SZA'LLI'TA'SI FELADAT

	Cu					
	1	3	2	5	4	
	X _N	3 ×12	2 ×13	X ₁₄	× ₁₅	15 = a1
	3	8	2	Л	3	
	×21	X22	X ₂₃	Хэц	×25	17 = a2
	1	4	2	5	Λ	
	Xsa	×32	X33	Хзų	×37-	23 = a ₃
	3	5	1	8	7	
	Xu ₁	X42	Х43	Хич	× ₄ -	12 = a4 R rakta'rak ke'szlete
bolt ig	b ₁ =10 genye	b2=11	b _s =13	b ₄ =18	b5= 15	∑= 67

- 1. Egyfe'le avut szallı'tunk
- 2. Minden sor megfelel egy rakta'rnak
- 3. Minden oszlop megfelel egy boltnak
- 4. A raktarkeszlet megegyezik a bolt összes igényevel

FELADAT: Döntsük el, hogy melyik raktarból melyik boltba mennyit szállítsunk úgy, hogy: – a raktarkészletet nem léphetjük túl

- minden bolt kapja meg, amit igenyelt
- az összes költség minimális legyen

1.) A feladat modellje:

$$\begin{cases} \sum_{j} x_{ij} = a_{i} & (\forall i) \\ \sum_{c} x_{cj} = b_{cj} & (\forall j) \\ & \underline{x} \geq \underline{Q} \\ & \sum_{c,j} c_{cj} x_{cj} \rightarrow \min \end{cases}$$

Szimplex tabla: (2. fazisban)

A'llita's: Ez egy LP. (linea'ris programoza'si feladat)

Allita's: Az együttható matrix rangja n+m-1

- 2) ke'tfa'zisù modszerrel oldjuk meg a feladatot:
 - Л. fazis: megengedett bazismegolda's elöa'lli'ta'sa
 - 2. fazis: baziscserekkel optimallis megolda's megada'sa

Az első fazis algoritmusa:

- Sor-minimum modszer
- Tabla-minimum mödszer
- Vogel Korda

1. fazis

1 10	<u>3</u> 5	2	5	4	ИŚ	7
3	8	2 M	Л	3	174	М
4	4	2 2	5 18	л 3	23	21 B
3	5	1	8	7 12	JΣ	
ļØ	M Se	4S 2	J&	K K	Σ= 67	

2. fazis:

1 NO	3 5	2	5	4
3	8	2 M	1 x	3
1	4	2 2	5 ¦ 18	л З
3	5	1	8	7 12

$$1-5+2-2=-4$$
 LO jó csere

1 10	3 5-	2 × \	5	4
3	8 [-	2 I 	1 — M 1	3
4	4	2 i 13 - :	5 I	1 3
3	5	1	8	7 12

Baziscella: (kö) ahol szallitunk valamit (Az algoritmus neve: STEPPING STONE)

Kor: - nem köröl indulunk

- felváltva lépünk függőlegesen és vizszintesen
- csak kövekre szabad lelpni
- Visszaerünk oda, ahonnan indultunk

Allı'ta's: Tetszöleges nem köröl indulva pontosan 1 kör van.

A'llita's: Ha nincs javitó csere, akkor optimális a megolda's.

Sege'd algoritmus: segit megtalallni a javitocserett

- minden sorhoz: u:
- minden oszlophoz: Vi

$$u_{\lambda} + v_{j} = c_{i,j} \quad \forall (i,j) \in \mathcal{B}$$

Az egyenletrendszernek mindig van megoldalsa els a szabadsalgfoka 1.

$$5-(-4)-0=9+4-(-8)-0=12+3-1-5=-3-2-(-7)-5=4+3-(-8)-5=7+4-3-9=-8-3-15=-13-8-(-4)-15=-3-1$$

8-(-4)-15=-3-

2-(-7)-0=9

5

9

15

<u>A'llı'ta's:</u> a reduka'tt költse'q sza'mola'sa: c¿j - (u¿+vj)

Vogel-Korda:

1 4	3 M	2	5	4		15 A ← 1 2
3	8	2	۱ ۲	3 _		-
1 6	4	2 /	5 /	1	5	23 Ø C 1 1
3	5	1 12	88	7		12 2 ² ← 3 1
106 11-70 000	11 3 4-71 1 1 (1		181 1 5-74 0 4) (1 3	5 3-72 23	

- (1.) Felirjuk soronkent e's oszloponkent a 2 legkisebb költselg különbselgelt
- ② kivallasztjuk a legnagyobbat
- 3) A legolcsóbb cella't megkevessük
- (H) Elviszünk annyit, amennyit lehet

Nem kelpes mindig optimalis megoldalst tala'lni.

Λ -4 Λ Ŧ

Ez bazis megolda's e's optimallis megolda's i's egyben.