

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER POR PATENTS PO Box 1450 Alcassackin, Virginia 22313-1450 www.opub.com

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/576,867	04/21/2006	Shunpei Yamazaki	740756-2953	9922
22204 7590 06/09/2009 NIXON PEABODY, LLP		EXAMINER		
401 9TH STREET, NW			HANLEY, BRITT D	
SUITE 900 WASHINGTO	N, DC 20004-2128		ART UNIT	PAPER NUMBER
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2889	
			MAIL DATE	DELIVERY MODE
			06/09/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/576,867 YAMAZAKI ET AL. Office Action Summary Examiner Art Unit BRITT HANLEY 2889 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 21 April 2006. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-25 is/are pending in the application. 4a) Of the above claim(s) _____ is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-25 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) ☐ The drawing(s) filed on 21 April 2006 is/are; a) ☐ accepted or b) ☐ objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(e)

1) Notice of References Cited (PTO-892) Notice of Draftsperson's Patient Drawing Review (PTO-948) Notice of Draftsperson's Patient Drawing Review (PTO-948) Notice of Draftsperson's Patient Notice (PTO-948) Paper Nots/Mail Date 04/21/2000.	4) Interview Summary (PTO-413) Paper No(s)Mail Date. 5) Nettore of Informal Patent Application. 6) Other:	
S, Patent and Trademark Office		

DETAILED ACTION

Priority

Q1 Receipt is acknowledged of papers submitted under 35 U.S.C. 119(a)-(d), which papers have been placed of record in the file.

Drawings

Q2 The drawings are objected to as failing to comply with 37 CFR 1.84(p)(4) because reference character "104" has been used to designate both an insulating layer in figure 1A and a pillar in figure 14A. Corrected drawing sheets in compliance with 37 CFR 1.121(d) are required in reply to the Office action to avoid abandonment of the application. Any amended replacement drawing sheet should include all of the figures appearing on the immediate prior version of the sheet, even if only one figure is being amended. Each drawing sheet submitted after the filling date of an application must be labeled in the top margin as either "Replacement Sheet" or "New Sheet" pursuant to 37 CFR 1.121(d). If the changes are not accepted by the examiner, the applicant will be notified and informed of any required corrective action in the next Office action. The objection to the drawings will not be held in abeyance.

Specification

0.3 The title of the invention is not descriptive. A new title is required that is clearly indicative of the invention to which the claims are directed.

Claim Rejections - 35 USC § 103

- 0.4 The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Art Unit: 2889

0.5 The factual inquiries set forth in Graham v. John Deere Co., 383 U.S. 1, 148 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:

- 01 Determining the scope and contents of the prior art.
- 02 · Ascertaining the differences between the prior art and the claims at issue.
- 03 · Resolving the level of ordinary skill in the pertinent art.
- $04\,\cdot\,$ Considering objective evidence present in the application indicating obviousness or nonobviousness.
- 0.6 Claims 1, 2, 5, 6, 7, 10, 13, 14, 15, 18, 19, 23, and 24 are rejected under 35 U.S.C. 103(a) as being unpatentable over Yamazaki et al. (US 2001/0055841 A1) in view of Takao (JP 2003-058077 A) and Yamazaki et al. (US 6,355,941).
- 0.7 Hereinafter, Yamazaki et al. (US 2001/0055841 A1) is D1, Takao (JP 2003-058007 A) is D2, and Yamazaki et al. (US 6,355,941) is D3.
- Q.8 Regarding claims 1 and 14, D1 discloses a light emitting display device comprising: a gate electrode (339) formed over a substrate (301) having an insulating surface; a gate insulating layer (372) formed over the gate electrode; a semiconductor layer (435) and a first electrode (383) formed over the gate insulating layer (Figure 4A); a wiring layer (382) formed over the semiconductor layer (Figure 4A); a partition wall (384) covering an edge portion of the first electrode and the wiring layer; an electroluminescent layer (385) over the first electrode (Figure 4A); and a second electrode (386) over the electroluminescent layer (Figure 4A). D1 does not explicitly appear to disclose (a) a substance having a photocatalytic function between the substrate and gate electrode, or (b) the wiring layer covers the edge portion of the first electrode.
- 0.9 However, in the same field of active-matrix devices, D2 discloses forming gate electrodes on a substrate having a photocatalytic surface (TiO2) by ink jet method to simplify the manufacturing of a TFT array (see at least paragraph 12).
- 10 Further, in the same field of active-matrix devices, D3 discloses a wiring layer (157) covering an edge portion (Figure 4A) of a first electrode (158) in order to connect to the first electrode (paragraph 119).

- 1.1 At the time the invention was made, it would have been obvious to a person having ordinary skill in the art having the references of D1-D3 to modify the device of D1 to include the photocatalytic surface of D2 in order to simplify TFT manufacturing and to cover an edge of the first electrode with the wiring as taught by D3 in order to connect the wiring to the electrode.
- 1.2 Regarding claims 2 and 15, the D1 discloses a light emitting display device comprising: a wiring layer (382) and a first electrode (383) formed over a substrate (301) having an insulating surface; a semiconductor layer (435) formed over the wiring layer; a gate insulating layer (372) formed over the semiconductor layer; a gate electrode (339) formed over the gate insulating layer; a partition wall (384) covering an edge portion of the first electrode and the wiring layer; an electroluminescent layer (385) over the first electrode; and a second electrode (386) over the electroluminescent layer. D1 does not explicitly appear to disclose (a) a substance having a photocatalytic function between the substrate and gate electrode, (b) the wiring layer covers the edge portion of the first electrode, or (c) the top gate TFT/ reverse staggered TFT configuration.
- 1.3 However, in the same field of active-matrix devices, D2 discloses forming gate electrodes on a substrate having a photocatalytic surface (TiO2) by ink jet method to simplify the manufacturing of a TFT array (see at least paragraph 12).
- 1.4 Further, in the same field of active-matrix devices, D3 discloses a wiring layer (157) covering an edge portion (Figure 4A) of a first electrode (158) in order to connect to the first electrode (paragraph 119) and a reverse staggered TFT configuration (paragraphs 234-237, Figure 24).
- 1.5 At the time the invention was made, it would have been obvious to a person having ordinary skill in the art having the references of D1-D3 to modify the device of D1 to include the photocatalytic surface of D2 in order to simplify TFT manufacturing and to cover an edge of the first electrode with the wiring as taught by D3 in order to connect the wiring to the electrode.
 Further, the use of a reverse staggered TFT is a matter of design variation known in the art.

- 1.6 Regarding claims 4 and 17, the D1 discloses a light emitting display device comprising: a wiring layer (382) and a first electrode (383) formed over a substrate (301) having an insulating surface; a semiconductor layer (435) formed over the wiring layer, a gate insulating layer (372) formed over the semiconductor layer, a gate electrode (339) formed over the gate insulating layer, a partition wall (384) covering an edge portion of the first electrode and the wiring layer, an electroluminescent layer (385) over the first electrode; and a second electrode (386) over the electroluminescent layer, wherein the first electrode covers an edge portion of the wiring layer (Figure 4A). D1 does not explicitly appear to disclose (a) a substance having a photocatalytic function between the substrate and gate electrode, or (b) the top gate TFT/ reverse staggered TFT configuration.
- 1.7. However, in the same field of active-matrix devices, D2 discloses forming gate electrodes on a substrate having a photocatalytic surface (TiO2) by ink jet method to simplify the manufacturing of a TFT array (see at least paragraph 12).
- 1.8 Further, in the same field of active-matrix devices, D3 discloses a reverse staggered TFT configuration (paragraphs 234-237, Figure 24).
- 1.9 At the time the invention was made, it would have been obvious to a person having ordinary skill in the art having the references of D1-D3 to modify the device of D1 to include the photocatalytic surface of D2 in order to simplify TFT manufacturing and the use of a reverse staggered TFT is a matter of design variation known in the art.
- 2.0 Regarding claims 5 and 18, the combination of D1-D3 disclose a light emitting display device according to any one of claims 1 to 2 or 14-15, wherein the substance having a photocatalytic function comprises titanium oxide (D2, paragraph 12). The motivation to combine is given above.
- 2.1 Regarding claims 6 and 19, D1 discloses a light emitting display device comprising: a substrate (301) having an insulating surface, a gate electrode (339) formed over the substrate; a gate insulating layer (372) formed over the gate electrode; a semiconductor layer (435) and a first electrode (383) formed over the gate insulating layer; a wiring layer (382) formed over the semiconductor layer, a partition wall (384) covering an edge portion of the first electrode and the wiring layer; an electroluminescent layer (385) over the first electrode; and a second electrode (386) over the electroluminescent layer. D1 does not appear to explicitly disclose (a) a conductive layer including a refractory metal over a substrate having an insulating surface, or (b) the wiring layer covers the edge portion of the first electrode.

Art Unit: 2889

- 2.2 However, in the same field of active-matrix devices, D2 discloses forming gate electrodes on a substrate having a conductive layer including a refractory metal (Ti) by ink jet method to simplify the manufacturing of a TFT array (see at least paragraph 12).
- 23 Further, in the same field of active-matrix devices, D3 discloses a wiring layer (157) covering an edge portion (Figure 4A) of a first electrode (158) in order to connect to the first electrode (paragraph 119).
- 2.4 At the time the invention was made, it would have been obvious to a person having ordinary skill in the art having the references of D1-D3 to modify the device of D1 to include the conductive layer with a refractory metal of D2 in order to simplify TFT manufacturing and to cover an edge of the first electrode with the wiring as taught by D3 in order to connect the wiring to the electrode.
- 2.5. Regarding claims 7 and 20, D1 discloses a light emitting display device comprising: a substrate (301) having an insulating surface; a wiring layer (382) and a first electrode (383) formed over the substrate; a semiconductor layer (435) formed over the wiring layer, a gate insulating layer (372) formed over the semiconductor layer; a gate electrode (339) formed over the gate insulating layer; a partition wall (384) covering an edge portion of the first electrode and the wiring layer; an electroluminescent layer (385) over the first electrode; and a second electrode (386) over the electroluminescent layer. D1 does not explicitly appear to disclose (a) a substance conductive layer including a refractory metal over a substrate having an insulating surface, (b) the wiring layer covers the edge portion of the first electrode, or (c) the top gate TFT/ reverse staggered TFT configuration.
- 2.6 However, in the same field of active-matrix devices, D2 discloses forming gate electrodes on a substrate having a conductive layer including a refractory metal (Ti) by ink jet method to simplify the manufacturing of a TFT array (see at least paragraph 12).
- 2.7 Further, in the same field of active-matrix devices, D3 discloses a wiring layer (157) covering an edge portion (Figure 4A) of a first electrode (158) in order to connect to the first electrode (paragraph 119) and a reverse staggered TFT configuration (paragraphs 234-237, Figure 24).

- 2.8 At the time the invention was made, it would have been obvious to a person having ordinary skill in the art having the references of D1-D3 to modify the device of D1 to include the conductive layer with a refractory metal of D2 in order to simplify TFT manufacturing and to cover an edge of the first electrode with the wiring as taught by D3 in order to connect the wiring to the electrode. Further, the use of a reverse staggered TFT is a matter of design variation known in the art.
- 2.9 Regarding claims 9 and 22, D1 discloses a light emitting display device comprising: a substrate (301) having an insulating surface; a wiring layer (382) and a first electrode (383) formed over the substrate; a semiconductor layer (435) formed over the wiring layer; a gate insulating layer (372) formed over the semiconductor layer; a gate electrode (339) formed over the gate insulating layer; a partition wall (384) covering an edge portion of the first electrode and the wiring layer; an electroluminescent layer (385) over the first electrode; and a second electrode (386) over the electroluminescent layer, wherein the first electrode covers an edge portion of the wiring layer (Figure 4A). D1 does not explicitly appear to disclose (a) a substance conductive layer including a refractory metal over a substrate having an insulating surface, or (b) the top gate TFT/ reverse staggered TFT configuration.
- 3.0 However, in the same field of active-matrix devices, D2 discloses forming gate electrodes on a substrate having a conductive layer including a refractory metal (Ti) by ink jet method to simplify the manufacturing of a TFT array (see at least paragraph 12).
- 3.1 Further, in the same field of active-matrix devices, D3 a reverse staggered TFT configuration (paragraphs 234-237, Figure 24).
- 3.2 At the time the invention was made, it would have been obvious to a person having ordinary skill in the art having the references of D1-D3 to modify the device of D1 to include the conductive layer with a refractory metal of D2 in order to simplify TFT manufacturing and the use of a reverse staggered TFT is a matter of design variation known in the art.
- 3.3 Regarding claims 10 and 23, the combination of D1-D3 discloses a light emitting display device according to any one of claims 6-9 or 19-22 wherein the refractory metal is selected from the group consisting of Ti (titanium), W (tungsten), Cr (chromium), A1 (aluminum), Ta (tantalum), Ni (nickel), Zr (zirconium), Hf (hafnium), V (vanadium), Ir (iridium), Nb (niobium), Pd (lead), Pt (platinum), Mo (molybdenum), Co (cobalt), and Rh (rhodium) (D2, paragraph 12). The motivation to combine is given above.

- 3.4 Regarding claims 11 and 24, the combination of D1-D3 discloses a light emitting display device according to any one of claims 1-4, 6-9, 14-17, and 19-22, wherein the gate electrode and the wiring layer are made of a material selected from the group consisting of silver, gold, copper, and indium tin oxide (D3, Cu, paragraph 145). At the time the invention was made, it would have been obvious to a person having ordinary skill in the art to use a metal such as copper, gold, or ITO in order to reduce electrical resistance or form a transparent electrode. Further, these are all well known electrode materials in the art.
- 3.5 Regarding claim 13, the combination of D1-D3 disclose a TV set including a display screen having the light emitting display device according to any one of claims 1-2 and 6-7 (D1, Figure 18A).
- 3.6 Claims 3, 8, 16, and 21are rejected under 35 U.S.C. 103(a) as being unpatentable over Yamazaki et al. (US 2001/0055841 A1) in view of Takao (JP 2003-058077 A).
- 3.7. Regarding claims 3 and 16, D1 discloses a light emitting display device comprising: a gate electrode (339) formed over a substrate (301) having an insulating surface; a gate insulating layer (372) formed over the gate electrode; a semiconductor layer (435) and a first electrode (383) formed over the gate insulating layer (Figure 4A); a wiring layer (382) formed over the semiconductor layer (Figure 4A); a partition wall (384) covering an edge portion of the first electrode and the wiring layer; an electroluminescent layer (385) over the first electrode (Figure 4A); and a second electrode (386) over the electroluminescent layer (Figure 4A), wherein the first electrode covers an edge portion of the wiring layer (Figure 4A). D1 does not explicitly appear to disclose (a) a substance having a photocatalytic function between the substrate and gate electrode.
- 38 However, in the same field of active-matrix devices, D2 discloses forming gate electrodes on a substrate having a photocatalytic surface (TiO2) by ink jet method to simplify the manufacturing of a TFT array (see at least paragraph 12).
- 39 At the time the invention was made, it would have been obvious to a person having ordinary skill in the art having the references of D1-D2 to modify the device of D1 to include the photocatalytic surface of D2 in order to simplify TFT.

- 4.0 Regarding claims 8 and 21, D1 discloses a light emitting display device comprising: a substrate (301) having an insulating surface, a gate electrode (339) formed over the substrate; a gate insulating layer (372) formed over the gate electrode; a semiconductor layer (435) and a first electrode (383) formed over the gate insulating layer; a wiring layer (382) formed over the semiconductor layer; a partition wall (384) covering an edge portion of the first electrode and the wiring layer, an electroluminescent layer (385) over the first electrode; and a second electrode (386) over the electroluminescent layer, wherein the first electrode covers an edge portion of the wiring layer (Figure 4A). D1 does not appear to explicitly disclose (a) a conductive layer including a refractory metal over a substrate having an insulating surface.
- 4.1 However, in the same field of active-matrix devices, D2 discloses forming gate electrodes on a substrate having a conductive layer including a refractory metal (Ti) by ink jet method to simplify the manufacturing of a TFT array (see at least paragraph 12).
- 4.2 At the time the invention was made, it would have been obvious to a person having ordinary skill in the art having the references of D1-D2 to modify the device of D1 to include the conductive layer with a refractory metal of D2 in order to simplify TFT.
- 4.3 Claims 12 and 25 are rejected under 35 U.S.C. 103(a) as being unpatentable over Yamazaki et al. (US 2001/0055841 A1), Takao (JP 2003-058077 A), and Yamazaki et al. (US 6,355,941) as applied above, and in further view of Yamazaki et al. (US 6,355,941 B1), hereinafter D4.
- 4.4. Regarding claims 12 and 25, the combination of D1-D3 disclose the limitations of claims 1-4, 6-9, 14-17, and 19-22. The combination does not appear to explicitly disclose the semiconductor layer comprises a semi-amorphous semiconductor containing hydrogen and halogen and having a crystal structure.
- [01] However, in the same field of semiconductor devices, D4 discloses a semiconductor layer comprises a semi-amorphous semiconductor containing hydrogen and halogen and having a crystal structure (column 8, lines 31-46) in order to improve TFT operation. At the time the invention was made, it would have been obvious to a person having ordinary skill in the art having the references of D1-D3 and D4 to modify the device of D1-D3 to include the semiconductor layer comprising a semi-amorphous semiconductor containing hydrogen and halogen and having a crystal structure of D4 in order to improve TFT operation.

Application/Control Number: 10/576,867 Page 10

Art Unit: 2889

Conclusion

4.5 Any inquiry concerning this communication or earlier communications from the examiner should be directed to Britt Hanley whose telephone number is (571) 270-3042. The examiner can normally be reached on Monday - Thursday, 6:30a-5:00p ET.

- 46 If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Minh-Toan Ton can be reached on (571)272-2303. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.
- 4.7 Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair.direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Britt Hanley/ /Toan Ton/
Examiner, Art Unit 2889 Supervisory Patent Examiner, Art Unit 2889