dai and Steinberger '15	$\begin{array}{c} 2^{18} \ q^8 \ / 2^n \\ 2^{66} \ q^{10} / 2^n \\ 2^{222} q^{30} / 2^n \\ 2^{51} \ q^{12} / 2^n \\ 2^{23} \ q^8 \ / 2^n \end{array}$	6 rnd (flawed) 14 rnd 21 rnd (alter. key) 10 rnd 10 rnd

Even-Mansour	bound	remark
Andreeva et al. '13 Lampe and Seurin '13 Guo and Lin '15	$\begin{array}{c} 2^{34}q^{10}/2^n \\ 2^{91}q^{12}/2^n \\ 2^{11}q^8/2^n \end{array}$	5 rnd (random kdf) 12 rnd 15 rnd (alter. key)

Feist el	bound	remark
Coron et al. '08 Holenstein et al. '10 Guo and Lin '15 Dachman-Soled et al. '15 Dai and Steinberger '15	$\begin{array}{cccc} 2^{18} & q^8 & /2^n \\ 2^{66} & q^{10} / 2^n \\ 2^{222} q^{30} / 2^n \\ 2^{51} & q^{12} / 2^n \\ 2^{23} & q^8 & /2^n \end{array}$	6 rnd (flawed) 14 rnd 21 rnd (alter. key) 10 rnd 10 rnd

Even-Mansour	bound	remark
Andreeva et al. '13 Lampe and Seurin '13 Guo and Lin '15	$\begin{array}{c} 2^{34}q^{10}/2^n \\ 2^{91}q^{12}/2^n \\ 2^{11}q^8/2^n \end{array}$	5 rnd (random kdf) 12 rnd 15 rnd (alter. key)

Extremely hard research question!

bound	remark
$2^{18} q^8 / 2^n$	6 rnd (flawed)
$2^{00} q^{10}/2^n$	14 rnd
$(2^{222}q^{30}/2^n)$	21 rnd (alter. key)
$2^{51} q^{12}/2^n$	10 rnd
$2^{23} q^8 / 2^n$	10 rnd
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

pointless for n=128; security up to $q\lesssim 2$ for n=256

Even-Mansour	bound	remark
Andreeva et al. '13 Lampe and Seurin '13 Guo and Lin '15	$\begin{array}{c} 2^{34}q^{10}/2^n \\ 2^{91}q^{12}/2^n \\ 2^{11}q^8 \ /2^n \end{array}$	5 rnd (random kdf) 12 rnd 15 rnd (alter. key)

Extremely hard research question!

Coron et al. '08 $2^{18} q^8 / 2^n$ 6 rnd (flawed) Holenstein et al. '10 $2^{66} q^{10} / 2^n$ 14 rnd Guo and Lin '15 $2^{222} q^{30} / 2^n$ 21 rnd (alter. key) Dai and Steinberger '15 $2^{23} q^8 / 2^n$ 10 rnd	Feist el	bound	remark
	Holenstein et al. '10 Guo and Lin '15	$ \begin{array}{c} 266 \frac{10}{q^{10}/2^n} \\ 2^{222}q^{30}/2^n \\ 2^{51}q^{12}/2^n \end{array} $	14 rnd 21 rnd (alter. key) 10 rnd

pointless for n=128; security up to $q\lesssim 2$ for n=256

Even-Mansour	bound	remark
Andreeva et al. '13 Lampe and Seurin '13 Guo and Lin '15	$ \begin{array}{c} 2^{34}q^{10}/2^{n} \\ 2^{91}q^{12}/2^{n} \\ 2^{11}q^{8}/2^{n} \end{array} $	5 rnd (random kdf) 12 rnd 15 rnd (alter. key)

security up to $q \lesssim 8$ for n=128

Extremely hard research question!

Conclusion

Recipe

- Model:
 - Keyed: usually indistinguishability
 - Keyless: indifferentiability or dedicated security model
- Technique: game-playing, H-coefficient, explicit reduction, combinatorics, . . .

Conclusion

Recipe

- Model:
 - Keyed: usually indistinguishability
 - Keyless: indifferentiability or dedicated security model
- Technique: game-playing, H-coefficient, explicit reduction, combinatorics, . . .
- Approach depends on specific scheme and application

Conclusion

Recipe

- Model:
 - Keyed: usually indistinguishability
 - Keyless: indifferentiability or dedicated security model
- Technique: game-playing, H-coefficient, explicit reduction, combinatorics, . . .
- Approach depends on specific scheme and application

Thank you for your attention!