Statistical Learning for Halide Perovskite Discovery

Panayotis Manganaris¹

¹Purdue Materials Science and Engineering Mannodi Group

June 16, 2022

- Al Background
- Chemistry Background
- Pipeline
- Reference

Artificial Intelligence I

The Four Approached to Al

Thinking Humanly

Turing test approach
 (The Six Fields of AI)

- NLP
- Knowledge Representation
- automated reasoning
- Machine Learning
- computer vision
- robotics

Acting Humanly

- cognitive modeling approach
- neuromorphic algorithms

Thinking Rationally

- Laws of Thoughtlogical positing
- proven algorithms
- correct inference
- syllogistic reason

Acting Rationally

- The rational agent
- inference + reflex
- inference vs deduction

Russell and Norvig [2010]

Machine Learning

Al Background

ML Contributes to Al

- Adaptable agent
 - Contextual judgment of percept relevance
 - Autonomous utilization of percept sequence
- Learning
 - function performance improves with exposure to more percepts

Definition (Artifical Agency)

agent self-contained sensor->function->action pipeline function Set of all possible responses for all possible percepts percept sensory input

percept sequence history of sensory input

Inverse Design

Al Background

A Type of AI Implementation

senses maps points in many dimensions

function reliably navigates it's environment searching for optima

action returns its findings to human interpreters

Train Consequentially

- Minimize Loss
- Maximize Score

Perovskite Structure and Chemistry

Figure: Example of hybrid organic-inorganic MAPbI₃ Mannodi-Kanakkithodi and Chan [2022]

Our Dataset

DFT Simulations

- geometry optimization
- Static band structure and optical absorption

Levels of Theory

- PBE
- HSE06
- PBE+HSE06(SOC)
- Experimental

Formula	bg_{eV}	η	LoT
MAPbCl3	3.0300	0.0020	EXP
CsPbI0.375Br2.625	1.6880	0.1532	PBE
RbSnBr2.625Cl0.375	1.4467	NaN	HSE
CsGeCl3	1.0510	0.1767	PBE
MASr0.5Pb0.5Cl3	5.3125	NaN	HSE
MABa0.25Pb0.75I3	1.9980	0.0155	PBE
MASnI3	2.5741	NaN	HSE
MACa0.5Pb0.5Cl3	5.3219	NaN	HSE

Band Gap Fidelity I

Figure: PBE vs HSE Band Gaps

Band Gap Fidelity II

Almora et al. [2020]

Figure: PBE vs Almora BG

Figure: HSE vs Almora BG

Data Pre-Processing

Figure: Data Preprocessing Workflow to Implement with Python Pandas

Machine Learning Pipeline

Figure: Machine Learning Pipelin to Implement with Python SciKit-Learn


```
import sys, os
sys.path.append(os.path.expanduser("~/src/cmcl"))
sys.path.append(os.path.expanduser("~/src/spyglass"))
import pandas as pd
import numpy as np
import cmcl
from spyglass.model_imaging import parityplot
from sklearn pipeline import make pipeline
from sklearn.<module> import NumPreProcessor1
from sklearn.<module> import CatPreProcessor1
from sklearn.<module> import NumPreProcessor2
from sklearn.<module> import CatPreProcessor2
from sklearn.<module> import Estimator
df = pd.read_<data>('./file.<data>')
df = df.groupby('Formula', as index=False).agg(
    { 'bg_eV ': 'median '.
     'efficiency':'median'})
```

Pipeline

```
dc = df.ft.comp()
dc = dc.assign(label='label')
numeric features = dc
. select dtypes (np. number)
. columns
. to list()
numeric_pipeline = make_pipeline(NumPreProcessor1(),
                                   NumPreProcessor2())
categorical features = mc
.select dtypes('object')
. columns
.to_list()
catagorical_pipeline = make_pipeline(CatPreProcessor1(),
                                       CatPreProcessor2())
```

Pipeline

```
preprocessor = colt(
    transformers=[
        ("num", numeric pipeline, numeric features),
        ("cat", categorical pipline, categorical features),
ss = ShuffleSplit(n splits=1, train size=0.8,
                  random state=None)
train idx, test_idx = next(ss.split(dc))
dc tr, dc ts = dc.iloc[train idx], dc.iloc[test idx]
df_tr, df_ts = df.iloc[train_idx], df.iloc[test_idx]
pipe = make pipeline(preprocessor, Estimator())
pipe.fit(dc r, df tr.<target>)
```

Pipeline

Implementation in Jupyter Python IV

```
p, data = parityplot(pipe,
                      dc_ts, df_ts.<target>.to_frame(),
                      aspect = 1.0)
p. figure.show()
```

Reference I

Osbel Almora, Derya Baran, Guillermo C. Bazan, Christian Berger, Carlos I. Cabrera, Kylie R. Catchpole, Sule ErtenEla, Fei Guo, Jens Hauch, Anita W. Y. HoBaillie, T. Jesper Jacobsson, Rene A. J. Janssen, Thomas Kirchartz, Nikos Kopidakis, Yongfang Li, Maria A. Loi, Richard R. Lunt, Xavier Mathew, Michael D. McGehee, Jie Min. David B. Mitzi. Mohammad K. Nazeeruddin, Jenny Nelson, Ana F. Nogueira, Ulrich W. Paetzold, NamGyu Park, Barry P. Rand, Uwe Rau, Henry J. Snaith, Eva Unger, Lídice VaillantRoca, HinLap Yip, and Christoph J. Brabec. Device performance of emerging photovoltaic materials (version 1). Advanced Energy Materials, 11(11):2002774, 2020. doi: 10.1002/aenm.202002774. URL http://dx.doi.org/10.1002/aenm.202002774.

Arun Mannodi-Kanakkithodi and Maria K. Y. Chan. Data-driven design of novel halide perovskite alloys. *Energy Environ. Sci.*, 15:1930–1949, 2022. doi: 10.1039/D1EE02971A. URL http://dx.doi.org/10.1039/D1EE02971A.

Reference II

Stuart Russell and Peter Norvig. *Artificial intelligence: a modern approach*. Prentice Hall, Upper Saddle River, New Jersey, 2010. ISBN 9780136042594.

