

NAS 811

NORMA ADIF SEÑALIZACIÓN

DISEÑO DE INSTALACIONES DE CONTROL, MANDO Y SEÑALIZACIÓN

1ª EDICIÓN: ENERO 2021

CONTROL DE CAMBIOS Y VERSIONES

Revisión		Modificaciones	Puntos Revisados	
Nō	Fecha		Nevisados	

EQUIPO REDACTOR

Grupo de Trabajo GT-400. Sistemas de mando, señales y detección de trenes.

Propone:	Aprueba:
* GRUPO DE TRABAJO * GT-400 Odif	COMITÉ DE NORMATIVA Fecha: 22 - enero - 2021
Grupo de trabajo GT-400 Fecha: 24 de noviembre de 2020	Comité de Normativa Reunión de 22 de enero de 2021

NORMA ADIF SEÑALIZACIÓN		ADMINISTRADOR DE INFRAES	ADMINISTRADOR DE INFRAESTRUCTURAS FERROVIARIAS	
DISEÑO DE INSTALACIONES DE CONTROL, MANDO Y SEÑALIZACIÓN		COMITÉ DE NORMATIVA	COMITÉ DE NORMATIVA	
NAS 811	1ª EDICIÓN	ENERO 2021	Pág. 2 de 25	

INDICE DE CONTENIDOS	PAGINA
1 OBJETO	4
2 CAMPO DE APLICACIÓN	4
3 ABREVIATURAS Y DEFINICIONES	4
4 DATOS DE ENTRADA	6
5 DATOS DE SALIDA	6
6 REQUISITOS PARA EL DISEÑO DEL SISTEMA CMS 6.1DENOMINACIÓN DE ELEMENTOS	6 6 10
6.5CALCES DE PROTECCIÓN	12 13
6.9PASUS A NIVEL 6.10 DESLIZAMIENTOS 6.11 BLOQUEOS 6.12 DETECTORES 6.13 LÍMITES DE MANIOBRA 6.14 MANIOBRAS LOCALES 6.15 REPLANTEOS	
7 NORMATIVA DEROGADA	17
8 DOCUMENTACIÓN DE REFERENCIA	18
9 DISPOSICIONES TRANSITORIAS Y ENTRADA EN VIGOR	19
ANEJO 1. EJEMPLOS DE DISEÑO DE INSTALACIONES DE CONTROL, MANDO Y SEÑALIZACIÓN 1.SEÑALES 2.SISTEMAS DE DETECCIÓN DE TREN	21 23

1.-OBJETO

El objeto de este documento es normalizar los requisitos, en forma de criterios o principios ya establecidos, para el diseño de las instalaciones de control, mando y señalización en tierra.

Estos requisitos permiten, tomando como dato de entrada la configuración de vías, aparatos de vía y demás elementos de la infraestructura y energía, determinar la configuración de los elementos necesarios de CMS en vía y su emplazamiento.

Los requisitos descritos en este documento serán complementados por condiciones o restricciones de aplicación de los productos (especificaciones técnicas, manuales, etc.).

2.-CAMPO DE APLICACIÓN

El presente documento es de aplicación a las nuevas instalaciones de la Red Ferroviaria de Interés General (RFIG).

3.-ABREVIATURAS Y DEFINICIONES

3.1.-ABREVIATURAS Y ACRÓNIMOS

ASFA	Anuncio de Señales y Frenado Automático	
AV	Alta Velocidad	
ВА	Bloqueo automático, pudiendo ser en vía única, doble o banalizada	
BCA	Bloqueo de control automático	
BLA	Bloqueo de liberación automática, pudiendo ser en vía única, doble o doble banalizada	
BSL	Bloqueo de señalización lateral	
CV	Circuito de vía	
CVM	Cuadro de velocidades máximas	
CMS	Control, mando y señalización	
DCO	Detector de caída de objetos	
ERTMS	European Railway Traffic Management System	
N2	Nivel 2	
PCA	Puesto de Cantonamiento	
PK	Punto kilométrico	
RCF	Reglamento de circulación ferroviaria	

NORMA ADIF SEÑALIZACIÓN		ADMINISTRADOR DE INFRAESTRUCTURAS FERROVIARIAS	
DISEÑO DE INSTALACIONES DE CONTROL, MANDO Y SEÑALIZACIÓN		COMITÉ DE NORMATIVA	
NAS 811 1º EDICIÓN		ENERO 2021	Pág. 4 de 25

3.2.-DEFINICIONES

Ancho Convencional	En este documento se utiliza este término para referirse al ancho Ibérico (1668 mm).				
Ancho UIC	En este documento se utiliza este término para referirse al ancho Estándar (1435 mm).				
Circuito de vía	le vía Tramo de vía en el que se realiza la detección de tren independientemente de la tecnología utilizada.				
Diferímetro de deslizamiento de un movimiento que se activa cuando el tren hasta el final del movimiento, para considerar que el tren se ha de y disolver el movimiento.					
Distancia de Deslizamiento	Distancia de la ruta de deslizamiento en la que la instalación añade cierto grado de protección.				
Pantalla de ERTMS N2	Indican el inicio de un cantón de ERTMS Nivel 2, que no está dotado de señal luminosa.				
	En el centro de las pantallas figuran inscritos los códigos de identificación del cantón de ERTMS Nivel 2.				
Piquete de entrevías	Indica el punto hasta donde es compatible la circulación simultánea por ambas vías, sin que se produzcan interferencias entre ellas.				
Punto de peligro	Es la localización más allá del final del movimiento hasta la que podría llegar la cabeza del tren, sin el riesgo de una situación real de peligro.				
Rebase intempestivo	Rebase indebido de la señal límite o punto final del itinerario sin que esté actuando un diferímetro de deslizamiento.				
Ruta asegurada	Es la comprendida desde la señal que autoriza el movimiento o desde la cola de la circulación que la ha rebasado hasta la señal que lo limita.				
Ruta de deslizamiento	Es la que seguiría la circulación en caso de rebasar indebidamente la señal límite o punto final del itinerario.				
Señales fijas	Las que, de un modo permanente o temporal, están instaladas en puntos determinados de la vía o de las estaciones.				
Señales fijas fundamentales	Regulan la circulación de trenes y maniobras. S Complementan las órdenes de las señales fundamentales.				
Señales fijas indicadoras					
Vías de apartado	Resto de vías que no son generales.				
Vías generales	Vías de trayecto y en estación aquellas vías que dan continuidad a las líneas que pasan por la estación.				

Se utiliza la terminología:

- Debe: para indicar que es un requisito obligatorio.
- Criterio general: para indicar que se trata de un criterio utilizado de forma general pero que no impone una obligación.
- Es recomendable: para indicar que se trata de un requisito recomendable.
- Puede: para indicar que se permite o es una opción.

NORMA ADIF SEÑALIZACIÓN		ADMINISTRADOR DE INFRAESTRUCTURAS FERROVIARIAS	
DISEÑO DE INSTALACIONES DE CONTROL, MANDO Y SEÑALIZACIÓN		COMITÉ DE NORMATIVA	
NAS 811 1ª EDICIÓN		ENERO 2021	Pág. 5 de 25

4.-DATOS DE ENTRADA

Para el diseño se parte de los siguientes datos:

- Características básicas del proyecto (tipo de bloqueo a contemplar, disposición de enclavamientos, pasos a nivel, tercer carril...).
- Esquema de vías y andenes, con situación kilométrica de elementos.
- Aparatos de vía (agujas, escapes, travesías, cruzamientos, cambiadores de hilo...), con puntos kilométricos de junta de contraaguja y piquete de vía libre, descripción del tipo y velocidades admitidas en cada posición.
- Perfiles de vía referenciados a la kilometración.
- Velocidades máximas.
- Distancia y tipo de deslizamiento (itinerario, maniobra, rebase intempestivo...).
- Puntos de peligro.
- Otras informaciones que se precise considerar (zonas neutras, túneles significativos, detectores, etc.).

5.-DATOS DE SALIDA

Como resultado del diseño se elabora un esquema de señalización con el nombre y ubicación de los elementos de señalización (señales, CV, etc.).

6.-REQUISITOS PARA EL DISEÑO DEL SISTEMA CMS

6.1.-DENOMINACIÓN DE ELEMENTOS

Los elementos (señales, circuitos de vía...) se deben denominar conforme a la norma NAG 2-0-1.0 "Designación de vías y componentes de la superestructura en la red".

6.2.-SEÑALES

Los requisitos para el establecimiento y las características de las señales:

- Fijas fundamentales (con excepción de las señales de Paso a Nivel).
- Fijas indicadoras (de entrada, salida, dirección, posición de agujas, pantallas de ERTMS N2).

son:

- El formato de las <u>señales</u> debe ser conforme al "Catálogo Oficial de Señales de Circulación Ferroviaria en la Red Ferroviaria de Interés General"¹.
- El criterio de instalación de las <u>señales</u> en el lado derecho, izquierdo o en la vertical debe ser conforme a lo establecido en el RCF.
- Las <u>señales</u> como criterio general se establecen al lado derecho de la vía que señalizan, salvo en los trayectos de vía doble que se establecen en el exterior de ambas vías.

¹ El documento 06E068 Versión 2 "ETCS marker board definition" elaborado por el ERTMS Users Group, se encuentra en proceso de incluirse en el cuerpo normativo de Adif.

	c. cac.pooao ac	••••	
NORMA ADIF SEÑALIZACIÓN		ADMINISTRADOR DE IN	FRAESTRUCTURAS FERROVIARIAS
DISEÑO DE INSTALACIONES DE CONTROL, MAN	IDO Y SEÑALIZACIÓN	COMITÉ DE NORMATIVA	
NAS 811	1ª FDICIÓN	ENFRO 2021	Pág. 6 de 25

- Las <u>señales fijas fundamentales y pantallas de ERTMS N2</u> generalmente están asociadas a un circuito de vía y por lo tanto se deben considerar también los requisitos descritos en el apartado "6.3.-SISTEMAS DE DETECCIÓN DE TREN".
- En el caso de <u>señales fijas fundamentales y pantallas de ERTMS N2 asociadas a un circuito de vía</u>, la ubicación de la señal y del CV, además de cumplir con los requisitos descritos para ambos, se debe realizar de forma que el CV a continuación de la señal se ocupe en el mismo punto de la señal o a continuación de ésta, siendo recomendable que se produzca en el mismo punto de la señal. Si las características del CV para ciertas configuraciones obligase a que la ocupación se produzca a continuación de la señal se deberá declarar dicho valor y definir las posibles condiciones de uso/aplicación.
- Las <u>señales de entrada, entrada interiores, salida y salida interiores</u> como criterio general son:
 - o En líneas de Convencional: señales altas en vías generales y bajas en vías de apartado.
 - o En líneas de Alta Velocidad: señales altas todas ellas.
- Las señales avanzadas, preavanzadas, de PCA e intermedias deben ser señales altas.
- Las <u>señales de entrada, salida, entrada interiores, salida interiores, retroceso y maniobra</u> se establecen en las zonas de aparatos de vía (agujas, escapes, travesías...) para permitir los distintos movimientos por ellas. Según la configuración de vías y aparatos de vías de la estación y las necesidades de explotación algunas de ellas pueden no existir.
- Las <u>señales de entrada y entrada interiores</u> se establecen para permitir la entrada a la estación y <u>las señales de salida y salida interiores</u> para permitir la salida de la estación.
- La <u>señal de entrada</u> se debe establecer como mínimo, a distancia de deslizamiento del punto de peligro y como criterio general a distancia de deslizamiento de la zona de agujas (punta o piquete más cercano) o señal de retroceso cuando exista.
- Las <u>señales de entrada interiores</u>, <u>salida y salida interiores en vía general</u>, es recomendable que se establezcan como mínimo, a distancia de deslizamiento del punto de peligro. Si no es posible, por necesidades de longitud de estacionamiento, se deben establecer lo más cerca posible a esta distancia e incluir en el enclavamiento las incompatibilidades por deslizamiento necesarias. Como criterio general se establecen a distancia de deslizamiento de la zona de agujas (punta o piquete más cercano) o señal de retroceso cuando exista.
- La <u>señal de entrada interior, salida, salida interior, maniobra y retroceso delante de una punta de aguja</u> se debe establecer considerando los requisitos de CV que se describen en el apartado "6.3.-SISTEMAS DE DETECCIÓN DE TREN" y los requisitos de señales establecidos en este apartado.
- La <u>señal de entrada interior</u>, <u>salida</u>, <u>salida interior</u>, <u>maniobra y retroceso delante de un talón de aguja</u> se debe establecer considerando los requisitos de CV que se describen en el apartado "6.3.-SISTEMAS DE DETECCIÓN DE TREN" y los requisitos de señales establecidos en este apartado.
- La distancia de <u>señal de entrada interior</u>, <u>salida</u>, <u>salida interior</u>, <u>maniobra y retroceso al punto de peligro</u> debe incluir la distancia considerada para el rebase intempestivo que se defina para el proyecto.
- Las <u>señales avanzadas</u> se deben establecer en el trayecto, delante de las señales de entrada y de las señales de PCA.
- En el caso de señales de entrada muy próximas a las señales de salida de la estación colateral la <u>señal avanzada</u> puede no existir.
- La <u>señal avanzada de PCA</u> se debe establecer a distancia de frenado.

NORMA ADIF SEÑALIZACIÓN		ADMINISTRADOR DE INFRAESTRUCTURAS FERROVIARIAS	
DISEÑO DE INSTALACIONES DE CONTROL, MANDO Y SEÑALIZACIÓN		COMITÉ DE NORMATIVA	
NAS 811	1ª EDICIÓN	ENERO 2021	Pág. 7 de 25

- La señal avanzada de señal de entrada en BLA se debe establecer a distancia de frenado.
- <u>La señal avanzada de señal de entrada en BA</u> se establece como criterio general a distancia de frenado.
- Si la <u>señal avanzada en BA</u> no se establece a distancia de frenado, situación que recogería la secuencia de señales, es recomendable que exista distancia de frenado para la velocidad permitida circulando con bloqueo telefónico en caso de anormalidad del bloqueo automático; en caso contrario, se deberá declarar esta situación y gestionar las condiciones de circulación para el bloqueo telefónico que correspondan.
- Las <u>señales preavanzadas</u> se deben establecer en el trayecto, delante de la señal avanzada en trayectos con BLA diseñados para circular con señalización lateral a velocidades superiores a 160 km/h y con ASFA en modo convencional. Se deben establecer a la distancia de la señal avanzada que permita reducir la velocidad hasta 160km/h.
- Las <u>señales de retroceso</u> se establecen, cuando sea necesario, para permitir realizar la maniobra de retroceso una vez liberada la zona de agujas.
- Las <u>señales de maniobra</u> se establecen para el servicio interno cuando sólo se van a realizar maniobras.
- Las <u>señales que indiquen Preanuncio de Parada</u> disponen de pantalla alfanumérica para indicar la velocidad.
- Las <u>señales que indiquen Anuncio de Precaución</u> pueden disponer de pantalla alfanumérica o pantalla fija (RCF art. 2.1.2.3. señal FF3C) para indicar velocidad cuando sea necesario.
- La <u>indicación de velocidad</u> de las pantallas alfanuméricas en el aspecto de Preanuncio de Parada que se deben utilizar son 60km/h, 90km/h y 120km/h, esta última como criterio general utilizada sólo en líneas de Alta Velocidad.
- La <u>indicación de velocidad</u> de las pantallas alfanuméricas o pantalla fija en el aspecto de Anuncio de Precaución puede ser cualquiera que sea necesaria.
- Las <u>indicadoras de posición de aguja</u> se establecen, cuando sea necesario, para indicar la posición y velocidad de una aguja o conjunto de agujas. Como criterio general se establecen en las vías generales donde existan movimientos de salida a vía desviada, como por ejemplo en salidas a vías dobles o bifurcaciones.
- Las <u>indicadoras de posición de aguja</u> se deben establecer a continuación de la señal que protege el desvío y delante de la aguja a la que hacen referencia. Como criterio general a 5m de ésta.
- Las indicadoras de dirección se establecen, cuando es necesario, para indicar la dirección del movimiento establecido. Como criterio general se establecen en las dos señales fijas fundamentales anteriores a una bifurcación o pueden establecerse como señales independientes para señalizar varias vías o si existen problemas para establecerse en otras señales.
- Las <u>indicadoras de salida</u> se establecen en el caso de que desde el punto de parada no exista visibilidad de la señal de salida, se deben establecer en una situación que permita su visibilidad desde el punto de parada.
- Las <u>señales de liberación</u> se establecen, cuando sea necesario, para permitir liberar la curva de control de velocidad del equipo embarcado en el caso de que la secuencia de señales requiera indicar Anuncio de Parada en la señal de salida aunque el bloqueo permita aspectos más permisivos, por ejemplo cuando existen salidas por desviada de vía general (salidas por desviada a vías dobles, bifurcaciones, etc.). Se establecen a continuación de las señales de salida y de la zona de agujas. Como criterio general se establecen junto a la señal de entrada.

NORMA ADIF SEÑALIZACIÓN		ADMINISTRADOR DE INFRAESTRUCTURAS FERROVIARIAS	
DISEÑO DE INSTALACIONES DE CONTROL, MANDO Y SEÑALIZACIÓN		COMITÉ DE NORMATIVA	
NAS 811	1º EDICIÓN	ENERO 2021	Pág. 8 de 25

- Las <u>señales intermedias</u> se establecen en BA para permitir la circulación simultánea de varios trenes en el mismo sentido en cada vía, se deben establecer en el trayecto, entre la señal de salida de una estación y la señal avanzada de la siguiente.
- Las <u>señales intermedias</u> como criterio general se establecen a distancia de frenado entre ellas; entre las señales de salida al bloqueo (o señales de liberación cuando existan) y la primera señal intermedia y entre la última señal intermedia y la señal avanzada.
- El número de <u>señales intermedias</u> se debe definir de acuerdo a la distancia entre estaciones, distancia de frenado y las necesidades de capacidad.
- Para establecer los puntos kilométricos de las <u>señales intermedias</u> como criterio general se calcula la distancia entre señales avanzadas y se distribuyen de forma equidistante.
- La distancia entre <u>señales intermedias</u>, en principio equidistantes, se puede ajustar según declividades.
- Cuando sea necesario, las <u>señales intermedias</u> se pueden ubicar en distintos PKs para cada sentido y/o vía.
- Las <u>señales de PCA y pantallas de ERTMS N2</u> se establecen para permitir la circulación simultánea de varios trenes en el bloqueo según necesidades de explotación, como criterio general en BCA y BSL y a distancias:
 - o Entre pantallas de ERTMS N2: 2.500-3.500m
 - Entre señales de PCA; entre señales de salida y señales de PCA y entre señales de PCA y señales de entrada de estación: 7.000-10.000m.
- Las <u>señales fijas fundamentales</u> se deben establecer de forma que entre una señal que indique Parada y la anterior que indique Anuncio de Parada no exista una distancia superior a 3km en líneas convencionales y 5,5km en líneas de AV.
- En BA, <u>las señales intermedias y las señales avanzadas</u> pueden presentar en su mástil la letra "P" (RCF art. 2.1.2.7. fig. FF7B):
 - o <u>Señal avanzada</u>, cuando cumpla las siguientes condiciones:
 - El establecimiento del bloqueo como estación receptora no sea compatible con la maniobra de salida, o si es compatible que entre la señal de entrada y el límite de maniobras exista como mínimo la distancia de deslizamiento que evite que el deslizamiento de un movimiento invada la ruta asegurada del otro.
 - La señal de entrada no supervise el ancho de la ocupación (convencional o UIC) de su proximidad.
 - No proteja apeaderos.
 - o Señal intermedia, cuando cumpla las siguientes condiciones:
 - El establecimiento del bloqueo como estación receptora no sea compatible con la maniobra de salida, o si es compatible que entre la siguiente señal y el límite de maniobras exista como mínimo la distancia de deslizamiento que evite que el deslizamiento de un movimiento invada la ruta asegurada del otro.
 - No proteja CV que sean proximidad de la señal de entrada cuando ésta supervisa el ancho de la ocupación (convencional o UIC) de su proximidad.
- Cuando existan detectores de cajas calientes y frenos agarrotados, es recomendable no establecer <u>señales</u> en la zona del detector según requisitos establecidos por el tecnólogo.
- Cuando existan pasos a nivel, no se deben establecer <u>señales</u> en la zona de paso de vehículos y peatones

NORMA ADIF SEÑALIZACIÓN		ADMINISTRADOR DE INF	FRAESTRUCTURAS FERROVIARIAS
DISEÑO DE INSTALACIONES DE CONTROL, MANDO Y SEÑALIZACIÓN		COMITÉ DE NORMATIVA	
NAS 811	1ª EDICIÓN	ENERO 2021	Pág. 9 de 25

- Cuando existan pasos a nivel es recomendable no establecer <u>señales que puedan indicar</u> <u>Parada</u>, a distancia del paso a nivel, inferior a la de deslizamiento.
- Cuando existan zonas neutras y zonas de transición de sistemas de alimentación de tracción, no se deben establecer <u>señales</u> en el interior de ellas ni en un entorno de éstas que impida el paso de los trenes en las condiciones que tenga establecida la zona (regulador, disyuntor, pantógrafo).
- La ubicación de <u>señales</u> en infraestructuras singulares como túneles y viaductos de gran longitud, deberá considerar las restricciones o requisitos que estas impongan, como por ejemplo:
 - o Limitaciones de capacidad por situaciones de emergencia.
 - o Ubicación de los puntos de parada en las proximidades de galerías de evacuación.
- La ubicación de las <u>señales</u> debe tener en cuenta el diseño de la ubicación de balizas ASFA y ERTMS.

6.3.-SISTEMAS DE DETECCIÓN DE TREN

Los sistemas de detección de tren utilizados son de tecnología de circuitos de vía y de contador de ejes.

La tecnología de circuito de vía incluye los circuitos de vía eléctricos, electrónicos y de audiofrecuencia.

Para nuevas instalaciones, como criterio general, se utilizan contadores de eje y circuitos de vía de audiofrecuencia.

Para referirse de forma genérica al sistema de detección de tren con independencia de su tecnología se utiliza el nombre de circuitos de vía.

Los circuitos de vía permiten dividir la vía en segmentos en los que se detecta la presencia de los trenes permitiendo la circulación segura.

Salvo ciertas vías no controladas como algunas vías de apartado, derivaciones particulares, trayectos de bloqueos telefónicos... todas las vías disponen de circuitos de vía y la configuración se realiza para permitir de forma segura la mayor operatividad de las instalaciones.

No se incluyen en este documento los requisitos de instalación y configuración específicos de cada tecnología de circuito de vía, que también deberán tenerse en cuenta.

Como criterio general se establecen circuitos de vía en los siguientes sitios:

- Zonas de aparatos de vía (desvíos, escapes, travesías...).
- Dentro de una zona de aparatos de vía, se establecen varios circuitos de vía cuando sea posible permitir la circulación simultanea de varios trenes por la zona de aparatos de vía.
- Dentro de una zona de aparatos de vía, se pueden establecer varios circuitos de vía para permitir que una vez un tren haya circulado una parte de la zona ésta quede libre para otras circulaciones.
- Dentro de una zona de aparatos de vía con salida al trayecto, se pueden establecer varios circuitos de vía para permitir la correcta detección del escape de material.
- Estacionamientos.
- Tras la señal de entrada.
- Entre señal avanzada (cuando pueda indicar Parada) y entrada.

NORMA ADIF SEÑALIZACIÓN		ADMINISTRADOR DE INFRA	ADMINISTRADOR DE INFRAESTRUCTURAS FERROVIARIAS	
DISEÑO DE INSTALACIONES DE CONTROL, MANDO) Y SEÑALIZACIÓN	COMITÉ DE NORMATIVA		
NAS 811	1ª EDICIÓN	ENERO 2021	Pág. 10 de 25	

- Entre señales intermedias.
- Entre señales de PCA.
- Entre pantallas de ERTMS N2.
- En Pasos a nivel en estacionamiento.
- Tras una señal cuando se instale a distancia de deslizamiento del punto de peligro.
- Cuando sea necesario detectar la proximidad de un tren en una señal como por ejemplo en la proximidad de la señal de entrada de un bloqueo tipo BLA o en las señales de salida o maniobra de vías sin controlar.
- Cuando existan CV en estaciones mayores de 1km, puede dividirse para detectar la proximidad del tren en la señal, generando un CV de 500-750m delante de la señal.

Para establecer los requisitos de configuración de circuitos de vía se considera, según ERA/ERTMS/033281 "Interfaces between Control-Command and Signalling trackside and other subsystems":

- Distancia máxima entre primer/último eje y cabeza/cola del tren: 5m para líneas de alta velocidad y 4,2m para resto de líneas.
- Distancia mínima entre primer y último eje 3m.
- Distancia máxima entre dos ejes consecutivos cualesquiera 20m.

Por tanto se definen los siguientes requisitos:

- La longitud de CV (entre los puntos donde se garantiza la ocupación del circuito de vía), debe ser como mínimo de 20m (distancia máxima entre dos ejes consecutivos cualesquiera). En el caso de sumatorio de varios circuitos de vía el requisito se exige para cada uno de ellos.
- La zona máxima de no ocupación entre circuitos de vía (zonas muertas) debe ser inferior a 3m (distancia mínima entre primer y último eje). En el caso de sumatorio de varios circuitos de vía el requisito se exige para cada uno de ellos.
- Cuando existan señales asociadas a circuitos de vía se debe tener en cuenta lo descrito en "6.2.-SEÑALES".
- En zona de agujas, en el lado de la punta de aguja, se debe establecer la frontera entre
 circuitos de vía, como mínimo, a distancia que permita la instalación del CV y es
 recomendables que exista cierto margen para permitir que la aguja pueda alcanzar su
 posición final. Esta distancia será 20m (distancia del punto donde se garantiza la ocupación
 del CV a la punta de aguja) para líneas de convencional y 30m para líneas de AV. En
 situaciones especiales por falta de longitud de estacionamiento se puede reducir esta
 distancia.
- En zona de agujas, en el lado del talón de la aguja, se debe establecer la frontera entre circuitos de vía, como mínimo, a distancia que permita la instalación del CV y es recomendable establecer la frontera entre circuitos de vía de tal forma que antes de que el tren haya invadido galibo (superado el piquete de entrevías) se produzca la ocupación del circuito de vía de la aguja, esto requiere que la ocupación se produzca como mínimo 5m (distancia máxima entre primer/último eje y cabeza/cola del tren) delante del piquete, por homogeneidad se utiliza la distancia de 5m también para las líneas que no sean de alta velocidad. En el caso de que no sea posible establecer la frontera de esta forma se tendrá en cuenta lo descrito en "6.6.-FALTA DE GÁLIBO PUNTOS NEGROS".
- En el caso de circuitos de vía de proximidad de la señal de entrada de un bloqueo tipo BLA, la frontera del circuito de vía, como criterio general se establece a 500m de la baliza previa de la señal avanzada o preavanzada cuando exista. Si existiera algún paso a nivel enclavado

NORMA ADIF SEÑALIZACIÓN		ADMINISTRADOR DE INFRAESTRUCTURAS FERROVIARIAS	
DISEÑO DE INSTALACIONES DE CONTROL, MANDO Y SEÑALIZACIÓN		COMITÉ DE NORMATIVA	
NAS 811	1ª EDICIÓN	ENERO 2021	Pág. 11 de 25

que afecte al aspecto de la señal avanzada (o preavanzada), como criterio general se debe asegurar un tiempo mínimo de 30s para circular desde la frontera del CV a la baliza previa a la velocidad máxima. Para ello si fuera necesario se aumentaría la distancia de 500m a la distancia necesaria.

• En el caso de calces de protección se debe establecer la frontera entre circuitos de vía, como mínimo, a distancia que permita la instalación del CV.

6.4.-DETECCIÓN DE TALONAMIENTO DE DESVÍOS

Los desvíos pueden disponer de un sistema de sensor de rueda para detectar el talonamiento.

La necesidad o no de detección de talonamiento de desvíos, así como los desvíos dotados de sistema de sensor de rueda para la detección de talonamiento, viene definida como dato de entrada para el diseño y debe ser considerada en la funcionalidad del enclavamiento.

6.5.-CALCES DE PROTECCIÓN

Los calces de protección controlados por el enclavamiento, se deben establecer en los casos en los que sea necesario proteger la salida indebida desde:

- Vías no controladas por el enclavamiento en las que se realicen movimientos.
- Zonas de distinta responsabilidad de mando.
- Maniobras locales.

Los calces se establecen de forma que produzcan el descarrilamiento del tren hacia el lado contrario a las vías que se quieren proteger.

Los calces producen el descarrilamiento hacia el lado del carril en el que se establecen.

Los calces se deben establecer entre la señal que lo protege y la aguja, formando parte del circuito de vía a continuación de la señal, pudiendo ser éste: el circuito de aguja, uno propio para el calce u otro.

En el caso de calces en el talón de una aguja, se deben establecer de tal forma que, estando levantado el calce, antes de que el tren haya invadido galibo (superado el piquete de entrevías) se produzca el descarrilamiento, esto requiere realizar la instalación como mínimo 5m (distancia máxima entre primer/último eje y cabeza/cola del tren) delante del piquete.

6.6.-FALTA DE GÁLIBO — PUNTOS NEGROS

Cuando no se pueda disponer de la distancia mínima de 5m entre el piquete de entrevía y el punto donde se garantiza la ocupación del circuito de vía de la aguja, se da la situación de falta de gálibo.

Esta situación de falta de galibo se denomina punto negro y se deben establecer las incompatibilidades necesarias en el enclavamiento.

Como la existencia o no puntos negros depende de la configuración de vías y de la instalación de los circuitos de vía que se haga, durante la fase de replanteo y obra se deben identificar estos puntos para reflejarlos en el programa de explotación y para que las incompatibilidades necesarias puedan ser incluidas en la funcionalidad del enclavamiento.

En los escapes y agujas conjugadas se considera por defecto que existe falta de gálibo y por lo tanto no se suelen representar en los programas de explotación, aunque sí se consideran puntos negros y deben ser incluidos en la funcionalidad del enclavamiento, salvo que se confirme que existe gálibo. La existencia o no de punto negro en estos casos se confirma en fase de replanteo y

NORMA ADIF SEÑALIZACIÓI	l	ADMINISTRADOR DE INFR	AESTRUCTURAS FERROVIARIAS
DISEÑO DE INSTALACIONES	DE CONTROL, MANDO Y SEÑALIZACIÓN	COMITÉ DE NORMATIVA	
NAS 811	1ª EDICIÓN	FNFR0 2021	Pág. 12 de 25

obra.

6.7.-BALIZAS

Las balizas:

- Se deben establecer balizas para los sistemas ASFA y ERTMS, según los sistemas de los que esté dotada la línea.
- Las reglas de ingeniería de balizas ASFA se describen en la NAS 154 "ASFA Digital Vía. Reglas para la ubicación de Balizas".
- Las reglas de ingeniería de balizas ERTMS se describen en la NAS 840 "Requisitos funcionales y Reglas de Ingeniería ERTMS Nivel 1 y Nivel 2".
- La ubicación de las señales debe tener en cuenta el diseño de la ubicación de balizas ASFA y ERTMS.

6.8.-LONGITUD ÚTIL DE ESTACIONAMIENTO

La longitud útil de estacionamiento se calcula como la distancia entre desvíos o toperas considerando los parámetros de distancia de señal, balizas y margen de visibilidad, de la forma:

$$Longitud \ \verb"util" = d_p - a_1 - a_2 - a_3 - \ b_1 - b_2 - b_3$$

Donde:

- d_p: Distancia entre desvíos o toperas.
- a₁, b₁: Distancia del desvío a la señal.
- a₂, b₂: Distancia de la señal a la baliza de pie
- a₃, b₃: Distancia de visibilidad

Las distancias de señal a desvío y de señal a baliza de pie se describen en los apartados correspondientes en este documento.

La distancia de visibilidad se considera como criterio general 5m.

a) Para el caso de estacionamiento entre talones de agujas:

A modo de resumen:

a1, b1: 5m (distancia máxima entre primer/último eje y cabeza/cola del tren) + instalación CV.

La instalación de CV requiere:

- Tecnología circuito de vía entre 5m y 10m.
- Tecnología de contadores de eje entre 0m y 5m.

NORMA ADIF SEÑALIZACIÓN		ADMINISTRADOR DE INFRAEST	TRUCTURAS FERROVIARIAS
DISEÑO DE INSTALACIONES DE CONTROL, MANDO Y SEÑALIZACIÓN		COMITÉ DE NORMATIVA	
NAS 811	1ª EDICIÓN	ENERO 2021	Pág. 13 de 25

- a2, b2:
 - o 5m para balizas ASFA.
 - o Entre 9m y 15m para balizas ERTMS.
- Distancia de visibilidad:
 - o a3, b3: 5m.
- b) Para el caso de señales delante de punta de aguja:

A modo de resumen:

- a1: Recomendable 20m para convencional y 30m. para alta velocidad + instalación del CV.
- c) Para el caso de toperas:

La longitud útil de estacionamiento se debe considerar hasta la distancia de visibilidad de la topera.

a₃: 5m.

Además, la distancia de la señal al punto de peligro incluirá la distancia del rebase intempestivo de señal que se defina en el proyecto.

6.9.-PASOS A NIVEL

La situación de los pasos a nivel viene definida como dato de entrada para el diseño, existen los siguientes tipos:

- Paso a nivel enclavado: Cuando el paso a nivel se encuentra entre las señales de entrada de la estación, es gestionado por el enclavamiento.
- Paso a nivel afectado: Cuando la señal de protección de paso a nivel y/o los pedales de aviso se encuentran en la estación o antes de ésta, el enclavamiento envía al paso a nivel la información necesaria pero no controla el estado de éste.
- Pasos a nivel automáticos: Resto de pasos a nivel, no son controlados por el enclavamiento.

En el caso de pasos a nivel en estacionamiento:

 Si está cerca de una de las señales, de tal forma que no pueda estacionar un tren entre el paso a nivel y dicha señal, el CV de estacionamiento se puede dividir en dos: un CV que englobe el paso a nivel y llegue hasta la señal más cercana y un CV para el resto del estacionamiento.

 Si está en la zona central, de tal forma que pueda estacionar un tren entre el paso a nivel y cualquiera de las señales, el CV de estacionamiento se puede dividir en tres: un CV central que englobe el paso a nivel y dos CV más, a ambos lados del paso a nivel y que lleguen hasta las señales.

• Para estacionamientos pequeños puede interesar no dividir el CV de estacionamiento.

NORMA ADIF SEÑALIZACIÓN		ADMINISTRADOR DE INFRAESTRUCTURAS FERROVIARIAS	
DISEÑO DE INSTALACIONES DE CONTROL, MANDO Y SEÑALIZACIÓN		COMITÉ DE NORMATIVA	
NAS 811	1ª EDICIÓN	ENERO 2021	Pág. 15 de 25

6.10.-DESLIZAMIENTOS

La ruta de deslizamiento es la ruta que seguiría la circulación en caso de rebasar indebidamente la señal límite o punto final del itinerario.

La instalación proporciona cierto grado de protección para una distancia de ruta de deslizamiento, a esta distancia se le denomina distancia de deslizamiento.

Los tipos de deslizamiento que se consideran son:

- Asociados a un movimiento (itinerario ASFA y ERTMS, rebase autorizado, maniobra centralizada y local).
- No asociados a un movimiento (rebase intempestivo).

Las distancias de deslizamiento consideradas deben ser las que se definan en el proyecto.

Como criterio general:

- En Convencional:
 - o Para Itinerarios y Maniobras: 250m.
 - o Para Rebases Autorizados: 0m.
 - o Para itinerarios ERTMS: 0m.
- En Alta Velocidad:
 - Para Itinerarios y Maniobras:

Gradiente	Deslizamiento
Rampa o Pendiente hasta 10 ‰	300m
Pendiente hasta 20 ‰	350m
Pendiente hasta 30 ‰	420m

El gradiente que se debe considerar es el existente entre la baliza previa y el punto de peligro.

o Para Rebases Autorizados: Om.

Para itinerarios ERTMS: 0m.

La distancia de rebase intempestivo se define en el proyecto dependiendo de la velocidad de aproximación a la señal en indicación de parada considerada, distancia y capacidad de frenado, declividad, punto de peligro a proteger, velocidad de los movimientos cuya ruta asegurada invadiría el rebase intempestivo.

Los proyectos pueden definir otras distancias de deslizamiento, distintas al criterio general, en base a:

- Puntos de peligro considerados.
- Sistemas utilizados (ASFA, ERTMS) y ubicación de sus balizas.
- Velocidades máximas.
- Velocidad a la que se puede producir el rebase indebido.
- Porcentajes peso freno o deceleraciones consideradas.
- Otros criterios que apliquen.

NORMA ADIF SEÑALIZACIÓN		ADMINISTRADOR DE INFRAESTRUCTURAS FERROVIARIAS	
DISEÑO DE INSTALACIONES DE CONTROL, MANDO Y SEÑALIZACIÓN		COMITÉ DE NORMATIVA	
NAS 811	1ª EDICIÓN	ENERO 2021	Pág. 16 de 25

6.11.-BLOQUEOS

El tipo de bloqueo viene definido como dato de entrada para el diseño.

Como criterio general:

- Los bloqueos BCA y BSL se utilizan en líneas de Alta Velocidad.
- Los bloqueos BLA y BA se utilizan en líneas de Convencional:
 - Los bloqueos BLA se utilizan cuando no es necesario permitir la circulación simultánea de varios trenes en el bloqueo.
 - Los bloqueos BA se utilizan cuando es necesario permitir la circulación simultánea de varios trenes en el bloqueo.

6.12.-DETECTORES

Los detectores de caída de objetos, viento lateral... vienen definidos como dato de entrada para el diseño.

En el caso de detectores de caída de objetos se añaden a la funcionalidad del enclavamiento y por tanto se incluyen en el esquema de señalización.

La gestión del resto de detectores debe ser la definida en el proyecto.

6.13.-LÍMITES DE MANIOBRA

Los límites de maniobra se prescriben en el RCF.

En el caso de límite de maniobra mediante cartelón (RCF art. 2.1.3.13. aspecto K), éste se establece de acuerdo a las necesidades de explotación y se representa en el esquema de señalización.

Los límites de maniobra se tienen en cuenta en la funcionalidad del enclavamiento.

6.14.-MANIOBRAS LOCALES

Las maniobras locales necesarias se deben identificar para su inclusión en el programa de explotación y en la funcionalidad del enclavamiento.

6.15.-REPLANTEOS

El emplazamiento de todos los elementos se debe consolidar en los replanteos según los condicionantes de visibilidad, obra, electrificación, plataforma, mantenimiento, etc.

7.-NORMATIVA DEROGADA

Esta NAP no deroga ningún documento normativo de Adif.

NORMA ADIF SEÑALIZACIÓN		ADMINISTRADOR DE INFRAESTRUCTURAS FERROVIARIAS	
DISEÑO DE INSTALACIONES DE CONTROL, MANDO Y SEÑALIZACIÓN		COMITÉ DE NORMATIVA	
NAS 811	1ª EDICIÓN	ENERO 2021	Pág. 17 de 25

8.-DOCUMENTACIÓN DE REFERENCIA

- Reglamento (UE) 2016/919 de la Comisión de 27 de mayo de 2016 sobre la especificación técnica de interoperabilidad relativa a los subsistemas de "control-mando y señalización" del sistema ferroviario de la Unión Europea, y su corrección de errores.
- Reglamento de ejecución (UE) 2019/776 de la Comisión, de 16 de mayo de 2019, que modifica los reglamentos (UE) nº321/2013, (UE) nº1299/2014, (UE) nº1301/2014, (UE) nº1302/2014 y (UE) nº1303/2014 y (UE) 2016/919 de la Comisión y la Decisión de Ejecución 2011/665/UE de la Comisión en lo que se refiere a la armonización con la Directiva (UE) 2016/797 del Parlamento Europeo y del Consejo y la implementación de los objetivos específicos establecidos en la Decisión Delegada (UE) 2017/1474 de la Comisión
- ERA/ERTMS/033281. Versión 4.0. 20/09/2018 "Interfaces between Control-Command and Signalling trackside and other subsystems".
- NAG 2-0-1.0. 1ª edición: Julio 2016 erratum enero 2017 "Designación de vías y componentes de la superestructura en la red".
- NAS 840. 1º Edición: Junio de 2017. "Requisitos funcionales y Reglas de Ingeniería ERTMS Nivel 1 y Nivel 2".
- NAS 154. 1º edición: Mayo 2019 erratum (enero 2020). "ASFA Digital Vía. Reglas para la ubicación de Balizas".
- "Catálogo Oficial de Señales de Circulación Ferroviaria en la Red Ferroviaria de Interés General" según Orden FOM/2015/2016, de 30 de diciembre, publicada BOE-A-2017-556.
- Reglamento de Circulación Ferroviaria: En la fecha de publicación de esta norma el RCF en vigor es el que se aprueba en el Real Decreto 664/2015, de 17 de julio de 2015 y sus modificaciones según:
 - Real Decreto 695/2018 de 29 de junio, por el que se modifica el Real Decreto 664/2015, de 17 de julio, por el que se aprueba el Reglamento de Circulación Ferroviaria.
 - o Real Decreto 1011/2017 de 1 de diciembre, por el que se modifica el Real Decreto 664/2015, de 17 de julio, por el que se aprueba el Reglamento de Circulación Ferroviaria.
 - Real Decreto 1513/2018 de 28 de diciembre, por el que se modifica la disposición transitoria única del Real Decreto 664/2015, de 17 de julio, por el que se aprueba el Reglamento de Circulación Ferroviaria.
- NAS 800 (03.432.800) "Norma sobre explotación y seguridad de enclavamientos eléctricos".
- NAS 806 (03.432.806) "Explotación y seguridad de bloqueos automáticos".
- NAS 205 (NRS 05) "Explotación y seguridad de bloqueos de liberación automática (BLA)".
- NAS 813. 1º edición: Junio de 2017. "Enclavamientos electrónicos. Proximidades y diferímetros de disolución de rutas".
- NAS 814. 1º edición: Enero de 2020. "Enclavamientos electrónicos. Secuencias de aspectos de señales".
- NAS 812. 1º edición: Enero de 2017. "Enclavamientos electrónicos. Funcionalidad para tercer carril".

9.-DISPOSICIONES TRANSITORIAS Y ENTRADA EN VIGOR

La presente norma entrará en vigor el día de su aprobación.

Lo dispuesto en esta norma no será de aplicación a los proyectos de instalaciones cuya elaboración se hubiese iniciado con anterioridad a la entrada en vigor de esta norma, ni a las obras de ellos derivados.

Las instalaciones puestas en servicio con anterioridad a la entrada en vigor de esta norma y las modificaciones posteriores de las instalaciones existentes, cuando así se decida, podrán seguir operando bajo las mismas condiciones técnicas con que fueron admitidas para su puesta en servicio.

ANEJO 1. EJEMPLOS DE DISEÑO DE INSTALACIONES DE CONTROL, MANDO Y SEÑALIZACIÓN

ÍNDICE DE CONTENIDO	PÁGINA
1SEÑALES	21
2SISTEMAS DE DETECCIÓN DE TREN	23
3PUNTOS NEGROS	24

NORMA ADIF SEÑALIZACIÓN		ADMINISTRADOR DE INFRAESTRUCTURAS FERROVIARIAS	
DISEÑO DE INSTALACIONES DE CONTROL, MANDO	O Y SEÑALIZACIÓN	COMITÉ DE NORMATIVA	
NAS 811	1ª EDICIÓN	ENERO 2021	Pág. 20 de 25

1. SEÑALES

Ejemplo de estación

Dado el siguiente ejemplo de esquema de vías y aparatos de vías:

Considerando que forman escape las agujas: 2-4; 6-8; 7-5 y 1-3

Se establecen las señales del siguiente modo:

- Las señales de retroceso R1 y R4 se establecen a 20m (Convencional) o 30m (AV) de la punta de aguja que protegen (Ag. 1 y Ag. 2 respectivamente) y se ajustan en replanteo según requisitos de instalación del CV.
- Las señales R2 y R3 como criterio general se establecen en el mismo punto kilométrico que R1 y R4, en cualquier caso se establecen a 5m o más, según los requisitos de CV, del piquete de la aguja que protegen (Ag. 4 y Ag. 3 respectivamente).
- Las señales de salida se establecen a 5m o más, según los requisitos del CV, del piquete de la aguja que protegen.
- Las señales de salida de las vías de apartado S1/1, S1/2, S1/3, S1/5, S1/4, S2/3, S2/5 y S2/4 deben incluir la distancia de rebase intempestivo que se defina en el proyecto.
- Las señales E2, E4, E1 y E3 se establecen como criterio general a distancia de deslizamiento de las señales de retroceso, y siempre como mínimo a distancia de deslizamiento del piquete que protegen:
 - o De la señal E4 sería el piquete de la Ag. 8.
 - De la señal E2 sería el piquete de la Ag. 4.
 - o De la señal E1 sería el piquete de la Ag. 7.
 - o De la señal E3 sería el piquete de la Ag. 3.
- Al existir movimientos por vía general con desvío a la salida, movimientos en los cuales la señal de salida indicaría Anuncio de Parada aunque el bloqueo permita aspectos más permisivos, se establecen las señales de liberación 2871, 2873, 2860 y 2862.

NORMA ADIF SEÑALIZACIÓN		ADMINISTRADOR DE INER	RAESTRUCTURAS FERROVIARIAS
DISEÑO DE INSTALACIONES DE CO	NTROL, MANDO Y SEÑALIZACIÓN	COMITÉ DE NORMATIVA	IALSTRUCTURAS I ERROVIARIAS
NAS 811	1ª EDICIÓN	ENERO 2021	Pág. 21 de 25

- Se establecen indicadoras de posición de agujas IA3, IA4, IA7 e IA8 para indicar vía directa o desviada. Estas se establecen entre las señales de salida y la aguja correspondiente (agujas 3, 4, 7 y 8) como criterio general a 5m de ésta.
- Las señales avanzadas E'2, E'4, E'1 y E'3 se establecen a la distancia de frenado de su respectiva señal de entrada.

Ejemplo de trayecto

Dado el siguiente ejemplo de trayecto, una vez establecidas las señales de retroceso, entrada, avanzada y liberación:

Se establecen las señales intermedias del siguiente modo:

• Se calcula la distancia entre las señales avanzadas (Dt) y se divide la distancia por el número de cantones necesarios. Los grupos de señales intermedias se establecen a esta distancia.

NORMA ADIF SEÑALIZACIÓN		ADMINISTRADOR DE INFRAESTRUCTURAS FERROVIARIAS	
DISEÑO DE INSTALACIONES DE CONTROL, MANDO Y SEÑALIZACIÓN		COMITÉ DE NORMATIVA	
NAS 811	1ª EDICIÓN	ENERO 2021	Pág. 22 de 25

2. SISTEMAS DE DETECCIÓN DE TREN

Dado el siguiente ejemplo de esquema de vías y aparatos de vías:

Se establecen los siguientes CV:

- Se establece CV en las vías de estacionamiento 1, 2, 3, 4 y 5.
- Se establecen CV de avanzada E'2, E'4, E'1 y E'3.
- Se establece CV de entrada E2, E4, E1 y E3.
- En la zona de Agujas lado par:
 - Se divide en un CV para las agujas de la vía 1 (Ag. 2, 8, 10 y 14) y un CV para la vía 2 (Ag. 4, 6 y 12) lo que permite la circulación por ambas vías al mismo tiempo.
 - En las agujas de la vía 1, se divide en un CV para la Ag. 2 y otro CV para las Ag. 8, 10 y 14, lo que permite, siempre que exista gálibo entre los CV A2 y CV A8:
 - Con el tren en el CV A8 por circulación del tren en una ruta de entrada, permitir una entrada o salida por Ag 2 a desviada.
 - Con el tren en el CV A2 por circulación del tren en una ruta de salida , permitir una entrada o salida por Ag 8 a desviada.
- En la zona de Agujas lado impar:
 - Se divide en un CV para las agujas de la vía 1 (Ag. 1, 7, 9 y 13) y un CV para la vía 2 (Ag. 3, 5 y 11) lo que permite la circulación por ambas vías al mismo tiempo.
 - En las agujas de la vía 1, se divide en un CV para la Ag. 1 y otro CV para las Ag. 7, 9, y 13, lo que permite, siempre que exista gálibo entre los CV A1 y CV A7:
 - Con el tren en el CV A7 por circulación del tren en una ruta de entrada, permitir una entrada o salida por Ag 1 a desviada.
 - Con el tren en el CV A1 por circulación del tren en una ruta de salida, permitir una entrada o salida por Ag 7 a desviada.

NORMA ADIF SEÑALIZACIÓN		ADMINISTRADOR DE INFRAESTRUCTURAS FERROVIARIAS	
DISEÑO DE INSTALACIONES DE CONTROL, MANDO Y SEÑALIZACIÓN		COMITÉ DE NORMATIVA	
NAS 811	1ª EDICIÓN	ENERO 2021	Pág. 23 de 25

3. FALTA DE GÁLIBO - PUNTOS NEGROS

Dada la siguiente configuración de vías y circuitos de vía:

Si no es posible realizar la instalación de tal manera que la ocupación del CV de la aguja 1 se produzca como mínimo a 5m del piquete de la aguja 1 y la ocupación del CV de la aguja 5 se produzca como mínimo a 5m del piquete de la aguja 5 existiría falta de gálibo (punto negro).

NORMA ADIF SEÑALIZACIÓN		ADMINISTRADOR DE INFRAESTRUCTURAS FERROVIARIAS	
DISEÑO DE INSTALACIONES DE CONTROL, MANDO Y SEÑALIZACIÓN		COMITÉ DE NORMATIVA	
NAS 811	1ª EDICIÓN	ENERO 2021	Pág. 24 de 25

