Name: _____ Klasse: ____

Der räumliche Bau von Molekülen Anleitung zum Ableiten der Molekülgeometrie

Von drei Grundkörpern lässt sich die Geometrie vieler Moleküle ableiten:

Gerade: linear

2 Elektronenpaare

Dreieck: planar

3 Elektronenpaare

Tetraeder: räumlich

4 Elektronenpaare

Aufgabe:

Ermittle die Molekülgeometrie folgender Verbindungen:

Verbindung	N(L)	N(E)	Σ (L) + (E)	Geometrie
SO ₂				
H ₂ O				
CO_2				
PH ₃				
CCl ₄				
HCN				
CHCl ₃				
SO ₂ Cl ₂				
SF ₄ O				
SO ₃				

Beachte: Doppelbindungen zwischen Zentralatom und Ligand zählen nur als eine Bindung. Die Elektronen einer Doppelbindung stoßen sich jedoch mehr ab als die einer Einfachbindung und beeinflussen so den Bindungswinkel.