Millimiter-Wave: A Very Brief Introduction

Alisson Câmara Dias de Sousa 1

 $^1\langle {\sf alisson.camara@gmail.com}\rangle$

²Universidade Federal do Rio Grande do Norte

27 de Julho de 2018

Alisson Câmara Estado da Arte 27 de Julho de 2018 1 / 38

Estado da Arte

Sumário

- 1 Introdução
- 2 mmWave
- 3 Módulo NS3
- 4 Referencias

Introdução

Motivações

Number of cells

· Number of antennas

Bandwidth

How to Increase Rate in Cellular?

Millimeter wave

Alisson Câmara Estado da Arte 27 de Julho de 2018 3 / 38

Densification, greater bandwidth per user in each cell

Massive MIMO, higher spatial degrees of freedom

Características Principais das comunicações mmWave

- **1** 30GHz a 300GHz (10mm a 1mm)
- 2 Faltam estudos e medições acima de 100GHz
- 3 Largas faixas disponíveis
- 4 Características de propagação muito restritas
- Massive Mimo (Small antenna array)
 - Beamforming digital ainda impraticável

Alisson Câmara Estado da Arte 27 de Julho de 2018 4 /

Millimeter-Wave Propagation Characteristics

Figure 4. mmWave propagation characteristics.

Alisson Câmara Estado da Arte 27 de Julho de 2018 5 / 38

Millimeter-Wave Propagation Characteristics

A. Free-Space Loss

$$FSL_{[dB]} = 92.4 + 20 log f_{GHz} + 20 log d_{km}$$

Consequences:

- Perdas maiores do que 30dB em relação ao espectro convencional
- 2 Células menores
- 3 Maior segurança
- 4 Menor interferência

Alisson Câmara Estado da Arte 27 de Julho de 2018 6 / 38

Millimeter-Wave Propagation Characteristics

B. Atenuação Atmosférica

- Faixa do 802.11ay
- 2 60Ghz principal faixa de absorção Oxigênio
- Maior atenuação = menor alcançe = menor interferência = maior segurança
- 4 Polêmica com o órgão regulamentador americano FCC

Figure 8. Specific attenuation curves of O_2 , H_2O and rain at sea level. The term ρ refers to the density of H_2O in grams per mater² [75], [130].

Alisson Câmara Estado da Arte 27 de Julho de 2018 7 /

mmWave

Millimeter-Wave Propagation Characteristics

C. Desvanecimento Induzido por chuva

Figure 9. An illustration of a 60 GHz and a 3 GHz signal's wavelengths compared to a 2mm-sized rain droplet. Note here that the teardrop representation of the raindrop is used for illustrative reasons only and does not represent the raindrop's actual spheroidal form.

Millimeter-Wave Propagation Characteristics

D. Foliage Attenuation

Figure 10. An illustration of foliage attenuation imposed by the presence of multiple trees, where the thickness of the lines shown illustrates the signal power.

Millimeter-Wave Propagation Characteristics

E. Material Penetration

Figure 14. Human blockage of the communication between a transmitter and a receiver.

Alisson Câmara Estado da Arte 27 de Julho de 2018 10 / 38

Millimeter-Wave Propagation Characteristics

F. Propagation Mechanisms

Figure 13. An illustration of different propagation mechanisms, namely specular reflection, diffuse scattering and diffraction. The rectangular reflecting/diffracting surface used is for visualization purposes only and does not intend to characterize a real scenario.

Alisson Câmara Estado da Arte 27 de Julho de 2018 11 / 38

The Millimeter Wave Channel Model

- A. mmWave Channel Modeling Efforts (28GHz, 30GHz, 38GHz, 45GHz, 60GHz, 70GHz, 72GHz, 100GHz)
- B. Modeling Challenges (3D model, Measurements, Bandwidth, Mobility, Beamtracking)
- C. Path Loss and Shadowing
- D. Narrow Band Channel Model
- E. The Wideband Channel Model
- F. Spatio-Temporal Characteristics

Alisson Câmara Estado da Arte 27 de Julho de 2018 12 / 38

The Millimeter Wave Channel Model

Figure 26. mmWave Technology available techniques, pros and cons, scenarios and future work.

Design Guidelines

- A. Channel Model Considerations
- B. System Design Considerations
- C. Antenna Design Considerations
- D. Link Budget Analysis

Figure 27. Design considerations for mmWave systems, which characterize the "Signal Processing" entrance to the "mmWave Technology" roundabout of Fisine 2.

MIMO and Beamforming

lisson Câmara Estado da Arte 27 de Julho de 2018 15 / 38

mmWave

MIMO and Beamforming

Snapdragon X50 mmWave solution

architecture

performance and ease-of-use

placements and multiple modules

16 / 38

Alisson Câmara Estado da Arte 27 de Julho de 2018

mmWave - Desafios a serem superados

- Beamforming e Beam tracking adaptativos
- Canais de sincronização e broadcast direcionais
- 3 Problemas com a camada MAC, camada de rede e camada de transporte
 - Sombreamento
 - 2 Desvanecimento rápido
 - 3 Mudanças de link frequentes (Dual conectivity necessária)

Alisson Câmara Estado da Arte 27 de Julho de 2018 17 / 38

Desafios em simulações System-Level de redes mmWave

- 1 Complexidade computacional (Precisão vs Desempenho)
- Modelo do Canal
 - 1 LOS e NLOS
 - 2 Perdas de propagação e desvanecimento
 - 3 Beamforming deve ser simulado para transmissões direcionais
 - 4 Efeito doppler relevante
- 3 Considerar a Mobilidade
- 4 Células pequenas e Handover frequente
- Diversos protocolos interagindo (End-to-End)

Alisson Câmara Estado da Arte 27 de Julho de 2018 18 / 38

Módulo mmWave NS3

- 1 Módulo NS-3 Criado pela NYU
- End-to-End Framework (MEZZAVILLA et al., 2018)
 - Modelos de canais detalhados (3GPP , Ray-Tracing e Medições)
 - Camada MAC adaptável (inclusive com possibilidade de HARQ adaptativo)
 - 3 RLC, PDCP, RRC realistas
 - 4 Core network configurável
 - 5 Handover entre 5G e 5G/4G
- https://github.com/nyuwirelessunipd/ns3-mmwave

19 / 38

Módulo mmWave NS3 - Classes

Figure 1: Class diagram of the end-to-end mmWave module.

Alisson Câmara Estado da Arte 27 de Julho de 2018 20 / 38

Módulo mmWave NS3 - Modelos de Canais

- 1. Channel and Mimo Modeling (3GPP, Ray-Tracing, NYU model)
- 2.Beamforming
- 3.Interferência
- 4.Error Model

Figure 4: Example of average SINR plots for the three channel models.

Alisson Câmara Estado da Arte 27 de Julho de 2018 21 / 38

Módulo mmWave NS3 - Modelos de Canais

- **1** 3GPP Statistical Channel Model:
 - 1 6-100GHz
 - 2 Largura de banda ate 10% da frequência
 - 3 Vários cenários (Rural, urbano, indoor)
 - 4 Consistência espacial
 - 5 Bloqueio aleatório
 - \bullet Matriz de canal H(t,f) calculada repetidamente
 - 7 Calcula até 20 multipercursos (Clusters) com 20 raios cada
- 2 Exige muito esforço computacional

Alisson Câmara Estado da Arte 27 de Julho de 2018 22 / 38

Módulo mmWave NS3 - Modelos de Canais

- Ray-Tracing:
 - Modelo criado a partir de dados de simulação em softwares de Ray tracing adicionados ao NS-3
- 2 NYU Statistical Model
 - Utiliza modelos NLOS e LOS
 - 2 Simula Obstrução por objetos e construções
 - 3 Carrega várias matrizes pré-calculadas para aumentar desempenho
 - 4 Método semi empírico
 - 5 Algumas opções não verificadas formalmente

Camadas

- 1 Física
 - Frame Structure
 - 2 Phy Transmission and reception
- 2 MAC
 - 1 Adaptative Modulation and Coding
 - 2 Hybrid Arq Retransmission
- 3 Radio Link Control
 - 1 RLC AM Retransmission Modificada
 - 2 Active Queue Management
- 4 Dual Connectivity Extension

Camada Física - Frame Structure

Estrutura de quadro baseada em Time Division Duplex (TDD). Duração e Número de Simbolos OFDM Configuráveis pela classe MmwavePhyMacCommom.

Figure 6: Proposed mmWave frame structure.

Alisson Câmara Estado da Arte 27 de Julho de 2018 25 / 38

Camada Física - Transmissão e recepção

- As classes MmWaveEnbPhy e MmWaveUePhy modelam a camada física das eNBs e UEs.
- 2 MmWaveEnbNetDevice e MmWaveUeNetDevice Implementam as placa de rede
- 3 Os métodos StartSubFrame() e EndSubframe() são chamados em intervalos fixos determinados pelo usuário.
- 4 Os métodos StartSlot() e EndSlot() controlam os TTI variáveis e são configuras pela camada MAC.
- Para o inicio da transmissão de um Slot de dados eNB Phy chama AntennaArrayModel::ChangeBeamforming-Vector()

Alisson Câmara Estado da Arte 27 de Julho de 2018 26 / 38

Camada MAC

- Principal esquema de acesso considerado é TDMA. (SDMA e FDMA precisa de digital beamforming que não é prático)
- Adaptative Modulation and Coding implementado e Hybrid Arq Retransmission (HARQ).

Figure 7: Rate and MCS vs. SINR for a single user under AGWN and fast-fading mmWave channels. @[2016] ACM. Reprinted, with permission, from [28].

Camada MAC - Algoritmos de escalonamento

Escalonamento MAC

- Round-Robin(RR)
- Proportional-Fair (PF)
- 3 Earliest-Deadline-First (EDF)
- 4 Maximum Rate (MR):

Camada RLC (Radio Link Control)

- Modified RLC AM Retransmission: (Capacidade de segmentação do pacote a ser retransmitido caso haja degradação do canal)
- 2 Active Queue Management: Melhora desempenho do TCP (Controled Delay [CoDel] e Drop-Tail[padrão LTE], além dos disponíveis no NS-3)

Alisson Câmara Estado da Arte 27 de Julho de 2018 28 / 30

Dual Connectivity Extension

Use Cases

- A. Simulation Setup Walk-through
- B. Multi-User Scheduling Simulation
- C. Latency Evaluation for variable and Fixed TTI schemes
- D. TCP performance over mmWave
- E. LTE Aided Multi connectivity

Módulo mmWave NS3 - Simulation Setup Walk-through

- Definir os Atributos (mmWaveAttributesList)
- Configurar o objeto MmWaveHelper
 - 1 Objetos Referentes aos canais
 - 2 MmWavePhyMacCommon Object
 - 3 Instal mmWave Stack on NS-3 nodes
 - 4 Attach UE to eNB
 - 5 Enable/Disable simulation Traces
 - 6 MmWavePointToPointEpcHelper
 - 7 Demais protocolos (por exemplo TCP/IP)
- 3 Definir Posições iniciais, Velocidades e Obstáculos
 - 1 MobilityHelper
 - 2 Buildings e BuildingsHelper
- 4 Setup Applications
- 5 Executar simulação utilizando Simulator

Alisson Câmara Estado da Arte 27 de Julho de 2018 31 / 38

Ex.: Simulação de Escalonamento Multi-Usuário

Verificar a Latência e o Throughput dos usuários de uma célula com 1GHz de Banda

Figure 9: Distributions of PHY-layer throughput and IP-layer latency for 70
UEs, 10 Mbps/UE arrival rate

Figure 10: Distributions of PHY-layer throughput and IP-layer latency for 7 UEs, 100 Mbos/UE arrival rate

Alisson Câmara Estado da Arte 27 de Julho de 2018 32 / 38

Ex.: Análise de Latência para TTI fixo e TTI variável

Verificar o efeito dos intervalos de transmissão variáveis e fixos na latência dos usuários

Figure 11: Latency and Deadline Miss Ratio as a function of the downlink IP-layer arrival rate for fixed and variable TTI radio frame structures.

Alisson Câmara Estado da Arte 27 de Julho de 2018 33 / 38

Ex.: Performance do Protocolo TCP sobre um canal mmWave

Verificar o desempenho do protocolo TCP com diferentes técnicas de Active Queue Management (AQM) (Drop-Tail ou Controlled Delay [CoDel])

Figure 12: TCP performance of a single UE with human blockages. ©[2017] IEEE. Reprinted, with permission, from [18].

Ex.: Multi-Connectividade com LTE

Teste de desempenho entre Dual-Connectivity e Hard Handover) [mc-twoenbs.cc]

Figure 13: Random realization of the simulation scenario. The grey rectangles are randomly deployed non-overlapping obstacles.

Figure 14: PDCP| throughput with multiple RATs and eNBs, eNBs with CellId 2 and 3 are mmWave eNBs, while CellId 1 stands for the LTE eNB co-located with mmWave eNB 2.

Alisson Câmara Estado da Arte 27 de Julho de 2018 35 / 38

Potential Uses and Future Extensions

- **1** 3GPP signaling/Beamtracking
- 2 Carrier Agregation
- 3 Virtual and Augmented reality Application
- 4 Multi-hop Architectures
- 5 Veicular Channel and traffic models
- 6 Public safety scenarios
- Scalability
 - 1 Low-Rank Channel Modeling
 - 2 Migration to Cluster computing
- 8 Merge mmWave module with main ns-3 release

Alisson Câmara Estado da Arte 27 de Julho de 2018 36 /

Referências

MEZZAVILLA, M. et al. End-to-end simulation of 5g mmwave networks. *IEEE Communications Surveys Tutorials*, p. 1–1, 2018.

Alisson Câmara Estado da Arte 27 de Julho de 2018 37 / 38

Agradecimentos

Agradeço a todos.

Alisson Câmara Estado da Arte 27 de Julho de 2018 38 / 38