VE401 Assignment

Yang Tiancheng 517370910259 Qiu Yuqing 518370910026

March 8, 2020

Exercise 1. Elementary Probability

Solution. We use Cardano's principle to get the probability. The number of ways to pick 120 people from 2000 individuals is

 $n_1 = \frac{2000!}{120! \times (2000 - 120)!}$

The number of ways that me and my friend are both chosen is equal to the number of ways to choose 118 people from 1998 individuals, which is

$$n_2 = \frac{1998!}{118! \times (1998 - 118)!}$$

Therefore the probability that me and my friend will both be chosen is

$$\frac{n_2}{n_1} = \frac{\frac{1998!}{118! \times (1998 - 118)!}}{\frac{2000!}{120! \times (2000 - 120)!}} = 0.357\%$$

Exercise 2. Some Routine Calculations

i) **Proof.** Since $A \subset B$, $B = A + B \setminus A$. Note that $A \cap B \setminus A = \emptyset$. Thus $P[B] = P[A] + P[B \setminus A] \ge P[A]$. Therefore $P[A] \le P[B]$.

ii) **Proof.** Since A and B are independent, we have $P[A \cap B] = P[A]P[B]$. We know that P[A]P[B] > 0 so $P[A \cap B] > 0$. Thus $P[A \cap B] = \frac{|A \cap B|}{|S|} > 0$, which means that $|A \cap B| > 0$. Therefore, $A \cap B \neq \emptyset$ and hence they are not mutually exclusive.

iii) **Proof.** First we have two trivial equations:

$$P[A] = P[A \backslash (A \cap B)] + P[A \cap B]$$

$$P[B] = P[B \backslash (A \cap B)] + P[A \cap B]$$

We also have

$$P[A \cup B] = P[A \backslash (A \cap B)] + P[B \backslash (A \cap B)] + P[A \cap B]$$

. Therefore,

$$P[A \cup B] = P[A] - P[A \cap B] + P[B] - P[A \cap B] + P[A \cap B] = P[A] + P[B] - P[A \cap B]$$

Exercise 3. D'Alembert's Coins

i) **Solution.** No, it is not possible. If the coin is fair, we know that

$$P[two\ heads] = P[no\ heads] < P[onehead]$$

. Now if the coin is biased, for that coin $P[head] \neq P[nohead]$. And hence if it is tossed twice,

$$P[two\ heads] \neq P[no\ heads]$$

. Therefore, even though the coin can be biased, the three outcomes cannot have the same probability. \Box

ii) **Solution.** No, it is not possible as well. Denote one coin as A, with P[A, head] = a. We know that P[A, head] + P[A, tail] = 1 so P[A, tail] = 1 - a. Similarly, we also have coin B with b and b. Now, if the three outcomes have same probability, then

$$a \times b = (1 - a) \times (1 - b) = 1/3$$

. From here we get that a+b=1. Now we calculate

$$a \times b = a \times (1 - a) = \frac{1}{3}$$

which has no real solution. Therefore, it is impossible to make the coins so that D'Alembert's claim is true.

Exercise 4. Independence

i) **Solution.** Denotion of events:

P1: a participant from the first group is chosen;

P2: a participant from the second group is chosen;

A: the participant replies "yes" to the second question;

Now we list the known probabilities: P[P1] = 50%, P[P2] = 50%, P[A|P1] = 17%, P[A|P2] = 3%. We want to know the total probability of P[A].

$$P[A] = P[A|P1] \times P[P1] + P[A|P2] \times P[P2] = 17\% \times 50\% + 3\% \times 50\% = 10\%$$

Therefore, this probability is 10%.

ii) **Solution.** No. We have P[A|P1] > P[A]. Therefore it is not independent.

Exercise 5. This one may need a little thinking about... Though it doesn't.

Solution. We denote the event that a chip is defective by D. The event that a chip is stolen is S. $\neg S$ means that a chip is not stolen. Thieves stole the chips before inspection, so P[D|S] = 50%. We know that P[S] = 1% of the chips is illegal, hence $P[\neg S] = 99\%$ of the chips is legally marketed. For those chips that are legally marketed, their probability of being defective is 5%, because of the inspection. This means that if the chips is not stolen, the probability of being defective is $P[D|\neg S] = 5\%$. Now we apply the Bayes' theorem to get the probability we want to calculate, i.e., P[S|D].

$$P[S|D] = \frac{P[D|S]P[S]}{P[D|S]P[S] + P[D|\neg S]P[\neg S]} = \frac{0.5 \times 0.01}{0.5 \times 0.01 + 0.05 \times 0.99} = 9.17\%$$

Exercise 6. Mounty Hall in Prison?

Solution. They are both wrong. Conclusions first: the prisoner is wrong because the warden would have given him some information; the warden is wrong because the one who have a bigger chance of dying would not have been prisoner A.

Suppose that the warden tells A that prisoner B is not to be executed. We denote this event by B^* . The event that prisoner X is to be executed is denoted by DX. By Bayes' Theorem, we have

$$P[DA|B^*] = \frac{P[B^*|DA]P[DA]}{P[B^*|DA]P[DA] + P[B^*|DB]P[DB] + P[B^*|DC]P[DC]} = \frac{\frac{1}{2} \times \frac{1}{3}}{\frac{1}{2} \times \frac{1}{3} + 0 + 1 \times \frac{1}{3}} = \frac{1}{3}$$

However, for prisoner C, the probability that he is to be executed is then

$$P[DC|B^*] = \frac{P[B^*|DC]P[DC]}{P[B^*|DC]P[DC] + P[B^*|DB]P[DB] + P[B^*|DA]P[DA]} = \frac{1 \times \frac{1}{3}}{1 \times \frac{1}{2} + 0 + \frac{1}{2} \times \frac{1}{2}} = \frac{2}{3}$$

Therefore, neither of them is right.

Exercise 7. Two Children Paradox - Birthday Party

Solution. Denote the events as:

A: The lady's other child is a girl;

B: The lady's boy is born in July;

Then, according to the problem, what we need to calculate is P[A|B].

We define the sample space of the gender as $\{(b,b),(b,g),(g,b)\}$, where 'b' means the child is a boy and 'g' means the child is a girl and the former child is older than the latter. Each sample point has the same probability, i.e.

$$P[(b,b)] = P[(b,g)] = P[(g,b)] = \frac{1}{3}$$

For (b, g) and (g, b), the probability of the boy born in July should be $\frac{1}{12}$. For (b, b), the probability of at least one boy born in July can be calculated as follows:

- i) Only one boy is born in July: $\frac{1}{12}\times\frac{11}{12}\times2=\frac{22}{144}$
- ii) Two boys are both born in July: $\frac{1}{12} \times \frac{1}{12} = \frac{1}{144}$

Then, the probability of at least one boy born in July is $\frac{22}{144} + \frac{1}{144} = \frac{23}{144}$

Here we calculate $P[A \cap B]$. We use the total probability,

$$\begin{split} P[A \cap B] &= P[A \cap B | (b,b)] P[(b,b)] + P[A \cap B | (b,g)] P[(b,g)] + P[A \cap B | (g,b)] P[(g,b)] \\ &= 0 \times \frac{1}{3} + \frac{1}{12} \times \frac{1}{3} + \frac{1}{12} \times \frac{1}{3} \\ &= \frac{1}{18} \end{split}$$

Similarly, we can calculate P[B].

$$P[B] = P[B|(b,b)]P[(b,b)] + P[B|(b,g)]P[(b,g)] + P[B|(g,b)]P[(g,b)]$$

$$= \frac{23}{144} \times \frac{1}{3} + \frac{1}{12} \times \frac{1}{3} + \frac{1}{12} \times \frac{1}{3}$$

$$= \frac{47}{432}$$

Then, using the formula of conditional formula,

$$P[A|B] = \frac{P[A \cap B]}{P[B]}$$
$$= \frac{\frac{1}{18}}{\frac{47}{432}}$$
$$= \frac{24}{47}$$