Week 12: Affine transformations

Table of contents

Basic Definitions

2 Affine Transformations in 2D

Affine transformation - definition

• The map $T:\mathbb{R}^n \to \mathbb{R}^m$ is an **affine transformation** if there exist an $m \times n$ matrix A and a vector $\vec{b} \in \mathbb{R}^m$ such that

$$T(\vec{x}) = A\vec{x} + b$$

• Affine transformation is a generalization of linear transformation. If $\vec{b}=0$, then we have a linear transformation.

$$T(\vec{x}) = A\vec{x}$$

Find A and $ec{b}$

• A and \vec{b} can be determined if we have a clear formula for T:

$$T \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n + b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n + b_2 \\ & \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n + b_2 \end{pmatrix}$$

• Then $T(\vec{x}) = A\vec{x} + \vec{b}$ with

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Which of the following maps are linear transformations? Affine transformations? Or none of these. Find the matrix A and vector \vec{b} of T in $T(\vec{x}) = A\vec{x} + \vec{b}$ for affine transformations.

(a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 with $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + y^2 + 1 \\ y - x - 2 \end{pmatrix}$

(b)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 with $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + y \\ y - x \end{pmatrix}$

(c)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 by $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - z + 2y - 10 \\ y - x \\ y + z + 1 \end{pmatrix}$

(d)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 by $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - z + 2y - 10 \\ y - x \end{pmatrix}$

Projection, reflection, shear, rotation

- Linear transformations fixed the origin O.
 For any projection, or reflection, or shear, or rotation to be a linear transformation, the line/plane under consideration must go through O.
- When the line/plane under consideration doesn't go through O, we have an affine transformation.

3-step approach

Idea: Shift everything to the origin, do the linear map with respect to the origin, and then shift everything back.

- Translation by $-\vec{x}_0$, that is, map any point \vec{x} to $\vec{x} \vec{x}_0$
- $oldsymbol{2}$ Perform linear transformation by matrix A
- **3** Translation by \vec{x}_0

Question: What is the image of \vec{x} when applying the 3-approach algorithm to \vec{x} ?

Assume we want to find the image P' of P by rotation about \vec{x}_0 over angle θ .

Example 2: 3-step approach

- ① Shift \vec{x}_0 to O by the vector $-\vec{x}_0$ $\vec{x}_0 \mapsto \vec{x}_0 \vec{x}_0 = \vec{0} \text{ and } P \mapsto P \vec{x}_0 = Q$
- ② Find the image Q' of Q under rotation about O over θ Q' = AQ with A = matrix of rotation
- $oldsymbol{3}$ Shift everything back by $ec{x}_0$

$$P' = Q' + \vec{x}_0$$

Find the image of
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 under rotation about $\vec{x}_0 = \begin{pmatrix} 10 \\ 1 \end{pmatrix}$ over $\theta = 30^\circ$.

Assume we want to find the image P' of P by reflection through a line l which goes through \vec{x}_0 .

Example 3: 3-step approach

- ② Find the image Q' of Q under reflection through l' Q' = AQ with A = matrix of reflection through l'
- $oldsymbol{3}$ Shift everything back by $ec{x}_0$

$$P' = Q' + \vec{x}_0$$

Let l: x+2y=3 be a line in \mathbb{R}^2 . Find the image of $\begin{pmatrix} 1\\2 \end{pmatrix}$ under reflection through l.

Comments

Using the above idea, we will find the matrix A and the vector \vec{b} for the cases of projections, reflections, shear, rotations in \mathbb{R}^2 .

Projection in \mathbb{R}^2

Theorem 1

(a) The orthogonal projection onto $\vec{x} = \vec{x}_0 + t \vec{d}$ is

$$T(\vec{x}) = M\vec{x} + (I_2 - M)\vec{x}_0 \text{ with } M = \frac{1}{||\vec{d}||^2} \vec{d}\vec{d}^T$$

(b) The skew projection onto ax + by = c in the direction \vec{v} is

$$T(ec{x}) = Mec{x} + rac{c}{ec{v}\cdotec{n}}ec{v} ext{ with } M = I_2 - rac{1}{ec{v}\cdotec{n}}ec{v}ec{n}^T$$

Reflection in \mathbb{R}^2

Theorem 2

(a) The orthogonal reflection through $\vec{x} = \vec{x}_0 + t\vec{d}$ is

$$T(ec{x}) = M ec{x} + (I_2 - M) ec{x}_0$$
 with $M = \dfrac{2}{||ec{d}||^2} ec{d} ec{d}^T - I_2$

(b) The skew projection through ax+by=c in the direction \vec{v} is

$$T(\vec{x}) = M\vec{x} + \frac{c}{\vec{v} \cdot \vec{n}} \vec{v}$$
 with $M = I_2 - \frac{2}{\vec{v} \cdot \vec{n}} \vec{v} \vec{n}^T$

Consider the line l: x + 3y = 5 in \mathbb{R}^2 .

(a) Describe the projection onto l in the form $T(\vec{x}) = A\vec{x} + \vec{b}$.

Find the image of the line x - y = 1 under T.

(b) Describe the reflection through l in the form $T(\vec{x}) = A\vec{x} + \vec{b}$. Find the image of the line x-y=1 under T.

Shear in \mathbb{R}^2

Theorem 3

The shear with respect to the line ax + by = c in the direction of shearing vector \vec{v} is given by

$$T(ec{x}) = Mec{x} - rac{c}{||ec{n}||}ec{v} ext{ with } M = I_2 + rac{1}{||ec{n}||}ec{v}ec{n}^T$$

Describe the shear with respect to l:3x+4y=10 in the direction of the shearing vector $\vec{v}=\begin{pmatrix}8\\-6\end{pmatrix}$.

Rotation in \mathbb{R}^2

Theorem 4

The rotation about the point \vec{x}_0 over the angle θ is given by

$$T(\vec{x}) = M\vec{x} + (I_2 - M)\vec{x}_0$$
 with $M = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$

- (a) Describe the rotation about $\vec{x}_0 = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$ over $\theta = 30^\circ$.
- (b) Find the image of the line x 2y = 2.