Дискретная теория вероятностей.

Лектор — Юрий Александрович Давыдов Создатель конспекта — Глеб Минаев *

TODOs

И.	и ж	е всё-таки ${\mathcal G}$ будет борелевской сигма-алгеброй?	8
Написать. Пока лень			12
		самое для взятия по условию события	
Написать. Пока лень			
		совать	
C	одє	ержание	
1	Bep	ооятностные пространства и стандартные следствия	1
	1.1	Вероятностное пространство	1
	1.2	Условная вероятность	5
	1.3	Независимые события	
	1.4	Случайные величины	8
	1.5	Построение сложных вероятностных пространств	1
	1.6	Пуассоновская аппроксимация	.3
	Лит	ература:	
	• A	.Н. Ширяев, "Вероятность".	
	• M	І.А. Лифшиц, "Лекции"	
		Э.Г. Борисович, Н.М. Близняков, Я.А. Израилевич, Т.Н. Фоменко, "Введение в тополо ию", М.:Наука. Физматлит, 1995.	Э-
	• Ja	ames Munkres, Topology.	

1 Вероятностные пространства и стандартные следствия

1.1 Вероятностное пространство

Определение 1. Вероятностное пространство — это тройка $(\Omega, \mathcal{F}, \mathbb{P})$, где

^{*}Оригинал конспекта расположен на GitHub. Также на GitHub доступен репозиторий с другими конспектами.

- $\Omega \neq \varnothing$ множество объектов случайной природы, называемых элементарными событиями (ucxodamu),
- \mathcal{F} сигма-алгебра над множеством Ω (т.е. такое подмножество $\mathcal{P}(\Omega)$, что
 - 1. \mathcal{F} содержит Ω ,
 - 2. для всякого $A \in \mathcal{F}$ множество $\Omega \setminus A$ содержится в \mathcal{F} ,
 - 3. для всякого не более чем счётного семейства $\{A_i\}_{i\in I}$ множеств из ${\mathcal F}$ множества

$$\bigcup_{i \in I} A_i \qquad \qquad \mathbf{и} \qquad \bigcap_{i \in I} A_i$$

содержатся в \mathcal{F}),

которая называется множеством (случайных) событий,

- $\mathbb{P}-$ счётно-аддитивная мера, что $\mathbb{P}(\Omega)=1$ (т.е. функция из \mathcal{F} в [0;1], что
 - 1. $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$,
 - 2. для всякого не более чем счётного семейства $\{A_i\}_{i\in I}$ дизъюнктных множеств из $\mathcal F$

$$\mathbb{P}\left(\bigcup_{i\in I} A_i\right) = \sum_{i\in I} \mathbb{P}(A_i);$$

значение $\mathbb{P}(A)$ называется вероятностью события A).

Пример 1. Пусть мы бросаем монетку (один раз).

1. Тогда множество исходов будет состоять из элементарных событий "выпал орёл" и "выпала решка":

$$\Omega := \{ \mathrm{Op}\ddot{\mathbf{e}}_{\mathbb{H}}; \mathrm{Pe}_{\mathbb{H}}$$
ка $\}$

- 2. Множество событий будет состоять из событий:
 - (a) Ø ничего не выпало, т.е. ничего не произошло,
 - (b) {Opёл} выпал орёл,
 - (с) {Решка} выпала решка,
 - (d) {Opëл; Решка} выпал орёл или решка, т.е. что-то произошло.

T.е. в данном случае $\mathcal{F} = \mathcal{P}(\Omega)$.

3. Понятно, что

$$\mathbb{P}(\emptyset) = 0$$
, а $\mathbb{P}(\{\text{Opë}_{\pi}; \text{Решка}\}) = 1$.

При этом для всякой величины $p \in [0; 1]$ может быть, что

$$\mathbb{P}(\{\text{Opë}\pi\}) = p,$$
 а $\mathbb{P}(\{\text{Решка}\}) = 1 - p.$

В случае $p=\frac{1}{2}$ монетку называют cummempuчной (иначе necummempuчной).

Замечание ("стабилизация частот"). Пусть мы проводим один и тот же эксперимент n раз и смотрим, сколько раз реализовалось событие A. Обозначим это количество реализаций за $\nu_n(A)$. При этом если эксперимент брать "реальным", например, взятым из физики (подбрасывание монеты, бросание игрального кубика, etc.), то можно заметить следующие явления.

1. (эмпирический факт) Для всякого события A имеет место сходимость

$$\lim_{n \to \infty} \frac{\nu_n(A)}{n} = P(A).$$

Это и хочется назвать вероятностью.

2. Если $A = \Omega$, то $\nu_n(A)$ должно ровняться n, а значит

$$P(A) = \lim_{n \to \infty} \frac{\nu_n(A)}{n} = 1.$$

A если $A = \emptyset$, то P(A) = 0.

- 3. Для всякого события A верно, что $\nu_n(A) \in [0; n]$. Следовательно $P(A) \in [0; 1]$.
- 4. Если события A и B дизъюнктны, то $\nu_n(A) + \nu_n(B) = \nu_n(A \cup B)$. Отсюда следует аддитивность вероятности; и по аналогии получается счётная аддитивность.

Лемма 1.

1. Для всяких событий А и В

$$A \subseteq B \implies \mathbb{P}(A) \leqslant \mathbb{P}(B).$$

2. Для всякого события А

$$\mathbb{P}(A) + \mathbb{P}(A^C) = 1,$$

$$\operatorname{rde} A^C := \Omega \setminus A.$$

3. Для всяких событий А и В

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B).$$

4. Для всякого не более чем счётного семейства событий $\{A_i\}_{i\in I}$

$$\mathbb{P}\left(\bigcup_{i\in I} A_i\right) \leqslant \sum_{i\in I} \mathbb{P}(A_i)$$

Определение 2. Вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$ называется *дискретным*, если Ω не более чем счётно, а $\mathcal{F} = \mathcal{P}(\Omega)$.

Теорема 2. Пусть даны не более чем счётное Ω и $\mathcal{F} = \mathcal{P}(\Omega)$.

1. Пусть $(\Omega, \mathcal{F}, \mathbb{P})$ — дискретное вероятностное пространство. Для всякого $\omega \in \Omega$ можно обозначить

$$p_{\omega} := \mathbb{P}(\omega).$$

Tог ∂a

(a) кажедое $p_{\omega} \geqslant 0$,

(b)

$$\sum_{\omega \in \Omega} p_{\omega} = 1.$$

U npu этом \mathbb{P} можно задать условием

$$\mathbb{P}(A) = \sum_{\omega \in A} p_{\omega}$$

- 2. Пусть для всякого $\omega \in \Omega$ определено вещественное p_{ω} , что
 - (a) кажедое $p_{\omega} \geqslant 0$,

(b)

$$\sum_{\omega \in \Omega} p_{\omega} = 1.$$

Тогда можно задать функцию $\mathbb{P}:\mathcal{F} \to [0;1]$ условием

$$\mathbb{P}(A) = \sum_{\omega \in A} p_{\omega},$$

и тогда $(\Omega, \mathcal{F}, \mathbb{P})$ будет дискретным вероятностным пространством.

Доказательство.

- 1. Действительно:
 - (а) Каждое

$$p_{\omega} = \mathbb{P}(\omega) \geqslant 0.$$

(b) Поскольку $\Omega = \bigsqcup_{\omega \in \Omega} \{\omega\}$, то

$$\sum_{\omega \in \Omega} p_{\omega} = \sum_{\omega \in \Omega} \mathbb{P}(\omega) = \mathbb{P}(\Omega) = 1.$$

И аналогично $A=\bigsqcup_{\omega\in A}\{\omega\},$ а значит

$$\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\omega) = \sum_{\omega \in A} p_{\omega}.$$

2. Действительно, если $A = \bigsqcup_{i \in I} A_i$ (I не более чем счётно), то (так как каждое A_i не более чем счётно)

$$\mathbb{P}(A) = \sum_{\omega \in A} p_{\omega} = \sum_{i \in I} \sum_{\omega \in A_i} p_{\omega} = \sum_{i \in I} \mathbb{P}(A_i)$$

(так как мы рассуждаем в рамках абсолютно сходящегося ряда). Ну и, конечно,

$$\mathbb{P}(\varnothing) = \sum_{\omega \in \varnothing} p_{\omega} = 0$$
 и $\mathbb{P}(\Omega) = \sum_{\omega \in \Omega} p_{\omega} = 1$

Определение 3. $(\Omega, \mathcal{F}, \mathbb{P})$ называется пространством классического типа, если Ω кончено, $\mathcal{F} = \mathcal{P}(\Omega)$ и для всякого $\omega \in \Omega$

$$\mathbb{P}(\omega) = \frac{1}{|\Omega|}.$$

Замечание 1. В классическом пространстве соответственно имеем, что

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|}$$

1.2 Условная вероятность

Определение 4. Вероятность события A при условии события B (где $\mathbb{P}(B) \neq 0$) есть

$$\mathbb{P}_B(A) = \mathbb{P}(A \mid B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Теорема 3. Пусть даны вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$ и $B \in \mathcal{F}$, что $\mathbb{P}(B) \neq 0$. Тогда тройки (Ω, \mathcal{F}, P) и (B, \mathcal{F}_B, P_B) , где

$$\mathcal{F}_B := \{ S \in \mathcal{F} \mid S \subseteq B \},$$

a

$$P: \mathcal{F} \to [0; 1], A \mapsto \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

u

$$P: \mathcal{F}_B \to [0;1], A \mapsto \frac{\mathbb{P}(A)}{\mathbb{P}(B)},$$

являются вероятностными пространствами.

Доказательство. Понятно, что

$$P(\varnothing) = 0$$
 и $P(\Omega) = 1$.

Также если $A = \bigsqcup_{i \in I} A_i$ (где I не более чем счётно), то

$$\left(\bigcup_{i\in I} A_i\right)\cap B = \bigcup_{i\in I} A_i\cap B \quad \Longrightarrow \quad \mathbb{P}\left(\left(\bigcup_{i\in I} A_i\right)\cap B\right) = \sum_{i\in I} \mathbb{P}(A_i\cap B).$$

Значит первая тройка является вероятностным пространством.

Заметим, что отношение \sim на \mathcal{F} , заданное условием

$$S \sim T \iff S \cap B = T \cap B$$

определяет классы эквивалентности, минимальные по включению предстаители которых (представителем [A] будет $A \cap B$), образуют \mathcal{F}_B . При этом для всяких S и T из $S \sim T$ следует, что

$$\mathbb{P}(S \cap B) = \mathbb{P}(T \cap B).$$

Также несложно понять, что \mathcal{F}_B будет сигма-алгеброй. Значит P_B сужением P на \mathcal{F} с тем же множеством значений. Таким образом вторая тройка тоже будет вероятностным пространством.

Лемма 4 (формула полной вероятности). Пусть дано не более чем счётное разбиение $\{B_i\}_{i\in I}$ множества Ω на множества из \mathcal{F} . Тогда для всякого события A

$$\mathbb{P}(A) = \sum_{i \in I} \mathbb{P}(B_i) \mathbb{P}(A \mid B_i).$$

Доказательство. Поскольку $\{B_i \cap A\}_{i \in I}$ есть разбиение A, значит

$$\mathbb{P}(A) = \sum_{i \in I} \mathbb{P}(A \cap B_i) = \sum_{i \in I} \mathbb{P}(B_i) \mathbb{P}(A \mid B_i)$$

Лемма 5 (формула Байеса). Для всяких событий А и В

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A)\mathbb{P}(B \mid A)}{\mathbb{P}(B)}$$

Доказательство.

$$\mathbb{P}(A\mid B) = \frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)\mathbb{P}(B\mid A)}{\mathbb{P}(B)}.$$

Следствие 5.1. Пусть дано не более чем счётное разбиение $\{B_i\}_{i\in I}$ множества Ω на множества из \mathcal{F} . Тогда для всякого события A и индекса $j\in I$

$$\mathbb{P}(B_j \mid A) = \frac{\mathbb{P}(B_j) \mid (A \mid B_j)}{\sum_{i \in I} \mathbb{P}(B_i) \mathbb{P}(A \mid B_i)}.$$

Пемма 6 (формула умножения). Для всяких событий $\{A_k\}_{i=1}^n$. Тогда

$$\mathbb{P}\left(\bigcap_{k=1}^{n} A_{i}\right) = \prod_{k=1}^{n} \mathbb{P}\left(A_{k} \mid \bigcap_{i=1}^{k-1} A_{i}\right) = \mathbb{P}(A_{1}) \cdot \mathbb{P}(A_{2} \mid A_{1}) \cdot \dots \cdot \mathbb{P}\left(A_{n} \mid \bigcap_{i=1}^{n-1} A_{i}\right)$$

1.3 Независимые события

Определение 5. События A и B называются *независимыми*, если

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

Лемма 7. Для любых двух событий A и В ТГАЕ

1. A u B независимы u ux вероятностu > 0,

2.
$$\mathbb{P}(A) = \mathbb{P}(A \mid B) \ (a \ \mathbb{P}(B) = \mathbb{P}(B \mid A)).$$

Определение 6. Семейство событий $\{A_i\}_{i\in I}$ называется независимым (или также "независимым в совокупности" или "совместно независимым"), если для всякого конечного $S\subseteq I$ верно равенство

$$\mathbb{P}\left(\bigcap_{i\in I}A_i\right) = \prod_{i\in I}\mathbb{P}(A_i).$$

Замечание 2. Независимость (в совокупности) есть частный случай попарной независимости (что понятно, из определения), но не является равносильным ему свойством.

 $\Pi pumep\ 2$ (пирамида Бернштейна). Рассмотрим пространство классического типа с $\Omega=\{1;2;3;4\}.$ Пусть

$$A_1 := \{1; 4\}, \qquad A_2 := \{2; 4\} \qquad \text{if} \qquad A_3 := \{3; 4\}.$$

Тогда

$$\mathbb{P}(A_i) = \frac{1}{2}, \qquad \mathbb{P}(A_i \cap A_j) = \frac{1}{4} = \mathbb{P}(A_i) \cdot \mathbb{P}(A_j) \qquad \text{ if } \qquad \mathbb{P}(A_1 \cap A_2 \cap A_3) = \frac{1}{4} = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2) \cdot \mathbb{P}(A_3).$$

Отсюда, например, следует, что

$$\mathbb{P}(A_3 \mid A_1 \cap A_2) \neq \mathbb{P}(A_3)$$

Теорема 8. Пусть даны некоторые натуральные $\{m_i\}_{i=1}^n$ и семейство независимых событий

$${A_{i,j}}_{i \in \{1; \dots; n\}}$$
 $i \in \{1; \dots; m_i\}$

Тогда семейство событий

$$\left\{\bigcup_{j=1}^{m_i} A_i\right\}_{i=1}^n$$

независимо.

Доказательство.

Лемма 9. Пусть дано семейство независимых событий $\{A_i\}_{i\in I} \cup \{B;C\}$. Тогда семейства

$$\{A_i\}_{i\in I}\cup\{B\cap C\}$$
 u $\{A_i\}_{i\in I}\cup\{B\cup C\}$

являются независимыми (сами для себя, а не друг для друга).

Доказательство.

1. Покажем для пересечения. Пусть $S\subseteq I$ — конечное подмножество. Тогда

$$\mathbb{P}\left((B\cap C)\cap\bigcap_{i\in S}A_i\right)=\mathbb{P}(B)\cdot\mathbb{P}(C)\cdot\prod_{i\in S}\mathbb{P}(A_i)=\mathbb{P}(B\cap C)\cdot\prod_{i\in S}\mathbb{P}(A_i).$$

Значит

$${A_i}_{i\in I}\cup {B\cap C},$$

действительно, независим.

2. Покажем для объединения. Пусть $S \subseteq I$ — конечное подмножество. Тогда

$$\mathbb{P}\left((B \cup C) \cap \bigcap_{i \in S} A_i\right) = \mathbb{P}\left(B \cap \bigcap_{i \in S} A_i\right) + \mathbb{P}\left(C \cap \bigcap_{i \in S} A_i\right) - \mathbb{P}\left((B \cap C) \cap \bigcap_{i \in S} A_i\right)$$

$$= \mathbb{P}(B) \cdot \prod_{i \in S} \mathbb{P}(A_i) + \mathbb{P}(C) \cdot \prod_{i \in S} \mathbb{P}(A_i) - \mathbb{P}(B) \cdot \mathbb{P}(C) \cdot \prod_{i \in S} \mathbb{P}(A_i)$$

$$= (\mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(B) \cdot \mathbb{P}(C)) \cdot \prod_{i \in S} \mathbb{P}(A_i)$$

$$= \mathbb{P}(B \cup C) \cdot \prod_{i \in S} \mathbb{P}(A_i).$$

Значит

$$\{A_i\}_{i\in I}\cup\{B\cup C\},\$$

действительно, независим.

Несложно понять, что операциями из леммы выше из семейства

$${A_{i,j}}_{i \in {1;...;n}}$$

 $_{j \in {1;...;m_i}}$

можно получить семейство

$$\left\{\bigcup_{j=1}^{m_i} A_i\right\}_{i=1}^n,$$

и при этом семейство будет оставаться независимым после каждой операции. Следовательно конечное семейство будет независимым.

1.4 Случайные величины

Определение 7. Случайная величина X в вероятностном пространстве $(\Omega, \mathcal{F}, \mathbb{P})$ на измеримое пространство $(R, \mathcal{G}) - \mathcal{F}/\mathcal{G}$ -измеримая функция из Ω в R.

Замечание. Мы будем рассматривать в качестве R множество \mathbb{R} , а в качестве $\mathcal{G} - \mathcal{P}(\mathbb{R})$. При этом поскольку мы рассматриваем дискретные вероятностные пространства, то всякое отображение из Ω в \mathbb{R} будет измеримым.

Или же всё-таки \mathcal{G} будет борелевской сигма-алгеброй?

Определение 8. Распределение случанйной величины X в вероятностном пространстве $(\Omega, \mathcal{F}, \mathbb{P})$ на измеримое пространство (R, \mathcal{G}) — функция

$$\mathbb{P}_X: \mathcal{G} \to [0;1], S \mapsto \mathbb{P}(X^{-1}(S)).$$

Замечание 3. $(R, \mathcal{G}, \mathbb{P}_X)$ — вероятностное пространство.

Замечание 4. Для дискретного пространства можно считать, что $X(\Omega) = \{a_i\}_{i \in I}$, где I не более чем счётно. Значит можно определить

$$A_i := \{ \omega \in \Omega \mid X(\omega) = a_i \}$$
 и $p_i := \mathbb{P}(A_i).$

Тогда

- 1. $p_i \ge 0$,
- 2. $\sum_{i \in I} p_i = 1$.

Поэтому в качестве распределения случайной величины можно также рассматривать сужение \mathbb{P}_X на $\{\{a_i\}\}_{i\in I}$.

Определение 9. Пусть X и Y — случайные в (возможно, разных) вероятностных пространствах на измеримое пространство (R,\mathcal{G}) . Тогда говорят, что X имеет распределение Y или Y имеет распределение X, и пишут $X \sim Y$, если их функции распределения совпадают.

 $\Pi puмep$ 3.

1. Вырожденное распределение. Пусть $X(\Omega) = a$. Тогда распределение X будет состоять только из сопоставления

$$a \mapsto 1$$
.

2. Распределение Бернулли: B(1,p). Для всякой величины $p \in [0;1]$ можно рассмотреть случайную величину $X \sim B(1,p)$ с распределением

$$X = \begin{cases} 0 & \text{с вероятностью } 1 - p, \\ 1 & \text{с вероятностью } p. \end{cases}$$

3. **Биномиальное распределение:** B(n,p). Для всякой величины $p \in [0;1]$ можно рассмотреть случайную величину $X \sim B(n,p)$ с множеством значений $\{0;\ldots;n\}$ и распределением

$$\mathbb{P}{X = k} = \binom{n}{k} p^k (1-p)^{n-k}.$$

4. **Геометрическое распределение.** Для всякой величины $p \in [0;1]$ можно рассмотреть случайную величину X с множеством значений $\mathbb{N} \cup \{0\}$ и распределением

$$\mathbb{P}\{X=k\} = p^k(1-p).$$

5. Распределение Пуассона: $\mathcal{P}(\alpha)$. Для всякой величины $\alpha > 0$ можно рассмотреть случайную величину $X \sim \mathcal{P}(\alpha)$ с множеством значений $\mathbb{N} \cup \{0\}$ и распределением

$$\mathbb{P}\{X = k\} = \frac{\alpha^k}{k!}e^{-\alpha}.$$

Определение 10. Семейство случайных величин $\{X_i\}_{i\in I}$ в вероятностном пространстве $(\Omega, \mathcal{F}, \mathbb{P})$ на измеримые пространства $\{(R_i, \mathcal{G}_i)\}_{i\in I}$ называются *независимым*, если для всякого семейства $\{S_i\}_{i\in I}$, что $S_i \in \mathcal{G}_i$, семейство событий

$$\{X_i^{-1}(S_i)\}_{i\in I}$$

независимо.

Говоря проще, распределение вероятностей всякого X_i не зависит от конечного количества условий на другие случайные величины.

Теорема 10. Пусть дано семейство случайных величин $\{X_i\}_{i=1}^n$. Величина X_i имеет распределение $\{a_{i,j} \mapsto p_{i,j}\}_{j \in I_i}$. Тогда семейство $\{X_i\}_{i=1}^n$ независимо тогда и только тогда, когда для всяких $\{j_i\}_{i=1}^n$, что $j_i \in I_i$, верно, что

$$\mathbb{P}\left\{\bigwedge_{i=1}^{n} X_i = a_{i,j_i}\right\} = \prod_{i=1}^{n} p_{i,j_i}.$$

Доказательство. Понятно, что равенство в условии равносильно части условия независимости

$$\{X_i^{-1}(\{a_{i,j_i}\})\}_{i=1}^n,$$

где выбираемое множество индексов $S = \{1; ...; n\}$. Таким образом из независимости $\{X_i\}_{i=1}^n$, очевидно, следует предыдущее утверждение; покажем теперь следование в обратную сторону.

Покажем, что из утверждения выше следует полная независимость семейства событий

$$\{X_i^{-1}(\{a_{i,j_i}\})\}_{i=1}^n$$
.

Понятно, что для всякого i семейство множеств

$$\{X_i^{-1}(a_{i,k_i})\}_{k_i \in I_i}$$

есть разбиение Ω . Значит для всякого $S \subseteq \{1, ... n\}$ мы имеем, что

$$\mathbb{P}\left(\bigcap_{i \in S} X_{i}^{-1}(a_{i,j_{i}})\right) = \sum_{\substack{\{k_{i}\}_{i \notin S} \\ k_{i} \in I_{i}}} \mathbb{P}\left(\bigcap_{i \in S} X_{i}^{-1}(a_{i,j_{i}}) \cap \bigcap_{i \notin S} X_{i}^{-1}(a_{i,k_{i}})\right)
= \sum_{\substack{\{k_{i}\}_{i \notin S} \\ k_{i} \in I_{i}}} \prod_{i \in S} \mathbb{P}(X_{i}^{-1}(a_{i,j_{i}})) \cdot \prod_{i \notin S} \mathbb{P}(X_{i}^{-1}(a_{i,k_{i}}))
= \prod_{i \in S} \mathbb{P}(X_{i}^{-1}(a_{i,j_{i}})) \cdot \sum_{\substack{\{k_{i}\}_{i \notin S} \\ k_{i} \in I_{i}}} \prod_{i \notin S} \mathbb{P}(X_{i}^{-1}(a_{i,k_{i}}))
= \prod_{i \in S} \mathbb{P}(X_{i}^{-1}(a_{i,j_{i}})) \cdot \prod_{i \notin S} \sum_{k_{i} \in I_{i}} \mathbb{P}(X_{i}^{-1}(a_{i,k_{i}}))
= \prod_{i \in S} \mathbb{P}(X_{i}^{-1}(a_{i,j_{i}}))$$

Теперь покажем, что из независимости прообразов одноэлементных множеств следует независимость прообразов любых множеств. Действительно, пусть дано семейство множеств $\{B_i\}_{i=1}^n$, что $B_i \subseteq \Omega(X_i)$ (следовательно B_i не более чем счётно). Тогда для всякого конечного $S \subseteq \{1; \ldots; n\}$

$$\mathbb{P}\left(\bigcap_{i \in S} X_i^{-1}(B_i)\right) = \mathbb{P}\left(\bigsqcup_{\substack{\{a_i\}_{i \in S} \\ a_i \in B_i}} \bigcap_{i \in S} X_i^{-1}(a_i)\right) = \sum_{\substack{\{a_i\}_{i \in S} \\ a_i \in B_i}} \mathbb{P}\left(\bigcap_{i \in S} X_i^{-1}(a_i)\right) = \prod_{\substack{\{a_i\}_{i \in S} \\ a_i \in B_i}} \mathbb{P}(X_i^{-1}(a_i)) = \prod_{i \in S} \sum_{a_i \in B_i} \mathbb{P}(X_i^{-1}(a_i)) = \prod_{i \in S} \mathbb{P}(X_i^{-1}(a_i))$$

Пример 4. Пусть $X \sim \mathcal{P}(\alpha), Y \sim \mathcal{P}(\beta)$ и X и Y независимы. Значит X + Y имеет множество значений $\mathbb{N} \cup \{0\}$, а её распределение

$$\mathbb{P}\{X+Y=n\} = \mathbb{P}\left(\bigsqcup_{k=0}^{n} \{X=k \land Y=n-k\}\right) = \sum_{k=0}^{n} \mathbb{P}\{X=k \land Y=n-k\}$$

$$= \sum_{k=0}^{n} \mathbb{P}\{X=k\} \cdot \mathbb{P}\{Y=n-k\} = \sum_{k=0}^{n} \frac{\alpha^{k}}{k!} e^{-\alpha} \cdot \frac{\beta^{n-k}}{(n-k)!} e^{-\beta}$$

$$= \sum_{k=0}^{n} \frac{\alpha^{k} \beta^{n-k} \binom{n}{k}}{n!} e^{-(\alpha+\beta)} = \frac{(\alpha+\beta)^{n}}{n!} e^{-(\alpha+\beta)},$$

T.e. $X + Y \sim \mathcal{P}(\alpha + \beta)$.

 $\Pi p u m e p 5$ (испытания Бернулли). Пусть $\{\varepsilon_i\}_{i=1}^n$ — независимые случайные величины с распределением Бернулли B(1,p). Тогда $\sum_{i=1}^n \varepsilon_i$ имеет множество значений $\{0;\ldots;n\}$, а её распреде-

ление

$$\mathbb{P}\left\{\sum_{i=1}^{n} \varepsilon_{i} = k\right\} = \mathbb{P}\left(\bigsqcup_{\substack{S \subseteq \{1; \dots; n\} \\ |S| = k}} \left\{\bigwedge_{i \in S} X_{i} = 1 \land \bigwedge_{j \notin S} X_{j} = 0\right\}\right)$$

$$= \sum_{\substack{S \subseteq \{1; \dots; n\} \\ |S| = k}} \mathbb{P}\left\{\bigwedge_{i \in S} X_{i} = 1 \land \bigwedge_{j \notin S} X_{j} = 0\right\}$$

$$= \sum_{\substack{S \subseteq \{1; \dots; n\} \\ |S| = k}} \prod_{i \in S} \mathbb{P}\{X_{i} = 1\} \cdot \prod_{j \notin S} \mathbb{P}\{X_{j} = 0\}$$

$$= \sum_{\substack{S \subseteq \{1; \dots; n\} \\ |S| = k}} \prod_{i \in S} \mathbb{P}\{X_{i} = 1\} \cdot \prod_{j \notin S} \mathbb{P}\{X_{j} = 0\}$$

$$= \sum_{\substack{S \subseteq \{1; \dots; n\} \\ |S| = k}} p^{|S|} \cdot (1 - p)^{n - |S|}$$

$$= p^{k}(1 - p)^{n - k} \sum_{\substack{S \subseteq \{1; \dots; n\} \\ |S| = k}} 1$$

$$= \binom{n}{k} p^{k}(1 - p)^{n - k},$$

$$\sum_{i=1}^{n} \varepsilon_{i} \sim B(n, p).$$

т.е.

1.5 Построение сложных вероятностных пространств

Теорема 11.

- 1. Пусть даны вероятностные пространства $(\Omega_1, \mathcal{F}_1, \mathbb{P}_1)$ и $(\Omega_2, \mathcal{F}_2, \mathbb{P}_2)$. Обозначим
 - $\Omega := \Omega_1 \times \Omega_2$,
 - ullet ${\cal F}-$ минимальная сигма-алгебра, содержащая как подмножество

$$\{S_1 \times S_2 \mid S_1 \in \mathcal{F}_1 \land S_2 \in \mathcal{F}_2\},\$$

• \mathbb{P} — счётно-аддитивная функция на (Ω, \mathcal{F}) , что для всяких $S_1 \in \mathcal{F}_1$ и $S_2 \in \mathcal{F}_2$

$$\mathbb{P}(S_1 \times S_2) = \mathbb{P}(S_1) \cdot \mathbb{P}(S_2)$$

(такая функция существует и единственна).

Тогда $(\Omega, \mathcal{F}, \mathbb{P})$ — вероятностное пространство.

2. Пусть даны события A_1 и A_2 в вероятностных пространствах $(\Omega_1, \mathcal{F}_1, \mathbb{P}_1)$ и $(\Omega_2, \mathcal{F}_2, \mathbb{P}_2)$. Тогда множества

$$B_1 := A_1 \times \Omega_2$$
 u $B_2 := \Omega_1 \times A_2$

являются событиями в вероятностном пространстве $(\Omega, \mathcal{F}, \mathbb{P})$, причём

$$\mathbb{P}_1(A_1) = \mathbb{P}(B_1)$$
 u $\mathbb{P}_2(A_2) = \mathbb{P}(B_2).$

3. Пусть даны независимые семейства события $\{A_{1,i}\}_{i\in I_1}$ и $\{A_{2,i}\}_{i\in I_2}$ в вероятностных пространствах $(\Omega_1, \mathcal{F}_1, \mathbb{P}_1)$ и $(\Omega_2, \mathcal{F}_2, \mathbb{P}_2)$. Тогда объединение семейств $\{B_{1,i}\}_{i\in I_1}$ и $\{B_{2,i}\}_{i\in I_2}$, где

$$B_{1,i} := A_{1,i} \times \Omega_2 \qquad u \qquad B_{2,i} := \Omega_1 \times A_{2,i},$$

является независимым в вероятностном пространстве $(\Omega, \mathcal{F}, \mathbb{P})$.

4. Пусть даны случайные величины X_1 и X_2 в вероятностных пространствах $(\Omega_1, \mathcal{F}_1, \mathbb{P}_1)$ и $(\Omega_2, \mathcal{F}_2, \mathbb{P}_2)$ на измеримые пространства (R_1, \mathcal{G}_1) и (R_2, \mathcal{G}_2) соответственно. Тогда функции

$$Y_1: \Omega \to R_1, (\omega_1, \omega_2) \mapsto X_1(\omega_1)$$
 u $Y_2: \Omega \to R_2, (\omega_1, \omega_2) \mapsto X_2(\omega_2)$

являются случайными величинами в вероятностном пространстве $(\Omega, \mathcal{F}, \mathbb{P})$ на те же измеримые пространства, причём

$$A_1 \sim B_1$$
 u $A_2 \sim B_2$.

5. Пусть даны независимые семейства случайных величин $\{X_{1,i}\}_{i\in I_1}$ и $\{X_{2,i}\}_{i\in I_2}$ в вероятностных пространствах $(\Omega_1, \mathcal{F}_1, \mathbb{P}_1)$ и $(\Omega_2, \mathcal{F}_2, \mathbb{P}_2)$. Тогда объединение семейств $\{Y_{1,i}\}_{i\in I_1}$ и $\{Y_{2,i}\}_{i\in I_2}$, где

$$Y_{1,i}: \Omega \to R_{1,i}, (\omega_1, \omega_2) \mapsto X_{1,i}(\omega_1)$$
 u $Y_{2,i}: \Omega \to R_{2,i}, (\omega_1, \omega_2) \mapsto X_{2,i}(\omega_2),$

является независимым в вероятностном пространстве $(\Omega, \mathcal{F}, \mathbb{P})$.

Доказательство.

Написать. Пока лень...

Теорема 12.

То же самое для взятия по условию события.

Замечание. Таким образом мы теперь умеем склеивать два вероятностных пространства в новое большое вероятностное пространство и сжимать вероятностное пространство по модулю всякого его события.

Теорема 13.

- 1. Распределение Бернулли реализуемо.
- 2. Биномиальное распределение реализуемо.
- 3. Распределение Пуассона реализуемо.
- 4. Всякое не более чем счётное распределение реализуемо.
- 5. Всякое распределение реализуемо.

Доказательство.

Написать. Пока лень...

1.6 Пуассоновская аппроксимация

Теорема 14. Пусть дана последовательность чисел $\{p_n\}_{n=0}^{\infty}$ из отрезка [0;1], что

$$\lim_{n\to\infty} np_n \to \alpha$$

для некоторой константы α , и последовательность случайных величин $\{X_n\}_{n=0}^{\infty}$, что $X_n \sim B(n, p_n)$. Тогда для всякого $k \in \mathbb{N} \cup \{0\}$

$$\lim_{n \to \infty} \mathbb{P}\{X_n = k\} = \frac{\alpha^k}{k!} e^{-\alpha}$$

Для всякого $n \in \mathbb{N} \cup \{0\}$

$$\sum_{k=0}^{\infty} |\mathbb{P}\{X_n = k\} - \frac{(np_n)^k}{k!} e^{-np_n}| \leqslant 2np^2$$

Доказательство.

$$\mathbb{P}\{X_n = k\} = \frac{n!}{k!(n-k)!} p_n^k (1-p_n)^{n-k} = \frac{n \cdot \dots \cdot (n-k+1)}{k!n^k} (np_n)^k (1-p_n)^{n-k}.$$

При этом

$$\frac{n \cdot \dots \cdot (n-k+1)}{k!n^k} \to \frac{1}{k!}, \qquad (np_n)^k \to \alpha^k, \qquad (1-p_n)^{n-k} = \left(1 - \frac{\alpha + o(1)}{n}\right)^{n(1+o(1))} \to e^{-\alpha}.$$

Отсюда и получается требуемое утверждение.

Теорема 15. Пусть даны некоторое подмножество $A \subseteq \mathbb{R}$ и случайные виличины $S_n \sim B(n,p)$ и $S \sim \mathcal{P}(np)$. Тогда

$$|\mathbb{P}\{S_n \in A\} - \mathbb{P}\{S \in A\}| \leqslant np^2.$$

Доказательство. Рассмотрим следующее вероятностное пространство. Пусть

$$\Omega_1 := \mathbb{N} \cup \{0; -1\}, \qquad \mathcal{F}_1 := \mathcal{P}(\Omega)$$
 и $\mathbb{P}_1(n) := \begin{cases} 1-p & \text{если } n = -1, \\ \frac{p^0}{0!}e^{-p} - (1-p) & \text{если } n = 0, \\ \frac{p^n}{n!}e^{-p} & \text{иначе.} \end{cases}$

Определим на нём случайные величины

$$arepsilon_1 := egin{cases} 0 & ext{если } n = -1, \ 1 & ext{иначе}, \end{cases}$$
 и $\eta_1 := egin{cases} 0 & ext{если } n = -1, \ n & ext{иначе}. \end{cases}$

Несложно видеть, что

$$\varepsilon_1 \sim B(1, p),$$
 a $\eta_1 \sim \mathcal{P}(p).$

При этом

$$\mathbb{P}_1\{\varepsilon_1 \neq \eta_1\} = 1 - \mathbb{P}_1\{\varepsilon_1 = \eta_1\} = 1 - \mathbb{P}_1(\{-1;1\}) = 1 - ((1-p) + pe^{-p}) = p(1-e^{-p}) \leqslant p^2.$$

Теперь сделаем ещё n-1 дубликатов нашего пространства и построенных случайных величин и перемножим их как в теореме 11. Получим пространство $(\Omega, \mathcal{F}, \mathbb{P})$ в котором выбраны случайные величины $\{\varepsilon_i\}_{i=1}^n$ и $\{\eta_i\}_{i=1}^n$, где

$$\varepsilon_i \sim B(1, n),$$
 a $\eta_i \sim \mathcal{P}(p).$

При этом семейства $\{ \varepsilon_i \}_{i=1}^n$ и $\{ \eta_i \}_{i=1}^n$ независимы. Значит

$$S_n \sim B(n,p) \sim X := \sum_{i=1}^n \varepsilon_i$$
 If $S \sim \mathcal{P}(np) \sim Y := \sum_{i=1}^n \eta_i$.

Следовательно

$$\{X \neq Y\} \subseteq \bigcup_{i=1}^{n} \{\varepsilon_i \neq \eta_i\} \implies \mathbb{P}\{X \neq Y\} \leqslant \sum_{i=1}^{n} \mathbb{P}\{\varepsilon_i \neq \eta_i\} \leqslant np^2.$$

Отсюда имеем, что

$$|\mathbb{P}\{S_n \in A\} - \mathbb{P}\{S \in A\}| = |\mathbb{P}\{X \in A\} - \mathbb{P}\{Y \in A\}|$$

$$= |\mathbb{P}\{X \in A \land Y \notin A\} - \mathbb{P}\{Y \in A \land X \notin A\}|$$

$$\leqslant \mathbb{P}\{X \in A \land Y \notin A\} + \mathbb{P}\{Y \in A \land X \notin A\}$$

$$\leqslant \mathbb{P}\{X \neq Y\}$$

$$\leqslant np^2.$$

Следствие 15.1. Пусть дано $n \in \mathbb{N} \cup \{0\}$ и случайные события $S_n \sim B(n,p)$ и $S \sim \mathcal{P}(np)$. Тогда

$$\sum_{k=0}^{\infty} |\mathbb{P}\{S_n = k\} - \mathbb{P}\{S = k\}| \leqslant 2np^2.$$

Доказательство. Обозначим

$$B_{+} := \{k \mid \mathbb{P}\{S_{n} = k\} \geqslant \mathbb{P}\{S = k\}\}$$
 $B_{-} := (\mathbb{N} \cup \{0\}) \setminus B_{+}.$

Тогда понятно, что

$$\sum_{k=0}^{\infty} |\mathbb{P}\{S_n = k\} - \mathbb{P}\{S = k\}| = \sum_{k \in B_+} (\mathbb{P}\{S_n = k\} - \mathbb{P}\{S = k\}) - \sum_{k \in B_-} (\mathbb{P}\{S_n = k\} - \mathbb{P}\{S = k\})$$

$$= (\mathbb{P}\{S_n \in B_+\} - \mathbb{P}\{S \in B_+\}) - (\mathbb{P}\{S_n \in B_-\} - \mathbb{P}\{S \in B_-\})$$

$$\leq |\mathbb{P}\{S_n \in B_+\} - \mathbb{P}\{S \in B_+\}| + |\mathbb{P}\{S_n \in B_-\} - \mathbb{P}\{S \in B_-\}|$$

$$\leq nv^2 + nv^2 = 2nv^2$$

Перерисовать.