Analysis II für Ingenieure, SoSe 2003 Lösungen zur Juli-Vollklausur

Verständnisteil

Aufgabe 1

Zum Beispiel:

a)
$$A = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le 1 \}, B = \emptyset$$

b)
$$A = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 2 \}, B = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 1 \}$$

c)
$$A = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 1 \}, B = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 1, x \ge 0 \}$$

d)
$$A = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 < 2 \}, B = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 1 \}$$

e)
$$A = \mathbb{R}^2$$
, $B = \emptyset$

Aufgabe 2

a) Ja, denn

 $\underline{x>1}$: Da $1+y^2\neq 0$ für alle $y\in\mathbb{R}$, und $\ln x$ für x>1 überall definiert ist, ist f als Komposition stetiger Funktionen stetig.

 $\underline{x < 1}$: Da der Nenner $1 + (x - 1)^2 \neq 0$ für alle $x \in \mathbb{R}$ gilt, ist f als Komposition stetiger Funktionen stetig.

b) $f(1,y) = \frac{(1-1)^2 + y^2 \ln 1}{1+y^2} = 0$ und der linksseitige Grenzwert ist:

$$\lim_{h \to 0} f(1 - h, y) = \lim_{h \to 0} \frac{(1 - h) + y - 1}{1 + (1 - h - 1)^2} = \lim_{h \to 0} \frac{y - h}{1 + h^2} = y$$

Damit ist f nur für y = 0 in (1, y) stetig.

c) rechtsseitige partielle Ableitung: (h > 0)

$$\lim_{h \to 0} \frac{f(1+h,1) - f(1,1)}{h} = \lim_{h \to 0} \frac{\frac{(1+h-1)^2 + \ln(1+h)}{1+1^2} - 0}{h} = \lim_{h \to 0} \frac{h^2 + \ln(1+h)}{2h}$$

$$\stackrel{L'Hospital}{=} \lim_{h \to 0} \frac{2h + \frac{1}{1+h}}{2} = \frac{1}{2}$$

linksseitige partielle Ableitung: (h > 0)

$$\lim_{h \to 0} \frac{f(1-h,1) - f(1,1)}{h} = \lim_{h \to 0} \frac{\frac{1-h+1-1}{1+(1-h-1)^2} - 0}{h} = \lim_{h \to 0} \frac{1-h}{h+h^3} = +\infty$$

Aufgabe 3

notwendig: $grad f(x, y, z) = \vec{0}$

<u>hinreichend</u>: für Minimum: Hessematrix von f(x, y, z) positiv definit

(alle Eigenwerte der Hessematrix > 0)

(Hesseform > 0)

für Maximum: Hessematrix von f(x, y, z) negativ definit

(alle Eigenwerte der Hessematrix < 0)

(Hesseform < 0)

für Sattelpunkt: Hessematrix von f(x, y, z) indefinit

Eigenwerte sowohl > 0 als auch < 0

(Hesseform hat Vorzeichenwechsel).

Aufgabe 4

	Skalares Feld	Vektorfeld	nicht definiert
$rot(rot \ \vec{v})$		X	
$\operatorname{div}(\operatorname{div}\ \vec{v})$			X
$rot(\phi \cdot grad \phi)$		X	
$\vec{v} \cdot \text{rot } \vec{v}$	X		
$\operatorname{div}(\operatorname{grad} \phi)$	X		
$rot(\vec{v} \times \vec{v})$		X	
$\phi \cdot \operatorname{grad} \phi$		X	
$\operatorname{div}(\vec{v} \times \operatorname{rot} \vec{v})$	X		
$\operatorname{grad}(\operatorname{rot}\vec{v})$			X
$\operatorname{grad}(\operatorname{div}\vec{v})$		X	

Aufgabe 5

Ist $\vec{v}(x, y, z)$ ein Potentialfeld?

ja, da $rot \vec{v} = \vec{0}$ und der Defintionsbereich offen und konvex ist,

ODER

ja, da man eine Stammfkt. angeben kann: z.B. $f(x,y,z) = -\cos x + \frac{1}{2}y^2 + \sin z$ Da die Kurve $\vec{c}(t)$ geschlossen ist $(\vec{c}(0) = \vec{c}(2\pi) = (1,0,1)^T)$ und \vec{v} ein Potentialfeld ist, gilt

$$\oint_{\vec{c}} \vec{v} \cdot d\vec{s} = 0.$$

Aufgabe 6

Eine Parametrisierung der allgemeinen Ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ lautet

$$\vec{c}(t) = \begin{pmatrix} a\cos t \\ b\sin t \end{pmatrix}, t \in [0, 2\pi].$$

Hier ist $a=\sqrt{2}$ und b=2, und die gesuchte Kurve ist nur ein Teil der Ellipse. Deswegen muss der Parameterbereich eingeschränkt werden. Dafür gibt es je nach gewählter Strecke (z.B.) zwei Möglichkeiten:

i) mathematisch positiv (gegen den Uhrzeigersinn):

$$\vec{c}(t) = \left(\begin{array}{c} \sqrt{2}\cos t \\ 2\sin t \end{array} \right), \ t \in [\frac{\pi}{4}, 2\pi].$$

ii) mathematisch negativ (im Uhrzeigersinn):

$$\vec{c}(t) = \begin{pmatrix} \sqrt{2}\cos t \\ -2\sin t \end{pmatrix}, \ t \in [-\frac{\pi}{4}, 0].$$