8.5

Understanding Self-Attention

Part 2: Self-Attention with Learnable Weights

Sebastian Raschka and the Lightning Al Team

1. Compute similarity (get ω 's)

2. Normalize (get α 's)

Input sequence: $x^{(1)} = x^{(i)\top} \cdot x^{(1)}$ $x^{(2)} = x^{(i)\top} \cdot x^{(2)}$ $x^{(3)} = x^{(i)\top} \cdot x^{(3)}$ $x^{(1)} = x^{(i)\top} \cdot x^{(3)}$ $\alpha_{i3} = x^{(i)\top} \cdot x^{(3)}$ $\alpha_{i4} = x^{(i)} \cdot x^{(i)}$ Attention weights

3. Compute context vector $z^{(i)}$

$$z^{(i)} = \sum_{j=1}^{T} \alpha_{ij} \cdot x^{(j)}$$

Context vector

A self-attention mechanism with learnable weights: scaled dot-product attention

A self-attention mechanism with learnable weights: scaled dot-product attention

Proposed in the original transformer paper and the most widely used attention mechanism today

We introduce 3 weight matrices

 U_q

 U_k

 U_{v}

We introduce 3 weight matrices

query sequence:
$$q^{(i)} = U_q x^{(i)}$$
 for $i \in [1,...,T]$

key sequence:
$$k^{(i)} = U_k x^{(i)}$$
 for $i \in [1,...,T]$

value sequence:
$$v^{(i)} = U_v x^{(i)}$$
 for $i \in [1,...,T]$

Query, key, and value are inspired by databases (and information retrieval systems).

If we enter a query, it is matched against a key to retrieve certain values.

Similar to the previous lecture (basic self-attention) it's about computing a context vector.

Input sequence:

 $\boldsymbol{x}^{(1)}$

 $\boldsymbol{x}^{(2)}$

. . .

 $\boldsymbol{x}^{(T)}$

1. Compute key, query, and value vectors (vector-matrix multiplication)

Suppose we want to compute the context vector for the 2nd input element

Sebastian Raschka

Deep Learning Fundamentals, Unit 8

Lightning Al

2. Compute ω (similarity) as in previous video (but now between q's and k's instead of x's)

Sebastian Raschka

Deep Learning Fundamentals, Unit 8

Sebastian Raschka

Deep Learning Fundamentals, Unit 8

4. Compute context vector $z^{(2)}$

where
$$\mathbf{z}^{(2)} = \sum_{j=1}^{T} \alpha_{2,j} \mathbf{v}^{(j)}$$

Sebastian Raschka

Deep Learning Fundamentals, Unit 8

Sebastian Raschka

Deep Learning Fundamentals, Unit 8

Lightning Al

Summary:

for each token, self attention

- compares that token to each other token in the input sequence
- computes attention scores unique to the input token (query)
- calculates the weighted average of all inputs via the attention scores

Self-attention is a sequence-to-sequence (many-to-many) approach:

- taking n tokens as input and
- returning n tokens as output.

Sebastian Raschka

Deep Figure 1: The Transformer - model architecture. Unit 8

Lightning Al

Next: What is "multi-head" attention?