Sam Clifford

Principles of graphical excellence

Building plots

Some commo geometries

Small multiple

Other plotting aesthetics

Summary

References

It was the best of plots, it was the worst of plots

Sam Clifford

2019-10-31

Sam Clifford

Principles of graphical excellence

Building plots

Some commo geometries

Small multiples

Other plotting aesthetics

Summary

References

Principles of graphical excellence

Sam Clifford

Principles of graphical excellence

Building plots

geometries

Small multipl

Other plottin

Summar

References

Many uses of visualisation in science

- Showing the data
- Showing the results of analysis
- Showing the physical phenomenon being described
- Describing an experimental setup

Sam Clifford

Principles of graphical excellence

Building plots

geometries

Small multiple

Other plotting

Summar

References

Tufte's principles

Tufte [1983] and Pantoliano [2012]

- Show the data
 - Induce the viewer to think about the substance of the findings rather than the methodology, the graphical design, or other aspects
 - Avoid distorting what the data have to say
 - Serve a clear purpose: description, exploration, tabulation, or decoration
- Provide clarity
 - Present many numbers in a small space, i.e., efficiently
 - Make large data sets coherent
 - Be closely integrated with the statistical and verbal descriptions of the data set

Sam Clifford

Principles of graphical excellence

Building plots

geometries

Other plotting

aesthetics

Summary

References

Tufte's principles

- Allow comparison where appropriate
 - Encourage the eye to compare different pieces of data
 - Reveal the data at several levels of detail, from a broad overview to the fine structure
- Visual representations of data must tell the truth
- Good graphical representations maximise data-ink and erase as much non-data-ink as possible
- Avoid chartjunk, the excessive and unnecessary use of graphical effects in graphs
- Don't map the same variable to multiple graphical elements (e.g. color and y value)
- Produce graphs with high data density

Sam Clifford

Principles of graphical excellence

Building plots

Some common

geometries
Small multiple

Other plotting

Summary

References

Why do we visualise?

- We don't just make graphs because it's fun (but it totally is!)
- We do it to communicate information
- Describing with summary statistics may not tell the whole story
- Graph must communicate what's in your mind to reader, including key relationships
- Reader should be able to understand what the graph means and not be
 - · misled into thinking something that is untrue
 - distracted from the main point

Sam Clifford

Principles of graphical excellence

Building plots

Some common geometries

Small multiples

Other plotting aesthetics

Summary

References

Building plots

Sam Clifford

Principles o graphical excellence

Building plots

geometries
Small multiple

Other plottin

Summary

References

Building plots

- R package ggplot2 uses a grammar of graphics [Wickham, 2010, RStudio, 2012]
 - map variables in data frame to aesthetic options in the plot
 - choose a geometry for how to display these variables
 - adjustments to axis scales
 - adjustments to colors, themes, etc.
 - adding extra commands in a "do this, then do this" manner

Sam Clifford

Principles of graphical excellence

Building plots

geometries

aesthetics

Summar

References

Building a plot

- How do we structure a call to ggplot to make a plot?
 - load ggplot2 package
 - Specify we want a ggplot object and which data frame we're going to use,
 - set **aesthetic options** to tell R which variables to map to the x and y axes of the plot
 - state geometry we're using to show variables

```
ggplot(data = my.data.frame,
    aes(x = my.x.variable,
    y = my.y.variable)) +
    geom_point()
```

Sam Clifford

Principles of graphical excellence

Building plots

Some common geometries

Small multiples

Other plotting aesthetics

Summary

References

Some common geometries

Sam Clifford

Principles of graphical excellence

Building plots

Some common geometries

Small multiple:

Other plotting

Summary

References

Scatter plot

- $\bullet\,$ For each observation in data, a pair of values (x,y) is shown as a point
- Can show more structure in the data by setting aesthetics of the geometry (mapping variables to graphical elements)
- e.g. if we want to show male and female relative bone density values with different colours

Sam Clifford

Principles of graphical excellence

Building plots

Some common

geometries

Small multiples

Other plotting aesthetics

Summary

References

Scatter plot

Sam Clifford

Principles of graphical

Building plots

Some common

geometries

Small multiple

Other plotting aesthetics

Summar

References

Boxplot

```
ggplot(data = airquality, aes(x = factor(Month), y = 0zone)) +
geom_boxplot() + theme_bw() +
labs(y = "0zone conc. (ppb)", x = "Month")
```


 outliers shown as dots, indicating they're far away from typical values

Sam Clifford

Principles of graphical excellence

Building plots

Some common geometries

Small multiple

Other plotting aesthetics

Summar

References

Line plot

- Similar to scatter plot, but joins pairs of values
- Useful when showing how something changes over time
- Use only when (x,y) are ordered pairs of numeric values, e.g. x is time or date
- For this reason, often referred to as time series plot

Sam Clifford

Principles of graphical

Building plots

Some common

geometries

Oman marapic

Other plottin aesthetics

Summary

References

Line plot

Show the Ozone concentrations over time

Sam Clifford

Principles of graphical excellence

Building plots

Some common

geometries
Small multiple

Other plottin

Summar

References

Line plot

- geom_line() stops plotting when it hits an NA value
- If we have individual measurements in a group of NA values it won't plot that value
- Can use multiple geometries to display the same variables

Sam Clifford

Principles of graphical excellence

Building plots

Some common

geometries

Other plotting

Summary

References

Smooth plot

- Often too much data in a scatter plot to see pattern
- Maybe we want to show the reader the trend in the data
- geom_smooth() generates a scatterplot smoother that shows the overall relationship between y and x

```
ggplot(data=airquality, aes(x=Temp, y=Ozone)) +
  geom_point() + geom_smooth() + theme_bw() +
  labs(x=expression(Temperature~(degree*F)), y="Ozone (ppb)")
```


Sam Clifford

Principles o graphical excellence

Building plots

Some common

geometries

Small multiple

Other plottin

Summary

References

Bar/column plots

- Good for showing the amount of something (requires meaningful zero)
- geom_col() xy plot given some variables x, y
- geom_bar() counts number of of times categorical x occurs
- \bullet geom_histogram() -counts number of times x in bin

```
It was the best
of plots, it was
the worst of
plots
```

Sam Clifford

Principles of graphical excellence

Building plots

Some common

geometries

Other plottin

aesthetics

Summar

References

Bar/column plots

• e.g. a histogram of Ozone concentrations

```
ozone_hist <-
ggplot(data = airquality, aes(x = Ozone)) +
geom_histogram(binwidth = 10, boundary = 0) +
labs(x = "Ozone concentration (ppb)") +
theme_bw()
ozone hist</pre>
```


Sam Clifford

Principles of graphical excellence

Building plots

Some common geometries

Other plotting

Summar

References

Bar/column plots

• e.g. a bar plot of month

```
ggplot(data = airquality, aes(x = factor(Month))) +
  geom_bar() + labs(x = "Month") + theme_bw()
```


Sam Clifford

Principles of graphical excellence

Building plots

Some commo

Small multiples

Other plotting aesthetics

Summary

References

Small multiples

Sam Clifford

Principles of graphical excellence

Building plots

geometries Small multiples

Other plotting

Summary

References

Small multiples

- Group a plot by some categorical variable
- Repeat a basic graph for groups in the data
 - · air quality data has information about, e.g. months
- Can view 3-5 dimensions in the data on a 2D page
 - Often a better alternative to 3D, since it doesn't distort comparisons
 - Inner axes relate to the smallest X-Y plots
 - Outer axes relate to the grouping variables
- Avoids using loops

Sam Clifford

Principles of graphical excellence

Building plots

Some common

geometries

Small multiples

Other plotting aesthetics

Summary

References

Small multiples

 By adding one extra command we can tell R to repeat the histogram plot of Ozone concentration for each value of Month

```
ozone_hist + facet_wrap( ~ Month, nrow = 1)
```


Sam Clifford

graphical excellence

Building plots

aeometries Small multiples

aesthetics

Summary

References

Small multiples

 If we have two (or more) grouping variables we can use facet grid(V1 ~ V2) to tell R to repeat the plotting geometries for each value of V1 and V2 as rows and columns of a grid

```
library(mosaicData)
data(Weather)
annual 5 cities <- Weather %>%
 group_by(city, month, year) %>%
 summarise_at(.vars = vars(contains("temp")), .funs = list(mean))
 ggplot(data = ... aes(x = month, v = avg temp)) +
 geom_line() +
 geom_ribbon(aes(ymin = low temp, ymax = high temp),
              alpha = 0.25) + theme bw() +
 xlab("Month") + ylab(expression(Temperature~(degree*F))) +
 ggtitle("Monthly average of daily mean, min and max temperatures") +
 facet grid(vear ~ citv) +
 scale x continuous(breaks = seg(1, 12, bv = 3))
```

Sam Clifford

Principles of graphical excellence

Building plots

Some commo geometries

Small multiples

Other plotting aesthetics

Summary

References

Small multiples

Monthly average of daily mean, min and max temperatures

Sam Clifford

Principles of graphical excellence

Building plots

Some comm geometries

Small multiples

Other plotting aesthetics

Summary

References

Other plotting aesthetics

Sam Clifford

Principles of graphical excellence

Building plots

geometries

·

Other plotting aesthetics

Summar

References

#aesthetic

- ggplot2 allows the passing of arguments to a plotting geometry
- Map things other than x and y coordinates
- Aesthetics map variables to graphical elements such as
 - group (repeat geometry for a grouping variable in same axes)
 - size
 - shape
 - colour
 - · alpha transparency
 - fill colour
- We need to put these inside aes () brackets if we wish to map a variable
- Optionally, putting them outside (but still inside the geometry) allows us to apply one value across the whole geometry

Sam Clifford

Principles of graphical excellence

Building plots

Some common geometries

Small multiple

Other plotting aesthetics

Summary

References

Group

 Instead of splitting all data up with small multiples, we could use grouping to show each each group on a common set of axes

```
library(ElemStatLearn)
data(bone)

ggplot(data = bone, aes(x = age, y = spnbmd)) +
    geom_point(alpha=0.1) + facet_wrap(~ gender) +
    geom_line(aes(group = idnum)) + theme_bw() +
    labs(x = "Age (years)", y = expression(Rel.~BMD~(g~cm^{-3}~yr^{-1})),
        title = "Relative spinal bone mineral density")
```

Relative spinal bone mineral density

Especially useful when many, many groups

Sam Clifford

Principles of graphical excellence

Building plots

Some common geometries

Small multiple

Other plotting aesthetics

Summary

References

Colour and fill

- We can change the colour for the geometry as a whole by putting it outside the aes() brackets
 - colour is the external part of geometry (e.g. bar boundary)
 - fill is the internal part of geometry

Sam Clifford

graphical

Building plots

Some common

aeometries

Other plotting aesthetics

References

Size

- Size refers to the elements of the plotting geometry
 - radius of points
 - thickness of lines

```
ggplot(data = airquality, aes(x = Solar.R, y = Temp)) + theme_bw() +
 geom point(aes(size = Ozone), pch = 1) + theme(legend.position = "bottom") +
 scale size area(name = "Ozone concentration (ppb)") +
 labs(x = "Solar radiation (Langleys)",
      v = expression(Max.~daily~temp.~(degree*F)))
```


Ozone concentration (ppb)

Sam Clifford

Principles of graphical excellence

Building plots

Some common

geometries

Small multiples

Other plotting aesthetics

Summary

References

Alpha transparency

- Alpha refers to the transparency (1 = solid, 0 = fully transparent)
- Useful when you've got lots of things stacked on top of each other in a plot

```
ggplot(data = airquality, aes(x = Solar.R, y = Temp)) + theme_bw() +
geom_point(alpha = 0.25) + theme(legend.position = "bottom") +
geom_smooth() +
labs(x = "Solar radiation (Langleys)",
    y = expression(Max.-daily-temp.-(degree*F)))
```


Sam Clifford

Principles of graphical excellence

Building plots

Some common

geometries

Small multiple:

Other plotting aesthetics

Summary

References

Shape

- Can change point shape to help identify grouping
- Most useful when there's only a few groups

```
data(mtcars)
ggplot(data=mtcars, aes(x=wt, y=mpg)) +
  geom_point(aes(shape=factor(am))) + theme_bw() +
  xlab("Weight (1000lbs)") + ylab("Fuel efficiency (mpg)") +
  geom_smooth(method = "lm")
```


Sam Clifford

Principles of graphical excellence

Building plots

geometries

Other plotting

aesthetics

Summar

References

Changing the default options

Many scale_* functions allow us to set options for the relevant aesthetic and corresponding legend name, e.g.

- scale_color_gradient() makes a color gradient for when we use aes(color=...)
- scale_fill_brewer() sets a color palette for aes(fill=...) using colour schemes at http://colorbrewer2.org/
- scale_shape(name = "Transmission", ...)
 changes the title from "factor(am)" to "Transmission" for
 aes(shape=factor(am)) in the previous slide
- scale_x_log10() changes the x axis to have a logarithmic scale in increasing powers of 10.
- Find more at the ggplot2 documentation page

Sam Clifford

Principles of graphical

Building plots

Some common

geometries

Small multiple:

Other plotting aesthetics

Summary

References

Changing the default options

Sam Clifford

Principles of graphical excellence

Building plots

Some common geometries

Small multiples

Other plotting aesthetics

Summary

References

Summary

Sam Clifford

Principles of graphical excellence

Building plots

geometries
Small multiple

Other plotting aesthetics

Summary

References

Summary

- We make graphs to tell a story with data
- Graphs should draw the reader in and explain what they're seeing
- Plots are built from
 - geometric objects
 - axis scales
 - coordinate systems (linear scale, logarithmic scale, 2D, 3D, etc.)
 - annotations (e.g. heading in small multiples)

Sam Clifford

Principles o graphical excellence

Building plots

Some commi

Small multiple

Other plotting

Summary

References

Summary

- Successively building a plot with a grammar of graphics allows development of complex plots from simple elements and small changes
- Choose a plotting geometry that helps tell the story
- Meaningful labels remove ambiguity and confusion

Sam Clifford

Principles of graphical excellence

Building plots

geometries

Other plotting aesthetics

Summary

References

Further reading

- Extra notes on Tufte's principles
- · History of visualisation
 - Friendly [2005]
 - Friendly [2006]
- Visualisation to help decision making
 - Tufte [1997]
- · ggplot2 resources
 - Wickham [2010]
 - RStudio [2012]

Sam Clifford

Principles of graphical excellence

Building plot

geometries

Other plottin

Summar

References

M. Friendly. Milestones in the history of data visualization: A case study in statistical historiography. In C. Weihs and W. Gaul, editors, Classification: The Ubiquitous Challenge, pages 34–52. Springer, New York, 2005. URL http://www.math.yorku.ca/SCS/Papers/qfkl.pdf.

 M. Friendly. A brief history of data visualization. In C. Chen,
 W. Härdle, and A Unwin, editors, Handbook of Computational Statistics: Data Visualization, volume III. Springer-Verlag,
 Heidelberg, 2006. URL http://www.datavis.ca/papers/hbook.pdf.

Mike Pantoliano. Data visualization principles: Lessons from tufte, 2012. URL https://moz.com/blog/data-visualization-principles-lessons-from-tufte

RStudio. Rstudio cheat sheets, 2012. URL https://www.rstudio.com/resources/cheatsheets/.

Edward Tufte. *The Visual Display of Quantitative Information*. Graphics Press, 1983.

Sam Clifford

Principles of graphical excellence

Building plots

Some common

geometries

Siliali Illulupio

Other plotting aesthetics

Summary

References

E.R. Tufte. *Visual and statistical thinking*. Graphics Press, 1997. ISBN 9781930824157. URL

https://www.edwardtufte.com/tufte/books_textb.

Hadley Wickham. A layered grammar of graphics. *Journal of Computational and Graphical Statistics*, 19(1):3–28, 2010. doi: 10.1198/jcgs.2009.07098.