	TP1 Debit - Marin Mrabet	Pt		а в с	D Note	
1	Préparation du travail					
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	Α		2	
2	Quel est le nom de la grandeur réglée ?	1	Α		0,5	
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	1	Α		0,5	
4	Quelle est la grandeur réglante ?	1	Α		0,5	
5	Donner une grandeur perturbatrice.	1	Α		0,5	
6	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités.	1	Α		1	
II.	Etude du procédé					
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	Α		1	
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).	1	Α		1	
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1	С	_	0,35	Alors dans le calcul. C'est l'inverse
4	En déduire le sens d'action à régler sur le régulateur.	1	Α		1	
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	В		2,25	Échelle de temps à revoir.
III.	Etude du régulateur			_		
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	D		0,075	Ce n'est pas la réponse à la questi
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2	Α		1,5	
IV.	Performances et optimisation					
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	Α		1	
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.	2	D		0,075	Vous êtes encore en boucle ouvert
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	D		0,05	
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	D		0,075	
			Not	e sur : 20	13,4	

TP1 Débit

I. Préparation du travail

1/ Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.

2/ Quel est le nom de la grandeur réglée ?

La grandeur réglée est le débit d'entrée Qe.

3/ Quel est le principe utilisé pour mesurer la grandeur réglée ?

Le principe utilisée pour mesurée la grandeur réglée est la mesure de la vitesse de rotation d'un rotor.

4/ Quelle est la grandeur réglante ?

La grandeur réglante est l'ouverture de l'électrovanne Vc.

5/ Donner une grandeur perturbatrice.

La grandeur perturbatrice est Pe.

6/ Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités.

II. Etude du procédé

1/ Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.

ENTREE:

TagName	01M01_08		LIN Name	01M01_08	
Туре	AI_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	1	
PV	0.0	%	Channel	1	
HR	100.0	%	InType	mA	
LR	0.0	%	HR_in	20.00	mΑ
			LR_in	4.00	mΑ
HiHi	100.0	%	AI	0.00	mΑ
Hi	100.0	%	Res	0.000	Ohr
Lo	0.0	%			
LoLo	0.0	%	CJ type	Auto	

PID:

TagName	BENI		LIN Name	BENI	
Туре	PID	DBase	<local></local>		
Task	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO				
			HAA	100.0	
PV	0.0	%	LAA	0.0	-
SP	0.0	%	HDA	100.0	-
OP	0.0	%	LDA	100.0	
SL	0.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	
Track	0.0	%	TI	0.00	
			TD	0.00	
HR_SP	100.0	%			

SORTIE:

TagName	02P01_08		LIN Name	02P01_08	
Туре	AO_UIO	DBase	<local></local>		
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	2	
OP	0.0	%	Channel	1	
HR	100.0	%	OutType	mΑ	
LR	0.0	%	HR_out	20.00	1
			LR_out	4.00	r
Out	0.0	%	AO	0.00	r
Track	0.0	%			
Trim	0.000	mΑ	Options	>0000	
			Status	>0000	

2/Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).

Caractéristique statique

	Étiquettes de	Valeurs X	Valeurs Y
1	1 ligne	0	0,8
2	2 ligne	20	19
3	3 ligne	40	19,6
4	4 ligne	60	26,7
5		80	42
6		100	50

3/ En déduire le gain statique du procédé autour du point de fonctionnement.

$$K = DELTA X / DELTA Y$$

Delta
$$Y = 50 - 0.8 = 49.2$$

Delta
$$X = 100 - 0 = 100$$

$$K = \frac{100}{49,2} = \frac{2,032}{49,2}$$

4/ En déduire le sens d'action à régler sur le régulateur.

Le sens d'action du régulateur est inverse car lorsque on augmente Y on à X qui augmente donc le procédé est direct.

5/ Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.

$$K = DELTA X / DELTA Y = 9 / 10 = 0.9$$

$$t0 = 00:32:42 = 0s$$

$$t1 = 00:32:43 = 1s$$

$$t2 = 00:32:43,5 = 1,5s$$

Le retard
$$T=2.8(t1-t0) - 1.8(t2-t0) = 2.8(1-0)-1.8(1.5-0) = 0.1$$

La constante de temps
$$t = 5,5(t2-t1) = 5,5(1,5-1) = 2,75$$

III. Étude du régulateur

1/ Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.

$$Kr = T/t = 0.1 / 2.75 = 0.036$$

Donc c'est un régulateur proportionnelle car 0,036 est inférieur à 0,05.

2/ En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.

$$A = 0.8 / K*Kr = 0.8 / 0.9*0.036 = 24.7$$

$$Td = 0s$$

IV. Performances et optimisation

1/ Programmer votre régulateur pour assurer le fonctionnement de la régulation.

$$Xp = 100/A = 100 / 24,7 = 4,04$$

TimeBase	Secs	
XP	4.0	%
TI	99.99	
TD	0.00	

2/ Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et l'erreur statique.

Dépassement : aucun

Erreur statique : W - X = 50-44 = 6%

t0 = 1:39:02 = 0s

Temps de réponse : à 95% = 0.95 * 44 = 41.8

à 105% = 1,05*44 = 46,2

Trép = 1:39:04 = 2s

3/ Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.

$$Xp = 87$$

$$Td = 0s$$

$$Ti = 2,09s$$

TimeBase	Secs	
XP	87.0	%
TI	2.09	
TD	0.00	2.09
		2.02

4/ Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.

Dépassement : 155,5%

Erreur statique : W - X = 50 - 53,5 = -3,5

t0 = 02:08:32 = 0s

Temps de réponse : à 95% = 0.95 * 53.5 = 50.825

à 105% = 1,05*53,5 = 56,175

Trép = 02:08:52 = 20s

On observe donc que le temps de réponse est plus long et qu'il y a un dépassement contrairement au précèdent graphique.