PENGOLAHAN CITRA DIGITAL

OPERASI DASAR GKV - IF 2020

OPERASI DASAR CITRA

- LEVEL KOMPUTASI
- OPERASI ARITMATIKA
- OPERASI BOOLEAN
- OPERASI GEOMETRI

ODC - LEVEL KOMPUTASI

- TITIK
- LOKAL
- GLOBAL

LK-TITIK

- Operasi pada level titik hanya dilakukan pada pixel tunggal di dalam citra.
- Operasi titik dikenal juga dengan nama operasi pointwise.
- Operasi ini terdiri dari pengaksesan pixel pada lokasi yang diberikan, memodifikasinya dengan operasi linear atau nonlinear, dan menempatkan nilai pixel baru pada lokasi yang bersesuaian di dalam citra yang baru.
- Operasi ini diulangi untuk keseluruhan pixel di dalam citra.

LK-TITIK (2)

• Secara matematis operasi titik dituliskan sebagai berikut :

$$f_B(x, y) = O_{\text{titik}} \{ f_A(x, y) \}$$

LK-TITIK (3)

- Pengambangan (Thresholding)
- Negatif (Negative)
- Pencerahan (Brightening)
- Pemotongan (Clipping)

Pengambangan (Thresholding-1)

• Pada operasi pengambangan, nilai intensitas *pixel dipetakan ke* salah satu dari dua nilai, *a1 atau a2, berdasarkan nilai ambang* (threshold) T:

$$f(x, y)' = \begin{cases} a_1, & f(x, y) < T \\ a_2, & f(x, y) \ge T \end{cases}$$

Pengambangan (Thresholding-2)

```
Editor - C:\Users\user\Documents\MATLAB\PCD\thresholding.m
 thresholding.m
      function y=thresholding(x,T)
       x=double(x);
      [M N] = size(x);
      \equiv for i=1:M,
        for j=1:N,
                if x(i,j) < T
                    y(i,j)=0;
                else
                    y(i,j)=255;
                 end
            end
       ⊢ end
       v=uint8(v);
13 -
```

Pengambangan (Thresholding-3)

✓ Variables - y							
Э	ÿ ×						
	₩ y <512x512 uint8>						
	5	6	7	8	9		
6	255	255	255	255	255		
7	255	255	255	255	255		
8	255	255	255	255	255		
9	255	255	255	255	255		
10	255	255	255	255	255		
11	255	255	255	0	255		
12	255	255	0	0	255		
13	255	255	255	255	255		
14	255	255	255	255	255		

Negative Image -1

Operasi negatif digunakan untuk mendapatkan citra negatif (negative image) meniru film negatif pada fotografi dengan cara mengurangi nilai intensitas pixel dari nilai keabuan maksimum.

```
f'(x,y) = \max \text{ gray level} - f(x,y)

f'(x,y) = 255 - f(x,y), untuk 8 bit

f'(x,y) = 127 - f(x,y), untuk 7 bit
```

Negative Image -2

```
Editor - C:\Users\user\Documents\MATLAB\PCD\negatif.m
thresholding.m
               × negatif.m
      function neg=negatif(gb)
       qb=double(qb);
        [M N] = size(qb);
      \frac{1}{2} for i=1:M,
           for j=1:N,
                neg(i,j)=255-gb(i,j);
            end
       end
      neg=uint8(neg);
```

Negative Image -3

✓ Variables - x					
∄ x	×				
	5	6	7	8	9
6	136	134	134	135	136
7	135	137	134	131	134
8	133	134	131	132	134
9	134	135	132	132	138
10	130	129	130	132	136
11	131	130	130	127	134
12	134	130	125	123	135
13	132	128	134	131	136
14	135	132	131	131	134

✓ Variables - y						
y ×						
	5	6	7	8	9	
6	119	121	121	120	119	
7	120	118	121	124	121	
8	122	121	124	123	121	
9	121	120	123	123	117	
10	125	126	125	123	119	
11	124	125	125	128	121	
12	121	125	130	132	120	
13	123	127	121	124	119	
14	120	123	124	124	121	

Pencerahan - 1

Kecerahan citra dapat diperbaiki dengan menambahkan sebuah konstanta kepada (atau dari) setiap *pixel di dalam citra*.

Secara matematis operasi ini ditulis sebagai :

$$f(x, y)' = f(x, y) + b$$

Jika *b positif, kecerahan citra bertambah, sebaliknya jika b negatif kecerahan* citra berkurang.

Pencerahan - 2

```
Editor - C:\Users\user\Documents\MATLAB\PCD\brightness.m
thresholding.m
                × negatif.m
                             × brightness.m
      function y=brightness(x,k)
       x=double(x);
       [m n] = size(x);
      \bigcirc for i=1:m,
            for j=1:n,
                y(i,j)=x(i,j)+k;
            end
      ⊢ end
      ^{\perp} y=uint8(y);
```

Pencerahan - 3

✓ Variables - y							
y ×							
∃ y <512x512 uint8>							
	5	6	7	8	9		
6	236	234	234	235	236		
7	235	237	234	231	234		
8	233	234	231	232	234		
9	234	235	232	232	238		
10	230	229	230	232	236		
11	231	230	230	227	234		
12	234	230	225	223	235		
13	232	228	234	231	236		
14	235	232	231	231	234		

Pemotongan (clipping)

Operasi ini dilakukan jika nilai intensitas *pixel hasil suatu* operasi pengolahan citra terletak di bawah nilai intensitas minimum atau di atas nilai intensitas maksimum:

$$f(x, y)' = \begin{cases} 255, & f(x, y) > 255 \\ f(x, y), & 0 \le f(x, y) \le 255 \\ 0, & f(x, y) < 0 \end{cases}$$

LK - LOKAL

Operasi pada aras lokal menghasilkan citra keluaran yang intensitas suatu pixel bergantung pada intensitas pixel-pixel tetangganya.

LK - GLOBAL

Operasi pada aras global menghasilkan citra keluaran yang intensitas suatu *pixel* bergantung pada intensitas keseluruhan *pixel*.

Contoh operasi global : Perataan Histogram

OPERASI ARITMATIKA

Karena citra dijital adalah matriks, maka operasi-operasi aritmetika matriks juga berlaku pada citra. Operasi matriks yang dapat dilakukan adalah:

1. Penjumlahan atau pengurangan antara dua buah citra A dan B:

$$C(x, y) = A(x, y) \pm B(x, y),$$

2. Perkalian dua buah citra:

$$C(x, y) = A(x, y) B(x, y),$$

3. Penjumlahan/pengurangan citra A dengan skalar c:

$$B(x, y) = A(x, y) \pm c,$$

4. Perkalian/pembagian citra A dengan sebuah skalar c:

$$B(x, y) = c \times A(x, y)$$

OPERASI BOOLEAN

Selain operasi aritmatika, pemrosesan citra digital juga melibatkan operasi Boolean (and, or, dan not):

- 1. C(x, y) = A(x, y) and B(x, y),
- 2. C(x, y) = A(x, y) or B(x, y),
- 3. C(x, y) = not A(x, y).

OPERASI GEOMETRI

Pada operasi geometrik, koordinat *pixel berubah akibat transformasi, sedangkan* intensitasnya tetap. Ini berbeda dengan dengan operasi aritmetika yang mana koordinat *pixel tetap sedangkan intensitasnya berubah.*

$$f'(x', y') = f(g1(x, y), g2(x, y))$$

- Translasi
- 2. Rotasi
- 3. Penskalaan
- 4. Flipping

GEOMETRI-TRANSLASI

• Rumus translasi citra:

$$X' = X + M$$

$$y' = y + n$$

GEOMETRI-ROTASI

• Rumus rotasi citra:

$$x' = x \cos(q) - y \sin(q)$$

$$y' = x \sin(q) + y \cos(q)$$

Rotasi 90 derajat CCW

GEOMETRI-PENSKALAAN

Penskalaan citra, disebut juga *image zooming, yaitu pengubahan ukuran citra* (membesar/zoom out atau mengecil/zoom in).

Rumus penskalaan citra:

$$X' = SX \times X$$

$$y' = sy \times y$$

GEOMETRI-PENSKALAAN-2

Penskalaan 2 x

GEOMETRI - FLIPPING

Flipping adalah operasi geometri yang sama dengan pencerminan (image reflection). Ada dua macam flipping: horizontal dan vertikal.

Flipping Horisontal:

$$f'(x,y) = f(N-x,y)$$

FlippingVertikal:

$$f'(x,y)=f(x,M-y)$$

GEOMETRI – FLIPPING-2

(a) citra

(b) flip horizontal

(c) flip vertikal