FUNCTION&L PROGRAMMING IN PYTHON FOR LINGUISTS

1. Functional Programming

What is Functional Programming?

• Functional programming (FP) is a **programming paradigm** that focuses on **pure functions, immutability, and avoiding side effects**. Unlike imperative programming, where you define a sequence of commands that modify the program's state, functional programming treats computation as the evaluation of mathematical functions.

Key Principles of Functional Programming

1.First-Class Functions

- 1. Functions can be assigned to variables, passed as arguments, and returned from other functions.
- 2. This makes code more modular and reusable.

2.Immutability

- 1. Once a variable is assigned, it cannot be changed.
- 2. Instead of modifying existing data, FP creates new data structures.

3. Pure Functions

- A function's output depends only on its input and has **no side effects** (i.e., it does not modify external variables or data).
- This makes code easier to test and debug.

4. Higher-Order Functions

- Functions that take other functions as arguments or return functions.
- Common examples: map(), filter(), and reduce().

5. Recursion Instead of Loops

 Instead of using for or while loops, FP relies on recursive function calls.

6. Lazy Evaluation

- Expressions are not evaluated until their values are needed.
- This improves performance and optimizes memory usage.

Why is Functional Programming Useful in Linguistics?

- Linguistics involves processing large amounts of text, such as corpora, dictionaries, and phonological patterns.
- Functional programming is particularly useful because it:

1. Handles Large Datasets Efficiently

• Linguistic data (like corpora or speech datasets) can be processed in parallel using functional constructs like map().

2. Encourages Modular & Reusable Code

- Functional programming allows you to write small, reusable functions.
- Example: A function that converts text to lowercase can be reused in multiple linguistic analyses.

3. Avoids Unintended Side Effects

- Linguistic processing often involves multiple transformations on text (e.g., tokenization, stemming, lemmatization).
- FP ensures data remains unchanged, preventing accidental corruption.

4. Supports Parallel Processing

- Corpus linguistics and sentiment analysis require processing millions of words.
- Functional programming supports **parallel execution** (e.g., *multiprocessing* in Python).

Example: Imperative vs. Functional Style in Text Processing

Consider a task where we need to **filter out stopwords** from a sentence.

Imperative Style (Traditional Approach)

['This', 'simple', 'example']

Problems with Imperative Style

- Uses a loop and mutable lists (filtered_words).
- Code is longer and harder to debug.

• Functional Style (Using filter() and lambda)

```
stopwords = {"a", "the", "in", "on", "and", "is"}
sentence = "This is a simple example"

filtered_words = list(filter(lambda w: w not in stopwords, sentence.split()))

print(filtered_words)
```

- Output: ['This', 'simple', 'example']
- **≻Why is this Better?**
 - More concise: Eliminates explicit loops.
 - Immutable: No unnecessary modifications.
 - More readable & reusable.

2. Variables, State, and Mutability

Understanding Immutability

- In functional programming, variables don't change once assigned.
- Helps prevent bugs caused by unexpected state changes.

• Example:

```
1 x = "hello"
2 y = x.upper()
3 print(y) # HELLO
4 print(x) # hello (unchanged)
```

Why Avoid State Changes?

- Reduces side effects.
- Makes debugging easier.

3. Functions as First-Class Objects

- What Does "First-Class Citizen" Mean?
 - Functions can be stored in variables, passed as arguments, and returned from other functions.

• Example:

```
def greet(name):
    return "Hello, " + name

welcome = greet # Assign function to a variable
print(welcome("Alice")) # Output: Hello, Alice
```

- Linguistics Application:
 - Defining functions for text transformations.

4. Lambda Functions

What is a Lambda Function?

 A small anonymous function using the *lambda* keyword. Unlike regular functions created with def, lambda functions do not have a name and are typically used for short, simple operations.

>Syntax: lambda arguments: expression

- lambda is the keyword.
- arguments are the input parameters (like a normal function).
- expression is the single operation the function performs (must return a value).

• Key Difference from def Functions:

- Lambda functions are one-liners (cannot contain multiple statements).
- Implicit return (no need to use return keyword).

- Example: Converting Words to Uppercase
- Using a regular function (def):

```
1 def uppercase(word):
2    return word.upper()
3
4 print(uppercase("phoneme")) # Output: PHONEME
```

Using a lambda function:

```
uppercase = lambda word: word.upper()
print(uppercase("phoneme")) # Output: PHONEME
```

- Why Use Lambda Functions?
 - Shortens simple functions.
 - Useful in functions like map() and filter().

5. Overt Recursion

What is Recursion?

- A function that calls itself until a base condition is met.
- A recursive function breaks down a complex problem into smaller, simpler subproblems.
- Every recursive function must have a **base case** (a stopping condition) and **a recursive step** (where it calls itself).

Example: Counting Syllables Recursively

```
def count_vowels(word, count=0):
    if word == "":
        return count
    return count_vowels(word[1:], count + (1 if word[0] in "aeiou" else 0))
    print(count_vowels("phonology")) # Output: 3
```

➤Why is Recursion Useful in Linguistics?

- Parsing Nested Structures (e.g., Sentence Trees)
- Morphological Analysis (Breaking Words into Morphemes)
- Phonological Rule Application

6. Comprehensions in Python

- Python comprehensions allow for concise and efficient creation of lists, sets, and dictionaries in a single line.
- They are faster and more readable than traditional loops.

Types of Comprehensions

Comprehension Type	Syntax	Example
List Comprehension	[expression for item in iterable if condition]	[w for w in words if "ing" in w]
Set Comprehension	{expression for item in iterable if condition}	{len(w) for w in words}
Dictionary Comprehension	{key: value for item in iterable if condition}	{w: len(w) for w in words}

Example: Finding Words with 'ing' Using List Comprehension

```
words = ["running", "jump", "singing", "play"]
ing_words = [w for w in words if "ing" in w]
print(ing_words) # Output: ['running', 'singing']
```

Equivalent Traditional Loop

```
words = ["running", "jump", "singing", "play"]
ing_words = []
for w in words:
    if "ing" in w:
        ing_words.append(w)
print(ing_words) # Output: ['running', 'singing']
```

Why use List Comprehension?

- More concise than loops.
- Faster than appending to lists manually.

• Comprehensions use **optimized internal loops**, making them **faster** than traditional loops.

Performance Comparison

```
import time

morphology", "syntax", "phonetics"] * 1000 # Large dataset

"Using a Loop
start = time.time()
word_lengths = {}
for w in words:
    word_lengths[w] = len(w)
end = time.time()
print(f"Loop Time: {end - start:.6f} sec")

"Using Dictionary Comprehension
start = time.time()
word_lengths = {w: len(w) for w in words}
end = time.time()
print(f"Comprehension Time: {end - start:.6f} sec")
```

• Expected Output (Varies by System):

```
Loop Time: 0.000420 sec
Comprehension Time: 0.000308 sec
```

Use comprehensions whenever possible for simple transformations—they make code **faster and cleaner!**

Nested Comprehensions:

Comprehensions can also **replace nested loops** for more complex operations.

• Example: Creating Word Bigrams Using Nested List Comprehension

```
words = ["syntax", "morphology"]
bigrams = [(w[i], w[i+1]) for w in words for i in range(len(w) - 1)]
print(bigrams)
# Output: [('s', 'y'), ('y', 'n'), ('n', 't'), ('t', 'a'), ...]
```

Why use nested comprehensions?

- Avoids deeply nested loops.
- More efficient in handling multiple iterations.

Why Use Comprehensions?

Feature	Traditional Loops	Comprehensions
Code Length	Longer	Shorter
Readability	More verbose	More Concise
Performance	Slower	Faster
Best For	Complex Logic	Simple Transformations

Rule of Thumb:

- Use **comprehensions** for simple list, set, or dictionary transformations.
- X Use loops when code requires multiple statements or complex logic.

7. Vectorized Computation in Python

 Vectorized computation is a technique where operations are applied to entire arrays (vectors) at once, instead of using loops.

Key Features:

- ✓ Eliminates explicit loops, making code more concise and readable.
- ✓ Uses **optimized low-level implementations** for speed (e.g., NumPy in Python).
- ✓ Ideal for processing large linguistic datasets efficiently.

7.1. Using NumPy for Linguistics

Python's built-in lists are **not optimized for numerical operations**. Instead, **NumPy arrays** allow efficient vectorized computations.

Example: Token Frequency in a Corpus

```
import numpy as np

# Word frequencies from a corpus
freqs = np.array([10, 50, 30, 60])

# Normalize frequencies (convert to probabilities)
norm_freqs = freqs / np.sum(freqs)

print(norm freqs)
```

- How does it work?
 - np.array([10, 50, 30, 60]) creates a NumPy array.
 - np.sum(freqs) calculates the total frequency.
 - freqs / np.sum(freqs) divides each element by the total → producing normalized frequencies.

No loops required! NumPy performs element-wise division faster than traditional loops.

• Output: [0.06666667 0.33333333 0.2 0.4]

- Why is Vectorized Computation Useful?
- 1. Speeds Up Large-Scale Linguistic Computations
- Processing millions of words in a text corpus is computationally expensive.
 NumPy optimizes operations using C and Fortran, making it significantly faster.
- 2. More Efficient Than Traditional Loops
- Loop-Based Approach (Slow)

```
freqs = [10, 50, 30, 60]
total = sum(freqs)
norm_freqs = [f / total for f in freqs] # List comprehension
print(norm_freqs)
```

 <u>i</u> Problem: Python lists require explicit looping, which is slower for large datasets.

NumPy Approach (Fast & Efficient)

```
import numpy as np
freqs = np.array([10, 50, 30, 60])
norm_freqs = freqs / np.sum(freqs) # Vectorized computation
print(norm_freqs)
```

No loops → Operations happen at the **hardware level** (C/Fortran), making it **much faster**.

Example: Text Processing with NumPy

Let's say we have a list of **word lengths** and we want to find the **mean length**.

Loop-Based Approach:

```
word_lengths = [4, 7, 5, 6, 8]
mean_length = sum(word_lengths) / len(word_lengths)
print(mean_length) # Output: 6.0
```

NumPy Approach (Faster & Cleaner):

```
import numpy as np
word_lengths = np.array([4, 7, 5, 6, 8])
mean_length = np.mean(word_lengths) # Vectorized mean calculation
print(mean length) # Output: 6.0
```


NumPy computes directly without a loop!

Real-World Linguistic Applications of Vectorized Computation

Application	How Vectorization Helps
Token Frequency Analysis	Normalizing word counts without loops
Phonetic Feature Processing	Vectorized transformations of speech signals
Corpus Statistics	Fast computation of mean word length, type-token ratio, etc.
TF-IDF Computation	Computing term frequency-inverse document frequency efficiently

Why Use Vectorized Computation?

Feature	Loops (Traditional Approach)	Vectorized (NumPy)
Speed	Slower (executes element by element)	Faster (executes at C-level)
Code Simplicity	Requires multiple lines of code	Achieves the same in one line
Memory Efficiency	Stores intermediate results	Optimized for memory usage
Performance	Iterates in Python (slower)	Uses optimized C/Fortran operations
Scalability	Becomes slow with large datasets	Handles large corpora efficiently

8. Iterables, Iterators, and Generators in Python

What is an Iterable?

- An iterable is any object in Python that can be looped over (e.g., lists, tuples, strings, dictionaries, etc.).
- It contains elements that can be accessed **one by one** but does not keep track of where it is in the iteration.
- Example: Lists (An Iterable)

```
words = ["syntax", "morphology", "phonetics"]
for w in words:
    print(w)
```

- ✓ Works with loops (e.g., for loops)
- X Does not remember position once exhausted

What is an Iterator?

- An iterator is an object that remembers its position in the sequence while iterating.
 - It must implement <u>__iter__()</u> and <u>__next__()</u> methods.
 - Once an iterator is exhausted, it cannot be reset (unlike iterables).
- Example: Creating an Iterator from an Iterable

```
words = ["syntax", "morphology", "phonetics"]
iterator = iter(words)  # Convert list into an iterator

print(next(iterator))  # Output: syntax
print(next(iterator))  # Output: morphology
print(next(iterator))  # Output: phonetics
```

X Calling next(iterator) again will raise an error (StopIteration).

What is a Generator?

- A **generator** is a special type of iterator that **produces values lazily**, meaning it **yields one value at a time** instead of storing everything in memory.
- Uses yield instead of return
- Automatically remembers its state
- **✓** More memory-efficient than lists

Example: Generator Function for Streaming Words

```
def word_stream():
    words = ["syntax", "morphology", "phonetics"]
    for w in words:
        yield w # Produces one word at a time

stream = word_stream() # Create generator object

print(next(stream)) # Output: syntax
print(next(stream)) # Output: morphology
print(next(stream)) # Output: phonetics
```

➤ How Does It Work?

Calling word_stream() does not execute the function immediately → It creates a generator object. The first next(stream) executes until it reaches yield, returning "syntax".

The second next(stream) resumes execution where it left off, returning "morphology".

- Why Use Generators?
- Memory-Efficient for Large Text Processing
- Instead of loading an entire corpus into memory, a generator fetches one word at a time.
- **✓** Faster Performance
- No need to **precompute and store** all values \rightarrow **Improves speed** for big data.
- **☑** Can be used in Streaming Data Processing
- Perfect for handling large files, corpora, and databases without high RAM usage.

• Example: Reading a Large Text File Line by Line (Efficiently)

```
def read_large_file(filename):
    with open(filename, "r", encoding="utf-8") as file:
        for line in file:
            yield line.strip() # Yield one line at a time

lines = read_large_file("corpus.txt")

print(next(lines)) # Prints the first line of the file
print(next(lines)) # Prints the second line
```

Does not load the entire file into memory!

Why Use Iterators & Generators?

Feature	Iterable (List, String)	Iterator (iter())	Generator (yield)
Loop Over Data	✓ Yes	✓ Yes	✓ Yes
Remembers Position	× No	Yes	Yes
Exhaustible?	× No	Yes	Yes
Memory Efficiency	X Loads all data	X Stores all data	Generates on demand
Best For	Small data sets	Keeping track of iteration	Large-scale text processing

Key Takeaways

- . Use Iterables (list, tuple, string) when working with small datasets.
- . Use Iterators when you need to manually control iteration.
- . Use Generators when working with large text files, corpora, or realtime data streaming.

9. Parallel Programming in Python

 Parallel processing speeds up tasks by executing multiple operations simultaneously instead of one after another (sequential processing).

Key Benefits:

- Faster execution → Speeds up corpus processing, NLP tasks, and text analysis.
- Utilizes multiple CPU cores → More efficient for large datasets.
- Ideal for repetitive linguistic computations (e.g., phoneme classification, token frequency calculations).

Using multiprocessing to Process Words in Parallel

• Python's multiprocessing module **allows multiple CPU cores to process data concurrently**. Below, we convert words **to uppercase** in **parallel**, using two CPU cores.

```
from multiprocessing import Pool

def process_word(word):
    return word.upper() # Convert to uppercase

words = ["phoneme", "syllable", "morpheme"]

# Create a pool of 2 worker processes
with Pool(2) as p:
    results = p.map(process_word, words) # Process words in parallel

print(results) # Output: ['PHONEME', 'SYLLABLE', 'MORPHEME']
```

How Does It Work?

Pool(2) → Creates a **pool of 2 worker processes**.
map(process_word, words) → **Splits the list** across processes and applies process_word(). **Each process runs independently**, utilizing multiple CPU cores.

Why Use multiprocessing Instead of a Loop?

Feature	Loop (Sequential)	Multiprocessing (Parallel)
Speed	Slower (one task at a time)	Faster (multiple tasks at once)
CPU Usage	Uses one core	Uses multiple cores
Efficiency	Good for small tasks	Best for large datasets
Use Case	Simple word processing	Large-scale corpus analysis

Real-World Use Cases in Linguistics

• Fast Corpus Processing (e.g., Tokenizing a Large Text Corpus)

```
1 from multiprocessing import Pool
2 import nltk
 4 nltk.download("punkt")
5 from nltk.tokenize import word tokenize
  def tokenize sentence (sentence):
      return word tokenize (sentence)
10 sentences = [
      "Phonetics studies the sounds of speech.",
   "Morphology examines word structure.",
      "Syntax analyzes sentence structure."
14 ]
16 # Process sentences in parallel
17 with Pool(3) as p:
      tokenized sentences = p.map(tokenize sentence, sentences)
19
20 print (tokenized sentences)
```

Speeds up tokenization for large corpora!

Parallel Phoneme Classification

 Instead of looping over millions of phonemes, we can process them in parallel.

```
from multiprocessing import Pool

phonemes = ["a", "e", "i", "o", "u"]

def classify_phoneme(phoneme):
    vowels = {"a", "e", "i", "o", "u"}
    return (phoneme, "vowel" if phoneme in vowels else "consonant")

with Pool(2) as p:
    classified_phonemes = p.map(classify_phoneme, phonemes)

print(classified_phonemes)

print(classified_phonemes)

duput: [('a', 'vowel'), ('e', 'vowel'), ('i', 'vowel'), ('o', 'vowel'), ('u', 'vowel')]
```

✓ Handles large phoneme datasets efficiently!

When NOT to Use Parallel Processing

- X If a task doesn't require high computation, parallelization may add overhead instead of speeding things up.
- Use parallel processing for **CPU-intensive tasks**, like **text analysis**, **speech recognition**, and **NLP**.

Final Takeaways:

- Parallel processing speeds up large-scale linguistic tasks.
- Use multiprocessing.Pool for CPU-bound tasks.
- . Ideal for tokenization, phoneme classification, and corpus analysis.

10. Making Nonsense Items Again

Nonsense items are artificially generated words that follow linguistic rules but do not exist in the language.

Why Create Nonsense Words?

- Used in psycholinguistic experiments to test word recognition.
- Helps in studying phonotactic constraints (rules about which sounds can appear together).
- Useful for modeling language acquisition (how speakers process new words).

Using Functional Programming to Generate Fake Words

We can use functional programming (lambda, random.choice()) to generate nonsense words.

```
import random

# Define possible consonants and vowels
consonants = "ptkbdgmn"
vowels = "aeiou"

# Generate a nonsense word (CVC pattern)
generate_word = lambda: random.choice(consonants) + random.choice(vowels) + random.choice(consonants)

# Generate and print a random word
print(generate_word()) # Example Output: "tam"
```

- random.choice(consonants) picks a random consonant.
- random.choice(vowels) picks a random vowel.
- random.choice(consonants) picks another consonant → forming a CVC (Consonant-Vowel-Consonant) structure.

Linguistics Application: Phonotactic Constraints

- Phonotactic constraints determine which sound sequences are allowed in a language.
- Example: Generating Nonsense Words for English
 - Some consonant clusters, like "bn" or "zr", are **not allowed** in English. We can filter **only valid English-like sequences**:

```
import random

print(generate word())  # Example Output: "tam"

# Define consonants and vowels with English phonotactic constraints
onset = "ptkbdgmn"  # Allowed initial consonants

vowel = "aeiou"

coda = "tksmn"  # Allowed final consonants

# Generate nonsense words following English-like patterns
generate_word = lambda: random.choice(onset) + random.choice(vowel) + random.choice(coda)

print(generate word())  # Example Output: "tam"
```


Ensures phonotactically valid words!

Expanding to Complex Word Structures

• We can generate longer nonsense words (e.g., CCVCVCC patterns):

```
import random

description

from the composition of the compositi
```

- Why Is This Useful?
 - Simulates **natural language patterns**
 - Used in **linguistic experiments**
 - Can be customized for different languages

Why Generate Nonsense Words?

Application	How Does It Help?
Psycholinguistics	Test word recognition & learning
Phonology	Study phonotactic rules
Speech Disorders	Assess pronunciation skills
Computational Linguistics	Generate test data for NLP models

11. Summary

Key Takeaways

- Functional programming avoids side effects and uses immutability.
- . Recursion and comprehensions simplify code.
- . Parallelism speeds up linguistic data processing.