סיכומי הרצאות - אלגברה לינארית 1

מיכאל פרבר ברודסקי

תוכן עניינים

2	ונואידים, חבורות, חוגים ושדות	ו מ
2		1
2	1.1 תכונות של פעולות	
2	מונואיד	
2	חבורה 1.3	
2	חוג 1.4	
3	שדה 1.5	
3	מרוכבים) II
3	הגדרות בסיסיות	2
3	הצגה פולארית	3
4	מטריצות	III
4		4
4	4.1 פעולות בסיסיות	
5	4.2 פעולות אלמנטריות על מטריצה	
5		
5		5
5	הגדרות 5.1	
6	5.2 מציאת פתרונות	
6	מציאת מספר הפתרונות לפי צורה מדורגת (לא בהכרח קנונית)	
6	מציאת הפתרונות עצמם לפי צורה מדורגת קנונית	
6	תת מרחב	6
7	צירופים לינאריים	7
7	בת"ל 7.1	
7	קבוצת הצירופים הלינאריים קבוצת הצירופים הלינאריים	
7	7.3	
8	כפל מטריצות, שחלוף והפיכות	8
8	8.1 טענות לגבי כפל מטריצות:	-
8	:Transpose אחלוף 8.2	
9	8.3 הפיכות מטריצה	

חלק I

מונואידים, חבורות, חוגים ושדות

1 הגדרות

1.1 תכונות של פעולות

A imes A הוא A imes A הוא A imes A תהא A imes A

- $\forall a, b, c \in A. (a*b)*c = a*(b*c)$ אסוצייטיבית: * .1
 - $. \forall a, b.a * b = b * a$ אילופית: * .2
 - $.*:A\times A\to A$:* סגורה לפעולה A סגורה לפעולה

1.2 מונואיד

G כך ש: G כאשר G כאשר אוג G כאשר הוא זוג G כאשר G כאשר פונאיד הוא כלשהי ו

- .* סגורה לפעולה G .1
- 2. * פעולה אסוצייטיבית.
- . האיבר הזה . $\exists e \in G. \forall g \in G. e*g = g*e = g$ האיבר לפעולה, לפעולה, לפעולה, לפעולה. פ e_G האיבר הזה יחיד ומסומן.

1.3 חבורה

מקרה פרטי של מונואיד שמקיימת גם:

4. קיים איבר הופכי, כלומר $g\in G.\exists h\in G.g*h=h*g=e$ ראיבר יחידה. איבר איבר הופכי של g מסומן -g^-1

1.4 חוג

שלשה $\langle R, +, * \rangle$ נקראת חוג אם:

- $. orall a, b \in R.a + b = b + a$ חבורה חילופית, כלומר $\langle R, +
 angle$.1
 - .* סגורה לפעולה R ו־R סגורה לפעולה * .2
 - 3. חוק הפילוג:

$$\forall a, b, c \in R.a * (b+c) = a * b + a * c$$

 $(b+c) * a = b * a + c * a$

a*b=b*a חוג חילופיa*b=b*a אם אפעולה חילופית (כלומר

חוג עם יחידה $^{ au}$ אם $\langle R, * \rangle$ מונואיד.

סיים. 0_R ניטרלי לחיבור, 1_R ניטרלי לכפל אם קיים.

a*b=0מחלק $b\neq 0$ כך של $b\neq 0$ נקרא "מחלק 0" אם יש $b\neq 0$ כך של a*b=0 בממשיים אין מחלק a*b=0 מחלק a*b=0 מחלק a*b=0

חוג חילופי עם יחידה וללא מחלקי 0 נקרא **תחום שלמות**. הוא מקיים את חוק הצמצום (לכל a=c אז a*b=c*b, אם $a,b,c\in R$

1.5 שדה

גם: מקרה פרטי של חוג שמקיים גם: $\langle F, +, * \rangle$

. חבורה חילופית. $\langle F \setminus \{0_F\}, * \rangle$

כל שדה הוא תחום שלמות, אבל ההפך אינו נכון. תחומי שלמות סופיים הם כן שדות. כל שדה הוא תחום שלמות, אבל ההפך אינו נכון. תחומי שלמות בהגדרת שדה מוסיפים את הדרישה $0_F \neq 1_F$

חלק II

מרוכבים

2 הגדרות בסיסיות

נסמן הוא המספר המספר היא: $\mathbb{C}=\mathbb{R}^2$, כאשר המספר הראשון הוא . $i=\sqrt{-1}$ נסמן החלק הממשי (שמסומן ($Re\left(c\right)$) והמספר השני הוא החלק הדמיוני (שמסומן , $z\in\mathbb{C}$) עובדות: עבור

- . בירים. z של z מראשית הצירים. $||z||=\sqrt{Re\left(z\right)^{2}+Im\left(z\right)^{2}}$. מראשית הצירים. 1
 - $z=||z||\,e^{i\cdot\arg(z)}$ לכן, $e^{i heta}=\cos\left(heta
 ight)+i\sin\left(heta
 ight)$.2
 - 3. **חיבור:** מחברים את החלק הממשי והדמיוני בנפרד.
 - $.i^2 = -1$ משתמשים בזה ש־ $.(a+ib)\cdot(c+id) = (ac-bd)+i\,(bc+da)$.4
 - 5. כל שורש של פולינום מרוכב הוא מרוכב.
 - .6 נגדיר \overline{z} להיות $\overline{z}=a-ib$ כלומר להפוך את החלק הדמיוני.

$$\overline{\overline{z}} = z$$
 (x)

$$z\cdot \overline{z} = \left|\left|z\right|\right|^2$$
 (1)

$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$$
 (a)

$$\overline{z_1\cdot z_2}=\overline{z_1}\cdot\overline{z_2}$$
 (7)

$$Re\left(z
ight)=rac{z+\overline{z}}{2},Im\left(z
ight)=rac{z-\overline{z}}{2i},$$
 (ন)

- .(כלומר כל שורש של כל פולינום מרוכב הוא מרוכב). שדה סגור אלגברית (כלומר כל שורש של כל פולינום מרוכב הוא מרוכב).
 - .8 איבר הופכי מקבלים (אם מכפילים בהופכי מקבלים 1). $w = \frac{a-ib}{a^2+b^2}$

3 הצגה פולארית

נגדיר מרוכב בתור אוג $\langle r, \theta \rangle$ כאשר r המרחק מראשית הצירים ו־ θ הארגומנט.

$$z = r\cos\theta + ir\sin\theta = r \cdot e^{i\theta}$$

עובדות:

1. הארגומנט של z: נסמן $\arg(z)$ להיות הזווית שהמספר יוצר עם ציר הממשיים (לרוב נסמן .1 $\arg(z) = \arctan\left(\frac{b}{a}\right)$ בעזרת לחשב אותו בעזרת $\gcd(z) = \arctan\left(\frac{b}{a}\right)$

$$\overline{z}=r\cdot e^{-i\theta}, z^{-1}=\frac{1}{r}e^{-i\theta}$$
 .2

$$\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$
.3

4. להכפיל מספרים מרוכבים על הגרף נראה כמו להכפיל את האורכים זה בזה ולחבר את הזוויות

 $e^{i\theta}=e^{i(\theta+2\pi k)}$ - פתרון משוואה $z^n=re^{i\theta}$. נמצא הצגה פולארית נמצא . $z^n=a+ib$ נשתמש בעובדה עבור . $k\in\mathbb{Z}$ עבור

$$z = \sqrt[n]{r}e^{i\left(\frac{\theta}{n} + 2\pi\frac{k}{n}\right)}$$

עבור שונים. $k \in \{0, \dots, n-1\}$ ולכל . $k \in \mathbb{Z}$

חלק III

מטריצות

4 הגדרות

וקטור הוא mיה של איברים ב־ \mathbb{F} . מטריצה היא mיה של וקטורים. מטריצה מסדר היא וקטור הוא mיה של איברים ב־mיה מטריצה עמודות (קודם y ואז y).

נגדיר מערכת משוואות כמטריצה באופן הבא:

$$\begin{cases} \alpha_{1,1}x_1 + \dots + \alpha_{1,n}x_n &= b_1 \\ \vdots &= \vdots \\ \alpha_{m,1}x_1 + \dots + \alpha_{m,n}x_n &= b_m \end{cases} \equiv \begin{pmatrix} \alpha_{1,1} & \dots & \alpha_{1,n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ \alpha_{m,1} & \dots & \alpha_{m,n} & b_m \end{pmatrix}$$

4.1 פעולות בסיסיות

חיבור וקטורים:

$$\begin{pmatrix} \alpha_0 \\ \vdots \\ \alpha_n \end{pmatrix} + \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} \alpha_0 + \beta_0 \\ \vdots \\ \alpha_n + \beta_n \end{pmatrix}$$

כפל מטריצה בוקטור: כמו להציב את הוקטור בעמודות המטריצה.

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix} \cdot \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} \beta_1 a_{1,1} + \dots + \beta_n a_{1,n} \\ \dots + \dots + \dots \\ \beta_1 a_{m,1} + \dots + \beta_n a_{m,n} \end{pmatrix}$$

 $A\overline{x}=\overline{b}$ בנוסף, הפתרונות של ($\overline{x}\in \mathrm{Sols}\left(A\mid b
ight)$ שקולים ל־

את פתרונות המטריצה נסמן ב־Sols. מטריצות נקראות שקולות אם הפתרונות שלהן זהים. משפטים לגבי כפל מטריצה בוקטור:

מטפטים לגבי בפל מטויבוו בוקטוו

$$A(\alpha \cdot \overline{x}) = \alpha \cdot (A \cdot \overline{x}) \bullet$$

 $A(\overline{x} + \overline{y}) = A\overline{x} + A\overline{y} \bullet$

 $0\cdot b=0$,סיריצת ה־0, עבור 0 מטריצת היחידה, $ar{b}=ar{b}$ אבור היחידה מרטיצת -0 I_n

פעולות אלמנטריות על מטריצה 4.2

הפעולות האלה הן:

- $R_i \leftrightarrow R_j$. להחליף סדר בין משוואות.
- $R_i \rightarrow \alpha \cdot R_i$.2. להכפיל משוואה בקבוע.
 - $R_i \rightarrow R_i + R_i$.3 .3

כולן משמרות את הפתרונות של המטריצה.

מטריצות ששקולות באמצעות סדרת פעולות אלמנטריות נקראות <u>שקולות שורה</u>.

שונות 4.3

מטריצה ריבועית: מטריצה שכמות העמודות בה שווה לכמות השורות.

(מטריצה ריבועית) $A\in M_n\left(\mathbb{F}
ight)$ משפט עבור שקולים עבור מטריצה און הבאים 1.4 משפט

- I_n שקולת שורות ל- A .1
- . יש פתרון יחיד. $\overline{b}\in\mathbb{F}^n$ למערכת $\overline{b}\in\mathbb{F}^n$
 - . לכל $b \in \mathbb{F}^n$ קיים פתרון.
 - . למערכת $\overline{a} = \overline{b}$ יש פתרון יחיד.
- . יש פתרון יחיד. $A\overline{x}=\overline{b}$ יש פתרון יחיד. 5

i
eq j ואם i,i=j אם $a_{i,j}=1$ מטריצת היחידה: מסומנת I_n ואם היא מטריצה ריבועית שבה :לדוגמה. $a_{i,j}=0$

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $:e_i$ וקטור

$$(e_i)_i = \begin{cases} 0 & x \neq i \\ 1 & x = i \end{cases}$$

iה בעצם 0 בכל מקום חוץ מהמקום ה־i

מטריצת הסיבוב:

$$R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

אם מכפילים וקטור במטריצת הסיבוב, זה מסובב את הוקטור θ מעלות.

דירוג ודירוג קנוני 5

5.1 הגדרות

בצורה מדורגת:

- .1 משוואות 0 (מהצורה b (מהצורה למטה.
- 2. המשתנה הפותח בכל משוואה נמצא מימין ממש למשתנים הפותחים במשוואות מעליו.

משתנה חופשי הוא משתנה שלא מקדם פותח של אף שורה.

בנוסף, בצורה מדורגת קנונית:

- 3. המקדם של כל משתנה פותח הוא
- 4. לכל משתנה פותח של משוואה, המקדם של המשתנה בשאר המשוואות הוא 0.

לכל מטריצה קיימת צורה מדורגת קנונית יחידה ששקולה לה.

5.2 מציאת פתרונות

(לא בהכרח קנונית) מציאת מספר הפתרונות לפי צורה מדורגת (לא בהכרח קנונית)

 $(A \mid b)$ מטריצה מדורגת:

- .1 אין פתרון. ($b \neq 0$ כאשר $b \neq 0$ כאשר סתירה ($A \mid b$) אין פתרון.
 - . מספר המשתנים החופשיים. $|\mathbb{F}|^k$ פתרונות כאשר k

5.2.2 מציאת הפתרונות עצמם לפי צורה מדורגת קנונית

אז: $(A\mid b)$ מטריצה מדורגת קנונית מסדר $m\times n$ ששקולה ל־

- . $\operatorname{Sols}\left((A'\mid b')\right)=\emptyset$ אם ב־ $(A'\mid b')$ יש שורת סתירה אז
- 2. אחרת: נעשה החלפה על המשתנים החופשיים. כל משתנה שאינו חופשי יוגדר לפי משוואה מסוימת. דוגמה:

$$\left(\begin{array}{cccc|cccc} 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 4 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 3 & 3 \end{array}\right)$$

המקדמים החופשיים הם 1,4,6. הפתרון הוא:

6 תת מרחב

טענה (בוחן תת מרחב): $U\subseteq F^n$ היא תת מרחב אמ"מ:

- .1 סגורה לחיבור. U
- .2 סגירה לכפל בסקלר. U
- $.u \neq \emptyset$ ניתן להחליף את התנאי ב $\overline{0} \in U$.3

נובע מכאן גם שחיתוך של תתי מרחבים הוא תת מרחב.

7 צירופים לינאריים

7.1 בת"ל

נקראת $\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{pmatrix} \in \mathbb{F}^k$ סדרת מקדמים ($\overline{v_1},\dots,\overline{v_k}$) $\in (\mathbb{F}^n)^k$ יהיו ויהי 1.7 הגדרה $\alpha_1\overline{v_1}+\dots+\alpha_k\overline{v_k}=0$ אם (v_1,\dots,v_k)

נגדיר את מרחב התלויות של (v_1,\ldots,v_k) להיות:

$$LD\left(\left(v_{1},\ldots,v_{k}\right)\right) = \left\{ \begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{pmatrix} \in \mathbb{F}^{n} \mid \alpha_{1}v_{1} + \cdots + \alpha_{k}v_{k} = 0 \right\}$$

 $LD((v_1, ..., v_k)) = Sols((v_1, ..., v_k \mid 0))$

$$LD(v_1, \ldots, v_k) = \{0\} \iff v_1, \ldots, v_k$$
 מסקנה 2.7 בת"ל

 $ar b\in\mathbb F^m$ סדרת mיות (בת"ל) אם לכל בלתי תלויה לינארית תקרא בלתי ($\overline{v_1},\dots,\overline{v_k})\in(\mathbb F^m)^k$ סדרת מדרה $\sum_{i=1}^k x_i\overline{v_i}=ar b$ אם לכל היותר פתרון אחד למשוואה

- . תהי $S\subseteq \mathbb{F}^n$ אם $S\subseteq \mathbb{F}^n$. תלויה לינארית.
- .2 עד ש־ $S\subseteq \mathbb{F}^n$ ברופורציונים \Leftrightarrow מלויה לינארית אז מרופורציונים פרופורציונים.
- לינארי צירוף אינו איבר אינו איבר לינארית לינארית בלתי תלויה לינארי בלתי בלתי בלתי לינארי בלתי בלתי לינארי בלתי לינארי בלתי לינארי של קודמיו.

7.2 קבוצת הצירופים הלינאריים

 $(v_1,\ldots,v_k)\in \left(\mathbb{F}^n
ight)^k$ איות, מיות, עבור סדרת n עבור סדרת n

$$\operatorname{sp}(v_1,\ldots,v_k) = \left\{ \sum_{i=1}^k \alpha_i v_i \mid \alpha_1,\ldots,\alpha_k \in \mathbb{F} \right\}$$

יא: $K\subseteq \mathbb{F}^n$ היא: המרחב הנפרש על ידי v_1,\ldots,v_k היא

$$\operatorname{sp}(k) = \left\{ b \in \mathbb{F}^n \mid \exists k \in \mathbb{N}. \exists \alpha_1, \dots, \alpha_k \in \mathbb{F}. \exists t_1, \dots, t_k \in K. b = \sum_{i=1}^k \alpha_i t_i \right\}$$

 $\operatorname{span}(A) = b$ אם B את פורשת A

7.3 בסיס

הגדרה 5.7 יהי $\mathbb F^n$ של שניים מהתנאים B אז B נקראת בסיס של $\mathbb F^n$ אם שניים מהתנאים הבאים מתקיימים:

- ל. בת"ל.
- \mathbb{F}^n את פורשת B .2
 - .m = n .3

כל שניים מוכיחים גם את השלישי.

בסיס: B בסיס בסיס התנאים הבאים שקולים

- .1 בת"ל וכל קבוצה המכילה ממש את B הינה תלויה לינארית. B בת"ל מקסימלית).
 - B .2 פורשת וכל קבוצה שמוכלת ממש ב־B אינה פורשת. (פורשת מינימלית).
 - .Bיש הצגה יחידה כצירוף של וקטורים מ־ .3

8 כפל מטריצות, שחלוף והפיכות

 $(A\cdot B)\in$ מטריצות. נגדיר מטריצה $B\in M_{m imes p}(R)$, $A\in M_{n imes m}(R)$ חוג ויהיו R יהא חוג ויהיו $M_{p imes n}(R)$ בצורה הבאה:

$$\cdot (A \cdot B)_{i,j} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

$$A\cdot B=\left(egin{array}{cccc}A\cdot C_1(B)‐&A\cdot C_n(B)\\dash‐‐\end{array}
ight)$$
 2.8 משפט

$$A\cdot B=\left(egin{array}{cccc} -&R_1(A)\cdot B&-\ &dots\ -&R_n(A)\cdot B&- \end{array}
ight)$$
 3.8 משפט

2.1 טענות לגבי כפל מטריצות:

- $A\in M_{m imes k}(\mathbb{F}), B\in M_{k imes t}(\mathbb{F}), C\in \mathcal{A}$ עבור עבור $A\cdot B\cdot C=A\cdot (B\cdot C)$.1 . $M_{t imes n}(\mathbb{F})$
 - 2. חוק הפילוג:

$$A \in M_{m \times k}(\mathbb{F}), B_1, B_2 \in M_{k \times n}(\mathbb{F})$$
 עבור $A \cdot (B_1 + B_2) = A \cdot B_1 + A \cdot B_2$ (א)

$$A_1,A_2\in M_{m imes k}(\mathbb{F}),B\in M_{k imes n}(\mathbb{F})$$
 עבור $(A_1+A_2)\cdot B=A_1\cdot B+A_2\cdot B$ (ב)

$$A \in M_{m \times k}(\mathbb{F}), B \in M_{k \times n}(\mathbb{F}), \alpha \in \mathbb{F}$$
 עבור $A \cdot (\alpha \cdot B) = \alpha \cdot (A \cdot B)$.3

$$A\cdot I_n=A$$
 נוסף לכך . $A\cdot 0=0\cdot A=0$, $A\in M_{m imes n}(\mathbb{F})$ לכל מטריצה . $I_m\cdot A=A$

$$.igg(egin{array}{ccc} 1 & 1 \\ 1 & 1 \end{array}igg)\cdotigg(egin{array}{ccc} 1 & 1 \\ -1 & -1 \end{array}igg)=igg(egin{array}{ccc} 0 & 0 \\ 0 & 0 \end{array}igg)$$
 הערה: יש מחלקי אפס, לדוגמה

:Transpose שחלוף 8.2

$$.(A^T)_{i,j} = (A)_{j,i}$$

$$.egin{pmatrix} 1 & 2 \\ 4 & 8 \\ 16 & 32 \end{pmatrix}^T = egin{pmatrix} 1 & 4 & 16 \\ 2 & 8 & 32 \end{pmatrix}$$
 : באופן אינטואטיבי, הפעולה מחליפה בין השורות לעמודות. לדוגמה:

משפט 5.8 חוקי

- $lpha \in \mathbb{F}$ עבור $(lpha A)^T = lpha \left(A^T
 ight)$ עבור •
- $A \in M_{m \times k}(\mathbb{F}), B \in M_{k \times n}(F)$ עבור $(A \cdot B)^T = B^T \cdot A^T$

8.3 הפיכות מטריצה

:תיקרא $A\in M_{m imes n}(\mathbb{F})$ מטריצה 6.8 הגדרה

- $B \cdot A = I_n$ כך ש $B \in M_{n imes m}(\mathbb{F})$ בינמת מטריצה אם קיימת מטריצה.1
 - $A\cdot B=I_m$ כך ש $B\in M_{n imes m}(\mathbb{F})$ בינמת מטריצה פיימת.
- $B\cdot A=I_n$ כך ש $A\cdot B=I_m$ כך ש $B\in M_{n imes m}(\mathbb{F})$ גם קיימת מטריצה $A\cdot B=I_m$ בפרט המטריצה B היא יחידה ומסומנת A^{-1} , ומקיימת B

הערה: חמטריצה 0 אינה הפיכה, מימין או משמאל.

:טענות

- . יש שורת אפסים אז A לא הפיכה מימין. $A \in M_{m \times n}(\mathbb{F})$ לא הפיכה מימין.
 - . אם A הפיכה A^T הפיכה.
 - $.(A^T)^{-1} = (A^{-1})^T$.3
- $A\cdot B$. $A\cdot B$ הפיכה $A\cdot B$ הפיכות, אז $A\in M_{m imes k}(\mathbb{F}), B\in M_{k imes n}(\mathbb{F})$.4

 $A\in M_{m imes n}(\mathbb{F})$ משפט 7.8 משפט

- ת העמודות סדרת לכל b (כלומר אם $A\cdot \overline{x}=b$ הפיכה מימין אם ורק אם למערכת ל $A\cdot \overline{x}=b$ למערכת אם ורק אם $(m\leq n^-)$.
- יש פתרון יחיד (כלומר סדרת העמודות $A\cdot \overline{x}=0$ הפיכה משמאל אם ורק אם למערכת $M\cdot \overline{x}=0$ יש פתרון יחיד (כלומר סדרת העמודות של $M\cdot \overline{x}=0$ של $A\cdot \overline{x}=0$
- ת העמודות סדרת לכל (כלומר יחיד לכל א $A\cdot \overline{x}=b$ מערכת למערכת הפיכה אם הפיכה A .3 של (m=nולכן בסיס, ולכן של של של הפיס, ולכן הפיס, ולכן היחיד העמודות

בפרט מטריצה הפיכה היא ריבועית.