Immerse In The Oil Canvas

R07922103 李俊賢 R07922024 黃琬庭 B04901190 范晟祐

一、簡介

一開始我們選擇油畫作為我們的期末題目,但做完後發現不如想像中難, 而且沒有切入點能夠改良原本的油畫論文。因此我們細數教授上課的範例,發 現走進山水畫是個不錯的概念,如果我們也能夠走進我們的油畫作品,並讓觀 看者有更多的回饋感,那將會是多麼有趣又有創意的作品啊。

於是我們就開始著手實踐。首先當然是想辦法讓程式能自動生成油畫,我們參考了 SIGGRAPH 98 的 Painterly Rendering with Curved Brush Strokes of Multiple Size [1],利用不同粗度的筆刷去隨機生成筆畫,並做一個疊加後產生亂中有序的油畫。

再來因為我們需要有深度圖來重建我們的油畫作品,所以我們找了一個效果不錯,而且運行時間非常快的實作方法(Fast Cost-Volume Filtering for Visual Correspondence and Beyond [2])。結合這兩個方法,我們就可以實作出像是走進畫布裡的感覺。

二、相關研究

- 1. Painterly Rendering with Curved Brush Strokes of Multiple Sizes [1] 整個演算法可以分成三大步驟:
 - (1) 先產生一張白色的畫布·對於原影像做高斯模糊後·與畫布算出 Difference image·再對於每個 pixel 用適當的網格去計算誤差·如果 誤差大於 T 的話就代表這個 pixel 需要被畫。如下圖:

(2) 對於每個需要被畫的位置,依照該位置的 gradient 的法向量去做筆畫的延伸,在這裡我們可以定義最小筆畫長度跟最長筆畫長度,並在運算中強制讓筆畫的長度介於最小和最長之間,如果當我們所要畫的位置的筆畫顏色與畫布顏色差太多,則不繼續畫。

(3) 將筆畫紀錄好後以亂序的方式畫上去。再接著以遞迴的方式,畫上第 二三層的筆畫,這邊要注意筆刷大小必須不斷縮小,才能漸漸把細節 畫出,如下圖所示,三層都畫完之後就是一張完整的油畫了。

(4) 以下分別是依據筆刷大小 8, 4, 2 分別畫出來的油畫, 最後做三個疊加。

原圖:

Strokes of Multiple Sizes(R) - 4:

Strokes of Multiple Sizes(R) - 2:

Strokes of Multiple Sizes(R) - (8,4,2):

(5) 最後介紹一些本篇論文所使用的參數。下面實作結果中會使用這些參 數去做不同畫風的調整。

Threshold(T): 決定一個 pixel 是否需要被畫的 threshold

Brush size:筆刷大小

Curvature filter(fc): 在依據 gradient 畫筆劃時,前一個筆劃的參考比

重

Blur factor(f_s):高斯模糊的強度

Minimum/ Maximum stroke lengths:最短/最長的筆劃

Opacity(a):筆劃的透明度

Grid size(fg):一個 pixel 所需要參考的鄰近網格大小

- 2. Fast Cost-Volume Filtering for Visual Correspondence and Beyond [2]
 - (1) Pipeline For the Disparity:

Alogorithm

Cost Computation

Calculate the cost for each pixel with specific layer

$$C_{i,j} = (1-\alpha) \cdot min[\|I_{i+l}' - I_i\|, \tau_1] + \alpha \cdot min[\|\nabla_x I_{i+l}' - \nabla_x I_i|, \tau_2]$$

Cost Aggregation

- 1. Produce the cost volume, each layer has parameter *l* , assigning the disparity from 1 to Maxdisp, and finsih it with above equation.
- 2. Apply an image guided filter on each layer of cost volume, using the input image as the reference of image.

Disp. Optimization

Winner take all from cost volume layers, and choose the minimum value.

Disp. Refinement

Apply a median weighted filter on the above labeled image.

(2) Cost Volume: 首先我們重複下圖,移動的幅度為 Disparity 中每一個有可能的值,這樣我們就可以形成一個三圍的空間,再來我們用定義的 Cost function 來計算每一個 pixel value 的值,找出每一個 Disparity中 Cost 最小的一個,就設定他為這個 pixel 的 disparity。

在計算 Cost 時會運用到類似 image guided filter 的原理,他就像是一個bilateral filter,只是他在 RGB 差值的計算上是利用另一張圖的相對位置來計算,利用這個 filter 我們就可以將顏色邊緣的區域很清楚地計算出來。

Figure 2. **1D** step edge. We shown μ and σ for a kernel centered exactly at the edge. See text for details. Figure courtesy from [11].

Figure 3. Filter kernels. We show kernels of the guided filter with r=9 and $\epsilon=0.01^2$, at different locations in an image of [1].

(3) Post-Processing: 再來利用 image guided median filtering 作為後處理,這會讓我們的結果更好,而且我們的 image guided filter 是利用 O(1)的 box filter 來實作的,所以運行時間非常快。至於如何實作 O(1)的 box filter 和如何利用它來實作 image guided filter 為 Constant Time O(1) Bilateral Filtering [3] 論文內容,在此不做贅述。

三、實作結果

- 1. Painterly Rendering with Curved Brush Strokes of Multiple Sizes [1]
 - (1) Impressionist(印象派): A normal painting style, with no curvature filter, and no random color. $T=50,\ R=(8,4,2),\ f_c=1,\ f_s=0.5,\ \alpha=1,\ f_g=1,\ minLength=2,\ maxLength=4$

(2) Expressionist(表現主義): Elongated brush strokes. $T=50, R=(8,4,2), f_c=0.5, f_s=0.5, \alpha=0.7, f_g=1,$ minLength = 3, maxLength = 6

(3) Colorist Wash(水彩畫): Loose, semi-transparent brush strokes. Random jitter is added to R, G, and B color components. T=50, R=(8,4,2), $f_c=1$, $f_s=0.5$, $\alpha=0.5$, $f_g=1$, minLength = 4, maxLength = 16

(4) Pointillist(點畫): Densely-placed circles with random hue and saturation. $T=50,\ R=(4,2),\ f_c=1,\ f_s=0.5,\ \alpha=1,\ f_g=0.5,\ minLength=0,\ maxLength=0$

2. Fast Cost-Volume Filtering for Visual Correspondence and Beyond [2] (1) Tsukuba

(3) Cones

3. Result

Step1: Reconstruct the image to 3D space Step2: Apply the oil painting texture on it

四、參考資料

- [1] Aaron Hertzmann, "Painterly Rendering with Curved Brush Strokes of Multiple Size", Proceedings of the 25th annual conference on Computer graphics and interactive techniques, Pages 453-460
- [2] Christoph Rhemann, Asmaa Hosni, Michael Bleyer, Carsten Rother, Margrit Gelautz, "Fast Cost-Volume Filtering for Visual Correspondence and Beyond", IEEE Transactions on Pattern Analysis and Machine Intelligence (Volume: 35, Issue: 2, Feb. 2013)
- [3] Fatih Porikli, "Constant Time O(1) Bilateral Filtering", 2008 IEEE Conference on Computer Vision and Pattern Recognition