ECE 161A: The Z-Transform

Florian Meyer University of California, San Diego Email: flmeyer@ucsd.edu

Z-Transform Definition

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

Will use the notation $X(z) = \mathcal{Z}(x[n])$.

Definition not complete without specifying the Region Of Convergence (ROC)

$$ROC: \{z: \sum_{n=-\infty}^{\infty} |x[n]z^{-n}| = \sum_{n=-\infty}^{\infty} |x[n]||z|^{-n} < \infty \}$$

Why Z-transforms?

- More general: Applicable to a larger class of signals
- Easier to manipulate: Complex variable theory can be useful (Laurent series and associated results).

Z-Transform versus DTFT

$$X(e^{j\omega}) = X(z)_{|z=e^{j\omega}}$$

Since $|e^{j\omega}|=1$. DTFT is the z-transform evaluated on the unit circle.

For the Fourier Transform to be defined, ROC must include the unit circle. Sequence must be absolutely summable.

Example 1: Right Sided Sequence

Consider $x[n] = a^n u[n]$.

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} = \sum_{n=-\infty}^{\infty} a^n u[n]z^{-n} = \sum_{n=0}^{\infty} a^n z^{-n}$$
$$= \sum_{n=0}^{\infty} (az^{-1})^n = \frac{1}{1 - az^{-1}}, |az^{-1}| < 1$$

$$ROC: \{z: |az^{-1}| < 1\} = \{z: |z| > |a|\}$$

Example 2: Left Sided Sequence

Consider $x[n] = -a^n u[-n-1]$.

$$X(z) = -\sum_{n=-\infty}^{\infty} a^n u[-n-1] z^{-n} = -\sum_{n=-\infty}^{-1} a^n z^{-n}$$

$$= -\sum_{n=1}^{\infty} a^{-n} z^n = -\sum_{n=1}^{\infty} (a^{-1} z)^n = -\frac{a^{-1} z}{1 - a^{-1} z}, \quad |a^{-1} z| < 1$$

$$= -\frac{a z^{-1}}{a z^{-1}} \frac{a^{-1} z}{1 - a^{-1} z} = -\frac{1}{a z^{-1} - 1} = \frac{1}{1 - a z^{-1}}, \quad |a^{-1} z| < 1$$

$$ROC: \{z: |a^{-1}z| < 1\} = \{z: |z| < |a|\}$$

General Sequences

- 1. Finite Duration Sequences
- 2. Right Sided Sequences
- 3. Left Sided Sequences
- 4. Two Sided Sequences

Finite Duration Sequences

1. Finite Duration Sequences: Sequences that are non-zero for $-\infty < N_1 \le n \le N_2 < \infty$

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} = \sum_{n=N_1}^{N_2} x[n]z^{-n}$$

ROC: All z except possibly z=0 or $z=\infty$ because z^{-n} is infinity at z=0 for positive values of n and similarly for $z=\infty$ for negative values of n.

Right Sided Sequences

2. Right Sided Sequences: Sequences that are zero for $n < N_1 < \infty$

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} = \sum_{n=N_1}^{\infty} x[n]z^{-n}$$

ROC: $\{z : |z| > r_R\}$ except possibly $z = \infty$

Reasoning: If $\sum_{n=N_1}^{\infty} |x[n]||z|^{-n}$ converges for $|z|=r_1$, it will converge for all $|z|>r_1$ since all terms with positive n get smaller

$$|x[n]r_1^{-n}| = \frac{|x[n]|}{r_1^n} > \frac{|x[n]|}{r_2^n} = |x[n]r_2^{-n}|, \quad r_2 > r_1 \text{ and } n > 0$$

Left Sided Sequences

3. Left Sided Sequences: Sequences that are zero for $n>N_2>-\infty$

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n} = \sum_{n = -\infty}^{N_2} x[n]z^{-n}$$

ROC: $\{z : |z| < r_L\}$ except possibly z = 0

Reasoning: If $\sum_{n=-\infty}^{N_2} |x[n]| |z|^{-n}$ converges for $|z| = r_1$, it will converge for all $|z| < r_1$ since all terms with negative n get smaller

Two-Sided Sequences

4. Two Sided Sequences: Sequences that are neither left-sided or right-sided, i.e. sequence defined over $-\infty < n < \infty$.

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

ROC: $\{z : r_R < |z| < r_L\}$ is an annular ring

Reasoning: If $\sum_{n=-\infty}^{\infty} x[n]z^{-n} = \sum_{n=-\infty}^{-1} x[n]z^{-n} + \sum_{n=0}^{\infty} x[n]z^{-n}$, sum of a left sided sequence and a right sided sequences. Both sequences must converge, and the ROC is the intersection.

Summary of ROCs

- 1. Finite Duration Sequences. ROC: All z except possibly z=0 or $z=\infty$
- 2. Right Sided Sequences. ROC: $\{z : |z| > r_R\}$ except possibly $z = \infty$
- 3. Left Sided Sequences. ROC: $\{z : |z| < r_L\}$ except possibly z = 0
- 4. Two Sided Sequences. ROC: $\{z: r_R < |z| < r_L\}$ is an annular ring

TABLE 3.1 SOME COMMON z-TRANSFORM PAIRS

Sequence Transform

1. δ[n]	1	All z
2. <i>u</i> [<i>n</i>]	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $a^n u[n]$	$\frac{1}{1 - az^{-1}}$	z > a
$6a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
7. $na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$8na^n u[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
9. $[\cos \omega_0 n] u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2\cos \omega_0] z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n] u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n] u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
(" 0 - " 1	1 aNa-N	

ROC

|z| > 0

Examples

Delta function:

$$x[n] = \delta[n] \leftrightarrow X(z) = \sum_{n=-\infty}^{\infty} \delta[n] z^{-n} = 1.$$

ROC: Entire z-plane

Delayed Delta function:

$$x[n] = \delta[n - n_0] \leftrightarrow X(z) = \sum_{n = -\infty}^{\infty} \delta[n - n_0] z^{-n} = z^{-n_0}.$$

ROC: Entire z-plane except z = 0 or $z = \infty$.

Exponential sequence: $x[n] = a^n u[n]$, has Z-transform

$$X(z) = \sum_{n=-\infty}^{\infty} a^n u[n] z^{-n} = \sum_{n=0}^{\infty} (az^{-1})^n = \frac{1}{1 - az^{-1}}, |az^{-1}| < 1$$

ROC:
$$\{z : |az^{-1}| < 1\} = \{z : |z| > |a|\}$$

Property Section Number Reference Sequence

TABLE 3.2

6

7

8

9

3.4.6

3.4.7

		x[n]	X(z)
		$x_1[n]$	$X_1(z)$
		$x_2[n]$	$X_2(z)$
1	3.4.1	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$
2	3.4.2	$x[n-n_0]$	$z^{-n_0}X(z)$
3	3.4.3	$z_0^n x[n]$	$X(z/z_0)$
	2.4.4	0 10 100	dX(z)
4	3.4.4	nx[n]	-z
5	3.4.5	$x^*[n]$	$\frac{-z}{X^*(z^*)} \frac{dz}{dz}$

 $\mathcal{R}e\{x[n]\}$

 $\mathcal{I}m\{x[n]\}$

 $x_1[n] * x_2[n]$

 $x^*[-n]$

Transform

 $\frac{1}{2j}[X(z) - X^*(z^*)]$

 $X^*(1/z^*)$

 $X_1(z)X_2(z)$

ROC

Contains $R_{x_1} \cap R_{x_2}$ R_x , except for the possible addition or deletion of the origin or ∞

 R_{x} R_{x_1} R_{x_2}

 $|z_0|R_x$ R_x R_x

Contains R_x

Contains R_x

Contains $R_{x_1} \cap R_{x_2}$

 $1/R_x$

SOME z-TRANSFORM PROPERTIES

Property 2: Time Shifting

$$x[n] \leftrightarrow X(z)$$
, ROC: $R_x = \{z : r_R < |z| < r_L\}$

Time Shifting: $x[n-n_0] \leftrightarrow z^{-n_0}X(z)$, ROC is R_x (except the addition or deletion of 0 and ∞ for sequences that are not two-sided)

Proof:

$$\mathcal{Z}(x[n-n_0]) = \sum_{n=-\infty}^{\infty} x[n-n_0]z^{-n}$$

$$= \sum_{m=-\infty}^{\infty} x[m]z^{-(m+n_0)} \text{ (Change of variables } m=n-n_d)$$

$$= z^{-n_0} \sum_{m=-\infty}^{\infty} x[m]z^{-m} = z^{-n_0}X(z)$$

Due to the presence of z^{-n_0} , ROC is R_x (except the addition or deletion of 0 and ∞ for sequences that are not two-sided)

Property 3: Multiplying by an Exponential Sequence

Modulation: $z_0^n x[n] \leftrightarrow X(\frac{z}{z_0})$, with ROC $\{z : |z_0|r_R < |z| < |z_0|r_L\}$ Proof:

$$\mathcal{Z}(z_0^n x[n]) = \sum_{n=-\infty}^{\infty} z_0^n x[n] z^{-n}$$
$$= \sum_{n=-\infty}^{\infty} x[n] \left(\frac{z}{z_0}\right)^{-n}$$
$$= X\left(\frac{z}{z_0}\right)$$

ROC: $\{z : r_R < |\frac{z}{z_0}| < r_L\} = \{z : |z_0|r_R < |z| < |z_0|r_L\}$

Property 9: Convolution

 $x[n] * y[n] \leftrightarrow X(z)Y(z)$ and ROC contains $R_x \cap R_y$ Proof:

$$\mathcal{Z}(x[n] * y[n]) = \mathcal{Z}(\sum_{k=-\infty}^{\infty} x[k]y[n-k])$$

$$= \sum_{k=-\infty}^{\infty} x[k]\mathcal{Z}(y[n-k]) \text{ (Linearity)}$$

$$= \sum_{k=-\infty}^{\infty} x[k]z^{-k}Y(z) \text{ (Time Shifting)}$$

$$= X(z)Y(z)$$

X(z) and Y(z) have to be defined for the product to be defined. So ROC contains $R_x \cap R_y$

Property 5

 $x^*[n] \leftrightarrow X^*(z^*)$ and ROC is R_x

Proof:

$$\mathcal{Z}(x^*[n]) = \sum_{n=-\infty}^{\infty} x^*[n] z^{-n} = \sum_{n=-\infty}^{\infty} x^*[n] (z^*)^{-n})^* = \sum_{n=-\infty}^{\infty} (x[n](z^*)^{-n})^*$$

$$= \left(\sum_{n=-\infty}^{\infty} x[n](z^*)^{-n}\right)^*$$

$$= (X(z^*))^* = X^*(z^*)$$

ROC: $\sum_{n=-\infty}^{\infty} |x^*[n]| |z^{-n}| = \sum_{n=-\infty}^{\infty} |x[n]| |z^{-n}|$, and so the ROC is R_x

Example

$$X(z) = \frac{1}{1 - az^{-1}} + \frac{1}{1 - bz^{-1}} + \frac{1}{1 - cz^{-1}}$$

What are the possible ROCs?

Potential ROCs

$$X(z) = \underbrace{\frac{1}{1 - az^{-1}}}_{1 - az^{-1}} + \underbrace{\frac{1}{1 - bz^{-1}}}_{1 - cz^{-1}}$$

 $x[n] = a^n u[n] - b^n u[-n-1] - c^n u[-n-1]$

 $X(z) = \frac{1}{1 - az^{-1}} + \frac{1}{1 - bz^{-1}} + \frac{1}{1 - cz^{-1}}$

Consider ROC: $\{z : a < |z| < b\}$

What is x[n]?

$$X(z) = \frac{1}{1-az^{-1}} + \frac{1}{1-bz^{-1}} + \frac{1}{1-cz^{-1}}$$
 Consider ROC: $\{z: |z|>c\}$

What is
$$x[n]$$
?

$$X(z) = \frac{1}{z^2} + \frac{1}{z^2} + \frac{1}{z^2}$$

$$X(z) = \underbrace{\frac{1}{1 - az^{-1}}}_{|z| > a} + \underbrace{\frac{1}{1 - bz^{-1}}}_{|z| > b} + \underbrace{\frac{1}{1 - cz^{-1}}}_{|z| > c}$$

$$X(z) = \underbrace{\frac{1 - az^{-1}}{|z| > a}}_{|z| > a} + \underbrace{\frac{1 - bz^{-1}}{|z| > b}}_{|z| > b} + \underbrace{\frac{1 - cz^{-1}}{|z| > b}}_{|z| > b}$$

$$\mathbf{v}[n] = \mathbf{z}^n u[n] + \mathbf{b}^n u[n] + \mathbf{c}^n u[n]$$

$$x[n] = a^n u[n] + b^n u[n] + c^n u[n]$$