הרצאה 8 אלגוריתמים

המשך הוכחה מהרצאה 7:

 $I_j \in X \Leftrightarrow I_J \in , 1 \leq j \leq k$ בעד: הנחת האינדוקצייה היא שיש פתרון אופטימלי בך הנחת האינדוקצייה היא איש פתרון אופטימלי X^*

 $:I_{k+1}$ -ב בחירת האלגוריתם ב- לפני מקרים לפני נתבונן באינטרוול k+1

- אינטרוול אינטרוול ובהכרח קיים אינטרוול אחרת אחרת אינטרוול ובהכרח קיים אינטרוול $I_{k+1} \in X^* \text{ אם } I_{k+1} \in X \text{ .1}$ ב-
- נבים לב . I_{k+1} עם אנטרוול מ-* X^* שנחתך בעל בעל בעל בעל בעל בעל אינדקס בעל האינטרוול ראינטרוול $r \geq k+2$
 - . (מהנ"א) $I_r \in X^*$ שכן אלו $I_r \in X^*$ מפני ש- $r \leq k$ מפני אלו אלו
- X^* -ב הוא היחיד ב- ווא נשים לב היחיד ב- זוהי בחר את בחר הוא היחיד ב- זוהי היחיד ב- ווא היחיד ב- ווא היחיד ב- ווא שנחתך עם ווא ב- ווא היחיד ב- וו
 - (אחרת X^* לא אופטימלי).
 - נסתכל על $X^* \backslash \{I_r\} \cup \{I_{k+1}\}$ ונוכיח שהוא פתרון ווסענה תנבע מכך ש- $|X^*| = |X^* \backslash \{I_r\} \cup \{I_{k+1}\}|$

 $X^*ackslash\{I_r\}$ -נראה ש- I_{k+1} לא נחתך עם אף אינטרוול ב

- (א) נחתך עם משימום עם אינדקסים I_{k+1} לא. I_{k+1}
- (ב) אינדקסים $l_{k+1}, k+2, \ldots, r-1$ נחתך עם משימום עם משימום לא I_{k+1}
 - (ג) האם I_{k+1} נחתך עם משימום עם אינדקסים וואר לא. אינדקסים $I_{k+1} \in X^* \backslash \{I_r\} \cup \{I_{k+1}\} \Leftarrow$
- שני במקרה כזה ב-* X^* לפי הנ"א, איכול להכיל את לא לא לפי לפי לפי לפי לפי לפי לפי לפי לא לפי אינטרוולים אינטרוולים אינטרוולים אינטרוולים אינטרוולים אינטרוולים שנחתכים.

שאלה:

לכלכ אינטרוול I_i נתון פמספקים. כיצד ממקסמים הבקשות נתון נתון לכלכ אינטרוול לכלכ יעד ממקסמים.

Huffman קידוד

בגדול, בהנתן קובץ המורכב מאוסף תווים, רוצים למצוא כיצד "לקודד" אותו כך שאורך הקובץ המקודד

יהיה קצר ככל הניתן. בקידוד כל תו בקובץ יהפוך למחרוזות בינארית (באורך כלשהו).

 $w_i \in \{0,1\}$ $w=w_1w_2\ldots w_n$ מילת קוד היא מחרוזת בינארית

.l(w) ישומן ע"י מילת הקוד w מילת מילת של

קוד הוא אוסף של מילות קוד.

דוגמה:

$$C_1=01,\,C_2=0,\,C_3=10$$
 כאשר כאשר כ ב $C=\{\,C_1\,,\,C_2\,,\,C_3\,\}_{(a_1)}^{(a_2)}_{(a_2)}^{(a_3)}$. פעולת הקידוד נעשית ע"י החלפת כל תו במילת הקוד

$$a_1a_2a_3 \longrightarrow 01010$$
 לומר

אנו נרצה להגביל את עצמינו לקידוד שיש רק דרך אחת לפענח אותו.

נתמקד בקודים <u>חסרי רישאות,</u> שבהם אין מילת קוד שהיא רישא של מילת קוד אחרת. עבור קודים חסרי רישאות, הפיענוח פשוט ונעשה ע"י קריאה של הקובץ המקודד.

 f_i תווים כך שלתו הi נתונה תדירות n

מטרה: אחת אחת דרך איש היי, מותאם למילת הוו ה-iהתו שבו קוד למצוא למילת מטרה: מטרה התו היי שבו התו

$$\sum_{i=1}^n l(c_i) \cdot f_i$$
 המביאה למינימום

טענה (לא להוכחה):

מבין הפתרונות האופטימליים קיים אחד לפחות שהוא קוד חסר רישאיות.

האם קיימת דרך נוחה לייצג קוד חסר רשאיות?

ניתן להציג קוד חסר רישאות ע"י עץ בינארי

(למשל שמאלה זה 1 וימינה 0) כאשר העלים הם מילות הקוד.

טענה 1

קוד אופטימלי מיוצג ע"י עץ מלא (לכל צומת שאינו עלה יש שני ילדים ישירים).

הוכחה בתרגול.

:הרעיון

שני העלים עם התדירות הנמוכה ביותר יהיו עלים אחים עמוקים ביותר בעץ.

האלגוריתם של Huffman

 $f_1 \geq f_2 \geq \cdots \geq f_n$:נמיין את התווים הנתונים לפי התדירויות: .1

- $f_{n-1} +$ הדירות בעל "מלאכותי" תו נכניס ובמקומם ה-n-1וה- ה-ווים את נוציא .2 T' נפתור רקורסיבית את הבעיה עבור הקלט המצומצם ונקבל עץ
 - - ישירים שני לדים שני התו המלאכותי את לעלה שמייצג את ב-'T נוסיף לעלה שמייצג את התו n-1התו התו מייצג את התו הn-1השני את מייצג את כאשר נסמן ב-T את התו המתקבל.
 - T את את 4

עץ: מחזירים אם מחזירים עץ: מחזירים מחזירים עץ: מה תנאי העצירה של האלגוריתם הרקורסיבי?

דוגמה:

$$f_1 = 1, f_2 = 2, f_3 = 3, f_4 = 4, f_5 = 5$$

$$\{C_1, C_2, C_3, C_4\}$$

$$\{C_1, C_2, C_{34}\}$$

$$\{C_{12}, C_{34}\}$$

2 טענה

יהיו y-ותר העדרים הנמוכים ביותר. y-ותר שתי מילות יהיו . ביותר מוכים עלים עלים שבו y-ו שבו דיותר שופטימלי אזי קיים פתרון אופטימלי אזי שבו דיותר

 $f_a \leq f_b$ וגם $f_x \leq f_y$ יהי עץ אופטימלי: בה"כ, $f_a \leq f_b$

b-ו y ובין a-ו x ובין בו נחליף בין T' ובין T' מהו השינוי בערך של T?

מסקנה:

zב ונסמן ביותר הנמוכות ביותר בעלי בעלי בעלי את את ביותר ונסמן ב-xאת התו המלאכותי שהוספנו במקום שניהם.

.T את ערך העץ cost(T)-ב נסמן

נסמן ב- T^{\prime} את העץ המתקבל מהקריאה הרקורסיבית, אזי:

$$cost(T) = cost(T') - l_T(z) \cdot f_z + (l_{T'}(Z) + 1)(f_x + f_y) = cost(T') + f_x + f_y$$

נכונות האלגוריתם נובעת מטענה 2 והמסקנה (ניתן להוכיח בשלילה).