Bhoris Dhanjal

Algebra IV

Contents

1	\mathbf{Gro}	Groups and subgroups 1							
	1.1	Binary	y operation	1					
	1.2	Group	axioms	1					
	1.3	1.3 Examples of Groups							
		1.3.1	Group of integers modulo n	2					
		1.3.2	Klein-4 group (Vierergruppe)	2					
		1.3.3	Symmetric group	3					
		1.3.4	Alternating group	3					
		1.3.5	Dihedral group	3					
	1.4	.4 Common properties of groups							
		1.4.1	Abelian group	3					
2	Cyclic groups and cyclic subgroups								
3	Lagrange's theorem and group homomorphisms								

Chapter 1

Groups and subgroups

1.1 Binary operation

For a set V a function from $f: V \times V \to V$ is called a binary function if the following properties hold.

- 1. f is defined for all pairs of elements of V.
- 2. f is closed.

Example 1.1. $G = \{1, 2, 3\}$, then + is not a binary operation as it is not closed under addition.

Example 1.2. $G = \{-1, 0, 1\}$, then + is a binary operation.

Example 1.3. N, then both $+, \times$ are binary operations.

1.2 Group axioms

A group is an ordered pair (G, *) where G is a non empty set and * is a binary operation on G satisfying the following axioms:

- 1. Closure: \forall a, b \in G, a * b, is also in G
- 2. **Associativity:** (a * b) * c = a * (b * c), \forall a, b, c \in G
- 3. **Identity:** \exists e \in G, called an identity of G, s.t. \forall a \in G we have a * e = e * a = a
- 4. **Inverse:** \forall a \in G \exists a^{-1} \in G, called an inverse of a, s.t. a * $a^{-1} = a^{-1}$ * a = e.

2

1.3 Examples of Groups

Example 1.4. $(\mathbb{N}, +)$ is not a group since it lacks additive identity.

Example 1.5. $(\mathbb{Z}, +)$ is a group while (\mathbb{Z}, \times) is not a a group since it lacks multiplicative inverses.

Example 1.6. (\mathbb{Q}, \times) is not a group since 0 doesn't have an inverse. However $(\mathbb{Q} \setminus 0, \times)$ is a group.

Example 1.7. $n\mathbb{Z} = \{\ldots, -2n, -n, 0, n, 2n \ldots\}$ with addition are subgroups of $(\mathbb{Z}, +)$.

Example 1.8. $S = \{1, -1, i, -1\}$, with multiplication is a cyclic group generated by i. Exercise make a Cayley table.

Example 1.9. $M_{n\times n}(\mathbb{R})$ for $n\times n$ matrices over \mathbb{R} forms a group under addition but not under matrix multiplication (because of lack of inverses).

Example 1.10. $GL_n(\mathbb{R})$ (i.e. General linear group - matrices with positive determinant) forms a group under multiplication.

Example 1.11. $SL_n(\mathbb{R})$ (i.e. Special linear group - matrices with det=1) forms a group under multiplication.

1.3.1 Group of integers modulo n

Definition 1.12 (Congruence class). For $n \in \mathbb{Z}$ define the congruence relation R as $aRb \iff n|(a-b)$. This is a equivalence relation.

Definition 1.13 ($\mathbb{Z}/n\mathbb{Z}$ or \mathbb{Z}_n). Let $\mathbb{Z}/n\mathbb{Z}$ be defined as the $\{x \in \mathbb{Z} \mid xRn\}$.

$$\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$$

Addition $\overline{a} + \overline{b} = \overline{a+b}$ and multiplication $\overline{a} \cdot \overline{b} = \overline{ab}$.

 $(\mathbb{Z}_n,+)$ forms a group for all n, while (\mathbb{Z}_n*,\cdot) forms a group only when n is prime.

Theorem 1.14. \mathbb{Z}_n* forms a group under multiplication iff n is prime.

Proof. The proof is trivial. \Box

1.3.2 Klein-4 group (Vierergruppe)

Denoted by V_4 the Klein-4 group is the smallest non-cyclic group. It is abelian. It is a group with 4 elements such that the square of all elements is identity. And product of two distinct elements gives a distinct element.

The symmetry group of a rectangle is isomorphic to V_4 .

3

1.3.3 Symmetric group

The symmetric group is the group whose elements are all the bijections from the set to itself. The order of the n^{th} Symmetric group (S_n) is equal to n!.

Two-Line to Cycle notation for permutations

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1 \end{pmatrix} = (125)(34) = (34)(125) = (34)(512) = (15)(25)(34)$$

Here, the last form is a case of 2-cycle (transposition).

The parity of any permutation σ is given by the parity of the number of its 2-cycles (transpositions). In the above example it is odd.

1.3.4 Alternating group

The group of all even permutations from S_n is called the alternating group A_n .

1.3.5 Dihedral group

This is the group of symmetries of a regular polygon. Denoted by $D_n, n \geq 3$.

- Order of $D_n = 2n$.
- $D_n = \{e, x, x^2, \dots, x^{n-1}, y, yx, yx^2, \dots, yx^{n-1}\}$. Here we can interpret x as rotation by $2\pi/n$ and y is reflection about vertical axis.

1.4 Common properties of groups

1.4.1 Abelian group

If a group is commutative it is called Abelian.

• If $a^2 = e \forall a \in G$ then it is Abelian.

1.4.2 Order of a group

If there are a finite number of elements in a group then the group is called a finite group and the number of elements is called the group order of the group.

1.4.3 Order of element

The smallest natural number n such that $a^n = e$ is called the order of a group element a.

Chapter 2

Cyclic groups and cyclic subgroups

Chapter 3

Lagrange's theorem and group homomorphisms