HOMEWORK 2

P1 (15 points). Suppose X and Y are independent Poisson random variables with mean λ_1 and λ_2 . Show that X + Y is also a Poisson random variable with mean $\lambda_1 + \lambda_2$ and then compute P(X = k | X + Y = n).

P2 (15 points). Let X be $\mathcal{N}(\mu, \sigma^2)$. Let $Y = \alpha X + \beta$, where α and β are constants. Show that Y is $\mathcal{N}(\alpha\mu + \beta, \alpha^2\sigma^2)$.

Hint: Change of variable in integration.

P3 (10 points). An urn contains n+m balls, of which n are red and m are black. They are withdrawn from the urn, one at a time without replacement. Let X be the number of red balls removed before the first black ball is chosen. Computer E[X].

Hint: Use the trick of indicator random variables. Number the red balls $1, 2, \ldots, n$. Define the indicator random variables X_i , for $i = 1, 2, \ldots, n$, by

$$X_i = \begin{cases} 1, & \text{if red ball } i \text{ is taken before any black ball is chosen} \\ 0, & \text{otherwise.} \end{cases}$$

Express X in terms of X_i .

P4 (15 points). Continue with the previous problem setup. Let Y be the number of red balls chosen after the first black ball is chosen but before the second black ball is chosen.

- (a) Express Y as the sum of indicator random variables, and compute E[Y].
- (b) Compare E[Y] with E[X] obtained in the previous problem.
- (c) Can you explain the result obtained in part (b)?

Hint: For part (c), let the random variable R_i be the number of red balls between the (i-1)-th black ball and the *i*-th black ball in the sequence, where i = 2, 3, ..., m. Let the random variable R_1 be the number of red balls before the first black ball and R_{m+1} be the number of red balls after the last black ball. Argue that all the R_i 's have the same distribution.

P5 (15 points). Let X and Y be independent continuous random variables. Let $g, h : \mathbb{R} \to \mathbb{R}$ be measurable functions. Show that

$$E[h(X)g(Y)] = E[h(X)]E[g(Y)],$$

whenever the expectations exist. If X and Y have the exponential distribution with parameter 1, find $E[\exp(\frac{1}{2}(X+Y))]$.

P6 (15 points). Let $(\Omega_1, \mathcal{F}_1)$ and $(\Omega_2, \mathcal{F}_2)$ be two measurable spaces.

- (a) Show that, for any function $f: \Omega_1 \to \Omega_2$, the collection $\mathcal{S} = \{B \subseteq \Omega_2 : f^{-1}(B) \in \mathcal{F}_1\}$ is a σ -field.
- (b) Let \mathcal{A} be a collection of subsets on Ω_2 . Suppose $f^{-1}(A) \in \mathcal{F}_1$ for each $A \in \mathcal{A}$. Show that f is a measurable function from $(\Omega_1, \mathcal{F}_1)$ to $(\Omega_2, \sigma(\mathcal{A}))$, where $\sigma(\mathcal{A})$ is the σ -field generated by \mathcal{A} , i.e., the smallest σ -field containing all the sets in \mathcal{A} . (Therefore, to check a function is measurable with respect to \mathcal{F}_1 and $\sigma(\mathcal{A})$, it is enough to check whether the inverse image is in \mathcal{F}_1 for each set in \mathcal{A} .)

Hint: For (a), apply the definition of a σ -field.

P7 (15 points). Given a set Ω_1 and a measurable space $(\Omega_2, \mathcal{F}_2)$, let $f: \Omega_1 \to \Omega_2$.

$$\mathcal{F}_1 = \{ f^{-1}(B) : B \in \mathcal{F}_2 \}. \tag{1}$$

Show that \mathcal{F}_1 is a σ -field and that f is measurable with respect to \mathcal{F}_1 and \mathcal{F}_2 . Such \mathcal{F}_1 is called the σ -field generated by f and it is denoted by $\sigma(f)$.