Kernel SVM (MSBA 7027)

Zhengli Wang

Faculty of Business and Economics
The University of Hong Kong
2023

Outline

• Kernel

• Local Regression

• SVM

Recap

• Regression

$$\mathbb{E}(Y|X)) = f(X)$$

Classification

$$\log \frac{P(G=1|X)}{P(G=0|X)} = f(X)$$

- We want to learn f(X) from the training set $(x_1, y_1), ..., (x_N, y_N)$
- When $f(X) = \beta_0 + \beta_1 X_1 + ... + \beta_p X_p$
 - Multiple linear regression
 - Logistic regression

Recap

- When $f(X) = \beta_0 + \beta_1 h_1(X) + \dots + \beta_m h_m(X)$ with known h's
 - Cubic spline, natural cubic spline
 - Logistic regression with known basis function
- When f(X) unknown
 - Smoothing spline
 - Nonparametric logistic regression

- When $f(X) = \beta_0 + f_1(X_1) + \dots + f_p(X_p)$
 - GAM

Recap: K-nearest-neighbor (KNN)

• The k-NN estimate is a direct estimate of the conditional expectation

$$f(x_0) = \mathbb{E}(Y|X = x_0)$$

$$\hat{f}(x_0) = Ave\{y_i : x_i \in \mathcal{N}_k(x_0)\}\$$

where $\mathcal{N}_k(x_0)$ is the set of k training points nearest to the query point x_0 in squared distance.

• Another technique to estimate f(X): This estimator based on local information of x_0 , where the value of $f(x_0)$ is of interest.

K-NN example: Discontinuous

Blue curve: true relationship

Green curve: kNN (k = 30)

Kernel Smoothing: fitting a continuous/smooth curve

- Equal weights ⇒ discontinuity
 - $\hat{f}(x_0) = \sum_{i=1}^{N} w_i y_i$, where $\sum_{i=1}^{N} w_i = 1$
 - E.g. K = 3, weight w_i is either 1/3 or 0

Kernel Smoothing: fitting a continuous/smooth curve

- Equal weights ⇒ discontinuity
 - $\hat{f}(x_0) = \sum_{i=1}^{N} w_i y_i$, where $\sum_{i=1}^{N} w_i = 1$
 - E.g. K = 3, weight w_i is either 1/3 or 0
- Tentative Modification: $w_i \propto K(x_{0,}x_i)$ continuous, measures how far x_0 and x_i is
- Nadaraya-Watson (NW) Estimate: weighted average

$$\hat{f}(x_0) = \frac{\sum_{i=1}^{N} K_{\lambda}(x_{0,i}x_i)y_i}{\sum_{i=1}^{N} K_{\lambda}(x_{0,i}x_i)}$$

where the weights are given by the kernel function

$$K_{\lambda}(x_{0},x_{i}) = D\left(\frac{|x_{i}-x_{0}|}{\lambda}\right)$$

- λ is called window size, bandwidth, window width etc
 - Intuitively, think of λ as the standard deviation in the normal dist.

Kernel Smoothing: Example

• Nadaraya-Watson (NW) Estimate: $\hat{f}(x_0) = \frac{\sum_{i=1}^{N} K_{\lambda}(x_0, x_i) y_i}{\sum_{i=1}^{N} K_{\lambda}(x_0, x_i)}$

$$K_{\lambda}(x_{0}, x_{i}) = D(|x_{i} - x_{0}|), D(t) = \begin{cases} 1 - |t| & \text{if } |t| \le 1\\ 0 & \text{Otherwise} \end{cases}$$

• Training observations (1, 2), (1.5, 4), (2.5, 6)

• Critical points: (0.5, 2), (1, 8/3), (1.5, 10/3), (2, 5), (2.5, 6)

What is a kernel?

- For now, think of it as a function K, which depends on two inputs: x & x'
 - K(x,x') Measures how close (similar) x and x' is
 - The farther away x and x'is, the smaller K is

Examples of Kernel Function

• Epanechnikov kernel

$$D(t) = \begin{cases} \frac{3}{4}(1 - t^2) & if |t| \le 1\\ 0 & Otherwise \end{cases}$$

• Tri-cube kernel

$$D(t) = \begin{cases} (1 - |t^3|)^3 & if |t| \le 1\\ 0 & Otherwise \end{cases}$$

Epanechnikov kernel

However, there is a problem near boundary, what is it?

Local regression

- Combines linear regression and kernel
- At point x_0 (Weighted LS)

$$\min_{\beta_0 \beta_1} \sum_{i=1}^{N} K_{\lambda}(x_0, x_i) (y_i - \beta_0 - \beta_1 x_i)^2$$

• Fitted value

$$\hat{f}(x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0$$

• In fact, NW Est. is a special case of local regression, why?

Local regression

- Solution to: $\min_{\beta_0} \sum_{i=1}^{N} (y_i \beta_0)^2$?
 - Ans: $\frac{\sum_{i=1}^{N} y_i}{N}$
- Solution to: $\min_{\beta_0} \sum_{i=1}^{N} w_i (y_i \beta_0)^2$?
 - Ans: $\frac{\sum_{i=1}^{N} w_i y_i}{\sum_{i=1}^{N} w_i}$

Local regression: Bias removal

Local Linear Regression at Boundary

Selecting the Width of the Kernel

- In each of the kernels, K_{λ} , λ is a parameter that controls its width
 - Epanechnikov or tri-cube kernel, the radius of the support region
 - Gaussian kernel, the standard deviation
 - K-NN, analogous to #[nearest neighbors]
- Bias-variance tradeoff for local averages
 - Large λ vs Small λ

Local regression

Look at some code examples

Local Regression

Local logistic regression: Similar

• The log likelihood $l(y_i, x_i; \beta)$ can be localized at the query point x_0 . We choose para. β to maximize the kernel-weighted log likelihood

$$max_{\beta} \sum_{i=1}^{N} K_{\lambda}(x_0, x_i) l(y_i, x_i; \beta)$$

• Recall in MSBA7002

•
$$l(y_i, x_i; \beta) = \ln p(x_i)$$
 if $y_i = 1$; $l(y_i, x_i; \beta) = \ln (1 - p(x_i))$ if $y_i = 0$

•
$$log \frac{p(x_i)}{1 - p(x_i)} = \beta_0 + \beta_1 x_i$$
, and note $\beta = (\beta_0, \beta_1)$

Example: Local logistic regression

Look at some code examples

Local Regression for *p*-dim

- $X \in \mathbb{R}^P$
- Criterion

$$\min_{\beta_0,\beta_1,...\beta_p} \sum_{i=1}^{N} K_{\lambda}(x_0,x_i) \left(y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_p x_{ip} \right)^2$$

where

$$K_{\lambda}(x_0, x) = D\left(\frac{||x - x_0||}{\lambda}\right)$$

Local Regression for *p*-dim

- $X \in \mathbb{R}^P$
- Note: difference from GAM
 - GAM: wage = $\beta_0 + f_1(year) + f_2(age)$
 - Local regression: wage = f(year, age), can consider interaction terms
- However, local regression does not perform well when p is large
 - When p large: curse of dimensionality, in most parts of the space → few data points
 - p = 2 is usually OK, and may perform well

Local regression

Code examples