Work extraction from quantum coherence

Imperial College London

<u>Kamil Korzekwa¹</u>, Matteo Lostaglio¹, Jonathan Oppenheim², David Jennings¹

- ¹ Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
- ² Department of Physics, University College London, London WC1E 6BT, United Kingdom

1. Thermodynamic setting

Joint energy-conserving unitary evolution

Arbitrary state: ρ_S Hamiltonian: H_S Thermal State: $\gamma_E \propto e^{-\beta H_E}$ Hamiltonian: H_E

 $[U, H_S + H_E] = 0$

Hence the evolution of the system is described by *thermal* operations:

 $\mathcal{E}_{T}(\rho_{S}) = Tr_{E}(U(\rho_{S} \otimes \gamma_{E})U^{\dagger}),$ $\mathcal{E}_{T}(e^{-iH_{S}t}\rho_{S}\rho e^{iH_{S}t}) = e^{-iH_{S}t}\mathcal{E}_{T}(\rho_{S})e^{iH_{S}t}$

that form a subset of time-translation symmetric operations:

2. Work extraction & work-locking

Coherence part of free energy is locked!

$$\rho_S \to W \iff D(\rho_S) \to W$$

$$D(\rho_S) = \sum_{n,m} |n\rangle\langle n|\rho_S |n\rangle\langle n|$$

E.g. The amount of work that can be extracted from pure qubit state $|\gamma\rangle$ is zero.

3. Unlocking work with a repeatable resource

Idea: Introduce an ancillary ladder system (reference) with coherence that can be reused infinitely many times

$$H_R = \sum_{n} \hbar \omega_0 n |n\rangle\langle n|$$

E.g. Single-mode bosonic field in a coherent state $|\alpha\rangle$ or a uniform superposition of energy eigenstates $|\psi_L\rangle \propto \sum_{n=0}^L |n\rangle$.

In the limit of a classical (unbounded) reference (properly defined size $N \to \infty$) all work can be extracted from coherence:

$$W(\rho_S) \to \Delta F(\rho_S)$$

Using a bounded reference the amount of work that can be extracted is strictly smaller than the expected free energy difference:

$$W(\rho_S) < \Delta F(\rho_S)$$

Explicit protocols for bounded reference frames (described by quality parameter $\langle \overline{\Delta} \rangle$) extracting work from coherence in single-shot and asymptotic scenarios.

4. Results

II. Work extraction

Work extraction from a qubit state $|\gamma\rangle = \sqrt{1-p}|0\rangle + \sqrt{p}|1\rangle$ (where p is the thermal occupation of excited state). Left: Asymptotic scenario.

Right: Single-shot scenario ($\delta \varepsilon$ - the decrease in failure probability)