

Universidade Tecnológica Federal do Paraná Câmpus Cornélio Procópio Departamento Acadêmico de Matemática

Notas de Aula

Dados de Identificação		
Professor:	Matheus Pimenta	
Disciplina:	Geometria Analítica e Álgebra Linear - EC31G	

1 Sistema de Coordenadas

1.1 Coordenadas de um Ponto no Plano

Em 1619, o filósofo e matemático francês René Descartes (1596-1650) percebeu que a ideia de determinar posições utilizando retas, escolhidas como referência, poderia ser aplicado à matemática. Para isso usou retas numeradas.

Descartes resolveu este problema usando duas retas numeradas, perpendiculares, cortandose na origem. Usualmente, uma dessas retas é horizontal, com a direção positiva para a direita. Esta reta será chamada eixo x ou eixo das abscissas. A outra reta, vertical com a direção positiva para cima, é chamada eixo y, ou eixo das ordenadas.

cada ponto P do plano fica associado um par de números (x,y), que são as coordenadas deste ponto. O número x é chamado abscissa desse ponto, e o número y é a sua ordenada. O número x mede a distância orientada do ponto P ao eixo y, e o número y mede a distância orientada do ponto P ao eixo x.

Se P tem coordenadas x e y escrevemos P(x, y).

FIGURA 01 - PLANO CARTESIANO

Todo ponto P determina um par ordenado de números reais e reciprocamente, todo par ordenado de números reais (a,b) determina um único ponto do plano. Temos então uma correspondência biunívoca entre os pontos do plano e os pares ordenados de números reais. Uma correspondência desse tipo é chamada um sistema de coordenadas no plano ou sistema de coordenadas cartesianas.

O eixo das abscissas e o eixo das ordenadas, usualmente colocados na posição indicada na figura abaixo, dividem o plano em quatro regiões, denominadas quadrantes.

FIGURA 02 - PLANO CARTESIANO COM QUADRANTES

O primeiro quadrante é o conjunto de todos os pontos (x, y) do plano para os quais x > 0 e y > 0; o segundo quadrante é o conjunto de todos os pontos (x, y) do plano para os quais x < 0 e y > 0; no terceiro temos x < 0 e y < 0 e, no quarto, x > 0 e y < 0.

Como a correspondência entre os pontos do plano e o conjunto de pares ordenados de números reais é biunívoca, em geral, nos referimos a um ponto P como o ponto (1,2) ou o ponto (x,y) quando, na realidade queremos nos referir ao ponto P cujas coordenadas são (1,2) ou (x,y).

1.2 Coordenadas de um Ponto no Espaço

Sistema cartesiano ortogonal no espaço: no espaço tridimensional adiciona-se um terceiro eixo, o eixo z ou eixo das cotas. Os três eixos: ordenada, abscissa e cota, dividem o espaço em oito partes chamadas de octantes ou oitantes.

No espaço um ponto fica caracterizado por uma tripla, chamada de terna:

$$P = (x, y, z)$$

FIGURA 03 - ESPAÇO

Dimensões maiores: para quatro ou mais dimensões os eixos adicionais não tem mais nomes, mas a propriedade deles serem ou não ortogonais para definirmos sistemas de coordenadas ortogonais ou não continua válida.

As seguintes observações são válidas:

- a origem do sistema de eixos ortogonais é o ponto O = (0,0,0);
- os eixos do sistema são os conjuntos:

$$eixo - OX = \{(x, 0, 0); x \in \mathbb{R}\}\$$

 $eixo - OY = \{(0, y, 0); y \in \mathbb{R}\}\$
 $eixo - OZ = \{(0, 0, z); z \in \mathbb{R}\}\$

• os planos cartesianos são os conjuntos:

$$\pi_{XY}=\{(x,y,0);x,y\in\mathbb{R}\}$$
ou seja, $\pi_{XY}:z=0$
$$\pi_{XZ}=\{(x,0,z);x,z\in\mathbb{R}\}$$
ou seja, $\pi_{XZ}:y=0$
$$\pi_{YZ}=\{(0,y,z);y,z\in\mathbb{R}\}$$
ou seja, $\pi_{YZ}:x=0$

Um sistema de coordenadas cartesianas no espaço ε permite descrever todos os subconjuntos do espaço por meio das coordenadas de seus pontos.

2 Matrizes

Aparecem na resolução de problemas, pois ordenam e simplificam dados, fornecendo métodos de resolução.

Exemplo: Uma indústria de roupas necessita das seguintes matéria prima: golas, malha, ribana, botão e linha ou estampa, bordado e corte.

O primeiro padrão de produção é o seguinte:

	Camisa	Polo	Camiseta	Regata
Linha	1	1	1	1
Golas	1	1	0	0
Malha	3	2	2	1
Ribana	0	0	1	1
Botão	10	2	0	0

Um segundo padrão de produção é o seguinte

	Camisa	Polo	Camiseta	Regata
Estampa	0	1	2	1
Bordado	1	1	1	0
Corte	5	5	4	3

Reescrevendo em forma matricial:

O padrão 1 é o seguinte: $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 3 & 2 & 2 & 1 \\ 0 & 0 & 1 & 1 \\ 10 & 2 & 0 & 0 \end{bmatrix}$

O padrão 2 é o seguinte: $\begin{bmatrix} 0 & 1 & 2 & 1 \\ 1 & 1 & 1 & 0 \\ 5 & 5 & 4 & 3 \end{bmatrix}$

Definição 2.1 (Matriz) Uma matriz é um conjunto de elementos dispostos em m linhas e n colunas:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ a_{31} & a_{32} & \dots & a_{3n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

2.1 Tipos de Matrizes

Considere uma matriz com m linhas e n colunas, denotada por $A_{m \times n}$.

2.1.1 Matriz Quadrada

É quando m=n e então dizemos que A é de ordem m.

Exemplo:

$$\begin{bmatrix}
3 & 6 & 32 \\
5 & 8 & 0 \\
6 & 12 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}$$

2.1.2 Matriz Nula

Todos os elementos são nulos, ou seja, $a_{ij} = 0$.

Exemplo:

$$\left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \qquad \left[\begin{array}{ccc} 0 & 0 \\ 0 & 0 \end{array}\right] \qquad \left[\begin{array}{ccc} 0 \end{array}\right]$$

2.1.3 Matriz Coluna

Ocorre quando n = 1 e m é qualquer.

Exemplo:

$$\begin{bmatrix} 0 \\ 2 \\ 6 \\ 9 \\ 1 \end{bmatrix}$$

2.1.4 Matriz Linha

Ocorre quando m = 1 e n é qualquer.

Exemplo:

2.1.5 Matriz Diagonal

É no caso quando:

• m=n;

• $a_{ij} = 0$ para todo $i \neq j$

Exemplo:

$$\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 32 & 0 \\
0 & 0 & 1
\end{array}\right]$$

 $\left[\begin{array}{cc} 3 & 0 \\ 0 & 7 \end{array}\right]$

2.1.6 Matriz Identidade

Ocorre no caso:

• m=n;

• $a_{ij} = 0$ para todo $i \neq j$;

• $a_{ii} = 1$

Exemplo:

$$\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]$$

 $\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$

2.1.7 Matriz Triangular Superior

É a seguinte:

• m=n;

• $a_{ij} = 0$ para todo i > j;

$$\begin{bmatrix}
2 & 2 & 0 & -4 \\
0 & -1 & 4 & 5 \\
0 & 0 & 23 & -10 \\
0 & 0 & 0 & 3
\end{bmatrix}$$

 $\left[\begin{array}{ccc}
2 & 1 & 3 \\
0 & 7 & 2 \\
0 & 0 & 3
\end{array}\right]$

${\bf 2.1.8}\quad {\bf Matriz\ Triangular\ Inferior}$

É a seguinte:

• m=n;

• $a_{ij} = 0$ para todo i < j;

$$\begin{bmatrix}
7 & 0 & 0 & 0 \\
21 & 1 & 0 & 0 \\
4 & 3 & 3 & 0 \\
67 & -9 & 3 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
 21 & 0 & 0 \\
 1 & -5 & 0 \\
 5 & 2 & -6
 \end{bmatrix}$$

5

2.1.9 Matriz Simétrica

É a seguinte:

- \bullet m=n;
- $a_{ij} = a_{ji}$

$$\left[
 \begin{array}{cccc}
 a & b & c & d \\
 b & e & f & g \\
 c & f & h & i \\
 d & g & i & k
 \end{array}
\right]$$

2.2 Operações com Matrizes

2.2.1 Adição de Matrizes

Duas matrizes de mesma ordem $A_{m\times n}$ e $B_{m\times n}$, podem ser somadas, operando os elementos correspondentes:

$$A + B = [a_{ij} + b_{ij}]_{m \times n}$$

Exemplo

$$\begin{bmatrix} 1 & 2 & 4 \\ -3 & 2 & 7 \\ 3 & 10 & 9 \end{bmatrix} + \begin{bmatrix} 2 & 0 & 12 \\ 2 & -5 & -3 \\ 6 & 2 & -6 \end{bmatrix} = \begin{bmatrix} 3 & 2 & 16 \\ -1 & -3 & 4 \\ 9 & 12 & 3 \end{bmatrix}$$

Propriedades da Adição

Sejam A,B e C matrizes de ordem $m \times n$.

- 1. Comutativa A + B = B + A
- 2. Associativa (A+B)+C=A+(B+C)
- 3. Elemento Neutro

A + 0 = A, onde 0 é a matriz nula de ordem $m \times n$ Obs. A + (-A) = 0 onde -A é a matriz oposta

Demonstrações - Exercícios

2.2.2 Multiplicação por Escalar

Sejam $A_{m \times n}$ e $k \in \mathbb{R}$, definimos $k \cdot A = [k \cdot a_{ij}]_{m \times n}$

Exemplo:

$$2 \cdot \begin{bmatrix} 3 & 2 & 16 \\ -1 & -3 & 4 \\ 9 & 12 & 3 \end{bmatrix} = \begin{bmatrix} 6 & 4 & 32 \\ -2 & -6 & 8 \\ 18 & 24 & 6 \end{bmatrix}$$

Propriedades: Dadas as matrizes A e B de ordem $m \times n$ e números k, k_1 e $k_2 \in \mathbb{R}$, são válidas:

6

1. Distributiva k(A+B) = kA + kB

2. Distributiva

$$(k_1 + k_2)A = k_1A + k_2A$$

3. $0 \cdot A = 0_{m \times n}$, onde $0 \in \mathbb{R}$

4. Associativa

$$k_1(k_2A) = (k_1k_2)A$$

Demonstrações - Exercícios

2.2.3Multiplicação de Matrizes

Sejam $A_{m\times n}$ e $B_{n\times p}$, definimos $A\cdot B=C_{m\times p}$ onde:

$$A = [a_{ij}]_{m \times n}$$

$$B = [b_{rs}]_{n \times p}$$

$$C = [c_{uv}]_{m \times p}$$

e
$$c_{uv} = \sum_{k=1}^{n} a_{vk} \cdot b_{kv} + \dots + a_{vn} \cdot b_{nv}$$

Exemplo:
$$\begin{bmatrix} 2 & 1 \\ 4 & 2 \\ 5 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 4 & 4 \\ 5 & 7 \end{bmatrix}$$

Propriedades: Sejam A, B e C matrizes com as ordens compatíveis para a realização da multiplicação entre sí, são válidas:

1. AI = IA = A, onde I é a matriz identidade

$$2. \ A(B+C) = AB + AC$$

$$3. (A+B)C = AC + BC$$

$$4. \ (AB)C = A(BC)$$

5.
$$0 \cdot A = A \cdot 0 = 0$$

$$6. \ (AB)^t = B^t \cdot A^t$$

Obs. Em geral não é valida a comutativa: $AB \neq BA$.

Demonstrações - Exercícios

Transposição

Dada $A_{m \times n}$, podemos obter $A_{n \times m}^t$ cujas linhas de A^t são as colunas de A. A^t é chamada de matriz transposta.

7

Exemplo:

$$A = \begin{bmatrix} 2 & 2 \\ 4 & 4 \\ 5 & 7 \end{bmatrix} e A^t = \begin{bmatrix} 2 & 4 & 5 \\ 2 & 4 & 7 \end{bmatrix}$$

Propriedades:

1. A matriz A é simétrica $\Leftrightarrow A = A^t$ $\begin{bmatrix} a & b & c & d \\ b & e & f & g \\ c & f & h & i \\ d & g & i & k \end{bmatrix} = \begin{bmatrix} a & b & c & d \\ b & e & f & g \\ c & f & h & i \\ d & q & i & k \end{bmatrix}$

$$2. \ (A^t)^t = A$$

2.3 Determinante de uma Matriz

É uma função matricial que associa cada matriz quadrada a um escalar. É de grande importância para definir se uma matriz é inversível ou não.

Inicialmente tomemos algumas definições preliminares.

Definição 2.2 Seja I_n o conjunto dos n primeiros números naturais. Exemplo: $I_3 = \{1, 2, 3\}$, uma permutação em I_n é uma função bijetora $P: I_n \to I_n$.

Por I_n ser finito, P é bijetora se, e somente se, P é injetora.

Exemplo: Seja I_3 , apresente as permutações de I_3 .

Para I_3 temos 3! funções bijetoras definidas sobre I_3 , que são:

$$P(1) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad P(3) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \qquad P(5) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$
$$P(2) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \qquad P(4) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad P(6) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

No caso das linhas serem iguais, denomina-se como permutação identidade, como no caso de P(1).

Definição 2.3 (Permutações par e impar) Uma permutação é definida como par, quando o número de trocas para transformá-la na permutação identidade é um número par, analogamente, uma permutação será definida como impar, quando o número de trocas para transformá-la na permutação identidade é um número impar. Só pode-se efetuar troca de dois números por vez de lugar.

Exemplo: A permutação P(2) necessita apenas de uma troca para obter a permutação identidade, sendo assim, uma permutação ímpar.

Já a permutação P(5) necessita de duas trocas, sendo uma permutação par.

Definição 2.4 (Sinal da Permutação) O sinal de uma permutação é definido por sinal(P) = +1 se P é par e sinal(P) = -1 se P é impar.

Exemplo: As permutações P(1), P(5) e P(6) são permutações pares, enquanto as permutação P(2), P(3) e P(4) são ímpares.

Definição 2.5 (Determinante de uma Matriz) Seja $\mathbb{M}(\mathbb{K})$ o espaço vetorial de todas as matrizes quadradas de ordem n tendo escalares em um corpo \mathbb{K} e P_n o conjunto de todas as permutações de elementos de $I_n = 1, 2, 3, \ldots, n$.

Define-se a função determinante: det : $\mathbb{M}(\mathbb{K}) \to \mathbb{K}$ que associa cada matriz $A \in \mathbb{M}(\mathbb{K})$, o escalar denotado por $\det(A)$, definido por:

$$\det(A) = \sum_{P \in P_n} sinal(P) a_{1P(1)} a_{2P(2)} a_{3P(3)} \dots a_{nP(n)}$$

A soma acima deve ser realizada para todas as permutações P que pertencem ao conjunto P_n .

Exemplo: Considere uma matriz 3×3 :

$$\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix}$$

Utilizando as permutações de I_3

$P(1) = \Big($	$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array} \right)$	$P(3) = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right)$	$P(5) = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right)$
$P(2) = \Big($	$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}\right)$	$P(4) = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right)$	$P(6) = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right)$

Temos que:

$P_1(1) = 1$	$P_1(2) = 2$	$P_1(3) = 3$
$P_2(1) = 1$	$P_2(2) = 3$	$P_2(3) = 2$
$P_3(1) = 3$	$P_3(2) = 2$	$P_3(3) = 1$
$P_4(1) = 2$	$P_4(2) = 1$	$P_4(3) = 3$
$P_5(1) = 3$	$P_5(2) = 1$	$P_5(3) = 2$
$P_6(1) = 2$	$P_6(2) = 3$	$P_6(3) = 1$
$sinal(P_1) = 1$	$sinal(P_2) = -1$	$sinal(P_3) = -1$
$sinal(P_4) = -1$	$sinal(P_5) = 1$	$sinal(P_6) = 1$

Assim:

$$\det(A) = \sum_{P \in P_3} sinal(P)a_{1P(1)}a_{2P(2)}a_{3P(3)}$$

$$= sinal(P_1)a_{1P1(1)}a_{2P1(2)}a_{3P1(3)}$$

$$+ sinal(P_2)a_{1P2(1)}a_{2P2(2)}a_{3P2(3)}$$

$$+ sinal(P_3)a_{1P3(1)}a_{2P3(2)}a_{3P3(3)}$$

$$+ sinal(P_4)a_{1P4(1)}a_{2P4(2)}a_{3P4(3)}$$

$$+ sinal(P_5)a_{1P5(1)}a_{2P5(2)}a_{3P5(3)}$$

$$+ sinal(P_6)a_{1P6(1)}a_{2P6(2)}a_{3P6(3)}$$

$$= a_{11}a_{22}a_{33} + a_{13}a_{21}a_{32} + a_{12}a_{23}a_{31} - a_{11}a_{23}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33}$$

Que é a forma conhecida.

Propriedades: Segue algumas propriedades de determinantes.

- 1. Se todos os elementos de uma linha (ou coluna) de A são nulos, então $\det(A) = 0$. Já que em cada termo do cálculo do determinante há um dos elementos da linha (ou colunas) nula.
- 2. $\det(A) = \det(A^t)$ Se $A = [a_{ij}]$ e $A^t = [a_{ji}]$ as propriedades válidas para as linhas, são válidas para as colunas.
- 3. Se multiplicarmos uma linha de A por uma constante, $\det(A)$ é multiplicado pela constante.

Seja a matriz original e B a matriz obtida de A multiplicando uma linha de A por k. No det(B), em cada termo, aparece um elemento dessa linha, podemos colocar k em evidência e obter $det(B) = k \cdot det(A)$.

- 4. Ao permutar duas linhas da matriz, o determinante troca de sinal, pois alteramos a paridade do número de inversões dos índices.
- 5. Se A tem duas linhas (ou colunas) iguais, seu determinante é nulo, isto é det(A) = 0. Se trocarmos as linhas iguais o determinante é o mesmo, já que pela propriedade 4, o determinante só pode ser 0.
- 6. $\det(A \cdot B) \det(A) \cdot \det(B)$

2.3.1 Desenvolvimento de Laplace

O objetivo do Desenvolvimento de Laplace é realizar o cálculo de determinantes de matrizes de ordem n, no caso $\det(A)_{n\times m}$.

Anteriormente já mostramos que se A possui ordem 3, então seu determinante é:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = a_{11}a_{22}a_{33} + a_{13}a_{21}a_{32} + a_{12}a_{23}a_{31} - a_{11}a_{23}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33}$$

Pode-se escrever como:

$$a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

Ou ainda:

$$a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Então $\det(A)_{3\times 3}$ pode ser expresso em função dos determinantes das submatrizes 2×2 .

$$\det A = a_{11}|A_{11}| - a_{12}|A_{12}| + a_{13}|A_{13}|$$

onde A_{ij} é a submatriz onde a i-esima linha e a j-esima coluna da matriz original foram retiradas.

Se $\Delta_{ij} = (-1)^{i+j} |A_{ij}|$, obtemos: $\det(A) = a_{11} \Delta_{11} + a_{12} \Delta_{12} + a_{13} \Delta_{13}$. Generalizando,

$$\det(A) = a_{ij}\Delta_{ij} + \dots + a_{in}\Delta_{in}$$

Exemplo: Calcule o determinante das matrizes abaixo:

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & -1 \\ -2 & -1 & 2 \end{bmatrix}$$

$$B = \begin{bmatrix} -5 & 2 & 3 & -4 \\ 0 & 2 & 0 & 0 \\ -5 & 2 & -3 & 0 \\ -8 & 5 & 3 & 1 \end{bmatrix}$$

2.3.2 Matriz dos Cofatores e Matriz Adjunta

Dada a matriz A, chamamos de cofator o elemento Δ_{ij} definido anteriormente.

Calculando Δ_{ij} para todos elementos a_{ij} de A, temos a matriz de cofatores. Notação \overline{A} .

Exemplo: Calcule a matriz de cofatores de A.

$$A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 1 & 4 \\ 1 & 6 & 5 \end{bmatrix}$$

Já a Matriz Adjunta de A é a transposta da matriz dos cofatores.

A adjunta da matriz do exemplo anterior é a seguinte:

$$A = \begin{bmatrix} -19 & -5 & 4\\ 19 & 10 & -8\\ -19 & -11 & 5 \end{bmatrix}$$

Ao efetuarmos $A \cdot Adj(A)$ temos:

$$\begin{bmatrix} -19 & 0 & 0 \\ 0 & -19 & 0 \\ 0 & 0 & -19 \end{bmatrix} = -19 \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = -19 \cdot Id_3$$

Obs. $\det(A) = -19$

Teorema 2.1 $A \cdot Adj(A) = \det(A) \cdot Id_n$

2.4 Matriz Inversa

Definição 2.6 (Matriz Inversa) Dada a matriz quadrada A de ordem n, chamamos de inversa de A uma matriz A^{-1} tal que:

$$A \cdot A^{-1} = A^{-1} \cdot A = I_n$$

11

Exemplo: Determine a inversa da matriz A:

$$A = \begin{bmatrix} 6 & 2 \\ 11 & 4 \end{bmatrix}$$

Obs.:

1. Se A e B são matrizes quadradas inversíveis então:

$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$

- 2. A inversa de A é única.
- 3. Nem toda matriz A tem inversa, pois o sistema pode não ter solução.

Exemplo: $A = \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}$

Demonstração 1 (Propriedade 1)

Demonstração 2 (Propriedade 2)

Demonstração 3 (Propriedade 3)

Concluímos que para que exista a inversa A^{-1} , $\det(A) \neq 0$

Teorema 2.2 Se A pode ser reduzida à Id por uma sequência de operações elementares, então A^{-1} é obtida a partir de Id pela mesma sequência de operações elementares. São operações elementares:

- Permutar linhas;
- Multiplicar uma linha por $k \in \mathbb{R}$, sendo $k \neq 0$;
- ullet Somar linhas multiplicadas por k

Exemplo 01: Determine A^{-1} :

$$A = \begin{bmatrix} 6 & 2 \\ 11 & 4 \end{bmatrix}$$

Exemplo 02: Determine
$$B^{-1}$$
:
$$B = \begin{bmatrix} 2 & -3 & 7 \\ 1 & 0 & 3 \\ 0 & 2 & -1 \end{bmatrix}$$

3 Sistemas de Equações Lineares

3.1 Conceito de Equações Lineares e Sistema de Equações Lineares

3.1.1 Equações Lineares

Para que uma equação seja considerada linear deverá ser escrita da seguinte forma:

$$a_1x_1 + a_2x_2 + a_3x_3 + \cdots + a_nx_n = b$$

Onde os elementos $a_1, a_2, a_3, \ldots, a_n$ são os coeficientes da equação, enquanto $x_1, x_2, x_3, \ldots, x_n$ são as incógnitas da equação e o termo b é chamado de termo independente.

O valor de b é qualquer valor real, quando b=0 dizemos que é uma equação linear homogênea.

A solução dessa equação será dada por um conjunto que ao ser substituído, transforme a equação $a_1x_1 + a_2x_2 + a_3x_3 + \cdots + a_nx_n = b$ em verdade.

Exemplo 01: Dado o conjunto solução S = (0, 1, 2) e a equação linear $-2x_1 + x_2 + 5x_3 = 11$. Verifique que S é solução da equação dada.

3.1.2 Sistemas Lineares

Quando temos um conjunto de equações lineares, dizemos que temos um sistema de equações lineares, ou apenas sistema linear.

Definição 3.1 (Sistema Linear) Um sistema de equações lineares com m equações e n incógnitas é um conjunto do tipo:

$$\begin{cases}
 a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
 a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
 & \vdots \\
 a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n
\end{cases}$$
(1)

 $com \ a_{ij} \ onde \ 1 \leq i \leq m \ e \ 1 \leq j \leq n.$

A solução é uma n-upla (x_1, x_2, \ldots, x_n) que satisfaz as equações simultaneamente.

OBS: Dois sistemas são equivalentes se, e somente se, toda solução de um é também solução de outro

Podemos escrever o sistema (1) através de matrizes, em sua forma matricial.

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

ou ainda $A \cdot X = B$

Onde:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

é a matriz dos coeficientes,

$$X = \left[\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right]$$

é a matriz das incógnitas e

$$B = \left[\begin{array}{c} b_1 \\ b_2 \\ \vdots \\ b_n \end{array} \right]$$

é a matriz dos termos independentes.

Uma outra matriz que pode ser associada ao sistema é a $matriz \ ampliada$ do sistema, definida como segue:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} & b_n \end{bmatrix}$$

Onde cada linha é uma representação abreviada da equação correspondente do sistema. **Exemplo 02:** Considere o seguinte sistema linear.

$$\begin{cases} 2x + y + z = 8 \\ x + y + 4z = 15 \\ 3y + 2z = 9 \end{cases}$$

Escreva as matrizes dos coeficientes, das incógnitas, dos termos independentes e a matriz ampliada.

3.1.3 Operações Elementares

São três operações elementares sobre as linhas de uma matriz.

1. Permuta das *i-ésima* e *j-ésima* linha. $(L_i \leftrightarrow L_j)$ Exemplo: $L_2 \leftrightarrow L_3$

$$\begin{bmatrix} 2 & -3 & 7 \\ 1 & 0 & 3 \\ 0 & 2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -3 & 7 \\ 0 & 2 & -1 \\ 1 & 0 & 3 \end{bmatrix}$$

2. Multiplicação da *i-ésima* linha por um escalar não nulo k. $(L_i \to kL_i)$ Exemplo: $L_2 \to 2L_2$

$$\begin{bmatrix} 2 & -3 & 7 \\ 1 & 0 & 3 \\ 0 & 2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -3 & 7 \\ 2 & 0 & 6 \\ 0 & 2 & -1 \end{bmatrix}$$

3. Substituição da *i-ésima* linha mais k vezes a j-sima linha. $(L_i \to L_i + kL_j)$ Exemplo: $L_2 \to L_2 + 2L_1$

$$\begin{bmatrix} 2 & -3 & 7 \\ 1 & 0 & 3 \\ 0 & 2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -3 & 7 \\ 5 & -6 & 17 \\ 0 & 2 & -1 \end{bmatrix}$$

Se A e B são matrizes $m \times n$, dizemos que B é linha equivalente a A, se B for obtida de A através de um número finito de operações elementares sobre as linhas de A. Notação: $A \to B$ ou $A \sim B$

Teorema 3.1 Dois sistemas que possuem matrizes ampliadas equivalentes são equivalentes.

Definição 3.2 Um sistema de equações lineares pode ser classificado em relação ao número de soluções.

- 1. Um sistema de equações lineares é incompatível (ou sistema impossível S.I), se não admite nenhuma solução.
- 2. Um sistema de equações lineares que admite uma única solução é definido como compatível determinado (ou sistema possível determinado S.P.D).
- 3. Se um sistema de equações lineares tem mais de uma solução (ou infinitas soluções) ele recebe o nome de compatível indeterminado (ou sistema possível indeterminado S.P.I)

Discutir um sistema de equações lineares S significa efetuar um estudo visando classificá-lo de acordo com as definições anteriores.

Solucionar um sistema de equações lineares, significa apresentar todas as soluções.

Figura 1: Solução do sistema do Exemplo 01

Interpretação Geométrica de Sistemas de Equações Lineares 3.1.4

A solução de um sistema de equação linear pode ser analisada geometricamente.

Exemplo 01: Analise o seguinte sistema de equação linear.

$$\begin{cases} 2x + y = 5 \\ x - 3y = 6 \end{cases}$$

A solução do sistema é x = 3 e y = -1

Como o sistema tem solução única, esta é representada pela intersecção das retas cujas equações gerais são: 2x + y = 5 e x - 3y = 6

Exemplo 02: Analise o seguinte sistema de equação linear.

$$\begin{cases} 2x + y = 5 \\ 6x + 3y = 15 \end{cases}$$

A solução do sistema é $x=-\frac{1}{2}y+\frac{5}{2}$ e $y=\lambda\in\mathbb{R}$. Como o sistema tem infinitas soluções, estas são representadas pela intersecção das retas cujas equações gerais são: 2x + y = 5 e 6x + 3y = 15 (retas coincidentes).

Figura 2: Solução do sistema do Exemplo 02

Exemplo 03: Analise o seguinte sistema de equação linear.

$$\begin{cases} 2x + y = 5\\ 6x + 3y = 10 \end{cases}$$

O sistema não tem solução. De fato, as retas cujas equações gerais são: 2x + y = 5 e 6x + 3y = 10 são paralelas (não coincidentes).

Figura 3: Solução do sistema do Exemplo 03

No caso de sistemas lineares com mais de duas incógnitas as equações representam planos e outras figuras geométricas. A solução existirá na interseção destes planos.

Considere o seguinte sistema de equações lineares com três incógnitas.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{n2}x_2 + a_{33}x_3 = b_3 \end{cases}$$

cada equação representa um plano no espaço tridimensional. Desta forma os planos π_1 , π_2 e π_3 são os planos definidos pelas equações do sistema. Assim, as soluções do referido sistema pertencem à interseção destes planos, isto é, $\pi_1 \cap \pi_2 \cap \pi_3$.

Se pelo menos dois desses planos são paralelos, ou se dois deles intersectam o terceiro segundo retas paralelas, a interseção $\pi_1 \cap \pi_2 \cap \pi_3$ é vazia e o sistema é impossível.

Se os três planos se intersectam em uma reta r, isto é, se $\pi_1 \cap \pi_2 \cap \pi_3 = r$, o sistema é indeterminado e qualquer ponto da reta r é uma solução do sistema.

O sistema é determinado (solução única), quando os três planos se encontram em um único ponto.

Existem ao todo, oito posições relativas possíveis para os planos π_1 , π_2 e π_3 . Quatro dessas posições correspondem aos sistemas impossíveis e nas outras quatro, o sistema tem solução.

Caso 1: Os três planos coincidem. Neste caso o sistema é indeterminado e qualquer ponto dos planos é uma solução do sistema.

Exemplo:

$$\begin{cases} x + 2y - z = 3 \\ 2x + 4y - 2z = 6 \\ 3x + 6y - 3z = 9 \end{cases}$$

Caso 2: Dois planos coincidem e o terceiro é paralelo a eles. Neste caso o sistema é impossível.

Exemplo:

$$\begin{cases} x + 2y - z = 3 \\ 2x + 4y - 2z = 6 \\ 3x + 6y - 3z = 8 \end{cases}$$

Caso 3: Dois dos planos coincidem e o terceiro os intersecta segundo uma reta r. Neste caso o sistema é indeterminado e qualquer ponto da reta r é uma solução do sistema.

Exemplo:

$$\begin{cases} x + 2y - z = 3 \\ 2x + 4y - 2z = 6 \\ 3x + 6y + z = 9 \end{cases}$$

Caso 4: Os três planos são paralelos dois a dois. Neste caso o sistema é impossível.

Exemplo:

$$\begin{cases} x + 2y - z = 3 \\ 2x + 4y - 2z = 4 \\ 3x + 6y - 3z = 5 \end{cases}$$

Caso 5: Os planos π_1 e π_2 são paralelos e o plano π_3 os intersecta segundo duas retas paralelas. Neste caso o sistema é impossível.

Exemplo:

$$\begin{cases} x + 2y - z = 3 \\ 2x + 4y - 2z = 4 \\ x + 2y + z = 9 \end{cases}$$

Caso 6: Os três planos são distintos e tem uma reta r em comum, isto é $\pi_1 \cap \pi_2 \cap \pi_3 = r$. Neste caso o sistema é indeterminado e qualquer ponto da reta r é uma solução do sistema.

Exemplo:

$$\begin{cases} x + y + z = 1 \\ 2x - y + z = 3 \\ 5x + 2y + 4z = 6 \end{cases}$$

Caso 7: Os três planos se intersectam, dois a dois, segundo retas $r = \pi_1 \cap \pi_2$, $s = \pi_1 \cap \pi_3$ e $t = \pi_2 \cap \pi_3$, paralelas umas às outras. Neste caso o sistema é impossível.

Exemplo:

$$\begin{cases} x + 2y - 3z = 1\\ 3x + y + z = 2\\ 8x + y + 6z = 6 \end{cases}$$

Caso 8: Os três planos se intersectam em apenas um ponto. Neste caso, o sistema é possível e determinado (solução única).

19

Exemplo:

$$\begin{cases} x + 2y + 3z = 1 \\ 2x + y + z = 2 \\ 3x - y + 2z = 1 \end{cases}$$

Definição 3.3 (Forma Escada) $Uma \ matriz \ m \times n \ \acute{e} \ reduzida \ \grave{a} \ forma \ escada \ se$:

1. O primeiro elemento não nulo de uma linha não nula é 1;

- 2. Cada coluna que contém o primeiro elemento não nulo de alguma linha tem todos os seus outros elementos iguais a zero;
- 3. Toda linha nula ocorre abaixo de todas as linhas não nulas (isto é, daquelas que possuem pelo menos um elemento não nulo);
- 4. Se as linhas $1, \ldots, r$ são as linhas não nulas, e se o primeiro elemento não nulo da linha i ocorre na coluna k_i , então $k_1 < k_2 < \cdots < k_r$

Essa ultima condição impõe a forma escada à matriz. Ou seja, o número de elementos precedendo o primeiro elemento não nulo de uma linha aumentada a cada linha, até que sobrem somente linhas nulas, se houver.

Teorema 3.2 Toda matriz $A_{m \times n}$ é linha equivalente a uma única matriz linha reduzida à forma escada.

Definição 3.4 (Posto e Nulidade) Dada uma matriz $A_{m\times n}$, seja $B_{m\times n}$ a matriz-linha reduzida à forma escada linha equivalente a A. O posto de A, denotado por p, é o número de linhas não nulas de B. A nulidade de A é o número n-p.

Dada uma matriz A qualquer, para determinar seu posto é necessário encontrar sua matrizlinha reduzida à forma escada, e depois contar suas linhas não nulas. Este número é o posto de A. A nulidade é a diferença entre as columas de A e o posto.

- **Teorema 3.3** 1. Um sistema de m equações e n incógnitas admite solução se, e somente se, o posto da matriz ampliada é igual ao posto da matriz dos coeficientes.
 - 2. Se as duas matrizes têm o mesmo posto p e p = n, a solução será única.
 - 3. Se as duas matrizes têm o mesmo posto p e p < n, podemos escolher n p incógnitas, e as outras p incógnitas serão dadas em função destas.

3.1.5 Sistema de Equações Lineares Homogêneos

Um sistema linear é homogêneo se os termos independentes são todos nulos, isto é, um sistema da forma AX = 0. Neste caso, há sempre a solução nula $(x_1, x_2, ..., x_n) = (0, 0, ..., 0)$. Resta ver se tem somente a solução nula (sistema homogêneo determinado) ou se existem outras soluções (sistema homogêneo indeterminado).

Matricialmente, a última coluna da matriz ampliada sendo nula, as operações elementares sobre linhas não modifica essa situação, e por isso, muitas vezes esta coluna é omitida por economia.

Uma relação interessante entre um sistema não homogêneo AX = B e o sistema homogêneo associado AX = 0, é que se X_0 é uma solução particular do sistema não homogêneo, isto é, $AX_0 = B$, as outras soluções podem ser escritas na forma $X = X_0 + X_1$, onde X_1 é uma solução do sistema homogêneo.

3.1.6 Resolução de Sistemas de Equações Lineares

Método de Escalonamento

Definição 3.5 Diz-se que uma matriz é escalonada quando o primeiro elemento não-nulo de cada uma das suas linhas situa-se à esquerda do primeiro elemento não-nulo da linha seguinte. Além disso, as linhas que tiverem todos os seus elementos iguais a zero devem estar abaixo das demais.

Definição 3.6 Diz-se que um sistema de equações lineares é um sistema escalonado, quando a matriz aumentada associada a este sistema é uma matriz escalonada. O Método do Escalonamento para resolver ou discutir um sistema de equações lineares S consiste em se obter um sistema de equações lineares escalonado equivalente a S (equivalente no sentido de possuir as mesmas soluções que este).

Partindo do sistema S pode-se chegar a este sistema escalonado equivalente por meio das operações elementares.

Desta forma, se um sistema de equações foi escalonado e, retiradas as equações do tipo 0 = 0, então restam p equações com n incógnitas.

Se a última equação restante é da forma: $0.x_1 + 0.x_2 + \cdots + 0.x_{n-1} + 0.x_n = b_p$ onde $b_p \neq 0$, então o sistema de equações é impossível – S.I. (não admite soluções)

Caso contrário sobram duas opções:

- 1. Se p = n o sistema é possível determinado S.P.D. (admite solução única).
- 2. Se p < n, então o sistema é possível indeterminado S.P.I. (admite infinitas soluções).

OBS.Para se escalonar um sistema S é mais prático efetuar o escalonamento da matriz aumentada associada ao sistema. Uma vez concluído o escalonamento dessa matriz aumentada, associamos a ela o novo sistema que é equivalente ao sistema original S.

Exemplos

Método de Cramer

O método de Cramer se aplica para sistemas de equações lineares onde a matriz dos coeficientes das incógnitas é quadrada.

Define-se por D o determinante da matriz dos coeficientes A, isto é, $A = \det(A)$ e D_i ao determinante da matriz obtida de A, substituindo a i-ésima coluna pela coluna dos termos independentes.

Assim, se $D \neq 0$, então $x_i = \frac{D_i}{D}$. A solução será única, pois $\exists A^{-1}$ e

$$A.X = B$$

$$A^{-1}(A.X) = A^{-1}.B$$

$$(A^{-1}.A)X = A^{-1}.B$$

$$I.X = A^{-1}.B$$

$$X = A^{-1}.B$$

OBS 1: Se $D=D_1=D_2=\cdots=D_n=0$ o sistema **não** é necessariamente S.P.I. Utilizar o método de Cramer apenas quando $D\neq 0$.

OBS 2: Embora o método de Cramer apresente de forma explícita a solução do sistema de equações lineares, ele não é muito utilizado para cálculos numéricos. Isto ocorre porque o número de operações que é envolvida é muito grande quando trabalhado com muitas equações.

Exemplos

3.1.7 Sistemas Lineares - Aplicações

4 Vetores

Definição 4.1 (Vetores) São grandezas que informam a direção, módulo e o sentido.

Definição 4.2 (Segmento Orientado) É um par ordenado (A, B) de pontos no espaço. A é a origem e B é a extremidade do segmento orientado (A, B). Um segmento orientado do tipo (A, A) é chamado segmento orientado nulo.

Definição 4.3 1. Os segmentos orientados (A, B) e (C, D) são de mesmo comprimento se os segmentos geométricos AB e CD têm comprimentos iguais.

- 2. Se os segmentos orientados (A, B) e (C, D) não são nulos, eles são de mesma direção ou paralelos, se os segmentos geométricos AB e CD são paralelos (isto inclui o caso em que AB e CD são colineares).
- 3. Suponha (A, B) e (C, D) sejam paralelos:
 - No caso em que as retas AB e CD são distintas, os segmentos orientados (A, B) e (C, D) são de mesmo sentido se os segmentos geométricos tem interseção vazia. Se não, (A, B) e (C, D) são de sentido contrário
 - No caso em que as retas AB e CD coincidem, tomemos (E, F) tal que E não pertença à reta AB, e (E, F) e (A, B) sejam do mesmo sentido, de acordo com o critério anterior. Então, os segmentos orientados (A, B) e (C, D) são de mesmo sentido se (E, F) e (C, D) são de mesmo sentido. Se não, (A, B) e (C, D) são de sentido contrários.

Definição 4.4 Os segmentos orientados (A, B) e (C, D) são equipolentes se forem ambos nulos, ou então, no caso de nenhum deles nulos, possuírem mesma direção, mesmo comprimento e mesmo sentido. Notação: Equipolência entre (A, B) e (C, D) por $(A, B) \sim (C, D)$

Definição 4.5 Dado o segmento orientado (A,B), a classe de equipolência $de\ (A,B)$ é o conjunto de todos os segmentos orientados equipolentes a (A,B). O segmento orientado (A,B) é chamado representante da classe.

Definição 4.6 (Vetor (formalmente)) \acute{E} uma classe de equipolência de segmentos orientados. Se (A,B) \acute{e} um segmento orientado, o vetor que tem (A,B) como representante será representado por \overrightarrow{AB} . Quando não se quer destacar um representante em especial, usamos letras minúsculas com uma seta $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{b}, \ldots)$. O conjunto de todos os vetores será indicado por \mathbb{V} .

Proposição 4.1 1. É dado um vetor \overrightarrow{u} qualquer. Escolhido arbitrariamente um ponto P, existe um segmento orientado representante de \overrightarrow{u} com origem P, isto é, existe um ponto P tal que $\overrightarrow{u} = \overrightarrow{PB}$

2. Tal representante (e, portanto, o ponto B) é único, isto é, se $\overrightarrow{PA} = \overrightarrow{PB} \Rightarrow A = B$

Definição 4.7 (Vetor Nulo) \acute{E} o vetor que tem como representante um segmento orientado nulo. \acute{E} indicado por $\overrightarrow{0}$.

Definição 4.8 (Vetor Oposto) Se (A,B) é representante de um vetor \overrightarrow{u} o vetor oposto de \overrightarrow{u} , indicado por $-\overrightarrow{u}$, é o vetor que tem (B,A) como representante. Portanto:

$$-\overrightarrow{AB} = \overrightarrow{BA}$$

- **Definição 4.9** 1. Os vetores \overrightarrow{u} e \overrightarrow{v} são paralelos se um representante de \overrightarrow{u} é paralelo a um representante de \overrightarrow{v} (neste caso, qualquer representante de um vetor é paralelo a qualquer representante do outro vetor). **Notação:** \overrightarrow{u} // \overrightarrow{v}
 - 2. Os vetores não nulos e paralelos \overrightarrow{u} e \overrightarrow{v} são de mesmo sentido se um representante de \overrightarrow{u} e um de \overrightarrow{v} possuem o mesmo sentido.
 - 3. Analogamente para o caso de sentidos opostos.
 - 4. O vetor nulo é paralelo a qualquer vetor.
- Proposição 4.2 1. Se \overrightarrow{u} e \overrightarrow{v} são de mesmo sentido e o mesmo acontece para \overrightarrow{v} e \overrightarrow{w} , então \overrightarrow{u} e \overrightarrow{w} são de mesmo sentido.
 - 2. Se \overrightarrow{u} e \overrightarrow{v} são de sentido contrário e o mesmo acontece para \overrightarrow{v} e \overrightarrow{w} , então \overrightarrow{u} e \overrightarrow{w} são de mesmo sentido.
 - 3. Se \overrightarrow{u} e \overrightarrow{v} são de mesmo sentido e \overrightarrow{v} e \overrightarrow{w} de sentido contrário, então \overrightarrow{u} e \overrightarrow{w} são de sentido contrário.
- **Definição 4.10 (Norma)** É o comprimento de qualquer um de seus representantes. A norma do vetor \overrightarrow{u} é indicada por $||\overrightarrow{u}||$. Um vetor é unitário se sua norma é 1.

Proposição 4.3 Sejam \overrightarrow{u} e \overrightarrow{v} vetores não-nulos. Então $\overrightarrow{u} = \overrightarrow{v}$ se, e somente se, \overrightarrow{u} e \overrightarrow{v} tem normais iguais, são de mesma direção e de mesmo sentido.

5 Espaços Vetoriais

Definição 5.1 (Espaço Vetorial) Um espaço vetorial real é um conjunto V, não vazio, com duas operações:

1. Soma: $V \times V \rightarrow V$;

2. Multiplicação por Escalar: $\mathbb{K} \times V \to V$

tais que, para quaisquer u, v e $w \in V$ e a e $b \in \mathbb{K}$, as seguintes propriedades são validas:

- 1. (u+v)+w=u+(v+w);
- 2. u + v = v + u;
- 3. $\exists 0 \in V; u + 0 = u \ (0 \ \'e \ chamado \ vetor \ nulo);$
- 4. $\exists -u \in V; u + (-u) = 0;$
- 5. a(u+v) = au + av;
- 6. (a+b)v = av + bv;
- 7. (ab)v = a(bv);
- 8. 1u = u.

Exemplo 01: O conjunto dos vetores do espaço.

$$V = \mathbb{R}^3 = \{(x_1, x_2, x_3); x_i \in \mathbb{R}\}\$$

é um espaço vetorial real.

Exemplo 02: O conjunto dos vetores n-uplas de números reais.

$$V = \mathbb{R}^n = \{(x_1, x_2, \dots, x_n); x_i \in \mathbb{R}\}\$$

Mostrando que realmente é um espaço vetorial.

Exemplo 03: O conjunto das matrizes reais $m \times n$ com a soma e produto por escalar usuais.

Exemplo 04: O conjunto dos polinômios com coeficientes reais, de grau menor ou igual a n (incluindo o zero).

Exemplo 05: O conjunto das matrizes 2×2 , cujos elementos são números complexos.

5.1 Subespaços Vetoriais

As vezes, é necessário detectar, dentro de um espaço vetorial V, subconjuntos W que sejam eles próprios espaços vetoriais "menores". Tais conjuntos serão chamados de subespaços de V.

Exemplo 01: $V = \mathbb{R}^2$, o plano, onde W é uma reta deste plano, que passa pela origem.

Note que a reta W funciona sozinha como um espaço vetorial pois, ao somarmos dois vetores de W, obtemos outro vetor de W, igualmente se multiplicarmos um vetor de W por um escalar.

Em outras palavras, o conjunto W é "fechado" em relação à soma de vetores e a multiplicação por escalar.

Definição 5.2 (Subespaço Vetorial) Dado um espaço vetorial V, um subconjunto W, não vazio, será um subespaço vetorial de V se:

- 1. Para quaisquer $u, v \in W$ tivermos $u + v \in W$;
- 2. Para quaisquer $a \in \mathbb{K}$, $u \in W$ tivermos $au \in W$

OBS.

- As condições acima garantem que ao operarmos em W (soma e multiplicação por escalar) não obteremos um vetor fora de W. É suficiente para afirmar que W é um espaço vetorial, pois as operações estão bem definidas, e não é necessário verificar as condições de espaço vetorial, pois já são validas em V, que contém W.
- Qualquer subespaço W de V necessita conter o vetor nulo (devido a condição 2, no caso de a=0).
- Todo espaço vetorial admite pelo menos dois subespaços (subespaços triviais), o conjunto formado somente pelo vetor nulo e o próprio espaço vetorial.

Exemplo 01: $V = \mathbb{R}^3$ e $W \subset V$, um plano passando pela origem.

Exemplo 02: $V = \mathbb{R}^5 \in W = \{(0, x_2, x_3, x_4, x_5); x_i \in \mathbb{R}\}$

Mostrando que realmente é um subespaço vetorial.

Exemplo 03: $V = \mathbb{M}(n, m)$ e W é o subconjunto das matrizes triangulares superiores. **Exemplo 04:**Uma situação importante em que aparece um subespaço é obtida ao resolver-

$$\begin{cases} 2x + 4y + z = 0 \\ x + y + 2z = 0 \\ x + 3y - z = 0 \end{cases}$$

Mostrando que realmente é um subespaço vetorial.

mos um sistema linear homogêneo. Por exemplo:

Exemplo 05: O conjunto-solução de um sistema linear homogêneo de n incógnitas é um subespaço vetorial de $\mathbb{M}(n,1)$.

Exemplos de conjuntos que não são subespaços vetoriais.

Exemplo 06: $V = \mathbb{R}^2$, onde W é uma reta deste plano que não passa pela origem.

Mostrando que W não é um subespaço vetorial.

Exemplo 07: $V = \mathbb{R}^2 \in W = \{(x, x^2); x \in \mathbb{R}\}.$

Mostrando que W não é um subespaço vetorial.

Exemplo 08: $V = \mathbb{M}(n,n)$ e W é o subconjunto de todas as matrizes em que $a_{11} \leq 0$. Basta mostrar que a condição 2 não é satisfeita.

Teorema 5.1 (Interseção de subespaços) Dados W_1 e W_2 subespaços de um espaço vetorial V, a interseção $W_1 \cap W_2$ ainda é um subespaço de V.

Prova do Teorema.

Exemplo 01: $V = \mathbb{M}(n,n)$ e

 $W_1 = \text{matrizes triangulares superiores};$

 $W_2 = \text{matrizes triangulares inferiores e então } W_1 \cap W_2 = \text{matrizes diagonais.}$

O teorema não é valido para o caso da união de subespaços. Veja o próximo contra-exemplo.

Exemplo 01: $V = \mathbb{R}^3$ e W_1 e W_2 são retas que passam pela origem.

Mostrando que não é subespaço vetorial.

Teorema 5.2 (Soma de subespaços) Sejam W_1 e W_2 subespaços de um espaço vetorial V. Então, o conjunto

$$W_1 + W_2 = \{v \in V; v = w_1 + w_2, w_1 \in W_1 \mid e \mid w_2 \in W_2\}$$

é subespaço de V.

Exemplo 01: O exemplo anterior, $W = W_1 + W_2$ é o plano que contém as duas retas.

Exemplo 02: Se $W_1 \subset \mathbb{R}^3$ é um plano e W_2 é uma reta contida neste plano, ambos passando

pela origem,
$$W_1 + W_2 = W_1$$
.

Exemplo 03: $W_1 = \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$ e $W_2 = \begin{bmatrix} 0 & 0 \\ c & d \end{bmatrix}$, onde $a, b, c, d \in \mathbb{R}$. Então $W_1 + W_2 = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbb{M}(2,2)$

Quando $W_1 \cap W_2 = \{0\}$, então $W_1 + W_2$ é chamada soma direta de W_1 com W_2 , denotada por $W_1 \oplus W_2$. O exemplo 03 é um exemplo de soma direta. O exemplo 01 das matrizes triangulares não é uma soma direta.

5.2Combinação Linear

Definição 5.3 Sejam V um \mathbb{K} -espaço vetorial, $v_1, v_2, \ldots, v_n \in V$ e a_1, \ldots, a_n escalares. Então, o vetor:

$$v = a_1v_1 + a_2v_2 + \dots + a_nv_n$$

é um elemento de V ao que chamamos combinação linear de v_1, \ldots, v_n .

Uma vez fixado os vetores v_1, \ldots, v_n em V, o conjunto W de todos os vetores de V que são combinações lineares destes, é um subespaço vetorial. (MOSTRE).

W é chamado subespaço gerado por v_1,\ldots,v_n e usamos a notação

$$W = [v_1, \dots, v_n]$$

Formalmente,

$$W = [v_1, \dots, v_n] = \{v \in V; v = a_1v_1 + a_2v_2 + \dots + a_nv_n, a_i \in \mathbb{R}, 1 \le i \le n\}$$

Outra definição é a seguinte: $W = [v_1, \ldots, v_n]$ é o menor subespaço de V que contém o conjunto de vetores $\{v_1, \ldots, v_n\}$, no sentido de que qualquer outro subespaço W' de V que contenha $\{v_1, \ldots, v_n\}$ satisfará $W' \supset W$.

Exemplo 01: Se $v_1, v_2 \in \mathbb{R}^3$ são tais que $\alpha v_1 \neq v_2$ para todo $\alpha \in \mathbb{R}$, então $[v_1, v_2]$ será o plano que passa pela origem e contém v_1 e v_2 .

Exemplo 02: $V = \mathbb{R}^2$, $v_1 = (1,0)$, $v_2 = (0,1)$. Logo $V = [v_1, v_2]$ pois, dado $v = (x,y) \in V$, temos (x,y) = x(1,0) + y(0,1), ou seja, $v = xv_1 + yv_2$.

5.3 Dependência e Independência Linear

É de grande importância determinar se um vetor é ou não combinação linear de outros vetores.

Definição 5.4 Sejam V um espaço vetorial e $v_1, \ldots, v_n \in V$. Dizemos que o conjunto $\{v_1, \ldots, v_n\}$ é linearmente independente (LI), ou que os vetores v_1, \ldots, v_n são LI, se a equação

$$a_1v_1 + \dots + a_nv_n = 0$$

implica que $a_1 = a_2 = \cdots = a_n = 0$. No caso em que exista algum $a_i \neq 0$ dizemos que $\{v_1, \ldots, v_n\}$ é linearmente dependente (LD), ou que os vetores v_1, \ldots, v_n são LD.

Teorema 5.3 $\{v_1, \ldots, v_n\}$ é LD se, e somente se um destes vetores for uma combinação linear dos outros.

Equivalentemente, um conjunto de vetores é LI se, e somente se nenhum deles for uma combinação linear dos outros.

Exemplo 01: De modo análogo, vemos que para $V = \mathbb{R}^3$, $e_1 = (1,0,0), e_2 = (0,1,0)$ e $e_3 = (0,0,1)$. Então e_1, e_2, e_3 são LI.

5.4 Base de um Espaço Vetorial

Estamos interessados em encontrar, dentro de um espaço vetorial V, um conjunto finito de vetores, tais que qualquer outro vetor de V seja uma combinação linear deles. Ou seja, queremos determinar um conjunto de vetores que gere V e tal que todos os elementos sejam realmente necessários para geral V. Denominaremos tal conjunto por base.

Definição 5.5 Um conjunto $\{v_1, \ldots, v_n\}$ de vetores de V será uma base de V se:

- $\{v_1,\ldots,v_n\}$ $\not\in LI$;
- $[v_1,\ldots,v_n]=V$

Exemplo 01: $V = \mathbb{R}^n$, $e_1 = (1, 0, ..., 0)$, $e_2 = (0, 1, 0, ..., 0)$, ..., $e_n = (0, 0, ..., 1)$ é base de V, conhecida como base canônica de \mathbb{R}^n .

Exemplo 02: O conjunto $\{(1,1),(0,1)\}$ também é uma base de $V=\mathbb{R}^2$.

Mostrando que é base.

Exemplo 03:
$$V = \mathbb{M}(2,2)$$
 e $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ é uma base de V .

Teorema 5.4 Sejam v_1, v_2, \ldots, v_n vetores não nulos que geram um espaço vetorial V. Então, dentre estes vetores podemos extrair uma base de V.

Teorema 5.5 Seja um espaço vetorial V gerado por um conjunto finito de vetores v_1, v_2, \ldots, v_n . Então, qualquer conjunto com mais de n vetores é necessariamente LD (e, portanto, qualquer conjunto LI tem no máximo n vetores).

Corolário 5.1 Qualquer base de um espaço vetorial tem sempre o mesmo número de elementos. Este número é chamado dimensão de V, e denotado dimV.

Exemplos: Analisar os exemplos anteriores para determinar a $\dim V$.

OBS. Quando um espaço vetorial V admite uma base finita, dizemos que V é um espaço de dimensão finita.

Teorema 5.6 Qualquer conjunto de vetores LI de um espaço vetorial V de dimensão finita pode ser completado de modo a formar uma base de V.

Corolário 5.2 Se $\dim V = n$, qualquer conjunto de n vetores LI formará uma base de V.

Teorema 5.7 Se U e W são subespaços de um espaço vetorial V que tem dimensão finita, então $\dim U \leq \dim V$ e $\dim W \leq \dim V$. Alem disso,

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W)$$

Teorema 5.8 Dada uma base $B = \{v_1, v_2, \dots, v_n\}$ de V, cada vetor de V é escrito de maneira única como combinação linear de v_1, v_2, \dots, v_n .

Definição 5.6 Sejam $B = \{v_1, \ldots, v_n\}$ base de V e $v \in V$ onde $v = a_1v_1 + \cdots + a_nv_n$. Chamamos estes números a_1, a_2, \ldots, a_n de coordenadas de v em relação à base B e denotamos por:

$$[v]_B = \left[\begin{array}{c} a_1 \\ \vdots \\ a_n \end{array} \right]$$

Exemplo 01: Se $B = \{(1,1), (0,1)\}$, então (4,3) = x(1,1) + y(0,1), resultando em x = 4 e y = -1.

Então
$$(4,3) = 4(1,1) - 1(0,1)$$
, donde $[(4,3)]_B = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$

OBS. É importante notar que a ordem dos elementos de uma base também influi na matriz das coordenadas de um vetor em relação a esta base.

Por exemplo, se tivermos: $B_1 = \{(1,0), (0,1)\}$ e $B_2 = \{(0,1), (1,0)\}$ então

$$[(4,3)]_{B1} = \begin{bmatrix} 4\\3 \end{bmatrix} \text{ mas } [(4,3)]_{B2} = \begin{bmatrix} 3\\4 \end{bmatrix}$$

Devido a isso, a partir de agora, sempre que considerarmos uma base $B = \{v_1, \ldots, v_n\}$, estaremos subentendendo que a base seja ordenada na ordem que aparece os vetores.

Exemplo: Considere:

$$V = \{(x, y, z); x + y - z = 0\}$$
$$W = \{(x, y, z); x = y\}$$

Determine V + W.

Resolvendo o exemplo.

5.5 Mudança de Base

A mudança de base tem como objetivo facilitar as operações. Nosso interesse é na seguinte situação:

Sejam $B = \{u_1, \dots, u_n\}$ e $B' = \{w_1, \dots, w_n\}$ duas bases ordenadas de um mesmo espaço vetorial V. Dado um vetor $v \in V$, podemos escrevê-lo como:

$$v = x_1 u_1 + \dots + x_n u_n \tag{2}$$

$$v = y_1 w_1 + \dots + y_n w_n \tag{3}$$

Podemos relacionar as coordenadas de v em relação à base B,

$$[v]_B = \left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right]$$

e também podemos relacionar as coordenadas de v em relação à base B',

$$[v]_{B'} = \left[\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array} \right]$$

Como $\{u_1, \ldots, u_n\}$ é base de V, podemos escrever os vetores w_1 como combinação linear dos u_j , isto é,

$$\begin{cases} w_1 = a_{11}u_1 + a_{21}u_2 + \dots + a_{n1}u_n \\ w_2 = a_{12}u_1 + a_{22}u_2 + \dots + a_{n2}u_n \\ \vdots & \vdots & \vdots \\ w_n = a_{1n}u_1 + a_{2n}u_2 + \dots + a_{nn}u_n \end{cases}$$

$$(4)$$

A matriz $[I]_B^{B'}$ é chamada matriz de mudança de base B' para a base B. Compare $[I]_B^{B'}$ com (4) e observe que esta matriz é obtida, colocando as coordenadas em relação a B de w_i na i-ésima coluna. Uma vez obtida $[I]_B^{B'}$ podemos encontrar as coordenadas de v na base B' (supostamente conhecidas).

Exemplo: Sejam $B = \{(2, -1), (3, 4)\}$ e $B' = \{(1, 0), (0, 1)\}$ bases de \mathbb{R}^2 . Determine $[I]_B^{B'}$.

Resolvendo o exemplo.

O cálculo utilizando a matriz de mudança de base é operacionalmente vantajoso quando trabalhamos com mais vetores, pois não há necessidade de resolução de mais de um sistema de equação para cada vetor.

A inversa da Matriz de Mudança de Base

Um fato importante é que as matrizes $[I]_B^{B'}$ e $[I]_{B'}^{B}$ são inversíveis e $([I]_B^{B'})^{-1} = [I]_{B'}^{B}$ **Exemplo:** Consideremos em \mathbb{R}^2 a base $B = \{e_1, e_2\}$ e a base $B' = \{f_1, f_2\}$, obtida da base canônica B pela rotação de um ângulo θ . Determine $[I]_B^{B'}$.

Resolvendo o exemplo.

6 Transformações Lineares

Definição 6.1 (Transformação Linear) Sejam V e W dois espaços vetoriais. Uma transformação linear (aplicação linear) é uma função de V em W, $T:V\to W$, que satisfaz as seguintes condições:

1. Quaisquer que sejam u e v em V,

$$T(u+v) = T(u) + T(v)$$

2. Quaisquer que sejam $\lambda \in \mathbb{R}$ e $v \in V$,

$$T(\lambda v) = \lambda T(v)$$

6.1 Exemplos de Transformações Lineares

1. $V=\mathbb{R}$ e $W=\mathbb{R}$, onde $T:\mathbb{R}\to\mathbb{R}$ dada por $T(u)=\alpha u;$ Mostrando que é Transformação Linear

2. $T: \mathbb{R} \to \mathbb{R}$ dada por $T(u) = u^2$; Mostrando que não é Transformação Linear

3. $V = \mathbb{R}^2$ e $W = \mathbb{R}^3$, onde $T : \mathbb{R}^2 \to \mathbb{R}^3$ dada por T(x,y) = (2x,0,x+y); Mostrando que é Transformação Linear

OBS. Da definição de Transformação Linear, $T:V\to W$ leva o vetor nulo de V no vetor nulo de W, isto é, se $0\in V, T(0)=0\in W$. Isto é, se $T(0)\not=0$ então T não é Transformação Linear. **CUIDADO!** T(0)=0 não implica em T ser linear, ver exemplo 02 anterior.

- 4. A aplicação nula.
- 5. $V = W = \mathbb{P}_n$, onde $D : \mathbb{P}_n \to \mathbb{P}_n$ dada por D(f) = f' (aplicação derivada); Mostrando que é Transformação Linear

O próximo exemplo é um caso particular do seguinte resultado, a toda matriz $m \times n$ está associada uma transformação linear de \mathbb{R}^n em \mathbb{R}^m . Isto é, uma matriz produz uma transformação linear, e a recíproca também é verdade, isto é, uma transformação linear produz uma matriz.

6. $V = \mathbb{R}^n$ e $W = \mathbb{R}^m$, onde $T : \mathbb{R}^n \to \mathbb{R}^m$, seja A uma matriz $m \times n$. Definimos $L_A : \mathbb{R}^n \to \mathbb{R}^m$ por $L_A(v) = Av$, onde v é um vetor coluna de tamanho n;

Mostrando que é Transformação Linear

6.2 Transformações do Plano no Plano

Os seguintes exemplos são para ilustrar geometricamente as transformações lineares no plano \mathbb{R}^2 .

6.2.1 Exemplos de Transformações no Plano

1. Expansão (ou Contração) Uniforme: $T: \mathbb{R}^2 \to \mathbb{R}^2$, $\alpha \in \mathbb{R}$ onde $T(v) = \alpha v$. Exemplo: $T: \mathbb{R}^2 \to \mathbb{R}^2$, $\alpha \in \mathbb{R}$ onde T(v) = 2v ou T(x,y) = 2(x,y). Essa função leva cada vetor do plano num vetor de mesma direção e sentido de v, mas de módulo maior.

Escrevendo na forma de vetores-coluna,

$$\begin{bmatrix} x \\ y \end{bmatrix} \to 2 \begin{bmatrix} x \\ y \end{bmatrix} \text{ ou } \begin{bmatrix} x \\ y \end{bmatrix} \to \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2. Reflexão em Torno do Eixo x: $F: \mathbb{R}^2 \to \mathbb{R}^2$, onde F(x,y) = (x,-y).

$$\left[\begin{array}{c} x \\ y \end{array}\right] \rightarrow \left[\begin{array}{c} x \\ -y \end{array}\right] \text{ ou } \left[\begin{array}{c} x \\ y \end{array}\right] \rightarrow \left[\begin{array}{c} 1 & 0 \\ 0 & -1 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

3. Reflexão na Origem: $T: \mathbb{R}^2 \to \mathbb{R}^2$, onde F(x,y) = (-x,-y).

34

$$\left[\begin{array}{c} x \\ y \end{array}\right] \to \left[\begin{array}{c} -x \\ -y \end{array}\right] \text{ ou } \left[\begin{array}{c} x \\ y \end{array}\right] \to \left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

4. Rotação de um Ângulo θ : (no sentido anti-horário)

 $x' = r\cos(\alpha + \theta) = r\cos(\alpha)\cos(\theta) - r\sin(alpha)\sin(\theta)$

Mas $r\cos(\theta) = x e r\sin(\theta) = y$

Então, $x' = x\cos(\theta) - y\sin(\theta)$

Analogamente, $y' = r \sin(\alpha + \theta) = r(\sin(\alpha)\cos(\theta) + \cos(\alpha)\sin(\theta)) = y\cos(\theta) + x\sin(\theta)$

Assim, $R_{\theta}(x,y) = (x\cos(\theta) - y\sin(\theta), y\cos(\theta) + x\sin(\theta))$ ou na forma coluna,

$$\begin{bmatrix} x \\ y \end{bmatrix} \to \begin{bmatrix} x\cos(\theta) - y\sin(\theta) \\ y\cos(\theta) + x\sin(\theta) \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

COnsiderando o caso particular onde $\theta = \frac{\pi}{2}$. Neste caso, $\cos(\theta) = 0$ e $\sin(\theta) = 1$

Então,

$$\left[\begin{array}{c} x \\ y \end{array}\right] \rightarrow \left[\begin{array}{c} -y \\ x \end{array}\right] = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

5. Cisalhamento horizontal: $T: \mathbb{R}^2 \to \mathbb{R}^2$, $\alpha \in \mathbb{R}$ onde $T(x,y) = (x + \alpha y, y)$.

Por exemplo, T(x, y) = (x + 2y, y)

$$\left[\begin{array}{c} x \\ y \end{array}\right] \rightarrow \left[\begin{array}{c} x+2y \\ y \end{array}\right] = \left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

Um exemplo de Transformação que não é linear.

6. Translação: T(x,y) = (x+a,y+b) ou

$$\left[\begin{array}{c} x \\ y \end{array}\right] \rightarrow \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] + \left[\begin{array}{c} a \\ b \end{array}\right]$$

6.3 Conceitos e Teoremas

Teorema 6.1 Dados dois espaços vetoriais reais V e W e uma base de V, $\{v_1, v_2, \ldots, v_n\}$, sejam w_1, w_2, \ldots, w_n elementos arbitrários de W. Então existe uma única aplicação linear $T: V \to W$ tal que $T(v_1) = w_1, \ldots, T(v_n) = w_n$. Essa aplicação é dada por:

Se
$$v = a_1v_1 + \cdots + a_nv_n$$
,

$$T(v) = a_1 T(v_1) + \dots + a_n T(v_n)$$
$$= a_1 w_1 + \dots + a_n w_n$$

Verifique que T assim definida é linear e que é a única que satisfaz as condições exigidas.

Exemplo 01: Qual é a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que T(1,0) = (2,-1,0) e T(0,1) = (0,0,1)?

Definiremos os conjuntos núcleo e imagem de uma Transformação Linear.

Definição 6.2 (Imagem de uma Transformação Linear) Seja $T: V \to W$ uma aplicação linear. A imagem de T é o conjunto dos vetores $w \in W$ tais que existe um vetor $v \in V$, que safisfaz T(v) = w. Ou seja,

$$Im(T) = \{w \in W; T(v) = w \text{ para algum } v \in V\}$$

Note que Im(T) é um subconjunto de W e, além disso, é um subespaço vetorial de W.

Definição 6.3 (Núcleo de uma Transformação Linear) $Seja \ T : V \to W$ uma transformação linear. O conjunto de todos os vetores $v \in V$ tais que T(v) = 0 é chamado núcleo de T, sendo denotado por ker(T). Isto é:

$$ket(T) = \{v \in V; T(v) = 0\}$$

Note que $Ker(T) \subset V$ é um subconjunto de V e, além disso, é um subespaço vetorial de V.

Definição 6.5 A aplicação $T:V\to W$ será sobrejetora se a imagem de T coincidir com W, ou seja T(V)=W.

Em outras palavras, T será sobrejetora se dado $w\in W$, existir $v\in V$ tal que T(v)=w.

Teorema 6.2 Seja $T:V\to W$, uma aplicação linear. Então $ker(T)=\{0\}$, se e somente se T é injetora.

PROVA:

Uma consequência é que uma aplicação linear injetora leva vetores LI em vetores LI.

Teorema 6.3 (do Núcleo e Imagem) $Seja \ T: V \to W \ uma \ aplicação \ linear. \ Então:$

$$\dim(V) = \dim(\ker(T)) + \dim(\operatorname{Im}(T))$$

PROVA:

Corolário 6.1 Se dimV = dimW, então T linear é injetora se e somente se T é sobrejetora. Corolário 6.2 Seja $T: V \to W$ uma aplicação linear injetora. Se dimV = dimW, então T leva base em base.

PROVA:

Quando $T:V\to W$ for injetora e sobrejetora, ao mesmo tempo, dá-se o nome de *isomorfismo*. Quando há uma tal transformação entre dois espaços vetoriais dizemos que estes são *isomorfos*.

No ponto de vista da álgebra linear, dois espaços vetoriais *isomorfos* são, por assim dizer, idênticos. Devido aos resultados anteriores, os espaços isomorfos possuem a mesma dimensão e um isomorfismo leva base a base.

Além, disso $T: V \to W$ tem uma aplicação inversa $T^{-1}: W \to V$ que é linear (MOSTRE) e também é um isomorfismo.

Exemplo 01: Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x, y, z) = (x - 2y, z, x + y). Mostre que T é isomorfismo e determine T^{-1} .

6.4 Aplicações Lineares e Matrizes

Já sabemos que a toda matriz $m \times n$ está associada uma transformação linear $T : \mathbb{R}^n \to \mathbb{R}^m$. Nesta seção será formalizado para espaços vetoriais V e W e também será estabelecido o recíproco, isto é, uma vez fixadas as bases, toda transformação linear $T:V\to W$ estará associada uma única matriz.

Exemplo 01: Consideramos \mathbb{R}^2 e as bases:

 $B = \{(1,0),(0,1)\} \text{ e } B' = \{(1,1),(-1,1)\} \text{ e a matriz } A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}. \text{ Queremos associar a esta matriz } A \text{ uma aplicação linear que depende de } A \text{ e das bases dadas } B \text{ e } B', \text{ isto \'e},$

$$T_A: \mathbb{R}^2 \to \mathbb{R}^2$$

$$v \to T_A(v)$$

Exemplo 02: $A = \begin{bmatrix} 1 & -3 & 5 \\ 2 & 4 & -1 \end{bmatrix}$, $B = \{(1,0),(0,1)\}$ e $B' = \{(1,0,0),(0,1,0),(0,0,1)\}$ e $T_A : \mathbb{R}^3 \to \mathbb{R}^2$. Determine T_A .

Agora vamos encontrar a matriz associada a uma transformação linear. Seja $T: V \to W$ linear, $B = \{v_1, \ldots, v_n\}$ base de V e $B' = \{w_1, \ldots, w_m\}$ base de W. Então $T(v_1), \ldots, T(v_n)$ são vetores de W e portanto

$$T(v_1) = a_{11}w_1 + a_{21}w_2 + \dots + a_{m1}w_m$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$T(v_n) = a_{1n}w_1 + a_{2n}w_2 + \dots + a_{mn}w_m$$

A transposta da matriz de coeficientes deste sistema, denotada por $[T]_{B'}^B$, é chamada matriz de T em relação às bases B e B'.

$$[T]_{B'}^B = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} = A$$

Note que T passa a ser a aplicação linear associada à matriz A e bases B e B', isto é $T = T_A$. **Exemplo 03:** Seja $T : \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(x,y,z) = (2x+y-z,3x-2y+4z). Sejam $B = \{(1,1,1),(1,1,0),(1,0,0)\}$ e $B' = \{(1,3),(1,4)\}$. Determine $[T]_{B'}^B$.

OBS. Se fossem utilizadas outras bases, teríamos outra matriz associada a T. **Exemplo 04:** Dadas as bases $B = \{(1,1),(0,1)\}$ de \mathbb{R}^2 e $B' = \{(0,3,0),(-1,0,0),(0,1,1)\}$ de \mathbb{R}^3 , encontremos a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ cuja matriz é: $[T]_{B'}^B = \begin{bmatrix} 0 & 2 \\ -1 & 0 \\ -1 & 3 \end{bmatrix}$

Teorema 6.4 Sejam V e W espaços vetoriais, α base de V, β base de W e $T:V \to W$ uma aplicação linear. Então, para todo $v \in V$ vale:

$$[T(v)]_{\beta} = [T]_{\beta}^{\alpha} \cdot [v]_{\alpha}$$

Através deste teorema, o estudo de transformações lineares entre espaços de dimensão finita é reduzido ao estudo de matrizes. No caso particular de V=W e T=I, o resultado é o mesmo da matriz de mudança de base.

Exemplo 05: Seja a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ dada por

$$[T]_{\alpha}^{\beta} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -2 & 3 \end{bmatrix}$$

onde $\alpha = \{(1,0),(0,1)\}$ é base de \mathbb{R}^2 , $\beta = \{(1,0,1),(-2,0,1),(0,1,0)\}$ é base de \mathbb{R}^3 . Qual a imagem do vetor v = (2,-3) gerada por T.

O relacionamento entre as dimensões do núcleo e da imagem de uma transformação linear e o posto de uma matriz associada é dado no teorema a seguir.

Teorema 6.5 Seja $T: V \to W$ uma aplicação linear e α e β bases de V e W respectivamente. Então:

$$\dim Im(T) = posto \ de \ [T]^{\alpha}_{\beta}$$
$$\dim ker(T) = nulidade \ de \ [T]^{\alpha}_{\beta}$$

ou ainda, $\dim \ker(T) = n \text{\'umero de colunas}$ - posto $\det [T]^{\alpha}_{\beta}$.

Teorema 6.6 Sejam $T_1: V \to W$ e $T_2: W \to U$ transformações lineares e α, β e γ bases de V, W e U respectivamente. Então a composta de T_1 com $T_2, T_1 \circ T_2: V \to U$ é linear e

$$[T_2 \circ T_1]^{\alpha}_{\gamma} = [T_2]^{\beta}_{\gamma} \cdot [T_1]^{\alpha}_{\beta}$$

Exemplo 01: Consideramos uma expansão do plano \mathbb{R}^2 dada por $T_1(x,y) = 2(x,y)$, e um cisalhamento dado por $T_2(x,y) = (x+2y,y)$.

Exemplo 02: Sejam as transformações lineares $T_1: \mathbb{R}^2 \to \mathbb{R}^3$ e $T_2: \mathbb{R}^3 \to \mathbb{R}^2$ cujas matrizes são:

$$[T_1]^{\alpha}_{\beta} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} e [T]^{\beta}_{\gamma} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

em relação às bases $\alpha = \{(1,0),(0,2)\}, B = \{(\frac{1}{3},0,-3),(1,1,15),(2,0,5)\}$ e $\gamma = \{(2,0),(1,1)\}.$ Determine a transformação linear composta $T_2 \circ T_1 : \mathbb{R}^2 \to \mathbb{R}^2$, isto é, $(T_2 \circ T_1)(x,y)$.

Corolário 6.3 Se $T: V \to W$ é uma transformação linear inversível (T é um isomorfismo) e α e β são bases de V e W, então $T^{-1}:W\to V$ é um operador linear e

$$[T^{-1}]^{\beta}_{\alpha} = ([T]^{\alpha}_{\beta})^{-1}$$

Corolário 6.4 Seja $T:V \to W$ uma transformação linear e α e β bases de V e W. Então Té inversível se e somente se $\det[T]^{\alpha}_{\beta} \neq 0$.

Exemplo 01: Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação linear dada por:

$$[T]_{\xi}^{\xi} = \left[\begin{array}{cc} 3 & 4 \\ 2 & 3 \end{array} \right]$$

onde ξ é a base canônica de \mathbb{R}^2 . Determine T^{-1} .

Corolário 6.5 Conhecendo a matriz de uma transformação linear em relação a certas bases α e β e as matrizes de mudança de base para novas bases α' e β' , podemos achar a matriz da mesma transformação linear, desta vez em relação às novas bases α' e β' . Matematicamente,

$$[T]^{\alpha'}_{\beta'} = [I \circ T \circ I]^{\alpha'}_{\beta'} = [I]^{\beta}_{\beta'}[T]^{\alpha}_{\beta}[I]^{\alpha'}_{\alpha}$$

Como caso particular, se $T:V\to V$ é uma transformação linear e α e β são bases de V, então

$$[T]_{\beta}^{\beta} = [I \circ T \circ I]_{\beta}^{\beta} = [I]_{\beta}^{\alpha} [T]_{\alpha}^{\alpha} [I]_{\alpha}^{\beta}$$

Lembre-se que $[I]^{\beta}_{\alpha} = ([I]^{\alpha}_{\beta})^{-1}$ denotando $[I]^{\beta}_{\alpha} = A$, segue que

$$[T]^{\beta}_{\beta} = A \cdot [T]^{\alpha}_{\alpha} \cdot A^{-1}$$

Dizemos neste caso que as matrizes $[T]^{\alpha}_{\alpha}$ e $[T]^{\beta}_{\beta}$ são semelhantes. **Exemplo:** Seja a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ cuja matriz em relação à base canônica ξ é:

$$[T]_{\xi}^{\xi} = \begin{bmatrix} -2 & 4 & -4 \\ 1 & -2 & 2 \\ 3 & -6 & 5 \end{bmatrix}$$

Calculemos a matriz desta transformação em relação à base $B = \{(0, 1, 1), (-1, 0, 1), (1, 1, 1)\}.$

7 Autovalores e Autovetores

Ao estudarmos conceitos de autovalores e autovetores estaremos interessados em determinar uma classe especial de vetores no espaço vetorial, que satisfaça a propriedade definida. Como forma de introduzir esses conceitos, tomemos os seguintes exemplos.

Exemplo 01: Dada $T: V \to V$, quais vatores $v \in V$ tais que T(v) = v? (v é denominado $vetor\ fixo$).

O primeiro exemplo é o trivial, a aplicação identidade, onde todo vetor é definido como vetor fixo.

Exemplo 02:
$$r_x : \mathbb{R}^2 \to \mathbb{R}^2$$
 dada por $r_x(x,y) = (x,-y)$ ou $\begin{bmatrix} x \\ y \end{bmatrix} \to \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

Esses vetores são únicos.

Dada uma transformação linear de um espaço vetorial $T:V\to V$, nosso interesse é descobrir quais vetores são levados em um múltiplo de si mesmo, isto é, procuramos um vetor $v\in V$ e um escalar $\lambda\in\mathbb{R}$ tais que:

$$T(v) = \lambda v$$

Neste caso, T(v) será um vetor de mesma "direção" que v (sobre a mesma reta suporte). Como v=0 satisfaz a equação para todo λ , estamos interessados em determinar vetores $v\neq 0$ satisfazendo a condição acima.

Definição 7.1 (Autovetor e Autovalor) Seja $T: V \to V$ um operador linear. Se existirem $v \in V$, $v \neq 0$, $e \lambda \in \mathbb{R}$ tais que $T(v) = \lambda v$, λ é um autovalor de T e v é um autovetor de T associado a λ .

Note que λ pode ser igual a 0, embora $v \neq 0$.

Exemplo 01: $T: \mathbb{R}^2 \to \mathbb{R}^2$ onde T(x,y) = 2(x,y)

$$\left[\begin{array}{c} x \\ y \end{array}\right] \rightarrow \left[\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} 2x \\ 2y \end{array}\right] = 2 \left[\begin{array}{c} x \\ y \end{array}\right]$$

 $\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \end{bmatrix} = 2 \begin{bmatrix} x \\ y \end{bmatrix}$ Neste caso, 2 é um autovalor de T e qualquer $(x,y) \neq (0,0)$ é um autovetor de T associado ao autovalor 2.

De modo geral toda transformação do tipo $T:\mathbb{R}^2 \to \mathbb{R}^2$ onde $T(x,y)=\alpha(x,y), \alpha \neq 0$ tem α como autovalor e qualquer $(x,y) \neq (0,0)$ como autovetor correspondente. Note que T(v) é sempre um vetor de mesma direção que v. Ainda mais se,

- 1. $\alpha < 0$, T inverte o sentido do vetor;
- 2. $|\alpha| > 1$, T dilata o vetor;
- 3. $|\alpha| < 1$, T contrai o vetor;
- 4. $\alpha = 1, T$ é a identidade

Exemplo 02: Seja
$$A = \begin{bmatrix} 2 & 2 \\ 0 & 1 \end{bmatrix}$$

Teorema 7.1 Dada uma transformação $T: V \to V$ e um autovetor v associado a um autovalor λ , qualquer vetor $w = \alpha v (\alpha \neq 0)$ também é um autovetor de T associado a λ .

MOSTRE QUE: o conjunto formado pelos autovetores associados a um autovalor λ e o vetor nulo é um subespaço vetorial de V, isto é, $V_{\lambda} = \{v \in V; T(v) = \lambda v\}$ é subespaço de V.

Definição 7.2 O subespaço $V_{\lambda} = \{v \in V; T(v) = \lambda v\}$ é chamado o subespaço associado ao autovalor λ .

7.1 Autovalores e Autovetores de uma Matriz

Dada uma matriz quadrada de ordem n, A, estaremos entendendo por autovalor e autovetor de A, autovalor e autovetor da transformação linear $T_A : \mathbb{R}^n \to \mathbb{R}^n$, associada à matriz A em relação à base canônica, isto é, $T_A(v) = A \cdot v$ (na forma coluna). Assim, um autovalor $\lambda \in \mathbb{R}$ de A, e um autovetor $v \in \mathbb{R}^n$, são soluções da equação $A \cdot v = \lambda v, v \neq 0$.

Exemplo 01: Dada a matriz diagonal

$$A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

e dados os vetores da base canônica de \mathbb{R}^n , temos

$$A \cdot e_1 = \left[\begin{array}{c} a_{11} \\ 0 \\ \vdots \\ 0 \end{array} \right] = a_{11}e_1$$

e em geral, $A \cdot e_i = a_{ii}e_i$. Então, estes vetores da base canônica de \mathbb{R}^n são autovetores para A, e o autovetor e_i é associado ao autovalor a_{ii} .

A próxima seção mostrará que dada uma transformação linear $T:V\to V$ e fixada uma base B podemos reduzir o problema de encontrar autovalores e autovetores para T à determinação de autovalores para a matriz $[T]_B^B$.

7.2 Polinômio Característico

Nesta seção determinaremos um método prático para determinar autovalores e autovetores de uma matriz real A de ordem n.

Inicialmente tomaremos um exemplo onde n=3 e depois será generalizado para n qualquer.

Exemplo:

$$A = \left[\begin{array}{rrr} 4 & 2 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 2 \end{array} \right]$$

Nosso interesse esta em determinar vetores $v \in \mathbb{R}^3$ e escalares $\lambda \in \mathbb{R}$ tais que $A \cdot v = \lambda v$.

Observe que se I for a matriz identidade de ordem 3, então a equação acima pode ser escrita na forma $Av = (\lambda I)v$, ou ainda, $(A - \lambda I)v = 0$.

Escrevendo explicitamente, temos:

$$\left(\begin{bmatrix} 4 & 2 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} \right) \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Disso temos a seguinte equação matricial:

$$\begin{bmatrix} 4-\lambda & 2 & 0 \\ -1 & 1-\lambda & 0 \\ 0 & 1 & 2-\lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Escrevendo o sistema de equações lineares equivalente a esta equação matricial, obteremos um sistema de três equações e três incógnitas.

Se o determinante da matriz dos coeficientes foi igual a 0, implica que o sistema só possuíra uma única solução, neste caso a solução trivial, ou seja, x=y=z=0. Como nosso interesse é calcular os autovetores de A, isto é, $v\neq 0$, tais que $(A-\lambda I)v=0$ Assim, neste caso $\det(A-\lambda I)$ deve ser zero.

$$\begin{bmatrix} 4-\lambda & 2 & 0 \\ -1 & 1-\lambda & 0 \\ 0 & 1 & 2-\lambda \end{bmatrix} = 0$$

E portanto, $-\lambda^3 + 7\lambda^2 - 16\lambda + 12 = 0$. Vemos que $\det(A - \lambda I)$ é um polinômio em λ . Este polinômio é chamado o polinômio característico de A.

Continuando a resolução, temos $(\lambda - 2)^2(\lambda - 3) = 0$. Dessa forma, $\lambda = 2$ e $\lambda = 3$ são as raízes do polinômio característico de A, e portanto os autovalores da matriz A.

Conhecendo os autovalores, podemos determinar os autovetores, resolvendo a equação $Av = \lambda v$, para os casos:

i) $\lambda = 2$

$$\begin{bmatrix} 4 & 2 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 2 \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Rightarrow \begin{cases} 4x + 2y = 2x \\ -x + y = 2y \\ y + 2z = 2z \end{cases}$$

Resolvendo o sistema segue que: na terceira equação y = 0 e substituindo na segunda, tem-se x = 0. Como não há nenhuma restrição em relação a z, os autovetores associados a $\lambda = 2$ são do tipo (0, 0, z), ou seja, pertecem ao subespaço [(0, 0, 1)].

ii) $\lambda = 3$

Resolvendo a equação Av = 3v, temos o seguinte sistema:

$$\begin{cases} 4x + 2y = 3x \\ -x + y = 3y \\ y + 2z = 3z \end{cases}$$

Tanto na primeira, quanto na segunda equação implica em x = -2y e da terceira segue que z = y. Assim, os autovetores associados ao autovalor $\lambda = 3$ são do tipo (-2y, y, y), ou seja, pertencem ao subespaço [(-2, 1, 1)].

Generalizando para o caso n qualquer. Seja A uma matriz de ordem n. Quais são os autovalores e autovetores correspondentes de A? Serão exatamente aqueles que satisfazem a equação $Av = \lambda v$ ou $Av = (\lambda I)v$ ou ainda $(A - \lambda I)v = 0$. Explicitamente, temos:

$$\begin{bmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Se B é a primeira matriz acima, então $B \cdot v = 0$. Se $\det B \neq 0$, então o posto da matriz é n e portanto o sistema de equações lineares homogêneo indicado acima tem uma única solução (solução trivial $x_1 = x_2 = \cdots = x_n = 0$), o que não é o buscado, já que v deve ser diferente de 0. Assim, a única maneira de encontrarmos autovetores v (soluções não nulas da equação acima) é termos $\det B = 0$, ou seja,

$$\det(A - \lambda I) = 0$$

.

Impondo esta condição determinamos primeiramente os autovalores λ que satisfazem a equação e depois os autovetores a eles associados. Note que

$$P(\lambda) = \det(A - \lambda I) = \det \begin{bmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{bmatrix}$$

é um polinômio em λ de grau n.

 $P(\lambda) = (a_{11} - \lambda) \dots (a_{nn} - \lambda) + \text{termos de grau} < n$, e os autovalores procurados são as raízes deste polinômio. $P(\lambda)$ é chamado polinômio característico da matriz A.

Exemplo 01:

$$A = \left[\begin{array}{cc} -3 & 4 \\ -1 & 2 \end{array} \right]$$

 $Resolvendo\ o\ exemplo.$

Exemplo 02:

$$A = \left[\begin{array}{cc} \sqrt{3} & -1\\ 1 & \sqrt{3} \end{array} \right]$$

Resolvendo o exemplo.

OBS: Quando trabalhamos em espaços algebricamente fechados, o polinômio característico sempre apresentará raízes (o caso quando estamos em \mathbb{C}).

No exemplo anterior, as raízes seriam $\lambda = \sqrt{3} + i$ e $\lambda = \sqrt{3} - i$. Os autovetores encontrados, da mesma maneira que no caso real, são do tipo (x, -ix) e (x, ix), respectivamente. Porém, não se tem a visão geométrica do comportamento do vetor. Autovalores e autovetores complexos são utilizados na resolução de um sistema de equações diferenciais.

Exemplo 03:

$$A = \left[\begin{array}{rrr} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{array} \right]$$

Resolvendo o exemplo.

Exemplo 04:

$$A = \left[\begin{array}{rrr} 3 & -3 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{array} \right]$$

Resolvendo o exemplo.

Pode-se também definir o polinômio característico de uma matriz, cuja a transformação linear $T: \mathbb{R}^n \to \mathbb{R}^n$ esta associada a ela.

Podemos estender este conceito para qualquer operador linear $T:V\to V$, partindo do seguinte argumento.

Seja B uma base de V, então temos as equivalências:

Observamos que a última condição é dada por $P(\lambda) = 0$, onde $P(\lambda)$ é o polinômio característico da matriz $[T]_B^B$.

Neste caso, $P(\lambda)$ também será chamado polinômio característico da transformação T e suas raízes serão os autovalores de T. Não há dependência da base na utilização.

Exemplo 01: Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x,y) = (-3x + 4y, -x + 2y).

Resolvendo o exemplo.

Exemplo 02: Resolvendo o exemplo.

Definição 7.3 Chamamos de multiplicidade algébrica de um autovalor a quantidade de vezes que ele aparece como raiz do polinômio característico.

A multiplicidade geométrica de um autovalor λ é a dimensão do subespaço V_{λ} de autovetores associados a λ .

Exemplos da M.A. e da M.G.

8 Diagonalização de Operadores

8.1 Base de Autovetores

Dado um operador linear $T:V\to V$, nosso objetivo é conseguir uma base B de V na qual a matriz do operador nesta base $([T]_B^B)$ seja uma matriz diagonal, que é a forma mais simples possível de se representar um operador.

Teorema 8.1 Autovetores associados a autovalores distintos são linearmente independentes.

Ideia da Prova.

Corolário 8.1 Se V é um espaço vetorial de dimensão n e $T:V \to V$ é um operador linear que possui n autovalores distintos, então V possui uma base cujos vetores são todos autovetores de T.

Em outras palavras, se conseguirmos encontrar tantos autovalores distintos quanto for a dimensão do espaço, podemos garantir a existência de uma base de autovetores.

Exemplo 01: Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear dada por T(x,y) = (-3x+4y, -x+2y). Determine uma base B de autovetores.

 $Resolvendo\ o\ exemplo.$

Exemplo 02: Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ uma transformação linear cuja matriz em relação à base canônica α é:

$$[T]_{\alpha}^{\alpha} = \begin{bmatrix} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix}$$

Resolvendo o exemplo.

Note que em relação a esta base de autovetores, a matriz de T é uma matriz diagonal.

É óbvio que as matrizes diagonais $[T]_B^B$ que foram obtidas nos exemplos 01 e 02 não foram por acaso. Dada uma transformação linear qualquer $T:V\to V$, se conseguirmos uma base $B=\{v_1,v_2,\ldots,v_n\}$ formada por autovetores de T, então, como

$$T(v_1) = \lambda_1 v_1 + 0v_2 + \dots + 0v_n$$

$$T(v_2) = 0v_1 + \lambda_2 v_2 + \dots + 0v_n$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$T(v_n) = 0v_1 + 0v_2 + \dots + \lambda_n v_n$$

a matriz $[T]_B^B$ será uma matriz diagonal onde os elementos da diagonal principal são os autovalores λ_i , isto é,

$$[T]_{B}^{B} = \begin{bmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \lambda_{n} \end{bmatrix}$$

Um autovalor aparecerá na diagonal quantas vezes forem os autovetores LI a ele associados. Por outro lado, se $\gamma = \{u_1, u_2, \dots, u_n\}$ é uma base de V tal que

$$[T]_{\gamma}^{\gamma} = \begin{bmatrix} a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & a_n \end{bmatrix}$$

Dessa forma, u_1, \ldots, u_n são necessariamente autovetores de T com autovalores a_1, \ldots, a_n respectivamente. De fato, da definição de $[T]^{\gamma}$ temos:

$$T(u_1) = a_1u_1 + 0u_2 + \dots + 0u_n = a_1u_1$$

$$T(u_2) = 0u_1 + a_2u_2 + \dots + 0u_n = a_2u_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$T(u_n) = 0u_1 + 0u_2 + \dots + a_nu_n = a_nu_n$$

Dessa forma, concluímos que um operador $T:V\to V$ admite uma base B em relação à qual sua matriz $[T]_B^B$ é diagonal se, e somente se essa base B for formada por autovetores de T.

Definição 8.1 Seja $T: V \to V$ um operador linear. Dizemos que T é um operador diagonalizável se existe uma base de V cujos elementos são autovetores de T.

Os operadores do exemplo 01 e 02 são diagonalizáveis. Agora seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear cuja matriz em relação à base canônica α é:

$$[T]_{\alpha}^{\alpha} = \begin{bmatrix} 3 & -3 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix}$$

Resolvendo o exemplo.

8.2 Polinômio Minimal

Definição 8.2 Seja $p(x) = a_n x^n + \cdots + a_1 x + a_0$ um polinômio e A uma matriz quadrada. Então p(A) é a matriz

$$p(A) = a_n A^n + \dots + a_1 A + a_0 I$$

Quando p(A) = 0, dizemos que o polinômio anula a matriz A.

Exemplo: Sejam $p(x) = x^2 - 9$ e q(x) = 2x + 3. Se $A = \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix}$. Determine p(A) e q(A).

Resolvendo o exemplo.

Definição 8.3 Seja A uma matriz quadrada. O polinômio minimal de A é um polinômio

$$m(x) = x^k + a_{k-1}x^{k-1} + \dots + a_0$$

tal que:

- i) m(A) = 0, isto \acute{e} , m(x) anula a matrix A.
- ii) m(x) é o polinômio de menor grau entre aqueles que anulam A.

Note que o coeficiente do termo x^k do polinômio minimal é 1 $(a_k = 1)$.

Os próximos resultados envolvendo polinômio minimal serão utilizados para determinar um procedimento para verificar se um operador é diagonalizável ou não, sem calcular os autovetores. As provas destes teoremas serão exibidas em futuras atualizações destas notas de aula.

Teorema 8.2 Sejam $T: V \to V$ um operador linear e α uma base qualquer de V de dimensão n. Então T é diagonalizável se, e somente se o polinômio minimal de $[T]^{\alpha}_{\alpha}$ é da forma

$$m(x) = (x - \lambda_1)(x - \lambda_2) \dots (x - \lambda_r)$$

 $com \lambda_1, \lambda_2, \ldots, \lambda_r \ distintos.$

Teorema 8.3 (de Cayley-Hamilton) Seja $T: V \to V$ um operador linear, α uma base de V e p(x) o polinômio característico de T. Então

$$p([T]^{\alpha}_{\alpha}) = 0$$

Isto significa que o polinômio característico é um candidato ao polinômio minimal, já que satisfaz a condição i) da definição de polinômio minimal.

Exemplo: Seja
$$[T]^{\alpha}_{\alpha} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Resolvendo o exemplo.

Teorema 8.4 As raízes do polinômio minimal são as mesmas raízes (distintas) do polinômio característico.

Estes dois teoremas juntos nos permitem definir o polinômio minimal de um operador linear $T:V\to V$. O polinômio minimal deve ser de grau menor ou no máximo igual ao do polinômio característico e ainda deve ter as mesmas raízes.

Exemplo: Seja $T: V \to V$ um operador linear e α uma base de V. Suponhamos que o polinômio característico de T seja $p(\lambda) = (\lambda - 3)^2(\lambda - 1)^3(\lambda - 5)$. Qual seu polinômio minimal?

Resolvendo o exemplo.

Teorema 8.5 Sejam $\lambda_1, \lambda_2, \ldots, \lambda_r$ os autovalores distintos de um operador linear T. Então T será diagonalizável se, e somente se o polinômio

$$(x-\lambda_1)(x-\lambda_2)\dots(x-\lambda_r)$$

anular a matriz de T.

Exemplo 01: O operador linear $T: \mathbb{R}^4 \to \mathbb{R}^4$ definido por T(x, y, z, t) = (3x - 4z, 3y + 5z, -z, -t) é diagonalizável?

Resolvendo o exemplo.

8.3 Diagonalização Simultânea de dois Operadores

Suponhamos que sejam dados $T_1: V \to V$ e $T_2: V \to V$ operadores lineares, ambos diagonalizáveis. Isto significa que existem bases α_1 e α_2 de V tais que $[T_1]_{\alpha_1}^{\alpha_1}$ e $[T_2]_{\alpha_2}^{\alpha_2}$ são diagonalis. No entanto não podemos garantir que $\alpha_1 = \alpha_2$, isto é, não podemos garantir sempre que existe uma mesma base α de V em relação à qual as matrizes de T_1 e T_2 admitem o mesmo conjunto de autovetores LI. Em que situação vale tal relação entre T_1 e T_2 ?

Através de resultados, obtemos que T_1 e T_2 operadores diagonalizáveis, então T_1 e T_2 são simultaneamente diagonalizáveis se e somente se T_1 e T_2 comutam $(T_1 \circ T_2 = T_2 \circ T_1)$.

Na prática, dados T_1 e T_2 , tomamos uma base B qualquer de V e verificamos se T_1 e T_2 são diagonalizáveis. Se isto acontecer e, além disso, $[T_1]_B^B[T_2]_B^B = [T_2]_B^B[T_1]_B^B$, então podemos concluir que T_1 e T_2 são simultaneamente diagonalizáveis.

Exemplo: Sejam $T_1,T_2:\mathbb{R}^3\to\mathbb{R}^3$ operadores lineares cujas matrizes em relação à base canônica são respectivamente

$$[T_1] = \begin{bmatrix} \frac{9}{5} & \frac{2}{5} & 0\\ \frac{2}{5} & \frac{6}{5} & 0\\ 0 & 0 & 2 \end{bmatrix}$$
 e $[T_2] = \begin{bmatrix} \frac{11}{5} & \frac{8}{5} & 0\\ \frac{8}{5} & -\frac{1}{5} & 0\\ 0 & 0 & 4 \end{bmatrix}$

Resolvendo o exemplo.