Ch 9.2: Support Vector Classifier

Lecture 26 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Fri, Nov 18, 2022

Announcements

Last time:

• 9.1 Maximal Margin Classifier

This lecture:

• 9.2 Support Vector Classifier

Announcements:

2/21

 \bullet HW #8 due tonight

Section 1

Last time

Dr. Munch (MSU-CMSE)

Separating Hyperplane

Require that for every data point:

$$eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip} > 0 \text{ if } y_i = 1$$

 $eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip} < 0 \text{ if } y_i = -1$

Equivalently

Require that for every data point

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) > 0$$

Separating hyperplane becomes a classifier

If you have a separating hyperplane:

Check

$$f(x^*) = \beta_0 + \beta_1 x_1^* + \beta_2 x_2^* + \dots + \beta_p x_p^*$$

- If positive, assign $\hat{y} = 1$
- If negative, assign $\hat{y} = -1$

Dr. Munch (MSU-CMSE)

Maximal margin classifier

- For a hyperplane, the *margin* is the smallest distance from any data point to the hyperplane.
- Observations that are closest are called *support vectors*.
- The *maximal margin hyperplane* is the hyperplane with the largest margin
- The classifier built from this hyperplane is the *maximal margin classifier*.

Mathematical Formulation

$$\begin{aligned} & \underset{\beta_0,\beta_1,\dots,\beta_p,M}{\text{maximize}} \, M \\ & \text{subject to } \sum_{j=1}^p \beta_j^2 = 1, \\ & y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \geq M \ \, \forall \, i = 1,\dots,n \end{aligned}$$

Problems

Might be no separating hyperplane

Sensitivity to new points

Section 2

Support Vector Classifier

Basic idea

r. Munch (MSU-CMSE) Fri, Nov 18, 2022

Soft margin

11 / 21

. Munch (MSU-CMSE) Fri, Nov 18, 2022

Mathematical Formulation of SVC

$$\max_{\beta_0,\beta_1,\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M} M$$
subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1,$$

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i),$$

$$\epsilon_i \ge 0, \quad \sum_{j=1}^{n} \epsilon_i \le C,$$

Find positive ε 's that will satisfy this

Fix
$$M = \sqrt{2}$$
 $y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \varepsilon_i)$

What is ε ?

Fix
$$M = \sqrt{2}$$
 $y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \varepsilon_i)$

Fill in the table so that the inequality is satisfied.

Point	Left Side	$arepsilon_{i}$	$M(1-\varepsilon_i)$
Α	$2\sqrt{2}$	0	$\sqrt{2}$
В	$\frac{\sqrt{2}}{2}$		
С	$-\frac{\sqrt{2}}{2}$	1.5	$-\frac{\sqrt{2}}{2}$
Χ	$\frac{3\sqrt{2}}{2}$		
Υ	$\sqrt{2}$		
Z	$-\sqrt{2}$		

14 / 21

Munch (MSU-CMSE) Fri, Nov 18, 2022

What is ε ?

15 / 21

Dr. Munch (MSU-CMSE) Fri, Nov 18, 2022

What is C?

$$\begin{aligned} & \underset{\beta_0,\beta_1,\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M}{\operatorname{maximize}} & M \\ & \text{subject to} & \sum_{j=1}^p \beta_j^2 = 1, \\ & y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \geq M(1 - \epsilon_i), \\ & \epsilon_i \geq 0, & \sum_{i=1}^n \epsilon_i \leq C, \end{aligned}$$

16 / 21

r. Munch (MSU-CMSE) Fri, Nov 18, 2022

Examples messing with C

What affects the hyperplane?

Coding

Dr. Munch (MSU-CMSE)

TL;DR

Maximal Margin Classifier

$$\max_{\beta_0,\beta_1,\ldots,\beta_p,M} M$$

subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1$$
,

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M \ \forall i = 1, \dots, n$$

Support Vector Classifier

$$\max_{\beta_0,\beta_1,\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M} M$$

subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1$$
,

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i),$$

$$\epsilon_i \ge 0, \quad \sum_{i=1}^n \epsilon_i \le C,$$

Next time

20	F	Nov 4	Polynomial & Step Functions.	7.1,7.2	
21	М	Nov 7	Step Functions	7.2	
22	W	Nov 9	Basis functions, Regression Splines	7.3,7.4	
23	F	Nov 11	Decision Trees	8.1	HW #7 Due
24	М	Nov 14	Random Forests	8.2.1, 8.2.2	
25	W	Nov 16	Maximal Margin Classifier	9.1	
26	F	Nov 18	SVC	9.2	HW #8 Due
27	М	Nov 21	SVM	9.3, 9.4, 9.5	
28	W	Nov 23	Extended virtual office hours		
	F	Nov 25	No class - Thanksgiving		
29	М	Nov 28	Single layer NN	10.1	HW #9 Due
30	W	Nov 30	Multi Layer NN	10.2	
31	F	Dec 2	CNN	10.3	
32	М	Dec 5	Unsupervised Learning & Clustering	12.1, 12.4	HW #10 Due
	W	Dec 7	Review		
	F	Dec 9	Midterm #3	Bring your cheat sheet and a non-internet-connected calculator	

Dr. Munch (MSU-CMSE) Fri, Nov 18, 2022