MATH 8253 Homework I

David DeMark

27 September 2017

1.)

Proposition. Let A be a ring, $S \subset A$ a multiplicative system, and $\tau : A \to A_S$ the localization homomorphism. Then, the induced map

$$\tau^* : \operatorname{Spec} A_S \to \bigcap_{f \in S} D(f) \subset \operatorname{Spec} A$$

is a homeomorphism.

Proof. • Well-Defined It is well-known that for any ring homomorphism, the pre-image of a prime ideal is a prime ideal. We let $\mathfrak{p} \triangleleft A_S$. We note that $\tau^{-1}(\mathfrak{p}) \neq \emptyset$ as $(\operatorname{Im}\tau)^c \subset A^{\times}$. Then, $\tau^{-1}(\mathfrak{p}) \cap S \neq \emptyset$, as else \mathfrak{p} contains a unit. Hence, $\tau^*(x_{\mathfrak{p}}) = x_{\tau^{-1}(\mathfrak{p})} \in \bigcap_{f \in S} D(f)$.

- Injectivity From our previous observation that $(\operatorname{Im}\tau)^c \subset A_S^{\times}$, we have that for any proper ideal $I \triangleleft A_S$, $I \subset \operatorname{Im}\tau$. Thus, for any two prime ideals $\mathfrak{p}_1, \mathfrak{p}_2$, we have that $\tau^{-1}(\mathfrak{p}_1\Delta\mathfrak{p}_2) \neq \emptyset$ and hence $\tau^{-1}(\mathfrak{p}_1)$ and $\tau^{-1}(\mathfrak{p}_2)$ are distinct. It follows τ^* is injective.
- Surjectivity We let $x_{\mathfrak{q}} \in \bigcap_{f \in S} D(f)$ and let $\mathfrak{q} = \langle x_1, \ldots \rangle$. We claim that $\tau^{-1} \langle \tau \mathfrak{q} \rangle = \mathfrak{q}$. That $\mathfrak{q} \subset \tau^{-1} \langle \tau \mathfrak{q} \rangle$ is obvious. We suppose $r \in \tau^{-1} \tau \mathfrak{q}$. Then, $\frac{r}{1} \in \langle \tau \mathfrak{q} \rangle = \mathfrak{q}[S^{-1}]$, so $\frac{r}{1} = \frac{q}{s}$ for some $q \in \mathfrak{q}$, $s \in S$. Then, s'(rs q) = 0 for some $s' \in S$. However, we must have that $(rs q) \in \mathfrak{q}$ as $s \notin \mathfrak{q}$, which then implies $rs \in \mathfrak{q}$ which in turn implies by primality $r \in \mathfrak{q}$ as $s \notin \mathfrak{q}$. Thus, $\tau^{-1} \langle \tau \mathfrak{q} \rangle = \mathfrak{q}$, so $\tau^* x_{\langle \tau \mathfrak{q} \rangle} = x_{\mathfrak{q}}$ and τ^* is surjective.
- Bicontinuity We let $E \subset A$. Then, $(\tau^*)^{-1}D(E) = D_S(\tau E)$, which is open, so τ^* is continuous. To show continuity of $(\tau^*)^{-1}$, we let $E \subset A_S$ and claim $\tau^*(V_S(E)) = V(\tau^{-1}(E))$. We note that if $E \subset \mathfrak{p} \triangleleft A_S$ then certainly $\tau^{-1}(E) \subset \tau^{-1}(\mathfrak{p})$, so $\tau^*V_S(E) \subset V(\tau^{-1}(E))$. On the other hand, for $\tau^{-1}(E) \subset \mathfrak{q} \triangleleft A$, we have that $E \subset \tau\tau^{-1}(E) \subset \langle \tau(\mathfrak{q}) \rangle = (\tau^*)^{-1}(\mathfrak{q})$, so $V(\tau^{-1}(E)) \subset \tau^*(V_S(E))$ and our proof is complete.

2.)

Proposition. Let X be an irreducible topological space such that there is some $x_0 \in X$ with $\overline{\{x_0\}} = X$. Then, for $\phi: X \to Y$ continuous, (i), $\overline{\mathrm{Im}(\phi)}$ is irreducible, and (ii) $\overline{\{\phi(x)\}} = \overline{\mathrm{Im}(\phi)}$

Proof. We begin with a quick lemma.

Lemma. With the hypotheses of the proposition, for any $u \subset \overline{\mathrm{Im}(\phi)}$ open, $\phi^{-1}(u) = \emptyset$ if and only if $u = \emptyset$.

Proof. One direction is obvious, we now show the other. We suppose $\phi^{-1}(u) = \underline{\emptyset}$. Then, $u \cap \operatorname{Im}(\phi) = \underline{\emptyset}$, so $\overline{\operatorname{Im}(\phi)} \setminus u$ is a closed subset of Y containing the image of ϕ and hence its closure, that is $\overline{\operatorname{Im}(\phi)} \subseteq \overline{\operatorname{Im}(\phi)} \setminus u$. Thus, $u = \underline{\emptyset}$.

Now, onward to the proposition.

- (i) We let $\emptyset \neq u, v \subset \overline{\text{Im}(\phi)}$ be open. Then, $\phi^{-1}(u), \phi^{-1}(v)$ are nonempty open sets in X by the lemma, and hence $\emptyset \neq \phi^{-1}(u) \cap \phi^{-1}(v) = \phi^{-1}(u \cap v)$. Thus, for any two non-empty open sets in $\overline{\text{Im}(\phi)}$, their intersection is non-empty and hence $\overline{\text{Im}(\phi)}$ is irreducible.
- (ii) We let $\phi(x) \notin v \subset \overline{\operatorname{Im}(\phi)}$ where v is open. Then, $x \notin \phi^{-1}(v)$, so $X \setminus \phi^{-1}(v)$ is a closed subset of X containing x and is hence the full set X. Thus, $\phi^{-1}(v)$ is empty, so by the lemma $v = \emptyset$. Hence, $\overline{\{\phi(x)\}} = \overline{\operatorname{Im}(\phi)}$

Corollary. Let $\phi: A \to A'$ be a ring homomorphism and $\phi^*: \operatorname{Spec} A' \to \operatorname{Spec} A$ the corresponding map of spectra. If $\operatorname{Spec} A'$ is irreducible with ξ its generic point, then the closure $\phi^*(\operatorname{Spec} A')$ is irreducible and $\phi^*(\xi)$ is a generic point of it.

Proof. Follows from the proposition, replacing Spec A' with X and ξ with x.

3.)

Proposition. For R a principal ideal domain with natural injection $\iota: R \to R[t]$ and induced map $\pi: \operatorname{Spec} R[t] \to \operatorname{Spec} R$, $\pi^{-1}(s) \approx \mathbb{A}^1_{k(s)}$.

Proof. We let $s \in \operatorname{Spec} R$ correspond to ideal $\mathfrak{p}_s \triangleleft R$. Then, $K(s) = (R/\mathfrak{p}_s)_{\mathfrak{p}_s} = R/\mathfrak{p}_s$ as in a PID, primality and maximality are equivalent. Thus, $\mathbb{A}^1_{k(s)} = \operatorname{Spec} k(s)[t] = \operatorname{Spec} (R/\mathfrak{p}_s)[t] = \operatorname{Spec} (R[t]/\mathfrak{p}_s[t]) \approx V(\mathfrak{p}_s[t]) \subset \mathbb{A}^1_R$. Thus, we need only show $V(\mathfrak{p}_s[t]) = \pi^{-1}(s)$. We note for $x \in \mathbb{A}^1_R$, $\pi(x) = s$ if and only if $\mathfrak{p}_s[t] \subset \mathfrak{q}_x \subset R[t]$, as \mathfrak{p}_s is maximal in R. This is precisely the set $V(\mathfrak{p}_s[t])$. This completes our proof

4.)

We let A be a ring

a.)

Proposition. For $f \in A$, we let $S(f) = \{g \in A : D(f) \subset D(g)\}$. Then S(f) is a multiplicative system containing $\{f, f^2, f^3, \ldots\}$.

Proof. We let $g, h \in S(f)$. Then, $D(gh) = D(g) \cap D(h) \supseteq D(f)$, so $gh \in S(f)$. We also note that as $A \to k(s)$ is a ring homomorphism, for $f \neq 0$ in k(s), we have $f^n \neq 0$ as otherwise k(s) would contain zero-devisors. Thus, for any $s \in D(f)$, $s \in D(f^n)$ for all n.

b.)

Proposition. The localization map $\sigma: A_f \to A_{S(f)}$ is an isomorphism.

Proof. We shall state and prove a lemma then show its equivalence to the proposition.

Lemma. For $D(f) \subset D(g)$, and $\rho_f : A \to A_f$ the localization map, $\rho_f(g)$ is a unit in A_f .

Proof. We rewrite our hypothesis as $V(f) \supset V(g)$ and have by the Nullstellensatz that $\operatorname{rad}(\langle f \rangle) = I(V(F)) \subset I(V(g)) = \operatorname{rad}(\langle g \rangle)$. In particular, we have that $f \in \operatorname{rad}(\langle g \rangle)$, so for some n, $f^n = gr$ with $r \in A$. Applying ρ_f to that equality yields $\frac{f^n}{1} = \frac{gr}{1}$, so dividing through by f^n gives the relation $\rho_f(g) \frac{r}{f^n} = 1$.

We have the below commutative diagram

$$A_f \xrightarrow{\sigma} A_{S(f)}$$

We note that as f is mapped by $\rho_{S(f)}$ to the unit group of $A_{S(f)}$, the localization universal mapping property implies that σ is the unique map for which this diagram commutes. On the other hand, as S(f) is mapped to the unit group of A_f by ρ_f , we have that there is a unique map ψ making the below diagram commutative.

$$A_f \xrightarrow{\sigma} A_{S(f)} \xrightarrow{\rho_f} A_f$$

However, as the identity is the unique map from A_f to A_f commuting with ρ_f , we must have that $\psi \sigma = \mathrm{id}_{A_f}$. This argument can be restated symmetrically, thus showing ψ and σ to be two-sided mutual inverses and hence isomorphisms.

c.)

Prompt. Define a contravariant functor $\mathcal{O}_X : \mathbb{D}(X) \to \mathbf{Ring}$ by

$$D(f) \mapsto A_{S(f)}$$
$$D(f) \subset D(g) \mapsto (A_{S(g)} \to A_{S(f)})$$

Response. We show functoriality. We first note that $D(f) \subset D(g)$ implies that for any $h \in S(g)$, $D(f) \subset D(g) \subset D(h)$, so $h \in S(f)$. Thus, $S(g) \subset S(f)$, so the morphism $A_{S(g)} \to A_{S(f)}$ is achieved simply by localizing $A_{S(g)}$ at S(f). We note that $A_{S(f)} \to A_{S(f)}$ is indeed the identity morphism in **Ring** and thus \mathcal{O}_X preserves identity. Finally, we suppose $D(f) \subset D(g) \subset D(h)$. Then, $A_{S(h)} \to A_{S(g)} \to A_{S(f)}$ is the composite of the localization of one set and a superset to it and hence the same map as $A_{S(h)} \to A_{S(f)}$ (this also follows immediately from a universal mapping property argument). Hence \mathcal{O}_X is indeed a contravariant functor.

d.)

Proposition. $\mathcal{O}_X^\#:\mathbb{D}^\#(X)\to\mathbf{Ring}$ is naturally equivalent to the composition $\mathcal{O}_X\circ F:\mathbb{D}^\#(X)\to\mathbf{Ring}$

Proof. We define our natural transformation by $n_{\bullet} \in \operatorname{Mor}_{\mathbb{D}^{\#}(X)}(\bullet, -)$ and $m_{\bullet} \in \operatorname{Mor}_{\mathbf{Ring}}(\bullet, -)$. We let $n_f = \operatorname{id}_f$ and $m_{A_f} = \sigma$ where σ is the isomorphism defined in part 4b. Then, we have the following diagram showing the paths of elements:

$$f \xrightarrow{\mathcal{O}^{\#}(X)} A_f$$

$$\downarrow^{n_f} \qquad \downarrow^{m_f}$$

$$f \xrightarrow{F} D(f) \xrightarrow{\mathcal{O}_X} A_{S(f)}$$

It is immediately clear this diagram commutes. As all of m_{\bullet} and n_{\bullet} are isomorphisms, our natural transformation is a natural equivalence.

5.)

a.)

Proposition. Let A be a ring, X its spectrum, $f \in A$, X_f the spectrum of A_f , and $\tau^* : X_f \to D(f) \subset X$ the homeomorphism of problem 1. Then τ^* induces a bijection between basic open sets $D(g) \subset D(f)$ and those $D_f(g) \subset X_f$.

Proof. We shall show that for $U \subset X_f$ open, $\tau^*(U)$ is basic if and only if U is basic. We first assume $\tau^*(U) = D(g)$ with $g \in A$. Then, as τ^* is a homeomorphism, $U = (\tau^*)^{-1}(D(g)) = D_f(\tau(g)) = D_f(\frac{g}{1})$. Conversely, consider $D_f(\frac{h}{f^n})$ where $n \geq 0$. We claim that $D_f(\frac{h}{f^n}) = D_f(\frac{h}{1})$. Indeed, as f^n is a unit in A_f , if $\frac{h}{f^n}$ maps to a nonzero element in k(s) for any $s \in X_f$, then $f^n \frac{h}{f^n}$ is necessarily nonzero. Thus, $D_f(\frac{h}{f^n}) = D_f(\frac{h}{1}) = \tau(D(h))$. This completes our proof. \square

b.)

Proposition 5.1. The restriction of \mathcal{O}_X to $\mathbb{D}(D(f))$ for some $f \in A$ is equivalent to $\mathcal{O}_{X_f} : \mathbb{D}(X_f) \to \mathbf{Ring}$.

Proof. I'm ultimately a bit confused by this... We can only define a natural transformation between functors between the *same* two categories \mathcal{C} and \mathcal{D} ... It seems like a natural interpretation to require a natural equivalence $F: \mathbb{D}(D(f)) \to X_f$ which commutes with \mathcal{O}_{X_f} and \mathcal{O}_X , that is a natural equivalence F such that the following commutes:

$$\mathbb{D}(D(f)) \xrightarrow{\mathcal{O}_X} \mathbf{Ring}$$

$$\downarrow_F \qquad \qquad \nearrow \\ \mathbb{D}(X_f)$$

We let $F(D(g)) = D_f(\frac{g}{1}) = (\tau^*)^{-1}(D(g))$, and $F(D(g) \hookrightarrow D(h)) = [(\tau^*)^{-1}(D(g)) \hookrightarrow (\tau^*)^{-1}(D(h))]$ (As τ is a homeomorphism, such inclusions are preserved). As F is in fact surjective (even better than essentially surjective!) in light of part a and is in its description explicitly bijective on morphisms, it is indeed a natural equivalence. Further, as $(\mathcal{O}_{X_f} \circ F)(D(g)) = (A_f)_g = A_g = \mathcal{O}_X(D(g))$ (4b,c), it is clear our diagram commutes on objects (that it commutes on morphisms is more or less trivially checked as each morphism set has cardinality at most one). This completes our "proof."

¹This feels like terrible and possibly not even well-defined notation, but I'm not sure how to express this otherwise?

6.)

Prompt. Find two presheaves, one of which (i) fails locality but satisfies gluing and the other of which (ii) satisfies locality but fails gluing.

- Response. (i) We let X be some Euclidean² space, say \mathbb{C}^n for $n \geq 1$ and define the "double-power" presheaf $P: \mathbf{Op}(X) \to \mathbf{Set}$ as follows: for an open set $U \subset X$, let $P(U) = \mathcal{P}(\mathcal{P}(U))$. For $V \subset U$, $S \in P(U)$, let $S|_V = \{s \in S: s \subset V\}$. Then, $S|_U = \{s \in S: s \subset U\} = S = \mathrm{id}_{\mathbf{Set}}(S)$, so the identity restriction axiom of presheaves is satisfied. In addition, for $S \in P(U)$, $W \subset V \subset U$, $(S|_V)|_W = \{s \in S: s \subset V\}|_W = \{s \in S: s \subset V \cap W\}$. As $V \cap W = W$ by assumption, this is the same set as $\{s \in S: s \subset W\} = S|_W$. Thus, P is indeed a presheaf. We claim it satisfies the gluing sheaf axiom: we let $\{U_i\}_{i \in I}$ be some open cover of X and $\{S_i\}_{i \in I}$ an element of $\prod_{i \in I} P(U_i)$ satisfying the intersection-compatibility condition of the gluing axiom. We claim that $S = \bigcup_{i \in I} S_i$ satisfies $S|_{U_i} = S_i$ for all i. Indeed, that $S_i \subset S|_{U_i}$ follows trivially from the way in which we defined restriction maps. To show the opposite containment, we suppose there exists some $\emptyset \neq W \in (S|_{U_i} \setminus S_i)$. Then, $W \in S_j$ for some j, and $W \subset U_i$ as otherwise it would not be an element of $S|_{U_i}$. Thus, $W \in (S_j|_{U_i \cap U_j} \setminus S_i|_{U_i \cap U_j})$, contradicting our assumption of compatibility, and showing P to satisfy the gluing sheaf axiom. However, we claim it does not satisfy the locality axiom. To see this, we let $\{B_i\}_{i \in I}$ be an open covering of X by unit balls, Y a ball of radius exceeding unity and Y the singleton set Y is not a sheaf.
 - (ii) (Note: I found reference to this one in Vakil, but proved its relevant properties myself) We let $X = \mathbb{C}$ and let \mathcal{B}_X be the "presheaf of bounded functions," that is, a functor from $\mathbb{D}(\mathbb{C})$ to **Ring** where $\mathcal{B}_X(u)$ is the ring of bounded functions on $u \subset \mathbb{C}$ open and $(u \subset v) \mapsto (f \mapsto f|_v)$, that is simple function restriction. Then, it is clear that \mathcal{B}_X is a presheaf, and it quite clearly satisfies the locality axiom as any non-zero function on \mathbb{C} certainly must restrict to a non-zero function on some set of an open cover. However, if we consider the function on \mathbb{C} f(x) = x and an open cover $\{u_i\}_{i \in I}$ consisting of bounded sets, we have that on each u_i , $f|_{u_i}$ is bounded, but $f \notin \mathcal{B}_X(\mathbb{C})$ as it is not bounded on the complex plane. Thus, \mathcal{B}_X fails to be a sheaf because it fails the gluing axiom.

 2 well, I think any topological space with cardinality greater than 1 *should* work, but let's stick to Euclidean so I can make my counter-example super concrete so there's less to poke holes in