Solving Equations MEG

Tom Yan

August 2023

1 Introduction

- 1. Find all x such that $-4 < \frac{1}{x} < 3$.
- 2. Solve the following system of equations

$$xy = 12\sqrt{6}$$

$$yz = 54\sqrt{2}$$

$$zx = 48\sqrt{3}$$
.

3. Find all real numbers x for which

$$\frac{8^x + 27^x}{12^x + 18^x} = \frac{7}{6}.$$

4. (USSR 1990) Mr Fat is going to pick three non-zero real numbers and Mr Taf is going to arrange the three numbers as coefficients of a quadratic equation

$$\underline{} x^2 + \underline{} x + \underline{} = 0$$

Mr Fat wins the game if and only if the resulting equation has two distinct rational solutions. Who has the winning strategy?

5. (ARML 1997) Find a triple of rational numbers (a, b, c) such that

$$\sqrt[3]{\sqrt[3]{2} - 1} = \sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c}.$$

- 1. If x is positive we have 1 < 3x so $x > \frac{1}{3}$, if x is negative $\frac{1}{3} < 3$ will always be true. Meanwhile, we have 1 < -4x so $x < -\frac{1}{4}$. Therefore, all x such that $x > \frac{1}{3}$ or $x < -\frac{1}{4}$ works.
- 2. Solving for x and substituting it into the third equation we get $z\frac{12\sqrt{6}}{y}=45\sqrt{3}$, we multiply this by the second equation to get $z^2=4\times54$ so $z=\pm6\sqrt{6}$. From there, its pretty easy to sub this value back into the equations to get two sets of solutions for (x,y,z), $(\pm4\sqrt{2},\pm3\sqrt{3},\pm6\sqrt{6})$.
- 3. We let $a=2^x$ and $b=3^x$. The equation becomes $\frac{a^3+b^3}{a^2b+b^2a}=\frac{7}{6}$. Which after some simplifying we get $6a^2-13ab+6b^2=0$, which is (2a-3b)(3a-2b)=0. Therefore $2^{x+1}=3^{x+1}$ or $2^{x-1}=3^{x-1}$, which implies x=-1 and x=1.
- 4. Mr Fat has the winning strategy, because by choosing a set of distinct rational nonzero numbers a,b,c, such that a+b+c=0 will make him win. Let a',b',c' be a random permutation of a,b,c and let $f(x)=a'x^2+b'x+c'$. Then f(1)=a'+b'+c'=a+b+c=0, and so 1 is a solution. Since the product of two numbers is $\frac{c'}{a'}$ by Vieta's, the other solution is clearly $\frac{c'}{a'}$, which is different from 1. Thus Mr Fat can guarantee two distinct solutions.
- 5. Official Solution: Let $x = \sqrt[3]{\sqrt[3]{2} 1}$ and $y = \sqrt[3]{2}$. So $y^3 = 2$ and $x = \sqrt[3]{y 1}$. Note that

$$1 = y^3 - 1 = (y - 1)(y^2 + y + 1)$$

and

$$y^{2} + y + 1 = \frac{3y^{2} + 3y + 3}{3} = \frac{(y+1)^{2}}{3}$$

which implies that

$$x^{3} = y - 1 = \frac{1}{y^{2} + y + 1} = \frac{3}{(y+1)^{3}}$$

or

$$x = \frac{\sqrt[3]{3}}{u+1}.$$

On the other hand $3 = y^3 + 1 = (y+1)(y^2 - 1 + 1)$ from which it follows that

$$\frac{1}{y+1} = \frac{y^2 - y + 1}{3}.$$

Thus we have

$$x = \sqrt[3]{\frac{1}{9}}(\sqrt[3]{4} - \sqrt[3]{2} + 1).$$

Consequently $(a,b,c)=(\frac{4}{9},-\frac{2}{9},\frac{1}{9})$ is a desired triple.