

Tomasz Krawczyk

tkrawczyk@future-processing.com

WWW.FUTUREDEVDAY.PL

Agenda

- Big Data
- Lambda Architecture
- Big Data Project
- Azure as a Big Data Platform
- Our Solution

Big Data 3V

Data Volume

• Byte One grain of rice

• Kilobyte Cup of rice

Megabyte 8 bags of rice

• Gigabyte 3 semi trucks

Terabyte 2 container ships

Petabyte Blankets Manhattan

• Exabyte Blankets west coast states

• Zettabyte Fills the Pacific Ocean

Yottabyte As earth-sized rice ball

Data Variety

- Structured
- Unstructured
- Semi-structured
- All the above

Data Velocity

- Near to Real Time
- Batch

Lambda Architecture

Data Lake Approach

What is Data Lake?

"If you think of a datamart (a subset of a data warehouse) as a store of bottled water – cleansed and packaged and structured for easy consumption – the data lake is a large body of water in a more natural state,"

Pentaho CTO James Dixon

Source: https://premiumwaters.com

Source: https://snowbrains.com

I(ngest) S(tore) A(nalyse) S(urface) A(ct)
Make Me More Money

Big Data Project

Input Data

- IoT (400 000 Meters)
- Source OnPremise Oracle Database
- 30 TB Initial Load
- 15 GB Daily Load (Batch Mode)

Data Processing

- 7 problems = 7 algorithms(Mathematical and analytical models)
- Batch mode
- Total Processing Time < 8h

Output data

- KPIs
- Visualizations (Maps, Charts...)
- Access to raw data
 - Detailed Queries (Point Queries)

Big Data Project - Basic Concept

OnPremise + Oracle

Azure Storage

Azure + Hadoop + Python

Azure + .Net Core + React

Azure - Lambda architecture (Cold Path)

Azure - Big Data Storage

Azure Blob Storage

- General purpose object store
- Object store with flat namespace
- Hot/cold/archive tiers
- Data replication and redundancy options

Azure Data Lake Storage (Gen1)

- Unlimited storage, petabyte files
- WebHDFS-compatible REST interface
- Hadoop and big data optimizations
- Supports files and folders objects

Azure Data Lake Storage (Gen2)

- Multi-modal combining features from both of the above
- Not a separate service: Azure Storage with new features

Azure Big Data - Compute

Less administrative effort

Greater administrative effort

Greater integration with various Apache projects

Less integration with various Apache projects

Azure Data Factory

- Fully managed service to support orchestration of data movement and transformation
- Connect to relational or non-relational data that is on-premises or in the cloud
- Allows monitor and manage data processing pipelines
- Version 1 and 2 (+SSIS)

Loading Data - Ingest

Challenges

- More than 100 Queries
- Incremental Load

Loading Data - Ingest

Query = Where (Inserted Date Between Last Load and Now)

Data Processing - Analyse

Data Processing - Basic Analysis

Select

Select

Data Processing - Advanced Analysis

Python is a king of data science

Data sources and sinks

Data Processing - Analyse

Create Cluster on demand, run job and terminate cluster

Data Processing - Results -Interactive Queries

Results - Interactive Queries

Query:

ObjectId = 1101 Date Between 2018-09-01 and 2018-11-30

MOD = 1101 % 1000 = 101

YYYYMM = 201809

YYYYMM = 201810

YYYMM = 201811

Result = (Read Part1 (YYYYMM=201810 MOD =101) + Read Part2 (YYYYMM=201811 MOD =101) + Read Part3 (YYYYMM=201811 MOD =101))+ Merge

System Architecture

