

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MATHEMATICS

18MAB203T- Probability and Stochastic Processes

Module – IV Tutorial Sheet - 12

		Tutorial Sheet - 12	
	Sl.No.	Questions	Answer
		Part – B	
1		$X(t)$ is a process with mean $\mu(t) = 3$ and $R_{xx}(\tau) = 9 + 4e^{-0.2 \tau }$. Determine the mean,	(i) 3 (ii) 3
		ne covariance of the random variables	(iii) 4 (iv) 4 (v) 2.19
2	$X(t) = A\cos(\omega t - \omega t)$	processes $X(t)$ and $Y(t)$ are given by $(t) + \theta$, $Y(t) = A\sin(\omega t + \theta)$, where A and ω are θ is a uniform random variable over $(0, 2\pi)$.	
3	Prove that the WSS rando	•	
		$\theta + \varphi$, is given by $R_{XY}(\tau) = \frac{AB}{2}\cos(\omega\tau + \varphi)$. of φ when $X(t)$ and $Y(t)$ are orthogonal.	
	T	Part-C	
4	and Y and $E(X) = E(Y) = 0$ $\{V(t)\}$ are incompared.	$t+Y\sin t$, and $V(t)=Y\cos t+X\sin t$ where X are independent RV's such that, $O; E(X^2)=E(Y^2)=1$, show that $\{U(t)\}$ and dividually stationary in the wide sense, but intly wide-sense stationary	
5	Two rando $X(t) = A\cos \omega t + A\cos \omega t$ and B are ran show that $X(t)$ B are uncorrel variance. Provistationary, find	om variables are defined by $B \sin \omega t$ and $Y(t) = B \cos \omega t - A \sin \omega t$ where A dom variables and ω is a constant. we can and $Y(t)$ are wide sense stationary if A and ated zero mean random variables with same we that $X(t)$ & $Y(t)$ are jointly wide sense ding the cross-correlation function.	$R_{XY}(\tau) = -\sigma^2 \sin \omega \tau$
6	RV uniformly	$O(t+\theta)$ and $Y(t) = 20\sin(10t+\theta)$ where θ is a y distributed in $(0, 2\pi)$, prove that the $Y(t)$ and $Y(t)$ are jointly wide-sense	
7	Z(t) = A(t) - B(t)	s-correlation function of $w(t) = A(t) + B(t)$ & where A(t) & B(t) are statistically random variable with Zero mean and	$R_{\scriptscriptstyle WZ}(\tau) = -2e^{- \tau }$

autocorrelation	function	$R_{AA}(\tau) = e^{- \tau }$ $R_{BB}(\tau) = 3e^{- \tau }$	
respectively		BB V	