Sys-Verilog Questions Review

Some Solutions to questions from ChipIO-Dev

Counter

Counter

Router

Connect (wire)

Recursion or calling the same hardware segment repeatedly

Log2(**5**)

Minimum number of bits represent 5?

$$Min = 2$$

$$5 > 2^2$$
 (increment) ____ ___

Log2(**4**)

Minimum number of bits represent 5?

$$Min = 2$$

$$4 \not< 2^2$$
 (perfect)

Log2 : Debug Results

Second Largest

Count	0	1	2	3	4	
Data_In	DO	D1	D2	D3	D4	
2nd Largest	0	0	2	2	2	3

-, **2** 3, **2** 3, **2** 3, **2** 7, **3**

Rounded Division

Generate Logic Blocks

Gray code

Vertical Delay:) $2^3 = 8cycle$ $2^2 = 4cycle$ $2^1 = 2cycle$ $2^0 = 1cycle$

$$2^3 = 8cycle$$

$$2^2 = 4cycle$$

$$2^1 = 2cycle$$

$$2^0 = 1$$
cycle

0	0	0	O
O	O	O	1
O	O	1	1
O	O	1	O
O	1	1	O

Parralel In -Serial Out

Serial to Parallel

Serial to Parallel (Simulation Concept)

Fibonacci

Count Ones

Architecture Similar to Linked List Gen Din_0 adderz $wire_0$ equal_width Gen Din_1 Din adderz data_width $wire_1$ equal_width $wire_{15}$ Dout (i.e. Count) adderz equal_width equal_width = log2(data_width)

Count Ones

```
[2025-10-21 23:50:16 UTC] iverilog '-Wall' '-g2012' design.sv testbench.sv && unbuffer vvp a.out index - 0 input - 3 n_ones - 2 index - 1 input - 5 n_ones - 2 index - 2 input - 8 n_ones - 1 testbench.sv:44: $finish called at 9 (1s)

Done
```

Gray Code to Binary (Width = 3)

Trailing Ones

StopWatch Timer


```
[2025-10-23 19:15:00 UTC] iverilog '-Wall' '-g2012' design.sv testbench.sv && unbuffer vvp a.out
prev_button
              0] Button Press: reset[0] start[0] stop[0]
                                                           return -
prev_button Event
              1] Button Press: reset[0] start[0] stop[0]
                                                           return -
              2] Button Press: reset[0] start[1] stop[0]
                                                           return -
                 Button Press: reset[0] start[0] stop[0]
                                                           return -
              4] Button Press: reset[1] start[0] stop[0]
                                                           return -
              5] Button Press: reset[0] start[0] stop[0]
                                                           return -
              6] Button Press: reset[0] start[0] stop[0]
                                                           return -
              7] Button Press: reset[0] start[1] stop[1]
                                                           return -
              8] Button Press: reset[0] start[0] stop[0]
                                                           return -
              9] Button Press: reset[0] start[0] stop[0]
                                                           return -
           [ 10] Button Press: reset[0] start[1] stop[0]
                                                           return -
           [ 11] Button Press: reset[0] start[0] stop[0]
                                                           return -
           [ 12] Button Press: reset[1] start[1] stop[1]
                                                           return -
           [ 13] Button Press: reset[0] start[0] stop[0]
                                                           return -
           [ 14] Button Press: reset[0] start[1] stop[0]
                                                           return -
           [ 15] Button Press: reset[0] start[0] stop[1]
                                                           return -
           [ 16] Button Press: reset[0] start[0] stop[0]
                                                           return -
           [ 17] Button Press: reset[0] start[0] stop[0]
                                                           return -
           [ 18] Button Press: reset[0] start[0] stop[1]
                                                           return -
           [ 19] Button Press: reset[0] start[0] stop[0]
                                                           return -
           [ 20] Button Press: reset[0] start[1] stop[0]
                                                           return -
           [ 21] Button Press: reset[0] start[0] stop[0] return -
           [ 22] Button Press: reset[0] start[0] stop[0] return -
           [ 23] Button Press: reset[0] start[0] stop[0] return -
           testbench.sv:136: $finish called at 114000 (1ps)
           Done
```


Circuit from OLD grad school slides:). Might as well build it in SV

Sequence Detector

Sequence Detector

FIFO FULL

Evaluations of sequence are valid

Histo Amazon

Send Mechanism

Histo Amazon

Receive Mechanism (Test Address)

Divisible By Three

Palindrome

Odd Data Width

== DataIn[mid:0]

Half_Size_Floored = 2

Even Data Width

RotateRight by mid → NOT →

Multiply by ones vector
Size = Half_Size_Floored

== DataIn[mid:0]

Divide-By-Events DIV2 (8 ns) period DIV4 (16ns) period 4ns period DIV6 (32 ns) period

Divide-By-Events Timing

Testbench ResetN		\										
ResetN TestBench												
ResetN DUT												
DUT Div2				0	1	0	1	0	1			
DUT Div4	Dea Cvc	ssert Reset, Next le Deassert Go		0	1	1	0	1	1			
DUT Div6				0	1	1	1	O	O	0		
Go Testbench			V									
Go_z Testbench												
Go_zz Testbench						Capt	ure valid clo	ck data on v	alid_z and v	alid_zz		
Go_zzz Testbench												
Valid												
Valid_z												
Valid_zz												
Valid_zzz												

Testbench Log

```
TARGETS [11011] [11110]
Input 00001 Response 0
Input 00010 Response 0
Input 01011 Response 0
Input 01011 Response 0
Input 10111 Response 0
Input 11111 Response 0
Input 11111 Response 0
Input 11111 Response 0
Input 11110 Response 1
Input 11101 Response 0
Input 11011 Response 0
Input 11012 Response 0
Input 11013 Response 0
Input 11014 Response 0
Input 11015 Response 0
Input 11016 Response 0
Input 11017 Response 0
Input 11018 Response 0
Input 11019 Response 0
```

FizzBuzz

12	11	10	9	8	7	6	5	4	3	2	1	O	Tick
2	1	O	4 —	_ 3	2	1	O	0 —	4	2	1	0 —	Fizz
0	_ 2	1	0 —	_ 2	1	0 —	_ 2	1	0 -	2	1	0 —	Buzz

FizzBuzz

```
[2025-10-27 23:34:07 UTC] iverilog '-Wall' '-g2012' design.sv testbench.sv && unbuffer vvp a.out
Time 0 fiss - 1. buzz - 1. fizzbuzz 1
Time 1 fiss - 0. buzz - 0. fizzbuzz 0
Time 2 fiss - 0. buzz - 0. fizzbuzz 0
Time 3 fiss - 1. buzz - 0. fizzbuzz 0
Time 4 fiss - 0. buzz - 0. fizzbuzz 0
Time 5 fiss - 0. buzz - 1. fizzbuzz 0
Time 6 fiss - 1. buzz - 0. fizzbuzz 0
Time 7 fiss - 0. buzz - 0. fizzbuzz 0
Time 8 fiss - 0. buzz - 0. fizzbuzz 0
Time 9 fiss - 1. buzz - 0. fizzbuzz 0
Time 10 fiss - 0. buzz - 1. fizzbuzz 0
Time 11 fiss - 0. buzz - 0. fizzbuzz 0
Time 12 fiss - 1. buzz - 0. fizzbuzz 0
Time 13 fiss - 0. buzz - 0. fizzbuzz 0
Time 14 fiss - 0. buzz - 0. fizzbuzz 0
Time 15 fiss - 1. buzz - 1. fizzbuzz 1
Time 16 fiss - 0. buzz - 0. fizzbuzz 0
Time 17 fiss - 0. buzz - 0. fizzbuzz 0
Time 18 fiss - 1. buzz - 0. fizzbuzz 0
Time 19 fiss - 0. buzz - 0. fizzbuzz 0
Time 20 fiss - 0. buzz - 1. fizzbuzz 0
Time 21 fiss - 1. buzz - 0. fizzbuzz 0
Time 22 fiss - 0. buzz - 0. fizzbuzz 0
Time 23 fiss - 0. buzz - 0. fizzbuzz 0
Time 24 fiss - 1. buzz - 0. fizzbuzz 0
Time 25 fiss - 0. buzz - 1. fizzbuzz 0
Time 26 fiss - 0. buzz - 0. fizzbuzz 0
Time 27 fiss - 1. buzz - 0. fizzbuzz 0
Time 28 fiss - 0. buzz - 0. fizzbuzz 0
Time 29 fiss - 0. buzz - 0. fizzbuzz 0
testbench.sv:97: $finish called at 67 (1s)
Done
```


Full Adder

```
[2025-10-28 03:53:35 UTC] iverilog '-Wall' '-g2012' design.sv testbench.sv && unbuffer vvp a.out
a - 0 b - 0. cin - 0 sum - 0 cout - 0
a - 0 b - 0. cin - 1 sum - 1 cout - 0
a - 0 b - 1. cin - 0 sum - 1 cout - 0
a - 0 b - 1. cin - 1 sum - 0 cout - 1
a - 1 b - 0. cin - 0 sum - 1 cout - 0
a - 1 b - 0. cin - 1 sum - 0 cout - 1
a - 1 b - 1. cin - 0 sum - 0 cout - 1
a - 1 b - 1. cin - 0 sum - 0 cout - 1
Done
```

Ripple Adder

A = 2b'11

B= 2b'11

Ripple Adder Testbench Logs

```
[2025-10-28 05:50:07 UTC] iverilog '-Wall' '-g2012' design.sv testbench.sv && unbuffer vvp a.out a - 3 b - 3 sum 000000110 cout 00000011 a - 7 b - 10 sum 000010001( 17) cout 00001110 a - 123 b - 189 sum 100111000(312) cout 11111111

Done
```

FlipFlop

Time Step	0	1	2	3	4	5	6	7	8	9	10	11	
DIN	O	Α	Α	Α									
ADDR		1	2	2	0	0	3	4	5	6	6	7	
WR		1		1									
RD		1	1		1		1	1	1	1	1	1	
RESETN													
DOUT						Α	Α	Α	Α	Α	Α	Α	A
ERRR			1	1		1	O	1	1	1	1	1	1

Previous valid read persists on dout port

```
[2025-10-28 18:35:06 UTC] iverilog '-Wall' '-g2012' design.sv testbench.sv && unbuffer vvp a.out
         0 dout -
                   0 error - 0
Time -
Time -
        1 dout -
                   0 error - 1
                   0 error - 1
Time -
        2 dout -
Time -
         3 dout -
                   0 error - 0
Time -
         4 dout -
                   0 error - 1
Time -
         5 dout -
                   0 error - 0
Time -
         6 dout -
                   0 error - 1
Time -
        7 dout -
                   0 error - 1
Time -
        8 dout -
                   0 error - 1
Time -
       9 dout -
                   0 error - 1
Time -
        10 dout -
                   0 error - 1
Time -
        11 dout -
                   0 error - 1
testbench.sv:185: $finish called at 35 (1s)
Done
```

MULTI BIT FIFO

MULTI BIT FIFO

Time Step	0	1	2	3	4	5	6	
DIN	0	5	3	6	6	O	O	
WR	O	1	1	1	1	O	O	
DOUT	-	O	5	5	3	6	6	0
FULL	-	O	O	1	1	1	1	1
EMPTY	-	1	O	1	1	1	1	1

Assert RUN

Assert RUN

Count = 0

Dot Product

Rstn	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	
Din	16h0	16h0	16h0	16h0	16h0	16h1	16h2	16h3	16h4	16h5	16h6	16h7	16h8	16h9	16hA	16hB	16hC	16hd	
Dout	-	O	O	0	0	O	0	0	O	0	O	16h20	16h20	16h20	16h20	16h20	16h20	16h10A	16h10A
Run	_	1	1	1	1	1	0	0	O	O	O	1	O	O	O	O	O	1	O
Internal Counte r		-	_	0	O	O	1	2	3	4	5	O	1	2	3	4	5	O	

Counter zeroed

Counters running

Binary To Thermometer

0000_0000

0(255) + 1(1)

0000_0001

O(254) + 1(2)

Thermometer Code Detector

Thermometer Code Detector

```
[2025-10-29 19:17:40 UTC] iverilog '-Wall' '-g2012' design.sv testbench.sv && unbuffer vvp a.out
code -
          1 isThermometer - 1
          3 isThermometer - 1
code -
        7 isThermometer - 1
code -
code -
         15 isThermometer - 1
code -
         31 isThermometer - 1
code -
         63 isThermometer - 1
        127 isThermometer - 1
code -
        255 isThermometer - 1
code -
code -
        511 isThermometer - 1
       1023 isThermometer - 1
code -
       2047 isThermometer - 1
code -
       4095 isThermometer - 1
code -
       8191 isThermometer - 1
code -
code - 16383 isThermometer - 1
code - 32767 isThermometer - 1
code - 65535 isThermometer - 1
Done
```

2 Read 1 Write Register File

11.				2		_		7					
Index	0	1	2	3	4	5	6	/	-				
resetn	1	1	1	1	1	1	1	1	1				
Din	0	30	100	20	0	40	29	0	10				
Wad1	0	0	0	1	0	16	17	0	0				
Rad1	0	0	1	0	1	0	0	16	0				
Rad2	0	0	1	0	0	0	0	17	0				
Wen1	0	0	0	1	0	1	1	0	0				
Ren1	0	0	1	0	1	0	0	1	0				
Ren2	0	0	1	0	0	0	0	1	0				
Collision	0	0	0	1	o	O	0	O	o				
Dout1	0	0	0	o	o	20	0	O	40				
Dout2	0	O	0	o	o	O	0	O	29				
Valid DUIT					1								
Valid Testbench Response	0		1										

```
[2025-10-29 22:58:39 UTC] iverilog '-Wall' '-g2012' design.sv testbench.sv && unbuffer vvp a.out
         0 dout2-
                    0 collision-0
dout1-
                    0 collision-0
dout1-
        0 dout2-
dout1-
       0 dout2-
                    0 collision-0
                    0 collision-0
dout1-
       0 dout2-
                    0 collision-0
dout1-
        20 dout2-
        20 dout2-
                    0 collision-0
dout1-
       20 dout2- 0 collision-0
dout1-
dout1-
       40 dout2- 29 collision-0
testbench.sv:199: $finish called at 23 (1s)
Done
```


TAP = 16h_E

Ob00001110

LSB

8 Bit LFSR SIMPLE EXAMPLE

TIME = O(RESET)

REGISTER VALUE = 1

0 1 0 0 0 0 0

TIME = 1

NEXT REGISTER VALUE = 2

XOR

TIME = 1

REGISTER VALUE = 2

1 0 1 0 0 0 0

TIME = 2

NEXT REGISTER VALUE = 5

8 Bit LFSR Architecture

8 Bit LFSR Architecture

32. Configurable 8-Bit LFSR

Test Model

Test Bench Logs

Carry Select (32 Bit)

Carry Select (Flow)

[2025-10-30 18:35:00 UTC] iverilog '-Wo	all' '-g2012' design.sv testbench.sv && unb	uffer vvp a.out
MODEL 1389860 + 9002625 = 10392485	SYSTEM-ALU 1389860+ 9002625=10392485	valid=1 [10392485] [10392485]
MODEL 8705545 + 15750755 = 7679084	SYSTEM-ALU 8705545+15750755= 7679084	valid=1 [7679084] [7679084]
MODEL 12155661 + 14653837 = 10032282	SYSTEM-ALU 12155661+14653837=10032282	valid=1 [10032282] [10032282]
MODEL 12747877 + 3625490 = 16373367	SYSTEM-ALU 12747877+ 3625490=16373367	valid=1 [16373367] [16373367]
MODEL 15983361 + 14142733 = 13348878	SYSTEM-ALU 15983361+14142733=13348878	valid=1 [13348878] [13348878]
MODEL 2355574 + 9293117 = 11648691	SYSTEM-ALU 2355574+ 9293117=11648691	valid=1 [11648691] [11648691]
MODEL 13916141 + 3012492 = 151417	SYSTEM-ALU 13916141+ 3012492= 151417	valid=1 [151417] [151417]
MODEL 16640505 + 3613894 = 3477183	SYSTEM-ALU 16640505+ 3613894= 3477183	valid=1 [3477183] [3477183]
MODEL 16221381 + 1299114 = 743279	SYSTEM-ALU 16221381+ 1299114= 743279	valid=1 [743279] [743279]
MODEL 11532261 + 13791863 = 8546908	SYSTEM-ALU 11532261+13791863= 8546908	valid=1 [8546908] [8546908]
MODEL 3331602 + 15522703 = 2077089	SYSTEM-ALU 3331602+15522703= 2077089	valid=1 [2077089] [2077089]
MODEL 3172850 + 7771854 = 10944704	SYSTEM-ALU 3172850+ 7771854=10944704	valid=1 [10944704] [10944704]
MODEL 31464 + 13258437 = 13289901	SYSTEM-ALU 31464+13258437=13289901	valid=1 [13289901] [13289901]
MODEL 5785948 + 9316541 = 15102489	SYSTEM-ALU 5785948+ 9316541=15102489	valid=1 [15102489] [15102489]
MODEL 11229229 + 10954341 = 5406354	SYSTEM-ALU 11229229+10954341= 5406354	valid=1 [5406354] [5406354]
MODEL 15688291 + 7571210 = 6482285	SYSTEM-ALU 15688291+ 7571210= 6482285	valid=1 [6482285] [6482285]
MODEL 3875456 + 6562080 = 10437536	SYSTEM-ALU 3875456+ 6562080=10437536	valid=1 [10437536] [10437536]
MODEL 7882154 + 13421725 = 4526663	SYSTEM-ALU 7882154+13421725= 4526663	valid=1 [4526663] [4526663]
MODEL 2113174 + 8632339 = 10745513	SYSTEM-ALU 2113174+ 8632339=10745513	valid=1 [10745513] [10745513]
MODEL 12335117 + 10999379 = 6557280	SYSTEM-ALU 12335117+10999379= 6557280	valid=1 [6557280] [6557280]
MODEL 10476907 + 10889941 = 4589632	SYSTEM-ALU 10476907+10889941= 4589632	valid=1 [4589632] [4589632]
MODEL 1526274 + 5652142 = 7178416	SYSTEM-ALU 1526274+ 5652142= 7178416	valid=1 [7178416] [7178416]
MODEL 16771357 + 12939983 = 12934124	SYSTEM-ALU 16771357+12939983=12934124	valid=1 [12934124] [12934124]
MODEL 8669475 + 615690 = 9285165	SYSTEM-ALU 8669475+ 615690= 9285165	valid=1 [9285165] [9285165]
MODEL 7539402 + 3230780 = 10770182	SYSTEM-ALU 7539402+ 3230780=10770182	valid=1 [10770182] [10770182]
MODEL 6864370 + 3039626 = 9903996	SYSTEM-ALU 6864370+ 3039626= 9903996	valid=1 [9903996] [9903996]
MODEL 12890945 + 4928728 = 1042457	SYSTEM-ALU 12890945+ 4928728= 1042457	valid=1 [1042457] [1042457]
MODEL 2159480 + 9048713 = 11208193	SYSTEM-ALU 2159480+ 9048713=11208193	valid=1 [11208193] [11208193]
MODEL 12914155 + 157110 = 13071265	SYSTEM-ALU 12914155+ 157110=13071265	valid=1 [13071265] [13071265]
MODEL 4979142 + 1381294 = 6360436	SYSTEM-ALU 4979142+ 1381294= 6360436	valid=1 [6360436] [6360436]
MODEL 7668412 + 1039658 = 8708070	SYSTEM-ALU 7668412+ 1039658= 8708070	valid=1 [8708070] [8708070]
MODEL 14129675 + 9944689 = 7297148	SYSTEM-ALU 14129675+ 9944689= 7297148	valid=1 [7297148] [7297148]
Done		

Descending Method

3 11 1 0

Bubble Sort(eureka second attempt)

Max = 3

input value >= BlockO

And

Input value < Block1

Replace Block 0 with input

input value < Block1 - No Operation

Bubble Sort(eureka second attempt)

Max = 7

input value < Block1 - No Operation

input value < BlockO - No Operation

Bubble Sort(eureka second attempt)

Value > block 2
BUT

Value ≠ Block1
(No Replacement)
(Shift)

Value >= block 1
AND
Value < Block0
(Replacement)

Value < BlockO (No Operation)

Bubble Sort(eureka second attempt)

Value >= block 2
BUT
Value ≮ Block1
(No Replacement)
(Shift)

Value >= block 1
AND
Value ≮ Block0
(No Replacement)
(Shift)

Value > BlockO and Last Block

Bubble Sort (eureka second attempt)

Bubble Sort(Update Flow)

(new_value << index * BITS_PER_BLOCK))</pre>

Index = 0

(Din << index * BITS_PER_BLOCK))

2 4 6 0

Write New Value

OR Gated

Bubble Sort(Update Flow)

Bubble Sort(Update Flow)

Bubble Sort(Testbench Timing)

SORTIT	O	0	0	0	0	O	1	1	1	1	1	1	1
RESETN	0	0	0	1	1	1	1	1	1	1	1	1	1
DIN	O	0	0	H_2	H_3	H_1	H_4	H_5	H_7	H_7	H_7	H_7	H_7
DOUT	H_O	H_O	H_O	H_O	H_O	H_O	H_0	H_53	H_53	H_53	H_53	H_53	H_53


```
[2025-10-31 18:27:18 UTC] iverilog '-Wall' '-g2012' design.sv testbench.sv && unbuffer vvp a.out

DOUT: h0000 prev_in - 0

DOUT: h0000 prev_in - 0

DOUT: h0000 prev_in - 2

DOUT: h0000 prev_in - 3

DOUT: h0000 prev_in - 1

DOUT: h0003 prev_in - 4

DOUT: h0053 prev_in - 5

DOUT: h0053 prev_in - 7

DOUT: h0053 prev_in - 7
```