CS 455: Principles of Database Systems

Review Guide 3: Database Theory (Selected Soln)

1. Given: α , β , γ , δ refer to distinct sets of attributes in R. For each of the following inference rules, show it is either <u>sound</u> through derivation using only **Armstrong's Axioms**, or <u>unsound</u> by providing a counterexample.

(a)
$$\alpha \to \beta \stackrel{?}{\Longrightarrow} \alpha \cup \gamma \to \beta$$

$$\alpha \to \beta$$
 Given (1)

$$\alpha \cup \gamma \to \beta \cup \gamma \text{ Aug (1) with } \gamma$$
 (2)

$$\beta \cup \gamma \to \beta$$
 Trivial (3)

$$\alpha \cup \gamma \to \beta$$
 Transitivity (4)

$$\therefore \alpha \to \beta \implies \alpha \cup \gamma \to \beta \quad \Box \tag{5}$$

(b)
$$\alpha \to \beta \stackrel{?}{\Longrightarrow} \beta \subseteq \alpha$$

Consider a relation Pres(ssn, name, leaning) and that $FD(Pres) = \{name, party \rightarrow isCorrupt\}$. You can observe that FD(Pres) holds on the relational instance below. However, $isCorrupt \not\subseteq \{name, party\}$.

name	party	isCorrupt
Johnson	R	у
Johnson	D	n
Cleveland	R	n
Lincoln	R	n

(c)
$$\alpha \to \beta, \beta \to \gamma \stackrel{?}{\Longrightarrow} \alpha \cup \delta \to \gamma \cup \delta$$

$$\alpha \to \beta$$
 Given (1)

$$\beta \to \gamma$$
 Given (2)

$$\alpha \rightarrow \gamma$$
 Transitivity of (1) and (2). (3)

$$\alpha \cup \delta \rightarrow \gamma \cup \delta$$
 Augmentation of γ on (3)

$$\therefore \alpha \to \beta, \beta \to \gamma \implies \alpha \cup \delta \to \gamma \cup \delta \quad \Box$$
 (5)

(d) ** $\alpha \to \beta, \beta \cup \gamma \to \delta \stackrel{?}{\Longrightarrow} \alpha \cup \gamma \to \beta \cup \delta$

$$\alpha \to \beta \text{ Given} \tag{1}$$

$$\alpha \cup \gamma \to \beta \cup \gamma \text{ Aug (1) with } \gamma \tag{2}$$

$$\beta \cup \gamma \to \delta \text{ Given} \tag{3}$$

$$\beta \cup \gamma \to \beta \text{ Trivial} \tag{4}$$

$$\alpha \cup \gamma \to \delta \text{ Transitivity between (2) and (3)} \tag{5}$$

$$\alpha \cup \gamma \to \beta \text{ Transitivity between (2) and (4)} \tag{6}$$

$$(\alpha \cup \gamma) \cup (\alpha \cup \gamma) \to \delta \cup \alpha \cup \gamma \text{ Aug (5) with } \alpha \cup \gamma \tag{7}$$

$$\alpha \cup \gamma \to \alpha \cup \gamma \cup \delta \text{ Definition of } \cup \tag{8}$$

$$\alpha \cup \gamma \cup \delta \to \beta \cup \delta \text{ Aug (6) with } \delta \tag{9}$$

$$\alpha \cup \gamma \to \beta \cup \delta \text{ Transitivity between (8) and (9)}$$

$$\therefore \alpha \to \beta, \beta \cup \gamma \to \delta \Longrightarrow \alpha \cup \gamma \to \beta \cup \delta \square \tag{11}$$

2. ** Consider the relation U(W, X, Y, Z) with a set of functional dependencies

$$FD(U) = \{ XZ \rightarrow YZ, Y \rightarrow Z \}$$

(a) List all of U's superkeys with respect to FD(U).

Sol: You could run the attribute closure algorithm for the power set of the set of attributes. By themselves, $\{X,Y\}$ and $\{X,Z\}$ can determine everything except W. Because no FDs can determine W, it must be included as a key attribute to trivially determine itself. Therefore, it follows that $\{X,W,Y\}$ and $\{X,W,Z\}$ are candidate keys, and $\{X,W,Y,Z\}$ is a super key.

(b) Is U in BCNF with respect to FD(U)? If so, show that every functional dependency $\alpha \to \beta$ is either trivial or that α is a superkey in U. Otherwise, decompose U into a set of BCNF relations with respect to FD(U). Show your work.

Sol: I started by splitting on $XZ \to YZ$ to obtain $U_1(X,Y,Z)$ and $U_2(X,Z,W)$. U_2 's candidate key is $\{X,W\}$, and it is in BCNF because the only FD preserved is $XZ \to Z$, which is trivial. Different story for U_1 . The candidate key is $\{X,Z\}$ and $\{X,Y\}$ and both of the original FDs are preserved. $Y \to Z$ violates BCNF for U_1 , so we split it into $U_{1a}(Y,Z)$ and $U_{1b}(Y,X)$. They are both in BCNF. The final set of normalized relations are as follows: $U_{1a}(Y,Z)$, $U_{1b}(Y,X)$, and $U_2(X,Z,W)$.

(c) Find $FD_c(U)$, the canonical cover of FD(U). Sol:

$$FD_c(U) = \{$$
 $XZ \to Y,$
 $Y \to Z\}$

(d) List all of U's superkeys with respect to $FD_c(U)$.

Sol: The set of keys do not change from earlier since $FD(U)^+ = FD_c(U)^+$.

(e) Is U in BCNF with respect to $FD_c(U)$? If so, show that every functional dependency $\alpha \to \beta$ is either trivial or that α is a superkey in U. Otherwise, decompose U into a set of BCNF relations with respect to $FD_c(U)$. Show your work.

Sol: $U_1(Y, Z)$ where Y is key, $U_2(Y, X)$ where YX is key, and $U_3(X, Z, W)$ where XYW is key.