Астрономия — II (21 и 28 сентября 2020 года)

1 Правило Тициуса-Боде

Расстояние R_i от Солнца до всех планет (кроме Нептуна), а также до пояса астероидов, Плутона и Эриды (ещё одна карликовая планета) с хорошей точностью подчиняется **правилу Тициуса-Боде**: $R_i = 0.3 \cdot k_i + 0.4$ астрономических единиц, где $k_i = 0, 1, 2, 4, 8...$ соответственно для каждого объекта в порядке удаления от Солнца¹. При этом следует понимать, что указанная формула эмпирическая, то есть полученная из наблюдений². В таблице ниже даны значения k_i , R_i , а также указаны точные растояния $R_{\text{точн.}}$ от Солнца до планет Солнечной системы. Видно, что различие между R_i и $R_{\text{точн.}}$ невелико.

		Расстояние (а.е.)	
i	k_i	R_i	$R_{\text{точн.}}$
Меркурий	0	0.4	0.39
Венера	1	0.7	0.72
Земля	2	1	1.00
Mapc	4	1.6	1.52
Пояс астероидов	8	2.8	2.2 - 3.6
Юпитер	16	5.2	5.20
Сатурн	32	10.0	9.54
Уран	64	19.6	19.22
Нептун	_	_	30.06
Плутон	128	38.8	39.5
Эрида	256	77.2	67.7

Рис.1. Солнечная система.

На рисунке справа изображены объекты Солнечной системы с соблюдением пропорций. Заметим, что расстояние между планетами увеличивается по мере отдаления от Солнца. Ниже мы обсудим форму орбит планет и вид траектории движения других объектов.

2 Пояс астероидов

Факт того, что расстояние от Солнца до пояса астероидов с хорошей точностью удовлетворяет правилу Тициуса-Боде, ещё в XVIII веке дал астрономам основания полагать, что между Марсом и Юпитером находится ещё одна планета. Сначала на предсказываемом правилом расстоянии от Солнца была обнаружена Церера (сейчас считается карликовой планетой), а позже выяснилось, что на таком же расстоянии от Солнца находится множество тел, формирующих, пояс астероидов, который, по одной из версий, сформировался в результате разрушения планеты Фаэтон, которая раньше располагалась на этой орбите.

 $^{^{1}}$ Последовательность легко запомнить - это ноль и степени числа 2 в порядке возрастания.

 $^{^{2}}$ На текущий момент нет физического закона, который бы это правило описывало!

3 Немного геометрии

Рис.2. (a) - эллипс, (б) - парабола, (в) - гипербола.

Рис.3. К описанию эллипса.

Сечения конуса плоскостью (см. рисунок слева) могут давать три типа кривых: эллипс, параболу или гиперболу. В силу закона всемирного тяготения и второго закона Ньютона траектория небесного тела в поле тяготения другого, гораздо более массивного тела, может являться одной из трёх описанных выше кривых³.

Эллипс - геометрическое место точек, для которых сумма расстояний до двух заданных точек - фокусов (на рисунке обозначены как F_1 и F_2) - постоянна⁴. Окружность является частным случаем эллипса (фокусы совпадают друг с другом и с центром окружности). Большая и малая полуоси эллипса - расстояние от центра фокуса до самой дальней и до самой ближней от него точек соответственно (на рисунке обозначены как \mathbf{a} и \mathbf{b}). Одной из характеристик эллипса является эксцентриситет e, который задаётся формулой

$$e = \frac{c}{a} = \sqrt{1 - \frac{b^2}{a^2}}.$$

В справедливости этой формулы нетрудно убедиться самостоятельно⁵. Понятно, что для эллипса e < 1, для окружности e = 0; для других конических сечений также можно определить эксцентриситет (по другим формулам). У параболы e = 1, у гиперболы e > 1.

4 Законы Кеплера

Эти законы, подобранные Иоганном Кеплером на основе анализа астрономических наблюдений Тихо Браге, описывают идеализированную гелиоцентрическую (то есть с Солнцем в центре) орбиту планеты. На самом деле, согласно этим законам двигаются не только планеты, но и кометы, астероиды и другие малые тела вокруг Солнца, а так же спутники (естественные и искусственные) вокруг планет. Вообще, законы Кеплера хорошо описывают движение тела массой m_1 вокруг тела массой m_2 при условии, что m_2 много больше m_1 и вокруг них больше нет никаких сопоставимых с ними по массе тел.

 $^{^3}$ Это не очень трудно показать, используя полярные координаты. Не будем заострять на этом внимание.

 $^{^4}$ То есть сумма длин отрезков F_1X и XF_2 постоянна для любой точки X, лежащей на эллипсе.

 $^{^5}$ Мысленно передвиньте точку X на рисунке сначала в самую ближнюю к центру, а потом в самую дальнюю от центра точку, посчитайте сумму расстояний от любого из фокусов до этих точек и приравняйте эти суммы. После этого станет очевидным равенство $c^2 = a^2 - b^2$.

⁶В действительности орбита планеты может быть не такой, как описано, а более сложной формы.

Первый закон: орбита каждой планеты Солнечной системы - эллипс, в одном из фокусов которого находится Солнце.

Для всех планет (кроме Меркурия и Плутона) эксцентриситет орбиты не превышает 0.1. Это позволяет утверждать⁷, что планеты двигаются практически по окружностям, то есть большая полуось примерно равна малой - в этом нетрудно убедиться, подставив 0.1 (или меньшую величину) в формулу выше и выразив из неё соотношение между \mathbf{a} и \mathbf{b} .

Второй закон: каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, заметает собой равные площади.

С этим законом связаны два понятия: перигелий - ближайшая к Солнцу и афелий - наиболее удалённая от Солнца точки орбиты. Если говорить о вращении чего-либо по эллипсу вокруг Земли, то используют понятия перигей и апогей. На рисунке справа площади закрашенных секторов равны. Дуги эллипса, на которые опираются эти сектора (выделены пожирнее) планета проходит за одинаковые промежутки време-

Рис.4. Иллюстрация второго закона Кеплера

ни. Следовательно, планета движется неравномерно: в афелии её скорость минимальна, в перигелии максимальна. Иногда этот закон формулируют в следующем виде: секториальная скорость планет относительно Солнца постоянна.

Третий закон: квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей орбит планет.

Этот закон можно переформулировать следующим образом: $T^2/a^3 = const$ - величина постоянная, которая определяется только массой Солнца и некоторыми физическими постоянными, то есть указанное отношение одинаково для всех планет. Это упрощает жизнь: если измерять период обращения \mathbf{T} планеты в земных годах, а длину большой полуоси \mathbf{a} (которая, как было сказано выше, не сильно отличается от длины малой полуоси и от расстояния между Солнцем и планетой) в астрономических единицах, то $const = 1 \operatorname{год}^2/(a.e.)^3$.

Задача. Найдите период обращения Сатурна вокруг Солнца в земных годах.

Решение. Самое простое решение заключается в открытии учебника или соответствующей странички в интернете. Но, предположим, у нас этих возможностей нет. Тогда мы можем воспользоваться двумя описанными ранее принципами, которые помогут нам без труда найти ответ. Высокой точности в решении таких задач не требуется! Сначала найдём примерное расстояние от Солнца до Сатурна по правилу Тициуса-Боде (как было сказано выше, для него $k_{\text{Сатурна}} = 32$): $R_{\text{Сатурна}} = 0.3 \cdot 32 + 0.4 = 10$ а.е. Не пытаясь угнаться за точностью, скажем, что это и есть длина большой полуоси орбиты Сатурна: $a_{\text{Сатурна}} = 10$ а.е. Теперь подставим полученное значение в третий закон Кеплера:

$$T_{\text{Сатурна}}^2 = a_{\text{Сатурна}}^3 \frac{\text{год}^2}{\text{а.e.}^3} \Rightarrow T_{\text{Сатурна}} = a_{\text{Сатурна}}^{3/2}$$
 лет $= 10^{3/2}$ лет ≈ 31.6 лет

В действительности период обращения Сатурна чуть меньше: примерно 29.5 земных лет. Однако полученный ответ достаточно точный для оценок описанными выше методами.

 $^{^{7}{}m C}$ достаточно высокой для школьных уроков астрономии точностью.