8086 Basic Configuration and System Design

UCS1502 - MICROPROCESSORS AND INTERFACING

Learning Objective

- To understand the minimum and maximum mode of operation
- To understand system design using 8086

Overview

- Pin Diagram of 8086
- Minimum mode
- Maximum mode
- Read / write cycle
- System Design

INTEL 8086 - Pin Diagram

Minimum Mode- Pin Details

Maximum Mode - Pin Details

000: INTA

001: read I/O port

010: write I/O port

011: halt

100: code access

101: read memory

110: write

memory

111: none -passive

Maximum Mode - Pin Details

Lock Output

Used to lock peripherals off the system

Activated by using the LOCK: prefix on any

instruction

Maximum Mode - Pin Details

00: Queue is idle

01: First byte of opcode

10: Queue is empty

11: Subsequent byte of

opcode

Minimum Mode 8086 System

Minimum Mode 8086 System

'Read' Cycle timing Diagram for Minimum Mode

'Write' Cycle timing Diagram for Minimum Mode

Maximum Mode 8086 System

Maximum Mode 8086 System

- Here, either a numeric coprocessor of the type 8087 or another processor is interfaced with 8086.
- The Memory, Address Bus, Data Buses are shared resources between the two processors.
- The control signals for Maximum mode of operation are generated by the Bus Controller chip 8788.
- The three status outputs S0*, S1*, S2* from the processor are input to 8788.
- The outputs of the bus controller are the Control Signals, namely DEN, DT/R*, IORC*, IOWTC*, MWTC*, MRDC*, ALE etc.

Memory Read timing in Maximum Mode

<u>S2</u>	<u>S1</u>	SO	Function
0	0	0	Interrupt acknowledge
0	0	1	I/O read
0	1	0	I/O write
0	1	1	Halt
1	0	0	Opcode fetch
1	0	1	Memory read
1	1	0	Memory write
1	1	1	Passive

TABLE 8–6 Bus control functions generated by the bus controller (8288) using $\overline{S2}$, $\overline{S1}$, and \overline{SO}

Memory Write timing in Maximum Mode

<u>S2</u>	<u>S1</u>	SO	Function
0 0 0 0 1 1	0 0 1 1 0 0	0 1 0 1 0	Interrupt acknowledge I/O read I/O write Halt Opcode fetch Memory read Memory write
1	1	1	Passive

TABLE 8–6 Bus control functions generated by the bus controller (8288) using $\overline{S2}$, $\overline{S1}$, and \overline{SO}

Check your understanding

- What is the difference between the minimum mode and maximum mode?
- Why do we need a bus controller?

Summary

- Pin Diagram of 8086
- Minimum mode
- Maximum mode
- Read / write cycle
- System Design

Reference

• Doughlas V Hall, "Microprocessors and Interfacing, Programming and Hardware", TMH, 2012.

Thank you

