MATH 185: Homework 2

William Guss 26793499 wguss@berkeley.edu

February 4, 2016

1.

Definition 1. A set $S \subset \mathbb{C}$ is bounded if and only if there exists $z \in \mathbb{C}$ such that for every $s \in S$, $|s| \leq |z|$

Definition 2. Alternatively, a set $S \subset \mathbb{C}$ is bounded if and only if there is an r such that $S \subset B_r(0)$, where $B_s(z)$ is the ball of radius s with center z.

Theorem 1. If $(z_n)_{n=1}^{\infty}$ is a convergent sequence of compex numbers, then the sequence is bounded.

Proof. Take the value set $S = \{z_n\}$. Then suppose there were no r such that $S \subset B_r(0)$. If this is the case, the countability of S implies that for every $n, S \cap B_n(0)$ is finite. Since $z_n \to z$, take $N \in \mathbb{N}$ such that N > |z|. Such an n exists by the archimedian principle of \mathbb{R} . Then $S \cap N$ must be finite.

Take $\epsilon = N - |z|$, then there is an M such that for all m > M, $d(z_n, z) < \epsilon$. That is there are infinite elements within ϵ of z, and thereby there are infinite elements in $S \cap B_N(0)$. This is a conradiction to its finiteness.

Therefore it must be that the value set is contained within the N ball, and therefore, (z_n) is bounded.

2. Exercise II.1.11

Theorem 2. The function $Arg : \mathbb{C} \to \mathbb{R}$ is continuous except for along the line $L = \{z : Im(z) = 0 \land Re(z) < 0\}.$

Proof. A function is continuous if and only if it preserves limits. Specifically, if $\lim_{h\to x} f(h) = f(x)$ implies that f is continuous at h. Consider the restricted Arg function, say $A: \mathbb{C} \setminus L \to \mathbb{R}$. Then it is clear that $\lim_{\mathbb{C} \setminus L} A(h) = (-\pi, \pi)$, since if a point is within an ϵ neighborhood of another point, its gradial distance is proportionate to \sin^{-1} of its ϵ distance, (a continuous function).

However consider any $z \in L$ Such that $h \to z$ approaches from the upper half plane and $g \to z$ from the lower. Clearly $Arg(h) \to \pi$ and $Arg(g) \to -\pi$, so no limit exists and the function is not continuous at z. This completes the proof.

3. Exercise II.1.16

Theorem 3. The punctured plane $\mathbb{C} \setminus L = \mathbb{C}_P$ is star shaped but not convex.

Proof. Take any $z \in \mathbb{C}_P$. Then for any $r \geq 1$, z/r is clearly in \mathbb{C}_P since r is always positive and the imaginary part of z is always non-zero or its real part is non-negative. In the first case z/r is never in L for all finite r, and when $r \to \infty$, then $r = 0 \in \mathbb{C}_P$. In the second case, its real part is always positive or 0 until it reaches 0 by the same logic. In the case that both are true, we consider again the same logic. If z = 0, we are done.

Clearly, \mathbb{C}_P is not convex when considering the line, $B = \{x + iy : x = -1\}$ which contains $-1 \in L$.

Definition 3. A space X is contractible if the identity map is homotopic to some constant map.

Definition 4. A homotopy between two continuous functions f, g from a topological space X to a topological space Y is a continuous function $H: X \times [0,1] \to Y$, such that if $x \in X$ then, H(x,0) = f(x), H(x,1) = g(x). [Wikipedia]

Theorem 4. Every homeomorphism is a homotopy equivalence.

Theorem 5. A star-shaped space X is homotopic to a point.

Proof. Let $H(x,t) = x(1-t) + z_0t$, then $H(x,0) = id_X$, and H(x,1) is the constant identity. H is continuous by the definition of H as a star shaped space. Therefore, the star-shaped space is homotopic to a point.

Theorem 6. The space $\gamma = \mathbb{C} \setminus [-1, 1]$ is not star shaped.

Proof. The set γ is not homeomorphic to the unit ball B^2 since it is homeomorphic to the annalus. Therefore, γ is not homotopic to B^2 which is homotopic to a point since B^2 is star shaped. The space γ could not be star shaped since if it were it would be homotopic to a point which it is not. Therefore, γ is not star shaped.

Theorem 7. The punctured disk is not star shaped.

Proof. The punctured disk is not homeomorphic to B^2 for the same reason as the previous proof. Therefore it is not homeotopic, and by the logic of the above proof, it is not homeotopic to a point, and so it could not possibly be star shaped as that would lead to a contradiction. This completes the proof.

4.

Theorem 8. The functions x = Rez and y = Imz are not complex differentiable at any point.

Proof. Suppose those functions were differentiable. Then it follows that there partials as functions of \mathbb{R}^2 should be

$$Dx(p) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, Dy(p) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}. \tag{1}$$

This is a contradiction to the Cauchy-Rieman equations.

5. We take the derivative as follows

$$f' = \lim_{\Delta z_0} \frac{a(z + \Delta z)^2 + b|z + \Delta z|^2 + c\overline{(z + \Delta z)}^2}{\Delta z}$$

$$= \lim_{\Delta z_0} \frac{a(z + \Delta z)^2 + b|z + \Delta z|^2 + c\overline{(z + \Delta z)}^2}{\Delta z}$$
(2)

6. Validation:

$$Df(p) = \begin{bmatrix} \cos x \sinh y & \sin x \cosh y \\ -\sin x \cosh y & \cos x \sinh y \end{bmatrix}$$
 (3)

The complex function is $f = sinx \sinh y$, $v = \cos x \cosh y$. It follows that, $f = ie^z + e^{-z}$; So I estimate this function is a rotated cosine.