GOVERNMENT POLYTECHNIC, NAGPUR.

(An Autonomous Institute of Govt. of Maharashtra)

COURSE CURRICULUM

PROGRAMME : DIPLOMA IN CM/IT

LEVEL NAME : ENGINEERING SCIENCES AND TECHNICAL ARTS COURSES

COURSE CODE : EC310E

COURSE TITLE : DIGITAL TECHNIQUES

PREREQUISITE : NIL

TEACHING SCHEME: TH: 03; TU: 00; PR: 02(CLOCK HRs.)

TOTAL CREDITS : 04 (1 TH/TU CREDIT = 1 CLOCK HR., 1 PR CREDIT = 2 CLOCK HR.)

TH. TEE : 03 HRs

PR. TEE : 02 HRs (Internal)

PT. EXAM : 01 HR

* RATIONALE:

This course forms the foundation of digital electronics to the students of Information Technology. It deals with learning the concepts of number Systems logic gates, combinational and sequential logic circuits. Now a day, many electronic systems are digitized. Hence, it is necessary to know the concept of design of a digital system. This course emphasizes on the combinational and sequential logic design.

* COURSE OUTCOMES:

After completing this course students will be able to-

- Analyze digital logic circuits.
- 2. Perform conversion of different number system
- Describe operation of various digital circuits like combinational circuits and sequential circuits.
- 4. Identify various pins of logic gate ICs.
- Assemble various digital circuits like combinational circuits, Sequential circuits on breadboard.
- 6. Interpret the output of various combinational and sequential circuits.

* COURSE DETAILS:

A. THEORY:

Units	Specific Learning Outcomes (Cognitive Domain)	Topics and subtopics	Hrs.
1.Digital system and Number system	 Define the terms analog and digital system. Describe various logic levels. Solve numerical on conversion of number system Perform binary addition and subtraction. 	 1.1 Digital and Analog System, 1.2 Comparison of analog and digital system 1.3 Logic levels. 1.4 Binary, decimal, octal and hexadecimal number systems and their conversions. 1.5 Binary addition and subtraction. 1.6 Binary subtraction by using 1's & 2's complement 	08
2.Logic gates & Boolean Algebra	 Define logic gates. Describe various logic gates. Draw various logic gates using universal gates. Solve various Boolean expressions. State and prove De-Morgans theorem. 	 2.1 Definition and types of logic gates 2.2 Operating principle, truth table, 2.3 Boolean equation and symbol of NOT, OR, AND, NAND, NOR, EX-OR and EX-NOR gates. 2.3 Universal logic gates. Design of other logic gates using universal gates. 2.4 Basic laws of Boolean algebra.2.5De-Morgan's theorem. 	08
3.Combinatio nal circuits	 Define min term and max term. Describe K-map method of simplification Design adder and subtractor using logic gates. Design BCD to 7 segments decoder. Design binary to gray and gray to binary converter. 	 3.1 Min-term and Max-term representation of logical function. 3.2 K-map minimization up to 4 variables. Don't care condition. 3.3 Binary half & full adder and binary half and full subtractor. 3.4 BCD to7Segment decoder. 3.5 Binary to gray and gray to binary conversion. 	10
4.Multiplexe rs and Demultiplux ers	 State the need of multiplexers and de multiplexers. Design of various multiplexers and de multiplexers using logic 	4.1 Types, advantages, design steps and applications of multiplexers 2:1, 4:1, 8:1 and 16:1 multiplexers up to 16:1. 4.2 Multiplexers tree	08

	gates.	4.3 Types advantages and application	
	3. Design higher order	of demultiplexers 1:2, 1:4 and 1:8	
	multiplexers and	de multiplexers.	
	demultiplexers using lower	4.4 Demultiplexers tree upto 1 to 16	
	order.	demultiplexers.	
	4. Compare multiplexers and de	4.5 Comparison between multiplexers	
	multiplexers.	and demultiplexers	
5.Sequential	Compare combinational and	5.1 Combinational and sequential	08
Circuits	sequential systems.	logic systems.	
	2. Compare latch and flip flop.	5.2 Triggering Methods.	
	Design of various flip flops.	5.3 RS latch using NOR gates and	
	4. Describe Race around	NAND gates.	
	condition.	5.4 Clocked RS flip flop, J-K flipflop,	
	5. List various applications of	D and T Flip Flop.	
	flip flops.	5.5 Propagation delay time and race-	
	1	around condition	
		5.6 MS J-K flip flop .	
	~~	5.7 Applications of flip flops	
6.Counters &	Define Counters.	1.1 Counters– Asynchronous (ripple)	06
Shift	Compare Asynchronous and	and synchronous counters.	-
Registers	Synchronous Counters.	(Definition)	
registers	Define MOD N Counter.	1.2 Design of asynchronous counter	
	4. Define various shift registers.	(UP and DOWN) using JK or T	
	Design Bi-directional and	flip flop (up to 4 bit)	
	circulating shift register.	1.3 MOD – N Counter	
	List various applications of	1.4 Ring Counter, Johnson Counter.	
	shift registers.	1.5 Decade counter IC 7490.	
	Sint registers.	1.6 Definition and types of shift	
		registers (SISO, SIPO, PISO,	
		PIPO)	
		1.7 Bi-directional shift register.	
		1.8 Universal Shift Register.	
		1.9 Application of shift register	
		Total Hrs.	48

B. LIST OF PRACTICALS/LABORATORY EXPERIENCES/ASSIGNMENTS:

Practical's	Specific Learning Outcomes (Psychomotor Domain)	Units	Hrs
1	Identify different pins of logic gate IC, apply input, measure output and relate it with the truth table.		02
2	Assemble various basic gates using universal gates and relate it with the truth table.	Logic gates &	02
3	Assemble the logic circuit using AND/OR/NOT logic gatesand NAND gates for verification of Boolean expression.	Boolean algebra	02
4	Assemble the logic circuit using AND/OR/NOT logic gatesand NAND gates for verification of De Morgan's Theorem		02
5	Identify different pins of 8:1 multiplexer IC, apply input, measure output and relate it with the truth table.	Multiplexers and	02
6	Identify different pins of 1: 8 de multiplexer IC, apply input, measure output and relate it with the truth table.	Demultiplexers	02
7	Assemble the logic circuit for half adder and full adder using logic gates and verify its truth table.	Combinational Circuits	02
8	Identify different pins of S R flip flop IC, apply input, measure output and relate it with the truth table.		02
9	Identify different pins of S R flip flop IC, apply input, measure output and relate it with the truth table.	Sequential	02
10	Identify different pins of D flip flop IC, apply input, measure output and relate it with the truth table.	Circuits	02
11	Identify different pins of T flip flop IC, apply input, measure output and relate it with the truth table.		02
12	Assemble 4 bit synchronous counter using Flip Flop, show its output on LED and relate it with the truth table.		02
13	Assemble decade counter using IC 7490, show its output on LED and relate it with the truth table	Counters &	02
14	Assemble 4 bit SISO register using flip flop, show its output on LED and relate it with the truth table	- shift registers	02
15	Assemble 4 bit PIPO register using flip flop, show its output on LED and relate it with the truth table.		02
		Skill Assessment	02
		Total Hrs	32

❖ SPECIFICATION TABLE FOR THEORY PAPER:

Unit	Units	Levels from	ess Dimension	Total Marks	
No.		R	U	A	1
01	Digital System and Number System.	02(00)	04(04)	04(00)	10(04)
02	Logic Gates& Boolean Algebra	04 (04)	04(04)	04(00)	12(08)
03	Combinational Circuits	06 (02)	04(06)	04(00)	14(08)
04	Multiplexerand De multiplexers	02 (00)	04(06)	04(00)	10(06)
05	Sequential Circuits	06(04)	06(00)	00(04)	12(08)
06	Counters&Shift registers	06(00)	06(00)	00 (06)	12(06)
	Total	26(<mark>10</mark>)	28(20)	16(10)	70 (40)

R - Remember U - Understand A - Analyze / Apply

GPN -

* QUESTION PAPER PROFILE FOR THEORY PAPER:

Q.		Bit	1		Bit 2	2	Α	Bit :	3	1	Bit	4	15	Bit 5	5		Bit (6	
No	Т	L	M	Т	L	M	T	L	M	Т	L	M	T	L	M	T	L	M	option
01	1	R	2	2	R	2	3	R	2	4	R	2	2	R	2	3	R	2	. 5/ <mark>7</mark>
UI	3	U	2																3/1
02	1	Α	4	2	Α	4	3	R	4	1	U	4	2	U	4				3/5
03	1	U	4	2	U	4	3	U	4	2	R	4	5	R	4				3/5
04	3	Α	4	4	U	4	4	A	4	3	U	4	5	A	4				3/5
05	5	R	6	5	U	6	4	U	6										2/3
06	6	R	6	6	U	6	6	A	6										2/3

T= Unit/Topic Number L= Level of Question M= Marks

A-Analyze/ Apply R-Remember U-Understand

* ASSESSMENT AND EVALUATION SCHEME:

	V	Vhat	To Whom	Frequency	Max Marks	Min Marks	Evidence Collected	Course Outcomes		
ory	CA (Continuous Assessment)	Progressive Test (PT)	Students	Two PT (average of two tests will be computed)	20		Test Answer Sheets	1, 2, 3		
Direct Assessment Theory	Conti Assess	Assignments	Stud	Continuous	10		Assignment Book / Sheet	1, 2, 3		
Direct Asse	TEE (Term End Examination)	End Exam	Students	End Of the Course	70	28	Theory Answer Sheets	1, 2, 3		
				Total	100	40				
	essment)	Skill Assessment		Continuous	20	-	Rubrics & Assessment Sheets	4,5,6		
Direct Assessment Practical	CA (Continuous Assessment)	Journal Writing	Students	Students	Student	Continuous	05		Journal	4,5,6
sessme	(Cor			TOTAL	25	10				
Direct As	TEE (Term End Examination)	End Exam	Students	End Of the Course	50	20	Rubrics &Practical Answer Sheets	4,5,6		
ssessment	Student Feedback on course End Of Course		Studente	After First Progressive Test	Stud	lent Feedba	ack Form	1 2 2 450		
Indirect A			Students	End Of The Course	Questionnaires			1, 2, 3, 4,5,6		

❖ SCHEME OF PRACTICAL EVALUATION:

S.N.	Description	Max. Marks
1	Drawing circuit diagram, truth table, writing procedure etc.	10
2	Identifying various pins of IC	10
3	Performance on bread board	20
4	Viva voce	10
	TOTAL	50

***** MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES:

Course Outcomes		Program Outcomes (POs)								PSOs		
(COs)	1	2	3	4	5	6	7	8	9	10	1	2
1	ā	3	-	- 1	3	Š	-	-	-	3	-	-
2	-	3	-	(7)	1		13	-	-	3	-	-
3	-	3	-[7	7		-/	>-	-	3	-	=
4	-	3	2	2	(G1	W	2	2	-	3	-	-
5	-	3	2	2	Zin.	-	2	2	-	3	-	-
6	-	3	2	2	-	1	2	2	-	3	-	-

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

* REFERENCE & TEXT BOOKS:

S.N.	Title	Author, Publisher, Edition and Year Of publication	ISBN Number
1.	Digital Integrated Electronics	H. Taub and D.Schilling. McGraw-Hill, 2008, Second Edition	ISBN 10: 0070857881 ISBN 13: 9780070857889
2.	Digital Principles and Applications	Malvino Leach. McGraw-Hill, Seventh Edition,2011	ISBN 10: 0070398836 ISBN 13: 9780070398832
3.	Digital electronics- R.P.Jain.	R.P.Jain. McGraw-Hill, Third Edition,2003	SBN 10: 0070669112 ISBN 13: 9780070669116
4.	CMOS/TTL: A user's guide with projects	Carr, Joseph J. Tab Books; 1st edition (1984)	SBN 10: 0830616500 ISBN 13: 9780830616503

E-REFERENCES: ٠

- www.electrical4u.com/digital-electronics, assessed on 20th January 2016
- http://nptel.ac.in/courses/108108076/1, assessed on 20th January 2016
- http://www.electrical4u.com , assessed on 20th January 2016
- https://www.youtube.com/watch?v=A9KSGAnjo2U, assessed on 20th January 2016

LIST OF MAJOR EQUIPMENTS/INSTRUMENTS WITH SPECIFICATION ٠

- 1. Digital Multi-Meter.
- 2. Logic Gates ICs (7400,7402,7404,7408,7432,7486)
- 3. Multiplexer and De multiplexer IC(74150,74151,74138,74139)
- 4. Flip Flops ICs (7472,7474,74H71,74L71)
- 5. Breadboard and LEDs.
- 6. Power Supply

LIST OF EXPERTS & TEACHERS WHO CONTRIBUTED FOR THIS CURRICULUM:

S.N.	Name	Designation	Institute / Industry
1.	Prof. A A Ali	HOD in Electronics and	Government Polytechnic,
	21	Telecommunication Engg. (II Shift)	Nagpur
2.	Prof. V M Sakode	Lecturer in Electronics and Telecommunication Engg.	Government Polytechnic, Nagpur
3	Mr. Sandip V Darwhekar	Director	Beta computronics Pvt Ltd, Nagpur
4	Mrs Gajala Ali	Head of Electronics Engg	Anjuman Polytechnic , Nagpur
5	Mr. S. M. Kale	Lecturer, Electronics	Government Polytechnic,
		Engg.	Gadchiroli.

(Chairman PBOS)