Considérons la fonction f définie sur  $\mathbb R$  par  $f(x)=x\mathrm{e}^x-4\mathrm{e}^x$ . On se propose d'étudier cette fonction.

- **a.** Étudiez le signe de f(x).
- **b.** Calculez f'(x).
- **c.** Dressez le tableau de variation de f.



- ${f d}.$  Tracez la tangente à la courbe représentative de f au point d'abscisse 0.
- ${f e}.$  Tracez la courbe représentative de f à main levée.

Étudiez la fonction f définie sur  $\mathbb R$  par  $f(x)=xe^x-e$  .

- **a.** On se propose de montrer que f(x) change de signe en 1. Justifiez que si x>1, alors  $\mathrm{e}^x>\mathrm{e}$  et en déduire  $x\mathrm{e}^x>\mathrm{e}$ . Conclure.
- **b.** Calculez f'(x).
- **c.** Dressez le tableau de variation de f.
- **d.** Montrez que si x < 0 alors  $f(x) < -\mathrm{e}$ . Tracez la droite d'équation  $x = -\mathrm{e}$
- $\mathbf{e.}$  Tracez la tangente à la courbe représentative de f au point d'abscisse 0.
- ${f f.}$  Tracez la courbe représentative de f à main levée.



**Propriétés :**  $x \longmapsto \exp(-x)$  est dérivable sur  $\mathbb R$  et sa dérivée est  $-\exp(-x)$ .

$$(\exp(-x))' = -\exp(-x)$$

Calculez les dérivées de f et g définies sur  $\mathbb R$  par  $f(x)=rac{e^x}{e^x+1}$  et  $g(x)=rac{e^{-x}}{1+e^{-x}}$ .

E4 On considère la fonction f définie sur  $\mathbb R$  par

$$f(x)=rac{x^2}{e^{x-2}}$$

- **a.** Déterminez le signe de f(x).
- **b.** Calculez f'(x).
- ${f c.}$  Dressez le tableau de variation de f.
- **d.** Déterminez les extremums locaux de f.
- **e.** Déterminez une équation réduite de la tangente en 5 à la courbe représentative de f. (on prendra  $e^3 \approx 20$ ).
- ${f f.}$  Tracez la courbe représentative de f à main levée.



On considère la fonction f définie sur  $\mathbb R$  par  $f(x)=rac{\mathrm e^x}{1+\mathrm e^x}$  .

- **a.** Étudiez le signe de f(x).
- **b.** Montrez que  $f(x)=rac{1}{1+{
  m e}^{-x}}$  .
- **c.** En déduire que f(x) < 1.
- **d.** Calculez f'(x).
- **e.** Dressez le tableau de variation de f.
- ${f f.}$  Tracez la tangente à la courbe représentative de f au point d'abscisse 0.
- ${\bf g.}$  Tracez la courbe représentative de f à main levée.



**Propriétés :** Soient a et b deux réels. Soit f la fonction définie sur  $\mathbb R$  par  $f(x)=\mathrm e^{ax+b}$ . Alors f est dérivable sur  $\mathbb R$  et  $f'(x)=a\mathrm e^{ax+b}$ .

Étudiez la fonction f définie sur  $\mathbb R$  par  $f(x)=x\mathrm{e}^{-2x+1}$  .