HKDSE MATH EP

M2

HONG KONG EDUCATIONAL PUBLISHING COMPANY

HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION

MATHEMATICS Extended Part

Module 2 (Algebra and Calculus) MOCK EXAM 6 Question-Answer Book

Time allowed: 2½ hours

This paper must be answered in English

INSTRUCTIONS

- 1. After the announcement of the start of the examination, you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1, 3, 5, 7, 9 and 11.
- 2. This paper consists of **TWO** sections, A and B.
- 3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Graph paper and supplementary answer sheets will be supplied on request. Write your Candidate Number, mark the question number box and stick a barcode label on each sheet, and fasten them with string **INSIDE** this book.
- 5. Unless otherwise specified, all working must be clearly shown.
- 6. Unless otherwise specified, numerical answers must be exact.
- 7. In this paper, vectors may be represented by bold-type letters such as **u**, but candidates are expected to use appropriate symbols such as **u** in their working.
- 8. The diagrams in this paper are not necessarily drawn to scale.
- 9. No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the 'Time is up' announcement.
- © 香港教育圖書公司 保留版權 Hong Kong Educational Publishing Company All Rights Reserved 2016

Please	stick	the	bard	ode	labe	el he	ere.
Candidate Number							

FORMULAS FOR REFERENCE

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2 \sin A \cos B = \sin (A + B) + \sin (A - B)$$

$$2\cos A\cos B = \cos (A+B) + \cos (A-B)$$

$$2 \sin A \sin B = \cos (A - B) - \cos (A + B)$$

$$\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

<u> 2015</u>

1. (a) Prove that $\tan^2 x = \frac{1 - \cos 2x}{1 + \cos 2x}$.

(b) Let $f(x) = \sec^4 x - 2 \tan^4 x$. Express f(x) in the form $\frac{A + B \cos 2x + C \cos 4x}{D + E \cos 2x + F \cos 4x}$, where A, B, C, D, E and F are constants.

(5 marks)

Answers written in the margins will not be marked.

Please stick the barcode label here.

Please stick the barcode label here.

Let $f(x) = \frac{1}{\sqrt{2x - x^2}}$	$\frac{1}{1}$. Find $f'(1)$ from	first principles.		(4 ma
			<u>.</u>	
				-
			,	
,				

Answers written in the margins will not be marked.

Please stick the barcode label here.

Using integration by parts, find $\int \frac{\ln x}{x^3} dx$.	(4 mark
	·- \
	<u> </u>
·	,
	-

Answers written in the margins will not be marked.

not de market	
not pe	
S WIII	١
the margins will	
the	١
=	l
wers written n	
Answers	
7	

		1	2	3		n	1			
1	_	2!	$-\frac{2}{3!}$	4!	()	(n+1)!	$=\frac{1}{(n+1)!}.$			(5 marks)
							-			
		_								
			<u> </u>							
									 · ·	
								127	 	
	_									
	-								 	
		_								
									 	

Please stick the barcode label here.

where A and B are graph.	constants. Find the	local extreme	point(s) and the	other asymp	ptote(s) of (7 ma
	·				
-			*****	*******	

	·				
	·				
	· :.				

Answers written in the margins will not be marked.

8. (a) Using integration by substitution, show that $\int \sqrt{4-x^2} dx = 2\sin^{-1}\frac{x}{2} + \frac{1}{2}x\sqrt{4-x^2} + C$, where $-2 \le x \le 2$ and C is a constant.

(b)

Figure 1

Figure 1 shows the shaded region bounded by the curves $C_1: y=2x-x^2$, $C_2: y=2\sqrt{4-x^2}$ and the x-axis. Find the area of the shaded region.

(6 marks)

Answers written in the margins will not be marked.

-	•	
 	 ·	

Please stick the barcode label here.

- 9. Let **a** and **b** be two vectors in a plane such that $|\mathbf{a}| = 13$ and $|\mathbf{b}| = 10$. The angle between **a** and **b** is θ , where $\cos \theta = \frac{16}{65}$.
 - (a) Find $\mathbf{a} \cdot \mathbf{b}$.
 - (b) Find the value of k if the projection of $(5\mathbf{a} + k\mathbf{b})$ on \mathbf{b} is a unit vector.

(5 marks)

·		

10.	The following table show	vs the volume and selling	g price of each	bottle of each type of detergent.
-----	--------------------------	---------------------------	-----------------	-----------------------------------

	Volume (L)	Selling price (\$)
Detergent A	1	100
Detergent B	2	150
Detergent C	5	300

Tom wants to buy x bottles of detergent A, y bottles of detergent B and z bottles of detergent C. Suppose he buys a total of 8 bottles of detergent with a total volume of 14 L.

- (a) Tom claims that there is only one set of combination of x, y and z. Do you agree? Explain your answer.
- (b) Moreover, suppose Tom spends exactly \$1100 to buy the detergent. Do you think that there is only one set of x, y and z? Explain your answer.

is only one set of x , y and z ? Explain your answer.	(7 marks)
·	

Answers written in the margins will not be marked.

SECTION B (50 marks)

11. Figure 2 shows a prism ABCDEFGH with a trapezoidal base ABCD, where AB // DC. The position vectors of A, B and C are $2\mathbf{i} + \mathbf{j} + 4\mathbf{k}$, $2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$ and $\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ respectively. The area of the trapezoidal base ABCD is 6.

- (a) (i) By considering the areas of $\triangle ABC$ and $\triangle ACD$, find AB : DC.
 - (ii) Find the position vector of D.

(6 marks)

(6 marks)

Answers written in the margins will not be marked.

- (b) Suppose the position vector of F is $4\mathbf{i} 2\mathbf{j} + \mathbf{k}$.
 - (i) By considering the volume of the prism ABCHFG, find the volume of the prism ABCDEFGH.
 - (ii) Find the acute angle between the line FC and the plane ABCD. (Give the answer correct to the nearest 0.1° .)

	 · · · · · · · · · · · · · · · · · · ·	 	
·			

12. (a) Let $t = \tan x$. Show that $\cos 2x = \frac{1 - t^2}{1 + t^2}$.

(2 marks)

- Using (a) and the substitution $t = \tan x$, show that $\int \frac{dx}{3 + \cos 2x} = \int \frac{dt}{2t^2 + 4}$.
 - Using integration by substitution, show that $\int \frac{dt}{t^2+2} = \frac{\sqrt{2}}{2} \tan^{-1} \left(\frac{t}{\sqrt{2}}\right) + C$, where C is a constant.

(5 marks)

- (c) (i) Express $\frac{d}{dx} \left(\frac{\sin 2x}{3 + \cos 2x} \right)$ in the form $\frac{P}{3 + \cos 2x} + \frac{Q}{(3 + \cos 2x)^2}$, where P and Q are
 - (ii) Hence or otherwise, show that $\int_0^{\frac{\pi}{4}} \frac{dx}{(3 + \cos 2x)^2} = \frac{3\sqrt{2}}{32} \tan^{-1} \left(\frac{1}{\sqrt{2}}\right) \frac{1}{48}$.

(5 marks)

Answers written in the margins will not be marked.

—· .,		 			
	_				
		 	-	 	
——————————————————————————————————————				 	
			····		
		 •			
	-				
		 · -		 	

- 13. Let *I* be the 3 × 3 identity matrix, $P = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix}$ and $Q = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, where *a*, *b* and *c* are real numbers with $a^2 + b^2 + c^2 = 1$.
 - (a) (i) Show that QQ^TP is the 3×3 zero matrix.
 - (ii) Show that $(I + P)^{-1} = \frac{1}{2}(I P + QQ^T)$

Hence show that $I + P^2 = QQ^T$.

(10 marks)

(b) Let
$$M = \begin{pmatrix} 0 & -\sqrt{2} & \sqrt{3} \\ \sqrt{2} & 0 & -1 \\ -\sqrt{3} & 1 & 0 \end{pmatrix}$$
. Evaluate $M + \frac{1}{6}M^3 + \frac{1}{6^2}M^5 + \dots + \frac{1}{6^{1008}}M^{2017}$.

(4 marks)

Answers written in the margins will not be marked.

	·
-	
	<u> </u>
	·

		· ·	
-			
			 -
		 •	
	·	 	
		 	 .,
		 -	
		· ·	

Figure 3

Figure 3 shows a circle with centre D and radius 1 unit, where O is the origin and D lies on the y-axis. The circle touches the x-axis at O. A is a moving point on the negative x-axis. AD is produced to intersect the circle at B. C is a point on the positive x-axis such that BC = AB and

BC intersects the circle at *E*. It is given that $\angle ACB = \theta$, where $\frac{\pi}{4} < \theta < \frac{\pi}{2}$. Let *S* square units be the area of the shaded region.

(a) Show that $S = 2\theta - \frac{\pi}{2} + \frac{1}{2}\sin 4\theta$.

(4 marks)

- (b) Let x units be the horizontal distance between B and C. C is moving towards O such that the rate of change of x is 1 unit per second.
 - (i) Show that $x = \cos \theta + \cot \theta$.
 - (ii) Hence find the rate of increase of S when $\triangle ABC$ is equilateral.

(8 marks)

		 -	