## [转] 不同损失函数的对比

作者: 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

本章介绍的三种两类分类模型:Logistic回归、感知器和支持向量机。虽然它们的决策函数相同,但由于使用了不同的损失函数以及相应的优化方法,导致它们之间在实际任务上的表现存在一定的差异。

为了比较这些损失函数,我们统一定义类别标签  $y \in \{+1,-1\}$ ,并定义  $f(\mathbf{x};\mathbf{w}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$ 。这样对于样本  $(\mathbf{x},y)$ ,若  $yf(\mathbf{x};\mathbf{w}) > 0$ ,则分类正确,相反则分类错误。这样为了方便比较这些模型,我们可以将它们的损失函数都表述为定义在  $yf(\mathbf{x};\mathbf{w})$  上的函数。

Logistic回归的损失函数可以改写为

$$\mathcal{L}_{LR} = -\log p(y|\mathbf{x}) \tag{3.100}$$

$$= -I(y=1)\log\sigma(f(\mathbf{x};\mathbf{w})) - I(y=-1)\log\sigma(-f(\mathbf{x};\mathbf{w}))$$
(3.101)

$$= \log \left( 1 + \exp \left( -yf(\mathbf{x}; \mathbf{w}) \right) \right). \tag{3.102}$$

感知器的损失函数为



| ;           | 激活函数                                                                   | 损失函数                                                                                   | 优化方法      |
|-------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------|
| 线性回归        | -                                                                      | $(y - \mathbf{w}^{\mathrm{\scriptscriptstyle T}} \mathbf{x})^2$                        | 最小二乘、梯度下降 |
| Logistic 回归 | $\sigma(\mathbf{w}^{\scriptscriptstyle \mathrm{T}}\mathbf{x})$         | $\mathbf{y} \log \sigma(\mathbf{w}^{\scriptscriptstyle \mathrm{T}} \mathbf{x})$        | 梯度下降      |
| Softmax 回归  | $\operatorname{softmax}(W^{\scriptscriptstyle{\mathrm{T}}}\mathbf{x})$ | $\mathbf{y} \log \operatorname{softmax}(W^{\scriptscriptstyle \mathrm{T}} \mathbf{x})$ | 梯度下降      |
| 感知器         | $\mathrm{sgn}(\mathbf{w}^{\scriptscriptstyle{\mathrm{T}}}\mathbf{x})$  | $\max(0, -y\mathbf{w}^{\mathrm{\scriptscriptstyle T}}\mathbf{x})$                      | 随机梯度下降    |
| 支持向量机       | $\mathrm{sgn}(\mathbf{w}^{\scriptscriptstyle{\mathrm{T}}}\mathbf{x})$  | $\max(0, 1 - y\mathbf{w}^{\mathrm{\scriptscriptstyle T}}\mathbf{x})$                   | 二次规划、SMO等 |

表 3.1 几种不同的线性模型对比

## 参考文献:

[1] 邱锡鹏, <u>神经网络与深度学习[M]</u>. 2019.

[2] 交叉熵代价函数(作用及公式推导)