Теоремы по матану, семестр 4

5 марта 2018 г.

Содержание

1	Характеризация измеримых функций с помощью ступенчатых (формулировка). Следствия	2
2	Измеримость монотонной функции	2
3	Теорема Лебега о сходимости почти везде и сходимости по мере	3
4	Теорема Рисса о сходимости по мере и сходимости почти везде	3
5	Простейшие свойства интеграла Лебега 5.1 Для определения (5) 5.2 Для окончательного определения	4 4 5
6	Счетная аддитивность интеграла (по множеству)	7
7	Теорема Леви	8
8	Линейность интеграла Лебега	8
9	Теорема об интегрировании плоложительных рядов	9
10	Теорема о произведении мер	10
11	Абсолютная непрерывность интеграла 11.1 Следствие	11 11
12	Теорема Лебега о мажорированной сходимости для случая сходимости по мере.	11
13	Теорема Лебега о мажорированной сходимости для случая сходимости почти везде.	13
14	Теорема Фату. Следствия. 14.1 Следствие 1	13 14

1 Характеризация измеримых функций с помощью ступенчатых (формулировка). Следствия

 (X, \mathbb{A}, μ) — пространство с мерой.

f — измеримая функция на $X, \forall x \ f(x) \geq 0$. Тогда \exists ступенчатые функции f_n , такие что:

- 1. $\forall x \ 0 \le f_n(x) \le f_{n+1}(x) \le f(x)$.
- 2. $f_n(x)$ поточечно сходится к f(x).

Следствие 1:

 $f: X \to \overline{\mathbb{R}}$ измеримая. Тогда \exists ступенчатая $f_n: \forall x: lim f_n(x) = f(x)$ и $|f_n(x)| \leq |f(x)|$. Доказательство:

- 1. Рассмотрим $f = f^+ f^-.f^+ = max(f,0), f^- = max(-f,0)$. Срезки измеримы: $E(f^+ < a) = E(f < a) \cap E(0 < a)$, при этом f и $g \equiv 0$ измеримы $(f^-$ измерима аналогично).
- 2. Срезки измеримы и неотрицательны, тогда по теореме существуют ступенчатые функции $f_n^+ \to f^+, f_n^- \to f^-$. Тогда и $f_n^+ f_n^-$ это ступенчатая функция, при этом по свойству пределов: $f_n^+ f_n^- \to f^+ f^- = f$. Неравенство с модулем верно при правильных эпсилон-неравенствах.

Следствие 2:

f,g — измеримые функции. Тогда fg — измеримая функция. При этом считаем, что $0\cdot\infty=0$. Доказательство:

1. Рассмотрим $f_n \to f: |f_n| \le |f|, g_n \to g: |g_n| \le |g|$ из первого следствия. Тогда $f_n g_n \to fg$ и fg измерима по теореме об измеримости пределов и супремумов (произведение ступенчатых функций – ступенчатая функция, значит, измеримая)

Следствие 3:

f,g — измеримые функции. Тогда f+g — измеримая функция. При этом считаем, что $\forall x$ не может быть, что $f(x)=\pm\infty, g(x)=\mp\infty$

Доказательство:

Доказывается как следствие 2.

2 Измеримость монотонной функции

Пусть $E \subset R^m$ — измеримое по Лебегу, $E' \subset E, \lambda_m(E \setminus E') = 0, f: E \to \mathbb{R}$. Пусть сужение $f: E' \to R$ непрерывно. Тогда f измерима на E.

- 1. $E(f < a) = E'(f < a) \cup e(f < a), e := E \setminus E', \lambda_m(e) = 0.$
- 2. E'(f < a) открыто в E', так как f непрерывна. Поэтому $E' = G \cap E' \Rightarrow$, где G открытое в E множество. Значит, E'(f < a) измеримо по Лебегу, так как оно является борелевским.
- 3. Но и e(f < a) измеримо, так $\lambda_m(e) = 0$, следовательно E(f < a) измеримо как объединение измеримых множеств

Следствие:

 $f: \langle a,b \rangle \to \mathbb{R}$ монотонна. Тогда f измерима.

Доказательство:

Множество разрывов монотонной функции НБЧС множество, поэтому можно воспользоваться доказанной теоремой.

3 Теорема Лебега о сходимости почти везде и сходимости по мере

 (X,a,μ) - пространство с мерой, $\mu \cdot X < +\infty$

 $f_n, f: X \to \overline{R}$ - п.в. конечны, измеримы

 $f_n \to f$ (поточечно, п.в.)

Доказательство:

1. подменим значения f_n и f на некотором множестве меры 0 так, чтобы сходимость $f_n \to f$ была всюду. (Так можно сделать. Действительно, $f_n \to f$ на $X \setminus e$, $\mu e = 0$

 f_n - конечно на $X \setminus e_n$,

f - конечно на $X \setminus e_0$.

Тогда на $(X \setminus \bigcup_{n=0}^{+\infty} e_n)$ функции конечны и есть сходимость $f_n \to f$. По свойствам меры $\mu \bigcup_{n=0}^{+\infty} e_n =$

0. Тогда определим на $\bigcup_{n=0}^{+\infty} e_n \ f_n = f = 0$. Это очевидно даст нам необходимую конечность и поточечную сходимость.)

2. (частный случай) $f_n \to f \equiv 0$. Тогда пусть $\forall x f_n(x)$ - монотонно (по n). $|f_n(x)|$ - убывает с ростом n и $X(|f_n| \ge \epsilon) \supset X(|f_{n+1}| \ge \epsilon)$. А также $\bigcap_{n=0}^{+\infty} X(|f_n| \ge \epsilon) = \emptyset$.

$$\begin{cases} \mu X < +\infty \\ \dots \supset E_n \supset E_{n+1} \supset \dots \end{cases}$$

 $\Rightarrow \mu E_n \to \mu \cup E_n$ - Th о непрерывности меры сверху.

$$\Rightarrow \mu X(|f_n \ge \epsilon|) \to \mu \emptyset = 0$$

3. (общий случай) $f_n \to f$. Рассмотрим $\phi_n(x) := \sup_{k \ge n} |f_k(x) - f(x)|$. Заметим свойства ϕ :

$$\begin{cases} \phi_n(x) \to 0\\ \phi_n \downarrow_n \end{cases}$$

 $X(|f_n-f|\geq \epsilon)\subset X(|\phi_n\geq \epsilon|)\Rightarrow$ по монотонности меры имеем $\mu X(|f_n-f|\geq \epsilon)\leq \mu X(\phi_n\geq \epsilon)\stackrel{part.case}{\longrightarrow} 0$, ч.т.д.

4 Теорема Рисса о сходимости по мере и сходимости почти везде

 (X,a,μ) - пространство с мерой

 $f_n, f: X \to R$ - п.в. конечны, измеримы

$$f_n \stackrel{\mu}{\Rightarrow} f$$
.

Тогда $\exists n_k \uparrow : f_{n_k} \to f$ п.в.

<u>Доказательство:</u> $\forall k \ \mu X(|f_n - f| \ge \frac{1}{k}) \stackrel{n \to +\infty}{\to} 0$

Тогда $\exists n_k : \forall n \geq n_k \mu X(|f_n - f| \geq \frac{1}{k}) < \frac{1}{2k}$ (можно считать $n_1 < n_2 < \ldots$) Проверим $f_{n_k} \to f$ п.в. $: E_k := \bigcap j = k^{+\infty} X(|f_{n_j} - f| \geq \frac{1}{j})$

 $E_1 \supset E_2 \supset E_3 \supset \dots$

 $E_0 := \bigcap k \in NE_k$.

 $\mu E_k \geq \sum_{j=k}^{+\infty} \mu X(|f_{n_j} - f| \geq \frac{1}{j}) \geq \sum_{j=k}^{+\infty} \frac{1}{2^j} = \frac{1}{2^{(k-1)}}$ - конечно $\Rightarrow \mu E_k \rightarrow \mu E_0 \Rightarrow \mu E_0 = 0$ (т.к.

Рассмотрим $X \notin E_0$, т.е. если $X \notin E_0$, то $\exists k : X \notin E_k$, тогда $\forall j \geq k |f_n(x) - f(x)| < \frac{1}{j}$ при $n \geq n_j$, т.е. $f_{n_k} \to f$, ч.т.д. Следствие: $f_n \Rightarrow f |f_n| \le g$ п.в. Док-во: Рассмотрим последовательность f_{n_k} где $f_{n_k} o f$ п.в. и вдоль нее применим Th о двух городовых.

$$\begin{cases} f_{n_k}(x) \to f(x) \forall x \in X \setminus e_1 \\ |f_n(x)| \le g(x) \forall x \in X \setminus e_2 \end{cases}$$

$$\Rightarrow |f| \leq g$$
 на $(X \setminus e_1) \setminus e_2$

5 Простейшие свойства интеграла Лебега

Для определения (5) 5.1

1. $\int f$ не зависит от представления f как ступенчатой функции, то есть если f реализуется как $\overline{f} = \sum_{k} (\lambda_k \cdot \chi_{E_k})$ и как $f = \sum_{l} (\alpha_l \cdot \chi_{G_l})$, интегралы по этим функциям равны

Доказательство:

Выпишем общее разбиение для этих двух разбиений

Пусть $F_{ij} = E_i \cap G_j$

Тогда
$$f = \sum_k (\lambda_k \cdot \chi_{E_k}) = \sum_l (\alpha_l \cdot \chi_{G_l}) = \sum_{i,j} (\lambda_i (= \alpha_j) \cdot \chi_{F_{i,j}})$$

$$\int f = \sum_{i,j} (\lambda_i \cdot \mu F_{i,j}) = \sum_i (\lambda_i \cdot \sum_j (\mu F_{i,j})) = \sum_i (\lambda_i \cdot \mu E_i) = \int f$$
 для первого разбиения

Аналогично для второго разбиения получаем

$$\int f = \sum_{i,j} (\lambda_i \cdot \mu F_{i,j}) = \sum_j (\alpha_i \cdot \sum_i (\mu F_{i,j})) = \sum_j (\lambda_j \cdot \mu G_i) = \int f$$
 для второго разбиения, что и требовалось доказать

2. f,g -измеримые ступенчатые функции, $f\leqslant g$, тогда $\int\limits_{\mathbb{R}^d}f\leqslant\int\limits_{\mathbb{R}^d}g$

Доказательство:

Пусть
$$f = \sum_{k} (\lambda_k \cdot \chi_{E_k}), g = \sum_{l} (\alpha_l \cdot \chi_{G_l})$$

Аналогично доказательству предыдущей теоремы, строим общее ступенчатое разбиение

Пусть
$$F_{ij} = E_i \cap G_j$$

Тогда $\int f = \sum_{i,j} (\lambda_i \cdot \mu F_{i,j}) \leqslant \sum_i (\alpha_j \cdot \mu F_{i,j}) = \int g$, что и требовалось доказать

5.2Для окончательного определения

1. Монотонность $f \leqslant g \Rightarrow \int\limits_{\mathbb{X}} f \leqslant \int\limits_{\mathbb{X}} g$

Доказательство:

(a) $f,g\geqslant 0$, тогда доказательство тривиально (по свойствам супремума)

(b)
$$\int_{\mathbb{X}} f = \int_{\mathbb{X}} f^+ - \int_{\mathbb{X}} f^-$$

 $\int_{\mathbb{X}} g = \int_{\mathbb{X}} g^+ - \int_{\mathbb{X}} g^-$
Из того, что $\int_{\mathbb{X}} f^+ \leqslant \int_{\mathbb{X}} g^+$, а $\int_{\mathbb{X}} f^- \geqslant \int_{\mathbb{X}} g^-$ следует, что $\int_{\mathbb{X}} f \leqslant \int_{\mathbb{X}} g$

2.
$$\int_{\mathbb{E}} 1 \cdot d\mu = \mu E$$
$$\int_{\mathbb{E}} 0 \cdot d\mu = 0$$

Очевидно из определения интеграла ступенчатой функции

3. $\mu E=0, f$ -измерима, тогда $\int\limits_{\mathbb{R}} f=0$, даже если $f=\infty$ на \mathbb{E}

Доказательство:

(a) f-ступенчатая \Rightarrow ограниченная

$$f=\sum_{k=1}^n(\lambda_k\cdot\chi_{E_k})$$
, тогда $\int\limits_{\mathbb{E}}f=\sum\lambda_k\cdot\mu(E\cap E_k)$
Но $\mu(E\cap E_k)=0$ (так как $\mu E=0$), тогда $\int\limits_{\mathbb{E}}f=0$

(b)
$$f$$
 - измеримая, $f\geqslant 0$.
$$\int\limits_{\mathbb{E}} f=\sup(\int\limits_{\mathbb{E}} g), \ \text{где } 0\leqslant g\leqslant f, \ g$$
 - ступенчатая Тогда $\int\limits_{\mathbb{E}} f=\sup(0)=0$

Тогда
$$\int_{\mathbb{E}} f = \sup(0) = 0$$

(c) f - произвольная измеримая

Тогда
$$\int\limits_{\mathbb{E}} f = \int\limits_{\mathbb{E}} f^+ - \int\limits_{\mathbb{E}} f^- = 0 - 0 = 0$$

4. (a)
$$\int_{\mathbb{E}} -f = -\int_{\mathbb{E}} f$$

(b)
$$\forall c \in \mathbb{R} : \int_{\mathbb{E}} (c \cdot f) = c \cdot \int_{\mathbb{E}} f$$

(а)
$$(-f)^+ = f^ (-f)^- = f^+$$
 Тогда $\int_{\mathbb{E}} -f = \int_{\mathbb{E}} (-f)^+ - \int_{\mathbb{E}} (-f)^- = \int_{\mathbb{E}} f^- - \int_{\mathbb{E}} f^+ = -\int_{\mathbb{E}} f$

- (b) Пусть c>0. Если c<0, то по предыдущему случаю можем рассматривать для -c<0. Если c=0, то по предыдущей теореме $\int\limits_{\mathbb{R}} (0\cdot f) = \int\limits_{\mathbb{R}} 0 = 0 = 0 \cdot \int\limits_{\mathbb{R}} f$
 - і. Пусть $f\geqslant 0$ $\int\limits_{\mathbb{E}}(c\cdot f)=\sup(\int\limits_{\mathbb{E}}g), \text{ где }0\leqslant g\leqslant c\cdot f, \text{ }g\text{ ступенчатая}$ Пусть $g=c\cdot \widetilde{g}, \text{ тогда }\int\limits_{\mathbb{E}}(c\cdot f)=\sup(\int\limits_{\mathbb{E}}(c\cdot \widetilde{g})), \text{ где }0\leqslant c\cdot \widetilde{g}\leqslant c\cdot f, \text{ }\widetilde{g}\text{ ступенчатая}$ Тогда $\int\limits_{\mathbb{E}}(c\cdot f)=\sup(\int\limits_{\mathbb{E}}(c\cdot \widetilde{g}))=\sup(c\cdot \int\limits_{\mathbb{E}}\widetilde{g})=c\cdot \sup(\int\limits_{\mathbb{E}}\widetilde{g})=c\cdot \int\limits_{\mathbb{E}}f$
 - ії. Если f произвольная: $\int\limits_{\mathbb{E}} (c \cdot f) = \int\limits_{\mathbb{E}} (c \cdot f)^+ \int\limits_{\mathbb{E}} (c \cdot f)^- = \int\limits_{\mathbb{E}} c \cdot f^+ \int\limits_{\mathbb{E}} c \cdot f^- = c \cdot \int\limits_{\mathbb{E}} f^+ c \cdot \int\limits_{\mathbb{E}} f^- = c \cdot \left(\int\limits_{\mathbb{E}} f^+ \int\limits_{\mathbb{E}} f^-\right) = c \cdot \int\limits_{\mathbb{E}} f$
- 5. Если существует $\int\limits_{\mathbb{E}} f d\mu$, то $|\int\limits_{\mathbb{E}} f| \leqslant \int\limits_{\mathbb{E}} |f|$

Доказательство:

$$-|f| \leqslant f \leqslant |f|$$

$$\int_{\mathbb{E}} -|f| \leqslant \int_{\mathbb{E}} f \leqslant \int_{\mathbb{E}} |f|$$

$$-\int_{\mathbb{E}} |f| \leqslant \int_{\mathbb{E}} f \leqslant \int_{\mathbb{E}} |f|$$
 Тогда $|\int_{\mathbb{E}} f| \leqslant \int_{\mathbb{E}} |f|$

6. f - измеримая на $\mathbb{E},\,\mu\mathbb{E}<\infty$

$$a\leqslant f\leqslant b,$$
тогда $a\cdot \mu E\leqslant \int\limits_{\mathbb{E}}f\leqslant b\cdot \mu E$

Доказательство:

$$\begin{split} a \leqslant f \leqslant b &\Rightarrow \int\limits_{\mathbb{E}} a \leqslant \int\limits_{\mathbb{E}} f \leqslant \int\limits_{\mathbb{E}} b \\ a \cdot \int\limits_{\mathbb{E}} 1 \leqslant \int\limits_{\mathbb{E}} f \leqslant b \cdot \int\limits_{\mathbb{E}} 1 \\ a \cdot \mu \mathbb{E} \leqslant \int\limits_{\mathbb{E}} f \leqslant b \cdot \mu \mathbb{E} \end{split}$$

Следствие:

Если f - Измеримая и ограниченная на $\mathbb{E}, \mu \mathbb{E} < \infty,$ тогда f - суммируемая на \mathbb{E}

7. f - суммируемая на $\mathbb{E}\Rightarrow f$ почти везде конечная на \mathbb{E} (то есть $f\in lpha^0(\mathbb{E})$)

Доказательство:

(a) Пусть $f \geqslant 0$

Пусть $f = +\infty$ на A и пусть $\mu A > 0$

Тогда $\forall n \in \mathbb{N} : f \geqslant n \cdot \chi_A$

Тогда
$$\forall n \in \mathbb{N}: \int\limits_{\mathbb{E}} f \geqslant n \cdot \int\limits_{\mathbb{E}} \chi_A = n \cdot \mu A \Rightarrow \int\limits_{\mathbb{E}} f = +\infty$$

(b) f любого знака

Распишем $f = f^+ - f^-$, по предыдущему пункту f^+, f^- конечны почти везде $\Rightarrow f$ тоже конечно почти везде

6 Счетная аддитивность интеграла (по множеству)

$$(X,\mathbb{A},\mu)$$
 — пространство с мерой, $A=\bigsqcup_{i=1}^\infty A_i$ — измеримы. $f:X o\overline{\mathbb{R}}$ — изм., $f\geqslant 0$

$$\underline{ ext{Тогда:}}\int\limits_{A}f=\sum_{i=1}^{\infty}\int\limits_{A_{i}}f$$

Доказательство:

1. Для начала докажем это для ступенчатых функций. Пусть $f = \sum_k (\lambda_k \cdot \chi_{E_k})$

$$\int_A f d\mu = \sum_k (\lambda_k \cdot \mu(E_k \cap A)) = \sum_k (\lambda_k \cdot (\sum_i \mu(E_k \cap A_i))) = \sum_i (\sum_k (\lambda_k \cdot \mu(E_k \cap A_i))) = \sum_i (\int_A f d\mu)$$

2. Докажем, что $\int\limits_A f \leqslant \sum\limits_i \int\limits_{A_i} f$

(a) Рассмотрим
$$0\leqslant g\leqslant f$$
— ступенчатая. $\int\limits_A g=\sum\limits_i\int\limits_{A_i}g\leqslant\sum\limits_i\int\limits_{A_i}f$

(b) Переходя к *sup* получаем желаемое

3. Теперь докажем, что
$$\int\limits_A f \geqslant \sum\limits_i \int\limits_{A_i} f$$

(a)
$$A = A_1 \sqcup A_2$$

- і. Рассмотрим g_1,g_2 ступенчатые такие, что $0\leqslant g_i\leqslant f\cdot\chi_{A_i}$
- ії. Рассмотрим их общее разбиение E_k : $g_i = \sum_k (\lambda_k^i \cdot \chi_{E_k})$

і
іі.
$$g_1+g_2$$
 — ступенчатая и $0\leqslant g_1+g_2\leqslant f\cdot\chi_A$

iv.
$$\int_{A_1} g_1 + \int_{A_2} g_2 \stackrel{lemma}{=} \int_A (g_1 + g_2) \stackrel{iii}{\leqslant} \int_A f$$

- v. Поочерёдно переходя к sup по g_1 и g_2 получаем: $\int\limits_{A_1}f+\int\limits_{A_2}f\leqslant\int\limits_Af$
- (b) $\forall n \in \mathbb{N}$, что $A = \bigsqcup_{i=1}^n A_i$ будем последовательно отщеплять последнее множество по (a)

(c)
$$A = \bigsqcup_{i=1}^{\infty} A_i$$

i. Фиксрируем $n \in \mathbb{N}$

іі.
$$A=(\coprod_{i=1}^n A_i)\sqcup B$$
, где $B=\coprod_{i=n+1}^\infty A_i$

iii.
$$\int\limits_A f \geqslant \sum\limits_{i=1}^n \int\limits_{A_i} f + \int\limits_B f \geqslant \sum\limits_{i=1}^n \int\limits_{A_i} f$$

iv. Переходим к lim по n

Следсвие 1: $0\leqslant f\leqslant g$ - измеримы и $A\subset B$ - измеримы $\Rightarrow\int\limits_A f\leqslant\int\limits_B g$

$$\smallint_B g \geqslant \smallint_B f = \smallint_A f + \smallint_{B \backslash A} f \geqslant \smallint_A f$$

Следствие 2:
$$f$$
 - суммируема на $A\Rightarrow\int\limits_A f=\sum\limits_i\int\limits_{A_i} f$

Достаточно рассмотреть срезки f^+ и f^-

Следствие 3:
$$f\geqslant 0$$
 - изм. $\delta:\mathbb{A}\to\overline{\mathbb{R}}(A\longmapsto\int\limits_A fd\mu)\Rightarrow \delta$ - мера

7 Теорема Леви

 $(X, \mathbb{A}, \mu), f_n \geqslant 0$ - изм.

$$f_1(x) \leqslant \ldots \leqslant f_n(x) \leqslant f_{n+1}(x) \leqslant \ldots$$
 при почти всех x

 $f(x) = \lim_{n \to \infty} f_n(x)$ при почти всех x (считаем, что при остальных $x : f \equiv 0$)

$$\underline{\text{Тогда:}} \lim_{n \to \infty} \int\limits_X f_n(x) d\mu = \int\limits_X f(x) d\mu$$

Доказательство:

$$N.B. \int_X f_n \leqslant \int_X f_{n+1} \Rightarrow \exists \lim$$

f - измерима как предел последовательности измеримых функций

1. ≤

Очевидно $f_n\leqslant f$ при п.в $x\Rightarrow\int\limits_X f_n\leqslant\int\limits_X f.$ Делаем предельный переход по n

 $2. \geqslant$

- (a) Логичная редукция: $\lim_{n\to\infty}\int\limits_X f_n(x)\geqslant \int\limits_x g$, где $0\leqslant g\leqslant f$ ступенчатая
- (b) Наглая редукция: $\forall c \in (0,1): \lim \int\limits_X f_n(x) \geqslant c \cdot \int\limits_X g$
 - і. $E_n = \{x \mid f_n(x) \geqslant c \cdot g\}$. Очевидно $E_1 \subset ... \subset E_n \subset E_{n+1} \subset ...$
 - ii. $\bigcup_{n=1}^{\infty} E_n = X$ т.к. c < 1
 - iii. $\int\limits_X f_n \geqslant \int\limits_{E_n} f_n \geqslant \int\limits_{E_n} g \Rightarrow \lim \int\limits_X f_n \geqslant c \cdot \lim \int\limits_{E_n} g = c \cdot \int\limits_X g$
 - iv. Последний знак равно обусловлен тем, что интеграл неотрицательной и измеримой функции по множеству мера (см. следствие 3 предыдущей теоремы), и мы используем неперрывность меры снизу

8 Линейность интеграла Лебега

 $f,g\geqslant 0$, измеримые

Тогда
$$\int_{\mathbb{E}} (f+g) = \int_{\mathbb{E}} f + \int_{\mathbb{E}} g$$

1. Пусть f, g - ступенчатые, тогда у них имеется общее разбиение

$$f = \sum_k (\lambda_k \cdot \chi_{E_k})$$

$$g = \sum_k (\alpha_k \cdot \chi_{E_k})$$

$$\int_{\mathbb{E}} (f+g) = \sum_k (\lambda_k + \alpha_k) \cdot \mu E_k = \sum_k \lambda_k \cdot \mu E_k + \sum_k \alpha_k \cdot \mu E_k = \int_{\mathbb{E}} f + \int_{\mathbb{E}} g, \text{ что и требовалось доказать}$$

2. $f, g \ge 0$, измеримые

Тогда
$$\exists h_n: 0 \leqslant h_n \leqslant h_{n+1} \leqslant f, h_n$$
 ступенчатые $\exists \widetilde{h_n}: 0 \leqslant \widetilde{h_n} \leqslant \widetilde{h_{n+1}} \leqslant g, \, \widetilde{h_n}$ ступенчатые $\lim_{n \to +\infty} h_n = f$ $\lim_{n \to +\infty} \widetilde{h_n} = g$ $\int_{\mathbb{E}} (h_n + \widetilde{h_n}) = \int_{\mathbb{E}} h_n + \int_{\mathbb{E}} \widetilde{h_n}$ $\int_{\mathbb{E}} (h_n + \widetilde{h_n}) \to \int_{\mathbb{E}} (f + g)$ $\int_{\mathbb{E}} h_n \to \int_{\mathbb{E}} f$ $\int_{\mathbb{E}} \widetilde{h_n} \to \int_{\mathbb{E}} g$ Тогда $\int_{\mathbb{E}} (f + g) = \int_{\mathbb{E}} f + \int_{\mathbb{E}} g$, что и требовалось доказать

3. Если f,g - любые измеримые, распишем обе через срезки и докажем для них

9 Теорема об интегрировании плоложительных рядов

$$u_n(x) \geq 0$$
 почти всюду на \mathbb{E} , тогда $\int\limits_{\mathbb{E}} (\sum_{n=1}^{+\infty} u_n(x)) d\mu(x) = \sum_{n=1}^{+\infty} \int\limits_{\mathbb{E}} u_n(x) d\mu(x)$

Доказательство:

$$\overline{S_N(x)} = \sum_{n=1}^{N} u_n(x); S(x) = \sum_{n=1}^{+\infty} u_n(x)$$

1.
$$S_N$$
 - возрастает к S при почти всех х $\xrightarrow{\mathrm{T. \ Леви}} \int\limits_{\mathbb{E}} S_N \xrightarrow[N \to +\infty]{} \int\limits_{\mathbb{E}} S = \int\limits_{\mathbb{E}} \sum_{n=1}^{+\infty} u_n(x)$

2. С другой стороны
$$\int_{\mathbb{E}} S_N = \int_{\mathbb{E}} \sum_{n=1}^N u_n = \sum_{n=1}^N \int_{\mathbb{E}} u_n(x) d\mu \xrightarrow[N \to +\infty]{} \sum_{n=1}^{+\infty} \int_{\mathbb{E}} u_n(x) d\mu$$

3. Найденные пределы совпадают в силу единственности предела последовательности, что и требовалось доказать.

10 Теорема о произведении мер

$$<$$
 $\mathbb{X}, \alpha, \mu>, <$ $\mathbb{Y}, \beta, \nu>$ - пространства с мерой $\alpha \times \beta = \{A \times B \subset \mathbb{X} \times \mathbb{Y} : A \in \alpha, B \in \beta\}$ $m_0(A \times B) = \mu A \cdot \nu B$

Тогда:

- 1. m_0 мера на полукольце $\alpha \times \beta$
- $2.~\mu,\,
 u$ σ -конечны $\Rightarrow m_0$ σ -конечна

Доказательство:

1. Неотрицательность m_0 очевидна. Необходимо доказать счетную аддитивность

Пусть
$$P=\coprod_{i=1}^{\infty}P_k$$
, где $P\in\alpha imes\beta$ $P=A imes B;\ P_k=A_k imes B_k$ Заметим, что:

- $\chi_P(x,y) = \sum \chi_{P_k}(x,y)$, в силу дизъюнктности P_k ((x, y) входит максимум в одно множество из всех P_k)
- $\chi_{A\times B}(x,y)=\chi_A(x)\cdot\chi_B(y)$, так как $(x,y)\in A\times B\Leftrightarrow x\in A$ И $y\in B$

Воспользовавшись вышесказанным получим:

$$\chi_P(x,y) = \chi_{A\times B}(x,y) = \chi_A(x) \cdot \chi_B(y)$$

$$\chi_P(x,y) = \sum \chi_{P_k}(x,y) = \sum \chi_{A_k\times B_k}(x,y) = \sum \chi_{A_k}(x) \cdot \chi_B(y)$$

Имеем следующее равенство:

$$\chi_A(x) \cdot \chi_B(y) = \sum \chi_{A_k}(x) \cdot \chi_{B_k}(y)$$

Проинтегрируем его по мере μ по x, затем по мере ν по y, получим:

$$\mu A \cdot \nu B = \sum \mu A_k \cdot \nu B_k$$
, то есть $m_0(P) = \sum m_0(P_k)$, что и требовалось доказать.

2.
$$\mu$$
, ν - σ -конечны $\Rightarrow X = \bigcup_{k=1}^{\infty} A_k$, где $\mu A_k < +\infty$; $Y = \bigcup_{k=1}^{\infty} B_k$, где $\nu B_k < +\infty$ $X \times Y = \bigcup_{k=1}^{\infty} A_k \times B_k$

$$X \times Y = \bigcup_{i,j} (A_i \times B_j)$$

$$m_0(A_i \times B_j) = \mu A_i \cdot \nu B_j < +\infty$$
, так как $\mu A_i < +\infty$ и $\nu B_j < +\infty$ все $(A_i \times B_j) \in \alpha \times \beta$ по определению

Что и требовалось доказать.

11 Абсолютная непрерывность интеграла

< ${
m X}, lpha, \mu>$ - пространство с мерой $f:X
ightarrow \overline{\mathbb{R}}$ - суммируема

Тогда $\forall \epsilon > 0 \; \exists \delta > 0: \; \forall E$ — измеримое $\mu E < \delta \; |\int\limits_E f d\mu| < \epsilon$

Доказательство:

 $\overline{X_n := X(|f| \ge n)}$

 $X_n \subset X_{n+1} \subset \dots$

 $\mu(\cap X_n) = 0$, т.к. f – суммируема

- 1. Мера : $(A \mapsto \int\limits_A |f|)$ непрерывна сверху, т.е. $\forall \ \epsilon \ \exists \ n_\epsilon \ \int\limits_{X_{n_\epsilon}} |f| < \epsilon/2$
- 2. Зафиксируем ϵ в доказываемом утверждении, возьмем $\delta:=\frac{\epsilon/2}{n_\epsilon}$
- 3. $\left| \int_{E} f d\mu \right| \leq \int_{E} |f| = \int_{E \cap X_{n_{\epsilon}}} |f| + \int_{E \cap X_{n_{\epsilon}}^{c}} |f| \stackrel{*}{\leq} \int_{X_{n_{\epsilon}}} |f| + n_{\epsilon} \cdot \mu(E \cap X_{n_{\epsilon}}^{c}) \stackrel{**}{<} \epsilon/2 + n_{\epsilon} \cdot \mu E < \epsilon/2 + n_{\epsilon} \cdot \frac{\epsilon/2}{n_{\epsilon}} < \epsilon$
 - * В первом слагаемом увеличили множество, во втором посмотрели на определние X_n , взяли дополнение, воспользовались 6-м простейшим свойством интеграла
 - ** Воспользовались непрерывностью сверху

11.1 Следствие

f - суммируема

 e_n - измеримые множества

$$\mu e_n \to 0 \Rightarrow \int_{e_n} f \to 0$$

12 Теорема Лебега о мажорированной сходимости для случая сходимости по мере.

 $< X, A, \mu >$ пространство с мерой,

 f_n, f – измеримы,

 $f_n \stackrel{\mu}{\Rightarrow} f$ (сходится по мере),

 $\exists q: \mathbb{X} o \overline{\mathbb{R}}$ такая, что:

- \bullet $\forall n$, для «почти всех» $x \mid f_n(x) \mid \leq g(x) \ (g$ называется мажорантой)
- \bullet g суммируемая

Тогда:

- f_n, f суммируемы
- $\bullet \int\limits_{\mathbb{X}} |f_n f| d\mu \to 0$

•
$$\int_{\mathbb{X}} f_n \to \int_{\mathbb{X}} f$$
 («уж тем более»)

Доказательство:

- 1. f_n суммируема, так как существует мажоранта g
- 2. f суммируема по теореме Рисса ($f_{nk} \to f$ почти везде, $|f_{nk}| \le g$, тогда $|f| \le g$ почти везде)
- 3. «уж тем более»:

$$\left| \int_{\mathbb{X}} f_n - \int_{\mathbb{X}} f \right| \le \int_{\mathbb{X}} |f_n - f|$$

Допустим, что $\int\limits_{\mathbb{X}}|f_n-f|d\mu \to 0$ уже доказано.

Тогда «уж тем более» очевидно.

4. Докажем основное утверждение:

Разберем два случая:

(а)
$$\mu \mathbb{X} < \infty$$
 Фиксируем $\epsilon \ge 0$ $X_n := X(|f_n - f| \ge \epsilon)$ $\mu X \to 0$ (так как $f_n \Rightarrow f$)
$$\int\limits_{\mathbb{X}} |f_n - f| = \int\limits_{X_n} |f_n - f| + \int\limits_{X_n^c} |f_n - f| \le \int\limits_{X_n} 2g + \int\limits_{X_n^c} \epsilon < \epsilon + \epsilon \mu \mathbb{X} \text{ (прим. } \int\limits_{X_n} 2g \to 0 \text{ по след. } \kappa$$
 т. об абс. сходимости)

(b)
$$\mu \mathbb{X} = \infty$$

Докажем «Антиабсолютную непрерывность» для g:

$$\forall \epsilon \; \exists A \subset \mathbb{X} \mid \mu A$$
 - конеч. $\int\limits_{X \backslash A} g < \epsilon$

доказательство:

$$\int_{\mathbb{X}} = \sup(\int_{\mathbb{X}} g_k \mid 0 \le g_k \le g) \ (g_k - \text{ступен.})$$

$$\exists g_n \int_{\mathbb{X}} g - \int_{\mathbb{X}} g_n < \epsilon$$

$$A := \sup g_n \ (\sup f := \text{замыкание} \ \{x \mid f(x) \ne 0 \ \})$$

$$A = \bigcup_{k \mid \alpha_k \ne 0} E_k$$

$$g = \sum_{k \mid \alpha_k \ne 0} E_k$$

$$g = \sum_{k \mid \alpha_k \ne 0} \alpha_k \mathcal{X}_{E_k} \ (X = \bigsqcup E_k)$$

$$\int_{\mathbb{X}} g_n = \sum \alpha_k \mu E_k < +\infty \ (\mu A - \text{конеч.})$$

$$\int_{\mathbb{X}} g = \int_{\mathbb{X} \setminus \mathbb{A}} g - g_n \le \int_{\mathbb{X}} g - g_n < \epsilon$$

Теперь докажем основное утверждение:

$$\int\limits_{\mathbb{X}} |f_n - f| = \int\limits_{\mathbb{A}} |f_n - f| + \int\limits_{\mathbb{X} \setminus \mathbb{A}} |f_n - f| \le \int\limits_{\mathbb{A}} |f_n - f| + 2\epsilon < 3\epsilon \; \left(\int\limits_{\mathbb{A}} |f_n - f| \to 0 \text{ по п. (a)}\right)$$

13 Теорема Лебега о мажорированной сходимости для случая сходимости почти везде.

 $< X, A, \mu >$ – пространство с мерой, f_n, f – измеримы, $f_n \stackrel{\mu}{\Rightarrow} f$ почти везде, $\exists g \mid \mathbb{X} \to \overline{\mathbb{R}}$ такая, что:

- $\forall n$, для «почти всех» $x |f_n(x)| \le g(x) (g$ называется мажорантой)
- *q* суммируемая

Тогда:

- f_n, f суммируемы
- $\bullet \int\limits_{\mathbb{T}} |f_n f| d\mu \to 0$
- $\int_{\mathbb{X}} f_n \to \int_{\mathbb{X}} f$ («уж тем более»)

Доказательство:

- 1. «уж тем более» см. пред. теорему.
- 2. Докажем основное утверждение:

$$h_n(x) := \sup(|f_n - f|, |f_{n+1} - f|, \dots)$$

Заметим, что при фикс. x выпол. $0 \le h_n \le 2g$ почти везде

$$\lim_{n \to +\infty} h_n = \overline{\lim}_{n \to +\infty} |f_n - f| = 0$$
 почти везде

$$2g-h_n\uparrow,\ 2g-h_n o 2g$$
 почти везде

$$\int\limits_{\mathbb{X}} (2g-h_n) d\mu \to \int\limits_{\mathbb{X}} 2g$$
 (по т. Леви)

$$\int\limits_{\mathbb{X}} 2g - \int\limits_{\mathbb{X}} h \Rightarrow \int\limits_{\mathbb{X}} h_n \to 0$$

$$\int\limits_{\mathbb{X}} |f_n - f| \le \int\limits_{\mathbb{X}} h_n \to 0$$

Теорема Фату. Следствия. 14

 $< X, A, \mu >$ пространство с мерой

$$f_n, f$$
 — измеримы,

$$f_n \ge 0$$

$$f_n \ge 0$$
 $f_n \stackrel{\mu}{\Rightarrow} f$ «почти везде»,

$$\exists C > 0 \ \forall n \ \int_{\mathbb{X}} f_n d\mu \le C$$

Тогда:

$$\bullet \int\limits_{\mathbb{X}} f \leq C$$

Доказательство:

$$g_n:=\inf(f_n,f_{n+1},\dots)\quad (g_n\leq g_{n+1}\leq\dots)$$
 $\lim g_n=\varliminf(f_n)=no$ чти вез $de=\lim f_n=f$ $(g_n\to f$ почти вез $de=\lim f_n=f$ $(g_n\to f)$ $(g_n\to f$

14.1 Следствие 1

$$f_n, f \geq 0$$
 – измер. $f_n \stackrel{\mu}{\Rightarrow} f$ $\exists C \ \forall n \int\limits_{\mathbb{X}} f_n \leq C$ Тогда:

$$\bullet \int\limits_{\mathbb{X}} f \le C$$

Доказательство:

 $\exists f_{n_k} o f$ почти везде

14.2 Следствие 2

 $f_n \ge 0$ – измер. Тогда:

•
$$\int_{\mathbb{X}} \underline{lim}(f_n) \ge \underline{lim}(\int_{\mathbb{X}} f_n)$$

$$\exists n_k \mid \int\limits_{\mathbb{X}} f_{n_k} \underline{k} \to + \infty \underset{n \to +\infty}{\underline{\lim}} \int\limits_{\mathbb{X}} f_n$$
 Рассмотрим g_{n_k} такое, что $g_{n_k} \uparrow$ и $g_{n_k} \to \underline{\lim} f$ Применяем теорему Леви к нер-ву
$$\int\limits_{\mathbb{X}} g_{n_k} \leq \int\limits_{\mathbb{X}} f_{n_k}$$

$$\int\limits_{\mathbb{X}} \underline{\lim} f \leq \underline{\lim} \int\limits_{\mathbb{X}} f_n$$