Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Физический факультет

Исследование движения тел под воздействием силы тяжести

Цель работы:

Измерение модуля ускорения свободного падения. Экспериментальная проверка эквивалентности гравитационной и инертной массы.

Содержание

1	Обо	значения	4				
2	Вве	едение	4				
	2.1	Закон всемирного тяготения	4				
	2.2	Гравитационное поле шарообразных тел. Ускорение					
		силы тяжести.	5				
	2.3	Зависимость ускорения свободного падения от геогра-					
		фической широты	6				
		2.3.1 Вклад центробежной силы	6				
		2.3.2 Вклад формы земной поверхности	9				
	2.4	Эквивалентность инертной и гравитационной масс.	11				
	2.5	Цель работы	12				
3	Дв	ижение тела по наклонной плоскости	13				
4	Оп	исание лабораторной установки	16				
	4.1	Лабораторная установка.	16				
	4.2	Измерение угла наклона рельса при помощи угольника.	17				
	4.3	Измерение ускорения тележки при помощи программ-					
		ного обеспечения «SPARKvue».	17				
5	Пој	рядок выполнения работы	20				
	5.1	Измерение ускорения тележки при различных углах					
		наклона рельса к горизонту	20				
	5.2	Обработка результатов измерений	22				
6	Рез	зультаты лабораторной работы	25				
7	Ko	нтрольные вопросы	25				
8	Приложение						
	8.1	Метод наименьших квадратов	26				
	8.2	Поправочные коэффициенты для расчёта g на раз-					
		личных широтах	29				

8.3	Ускорения свободного падения на уровне моря на раз-	
	личных широтах	30

1 Обозначения

Для векторных физических величин в тексте приняты следующие обозначения:

- выделение литер жирным шрифтом, например \mathbf{A} , \mathbf{b} , указывает на то, что величины \mathbf{A} и \mathbf{b} являются векторами;
- A, b модули векторов **A**, **b**;
- A_x , b_x проекции векторов **A** и **b** на ось OX;
- [A; b] векторное произведение A и b.

2 Введение

Гравитационное взаимодействие (гравитация) - вид фундаментального взаимодействия, наряду с сильным, слабым и электромагнитным. Гравитационное взаимодействие между телами осуществляется посредством создаваемого этими телами поля ¹, называемого гравитационным.

2.1 Закон всемирного тяготения.

Математическая теория гравитации (закон всемирного тяготения) впервые была описана английским учёным Исааком Ньютоном в 1687 году в книге «Математические начала натуральной философии». В своём фундаментальном труде Ньютон ввёл понятие сил и сформулировал законы, описывающие связь движения тел с силами. Ньютон доказал, что за движение планет по эллиптическим орбитам вокруг Солнца отвечает та же сила, что на Земле заставляет предметы падать на её поверхность.

¹Данное определение для гравитационного поля справедливо с точки зрения классической теории гравитации, изложенной Ньютоном в 1687 г. С точки зрения современной физики гравитация описывается в рамках общей теории относительности (ОТО), предложенной Эйнштейном в 1915 году. В рамках ОТО гравитационное поле представляет собой пространство-время, искривлённое присутствием материи, которое описывается уравнениями Эйнштейна.

Согласно закону всемирного тяготения все массивные объекты испытывают взаимное притяжение. Модуль силы притяжения (силы гравитационного взаимодействия) $\mathbf{F}_{\rm rp}$ между двумя материальными точками² пропорционален произведению масс этих материальных точек и обратно пропорциональна квадрату расстояния между ними:

$$F_{\rm rp} = G \frac{m_1 m_2}{R^2},\tag{1}$$

 m_1, m_2 — массы 1-й и 2-й материальной точки соответственно, R — расстояние между материальными точками, $G=6.6720\cdot 10^{-11}$ $\frac{\mathrm{H}\cdot\mathrm{M}^2}{\mathrm{K}\Gamma^2}$ — гравитационная постоянная [1].

2.2 Гравитационное поле шарообразных тел. Ускорение силы тяжести.

Рассмотрим гравитационное поле создаваемое шарообразным телом массой M и радиуса R. Поместим в это поле материальную точку массы m ($m \ll M$) на расстоянии H (H > R) от центра шарообразного тела. При такой постановке задачи на материальную точку со стороны шарообразного тела будет действовать сила притяжения, по модулю равная [1]:

$$F_{\rm rp} = G \frac{Mm}{H^2},\tag{2}$$

и направленная по радиусу тела массы M к его центру. Формула (2) показывает, что однородное шарообразное тело притягивает материальную точку так, как если бы вся масса этого тела была сосредоточена в его геометрическом центре.

Введём понятие напряжённости, рассматриваемого гравитационного поля, как силы, действующей со стороны этого поля на еди-

 $^{^2}$ Под материальной точкой понимаем некоторое тело формой и размерами которого в данной задаче можно пренебречь.

ницу массы материальной точки, помещённой в это поле:

$$\mathbf{E} = \frac{\mathbf{F}_{\rm rp}}{m}.\tag{3}$$

Согласно 2-му закону Ньютона под действием этой силы, материальная точка приобретает ускорение **a**:

$$\mathbf{a} = \frac{\mathbf{F}_{\rm rp}}{m}.\tag{4}$$

Из формулы (4) видно, что напряжённость гравитационного поля равна ускорению, сообщаемому полем материальной точке, помещённой в это поле. Ускорение а называется ускорением силы тяжести или ускорением свободного падения и обозначается литерой **g**.

Рассмотрим Землю, как шарообразное тело массы M_0 и радиуса R_0 , а в качестве материальной точки некоторый небольшой объект массы m, расположенный на расстоянии h ($h \ll R$) от её поверхности. В этом случае гравитационное поле, создаваемое Землёй в этой точке, можно считать однородным, силу тежести постоянной, не зависимой от высоты, а модуль ускорения свободного падения на основании (2) и (4) равным:

$$g_0 = G \frac{M_0}{R_0^2}. (5)$$

Формулу (5) с точностью 0.5~% позволяет рассчитать ускорение свободного падения во всех точках земной поверхности.

2.3 Зависимость ускорения свободного падения от географической широты

2.3.1 Вклад центробежной силы

Формула (5), как и 2-й закон Ньютона, использованный в предыдущем разделе справедлива только в том случае, когда Земля представляется идеальным шаром, а система отсчёта, связанная с Землёй, является инерциальной. Однако, Земля совершает довольно сложное движение:

- Земля совершает суточное вращение вокруг своей оси;
- земная ось со временем меняет свою ориентацию в пространстве (прецессия земной оси);
- Земля вращается вокруг центра масс системы Земля-Луна;
- Земля вращается вокруг Солнца;

Все эти факторы приводят к тому, что система отсчёта связанная с Землёй является неинерциальной (лабораторная система отсчёта), и в формулу для расчёта модуля ускорения свободного падения необходимо внести корректировки.

Среди перечисленных видов движения, совершаемого Землёй, основной вклад в ускорение свободного падения вносит суточное вращение Земли вокруг своей оси. Сила $\mathbf{F}_{\text{тяж}}$, действующая на некоторое свободнопадающее тело массы m, вблизи поверхности Земли равна:

$$\mathbf{F}_{\text{\tiny TЯЖ}} = \mathbf{F}_{\text{\tiny FP}} + \mathbf{F}_{\text{\tiny ИН}} = m\mathbf{g}_0 + \mathbf{F}_{\text{\tiny ИН}} = m\mathbf{g}, \tag{6}$$

где \mathbf{g}_0 и \mathbf{g} ускорения свободного падения в инерциальной и лабораторной системах отсчёта, а \mathbf{F}_{uh} — сила инерции. Формула (6) представляет собой запись 2-го закона Ньютона в неинерциальной системе отсчёта. Сила инерции \mathbf{F}_{uh} для неинерциальной системы отсчёта, вращающейся с постоянной угловой скоростью $\boldsymbol{\omega}$ может быть представлена в виде векторной суммы 2-х сил [1]:

$$\mathbf{F}_{\mathbf{u}\mathbf{h}} = \mathbf{F}_{\mathbf{I}\mathbf{I}} + \mathbf{F}_{\mathbf{K}},\tag{7}$$

где $\mathbf{F}_{\mathtt{u}}$ – центробежная сила инерции:

$$\mathbf{F}_{II} = m\omega^2 \mathbf{r},\tag{8}$$

 ${f r}$ – вектор, направленный от оси вращения к данной точке, перпендикулярный оси вращения (рис. 1), а ${f F}_{\kappa}$ – сила Кориолиса, дей-

Рис. 1. Сила тяжести при учёте суточного вращения земли

ствующая на тело, движущееся со скоростью \mathbf{v}' относительно вращающейся системы отсчёта:

$$\mathbf{F}_{\kappa} = -2m \left[\boldsymbol{\omega}; \mathbf{v}' \right]. \tag{9}$$

В случае, когда тело движется достаточно медленно относительно лабораторной системы отсчёта, силой Кориолиса (9) можно пренебречь. Из (рис. 1) видно, что модуль центробежной силы $\mathbf{F}_{\mathfrak{q}}$ может быть выражен через угол φ следующим образом:

$$F_{II} = m\omega^2 R \cos \varphi. \tag{10}$$

Из формулы (6) с учётом выражения (10) и теоремы косинусов получаем зависимость модуля силы тяжести от угла φ :

$$F_{\text{\tiny TSJK}} = mg = \sqrt{F_{\text{\tiny Tp}}^2 + F_{\text{\tiny II}}^2 - 2F_{\text{\tiny Tp}}F_{\text{\tiny II}}\cos\varphi} =$$

$$= \sqrt{m^2g_0^2 + m^2\omega^4R^2\cos^2\varphi - 2m^2g_0\omega^2R\cos^2\varphi}.$$
(11)

Из формулы (11) следует, что зависимость модуля ускорения свободного падения от угла φ имеет вид:

$$g(\varphi) = g_0 \sqrt{1 + \left(\frac{\omega^4 R^2}{g_0^2} - 2\frac{R\omega^2}{g_0}\right) \cos^2 \varphi}$$
 (12)

Формула (12) показывает, как суточное вращение Земли с постоянной угловой скоростью ω влияет на ускорение свободного падения. Из формулы (12) видно, что наибольший вклад центробежная сила даёт на экваторе – $\varphi = 0^o$, а на полюсах – $\varphi = 90^o$ отсутствует:

$$g(0^{o}) = g_0(1 - \frac{R\omega^2}{g}); \tag{13}$$

$$g(90^{\circ}) = g_0. (14)$$

2.3.2 Вклад формы земной поверхности

Принято считать, что наиболее подходящим геометрическим телом для модели Земли является эллипсоид вращения. Данная модель выбирается по следующим параметрам [2]:

 центр масс и ось вращения модели должна совпадать с центром масс и осью вращения реальной Земли;

- угловые скорости вращения модели и реальной Земли совпадают;
- масса модели равна реальной массе Земли.

Гравитационный потенциал эллипсоида $W_9 = W_9(r,\Theta)$ является функцией радиуса и полярного угла [2], в отличии от гравитационного потенциала шарообразного тела $W_{\rm m} = W_{\rm m}(r)$ [1]. К тому же географическая широта точки на поверхности Земли задаётся при помощи геодезического угла φ' – угла между экваториальной плоскостью и нормалью к поверхности эллипсоида в данной точке, а не геоцентрического φ – угла между экваториальной плоскостью и линией, соединяющей центр эллипсоида с данной точкой (рис. 2). Это приводит к тому, что для вычисления силы тяжести, создаваемой эллипсоидом, приходится прибегнуть к теории, изложенной в курсе математической физики, по этой причине приведём формулу зависимости ускорения свободного падения от географической широты без вывода.

В 1929 году итальянский геодезист Сомильяна (Somigliana) получил формулу показывающую зависимость ускорения свободного падения от геодезического угла.

$$g'(\varphi) = \frac{g_{\theta}' a \cos \varphi' + g_{\Pi}' b \sin \varphi'}{\sqrt{a^2 \cos^2 \varphi' + b^2 \sin^2 \varphi'}},\tag{15}$$

где $g_{9}', g_{11}' -$ модули ускорения свободного падения на экваторе и на полюсе, соответственно, a и b – большая и малая полуоси эллипсоида.

Формула Сомильяны в виде (15) на практике применяют редко, вместо неё в геофизике используют приближённую формулу [2]:

$$g' = g_9'(1 + \beta \sin^2 \varphi' - \beta_1 \sin^2 2\varphi'),$$
 (16)

численные значения коэффициентов g'_{9} , β , β_{1} , входящие в эту формулу определяются эмпирически и утверждаются на Генеральной ассамблее Международного Союза геодезии и геофизики (приведены в разделе (8.2)).

Рис. 2. Геоцентрическая и геодезическая широта точки Q

2.4 Эквивалентность инертной и гравитационной масс.

Массы, входящие в формулы (2), (3) и (4), строго говоря, различны, т.к. масса в формулах (2) и (3), характеризует силу с которой гравитационное поле действует на помещённое в него тело (гравитационная масса), а масса в формуле (4) — инертные свойства тела (инертная масса). Гравитационная масса для гравитационных взаимодействий, имеет смысл схожий с электрическим зарядом, при рассмотрении электромагнитных взаимодействий. Ниоткуда не следует, что гравитационная и инертные массы должны быть равны друг другу, но можно показать, что эти массы пропорциональны, а значит выбором соответствующих единиц измерений их можно сделать равными.

Рассмотрим некоторое тело, находящееся вблизи поверхности Земли. Пусть $m_{\rm r}$ и $m_{\rm u}$ – его гравитационная и инертная массы со-

ответственно, а $M_{\rm r}$ – гравитационная масса Земли, тогда со стороны Земли на это тело действует сила ${\bf F}$, модуль которой

$$F = G \frac{M_{\rm r} m_{\rm r}}{R^2},\tag{17}$$

где R — средний радиус Земли, а G — гравитационная постоянная. Под действием силы (17) тело приобретает ускорение \mathbf{g} , модуль которого

$$g = \frac{F}{m_{\scriptscriptstyle \rm I\hspace{-.1em}I}} = G \frac{M_{\scriptscriptstyle \rm \Gamma}}{R^2} \frac{m_{\scriptscriptstyle \rm \Gamma}}{m_{\scriptscriptstyle \rm I\hspace{-.1em}I}} = const \frac{m_{\scriptscriptstyle \rm \Gamma}}{m_{\scriptscriptstyle \rm I\hspace{-.1em}I}} \tag{18}$$

из (18) следует, что $m_{\rm r} \sim m_{\rm u}$ т.к. g вблизи поверхности Земли, для всех тел одинаково, т.о. надлежащим выбором единиц измерения (например системы единиц СИ) инертную и гравитационную массы можно сделать равными.

Из равенства инертной и гравитационной масс следует эквивалентность неинерциальной системы отсчёта некоторому гравитационному полю, т.е. свойства движения в неинерциальной системе отсчёта такие же, что и в инерциальной при наличии гравитационного поля.

Равенство гравитационной и инертной масс было проверено различными экспериментами. Установлено, что $|m_{\rm r} - m_{\rm u}| \le 10^{-12}$ [1].

2.5 Цель работы

Формула (16) показывает, что ускорение свободного падения зависит от географической широты местности, из за наличия сил инерции и отклонения формы земной поверхности от сферы. Модуль ${\bf g}$ варьируется от 9.780 м/с² на экваторе, до 9.832 м/с² на полюсах.

Целью данной работы является:

- 1. измерение величины ускорения свободного падения на широте Санкт-Петербурга (8.3);
- 2. экспериментальная проверка эквивалентности гравитационной

и инертной массы.

Для этих целей, в данной лабораторной работе, предлагается использовать наклонную плоскость и тело, совершающее равноускоренное движение вниз по этой плоскости (см. главу 4) под воздействием силы тяжести.

3 Движение тела по наклонной плоскости

Равноускоренное движение тела вдоль некоторой оси OX, описывается дифференциальным уравнением 2-го порядка:

$$\frac{d^2x(t)}{dt^2} = a_x; (19)$$

с начальными условиями:

$$x(0) = x_0, \quad \dot{x}(0) = V_{0x}, \tag{20}$$

где x_0 – координата в момент времени $t=0,\ V_{0x}$ – проекция начальной скорости на ось OX в момент времени $t=0,\ a_x$ – проекция ускорения на ту же ось.

Решение уравнения (19) относительно 1-й производной (скорости), даст зависимость проекции скорости на ось OX от времени:

$$V_x(t) = V_{0x} + a_x t, (21)$$

а решение относительно 2-й производной (координаты x) — зависимость координаты x от времени:

$$x(t) = x_0 + V_{0x}t + \frac{a_x}{2}t^2. (22)$$

Из уравнения (22) следует, что за промежуток времени t_2-t_1 , тело пройдёт расстояние:

$$x(t_2) - x(t_1) = V_{0x}(t_2 - t_1) + \frac{a_x}{2}(t_2^2 - t_1^2).$$
 (23)

Если в начальный момент времени тело покоилось, то из формулы (23) получим:

$$x(t_2) - x(t_1) = \frac{a_x}{2}(t_2^2 - t_1^2). \tag{24}$$

Из формулы (21) видно, что между перемещением $\Delta x = x(t_2) - x(t_1)$ и полуразностью квадратов значений времени $\frac{1}{2}(t_2^2 - t_1^2)$, существует линейная зависимость, коэффициент пропорциональности которой, равен проекции ускорения тела на ось OX.

В качестве тела, совершающего равноускоренное движение, рассмотрим тележку, скатывающуюся по наклонной плоскости. Второй закон Ньютона для данной тележки записывается в виде следующего векторного уравнения:

$$m\mathbf{a} = m\mathbf{g} + \mathbf{N} + \mathbf{F}_{\text{TD.}},\tag{25}$$

где ${\bf a}$ — ускорение тележки, ${\bf g}$ — ускорение свободного падения, ${\bf N}$ — сила реакции опоры, ${\bf F}_{\rm Tp.}$ - сила трения качения, возникающая в следствии неупругих деформаций колёс и плоскости качения, при движении тележки, m — масса тележки.

Направим ось OX вдоль наклонной плоскости, а ось OY перпендикулярно ей (рис. 3), тогда уравнение (25) в проекциях на эти оси принимает вид системы:

$$\begin{cases} OX : ma_x = mg \sin \alpha - F_{\text{Tp.}}, \\ OY : N = mg \cos \alpha \end{cases}$$
 (26)

где α - угол наклона плоскости к горизонту.

Модуль силы трения качения колеса тележки:

$$F_{\rm Tp.} = \frac{f}{R} N, \tag{27}$$

где f – коэффициент силы трения качения, имеющий размерность длины, R – радиус колеса.

Рис. 3. Векторная диаграмма сил, действующих на тело, расположенное на наклонной плоскости

Из системы (26), с учётом силы трения (27), следует:

$$ma_x = mg\sin\alpha - \frac{f}{R}mg\cos\alpha. \tag{28}$$

Запишем уравнение (28), разделяя понятия инертной и гравитационной массы (2.4):

$$m_{\rm H} a_x = m_{\rm r} g \sin \alpha - \frac{f}{R} m_{\rm r} g \cos \alpha, \qquad (29)$$

откуда модуль ускорения $a = a_x$:

$$a = \frac{m_{\rm r}}{m_{\rm H}} g \sin \alpha - \frac{f}{R} \frac{m_{\rm r}}{m_{\rm H}} g \cos \alpha. \tag{30}$$

Поскольку в лабораторной установке угол α достаточно мал, то в формуле (30) можно положить $\cos \alpha \approx 1$. С учётом этого выражение для модуля ускорения будет иметь вид:

$$a = \frac{m_{\scriptscriptstyle \Gamma}}{m_{\scriptscriptstyle \rm H}} g \left(\sin \alpha - \frac{f}{R} \right). \tag{31}$$

Таким образом, теоретическая зависимость модуля ускорения от $\sin \alpha$ является линейной. Угловой коэффициент этой зависимости равен модулю ускорения свободного падения, т.к. инертная и грави-

тационные массы эквивалентны (см. пункт (2.4)), но мы попробуем проверить этот факт в ходе лабораторной работы.

4 Описание лабораторной установки

4.1 Лабораторная установка.

Лабораторная установка представлена на (рис. 4).

Рис. 4. Лабораторная установка

В комплект входят:

- 1. алюминиевый рельс на регулируемых ножках, оборудованный сантиметровой шкалой с ценой деления 1 мм.;
- 2. две тележки красная и синяя, снабжённые пусковым пружинным механизмом (для данной работы не используется) и встроенным bluetooth датчиком (включается нажатием кнопки расположенной на тележке);
- 3. утяжелитель деревянный брусок;
- 4. угольник для измерения высоты с ценой деления 1 мм;
- штатив;

6. компьютер с установленным программным обеспечением «SPARKvue».

4.2 Измерение угла наклона рельса при помощи угольника.

Для измерения угла наклона рельса к горизонту используется угольник, при помощи которого, в заданных точках рельса измеряется его высота относительно стола, при горизонтальном и наклонённом положениях.

4.3 Измерение ускорения тележки при помощи программного обеспечения «SPARKvue».

Программное обеспечение «SPARKvue» предназначено для получения данных от одного или нескольких bluetooth датчиков расположенных в тележках. Для измерения ускорения тележки необходимо произвести следующие действия:

- 1. Запустить программу «SPARKvue» (ярлык расположен на рабочем столе);
- 2. Выбрать блок «Получить данные с датчика» (рис. 5)

Рис. 5. Получить данные с датчика

3. включить bluetooth датчик синей тележки нажатием соответствующей кнопки на её корпусе; 4. активировать тележку в интерфейсе программы одинарным щелчком левой кнопки мыши по изображению тележки (рис. 6);

Рис. 6. Выбрать беспроводное устройство для подсоединения

5. в появившемся окне «**Виды измерений**» (рис. 7) отключить все Smart Cart датчики за исключением датчика положения, в меню которого оставить активным пункт «**Скорость**» (рис. 8);

Рис. 7. Выбор измеряемой величины

- 6. в блоке «**Шаблоны**», расположенном в том же окне, выбрать «**Таблица и график**»;
- 7. при помощи штатива поднять рельс на определённую высоту;
- 8. установить тележку на правом конце рельса;

Рис. 8. Датчик положения - Скорость

- 9. нажать кнопку «Старт», одновременно отпустив тележку (тележка начнёт скатываться вниз, а программа будет принимать данные о скорости тележки, записывая их в таблице, одновременно с этим будет строиться график зависимости скорости от времени);
- 10. до взаимодействия тележки с левым упором рельса нажать кнопку «**Стоп**», выключив сбор данных;
- 11. нажать кнопку с изображением прямоугольного контура, нарисованного пунктирной линией, расположенную под графиком;
- 12. выделить линейный участок графика;
- 13. на выделенном участке нажать правую кнопку мыши и выбрать пункт «**Линейная аппроксимация**» (программа построит аппроксимационную прямую (рис. 9), описываемую уравнением y = mx + b, где y скорость, x время, а m, согласно уравнению (21) является ускорением).

Рис. 9. Вычисление ускорения тележки

5 Порядок выполнения работы

5.1 Измерение ускорения тележки при различных углах наклона рельса к горизонту

1. Измерить вертикальные координаты h_0 и h_0' верхнего края горизонтально расположенного рельса в точках x=0.7 м и x'=1.7 м соответственно, данные измерений занести в таблицу (1);

Таблица 1: Измерение зависимости ускорения от синуса угла наклона

- $h_0 =$ ____ м высота точки не наклонённого рельса с координатой x = 0.7 м;
- $h'_0 =$ ____ м высота точки не наклонённого рельса с координатой x = 1.7 м;
- $n_{\text{пл.}}$ количество пластин;
- h высота точки рельса с координатой x=0.7 м;
- h' высота точки рельса с координатой x=1.7 м;
- i номер измерения.

1	2	3	4	5	6	7	8	9
	<i>h</i> , м			i			a_i , м/с ²	$a, \text{ m/c}^2$
$n_{\text{пл.}}$	п, м	<i>h</i> ′, м	$\sin \alpha$	1	a_i , M/C	a, м/с ²	$u_i, M/C$	a, M/C
				l				
9				2				
2				3				
				$\begin{vmatrix} 4 \\ 5 \end{vmatrix}$				
				1				
				2				
4				3				
				4				
				5				
				1				
				2				
6				3				
				4				
				5				
				1				
				2				
8				3				
				4				
				5				
				1				
				2				
10				3				
				4				0.1
				5				21

- 2. При помощи штатива поднять правый конец рельса на высоту 2-й риски и измерить вертикальные координаты h и h' наколонённого рельса в точках x = 0.7 м и x' = 1.7 м соответственно, данные измерений занести в таблицу (1);
- 3. Подготовить оборудование к работе (см. раздел «Измерение ускорения тележки при помощи программного обеспечения «SPARKvue»»);
- 4. Произвести серию из 5-ти измерений ускорения тележки без утяжелителя и с утяжелителем (см. раздел «Измерение ускорения тележки при помощи программного обеспечения «SPARKvue»», полученные значения ускорения занести в таблицу (1) (столбцы 6 и 8);
- 5. Повторить действия описанные в пунктах (2) и (4) для 3-й, 4-й, 5-й и 6-й риски штатива, полностью заполнив 2-й, 3-й, 6-й и 8-й столбец таблицы.
- 6. После окончания измерений отключить bluetooth датчик на тележке и закрыть программу «SPARKvue».

5.2 Обработка результатов измерений

1. Для каждой серии измерений из таблицы (1), вычислить значение синуса угла α по следующей формуле:

$$\sin(\alpha) = \frac{(h'_0 - h') - (h_0 - h)}{x' - x}.$$
(32)

Результаты расчётов записать в 4-й столбец таблицы (1).

2. Для каждой серии измерений вычислить среднее значение ускорения $\langle a \rangle$ и погрешность Δa для по формулам [3]:

$$\langle a \rangle = \frac{\sum_{i=1}^{N} a_i}{N}; \sigma_a = \sqrt{\frac{\sum_{i=1}^{N} (a_i - \langle a \rangle)^2}{N - 1}}; \Delta a = \frac{\alpha_{0.95, N} \sigma}{\sqrt{N}}$$
(33)

где N - количество измерений, σ_a - стандартное отклонение отдельного измерения, а $\alpha_{0.95,N}$ - коэффициент Стьюдента для доверительной вероятности 0.95 и количества измерений N.

- 3. Результаты расчёта среднего ускорения в виде доверительного интервала [3] $\langle a \rangle \pm \Delta a$ внести в 7-й и 9-й столбцы таблицы (1).
- 4. Теоретическая зависимость a от $\sin(\alpha)$ в соответствии с формулой (31), является линейной:

$$a = A + B\sin(\alpha),\tag{34}$$

где $A=-\frac{m_{{\scriptscriptstyle \Gamma}}}{m_{{\scriptscriptstyle H}}}\frac{f}{R}g$, а B=g в случае если инертная и гравитационные массы эквивалентны, в противном случае $B=\frac{m_{{\scriptscriptstyle \Gamma}}}{m_{{\scriptscriptstyle H}}}g$. Найти коэффициенты линейной зависимости можно используя метод наименьших квадратов (МНК) по следующим формулам (см. пункт 8.1):

$$B = \frac{\sum_{j=1}^{n} a_j \sin(\alpha)_j - \frac{1}{n} \sum_{i=j}^{n} a_j \sum_{i=1}^{n} \sin(\alpha)_j}{\sum_{j=1}^{n} \sin^2(\alpha)_j - \frac{1}{n} \left(\sum_{i=j}^{n} \sin(\alpha)_j\right)^2},$$

$$A = \frac{1}{n} \left(\sum_{j=1}^{n} a_j - B \sum_{j=1}^{n} \sin(\alpha)_j\right),$$
(35)

где a_j - значение среднего ускорения при фиксированном угле α , берётся из 7-го столбца таблицы (1), а n=5 – число углов наклона рельса, при которых проводились измерения.

5. Рассчитать стандартное отклонение σ_B для коэффициента B

по следующей формуле [3]:

$$\sigma_B = \sqrt{\frac{\sum_{j=1}^n d_j^2}{D(n-2)}};\tag{36}$$

где

$$d_{j} = a_{j} - (A + B\sin(\alpha)_{j})$$

$$D = \sum_{j=1}^{n} \sin^{2}(\alpha)_{j} - \frac{1}{n} \left(\sum_{j=1}^{n} \sin(\alpha)_{j}\right)^{2}.$$
(37)

6. Рассчитать абсолютную ΔB и относительную ε_B погрешности для доверительной вероятности 0.90 по формулам:

$$\Delta B = 2\sigma_B$$

$$\varepsilon_g = \frac{\Delta_g}{g} 100\%$$
(38)

- 7. По данным 4-го и 7-го столбца таблицы (1) построить график экспериментальной зависимости a от $\sin \alpha$ для тележки без утяжелителя.
- 8. Используя значения коэффициентов A и B, на том же рисунке построить график линейной зависимости (34) из пункта (4) для тележки без утяжелителей.
- 9. По данным 4-го и 9-го столбца таблицы (1) построить график экспериментальной зависимости a от $\sin \alpha$ для тележки с утяжелителем.
- 10. Используя значения коэффициентов А и В, на том же рисунке построить график линейной зависимости (34) из пункта (4)

для тележки с утяжелителем.

6 Результаты лабораторной работы

В качестве основных результатов лабораторной работы необходимо предъявить:

- 1. графики зависимости $a = f(\sin(\alpha))$ для тележки без утяжелителя и с утяжелителем;
- 2. значение коэффициентов B линейной зависимости (34) с абсолютной и относительной погрешностями;
- 3. вывод о справедливости принципа эквивалентности инертной и гравитационной масс, основанный на сравнении этих коэффициентов для тележки без утяжелителя и тележки с утяжелителем;
- 4. абсолютное отклонение измеренного значения модуля ускорения свободного падения от его табличного значения на широте Санкт-Петербурга (8.3) $|g_{\text{эксп.}} g_{\text{таб.}}|$;
- 5. вывод о достоверности результатов проведённых измерений, сформулированный на основании сравнения абсолютной погрешности ΔB с величиной $|g_{
 m 9kcn.} g_{
 m Tab.}|$.

7 Контрольные вопросы

- 1. В первом случае некоторому телу придали начальную скорость параллельно шероховатой наклонной плоскости в направлении вверх, а во втором случае - вниз. В каком случае модуль ускорения тела будет больше и почему?
- 2. Дайте определение инерциальной и неинерциальной системы отсчёта.

- 3. Почему модуль ускорения свободного падения зависит от географической широты? Какой фактор вносит наибольший вклад в эту зависимость?
- 4. Дайте определение инертной и гравитационной массы.
- 5. Что понимается под эквивалентностью гравитационного поля и неинерциальной системы отсчёта?

8 Приложение

8.1 Метод наименьших квадратов

Пусть при выполнении эксперимента была получена зависимость некоторой величины y от величины x, представленная в виде таблицы (2).

Таблица 2: Экспериментальные данные

			-					
\boldsymbol{x}	x_1	x_2	x_3	x_4	x_5		x_i	 x_n
y	y_1	y_2	y_3	y_4	y_5		y_i	 y_n

Пусть экспериментальные значения величины y содержат погрешности, распределения которых независимы в разных точках и подчиняются закону нормального распределения. Необходимо найти наиболее вероятные значения параметров $a_0, a_1, ..., a_k$ аналитической зависимости

$$Y = f(x, a_0, a_1, ..., a_k). (39)$$

Задачу подбора параметров аналитической зависимости по имеющимся экспериментальным данным можно разделить на два этапа:

- на первом этапе на основании теоретической модели выбирается вид зависимости (линейная, квадратичная, кубическая и т.д.);
- на втором подбираются параметры выбранной зависимости $a_0, a_1, ..., a_k$.

Наиболее вероятные значения параметров $a_0, a_1, ..., a_k$ позволяет найти МНК, его идея заключается в том, что функцию (39) необходимо подобрать таким образом, чтобы сумма квадратов отклонений экспериментальных значений y_i от расчётных $Y_i = f(x_i, a_0, a_1, ..., a_k)$ была наименьшей [4]:

$$S(a_0, a_1, ..., a_k) = \sum_{i=1}^{n} (y_i - f(x_i, a_0, a_1, ..., a_k))^2 \to min.$$
 (40)

Задача сводится к определению коэффициентов $a_0, a_1, ..., a_k$ из условия (40), т.е. необходимо подобрать коэффициенты при которых функция $S(a_0, a_1, ..., a_k)$ достигает минимального значения. Используя необходимое условие экстремума функций многих переменных [5], приходим к выводу, что задача поиска минимума функции $S(a_0, a_1, ..., a_k)$ эквивалентна решению системы уравнений:

$$\begin{cases} \frac{\partial S}{\partial a_0} = 0\\ \frac{\partial S}{\partial a_1} = 0\\ \dots\\ \frac{\partial S}{\partial a_k} = 0. \end{cases}$$
(41)

Если параметры $a_0, a_1, ..., a_k$ входят в зависимость (39) линейно, то (41) представляет собой систему из k+1 линейного уравнения с k+1 неизвестными:

$$\begin{cases}
\sum_{i=1}^{n} -2(y_i - f(x_i, a_0, a_1, ..., a_k)) \frac{\partial f}{\partial a_0} = 0 \\
\sum_{i=1}^{n} -2(y_i - f(x_i, a_0, a_1, ..., a_k)) \frac{\partial f}{\partial a_1} = 0 \\
\vdots \\
\sum_{i=1}^{n} -2(y_i - f(x_i, a_0, a_1, ..., a_k)) \frac{\partial f}{\partial a_k} = 0.
\end{cases}$$
(42)

Решив систему (42), найдём наиболее вероятные значения коэффи-

циентов $a_0, a_1, ..., a_k$ подбираемой зависимости (39).

Подбор коэффициентов линейной зависимости

Рассмотрим подбор коэффициентов $a_0, a_1, ..., a_k$ зависимости (39) на примере линейной функции:

$$Y = a_0 + a_1 x. (43)$$

Функция $S(a_0, a_1)$ для (43), очевидно, имеет вид:

$$S(a_0, a_1) = \sum_{i=1}^{n} (y_i - a_0 - a_1 x_i)^2.$$
(44)

Продифференцировав (44) по a_0 и a_1 , получим систему из 2-х линейных алгебраических уравнений:

$$\begin{cases} \sum_{i=1}^{n} -2(y_i - a_0 - a_1 x_i) = 0 \\ \sum_{i=1}^{n} -2(y_i - a_0 - a_1 x_i) x_i = 0 \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} a_0 n + a_1 \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i \\ a_0 \sum_{i=1}^{n} x_i + a_1 \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i x_i, \end{cases}$$
(45)

решив которую, получим коэффициенты a_0 и a_1 линейной зависимости (43):

$$\begin{cases}
a_0 = \frac{1}{n} \left(\sum_{i=1}^n y_i - a_1 \sum_{i=1}^n x_i \right) \\
\sum_{i=1}^n y_i x_i - \frac{1}{n} \sum_{i=1}^n y_i \sum_{i=1}^n x_i \\
a_1 = \frac{\sum_{i=1}^n y_i^2 - \frac{1}{n} (\sum_{i=1}^n x_i)^2}{\sum_{i=1}^n x_i^2 - \frac{1}{n} (\sum_{i=1}^n x_i)^2}.
\end{cases} (46)$$

Формулы (35) являются частным случаем формул (46).

8.2 Поправочные коэффициенты для расчёта g на различных широтах

Для коэффициентов g_9' , β , β_1 входящих в формулу (16) на Генеральной ассамблее Международного Союза геодезии и геофизики, состоявшейся в Москве в 1971 г. рекомендованы следующие значения (значение для g_9' дано в миллигалах (1гал = 1 см/с²)):

- $g_9' = 978031.8;$
- $\beta = 0.0053024;$
- $\beta_1 = 0.0000059$.

8.3 Ускорения свободного падения на уровне моря на различных широтах

Широта	g , м/с 2
0^o	9.78030
10°	9.78186
20^{o}	9.78634
30^o	9.79321
40^{o}	9.80166
50°	9.81066
55°45′ Москва	9.81523
$59^{o}57^{'}$ Санкт-Петербург	9.81908
60°	9.81914
70^{o}	9.82606
80°	9.83058
90^{o}	9.83216

Список литературы

- [1] Матвеев А.Н., Механика и теория относительности, том 1.
- [2] Пантелеев В.Л., Теория фигуры Земли: Курс Лекций. МГУ им. Ломоносова. Физический факультет. Москва, 2000
- [3] Курепин В.В., Баранов И.В., Обработка экспериментальных данных: Учеб.-метод. пособие СПб.: НИУИТМО; ИХиБТ, 2012.
- [4] Вержбицкий В.М. Основы численных методов. М: Высшая школа, 2002. 840 стр.
- [5] Демидович Б.П., Задачи и упражнения по математическому анализу для ВТУЗОВ. Москва: ИНТЕГРАЛ-ПРЕСС. 1997 г.