4.18 By Result 4.11 we know that the maximum likelihood estimates of $\underline{\nu}$ and $\underline{x} = [4.6]'$ and

$$\frac{1}{n} \int_{j=1}^{n} (x_{j} - \bar{x}) (x_{j} - \bar{x})' = \frac{1}{4} \left\{ \left(\begin{bmatrix} 3 \\ 6 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right) \left(\begin{bmatrix} 3 \\ 6 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 4 \end{bmatrix} \right) \left(\begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 7 \end{bmatrix}$$

- 4.19 a) By Result 4.7 we know that $(x_1 \mu)^1 + (x_1 \mu) \sim x_6^2$
 - b) From (4-23), $\bar{X} \sim N_6(\underline{\mu}, \frac{1}{20}; \pm)$. Then $\bar{X} \underline{\mu} \sim N_6(\underline{0}, \frac{1}{20}; \pm)$ and finally $\sqrt{20}(\bar{X} \underline{\mu}) \sim N_6(\underline{0}, \pm)$
 - c) From (4-23), 19S has a Wishart distribution with 19 d.f.
- 4.21 (a) \overline{X} is distributed $N_4(\mu, n^{-1}\Sigma)$
 - (b) $X_1 \mu$ is distributed $N_4(0, \Sigma)$ so $(X_1 \mu)'\Sigma^{-1}(X_1 \mu)$ is distributed as chi-square with p degrees of freedom.
 - (c) Using Part a),

$$(\,\overline{X}-\mu\,)'(\,n^{-1}\Sigma\,)^{-1}(\,\overline{X}-\mu\,)=n(\,\overline{X}-\mu\,)'\Sigma^{-1}(\,\overline{X}-\mu\,)$$

is distributed as chi-square with p degrees of freedom.

- (d) Approximately distributed as chi-square with p degrees of freedom. Since the sample size is large, Σ can be replaced by S.
- 4.22 a) We see that n=75 is a sufficiently large sample (compared with p) and apply Result 4.13 to get $\sqrt{n}(X-\mu)$ is approximately $N_p(0, t)$ and that \bar{X} is approximately $N_p(\mu, t)$.
 - b) By (4-28) we conclude that $\sqrt{n}(X-\mu)^{2}S^{-1}(X-\mu)$ is approximately X_{p}^{2} .

4.24 (a) Q-Q plots for sales and profits are given below. Plots not particularly straight, although Q-Q plot for profits appears to be "straighter" than plot for sales. Difficult to assess normality from plots with such a small sample size (n = 10).

(b) The critical point for n = 10 when $\alpha = .10$ is .9351. For sales, $r_Q = .940$ and for profits, $r_Q = .968$. Since the values for both of these correlations are greater than .9351, we cannot reject normality in either case.