

Numerische Darstellung und Codes

Übungen Digitales Design

Lösung vs. Hinweise:

Nicht alle hier gegebenen Antworten sind vollständige Lösungen. Einige dienen lediglich als Hinweise, um Ihnen bei der eigenständigen Lösungsfindung zu helfen. In anderen Fällen wird nur ein Teil der Lösung präsentiert.

1 NUM - Zahlensysteme

- 1.1 Bestimmen Sie, bis zu welchem Wert man zählen kann, mit Zahlen codiert auf:
 - a) 0 to 15
 - b) 0 to 255
 - c) 0 to 1023

- d) 0 to 65535
- e) 0 to 4'294'967'295 (4 Gbit)

num/number-systems-01

1.2 Bestimmen Sie, bis zu welchem Wert man zählen kann, mit Hexadezimalzahlen codiert auf:

a) 0 to 65535

b) 0 to 4'294'967'295 (4 Gbit)

num/number-systems-02

2 | NUM - Umwandlung von Zahlensystemen

2.1	Führen Sie die Umwandlung folgender reiner Binärzahlen im Dezimalfor-		
mat	durch:		
	a) 6 ₁₀	c) 74 ₁₀	e) 255 ₁₀
	b) 15 ₁₀	d) 11 ₁₀	
			num/conversion-01
2.2	Führen Sie die Umwan	dlung folgender Dezimal	zahlen im Binärformat
dur	ch:		
	 a) 111 1101₂ b) 1 0000₂ 	c) 1111 1110 0101 1001 ₂ d) 1 0000 0000 ₂	e) 1001 ₂
			num/conversion-02
2.3	Führen Sie die Umwand	llung folgender Hexadezi	malzahlen im Binärfor-
mat	durch:		
	a) 1110_2 b) $1\ 0101\ 1100_2$	c) $1010\ 1011\ 0011\ 1101_2$ d) $1001\ 1111\ 0111_2$	e) 10 0011 0100 0110 ₂
			num/conversion-03
2.4	Führen Sie die Umwand	llung folgender Binärzah	len im Hexadezimalfor-
mat	t durch:		
	a) A_{16} b) 6_{16}	c) EB_{16} d) $2F_{16}$	e) C_{16}
			num/conversion-04
2.5	Führen Sie die Umwandl	ung folgender Hexadezim	alzahlen im Dezimalfor-
mat	t durch:		
	a) 13 ₁₀ b) 348 ₁₀	c) 564_{10} d) 254_{10}	e) 42681 ₁₀
			num/conversion-05
2.6	Führen Sie die Umwandl	ung folgender Dezimalzal	nlen im Hexadezimalfor

3. $FE59_{16}$ 4. $D1_{16}$

num/conversion-06

5. 9₁₆

mat durch:

1. 80₁₆

2. 10₁₆

3 NUM - Operationen auf Logikzahlen

3.1 Führen Sie im Binärsystem folgende Additionen durch:

 $1.\ \ 0010\ \ 1010_2$

3. 1011 0011₂

 $2. \ 0110 \ 1001_2$

4. 1000 0000₂

num/operation-01

3.2 Führen Sie im Binärsystem folgende Substraktionen durch:

 $1. \ 0011 \ 1010_2$

 $3. 0000 1100_2$

2. 0011 1010₂

4. 0111 1111₂

num/operations-02

3.3 Führen Sie im Binärsystem folgende Multiplikationen durch:

1. 0011 1100₂

3. 0011 0000₂

 $2.\ \ 0011\ \ 1100_2$

4. 0110 0010₂

num/operation-03

3.4 Führen Sie im Hexadezimalsystem folgende Additionen durch:

1. 1300₁₆

3. 1333₁₆

2. 8984₁₆

4. 13534₁₆

num/operation-04

3.5 Bestimmen Sie den Binärwert von:

1. 1001₂

3. 11100001₂

2. 110001₂

4. 111110000001_2 ; $(2^{n-1}-1)*2^{n+1}+1$

num/operation-05

4 | NUM - Codes

- 4.1 Führen Sie folgende Additionen auf BCD-codierte Zahlen durch:
 - 1. 0100 0100 0100 $_{\rm BCD}$

3. $1001\ 0010_{\mathrm{BCD}}$

2. $0110\ 0011\ 0011_{\rm BCD}$

4. 0001 0000 0000_{BCD}

num/codes-01

4.2 Führen Sie die Umwandlung des Gray-Codes $1001_{\rm Gray}$ mit Hilfe der Rekursionsformel im Skript durch.

 1110_{2}

num/codes-02

5 NUM - Darstellung von Arithmetischen Zahlen

5.1 Stellen Sie folgende Dezimal- und reine Binärzahlen mit den Verfahren Vorzeichen- Grösse, Einer-Komplement und Zweierkomplement auf 8 Bits codiert dar:

1. $0001 \ 0010_s$	4. $0001\ 1010_s$
$0001\ 0010_{\rm 1cl}$	$0001\ 1010_{1\mathrm{cl}}$
$0001\ 0010_{\rm 2cl}$	$0001\ 1010_{\rm 2cl}$
2. $1000 \ 0011_s$	5. $0000 \ 1010_s$
$1111\ 1100_{1{\rm cl}}$	$0000\ 1010_{\rm 1cl}$
$1111\ 1101_{2{\rm cl}}$	$0000\ 1010_{\rm 2cl}$
3. $0000 \ 0000_s; 1000 \ 0000_s$	6. $1110 \ 0100_s$
$0000\ 0000_{\rm 1cl}; 1111\ 1111_{\rm 1cl}$	$1001\ 1011_{1{\rm cl}}$
$0000 0000_{\rm 2cl}$	$1001\ 1100_{\rm 2cl}$

num/representation-01

- 5.2 Führen Sie eine Zeichenänderung auf die folgenden, im Zweierkomplement codierten Zahlen durch:
- 5.3 Perform a character change to the following numbers encoded in two's complement:
 - $1. \ 11111 \ 11111_2$
- 3. 0001 0000₂
- 5. BC₁₆

- $2.\ 1000\ 1000_2$
- 4. FF₁₆

6. $7F_{16}$

num/representation-02

5.4 Gegeben sind die Zahlen 0001_2 und 1001_2 , ausgedrückt als Zweierkomplement auf 4 Bits codiert. Stellen Sie dieselben Zahlen als Zweierkomplement auf 8 Bits codiert dar.

0000 0001;1111 1001

 $num/representation\hbox{-}03$