Properties of Bezier Curves 1	
Suppose you have a 2D Bezier curve defined by the control points b_0 , b_1 , and b_2 . Which of the true of that curve?	follow is NOT
○ (a) It will be a cubic polynomial curve. ○ (b) It will be completely contained within the triangle formed by b_0 , b_1 , and b_2 . ○ (c) Changing the order of the control points to be b_2 , b_1 , and b_0 will result in the same curv ○ (d) It will pass through the points b_0 and b_2 .	e.
Save & Grade Save only	New variant

See the lecture Bezier Curves:

https://github.com/illinois-cs415/illinois-cs415.github.io/raw/main/img/slides/415-GeometryBezier1.pdf

Bezier Patches 1	
Suppose we have a cubic Bezier patch in 3D space defined by the control net of points $b_{0,0}$,, of points does the patch interpolate?	b _{3,3} . Which set
 (a) All the control points on the boundary of the patch (b) The corner points b_{0,0} b_{3,0} b_{0,3} and b_{3,3} (c) A Bezier patch does not interpolate any of the points in the control net. (d) All the boundary points of the patch 	
Save & Grade Save only	New variant

See the lecture Bezier Patches page 16

https://github.com/illinois-cs415/illinois-cs415.github.io/raw/main/img/slides/415-GeometryBezier2.pdf

Suppose we have a quadratic Bezier patch in 3D. We wish to render the patch using a set of triangles. What is the maximum resolution at which the patch can be rendered in terms of the number of triangles? (a) We can render the patch using a grid with 16 vertices, generating 18 triangles. (b) We can render the patch using a grid with 16 vertices, generating 32 triangles. (c) We can render the patch using a grid with 9 vertices, generating 8 triangles. (d) We can render the patch using a grid with 9 vertices, generating 18 triangles. (e) A Bezier patch can only be used to generate quadrilaterals. (f) We can render the patch using as many triangles as we wish; there is no inherent limit to the resolution at which you can approximate a Bezier patch.

We can generate any number of points on the patch the we wish...imagine we want to generate a grid of n by n points we simply generate a point B(u,v) where u and v go from 0 to 1 using a stepsize of 1/(n-1). This grid consists of quadrilateral cells, each of which can be broken into 2 triangles. So...how many triangles can we generate?

How many triangles are removed by an edge collapse?
See the lecture LOD Generation and Mesh Simplification pages 13-14

https://github.com/illinois-cs415/illinois-cs415.github.io/raw/main/img/slides/415-LOD.pdf

See the lecture Bezier Curves pages 19-21, example on page 21

- 0.45 (0.95,0,0) + 0.55 (0.95,1,0.95)

a 2 2 2 and you can finish

Imagine we generate a rectangular mesh with a boundary using an n+1 by n+1 grid of vertices. In the example above, it is using n=5. We have (5+1)*(5+1) grid of vertices and 5*5*2 triangles. Triangles are generated as shown, cutting each grid square into 2 triangles.

The mesh is stored using an **indexed face format** (like an OBJ file, for example). Assuming:

- 1. each vertex is specified by 3 floating point coordinates (the image doesn't show z-axis)
- 2. floating point numbers use **4 bytes** of space
- 3. integer indices use **2 bytes** of space.

Suppose you need to store a mesh with n=15. How much space is used by the mesh?

bytes = integer

For n=15 162 vertices each needing 3 woords x 4 bytes 162 guads in grid ... each spirt into 2 towardles

each De has Bindices

Quadric Error Metric 1

We saw that the squared distance from a point p to a plane q in 3D space can be found in the following manner:

$$p = (x, y, z, 1)^T, q = (a, b, c, d)^T$$

$$\operatorname{dist}(q,p)^2 = (q^Tp)^2 = p^T(qq^T)p =: p^TQ_qp$$

$$Q_q = egin{bmatrix} a^2 & ab & ac & ad \ ab & b^2 & bc & bd \ ac & bc & c^2 & cd \ ad & bd & cd & d^2 \ \end{pmatrix}$$

Suppose we wish to find the sum of the squared distances from p to a set of N planes $q_1,...,q_n$ and we already have access to the matrices $Q_1,...,Q_n$. How many scalar multiplications would need to be performed to find the sum? Disregard any addition operations.

- O (a) 20
- O (b) 32N
- O (c) 16N
- O (d) 32
- O (e) 20N

Save & Grade

Save only

New variant

Can sum all n Q; matrices to a single matrix using only addition

T Qg P = [x,y,z,1] [900 ... - 903] [x]

[250 ... 823] [7]

See the lecture Bezier Curves pages 19-21, example on page 21

Evaluating Bezier Curves

Suppose we have a 2D quadratic Bezier curve with control points

$$b_0 = (-3, -2) \ b_1 = (0, -1)$$

$$b_1=(0,-1)$$

$${\color{red} \digamma}b_2=(2,4)$$

Recall that the Berstein polynomials for a quadratic Bezier curve are:

$$B_0^2(t) = (1-t)^2$$
 $B_1^2(t) = (1-t)2t$ $B_2^2(t) = t^2$

$$B_1^2(t) = (1-t)2t$$

$$B_2^2(t) = t^2$$

What is the y coordinate of the point on the curve at $t=0.1\,$ Your answer is expected to be correct to 2 significant digits.

number (2 significant figures)

Save & Grade Save only New variant

Using only y coords we have $(1-0.1)^2 (-2) + (1-0.1)(2 \times 0.1) (-1) + (0.1)^2 (-2)$