Real-World Applications of Machine Learning 2.2: Complex Machine Learning Models and Keras Part 1

Keras Convolutional Neural Network (CNN) model

Starting hyperparameters used:

```
epochs = 10

Batch_size = 16

n_hidden = 32

kernal_size = 2
```

Ending hyperparameters used:

5. Build and run CNN keras model

Final accuracy and loss:

```
Epoch 1/50
72/72 -
                          - 3s 29ms/step - accuracy: 0.0878 - loss: 32.8681
Epoch 2/50
72/72 -
                          - 2s 28ms/step - accuracy: 0.0794 - loss: 444.0713
Epoch 3/50
72/72
                          - 2s 28ms/step - accuracy: 0.0903 - loss: 6295.6978
Epoch 4/50
72/72 -
                          - 2s 28ms/step - accuracy: 0.0842 - loss: 14114.4316
Epoch 5/50
72/72 -
                          - 2s 28ms/step - accuracy: 0.0979 - loss: 30875.8047
Epoch 6/50
72/72 -
                          - 2s 27ms/step - accuracy: 0.0923 - loss: 33370.5938
Epoch 7/50
72/72
                          - 2s 27ms/step - accuracy: 0.0874 - loss: 75583.1328
Epoch 8/50
72/72 -
                          - 2s 27ms/step - accuracy: 0.1267 - loss: 71762.4531
Epoch 9/50
72/72
                          - 2s 29ms/step - accuracy: 0.1130 - loss: 114932.4531
Epoch 10/50
```

Keanu G. 2.2-complex-machine-learning-models-pt-1

```
- 2s 29ms/step - accuracy: 0.1228 - loss: 926242.8125
         72/72
         Epoch 43/50
         72/72 -
                                   - 2s 29ms/step - accuracy: 0.1405 - loss: 893793.7500
         Epoch 44/50
         72/72 -
                                   - 2s 29ms/step - accuracy: 0.1262 - loss: 1038898.1875
         Epoch 45/50
                                   - 2s 28ms/step - accuracy: 0.1113 - loss: 893272.0000
         72/72 -
         Epoch 46/50
         72/72 -
                                   - 2s 28ms/step - accuracy: 0.1299 - loss: 1342451.2500
         Epoch 47/50
         72/72 -
                                   - 2s 29ms/step - accuracy: 0.1394 - loss: 1102487.8750
         Epoch 48/50
         72/72 -
                                   − 2s 30ms/step - accuracy: 0.1409 - loss: 995745.4375
         Epoch 49/50
         72/72 -
                                   - 2s 29ms/step - accuracy: 0.1118 - loss: 1312391.8750
         Epoch 50/50
         72/72 -
                                   - 2s 29ms/step - accuracy: 0.1104 - loss: 1273658.3750
Out[38]: <keras.src.callbacks.history.History at 0x1b235f70290>
```

Partial screenshot of (ending parameters) confusion matrix (easier to see in script):

144/144	• 0s 2ms/step
Pred	BELGRADE_pleasant_weather \
True	
BASEL_pleasant_weather	265
BELGRADE_pleasant_weather	73
BUDAPEST_pleasant_weather	8
DEBILT_pleasant_weather	0
DUSSELDORF_pleasant_weather	0
HEATHROW_pleasant_weather	1
KASSEL_pleasant_weather	0
LJUBLJANA_pleasant_weather	4
MAASTRICHT_pleasant_weather	0
MADRID_pleasant_weather	5
MUNCHENB_pleasant_weather	0
OSLO_pleasant_weather	0
STOCKHOLM_pleasant_weather	1
VALENTIA_pleasant_weather	0
Pred	DUSSELDORF_pleasant_weather \
True	
BASEL_pleasant_weather	2
BELGRADE_pleasant_weather	0
BUDAPEST_pleasant_weather	0
DEBILT_pleasant_weather	0
DUSSELDORF_pleasant_weather	0
HEATHROW_pleasant_weather	0
KASSEL_pleasant_weather	0
LJUBLJANA_pleasant_weather	0
MAACEDICUT 1 I II	0
MAASTRICHT_pleasant_weather	
MADRID_pleasant_weather	0
	0 0

Keanu G.

2.2-complex-machine-learning-models-pt-1

Notes:

- The model predicted for all weather stations.
- There is relatively low accuracy and exceptionally high loss for all hyperparameters used in CNN model.
- Accuracy improves slightly then plateaus or decreases while the loss increases with each epoch.
- The model may be too simple to capture the complex data patterns.
- When using binary_crossentropy with sigmoid, similar results occur, however, the
 accuracy increases while loss converges lower with each epoch to around .08 loss
 and 0.3 accuracy.

Questions to consider:

- Does the model use an unscaled data approach? (yes)
- Possible preprocessing issues?
- Possible data architectural issues?

Recommendations:

- Implement scaled weather data.
- A better look into data preprocessing and architectural issues.
- Consider more complex layering, a different activation method, or keras model.