Gutes Äffchen – böses Äffchen

Überleben im Zoo dank Entscheidungsbäumen

Beißt

06

Beißt nicht

Haben Sie gelernt, wer beißt?

Lächelt der Mund?

Beißt

01

Beißt nicht

beißt nicht

beißt

beißt nicht

beißt nicht

beißt

beißt

beißt nicht

beißt nicht

beißt nicht

beißt nicht

beißt nicht

beißt

beißt nicht

Was soll ich am Wochenende unternehmen? Entwerfen Sie einen Entscheidungsbaum!

Weekend	Weather	Parents	Money	Decision
Wl	Sunny	Yes	Rich	Cinema
W2	Sunny	No	Rich	Tennis
W3	Windy	Yes	Rich	Cinema
W4	Rainy	Yes	Poor	Cinema
W5	Rainy	No	Rich	Stay In
W6	Rainy	Yes	Poor	Cinema
W7	Windy	No	Poor	Cinema
W8	Windy	No	Rich	Shopping
W9	Windy	Yes	Rich	Cinema
W10	Sunny	No	Rich	Tennis

Welches Attribut steht im Wurzelknoten Ihres Baums? Warum?

Welches Attribut ist am "hilfreichsten" für die Entscheidungsfindung?

Weekend	Weather	Parents	Money	Decision
Wl	Sunny	Yes	Rich	Cinema
W2	Sunny	No	Rich	Tennis
W3	Windy	Yes	Rich	Cinema
W4	Rainy	Yes	Poor	Cinema
W5	Rainy	No	Rich	Stay In
W6	Rainy	Yes	Poor	Cinema
W7	Windy	No	Poor	Cinema
W8	Windy	No	Rich	Shopping
W9	Windy	Yes	Rich	Cinema
W10	Sunny	No	Rich	Tennis

Ein Attribut sollte möglichst weit oben im Baum stehen, wenn seine verschiedenen Attributwerte zu möglichst klaren Entscheidungen führen.

Bsp.: Money als Wurzel. Argument: Wenn Money=Poor, geht man auf jeden Fall ins Kino Bsp.: Parents als Wurzel. Argument: Wenn Parents=Yes, geht man auf jeden Fall ins Kino

Der Gini-Koeffizient

- Der Gini-Koeffizient ist eine Zahl zwischen 0 und 1
- misst, wie heterogen ("unordentlich") die Daten sind, d.h. wie ungleichmäßig die Werte des Ziel-Features verteilt sind
- Gini = 0: Alle Daten haben beim Ziel-Feature denselben Wert → perfekte Ordnung
- Bsp. Weather=Windy → Werte bei Decision:
 [Cinema, Cinema, Shopping, Cinema]
 - → ziemlich einheitlich → niedriger Gini-Koeffizient
- Bsp. Parents=No →
 [Tennis, Stay-In, Cinema, Shopping, Tennis]
 - → eher uneinheitlich → hoher Gini-Koeffizient

Weekend	Weather	Parents	Money	Decision
Wl	Sunny	Yes	Rich	Cinema
W2	Sunny	No	Rich	Tennis
W3	Windy	Yes	Rich	Cinema
W4	Rainy	Yes	Poor	Cinema
W5	Rainy	No	Rich	Stay In
W6	Rainy	Yes	Poor	Cinema
W7	Windy	No	Poor	Cinema
W8	Windy	No	Rich	Shopping
W9	Windy	Yes	Rich	Cinema
W10	Sunny	No	Rich	Tennis

Der Gini-Koeffizient (die Gini-Unreinheit)

Weekend	Weather	Parents	Money	Decision
Wl	Sunny	Yes	Rich	Cinema
W2	Sunny	No	Rich	Tennis
W3	Windy	Yes	Rich	Cinema
W4	Rainy	Yes	Poor	Cinema
W5	Rainy	No	Rich	Stay In
W6	Rainy	Yes	Poor	Cinema
W7	Windy	No	Poor	Cinema
W8	Windy	No	Rich	Shopping
W9	Windy	Yes	Rich	Cinema
W10	Sunny	No	Rich	Tennis

$$Gini(D) = 1 - \sum_{i=1}^{K} (p_i)^2$$

Maximalwert 1, aber in der Regel deutlich niedriger

- Bei 2 möglichen Werten: Maximalwert Gini = 0,5
- Bei n möglichen Werten: Maximalwert Gini = $1 \frac{1}{n}$ (nähert sich 1)

- D: (Ausgewählte) Datensätze
- K: Anzahl möglicher Werte für das Ziel-Feature
 - hier: K=4 (4 Entscheidungen möglich)
- p_i : relative Häufigkeit des i-ten Werts in D
 - Bsp: In der Gesamtliste ist $p_{cinema} = \frac{6}{10}$ (an 6 von 10 Wochenenden gehe ich ins Kino)

• Gini(Gesamt) =
$$1 - \left(\frac{6}{10} \right)^2 + \left(\frac{2}{10} \right)^2 + \left(\frac{1}{10} \right)^2 + \left(\frac{1}{10} \right)^2 \right) = 0,58$$

Trennschärfe bestimmen

- Wir wollen herausfinden, wie gut wir das
 Zielmerkmal (hier: Decision) anhand der
 Werte eines anderen Merkmals vorhersagen
 können
- Bsp.: Es wäre ideal, wenn wir bei Parents=no immer Tennis spielen und bei Parents=yes immer ins Kino gehen würden
- Dann wäre Parents der perfekte
 Wurzelknoten für unseren
 Entscheidungsbaum, weil es ausreicht, für
 einen unbekannten Datensatz dessen Wert
 bei Parent zu betrachten, um eine
 Entscheidung zu treffen

Weekend	Weather	Parents	Money	Decision
W1	Sunny	Yes	Rich	Cinema
W2	Sunny	No	Rich	Tennis
W3	Windy	Yes	Rich	Cinema
W4	Rainy	Yes	Poor	Cinema
W5	Rainy	No	Rich	Stay In
W6	Rainy	Yes	Poor	Cinema
W7	Windy	No	Poor	Cinema
W8	Windy	No	Rich	Shopping
W9	Windy	Yes	Rich	Cinema
W10	Sunny	No	Rich	Tennis

Wie schätzt du die Trennschärfe von Parents ein?

Aufteilungen bewerten: Der *gewichtete* Gini-Koeffizient

Warum ist die Gewichtung notwendig?
Stell dir vor, es gäbe 9
Datensätze mit Parents=yes und nur 1 mit Parents=no

٦	Weekend	Weather	Parents	Money	Decision
	W1	Sunny	Yes	Rich	Cinema
5 Dalama".	W3	Windy	Yes	Rich	Cinema
5 Datensätze	W4	Rainy	Yes	Poor	Cinema
	W6	Rainy	Yes	Poor	Cinema
	W9	Windy	Yes	Rich	Cinema

Weather	Parents	Money	Decision
Sunny	No	Rich	Tennis
Rainy	No	Rich	Stay In
Windy	No	Poor	Cinema
Windy	No	Rich	Shopping
Sunny	No	Rich	Tennis
	Sunny Rainy Windy Windy	Sunny No Rainy No Windy No Windy No	Sunny No Rich Rainy No Rich Windy No Poor Windy No Rich

5 Datensätze

$$Gini(F) = \sum_{v \in V_F} p_v \cdot Gini(F = v)$$

- *F*: ein Feature (Bsp. *Parents*)
- V_F : mögliche Werte dieses Features (Bsp. $\{yes, no\}$)
- v: ein bestimmter Wert (Bsp. no)
- p_v : relative Häufigkeit von F=v in den Daten (Bsp. $p_{no}=\frac{5}{10}$)

Gini(parents=no)

Weekend	Weather	Parents	Money	Decision
Wl	Sunny	Yes	Rich	Cinema
W2	Sunny	No	Rich	Tennis
W3	Windy	Yes	Rich	Cinema
W4	Rainy	Yes	Poor	Cinema
W 5	Rainy	No	Rich	Stay In
W6	Rainy	Yes	Poor	Cinema
W7	Windy	No	Poor	Cinema
W8	Windy	No	Rich	Shopping
W9	Windy	Yes	Rich	Cinema
W10	Sunny	No	Rich	Tennis

•
$$p_{Tennis} = \frac{2}{5}$$

•
$$p_{Stay-In} = \frac{1}{5}$$

•
$$p_{Shopping} = \frac{1}{5}$$

•
$$p_{Cinema} = \frac{1}{5}$$

• Gini(Parents=No) =
$$1 - \left(\left(\frac{2}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{1}{5}\right)^2\right)$$

$$= 0.72$$

Gini(parents=yes)

Weekend	Weather	Parents	Money	Decision
Wl	Sunny	Yes	Rich	Cinema
W2	Sunny	No	Rich	Tennis
W3	Windy	Yes	Rich	Cinema
W4	Rainy	Yes	Poor	Cinema
W5	Rainy	No	Rich	Stay In
W6	Rainy	Yes	Poor	Cinema
W7	Windy	No	Poor	Cinema
W8	Windy	No	Rich	Shopping
W9	Windy	Yes	Rich	Cinema
W10	Sunny	No	Rich	Tennis

•
$$p_{Cinema} = \frac{5}{5}$$

•
$$p_{Tennis} = \frac{0}{5}$$

•
$$p_{Stay-In} = \frac{0}{5}$$

•
$$p_{Stay-In} = \frac{0}{5}$$

• $p_{Shopping} = \frac{0}{5}$

• Gini(Parents=Yes) =
$$1 - \left(\left(\frac{5}{5}\right)^2 + \left(\frac{0}{5}\right)^2 + \left(\frac{0}{5}\right)^2 + \left(\frac{0}{5}\right)^2 + \left(\frac{0}{5}\right)^2\right)$$

$$-1 - 1 - 0$$

Aufteilungen bewerten: Der *gewichtete* Gini-Koeffizient

$$Gini(F) = \sum_{v \in V_F} p_v \cdot Gini(F = v)$$

$$Gini(Parents) = \frac{5}{10} \cdot 0 + \frac{5}{10} \cdot 0,72 = 0,36$$

Formelsammlung TGI

6.2 Gini-Unreinheit

Für eine (ausgewählte) Menge von Datensätzen *D* und einem Ziel-Feature mit *k* möglichen Ausprägungen ist die **Gini-Unreinheit** (auch: Gini-Koeffizient, Gini-Index, Gini Impurity) wie folgt definiert:

$$Gini(D) = 1 - \sum_{i=1}^{k} (p_i)^2$$

wobei p_i die relative Häufigkeit der i-ten Ausprägung des Ziel-Merkmals ist.

Mit Gini(F = v) bezeichnen wir die Gini-Unreinheit der Auswahl von Datensätzen, bei denen das Merkmal/Feature F den Wert v hat.

Ein Feature F kann verschiedene Werte $v \in V_f$ annehmen. Tritt ein bestimmter Wert v mit der relativen Häufigkeit p_v auf, dann berechnet sich die **gewichtete Gini-Unreinheit** für das Feature F folgendermaßen:

$$Gini(F) = \sum_{v \in V_F} p_v \cdot Gini(F = v)$$

Aufgabe

Weekend	Weather	Parents	Money	Decision
Wl	Sunny	Yes	Rich	Cinema
W2	Sunny	No	Rich	Tennis
W3	Windy	Yes	Rich	Cinema
W4	Rainy	Yes	Poor	Cinema
W5	Rainy	No	Rich	Stay In
W6	Rainy	Yes	Poor	Cinema
W7	Windy	No	Poor	Cinema
W8	Windy	No	Rich	Shopping
W9	Windy	Yes	Rich	Cinema
W10	Sunny	No	Rich	Tennis

- Berechne die gewichteten Gini-Koeffizienten für die Features
 - Money und
 - Weather

Lösung

Weekend	Weather	Parents	Money	Decision
Wl	Sunny	Yes	Rich	Cinema
W2	Sunny	No	Rich	Tennis
W3	Windy	Yes	Rich	Cinema
W4	Rainy	Yes	Poor	Cinema
W5	Rainy	No	Rich	Stay In
W6	Rainy	Yes	Poor	Cinema
W7	Windy	No	Poor	Cinema
W8	Windy	No	Rich	Shopping
W9	Windy	Yes	Rich	Cinema
W10	Sunny	No	Rich	Tennis

•
$$Gini(Money) = \frac{3}{10} \cdot 0 + \frac{7}{10} \cdot 0,694 = 0,486$$

•
$$Gini(Weather) = \frac{3}{10} \cdot 0,444 + \frac{3}{10} \cdot 0,444 + \frac{4}{10} \cdot 0,375 = 0,416$$

•
$$Gini(Parents) = \frac{5}{10} \cdot 0 + \frac{5}{10} \cdot 0,72 = 0,36$$

Parents hat den niedrigsten Gini-Wert, d.h. sorgt für am meisten Ordnung

→ bester Wurzelknoten des Entscheidungsbaums

So sieht unser Entscheidungsbaum jetzt aus

Wie geht es jetzt weiter?

- Wir ergänzen jeden Teilbaum nach derselben Methode wie eben
 - gewichtete Gini-Koeffizienten für alle Features (außer *Parents*) berechnen. Feature mit bestem (= niedrigsten) Wert auswählen
- Rekursion!

So sieht unser Entscheidungsbaum jetzt aus

Wichtig: In jedem Teilbaum nur noch diejenigen Datensätze verwenden, die zu den getroffenen Entscheidung passen!

• Bsp.: Im Ast Parents=Yes müssen alle Daten beim Feature Parents den Wert Yes haben.

Entscheidungsbaum der Tiefe 2

