Lecture RNN y transformadores para modelado secuencia a secuencia

RNN de varios a varios para generar texto

- 1. Generación de secuencias con RNN
- 2. Caracter RNN en PyTorch
- 3. RNN con atención
- 4. Atención es todo lo que necesitamos
- 5. Modelos de transformadores
- 6. Transformador en PyTorch

Diferentes tipos de tareas de modelado de secuencias

"training"

"generating new text"

Caracter RNN

En cada paso de tiempo Salida Softmax (probabilidad) para cada posible "siguiente letra"

Para generar texto nuevo, ahora, muestre las salidas de softmax y proporcione la letra como entrada para el siguiente paso de tiempo

"generating new text"

Para generar texto nuevo, ahora, muestre las salidas de softmax y proporcione la letra como entrada para el siguiente paso de tiempo

many-to-many

"generating new text"

Tenga en cuenta que este enfoque funciona tanto con palabras como con caracteres RNN

Ventajas y desventajas de los RNN de caracter sobre los RNN de palabras

Ventajas:

- Las incrustaciones de caracteres (solo 24 letras más puntuación en inglés) requieren menos memoria en comparación con las incrustaciones de palabras
- Capas de salida más pequeñas por la misma razón que la anterior

Desventajas:

- Puede crear palabras extrañas y sin sentido
- Peor en la captura de dependencias de larga distancia

RNN de varios a varios para generar texto

- 1. Generación de secuencias con RNN
- 2. Caracter RNN en PyTorch
- 3. RNN con atención
- 4. Atención es todo lo que necesitamos
- 5. Modelos de transformadores
- 6. Transformador en PyTorch

https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html

Parameters

- input_size The number of expected features in the input x
- hidden_size The number of features in the hidden state h
- num_layers Number of recurrent layers. E.g., setting num_layers=2 would mean stacking two
 LSTMs together to form a stacked LSTM, with the second LSTM taking in outputs of the first LSTM
 and computing the final results. Default: 1
- bias If False, then the layer does not use bias weights b_ih and b_hh. Default: True
- batch_first If True, then the input and output tensors are provided as (batch, seq, feature).
 Default: False
- dropout If non-zero, introduces a Dropout layer on the outputs of each LSTM layer except the last layer, with dropout probability equal to dropout. Default: 0
- bidirectional If True, becomes a bidirectional LSTM. Default: False
- proj_size If > 0, will use LSTM with projections of corresponding size. Default: 0

```
>>> rnn = nn.LSTM(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> c0 = torch.randn(2, 3, 20)
>>> output, (hn, cn) = rnn(input, (h0, c0))
```

```
>>> rnn = nn.LSTM(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> c0 = torch.randn(2, 3, 20)
>>> output, (hn, cn) = rnn(input, (h0, c0))
```


https://pytorch.org/docs/stable/generated/torch.nn.LSTMCell.html

Inputs: input, (h_0, c_0)

- input of shape (batch, input_size): tensor containing input features
- h_0 of shape (batch, hidden_size): tensor containing the initial hidden state for each element in the batch.
- c_0 of shape (batch, hidden_size): tensor containing the initial cell state for each element in the batch.

If (h_o, c_o) is not provided, both h_0 and c_0 default to zero.

Outputs: (h_1, c_1)

- h_1 of shape (batch, hidden_size): tensor containing the next hidden state for each element in the batch
- c_1 of shape (batch, hidden_size): tensor containing the next cell state for each element in the batch

Traducción con una secuencia a secuencia red y atención (inglés a francés) https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

RNN de varios a varios para generar texto

- 1. Generación de secuencias con RNN
- 2. Caracter RNN en PyTorch
- 3. RNN con atención
- 4. Atención es todo lo que necesitamos
- 5. Modelos de transformadores
- 6. Transformador en PyTorch

Arquitectura de varios a varios para la traducción de idiomas

Translated sentence

Input sentence

Input: Today is a great day

Translation: Heute ist ein großartiger Tag

Input:

If you've ever_studied a foreign language, you've probably encountered a "false friend" at some point.

Translation:

Wenn Sie jemals eine Fremdsprache gelernt haben, sind Sie wahrscheinlich irgendwann auf einen "falschen Freund" gestoßen.

Desafío en la traducción de idiomas: memorice la oración de entrada completa en un estado oculto

- Desarrollado originalmente para la traducción de idiomas: Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. https://arxiv.org/abs/1409.0473

"...permitir que un modelo busque automáticamente (de forma suave) partes de una oración de origen que sean relevantes para predecir una palabra de destino..."

Figure 2: The BLEU scores of the generated translations on the test set with respect to the lengths of the sentences. The results are on the full test set which includes sentences having unknown words to the models.

Asigne un peso de atención a cada palabra, para saber cuánta "atención" debe prestar el modelo a cada palabra (es decir, para cada palabra, la red aprende un "contexto")

- Desarrollado originalmente para la traducción de idiomas: Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. https://arxiv.org/abs/1409.0473

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

Desde ~ 2018, Los transformadores han ido creciendo en popularidad... y tamaño

Fuente imagen: https://medium.com/huggingface/distilbert-8cf3380435b5

Procedimiento principal:

- 1) Derivar pesos de atención: Similitud entre la entrada actual y todas las demás entradas (siguiente diapositiva)
- 2) Normalizar pesos a través de softmax (siguiente diapositiva)
- 3) Calcule el valor de atención a partir de pesos normalizados y las entradas correspondientes (a continuación)

Autoatención como suma ponderada:

 $\mathbf{A}_i = \sum_{j=1}^T a_{ij} \mathbf{x}_j$ peso basado en la similitud entre la entrada actual \mathbf{x}_i y todas las demás entradas

Autoatención como suma ponderada:

 $A_i = \sum_{j=1}^{I} a_{ij} \mathbf{x}_j$ peso basado en la similitud entre la entrada actual \mathbf{x}_i y todas las demás entradas

salida correspondiente a la i-ésima entrada

¿Cómo calcular los pesos de atención?:

Aquí como producto punto simple:

$$e_{ij} = x_i^T x_j$$

Repita esto para todas las entradas $j \in \{1...T\}$, luego normalizar

$$a_{ij} = rac{exp(e_{ij})}{\sum_{j=1}^{T} exp(e_{ij})} = softmax([e_{ij}]_{j=1...T})$$

Fuente imagen: Raschka & Mirjalili 2019. Python Machine Learning, 3rd edition

Usar la atención sin el RNN: transformadores y mecanismo de autoatención

- 1. Generación de secuencias con RNN
- 2. Caracter RNN en PyTorch
- 3. RNN con atención
- 4. Atención es todo lo que necesitamos
 - 4.1 Forma básica de autoatención
 - 4.2 Atención personal y atención de productos punto
 - 4.3 Atención multicabezal
- 5. Modelos de transformadores
 - 5.1 La arquitectura del transformador
 - 5.2 Algunos modelos de transformadores populares: BERT, GPT y BART
- 6. Transformador en PyTorch

Autoatención: Relacionar diferentes posiciones dentro de una sola secuencia (vs.entre secuencias de entrada y salida)

Fuente imagen: Raschka & Mirjalili 2019. Python Machine Learning, 3rd edition

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

- La versión básica anterior no incluía ningún parámetro que se pudiera aprender, por lo que no es muy útil para aprender un modelo de lenguaje.
- Ahora estamos agregando 3 matrices de peso entrenables que se multiplican con las incrustaciones de la secuencia de entrada $(x_i{}^\prime s)$

query =
$$W^q x_i$$

$$\text{key} = W^k x_i$$

value =
$$W^v x_i$$

Matriz de puntuación de atención: $oldsymbol{A}=egin{array}{c} oldsymbol{A}_1 \\ oldsymbol{A}_2 \\ oldsymbol{A}_3 \end{array}$

Mecanismo de autoatención (atención de productos punto escalados)

 $d_e={
m embedding\ size}$

T = input sequence size

 $\boldsymbol{x} \in \mathbb{R}^{T \times d_e}$

Mecanismo de autoatención

$$A(Q,K,V) = softmax(rac{QK^T}{\sqrt{d_k}})V$$

Para asegurarse de que los productos punto entre la consulta y la clave y no crezcan demasiado (y el gradiente de softmax se vuelva demasiado pequeño) para d_k grandes

Scaled Dot-Product Attention

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I., 2017. Attention Is All You Need

Usar la atención sin el RNN: transformadores y mecanismo de autoatención

- 1. Generación de secuencias con RNN
- 2. Caracter RNN en PyTorch
- 3. RNN con atención
- 4. Atención es todo lo que necesitamos
 - 4.1 Forma básica de autoatención
 - 4.2 Atención personal y atención de productos punto
 - 4.3 Atención multicabezal
- 5. Modelos de transformadores
 - 5.1 La arquitectura del transformador
 - 5.2 Algunos modelos de transformadores populares: BERT, GPT y BART
- 6. Transformador en PyTorch

Mecanismo de autoatención (atención de productos punto escalados)

 $d_{e} = {
m embedding \ size}$

T = input sequence size

$$x \in \mathbb{R}^{T \times d_e}$$

Atención multicabezal

- Aplicar la autoatención varias veces en paralelo (similar a varios núcleos para canales en CNN)
- Para cada cabeza (capa de autoatención), usar difer W^q,W^k,W^v , go concatenar los resultados, A_i
- 8 cabezas de atención en el transformador original, es decir, $W^q_{(1)},W^k_{(1)},W^v_{(1)},...,W^q_{(8)},W^k_{(8)}$
- Permite atender diferentes partes de la secuencia de manera diferente

Scaled Dot-Product Attention

Multi-Head Attention Linear Concat Scaled Dot-Product Attention Linear Linear Linear Linear

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.

$$T \times d_e = T \times 512$$

У

$$d_v = 512/h = 64$$

Usar la atención sin el RNN: transformadores y mecanismo de autoatención

- 1. Generación de secuencias con RNN
- 2. Caracter RNN en PyTorch
- 3. RNN con atención
- 4. Atención es todo lo que necesitamos
 - 4.1 Forma básica de autoatención
 - 4.2 Atención personal y atención de productos punto
 - 4.3 Atención multicabezal
- 5. Modelos de transformadores
 - 5.1 La arquitectura del transformador
 - 5.2 Algunos modelos de transformadores populares: BERT, GPT y BART
- 6. Transformador en PyTorch

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

Resumen de atención de productos punto escalados

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I., 2017. Attention Is All You Need.

Figure 1: The Transformer - model architecture.

Genera palabras de salida una a la vez

Atención multicabezal enmascarada

Figure 1: The Transformer - model architecture.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I., 2017. Attention Is All You Need.

Agregar matriz de codificación posicional a la matriz de incrustación de palabras

- El producto punto escalado y la capa completamente conectada no varían en la permutación
- La codificación posicional sinusoidal es un vector de pequeños valores (constantes) agregados a las incrustaciones
- Como resultado, la misma palabra tendrá incrustaciones ligeramente diferentes dependiendo de dónde se encuentren en la oración.

 $d_o = 512$

Add & Norm Feed Forward

Figure 1: The Transformer - model architecture.

Output Probabilities

Softmax

Linear

Add & Norm

Feed

Forward

Add & Norm

Add & Norm

Figure 1: The Transformer - model architecture.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I., 2017. Attention Is All You Need.

Figure 5: Many of the attention heads exhibit behaviour that seems related to the structure of the sentence. We give two such examples above, from two different heads from the encoder self-attention at layer 5 of 6. The heads clearly learned to perform different tasks.

Usar la atención sin el RNN: transformadores y mecanismo de autoatención

- 1. Generación de secuencias con RNN
- 2. Caracter RNN en PyTorch
- 3. RNN con atención
- 4. Atención es todo lo que necesitamos
 - 4.1 Forma básica de autoatención
 - 4.2 Atención personal y atención de productos punto
 - 4.3 Atención multicabezal
- 5. Modelos de transformadores
 - 5.1 La arquitectura del transformador
 - 5.2 Algunos modelos de transformadores populares: BERT, GPT y BART
- 6. Transformador en PyTorch

Resumen

Figure 1: The Transformer - model architecture.

Las dos claves del éxito detrás de transformadores

- 1. Autoatención para codificar dependencias de largo alcance
- 2. Autosupervisión para aprovechar grandes conjuntos de datos sin etiquetar

Enfoque de entrenamiento de transformadores

- 1. Entrenamiento previo en grandes conjuntos de datos sin etiquetar (aprendizaje autosupervisado)
- 2. Capacitación para tareas posteriores sobre datos etiquetados (aprendizaje supervisado)
 - a) Enfoque de ajuste fino
 - b) Enfoque basado en características

Algunos modelos de transformadores populares: BERT, GPT y BART

- 5.2.2 GPT-v1: Transformador generativo pre-entrenado
- 5.2.3 BERT: Representaciones de codificador bidireccional de transformadores
- 5.2.4 GPT-v2: Los modelos de lenguaje son aprendices multitarea sin supervisión
- 5.2.5 GPT-v3: Los modelos de lenguaje son aprendices con pocas posibilidades
- 5.2.6 BART: Combinando transformadores bidireccionales y autorregresivos
- 5.2.7 Palabras de cierre: el reciente crecimiento de los transformadores del lenguaje

Algunos modelos de transformadores populares: BERT, GPT y BART

GPT-v1:

Transformador generativo pre-entrenado

GPT-v1: Transformador generativo pre-entrenado

Desarrollado por OpenAI

GPT (110 million parameters)

• Unidireccional: entrenado para predecir la siguiente palabra en una oración

```
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

GPT-2 (1.5 billion parameters)
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9. https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

GPT-3 (175 billion parameters)
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165. https://arxiv.org/abs/2005.14165
```

Conceptos clave de GPT-v1

- Cuello de botella: falta de datos etiquetados
- 2 Proceso de entrenamiento en 2 pasos ("semi-supervisado")
- 1. Entrenamiento previo generativo (sobre datos sin etiquetar); aprendizaje no supervisado/"autosupervisado"
 - 2. Ajuste fino discriminativo (en datos etiquetados), aprendizaje supervisado
- Entrenamiento previo sobre un gran conjunto de datos BookCorpus (7000 libros)
- Basado en la arquitectura del decodificador del Transformador original ("Atención es todo lo que necesita")

Arquitectura de GPT-v1 y tareas posteriores

Figure 1: (**left**) Transformer architecture and training objectives used in this work. (**right**) Input transformations for fine-tuning on different tasks. We convert all structured inputs into token sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

Estudio de ablación GPT-v1

Table 5: Analysis of various model ablations on different tasks. Avg. score is a unweighted average of all the results. (*mc*= Mathews correlation, *acc*=Accuracy, *pc*=Pearson correlation)

Method	Avg. Score	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	MNLI (acc)	QNLI (acc)	RTE (acc)
Transformer w/ aux LM (full)	74.7	45.4	91.3	82.3	82.0	70.3	81.8	88.1	56.0
Transformer w/o pre-training Transformer w/o aux LM LSTM w/ aux LM	59.9 75.0 69.1	18.9 47.9 30.3	84.0 92.0 90.5	79.4 84.9 83.2	30.9 83.2 71.8	65.5 69.8 68.1	75.7 81.1 73.7	71.2 86.9 81.1	53.8 54.4 54.6

Algunos modelos de transformadores populares: BERT, GPT y BART

BERT: Representaciones de codificador bidireccional de transformadores

BERT (Bidirectional Encoder Representations from Transformers)

Paper: Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep

bidirectional transformers for language understanding.

https://arxiv.org/abs/1810.04805

(Google Research, 2018)

- Codificador de transformador bidireccional multicapa
- Arquitectura casi idéntica al transformador original y GPT, excepto
 - Enmascaramiento bidireccional (conocido como tarea "Cloze", Taylor 1953 *)
 - Predicción de la siguiente oración como tarea adicional de preentrenamiento

Entradas de BERT

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmentation embeddings and the position embeddings.

Las incrustaciones de tokens son incrustaciones de WordPiece* con un tamaño de vocabulario de 30.000

^{*} Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K, Klingner J. Google's neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144. 2016 https://arxiv.org/abs/1609.08144

Tareas previas al entrenamiento de BERT

Conjuntos de datos previos al entrenamiento

- BookCorpus (800 millones de palabras)
- Wikipedia (2500 millones de palabras)

Tareas previas al entrenamiento

- Modelo de lenguaje enmascarado ("Cloze")
- Predicción de la siguiente oración

Tarea 1 de preentrenamiento BERT - Modelo de lenguaje enmascarado

Sentencia de entrada: A quick brown fox jumps over the lazy dog

"Marca" el 15% de las palabras:

- 80%: Reemplaza con $[M\acute{a}scara]$
- 10%: Reemplaza con palabra aleatoria ($caf\acute{e}$)
- 10%: Dejar como está (fox) para imitar el escenario de ajuste fino

Tarea 1 de preentrenamiento BERT - Modelo de lenguaje enmascarado

Sentencia de entrada: A quick brown fox jumps over the lazy dog

Enmascarado al azar: A quick brown $[M\acute{a}scara]$ jumps over the lazy dog

Tarea 2 de preentrenamiento BERT - Predicción de la siguiente oración

Tarea de clasificación binaria equilibrada (50% IsNext, 50% NotNext)

Input = [CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP]

Label = IsNext

Input = [CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight ##less birds [SEP]

Label = NotNext

Tareas previas y posteriores al entrenamiento de BERT

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architectures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating questions/answers).

Enfoque de entrenamiento de transformadores

- 1. Entrenamiento previo en grandes conjuntos de datos sin etiquetar (aprendizaje auto-supervisado)
- 2. Capacitación para tareas posteriores sobre datos etiquetados (aprendizaje supervisado)
 - a) Enfoque de ajuste fino
 - b) Enfoque basado en características (hoy en día también llamado "ajuste fino")

Enfoque de preentrenamiento y ajuste de BERT

- Agregar capa de clasificación
- Entrene de un extremo a otro en un conjunto de datos etiquetado para la tarea posterior (actualice TODOS los parámetros)

Rendimiento de BERT vs GPT-v1

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set. BERT and OpenAI GPT are single-model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

BERT preentrenamiento y entrenamiento basado en características

- Mantenga BERT congelado después del entrenamiento previo
- Cree incrustaciones BERT para conjuntos de datos etiquetados para tareas posteriores y entrene un nuevo modelo en estas incrustaciones (en el papel original, biLSTM de 2 capas en incrustaciones de las últimas 4 capas concatenadas se desempeñó mejor)

System	Dev F1	Test F1
ELMo (Peters et al., 2018a)	95.7	92.2
CVT (Clark et al., 2018)	-	92.6
CSE (Akbik et al., 2018)	-	93.1
Fine-tuning approach		
BERT _{LARGE}	96.6	92.8
$BERT_{BASE}$	96.4	92.4
Feature-based approach (BERT _{BASE})		
Embeddings	91.0	-
Second-to-Last Hidden	95.6	-
Last Hidden	94.9	-
Weighted Sum Last Four Hidden	95.9	-
Concat Last Four Hidden	96.1	-
Weighted Sum All 12 Layers	95.5	-

Table 7: CoNLL-2003 Named Entity Recognition results. Hyperparameters were selected using the Dev set. The reported Dev and Test scores are averaged over 5 random restarts using those hyperparameters.

Algunos modelos de transformadores populares: BERT, GPT y BART

GPT-v2: Los modelos de lenguaje son aprendices multitarea sin supervisión

GPT-v1: Transformador generativo pre-entrenado

- Desarrollado por OpenAI
- Unidireccional: entrenado para predecir la siguiente palabra en una oración

GPT (110 million parameters)
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. https://cdn.openai.com/research-covers/language-understanding_paper.pdf

GPT-2 (1.5 billion parameters)

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

GPT-3 (175 billion parameters)

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165. https://arxiv.org/abs/2005.14165

Arquitectura de GPT-v1 y tareas posteriores

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input transformations for fine-tuning on different tasks. We convert all structured inputs into token sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. https://cdn.openai.com/research-covers/language-unsupervised/language understanding paper.pdf

Conceptos clave de GPT-v2

- Unidireccional como GPT-v1
- Comparado con GPT-v1
 - Modelo más grande (cuanto más grande mejor)
 - Conjunto de datos sin etiquetas más grande (cuanto más grande, mejor)
 - Sin ajuste fino (use transferencia de disparo cero en su lugar)

Arquitectura GPT-v2

- En general, similar a GPT-v1 (que se basa en el decodificador Transformador original)
- Alguna pequeña reordenación de las capas de normal y residuales
- Aumentar el tamaño del vocabulario de 30.000 -> 50.257
- Aumentar el tamaño del contexto de 512 -> 1024 tokens
- En general, 1.5 mil millones en lugar de 110 millones de parámetros

Conjunto de datos de entrenamiento GPT-v2

- WebText (millones de páginas web)
- Calidad del conjunto de datos enfatizada
- Basado en publicaciones de Reddit con más de 3 karma
 - Obtiene 45 millones de enlaces a sitios web
 - -Después del preprocesamiento y la limpieza: 8 millones de documentos
 - -40 Gb de texto

Transferencia de tareas Zero-Shot

A diferencia de GPT-v1, no hay instrucciones específicas/reorganización para tareas específicas

https://huggingface.co/models?filter=zero-shot-classification

Arquitectura de GPT-v1 y tareas posteriores

Language Models are Unsupervised Multitask Learners

Language Models are Unsupervised Multitask Learners

	LAMBADA	LAMBADA	CBT-CN	CBT-NE	WikiText2	PTB	enwik8	text8	WikiText103	1BW*
	(PPL)	(ACC)	(ACC)	(ACC)	(PPL)	(PPL)	(BPB)	(BPC)	(PPL)	(PPL)
SOTA	99.8	59.23	85.7	82.3	39.14	46.54	0.99	1.08	18.3	21.8
117M	35.13	45.99	87.65	83.4	29.41	65.85	1.16	1.17	37.50	75.20
345M	15.60	55.48	92.35	87.1	22.76	47.33	1.01	1.06	26.37	55.72
762M	10.87	60.12	93.45	88.0	19.93	40.31	0.97	1.02	22.05	44.575
1542M	8.63	63.24	93.30	89.05	18.34	35.76	0.93	0.98	17.48	42.16

Algunos modelos de transformadores populares: BERT, GPT y BART

GPT-v3: Los modelos de lenguaje son aprendices con pocas posibilidades

GPT: (Generative Pre-trained Transformer)

- Desarrollado por OpenAI
- Unidireccional: entrenado para predecir la siguiente palabra en una oración

```
GPT (110 million parameters)
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. https://cdn.openai.com/research-covers/language-
unsupervised/language_understanding_paper.pdf
```

```
GPT-2 (1.5 billion parameters)
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
```

```
GPT-3 (175 billion parameters)
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020).
Language models are few-shot learners. arXiv preprint arXiv:2005.14165. https://arxiv.org/abs/2005.14165
```

Arquitectura GPT-v3

- En general, similar a GPT-v2
- 175 mil millones en lugar de 1.5 mil millones de parámetros (más capas, etc.)
- Duplica el tamaño del contexto (2048 en lugar de 1024)
- Incrustaciones de palabras más grandes (12,8 k en lugar de 1,6 k)
- Patrón de atención de Transformador Escaso*

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating Long Sequences With Sparse Transformers, 2019.

Conjuntos de datos de entrenamiento de GPT-v3

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

Table 2.2: Datasets used to train GPT-3. "Weight in training mix" refers to the fraction of examples during training that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets are seen less than once.

Aprendizaje implícito de tareas (...mientras aprende a predecir la siguiente palabra)

Figure 1.1: Language model meta-learning. During unsupervised pre-training, a language model develops a broad set of skills and pattern recognition abilities. It then uses these abilities at inference time to rapidly adapt to or recognize the desired task. We use the term "in-context learning" to describe the inner loop of this process, which occurs within the forward-pass upon each sequence. The sequences in this diagram are not intended to be representative of the data a model would see during pre-training, but are intended to show that there are sometimes repeated sub-tasks embedded within a single sequence.

Mostrar ejemplos vs ajustes precisos

The	three settings we explore for in-context learning	Traditional fine-tuning (not used for GPT-3) Fine-tuning					
Zero	shot						
	model predicts the answer given only a natural language cription of the task. No gradient updates are performed.	The model is trained via repeated gradient updates using a large corpus of example tasks.					
	Translate English to French: task description	sea otter => loutre de mer example #1					
	cheese -> prompt	₩					
		gradient update					
		Ψ.					
One	shot	1 peppermint → menthe poivrée ← example #2					
In ac	ddition to the task description, the model sees a single						
exan	nple of the task. No gradient updates are performed.	gradient update					
	Translate English to French: task description	Ψ					
	sea otter -> loutre de mer example	*** *					
	cheese =>						
		gradient update					
In ad	-shot ddition to the task description, the model sees a few nples of the task. No gradient updates are performed.	1 cheese =>					
	Translate English to French: task description						
	sea otter => loutre de mer examples						
	peppermint => menthe poivrée						
	plush girafe -> girafe peluche						
	cheese => prompt						

Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show four methods for performing a task with a language model – fine-tuning is the traditional method, whereas zero-, one-, and few-shot, which we study in this work, require the model to perform the task with only forward passes at test time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task descriptions, examples and prompts can be found in Appendix G.

Algunos de los muchos resultados...

Figure 3.3: On TriviaQA GPT3's performance grows smoothly with model size, suggesting that language models continue to absorb knowledge as their capacity increases. One-shot and few-shot performance make significant gains over zero-shot behavior, matching and exceeding the performance of the SOTA fine-tuned open-domain model, RAG [LPP+20]

Algunos modelos de transformadores populares: BERT, GPT y BART

BART: Combinando transformadores bidireccionales y autorregresivos

BART: Combining Bidirectional and Auto-Regressive Transformers

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., & Zettlemoyer, L. (2019). BART: Denoising Sequence-toSequence Pre-training for Natural Language Generation, Translation, and Comprehension. http://arxiv.org/abs/1910.13461

BART de Facebook AI combina BERT de Google y GPT de OpenAI

La naturaleza bidireccional y autocodificadora de BERT es...

+Bueno para tareas posteriores (por ejemplo, clasificación) que requieren información sobre toda la secuencia

-No es tan bueno para tareas de generación donde la palabra generada solo debería depender de palabras generadas previamente

El enfoque unidireccional y autorregresivo de GPT es...

+Bueno para generación de texto

-No tan bueno para tareas que requieren información de secuencias completas, por ejemplo, clasificación

BART es lo mejor de ambos mundos

BART: Codificador BERT + Decodificador GPT + Transformaciones de ruido

the document is encoded bidirectionally. Missing tokens are predicted independently, so BERT cannot easily be used for generation.

(a) BERT: Random tokens are replaced with masks, and (b) GPT: Tokens are predicted auto-regressively, meaning GPT can be used for generation. However words can only condition on leftward context, so it cannot learn bidirectional interactions.

(c) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a document has been corrupted by replacing spans of text with mask symbols. The corrupted document (left) is encoded with a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder. For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final hidden state of the decoder.

Figure 1: The Transformer - model architecture.

Transformaciones de ruido en BART para el entrenamiento previo sobre datos sin etiquetar

Figure 2: Transformations for noising the input that we experiment with. These transformations can be composed.

Como un codificador automático de eliminación de ruido, optimiza la pérdida de reconstrucción

Rendimiento de BART bajo diferentes transformaciones de ruido

Model	SQuAD 1.1	MNLI	ELI5	XSum	ConvAI2	CNN/DM
	F1	Acc	PPL	PPL	PPL	PPL
BERT Base (Devlin et al., 2019)	88.5	84.3	-	-	-	-
Masked Language Model	90.0	83.5	24.77	7.87	12.59	7.06
Masked Seq2seq	87.0	82.1	23.40	6.80	11.43	6.19
Language Model	76.7	80.1	21.40	7.00	11.51	6.56
Permuted Language Model	89.1	83.7	24.03	7.69	12.23	6.96
Multitask Masked Language Model	89.2	82.4	23.73	7.50	12.39	6.74
BART Base						
w/ Token Masking	90.4	84.1	25.05	7.08	11.73	6.10
w/ Token Deletion	90.4	84.1	24.61	6.90	11.46	5.87
w/ Text Infilling	90.8	84.0	24.26	6.61	11.05	5.83
w/ Document Rotation	77.2	75.3	53.69	17.14	19.87	10.59
w/ Sentence Shuffling	85.4	81.5	41.87	10.93	16.67	7.89
w/ Text Infilling + Sentence Shuffling	90.8	83.8	24.17	6.62	11.12	5.41

Ajuste fino de datos etiquetados

- (a) To use BART for classification problems, the same input is fed into the encoder and decoder, and the representation from the final output is used.
- (b) For machine translation, we learn a small additional encoder that replaces the word embeddings in BART. The new encoder can use a disjoint vocabulary.

Figure 3: Fine tuning BART for classification and translation.

Rendimiento de BART para tareas discriminatorias

	SQuAD 1.1 EM/F1	SQuAD 2.0 EM/F1	MNLI m/mm	SST Acc	QQP Acc	QNLI Acc	STS-B Acc	RTE Acc	MRPC Acc	CoLA Mcc
BERT	84.1/90.9	79.0/81.8	86.6/-	93.2	91.3	92.3	90.0	70.4	88.0	60.6
UniLM	-/-	80.5/83.4	87.0/85.9	94.5	-	92.7	-	70.9	-	61.1
XLNet	89.0 /94.5	86.1/88.8	89.8/-	95.6	91.8	93.9	91.8	83.8	89.2	63.6
RoBERTa	88.9/ 94.6	86.5/89.4	90.2/90.2	96.4	92.2	94.7	92.4	86.6	90.9	68.0
BART	88.8/ 94.6	86.1/89.2	89.9/90.1	96.6	92.5	94.9	91.2	87.0	90.4	62.8

Table 2: Results for large models on SQuAD and GLUE tasks. BART performs comparably to RoBERTa and XLNet, suggesting that BART's uni-directional decoder layers do not reduce performance on discriminative tasks.

Rendimiento de BART para tareas generativas

	CNN/DailyMail				XSum	
	R1	R2	RL	R1	R2	RL
Lead-3	40.42	17.62	36.67	16.30	1.60	11.95
PTGEN (See et al., 2017)	36.44	15.66	33.42	29.70	9.21	23.24
PTGEN+COV (See et al., 2017)	39.53	17.28	36.38	28.10	8.02	21.72
UniLM	43.33	20.21	40.51	-	-	-
BERTSUMABS (Liu & Lapata, 2019)	41.72	19.39	38.76	38.76	16.33	31.15
BERTSUMEXTABS (Liu & Lapata, 2019)	42.13	19.60	39.18	38.81	16.50	31.27
BART	44.16	21.28	40.90	45.14	22,27	37.25

Table 3: Results on two standard summarization datasets. BART outperforms previous work on summarization on two tasks and all metrics, with gains of roughly 6 points on the more abstractive dataset.

	16.02 35.07 19.09 17.51			ConvAI2		
	Valid F1	Valid PPL				
Seq2Seq + Attention	16.02	35.07				
Best System	19.09	17.51				
BART	20.72	11.85				

Table 4: BART outperforms previous work on conversational response generation. Perplexities are renormalized based on official tokenizer for ConvAI2.

	ELI5					
	R1	R2	RL			
Best Extractive	23.5	3.1	17.5			
Language Model	27.8	4.7	23.1			
Seq2Seq	28.3	5.1	22.8			
Seq2Seq Multitask	28.9	5.4	23.1			
BART	30.6	6.2	24.3			

Table 5: BART achieves state-of-the-art results on the challenging ELI5 abstractive question answering dataset. Comparison models are from Fan et al. (2019).

Algunos modelos de transformadores populares: BERT, GPT y BART

Palabras de cierre: El reciente crecimiento de los transformadores del lenguaje

Transformadores para secuencias más largas

Transformador-XL:

- Modelo sin codificador, solo decodificador
- Entrenado para predecir la siguiente palabra en una oración
- Utiliza estados ocultos para recordar el segmento de texto anterior (512 token)
- "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context", Dai et al. 2019. https://arxiv.org/abs/1901.02860

Longformer:

- En lugar de un mecanismo de atención que escala cuadráticamente, utiliza un mecanismo de atención que escala linealmente con la longitud de la secuencia
- Utiliza segmentos de texto extremadamente largos (miles de tokens); similar a RoBERTa
- "Longformer: The Long-Document Transformer", Beltagy et al. 2020. https://arxiv.org/abs/2004.05150

GPT-3 (175 billion)

Fuente imagen: https://medium.com/huggingface/distilbert-8cf3380435b5

TECH ARTIFICIAL INTELLIGENCE

OpenAl's text-generating system GPT-3 is now spewing out 4.5 billion words a day

Robot-generated writing looks set to be the next big thing

By James Vincent | Mar 29, 2021, 8:24am EDT

https://www.theverge.com/2021/3/29/22356180/openai-gpt-3-text-generation-words-day

THE COST OF TRAINING NLP MODELS A CONCISE OVERVIEW

Or Sharir AI21 Labs ors@ai21.com Barak Peleg AI21 Labs barakp@ai21.com Yoav Shoham AI21 Labs yoavs@ai21.com

April 2020

Costos: No aptos para los débiles de corazón

- \$ 2.5k \$ 50k (modelo de parámetro de 110 millones)
- \$ 10k \$ 200k (modelo de parámetros de 340 millones)
- \$ 80k \$ 1.6m (modelo de parámetros de 1.500 millones)

Transformadores para una mejor eficiencia

Reformer:

- La atención del producto punto se reemplaza con la atención de hash sensible a la localidad (LSH)
- Esto logra la atención con O(nlog(n)) en lugar del costo de la memoria $O(n^2)$ Kitaev, N., Kaiser, Ł. and Levskaya, A., 2020. Reformer: The efficient transformer. arXiv preprint arXiv:2001.04451. https://arxiv.org/abs/2001.04451

ALBERT:

 Tamaño 5 veces más pequeño que BERT con el mismo rendimiento, debido a la compresión mediante poda

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P. and Soricut, R., 2019. Albert: A lite BERT for self-supervised learning of language representations. arXiv

• preprint arXiv:1909.11942. https://arxiv.org/abs/1909.11942

- 1. Generación de secuencias con RNN
- 2. Caracter RNN en PyTorch
- 3. RNN con atención
- 4. Atención es todo lo que necesitamos
 - 4.1 Forma básica de autoatención
 - 4.2 Atención personal y atención de productos punto
 - 4.3 Atención multicabezal
- 5. Modelos de transformadores
 - 5.1 La arquitectura del transformador
 - 5.2 Algunos modelos de transformadores populares: BERT, GPT y BART
- 6. Transformador en PyTorch