Entrega Proyecto de Ingeniería de Software I

Por

Andrés Maya Fabian Acuña Mateo Villa

Docente María Clara Gómez Álvarez

Facultad de Ingenierías Especialización en Ingeniería de Software

Docente: Maria Clara Gómez Alvarez

1. Título: Revisión sistemática de aplicación de redes neuronales artificiales para el mejoramiento del transporte público en Latinoamérica

2. Estrategia de búsqueda

2.1 Problema

La movilidad en muchas ciudades en crecimiento en el mundo se ha visto afectada por el crecimiento económico y migración de las poblaciones. La aparición de nuevas necesidades en el desplazamiento de las personas ha llevado a que surja la necesidad de la creación de diferentes medios de transporte. (U, n.d.)

2.2 Preguntas de investigación

- ¿Cón pueden las redes neuronales artificiales mejorar el transporte público en tiempos de espera, seguridad y movilidad?
- ¿Es posible placar algoritmos de redes neuronales artificiales en la toma de decisiones con el fin de mejorar el transporte público en las ciudades latinoamericanas?

2.3 Palabras clave

Redes neuronales, transporte público, inteligencia artificial, RNA, modelo predicción

F

3. Selección de fuentes

3.1. Cadenas de búsqueda

Determinar dos cadenas de búsqueda como mínimo

- **A.** (artificial neural networks) and (public transport)
- **B.** (public transport) AND (neural network) AND (time optimization)

3.2. Listado de fuentes

Seleccionar 4 bases de datos, y en cada una de ellas hacer la consulta con las dos cadenas de búsqueda definidas previamente:

Cadena búsqueda	Science Direct	EbscoHost	ISI-Web of Science	Emerald
(artificial neural	79	8	23	225
networks) and (public				
transport)				
(public transport) AND	1275	0	2	156
(neural network) AND				
(time optimization)				

3.3. Definir los criterios de inclusión y exclusión de los estudios (de la búsqueda)

INCLUSIÓN	EXCLUSIÓN
Idioma: Español, Inglés	Tipo: Libros
Año de publicación: 2010 a 2019	Área: Medicina
Tipo: Artículos de investigación	

Docente: Maria Clara Gómez Alvarez

4. Fuente de búsqueda: ScienceDirect

Tomando una cadena de búsqueda, extraer 3 artículos de la fuente ScienceDirect

Listar los 3 artículos encontrados en ScienceDirect

ID	Título	Autor	Referencia
1	Multi-output bus travel time prediction with convolutional LSTM neural network	Niklas Christoffer Petersen	(Petersen, Rodrigues, & Pere 2019)
2	Modelling public transport trips by radial basis function neural networks	Hilmi Berk Celikoglu Hikmet Kerem Cigizoglu	(Celikoglu & Cigizoglu, 2007)
3	Short Term Traffic Prediction on the UK Motorway Network Using Neural Networks	Carl Goves Robin North Ryan Johnston Graham Fletcher	(Goves, North, Johnston, & Fletcher, 2016)

5. Bibliografía

Celikoglu, H. B., & Cigizoglu, H. K. (2007). Modelling public transport trips by radial basis function neural rorks. Mathematical and Computer Modelling, 45(3–4), 480–489. https://doi.org/10.1016/J.MCM.2006.07.002

Goves, C., North, R., Johnston, R., & Fletcher, G. (2016). Short Term Traffic Prediction on the UK Motorway Network Using Neural Networks. In *Transportation Research Procedia*. https://doi.org/10.1016/j.trpro.2016.05.019

Petersen, N. C., Rodrigues, F., & Pereira, F. C. (2019). Multi-output bus travel time prediction with convolutional LSTM neural network. *Expert Systems with Applications*. https://doi.org/10.1016/j.eswa.2018.11.028

UNAL. (n.d.). Congestión vehicular ¿un problema de movilidad? - Instituto de Estudios Urbanos. Retrieved February 17, 2019, from http://ieu.unal.edu.co/en/noticias-del-ieu/item/congestion-vehicular-un-problema-de-movilidad