ResNet最强改进版来了! ResNeSt: Split-Attention Networks

ResNeSt: Split-Attention Networks

Hang Zhang, Chongruo Wu*, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang, Yue Sun, Tong He, Jonas Mueller, R. Manmatha, Mu Li, and Alexander Smola

Amazon, University of California, Davis*
{hzaws,chongrwu,zhongyue,yzaws,haibilin,zhiz,ysumzuz @Amuzoi
htong,jonasmue,manmatha,mli,smola}@amazon.com

《ResNeSt: Split-Attention Networks》

作者团队:亚马逊(

@张航 和 @李沐 等) &UC Davis

代码(提供PyTorch和MXNet双版本): github.com/zhanghang198

论文: hangzhang.org/files/res

前言

开头先致敬一下 ResNet! Amusi 于2020年4月17日在谷歌学术上查看ResNet的引用量,发现已高达 43413!请注意,这还只是ResNet发表短短4年多的引用量。

这里吐槽一句,现在出现很多基于NAS的新网络(趋势),暴力出奇迹,比如MobileNetV3、 EfficientNet等,但论应用场景,还是ResNet给力。实际上,很多下游工作(目标检测、图像分割等)仍然在使用ResNet或其变体,主要是因为结构简洁通用。

本文要介绍的是ResNet 的新变体: **ResNeSt**。继续将ResNet"发扬光大", 值得点赞。

Amusi 将标题注明了最强,很多人肯定会质疑是不是标题党?究竟有多强?往下看,你就知道了!

先说几组数据:

ResNeSt-50 在 ImageNet 上实现了81.13% top-1 准确率

简单地用ResNeSt-50替换ResNet-50,可以将MS-COCO上的Faster R-CNN的mAP从39.25%提高到42.33%!

简单地用ResNeSt-50替换ResNet-50,可以将ADE20K上的DeeplabV3的mloU从42.1%提高到45.1%!

性能显著提升,参数量并没有显著增加,部分实验结果如下图所示。轻松超越ResNeXt、SENet等前辈(巨人)们。

	Crop	#P	Acc	%	
ResNeSt-50 (ours)	224	27.5M	81.1		
ResNeSt-101 (ours) 256	48.3M	82.8		
ResNeSt-200 (ours	320	70.2M	83.9		
ResNeSt-269 (ours) 416	111M	84.5		
Î	Back	kbone	#	Params	Score%
FasterRCNN 46	ResNe	t-50 57	7	34.9M	39.25
rasternenn 40	ResNeSt	-50 (ou	ırs)	36.8M	42.33
D1-1-1-72	ResNe	t-50 57	7	42.2M	-42.10
DeeplabV3 [7]	ResNeSt	-50 (ou	irs)	44.0M	45.10

Table 1: (Left) Accuracy and latency trade-off on GPU using official code implementation (details in Section 5). (Right-Top) Top-1 accuracy on ImageNet using ResNeSt. (Right-Bottom) Transfer learning results: object detection mAP on MS-COCO 42 and semantic segmentation mIoU on ADE20K 71.

ResNeSt

ResNeSt 的全称是: **Split-Attention Networks**, 也就是特别引入了Split-Attention模块。如果没有猜错, ResNe**S**t 的 **S** 应该就是 **Split**。

这里要说一下,ResNeSt 实际上是站在巨人们上的"集大成者",特别借鉴了: Multi-path 和 Feature-map Attention思想。

其中:

GoogleNet 采用了Multi-path机制,其中每个网络块均由不同的卷积kernels组成。

ResNeXt在ResNet bottle模块中采用**组卷积**,将multi-path结构转换为统一操作。 **SE-Net** 通过自适应地重新校准通道特征响应来引入**通道注意力 (channel-attention) 机制**。 SK-Net 通过两个网络分支引入**特征图注意力 (feature-map attention)**。

ResNeSt 和 SE-Net、SK-Net 的对应图示如下:

Fig. 1: Comparing our ResNeSt block with SE-Net [30] and SK-Net [38]. A detailed view of Split-Attention unit is shown in Figure [2]. For simplicity, we show ResNeSt block in cardinality-major view (the featuremap groups with same cardinal group index reside next to each other). We use radix-major in the real implementation, which can be modularized and accelerated by group convolution and standard CNN layers (see supplementary material).

其中上图中都包含的 Split Attention模块如下图所示:

Fig. 2: Split-Attention within a cardinal group. For easy visualization in the figure, we use c = C/K in this figure.

从图1和图2可知,都有split的影子。比如图1中的 K(k) 和图2中的 R(r) 都是超参数,也就是共计 G = K*R 组。

限于篇幅问题,本文旨在论文速递。完整理解Split Attention模块需要涉及部分公式,这里建议大家结合原文和代码进行理解。目前代码已经提供PyTorch和MXNet两个版本。

github.com/zhanghang198

同时论文还介绍了训练策略,这个对大家目前的工作应该具有很大的参考价值(涨点tricks)。

Large Mini-batch Distributed Training
Label Smoothing
Auto Augmentation
Mixup Training
Large Crop Size
Regularization

实验结果

ResNeSt 在ImageNet 图像分类性能如下,轻松超越SKNet、SENet、ResNetXt和ResNet。

	// D	GFLOPs	top-1 acc (%)		
	#P	Grlops	224×	$320 \times$	
ResNet-50 23	25.5M	4.14	76.15	76.86	
ResNeXt-50 [60]	25.0M	4.24	77.77	78.95	
SENet-50 29	27.7M	4.25	78.88	80.29	
ResNetD-50 [26]	25.6M	4.34	79.15	79.70	
SKNet-50 [38]	27.5M	4.47	79.21	80.68	
ResNeSt-50-fast(ours)	27.5M	4.34	80.64	81.43	
ResNeSt-50(ours)	27.5M	5.39	81.13	81.82	
ResNet-101 23	44.5M	7.87	77.37	78.17	
ResNeXt-101 [60]	44.3M	7.99	78.89	80.14	
SENet-101 29	49.2M	8.00	79.42	81.39	
ResNetD-101 26	44.6M	8.06	80.54	81.26	
SKNet-101 [38]	48.9M	8.46	79.81	81.60	
ResNeSt-101-fast(ours)	48.2M	8.07	81.97	82.76	
ResNeSt-101(ours)	48.3M	10.2	82.27	83.00	

Table 3: Image classification results on ImageNet, comparing our proposed ResNeSt with other ResNet variants of similar complexity in 52-12-22-21-191-layer configurations. We report top-1 accuracy using crop sizes 224 and 320.

ResNeSt 和其他SoTA的CNN模型进行性能比较(特别是NAS阵营)

	#P	crop	img/sec	acc(%)
ResNeSt-101(ours)	48M	256	291.3	83.0
EfficientNet-B4 [55]	19M	380	149.3	83.0
SENet-154 29	146M	320	133.8	82.7
NASNet-A 74	89M	331	103.3	82.7
AmoebaNet-A 45	87M	299	-	82.8
ResNeSt-200 (ours)	70M	320	105.3	83.9
EfficientNet-B5 55	30M	456	84.3	83.7
AmoebaNet-C 45	155M	299	_	83.5
ResNeSt-269 (ours)	111M	416	51.2	84.5
GPipe	557M	-	-	84.3
EfficientNet-B7 55	66M	600	34.9	84.4

Table 4: Accuracy vs. Latency for SoTA CNN models on ImageNet with large crop sizes. Our ResNeSt model displays the best trade-off (additional details/results in Appendix). EfficientNet variants b2-b7 are described in [55]. ResNeSt variants use a different number of layers listed in red. Average Inference latency is measured on a NVIDIA V100 GPU using the original code implementation of each model with a mini-batch of size 16.

ResNeSt 在MS-COCO 目标检测和实例分割任务上的表现性能如下,涨点太恐怖!

	Method	Backbone	mAP%
논		ResNet101 22	37.3
Work	Faster-RCNN [46]	ResNeXt101 5 60	40.1
		SE-ResNet101 29	41.9
rior	Faster-RCNN+DCN 12	ResNet101 5	42.1
Д	Cascade-RCNN 2	ResNet101	42.8
		ResNet50 57	39.25
	Faster-RCNN 46	ResNet101 57	41.37
Our Results		ResNeSt50 (ours)	42.33
		ResNeSt101 (ours)	44.72
	[ResNet50 57	42.52
	Cascade-RCNN 2	ResNet101 57	44.03
		ResNeSt50 (ours)	45.41
		ResNeSt101 (ours)	47.50
	Cascade-RCNN 2	ResNeSt200 (ours)	49.03

Table 5: Object detection results on the MS-COCO validation sets Both Faster-RCNN and Cascade-RCNN are significantly improved by our ResNeSt backbone.

×	Method	Backbone	box mAP%	mask mAP%
Work	DCV-V2 72	ResNet50	42.7	37.0
r V	HTC 4	ResNet50_	43.2	38.0
Prior	Mask-RCNN 22	ResNet101 5	39.9	36.1
Ъ	Cascade-RCNN 3	ResNet101	44.8	38.0
		ResNet50 57	39.97	36.05
Results	Mask-RCNN 22	ResNet101 57	41.78	37.51
		ResNeSt50 (ours)	42.81	38.14
esı		ResNeSt101 (ours)	45.75	40.65
Our R		ResNet50 57	43.06	37.19
	Cascade-RCNN 2	ResNet101 57	44.79	38.52
		ResNeSt50 (ours)	46.19	39.55
		ResNeSt101 (ours)	48.30	41.56

Table 6: Instance Segmentation results on the MS-COCO validation set. Both Mask-RCNN and Cascade-RCNN models are improved by our ResNeSt backbone. Models with our ResNeSt-101 outperform all prior work using ResNet-101.

ResNeSt 在ADE20K 语义分割任务上的表现性能如下:

Method	Backbone	pixAcc%	mIoU%		Method	Backbone	mIoU%
UperNet 59	ResNet101	81.01	42.66		DANet 16	ResNet101	77.6
FSPNet 69	ResNet101	81.39	43.29	ork	PSANet 70	ResNet101	77.9
≥ EncNet 65	ResNet101	81.69	44.65	1	PSPNet 69	ResNet101	78.4
5 CFNet 66	ResNet101	81.57	44.89	ior	AAF 33	ResNet101	79.2
OCNet 63	ResNet101	-	45.45	Pr	DeeplabV3 7	ResNet101	79.3
ACNet 17	ResNet101	81.96	45.90		OCNet 63	ResNet101	80.1
	ResNet50 21	80.39	42.1	1		ResNet50 21	78.72
DeeplabV3 7	ResNet101 21	81.11	44.14	ırs	DeeplabV3 7	ResNet101 21	79.42
o Deeblan v 3	ResNeSt-50 (ours)	81.17	45.12	Ō	Deeplad v 3	ResNeSt-50 (ours)	79.87
	ResNeSt-101 (ours)	82.07	46.91			ResNeSt-101 (ours)	80.42

Table 7: Semantic segmentation results on validation set of: Approximately, Citscapes (Right). Models are trained without coarse labels or extra data.

欢迎各位CVers点赞支持!也推荐大家关注 <u>计算机视觉论文速递</u> 知乎专栏和 <u>CVer</u> 微信公众号,可以快速了解到最新优质的CV论文。