Capstone Project

Project Notes -1

Table of Contents

Table of Contents	2
List of Figures	3
List of Tables	4
1. Introduction of the business problem	5
Defining problem statement	5
Need of the study/project	5
Understanding business/social opportunity	5
2. Data Report	6
Understanding how data was collected in terms of time, frequency and methodology	6
Visual inspection of data (rows, columns, descriptive details)	6
Understanding of attributes (variable info, renaming if required)	12
3. Exploratory Data Analysis	13
Univariate analysis	13
Bivariate analysis (relationship between different variables , correlations)	21
Removal of unwanted variables	31
Missing Value treatment	31
Outlier treatment	32
Variable transformation	33
Addition of new variables	35
4. Business insights from EDA	35
Is the data unbalanced? If so, what can be done? Please explain in the context of the business	35
Any business insights using clustering	37
Any other business insights	39

List Of Tables

Table	Page No					
Table 1.1 Sample of the dataset	6					
Table 1.2 Information of the dataset	7					
Table 1.3 Unique values in categorical variables	8					
Table 1.4 Unique values in Numerical variables	9					
Table 1.5 Information of the dataset post cleaning						
Table 1.6 Descriptive Statistics of the Numerical Variable						
Table 1.7 Descriptive Statistics of the Categorical Variable						
Table 1.8 Data Descriptive of Variable						
Table 1.9 Missing values in dataset	32					
Table 1.10 Encoded categorical variables						
Table 1.11 Scaled variables	34					
Table 1.12 Silhouette Score	36					

List Of Figures

Figure	Page No						
fig 1.1 Target variable distribution	13						
fig 1.2 Univariate Analysis- Tenure							
fig 1.3 Univariate Analysis- CC_Contacted_LY	14						
fig 1.4 Univariate Analysis- rev_pre_month	15						
fig 1.5 Univariate Analysis- rev_growth_yoy	15						
fig 1.6 Univariate Analysis- coupon_used_for_payment	16						
fig 1.7 Univariate Analysis- Day_Since_CC_connect	16						
fig 1.8 Univariate Analysis- Cashback	17						
fig 1.9 Univariate Analysis- City_tier	17						
fig 1.10 Univariate Analysis- Payment	18						
fig 1.11 Univariate Analysis- Gender							
fig 1.12 Univariate Analysis- Service_Score							
fig 1.13 Univariate Analysis- Account_User_count							
fig 1.14 Univariate Analysis- Account_Segment							
fig 1.15 Univariate Analysis- CC_Agent_Score	20						
fig 1.16 Univariate Analysis- Marital Status							
fig 1.17 Univariate Analysis- Complaint_LY	20						
fig 1.18 Univariate Analysis- Login_device	21						
fig 1.19 Bivariate Analysis- City_Tier with Churn	21						
fig 1.20 Bivariate Analysis- Payment with Churn	22						
fig 1.21 Bivariate Analysis- Payment with Churn	22						
fig 1.22 Bivariate Analysis- Service_Score with Churn	23						
fig 1.23 Bivariate Analysis- Account_user with Churn	23						
fig 1.24 Bivariate Analysis- Account Segment with Churn	24						
fig 1.25 Bivariate Analysis- CC_Agent_Score with Churn	24						
fig 1.26 Bivariate Analysis- Marital Status with Churn	25						

fig 1.27 Bivariate Analysis- Complain_ly with Churn	25
fig 1.28 Bivariate Analysis- Login Device with Churn	26
fig 1.29 Bivariate Analysis- Tenure with Churn	26
fig 1.30 Bivariate Analysis- CC_Contacted_LY with Churn	27
fig 1.31 Bivariate Analysis- rev_per_month with Churn	27
fig 1.32 Bivariate Analysis- rev_growth_yoy with Churn	27
fig 1.33 Bivariate Analysis- coupon_used_for_payment with Churn	28
fig 1.34 Bivariate Analysis - Day_Since_CC_connect with Churn	28
fig 1.35 Bivariate Analysis- cashback with Churn	28
fig 1.36 Pairplot	29
fig 1.37 Correlation Matrix	30
fig 1.38 Missing value Treatment	31
fig 1.39 Outliers in the data	32
fig 1.40 Outliers after treatment	33
fig 1.41 Target Class imbalance	35
fig 1.42 distortion Score Elbow for KMeans Clustering	36
fig 1.43 Plot of the clusters	37
fig 1.44 Cluster distribution	37

CUSTOMER CHURN

1. INTRODUCTION OF THE BUSINESS PROBLEM

PROBLEM STATEMENT:

The problem at hand is developing a churn prediction model for a DTH service provider. The primary challenge faced by the company is retaining existing customers in a highly competitive market.

Account churn, where one account can encompass multiple customers, poses a significant threat, as the loss of a single account can result in the attrition of several customers. The problem is to create a predictive model to identify potential churners and design segmented offers to retain them.

WHY IS IT NEEDED?:

The need for this study or project arises from the company's requirement to address the critical issue of customer churn. Retaining customers is pivotal, and the company aims to achieve this by creating a model that can predict churn and provide tailored offers to potential churners. In this context, the project is essential for enhancing customer retention, staying competitive in the market, exploring revenue growth opportunities, and elevating the overall customer experience.

UNDERSTANDING BUSINESS OPPORTUNITY

The business opportunity lies in devising a sophisticated churn prediction model and formulating distinct campaign recommendations to combat churn effectively.

The potential benefits include strengthening customer loyalty, improving market competitiveness, unlocking revenue growth, and delivering an exceptional customer experience.

The project represents a unique business opportunity to align recommendations with strategic objectives, ensuring they don't inadvertently lead to losses for the company. It underscores the importance of creating offers that are both enticing to customers and financially viable for the business, presenting a balance between customer satisfaction and revenue assurance.

2. DATA REPORT:

a) Understanding how data was collected in terms of time, frequency and methodology

The data source and context are not explicitly detailed. It appears to be derived from a DTH (or Cable) service provider, potentially originating from historical records. The data column description indicates it as average of previous 12 months at any point in time. However, geographical coverage and data duration (Date/year) remain unspecified, so we make the assumption that it pertains to the Indian States, with monetary values expressed in Rupees, this assumption is taken basis the payment methods shown as UPI in data.

b) Visual inspection of data (rows, columns, descriptive details)

About the dataset:

The number of rows are **11260**The number of columns (variables) are **19**

Sample of the data

Table 1.1 Sample of the dataset

Information about data

Table 1.2 Information of the dataset

The initial data review suggests the need for data preprocessing, including handling missing values and potentially converting data types. Additionally, feature engineering and cleaning will be required to prepare the data for analysis. Below are the key details:

Data Size and Completeness:

- The dataset contains 11,260 rows and 19 columns.
- There are missing values in several columns, indicated by the "Non-Null Count" being less than 11,260.

o Target Variable (Churn):

 The "Churn" column is binary, indicating whether an account churned or not. This is binary value, hence this is a classification problem

Categorical and Numerical Features:

- The dataset contains a mix of categorical and numerical features.
- Several features are incorrectly labelled as type object or Numerical which will require data type conversion for analysis.
- "City_Tier" is currently represented as a float but may need to be converted to a categorical data type.
- "rev_per_month," "coupon_used_for_payment," "cashback" are tagged as categorical features, but they appear to be numeric. These columns need their data types corrected.

Missing Values:

- "Tenure" and "City_Tier" columns contain missing values, requiring data imputation.
- "CC_Contacted_LY," "Payment," "Gender," "Marital_Status," "Account_user_count," "account_segment," "Complain_ly," "Day_Since_CC_connect," "rev_per_month," "coupon_used_for_payment," "cashback," and "Login_device" columns also have missing values that may need data imputation or cleaning.

Data Cleaning & Fixing Data Types

We'll start with the Categorical columns, wherein we will identify unique values in each and fix the values wherever we find data issues.

Categorical

• Lots of Numeric values seems to be tagged as Object, we checked their unique values & found unexpected values as shown below:

```
Value counts for column 'Tenure':
[4 0 2 13 11 '#' 9 99 19 20 14 8 26 18 5 30 7 1 23 3 29 6 28 24 25 16 10
 15 22 nan 27 12 21 17 50 60 31 51 61]
Value counts for column 'Payment':
['Debit Card' 'UPI' 'Credit Card' 'Cash on Delivery' 'E wallet' nan]
Value counts for column 'Gender':
['Female' 'Male' 'F' nan 'M']
Value counts for column 'Account_user_count':
[3 4 nan 5 2 '@' 1 6]
Value counts for column 'account_segment':
['Super' 'Regular Plus' 'Regular' 'HNI' 'Regular +' nan 'Super Plus'
 'Super +']
Value counts for column 'Marital_Status':
['Single' 'Divorced' 'Married' nan]
Value counts for column 'rev per month':
[9 7 6 8 3 2 4 10 1 5 '+' 130 nan 19 139 102 120 138 127 123 124 116 21
 126 134 113 114 108 140 133 129 107 118 11 105 20 119 121 137 110 22 101
136 125 14 13 12 115 23 122 117 131 104 15 25 135 111 109 100 103]
Value counts for column 'rev_growth_yoy':
[11 15 14 23 22 16 12 13 17 18 24 19 20 21 25 26 '$' 4 27 28]
Value counts for column 'coupon_used_for_payment':
[1 0 4 2 9 6 11 7 12 10 5 3 13 15 8 '#' '$' 14 '*' 16]
Value counts for column 'Day_Since_CC_connect':
[5 0 3 7 2 1 8 6 4 15 nan 11 10 9 13 12 17 16 14 30 '$' 46 18 31 47]
Value counts for column 'cashback':
[159.93 120.9 nan ... 227.36 226.91 191.42]
Value counts for column 'Login device':
['Mobile' 'Computer' '&&&&' nan]
```

Table 1.3 Unique values in categorical variables

Column value counts include a mix of valid and invalid entries, potentially requiring data cleaning and standardization.:

NAN / Missing Values: Below columns have Nan present:

Tenure, City_Tier, CC_Contacted_LY, Payment, Gender, Service_Score, Account_user_count, account_segment,CC_Agent_Score, Marital_Status, rev_per_month, Complain_ly, Day_Since_CC_connect, cashback, Login_device

Unexpected Values:

- Tenure (Unexpected values like '#', high numerical values)
- Account_user_count (Unexpected value '@' alongside numerical counts)

- o **Gender** (Inconsistent formatting with **'F'** and **'M'** alongside 'Female' and 'Male')
- rev_per_month (Unexpected values like '+', high numerical values)
- rev_growth_yoy (Unexpected values like '\$' mixed with numerical values)
- coupon_used_for_payment(Unexpected values like '#', '\$', and '*' with numerical value)
- Day_Since_CC_connect (Unexpected values like '\$' mixed with numerical values)
- Login_device (Unexpected value '&&&&' alongside 'Mobile' and 'Computer')

Approach to fix: We fixed these unexpected values by **replacing them with nan(Null).** The nan will be treated further using appropriate methods.

Numerical Columns

```
Value counts for column 'Tenure':
[ 4. 0. 2.13.11. nan 9.99.19.20.14. 8.26.18. 5.30. 7.
 23. 3. 29. 6. 28. 24. 25. 16. 10. 15. 22. 27. 12. 21. 17. 50. 60. 31.
51. 61.]
Value counts for column 'City_Tier':
[ 3. 1. nan 2.]
Value counts for column 'CC_Contacted_LY':
[ 6. 8. 30. 15. 12. 22. 11. 9. 31. 18. 13. 20. 29. 28. 26. 14. 10. 25. 27. 17. 23. 33. 19. 35. 24. 16. 32. 21. nan 34. 5. 4. 126. 7. 36. 127. 42. 38. 37. 39. 40. 41.
 132. 43. 129.]
Value counts for column 'Service Score':
[ 3. 2. 1. nan 0. 4. 5.]
Value counts for column 'Account user count':
[ 3. 4. nan 5. 2. 1. 6.]
Value counts for column 'CC_Agent_Score':
[ 2. 3. 5. 4. nan 1.]
Value counts for column 'rev_per_month':
[ 9. 7. 6. 8. 3. 2. 4. 10.
                                               1. 5. nan 130. 19. 139.
102. 120. 138. 127. 123. 124. 116. 21. 126. 134. 113. 114. 108. 140. 133. 129. 107. 118. 11. 105. 20. 119. 121. 137. 110. 22. 101. 136. 125. 14. 13. 12. 115. 23. 122. 117. 131. 104. 15. 25. 135. 111.
 109. 100. 103.]
Value counts for column 'Complain_ly':
[ 1. 0. nan]
Value counts for column 'rev_growth_yoy':
[11. 15. 14. 23. 22. 16. 12. 13. 17. 18. 24. 19. 20. 21. 25. 26. nan 4.
 27. 28.]
Value counts for column 'coupon_used_for_payment':
[ 1. 0. 4. 2. 9. 6. 11. 7. 12. 10. 5. 3. 13. 15. 8. nan 14. 16.]
Value counts for column 'Day_Since_CC_connect':
[5. 0. 3. 7. 2. 1. 8. 6. 4. 15. nan 11. 10. 9. 13. 12. 17. 16.
 14. 30. 46. 18. 31. 47.]
```

Table 1.4 Unique values in Numerical variables

- We did not find any unexpected or negative values in Numerical columns except those which were tagged as Object and NAN values
- There were many columns that were tagged as Numerical, we converted below Columns to categorical.

City_Tier
Complain_ly
Service_Score
Account_user_count
CC_Agent_Score

Post the data cleaning & datatype transformation, here is the **updated data types**:

RangeIndex: 11260 entries, 0 to 11259											
Data columns (total 19 columns):											
#	Column Non-Null Count Dtype										
0	AccountID	11260	non-null	object							
1	Churn	11260	non-null	int64							
2	Tenure	11042	non-null	float64							
3	City_Tier	11260	non-null	object							
4	CC_Contacted_LY	11158	non-null	float64							
5	Payment	11151	non-null	object							
6	Gender	11152	non-null	object							
7	Service_Score	11260	non-null	object							
8	Account_user_count	11260	non-null	object							
9	account_segment	11163	non-null	object							
10	CC_Agent_Score	11260	non-null	object							
11	Marital_Status	11048	non-null	object							
12	rev_per_month	10469	non-null	float64							
13	Complain_ly	11260	non-null	object							
14	rev_growth_yoy	11257	non-null	float64							
15	coupon_used_for_payment	11257	non-null	float64							
16	Day_Since_CC_connect	10902	non-null	float64							
17	cashback	10787	non-null	float32							
18	Login_device	10500	non-null	object							
dtyp	es: float32(1), float64(6), inte	54(1), obj	ect(11)							

Table 1.5 Information of the dataset post cleaning

Now, the data type has been fixed. We have 8 Numerical & 11 Categorical column

Statistical Summary of dataset

Numerical columns

	count	mean	std	min	25%	50%	75%	max
Churn	11260.0	0.168384	0.374223	0.0	0.000000	0.00	0.000000	1.0
Tenure	11042.0	11.025086	12.879782	0.0	2.000000	9.00	16.000000	99.0
CC_Contacted_LY	11158.0	17.867091	8.853269	4.0	11.000000	16.00	23.000000	132.0
rev_per_month	10469.0	6.362594	11.909686	1.0	3.000000	5.00	7.000000	140.0
rev_growth_yoy	11257.0	16.193391	3.757721	4.0	13.000000	15.00	19.000000	28.0
coupon_used_for_payment	11257.0	1.790619	1.969551	0.0	1.000000	1.00	2.000000	16.0
Day_Since_CC_connect	10902.0	4.633187	3.697637	0.0	2.000000	3.00	8.000000	47.0
cashback	10787.0	196.236343	178.660522	0.0	147.210007	165.25	200.009995	1997.0

Table 1.6 Descriptive Statistics of the Numerical Variable

- The average **tenure** of accounts is approximately 11 months, with a wide range from 0 to 99 months.
- On average, **customer care connect** in last year was approximately 17.87 times in the last year, with a range from 4 to 132 times.
- The average **monthly revenue generated** by accounts is 6.36, with a wide range from 1.0 to 140.0.
- The accounts show an average **year-over-year revenue growth** of approximately 16.19%, with values ranging from 4.0% to 28.0%.
- On average, accounts use approximately 1.79 **coupons for payments**, with a range from 0 to 16 coupons.
- On average, accounts have not contacted customer care for approximately 4.63 days, with a range from 0 to 47 days
- The average **monthly cashback** generated by accounts is approximately 196.24, with a range from 0.0 to 1997.0.

Categorical columns

	count	unique	top	freq
AccountID	11260	11260	20000	1
City_Tier	11260	4	1.0	7263
Payment	11151	5	Debit Card	4587
Gender	11152	2	Male	6704
Service_Score	11260	7	3.0	5490
Account_user_count	11260	7	4.0	4569
account_segment	11163	5	Regular Plus	4124
CC_Agent_Score	11260	6	3.0	3360
Marital_Status	11048	3	Married	5860
Complain_ly	11260	3	0.0	7792
Login_device	10500	2	Mobile	7482

Table 1.7 Descriptive Statistics of the Categorical Variable

- AccountID: All 11260 entries are unique.
- **City_Tier**: There are 4 unique city tiers. The most frequent city tier is 1.0, which appears 7263 times.
- **Payment**: There are 5 unique payment methods. The most frequent payment method is "Debit Card," occurring 4587 times.
- **Gender**: There are 2 unique genders. "Male" is the most frequent gender, with 6704 occurrences.

- **Service_Score**: There are 7 unique service scores. The most frequent service score is 3.0, appearing 5490 times.
- **Account User count** Most of the accounts has user count of 4 (4569), with a minimum of 1 and a maximum of 6 users.
- **account_segment**: There are 5 unique account segments. "Regular Plus" is the most frequent account segment, occurring 4124 times.
- **CC_Agent_Score**: There are 6 unique customer care agent scores. The most frequent agent score is 3.0, with 3360 occurrences.
- **Marital_Status**: There are 3 unique marital statuses. "Married" is the most frequent status, occurring 5860 times.
- **Complain_ly**: There are 3 unique values. The most frequent value is 0.0, appearing 7792 times.
- **Login_device**: There are 2 unique login devices. "Mobile" is the most frequent login device, occurring 7482 times.

Please note: the above descriptive summary is of original dataset post cleaning, inclusive of nan & outliers, hence count may vary post treatment.

Duplicate Values

Total duplicates in the data are: 0

c) Understanding of attributes

Variable	Description			
AccountID	Account unique identifier			
Churn	Account churn flag (Target)			
Tenure	Tenure of account			
City_Tier	Tier of primary customer's city			
CC_Contacted_L12m	How many times all the customers of the account has contacted			
	customer care in the last 12 months			
Payment	Preferred Payment mode of the customers in the account			
Gender	Gender of the primary customer of the account			
Coming Coord	Satisfaction score given by customers of the account on service			
Service_Score	provided by the company			
Account_user_count	Number of customers tagged with this account			
account_segment	Account segmentation on the basis of spend			
CC Agent Seere	Satisfaction score given by customers of the account on customer			
CC_Agent_Score	care service provided by the company			
Marital_Status	Marital status of the primary customer of the account			
rev_per_month	Monthly average revenue generated by account in last 12 months			
Complain_I12m	Any complaints have been raised by account in last 12 months			
rev_growth_yoy	Revenue growth percentage of the account (last 12 months vs last 24 to 13 months)			

coupon_used_ll2m	How many times customers have used coupons to do the payment in
coupon_useu_nzm	the last 12 months
Day Since CC connect	Number of days since no customers in the account has contacted the
Day_Since_CC_connect	customer care
agabbgak 110m	Monthly average cashback generated by account in the last 12
cashback_l12m	months
Login_device	Preferred login device of the customers in the account

Table 1.8 Data Descriptive of Variable

- There is **no renaming of columns needed** here.

3. Exploratory Data Analysis

a) Univariate analysis

Target Variable

fig 1.1 Target variable distribution

- Churn Variable has 2 unique values, 1 which stands for Churned customer and 0 for non churned customer.
- We can clearly see the class Imbalance here. only 16.8% of the customers are churned.

Numerical Variables

Tenure:

fig 1.2 Univariate Analysis- Tenure

- The tenure values have a wide range from 0 to 99 months, indicating variability in customer loyalty.
- The distribution is positively skewed (skewness 3.90), suggesting that more customers have shorter tenure.
- o There are significant outliers on the higher end (kurtosis 23.37), which might represent long-term loyal customers or data anomalies.

CC_Contacted_LY:

fig 1.3 Univariate Analysis - CC_Contacted_LY

- The number of CC contacts in the last year ranges from 4 to 132, indicating variation in customer interactions.
- The distribution is moderately positively skewed (skewness 1.42), suggesting that most customers had relatively fewer contacts.
- There are some outliers with a higher number of contacts (kurtosis 8.23), indicating potential high engagement customers or data anomalies.

rev_per_month:

fig 1.4 Univariate Analysis- rev_pre_month

- o Monthly revenue varies significantly, with values ranging from 1 to 140.
- The distribution is highly positively skewed (skewness 9.09), indicating that most customers generate lower revenue.
- o There are many extreme outliers (kurtosis 86.96), potentially representing high-revenue customers or data anomalies.

rev_growth_yoy:

fig 1.5 Univariate Analysis- rev_growth_yoy

- Year-over-year revenue growth percentages range from 4% to 28%.
- The distribution is moderately positively skewed (skewness 0.75), suggesting steady growth rates.
- The kurtosis value is close to zero (kurtosis -0.22), indicating a distribution with lighter tails and fewer outliers.

coupon_used_for_payment:

fig 1.6 Univariate Analysis- coupon_used_for_payment

- o Most customers use 1 to 2 coupons for payments, with a range of 0 to 16.
- The distribution is positively skewed (skewness 2.58), indicating that a significant portion of customers uses coupons for payment.
- The kurtosis value is relatively high (kurtosis 9.10), suggesting a distribution with some outliers related to coupon usage.

Day_Since_CC_connect:

fig 1.7 Univariate Analysis - Day_Since_CC_connect

- o The number of days since the last customer care connect spans from 0 to 47 days.
- o The distribution is positively skewed (skewness 1.27), indicating that most customers recently connected. Around 50% of the user have not connected since 3 days or more.
- The kurtosis value is 5.33, suggesting a distribution with some customers having longer periods since the last connect.

cashback:

fig 1.8 Univariate Analysis- Cashback

- Cashback values vary widely from 0 to 1997.
- o The distribution is highly positively skewed (skewness 8.77), indicating that most customers receive lower cashback amounts.
- o There are numerous **extreme outliers** (kurtosis 81.11), which could represent customers with **exceptionally high cashback or anomalies in the data**.

Categorical Variables

fig 1.9 Univariate Analysis- City_tier

- Approximately 65.50% of customers are in City Tier 1 while around 30.24% of customers are in City Tier 3.
- o The customers decreases with tiers, least customers are from lower tier cities.

fig 1.10 Univariate Analysis- Payment

The data suggests that most customers prefer "Debit Card" (41.71%) and "Credit Card" (31.18%) as payment method

fig 1.11 Univariate Analysis- Gender

o **60.50%** of customers are **male**(Majority)

fig 1.12 Univariate Analysis - Service_Score

- A significant portion of customers have "Service_Score" of 3.0 (49.63%) suggesting customers are relatively neutral with the services.
- There are only 5 (0.071%) users who are highly satisfied & 20.7% just satisfied, which indicates need of improvement in services.

fig 1.13 Univariate Analysis- Account_User_count

Most customers have 3 to 4 account users, with a range of 1 to 6 users.

fig 1.14 Univariate Analysis - Account_Segment

"Regular Plus" and "Super" are the most common account segments, making up 37.49% and
 36.07% of the customer base, respectively.

fig 1.15 Univariate Analysis- CC_Agent_Score

 38.35% having customer care score 4 & 5 suggesting a ratio of Satisfied users with customer care while 30.78% having score 1 & 2 suggesting relatively high dissatisfaction

fig 1.16 Univariate Analysis- Marital Status

53.9% of the subscribers are married while 31.3% are single.

fig 1.17 Univariate Analysis- Complaint_LY

 Most customers (72.37%) did not file any complaints in the last year which indicates a good sign of less customers facing issues.

fig 1.18 Univariate Analysis-Login_device

A large portion of customers use mobile devices (73.20%) for login.

b) Bivariate analysis Categorical Columns with Churn

City_Tier:

fig 1.19 Bivariate Analysis- City_Tier with Churn

- o City_Tier I has the highest customer base.
- Churn rate is relatively higher in City_Tier 3 (21.3%) compared to other City_Tiers.
- o This might be either due to higher cost for tier 3 cities or availability of regional/local contents.

Payment:

fig 1.20 Bivariate Analysis- Payment with Churn

- Customers who use 'Cash on Delivery' as their payment method have the highest churn rate (25.05%).
- o 'Credit Card' and 'Debit Card' users have lower churn rates compared to 'Cash on Delivery' users.

Gender:

fig 1.21 Bivariate Analysis- Payment with Churn

Churn is slightly higher among 'Male' customers (~18%) compared to 'Female' customers (15%).

Service_Score

fig 1.22 Bivariate Analysis- Service_Score with Churn

- A significant portion of customers have "Service_Score" of 3.0 (49.6%) suggesting customers are relatively neutral with the services.
- o There are only **5 (0.071%) users** who are **highly satisfied** have 0 churn rate, while customers with score 0 and 1 also have 0% churn.
- On the other hand, customers with a 'Service_Score' of 2 and 3 & 4 have almost similar churn rates (~17%), indicates that the Churn rate is constant irrespective Service score.

Account_User:

fig 1.23 Bivariate Analysis- Account_user with Churn

- Most customers have 'Account_user_count' of 3 or 4.
- Churn rate increases as 'Account_user_count' increases.
- Customers with 'Account_user_count' of 6 have the highest churn rate (34%), followed by 5 having chrun rate of 22%.

Account Segment:

fig 1.24 Bivariate Analysis- Account Segment with Churn

- o 'Regular Plus' account segment has the highest churn rate (27.13%).
- o 'Regular', 'Super Plus', 'Super' segments have the lowest churn rates.

CC_Agent_Score:

fig 1.25 Bivariate Analysis- CC_Agent_Score with Churn

- o Customers with 'CC_Agent_Score' of 5.0 have the highest churn rate (24%).
- o 'CC_Agent_Score' of 1.0 and 2.0 have the lowest churn rates (11% and 13% respectively).
- As 'CC_Agent_Score' increases, the churn rate also increases, which is quite interesting to have a deep dive on why customer with higher Customer Care Agent score tends to churn which ideally should be opposite i.e. with higher CC agent score, less customers to churn.

Marital Status:

fig 1.26 Bivariate Analysis- Marital Status with Churn

- Customers with 'Single' marital status have the highest churn rate (27%), which generally represents a younger population, might be due to unavailability of engaging contents or plans for younger/singles.
- o 'Married' customers have a lower churn rate (12%).
- 'Divorced' customers have a moderate churn rate (15%).

Complain_ly:

fig 1.27 Bivariate Analysis- Complain_ly with Churn

- Customers who have **complained in the last year** ('Complain_ly' = 1.0) have a significantly **higher churn rate (31.76%).**
- Customers who did not complain ('Complain_ly' = 0.0) have a lower churn rate (11.14%).

This indicates that the **issues with services leads to higher churn**, hence the complaints to be looked further to know the root cause & eliminate to reduce churn.

Login Device:

fig 1.28 Bivariate Analysis- Login Device with Churn

- o Customers who use 'Computer' as their login device have a higher churn rate (19.78%).
- o Customers who use 'Mobile' devices have a relatively lower churn rate (15.76%).
- This might indicate that users who prefer **login on the go or ease of login** tends to **churn lower**, the **company can promote app/mobile based logins to reduce churn.**

Bivariate Analysis Distribution of Numerical Columns with Churn

fig 1.29 Bivariate Analysis- Tenure with Churn

Tenure:

- o Customers with **lower tenure (recent customers)** have a **higher churn rate.**
- Customers with longer tenure (loyal customers) have a lower churn rate.

fig 1.30 Bivariate Analysis- CC_Contacted_LY with Churn

CC_Contacted_LY:

 The median connects in last year is higher for customer who churned as compared to those who didn't.

fig 1.31 Bivariate Analysis- rev_per_month with Churn

rev_per_month:

- o Customers with lower monthly revenue tend to have a higher churn rate.
- o Customers with **higher monthly revenue** have a **lower churn rate.**

fig 1.32 Bivariate Analysis- rev_growth_yoy with Churn

rev_growth_yoy:

- o Customers with lower year-over-year revenue growth tend to have a higher churn rate.
- o Customers with higher year-over-year revenue growth have a lower churn rate.

fig 1.33 Bivariate Analysis- coupon_used_for_payment with Churn

coupon_used_for_payment:

- o Customers who use **fewer coupons** for payment tend to have a **higher churn rate**.
- Customers who use more coupons for payment have a lower churn rate.

fig 1.34 Bivariate Analysis - Day_Since_CC_connect with Churn

Day_Since_CC_connect:

- Customers with a shorter time since the last contact with customer care tend to have a higher churn rate.
- Customers with a longer time since the last contact with customer care have a lower churn rate.

fig 1.35 Bivariate Analysis- cashback with Churn

cashback:

- Customers with lower cashback amounts tend to have a higher churn rate.
- Customers with higher cashback amounts have a lower churn rate.

Pairplot

fig 1.36 Pairplot

Correlation Heatmap

fig 1.37 Correlation Matrix

- Tenure, the time since the last contact with customer care (Day_Since_CC_connect), and cashback appear to have the most significant impact on churn. Customers with longer tenure, recent contact with customer care, and higher cashback are less likely to churn.
- Other variables, such as CC_Contacted_LY, Account_user_count, and usage of coupons for payment, have weaker correlations with churn and may have a less pronounced impact.
- Monthly revenue and year-over-year revenue growth do not have strong correlations with churn, indicating that these factors may not be the primary drivers of customer churn.

1. Positive Relationships:

- Customers with longer tenure tend to generate higher monthly revenue and have been using their credit cards for a longer period.
- There is a strong positive relationship between monthly revenue and cashback, indicating that customers who generate more revenue receive higher cashback.
- o In higher city tiers, customers are more likely to use E-wallets for payments.

2. **Negative Relationships:**

- Longer-tenured customers are less likely to belong to the "Regular Plus" account segment and are slightly less likely to be married.
- o Customers in higher city tiers are less likely to be in the "Regular Plus" account segment.
- Customers receiving higher cashback are less likely to be in the "Regular Plus" account segment.

3. Low Relationships:

- Gender does not strongly correlate with most variables, suggesting that it may not significantly impact other customer behaviors.
- Contacting customer care in the last year does not show strong correlations with other variables, indicating that this activity might not strongly influence other aspects of customer behaviour.

a) Removal of unwanted variables

For further analysis, we will drop the column **AccountID** as this is only for unique account identification assigned by system and have no significance in analysis.

b) Missing Value treatment

The total number of missing values are 4361, which is 2.04% of total data.

```
Tenure has 218 missing values, which is 1.94% of the column.
City Tier has 112 missing values, which is 0.99% of the column.
CC_Contacted_LY has 102 missing values, which is 0.91% of the column.
Payment has 109 missing values, which is 0.97% of the column.
Gender has 108 missing values, which is 0.96% of the column.
Service_Score has 98 missing values, which is 0.87% of the column.
Account user count has 444 missing values, which is 3.94% of the column.
account_segment has 97 missing values, which is 0.86% of the column.
CC Agent Score has 116 missing values, which is 1.03% of the column.
Marital Status has 212 missing values, which is 1.88% of the column.
rev_per_month has 791 missing values, which is 7.02% of the column.
Complain ly has 357 missing values, which is 3.17% of the column.
rev_growth_yoy has 3 missing values, which is 0.03% of the column.
coupon_used_for_payment has 3 missing values, which is 0.03% of the column.
Day Since CC connect has 358 missing values, which is 3.18% of the column.
cashback has 473 missing values, which is 4.20% of the column.
Login device has 760 missing values, which is 6.75% of the column.
```

Table 1.9 Missing values in dataset

fig 1.38 Missing value Treatment

Imputing Missing Values

- o We imputed all missing in categorical using Mode
- o For all Numeric, we will use KNN imputer

Data after missing value Treatment:-

Table 1.10 Missing values post treatment

d) Outlier treatment

Outliers in the data:

fig 1.39 Outliers in the data

We can see that there are outliers present in the dataset. We have taken the values beyond 1st & 99th % tile as the outliers. Below are the outliers in each variable

- o CC_Contacted_LY 80
- o rev_per_month -113
- rev_growth_yoy -52
- coupon_used_for_payment- 98
- Day_Since_CC_connect-94
- o Cashback-226

Treatment Approach: We will cap the outliers to 1st & 99th %tile. Since our data was already scaled & treated, we will do the outlier treatment on scaled data. The result of Outlier treatment on Original as well as on Scaled data is same, hence we are considering scaled data for ease of further analysis in model building

Data post Outlier Treatment

fig 1.40 Outliers after treatment

e) Variable transformation

Datatypes correction:

Categorical columns: rev_per_month", rev_growth_yoy", "coupon_used_for_payment ", "Day_Since_CC_connect ", "Cashback" were transformed to their correct datatypes after fixing of bad data earlier.

Numeric columns: AccountID , Churn, City_Tier, Complain_ly , CC_Agent_Score. Were converted to object since these were Ordinal/Categorical Variables. We dropped AccountID.

Encoding the categorical variables

The categorical variables need to be encoded before feeding into the KNN imputer, Clustering algorithms & machine learning models. We used **Label encoder** to encode all the categorical columns here.

							0	•	
Marital_Status	_Agent_Score	account_segment CC_	Account_user_count	Service_Score	Gender	Payment	CC_Contacted_LY	City_Tier	Tenure
:	1	3	2	3	0	2	6.0	2	4.0
:	2	2	3	3	1	4	8.0	0	0.0
:	2	2	3	2	1	2	30.0	0	0.0
:	4	3	3	2	1	2	15.0	2	0.0
:	4	2	2	2	1	1	12.0	0	0.0
Login_devic	cashback	_Since_CC_connect	for_payment Day	coupon_used_	h_yoy	ev_growt	Complain_ly re	r_month	rev_pe
	159.929993	5.0	1.0		11.0		1	9.0	
	120.900002	0.0	0.0		15.0		1	7.0	
	NaN	3.0	0.0		14.0		1	6.0	
		2.0	0.0		23.0		0	0.0	
	134.070007	3.0	0.0		23.0		0	8.0	
	134.070007 129.600006		1.0		11.0		0	3.0	

Table 1.10 Encoded categorical variables

Feature Scaling:

We scaled the numerical variables in the dataset using **Standard Scaler**. The dataset after scaling is:

Tenure	City_Tier	CC_Contacte	d_LY Payment	Gender	Service_Score	Account_user_count_	t account_segme	nt CC_Agen	t_Score Marita	1_Status
-0.545460	2	-1.34	10479 2	0	3		2	3	1	2
-0.856038	0	-1.11	4564 4	1	3		3	2	2	2
-0.856038	0	1.37	70505 2	1	2		3	2	2	2
-0.856038	2	-0.32	23860 2	1	2		3	3	4	2
-0.856038	0	-0.66	62733 1	1	2		2	2	4	2
rev_per_	month Co	omplain_ly	rev_growth_ye	oy cou	pon_used_for_	payment Day_Sir	ce_CC_connect	cashback	Login_device	Churn
0.2	221461	1	-1.3821	20	-	0.401439	0.099207	-0.203224	1	1
0.0	053522	1	-0.3175	98		0.909191	-1.253070	-0.421693	1	1
-0.0	030447	1	-0.5837	28	-	0.909191	-0.441704	NaN	1	1
0.	137492	0	1.8114	47	-	0.909191	-0.441704	-0.347974	1	1
-0.2	282355	0	-1.3821	20		0.401439	-0.441704	-0.372995	1	1

Table 1.11 Scaled variables

f) Addition of new variables

- Clusters: Variable will be formed after the end of clustering process.
- No other new variable was added in the dataset

4. BUSINESS INSIGHTS FROM EDA

a) Is the data unbalanced? If so, what can be done? Please explain in the context of the business

From the below target variable plot, we can clearly see the **class imbalance here. only 16.8% of** the customers are churned.

Churn rates vary significantly across different categorical variables, with some categories having higher churn rates than others. For instance, certain city tiers, payment methods, gender, account segments, and marital status categories have notably higher churn rates compared to their counterparts.

fig 1.41 Target Class imbalance

To address this issue in the context of the DTH service provider, the following actions can be taken:

Collect More Data: Collecting more data, especially from the minority class, can help improve the balance in the dataset. Engaging with more customers who have churned to gather their feedback and understanding their pain points can be valuable.

Resampling: If more data is unavailable, to balance the dataset, we can employ resampling techniques such as SMOTE. This can involve oversampling the minority class (Churn) by generating

synthetic samples or under sampling the majority class (Not Churn). Both methods can help balance the class distribution and improve model performance.

b) Any business insights using clustering

KMeans Clustering Approach:

We used k-means clustering which is an unsupervised clustering technique for segmenting the Similar type of matches in k numbers of clusters.

We checked **2 methods** to find the optimum clusters.

Method 1: First, we scaled the data & applied PCA with 3 components wherein we got the k clusters as 4 using elbow visualizer plot. However, since we only took 3 principle components from PCA that didn't capture much variance hence we considered it as not sufficient to proceed further & did not go ahead with it.

Method 2: In this, we took the scaled data plotted the distortion score Elbow and got k=5.

fig 1.42 distortion Score Elbow for KMeans Clustering

Let's confirm value of k among these using silhouette score. We'll check on 2 to 8

k = 2
Silhouette Score = 0.13459603536413353
Minimum Sil Width = 0.012092665037392987
k = 3
Silhouette Score = 0.1274244057273217
Minimum Sil Width = -0.0608394598976085
k = 4
Silhouette Score = 0.10234412335716576
Minimum Sil Width = -0.0823392577919645
k = 5
Silhouette Score = 0.09681396366813581
Minimum Sil Width = -0.05970787597370444
k = 6
Silhouette Score = 0.11060016505956112
Minimum Sil Width = -0.11400279732332869
k = 7
Silhouette Score = 0.09244997648418969
Minimum Sil Width = -0.12633030221423378
k = 8
Silhouette Score = 0.09766469426462024
Minimum Sil Width = -0.12475225167650357

Table 1.12 silhouette score

- **Silhouette Score close to 1** => Clusters are well separated from each other.
- **Minimum Sil-Width = +ve** => No Data points are mapped incorrectly to their cluster In this case, the other clusters don't well differentiate because 2 groups out of a set of data points are obvious.

For k = 2, we have the highest Silhouette Score (0.134) among the options. The Minimum Silhouette Width is also positive (0.012), indicating that there is a reasonable separation between the clusters.

Taking 6 Clusters basis previous elbow method shows that increasing k post 6 found the point where adding more clusters provides diminishing returns in terms of reducing the inertia. However, having 6 cluster might become difficult in interpretability and practical implications of the resulting clusters.

We have gone ahead with k=2 for easier interpretation

fig 1.43 Plot of the clusters

fig 1.44 Cluster distribution

- **Tenure Variation:** The average tenure of customers in both clusters is quite close, with Cluster 0 having slightly higher tenure compared to Cluster 1.
- **Contact Frequency:** Cluster 1 has a slightly higher average contact frequency in the last year compared to Cluster 0, suggesting that Cluster 1 customers may have more interactions with the company.
- **Gender Balance:** Both clusters have a balanced distribution of gender, and there is no gender bias in either group.
- **Service Satisfaction:** Cluster 1 has a slightly higher average service score, indicating higher levels of satisfaction with the service offered by the company.
- **Account User Count:** Customers in Cluster 0 have a slightly higher average account user count compared to Cluster 1.
- **CC Agent Score:** Cluster 1 stands out with a significantly higher average agent score compared to Cluster 0, indicating more positive interactions with customer care agents.
- **Revenue per Month:** Cluster 1 exhibits a slightly higher average monthly revenue per customer compared to Cluster 0, indicating that Cluster 1 customers may be more profitable.
- **Interaction Frequency:** Cluster 1 has a significantly higher average interaction frequency compared to Cluster 0, suggesting that these customers are more engaged and active.

Cluster 1 may represent the company's most loyal and engaged customers, while Cluster 0 could be targeted for improvements in services and addressing complaints.

c) Any other business insights

Executive Summary

1. Data Collection and Pre-processing:

- The dataset appears to be derived from a DTH (Direct-To-Home) service provider, containing records over an unspecified period, possibly in Indian states with payments in Rupees via UPI.
- Data pre-processing was performed to address missing values, correct data types, and standardize data. Anomalies and unexpected values were resolved.

2. Exploratory Data Analysis:

- The dataset consists of 11,260 rows and 19 columns with a binary target variable, "Churn," representing customer attrition.
- o Key findings include class imbalance with only 16.8% of customers marked as churned.
- Numerical features exhibit varying distributions, such as positively skewed tenure, moderate-skewed revenue, and highly skewed cashback.
- Categorical variables like "City_Tier" show that the majority of customers are in Tier 1 cities, and payment methods like "Debit Card" and "Credit Card" are popular.
- Analysis of categorical variables indicated relationships between features and churn,
 highlighting the impact of "City_Tier," "Payment," and "Complain_ly" on customer attrition.

o In numerical features, **lower tenure**, **higher CC contacts in the last** year, **lower monthly revenue**, and **higher cashback amounts** were **associated with higher churn rates**.

3. Data Preparation:

- Unwanted variable Account id was removed
- Missing values were imputed using Mode for categorical & KNN for numerical, with 2.04% of the data containing missing values.
- o Outliers were treated by capping values at the 1st and 99th percentiles.
- Label Encoding was done for categorical and Standard scaling was applied to the numerical variables in the dataset.

Business Insights:

1. Churn Analysis:

 The class imbalance, with only 16.8% churned customers, indicates the need to focus on retaining existing customers to maintain business stability.

2. Demographics and Churn:

- Customers from City_Tier 3 have a higher churn rate, suggesting that tailored offerings or incentives may be needed to retain these customers.
- Churn rates differ based on payment methods and gender. Efforts should be made to engage male customers more effectively.

3. Service and Customer Care:

- The "Service_Score" analysis shows that higher scores don't necessarily lead to lower churn.
 Service quality may need improvement.
- Customers who complained in the last year had a significantly higher churn rate, indicating a need to address their issues promptly.

4. Engagement and Loyalty:

- Increasing the number of account users leads to a higher churn rate. Strategies for retaining multi-user accounts should be explored.
- Encouraging customers to use mobile devices for logins may reduce churn, as mobile users exhibit a lower attrition rate.

Recommendations:

- Balancing Churn Rate: Implement strategies to retain existing customers, including offering personalized deals and promotions.
- Customized Service Quality: Enhance services for specific segments, like "Regular Plus" customers, who have a higher churn rate. Address service quality issues identified in the data.
- Prompt Complaint Resolution: Improve customer care and promptly address customer complaints to prevent churn.
- Multi-User Account Strategies: Create incentives or tailored offerings for multi-user accounts to reduce attrition.
- Mobile Login Promotion: Promote mobile login to lower churn by making it more convenient for customers.