

Computer Science Fundamentals

Number Systems – Binary Addition & Subtraction, Complement

Technische Hochschule Rosenheim Winter 2021/22 Prof. Dr. Jochen Schmidt

Overview

- Basic logical operations
- Binary addition
- Representation of negative integers by complements

Basic Logical Operators

 In computers, logical operations are performed bitwise

Three basic logical functions

Logical AND (conjunction)

Logical OR (disjunction)

Logical NOT (negation/inversion)

 All other logical operations can be derived from these basic functions

Defined using truth tables

			AND	OR	NOI
_	а	b	$a \wedge b$	$a \lor b$	$\neg a$
_	0	0	0	0	1
-	0	1	0	1	1
-	1	0	0	1	0
-	1	1	1	1	0

Exercises

Logical Operators – XOR

- another important logical function is the exclusive OR (XOR)
- $a \times A \times A = (a \wedge \neg b) \vee (\neg a \wedge b)$

truth table

a	b	a XOR b
0	0	0
0	1	1
1	0	1
1	1	0

Binary Addition

Rules for the addition of two binary digits

• 0 + 0	= 0
• 0 + 1	= 1
• 1 + 0	= 1
• 1 + 1	= 0 carry 1
 1 + 1 + 1 (carry) 	= 1 carry 1

• Identical to the rules of logical XOR plus carry-over!

Binary Addition

• Example: Add the numbers 11 and 14 using binary arithmetic

Calculation:

Exercises

- Calculate the sum of the following numbers in binary arithmetic
 - 45 and 54
 - 151.875 and 27.625

Binary Subtraction

Rules for the subtraction of two binary numbers

- 0 0 = 0
- 1-1=0
- 1 0 = 1
- 0-1=1 carry -1

We could do that in the computer – but we don't!

Binary Subtraction

- How are negative numbers represented?
 - Usually by their absolute value preceded by a minus sign
- Is this representation also conceivable in a computer?
 - Yes, but
 - Separate sign calculation would have to be carried out
 - Requires an arithmetic unit that can do both, add and subtract
- Is there a way to get by with addition only?
 - Reduce subtraction to addition: complement representation

Method of Complements

- Two types of complement formation, where B is the basis of the numeral system
 - B-Complement and
 - (B-1)-Complement
- For base 2 we have
 - Two's Complement (Zweierkomplement) and
 - Ones' Complement (Einerkomplement)
- B-complement (i.e., two's-complement) is more common nowadays
- Using complement requires the number of bits used to be fixed!
 - as this is always the case in a computer, this is not a drawback
- Complement representation is used only for integers
 - Floating-point representation → later

Two's Complement: 4 Bit Example

Two's Complement = B-complement with base 2

leftmost Bit (= most significant bit, MSB)

 $0 \rightarrow positive number$

 $1 \rightarrow$ negative number

BUT: This is not a sign-bit in the sense of sign/value-notation!

How to Obtain the Two's Complement

- positive integers: conversion decimal ←→ dual as discussed before
 - but with a fixed number of bits, i.e., leading zeros

4 Bit example

+5 =

0101

- negative integers conversion decimal → dual
 - 1. convert the corresponding positive decimal to dual with fixed width
 - 2. apply a NOT-operation, i.e., invert all bits
 - 3. add one
- negative integers conversion dual → decimal
 - 1. apply a NOT-operation, i.e., invert all bits
 - 2. add one
 - 3. convert to decimal and add a minus-sign

$$0101 = +5$$

$$\rightarrow$$
 1011 = -5

Advantage of Complement Representation

A computer does not have to be able to subtract, but can execute any subtraction a – b by adding a and (–b)

Example (Two's Complement)

$$2-4 = 2 + (-4)$$

$$0010 = 2$$

$$+ 1100 = -4$$

$$1110 = -2$$

$$6-2 = 6 + (-2)$$

$$0110 = 6$$

$$+ 1110 = -2$$

$$1|0100 = 4$$

Overflow – gets discarded!

No problem here, as the result is within the representable range.

Two's Complement

Caution:

If the calculation returns a result that is not in the representable number range, then you get an overflow and an incorrect result

Example:

With 5 available bits, we want to perform binary subtraction: $(-9)_{10} - (13)_{10}$

The overflow is discarded, but would have been relevant → Wrong result!

Exercises

Form the corresponding B-complement to the following numbers

- 10101₂
- 785₁₀
- 453₁₆

Exercise

Subtract the following numbers using base 2 with 8 digits and the Two's complement:

$$57_{10} - 122_{10}$$

Two's complement: Most Negative Number

- The most negative number is special in Two's complement
- that's because of the asymmetry there is no corresponding positive number
- 4-Bit example: range -8, ..., +7; most negative number: -8 = 1000
 - taking the absolute value/changing sign/multiplication by one leads to incorrect result: -(-8) = -8

```
-8 = 1000
invert 0111
add 1 0001
result 1000 = -8
```

- similar for division by -1/modulo operation
- in standard C/C++, the behavior for the above cases is undefined
 - i.e., anything can happen
 - the same is true for an overflow (e.g., adding 1 to the most positive number)
 - this allows for compiler optimizations to take place

Why does Complement Work?

- In a computer we use defined data types for numbers
 - e.g., int, long int, unsigned int, ...
 - these do have a defined fixed number of bits
- therefore
 - we do not actually use natural numbers or integers
 - but rather modular arithmetic, i.e., division remainders
- algebraically: we use a quotient ring (Restklassenring) \mathbb{Z}/n (or \mathbb{Z}_n)
 - pronounced " \mathbb{Z} modulo n"

- Example: unsigned integers, *N* Bits
 - $n = 2^N$, range $0, 1, \dots, 2^{N-1} \longrightarrow \text{mod } 2^N$
 - 8 Bits: range $0, 1, \dots, 255 \longrightarrow \text{mod } 256$
 - 4 Bits: range $0, 1, ..., 15 \longrightarrow \text{mod } 16$

Why does Complement Work?

- as we use only remainders of division (modulo) by 2^N
 - we can add/subtract multiples of the modulus 2^N without changing anything
 - 4 Bits/mod 16:

$$0 \equiv 16 \equiv 32 \equiv 48 \equiv \cdots$$

 $0 \equiv -16 \equiv -32 \equiv -48 \equiv \cdots$
 $1 \equiv 17 \equiv 33 \equiv 49 \equiv \cdots$
 $1 \equiv -15 \equiv -31 \equiv -47 \equiv \cdots$
 $15 \equiv 31 \equiv 47 \equiv 63 \equiv \cdots$
 $15 \equiv -1 \equiv -17 \equiv -33 \equiv \cdots$

- we can choose an arbitrary range of 2^N integers
 - 4 Bits/mod 16: instead of range 0, 1, ..., 15 we can, e.g., use the range -8, ..., 0, ..., 7
 - 4 Bits/mod 16: Want to know what $-3 \mod 16$ would be in the standard range 0, 1, ..., 15? Just add 16 as many times as required: $-3 \mod 16 = (-3) + 16 \mod 16 = 13$
 - convert 13 to dual you get the Two's complement
 - so, the Two's complement of a number is just the difference of the modulus and the desired negative number
- Inversion/adding a one just a fast way to compute the difference to the modulus 2^N
 - Inversion = difference to $2^N 1$ (e.g., difference to $2^4 1 = 15$: 15 3 = 12)
 - add 1 to get the difference to 2^N (e.g., $12 + 1 = 13 \equiv -3$)
- ignoring an overflow is just reduction mod 2^N

Ones' Complement: 4 Bit Example

Ones' complement = (B-1)-complement with base 2

symmetric – modular arithmetic mod $2^N - 1$, but we have a positive as well as a negative zero!

leftmost Bit (= most significant bit, MSB)

 $0 \rightarrow positive number$

 $1 \rightarrow$ negative number

BUT: This is not a sign-bit in the sense of sign/value-notation!

How to Obtain the Ones' Complement

- - but with a fixed number of bits, i.e., leading zeros

4 Bit example

- negative integers conversion decimal → dual
 - 1. convert the corresponding positive decimal to dual with fixed width
 - 2. apply a NOT-operation, i.e., invert all bits

+5 = 0101 1010 = -5

- negative integers conversion dual → decimal
 - 1. apply a NOT-operation, i.e., invert all bits
 - 2. convert to decimal and add a minus-sign

$$0101 = +5$$

$$\rightarrow$$
 1010 = -5

Seems much simpler than Two's complement? Well, there's a catch...

Adding Numbers Using Complements

- Two's complement: Overflow is always discarded
 - as long as the result is within range, it will be correct
- Ones' complement: Overflow is wrapped around
 - if there is an overflow, this "one" is added to the rightmost bit
 - this is called end-around carry (Einerrücklauf)
 - as with the Two's complement, the result has to be in range to be correct

7 0111 1010 0110 negative numbers 1100 0100 -3 4 positive 1101 0011 numbers -1 0010 1110 0001

Why an end-around carry in Ones' complement?

- an overflow happens, when crossing zero
- but we have two zeros: add one to correct for that bias

Ones' Complement – Examples

We subtract the following numbers using base 2 with 5 digits and Ones' complement:

$$14_{10} - 7_{10}$$

$$14_{10} =$$
 01110₂ 14 01110
 $7_{10} =$ 00111₂ + (-7) 11000
Ones' complement of 7_{10} (i.e., -7) = 11000 = 1 | 00110
+1 (end-around carry) 00001
= +7 00111

$$9_{10} - 13_{10}$$

$$9_{10} = 01001_2$$
 9 01001
 $13_{10} = 01101_2$ + (-13) = 10010
Ones' complement of 13_{10} (i.e., -13) = 10010 = -4

Exercise

Subtract the following numbers using base 2 with 8 digits and the Ones' complement:

Historical Example: Comptometer

Uses base 10

- calculations executed using 10-Complement
- Input of numbers using 9-Complement

Large numbers

Labels for addition

Small numbers
Labels for subtraction
(as 9-complement)

© Royalbroil / Wikimedia Commons / CC-BY-SA 2.5

Concluding Remarks

- complements also work for fixed-point arithmetic
 - omit the point, i.e., treat number as integer
 - convert/perform arithmetic operations
 - re-insert point at correct position
 - float/double data types are not fixed-point complement is not used here
- when extending the length (in bit) of a data type in complement representation, the leftmost bit must be repeated

```
• unsigned integer (4 Bit to 8 Bit): +6 = 0110 \longrightarrow 0000 \ 0110 \\ +9 = 1001 \longrightarrow 0000 \ 1001• signed integer, two's complement (4 Bit to 8 Bit): +6 = 0110 \longrightarrow 0000 \ 0110 \\ -7 = 1001 \longrightarrow 1111 \ 1001
```

• when we see 1111 1001 in memory, how do we know which representation (data type) it is? unsigned integer, ones' or two's complement, fixed-point, floating-point, ASCII, ...?