WHO Health Data Analysis A Presentation by Marjella Ernst

Marjella Ernst

June 2025

Marjella Ernst WHO Health Data Analysis

Introduction

Introduction

Introduction

This presentation explores the relationship of various factors such as: - stress - physical exercise - sleep, and on health.

Hypotheses to test

Hypotheses to test

- 1 sleeping is more important to health than exercise
- 2 living a stress free lifestyle has a major impact on health

Research Question

Research Question

"Which are the main influencing factors on health and how can we use these insights to improve it?"

Data

- The data used for this analysis originates from the **World** Health Organization (WHO).
- It includes self-reported indicators on:
 - Physical activity
 - Sleep quality
 - Stress levels
 - Caloric intake
- The dataset builds the empirical basis for testing the relationship between lifestyle factors and health outcomes

Methodology

- A multiple linear regression model is used to estimate the effect of:
 - **Exercise** (physical activity),
 - Sleep quality, and
 - Stress level

on the dependent variable **Health** (approximated by excess caloric intake).

■ The model is specified as:

$$\mathsf{Health}_i = \beta_0 + \beta_1 \cdot \mathsf{Exercise}_i + \beta_2 \cdot \mathsf{Sleep}_i + \beta_3 \cdot \mathsf{Stress}_i + \varepsilon_i$$

■ In R. the model is estimated as:

lm(Health ~ Exercise + Sleep + Stress, data = processed)

Challenge: What is Health?

Challenge: What is Health?

- For the purpose of this analysis, health is approximated by excess body weight
 - This serves as a proxy indicator due to data limitations
 - Other common indicators, such as BMI, are not available in the dataset

Regression Results

Table 1: Regression Results:

Regression Results

Health ~ Exercise + Sleep + Stress (1)246.148** (Intercept) (87.845)Exercise 285.774*** (21.394)Sleep 30.220 (20.625)Stress -5.357(8.851)Num.Obs. 100 R2 0.652 0.642R2 Adj. AIC 1370.7

- Exercise has strong and highly significantly positive effect on health
 - Coefficient: 285.77 (***), p < 0.001
 - Interpretation: Higher physical activity is strongly associated with better health (less excess weight)
- Sleep shows small positive effect, but is not statistically significant
 - Coefficient: 30.22, p > 0.1
 - No strong evidence that sleep quality alone explains variation in health

- Stress has a small negative effect, but is also not statistically significant
 - Coefficient: -5.36, p > 0.5
 - Cannot conclude that stress significantly affects health in this model

Model fit:

- \blacksquare R² = 0.652 \rightarrow model explains ~65% of the variation in health
- Adjusted $R^2 = 0.642$ is still high after adjusting for model complexity
- AIC = 1370.7 model complexity vs. fit trade-off

Limitations

- Health is difficult to measure because it includes multiple dimensions:
 - Physical aspects (e.g., number of illnesses, fitness)
 - Mental aspects (e.g., stress resistance, absence of psychological conditions)
- Many influencing factors of health are themselves difficult to observe or quantify:
 - Genetics, sleep, nutrition
 - Environmental and external factors
 - Access to health care
- There is a significant risk of reverse causality:
 - Poor health can increase stress
 - Illness may limit exercise
 - Health problems can disrupt sleep

Conclusion

Conclusion

- Exercise is found to be clearly statistically significant for health
- Sleep and stress show expected effects but lack statistical significance
- The model explains a large share of variation in health (\sim 65%)
- Hower, health is a multifaceted concept, more complex than this model can explain
- Further research should include:
 - Better proxies for health (e.g., BMI, blood pressure, clinical diagnoses)
 - Longitudinal data to address reverse causality
 - Interaction effects (like stress and sleep)