Analysis of Ancestry in Genetic Programming with a Graph Database

David Donatucci M. Kirbie Dramdahl

1 May 2014 CSci4453: Databases

The Big Picture

- Genetic programming demonstrated to be effective for a variety of applications.
- Difficult to determine how this process works.
- Databases allow examination of the internal interactions of a run.
- Graph databases more efficient at this task than relational databases.
- This knowledge may be used to improve genetic programming algorithms.

- Genetic Programming
- Graph Database
- Experimental Setup
- Results
- Conclusions

- Genetic Programming
 - GP Overview
- Graph Database
- Experimental Setup
- 4 Results
- Conclusions

Genetic Programming Overview

- Genetic Programming is based upon biological principles.
- Individuals form a population.
- Transformations
 - Crossover (XO)
 - Mutation
 - Reproduction
 - Elitism
- Transformations occur over a specified number of generations.
- Individuals are rated by their fitness.

Transformations

Crossover sexual reproduction (root and non-root)

Mutation subtrees altered

Reproduction asexual reproduction

Elitism reproduction based on fitness

geneticprogramming.us

- Genetic Programming
- @ Graph Database
- Experimental Setup
- Results
- Conclusions

Neo4j

- information is stored using a graph
- nodes and relationships
- efficient recursive queries compared with traditional databases

Neo4j http://goo.gl/nzRWSV

- Genetic Programming
- Graph Database
- Experimental Setup
 - Configurations
- Results
- Conclusions

Run Configurations

```
Target Function sin(x)
               Variables x (range 0.0 to 6.2, incremented by steps of 0.1)
              Constants range between -5.0 and 5.0
             Operations addition (+), subtraction (-), multiplication (*),
                         protected division (/)
    Generation Number 100
Population Size Per Gen 1,000 and 10,000
 Transform Percentages crossover (90%), mutation (1%), reproduction (9%)
                 Elitism best 1%
                 Fitness absolute error between target function and
```

individual function

- Genetic Programming
- Graph Database
- Experimental Setup
- Results
 - Fitness Over Time
 - Improved Transformations
 - Common Ancestor
- Conclusions

Fitness Over Time

What does the fitness of the "winning" individual's ancestry line look like over time?

Percentage of Improved Transformations

How often does mutation and crossover improve fitness?

Results for Three 1,000 Individual Runs and One 10,000 Individual Run

Common Ancestor

Does a group of individuals have a common root parent ancestor and how many initial generation individuals have descendants in the final generation?

May '14, CSci4453

- Genetic Programming
- 2 Graph Database
- Experimental Setup
- Results
- Conclusions

Conclusions

- We can gather internal data efficiently.
- Provides more in depth information than statistical summaries.
- Support for hypotheses.

Future Work

- Trying different setup configurations.
- Enforcing the root parent to have better fitness in XO.
- Dynamically change parameters.

Thanks!

Questions?

