Додаток 1

Міністерство освіти і науки України
Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"
Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів»

Варіант<u>34</u>

Виконав студе:	нт <u>III-13 Шиманська Ганна Артурівна</u>
	(шифр, прізвище, ім'я, по батькові)
Перевірив	
	(прізвище, ім'я, по батькові)

Лабораторна робота 3

Дослідження арифметичних циклічних алгоритмів

Мета – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 34

34. Для заданого натурального числа n обчислити

$$y = \sqrt{3 + \sqrt{6 + ... + \sqrt{3(n-1) + \sqrt{3n}}}}$$
.

• Постановка задачі

Залежно від числа п обчислити значення функції.

Побудова математичної моделі

Складемо таблицю змінних

Змінна	Tun	Ім'я	Призначення
Задане	Цілочисельний, > 0	n	Вхідні дані
натуральне число			
Підкореневий	Цілочисельний, >=	nextSqrtAddend	Проміжні дані
вираз наступного	0		
доданка			
Номер ітерації	Цілочисельний, > 0	i	Проміжні дані
Значення функції	Дійсний	expression	Вихідні дані

Для обчислення кореня використаємо функцію sqrt.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

```
Крок 1. Визначимо основні дії.
```

Крок 2. Деталізуємо знаходження nextSqrtAddend.

Крок 3. Деталізуємо дію знаходження expression.

• Псевдокод алгоритму

```
Крок 1.
```

початок

Введення п

Обчислення nextSqrtAddend

Обчислення expression

Виведення expression

кінець

Крок 2.

початок

Введення п

повторити

для і від n до 1

nextSqrtAddend = 3 * i

Обчислення expression

все повторити

Виведення expression

кінець

Крок 3.

початок

Введення п

повторити

для і від n до 1

nextSqrtAddend = 3 * i

expression =sqrt(expression + nextSqrtAddend)

все повторити

Виведення expression

кінець

• Блок-схема

• Випробування алгоритму

Номер ітерації і	Дія
	початок
	Введення n = 5
n	expression = 3.87298
n-1	expression = 3.98409
n-2	expression = 3.60334
n-3	expression = 3.09893
n-4	expression = 2.4696
	Виведення expression = 2.4696
	кінець

• Висновки:

У цій роботі я дослідила арифметичний циклічний алгоритм, застосувавши його для знаходження значення функції. На прикладі мого завдання прослідковується ефективність використання ітераційних циклів та їх практичне застосування у прикладних задачах. Поетапна зміна значень nextSqrtAddend та expression дозволяє детально проаналізувати результат виводу на кожній ітерації. Внаслідок роботи алгоритму для значення n = 5 було знайдено значення функції expression = 2.4696.