Різні модифікації градієнтного методу

30 травня 2023 р.

Визначення

Визначення

Умова Ліпшиця для градієнта з константою L

$$\|\nabla f(x_1) - \nabla f(x_2)\| \ge L\|x_1 - x_2\|$$

Визначення

Гладка функція — це функція, що має неперервну похідну на всій області визначення.

Визначення

Визначення

m-сильно опукла функція - функція, що задовільняє нерівність:

$$f(y) \ge f(x) + \nabla f(x)(y-x) + \frac{m}{2}||y-x||^2$$

Формалювання проблеми

 $\min_{x \in \mathbb{R}^n} f(x)$, де f гладка і опукла функція. Часто ще додають сильну m-опуклість та умову Ліпшиця.

Градієнтний метод

Згадаємо базовий градієнтний методу

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

$$\alpha = \frac{2}{L}, N = O(\frac{L}{m} \ln(\frac{\|x_0 - x^*\|^2}{\varepsilon}))$$

Проблема незмінного кроку

Змінний крок

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k), \alpha_k \to 0$$

Метод важкого шара Поляка

Метод важкого шара Поляка

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) + \beta(x_k - x_{k-1}), \beta$$
- масса шара

Метод Нестерова

$$x_{k+1} = y_k - \alpha_k \nabla f(y_k)$$

 $y_{k+1} = x_{k+1} + \beta_k (x_{k+1} - x_k)$
Aбо
 $x_{k+1} = x_k + \beta_k (x_k - x_{k-1}) - \alpha_k \nabla f(x_k + \beta_k (x_k - x_{k-1}))$

Метод Нестерова

Метод Нестерова

Теорема

Для досягнення точності ε , отримання x_N , такого що $f(x_N) - f^* \le \varepsilon$, методу Нестерова потрібно

- в опулому випадку: $N = O\left(\frac{LR^2}{\sqrt{\varepsilon}}\right)$
- у сильно опуклому випадку

$$N = O\left(\sqrt{\frac{L}{m}}\log\left(\frac{1}{\varepsilon}\right)\right)$$

Стохастичний градієнтний метод

Задача:

$$F(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \rightarrow min, x \in \mathbb{R}^d, f_i : \mathbb{R}^d \rightarrow \mathbb{R}$$

- f_i гладкі з L_i константою

Запозичення в ML

$$x_{k+1} = x_k - \alpha_k \nabla f_{i_k}(x_k) + \beta_k (x_k - x_{k-1})$$

Метод важкого шара Поляка

Теорема

Якщо взяти за параметри методу $\alpha_k = \frac{2\mu}{k+2}$, $\beta_k = \frac{k}{k+2}$ де $0 < \mu \le \frac{1}{4L_{max}}$

Тоді для довільного $N \in \mathbb{N}$ має місце оцінка

$$M(F(x_N)-\min F) \leq \frac{\|x_0-x^*\|^2}{\mu(N+1)} + \frac{2\mu}{n} \sum_{i=1}^n \|\nabla f_i(x^*)\|^2$$

Adam

$$m_{i}^{k} = \beta_{1} m_{i}^{k-1} + (1 - \beta_{1}) g_{i}^{k}, \quad \hat{m}_{i}^{k} = \frac{m_{i}^{k}}{1 - \beta_{1}^{k}},$$

$$v_{i}^{k} = \beta_{2} v_{i}^{k-1} + (1 - \beta_{2}) (g_{i}^{k})^{2}, \quad \hat{v}_{i}^{k} = \frac{v_{i}^{k}}{1 - \beta_{2}^{k}}, \quad (1)$$

$$x_{i}^{k+1} = x_{i}^{k} - \frac{\eta}{\sqrt{\hat{v}_{i}^{k} + \varepsilon}} \hat{m}_{i}^{k}, \quad i = \overline{1, d}, \quad \varepsilon = 10^{-8},$$