EECS151: Introduction to Digital Design and ICs

Lecture 11 – CMOS

Bora Nikolić

RISC-I: Reduced Instruction Set Computing

On February 12, 2015, IEEE installed a plaque at UC Berkeley to commemorate the contribution of RISC-I. The plaque reads:

UC Berkeley students designed and built the first VLSI reduced instruction-set computer in 1981. The simplified instructions of RISC-I reduced the hardware for instruction decode and control, which enabled a flat 32-bit address space, a large set of registers, and pipelined execution. A good match to C programs and the Unix operating system, RISC-I influenced instruction sets widely used today, including those for game consoles, smartphones and tablets.

https://risc.berkeley.edu/risc-i/reunion/

Review

- Pipelining increases throughput
 - Structural, control and data hazards exist
- FPGAs are widely used for hardware prototyping and accelerating key applications.
- Core FPGA building blocks:
 - Configurable Logic Blocks (CLBs)
 - Slices
 - Look-Up Tables
 - Flip-Flops
 - Carry chain
 - Configurable Interconnect

FPGA Interconnect

3 Berkeley © © © O BY NC SA

EECS151 L11 CMOS
Nikolić, Fall 2021

Configurable Interconnect

- Between rows and columns of CLBs are wiring channels.
- These are programable. Each wire can be connected in many ways.
- Switch Box:
 - Each interconnection has a transistor switch.
 - Each switch is controlled by 1-bit configuration register.

FPGA Features: BRAMs, DSP, Al

5 Berkeley © SO BY NC SA

EECS151 L11 CMOS

Nikolić, Fall 2021

Diverse Resources on FPGA

Colors represent different types of resources:

Logic

Block RAM

DSPs

Clocking

1/0

Serial I/O + PCI

A routing fabric runs throughout the chip to wire everything together.

Virtex-5 Die Photo [Xilinx]

Block RAM

- Block Random Access Memory
- Used for storing large amounts of data:
 - 18Kb or 36Kb
 - Configurable bitwidth
 - 2 read and write ports
- More recently
 - UltraRAM in UltraScale+ devices

Figure 2: Block RAMs Arranged in Columns with Detailed Floorplan of XC3S200

Xilinx Datasheet

DSP Slice

Efficient implementation of multiply, add, bit-wise logical.

Xilinx Resource

Al Engine

Versal Al Core

Xilinx HotChips'2019

State-of-the-art Xilinx FPGA Platform

Versal (ACAP: Adaptive Compute Acceleration Platform)

Xilinx HotChips'2019

CMOS Process

Berkeley © \$0

BY NG SA

EECS151 L11 CMOS Nikolić, Fall 2021 11 Ber

Design Process

Design through layers of abstractions

Step-and-Scan Lithography

Semiconductor Manufacturing

- Repetitive steps (40-70 masks):
 - Passivation
 - Photoresist coating
 - Patterning (stepper)
 - Develop
 - Etch
 - Process step
 - Etching
 - Deposition
 - Implant
 - Remove resist
 - Repeat
- Zoom into a chip:

https://youtu.be/Fxv3JoS1uY8

http://laplace.ucv.cl/Charlas/Semiconductors/Chip/semiconductors.html

CMOS Process

- Post ~250nm CMOS
- Shallow-trench isolation, dual/triple-well process

Metal Stack

• Interconnect is predominantly copper

SEM view of Copper Interconnect (IBM Microelectronics)

SEM view of Copper Interconnect (IBM Microelectronics)

Metal Stack in Modern Processes

- Metal stack
 - Bottom layers have pitch that matches transistors
 - Intermediate are 2-4x
 - Top layers are wide and thick:
 Power distribution, clock

EECS151 L11 CMOS

Nikolić, Fall 2021

Lithography Scaling

EUV - Expected in volume this year

Sub-Wavelength Lithography

Light projected through a gap

Lithography Implications

Forbidden directions

Forbidden pitches

Optical proximity correction (OPC)

We Would Just Like a Square Contact...

• OPC vs. ILT

Optical Proximity Correction

Inverse Lithography Technology

45 nm node

without **OPC**

28 nm node

normal **OPC**

14 nm node

normal ILT

7_{nm} node

> ideal ILT

https://semiengineering.com/what-happened-to-inverse-lithography/

Multiple Patterning

Double patterning (pitch-split double exposure)

* 7nm process is quadruple patterned (w/o EUV)

EECS151 L11 CMOS
Nikolić, Fall 2021

Lithography and Processing Takeaways

- 193nm lithography impacts many of the design rules in modern processes:
 - Preferred and forbidden directions
 - Forbidden pitches
 - Multiple patterning
- EUV relaxes many of the restrictions in sub 5nm processes

Berkeley @ S

Nikolić, Fall 2021 23 Berkeley

Administrivia

- Semiconductor Workforce Fellowships in the area of SoC design
 - 8 undergraduate scholarships (4k each), applications due October 15
- Homework 4 is due today
 - No new homework this week
 - Homework 5 will be posted later this week, due next week
- No lab this week
 - Lab 6 (last) after the midterm
- Midterm 1 on October 7, 7-8:30pm
 - You will be assigned a classroom
 - One double-sided page of notes allowed
 - Material includes FPGAs

Nikolić, Fall 2021

MOS Transistors

25 Berkeley © © © © BY NC SA

EECS151 L11 CMOS Nikolić, Fall 2021 25

MOS Transistors

Symbol

Polysilicon (or metal) Gate (G) Source (S)

Drain (D)

Gate oxide N^+ diffusion

W

Contacts

- NMOS: Drain is at higher voltage
- PMOS: Source is at higher voltage

P-type

PMOS

Different Kinds of MOS Transistors

Planar bulk CMOS

Berkeley @06

Different Kinds of MOS Transistors

Planar bulk CMOS

Fully-depleted SOI

ST 28nm VLSI 2012

Burried oxide (or BOX) W

Transistors are Changing

From bulk to finFET and FDSOI

Berkeley @08

Transistor Dimensions are Quantized

- FinFET widths are discrete ($W = kW_{unit}$)
 - k is an integer
- Lengths are quantized because of lithography
 - Also are quantized lower metal layers, contacts...

Ohm's Law

Resistors

Physical resistors

W

$$\mathbf{R} = \rho \frac{\mathbf{L}}{\mathbf{T} \mathbf{W}}$$

In a planar process,
 designer controls W and L

Series and Parallel

• With two identical resistors, R

Equivalent to doubling length

Equivalent to doubling width

An n-Channel MOS Transistor

Polysilicon gate,
dielectric, and substrate form a
capacitor.

When $V_{GS} \le V_{Th}$ transistor is off

 $V_{DS} > 0$, transistor leaks $I_{DS} \sim nA$

An n-Channel MOS Transistor

When V_{GS}<V_{Th} transistor is off

 $V_G > V_{Th}$, small region near the surface turns from p-type to n-type.

nFet is on. Current is proportional to V_{DS}

An n-Channel MOS Transistor

p-

$$(V_{DS} > V_{GS} - V_{Th})$$

 $V_S = 0V$

n+

 $V_{DG} < 0$

I > 0

n+

MOS Transistors

NMOS Transistor I-V characteristics

Old transistor

Nearly linear $I_{DS} \sim K(V_{GS}-V_{Th})$

~7nm transistor

Velocity Saturation

Carrier velocity in the channel saturates

- All submicron transistors are velocity saturated
- Other effects (drain-induced barrier lowering)
 cause I_{DS} to increase in saturation

Summary

- Core FPGA building blocks:
 - Configurable Logic Blocks (CLBs)
 - Configurable Interconnect
 - Switch boxes
- Modern FPGA Designs:
 - BRAMs, DSPs, and Al Engines
- CMOS process is used for producing chips
 - Planar bulk process used up to 28nm node
 - finFET used below the 22nm node
 - Also FDSOI, but we didn't talk about it