Discrete Mathematics Exercise 8

Qiu Yihang, 2020/10/20

1. Solution:

For any $x \in \mathbb{R}$, $x - x = 0 \in \mathbb{Q}$. Thus, $\forall x \in \mathbb{R}$ $(x\mathcal{R}x)$, i.e. \mathcal{R} is reflexive. For any $x, y \in \mathbb{R}$, $x - y \in \mathbb{Q} \to y - x = -(x - y) \in \mathbb{Q}$. Thus, $\forall x, y \in \mathbb{R}$ $(x\mathcal{R}y \to y\mathcal{R}x)$, i.e. \mathcal{R} is symmetric. Exists $x = 2, y = 3 \in \mathbb{R}$ s.t. $x\mathcal{R}y \land y\mathcal{R}x$ but $x \neq y$. Thus, \mathcal{R} is not antisymmetric. For any $x, y, z \in \mathbb{R}$, $x - y \in \mathbb{Q} \land y - z \in \mathbb{Q} \to x - z = (x - y) + (y - z) \in \mathbb{Q}$. Thus, $\forall x, y, z \in \mathbb{R}$ $(x\mathcal{R}y \land y\mathcal{R}z \to x\mathcal{R}z)$, i.e. \mathcal{R} is transitive.

In conclusion, \mathcal{R} is reflexive, symmetric and transitive, but is not antisymmetric.

2. b) Solution:

Exists $x = 0 \in \mathbb{Z}$ s.t. $x^2 = 0 \not\ge 1$, i.e. $\neg x \mathcal{R} x$. Thus, \mathcal{R} is not reflexive. For any $x, y \in \mathbb{Z}$, $xy \ge 1 \to yx \ge 1$. Thus, $\forall x, y \in \mathbb{Z} \ (x \mathcal{R} y \to y \mathcal{R} x)$, i.e. \mathcal{R} is symmetric. Exists $x = 1, y = 2 \in \mathbb{Z}$ s.t. $x \mathcal{R} y \land y \mathcal{R} x$ but $x \ne y$. Thus, \mathcal{R} is not antisymmetric. Exists $x = 0.5, y = 4, z = 0.3 \in \mathbb{Z}$ s.t. $x \mathcal{R} y \land y \mathcal{R} z$ but $\neg x \mathcal{R} z$. Thus, \mathcal{R} is not transitive.

In conclusion, \mathcal{R} is symmetric but is not reflexive or antisymmetric or transitive.

f) Solution:

For any $x \in \mathbb{Z}$, x and x are for sure both negative or both nonnegative. Thus, $\forall x \in \mathbb{Z}$ ($x\Re x$), i.e. \Re is reflexive.

For any $x, y \in \mathbb{Z}$, that x and y are both negative or both nonnegative implies y and x are both negative or both nonnegative. Thus, $\forall x, y \in \mathbb{Z} (x\mathcal{R}y \to y\mathcal{R}x)$, i.e. \mathcal{R} is symmetric.

Exists $\forall x = 1, y = 2 \in \mathbb{Z}$ s.t. $x\mathcal{R}y \land y\mathcal{R}x$ but $x \neq y$. Thus, \mathcal{R} is not antisymmetric.

For any $x, y, z \in \mathbb{R}$, that x and y are both negative or both nonnegative and that y and z are both negative or both nonnegative implies x and z are both negative or both nonnegative.

Thus,
$$\forall x, y, z \in \mathbb{Z} (x\mathcal{R}y \land y\mathcal{R}z \rightarrow x\mathcal{R}z)$$
, i.e. \mathcal{R} is transitive.

In conclusion, \mathcal{R} is reflexive, symmetric and transitive but is not antisymmetric.

3. Solution:

- a) $\mathcal{R}_1 \circ \mathcal{R}_1 = \{(a,b) \in \mathbb{R}^2 | a > b\}.$ For any $(a,b) \in \mathcal{R}_1 \circ \mathcal{R}_1$, $\exists c \in \mathbb{R} (a,c), (c,b) \in \mathcal{R}_1$ i.e. $(a > c) \land (c > b)$, i.e. a > b. Thus, $\mathcal{R}_1 \circ \mathcal{R}_1 = \{(a,b) \in \mathbb{R}^2 | a > b\}.$
- b) $\mathcal{R}_1 \circ \mathcal{R}_2 = \{(a,b) \in \mathbb{R}^2 | a > b\}$ For any $(a,b) \in \mathcal{R}_1 \circ \mathcal{R}_2$, $\exists c \in \mathbb{R} (a,c) \in \mathcal{R}_2$, $(c,b) \in \mathcal{R}_1$ i.e. $(a \ge c) \land (c > b)$, i.e. a > b. Thus, $\mathcal{R}_1 \circ \mathcal{R}_2 = \{(a,b) \in \mathbb{R}^2 | a > b\}$.

- c) $\mathcal{R}_1 \circ \mathcal{R}_3 = \mathbb{R}^2$ For any $(a,b) \in \mathcal{R}_1 \circ \mathcal{R}_3$, $\exists c \in \mathbb{R} (a,c) \in \mathcal{R}_3$, $(c,b) \in \mathcal{R}_1$ i.e. $(a < c) \land (c > b)$. Thus, $\mathcal{R}_1 \circ \mathcal{R}_3 = \mathbb{R}^2$.
- e) $\mathcal{R}_1 \circ \mathcal{R}_5 = \{(a,b) \in \mathbb{R}^2 | a > b\}$ For any $(a,b) \in \mathcal{R}_1 \circ \mathcal{R}_5$, $\exists c \in \mathbb{R} (a,c) \in \mathcal{R}_5$, $(c,b) \in \mathcal{R}_1$ i.e. $(a = c) \land (c > b)$, i.e. a > b. Thus, $\mathcal{R}_1 \circ \mathcal{R}_5 = \{(a,b) \in \mathbb{R}^2 | a > b\}$.
- f) $\mathcal{R}_1 \circ \mathcal{R}_6 = \mathbb{R}^2$ For any $(a,b) \in \mathcal{R}_1 \circ \mathcal{R}_6$, $\exists c \in \mathbb{R} \ (a,c) \in \mathcal{R}_6$, $(c,b) \in \mathcal{R}_1$ i.e. $(a \neq c) \land (c > b)$. Thus, $\mathcal{R}_1 \circ \mathcal{R}_6 = \mathbb{R}^2$.
- g) $\mathcal{R}_2 \circ \mathcal{R}_3 = \mathbb{R}^2$ For any $(a,b) \in \mathcal{R}_2 \circ \mathcal{R}_3$, $\exists c \in \mathbb{R} \ (a,c) \in \mathcal{R}_3$, $(c,b) \in \mathcal{R}_2$ i.e. $(a < c) \land (c \ge b)$. Thus, $\mathcal{R}_2 \circ \mathcal{R}_3 = \mathbb{R}^2$.
- h) $\mathcal{R}_3 \circ \mathcal{R}_3 = \{(a,b) \in \mathbb{R}^2 | a < b\}$ For any $(a,b) \in \mathcal{R}_3 \circ \mathcal{R}_3$, $\exists c \in \mathbb{R} (a,c) \in \mathcal{R}_3$, $(c,b) \in \mathcal{R}_3$ i.e. $(a < c) \land (c < b)$, i.e. a < b. Thus, $\mathcal{R}_3 \circ \mathcal{R}_3 = \{(a,b) \in \mathbb{R}^2 | a < b\}$.

4. Proof:

To prove the composition operator is associative, we only need to prove that

$$\forall x \forall y ((x,y) \in (\mathcal{R}_3 \circ \mathcal{R}_2) \circ \mathcal{R}_1 \leftrightarrow (x,y) \in \mathcal{R}_3 \circ (\mathcal{R}_2 \circ \mathcal{R}_1)).$$

$$\begin{split} (a,b) \in (\mathcal{R}_3 \circ \mathcal{R}_2) \circ \mathcal{R}_1 \quad & \text{iff.} \quad \exists c \big((a,c) \in \mathcal{R}_1 \land (c,b) \in \mathcal{R}_3 \circ \mathcal{R}_2 \big) \\ & \text{iff.} \quad \exists c \exists d \, \big((a,c) \in \mathcal{R}_1 \land (c,d) \in \mathcal{R}_2 \land (d,b) \in \mathcal{R}_3 \big) \\ & \text{iff.} \quad \exists d \big((a,d) \in \mathcal{R}_2 \circ \mathcal{R}_1 \land (d,b) \in \mathcal{R}_3 \big) \\ & \text{iff.} \quad (a,b) \in \mathcal{R}_3 \circ (\mathcal{R}_2 \circ \mathcal{R}_1) \end{split}$$

Thus, the composition operator is associative over relations.

QED

5. Proof:

To prove that a relation \mathcal{R} on a set \mathbb{A} is transitive iff. $\mathcal{R} \circ \mathcal{R} \subseteq \mathcal{R}$, we just need to prove that a relation \mathcal{R} on a set \mathbb{A} is not transitive iff. $\mathcal{R} \circ \mathcal{R} \not\subseteq \mathcal{R}$.

a relation \mathcal{R} on a set \mathbb{A} is not transitive

- iff. $\exists x, y, z \in \mathbb{A} \neg (x\mathcal{R}y \land y\mathcal{R}z \rightarrow x\mathcal{R}z)$
- iff. $\exists x, y, z \in \mathbb{A} \neg (\neg (x \mathcal{R} y \land y \mathcal{R} z) \lor x \mathcal{R} z)$
- iff. $\exists x, y, z \in \mathbb{A} (x \mathcal{R} y \land y \mathcal{R} z) \land \neg x \mathcal{R} z$
- iff. $\exists x, z \in \mathbb{A} \ (\exists y \in \mathbb{A} \ ((x, y) \in \mathcal{R} \land (y, z) \in \mathcal{R} \land (x, z) \notin \mathcal{R}))$
- iff. $\exists x, z \in \mathbb{A} ((x, z) \in \mathcal{R} \circ \mathcal{R} \land (x, z) \notin \mathcal{R})$
- iff. $\mathcal{R} \circ \mathcal{R} \not\subseteq \mathcal{R}$

QED

6. Proof:

Since a relation \mathcal{R} on a set \mathbb{A} is antisymmetric **iff.** $\forall x, y \in \mathbb{A}$ $(x\mathcal{R}y \land y\mathcal{R}x \to x = y)$ and $\mathcal{R} \cap \mathcal{R}^{-1} \subseteq I_{\mathbb{A}}$ **iff.** $\forall x, y \in \mathbb{A}$ $((x, y) \in \mathcal{R} \land (x, y) \in \mathcal{R}^{-1} \to (x, y) \in I_{\mathbb{A}})$, we just need to prove $\forall x, y \in \mathbb{A}$ $(x\mathcal{R}y \land y\mathcal{R}x \to x = y)$ **iff.** $\forall x, y \in \mathbb{A}$ $((x, y) \in \mathcal{R} \land (x, y) \in \mathcal{R}^{-1} \to (x, y) \in I_{\mathbb{A}})$.

$$\forall x, y \in \mathbb{A} \quad \left((x, y) \in \mathcal{R} \land (x, y) \in \mathcal{R}^{-1} \to (x, y) \in I_{\mathbb{A}} \right)$$
 iff.
$$\forall x, y \in \mathbb{A} \quad \left((x, y) \in \mathcal{R} \land (x, y) \in \mathcal{R}^{-1} \to x = y \right)$$
 iff.
$$\forall x, y \in \mathbb{A} \quad \left((x, y) \in \mathcal{R} \land (y, x) \in \mathcal{R} \to x = y \right)$$
 iff.
$$\forall x, y \in \mathbb{A} \quad (x\mathcal{R}y \land y\mathcal{R}x \to x = y)$$

QED

7. Disproof:

 $\mathcal{R}_1 \cup \mathcal{R}_2$ might not be an equivalence relation on \mathbb{A} .

For example:

 $\mathbb{A} = \mathbb{N}, \ \mathcal{R}_1 = \{(a,b) \in \mathbb{N} \times \mathbb{N} \mid a \text{ and } b \text{ are congruent modulo 7}\},$ $\mathcal{R}_2 = \{(a,b) \in \mathbb{N} \times \mathbb{N} \mid a \text{ and } b \text{ are congruent modulo 2}\}.$

Since $9\mathcal{R}_12$ and $2\mathcal{R}_24$, (9,2), $(2,4) \in \mathcal{R}_1 \cup \mathcal{R}_2$. However, $(9,4) \notin \mathcal{R}_1 \cup \mathcal{R}_2$.

Therefore, $\mathcal{R}_1 \cup \mathcal{R}_2$ is not transitive, and is thereby not an equivalence relation on \mathbb{A} .

Thus, when \mathcal{R}_1 and \mathcal{R}_2 are equivalence relations on \mathbb{A} , $\mathcal{R}_1 \cup \mathcal{R}_2$ might not be an equivalence relation on \mathbb{A} .

8. Proof:

Since \mathcal{R}_1 and \mathcal{R}_2 are equivalence relations,

$$(\forall a \in \mathbb{A} ((a, a) \in \mathcal{R}_1)) \land (\forall a \in \mathbb{A} ((a, a) \in \mathcal{R}_2)) \Rightarrow \forall a \in \mathbb{A} ((a, a) \in \mathcal{R}_1 \land (a, a) \in \mathcal{R}_2)$$
$$\Rightarrow \forall a \in \mathbb{A} ((a, a) \in \mathcal{R}_1 \cap \mathcal{R}_2).$$

Thus, $\mathcal{R}_1 \cap \mathcal{R}_2$ is reflexive.

Since \mathcal{R}_1 and \mathcal{R}_2 are equivalence relations,

Since \mathcal{R}_1 and \mathcal{R}_2 are equivalence relations,

Since $\mathcal{R}_1 \cap \mathcal{R}_2$ is reflexive, symmetric and transitive, $\mathcal{R}_1 \cap \mathcal{R}_2$ is an equivalence relation on \mathbb{A} .

QED