МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ, НГУ)

Факультет	
Кафедра	
Направление подготовки	
ВЫПУСКНАЯ КВАЛИФИКАП	ДИОННАЯ РАБОТА БАКАЛАВРА
(Фамилия, Им	я, Отчество автора)
Тема работы	
«К защите допущена»	Научный руководитель
Заведующий кафедрой,	ученая степень, звание
ученая степень, звание	должность, место работы
	/
(фамилия, И., О.) / (подпись)	(фамилия, И., О.) / (подпись)
«»20г.	«»20г.

Содержание

1	Вве	дение	3
2	Обз	ор литературы	4
	2.1	Нелинейно-оптические хромофоры и их применение	2
	2.2	Сопряженные донорно-акцепторные хромофоры	5
	2.3	Подходы к синтезу триарилпиразолинов	7
		2.3.1 Синтез из халконов и гидразинов	7
		2.3.2 Синтез из аналогов халконов	ç
		2.3.3 Синтез [3 + 2] циклоприсоединением	11
	2.4	Реакции пиразолинов	13
		2.4.1 Реакции окисления	13
		2.4.2 Реакции восстановления	14
3	Резу	льтаты и обсуждение	15
	3.1	Взаимодействие формилированного декафтортриарилпиразолина с бинуклеофи-	
		лами	15
	3.2	Введение разделительного блока	16
4	Экс	периментальная часть	21
5	Зак	тючение	25
П	рилох	кение А Спектры	26
Cı	писок	сокращений	3 1
Cı	писок	литературы	32

1 Введение

Увеличивающиеся объемы передаваемой информации ставят задачу создания новых методов ее обработки, в том числе оптических. Большую перспективу имеют электрооптические (ЭО) модуляторы, основанные на композициях хромофор-полимер. Рабочей средой в таких устройствах является органический донорно-акцепторный хромофор, проявляющий нелинейность второго порядка.

Органические нелинейно-оптические (НЛО) материалы обладают важным преимуществом относительно неорганических — бо́льшими значениями НЛО восприимчивости второго порядка и, соответственно, меньшими величинами управляющих напряжений, и относительно полупроводниковых — высокой температурной стабильностью спектральных ЭО свойств.

Отличительным свойств органических НЛО материалов является возможность получения хромофоров, поглощающих в заданной области спектра. В настоящее время актуальны разработки материалов, работающих в двух спектральных областях: 1300–1550 нм (область нулевой дисперсии кварцевого оптического волокна) и 830–900 нм (окно прозрачности атмосферы).

Важными являются также пленкообразующие свойства органических хромофоров, так как эффективность работы ЭО модулятора зависит, в том числе, от эффективности ориентации молекул хромофора в полимерной матрице. С этой целью в структуру хромофоров вводятся разветвленные (дендроидные) заместители, препятствующие агрегации молекул хромофора в полимере при больших концентрациях.

Синтез хромофоров для ЭО модуляторов является одним из основных направлений научной тематики в Лаборатории органических светочувствительных материалов НИОХ СО РАН. В качестве таких хромофоров используются полиметиновые красители биполярной структуры с различной длиной полиметиновой цепи. Ранее в лаборатории был синтезирован ряд новых хромофоров для спектральной области 720–760 нм с использованием полифторированных триарилпиразолинов в качестве донорных блоков [1].

Целью данной работы является синтез новых нелинейных хромофоров на основе полифторированных триарилпиразолинов. Таким образом, были сформулированы следующие задачи:

- 1. Разработать подход к синтезу нелинейных хромофоров на основе полифторированных триарилпиразолинов, замещенных бифункциональными нуклеофилами для области 500—600нм и для ИК-области.
- 2. Оптимизировать методику введения в молекулу хромофора дендроидных заместителей.

2 Обзор литературы

2.1 Нелинейно-оптические хромофоры и их применение

Нелинейные оптические среды — это такие среды, в которых вектор поляризации \mathbf{P} зависит от напряженности внешнего электрического поля \mathbf{E} нелинейно:

$$\mathbf{P} = \mathbf{P_0} + \chi_{ij}^{(1)} E_i + \chi_{ijk}^{(2)} E_i E_j + \cdots,$$
 (2.1)

Разобраться с тензорагде $\chi^{(n)}$ – n-ый нелинейный коэффициент.

Такое свойство этих сред позволяет проявляться нелинейными оптическим эффектам: генерации кратных гармоник, сложению частот, генерации разностной частоты и другим многофотонным процессам.

Нелинейность второго порядка позволяет управлять нелинейными эффектами с помощью внешнего электрического поля (эффект Поккельса). Она требует отсутствия центра симметрии в молекуле; на практике это достигается использованием асимметричного донорно-акцепторного хромофора. Второй нелинейный коэффициент образца $\chi_{ijk}^{(2)}$ зависит от молекулярной восприимчивости β_{ijk} следующим образом:

$$\chi^{(2)} \propto N \beta_{ijk} \langle \cos^3 \theta \rangle,$$
 (2.2)

где N —плотность образца (м $^{-3}$), член $\langle \cos^3 \theta \rangle$ соответствует отклонению формы молекулы от сферы. Тогда основной элемент тензора электрооптического эффекта Поккельса r_{33} выражается как:

$$r_{33} = \frac{-2\chi^{(2)}}{\eta^4},\tag{2.3}$$

где η –показатель преломления.

Таким образом, для максимизации нелинейных свойств хромофоров согласно уравнению 2.2 необходимо увеличивать как молекулярную восприимчивость β , которая зависит от структуры хромофора, так и произведение $N\langle\cos^3\theta\rangle$, которое зависит от расположения молекул хромофора в матрице и межмолекулярного взаимодействия [2].

Оно надо настолько подробно?

Материалы на основе нелинейных донорно-акцепторных хромофоров применяются в электрооптических (ЭО) модуляторах. Электрооптический модулятор — устройство сопряжения между электрическими и оптическими системами связи, позволяющее преобразовывать электрический сигнал в оптический [3].

Большинство современных коммерческих образцов ЭО модуляторов основаны на неорганических нелинейно-оптических материалах, например на ниобате лития. Неорганические НЛО материалы по сравнению с органическими имеют ряд недостатков: низкая нелинейная

восприимчивость и, как следствие, высокие значения управляющих напряжений, зависимость НЛО свойств от температуры и ограниченность полосы модулируемого излучения.

Таким образом, применение органических материалов полимер-хромофор позволяет создавать более эффективные ЭО модуляторы с использованием методов фотолитографии и микропечати [4].

2.2 Сопряженные донорно-акцепторные хромофоры

Сопряжённые донорно-акцепторные хромофоры представляют большой интерес из-за их электрооптических свойств: система сопряженных двойных связей позволяет образовать низколежащую НСМО и реализовать внутримолекулярный перенос заряда. Они применяются в таких областях, как органическая электроника, электрооптика, фотовольтаика [5].

Общая структура донорно-акцепторного хромофора представлена на Рис. 2.1 и включает в себя донорный блок (**D**), π -сопряженный мостик (π) и акцепторный блок (**A**).

Рис. 2.1: Общая структура донорно-акцепторных хромофоров

Внутримолекулярный перенос заряда хорошо заметен при сравнении спектров поглощения анилина, нитробензола, *пара*- и *мета*-нитроанилина (Рис. 2.2). В спектре *пара*-нитроанилина присутствует интенсивная полоса переноса заряда из-за сопряжения, присутствующего в молекуле и возможности образования цвиттерионной резонансной структуры. В спектре *мета*-нитроанилина соответствующая полоса имеет гораздо меньшую интенсивность из-за отсутствия сопряжения между нитрогруппой и аминогруппой [5].

Донорно-акцепторные хромофоры могут иметь различные организации: линейную (диполярную) — $D-\pi-A$, квадрупольную — $D-\pi-A-\pi-D$ или $A-\pi-D-\pi-A$, октапольную — $(D-\pi)_3-A$ или $(A-\pi)_3-D$. В литературе описаны хромофоры с более редкими структурами, такие как V-образная **1** [6], Y-образная [7], H-образная **2** [8] и X-образная **3** [9—11].

Рис. 2.2: Сравнение спектров поглощения анилина, нитробензола, *пара-* и *мета-*нитроанилина [5]

Рис. 2.3: Различные структуры нелинейных хромофоров

2.3 Подходы к синтезу триарилпиразолинов

2-Пиразолины (Рис. 2.4) были впервые синтезированы в 19 веке Фишером и Кнёвенагелем реакцией α,β-ненасыщенных альдегидов и кетонов с фенилгидразином при кипячении в уксусной кислоте.

Химия пиразолинов получила развитие в середине XX века в связи с применением арилпиразолинов в качестве оптических отбеливателей и органических сцинтиляторов. Благодаря их люминисцентным свойствам в настоящее они используются для создания органических светодиодов (OLED) [12—14].

Производные пиразолина проявляют биологическую активность, поэтому их синтез представляет большой интерес [15—17]. Пиразолины проявляют противомикробную [18], противодиабетическую [19], противоэпилептическую [20], антиоксидантную [21], противовоспалительную [22] активность.

Рис. 2.4: Структура и нумерация атомов 2-пиразолина

2.3.1 Синтез из халконов и гидразинов

Основным способом синтеза 2-пиразолинов является реакция конденсации халконов с гидразинами. Этот подход является достаточно общим, как было показано в работе [23], где таким способом была получена библиотека из 7680 1,3,5-триарилпиразолинов с различными заместителями во всех трех ароматических ядрах.

Схема 2.1: Синтез триарилпиразолинов с использованием халконов

Халконы представляют собой соединения с двумя электрофильными центрами — карбонильной группой и сопряженной связью C=C. Однако в реакциях халконов с гидразинами наблюдается высокая региоселективность (в отличие от, например, 1,3-дикетонов), в реакцию с атомом азота первой вовлекается карбонильная группа. Такое поведение обычно объясняют повышенной нуклеофильностью первичного атома азота в замещенных гидразинах по сравнению с вторичным.

Механизм образования пиразолинов (Схема 2.2) включает в себя образование гидразона и атаку вторичного атома азота на сопряженную двойную связь, замыкающую цикл. Стадия замыкания цикла является лимитирующей и ее скорость значительно зависит от пространственного и электронного строения гидразона, а также от кислотности среды.

Схема 2.2

В случае фенилгидразина лимитирующей стадией является дегидратация, а стадия циклизации является быстрой и самопроизвольной. На ход реакции в наибольшей мере влияет заместитель при карбонильной группе (R_1) и его влияние мало зависит от кислотности среды. Было показано, что реакция фенилгидразина с диарилиденацетонами происходит по фрагменту, содержащему донорную группу [24].

Обычно сначала получают халкон конденсацией Кляйзена-Шмидта в основных условиях и вводят его в реакцию с арилгидразином в кислых условиях. Однако описаны как конденсация в кислых условиях [25; 26], так и циклизация в основных [27—31].

Существует *one-pot* модификация этого метода (Схема 2.3), в этом варианте халкон не выделяется в индивидуальном виде, а сразу же реагирует с фенилгидразином, присутствующим в реакционной смеси. При этом реакция проводится целиком в основной среде [32].

$$R_1 = H, 4-Me, 4-CI, 4-OMe$$
 $R_2 = H, 4-Br, 4-CI, 4-OMe, 4-NO_2$

Схема 2.3

В недавнее время были предприняты попытки проводить реакцию в более экологичных условиях, используя в качестве циклизующего агента вольфрамсерную кислоту [33] и целлюлозосульфоновую кислоту [34]. Также в качестве экологически чистых методов исследовались синтез в водных растворах [35], механохимический синтез [36], микроволновый синтез [37] и ультразвуковой синтез [38].

дописать?

Получение полифторированных триарилпиразолинов несет в себе больше сложностей: в случае разных заместителей халкона часто не удается подобрать условия реакции таким образом, чтобы получать селективно один региоизомер — образуется смесь продуктов с разными заместителями в положениях 3 и 5. Так, в работе [39] изучается взаимодействие фенилгидразина с халконами, с одним полифторированным кольцом (Схема 2.4).

$$Ph \xrightarrow{F} F$$

$$R = F, OPh, N(CH2)5$$

$$PhNHNH2$$

$$R = F, OPh, N(CH2)5$$

$$R = F, OPh, N(CH2)5$$

Схема 2.4: Образование двух региоизомеров 2-пиразолина

Было обнаружено, что халконы с акцепторным заместителем при двойной связи при кипячении образуют один региоизомер пиразолина, а халконы с акцепторным заместителем при карбонильной группе — два региоизомера в сравнимых количествах. Это можно объяснить большим различием σ^* -констант заместителей при двойной связи (C_6F_5CO и Ph), из-за чего усиливается электрофильный характер β -атома углерода, что дает возможность нуклеофильной атаки фенилгидразина как по карбонильной группе, так и по двойной связи.

2.3.2 Синтез из аналогов халконов

Сопряженные енины можно считать аналогами халконов, поскольку при гидратации тройной связи образуется соответствующий кетон. В работе [40] была исследована реакция циклизации арилгидразинов с 1,3-енинами при катализе различными метал-содержащими реагентами (Схема 2.5). Было показано, что при микроволновом облучении смеси сопряженных енинов с арилгидразинами в присутствии Zn(OTf)₂ наблюдается наилучший выход соответствующих пира-

золинов. В ходе реакции происходит двойное гидроаминирование сначала тройной, а потом двойной связи.

$$\begin{bmatrix} PhMe \\ R_1 \\ R_2 \end{bmatrix}$$

$$\begin{bmatrix} R_1 \\ R_2 \\ R_1 \end{bmatrix}$$

$$\begin{bmatrix} R_1 \\ R_2 \\ R_1 \end{bmatrix}$$

Схема 2.5

Некоторые пропаргиловые спирты способны вступать в перегруппировку с образованием халконов. При исследовании реакции сочетания Соногаширы вторичных пропаргиловых спиртов с арилгалогенидами было обнаружено, что при наличии акцпторных заместителей в арилгалогениде такая перегруппировка может происходить под действием триэтиламина, который присутствует в реакционной смеси (Схема 2.6) [41].

Пропаргиловые спирты, не содержащие акцепторных заместителей, также способны вступать в эту перегруппировку, однако в более жестких условиях. В работе [42] была разработана и оптимизирована методика синтеза пиразолинов из пропаргиловых спиртов и арилгидразинов в присутствии tBuOK (Схема 2.7).

Схема 2.6

OH
$$HN^{NH_2}$$
 HN^{NH_2} H

Схема 2.7

2.3.3 *Синтез* [3 + 2] циклоприсоединением

Второй способ синтеза пиразолинов использует [3 + 2] циклоприсоединение илидов азометиновых иминов **4** к алкинам. Циклоприсоединение 1,3-диполей к диполярофилам является удобным способом получения пятичленных циклов. Наиболее известным примером таких реакций является присоединение азидов к алкинам. Считается, что [3 + 2] циклоприсоединение идет по согласованному механизму. Использование комплексов металлов с хиральными лигандами в качестве катализаторов позволяет селективно получать энантиомерно чистые пиразолины. Циклоприсоединение илидов азометиновых иминов к алкенам дает полностью насыщенные аналоги пиразолинов — пиразолидины [43].

Схема 2.8: Синтез триарилпиразолинов с использовнием [3 + 2] циклоприсоединения

Азометиновые имиды можно представить в виде четырех резонансных структур (Рис. 2.5) — двух иминных и двух диазониевых. Чаще всего их изображают с зарядами, локализованными на атомах азота, такое распределение зарядов соотносится с квантовомеханическими расчетами [43].

Рис. 2.5: Резонансные структуры илидов азометиновых иминов

Существует несколько способов получения илидов азометиновых иминов в основном in situ, включающие генерацию из гидразонов 5 с последующим [3+2] циклоприсоединением, генерацию из енгидразинов 6, взаимодействие 1,2-дизамещенных гидразинов 7 с карбенами,

взаимодействие азосоединений **8** с диазоалканами **9**, окисление N,N,N'-тризамещенных гидразинов **10**, 1,4-силатропный сдвиг в α -силилнитрозаминах и α -силилнитрозамидах **11** и метатезис 1,2-диарилдиазен-1-оксидов **12** [44].

Схема 2.9: Различные способы получения илидов азометиновых имидов

Синтез пиразолинов, исходя из ациклических илидов азометиновых иминов, получаемых *in situ*, был подробно изучен в работе [45]. В этой работе было синтезировано более 18 пиразолинов и проведена оптимизация условий реакции: было изучено влияние различных солей Cu(I) и заместителей лигандов и субстратов.

$$_{\text{HN-NH}}^{\text{Bz}}$$
 $_{\text{R}^2}^{\text{Bn}}$ $_{\text{CuAc}}^{\text{CuAc}}$ $_{\text{(R,R)-L}}^{\text{R}}$ $_{\text{R}^2}^{\text{Bz}}$ $_{\text{R}^2}^{\text{Br}}$ $_{\text{R}^2}^{\text{Bz}}$ $_{\text{R}^2}^{\text{R}}$ $_{\text{R}^2}^{\text{CO}_2\text{H}}$ $_{\text{R}^2}^{\text{CO}_2$

Схема 2.10: Энантиоселективный синтез пиразолинов с использованием [3 + 2] циклоприсоединения [45]

2.4 Реакции пиразолинов

2.4.1 Реакции окисления

Пиразолины неустойчивы к окислению — они могут быть переведены в соответствующие пиразолы действием различных окислителей (Схема 2.11). При этом возможно как стехимометрическое окисление [46—51], так и каталитическое [52—54].

$$hv$$
 CCI_4
 Ar_3
 $N-N$
 Ar_1
 Ar_2
 Ar_3
 $N-N$
 Ar_1
 Ar_1
 $CTEXHOMETPHYECKHM$
 $OKHICHALDER$

Схема 2.11: Окисление пиразолинов в пиразолы

Также описано окисление пиразолинов в хлорированных растворителях (1,2-дихлорэтан и CCl_4) под действием видимого света. В этом случае в качестве окислителя выступает растворитель. Для этой реакции в работах [55; 56] был предложен механизм (Схема 2.12), включающий фотовозбуждение молекулы приразолина, перенос электрона на молекулу растворителя и дальнейшие превращения получившегося катион-радикала.

$$Ar_{3} \xrightarrow{N-N} Ar_{2} \xrightarrow{hv} Ar_{2} \xrightarrow{hv} Ar_{3} \xrightarrow{N-N} Ar_{2} \xrightarrow{Ar_{3}} Ar_{2} \xrightarrow{N-N} Ar_{2} \xrightarrow{-CHCl_{3}} Ar_{3} \xrightarrow{N-N} Ar_{2} \xrightarrow{N-N} Ar_{2} \xrightarrow{N-N} Ar_{2} \xrightarrow{N-N} Ar_{2} \xrightarrow{N-N} Ar_{3} \xrightarrow{N-N} Ar_{2} \xrightarrow{N-N} Ar_{3} \xrightarrow{N-N} Ar_{2} \xrightarrow{N-N} Ar_{3} \xrightarrow{N-N} Ar_{2} \xrightarrow{N-N} Ar_{3} \xrightarrow{N-N} Ar_{4} \xrightarrow{N-N} Ar_{4} \xrightarrow{N-N} Ar_{5} \xrightarrow{N-N} Ar_{5}$$

Схема 2.12: Предполагаемый механизм окисления пиразолинов под воздействием света

Радкикальный характер этой реакции подтверждатеся тем, что добавление в реакционную смесь радикальных ингибиторов замедляют реакцию. Однако полного ингибирования не

наблюдается, поскольку стадия образования пиразолиниевого радикала не является лимитирующей [56].

2.4.2 Реакции восстановления

3 Результаты и обсуждение

Ранее было показано [1; 57], что формильные производные триарилпиразолинов, содержащих полифторфенильные остатки в положениях 5 или 3 пиразолинового цикла, могут служить эффективными донорами в синтезе сопряженных донорно-акцепторных хромофоров с поглощением при 720–760 нм. В развитие этой тематики была поставлена задача синтеза Д-А хромофоров с использованием декафторзамещенных производных триарилпиразолина. Наличие двух пентафторфенильных групп дает дополнительные возможности для модификации донорного фрагмента.

Альдегид **13** был наработан по литературной методике [39; 58]. Его получение представляет собой многостадийный процесс (Схема 3.1). Альдольно-кротоновой конденсацией пентафторацетофенона **14** с пентафторбензальдегидом **15** получали декафторхалкон **16**, который переводили в пиразолин **17** конденсацией с фенилгидразином. Далее кольцо в положении 1 пиразолина **17** формилировали реакцией Вильсмайера, получая альдегид **13**.

$$F = \begin{cases} F \\ F \\ F \end{cases} = \begin{cases} F \\ F$$

Схема 3.1: Синтез декафторпиразолина

3.1 Взаимодействие формилированного декафтортриарилпиразолина с бинуклеофилами

Далее атом фтора в *пара*-положении обоих колец замещали на бифункциональный нулеофил: 4-гидроксипиперидин или пиперазин (Схема 3.2). При 60 °C реакция замещения фтора в обеих пентафторфенильных группах на остатки 4-гидроксипиперидина не идет до конца, в смеси присутствует примесь исходного соединения. Поэтому реакционную смесь выдерживали

при 100 °C. Из реакционной смеси были выделены два соединения — целевой альдегид с двумя гидроксипиперидиновыми остатками и альдегид, содержащий в одном из колец диметиламиногруппу. Установить место вступления диметиламиногруппы представляет ближайшую задачу.

Первоначально пиперазин вводили в тех же условиях, что и 4-гидроксипиперидин при этом из реакционной смеси был выделен только продукт олигомеризации (сшивки) по пиперазиновым группам. При проведении реакции при температуре 80 °C и десятикратном избытке пиперазина в реакционной смеси удается выделить продукт замещения обоих атомов фтора на остатки пиперазина в смеси с, предположительно, продуктом замещения одного из атомов фтора на диметиламиногруппу, аналогично реакции с 4-гидроксипиперидином.

Спектры ЯМР продукта **18а** явно отражают его структуру. В спектре ЯМР ¹Н наблюдаются сигнал альдегдного протона; сигналы системы *АА'ВВ' пара*-фениленового кольца; три дублета дублетов, соответствующие системе ABX пиразолинового кольца; в сильном поле — мультиплеты, соответствующие протонам пиперидиногруппы, в том числе сложный мультиплет, принадлежащий протону СН–ОН. Спектр ¹⁹F также имеет характерный вид и содержит уширенный синглет, который соответствует атомам фтора в *орто*-положении кольца в 5 положении пиразолина. Считается, что это уширение связано с взаимодействием этих атомов фтора с ароматическим кольцом в 1 положении пиразолина.

Схема 3.2: Замещение атомов фтора на остатки 4-гидроксипиперидина

3.2 Введение разделительного блока

После этого гидроксигруппу альдегида **18a** ацилировали хлористым бензоилом (Схема 3.3). Были испытаны два подхода: бензоилирование большим избытком хлористого бензоила и бен-

зоилирование с катализом DMAP и стехиометрическим количеством хлористого бензоила. В результате было обнаружено, что использование DMAP позволяет сократить время реакции с 6–8 часов до 2 в случае хлористого бензоила и требует гораздо меньшего избытка хлорангидрида (1.25 экв. против 3 экв. при проведении реакции без катализатора).

О полном ацилировании ОН-групп можно судить по смещению сигнала протонов CH-OH в слабое поле.

Схема 3.3

Также мы исследовали альтернативную последовательность реакций: конденсацию альдегида **18a** с дицианоизофороном и последующее ацилирование полученного ОН-красителя **21a** (Схема 3.4).

При сопоставимых выходах на стадии ацилирования более выгодным является подход с конденсацией и последующим ацилированием, поскольку он позволяет использовать меньшее количество хлорангидрида, получение которого представляется собой значительную сложность. В итоге оптимизированная последовательность реакций и методика ацилирования позволила снизить требуемое количество ацилирующего реагента.

Мы обнаружили, что при длительной выдержке реакционной смеси вместо пиразолина **20a** образуется соответствующий пиразол. На образование пиразола указывает отсутствие в 1 Н ЯМР спектре сигналов ABX-системы пиразолина и отсутствие в спектре 19 Г уширенного синглета.

Также мы наблюдали окисление пиразолина в пиразол даже при кратковременной выдержке в темноте в хлорированных растворителях (CH_2Cl_2 и $CDCl_3$). При этом для предшественника соединения **20a** — альдегида **18a** окисления не наблюдалось даже при длительной выдержке в хлороформе на свету. Это может быть связано с предполагаемым механизмом окис-

R = Ph (a); TAFS (b); TATBS (c); MATBS (d)

Схема 3.4

ления (Схема 2.12 на стр. 13); введение в молекулу акцептора упрощает образование цвиттерионной структуры, играющей ключевую роль в процессе окисления. Таким образом, наилучшая стратегия при синтезе и очистке производных альдегида **18а** — избегать хлорсодержащих растворителей.

как-то кри-

В спектре ЯМР 1 Н соединения **21а** характеристическими являются сигналы AB-системы двойной связи с КССВ около 15 Γ ц, что указывает на E-конфигурацию двойной связи, синглет при 6.72 м.д., соответствующий протону при двойной связи дицианоизофорона, два синглета при 2.61 и 2.55 м.д., принадлежащих CH_{2} группам дицианоизофорона и синглет при 1.04 м.д., принадлежащий двум метильными группам дицианоизофорона.

По оптимизированной методике (Схема 3.4) мы синтезировали производные соединений **21a** и **22a** с разделительными блоками (Рис. 3.1) — эфиры **20a**—**c** и **23a**—**d**. В целом, реакция

ацилирования идет достаточно быстро и с хорошим выходом (Таблица 3.1, Таблица 3.2), однако в случае соединения **23d** выход продукта составляет всего 7.5%.

Рис. 3.1: Структуры использованных разделительных блоков

Это может быть связано с тем, что хлорангидрид является стерически затрудненным, а следовательно, затруднен подход ОН-группы к карбонильной группе. Для получения соединения **23d** мы использовали несколько вариаций общей методики: увеличение времени реакции, замена растворителя с бензола на ацетонитрил, проведение реакции при повышенной температуре с нагревом микроволновым излучением, однако это не привело к повышению выхода.

В качестве альтернативных способов получения целевых эфиров мы также исследовали транслитерацивеакцию Мицунобу и реакцию Штеглиха.

Таблица 3.1

№	Реагент	Субстрат	Экв. реагента	Продукт	Условия	Время реакции, ч	Выход, %
1	PhCOCl	18a	6	19	PhH, NEt ₃	24	74
2	PhCOCl	18a	2.5	19	PhH, NEt ₃ , DMAP	6	74
3	PhCOCl	21a	3	20a	PhH, NEt ₃ , DMAP	2	25
4	TAFS-Cl	21a	3	20b	PhH, NEt ₃ , DMAP	2	30
5	TATBS-Cl	21a	3	20c	PhH, NEt ₃ , DMAP	6	55

Таблица 3.2: Результаты ацилирования соединения 22а

№	Реагент	Экв. реагента	Продукт	Условия	Время реакции, ч	Выход, %
1	PhCOCl	1.5	23a	PhH, NEt ₃ , DMAP	4	92
2	TAFS-Cl	1.5	23b	PhH, NEt ₃ , DMAP	2.5	97
3	TATBS-Cl	1.5	23c	PhH, NEt ₃ , DMAP	3	59
4	TATBS-OH	1	23c	ТГФ, DIAD, PPh_3	2.5	
5	MATBS-Cl	1.5	23d	PhH, NEt ₃ , DMAP	12	7.5
6	MATBS-Cl	1.5	23d	MeCN, NEt ₃ , DMAP	36	7.5
71	MATBS-Cl	1.5	23d	PhMe, NEt ₃ , DMAP	0.5	2.5

 $^{^{1}}$ Реакцию проводили в микроволновом реакторе при температуре 150 $^{\circ}\mathrm{C}$

написать

Спектры эфиров

4 Экспериментальная часть

Спектральные данные получены в Исследовательском химическом центре коллективного пользования СО РАН. Спектры ЯМР регистрировали на спектрометрах Bruker AV-300 (1 H, 300.13 МГц; 19 F, 282.37 МГц) и Bruker AV-400 (1 H, 400.13 МГц) в дейтерохлороформе, ДМСО- 4 G и ацетоне- 4 G. Значения химических сдвигов протонов приведены относительно сигналов остаточных протонов растворителей. При регистрации спектров ЯМР 19 F в качестве внутреннего стандарта использовали 6 G (6 F = 0 м.д.). Спектры ЯМР 13 C регистрировали в режиме широкополосной развязки (broadband decoupling, ВВ). Электронные спектры поглощения регистрировали на спектрофотометре Hewlett Packard 8453. Масс-спектры высокого разрешения получены на приборе DFS (Thermo Fisher Scientific) в режиме прямого ввода, энергия ионизации 70 эВ. Масс-спектры методом MALDI-TOF получены на приборе Autoflex Speed MALDI-TOF «Вгикег Daltonic» (Германия) в режиме положительного отраженного иона, частота лазера — 1000 Гц, ускоряющее напряжение — 19 кВ 1 .

уточнить

В работе использовались растворители: следующие реактивы И 4-гидроксипиперидин 97% (Alfa Aesar), пиперазин 99% (Aldrich), триэтиламин 99.5 % (AppliChem), фенилгидразин 97 % (Acros Organics).

Альдегид 13 синтезировали по [39; 58].

4-3,5-Бис[2,3,5,6-тетрафтор-4-(4-гидроксипиперидин-1-ил)фенил]-4,5-дигидро-1*H*-

R19

пиразол-1-илбензальдегид (18а). Раствор 3.00 г (5.9 ммоль) альдегида **13** и 1.80 г (17.8 ммоль) 4-гидроксипиперидина в 50 мл сухого ДМФА нагревали до 100 °C, выдерживали при этой температуре 6 часов и оставляли на ночь. Реакционную смесь выливали в 400 мл воды со льдом, перемешивали до таяния льда и отфильтровывали осадок. Осадок на фильтре промывали водой до нейтральной реакции, затем гексаном и сушили на воздухе. Желтооранжевый порошок, выход 3.70 г (93 %). Продукт очищали колоночной хроматографией на SiO₂, элюент — CH₂Cl₂: ацетонитрил, градиент 5:1 – 2:3. Собирали желтые фракции, анализировали ТСХ (CH₂Cl₂: ацетонитрил, 2:1, $R_f \approx 0.25 - 0.3$). $T_{пл.}$ 155–159 °C. МС (DFS) Найдено [M⁺]: 668.2023. $C_{32}H_{28}O_3N_4F_8$. Рассчитано: М 668.2028. ЯМР ¹H (ацетон-d₆) δ , м.д.: 9.77 (с, 1 H, CHO), 7.76 (д, 2 H, 2 H_{Ar}, J = 8.8 Гц), 7.17 (д, 2 H, 2 H_{Ar}, J = 8.8 Гц), 5.98, 4.16, 3.90 (все дд, все по 1 H, система ABX пиразолина, J = 18.2, 13.1, 5.3 Гц), 3.86 – 3.69 (м, 3 H), 3.63 – 3.47 (м, 2 H), 3.47 – 3.31 (м, 2 H), 3.28 – 3.17 (м, 2 H), 3.17 – 3.03 (м, 2 H), 2.00 – 1.82 (м, 4 H), 1.77 – 1.50 (м, 4 H). ЯМР ¹⁹F (ацетон-d₆) δ , м.д.: 22.27 (дд, 2 F, J = 18.4, 6.9 Гц), 18.05 (уш. с., 2 F), 12.62 (дд, 2 F, J = 20.8, 6.5 Гц), 11.67 (дд, 2 F, J = 17.6, 6.0 Гц). ЯМР ¹³C (CDCl₃) δ , м.д.: 190.41, 147.40, 146.52, 146.02, 144.49, 144.05, 142.98, 141.03, 140.61,

¹Исследование выполнено в центре масс-спектрометрического анализа ИХБФМ СО РАН

131.67, 131.03, 130.93, 128.59, 112.66, 110.35, 110.22, 110.10, 104.00, 77.15, 76.90, 76.64, 67.18, 67.15, 51.57, 48.54, 48.51, 48.48, 48.44, 43.57, 34.85, 34.83.

R20

R22

R24

[1-(4-Формилфенил)-4,5-дигидро-1H-пиразол-3,5-диил]бис(2,3,5,6-тетрафтор-4,1-фенилен)бис(пиперидин-1,4-диил)дибензоат (24а). Способ 1 Суспензию 0.50 г (0.75 ммоль) альдегида 18а в 10 мл сухого бензола доводили до кипения и прибавляли к ней 0.62 мл (4.5 ммоль) триэтиламина и 0.35 мл (3.0 ммоль) хлористого бензоила. После двух часов кипячения прибавляли еще столько же триэтиламина и хлористого бензоила и кипятили еще сутки. Реакционную смесь выливали в 100 мл воды и добавляли бензол до разделения фаз. Органическую фазу отделяли, сушили над Na₂SO₄ и удаляли растворитель в вакууме. Твердый остаток очищали колоночной хроматографией на SiO₂, элюент — бензол : CHCl₃, градиент 1:0-0:1. Собирали желтые фракции, элюент удаляли в вакууме и повторно очищали колоночной хроматографией на SiO₂, элюент — смесь бензол : CH₂Cl₂ 1:1. Собирали желтые фракции, растворитель удаляли в вакууме. Желтое масло, выход 0.49 г (74 %).

Способ 2 К суспензии $0.20\,\Gamma$ ($0.3\,\text{ммоль}$) альдегида 18a в 5 мл сухого бензола, прибавляли $0.11\,\text{мл}$ ($0.75\,\text{ммоль}$) хлористого бензоила, $0.13\,\text{мл}$ ($0.75\,\text{ммоль}$) триэтиламина и 2 мг DMAP. Реакционную смесь кипятили 6 часов, оставляли на ночь и удаляли растворитель в вакууме. Полученное масло очищали колоночной хроматографией на SiO_2 , элюент — смесь ацетонитрил : CH_2Cl_2 , градиент 1:1-8:1, собирали желтую фракцию, элюент удаляли в вакууме, полученное масло промывали смесью гексана с диэтиловым эфиром 1:1. Светло-желтый порошок, выход $0.19\,\Gamma$ ($74\,\%$). $T_{\text{пл.}}\,180-183\,^{\circ}\text{C}.$ MC (DFS) Найдено [M⁺]: $876.2548.\,\,\text{C}_{46}\text{H}_{36}\text{O}_{5}\text{N}_{4}\text{F}_{8}.$ Рассчитано: М $876.2553.\,\,\text{ЯМР}\,^{1}\text{H}$ (CDCl₃) δ , м.д.: $9.77\,\,\text{(c, 1 H, CHO)}$, $8.00-8.14\,\,\text{(m, 4 H}_{Ar)}$, $7.73\,\,\text{(д, 2 H}_{Ar},\,J=8.4\,\,\Gamma\text{ц)}$, $7.61-7.52\,\,\text{(m, 2 H}_{Ar)}$, $7.50-7.39\,\,\text{(m, 4 H}_{Ar)}$, $7.13\,\,\text{(д, 2 H}_{Ar},\,J=8.4\,\,\Gamma\text{ц)}$, $5.75,\,3.95\,\,\text{(оба дд, оба по 1 H, пиразолин, }J=17.8,\,13.0,\,5.9\,\,\Gamma\text{ц)}$, $5.35-5.11\,\,\text{(m, 3 H, 2 CH-OH, пиразолин)}$, $3.65-3.41\,\,\text{(m, 4 H)}$, $3.41-3.13\,\,\text{(m, 4 H)}$, $2.26-2.03\,\,\text{(m, 4 H)}$, $2.03-1.87\,\,\text{(m, 4 H)}.\,\,\text{ЯМР}\,^{19}\text{F}$ (CDCl3) δ , м.д.: $21.14\,\,\text{(д, 2 F, }J=12.2\,\,\Gamma\text{ц)}$, $16.72\,\,\text{(уш. c, 2 F)}$, $11.74\,\,\text{(c, 2 F)}$, $11.14-9.71\,\,\text{(m, 2 F)}$.

(E)-{[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]винил}фенил)-4,5-дигидро-1H-пиразол-3,5-диил]бис(2,3,5,6-тетрафтор-4,1-фенилен)}бис(пиперидин-

1,4-диил)дибензоат (20а). Способ 1. К суспензии $0.48\,\Gamma$ ($0.55\,\text{ммоль}$) альдегида **24а** в $15\,\text{мл}$ бутанола прибавляли $0.10\,\Gamma$ дицианоизофорона и 5 капель морфолина. Смесь кипятили в атмосфере аргона 7 часов, растворитель удаляли в вакууме. Твердый остаток очищали колоночной хроматографией на SiO_2 , элюент — CH_2Cl_2 : гексан, градиент 1:1-0:1, затем ацетонитрил. Собирали красные фракции.

Способ 2. К суспензии 0.10 г (0.12 ммоль) соединения 21а в 5 мл сухого бензола прибавляли 0.35 мл (0.30 ммоль) хлористого бензоила, 0.42 мл (0.30 ммоль) триэтиламина и 7 мг DMAP. Реакционную смесь кипятили в атмосфере аргона 10 часов, добавив еще столько же хлористого бензоила. Растворитель удаляли в вакууме. Очищали колоночной хроматографией на SiO_2 , элюент — смесь ацетонитрил : CH_2Cl_2 , градиент 1:10 — 1:1. Собирали оранжевые фракции, растворитель удаляли в вакууме. Темно-оранжевый порошок, выход $T_{пл.}$ 145—147 °C. МС (MALDI-TOF) Найдено $[M+H]^+$: 1045.3609. $C_{56}H_{48}O_4N_6F_8$. Рассчитано: [M+H] 1045.3682.

(Е)-2-[3-(4-{3,5-Бис[2,3,5,6-тетрафтор-4-(4-гидроксипиперидин-1-ил)фенил]-4,5-

дигидро-1*H*-пиразол-1-ил}стирил)-5,5-диметилциклогекс-2-ен-1-илиден]малононитрил (21а). К раствору 0.25 г (0.37 ммоль) альдегида 25а и 0.070 г (0.37 ммоль) дицианоизофорона в 5 мл бутанола прибавляли 5 капель морфолина, кипятили в атмосфере аргона 7 часов и оставляли на ночь. Выпавший осадок отфильтровывали, промывали этанолом и диэтиловым эфиром. Темно-красный порошок, выход 0.13 г (42%). ЯМР 1 H (CDCl₃) δ , м.д.: 7.37 (д, $2\,\mathrm{H}_{\mathrm{Ar}}$, $J=8.7\,\mathrm{\Gamma u}$), 7.05 (д, $2\,\mathrm{H}_{\mathrm{Ar}}$, $J=8.7\,\mathrm{\Gamma u}$), 6.96 (д, $1\,\mathrm{H}$, $\mathrm{CH}=$, $J=15.9\,\mathrm{\Gamma u}$), 6.80 (д, $1\,\mathrm{H}$, $=\mathrm{CH}$, $J=15.9\,\mathrm{\Gamma u}$), 6.73 (с, $1\,\mathrm{H}$, $\mathrm{CH}_{\mathrm{isoph}}$), 5.71 (дд, $1\,\mathrm{H}_{\mathrm{pyr}}$, J=13.0, $5.6\,\mathrm{\Gamma u}$), 3.99-3.76 (м, $3\,\mathrm{H}$, $2\,\mathrm{CH}_{\mathrm{pip}}$, $1\,\mathrm{H}_{\mathrm{pyr}}$), 3.75-3.60 (м, $2\,\mathrm{H}$, $2\,\mathrm{CH}_{\mathrm{pip}}$), 3.55-3.44 (м, $2\,\mathrm{H}$, $\mathrm{CH}_{\mathrm{2pip}}$), 3.44-3.31 (м, $3\,\mathrm{H}$, $\mathrm{CH}_{\mathrm{2pip}}$, $1\,\mathrm{H}_{\mathrm{pyr}}$), 3.25-3.02 (м, $4\,\mathrm{H}$, $2\,\mathrm{CH}_{\mathrm{2pip}}$), 2.55 (с, $2\,\mathrm{H}$, $\mathrm{CH}_{\mathrm{2isoph}}$), 2.41 (с, $2\,\mathrm{H}$, $\mathrm{CH}_{\mathrm{2isoph}}$), 1.97 (м, $4\,\mathrm{H}$,

Моноэфиры (общая методика) К раствору 0.10 г соединений 22а в 6 мл сухого бензола добавляли 1.25—1.5 экв. хлорангидридов, 2-3 экв. триэтиламина и 0.05 экв. DMAP. Полученную смесь кипятили до окончания реакции. Растворитель удаляли в вакууме, твердый остаток очищали колоночной хроматографией на SiO₂, элюент — бензол. Элюент удаляли в вакууме, твердый продукт промывали гексаном или смесью гексан-эфир.

 $2 \text{ CH}_{2\text{pip}}$), 1.78 – 1.63 (м, 4 H, 2 CH_{2pip}), 1.04 (с, 6 H, 2 CH_{3isoph}). ЯМР ¹⁹F (CDCl₃) δ , м.д.:

20.65 (дд, 2 F, J = 19.6, 7.9 Гц), 16.69 (уш. c, 2 F), 11.44 (c, 2 F), 10.11 (д, 2 F, J = 19.6, 8.3 Гц).

(E)-{[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]винил}фенил)-4,5-дигидро-1H-пиразол-3,5-диил]бис(2,3,5,6-тетрафтор-4,1-фенилен)}бис(пиперидин-1,4-диил) бис[4-метил-3,5-бис({[2,3,5,6-тетрафтор-4-(трифторметил)фенил]тио}метил)бензо-ат] (20b). По общей методике из $0.10\,\Gamma$ ($0.12\,\text{ммоль}$) соединения 21a, $0.24\,\Gamma$ ($0.36\,\text{ммоль}$, $3\,\text{экв.}$) ТАFSCl, $0.10\,\text{мл}$ ($0.72\,\text{ммоль}$, $6\,\text{экв.}$) триэтиламина и $0.001\,\Gamma$ ($0.05\,\text{экв.}$) DMAP. Время реакции $2\,\text{часа.}$ Твердый остаток после удаления растворителя очищали колоночной хроматографией на SiO_2 , элюент — CH_2Cl_2 . Темно-красный порошок, выход $0.075\,\Gamma$ ($30\,\%$). $T_{пл.}\,93-95\,^\circ C$. МС (МАLDI-TOF) Найдено [M-H] $^-: 2119.2502. C_{92}H_{56}O_4N_6F_{36}S_4$. Рассчитано: [M-H] 2119.2598.

(E)-{[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]винил}фенил)-4,5-дигидро-1H-пиразол-3,5-диил]бис(2,3,5,6-тетрафтор-4,1-фенилен)}бис(пиперидин-1,4-диил) бис[3,5-бис({[4-(трет-бутил)фенил]тио}метил)-4-метилбензоат] (20с). По общей методике из $0.06\,\Gamma$ ($0.07\,$ ммоль) соединения 21a, $0.12\,\Gamma$ ($0.22\,$ ммоль) ТАТВЅСІ, $0.14\,$ мл ($1.1\,$ ммоль) триэтиламина и $0.001\,\Gamma$ ($0.05\,$ экв.) DMAP. Время реакции $6\,$ часов. Твердый остаток после удаления растворителя очищали колоночной хроматографией на SiO_2 , элюент — бензол. Темно-красный порошок, выход $0.070\,\Gamma$ ($55\,$ %). МС (MALDI-TOF) Найдено [M + H] $^+$: $1785.7141.\ C_{104}H_{108}O_4N_6F_8S_4$. Рассчитано: [M + H] 1785.7260.

R23

дендроиды

пиперидин с двумя

TAFS R30

пиперидин с двумя ТАТВЅ R33 пиеридин с одним TAFS R36 (E)-1-{4-[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]винил}фенил)-3-фенил-4,5-дигидро-1H-пиразол-5-ил]-2,3,5,6-тетрафторфенил}пиперидин-4-ил 4-метил-3,5-бис({[2,3,5,6-тетрафтор-4-(трифторметил)фенил]тио}метил)бензоат (23b). По общей методике из $0.10\,\Gamma$ ($0.15\,\text{ммоль}$) соединения 22a, $0.15\,\Gamma$ ($0.23\,\text{ммоль}$) ТАFSCl, $0.42\,\text{мл}$ ($0.23\,\text{ммоль}$) триэтиламина и $0.001\,\Gamma$ ($0.05\,$ экв.) DMAP. Время реакции 3 часа. Твердый остаток после удаления растворителя очищали колоночной хроматографией на SiO₂, элюент — бензол. Темно-красный порошок, выход $0.19\,\Gamma$ ($97\,\%$). $T_{\text{пл.}}$ 108– $111\,^{\circ}$ C. MC (MALDI-TOF) Найдено [M+H]⁺: $1308.2568.\,C_{63}H_{43}O_{2}N_{5}F_{18}S_{2}.\,$ Рассчитано: [M+H] 1308.2644.

пиеридин с одним TATBS R31 (E)-1-{4-[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]ви-нил}фенил)-3-фенил-4,5-дигидро-1H-пиразол-5-ил]-2,3,5,6-тетрафторфенил}пиперидин-4-ил 3,5-бис({[4-(трет-бутил)фенил]тио}метил)4-метилбензоат (23с). По общей методике из $0.10\,\Gamma$ ($0.15\,$ ммоль) соединения 22a, $0.12\,\Gamma$ ($0.23\,$ ммоль) ТАТВSСІ, $0.06\,$ мл ($0.4\,$ ммоль) триэтиламина и $0.001\,\Gamma$ ($0.05\,$ экв.) DMAP. Время реакции 3 часов. Твердый остаток после удаления растворителя очищали колоночной хроматографией на SiO_2 , элюент — бензол. Темно-красный порошок, выход $0.10\,\Gamma$ ($59\,$ %). $T_{\text{пл.}}\,$ 108– $110\,$ °C. МС (MALDI-TOF) Найдено [M+H]+: 1140.4823. $C_{69}H_{69}O_2N_5F_4S_2$. Рассчитано: [M+H] 1140.4902.

пиеридин с одним MATBS R32 (E)-1-{4-[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]винил}фенил)-3-фенил-4,5-дигидро-1H-пиразол-5-ил]-2,3,5,6-тетрафторфенил}пиперидин-4-ил 3,5-бис({[4-(трет-бутил)фенил]тио}метил)-2,4,6-триметилбензоат (23d). По общей методике из $0.09\,\Gamma$ ($0.14\,\text{ммоль}$) соединения 22a, $0.11\,\Gamma$ ($0.21\,\text{ммоль}$) МАТВЅСІ, $0.06\,\text{мл}$ ($0.4\,\text{ммоль}$) триэтиламина и $0.001\,\Gamma$ ($0.05\,$ экв.) DМАР. Время реакции 12 часов. Твердый остаток после удаления растворителя очищали колоночной хроматографией на SiO_2 , элюент — бензол. Темно-красный порошок, выход $0.012\,\Gamma$ ($7.5\,\%$). $T_{\text{пл.}}$ 147–150 °C. МС (MALDI-TOF) Найдено $[M+H]^+$: 1168.5130. $C_{71}H_{73}O_2N_5F_4S_2$. Рассчитано: [M+H] 1168.5215.

5 Заключение

В ходе работы были достигнуты следующие результаты:

- 1. Начата работа по синтезу донорных блоков, исходя из декафторзамещенного трифенилпиразолина.
- 2. Синтезированы красители конденсацией бифункционально замещенных октафтортрифенилпиразолинов с трицианоизофороном.
- 3. Исследованы альтернативные пути бензоилирования хромофоров как модельной реакции для введения дендроидных фрагментов.
- 4. Осуществлен синтез аналога известного хромофора с новым дендроидным заместителем TAFS, поглощающего в ИК области спектра (λmax 936 нм).

Приложение А Спектры

Рис. А.1: Спектр ЯМР ¹Н соединения **18а**

Рис. А.2: Спектр ЯМР ¹⁹F соединения **18a**

Рис. А.3: Спектр ЯМР ¹³С соединения **18а**

Рис. А.4: Спектр ЯМР ¹Н соединения **24**а

Рис. А.5: Спектр ЯМР ¹⁹F соединения **24a**

Список сокращений

НСМО Низшая Свободная Молекулярная Орбиталь

in situ В реакционной смеси

ДМФА N,N-диметилформамид

DMAP 4-Диметиламинопиридин

DIAD Диизопропилазодикарбоксилат

КССВ Константа спин-спинового взаимодействия

TAFS Toluic Acid Fluorinated Sulfide (бис[4-метил-3,5-бис({[2,3,5,6-тетрафтор-4-(трифторметил)фенил]тио}метил)бензоил)

TATBS Toluic Acid Tert-Butyl Sulfide (3,5-бис({[4-(трет-бутил)фенил]тио}метил)4-метилбензоил)

MATBS Mesitylenecarboxylic Acid Tert-Butyl Sulfide (3,5-бис({[4-(трет-бутил)фенил]-тио}метил)-2,4,6-триметилбензоил)

Список литературы

- Формильные производные аминозамещенных полифторфенил-4,5-дигидро-1Н-пиразолов: синтез и использование в качестве донорных блоков в структурах нелинейно-оптических хромофоров / В. Шелковников [и др.] // Журнал органической химии. 2019. Т. 55, № 10. С. 1551—1566.
- 2. Dalton L. R., Sullivan P. A., Bale D. H. Electric Field Poled Organic Electro-optic Materials: State of the Art and Future Prospects // Chemical Reviews. 2010. T. 110, № 1. C. 25—55.
- 3. *Афанасьев В.* Электрооптический модулятор по схеме интерферометра Маха-Цендера // Прикладная фотоника. 2016. Т. 3, № 4. С. 341—369.
- 4. Recent Progress of Imprinted Polymer Photonic Waveguide Devices and Applications / X.-Y. Han [и др.] // Polymers. 2018. Т. 10, № 6. С. 603.
- 5. *Bureš F.* Fundamental aspects of property tuning in push–pull molecules // RSC Adv. 2014. T. 4, № 102. C. 58826—58851.
- 6. Donor-(π -bridge)-azinium as D- π -A + one-dimensional and D- π -A +- π -D multidimensional V-shaped chromophores / M. A. Ramírez [μ др.] // Organic and Biomolecular Chemistry. 2012. T. 10, № 8. C. 1659—1669.
- 7. Benzothiazoles with tunable electron-withdrawing strength and reverse polarity: A route to triphenylamine-based chromophores with enhanced two-photon absorption / P. Hrobárik [и др.] // Journal of Organic Chemistry. 2011. Т. 76, № 21. С. 8726—8736.
- 8. Changing the shape of chromophores from "h-type" to "star-type": Increasing the macroscopic NLO effects by a large degree / W. Wu [и др.] // Polymer Chemistry. 2013. Т. 4, № 2. С. 378—386.
- 9. Chase D. T., Young B. S., Haley M. M. Incorporating BODIPY fluorophores into tetrakis(arylethynyl)benzenes // Journal of Organic Chemistry. 2011. T. 76, № 10. C. 4043—4051.
- 10. Property tuning in charge-transfer chromophores by systematic modulation of the spacer between donor and acceptor / F. Bureš [и др.] // Chemistry A European Journal. 2007. Т. 13, № 19. С. 5378—5387.
- 11. Dicyanopyrazine-derived push-pull chromophores for highly efficient photoredox catalysis / Y. Zhao [и др.] // RSC Advances. 2014. Т. 4, № 57. С. 30062—30067.
- 12. Blue organic light-emitting diodes based on pyrazoline phenyl derivative / P. Stakhira [и др.] // Synthetic Metals. 2012. Т. 162, № 3/4. С. 352—355.

- 13. *Ramkumar V.*, *Kannan P.* Highly fluorescent semiconducting pyrazoline materials for optoelectronics // Optical Materials. 2015. T. 46. C. 605—613.
- 14. *Vandana T.*, *Ramkumar V.*, *Kannan P.* Synthesis and fluorescent properties of poly(arylpyrazoline)'s for organic-electronics // Optical Materials. 2016. T. 58. C. 514—523.
- 15. A Comprehensive Review on Recent Developments in the Field of Biological Applications of Potent Pyrazolines Derived from Chalcone Precursors / V. V. Salian [и др.] // Letters in Drug Design & Discovery. 2018. Т. 15, № 5. С. 516—574.
- 16. 2-Pyrazolines as Biologically Active and Fluorescent Agents, An Overview / P. Singh [и др.] // Anti-Cancer Agents in Medicinal Chemistry. 2018. Т. 18, № 10. С. 1366—1385.
- 17. Pharmacological Activity of 4,5-Dihydropyrazole Derivatives (Review) / D. D. Korablina [и др.] // Pharmaceutical Chemistry Journal. 2016. Т. 50, № 5. С. 281—295.
- 18. *Hassan S*. Synthesis, Antibacterial and Antifungal Activity of Some New Pyrazoline and Pyrazole Derivatives // Molecules. 2013. T. 18, № 3. C. 2683—2711.
- 19. Synthesis and DP-IV inhibition of cyano-pyrazoline derivatives as potent anti-diabetic agents / J. H. Ahn [и др.] // Bioorganic & Medicinal Chemistry Letters. 2004. Т. 14, № 17. С. 4461—4465.
- 20. Synthesis, characterization and pharmacological properties of some 4-arylhydrazono-2-pyrazoline-5-one derivatives obtained from heterocyclic amines / Ş. Güniz Küçükgüzel [и др.] // European Journal of Medicinal Chemistry. 2000. Т. 35, № 7/8. С. 761—771.
- 21. *Jagadish P. C., Soni N., Verma A.* Design, Synthesis, and In Vitro Antioxidant Activity of 1,3,5-Trisubstituted-2-pyrazolines Derivatives // Journal of Chemistry. 2013. T. 2013. C. 1—6.
- 22. Barsoum F. F., Hosni H. M., Girgis A. S. Novel bis(1-acyl-2-pyrazolines) of potential anti-inflammatory and molluscicidal properties // Bioorganic & Medicinal Chemistry. 2006. T. 14, № 11. C. 3929—3937.
- 23. Automated parallel synthesis of chalcone-based screening libraries / D. G. Powers [и др.] // Tetrahedron. 1998. Т. 54, № 16. С. 4085—4096.
- 24. *Chebanov V. A.*, *Desenko S. M.*, *Gurley T. W.* Azaheterocycles Based on α,β -Unsaturated Carbonyls. Springer-Verlag Berlin Heidelberg, 2008.
- 25. *Wang Z.* Claisen-Schmidt Condensation // Comprehensive Organic Name Reactions and Reagents. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. C. 660—664.

- 26. *Nielsen A. T., Houlihan W. J.* The Aldol Condensation // Organic Reactions. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. C. 1—438.
- 27. Synthesis and antimicrobial activity of quinoline-based 2-pyrazolines / M. Munawar [и др.] // Chemical Papers. 2008. Т. 62, № 3. С. 288—293.
- 28. Development of potential selective and reversible pyrazoline based MAO-B inhibitors as MAO-B PET tracer precursors and reference substances for the early detection of Alzheimer's disease / C. Neudorfer [и др.] // Bioorganic & Medicinal Chemistry Letters. 2014. Т. 24, № 18. С. 4490—4495.
- 29. Solution-Phase Parallel Synthesis of a Library of \triangle 2 -Pyrazolines / S. Manyem [и др.] // Journal of Combinatorial Chemistry. 2007. Т. 9, № 1. С. 20—28.
- 30. *Patel V. M.*, *Desai K. R.* Eco-friendly synthesis of pyrazoline derivatives over potassium carbonate // Arkivoc. 2004. T. 2004, № 1. C. 123.
- 31. Structure-guided discovery of 1,3,5-triazine–pyrazole conjugates as antibacterial and antibiofilm agent against pathogens causing human diseases with favorable metabolic fate / B. Singh [и др.] // Bioorganic & Medicinal Chemistry Letters. 2014. Т. 24, № 15. С. 3321—3325.
- 32. *Farooq S.*, *Ngaini Z.* One-Pot and Two-Pot Synthesis of Chalcone Based Mono and Bis-Pyrazolines // Tetrahedron Letters. 2020. T. 61, № 4. C. 151416.
- 33. Rahmatzadeh S. S., Karami B., Khodabakhshi S. A Modified and Practical Synthetic Route to Indazoles and Pyrazoles Using Tungstate Sulfuric Acid // Journal of the Chinese Chemical Society. 2015. T. 62, № 1. C. 17—20.
- 34. *Daneshfar Z.*, *Rostami A.* Cellulose sulfonic acid as a green, efficient, and reusable catalyst for Nazarov cyclization of unactivated dienones and pyrazoline synthesis // RSC Advances. 2015. T. 5, № 127. C. 104695—104707.
- 35. *Marković V., Joksović M. D.* "On water" synthesis of N-unsubstituted pyrazoles: semicarbazide hydrochloride as an alternative to hydrazine for preparation of pyrazole-3-carboxylate derivatives and 3,5-disubstituted pyrazoles // Green Chemistry. 2015. T. 17, № 2. C. 842—847.
- 36. An atom efficient, green synthesis of 2-pyrazoline derivatives under solvent-free conditions using grinding technique / S. B. Zangade [и др.] // Green Chemistry Letters and Reviews. 2013. Т. 6, № 2. С. 123—127.
- 37. Synthesis, characterization and pharmacological study of 4,5-dihydropyrazolines carrying pyrimidine moiety / A. Adhikari [и др.] // European Journal of Medicinal Chemistry. 2012. Т. 55. С. 467—474.

- 38. Green synthesis and anti-infective activities of fluorinated pyrazoline derivatives / S. N. Shelke [и др.] // Bioorganic & Medicinal Chemistry Letters. 2012. Т. 22, № 17. С. 5727—5730.
- 39. Взаимодействие полифторхалконов с гидразингидратом и фенилгидразином / К. Шмуйлович [и др.] // Известия Академии наук. Серия химическая. 2010. Т. 5, № 7. С. 1378—1382.
- 40. *Patil N. T.*, *Singh V.* Synthesis of 1,3,5-trisubstituted pyrazolines via Zn(ii)-catalyzed double hydroamination of enynes with aryl hydrazines // Chemical Communications. 2011. T. 47, № 39. C. 11116.
- 41. *Müller T. J. J., Ansorge M., Aktah D.* An Unexpected Coupling Isomerization Sequence as an Entry to Novel Three-Component-Pyrazoline Syntheses // Angewandte Chemie International Edition. 2000. T. 39, № 7. C. 1253—1256.
- 42. A novel methodology for synthesis of dihydropyrazole derivatives as potential anticancer agents / X. Wang [и др.] // Org. Biomol. Chem. 2014. Т. 12, № 13. С. 2028—2032.
- 43. Metal-catalyzed [3+2] cycloadditions of azomethine imines / U. Grošelj [и др.] // Chemistry of Heterocyclic Compounds. 2018. Т. 54, № 3. С. 214—240.
- 44. *Schantl J. G.* Product Class 19: Azomethine Imines // Category 4. Compounds with Two Carbon Heteroatom Bonds. T. 27. Stuttgart: Georg Thieme Verlag, 2005. C. 731—761.
- 45. *Hashimoto T.*, *Takiguchi Y.*, *Maruoka K.* Catalytic Asymmetric Three-Component 1,3-Dipolar Cycloaddition of Aldehydes, Hydrazides, and Alkynes // Journal of the American Chemical Society. 2013. T. 135, № 31. C. 11473—11476.
- 46. Zolfigol M. A., Azarifar D., Maleki B. Trichloroisocyanuric acid as a novel oxidizing agent for the oxidation of 1,3,5-trisubstituted pyrazolines under both heterogeneous and solvent free conditions // Tetrahedron Letters. 2004. T. 45, № 10. C. 2181—2183.
- 47. *Dodwadmath R. P., Wheeler T. S.* Studies in the chemistry of chalcones and Chalcone-Oxides // Proceedings of the Indian Academy of Sciences Section A. 1935. T. 2, № 5. C. 438—451.
- 48. *Gladstone W. A.*, *Norman R. O.* Reactions of lead tetra-acetate. Part VII. Some reactions leading to pyrazoles // Journal of the Chemical Society C: Organic. 1966. № 1536. C. 1536—1540.
- 49. Auwers K. V., Heimke P. Über Pyrazoline // Justus Liebig's Annalen der Chemie. 1927. T. 458, № 1. C. 186—220.

- 50. Hypervalent Iodine Oxidation of 1, 3, 5-Trisubstituted Pyrazolines: A Facile Synthesis of 1,3,5-Trisubstituted Pyrazoles / S. P. Singh [и др.] // Synthetic Communications. 1997. Т. 27, № 15. С. 2683—2689.
- 51. *Walker D.*, *Hiebert J. D.* 2,3-Dichloro-5,6-dicyanobenzoquinone and Its Reactions // Chemical Reviews. 1967. T. 67, № 2. C. 153—195.
- 52. *Nakamichi N.*, *Kawashita Y.*, *Hayashi M.* Oxidative Aromatization of 1,3,5-Trisubstituted Pyrazolines and Hantzsch 1,4-Dihydropyridines by Pd/C in Acetic Acid // Organic Letters. 2002. T. 4, № 22. C. 3955—3957.
- 53. *Kojima M.*, *Kanai M.* Tris(pentafluorophenyl)borane-Catalyzed Acceptorless Dehydrogenation of N-Heterocycles // Angewandte Chemie International Edition. 2016. T. 55, № 40. C. 12224—12227.
- 54. *Shah J. N.*, *Shah C. K.* Oxidative dehydrogenation of pyrazolines with cobalt(II) and oxygen // The Journal of Organic Chemistry. 1978. T. 43, № 6. C. 1266—1267.
- 55. Visible light mediated metal-free oxidative aromatization of 1,3,5-trisubstituted pyrazolines / S. B. Annes [и др.] // Tetrahedron Letters. 2019. Т. 60, № 34. С. 150932.
- 56. *Traven V. F.*, *Dolotov S. M.*, *Ivanov I. V.* Activation of fluorescence of lactone forms of rhodamine dyes by photodehydrogenation of aryl(hetaryl)pyrazolines // Russian Chemical Bulletin. 2016. T. 65, № 3. C. 735—740.
- 57. Synthesis and nonlinear optical properties of donor-acceptor dyes based on triphenylpyrazolines as a donor block and dicyanoisophorone as acceptor / V. V. Shelkovnikov [и др.] // Russian Chemical Bulletin. 2019. Т. 68, № 1. С. 92—98.
- 58. Синтез несимметричных тиофлавилиевых красителей на основе производный юлолидина и полифторированных трифенилпиразолинов / И. Каргаполова [и др.] // Журнал органической химии. 2016. Т. 52. С. 10—14.