Camera model & calibration

Prof. Didier Stricker

Camera Calibration

- Finding camera's internal parameters that effect the imaging process.
 - 1. Position of the image center on the image (usually not just (width/2, height/2).
 - 2. Focal length
 - 3. Scaling factors for row and column pixels.
 - 4. Lens distortion.

Calibration Procedure

Calibration: finding the function (defined by the camera) that maps 3D points to 2D image plane.

First thing required is to obtain pairs of corresponding 3D and 2D points. (X_1, Y_1, Z_1) (x_1, y_1) , (X_2, Y_2, Z_2) (x_2, y_2) ,

Calibration Procedure

Calibration Target: Two perpendicular planes with chessboard pattern.

- 1. We know the 3D positions of the corners with respect to a coordinates system defined on the target.
- Place a camera in front of the target and we can locate the corresponding corners on the image. This gives us the correspondences.
- 3. Recover the equation that describes imaging projection and camera's internal parameters. At the same time, also recover the relative orientation between the camera and the target (pose).

Finding Corners

- 1. Corner detector
- 2. Canny Edge detector plus fitting lines to the detected edges. Find the intersections of the lines.
- 3. Manual input.

Matching 3D and 2D points (we know the number of corners) by counting.

This gives corresponding pairs

(world point)
$$< --- >$$
 (image point)
(X_1, Y_1, Z_1) (x_1, y_1),

World Coordinates and Camera Coordinates

Camera Frame to World Frame

Definition: 3D-Rotation

- Linear Algebra
- Definition: a matrix R is a rotation matrix if and only if it is a orthogonal matrix with determinant +1

Orthogonal Matrix: a square matrix with real entries whose columns and rows are orthogonal vectors with length 1.

That means: $RR^T = I$

Or: $R^{-1} = R^{T}$

3D Transformations - Rotation

Euler Angles for Rotation R=R_zR_yR_x:

rotation by
$$\psi$$
 about the z axis: $R_z = \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$

rotation by
$$\theta$$
 about the y axis: $R_y = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$

rotation by
$$\phi$$
 about the x axis:
$$R_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix}$$

Sequence not standardized! Many different conventions!

Homogeneous Coordinates

$$\begin{bmatrix} x_S \\ y_S \\ z_S \end{bmatrix} = \begin{bmatrix} T_x \\ T_y \\ T_z \end{bmatrix} + \begin{bmatrix} \mathbf{I.i} & \mathbf{J.i} & \mathbf{K.i} \\ \mathbf{I.j} & \mathbf{J.j} & \mathbf{K.j} \\ \mathbf{I.k} & \mathbf{J.k} & \mathbf{K.k} \end{bmatrix} \begin{bmatrix} X_S \\ Y_S \\ Z_S \end{bmatrix}$$

$$\begin{bmatrix} x_S \\ y_S \\ z_S \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{I.i} & \mathbf{J.i} & \mathbf{K.i} & T_x \\ \mathbf{I.j} & \mathbf{J.j} & \mathbf{K.j} & T_y \\ \mathbf{I.k} & \mathbf{J.k} & \mathbf{K.k} & T_z \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} X_S \\ Y_S \\ Z_S \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{T} \\ \mathbf{0_3^T} & 1 \end{bmatrix} \begin{bmatrix} X_S \\ Y_S \\ Z_S \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_S \\ y_S \\ z_S \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{T} \\ \mathbf{0_3^T} & 1 \end{bmatrix} \begin{bmatrix} X_S \\ Y_S \\ Z_S \\ 1 \end{bmatrix}$$

Let
$$C = -R^t T$$

$$\begin{bmatrix} x_S \\ y_S \\ z_S \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & -\mathbf{R} \widetilde{\mathbf{C}} \\ \mathbf{0_3^T} & 1 \end{bmatrix} \begin{bmatrix} X_S \\ Y_S \\ Z_S \\ 1 \end{bmatrix}$$

Perspective Projection

Use Homogeneous coordinates, the perspective projection becomes linear.

$$x_{i} = f \frac{x_{s}}{z_{s}}$$

$$y_{i} = f \frac{y_{s}}{z_{s}}$$

$$y_{i} = f \frac{y_{s}}{z_{s}}$$

$$y_{i} = f \frac{y_{s}}{z_{s}}$$

$$z_{s}$$

$$z_{i} = u/w, y_{i} = v/w$$

$$z_{s}$$

Pixel Coordinates

Transformation uses:

- image center (x_0, y_0)
- scaling factors k_x and k_y

$$x_{i} = f \frac{x_{s}}{z_{s}} \qquad x_{pix} = k_{x}x_{i} + x_{0} = f k_{x} \frac{x_{s} + z_{s}x_{0}}{z_{s}}$$

$$y_{i} = f \frac{y_{s}}{z_{s}} \qquad y_{pix} = k_{y}y_{i} + y_{0} = f k_{y} \frac{y_{s} + z_{s}y_{0}}{z_{s}}$$

$$\begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \begin{bmatrix} \alpha_x & 0 & x_0 & 0 \\ 0 & \alpha_y & y_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_s \\ y_s \\ z_s \\ 1 \end{bmatrix} \quad \text{with} \quad \alpha_x = f k_x \quad \text{then} \quad x_{pix} = u' / w' \\ \alpha_y = f k_y \quad \text{then} \quad y_{pix} = v' / w'$$

$$y_{0}$$
 y_{0}
 y

$$x_{pix} = k_x x_i + x_0 = f k_x \frac{x_s + z_s x_0}{z_s}$$

$$y_{pix} = k_y y_i + y_0 = f k_y \frac{y_s + z_s y_0}{z_s}$$

Calibration Matrix

$$\begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \begin{bmatrix} \alpha_x & s & x_0 & 0 \\ 0 & \alpha_y & y_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_s \\ y_s \\ z_s \\ 1 \end{bmatrix} \text{ with } \begin{aligned} \alpha_x &= f k_x & x_{pix} &= u' / w' \\ \alpha_y &= f k_y & y_{pix} &= v' / w' \end{aligned}$$

$$\begin{bmatrix} \alpha_x & s & x_0 & 0 \\ 0 & \alpha_y & y_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} \alpha_x & s & x_0 \\ 0 & \alpha_y & y_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{I}_3 & | & \mathbf{0}_3 \end{bmatrix}$$

- $\alpha_{\rm x}$ and $\alpha_{\rm y}$ "focal lengths" in pixels
- x_0 and y_0 coordinates of image center in pixels
- •Added parameter S is skew parameter
- K is called *calibration matrix*. Five degrees of freedom.
 - •K is a 3x3 upper triangular matrix

Putting Everything Together

$$\begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{I}_3 \\ V_S \\ Z_S \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & -\mathbf{R} \widetilde{\mathbf{C}} \\ \mathbf{0}_3^T & 1 \end{bmatrix} \begin{bmatrix} X_S \\ Y_S \\ Z_S \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{I}_3 \\ V_S \\ Z_S \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{R} & -\mathbf{R} \widetilde{\mathbf{C}} \\ \mathbf{0}_3^T & 1 \end{bmatrix} \begin{bmatrix} X_S \\ Y_S \\ Z_S \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \mathbf{P} \begin{bmatrix} X_S \\ Y_S \\ Z_S \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \mathbf{I}_3 \\ V_S \\ Z_S \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \mathbf{P} \begin{bmatrix} X_S \\ Y_S \\ Z_S \\ 1 \end{bmatrix}$$

$$\mathbf{X} = \mathbf{P} \mathbf{X}$$

Calibration

- 1. Estimate matrix **P** using scene points and their images
- 2. Estimate the intrinsic and extrinsic parameters

$$\mathbf{P} = \mathbf{K} \mathbf{R} \left[\mathbf{I}_3 \quad | \quad -\widetilde{\mathbf{C}} \right]$$

Left 3x3 sub-matrix is the product of an upper triangular matrix and an orthogonal matrix.

- Use corresponding image and scene points
 - 3D points X_i in world coordinate system
 - Images $\mathbf{x_i}$ of $\mathbf{X_i}$ in image
- Write $\mathbf{x_i} = \mathbf{P} \mathbf{X_i}$ for all i

- $\mathbf{x_i} = \mathbf{P} \ \mathbf{X_i}$ involves homogeneous coordinates, thus $\mathbf{x_i}$ and $\mathbf{P} \ \mathbf{X_i}$ just have to be proportional: $\mathbf{x_i} \times \mathbf{P} \ \mathbf{X_i} = 0$
- Let \mathbf{p}_1^T , \mathbf{p}_2^T , \mathbf{p}_3^T be the 3 row vectors of **P**

$$\mathbf{P} \mathbf{X}_{i} = \begin{bmatrix} \mathbf{p}_{1}^{\mathsf{T}} \mathbf{X}_{i} \\ \mathbf{p}_{2}^{\mathsf{T}} \mathbf{X}_{i} \\ \mathbf{p}_{3}^{\mathsf{T}} \mathbf{X}_{i} \end{bmatrix} \qquad \mathbf{X}_{i} \times \mathbf{P} \mathbf{X}_{i} = \begin{bmatrix} v'_{i} \mathbf{p}_{3}^{\mathsf{T}} \mathbf{X}_{i} - w'_{i} \mathbf{p}_{2}^{\mathsf{T}} \mathbf{X}_{i} \\ w'_{i} \mathbf{p}_{1}^{\mathsf{T}} \mathbf{X}_{i} - u'_{i} \mathbf{p}_{3}^{\mathsf{T}} \mathbf{X}_{i} \\ u'_{i} \mathbf{p}_{2}^{\mathsf{T}} \mathbf{X}_{i} - v'_{i} \mathbf{p}_{1}^{\mathsf{T}} \mathbf{X}_{i} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \mathbf{0_4^T} & -w_i \mathbf{X_i^T} & v_i \mathbf{X_i^T} \\ w_i \mathbf{X_i^T} & \mathbf{0_4^T} & -u_i \mathbf{X_i^T} \\ -v_i \mathbf{X_i^T} & u_i \mathbf{X_i^T} & \mathbf{0_4^T} \end{bmatrix} \begin{bmatrix} \mathbf{p_1} \\ \mathbf{p_2} \\ \mathbf{p_3} \end{bmatrix} = 0 \qquad \begin{bmatrix} \mathbf{p_1} \\ \mathbf{p_2} \\ \mathbf{p_3} \end{bmatrix} \text{ is a } 12 \times 1 \text{ vector}$$

• Third row can be obtained from sum of u'_i times first row - v'_i times second row

$$\begin{bmatrix} \mathbf{0_4^T} & -w_i' \mathbf{X_i^T} & v_i' \mathbf{X_i^T} \\ w_i' \mathbf{X_i^T} & \mathbf{0_4^T} & -u_i' \mathbf{X_i^T} \\ -v_i' \mathbf{X_i^T} & u_i' \mathbf{X_i^T} & \mathbf{0_4^T} \end{bmatrix} \begin{bmatrix} \mathbf{p_1} \\ \mathbf{p_2} \\ \mathbf{p_3} \end{bmatrix} = 0$$
Rank 2

- So we get 2 independent equations in 11 unknowns (ignoring scale)
- With 6 point correspondences, we get enough equations to compute matrix **P**

$$\mathbf{A} \mathbf{p} = 0$$

- Linear system $\mathbf{A} \mathbf{p} = 0$
- When possible, have at least 5 times as many equations as unknowns (28 points)
- Minimize $|| \mathbf{A} \mathbf{p} ||$ with the constraint $|| \mathbf{p} || = 1$
 - P is the unit singular vector of A corresponding to the smallest singular value (the last column of V, where $A = U D V^T$ is the SVD of A)

Computing the translation component

- Find homogeneous coordinates of C in the scene
- C is the null vector of matrix P
 - $\mathbf{P} \mathbf{C} = 0:$ $\mathbf{P} = \mathbf{K} \mathbf{R} \begin{bmatrix} \mathbf{I}_{3} & | & -\widetilde{\mathbf{C}} \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 & X_{c} \\ 0 & 1 & 0 & Y_{c} \\ 0 & 0 & 1 & Z_{c} \end{bmatrix} \begin{bmatrix} X_{c} \\ Y_{c} \\ Z_{c} \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
- Find null vector **C** of **P** using SVD
 - C is the unit singular vector of P corresponding to the smallest singular value (the last column of V, where P = U D V^T is the SVD of P)

Camera matrix decomposition

Finding the camera orientation and internal parameters

A **QR decomposition** (also called a **QR factorization**) of a matrix is a decomposition of the matrix into an orthogonal and a right triangular matrix.

$$=(QR)^{-1}=R^{-1}Q^{-1}$$

Further Improvement

Use as initialization for nonlinear minimization of $\sum_{i} d(\mathbf{x}_{i}, \mathbf{PX}_{i})^{2}$

Most popular non-linear minimization algorithm is the **Levenberg-Marquart minimization**

LM is more robust to local minima than e.g. the Gauss– Newton algorithm and the method of gradient descent)

Advanced Calibration: Nonlinear Distortions

- Barrel and Pincushion
- Tangential

Barrel and Pincushion Distortion

tele

wideangle

Models of Radial Distortion

distance from center

Image Rectification

Examplary calibration set-ups

Direct linear calibration

- Advantage:
 - Very simple to formulate and solve
- Disadvantages:
 - Doesn't tell you the camera parameters
 - Doesn't model radial distortion
 - Hard to impose constraints (e.g., known focal length)
 - Doesn't minimize the right error function

For these reasons, *nonlinear methods* are preferred

- Define error function E between projected 3D points and image positions
 - E is nonlinear function of intrinsics, extrinsics, radial distortion
- Minimize E using nonlinear optimization techniques
 - e.g., variants of Newton's method (e.g., Levenberg Marquart)

Alternative: multi-plane

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

C

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online!
 - Intel's OpenCV library: http://www.intel.com/research/mrl/research/opencv/
 - Matlab version by Jean-Yves Bouget:
 http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
 - Zhengyou Zhang's web site: http://research.microsoft.com/~zhang/Calib/

Calibration or Pose estimation using a CAD model

Reduce the number of interactions

- Pre-compute as much parameters as possible:
 - More stable
 - Less user-input required

Calibration or Pose estimation using a CAD model

THANK YOU!