muutiple of pq.

1. If $G = \langle a \rangle$ and $b \in G$, then the order of b is a factor of the order of a.

Proof. Let the order of b be l. That is $b^l = e$. Since $b \in G$, b is some m power of a, then $b = a^m$. We can rewrite $b^l = e$ as $(a^m)^l = a^{ml} = e$. Hence, the order of b, l is a factor of the order of a, ml.

2. Let *G* have order 4. Prove that either *G* is cyclic, or every element of *G* is its own inverse. Conclude that every group of order 4 is abelian.

Proof. Since *G* is a finite group, and the possible order of its can only be 1, 2 and 4. If *G* have an element *a* of order 1, $a^1 = e$, which is its own inverse. Then, if *G* have an element *a* of order $2,a^2 = e$. We can concludue that a is its own inverse because a*a = e. If *G* have an element *a* of order 4. Then $\langle a \rangle$ is a subgroup of *G* and since |a| = 4, we have $|\langle a \rangle| = 4$. This means that $\langle a \rangle = G$ and so *G* is cyclic. Then, Let *G* have an element *b* of order 2. Therefore, either *G* is cyclic, or every element of *G* is its own inverse.

Cyclic group is abelian because it is all generated by the same generator. If every element is its own inverse. That implies $a, b \in G$, such that, $ab = (ab)^{-1} = b^{-1}a^{-1} = ba$. Therefore, every group of order 4 is abelian.

3. Let *G* be finite, and $H, K \leq G$. Suppose *H* has index *p* and *K* has index *q*, where *p* and *q* are distinct primes. Prove that the index of $H \cap K$ is a multiple of pq.

Proof. Let the order of G be n, order of H be l and the order of K be b. Then, we know that the index of H, $p=\frac{n}{l}$ and the index of K, $q=\frac{n}{b}$. We know that $H\cap K$ is a subgroup of H and of K. Then, by the Lagrange's theorem, we can conclude that $|H\cap K|$ is a factor of |H| and of |K|. Let $|H\cap K|=z$, we can express l=zi and b=zj. Hence, we can rewrite the $p=\frac{n}{zi}$ and $q=\frac{n}{zj}$. Or, $pi=qj=\frac{n}{z}$. We also know that i must be an integer, then p is a factor of qj. However, q is a prime number, p hence must be a factor of j, say px=j. Putting it in the equation, we will have $qj=qpx=\frac{n}{z}$. Therefore, qp=pq is a factor of $\frac{n}{z}$, which is the index of $H\cap K$. Then, $H\cap K$ is a