Bap. 1 (130423)

- 1. Прямые разбивают плоскость на равносторонние треугольники со стороной 16. Определить вероятность того, что монета диаметра 5, наугад брошенная на плоскость, не пересечет ни одной прямой.
- **3.** Дана плотность распределения абс. непр. случайной величины ξ : $p(x) = \begin{cases} C, \ x \in [1,3], \\ 5C, \ x \in [3,6],. \end{cases}$ Вычислить $C, \ \mathbf{E}\xi, \ 0, \mathbf{B}$ ост.сл.

 $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = (\xi + 1)^2$.

Bap. 3 (130423)

- 1. На плоскости расчерчена прямоугольная сетка, величина ячейки 7×9 ед. Определить вероятность того, что монета диаметра 3, наугад брошенная на плоскость, не пересечет ни одной прямой.
- **2.** Дана функция распределения случайной величины ξ : $\mathbf{x} \quad (-\infty, -2] \quad (-2, -1] \quad (-1, 0] \quad (0, 1] \quad (1, 2] \quad (2, \infty)$ $\mathbf{F}_{\xi}(x) \quad 0 \quad 1/8 \quad 3/8 \quad 1/2 \quad 5/8 \quad 1$. Вычислить $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = |\xi 1|^{3/2}$.
- 3. Дана плотность распределения абс. непр. случайной величины ξ : $p(x) = \begin{cases} C|x|, & x \in [0, 2\pi], \\ 0, \text{в ост.сл.} \end{cases}$. Вычислить C, $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \sin(3\xi)$.

Bap. 5 (130423)

- 1. Прямые разбивают плоскость на полосы ширины 9. Определить вероятность того, что отрезок длины 3, наугад брошенный на плоскость, не пересечет ни одной прямой.
- **3.** Дана плотность распределения абс. непр. случайной величины ξ : $p(x) = C \exp(-|5x-5|)$, $x \in \mathbb{R}$. Вычислить C, $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \xi^2$.

Bap. 7 (130423)

- 1. Прямые разбивают плоскость на равносторонние треугольники со стороной 10. Определить вероятность того, что монета диаметра 3, наугад брошенная на плоскость, не пересечет ни одной прямой.
- 3. Дана плотность распределения абс. непр. случайной величины ξ : $p(x) = \begin{cases} C, \ x \in [0,1], \\ 5C, \ x \in [1,3],. \end{cases}$ Вычислить $C, \ \mathbf{E}\xi, \ \mathbf{D}\xi$, энтропию ξ и распределение $\eta = (\xi-1)^2.$

Bap. 2 (130423)

- 1. Прямые разбивают плоскость на полосы ширины 9. Определить вероятность того, что отрезок длины 5, наугад брошенный на плоскость, не пересечет ни одной прямой.
- **2.** Распределение случайной величины ξ задано таблицей $\frac{k}{p_k} \frac{-1}{4/9} \frac{0}{2/9} \frac{2}{1/9}$. Вычислить $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \sin(\pi \xi/2)$.
- 3. Дана функция распределения абс. непр. случайной величины ξ : $F(x) = \begin{cases} 0, & x \leq 2\pi \\ \sin(2x), & x \in (2\pi, C] \end{cases}$. Найти C, $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \sin(3\xi)$.

Bap. 4 (130423)

- 1. Прямые разбивают плоскость на равносторонние треугольники со стороной 16. Определить вероятность того, что монета диаметра 3, наугад брошенная на плоскость, не пересечет ни одной прямой.
- **2.** Распределение случайной величины ξ задано таблицей k-1 1 2 p_k 1/2 1/6 1/3 . Вычислить $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta=\sin(\pi\xi/3)$.
- **3.** Дана функция распределения абс. непр. случайной величины ξ : $F(x) = \begin{cases} 0, & x \leq 0 \\ Cx^2, & x \in (0,3]. \end{cases}$ Найти C, $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = 1/\xi$.

Bap. 6 (130423)

- 1. На плоскости расчерчена прямоугольная сетка, величина ячейки 9×8 ед. Определить вероятность того, что монета диаметра 3, наугад брошенная на плоскость, не пересечет ни одной прямой.
- **2.** Распределение случайной величины ξ задано таблицей k-2-1 0 1 2 вычислить $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta=\cos(\pi\xi/4)$.
- **3.** Дана функция распределения абс. непр. случайной величины ξ : $F(x) = \begin{cases} C \exp(5x+10), & x \leq -2, \\ 1-C \exp(-5x-10), & x > -2. \end{cases}$ Вычислить C, $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = (\xi+1)^4$.

Bap. 8 (130423)

- 1. Прямые разбивают плоскость на полосы ширины 7. Определить вероятность того, что отрезок длины 2, наугад брошенный на плоскость, не пересечет ни одной прямой.
- **2.** Распределение случайной величины ξ задано таблицей k 1 2 3 4 5 вычислить $\mathbf{E}\xi$, \mathbf{p}_k 1/10 1/10 3/10 3/10 1/5 Вычислить $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta=\sin(\pi\xi/2)$.
- 3. Дана функция распределения абс. непр. случайной величины ξ : $F(x) = \begin{cases} 0, & x \le -2\pi \\ \sin(5x), & x \in (-2\pi, C]. \end{cases}$ Найти C, $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \sin(3\xi)$.

Bap. 9 (130423)

- 1. На плоскости расчерчена прямоугольная сетка, величина ячейки 6×8 ед. Определить вероятность того, что монета диаметра 2, наугад брошенная на плоскость, не пересечет ни одной прямой.
- 3. Дана плотность распределения абс. непр. случайной величины ξ : $p(x) = \begin{cases} C|x|, \ x \in [0,\pi], \\ 0, \text{в ост.сл.} \end{cases}$. Вычислить C, $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \sin(\xi)$.

Bap. 11 (130423)

- 1. Прямые разбивают плоскость на полосы ширины 9. Определить вероятность того, что отрезок длины 4, наугад брошенный на плоскость, не пересечет ни одной прямой.
- **2.** Дана функция распределения случайной величины ξ : $\mathbf{F}_{\xi}(x)$ 0 3/10 2/5 7/10 1 . Вычислить $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \cos(\pi \xi/4)$.
- **3.** Дана плотность распределения абс. непр. случайной величины ξ : $p(x) = C \exp(-|5x+10|), x \in \mathbb{R}$. Вычислить C, $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \exp(-\xi)$.

Bap. 13 (130423)

- 1. Прямые разбивают плоскость на равносторонние треугольники со стороной 12. Определить вероятность того, что монета диаметра 3, наугад брошенная на плоскость, не пересечет ни одной прямой.
- **2.** Дана функция распределения случайной величины ξ : $x (-\infty, -3] (-3, -1] (-1, 1] (1, \infty)$ $F_{\xi}(x) 0 3/7 4/7 1$. Вычислить $\mathbf{E}\xi, \mathbf{D}\xi$, энтропию ξ и распределение $\eta = \sin(\pi \xi/6)$.
- 3. Дана плотность распределения абс. непр. случайной величины ξ : $p(x) = \begin{cases} C, & x \in [0,3], \\ 4C, & x \in [3,5],. \end{cases}$ Вычислить $C, \mathbf{E}\xi, 0, \mathbf{B}$ ост.сл.

 $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = (\xi + 1)^2$.

Bap. 15 (130423)

- 1. На плоскости расчерчена прямоугольная сетка, величина ячейки 7×6 ед. Определить вероятность того, что монета диаметра 4, наугад брошенная на плоскость, не пересечет ни одной прямой.
- 2. Дана функция распределения случайной величины ξ : $\mathbf{x} \quad (-\infty,-2] \quad (-2,-1] \quad (-1,0] \quad (0,\infty)$ $\mathbf{F}_{\xi}(x) \quad 0 \quad 1/5 \quad 2/5 \quad 1$. Вычислить $\mathbf{E}\xi,\,\mathbf{D}\xi,\,$ энтропию ξ и распределение $\eta=(\xi-1)^2.$
- 3. Дана плотность распределения абс. непр. случайной величины $\xi\colon p(x)=\left\{ egin{align*} C|x|,\ x\in[-\pi,\pi],\ 0,\mbox{в ост.сл.} \end{array} \right.$ Вычислить C, $\mathbf{E}\xi,\ \mathbf{D}\xi,\ \mbox{энтропию }\xi$ и распределение $\eta=\sin(\xi).$

Bap. 10 (130423)

- 1. Прямые разбивают плоскость на равносторонние треугольники со стороной 10. Определить вероятность того, что монета диаметра 3, наугад брошенная на плоскость, не пересечет ни одной прямой.
- 2. Распределение случайной величины ξ задано таблицей k-2-1 0 1 2 $p_k 3/10 1/10 3/10 1/10 1/5$. Вычислить $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \cos(\pi \xi/4)$.
- 3. Дана функция распределения абс. непр. случайной величины ξ : $F(x) = \begin{cases} 0, & x \leq 0 \\ Cx^2, & x \in (0,4] \end{cases}$. Найти C, $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = (\xi+1)^2$.

Bap. 12 (130423)

- 1. На плоскости расчерчена прямоугольная сетка, величина ячейки 6×8 ед. Определить вероятность того, что монета диаметра 3, наугад брошенная на плоскость, не пересечет ни одной прямой.
- **2.** Распределение случайной величины ξ задано таблицей $\frac{k}{p_k} \frac{0}{1/3} \frac{1}{2/9} \frac{2}{1/3} \frac{3}{1/9}$. Вычислить $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \sin(\pi \xi/3)$.
- **3.** Дана функция распределения абс. непр. случайной величины ξ : $F(x) = \begin{cases} C \exp(5x+10), & x \leq -2, \\ 1-C \exp(-5x-10), & x > -2. \end{cases}$ Вычислить C, $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \exp(-2\xi)$.

Bap. 14 (130423)

- 1. Прямые разбивают плоскость на полосы ширины 8. Определить вероятность того, что отрезок длины 1, наугад брошенный на плоскость, не пересечет ни одной прямой.
- **2.** Распределение случайной величины ξ задано таблицей k 0 1 2 3 4 вычислить $\mathbf{E}\xi$, \mathbf{p}_k 1/5 1/10 3/10 3/10 1/10 Вычислить $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta=|\xi-1|^{3/2}$.
- 3. Дана функция распределения абс. непр. случайной величины ξ : $F(x) = \begin{cases} 0, & x \leq 0 \\ \sin(x), & x \in (0, C]. \end{cases}$ Найти C, $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \operatorname{tg}(\xi)$.

Bap. 16 (130423)

- 1. Прямые разбивают плоскость на равносторонние треугольники со стороной 16. Определить вероятность того, что монета диаметра 3, наугад брошенная на плоскость, не пересечет ни одной прямой.
- **2.** Распределение случайной величины ξ задано таблицей k=-3 -1 0 $p_k=1/2$ 3/8 1/8 . Вычислить $\mathbf{E}\xi,\ \mathbf{D}\xi,\$ энтропию ξ и распределение $\eta=(\xi-1)^4.$
- 3. Дана функция распределения абс. непр. случайной величины ξ : $F(x) = \begin{cases} 0, & x \leq 0 \\ Cx^2, & x \in (0,3]. \text{ Найти } C, \mathbf{E}\xi, \mathbf{D}\xi, \\ 1, & x > 3 \end{cases}$ энтропию ξ и распределение $\eta = (\xi+1)^2.$

Bap. 17 (130423)

- 1. Прямые разбивают плоскость на полосы ширины 8. Определить вероятность того, что отрезок длины 4, наугад брошенный на плоскость, не пересечет ни одной прямой.
- **3.** Дана плотность распределения абс. непр. случайной величины ξ : $p(x) = C \exp(-|5x-15|), x \in \mathbb{R}$. Вычислить C, $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = |\xi|$.

Bap. 19 (130423)

- 1. Прямые разбивают плоскость на равносторонние треугольники со стороной 16. Определить вероятность того, что монета диаметра 1, наугад брошенная на плоскость, не пересечет ни одной прямой.
- **2.** Дана функция распределения случайной величины ξ : $\mathbf{E}_{\xi}(x)$ $\mathbf{E}_{\xi}(x)$
- **3.** Дана плотность распределения абс. непр. случайной величины ξ : $p(x) = \begin{cases} C, \ x \in [2,3], \\ 4C, \ x \in [3,6],. \end{cases}$ Вычислить $C, \ \mathbf{E}\xi, 0, \mathbf{B}$ ост.сл.

 $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = (\xi + 1)^4$.

Bap. 21 (130423)

- 1. На плоскости расчерчена прямоугольная сетка, величина ячейки 9×6 ед. Определить вероятность того, что монета диаметра 1, наугад брошенная на плоскость, не пересечет ни одной прямой.
- **2.** Дана функция распределения случайной величины ξ : $\begin{array}{cccc} \mathbf{x} & (-\infty,-2] & (-2,0] & (0,\infty) \\ \mathbf{F}_{\xi}(x) & 0 & 1/3 & 1 \end{array}$. Вычислить $\mathbf{E}\xi,\,\mathbf{D}\xi,\,$ энтропию ξ и распределение $\eta=\cos(\pi\xi/3).$
- 3. Дана плотность распределения абс. непр. случайной величины ξ : $p(x) = \begin{cases} C|x|, & x \in [-\pi, \pi/2], \\ 0, & \text{в ост.сл.} \end{cases}$. Вычислить C, $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \sin(\xi)$.

Bap. 23 (130423)

- 1. Прямые разбивают плоскость на полосы ширины 8. Определить вероятность того, что отрезок длины 3, наугад брошенный на плоскость, не пересечет ни одной прямой.
- 3. Дана плотность распределения абс. непр. случайной величины ξ : $p(x) = C \exp(-|4x-4|), x \in \mathbb{R}$. Вычислить C, $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \xi^3$.

Bap. 18 (130423)

- 1. На плоскости расчерчена прямоугольная сетка, величина ячейки 7×7 ед. Определить вероятность того, что монета диаметра 4, наугад брошенная на плоскость, не пересечет ни одной прямой.
- **2.** Распределение случайной величины ξ задано таблицей k-2-1=0 р $_k=1/2=1/6=1/3$. Вычислить $\mathbf{E}\xi,\ \mathbf{D}\xi,\$ энтропию ξ и распределение $\eta=\cos(\pi\xi/4).$
- 3. Дана функция распределения абс. непр. случайной величины ξ : $F(x) = \begin{cases} C \exp(3x+6), & x \leq -2, \\ 1-C \exp(-3x-6), & x > -2. \end{cases}$ Вычислить C, $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = (\xi+1)^4$.

Bap. 20 (130423)

- 1. Прямые разбивают плоскость на полосы ширины 8. Определить вероятность того, что отрезок длины 3, наугад брошенный на плоскость, не пересечет ни одной прямой.
- **2.** Распределение случайной величины ξ задано таблицей k 1 2 3 4 5 Вычислить $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta=\xi^3$.
- 3. Дана функция распределения абс. непр. случайной величины ξ : $F(x) = \begin{cases} 0, & x \leq 4\pi \\ \sin(x), & x \in (4\pi, C] \end{cases}$. Найти C, $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \sin(2\xi)$.

Bap. 22 (130423)

- 1. Прямые разбивают плоскость на равносторонние треугольники со стороной 14. Определить вероятность того, что монета диаметра 5, наугад брошенная на плоскость, не пересечет ни одной прямой.
- **2.** Распределение случайной величины ξ задано таблицей k-1 2 3 p_k 3/8 1/8 1/2 . Вычислить $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta=\sin(\pi\xi/2)$.
- **3.** Дана функция распределения абс. непр. случайной величины ξ : $F(x) = \begin{cases} 0, & x \leq 0 \\ Cx^2, & x \in (0,4] \end{cases}$. Найти C, $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = 1/\xi$.

Bap. 24 (130423)

- 1. На плоскости расчерчена прямоугольная сетка, величина ячейки 8×9 ед. Определить вероятность того, что монета диаметра 1, наугад брошенная на плоскость, не пересечет ни одной прямой.
- **2.** Распределение случайной величины ξ задано таблицей $\frac{k}{p_k} \frac{-1}{1/3} \frac{1}{4/9} \frac{2}{1/9} \frac{3}{1/9}$. Вычислить $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \cos(\pi \xi/2)$.
- **3.** Дана функция распределения абс. непр. случайной величины ξ : $F(x) = \begin{cases} C \exp(3x-6), & x \leq 2, \\ 1-C \exp(-3x+6), & x > 2 \end{cases}$ Вычислить C, $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \exp(3\xi)$.

Bap. 25 (130423)

- 1. Прямые разбивают плоскость на равносторонние треугольники со стороной 12. Определить вероятность того, что монета диаметра 1, наугад брошенная на плоскость, не пересечет ни одной прямой.
- **3.** Дана плотность распределения абс. непр. случайной величины ξ : $p(x) = \begin{cases} C, \ x \in [-1,1], \\ 2C, \ x \in [1,2], \end{cases}$. Вычислить $C, \ \mathbf{E}\xi, \ 0, \ \mathbf{B}$ ост.сл.

 $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = (\xi + 1)^4$.

Bap. 27 (130423)

- 1. На плоскости расчерчена прямоугольная сетка, величина ячейки 6×7 ед. Определить вероятность того, что монета диаметра 1, наугад брошенная на плоскость, не пересечет ни одной прямой.
- **2.** Дана функция распределения случайной величины ξ : $x \quad (-\infty, -2] \quad (-2, -1] \quad (-1, 0] \quad (0, 1] \quad (1, 2] \quad (2, \infty)$ $F_{\xi}(x) \quad 0 \quad 1/7 \quad 2/7 \quad 3/7 \quad 5/7 \quad 1$. Вычислить $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \xi^2$.
- 3. Дана плотность распределения абс. непр. случайной величины ξ : $p(x) = \begin{cases} C|x|, \ x \in [-2\pi/3, \pi], \\ 0, \text{в ост.сл.} \end{cases}$. Вычислить $C, \ \mathbf{E}\xi, \ \mathbf{D}\xi, \$ энтропию ξ и распределение $\eta = \sin(2\xi).$

Bap. 26 (130423)

- 1. Прямые разбивают плоскость на полосы ширины 7. Определить вероятность того, что отрезок длины 5, наугад брошенный на плоскость, не пересечет ни одной прямой.
- **2.** Распределение случайной величины ξ задано таблицей k 1 2 4 p_k 2/5 1/5 2/5 . Вычислить $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta=\xi^4$.
- 3. Дана функция распределения абс. непр. случайной величины ξ : $F(x) = \begin{cases} 0, \ x \leq 0 \\ \sin(2x), \ x \in (0, C]. \end{cases}$ Найти C, $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \sin(\xi)$.

Bap. 28 (130423)

- 1. Прямые разбивают плоскость на равносторонние треугольники со стороной 14. Определить вероятность того, что монета диаметра 2, наугад брошенная на плоскость, не пересечет ни одной прямой.
- **2.** Распределение случайной величины ξ задано таблицей $\frac{k}{p_k}$ $\frac{2}{2/5}$ $\frac{4}{2/5}$. Вычислить $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \cos(\pi \xi/3)$.
- 3. Дана функция распределения абс. непр. случайной величины ξ : $F(x) = \begin{cases} 0, & x \leq 0 \\ Cx^2, & x \in (0,5] \end{cases}$. Найти C, $\mathbf{E}\xi$, $\mathbf{D}\xi$, энтропию ξ и распределение $\eta = \cos(\pi \xi/6)$.