Abyen =
$$\frac{R_2}{R_1 + R_2}$$
 Av

$$\beta = \frac{Rz}{R_1}$$

Cop gain =
$$RA = \frac{R_1}{R_2}$$
 Appen = $\frac{R_2}{R_1 + R_2}$ Appen = $\frac{R_2}{R_2}$

$$AcL = \frac{Aopen}{1+ Pop gam} = \frac{P_2}{P_1+P_2} A_0$$

Aupen = Au

loop gain =
$$\beta A_{ppen} = \frac{R_1}{R_1 + R_2} A_0$$

$$AcL = \frac{Aopen}{(+ loop gam)} = \frac{Ao}{1 + \frac{R_1}{R_1 + R_2}} A_0$$

$$\int + \frac{R_1}{R_1 + R_2} A_0$$

对在图:
$$A_{11} = \frac{R_{1}}{R_{1}+R_{2}} A_{0}$$

$$Acl = \frac{\frac{R_2}{R_1 + R_2} Ao}{1 + \frac{R_1}{R_1 + R_2} Ao} = /o. =$$

$$A_o = \infty \quad \Rightarrow \quad A_{cL} = \frac{R_2}{R_1} = 10 \quad R_2 = 100 \, \text{kA}$$

$$A_0 = 1000 \implies A_{cl} = 10$$
, $R_2 = 101.11k \Lambda$
 $A_0 = 200 \implies A_{cl} = 10$ $R_2 = 105.79 k \Lambda$

$$A_{cl} = \frac{A_{o}}{(+ \frac{k_{1}}{R_{1} + k_{2}} A_{o})}$$

$$R + B_{2}$$

$$A_0 = \infty \quad \rightarrow \quad A_{CL} = 10 = \frac{R_1 + 12r}{R_1} = 1 + \frac{R_r}{R_1}$$

$$A_0 = 1000 \rightarrow R_2 = 91.01 \text{ kg}$$

$$A_0 = 200 \rightarrow R_2 = 95.26 \text{ kg}$$

$$P_{2} = 15.26 \text{ kA}$$

(C)
$$A_0 = 800$$
. $A_{CL} = \frac{800}{1 + \frac{10}{10 + 91.01}} \times 800 = 9.975$

percent-ye= $\frac{10-9.975}{10} = 0.25\%$

10

 $A_0 = 160 \qquad A_{CL} = \frac{160}{1 + \frac{10}{10 + 95.26} \times 160} = 9.87626$ $percentage = \frac{10 - 9.876265}{1 + \frac{10}{10 + 95.26} \times 160} = 1.23\%$

$$R_2 = 95.26 \text{ K/V}$$

8.2 3d13 | cascade = 1 2 = 1 + 3d13 | Stage.

Wo=20K

t-3dB |cascode =
$$\sqrt{2^{-1}}$$
 +-3dB|stage = 407NJ

$$f$$
-3013 | coscode = $\sqrt{2\dot{v}}$ -1 f -3013 | stage = 1.02 MHz
 $\beta = 0.099$

83
$$\frac{(w)_{1}}{3} = |v|_{0} \quad \frac{(w)_{1}}{L} = 2v \quad Rv = 2kn.$$

$$\frac{2}{3}R_{0} \quad \frac{(w)_{1}}{2} = |v|_{0} \quad \frac{(w)_{1}}{2} = |v|_{0} \quad \frac{(w)_{1}}{2} \quad \frac{(w)_{2}}{2} \quad \frac{(w)_{1}}{2} = |v|_{0} \quad \frac{(w)_{2}}{2} \quad \frac{(w)_{2}}{2} = |v|_{0} \quad \frac{(w)_{2}}{2} = |v$$

$$2 = \frac{3m_1}{2 \ln \ln \ln (W)} = 1.94613 \text{ mA}$$

$$V_{fB}$$

$$I_p = \frac{V_{fis}}{R}$$

$$I_p = \frac{V_{p3}}{R_1}$$

$$I_p = \frac{V_{fis}}{R_i} = \frac{V_{mixe}}{R_i} = \frac{1}{lok N} = lot A$$

$$J_p = \frac{V_{fi}}{R}$$

$$g_{m_1} = \int 2l_p N_n Co_{\pi} \frac{w}{l} = \int 2 \times /o^{-4} \times yo_{\pi} /o^{-6} \times 200 = 1.414 \times /o^{-2} S$$

$$R_1$$

$$R_1$$

 $r_0 = \frac{1}{n \ln x / \sigma^4} = /\sigma^5 N$

(C) Gropen =
$$\frac{j_{ant}}{v_m} = \frac{Agm}{1+g_m R_s} = 4.67mS$$

Calusp = $A \cdot \frac{g_m R_s}{1+g_m R_s} = 46.7$

$$(d) \quad \text{fort} \quad = 9.17 \, \text{ps}$$

$$(d) \quad \text{fort} \quad = 9.17 \, \text{ps} + 2.17 \, \text{ps} = 1.17 \, \text{ps}$$

Vout. close = Vout. open (It Gloup) = 76.96 x/081