- 1. <u>13.1 Introduction to Magnetism</u>
- 2. <u>13.2 Magnets</u>
- 3. <u>13.3 Ferromagnets and Electromagnets</u>
- 4. <u>13.4 Magnetic Fields and Magnetic Field Lines</u>
- 5. <u>13.5 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field</u>
- 6. <u>13.6 Force on a Moving Charge in a Magnetic Field:</u> <u>Examples and Applications</u>
- 7. <u>13.7 Magnetic Force on a Current-Carrying Conductor</u>
- 8. <u>13.8 Torque on a Current Loop: Motors and Meters</u>
- 9. 13.9 Magnetic Fields Produced by Currents: Ampere's Law
- 10. 13.10 Magnetic Force between Two Parallel Conductors

13.1 - Introduction to Magnetism class="introduction"

The magnificen t spectacle of the Aurora Borealis, or northern lights, glows in the northern sky above Bear Lake near Eielson Air Force Base, Alaska. Shaped by the Earth's magnetic field, this light is produced by radiation spewed from solar storms. (credit: Senior Airman Joshua Strang, via Flickr)

One evening, an Alaskan sticks a note to his refrigerator with a small magnet. Through the kitchen window, the Aurora Borealis glows in the night sky. This grand spectacle is shaped by the same force that holds the note to the refrigerator.

People have been aware of magnets and magnetism for thousands of years. The earliest records date to well before the time of Christ, particularly in a region of Asia Minor called Magnesia (the name of this region is the source of words like *magnetic*). Magnetic rocks found in Magnesia, which is now part of western Turkey, stimulated interest during ancient times. A practical application for magnets was found later, when they were employed as navigational compasses. The use of magnets in compasses resulted not only in improved long-distance sailing, but also in the names of "north" and "south" being given to the two types of magnetic poles.

Today magnetism plays many important roles in our lives. Physicists' understanding of magnetism has enabled the development of technologies that affect our everyday lives. The iPod in your purse or backpack, for example, wouldn't have been possible without the applications of magnetism and electricity on a small scale.

The discovery that weak changes in a magnetic field in a thin film of iron and chromium could bring about much larger changes in electrical resistance was one of the first large successes of nanotechnology. The 2007 Nobel Prize in Physics went to Albert Fert from France and Peter Grunberg from Germany for this discovery of *giant magnetoresistance* and its applications to computer memory.

All electric motors, with uses as diverse as powering refrigerators, starting cars, and moving elevators, contain magnets. Generators, whether producing hydroelectric power or running bicycle lights, use magnetic fields. Recycling facilities employ magnets to separate iron from other refuse. Hundreds of millions of dollars are spent annually on magnetic containment of fusion as a future energy source. Magnetic resonance imaging (MRI) has become an important diagnostic tool in the field of medicine, and the use of magnetism to explore brain activity is a subject of contemporary research and development. The list of applications also includes computer hard drives, tape recording, detection of inhaled asbestos, and levitation of high-speed trains. Magnetism is used to explain atomic energy levels, cosmic rays, and charged particles trapped in the Van Allen belts. Once again, we will find all these disparate phenomena are linked by a small number of underlying physical principles.

13.2 - Magnets

- Describe the difference between the north and south poles of a magnet.
- Describe how magnetic poles interact with each other.

Magnets come in various shapes, sizes, and strengths. All have both a north pole and a south pole. There is never an isolated pole (a monopole).

All magnets attract iron, such as that in a refrigerator door. However, magnets may attract or repel other magnets. Experimentation shows that all magnets have two poles. If freely suspended, one pole will point toward the north. The two poles are thus named the **north magnetic pole** and the **south magnetic pole** (or more properly, north-seeking and south-seeking poles, for the attractions in those directions).

Note:

Universal Characteristics of Magnets and Magnetic Poles

It is a universal characteristic of all magnets that *like poles repel and unlike poles attract*. (Note the similarity with electrostatics: unlike charges attract and like charges repel.)

Further experimentation shows that it is *impossible to separate north and south poles* in the manner that + and – charges can be separated.

One end of a bar magnet is suspended from a thread that points toward north. The magnet's two poles are labeled N and S for north-seeking and south-seeking poles, respectively.

Note:

Misconception Alert: Earth's Geographic North Pole Hides an S

The Earth acts like a very large bar magnet with its south-seeking pole near the geographic North Pole. That is why the north pole of your compass is attracted toward the geographic north pole of the Earth—because the magnetic pole that is near the geographic North Pole is actually a south magnetic pole! Confusion arises because the geographic term "North Pole" has come to be used (incorrectly) for the magnetic pole that is near the

North Pole. Thus, "North magnetic pole" is actually a misnomer—it should be called the South magnetic pole.

Unlike poles attract, whereas like poles repel.

North and south poles always occur in pairs. Attempts

```
to separate them result in more pairs of poles. If we continue to split the magnet, we will eventually get down to an iron atom with a north pole and a south pole—these, too, cannot be separated.
```

The fact that magnetic poles always occur in pairs of north and south is true from the very large scale—for example, sunspots always occur in pairs that are north and south magnetic poles—all the way down to the very small scale. Magnetic atoms have both a north pole and a south pole, as do many types of subatomic particles, such as electrons, protons, and neutrons.

Section Summary

- Magnetism is a subject that includes the properties of magnets, the effect of the magnetic force on moving charges and currents, and the creation of magnetic fields by currents.
- There are two types of magnetic poles, called the north magnetic pole and south magnetic pole.
- North magnetic poles are those that are attracted toward the Earth's geographic north pole.
- Like poles repel and unlike poles attract.
- Magnetic poles always occur in pairs of north and south—it is not possible to isolate north and south poles.

Glossary

north magnetic pole

the end or the side of a magnet that is attracted toward Earth's geographic north pole

south magnetic pole

the end or the side of a magnet that is attracted toward Earth's geographic south pole

13.3 - Ferromagnets and Electromagnets

- Define ferromagnet.
- Describe the role of magnetic domains in magnetization.
- Explain the significance of the Curie temperature.
- Describe the relationship between electricity and magnetism.

Ferromagnets

Only certain materials, such as iron, cobalt, nickel, and gadolinium, exhibit strong magnetic effects. Such materials are called **ferromagnetic**, after the Latin word for iron, *ferrum*. A group of materials made from the alloys of the rare earth elements are also used as strong and permanent magnets; a popular one is neodymium. Other materials exhibit weak magnetic effects, which are detectable only with sensitive instruments. Not only do ferromagnetic materials respond strongly to magnets (the way iron is attracted to magnets), they can also be **magnetized** themselves—that is, they can be induced to be magnetic or made into permanent magnets.

An unmagnetized piece of iron is placed between two magnets, heated, and then cooled, or simply tapped when cold. The iron becomes a permanent magnet with the poles aligned as shown: its south pole is adjacent to the north pole of the original magnet, and its north pole is adjacent to the south pole of the original magnet. Note that there are attractive forces between the magnets.

When a magnet is brought near a previously unmagnetized ferromagnetic material, it causes local magnetization of the material with unlike poles closest, as in [link]. (This results in the attraction of the previously unmagnetized material to the magnet.) What happens on a microscopic scale is illustrated in [link]. The regions within the material called **domains** act like small bar magnets. Within domains, the poles of individual atoms are aligned. Each atom acts like a tiny bar magnet. Domains are small and randomly oriented in an unmagnetized ferromagnetic object. In response to an external magnetic field, the domains may grow to millimeter size, aligning themselves as shown in [link](b). This induced magnetization can be made permanent if the material is heated and then cooled, or simply tapped in the presence of other magnets.

(a) An unmagnetized piece of iron (or other ferromagnetic material) has randomly oriented domains. (b) When magnetized by an external field, the domains show greater alignment, and some grow at the expense of others. Individual atoms are aligned within domains; each atom acts like a tiny bar magnet.

Conversely, a permanent magnet can be demagnetized by hard blows or by heating it in the absence of another magnet. Increased thermal motion at higher temperature can disrupt and randomize the orientation and the size of

the domains. There is a well-defined temperature for ferromagnetic materials, which is called the **Curie temperature**, above which they cannot be magnetized. The Curie temperature for iron is $1043~\rm K~(770^{\circ}C)$, which is well above room temperature. There are several elements and alloys that have Curie temperatures much lower than room temperature and are ferromagnetic only below those temperatures.

Electromagnets

Early in the 19th century, it was discovered that electrical currents cause magnetic effects. The first significant observation was by the Danish scientist Hans Christian Oersted (1777–1851), who found that a compass needle was deflected by a current-carrying wire. This was the first significant evidence that the movement of charges had any connection with magnets. **Electromagnetism** is the use of electric current to make magnets. These temporarily induced magnets are called **electromagnets**. Electromagnets are employed for everything from a wrecking yard crane that lifts scrapped cars to controlling the beam of a 90-km-circumference particle accelerator to the magnets in medical imaging machines (See [link]).

Instrument for magnetic resonance imaging (MRI). The device uses a superconducting

cylindrical coil for the main magnetic field. The patient goes into this "tunnel" on the gurney. (credit: Bill McChesney, Flickr)

[link] shows that the response of iron filings to a current-carrying coil and to a permanent bar magnet. The patterns are similar. In fact, electromagnets and ferromagnets have the same basic characteristics—for example, they have north and south poles that cannot be separated and for which like poles repel and unlike poles attract.

Iron filings near (a) a current-carrying coil and (b) a magnet act like tiny compass needles, showing the shape of their fields. Their response to a current-carrying coil and a permanent magnet is seen to be very similar, especially near the ends of the coil and the magnet.

Combining a ferromagnet with an electromagnet can produce particularly strong magnetic effects. (See [link].) Whenever strong magnetic effects are needed, such as lifting scrap metal, or in particle accelerators, electromagnets are enhanced by ferromagnetic materials. Limits to how strong the magnets can be made are imposed by coil resistance (it will overheat and melt at sufficiently high current), and so superconducting magnets may be employed. These are still limited, because superconducting properties are destroyed by too great a magnetic field.

An electromagnet with a ferromagnetic core can produce very strong magnetic effects. Alignment of domains in the core produces a magnet, the poles of which are aligned with the electromagnet

•

[link] shows a few uses of combinations of electromagnets and ferromagnets. Ferromagnetic materials can act as memory devices, because the orientation of the magnetic fields of small domains can be reversed or erased. Magnetic information storage on videotapes and computer hard drives are among the most common applications. This property is vital in our digital world.

An electromagnet induces regions of permanent magnetism on a floppy disk coated with a ferromagnetic material. The information stored here is digital (a region is either magnetic or not); in other applications, it can be analog

(with a varying strength), such as on audiotapes.

Current: The Source of All Magnetism

An electromagnet creates magnetism with an electric current. In later sections we explore this more quantitatively, finding the strength and direction of magnetic fields created by various currents. But what about ferromagnets? [link] shows models of how electric currents create magnetism at the submicroscopic level. (Note that we cannot directly observe the paths of individual electrons about atoms, and so a model or visual image, consistent with all direct observations, is made. We can directly observe the electron's orbital angular momentum, its spin momentum, and subsequent magnetic moments, all of which are explained with electric-current-creating subatomic magnetism.) Currents, including those associated with other submicroscopic particles like protons, allow us to explain ferromagnetism and all other magnetic effects. Ferromagnetism, for example, results from an internal cooperative alignment of electron spins, possible in some materials but not in others.

Crucial to the statement that electric current is the source of all magnetism is the fact that it is impossible to separate north and south magnetic poles. (This is far different from the case of positive and negative charges, which are easily separated.) A current loop always produces a magnetic dipole—that is, a magnetic field that acts like a north pole and south pole pair. Since isolated north and south magnetic poles, called **magnetic monopoles**, are not observed, currents are used to explain all magnetic effects. If magnetic monopoles did exist, then we would have to modify this underlying connection that all magnetism is due to electrical current. There is no known reason that magnetic monopoles should not exist—they are simply never observed—and so searches at the subnuclear level continue. If they do not exist, we would like to find out why not. If they do exist, we would like to see evidence of them.

Note:

Electric Currents and Magnetism

Electric current is the source of all magnetism.

(a) In the planetary model of the atom, an electron orbits a nucleus, forming a closed-current loop and producing a magnetic field with a north pole and a south pole. (b) Electrons have spin and can be crudely pictured as rotating charge, forming a current that produces a magnetic field with a north pole and a south pole. Neither the planetary model nor the image of a spinning electron is completely consistent with modern physics. However, they do provide a useful way of understanding phenomena.

Note:

PhET Explorations: Magnets and Electromagnets

Explore the interactions between a compass and bar magnet. Discover how you can use a battery and wire to make a magnet! Can you make it a stronger magnet? Can you make the magnetic field reverse?

Magnets and Electromagnet

<u>S</u>

Section Summary

- Magnetic poles always occur in pairs of north and south—it is not possible to isolate north and south poles.
- All magnetism is created by electric current.
- Ferromagnetic materials, such as iron, are those that exhibit strong magnetic effects.
- The atoms in ferromagnetic materials act like small magnets (due to currents within the atoms) and can be aligned, usually in millimeter-sized regions called domains.
- Domains can grow and align on a larger scale, producing permanent magnets. Such a material is magnetized, or induced to be magnetic.
- Above a material's Curie temperature, thermal agitation destroys the alignment of atoms, and ferromagnetism disappears.
- Electromagnets employ electric currents to make magnetic fields, often aided by induced fields in ferromagnetic materials.

Glossary

ferromagnetic

materials, such as iron, cobalt, nickel, and gadolinium, that exhibit strong magnetic effects

magnetized

to be turned into a magnet; to be induced to be magnetic

domains

regions within a material that behave like small bar magnets

Curie temperature

the temperature above which a ferromagnetic material cannot be magnetized

electromagnetism

the use of electrical currents to induce magnetism

electromagnet

an object that is temporarily magnetic when an electrical current is passed through it

magnetic monopoles

an isolated magnetic pole; a south pole without a north pole, or vice versa (no magnetic monopole has ever been observed)

13.4 - Magnetic Fields and Magnetic Field Lines

• Define magnetic field and describe the magnetic field lines of various magnetic fields.

Einstein is said to have been fascinated by a compass as a child, perhaps musing on how the needle felt a force without direct physical contact. His ability to think deeply and clearly about action at a distance, particularly for gravitational, electric, and magnetic forces, later enabled him to create his revolutionary theory of relativity. Since magnetic forces act at a distance, we define a **magnetic field** to represent magnetic forces. The pictorial representation of **magnetic field lines** is very useful in visualizing the strength and direction of the magnetic field. As shown in [link], the **direction of magnetic field lines** is defined to be the direction in which the north end of a compass needle points. The magnetic field is traditionally called the **B-field**.

Magnetic field lines are defined to have the direction that a small compass points when placed at a location. (a) If small compasses are used to map the magnetic field around a bar magnet, they will point in the directions shown: away from the north pole of the magnet, toward the south pole of the magnet. (Recall that the Earth's north magnetic pole is really a south pole in terms of definitions of poles on a bar magnet.) (b) Connecting the arrows gives continuous magnetic field lines. The strength of the field is proportional to the closeness (or density) of the lines. (c) If the interior of the magnet could be probed, the field lines would be found to form continuous closed loops.

Small compasses used to test a magnetic field will not disturb it. (This is analogous to the way we tested electric fields with a small test charge. In both cases, the fields represent only the object creating them and not the probe testing them.) [link] shows how the magnetic field appears for a current loop and a long straight wire, as could be explored with small compasses. A small compass placed in these fields will align itself parallel to the field line at its location, with its north pole pointing in the direction of *B*. Note the symbols used for field into and out of the paper.

Small compasses could be used to map the fields shown here. (a) The magnetic field of a circular current loop is similar to that of a bar magnet. (b) A long and straight wire creates a field with magnetic field lines forming circular loops. (c) When the wire is in the plane of the paper, the field is perpendicular to the paper. Note that the symbols used for the field pointing inward (like the tail of an arrow) and the field pointing outward (like the tip of an arrow).

Note:

Making Connections: Concept of a Field

A field is a way of mapping forces surrounding any object that can act on another object at a distance without apparent physical connection. The field represents the object generating it. Gravitational fields map gravitational forces, electric fields map electrical forces, and magnetic fields map magnetic forces.

Extensive exploration of magnetic fields has revealed a number of hardand-fast rules. We use magnetic field lines to represent the field (the lines are a pictorial tool, not a physical entity in and of themselves). The properties of magnetic field lines can be summarized by these rules:

- 1. The direction of the magnetic field is tangent to the field line at any point in space. A small compass will point in the direction of the field line.
- 2. The strength of the field is proportional to the closeness of the lines. It is exactly proportional to the number of lines per unit area perpendicular to the lines (called the areal density).
- 3. Magnetic field lines can never cross, meaning that the field is unique at any point in space.
- 4. Magnetic field lines are continuous, forming closed loops without beginning or end. They go from the north pole to the south pole.

The last property is related to the fact that the north and south poles cannot be separated. It is a distinct difference from electric field lines, which begin and end on the positive and negative charges. If magnetic monopoles existed, then magnetic field lines would begin and end on them.

Section Summary

- Magnetic fields can be pictorially represented by magnetic field lines, the properties of which are as follows:
- 1. The field is tangent to the magnetic field line.
- 2. Field strength is proportional to the line density.
- 3. Field lines cannot cross.
- 4. Field lines are continuous loops.

Conceptual Questions

Exercise:

Problem:

List the ways in which magnetic field lines and electric field lines are similar. For example, the field direction is tangent to the line at any point in space. Also list the ways in which they differ. For example, electric force is parallel to electric field lines, whereas magnetic force on moving charges is perpendicular to magnetic field lines.

Exercise:

Problem:

Noting that the magnetic field lines of a bar magnet resemble the electric field lines of a pair of equal and opposite charges, do you expect the magnetic field to rapidly decrease in strength with distance from the magnet? Is this consistent with your experience with magnets?

Exercise:

Problem:

Is the Earth's magnetic field parallel to the ground at all locations? If not, where is it parallel to the surface? Is its strength the same at all locations? If not, where is it greatest?

Glossary

magnetic field

the representation of magnetic forces

B-field

another term for magnetic field

magnetic field lines

the pictorial representation of the strength and the direction of a magnetic field

direction of magnetic field lines the direction that the north end of a compass needle points

13.5 - Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field

- Describe the effects of magnetic fields on moving charges.
- Use the right hand rule 1 to determine the velocity of a charge, the direction of the magnetic field, and the direction of the magnetic force on a moving charge.
- Calculate the magnetic force on a moving charge.

What is the mechanism by which one magnet exerts a force on another? The answer is related to the fact that all magnetism is caused by current, the flow of charge. *Magnetic fields exert forces on moving charges*, and so they exert forces on other magnets, all of which have moving charges.

Right Hand Rule 1

The magnetic force on a moving charge is one of the most fundamental known. Magnetic force is as important as the electrostatic or Coulomb force. Yet the magnetic force is more complex, in both the number of factors that affects it and in its direction, than the relatively simple Coulomb force. The magnitude of the **magnetic force** F on a charge q moving at a speed v in a magnetic field of strength B is given by

Equation:

$$F = \text{qvB sin } \theta$$
,

where θ is the angle between the directions of \mathbf{v} and \mathbf{B} . This force is often called the **Lorentz force**. In fact, this is how we define the magnetic field strength B—in terms of the force on a charged particle moving in a magnetic field. The SI unit for magnetic field strength B is called the **tesla** (T) after the eccentric but brilliant inventor Nikola Tesla (1856–1943). To determine how the tesla relates to other SI units, we solve $F = \text{qvB} \sin \theta$ for B.

Equation:

$$B = \frac{F}{\operatorname{qv}\sin\theta}$$

Because $\sin \theta$ is unitless, the tesla is

Equation:

$$1~\mathrm{T} = \frac{1~\mathrm{N}}{\mathrm{C}\cdot\mathrm{m/s}} = \frac{1~\mathrm{N}}{\mathrm{A}\cdot\mathrm{m}}$$

(note that C/s = A).

Another smaller unit, called the **gauss** (G), where $1~\mathrm{G}=10^{-4}~\mathrm{T}$, is sometimes used. The strongest permanent magnets have fields near 2 T; superconducting electromagnets may attain 10 T or more. The Earth's magnetic field on its surface is only about $5\times10^{-5}~\mathrm{T}$, or 0.5 G.

The *direction* of the magnetic force ${\bf F}$ is perpendicular to the plane formed by ${\bf v}$ and ${\bf B}$, as determined by the **right hand rule 1** (or RHR-1), which is illustrated in [link]. RHR-1 states that, to determine the direction of the magnetic force on a positive moving charge, you point the thumb of the right hand in the direction of ${\bf v}$, the fingers in the direction of ${\bf B}$, and a perpendicular to the palm points in the direction of ${\bf F}$. One way to remember this is that there is one velocity, and so the thumb represents it. There are many field lines, and so the fingers represent them. The force is in the direction you would push with your palm. The force on a negative charge is in exactly the opposite direction to that on a positive charge.

 ${f F}\perp$ plane of ${f v}$ and ${f B}$

Magnetic fields exert forces on moving charges. This force is one of the most basic known. The direction of the magnetic force on a moving charge is perpendicular to the plane formed by **v** and **B** and follows right hand rule—1 (RHR-1) as shown. The magnitude of the force is proportional to *q*, *v*, *B*, and the sine of the angle between **v** and **B**.

Note:

Making Connections: Charges and Magnets

There is no magnetic force on static charges. However, there is a magnetic force on moving charges. When charges are stationary, their electric fields do not affect magnets. But, when charges move, they produce magnetic

fields that exert forces on other magnets. When there is relative motion, a connection between electric and magnetic fields emerges—each affects the other.

Example:

Calculating Magnetic Force: Earth's Magnetic Field on a Charged Glass Rod

With the exception of compasses, you seldom see or personally experience forces due to the Earth's small magnetic field. To illustrate this, suppose that in a physics lab you rub a glass rod with silk, placing a 20-nC positive charge on it. Calculate the force on the rod due to the Earth's magnetic field, if you throw it with a horizontal velocity of 10 m/s due west in a place where the Earth's field is due north parallel to the ground. (The direction of the force is determined with right hand rule 1 as shown in [link].)

North

B

West

V

F

(a)

(b)

A positively charged object moving due west in a region where the Earth's magnetic field is due north experiences a force that is straight down as shown. A negative charge moving in the same direction would feel a force straight up.

Strategy

We are given the charge, its velocity, and the magnetic field strength and direction. We can thus use the equation $F = qvB \sin \theta$ to find the force.

Solution

The magnetic force is

Equation:

$$F = qvb \sin \theta$$
.

We see that $\sin \theta = 1$, since the angle between the velocity and the direction of the field is 90° . Entering the other given quantities yields

Equation:

$$egin{array}{lll} F &=& 20 imes 10^{-9} \; \mathrm{C} \; \left(10 \; \mathrm{m/s}
ight) \; 5 imes 10^{-5} \; \mathrm{T} \ &=& 1 imes 10^{-11} \; (\mathrm{C} \cdot \mathrm{m/s}) \; \; rac{\mathrm{N}}{\mathrm{C} \cdot \mathrm{m/s}} \; \; = 1 imes 10^{-11} \; \mathrm{N}. \end{array}$$

Discussion

This force is completely negligible on any macroscopic object, consistent with experience. (It is calculated to only one digit, since the Earth's field varies with location and is given to only one digit.) The Earth's magnetic field, however, does produce very important effects, particularly on submicroscopic particles. Some of these are explored in Force on a Moving Charge in a Magnetic Field: Examples and Applications.

Section Summary

• Magnetic fields exert a force on a moving charge *q*, the magnitude of which is

Equation:

$$F = qvB \sin \theta$$
,

where θ is the angle between the directions of v and B.

• The SI unit for magnetic field strength B is the tesla (T), which is related to other units by

Equation:

$$1 T = \frac{1 N}{C \cdot m/s} = \frac{1 N}{A \cdot m}.$$

- The *direction* of the force on a moving charge is given by right hand rule 1 (RHR-1): Point the thumb of the right hand in the direction of v, the fingers in the direction of B, and a perpendicular to the palm points in the direction of F.
- The force is perpendicular to the plane formed by **v** and **B**. Since the force is zero if **v** is parallel to **B**, charged particles often follow magnetic field lines rather than cross them.

Conceptual Questions

Exercise:

Problem:

If a charged particle moves in a straight line through some region of space, can you say that the magnetic field in that region is necessarily zero?

Problems & Exercises

Exercise:

Problem:

What is the direction of the magnetic force on a positive charge that moves as shown in each of the six cases shown in [link]?

Solution:

- (a) Left (West)
- (b) Into the page
- (c) Up (North)
- (d) No force
- (e) Right (East)
- (f) Down (South)

Exercise:

Problem: Repeat [link] for a negative charge.

Exercise:

Problem:

What is the direction of the velocity of a negative charge that experiences the magnetic force shown in each of the three cases in $[\underline{link}]$, assuming it moves perpendicular to \mathbf{B} ?

Solution:

- (a) East (right)
- (b) Into page
- (c) South (down)

Exercise:

Problem: Repeat [link] for a positive charge.

Exercise:

Problem:

What is the direction of the magnetic field that produces the magnetic force on a positive charge as shown in each of the three cases in the figure below, assuming $\bf B$ is perpendicular to $\bf v$?

Solution:

- (a) Into page
- (b) West (left)
- (c) Out of page

Exercise:

Problem: Repeat [link] for a negative charge.

Exercise:

Problem:

What is the maximum force on an aluminum rod with a 0.100- μC charge that you pass between the poles of a 1.50-T permanent magnet at a speed of 5.00 m/s? In what direction is the force?

Solution:

 $7.50\times10^{-7}\ N$ perpendicular to both the magnetic field lines and the velocity

Exercise:

Problem:

(a) A cosmic ray proton moving toward the Earth at 5.00×10^7 m/s experiences a magnetic force of 1.70×10^{-16} N. What is the strength of the magnetic field if there is a 45° angle between it and the proton's velocity? (b) Is the value obtained in part (a) consistent with the known strength of the Earth's magnetic field on its surface? Discuss.

Solution:

- (a) $3.01 \times 10^{-5} \text{ T}$
- (b) This is slightly less then the magnetic field strength of $5 \times 10^{-5} \mathrm{~T}$ at the surface of the Earth, so it is consistent.

Exercise:

Problem:

(a) A physicist performing a sensitive measurement wants to limit the magnetic force on a moving charge in her equipment to less than 1.00×10^{-12} N. What is the greatest the charge can be if it moves at a maximum speed of 30.0 m/s in the Earth's field? (b) Discuss whether it would be difficult to limit the charge to less than the value found in (a) by comparing it with typical static electricity and noting that static is often absent.

Solution:

- (a) $6.67 \times 10^{-10}~\mathrm{C}$ (taking the Earth's field to be $5.00 \times 10^{-5}~\mathrm{T}$)
- (b) Less than typical static, therefore difficult

Glossary

right hand rule 1 (RHR-1)

the rule to determine the direction of the magnetic force on a positive moving charge: when the thumb of the right hand points in the direction of the charge's velocity ${\bf v}$ and the fingers point in the direction of the magnetic field ${\bf B}$, then the force on the charge is perpendicular and away from the palm; the force on a negative charge is perpendicular and into the palm

Lorentz force

the force on a charge moving in a magnetic field

tesla

T, the SI unit of the magnetic field strength; 1 $T=\frac{1\,\mathrm{N}}{\mathrm{A}\cdot\mathrm{m}}$

magnetic force

the force on a charge produced by its motion through a magnetic field; the Lorentz force

gauss

G, the unit of the magnetic field strength; $1~\mathrm{G} = 10^{-4}~\mathrm{T}$

13.6 - Force on a Moving Charge in a Magnetic Field: Examples and Applications

- Describe the effects of a magnetic field on a moving charge.
- Calculate the radius of curvature of the path of a charge that is moving in a magnetic field.

Magnetic force can cause a charged particle to move in a circular or spiral path. Cosmic rays are energetic charged particles in outer space, some of which approach the Earth. They can be forced into spiral paths by the Earth's magnetic field. Protons in giant accelerators are kept in a circular path by magnetic force. The bubble chamber photograph in [link] shows charged particles moving in such curved paths. The curved paths of charged particles in magnetic fields are the basis of a number of phenomena and can even be used analytically, such as in a mass spectrometer.

Trails of bubbles are produced by high-energy charged particles moving through the superheated liquid hydrogen in this artist's rendition of a bubble chamber. There is a strong magnetic field perpendicular to the page that causes the curved paths of the particles. The

radius of the path can be used to find the mass, charge, and energy of the particle.

So does the magnetic force cause circular motion? Magnetic force is always perpendicular to velocity, so that it does no work on the charged particle. The particle's kinetic energy and speed thus remain constant. The direction of motion is affected, but not the speed. This is typical of uniform circular motion. The simplest case occurs when a charged particle moves perpendicular to a uniform B-field, such as shown in [link]. (If this takes place in a vacuum, the magnetic field is the dominant factor determining the motion.) Here, the magnetic force supplies the centripetal force $F_c = mv^2/r$. Noting that $\sin \theta = 1$, we see that F = qvB.

A negatively charged particle moves in the plane of the page in a region where the magnetic field is perpendicular into the page (represented by the small circles with x's—like the tails of arrows). The magnetic force is perpendicular to the velocity, and so

velocity changes in direction but not magnitude. Uniform circular motion results.

Because the magnetic force F supplies the centripetal force F_c , we have **Equation:**

$$ext{qvB} = rac{mv^2}{r}.$$

Solving for *r* yields

Equation:

$$r=rac{\mathrm{mv}}{\mathrm{q}\mathrm{B}}.$$

Here, r is the radius of curvature of the path of a charged particle with mass m and charge q, moving at a speed v perpendicular to a magnetic field of strength B. If the velocity is not perpendicular to the magnetic field, then v is the component of the velocity perpendicular to the field. The component of the velocity parallel to the field is unaffected, since the magnetic force is zero for motion parallel to the field. This produces a spiral motion rather than a circular one.

Example:

Calculating the Curvature of the Path of an Electron Moving in a Magnetic Field: A Magnet on a TV Screen

A magnet brought near an old-fashioned TV screen such as in [link] (TV sets with cathode ray tubes instead of LCD screens) severely distorts its picture by altering the path of the electrons that make its phosphors glow. (Don't try this at home, as it will permanently magnetize and ruin the TV.) To illustrate this, calculate the radius of curvature of the path of an electron having a velocity of 6.00×10^7 m/s (corresponding to the accelerating voltage of about 10.0 kV used in some TVs) perpendicular to

a magnetic field of strength $B=0.500~\mathrm{T}$ (obtainable with permanent magnets).

Side view showing what happens when a magnet comes in contact with a computer monitor or TV screen. Electrons moving toward the screen spiral about magnetic field lines, maintaining the component of their velocity parallel to the field lines. This distorts the image on the screen.

Strategy

We can find the radius of curvature r directly from the equation $r = \frac{mv}{qB}$, since all other quantities in it are given or known.

Solution

Using known values for the mass and charge of an electron, along with the given values of v and B gives us

Equation:

$$egin{array}{lll} r = rac{
m mv}{
m qB} & = & rac{ig(9.11 imes 10^{-31} {
m \, kg}ig) ig(6.00 imes 10^7 {
m \, m/s}ig)}{ig(1.60 imes 10^{-19} {
m \, C}ig) ig(0.500 {
m \, T}ig)} \ & = & 6.83 imes 10^{-4} {
m \, m} \end{array}$$

or

Equation:

r = 0.683 mm.

Discussion

The small radius indicates a large effect. The electrons in the TV picture tube are made to move in very tight circles, greatly altering their paths and distorting the image.

[link] shows how electrons not moving perpendicular to magnetic field lines follow the field lines. The component of velocity parallel to the lines is unaffected, and so the charges spiral along the field lines. If field strength increases in the direction of motion, the field will exert a force to slow the charges, forming a kind of magnetic mirror, as shown below.

When a charged particle moves along a magnetic field line into a region where the field becomes stronger, the particle experiences a force that reduces the component of velocity parallel to the field. This force slows the motion along the field line and here reverses it, forming a "magnetic mirror."

The properties of charged particles in magnetic fields are related to such different things as the Aurora Australis or Aurora Borealis and particle accelerators. *Charged particles approaching magnetic field lines may get trapped in spiral orbits about the lines rather than crossing them*, as seen above. Some cosmic rays, for example, follow the Earth's magnetic field lines, entering the atmosphere near the magnetic poles and causing the southern or northern lights through their ionization of molecules in the atmosphere. This glow of energized atoms and molecules is seen in [link]. Those particles that approach middle latitudes must cross magnetic field lines, and many are prevented from penetrating the atmosphere. Cosmic rays are a component of background radiation; consequently, they give a higher radiation dose at the poles than at the equator.

Energetic electrons and protons, components of cosmic rays, from the Sun and deep outer space often follow the Earth's magnetic field lines rather than cross them. (Recall that the Earth's north magnetic pole is really a south pole in terms of a bar magnet.)

Some incoming charged particles become trapped in the Earth's magnetic field, forming two belts above the atmosphere known as the Van Allen radiation belts after the discoverer James A. Van Allen, an American astrophysicist. (See [link].) Particles trapped in these belts form radiation fields (similar to nuclear radiation) so intense that manned space flights avoid them and satellites with sensitive electronics are kept out of them. In the few minutes it took lunar missions to cross the Van Allen radiation belts, astronauts received radiation doses more than twice the allowed annual exposure for radiation workers. Other planets have similar belts, especially those having strong magnetic fields like Jupiter.

The Van Allen radiation belts are two regions in which energetic charged particles are trapped in the Earth's magnetic field. One belt lies about 300 km above the Earth's surface. the other about 16,000 km. Charged particles in these belts migrate along magnetic field lines and are partially reflected away from the poles by the stronger fields there. The charged particles that enter the atmosphere are replenished by the Sun and sources in deep outer space.

Back on Earth, we have devices that employ magnetic fields to contain charged particles. Among them are the giant particle accelerators that have been used to explore the substructure of matter. (See [link].) Magnetic fields not only control the direction of the charged particles, they also are used to focus particles into beams and overcome the repulsion of like charges in these beams.

The Fermilab facility in Illinois has a large particle accelerator (the most powerful in the world until 2008) that employs magnetic fields (magnets seen here in orange) to contain and direct its beam. This and other accelerators have been in use for several decades and have allowed us to discover some of the laws underlying all matter. (credit: ammcrim, Flickr)

Thermonuclear fusion (like that occurring in the Sun) is a hope for a future clean energy source. One of the most promising devices is the *tokamak*, which uses magnetic fields to contain (or trap) and direct the reactive charged particles. (See [link].) Less exotic, but more immediately practical, amplifiers in microwave ovens use a magnetic field to contain oscillating electrons. These oscillating electrons generate the microwaves sent into the oven.

Tokamaks such as the one shown in the figure are being studied with the goal of economical production of energy by nuclear fusion. Magnetic fields in the doughnut-shaped device contain and direct the reactive charged particles. (credit: David Mellis, Flickr)

Mass spectrometers have a variety of designs, and many use magnetic fields to measure mass. The curvature of a charged particle's path in the field is related to its mass and is measured to obtain mass information. (See More Applications of Magnetism.) Historically, such techniques were employed in the first direct observations of electron charge and mass. Today, mass

spectrometers (sometimes coupled with gas chromatographs) are used to determine the make-up and sequencing of large biological molecules.

Section Summary

 Magnetic force can supply centripetal force and cause a charged particle to move in a circular path of radius
 Equation:

$$r = \frac{\mathrm{mv}}{\mathrm{qB}},$$

where v is the component of the velocity perpendicular to B for a charged particle with mass m and charge q.

Conceptual Questions

Exercise:

Problem:

How can the motion of a charged particle be used to distinguish between a magnetic and an electric field?

Exercise:

Problem:

If a cosmic ray proton approaches the Earth from outer space along a line toward the center of the Earth that lies in the plane of the equator, in what direction will it be deflected by the Earth's magnetic field? What about an electron? A neutron?

Exercise:

Problem: What are the signs of the charges on the particles in [link]?

Exercise:

Problem:

Which of the particles in [link] has the greatest velocity, assuming they have identical charges and masses?

Exercise:

Problem:

Which of the particles in [link] has the greatest mass, assuming all have identical charges and velocities?

Problems & Exercises

If you need additional support for these problems, see <u>More Applications of Magnetism</u>.

Exercise:

Problem:

A cosmic ray electron moves at 7.50×10^6 m/s perpendicular to the Earth's magnetic field at an altitude where field strength is 1.00×10^{-5} T. What is the radius of the circular path the electron follows?

Solution:

4.27 m

Exercise:

Problem:

(a) An oxygen-16 ion with a mass of 2.66×10^{-26} kg travels at 5.00×10^6 m/s perpendicular to a 1.20-T magnetic field, which makes it move in a circular arc with a 0.231-m radius. What positive charge is on the ion? (b) What is the ratio of this charge to the charge of an electron? (c) Discuss why the ratio found in (b) should be an integer.

Exercise:

Problem:

A velocity selector in a mass spectrometer uses a 0.100-T magnetic field. (a) What electric field strength is needed to select a speed of $4.00 \times 10^6 \ \mathrm{m/s?}$ (b) What is the voltage between the plates if they are separated by 1.00 cm?

Exercise:

Problem:

A mass spectrometer is being used to separate common oxygen-16 from the much rarer oxygen-18, taken from a sample of old glacial ice. (The relative abundance of these oxygen isotopes is related to climatic temperature at the time the ice was deposited.) The ratio of the masses of these two ions is 16 to 18, the mass of oxygen-16 is 2.66×10^{-26} kg, and they are singly charged and travel at 5.00×10^6 m/s in a 1.20-T magnetic field. What is the separation between their paths when they hit a target after traversing a semicircle?

Solution:

0.173 m

13.7 - Magnetic Force on a Current-Carrying Conductor

- Describe the effects of a magnetic force on a current-carrying conductor.
- Calculate the magnetic force on a current-carrying conductor.

Because charges ordinarily cannot escape a conductor, the magnetic force on charges moving in a conductor is transmitted to the conductor itself.

The magnetic field exerts a force on a current-carrying wire in a direction given by the right hand rule 1 (the same direction as that on the individual moving charges). This force can easily be large enough to move the wire, since typical currents consist of very large numbers of moving charges.

We can derive an expression for the magnetic force on a current by taking a sum of the magnetic forces on individual charges. (The forces add because they are in the same direction.) The force on an individual charge moving at the drift velocity $v_{\rm d}$ is given by $F=qv_{\rm d}B\sin\theta$. Taking B to be uniform over a length of wire l and zero elsewhere, the total magnetic force on the wire is then $F=(qv_{\rm d}B\sin\theta)(N)$, where N is the number of charge carriers in the section of wire of length l. Now, N=nV, where n is the number of charge carriers per unit volume and V is the volume of wire in the field. Noting that V=Al, where A is the cross-sectional area of the

wire, then the force on the wire is $F = (qv_{\rm d}B\sin\theta)({\rm nAl})$. Gathering terms,

Equation:

$$F = (nqAv_{\rm d})lB\sin\theta.$$

Because $nqAv_{\rm d}=I$ (see Current),

Equation:

$$F = \text{IlB sin } \theta$$

is the equation for magnetic force on a length l of wire carrying a current I in a uniform magnetic field B, as shown in $[\underline{\text{link}}]$. If we divide both sides of this expression by l, we find that the magnetic force per unit length of wire in a uniform field is $\frac{F}{l} = IB \sin \theta$. The direction of this force is given by RHR-1, with the thumb in the direction of the current I. Then, with the fingers in the direction of B, a perpendicular to the palm points in the direction of F, as in $[\underline{\text{link}}]$.

 $\textbf{F} \perp \text{ plane of } I \text{ and } \textbf{B}$

The force on a currentcarrying wire in a magnetic field is $F = \text{IlB sin } \theta$. Its direction is given by RHR-1.

Example:

Calculating Magnetic Force on a Current-Carrying Wire: A Strong Magnetic Field

Calculate the force on the wire shown in [link], given B = 1.50 T, l = 5.00 cm, and I = 20.0 A.

Strategy

The force can be found with the given information by using $F = IlB \sin \theta$ and noting that the angle θ between I and B is 90° , so that $\sin \theta = 1$.

Solution

Entering the given values into $F = IlB \sin \theta$ yields

Equation:

$$F = \text{IlB sin } \theta = (20.0 \text{ A})(0.0500 \text{ m})(1.50 \text{ T})(1).$$

The units for tesla are $1~\mathrm{T}=rac{\mathrm{N}}{\mathrm{A\cdot m}}$; thus,

Equation:

$$F = 1.50 \text{ N}.$$

Discussion

This large magnetic field creates a significant force on a small length of wire.

Section Summary

• The magnetic force on current-carrying conductors is given by **Equation:**

$$F = IlB \sin \theta$$
,

where I is the current, l is the length of a straight conductor in a uniform magnetic field B, and θ is the angle between I and B. The force follows RHR-1 with the thumb in the direction of I.

Conceptual Questions

Exercise:

Problem:

Which is more likely to interfere with compass readings, AC current in your refrigerator or DC current when you start your car? Explain.

Problems & Exercises

Exercise:

Problem:

What is the direction of the magnetic force on the current in each of the six cases in [link]?

Solution:

- (a) west (left)
- (b) into page
- (c) north (up)
- (d) no force
- (e) east (right)
- (f) south (down)

Exercise:

Problem:

What is the direction of a current that experiences the magnetic force shown in each of the three cases in $[\underline{link}]$, assuming the current runs perpendicular to B?

Exercise:

Problem:

What is the direction of the magnetic field that produces the magnetic force shown on the currents in each of the three cases in [link], assuming is perpendicular to ?

Solution:

- (a) into page
- (b) west (left)
- (c) out of page

Exercise:

Problem:

(a) A DC power line for a light-rail system carries 1000 A at an angle of 30.0° to the Earth's 5.00×10^{-5} -T field. What is the force on a 100-m section of this line? (b) Discuss practical concerns this presents, if any.

Solution:

- (a) 2.50 N
- (b) This is about half a pound of force per 100 m of wire, which is much less than the weight of the wire itself. Therefore, it does not cause any special concerns.

Exercise:

Problem:

(a) A 0.750-m-long section of cable carrying current to a car starter motor makes an angle of 60° with the Earth's 5.50×10^{-5} T field. What is the current when the wire experiences a force of 7.00×10^{-3} N? (b) If you run the wire between the poles of a strong horseshoe magnet, subjecting 5.00 cm of it to a 1.75-T field, what force is exerted on this segment of wire?

Exercise:

Problem:

(a) What is the angle between a wire carrying an 8.00-A current and the 1.20-T field it is in if 50.0 cm of the wire experiences a magnetic force of 2.40 N? (b) What is the force on the wire if it is rotated to make an angle of 90° with the field?

Solution:

- (a) 30°
- (b) 4.80 N

13.8 - Torque on a Current Loop: Motors and Meters

- Describe how motors and meters work in terms of torque on a current loop.
- Calculate the torque on a current-carrying loop in a magnetic field.

Motors are the most common application of magnetic force on current-carrying wires. Motors have loops of wire in a magnetic field. When current is passed through the loops, the magnetic field exerts torque on the loops, which rotates a shaft. Electrical energy is converted to mechanical work in the process. (See [link].)

Torque on a current loop. A current-carrying loop of wire attached to a vertically rotating shaft feels magnetic forces that produce a clockwise torque as viewed from above.

Let us examine the force on each segment of the loop in [link] to find the torques produced about the axis of the vertical shaft. (This will lead to a useful equation for the torque on the loop.) We take the magnetic field to be uniform over the rectangular loop, which has width w and height l. First, we note that the forces on the top and bottom segments are vertical and, therefore, parallel to the shaft, producing no torque. Those vertical forces are equal in magnitude and opposite in direction, so that they also produce no net force on the loop. [link] shows views of the loop from above. Torque

is defined as τ θ , where F is the force, r is the distance from the pivot that the force is applied, and θ is the angle between r and F. As seen in [link](a), right hand rule 1 gives the forces on the sides to be equal in magnitude and opposite in direction, so that the net force is again zero. However, each force produces a clockwise torque. Since r w, the torque on each vertical segment is w F θ , and the two add to give a total torque.

Equation:

Top views of a current-carrying loop in a magnetic field. (a) The equation for torque is derived using this view. Note that the perpendicular to the loop makes an angle θ with the field that is the

same as the angle between w and . (b) The maximum torque occurs when θ is a right angle and θ . (c) Zero (minimum) torque occurs when θ is zero and θ . (d) The torque reverses once the loop rotates past θ .

Now, each vertical segment has a length l that is perpendicular to B, so that the force on each is F . Entering F into the expression for torque yields

Equation:

au heta

If we have a multiple loop of N turns, we get N times the torque of one loop. Finally, note that the area of the loop is A $\ \ \,$; the expression for the torque becomes

Equation:

au au

This is the torque on a current-carrying loop in a uniform magnetic field. This equation can be shown to be valid for a loop of any shape. The loop carries a current I, has N turns, each of area A, and the perpendicular to the loop makes an angle θ with the field B. The net force on the loop is zero.

Example:

Calculating Torque on a Current-Carrying Loop in a Strong Magnetic Field

Find the maximum torque on a 100-turn square loop of a wire of 10.0 cm on a side that carries 15.0 A of current in a 2.00-T field.

Strategy

Torque on the loop can be found using τ θ . Maximum torque occurs when θ ° and θ .

Solution

For θ , the maximum torque is

Equation:

au

Entering known values yields

Equation:

au

Discussion

This torque is large enough to be useful in a motor.

The torque found in the preceding example is the maximum. As the coil rotates, the torque decreases to zero at θ . The torque then *reverses* its direction once the coil rotates past θ . (See [link](d).) This means that, unless we do something, the coil will oscillate back and forth about equilibrium at θ . To get the coil to continue rotating in the same direction, we can reverse the current as it passes through θ with automatic switches called *brushes*. (See [link].)

(a) As the angular momentum of the coil carries it through θ , the brushes reverse

the current to keep the torque clockwise. (b)
The coil will rotate continuously in the
clockwise direction, with the current
reversing each half revolution to maintain
the clockwise torque.

Meters, such as those in analog fuel gauges on a car, are another common application of magnetic torque on a current-carrying loop. [link] shows that a meter is very similar in construction to a motor. The meter in the figure has its magnets shaped to limit the effect of θ by making B perpendicular to the loop over a large angular range. Thus the torque is proportional to I and not θ . A linear spring exerts a counter-torque that balances the current-produced torque. This makes the needle deflection proportional to I. If an exact proportionality cannot be achieved, the gauge reading can be calibrated. To produce a galvanometer for use in analog voltmeters and ammeters that have a low resistance and respond to small currents, we use a large loop area A, high magnetic field B, and low-resistance coils.

Meters are very similar to motors but only rotate through a part of a revolution. The magnetic poles of this meter are shaped to keep the component of B perpendicular to the loop constant, so that the torque does not depend on θ and the deflection

against the return spring is proportional only to the current I.

Section Summary

• The torque τ on a current-carrying loop of any shape in a uniform magnetic field. is

Equation:

au θ

where N is the number of turns, I is the current, A is the area of the loop, B is the magnetic field strength, and θ is the angle between the perpendicular to the loop and the magnetic field.

Problems & Exercises

Exercise:

Problem:

Calculate the magnetic field strength needed on a 200-turn square loop 20.0 cm on a side to create a maximum torque of if the loop is carrying 25.0 A.

Exercise:

Problem:

Since the equation for torque on a current-carrying loop is τ θ , the units of must equal units of Verify this.

Solution:

$$A \quad m \quad T \quad A \quad m \quad \frac{N}{A \quad m} \quad N \quad m.$$

Glossary

motor

loop of wire in a magnetic field; when current is passed through the loops, the magnetic field exerts torque on the loops, which rotates a shaft; electrical energy is converted to mechanical work in the process

meter

common application of magnetic torque on a current-carrying loop that is very similar in construction to a motor; by design, the torque is proportional to I and not θ , so the needle deflection is proportional to the current

13.9 - Magnetic Fields Produced by Currents: Ampere's Law

- Calculate current that produces a magnetic field.
- Use the right hand rule 2 to determine the direction of current or the direction of magnetic field loops.

How much current is needed to produce a significant magnetic field, perhaps as strong as the Earth's field? Surveyors will tell you that overhead electric power lines create magnetic fields that interfere with their compass readings. Indeed, when Oersted discovered in 1820 that a current in a wire affected a compass needle, he was not dealing with extremely large currents. How does the shape of wires carrying current affect the shape of the magnetic field created? We noted earlier that a current loop created a magnetic field similar to that of a bar magnet, but what about a straight wire or a toroid (doughnut)? How is the direction of a current-created field related to the direction of the current? Answers to these questions are explored in this section, together with a brief discussion of the law governing the fields created by currents.

Magnetic Field Created by a Long Straight Current-Carrying Wire: Right Hand Rule 2

Magnetic fields have both direction and magnitude. As noted before, one way to explore the direction of a magnetic field is with compasses, as shown for a long straight current-carrying wire in [link]. Hall probes can determine the magnitude of the field. The field around a long straight wire is found to be in circular loops. The **right hand rule 2** (RHR-2) emerges from this exploration and is valid for any current segment—point the thumb in the direction of the current, and the fingers curl in the direction of the magnetic field loops created by it.

(a) Compasses placed near a long straight current-carrying wire indicate that field lines form circular loops centered on the wire. (b) Right hand rule 2 states that, if the right hand thumb points in the direction of the current, the fingers curl in the direction of the field. This rule is consistent with the field mapped for the long straight wire and is valid for any current segment.

The magnetic field strength (magnitude) produced by a long straight current-carrying wire is found by experiment to be **Equation:**

$$B = rac{\mu_0 I}{2\pi r} ext{ (long straight wire)},$$

where I is the current, r is the shortest distance to the wire, and the constant $\mu_0 = 4\pi \times 10^{-7} \, \mathrm{T \cdot m/A}$ is the **permeability of free space**. (μ_0 is one of the basic constants in nature. We will see later that μ_0 is related to the speed of light.) Since the wire is very long, the magnitude of the field depends only on distance from the wire r, not on position along the wire.

Example:

Calculating Current that Produces a Magnetic Field

Find the current in a long straight wire that would produce a magnetic field twice the strength of the Earth's at a distance of 5.0 cm from the wire.

Strategy

The Earth's field is about 5.0×10^{-5} T, and so here B due to the wire is taken to be 1.0×10^{-4} T. The equation $B = \frac{\mu_0 I}{2\pi r}$ can be used to find I, since all other quantities are known.

Solution

Solving for I and entering known values gives

Equation:

$$egin{array}{lcl} I & = & rac{2\pi rB}{\mu_0} = rac{2\pi (5.0 imes 10^{-2} \ \mathrm{m}) \left(1.0 imes 10^{-4} \ \mathrm{T}
ight)}{4\pi imes 10^{-7} \ \mathrm{T\cdot m/A}} \ & = & 25 \ \mathrm{A.} \end{array}$$

Discussion

So a moderately large current produces a significant magnetic field at a distance of 5.0 cm from a long straight wire. Note that the answer is stated to only two digits, since the Earth's field is specified to only two digits in this example.

Ampere's Law and Others

The magnetic field of a long straight wire has more implications than you might at first suspect. Each segment of current produces a magnetic field like that of a long straight wire, and the total field of any shape current is the vector sum of the fields due to each segment. The formal statement of the direction and magnitude of the field due to each segment is called the Biot-Savart law. Integral calculus is needed to sum the field for an arbitrary shape current. This results in a more complete law, called **Ampere's law**, which relates magnetic field and current in a general way. Ampere's law in turn is a part of **Maxwell's equations**, which give a complete theory of all electromagnetic phenomena. Considerations of how Maxwell's equations appear to different observers led to the modern theory of relativity, and the realization that electric and magnetic fields are different manifestations of the same thing. Most of this is beyond the scope of this text in both mathematical level, requiring calculus, and in the amount of space that can be devoted to it. But for the interested student, and particularly for those who continue in physics, engineering, or similar pursuits, delving into these matters further will reveal descriptions of nature that are elegant as well as profound. In this text, we shall keep the general features in mind, such as RHR-2 and the rules for magnetic field lines listed in Magnetic Fields and Magnetic Field Lines, while concentrating on the fields created in certain important situations.

Magnetic Field Produced by a Current-Carrying Circular Loop

The magnetic field near a current-carrying loop of wire is shown in [link]. Both the direction and the magnitude of the magnetic field produced by a current-carrying loop are complex. RHR-2 can be used to give the direction of the field near the loop, but mapping with compasses and the rules about field lines given in Magnetic Fields and Magnetic Field Lines are needed for more detail. There is a simple formula for the magnetic field strength at the center of a circular loop. It is Equation:

$$B = \frac{\mu_0 I}{2R}$$
 (at center of loop),

where R is the radius of the loop. This equation is very similar to that for a straight wire, but it is valid *only* at the center of a circular loop of wire. The similarity of the equations does indicate that similar field strength can be obtained at the center of a loop. One way to get a larger field is to have N loops; then, the field is $B = N\mu_0 I/(2R)$. Note that the larger the loop, the smaller the field at its center, because the current is farther away.

(a) RHR-2 gives the direction of the magnetic field inside and outside a current-carrying loop. (b) More detailed mapping with compasses or with a Hall probe completes the picture. The field is similar to that of a bar magnet.

Magnetic Field Produced by a Current-Carrying Solenoid

A **solenoid** is a long coil of wire (with many turns or loops, as opposed to a flat loop). Because of its shape, the field inside a solenoid can be very

uniform, and also very strong. The field just outside the coils is nearly zero. [link] shows how the field looks and how its direction is given by RHR-2.

(a) Because of its shape, the field inside a solenoid of length l is remarkably uniform in magnitude and direction, as indicated by the straight and uniformly spaced field lines. The field outside the coils is nearly zero. (b) This cutaway shows the magnetic field generated by the current in the solenoid.

The magnetic field inside of a current-carrying solenoid is very uniform in direction and magnitude. Only near the ends does it begin to weaken and change direction. The field outside has similar complexities to flat loops and bar magnets, but the **magnetic field strength inside a solenoid** is simply

Equation:

$$B = \mu_0 \text{nI} \text{ (inside a solenoid)},$$

where n is the number of loops per unit length of the solenoid (n = N/l), with N being the number of loops and l the length). Note that B is the field

strength anywhere in the uniform region of the interior and not just at the center. Large uniform fields spread over a large volume are possible with solenoids, as [link] implies.

Example:

Calculating Field Strength inside a Solenoid

What is the field inside a 2.00-m-long solenoid that has 2000 loops and carries a 1600-A current?

Strategy

To find the field strength inside a solenoid, we use $B = \mu_0 nI$. First, we note the number of loops per unit length is

Equation:

$$n = \frac{N}{l} = \frac{2000}{2.00 \text{ m}} = 1000 \text{ m}^{-1} = 10 \text{ cm}^{-1}.$$

Solution

Substituting known values gives

Equation:

$$B = \mu_0 \mathrm{nI} = \left(4\pi \times 10^{-7} \; \mathrm{T \cdot m/A}\right) \left(1000 \; \mathrm{m}^{-1}\right) (1600 \; \mathrm{A}) = 2.01 \; \mathrm{T}.$$

Discussion

This is a large field strength that could be established over a large-diameter solenoid, such as in medical uses of magnetic resonance imaging (MRI). The very large current is an indication that the fields of this strength are not easily achieved, however. Such a large current through 1000 loops squeezed into a meter's length would produce significant heating. Higher currents can be achieved by using superconducting wires, although this is expensive. There is an upper limit to the current, since the superconducting state is disrupted by very large magnetic fields.

There are interesting variations of the flat coil and solenoid. For example, the toroidal coil used to confine the reactive particles in tokamaks is much like a solenoid bent into a circle. The field inside a toroid is very strong but circular. Charged particles travel in circles, following the field lines, and collide with one another, perhaps inducing fusion. But the charged particles do not cross field lines and escape the toroid. A whole range of coil shapes are used to produce all sorts of magnetic field shapes. Adding ferromagnetic materials produces greater field strengths and can have a significant effect on the shape of the field. Ferromagnetic materials tend to trap magnetic fields (the field lines bend into the ferromagnetic material, leaving weaker fields outside it) and are used as shields for devices that are adversely affected by magnetic fields, including the Earth's magnetic field.

Note:

PhET Explorations: Generator

Generate electricity with a bar magnet! Discover the physics behind the phenomena by exploring magnets and how you can use them to make a bulb light.

Generato

r

Section Summary

• The strength of the magnetic field created by current in a long straight wire is given by

Equation:

$$B = \frac{\mu_0 I}{2\pi r}$$
 (long straight wire),

where I is the current, r is the shortest distance to the wire, and the constant $\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$ is the permeability of free space.

- The direction of the magnetic field created by a long straight wire is given by right hand rule 2 (RHR-2): *Point the thumb of the right hand in the direction of current, and the fingers curl in the direction of the magnetic field loops* created by it.
- The magnetic field created by current following any path is the sum (or integral) of the fields due to segments along the path (magnitude and direction as for a straight wire), resulting in a general relationship between current and field known as Ampere's law.
- The magnetic field strength at the center of a circular loop is given by **Equation:**

$$B = \frac{\mu_0 I}{2R} \text{(at center of loop)},$$

where R is the radius of the loop. This equation becomes $B = \mu_0 \mathrm{nI}/(2R)$ for a flat coil of N loops. RHR-2 gives the direction of the field about the loop. A long coil is called a solenoid.

• The magnetic field strength inside a solenoid is **Equation:**

$$B = \mu_0 \text{nI}$$
 (inside a solenoid),

where n is the number of loops per unit length of the solenoid. The field inside is very uniform in magnitude and direction.

Glossary

right hand rule 2 (RHR-2)

a rule to determine the direction of the magnetic field induced by a current-carrying wire: Point the thumb of the right hand in the direction of current, and the fingers curl in the direction of the magnetic field loops

magnetic field strength (magnitude) produced by a long straight currentcarrying wire defined as $B = \frac{\mu_0 I}{2\pi r}$, where I is the current, r is the shortest distance to the wire, and μ_0 is the permeability of free space

permeability of free space

the measure of the ability of a material, in this case free space, to support a magnetic field; the constant $\mu_0=4\pi\times 10^{-7}~{
m T\cdot m/A}$

magnetic field strength at the center of a circular loop defined as $B=\frac{\mu_0 I}{2R}$ where R is the radius of the loop

solenoid

a thin wire wound into a coil that produces a magnetic field when an electric current is passed through it

magnetic field strength inside a solenoid

defined as $B=\mu_0 nI$ where n is the number of loops per unit length of the solenoid (n=N/l, with N being the number of loops and l the length)

Biot-Savart law

a physical law that describes the magnetic field generated by an electric current in terms of a specific equation

Ampere's law

the physical law that states that the magnetic field around an electric current is proportional to the current; each segment of current produces a magnetic field like that of a long straight wire, and the total field of any shape current is the vector sum of the fields due to each segment

Maxwell's equations

a set of four equations that describe electromagnetic phenomena

13.10 - Magnetic Force between Two Parallel Conductors

- Describe the effects of the magnetic force between two conductors.
- Calculate the force between two parallel conductors.

You might expect that there are significant forces between current-carrying wires, since ordinary currents produce significant magnetic fields and these fields exert significant forces on ordinary currents. But you might not expect that the force between wires is used to *define* the ampere. It might also surprise you to learn that this force has something to do with why large circuit breakers burn up when they attempt to interrupt large currents.

The force between two long straight and parallel conductors separated by a distance r can be found by applying what we have developed in preceding sections. [link] shows the wires, their currents, the fields they create, and the subsequent forces they exert on one another. Let us consider the field produced by wire 1 and the force it exerts on wire 2 (call the force F_2). The field due to I_1 at a distance r is given to be

Equation:

(a) The magnetic field produced by a long straight conductor is perpendicular to a parallel conductor, as indicated by RHR-2. (b) A view

from above of the two wires shown in (a), with one magnetic field line shown for each wire. RHR-1 shows that the force between the parallel conductors is attractive when the currents are in the same direction. A similar analysis shows that the force is repulsive between currents in opposite directions.

This field is uniform along wire 2 and perpendicular to it, and so the force F_2 it exerts on wire 2 is given by $F = \text{IIB sin } \theta$ with $\sin \theta = 1$:

Equation:

$$F_2 = I_2 l B_1$$
.

By Newton's third law, the forces on the wires are equal in magnitude, and so we just write F for the magnitude of F_2 . (Note that $F_1 = -F_2$.) Since the wires are very long, it is convenient to think in terms of F/l, the force per unit length. Substituting the expression for B_1 into the last equation and rearranging terms gives

Equation:

$$rac{F}{l}=rac{\mu_0 I_1 I_2}{2\pi r}.$$

F/l is the force per unit length between two parallel currents I_1 and I_2 separated by a distance r. The force is attractive if the currents are in the same direction and repulsive if they are in opposite directions.

This force is responsible for the *pinch effect* in electric arcs and plasmas. The force exists whether the currents are in wires or not. In an electric arc, where currents are moving parallel to one another, there is an attraction that squeezes currents into a smaller tube. In large circuit breakers, like those

used in neighborhood power distribution systems, the pinch effect can concentrate an arc between plates of a switch trying to break a large current, burn holes, and even ignite the equipment. Another example of the pinch effect is found in the solar plasma, where jets of ionized material, such as solar flares, are shaped by magnetic forces.

The *operational definition of the ampere* is based on the force between current-carrying wires. Note that for parallel wires separated by 1 meter with each carrying 1 ampere, the force per meter is

Equation:

$$rac{F}{l} = rac{ig(4\pi imes 10^{-7}~{
m T}\cdot{
m m/A}ig)(1~{
m A})^2}{(2\pi)(1~{
m m})} = 2 imes 10^{-7}~{
m N/m}.$$

Since μ_0 is exactly $4\pi \times 10^{-7}~T \cdot m/A$ by definition, and because $1~T=1~N/(A\cdot m)$, the force per meter is exactly $2\times 10^{-7}~N/m$. This is the basis of the operational definition of the ampere.

Note:

The Ampere

The official definition of the ampere is:

One ampere of current through each of two parallel conductors of infinite length, separated by one meter in empty space free of other magnetic fields, causes a force of exactly $2 \times 10^{-7} \ \mathrm{N/m}$ on each conductor.

Infinite-length straight wires are impractical and so, in practice, a current balance is constructed with coils of wire separated by a few centimeters. Force is measured to determine current. This also provides us with a method for measuring the coulomb. We measure the charge that flows for a current of one ampere in one second. That is, $1 \, C = 1 \, A \cdot s$. For both the ampere and the coulomb, the method of measuring force between conductors is the most accurate in practice.

Section Summary

• The force between two parallel currents I_1 and I_2 , separated by a distance r, has a magnitude per unit length given by **Equation:**

$$\frac{F}{l} = \frac{\mu_0 I_1 I_2}{2\pi r}.$$

• The force is attractive if the currents are in the same direction, repulsive if they are in opposite directions.

Conceptual Questions

Exercise:

Problem:

Suppose two long straight wires run perpendicular to one another without touching. Does one exert a net force on the other? If so, what is its direction? Does one exert a net torque on the other? If so, what is its direction? Justify your responses by using the right hand rules.

Problems & Exercises

Exercise:

Problem:

The force per meter between the two wires of a jumper cable being used to start a stalled car is 0.225 N/m. (a) What is the current in the wires, given they are separated by 2.00 cm? (b) Is the force attractive or repulsive?

Exercise:

Problem:

A 2.50-m segment of wire supplying current to the motor of a submerged submarine carries 1000 A and feels a 4.00-N repulsive force from a parallel wire 5.00 cm away. What is the direction and magnitude of the current in the other wire?

Solution:

400 A in the opposite direction

Exercise:

Problem:

The wire carrying 400 A to the motor of a commuter train feels an attractive force of $4.00 \times 10^{-3} \ \mathrm{N/m}$ due to a parallel wire carrying 5.00 A to a headlight. (a) How far apart are the wires? (b) Are the currents in the same direction?

Exercise:

Problem:

[link] shows a long straight wire near a rectangular current loop. What is the direction and magnitude of the total force on the loop?

