ISS numerical exercise 2 — Spectral analysis

František Grézl, October 2022

Mějme diskrétní signál o délce N=8 vzorků / Let us have a discrete signal with N=8 samples: $x[n]=[1;\ 1;\ 1;\ 0;\ 0;\ 0.5;\ 0.5;\ 0].$

1. Zkonstruujte bázové vektory odvozené z harmonické funkce $\cos(x)$ pro tento signál / For this signal, construct basis vectors derived from harmonic function $\cos(x)$:

$$a[n] = \cos\left(2\pi \frac{k}{N}n\right)$$

2. Proveďte projekci vektoru x[n] do kosinových bázových vektorů / Perform the projection of signal x[n] into cosine bases:

$$c_k = \sum_{n=0}^{N-1} x[n]a[n]$$

x[n]	1	1	1	0	0	0.5	0.5	0	c_k
$a_0[n]$									
$a_0[n]x[n]$									
$a_1[n]$									
$a_1[n]x[n]$									
$a_2[n]$									
$a_2[n]x[n]$									
$a_3[n]$									
$a_3[n]x[n]$									
$a_4[n]$									
$a_4[n]x[n]$									

3. Zkonstruujte bázové vektory odvozené z harmonické funkce $\sin(x)$ pro tento signál / For this signal, construct basis vectors derived from harmonic function $\sin(x)$:

$$b[n] = \sin\left(2\pi \frac{k}{N}n\right)$$

4. Proveďte projekci vektoru x[n] do sinových bázových vektorů / Perform the projection of signal x[n] into sine bases:

$$d_k = \sum_{n=0}^{N-1} x[n]b[n]$$

x[n]	1	1	1	0	0	0.5	0.5	0	d_k
$b_0[n]$									
$b_0[n]x[n]$									
$b_1[n]$									
$b_1[n]x[n]$									
$b_2[n]$									
$b_2[n]x[n]$									
$b_3[n]$									
$b_3[n]x[n]$									
$b_4[n]$									
$b_4[n]x[n]$									

5. Spočítejte hodnoty amplitudy a fáze. U úhlů ověřte správnost výsledků. / Compute values of magnitude and phase. For angles, check the correctness of results.

$$B_k = \sqrt{c_k^2 + d_k^2}$$

$$\phi_k = \tan^{-1} \frac{d_k}{c_k}$$

k	B_k	ϕ_k
0		
1		
2		
3		
4		

6. Zkonstruujte bázové vektory odvozené z komplexní exponenciály $e^{j\alpha}$ pro tento signál / For this signal, construct basis vectors derived from complex exponential $e^{j\alpha}$:

$$a[n] = e^{j2\pi\frac{k}{N}}n$$

7. Proveďte projekci vektoru x[n] do bázových vektorů daných komplexní exponenciálou / Perform the projection of signal x[n] into bases given by complex exponentials:

$$c_k = \sum_{n=0}^{N-1} x[n]a[n]$$

x[n]	1	1	1	0	0	0.5	0.5	0	c_k
$a_0[n]$									
$a_0[n]x[n]$									
$a_1[n]$									
$a_1[n]x[n]$									
$a_2[n]$									
$a_2[n]x[n]$									
$a_3[n]$									
$a_3[n]x[n]$									
$a_4[n]$									
$a_4[n]x[n]$									

- 8. Porovnejte výsledky rozkladu do sin a cos bází s rozkladem do komplexních exponencoiál / Compare the results with the decomposition into cosines and sines.
- 9. Zkonstruujte komplexně sdružené bázové vektory odvozené z komplexní exponenciály $e^{-j\alpha}$ pro tento signál / For this signal, construct basis vectors derived from complex=conjugated complex exponentials $e^{-j\alpha}$:

$$a^{\star}[n] = e^{-j2\pi \frac{k}{N}} n$$

10. Proveďte projekci vektoru x[n] do bázových vektorů daných zápornou komplexní exponenciálou / Perform the projection of signal x[n] into bases given by these negative complex exponentials:

$$c_k = \sum_{n=0}^{N-1} x[n]a^*[n]$$

x[n]	1	1	1	0	0	0.5	0.5	0	c_k
$a_0^{\star}[n]$									
$a_0^{\star}[n]x[n]$									
$a_1^{\star}[n]$									
$a_1^{\star}[n]x[n]$									
$a_2^{\star}[n]$									
$a_2^{\star}[n]x[n]$									
$a_3^{\star}[n]$									
$a_3^{\star}[n]x[n]$									
$a_4^{\star}[n]$									
$a_4^{\star}[n]x[n]$									

11. Porovnejte výsledky získané rozkladem do kladných exponenciál a do záporných exponenciál / Compare results obtained by projections to positive and negative complex exponentials.