General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

UNIVERSITY OF VIRGINIA ACQUISITION OF PASSENGER RIDE QUALITY DATA ABOARD THE TOTAL IN-FLIGHT SIMULATOR (TIFS)

Technical Report 403220
Short-Haul Air Transportation Program

by
Eugene W. McClurken, Jr.

(NASA-CR-145957) UNIVERSITY OF VIRGINIA N76-14787
ACQUISITION OF PASSENGER RIDE QUALITY DATA
ABOARD THE TOTAL IN-FIIGHT SIMULATOR (TIFS)
(Virginia Univ.) 112 p HC \$5.50 CSCL 05E Unclas
G3/53 06792

October 1975

Department of Engineering Science and Systems

UNIVERSITY OF VIRGINIA ACQUISITION OF PASSENGER RIDE QUALITY DATA ABOARD THE TOTAL IN-FLIGHT SIMULATOR (TIFS)

Eugene W. McClurken, Jr.

Approved by:

Ira D. Jacobson

Co-principal Investigator

A. R. Kuhlthau

Co-principal Investigator

Performing Organization Report No. TR-403220

October 1975

Prepared under Grant No. NGR 47-005-181 by UNIVERSITY OF VIRGINIA
Department of Engineering Science and Systems Charlottesville, Virginia 22901

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TABLE OF CONTENTS

																								Page
LIST OF ILLUST	RATIONS.					. ,																		v
LIST OF TABLES																						•		vii
SUMMARY																						•		1
OBJECTIVES	• • • •			•	•		•	•	•	•		•	•	•	•		•			•	•		•	1
APPROACH		• •		٠	•	• •	۰							•										2
TOTAL IN-FLIGHT	T SIMULA	TOR.				٠.		•											۰				•	3
DRIVE TAPE PRE																								5
TEST SUBJECTS.																								5
TEST PROTOCOL.																								6
Subject B																								7
Debriefin																								8
DATA RECORDING																								8
RESULTS AND DIS																								8
Sinusoida																								9
Sinusoida																								12
Random Vei																						•	•	12
Random Vei																				•	•	•	•	12
Random Ro											,				•	•	•	•	•	•	•	•	•	12
Narrow Bar															•	• nd		•	•	•	•	•	•	12
Transverse	Accele	ratio	ns.	•			•	• •	•	• .		٠.		•		•	•				a	•		13
CONCLUSIONS				•																				13
RECOMMENDATIONS	S																							14
REFERENCE																								15
APPENDIX A	FLIGHT S	SUMMA	RIE	s:	SI	UBJ	ECT	S	EA	T ! P	IG,	SI	JBJ	EC	Т	RE	SP	ON	SE	s,				•
	AND INVE																			•	•		•	43
Notes for	Append !	κ A.		•	•		•	•	•			•	•	•	•		•	•	•	•	•			43
Flight Sun	maries.			•	•		•	•	•			•	•							•				45
APPENDIX B	SUBJECT	BACK	GRO	UND	Al	D	COM	(FO	RT	SC	AL	E !	ИТ	ER	PR	EΤ	ΛT	10	N					71
APPENDIX C	SUBJECTS CABIN TE	S AND EMPER	SE. ATU	AT RE,	AS:	S I GI ND	NME SIX	NT (-D	, EG	SCH Ree	IEDI E-O	ULE F-F	RE	F	TE OM	ST r	F ms	L!	GH IOT	TS 10	, NS			97
Six-Degree																					_		_	100

LIST OF ILLUSTRATIONS

(1) 6선

11

<u>Figure</u>		Page
1	Sample subject response sheet	. 16
2	TIFS subject test area arrangement	. 17
3	TIFS cabin arrangement	. 18
4	Sound pressure level distribution	. 19
5	Typical TIFS noise spectrum recorded by PEMS !!	. 20
6	Sinusoidal motions range, transverse vs. vertical with frequency, flight number, and (flight segments) indicated	. 21
7	Random motions range, transverse vs. vertical with flight number and (flight segments) indicated	. 22
8	Sinusoidal transverse and vertical accelerations, Flight 355	23
9	Sinusoidal vertical and transverse accelerations, Flight 327	24
10	Sinusoidal vertical and transverse accelerations, Flight 352	25
11	Sinusoidal vertical and transverse accelerations, Flight 356	. 26
12	Sinusoidal roll rate, Flight 326	. 27
13	Sinusoidal roll rate, Flight 334	. 28
14	Random transverse and vertical accelerations, Flight 325	. 29
15	.Random transverse and vertical accelerations, Flight 353	30
16	Random transverse and vertical accelerations, Flight 359	31
17	Random vertical acceleration, Flight 357	32
18	Random yaw and roll rates, Flight 328	33
19	Random yaw and roll rates with background random vertical and transverse accelerations, Flight 354	. 34
20	Random yaw and roll rates with background random vertical and transverse accelerations, Flight 358	35
21	Random vertical and transverse accelerations, 0.3 - 1 Hz, Flight 332	.36
22	Random vertical and transverse accelerations, 0.7 - 1 Hz, Flight 333	37
23	Random vertical and transverse accelerations, 0.1 - 1 Hz, Flight 351	. 38
24	Vertical and transverse sinusoidal accelerations, Flights 327, 352, 356, and 355	_
25	Comfort response vs. frequency of sinusoidal roll rate	
26	Typical power spectral density plots of vertical acceleration in bandpass frequency effect test	

LIST OF TABLES

Table		
•		Page
1	AREAS OF FLIGHT TEST INVESTIGATION	_
11	GUIDE TO MOTION/RESPONSE CHARGE	2
111	GUIDE TO MOTION/RESPONSE GRAPHS	9
C-1	SUBJECTS AND SEAT ASSIGNMENTS	10
C-2	SUBJECTS AND SEAT ASSIGNMENTS	97
C-3	SCHEDULE OF UVA TEST FLIGHTS.	98
~ ,	TEMPERATURE VARIATION AT TEST OBSERVER SEAT	99

PRECEDING PAGE BLANK NOT

UNIVERSITY OF VIRGINIA ACQUISITION OF PASSENGER RIDE QUALITY DATA ABOARD THE TOTAL IN FLIGHT SIMULATOR (TIFS)

Eugene W. McClurken, Jr. University of Virginia

SUMMARY

The "In-Flight Simulator Investigation of Passenger Subjective Response to Vehicle Motions" (ref. 1) was a cooperative effort among the V/STOL Aircraft Projects Office and Aerospace Dynamics Branch at NASA/Langley Research Center; the Department of Psychology, Hampton Institute; and the Department of Engineering Science and Systems, University of Virginia. This report describes the preparation, implementation, and results of the test flights made in support of the University of Virginia investigations.

The Total In-Flight Simulator (TIFS) aircraft is a C-131H owned by the U.S. Air Force Flight Dynamics Laboratory and operated by Calspan Corporation of Buffalo, New York. Pre-recorded signals were converted into controlled aircraft motion for evaluation by ten subjects on a seven-point rating scale. Eighteen test flights were flown in August and September 1974 for the University of Virginia, the results of which are to be used in validation studies on ground-based simulators at NASA/Langley Research Center and to extend passenger response models developed at the University of Virginia.

The first series of test flights occurred in the four-day period August 12-15, 1974. A hydraulic problem cancelled flights on August 16, and a required 100-hour inspection of the aircraft postponed the remaining University of Virginia flight tests until September 13, 14, and 16, 1974.

OBJECTIVES

The purpose expressed (ref. 1) for using the airborne simulator include:

 The establishment of baseline data for comparison of passenger subjective responses (PSRs) to actual flight motions with PSRs to similar motions reproduced on ground-based simulators, and

 The investigation of PSRs to motions occurring in commercial flight regimes but not easily reproducible in ground-based simulators.

The University of Virginia was asked to be responsible for experiments involving PSRs to isolated and combined motions as indicated in table 1.

TABLE 1.- AREAS OF FLIGHT TEST INVESTIGATION

Type of Motion	Number of Flights
Sinusoidal	
Low frequency vertical and transverse accelerations	5
Low frequency roll rates	2
Random	
Vertical and transverse accelerations	3
Vertical acceleration (isolated)	2
Roll and yaw rates	3
Narrow bandpass frequency effects	3

APPROACH

The eighteen test flights were ordered so as to present to the subjects a variety of combinations of motion. This approach was used to assist subjects in judging on the basis of their own comfort, rather than acting as motion amplitude meters comparing one flight to another.

Each twenty-segment flight was composed of two independent ten-segment tests in which five unique levels of motion were presented in random order with smooth transitions and repeated in random variation.

Ten test subjects per flight were asked to evaluate each of the twenty segments using a seven-point rating scale and entering observations or comments into a written log. Each segment was two minutes long. Twenty seconds after

the beginning of the segment, an announcement over the aircraft public address system directed subjects to begin the evaluation and indicated the current segment identification number. Eighty seconds later another announcement directed subjects to record subjective responses and comments. Subject response sheets (see figure 1), clipboards, and pens were provided for that purpose. Responses were selected from the seven-point scale printed in the upper left corner of each response sheet.

Subjects were briefed prior to each day of flying concerning scheduling, use of the response sheets, and safety procedures. Subjects were debriefed informally following each flight and more formally at the end of each day of flying. Aircraft and subject schedules necessitated more concentrated flight exposures (up to four flights per day) than would have been preferred (one flight in the morning and one in the afternoon). Rest periods of thirty to forty-five minutes out of the aircraft were provided between flights, with sixty to ninety minutes for lunch.

Experience gained in previous flight tests indicated the inability of some subjects to separate environmental factors affecting judgments of comfort. Rather than have subjects attempt to isolate the effects of motion on subjective response, they were asked to respond to the total passenger environment, including motions, noise, vibration, temperature, pressure, etc.

TOTAL IN-FLIGHT SIMULATOR

The Total In-Flight Simulator (TIFS) is a Convair C-131H, a version of the Convair 580 modified by the addition of direct lift flaps, side force surfaces, and control systems to provide variable stability flight capabilities through an onboard computer. For this research effort, analog tapes were created to provide controlled inputs to the computer which operated the control surfaces to produce desired levels of motion.

An extensive automatic safety trip system guarded against motion amplitudes or control surface deflection rates which exceeded preset limits. In several instances, these limits restricted the motion levels desired for the tests (especially for random roll and yaw) and this restriction resulted in the elimination of several tapes from the sequence of experiments.

The aircraft cabin was divided by opaque curtains into three sections: the cockpit area, the test subject area, and the computer area (see figures 2 and 3). The test subject area was outfitted with airline-type adjustable seats, carpeting, and paneling to cover power and hydraulic consoles. The seats were of two types. Those numbered 1 through 6, located left of the aisle had cushions measuring 50.8 cm (20 inches) deep and 45.7 cm (18 inches) in width. The seat back was 66 cm (26 inches) above the cushion which, when unoccupied, was 45.7 cm (18 inches) above the floor. Seats 7 through 10 had cushions 45.7 cm (18 inches) square and 42 cm (16.5 inches) above the floor. Seat backs in this type were 69 cm (27 inches) high. Both types of seats had 7.6 cm (3 inch) wide arm rests and 37 cm (14.5 inches) knee room between seat pairs. Seats 1, 2, 7, and 8 had at least 61 cm (24 inches) of leg room.

10

Located behind the ten subject seats were the test observer and camera operator, one of whom remained in voice contact with the crew.

The University of Virginia Portable Environmental Recording Systems (PEMS I AND II) were positioned in front of and operated by the observer. Only one of the two systems was operated at any given time.

Temperature control of the cabin proved somewhat difficult. The demands placed on the air conditioning system by the warm weather and sun, while the aircraft was on the ground between flights, frequently exceeded the system's capacity. Uneven air distribution and system lag time further complicated the effort to achieve uniform and comfortable temperatures for the flight tests. When feasible, higher test altitudes were requested to take advantage of lower outside air temperatures.

Test subjects occasionally experienced some discomfort due to pressure changes in the unpressurized cabin. Most such occurrences were during descent portions of flight although on several occasions, the effects were noticeable during the flight tests.

Noise level was generally above 88 dB(A) throughout the test period of each flight, in some test subject seats as high as 100 dB(A). (Refer to figures 4 and 5.)

DRIVE TAPE PREPARATION

Motion levels were selected to provide a reasonable distribution of subjective responses, based on data from previous flight experiences. The simulator was operated in a four-degree-of-freedom mode, providing control over vertical acceleration, transverse or lateral acceleration, roll rate, and yaw rate.

Tape generation was accomplished by amplifying and filtering random and sinusoidal inputs using an analog computer at NASA/Langley Research Center. Potentiometers were manually adjusted according to a prepared script to provide appropriate new rms levels every two minutes, with smooth transitions between segments. Discontinuities would have resulted in aborts by the automatic safety system aboard TIFS.

Drive tapes are seven-track, wide-band FM, recorded at 3-3/4 ips (identified as TIFS Driving Tapes (TDT) -1 through -16) with track assignments and conversions as follows:

Track	<u>Variable</u>	Conversion
1	Vertical acceleration	0.625 g/volt 0.299 g/volt
2	Transverse acceleration	0.299 g/Voit
3	(not recorded)	
4	Roll rate	12.55 deg/sec/volt
5	Yaw rate	7.75 deg/sec/volt
6	NASA 36 time code	FM
7	NASA 36 time code	Direct

TEST SUBJECTS

For each flight, ten subjects were chosen from a pool of twenty-six volunteers, thirteen men and thirteen women. Five were NASA employees; seven were students or employees of the University of Virginia; thirteen were students or employees of Hampton Institute; and one was nonaffiliated. Eight were 18-20 years old; nine were 21-25; three 26-30; five were 31-35; and one was in the 36-40 category. Ten could be considered experienced subjects,

having participated in previous flight programs; three additional subjects had some previous affiliation with flight research or piloting an aircraft; and thirteen were considered not experienced as subjects. Hampton Institute subjects were paid for their participation.

Subjects were not pre-tested or screened prior to the test flights, nor were training flights available to provide rating experience for naive subjects. During the test flights, it was discovered that one subject's responses were pre-determined by the subject's attitude toward given flights and a few subjects tended to doze during tests. In some cases several test flights and debriefings were completed before subjects fully understood the nature of the judgments requested.

In order to provide a context for individual responses, the following information was provided by each subject:

- 1. Age
- 2. Total number of flights (lifetime)
- Number of flights (last two years)
- 4. Types of aircraft
- Attitude towards flying.

After having performed the evaluation tasks on one or more test flights, each subject was asked to describe in detail his or her interpretation of each point of the seven-point comfort rating scale. This contextual information is summarized by subject code number in appendix B. Individual subject responses to each flight segment are given in appendix A.

An effort was made to provide both continuity and variety in the subject population. Thirteen subjects made less than five flights each; five subjects participated in five to nine flights each; and eight subjects each flew ten to eighteen test flights.

TEST PROTOCAL

Provision was made for four test flights per day under acceptable weather conditions. The planned schedule is listed below:

0800-0825	Subject briefing, coffee
0830-0840	Board TIFS aircraft
0840-0900	Taxi, takeoff, climb to test altitude
0900-0940	First test flight
0940-1000	Descend, land, subjects deplane
1000-1025	Break
1030-1035	Reboard T1FS
1035-1100	Taxi, takeoff, climb to test altitude
1100-1140	Second test flight
1140-1200	Descend, land, subjects deplane
1200-1215	Debriefing
1215-1300	Lunch
1300-1310	Reboard TIFS
1310-1330	Taxi, takeoff, climb to test altitude
1330-1410	Third test flight
1410-1430	Descend, land, subjects deplane
1430-1500	Break
1500-1505	Reboard TIFS
1505-1530	Taxi, takeoff, climb to test altitude
1530-1610	Fourth test flight
1610-1630	Descend, land, subjects deplane
1640-1700	Debriefing

This schedule was followed closely when operating under Visual Flight Rules (VFR) conditions, but delays were occasionally encountered. When weather conditions necessitated Instrument Flight Rules (IFR) operation, approximately forty minutes additional flight time was required for departing from and returning to Langley Air Force Base. Flights with durations exceeding ninety minutes were followed by refueling, requiring thirty to fifty minutes.

Subject Briefings

First time subjects were introduced to each other and to the rest of the group and given a brief explanation of the test purposes, schedule, safety aspects, and procedures for terminating a test if anyone should so desire. The use of the subject response form was explained and seat assignments were made.

Debriefings

Informal debriefing following each flight was attempted by involving individuals or small groups in conversations. Questions were answered, instructions clarified, and comments noted by the observers, test conductor, or member of the research team. More formal debriefing sessions were scheduled at the end of each flight day.

DATA RECORDING SYSTEM

The University of Virginia provided two carry-on motion recording systems for use in data acquisition. These were designed and constructed at the University of Virginia for use in ride quality research programs. These Portable Environmental Measuring Systems, PEMS I and PEMS II, were located near the aircraft center of gravity and provided six-degree-of-freedom motion recording capability (except on two flights, 349 and 350, when data were lost due to a blown fuse in a circuit providing power to an output amplifier). The TIFS aircraft is also equipped with a data recording system, but at the time of this writing, our processing of the Calspan-recorded data was incomplete.

This report treats only the data recorded on the University of Virginia systems and reduced at the Data Transcription Facility at NASA Langley Research Center. The following results are based on those data.

RESULTS AND DISCUSSION

These results and conclusions are based on apparent functional relationships between subjective responses and the degree(s) of freedom intended as inputs to the test. Total motion experienced by the subjects is more fully described by the six-degree-of-freedom summary contained in appendix C.

The ranges of sinusoidal and random vertical and transverse accelerations measured are indicated graphically in figures 6 and 7. Mean subjective responses are plotted versus variable motions in figures 8 through 23, in accordance with the table below. The range and types of motion for each test are summarized in table III.

TABLE II.- GUIDE TO MOTION/RESPONSE GRAPHS

Motion	Flights	Figures
Sinusoidal vertical and transverse accelerations	355 327 352 356	8 9 10 11
Sinusoidal roll rate	326 334	12 13
Random vertical and transverse accelerations	325 353 359	14 15 16
Rardom vertical acceleration Random roll and yaw rates	357 328 354 358	17 18 19 20
Narrow bandpass frequency effects on random vertical and transverse accelerations	332 333 351	21 22 23

Sinusoidal Vertical and Transverse Accelerations

The first ten segments of Flight 355 presented to the subjects various amplitudes of 1.0 Hz sinusoidal transverse acceleration as the test motion stimulus. The remaining ten segments exposed them to 1.0 Hz vertical sinusoidal acceleration levels. Although neither of these motions is generally encountered in flight, the response data may be used in relating the University of Virginia TIFS subject group with subjects used in classic simulator studies.

It is of interest to note in figure 8 (Flight 355) that subject sensitivity to transverse acceleration is approximately three times that to vertical acceleration (each sinusoidal at 1 Hz), as indicated by the slopes of the graphs shown.

Flights 327, 352, and 356 presented to the subjects 0.3 and 1.0 Hz vertical sinusoidal accelerations in combination with 0.5 Hz transverse sinusoidal accelerations. Figure 24 is a comparative summary of the least squares linear fits of the mean responses to the various combinations for a 1 Hz vertical and 0.5 Hz lateral acceleration combination showing a monotonic degradation of comfort level with increasing amplitudes of transverse acceleration.

TABLE III.- TEST FLIGHT SUMMARY

TIFS	TOT	SEGMENTS	VERTICAL ACCELERATION 9 rms	TRANSVERSE ACCELERATION 9 rms	ROLL RATE rad/s rms	YAW RATE rad/s rms
325	-	1 - 10	R 0.044	R 0.017 - 0.071 R 0.017 - 0.066	! ;	1 1
326	15	1 - 10	: 1	1 1	S*(1 Hz) 0.015 - 0.075 S (0.5 Hz) 0.016 - 0.081	!!!
327	12	1 - 10	S (0.3 Hz) 0.037 - 0.16 S (! Hz) 0.021 - 0.10	s (0.5 Hz) 0.0525 S (0.5 Hz) 0.0859	1 1	
328	2	1 - 10	1 1	1	R 0.0096 R 0.022	R 0.004 - 0.009 R 0.002 - 0.01
332	ω .	1 - 10	R (0.3 - 1 Hz) 0.03 - 0.15 R (0.3 - 1 Hz) 0.03 - 0.156	R (0.3 - 1 Hz) 0.057 R (0.3 - 1 Hz) 0.022	1 1	
333	10	1 - 10	R (0.7 - 1 Hz) 0.03 - 0.15 R (0.7 - 1 Hz) 0.03 - 0.14	R (0.7 - 1 Hz) 0.014 R (0.7 - 1 Hz) 0.025		
334	m	1 - 10	; I	1 1	S (0.3 Hz) 0.02 - 0.20 S (0.1 Hz) 0.04 - 0.21	
349	9	1 - 10				
350	7=	- 10				
ı Ra	TR - Random Input		#5 - Sinusoidal Input			

TABLE !!!.- CONTINUED

¥.4

Andrew Co.

To the second

And the same of

7-10

te and to the

Contraction of

YAW RATE rad/s rms		1	1 1	R 0.0013 - 0.0094 R 0.0013 - 0.011	: :	!!!	i	R 0.004 ~ 0.0105 R 0.002 ~ 0.016	
ROLL RATE rad/s rms	1 1	-	1 1	R 0.008 - 0.0185 R 0.011 - 0.054			1 1	R 0.003 - 0.015 R 0.008 - 0.0385	1 7
TRANSVERSE ACCELERATION 9 rms	R (0.1 - 1 Hz) 0.027 R (0.1 - 1 Hz) 0.075	S (0.5 Hz) 0.087	R 0.015 - 0.06 R 0.013 - 0.06	R 0.012 R 0.012	S (1 Hz) 0.0148 - 0.065	S (0.5 Hz) 0.096 S (0.5 Hz) 0.022		R 0.025 R 0.025	R 0.014 - 0.071 R 0.016 - 0.066
VERTICAL ACCELERATION 9 rms	R (0.1 - 1 Hz) 0.026 - 0.11 R (0.1 - 1 Hz) 0.033 - 0.124	S (1 Hz) 0.021 - 0.106	R 0.063 R 0.034	R 0.018 R 0.018	s (1 Hz) 0.03 - 0.13	S (0.3 Hz) 0.04 - 0.18 S (1 Hz) 0.02 - 0.11	R 0.03 - 0.12 R 0.035 - 0.15	R 0.034 R 0.034	R 0.063 R 0.037
SEGMENTS	1 - 10	11 - 20	1 - 10	1 - 10	1 - 10	1 - 10	1 - 10	1 - 10	1 - 10
TDT	6	14	†7	=	13	91	vo	1	4
T1FS FLIGHT	351	352	353	354	355	356	357	358	359

Sinusoidal Roll Rate

Four frequencies of sinusoidal roll rate were investigated: 0.1, 0.3, 0.5, and 1.0 Hz, on Flights 326 and 334. Figures 12 and 13 show the mean subjective responses and roll rate amplitudes for individual flight segments. Figure 25 summarizes the results, indicating that a roll rate of 0.3 Hz was judged the most comfortable of the four frequencies tested. At each frequency, ratings degraded with increasing amplitude roll rates. Subject comments noted motion similarities ranging from rocking in a cradle to tossing in a boat.

Random Vertical and Transverse Accelerations

Flights 325 and 353 had eight subjects in common and Flight 359 had four in common with the first two flights. The responses indicated that the levels of constant random vertical acceleration experienced in this series of flights (0.024, 0.034, 0.045, and 0.063 g rms) produced no consistent effect in combination with the levels of transverse acceleration. For any given level of constant random vertical acceleration, the random transverse acceleration (ranging from 0.013 to 0.071 g rms) produced reasonably linear responses by the groups of subjects, as shown in figures 14, 15, and 16.

Random Vertical Acceleration

The results of Flight 357 are displayed in figure 17. Points for segments 1, 2, 5, and 6 are missing due to data reduction problems. Once again, subject responses were relatively less sensitive to vertical acceleration below 0.08 g rms. A linear least squares fit of data in segments 11-20 yields the equation: $C = 2.14 + 14.3 \, a_V$ where C is the subjective comfort level and a_V the rms vertical acceleration. This equation agrees quite well with previous data (ref. 2) taken onboard commercial airline flights.

Random Roll and Yaw Rates

The TIFS system was unable to provide sufficient magnitudes of simultaneous random yaw and roll rates to generate useful data. Flights 328, 354, and 358 were intended to investigate the effects of these random degrees of freedom on subjective response. As can be seen from figures 18, 19, and 20 the low values

of mean subjective response and absence of strong functional relationships indicate that the motions experienced did not affect subject sensitivity.

Narrow Bandpass Frequency Effects on Random Vertical and Transverse Accelerations

Flights 332, 351, and 333 presented filtered motions to the subjects. Bandpass frequencies of 0.3 to 1.0 Hz, 0.1 to 1.0 Hz, and 0.7 to 1.0 Hz, respectively, were the desired regions of investigation. Figures 21, 22, and 23 indicate mean subjective responses to varying rms levels of vertical acceleration with constant rms transverse accelerations. Figure 26 shows a typical power spectral density plot for each of the three flights. The actual frequency bands achieved (determined by half-power points) were 0.2 to 1.0 Hz, 0 to 0.65 Hz, and 0.4 to 1.2 Hz with peak power points at approximately 0.5, 0.35, and 0.8 Hz, respectively. As these data were mainly for comparison with future ground-based simulations, no analysis is presented here; however, for the first two bandpass frequencies similar results to the atmospheric spectrum were obtained.

CONCLUSIONS

- Use of airborne simulators can provide important baseline data to confirm or negate ground-based simulator validity. Scheduling problems and cost of airborne investigation will necessarily limit its use to spot checking validity of ground-reproducible regimes, and efficiently planned programs examining regimes not reproducible on ground-based simulators.
- The TIFS system is useful for sinusoidal testing in vertical, transverse, and roll degrees of freedom, has some important limitations in random vertical and transverse accelerations, and is severely restrictive in random roll and yaw rate investigations.
- The TIFS aircraft did permit the University of Virginia to explore isolated degrees of freedom and motion combinations unavailable in commercial flight experiences. Useful data

were obtained which can be applied to the modeling effort currently in progress.

10

 Unless naiveté is deemed essential, subjects should be screened on ground-based simulators to prevent use of unreliable subjects for flight testing and provide a training situation to confirm the subject's understanding of the judgments (responses) he or she is asked to make.

RECOMMENDATIONS

- Improved temperature control for motion experiments.
- Investigation of temperature and humidity as independent variable constituents of subjective response to ride quality. The nature and variety of motion variables investigated in these tests precluded controlled experiments with temperature as the subject variable.
- Increasing confidence in results by repeated experiments to achieve a reasonable statistical sample. The time limitations of this program restricted repetition of flight tests.
- Examine effects of visual cues on responses.
- Examine effects of activity (reading, conversation, looking out window, etc.) on responses.
- Examine effects of motion on performance of normal passenger activities.
- Investigate subject response degradation with exposure time and flight test frequency (i.e., recovery time and fatigue effects).
- Provide onboard (computer) calculation of rms motion values for segments to permit more efficient use of flight test time available.

- Examine the effect of subject group composition on mean subjective response using existing data.
- Run additional tests (perhaps on ground-based simulators) to further investigate the effects of interchanging the constant and variable presentation of motion inputs: e.g., in tests similar to Flights 325, 353, and 359 present varying levels of vertical acceleration in conjunction with constant levels of transverse acceleration to determine whether or not the method of presentation affects subject response sensitivities.

REFERENCE

 Schoonover, W. E., Jr.: Protocol: In-Flight Simulator Investigation of Passenger Subjective Response to Vehicle Motions. NASA Langley Research Center, April 1974. (Unpublished material; available from author.)

SUBJECT RESPONSE SHEET

l. Ver	y Comfortable						
2. Com	fortable						
3. Som	ewhat Comforta	ab I e	Name:				
4. Neu	tral		Date:				
5. Som	ewhat Uncomfor	table		(circle):			
6. Unc	omfortable						
7. Ver	y Uncomfortabl	е	Seat:				
	you feel?						
Did you	do or eat any	thing today wh	ch is quite diffe	erent from ·	your r	normal routin	e.
PLEASE !	REMEMBER: You	r resconse sho	d indicate your	OVERALL CO			
	ARE	NOT TO MEASURE	ONLY THE MOTION	UVERALL CUP	1FORT	LEVEL. YOU	
	fee	1 Make commer	s freely. Your	. We need t	0 KNC	ow now you	
	Overall Subjective		is truely. Tour	responses a	אופ כנ	onridential.	
Segment	Response	<u>Comments</u>					
1							
2							_
3	ļ						_
4	\						
5							_
6							_
7							_
8							_
9							_
10				- · · · · · · · · · · · · · · · · · · ·			_
11	 						_
12					-		_
13							_
14					 		_

Figure 1.- Sample subject response sheet.

Figure 2.- TIFS subject test area arrangement.

Figure 3.- TIFS cabin arrangement.

FIGURE 4. SOUND PRESSURE LEVEL DISTRIBUTION

1/3 Octave Band Analysis
TIFS Aircraft in Cruise - System On
Rear of Subject Area

Figure 5.- Typical TIFS noise spectrum recorded by PEMS II.

REPRODUCED IN OF THE ORIGINAL PAGE IS POOR

Figure 6.- Sinusoidal motions range, transverse vs. vertical with frequency, flight number, and (flight segments) indicated.

Figure 7.- Random motions range, transverse vs. vertical with flight number and (flight segments) indicated.

Figure 8.- Sinusoidal transverse and vertical accelerations, Flight 355.

Figure 9.- Sinusoidal vertical and transverse accelerations, Flight 327.

Figure 10.- Sinusoidal vertical and transverse accelerations, Flight 352.

Figure 11.- Sinusoidal vertical and transverse accelerations, Flight 356.

Figure 12.- Sinusoidal roll rate, Flight 326.

Figure 13.- Sinusoidal roll rate, Flight 334.

Figure 14.- Random transverse and vertical accelerations, Flight 325.

Figure 15.- Random transverse and vertical accelerations, Flight 353.

Figure 16.- Random transverse and vertical accelerations, Flight 359.

Figure 17.- Random vertical acceleration, Flight 357.

Figure 18.- Random yaw and roll rates, Flight 328.

Ď,

Figure 19.- Random yaw and roll rates with background random vertical and transverse accelerations, Flight 354.

Figure 20.- Random yaw and roll rates with background random vertical and transverse accelerations, Flight 358.

Figure 21.- Random vertical and transverse accelerations, 0.3 - 1 Hz, Flight 332.

Figure 22.- Random vertical and transverse accelerations, 0.7 - 1 Hz, Flight 333.

TOTAL CHARLES A CONTRACTOR

Figure 23.- Random vertical and transverse accelerations, 0.1 - 1 Hz, Flight 351.

Figure 24.- Vertical and transverse sinusoidal accelerations, Flights 327, 352, 356, and 355.

Figure 25.- Comfort response vs. frequency of sinusoidal roll rate.

Figure 26.- Typical power spectral density plots of vertical acceleration in bandpass frequency effect test.

APPENDIX A

FLIGHT SUMMARIES: SUBJECT SEATING, SUBJECT RESPONSES, AND INVESTIGATED MOTION STIMULE

Notes for Appendix A

TIFS FLIGHT	Each flight of the TIFS aircraft is assigned a unique number by the Calspan Corporation.
TDT	Identifies the number of the driving tape used to supply to the TIFS computer electrical inputs representing the desired motions.
INSTRUMENTATION	The University of Virginia has two instrumentation packages for measuring motion and environmental data. This entry indicates which equipment, PEMS I or PEMS II, was used on a given flight.
DATE	Date of the test flight.
SEAT	Refer to figure 2 for a seating diagram and numbering system used for the University of Virginia tests.
SUBJ	Subjects are identified by a code number which permits cross referencing responses with background, experience, and response scale interpretations in appendix B. Individual subject responses for each of the twenty flight segments are listed vertically under each SEAT and SUBJect code. In some cases, subjects failed to respond (represented by -0). On occasion, a

subject's responses during a given test were consistently beyond one standard deviation from the mean. His or her responses may then have been deleted from the results (indicated by 0). The number of subjects whose responses were used in computing the mean and standard deviation for a given segment. . The mean value of subject responses. . The standard deviation is calculated from: $S = \sqrt{\frac{\sum x^2}{N-1}}$ using N-1 rather than N in the denominator because sampled population was small. VERT(R), TRANS(R), VERT(S), TRANS(S) . Represent vertical and transverse accelerations, random (R) and sinusoidal (\$), respectively. Each is given in units of g rms. ROLL(S), ROLL(R), YAW(R) Represent sinusoidal roll, random roll, and random yaw rates, respectively. Each is given in units of rms radians per second.

TIF	S FLI	G4T 3	25		ונד	1		I	VS Ti	RUM	ENT	NOITA	PEN	S II		DATE	8-12-74	
		SEAT	1	z	3	4	5	6	7	8	9	16	R E	SP	O N	SL	VERT (R)	TRANS (R)
SEG	MENT	SUBJ	21	15	13	21	8	4	22	12	23	7	N	MEAN	STD	DEV	(RMS G)	(RMS G)
	1		3	3	4	4	3	3	6	4	5	3	1,	3.82	1	.633	247 62-02	2.7431E-02
	2		5	3	6	5	4	5	7	6	4	4	10	4.93	1	197	2.421 0E-02	4.8617E-02
	3		2	2	2	3	2	2	3	2.	1	2	16	2.13		568	2.1658E-02	1.75718-12
	4		3	4	5	5	4	5	5	4	3	4	10	4.23	i (789	2.3258E=02	4.2995E-12
	5		5	5	7	ė	5	á	7	5	б	6	11	5.7û		823	2.+15 3E-02	7.1127£-02
	6		2	3	3	4	2	4	3	3	4	3	10	3.13		738	2•1655E+02	2.76786-02
	7		2	4	4	4	3	5	3	4	4	4	10	3.70		823	2.3357E-02	3.6007E-J2
	8		6	5	ô	5	6	ь	6	5	5	5	1 ú	5.53	,	.527	2.4754E-42	6.4538E-J2
	9		2	1	2	4	2	s	2	3	1	3	10	2.23	l •	919	2.2324E-G2	1.9750E-J2
	10		5	3	5	4	3	5	3	4	4	3	13	3.9.	1	876	2.041 2E-u2	5.24862=32
	11		4	4	4	5	4	Ġ	3	4	4	4	10	4.23		789	4.84) 4E-02	4.6008E-02
	12		3	2	2	3	2	2	2	2	1	2	10	2.10		•568	4.221 1E-02	1.719úE-ú2
	13		ò	5	5	5	6	7	6	5	5	6	10	5.60		699	4.465 9E=02	5.9655E-02
	14		3	3	4	5	4	5	5	3	2	5	10	3.90	1	.101	4.51262-02	4.6758E-32
	15		2	2	4	4	3	4	2	3	2	2	13	2.8.		919	4.3433E-G2	2.93346-02
	16		5		7	3	6	7	7	5	5	6	10	5.50	1	354	4.203 9E-02	6.5703E-02
	17		4	4	4	6	3	5	3	4	4	5	10	4.30	1	659	4.545 GE=62	4.3845E-02
	18		2	2	3	+	2	2	2	2	2	2	16	2.3.		675	4.797 3E-02	1.8524E-02
	19		5	5	4	5	5	ć	2	4	4	4	1 ũ	ن جاء ۾ پا	1	675	4.35) 5E-02	5.3373E-02
	20		2	3	3	4	3	3	2	3	2	2	10	2.73		675	4.555 3L-02	2.79576-02

[-]

TIFS FLI	GAT 3	26		Tat	15		I	ISTF	QU MS	ENT	AT ION	PEN	s II	DATE	8-12-74
	SEAT	1	2	3	•	5	5	7	8	9	10	R E	S P 0	N S E	ROLL (S)
SEGMENT	SUBJ	29	15	13	21	8	4	55	12	23	7	N	MEAN S	TD DEV	RMS RAD/S
i		2	4	5	2	3	4	3	3	2	s	10	2.7ú	.823	3.05.2E-02
s		5	5	4	4	6	6	5	5	3	4	13	4.7ú	.949	7.471 6E-02
3		1	2	2	2	3	3	2	2	1	1	10	1.90	.738	1.507 6E-02
4		2	5	4	5	6	5	5	4	3	3	10	4.20	1.229	6.0057E-02
5		2	4	s	3	4	4	3	3	3	1	13	2.93	.994	3271E-ú2
6		1	2	2	2	3	3	3	2	2	1	1.0	2.1.	.738	1.5735E-02
7		1	3	Ş	•	4	Ļ	5	4	1	5	10	3.01	1.414	4.485 1E-62
8		2	4	3	3	6	5	ź	5	2	3	1.0	3.00	1.398	5.9514E-02
9		5	5	3	3	6	ô	6	5	. 4	3	10	4.60	1.265	7.563 3E-02
10		2	3	2	3	3	5	4	3	2	s	13	2.9.	.994	3.1636E-82
11		1	1	2	2	2	2	2	2	1	i	13	1.63	.51 0	1.6827E-02
12		2	2	-,	3	3	3	2	2	2	5	9	2.33	.500	6.46? 9E=02
13		3	2	- 3	2	3	2	3	2	1	2	9	5.55	.667	3.295 3E-02
14		5	-	- j	4	5	3	5	3	1	2	9	3.67	1.581	8.13:8E+02
15		3	3	3	3	3	2	3	2	2	2	1.	2.63	.516	4.87324-32
16		3	2	2	2	2	2	3	2	1	. 1	10	2.0)	.667	3.43L 2E-02
1.7		5	3	2	2	3	3	3	2	2	3	10	2.8,	.919	6.+456E-02
18		2	1	1	1	2	5	2	2	1	. 3	10	1.73	.675	1.6951E=02
. 19		3	4	. 3	S	4	4	5	, 4	. 3	3	13	3.51	.854	0.153 CE+02
23		3	3	: 2	2	3	3	4	. 3	3	4	10	3.03	•667	4.845 5L-02

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

TIFS FLIGHT 327	7	ŢΩ	e T :	12	1	(NS	RUP	IEN'	TAT:	ION	PEHS	II	DATE	8-13-74	
SEAT	1 2	. 3	ì	4 (5 (.	7 (3 '	9 1	B		S P O		VERT (S)	TRANS (S)
SEGMENT SUEJ	20 15	13	3 2	1	8 2	4 2	2 1	2 2	3	7	N H	EAN ST	D DEV	(RHS G)	TRIIS ST
	3 5		.		2	i.	6	4	3	3	10	3.73	1.166	3.695 4£=02	5.1916E-02
1	-			-		5	6	5	5	6	10	5.23	1.398	1.262 3E-ú1	5.2131E-02
2	3 =		7 6	7 6	3 3	_	-	- 5	5	4	10	4.61	1.075	6.8635L-02	5.2002E-42
3		•	-			4	7	6	5	7	1.0	6.10	.994	1.59.9E÷01	5.23316-02
4	_	•	7 6	7 5	6 5	3	5	5	4	5	13	4.9.	.994	1.J2.4E-31	5.7279E-02
5	_			7	5	5	ó	5	4	6	10	5.53	.972	1.32336-01	5.3929E-02
6	•	5	7 7	7	3	2	7	5	3	3	1:0	4,63	1.897	6.72126-02	5.1220E-02
7	-	=	-	-	3	 5	7	6	5	5	10	5.51	1.354	1.60; 5E-01	5.1284E-02
8	4	6	7 7	7 7	3	э 3	6	4	4	3	10	4.43	1.647	9.63:6E-J2	5.1679E-02
9	3	·	_			2	5		3	3	10	3.93	1.449	3.8437E=ŭ2	5.2020E-02
10	2	5	6	6 5	4	5	7	5	4	3	10	4.73	1.252	2.12206-02	8.63996-42
11	3			•		3	6	6	5	4	18	4.90	1.376	6.687 28-02	8.5384E-J2
12	3	4	7	6	5 6		7	6	i	5	10	5.21	1.398	9.49) 15-12	8.5227E-02
13					- I.	4	ô	5	4	4	10	4.73	1-059	5.16; 9L-úZ	8.61191-12
14	3	5	6	6 6	5	3	5	6	5	5	1.0	4.73	1.337	8.435 0=-02	
15	_		_	_	5	5	ñ	5	4	. 4	10	4.70	1.337	5.63+8E-02	8.6712E-u2
16	2	5	6		5		ó				g	4.67	1.633	12.06-41	
17		-	-		4		6	5	. 3	3	, 9	4.50	1.130	5.1535E-02	9.3018E-02
18	4	5	6				_					9 4.44	882	8.34.6E-02	8.7936E-J2
19 20	5 3			5 -û 6 -J		, 4	_					, 9 4.0:	1.581	3.57216-0	8.6912E-12

And the same of th

TIFS FLI	GHT 328		TD	T 2	!	I	NST	ŔUĦ	ENT	ATTO	I PEH	S II		DATE	8-13-74	
SEGNENT	SEAT 1	٤.			5	6	7	8 12		1.0	_	-	_	N S E	RCLL (R)	YAN (R)
SEGNENT	3070 28	10	13	= 1	9	£ **		12	23	7	n	HEAN	211	D DEV	RHS RAD/S	RMS RAD/S
1	0	2	1	1	2	1	1	2	1	1	9	1. 3	5	.500	9.1919E-03	4.3231E-03
S	C	2	1	2	2	1	1	2	1	1	9	1.4	•	.527	1.3270E-02	7.8269E-03
3	0	2	2	1	2	1	1	2	1	2	9	1.56	•	.527	9.2764E-03	5.3664E-03
6	8	2	5	1	S	2	2	2	2	2	9	1.6)	.333	8.4139E-03	9.0769E-03
5	0	5	2	1	S	2	2	2	2	2	9	1.89)	.333	8.4168E-03	6.0214E-03
.5	0	2	\$	i	2	S	1	3	3	3	9	2.11	L	.762	9.2175E-03	5.2138E-03
7	C	3	?	1	2	s	5	4	2	2	9	2.2	?	.833	1.2468E-02	8.3602E-03
6	£	2	2	-0	2	1	2	3	2	2	8	2.00)	.535	9.8276E-03	6.3257E-03
9	0	3	2	- 0	2	2	2	2	2	3	8	2.29	;	. 463	8.8127E-03	7.6490E-03
10	0	2	2	1	2	1	2	3	2	2	3	1.89)	.601	7.3408E-03	9.2617E-03
11	9	3	1	2	2	1	2	2	1	2	9	1.76	,	.667	2.2754E-02	6.1858E-Q3
12	a	3	1	2	3	1	2	3	1	2	9	2.00	1	.866	1.9916E-02	2.5622E-03
13	a	2	1	1	3	S	2	2	1	2	9	1.76	ı	.667	2.7571E-02	9.4852E-03
14	0	3	1	1	.3	1	3	2	1	1	9	1.76)	.972	2.5292E-02	5.0814E-03
15	0	S	3	1	3	1	5	s	1	1	9	2.11	. 1	1.364	2.2234E-02	9.67626-03
16	ល	3	3	2	3	1	3	2	1	2	9	2.22	!	.633	2.0092E-02	6.6043E-03
17	a	2	2	2	3	2	2	3	1	2	9	2.11	•	.681	2.2296E-02	4.644E-03
18	G	2	5	1	3	1	2	2	2	1	9	1.76	ı	.667	2.0188E-02	2.3258E-03
19	a	2	2	2	3	1	2	s	1	5	9	1.89)	.601	2.1615E-02	6.2194E-03
25	G	3	S	2	3	S	2	3	1	2	9	2.22	!	.667	2.2091E-02	1.0602E-02

1																	
SEGMENT SUBJ 20 15 13 21 8 24 22 12 23 7 N HEAN STO DEV RMS RAD/S RMS 1 3 2 1 1 2 1 1 2 1 1 10 1.50 .707 9.1919E-03 4.32 2 4 2 1 2 2 1 1 2 1 1 2 1 1 10 1.70 .949 1.32/0E-02 7.82 3 6 2 2 1 2 1 1 2 1 1 2 1 2 10 2.00 1.491 9.2754E-03 5.36 4 5 2 2 1 2 2 2 2 2 2 1 0 2.20 1.033 8.4139E-03 9.07 5 5 2 2 1 2 2 2 2 2 2 2 1 0 2.20 1.033 8.4139E-03 9.07 5 6 6 7 2 1 1 2 2 1 3 3 3 10 2.51 1.434 9.21/5E-03 5.21 7 3 3 2 1 2 2 2 4 2 2 10 2.30 .823 1.240E-02 8.36 8 6 2 2 0 2 1 2 2 2 2 2 2 10 2.30 .823 1.240E-02 8.36 8 6 2 2 0 2 1 2 2 2 2 2 2 3 9 2.44 1.424 9.82/6E-03 6.32/ 9 6 3 2 0 2 2 2 2 2 2 2 3 9 2.44 1.424 9.82/6E-03 6.32/ 9 6 3 2 0 2 1 2 2 2 2 2 2 3 9 2.67 1.323 8.812/FE-03 7.64/ 10 5 2 2 1 2 1 2 2 2 2 2 2 3 9 2.67 1.323 8.812/FE-03 7.64/ 10 5 2 2 1 2 1 2 2 2 2 2 2 3 9 2.67 1.323 8.812/FE-03 7.64/ 10 5 2 2 1 2 1 2 1 2 3 2 2 10 2.2J 1.135 7.34:8E-03 9.26/ 11 3 3 1 2 2 1 2 2 1 2 1 2 10 1.90 .738 2.2774E-02 6.18/ 12 3 3 1 2 3 1 3 2 2 1 2 1 2 10 1.90 .738 2.2774E-02 6.18/ 13 0 2 1 1 3 2 2 1 2 3 1 2 10 1.90 .738 2.2774E-02 6.18/ 14 0 3 1 1 3 1 3 2 1 1 9 1.78 .667 2.7771E-02 9.48/ 15 0 0 3 3 2 3 1 3 1 5 2 1 1 9 2.11 1.364 2.2234E-02 5.08/ 15 0 0 3 3 2 3 1 3 1 5 2 1 1 9 2.11 1.364 2.2234E-02 9.67/ 16 0 0 3 3 2 3 1 3 2 1 2 9 2.22 .833 2.009 2E-62 6.68/		8-13-74	DATE	MS II	PE	ATION	E NT A	RU M!	NSTI	I	2	T i	TO.		28	GHT 32	TIFS FLI
1 3 2 1 1 2 1 1 2 1 1 1 0 1.50 .707 9.1919E-03 4.32 2 4 2 1 2 2 1 1 2 1 1 2 1 1 10 1.70 .949 1.3270E-02 7.82 3 6 2 2 1 2 1 1 2 1 2 2 2 2 2 2 10 2.01 1.491 9.2754E-03 5.36 4 5 2 2 1 2 2 2 2 2 2 2 10 2.20 1.033 8.4139E-03 9.07 5 5 2 2 1 2 2 2 2 2 2 2 10 2.20 1.033 8.4139E-03 9.07 6 6 2 2 1 2 2 2 2 2 2 2 10 2.20 1.033 8.4139E-03 9.07 7 3 3 2 1 2 2 2 2 2 2 2 10 2.20 1.033 8.4139E-03 9.07 8 6 2 2 1 2 2 1 3 3 3 10 2.50 1.434 9.2175E-03 5.21 7 3 3 2 1 2 2 2 4 2 2 10 2.30 .823 1.240E-02 8.36 8 6 2 2 -0 2 1 2 3 2 2 9 2.44 1.424 9.8276E-03 6.32 9 6 3 2 -0 2 2 2 2 2 3 9 2.44 1.424 9.8276E-03 7.644 10 5 2 2 1 2 1 2 3 2 2 10 2.21 1.135 7.34.8E-03 9.26 11 3 3 1 2 2 1 2 2 1 2 10 1.90 .738 2.2754E-02 6.18 12 3 3 1 2 3 1 2 3 1 2 10 1.90 .738 2.2754E-02 6.18 13 -0 2 1 1 3 2 2 2 1 2 9 1.78 .667 2.7571E-02 9.48 14 -0 3 1 1 3 1 3 2 1 1 9 1.78 .972 2.5292E-02 5.08 15 -0 2 3 1 3 1 5 2 1 1 9 2.11 1.364 2.2234E=02 9.678 16 -0 3 3 2 3 1 3 2 1 2 9 2.22 .833 2.0092E-62 6.684	(R)	ROLL (R) YAN	N S E	SPO	RI	10	9	8	7	6	5	4	3	5	i	SEAT	
2	RAD/S	RMS RAD/S RMS	TO DEV	MEAN ST	N	7	53	12	55	24	8	21	13	15	20	COUZ	SEGHENT
3 6 2 2 1 2 1 1 2 1 2 10 2.00 1.491 9.2754E-03 5.36 4 5 2 2 1 2 2 2 2 2 2 10 2.20 1.033 8.4139E-03 9.07 5 5 2 2 1 2 2 2 2 2 2 10 2.20 1.033 8.4139E-03 9.07 6 6 2 2 1 2 2 2 2 2 2 10 2.20 1.033 8.4139E-03 6.02 6 6 2 2 1 2 2 1 3 3 3 10 2.50 1.434 9.2175E-03 5.21 7 3 3 2 1 2 2 2 4 2 2 10 2.30 .823 1.2450E-02 8.36 8 6 2 2 -0 2 1 2 3 2 2 9 2.44 1.424 9.8276E-03 6.32 9 6 3 2 -0 2 2 2 2 2 3 9 2.44 1.424 9.8276E-03 7.644 10 5 2 2 1 2 1 2 3 2 2 10 2.20 1.135 7.34.8E-03 9.26 11 3 3 1 2 2 1 2 2 1 2 10 1.90 .738 2.2754E-02 6.18 12 3 3 1 2 3 1 2 3 1 2 10 2.10 .876 1.9916E-02 2.58 13 .0 2 1 1 3 2 2 2 1 2 9 1.78 .667 2.7571E-02 9.48 14 -0 3 1 1 3 1 3 2 1 1 9 1.78 .972 2.5292E-02 5.08 15 -0 2 3 1 3 1 5 2 1 1 9 2.11 1.364 2.2234E-02 9.67 16 -0 3 3 2 3 1 3 2 1 2 9 2.22 .833 2.0092E-62 6.684	2 3 1E-03	9.19196-03 4.3	.707	1.50	10	1	1	2	1	1	2	1	1	2	3		1
5 2 2 1 2 2 2 2 2 2 1 0 2.20 1.033 8.4139E-03 9.07 5 5 2 2 1 2 2 2 2 2 2 1 0 2.20 1.033 8.4139E-03 9.07 6 6 2 2 1 2 2 1 3 3 3 10 2.51 1.434 9.2175E-03 5.21 7 3 3 2 1 2 2 2 4 2 2 10 2.30 .823 1.2430E-02 8.366 8 6 2 2 -0 2 1 2 3 2 2 9 2.44 1.424 9.8276E-03 6.329 9 6 3 2 -0 2 2 2 2 2 3 9 2.67 1.323 8.8127E-03 7.649 10 5 2 2 1 2 1 2 3 2 2 10 2.20 1.135 7.34.8E-03 9.269 11 3 3 1 2 2 1 2 2 1 2 10 1.90 .738 2.2754E-02 6.189 12 3 3 1 2 3 1 2 3 1 2 10 2.10 .876 1.9916E-02 2.588 13 -0 2 1 1 3 2 2 2 1 2 9 1.78 .667 2.7571E-02 9.489 14 -0 3 1 1 3 1 3 2 1 1 9 1.78 .972 2.5292E-02 5.089 15 -0 2 3 1 3 1 5 2 1 1 9 2.11 1.364 2.2234E-02 5.089 16 -0 3 3 2 3 1 3 2 1 2 9 2.22 .833 2.0032E-02 6.684	269E-03	1.32704-02 7.8	.949	1.70	10	1	1	2	1	1	2	2	1	2	4		5
5	664E-03	9.2754E-03 5.3	1.491	2.00	10	2	1	2	1	1	5	1	2	2	6		3
6 6 2 2 1 2 2 1 3 3 3 10 2.50 1.434 9.217 5E-03 5.21 7 3 3 2 1 2 2 2 4 2 2 10 2.3ú .823 1.245 0E-02 8.36 8 6 2 2 -0 2 1 2 3 2 2 9 2.44 1.424 9.827 6E-03 6.32 9 6 3 2 -ú 2 2 2 2 2 3 9 2.67 1.323 8.812 7E-03 7.64 10 5 2 2 1 2 1 2 3 2 2 10 2.2J 1.135 7.34.8E-03 9.26 11 3 3 1 2 2 1 2 2 1 2 10 1.90 .738 2.275 4E-02 6.18 12 3 3 1 2 3 1 2 3 1 2 10 2.1J .876 1.991 6E-U2 2.58 13 .0 2 1 1 3 2 2 2 1 2 9 1.78 .667 2.757 1E-02 9.48 14 -ú 3 1 1 3 1 3 2 1 1 9 1.78 .972 2.529 2E-02 5.08 15 -0 2 3 1 3 1 5 2 1 1 9 2.11 1.364 2.223 4E-02 9.678 16 -0 3 3 2 3 1 3 2 1 2 9 2.22 .833 2.009 2E-G2 6.684	789E-03	8.4139E-03 9.6	1.033	2.20	16	2	2	2	2	Ž	5	1	5	2	5		4
7 3 3 2 1 2 2 2 4 2 2 10 2.3ú .823 1.2450E-02 8.36684 8 6 2 2 -0 2 1 2 3 2 2 9 2.44 1.424 9.8276E-03 6.329 9 6 3 2 -ú 2 2 2 2 2 3 9 2.67 1.323 8.8127E-03 7.646 10 5 2 2 1 2 1 2 3 2 2 10 2.21 1.135 7.3418E-03 9.265 11 3 3 1 2 2 1 2 2 1 2 10 1.90 .738 2.2754E-02 6.189 12 3 3 1 2 3 1 2 3 1 2 10 2.10 .876 1.9916E-02 2.588 13 0 2 1 1 3 2 2 2 1 2 9 1.78 .667 2.7571E-02 9.489 14 -ú 3 1 1 3 1 3 2 1 1 9 1.78 .972 2.5292E-02 5.089 15 -û 2 3 1 3 1 5 2 1 1 9 2.11 1.364 2.2234E-02 9.678 16 -0 3 3 2 3 1 3 2 1 2 9 2.22 .833 2.0032E-02 6.684	214E-03	8.4158E-u3 6.0	1.533	2.23	1.i	2	2	s	2	2	2	1	2	2	s		5
8 6 2 2 -0 2 1 2 3 2 2 9 2.44 1.424 9.827 6E-03 6.329 9 6 3 2 -1 2 2 2 2 2 3 9 2.67 1.323 8.812 7E-03 7.649 10 5 2 2 1 2 1 2 3 2 2 10 2.21 1.135 7.341 8E-03 9.269 11 3 3 1 2 2 1 2 2 1 2 10 1.90 .738 2.277 4E-02 6.189 12 3 3 1 2 3 1 2 3 1 2 10 2.10 .876 1.991 6E-02 2.580 13 .0 2 1 1 3 2 2 2 1 2 9 1.78 .667 2.757 1E-02 9.489 14 -0 3 1 1 3 1 3 2 1 1 9 1.78 .972 2.529 2E-02 5.080 15 -0 2 3 1 3 1 5 2 1 1 9 2.11 1.364 2.223 4E-02 9.678 16 -0 3 3 2 3 1 3 2 1 2 9 2.22 .833 2.009 2E-62 6.684	138E-03	9.217 5E-03 5.2	1.434	2.5)	10	3	3	3	1	2	2	1	5	2	6		6
9 6 3 2 - 1 2 2 2 2 2 3 9 2.67 1.323 8.8127E-03 7.649 10 5 2 2 1 2 1 2 3 2 2 10 2.21 1.135 7.3418E-03 9.269 11 3 3 1 2 2 1 2 2 1 2 10 1.90 .738 2.2754E-02 6.189 12 3 3 1 2 3 1 2 3 1 2 10 2.10 .876 1.9916E-02 2.588 13 0 2 1 1 3 2 2 2 1 2 9 1.78 .667 2.7571E-02 9.489 14 -0 3 1 1 3 1 3 2 1 1 9 1.78 .972 2.5292E-02 5.089 15 -0 2 3 1 3 1 5 2 1 1 9 2.11 1.364 2.2234E-02 9.678 16 -0 3 3 2 3 1 3 2 1 2 9 2.22 .833 2.0092E-62 6.684	602E-03	1.245 08-02 8.3	.823	2.30	10	2	2	4	2	2	2	1	2	3	3		7
10 5 2 2 1 2 1 2 3 2 2 10 2.2J 1.135 7.34; 8E-03 9.26; 11 3 3 1 2 2 1 2 2 1 2 10 1.9J .738 2.275 4E-02 6.18; 12 3 3 1 2 3 1 2 3 1 2 10 2.1J .876 1.99; 6E-U2 2.58; 13 .0 2 1 1 3 2 2 2 1 2 9 1.78 .667 2.757 1E-02 9.48; 14 .0 5 1 1 3 1 3 2 1 1 9 1.78 .972 2.529 2E-02 5.08; 15 .0 2 3 1 3 1 5 2 1 1 9 2.11 1.364 2.223 4E-02 9.67; 16 .0 3 3 2 3 1 3 2 1 2 9 2.22 .833 2.009 2E-62 6.684	257E-03	9.8276E-03 6.3	1.424	2.44	9	2	2	3	2	1	2	-0	2	5	6		8
11	•90E-03	8-8427E-03 7.6	1.323	2 • 67	9	3	2	2	2	2	s	ن -	2	3	6		9
12	617E - 03	7.34:8E-03 9.2	1.135	2.21	19	2	2	3	2	1	Š	1	2	5	5		10
13	858E-03	2.2754E-02 6.1	.738	1.90	1.0	2	1	2	2	1	2	2	1	3	3		11
13	325E-13	1.99162-02 2.50	.876	2.13	1.0	2	1	3	2	1	3	ż	1	3	3		12
15 -0 2 3 1 3 1 5 2 1 1 9 2.11 1.364 2.2234E+02 9.670 16 -0 3 3 2 3 1 3 2 1 2 9 2.22 .833 2.0092E-62 6.684	152E-13		.667	1.78	9	2	1	2	2	2	3	1	1	2	- 0		13
15 -0 2 3 1 3 1 5 2 1 1 9 2.11 1.364 2.2234E=02 9.678 16 -0 3 3 2 3 1 3 2 1 2 9 2.22 .833 2.0092E=62 6.684	14E-J3	2.5292E-02 5.0(•972	1.78	9	1	1	2	3	1	3	1	1	3	- ú		14
17 -1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	82E-03		1.364	2.11	9	1	1	2	5	1	3	1	3	2	-0		15
17	143E-13	2.0032E-62 6.66	.833	2.22	9	2	1	2	3	1	3	2	3	3	- q		16
	44E-ù3	2.2296E-12 4.64	.601	2.11	9	2	1	3	2	2	3	2	2	5	- 1	•	17
140 2 2 4 2 4 2 5 5	58E-03		.667	1.78	9	1	2	2	2	1	3	1	2	2	-0		1 8
191 2 2 2 2 4 2 0 4 0 4 0 4 0 4 0 4 0 4 0 4	94E-33		.601	1.89	9	2	1	2	2	1	3	2	2	2	-3		19
20	02E-12		.667	2.22	9	2	1	3	2	2	3	2	2	3	- a		20

TIFS	FLIC	3HT 3	32		TOT	1 6	3	IN	STR	UHE	NTA	TION	PEM	s II		DATE	8-14-74	
		SEAT	1	2	3	4	5	6	7	8	9	10	R E	S P	0 1	N S E	VERT (R)	TRANS (R)
SEGHE	NT	suaJ	13	ε	21	15	24	8	7	23	12	4	N	MEAN	ST	D DEV	(RHS G)	(RMS G)
	1		5	ŷ	4	4	3	4	5	2	6	5	9	4.2	2 :	1.202	5.247 1E-02	5.5643E-02
	2		5	-û	5	5	4	4	5	5	6	6	9	5.0	1	.707	1-3834E-01	5.4924E-J2
	3		4	-5	5	5	3	5	4	4	5	5	9	4.4	+	.726	3,475 9É-02	5.9592E-02
	4		5	-6	6	6	5	5	6	5	6	6	9	5.5	6	.527	1.433 5E-01	5.4417E-02
	5		4	- ;	6	5	3	5	5	4	5	7	9	5.0	9	1.225	8.82+3E-02	5.89286-02
	6		4	-ū	5	5	3	5	4	3	5	7	9	4.5	6	1.236	3.653 2E-02	5.6725E-02
	7		4	÷C	. 5	5	4	4	5	4	5	6	9	4.5	7	.707	8.275 8E=82	6.J24JE-J2
	8		4	÷0	5	. 4	5	4	5	3	5	6	9	4.5	ô	.882	5.697 4E-02	5.4848E-02
	9		5	- .	6	5	6	5	6	5	6	7	9	5.6	7	.797	1.5158E-01	6.0951E-02
	13		4	-i	. 5	. 4	. 5	4	5	4	6	7	9	4.8	9	1.054	1.187 9E-01	5.9047E-02
	11		3	-0	. 5	i 4	. 3	4	4	3	4	. 4	9	3.7	8	.667	1.16536-01	2.1242E-02
	1.2		4	-0	: -0	1 5	, 6	5	4	3	4	. 4	8	4.3	8	.916	1.5054E-01	2.2631E-02
	13		3	-	, - 0	1 4	. 2	3	3	1	4	3	8	2,5	8	. 991	5.873 3E-02	2.22666-02
	14		3	e		3	3 2	S	2	: 1	3	3	8	2.3	8	.744	8.45; 3E-02	2.1224E-02
	15		Z	: -i	i) (2 1	3	1	. 1	2	2	8	1.7	'5	.787	3.11) 2E-02	2.0288E-02
	16		3	· } -(G - 0	, (. 2	3	2	2	3	3 4	8	2.8	8	.835	1.137 1E-01	2.1083E-02
	1.7		j	3 - .	; ;	, ,	. 2	3	2	2 2		. 4	8	3.0	33	.926	1.)1, 98-61	2.2401E-02
	18		;	3 -	i i	• !	5 2	. 4	9	5 3	•	5 5	9	4.6	00	1.115	1.56.58-01	2.2127E-02
	19		i	2 -	6 4	• :	3 3	3		2 1	. ;	3 2	9	2.	56	.882	3.33/ 2E-02	2.4153E-02
							, 4	_		, 4		, 1	۵		2.2	.972	6.3681E-32	2.1911E-02

TIFS FLIC	SHT 332		73	T 4	1	ĪN	s ra	UME	ATV	TION	PEN	s 11	DATE	8-14-74	
	SEAT 1	2	3	4	5	6	7	8	9	13	RE	S P 3	1 4 5 E	VERT (R)	TRANS ERI
SEGHENT	SURJ 13	ũ	21	15	24	8	7	23	12	4	N	MEAN S	STO DEV	(RMS G)	(RHS G)
1	5	- 0	4	4	3	4	5	s	6	8	8	4.13	1.246	5.2471E-02	5.5643E-02
2	5	- a	5	5	4	4	5	5	6	a	8	4.88	.641	1.0834E-01	5.49246-02
3	4	-0	5	5	3	5	4	4	5	0	8	4.36	.744	3.4769E-02	5.9592E-02
I ₄	5	-3	6	6	5	5	6	5	6	3	8	5.50	.535	1.4335E-01	5.4417E-02
5	4	-0	5	6	3	5	5	4	5	ð	Ŗ	4.75	1.035	6.6243E-02	5.8928E-02
5	4	- 5	5	5	3	5	4	3	5	a	4	4.25	.886	3.6532E-02	5.6725E-02
7	4	-(5	5	4	4	5	4	5	0	9	4.50	.535	6.2758E-02	6.0240E-02
8	4	, -i) 5	i 4	5	4	5	3	5	9	4	4.38	.744	5.8974E-02	5.4548E-02
9	5	; - :) =	5	6	5	6	5	6	ĵ	6	5.50	.535	1.5158E-01	6.0951E-02
1.0	4	, -:	3 9	; 4	5	4	5	4	6	3	8	4.63	.744	1.1879E-01	5.9047E-02
11	į	s -) 9	5 4	3	4	4	3	4	ŝ	9	3.75	.707	1.1663E-01	Z.1242E-02
12) -:) 5	6	5	4	3	4	g	7	4.43	.976	1.5064E-01	2.2831E-02
13	3	3 -) -:	1 4	. 2	3	3	1	Į,	3	7	2.86	1.069	5.8783E-02	2.2260E-02
14	;	3 -	o – i	3	2	2	2	1	3	9	7	2.29	.756	3.4563E-02	2.1224E-02
15	;	2 -	0 -	i 3	1	3	1	1	2	0	7	1.71	. 756	3.1102E-02	Z.0208E-02
1:5		3 -	3 -	2 4	. 2	3	2	2	3	3	7	2.71	.756	1.1371E-01	2.1083E-02
17		3 -	. -	. 4	. 2	3	2	2	4	a	7	2.86	.906	1.0109E-01	2.2401E-02
16		3 -	3	4 5	5 2	4	5	3	5	3	6	3.88	1.126	1.5645E-01	2.2127E-02
19		2 -	ថ	4 3	3 3	3	2	1	. 3	ū	4	2.63	916	3.3372E-02	2.4153E-02
20		2 ~	3	4 :	5 1	2	2	1	. 2	ð	9	2.13	.991	6.0651E-02	2.1911E-02

TIFS FLI	TIFS FLIGHT 333 TOT 10							RUM	ENT	TION	PEN	s II		GATE	8-15-74	
	SEAT 1	. 2	3	4	5	6	7	8	9	10	RE	SP	0 N	Sε	VERT (R)	TRANS (R)
SEGNENT	SUBJ 13	21	50	15	24	8	7	23	12	22	N	MEAN	STO	DEA	(RHS G)	(RMS G)
1	3	2	2	2	1	2	2	1	2	1	10	1.80		. 632	2.5323E-02	1.4734E-02
2	3	2	3	2	1	2	2	1	2	1	1:0	1.90		.738	4.485 BE-02	1.45416-32
3	4	2	2	3	2	3	4	1	4	ż	10	2.73	1	.659	8.1026E-02	1.5058E-02
4	5	2	2	3	2	3	4	2	4	ź	1:0	3-60	1	.054	1.015 0E-01	1.4356E-02
5	4	2	2	2	1	2	3	2	4	S	10	2.43		•966	6.213 5E-02	1.3786E-02
6	5	. 4	3	4	3	4	5	3	5	5	1-3	4.13		.876	1.467 8E-01	1.4037E-ú2
7	4	2	4	3	1	2	3	1	4	4	10	2.83	1	.229	5.492 1E+02	1.4163E-J2
8	4	2	2	2	1	3	2	1	3	3	10	2.31		• 949	3.202 3E-02	1.3816E-02
9	5	. 4	5	3	3	3	5	2	4	5	1/0	3.91	1	.101	1.39+6E-01	1.3856E-02
13	4	- i	3	2	5	3	+	5	3	6	9	3.56	1	.333	8.9628E-02	2.G402E-02
11	4	- 0	÷	3	2	3	4	3	4	5	9	3.56	·	.882	8.J823E-02	2.56328-02
12	9	; - .	3	3	3	4	5	2	5	3	9	3.67	1	.118	1-34746-81	2.57156-02
13	4	- û	6	3	2	3	5	2	3	3	9	3,44	1	.333	3.249 8E-02	2.5446E-02
14	•	-6	. 5	3	2	3	5	3	3	3	9	3,44	1	.014	5.563 8E+02	2.5689E+02
15	- () -i	- 0	-6	-0	- (i	- 3	-0	-6	-0	a	•0.	•	-006	•0	• 0
16	ŧ	- :	3	3	5	4	5	2	3	3	9	3.5ê	1	+914	6.027 4E-02	2.6637E-02
17	;	3	2	2	2	5	5	Ż	3	3	9	3.63	1	.225	1.123 0E-01	2.5698E-02
16	4	• - 6	2	2	3	5	ô	3	5	5	9	3.89	1	.453	1.385 7E-01	2.5356E-02
19	•	5 - (2	3	4	5	6	4	5	5	9	433	1	.225	3.32396-02	2.48JúE=32
20	4		1	3	z	3	4	2	L	3	9	2.89	1	.054	6.91+9E-02	9.8493E-03

TIFS FLI	GHT 33	4		101	1 3		I	IS TR	UME	NT.	NOIT	PEH	S II	DATE	6-15-74
	SEAT	1	2	3	4	5	6	7	8	9	1:0	R E	S P 0	N S E	ROLL (S)
SEGMENT	SUBJ	13	21	20	15	8	24	23	7	5.5	12	N	MEAN S	TO DEV	RHS RAD/S
1		5	5	3	3	2	1	2	2	3	S	10	2.20	- 632	6.709 2E-02
2		2	S	2	3	3	2	3	2	È	5	13	2.6.	.966	8.965 8E-J2
3		2	1	1	2	2	2	1	1	3	2	10	1.73	.675	2.201 1E-02
4		1	S	5	3	3	3	1	2	6	2	1:0	2.80	1.619	1.1359E-01
5		2	2	3	2	2	2	1	2	5	2	10	2.30	1.059	4.552 6E-02
6		2	3	6	3	3	5	1	3	6	3	10	3.23	1.619	1.55.26-01
7		s	1	3	2	2	1	1	2	6	2	1.3	2.23	1.476	7.661 36-02
8		2	2	5	3	3	3	Z	5	7	4	10	3.60	1.647	1.967 0E-01
9		2	2	3	3	2	г	1	5	7	2	1.0	2.90	1.792	1.1534E-01
10		2	2	2	3	2	1	1	2	6	2	1.0	2.30	1.418	3+895 2E-02
11		2	2	2	2	s	1	1	1	6	2	10	2.13	1.449	4.151 1E-02
12		3	-5	3	3	۷	2	1	5	6	3	9	3.11	1.537	1 - 2 25 6E - 01
13		4	2	7	4	7	5	5	7	7	5	16	5.33	1.793	2.0899E-01
14		3	3	6	3	7	4	4	6	6	3	10	4.5)	1.581	8.515 1E-02
15		4	5	5	5	7	5	5	7	7	6	10	5.63	1.û75	1.671 4E-01
16		3	4	5	3	6	4	3	5	6	2	10	4.10	1.370	4.953 9E-02
17		3	4	6	4	6	ь	2	7	6	3	1.0	4.73	1.703	1.191 9E-01
18		3	2	4	3	6	3	1	7	6	2	10	3.70	2.603	3.651 86-02
19		4	- £	7	40	6	6	3	7	6	2	9	5.43	1.603	9.48352-02
20		3		4	3	6	6	2	6	6	2	9	4.22	1.787	7.34+9E-02

TIFS FLI	GHT 33	4		to	T 3	ï	I I	NS T	RUM	ENT	ATION	PEN	4S II	OA TE	8-15-74
	SEAT	1	2	3	4	5	6	7	8	9	10	R E	S P (O N S E	ROLL (S)
SEGMENT	CBUZ	13	21	20	15	8	24	23	7	22	12	4	MEAN S	STO DEV	RMS RAD/S
1		2	2	3	3	2	1	2	5	0	2	9	2.11	.601	6.70 82E-02
2		5	2	S	3	3	2	3	2	Đ	2	9	5 • 33	.500	8.9668E-02
3		2	1	1	2	2	2	1	1	į	5	9	1.56	. 527	2.2011E-02
4		1	5	5	3	3	3	1	2	0	2	9	2.44	1.236	1.1359E-01
5		2	S	3	2	5	2	1	2	3	2	3	2.00	.500	4.5526E-02
б		2	3	6	3	3	2	1	3	0	3	3	2.89	1.364	1.5542E-01
7		2	1	3	2	2	1	1	2	٥	2	9	1.78	•667	7.6613E-02
6		2	2	5	3	3	3	5	5	0	4	9	3.22	1.202	1.9670E-01
9		2	2	3	3	2	2	1	5	0	2	9	2.44	1.130	1.1534E-01
10		2	2	2	3	5	1	1	2	ō	2	y,	1.69	.601	3.8952E-02
11		S	2	S	2	2	1	1	1	0	2	9	1.67	. 50G	4.1511E-02
12		3	- 3	3	3	2	2	1	5	0	3	9	2.75	1.165	1.2266E-01
13		4	2	7	4	7	5	5	7	Q	5	4	5.11	1.691	2.0699E-01
14		3	3	á	3	7	4	4	5	0	3	3	4.33	1.581	8.5161E-02
15		4	5	5	5	7	5	5	7	0	6	9	5.44	1.014	1.6714E-01
16		3	4	5	3	6	4	3	5	0	2	9	3. R9	1.269	4.9539E-02
17		3	4	5	4	6	6	2	7	ū	3	9	4.56	1.740	1.19196-01
18		3	2	4	3	6	3	1	7	0	2	9	3.44	1.944	3.6518E-02
19		4	- a	7	4	6	6	3	7	0	2	8	4.88	1.885	9.4855E-02
20		3	- D	4	3	6	6	2	6	0	2	Ą	4.00	1.773	7.8449E-02

TIFS FLI	GHT 35	1		TO	ŗ	9	I	NST	RUME	ENT	ATI	DN	PEI	4\$ I		DATE	9-13-74	
55 5 45 N 9	SEAT	1	5	3	4	_	6		8	9	10	Í	R E	SP	0 N	SE	VERT (Ř)	TRANS (R)
SEGHENT	SUBJ .	26	8	27	23	25	7	13	15	4	12		N	ME AN	STO	DEV	(RMS G)	(RMS G)
1		2	2	2	1	2	2	3	3	3	2	;	10	5.51		• 632	2.5654E-02	2.5890E-02
2		5	2	2	3	5	3	•	3	4	2	1	ıa	3.30	1	. 160	5.49. 8E-02	2.8091E-02
3		5	4	2	5	5	5	5	5	5	3	;	1-0	4.50	1	.179	1.04976-01	2.8821E-02
4		4	2	2	4	94	4	•	3	4	2	1	LO	3.30		. 949	4.13538-62	2.52426-32
5		5	3	2	3	3	5	5	4	3	3	1	ĿÜ	3.60	1	.675	7.74, 7E-02	2.7383E-02
6		4	2	2	3	3	4	4	3	3	2	1	LO	3.00	•	616	4.7634E-02	2.7199E-02
7		5	3	3	6	3	6	5	4	5	3	1	a	4.33	1	252	1-11-0E-01	2.6825E-12
8		4	2	2	3	3	4	3	3	3	2	1	a	2.93		738	3.137 5E-02	2.7165E-02
9		5	3	*	5	-0	5	4	3	4	-0		8	4.13	•	835	9.167 9E-ú2	2.89596-12
10		4	2	4	ś	-0	5	3	3	4	2		9.	3.33	1.	. Gau	7.105 3E-02	2.8196E-02
11		6	4	6	6	-0	5	3	4	5	2		9	4.56	1.	424	6.96; 6E-02	7.2307E-02
12		6	5	6	6	-0	6	4	5	6	3		9	5.22	1.	093	1.2149E-01	7.8437E-02
13		6	4	5	5	6	5	4	4	6	2	1	ũ	4.73	1.	252	3.3296E-02	7.5748E-02
14		6	5	5	Ē	6	5	3	4	7	5	1	ù	5.13	1.	141	9.151 3E-02	7.5822L-02
15		6	4	5	4	5	5	4	4	6	4	1.	ù	4.73	•	823	5.0430E-02	7.1659E-02
16		6	4	ô	5	5	6	4	4	5	4	1	a	4.93	•	676	1.24' 26-01	7.3823E-02
17		6	3	5	4	5	5	4	3	5	2	1	à	4.20	1.	229	7.3736E-02	7.6447E-02
18		6	3	6	6	6	6	3	4	6	2	1	ű	4.83	1.	619	9.827 GE-02	7.5573E-02
19		6	3	5	3	5	6	*	3	Ē	2	1	3	4.20	1.	398	4.723 7E-02	7.4117ā-02
20		6	3	4	4	5	à	-)	3	5	1		9	4.11	1.	616	3.27+1E-02	7_4AQ1F=02

Distance of the last

TIFS FLI	64 1 3 9	51		TBT		•	IN	STR	UME	NT 4	TION	PEM	s I	D4 TE	9-13-74	
	SEAT	1	2	3	4	5	6	7	8		19			N S E TO DEV	VERT (R)	TRANS (R)
SEGMENT	SUPJ	25	5	27	20	25	,	13	15	4	12	74 1	HENN S	IU OEA	TRII J	11113
1		2	2	2	1	2	2	3	3	3	3	9	2.22	. 667	2.5664E-02	2.5890E-02
Ż		5	2	S	3	5	3	4	3	4	6	3	3.44	1.130	5.4908E-02	2.5091E-02
3		5	4	2	5	5	6	5	5	5	0	9	4.67	1.115	1.0497E-01	2.8821E-02
4		4	2	2	4	4	Ľ,	4	3	4	S	3	3.44	.882	4.1363E-02	2.5242E-02
5		5	3	2	3	3	5	5	4	3	0	9	3.67	1.118	7.7407E-02	2.7363E-02
6		4	2	2	3	3	4	4	3	3	9	9	3.11	.752	4.7694E-02	2.7199E-02
7		5	3	3	6	3	6	5	4	5	9	g	4.44	1.236	1.1140E-01	2.6625E-02
Ą		4	2	2	3	3	4	3	3	3	q	9	3.00	.707	3.1375E-02	2.7165E-02
9		5	3	4	5	- 5	5	4	3	4	9	5	4.13	.835	9.1679E-02	2.8959E-02
10		4	2	4	3	-0	5	3	3	4	9	Ą	3.50	. 926	7.1053E-02	2.8196E-02
11		6	4	6	6	-0	5	3	4	5	0	5	4.88	1.126	6.9656E-02	7.2307E-02
12		6	5	6	5	-0	6	4	5	6	a	6	5.50	.756	1.2149E-01	7.6437E-02
13		6	4	5	5	6	5	4	4	6	0	Э	5.09	.866	3.3296E-02	7.5748E-02
14		6	5	5	5	6	5	3	4	7	0	9	5.11	1.167	9.1513E-02	7.5822E-02
15		6	4	5	4	5	5	4	4	5	а	9	4.78	.833	5.0490E-02	7.1659E-02
16		6	4	- 6	5	5	6	4	4	5	a	9	5.00	.856	1.2472E-01	7.3823E-02
17		6	3	5	4	5	5	4	3	5	G	q	4.44	1.014	7.0786E-02	7.6447E-02
18		6	3	6	6	6	6	. 3	4	6	Q	9	5.11	1.364	9.8270E-02	7.5573E-02
19		6	3	5	3	5	6	4	3	5	0	9	4.4	1.236	4.7297E-02	7.4117E-02
20		6	3	. 4	4	5	6	-0	3	5	0	3	4.50	1.195	3.2741E-02	7.4891E-02

-

T. C. T. Mark

TIFS FLI	G-1T 35	2		TO:	T 10	•	I	NSTR	UHE	NT	ATION	PcF	S Í	DATE	9-13-74	
	SEAT	1	2	3	4	5	6	7	8	9	1:0	RE	S P 0	NSE	VERT (S)	TRANS (S)
SEGMENT	SUBJ	4	28	SJ	27	25	7	13	8	12	15	N	MEAN S	TO DEV	(RHS G)	(RMS G)
1		4	5	3	6	6	3	4	3	3	3	10	4.03	1.247	2.107 3E-02	8.6695E-J2
2		3	5	4	6	6	2	4	3	3	3	13	3.91	1.37.	6.+93 1E-02	8.6922E-02
3		4	5	3	6	6	4	4	4	3	3	10	4.20	1.135	9.738 8E-02	8.4024E-02
4		4	5	4	6	6	3	5	3	3	3	13	4.23	1.229	4.77+4E-02	8.2726E-12
5		5	5	4	6	6	-0	5	3	3	3	9	4.4-	1.236	8.60+7E-02	8.4869E-02
6		5	5	5	6	6	5	4	3	3	3	13	4.63	1.265	6.3230E-02	8.6846E-42
7		5	5	3	7	5	5	•	5	3	3	10	4.50	1.269	1.36536-01	8.6605E-02
8		5	5	2	6	4	3	4	4	2	3	10	3.80	1.317	4.615 1E-02	8.89692-02
9		6	5	4	6	4	3	4	4	3	3	13	4.2)	1.135	8.697 9E-02	8.9677E-J2
10		6	5	4	6	4	-6	4	3	2	3	9	4.11	1.364	3.161 3E-02	8.9783E-02

TIFS FLI	G4T 35	3		TOT	4	•	I	NS TE	RUPE	NT	ATION	PEH	IS I		DATE	9-14-74	
	SEAT	1	2	3	4	5	6	7	8	9	1.0	R E	S P	0 1	N S E	VERT (R)	TRANS (R)
SEGMENT	SUBJ	4	8	i .	12	30	20	13	25	23	7	N	MEAN	ST	O DEV	(RMS G)	(RMS G)
1		3	2	2	2	2	5	3	3	1	2	10	2.50	1 :	1.086	6.49) 4E-02	2.82636-02
2		5	4	3	2	5	4	3	3	2	3	14	3.40		1.075	6.761 5E-02	5.3294E-J2
3		4	2	5	2	3	3	3	3	1	3	13	2.68	ŀ	.843	6.1227E-02	1.5286E-02
4		5	3	3	3	4	3	3	3	1	4	10	3.2	1	1.033	6.3424E-02	4.6958E-02
5		6	4	3	3	6	4	4	4	2	2	10	3.86) .	1.398	5.803 4E-02	5.8874E-02
6		4	4	2	2	3	3	3	3	1	2	18	2.7)	.949	6+157 ZE-02	2.4379E-02
7		5	4	2	2	3	2	3	3	-:	1	9	2.7	3	1.202	6.55148-02	3.3444E-02
8		6	5	3	3	6	3	4	3	-0	3	9	4.0)	1.323	6.58348-02	6.1735E-02
9		4	4	2	3	4	2	2	3	-0	2	9	2.8	•	.928	6.4132E-02	1.4867E-02
10		5	4	3	2	3	3	2	- 0	-0	3	8	3.1	3	.991	6.5654E-02	4.7823E+02
41		6	5	2	2	5	2	3	- (}	-0	2	8	3.3	3	1.685	3.607 9E-02	4.3043E-02
12		3	4	2	2	2	1	2	-3	- e	3	8	2.3	3	.916	3.1859E-02	1.4194E-02
13		6	5	3	4	4	5	3	-3	- C	2	8	4.0	3	1.309	3.41+8E-02	5.8091E-02
14		5		3	3	3		3	- 3	-6	2	8	3.3	8	.916	3.76.62-02	3.6103E-02
15		4	3	2	2	3	1	3	- 0	-0	2	8	2.5	a	. 926	3.341 3E-02	2.7320E-02
16		7	5	3	4	5	2	- 0	-3	-0	4	7	4.2	9	1.604	3.4439E+02	6.25384-02
17		5	4	2	2	4	2	- 3	-0	1	. 3	a	2.8	8	1.356	3.43516-02	3.9184E-02
18		3	3	2	2	2	1	-0	- 0	1	. 3	8	2.1	3	. 835	3.675 3E-02	1.28686-02
19		5	4	3	3	4	3	3	- 0	2	. 3	9	3.3	3	•856	3,39752-02	+.8526E-J2
20		3	J	. 2	2	2	1	. 2	-0	1	. 2	9	2.4	ù	.707	2.9778E-02	1.8987E-02

A CONTRACT

TIFS FLE	GHT 35	3		T91	4		Į:	4S T	RUME	NTA	TION	PEM	s I	DATE	9-14-74	
	SEAT	1	2	3	4	5	6	7	5	9	10	RE	ŞР	0 N S E	VERT (R)	TRANS (R)
SEGMENT	LPUZ	4	8	15	12	30	20	13	25	23	7	N	MEAN	STD DEV	(RHS G)	(RHS G)
1		ũ	2	2	2	2	5	3	3	6	2	8	2 • 63	1.061	6.4904E-02	2.8263E-02
Z		G	4	3	2	5	4	3	3	0	3	8	3.38	-916	6.7615E-02	5.3294E-82
3		Đ	2	2	2	3	3	3	3	0	3	8	2.63	.518	6.1227E-02	1.5286E-02
4		0	3	3	3	4	3	3	3	0	4	8	3. 25	.463	6.0424E-02	4.6958E-82
5		0	4	3	3	6	4	4	4	0	2	5	3.79	1.165	9.8034E-02	5.8874E-02
6		0	4	2	2	3	3	3	3	G	2	4	2.79	.707	6.1572E-02	2.4379E-02
7		a	4	2	2	3	2	3	3	8	1	8	2.50	.926	6.5534E-02	3.344E-02
8		C	5	3	3	6	3	4	3	0	3	8	3.79	1.165	6.5894E-02	6.1735E-02
9		8	4	2	3	4	2	2	3	3	2	4	2.79	. 886	6.4192E-02	1.4867E-02
10		0	4	3	2	3	3	2	- 0	0	3	7	2.66	6 -690	6.5664E-02	4.7823E-02
11		0	5	2	2	5	2	3	- 0	0	2	7	3.0	0 1.414	3.6079E-02	4.3043E-02
12		9	4	2	2	s	1	2	-0	0	3	7	2.2	9 .951	3.1859E-02	1.4194E-02
13		ą	5	3	4	4	5	3	-0	0	2	7	3.7	1 1.113	3.4148E-02	5.8091E-02
14		8	4	3	3	3	. 4	. 3	-3	0	2	7	3-1	.690	3.7646E-02	3.6103E-02
15		0	3	2	2	3	1	. 3	-5	0	2	7	2.2	9 .756	3.3413E-02	2.7320E-02
16		G	5	3	4	5	. 2	- 0	-0	0	4	6	3.8	3 1.169	3.4499E-02	6.2506E-02
17		0	4	. 2	2	4	. 2	2 - 0	- C	0	3	6	2.6	3 .983	3.4351E-02	3.9164E-82
16		a	3	2	2	Z	2 1	0	-0	9	3	6	2.1	7 .753	3.6763E-02	1.2888E-82
19		G	4	. 3	3	4	. 3	5 3	: - 3	1 0	3	7	3.2	9 .488	3.3975E-02	4.8526E-02
20		6	3	2	2	2	2 1	ı a	2 -0	. 0	2	7	2.0	0 .577	2.9778E-02	1.8987E-02

Exemples

* - 1,000 mm # #

Special Property of the Control of t

TIFS FLI	G:1T 354			TOT	11		IN	STR	EU PE	NT	ATION	PENS	s I	DATE	9-14-74	
	SEAT	1	2	3	4	5	6	7	8	9	10	RE	S P 0	NSE	ROLL (R)	YAW (R)
SEGHENT	SnB7 S	j	1.5	13	25	8	4	30	12	23	7	N I	MEAN ST	TO DEV	RMS RAD/S	RHS RAD/S
i		3	3	2	2	2	2	1	2	1	2	10	2.00	-667	•0	• 0
2		3	2	2	2	2	2	1	2	1	2	10	1.93	•568	1.85+5E-02	6.8721E-03
3		2	2	2	2	5	3	2	2	1	2	10	2.00	.471	5.0352E-03	7.1077E-03
4		3	2	2	3	2	3	2	2	1	2	10	2.20	.632	4.91.1E-03	2.4297E=03
5		3	2	2	3	3	3	3	2	1	1	10	2.33	.823	5.911 4E-03	5.2140E-03
6		5	2	3	3	3	3	2	2	1	1	16	2.50	1.179	5.337 3E-03	2.5606E-03
7		4	2	3	3	2	2	2	2	1	1	10	2.23	. 91 9	1.07t GE-02	7.5752E-03
8		6	2	2	3	2	2	2	2	1	-0	9	2.44	1.424	1.453 9E-02	3.8043E-03
9		5	3	2	3	2	2	3	2	1	1	10	2.43	1.174	1.42. 0E-ú2	9.4214E-03
1.0		5	3	3	3	s	2	3	2	1	. 1	10	2.50	1.179	8.067 1E-03	4.1039E-03
11		6	3	3	3	2	3	3	2	1	3	10	2.90	1.287	1.10) 4E-02	1.276ặE+03
12		5	2	2	3	2	2	2	3	1	. 2	10	2.40	1.075	4.752 4E-02	4.4441E-03
13		7	3	3	3	2	2	3	3	1	3	1.0	3.00	1.563	1.205 1E-02	1.3334E-03
14		6	3	. 2	3	2	2	2	2	1	. 3	10	2.63	1.35.	3.64. 4E=42	1.9671E-03
15		5	3	. 3	3	3	Į,	z	. 2	. 1	4	10	3.00	1.155	2+3 33 9E=02	1.7878E-03
16		Ġ			3	3	3	2	. 2	: 1	4	15	3.03	1.333	5.453 3E-02	6.1936E-03
17		5		. 3	; -û	3	3	3	3 2	. 1	. 3	9	3.00	1.118	3.7357E-02	1.1321E-02
18		5		3	-0	3	3	3	1 2	! 1	. 2	9	2.78	1,693	4. +13 3E-02	3.3825E-ú3
19		5			J	2	2	: 3	, 2	! 1	. 2	9	2.56	1.130	2.58, 8E+02	1.8777E-03
20		5			· -0	3			3		L 3	9	3.00	1.118	1.452 0E-02	1.4158E-J3

TIFS FLI	GHT 354		ŦĐ	T 11		I'A	15 FI	RUH	ENT	ATION	PEN	4S I		DATE	9-14-74	
	SEAT 1	2	3	4	5	6	7	8	9	10	R S	5 P	0 N	SE	ROLL (Q)	YAH (R)
SEGHÉNT	SUBJ 20	15	13	25	8	4	30	12	23	7	Ŋ	MEAN	STD	DEV	RHS RAD/S	RMS RAD/S
1	0	3	z	s	2	2	1	2	8	2	Ą	2.00)	. 535	.0	. 0
5	0	2	2	2	2	2	1	5	ũ	2	٩	1.86)	. 354	1.8545E-02	6.8721E-03
3	0	2	2	2	2	3	s	s	8	2	9	2.13	3	. 354	5.0362E-03	7.1077E-03
4	0	2	2	3	2	3	s	2	0	2	8	2.25	;	.463	4.9141E-03	2.4297E-03
5	c	2	2	3	3	3	3	2	0	1	5	2.36	ì	. 744	5.9114E-03	5.2140E-03
6	0	2	3	3	3	3	2	2	ð	1	A	2.38)	.744	5.3373E-03	2.5606E-03
7	0	2	3	3	2	2	2	2	9	1	8	2.13	3	.641	1.0710E-02	7.5752E-03
8	. c	2	2	3	2	2	2	5	0	- 0	7	2.14	,	.376	1.4539E-82	3.8043E-03
9	C	3	2	3	2	2	3	2	0	1	9	2.29	;	.707	1.4200E-02	9.4214E-03
1.8	0	3	3	3	2	2	3	2	9	1	4	2.36	i	.744	6.0871E-03	4.1039E-03
11	3	3	3	3	2	3	3	2	3	3	4	2.75	i	.463	1.1034E-02	1.2768E-03
12	a	2	2	3	2	2	2	3	8	2	Ą	2 . 25	i	-463	4.7524E-02	4.4441E-03
13	0	3	3	3	2	2	3	3	e	3	8	2.75	; .	. 463	1.2051E-02	1.3331E-03
14	G	3	2	3	2	2	2	2	0	3	9	2.36	ļ.	.518	3.6404E-02	1.9671E-03
15	8	3	3	3	3	4	2	5	¢	4	4	3.00	!	. 756	2.0339E-02	1.7878E-03
16	o	3	3	3	3	3	5	2	C	4	5	2.66		.641	5.4533E-02	6.1936E-03
17	0	4	3	- a	3	3	3	2	J	3	7	3.00		.577	3.7357E-02	1.1321E-02
18	0	3	3	- e	3	3	3	2	3	2	7	2.71		.486	4.4133E-02	3.3625E-03
19	٥	3	3	- e	2	2	3	2	a	2	7	2.43		- 535	2.5808E-02	1.8777E-03
20	a	2	3	- ŋ	3	4	3	3	G	3	7	3.00		.577	1.4520E-02	1.4158E-03

Total Control

Transport

Section 1

A SOUTH

The same of the sa

Transport of the second

Transpero I

E-chilespille

1

A complete of

. . .

To describe the

-

to make .

TIFS FLI	GHT 355		T	101	1	3	I	NST	RUH	EN T	ATIO	N PE	MS I	DATE	9-14-74	
SE GMENT		1 2	2 3	3 7	4 13	5 25	_	·	_	30				O N S c STD DEV	VERT (S)	TRANS (S)
1		,	u	3	2	3	3	5	2	3	2	8	2.50	.535	1.4642E-02	1.47036-02
2	-0) (j	3	4	5	5	4	3	5	4	8	4.13	.835	1.5406E-02	5.23906-02
3	-0	} (,	2	3	5	4	2	2	5	3	8	3.25	1.282	1.77076-02	2.68146-02
4	-0) (,	4	4	6	6	4	3	6	4	8	4.63	1.165	1.8196E-02	6.4382E-12
5	- ù	ı,	, 1	4	3	5	ų	3	2	5	3	8	3.63	1.061	1.6076E-02	4.1269E-02
6	ن –	Ü	•	٠	•	5	5	5	3	5	4	8	4.38	.744	1.5503E-02	5.29936-12
7	-0	0	4	b	3	4	4	3	2	4	2	8	3.25	• 885	1.97u7E-02	2 • 8665E-12
8	-8	U	9	5	3	5	7	õ	4	5	2	8	4.50	1.512	1.6532E-02	6.5298E-12
9	- 0	ű	5	•	4	5	5	4	3	4	3	8	4.13	.835	2.3759E-02	4.1000E-02
10	-0	ũ	3	3	3	4	3	3	3	3	4	8	3.25	•463	2.2545E-02	1.4953E=02
11	- ù	û	2	?	3	3	3	3	2	3	2	8	2.63	-518	3.2226E+02	1.1278E-02
12	-0	ů	3	}	3	3	4	3	3	3	3	ŝ	3.13	.354	6.6443E-02	8.8242E+03
13	-0	٠	4	,	4	5	4	4	3	5	2	8	3.88	•991	1.3356E-01	1.0121E-02
14	-0	ũ	3		š	4	3	3	2	4	3	8	3.13	- 641	5.30885-02	8.4343E-Q3
15	-0	¢	4		3	4	4	4	3	3	3	8	3.50	•535	1.0542E-01	1.1192E-ú2
16	-0	ų	4		Ş	4	3	3	3	3	2	8	3.ûu	•756	8.120 BE-02	8.8032E-03
17	-0	8	4		3	6	4	*	4	3	2	8	3.75	1.165	1.J158E-01	6.0543E-13
18	-0	G	s		3	3	3	3	2	3	3	8	2.75	•463	5.4269E-02	6.450uE-03
19	-0	Ç	3		ذ	5	3	•	3	3	2	8	3.25	.886	1.0711E-01	9.4168E-03
20	-3	u	2		j	3	2	3	г	2	2	8	2.38	-518	3.4588E-02	6.9959E-43

TIFS FLI	G4T 355	TOT 13	INSTRU	ME NTATIO	N PEHS I	DATE 9-14-74	
SEGHENT	3EAT 1 2 3UBJ 0 23	3 4 5 7 13 25	6 7 (4 8 15		R E S P N MEAN	O N S L VERT (SE	TRANS (S)
1	-0 2	3 2 3	3 2 2	_	9 2.33	•707 1•46• 2E-	·u2 1.47u3E+j2
3	- 0 2		. · •	5 4	9 3.89	1.654 1.54,68-	
4	-J 5		4 2 2	₹ 3	9 3.11	1.269 1.77; 7E-	
5	-0 3		6 4 3	E 4	9 4.44	1.236 1.8136E-	
6	-G -;		4 3 2	5 3	9 3.56	1.614 1.607 6E-	
7	-0 -s		5 5 3	5 4	8 4.38	.744 1.55. 3E-0	
8			+ 3 2	4 2	8 3,25	.886 1.97) 7E-0	
9		_ , ,		5 2	8 4.53	1.512 1.653 25-0	
10	_	5 + 5 5	→ 3	4 3	8 4.13	.835 2.375 9E-û	
11	_	3 3 4 3	3 3	3 4	8 3.25	•463 2•25•5E-0	
12		2 3 3 3	3 2	3 2	8 2.63	.518 3.2226E-0	
13		3 3 3 4	3 3	3 3	8 3.13	.354 6.64+ 3E-0;	
14	-1 -0 4		4 3	5 2	8 3.88	•991 1.3356E-01	
15	-0 -6 3	3 4 3	3 2	4 3	8 3,13	.641 5.303 8E-02	
16	-0 -i 4	3 4 4	4 3	3 3	8 3.5)	.535 1.J6.2E-J1	
17	-j 2 4	2 4 3	3 3	3 2	9 2.89	.782 8.12 8E-02	
18	-0 2 4	364	+ 4	3 2	9 3.56 1	1.236 1.3198E-41	
19	-0 1 2	3 3 3	3 5 3	3 3	9 2.56	.726 5.425 9£-u2	6.4543E-13
	~3 1 3	3 5 3	4 3 3	3 2	3.03 1	.116 1.J7L1E-31	6.45302-33
2û	- 3 1 2	3 3 2	3 2 2	. 5 d		.667 3.+538E-02	9.0168E-13 6.9959E-13

•

Walter ...

-

and division in

Principus, p

And the same of th

Wind state of

事を1.50mmで乗

7.75

TIFS FLI	GHT 356		TO:	T 1	6	I	NST	RUH	ENT	AT IO	N PE	MS II	DATE	9-16-74	
	SEAT 1	5	3	4	5	5	7	8	9	1.0	R	ESP	0 N S E	VERT (S)	TRANS (S)
SEGMENT	\$U8J 28	4	19	7	14	8	9	15	3	12	N	MEAN	STO DEV	(RHS G)	(RMS G)
1	5	5	2	3	2	3	6	5	5	4	10	4.00	1.414	4.212 2E-02	9.3096E-02
2	5	6	3	5	3	4	6	5	6	4	10	4.70	1.16û	1.333 3E-01	9.2563E-02
3	5	E	3	5	3	3	6	4	5	4	10	4.43	1.174	6.945 (E-J2	9-4180E-02
4	5	7	. *	6	4	5	6	5	6	4	10	5.23	1.033	1.657 9E-01	9.52996-02
5	5	6	3	5	4	÷	Ó	4	6	4	10	4.70	1.059	1-00746-01	9.52796-12
6	5	6	3	5	5	4	5	4	6	3	10	4.63	1.075	1.3379E-01	9.5561E-02
7	5	6	3	5	5	4	5	5	6	4	10	4.83	•919	7-3429E-02	9.6637E-02
8	5	7	5	5	5	5	6	5	6	3	10	5.20	1.033	1.6851E-01	9.5951E-02
9	5	7	4	5	6	4	5	5	5	3	10	4.94	1.101	1+0196E-01	9.5998E-02
1.0	5	7	5	•	6	4	5	4	6	4	1.0	5.ûü	1.854	3.781 8E-02	9.6273E-02
11	4	3	2	2	4	3	+	3	3	2	10	3.00	. 816	2.075 9E-02	2.2840E-02
12	4	3	2	2	4	3	4	3	4	2	10	3.10	.876	5.955 8E-02	2.1818E-j2
13	5	÷	2	2	4	4	5	4	la	3	10	3.70	1.059	1.347 7E-01	2.1994E-02
14	õ	4	1	3	4	5	5	3	4	2	1 ü	3.30	1.337	4.555 1E-02	2.2750E-42
15	5	5	2	3	3	3	5	3	4	2	10	3.53	1.179	8.51918-02	2.2866E-02
16	5	4	2	2	3	4	5	2	4	2	1:0	3.30	1.252	6.78.2E-ú2	2.3683E-02
17	5	5	2	Ļ	4	5	5	3	5	3	14	4.13	1.101	1.10-96-01	2.2520E-02
18	5	3	3	3	3	4	•	3	4	2	10	3.40	.843	4.4180E-02	2.3084E-02
19	5	4	3	4	3	3	4	3	4	2	10	3.51	. 656	8.645 OL-02	2.2784E-u2
20	4	4	3	3	2	3	4	3	3	2	10	3.13	.738	2.561 7E-02	2.24246-02

TIFS FLI	G4T 39	57		TOT	6	•	IN	STRU	JME	NTA	TION	PEMS	II	DATE	9-16-74
	SEAT	1	2	3	4	5	6	7	8	9	10	RE	S P 0	N S E	VERT (R)
SEGMENT	SUBJ	85	12	8	1+	15	19	7	4	9	3	N P	IEAN SI	ro DEV	(RMS G)
1		2	2	2	1	2	5	s	2	3	2	10	2.00	.471	. 0
2		3	ż	3	2	2	3	5	3	4	3	1.3	3.12	.876	•3
3		2	2	2	2	2	2	š	2	3	2	10	2.23	.422	2.68.1E-02
4		2	3	2	2	2	s	2	2	4	2	10	2.31	.675	6.691 5E-02
5		4	3	3	3	3	2	5	4	è	3	10	3.50	-972	•1
6		3	2	2	3	s	2	2	s	3	2	10	2.33	. 483	• 6
7		2	2	2	2	2	1	•	2	4	3	13	2.43	.966	7.147 7E-02
8		2	4	3	3	3	5	5	4	6	4	10	3.90	1.197	1.2634E-01
9		2	2	. 2	3	2	2	5	2	3	2	13	2.54	.972	2.82346-02
1:0		3	3	3	2	2	4	5	3	ē	3	1.0	3.31	1.059	9.88+4E-02
11		3	3	3	. 3	3	5	6	5	6	4	10	4.10	1.287	1.241 6E-01
12		3	. 4	. 3	2	2	4	ŝ	2	4	2	10	3.14	1.101	3.542 2E-02
13		5		. 4	. 3	. 4	3	6	6	6	. 4	1 û	4.50	1.179	1.513 GE-01
14		4	• 3	3 3	. 4	. 3	2	5	•	5	3	10	3.63	• 966	8.855 98-02
15		4	. 3	3 3	3	2	2	5	2	4	. 2	16	3.00	1.654	6-237 9E-02
16		9	5 3	3 4	, 5	i 4	, 2	6	5	€	4	13	4443	1.265	1.421 66-81
17		9	5 ;	3 3	} 4	• 3	, 2	5	4	4	3	16	3.71	1.160	9.24L6E-02
18			• ;	2 3	3 4		2	5	2	4	2	1.0	3.00	1.155	5.J255E-02
19		ļ	5 8	2 3	3 5	5 2	? ŝ	5	3	9	5 4	1.6	3.93	1.287	1.152 3E-01
20				3 ;	3 5	5 6	2 3	5	2	:	3	10	3.31	1.059	6.8323E-02

TIFS FLI	GHT 39	57		TOT	5		IN:	STRE	JHE	AT A	NO17	PEMS	11	DATE	9-16-74
	SEAT	1	2	3	4	5	6	7	9	9	10	RE	S P 0	N Ś E	VERT (R)
SEGMENT	ZNê7	28	12	3	14	15	19	7	4	9	3	N F	1EAN S	TO DEV	(RHS G)
1		2	2	2	i	2	2	0	2	3	2	9	2.00	.500	• 0
5		3	3	3	2	z	3	9	3	4	3	9	2.89	.681	. 0
3		2	2	2	2	2	2	G	2	3	2	9	2.11	.333	2.6841E-02
4		2	3	S	s	2	2	0	2	4	z	9	2.33	.707	6.6915E-02
5		4	3	3	3	3	2	3	4	5	3	9	3.33	.566	• C
5		3	2	2	3	2	2	0	5	3	2	9	2.33	.500	• 0
7		2	2	2	2	2	1	0	2	4	3	9	2.22	.833	7.1477E-02
5		2	4	3	3	3	5	0	4	6	4	9	3.78	1.202	1.26946-01
9		2	2	ż	3	2	2	3	2	3	2	9	5*55	.441	2.8234E-02
16		3	3	3	2	2	4	9	3	5	3	3	3.11	.928	9.6844E-02
11		3	3	3	3	3	5	0	5	6	4	9	3.89	1.167	1.2416E-01
12		3	. 4	3	2	2	4	0	2	4	2	9	2.89	. 928	3.5422E-02
13		5	4		3	4	3	C	5	6	4	g	4.33	1.118	1.5130E-01
14		4	. 3	3	4	3	2	0	4	5	3	9	3.44	.852	8.8569E-02
15		4	. 3	3	3	2	s	0	2	4	2	9	2.78	. 633	6.2379E-02
15		5	; 3	i 4	- 5	4	2	0	5	6	4	9	4.22	1.202	1.4216E-01
17		5	; :	3	. 4	3	2	J	4	4	3	9	3.44	.882	9.2416E-02
18		4	. 2	3	. 4	. 2	2	0	s	4	2	9	2.78	.972	5.3295E-02
19		9	5 3	2 3	5	2	5	C	3	5	4	9	3.78	1.302	1.1523E-01
20		4	• 3	3 3	. 5	. 2	3	9	2	3	3	9	3.11	. 928	6.83236-82

TIFS FLI	G47 35	8		101	11		I	NSTR	UHE	NT/	ŤĪ	N	PENS	s II	DATE	9-16-74	
	SEAT	1	2	3	4	5	б	7	8	9	10		RE	S P (3 R C	ROUL (R)	YAH (R)
SEGNENT	sueJ	14	15	SÌ	34	8	33	32	19	7	31		N	HEAN S	STO DEV	RMS RAD/S	RHS RAD/S
1		2	2	2	5	2	2	2	1	2	4		10	2.40	1.174	1.48) 2E-02	5.1402E-13
2		2	2	2	3	2	2	4	2	2	5		10	2.60	1.075	4.27+6E-03	1.0238E-02
3		- j	- 8	-0	- ū	-0	-0	- 0	- 0	- C	- 0		a	.68	.G0ú	• 0	• G
4		2	3	1	3	2	2	2	2	3	4		10	2.40	.8-3	3.461 8E-03	5.4756E-03
5		2	z	2	3	2	2	2	2	3	4		10	2.40	.699	6.6585E-03	9.6347E-03
6		2	3	1	j	2	2	2	2	3	3		13	2.3)	.675	2.792 7E-03	3.6419E-03
7		2		-3	3	2	2	2	2	3	4		9	2.44	.726	4.093 DE-03	1.0515E-02
		2		-à	3	2	. 1	. 2	3	2	2		9	2.22	.667	1.551 5E-J2	3.54888-43
9		2		- a	3	2	2	. 2	2	4	. 2		9	2.44	.726	1.0759E-02	7.3541E-03
10		3		-3		3	3 2	. 4	. 2	3	; 2	2	9	2.78	.667	1.175 5E-02	6.7188E-03
11		3	_	_		3	. 1	. 4	. 2	a	2 2	2	18	2.60	.966	1.84) 0E-02	1.6342E-02
12		4					3 4		. 2	! 3	3 4	•	13	3.40	.843	3.8536E-02	2.5891E-03
13				3 3			- 3 2	2	3	3 8	2 :	3	10	3.10	.876	8.255 3E-03	1.7965E-03
									. 2			2	1:0	3.10	.994	2.765 8E-02	2.8913E-43
14			•						3 2			3	1.1	3.0:	.816	1.5255E-42	1.8861E-03
-									. 2		4	5	10	3.86	1.633	3.812 5E-02	7.8107E-03
16				-							3	2	13	2.9	j 1.101	2.571 1E-02	2.2582E-13
17			•		•			_				3	10			3.533 1E-02	2.8963E-J3
18					-	-		-				2	10			2.3482E-02	1.0242E-02
19												2	1.0		-	1.673 7E-02	4.50566-03
20	ì		4	4	2	3	£:	-	- '	-	•	-					

a comment

1000

Total Control

Promoted of

TIFS FLI	GH T 359		to	Ŧ	4	IN	S T	EHUS	NT A	T	0 N	PEM	s I		OATE	9-16-74	
	SEAT 1	2	3	4	5	6	7	3	9	19					NSE	VERT (R)	TRANS (R)
SEGMENT	SUBJ 19	7	31	33	15	20	5	14	32	34		N	MEAN	\$1	D DEV	(RHS G)	(RMS G)
1	2	3	4	2	3	3	3	2	C	9		Ą	2.7	5	.707	6.0996E-02	2.4957E-02
2	3	4	. 4	. 3	4	5	3	3	0	0		8	3.6	3	.744	6.4507E-02	4.7347E-02
3	2	4	. 3	3	3	3	3	3	0	0		8	3.0	0	.535	5.7965E-02	1.3818E-02
4	3	4	. 3	. 4	. 4	4	4	3	G	o		9	3.6	3	.518	5.9355E+02	4.1598E-02
5	5	9	: 6	, 5	4	5	5	3	0	0		8	4.7	5	.886	6.3155E-02	7.1206E-02
6	4		5 3	; 4	. 3	4	4	3	0	0)	8	3.7	5	. 7:0:7	6.4245E-02	2.5873E-02
7	5		; 4	. 3	3	5	4	4	G	C)	9	4.1	3	. 835	6.4858E-02	3.6267E-02
В	4	. (5 5	, 5	; 4	5	5	4	0	(į	9	4.7	5	.707	6.2288E-02	6.4653E-02
9	3		5 (. 4	, 3	3	4	. 5	0		3	8	3.8	8	.835	6.1701E+02	1.6595E-02
1.0	5	. (5 3	3 4	, 3	3	5	5	G	(3	3	4.2	5	1.165	6.6504E-02	5.0477E-02
11	4	. 1	j t			4	5	. 4	C	. 4	3	В	4.3	8	.744	3.7208E-02	4.4850E-02
12	3		5 1	2 2	2 3	3 2	4	. 4	9	ı i	0	3	3.1	.3	1.126	3.1424E-02	1.5723E-02
13		,	5	; (. 4	4	, 5	9	!	9	3	4.6	3	.744	3.6082E-02	6.0358E-02
1.4	é		4	. .	•	3 3	5	; 4,	. 0)	0	8	3.6	38	.641	4.0717E-02	4.0766E+02
15			5	<u>.</u>	3 .	3 3	4	, 4	. 0)	C	8	3.	75	.707	3.6576E-02	3.1334E-02
15		5	5	5	4	4 4	4	. 4	. 0)	0	8	4.	36	.518	3.4360E-02	6.6197E-02
17		4	4		3	3 -G	4	. 4		1	Q	7	3.	71	.485	3.4891E-02	4.1212E-02
18		•	3	2	2	3 -6		. 4	, (;	ū	7	3.:	14	.980	3.7358E-02	1.6495E-02
19		5	4	5	4	4 - C	9	5 4	, í	3	C	7	4.	43	.535	3.6959E-02	5.0612E-02
20		4	4	14	4	3 +3		. .	. :	C	e	7	3.	56	.378	4.6118E+02	2.0542E-02
~-																	

TIFS FLI	GHT 35	9		דטז	4	•	IN	STR	UME	NTA	TION	PEMS	; 1	DATE	9-16-74	
	SE.AT	1	2	3	4	5	6	7	8	9	10	RE	S P 0	NSE	VERT (R)	TRANS (R)
SEGMENT	rans	19	7	31	33	15	20	5	14	32	34	N P	HEAN S'	TO DEV	(RHS G)	(RHS G)
1		2	3	4	2	3	3	3	2	3	3	10	2.80	.632	6.J936E-02	2.4957E-12
2		3	i.	4	3	4	õ	3	3	5	6	1.3	4.33	1.654	6.+5; 7E-02	4.7347E-02
3		2	4	3	š	3	3	3	3	5	5	10	3.40	.966	5.795 5E-02	1.3818E-82
4		3		3	4	4	4	-	3	5	4	10	3.80	.632	5.93; 5E-02	4.1598E-02
5		5	5	ó	5	4	5	5	3	7	7	10	5.20	1.229	6.315 5E-02	7.1206E-02
6		4	5	3	4	3	4	4	3	6	5	10	4.13	. 994	6.42+5E-02	2.5873E-02
7		ē	5	4	3	3	5	4	4	5	6	10	4.48	• 965	6.485 8E-02	3.6267E-02
8		4	ô	5	5	4	. 5	5	4	7	5	10	5.00	.943	6.223 8E-02	6.4653E-02
9		3	5	. 4	4	3	3	4	5	6	7	13	4.43	1.35.	6.17.1E-02	1.6595E-02
10		5	6	3	4		3	5	5	6	6	10	4.60	1.265	6.653 4E-02	5.0477E-02
11		4	ć	, 4,	4	. 4	, 4	5	4	6	7	10	4.80	1.135	3.72. 8E-02	4.4850E-u2
12		3	5	z	. 2	. 3	3 2	4	4	4	6	10	3.5)	1.354	3.1424E-02	1.5723E-02
13		5	6	5 5	. 4	, 4		4	. 5	7	7	10	5.19	1.197	3.603 2E-02	6.0358E-J2
14		4	4		, 4	. 3	3 3	5	i 4.	5	6	10	4.23	.919	4.371 7E-02	4.0766E=02
15		•	•	5 4	, ;	i :	3 3	4	, 4	4	6	10	4.00	.943	3.657 6E-02	3.1334E-02
16		5			, ,	, (4 4	4	, 4	7	7	1.0	4.93	1.197	3.435 0E-02	6.6197E-J2
17				, .	. :	3	3 -0	4	. 4	6	6	9	4,22	1.693	3.489 1E-02	4.1212E-02
18		4			-	2	3 -0		. 4	. 4	6	9	3.56	1.236	3.735 86-02	1.6495E-02
19		5			5 4		4 -3	5	; .	. 6	5 6	9	→. 78	.833	3.695 9E=02	5.6612k-02
2.0		-		4		4	3 -3		. 4	. 7		9	4.56	124	4.611 8E-02	2.05426-02

1

Barbara and A

Harmon at

A control of the following of the follow

g and garage

• April 19

i

APPENDIX B

SUBJECT BACKGROUND AND COMFORT SCALE INTERPRETATION

Subject Code: 3

Occupation: Employee, NASA-LRC

Age; Sex: 38; male

Total flight experiences: 1000+

Flights in last 2 years: 100+

Types of aircraft flown: small aircraft - 100+

commercial airline - 4 to 5

Attitude towards flying: Flying is a means of transportation. I would rather

fly than drive or ride on trains or other ground transportation because it

is faster. For the same time interval, flying is less tiring.

- 1 Very comfortable
- 2 Comfortable
- 3 Somewhat comfortable
- 4 Neutral
- 5 Somewhat uncomfortable
- 6 Uncomfortable
- 7 Very uncomfortable

Occupation: Employee, NASA-LRC

Age; Sex: 27; male

Total flight experiences: 50

Flights in last 2 years: 10 flights commercial, 20 flights research,

all seasons, mixed weather

Types of aircraft flown: commercial jet, prop, and helicopter

Attitude towards flying: I absolutely love flying, have seldom felt anxious

while flying, and have never been motion sick.

- 1 Very comfortable: armshair, feet by the fire.
- 2 Comfortable: only occasional perception of extraneous stimulus, but comforting break in monotony.
- 3 Somewhat comfortable: same as 2.
- 4 Neutral: stimulus definitely perceived, but not distracting.
- 5 Somewhat uncomfortable: stimulus distracts from desired activity.
- 6 Uncomfortable: stimulus makes desired activity difficult.
- 7 Very uncomfortable: forget any desired activity, apprehensive (safety) and/or stimulus--fatigued.

Occupation: Professor, UVA

Age; Sex: 32; male

Total flight experiences: 100 to 200 Flights in last 2 years: 40 to 50

Types of aircraft flown: prop, jet, helicopter, propjet, etc.

Attitude towards flying: Good

Interpretation of comfort scale:

1 - Very comfortable

2 - Comfortable

3 - Somewhat comfortable

4 - Neutral

1

5 - Somewhat uncomfortable

6 - Uncomfortable

7 - Very uncomfortable

Occupation: Research Assistant, UVA

Age; Sex: 24; male

Total flight experiences: 15 to 20

Flights in last 2 years: twice a year, mostly summer

Types of aircraft flown: mostly commercial, have also flown in light

planes and helicopters

Attitude towards flying: In general I like to fly, preferably during

good weather.

- I Very comfortable: where the motion is soothing and I can hardly feel it. Everything is at the right level.
- 2 Comfortable: where one begins to perceive all the changes from optimum level.
- 3 Somewhat comfortable: I would rather name it as "barely comfortable." All modes can be perceived very clearly.
- 4 Neutral: This is the level beyond which I would not like to go through an entire flight without getting tired.
- 5 Somewhat uncomfortable: If I try, I will be able to tolerate this over a flight without getting upset or tired.
- 6 Uncomfortable: I may tolerate this with a maximum of 10-15% of the flight time, but would have an effect on me afterwards.
- 7 Very uncomfortable: No way would I like to go through this.
 Only spurts of this can be tolerated, no more.

Occupation: Employee, UVA Age; Sex: 35; female

Total flight experiences: 60 to 100

Flights in last 2 years: 20 (all above in last 15 years)

Types of aircraft flown: mostly commercial, some general aviation, some

simulators, B-707, 737, 747, YS-11, Cessna, Piper

Attitude towards flying: Love flying!

- 1 Very comfortable: no perceptable motion, little noise, vibration slight, if any; temperature comfortable.
- 2 Comfortable: slight motion, environmental conditions agreeable.
- 3 Somewhat comfortable: motion increase, able to perform activities, temperature or noise bothersome.
- 4 Neutral: not comfortable or uncomfortable, beginning to have difficulty performing activities.
- 5 Somewhat uncomfortable: definite motion, unable to write or read.
- 6 Uncomfortable: as close to unhappy as you can get without feeling sick.
- 7 Very uncomfortable: miserable, airsick.

Occupation: Employee, NASA-LRC

Age; Sex: 32; male

Total flight experiences: 200 hours

Flights in last 2 years: helicopter, 3 hours; general aviation, 4 or 5

hours; commercial, 40 hours

Types of aircraft flown: helicopter, general aviation, commercial

Attitude towards flying: Ratings 1, 2, and 3 were seldom used. I can

never take aircraft flight that lightly.

- 1 Very comfortable: impossible dream.
- 2 Comfortable: never in an airplane.
- 3 Somewhat comfortable: exceptionally smooth flight.
- 4 Neutral: satisfactory (normal airplane cruise).
- 5 Somewhat uncomfortable: slightly rough air.
- 6 Uncomfortable: rough air/rapid descents (tense, anxious).
- 7 Very uncomfortable: very anxious/concerned for safety of aircraft.

Occupation: Research Assistant, UVA

Age: Sex: 36; male

Total flight experiences: 3,000+

Flights in last 2 years: 60

Types of aircraft flown: Piper, J3, Cherokee; Beech, T34, TC45J;

Cessna, 150, 172, 207; TA4F, TF7J, AF9J, F11, F2, T28, A4E, A4C,

A4B, C117, C130, commercial

Attitude towards flying: Love it! Subject 12 is a rated pilot.

- 1 Very comfortable: comfortable environment, temperature @ 70, seated in a comfortable seat, i.e., sitting in living room watching TV.
- 2 Comfortable: lack of unpleasant noise or vibration, reasonable temperature, able to walk around easily, able to read/work easily.
- 3 Somewhat comfortable: lack of obnoxious levels of vibration, should be able to sleep or carry on reasonable activity without too many distractions.
- 4 Neutral: indifference point, wish it was better but can still carry on normal activity such as sleep, relax, read, without too much distraction.
- 5 Somewhat uncomfortable: becoming difficult to maintain conversation, could still rest or sleep, becoming annoyed.
- 6 Uncomfortable: if sleeping, would occasionally wake up (i'd be woken up abruptly). Hard to read, to concentrate, would be difficult to walk around.
- 7 Very uncomfortable: worried about vehicle coming apart, impossible to walk around.

Occupation: Research Assistant, UVA

Age; Sex: 22; male

Total flight experiences: 200 to 300

Flights in last 2 years: 100 hours past 4 years in private aircraft,

4 flights per year past 4 years on military space-available flights

Types of aircraft flown: 100 hours PA-28-140; 10 to 15 hours Cessna 172,

T34; 50 to 75 hours C-118, C-131; 2 hours T33; rest of flights on commercial aircraft

Attitude towards flying: Love it!

Subject 13 is a rated pilot.

- 1 Very comfortable: straight and level flight, comfortable temperature, no sharp changes in motion.
- 2 Comfortable: straight and level flight, tolerable temperatures, moderate changes in motion allowable.
- 3 Somewhat comfortable: straight and level flight, tolerable temperatures, somewhat bumpy, however reading or writing could still be done reasonably well.
- 4 Neutral: climbs, turns, large bumps, difficult reading, however still possible.
- 5 Somewhat uncomfortable: cannot read, cannot sleep because of motion.
- 6 Uncomfortable: feeling sick to stomach.
- 7 Very uncomfortable: feeling as if ready to throw-up.

Occupation: Research Assistant, UVA

Age: Sex: 23; female

Total flight experiences: Approximately 30

Flights in last 2 years: 24

Types of aircraft flown: 737, 727, DC-9, YS-11, Piper Cub, Cessna 207

Attitude towards flying: Love flying.

interpretation of comfort scale:

1 - Very comfortable: as comfortable as I would be in a chair at home.

- 2 Comfortable: noise, temperature, pressure, etc., not at optimum but not annoying.
- 3 Somewhat comfortable: some motion, temperature, pressure, etc., irritating but not to any extreme.
- 4 Neutral: beginning to have some physical discomfort, annoyance.
- 5 Somewhat uncomfortable: queasy stomach, but not too upsetting.
- 6 Uncomfortable: near to airsick, headache--on the verge.
- 7 Very uncomfortable: vomiting, etc.

Occupation: Research Assistant, UVA

Age; Sex: 25; male

Total flight experiences: 50 to 100

Flights in last 2 years: most flights have occurred during last four years

Types of aircraft flown: mostly jet airlines, 727, 707, DC9, DC10, 737,

Electra, F27; 20 to 30 flights on USAF C135, C118, T29; 10 flights on

general aviation airplanes

Attitude towards flying: Love it.

- 1 Very comfortable: no motion at all, smooth, can rest, write or sit with no obstruction.
- 2 Comfortable: a few small bumps, but still no problem doing anything.
- 3 Somewhat comfortable: a few annoying parts, cannot rest my head on my hand without it bumping off occasionally, sometimes too cold.
- 4 Neutral: not good, but not really annoying either.
- 5 Somewhat uncomfortable: starting to move me around or out of my seat, could put up with it for awhile though, also when it is too hot and I feel sticky.
- 6 Uncomfortable: getting really knocked around, maybe begin to feel a little nausea or stuff bouncing around in my stomach.
- 7 Very uncomfortable: bad news, let me off the plane.

Occupation: Work/Study Student, NASA-LRC

Age; Sex: 20; female

Total flight experiences: 35 Flights in last 2 years: 20

Types of aircraft flown: DC-9, DC-10, 737, turbo-prop

Attitude towards flying: Enjoy it.

- 1 Very comfortable: all conditions perfect-confident.
- 2 Comfortable: all conditions O.K. except one or two small things (like noise)--confident but bothered.
- 3 Somewhat comfortable: general motion O.K. except maybe temperature is bad or headache--confident but annoyed.
- 4 Neutral: don't really feel 0.K. or bad--0.K.
- 5 Somewhat uncomfortable: possibly motion disturbed me a little-feel "strained".
- 6 Uncomfortable: feel queasy--perspire.
- 7 Very uncomfortable: feel sick enough to stop flight--sick.

4

10

Occupation: Student, Hampton Institute

Age; Sex: 30; female

Total flight experiences: 25 to 40

Flights in last 2 years: I've flown in all seasons several times a year for 6 or 7 years, but not very much in the past 2 years, only 2 or 3 times recently.

Types of aircraft flown: jets mainly and propjets about twice

Attitude towards flying: I love to fly!

- 1 Very comfortable: I would have to be in a very positive state of mind. Temperature would be cool and pleasant, plane motion should be at minimum, lightly rolling, sort of gliding or rocking.
- 2 Comfortable: same general temperature, but could allow for some deviation--pleasant state of mind, plane motion can vary to a variety of motions, but not too sharply.
- 3 Somewhat comfortable: more variations in temperature and plane motion but nothing that would make me feel uneasy.
- 4 Neutral: I feel uncertain about this rating; basically indifference.
- 5 Somewhat uncomfortable: experiencing minor discomforts but they can be tolerated.
- 6 Uncomfortable: feeling bad generally or extreme temperature change.
- 7 Very uncomfortable: motion sickness and/or very bad motion.

Occupation:

Age; Sex: 21; male

Total flight experiences: 1

Flights in last 2 years: 1

Types of aircraft flown: commercial 727

Attitude towards flying: I like it.

- 1 Very comfortable: no stomach discomfort, cool and dry body.
- 2 Comfortable: no stomach discomfort, temperature not exactly the way I'd like it.
- 3 Somewhat comfortable: no stomach discomfort, distracting motions of aircraft, temperature not perfect.
- 4 Neutral: bordering on stomach discomfort but not quite, temperature not perfect, distracting aircraft motions.
- 5 Somewhat uncomfortable: first feelings of sickness, usually extreme case of the butterflies.
- 6 Uncomfortable: feel a little sick and perhaps quite tense.
- 7 Very uncomfortable: feel sick and might regurgitate.

**

Occupation: Employee, Hampton Institute

Age; Sex: 23; female

Total flight experiences: 12 to 15

Flights in last 2 years: I have flown approximately 5 times

Types of aircraft flown: commercial at all times (Delta, Boeing 707)

Attitude towards flying: I enjoy flying very much. My trips were long-term in that I was on the plane for 3-4 consecutive hours. The rides were

very smooth.

- 1 Very comfortable: relaxed, no physical agitation, no discomfort.
- 2 Comfortable: no physical agitation or discomfort.
- 3 Somewhat comfortable: slightly agitating but not totally agitating.
- 4 Neutral: neither one way nor the other, undecided.
- 5 Somewhat uncomfortable: physically agitating, but not nauseating.
- 6 Uncomfortable: not relaxed, physical agitation, slightly nauseating and prompting dizziness.
- 7 Very comfortable: totally tense, total physical agitation, nauseating and dizzy feeling.

Occupation: Employee, Hampton Institute

Age; Sex: 30; male

Total flight experiences:

Flights in last 2 years: every other weekend during 1968, few times since

Types of aircraft flown: general aviation, commercial DC8

Attitude towards flying: Love it!

- 1 Very comfortable: everything is all right.
- 2 Comfortable: everything is all right except one or two things.
- 3 Somewhat comfortable: a little change from 2 but not much.
- 4 Neutral: no feeling.
- 5 Somewhat uncomfortable: a change in the ride or temperature that makes me change my seat setting.
- 6 Uncomfortable: a little more change to the downward side, I am starting to think more of getting out.
- 7 Very uncomfortable: I wish I was on the ground.

Occupation: Work/Study Student, NASA-LRC

Age; Sex: 20; female

Total flight experiences: 7

Flights in last 2 years: all since January 1974, about once every other month

Types of aircraft flown: commercial 6 times; 2 times BAC-fanjet; 4 times DC9;

general aviation, 1 time, Cessna 4 seats

Attitude towards flying: I love flying!

- 1 Very comfortable: motion not at all annoying, neither hardly noticeable or unenjoyable, no noticeable pressure changes, no smoke, very slightly gool temperature, noise not much more excessive than it normally is on TIFS.
- 2 Comfortable: motion not annoying, very little noticeable pressure change, very little smoke, temperature could be a little cooler or warmer than I prefer, but not much, noise slightly more excessive than normal.
- 3 Somewhat comfortable: motion not annoying for a short period, but might be for a long period, temperature much warmer or colder than I prefer; I don't base my answers too terribly much on temperature but I'd rather be a little cooler than too warm, noise very excessive, pressure change noticeable, but not hurting ears.
- 4 Neutral: pressure change noticeable, but not hurting ears, don't really notice temperature, noise or motion.
- 5 Somewhat uncomfortable: about the same as 3 except motion slightly annoying and possibly very annoying if it lasted too long, pressure hurting ears.
- 6 Uncomfortable: motion annoying, pressure constantly annoying, temperature really hot, hard to breathe.
- 7 Very uncomfortable: If I ever got to this point, I'd probably be asking you to reduce the gain, feeling motion sickness almost to the point of actually being sick or constant pain due to pressure.

Occupation:

Age; Sex: 20; female

Total flight experiences: no flights prior to today

Flights in last 2 years: none Types of aircraft flown: nine

Attitude towards flying: The flights were more enjoyable than I had anticipated. I had expected to be frightened, however I felt very at ease.

- 1 Very comfortable: according to my flight history, I have no accurate judgment (I did not use these).
- 2 Comfortable: same as above.
- 3 Somewhat comfortable: I'm enjoying the flight.
- 4 Neutral: Okay; nothing wrong.
- 5 Somewhat uncomfortable: feeling rather shakey.
- 6 Uncomfortable: on the verge of nausea.
- 7 Very uncomfortable: ill.

Occupation:

Age; Sex: 19; female

Total flight experiences: 1

Flights in last 2 years: 0

Types of aircraft flown: commercial

Attitude towards flying: I enjoy flying but am sort of skeptical because of the motions of the plane which sometime causes uncomfortable feelings (nausea).

- I Very comfortable: ride was comfortable, no problems.
- 2 Comfortable: ride fairly comfortable.
- 3 Somewhat comfortable: slight discomfort, noticed movement of plane.
- 4 Neutral: discomfort.
- 5 Somewhat uncomfortable: beginning to feel uncomfortable (physical).
- 6 Uncomfortable: nausea.
- 7 Very uncomfortable: unbearable.

Occupation:

Age; Sex: 20; female

Total flight experiences: 3 flights (besides these today)

Flights in last 2 years: no flights in past 2 years

Types of aircraft flown: commercial planes

Attitude towards flying: Love flying, but not in a simulator!

- 1 Very comfortable: extremely comfortable (like sleeping in a bed).
- 2 Comfortable: feeling fine.
- 3 Somewhat comfortable: Okay.
- 4 Neutral: something is out of place somewhere!
- 5 Somewhat uncomfortable: just a little uncomfortable.
- 6 Uncomfortable: extremely uncomfortable to me.
- 7 Very uncomfortable: ready to quit!!!

Occupation:

Age; Sex: 20; male

Total flight experiences: 10 Flights in last 2 years: 10

Types of aircraft flown: commercial

Attitude towards flying: I like flying.

- 1 Very comfortable: means nothing at all in the flight is bothering me.
- 2 Comfortable: means hardly anything at all is wrong.
- 3 Somewhat comfortable: being moved about by the flight but there is not enough action to cause me to feel it.
- 4 Neutral: discomfort but not a whole lot of it.
- 5 Somewhat uncomfortable: discomfort enough so I start to feel it.
- 6 Uncomfortable: I'm beginning to hurt.
- 7 Very uncomfortable: I'm sick.

Occupation: Housewife/Teacher

Age; Sex: 25; female

Total flight experiences: 25 Flights in last 2 years: 20

Types of aircraft flown: commercial

Attitude towards flying: I really enjoyed the opportunity to fly in the project. The first part of the flight was great. The second flight

was interesting in finding what levels of motion affect me.

- 1 Very comfortable: very smooth, no noticeable disturbance.
- 2 Comfortable: very few bumps.
- 3 Somewhat comfortable: some bumps.
- 4 Neutral: middle of the road.
- 5 Somewhat uncomfortable: slightly uncomfortable.
- 6 Uncomfortable: making me aware of uncomfortable movements.
- 7 Very uncomfortable: makes me sick.

Occupation:

Age; Sex: 34; female

Total flight experiences: 10 Flights in last 2 years: 3

Types of aircraft flown: commercial

Attitude towards flying: I enjoy flying. I have no complaints at all.

- 1 Very comfortable: very comfortable without any flaws.
- 2 Comfortable: maybe a dip here and there.
- 3 Somewhat comfortable: temperature, writing possible, smoothness of ride.
- 4 Neutral: more or less OK, maybe the noise could be a bit distracting.
- 5 Somewhat uncomfortable: noise, sudden dips, turbulence, wind.
- 6 Uncomfortable: teo many rocky motions, and again sudden dips.
- 7 Very uncomfortable: could be completely out of sorts, which I have not experienced yet.

Occupation:

Age; Sex: 18; female

Total flight experiences: None Flights in last 2 years: None Types of aircraft flown: None

Attitude towards flying: Very anxious to fly.

- 1 Very comfortable: feeling completely at ease and really being unaware of the fact that I am flying--temperature just right, motion smooth.
- 2 Comfortable: feeling at ease but somewhat aware of the fact that 1 am flying--temperature 0.K.
- 3 Somewhat comfortable: feeling rested but not completely at ease-temperature either slightly too cool or warm.
- 4 Neutral: neither comfortable nor uncomfortable.
- 5 Somewhat uncomfortable: feeling slightly rested but not at ease, motion varying too much.
- 6 Uncomfortable: feeling sick and uptight, too cool or warm.
- 7 Very uncomfortable: miserable, sharp jolts, too cold or hot.

Occupation:

Age; Sex: 21; female

Total flight experiences: 1

Flights in last 2 years: 0

Types of aircraft flown: commercial

Attitude towards flying: It's all right.

- 1 Very comfortable: no annoying noises, motions, etc.
- 2 Comfortable: minimal annoyances.
- 3 Somewhat comfortable: a few annoying sounds, motions.
- 4 Neutral: not quite comfortable, but not really uncomfortable.
- 5 Somewhat uncomfortable: slightly annoying noises, motions.
- 6 Uncomfortable: containing a number of annoyances.
- 7 Very uncomfortable: everything annoying to the point of racking my nerves--excessive rocking, swaying, etc.

 \sim

Subject Code: 33

Occupation:

Age; Sex: 19; male

Total flight experiences: 10 Flights in last 2 years: 10

Types of aircraft flown: general aviation Attitude towards flying: Like very much.

- 1 Very comfortable: very rested, no feeling of flying.
- 2 Comfortable: rested, average turbulence.
- 3 Somewhat comfortable: occasional turbulence, but not enough to bother me.
- 4 Neutral: ride seems to bother me for one reason or other.
- 5 Somewhat uncomfortable: rough but I would not seem worried.
- 6 Uncomfortable: rough, jerky--! would be bothered somewhat.
- 7 Very uncomfortable: I would be very afraid--very rough and jerky.

Occupation:

Age; Sex: 21; male

Total flight experiences: 6

Flights in last 2 years: 6

Types of aircraft flown: commercial Attitude towards flying: I like it.

- i Very comfortable: not being able to tell you are moving.
- 2 Comfortable: feeling of well being.
- 3 Comewhat comfortable: at least enjoyable.
- 4 Neutral: no opinion.
- 5 Somewhat uncomfortable: unpleasant.
- 6 Uncomfortable: distressing.
- 7 Very uncomfortable: below toleration; causes my head to hurt.

APPENDIX C

PARTITION OF

Parameter (A)

A CONTRACTOR OF THE PERSON NAMED IN

A. 1

Address of the last

.

-

SUBJECTS AND SEAT ASSIGNMENT, SCHEDULE OF TEST FLIGHTS, CABIN TEMPERATURE,

AND SIX-DEGREE-OF-FREEDOM rms MOTIONS

ASSIGNMENTS
SEAT
AND
SUBJECTS
١.
<u></u>
TABLE

	•								Seat	Assi	Seat Assignments	됩							
اء ق	Flights	325	326	337	328	332	33	334	쮰	얾	덫	COL.	353		322	얾	357	띘	323
	~															ov.	2		
_	2	9	•			2					Φ	_	_	ب	9	7	00		
LP.	8								-	2									
	18	2	2	2	2	~	7	80	2	9	ø	9	2	으	~	3	1	0	~
		ĸ	'n	v	40	9	9	5			2	œ	~	ī.	~	9	m	ĸ	7
	7															~	Φ		
	5	œ	œ	æ	œ	c,	Ģ.	2	~	8	2	σ	4	œ		2	7		
-	2	~	M	m	m	·	_	_	m	4	7	~	~	~	4				
	4															'n	4	<u>-</u>	œ
. Les	8	~	cv	7	~	4	4	4	о ъ	00	œ	2	~	~	80	∞	'n	~	5
	-3															<u> </u>	•	50	_
	. 5	-	-	-	-		~	m			4	(C)	φ		0			m	9
_		4	3	.	4	•	CI	7											
ę.	9	^	7	7	~		2	σ											
•	2	o	Φ	6	o,	00		7					σ	6	~				
	ĸ			9	•	v,	ĸ	ø											
40	~								7	ď	ιn.	₩.	œ	4	M				
•	~								4	m									
_									'n	~	m	4							
20	9								9	-	-	~				-			
c h	8								80	σ									
	m												w	~	Φ			;	•
-	~																	2	M
24	8																	~ ,	σ,
105	7																	٠ -	* 9
4	~																	*	2
FALS	178	2	2	2	2	Đ	2	2	2	5	2	2	9	2	O.	2	2	2	2

TABLE C-2.- SCHEDULE OF UVA TEST FLIGHTS

<u>Flight</u>	Date	T:
325		Time
	Aug. 12	1300
326	Aug. 12	1515
327	Aug. 13	0857
328	Aug. 13	1202
332	Aug. 14	1545
333	Aug. 15	0902
334	Aug. 15	_
34 9	Sept. 13	1100
350	Sept. 13	0845
351		1023
352	Sept. 13	1348
	Sept. 13	1532
353	Sept. 14	0834
354	Sept. 14	1110
355	Sept. 14	1349
356	Sept. 16	
357	Sept. 16	0852
358	·	1055
359	Sept. 16	1357
	Sept. 16	1538

TABLE C-3.- TEMPERATURE VARIATION AT TEST OBSERVER SEAT

Filabe	Segme	nt l	Segment	2
Flight <u>Number</u>	°c	o _F	<u>°с</u>	o _F
325	27.8	82	22.2	72
326	27.8	82	22.2	72
327	26.7	80	22.2	72
328	27.8	82 *	20.6	69*
332	31.1	88	23.3	74
333	25.6	78	22.8	73
334	27.8	82	24.4	76
349	27.8	82	25.6	78
350	28.9	84	26.7	80
351	31.1	88	24.4	76
352	27.8	82	25	77
353	27.8	82	23.9	75
354	27.8	82	25	77
355	25	77	23.3	74
356	21.7	71	21.7	71
357	26.1	79	27.2	81
358	27.8	82	29.4	85
359	28.9	84	28.3	83

^{*}Recorded at seat 2.

	RHS RADIS	.19819687	.12318279	.21685479	. 28896367	.16861495	24919013	13494073	06828854	. 27637836	.20248704	.31058976	.19765121	.19343733	.39015382	.27605253	. 21638854	. 22325322	. 16052103		ROLL RMS RAD/S		1,75028569	4.28170527	3,00393000	1.73470459	. 90514640	2,57023345	3.41511347	4.33420199	9429249	3,70364685	1.88643851	4.65950641	2.79608655	1.96629092	3,69377699	4.61779168	2,77737286	
	RHS RAD/S	. 17950766	18996666	. 09841037	.11921829	. 09262343	254.00.65	22/10121.	12783192	13662179	.11982904	.12938702	.11605033	.11719215	.18220593	. 11924345	. 11724334	.12309346	.11455130		PITCH PHS PADVS	CONTRACTOR	.09528641	.14283557	. 08458014	111403100	29580906	.12305283	. 11064809	.10736148	112241181	13890644	.15310127	. 18655830	.17401437	.17889662	.17272522	. 16174981	11689545	
	RMS RADIS	.17438463	111111528	.16833894	. 23264565	.14419431	. 34017642	. 221/3182	113/1455	. 181645133	15934240	.22846563	.17409193	.14288107	. 32475224	. 23593248	.11936918	.17009409	.13189390		YAN SOCIAL	RMS RAUVS	.12357184	.15182556	.11266321	.16694011	21250521	13911865	.15525785	.21206839	. 12059435	17896089	1936914	24892971	.23558013	.29543527	.20417884	.31998437	.22679065	*235367*3
DATE 8-12-74	LONGITUDINAL PMS G	.00768036	100000000	200532843	.00668162	*********	19121900.	.00609319	.00459336	*00992124	90000000	206535300	.00506943	36676700	.00654966	.00589737	. 00763649	.00629158	\$0604200*	DATE 8-12-74		RHS G		.01017595	.00504847	.00781985	.00532052	.00505910	.00743115	.00932143	.00576958	.00831565	.00573960	00011330		0100000000	.00486796	.00585107	.00664650	.00623041
INSTOUMENTATION PENS II	TOPNSVERSE C SAG	15 12 72 20 .	.04461487	01.2006.10	. 171126 65	9777779.	,076ANA594	6342 3750	. 91074004	* 16247952	19.00.20.0	0.11.11.10.0	0.07.07.00	33.1.1.000	012011	. 04.7845.18	12765810	. 05 2 2 7 7 2 2 1	. 127946711	INSTRINCT STICK PERS II		C VMG		93041610	. 11 14 18 52	. 01188234	. 11 047980	. 011881 60	.0117710	.01272164		-		113.40.00	. 11 25 43.87	- :	1111111	. 11725424		
1 101	VERTICAL RMS G	. 97447632	. 02421012	.02165814	. 62416326	02166495	.02335680	02477459	. 02232420	. 02641174	. 04840351	.04221137	0.35.55.5		100	0.500337	107270	. 11. 1691.79	14555327	101 15	VEFTICAL	5 Sad		. 01975941	01744779	.02468421	.02021831	\$2666610*	. 02346551	102611261	7736660	.01954865	.01859485	.01845427	.02347957	. 01849649	48484050.	*********	. 01987134	.01978560
TIFS FLIGHT 325	SFGNENT	•					•	•	c							.:	•		2,1	TTFS FLIGHT 126		SFCHENT									σ:								• •	22

ROLL RMS RADIS		57017305	.32747519	. 86141163	1.48882504	.78767379	. 60315006	.27280762	. 2961148	. 34132096	2216476.	44035816	1425364	36496046.	37051316	10101CT	28530150	76812108	. 32615947			RMS RADIS		12467026.	57150135	.46217217	.48233806	. 52822344	.71405182	. 50510136	.42067802	1.30395552	1.14131503	1.58000000	1.44937918	1.27412715	1.15139046	1.27773237	1.2501503539	1.26607788
PITCH RADIS	46670384	. 21038061	. 20693960	.37412565	. 37763739	. 22313897	. 20397549	. 22397991	195925011	1305011	23140000	50001153 ·	. 22150621	. 21837124	22333150	. 2366643	. 19724350	. 27165051	.16905620			RMS RADIS		15717217	14760759	. 14205633	. 15064196	13982847	4 3 4 3 9 6 2 2 1	15135050	. 17183422	. 17034377	.15533512	. 18546698	. 18223062	17382750	15764200	15200329	91926	16374065
RHS RADIS	. 38749183	.26491886	. 21309388	.56758259	.74552666	. 32505384	. 27.381746	• 20112583	3040230	44749300	28676122	30605882	. 31290414	. 28101957	.27870878	.30070584	. 29550635	. 42128375	.28366706		3	RMS RAD/S	21. 771. 103	160833084	.30753211	. 52027877	.34506521	. 29878253	447909299	. 43633777	. 53075418	.35448554	.14797635	. 54356232	. 29119924	00000000	36500555	13328541	. 35641268	. 60753601
LONGITUDIVAL RMS G	,00893051	.00865829	.01377970	.01385857	.01445718	. 0.0053487	10004000	13300000	- 01106074	26267900	.00974837	.00869218	.01132628	.00765550	.00691571	.00625955	.02317693	.01312479	• 00989965	DATE 8-13-74	. AUTOUT TONO	RHS G	. 00717767	.00547047	2,005,000	.00673068	.00596800	.00845447	. 0054950	.00658703	.09504028	.00717530	.00602229	. 00535460	. 00695263		*3*00000	.00554252	.00625963	.00692127
TO BHS VERSE	. 95191628	1902 14.36.	2010000	. 157130 6	*I b / 2/ - 0 *	17 12 130	.06128463	. 151578	. 050000	. 1AF 39aD7	27762344.	. 90 522734	. 11852	55277346.	.18671217	. 18692205	.00301774	. 00793634	. 18601167	INSTRUMENTATION DEHS II	#20 FU 014 4 CF	, c . v . v	. 61457540	35500	. 11124500	. 01 777 85	- :	91111111	. 11164772	-	. 01331953	. 01419437	. 11114AF4	00000000	. 0151766	0.051.1.1.	. 1127571	2	5	. 017152 65
VERTICAL RMS G	.036950.	.12622599	. 06.55.8479	66264661	11221201	.06728224	.16 005312	. NOF 3F649	. n3849675	. 02121989	. 04587152	15056760.	.05160911	. NP 43504F	.05675930.	023662	in a	8.34	. 03572114	101 2	VEPTICAL	SHS G	.01717760	0.1	.01715168	. 01772917	6,066610.	. 04440946	.01840815	.01799167	.01802720	.01944358	.01737498	.02134362	20	.01798527	96256210	.01762952	.01850027	. 0227#618
SPGMENT	•	ν,		• •	•	•	•	•	1,1		13			.	• :					Ties etical 328		SEG4F17	•	•	•	٠, د		•	•	U		ב:	<u>.</u>	.:	::	•	17	:	13	53

VEPTICAL PSTICAL 105247095 1034749205 103653734 103653734 105657330 1156575 11166276 11166276 11166276 11166276 11166276	79 MSV P P S E	CONGITUDINAL			
105247094 104342095 104335271 104335271 105273303 105273303 1156275303 1166275 11662761 11662761 11662761	. 15 L Q R L Q . 15 L Q R L Q . 15 L Q S G . 15 L Q S G . 15 L Q S G . 15 F Z Q Z Z G	RHS G	SHS RADIS	RMS RADIS	RPS RADIS
10834205 10844205 10862434 10862434 10862434 1196973 11166273 11166276 11166276 11166276 11166276 11166276	. 1549249 . 15494195 . 1544195 . 15492792	.00726189	. 33564863	.30750285	.43896455
.03476924 .14735271 .03653213 .03653213 .036275308 .15627513 .11662761 .11662761 .05473565	. 15059195 . 1541501 . 15407402 . 1570477	.011118928	. 33286634	13555	34303061
11449884 0088248 00882484 00882580 1558483 1158484 1156826 1156826 034569	10-11-10-10-10-10-10-10-10-10-10-10-10-1	26967900.	27.040525	. 20641705	.34813790
.03657452 .03657452 .0565752 .15155777 .116657777 .116677777 .05477777 .0547776 .0547776	7457247	100736329	.26294106	.17418668	.36133087
1156275 1166273 1166273 1166275 1166276 1166276 1166276 1166276	92 07 00	.00588685	.26018263	.15100993	. 32956031
15154165 11165741 11165761 11165761 11165761 11165761 11165761 11165761		.00578027	.27976419	.15827192	. 34259305
15154166 117878552 11667861 15067864 08456296	. 15484707	.00524732	. 27104797	14509997	. 51005650
.11874552 .11662761 .15067864 .05474265	. 16195180	.00784385	.25843751	. 21478827	110 13966.
.11662761 .15067864 .05677265	. 05914744	.00826008	. 25574986	.16354351	10864544
.15067864 .05879265 .08456299	. 12124218	.00585747	. 18952835	0.150011.90	250278645
. 05879265	. 12 28 31 34	.00749853	. 25 019392	0+060363*	19740061
. 08456299	03056660.	.00565641	• 20559669	12109087	10001161
*	. 02122357	.00642822	.18458061	.13750636	11/865169
201111	12124842	.00489326	.18001389	.11161093	. 16863667
	20080100	.00608490	. 20145471	.15885528	. 22501333
.11371015	0336.0067	.00556034	. 22584508	.18913223	. 23154049
. 10109402	0990000	007 ROOK R	. 20649213	.18592741	.24339885
.16645127	0.44.1.20.	20000000	18615450	.13187115	. 29439429
.03337214	. 124152 45	100141001	17944916		.23376270
. 16059111	90016124.	7	200.000		
TDT 10 TH	II Sm3d müllülmaminatsiil	DATE 8-15-74			
	TO PINCHED CE	LONGITUDINAL	YAW	РІТСН	ROLL
RYS G		RHS G	RMS RADIS	RMS RAD/S	RMS RADIS
			201061.11	12321120	. 27492544
16251320.	. 11473343	.00705684	* 22496444	13809055	.26605075
.04495978	87 23 23 24 2	50476500.	26660012	. 18943601	. 35203693
.08102592	642500	91669300	200000000000000000000000000000000000000	38030251	*40586944
0.10149877	. 111. 11. 11.	2121210	20074113	.14275153	*25197024
. 06211534		455444	. 22522655	.24437471	.25310472
8779	27.25.110	25.45.000	.19747911	.16488784	.17504000
25 440	000000000	.00594062	. 21359775	.13085870	.23796638
.0.5003.0	30 32 30 10	.00613294	. 31252680	.19545844	.57284378
6000	10204021	.01418661	. 59183613	. 29513895	1.07396462
000000	. 0266 1221	.00708703	.20899761	.16396951	. 27198346
10474254	. 112 57 15 17	.00623418	.22082799	.18530785	437956554
03246766	. n 2 t4 4F N 2	.00825803	. 21181596	.12609917	34774951
.0554752	. 12554871	.00627001	.21833461	.14535130	.35171011
00000000	. 0000 0000	. 000000000	. 00000000	0000000.	20000000
. 06027437	. 11766 17 19	.00565157	.21450175	.12834719	*37.010914
.11199554	* 12560#44	.00844251	.18882267	118919/19	24.052858
.1385712A	. 12575587	.00703932	.18890738	20166612.	19769674
.03329865	08664720.	.0054000	* 22 26 36 51	31207852	18044390

ROLL RMS RAD/S	3.84421644	1.26138812	6.50953147	2.60894615	8.90668288	4.39044417	11.27208942	6.60984115	2.23221863	7 6206799	01064630.1	64935640	65003000	2.83889163	6.83015373	2.09270160	5.43755460	4.03720200		ROLL RMS RAD/S	. 29394000	. 39247000	.38525000	.39813000	0000000000	. 38540000	.86563000	.48410000	.34453000	. 38018000	. 53435000	. 60447000	.47284000	. 5346600	0003584	.42415000	.38890000
PITCH RHS RAD/S	. 35751 923	44265111	.19769168	. 10442222	.17187495	.11475626	.16364901	. 26145172	.10851728	10327633	35 105 101 .		1831366	100000000000000000000000000000000000000	.16613248	. 19367884	1717	.11038116		PITCH RHS RAD/S	.11108000	. 16083000	. 20770000	.12175000	1362100	17178000	.16960000	.16472000	.14726000	.14618000	. 20588000	.16927000	.17444000	.22505000	0000344	1322000	.15748000
RMS RAD/S	.43678370	106061131	.39969989	. 31138080	. 38242646	. 26588343	. 43171750	.73371657	.18491620	191/620/	5605565	. 64185256	2720000	* A 6 12 1 5 10 0	. 35913786	.47076533	. 34609247	.26659707		TAN RADIS	00074960.	.15072000	.12363000	.12492000	13638000	11339600	16994000	.11617000	.12143000	.19156000	25287000	.25259000	.19485000	.27641000	00036002	22215000	19676000
LONGITUDINAL RMS G	.00799306	111111000	.00955761	.00658551	.00561489	.00467333	.00524814	.01228902	*00803069	.00553182	50163.00.	- 1001001000 ·	000000000000000000000000000000000000000	10000000	. 01043983	.01062826	19460600*	.00525852	DATE 9-13-74	LONGIT UDINAL RMS G	.01453000	.01706000	.01811000	.01333000	0117 3000	1511000	00000000	.02065000	.01848000	.01129000	011696910	.01745000	.01289000	.01699000	00060600*	00000000	00024000
TO ANS YERSE DMS G	. 11477583	01.03.01.0.	. 01351703	. 01215072	.013073	. 11159483	. n1169F73	. 11867546	. 91 179327	03636660	2322333	1000000	84 + + 4 + 0	00111	. 17768860	. 01 484453	. 12384450	-	I SHELDINENTATION PERS I	TO A PIC VE PSE	. 02589000	00060420.	. 92842000	. 17575110	00011120	. 0264300	. 02715000	00096820.	. 42820000	000122100	0000 1000	. 07 58 50 00	. 07 15 50 00	00008270.	000000000	0.025-00-0	00000000
VERTICAL RMS G	. 02931689	. 01671708		. 01897594	.02804861	.01812871	.02042156	. 14134479	.01854978	01044000	073777	. 06 75 70 63	000000000000000000000000000000000000000	. 06.250.840	.03619668	.03942715	. 03492525	.01950308	101 9	VERTICAL RMS G	. 02571000		.10497039	.04135000		11136000	. 03137000	.09168000	.71059000	. 06979090	.1214,000	.09152000	.05048000	.12473000	07070	67960	00002740.
SF6 went	•••	•		u	•	•	• :	σ	.						•				TIES FLIGHT 151	1434535		. ~	•	- 1		۰.	•	. 6	1.				1.5	31	1,	• :	<u>.</u>

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

	RHS RAD/S	. 47387000	. 45263000	. 46486000	.84019000	.71423000	.54312000	70707000	44504000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000001364.			ROLL RHS RAD/S		. 40689065	2726.54.76	451545134	2000011	00103036	01661604	20122011	39 140000	60032600	273/500	13605055	50365055	19111809.	2686974	01011111	66361906	10010101	2010101	***********	.376011062
	PITCH RHS RAD/S	.11542000	.14645000	. 28286000	. 22270000	19408000	14991000	21766 000	0000017	000 60 101 •	00000000	.10421000			PITCH RHS RAD/S		. 32707797	15416665	. 14551923	62144601	62626262.	16932266	15551206	9000010	.14534463	116641 021	.13303363	10400 680	12556672	. 14085099	12321932	.19393556	.12421353	11355615	15946041	.14619508
	RHS RADIS	25566000	22352000	23046000	27201000	26759000	27. 828000	000038131	• 59344000	000274750	. 30038000	.24328000			RHS RADVS		.14572920	. 20290145	. 07922878	.18325938	.35984719	.12412897	.18695721	. 39720272	.10604716	.27136507	. 19722576	. 09914383	.25951108	.18367090	.13199242	.25074888	.15324816	. 08556226	. 20136037	.27735717
04TE 9-13-74	LONGIT LDINAL RMS G		011483000	.01520000	000000000000000000000000000000000000000	00004310	00000101	00052610.	,01188000	*01466000	.01659000	.01553000		DATE 9-14-74	LONGITUDINAL PHS G	,	.00873149	0.00977870	.01167733	.01270748	.01381014	.01188949	.01211280	.01630767	.01955940	.01881994	.01536587	.01705989	.01851405	.02043869	.01758607	.02015043	.01873179	.01418485	.01473567	.01631594
I SH3H HOLLVALDH DEHS I	TRANSUF DSE DYS C		00000000	0000000	00010200	Dane saule	00014940.	. 0868500	. 1866,000	00 400000000000000000000000000000000000	. 18067110	00077000.		I SHEMINENTATION PEHS I	TOANSVEFSE	÷ C E	. 12875252	**************************************	. 11528627	67856770.	JUCAR764	84475750.	. 03744308	. 16173692	. 11246778	. 047779	00278270.	. 11419437	. 04 404 31	. 03610263	. n2731977	.0480840	. 13018418	. n1284759	. 04857478	. n1 ha46 F7
107	VERTICAL PPS G		. 02111090	00000.000	000000000	. 0477 2000	.08619000	. 06 330 000	.10661000	.04519000	.08696000	.03160000		+ 101	VERTICAL	9 544	. 06 499 377	. 06761509	. 0f 122744	. 06042351	. 05 80 3447	. 06157191	. 06553396	.06 - 89385	.06419199	.06566354	.02407989	.03185906	.03414821	0376457	0334125	.03440928	.03435113	0367627	0339749	.02977784
TIFS FLIGHT 352	SEGWF NT		1	•	•	•	u·	•		•	•	••		TIPS FLIGHT 153		SECHENT		•	•	•	u	•	•	•	o	•	•	:-:		•				. •		5.0

	ROLL RMS RAD/S	00000000	50254000 T			. 38566271	.61375691	. 63319866	* 61.076.961	000000000000000000000000000000000000000	DRAMATHON C	20001001001	**************************************	#20100000000000000000000000000000000000	OR WASHINGTON THE	2-140At 260	2. 5005047F	- 4740444	******	91601270+		ROLL	RMS RADIS	. 52631689	. 51027000	.42928888	. 56237000		のではないできませる。	00000000	. 97077000	0000 10+9 ·			3571888	.29545610	. 29615000	* 29113040		. 26109000	
	PITCH RHS RAD/S	. 00000		1131270	. 12570203	. 12209832	-11959097	. 15667462	20414211	1225271		100000000000000000000000000000000000000	11678475	11399160	17741777	15874564	V4010411			P2+ P30+		PITCH	RMS RAD/S	.11959000	. 11744000	. 21379000	000000000000000000000000000000000000000	00061671	19265000	. 14191000	. 23703846	• 19663 800	1976660		16398000	. 22484 400	.20474090	. 25631.808	040 01 29 1 °	. 23246688	
	YAN RHS RAD/S	• 00 000000		13923721	. 29879926	. 14673786	.43410626	- 21801376	01/05/06	* CONTROL *	C#164156	90699920	11272977	10244999	- 150 P 100	. 64.875265	31030000	.10760576	0014			YAH	RHS RAD/S	.13027000	• 24240000	.15511000	17855030	00001007	-29854000	.21648000	***956000	14 090000	DOD-04-04-04		. 11678000	.05727000	. 07449000	. 06.297000	00000000	. 05 248400	
DATE 9-16-74	LONGITUDINAL RMS 6		* 0.50 1.050	.01776426	.01623730	.01792464	.01392300	2261110	16264910*		.01605179	101629765	101219754	11699912	.01777020	.01721424	.01586285	.01234990	1940440	7	DATE 9-14-74		S ES	.01130000	.01621000	0219200		. 02328000	.01901000	.02156000	. 022 31000	005542000		10000000	101921000	.01412000	.01064000	. 00670000		.01765000	
INSTRUMENTATION PERS I	3Sd 3AShdet	00000000	のようななながら	11019577	6121121P.	. 01 1501 72	0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	000 C C C C C C C C C C C C C C C C C C		G-KGMGGC -	4670510		4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ESTABLIST OF	. n1247072	. 01747760	.01430449	. 00080811	11 14 6 6 6 C C		I SHED METERIOR DEMS I	_	ය වැනි ය	. 112-74611	0448644			De O Box Mar.	. 1725.7010	. 16 F 490 0 0	. 34.9.3000			2001+010	י החיקב לחים	. n1 11 9n 4g	00004400.				
101 11	VERTICAL RPS G	. 00000000	11774679	. 11574992	.02248355	. 01953919	. 0169R568	01201610	0.00 TO 10 T	- C	. 021 396.81	.017 39 620	.01875113	. 01751675	021	17222	.01897683	17563	01750		FDT 13	_	٠ د د	.01464000	115-101	1001	. 61605080	.01551000	.0197000	.01654000	. 02375000	***************************************	106645400	13355000		. 10643000	. 06121000	1111111111	100407	00065480	
TIES FLIGHT 354		~ 1		J	tr	ur (• •) o)· ¢	•	6	F 44	7	£.	년 #1	17	•	•			Ties Flight ass	1													,	u	ul' p				

	ROLL RMS RAD/S		. / 0428687	202101305	. 53372277	. 55965168	.54658028	.71184970	.53228752	.50155757	. 50808464	.43040678	.14387495	.61967734	. 60545025	.99390643	.98360561	1.01350876	.39067890	. 32101402	.38440864			RHS RAD/S		.00000000	.00000000	.26078919	1.65665325	.00000000	00000000	. 811110419	. 25329624	*0000131.	17553057	.84751991	. 59070297	.48144574	. 27465251	*50209404	.38744032	.17352521	.22302242	
	PITCH RMS RAD/S		. 26165053	. 32449961	. 20666156	. 18167 083	.18830560	. 52171831	.14267796	.12183596	.11615076	.10733126	.12845622	.17293351	.12671227	.17823960	.16109935	.39579035	.21067273	.15249918	. 09975921			RMS RADIS		. 000000000	00000000	.10767079	1.48492424	00000000	00000000	197976011	62925061	12465954	14013922	. 55549977	.19603826	.16979105	.11123399	.14508274	. 16871574	.18827108	.13291351	
	YAH RHS RAD/S	67711578	35455506	.48795492	.31892005	. 33420054	. 35358167	.63210759	. 32709326	.31305750	. 32405246	.11210709	.10251341	. 11 09 0987	111542097	.15866632	. 27349589	. 39758014	. 24 038303	. 11042645	.16631897			RHS RADIS		. 00 50000	00000000	1402/611.	C. 23226343	0000000.	00000000	14254122	10183320	409928494	.10246463	. 52936755	. 20510241	.14249561	.13201894	. 10009995	.12393143	. 09155872	.09222906	
DATE 9-15-74	LONGITUDINAL RMS G	180754983	.00797139	.0078000€	.01094715	.10768505	.01091696	68424.00	-108708E7	.00733417	.00.00.00	.00400416	16521166	00649034	9,001,000	2/608/00.	- 00015192	. 100523408	• 007 87934	.00750107	.00584397	DATE 9-16-74		RHS G		. 2000000	00000000	00000000	26,063,00		2020200	.01011830	.00524986	.00847856	.01002397	.00666243	.01487111	.00426378	*5967500	.01060660	.01062638	7/957600.	.00642495	
II SHBU MULTATION DEHS II	TOPHICVEDSE PRO G	91 360200.	6725500.	. 10414015	. 00529000	9022200	801011010	6711000	I 11/2 20 0 0	20140300	6113860	. 02141765	0210010	10072001	1 23 8000	. 12368360	613561	60280260	00000000	52 15 1221	14367624.	II SHE DENTILLION DENS II	TO A STATE OF	2 Swd		0000000	0.3980000	0.1120211.0		00000000	67617610	. n1 n252 D7	. 11267123	. 00000000	6.00,000.	. 11781788	. 11167115	. 11057544	800 Eu Iu •	77 00 50 50	0100101	3. 50.44.4	. 11 11 202	
157 16	VFPTICAL PPS G	. 114212244	113333417	.06946906	.15574982	42273000	. 07042860	16851902	10146266	0278170	. 02076897	. 059557EL	. 10476641	. 04555107	DRESON	DF 78.22	11049111	. 04413031	0054460	02564670		6 101	VEDITCAL	SHa			. P2F8L133	DE FG1 LA	.00000000	-	. 17147657	.12694094	. n2A23367	108844T2	.12416119	. 07542174	15129772		1,306.40	. 0024.601	DE024519	11523020	. 16872276	
TIFS FLIGHT 35E	SECHENT	-	•					•	U			2.										TIES FLIGHT 767		CFFERT	•			•		•						2.		•				৽		

ROLL RMS RADIS		. 84826293	.00000000	.19636347	. 38157569	.16003750	. 23455703	24690599 *	. 61712235	. 67423290	25.20437044	- 47 31 3445	1.58555986	87420249	2.18481120	1.47343137	2.02467281	1.34565969	.95915067		- 108	RMS RAD/S	.57971545	.34465925	. 21453438	. 28338490	. 53255986	.23758367	.93/38466	. 50355031	.32666497	.30131877	16100492	. 66899202	.74539251	1010110	27708302	22846225	31524436
PITCH RMS RAD/S		11455130	. 00000000	.12095040	. 28964634	42764660.	. 09584258	.12670438	.13464763	951553	12058140	27.2270	. 10693456	.12609124	. 41943778	.10280564	.10925200	. 626 32 2 60	.10300485		POLLO	RHS RAD/S	.16400000	.15832561	.13222708	.12110326	.17819371	.18119051	16 602 167	17695197	.21643013	0.13736448	.10875201	.18329484	. 25384010	1104/2011	111951151	12419742	105971
RHS RADIS	0.602.00	. 58668561	. 00000000	. 31378655	,55213223	. 22016812	.60255290	. 2033/158	. 42143801	14260606	14837116	10295144	.16568947	.10808793	** 44760474	.12941020	.16597590	. 58691567	.25820147		74.	RHS RAD/S	.18988418	.18060177	.07796089	.16229295	.30727838	10830974	37,007037	110408650	19844395	.18453997	.08968389	. 2994666	. 52475709	10553301	15894968	. 07112384	1 4 8 10055
LONGITUDINAL RHS G		.00568530	. 000000000	.00540934	*00596984	.00466487	*00506498	.00480905	*00551377	. 00000000	.00720888	.00504183	.00714864	.00532071	.00653636	.00561823	.00796461	.00748071	.00547111	DATE 9-16-74	INTUITION	RMS G	.01442359	.01490067	.01227599	. 01163959	.01660181	.01191050	.01052996	1171714	.01722701	.00956112	.01727628	.01820961	.02030197	*0120320	1175094	.01087152	01046900
TOBUSVEPSE PMS G	-0340404	. 12460142	00000000.	. 1751713	. 02189726	. 02368860	4525450	.0553355	1000 1000	#1 16776 ·	. 02578701	. 12505571	. 02434992	.02701891	. 12191301	. 1125212 10	.02604439	.02405223	**********	INSTRUMENTATION PERS I	TO SUCKE	2 2 2	. 02495716	• 04734659	. 01381847	. 14149808	.07120604	. 0250.335	. 13425716	. 11659458	.05047673	.04484975	.01572323	.05055810	. 04075641	C. #C. 150 .	. 14121165	. 01 5495 15	. 05051225
VEPTICAL RHS G	03487866	.03349328	.00000000	. 03554434	.03427681		. 03173574		01100100	. 03739652	.03528881	.03380976	.03322650	.03690528	. 03131119	.03442092	.03512122	.03515821	.03503988	4 TOT	VERTTCAL	RHS G	. 06 099590	.06450736	*9496460		. 06315457	*00+5+00*	. 06228804	.06170089			.03142388	.03608185	. 04071732	. 0303636	.03489126	0373	
TE GMENT		••	•	• •						:=	15	13	:	16	16	17	:	••	2.0	TIFS FLIGHT 359		SFGWENT	-	~	•	. • •	۲,		•	. •	10	::	12	: :	:::		1.	•	