	TP1 Niveau - Bichon Vincent	Pt		АВС	Note	
ı	Préparation du travail					
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	С		0,7	
2	Quel est le nom de la grandeur réglée ?	1	В		0,375	
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	1	Α		0,5	
4	Quelle est la grandeur réglante ?	1	Α		0,5	
5	Donner une grandeur perturbatrice.	1	Α		0,5	
6	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités.	1	Α		1	
II.	Etude du procédé					
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	Α		1	
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).	1	Α		1	
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1	Α		1	
	En déduire le sens d'action à régler sur le régulateur.	1	C		0.35	Il faut être plus explicite.
5		3	Α			Caractéristique surprenante.
	Etude du régulateur					· ·
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	Α		1,5	
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2	Α		1,5	
IV.	Performances et optimisation		· ·			
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	В		0,75	Il faut changer l'unité de temps.
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.	2	Х		0	- -
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	Х		0	
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	Χ		0	
			Not	e sur : 20	13,7	

TP1 Niveau

Bichon

I. Préparation du travail

1)

- 2) Grandeur reglé : Niveau d'eau dans la cuve du haut
- 3) Principe utilisé pour mesurer la grandeur reglé : On va mesurer la pression différentielle entre les deux euves
- 4) Grandeur reglante : Débit de la pompe Q1
- 5) Grandeur perturbatrice : Débit de sortie de la cuve du haut

6)

II. Etude du procédé

1)

X	Y
0	0
25	34,1
50	62,5
75	84,4
100	90

- 3) $K = \Delta S/\Delta E = (90-34,1)/(100-25) = 0.74$
- 4) Action direct, régulateur inverse
- 5)

$$\Delta Y = 60 - 0 = 60$$

$$\Delta X = 70 - 0 = 70$$

$$28\% = 19,6 t1$$

$$40\% = 28 t2$$

$$t0 = 23:25:30$$

$$t1 = 23:26:55$$

$$t2 = 23:27:10$$

$$K = \Delta S/\Delta E = 70-0/60-0 = 1,16$$

$$T = 2.8(85)-1.8(100) = 58s$$

$$\tau = 5,5(15) = 82,5s$$

III. Etude du régulateur

Delta =
$$50-40 = 10$$

DeltaP =
$$19-14 = 5$$

Delta
$$I = 24-19 = 5$$

Delta P = Delta I donc strucutre mixte

2)
$$T/\tau = 58/82,5 = 0,7$$
 donc PID Mixte

A =
$$0.83 / 1.16* (1/0.7+0.4) = 1.3$$

Xp = $100/1.3 = 77$

$$Ti = 82,5+0,4*58 = 105,7$$

$$Td = 58/0,7+2,5 = 18,125$$

IV. Performances et optimisation

1)

2)