Niveau: Première année de PCSI

COLLE 6 = SUITES NUMÉRIQUES ET FONCTIONS CONTINUES

Connaître son cours:

Soit $I \subset \mathbb{R}$ un intervalle, $f: I \longrightarrow \mathbb{R}$ et $a \in I$. Montrer les assertions suivantes :

- 1. La limite de la fonction f en a est unique, quand elle existe.
- 2. Si f est admet une limite en a alors f est localement bornée.
- 3. f admet la limite l en a si, et seulement si, pour toute une suite $(u_n)_n$ d'éléments de I convergeant vers a, la suite $(f(u_n))_n$ converge vers l.

Suites numériques:

Exercice 1.

On considère la suite (u_n) définie pour tout entier naturel n par : $u_n = \int_0^1 \frac{e^{-nx}}{1+e^{-x}} dx$.

- 1. (a) Montrer que $u_0 + u_1 = 1$.
 - (b) Calculer u_1 . En déduire u_0 .
- 2. Montrer que pour tout entier naturel $n, u_n \ge 0$.
- 3. (a) Montrer que pour tout n > 0, $u_{n+1} + u_n = \frac{1 e^{-n}}{n}$.
 - (b) En déduire que pour tout $n > 0, u_n \le \frac{1 e^{-n}}{n}$.
- 4. Déterminer la limite de la suite (u_n) .

Exercice 2.

- 1. On pose $u_n = \frac{(2n)!}{4^n(n!)^2}$. Montrer que la suite u_n est décroissante.
- 2. En utilisant la formule de Stirling (que l'on ne demande pas de démontrer!):

$$n! = n^n e^{-n} \sqrt{2\pi n} \left(1 + O\left(\frac{1}{n}\right) \right) \sim_{+\infty} n^n e^{-n} \sqrt{2\pi n}$$

montrer que $u_n \sim \frac{1}{\sqrt{\pi n}}$ et en déduire $\lim_{n \to +\infty} u_n$.

Exercice 3.

Soit $(u_n)_n$ une suite réelle vérifiant, pour tout $n \in \mathbb{N}$,

$$u_n = \int_0^1 x^n e^x dx$$

- 1. Calculer les trois premiers termes de la suite $(u_n)_n$.
- 2. Montrer que la suite $(u_n)_n$ est monotone et positive. Justifier que cette suite converge et donner sa limite.
- 3. Montrer que pour tout $n \in \mathbb{N}$, il existe $a, b \in \mathbb{Z}$ tel que : $u_n = a \times e + b$.
- 4. Montrer que e n'est pas un nombre rationnel.

Niveau: Première année de PCSI

Fonctions continues:

Exercice 4.

Démontrer que si une fonction $f: \mathbb{R} \to \mathbb{R}$ est continue en x_0 , alors |f| est continue en x_0 . Démontrer que la réciproque est fausse.

Exercice 5.

Soient $f, g : \mathbb{R} \to \mathbb{R}$ deux fonctions continues. Montrer que $\inf(f, g)$ et $\sup(f, g)$ sont continues.

Exercice 6.

Soit $f:\mathbb{R}\to\mathbb{R}$ périodique et admettant une limite finie l en $+\infty$. Montrer que f est constante.