ELEC2400

ELECTRONIC CIRCUITS

FALL 2021-22

HOMEWORK 5 SOLUTION

Q1. Assume the switch has been open for a long time. The switch is closed at t = 0. Find the equation of the voltage $v_0(t)$ for t > 0.

In the steady state up to $t = 0^-$, the capacitor behaves like an open circuit. No current goes through the 4-k Ω resistor. Hence, $v_0(0^-) = 0$ V.

At $t = 0^+$, the capacitor voltage is unchanged. Same is true for the 4-V source. Hence, $v_o(0^+) = v_o(0^-) = 0$ V.

In the steady state when $t \to \infty$, the capacitor behaves like an open circuit again.

$$v_o(\infty) = 6\left(\frac{4}{2+4}\right) = 4 \text{ V}$$

Time constant:

$$\tau = R_{eq}C = (2k||4k)1\mu = 1.333 \text{ ms}$$

Therefore, for t > 0

$$v_o(t) = 0 + (4 - 0) \left(1 - e^{-\frac{t}{1.333m}} \right) = 4(1 - e^{-750t}) V$$

Q2. Assume the switch has been closed for a long time. The switch is opened at t=0. Find the equation of the voltage $v_o(t)$ for t>0.

In the steady state up to $t = 0^-$, the inductor behaves like a short circuit. Hence, $v_o(0^-) = 4$ V. Furthermore, KCL at the node v_o yields $i_L(0^-) = 0$ A.

At $t=0^+$, the inductor current is unchanged. Hence, $i_L(0^+)=i_L(0^-)=0$ A. Moreover, the switch is already opened. There is no current going through the 2-k Ω resistor on the right and $v_0(0^+)=0$ V.

In the steady state when $t \to \infty$, the inductor behaves like a short circuit again and $v_o(\infty) = 4$ V.

Time constant: only the 2-k Ω resistor on the right takes part in the transient.

$$\tau = L/R_{eq} = 1 \text{m}/2 \text{k} = 0.5 \, \mu \text{s}$$

Therefore, for t > 0

$$v_o(t) = 0 + (4 - 0) \left(1 - e^{-\frac{t}{0.5\mu}} \right) = 4(1 - e^{-2000000t}) V$$

- Q3. Assume the switch has been open for a long time. The switch is closed at t = 0.
 - (a) Find the equation of the voltage $v_1(t)$ for t > 0.
 - (b) Plot $v_1(t)$ as a function of time starting from t < 0.

In the steady state up to $t = 0^-$, the capacitor behaves like an open circuit. No current goes through any resistor. Hence, $v_1(0^-) = v_C(0^-) = 8 \text{ V}$.

At $t = 0^+$, the capacitor voltage is unchanged. Hence, $v_C(0^+) = v_C(0^-) = 8$ V. The capacitor behaves momentarily as an 8-V battery and the following circuit diagram applies

Apply KCL to the node v_1 ,

$$\frac{v_1 - 8}{20} + \frac{v_1 - 8}{0.1} + \frac{v_1}{0.1} = 0$$

$$v_1 - 8 + 200v_1 - 1600 + 200v_1 = 0$$

 $401v_1 = 1608$
 $v_1(0^+) = 4.0100 \text{ V}$

In the steady state when $t \to \infty$, the capacitor behaves like an open circuit again.

$$v_1(\infty) = 8\left(\frac{0.1}{20 + 0.1}\right) = 0.0398 \text{ V}$$

Time constant:

$$\tau = R_{eq}C = (0.1 + 20||0.1)0.1\mu = 0.01995 \,\mu s$$

Therefore, for t > 0

$$v_1(t) = 0.0398 + (4.0100 - 0.0398)e^{-\frac{t}{0.01995\mu}} = 0.04 + 3.97e^{-50100000t} \text{ V}$$

Following is a plot of $v_1(t)$ starting from t < 0.

- Q4. Assume the switch has been open for a long time. The switch is closed at t = 0.
 - (a) Find the equation of the current $i_1(t)$ for t > 0.
 - (b) Plot $i_1(t)$ as a function of time starting from t < 0.

In the steady state up to $t = 0^-$, the inductor behaves like a short circuit. Hence, $i_1(0^-) = -2/6 = -0.3333$ A.

At $t = 0^+$, the inductor current is unchanged. The inductor behaves momentarily as a 0.3333-A current source and the following circuit diagram applies

Apply KCL to the node v_1 , noting that $v_1 = 2i_1 + 2$,

$$-3 + \frac{(2i_1 + 2) - 9}{2} + 0.3333 + i_1 = 0$$

$$-6 + 2i_1 + 2 - 9 + 0.6667 + 2i_1 = 0$$

$$4i = 12.3333$$

$$i_1(0^+) = 3.083 \text{ A}$$

In the steady state when $t \to \infty$, the inductor behaves like a short circuit again and the following circuit diagram applies

Apply KCL to the node v_1 , noting that $v_1 = 2i_1 + 2$,

$$-3 + \frac{(2i_1 + 2) - 9}{2} + \frac{2i_1 + 2}{4} + i_1 = 0$$

$$-12 + 4i_1 + 4 - 18 + 2i_1 + 2 + 4i_1 = 0$$

$$10i_1 = 24$$

$$i_1(\infty) = 2.4 \text{ A}$$

Time constant: the 6- Ω resistor is open-circuited by the zeroed-out current source in the R_{eq} calculation.

$$\tau = L/R_{eq} = 3/(4+2||2) = 3/(4+1) = 0.6 \text{ s}$$

Therefore, for t > 0

$$i_1(t) = 2.4 + (3.083 - 2.4)e^{-\frac{t}{0.6}} = 2.4 + 0.683e^{-1.67t} \text{ V}$$

Following is a plot of $i_1(t)$ starting from t < 0.

- Q5. Find V_o and I_o in the circuit below with
 - (i) ideal diode model,
 - (ii) offset diode model ($V_F = 0.5 \text{ V}$).

(i) Assume both diodes are ON. KCL at the node V₁ yields

$$\frac{V_1 - 5}{8} + \frac{V_1}{3} + \frac{V_1 - 1.3}{2} = 0$$

$$3V_1 - 15 + 8V_1 + 12V_1 - 15.6 = 0$$

$$23V_1 = 30.6$$

$$V_1 = 1.3304 \text{ V} = V_0$$

$$I_0 = \frac{V_0 - 1.3}{2} = \frac{1.3304 - 1.3}{2} = 0.0152 \text{ A} > 0$$

The results for V₁, V₀ and I₀ are consistent with both diodes being ON.

(ii) Assume D₁ ON and D₂ OFF. The circuit diagram looks like this

from which

$$V_o = 1.3 \text{ V}$$

 $I_o = 0 \text{ A}$

As a check, apply KCL to the node V₁,

$$\frac{V_1 - 5}{8} + \frac{V_1 - 0.5}{3} = 0$$
$$3V_1 - 15 + 8V_1 - 4 = 0$$
$$11V_1 = 19 \text{ V}$$
$$V_1 = 1.73 \text{ V} < V_0 + V_F$$

This is consistent with D_2 being OFF.

- Q6. Plot V_0 as a function of V_{IN} for V_{IN} from -5 V to 25 V in the circuit with
 - (i) ideal diode model,
 - (ii) offset diode model ($V_F = 0.5 \text{ V}$).

Qualitatively speaking, when V_{IN} starts from low, D_1 is OFF and V_1 is set by the 6-V source. When V_{IN} gets high enough, both D_1 and D_2 are ON and V_1 is set by both V_{IN} and the 6-V source. Finally, when V_{IN} gets sufficiently high, D_2 is OFF and V_1 is set by V_{IN} only.

- (i) Ideal diode model:
 - (a) When D_1 is OFF and D_2 is ON, $V_0 = 4$ V and $V_1 = 2$ V. This is true for

$$-5 \text{ V} \le V_{IN} < 2 \text{ V}$$

(b) When D_1 is ON and D_2 is OFF, $V_0 = 6 \text{ V} < V_1 = 2V_{IN}/3$. This is therefore true for

$$V_{IN} > 6 \times 3/2 = 9 \text{ V}$$

We now have everything we need to do the plot. The following are optional.

(c) $2 \text{ V} \leq V_{IN} \leq 9 \text{ V}$, both diodes are ON. Apply KCL to the node V_1 ,

$$\frac{V_1 - V_{IN}}{1} + \frac{V_1 - 6}{4} + \frac{V_1}{2} = 0$$

$$4V_1 - 4V_{IN} + V_1 - 6 + 2V_1 = 0$$

$$7V_1 = 4V_{IN} + 6$$

$$V_1 = \frac{4V_{IN} + 6}{7}$$
(1)

Notice that V₀ is the center tap between the 6-V source and V₁, and also from (1)

$$V_o = \frac{6 + V_1}{2} = \frac{6 + \frac{4V_{IN} + 6}{7}}{2} = \frac{2}{7}V_{IN} + \frac{24}{7}$$

Following is a plot of Vo vs. VIN.

- (ii) Offset diode model ($V_F = 0.5 \text{ V}$):
 - (a) When D₁ is OFF and D₂ is ON,

$$I_1 = \frac{6 - 0.5}{2 + 2 + 2} = 0.9167 \text{ A}$$

yielding

$$V_1 = 2I_1 = 1.833 \text{ V}$$

$$V_0 = 6 - 2I_1 = 4.167 \text{ V}$$

This is true for

$$-5 \text{ V} \le V_{IN} < V_1 + V_F = 1.833 + 0.5 = 2.333 \text{ V}$$

(b) When D_1 is ON and D_2 is OFF,

$$I_1 = \frac{V_{IN} - 0.5}{1 + 2}$$

yielding

$$V_1 = 2I_1 = \frac{2}{3}V_{IN} - \frac{1}{3}$$

This is true for $V_0 = 6 \text{ V} < V_1 + V_F$, or

$$\left(\frac{2}{3}V_{IN} - \frac{1}{3}\right) + 0.5 > 6$$

$$2V_{IN} - 1 + 1.5 > 18$$

 $V_{IN} > 8.75 \text{ V}$

We now have everything we need to do the plot. The following are optional.

(c) For 2.333 V $\leq V_{IN} \leq$ 8.75 V, both diodes are ON. The circuit diagram looks like

Apply KCL to the node V_1 ,

$$\frac{V_1 + 0.5 - V_{IN}}{1} + \frac{V_1 + 0.5 - 6}{4} + \frac{V_1}{2} = 0$$

$$4V_1 + 2 - 4V_{IN} + V_1 + 0.5 - 6 + 2V_1 = 0$$

$$7V_1 = 4V_{IN} + 3.5$$

$$V_1 = \frac{4V_{IN} + 3.5}{7}$$
(2)

Apply KCL to the node V_o and also from (2)

$$\frac{V_o - 6}{2} + \frac{V_o - 0.5 - V_1}{2} = 0$$

$$V_o - 6 + V_o - 0.5 - \frac{4V_{IN} + 3.5}{7} = 0$$

$$7V_o - 42 + 7V_o - 3.5 - 4V_{IN} - 3.5 = 0$$

$$14V_o = 4V_{IN} + 49$$

$$V_o = 0.2857V_{IN} + 3.5$$

Following is a plot of V_o vs. V_{IN} .

- Q7. In the figure, it shows a Zener diode voltage regulator circuit ($V_{Z0} = 5.6 \text{ V}$, $R_Z = 10 \Omega$).
 - (a) Determine the output voltage V_0 if $V_{IN} = 6.5$ V.
 - (b) Plot V_{o} as the function of V_{IN} for 6 V < V_{IN} < 8 V.

Case 1: Zener diode is OFF

$$V_o = V_{in} \left(\frac{1k}{300 + 1k} \right) = 0.76923 V_{in}$$

This is true so long as $V_o < 5.6 \text{ V}$, which means $V_{in} < 7.28 \text{ V}$.

When $V_{in} = 6 \text{ V}$, $V_o = 4.615 \text{ V}$.

When $V_{in} = 6.5 \text{ V}$, $V_o = 5 \text{ V}$.

When $V_{in} = 7.28 \text{ V}$, $V_o = 5.6 \text{ V}$.

Case 2: Zener diode is ON. This happens when $V_o \ge 5.6 \text{ V}$, which means $V_{in} \ge 7.28 \text{ V}$.

Replacing the Zener diode by its circuit model, the circuit now looks like this

Apply KCL to the node V_o,

$$\frac{V_o}{1k} + \frac{V_o - 5.6}{10} + \frac{V_o - V_{in}}{300} = 0$$

$$3V_o + 300V_o - 1680 + 10V_o - 10V_{in} = 0$$

$$313V_o = 1680 + 10V_{in}$$

$$V_o = 5.367412 + 0.031949V_{in}$$

When $V_{in} = 8 \text{ V}$, $V_o = 5.623 \text{ V}$.

Following is a plot of V_o vs. V_{in} . Once $V_o \ge 5.6$ V, it is regulated to within a narrow range.

- Q8. Find V_0 assuming ideal op amp and offset diode model ($V_F = 0.5 \text{ V}$) for the case:
 - (i) when $V_{in} = 4 V$,
 - (ii) when $V_{in} = -4 \text{ V}$.

(i) when $V_{in} = 4 \text{ V}$, D_1 is ON and the circuit diagram looks like this

Apply KCL to the node V_- , which is equal to V_+ at 0 V.

$$\frac{V_o}{4k} + \frac{V_o + 0.5}{4k} = -\frac{V_{in}}{2k}$$

$$V_o + V_o + 0.5 = -2V_{in}$$

 $V_o = -V_{in} - 0.25 = -4 - 0.25 = -4.25 \text{ V}$

(ii) when $V_{in} = -4$ V, D_1 is OFF and the circuit is an inverting amplifier with a gain of -2. Hence, V_0 would like to go to 8 V. However, the op amp would be saturated, limiting output to

$$V_o = 5 \text{ V}$$