Homework 2 Solutions

Section 3:

2. Determine whether $\phi: \mathbb{Z} \to \mathbb{Z}$ defined by $\phi(n) = -n$ is an isomorphism of binary algebraic structures from $(\mathbb{Z}, +)$ to itself.

Solution. Yes, ϕ is an isomorphism.

4. Determine whether $\phi : \mathbb{Z} \to \mathbb{Z}$ defined by $\phi(n) = n + 1$ is an isomorphism of binary algebraic structures from $\langle \mathbb{Z}, + \rangle$ to itself.

Solution. No, ϕ is not an isomorphism. It doesn't satisfy the homomorphism property: $\phi(1+1) = \phi(2) = 2+1=3$, but $\phi(1) + \phi(1) = (1+1) + (1+1) = 4$, so $\phi(1+1) \neq \phi(1) + \phi(1)$.

6. Determine whether $\phi: \mathbb{Q} \to \mathbb{Q}$ defined by $\phi(x) = x^2$ is an isomorphism of binary algebraic structures from $\langle \mathbb{Q}, \cdot \rangle$ to itself.

Solution. No, ϕ is not an isomorphism. It is neither one to one, nor onto: $\phi(-1) = 1 = \phi(1)$ and there is no $x \in \mathbb{Q}$ such that $\phi(x) = x^2 = -1$.

8. Determine whether $\phi: M_2(\mathbb{R}) \to \mathbb{R}$ defined by $\phi(A) = \det(A)$ is an isomorphism of binary algebraic structures from $\langle M_2(\mathbb{R}), \cdot \rangle$ to $\langle \mathbb{R}, \cdot \rangle$.

Solution. No, ϕ is not an isomorphism. It is not one to one:

$$\phi\left(\begin{pmatrix}1&0\\0&1\end{pmatrix}\right)=1=\phi\left(\begin{pmatrix}-1&0\\0&-1\end{pmatrix}\right).$$

- 18. The map $\phi: \mathbb{Q} \to \mathbb{Q}$ defined by $\phi(x) = 3x 1$ for $x \in \mathbb{Q}$ is one to one and onto \mathbb{Q} .
 - **a.** Give the definition of a binary operation * on \mathbb{Q} such that ϕ is an isomorphism mapping $(\mathbb{Q}, +)$ onto $(\mathbb{Q}, *)$ and give the identity element for * on \mathbb{Q} .

Solution. If ϕ is to be an isomorphism, it must satisfy the homomorphism property. Then, for $a, b \in \mathbb{Q}$, we must have

$$a * b = \left[3\left(\frac{a+1}{3}\right) - 1\right] * \left[3\left(\frac{b+1}{3}\right) - 1\right]$$

$$= \varphi\left(\frac{a+1}{3}\right) * \varphi\left(\frac{b+1}{3}\right)$$

$$= \varphi\left(\frac{a+1}{3} + \frac{b+1}{3}\right)$$

$$= \varphi\left(\frac{a+b+2}{3}\right)$$

$$= 3\left(\frac{a+b+2}{3}\right) - 1$$

$$= a+b+1.$$

To find the identity element for *, we note that isomorphisms preserve identity elements. So we simply compute $\phi(0) = 3(0) - 1 = -1$. So -1 is the identity element for *.

b. Give the definition of a binary operation * on \mathbb{Q} such that ϕ is an isomorphism mapping $(\mathbb{Q}, *)$ onto $(\mathbb{Q}, +)$ and give the identity element for * on \mathbb{Q} .

Solution. If ϕ is to be an isomorphism, it must satisfy the homomorphism property. Then, for $a, b \in \mathbb{Q}$, we must have

$$3(a*b) - 1 = \phi(a*b) = \phi(a) + \phi(b) = (3a-1) + (3b-1) = 3a + 3b - 2.$$

Solving for a * b, we must have $a * b = a + b - \frac{1}{3}$.

To find the identity element for *, we note that isomorphisms preserve identity elements. So we simply compute $\phi^{-1}(0) = \frac{0+1}{3} = \frac{1}{3}$. So $\frac{1}{3}$ is the identity element for *.

Section 4:

4. Let * be defined on \mathbb{Q} by letting a * b = ab. Determine whether * gives a group structure on \mathbb{Q} . If no group results, give the first axiom in the order \mathcal{G}_1 , \mathcal{G}_2 , \mathcal{G}_3 (from the definition of a group) that does not hold.

Solution. $\langle \mathbb{Q}, * \rangle$ is not a group. \mathscr{G}_3 is the first axiom that doesn't hold: 0 has no inverse since $0 * a = 0 = 0 \neq 1$ for all $a \in \mathbb{Q}$.

8. We can also consider multiplication \cdot_n modulo n in \mathbb{Z}_n . For example, $5 \cdot_7 6 = 2$ in \mathbb{Z}_7 because $5 \cdot_6 = 30 = 4(7) + 2$. The set $\{1, 3, 5, 7\}$ with multiplication \cdot_8 modulo 8 is a group. Give the table for this group.

Solution.

[Note: This group is isomorphic to V (the Klein 4-group).]

9. Show that the group $\langle U, \cdot \rangle$ is not isomorphic to either $\langle \mathbb{R}, + \rangle$ or $\langle \mathbb{R}^*, \cdot \rangle$.

Claim: $\langle U, \cdot \rangle \not\simeq \langle \mathbb{R}, + \rangle$

Proof. Suppose, for the sake of contradiction, that $\phi: U \to \mathbb{R}$ is an isomorphism from $\langle U, \cdot \rangle$ to $\langle \mathbb{R}, + \rangle$. Then, since isomorphisms preserve identity elements (as shown in class), we must have $\phi(1) = 0$. Now, each element $z \in \{1, -1, i, -i\} =: S \subset U$ satisfies $z^4 = 1$. Then, for $z \in S$, we have

$$0 = \phi(1) = \phi(z^4) = \phi(z \cdot z \cdot z \cdot z) = \phi(z) + \phi(z) + \phi(z) + \phi(z) = 4\phi(z).$$

But this implies that $\phi(z) = 0$ for each $z \in S$, namely that ϕ is not injective, a contradiction. Hence there is no such isomorphism and so $\langle U, \cdot \rangle \not\simeq \langle \mathbb{R}, + \rangle$.

Claim: $\langle U, \cdot \rangle \not\simeq \langle \mathbb{R}^*, \cdot \rangle$

Proof. Suppose, for the sake of contradiction, that $\phi: U \to \mathbb{R}^*$ is an isomorphism from $\langle U, \cdot \rangle$ to $\langle \mathbb{R}^*, \cdot \rangle$. Then, since isomorphisms preserve identity elements (as shown in class), we must have $\phi(1) = 1$. Now, each element $z \in \{1, -1, i, -i\} =: S \subset U$ satisfies $z^4 = 1$. Then, for $z \in S$, we have

$$1 = \phi(1) = \phi(z^4) = \phi(z \cdot z \cdot z \cdot z) = \phi(z) \cdot \phi(z) \cdot \phi(z) \cdot \phi(z) = \phi(z)^4.$$

But this implies that $\phi(z) = \pm 1$ for each $z \in S$. Since there are 4 elements in S whose images lie in a 2-element set (i.e. $\{1, -1\}$), ϕ is not injective, a contradiction. Hence there is no such isomorphism and so $\langle U, \cdot \rangle \not\simeq \langle \mathbb{R}^*, \cdot \rangle$.

31. If * is a binary operation on a set S, an element x of S is an **idempotent for** * if x * x = x. Prove that a group has exactly on idempotent element.

Proof. Let $\langle G, * \rangle$ be a group with identity element e. Then, by definition, e * e = e, so e is an idempotent for *. Let $x \in G$ be an idempotent for *. Then

$$x * x = x = x * e$$

and so, by the left-cancellation law, x = e. Therefore G has exactly one idempotent element.

34. Let G be a group with a finite number of elements. Show that for any $a \in G$, there exists an $n \in \mathbb{Z}^+$ such that $a^n = e$.

Proof. Suppose G has m elements and consider the set $S = \{a^0, a^1, a^2, \dots, a^m\}$. Since G is closed under its operation, each element of S is in G and so $S \subseteq G$. We can therefore conclude that $|S| \leq |G| = m$, i.e. S has at most m distinct elements. It must therefore be the case that there are some $0 \leq k < \ell \leq m$ such that $a^k = a^\ell$ (else S would consist of m+1 elements). But then

$$a^k * a^{\ell-k} = a^\ell = a^k = a^k * e$$

and so by the left-cancellation law, we have $a^{\ell-k}=e$. Since $\ell>k$, we have $\ell-k\in\mathbb{Z}^+$ and so, setting $n=\ell-k$, we are done.

Additional Exercises:

1. Let G be a group and $a \in G$. Prove that (a')' = a.

Proof. Since (a')' is an inverse for a' and a' is an inverse for a, we have

$$a' * (a')' = e = a' * a.$$

By the left-cancellation law, we have (a')' = a.

2. Let $\langle S, * \rangle$ be a binary algebraic structure and define $\operatorname{Aut}(S)$ to be the set of isomorphisms from S to S. That is,

$$\operatorname{Aut}(S) = \{ f : S \to S \mid f \text{ is an isomorphism} \}.$$

Prove that $\langle \operatorname{Aut}(S), \circ \rangle$ is a group, where \circ is the usual function composition. You do not need to prove that \circ is associative (this is well-known) and you may use results proved in class, so long as you cite them.

Proof. We first show that $\operatorname{Aut}(S)$ is closed under \circ . Let $f, g \in \operatorname{Aut}(S)$. Then, by definition of isomorphism, f and g are bijective and satisfy

$$f(s*t) = f(s)*f(t)$$
 & $g(s*t) = g(s)*g(t)$

for all $s, t \in S$. Now the composition of bijective functions is bijective, so $f \circ g$ is bijective and, for $s, t \in S$, we have

$$(f \circ g)(s * t) = f(g(s * t)) = f(g(s) * g(t)) = f(g(s)) * f(g(t)) = (f \circ g)(s) * (f \circ g)(t).$$

Therefore $f \circ g$ is a bijection from S to itself satisfying the homomorphism property, namely $f \circ g$ is an isomorphism and is therefore in $\operatorname{Aut}(S)$. So $\operatorname{Aut}(S)$ is closed under \circ .

It is well-known that composition is associative, so we omit the proof of this fact.

We claim that id_S is an identity element for \circ . Note that id_S is a bijection and, for $s, t \in S$,

$$id_S(s * t) = s * t = id_S(s) * id_S(t).$$

Therefore id_S is a bijection from S to itself satisfying the homomorphism property, namely $id_S \in Aut(S)$. Also, given $f \in Aut(S)$, we have

$$id_S \circ f = f = f \circ id_S$$

so id_S is indeed an identity element for \circ .

Finally, we proved in class that if $\phi: S \to S'$ is an isomorphism of binary algebraic structures $\langle S, * \rangle$ and $\langle S', *' \rangle$, then so is its *inverse function* $\phi^{-1}: S' \to S$. Therefore, given $f \in \operatorname{Aut}(S)$, we also have $f^{-1} \in \operatorname{Aut}(S)$ and

$$f \circ f^{-1} = \mathrm{id}_S = f^{-1} \circ f$$

(this is the characterization of an inverse function). Hence each element of $\operatorname{Aut}(S)$ has an inverse element in $\operatorname{Aut}(S)$ with respect to \circ .

We have shown that $\operatorname{Aut}(S)$ is closed under \circ , observed that \circ is associative, produced an identity element for \circ in $\operatorname{Aut}(S)$, and verified that every element of $\operatorname{Aut}(S)$ has an inverse with respect to \circ in $\operatorname{Aut}(S)$. Therefore $\langle \operatorname{Aut}(S), \circ \rangle$ is a group.

[Note: We have distinguished between an *inverse function* and an *inverse element under composition*, even though they wind up meaning the same thing in this context.]