uhheieioh

March 16, 2025

1 Credit Card Fraud Detection

```
[1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

```
[2]: # Load the dataset
file_path = "creditcard.csv"
df = pd.read_csv(file_path)

# Display basic information about the dataset
df.info(), df.head()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284807 entries, 0 to 284806
Data columns (total 31 columns):

#	Column	Non-Null Count Dtype
0	Time	284807 non-null float64
1	V1	284807 non-null float64
2	V2	284807 non-null float64
3	V3	284807 non-null float64
4	V4	284807 non-null float64
5	V 5	284807 non-null float64
6	V6	284807 non-null float64
7	V7	284807 non-null float64
8	V8	284807 non-null float64
9	V 9	284807 non-null float64
10	V10	284807 non-null float64
11	V11	284807 non-null float64
12	V12	284807 non-null float64
13	V13	284807 non-null float64
14	V14	284807 non-null float64
15	V15	284807 non-null float64
16	V16	284807 non-null float64
17	V17	284807 non-null float64
18	V18	284807 non-null float64

```
V20
     20
                  284807 non-null
                                   float64
         V21
                  284807 non-null
                                   float64
     21
     22
         V22
                 284807 non-null
                                   float64
     23
         V23
                 284807 non-null
                                   float64
         V24
     24
                  284807 non-null
                                   float64
     25
         V25
                  284807 non-null
                                   float64
     26
         V26
                 284807 non-null
                                   float64
     27
         V27
                 284807 non-null
                                   float64
     28
         V28
                 284807 non-null
                                   float64
     29
                 284807 non-null
                                   float64
         Amount
         Class
                 284807 non-null
                                   int64
    dtypes: float64(30), int64(1)
    memory usage: 67.4 MB
[2]: (None,
         Time
                     ۷1
                               ٧2
                                          VЗ
                                                    ۷4
                                                              ۷5
                                                                        ۷6
                                                                                   ۷7
      0
          0.0 -1.359807 -0.072781
                                   2.536347
                                              1.378155 -0.338321
                                                                  0.462388
      1
          0.0 1.191857 0.266151
                                   0.166480
                                              0.448154
                                                        0.060018 -0.082361 -0.078803
      2
          1.0 -1.358354 -1.340163
                                   1.773209
                                             0.379780 -0.503198
                                                                  1.800499
                                                                            0.791461
      3
          1.0 -0.966272 -0.185226
                                   1.792993 -0.863291 -0.010309
                                                                  1.247203
                                                                            0.237609
          2.0 -1.158233 0.877737
                                   1.548718 0.403034 -0.407193
                                                                  0.095921
                                                                            0.592941
               ۷8
                         ۷9
                                      V21
                                                V22
                                                          V23
                                                                    V24
                                                                              V25
         0.098698
                             ... -0.018307
                                           0.277838 -0.110474
                  0.363787
                                                               0.066928
                                                                         0.128539
         0.085102 -0.255425
                             ... -0.225775 -0.638672
                                                    0.101288 -0.339846
                                                                         0.167170
         0.247676 -1.514654
                                          0.771679
                                                    0.909412 -0.689281 -0.327642
                             ... 0.247998
                             ... -0.108300
         0.377436 -1.387024
                                          0.005274 -0.190321 -1.175575
                                                                         0.647376
      4 -0.270533 0.817739
                             ... -0.009431
                                          V26
                        V27
                                  V28
                                                Class
                                       Amount
      0 -0.189115
                   0.133558 -0.021053
                                        149.62
                                                    0
      1 0.125895 -0.008983
                            0.014724
                                          2.69
                                                    0
```

[5 rows x 31 columns])

3 -0.221929

2 -0.139097 -0.055353 -0.059752

0.062723

0.502292 0.219422 0.215153

V19

19

284807 non-null

float64

1.1 Initial Observations:

The dataset contains 284,807 rows and 31 columns. The target variable is "Class" (0 for normal transactions, 1 for fraudulent transactions). All columns except "Class" are numerical. No missing values are present.

378.66

123.50

69.99

0.061458

0

0

0

```
[3]: # Summary statistics
summary_stats = df.describe()

# Check class distribution
class_distribution = df['Class'].value_counts(normalize=True) * 100

# Correlation heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(df.corr(), cmap="coolwarm", annot=False)
plt.title("Correlation Heatmap of Features")
plt.show()
```


1.1.1 Key Findings from EDA:

Highly Imbalanced Dataset:

99.83% of transactions are normal (Class 0). Only 0.17% are fraudulent (Class 1). This extreme imbalance needs to be addressed for effective ML modeling. Feature Correlation:

Most features have low correlation with each other. Some features like V17, V14, and V12 show a stronger correlation with the target class.

from IPython.display import display # Display summary statistics display(summary_stats) # Display class distribution display(class_distribution) ٧2 Time V1 V3 ۷4 \ count 284807.000000 2.848070e+05 2.848070e+05 2.848070e+05 2.848070e+05 94813.859575 1.168375e-15 3.416908e-16 -1.379537e-15 2.074095e-15 mean 47488.145955 1.958696e+00 1.651309e+00 1.516255e+00 1.415869e+00 std 0.000000 - 5.640751e + 01 - 7.271573e + 01 - 4.832559e + 01 - 5.683171e + 00min 25% 54201.500000 -9.203734e-01 -5.985499e-01 -8.903648e-01 -8.486401e-01 50% 84692.000000 1.810880e-02 6.548556e-02 1.798463e-01 -1.984653e-02 75% 139320.500000 1.315642e+00 8.037239e-01 1.027196e+00 7.433413e-01 max 172792.000000 2.454930e+00 2.205773e+01 9.382558e+00 1.687534e+01 **V**5 V6 V7 V8 V9 \ 2.848070e+05 2.848070e+05 2.848070e+05 2.848070e+05 2.848070e+05 count 9.604066e-16 1.487313e-15 -5.556467e-16 1.213481e-16 -2.406331e-15 mean 1.380247e+00 1.332271e+00 1.237094e+00 1.194353e+00 1.098632e+00 std min -1.137433e+02 -2.616051e+01 -4.355724e+01 -7.321672e+01 -1.343407e+0125% -6.915971e-01 -7.682956e-01 -5.540759e-01 -2.086297e-01 -6.430976e-01 50% -5.433583e-02 -2.741871e-01 4.010308e-02 2.235804e-02 -5.142873e-0275% 6.119264e-01 3.985649e-01 5.704361e-01 3.273459e-01 5.971390e-01 3.480167e+01 7.330163e+01 1.205895e+02 2.000721e+01 1.559499e+01 max V21 V22 V23 V24 count 2.848070e+05 2.848070e+05 2.848070e+05 2.848070e+05 1.654067e-16 -3.568593e-16 2.578648e-16 4.473266e-15 mean 7.345240e-01 7.257016e-01 6.244603e-01 6.056471e-01 std ... -3.483038e+01 -1.093314e+01 -4.480774e+01 -2.836627e+00 min 25% ... -2.283949e-01 -5.423504e-01 -1.618463e-01 -3.545861e-01 50% ... -2.945017e-02 6.781943e-03 -1.119293e-02 4.097606e-02 75% 1.863772e-01 5.285536e-01 1.476421e-01 4.395266e-01 1.050309e+01 2.720284e+01 2.252841e+01 4.584549e+00 max V25 V26 V27 V28 Amount 2.848070e+05 2.848070e+05 2.848070e+05 2.848070e+05 284807.000000 count 1.683437e-15 -3.660091e-16 -1.227390e-16 mean 5.340915e-16 88.349619 4.822270e-01 4.036325e-01 3.300833e-01 250.120109 5.212781e-01 std -1.029540e+01 -2.604551e+00 -2.256568e+01 -1.543008e+01 min 0.000000 -3.171451e-01 -3.269839e-01 -7.083953e-02 -5.295979e-02 5.600000 25% 1.659350e-02 -5.213911e-02 1.342146e-03 1.124383e-02 50% 22.000000 75% 3.507156e-01 2.409522e-01 9.104512e-02 7.827995e-02 77.165000

[12]: import pandas as pd

```
7.519589e+00 3.517346e+00 3.161220e+01 3.384781e+01
                                                                 25691.160000
max
               Class
      284807.000000
count
            0.001727
mean
            0.041527
std
min
            0.000000
25%
            0.000000
50%
            0.000000
75%
            0.000000
            1.000000
max
[8 rows x 31 columns]
Class
    99.827251
0
      0.172749
1
Name: proportion, dtype: float64
```

1.2 Outlier

```
[15]: # Import necessary libraries
      import pandas as pd
      from IPython.display import display
      # Load dataset
      file_path = "creditcard.csv"
      df = pd.read_csv(file_path)
      # Identify outliers using the IQR method
      Q1 = df.quantile(0.25)
      Q3 = df.quantile(0.75)
      IQR = Q3 - Q1
      # Define outlier bounds
      lower_bound = Q1 - 1.5 * IQR
      upper_bound = Q3 + 1.5 * IQR
      # Count outliers per column
      outliers = ((df < lower_bound) | (df > upper_bound)).sum()
      # Convert outlier count to DataFrame and display
      outliers_df = outliers.to_frame(name="Outliers")
      # Display the DataFrame in a readable format
      print("\nOutlier Count Per Column:\n")
      print(outliers_df)
```

Outlier Count Per Column:

	Outliers
Time	0
V1	7062
V2	13526
V3	3363
V4	11148
V5	12295
V6	22965
V7	8948
V8	24134
V9	8283
V10	9496
V11	780
V12	15348
V13	3368
V14	14149
V15	2894
V16	8184
V17	7420
V18	7533
V19	10205
V20	27770
V21	14497
V22	1317
V23	18541
V24	4774
V25	5367
V26	5596
V27	39163
V28	30342
Amount	31904
Class	492

1.2.1 Outlier Analysis:

Several features contain a significant number of outliers. Features V1, V2, V4, V14, V17 have high outlier counts. Outliers can impact ML model performance, especially for classification tasks.

1.2.2 Outlier Handling Summary:

Applied Clipping: Features are clipped at the 1st and 99th percentile to reduce extreme values. Reduction in Outliers: Some extreme values are adjusted while maintaining the dataset integrity.

```
[2]: # Import necessary libraries
import pandas as pd
```

```
from IPython.display import display
# Load dataset
file_path = "creditcard.csv"
df = pd.read_csv(file_path)
# Identify outliers using the IQR method
Q1 = df.quantile(0.25)
Q3 = df.quantile(0.75)
IQR = Q3 - Q1
# Define outlier bounds
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# Clipping outliers to the 1st and 99th percentile
for col in df.columns:
   if col not in ["Class", "Time"]:
       lower_clip = df[col].quantile(0.01)
       upper_clip = df[col].quantile(0.99)
       df[col] = df[col].clip(lower_clip, upper_clip)
# Verifying if outliers are handled
outliers_after = ((df < lower_bound) | (df > upper_bound)).sum()
# Convert outlier count to DataFrame and display
outliers_after_df = outliers_after.to_frame(name="Outliers After Clipping")
# Display the DataFrame in a readable format
print("\nOutlier Count After Clipping:\n")
print(outliers_after_df)
```

Outlier Count After Clipping:

	Outliers	After	Clipping
Time			0
V1			7062
V2			13526
V3			3343
V4			8905
V5			12295
V6			21213
V7			8948
V8			24134
V9			5844
V10			9496

V12	14579
V13	0
V14	14149
V15	0
V16	6521
V17	6663
V18	7533
V19	10205
V20	27770
V21	14497
V22	0
V23	18541
V24	4638
V25	3688
V26	4867
V27	39163
V28	30342
Amount	31904
Class	492

1.2.3 Logistic Regression

[4]: pip install scikit-learn

Collecting scikit-learnNote: you may need to restart the kernel to use updated packages.

```
[notice] A new release of pip is available: 24.3.1 -> 25.0.1 [notice] To update, run: python.exe -m pip install --upgrade pip
```

```
Downloading scikit_learn-1.6.1-cp313-cp313-win_amd64.whl.metadata (15 kB) Requirement already satisfied: numpy>=1.19.5 in
```

c:\users\windows\appdata\local\programs\python\python313\lib\site-packages (from scikit-learn) (2.2.0)

Requirement already satisfied: scipy>=1.6.0 in

c:\users\windows\appdata\local\programs\python\python313\lib\site-packages (from scikit-learn) (1.15.2)

Collecting joblib>=1.2.0 (from scikit-learn)

Downloading joblib-1.4.2-py3-none-any.whl.metadata (5.4 kB)

Collecting threadpoolctl>=3.1.0 (from scikit-learn)

Downloading threadpoolctl-3.6.0-py3-none-any.whl.metadata (13 kB)

Downloading scikit_learn-1.6.1-cp313-cp313-win_amd64.whl (11.1 MB)

```
----- 0.0/11.1 MB ? eta -:--:-
---- 1.3/11.1 MB 6.5 MB/s eta 0:00:02
----- 2.9/11.1 MB 6.6 MB/s eta 0:00:02
----- 3.9/11.1 MB 6.6 MB/s eta 0:00:02
```

```
----- 4.7/11.1 MB 5.8 MB/s eta 0:00:02
      ----- 5.8/11.1 MB 5.4 MB/s eta 0:00:01
      ----- 6.6/11.1 MB 4.9 MB/s eta 0:00:01
        ----- 7.1/11.1 MB 4.7 MB/s eta 0:00:01
      ----- 7.9/11.1 MB 4.5 MB/s eta 0:00:01
      ----- 8.7/11.1 MB 4.4 MB/s eta 0:00:01
      ----- 9.4/11.1 MB 4.3 MB/s eta 0:00:01
      ----- 10.2/11.1 MB 4.2 MB/s eta 0:00:01
      ----- 10.7/11.1 MB 4.1 MB/s eta 0:00:01
      ----- 11.1/11.1 MB 4.0 MB/s eta 0:00:00
   Downloading joblib-1.4.2-py3-none-any.whl (301 kB)
   Downloading threadpoolctl-3.6.0-py3-none-any.whl (18 kB)
   Installing collected packages: threadpoolctl, joblib, scikit-learn
   Successfully installed joblib-1.4.2 scikit-learn-1.6.1 threadpoolctl-3.6.0
[7]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import classification report, accuracy score,
    # Splitting dataset into features and target
    X = df.drop(columns=['Class', 'Time'])
    y = df['Class']
    # Splitting into train and test sets (80% train, 20% test)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
     →random_state=42, stratify=y)
    # Standardizing the features
    scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
    # Training a Random Forest Classifier
    rf_model = RandomForestClassifier(n_estimators=100, random_state=42,_u

¬class_weight='balanced')
    rf_model.fit(X_train, y_train)
    # Predictions
    y_pred = rf_model.predict(X_test)
    # Model evaluation
    classification_rep = classification_report(y_test, y_pred)
```

conf_matrix = confusion_matrix(y_test, y_pred)
accuracy = accuracy_score(y_test, y_pred)

```
# Display classification report
print("\nClassification Report:\n")
print(classification_rep)

# Display confusion matrix
print("\nConfusion Matrix:\n")
print(conf_matrix)

# Display accuracy
print("\nModel Accuracy: {:.2f}%".format(accuracy * 100))
```

Classification Report:

support	f1-score	recall	precision	
56864	1.00	1.00	1.00	0
98	0.84	0.76	0.95	1
56962	1.00			accuracy
56962	0.92	0.88	0.97	macro avg
56962	1.00	1.00	1.00	weighted avg

Confusion Matrix:

[[56860 4] [24 74]]

Model Accuracy: 99.95%

[9]: pip install imbalanced-learn

Collecting imbalanced-learnNote: you may need to restart the kernel to use updated packages.

```
[notice] A new release of pip is available: 24.3.1 -> 25.0.1 [notice] To update, run: python.exe -m pip install --upgrade pip
```

Downloading imbalanced_learn-0.13.0-py3-none-any.whl.metadata (8.8 kB)

Requirement already satisfied: numpy<3,>=1.24.3 in

c:\users\windows\appdata\local\programs\python\python313\lib\site-packages (from imbalanced-learn) (2.2.0)

Requirement already satisfied: scipy<2,>=1.10.1 in

c:\users\windows\appdata\local\programs\python\python313\lib\site-packages (from imbalanced-learn) (1.15.2)

Requirement already satisfied: scikit-learn<2,>=1.3.2 in

```
c:\users\windows\appdata\local\programs\python\python313\lib\site-packages (from
     imbalanced-learn) (1.6.1)
     Collecting sklearn-compat<1,>=0.1 (from imbalanced-learn)
       Downloading sklearn_compat-0.1.3-py3-none-any.whl.metadata (18 kB)
     Requirement already satisfied: joblib<2,>=1.1.1 in
     c:\users\windows\appdata\local\programs\python\python313\lib\site-packages (from
     imbalanced-learn) (1.4.2)
     Requirement already satisfied: threadpoolctl<4,>=2.0.0 in
     c:\users\windows\appdata\local\programs\python\python313\lib\site-packages (from
     imbalanced-learn) (3.6.0)
     Downloading imbalanced_learn-0.13.0-py3-none-any.whl (238 kB)
     Downloading sklearn_compat-0.1.3-py3-none-any.whl (18 kB)
     Installing collected packages: sklearn-compat, imbalanced-learn
     Successfully installed imbalanced-learn-0.13.0 sklearn-compat-0.1.3
[10]: from sklearn.linear_model import LogisticRegression
      from imblearn.under_sampling import RandomUnderSampler
      # Applying undersampling to balance the dataset
      undersampler = RandomUnderSampler(random_state=42)
      X_resampled, y_resampled = undersampler.fit_resample(X_train, y_train)
      # Train a Logistic Regression model
      log model = LogisticRegression(max iter=200, random state=42)
      log_model.fit(X_resampled, y_resampled)
      # Predictions
      y_pred_log = log_model.predict(X_test)
      # Model evaluation
      classification rep_log = classification_report(y_test, y_pred_log)
      conf_matrix_log = confusion_matrix(y_test, y_pred_log)
      accuracy_log = accuracy_score(y_test, y_pred_log)
      # Display Classification Report
      print("\nClassification Report:\n")
      print(classification_rep_log)
      # Display Confusion Matrix
      print("\nConfusion Matrix:\n")
      print(conf_matrix_log)
```

Classification Report:

Display Accuracy

print("\nModel Accuracy: {:.2f}%".format(accuracy_log * 100))

F	recision	recall	f1-score	support
0	1.00	0.96	0.98	56864
1	0.04	0.92	0.08	98
accuracy			0.96	56962
macro avg	0.52	0.94	0.53	56962
veighted avg	1.00	0.96	0.98	56962

Confusion Matrix:

[[54659 2205] [8 90]]

Model Accuracy: 96.11%

ML Model Evaluation: Accuracy: 97.18% (Overall correctness of predictions) Precision & Recall: Normal Transactions (Class 0): Precision: 100% (Almost all predicted normal transactions are correct) Recall: 97% (Model correctly identifies most normal transactions) Fraud Transactions (Class 1): Precision: 5% (Many false positives, meaning the model misclassifies normal transactions as fraud) Recall: 92% (Model captures most actual fraud cases) Key Takeaways: The model successfully detects fraudulent transactions (high recall: 92%). However, low precision for fraud (5%) means it incorrectly flags normal transactions as fraud. Using better feature selection, SMOTE (oversampling), or advanced models (XGBoost, Neural Networks) can improve performance.

1.2.4 Clustering

```
[12]: # Import necessary libraries

from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.mixture import GaussianMixture
from IPython.display import display

# Prepare data (remove non-numeric columns)
X = df.drop(columns=["Class", "Time", "Amount"]).values

# Perform PCA to reduce dimensions for clustering
pca = PCA(n_components=2, random_state=42)
X_pca = pca.fit_transform(X)

# Apply K-Means clustering (unsupervised learning)
kmeans = KMeans(n_clusters=2, random_state=42, n_init=10)
df['Cluster_KMeans'] = kmeans.fit_predict(X_pca)
```

```
# Apply Gaussian Mixture Model (GMM) for soft clustering
gmm = GaussianMixture(n_components=2, random_state=42)
df['Cluster_GMM'] = gmm.fit_predict(X_pca)

# Display the first few rows with clustering results
print("\nClustering Results:\n")
display(df[['Cluster_KMeans', 'Cluster_GMM']].head())
```

Clustering Results:

	Cluster_KMeans	Cluster_GMM
0	1	1
1	0	0
2	1	1
3	1	1
4	1	1

1.2.5 MAE, MSE and R2 Score

```
[16]: from sklearn.model_selection import train_test_split
      from sklearn.preprocessing import StandardScaler
      from sklearn.linear model import LogisticRegression, LinearRegression
      from sklearn.metrics import classification_report, mean_absolute_error, r2_score
      # Splitting dataset for classification (Fraud Detection)
      X_class = df.drop(columns=['Class', 'Time'])
      y_class = df['Class']
      X_train_class, X_test_class, y_train_class, y_test_class = train_test_split(
          X_class, y_class, test_size=0.2, random_state=42, stratify=y_class
      # Standardizing the features
      scaler = StandardScaler()
      X_train_class = scaler.fit_transform(X_train_class)
      X_test_class = scaler.transform(X_test_class)
      # Logistic Regression for Fraud Detection
      log_model = LogisticRegression(max_iter=200, random_state=42,__
       ⇔class_weight="balanced")
      log_model.fit(X_train_class, y_train_class)
      y_pred_class = log_model.predict(X_test_class)
      # Classification report
      classification_rep = classification_report(y_test_class, y_pred_class)
```

```
# Regression Task (Predicting transaction amount)
X_reg = df.drop(columns=['Amount', 'Time'])
y_reg = df['Amount']
X_train_reg, X_test_reg, y_train_reg, y_test_reg = train_test_split(
   X_reg, y_reg, test_size=0.2, random_state=42
# Standardizing features for regression
X_train_reg = scaler.fit_transform(X_train_reg)
X_test_reg = scaler.transform(X_test_reg)
# Linear Regression Model
lin_reg = LinearRegression()
lin_reg.fit(X_train_reg, y_train_reg)
y_pred_reg = lin_reg.predict(X_test_reg)
# Regression performance metrics
mae = mean_absolute_error(y_test_reg, y_pred_reg)
r2 = r2_score(y_test_reg, y_pred_reg)
# Display classification report
print("\nClassification Report:\n")
print(classification_rep)
# Display Mean Absolute Error (MAE)
print("\nMean Absolute Error (MAE):")
print(mae)
# Display R2 Score
print("\nR2 Score:")
print(r2)
```

Classification Report:

support	f1-score	recall	precision	
56864	0.99	0.98	1.00	0
98	0.11	0.91	0.06	1
56962	0.98			accuracy
56962	0.55	0.94	0.53	macro avg
56962	0.99	0.98	1.00	weighted avg

Mean Absolute Error (MAE): 23.730541217315356

R² Score: 0.9203329830770584

```
[17]: # Import necessary libraries
      import pandas as pd
      import numpy as np
      from sklearn.model_selection import train_test_split
      from sklearn.preprocessing import StandardScaler
      from sklearn.linear_model import LogisticRegression, LinearRegression
      from sklearn.metrics import classification report, mean_absolute_error, u
       ⇒r2_score, mean_squared_error
      # Load dataset
      file_path = "creditcard.csv"
      df = pd.read_csv(file_path)
      # Splitting dataset for classification (Fraud Detection)
      X_class = df.drop(columns=['Class', 'Time'])
      y_class = df['Class']
      X train_class, X_test_class, y_train_class, y_test_class = train_test_split(
          X_class, y_class, test_size=0.2, random_state=42, stratify=y_class
      # Standardizing the features
      scaler = StandardScaler()
      X_train_class = scaler.fit_transform(X_train_class)
      X_test_class = scaler.transform(X_test_class)
      # Logistic Regression for Fraud Detection
      log_model = LogisticRegression(max_iter=200, random_state=42,__
       ⇔class_weight="balanced")
      log_model.fit(X_train_class, y_train_class)
      y_pred_class = log_model.predict(X_test_class)
      # Classification report
      classification_rep = classification_report(y_test_class, y_pred_class)
      # Splitting dataset for Regression (Predicting transaction amount)
      X_reg = df.drop(columns=['Amount', 'Time'])
      y_reg = df['Amount']
      X_train_reg, X_test_reg, y_train_reg, y_test_reg = train_test_split(
          X_reg, y_reg, test_size=0.2, random_state=42
      # Standardizing features for regression
      X_train_reg = scaler.fit_transform(X_train_reg)
```

```
X_test_reg = scaler.transform(X_test_reg)
# Linear Regression Model
lin_reg = LinearRegression()
lin_reg.fit(X_train_reg, y_train_reg)
y_pred_reg = lin_reg.predict(X_test_reg)
# Regression performance metrics
mae = mean_absolute_error(y_test_reg, y_pred_reg)
r2 = r2_score(y_test_reg, y_pred_reg)
mse = mean_squared_error(y_test_reg, y_pred_reg)
rmse = np.sqrt(mse) # Root Mean Square Error (Mean Square Root)
# Display results
print("\nClassification Report:\n")
print(classification_rep)
print("\nMean Absolute Error (MAE):")
print(mae)
print("\nR2 Score:")
print(r2)
print("\nMean Squared Error (MSE):")
print(mse)
print("\nRoot Mean Squared Error (RMSE):")
print(rmse)
```

Classification Report:

support	f1-score	recall	precision	
56864	0.99	0.97	1.00	0
98	0.11	0.92	0.06	1
56962	0.97			accuracy
56962	0.55	0.95	0.53	macro avg
56962	0.99	0.97	1.00	weighted avg

Mean Absolute Error (MAE): 24.381081132416714

R² Score:

0.9180030260351862

```
Mean Squared Error (MSE):
     4332.916223786584
     Root Mean Squared Error (RMSE):
     65.82489060975783
[19]: import matplotlib.pyplot as plt
      import pandas as pd
      from sklearn.cluster import KMeans
      from sklearn.mixture import GaussianMixture
      from sklearn.decomposition import PCA
      # Reduce dataset size for clustering to improve efficiency
      df_sample_cluster = df.sample(n=10000, random_state=42)
      X_sample_cluster = df_sample_cluster.drop(columns=["Class", "Time", "Amount"])
      # Perform PCA for dimensionality reduction (2 components for visualization)
      pca = PCA(n components=2)
      X_pca_cluster = pca.fit_transform(X_sample_cluster)
      # Apply K-Means Clustering
      kmeans = KMeans(n_clusters=2, random_state=42, n_init=10)
      df_sample_cluster["Cluster_KMeans"] = kmeans.fit_predict(X_pca_cluster)
      # Apply Gaussian Mixture Model (GMM) for soft clustering
      gmm = GaussianMixture(n_components=2, random_state=42)
      df_sample_cluster["Cluster_GMM"] = gmm.fit_predict(X_pca_cluster)
      # Convert results to DataFrame for easy viewing
      results_df = df_sample_cluster[['Cluster_KMeans', 'Cluster_GMM']].head()
      print("Clustering Results (Sampled):\n", results_df)
      # Plot clustering results
      plt.figure(figsize=(10, 5))
     Clustering Results (Sampled):
              Cluster KMeans Cluster GMM
     43428
                          1
                                        1
     49906
                          0
                                        1
                          0
                                       0
     29474
     276481
                          1
                                       0
     278846
[19]: <Figure size 1000x500 with 0 Axes>
```

<Figure size 1000x500 with 0 Axes>

K-means Clustering

```
[20]: # K-Means Clustering Plot

plt.subplot(1, 2, 1)

plt.scatter(X_pca_cluster[:, 0], X_pca_cluster[:, 1],

c=df_sample_cluster["Cluster_KMeans"], cmap='viridis', alpha=0.5)

plt.title("K-Means Clustering")

plt.show()
```

K-Means Clustering

Gaussian Mixture Clustering

Gaussian Mixture Model Clustering

Anomaly Detection using IsolationForest / Anomaly Score

```
plt.title("Anomaly Detection Distribution")
plt.xlabel("Anomaly Score")
plt.ylabel("Frequency")
plt.show()
```

Anomaly Detection Results:

	Anomaly_Score
43428	-1
49906	1
29474	1
276481	1
278846	1

Anomaly Detection Distribution


```
[26]: from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# Prepare data
X = df.drop(columns=["Class", "Time", "Amount"]).values
y = df["Class"].values

# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, \( \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\t
```

```
# Standardizing features
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# Implement Gradient Descent for Logistic Regression
def sigmoid(z):
    return 1 / (1 + np.exp(-z))
def gradient_descent(X, y, lr=0.01, epochs=1000):
    m, n = X.shape
    weights = np.zeros(n)
    bias = 0
    losses = []
    for i in range(epochs):
        linear_model = np.dot(X, weights) + bias
        predictions = sigmoid(linear_model)
        # Compute gradients
        error = predictions - y
        dw = (1/m) * np.dot(X.T, error)
        db = (1/m) * np.sum(error)
        # Update weights
        weights -= lr * dw
        bias -= lr * db
        # Compute loss (Log Loss)
        loss = (-1/m) * np.sum(y*np.log(predictions) + (1-y)*np.
 ⇒log(1-predictions))
        losses.append(loss)
    return weights, bias, losses
# Train model using Gradient Descent
weights, bias, losses = gradient_descent(X_train, y_train, lr=0.01, epochs=1000)
# Plot loss over iterations
plt.figure(figsize=(8, 5))
plt.plot(losses, label="Loss")
plt.xlabel("Iterations")
plt.ylabel("Log Loss")
plt.title("Gradient Descent Convergence")
plt.legend()
plt.show()
```

```
# Display final loss value losses[-1]
```


[26]: np.float64(0.10949750800455114)

```
[27]: # Define a sample quadratic loss function: f(x) = (x-3)^2 + 5

def loss_function(x):
    return (x - 3) ** 2 + 5

# Compute gradient: f'(x) = 2(x-3)

def gradient(x):
    return 2 * (x - 3)

# Implementing different types of Gradient Descent

def gradient_descent(lr=0.1, iterations=50, method="vanilla"):
    x = np.random.uniform(-5, 5) # Start from a random point
    x_vals = [x]
    loss_vals = [loss_function(x)]
    velocity = 0
    beta = 0.9 # Momentum term
    v = 0 # RMSprop term
    eps = 1e-8 # Smoothing term
```

```
for _ in range(iterations):
       grad = gradient(x)
        if method == "momentum":
            velocity = beta * velocity + (1 - beta) * grad
            x -= lr * velocity
        elif method == "rmsprop":
           v = beta * v + (1 - beta) * (grad ** 2)
            x -= lr * grad / (np.sqrt(v) + eps)
        elif method == "adam":
           m = beta * grad + (1 - beta) * grad
           v = beta * v + (1 - beta) * (grad ** 2)
            x = lr * m / (np.sqrt(v) + eps)
        else: # Vanilla Gradient Descent
           x -= lr * grad
       x_vals.append(x)
       loss_vals.append(loss_function(x))
   return x_vals, loss_vals
# Run different optimization techniques
methods = ["vanilla", "momentum", "rmsprop", "adam"]
plt.figure(figsize=(10, 6))
for method in methods:
   x_vals, loss_vals = gradient_descent(method=method)
   plt.plot(loss_vals, label=method)
plt.xlabel("Iterations")
plt.ylabel("Loss")
plt.title("Comparison of Gradient Descent Optimization Methods")
plt.legend()
plt.show()
```


Optimization Comparison Results I implemented and visualized the performance of different gradient-based optimization techniques:

Vanilla Gradient Descent:

Slow convergence, gradually moving towards the minimum. Momentum-Based Optimization:

Faster convergence due to accumulated velocity, reducing oscillations. RMSprop (Root Mean Square Propagation):

Adaptive learning rate prevents large updates, improving stability. Adam (Adaptive Moment Estimation):

Combines momentum & RMSprop, leading to fast and stable convergence. Key Takeaways Adam & RMSprop perform better than vanilla Gradient Descent. Momentum helps smooth updates, avoiding oscillations. Adaptive methods (Adam, RMSprop) adjust learning rates dynamically, improving training speed.

```
[31]: # Re-import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# 1. Class Distribution (Fraud vs Non-Fraud)
```

```
plt.figure(figsize=(6, 4))
sns.countplot(x=df['Class'], palette="coolwarm")
plt.title("Class Distribution (Fraud vs Non-Fraud)")
plt.xlabel("Transaction Type (0: Normal, 1: Fraud)")
plt.ylabel("Count")
plt.show()
```

C:\Users\Windows\AppData\Local\Temp\ipykernel_7372\3618872454.py:10:
FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(x=df['Class'], palette="coolwarm")

Transaction Type (0: Normal, 1: Fraud)

[32]: # 2. Correlation Heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(df.corr(), cmap="coolwarm", annot=False)
plt.title("Correlation Heatmap of Features")
plt.show()


```
[33]: # 3. Distribution of Transaction Amounts
plt.figure(figsize=(8, 5))
sns.histplot(df['Amount'], bins=50, kde=True, color="blue")
plt.title("Transaction Amount Distribution")
plt.xlabel("Amount ($)")
plt.ylabel("Frequency")
plt.show()
```



```
[34]: # 4. PCA-based Clustering Visualization
from sklearn.decomposition import PCA

# Reduce dataset to two dimensions using PCA
X = df.drop(columns=["Class", "Time", "Amount"])
pca = PCA(n_components=2, random_state=42)
X_pca = pca.fit_transform(X)

# Scatter plot for PCA representation
plt.figure(figsize=(8, 6))
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=df["Class"], cmap="coolwarm", alpha=0.5)
plt.title("PCA-based Clustering of Transactions")
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.colorbar(label="Class (0: Normal, 1: Fraud)")
plt.show()
```



```
[35]: # 5. Boxplots for Outlier Detection in Key Features
plt.figure(figsize=(12, 6))
selected_features = ["V1", "V10", "V14", "V17", "Amount"]
df_selected = df[selected_features].copy()

# Plotting boxplots
df_selected.boxplot(grid=False, vert=False)
plt.title("Boxplots of Selected Features (Outlier Detection)")
plt.show()
```



```
[36]: # 6. Fraud vs. Non-Fraud Transaction Amounts

plt.figure(figsize=(8, 5))

sns.boxplot(x=df["Class"], y=df["Amount"], palette="coolwarm")

plt.title("Transaction Amounts by Class (Fraud vs Non-Fraud)")

plt.xlabel("Class (0: Normal, 1: Fraud)")

plt.ylabel("Transaction Amount ($)")

plt.yscale("log") # Log scale for better visualization

plt.show()
```

 $\begin{tabular}{ll} $C:\Users\Windows\AppData\Local\Temp\ipykernel_7372\2218142348.py:3: Future\Warning: \end{tabular}$

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(x=df["Class"], y=df["Amount"], palette="coolwarm")

[37]: # 7. Distribution of Feature Importance (Using Random Forest Feature Importance) from sklearn.ensemble import RandomForestClassifier # Prepare data for feature importance analysis X = df.drop(columns=["Class", "Time", "Amount"]) y = df["Class"] # Train a RandomForest model rf_model = RandomForestClassifier(n_estimators=100, random_state=42,__ ⇔class_weight="balanced") rf_model.fit(X, y) # Get feature importances feature_importances = pd.DataFrame({"Feature": X.columns, "Importance": L orf_model.feature_importances_}) feature_importances = feature_importances.sort_values(by="Importance",_ →ascending=False) # Plot feature importance plt.figure(figsize=(10, 6)) sns.barplot(x="Importance", y="Feature", data=feature_importances[:15],__ ⇔palette="coolwarm") plt.title("Top 15 Important Features (Random Forest)")

```
plt.xlabel("Importance Score")
plt.ylabel("Feature Name")
plt.show()
```

C:\Users\Windows\AppData\Local\Temp\ipykernel_7372\4024610950.py:18:
FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x="Importance", y="Feature", data=feature_importances[:15],
palette="coolwarm")


```
[38]: # 8. Pairplot of Key Features (Fraud vs. Non-Fraud)
selected_features = ["V1", "V10", "V14", "V17", "Amount", "Class"]
df_selected = df[selected_features].copy()

# Sample data for pairplot (reduce dataset size for efficiency)
df_sample = df_selected.sample(n=3000, random_state=42)

# Plot pairplot for fraud vs. non-fraud transactions
sns.pairplot(df_sample, hue="Class", palette="coolwarm", diag_kind="kde")
plt.show()
```


[]:[