Example:

iterations

	0	1	2_	3	4	5	6	7	last
5	0	0	0	0	0	0	0	0	0
A	∞	10	10	5	5	5	5	5	S
В	∞	∞	\emptyset	10	6	5	5	5	5
C	∞	$ \omega $	∞	∞	11	7	6	6	6
D	∞	$ \approx $	\sim		∞	14	10	9	9
E	\sim	\emptyset	12	8	7	7	7	7	7
F	∞	∞	9	3	9	9	9	9	9
G	<i>∞</i>	8	8	\$	8	8	8	8	8

Vertices

Connectness of Bellman-Ford: Let len (i, v) denote the length of a shortest path from s to v that contains & i edgs. Sing the shortest path from Stav Contains $\leq n-1$ edges, it's sufficient to prove that after i iterations len $(V) \leq len(i, v)$ By induction on i Box case: i=0 len(s)=0 \leq len(0,s)=0 $len(V \neq S) = +\infty = len(0, V \neq S)$ hauctive hypothesis: len(v) \leq len(x,v) \forall 1 \leq k<i Take i 7, 1 and a shortest path from star v with < i edges. Let (u, v) be the last edge of this path. Then len(i, v) = W(v, v) + len(i-1, v)

by contradiction By the ind. hyp. len(U) \leq len(i-1, U) In the i-th iteration we update len $(v) = \min \left\{ len(v), len(u) + w(v,v) \right\}$ $\leq len(i-1, U) + W(U, V)$ = len(i, V)< len (i, v) os desired

All-Pains Shortest Paths (APSP)
input: a directed, weighted graph $G=(V,E)$ output: one of the following
a) dist (v, v) I ordend vertex pain b) a declaration that G contains a negative
Obvious solution: invoke B-F once for every vertex
$\longrightarrow \bigcirc (m \cdot n^2)$ very high
Can We do better?
les, using dynamic programming
Outline: 1) B-F has a dynamic programming formulation 2) (we want see) one can adapt that formulation

(we won't see) one can adapt that formulation to APSP, obtaining on O (m. n2) algorithm; an improved formulation can be made to

subproblems	having	smoller	edge	budgets
	N	eives as a	e. Me ass	nae of
	s	eves as a ubproblem	かえる	,

Subproblems: Compute len (i, v), the length of a shortest path from s to v that contains of most i edges. (If me much path exists, define len (i, v) as $+\infty$) $O(N^2)$ subproblems

Obs.: every subproblem works with the full input; the idea is to control the allowable size of the output.

Le solution to a subproblem

Bellmon-Ford recurrence:

 $len(i,v) = \begin{cases} 0 & i=0 \text{ and } v=S \\ +\infty & i=0 \text{ and } v\neq S \end{cases}$ $len(i,v) = \begin{cases} len(i-1,v) & \text{otherwise} \\ min & len(i-1,v) + w(v,v) \end{cases}$ $(v,v) \in E$

(It's easy to transform or dyn. progr. evolution of this recurrence into our original formulation of B-F.)

This formulation can be adopted to APSP

— O(n³ logn)

The Floyd-Warshell algorithm

Idea: go one step further: instead of restricting the number of edges allowed in a solution, restrict the identities of the vertices that are allowed in a solution. (In other words, now paths can pass through only certain vertices.)

Let's define the subproblems:
Call the vuties 1,2,,n
Compute dist (u, v, k) = longth of a
shatest path from Uto V that uses only vatices from 1,2,, kg as internal various,
Vatices from {1,2,, k} as internal vatices,
and that does not contain a directed cycle.
(If no mich path exists, define dist (U, V, K) ost so)
X -> measures the subpoblem size
$\rightarrow O(n^3)$ subproblems
·

Algarithm: expand the set of allowed Enternal varices one vartex at a time, until this set is V.

Payoff of defining subproblems in this way: only 2 candidates for the optimal solution to a subproblem, depending on whether it uses Vetex Kornot:

Floyd-Warshall (G) label the vertices V= {1,2, ---, h} arbitrarily 1 subproblems (Kindexed from a) $A = n \times n \times (n+1)$ array None cases (K=0) for v=1 to n of for V=1 to not if v=v then A[v,v,o]=0else if (v,v) EE Hen A[v,v,o] = w(v,v) else $A \left[\frac{U_1 V_2}{V_3} \right] = +\infty$ // solve all subproblems for K=1 to n do for V=1 to N do fan V = 1 to n old A[U,V,K] = min | A[U,V,K-1],A[U,k,k-1] + A[k,v,k-1]

I check for a regative cycle

for U=1 for n do

if A[U,U,n] < O then

return "G contains a negative cycle"

Is there a truly-subcubic alg. for APSP?

O(n^3-E) for some constant E>0

Open problem!