COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2020

Reminders

HW1 Due Feb 20th HW2 Due Feb 27th

PR1 Due March 10th

Previously on COS 433...

Theorem: No stateless randomized encryption scheme can have perfect security for multiple messages

Security Parameter **\lambda**

Additional input to system, dictates "security level"

Key, message, ciphertext size all **polynomial** in λ

Probability of adversary success is **negligible** in λ

Defining Encryption Again

Syntax:

- Key space K_λ
- Message space M_λ
- Ciphertext space C_{λ}
- Enc: $K_{\lambda} \times M_{\lambda} \rightarrow C_{\lambda}$ (potentially randomized)
- Dec: $K_{\lambda} \times C_{\lambda} \rightarrow M_{\lambda}$

Correctness:

- $|\mathbf{k}| = \log |\mathbf{K}_{\lambda}|$, $|\mathbf{m}| = \log |\mathbf{M}_{\lambda}|$, $|\mathbf{c}| = \log |\mathbf{C}_{\lambda}|$ polynomial in λ
- For all λ , $k \in K_{\lambda}$, $m \in M_{\lambda}$, Pr[Pr[Dec(k, Enc(k,m)) = m] = 1

Statistical Distance

Given two distributions D_1 , D_2 over a set X, define

$$\Delta(D_1,D_2) = \frac{1}{2}\sum_{x} | Pr[D_1=x] - Pr[D_2=x] |$$

Observations:

$$0 \le \Delta(D_1, D_2) \le 1$$

$$\Delta(D_1, D_2) = 0 \iff D_1 \stackrel{d}{=} D_2$$

$$\Delta(D_1, D_2) \le \Delta(D_1, D_3) + \Delta(D_3, D_2)$$

$$(\Delta \text{ is a metric})$$

Another View of Statistical Distance

Theorem: $\Delta(D_1,D_2) \geq \epsilon$ iff \exists (potentially randomized) \triangle s.t.

$$| Pr[A(D_1) = 1] - Pr[A(D_2) = 1] | \ge \varepsilon$$

Terminology: for any A, $|Pr[A(D_1) = 1] - Pr[A(D_2) = 1]|$ is called the "advantage" of A in distinguishing D_1 and D_2

Statistical Security (Asymptotic)

```
Definition: A scheme (Enc,Dec) has statistical secrecy for d messages if \exists negligible \epsilon such that \forall two sequences (m_0^{(i)})_{i \in [d]}, (m_1^{(i)})_{i \in [d]} \in M_\lambda^d, \Delta \big[ \left( \text{Enc}(K_\lambda, \, m_0^{(i)}) \right)_{i \in [d]}, \\ \left( \text{Enc}(K_\lambda, \, m_1^{(i)}) \right)_{i \in [d]} \big] < \epsilon(\lambda)
```

We will call such a scheme **d**-time statistically secure

Limits of Statistical Security

Theorem: Suppose (Enc,Dec) has plaintext space $M = \{0,1\}^n$ and key space $K = \{0,1\}^t$. Moreover, assume it is (d, 0.4999)-secure. Then:

t 2 d n

In other words, the key must be at least as long as the total length of all messages encrypted

Takeaway

If you don't want to physically exchange keys frequently, you cannot obtain statistical security

So, now what?

Timeline/Cipher sophistication

Computational Security

We are ok if adversary takes a really long time

Only considered attack for adversaries that don't take too long

Today: Continuation of Computational Security

Brute Force Attacks

Simply try every key until find right one

If keys have length λ , 2^{λ} is upper bound on attack

Applicable when easy to check if key is correct

• In case of perfect/statistical security, not possible

Crypto and P vs NP

What if P = NP?

From this point forward, almost all crypto we will see depends on computational assumptions

Defining Encryption Yet Again

Syntax:

- Key space K_λ
- Message space M_{λ}
- Ciphertext space C_{λ}
- Enc: $K_{\lambda} \times M_{\lambda} \rightarrow C_{\lambda}$ (potentially randomized)
- Dec: $K_{\lambda} \times C_{\lambda} \rightarrow M_{\lambda}$

Correctness:

- $|\mathbf{k}| = |\mathbf{K}_{\lambda}|$, $|\mathbf{m}| = |\mathbf{M}_{\lambda}|$, $|\mathbf{c}| = |\mathbf{C}_{\lambda}|$ polynomial in λ
- Enc, Dec running time polynomial in λ
- For all λ , $k \in K_{\lambda}$, $m \in M_{\lambda}$, Pr[Pr[Dec(k, Enc(k,m)) = m] = 1

Defining Security

Consider an attacker as a probabilistic efficient algorithm

Attacker gets to choose the messages

All attacker has to do is distinguish them

Security Experiment/Game (One-time setting)

IND-Exp_b(
$$\mathbb{R},\lambda$$
)

Security Definition

(One-time setting, concrete)

Definition: (Enc, Dec) has (†,ε)-ciphertext indistinguishability if, for all ** running in time at most †

Pr[1←IND-Exp₀(
$*$
)]
- Pr[1←IND-Exp₁(*)] ≤ ε

Security Definition

(One-time setting, asymptotic)

Definition: (Enc, Dec) has **ciphertext indistinguishability** if, for all \mathbb{R} running in polynomial time, \exists negligible ϵ s.t.

Pr[1←IND-Exp₀(
$*$
,λ)]

- Pr[1←IND-Exp₁(* ,λ)] ≤ ε(λ)

Construction with | k | << | m |

Idea: use OTP, but have key generated by some expanding procedure **G**

What do we want out of **G**?

Defining Pseudorandom Generator (PRG)

Syntax:

- Seed space S_{λ}
- Output space X_{λ}
- G: $S_{\lambda} \rightarrow X_{\lambda}$ (deterministic)

Correctness:

- $|s|=\log|S_{\lambda}|$, $|x|=\log|X_{\lambda}|$ polynomial in λ ,
- $\cdot |X_{\lambda}| > 2 \times |S_{\lambda}|$
- Running time of G polynomial in λ

Security of PRGs

Definition: $G:S_{\lambda} \rightarrow X_{\lambda}$ is a secure pseudorandom generator (PRG) if:

• For all n running in polynomial time, \exists negles,

Pr[
$$\lambda$$
 (G(s))=1:s \leftarrow S $_{\lambda}$]

- Pr[λ (x)=1:x \leftarrow X $_{\lambda}$] $\leq \varepsilon(\lambda)$

Secure PRG -> Ciphertext Indistinguishability

$$K_{\lambda} = S_{\lambda}$$

 $M_{\lambda} = X_{\lambda}$ (assumed to be $\{0,1\}^n$)
 $C_{\lambda} = X_{\lambda}$

Enc(k,m) = PRG(k)
$$\oplus$$
 m
Dec(k,c) = PRG(k) \oplus c

Intuitively, security is obvious:

- PRG(k) "looks" random, so should completely hide m
- However, formalizing this argument is non-trivial.

Solution: reductions

 Assume toward contradiction an adversary for the encryption scheme, derive an adversary for the PRG

Assume towards contradiction that there is a \(\biggream\) and non-negligible ε such that

Use \gtrsim to build \gtrsim will run \gtrsim as a subroutine, and pretend to be

Case 1: x = PRG(s) for a random seed s

• "sees" **IND-Exp**_b for a random bit **b**

Case 1: x = PRG(s) for a random seed s

• * "sees" **IND-Exp** for a random bit **b**

Case 2: x is truly random

• * "sees" OTP encryption

Case 2: x is truly random

- * "sees" OTP encryption
- Therefore **Pr[b'=1 | b=0] = Pr[b'=1 | b=1]**

Putting it together:

•
$$Pr[\lambda (G(s))=1:s \leftarrow \{0,1\}^{\lambda}] = \frac{1}{2}(1 \pm \epsilon(\lambda))$$

•
$$Pr[(x)=1:x \leftarrow \{0,1\}^n] = \frac{1}{2}$$

• Absolute Difference: $1/2\epsilon_{\bullet} \Rightarrow$ Contradiction!

Thm: If **G** is a secure PRG, then **(Enc,Dec)** is has ciphertext indistinguishability

An Alternate Proof: Hybrids

Idea: define sequence of "hybrid" experiments "between" **IND-Exp**₀ and **IND-Exp**₁

In each hybrid, make small change from previous hybrid

Hopefully, each small change is undetectable

Using triangle inequality, overall change from **IND**- $\mathbf{Exp_0}$ and $\mathbf{IND-Exp_1}$ is undetectable

An Alternate Proof: Hybrids

Hybrid 0: IND-Expo

Hybrid 1:

Hybrid 2:

Hybrid 3: IND-Exp₁


```
| Pr[b'=1 : IND-Exp_0]-Pr[b'=1 : IND-Exp_1] |
      = | Pr[b'=1 : Hyb 0] - Pr[b'=1 : Hyb 3] |
      ≤ | Pr[b'=1 : Hyb 0]-Pr[b'=1 : Hyb 1] |
        + | Pr[b'=1 : Hyb 1]-Pr[b'=1 : Hyb 2] |
        + | Pr[b'=1 : Hyb 2]-Pr[b'=1 : Hyb 3] |
If |Pr[b'=1:IND-Exp_0]-Pr[b'=1:IND-Exp_1]| \ge \varepsilon,
Then for some i=0,1,2,
      |Pr[b'=1:Hyb i]-Pr[b'=1:Hyb i+1]| \ge \varepsilon/3
```

Suppose \Re distinguishes **Hybrid 0** from **Hybrid 1** with advantage $\varepsilon/3$

Suppose \mathbb{R} distinguishes **Hybrid 0** from **Hybrid 1** with advantage $\varepsilon/3$ \Rightarrow Construct

Suppose $\rat{\mathbb{R}}$ distinguishes **Hybrid 0** from **Hybrid 1** with advantage $\rat{\epsilon/3}$ \Rightarrow Construct

If is given **G(s)** for a random **s**, sees **Hybrid 0**If is given x for a random **x**, sees **Hybrid 1**

Therefore, advantage of i is equal to advantage of i which is at least $\epsilon/3 \Rightarrow$ Contradiction!

Suppose \mathbb{R} distinguishes **Hybrid 1** from **Hybrid 2** with advantage $\varepsilon/3$

Suppose \Re distinguishes **Hybrid 2** from **Hybrid 3** with advantage $\varepsilon/3$

How do we build PRGs?

- Last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

Are LFSR's secure PRGs?

Are LFSR's secure PRGs?

No!

First **n** bits of output = initial state

PRGs should be Unpredictable

More generally, it should be hard, given some bits of output, to predict subsequent bits

Definition: $G:S_{\lambda} \to \{0,1\}^{n(\lambda)}$ is **unpredictable** if, for all polynomial time \mathfrak{L} and any $p=p(\lambda)$, \exists negligible ε such that:

$$Pr[G(s)_{p+1} \leftarrow F(G(s)_{[1,p]})] - \frac{1}{2} \leq \epsilon(\lambda)$$

PRGs should be Unpredictable

More generally, it should be hard, given some bits of output, to predict subsequent bits

Theorem: G is **unpredictable** iff it is **pseudorandom**

Pseudorandomness -> Unpredictability

Assume towards contradiction ****** s.t.

$$Pr[G(s)_{p+1} \leftarrow F(G(s)_{[1,p]})] - \frac{1}{2} > \epsilon$$

Pseudorandomness → Unpredictability

Pseudorandomness -> Unpredictability

Analysis:

- If x is random, $Pr[1 \oplus b \oplus x_{p+1} = 1] = \frac{1}{2}$
- If **x** is pseudorandom,

Pr[1
$$\oplus$$
b \oplus x_{p+1} = 1]
= Pr[G(s)_{p+1} \leftarrow $(G(s)_{[1,p]})$]
> (½ + ϵ) or < (½ - ϵ)

Unpredictability -> Pseudorandomness

Assume towards contradiction is s.t.

$$Pr[integration (G(s))=1:s ← {0,1}λ]$$

$$-Pr[integration (x)=1:x ← {0,1}†] > ε$$

Unpredictability → Pseudorandomness

Hybrids:

$$H_i: x_{[1,i]} \leftarrow G(s), x_{[i+1,t]} \leftarrow \{0,1\}^{t-i}$$

 H_0 : truly random x

H_t: pseudorandom **†**

Unpredictability → Pseudorandomness

Hybrids:

$$H_i: x_{[1,i]} \leftarrow G(s), x_{[i+1,t]} \leftarrow \{0,1\}^{t-i}$$

$$Pr[\lambda(x)=1:x\leftarrow H_s]$$

$$-Pr[\lambda(x)=1:x\leftarrow H_0] > \epsilon$$

$$Let q_i = Pr[\lambda(x)=1:x\leftarrow H_i]$$

Unpredictability → Pseudorandomness

Hybrids:

$$H_i: x_{[1,i]} \leftarrow G(s), x_{[i+1,t]} \leftarrow \{0,1\}^{t-i}$$

$$| q_t - q_0 | > \varepsilon$$

Let
$$q_i = Pr[x(x)=1:x \leftarrow H_i]$$

Unpredictability → Pseudorandomness

Hybrids:

$$H_i: x_{[1,i]} \leftarrow G(s), x_{[i+1,t]} \leftarrow \{0,1\}^{t-i}$$

By triangle inequality, there must exist an i s.t.

$$| q_i - q_{i-1} | > \varepsilon/t$$

Can assume wlog that

$$q_i - q_{i-1} > \varepsilon/t$$

Unpredictability → Pseudorandomness

Construct 🗼

Unpredictability → Pseudorandomness

Analysis:

- If $\mathbf{b} = \mathbf{G}(\mathbf{s})_i$, then \mathbf{k} sees \mathbf{H}_i
 - \Rightarrow and \uparrow outputs **1** with probability $\mathbf{q_i}$
 - \Rightarrow outputs **b=G(s)**_i with probability **q**_i

Unpredictability → Pseudorandomness

Analysis:

• If
$$\mathbf{b} = \mathbf{1} \oplus \mathbf{G}(\mathbf{s})_i$$
, then Define \mathbf{q}_i as $\mathbf{Pr}[$ outputs $\mathbf{1}$]

$$\frac{1}{2}(\mathbf{q}_i' + \mathbf{q}_i) = \mathbf{q}_{i-1} \Rightarrow \mathbf{q}_i' = 2\mathbf{q}_{i-1} - \mathbf{q}_i$$

$$\Rightarrow \mathbf{outputs} \mathbf{G}(\mathbf{s})_{[1,i]} \text{ with probability}$$

$$\mathbf{1} - \mathbf{q}_i' = \mathbf{1} + \mathbf{q}_i - 2\mathbf{q}_{i-1}$$

Unpredictability → Pseudorandomness

Analysis:

• Pr[\cdot] outputs $G(s)_i$]

= $\frac{1}{2} (q_i) + \frac{1}{2} (1 + q_i - 2q_{i-1})$ = $\frac{1}{2} + q_i - q_{i-1}$ > $\frac{1}{2} + \epsilon/t$

Any ideas?

Linearity

LFSR's are linear:

Linearity

LFSR's are linear:

Each output bit is a linear function of the initial state (that is, G(s) = A ● s (mod 2))

Any linear **G** cannot be a PRG

Can check if x is in column-span of A using linear algebra

Introducing Non-linearity

Non-linearity in the output:

Non-linear feedback:

LFSR period

Period = number of bits before state repeats

After one period, output sequence repeats

Therefore, should have extremely long period

- Ideally almost 2^λ
- Possible to design LFSR's with period 2^λ-1

Hardware vs Software

PRGs based on LFSR's are very fast in hardware

Unfortunately, not easily amenable to software

RC4

Fast software based PRG

Resisted attack for several years

No longer considered secure, but still widely used

RC4

State = permutation on [256] plus two integers

Permutation stored as 256-byte array S

```
Init(16-byte k):
    For i=0,...,255
        S[i] = i
        j = 0
        For i=0,...,255
            j = j + S[i] + k[i mod 16] (mod 256)
            Swap S[i] and S[j]
        Output (S,0,0)
```

RC4

```
GetBits(S,i,j):

i++ (mod 256)

j+= S[i] (mod 256)

Swap S[i] and S[j]

+ S[j] (mod 256)

Output (S,i,j), S[t]
```

New state

Next output byte

Insecurity of RC4

Second byte of output is slightly biased towards 0

- $Pr[second byte = 0^8] \approx 2/256$
- Should be 1/256

Means RC4 is not secure according to our definition

- a outputs 1 iff second byte is equal to 08
- Advantage: ≈ 1/256

Not a serious attack in practice, but demonstrates some structural weakness

Insecurity of RC4

Possible to extend attack to actually recover the input **k** in some use cases

- The seed is set to (IV, k) for some initial value IV
- Encrypt messages as RC4(IV,k)⊕m
- Also give IV to attacker
- Cannot show security assuming RC4 is a PRG

Can be used to completely break WEP encryption standard

Summary

Stream ciphers = secure encryption for arbitrary length, number of messages (though we did not completely prove it)

However, implementation difficulties due to having to maintaining state

Reminders

HW1 Due Feb 20th HW2 Due Feb 27th

PR1 Due March 10th