

Instituto de Matemática Departamento de Ciência da Computação

Arquitetura de Computadores

Memória externa

Prof. Marcos E Barreto

Tópicos

- Funcionamento básico de discos magnéticos
- Memória óptica
- Fitas magnéticas

- Referência:
 - Stallings. Arquitetura e organização de computadores. Cap. 6.

- Prato circular de material não-magnético (substrato de alumínio ou vidro) coberto por um material magnetizável.
- Em geral, o substrato de vidro apresenta diversas vantagens sobre o substrato de alumínio:
 - Maior uniformidade da superfície => maior confiabilidade
 - Redução de defeitos gerais da superfície => menos erros de leitura/gravação
 - Melhor rigidez
 - Maior resistência a choque e danos

- Leitura magnética e mecanismos de gravação
 - Cabeças de leitura e gravação: bobinas semicondutoras estáticas (o prato gira sob as bobinas).
 - Eletricidade que flui pela bobina gera um campo magnético. Os pulsos elétricos que passam pelas cabeças geram padrões magnéticos que são gravados com diferentes valores (padrões) para positivo e negativo.
 - Discos rígidos mais antigos e disquetes empregam uma cabeça para leitura e gravação.
 - Sistemas mais modernos de discos rígidos empregam uma cabeça de leitura fisicamente próxima da cabeça de gravação.

Corrente

de leitura

LEITURA

2010/2

O sensor MR possui uma resistência elétrica que depende do sentido da magnetização.

Quando a superfície passa sob ele, o sensor detecta as mudanças de resistência e as interpreta como sinais de voltagem.

GRAVAÇÃO

A corrente elétrica induz um campo magnético no espaço, o qual é gravado na superfície.

Reverter o sentido da corrente reverte a direção de magnetização na superfície.

- Organização e formatação de dados
 - Discos são organizados em trilhas, setores e cilindros.

 Trilhas: conjunto concêntrico de anéis. Cada trilha tem a mesma largura da cabeça de leitura/gravação. Existem milhares de trilhas por superfície.

- Setores: unidade de transferência de/para o disco. Têm tamanho variável. Existem centenas de setores por trilhas.
- Lacunas separam trilhas e setores adjacentes.

2010/2 MATA48 ·

Organização e formatação de dados

- Velocidade angular constante
 - Objetivo: ler as informações com a mesma taxa, girando o disco a uma velocidade fixa, independente das trilhas nas quais se encontram as informações.
 - O disco é dividido em uma série de setores em forma de torta e em uma série de trilhas concêntricas.
 - Vantagens
 - Blocos podem ser endereçados por trilhas e setores, com pequenos movimentos da cabeça de leitura/gravação.
 - Desvantagens
 - Quantidade de dados nas trilhas externas é a mesma do que nas trilhas internas.

Organização e formatação de dados

- Gravação em múltiplas zonas
 - <u>Objetivo</u>: aumentar a densidade de dados por trilha.
 - Superfície é dividida em zonas concêntricas (geralmente 16).
 - Dentro de uma zona, o número de bits por trilha é constante.
 - Zonas mais distantes do centro contêm mais bits (mais setores) do que as zonas próximas ao centro.
 - À medida que a cabeça do disco se move de uma zona para a outra, a quantidade de bits ao longo da trilha muda, causando diferentes velocidades de leitura e gravação.

- Org. e formatação de dados
 - Localização de trilhas e setores

Winchester Seagate ST506

- 30 setores de 600 bytes por trilha
- 512 bytes dados + 88 bytes controle
- ID: identifica cada setor
- SYNCH: delimita início do campo
- Identificação de trilhas em cada superfície
- Identificação da cabeça de leitura/gravação
- Código de detecção de erros
- Problemas: como identificar o centro de uma trilha e como identificar o início e o fim de um setor?

 Solução: uso de informações de controle gravadas junto aos dados, as quais são manipuladas somente pela unidade de disco.

Características físicas

Movimento da cabeça	Pratos		
Cabeça fixa (uma por trilha)	Único prato		
Cabeça móvel (uma por superfície)	Múltiplos pratos		
Portabilidade do disco	Mecanismo da cabeça		
Disco não removível	Contato (disquete)		
Disco removível	Lacuna fixa		
	Lacuna aerodinâmica (Winchester)		
Faces			
Única face			
Dupla face			

Movimento da cabeça

Fixa

- Uma cabeça de leitura/gravação por trilha.
- Todos os discos são montados em um braço rígido que cobre todas as trilhas.
- Sistemas raros atualmente.

Móvel

- Uma cabeça de leitura e gravação por superfície.
- A cabeça é montada sobre um braço rígido, que pode ser expandido ou retraído para o deslocamento sobre as trilhas.

Portabilidade do disco

Não-removível

- O disco é montado permanentemente na unidade de disco, consistindo em um braço, um eixo que faz o disco girar e o circuito eletrônico necessário para leitura e gravação de dados.
- Exemplo: disco rígido

Removível

- Pode ser removido e substituído por outro.
- Vantagem: quantidade ilimitada de dados estão disponíveis com um número limitado de sistemas de disco.
- O disco pode ser movido para outro computador.
- Exemplos: disquetes, discos ZIP

Faces

- Única face
 - Sistemas mais baratos, com somente uma superfície magnetizada.
- Dupla face
 - Cobertura magnetizável é aplicada em ambas as superfícies.

Número de pratos

Alguns modelos acomodam múltiplos pratos empilhados verticalmente.

Existe uma cabeça de leitura/gravação por trilha; todas as cabeças têm a

mesma distância do centro do disco.

 Cilindro: conjunto das trilhas na mesma posição relativa em cada disco

Mecanismo da cabeça

Contato

- Mecanismo de leitura/gravação que entra em contato físico ("encosta") com a superfície.
- Tipo mais barato => usado em disquetes

Lacuna fixa

 Cabeça de leitura/gravação está a uma altura fixa da superfície, permitindo uma camada de ar entre ela e a superfície => discos tradicionais.

Lacuna aleatória

- Cabeças Winchester (montagem selada) que operam bem próximas da superfície do disco, permitindo maior densidade de dados.
- A cabeça é uma folha aerodinâmica que se apóia na superfície. Quando o disco gira, a pressão do ar faz a folha subir acima da superfície.
- Tecnologia usado em discos de alto desempenho.

Alguns parâmetros para discos rígidos

Características	Seagate Barracuda ES.2	Seagate Barracuda 7200.10 Seagate Barracuda 7200.9		Seagate	Hitachi Microdrive	
Aplicação	Servidor de alta capacidade	Desktop de alto desempenho	.		Dispositivos portáteis	
Capacidade	1TB	750 GB 160 GB		120 GB	8 GB	
Tempo mínimo de busca entre trilhas	0,8 ms	0,3 ms	1,0 ms	-	1,0 ms	
Tempo médio de busca	8,5 ms	3,6 ms	9,5 ms	12,5 ms	12 ms	
Velocidade do eixo	7200 rpm	7200 rpm	7200 rpm	5 400 rpm	3600 rpm	
Atraso rotacional médio	4,16 ms	4,16 ms	4,17 ms	5,6 ms	8,33 ms	
Taxa de transferência máxima	3 GB/s	300 MB/s	300 MB/s	150 MB/s	10 MB/s	
Bytes por setor	512	512	512	512	512	
Trilhas por cilindro (número de superfícies do prato)	8	8	2	8	2	

Parâmetros de desempenho de discos

- A operação de E/S do disco depende do sistema computacional, do sistema operacional, da natureza do canal de E/S e do hardware controlador de disco.
- Diagrama de temporização geral de transferência

Tempo de busca (seek): tempo gasto para posicionar a cabeça na trilha desejada. **Atraso (latência) rotacional:** tempo gasto até que o setor desejado esteja embaixo da cabeça.

Tempo de acesso = tempo de busca + atraso rotacional

Tempo de transferência: tempo necessário para leitura ou gravação dos dados Tempo de espera pelo dispositivo: quando um processo emite um comando de E/S ele deve esperar em uma fila pelo dispositivo.

Tempo de espera pelo canal: se o dispositivo compartilha um canal de E/S com outros discos, então deve esperar até que o canal esteja liberado.

Parâmetros de desempenho de discos

- Tempo de busca (seek)
 - Tempo necessário para mover o braço do disco (e cabeça de leitura/gravação) até a trilha desejada
 - Tempo de inicialização + tempo de travessia
 - Atualmente, os discos têm um diâmetro médio de 3,5 polegadas (8,9 cm), resultando num tempo de busca médio abaixo de 10 ms.
- Atraso (latência) rotacional
 - Discos giram em velocidades que variam de 3.600 rpm (dispositivos portáteis → câmeras digitais) até 20.000 rpm => uma rotação a cada 3 ms => atraso rotacional médio de 1,5 ms.

Parâmetros de desempenho de discos

- Tempo de transferência
 - Depende da velocidade de rotação do disco, no seguinte padrão T = b/rN
 - T = tempo de transferência
 - b = número de bytes a serem transferidos
 - r = velocidade de rotação (em rotações por minuto rpm)
 - **n** = número de bytes em uma trilha
 - Tempo de acesso médio total: Ta = Ts + 1/2r + b/rN
 - Ts = tempo médio de busca.
 - <u>OBS</u>: lembrar que em uma unidade em zonas, a quantidade de bytes por trilha varia, o que complica o cálculo.

Comparação de tempo de acesso

- Configurações do disco
 - Tempo médio de acesso de 4ms
 - Velocidade de rotação: 15200 rpm
 - 500 setores de 512 bytes por trilha
- Operação: leitura de um arquivo com 2500 setores com total de 1.28 MB
- Problema: qual o tempo de transferência deste arquivo?
- Solução 1: organização sequencial (setores alocados sequencialmente)
 - Arquivo ocupa 5 trilhas adjacentes (5 trilhas X 500 setores/trilha = 2500 setores)
 - Tempo médio de busca (primeira trilha): 4 ms
 - Tempo rotacional médio: 2 ms
 - Leitura de 500 setores: 4 ms
- 4 + 2 + 4 => 10 ms
 - Trilhas restantes são lidas sem tempo de busca, somente atraso rotacional
 - Cada trilha: 2 + 4 => 6 ms

Comparação de tempo de acesso

- Configurações do disco
 - Tempo médio de acesso de 4ms
 - Velocidade de rotação: 15200 rpm
 - 500 setores de 512 bytes por trilha
- Operação: leitura de um arquivo com 2500 setores com total de 1.28 MB
- Problema: qual o tempo de transferência deste arquivo?
- Solução 2: organização aleatória (setores distribuídos no disco)
 - Arquivo ocupa 5 trilhas adjacentes (5 trilhas X 500 setores/trilha = 2500 setores)
 - Tempo médio de busca (primeira trilha): 4 ms
 - Tempo rotacional médio: 2 ms
 - Leitura de 1 setor: 0,008 ms

Tempo total => 2500 X 6,008 => 15020 ms => 15,02 segundos

Memória óptica

- Surgimento do sistema de áudio digital de disco compacto (CD) em 1983
- Disco não apagável com armazenamento de mais de 60 minutos de informação de áudio num lado.
- Diversos sistemas de disco óptico existentes.

CD

Compact disk. Um disco não apagável que armazena informações de áudio digitalizadas. O sistema padrão utiliza discos de 12 cm e pode gravar mais de 60 minutos de tempo de execução sem interrupção.

CD-ROM

Compact disk read-only memory. Um disco não apagável para armazenar dados de computador. O sistema padrão utiliza discos de 12 cm e pode manter mais de 650 MBytes.

CD-R

CD Gravável. Semelhante a um CD-ROM. O usuário pode gravar no disco apenas uma vez.

CD-RW

CD Regravável. Semelhante a um CD-ROM. O usuário pode apagar e regravar no disco várias vezes.

DVD

Digital versatile disk. Uma tecnologia para produzir representação digitalizada e compactada de informações de vídeo, além de grandes volumes de outros dados digitais. São usados diâmetros de 8 e 12 cm, com uma capacidade de dupla face chegando até a 17 GBytes. O DVD básico é somente de leitura (DVD-ROM).

DVD-R

DVD Gravável. Semelhante a um DVD-ROM. O usuário pode gravar no disco apenas uma vez. Só podem ser usados discos de uma face.

DVD-RW

DVD Regravável. Semelhante a um DVD-ROM. O usuário pode apagar e regravar no disco várias vezes. Só podem ser usados discos de uma face.

Blu-Ray DVD

Disco de vídeo de alta definição. Oferece densidade de armazenamento de dados muito maior que o DVD, usando um laser de 405 nm (azul violeta). Uma única camada em uma única face pode armazenar 25 GBytes.

CD de áudio / CD-ROM

- Usam a mesma tecnologia. Aparelhos de CD-ROM têm mecanismos de correção de erros
- Disco é formado por uma resina (policarbonato), na qual as informações são gravadas em sulcos microscópios. Essa resina é coberta por uma superfície refletora (alumínio ou ouro), a qual é coberta com uma superfície de acrílico para proteção contra poeira e arranhões.
- Leitura é feita através de um laser de baixa potência, o qual capta a intensidade da luz refletida no policarbonato.

CD de áudio / CD-ROM

- Disco contém uma única trilha espiral, começando no centro.
- Setores têm o mesmo tamanho, independente da localização.
- Setores são lidos na mesma velocidade, girando-se o disco em uma velocidade linear constante => disco gira mais lentamente para leitura de dados próximos à margem externa.

Formato de bloco típico

Modo 0: campo de dados em branco

Modo 1: 2048 bytes de dados + código de correção de erros

Modo 2: 2336 bytes de dados sem correção de erros

CD de áudio / CD-ROM

- VANTAGENS
 - Discos ópticos podem ser replicados mais facilmente e com menor custo do que discos magnéticos.
 - Disco óptico é removível.
- DESVANTAGENS
 - Disco apenas de leitura, não podendo ser atualizado.
 - Apresenta tempo de acesso maior do que discos magnéticos, de até meio segundo
 - O uso de velocidade linear constante dificulta o acesso aleatório => localizar um endereço específico envolve mover a cabeça para a área geral, ajustar a velocidade de rotação, ler o endereço e fazer ajustes para encontrar e acessar o setor específico.

CD gravável (CD-R)

- Útil para aplicações nas quais somente um pequeno número de cópias dos dados é necessário => menor custo do que gravação de um CD-ROM.
- Disco pode ser gravado por um feixe de intensidade moderada.
- O meio do CD-R é ligeiramente diferente do meio do CD-ROM. No CD-ROM, a gravação é feita no sulco do meio, que muda a refletividade. No CD-R, o meio inclui uma camada de substrato, que altera a refletividade de um laser de alta intensidade.

CD regravável (CD-RW)

- Disco pode ser regravado várias vezes.
- Utiliza a técnica de mudança de fase => disco emprega um material com duas refletividades diferentes em dois estados de fases diferentes (estado amorfo e estado cristalino). O feixe de laser muda o material de uma fase para a outra.

VANTAGENS

- Pode ser usado como armazenamento secundário verdadeiro.
- Apresentam melhor confiabilidade e vida útil mais longa, se comparados aos discos magnéticos.

DESVANTAGENS

 A mudança de fase faz com que o material perca suas propriedades => em geral, os discos suportam entre 500 mil e 1 milhão de ciclos de apagamento.

Digital versatile disk

DVD

- Introduzido como substituto de fitas VHS e discos CD-ROM.
- Em geral, a capacidade é sete vezes maior do que CD-ROM.
 - No DVD, os bits são gravados com maior densidade (mais próximos). É usado um laser com comprimento de onda mais curto, que permite um espaçamento menor dentro do espiral => resulta num aumento de cerca de sete vezes (em média, 4,7 GB).
 - O DVD emprega uma segunda camada semirefletora. Ajustando os lasers, cada camada pode ser lida separadamente => resulta em capacidades aproximadas de 8,5 GB.
 - DVD-ROM pode ser lido dos dois lados => resulta em uma capacidade de até 17 GB.

Digital versatile disk

(b) DVD-ROM, dupla face, dupla camada — Capacidade de 17 GB

Discos ópticos de alta definição

- Projetados para armazenar vídeo em alta definição com capacidade de armazenamento muito maior do que DVDs.
- Maior densidade de bits graças a um laser de comprimento de onda mais curto => sulcos de dados (que representam 0 e 1) são menores em comparação aos DVDs.
- HD-DVD
 - Capacidade de até 15 GB em um única camada de uma face.
- Blu-ray DVD
 - Posiciona a camada de dados no disco mais perto do laser, o que permite um foco mais estreito e menos distorcido (trilhas e sulcos menores).
 - Capacidade de 25 GB em uma única camada até 50 GB em camada dupla.
 - Três tipos: BD-ROM, BD-R e BD-RE.

Características da memória óptica

- O meio é uma fita de poliéster flexível coberta com material magnetizável.
- As fitas têm largura entre 0,38 e 1,27 cm.
- São acomodadas em carretéis rebobináveis ou em cartuchos.
- Meio de acesso sequencial
- Os dados são acomodados em trilhas paralelas no sentido do comprimento da fita
 - 9 trilhas (8 bits de dados + bit de paridade)
 - 18 ou 36 trilhas nas fitas mais atuais => palavra simples ou palavra dupla digital

- Formas de gravação
 - Paralela
 - Trilhas paralelas.
 - Serial
 - Dados são dispostos como uma sequência de bits ao longo da trilha.
 - Dados são lidos e gravados em blocos contíguos, chamados registros físicos, os quais são separados por lacunas.

- Formas de gravação
 - Serpentina
 - Dados são gravados ao longo de toda a extensão da fita, num sentido e depois no outro sentido.
 - A cabeça de leitura/gravação é capaz de ler e gravar uma série de trilhas adjacentes simultaneamente (de 2 a 8).

• Sistema atual: fita linear aberta (LTO – linear tape open), introduzida em 1990

	LTO-1	LTO-2	LTO-3	LTO-4	LTO-5	LTO-6
Data de lançamento	2000	2003	2005	2007	TBA	TBA
Capacidade compactada	200 GB	400 GB	800 GB	1600 GB	3,2TB	6,4TB
Taxa de transferência compactada (MB/s)	40	80	160	240	360	540
Densidade linear (bits/mm)	4880	7398	9638	13300		
Trilhas de fita	384	512	704	896		
Comprimento da fita	609 m	609 m	680 m	820 m		
Largura da fita (cm)	1,27	1,27	1,27	1,27		
Elementos de gravação	8	8	16	16		