第2章: 隐马氏模型(HMM)及其应用

- Markov Model
- Page rank算法和Markov Model
- Hidden Markov Model (HMM)
- HMM的理论基础
- HMM的应用

Part I

Markov Model

食堂就餐人数问题(I)

• 某大学有三个食堂A、B、C。调查显示:在食堂A就餐的人中p_{aa}部分仍然回到食堂A,有p_{ab}部分选择食堂B,p_{ac}部分选择食堂C;在食堂B就餐的人中p_{bb}部分仍然回到食堂B,有p_{ba}部分选择食堂A,p_{bc}部分选择食堂C;在食堂C就餐的人中p_{cc}部分仍然回到食堂C,有p_{ca}部分选择食堂A,p_{cb}部分选择食堂B;

• 请估计在食堂A、B、C的就餐人数。

食堂就餐人数问题(II)

食堂就餐人数问题 (III)

- 令An为第n天在食堂A就餐的人数比例
- 令Bn为第n天在食堂B就餐的人数比例
- 令Cn为第n天在食堂C就餐的人数比例

$$A_{n+1} = p_{aa}A_n + p_{ba}B_n + P_{ca}C_n$$

$$B_{n+1} = p_{ab}A_n + p_{bb}B_n + P_{cb}C_n$$

$$C_{n+1} = p_{ac}A_n + p_{bc}B_n + P_{cc}C_n$$

不动点问题(I)

$$(A_{n+1}, B_{n+1}, C_{n+1})$$

$$= (A_n, B_n, C_n) \begin{pmatrix} p_{aa} & p_{ab} & p_{ac} \\ p_{ba} & p_{bb} & p_{bc} \\ p_{ca} & p_{cb} & p_{cc} \end{pmatrix}$$

问题:极限是否存在?若存在,

$$(x, y, z) = (x, y, z) \begin{pmatrix} p_{aa} & p_{ab} & p_{ac} \\ p_{ba} & p_{bb} & p_{bc} \\ p_{ca} & p_{cb} & p_{cc} \end{pmatrix}$$

不动点问题(Ⅱ)

若初值为π₀=(A₀,B₀,C₀),并令P为上式中的矩阵,则

$$(A_n, B_n, C_n) = \pi_0 P^n$$

若π=(1/3,1/3,1/3), P由下面的矩阵给出,我们可以具体计算(A_n,B_n,C_n)

$$\left(\begin{array}{cccc}
0.75 & 0.05 & 0.20 \\
0.20 & 0.60 & 0.20 \\
0.40 & 0.20 & 0.40
\end{array}\right)$$

不动点问题(III)

n	A _n	B _n	C_n	n	A _n	B _n	C _n
1	0.4500	0.2833	0.2667	11	0.5553	0.1947	0.2500
2	0.5008	0.2458	0.2533	12	0.5554	0.1946	0.2500
3	0.5261	0.2232	0.2507	13	0.5555	0.1945	0.2500
4	0.5395	0.2104	0.2501	14	0.5555	0.1945	0.2500
5	0.5468	0.2032	0.2500	15	0.5555	0.1945	0.2500
6	0.5507	0.1993	0.2500	16	0.5555	0.1945	0.2500
7	0.5529	0.1971	0.2500	17	0.5555	0.1945	0.2500
8	0.5541	0.1959	0.2500	18	0.5555	0.1945	0.2500
9	0.5548	0.1952	0.2500	19	0.5555	0.1945	0.2500
10	0.5551	0.1949	0.2500	20	0.5555	0.1945	0.2500

Dynamics of the numbers

换起点π=(0.8,0.1,0.1)

n	A _n	B _n	C _n	n	A _n	B _n	C _n
1	0.66	0.12	0.22	11	0.5558	0.1942	0.25
2	0.607	0.149	0.244	12	0.5557	0.1943	0.25
3	0.5827	0.1686	0.2488	13	0.5556	0.1944	0.25
4	0.5702	0.1800	0.2498	14	0.5556	0.1944	0.25
5	0.5636	0.1865	0.2500	15	0.5556	0.1944	0.25
6	0.5600	0.1901	0.2500	16	0.5556	0.1944	0.25
7	0.5580	0.1920	0.2500	17	0.5556	0.1944	0.25
8	0.5569	0.1931	0.2500	18	0.5556	0.1944	0.25
9	0.5563	0.1937	0.2500	19	0.5556	0.1944	0.25
10	0.5560	0.1940	0.25	20	0.5556	0.1944	0.25

不动点还和前面的一样!

问题的特征

- 每一步活动只与当前处在什么"状态"有关,与过去的"状态"没有关系。
- 矩阵P特殊性:每行和为1,表示下一个时刻的状态必须在A、B、C中之一。
- 马尔可夫链模型, 简称马氏链。

离散时间随机过程

- 对于离散的时间 $t=0, 1, 2, 3, \cdots$ 的每一个 t 对应一个随机变量 $\xi_1(\omega)$,我们把 $\xi=\{\xi_0, \xi_1, \cdots, \xi_n, \cdots\}$ 这样一个随机变量的序列叫做离散时间的**随机过程**。
- 所有 $\xi(\omega)$ (t=0, 1, 2, 3, …) 具有公共的取值集合, 我们把此集合叫做**状态空间**,记为 S 。

离散时间随机过程

- 对于一个固定的 ω , $\xi(\omega)=\{\xi_0(\omega),\xi_1(\omega),\cdots,\xi_n(\omega),\cdots\}$ 就是一个状态的序列, 称为该随机过程的一条轨道,我们把 $\xi_t(\omega)$ 的取值叫做该条轨道在时间 t 的状态。
- $(\xi_{n_1}(\omega), \xi_{n_2}(\omega), \dots, \xi_{n_m}(\omega))$ 的联合分布称为 ξ 的一个有限维分布, 我们用 ξ 的全部有限维分布刻画它的统计特性.

马氏(Markov)链

• 随机过程 $\{\xi_n(\omega), n > 0\}$ 称为有限状态马氏链,若 ξ_n 只有有限个取值且满足

$$P(\xi_{n+k} = j \mid \xi_n = i, \dots, \xi_0 = i_0)$$

= $P(\xi_{n+k} = j \mid \xi_n = i)$

- 记之为 $p_{ij}(n,n+k)$
- 矩阵 $P(n,n+k) = (p_{ij}(n,n+k))$ 称为从n出发的k步转移概率矩阵

时齐马氏链

- 如果马氏链的转移矩阵与出发时刻无关,即 P(n,n+k) = P(0,k),则称此马氏链是**时齐的。**
- 这时将 $p_{ij}(n,n+k)$ 简单地记为 $p_{ij}(k)$.
- 通常不特别说明, 马氏链就指时齐马氏链。
- 前面的食堂问题就是一个1步时齐马氏链。

高阶马氏过程

• 若一个随机过程满足:

$$\forall n; j, i_n, i_{n-1}, i_{n-2}, \dots, i_0,$$

$$P(x_{n+1} = j \mid x_n = i_n, \dots, x_0 = i_0)$$

$$= P(x_{n+1} = j \mid x_n = i_n, \dots, x_{n-k+1} = i_{n-k+1})$$

也就是说随机过程下一时间的发展只和包括当前时间在内的最近的k个时间的状态有关而和这k个时间之前的历史没有关系,(其中k=0,1,2,…),我们把这样的随机过程叫做k阶马氏链。

零(1)阶马氏过程

 显然零阶马氏链就是说下一时间的发展和 当前状态及已有历史都独立,也就是相互 独立的随机序列(过程)。

• 1-阶马氏链就是前面的马氏链.

关于名称的一点说明

- 参考书中,看到马氏链(过程)的时候要根据上下 文进行判断。有的时候是指普遍的马氏链(包括 高阶、一阶、零阶),有时候特指一阶马氏链。
- 在大多数情况下,如不特别说明,通常是特指一阶时齐的马氏链。
- 如果将一个 k-阶马氏链的相邻 k 个时间的状态合为一个新的状态: $y_n = (x_n, x_{n-1}, \dots, x_{n-k+1})$, 则 $\{y_n\}$ 是一个 1-阶马氏链。

转移概率矩阵性质

$$P(n,n) = I$$

$$P(n,m)1^{T} = 1^{T}$$

$$P(n,l) = P(n,m)P(m,l)$$

• 其中第三个方程称之为C-K方程

时齐马氏链性质(I)

• 时齐马氏链由转移概率矩阵和初分布完全确定,设转移概率矩阵为 $P=(p_{ij})$,初始分布: $\mu_i^{(0)} = P(\xi_0 = i)$ 则

$$P = P(n, n + 1)$$

$$P(n, n + m) = P^{m}$$

$$P(\xi_{0} = i_{0}, \xi_{1} = i_{1}, \dots, \xi_{n} = i_{n})$$

$$= \mu_{i_{0}}^{(0)} p_{i_{0}, i_{1}} \dots p_{i_{n-1}, i_{n}}$$

时齐马氏链性质(II)

• 若记

$$\mu_i^{(n)} = P(\xi_n = i), \mu^{(n)} = (\mu_i^{(n)}, i \in S),$$

即所谓绝对概率,则:

$$\mu^{(n+m)} = \mu^{(m)} P^n$$

马氏链的不变分布

• 状态空间S上的一个概率分布称为转移概率 矩阵P的不变概率分布(简称不变分布),如 果

$$\pi P = \pi$$

 一般来说,不变分布未必存在。若不变分 布存在且唯一(记为π),则它是以下代数方 程组的唯一非负解。

$$\pi = \pi P$$
$$\pi 1^T = 1^T$$

概念: 可达、互通、不可约

• 可达: 状态i称为可达状态j, 如果存在一个指标序 列 $i_0 = i, i_1, \dots, i_n = j$, 使得

$$p_{i_k,i_{k+1}} > 0 \quad k = 0, 1, \dots, n-1.$$

• 用转移概率矩阵来刻画 i可达 j:

$$\exists n > 0, (p^n)_{ij} > 0.$$

- 互通: 状态i可达状态j,而且状态j可达状态i.
- 不可约: 如果所有状态之间是互通的.

概念: 常返

• 常返性: 马氏链 $\{\xi_n(\omega): n \geq 0\}$,状态y称为常返的,如果概率为1地发生如下事件: 从y出发的状态,有限时间内离开状态y,此后又必到达y,…,如此无限重复。

概念: 周期

• 从某个状态i出发,经过n步回到状态i的情形。 为此定义集合

$$\{n: (p^n)_{ii} > 0\}$$

• 这个集合的最大公约数称之为状态i的周期T。

• 若T>1称状态i是周期的; 若T=1,称状态i为非周期的。

Example

• 状态1,2,3的周期为2

	0	1	2	3	4
0	1	0	0	0	0
1	1-p	0	p	0	0
2	0	1-p	0	p	0
3	0	0	1-p	0	p
4	0	0	0	0	1

马氏链的遍历极限(I)

若马氏链 $\{\xi_n(\omega): n \geq 0\}$ 的状态空间**S**为有限集 (不妨设**S**= $\{1,2,\dots,N\}$),且 ξ (转移矩阵为**P**)是一个互通常返马氏链,则它存在唯一的不变概率 分 $\pi = (\pi_1, \pi_2, \dots, \pi_N)$,并使得

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} P^k}{n} = \pi 1^T$$

马氏链的遍历极限(II)

若马氏链 $\{\xi_n(\omega): n \geq 0\}$ 的状态空间**S**为有限集**(**不妨设**S={1,2,···, N})**,且转移矩阵矩阵的每个元素为正,则它存在唯一不变概率分布 $\vec{\pi} = (\pi_1, \pi_2, \cdots, \pi_n)$,满足如下(指数)遍历性

$$\sum_{k} \pi_k p_{kj} = \pi_j, \pi_j \ge \delta$$
$$|p_{ij}(n) - \pi_j| \le (1 - N\delta)^n$$

马氏链的遍历极限(III)

• 令 $T_i(\omega)$ 是 $\{\xi_1(\omega), \dots, \xi_n(\omega)\}$ 中首次出现状态 i 的时间。 那么 $\mu_i = E(T_i(\omega)|\xi_0(\omega) = i)$ 就是一个平均返回(状态i) 时间。有结论如下

对于互通常返马氏链

$$\mu_i = \frac{1}{\pi_i}$$

其中不变分布为 $\vec{\pi} = (\pi_1, \pi_2, \cdots, \pi_n),$

Part II

Page Rank算法和Markov Model

Page Rank

Basic idea of Page Rank.

Calculation of Page Rank.

Page Rank and Markov chain

Basic Idea of Page Rank

- Suppose that:
 - Page d₁ contains hyperlinks to 10 pages;
 - Page d₂ just has a single link to page d₃
- The contribution of d₂ to pr(d₃) should be greater than the contribution of d₁
- The simplest solution is to allocate a weight of $w_{de} = 1/L(d)$ to the hyperlink from document d to document e, where L(d) is the number of hyperlinks from d.

Random Surfer Model

- w_{de} can be thought of as the probability of following the link to page e if the user is on page d.
- The case where $w_{de} = 1/L(d)$ corresponds to the random surfer model: on any page the random surfer is equally likely to choose any of the available links.

Simplified Page Rank Calculation

- Once pr(d) is accepted as a measure of the importance of d there is a natural consequence;
- In the calculation of pr(d), a hyperlink from a page d_1 to d should count for more than a hyperlink from page d_2 to d if $pr(d_1) > pr(d_2)$
- This motivates:

$$pr(d) = \sum_{e \in L(d)} pr(e) w_{ed}$$

where L(d) is the set of pages which link to page d.

Simplified Page Rank Calculation

$$pr(d) = 0.35 * 1/3 + 0.1 * 1 + 0.15 * 1/2 = 0.292$$

Simplified Page Rank Calculation

 Change pr(d) will change the page ranks of other pages, which in turn change pr(d);

 In other words, the definition of page rank is recursive,

$$pr_{n+1}(d) = \sum_{e \in L(d)} pr_n(e) w_{ed}$$

Markov Chain Interpretation

Let

$$W = \begin{pmatrix} w_{11} & w_{12} & \cdots & w_{1D} \\ w_{21} & w_{22} & \cdots & w_{2D} \\ \cdots & \cdots & \cdots & \cdots \\ w_{D1} & w_{D2} & \cdots & w_{1D} \end{pmatrix}$$

Notice that each row of W sums to 1.

Markov Chain Interpretation

$$\begin{bmatrix} pr_{n+1}(1) \\ pr_{n+1}(2) \\ \dots \\ pr_{n+1}(D) \end{bmatrix} = \begin{bmatrix} w_{11} & w_{21} & \cdots & w_{D1} \\ w_{12} & w_{22} & \cdots & w_{D2} \\ \dots & \dots & \dots & \dots \\ w_{1D} & w_{2D} & \cdots & w_{DD} \end{bmatrix} \begin{bmatrix} pr_n(1) \\ pr_n(2) \\ \dots \\ pr_n(D) \end{bmatrix}$$

- If the system converges, then pr=W^T pr.
- pr is the invariant distribution of the Markov chain.
- In other word, pr is an eigenvector of W^T.

Damping Factor

- It represents the change that user stopping clicking links and get bored with the current page and then request another random page.
- If the damping factor is 85% then there is assumed to be about a 15% chance that a typical users won't follow any links on the page and instead navigate to a new random URL

Page Rank

Taking into account the damping factor

$$pr(d) = \frac{1-\alpha}{N} + \alpha \left(\sum_{e \in L(d)} \frac{pr(e)}{l(e)} \right)$$

Part III

Hidden Markov Model

Hidden Markov Models - HMM

HMM一韦小宝的骰子

- 两种骰子,开始以2/5的概率出千。
 - -正常A: 以1/6的概率出现每个点
 - 不正常B: 5,6出现概率为3/10,其它为1/10
- 出千的随机规律

HMM例1一韦小宝的骰子

• 观测到其一次投掷结果

$$O = (1, 3, 4, 5, 5, 6, 6, 3, 2, 6)$$

• 问题: 请判断韦小宝什么时候出千了?

隐马氏模型的数学模型

- 隐过程为X={X₁,···,X_T}
- 观察过程为 $Y=\{Y_1, \dots, Y_T\}$
- 模型参数 $\lambda = \{\pi, A, B\}$
 - 初始分布 π =(π _i), π _i=P{X₁=i}
 - 转移矩阵A= (a_{ij}), a_{ij} = P(X_{n+1}=j | X_n= i)
 - 给定某个时间的隐状态的条件下, 观测的分布 矩阵 $\mathbf{B}=(b_{ii})$, $b_{ii}=P(Y_n=l\mid X_n=i)$ 。

隐马氏模型的数学问题

- 识别问题一已知若干个隐马氏模型及其参数,对一个观测样本,决定它来自哪一个模型。
- 解码问题一由观测样本得到隐状态;
- 学习问题一由观测样本得到参数组λ;

Part IV

隐马氏模型(HMM)理论

识别问题

- 在已知若干个模型及其参数的情况下,识别问题就是一个对于给定样本进行 Bayesian 判决的问题。
- 判决步骤:
 - 根据参数求出在每一个模型中, 出现给定样本的概率 $P(Y \mid \lambda)$, 归一化就得到给定样本来自每个模型的概率 $P(\lambda \mid Y)$ 。
 - 利用 Bayesian 原理, 就可以得到最好模型猜测。

观测序列的概率计算

$$Pr(Y = y | \lambda) = \sum_{X=x} Pr(Y = y | X = x, \lambda) Pr(X = x | \lambda)$$

$$= \sum_{X=(x_1, \dots, x_T)} \pi(x_1) b_{x_1}(y_1) a_{x_1 x_2} b_{x_2}(y_2) \cdots a_{x_{T-1} x_T} b_{x_T}(y_T)$$

枚举复杂度 2TNT

多项式复杂度算法:前传算法和后传算法

前传概率

$$\alpha_{t}(i) = Pr(y_{1}, y_{2}, \dots, y_{t}, x_{t} = i | \lambda)$$

$$a_{t+1}(i) = Pr(y_{1}, y_{2}, \dots, y_{t+1}, x_{t+1} = i | \lambda)$$

$$= \sum_{j} Pr(y_{1}, y_{2}, \dots, y_{t+1}, x_{t} = j, x_{t+1} = i | \lambda)$$

$$= \sum_{j} Pr(y_{1}, y_{2}, \dots, y_{t}, x_{t} = j | \lambda) Pr(y_{t+1}, x_{t+1} = i | x_{t} = j, \lambda)$$

$$= \sum_{j} \alpha_{t}(j) a_{ji} b_{i}(y_{t+1})$$

前传算法 (Forward Algorithm)

• 初始化

$$\alpha_1(i) = \pi_i b_i(y_1), i = 1, 2, \dots, N.$$

迭代

$$\alpha_{t+1}(i) = \sum_{j=1}^{N} \alpha_t(j) a_{ji} b_i(y_{t+1})$$

$$i = 1, 2, \dots, N, \quad t = 1, 2, \dots, T - 1.$$

结果

$$Pr(Y \mid \lambda) = \sum_{i=1}^{N} \alpha_T(i).$$

后传概率

$$\beta_t(i) = Pr(y_{t+1}, y_{t+2}, \cdots, y_T | x_t = i, \lambda)$$

$$\beta_t(i) = \sum_j Pr(y_{t+1}, y_{t+2}, \dots, y_T, x_{t+1} = j | x_t = i, \lambda)$$

$$= \sum_j Pr(y_{t+2}, \dots, y_T | x_{t+1} = j, \lambda) Pr(y_{t+1}, x_{t+1} = j | x_t = i, \lambda)$$

$$= \sum_j \beta_{t+1}(j) a_{ij} b_j(y_{t+1})$$

后传算法(Backward Algorithm)

• 初始化

$$\beta_T(i) = 1, i = 1, 2, \cdots, N;$$

• 迭代

$$\beta_t(i) = \sum_{j=1}^{N} \beta_{t+1}(j) a_{ij} b_j(y_{t+1})$$

$$1 \le i \le N, \quad t = T - 1, \dots, 1;$$

结果

$$Pr(Y|\lambda) = \sum_{i=1}^{N} \beta_1(i)\pi_i b_i(y_1).$$

解码问题(I)

- 问题: 给定观测序列 $Y = (y_1, y_2, \dots, y_T)$,如何给出 隐状态序列 $X^0 = (x_1^0, x_2^0, \dots, x_T^0)$.
- 单点最优

$$\gamma_t(i) = Pr(X_t = i|Y)$$

 $X'_t = \operatorname*{Argmax}_i \gamma_t(i)$

• 路径最优指:对任意的 $X^0 = (x_1, x_2, \dots, x_T)$ 有

$$Pr(x'_1, x'_2, \cdots, x'_T | y_1, \cdots, y_T)$$

 $\geq Pr(x_1, x_2, \cdots, x_T | y_1, \cdots, y_T)$

解码问题(II)

• 由Bayesian公式有

$$Pr(x'_{1}, x'_{2}, \cdots, x'_{T} | y_{1}, \cdots, y_{T})$$

$$= \frac{Pr(x_{1}, x_{2}, \cdots, x_{T}, y_{1}, \cdots, y_{T})}{Pr(y_{1}, \cdots, y_{T})}$$

• 又由于序列 Y 给定, 问题等价于找最优的 X^0 使 联合概率 $Pr(x_1, \dots, x_T; y_1, \dots, y_T)$ 最大。

最优单点确定

$$\gamma_{t}(i) = Pr(X_{t} = i|y_{1}, y_{2}, \dots, y_{T}, \lambda)$$

$$= \frac{Pr(X_{t} = i, y_{1}, \dots, y_{T}|\lambda)}{Pr(y_{1}, \dots, y_{T}|\lambda)}$$

$$= \frac{Pr(X_{t} = i, y_{1}, y_{2}, \dots, y_{T}|\lambda)}{\sum_{i} Pr(X_{t} = i, y_{1}, y_{2}, \dots, y_{T}|\lambda)}$$

$$= \frac{Pr(y_{t+1}, \dots, y_{T}|x_{t} = i, y_{1}, \dots, y_{t}, \lambda)Pr(x_{t} = i, y_{1}, \dots, y_{t}|\lambda)}{\sum_{i} Pr(X_{t} = i, y_{1}, y_{2}, \dots, y_{T}|\lambda)}$$

$$= \frac{\alpha_{t}(i)\beta_{t}(i)}{\sum_{i} \alpha_{t}(i)\beta_{t}(i)}$$

Viterbi算法(I)

- 算法的思想动态规划的递推算法。
- 递推变量为

$$\delta_t(i) = \max_{x_1, \dots, x_{t-1}} Pr(x_1, \dots, x_{t-1}, x_t = i, y_1, \dots, y_t | \lambda)$$

• 我们有递推公式

$$\delta_{t+1}(i) = \max_{x_1, \dots, x_t} Pr(x_1, \dots, x_t, x_{t+1} = i, y_1, \dots, y_{t+1} | \lambda)$$
$$= \left(\max_j \delta_t(j) a_{ji}\right) b_i(y_{t+1})$$

• 以 ψ_t (i)记录t时刻时使 δ_t (j) a_{ji} 最大的状态j。

Viterbi算法(II)

• 初始化

$$\delta_1(i) = \pi_i b_i(y_1),$$

 $\psi_1(i) = 0, \quad i = 1, 2, \dots, N.$

迭代

$$\delta_t(j) = \left(\max_{1 \le i \le N} \delta_{t-1}(i) a_{ij}\right) b_j(y_t)$$

$$\psi_t(j) = \operatorname*{Argmax}_{1 \le i \le N} \left(\delta_{t-1}(i) a_{ij}\right)$$

$$t = 2, \dots, T; \ j = 1, \dots, N.$$

Viterbi算法(III)

• 终止

$$p^* = \max_{1 \le i \le N} \delta_T(i)$$
$$x_T^* = \underset{1 \le i \le N}{\operatorname{Argmax}} \delta_T(i)$$

• 后推

$$x_t^* = \psi_{t+1}(x_{t+1}^*)$$

 $t = T - 1, T - 2, \dots, 1.$

Viterbi算法实例(I)

• 转移概率以及初概率

	A	В
Α	0.8	0.2
В	0.1	0.9
初概率	0.6	0.4

• 条件概率(Emission Probability)

	V ₁	V_2	V_3	V_4	V_5	V_6
А	1/6	1/6	1/6	1/6	1/6	1/6
В	0.1	0.1	0.1	0.1	0.3	0.3

Viterbi算法实例(II)

	y _t	$\delta_{t}(A)$	$\psi_t(A)$	$\delta_{t}(B)$	$\psi_t(B)$
t=1	1	1.000x10 ⁻¹	-	4.000x10 ⁻²	-
t=2	3	1.333x10 ⁻²	Α	3.600x10 ⁻³	В
t=3	4	1.778x10 ⁻³	Α	3.240x10 ⁻⁴	В
t=4	5	3.370x10 ⁻⁴	Α	1.067x10 ⁻⁴	Α
t=5	5	3.161x10 ⁻⁴	Α	2.880x10 ⁻⁵	В
t=6	6	4.214x10 ⁻⁶	Α	7.776x10 ⁻⁶	В
t=7	6	5.619x10 ⁻⁷	Α	2.100x10 ⁻⁶	В
t=8	3	7.492x10 ⁻⁸	Α	1.890x10 ⁻⁷	В
t=9	2	9.989x10 ⁻⁹	Α	1.701x10 ⁻⁸	В
t=10	6	1.322x10 ⁻⁹	А	4.592x10 ⁻⁹	В

Viterbi算法实例(III)

观测序列为:

解码出来的状态序列为:

AAABBBBBB

HMM学习问题

- 学习问题:
 - -就是由观测估计模型参数.
- 学习的两种情况:
 - -观测链相应的状态链已知;
 - -观测链相应的状态链未知。

学习原则

• 极大似然估计(MLE)

$$\widehat{\lambda} = \operatorname{Argmax}_{\lambda} Pr(y_1, \cdots, y_T | \lambda)$$

• 状态链已知时

$$Pr(y_1, \cdots, y_T, X_1, \cdots, X_T | \lambda)$$

• 状态链未知时

$$\sum_{(X_1,\cdots,X_T)} Pr(y_1,\cdots,y_T,X_1,\cdots,X_T|\lambda)$$

状态链已知时的MLE

$$Pr(y_{1}, \dots, y_{T}; X_{1}, \dots, X_{T} | \lambda)$$

$$= \pi_{X_{1}} \prod_{t=1}^{T-1} a_{X_{t}X_{t+1}} \prod_{t=1}^{T} b_{X_{t}}(y_{t})$$

$$= \prod_{i} \pi_{i}^{1_{i}(X_{1})} \prod_{i,j} a_{ij}^{\sum_{t=1}^{T-1} 1_{i}(X_{t}) 1_{j}(X_{t+1})} \prod_{i,l} b_{i}(l)^{\sum_{t=1}^{T} 1_{i}(X_{t}) 1_{l}(y_{t})}$$

$$= \prod_{i} \pi_{i}^{C_{i}} \prod_{i,j} a_{ij}^{A_{ij}} \prod_{i,l} b_{i}(l)^{B_{il}}$$

简单优化问题

$$\operatorname{Max:} \sum_{k} z_k \log x_k$$

subject to:
$$\sum_{k} x_k = 1$$

Estimation:
$$x_i = \frac{z_i}{\sum_k z_k}, i = 1, \dots, N.$$

参数估计(状态已知)

• 把从状态 *i* 到转移为状态 *j* 的频数记为 *A_{ij}*, 可估计 转移概率 *a_{ij}*, 为

$$\widehat{a}_{ij} = \frac{A_{ij}}{\sum_{j=1}^{N} A_{ij}}$$

• 同样记状态 i 下观察到符号 s 的频数记为 B_{is} ,则可估计 b_{is} ,为

$$\widehat{b}_{is} = \frac{B_{is}}{\sum_{j=1}^{M} B_{ij}}$$

参数估计评价

• 隐Markov模型的状态链要有充分长的样本 (大数定律,以频率代替概率)。

不幸的是状态链往往并不知道,而只是可以得到估计,不修正地使用频率估计会增加误差,且这种估计不稳健。

参数估计的EM思想

- 当状态链未知时,由于似然函数的计算中包含了对所有可能的状态链的求和,计算过大,在实际中是不可能被采用的.为此,人们采取折衷的方案,构造一个递推算法,使之能相当合理地给出模型参数的粗略估计.
- 其核心思想是:在当前参数下,用期望值当成频数 "数数",并用的"频率"估计概率。这实际上是一种EM迭代算法思想。

EM算法

- 实际上是 E (期望) 与 M (最大化) 两个步骤合起来构成的算法, 称为EM算法.
- EM算法是针对测量数据不完全时,求参数的最大似然估计的统计方法。
- HMM 的模型参数的估计,是EM算法的一个最常见且极有用的一种典型例子.

EM算法基本框架

- 观测数据Y
- 缺失数据 X
- 完全数据 Z=(Y, X).
- E-Step (取期望).

$$\widehat{Z} = E(Z \mid Y, \theta^{(t-1)})$$

• M-step (取极大).

$$\theta^{(t)} = \underset{\theta}{\operatorname{Argmax}} L(\theta \mid \widehat{Z}, \theta^{(t-1)})$$

期望频数(状态未知)

$$\xi_{t}(i,j) = Pr(X_{t} = i, X_{t+1} = j | y_{1}, \dots, y_{T}, \lambda)$$

$$= \frac{Pr(X_{t} = i, X_{t+1} = j, y_{1}, \dots, y_{T} | \lambda)}{Pr(y_{1}, \dots, y_{T} | \lambda)}$$

$$= \frac{Pr(X_{t} = i, X_{t+1} = j, y_{1}, \dots, y_{T} | \lambda)}{\sum_{i} \sum_{j} Pr(X_{t} = i, X_{t+1} = j, y_{1}, \dots, y_{T} | \lambda)}$$

$$= \frac{Pr(x_{t+1} = j, y_{t+1}, \dots, y_{t} | x_{t}, y_{1}, \dots, y_{t}, \lambda) Pr(x_{t} = i, y_{1}, \dots, y_{t} | \lambda)}{Pr(y_{1}, \dots, y_{T}) | \lambda}$$

$$= \frac{\alpha_{t}(i) a_{ij} b_{j}(y_{t+1}) \beta_{t+1}(j)}{\sum_{i} \sum_{j} a_{ij} b_{j}(y_{t+1}) \beta_{t+1}(j)}$$

$$= \frac{\alpha_{t}(i) a_{ij} b_{j}(y_{t+1}) \beta_{t+1}(j)}{\sum_{i} \alpha_{t}(i) \beta_{t}(i)}$$

期望频数(状态未知)

$$\gamma_t(i) = Pr(x_t = i | y_1, \dots, y_T, \lambda)$$

$$= \sum_{j=1}^N Pr(x_t = i, x_{t+1} = j | y_1, \dots, y_T, \lambda)$$

$$= \sum_{j=1}^N \xi_t(i, j)$$

Baum-Welch公式

$$\begin{cases}
\overline{\pi}_i = r_1(i) \\
\overline{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)} \\
\overline{b}_j(l) = \frac{\sum_{t=1}^{T} \gamma_t(j)\delta(y_t, V_l)}{\sum_{t=1}^{T} \sum_j \gamma_t(j)}
\end{cases}$$

Baum-Welch公式的推导(1)

• 我们定义一个描述模型"趋势"的量,以 衡量参数估计前后的概率分布的差异。相 对熵是最好的选择

$$Q(\overline{\lambda}|\lambda) = \sum_{X} P(X, Y|\lambda) \log Pr(X, Y|\overline{\lambda})$$

Baum-Welch公式的推导(2)

$$\begin{aligned} &Q(\overline{\lambda}|\lambda) - Q(\lambda|\lambda) \\ &= \sum_{X} Pr(X, Y|\lambda) \log \frac{Pr(X, Y|\overline{\lambda})}{Pr(X, Y|\lambda)} \\ &\leq \sum_{X} Pr(X, Y|\lambda) (\frac{Pr(X, Y|\overline{\lambda})}{Pr(X, Y|\lambda)} - 1) \\ &= Pr(Y|\overline{\lambda}) - Pr(Y|\lambda) \end{aligned}$$

说明只要依据Q函数增大来更新参数,就能够使得似然函数朝变大的方向改进,而且一个观测Y对应了一次改进。

Baum-Welch公式的推导(3)

 于是要想得到参数修改的递推公式,只要 把模型λ_m修改为更好的模型λ_{m+1},即只需 将它取得使下式成立,

$$\lambda_{m+1} = \operatorname*{Argmax}_{\lambda} Q(\lambda | \lambda_m)$$

Baum-Welch公式的推导(4)

• 写出Q函数的表达式,我们有

$$Q(\overline{\lambda}|\lambda) = \sum_{X} Pr(X, Y|\lambda) \log Pr(X, Y|\overline{\lambda})$$

$$= \sum_{X} Pr(X, Y|\lambda) \left(\log \overline{\pi}_{x_1} + \sum_{t=1}^{T-1} \log \overline{a}_{x_t x_{t+1}} + \sum_{t=1}^{T} \log \overline{b}_{x_t}(y_t) \right)$$

$$= \sum_{i} \left(\sum_{X} Pr(X, Y|\lambda) 1_i(x_1) \right) \log \overline{\pi}_i$$

$$+ \sum_{i} \sum_{j} \left(\sum_{t=1}^{T-1} \sum_{X} Pr(X, Y|\lambda) 1_i(x_t) 1_j(x_{t+1}) \right) \log \overline{a}_{ij}$$

$$+ \sum_{i} \sum_{l} \left(\sum_{t=1}^{T} \sum_{X} Pr(X, Y|\lambda) 1_i(x_t) 1_l(y_t) \right) \log \overline{b}_i(l)$$

Baum-Welch公式的推导(5)

$$= \sum_{i} (Pr(x_1 = i, Y | \lambda)) \log \overline{\pi}_i$$

$$+ \sum_{i} \sum_{j} \left(\sum_{t=1}^{T-1} Pr(x_t = i, x_{t+1} = j, Y | \lambda) \right) \log \overline{a}_{ij}$$

$$+ \sum_{i} \sum_{l} \left(\sum_{t=1}^{T} \sum_{X} Pr(x_t = i, Y | \lambda) 1_l(y_t) \right) \log \overline{b}_i(l)$$

• 对每个变量可以分别取最大值。

初概率的重估计

Max:
$$Q_{\pi}(\overline{\pi}|\lambda) = \sum_{i} P(x_1 = i, Y|\lambda) \log \overline{\pi_i}$$

Subject to:
$$\sum_{i} \overline{\pi_i} = 1$$

$$\pi_i^{(m+1)} = \frac{P(x_1 = i, Y | \lambda^{(m)})}{P(Y | \lambda^{(m)})} = \gamma_1(i)$$

转移概率重估计

Max:
$$Q_{a_i}(\overline{a_i}|\lambda) = \sum_j \left(\sum_{t=1}^{T-1} P(x_t = i, x_{t+1} = j, Y|\lambda)\right) \log \overline{a_{ij}}$$

Subject to: $\sum_j \overline{a_{ij}} = 1$

$$a_{ij}^{(m+1)} = \frac{\sum_{t=1}^{T-1} P(x_t = i, x_{t+1} = j, Y|\lambda^{(m)})}{\sum_{t=1}^{T-1} P(x_t = i, Y|\lambda^{(m)})}$$

$$= \frac{\sum_{t=1}^{T-1} \xi_t(i, j)}{\sum_{t=1}^{T-1} \gamma_t(i)}$$

观测概率重估计

Max:
$$Q_{b_i}(\overline{b_i}|\lambda) = \sum_k \left(\sum_{t=1}^T P(x_t = i, Y|\lambda) 1_k(y_t)\right) \log \overline{b_{ik}}$$

Subject to: $\sum_k \overline{b_{ik}} = 1$

$$b_{ik}^{(m+1)} = \frac{\sum_{t=1}^T \left(P(x_t = i, Y|\lambda^{(m)})\delta(y_t, k)\right)}{\sum_{t=1}^T P(x_t = i, Y|\lambda^{(m)})}$$

$$= \frac{\sum_{t=1}^T \gamma_t(i)\delta(y_t, k)}{\sum_{t=1}^T \gamma_t(i)}$$

几点说明

- 更详细的内容可参见《应用随机过程》 第 十章 HMM.
- 在上面所述的算法中,初始值 λ₀ 的设置会直接影响到估计的好坏.为此,常用的一种方法是,根据先验知识设置一条较长的"标准虚拟"状态链,再用前面讲的已知观测链相应的状态链的情况下参数估计的方法,得到一个对参数的粗估计,并以它作为λ₀ 的取值。

Part V

隐马氏模型应用

应用1: 基因序列CpG岛识别

本部分ppt修改自网上资料 http//people.brandeis.edu/~moshep/Projects /ProjectPresentations2003_2/HMM/CpG_Island s_HMM_final.ppt

什么是CpG岛?

CG-poor regions: P(CG)

~ <u>0.07!</u>

CpG岛

- Away from gene regions:
 - The C in CG pairs is usually methylated
 - Methylation inhibits gene transcription
 - These CGs tend to mutate to TG
- Near promoter and coding regions:
 - Methylation is suppressed:
 - CGs remain CGs
 - Makes transcription easier!

CpG岛的生物学意义

- CpG-rich regions are associated with genes which are frequently transcribed.
- Helps to understand gene expression related to *location* in genome.

HMM对于CpG岛识别的意义

- Q: Why an HMM?
- It can answer the questions:
 - Short sequence: does it come from a CpG island or not?
 - Long sequence: where are the CpG islands?
- So, what's a good model?
 - Well, we need states for ISLAND bases and NON-ISLAND bases ...

HMM模型框架

CpG Island (+)

CpG NON-Island (-)

HMM模型框架

HMM示意

HMM训练问题

CG-RICH sequences

AATAGAGAGGTTCGACTCTG
CATTTCCCAAATACGTAATGCT
TACGGTACACGACCCAAGCTC
TCTGCTTGAATCCCAAATCTG
AGCGGACAGATGAGGGGGC
GCAGAGGAAAAACAGGTTTT
GGACCCTACATAAANAGAGA
GGTTCGTAAATAGAGA

HOW?

ML or Forward/ Backward algorithm

CG-POOR sequences

GGTTCGACTCTGCATTTCCCA
AATACGTAATGCTTACGGTTA
AATAGAGAGGGTTCGACTCTG
CATTTCCCAAATACGTAATGCT
TACGGTACACGACCCAAGCTC
TCTGCTTGTAACTTGTTTTNG
TCGCAGCTGGTCTTGCCTTTG
CTGGGGCTGCTGA

	A+	C+	G+	T+	A-	C-	G-	T-
	0.17							
	0.16							
G+	0.15	0.33	0.37	0.11	0.01	0.01	0.01	0.01
T+	0.07	0.35	0.37	0.17	0.01	0.01	0.01	0.01
A-	0.01	0.01	0.01	0.01	0.29	0.2	0.27	0.2
C-	0.01	0.01	0.01	0.01	0.31	0.29	0.07	0.29
G-	0.01	0.01	0.01	0.01	0.24	0.23	0.29	0.2
T-	0.01	0.01	0.01	0.01	0.17	0.23	0.28	0.28

HMM解码问题

Viterbi Algorithm

- Decoding- Meaning of observation sequence by looking at the underlying states.
- Hidden states A+,C+,G+,T+,A-,C-,G-,T-
- Observation sequence CGCGA
- State sequences C+,G+,C+,G+,A+ or C-,G-,C-,G-,Aor C+,G-,C+,G-,A+
- Most Probable Path C+,G+,C+,G+,A+

HMM解码问题

应用II: Gene Finding

 This part is modified from slides download from www.cs.ubc.ca/~rogic/GeneFinding.ppt

Spliced Alignment Compare with cDNA or EST probes

Spliced Alignment Compare with Protein Probes

A Eukaryotic Gene

- This is the human p53 tumor suppressor gene on chromosome 17.
- Genscan is one of the most popular gene prediction algorithms.

A Eukaryotic Gene

This particular gene lies on the reverse strand.

An Intron

Signals vs Contents

- In gene finding, a small pattern within the genomic DNA is referred to as a signal, whereas a region of genomic DNA is a content.
- Examples of signals: splice sites, starts and ends of transcription or translation, branch points, transcription factor binding sites
- Examples of contents: exons, introns, UTRs, promoter regions

Prior Knowledge

- The translated region must have a length that is a multiple of 3.
- Some codons are more common than others.
- Exons are usually shorter than introns.
- The translated region begins with a start signal and ends with a stop codon.
- 5' splice sites (exon to intron) are usually GT;
- 3' splice sites (intron to exon) are usually AG.
- The distribution of nucleotides and dinucleotides is usually different in introns and exons.

Prior Knowledge

- We want to build a probabilistic model of a gene that incorporates our prior knowledge.
- E.g., the translated region must have a length that is a multiple of 3.

Prokaryotic Vs. Eukaryotic Gene Finding

Prokaryotes:

- small genomes $0.5 10 \cdot 10^6$ bp
- high coding density (>90%)
- no introns

Gene identification relatively easy,
 with success rate ~ 99%

Problems:

- overlapping ORFs
- short genes
- finding TSS and promoters

Eukaryotes:

- large genomes 10⁷ 10¹⁰ bp
- low coding density (<50%)
- intron/exon structure

 Gene identification a complex problem, gene level accuracy ~50%

Problems:

many

HMMs and Gene Structure

- Nucleotides {A, C, G, T} are the observables
- Different states generates generate nucleotides at different frequencies
 A simple HMM for unspliced genes:

AAAGC ATG CAT TTA ACG AGA GCA CAA GGG CTC TAA TGCCG

• The sequence of states is an annotation of the generated string – each nucleotide is generated in intergenic, start/stop, coding state

Examples of Gene Finders Using HMM

- GeneMark HMMs enhanced with ribosomal binding site recognition
- Genie neural networks for splicing, HMMs for coding sensors, overall structure modeled by HMM
- Genscan Weight Matrix, Weight Array and decision trees as signal sensors,
 HMMs for content sensors, overall HMM
- HMMgene HMM trained using conditional maximum likelihood
- Morgan decision trees for exon classification, also Markov Models
- VEIL sub-HMMs each to describe a different bit of the sequence, overall HMM

EXAMPLE: Finding Genes with VEIL

- The Viterbi Exon-Intron Locator (VEIL) was developed by John Henderson, Steven Salzberg, and Ken Fasman at Johns Hopkins University.
- Gene finder with a modular structure:
- Uses a HMM which is made up of sub-HMMs each to describe a different bit of the sequence: upstream noncoding DNA, exon, intron, ...
- Uses biological knowledge to "hardwire" part of HMM, eg. start + stop codons, splice sites.

The Overall Model of VEIL

For more details, see J. Henderson, S.L. Salzberg, and K. Fasman (1997) Journal of Computational Biology 4:2, 127-141.

Genscan

- Developed by Chris Burge 1997
- One of the most accurate ab initio programs
- Uses explicit state duration HMM (semi-HMM) to model gene structure (different length distributions for exons)
- Different model parameters for regions with different GC content

GeneScan

- N intergenic region
- P promoter
- (5'/3') UTR 5'/3' untranslated region
- E_{sngl} single exon (intronless) (translation start -> stop codon)
- E_{init} initial exon (translation start -> donor splice site)
- E_k phase k internal exon (acceptor splice site -> donor splice site)
- E_{term} terminal exon (acceptor splice site -> stop codon)
- I_k phase k intron: 0 between codons; 1 after the first base of a codon; 2 – after the second base of a codon

GeneScan Features

- Model both strands at once
- Each state may output a string of symbols (according to some probability distribution).
- Explicit intron/exon length modeling
- Advanced splice site modeling
- Parameters learned from annotated genes
- Prediction of multiple genes in a sequence (partial or complete).

PWM

 Position Weight matrix (PWM) for acceptor site, branch point, polyA site and promoter

region.

$$A \begin{bmatrix} 0.3 & 0.6 & 0.1 & 0.0 & 0.0 & 0.6 & 0.7 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0.1 & 0.0 & 0.0 & 0.2 & 0.1 & 0.1 & 0.2 \\ G \begin{bmatrix} 0.1 & 0.1 & 0.7 & 1.0 & 0.0 & 0.1 & 0.1 & 0.5 & 0.1 \\ 0.4 & 0.1 & 0.1 & 0.0 & 1.0 & 0.1 & 0.1 & 0.2 & 0.6 \end{bmatrix}$$

http://en.wikipedia.org/wiki/Position_weight_matrix

Donor Sites: A Simple Model

Donor Sites: An Advance Model

MDD (maximal dependence decomposition)

Nodes: Counts

Edges: Split Variables

Semi-Markov and Hidden Semi-Markov

Semi-Markov

States have Markov dependence; each state has an associated length

Hidden Semi-Markov

Hidden states semi-Markov; observable generated from hidden

Why Semi-Markov Model

 For general Markov model, the duration of state follows a geometric distribution

$$P(d = k)$$
= $P(X_n = i, X_{n+1} = i, \dots, X_{n+k-1} = i, X_{n+k} \neq i)$
= $a_{ii}^k (1 - a_{ii})$

 However, the exon length generally follows a normal distribution

GeneScan

For more detail, see:

- Burge, C. and Karlin, S. (1997) Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78-94
- Burge, C. B. and Karlin, S. (1998) Finding the genes in genomic DNA. *Curr. Opin. Struct. Biol.*8, 346-354.

参考文献

- 钱敏平,龚光鲁。《应用随机过程》,北京大学出版社,1998。
- David W. Mount. Bioinformatics, Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press, 2002.
- Amy N. Langville and Carl D. Meyer. Deeper Inside PageRank, Internet Mathematics Vol. 1, No. 3: 335-380, 2004.
- L. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition", Proceedings of the IEEE, Vol. 77, No. 2, Feb. 1989
- On-line tutorial: http://www.comp.leeds.ac.uk/roger/ HiddenMarkovModels/html_dev/main.html