Honors Mathematics III RC 2

CHEN Xiwen

UM-SJTU Joint Institute

May 29, 2018

Table of contents

Linear Maps

Summary

Definitions

Theorems and Lemmas

Examples

Assignment

Exercises

Inner Product Spaces

Dual Spaces

Linear Maps

Summary

Definitions
Theorems and Lemmas

Assignment

Exercises

Inner Product Spaces
Dual Spaces
Linear Maps
Operator Norm

Linear Maps — Summary

1. Concepts

- Linear and structure-preserving maps.
- Homomorphisms and isomorphisms.
- Coordinate map and dual space.
- Range and Kernel of a linear map.
- Bounded linear maps.
 - Least upper bound for an operator.
 - Operator norm.

2. Theorems and Lemmas

- Unique linear map on vector spaces (Theorem 1.4.4).
- "Basis maps to basis" (Theorem 1.4.11).
- Dimension.
 - Isomorphism (Lemma 1.4.13).
 - Dimension formula (1.4.14).
- Injective and surjective linear maps (Corollary 1.4.15).

Summary

Definitions

Theorems and Lemmas

Examples

Assignment

Exercises

Inner Product Spaces

Dual Spaces

Linear Maps

Linear and Structure-Preserving Maps

- ► Linear map L from (U, \oplus, \odot) to (V, \boxplus, \boxdot) (both real or both complex) is:
 - ▶ Homogeneous: $L(\lambda \odot u) = \lambda \boxdot L(u), \lambda \in \mathbb{F}$.
 - ▶ *Additive:* $L(u \oplus u') = L(u) \boxplus L(u')$.

Remark: For the conjugate map in \mathbb{C} , if \mathbb{C} is regarded as a complex vector space, is not linear:

$$a+bi\mapsto a-bi, \quad i(a+bi)=-b+ai\mapsto -b-ai\neq i(a-bi)$$

► Structure-preserving map (homomorphism):

$$\begin{array}{c|c}
U & \xrightarrow{L} & V \\
\downarrow^{\lambda \odot} & \downarrow^{\lambda \odot} \\
U & \xleftarrow{L^{-1}} & V
\end{array}$$

Homomorphism

A homomorphism $L \in \mathcal{L}(U, V)$ is said to be

- **▶** *isomorphism*: *L* is bijective;
- **endomorphism:** U = V;
- **automorphism:** U = V and L is bijective;
- epimorph: L is surjective;
- **monomorph:** *L* is injective.

Coordinate Map and Dual Space

► The *coordinate map* is linear and bijective:

$$\varphi: V \to \mathbb{F}^n, \quad v = \sum_{k=1}^n \lambda_k b_k \mapsto \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$

- **Dual space:** $V^* = \mathcal{L}(V, \mathbb{F})$.
- ► Dual basis:

$$b_k^*: V \to \mathbb{F}, \quad b_k^*(b_j) = \delta_{jk} = \left\{ egin{array}{ll} 1 & j = k \\ 0 & j
eq k \end{array} \right.$$

Range and Kernel

Range:

$$\operatorname{ran} L := \left\{ v \in V : \underset{u \in U}{\exists} v = Lu \right\}$$

► Kernel:

$$\ker L := \{u \in U : Lu = 0\}$$

Remark: $L \in \mathcal{L}(U, V)$ is injective iff $\ker L = \{0\}$.

$$Lx = L(x + y - y) = L(x + y) - Ly \neq 0 \text{ if } x \neq 0$$

This can be used to prove injective property.

Normed Vector Spaces and Bounded Linear Maps

▶ A linear map $L: U \to V$ between two normed vector spaces is **bounded** if $\exists c > 0$ s.t. $\|Lu\|_V \le c \cdot \|u\|_U$. **Remark.** Every linear map in a finite-dimensional vector space is bounded.

$$Lb_k = v_k \Rightarrow ||Lu|| = ||\sum \lambda_k v_k|| \le \sum |\lambda_k| \cdot ||v_k||$$

Operator norm:

$$\|L\| := \sup_{u \in U, \ u \neq 0} \frac{\|Lu\|_V}{\|u\|_U} = \sup_{u \in U, \ \|u\|_U = 1} \|Lu\|_V$$

Summary

Theorems and Lemmas

Examples

Assignment

Exercises

Inner Product Spaces

Linear Maps

Homomorphisms

Theorem 1.4.4.

For a basis (b_1, \ldots, b_n) of U and every $(v_1, \ldots, v_n) \in V^n$, $\exists ! L : U \to V \text{ s.t. } Lb_k = v_k$.

Proof.

Uniqueness:

$$Lu = \sum_{k=1}^{n} \lambda_k L(b_k) = \sum_{k=1}^{n} \lambda_k v_k$$
$$= \sum_{k=1}^{n} \lambda_k M(b_k) = Mu$$

Existence: Define a map L by $Lu = \sum_{k=1}^{n} \lambda_k v_k$ and show that L is linear.

Isomorphisms

Theorem 1.4.11.

 $L \in \mathcal{L}(U, V)$, where U, V are finite-dimensional, is an isomorphism iff it maps from basis to basis.

Proof.

 (\Rightarrow)

► A representation for each *y* exists:

$$y = L\left(\sum_{k=1}^{n} \lambda_k b_k\right) = \sum_{k=1}^{n} \lambda_k \cdot Lb_k$$

► This representation is unique:

$$y = \sum_{k=1}^{n} \lambda_k \cdot Lb_k = \sum_{k=1}^{n} \mu_k \cdot Lb_k \implies L^{-1}y = \sum_{k=1}^{n} \lambda_k b_k$$
$$= \sum_{k=1}^{n} \mu_k b_k$$

Isomorphisms

Theorem 1.4.11.

 $L \in \mathcal{L}(U, V)$, where U, V are finite-dimensional, is an isomorphism iff it maps from basis to basis.

Proof (continued).

 (\Leftarrow)

- ▶ Surjective: $\forall y \in V, y = \sum \lambda_k \cdot Lb_k$ is the image of $x = \sum \lambda_k b_k$.
- ▶ Injective: $\ker L = \{0\}$

$$Lx = \sum \lambda_k \cdot Lb_k = 0 \Leftrightarrow \lambda_k = 0$$

Dimension

Lemma 1.4.13.

Isomorphic is equivalent to having the same dimension: $U\cong V\Leftrightarrow \dim\ U=\dim\ V$.

Dimension Formula 1.4.14.

 $\dim \operatorname{ran} L + \dim \ker L = \dim U, \dim U < \infty.$

Proof.

- Basis of ker $L:(a_1,\ldots,a_r)$ Basis of $U:(a_1,\ldots,a_r,a_{r+1},\ldots,a_n)$.
- $ightharpoonup (La_{r+1}, \ldots, La_n)$ is independent and forms a basis of ran L.

Corollary 1.4.15.

If dim $U = \dim V$, then for a linear map $L \in \mathcal{L}(U, V)$: injective \Leftrightarrow surjective.

The Operator Norm

Theorem 1.4.19.

The *operator norm* $\|L\| = \sup_{u \in U, u \neq 0} \frac{\|Lu\|_V}{\|u\|_U}$ defines a norm:

- ▶ $||L|| \ge 0$.
- $||\lambda \cdot L|| = |\lambda| \cdot ||L||.$
- $||L_1 + L_2|| \le ||L_1|| + ||L_2||.$

Additionally,

 $||L_1L_2|| \leq ||L_1|| \cdot ||L_2||, \quad L_1 \in \mathcal{L}(U,V), \quad L_2 \in \mathcal{L}(V,W).$

Summary

Definitions

Theorems and Lemmas

Examples

Assignment

Exercises

Inner Product Spaces

Dual Spaces

Linear Maps

Example 1.

Suppose that a vector space $V=V_1\oplus V_2$. L is a linear map on V and

$$\forall v_1 \in V_1, \quad \forall v_2 \in V_2 \Rightarrow L(v_1 + v_2) = v_1$$

Find ran L and ker L.

Example 1.

Suppose that a vector space $V=V_1\oplus V_2$. L is a linear map on V and

$$\forall v_1 \in V_1, \quad \forall v_2 \in V_2 \Rightarrow L(v_1 + v_2) = v_1$$

Find ran L and ker L.

Solution.

- $v_2 = 0 \Rightarrow \forall v_1 \in V_1, Lv_1 = v_1 = 0 \text{ iff } v_1 = 0.$
- $\forall v \in V, v = v_1 + v_2, Lv = v_1.$

Therefore ker $L = V_2$, ran $L = V_1$.

Example 2.

Suppose L is a linear map from U to V. V' is a subspace of V and $V' \subset \operatorname{ran} L$. Show that

- 1. $L^{-1}(V') := \{u \in U | L(u) \in V'\}$ is a subspace of U.
- 2. dim V' + dim ker L = dim $L^{-1}(V')$.

Example 2.

Suppose L is a linear map from U to V. V' is a subspace of V and $V' \subset \operatorname{ran} L$. Show that

- 1. $L^{-1}(V') := \{u \in U | L(u) \in V'\}$ is a subspace of U.
- 2. dim V' + dim ker L = dim $L^{-1}(V')$.

Solution.

- 1. \triangleright 0 \in $L^{-1}(V')$.
 - $u, v \in L^{-1}(V') \Rightarrow L(u+v) = Lu + Lv \in V' \Rightarrow (u+v) \in L^{-1}(V').$
 - $V \in L^{-1}(V') \Rightarrow L(\lambda v) \in V' \Rightarrow \lambda v \in L^{-1}(V').$

Example 2.

Suppose L is a linear map from U to V. V' is a subspace of V and $V' \subset \operatorname{ran} L$. Show that

- 1. $L^{-1}(V') := \{u \in U | L(u) \in V'\}$ is a subspace of U.
- 2. dim $V' + \dim \ker L = \dim L^{-1}(V')$.

Solution (continued).

2. Define

$$L': L^{-1}(V) \to V', \quad L'(v) \mapsto L(v)$$

then dim $L^{-1}(V')$ – dim V' = dim ker L' = ker L. **Note:** $0 \in V'$ implies ker L = ker L'.

Exercise 1.4 (iii).

```
\begin{split} \sin \alpha_1 + \sin \alpha_2 + \sin \alpha_3 + \sin \alpha_4 &= 0 \\ \cos \alpha_1 + \cos \alpha_2 + \cos \alpha_3 + \cos \alpha_4 &= 0 \\ \sin 2\alpha_1 + \sin 2\alpha_2 + \sin 2\alpha_3 + \sin 2\alpha_4 &= 0 \\ \cos 2\alpha_1 + \cos 2\alpha_2 + \cos 2\alpha_3 + \cos 2\alpha_4 &= 0 \\ 3\sin \alpha_1 + \sin \alpha_2 - \sin \alpha_3 - 3\sin \alpha_4 &= 0 \\ 3\cos \alpha_1 + \cos \alpha_2 - \cos \alpha_3 - 3\cos \alpha_4 &= 0 \\ 3\sin 2\alpha_1 + \sin 2\alpha_2 - \sin 2\alpha_3 - 3\sin 2\alpha_4 &= 0 \\ 3\cos 2\alpha_1 + \cos 2\alpha_2 - \cos 2\alpha_3 - 3\cos 2\alpha_4 &= 0 \end{split}
```

Exercise 1.4 (iii).

$$\begin{cases} \sin\alpha_1 + \sin\alpha_2 + \sin\alpha_3 + \sin\alpha_4 = 0 \\ \cos\alpha_1 + \cos\alpha_2 + \cos\alpha_3 + \cos\alpha_4 = 0 \\ \sin2\alpha_1 + \sin2\alpha_2 + \sin2\alpha_3 + \sin2\alpha_4 = 0 \\ \cos2\alpha_1 + \cos2\alpha_2 + \cos2\alpha_3 + \cos2\alpha_4 = 0 \\ 3\sin\alpha_1 + \sin\alpha_2 - \sin\alpha_3 - 3\sin\alpha_4 = 0 \\ 3\cos\alpha_1 + \cos\alpha_2 - \cos\alpha_3 - 3\cos\alpha_4 = 0 \\ 3\sin2\alpha_1 + \sin2\alpha_2 - \sin2\alpha_3 - 3\sin2\alpha_4 = 0 \\ 3\cos2\alpha_1 + \cos2\alpha_2 - \cos2\alpha_3 - 3\cos2\alpha_4 = 0 \end{cases}$$

Using Euler's formula $e^{i\theta}=\cos \theta+i\sin \theta$, we then obtain

$$\begin{cases} e^{i\alpha_{1}} + e^{i\alpha_{2}} + e^{i\alpha_{3}} + e^{i\alpha_{4}} = 0 \\ 3e^{i\alpha_{1}} + e^{i\alpha_{2}} - e^{i\alpha_{3}} - 3e^{i\alpha_{4}} = 0 \\ e^{2i\alpha_{1}} + e^{2i\alpha_{2}} + e^{2i\alpha_{3}} + e^{2i\alpha_{4}} = 0 \\ 3e^{2i\alpha_{1}} + e^{2i\alpha_{2}} - e^{2i\alpha_{3}} - 3e^{2i\alpha_{4}} = 0 \end{cases} \Rightarrow \begin{cases} 2e^{i\alpha_{1}} + e^{i\alpha_{2}} = e^{i\alpha_{4}} \\ 2e^{2i\alpha_{1}} + e^{2i\alpha_{2}} = e^{2i\alpha_{4}} \end{cases}$$

Exercise 1.7

- (i). To show that U is a subspace of the real vector space \mathbb{R}^4 ,
 - \triangleright 0 \in U.
 - $\triangleright \forall u_1, u_2 \in U \Rightarrow u_1 + u_2 \in U.$
 - $\forall u \in U, \lambda \in \mathbb{R} \Rightarrow \lambda u \in U.$
- (ii).

Summary

Definitions

Theorems and Lemmas

Examples

Assignment

Exercises

Inner Product Spaces

Dual Spaces

Linear Maps

Inner Product Spaces

Exercise 1. Let V be the space of continuous complex-valued functions on the interval $[-\pi, \pi]$. If $f, g \in V$, we define

$$\langle f, g \rangle = \int_{-\pi}^{\pi} \overline{f(t)} g(t) dt$$

and choose a basis

$$\mathcal{B} = \left\{ f_n(t) = \frac{1}{\sqrt{2\pi}} e^{int} \right\}_{n=-\infty}^{\infty}$$

- (1). Show that the basis is an orthonormal basis.
- (2). Represent the function $h: \mathbb{R} \to \mathbb{R}$, h(t) = t as a linear combination of this basis.

Inner Product Spaces

Exercise 2. Let V be a finite dimensional space over \mathbb{R} , with an inner product $\langle \cdot, \cdot \rangle$. Let $\{v_1, \ldots, v_m\}$ be a set of elements of V, of norm 1, and mutually perpendicular (i.e., $\langle v_i, v_j \rangle = 0$ if $i \neq j$). Assume that for every $v \in V$ we have

$$||v||^2 = \sum_{i=1}^m \langle v_i, v \rangle^2$$

Show that $\{v_1, \ldots, v_m\}$ is a basis of V.

Summary

Definitions

Theorems and Lemmas

Examples

Assignment

Exercises

Inner Product Spaces

Dual Spaces

Linear Maps

Dual Spaces

Exercise 3. Let V be a vector space of dimension n. Let V^{**} be the dual space of V^* , where V^* is the dual space for V. Show that each element $v \in V$ gives rise to an element λ_v in V^{**} and that the map $v \mapsto \lambda_v$ gives an isomorphism of V and V^{**} .

Summary

Definitions

Theorems and Lemmas

Examples

Assignment

Exercises

Inner Product Spaces

Dual Spaces

Linear Maps

Exercise 4. Suppose there are two linear maps A and B satisfying $AB - BA = \mathrm{id}$. Show that for any $k \in \mathbb{N}_+$, we have

$$A^kB - BA^k = kA^{k-1}$$

Exercise 5. Suppose L is a linear map in a finite dimensional vector space V satisfying $L^2 = L$. Show that

- (1). Any $v \in V$ has a unique representation $v = v_1 + v_2$, where $Lv_1 = v_1$ and $Lv_2 = 0$.
- (2). If Lv = -v for some $v \in V$, then v = 0.

Summary
Definitions
Theorems and Lemmas
Examples

Assignment

Exercises

Inner Product Spaces
Dual Spaces
Linear Maps

Operator Norm

Exercise 6. (*Column-sum Norm*) Show that the operator norm induced by

$$||x||_1 = \sum_{j=1}^n |x_j|$$

is

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$

where $x = (x_1, ..., x_n)^T$ is a vector in \mathbb{R}^n and A is a matrix representing a linear map.

P.S.

Some statements and proofs in the slides above are not mathematically rigorous. I am merely trying to give you a general idea about what is going on. Please refer to the course slides if you want to check the details! Thanks for your attention!