主成分分析

評価と視覚化

村田 昇

2019.11.06

講義の予定

• 第1日: 主成分分析の考え方

• 第2日: 分析の評価と視覚化

主成分分析の復習

主成分分析

- 多数の変量のもつ情報の分析・視覚化
 - 変量を効率的に縮約して少数の特徴量を構成する
 - 変量の間の関係を明らかにする
- 分析の方針:
 - データの情報を最大限保持する変量の線形結合を構成
 - データの情報を最大限反映する座標 (方向)を探索
 - (データの情報を保持する=データを区別できる)

分析の考え方

- 1変量データ $a^{\mathsf{T}}x_1, \ldots, a^{\mathsf{T}}x_n$ を構成
 - 観測データ x_1, \ldots, x_n のもつ情報を最大限保持するベクトルaを **うまく** 選択
 - $-\mathbf{a}^\mathsf{T}\mathbf{x}_1,\dots,\mathbf{a}^\mathsf{T}\mathbf{x}_n$ の変動 (ばらつき) が最も大きい方向を選択
- 最適化問題: 制約条件 $\|a\| = 1$ の下で以下の関数を最大化せよ

$$f(\boldsymbol{a}) = \sum_{i=1}^n (\boldsymbol{a}^\mathsf{T} \boldsymbol{x}_i - \boldsymbol{a}^\mathsf{T} \bar{\boldsymbol{x}})^2, \quad \bar{\boldsymbol{x}} = \frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i$$

行列による表現

• 中心化したデータ行列

$$X = \begin{pmatrix} \boldsymbol{x}_1^\mathsf{T} - \bar{\boldsymbol{x}}^\mathsf{T} \\ \vdots \\ \boldsymbol{x}_n^\mathsf{T} - \bar{\boldsymbol{x}}^\mathsf{T} \end{pmatrix} = \begin{pmatrix} x_{11} - \bar{x}_1 & \cdots & x_{1p} - \bar{x}_p \\ \vdots & & \vdots \\ x_{n1} - \bar{x}_1 & \cdots & x_{np} - \bar{x}_p \end{pmatrix}$$

• 評価関数 f(a) は行列 X^TX の二次形式

$$f(\boldsymbol{a}) = \boldsymbol{a}^{\mathsf{T}} X^{\mathsf{T}} X \boldsymbol{a}$$

固有值問題

• 最適化問題

maximize
$$f(\mathbf{a}) = \mathbf{a}^\mathsf{T} X^\mathsf{T} X \mathbf{a}$$
 s.t. $\mathbf{a}^\mathsf{T} \mathbf{a} = 1$

• f(a) の極大値を与える a は X^TX の固有ベクトル

$$X^{\mathsf{T}}X\boldsymbol{a} = \lambda \boldsymbol{a}$$

主成分負荷量と主成分得点

- 主成分負荷量 (principal component loading): a
- 主成分得点 (principal component score): $x_i^{\mathsf{T}}a$
- 第 1 主成分負荷量は $X^\mathsf{T} X$ の第 1(最大) 固有値 λ_1 に対応する固有ベクトル a_1
- 同様に第 k 主成分負荷量は $X^\mathsf{T} X$ の第 k 固有値 λ_k に対応する固有ベクトル \boldsymbol{a}_k

寄与率

寄与率の考え方

• 回帰分析で考察した 寄与率 の一般形

(寄与率) =
$$\frac{(その方法で説明できる変動)}{(データ全体の変動)}$$

• 主成分分析での定義 (proportion of variance)

Gram 行列のスペクトル分解

• 行列 X^TX (非負値正定対称行列) のスペクトル分解

$$X^{\mathsf{T}}X = \lambda_1 \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} + \lambda_2 \boldsymbol{a}_2 \boldsymbol{a}_2^{\mathsf{T}} + \dots + \lambda_p \boldsymbol{a}_p \boldsymbol{a}_p^{\mathsf{T}}$$
$$= \sum_{k=1}^p \lambda_k \boldsymbol{a}_k \boldsymbol{a}_k^{\mathsf{T}}$$

固有値と固有ベクトルによる行列の表現

• 主成分の変動の評価

$$f(\boldsymbol{a}_k) = \boldsymbol{a}_k^\mathsf{T} X^\mathsf{T} X \boldsymbol{a}_k = \lambda_k$$

固有ベクトル (単位ベクトル) の直交性を利用

寄与率の計算

• 主成分と全体の変動

(主成分)
$$= \sum_{i=1}^{n} (\boldsymbol{a}_{k}^{\mathsf{T}} \boldsymbol{x}_{i} - \boldsymbol{a}_{k}^{\mathsf{T}} \bar{\boldsymbol{x}})^{2} = \boldsymbol{a}_{k}^{\mathsf{T}} X^{\mathsf{T}} X \boldsymbol{a}_{k} = \lambda_{k}$$
(全体)
$$= \sum_{i=1}^{n} \|\boldsymbol{x}_{i} - \bar{\boldsymbol{x}}\|^{2} = \sum_{l=1}^{p} \boldsymbol{a}_{l}^{\mathsf{T}} X^{\mathsf{T}} X \boldsymbol{a}_{l} = \sum_{l=1}^{p} \lambda_{l}$$

• 寄与率の固有値による表現:

(寄与率) =
$$\frac{\lambda_k}{\sum_{l=1}^p \lambda_l}$$

累積寄与率

• **累積寄与率** (cumulative proportion): 第 k 主成分までの変動の累計

$$(累積寄与率) = \frac{\sum_{l=1}^{k} \lambda_l}{\sum_{l=1}^{p} \lambda_l}$$

第1から第 k までの寄与率の総和

- 累積寄与率はいくつの主成分を用いるべきかの基準
- 一般に累積寄与率が80%程度までの主成分を用いる

主成分負荷量再考

主成分負荷量と主成分得点

- 負荷量 (得点係数) の大きさ: 変数の貢献度
- 問題点:
 - 変数のスケールによって係数の大きさは変化する
 - 変数の正規化 (標本平均 0, 不偏分散 1) がいつも妥当とは限らない
- スケールによらない変数と主成分の関係: 相関係数

相関係数

- e_l: 第 l 成分は 1, それ以外は 0 のベクトル
- Xe_l: 第 l 変数ベクトル
- Xa_k: 第 k 主成分得点ベクトル
- 主成分と変数の相関係数:

$$\begin{aligned} \operatorname{Cor}(X\boldsymbol{a}_k, X\boldsymbol{e}_l) &= \frac{\boldsymbol{a}_k^\mathsf{T} X^\mathsf{T} X \boldsymbol{e}_l}{\sqrt{\boldsymbol{a}_k^\mathsf{T} X^\mathsf{T} X \boldsymbol{a}_k} \sqrt{\boldsymbol{e}_l^\mathsf{T} X^\mathsf{T} X \boldsymbol{e}_l}} \\ &= \frac{\lambda_k \boldsymbol{a}_k^\mathsf{T} \boldsymbol{e}_l}{\sqrt{\lambda_k} \sqrt{(X^\mathsf{T} X)_{ll}}} \end{aligned}$$

正規化データの場合

- X^TX の対角成分は全て n-1 $((X^TX)_{ll}=n-1)$
- 第 k 主成分に対する第 l 変数の相関係数:

$$(\boldsymbol{r}_k)_l = \sqrt{\lambda_k/(n-1)} \cdot (\boldsymbol{a}_k)_l$$

• 第 k 主成分に対する相関係数ベクトル:

$$\boldsymbol{r}_k = \sqrt{\lambda_k/(n-1)} \cdot \boldsymbol{a}_k$$

- 主成分負荷量
 - 同じ主成分への各変数の影響は固有ベクトルの成分比
 - 同じ変数の各主成分への影響は固有値の平方根で重みづけ

バイプロット

特異值分解

• 階数 r の $n \times p$ 型行列 X の分解:

$$X = U\Sigma V^{\mathsf{T}}$$

- -U は $n \times n$ 型直交行列, V は $p \times p$ 型直交行列
- Σ は *n* × *p* 型行列

$$\Sigma = \begin{pmatrix} D & O_{r,p-r} \\ O_{n-r,r} & O_{n-r,m-r} \end{pmatrix}$$

- * $O_{s,t}$ は $s \times t$ 型零行列
- * D は $\sigma_1 \geq \sigma_2 \geq \sigma_r > 0$ を対角成分とする $r \times r$ 型対角行列
- D の対角成分: X の **特異値** (singular value)

特異値分解による Gram 行列の表現

• Gram 行列の展開:

$$X^{\mathsf{T}}X = (U\Sigma V^{\mathsf{T}})^{\mathsf{T}}(U\Sigma V^{\mathsf{T}})$$
$$= V\Sigma^{\mathsf{T}}U^{\mathsf{T}}U\Sigma V^{\mathsf{T}}$$
$$= V\Sigma^{\mathsf{T}}\Sigma V^{\mathsf{T}}$$

• 行列 $\Sigma^{\mathsf{T}}\Sigma$ は対角行列

$$\Sigma^{\mathsf{T}} \Sigma = \begin{pmatrix} \sigma_1^2 & & & & \\ & \ddots & & & \\ & & \sigma_r^2 & & \\ & & & 0 & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}$$

特異値と固有値の関係

- 行列 V の第 k 列ベクトル v_k
- 特異値の平方

$$\lambda_k = \begin{cases} \sigma_k^2, & k \le r \\ 0, & k > r \end{cases}$$

• Gram 行列の固有値問題

$$X^{\mathsf{T}} X \boldsymbol{v}_k = V \Sigma^{\mathsf{T}} \Sigma V^{\mathsf{T}} \boldsymbol{v}_k = \lambda_k \boldsymbol{v}_k$$

- $-X^\mathsf{T}X$ の固有値は行列 X の特異値の平方
- 固有ベクトルは行列 V の列ベクトル $\boldsymbol{a}_k = \boldsymbol{v}_k$

データ行列の近似表現

- 行列 U の第 k 列ベクトル u_k
- データ行列の特異値分解: (注意 Σ は対角行列)

$$X = U\Sigma V^\mathsf{T} = \sum_{k=1}^r oldsymbol{u}_k \sigma_k oldsymbol{v}_k^\mathsf{T}$$

• 第 k 主成分と第 l 主成分を用いた行列 X の近似 X'

$$X \simeq X' = \boldsymbol{u}_k \sigma_k \boldsymbol{v}_k^\mathsf{T} + \boldsymbol{u}_l \sigma_l \boldsymbol{v}_l^\mathsf{T}$$

• バイプロット: 上記の分解を利用した散布図

バイプロット

- X の変動を最大限保持する近似は k=1, l=2

$$X' = GH^{\mathsf{T}},$$

$$G = \begin{pmatrix} \sigma_k^{1-s} \boldsymbol{u}_k & \sigma_l^{1-s} \boldsymbol{u}_l \end{pmatrix}, \quad H = \begin{pmatrix} \sigma_k^s \boldsymbol{v}_k & \sigma_l^s \boldsymbol{v}_l \end{pmatrix}$$

- 行列 G の各行は各データの 2 次元座標
- 行列 H の各行は各変量の 2 次元座標
- 関連がある2枚の散布図を1つの画面に表示する散布図を一般にバイプロット (biplot) と呼ぶ
- パラメタ s は 0,1 または 1/2 が主に用いられる