Local Spectral Clustering of Density Upper Level Sets

Alden Green, Sivaraman Balakrishnan, and Ryan Tibshirani

May 1, 2019

Abstract

Spectral clustering methods are a family of popular nonparametric clustering tools. Recent works have proposed and analyzed *local* spectral methods, which extract clusters using locally-biased random walks around a user-specified seed node. Several authors have shown that local methods, such as personalized PageRank (PPR), have worst-case guarantees for certain graph-based measures of cluster quality. In contrast to existing works, we analyze PPR in a traditional statistical learning setup, where we obtain samples from an unknown distribution, and aim to identify connected regions of high-density (density clusters). We introduce two natural criteria for cluster quality, and derive bounds for these criteria when evaluated on empirical analogues of density clusters. Moreover, we prove that PPR, run on a neighborhood graph, extracts sufficiently salient density clusters.

1 Introduction

Let $\mathbf{X} = \{x_1, \dots, x_n\}$ be a sample drawn i.i.d. from a distribution \mathbb{P} on \mathbb{R}^d , with density f, and consider the problem of clustering: splitting the data into groups which satisfy some notion of within-group similarity and between-group difference. We focus on spectral clustering methods, a family of powerful nonparametric clustering algorithms. Roughly speaking, a spectral technique first constructs a geometric graph G, where vertices are associated with samples, and edges correspond to proximities between samples. It then learns a feature embedding based on the Laplacian of G, and applies a simple clustering technique (such as k-means clustering) in the embedded feature space.

To be more precise, let G = (V, E, w) denote a weighted, undirected graph constructed from the samples \mathbf{X} , where $V = \{1, \ldots, n\}$, and $w_{uv} = K(x_u, x_v) \geq 0$ for $u, v \in V$, and a particular kernel function K. Here $(u, v) \in E$ if and only if $w_{uv} > 0$. We denote by $\mathbf{A} \in \mathbb{R}^{n \times n}$ the weighted adjacency matrix, which has entries $A_{uv} = w_{uv}$, and by \mathbf{D} the degree matrix, with $\mathbf{D}_{uu} = \sum_{v \in V} \mathbf{A}_{uv}$. We also denote by \mathbf{W}, \mathbf{L} the random walk transition probability matrix and normalized Laplacian matrix, respectively, which are defined as

$$\mathbf{W} = \mathbf{D}^{-1}\mathbf{A}, \quad \mathbf{L} = \mathbf{I} - \mathbf{W},$$

where $\mathbf{I} \in \mathbb{R}^{n \times n}$ is the identity matrix. Classical global spectral methods take a eigendecomposition $L = U \Sigma U^T$, use some number of eigenvectors (columns in U) as a feature representation for the samples, and then run (say) k-means in this new feature space.

When applied to geometric graphs constructed from a large number of samples, global spectral clustering methods can be computationally cumbersome and insensitive to the local geometry of the underlying distribution [21, 22]. This has led to recent increased interest in local spectral algorithms, which leverage locally-biased spectra computed using random walks around a user-specified seed node. A popular local clustering algorithm is Personalized PageRank (PPR), first introduced by [15], and further developed by [4, 22, 28, 30, 37], among others.

¹Other popular choices here include the unnormalized Laplacian, and symmetric normalized Laplacian.

Local spectral clustering techinques have been practically very successful [5, 13, 21, 22, 35], which has led many authors to develop supporting theory [3, 12, 29, 37] that gives worst-case guarantees on traditional graph-theoretic notions of cluster quality (like conductance). In this paper, we adopt a more traditional statistical viewpoint, and examine what the output of a local clustering algorithm on \mathbf{X} reveals about the unknown density f. In particular, we examine the ability of the PPR algorithm to recover density clusters of f, which are defined as the connected components of the upper level set $\{x \in \mathbb{R}^d : f(x) \geq \lambda\}$ for some threshold $\lambda > 0$ (a central object of central interest in the classical statistical literature on clustering, dating back to Hartigan [14]).

1.1 Graph Connectivity Criteria

Here we define a pair of criteria that reflect the quality of a cluster with respect to G = (V, E, w). There are many graph-based measures of cluster quality that one could consider; see, e.g., [11, 36] for an overview. The pair of criteria that we focus on are (arguably) quite natural, and moreover, they play a fundamental role in our analysis of the PPR algorithm. Our two criteria capture the *external* and *internal* connectivity of a subset $S \subseteq V$, denoted $\Phi(S; G)$ and $\Psi(S; G)$, respectively, and defined below in turn.

External Connectivity: Normalized Cut Define the cut between subsets $S, S' \subseteq V$ to be

$$\operatorname{cut}(S, S'; G) = \sum_{u \in S} \sum_{v \in S'} w_{uv},$$

and define $\operatorname{vol}(S; G) = \operatorname{cut}(S, V; G) = \sum_{u \in S} \sum_{v \in V} w_{uv}$. As our notion of external connectivity, we use the normalized cut of S, defined as

$$\Phi(S;G) = \frac{\operatorname{cut}(S;G)}{\min\{\operatorname{vol}(S;G),\operatorname{vol}(S^c;G)\}},\tag{1}$$

where we abbreviate $\operatorname{cut}(S;G) = \operatorname{cut}(S;S^c;G)$.

Internal Connectivity: Inverse Mixing Time For $S \subseteq V$, denote by $G[S] = (S, E_S, w_S)$ the subgraph induced by S (where the edges are $E_S = E \cap (S \times S)$). Let \mathbf{A}_S , \mathbf{D}_S be the adjacency matrix and degree matrix, respectively, of G[S]. Define the random walk matrix as usual, $\mathbf{W} = \mathbf{D}_S^{-1} \mathbf{A}_S$, and for $v \in V$, write

$$q_{vu}^{(t)} = e_v \mathbf{W}_S^t e_u$$

for the t-step transition probability of a random walk over G[S] originating at v.² Also write $\tilde{\boldsymbol{\pi}} = (\tilde{\pi}_u)_{u \in S}$ for the stationary distribution of this random walk. (Given the definition of \mathbf{W}_S , it is well-known that the stationary distribution is given by $\tilde{\pi}_u = (\mathbf{D}_S)_{uu}/\text{vol}(S; G[S])$.)

Our internal connectivity parameter will capture the time it takes for the random walk over G[S] to mix (approach the stationary distribution) uniformly over S. For this, we first define the relative pointwise mixing time of G[S] as

$$\tau_{\infty}(G[S]) = \min \left\{ m : \frac{|q_{vu}^{(m)} - \widetilde{\pi}_u|}{\widetilde{\pi}_u} \le \frac{1}{4}, \text{ for } u, v \in V \right\}.$$

Now our internal connectivity parameter is simply the inverse mixing time,

$$\Psi(S;G) = \frac{1}{\tau_{\infty}(G[S])}.$$
 (2)

²Given a starting node v and and a random walk defined by transition probability matrix \mathbf{P} , the notation $e_v \mathbf{P}^t$ is used to denote the distribution of the random walk after t steps.

If S has normalized cut no greater than Φ , and inverse mixing time no less than Ψ , we call it as a (Φ, Ψ) -cluster. Both local [37] and global [18] spectral algorithms have been shown to output clusters (or partitions) which approximate the optimal (Φ, Ψ) -cluster (or partition) for a given graph G^3

1.2PPR on a Neighborhood Graph

We now describe the clustering algorithm that will be our focus for the rest of the paper. We start with the geometric graph that we form based on the samples X: for a radius r > 0, we consider the r-neighborhood graph of **X**, denoted $G_{n,r} = (V, E)$, an unweighted graph with vertices $V = \{1, \ldots, n\}$, and an edge $(u, v) \in E$ if and only if $||x_u - x_v|| \le r$, where $||\cdot||$ denotes Euclidean norm. Note that this is a special case of the general construction introduced above, with $K(u, v) = 1(||x_u - x_v|| \le r)$.

Next, we define the PPR vector $\mathbf{p} = \mathbf{p}(v, \alpha; G_{n,r})$, with respect to a seed node $v \in V$ and a teleportation parameter $\alpha \in [0, 1]$, to be the solution of the following linear system:

$$\mathbf{p} = \alpha \mathbf{e}_v + (1 - \alpha)\mathbf{p}\mathbf{W},\tag{3}$$

where **W** is the random walk matrix of the underlying graph $G_{n,r}$ and e_v denotes indicator vector for node v (with a 1 in the vth position and 0 elsewhere). In practice, we can approximately solve the above linear system via a simple, efficient random walk, with appropriate restarts to v.

For a level $\beta > 0$ and a target stationary measure $\pi_0 > 0$, we define a β -sweep cut of \mathbf{p} as

$$S_{\beta} = \{ u \in V : p_u > \beta \pi_0 \}. \tag{4}$$

Having computed sweep cuts over a range $\beta \in (\frac{3}{10}, \frac{1}{2})$, we output a cluster $\widehat{C} = S_{\beta^*}$, based on the sweep cut S_{β^*} that minimizes the normalized cut $\Phi(S_{\beta^*}; G_{n,r})$ as defined in (1). For concreteness, we summarize this procedure in Algorithm 1.

Algorithm 1 PPR on a Neighborhood Graph

Input: data $\mathbf{X} = \{x_1, \dots, x_n\}$, radius r > 0, teleportation parameter $\alpha \in [0, 1]$, seed $v \in \mathbf{X}$, target stationary measure $\pi_0 > 0$.

Output: cluster $\widehat{C} \subseteq V$.

- 1: Form the neighborhood graph $G_{n,r}$.
- 2: Compute the PPR vector $\mathbf{p}(v, \alpha; G_{n,r})$ as in (3).
- 3: For $\beta \in (\frac{3}{10}, \frac{1}{2})$ compute sweep cuts S_{β} as in (4). 4: Return $C = S_{\beta^*}$, where

$$\beta^* = \arg\min_{\beta \in (\frac{3}{10}, \frac{1}{2})} \Phi(S_\beta; G_{n,r}).$$

1.3 Summary of Results

Let $\mathbb{C}_f(\lambda)$ denote the connected components of the density upper level set $\{x \in \mathbb{R}^d : f(x) > \lambda\}$. For a given density cluster $\mathcal{C} \in \mathbb{C}_f(\lambda)$, we call $\mathcal{C}[\mathbf{X}] = \mathcal{C} \cap \mathbf{X}$ the empirical density cluster. Below we define a notion of consistency in density cluster estimation.

³In the case of [18], the internal connectivity parameter ϕ is actually the conductance, i.e., the minimum normalized cut within the subgraph G[S]. See Theorem 3.1 in their paper for details; however, note that $\phi^2/\log(\text{vol}(S)) \leq O(\Psi)$, and so the lower bound on ϕ translates to a lower bound on Ψ .

⁴The choice of a specific range such as $(\frac{3}{10}, \frac{1}{2})$ is standard in the analysis of PPR algorithms, see, e.g., [37].

Definition 1 (Consistent density cluster estimation). For an estimator $\widehat{\mathcal{C}} \subseteq \mathbf{X}$ and cluster $\mathcal{C} \in \mathbb{C}_f(\lambda)$, we say $\widehat{\mathcal{C}}$ is a consistent estimator of \mathcal{C} if for all $\mathcal{C}' \in \mathbb{C}_f(\lambda)$ with $\mathcal{C} \neq \mathcal{C}'$ the following holds as $n \to \infty$:

$$C[\mathbf{X}] \subseteq \widehat{C} \quad and \quad \widehat{C} \cap C'[\mathbf{X}] = \emptyset,$$
 (5)

with probability tending to 1.

A summary of our main results (and outline for the rest of this paper) is as follows.

- 1. In Section 2, we derive in Theorem 1 an upper bound on the normalized cut of a (thickened) empirical density cluster $C_{\sigma}[\mathbf{X}]$, under natural geometric conditions (precluding clusters that are too thin and long).
- 2. Under largely the same set of geometric conditions, we derive in Theorem 2 a lower bound on the inverse mixing time of a random walk over $\mathcal{C}_{\sigma}[\mathbf{X}]$.
- 3. In Section 3, we show in Theorem 4 that these bounds in Theorems 1 and 2, on the cluster quality criteria, have algorithmic consequences for PPR: properly initialized, Algorithm 1 performs consistent density cluster estimation in the sense of (5).
- 4. We show in Corollary 1 that Theorems 1 and 2, along with the results in [37], lead to alternative, graph-theoretic guarantees on cluster quality: an upper bound on the normalized cut of the estimated cluster \hat{C} , and an upper bound on volume of the symmetric set difference between \hat{C} and $\mathcal{C}[\mathbf{X}]$.
- 5. In Section 4, we empirically demonstrate that violations of the geometric conditions we require manifestly impact density cluster recovery.

On the topic of conditions, it is worth mentioning that, as density clusters are inherently local, focusing on the PPR algorithm actually eases our analysis and allows us to require fewer global regularity conditions relative to those needed for more classical global spectral algorithms.

1.4 Related Work

In addition to the background given above, a few related lines of work are worth highlighting. Global spectral clustering methods were first developed in the context of graph partitioning [9, 10] and their performance is well-understood in this context (see, e.g., Tolliver and Miller 31, von Luxburg 33). In a similar vein, several recent works [2, 6, 8, 20, 23, 24] have studied the efficacy of spectral methods in successfully recovering the community structure in the stochastic block model and variants.

Building on earlier work of [19], [16, 34] studied the limiting behaviour of spectral clustering algorithms. These authors show that when samples are obtained from a distribution, and we appropriately construct a geometric graph, the spectrum of the Laplacian converges to that of the Laplace-Beltrami operator on the data-manifold. However, relating the partition obtained using the Laplace-Beltrami operator to the more intuitively defined high-density clusters can be challenging in general.

Perhaps most similar to our results are the works [25, 26, 32], who study the consistency of spectral algorithms in recovering the latent labels in certain parametric and nonparametric mixture models. These results focus on global rather than local algorithms, and as such impose global rather than local conditions on the nature of the density. Moreover, they do not in general ensure recovery of density clusters, which is the focus in our work.

2 Cluster Quality Criteria Bounds for Density Clusters

2.1 Geometric Conditions on Density Clusters

In order to provide meaningful bounds on the normalized cut and inverse mixing time of an empirical density cluster, we must introduce conditions on the density f. Let $B(x,r) = \{y \in \mathbb{R}^d : ||y-x|| \le r\}$ be the closed ball of radius r > 0, centered at $x \in \mathbb{R}^d$. Given a set $A \subseteq \mathbb{R}^d$ and $\sigma > 0$, define $A_{\sigma} = A + B(0, \sigma) = \{y \in \mathbb{R}^d : \inf_{x \in A} ||y-x|| \le \sigma\}$, which we call the σ -expansion of A. For a differentiable function $g : \mathbb{R}^d \to \mathbb{R}^d$, write $\nabla g(x)$ to denote the Jacobian of g evaluated at $x \in \mathbb{R}^d$.

We are now ready to give our required conditions, stated with respect to a density cluster $C \in \mathbb{C}_f(\lambda)$ for some threshold $\lambda > 0$, and an expansion parameter $\sigma > 0$.

(A1) Bounded density within cluster: There are $0 < \lambda_{\sigma} < \Lambda_{\sigma} < \infty$ such that

$$\lambda_{\sigma} = \inf_{x \in \mathcal{C}_{\sigma}} f(x) \le \sup_{x \in \mathcal{C}_{\sigma}} f(x) \le \Lambda_{\sigma}.$$

(A2) Low noise density: There exists $\gamma, c_0 > 0$ such that for all $x \in \mathbb{R}^d$ with $0 < \operatorname{dist}(x, \mathcal{C}_\sigma) \leq \sigma$,

$$\inf_{x' \in \mathcal{C}_{\sigma}} f(x') - f(x) \ge c_0 \operatorname{dist}(x, \mathcal{C}_{\sigma})^{\gamma},$$

where $\operatorname{dist}(x, \mathcal{A}) = \inf_{x_0 \in \mathcal{A}} ||x - x_0||$.

(A3) Cluster separation: For all $\mathcal{C}' \in \mathbb{C}_f(\lambda)$ with $\mathcal{C}' \neq \mathcal{C}$,

$$\operatorname{dist}(\mathcal{C}_{\sigma}, \mathcal{C}'_{\sigma}) > \sigma,$$

where $\operatorname{dist}(\mathcal{A}, \mathcal{A}') = \inf_{x \in \mathcal{A}} \operatorname{dist}(x, \mathcal{A}')$.

(A4) Cluster diameter: There exists $D < \infty$ such that for all $x, x' \in \mathcal{C}_{\sigma}$,

$$||x - x'|| \le D$$
.

(A5) biLipschitz mapping to convex set: There exists $\mathcal{K} \subseteq \mathbb{R}^d$ convex, and $g: \mathbb{R}^d \to \mathbb{R}^d$ satisfying

$$\det(\nabla g(x)) = 1, \frac{1}{L} \|x - y\| \le \|g(x) - g(y)\| \le L \|x - y\| \text{ for all } x, y \in \mathbb{R}^d$$

such that \mathcal{C}_{σ} is the image of \mathcal{K} by g, $\mathcal{C}_{\sigma} = g(\mathcal{K})$.

Note that σ plays several roles here, precluding arbitrarily narrow clusters and long clusters in (A1) and (A4), flat densities around the level set in (A2), and poorly separated clusters in (A3).

Assumptions (A1), (A2), (A3) and (A5) are used to upper bound $\Phi(\mathcal{C}[\mathbf{X}]; G_{n,r})$, whereas (A1), (A4) and (A5) are required to lower bound $\Psi(\mathcal{C}[\mathbf{X}]; G_{n,r})$. We note that the lower bound on minimum density in (A1) along with (A3) are similar to the (σ, ϵ) -saliency of [7], a standard density clustering assumption, while (A2) is seen in, e.g., [27] (as well as many other works on density clustering and level set estimation.) It is worth highlighting that these assumptions are all local in nature, a benefit of studying a local algorithm such as PPR.

We also note that while many of these geometric conditions are typical in the density clustering literature, the restrictions we will impose upon them in order to obtain meaningful implications for PPR will not be. This is natural. The spectral algorithm we consider is not specifically designed for the task of level set estimation, and in fact one should expect PPR to fail to recover – either in the sense of (5), or indeed any reasonable notion of cluster recovery – a density cluster of sufficiently large diameter or sufficiently small

thickness (though we do not provide any lower bounds to this effect). Indeed, one of the primary motivations of this work was to better understand and characterize the distinctions between those level sets which are well conditioned for spectral algorithms, and those which are not.

In the next several subsections, we will derive bounds on the cluster quality criteria evaluated on $(\sigma$ -expansions of) density clusters. For notational simplicity, hereafter for $S \subseteq V$, we will abbreviate $\Phi(S; G_{n,r})$ by $\Phi_{n,r}(S)$, and similarly, $\Psi(S; G_{n,r})$ by $\Psi_{n,r}(S)$, and $\tau_{\infty}(G_{n,r}[S])$ by $\tau_{n,r}(S)$. We will also use ν for Lebesgue measure on \mathbb{R}^d , and $\nu_d = \nu(B)$ for the measure of the unit ball B = B(0,1).

2.2 Upper Bound on Normalized Cut

We start with an upper bound on the normalized cut (1) of $C_{\sigma}[\mathbf{X}]$. (In Theorem 1, the upper bound on the density in Assumption (A1) will not actually be needed, so we omit the parameter $\Lambda_{\sigma} > 0$ from the theorem statement.) For $S \subseteq \mathbb{R}^d$ and r > 0, let

$$\pi_{\mathbb{P},r}(\mathcal{S}) := \frac{\int_{\mathcal{S}} \mathbb{P}(B(x,r)) f(x) dx}{\int_{\mathbb{R}^d} \mathbb{P}(B(x,r)) f(x) dx}.$$

Theorem 1. Fix $\lambda > 0$, and let $C \in \mathbb{C}_f(\lambda)$ satisfy Assumptions (A1), (A2), and (A3), for some $\sigma, \lambda_{\sigma}, c_0, \gamma > 0$. Let $0 < r \le \sigma/4d$ be such that

$$\pi_{\mathbb{P},r}(\mathcal{C}_{\sigma}) \le \frac{1}{2}.\tag{6}$$

Then for any $0 < \delta < 1$, $\epsilon > 0$, if

$$n \ge \frac{(2+\epsilon)^2 \log(3/\delta)}{\epsilon^2} \left(\frac{25}{6\lambda_{\sigma}^2 \nu(\mathcal{C}_{\sigma}) \nu_d r^d}\right)^2,\tag{7}$$

then

$$\frac{\Phi_{n,r}(\mathcal{C}_{\sigma}[\mathbf{X}])}{r} \le \frac{4d}{\sigma} \frac{\lambda}{\lambda_{\sigma}} \frac{(\lambda_{\sigma} - c_0 \frac{r^{\gamma}}{\gamma + 1})}{\lambda_{\sigma}} + \epsilon, \tag{8}$$

with probability at least $1 - \delta$.

Remark 1. The proof of Theorem 1, along with all other proofs in this paper, can be found in the supplementary document. The key idea is that for any $x \in \mathcal{C}$, the simple (possibly loose) fact $B(x, \sigma) \subseteq \mathcal{C}_{\sigma}$ translates into the upper bound $\nu(\mathcal{C}_{\sigma} + rB) \leq (1 + 2dr/\sigma)\nu(\mathcal{C}_{\sigma})$. We leverage (A2) to find a corresponding bound on the weighted volume, then apply standard concentration inequalities to convert from population- to sample-based results.

Remark 2. The inequality in (8) is almost tight. Specifically, choosing $A_{\sigma} = B(0, \sigma)$ and

$$f(x) = \begin{cases} \lambda & \text{for } x \in \mathcal{A}_{\sigma}, \\ \lambda - \operatorname{dist}(x, \mathcal{A}_{\sigma})^{\gamma} & \text{for } 0 < \operatorname{dist}(x, \mathcal{A}_{\sigma}) < r, \end{cases}$$

we have that for n on the order of the lower bound in (7),

$$\frac{\Phi_{n,r}(\mathcal{A}_{\sigma}[\mathbf{X}])}{r} \ge c \frac{(\lambda - \frac{r^{\gamma+1}}{\gamma+1})}{\lambda} - \epsilon,$$

with probability at least $1-\delta$, for some constant c. (Note that the factor of $1/\sigma$ in c_{σ} is not replicated above.)

2.3 Lower Bound on Inverse Mixing Time

Next we lower bound the inverse mixing time (2) of $C_{\sigma}[\mathbf{X}]$, or equivalently, as $\Psi_{n,r}(C_{\sigma}[\mathbf{X}]) = 1/\tau_{n,r}(C_{\sigma}[\mathbf{X}])$, we upper bound the mixing time.

Theorem 2. Fix $\lambda > 0$, and let $C \in \mathbb{C}_f(\lambda)$ satisfy Assumptions (A1) and (A4) for some $\sigma, \lambda_{\sigma}, \Lambda_{\sigma}, D > 0$. Then for any $0 < r < \sigma/(4d)$, $0 < \delta < 1$, $\epsilon > 0$, and n satisfying

$$\sqrt{3^{d+1}\frac{(\log n + d\log \mu + \log(4/\delta))}{n\nu_d r^d \lambda_\sigma}} \leq \epsilon,$$

where $\mu = \log(\frac{2D}{r})$, we have

$$\tau_{n,r}(\mathcal{C}_{\sigma}[\mathbf{X}]) \le (d \log \mu + c_{\lambda})$$

$$\left(c_1 + 9^d c_2 \frac{\Lambda_{\sigma}^4 D^{2d}}{\lambda_{\sigma}^4 r^{2d}} \left(d \log \mu + c_{\lambda}\right)\right), \quad (9)$$

with probability at least $1 - \delta$, where $c_1, c_2 > 0$ are universal constants and $c_{\lambda} = \log(\Lambda_{\sigma}^2/\lambda_{\sigma}^2)$.

Remark 3. The proof of Theorem 2 relies on upper bounding the mixing time using the conductance of $G_{n,r}[\mathcal{C}_{\sigma}[\mathbf{X}]]$,

$$\widetilde{\Phi} = \min_{S \subseteq \mathcal{C}_{\sigma}[\mathbf{X}]} \Phi(S; G_{n,r}[\mathcal{C}_{\sigma}[\mathbf{X}]]).$$

The factor of $1/r^{2d}$ in the bound in (9) is suboptimal. This exponential dependence on d stems from a loose bound on the aforementioned conductance. In particular, we assert only that any set $S \subseteq \mathcal{C}_{\sigma}[X]$ must have $\operatorname{cut}(S; \mathcal{C}_{\sigma}[\mathbf{X}])$ on the order of n^2r^{2d} , while upper bounding $\operatorname{vol}(S; \mathcal{C}_{\sigma}[\mathbf{X}])$ by roughly n^2r^d , for a bound on the conductance of order r^d . The presence of r^{2d} comes from upper bounding the mixing time by about $1/\widetilde{\Phi}^2$, this being a variant of classic results on rapid mixing [17].

2.4 Tighter Lower Bound Under Convexity

It is possible to sharpen the dependency on d in (9), but at the cost of an additional assumption.

(A5) Convexity: The set C_{σ} is convex.

With (A5) in place, we give a tighter bound on the mixing time (albeit one that holds only asymptotically).

Theorem 3. Assume the conditions of Theorem 2, and additionally, (A5). Then for any $0 < r < \sigma/4d$, the following holds with probability 1:

$$\limsup_{n \to \infty} \tau_{n,r}(\mathcal{C}_{\sigma}[\mathbf{X}]) \leq c_1 \frac{\Lambda_{\sigma}^8}{\lambda_{\sigma}^8} (\log \mu + c_{\lambda}) \left(c_{\lambda} (d^3 \log \mu + c_2) + \frac{d^2 D^2}{r^2} \left(\log d + c_2 \frac{\Lambda_{\sigma}^2}{\lambda_{\sigma}^2} c_{\lambda} + c_3 + \log \log \mu \right) \right) + c_d \frac{o_r(1)}{r^2}, \tag{10}$$

where $\mu = \log(\frac{2D}{r})$, $c_1, c_2, c_3 > 0$ are universal constants, c_d is constant in r but depends on dimension d, and $c_{\lambda} = \log(\Lambda_{\sigma}^2/\lambda_{\sigma}^2)$.

Remark 4. The only potentially exponential dependence on dimension comes from the factor of c_d . However, for sufficiently small values of r $o_r(1)/r^2$ will be dominated by $1/r^2$, and therefore the last term in (10) will contribute negligibly to the overall bound.

Remark 5. We achieve superior rates in Theorem 3 to those of Theorem 2 in part by working with a generalization of the conductance, the *conductance function*,

$$\widetilde{\Phi}_{n,r}(t) = \min_{\substack{S \subseteq \mathcal{C}_{\sigma}[\mathbf{X}]\\ \widetilde{\pi}(S) < t}} \Phi(S; G_{n,r}[\mathcal{C}_{\sigma}[X]]),$$

where $\widetilde{\pi}$ is the stationary distribution over $G_{n,r}[\mathcal{C}_{\sigma}[\mathbf{X}]]$. The utility of the conductance function comes from the known upper bound of mixing time by

$$\int \frac{1}{t\widetilde{\Phi}_n(t)^2} dt,\tag{11}$$

which results in a tighter bound than merely using the conductance when $\widetilde{\Phi}_n(t)$ is large for small values of t.

Our proof relies on a novel (to the best of our knowledge) lower bound on this conductance function over $G_{n,r}$ in terms of a population-level analogue, which we denote $\widetilde{\Phi}_{\mathbb{P},r}$, and define formally in the supplementary document.

Lemma 1. Fix 0 < t < 1/2. Under the conditions on C_{σ} given by Theorem 3, the following statement holds: with probability one, as $n \to \infty$,

$$\liminf_{n \to \infty} \widetilde{\Phi}_{n,r}(t) \ge \min \left\{ \widetilde{\Phi}_{\mathbb{P},r}(t), c_d r \omega_r(1) \right\}$$
(12)

where c_d is the same as in Theorem 3.

Plugging $\widetilde{\Phi}_{\mathbb{P},r}$ into (11) yields a mixing time bound (with respect to total variation distance) on the order $dD^2/r^2 + d^2\log(D/r)$ over convex sets. By contrast, (10) is of order $d^2D^2/r^2 + d^3\log(D/r)$ (ignoring the $o_r(1)$ term) but handles mixing time with respect to relative pointwise distance (which is known to be a stricter metric).

Remark 6. The convexity condition is only needed to lower bound $\widetilde{\Phi}_{\mathbb{P},r}$. Any lower bound on $\widetilde{\Phi}_{\mathbb{P},r}$ could be directly plugged into the machinery of the proof of Theorem 3 to yield an alternative result. In recent work, [1] developed new population-level bounds on the conductance function (without requiring convexity), however the Markov chain dealt with there is somewhat different than the one we consider.

3 Consistent Cluster Estimation

3.1 Well-Conditioned Density Clusters

For PPR to successfully recover density clusters, the ratio $\Phi_{n,r}(\mathcal{C}_{\sigma}[\mathbf{X}])/\Psi_{n,r}(\mathcal{C}_{\sigma}[\mathbf{X}])$ should be small. Let us introduce the following notation for the upper bounds in Theorems 1 and 2:

$$\begin{split} \boldsymbol{\Phi}(\sigma,\lambda,\lambda_{\sigma},\gamma) &= \frac{\lambda}{\lambda_{\sigma}} \frac{(\lambda_{\sigma} - \frac{\sigma^{\gamma}}{\gamma+1})}{\lambda_{\sigma}}, \\ 1/\boldsymbol{\Psi}(\sigma,\lambda_{\sigma},\Lambda_{\sigma},D) &= (d\log\mu + c_{\lambda}) \cdot \\ \left(c_{1} + 9^{d}c_{2} \frac{\Lambda_{\sigma}^{4}D^{2d}}{\lambda_{\sigma}^{4}r^{2d}} \left(d\log\mu + c_{\lambda}\right)\right) \end{split}$$

(where all constants λ_{σ} , c_1 , c_2 , $c_{\lambda} > 0$ are as in these theorems).

Well-conditioned density clusters satisfy all of the given assumptions, for parameters which results in 'good' values of Φ and Ψ .

Definition 2 (Well-conditioned density clusters). For $\lambda > 0$ and $C \in \mathbb{C}_f(\lambda)$, let C satisfy (A1) - (A4) with respect to parameters $\sigma, \lambda_{\sigma}, \gamma > 0$ and $\Lambda_{\sigma}, D < \infty$, and additionally let C_{σ} satisfy (6). Then, setting $\kappa_1(C)$ and $\kappa_2(C)$ to be

$$\kappa_1(\mathcal{C}) := \frac{\mathbf{\Phi}(\sigma, \lambda, \lambda_{\sigma}, \gamma)}{\mathbf{\Psi}(\sigma, \lambda_{\sigma}, \Lambda_{\sigma}, D)}$$
$$\kappa_2(\mathcal{C}) := \kappa_1(\mathcal{C}) \cdot \sqrt{\mathbf{\Psi}(\sigma, \lambda_{\sigma}, \Lambda_{\sigma}, D)},$$

we call C a (κ_1, κ_2) -well-conditioned density cluster (with respect to $\sigma, \lambda_{\sigma}, \gamma, \Lambda_{\sigma}$ and D).

 Φ and Ψ are familiar; they are exactly the upper and lower bounds on $\Phi_{n,r}(\mathcal{C}_{\sigma}[\mathbf{X}])$ and $\Psi_{n,r}(\mathcal{C}_{\sigma}[\mathbf{X}])$ derived in Theorems 1 and 2, respectively.

Remark 7. For convenience and maximum generality, we define $\Psi(\sigma, \lambda_{\sigma}, \Lambda_{\sigma}, D)$ to correspond with the bound given by (9), and assume only (A1) - (A4). However, if we additionally have (A5), then we could sharpen $\Psi(\sigma, \lambda_{\sigma}, \Lambda_{\sigma}, D)$ to the tighter rate of (10), with no other changes to subsequent results.

As is typical in the local clustering literature, our results will be stated with respect to specific choices or ranges of each of the user-specified parameters, which in this case may depend on the underlying (unknown) density.

In particular, for a well conditioned density cluster C (with respect to some $\sigma, \lambda_{\sigma}, \gamma, \Lambda_{\sigma}$ and D), we require

$$\alpha \in [1/10, 1/9] \cdot \mathbf{\Psi}(\sigma, \lambda_{\sigma}, \Lambda_{\sigma}, D), \ r \leq \sigma/4d$$

$$\pi_0 \in [2/3, 6/5] \frac{\lambda_{\sigma}}{\nu(\mathcal{C}_{\sigma})\Lambda_{\sigma}^2}, \ v \in \mathcal{C}_{\sigma}[\mathbf{X}]^g$$
(13)

where $C_{\sigma}[\mathbf{X}]^g \subseteq C_{\sigma}[\mathbf{X}]$ is some 'good' subset of $C_{\sigma}[\mathbf{X}]$ which, as we will see, satisfies $\operatorname{vol}(C_{\sigma}[\mathbf{X}]^g) \ge \operatorname{vol}(C_{\sigma}[\mathbf{X}])/2$. (Intuitively one can think of $C_{\sigma}[\mathbf{X}]^g$ as being the nodes sufficiently close to the center of $C_{\sigma}[\mathbf{X}]$, although we provide no formal justification to this effect.)

Definition 3. If the input parameters to Algorithm 1 satisfy (13) with respect to some $C_{\sigma}[X]$, we say the algorithm is well-initialized.

Theorem 4. Fix $\lambda > 0$, and let $C \in \mathbb{C}_f(\lambda)$ be a (κ_1, κ_2) -well conditioned cluster (with respect to some $\sigma, \lambda_{\sigma}, \gamma, \Lambda_{\sigma}$ and D). If

$$\kappa_2 \le \frac{1}{40 \cdot 36} \frac{\lambda_\sigma^2}{\Lambda_\sigma^2} \frac{r^d \nu_d}{\nu(\mathcal{C}_\sigma)},\tag{14}$$

and Algorithm 1 is well-initialized, the output set $\widehat{C} \subseteq \mathbf{X}$ is a consistent estimator for C, in the sense of Definition 1.

Remark 8. We note that replacing $40 \cdot 36$ by larger constants in (14) allow for wider ranges of parameters in (13).

Approximate cluster recovery via PPR In [37], building on the work of [4] and others, theory is developed which links algorithmic performance of PPR to the normalized cut and mixing time parameters. Although not the primary focus of our work, it is perhaps worth noting that these results, coupled with

Theorems 1-3, translate immediately into bounds on the normalized cut of \widehat{C} and the (volume-weighted) symmetric set difference of \widehat{C} and $\mathcal{C}_{\sigma}[\mathbf{X}]$.

We collect some of the main results of [37] in Theorem 5. For G = (V, E) consider some $A \subseteq V$, and let $\Phi(A; G)$ and $\Psi(A; G)$ be defined as in (1) and (2), respectively.

Theorem 5 (Theorem 1 of [37]). There exists a set $A^g \subseteq A$ with $vol(A^g; G) \ge vol(A; G)/2$ such that the following statement holds: Choose any $v \in A^g$, fix $\alpha = 9/10\Psi(A; G)$, and compute the page rank vector $\mathbf{p}(v, \alpha; G)$. Letting

$$\widehat{C} = \operatorname*{arg\,min}_{\beta \in \left[\frac{1}{8}, \frac{1}{2}\right]} \Phi(S_{\beta}; G)$$

the following quarantees hold:

$$\begin{aligned} \operatorname{vol}(\widehat{C} \setminus A; G) &\leq \frac{24\Phi(A; G)}{\Psi(A; G)} \operatorname{vol}(A) \\ \operatorname{vol}(A \setminus \widehat{C}; G) &\leq \frac{30\Phi(A; G)}{\Psi(A; G)} \operatorname{vol}(A) \\ \Phi(\widehat{C}; G) &= O\left(\frac{\Phi(A; G)}{\sqrt{\Psi(A; G)}}\right) \end{aligned}$$

Corollary 1 – an analogous statement to Theorem 5 but stated specifically with respect to $C_{\sigma}[\mathbf{X}]$ – immediately follows.

Corollary 1. Fix $\lambda > 0$, and let $C \in \mathbb{C}_f(\lambda)$ be a (κ_1, κ_2) -well conditioned cluster (with respect to some $\sigma, \lambda_{\sigma}, \gamma, \Lambda_{\sigma}$ and D). Then, if Algorithm 1 is well-initialized (in the sense that the choices of input parameters satisfy (13)), the following guarantees hold for output set $\widehat{C} \subseteq \mathbf{X}$:

$$\operatorname{vol}(\widehat{C} \setminus \mathcal{C}_{\sigma}[\mathbf{X}]; G_{n,r}) \leq 30\kappa_{2}(\mathcal{C})\operatorname{vol}(\mathcal{C}_{\sigma}[\mathbf{X}])$$

$$\operatorname{vol}(\mathcal{C}_{\sigma}[\mathbf{X}] \setminus \widehat{C}; G_{n,r}) \leq 30\kappa_{2}(\mathcal{C})\operatorname{vol}(\mathcal{C}_{\sigma}[\mathbf{X}])$$

$$\Phi_{n,r}(\widehat{C}) = O(\kappa_{1}(\mathcal{C}))$$

4 Experiments

4.1 Validating Theoretical Bounds

As we do not provide any theoretical lower bounds, we validate the tightness of Theorems 1 and 3 via simulation. We sample points according to the density function q, where for $x \in \mathbb{R}^d$

$$q(x) := \begin{cases} \lambda, & x \in [0, \sigma] \times D^{d-1} =: \mathcal{C}, \\ \lambda - \operatorname{dist}(x, \mathcal{C})\eta, & x \in \mathcal{C}_{\sigma} \setminus \mathcal{C}, \\ (\lambda - \sigma\eta) - \operatorname{dist}(x, \mathcal{C}_{\sigma})^{\gamma}, & x \in (\mathcal{C}_{\sigma} + \sigma B), \setminus \mathcal{C}_{\sigma} \\ 0, & \text{otherwise,} \end{cases}$$

$$(15)$$

where $\lambda = \frac{150}{81}\sigma^{\gamma}$ and $\eta = \frac{15}{81}\sigma^{\gamma-1}$. Panels (a) and (b) in Figure 1 show 20,000 samples from two parameterizations of q. In (a), $\sigma = D = 3.2$, while in (b) $\sigma = .1$ and D = 3.2. (For both, d = 2).

Panels (c)-(f) in Figure 1 show the change in normalized cut and mixing time, respectively, as the parameters σ ((c) and (d)) and D ((e) and (f)) are varied. In panels (c) and (d) $\sigma = .1 \cdot \sqrt{2}^j, j = 1, \ldots, 10$, and D is fixed at 3.2. In panels (e) and (f), $D = .1 \cdot \sqrt{2}^j, j = 1, \ldots, 10$ and σ is fixed at .1. For each panel, the solid

lines show, up to constants 5 , the theoretical upper bound, given by Theorem 1 for panels (c) and (e) and Theorem 3 for panels (d) and (f). The dashed lines show the computed empirical value, averaged over m trials (m = 100 for the normalized cut, dashed lines in panels (c) and (e), and m = 20 for the mixing time, dashed lines in panel (d) and (f)). For each trial across all parameters, r, the neighborhood graph radius, is set throughout to be as small as possible such that the resulting graph is connected, for computational efficiency. Green lines correspond to dimension d = 2, whereas purple/pink lines correspond to d = 3.

Panels (d) and (f) show the solid lines tracking closely to the dashed lines, in both 2 and 3 dimensions. This provides empirical evidence that the upper bound on mixing time given by Theorem 3 has the right dependency on both thickness parameter σ and diameter D.

The story in panels (c) and (e) is more subtle. We note that while, broadly speaking, the trends do not appear to match, this gap between theory and empirical results is mostly due to the relationship when $\sigma \approx D$; this is the right hand side on panel (c) and the left hand side on panel (e). It is in these regions that the slopes of the dashed and solid lines appear most distinct. As the ratio D/σ grows, we see the slopes of the empirical curves converging to those predicted by theory. The takeaway message is that while the dependency in (8) on σ and D is loose for clusters with diameter close to thickness, it becomes tighter and tigher as D/σ grows.

4.2 Empirical PPR, normalized cut, and density clustering comparison

To drive home the main implications of Theorem 5, we show the behavior of PPR, normalized cut, and the density clustering algorithm of [7] on (a variant of) the famous 'two moons' dataset, considered a prototypical

⁵Note that we have rescaled all values of theoretical upper bounds by a constant, in order to mask the effect of large universal constants in these bounds. Therefore only comparison of slopes, rather than intercepts, is meaningful.

Figure 2: True density (column 1), PPR (column 2), normalized cut (column 3) and estimated density (column 4) clusters for 4 different simulated data sets. Seed node for PPR denoted by a black cross.

success story for spectral clustering algorithms. To form each of the four rows in Figure 2, 800 points are independently sampled following a 'two moons plus Gaussian noise model'. Formally, the (respective) generative models for the data are

$$Z \sim \text{Bern}(1/2), \theta \sim \text{Unif}(0, \pi)$$
 (16)

$$X(Z,\theta) = \begin{cases} \mu_1 + (r\cos(\theta), r\sin(\theta)) + \sigma\epsilon, & \text{if } Z = 1\\ \mu_2 + (r\cos(\theta), -r\sin(\theta)) + \sigma\epsilon, & \text{if } Z = 0 \end{cases}$$
 (17)

where

$$\mu_1 = (-.5, 0), \ \mu_2 = (0, 0), \ \epsilon \sim N(0, I_2)$$
 (row 1)

$$\mu_1 = (-.5, -.07), \ \mu_2 = (0, .07), \ \epsilon \sim N(0, I_2)$$
 (row 2)

$$\mu_1 = (-.5, -.125), \ \mu_2 = (0, .125), \ \epsilon \sim N(0, I_2)$$
 (row 3)

$$\mu_1 = (-.5, -.025), \ \mu_2 = (0, .025), \ \epsilon \sim N(0, I_{10})$$
 (row 4)

for I_d the $d \times d$ identity matrix. The first column consists of the empirical density clusters C_n and C'_n for a particular threshold λ of the density function; the second column shows the PPR plus minimum normalized sweep cut cluster, with hyperparameter α and all sweep cuts considered; the third column shows the global minimum normalized cut, computed according to the algorithm of Bressson et al. 2012; and the last column shows a cut of the cluster tree estimator of Chaudhuri Dasgupta

Rows 1-3 show the degrading ability of PPR to recover density clusters as the two moons become less salient. In the first row, the normalized cut conforms to the density cluster, and PPR recovers both. In the second row, the normalized cut still conforms to the density cluster, but because the internal connectivity of the lower moon is low, PPR fails to recover the normalized cut. In the third row, the moons have such low saliency that even the normalized cut fails to recover the lower moon; we also see from (k) that PPR does not somehow save us in this situation. Note that this is not a function of the finite sample: the 4th column shows us that the Chaudhuri Dasgupta cluster tree estimator can be recover the true density cluster.

The fourth row illustrates the effect of dimension. The gray dots in (m) (as in (a), (e) and (i) are observations in low-density regions. While the PPR sweep cut (n) has relatively high symmetric set difference with the chosen density cut, it still recovers C_n in the sense of Definition 1.

5 Discussion

For a clustering algorithm and a given object (such as a graph or set of points), there are an almost limitless number of ways to define what the 'right' clustering is. We have considered a few such ways – density level sets, and the bicriteria of normalized cut, inverse mixing time – and shown that under the right conditions, the latter agree with the former, with resulting algorithmic consequences.

There are still many directions worth pursuing in this area. Concretely, we might wish to generalize our results to hold over a wider range of kernel functions, and hyperparameter inputs to the PPR algorithm. More broadly, we do not provide any sort of theoretical lower bound, although we give empirical evidence in Figures ?? and ?? that poorly conditioned density clusters are not consistently estimated by PPR .

The initial motivation for this article was based on the intuition that density level sets, in the right conditions, will have small normalized cut. As a result, algorithms with normalized cut based guarantees (such as PPR) seemed likely to have density cluster recovery guarantees as well. However, the second-order behavior of PPR when failing to recover the conductance cut is also of interest. Are there situations when the conductance cut and density cut differ, yet PPR still recovers the latter? This is an open question.

REFERENCES

- [1] Yasin Abbasi-Yadkori, Peter Bartlett, Victor Gabillon, and Alan Malek. Hit-and-Run for Sampling and Planning in Non-Convex Spaces. In *Proceedings of the 20th International Conference on Artificial Intelligence and Statistics*, pages 888–895, 2017.
- [2] Emmanuel Abbe. Community detection and stochastic block models. Foundations and Trends® in Communications and Information Theory, 14(1-2):1–162, 2018.
- [3] Reid Andersen and Yuval Peres. Finding sparse cuts locally using evolving sets. In Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, STOC '09, pages 235–244, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-506-2. doi: 10.1145/1536414.1536449.
- [4] Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank vectors. In *Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science*, pages 475–486, 2006.
- [5] Reid Andersen, David F Gleich, and Vahab Mirrokni. Overlapping clusters for distributed computation. In Proceedings of the fifth ACM international conference on Web search and data mining, pages 273–282. ACM, 2012.
- [6] Sivaraman Balakrishnan, Min Xu, Akshay Krishnamurthy, and Aarti Singh. Noise thresholds for spectral clustering. In *Advances in Neural Information Processing Systems* 24. Curran Associates, Inc., 2011.
- [7] Kamalika Chaudhuri and Sanjoy Dasgupta. Rates of convergence for the cluster tree. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 343–351. Curran Associates, Inc., 2010.
- [8] Kamalika Chaudhuri, Fan Chung Graham, and Alexander Tsiatas. Spectral clustering of graphs with general degrees in the extended planted partition model. In *COLT*, volume 23, pages 35.1–35.23, 2012.
- [9] W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs. *IBM J. Res. Dev.*, 17 (5):420–425, September 1973.
- [10] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(2):298–305, 1973
- [11] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174, 2010.
- [12] Shayan Oveis Gharan and Luca Trevisan. Approximating the expansion profile and almost optimal local graph clustering. In Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages 187–196. IEEE, 2012.
- [13] David F Gleich and C Seshadhri. Vertex neighborhoods, low conductance cuts, and good seeds for local community methods. In *Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 597–605. ACM, 2012.
- [14] John A. Hartigan. Consistency of single-linkage for high-density clusters. *Journal of the American Statistical Association*, 1981.
- [15] Taher H Haveliwala. Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. *IEEE transactions on knowledge and data engineering*, 15(4):784–796, 2003.
- [16] Matthias Hein, Jean-Yves Audibert, and Ulrike von Luxburg. From graphs to manifolds weak and strong pointwise consistency of graph laplacians. In *Learning Theory*, 2005.
- [17] Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM journal on computing, 18(6): 1149–1178, 1989.

- [18] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad and spectral. *J. ACM*, 51(3):497–515, May 2004.
- [19] Vladimir Koltchinskii and Evarist Gine. Random matrix approximation of spectra of integral operators. Bernoulli, 6(1):113–167, 02 2000.
- [20] Jing Lei and Alessandro Rinaldo. Consistency of spectral clustering in stochastic block models. *Ann. Statist.*, 43(1):215–237, 02 2015.
- [21] Jure Leskovec, Kevin J. Lang, and Michael Mahoney. Empirical comparison of algorithms for network community detection. In *Proceedings of the 19th International Conference on World Wide Web*, 2010.
- [22] Michael W. Mahoney, Lorenzo Orecchia, and Nisheeth K. Vishnoi. A local spectral method for graphs: with applications to improving graph partitions and exploring data graphs locally. *Journal of Machine Learning Research*, 13:2339–2365, 2012.
- [23] Frank McSherry. Spectral partitioning of random graphs. In FOCS, pages 529–537, 2001.
- [24] Karl Rohe, Sourav Chatterjee, and Bin Yu. Spectral clustering and the high-dimensional stochastic blockmodel. *Ann. Statist.*, 39(4):1878–1915, 08 2011.
- [25] Geoffrey Schiebinger, Martin J. Wainwright, and Bin Yu. The geometry of kernelized spectral clustering. *Ann. Statist.*, 43(2):819–846, 04 2015.
- [26] Tao Shi, Mikhail Belkin, and Bin Yu. Data spectroscopy: Eigenspaces of convolution operators and clustering. *Ann. Statist.*, 37(6B):3960–3984, 12 2009.
- [27] Aarti Singh, Clayton Scott, and Robert Nowak. Adaptive hausdorff estimation of density level sets. *Ann. Statist.*, 37(5B):2760–2782, 10 2009.
- [28] Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal on Computing, 40(4):981–1025, 2011.
- [29] Daniel A Spielman and Shang-Hua Teng. A local clustering algorithm for massive graphs and its application to nearly linear time graph partitioning. SIAM Journal on Computing, 42(1):1–26, 2013.
- [30] Daniel A Spielman and Shang-Hua Teng. Nearly linear time algorithms for preconditioning and solving symmetric, diagonally dominant linear systems. SIAM Journal on Matrix Analysis and Applications, 35 (3):835–885, 2014.
- [31] David Tolliver and Gary L. Miller. Graph partitioning by spectral rounding: Applications in image segmentation and clustering. In *Computer Vision and Pattern Recognition*, CVPR, volume 1, pages 1053–1060, 2006.
- [32] Santosh Vempala and Grant Wang. A spectral algorithm for learning mixture models. *Journal of Computer and System Sciences*, 68(4):841 860, 2004.
- [33] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416, December 2007.
- [34] Ulrike von Luxburg, Mikhail Belkin, and Olivier Bousquet. Consistency of spectral clustering. *Ann. Statist.*, 36(2):555–586, 04 2008.
- [35] Xiao-Ming Wu, Zhenguo Li, Anthony M. So, John Wright, and Shih fu Chang. Learning with partially absorbing random walks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, *Advances in Neural Information Processing Systems* 25, pages 3077–3085. Curran Associates, Inc., 2012.
- [36] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-truth. Knowledge and Information Systems, 42(1):181–213, Jan 2015.

[37]	Zeyuan Allen Zhu, clusters. In <i>ICML</i>	Silvio Lattanzi, and (3), pages 396–404, 2	Vahab S Mirrokni. 2013.	A local algorithm for	finding well-connected