Dynamic Programming and Applications

Heterogeneous Agents and Inequality

Lecture 11

Andreas Schaab

Outline

Part 2: Huggett (1993) in continuous time (Bewley-Huggett-Aiyagari)

This is the textbook heterogeneous agent model / standard incomplete markets model

- 1. Households, firms and market clearing
- 2. Competitive equilibrium in sequence form
- 3. Recursive representation using dynamic programing
- 4. Competitive equilibrium in recursive form
- 5. Stationary competitive equilibrium in recursive form

I learned all this from Benjamin Moll!

Income and Wealth Distribution in Macroeconomics: A Continuous-Time Approach

See also Ben's teaching material: https://benjaminmoll.com/lectures/

Part 2: Huggett (1993)

Model overview

- Time is continuous, $t \in [0, \infty)$
- No aggregate uncertainty

 focus on one-time, unanticipated ("MIT") shocks (perfect foresight wrt. macroeconomic aggregates)
- Two types of agents: continuum of households (measure 1) + representative firm
- Households face "uninsurable idiosyncratic income risk"
- There is a single riskfree asset in zero net supply (\sim government bond)

Plan:

- 1. Present model in sequence form focusing exposition on individual *i*
- 2. Recursive representation of competitive equilibrium

Households

Preferences. The individual lifetime utility of a household $i \in [0, 1]$ is

$$V_{i,0} = \max_{\{c_{i,t}\}_{t \ge 0}} \mathbb{E}_0 \int_0^\infty e^{-\rho t} u(c_{i,t}) dt$$

Budget and **borrowing constraints**:

$$\dot{a}_{i,t} = w_t y_{i,t} + r_t a_{i,t} - c_{i,t}$$
$$a_{i,t} \ge \underline{a}$$

Idiosyncratic income risk: each $y_{i,t}$ follows a Markov chain (later: diffusion)

 $y_{i,t} \in \{y_1, y_2\}$ Poisson with intensities λ_1, λ_2

Definition. The problem of household i (in sequence form) is

$$\begin{split} \max_{\{c_{i,t}\}_{t\geq 0}} \mathbb{E}_0 \int_0^\infty e^{-\rho t} u(c_{i,t}) dt & \text{ s.t. } \\ \dot{a}_{i,t} &= w_t y_{i,t} + r_t a_{i,t} - c_{i,t} \\ y_{i,t} &\in \{y_1, y_2\} \text{ Poisson with intensities } \lambda_1, \lambda_2 \\ a_{i,t} &\geq \underline{a} \end{split}$$

taking as given initial $(a_{i,0}, y_{i,0})$

A **solution** to the household problem is a stochastic process $\{c_{i,t}, a_{i,t}\}_{t\geq 0}$

Firms

 A representative firm produces the (homogeneous) final consumption good using technology

$$Y_t = A_t \ell_t$$

$$\max_{\ell_t} Y_t - w_t \ell_t$$

ullet Firm problem is **static** \Longrightarrow otherwise we would have to think hard about ownership

Markets

How many markets are there?

Markets

How many markets are there?

Goods market:

$$Y_t = \int_0^1 c_{i,t} di$$

Labor market:

$$\ell_t = \int_0^1 y_{i,t} di$$

Asset market:

$$0 = \int_0^1 a_{i,t} di$$

Competitive Equilibrium

Definition. (Competitive equilibrium: sequence form) Taking as given an initial distribution of assets and individual labor productivities $\{a_{i,0},y_{i,0}\}_i$ as well as an exogenous path for TFP $\{A_t\}$, a competitive equilibrium comprises an allocation $\{Y_t,\ell_t,c_{i,t},a_{i,t}\}$ and prices $\{r_t,w_t\}$ such that: (i) households optimize, (ii) firms optimize, and (iii) markets clear.

Competitive Equilibrium

Definition. (Competitive equilibrium: sequence form) Taking as given an initial distribution of assets and individual labor productivities $\{a_{i,0},y_{i,0}\}_i$ as well as an exogenous path for TFP $\{A_t\}$, a competitive equilibrium comprises an allocation $\{Y_t,\ell_t,c_{i,t},a_{i,t}\}$ and prices $\{r_t,w_t\}$ such that: (i) households optimize, (ii) firms optimize, and (iii) markets clear.

- Always show definition of your equilibrium!
- Why is this a definition of competitive equilibrium "in sequence form"?
- How many parts are there to this definition?

• This is the full model. Would you know how to solve it?

- This is the full model. Would you know how to solve it?
- One theme of this course: recursive > sequence
- Let's think hard: what does it take to bring this GE model into recursive form?

- This is the full model. Would you know how to solve it?
- One theme of this course: recursive > sequence
- Let's think hard: what does it take to bring this GE model into recursive form?
- Right now: model = stochastic processes for each i
 Recursive representation = functions over state variables
- What about the household problem in PE? What are the state variables? Firms?
 What's the difference between PE and GE?

- This is the full model. Would you know how to solve it?
- One theme of this course: recursive > sequence
- Let's think hard: what does it take to bring this GE model into recursive form?
- Right now: model = stochastic processes for each i
 Recursive representation = functions over state variables
- What about the household problem in PE? What are the state variables? Firms?
 What's the difference between PE and GE?
- What about markets and GE? What does $\int_0^1 c_{i,t} di$ mean?

Recall household problem: Given $(a_{i,0}, y_{i,0})$,

$$\max_{\{c_{i,t}\}_{t\geq 0}} \mathbb{E}_0 \int_0^\infty e^{-\rho t} u(c_{i,t}) dt \qquad \text{s.t.}$$

$$\dot{a}_{i,t} = w_t y_{i,t} + r_t a_{i,t} - c_{i,t}$$

$$y_{i,t} \in \{y_1, y_2\} \text{ Poisson with intensities } \lambda_1, \lambda_2$$

$$a_{i,t} \geq \underline{a}$$

Recall household problem: Given $(a_{i,0}, y_{i,0})$,

$$\begin{split} \max_{\{c_{i,t}\}_{t\geq 0}} \mathbb{E}_0 \int_0^\infty e^{-\rho t} u(c_{i,t}) dt & \text{ s.t. } \\ \dot{a}_{i,t} &= w_t y_{i,t} + r_t a_{i,t} - c_{i,t} \\ y_{i,t} &\in \{y_1, y_2\} \text{ Poisson with intensities } \lambda_1, \lambda_2 \\ a_{i,t} &\geq \underline{a} \end{split}$$

Recursive representation:

$$\rho V_t(a, y) = \max_{c} \left\{ u(c) + \mathbb{E}_t \frac{dV_t(a, y)}{dt} \right\}$$

Two **Q**s: What is $\mathbb{E}_t \frac{dV_t(a,y)}{dt}$? And what about borrowing constraint?

From previous slide:

$$\rho V_t(a, y) = \max_{c} \left\{ u(c) + \mathbb{E}_t \frac{dV_t(a, y)}{dt} \right\}$$

Q1: What is continuation value?

From previous slide:

$$\rho V_t(a, y) = \max_{c} \left\{ u(c) + \mathbb{E}_t \frac{dV_t(a, y)}{dt} \right\}$$

Q1: What is continuation value?

$$\rho V_t(a, y_j) = \max_{c} \left\{ u(c) + (r_t a + w_t y_j - c) \partial_a V_t(a, y_j) + \lambda_j (V_t(a, y_{-j}) - V_t(a, y_j)) + \partial_t V_t(a, y_j) \right\}$$

Resolving max operator gives FOC, which defines **consumption policy function**:

$$u'(c_t(a,y_i)) = \partial_a V_t(a,y_i)$$

for all a and j. Define **savings policy function** as $s_t(a, y_j) = r_t a + w_t y_j - c_t(a, y_j)$

Q2: Where is the borrowing constraint $a_{i,t} \geq a$ in the HJB?

Answer: in the boundary condition!

Borrowing constraint gives rise to state constraint boundary condition

$$\partial_a V_t(\underline{a}, y_j) \geq u'(r_t \underline{a} + w_t y_j)$$

- Economic intuition: value of saving must be weakly larger than value of consuming
- Heuristic derivation: the FOC still holds at the borrowing constraint

$$u'(c_t(\underline{a},j)) = \partial_a V_t(a,y_j)$$

But borrowing constraint requires that

$$s_t(\underline{a}, y_j) = r_t \underline{a} + w_t y_j - c_t(\underline{a}, y_j) \ge 0$$

 Borrowing constraint showing up as boundary condition = major advantage of continuous time! **Summary**: A solution to the household problem in **recursive form** is a set of two functions $V_t(a,y)$ and $c_t(a,y)$ that satisfy

$$V_t(a,y)$$
 and $c_t(a,y)$ that satisfy
$$\rho V_t(a,y_j) = u(c_t(a,y_j)) + (r_t a + w_t y_j - c_t(a,y_j)) \partial_a V_t(a,y_j) + \lambda_j (V_t(a,y_{-j}) - V_t(a,y_j)) + \partial_t V_t(a,y_j) \partial_a V_t(a,y_j) + \lambda_j (V_t(a,y_{-j}) - V_t(a,y_j)) \partial_a V_t(a,y_j) \partial_a V_t(a,y_j)$$

 $u'(c_t(a,y_j)) = \partial_a V_t(a,y_j)$

with HJB boundary condition

$$\partial_a V_t(\underline{a}, y_i) \geq u'(r_t\underline{a} + w_t y_i)$$

To save space, will now use savings policy function $s_t(a, y_j) \equiv r_t a + w_t y_j - c_t(a, y_j)$ as shorthand

Income and Wealth Distribution

- We now have recursive representations of the household (and firm) problem
- But how do we do GE? We have conditions like $Y_t = \int_0^1 c_{i,t} di$
- Instead, we want to get **aggregate consumption** by integrating over $c_t(a, y)$
- Issue: there may be many households i in state (a, y)! Remember (important): household i is **uniquely** identified by her states (a_i, y_i) in this model
- Solution: integrate against the joint density \sim income-wealth distribution $g_t(a,y)$:

$$Y_t = \iint c_t(a, y)g_t(a, y) da dy \equiv \sum_j \int c_t(a, y_j)g_t(a, y_j)da$$

Kolmogorov Forward Equation

• If we knew $g_t(a, y)$, we'd be done! Why?

Kolmogorov Forward Equation

- If we knew $g_t(a, y)$, we'd be done! Why?
- Notice: $g_t(a, y)$ is a new object that wasn't part of the eq. definition in sequence form \implies Need new equilibrium condition!
- Where does this equilibrium condition come from?

Kolmogorov Forward Equation

- If we knew $g_t(a, y)$, we'd be done! Why?
- Notice: $g_t(a, y)$ is a new object that wasn't part of the eq. definition in sequence form \implies Need new equilibrium condition!
- Where does this equilibrium condition come from?
 ⇒ g_t(a, y) must be consistent with household behavior
- Turns out: $g_t(a, y)$ solves a **Kolmogorov forward equation**
- Another major advantage of continuous time!

Result: the joint density $g_t(a, y)$ solves the Kolmogorov forward (KF) equation

$$\partial_t g_t(a, y_j) = -\partial_a \Big[(r_t a + w_t y_j - c_t(a, y_j)) g_t(a, y_j) \Big] - \lambda_j g_t(a, y_j) + \lambda_{-j} g_t(a, y_{-j})$$

Proof: Define aggregate consumption as cross-sectional average consumption

$$C_t = \mathbb{E}_i(c_{i,t}) = \mathbb{E}_g(c_t(a,y)) \equiv \iint c_t(a,y)g_t(a,y) da dy$$

By "Ito's lemma", we have

$$dc_t(a,y_i) = \partial_t c_t(a,y_i)dt + s_t(a,y_i)\partial_a c_t(a,y_i)dt + \lambda_i (c_t(a,y_{-i}) - c_t(a,y_i))dt$$

On the **one hand**, we have

$$dC_t = \mathbb{E}_g(dc_t(a,y)) = \iint dc_t(a,y)g_t(a,y) da dy$$

and so plugging in

$$= \sum_{j} \int \left[\partial_t c_t(a, y_j) + s_t(a, y_j) \partial_a c_t(a, y_j) + \lambda_j (c_t(a, y_{-j}) - c_t(a, y_j)) \right] g_t(a, y_j) da dt$$

On the other hand, we have

$$dC_t = d \iint c_t(a,y)g_t(a,y) da dy = \sum_i \int \left[g_t(a,y_j)\partial_t c_t(a,y_j) + c_t(a,y_j)\partial_t g_t(a,y_j) \right] dadt$$

We now **equate the two** (next slide)

$$\sum_{i} \int \left[-\partial_a [s_t(a,y_j)g_t(a,y_j] - \lambda_j g_t(a,y_j) + \lambda_{-j}g_t(a,y_{-j}) \right] c_t(a,y) \, da \, dt$$

 $0 = \sum_{t} \int \left\{ \left[s_t(a, y_j) \partial_a c_t(a, y_j) + \lambda_j (c_t(a, y_{-j}) - c_t(a, y_j)) \right] g_t(a, y_j) - \left[c_t(a, y_j) \partial_t g_t(a, y_j) \right] \right\} da da$

(plus boundary conditions: abstract from those for now)

Integrating the first term by parts:

Finally arrive at:

 $0 = \sum_{i} \int \left[-\partial_t g_t(a, y_j) - \partial_a [s_t(a, y_j)g_t(a, y_j)] - \lambda_j g_t(a, y_j) + \lambda_{-j} g_t(a, y_{-j}) \right] c_t(a, y_j) da dt$

Concluding: this must hold "for all" $c_t(a, y)$, so term in brackets = 0

Competitive Equilibrium: Recursive Form

Definition. Taking as given an initial joint density $g_0(a, y)$ and an exogenous path of TFP $\{A_t\}$, a competitive equilibrium (in recursive form) comprises **functions**

$$\{V_t(a,y), c_t(a,y), g_t(a,y)\}$$
 and $\{Y_t, \ell_t, r_t, w_t\}$

such that (i) households optimize, (ii) firms optimize, (iii) markets clear, and (iv) the joint density evolves consistently with household behavior.

HJB and FOC:

$$\rho V_t(a, y_j) = u(c_t(a, y_j)) + s_t(a, y_j) \partial_a V_t(a, y_j) + \lambda_j (V_t(a, y_{-j}) - V_t(a, y_j)) + \partial_t V_t(a, y_j)$$
$$\partial_a V_t(\underline{a}, y_j) \ge u'(r_t \underline{a} + A_t y_j)$$
$$u'(c_t(a, y_j)) = \partial_a V_t(a, y_j)$$

KF:
$$\partial_t g_t(a, y_j) = -\partial_a \left[s_t(a, y_j) g_t(a, y_j) \right] - \lambda_j g_t(a, y_j) + \lambda_{-j} g_t(a, y_{-j})$$

Bond market:
$$0 = \sum_{j} \int ag_t(a, y_j) da$$

(We plugged in for $w_t = A_t$ and dropped goods market clearing by Walras' law)

In **continuous time**: HA models = system of 2 coupled PDEs!

Stationary Competitive Equilibrium

Definition. With $A_t = A$, a stationary competitive equilibrium comprises functions

$$\Big\{V(a,y),c(a,y),g(a,y)\Big\} \quad \text{ and } \quad \Big\{Y,\ell,r,w\Big\}$$

such that (i) households optimize, (ii) firms optimize, (iii) markets clear, and (iv) the joint density evolves consistently with household behavior.

- · Natural extension of "steady state" concept to HA economies
- Macroeconomic aggregates are constant. Distribution g(a,y) is constant but households still move around as they draw idiosyncratic income shocks
- Usual notion of "steady" is: "if you start there, you stay there"

Stationary Competitive Equilibrium Conditions

$$\rho V(a, y_j) = u(c(a, y_j)) + s(a, y_j) \partial_a V(a, y_j) + \lambda_j (V(a, y_{-j}) - V(a, y_j))$$

$$\partial_a V(\underline{a}, y_j) \ge u'(r\underline{a} + Ay_j)$$

$$u'(c(a, y_j)) = \partial_a V(a, y_j)$$

$$0 = -\partial_a \Big[s(a, y_j) g(a, y_j) \Big] - \lambda_j g(a, y_j) + \lambda_{-j} g(a, y_{-j})$$

$$0 = \sum_j \int ag(a, y_j) da$$

Typical Consumption and Saving Policy Functions

Typical Stationary Distribution

Household MPC

General Equilibrium: Existence and Uniqueness

Increase in r from r_L to $r_H > r_L$

Stationary Equilibrium

Asset Supply
$$S(r)=\int_{\underline{a}}^{\infty}ag_{1}(a;r)da+\int_{\underline{a}}^{\infty}ag_{2}(a;r)da$$

Stationary Equilibrium

Asset Supply
$$S(r) = \int_a^\infty a g_1(a;r) da + \int_a^\infty a g_2(a;r) da$$

Proposition: a stationary equilibrium exists (also unique!)

Extension: Diffusion Income Process

