AMATH 352: Problem Set 6

Dave Moore, dmmfix@uw.edu

February 20, 2017

Due: Friday February 24, 2017

Norms and Inner products:

1. Let W be an invertible matrix. Show that the map

$$\|x\|_{W} = \|Wx\|_{2}$$

is a norm on \mathbb{R}^m . Is it still a norm if W is singular? Why or why not?

Solution:

Since W is invertible, its range is all of \mathbb{R}^m , which means that we can simply observe that $\|\cdot\|_2$ is a norm on \mathbb{R}^m , and therefore $\|\cdot\|_W$ satisfies the 5 properties of a norm. However, if W were singular, the property that $\|x\|_W = 0 \implies x = 0$ would be violated, since we could choose some $y \neq 0 \in \text{null}(A)$ to obtain $\|y\|_W = \|Wy\|_2 = \|0\|_2 = 0$.

2. Consider a real square matrix $M \in \mathbb{R}^{n \times n}$. Suppose M is symmetric and full rank. Furthermore, suppose M is positive definite, i.e. it satisfies

$$\forall x \in \mathbb{R}^n, \ x \neq 0 \implies x^T M x > 0.$$

Show that the map $\langle \cdot, \cdot \rangle_{\mathbf{M}} : \mathbb{R}^n \to \mathbb{R}$ given by

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle_{\boldsymbol{M}} = \boldsymbol{x}^T \boldsymbol{M} \boldsymbol{y}$$

is an inner product on \mathbb{R}^n .

Solution:

Your solution.

3. Show that the function $\langle \cdot, \cdot \rangle : C^0([-1,1],\mathbb{R}) \to \mathbb{R}$ given by

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$$

is an inner product on $C^0([-1,1],\mathbb{R})$. Note that $C^0([-1,1],\mathbb{R})$ denotes the space of continuous functions that take input from [-1,1] and produce output in \mathbb{R} .

Solution:

Your solution.

Conditioning:

- 4. In this problem we show that orthogonal matrices are "perfectly conditioned" in the sense that their condition numbers with respect to the 2-norm are always 1. Suppose $O \in \mathbb{R}^{n \times n}$ is an orthogonal matrix.
 - (a) Show that $\|\mathbf{O}\|_2 = 1$. (Hint: recall that orthogonal matrices preserve the 2-norms of vectors).
 - (b) Show that O^T is an orthogonal matrix.
 - (c) Show that $\kappa_2(\mathbf{O}) = 1$.

Solution:

- (a) Your solution.
- (b) Your solution.
- (c) Your solution.

Operation count:

- 5. Find the number of necessary floating point operations required to compute the following operations (using the big-oh notation introduced in class). Explain your reasoning in each case.
 - (a) Compute the sum A + B for $A, B \in \mathbb{R}^{m \times n}$.
 - (b) Compute the outer product uv^T for $u, v \in \mathbb{R}^n$.
 - (c) Compute the product Ax for $x \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$ where A is upper triangular.

Solution:

- (a) Each element of the sum requires a single addition, and there are $m \times n$ elements in $\mathbf{A} + \mathbf{B} \in \mathbb{R}^{m \times n}$, so this is $O(m \times n)$.
- (b) $uv^T \in \mathbb{R}^{n \times n}$, and each element of the product requires a single multiplication, so the total operation count is $O(n^2)$.
- (c) This is equivalent to n dot-products of n-dimensional vectors. Each dot-product requires n multiplies and n-1 additions, or 2n-1 total flops. So the time complexity for n dot-products is $O(n^2)$.
 - Note that because A is upper-triangular, only half of the multiplies will be with non-zero components, but the resulting reduction in flops of $\frac{1}{2}$ is irrelevant for big-oh.
- 6. Comparing growth rates: This exercise is meant to give you an idea of how quickly the number of flops required to solve a problem can increase when one increases the problem size, depending on the complexity of the algorithm used. Construct a table comparing $n, n \log_2(n), n^2, n^3, 2^n$, and n! for n = 2, 4, 8, 16, 64, 512. (You may need to use something like Wolfram Alpha to compute some of these quantities).

Solution:

	2	4	8	16	64	512
n	2	4	8	16	64	512
$nlog_2(n)$	2	8	24	64	384	4608
n^2	4	16	64	256	4096	2.621×10^{5}
n^3	8	64	512	4096	2.621×10^{5}	1.342×10^{8}
2^n	4	16	256	65536	1.844×10^{19}	1.340×10^{154}
n!	2	24	40320	2.092×10^{13}	1.268×10^{89}	3.477×10^{1166}