VERMES MIKLÓS Fizikaverseny

III. forduló 2018. április 28. IX. osztály

JAVÍTÓKULCS

I. feladat

1) A vízszintes hajításkor a sebességek vízszintes (Ox) irányú összetevője nem változik meg. 0,5 p

Így
$$tg\alpha_1 = \frac{v_{1y}}{v_{1x}} = \frac{v_{1y}}{v_1}$$
 és $tg\alpha_2 = \frac{v_{2y}}{v_2} = \frac{v_{2y}}{v_2}$, 0,5 p

Amikor a sebességek irányai egymásra merőlegesek $\alpha_1 + \alpha_2 = \frac{\pi}{2}$ 0,5 p

Ebből következik:
$$tg\alpha_2 = ctg\alpha_1$$
, így $\frac{v_{2y}}{v_2} = \frac{v_1}{v_{1y}}$, ahonnan $v_{1y}v_{2y} = v_1v_2$.

De
$$v_{1y} = v_{2y} = gt$$
, $\Rightarrow g^2 t^2 = v_1 v_2$, és $t = \frac{\sqrt{v_1 v_2}}{q}$.

Ezt felhasználva kapjuk: $d = (v_1 + v_2)t = \frac{(v_1 + v_2)\sqrt{v_1v_2}}{g} = 2,42 \text{ m.}$ 0,5 p /4 p

2) a)
$$f_1 = \mu_1 mg \cos \alpha$$
 a súrlódási erő az m_1 tömegű test és a lap között 0,5 p

illetve
$$f_2 = \mu_2(M+m)g\cos\alpha$$
 a súrlódási erő a lap és a lejtő között. 0,5 p

Az m tömegű test mozgásegyenlete, amikor a lap felfele csúszik

$$mg\sin\alpha + f_1 = ma$$
 1 p

A lap felfele csúszásának feltétele: $f_1 \ge f_2 + Mg \sin \alpha$ 1 p

ahonnan $a \ge g \left(1 + \frac{M}{m}\right) \left(\sin \alpha + \mu_2 \cos \alpha\right)$ 1p /4 p

b) Tehát a test gyorsulása független μ_1 -től, de csak akkor valósítható meg a mozgás, ha

$$f_1 \ge ma - mg\sin\alpha$$
 1 p

$$\Rightarrow \qquad \mu_1 mg \cos \alpha \ge \left[g(m+M) \left(\sin \alpha + \mu_2 \cos \alpha \right) \right] - mg \sin \alpha \qquad \Rightarrow$$

$$\mu_1 \ge \frac{m(a-g\sin\alpha)}{mg\cos\alpha} = \mu_2 + \frac{M}{m}(tg\alpha + \mu_2)$$
 1 p /2 p

II. feladat

a)
$$F = \frac{\Delta p}{\Delta t} \quad \Rightarrow \quad p = f \cdot \Delta t \quad \Rightarrow \quad v_0 = \frac{F\Delta t}{m} = 20 \, m/s$$
 1 p

$$v_{0y} = \sqrt{2gh} = 16m/s$$

$$v_{0x} = \sqrt{v_0^2 - v_{0y}^2} = 12 \, \text{m/s}$$

$$v_{0y} = gt$$
 $\Rightarrow t = \frac{v_{0y}}{g} = 1.6 \text{ s}$ 0.5 p

$$x = v_{0x} \cdot t = 19, 2m$$
 0,5 p

$$d = \sqrt{h^2 + x^2} = 23,08 \, m$$
 1 p /5 p

b) A labda mozgási energiáját a pálya csúcspontján kizárólag a sebesség *x* irányú vetülete adja, tehát ekkor minimális az értéke 0,5 p

$$E_{c \min} = \frac{1}{2} m v_x^2 = 32,4 J$$
 1,5 p

c)
$$tg\alpha = \frac{v_{0y}}{v_x} = \frac{16}{12} \qquad \Rightarrow \qquad \alpha = arctg \frac{16}{12} \quad 1 \text{ p}$$
 /1 p

d)
$$x=v_{0x}\cdot t_1 \Rightarrow t_1=\frac{x}{v_{0x}}=2,92\,\mathrm{s}$$
 1 p
$$y=v_{0y}\cdot t_1-\frac{gt_1^2}{2}=4,09\,m\;,\quad \text{A labda 1,64 m-rel száll a kapó felé} \qquad 1 \;\mathrm{p} \qquad /2\mathrm{p}$$

III. feladat

1) Az első test lassuló mozgást végez $a_1 = g(\sin \alpha + \mu \cos \alpha) = 6\sqrt{2}m/s$ lassulással

A második test gyorsuló mozgást végez $a_2 = g \left(\sin \alpha - \mu \cos \alpha \right) = 4 \sqrt{2} m/s$ gyorsulással

Találkozásukkor
$$v_0 + a_2 t = 2(v_0 - a_1 t)$$
 $\Rightarrow t = \frac{v_0}{a_2 + 2a_1} = \frac{5\sqrt{2}}{16} = 0,442 s$ 1 p

1p

Sebességeik a találkozáskor
$$v_1 = v_0 - a_1 t = 6,25 \, m/s$$
, illetve $v_2 = v_0 + a_2 t = 12,5 \, m/s$ 1 p

A megtett utak
$$s_1 = \frac{v_0 + v_1}{2}t = 3,55m$$
 és $s_2 = \frac{v_0 + v_2}{2}t = 4,97m$, így a lejtő hossza $l = s_1 + s_2 = 8,52m$

A lejtő magassága
$$h=l\cdot\sin\alpha=6m$$
 1 p /6 p

2) a) A centripetális erő a
$$\vec{G}$$
 és \vec{T} erők eredője \Rightarrow $\vec{F}_{cp} = \vec{G} + \vec{T}$ 0,5 p \Rightarrow $T \sin \alpha = m\omega^2 R$ és $T \cos \alpha = mg$ 1 p

A két egyenletet elosztva
$$\Rightarrow tg\alpha = \frac{\omega^2 R}{q}$$
, 0,5 p

de
$$\omega = \frac{2\pi}{T}$$
 és $\sin \alpha = \frac{R}{l}$ \Rightarrow egy teljes forgás ideje $t = 2\pi \sqrt{\frac{l}{g} \cos \alpha}$ 1 p /3 p

b)
$$v = \frac{2 \pi R}{t} = \sqrt{\lg \sin \alpha \cdot t g \alpha}$$
 1 p /4p

