A Level Computer Science

Exam Style Questions

Unit 1.4.1

Data Types

Binary Representation, Subtraction & Normalisation MEGA Compilation Paper

Name	Date
------	------

Score	Grade
/ 100	

a)	The floating point binary number 010011 011 consists of a 6-bit mantissa and 3-bit exponent, both represented in two's complement. Convert the number to denary showing your working.
	[3
)	Show the denary number -5.25 in floating point binary form representing the mantiss and exponent in two's complement, using as few bits as possible. Show your working.
	[4
)	Show how the binary number 01011110 is represented in hexadecimal.
	[1
11	
1)	Show how the denary number -87 is represented in sign and magnitude binary.
	[2

[4]

e)	Complete the following binary subtraction. Show your working.
	01001001- 00101111
	[2]
f)	Show how the hexadecimal number 9B is represented in denary.
	[2]
Qı	estion 2
a)	Describe why two's complement may be preferable to sign and magnitude.
	[2]
b)	Demonstrate subtraction in binary using 8-bit two's complement using the equivalent of the denary calculation 47-23. You must show all working.

a)	i)	Change the denary number -89 into a two's complement, 8 bit binary number.	
	ii)	Change the denary number -72 into a two's complement, 8 bit binary number.	[1]
b)		d the two binary answers which you obtained, using 8 bit arithmetic. u must show your working.	[1]
c)	Exp	plain why your answer to the addition sum is wrong.	[2]
Ωu	iesi	tion 4	[2]
		a representation of denary -119 in 8-bits using:	
а)		Sign and Magnitude	
b)		Two's Complement	[1]
			[1]

A	real binary	number n	nay be re	presented in	n normalised fl	loating poin	t binary	notation,	using
41	oits for the	mantissa	followed	by 3 bits for	the exponent	, both in tw	o's comp	lement b	inary.

a)	Convert the denary value 1.75 to normalised two's complement binary in the format described. You must show your working.
	[4]
b)	Convert the following number to denary. You must show your working.
	0110 111
	[3]
Qı	estion 6
	loating point number is represented with a mantissa of 8-bits followed by an exponent of its, both in two's complement.
99	011010 0010
a)	Identify whether or not the number is normalised.
	[13]
b)	State how you arrived at your answer to part a).
	[1]
	[-]

wo's complement representation.
[1 ign and Magnitude representation.
[1
estion 8
The number below is represented in floating point format with a 5-bit mantissa in two's complement followed by a 3-bit exponent in two's complement. Calculate the denamentalise of the number, showing your working.
01001 010
[3
he numbers below are represented in floating point format with a 5-bit mantissa in two
complement followed by a 4-bit exponent in two's complement. Normalise the number hown below, showing your working.

	ii) 11100 0110				
			[2]		
Qı	ues	tion 9			
		two's complement convert the denary number -43 into an 8 bit binary number. show your working.	You		
			[2]		
Qı	ues	tion 10			
Со	nve	rt the denary number -52 into an 8-bit binary number using two's complement.			
Г					
			[2]		
Qı	ues	tion 11			
a)	Со	nvert the denary number –8 to:			
	i)	An 8-bit sign and magnitude binary number.	_		
	ii)	An 8-bit two's complement binary number.	[1]		
			[1]		

[3]

b)		omputer represents floating point binary numbers using a 6-bit mantissa and 4-bit conent, both using two's complement.
		d the following three numbers together and give the answer in the format described. I must show your working.
		010100 0010 011000 0001 100010 0010
Q	ues	[6]
4 b	its f	pinary number may be represented in normalised floating point binary notation using or the mantissa followed by 4 bits for the exponent, both in two's complement binary. lowing binary numbers are in the format described.
a)	Cal	culate their denary values. You must show your working.
	i)	0101 0110
	ii)	0100 1110

b) A real binary number may be represented in floating point binary notation using 7 bits for the mantissa followed by 5 bits for the exponent, both in two's complement binary. i) State which of the binary numbers P and Q is normalised. Give a reason for your answer. P = 101100110001 Q = 110100110011[2] ii) The binary number R is not normalised. Write the normalised form of R. You must show your working. R = 000110100101[3] **Question 13** A real binary number may be represented in normalised floating point binary notation using 5 bits for the mantissa followed by 3 bits for the exponent, both in two's complement binary. The following binary numbers are in the format described. a) Calculate their denary values. Show all working. i) 01100 011

[3]

ii) 10100 111	
	[3]
b) Write the denary number +3.5 as a normalised binary number in the format described	lin
a).	
	[3]
Question 14	
Two floating point numbers are shown below. Calculate the answer of the second numl subtracted from the first. You must show your working and ensure your answer is normalise	
01001100 0011 - 01001010 0010	
	\neg
	[5]

a)	Represent the number 55 in normalised floating point binary notation, with the mantissa and exponent both in two's complement binary, using as few bits as possible.
b)	[2] Represent the number 55 in normalised floating point binary notation, using 8 bits for the mantissa followed by 8 bits for the exponent, both in two's complement binary.
	[2]
Qı	estion 16
floa	riables in programs contain specific types of data. Show the denary number $-2\frac{\pi}{2}$ as a ating-point binary number with a 6-bit mantissa and 4-bit exponent, both stored using o's complement representation.
	[3]

[1]

Question 17

The following floating point binary number is represented using 7 bits for the mantissa and 4 bits for the exponent, both using two's complement.

	ntissa 00101	Exponent 0100	
Cai	nvert the r	number to denary, showing your working.	
ΩL	uestion 1	8	[3]
-	10011011		
a)	Convert t	he denary number 188 to an unsigned 8-bit binary number.	
			[1]
b)	Convert f	the denary number -44 to an 8-bit binary number with sign and magnitization.	tude
			[1]
c)	Convert represent	the denary number -44 to an 8-bit binary number with two's complementation.	nent

Express the denary number –43 in binary using 8-bit two's complement representation. Show your working.			
	[4		

END OF QUESTION PAPER