

Assignatura	Codi	Data	Hora inici
Lògica	05.570	11/06/2011	15:30

05.570 11 06 11 EX

Enganxeu en aquest espai una etiqueta identificativa amb el vostre codi personal Examen

Fitxa tècnica de l'examen

- Comprova que el codi i el nom de l'assignatura corresponen a l'assignatura en la qual estàs matriculat.
- Només has d'enganxar una etiqueta d'estudiant a l'espai corresponent d'aquest full.
- No es poden adjuntar fulls addicionals.
- No es pot realitzar la prova en llapis ni en retolador gruixut.
- Temps total: 2 h.
- En cas que els estudiants puguin consultar algun material durant l'examen, quin o quins materials poden consultar?

No es pot consultar cap material

- Valor de cada pregunta: Problema 1: 30%; problema 2: 25%; problema 3: 25%; problema 4: 10%; problema 5: 10%
- En cas que hi hagi preguntes tipus test: Descompten les respostes errònies? NO Quant?
- Indicacions específiques per a la realització d'aquest examen:

Enunciats

Assignatura	Codi	Data	Hora inici
Lògica	05.570	11/06/2011	15:30

Problema 1

- a) Formalitzeu utilitzant la lògica d'enunciats les frases següents. Utilitzeu els àtoms proposats.
 - A:" Lluitar molt"
 - B:" Poder assolir un bon lloc a la feina"
 - C: "Començar des de baix"
 - D: "Tenir contactes"
 - E: "Tenir paciència"
 - És necessari lluitar molt per a poder assolir un bon lloc a la feina, quan comences des de baix.
 C→(B→A)
 - 2) Si es tenen contactes, es pot assolir un bon lloc a la feina si es comença des de baix. $D \rightarrow (C \rightarrow B)$
 - 3) Si per assolir un bon lloc a la feina et cal tenir contactes, és que o lluites molt o tens paciència. (B→D) →(A ∨ E)
- b) Formalitzeu utilitzant la lògica de predicats les frases següents. Utilitzeu els predicats proposats.

Domini: un conjunt no buit

A(x): x és un aficionat al futbol J(x): x és un jugador de futbol

C(x): x cobra un sou alt R(x): x és radical

V(x,y): x vol ser com y

- 1) No tots els aficionats al futbol són radicals, però alguns sí. $\neg \forall x (A(x) \rightarrow R(x)) \land \exists x (A(x) \land R(x))$
- 2) Hi ha jugadors de futbol que cap aficionat no vol ser com ells. $\exists x \{J(x) \land \forall y [A(y) \rightarrow \neg V(y,x)]\}$
- 3) Si un jugador de futbol cobra un sou alt llavors hi ha aficionats al futbol que voldríem ser com ell. $\forall x[\ J(x) \land C(x) \to \exists y(A(y) \land V(y,x))\]$

Assignatura	Codi	Data	Hora inici
Lògica	05.570	11/06/2011	15:30

Problema 2

Demostreu, utilitzant la deducció natural, que el següent raonament és correcte. Utilitzeu només les 9 regles bàsiques (és a dir, no utilitzeu ni regles derivades ni equivalents deductius).

$$\begin{array}{l} S \diagdown Q \to (P \to \neg R) \\ \neg R \to S \\ S \diagdown R \to \neg \ (Q \land S) \\ \therefore \ \neg (P \land Q) \end{array}$$

<u>Solució</u>

		T	,
1	$S\lor Q\to (P\to \neg R)$		Р
2	¬R→S		Р
3	$S \lor R \rightarrow \neg (Q \land S)$		Р
4		P∧Q	Н
5		Р	E∧ 4
6		Q	E∧ 4
7		S∨Q	l∨ 6
8		P→¬R	E→ 1,7
9		¬R	E→ 5,8
10		S	E→ 2,9
11		S∨R	l∨ 10
12		¬ (Q∧S)	E→ 3,11
13		Q∧S	I∧ 6,10
14	¬(P∧Q)		I¬ 4,12,13

Assignatura	Codi	Data	Hora inici
Lògica	05.570	11/06/2011	15:30

Problema 3

Indiqueu aplicant resolució si el següent raonament és vàlid, indiqueu també si les premisses són consistents.

$$\begin{array}{l} P \wedge Q \rightarrow \neg (R \rightarrow \neg S) \\ \neg \ (R \rightarrow Q \wedge S) \\ \therefore \ (S \rightarrow \neg R) \rightarrow (P \rightarrow \neg Q) \end{array}$$

Solució

$$\begin{split} & FNC(P \land Q \rightarrow \neg (R \rightarrow \neg S)) = (\neg P \lor \neg Q \lor S) \land (\neg P \lor \neg Q \lor R) \\ & FNC(\neg (R \rightarrow Q \land S)) = R \land (\neg Q \lor \neg S) \\ & FNC(\neg ((S \rightarrow \neg R) \rightarrow (P \rightarrow \neg Q))) = (\neg S \lor \neg R) \land P \land Q \\ & Conjunt de clàusules = \{ \neg P \lor \neg Q \lor S, \neg P \lor \neg Q \lor R, R, \neg Q \lor \neg S, \neg S \lor \neg R, P, Q \} \\ & R \ subsumeix \ \neg P \lor \neg Q \lor R \\ & Conjunt de clàusules = \{ \neg P \lor \neg Q \lor S, R, \neg Q \lor \neg S, \neg S \lor \neg R, P, Q \} \end{split}$$

Clàusules troncals	Clàusules laterals
¬S∨¬R	R
¬S	$\neg P \lor \neg Q \lor S$
$\neg P \lor \neg Q$	Q
¬P	P

Consistència de premisses:

```
Conjunt de clàusules ={ \neg P \lor \neg Q \lor S, \neg P \lor \neg Q \lor R, R, \neg Q \lor \neg S} R subsumeix \neg P \lor \neg Q \lor R Conjunt de clàusules ={ \neg P \lor \neg Q \lor S, R, \neg Q \lor \neg S} Podem eliminar \neg P \lor \neg Q \lor S, \neg Q \lor \neg S per la regla del literal pur \neg Q Conjunt de clàusules ={ R} Podem eliminar R per la regla del literal pur Conjunt de clàusules ={ }
```

Per tant el raonament és vàlid i les premisses són consistents.

Assignatura	Codi	Data	Hora inici
Lògica	05.570	11/06/2011	15:30

Problema 4

Valideu o refuteu el següent raonament mitjançant el mètode de resolució:

```
 \exists x \forall y [ \ Q(x,y) \lor (T(x) \land R(y)) \ ]   \forall x \neg \forall y [ \ \neg Q(x,y) \to T(x) \ ]   \forall x \forall y [ \ \neg T(x) \to P(x,y) \ ]   \therefore \ \exists x [ \ \exists y P(x,y) \ \land \ T(x) \ ]
```

Solució

```
\mathsf{FNS}(\exists \mathsf{x} \forall \mathsf{y} [\ \mathsf{Q}(\mathsf{x},\mathsf{y}) \lor (\mathsf{T}(\mathsf{x}) \land \mathsf{R}(\mathsf{y}))\ ])
\forall y[ Q(a,y) \lor (T(a) \land R(y)) ]
\forall y[ (Q(a,y) \lor T(a)) \land (Q(a,y) \lor R(y)) ]
Clàusules: Q(a,y) \vee T(a), Q(a,y) \vee R(y)
\mathsf{FNS}(\forall x \neg \forall y \ [\ \neg \mathsf{Q}(x,y) \to \mathsf{T}(x)\ ])
\forall x \neg \forall y [ \neg \neg Q(x,y) \lor T(x) ]
\forall x \neg \forall y [ Q(x,y) \lor T(x) ]
\forall x \exists y \neg [Q(x,y) \lor T(x)]
\forall x \exists y [ \neg Q(x,y) \land \neg T(x) ]
\forall x [\neg Q(x,f(x)) \land \neg T(x)]
Clàusules: \neg Q(x,f(x)), \neg T(x)
FNS(\forall x \forall y [ \neg T(x) \rightarrow P(x,y) ])
\forall x \forall y [\neg \neg T(x) \lor P(x,y)]
\forall x \forall y [T(x) \lor P(x,y)]
Clàusules: T(x) \vee P(x,y)
FNS(\neg \exists x[ \exists y P(x,y) \land T(x) ])
\forall x \neg [\exists y P(x,y) \land T(x)]
\forall x [ \neg \exists y \neg P(x,y) \lor \neg T(x) ]
\forall x [ \forall y \neg P(x,y) \lor \neg T(x) ]
\forall x \ \forall y \ [ \neg P(x,y) \lor \neg T(x) ]
Clàusules: \neg P(x,y) \lor \neg T(x)
```

Conjunt de clàusules: { $Q(a,y) \lor T(a)$, $Q(a,y) \lor R(y)$, $\neg Q(x,f(x))$, $\neg T(x)$, $T(x) \lor P(x,y)$, $\neg P(x,y) \lor \neg T(x)$ }

Arbre de resolució

Clàusules troncals		Clàusules laterals		
$\neg P(x,y) \lor \neg T(x)$ $\neg P(a,y) \lor \neg T(a)$	Substituïm x per a	$Q(a,y) \vee T(a)$		
$\neg P(a,y) \lor Q(a,y) \\ \neg P(a,f(a)) \lor Q(a,f(a))$	Substituïm y per f(a)	$\neg Q(x,f(x))$ $\neg Q(a,f(a))$	Substituïm x per a	
¬P(a,f(a))		$ T(x) \vee P(x,y) $ $T(a) \vee P(a,f(a)) $	Substituïm x per a Substituïm y per f(a)	
T(a)		¬T(x) ¬T(a)	Substituïm x per a	

Assignatura	Codi	Data	Hora inici
Lògica	05.570	11/06/2011	15:30

Problema 5

Es vol dissenyar, usant únicament portes NOR, un circuit lògic que es correspongui amb la següent expressió:

A XOR B

Nota: XOR es correspon amb l'operador OR exclusiu.

- a) Reescriu la fórmula de manera justificada usant únicament l'operador ↓.
- b) Comprova l'equivalència de les dues fórmules construint la seva taula de veritat.

Solució

a) Expressem la fórmula inicial només amb les operacions +,· i ~. Apliquem una doble negació davant de l'expressió resultant, que és una conjunció, per a convertir-la en la negació d'una disjunció (un NOR) mitjançant la llei de De Morgan. Per últim les negacions més internes es poden transformar també en expressions amb NOR fent servir l'equivalència ~A = A NOR A.

A XOR B =
$$(A + B) \cdot (A \cdot B) = \sim [(A + B) \cdot (A \cdot B)] = \sim [\sim (A + B) + \sim (A \cdot B)] = \sim [\sim (A + B) + \sim (\sim (A + A) + \sim (\sim (A + A)$$

b)

Α	В	X=A↓B	Y=A↓A	Z=B↓B	Y↓Z	$(X) \downarrow ((Y) \downarrow (Z))$	A XOR B
0	0	1	1	1	0	0	0
0	1	0	1	0	0	1	1
1	0	0	0	1	0	1	1
1	1	0	0	0	1	0	0