

(11) **EP 3 181 872 B1**

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

06.10.2021 Bulletin 2021/40

(51) Int Cl.: **F02C** 9/28^(2006.01)

G05B 13/04 (2006.01)

(21) Application number: 16201972.3

(22) Date of filing: 02.12.2016

(54) MODELLING PROBABILISTIC CONTROL IN GAS TURBINE TUNING FOR POWER OUTPUT-EMISSIONS PARAMETERS, RELATED CONTROL SYSTEMS, COMPUTER PROGRAM PRODUCTS AND METHODS

MODELLIERUNG VON PROBABILISTISCHER STEUERUNG BEI DER GASTURBINENABSTIMMUNG AUF LEISTUNGSABGABEMISSIONSPARAMETER, ZUGEHÖRIGE STEUERUNGSSYSTEME, COMPUTERPROGRAMMPRODUKTE UND VERFAHREN

COMMANDE PROBABILISTE DE MODÉLISATION DANS LE RÉGLAGE DE TURBINE À GAZ POUR PARAMÈTRES D'ÉMISSIONS DE PUISSANCE FOURNIE, SYSTÈMES DE COMMANDE ASSOCIÉS, PROCÉDÉS ET PRODUITS-PROGRAMMES INFORMATIQUES

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

- (30) Priority: 16.12.2015 US 201514971710
- (43) Date of publication of application: 21.06.2017 Bulletin 2017/25
- (73) Proprietor: General Electric Company Schenectady, NY 12345 (US)
- (72) Inventors:
 - DAVIS, Jr. Lewis Berkley Schenectady, NY 12345 (US)
 - DAY, Scott Arthur Greenville, SC 29615 (US)

- HEALY, Timothy Andrew Greenville, SC 29615 (US)
- JORDAN, Jr. Harold Lamar Greenville, SC 29615 (US)
- MORGAN, Rex Allen Greenville, SC 29615 (US)
- (74) Representative: BRP Renaud & Partner mbB Rechtsanwälte Patentanwälte Steuerberater Königstraße 28 70173 Stuttgart (DE)
- (56) References cited:

EP-A1- 2 570 877 US-A1- 2007 073 525 US-A1- 2014 260 312

o 3 181 872 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

20

25

30

35

40

50

55

FIELD OF THE INVENTION

⁵ **[0001]** The subject matter disclosed herein relates to tuning and control systems. More particularly, the subject matter disclosed herein relates to tuning and control systems for gas turbines.

BACKGROUND OF THE INVENTION

[0002] At least some known gas turbine engines include controllers that monitor and control their operation. Known controllers govern the combustion system of the gas turbine engine and other operational aspects of the gas turbine engine using operating parameters of the engine. At least some known controllers receive operating parameters that indicate the gas turbine engine's present operating state, define operational boundaries by way of physics-based models or transfer functions, and apply the operating parameters to the operational boundary models. Additionally, at least some known controllers also apply the operating parameters to scheduling algorithms, determining error terms, and controlling boundaries by adjusting one or more gas turbine engine control effectors. However, at least some operating parameters may be unmeasured parameters, such as parameters that may be impractical to measure using sensors. Some of such parameters include firing temperature (i.e., stage 1 turbine vane exit temperature), combustor exit temperature, and/or turbine stage 1 nozzle inlet temperature.

[0003] At least some known gas turbine engine control systems indirectly control or monitor unmeasured operating parameters using measured parameters, such as compressor inlet pressure and temperature, compressor exit pressure and temperature, turbine exhaust pressure and temperature, fuel flow and temperature, ambient conditions, and/or generator power. However, there is uncertainty in the values of indirect parameters, and the associated gas turbine engines may need tuning to reduce combustion dynamics and emissions. Because of the uncertainty of unmeasured parameters, design margins are used for gas turbine engines that include such known control systems. Using such design margins may reduce the performance of the gas turbine engine at many operating conditions in an effort to protect against and accommodate worst-case operational boundaries. Moreover, many of such known control systems may not accurately estimate firing temperature or exhaust temperature of the gas turbine engine, which may result in a less efficient engine and variation from machine-to-machine in facilities with more than one gas turbine engine.

[0004] From US 2014/0260312 A1 a method of tuning a gas turbine is known that includes receiving a first plurality of operating parameters as the gas turbine engine is operated at a first operating state. Further, the method includes operating the gas turbine engine and a second operating state to measure a second plurality of operating parameters at the second operating state. In addition, the method includes operating the gas turbine engine at a third operating state to measure a third plurality of operating parameters at the third operating state, wherein the first, second, and third operating states are different from each other. Additionally, the method includes generating a correction factor based on the first, second and third plurality of operating parameters. The method also includes adjusting the operation of the gas turbine engine based on the correction factor. Document US 2014/0260312 A1 discloses a system according to the preamble of claim 1 and a method according to the preamble of claim 7.

[0005] It has proven difficult to reduce variation in firing temperature from machine-to-machine for industrial gas turbines. For example, firing temperature is a function of many different variables, including variations in the components of the gas turbine and their assembly. These variations are due to necessary tolerances in manufacturing, installation, and assembly of the gas turbine parts. In addition, the controls and sensors used to measure the operating parameters of the gas turbine contain a certain amount of uncertainty in their measurements. It is the uncertainty in the measurement system used to sense the values of the measured operating parameters and the machine component variations that necessarily result in variation of the unmeasured operating parameters of the gas turbine engine, such as the firing temperature. The combination of these inherent inaccuracies makes it difficult to achieve the design firing temperature of a gas turbine engine at a known set of ambient conditions and results in firing temperature variation from machine-to-machine.

BRIEF DESCRIPTION OF THE INVENTION

[0006] Various embodiments include a system having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective power output (mega-watt (MW) power output) to match a nominal power output value, and subsequently measuring an actual emissions value for each GT; adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual emissions value and a nominal emissions value at the ambient condition; and building an independent emissions model for each GT based upon the measured actual emissions value for each GT and the

adjusted operating condition of each GT.

10

15

20

35

40

50

55

[0007] A first aspect includes a system according to claim 1 having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective power output (MW power output) to match a nominal power output value, and subsequently measuring an actual emissions value for each GT; adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual emissions value and a nominal emissions value at the ambient condition; and building an independent emissions model for each GT based upon the measured actual emissions value for each GT and the adjusted operating condition of each GT in a way to bring the GT's actual emissions value closer to the nominal emissions value.

[0008] A second aspect not forming part of the claimed subject-matter, includes a computer program product having program code, which when executed by at least one computing device, causes the at least one computing device to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective power output (MW power output) to match a nominal power output value, and subsequently measuring an actual emissions value for each GT; adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual emissions value and a nominal emissions value at the ambient condition; and building an independent emissions model for each GT based upon the measured actual emissions value for each GT and the adjusted operating condition of each GT.

[0009] A third aspect includes a computer-implemented method according to claim 7, of tuning a set of gas turbines (GTs), performed using at least one computing device, the method including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective power output (MW power output) to match a nominal power output value, and subsequently measuring an actual emissions value for each GT; adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual emissions value and a nominal emissions value at the ambient condition; and building an independent emissions model for each GT based upon the measured actual emissions value for each GT and the adjusted operating condition of each GT in a way to bring the GT's actual emissions value closer to the nominal emissions value.

30 BRIEF DESCRIPTION OF THE DRAWINGS

[0010] These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings that depict various embodiments of the invention, in which:

FIG. 1 shows a schematic illustration of a gas turbine engine (GT), including a control system, according to various embodiments of the invention.

FIG. 2 shows a schematic view of a control architecture that may be used with the control system of FIG. 1 to control operation of the GT, according to various embodiments of the invention.

FIG. 3 shows a graphical depiction of a probabilistic simulation of the operating states of a statistically significant number of GT engines of FIG. 1 using a model of the GT used by the control system of FIG. 1.

FIG. 4 shows a flow diagram illustrating a method according to various embodiments of the invention.

FIG. 5 shows a graphical depiction of a process illustrated in the flow diagram of FIG. 4, in a two-dimensional Power output (MW) v. Emissions (NO_x) graph.

FIG. 6 shows a graphical depiction of a process illustrated in the flow diagram of FIG. 4, in a two-dimensional Power output (MW) v. Emissions (NO_x) graph.

FIG. 7 shows a graphical depiction of a process illustrated in the flow diagram of FIG. 4, in a three-dimensional Power output (MW) v. Emissions (NO_x) v. firing temperature (T4) graph.

FIG. 8 shows an illustrative environment including a control system according to various embodiments of the invention.

[0011] It is noted that the drawings of the invention are not necessarily to scale. The drawings are intended to depict only typical aspects of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbering represents like elements between the drawings.

5 DETAILED DESCRIPTION OF THE INVENTION

10

30

35

40

45

50

55

[0012] As indicated above, subject matter disclosed herein relates to tuning and control systems. More particularly, the subject matter disclosed herein relates to tuning and control systems for gas turbines.

[0013] Probabilistic control is a methodology for setting the operating state of a gas turbine (GT) based upon measured output (in mega-watts, MW) and mono-nitrogen oxides NO and NO₂ (nitric oxide and nitrogen dioxide), collectively referred to as NO_x emissions. As described herein, various embodiments provide tuning and control of a GT where errors in measurements exist. Conventional approaches exist to calculate and tune control mechanisms where measurement errors exist, but no conventional approaches are designed to account for and tune GT control functions in specific view of power output and NO_x measurements.

[0014] As used herein, term P50 GT or P50 machine refers to a mean (or, nominal) gas turbine or similar machine in a fleet. Parameters associated with this P50 measure are considered ideal, and are rarely if ever attained in an actual gas turbine. Other terms used herein can include: a) firing temperature (T4), which is the average temperature downstream of a first-stage nozzle, but upstream of the first rotating bucket in the turbine (e.g., GT); and b) T3.9, which is the combustion temperature in the gas turbine, and is higher than the firing temperature. The firing temperature, as is known in the art, cannot be measured, but is inferred from other measurements and known parameters. As used herein, the term, "indicated firing temperature" refers to the firing temperature as indicated by one or more components of control equipment, e.g., a control system monitoring and/or controlling GT components. The "indicated" firing temperature represents the best estimate of the firing temperature from conventional sensing/testing equipment connected with the GT control system.

[0015] Additionally, as described herein, the term "base load" for a particular gas turbine can refer to the maximum output of the gas turbine at rated firing temperature. Further, as described herein, and known in the art, base load for a given gas turbine will change based upon changes in ambient operating conditions. Sometimes base load is referred to as "Full Speed Full Load" in the art. Further, it is understood that NOx is sensitive to fuel composition, and as such, it is accounted for in any tuning processes conducted in a gas turbine (including tuning processes described herein).

[0016] Further, as described herein, the term "exhaust energy" refers to the energy contained within the exhaust gas exiting the GT, which may be determined based upon temperature measurements and pressure measurements of the exhaust gas at the exhaust section (outlet) of the GT. This exhaust energy is directly related to the amount of combustion gas flowing through the GT, and can be correlated with other operating parameters, e.g., power output.

[0017] Various embodiments described herein allow for probabilistic control of GTs (e.g., a fleet of two or more GTs) using power output and emissions parameters for the GTs. According to various embodiments, an approach can include the following processes:

- 1) Commanding one or more gas turbines (e.g., in a fleet) to a designed base load (MW value, NO_x value, fuel flow value, exhaust energy value), based upon a measured ambient condition. As described herein, in an ideal situation, the GT(s) should, in an ideal scenario, converge to P50 (nominal) operating parameters, including a P50 power output (nominal power output) value and P50 NO_x (emissions) value. However, as indicated herein, this does not occur in real-world operations;
- 2) Commanding the one or more GTs to adjust its power output (MW) to match to the nominal power output (P50 power output) value, and measuring the actual NOx value. As noted herein, this process will likely help to bring each GT's actual NOx value closer to the P50 NO_x value, but does not fully succeed in that goal. Additionally, this power output adjustment does not address another concern, that being the elevated firing temperature relative to its desired level;
- 3) Adjusting each GT's operating condition based upon its difference (Delta NO_x) between the measured actual NOx value (process 2) and the expected, P50 NO_x value for the ambient condition. The Delta NO_x value can be translated to a Delta power output (MW) value (representing the difference between the GT's actual power output and the power output at the P50 power output level) for each GT using conventional approaches. In this process, each GT that deviates from the P50 power output value, has its operating condition adjusted by a fixed fraction of the Delta power output value (as converted from the Delta NO_x value) such that it approaches and then reaches the Delta power output (MW) value for that GT. This adjustment will move each GT onto a line in Power output/NO_x space that is orthogonal to the P50 Power output/P50 NO_x characteristic for that GT. The above-noted general processes are described in further detail herein; and

4) Building an independent emissions model for each GT based upon the measured actual emissions value for each GT (from (2)) and the adjusted operating condition of each GT (from (3). This process can include creating an emissions model for each of the GTs based upon machine-specific emissions values relative to the nominal (P50) emissions values and the adjustment made during process (3) to bring the GT's actual emissions value closer to the nominal (P50) emissions value. The pre-existing emissions model for each GT can be physics based or empirical (e.g., constructed from laboratory data). The pre-existing emissions model can be constructed so as to allow adjustment with new (updated) emissions data.

5

10

20

30

35

45

50

55

[0018] In the following description, reference is made to the accompanying drawings that form a part thereof, and in which is shown by way of illustration specific example embodiments in which the present teachings may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present teachings and it is to be understood that other embodiments may be utilized and that changes may be made without departing from the scope of the present teachings. The following description is, therefore, merely illustrative.

[0019] FIG. 1 shows a schematic illustration of a gas turbine engine (GT) 10 including a control system 18, according to various embodiments. In various embodiments, gas turbine engine 10 includes a compressor 12, a combustor 14, a turbine 16 drivingly coupled to compressor 12, and a computer control system, or controller 18. An inlet duct 20 to compressor 12 channels ambient air and, in some instances, injected water to compressor 12. Duct 20 may include ducts, filters, screens, or sound absorbing devices that contribute to a pressure loss of ambient air flowing through inlet duct 20 and into inlet guide vanes (IGV) 21 of compressor 12. Combustion gasses from gas turbine engine 10 are directed through exhaust duct 22. Exhaust duct 22 may include sound adsorbing materials and emission control devices that induce a backpressure to gas turbine engine 10. An amount of inlet pressure losses and backpressure may vary over time due to the addition of components to inlet duct 20 and exhaust duct 22, and/or as a result of dust or dirt clogging inlet duct 20 and exhaust duct 22, respectively. In various embodiments, gas turbine engine 10 drives a generator 24 that produces electrical power.

[0020] Various embodiments are described which measure, analyze and/or control a set of GTs, which may include one or more gas turbine engines (GTs), e.g., in a fleet. It is understood that these approaches are similarly applied to a single GT as two or more GTs.

[0021] In various embodiments, a plurality of control sensors 26 detect various operating conditions of gas turbine engine 10, generator 24, and/or the ambient environment during operation of gas turbine engine 10. In many instances, multiple redundant control sensors 26 may measure the same operating condition. For example, groups of redundant temperature control sensors 26 may monitor ambient temperature, compressor discharge temperature, turbine exhaust gas temperature, and/or other operating temperatures the gas stream (not shown) through gas turbine engine 10. Similarly, groups of other redundant pressure control sensors 26 may monitor ambient pressure, static and dynamic pressure levels at compressor 12, turbine 16 exhaust, and/or other parameters in gas turbine engine 10. Control sensors 26 may include, without limitation, flow sensors, pressure sensors, speed sensors, flame detector sensors, valve position sensors, guide vane angle sensors, and/or any other device that may be used to sense various operating parameters during operation of gas turbine engine 10.

[0022] As used herein, the term "parameter" refers to characteristics that can be used to define the operating conditions of gas turbine engine 10, such as temperatures, pressures, and/or gas flows at defined locations within gas turbine engine 10. Some parameters are measured, i.e., are sensed and are directly known, while other parameters are calculated by a model and are thus estimated and indirectly known. Some parameters may be initially input by a user to controller 18. The measured, estimated, or user input parameters represent a given operating state of gas turbine engine 10.

[0023] A fuel control system 28 regulates an amount of fuel flow from a fuel supply (not shown) to combustor 14, an amount split between primary and secondary fuel nozzles (not shown), and an amount mixed with secondary air flowing into combustor 14. Fuel control system 28 may also select a type of fuel for use in combustor 14. Fuel control system 28 may be a separate unit or may be a component of controller 18.

[0024] Controller (control system) 18 may be a computer system that includes at least one processor (not shown) and at least one memory device (not shown) that executes operations to control the operation of gas turbine engine 10 based at least partially on control sensor 26 inputs and on instructions from human operators. The controller may include, for example, a model of gas turbine engine 10. Operations executed by controller 18 may include sensing or modeling operating parameters, modeling operational boundaries, applying operational boundary models, or applying scheduling algorithms that control operation of gas turbine engine 10, such as by regulating a fuel flow to combustor 14. Controller 18 compares operating parameters of gas turbine engine 10 to operational boundary models, or scheduling algorithms used by gas turbine engine 10 to generate control outputs, such as, without limitation, a firing temperature. Commands generated by controller 18 may cause a fuel actuator 27 on gas turbine engine 10 to selectively regulate fuel flow, fuel splits, and/or a type of fuel channeled between the fuel supply and combustors 14. Other commands may be generated to cause actuators 29 to adjust a relative position of IGVs 21, adjust inlet bleed heat, or activate other control settings on gas turbine engine 10.

[0025] Operating parameters generally indicate the operating conditions of gas turbine engine 10, such as temperatures, pressures, and gas flows, at defined locations in gas turbine engine 10 and at given operating states. Some operating parameters are measured, i.e., sensed and are directly known, while other operating parameters are estimated by a model and are indirectly known. Operating parameters that are estimated or modeled, may also be referred to as estimated operating parameters, and may include for example, without limitation, firing temperature and/or exhaust temperature. Operational boundary models may be defined by one or more physical boundaries of gas turbine engine 10, and thus may be representative of optimal conditions of gas turbine engine 10 at each boundary. Further, operational boundary models may be independent of any other boundaries or operating conditions. Scheduling algorithms may be used to determine settings for the turbine control actuators 27, 29 to cause gas turbine engine 10 to operate within predetermined limits. Typically, scheduling algorithms protect against worst-case scenarios and have built-in assumptions based on certain operating states. Boundary control is a process by which a controller, such as controller 18, is able to adjust turbine control actuators 27, 29 to cause gas turbine engine 10 to operate at a preferred state.

10

30

35

45

50

55

[0026] FIG. 2 shows a schematic view of an example control architecture 200 that may be used with controller 18 (shown in FIG. 1) to control operation of gas turbine engine 10 (shown in FIG. 1). More specifically, in various embodiments, control architecture 200 is implemented in controller 18 and includes a model-based control (MBC) module 56. MBC module 56 is a robust, high fidelity, physics-based model of gas turbine engine 10. MBC module 56 receives measured conditions as input operating parameters 48. Such parameters 48 may include, without limitation, ambient pressure and temperature, fuel flows and temperature, inlet bleed heat, and/or generator power losses. MBC module 56 applies input operating parameters 48 to the gas turbine model to determine a nominal firing temperature 50 (or nominal operating state 428). MBC module 56 may be implemented in any platform that enables operation of control architecture 200 and gas turbine engine 10 as described herein.

[0027] Further, in various embodiments, control architecture 200 includes an adaptive real-time engine simulation (ARES) module 58 that estimates certain operating parameters of gas turbine engine 10. For example, in one embodiment, ARES module 58 estimates operational parameters that are not directly sensed such as those generated by control sensors 26 for use in control algorithms. ARES module 58 also estimates operational parameters that are measured such that the estimated and measured conditions can be compared. The comparison is used to automatically tune ARES module 58 without disrupting operation of gas turbine engine 10.

[0028] ARES module 58 receives input operating parameters 48 such as, without limitation, ambient pressure and temperature, compressor inlet guide vane position, fuel flow, inlet bleed heat flow, generator power losses, inlet and exhaust duct pressure losses, and/or compressor inlet temperature. ARES module 58 then generates estimated operating parameters 60, such as, without limitation, exhaust gas temperature 62, compressor discharge pressure, and/or compressor discharge temperature. In various embodiments, ARES module 58 uses estimated operating parameters 60 in combination with input operating parameters 48 as inputs to the gas turbine model to generate outputs, such as, for example, a calculated firing temperature 64.

[0029] In various embodiments, controller 18 receives as an input, a calculated firing temperature 52. Controller 18 uses a comparator 70 to compare calculated firing temperature 52 to nominal firing temperature 50 to generate a correction factor 54. Correction factor 54 is used to adjust nominal firing temperature 50 in MBC module 56 to generate a corrected firing temperature 66. Controller 18 uses a comparator 74 to compare the control outputs from ARES module 58 and the control outputs from MBC module 56 to generate a difference value. This difference value is then input into a Kalman filter gain matrix (not shown) to generate normalized correction factors that are supplied to controller 18 for use in continually tuning the control model of ARES module 58 thus facilitating enhanced control of gas turbine engine 10. In an alternative embodiment, controller 18 receives as an input exhaust temperature correction factor 68. Exhaust temperature correction factor 68 may be used to adjust exhaust temperature 62 in ARES module 58.

[0030] FIG. 3 is a graph that shows a probabilistic simulation of the operating states of a statistically significant number of the gas turbine engine 10 of FIG. 1 using the model of gas turbine engine used by controller 18. The graph represents power output versus firing temperature of gas turbine engine 10. Line 300 is the linear regression model for the plurality of data points 308. Lines 302 represent the 99% prediction interval corresponding to data points 308. Further, line 304 represents the nominal or design firing temperature 50 for gas turbine engine 10, and line 306 represents a nominal or design power output for gas turbine engine 10. In various embodiments, the probabilistic simulation shown in FIG. 3 shows an approximate variance in firing temperature of 80 units. This variance may be attributed to the component tolerances of gas turbine engine 10, and the measurement uncertainty of controller 18 and control sensors 26.

[0031] Described herein are approaches for tuning gas turbine engine 10 that facilitates reducing variation in the actual gas turbine engine 10 operating state, e.g., firing temperature and/or exhaust temperature, which facilitates reducing variation in power output, emissions, and life of gas turbine engine 10. The probabilistic control approaches described herein may be implemented as either a discrete process to tune gas turbine engine 10 during installation and at various periods, or may be implemented within controller 18 to run periodically at a predetermined interval and/or continuously during operation of gas turbine engine 10. These approaches do not measure gas turbine firing temperature directly because firing temperature is an estimated parameter, as previously discussed. These probabilistic control approaches,

however, can yield directly measured parameters that are strong indicators of the firing temperature of the gas turbine engine 10, and allow for improved control over the firing temperature in a gas turbine engine 10.

[0032] FIG. 4 shows a flow diagram illustrating a method performed according to various embodiments. As described herein, the method can be performed (e.g., executed) using at least one computing device, implemented as a computer program product (e.g., a non-transitory computer program product), or otherwise include the following processes:

Process P1 : commanding each GT 10 in the set of GTs to a base load level (e.g., target indicated firing temperature), based upon a measured ambient condition for each GT 10. As noted herein, the base load (with a target indicated firing temp) is associated with an power output (MW) value and an emissions value for the measured ambient condition. As further noted herein, in response to commanding each GT 10 in the set of GTs to the base load level, each GT 10 does not attain at least one of the nominal power output value (P50 Power output) or the nominal emissions value (P50 NO $_{\chi}$). According to various embodiments, the process of commanding each GT 10 in the set of GTs to adjust a respective power output to match the nominal power output value moves an actual emissions value for each GT 10 closer to the nominal emissions value without matching the nominal emissions value:

10

15

20

25

30

35

40

45

50

Process P2: commanding each GT 10 in the set of GTs to adjust a respective power output to match a nominal power output value, and subsequently measuring an actual emissions value for each GT 10. In various embodiments, process P2 can further include converting the difference between the respective measured actual emissions value and the nominal emissions value for each GT 10 into a difference between a respective power output value and the nominal power output value at the ambient condition value for each GT 10;

Process P3: adjusting an operating condition of each GT 10 in the set of GTs based upon a difference between the respective measured actual emissions value and a nominal emissions value at the ambient condition. According to various embodiments, the process of adjusting the operating condition of each GT 10 includes adjusting the operating condition of each GT 10 in the set of GTs by a fixed fraction of the difference between the respective power output value and the nominal power output value, such that the power output of each GT 10 approaches and then reaches a respective nominal power output value. According to various embodiments, adjusting of the operating condition of each GT 10 in the set of GTs by the fixed fraction of the difference between the respective power output value and the nominal power output value aligns each GT 10 on a line in graphical space plotting power output versus emissions that is orthogonal to a nominal power output/nominal emissions characteristic for each GT 10; and

Process P4: Building an independent emissions model for each GT 10 based upon the measured actual emissions value for each GT 10 (from Process P2) and the adjusted operating condition of each GT 10 (from process P3). This process can include creating an emissions model 840 (FIG. 8) for each of the GTs 10 based upon machine-specific emissions values relative to the nominal (P50) emissions values and the adjustment made during process (3) to bring the GT's 10 actual emissions value closer to the nominal (P50) emissions value. In various embodiments, the emissions model for each GT can be physics based or empirical (e.g., constructed from laboratory data). The pre-existing emissions model can be constructed so as to allow adjustment with new (updated) emissions data. This process can include embedding operation condition(s) associated with model 840 (FIG. 8) in the controller 18 associated with each GT 10 (e.g., where multiple controllers 18 control multiple GTs 10), such that the associated controller 18 defaults to the operating condition(s) under similar conditions, or in some cases, as a baseline (base load) condition. In various embodiments, the ARES model, embedded in controller 18, is modified (set) such that its default operating condition(s) match the model 840 (FIG. 8). In this cases, the ARES model is centered around the operating condition(s) providing the nominal (P50) or near-nominal emissions value for each GT 10.

[0033] FIGS. 5-7 show graphical depictions, via Power output v. Emissions (NO $_x$) graphs, of the processes described in FIG. 4, with respect to an example data set representing a set (plurality) of GTs (similar to GT 10). All data points shown in FIGS. 5-6 represent Power output v. Emissions (NO $_x$) at indicated firing temperatures, where "indicated" firing temperature is the firing temperature as displayed or otherwise outputted by the controller of GT 10. That is, the "indicated" firing temperature is not necessarily the actual firing temperature (which, as described herein, cannot be accurately measured), but instead, the firing temperature as estimated by the controller (and related equipment) of the GT 10. [0034] As shown in this example, e.g., in FIG. 5, the center point of line GL is a function of the mean firing temperature (T4) of the set of GTs. The mean combustion temperature (T3.9) is a function of the mean firing temperature, and is greater than the mean firing temperature. Noted herein, as the mean firing temperature increases, so will the mean combustion temperature, meaning that line GL will shift to a greater Power output/NO $_x$ value, while remaining orthogonal to line RL, which defines the Power output/NO $_x$ characteristic for the mean GT in the set at base load. The two lines labeled BL bound line GL, and define the statistical variation among the set of GTs, to two sigma (Σ), from the mean

line RL. The inventors have discovered through empirical testing that lines BL represent a +/- 10 degree span in actual

firing temperature (T4) from line RL, as measured along a given line orthogonal to line RL. FIG. 6 shows the graphical depiction of FIG. 5, with the addition of indicators for the Mean T4 (firing temperature) at distinct example Power output/NO $_{\rm X}$ values for a fleet of GTs, along lines orthogonal to RL (Power output/NO $_{\rm X}$ characteristic) and lines BL. Mean T4 (B) and Mean T4 (P) in this example, illustrate example fleets at T4 = 2,410 degrees F and T4 = 2,430 degrees F, respectively. FIG. 6 also illustrates a line PL, which is an example of a single GT along a firing temperature (T4) "sweep" or variation orthogonal with the Power output/NOx characteristic line. PL shows how the Power output/NOx varies by a changing firing temperature (T4).

[0035] FIG. 7 shows a three-dimensional graphical depiction of the process P3 (FIG. 4), namely, adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual emissions value and a nominal emissions value at the ambient condition. That is, as shown in FIG. 7, the GL plane, defined by the plane of the GL (FIGS. 5-6) across firing temperature (T4) space, illustrates a model of where the set of GTs operate in the firing temperature (T4) space. That is, although actual firing temperature (T4) cannot be directly measured for each GT in the set of GTs, the GL plane represents the most accurate model of the firing temperature of GTs within the set of GTs. According to the various embodiments, process P3 includes adjusting an operating condition of each GT based upon a difference between its respective measured actual emissions value (NO_x value) and a nominal (average) emissions value (NO_x value) for the respective GT. That is, according to various embodiments, an operating condition of each GT is adjusted such that its Power output/NO_x value intersects GL in two-dimensional space (FIGS. 5-6), and the GL plane in three-dimensional space (FIG. 7). The intersection of the nominal (P50) Power output/NOx lines and the GL plane represents the most accurate model of the desired mean actual firing temperature (P4), and by tuning each GT 10 to approach that GL plane, firing temperature variation is reduced across the fleet, increasing the life of the fleet. [0036] The GL (and the GL plane) is a characteristic of how gas turbines are designed and built, and in Power output/NO_x space, its center is at the intersection of P50 Power output and P50 NO_x for the particular type of GT 10 in a fleet. The length of GL in two-dimensional space (e.g., the space between BLs, FIGS. 5-6)) is defined by the GT-to-GT hardware variation for a given type of GT (e.g., physical variances in the manufacture of two machines to the same specifications). By altering operating conditions of a GT 10 in order to align the Power output/NO_x value for that GT 10 with the GL (and GL plane), the variation in the actual firing temperature (T4) is minimized.

[0037] According to various embodiments, the graphical depictions shown in FIGS. 5-7 can be derived from Equations 1-4, which provide solutions for the change in operating state (Δ OperatingState) of GT 10, as well as the change in actual firing temperature (Δ T₄). As shown, Equations 1-4 are as follows:

$$\Delta OperatingState = \Delta MW_{Step 1-2} + \Delta NOx_{Step 2-3}$$

$$\Delta T_{4,Step1-3} = \Delta T_{4,Step1-2} + \Delta T_{4,Step2-3}$$

$$\Delta T_{4,Step1-2} = fn(\Delta MW_{Step1-2}) = fn(S_{MW}*(MW_{P50}-MW_1))$$

$$\Delta T_{4,Step2-3} = fn(\Delta NOx_{Step2-3}) = fn(S_{NOx} * (NOx_3 - NOx_2))$$

[0038] Where Step 1 = process P1; Step 2 = process P2; Step 3 = process P3; Variable1 = a first performance variable that can be measured from an external sensor on GT 10 (e.g., mega-watt output); Variable2 = a second (distinct from Variable1, but not independent) performance variable (e.g., emissions) that can be measured from an external sensor on GT 10 (e.g., an exhaust temperature, exhaust gas flow, etc.); S_{V1} = scale factor for Variable1 (e.g., MW scale factor); S_{V2} = scale factor for Variable2 (e.g., NO_x scale factor). As shown in Table 1 below, example scale factors can be chosen according to various embodiments to manipulate actual firing temperature, emissions, mega-watt output, etc. As noted herein, the terms "step 1," "step 2," and "step 3" can be used to refer to processes PI, P2 and P3, respectively.

Table 1 - Effect of Scale Factor (steps or processes P1/S1; P2/S2; P3/S3)

	S3 Scale	0	Х	X+Y	X+CY	X+2CY	X+3CY	X+4CY
S2 Scale	0	S1 Only						

50

10

30

35

40

(continued)

5

10

15

20

30

35

40

45

50

	S3 Scale	0	Х	X+Y	X+CY	X+2CY	X+3CY	X+4CY
S2 Scale	Y							
S2 Scale	Y+X						2Scale	
S2 Scale	Y+CX	Min Mw (S2 only)	Balanced Variation (S3)	Balanced Variation (S3)	Balanced Variation (S3)	~T4 Min		NOx Min
S2 Scale	Y+2CX	Min Mw (S2 only)	Balanced Variation (S3)	Balanced Variation (S3)	Balanced Variation (S3)	~T4 Min		NOx Min

[0039] As is evident in the example scale factors in Table 1, scale factors for MW (step 2, or process P2) and NO_{χ} (step 3, or process P3) can be selected according to empirical and/or model-based data to enhance the desired outcome for a particular GT 10 or fleet of GTs 10. For example, where the objective is to minimize variation in either MW or NO_{χ} , scale factors may be chosen such that the "min MW" or " NO_{χ} min" intersection is selected. Moving from the "min MW" box to the right (increasing NOx scale factor) trades variation in MW and fuel for variation in NOx and T4. The band labeled "balanced variation" represents a minimum region in the four-dimensional MW/ NO_{χ} /T4/Fuel Space (FIG. 7). For one GT 10, there is a minimum in T4 variation at a NOx scale factor of (X+2CY). The value at which such a minimum occurs is a function of the NO_{χ} v. T4 characteristic of the GT's combustor (e.g., a dry low NO_{χ} combustor). In the case where two scale factors are applied (MW scale factor and NO_{χ} scale factor), a MW scale factor of (Y-Z) provides variation which may be substantially equivalent to previously disclosed (unscaled) approaches. However, as can be seen in this example Table, a combination of Y+X as MW scale factor and (X+3CY) as NO_{χ} scale factor provides a minimum variation in T4 for the fleet of GTs 10.

[0040] FIG. 8 shows an illustrative environment 802 demonstrating the controller (control system 18) coupled with the GTs 10 via at least one computing device 814. As described herein, the control system 18 can include any conventional control system components used in controlling a gas turbine engine (GT). For example, the control system 18 can include electrical and/or electro-mechanical components for actuating one or more components in the GT(s) 10. The control system 18 can include conventional computerized sub-components such as a processor, memory, input/output, bus, etc. The control system 18 can be configured (e.g., programmed) to perform functions based upon operating conditions from an external source (e.g., at least one computing device 814), and/or may include pre-programmed (encoded) instructions based upon parameters of the GT(s) 10.

[0041] The system 802 can also include at least one computing device 814 connected (e.g., hard-wired and/or wirelessly) with the control system 18 and GT(s) 10. In various embodiments, the computing device 814 is operably connected with the GT(s) 10, e.g., via a plurality of conventional sensors such as flow meters, temperature sensors, etc., as described herein. The computing device 814 can be communicatively connected with the control system 18, e.g., via conventional hard-wired and/or wireless means. The control system 18 is configured to monitor the GT(s) 10 during operation according to various embodiments.

[0042] Further, computing device 814 is shown in communication with a user 836. A user 836 may be, for example, a programmer or operator. Interactions between these components and computing device 814 are discussed elsewhere in this application.

[0043] As noted herein, one or more of the processes described herein can be performed, e.g., by at least one computing device, such as computing device 814, as described herein. In other cases, one or more of these processes can be performed according to a computer-implemented method. In still other embodiments, one or more of these processes can be performed by executing computer program code (e.g., control system 18) on at least one computing device (e.g., computing device 814), causing the at least one computing device to perform a process, e.g., tuning at least one GT 10 according to approaches described herein.

[0044] In further detail, computing device 814 is shown including a processing component 122 (e.g., one or more processors), a storage component 124 (e.g., a storage hierarchy), an input/output (I/O) component 126 (e.g., one or more I/O interfaces and/or devices), and a communications pathway 128. In one embodiment, processing component 122 executes program code, such as control system 18, which is at least partially embodied in storage component 124. While executing program code, processing component 122 can process data, which can result in reading and/or writing the data to/from storage component 124 and/or I/O component 126 for further processing. Pathway 128 provides a

communications link between each of the components in computing device 814. I/O component 126 can comprise one or more human I/O devices or storage devices, which enable user 836 to interact with computing device 814 and/or one or more communications devices to enable user 136 and/or CS 138 to communicate with computing device 814 using any type of communications link. To this extent, control system 18 can manage a set of interfaces (e.g., graphical user interface(s), application program interface, and/or the like) that enable human and/or system interaction with control system 18.

[0045] In any event, computing device 814 can comprise one or more general purpose computing articles of manufacture (e.g., computing devices) capable of executing program code installed thereon. As used herein, it is understood that "program code" means any collection of instructions, in any language, code or notation, that cause a computing device having an information processing capability to perform a particular function either directly or after any combination of the following: (a) conversion to another language, code or notation; (b) reproduction in a different material form; and/or (c) decompression. To this extent, control system 18 can be embodied as any combination of system software and/or application software. In any event, the technical effect of computing device 814 is to tune at least one GT 10 according to various embodiments herein.

10

20

30

35

40

45

50

55

[0046] Further, control system can be implemented using a set of modules 132. In this case, a module 132 can enable computing device 814 to perform a set of tasks used by control system 18, and can be separately developed and/or implemented apart from other portions of control system 18. Control system 18 may include modules 132 which comprise a specific use machine/hardware and/or software. Regardless, it is understood that two or more modules, and/or systems may share some/all of their respective hardware and/or software.

[0047] When computing device 814 comprises multiple computing devices, each computing device may have only a portion of control system 18 embodied thereon (e.g., one or more modules 132). However, it is understood that computing device 814 and control system 18 are only representative of various possible equivalent computer systems that may perform a process described herein. To this extent, in other embodiments, the functionality provided by computing device 814 and control system 18 can be at least partially implemented by one or more computing devices that include any combination of general and/or specific purpose hardware with or without program code. In each embodiment, the hardware and program code, if included, can be created using standard engineering and programming techniques, respectively.

[0048] Regardless, when computing device 814 includes multiple computing devices, the computing devices can communicate over any type of communications link. Further, while performing a process described herein, computing device 814 can communicate with one or more other computer systems using any type of communications link. In either case, the communications link can comprise any combination of various types of wired and/or wireless links; comprise any combination of one or more types of networks; and/or utilize any combination of various types of transmission techniques and protocols.

[0049] As discussed herein, control system 18 enables computing device 814 to control and/or tune at least one GT 10. Control system 18 may include logic for performing one or more actions described herein. In one embodiment, control system 18 may include logic to perform the above-stated functions. Structurally, the logic may take any of a variety of forms such as a field programmable gate array (FPGA), a microprocessor, a digital signal processor, an application specific integrated circuit (ASIC) or any other specific use machine structure capable of carrying out the functions described herein. Logic may take any of a variety of forms, such as software and/or hardware. However, for illustrative purposes, control system 18 and logic included therein will be described herein as a specific use machine. As will be understood from the description, while logic is illustrated as including each of the above-stated functions, not all of the functions are necessary according to the teachings of the invention as recited in the appended claims.

[0050] In various embodiments, control system 18 may be configured to monitor operating parameters of one or more GT(s) 10 as described herein. Additionally, control system 18 is configured to command the one or more GT(s) 10 to modify those operating parameters in order to achieve the control and/or tuning functions described herein.

[0051] It is understood that in the flow diagram shown and described herein, other processes may be performed while not being shown, and the order of processes can be rearranged according to various embodiments. Additionally, intermediate processes may be performed between one or more described processes. The flow of processes shown and described herein is not to be construed as limiting of the various embodiments.

[0052] In any case, the technical effect of the various embodiments of the invention, including, e.g., the control system 18, is to control and/or tune one or more GT(s) 10 as described herein.

[0053] In various embodiments, components described as being "coupled" to one another can be joined along one or more interfaces. In some embodiments, these interfaces can include junctions between distinct components, and in other cases, these interfaces can include a solidly and/or integrally formed interconnection. That is, in some cases, components that are "coupled" to one another can be simultaneously formed to define a single continuous member. However, in other embodiments, these coupled components can be formed as separate members and be subsequently joined through known processes (e.g., fastening, ultrasonic welding, bonding).

[0054] When an element or layer is referred to as being "on", "engaged to", "connected to" or "coupled to" another

element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being "directly on," "directly engaged to", "directly connected to" or "directly coupled to" another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., "between" versus "directly between," "adjacent" versus "directly adjacent," etc.). As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprises" and/or "comprising," when used in this specification, specify the presence of stated features, integers, steps, operations, elements, components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

[0055] This written description uses examples to disclose the invention and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims.

Claims

10

15

20

25

30

35

40

1. A system (802) comprising:

at least one computing device (814) configured to tune a gas turbine (GT) (10) out of a set of gas turbines (GTs) (10) by performing actions including:

commanding said GT (10) of the set of GTs (10) to a base load level, based upon a measured ambient condition for said GT (10);

commanding said GT (10) of the set of GTs (10) to adjust a respective power output to match a scaled power output value equal to a fraction of a difference between the respective power output and a nominal power output value, and measuring an actual emissions value for said GT (10) during the adjusting of the respective power output; **characterised by**

adjusting an operating condition of said GT (10) of the set of GTs (10) based upon a difference between the respective measured actual emissions value, a nominal emissions value at the ambient condition and an emissions scale factor in a way to bring the GT's actual emissions value closer to the nominal emissions value.

wherein the adjusting of the operation condition of said GT (10) of the set of GTs (10) by a fixed fraction of the difference between the respective power output value and a nominal power output value aligns said GT(10) on a line (300, 302, 304, 306) in graphical space plotting power output versus emissions that is orthogonal to a nominal power output/nominal emissions characteristic for the said GT (10).

- 2. The system (802) of claim 1, wherein the base load level is associated with a power output value and an emissions value for the measured ambient condition, and wherein the scaled power output value is derived using a power scale factor.
- **3.** The system (802) of claim 1 or 2, wherein in response to commanding said GT (10) of the set of GTs (10) to the base load level, said GT (10) does not attain at least one of the nominal power output value or the nominal emissions value.
- 4. The system (802) of claim 1, 2 or 3, wherein the at least one computing device (814) is further configured to convert the difference between the respective measured actual emissions value and the nominal emissions value for said GT (10) into a difference between a respective power output value and the nominal power output value at the ambient condition value for said GT (10).
- 5. The system (802) of claim 4, wherein the adjusting of the operating condition of said GT (10) includes adjusting the operating condition of said GT (10) of the set of GTs (10) by a fixed fraction of the difference between the respective power output value and the nominal power output value, such that the power output of said GT (10) approaches and then reaches a respective nominal power output value.

- **6.** The system (802) of any preceding claim, wherein the commanding of said GT (10) of the set of GTs (10) to adjust a respective power output to match the scaled power output value equal to the fraction of the difference between the respective power output and the nominal power output value moves an actual emissions value for said GT (10) closer to the nominal emissions value without matching the nominal emissions value.
- 7. A computer-implemented method of tuning a- gas turbine (GT) (10) out of a set of gas turbines (GTs) (10), performed using at least one computing device (814), the method comprising:
 - commanding said GT (10) of the set of GTs (10) to a base load level, based upon a measured ambient condition for said GT (10);
 - commanding said GT (10) of the set of GTs (10) to adjust a respective power output to match a scaled power output value equal to a fraction of a difference between the respective power output and a nominal power output value, and measuring an actual emissions value for said GT (10) during the adjusting of the respective power output; **characterised by**
 - adjusting an operating condition of said GT (10) of the set of GTs (10) based upon a difference between the respective measured actual emissions value and a nominal emissions value at the ambient condition in a way to bring the GT's actual emissions value closer to the nominal emissions value,
- wherein the adjusting of the operation condition of said GT (10) of the set of GTs (10) by a fixed fraction of the difference between the respective power output value and a nominal power output value aligns said GT (10) on a line (300, 302, 304, 306) in graphical space plotting power output versus emissions that is orthogonal to a nominal power output/nominal emissions characteristic for the said GT (10).
 - **8.** The method of claim 78 wherein the base load level is associated with a power output value and an emissions value for the measured ambient condition and wherein the scaled power output value is derived using a power scale factor.
 - 9. The method of claim 89, wherein in response to commanding said GT (10) of the set of GTs (10) to the base load level, said GT (10) does not attain at least one of the nominal power output value or the nominal emissions value.

Patentansprüche

1. System (802), umfassend:

mindestens eine Rechenvorrichtung (814), die konfiguriert ist, um eine Gasturbine (GT) (10) aus einem Satz von Gasturbinen (GTs) (10) durch Ausführen von Aktionen abzustimmen, einschließend:

Anweisen der GT (10) in dem Satz von GTs (10) auf ein Grundlastniveau basierend auf einer gemessenen Umgebungsbedingung für die GT (10);

Anweisen der GT (10) des Satzes von GTs (10), eine entsprechende Leistungsabgabe zur Anpassung an einen skalierten Leistungsabgabewert gleich einem Bruchteil einer Differenz zwischen der entsprechenden Leistungsabgabe und einem nominalen Emissionswert einzustellen, und Messen eines tatsächlichen Emissionswerts für die GT (10) während der Einstellung der entsprechenden Leistungsabgabe; **gekennzeichnet durch**

Einstellen eines Betriebszustands der GT (10) des Satzes von GTs (10) basierend auf einer Differenz zwischen dem entsprechenden gemessenen tatsächlichen Emissionswert, einem nominalen Emissionswert bei Umgebungsbedingung und einem Emissionsskalierungsfaktor in einer Weise, um den tatsächlichen Emissionswert der GT näher an den nominalen Emissionswert zu bringen,

wobei das Einstellen des Betriebszustands der GT (10) des Satzes von GTs (10) um einen festen Bruchteil der Differenz zwischen dem entsprechenden Leistungsabgabewert und einem nominalen Leistungsabgabewert die GT (10) auf einer Linie (300, 302, 304, 306) in einem grafischen Raum ausrichtet, die die Leistungsabgabe den Emissionen gegenüberstellt und orthogonal zu einer nominalen Leistungsabgabe/nominalen Emissionskennlinie für die GT (10) ist.

 System (802) nach Anspruch 1, wobei das Grundlastniveau einem Leistungsabgabewert und einem Emissionswert für die gemessene Umgebungsbedingung zugeordnet ist, und wobei der skalierte Leistungsabgabewert unter Verwendung eines Leistungsskalierungsfaktors abgeleitet wird.

12

5

10

15

20

30

25

40

35

45

50

55

- 3. System (802) nach Anspruch 1 oder 2, wobei in Reaktion auf das Anweisen der GT (10) des Satzes von GTs (10) auf das Grundlastniveau die GT (10) mindestens einen von dem Leistungsabgabewert oder dem Emissionswert nicht erreicht.
- 4. System (802) nach Anspruch 1, 2 oder 3, wobei die mindestens eine Rechenvorrichtung (814) ferner konfiguriert ist, um die Differenz zwischen dem entsprechenden gemessenen tatsächlichen Emissionswert und dem nominalen Emissionswert für die GT (10) in eine Differenz zwischen einem entsprechenden Leistungsabgabewert und dem nominalen Leistungsabgabewert bei dem Umgebungsbedingungswert für die GT (10) umzuwandeln.
- 5. System (802) nach Anspruch 4, wobei das Einstellen des Betriebszustands der GT (10) das Einstellen des Betriebszustands der GT (10) des Satzes von GTs (10) um einen festen Bruchteil der Differenz zwischen dem entsprechenden Leistungsabgabewert und dem nominalen Leistungsabgabewert einschließt, so dass sich die Leistungsabgabe der GT (10) einem entsprechenden nominalen Leistungsabgabewert n\u00e4hert und diesen dann erreicht.
- 6. System (802) nach einem der vorstehenden Ansprüche, wobei das Anweisen der GT (10) des Satzes von GTs (10), um einen entsprechenden Leistungsabgabewert so einzustellen, dass er mit dem skalierten Leistungsabgabewert übereinstimmt, der gleich dem Bruchteil der Differenz zwischen dem entsprechenden Leistungsabgabewert und dem nominalen Leistungsabgabewert ist, einen tatsächlichen Emissionswert für die GT (10) n\u00e4her an den nominalen Emissionswert verschiebt, ohne den nominalen Emissionswert zu erreichen.
 - 7. Computerimplementiertes Verfahren zum Abstimmen einer Gasturbine (GT) (10) aus einem Satz von Gasturbinen (GTs) (10), das unter Verwendung mindestens einer Rechenvorrichtung (814) durchgeführt wird, wobei das Verfahren umfasst:
- Anweisen der GT (10) des Satzes von GTs (10) auf ein Grundlastniveau, basierend auf einer gemessenen Umgebungsbedingung für die GT (10);

 Anweisen der GT (10) des Satzes von GTs (10), eine entsprechende Leistungsabgabe zur Anpassung an einen skalierten Leistungsabgabewert gleich einem Bruchteil einer Differenz zwischen der entsprechenden Leistungsabgabe und einem nominalen Emissionswert einzustellen, und Messen eines tatsächlichen Emissionswerts für die GT (10) während der Einstellung der entsprechenden Leistungsabgabe; gekennzeichnet durch Einstellen eines Betriebszustands der GT (10) des Satzes von GTs (10) basierend auf einer Differenz zwischen dem entsprechenden gemessenen tatsächlichen Emissionswert und einem nominalen Emissionswert bei Umgebungsbedingung in einer Weise, um den tatsächlichen Emissionswert der GT näher an den nominalen Emissionswert zu bringen.
- wobei das Einstellen des Betriebszustands der GT (10) des Satzes von GTs (10) um einen festen Bruchteil der Differenz zwischen dem entsprechenden Leistungsabgabewert und einem nominalen Leistungsabgabewert die GT (10) auf einer Linie (300, 302, 304, 306) im grafischen Raum ausrichtet, die die Leistungsabgabe den Emissionen gegenüberstellt und orthogonal zu einer nominalen Leistungsabgabe/nominalen Emissionskennlinie für die GT (10) ist.
 - 8. Verfahren nach Anspruch 7, wobei das Grundlastniveau einem Leistungsabgabewert und einem Emissionswert für die gemessene Umgebungsbedingung zugeordnet ist, und wobei der skalierte Leistungsabgabewert unter Verwendung eines Leistungsskalierungsfaktors abgeleitet wird.
- 9. Verfahren nach Anspruch 8, wobei in Reaktion auf das Anweisen der GT (10) des Satzes von GTs (10) auf das Grundlastniveau die GT (10) mindestens einen von dem Leistungsabgabewert oder dem Emissionswert nicht erreicht.

50 Revendications

55

20

1. Système (802) comprenant :

au moins un dispositif informatique (814) configuré pour optimiser une turbine à gaz (GT) (10) parmi un ensemble de turbines à gaz (GT) (10) en mettant en œuvre des actions incluant :

la commande de ladite GT (10) de l'ensemble de GT (10) à un niveau de charge de base, sur la base d'une condition ambiante mesurée pour ladite GT (10);

5

10

15

20

40

la commande de ladite GT (10) de l'ensemble de GT (10) pour ajuster une sortie de puissance respective pour correspondre à une valeur de sortie de puissance à l'échelle égale à une fraction d'une différence entre la sortie de puissance respective et une valeur de sortie de puissance nominale, et la mesure d'une valeur d'émissions réelle pour ladite GT (10) pendant l'ajustement de la sortie de puissance respective ; caractérisé par

l'ajustement d'une condition de fonctionnement de ladite GT (10) de l'ensemble de GT (10) sur la base d'une différence entre la valeur d'émissions réelle mesurée respective, une valeur d'émissions nominale à la condition ambiante et un facteur d'échelle d'émissions d'une façon à amener la valeur d'émissions réelle de la GT plus près de la valeur d'émissions nominale,

dans lequel l'ajustement de la condition de fonctionnement de ladite GT (10) de l'ensemble de GT (10) par une fraction fixe de la différence entre la valeur de sortie de puissance respective et une valeur de sortie de puissance nominale aligne ladite GT (10) sur une ligne (300, 302, 304, 306) dans un espace graphique traçant la sortie de puissance en fonction des émissions qui est orthogonale à une caractéristique de sortie de puissance nominale/émissions nominales pour ladite GT (10).

- 2. Système (802) selon la revendication 1, dans lequel le niveau de charge de base est associé à une valeur de sortie de puissance et à une valeur d'émissions pour la condition ambiante mesurée, et dans lequel la valeur de sortie de puissance à l'échelle est dérivée en utilisant un facteur d'échelle de puissance.
- 3. Système (802) selon la revendication 1 ou 2, dans lequel en réponse à la commande de ladite GT (10) de l'ensemble de GT (10) au niveau de charge de base, ladite GT (10) n'atteint pas au moins une de la valeur de sortie de puissance nominale ou de la valeur d'émissions nominale.
- 4. Système (802) selon la revendication 1, 2 ou 3, dans lequel l'au moins un dispositif informatique (814) est en outre configuré pour convertir la différence entre la valeur d'émissions réelle mesurée respective et la valeur d'émissions nominale pour ladite GT (10) en une différence entre une valeur de sortie de puissance respective et la valeur de sortie de puissance nominale à la valeur de condition ambiante pour ladite GT (10).
- 5. Système (802) selon la revendication 4, dans lequel l'ajustement de la condition de fonctionnement de ladite GT (10) inclut l'ajustement de la condition de fonctionnement de ladite GT (10) de l'ensemble de GT (10) par une fraction fixe de la différence entre la valeur de sortie de puissance respective et la valeur de sortie de puissance nominale, de telle sorte que la sortie de puissance de ladite GT (10) se rapproche de puis atteint une valeur de sortie de puissance nominale respective.
 - 6. Système (802) selon une quelconque revendication précédente, dans lequel la commande de ladite GT (10) de l'ensemble de GT (10) pour ajuster une sortie de puissance respective pour correspondre à la valeur de sortie de puissance à l'échelle égale à la fraction de la différence entre la sortie de puissance respective et la valeur de sortie de puissance nominale déplace une valeur d'émissions réelle pour ladite GT (10) plus près de la valeur d'émissions nominale sans correspondre à la valeur d'émissions nominale.
 - 7. Procédé implémenté par ordinateur d'optimisation d'une turbine à gaz (GT) (10) parmi un ensemble de turbines à gaz (GT) (10), mis en œuvre en utilisant au moins un dispositif informatique (814), le procédé comprenant :
- 45 la commande de ladite GT (10) de l'ensemble de GT (10) à un niveau de charge de base, sur la base d'une condition ambiante mesurée pour ladite GT (10); la commande de ladite GT (10) de l'ensemble de GT (10) pour ajuster une sortie de puissance respective pour correspondre à une valeur de sortie de puissance à l'échelle égale à une fraction d'une différence entre la sortie de puissance respective et une valeur de sortie de puissance nominale, et la mesure d'une valeur d'émissions 50 réelle pour ladite GT (10) pendant l'ajustement de la sortie de puissance respective ; caractérisé par l'ajustement d'une condition de fonctionnement de ladite GT (10) de l'ensemble de GT (10) sur la base d'une différence entre la valeur d'émissions réelle mesurée respective et une valeur d'émissions nominale à la condition ambiante d'une façon à amener la valeur d'émissions réelle de la GT plus près de la valeur d'émissions nominale, dans lequel l'ajustement de la condition de fonctionnement de ladite GT (10) de l'ensemble de GT (10) par une 55 fraction fixe de la différence entre la valeur de sortie de puissance respective et une valeur de sortie de puissance nominale aligne ladite GT (10) sur une ligne (300, 302, 304, 306) dans un espace graphique traçant la sortie de puissance en fonction des émissions qui est orthogonale à une caractéristique de sortie de puissance nominale/émissions nominales pour ladite GT (10).

8. Procédé selon la revendication 7, dans lequel le niveau de charge de base est associé à une valeur de sortie de puissance et à une valeur d'émissions pour la condition ambiante mesurée, et dans lequel la valeur de sortie de

		puissance à l'échelle est dérivée en utilisant un facteur d'échelle de puissance.
5	9.	Procédé selon la revendication 8, dans lequel en réponse à la commande de ladite GT (10) de l'ensemble de GT (10) au niveau de charge de base, ladite GT (10) n'atteint pas au moins une de la valeur de sortie de puissance nominale ou de la valeur d'émissions nominale.
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		

Power Outupt. (arbitrary units)

FIG. 2

POWER OUTPUT (MW)

FOMER OUTPUT (MW)

FIG. 6

FIG.

FIG. 8

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 20140260312 A1 [0004]