# "Sentilytics: Comment Analyzer"

Developed For FCAIT, iMSc(IT)

Project Report (Sem - VI)

Submitted For

The Partial Fulfillment Towards

The Degree of

Integrated Master of Science (Information Technology)

iMSc(IT)

By

Akbar Ali Musamji - B46

Mohammed Akil Shiakh - B93

Shahid Husain Shaikh - B94

#### Under the Guidance of

External Guide

Maheraban Ali

Managing Director

Datahat Solution LLP

Internal Guide

Prof.Anjali Bobra

FCAIT, iMSc(IT),

Ahmedahad



Faculty of Computer Applications & Information Technology iMSc(IT) Programme, Ahmedabad.

#### GLS UNIVERSITY

Faculty of Computer Applications & Information Technology,

iMSc(IT) Programme Ahmedabad

#### CERTIFICATE

This is to certify that

- 1) Akbar Ali Musamji
- 2) Mohammed Akil Shaikh
- 3) Shahid Husain Shaikh

Students of Semester- VI Integrated Msc(IT) [TY iMSc(IT)], FCAIT, GLS University have successfully completed the Mini Project

on

"Sentilytics: Comment Analyzer"

as a partial fulfillment of the study of Third year Semester-VI, Integrated Master of Science (Information Technology) [iMSc(IT)]

Date of Submission:

Dean
Faculty of Computer Applications & IT (UG)
GLS University, Ahmedabad-380 006.
Dr. Tripti Dodiya

Dean

FCAIT-UG

Dr. Ankit

Interfial Guide



#### **Datahat Solutions LLP**

D301 Titanium city center Ahmedabad 380015 Gujarat, India +917567196771 LLP Identification : ABB-6972



#### **Project Mentorship**

19-03-2025

Project Title: Sentilytics - Al Powered Comments Analyzer

This is to certify that Akbarali Musamji, Mohammad Akil Shaikh, Shahid Shaikh, are students of Semester-VI, iMscIT programme, GLS University, Ahmedabad bring mentored by us.

Under the mentorship and guidance of **Datahat Solutions LLP**, they have effectively accomplished the following tasks:

- System Analysis
- UML Diagrams
- Data Dictionary
- Implementation
- Testing
- Deployment

Their dedication, sincerity, and hard work during the project have been exemplary.

Maherban Ali Datahat Solutions LLP (Managing Director)





#### 1.Introduction:

Sentilytics is an AI-powered sentiment analysis tool designed for real-time analysis of user-generated comments. The system categorizes comments into positive, negative, or neutral sentiments. It supports both single comment analysis and bulk analysis via CSV/Excel uploads. Users can visualize sentiment distribution using bar graphs and word clouds. The project comprises a React.js frontend and a Django backend with a custom sentiment analysis model.

### 2.Project Profile:

#### **2.1** Project Description:

Our system simplifies sentiment analysis by allowing users to analyze comments individually or in bulk. Users can either input a single comment or upload a CSV file containing multiple comments, and the system will classify them as **positive**, **negative**, **or neutral**.

For guest users, a single comment analysis is available without registration. Registered users, on the other hand, can perform batch analyses, visualize results through **bar graphs and word clouds**, and even correct misclassified sentiments to improve model accuracy.

Admins have access to user activity, and comment classification results. The Sentilytics platform ensures a **user-friendly experience**, helping businesses and individuals understand customer opinions in a structured and efficient manner.

#### 2.2 Project Modules:

- 1. Single Comment Analysis:
  - Users can analyze individual comments.
- 2. Multiple Comments Analysis:
  - Supports CSV/Excel file uploads for bulk analysis.
- 3. YouTube Comments Analysis:
  - Fetches and analyzes YouTube comments using the Google API.
- 4. Export Results:
  - Users can download results in Excel format.
- 5. Graphical Representations:
  - Bar graphs for sentiment distribution.
  - Word clouds for frequent terms in positive reviews.
- 6. Manual Sentiment Editing:
  - Users can correct misclassified sentiments to improve model accuracy.
- 7. User Management:
  - Guest users can analyze single comments, while registered users have access to batch analysis and sentiment corrections.
- 8. Database Storage:
  - Stores all analyses with timestamps, comment sources, and sentiment results.

#### 2.3 Technology Stack:

Frontend: React.js

Backend: Django (Python)

Database: PostgreSQL

 Machine Learning Model: Custom-built using Logistic Regression

Datasets: Sentiment140, Amazon Product Review

#### 2.4 Implementation Details:

Sentilytics follows a structured workflow for sentiment analysis:

- 1. Preprocessing: Text is cleaned by removing stopwords, special characters, and applying tokenization.
- 2. Feature Extraction: TF-IDF vectorization converts text into numerical format for analysis.
- 3. Model Prediction: The Logistic Regression model predicts sentiment polarity.
- 4. Result Storage: Analysis results are stored in the database for retrieval and visualization.
- 5. User Feedback Loop: Users can correct sentiments, which are stored to refine future model training.

## 3.UML Diagrams:

## 3.1 Use-case Diagram:



### 3.2 Class Diagram:

### Class Diagram - Sentilytics Comments Analyzer



## 3.3 Sequence Diagram:

#### 1. Single Comment Analysis Sequence Diagram



#### 2. Multiple Comment Analysis Sequence Diagram



#### 3. YouTube Comment Analysis Sequence Diagram



#### 4. Admin Comment Verification Sequence Diagram



## 3.4 Activity Diagram:

# **GUEST USE ACTIVITY DIAGRAM**



## **Registered User Activity Diagram**



# **Admin Activity Diagram**



## 3.5 State Chart Diagram

#### **Comments State**



## **4.DATA DICTIONARY**

### **4.1 USER TABLE:**

| Field Name   | Data Type      | Constraints                  | Description                         |
|--------------|----------------|------------------------------|-------------------------------------|
| id           | Integer (Auto) | Primary Key                  | Unique user ID                      |
| username     | Varchar        | Unique, Required             | Username for authentication         |
| email        | Varchar        | Unique, Required             | User's email                        |
| password     | Varchar        | Required, Non-Nullable       | Encrypted user password             |
| is_staff     | Boolean        | Default=False, Non-Nullable  | Determines if user has admin access |
| is_superuser | Boolean        | Default=False, Non-Nullable  | Determines if user has full access  |
| Date_joined  | DateTime       | Auto Timestamp, Non-Nullable | Date when the user registered       |

## **4.2 TOKEN TABLE:**

| Field Name | Data Type | Constraints                 | Description              |
|------------|-----------|-----------------------------|--------------------------|
|            |           |                             | Authentication token for |
| key        | Char      | Primary Key                 | API access               |
|            |           | Foreign Key (auth_user.id), |                          |
| user_id    | Integer   | Non-Nullable                | Links token to a user    |
|            |           | Auto Timestamp, Non-        | Timestamp when the       |
| created    | DateTime  | Nullable                    | token was created        |

### **4.3 COMMENT TABLE:**

| Field Name   | Data Type | Constraints                                                                      | Description                         |
|--------------|-----------|----------------------------------------------------------------------------------|-------------------------------------|
|              | Integer   |                                                                                  |                                     |
| id           | (Auto)    | Primary Key, Non-Nullable                                                        | Unique comment ID                   |
| •            | 1.1       | Facility (and access N. Naca M. Halila                                           | User who analyzed the               |
| user_id      | Integer   | Foreign Key (auth_user.id), Non-Nullable Foreign Key (analysis_batchcomment.id), | comment<br>Links to batch analysis  |
| batch_id     | Integer   | Default=None,Nullable                                                            | (if applicable)                     |
| comment      | Text      | Required, Non-Nullable                                                           | Original comment text               |
| comment      | TCAC      | Required, Non Nanable                                                            | Processed text after                |
| cleaned_text | Text      | Auto-generated, Non-Nullable                                                     | cleaning                            |
| sentiment    | Varchar   | Required, Non-Nullable                                                           | Predicted sentiment                 |
| score        | Float     | Auto-generated, Non-Nullable                                                     | Sentiment score                     |
|              |           |                                                                                  | Timestamp when the                  |
| date_created | DateTime  | Auto Timestamp, Non-Nullable                                                     | comment was analyzed                |
|              |           |                                                                                  | Timestamp when the comment was last |
| updated_at   | DateTime  | Auto Timestamp                                                                   | updated                             |
| apaatea_at   | Daterinie | Auto Illiestamp                                                                  | Indicates if sentiment              |
| is_updated   | Boolean   | Default=False, Non-Nullable                                                      | was manually corrected              |
|              |           |                                                                                  | Shows type of comment               |
| comment_type | Varchar   | Required, Default='single', Choices=(single, batch)                              | (Single,Batch)                      |

#### **4.4 BATCH COMMENTS**

| Field Name       | Data<br>Type | Constraints                                    | Description                              |
|------------------|--------------|------------------------------------------------|------------------------------------------|
|                  | Integer      |                                                |                                          |
| id               | (Auto)       | Primary Key, Non-Nullable                      | Unique batch ID<br>User who performed    |
| user_id          | Integer      | Foreign Key (auth_user.id), Non-Nullable       | batch analysis<br>Source type (CSV File, |
| comment_type     | Varchar      | Required, Non-Nullable<br>Auto-generated, Non- | Excel File, YouTube)                     |
| overall_sentimen |              | Nullable, Choices (positive, negative, neutra  | Aggregated                               |
| t                | Varchar      | 1)                                             | sentiment for batch Timestamp when       |
|                  | DateTim      |                                                | batch analysis was                       |
| date_created     | е            | Auto Timestamp, Non-Nullable                   | performed                                |

# **4.5 CORRECTED SENTIMENT:**

| Field Name          | Data Type         | Constraints                                                            | Description                                                                       |
|---------------------|-------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| id                  | Integer<br>(Auto) | Primary Key, Non-<br>Nullable<br>Foreign Key<br>(analysis_comment.id), | Unique correction ID                                                              |
| comment_id          | Integer           | Non-Nullable                                                           | Links to the corrected comment                                                    |
| comment_text        | Varchar           | Required, Non-Nullable Foreign Key (auth_user.id), Non-                | Original comment text                                                             |
| user_id             | Integer           | Nullable                                                               | User who corrected the sentiment                                                  |
| predicted_sentiment | Varchar           | Required, Non-Nullable                                                 | model predicted sentiment value                                                   |
| corrected_sentiment | Varchar           | Required, Non-Nullable                                                 | Corrected sentiment value<br>Indicates if admin verified<br>correction(True=valid |
| feedback_verified   | Boolean           | Default=False, Nullable<br>Auto Timestamp, Non-                        | correct,False=Invalid,Null =pending)                                              |
| date_corrected      | DateTime          | Nullable                                                               | Timestamp when sentiment was corrected                                            |

## **5.Screen Layouts:**

# **Login Page:**



## **Register Page:**



## **Home Page: Single Comment Analysis**



### **Single Comment Analysis:**



## Multiple/Youtube Comment Analysis:









#### **Dashboard:**





### **6.Conclusion:**

Sentilytics successfully leverages Logistic Regression with TF-IDF vectorization to provide a fast and accurate AI-powered sentiment analysis tool. The project integrates machine learning with an interactive UI to ensure efficient sentiment classification. Logistic Regression was chosen due to its interpretability, efficiency, and robustness for sentiment analysis tasks.

## 7. References:

- https://docs.djangoproject.com/en/
- https://youtu.be/j6szNSzw4BU?si=zl cct3gm2H39PEXt
- https://youtu.be/\_nvQKN8L1ZE?si=x JRRWVg-ECPf6j79
- https://www.kaggle.com/datasets/k azanova/sentiment140
- https://scikitlearn.org/stable/modules/generated /sklearn.linear\_model.LogisticRegres sion.html
- <a href="https://react.dev/learn">https://react.dev/learn</a>
- https://youtu.be/4z9bvgTlxKw?si=L Ar87T-412QDhVE-