

0

覃雄派

提纲

- 线性回归的评价
 - 拟合优度
 - 回归方程显著性检验
 - 回归系数的显著性检验
 - 线性回归模型评价的实例
 - 自变量筛选法
- 线性回归评价的实践

- 回归分析是应用广泛的统计分析方法,用于分析事物之间的相关关系
 - 其中一元线性回归(Linear Regression)模型,指的是只有一个解释变量的线性回归模型
 - 而多元线性回归模型,则是包含多个解释变量的线性回归模型
 - 所谓解释变量就是自变量,而被解释变量则是因变量
 - 回归模型就是描述因变量和自变量之间依存的数量关系的模型

- 我们把因变量的总变差(Sum of Squares for Total, SST)
 - 分解成自变量变动引起的变差(Sum of Squares for Regression, SSR)
 - 和其它因素造成的变差(Sum of Squares for Error, SSE)
 - 用数学语言来表达为
 - $-SST = \sum (y \bar{y})^2 = \sum (\hat{y} \bar{y})^2 + \sum (y \hat{y})^2 = SSR + SSE$
 - 式中,y表示因变量的实际值, \bar{y} 表示样本均值, \hat{y} 表示模型预测值,

- (1) 拟合优度检验:回归方程的拟合优度,指的是回归方程对样本的各个数据点的拟合程度
- 拟合优度的度量一般使用判定系数R2
 - 是在因变量的总变差中,由回归方程解释的变动(回归平方和)所占的比重
 - R²越大,方程的拟合程度越高
 - R²的计算公式为 $R^2 = \frac{SSR}{SST} = 1 \frac{SSE}{SST}$
 - 当一个多元线性回归模型的判定系数接近1.0时,说明其拟合优度较高

- (2) 回归方程显著性检验: 回归方程的显著性检验
- 目的是评价所有自变量和因变量的线性关系是否密切
 - 常用F检验统计量进行检验, F检验是对模型整体回归显著性的检验
 - F统计量的计算公式为 $F = \frac{SSR/k}{SSE/(n-k-1)}$ 式中,n为样本容量,k为自变量个数
 - F检验的原假设(H_0)为,自变量和因变量的线性关系不显著;备择假设(H_1)为,自变量和因变量的线性关系显著
 - 在给定的显著性水平(一般选0.05)下,查找自由度为(k, n-k-1)的F分布表,得到相应的临界值F。
 - 如果上述公式计算得的F>Fa, 那么拒绝原假设, 回归方程具有显著意义, 回归效果显著
 - 否则, F<Fa, 那么接受原假设, 回归方程不具有统计上的显著意义, 回归效果不显著

$$\{H_0: \beta_0 = \beta_1 = \dots = \beta_p = 0 \}$$
 $\{H_1: 系数\beta_0, \beta_1, \dots, \beta_{p \text{ 不全为0}}\}$

也可以用原假设的概率p值来 进行判断,p<0.05, 拒绝原假设 (即原假设不可能发生), p>=0.05接受原假设

- (3)回归系数的显著性检验:使用t检验,分别检验回归模型中的各个回归系数是否具有显著性,以便使模型中只保留那些对因变量有显著影响的因素
 - t检验是对单个解释变量回归系数的显著性检验
 - 回归系数i的t检验统计量为 $t_i = \frac{\beta_i}{S_{\beta_i}}$,其中 S_{β_i} 表示回归系数 β_i 的标准误差
 - t检验的原假设(H_0)为, a_i 的值为0,即对应变量 x_i 的系数为0,该变量无需进入方程;备择假设(H_1)为, a_i 的值不为0,即对应变量 x_i 的系数不为0,该变量需要进入方程
 - 给定显著性水平a(一般选0.05),查找自由度为n-k-1的t分布表,得到临界值ta,
 - 如果t_i>t_a,拒绝原假设,回归系数a_i与0有显著差异,对应的自变量x_i对因变量y有解释作用
 - 否则t_i<t_a,接受原假设,回归系数a_i与0没有显著差异,对应的自变量x_i对因变量y没有解释作用

也可以用原假设的概率p值来进行判断,p<0.05, 拒绝原假设(即原假设不可能发生), p>=0.05接受原假设

- (3) 回归系数的显著性检验: 使用t检验, 分别检验回归模型中的各个 回归系数是否具有显著性,以便使模型中只保留那些对因变量有显著 影响的因素
 - t检验的原假设、备择假设以及计算方法 (假设有k个变量)

$$\begin{cases} H_0: \ \beta_j = 0 \ , j = 1, 2, \cdots \\ H_1: \beta_j \neq 0 \end{cases}$$

$$t = \frac{\hat{\beta}_j - \beta_j}{se(\hat{\beta}_j)} \sim t(n - k - 1)$$

• β_j 为线性回归模型第j个系数 β_j 为原假设的值,也就是0, $se(\hat{\beta}_j)$ 为回归系数的标准差

- $\hat{\beta}_j$ 为线性回归模型第j个系数估计值,

- 线性回归模型评价的实例
 - 数据集
 - a chemical process expects the yield to be affected by the levels of two factors
 - That are x1 and x2

Observation	Factor 1	Factor 2	Yield
Number	(x_{i1})	(x_{i2})	(y_i)
1	41.9	29.1	251.3
2	43.4	29.3	251.3
3	43.9	29.5	248.3
4	44.5	29.7	267.5
5	47.3	29.9	273.0
6	47.5	30.3	276.5
7	47.9	30.5	270.3
8	50.2	30.7	274.9
9	52.8	30.8	285.0
10	53.2	30.9	290.0
11	56.7	31.5	297.0
12	57.0	31.7	302.5
13	63.5	31.9	304.5
14	65.3	32.0	309.3
15	71.1	32.1	321.7
16	77.0	32.5	330.7
17	77.8	32.9	349.0

PENNING OF CHINA

- 线性回归模型评价的实例
 - 数据集
 - A scatter plot

- 线性回归模型评价的实例
 - regression model

• 线性回归模型评价的实例

- 解析解

$$X = \begin{bmatrix} 1 & 41.9 & 29.1 \\ 1 & 43.4 & 29.3 \\ \vdots & \vdots & \vdots \\ 1 & 77.8 & 32.9 \end{bmatrix} \quad y = \begin{bmatrix} 251.3 \\ 251.3 \\ \vdots \\ \vdots \\ 349.0 \end{bmatrix}$$

$$\hat{\beta} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = (X'X)^{-1}X'y$$

$$= \begin{bmatrix} 17 & 941 & 525.3 \\ 941 & 54270 & 29286 \\ 525.3 & 29286 & 16254 \end{bmatrix}^{-1} \begin{bmatrix} 4902.8 \\ 276610 \\ 152020 \end{bmatrix}$$

$$= \begin{bmatrix} -153.51 \\ 1.24 \\ 12.08 \end{bmatrix}$$

- 线性回归模型评价的实例
 - 线性回归模型

$$\hat{eta}_0 = -153.51$$
, $\hat{eta}_1 = 1.24$ and $\hat{eta}_2 = 12.08$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2
= -153.5 + 1.24x_1 + 12.08x_2$$

- 线性回归模型评价的实例
 - 线性回归模型
 - A plot of the fitted regression plane

- 线性回归模型评价的实例
 - 线性回归模型: 预测值与误差

$$\hat{y}_i = -153.5 + 1.24x_{i1} + 12.08x_{i2}$$

$$e_i = y_i - \hat{y}_i$$

- 比如

$$\hat{y}_5 = -153.5 + 1.24x_{51} + 12.08x_{52}$$
 $= -153.5 + 1.24(47.3) + 12.08(29.9)$
 $= 266.3$

$$e_5 = y_5 - \hat{y}_5 = 273.0 - 266.3 = 6.7$$

- 线性回归模型评价的实例
 - 线性回归模型: 拟合优度计算R平方

R-sq(adj) = 96.35%

$$SST = \sum (y - \bar{y})^2 = \sum (\hat{y} - \bar{y})^2 + \sum (y - \hat{y})^2 = SSR + SSE$$

- 线性回归模型评价的实例
 - 线性回归模型: F检验—of Regression)
 - 原假设与备择假设
 - F统计量 $F_0 = \frac{MS_R}{MS_E}$

-对模型整体回归显著性的检验(Significance

$$H_0: \qquad \beta_1 = \beta_2 = \ldots = \beta_k = 0$$

$$H_1: \beta_j \neq 0$$
 for at least one j

$$MS_R = \frac{SS_R}{dof(SS_R)}$$
= $\frac{12816.35}{2}$
= 6408.17

即
$$\frac{SSR}{k}$$

$$egin{aligned} MS_E = & rac{SS_E}{dof(SS_E)} \ = & rac{SS_E}{(n-(k+1))} \ = & rac{423.37}{(17-(2+1))} \ = & 30.24 \end{aligned}$$

- F0=6408.17/30.24=211.9
 - 在给定的显著性水平(significance level of 0.1)下,查找自由度为(k, n-k-1)即(2,17-2-1)的F分布表,得到相应的临界值F

$$f_{0.1,2,14} = 2.726$$

- 线性回归模型评价的实例
 - 线性回归模型: F检验——对模型整体回归显著性的检验(Significance of Regression)
 - 结论

-
$$^{ ext{b}}$$
 $f_0 > f_{0.1,2,14}$

Source of	Degrees of	Sum of	Mean	F	P
Variation	Freedom	Squares	Squares	Statistic	Value
Regression	2	12816.35	6408.17	211.9	0.00
Error	14	423.37	30.24		
Total	16	13239.72			

- 所以拒绝原假设,选择备择假设
 - at least one coefficient out of β_1 and β_2 is significant
 - In other words, it is concluded that a regression model exists between yield and either one or both of the factors in the table

- 线性回归模型评价的实例
 - 线性回归模型: t检验——各个系数
 - 原假设与备择假设

$$H_0: \qquad \beta_j = 0$$

$$H_1: \qquad \beta_j \neq 0$$

- T统计量

$$T_0 = \frac{\hat{\beta}_j}{se(\hat{\beta}_j)}$$

- 结论
- - $-t_{lpha/2,n-2} < T_0 < t_{lpha/2,n-2}$, 不能拒绝原假设; 否则拒绝原假设

- 线性回归模型评价的实例
 - 线性回归模型: t检验——各个系数
 - The variance-covariance matrix of
 - the estimated regression
 - coefficients is obtained as follows
 - (具体推导这里不展开)

$$C = \hat{\sigma}^2 (X'X)^{-1}$$

$$se(\hat{\beta}_j) = \sqrt{C_{jj}}$$

$$\begin{split} \hat{\beta}_0 &= -153.51, \hat{\beta}_1 = 1.24 \text{ and } \hat{\beta}_2 = 12.08 \\ \hat{y} &= \qquad \qquad \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 \\ &= \qquad -153.5 + 1.24 x_1 + 12.08 x_2 \end{split}$$

两个变量,两个系数

线性回归的评 $\hat{\sigma}^2 = MS_E =$

- 线性回归模型评价的实例
 - 线性回归模型: t检验——各个系数

$$egin{array}{lll} b & = MS_E = & & rac{dof(SS_E)}{dof(SS_E)} \ & = & rac{SS_E}{(n-(k+1))} \ & = & rac{423.37}{(17-(2+1))} \ & = & 30.24 \end{array}$$

 SS_E

$$C = \hat{\sigma}^2 (X'X)^{-1}$$

$$se(\hat{\beta}_j) = \sqrt{C_{jj}}$$

$$C = \hat{\sigma}^{2}(X'X)^{-1}$$

$$= 30.24 \begin{bmatrix} 336.5 & 1.2 & -13.1 \\ 1.2 & 0.005 & -0.049 \\ -13.1 & -0.049 & 0.5 \end{bmatrix}$$

$$= \begin{bmatrix} 10176.75 & 37.145 & -395.83 \\ 37.145 & 0.1557 & -1.481 \\ -395.83 & -1.481 & 15.463 \end{bmatrix}$$

$$se(\hat{eta}_1) = \sqrt{0.1557} = 0.3946$$
 $se(\hat{eta}_2) = \sqrt{15.463} = 3.93$

- 线性回归模型评价的实例
 - 线性回归模型: t检验——各个系数

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2
= -153.5 + 1.24 x_1 + 12.08 x_2$$

$$(t_0)_{\hat{eta}_1} = rac{\hat{eta}_1}{se(\hat{eta}_1)} = rac{1.24}{0.3946} = 3.1393$$

$$(t_0)_{\hat{eta}_2} = rac{\hat{eta}_2}{se(\hat{eta}_2)} = rac{12.08}{3.93} = 3.0726$$

The critical values for the present t test at a significance of 0.1 are

$$t_{\alpha/2,n-(k+1)} = t_{0.05,14} = 1.761$$

 $-t_{\alpha/2,n-(k+1)} = -t_{0.05,14} = -1.761$

两个t统计量都处在阈值之外,应该拒绝原假设,接受备择假设,即两个系数都不为0

- 线性回归模型评价的实例
 - 线性回归模型: t检验——各个系数

$$(t_0)_{\hat{eta}_1} = \frac{\hat{eta}_1}{se(\hat{eta}_1)} = \frac{1.24}{0.3946} = 3.1393$$

$$(t_0)_{\hat{\beta}_2} = \frac{\hat{\beta}_2}{se(\hat{\beta}_2)} = \frac{12.08}{3.93} = 3.0726$$

on Table								
Regression Information								
Effect	Coefficient	Standard Error	Low Confidence	High Confidence	T Value	P Value	Variance Inflation Factor	
	-153.5117	100.8799	-331.1924	24.169	1.5217	0.1503		
2.4774	1.2387	0.3946	0.5437	1.9337	3.1392	0.0072	11.2389	
24.1647	12.0824	3.9323	5.1564	19.0083	3.0726	0.0083	11.2389	
	Effect 2.4774	-153.5117 2.4774 1.2387	Effect Coefficient Standard Error -153.5117 100.8799 2.4774 1.2387 0.3946	Effect Coefficient Standard Error Low Confidence -153.5117 100.8799 -331.1924 2.4774 1.2387 0.3946 0.5437	Regression Information Effect Coefficient Standard Error Low Confidence High Confidence -153.5117 100.8799 -331.1924 24.169 2.4774 1.2387 0.3946 0.5437 1.9337	Regression Information Effect Coefficient Standard Error Low Confidence High Confidence T Value -153.5117 100.8799 -331.1924 24.169 1.5217 2.4774 1.2387 0.3946 0.5437 1.9337 3.1392	Regression Information Effect Coefficient Standard Error Low Confidence High Confidence T Value P Value -153.5117 100.8799 -331.1924 24.169 1.5217 0.1503 2.4774 1.2387 0.3946 0.5437 1.9337 3.1393 0.0072	

· 自变量筛选法

- 在多元线性回归中,存在一个自变量选择的问题,因为并不是所有的自变量都对因变量有解释作用
 - 比如,我们通过身高、体重(自变量)和肺活量(因变量),建立的回归模型中
 - 这时候,我们引入一个血压数据,就可能和肺活量没有什么关系
 - 自变量间可能存在较强的线性关系,即共线性
 - 所以不能把所有的变量全部引入方程
 - 变量选择的方法,包括前向筛选法、后向筛选法、和逐步筛选法三种

- · 自变量筛选法: 前向筛选法(Forward)
 - 自变量不断进入回归方程的过程
 - 选择与因变量具有最高相关系数的自变量进入方程,并进行各种 检验
 - 其次,在剩余的自变量中寻找偏相关系数最高的变量,进入回归 方程,并进行检验
 - 反复上述步骤,直到没有可进入方程的自变量为止
 - 回归系数检验的概率P值小于P_{in}(0.05),才可以进入方程

- **自变量筛选法:** 后向筛选法(Backward)
 - 自变量不断剔除出回归方程的过程
 - 首先,将所有自变量全部引入回归方程
 - 其次,在一个或多个t值不显著的自变量中,将t值最小的那个变量 剔除出去,并重新建立方程和进行检验
 - 回归系数检验P值大于Pout(0.10),则剔除出方程
 - 如果新方程中所有变量的回归系数t值都是显著的,则变量筛选过程结束
 - 否则, 重复上述过程, 直到没有变量可剔除为止

- · 自变量筛选法:逐步筛选法(Stepwise)
 - 是"前向筛选法"和"后向筛选法"的结合
 - 前向筛选法,只对进入方程的变量的回归系数进行显著性检验, 而对已经进入方程的其它变量的回归系数不再进行显著性检验, 也就是,变量一旦进入方程就不会被剔除
 - 随着变量的逐个引进,由于变量之间存在着一定程度的相关性, 使得已经进入方程的变量,其回归系数不再显著,因此会造成最 后的回归方程可能包含不显著的变量
 - 逐步筛选法则在变量选择的每一个阶段,都考虑剔除一个变量的可能性

• 线性回归评价的实践

202	21-07-18《数据科学概论》new plan:	▶ 2022newPPT ➤ 0305-回归:多元回则	3(解析解与梯度下降	算法) →	× (
	名称	^	类型	大小	修改日期
	05_evaluate_regression_mode	l.ipynb	IPYNB 文件	66 KB	2021/12/1 16:15

- 线性回归评价的实践
 - 装载数据集,显示前5行

profit=pd. read_csv('50_Startups.csv', sep=",")
profit.head()

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94

- 线性回归评价的实践
 - 修改数据集的列名称(为了进行回归),显示前5行

	RD_Spend	Administration	Marketing_Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94

- 线性回归评价的实践
 - 回归,显示截距和系数

fit=sm.formula.ols('Profit~RD_Spend+Administration+Marketing_Spend', data=profit).fit() print(fit.params)

Intercept 50122.192990

RD_Spend 0.805715

Administration -0.026816

Marketing_Spend 0.027228

dtype: float64

Profit=50122.192990 + +0.027228Marketing_Spend

0.875715RD_Spend

0.026816Administration

- 线性回归评价的实践
 - 显示R平方系数、F检验结果、t检验结果

		OLS Regres	sion Results			
Dep. Variable:		Profit	R-squared:			0. 951
Model:	OLS		Adj. R-squa	red:		0. 948
Method:	Least Squares		F-statistic	:		296. 0
Date:	Wed, 01 Dec 2021		Prob (F-sta	tistic):	4.5	3e-30
Γime:		16:18:47		ood:	-5	25. 39
No. Observations:	50		AIC:			1059.
Of Residuals:	46		BIC:		1066.	
Of Model:		3				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0. 025	0. 975
Intercept	5. 012e+04	6572. 353	7. 626	0.000	3. 69e+04	6. 34e+04
RD_Spend	0.8057	0.045	17.846	0.000	0.715	0.89
Administration	-0.0268	0.051	-0.526	0. 602	-0.130	0.076
Marketing_Spend	0. 0272	0.016	1. 655	0. 105	-0.006	0.060
 Omnibus:		14. 838	Durbin-Wats	on:		1. 282
Prob(Omnibus):		0.001	Jarque-Bera (JB):		2	1.442
Skew:		-0.949	Prob(JB):		2.2	1e-05
Kurtosis:		5. 586	Cond. No.		1.4	0e+06

- R平方为0.951,拟合优度较好
- F-statistic : 296.0 , Prob (F-statistic):4.53e-30, F统计量值为296.0, 对应的概率值P远远小于0.05, 说明应该拒绝原假设(原假设不成立), 认为模型是显著的
- 在各自变量的t统计中, Administration和 Marketing_Spend变量所对应的概率值p大于0.05,说明不能拒绝原假设,这些变量是不显著的,无法认定其实影响Profit的重要因素

- 线性回归评价的实践
 - 由于Administration和Marketing_Spend变量的t检验结果是不显著的
 - 故可以探索这些变量与Profit之间的散点关系,如果确实没有线性关系,可将其从模型中剔除

- 线性回归评价的实践
 - 看看RD_Spend和目标变量的关系

• 线性回归评价的实践

- 剔除变量, 重建模型fit2

Profit=49032.899141+0.854291RD_Spend

- 新模型fit2通过了显著性检验
- 新模型fit2的每个自变量所对应的 系数也是通过显著性检验的

异常值

- 回归模型计算过程会依赖于自变量的均值,均值的最大弊端是其容易受到异常点(或极端值)的影响
- 建模数据中存在异常点,一定程度上会影响到建模的有效性
- 对于现行回归模型来说,通常利用帽子矩阵、DFFITS准则、学生化残差或Cook距离进行异常点检测
 - (这4种异常值检测方法的原理,在此不展开讨论)
 - 使用以上4种方法判别数据集的第i个样本是否为异常点
 - 前提是已构建好一个线性回归模型,然后基于由get_influence方法获得4种统计量的值

- 异常值
 - 计算每个样本的异常值指标

```
#异常值检验
outliers=fit2.get_influence()
#高杠杆值点(帽子矩阵)
leverage=outliers.hat_matrix_diag
#diffits值
dffits=outliers.dffits[0]
#学生化残差
resid_stu=outliers.resid_studentized_external
#cook距离
cook=outliers.cooks distance[0]
concat result = pd . concat ([pd . Series (leverage, name = 'leverage'), pd . Series (dffits, r
   pd . Series ( resid_stu , name = 'resid_stu') , pd . Series ( cook , name = 'cook' ) ] . axis = 1
raw outliers = pd. concat ([ profit , concat result ] , axis = 1)
raw outliers. head()
   RD_Spend Administration Marketing_Spend
                                                         Profit leverage
                                                                           diffits resid stu
                                               State
                                                                                              cook
0 165349.20
                  136897.80
                                  471784.10 New York 192261.83 0.101318
                                                                        0.073456
                                                                                  0.218771 0.002753
    162597.70
                  151377.59
                                  443898.53
                                           California 191792.06 0.096508
                                                                        0.139502
                                                                                  0.426837 0.009899
                                  407934.54
                                                                                  1.217678 0.065177
2 153441.51
                  101145.55
                                              Florida 191050.39 0.081556
                                                                        0.362855
3 144372.41
                  118671.85
                                  383199.62
                                            New York 182901.99 0.068347
                                                                        0.315040
                                                                                  1.163141 0.049263
 4 142107.34
                   91391.77
                                              Florida 166187.94 0.065297 -0.122261 -0.462571 0.007598
                                  366168.42
```


- 异常值
 - 通过学生化残差识别出异常值 (一定阈值下), 异常值比例为4%
 - 由于异常值比例非常小,故可以考虑将其直接从数据集中删除,由此继续建模将会得到更加稳健且合理的模型

outliers_ratio=sum(np. where(np. abs(raw_outliers.resid_stu)>2, 1, 0))/raw_outliers. shape[0] print(outliers_ratio)

0.04

• 异常值

- 去掉异常值,建立模型fit3

Profit=51454.448622+0.836629RD_Spend

OLS Rograssion Regults

#通过筛选的方法,将异常点排除

none_outliers=raw_outliers.loc[np.abs(raw_outliers.resid_stu) <=2,]

#应用无异常值的数据集重新建模

fit3=sm.formula.ols('Profit~RD_Spend', data=none_outliers).fit() #none_outliers

#返回模型的概览信息

print(fit3.params)
print(fit3.summary())

Intercept 51454.448622 RD_Spend 0.836629

dtype: float64

排除异常点之后得到的模型fit3,不管是模型的显著性检验还是系数的显著性检验,各自的概率P值均小于0.05,说明它们均通过显著性检验

ULS Regression Results							
Dep. Variable	:	Pr	ofit OLS		uared: R-squared:		0. <u>962</u> 0. <u>961</u>
Method:		Least Squ			atistic:	,	1171.
Date:		Wed, 01 Dec			(F-statisti	c):	2. 28e-34
Time:		16:3	2:06	Log-I	Likelihood:		-495. 77
No. Observati	ons:		48	AIC:			995. 5
Df Residuals:			46	BIC:			999. 3
Df Model:			1				
Covariance Ty	pe:	nonro	bust				
	coef	std err		t	P> t	[0. 025	0. 975]
Intercept 5	. 145e+04	2119. 025	24	1. 282	0.000	4.72e+04	5.57e+04
RD_Spend	0.8366	0. 024	34	1. 221	0.000	0.787	0.886
Omnibus:	======		=====). 188	Durb	======= in-Watson:		1. 550
Prob(Omnibus)	:	C	. 910	Tarqu	ue-Bera (JB)	:	0.381
Skew:			. 089	Prob			0. 827
Kurtosis:			. 601	Cond.	-		1. 68e+05
=========	======	========	=====		========		=======

• 异常值

- 进行预测验证一下

pred=fit3.predict(profit[['RD_Spend']])

#对于实际值与预测值的比较

df=pd. concat([pd. Series(profit. Profit/100, name='real'), pd. Series(pred/100, name='prediction')], axis=1) df['误差绝对值']=np. abs((df['real']-df['prediction'])/100)

df. head (10)

	real	prediction	误差绝对值
0	1922.6183	1897.903980	0.247143
1	1917.9206	1874.884131	0.430365
2	1910.5039	1798.280783	1.122231
3	1829.0199	1722.406055	1.066138
4	1661.8794	1703.455820	0.415764
5	1569.9112	1617.864984	0.479538
6	1561.2251	1640.776573	0.795515
7	1557.5260	1604.656535	0.471305
8	1522.1177	1523.038265	0.009206
9	1497.5996	1546.399960	0.488004

- 针对原始数据profit目标变量, 根据fit3模型重新预测各成本 下的利润预测值
- 从结果上看有的预测值比较 接近实际值,有的预测测偏 离实际值稍微远一点
- 但从总体上来说,预测值与 实际值之间的差异并不是特 别大

- 变量的相关系数
 - 考察自变量、因变量的相关系数
 - 考察自变量之间的相关系数
 - (把冗余的自变量剔除)

$$\rho_{x,y} = \frac{COV(x,y)}{\sqrt{D(x)}\sqrt{D(y)}}$$

COV(x,y)为自变量x与因变量y之间的协方差,D(x)和D(y)分别为自变量x和因变量y的 方差

$ ho $ \geqslant 0.8	$0.5 \le \rho < 0.8$	$0.3 \le \rho < 0.5$	$ \rho < 0.3$
高度相关	中度相关	弱相关	几乎不相关

• 变量的相关系数

```
ContinuousCols = ['RD_Spend', 'Administration', 'Marketing_Spend', 'Profit']

df2 = profit[ContinuousCols]
    cor_matrix = df2.corr().round(2)

# Plotting heatmap
    fig = plt.figure(figsize=(6,6));
    kot = cor_matrix[abs(cor_matrix)>=.45]
    sns.heatmap(kot, annot=True, center=0, cmap = sns.diverging_palette(250, 10, as_cmap=True, plt.show()
```

- 目标变量profit和RD_spend、Marketing_Spend (自变量与因变量)的相关系数比较高
- 但是Marketing_Spend和RD_spend(自变量之间)的相关系数比较高

