

ECON 312- Data Science

Python Assignment – ISLP Ch. 2

Submitted by

Musa Ahmed(BE-135-075)

Iffat Anan(BE-135-127)

Md. Abu Sayem Pappu(BE-135-002) Shapnil Das(JN-135-081)

Submitted to

Dr. Rushad Faridi

(Assistant Professor)
Department of Economics
University of Dhaka

This exercise relates to the College data set, which can be found in the file College.csv on the book website. It contains a number of variables for 777 different universities and colleges in the US.

The variables are:

- Private : Public/private indicator
- Apps: Number of applications received
- Accept: Number of applicants accepted
- Enroll : Number of new students enrolled
- Top10perc : New students from top 10% of high school class
- Top25perc : New students from top 25% of high school class
- F.Undergrad : Number of full-time undergraduates
- P.Undergrad : Number of part-time undergraduates
- Outstate : Out-of-state tuition
- Room.Board: Room and board costs
- Books : Estimated book costs
- Personal: Estimated personal spending
- PhD: Percent of faculty with Ph.D.s
- Terminal : Percent of faculty with terminal degree
- S.F.Ratio : Student/faculty ratio
- perc.alumni : Percent of alumni who donate
- Expend : Instructional expenditure per student
- Grad.Rate: Graduation rate

Before reading the data into Python, it can be viewed in Excel or a text editor.

(a) Use the pd.read_csv() function to read the data into Python. Call the loaded data college. Make sure that you have the directory set to the correct location for the data.

```
In [4]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

In [5]: college = pd.read_csv('College.csv')
college.head()
```

Out[5]:	Unnamed: 0	Private	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.

	0	Private	Apps	Accept	Enroll	1op10perc	Top25perc	F.Undergrad	P.Underç
0	Abilene Christian University	Yes	1660	1232	721	23	52	2885	
1	Adelphi University	Yes	2186	1924	512	16	29	2683	1
2	Adrian College	Yes	1428	1097	336	22	50	1036	
3	Agnes Scott College	Yes	417	349	137	60	89	510	
4	Alaska Pacific University	Yes	193	146	55	16	44	249	

(b) Look at the data used in the notebook by creating and running a new cell with just the code college in it. You should notice that the first column is just the name of each university in a column named something like Unnamed: 0. We don't really want pandas to treat this as data. However, it may be handy to have these names for later. Try the following commands and similarly

look at the resulting data frames:

This has used the first column in the file as an index for the data frame. This means that pandas has given each row a name

corresponding to the appropriate university. Now you should see that the first data column is Private. Note that the names of

the colleges appear on the left of the table. We also introduced a new python object above: a dictionary, which is specified by dictionary

(key, value) pairs. Keep your modified version of the data with the following:

```
In [6]: college = college.rename({"Unnamed: 0": "College"}, axis=1)
        college = college.set_index("College")
        college.head()
```

Out[6]:		Private	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrac
	College								
	Abilene Christian University	Yes	1660	1232	721	23	52	2885	537
	Adelphi University	Yes	2186	1924	512	16	29	2683	1227
	Adrian College	Yes	1428	1097	336	22	50	1036	99
	Agnes Scott College	Yes	417	349	137	60	89	510	63
	Alaska Pacific University	Yes	193	146	55	16	44	249	869

(c) Use the describe() method of to produce a numerical summary of the variables in the data set.

	_	•							
Out[7]:		Apps	Accept	Enroll	Enroll Top10perc		F.Undergrad	P.U	
	count	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	7	
	mean	3001.638353	2018.804376	779.972973	27.558559	55.796654	3699.907336	8	
	std	3870.201484	2451.113971	929.176190	17.640364	19.804778	4850.420531	15	
	min	81.000000	72.000000	35.000000	1.000000	9.000000	139.000000		
	25%	776.000000	604.000000	242.000000	15.000000	41.000000	992.000000		
	50%	1558.000000	1110.000000	434.000000	23.000000	54.000000	1707.000000	3	
	75%	3624.000000	2424.000000	902.000000	35.000000	69.000000	4005.000000	9	
	max	48094.000000	26330.000000	6392.000000	96.000000	100.000000	31643.000000	218	
	4							•	

(d) Use the pd.plotting.scatter_matrix() function to produce a scatterplot matrix of the first columns [Top10perc, Apps, Enroll].

Recall that you can reference a list C of columns of a data frame A using A[C].

In [8]: sns.pairplot(data=college,vars=["Top10perc","Apps","Enroll"],plot_kws={'alpha': 0.6

(e) Use the boxplot() method of college to produce side-by-side boxplots of Outstate versus Private.

```
In [9]: sns.boxplot(data=college,y="Outstate",x="Private")
```

Out[9]: <Axes: xlabel='Private', ylabel='Outstate'>

(f) Create a new qualitative variable, called Elite, by binning the Top10perc variable into two groups based on whether or not the proportion of students coming from the top 10% of their high school classes exceeds 50%.

```
college["Elite"] = pd.cut(college["Top10perc"],bins=[0,50,100],labels=["No","Yes"])
In [10]:
         college["Elite"]
Out[10]: College
         Abilene Christian University
                                             No
         Adelphi University
                                             No
         Adrian College
                                             No
          Agnes Scott College
                                             Yes
         Alaska Pacific University
                                             No
         Worcester State College
                                             No
         Xavier University
                                             No
         Xavier University of Louisiana
                                             No
         Yale University
                                             Yes
         York College of Pennsylvania
                                             No
         Name: Elite, Length: 777, dtype: category
         Categories (2, object): ['No' < 'Yes']</pre>
```

Use the value_counts() method of college['Elite'] to see how many elite universities there are. Finally, use the boxplot() method again to produce side-by-side boxplots of Outstate versus Elite.

```
college["Elite"].value_counts()
In [11]:
Out[11]: Elite
                 699
         No
                  78
          Yes
         Name: count, dtype: int64
         There are 78 Elite universities.
         sns.boxplot(data=college,x="Elite",y="Outstate")
In [12]:
Out[12]: <Axes: xlabel='Elite', ylabel='Outstate'>
           22500
                                    0
           20000
           17500
           15000
           12500
           10000
            7500
            5000
            2500
```

(g) Use the plot.hist() method of college to produce some histograms with differing numbers of bins for a few of the quantitative variables. The command plt.subplots(2, 2) may be useful:

Elite

Yes

it will divide the plot window into four regions so that four plots can be made simultaneously. By changing the arguments you can divide the screen up in other combinations.

No

```
In [13]: fig, axes = plt.subplots(2, 2, figsize=(10, 6))
    sns.histplot(x=college["PhD"],bins=10 ,ax=axes[0,0])
    sns.histplot(x=college["S.F.Ratio"],bins=30,ax=axes[0,1])
    sns.histplot(x=college["Grad.Rate"],bins=60,ax=axes[1,0])
    sns.histplot(x=college["perc.alumni"],bins=100,ax=axes[1,1])
```

Out[13]: <Axes: xlabel='perc.alumni', ylabel='Count'>

We have used "PhD", "S.F.Ratio", "Grade.Rate", "perc.alumni" as our choosen quantitative variables and the corresponding bins are 10,30,60,100

(h) Continue exploring the data, and provide a brief summary of what you discover.

```
In [14]: sns.boxplot(data=college,x="Elite",y="Grad.Rate",hue="Private",palette=["#E69F00","
Out[14]: <Axes: xlabel='Elite', ylabel='Grad.Rate'>
```


Colleges classified as elite, meaning they have more students from the top 10% of their high school class, tend to have higher graduation rates.

In both elite and non-elite groups, private colleges generally show better graduation outcomes than public colleges.

- 10. This exercise involves the Boston housing data set.
- (a) To begin, load in the Boston data set, which is part of the ISLP library.

```
In [15]: from sklearn.datasets import fetch_openml
boston = fetch_openml(name="boston", version=1, as_frame=True)
df = boston.frame
```

(b) How many rows are in this data set? How many columns? What do the rows and columns represent?

```
In [16]: df.head()
```

Out[16]	0	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
	0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90
	1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90
	2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83
	3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63
	4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90
	4												>
<pre>In [17]: print(f"Number of Rows = {df.shape[0]}") print(f"Number of Column = {df.shape[1]}") print(boston.DESCR)</pre>													
Print(boston.DESCR) Number of Rows = 506 Number of Column = 14 **Author**: **Source**: Unknown - Date unknown **Please cite**: The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter. Variables in order: CRIM per capita crime rate by town ZN proportion of residential land zoned for lots over 25,000 sq.ft. INDUS proportion of non-retail business acres per town CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) NOX nitric oxides concentration (parts per 10 million) RM average number of rooms per dwelling													
	AGE DIS RAD	wei ind	ighted dex of	on of on distant access	ces to ibility	five B	oston dial h	employ ighway	/ment ce /s				
	TAX PTR/ B	ATIO pup	oil-te	ue prope eacher re - 0.63)	atio by	town	·			- blac	ks hv 1	town	
	LST			status				, opoi	4	DIGCI	by 1		

Information about the dataset

CLASSTYPE: numeric CLASSINDEX: last

MEDV

Downloaded from openml.org.

Also each row represents a suburb of Boston ,so there are **506** suburbs in the dataset with **13** feature variable mentioned above and a target variavle (Median price of House per 1000s)

Median value of owner-occupied homes in \$1000's

(c) Make some pairwise scatterplots of the predictors (columns) in this data set. Describe your findings.

```
In [39]: feat_df = df.drop(columns=["MEDV","CHAS","B"])
```

We have excluded the Target variable "MEDV" and categorical Variable "CHAS"

```
In [41]: sns.pairplot(data=feat_df,plot_kws={'alpha': 0.6, 's': 50,"color":"darkgreen"})
```

Out[41]: <seaborn.axisgrid.PairGrid at 0x18cf8c7dd90>

- Scatterplots reveal several signs of multicollinearity among predictors in the Boston Housing dataset.
- **CRIM and DIS** show a negative correlation: crime rates tend to decrease in areas farther from employment centers.

- **DIS and INDUS** also exhibit a negative correlation, indicating that industrial zones are typically closer to city centers.
- **NOX and DIS** show a **non-linear** negative correlation: nitric oxide levels drop sharply with increasing distance from urban areas.
- **NOX and AGE** have a weak positive correlation, suggesting slightly higher pollution in older residential zones.
- RM and LSTAT demonstrate an almost perfect negative correlation: neighborhoods
 with more rooms per dwelling generally have a lower percentage of lower-income
 residents.
- These correlations suggest potential multicollinearity, particularly between RM and LSTAT, and between DIS and multiple other variables.
- A further diagnostic using **Variance Inflation Factors (VIF)** is recommended to confirm and quantify multicollinearity.

(d) Are any of the predictors associated with per capita crime rate? If so, explain the relationship.

```
df.corr(numeric_only=True)["CRIM"].sort_values()
In [19]:
Out[19]: MEDV
                  -0.388305
                  -0.385064
         DIS
                  -0.379670
         RM
                  -0.219247
         ΖN
                  -0.200469
         PTRATIO 0.289946
         AGE
                 0.352734
         INDUS
                 0.406583
         NOX
                   0.420972
         LSTAT
                   0.455621
         TAX
                   0.582764
         CRIM
                   1.000000
         Name: CRIM, dtype: float64
```

The correlations show that **crime rate (CRIM)** is positively associated with features like **TAX**, **LSTAT**, **NOX**, **INDUS**, and **AGE**, meaning areas with higher taxes, pollution, industry, and lower socioeconomic status tend to have more crime. Conversely, features like **DIS**, **RM**, **ZN**, and **B** are negatively correlated, suggesting that areas farther from the city center, with larger homes, more zoning for residential use.

(e) Do any of the suburbs of Boston appear to have particularly high crime rates? Tax rates? Pupil-teacher ratios? Comment on the range of each predictor.

```
In [20]: df["CRIM"].describe()
```

```
Out[20]: count
                   506.000000
                     3.613524
          mean
                     8.601545
          std
          min
                     0.006320
          25%
                     0.082045
          50%
                     0.256510
          75%
                     3.677083
                    88.976200
          max
          Name: CRIM, dtype: float64
In [21]: df["TAX"].describe()
Out[21]: count
                   506.000000
                   408.237154
          mean
          std
                   168.537116
          min
                   187.000000
          25%
                   279.000000
          50%
                   330.000000
          75%
                   666.000000
                   711.000000
          max
          Name: TAX, dtype: float64
         df["PTRATIO"].describe()
In [22]:
Out[22]: count
                   506.000000
          mean
                    18.455534
                     2.164946
          std
          min
                    12.600000
          25%
                    17.400000
          50%
                    19.050000
          75%
                    20.200000
          max
                    22.000000
          Name: PTRATIO, dtype: float64
In [23]: fig,axes = plt.subplots(2,2,figsize=(10,10))
         sns.boxplot(df,y="CRIM",ax=axes[0,0])
         sns.boxplot(df,y="TAX",ax=axes[0,1])
         sns.boxplot(df,y="PTRATIO",ax=axes[1,0])
         axes[1, 1].set_visible(False)
```


The CRIM (crime rate) feature shows a significant number of high-value outliers, indicating that some suburbs experience much higher crime rates than others.

In contrast, the PTRATIO (pupil-to-teacher ratio) feature has only a few mild outliers, suggesting relatively consistent values across most areas.

(f) How many of the suburbs in this data set bound the Charles river?

(g) What is the median pupil-teacher ratio among the towns in this data set?

35 suburbs are set bound the Charles river.

```
In [25]: df["PTRATIO"].median()
```

Out[25]: np.float64(19.05)

The median pupil-teacher ratio is 19.05

(h) Which suburb of Boston has lowest median value of owner-occupied homes? What are the values of the other predictors for that suburb, and how do those values compare to the overall ranges for those predictors? Comment on your findings.

In [26]:	<pre>df[df["MEDV"]== df["MEDV"].min()]</pre>													
Out[26]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTR	ATIO	I
	398	38.3518	0.0	18.1	(0.693	5.453	100.0	1.4896	24	666.0		20.2	396.9
	405	67.9208	0.0	18.1	(0.693	5.683	100.0	1.4254	24	666.0		20.2	384.9 ⁻
	4													•
In [27]:	df.de	escribe()											
Out[27]:		C	CRIM		ZN	INDU	S	NOX		RM		AGE		DIS
	count	t 506.00	0000	506.000	000	506.00000	0 506	5.000000	506.00	0000	506.000	0000	506.0	00000
	mear	3 .61	3524	11.363	636	11.13677	9 ().554695	6.28	4634	68.574	1901	3.7	95043
	sto	8.60	1545	23.322	453	6.86035	3 ().115878	0.70	2617	28.148	3861	2.1	05710
	mir	0.00	6320	0.000	000	0.46000	0 ().385000	3.56	1000	2.900	0000	1.1	29600
	25%	0.08	2045	0.000	000	5.19000	5.190000		5.88	5500	45.025	5000	2.10017	
	50%	0.25	6510	0.000	000	9.69000	0 ().538000	6.20	8500	77.500	0000	3.2	07450
	75%	3.67	7083	12.500	000	18.10000	0 (0.624000	6.62	3500	94.075	5000	5.1	88425
	max	8 8.97	6200	100.000	000	27.74000	0 (0.871000	8.78	80000	100.000	0000	12.1	26500
	4													•

we can see the suburb **405** has very high value of **CRIM**, which is more than **20 times** of the mean CRIM.

(i) In this data set, how many of the suburbs average more than seven rooms per dwelling? More than eight rooms per dwelling? Comment on the suburbs that average more than eight rooms per dwelling.

```
In [28]: more_than_7 = df[df["RM"] > 7]
len(more_than_7)
```

Out[28]: 64

64 suburbs has more than 7 rooms per dwelling.

In [29]: more_than_8 = df[df["RM"]>8]
len(more_than_8)

Out[29]: 13

Out[30]:

Out[31]:

13 suburbs has more than 8 rooms per dwelling.

In [30]: more_than_8.describe()

,		CRIM	ZN	INDUS	NOX	RM	AGE	DIS	
	count	13.000000	13.000000	13.000000	13.000000	13.000000	13.000000	13.000000	13.000
	mean	0.718795	13.615385	7.078462	0.539238	8.348538	71.538462	3.430192	325.076
	std	0.901640	26.298094	5.392767	0.092352	0.251261	24.608723	1.883955	110.97°
	min	0.020090	0.000000	2.680000	0.416100	8.034000	8.400000	1.801000	224.000
	25%	0.331470	0.000000	3.970000	0.504000	8.247000	70.400000	2.288500	264.000
	50%	0.520140	0.000000	6.200000	0.507000	8.297000	78.300000	2.894400	307.000
	75%	0.578340	20.000000	6.200000	0.605000	8.398000	86.500000	3.651900	307.000
	max	3.474280	95.000000	19.580000	0.718000	8.780000	93.900000	8.906700	666.000

In [31]: df.describe()

CRIM ZN **INDUS** NOX RM AGE DIS **count** 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 mean 3.613524 11.363636 11.136779 0.554695 6.284634 68.574901 3.795043 std 8.601545 23.322453 6.860353 0.115878 0.702617 28.148861 2.105710 min 0.006320 0.000000 0.460000 0.385000 3.561000 2.900000 1.129600 25% 0.082045 0.000000 5.190000 0.449000 5.885500 45.025000 2.100175 **50%** 0.256510 0.000000 9.690000 0.538000 6.208500 77.500000 3.207450 **75%** 3.677083 12.500000 18.100000 0.624000 6.623500 94.075000 5.188425 88.976200 100.000000 27.740000 0.871000 8.780000 100.000000 12.126500 max

we can conclude that suburbs having more than 8 rooms per dwelling have very less crime rater (CRIM) values.

Also, these have less value of LSTAT, and their target value, price is signifiantly larger than the overall mean price of the whole dataset