

CMT311 Principles of Machine Learning

Concept Learning, ERM & PAC

Angelika Kimmig KimmigA@cardiff.ac.uk

11.10.2019

The Statistical Learning Framework

the set of objects we the possible labels want to label domain set X label set Y training data S learner a finite sequence of objects from X labeled with elements of Y

data-generation model

a probability distribution D over X and a function f from X to Y that correctly labels every object

> the learner knows neither D nor f

hypothesis h

a prediction rule or function from X to Y

Boolean Concept Learning

using ?, -, specific values

More-general-than

- Let h_j and h_k be two Boolean-valued functions defined over X.
- Then h_j is more general than or equal to h_k , $h_j \ge_g h_k$, if and only if $\forall x \in X: h_k(x) = 1 \to h_j(x) = 1$
- h_j is strictly more general than h_k , $h_j>_g h_k$, if and only if $h_j\geq_g h_k$ and $h_k \not \geq_g h_j$
- h_j is **more specific than** h_k if and only if h_k is more general than h_j
- note: these notions are independent of the target concept

General-to-specific ordering

 $h_j \ge_g h_k$ if and only if $\forall x \in X : h_k(x) = 1 \rightarrow h_j(x) = 1$

h ₁	h ₂
,Cold,?,?,?,?	,Cold,High,?,?,?
,Cold,?,Strong,Cool,?	,?,?,?,?
,Cold,?,Strong,Cool,?	,Cold,High,?,?,?
,Cold,?,?,?,?	<-,-,-,-,->
<-,-,-,-,->	,Cold,High,-,?,?
<sunny,cold,high,weak,warm,same></sunny,cold,high,weak,warm,same>	<sunny,cold,high,weak,cool,same></sunny,cold,high,weak,cool,same>

General-to-specific ordering

 $h_j \ge_g h_k$ if and only if $\forall x \in X : h_k(x) = 1 \rightarrow h_j(x) = 1$

rectangle ($a \le x \le b \land c \le y \le d$) with a,b,c,d integers in [0,10]

h ₁	h ₂
(0≤x≤10 ∧ 0≤y≤10)	(0≤x≤10 ∧ 1≤y≤5)
(0≤x≤10 ∧ 1≤y≤5)	(0≤x≤9 ∧ 1≤y≤5)
(10≤x≤10 ∧ 1≤y≤1)	(0≤x≤10 ∧ 1≤y≤5)
(0≤x≤10 ∧ 1≤y≤5)	(10≤x≤0 ∧ 1≤y≤5)
(10≤x≤0 ∧ 1≤y≤5)	(3≤x≤1 ∧ 10≤y≤5)
(2≤x≤4 ∧ 3≤y≤7)	(1≤x≤4 ∧ 3≤y≤8)

A basic learner: FIND-S

- set h to the most specific hypothesis in H
- for each positive x in D
 - for each constraint a in h
 - if x does not satisfy a then replace a in h by the next more general constraint a' that is satisfied by x
- return h

training example current hypothesis h <-,-,-,-,-> <Sunny, Warm, Normal, Strong, Warm, Same> 1 <Sunny, Warm, Normal, Strong, Warm, Same> <Sunny, Warm, High, Strong, Warm, Same> 1 <Sunny, Warm, ?, Strong, Warm, Same> <Rainy, Cold, High, Strong, Warm, Change> 0 <Sunny, Warm, ?, Strong, Warm, Same> <Sunny, Warm, ?, Strong, ?, ?> <Sunny, Warm, High, Strong, Cool, Change> 1

hypothesis returned by FIND-S

Exercise

- Consider again the space of rectangles (a≤x≤b ∧ c≤y≤d) on the [0,10]x[0,10] grid.
- Trace the FIND-S algorithm for the following sequence of examples:
 - (2,4) 1
 - (7,4) 1
 - (5,1)0
 - (5,3)1
 - (2,6)0
 - (6,5)1

FIND-S: Discussion

- the hypothesis returned by FIND-S is
 - the most specific one in H that correctly labels all positive training examples
 - correctly labels all negative training examples, provided that the correct target concept is in H and the training data is correct
- open questions:
 - has the learner converged to the correct answer?
 - why prefer the most specific h?
 - what if the training data is not labeled correctly?
 - what if there are several maximally specific hypotheses for the training data?

Using version spaces

- A hypothesis h is consistent with training data D if and only if for all examples (x,y) in D, h(x)=y
- Goal: a learner that finds all hypotheses in H that are consistent with D, using the "more general than" order
- The version space VS_{H,D} with respect to hypothesis space H and training data D is the set of all hypotheses in H consistent with D

$$VS_{H,D} \equiv \{h \in H \mid consistent(h, D)\}$$

```
<Sunny, Warm, Normal, Strong, Warm, Same> 1
  <Sunny, Warm, High, Strong, Warm, Same> 1
                                                             the hypothesis
  <Rainy, Cold, High, Strong, Warm, Change> 0
                                                           returned by FIND-S
 <Sunny, Warm, High, Strong, Cool, Change> 1
                                                               on this data
                                    <Sunny, Warm, ?, Strong, ?, ?>
              <Sunny, ?, ?, Strong, ?, ?>
                                           <Sunny, Warm, ?, ?, ?, ?>
                                                                      <?, Warm, ?, Strong, ?, ?>
                               <Sunny, ?, ?, ?, ?, ?> <?, Warm, ?, ?, ?, ?>
```

another learner: LIST-THEN-ELIMINATE

- VS = list of all hypotheses in H
- for each example (x,y) in D
 - remove from VS all h with h(x)≠y
- return VS

Version space boundaries

 The general boundary G with respect to hypothesis space H and training data D is the set of maximally general members of H consistent with D.

$$G \equiv \{g \in H \mid consistent(g, D) \land \neg \exists g' \in H : g' >_g g \land consistent(g', D)\}$$

 The specific boundary S with respect to hypothesis space H and training data D is the set of minimally general members of H consistent with D.

$$S \equiv \{s \in H \mid consistent(s, D) \land \neg \exists s' \in H : s >_g s' \land consistent(s', D)\}$$

Every member of the version space lies between G and S:

$$VS_{H,D} = \{ h \in H \mid \exists s \in S : \exists g \in G : g \ge_q h \ge_q s \}$$

```
<Sunny, Warm, Normal, Strong, Warm, Same> 1

<Sunny, Warm, High, Strong, Warm, Same> 1

<Rainy, Cold, High, Strong, Warm, Change> 0

<Sunny, Warm, High, Strong, Cool, Change> 1
```


[Figure: Mitchell]

CANDIDATE-ELIMINATION

- G = set of maximally general hypotheses in H
- S = set of maximally specific hypotheses in H
- for each training example d
 - if d is positive
 - remove from G any h inconsistent with d
 - for each s in S that is not consistent with d
 - remove s from S
 - add to S all minimal generalisations h of s such that h is consistent with d and some member of G is more general than h
 - remove from S any h that is more general than some h' in S
 - if d is negative
 - remove from S any h inconsistent with d
 - for each g in G that is not consistent with d
 - remove g from G
 - add to G all minimal specialisations h of g such that h is consistent with d and some member of S is more specific than h
 - remove from G any h that is less general than some h' in G

<Sunny, Warm, Normal, Strong, Warm, Same> 1 <Sunny, Warm, High, Strong, Warm, Same> 1 <Rainy, Cold, High, Strong, Warm, Change> 0 <Sunny, Warm, High, Strong, Cool, Change> 1

Exercise

- Consider again the space of rectangles ($a \le x \le b \land c \le y \le d$) on the [0,10]x[0,10] grid, and the positive \bullet and negative \bullet training examples in the figure.
- What are the G and S boundaries of the version space? Write them down and draw them on the grid.

22

- Imagine the learner can ask the teacher to label a specific point as next training example. Suggest a point that would guarantee to shrink the version space independently of its label, and one that wouldn't.
- What is the smallest number of examples for which CANDIDATE-ELIMINATION can precisely learn any specific rectangle, say, (2≤x≤8 ∧ 3≤y≤5)?

Discussion

- The version space learned by CANDIDATE-ELIMINATION converges towards the hypothesis correctly describing the target concept, provided that
 - there is such a hypothesis in H, and
 - the training data is labeled correctly
- The size of the version space tells us how close we are
- What if we don't have enough data to converge?
- What if there is no correct h in H?

Using version spaces as classifiers

```
<Sunny, Warm, Normal, Strong, Cool, Change>
<Rainy, Cold, Normal, Light, Warm, Same>
<Sunny, Warm, Normal, Light, Warm, Same>
<Sunny, Cold, Normal, Strong, Warm, Same>
```


[Figure: Mitchell]

No correct h in H

No correct h in H

- Problem: there are many more Boolean functions over X than hypotheses in H, so the assumption that there is a good h in H is too strong
- What about including all these functions in H?
- Syntactically, this is easy: just allow any disjunctions, conjunctions and negations of our earlier hypotheses, e.g., <Sunny,?,?,?,?,> v <Cloudy,?,?,?,?,?,>

but...

- CANDIDATE-ELIMINATION now boils down to memorisation:
 - S = disjunction of all positive training examples
 - G = negated disjunction of all negative training examples
- only converges after seeing all instances
- every unseen instance is classified positive by half of the version space and negative by the other half

Inductive bias

- This tension is central to machine learning: we cannot learn successfully unless we restrict the hypothesis space
- Different learners make different assumptions to achieve learning; these assumptions are also called inductive bias
- Learners with stronger bias make more inductive leaps, classifying larger parts of the instance space

Inductive bias: example

	learning	classification	inductive bias
learner 1	store training data in memory	stored label if available, "unknown" otherwise	none
learner 2	CANDIDATE- ELIMINATION	agreed label if all members of the version space agree, "unknown" otherwise	target concept in hypothesis space
learner 3	FIND-S	label given by learned hypothesis	target concept in H & all examples negative unless there is reason to consider them positive

Boolean Concept Learning

vectors to 1 or 0

Lots of choices when building a learner for a given problem:

- different feature vector representations
- different hypothesis spaces
- different learning algorithms with different inductive bias

The Statistical Learning Framework

the set of objects we the possible labels want to label domain set X label set Y training data S learner a finite sequence of objects from X labeled with elements of Y hypothesis h a prediction rule or

function from X to Y

data-generation model

a probability distribution
D over X and a function f
from X to Y that correctly
labels every object

the learner knows neither D nor f

Measure of success

- error of a hypothesis h = probability of h assigning a wrong label to a random object x drawn from D
- formally:

 $L_{D,f}(h) = D(\{x \in X \mid h(x) \neq f(x)\})$ probability according to distribution D of the subset of X where hypothesis h and correct distribution D and correct function f disagree labeling function f

 If the learner would know D and f, it could simply search for the h with minimal L_{D,f}(h)

assume D is uniform, i.e., each point on the grid has probability $\frac{1}{121}$

correct function f: $3 \le x \le 8 \land 3 \le y \le 6$

hypothesis h: $4 \le x \le 6 \land 2 \le y \le 7$

$$L_{D,f}(h) = D(\{x \in X \mid h(x) \neq f(x)\}) = \frac{18}{121} = 0.149$$

Empirical Risk Minimisation (ERM)

• The training error (also called empirical error or empirical risk) of hypothesis h with respect to training sample $S = ((x_1, y_1), ..., (x_m, y_m))$ is the fraction of the training sample h is not consistent with, i.e.,

$$L_{S}(h) = \frac{\left| \{ i \in \{1, ..., m\} \mid h(x_{i}) \neq y_{i} \} \right|}{m}$$

- The learner can compute this for any given hypothesis!
- An **ERM** (empirical risk minimisation) learner returns a hypothesis h that minimises $L_{\mathcal{S}}(h)$ given \mathcal{S}

assume D is uniform, i.e., each point on the grid has probability $\frac{1}{121}$

correct function f: $3 \le x \le 8 \land 3 \le y \le 6$

hypothesis h: $4 \le x \le 6 \land 2 \le y \le 7$

$$L_{D,f}(h) = D(\{x \in X \mid h(x) \neq f(x)\})$$

$$= \frac{18}{121} = 0.149$$

$$L_{S}(h) = \frac{\left| \{ i \in \{1, ..., m\} \mid h(x_{i}) \neq y_{i} \} \right|}{m}$$

$$= \frac{0}{8} = 0$$

- positive training example
- negative training example

Example ERM learners

	learning	classification
learner 1	store training data in memory	stored label if available, 0 otherwise
learner 2	CANDIDATE- ELIMINATION	agreed label if all members of the version space agree, 0 otherwise
learner 3	FIND-S	label given by learned hypothesis

all have empirical error L_S(h)=0, but true error L_{D,F}(h) depends on the unseen positive examples

Example

assume

uniform distribution over days,
true function f = <?,Warm,?,?,?,?,</pre>

training data S: <Sunny, Warm, High, Weak, Warm, Same > 1

<Sunny, Warm, High, Weak, Warm, Change> 1

learned hypothesis h = <Sunny,Warm,High,Weak,Warm,?>

what is the **empirical error** of h? what is the **true error** of h?

this is called **overfitting**: h fits the training data very well, but generalises poorly to unseen examples

Overfitting

- We saw another example of overfitting earlier:
 CANDIDATE-ELIMINATION memoizes training examples if we allow it to learn arbitrary Boolean functions
- One way to avoid overfitting is to restrict the hypothesis space before seeing the data

The Statistical Learning Framework

the set of objects we the possible want to label hypotheses the possible labels domain set X label set Y hypothesis space H training data S learner a finite sequence of objects from X labeled with elements of Y hypothesis h

data-generation model

a probability distribution
D over X and a function f
from X to Y that correctly
labels every object

the learner knows neither D nor f

a prediction rule or function from X to Y, taken from H

(Boolean functions)

data-generation model

a probability distribution
D over X and a function f
from X to Y that correctly
labels every object

the learner knows neither D nor f

How to pick H to get good h_S , independently of D and f?

- Under the following conditions, ERM will not overfit:
 - H is finite
 not a necessary condition (more later)
 - there is a $h \in H$ such that $L_{D,f}(h) = 0$
 - S is "large enough"

the **realisability** assumption **note:** realisability implies $L_S(h_S) = 0$

we'll make this precise next

data-generation model

a probability distribution
D over X and a function f
from X to Y that correctly
labels every object

the learner knows neither D nor f

i.i.d. assumption, $S \sim D^m$: S contains m examples that are independently and identically distributed according to D and labeled using f

- ideally, we'd want ERM to return h_{S} with $L_{D,f}(h_{S})=0$
- this is not realistic: the random process may give us a misleading S
- instead, we aim for h_S that is **probably approximately** correct, i.e., for which it is very likely that $L_{D,f}(h_S)$ is small for a randomly selected S

set of all sequences of m pairs (x,y) hypothesis space H $\frac{good}{those\ h\ with} \\ L_{D,f}(h) \leq \epsilon$ those h with $L_{D,f}(h) > \epsilon$ bad

unknown

probability distribution D generating samples

sample m elements
x_i from X according
to D and label each
with y_i=f(x_i) to
generate sequence
((x₁,y₁),...,(x_m,y_m))

ERM_H selects

$$h_S \in \arg\min_{h \in H} L_S(h)$$

unknown tie-breaking mechanism selecting one of the hypotheses consistent with S

good news: bad is defined using $L_{D,f}(h)$, the probability of h making an error on x drawn from D

goal: upper-bound the probability that ERM_H selects a bad hypothesis

Formally

- Fix an accuracy parameter ϵ , and consider $L_{D,f}(h_S) > \epsilon$ a failure of the learner.
- Goal: ensure that the probability of failure (over samples S drawn from D and labeled by f) is at most δ , where we call (1δ) the confidence parameter.
- That is, given parameters ϵ and δ , we want $P(L_{D,f}(h_S) > \epsilon) \leq \delta$ or equivalently $P(L_{D,f}(h_S) \leq \epsilon) > 1 \delta$
- Question: how large should S be for this to hold?

Basic process

- The learner knows the object set X and hypothesis space H.
- The learner chooses the parameters ϵ and δ .
- The learner does not know the distribution D and function f, but can request an arbitrary but fixed number m of training examples drawn i.i.d. from D and labeled using f.
- How many examples should the learner ask for to achieve $P(L_{D,f}(h_S) > \epsilon) \leq \delta$?

Which m to choose?

- How many examples should the learner ask for to achieve $P(L_{D,f}(h_S) > \epsilon) \le \delta$?
- We'll answer this question by
 - providing a function g(m) such that $P(L_{D,f}(h_S) > \epsilon) \le g(m)$

preview:
$$g(m) = |H|e^{-\epsilon m}$$

• rearranging $g(m) \le \delta$ to obtain an inequality with just m on one side

preview:
$$m \ge \frac{\log(|H|/\delta)}{\epsilon}$$

set of all sequences of m pairs (x,y) domain set X hypothesis space H those h with $L_{D,f}(h) \le \epsilon$ those h with

unknown

probability distribution D generating samples

sample m elements x_i from X according to D and label each with $y_i = f(x_i)$ to generate sequence $((x_1,y_1),...,(x_m,y_m))$

ERM_H selects

$$h_S \in \arg\min_{h \in H} L_S(h)$$

unknown tie-breaking mechanism selecting one of the hypotheses consistent with S

one such upper bound is the **probability** of getting a sequence $S=((x_1,y_1),...,(x_m,y_m))$ such that **some bad h is consistent** with S

goal: upper-bound the probability that ERM_H selects a bad hypothesis

 $L_{D,f}(h) > \epsilon$

good

bad

for a specific bad hypothesis h, what is the probability of getting a sequence $S=((x_1,y_1),...,(x_m,y_m))$ such that this h is consistent with S?

for a specific bad hypothesis h, what is the probability of getting a sequence $S=((x_1,y_1),...,(x_m,y_m))$ such that this h is consistent with S?

for each
$$x_i$$
, $h(x_i)=y_i$

for each x_i , $h(x_i)=f(x_i)$

recall that $L_{D,f}(h)$ is the probability that for x drawn from D, $h(x) \neq f(x)$

thus, $1 - L_{D,f}(h)$ is the probability that for x drawn from D, h(x) = f(x)

as each x_i in S is drawn i.i.d. from D,

the probability of getting S consistent with h is $(1-L_{D,f}(h))^m \leq (1-\epsilon)^m$

for a specific bad hypothesis h, what is the probability of getting a sequence $S=((x_1,y_1),...,(x_m,y_m))$ such that this h is consistent with S?

$$\leq (1 - \epsilon)^m$$

the probability of getting S consistent with some bad h is $\leq |H_{bad}|(1-\epsilon)^m$ $\leq |H|(1-\epsilon)^m \leq |H|e^{-\epsilon m}$ holds for all $\epsilon \in [0,1]$

Which m to choose?

- How many examples should the learner ask for to achieve $P(L_{D,f}(h_S) > \epsilon) \leq \delta$?
- We'll answer this question by
 - providing a function g(m) such that $P(L_{D,f}(h_S) > \epsilon) \le g(m)$

preview:
$$g(m) = |H|e^{-\epsilon m}$$

• rearranging $g(m) \le \delta$ to obtain an inequality with just m on one side

preview:
$$m \ge \frac{\log(|H|/\delta)}{\epsilon}$$

- Let H be a finite hypothesis space of Boolean functions on X, $\delta \in [0,1]$, $\epsilon \in [0,1]$, and m an integer satisfying $m \geq \frac{\log(|H|/\delta)}{\epsilon}.$
- Then, for any distribution D over X and any labeling function f for which the realisability assumption holds, with probability of at least $1-\delta$ over the choice of an i.i.d. sample S of size m, we have that for every ERM hypothesis h_S it holds that $L_{D,f}(h_S) \leq \epsilon$.

That is, for sufficiently large m, any ERM hypothesis is **probably** (with confidence $1 - \delta$) approximately (up to an error of ϵ) correct.

Example

0.01

$$m \ge \frac{\log(|H|/\delta)}{\epsilon}$$

Example $m \ge \frac{\log(|H|/\delta)}{\epsilon}$

$$m \ge \frac{\log(|H|/\delta)}{\epsilon}$$

δ	0.05	0.01
0.05		
0.01		

PAC Learnability

- PAC = Probably Approximately Correct
- A hypothesis class H is PAC learnable if there exists a function $m_H:(0,1)^2\to\mathbb{N}$ and a learning algorithm with the following property: For every $\epsilon, \delta \in (0,1)$, for every distribution D over X, and for every function $f: X \to \{0,1\}$, if the realisability assumption holds w.r.t. H, D, f, then if given $m \ge m_H(\epsilon, \delta)$ i.i.d. examples generated by D and labeled by f, the algorithm returns a hypothesis h such that with probability at least $1 - \delta$ over the choice of the examples, the true error $L_{D,f}(h)$ is at most ϵ .

Sample Complexity

- The function $m_H: (0,1)^2 \to \mathbb{N}$ determines the **sample complexity** of learning H, i.e., the number of samples needed to guarantee a probably approximately correct solution.
- More precisely, $m_H(\epsilon, \delta)$ is the minimal integer the satisfies the requirements of PAC learning
- Thus: every finite H is PAC learnable with sample complexity $m_H(\epsilon,\delta) \leq \left\lceil \frac{\log(|H|/\delta)}{\epsilon} \right\rceil$

No correct h in H

data-generation model

a probability distribution
D over X and a function f
from X to Y that correctly
labels every object

the learner knows neither D nor f

i.i.d. assumption, $S \sim D^m$: S contains m examples that are independently and identically distributed according to D and labeled using f

with randomly labeled examples

data-generation model

a probability distribution D over $X \times Y$

the learner does not know D

i.i.d. assumption, $S \sim D^m$: S contains m examples that are independently and identically distributed according to D

New data generation model

• We now consider a distribution D over labeled objects, e.g., $D((x,y)) = D_X(x) \cdot D_Y(y \mid x)$

- Advantages:
 - can be a more realistic model of the world
 - can handle cases violating the realisability assumption
- Adapt the definition of true error to $L_D(h) = D(\{(x,y) \mid h(x) \neq y\})$
- Goal: a hypothesis that probably approximately minimises $L_{\!D}(h)$

The Bayes optimal predictor

- For any D over $X \times \{0,1\}$, the best labeling function is $f_D(x) = \begin{cases} 1 & \text{if } P(y=1 \mid x) \geq 0.5 \\ 0 & \text{otherwise} \end{cases}$
- best = no other $g: X \to \{0,1\}$ has lower error
- but we do not know D ...
- instead, we'll aim to learn a predictor whose error is not much larger than the best error in a given class of predictors

Agnostic PAC Learnability

 A hypothesis class H is agnostic PAC learnable if there exists a function $m_H: (0,1)^2 \to \mathbb{N}$ and a learning algorithm with the following property: For every $\epsilon, \delta \in (0,1)$, for every distribution D over $X \times Y$, if given $m \ge m_H(\epsilon, \delta)$ i.i.d. examples generated by D, the algorithm returns a hypothesis h such that with probability at least $1-\delta$ over the choice of the examples, the true error $L_D(h)$ is at most ϵ larger than the lowest true error of any hypothesis in H, i.e., $L_D(h) \leq \min L_D(h') + \epsilon$.

Remarks

- Agnostic PAC learnability generalises PAC learnability beyond the realisability assumption.
- The whole setup can also be generalised beyond Boolean concept learning (see the book if interested)
- The original definition of PAC learnability by Valiant also imposes conditions on the time the algorithm needs to find an answer (we'll get back to this)

For next week

- Mandatory: revise today's material
 - relevant textbook chapters:
 - Shalev-Shwartz & Ben-David: chapters 2 & 3
 - Mitchell: chapter 2
- Optional: look forward
 - Read Shalev-Shwartz & Ben-David, chapters 5 and 6 (excluding proofs), with the following questions in mind:
 - What are the key concepts and ideas introduced?
 - How do they relate to the material covered already?