Math 242 Test 1, Friday 21 September

Last 4	digits	of SSN:
	Last 4	Last 4 digits

Show all work clearly. No work means no credit. The points are: ex1: 7, ex2: 15, ex3: 9, ex4: 9, ex5: 5 plus 5 point for the writing.

Exercise 1 A spacecraft is in free fall towards the surface of the moon at a speed of $1000 \ mi/h$. Its retrorockets, when fired, provide a **constant deceleration** of $20{,}000 \ mi/h^2$.

1. Find the expression of the motion of the spacecraft when the retrorockets start (ignore the moon's gravitational field). We take y_0 for the initial height.

2. At what height above the lunar surface should the astronauts fire the retrorockets to insure a soft touchdown (v = 0 at impact)?

Exercise 2 We considere the following differential equation:

$$y^{2}(xy' + y)(1 + x^{4})^{1/2} = x.$$

1. Write this differential equation as a Bernouilli's equation.

2.	What	substitut	tion do we	have to de	o?			
3.	What	different	ial equatic	on do we ol	btain after	the substi	tution?	
4.	Solve	this last	differentia	l equation	and then	find the ex	pression of	y.

Exercise 3 A pitcher of buttermilk initially at 25 °C is to be cooled by setting it on the front porch, where the temperature is 5 °C. Suppose that the temperature of the buttermilk has dropped to 15 °C after 20 min.

1. Using the Newton's law of cooling, determine the temperature of the buttermilk at a time t (t in minutes).

2. When will the temperature of buttermilk be 10 °C (you can use that $\ln 4 = 2 \ln 2$)?

Exercise 4 We consider the following differential equation:

$$(1 + ye^{xy})dx + (2y + xe^{xy})dy = 0.$$

1. Show that this equation is exact.

2. Then solve this differential equation.

 ${\bf Exercise}~{\bf 5}~{\bf Solve}$ the differential equation:

$$2y\frac{dy}{dx} = \frac{x}{\sqrt{x^2 - 16}}, \quad y(5) = 2.$$

(you can use a formula of type $\int f'f^n = \ldots$)