

UNIVERSIDADE FEDERAL DE VIÇOSA – UFV CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS – CCE DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEL

Sistemas de Controle II ELT331

AULA 17 – Sistema de Controle Digital

Prof. Tarcísio Pizziolo

17. Sistema de Controle Digital Equações de Diferenças

- Os Controladores são programas de computadores.
- O sistema de controle com computador utiliza dados discretos (ou amostrados) em intervalos pré-estabelecidos, resultando em séries temporais de sinais.

Sistemas de Dados Amostrados (Discretos)

São sistemas dinâmicos em que uma ou mais variáveis podem mudar apenas em instantes discretos de tempo.

Estes instantes denotaremos por kT (k = 0,1, 2, ...).

Quantização

Conversão de um sinal analógico para o correspondente sinal digital. $\uparrow^{m(t)}$

17.1 Dispositivos Amostrados e Seguradores

- Um "amostrador" convencional converte um sinal contínuo em um trem de pulsos ocorrendo nos instantes de amostragem 0, T, 2T, ..., onde T é o período de amostragem.
- Na prática, a duração de T é muito pequena em comparação com a constante de tempo mais significativa do processo.
- Um "segurador" convencional converte um sinal amostrado em um sinal contínuo.
- O dispositivo segurador mais simples converte o sinal amostrado em outro sinal com amplitude constante entre dois instantes consecutivos de amostragem. Tal dispositivo é denominado "Segurador de Ordem Zero" $(G_h(s))$.

A Função de Transferência de Gh(s) é dada por:

$$G_h(s) = \frac{1 - e^{-sT}}{s} \Rightarrow G_h(s) = \frac{1}{s} - \frac{e^{-sT}}{s}$$

17.1 Dispositivos Amostrados e Seguradores

A combinação em série dos dispositivos "amostrador" e "segurador" nos dá a seguinte situação:

$$x_h(t + kT) = x(kT) p/0 \le t < T$$

17.2 Transformada Z

Define-se **Transformada-Z** a partir da Transformada de Laplace como a seguir.

Seja:
$$x(t) = \begin{cases} x(t); p/t \ge 0 \\ 0; p/t < 0 \end{cases}$$
 \therefore $L\{x(t)\} = \int_{0}^{\infty} x(t)e^{-st}dt = X(s)$

Discretizando x(t) para x(kT), obtemos:

$$X^*(s) = L\{x^*(t)\} = \sum_{k=0}^{\infty} x(kT)e^{-kTs}$$

Definamos:

$$z = e^{Ts} \Rightarrow \ln(z) = \ln(e^{Ts}) \Rightarrow \ln(z) = Ts \ln(e) \Rightarrow$$
$$\Rightarrow s = \frac{1}{T} [\ln(z)]$$

17.2 Transformada Z

Então:
$$X(z) = x^*(s) = X^* \left(\frac{1}{T} \ln(z)\right) = \sum_{k=0}^{\infty} x(kT) z^{-k}$$
 A Transformada – Z de $x^*(t) \Rightarrow X(z) = Z\{x^*(t)\}$

Conclusão:

$$Z\{x(t)\} = Z\{x^*(t)\} = X(z) = \sum_{k=0}^{\infty} x(kT)z^{-k}$$

Exemplo 1:

Determinar a Transformada-Z da função Degrau Unitário u(t).

$$u(t) = \begin{cases} 0, p/t < 0 \\ 1, p/t > 0 \end{cases}$$

$$Z\{u(t)\} = \sum_{k=0}^{\infty} u(kT)z^{-k} = 1 + z^{-1} + z^{-2} + \ldots = \frac{z}{(z-1)}$$

$$S = \frac{a_0}{1 - q} = \frac{1}{1 - z^{-1}}$$

Então:
$$Z\{u(t)\} = \frac{1}{1-z^{-1}} = \frac{z}{(z-1)}$$

Exemplo 2:

Determinar a Transformada-Z da função dada a seguir.

$$x(t) = \begin{cases} 0, p/t < 0 \\ e^{-at}, p/t \ge 0 \end{cases}$$

$$Z\{e^{-at}\} = \sum_{k=0}^{\infty} e^{-akT} z^{-k} = 1 + e^{-aT} z^{-1} + e^{-2aT} z^{-2} + \ldots = \frac{z}{z - e^{-aT}}$$

$$S = \frac{a_0}{1 - q} = \frac{1}{1 - e^{-aT}z^{-1}} = \frac{1}{1 - \frac{1}{e^{aT}z}} = \frac{e^{aT}z}{e^{aT}z - 1}$$

Então:
$$Z\{e^{-at}\} = \frac{e^{aT}z}{e^{aT}z-1} = \frac{z}{z-e^{-aT}}$$

Exemplo 3:

Determinar a Transformada-Z da função dada a seguir.

$$x(t) = \begin{cases} 0, p/t < 0 \\ sen(wt), p/t \ge 0 \end{cases}$$

Partindo de:

$$\mathbf{Z}\{\mathbf{e}^{-\mathbf{at}}\} = \frac{\mathbf{Z}}{(\mathbf{z} - \mathbf{e}^{-\mathbf{aT}})}$$

Podemos escrever:

$$\begin{split} Z\{sen(wt)\} &= Z\left\{\frac{\left(e^{jwt} - e^{-jwt}\right)}{j2}\right\} = \frac{1}{j2}\left(\frac{z}{\left(z - e^{jwT}\right)} - \frac{z}{\left(z - e^{-jwT}\right)}\right) \Rightarrow \\ &\Rightarrow Z\{sen(wT)\} = \frac{1}{j2}\left\{\frac{z\left(e^{jwt} - e^{-jwt}\right)}{z^2 - z\left(e^{jwT} + e^{-jwT}\right) + 1}\right\} \Rightarrow \\ &\Rightarrow Z\{sen(wt)\} = \frac{zsen(wT)}{z^2 - 2zcos(wT) + 1} \end{split}$$

Exemplo 4:

Determinar a Transformada-Z da função dada a seguir.

$$X(s) = L\{x(t)\} = \frac{1}{s(s+1)}$$

Expandindo em frações parciais obtém-se:

$$X(s) = \frac{1}{s} - \frac{1}{(s+1)} \Rightarrow x(t) = 1 - e^{-t}$$

Daí:

$$Z\{1-e^{-t}\} = Z\{1\} - Z\{e^{-t}\} = \frac{z}{z-1} - \frac{z}{z-e^{-T}} \Rightarrow$$

$$\Rightarrow \mathbf{Z}\{\mathbf{x}(t)\} = \frac{\mathbf{z}(1-\mathbf{e}^{-T})}{(\mathbf{z}-1)(\mathbf{z}-\mathbf{e}^{-T})}$$

Exemplo 5:

Determinar a Transformada-Z da função dada a seguir.

$$x(t) = \begin{cases} 0, p/t < 0 \\ a^{k}, p/t \ge 0 \end{cases}$$

$$Z\{a^k\} = \sum_{k=0}^{\infty} a^k z^{-k} = 1 + az^{-1} + a^2 z^{-2} + ... + a^k z^{-k}$$

$$S = \frac{a_0}{1 - q} = \frac{1}{1 - az^{-1}} = \frac{1}{z - a} = \frac{z}{z - a}$$

Então:
$$Z\{a^k\} = \frac{z}{z-a}$$

Exemplo 6:

Determinar a Transformada-Z da função dada a seguir.

$$x(t) = \begin{cases} 0, p/t < 0 \\ \cos(wt), p/t \ge 0 \end{cases}$$

Partindo de:

$$\mathbf{Z}\{\mathbf{e}^{-\mathbf{a}\mathbf{t}}\} = \frac{\mathbf{Z}}{(\mathbf{z} - \mathbf{e}^{-\mathbf{a}\mathbf{T}})}$$

Podemos escrever:

$$\begin{split} &Z\{cos(wt)\} = Z\left\{\frac{\left(e^{jwt} + e^{-jwt}\right)}{2}\right\} = \frac{1}{2}\left(\frac{z}{\left(z - e^{jwT}\right)} + \frac{z}{\left(z - e^{-jwT}\right)}\right) \Rightarrow \\ &\Rightarrow Z\{cos(wt)\} = \frac{1}{2}\left(\frac{z\left(z - e^{-jwT}\right) + z\left(z - e^{jwT}\right)}{\left(z - e^{jwT}\right)\left(z - e^{-jwT}\right)}\right) \Rightarrow \\ &\Rightarrow Z\{cos(wt)\} = \frac{z(z - cos(wT))}{z^2 - 2z\cos(wT) + 1} \end{split}$$