Projet de conception et de prog...

Mickael LE DENMAT

Université Versailles Saint-Quentin en Yvelines Investigating feature selection techniques to improve data mining tasks

27 janvier 2023

Table des matières

Introduction

Rough Set Theory

3 Références

Data Mining

• Le monde d'aujourd'hui : Beaucoup de données!

Data Mining

- Le monde d'aujourd'hui : Beaucoup de données!
- Problème de prise de décision.

Data Mining

- Le monde d'aujourd'hui : Beaucoup de données!
- Problème de prise de décision.

Solution

Data Mining: la pratique consistant à rechercher automatiquement de grandes quantités de données afin de découvrir des tendances et des modèles qui vont au delà de la simple analyse. [Oracle,]

Feature selection

• Complexité du monde réel.

Feature selection

- Complexité du monde réel.
- Accélérer la prise de décision.

Feature selection

- Complexité du monde réel.
- Accélérer la prise de décision.

Solution

Feature selection => Rough Set Theory.

Rough Set Theory

Un système d'information

Patient	Headache	Muscle-Pain	Temperature
01	Yes	Yes	Very High
02	Yes	No	High
03	Yes	No	High
04	No	Yes	Normal
05	No	Yes	High
06	No	Yes	Very High

Table – Exemple d'un système d'information

Un système de décision

Patient	Headache	Muscle-Pain	Temperature	Flu
01	Yes	Yes	Very High	Yes
02	Yes	No	High	Yes
03	Yes	No	High	No
04	No	Yes	Normal	No
05	No	Yes	High	Yes
06	No	Yes	Very High	Yes

Table – Exemple d'un système d'information

Indiscernibility Relation

Définition

Soit I = (U, A), avec I un système d'information, U un ensemble d'objets et A un ensemble d'attributs. Avec n'importe quel sous ensemble $P \subseteq A$. Il existe une relation d'équivalence, noté IND(P), définit comme :

$$IND(P) = \{(x, y) \in U^2 | \forall a \in P, a(x) = a(y) \}$$
 (1)

Indiscernibility Relation

Exemple

Patient	Headache	Muscle-Pain	Temperature	Flu
01	Yes	Yes	Very High	Yes
02	Yes	No	High	Yes
<i>o</i> ₃	Yes	No	High	No
04	No	Yes	Normal	No
05	No	Yes	High	Yes
06	No	Yes	Very High	Yes

Rough Set

Soit un ensemble X d'objets cibles tel que $X \subseteq U$.

• Représenter X avec P (un sous ensemble d'attributs).

Rough Set

Soit un ensemble X d'objets cibles tel que $X \subseteq U$.

- Représenter X avec P (un sous ensemble d'attributs).
- X n'a qu'une seule classe => classe d'équivalence de P.

Rough Set

Soit un ensemble X d'objets cibles tel que $X \subseteq U$.

- Représenter X avec P (un sous ensemble d'attributs).
- X n'a qu'une seule classe => classe d'équivalence de P.

Problème

On ne peut pas calculer précisément X.

On doit l'approximer.

Approximations

B-Lower Approximation

$$\underline{B}(X) = \{o_j | [o_j]_B \subseteq X\}$$
 (2)

C'est l'ensemble complet des objets dans U/P qui peuvent être classés dans X sans ambiguïté.

Approximations

B-Lower Approximation

$$\underline{B}(X) = \{o_j | [o_j]_B \subseteq X\} \tag{3}$$

C'est l'ensemble complet des objets dans U/P qui peuvent être classés dans X sans ambiguïté.

B-Upper Approximation

$$\bar{B}(X) = \{o_j | [o_j]_B \cap X \neq \emptyset\} \tag{4}$$

C'est l'ensemble des objets dans U/P qui peuvent être classés dans X. Ce sont des objets possèdent un objets indiscernables.

Approximation (suite)

B-boundary Approximation

$$BN_B(X) = \bar{B}(X) - \underline{B}(X)$$
 (5)

Positive & Negative Region

Définition

Positive Region

$$POS_{C}\{(d)\} = \bigcup_{X \in U/\{(d)\}} \bar{C}(X)$$
(6)

Positive & Negative Region

Définition

Positive Region

$$POS_{C}\{(d)\} = \bigcup_{X \in U/\{(d)\}} \bar{C}(X) \tag{7}$$

Negative Region

$$NEG_C\{(d)\} = U - \bigcup_{X \in U/\{(d)\}} \underline{C}(X)$$
 (8)

Reduct & Core

Définition

Un *reduct* est un sous ensemble minimal d'attributs ayant la même *Positive Region* que l'ensemble des attributs.

Reduct & Core

Définition

Un *reduct* est un sous ensemble minimal d'attributs ayant la même *Positive Region* que l'ensemble des attributs.

Définition

Un core est un ensemble d'attributs indépendant incluant tous les reduct.

Références

Oracle.

Qu'est-ce que le data mining?

Merci pour votre attention!

Des questions?

