Ex. No.: 10 Date: 20/12/2021

Verification of Step-Up and Step-Down Transformer

Aim:

To simulate the Transformer on step down and step-up mode using OrCAD capture CIS and find the input and output voltage both simulation and analytical calculation.

Apparatus:

ORCAD / Capture CIS: Analog Library - R

Design Cache – VSIN, XFRM_LINEAR

Ground (GND) – 0 (zero)

Simulation Settings: Analysis Type – Time Domain (Transient)

Circuit Diagram for Step-Down Transformer:

Circuit Diagram for Step-Up Transformer:

Statement:

A transformer is a machine that works by changing the output voltage by manipulating the imput voltage using inductors. A step-up voltage increases the voltage while a step-down voltage decreases the voltage.

Analytic Calculation:

```
Transformation ratio = \frac{\lambda_1}{\lambda_2} = \left(\frac{L_1}{L_2}\right)^{1/2}
 Voltage transformation:
        \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \sqrt{\frac{L_1}{L_2}}
   For step-up transformer:
    L1 = 20
    12 = 2000
   \frac{1}{v_2} = \left(\frac{20}{2000}\right)^{1/2}
    =) v2 = 10 v1
    =) V2 = 2000 V
 For step-down transformer:
    4= 2000
    12 = 20
    V. = 200
   \Rightarrow v_1 = \left(\frac{1}{100}\right)^{1/2}
   => 12 = 10
   =) 1/2 = 20 1
```

Simulation Circuit:

Step-Up Transformer:

Step-Down Transformer:

Simulation Profile Settings:

Analysis Type: Time Domain (Transient)		Run To Time :	20ms	seconds (TSTOP)	
Options:		Start saving data after :	0	seconds	
•	General Settings Monte Carlo/Worst Case	Transient options: ——— Maximum Step Size		seconds	
	Parametric Sweep	Skip initial transient bi	ias point calculation	(SKIPBP)	
	Temperature (Sweep)				
	Save Bias Point	Run in resume mode			Output File Options
	Load Bias Point				
	Save Check Point				
	Restart Simulation				

Procedure:

```
1. Press 'P' to place a part

2. Type 'F' and place 3 resistors

3. Type 'Vin' and place 1

4. Type 'XFRM_LINEAR' and place 1

5. Assign the correct values referring to the circuit diagram

6. Place voltage checkers on each side of the transformer

7. Create a new simulation and keep it at the 'Time Donain' Setting.

6. Set 'Run to Time' as 20 ms

9. Run the simulation to collect the data.
```

Result:

Step-Up Transformer Graph:

Red line – output voltage, 2000V

Green line – input voltage, 200V

Step-Down Transformer Graph:

Red line – output voltage, 20V

Green line – input voltage, 200V

Transformer Output

NOTATION	MANUAL CALCULATIONS	SIMULATED RESULT	
STEP-DOWN OUTPUT VOLTAGE	20	20	
STEP-UP OUTPUT VOLTAGE	2000	2000	

Inference:

by the marval calculations and the simulation circuit; both answers are coming the same. Therefore, the transformer works as expected.

Reg. No: 21BDS0340 Name: Abhinav Dinesh Srivatsa Date: 20/12/2021