; Problem Sp	ecify, design, develop, code and prove correct an R5RS Scheme program contains? which inputs
; integers m >	= 0 and n >= 0, and which outputs #t if all the digits of m occur in n, in the same order, ultiplicity constraints, and #f otherwise.
; For example, ;; (contains? 5	4932152 432) = #t: 4, 3, and 2 occur in the right order in 54932152
;; (contains? 5	432156 2) = #t
	1
	10rder 21 eserving 7 mortiphisty great 130%
	X not order preserving to mean that there
	Proching exists a 1-1 mapping from the
	Multicat of district of the
	multiset of digits of m to the
	as drawn with the blue and red
	ms -
	Consider $n = 3$ and $m = 333$
	contains? n m) would be true in This
	Tomary Toward De 2002 To Cott
	case it we eliminated The 1-1 requirement
	(Version 2 will ignore multiplicity)
	We will solve the problem with the multiplicity requirement first: every digit of m must occur in n at least the same number of times and in he same order.
	requirement first: evenu digit of m
	MUST DOUC IN n at least The same number
	t tools - d Is some notice
	of Lirred and in the survey of the

Divide & Conquer Analysis
Gratient 10) (Modulo n 10) - call it no
We have $\eta = \frac{1}{\sqrt{1 + m_0}}$ (modulo n 10) — call it no
$\frac{1}{2}$ $\frac{1}{2}$
We have $n = \frac{1}{(all_{1} + m_{0})}$
What do we lear of from compassing no and mo?
· what if no = mo?
If m < 10, so shat m = Mo, we could stop and return #I.
Ohonwise, (contains? n m) is #t iff (contains?, (quotient n 10) (quotient m 10)
· what if no + mo?
This means the digits of m can only mate to the digits of
any maje to some digits of
(quotient n 10), and he secursive (autient n 10) m)
(all would be (contains! (quotient n 10) m)
It's looking like This can be structured as an
It's looking like This can be structured as an induction on the number of digits in 1.
This allows us to figure out the basis case -
This allows us to figure out the basis case— lets look at n < 10 (ie, only 1 digit)

In this case - (contains? n m) = #t If n = m. (Again, this uses The multiplicity constraint) We might be ready to code (?) (define (contains? n m) (cond ((< n 10) (= n m)) (else (let ((no (modulo n 10)) (mo (modulo m 10))) (cond ((= no mo) ((f (x M 10) (contains? (quotient n 10)

(quotient m 10))) Celse ~ (contains? (quotient n 10) m))) Cool to observe that we used a divide conquer development strategy to come with iterative code! So then what is The invariant Penhaps something like the following:

