Kapitel 5: Verkehrslenkung im Internet

- 5.1 Übersicht
- 5.2 Adressen
- 5.3 Lokale Netze: Bridges und Switches
- 5.4 Intra-Domain Routing
- 5.5 Inter-Domain Routing

5.6 Internet Protocol (IPv4)

- 5.6.1 Header
- 5.6.2 Fragmentierung
- 5.6.3 DHCP
- 5.7 Network Address Translation (NAT)
- 5.8 IPv6
- 5.9 Mobilitätsunterstützung
- 5.10 Zusammenfassung

Internet Protokoll

- Auf Netzwerkschicht nur Routing basierend auf der IP Adresse betrachtet
- Routing wird aber von Routing Protokollen und nicht dem IP Protokoll festgelegt
- IP Protokoll spezifiziert
 - IP Adressen
 - Fragmentierung (nur in IPv4)
 - Differenzierung von Paketen
 - in IPv6 zusätzliche Funktionen wie Mobilitätsunterstützung oder Sicherheit über optionale Header
- IP Protokoll in Versionen
 - IPv4
 - IPv6

Aufbau IPv4 Header

- TOS (Type-Of-Service): Service Differentiation (DSCP) und Congestion Control (ECN)
- Protocol ID: Multiplexing
- Identifier, Flags, Offset: Fragmentierung

32 Bit —						
Version	Header Length	TOS/DSCP/ECN	Total Length			
Identifier			Flags	Fragment Offset		
Т	ΓL	Protocol ID	Header Checksum			
Source IP Address						
Destination IP Address						
Options (im Normalfall keine)						

DSCP: Differentiated Service (DiffServ) Code Point

- DSCP: Differentiated Service (DiffServ) Code Point
 - dient zur differenzierten Behandlung von IP Paketen

Wartezeitbetrachtung an einem Beispiel:

- Buffer: 1 MByte
- Capacity: 100 Mbps
- Queueing Delay: 80ms
- Problematisch für delay-sensitive Anwendungen

Wartezeitbetrachtung an einem Beispiel:

- 1 Mbps VoIP Verkehr mit DSCP 0
- Restlicher Verkehr mit DSCP 7
- Queueing Delay VoIP: ~ 0ms
- Queueing Delay restlicher Verkehr: 80ms
- kein Delay für delay-sensitiven Verkehr
- keine Nachteile für restlichen Verkehr

Einsatz von DSCP

- Szenario 1: ISPs führen selbständig Service Differentiation durch, um im Überlastfall die Funktionsfähigkeit von delay-kritischen Diensten zu bewahren oder bestimmte Dienste zu bevorzugen
 - ISPs filtern am Netzrand bestimmte Anwendungen, Quellen oder Ziele mit Hilfe von DPI (Deep Packet Inspection) Boxen und setzen (überschreiben)
 DSCP Werte
 - im Netzinneren und am Netzausgang werden Pakete anhand der DSCP Werte behandelt
 - bei verschlüsseltem Verkehr nur noch eingeschränkt (anhand der IP Header) möglich
 - kritisch hinsichtlich NetNeutrality

Einsatz von DSCP

- Szenario 2: Geschäftskunden (Firmen) führen die Service Differentiation selbst durch und haben einen Vertrag (SLA, Service Level Agreement) mit ihrem ISPs, wie die Pakete je nach DSCP behandelt werden
 - DSCP Werte werden auf den Hosts je nach Anwendung gesetzt, z.B. über Gruppenrichtlinien und QoS Manager in Windows
 - firmeninternes Netz kann Pakete nach DSCP Wert behandeln, falls erforderlich
 - ISPs übernehmen DSCP Werte der ankommenden Pakete, wenn Sie dem SLA entsprechen und behandeln sie entsprechend
 - auch hier stellt sich die Frage der NetNeutrality

ECN (Explicit Congestion Notification)

- TCP erkennt Überlast durch Paketverlust und reduziert daraufhin die Bandbreite
- Router erkennen einen bevorstehenden Paketverlust, wenn der Buffer vollläuft
- Ein Router kann einem TCP Sender Überlast signalisieren, indem das ECN-Bit gesetzt wird
 - realisiert wird dies über eine RED (Random Early Detect) Queue
 - ECN-Bit wird abhängig vom Pufferfüllstand mit einer bestimmten Wahrscheinlichkeit gesetzt
 - je höher der Pufferfüllstand, desto größer die Wahrscheinlichkeit
- Ein TCP Sender interpretiert ein Paket (ACK) mit gesetztem ECN-Bit als ob das Paket verloren gegangen wäre
- Verwendung von ECN ist über Netzwerkgrenzen problematisch, da TOS Bits von manchen ISP intern genutzt werden und die ECN Bits somit zufällig überschrieben werden

Kapitel 5: Verkehrslenkung im Internet

- 5.1 Übersicht
- 5.2 Adressen
- 5.3 Lokale Netze: Bridges und Switches
- 5.4 Intra-Domain Routing
- 5.5 Inter-Domain Routing

5.6 Internet Protocol (IPv4)

- 5.6.1 Header
- 5.6.2 Fragmentierung
- 5.6.3 DHCP
- 5.7 Network Address Translation (NAT)
- 5.8 IPv6
- 5.9 Mobilitätsunterstützung
- 5.10 Zusammenfassung

IPv4 Fragmentierung

- Layer 2 Protokolle transportieren nur Pakete bis zu einer maximalen Größe
- IP muss größere Pakete entweder in kleinere Paket aufteilen (fragmentieren) oder verwerfen
- Unterstützung der Fragmentierung im IPv4 Header:
 - Identifier: ursprüngliches Paket, eindeutig pro Senderadresse
 - Flags (2 Bits):
 - Don't Fragment Bit: Paket darf nicht fragmentiert werden
 - More Fragments Bit: weitere Fragmente kommen noch
 - Offset: Nummer des ersten Bytes dieses Pakets im ursprünglichen Paket

32 Bit —						
Version	Header Length	TOS/DSCP/ECN	Total Length			
Identifier			Flags	Fragment Offset		
TTL		Protocol ID	Header Checksum			

Beispiel: IPv4 Fragmentierung

IP Fragmentierung

IP Fragmentierung

20 1820

Length =
$$360$$
, M = 0
Offset = 3460

HT WI GN

IP Fragmentierung

Length = 1500, M = 1, Offset = 0

20 1480

Length = 520, M = 1, Offset = 1480

20 500

Length = 1500, M = 1, Offset = 1980

20 1480

Length = 360, M = 0, Offset = 3460

20 340

- Aggregation wird am Ziel gemacht:
 - fehlende Pakete
 - doppelte Pakete
 - verschiedene Pfade, out-of-order
- IP Fragmentierung ist teuer
 - genauer: Aggregation
 - Pakete müssen gespeichert werden, bis fehlende Teile ankommen
- IP Fragmente kosten
 - wenn Router/Switch Kapazität durch Forwarding Plane oder Switching Fabric limitiert ist
- Praxis:
 - wenn möglich vermeiden durch MTU Path Discovery
 - Forwarding im Router:
 - schnell für "normale" IP Pakete
 - speziell (langsam) für "große"
 Pakete

Kapitel 5: Verkehrslenkung im Internet

- 5.1 Übersicht
- 5.2 Adressen
- 5.3 Lokale Netze: Bridges und Switches
- 5.4 Intra-Domain Routing
- 5.5 Inter-Domain Routing

5.6 Internet Protocol (IPv4)

- 5.6.1 Header
- 5.6.2 Fragmentierung
- 5.6.3 DHCP
- 5.7 Network Address Translation (NAT)
- 5.8 IPv6
- 5.9 Mobilitätsunterstützung
- 5.10 Zusammenfassung

Grundkonfiguration eines Rechners im lokalen Netz

- Grundkonfiguration eines Rechners im lokalen Netz
 - IP-Adresse und Subnetzmaske
 - IP-Adresse des Default-Gateways (erster Router)
 - IP-Adresse des lokalen DNS-Servers
- Resultierende minimale Routingtabelle
 - IP-Adresse: 141.37.168.40
 - Subnetzmaske: 255.255.255.192
 - Default-Gateway: 141.37.168.5

Address Pattern	Subnet Mask	Next Hop
0.0.0.0	0.0.0.0	141.37.168.5
141.37.168.0	255.255.255.192	on route

- Möglichkeiten zur Konfiguration des Rechners
 - manuell
 - automatisch mittels DHCP (Dynamic Host Configuration Protocol)

HT WI GN

Manuelle Konfiguration (Windows)

Unter Windows können IP Adresse, Subnetzmaske, Standardgateway und DNS-Server entweder über das Netzwerk- und Freigabecenter unter Adaptereinstellungen manuell konfiguriert werden oder über die Kommandozeile mit dem Befehl netsh. Wird die Option "IP-Adresse bzw. DNS-Serveradresse automatisch beziehen" gewählt, so werden die Einstellungen über DHCP automatisch konfiguriert.

DHCP Szenario

DHCP Server vergibt Adressen aus dem Subnetz 223.1.2.0/24. Möglicherweise ist bereits eine IP-Adresse für die MAC-Adresse des Clients vorkonfiguriert.

DHCP Ablauf

DHCP nutzt UDP Socket

- Client: Port 68
- Server: Port 67

Source 0.0.0.0:

- Client hat noch keine IP
- aus diesem Netz

Destination 255.255.255:

- IP-Level Broadcast
- an alle in diesem Subnetz
- wird von Routern nicht weitergeleitet
 - Ausnahme: Router als DHCP Relay

Mehrere DHCP Server

- mehrere Server sind möglich
- DHCP Nachrichten werden gebroadcastet
- Client wählt Server aus

DHCP (Dynamic Host Configuration Protocol)

DHCP vergibt:

- IP Adresse, Subnetzmaske, Default Gateway
- DNS Server, WINS (Windows Internet Naming Service) Server
- Proxy mittels WPAD (Web Proxy Autodiscovery Protocol)

DHCP Server

- Manuelle Adresszuweisung: Für eine angegebene MAC-Adresse wird immer dieselbe IP-Adresse vergeben. Dies ist für alle Netzwerkgeräte von Vorteil, deren Dienste von anderen genutzt werden, wie z. B. Printserver.
- Dynamische Zuordnung: Ein anfragender Client bekommt eine beliebige Adresse aus einem festgelegten Adressbereich für eine bestimmte Zeit zugewiesen. Die Zuweisung selbst nennt man Lease, die Zeitspanne der Gültigkeit Leasetime.

DHCP Authentifizierung

- bei normalem DHCP keine Authentifizierung von Server und Client
- in späterem RFC 3118 hinzugefügt, aber oft nicht implementiert

Angriffsszenarien

- Rogue DHCP Server: vergibt falsche IP Adresse
- Bösartige Clients, die alle verfügbaren IP Adressen belegen