EXERCÍCIOS

 Ache os extremos relativos de f pelo teste da derivada primeira e determine os intervalos nos quais f é crescente e decrescente.

a)
$$f(x) = x^2 - 4x - 1$$

b) $f(x) = 4 \operatorname{sen} \frac{1}{2} x$
c) $f(x) = 2x^3 - 9x^2 + 2$
d) $f(x) = \sqrt{x} - \frac{1}{\sqrt{x}}$
f(x) =
$$\begin{cases} 5 - 2x & \text{se } x < 3 \\ 3x - 10 & \text{se } 3 \le x \end{cases}$$

of
$$f(x) = x^2 - 4x - 1$$

$$f(x) = 2x - 4$$

$$f(x) = 0 \iff 2x - 4 = 0 \iff x = 2$$

$$f \in DECRESCENTE QUANDO \begin{cases} x < 2 \end{cases}$$

$$f \in CRESCENTE SE x > 2$$

$$0 PONTO MÍNIMO DE f OCORRE$$

$$EM (2, -5).$$

EXERCÍCIOS

 Ache os extremos relativos de f pelo teste da derivada primeira e determine os intervalos nos quais f é crescente e decrescente. $f(x) = 2x^{3} - 9x^{2} + 2$ $f(x) = 6x^{2} - 18x \iff$

a)
$$f(x) = x^2 - 4x - 1$$

b)
$$f(x) = 4 \operatorname{sen} \frac{1}{2} x$$

c)
$$f(x) = 2x^3 - 9x^2 + 2$$

d)
$$f(x) = \sqrt{x} - \frac{1}{\sqrt{x}}$$

c)
$$I(x) = 2x^2 - 9x^2 + 2$$

d) $f(x) = \sqrt{x} - \frac{1}{\sqrt{x}}$

e) $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

e) $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

for $f(x) = \begin{cases} 5 - 2x \text{ se } x < 3 \end{cases}$

e)
$$f(x) = \begin{cases} 5 - 2x & \text{se } x < 3 \\ 3x - 10 & \text{se } 3 \le x \end{cases}$$

FREM UM POMTO MÍMINO RELATIVO

EXERCÍCIOS

 Encontre os pontos de inflexão do gráfico da função dada, se existirem. Determine onde o gráfico é côncavo para cima e onde ele é côncavo para baixo.

a)
$$f(x) = x^3 + 9x$$

b) $f(x) = 2x^3 + 3x^2 - 12x + 1$
c) $f(x) = (x - 1)^3$
f(x) = $\frac{2}{x^2 + 3}$

o)
$$f(x) = x^3 + 9x$$

$$f'(x) = 3x^2 + 9$$

$$f''(x) = 6x$$

$$f''(x) = 0 \implies 6x = 0 \implies x = 0$$

O GRÁFICO DE F TEM UM PONTO DE INFLEXÃO EM (0,0).

O GRAFICO DE F TEM C.V.B. SE X<0.

O GRÁFICO DE F TEM C.V.C. SE X>0.

EXERCÍCIOS

1) Represente graficamente as funções:

a)
$$f(x) = \frac{x-1}{2x-5}$$

b)
$$f(x) = x^3 + 3x^2 - 9x + 5$$

c)
$$f(x) = \frac{3x^2}{x^2 + 2}$$

d)
$$f(x) = \frac{x^2 - 2x + 4}{x - 2}$$

a)
$$f(x) = \frac{x-1}{2x-5}$$

$$\hat{f}(x) = \frac{1 \cdot (2x-5) - (x-1) \cdot 2}{(2x-5)^2} = \frac{2x-5-2x+2}{(2x-5)^2} = \frac{-3}{(2x-5)^2}$$

$$f''(x) = 6(2x-5)^{-3} = \frac{6}{(2x-5)^3}$$

ASSÍNTOTA VERTICAL:

$$2x-5=0 \Rightarrow x=\frac{5}{2}$$

ASSINTOTA HORIZONTAL:

$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} \frac{x-1}{2x-5} = \lim_{x\to\infty} \frac{x}{2x} = \frac{1}{2}$$

lim
$$f(x) = \lim_{x \to \infty} \frac{x-1}{2x-5} = \lim_{x \to \infty} \frac{x}{2x} = \frac{1}{2}$$

RAIZES: $f(x) = 0 \Rightarrow \frac{x-1}{2x-5} = 0$ > x-1=0 > x=1

GÉ DECRESCENTE PARA TODO 2 REAL.

FREM CONCAVIDADE VOLTADA PARA BAIXO SE X < 5.

F TEM COMCAVIDADE VOLTADA PARA CIMA SE x> 5.

$$\begin{cases} f(x) = x^{3} + 3x^{2} - 9x + 5 \\ f(x) = 3x^{2} + 6x - 9 \\ f(x) = 0 \Rightarrow (3x^{2} + 6x - 9 = 0) \div 3 \\ x^{2} + 2x - 3 = 0 \\ x = \frac{-2 \pm \sqrt{4 - 4 \cdot 1 \cdot (-3)}}{2} = \frac{-2 \pm 4}{2} \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$$

$$\int_{1}^{\infty} (x) = 6x + 6$$

$$\int_{1}^{\infty} (x) = 0 \rightarrow 6x + 6 = 0 \rightarrow x = -1$$

$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} x = \infty$$

$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} x = \infty$$

$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} x = -\infty$$

$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} x = -\infty$$

$$\begin{cases} f(x) = 0 \implies x^{3} + 3x^{2} - 9x + 5 = 0 & (1 \neq \text{UMA RAIZ}) \\ \frac{1}{4} \frac{1}{3} \frac{3}{-9} \frac{5}{5} \\ \hline 1 \frac{4}{4} \frac{-5}{5} \frac{1}{0} \\ x^{3} + 3x^{2} - 9x + 5 = (x - 1)(x^{2} + 4x - 5) \\ f(x) = 0 \iff (x - 1)(x^{2} + 4x - 5) = 0 \\ x - 1 = 0 \implies x^{2} + 4x - 5 = 0 \\ x = 1 \implies x^{2} = 1 \implies x^{2} = 1 \end{cases}$$

FITEM C.V.B QUANDO X <-1 E C.V.C. QUANDO X>-1.