Neural Prototype Trees

An XAI presentation by Jakub Bednarz

Introduction

- → So far we've been trying to perform post-hoc analysis of trained models
- → What if we could *choose* an already explainable class of models from the get-go and skip the explanations "for free"?
- → Problem: how to combine explainability and good performance, especially in domains dominated by deep NNs?
- → Let's take a look at one such method for image classification

Paper

Paper: Neural Prototype Trees for Interpretable Fine-grained Image Recognition (Meike Nauta, Ron van Breem, Christin Seifert)

Published in CVPR 2021

TL;DR; An intrinsically interpretable DL method for image classification, works like a decision tree with the branches taken based on the presence of trainable prototypical parts in the image.

Figure 1. A visual description of the method

Related work

Using prototypes and/or decision trees was done before. Some ideas include:

- → ProtoPNet: Have a bunch of prototypes (each having an assigned class), compute similarity with the image for each one, take a weighted sum
 - ♦ Issue: Lots of prototypes needed to get a good result
- → DNDF: Have a "soft" decision tree (routing through a node is stochastic), with probability of taking left or right determined by a NN
 - ♦ Issue: The NNs at the decision tree nodes are still not interpretable

So, how does it work?

- → First, we encode the images as feature maps with a CNN this is the input to the decision tree
- → Each node in the tree contains a prototype a learnable "patch" in the latent space
- → "Presence of prototype in the image" = minimum distance between the prototype and a patch of the image
- → This value determines (in a soft fashion) whether we route to the left or to the right
- → Leaf nodes contain class distributions

Figure 2. ProtoTree in more detail

conv2d0

Figure 3. Patch similarity - somewhat similar to line/pattern detectors

Making it interpretable

- → Prototypes are converted to actual patches by checking which patch in the training set matches the prototype best
- → Want to convert "soft" decision trees to "hard" decision trees select a path with highest probability
- → Making the decision tree smaller via pruning leaves with small discriminative power

Figure 5: Pruning removes a subtree T', and its parent, in which all leaves have an (nearly) uniform distribution.

Figure 3: Visualized root node from soft decision trees. Applied to resp. CIFAR10, MNIST, FashionMNIST and CUB. Republished with permission from the authors (a-c).

Datasets

- → The objective is fine-grained image classification
- → The two datasets tested are:
 - ◆ CUB: 200 types of birds
 - ♦ CARS: 196 models of cars

Results

- → State of the art on CUB is Metaformer with 92.9% accuracy
- → State of the art on CARS is TResNet-L + ML-Decoder with 96.41% accuracy

Data set	Method	Interpret.	Top-1 Accuracy	#Proto types
CUB (224 × 224)	Triplet Model [34]	*	87.5	n.a.
	TranSlider [58]	-	85.8	n.a.
	TASN [57]	O	87.0	n.a.
	ProtoPNet [9]	+	79.2	2000
	ProtoTree h=9 (ours)	++	$82.2 {\pm} 0.7$	202
	ProtoPNet ens. (3) [9]	+	84.8	6000
	ProtoTree ens. (3)	+	86.6	605
	ProtoTree ens. (5)	+	87.2	1008
CARS (224 \times 224)	RAU [36]	-	93.8	n.a.
	Triplet Model [34]		93.6	n.a.
	TASN [57]	o	93.8	n.a.
	ProtoPNet [9]	+	86.1	1960
	ProtoTree h=11 (ours)	++	86.6 ± 0.2	195
	ProtoPNet ens. (3) [9]	+	91.4	5880
	ProtoTree ens. (3)	+	90.3	586
	ProtoTree ens. (5)	+	91.5	977

Thoughts/Discussion

- → The pixel-space prototypes are not used "directly", but found after training what if we can't find it?
- → In a similar vein, trying to explain how predictions are made to a stakeholder may be difficult ("similarity with a learnable patch in the latent space" doesn't *sound* all that convincing)
- → Still, it seems better than trying to explain Integrated Gradients or any other such methods
- → Results on different datasets?