ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA CƠ KHÍ BỘ MÔN THIẾT KẾ MÁY

BÁO CÁO ĐỒ ÁN HỆ THỐNG TRUYỀN ĐỘNG

GVHD: TS. PHAM MINH TUẤN

SINH VIÊN THỰC HIỆN:

Họ và tên	MSSV		
Dương Quang Duy	2210497		
Đoàn Nguyễn Minh Khoa	2211586		

Mục lục

1	Chọn	động cơ điện								
	1.1	Xác định công suất bộ phận công tác								
	1.2	Số vòng quay của bộ phận công tác								
	1.3	Hiệu suất của các bộ truyền và các cặp ổ trong hệ thống dẫn động . 3								
	1.4	Công suất động cơ cần thiết								
	1.5	Dãy tỉ số truyền nên dùng cho các bộ truyền trong hệ thống 3								
2	Phân	phối tỉ số truyền								
3	Tính t	toán công suất và momen trên các trục								
	3.1	Tính toán công suất trên các trục								
	3.2	Tính toán momen trên các trục								
	3.3	Bảng thông số hệ thống								
4	Chọn	bộ truyền đai								
	4.1	Chọn loại đai								
	4.2	Tính đường kính bánh đại nhỏ 5								
	4.3	Chọn hệ số trượt tương đối và tính đường kính bánh đai lớn 5								
	4.4	Tính khoảng cách trục a và chiều dài đai L 6								
	4.5	Tính góc ôm đai								
	4.6	Xác định số đai								
	4.7	Lực tác dụng lên trục								
	4.8	Ứng suất lớn nhất trong dây đại								
	49	Tuổi tho dây đại								

ĐỀ SỐ 4: THIẾT KẾ HỆ THỐNG TRUYỀN ĐỘNG MÁY ÉP BÙN PHƯƠNG ÁN 6

Hệ thống dẫn động gồm:

- 1: Động cơ điện
- 4: Nối trục đàn hồi
- 2: Bộ truyền đai thang
- 5: Thùng chứa liệu
- 3: Hộp giảm tốc bánh răng nghiêng 1 cấp
- 6: Trục vít xoắn ốc

Phương án	6
Lực vòng trên cánh vít F, (N)	2800
Vận tốc vòng cánh vít v, (m/s)	1,3
Dường kính cánh vít, D (mm)	225
Thời gian phục vụ L, (năm)	7
Số ca làm việc, (ca)	2
Thời gian làm việc mỗi ca, (giờ)	8
Số giờ làm việc mỗi năm, (giờ)	300

1 Chon đông cơ điện

1.1 Xác định công suất bộ phận công tác

$$P_{ct} = \frac{F.v}{1000} = \frac{2800 \cdot 1.4}{1000} = 3.92kW$$

1.2 Số vòng quay của bô phân công tác

$$n_{ct} = \frac{60000.v}{\pi.D} = \frac{60000.1.4}{\pi.225} = 118.82(v/ph)$$

- 1.3 Hiệu suất của các bộ truyền và các cặp ổ trong hệ thống dẫn động
 - Bộ truyền đai: $\eta_d = 0.96$
 - Bộ truyền bánh răng: $\eta_{br} = 0.98$

 - \hat{O} lăn: $\eta_{ol} = 0.995$

Hiệu suất hệ thống:

$$\eta_{ch} = \eta_d \eta_{br} \eta_{nt} (\eta_{ol})^3 = 0.96 \cdot 0.98 \cdot 0.99 \cdot 0.995 = 0.9175$$

1.4 Công suất động cơ cần thiết

$$P_{dc} = \frac{P_{ct}}{\eta_{ch}} = \frac{3.92}{0.9175} = 4.273kW$$

- 1.5 Dãy tỉ số truyền nên dùng cho các bộ truyền trong hệ thống
 - Bộ truyền đai thang: $u_d = 2...3$
 - Bộ truyền bánh răng trụ răng nghiêng $u_{br}=3...5$

Như vậy số vòng quay của động cơ dao động trong khoảng từ 713 vòng/phút đến 2971 vòng/phút.

Từ bảng P1.1, Tài liệu [1] chọn động cơ DK32-6 có: $P_{dc}=4.5kW$ và $n_{dc}=965vng/pht$. Như vậy tỉ số truyền chung của hệ thống là:

$$u_{ch} = \frac{n_{dc}}{n_{ct}} = \frac{950}{118.82} = 7.995$$

2 Phân phối tỉ số truyền

Tỷ số truyền của cả hệ được xác định theo công thức:

$$u_{ch} = u_d.u_{br}$$

Chọn tỉ số truyền của hộp giảm tốc:

$$u_{br}=3$$

Như vây:

$$u_d = \frac{u_{ch}}{u_{hr}} = \frac{7.995}{3} = 2.665$$

3 Tính toán công suất và momen trên các trục

3.1 Tính toán công suất trên các trục

Công suất trên trục công tác

$$P_{ct} = \frac{F.v}{1000} = \frac{2800.1.4}{1000} = 3.92kW$$

Công suất trên trục II:

$$P_{II} = \frac{P_{ct}}{\eta_{ol}^2 \cdot \eta_{nt}} = \frac{3.92}{0.995^2 \cdot 0.99} = 4kW$$

Công suất trên trục I:

$$P_I = \frac{P_{II}}{\eta_{ol} \cdot \eta_{br}} = \frac{4}{0.995 \cdot 0.98} = 4.102kW$$

3.2 Tính toán momen trên các trục

Momen trên trục công tác:

$$M_{lv} = 9,55 \cdot 10^6 \cdot \frac{P_{ct}}{n_{ct}} = 9.55 \cdot 10^6 \cdot \frac{3.92}{118.82} = 315053.5(N.mm)$$

Momen trên trục II:

$$M_{II} = 9.55 \cdot 10^6 \cdot \frac{P_{II}}{n_{II}} = 9.55 \cdot 10^6 \cdot \frac{4}{118.82} = 321442.24(N.mm)$$

Momen trên trục I:

$$M_I = 9.55 \cdot 10^6 \cdot \frac{P_I}{n_I} = 9.55 \cdot 10^6 \cdot \frac{4.102}{356.47} = 109883.5(N.mm)$$

Momen trên trục động cơ:

$$M_{dc} = 9,55 \cdot 10^6 \cdot \frac{P_{dc}}{n_{dc}} = 9.55 \cdot 10^6 \cdot \frac{4.275}{950} = 42950.09(N.mm)$$

3.3 Bảng thông số hệ thống

Trục	Động cơ	I		II	Bộ phận công tác	
Thông số						
P, kW	4.275	4.10)2	4	3.92	
U	2.66			3		1
N, rpm	950	356.47		118.83	118.83	
T, Nmm	42950.09	109883.51		321442.24 315053.49		315053.49

4 Chọn bộ truyền đai

4.1 Chọn loại đai

Dựa vào công suất động cơ là $P_{dc}=4.275kW$ và số vòng quay $n_{dc}=950$ vòng/phút và hình 4.1 tài liệu [1] \Rightarrow Chọn đai loại C

Hình 4.1. Chọn loại tiết diện đại hình thang

4.2 Tính đường kính bánh đai nhỏ

Theo dãy giá trị tiêu chuẩn tài liệu [1], ta chọn $d_1 = 280(mm)$. Vận tốc dài trên bánh đai nhỏ:

$$v_1 = \frac{\pi d_1 n_1}{60000} = \frac{\pi \cdot 280 \cdot 950}{60000} = 13.928(m/s) < 25(m/s)$$

 \Rightarrow Thỏa điều kiện $v_1 < 25~(\mathrm{m/s})$

4.3 Chọn hệ số trượt tương đối và tính đường kính bánh đai lớn

Chọn hệ số trượt tương đối $\xi = 0.02$ Từ công thức tỉ số của bộ truyền đai:

$$u_d = \frac{d_2}{d_1(1-\xi)}$$

$$\Rightarrow d_2 = u_d \cdot d_1(1-\xi) = 2.665 \cdot 280(1-0,02) = 761.428(mm)$$

Theo bảng 4.21 tài liệu [1], ta chọn $d_2 = 710(mm)$

Bảng 4.21. Các thông số của bánh dai hình thang

Chu thích: Dương kính bánh đai d, mm: 63, 71, 80, 90, 100, 112, 125, 140, 160, 180, 200, 224, 250, 280, 315, 355, 400, 450, 500, 560, 630, 710, 800, 900, 1000, 1120, 1250, 1400, 1600, 1800, 2000, 2240, 2500, 2800, 3150, 3550, 4000.

Tính lại tỷ số truyền:

$$u_d = \frac{d_2}{d_1(1-\xi)} = \frac{710}{280 \cdot 0,98} = 2.587$$

Tính sai lệch của tỷ số truyền:

$$\Delta u = \frac{2.665 - 2.587}{2.665} \cdot 100\% = 2,92\%$$

⇒ Sai lệch của tỷ số truyền nằm trong phạm vi cho phép.

4.4 Tính khoảng cách trục a và chiều dài đai L

Bång 4.14

u ·	1	2 3		4	5	≥ 6	
a/d ₂	1,5	1,2	1,0	0,95	0,9	0,85	

Dựa vào bảng 4.14 tài liệu [1], ta chọn $a=d_2=710(mm)$ Kiểm tra điều kiện:

$$0.55(d_1 + d_2) + h \le a \le 2(d_1 + d_2)$$
$$0.55(280 + 710) + 10.5 \le 710 \le 2(280 + 710)$$
$$555 \le 710 \le 1980$$

 \Rightarrow Chọn a = 710 (mm) thỏa điều kiện. Chiều dài đai:

$$L = 2a + \pi \frac{(d_1 + d_2)}{2} + \frac{(d_2 - d_1)^2}{4a} = 2 \cdot 710 + \pi \frac{(280 + 710)}{2} + \frac{(710 - 280)^2}{4 \cdot 710} = 3040.2(mm)$$

 \Rightarrow Chọn chiều dài đai L = 3150 mm theo bảng 4.13.

·Bàng 4.13. Các thông số của đại hình thang

Loai đai	Kí hiệu	Kích thước tiết diện, mm			liện,	Diện tích tiết diện	Dường kính bánh	Chiều dài giới hạn
		b _t	b	h	y ₀	A, mm ²	đai nhỏ d ₁ , mm	l, mm
Dai hình	0	8,5	10	6	2,1	47	70-140	400-2500
thang thường	A	11	13	8	2,8	81	100-200	560-4000
	Б	14	17	10,5	4,0	138	140-280	800-6300
bt	. B	19	22	13,5	4,8	230	200-400	1800-10600
7.	Г	27	32	19,0	6,9	476	315-630	3150-15000
£ ******	Д	32	38	23,5	.8,3	692	500-1000	4500-18000
31	Ē	42	50	30	11.	1170	800-1600	6300-18000
40°								121
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- ;	-	-			7 1 1	1.54	
Dai hình	УО	8,5	10	8	2	56	63-180	630-3550
thang hep	УА	11	13	10	2,8	95	90-250	800-4500
	УБ	14	17	13	3,5	158	140-200	1250-8000
bt	УБ	19	22	18	4,8	278	224-315	2000-8000
£ \$ 5				. ,		: .		
40°			,					

Trị số tiêu chuẩn của chiều dài đai (mm) như sau : 400, (425), 450, (475), 500, (530), 560, (600), 630, (670), 710, (750), 800, (850), 900, (950), 1000, (1060), 1120, (1180), 1250, (1320), 1400, (1500), 1600, (1700), 1800, (1900), 2000, (2120), 2240, (2360), 2500, (2650), 2800, (3000), 3150, (3350), 3550, (3750), 4000, (4250), 4500, 5000, 5600, 6300, 7100, 8000, 9000, 10000, 11200, 12500, 14000.

Chú thích : Trị số trong ngoặc ít dùng.

Kiểm nghiệm đai về tuối thọ

$$i = \frac{v}{L} = \frac{13.928}{3.150} = 4.42/s < i_{max} = 10/s$$

Tính lại khoảng cách trục:

$$a = \frac{\lambda + \sqrt{\lambda^2 - 8\Delta^2}}{4} = \frac{1594.911 + \sqrt{1594.911^2 - 8 \cdot 215^2}}{4} = 767(mm)$$

Trong đó:

•
$$\lambda = L - \frac{\pi(d_1 + d_2)}{2} = 3150 - \frac{\pi(280 + 710)}{2} = 1594.911$$

•
$$\Delta = \frac{d_2 - d_1}{2} = \frac{710 - 280}{2} = 215$$

4.5 Tính góc ôm đai

$$\alpha_1 = 180 - 57 \frac{d_2 - d_1}{a} = 180 - 57 \frac{710 - 280}{767} = 148^{\circ} > a_{min} = 120^{\circ}$$

4.6 Xác đinh số đai

Số đai z được tính theo công thức:

$$z = \frac{P_1 K_d}{[P_0] C_{\alpha} C_L C_u C_z}$$
$$= \frac{4.275 \cdot 1.25}{3.52 \cdot 0.92 \cdot 1.07 \cdot 1.136 \cdot 1} = 1.36$$

Trong đó:

- $P_1 = 4.275(kW)$ công suất trên trục bánh dẫn
- $K_d = 1.25$ hệ số tải trọng động
- $[P_0] = 3.52 (kW)$ ctrị số công suất cho phép (bảng 4.19)
- $C_{\alpha}=0.92$ hệ số ảnh hưởng góc ôm đai (bảng 4.15)
- $C_L=1.07$ hệ số ảnh hưởng chiều dài đai (bảng 4.16)
- $C_u = 1.136$ hệ số ảnh hưởng của tỉ số truyền (bảng 4.17)
- $C_z = 1$ hệ số ảnh hưởng sự phân bố không đều tải trọng các dây đai (bảng 4.18)

 $L\hat{a}y z = 1 dai.$

Lực căng trên mỗi dây đai:

$$\frac{F_0}{z} = \frac{414}{2} = 207(N)$$

Tổng lực vòng có ích trên cả 2 đai:

$$F_t = \frac{1000P_1}{v_1} = \frac{1000.3, 212}{4,0422} = 794, 6(N)$$

Lực vòng có ích trên mỗi dây đai:

$$\frac{F_t}{z} = \frac{794,6}{2} = 397,3(N)$$

4.7 Lực tác dụng lên trục

$$F_r \approx 2F_0 \sin(\frac{\alpha_1}{2}) = 2.414 \sin(\frac{159}{2}) = 833, 8(N)$$

4.8 Úng suất lớn nhất trong dây đai

$$\sigma_{max} = \sigma_1 + \sigma_v + \sigma_{F1} = \sigma_0 + 0, 5\sigma_t + \sigma_v + \sigma_{F1}$$

$$= \frac{F_0}{A} + 0, 5.\frac{F_t}{A} + \rho \cdot v^2 \cdot 10^{-6} + E \cdot \frac{2 \cdot y_0}{d_1}$$

$$= \frac{414}{2 \cdot 138} + 0, 5.\frac{794, 6}{2 \cdot 138} + 1200 \cdot 4, 0422^2 \cdot 10^{-6} + 100 \cdot \frac{2 \cdot 4}{160} = 7,96(MPa)$$

4.9 Tuổi thọ dây đai

$$L_h = \frac{\left(\frac{\sigma_r}{\sigma_{max}}\right)^m . 10^7}{2.3600.i} = \frac{\left(\frac{9}{7.96}\right)^8 . 10^7}{2.3600.2, 526} = 1468, 5(h)$$

Trong đó:

 $\sigma_r=9~(\mathrm{MPa})$ - giới hạn mỏi của đai thang. m=8 - chỉ số mũ của đường cong mỏi đối với đai dẹt i=2,526 (s^{-1}) - số vòng chạy của đai trong một giây