Your CARTOON Is

Lee You Jin
Park Sung Chun
Lee Hyun Soo
Jang Hyung Joo

Subject

All video Frames

Make a cartoon

Extract highlight Frames

Cartoonization

Architecture

Feature 1 – Key Frame Extraction

- Differences with Key Frame Extraction
 - **Existing Unsupervised Clustering:**
 - Depends on the shooting time of the scene
 - Can't distinguish between frames of different temporal order

Ours:

- Depends on the shooting time and object information of the scene (Using YOLO v4)
- Can distinguish between frames of different temporal order

Difference from state of the art

Example of the original clustering.

Difference from state of the art

Example of our clustering.

Feature 2 - CartoonGAN

GAN을 기반으로 이미지를 만화 스타일로 변환하는데 초점을 맞춘 이미지 변환 모델

만화 이미지처럼 뚜렷한 윤곽선과 단순화된 면을 갖도록 변환되는 것이 특징

Loss: $L(G,D) = L_{adv}(G,D) + \lambda L_{con}(G,D)$

 $\text{Adversarial Loss}: L_{adv}(G, D) = \mathbb{E}_{c_i \sim S_{data}(c)}[logD(c_i)] + \mathbb{E}_{e_j \sim S_{data}(e)}\left[\log\left(1 - D(e_j)\right)\right] + \mathbb{E}_{p_k \sim S_{data}(p)}\left[\log\left(1 - D(G(p_k))\right)\right]$

Content Loss: $L_{con}(G, D) = \mathbb{E}_{p_i \sim S_{data}(p)} \left[\left| \left| VGG_l(G(p_i)) - VGG_l(p_i) \right| \right|_1 \right]$

가우시안 블러 필터를 사용하여 윤곽선이 흐릿한 만화 이미지를 라벨 0으로 모델의 학습 데이터로 함께 사용한다. 또한 Content Loss에서 사전에 훈련된 VGG 19 Net을 사용하여 변환 시 오브젝트가 뭉개 지지 않고 유지되도록 함.

(b) CycleGAN

Problems in Project

Not converted properly when converting certain images.

When images include things like grass, water waves.

Attempt	Number of train data	Learning ratio of G vs D	Inner network of Cartoon GAN
1st	9000	1:1	VGG 19 net
2nd	9000	1:3	VGG 19 net
3rd	9000	1:2	Inception net v3
4th	20000	1:1	VGG 19 net

Number of train data: 9,000 Learning ratio of G vs D: 1:3 Inner network of Cartoon GAN: VGG19 net

Attempt	Number of train data	Learning ratio of G vs D	Inner network of Cartoon GAN
1st	9000	1:1	VGG 19 net
2nd	9000	1:3	VGG 19 net
3rd	9000	1:2	Inception net v3
4th	20000	1:1	VGG 19 net

Number of train data: 9,000 Learning ratio of G vs D: 1:2 Inner network of Cartoon GAN: Inception v3 net

Attempt	Number of train data	Learning ratio of G vs D	Inner network of Cartoon GAN
1st	9000	1:1	VGG 19 net
2nd	9000	1:3	VGG 19 net
3rd	9000	1:2	Inception net v3
4th	20000	1:1	VGG 19 net

Number of train data: 20,000 Learning ratio of G vs D: 1:1

Inner network of Cartoon GAN: VGG19 net

Differences with Key Frame Extraction

Change hyper parameter, lambda value of content loss function.

$$\mathcal{L}(G, D) = \mathcal{L}_{adv}(G, D) + \underline{\omega} \mathcal{L}_{con}(G, D),$$

Change filter size of gaussian blur filter used for edge smoothing.

(a) A cartoon image c_i

(b) The edge-smoothed version e_i

Feature 3 – Layout & Sticker

Result

0

Ш

