

CI 3 – CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES SYSTÈMES

Chapitre 4 – Étude des chaînes fermées : Détermination des lois Entrée – Sortie

Résoudre : à partir des modèles retenus :

- choisir une méthode de résolution analytique, graphique, numérique;
- mettre en œuvre une méthode de résolution.

Rés – C1.1: Loi entrée sortie géométrique et cinématique – Fermeture géométrique.

Mod2 – C4.1: Représentation par schéma bloc.

Prothèse active transtibiale

D'après concours Mines-Ponts – MP – 2013.

Question 1

Après avoir identifié les différents paramètres variables du système, préciser quelle est l'entrée et quelle est la sortie.

Les paramètres variables sont :

- l'angle $\alpha(t)$;
- l'angle $\beta(t)$;
- l'angle $\theta(t)$ (non représenté);
- la distance $\lambda(t)$ représentative de l'élongation du vérin.

L'actionneur étant ici le vérin 3, $\lambda(t)$ est l'entrée du système. Dans le cas du système, $\theta(t)$ peut être considéré comme la sortie.

Question 2

Paramétrer le système et réaliser les figures planes correspondant aux différents changements de repères.

Question 3

Déterminer la loi entrée-sortie entre $\alpha(t)$ et $\lambda(t)$.

En considérant le triangle \overrightarrow{OAB} la fermeture géométrique s'écrit $\overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{BO} = \overrightarrow{0}$. En remplaçant les termes et en projetant sur $\overrightarrow{y_0}$ et $\overrightarrow{z_0}$, on a :

$$a\overrightarrow{z_0} - \lambda(t)\overrightarrow{y_3} + b\overrightarrow{y_2} = \overrightarrow{0} \Longleftrightarrow \begin{cases} -\lambda(t)\cos\beta(t) + b\cos\alpha(t) = 0\\ a - \lambda(t)\sin\beta(t) + b\sin\alpha(t) = 0 \end{cases}$$

Corribé

Compétences

On cherche à éliminer $\beta(t)$, en conséquence :

$$\begin{cases} \lambda(t)\cos\beta(t) = b\cos\alpha(t) \\ \lambda(t)\sin\beta(t) = a + b\sin\alpha(t) \end{cases} \implies \lambda^{2}(t) = b^{2} + a^{2} + 2ab\sin\alpha(t)$$

Par ailleurs, les exigences 4 et 5 du cahier des charges indiquent les variations du mouvement de la cheville, il est donc possible de tracer la courbes.

🞝 python

```
a=0.117
b=0.039
x=linspace(-25,15,200)
plt.plot(x,1000.*sqrt(b*b+a*a+2*a*b*sin(x*math.pi/180)))
plt.ylabel("Course du vérin $\\lambda$ (en mm)")
plt.xlabel("Angle $\\alpha$ (en degrés)")
plt.grid()
```

La loi entrée sortie correspondant au mouvement de la cheville est donnée par la courbe ci-contre.

Question 4

Commenter l'allure de la courbe et donner son équation. Comment les bornes de variation ont-elles été choisies? En linéarisant le comportement du système, déterminer l'équation de le droite.

Question 5

Donner le schéma bloc du système depuis la sortie du moteur jusqu'à la rotation α de la prothèse. L'exigence 3 estelle vérifiée?

D'après les notes de l'ibd, le domaine de variation de l'angle de la cheville doit être compris entre -25 et 15 degrés. Sur cette plage, on observe qu'il est possible de linéariser le comportement de la cheville.

Ainsi, pour 2 couples de points (-20, 110) et (10, 130), le coefficient directeur est donné par : $m = \frac{130-110}{10-(-20)} = \frac{20}{30} \simeq 0,66 \ mm/^{\circ} \simeq 240 \ mm/tour$.

L'ordonnée à l'origine est donnée par : $y = mx + p \Leftarrow p = 110 - \frac{2}{3}(-20) \approx 123 \ mm$.

Corrigé

Le moteur ayant une fréquence de rotation nominale de 7 600 tr/min, la fréquence de rotation de la cheville sera de :

$$\alpha_v = \omega_m \cdot \frac{1}{k} \cdot p_v \cdot \frac{1}{m} \cdot 7600 \cdot \frac{1}{2,1} \cdot 3 \cdot \frac{1}{240} \simeq 45,24 \, tr/min \simeq 4,73 \, rad/s.$$

La vitesse maximale demandée par le cahier des charges n'est donc pas dépassée. L'exigence est donc satisfaite.