

PROBLEM STATEMENT

"Interface an external LED with TIVA C Series LaunchPad and program it to flash at a frequency of 1 Hz, continuously."

GPIO PIN SELECTION

ARM Cortex-M4 Microcontroller

TM4C123 MICROCONTROLLER GPIOS

- Out of 64-pins of TM4C123GH6PM, 43 pins are GPIO
- Grouped in six labeled PortA to PortF
 - PortA to PortD are 8-pins ports, PortE is 6-pins, and PortF is 5-pins port
- Some of the port pins also have special peripheral functionalities multiplexed
- When configured as GPIO these port pins have the following capabilities
 - Internal weak pull-up or pull-down resistors
 - Each port pin can be configured as open drain
 - Slew rate control capability is provided for 8 mA output drive
 - Some of the port pins are capable of tolerating 5V when configured as inputs
 - Configurable current sourcing capability for levels of 2 mA, 4 mA, and 8 mA

TM4C123 MICROCONTROLLER GPIOS

- ARM Cortex-M4 architecture uses memory-based peripherals
- Two on-chip busses that connect the processor core to the peripherals
 - Advanced Peripheral Bus (APB) is a low-speed legacy bus
 - Advanced High-performance Bus (AHB) is a high-speed bus
- GPIO module has connectivity available on both the buses

TM4C123 MICROCONTROLLER GPIOS

- Start address is also known as Base
 Address of GPIO Port
- Address space allocated to GPIO is allocated to different configurations, control, status, and data registers
- Each configuration register has unique **Offset** for every GPIO port, and it can be accessed by adding this offset to base address
- All registers associated with each GPIO Port are accessible by both buses but with different addresses

Bus	Start Address	End Address	Description
	0x4000 4000	0x4000 4FFF	GPIO Port A Registers
Advanced	0x4000 5000	0x4000 5FFF	GPIO Port B Registers
Peripheral	0x4000 6000	0x4000 6FFF	GPIO Port C Registers
Bus	0x4000 7000	0x4000 7FFF	GPIO Port D Registers
(APB)	0x4002 4000	0x4002 4FFF	GPIO Port E Registers
	0x4002 5000	0x4002 5FFF	GPIO Port F Registers
	0x4005 8000	0x4005 8FFF	GPIO Port A Registers
Advanced	0x4005 9000	0x4005 9FFF	GPIO Port B Registers
High-	0x4005 A000	0x4005 AFFF	GPIO Port C Registers
Performance Bus	0x4005 B000	0x4005 BFFF	GPIO Port D Registers
(AHB)	0x4005 C000	0x4005 CFFF	GPIO Port E Registers
,	0x4005 D000	0x4005 DFFF	GPIO Port F Registers

TIVA C Series LaunchPad

GPIO CONFIGURATION STEPS

LED Interfacing at GPIO Port E Pin 1

GPIO CONFIGURATION STEPS

Step 1: Clock Enable

- Enable clock for GPIO Port whether entire port or few pins are to be configured as GPIO
- RCGC_GPIO_R register, mapped to memory address 0x400FE608, is used enable clock for GPIO
- Bit 0 to 5 of RCGC_GPIO_R can be set to enable clock to PortA to PortF, respectively
- For enabling clock for PortE, only bit 4 need to be set while all other bits are zero

Clock enable for	Port F	Port E	Port D	Port C	Port B	Port A	8-bit Hexadecimal Value
For clock enable set	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	o-bit nexadecimal value
Bit values	0	1	0	0	0	0	0x10

GPIO CONFIGURATION STEPS

Step 2: GPIO Bus Selection

- Bus configuration is selected (either APB or AHB) by selecting appropriate base address of the GPIO Port
- For selecting PortE on APB, 0x40024000 is selected as Base Address for all remaining configuration registers

Bus	Start Address	Description
	0x4000 4000	GPIO Port A Registers
Advanced	0x4000 5000	GPIO Port B Registers
Peripheral	0x4000 6000	GPIO Port C Registers
Bus (APB)	0x4000 7000	GPIO Port D Registers
	0x4002 4000	GPIO Port E Registers
	0x4002 5000	GPIO Port F Registers
	0x4005 8000	GPIO Port A Registers
Advanced	0x4005 9000	GPIO Port B Registers
High-	0x4005 A000	GPIO Port C Registers
Performance Bus	0x4005 B000	GPIO Port D Registers
(AHB)	0x4005 C000	GPIO Port E Registers
, ,	0x4005 D000	GPIO Port F Registers

GPIO CONFIGURATION STEPS

Step 3-5: Configurations

- PortE on APB (Base Address = 0x40024000)
- Mask for Pin 1 = 0000 0010 = 0x02

Step	Configuration	Register	Offset	Register Address (Base Address + Offset)	Configuration Setting	Register Value
3	Mode Control Config.	GPIO_AFSEL_R	0x420	0x40024420	Clear bit 1 to use as GPIO pin	0x00
4	Pad Control Config.	GPIO_DEN_R	0x51C	0x4002451C	Set bit 1 to digital enable GPIO pin	0x02
		GPIO_DIR_R	0x400	0x40024400	Set bit 1 to configure as pin as output	0x02
5	Data Control Config.	GPIO_DATA_R	0x000- 0x3FC	0x40024008	Set bit 1 to 1 to read/write GPIO pin (register offset is 0x008 i.e., 0000 0000	1000)

GPIO CONFIGURATION STEPS

Step 1-5: Summary

Step	Configuration	Register	Register Address (Base Address + Offset)	Configuration Setting	Register Value
1	Clock Enable	RCGC_GPIO_R	0x400FE608	Enable clock on GPIO PortE	0x10
2	Bus Selection	-	-	APB is selected for GPIO PortE	-
3	Mode Control Config.	GPIO_AFSEL_R	0x40024420	Clear bit 1 to use as GPIO pin	0x00
4	Pad Control Config.	GPIO_DEN_R	0x4002451C	Set bit 1 to digital enable GPIO pin	0x02
		GPIO_DIR_R	0x40024400	Set bit 1 to configure pin as output	0x02
5	Data Control Config.	GPIO_DATA_R	0x40024008	Set bit 1 to 1 to read/write GPIO pin (register offset is 0x008 i.e., 0000 0000	1000)

SOFTWARE PROGRAM

LED Interfacing at GPIO Port E Pin 1

Program Flowchart

SOFTWARE PROGRAM

Slide 15

Bit Masking & Bitwise Operators

SOFTWARE PROGRAM

- In computer programming, we can't perform any operation directly on individual bit.
- Byte (8-bits) is the minimum size of data that can be accessed and manipulated by different types of operators (arithmetic, logical, etc.)
- Bit Masking is a technique used for accessing individual bits by using bitwise operators
- Using a mask, individual bit or multiple bits in a byte, nibble, word, etc. can be set either on or off, or inverted from on to off (or vice versa) in a single bitwise operation

Bit Masking & Bitwise Operators

SOFTWARE PROGRAM

Bitwise AND Operation: Turning OFF Bits

Use bitwise logical operator AND for turning OFF the bits

The 1 bit in the **mask** select which bits we want to remain unchanged, and zero bits in the **mask** selects the bits to turn OFF

For example, Binary Value									
	Hex Value	b7	b6	b5	/ \	b3	b2	b1	b0
value	0xF6	1	1	1	1	0	1	1	0
mask	0xCF	1	1	0	0	1			
result	0xE6	1	1	O	0	0	1	1	0

(result = value&mask)
Bitwise AND operation for turning OFF bit4 & bit5

Bitwise OR Operation: Turning ON Bits

Use bitwise logical operator OR for turning ON the bits

The 1 bit in the **mask** select which bits we want to turn ON, and zero bits in the **mask** leaves the bits unchanged

For example,

(result = value | mask)
Bitwise OR operation for turning ON bit6

Bit Masking & Bitwise Operators

SOFTWARE PROGRAM

Bitwise XOR Operation: Toggle Bits

Use bitwise logical operator XOR for toggling the bits (change binary state, i.e., 0 to 1 or 1 to 0)

The 1 bit in the **mask** select which bits we want to toggle, and zero bits in the **mask** selects the bits to remain unchanged

For example,					inary	Value			\wedge
	Hex Value	b7	b6	b5	b4			b1	
value	0x67	0	1	1	0	0 0 0	1	1	1
mask	0x11	0	0	0	1	0	0	0	1
result	0xE6	0	1	1	1	0	1	1	0

(result = value^mask)

Bitwise XOR operation for toggling bit0 & bit4

Frequency Calculation

SOFTWARE PROGRAM

- Microcontroller on TIVA LaunchPad run at default clock frequency of 16 MHz (16 million clock cycles per seconds)
- To generate a desired time delay, a calculated number of clock cycles of the microcontroller can be dissipated
- For external LED to flash at 1 Hz frequency (f), it must be turned ON and OFF for 0.5 second each (50% duty cycle) as it's flash time period is 1 second (T=1/f)
- A single iteration of a loop, with no body, in embedded C language roughly takes 8 clock cycles to execute, i.e. 1/2 MHz = $0.5 \mu s$
- Therefore, by controlling the number of iterations of the loop, we may generate any time duration required to produce LED flash rate

HARDWARE CONNECTIONS

LED Interfacing at GPIO Port E Pin 1

TM4C123GH6PM GPIO

HARDWARE CONNECTIONS

Table 24-6. Recommended GPIO Pad Operating Conditions

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{IH}	GPIO high-level input voltage	0.65 * V _{DD}	-	5.5	V
V _{IL}	GPIO low-level input voltage	0	-	0.35 * V _{DD}	V
V _{HYS}	GPIO input hysteresis	0.2	-	-	V
V _{OH}	GPIO high-level output voltage	2.4	-	-	V
V _{OL}	GPIO low-level output voltage	-	-	0.4	V
	High-level source current, V _{OH} =2.4 V ^a				
Lan	2-mA Drive	2.0	-	-	mA
I _{OH}	4-mA Drive	4.0	-	-	mA
	8-mA Drive	8.0	-	-	mA
	Low-level sink current, V _{OL} =0.4 V ^a				
	2-mA Drive	2.0	-	-	mA
I _{OL}	4-mA Drive	4.0	-	-	mA
	8-mA Drive	8.0	-	-	mA
	8-mA Drive, V _{OL} =1.2 V	18.0	-	-	mA

a. I_O specifications reflect the maximum current where the corresponding output voltage meets the V_{OH}/V_{OL} thresholds. I_O current can exceed these limits (subject to absolute maximum ratings).

Output Interfacing for LED

HARDWARE CONNECTIONS

- GPIO pins are not capable of providing enough sinking/sourcing current to derive peripherals
- GPIO high-level output voltage is 2.4 V which is low to drive an LED
- Transistor can be used (as a switch) to provide the required voltage/current for LED Turn ON
- Values of resistors depends on the type of NPN Transistor used
- From BC547 datasheet, I_C (max.) = 100 mA & I_B = 5 mA
 - $R_C = (V_{CC} 0.7)/I_C = (3.3 0.7)/(100 \times 10^{-3}) = 26 \Omega \text{ (min.)}$
 - $R_B = V_{BE}/I_B = 2.4/(5x10^{-3}) = 480 \Omega$
- $R_C = 330 \Omega$ and $R_B = 470 \Omega$ can be used

TIVA C Series LaunchPad

HARDWARE CONNECTIONS

BC547 Transistor & LED

HARDWARE CONNECTIONS

https://www.componentsinfo.com/bc547-pinout-equivalent/https://www.pinterest.com/pin/816629344903063893/

THANK YOU

Any Questions???