

Lecture 8

Ordinary Differential Equations

Ye Ding (丁烨)

Email: <u>y.ding@sjtu.edu.cn</u>

School of Mechanical Engineering

Shanghai Jiao Tong University

Motivation: from Robotics

Motivation: from Vibration Theory

$$M\ddot{x} + m\ddot{x} + m\frac{l}{2}\ddot{\theta}\cos\theta - m\frac{l}{2}\dot{\theta}^2\sin\theta = -k_1x - k_2x - c_1\dot{x} - c_2\dot{x} + F(t)$$

$$\left(m\frac{l}{2}\ddot{\theta}\right)\frac{l}{2} + \left(m\frac{l^2}{12}\right)\ddot{\theta} + (m\ddot{x})\frac{l}{2}\cos\theta = -(mg)\frac{l}{2}\sin\theta + M_t(t)$$

- References for ODEs
 - [1] Cleve Moler, Numerical Computing with MATLAB, Society for Industrial and Applied Mathematics, 2004. Chapter 7
 - [2] Timothy Sauer, Numerical analysis (2nd ed.), Pearson Education, 2012. Chapter 6
 - [3] Richard L. Burden, J. Douglas Faires, Numerical analysis (9th ed.), Brooks/Cole, 2011. Chapter 5

⑤ Initial Value Problem (IVP): General Definition An initial value problem for a first-order ordinary differential equation is the equation together with an initial condition on a specific interval $a \le t \le b$:

$$\begin{cases} y' = f(t, y) \\ y(a) = y_a \\ t \text{ in } [a, b] \end{cases}$$

Ordinary Differential Equations

dsolve

ODE solver

odeToVectorField

Convert higher-order differential equations to systems of first-order differential equations

Ordinary Differential Equations: Example 1

$$y' = ty + t^3$$

```
>> syms t y(t)
```

$$>> y1 = dsolve(diff(y) == t*y + t^3)$$

Ordinary Differential Equations: Example 1

$$\begin{cases} y' = ty + t^3 \\ y(0) = 1 \end{cases}$$

```
>> syms t y(t)
>> y2 = dsolve(diff(y) == t*y + t^3, y(0) == 1)
```


Ordinary Differential Equations

To solve a system of ordinary differential equations:

```
>> syms x(t) y(t)
>> z = dsolve(diff(x) == y, diff(y) == -x)
```


Ordinary Differential Equations

To solve a system of ordinary differential equations:

```
>> syms x(t) y(t)
>> z = dsolve(diff(x) == y, diff(y) == - y - sin(t) * x)
```

Warning: Explicit solution could not be found.

- **☐** Scalar Differential Equation
 - > Euler's Method
 - > The Trapezoid Method
 - > Runge-Kutta Methods
- **☐** Systems of Differential Equations
 - > Runge-Kutta Methods
 - > Implicit Trapezoidal Method

Euler's Method: Basic Idea

Draw the slope field of

$$y' = ty + t^3$$

```
tList = linspace(0,1.0,11);
yList = linspace(0,2,21);
[T,Y] = meshgrid(tList,yList);
DT = ones(size(T));
DY = T.*Y + T.^3;
DNorm = sqrt(DT.^2+DY.^2);
DT = DT./DNorm;
DY = DY./DNorm;
quiver(T,Y,DT,DY)
```


Euler's Method: Basic Idea

Draw the slope field of

$$y' = ty + t^3$$

```
tList = linspace(0,1.0,11);
yList = linspace(0,2,21);
[T,Y] = meshgrid(tList,yList);
DT = ones(size(T));
DY = T.*Y + T.^3;
DNorm = sqrt(DT.^2+DY.^2);
DT = DT./DNorm;
DY = DY./DNorm;
scale = 0.5;
quiver(T,Y,DT,DY,scale)
```


Euler's Method: Basic Idea

$$\begin{cases} y' = ty + t^3 \\ y(0) = 1 \end{cases}$$

$$\begin{cases} y' = ty + t^3 \\ y(0) = 0.5 \end{cases}$$

Euler's Method: Basic Idea

How to solve the initial value problem?

$$\begin{cases} y' = ty + t^3 \\ y(0) = y_0 \\ t \text{ in } [0, 1] \end{cases}$$

Two-point forward-difference formula: Review

If f(x) is twice continuously differentiable, then

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{h}{2}f''(c)$$

where c is between x and x + h.

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

Euler's Method: Basic Idea

How to solve the initial value problem?

$$\begin{cases} y' = ty + t^3 \\ y(0) = y_0 \\ t \text{ in } [0, 1] \end{cases}$$

Step 1: Discrete the interval [0, 1] along the t-axis with equal step size h.

Step 2: Approximate the first-order derivative with the two-point forward-difference formula.

Euler's Method: Basic Idea

Geometric Interpretation:

$$\begin{cases} y' = ty + t^3 = f(t, y) \\ y(0) = 1 \end{cases}$$

The t values were selected to be $t_i = t_0 + ih$ with step size h = 0.2

$$i = 0$$
: $w_0 = y_0$
 $w_{i+1} = w_i + hf(t_i, w_i)$

Euler's Method: Example 2

$$\begin{cases} y' = ty + t^3 \\ y(0) = 1 \end{cases}$$
 with step size $h = 0.2$

Euler's Method: Example 2

$$\begin{cases} y' = ty + t^3 \\ y(0) = 1 \end{cases}$$

with step size h = 0.1

step	t_i	w_i	y_i	e_i
0	0.0	1.0000	1.0000	0.0000
1	0.1	1.0000	1.0050	0.0050
2	0.2	1.0101	1.0206	0.0105
3	0.3	1.0311	1.0481	0.0170
4	0.4	1.0647	1.0899	0.0251
5	0.5	1.1137	1.1494	0.0357
6	0.6	1.1819	1.2317	0.0497
7	0.7	1.2744	1.3429	0.0684
8	0.8	1.3979	1.4914	0.0934
9	0.9	1.5610	1.6879	0.1269
10	1.0	1.7744	1.9462	0.1718

Euler's Method: Example 2

$$\begin{cases} y' = ty + t^3 \\ y(0) = 1 \end{cases}$$

with step size h = 0.1

step	t_i	w_i	y_i	e_i
0	0.0	1.0000	1.0000	0.0000
1	0.2	1.0000	1.0206	0.0206
2	0.4	1.0416	1.0899	0.0483
3	0.6	1.1377	1.2317	0.0939
4	0.8	1.3175	1.4914	0.1739
5	1.0	1.6306	1.9462	0.3155

with step size h = 0.2

step	t_i	w_i	y_i	e_i
0	0.0	1.0000	1.0000	0.0000
1	0.1	1.0000	1.0050	0.0050
2	0.2	1.0101	1.0206	0.0105
3	0.3	1.0311	1.0481	0.0170
4	0.4	1.0647	1.0899	0.0251
5	0.5	1.1137	1.1494	0.0357
6	0.6	1.1819	1.2317	0.0497
7	0.7	1.2744	1.3429	0.0684
8	0.8	1.3979	1.4914	0.0934
9	0.9	1.5610	1.6879	0.1269
10	1.0	1.7744	1.9462	0.1718

Euler's Method: Example 2

t_i	$e_i(h = 0.2)$	$e_i(h = 0.1)$	$e_i(h = 0.05)$
0.05			0.0012523
0.10		0.0050376	0.0025313
0.15			0.0038718
0.20	0.020604	0.010504	0.0053097
0.25			0.006883
0.30		0.016982	0.008632
0.35			0.010601
0.40	0.048261	0.025126	0.012837
0.45			0.015395
0.50		0.035721	0.018335

Euler's Method: Local Truncation Error

Assuming that y" is continuous, the exact solution at $t_{i+1} = t_i + h$ is

$$y(t_i + h) = y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(c)$$

$$y(t_i) = w_i \text{ and } y'(t_i) = f(t_i, w_i)$$

$$y(t_{i+1}) = w_i + hf(t_i, w_i) + \frac{h^2}{2}y''(c)$$

Euler's Method: $w_{i+1} = w_i + hf(t_i, w_i)$

$$e_{i+1} = |w_{i+1} - y(t_{i+1})| = \frac{h^2}{2} |y''(c)|$$

Euler's Method: Geometric Interpretation for Errors

Euler's Method: Theory

A function f(t, y) is Lipschitz continuous in the variable y on the rectangle $S = [a,b] \times [\alpha,\beta]$ if there exists a constant L (called the Lipschitz constant) satisfying

$$|f(t, y_1) - f(t, y_2)| \le L|y_1 - y_2|$$

for each (t, y_1) , (t, y_2) in S.

Euler's Method: Theory

Theorem (Ref. [2], P. 288). Assume that f(t, y) is Lipschitz continuous in the variable y on the set $[a,b] \times [\alpha,\beta]$ and that $\alpha < y_a < \beta$. Then there exists c between a and b such that the initial value problem

$$\begin{cases} y' = f(t, y) \\ y(a) = y_a \\ t \text{ in } [a, c] \end{cases}$$

has exactly one solution y(t). Moreover, if f is Lipschitz on $[a,b] \times (-\infty,\infty)$, then there exists exactly one solution on [a,b].

Euler's Method: Theory

Theorem (Ref. [2], P. 289). Assume that f(t, y) is Lipschitz continuous in the variable y on the set $[a,b] \times [\alpha,\beta]$. If Y(t) and Z(t) are solutions in S of the differential equation

$$y' = f(t, y)$$

with initial conditions Y(a) and Z(a) respectively, then

$$|Y(t) - Z(t)| \le e^{L(t-a)}|Y(a) - Z(a)|$$

Euler's Method: Geometric Interpretation for Errors

Euler's Method: Local Truncation Error
The local truncation error, or one-step error, is defined as

$$e_{i+1} = |w_{i+1} - z(t_{i+1})|$$

the difference between the value of the solver w_{i+1} on that interval and the correct solution of the "one-step initial value problem" z_{i+1} :

$$\begin{cases} y' = f(t, y) \\ y(t_i) = w_i \\ t \text{ in } [t_i, t_{i+1}] \end{cases}$$

Euler's Method: Global Truncation Error

At step i, the global truncation error is defined as

$$g_i = |w_i - y_i|$$

the difference between the ODE solver (Euler's Method) approximation and the correct solution of the initial value problem

$$\begin{cases} y' = f(t, y) \\ y(a) = y_a \\ t \text{ in } [a, b] \end{cases}$$

Euler's Method: Global Truncation Error

At step i = 0, the global truncation error is

$$g_0 = |w_0 - y_0| = |y_a - y_a| = 0$$

At step i = 1, the global error is equal to the first local error

$$g_1 = e_1 = |w_1 - y_1|$$

At step i = 2, the global error is

$$g_2 = |w_2 - y_2| = |w_2 - z(t_2) + z(t_2) - y_2|$$

$$\leq |w_2 - z(t_2)| + |z(t_2) - y_2|$$

$$\leq e_2 + e^{Lh}g_1$$

$$= e_2 + e^{Lh}e_1$$

Euler's Method: Global Truncation Error

At step i = 3, the global truncation error is

$$|g_3| = |w_3 - y_3| \le e_3 + e^{Lh} g_2$$

 $\le e_3 + e^{Lh} e_2 + e^{2Lh} e_1$

At step i, the global error is

$$g_i = |w_i - y_i| \le e_i + e^{Lh} e_{i-1} + e^{2Lh} e_{i-2} + \dots + e^{(i-1)Lh} e_1$$

$$e_i \le Ch^{k+1}$$

$$e_i \le Ch^{k+1}$$

$$g_i \le \frac{Ch^k}{L} (e^{L(t_i - a)} - 1)$$

Euler's Method: Convergence

Assume that f(t, y) has a Lipschitz constant L for the variable y and that the solution y_i of the initial value problem

$$\begin{cases} y' = f(t, y) \\ y(a) = y_a \\ t \text{ in } [a, b] \end{cases}$$

at t_i is approximated by w_i , using Euler's Method. Let M be an upper bound for |y''(t)| on [a,b]. Then

$$|w_i - y_i| \le \frac{Mh}{2L} (e^{L(t_i - a)} - 1)$$

- **☐** Scalar Differential Equation
 - > Euler's Method
 - > The Trapezoid Method
 - > Runge-Kutta Methods
- **☐** Systems of Differential Equations
 - > Runge-Kutta Methods
 - > Implicit Trapezoidal Method

Trapezoid Method: Basic Idea

The IVP:
$$\begin{cases} y' = f(t, y) \\ y(a) = y_a \\ t \text{ in } [a, b] \end{cases}$$

$$\int_{t_i}^{t_i+h} f(t) dt = \int_{t_i}^{t_i+h} y'(t) dt = y(t_i+h) - y(t_i)$$

$$\int_{t_i}^{t_i+h} f(t) dt \approx h f(t_i)$$

$$i = 0$$
: $w_0 = y_0$

Euler's Method
$$i = 0$$
: $w_0 = y_0$ $w_{i+1} = w_i + hf(t_i, w_i), i = 1, 2, ...$

Trapezoid Method: Basic Idea

$$\int_{t_i}^{t_i+h} f(t) dt = \int_{t_i}^{t_i+h} y'(t) dt = y(t_i+h) - y(t_i)$$

$$\int_{t_i}^{t_i+h} f(t) dt \approx \frac{h}{2} [f(t_i) + f(t_i+h)]$$

Trapezoid Method

$$i = 0$$
: $w_0 = y_0$
 $w_{i+1} = w_i + [f(t_i, w_i) + f(t_i + h, w_{i+1})] \times h/2$

The Implicit Trapezoidal method

The Explicit Trapezoid Method

Trapezoid Method

$$i = 0$$
: $w_0 = y_0$
 $w_{i+1} = w_i + [f(t_i, w_i) + f(t_i + h, (w_{i+1}))] \times h/2$

$$w_i + hf(t_i, w_i)$$

$$w_0 = y_0$$

 $w_{i+1} = w_i + \frac{h}{2}(f(t_i, w_i) + f(t_i + h, w_i + hf(t_i, w_i)))$

The Explicit Trapezoid Method: Example 3

$$\begin{cases} y' = ty + t^3 \\ y(0) = 1 \end{cases}$$
 with step size $h = 0.1$

step	t_i	w_i	w_i y_i	
0	0.0	1.0000	1.0000	0.0000
1	0.1	1.0051	1.0050	0.0001
2	0.2	1.0207	1.0206	0.0001
3	0.3	1.0483	1.0481	0.0002
4	0.4	1.0902	1.0899	0.0003
5	0.5	1.1499	1.1494	0.0005
6	0.6	1.2323	1.2317	0.0006
7	0.7	1.3437	1.3429	0.0008
8	0.8	1.4924	1.4914	0.0010
9	0.9	1.6890	1.6879	0.0011
10	1.0	1.9471	1.9462	0.0010

The Explicit Trapezoid Method: Example 3

t_i	$e_i(h = 0.2)$	$e_i(h = 0.1)$	$e_i(h = 0.05)$
0.05			7.8027e-7
0.10		0.000012437	4.6601e-6
0.15			0.000011586
0.20	0.00019598	0.000073235	0.000021478
0.25			0.000034227
0.30		0.00017881	0.000049687
0.35			0.00006767
0.40	0.0010841	0.00032333	0.000087939
0.45			0.00011019
0.50		0.00049766	0.00013404

The Explicit Trapezoid Method: Truncation Error The correct extension of the solution at t_{i+1} can be given by the Taylor expansion

$$y_{i+1} = y(t_i + h) = y_i + hy'(t_i) + \frac{h^2}{2}y''(t_i) + \frac{h^3}{6}y'''(c)$$

$$y''(t) = \frac{\partial f}{\partial t}(t, y) + \frac{\partial f}{\partial y}(t, y)y'(t)$$
$$= \frac{\partial f}{\partial t}(t, y) + \frac{\partial f}{\partial y}(t, y)f(t, y)$$

$$y_{i+1} = y_i + h f(t_i, y_i)$$

$$+ \frac{h^2}{2} \left(\frac{\partial f}{\partial t}(t_i, y_i) + \frac{\partial f}{\partial y}(t_i, y_i) f(t_i, y_i) \right) + \frac{h^3}{6} y'''(c)$$

The Explicit Trapezoid Method: Truncation Error The Explicit Trapezoid Method can be written

$$w_{i+1} = y_i + \frac{h}{2} \left(f(t_i, y_i) + f(t_i + h, y_i + hf(t_i, y_i)) \right)$$

$$= f(t_i + h, y_i + hf(t_i, y_i))$$

$$= f(t_i, y_i) + h \frac{\partial f}{\partial t}(t_i, y_i) + hf(t_i, y_i) \frac{\partial f}{\partial y}(t_i, y_i) + O(h^2)$$

$$w_{i+1} = y_i + \frac{h}{2} f(t_i, y_i) + \frac{h}{2} \left(f(t_i, y_i) + h \left(\frac{\partial f}{\partial t}(t_i, y_i) + f(t_i, y_i) \right) + O(h^2) \right)$$

$$= y_i + hf(t_i, y_i) + \frac{h^2}{2} \left(\frac{\partial f}{\partial t}(t_i, y_i) + f(t_i, y_i) \frac{\partial f}{\partial y}(t_i, y_i) \right) + O(h^3)$$

The Explicit Trapezoid Method: Truncation Error
The Local Truncation Error is:

$$y_{i+1} - w_{i+1} = O(h^3)$$

The Global Truncation Error of the Explicit Trapezoid Method is proportional to h^2 .

- **☐** Scalar Differential Equation
 - > Euler's Method
 - > The Trapezoid Method
 - > Runge-Kutta Methods
- **☐** Systems of Differential Equations
 - > Runge-Kutta Methods
 - > Implicit Trapezoidal Method

Second-Order Runge-Kutta Method: RK2

Euler's Method: $w_{i+1} = w_i + hf(t_i, w_i)$

Trapezoid Method:

$$w_{i+1} = w_i + \frac{h}{2}(f(t_i, w_i) + f(t_i + h, w_i + hf(t_i, w_i)))$$

A unified form:

$$w_{i+1} = w_i + h\phi$$

where ϕ is called an increment function, which can be interpreted as a representative slope over the interval.

Second-Order Runge-Kutta Method: RK2

A general second-order version:

$$w_{i+1} = w_i + (a_1k_1 + a_2k_2)h$$

where

$$k_1 = f(t_i, w_i)$$

 $k_2 = f(t_i + p_1 h, w_i + q_{11} k_1 h)$

The Local Truncation Error:

$$y_{i+1} - w_{i+1} \stackrel{?}{=} O(h^3)$$

Second-Order Runge-Kutta Method: RK2

$$y_{i+1} = y_i + hf(t_i, y_i)$$

$$+ \frac{h^2}{2} \left(\frac{\partial f}{\partial t}(t_i, y_i) + \frac{\partial f}{\partial y}(t_i, y_i) f(t_i, y_i) \right) + \frac{h^3}{6} y'''(c)$$

$$w_{i+1} = y_i + h[a_1 f(t_i, y_i) + a_2 f(t_i + p_1 h, y_i + q_{11} f(t_i, y_i) h)]$$

$$f(t_i + p_1 h, y_i + q_{11} f(t_i, y_i) h)$$

$$= f(t_i, y_i) + p_1 h f(t_i, y_i) + q_1 h f(t_i, y_i) f(t_i, y_i) + O(h^2)$$

$$f(t_i + p_1h, y_i + q_{11}f(t_i, y_i)h)$$

$$= f(t_i, y_i) + p_1h f_t(t_i, y_i) + q_{11}h f(t_i, y_i) f_y(t_i, y_i) + O(h^2)$$

$$\begin{cases} a_1 + a_2 = 1 \\ a_2 p_1 = 1/2 \end{cases} \Rightarrow \begin{cases} a_1 = 1 - a_2 \\ p_1 = q_{11} = \frac{1}{2a_2} \end{cases}$$

Second-Order Runge-Kutta Method: RK2

$$\begin{cases} a_1 = 1 - a_2 \\ p_1 = q_{11} = \frac{1}{2a_2} \end{cases}$$

$$> a_2 = 1/2, a_1 = 1/2, p_1 = q_{11} = 1$$

$$w_{i+1} = w_i + \frac{h}{2}(f(t_i, w_i) + f(t_i + h, w_i + hf(t_i, w_i)))$$

$$> a_2 = 1, a_1 = 0, p_1 = q_{11} = 1/2$$

$$w_{i+1} = w_i + hf\left(t_i + \frac{h}{2}, w_i + \frac{h}{2}f(t_i, w_i)\right)$$

the Midpoint Method

Runge–Kutta Method of Order Four: RK4

$$w_{i+1} = w_i + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

where $k_1 = f(t_i, w_i)$

$$k_2 = f\left(t_i + \frac{h}{2}, w_i + \frac{h}{2}k_1\right)$$

$$k_3 = f\left(t_i + \frac{h}{2}, w_i + \frac{h}{2}k_2\right)$$

$$k_4 = f(t_i + h, w_i + hk_3)$$

The Local Truncation Error is $O(h^5)$.

RK4: Geometric Interpretation

RK4: Example 4

$$\begin{cases} y' = ty + t^3 \\ y(0) = 1 \end{cases}$$
 with step size $h = 0.2, 0.1, 0.05$

t_i	$e_i(h = 0.2)$	$e_i(h = 0.1)$	$e_i(h = 0.05)$
0.05			1.6286e-10
0.10		1.0443e-8	6.5086e-10
0.15			1.4614e-9
0.20	6.7341e-7	4.1639e-8	2.5901e-9
0.25			4.0317e-9
0.30		9.3113e-8	5.781e-9
0.35			7.8345e-9
0.40	2.6787e-6	1.6452e-7	1.0193e-8

- **☐** Scalar Differential Equation
 - > Euler's Method
 - > The Trapezoid Method
 - > Runge-Kutta Methods
- **☐** Systems of Differential Equations
 - > Runge-Kutta Methods
 - > Implicit Trapezoidal Method

Higher Order Equations

An *n*th-order ordinary differential equation:

Higher Order Equations

An *n*th-order ordinary differential equation:

$$y^{(n)} = f(t, y, y', y'', \dots, y^{(n-1)})$$

A system of first-order equations:

$$y'_1 = y_2$$

$$y'_2 = y_3$$

$$y'_3 = y_4$$

$$\vdots$$

$$y'_{n-1} = y_n,$$

$$y'_n = f(t, y_1, ..., y_n)$$

Runge–Kutta Method for Systems of ODEs

where

$$\mathbf{y}(t) = [y_1(t), y_2(t), \dots, y_n(t)]^T$$

Runge–Kutta Method for Systems of ODEs

The IVP:
$$\begin{cases} \mathbf{y}'(t) = \mathbf{f}(t, \mathbf{y}) \\ \mathbf{y}(t_0) = \mathbf{y}_0 \end{cases}$$
The RK4:
$$\mathbf{w}_{i+1} = \mathbf{w}_i + \frac{h}{6} (\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4)$$

$$\mathbf{k}_1 = \mathbf{f}(t_i, \mathbf{y}_i)$$

$$\mathbf{k}_2 = \mathbf{f}(t_i + \frac{h}{2}, \mathbf{y}_i + \frac{h}{2}\mathbf{k}_1)$$

$$\mathbf{k}_3 = \mathbf{f}(t_i + \frac{h}{2}, \mathbf{y}_i + \frac{h}{2}\mathbf{k}_2)$$

$$\mathbf{k}_4 = \mathbf{f}(t_i + h, \mathbf{y}_i + h\mathbf{k}_3)$$

Runge–Kutta Methods: Example 5 Lorenz equations

$$\begin{cases} x' = -sx + sy \\ y' = -xz + rx - y \\ z' = xy - bz \end{cases}$$
 s = 10, r = 28, and b = 8/3
Initial conditions: [5.001, 5, 5]

Stiff Differential Equations: Example 6

The IVP:

$$u_1' = 9u_1 + 24u_2 + 5\cos t - \frac{1}{3}\sin t$$
, $u_1(0) = \frac{4}{3}$

$$u_2' = -24u_1 - 51u_2 - 9\cos t + \frac{1}{3}\sin t$$
, $u_2(0) = \frac{2}{3}$

has the unique solution

$$u_1(t) = 2e^{-3t} - e^{-39t} + \frac{1}{3}\cos t,$$

$$u_2(t) = -e^{-3t} + 2e^{-39t} - \frac{1}{3}\cos t$$

Stiff Differential Equations: Example 6

RK4 with h = 0.05

Stiff Differential Equations: Example 6

RK4 with h = 0.1

Stiff Differential Equations: Example 6

t	$u_1(t)$	$w_1(t) \\ h = 0.05$	$w_1(t) \\ h = 0.1$	$u_2(t)$	$w_2(t) \\ h = 0.05$	$w_2(t)$ $h = 0.1$
0.1	1,793061	1,712219	-2.645169	-1,032001	-0,8703152	7.844527
0.2	1,423901	1,414070	-18,45158	-0.8746809	-0.8550148	38,87631
0.3	1,131575	1,130523	-87,47221	-0.7249984	-0.7228910	176,4828
0.4	0.9094086	0,9092763	-934.0722	-0.6082141	-0.6079475	789,3540
0.5	0.7387877	9.7387506	-1760.016	-0.5156575	-0.5155810	3520,00
0.6	0.6057094	0,6056833	-7848.550	-0.4404108	-0.4403558	15697,84
0.7	0,4998603	0,4998361	-34989.63	-0.3774038	-0.3773540	69979.87
0.8	0,4136714	0,4136490	-155979.4	-0.3229535	-0.3229078	311959,5
0.9	0,3416143	0,3415939	-695332.0	-0.2744088	-0.2743673	1390664.
1.0	0.2796748	0.2796568	-3099671.	-0.2298877	-0.2298511	6199352.

- **☐** Scalar Differential Equation
 - > Euler's Method
 - > The Trapezoid Method
 - > Runge-Kutta Methods
- **☐** Systems of Differential Equations
 - > Runge-Kutta Methods
 - > Implicit Trapezoidal Method

Implicit Trapezoidal Method Revisited

The IVP:

$$\begin{cases} \mathbf{y}'(t) = \mathbf{f}(t, \mathbf{y}) \\ \mathbf{y}(t_0) = \mathbf{y}_0 \end{cases}$$

Implicit Trapezoid Method

$$i = 0$$
: $w_0 = y_0$
 $w_{i+1} = w_i + [f(t_i, w_i) + f(t_i + h, w_{i+1})] \times h/2$

with the help of Newton Iteration Method

Implicit Trapezoidal Method Revisited: Example 6

Implicit Trapezoidal Method with h = 0.05

Implicit Trapezoidal Method Revisited: Example 6

Implicit Trapezoidal Method with h = 0.1

MATLAB Built-in Functions

MATLAB	Built-in Functions for ODEs
ode45	Nonstiff problems, medium accuracy. Use most of the time. It should be the first solver you try.
ode23	Nonstiff problems, low accuracy. Use for large error tolerances or moderately stiff problems.
ode113	Nonstiff problems, low to high accuracy. Use for stringent error tolerances or computationally ODE functions.
ode15s	Stiff problems, low to medium accuracy. Use if ode45 is slow (stiff systems) or there is a mass matrix.
ode23s	Stiff problems, low accuracy. Use for large error tolerances with stiff systems or with a constant mass matrix.
ode23t	Moderately stiff problems, low accuracy. Use for moderately stiff problems where you need a solution without numerical damping.
ode23tb	Stiff problems, low accuracy. Use for large error tolerances

with stiff systems or if there is a mass matrix.

Summary

- **☐** Symbolic Computation
- **☐** Scalar Differential Equation
 - ✓ Euler's Method
 - ✓ The Trapezoid Method
 - ✓ Runge–Kutta Methods
- **☐** Systems of Differential Equations
 - ✓ Runge–Kutta Methods
 - ✓ Implicit Trapezoidal Method

Thank You!