Choice Models in Marketing Capturing heterogeneity

MS Seminar

Random Utility Models

- The indirect utility of alternative j is U_i
- $U_{ijt} = V_{ijt} + \varepsilon_{ijt}$, $V_0 = 0$ $U_{iit} = \alpha_{ii} \beta_1 price_{iit} + \beta_2 adv_{iit} + \beta_3 display_{ijt} + \varepsilon_{iit}$
- •Alternative with largest utility is chosen $P(choice_{it} = j) = prob(V_{ijt} + \varepsilon_{ijt} > V_{ikt} + \varepsilon_{ikt}, \forall k \neq j) =$

$$prob(\varepsilon_{ijt} - \varepsilon_{ikt} > V_{ikt} - V_{ijt}, \forall k \neq j)$$

- Utilities are relative "only differences matter"
- Probit ε_{ijt} : $N(0,\sigma^2)$ ε_{ijt} : $N(0,\Sigma)$
- Logit ε_{ijt} : Extreme Value

Capturing Heterogeneity

$$U_{ijt} = \alpha_{ij} - \beta_{i1}price_{ijt} + \beta_{i2}adv_{ijt} + \beta_{i3}display_{ijt} + \varepsilon_{ijt}$$

- \bullet Consumers differ in their βs
- What are the difficulties?
- What do we need to identify these differences?
- Why is it important to account for heterogeneity?

Capturing Heterogeneity The effect of price and adv. type on brand attitude

	Price hi	gh Price lo	w	$R_{ijk} = f$	$\beta_{0k} + \beta_{rk}X_{r}$	$(i) + \beta_{ck} X_c(j)$	i)
Image appeal Quality appeal	R _{11k} R _{12k} R _{22k}		_	$+ \beta_{rck} X_r(i) X_c(j) + \epsilon_{ijk},$			
	1 1218	221	_		Coefficients ignoring gender		
	Daine bink	Deina Janu	Row	Intercept, β ₀	Row, β_r	Column, β_c	Interaction, β
	Price high	Price low	average				
B. Aggregate results: Total sample (n = 48 per cell)							
Image appeal	3.0	3.0	3.0				
Quality appeal	3.0	3.0	3.0	3.0	.0	.0	.0
C. Unobserved seg- ments:							
Males (n= 24 per cell)				Male coefficients			
Image appeal Quality appeal	3.0 6.0	.0 5.0	1.5 5.5				
Column average	4.5	2.5	3.5	3.5	-2.0	1.0	.5
Females (n= 24 per cell):				Female coefficients			
Image appeal	3.0	6.0	4.5				
Quality appeal	.0	1.0	.5				
Column average	1.5	3.5	2.5	2.5	2.0	-1.0	5

4

Oded Netzer - Columbia Business School Choice Models in Marketing

Source: Hutchinson, Kamakura and Lynch, JCR 2000

Methods to Capture Heterogeneity

- Observed variables (e.g., demographics, loyalty)
- Fixed effects
- Random effects
 - Discrete -
 - Latent Class Models/ Finite Mixture Models
 - Continuous -
 - Hierarchical Bayes
 - Simulated Maximum Likelihood

Methods to Capture Heterogeneity

	Individual	Group
Observed Hetero.	Fixed effects Interaction effect	Interaction with grouping variables
Unobserved Hetero.	Random effect	Latent class

Oded Netzer - Columbia Business School Choice Models in Marketing

Latent Class

- Finite number of segments
- Each segment has a different set of coefficients
- Distribution of β_i across customers can be approximated by a discrete distribution
 - $-\beta_i$ takes S distinct value for each support
- Advantages?
- Disadvantages?

Latent Class - Estimation

- Use data to figure out:
 - # of segments
 - Coefficients
 - Segment membership
 - Segment size

Latent Class - Estimation

- 1. Compute the choice probabilities for each purchase occasion for each customer assuming that the customer belongs to each of the S segments
- 2. Conditional on belonging to segment s, write the customer likelihood function (product of the probability of the chosen brand across all occasions)
- 3. Compute the weighted sum of likelihood across all segments
- 4. Compute the product of the likelihoods across customers

Latent Class - Estimation

$$L_{i|s} = \prod_{t=1}^{T_i} \prod_{j=1}^{J} \text{Prob}(Choice_{it|s} = j)^{Y_{ijt}}$$

$$LL = \log \left(\prod_{i=1}^{N} \sum_{s=1}^{S} L_{i|s} \pi_{s} \right) = \sum_{i=1}^{N} \log \left(\sum_{s=1}^{S} L_{i|s} \pi_{s} \right)$$

$$0 \le \pi_s \le 1; \sum_{s=1}^{S} \pi_s = 1$$

Oded Netzer - Columbia Business School Choice Models in Marketing

Latent Class - Estimation

- Determining the # of segments BIC=-2LL+(# of param.)*log(# of obs.) AIC=2* (# of param.)-2LL
- Computing elasticities
- Concomitant variables can make π_s function of individual characteristics
- · Posterior segment membership probabilities

prior
$$\pi_i = \frac{\pi_s L_{is}}{\sum_{q=1}^{S} \pi_s L_{iq}}$$
 posterior

Continuous Heterogeneity Distribution

- Distribution of β_i across customers follows a multivariate distribution (e.g., MVN)
- Estimate the mean of β and the covariance matrix associated with it
- No closed-form expression
 - Simulated Maximum Likelihood SML
 - Bayesian estimation

Mixed Logit

$$U_{ijt} = \beta'_{i} \mathbf{X}_{ijt} + \varepsilon_{ijt}$$

$$\beta_{i}: g(\beta | \mathbf{b}, \mathbf{W})$$
where
$$\mathbf{b} \text{ is the mean of } \beta_{i}\text{'s}$$

$$\mathbf{W} \text{ is the covariance of } \beta_{i}\text{'s}$$

Mixed Logit

Conditional on β_i the probability of choice is Logit

$$P(choice_{it} = j \mid \boldsymbol{\beta}_{i}) = P_{ijt}(\boldsymbol{\beta}_{i}) = \frac{e^{\boldsymbol{\beta}_{i} \mathbf{X}_{ijt}}}{\sum_{k=1}^{J} e^{\boldsymbol{\beta}_{i} \mathbf{X}_{ikt}}}$$

The likelihood of all choice made by customer i (conditioned on β_i) is:

$$L(\mathbf{Y_i} \mid \boldsymbol{\beta_i}) = \prod_{l=1}^{T_i} \prod_{j=1}^{J} \text{Prob}_{ijt}(\boldsymbol{\beta_i})^{Y_{ijt}}$$

but each β_i is unknown

Oded Netzer - Columbia Business School Choice Models in Marketing

Simulated Maximum Likelihood

Need to draw of a multivariate normal distribution

$$\boldsymbol{\beta}_i \sim MVN[\mathbf{b}, \mathbf{W}];$$

Exploit the fact that W is a var-cov matrix and can be decomposed

 $W = \Gamma \Gamma'$ where $\Gamma = Upper triangular matrix$

 $\beta_i = \mathbf{b} + \mathbf{w}_i$ where \mathbf{b} and \mathbf{w}_i are $K \times 1$ vectors

Make R standard normal draws of dimension $K(v_i)$

$$\beta_i = \mathbf{b} + \mathbf{w}_i = \mathbf{b} + \Gamma \mathbf{v}_i : MVN(\mathbf{b}, \mathbf{W})$$

Simulated Maximum Likelihood

- Make R draws for each customer draws for each customer are the same across purchase occasions
 - Fix draws throughout the estimation
- Begin with initial guesses for **b** and Γ
- You can treat the R draws as S segment in latent class likelihood and use the 4 steps in the latent class case to find the maximum likelihood estimates for ${\bf b}$ and Γ

Bayesian Estimation

```
\begin{aligned} \textit{Posterior} &= \prod\nolimits_{i=1}^{N} L(\textit{data} \,|\, \boldsymbol{\beta_i}, \mathbf{W}) \times \textit{priors} \\ \textit{Prior} &= N(\boldsymbol{\beta_1}, ..., \boldsymbol{\beta_N} \,|\, \mathbf{b}, \mathbf{W}) \; (\textit{normal}) \\ &\times IW(\mathbf{W} \,|\, \textit{parameters}) \; (\textit{Inverse Wishart}) \\ &\times g(\mathbf{b} \,|\, \textit{assumed parameters}) \; (\textit{Normal with large variance}) \end{aligned}
```

Sequentially draw from the posteriors

$$\begin{aligned} &b|\beta_1,...\beta_N,W\\ &W\,|\,\beta_1,...\beta_N,b\\ &\beta_i\,|\,b,W \end{aligned}$$

Bayesian Estimation

$$p(\mathbf{b} \mid \boldsymbol{\beta}_{1},...,\boldsymbol{\beta}_{N}, \mathbf{W}) = Normal[\overline{\boldsymbol{\beta}}, (1/N)\mathbf{W}]$$

$$\overline{\boldsymbol{\beta}} = (1/N) \sum_{i=1}^{N} \boldsymbol{\beta}_{i}$$

Easy to draw from MVN with known mean and Variance

$$p(\mathbf{W} | \mathbf{b}, \boldsymbol{\beta}_1, ..., \boldsymbol{\beta}_N) \sim Inverse \ Wishart[r + N, R + \sum_{i=1}^{N} (\boldsymbol{\beta}_i - \mathbf{b})(\boldsymbol{\beta}_i - \mathbf{b})']$$

Prior hyper-parameters

Bayesian Estimation

$$p(\beta_i | \mathbf{b}, \mathbf{W}) : L(data | \beta_i) \times N(\beta_i | \mathbf{b}, \mathbf{W})$$

Logit Normal

No closed form – we can't simply sample from that distribution

Use Metropolis-Hastings Algorithm

Note that for Probit this leads to Normal posterior (conjugate prior)

