Day 20

More on subspace and dimension

Some counting

Let F be a finite field with $q=p^d$ elements. Let W be a k-dimensional vector space. Then

- 1. The number of distinct bases of W is $(q^k-1)(q^k-q)(q^k-q^2)\cdots(q^k-q^{k-1})$.
- 2. The number of subspaces of dimension k is

$$\frac{(q^n-1)(q^n-q)\cdots(q^n-q^{k-1})}{(q^k-1)(q^k-q)\cdots(q^k-(q^{k-1}))}$$

3. The group Aut(V) has the same order as in part 1. (To see this, fix a basis of V. Given another basis, there is a bijective linear map from the fixed basis to this new basis. So the number of linear maps is the same as the number of different bases of V)

Proposition: If $W \subset V$ is a subspace, then the abelian group V/W is a vector space with a(v+W) = av+W being the scalar multiplication. The "isomorphism theorem" for abelian groups holds for vector spaces as well.

$$V \downarrow_{\pi} f \downarrow_{V/W} \xrightarrow{\overline{f}} K$$

We have $\dim(V) = \dim W + \dim(V/W)$. A linear map $f: V \to K$ is equivalent to an injective linear map $V/\ker(f) \to K$, and identifies the quotient with a subspace of K.

Proposition: If V and W are of the same finite dimension, and $f: V \to W$ is a linear map, then the following are equivalent: 1. f is injective. 2. f is surjective. 3. f is bijective. 4. If v_1, \ldots, v_n is a basis of V, then $f(v_1), f(v_2), \ldots, f(v_n)$ is a basis of W.