图论作业(第11周)

黄瑞轩 PB20111686

9.7

设 $d \to t$ 的容量为 x ,下面需要对 x 进行分类讨论。

(1) 若 $0 \le x \le 4$ 。

此时的最大流流量是6+x。

(2) 若 $4 < x \le 5$ 。

此时的最大流流量是10。

(3) 若x > 5。

此时的最大流流量是10。

9.11

由于各边容量上界为无穷,我们很容易可以给原网络一个初始可行流,在此基础上类比找最大流的方法,求出一个最小流。

此时的最小流流量为 16。

9.12

充分性: 如果存在一个顶点子集 $V'\subseteq V(N)-\{s,t\}$ 使得需要 V' 冒出流,则对于集合 V' 来说, $\sum_{e\in\alpha(V')}c(e)-\sum_{e\in\beta(V')}b(e)<0$,假设所有流向 V' 的边都满载,即 $in(V')=\sum_{e\in\alpha(V')}c(e)$,由于容量有上下界,所以 V' 流出的流量至少是 $\sum_{e\in\beta(V')}b(e)$,所以对于 V' 来说一定不能满足流入=流出,所以原网络没有可行流;需要 V' 漏掉流的情况 类似,同理可证。

必要性:由于网N没有可行流,从而N的伴随网络N'的最大流f'使得 $\exists v \in V(N)$,使得f'((s',v)) < c'((s',v))。从s'开始找可增载的路(至少为s'v),并且这样的路末尾不是t',否则与f'是最大流矛盾。假设这样的路末尾是u,下面证明 $\{u\}$ 需要冒出流或漏掉流。

(i) 找到的路最后以u为头,则在N中, $\forall e \in \alpha(u), f'(e) = 0 (e \neq us'), \forall e \in \beta(u), f'(e) = c'(e)$,否则u不是可增载路末尾。由f'的定义,由 $f((s',u)) + f'(e) = \sum_{e \in \beta(u)} c'(e)$,从而在N中, $\sum_{e \in \alpha(u)} b(e) + f'(e) = \sum_{e \in \beta(u)} c(e)$,即

$$\sum_{e \in \alpha(u)} b(e) - \sum_{e \in \beta(u)} c(e) < 0$$

因此需要 $\{u\}$ 漏掉流。

(ii) 找到的路最后以u为尾,与上类似可证需要 $\{u\}$ 冒出流。

即证。

10.1

基本圈组

> (1,1,0,1,1,0,0,0), (1,1,1,1,0,1,1,0), (1,1,0,1,0,0,1,1), (0,0,1,0,1,1,1,0),(0,0,0,0,1,0,1,1),

用基本圈组生成的向量(不同的基本圈组合而成): (0,0,1,0,0,1,0,1),

(0,0,1,0,0,1,0,1), (1,1,0,0,1,1,1,0), (1,1,1,0,1,0,1,1), (1,1,0,0,0,1,0,1), (0,0,0,1,1,1,0,1),(1,1,1,1,1,1,0,1).

圈空间 $\mathcal{C}(G)$ 的所有向量如上,图示如下,绿色线条表示圈向量中为1的边,按上面的顺序对应。

10.4

充分性:若任给 $S\in\mathcal{S}(G),S$ 中非零分量有偶数个。则任取 $v\in V(G),(\{v\},V-\{v\})$ 是一个断集,其在 $\mathcal{E}(G)$ 中对应的向量就是 v 的关联边,由假设知道边数为偶数,即 $\deg(v)\equiv 0 \pmod{2}$ 。则对 G 所有顶点都是这样,所以 G 是Euler图。

必要性:若 G 是Euler图,则其所有顶点都是偶度的。任取其顶点子集 $V'\subseteq V$,则原来 G 中的边分为三种。

- 1. 两个端点均在 V' 中的,设这种边有 n_1 条;
- 2. 两个端点均在 V-V' 中的,设这种边有 n_2 条;
- 3. 一个端点在 V' 中,另一个端点在 V-V' 中的,设这种边有 n_3 条。

如果 n_3 是奇数,则 n_1 和 n_2 中有一个是奇数,有一个是偶数,不妨设 n_2 是偶数。因为这是Euler图,所以 V-V' 中的每个顶点都是偶数度的顶点,现在我们的工作相当于给 V-V' 这个顶点集合添加边。先把 n_2 条边加入其中,现在要把 n_3 条边的一端加入其中,因为 n_3 是奇数,所以添加完之后

$$\sum_{v \in V-V'} \deg(v) = 2n_2 + n_3 \not\equiv 0 (\text{mod } 2)$$

这与 G 是Euler图矛盾,故 n_3 是偶数,所以任给 $S\in\mathcal{S}(G), S$ 中非零分量有偶数个。