Chapter 13 - Exercise 3: Adult transactions

- Cơ sở dữ liệu "Adult" được Ronny Kohavi và Barry Becker (Data Mining and Visualization,
 Silicon Graphics) trích xuất từ cơ sở dữ liệu của cục điều tra dân số tại
 http://www.census.gov/) vào năm 1994. Ban đầu nó được sử dụng để
 dự đoán liệu income có vượt quá 50 nghìn USD/năm hay không dựa trên dữ liệu điều tra dân
 số. Sau đó, CSDL đã được thu thập thêm thuộc tính income với các level small và large (>
 50K).
- Tiếp theo, bộ dữ liệu được dùng để tạo ra dữ liệu cho việc association mining (Xem thông tin chi tiết tại: https://rdrr.io/cran/arules/man/Adult.html). Và dữ liệu lúc này được lưu trong tập tin Adult transactions.csv.

Yêu cầu: Áp dụng thuật toán Apriori để tính toán mức độ kết hợp giữa các item

- Chuẩn hóa dữ liệu
- Áp dụng Apriori, Tìm kết quả
- Tìm kiếm thông tin từ kết quả: trong thông tin kết quả có 'hours-per-week=Full-time' không?
 Nếu có thì 'hours-per-week=Full-time' kết hợp với item nào?"
- Trực quan hóa dữ liệu
- Cho biết 10 mục xuất hiện nhiều nhất. Vẽ biểu đồ.

In [6]: data.head()

Out[6]:

	age=Young	age=Middle- aged	age=Senior	age=Old	workclass=Federal- gov	workclass=Local- gov	workclass:
1	False	True	False	False	False	False	
2	False	False	True	False	False	False	
3	False	True	False	False	False	False	
4	False	False	True	False	False	False	
5	False	True	False	False	False	False	

5 rows × 115 columns

In [7]: data.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 48842 entries, 1 to 48842

Columns: 115 entries, age=Young to income=large

dtypes: bool(115)
memory usage: 5.7 MB

In [8]: # df.isnull().any()

In [9]: frequent_itemsets = apriori(data, min_support=0.2, use_colnames=True)
 frequent_itemsets.head(3)

Out[9]:

itemsets	support	
(age=Middle-aged)	0.505119	0
(age=Senior)	0.260862	1
(workclass=Private)	0.694198	2

In [10]: | frequent_itemsets.tail(3)

Out[10]:

itemsets	support		
(native-country=United-States, hours-per-week=	0.212440	614	
(workclass=Private, native-country=United-Stat	0.202592	615	
(marital-status=Married-civ-spouse native-cou	0 274456	616	

In [11]: from mlxtend.frequent_patterns import association_rules
 association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7)

Out[11]:

antecedents		consequents	antecedent support	consequent support	support	confidence	
0	(age=Middle-aged)	ldle-aged) (workclass=Private)		0.694198	0.365669	0.723927	1.04:
1	(age=Middle-aged)	(race=White)	0.505119	0.855043	0.425351	0.842082	0.984
2	(age=Middle-aged)	(capital-gain=None)	0.505119	0.917387	0.463208	0.917028	0.999
3	(age=Middle-aged)	(capital-loss=None)	0.505119	0.953278	0.480079	0.950428	0.99
4	(age=Middle-aged)	(native- country=United- States)	0.505119	0.897424	0.448876	0.888655	0.991
3206	(race=White, relationship=Husband, capital-gai	(marital- status=Married-civ- spouse, sex=Male, 	0.321260	0.342103	0.274456	0.854311	2.49 ⁻
3207	(native- country=United-States, relationship=Hu	(marital- status=Married-civ- spouse, capital-lo	0.363069	0.300295	0.274456	0.755935	2.51
3208	(relationship=Husband, capital-loss=None)	(marital- status=Married-civ- spouse, native- cou	0.377892	0.298862	0.274456	0.726283	2.431
3209	(relationship=Husband, capital-gain=None)	(marital- status=Married-civ- spouse, native- cou	0.355227	0.318230	0.274456	0.772622	2.42 ⁻
3210	(race=White, relationship=Husband)	(marital- status=Married-civ- spouse, native- cou	0.365628	0.297838	0.274456	0.750644	2.520

3211 rows × 9 columns

localhost:8888/notebooks/Chapter13_Apriori/Chapter13_Ex3_Adults.ipynb

In [12]: rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1.4)
rules

Out[12]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	
0	(marital- status=Married-civ- spouse)	(relationship=Husband)	0.458192	0.403669	0.403423	0.880468	2
1	(relationship=Husband)	(marital- status=Married-civ- spouse)	0.403669	0.458192	0.403423	0.999391	2
2	(sex=Male)	(relationship=Husband)	0.668482	0.403669	0.403648	0.603828	1
3	(relationship=Husband)	(sex=Male)	0.403669	0.668482	0.403648	0.999949	1
4	(marital- status=Married-civ- spouse, age=Middle	(relationship=Husband)	0.254637	0.403669	0.221244	0.868859	2
1715	(relationship=Husband, capital-gain=None)	(marital- status=Married-civ- spouse, native-cou	0.355227	0.318230	0.274456	0.772622	2
1716	(race=White, relationship=Husband)	(marital- status=Married-civ- spouse, native-cou	0.365628	0.297838	0.274456	0.750644	2
1717	(marital- status=Married-civ- spouse)	(native- country=United-States, capital-loss=No	0.458192	0.274641	0.274456	0.598999	2
1718	(sex=Male)	(marital- status=Married-civ- spouse, native-cou	0.668482	0.274477	0.274456	0.410567	1
1719	(relationship=Husband)	(marital- status=Married-civ- spouse, native-cou	0.403669	0.276524	0.274456	0.679905	2

1720 rows × 9 columns

In [13]: print(rules.info())

```
<class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1720 entries, 0 to 1719
         Data columns (total 9 columns):
                                1720 non-null object
         antecedents
                                1720 non-null object
         consequents
         antecedent support
                                1720 non-null float64
         consequent support
                                1720 non-null float64
         support
                                1720 non-null float64
         confidence
                                1720 non-null float64
                                1720 non-null float64
         lift
         leverage
                                1720 non-null float64
         conviction
                                1720 non-null float64
         dtypes: float64(7), object(2)
         memory usage: 121.1+ KB
         None
In [14]:
         # "Có relationship=hours-per-week=Full-time không? nó kết hợp với item nào?"
         for row in rules.iterrows():
              if "hours-per-week=Full-time" in row[1][0]:
                  print(row)
         (38, antecedents
                                     (marital-status=Married-civ-spouse, hours-per-...
         consequents
                                                            (relationship=Husband)
         antecedent support
                                                                          0.249908
         consequent support
                                                                          0.403669
         support
                                                                          0.214774
         confidence
                                                                          0.859413
         lift
                                                                           2.12901
                                                                          0.113894
         leverage
         conviction
                                                                           4.24173
         Name: 38, dtype: object)
         (39, antecedents
                                     (relationship=Husband, hours-per-week=Full-time)
                                             (marital-status=Married-civ-spouse)
         consequents
         antecedent support
                                                                         0.214877
         consequent support
                                                                         0.458192
         support
                                                                         0.214774
         confidence
                                                                         0.999524
         lift
                                                                          2.18145
         leverage
                                                                          0.11632
                                                                          1137.26
         conviction
         Nama: 20 dt.ma. abdaat)
         support=rules['support'].values
In [15]:
         confidence=rules['confidence'].values
         lift = rules['lift'].values
In [16]: import matplotlib.pyplot as plt
```

```
In [17]: plt.figure(figsize=(8,5))
    plt.scatter(support, confidence, s= lift*100 ,alpha=0.8, c = lift)
    plt.xlabel('support')
    plt.ylabel('confidence')
    plt.show()
```



```
In [18]: result = data.apply(pd.value_counts).fillna(0)
    result
```

Out[18]:

	age=Young	age=Middle- aged	age=Senior	age=Old	workclass=Federal- gov	workclass=Local- gov	workcl
False	39215	24171	36101	47039	47410	45706	
True	9627	24671	12741	1803	1432	3136	

2 rows × 115 columns

```
In [19]: | df_true = result.iloc[1,:]
         df_true[:10]
Out[19]: age=Young
                                         9627
         age=Middle-aged
                                        24671
         age=Senior
                                        12741
         age=01d
                                         1803
         workclass=Federal-gov
                                         1432
         workclass=Local-gov
                                         3136
         workclass=Never-worked
                                           10
         workclass=Private
                                        33906
         workclass=Self-emp-inc
                                         1695
         workclass=Self-emp-not-inc
                                         3862
         Name: True, dtype: int64
In [20]: x = df_true.sort_values(ascending=False)
In [21]: ten = x[:10]
         ten_
Out[21]: capital-loss=None
                                                46560
         capital-gain=None
                                                44807
         native-country=United-States
                                                43832
         race=White
                                               41762
         workclass=Private
                                                33906
         sex=Male
                                                32650
         hours-per-week=Full-time
                                                28577
         income=small
                                                24720
         age=Middle-aged
                                                24671
         marital-status=Married-civ-spouse
                                               22379
         Name: True, dtype: int64
         import numpy as np
In [22]:
         pos = np.arange(len(ten_.values))
```

```
In [23]: plt.figure(figsize=(8,5))
    plt.bar(pos, ten_.values, align='center')
    plt.xticks(pos, ten_.keys(), rotation='vertical')
    plt.ylabel('Times')
    plt.xlabel('Attributes')
    plt.title('Ten Attributes')
    plt.show()
```

