Machine/Statistical Learning Lecture 5: Unsupervised classification K-means and Mixture models

Filière SICOM, 3A

Unsupervised classification

Assumptions

- $X \in \mathbb{R}^p$, $Y \in \{1, \dots, K\} \leftarrow K$ classes
- ▶ Training set $(x_1, ..., x_n)$ ← unknown outputs y_i

Example (p=2)

Unsupervised classification: Clustering

Objectives

- ▶ grouping similar data in the same cluster ← clustering
- For each x_i , $1 \le i \le n$, predict the class variable $Y_i \in \{1, ..., K\}$

Clustering limitations

Combinatorics problem

- ▶ Number of partitions into K classes for a sized n dataset : Stirling number of the 2nd kind S(n, K)
- Number of partitions for a sized n dataset : Bell number $B_n = \sum_{k=1}^n S(n,k)$

dataset size n	2	5	10	100	200
S(n,2) $(K=2 classes)$	1	15	511	6.3×10^{29}	8.0×10^{59}
S(n,4) $(K=4 classes)$	0	10	34105	6.7×10^{58}	1.1×10^{119}
B_n	2	52	115975	4.8×10^{115}	6.2×10^{275}

▶ Remember $\simeq 10^{80}$ atoms in the Universe...

Pb: Exhaustive search (brute-force) not possible in practice

 \square local search around initial solutions/values \rightarrow sub-optimal

Estimation problem and model selection

- ▶ possible parameters are unknown ← estimation
- ▶ Number of classes K possibly unknown \leftarrow model selection

Mixture of distributions

- ▶ Data X_1, \ldots, X_n assumed to be i.i.d. with pdf f
- ightharpoonup f is modeled as a mixture of distributions

$$f(x) = \sum_{k=1}^{K} \pi_k \phi(x; \theta_k)$$

 $\blacktriangleright \pi_1, \ldots, \pi_k$ are the relative sizes $(\sum_{k=1}^K \pi_k = 1)$ of the classes :

$$\Pr\left(Y_i = k\right) = \pi_k$$

- density ϕ is the parametric shape of a class,
- \triangleright parameters $\theta_1, \ldots, \theta_K$ are the *centroids* of the classes/clusters

Latent variable

 $Y \in \{1, \dots, K\}$ indicating the class of the r.v. X

- ▶ $Y \sim \text{discrete distribution s.t. } \Pr(Y_i = k) = \pi_k, \quad k = 1, \ldots, K$
- ► $X|Y = k \sim \text{distribution with pdf } \phi(\cdot|\theta_k)$

Gaussian mixture model

- ▶ Class centroid : $\theta = (\mu \leftarrow \text{mean}, \Sigma \leftarrow \text{covariance matrix})$
- ▶ Density ϕ of a class: multivariate normal distribution $\mathcal{N}(\mu, \Sigma)$ pdf

$$\phi(x; \mu, \Sigma) = (\det(2\pi\Sigma))^{-1/2} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

• Mixture density $f(x) = \sum_{k=1}^{K} \pi_k \phi(x; \mu_k, \Sigma_k)$

Example (p=2, K=5)

Mixture density f

n = 500 realizations

Cost based approximation : K-means

Pb: no simple expression of the Gaussian mixture parameter estimators

several approximations can be conducted to obtain a simple deterministic cost criterion

First approximation: euclidean distance

Replace the Mahalanobis distance in the Gaussian density by the simpler euclidean one

$$(x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) \to ||x - \mu_k||^2$$
, (i.e. $\Sigma_k = I_p$),

cluster centroid for the kth class reduces to $\theta_k = \mu_k \leftarrow$ mean vector

Cost based approximation: K-means (Cont'd)

- Pb: no straightforward expression of the Gaussian mixture parameter estimators
 - several approximations can be conducted to obtain a simple deterministic cost criterion

Second approximation: hard thresholding

Binarize the posterior probabilities: for each data point x_i ,

$$t_{i,k} \equiv \Pr(Y_i = k | x_i, \theta) = \begin{cases} 1 & \text{if } k = \arg\min_{1 \le j \le k} \|x_i - \mu_k\|, \\ 0 & \text{otherwise.} \end{cases}$$

 $Csq: x_i$ belongs with certainty to the class whose centroid is the closest

- make hard thresholding clustering
- deterministic model

Cost criterion : K-means clustering

Notations

For a given clustering Y, let

- ▶ $n_k = \#\{i \mid Y_i = k\}$ is the size of the kth cluster,
- $\hat{\mu}_k = \frac{1}{n_k} \sum_{i|Y_i=k} x_i$ is the sample mean of the points assigned in the kth cluster

Under the previous approximations, maximizing the resulting "log-likelihood" reduces to the following optimization problem :

K-means cost criterion

Minimize
$$J(Y) = \sum_{k=1}^{K} \sum_{i=1}^{n} t_{i,k} ||x_i - \widehat{\mu}_k||^2,$$

$$= \sum_{k=1}^{K} \sum_{i|Y_i = k} ||x_i - \widehat{\mu}_k||^2,$$

J(Y) is the sum of within-cluster dispersions

Equivalent cost criterion

(negative) Sum of between-cluster dispersions

$$J(Y) = -\sum_{k=1}^{K} n_k ||\widehat{\mu}_k - m||^2 + \text{constant},$$

where $m = \frac{1}{n} \sum_{i=1}^{n} x_i$ is the total mean.

- \blacksquare Minimizing the within-cluster dispersion \Leftrightarrow Maximizing the between-cluster dispersion
- General property of clustering algorithms

Proof: let $S_T = \sum_{j=1}^n (x_j - m)^T (x_j - m) = \sum_{k=1}^K \sum_{i|Y_i = k} ||x_i - m||^2$ be the total dispersion.

- ▶ Replace x_i by $x_i \widehat{\mu}_k + \widehat{\mu}_k$, and expand S_T
- Show that $S_T = J(Y) + \sum_{k=1}^K n_k \|\widehat{\mu}_k m\|^2$ (i.e. the cross product equals zero), and conclude by noting that S_T does not depend on Y

K-means : cost criterion optimization

Enlarged optimization problem

$$\min_{Y,\mu} J(Y,\mu) = \sum_{k=1}^{K} \sum_{i|Y_i = k} \underbrace{\|x_i - \mu_k\|^2}_{J_k},$$

 \triangleright J_K is the quadratic error for the kth cluster

Remarks

- ▶ For a given Y, $\min_{\mu} J(Y, \mu) = J(Y, \widehat{\mu}) \equiv J(Y)$
- ▶ For a given μ , exchanging $Y_i = k$ with $Y_i^* = l$ changes the two quadratic errors

$$\begin{bmatrix} J_k^{\star} &= J_k - ||x_i - \mu_k||^2, \\ J_l^{\star} &= J_l + ||x_i - \mu_l||^2, \end{bmatrix}$$

Thus $J(Y, \mu)$ is decreased if

$$J_l^{\star} - J_l \leq J_k - J_k^{\star}$$

$$\Leftrightarrow ||x_i - \mu_l||^2 \leq ||x_i - \mu_k||^2,$$

$$\Leftrightarrow x_i \text{ is closer} \quad \text{(euclidean distance) from the class } l \text{ center,}$$

K-means algorithm

- ▶ Require : *K* the number of clusters.
- ▶ Initialization : Set the centroid μ_k , $1 \le k \le K$, to a starting value $\mu_k^{(0)}$,
- ▶ For $t = 1 \rightarrow \dots$ until convergence (i.e. $\mu_k^{(t)} = \mu_k^{(t-1)}$)
 - 1. Assignment step: assign x_i to the class of the closest center

$$Y_i^{(t)} = \arg\min_{k=1,...,K} \left\| x_i - \mu_k^{(t-1)} \right\|^2, \quad \text{for } i = 1,...,n$$

2. **Update step**: update the centroids μ_k , for k = 1, ..., K

$$\mu_k^{(t)} = \arg\min_{\mu_k} \sum_{i|Y_i^{(t)} = k} ||x_i - \mu_k||^2 = \frac{1}{n_k^{(t)}} \sum_{i|Y_i^{(t)} = k} x_i,$$

i.e. $\mu_k^{(t)}$ is the sample mean of the kth cluster

Convergence of K-means algorithm

Convergence

- each step decreases the criterion,
- ▶ there is a (huge) finite number of partitions,
- the algorithm converges to a solution (in a finite number of steps)

But no guaranty of the solution optimality (depend on the initialization)...

Stopping criterion

K-means usually very fast for a small/moderate number of clusters K, but

- \triangleright running time increases with the number of clusters K
- in the worst case, can be very slow to converge even for K=2,

Thus, to shorten the computational time, the algorithm can be stopped when the cost criterion does not decrease significantly

Variants/Improvements of K-means algorithm

Initialization heuristics

- Forgy method
 - pick randomly K observations from the dataset as initial centers,
 - ▶ run K-means algorithm with these starting values
 - ▶ repeat these 2 steps several times and retain the best (cost sense) clustering
- ▶ lot of variants: Random partitions, k-means++, power init.
- may lower the computation time of one run,
- so can give some guaranties that the solution is competitive w.r.t. to the optimal one.

Choice of the distance

- ▶ Standard K-means based on the squared ℓ_2 (euclidean) distance.
- ▶ Other distance can be considered : e.g. using ℓ_1 distance yields the K-medians algorithm where the cluster centroid becomes the median (Exercice : show this, cf 2015-16 exam statement)

K-means initilization

Sensitivity to initialization/data geometry/number of classes

a) set of points $x_i \in \mathbb{R}^p$ (p=2) to classify, b) and c) two clusterings in K=2 classes with different initial centers, d) clustering in K=3 classes.

K-means

Prediction vs Clustering

- ightharpoonup the points x_1,\ldots,x_n are grouped according to the color of the regions
- ▶ Prediction : performance on *new* data is what matters
- ▶ Clustering : performance on *current* data is what matters

EM (Expectation-Maximization) algorithm

EM method is a general and important tool of statistical analysis :

- method for finding maximum likelihood (ML) or maximum a posteriori (MAP) estimates of parameters in statistical models, by maximizing iteratively the log-likelihood
- ightharpoonup introduction of unobserved latent variables Z to decompose the optimization problem in simpler sub-problems in an iterative way
- ► EM iteration alternates between performing an expectation (E) step, and a maximization (M) step

EM (Expectation-Maximization) principle

- \triangleright Z is a latent variable,
- Objective : maximize $\ell(\theta) = \log p(x|\theta)$

Sketch of EM algorithm

▶ E step: compute the expectation of the completed log-likelihood function evaluated using the current estimate for the parameter

$$\begin{split} Q\left(\theta, \theta^{(t-1)}\right) &= E_{Z|X, \theta^{(t-1)}} \left[\log p(x, z|\theta)\right], \\ &= \int p(z|x, \theta^{(t-1)}) \log p(x, z|\theta) dz \end{split}$$

▶ M step : compute parameters maximizing the expected log-likelihood

$$\theta^{(t)} = \arg\max_{\theta} Q\left(\theta, \theta^{(t-1)}\right),$$

• Repeat until convergence of the $\theta^{(t)}$ sequence

Application of EM to mixture models: E step

Introducing the latent variables Y_i , or equivalently, the binary variables

$$z_{ik} = \begin{cases} 1 & \text{if } Y_i = k, \\ 0 & \text{otherwise,} \end{cases}$$

the likelihood completed with the r.v. z_{ik} reads

$$p(x_{1},...,x_{n},z|\theta) = \prod_{i=1}^{n} p(x_{i},z|\theta) = \prod_{i=1}^{n} \prod_{k=1}^{K} \pi_{k} \phi(x_{i}|\theta_{k})^{z_{ik}},$$

$$\Rightarrow \log p(x_{1},...,x_{n},z|\theta) = \sum_{i=1}^{n} \sum_{k=1}^{K} z_{ik} \log [\pi_{k} \phi(x_{i}|\theta_{k})],$$

$$\Rightarrow Q\left(\theta,\theta^{(t-1)}\right) = \sum_{i=1}^{n} \sum_{k=1}^{K} \underbrace{E\left[z_{ik}|x_{i},\theta^{(t-1)}\right]}_{t_{ik}^{(t-1)}} \log (\pi_{k} \phi(x_{i}|\theta_{k}))$$
where $t_{ik}^{(t-1)} = \Pr\left(Y_{i} = k \mid x_{i},\theta^{(t-1)}\right) = \frac{\pi_{k}^{(t-1)} \phi(x_{i}|\theta^{(t-1)})}{\sum_{k=1}^{K} \pi_{k}^{(t-1)} \phi(x_{i}|\theta^{(t-1)})}$

Gaussian mixture models: M step

Find
$$\theta \equiv \theta^{(t)}$$
 maximizing $Q\left(\theta, \theta^{(t-1)}\right) = \sum_{i=1}^{n} \sum_{k=1}^{K} t_{ik}^{(t-1)} \log\left[\pi_k \phi(x_i | \theta_k)\right]$

▶ For any mixture model (i.e. $\forall \phi$):

$$\pi_k^{(t)} = \frac{1}{n} \sum_{i=1}^n \theta^{(t-1)}$$

▶ For a Gaussian mixture model $\theta = \{\mu_k, \Sigma_k\}$ and

$$\mu_k^{(t)} = \frac{\sum_{i=1}^n t_{ik}^{(t-1)} x_i}{\sum_{i=1}^n t_{ik}^{(t-1)}},$$

$$\Sigma_k^{(t)} = \frac{\sum_{i=1}^n t_{ik}^{(t-1)} \left(x_i - \mu_k^{(t)}\right) \left(x_i - \mu_k^{(t)}\right)^T}{\sum_{i=1}^n t_{ik}^{(t-1)}},$$

- empirical averages weighted by the posterior probability in $\theta^{(t-1)}$, $t_{ik}^{(t-1)} \equiv \Pr\left(Y_i = k \mid x_i, \theta^{(t-1)}\right)$
- soft-thresholding algorithm

EM algorithm for Gaussian mixture models

EM clustering

- ▶ Initialize $\pi_k^{(0)}$, $\mu_k^{(0)}$, $\Sigma_k^{(0)}$, for k = 1, ..., K
- For $t = 1, \dots$ until convergence

(E) for
$$i = 1, ..., n, k = 1, ..., K$$
, compute $t_{ik}^{(t-1)} \equiv \Pr\left(Y_i = k \mid x_i, \theta^{(t-1)}\right)$

(M) for
$$k = 1, ..., K$$
, compute $\pi_k^{(t)}, \mu_k^{(t)}, \Sigma_k^{(t)}$

Prediction/Correction structure

- ► E step ⇔ prediction step
- ► M step ⇔ update/correction step

Convergence

- ▶ EM : convergence toward a local maximum of the log-likelihood
- on guaranty of convergence toward the optimal solution (depend on the initial values)..

Gaussian mixture model and EM algorithm

Prediction vs Clustering

- the points x_1, \ldots, x_n are grouped according to the color of the regions
- ▶ Prediction : performance on *new* data is what matters
- ightharpoonup Clustering : performance on current data is what matters

Gaussian mixture model and EM algorithm

Estimation of the mixture density f

True density of the data points x_1, \ldots, x_n

Estimated density with EM (K = 3 classes)

Comparison K-means vs Algo EM

2 classes with overlapping and very different dispersions (covariances Σ_k)

Data x_1, \ldots, x_n , classes and true 95% confidence regions

Clustering with EM (K = 2) and estimated 95% confidence regions

Comparison K-means vs Algo EM

2 classes with overlapping and very different dispersions (covariances Σ_k)

Data x_1, \ldots, x_n , classes and true 95% confidence regions

Classification with K-means (K=2)

Model selection : estimation of K

Minimization of a penalized log-likelihood criterion

$$C(K) = -\hat{l}(x; K) + \text{pen}(K, n)$$

▶ $\hat{l}(x;K) \equiv l(x;\hat{\theta}_K,K)$ with $\hat{\theta}_K$ the MLE of the model parameters with K classes (profile log-likelihood w.r.t K)

Trade-off between two terms to minimize

- $-\hat{l}(x;K)$: fidelity to the data (likelihood)
- ightharpoonup pen(K, n): low complexity of the model

Model selection: BIC criterion

Bayesian Information Criterion (BIC)

Asymptotic $(n \gg m_K)$ criterion for Bayesian models (i.e. with a prior on the model parameters)

$$pen(K, n) = \frac{1}{2}m_K \log(n)$$

- \triangleright n is the size of the data
- \triangleright m_K is the effective number of parameters for the K class model

Equivalent to minimize the following criterion

$$BIC(K) = -2\hat{l}(x; K) + m_K \log(n)$$

Model selection : estimation of K

Example of synthetic data generated according to a mixture of K=3 Gaussians

Model selection : estimation of K

Gaussian mixture :
$$m_K = \underbrace{K-1}_{\pi_1,\dots,\pi_{K-1}} + K \times \underbrace{p}_{\mu_k} + K \times \underbrace{\frac{p(p+1)}{2}}_{\Sigma_h}$$

BIC criterion w.r.t. K

$$\Rightarrow \hat{K} = 2 \text{ or } \hat{K} = 3 \text{ (true value } K = 3)$$