Armazenamento e Estrutura de Arquivos

Classificação das médias de armazenamento físico

- Velocidade com a qual os dados podem ser acessados
- Custo por unidade de dados
- Confiabilidade
 - Dados perdidos na falha de potência ou falha do sistema
 - Falha física do dispositivo de armazenamento
- Pode diferenciar o tipo de armazenamento em:
 - Armazenamento volátil: perde o conteúdo quando a potência é desligada
 - Armazenamento não-volátil:
 - O Conteúdo persiste mesmo quando a potência é desligada.
 - Inclui armazenamento secundário (discos) ou armazenamento online; e o terciário ou offline (fitas).

Médias de Armazenamento Físico

 Cache – A mais rápida e custosa forma de armazenamento; volátil; gerenciada pelo hardware do sistema computacional.

Memória principal:

- Acesso rápido (10s a 100s nanosegundos; 1 nanosegundo = 10⁻⁹ segundos)
- geralmente muito pequena (ou muito cara) para armazenar todo o banco de dados
 - capacidades de até uns poucos Gigabytes
 - Capacidades têm aumentado e custos por byte têm diminuído constantemente e rapidamente (em aproximadamente um fator de 2 cada 2 a 3 anos)
- Volátil conteúdo da memória principal normalmente se perde se houver falta de energia ou uma falha do sistema.

Memória Flash

- Dados sobrevivem à falta de energia
- Dados podem ser escritos em um lugar uma vez, mas o lugar pode ser apagado e escrito de novo
 - Pode suportar um número limitado de ciclos de apagamento (de 10K a 1M).
 - Para escrever sobre a memória que já foi escrita tem que ser apagado o banco de memória inteiro
- Leituras são aproximadamente tão rápidas quanto da memória principal
- Mas as escritas são lentas (poucos microssegundos), apagar é mais lento
- O custo por unidade de armazenamento é aproximadamente similar ao da memória principal
- Amplamente usado em sistemas embutidos em portáteis ou câmeras digitais.
- É um tipo de EEPROM (Electrically Erasable Programmable Read-Only Memory)

Discos Magnéticos

- Os dados são armazenados em discos, e são lidos/gravados magneticamente
- Principal meio para armazenamento de dados on-line a longo prazo; normalmente armazena todo o banco de dados.
- Os dados devem ser movidos do disco para a memória principal para serem acessados, e os modificados são gravados de volta no disco
 - Acesso muito mais lento que o da memória principal
- Acesso direto é possível ler dados do disco em qualquer ordem, ao contrário da fita magnética.
- O tamanho dos discos magnéticos pode alcançar hoje em dia capacidades maiores a 400 GB
 - Muito maior capacidade e menor custo/byte que as memórias principal e flash
 - Crescimento constante e rápido com os avanços tecnológicos (fator de 2 a 3 cada 2 anos)
- Sobrevive a falhas de energia e falhas do sistema
 - Falhas de disco podem destruir dados, mas são raras

Armazenamento óptico

- Os dados não-voláteis, são lidos da forma ótica usando um laser
- CD-ROM (700 MB) e DVD (4.7 a 17 GB) as formas mais populares
- Write-one, read-many (WORM) discos óticos são usados para armazenamento histórico (CD-R, DVD-R, DVD+R)
- Versões para múltiplas gravações també são disponíveis (CD-RW, DVD-RW, DVD+RW, e DVD-RAM)
- Leituras e gravações são mais lentas que com discos magnéticos
- Sistemas de Juke-box, com grandes números de discos removíveis, poucos drives, e um mecanismo para carga e descarga automática de discos disponíveis para o armazenamento de grandes volumes de dados.

Armazenamento em fita

- não-volátil, usado principalmente para backup (recuperação de falhas de disco), e para armazenamento e arquivo
- Acesso sequencial muito mais lento que os discos
- Capacidade muito grande (40 a 300 GB)
- □ Fitas podem ser removidas da unidade (drive) ⇒
 custos de armazenamento muito mais baratos que
 disco, porém as unidades são mais custosas
- Bibliotecas de fitas (jukeboxes) disponíveis para o armazenamento de quantidades massívas de dados
 - Centos de terabytes (1 terabyte = 10⁹ bytes) até um petabyte (1 petabyte = 10¹² bytes)

Hierarquia de Armazenamento

Hierarquia de Armazenamento (Cont.)

- Armazenamento principal: O médio de armazenamento mais rápido mas volátil (cache, memória principal).
- Armazenamento secundário: próximo nível na hierarquia, não-volátil, tempo de acesso moderadamente rápido
 - Também chamado armazenamento on-line
 - Ex: memória flash, discos magnéticos
- Armazenamento terciário: nível mais baixo na hierarquia, não-volátil, tempo de acesso lento
 - Também chamado armazenamento off-line
 - Ex: fita magnética, armazenamento ótico

Mecanismo de disco duro magnético

PS: Diagrama é esquemático, e simplifica a estrutura de unidades disco reais

Bancos de Dados – Nível Físico

- Bancos de Dados armazenam grandes quantidades de dados por períodos longos de tempo em meios de armazenamento secundário;
- Estruturas de dados em memória principal armazenam quantidades limitadas de dados por curtos períodos de tempo;
- Fitas são usadas para backup

Bancos de Dados – Nível Físico

- Técnicas usadas para armazenamento e manipulação de grandes quantidades de dados armazenados em memória secundária;
- Técnicas eficientes para discos ópticos são diferentes;
- Um SGBD provê geralmente várias opções para organização física dos dados.
- Projeto Físico de Banco de Dados: Busca determinar o melhor tipo de organização dos dados, dentre todas as possíveis, para uma determinada aplicação;

Arquivos e Registros

- Sistema Operacional / Sistema de Arquivos:
 Fornece ao SGBD os serviços básicos
 manipulação de arquivos. O SGBD utiliza
 estes serviços para prover outras facilidades
 (nível lógico).
- Registros:
 - Campos ou ítens;
 - Tipo/Formato de Registros;
 - Tipo de dados de cada campo.

Arquivos e Registros

- Arquivos: Seqüências de registros
 - Tamanho fixo: Todos os registros possuem o mesmo tamanho exatamente;
 - Tamanho variável:
 - Um ou mais campos têm tamanho variável;
 - Campos com múltiplos valores (campos repetidos);
 - Campos opcionais;
 - Registros de tipos diferentes;

Registros

NAME=Smith, John SSN=123456789 DEPARTMENT=Computer X

Separator Characters

 separates field name from field value

separates fields

terminates record

Arquivos e Registros

- Blocos: Unidades de transferência da memória secundária para memória principal;
- Alocação de registros de um arquivo são feitas em blocos do disco;
- Modos de alocação: registros nem sempre cabem perfeitamente em um bloco;
- Fator de Bloco
- Alocação espalhada X Alocação não espalhada

Blocos de Registros

Não espalhada: os registros devem estar em um só bloco

Espalhada: os registros podem estar distribuídos em dois blocos

Organização de Arquivos

Registros Desordenados

Registros Ordenados

Arquivos de Registros Não Ordenados

- Busca de registros é linear;
- Inserção é feita no final do arquivo;
- Remoção é lógica: marca de remoção
- Reorganização periódica;
- Ordenação externa;
- Arquivo Relativo :
 - Registros de tamanho fixo;
 - Alocação não espalhada e contígua;
 - Fácil localização de registros;

Arquivos de Registros Ordenados

- Registros ordenados de acordo como um campo de ordenação;
- Chaves de Ordenação : ordenação baseada em um campo chave;
- Busca de registros pelo campo de ordenação é eficiente: busca binária;
- Inserção: arquivo auxiliar (arquivo de transação/overflow)
- Remoção: marcação para remoção física;
- Reorganização periódica;

Arquivos Ordenados

	NAME	SSN	BIRTHDATE	JOB	SALARY	SEX
block 1	Aaron, Ed	·				Cinnan []
	Abbott, Diane	Ģ		0,		
			i			
Į	Acosta, Marc					
	2 2000000000000	-			ř –	T
block 2	Adams, John	9				
	Adams, Robin		•			
	When In-		:			
L	Akers, Jan					
block 3	Alexander, Ed				Ì	
	Alfred, Bob					Č.
İ			E			
Ī	Allen, Sam		×			
in the second of	S					
block 4	Allen, Troy					
	Anders, Kelth					
		SX	1	32		\$5
Ļ	Anderson, Rob	<u> </u>				
block 5	Anderson, Zach					
	Angeli, Joe		A			Ĩ
[1	Olt	W	nike ere er
[Archer, Sue	(c)		k)(::::::::::::::::::::::::::::::::::::		
block 6	Arnold, Mack					2
	Arnold, Steven					
-			i			
Ļ	Alkins, Timothy					Li
			÷			
block n-1	Wong, James					Į.
	Wood, Donald	J3	·) }	Ĵ
[1			
[Woods, Manny					
block n	Meight Com					
	Wright, Parn	3				3
	Wyatt, Charles		ì			
ŀ	Zmmer, Byron		•		<u> </u>	
L	Emmo, byron					1.

- Função de endereçamento ou de Hashing : Determina a posição onde um registro deve ser inserido;
- Campo de Hashing : Usado como argumento da função;
- Objetivo : Melhorar o acesso com critério de busca;

- Hashing Interno:
 - Usado em memória principal;
 - Cada registro ocupa uma posição em um arranjo;
 - A função de Hashing retorna a posição do registro baseada no valor do campo de Hashing;
- Tratamento de Colisões
 - Endereçamento Aberto;
 - Encadeamento;
 - Hashing Múltiplo;

- null pointer = −1.
- · overflow pointer refers to position of next record in linked list.

Hashing Externo:

- Função de Hashing retorna o número de um bucket, ao invés do número de uma posição no arranjo;
- Um bucket pode conter um ou mais blocos do arquivo;
- Uma tabela associa o nr. do bucket ao endereço do primeiro (ou único) bloco do bucket;
- Podem haver m registros por bucket;
- Colisão ocorre quando o m + 1-ésimo registro deve ser inserido;

Hashing Externo

- Tratamento de Overflow por Encadeamento
 - Manter buckets de overflow;
 - Encadear registros que devem permanecer a um mesmo bucket;
- Remoção de Registros: Consiste em "apaga-los" do bucket. Se for usado overflow deve ser usado tratamento especial;
- Problemas :
 - Recuperação de vários registros em uma determinada ordem;
 - Má utilização do espaço de endereçamento dos buckets;
 - Tamanho fixo do arquivo;
 - Modificação do valor do campo usado como argumento da função Hashing;

Encadeamento

- Hashing com Expansão Dinâmica do Arquivo
- Hashing Dinâmico
 - Número de buckets não é fixo;
 - Uma colisão causa a divisão de um bucket em dois;
 - A divisão é feita com base no primeiro bit do valor gerado pela função Hashing;
 - Diret´orio: Árvore binária que guia a busca de um bucket;
 - Um bucket pode ser removido quando fica vazio o quando dois buckets podem ser combinados em um só;

Hashing Dinâmico

Hashing Extensível

- Diretório: Tabela com 2^d entradas. Cada entrada aponta para um bucket;
- \Box d = profundidade global;
- Os d primeiros bits do resultado da função Hashing determinam em que bucket será guardado o registro;
- □ Cada bucket pode conter até m registros que possuem os d´≤ d primeiros bits iguais. d´= Profundidade Local;

Hashing Extensível

- Um novo bucket é criado quando há colisões. A profundidade do bucket é aumentada de um e os registros são divididos de acordo com essa nova profundidade;
- Quando d´se torna maior que d, d´e incrementado de um e o tamanho do diretório é dobrado;
- Quando um bucket fica vazio ou quando dois buckets podem ser unidos em um só, um bucket é removido e d´ é decrementado;
- Quando todos os d´são menores que d seu valor é decrementado de um e o tamanho do diretório cai pela metade;

Hashing Extensível

Hashing Linear

- São alocados inicialmente M buckets (0, 1, ..., M 1), endereçados por uma função h0 = K mod M chamada primária;
- Quando um "Limite Máximo" de ocupação do arquivo é alcançado, um novo bucket *M é* criado para dividir as chaves para dividir o número de chaves com o bucket 0;
- A divisão de chaves é feita com base em uma nova função
- h1 = K mod 2M, que será usada para tratar colisões no bucket 0;
- □ O bucket *M é* encadeado ao bucket *M* 1;
- Quando a taxa de ocupação torna-se novamente crítica, os buckets seguintes (1, 2, 3, ...) vão sofrendo overflow;