

Graphen Algorithmen und Datenstrukturen 2

Grüne Farbe: Bitte im Script nachtragen

Graphentheorie (Repetition)

- Graphentheorie (wird als bekannt vorausgesetzt)
- Zusätzliches Dokument auf dem Netzlaufwerk:

08-1 Graphen - einige Definitionen

Anwendungsfälle Graphen

- Navigation
- Soziale Netzwerkanalyse
- Projektpläne
- Garbage Collection in Java

Speichern von Graphen (Kap. 7.4)

- Graph-Eigenschaften
 - Anzahl Knoten / Kanten
 - Verhältnis Knoten / Kanten
 - Parallele Kanten / Verschiedene Kanten-Eigenschaften
- Algorithmen => Graph-Operationen

Speichern von Graphen – Adjazenzmatrix (1)

- 1 5 2 5 4 3 4 6
- n×n-Matrix (n = Anzahl Knoten) (speicherhungrig)
- Gewichtet: Integer-Matrixint[][] g = new int[N][N];

Ungewichtet: Boolean-Matrix

boolean[][] g = new boolean[N][N]; =

	1	2	3	4	5	6
1	-	5	ı	4	ı	ı
2	ı	ı				
3	4	3				
4						
5						
6						

Speichern von Graphen – Adjazenzmatrix (2)

- Abbildung: Keine Kante
- Abbildung Abhängig von Interpretation
 - Distanz: Integer.MAX_VALUE
 - Kapazität: 0
- => Keine Fallunterscheidung bei Algorithmen nötig
- Ungerichtete Graphen: $A = A^T$

	1	2	3	4	5	6
1	<u>-</u>	5	-	4	-	-
2	ı	ı				
3	4	3				
4						
5						
6						

Speichern von Graphen - Kantentabelle

- Tabelle oder Liste mit Edge-Einträgen:
 - Edge: from, to, weight

```
class Edge {
  int from, to, weight;
}
```


from	1				
to	2				
weight	5				

Ungerichtete Graphen: 2x eintragen oder from / to gleich behandeln

Speichern von Graphen – Adjazenzlisten (Verbindungslisten) (1)

Array und pro Knoten eine Liste mit ausgehenden Kanten

Ungerichtete Graphen: Einträge bei beiden Knoten (2 Kanten)

Aufgabe: Speichern von Graphen

Ergänzen Sie die Einträge für die Graph-Repräsentationen im Script:

- Adjazenzmatrix (Kap. 7.4.1)
- Kantentabelle (Kap. 7.4.2)
- Adjazenzliste (Kap. 7.4.3)

für den im Script abgebildeten Beispielgraphen:

Aufgaben - Lösungen

Adjazenzliste

1	2	3	4	5	6
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
2/5	4/5	1/4	2/6		5/1
\downarrow		\downarrow			
4/4		2/3			
		\downarrow			
		4/8			

Adjazenzmatrix

1	2	3	4	5	6
i	5	i	4	ı	ı
i	i	i	5	ı	I
4	თ	i	8	ı	I
i	6	i	i	ı	I
-		-		-	-
ı	i	ı	i	1	_
	-	- 5 4 3	- 5 - 4 3 -	- 5 - 4 5 4 3 - 8	- 5 - 4 - 5 - 4 3 - 8 - - 6

Kantenliste

fr	1	1	2	3	3	3	4	6
to	2	4	4	1	2	4	2	5
weight	5	4	5	4	3	8	6	1

Topologisches Sortieren (Kap. 7.5) - Idee

- Reihenfolge ohne Abhängigkeits-Konflikte
- Kanten-Bedeutung: «ist Vorbedingung für»

Verschiedene «Topologische Sortierungen» möglich

Topologisches Sortieren - Vorbedingungen

- Gerichteter Graph
- Zyklenfrei

Topologisches Sortieren - Algorithmus

- 1. Bestimme für alle Knoten den Indegree
- 2. Sammle alle Knoten mit Indegree == 0 in einem Set Z
- 3. Solange Elemente in Z
 - Nehme Knoten v aus Z
 - 2. Füge v in topologisch sortierte Reihenfolge ein
 - 3. Für alle von v ausgehenden Kanten (v,w), reduziere den Indegree von w um 1.
 - 4. Entstehen durch 3 Knoten mit inDeg(v) == 0, füge diese in Z ein
- 4. Falls alle Knoten verarbeitet: Zyklenfrei (topologisch sortiert), sonst G hat Zyklen

Topologisches Sortieren - Aufgabe

 Finden Sie zwei topologische Sortierungen für den Graphen im Script auf Seite 3 oben:

Topologisches Sortieren - Aufgabe

 Finden Sie zwei topologische Sortierungen für den Graphen im Script auf Seite 3:

Topologische Sortierungen:

1254376

1254736

Adjazenz-Liste:

1) Eingangsgrade (Map):

1

2

3

Worst-Case Komplexitätsanalyse: Topologisches Sortieren mit einer Adjazenzliste. Verwenden Sie: n = Anz. Knoten, m=Anz. Kanten

1. Eingangsgrad für alle Knoten bestimmen

2. Alle Knoten mit Indegree 0 in Set Z sammeln

- 3. Solange Z nicht leer
 - 1. Knoten v aus Z entnehmen
 - 2. Indigree adjazenter Knoten um 1 reduzieren
 - 3. Falls ein Knoten einen Indegree 0 bekommt, füge diesen in Z ein
- Falls alle Knoten bearbeiten liegt eine top. Sortierung vor, ansonsten enthält der Graph Zyklen.

Worst-Case Komplexitätsanalyse: Topologisches Sortieren (Adjazenzliste)

1. Eingangsgrad für alle Knoten bestimmen

- ├ O(n+m)
- 2. Alle Knoten mit Indegree 0 in Set sammeln
- O(n

- 3. Solange Z (Queue) nicht leer
 - Knoten v aus Z entnehmen
 - 2. Indigree adjazenter Knoten um 1 reduzieren
 - 3. Falls ein Knoten einen Indegree 0 bekommt, füge diesen in Z ein
- O(n+m)
- 4. Falls alle Knoten bearbeiten liegt eine top. Sortierung vor, ansonsten enthält der Graph Zyklen.

=> O(n+m) für topologische Sortierung / Prüfen von Graphen auf Zyklen

Graph Traversierungen

- Alle Knoten durchlaufen
- Tiefensuche (Pre-Order Traversierung)
 - Weite Knoten möglichst rasch erreichen
- Breitensuche
 - Naheliegende Knoten möglichst rasch erreichen

Depth-First-Search (Tiefensuche) (Kap. 7.6)

- Arbeitsblatt DFS
 - Erkenntnisse der Aufgabe 2 im Abschnitt 7.6.1 anfügen

Depth-First-Search (Tiefensuche) (Kap. 7.6)

Lösung: Arbeitsblatt DFS - Aufgabe 1

Depth-First-Search (Tiefensuche) (Kap. 7.6)

Lösung: Arbeitsblatt DFS - Aufgabe 2

Depth-First-Search (Tiefensuche): Arbeitsblatt Erkenntnisse

- Im Gegensatz zu Bäumen muss bei allgemeinen Graphen mit folgender Situation umgegangen werden:
 - Man kann auf mehreren Wegen zum selben Knoten gelangen
 - Bei Zyklen will man nicht ewig im Kreis laufen
- Dazu drängt sich die folgende Lösung auf:
 - Besuchte Knoten «maskieren»: v.visited=true;
 - Markierte Knoten nicht nochmals besuchen if (!v.visisted) {...}

Depth-First-Search (Tiefensuche): Algorithmus

Initialisierung:

- Alle Knoten als nicht besucht markieren
- 2. dfs(startKnoten) aufrufen

```
(<u>Unterstrichene Teile</u> = Neu gegenüber Baum-Traversierung)
```

3. Für alle Knoten w, welche adjazent zu v sind: dfs(w) aufrufen

DFS-Anwendung: Graph auf Zusammenhang prüfen

Definition: Ein ungerichteter Graph ist zusammenhängend, falls es für jedes Paar von verschiedenen Knoten einen verbindenden Pfad gibt.

Algorithmus:

- 1. Alle Knoten als bisher **nicht** besucht markieren
- 2. Dfs(v) für beliebigen Knoten aufrufen
- 3. Prüfen, ob alle Knoten markiert wurden

DFS-Anwendung: Spannbaum

- Baum, der vom Startknoten alle erreichbaren Knoten enthält
- Jeder Baum mit n Knoten enthält genau (n-1) Kanten
 Algorithmus, um während DFS den Spannbaum zu speichern:
 dfs (Vertex v):

falls v als nicht besucht markiert ist:

- 1. v als besucht markieren
- 2. Für alle Knoten w adjazent zu v Falls w als *nicht besucht* markiert ist:
 - a) Kante <v,w> dem Graphen tree hinzufügen
 - b) dfs(w) aufrufen

dfs('A') führt zu folgendem Spannbaum:

Kürzeste Wege: Definition

- Ungewichtete Graphen: Anzahl Kanten von Start zu Ziel
- Gewichtete Graphen: Summe der Kantengewichte aller Kanten von Start zu Ziel

Kürzeste Wege in Ungewichteten Graphen: Breadth-First-Search (BFS)

• BFS: Man geht zuerst in die Breite und markiert Knoten mit Distanz 1, Distanz 2 usw.

Algorithmus:

- 1. Bei allen Knoten Distanzangabe auf ∞ setzen
- 2. Beim Startknoten 2 die Distanzangabe auf 0 setzen
- 3. Startknoten in Warteschlange erreichbar anfügen

- a. Vordersten Knoten v aus der Warteschlange entnehmen
- b. Für alle zu v adjazenten Knoten w:

Falls Distanzangabe von $w = \infty$ (Bisher unbesucht)

Distanzangabe von w = 1 + Distanzangabe von v

Knoten w hinten an Warteschlange erreichbar anfügen

Kürzeste Wege in gewichteten Graphen: Algorithmus nach Dijkstra

- Findet kürzeste Wege ausgehend von einem Knoten zu allen anderen
- Kein schnellerer Algorithmus für dieses Problem bekannt

- Annahmen
 - Keine Doppelten Kanten
 - Keine Schlingen
 - Nur positive Kantengewichte

Kürzeste Wege in gewichteten Graphen: Algorithmus nach Dijkstra

- Aufgabe
 - Dijkstra-Algorithmus Arbeitsblatt & Script
 - Aufwandsanalyse
 - Selbststudium

Kürzester Weg Von A nach E:

Dijkstra Aufwandsanalyse

Schritt 1: Tabelle für alle Knoten initialisieren: O(n)

Schritt 2a: n Knoten verarbeiten, jeweils n Knoten durchsuchen: O(n²)

Schritt 2c: Allen Kanten genau einmal folgen: O(m)

Insgesamt also: $O(n^2 + m)$

Verbesserung durch geschickte Wahl der Hilfsstruktur für 2a:

O((m + n) log n)

Selbststudium

IKEA TopSort Aufgabe d.)

Siehe Netzlaufwerk