João Victor Dias Gomes

Laboratório de Arquitetura e Organização de Computadores II Prática I – Parte III

Esta prática tem como objetivo a implementação de uma cache associativa por conjunto de 2 vias, com utilização do MIF e realização da leitura e escrita utilizando o display de 7 segmentos. Com isso, a primeira coisa a ser feita foi a integração dos sinais de entrada e saída da placa com a nossa prática em si, que passará a ser chamada de sistema. Nisso, foi criado módulos de decodificadores de sinais para as saídas a serem apresentadas nos display de 7 segmentos e o módulo chamado de sistema que como já referido vai lidar com os estímulos fornecidos pelas as entradas físicas da placa. A correlação correta entre pinos, leds e displays da placa com o sinal que cada um representa está na *tabela 01* no final deste documento.

sistema:svs decodificador display0 SW[17 0] hit miss clock read write writeback entrada[2 0] HEX0[6 0] 7 h7F -tag[2..0] sinaisCache[5..0] HEX1[6..0] indice[1_0] tag out[2 0] data inf2..01 data out[2 0] decodificador:display2 HEX2[6:0] entrada[2, 0] LEDG[17..0]

Figura 01 - Módulo que dialoga com a placa

Como visto na *figura 01* nosso sistema terá como entrada um clock, uma tag com 3 bits, um índice com dois bits, um dado com 3 bits e por fim um sinal para indicar leitura ou escrita na cache, sendo 1 escrita e 0 leitura. Já as saídas são hit ou miss, sendo hit igual a 1 e 0 igual a miss, writeback, a tag acessada, o dado presente na cache e sinais gerais da linha da cache com LRU, dirty e válido. Tendo deixado essa primeira parte clara, podemos então prosseguir para o funcionamento do nosso sistema, onde não iremos mais pensar no nosso mundo físico, ou seja, não vamos nos preocupar mais com os pinos da placa e com seus LEDs e displays de 7 segmentos.

O nosso sistema é composto principalmente de três módulos, a memória cache, a memória RAM e o controle da cache, também há módulos auxiliares com um multiplexador para controle de endereço para a memória ram e um extensor de sinal de 3 bits para 8 bits para os dados a serem fornecidos para a memória ram. O diagrama do sistema com seus módulos e suas conexões pode ser visto na imagem abaixo.

Figura 02 - Sistema

Para entendermos o funcionamento do nosso sistema, iremos fazer o estudo por casos. Podemos encontrar 5 casos, que são write hit, write miss com write back, read hit, read miss e read miss com write back. Porém, antes, vale destacar que o módulo de controle, responsável por receber e interpretar os sinais de entrada para gerir a cache e a memória ram, é ativado com a borda de descida do nosso clock. Isso implica que a leitura e escrita na cache e na memória ram acontecem na borda de subida do clock.

Figura 03 - Clock do sistema

Write hit

O caso de write hit é bem simples, se a tag fornecida pela entrada estiver em alguma das caches no índice indicado, basta escrever o valor de entrada na cache em questão. Para isso ocorrer o módulo de controle desabilita escrita na ram, ativa o sinal de hit, ativa sinal de escrita na cache, atualiza o sinal de dirty e a LRU da cache e por fim determina o endereço do registrador da cache que deverá ser escrito. Com isso, quando der a borda de subida do clock a cache receberá essas informações de dado e endereço e escreverá no registrador certo.

Aproveitarei esse caso, para destacar que as informações da cache com LRU, dirty, válido e a tag são armazenadas no próprio módulo de controle, para justamente facilitar o tratamento das informações, já os dados são armazenados no módulo da cache, que nada mais é que um banco de registradores.

Read hit

O read hit acontece quando tanto a tag de entrada bateu com a tag em uma das caches tanto se o dado presente é válido pelo sinal de mesmo nome. Assim, o controle emite os sinais de leitura da cache, leitura da memória ram, determina o endereço do registrador da cache, atualiza lru, informa que deu hit e atualiza o sinal de válido. Com isso, quando a cache for acionada ela irá fornecer o valor presente no registrador no endereço indicado.

Read miss

Até agora os processos se resumiram aos módulos de controle e do módulo de registradores da cache. Porém, em um processo de read miss sem write back, ou seja, quando o conteúdo presente na cache não é válido será necessário carregar um bloco da memória RAM para a nossa cache, para então poder ler seu conteúdo. Os sinais de controle são muito parecidos com o caso do read hit, porém o miss estará ativado o que levará ao dado fornecido pela ram ser escrito no registrador em questão.

Read ou Write miss com write back

Esses dois casos estão sendo abordados em conjunto, pois muitos dos sinais atuam em um também atuam no outro, com a ressalvas dos sinais que indicavam o próprio processo de escrita ou de leitura da cache. O processo de write back leva dois clocks para se completar o primeiro clock é idêntico para o write e para o read. Neste, o write back é habilitado assim como a escrita na ram, a leitura na cache e o sinal de miss. Além disso, o processo determina o endereço a ser acessado na cache, verifica qual o bloco mais antigo para ser levado para a ram e atualiza a lru.

Já no segundo clock o módulo de controle ignora as instruções de entrada e passa a agir com base nas informações antes determinadas, visto que o sinal de writeback está ativo. Assim, desabilita o write back para o próximo clock, mantém o sinal miss, descobre qual a cache mais antiga para determinar o endereço do registrador da cache, depois atualiza tag para a fornecida pela entrada, habilita a leitura da ram, atualiza dirty se for read e por último habilita ou desabilita escrita na cache.

Alguns últimos detalhes a serem mencionados são que o arquivo .mif foi inicializado com todos os valores iguais a zero. Com isso, quando se ver um dado igual a zero nos prints das simulações, entenda que esse dado foi trazido da memória RAM no caso de miss. Agora abaixo, estão as imagens das simulações que comprovam o funcionamento da cache associativa por conjunto de 2 vias.

Figura 04 - Wave

Figura 05 - início da simulação

```
----- INICIO DA SIMULAÇÃO ---
 ----- CLOCK 01 -----
# ENTRADA
# WRITE 0 TAG 100 INDICE 0 DADO x
# SAIDA
           WRITEBACK 0
# ADDRESS_CACHE x DADO-CACHE x
# RAM
# WREN x DADO-IN x ADDRESS 16 DADO-RAM 0
CACHE 0
# INDICE VALIDO DIRTY LRU TAG DADO
 0 0 0 100 1
 1 1 0 1 000 3
2 1 1 0 101 5
       0
             x x xxx x
CACHE 1
# INDICE VALIDO DIRTY LRU TAG DADO
 0 0 0 0 xxx 2
 1 0 0 0 xxx 4
2 1 0 1 111 6
3 0 x x xxx x
```

1 - Read miss TAG = 100 Índice = 00

Figura 06 - simulação parte 02

```
# ------ CLOCK 00 ------
# ENTRADA
# WRITE 0 TAG 100 INDICE 0 DADO x
# SAIDA
# HIT 0 WRITEBACK 0
# ADDRESS CACHE 0 DADO-CACHE 1
# RAM
# WREN 0 DADO-IN 1 ADDRESS 16 DADO-RAM 0
# CACHE 0
# INDICE VALIDO DIRTY LRU TAG DADO
 0 1 0 1 100 1
       1 0 1 000 3
1 1 0 101 5
  3
       0
             x x xxx x
# CACHE 1
# INDICE VALIDO DIRTY LRU TAG DADO
 0 0 0 0 xxx 2
1 0 0 0 xxx 4
 1 0
2 1
3 0
             0 1 111 6
             x x xxx x
```

Figura 07 - simulação parte 03

```
# ----- CLOCK 01 -----
# ENTRADA
# WRITE 0 TAG 100 INDICE 0 DADO x
# SAIDA
             WRITEBACK 0
# HIT 0
# ADDRESS CACHE 0 DADO-CACHE 0
# WREN 0 DADO-IN 0 ADDRESS 16 DADO-RAM 0
# CACHE 0
# INDICE VALIDO DIRTY LRU TAG DADO
       1 0 1 100 0
1 0 1 000 3
1 1 0 101 5
0 x x xxx x
   1
   2
# CACHE 1
# INDICE VALIDO DIRTY LRU TAG DADO
       0 0 0 xxx 2
  1 0 0 0 xxx 4
2 1 0 1 111 6
3 0 x x xxx x
```

2 - Read miss TAG = 101 Indice = 00

Figura 08 - simulação parte 04

```
----- CLOCK 00 -----
ENTRADA
WRITE 0 TAG 101 INDICE 0 DADO x
SAIDA
HIT 0 WRITEBACK 0
ADDRESS CACHE 4 DADO-CACHE 2
WREN 0 DADO-IN 2 ADDRESS 20 DADO-RAM 0
CACHE 0
INDICE VALIDO DIRTY LRU TAG DADO
     1 0 0 100 0
           0 1 000 3
      1
           1 0 101 5
      1
     0
           x x xxx x
CACHE 1
INDICE VALIDO DIRTY LRU TAG DADO
 0 1 0 1 101 2
1 0 0 0 xxx 4
      1
           0 1 111 6
 3 0 x x xxx x
```

Figura 09 - simulação parte 05

```
# ----- CLOCK 01 -----
# ENTRADA
# WRITE 0 TAG 101 INDICE 0 DADO x
# SAIDA
       WRITEBACK 0
# HIT 0
# ADDRESS CACHE 4 DADO-CACHE 0
# RAM
# WREN 0 DADO-IN 0 ADDRESS 20 DADO-RAM 0
# CACHE 0
# INDICE VALIDO DIRTY LRU TAG DADO
  0 1 0 0 100 0
  1
       1
            0 1 000 3
           1 0 101 5
      1
  2
  3
       0
            x x xxx x
# CACHE 1
# INDICE VALIDO DIRTY LRU TAG DADO
 0 1 0 1 101 0
      0
            0 0 xxx 4
 1
 2 1 0 1 111 6
3 0 x x xxx x
```

3 - Read hit TAG = 100 Indice = 00

Figura 10 - simulação parte 06

```
# ------ CLOCK 00 ------
# ENTRADA
# WRITE 0 TAG 100 INDICE 0 DADO x
# SAIDA
        WRITEBACK 0
# HIT 1
# ADDRESS CACHE 0 DADO-CACHE 0
# WREN 0 DADO-IN 0 ADDRESS 16 DADO-RAM 0
# CACHE 0
# INDICE VALIDO DIRTY LRU TAG DADO
      1 0 1 100 0
         1 0 1 000 3
1 1 0 101 5
0 x x xxx x
  1
  2
# CACHE 1
# INDICE VALIDO DIRTY LRU TAG DADO
  0 1 0 0 101 0
  1 0 0 0 xxx 4
2 1 0 1 111 6
3 0 x x xxx x
```

Figura 11 - simulação parte 07

```
----- CLOCK 01 ------
WRITE 0 TAG 100 INDICE 0 DADO x
      WRITEBACK 0
HIT 1
ADDRESS CACHE 0 DADO-CACHE 0
WREN 0 DADO-IN 0 ADDRESS 16 DADO-RAM 0
CACHE 0
INDICE VALIDO DIRTY LRU TAG DADO
 0 1 0 1 100 0
1 1 0 1 000 3
           1 0 101 5
      1
            x x xxx x
CACHE 1
INDICE VALIDO DIRTY LRU TAG DADO
 0 1 0 0 101 0
1 0 0 0 xxx 4
      1
            0 1 111 6
     0 x x xxx x
```

4 - Write hit TAG = 000 Indice = 01 Dado = 111

Figura 12 - simulação parte 08

```
: ----- CLOCK 00 -----
ENTRADA
WRITE 1 TAG 000 INDICE 1 DADO 7
SAIDA
              WRITEBACK 0
HIT 1
ADDRESS_CACHE 1 DADO-CACHE 3
: WREN 0 DADO-IN 3 ADDRESS 1 DADO-RAM 0
CACHE 0
: INDICE VALIDO DIRTY LRU TAG DADO
  0 1 0 1 100 0
1 1 1 1 000 3
2 1 1 0 101 5
3 0 x y yyy
2
                х
  3
                    x xxx x
         0
CACHE 1
: INDICE VALIDO DIRTY LRU TAG DADO
      1 0 0 101 0
0 0 0 xxx 4
1 0 1 111 6
0 x x xxx x
```

Figura 13 - simulação parte 09

```
----- CLOCK 01 -----
WRITE 1 TAG 000 INDICE 1 DADO 7
SAIDA
          WRITEBACK 0
ADDRESS CACHE 1 DADO-CACHE 7
RAM
WREN 0 DADO-IN 7 ADDRESS 1 DADO-RAM 0
CACHE 0
INDICE VALIDO DIRTY LRU TAG DADO
 0 1 0 1 100 0
           1 1 000 7
1 0 101 5
 1
      1
      1
      0
           x x xxx x
CACHE 1
INDICE VALIDO DIRTY LRU TAG DADO
 0 1 0 0 101 0
      0
           0 0 xxx 4
     1 0 1 111 6
0 x x xxx x
 2
```

5 - Write hit TAG = 111 Indice = 10 Dado = 010

Figura 14 - simulação parte 10

```
----- CLOCK 00 -----
# ENTRADA
# WRITE 1 TAG 111 INDICE 2 DADO 2
* SAIDA
HIT 1 WRITEBACK 0
# ADDRESS CACHE 6 DADO-CACHE 6
# WREN 0 DADO-IN 6 ADDRESS 30 DADO-RAM 0
CACHE 0
# INDICE VALIDO DIRTY LRU TAG DADO
§ 0 1 0 1 100 0
            1 1 000 7
       1
       1
            1 0 101 5
      0
            x x xxx x
 3
CACHE 1
# INDICE VALIDO DIRTY LRU TAG DADO
      1 0 0 101 0
            0 0 xxx 4
       0
 2 1 1 1 111 6
3 0 x x xxx x
```

Figura 15 - simulação parte 11

```
----- CLOCK 01 -----
ENTRADA
WRITE 1 TAG 111 INDICE 2 DADO 2
SAIDA
       WRITEBACK 0
HIT 1
ADDRESS_CACHE 6 DADO-CACHE 2
RAM
WREN 0 DADO-IN 2 ADDRESS 30 DADO-RAM 0
CACHE 0
INDICE VALIDO DIRTY LRU TAG DADO
 0 1 0 1 100 0
1 1 1 1 000 7
             1
                  0 101 5
       1
       0
             x x xxx x
CACHE 1
INDICE VALIDO DIRTY LRU TAG DADO
 0 1 0 0 101 0
1 0 0 0 xxx 4
2 1 1 1 111 2
            1 1 111 2
x x xxx x
    0
```

6 - Write Miss com write back TAG = 110 Índice = 10 Dado = 011 Primeiro clock

Figura 16 - simulação parte 12

Crock 00					
ENTRADA WRITE 1 TAG 110 INDICE 2 DADO 3					
SAIDA HIT 0 WRITEBACK 1 ADDRESS_CACHE 2 DADO-CACHE 5					
RAM WREN 1 DADO-IN 5 ADDRESS 22 DADO-RAM 0					
CACHE ()				
INDICE	VALIDO	DIRTY	LRU	TAG	DADO
0	1	0	1	100	0
1	1	1	1	000	7
2	1	1	1	101	5
3	0	х	x	XXX	x
CACHE 1	L				
INDICE	VALIDO	DIRTY	LRU	TAG	DADO
0	1	0	0	101	0
1	0	0			
2	1	1	0	111	2
3	0	x	x	XXX	x

Figura 17 - simulação parte 13

6 - Write Miss com write back TAG = 110 Índice = 10 Dado = 011 Segundo clock

Figura 18 - simulação parte 14

```
----- CLOCK 00 -----
ENTRADA
WRITE 1 TAG 110 INDICE 2 DADO 3
      WRITEBACK 0
HIT 1
ADDRESS CACHE 2 DADO-CACHE 0
WREN 0 DADO-IN 0 ADDRESS 26 DADO-RAM 5
CACHE 0
INDICE VALIDO DIRTY LRU TAG DADO
0 1 0 1 100 0
1 1 1 1 000 7
           1 1 110 0
     1
     0
          x x xxx x
CACHE 1
INDICE VALIDO DIRTY LRU TAG DADO
     1 0 0 101 0
           0 0 xxx 4
 1
     0
           1 0 111 2
 2
     1
     0 x x xxx x
```

Figura 19 - simulação parte 15

```
ENTRADA
WRITE 1 TAG 110 INDICE 2 DADO 3

SAIDA
HIT 1 WRITEBACK 0
ADDRESS_CACHE 2 DADO-CACHE 3

RAM
WREN 0 DADO-IN 3 ADDRESS 26 DADO-RAM 0

CACHE 0
INDICE VALIDO DIRTY LRU TAG DADO
0 1 0 1 100 0
1 1 1 1 100 7
2 1 1 1 110 3
3 0 x x xxxx x

CACHE 1
INDICE VALIDO DIRTY LRU TAG DADO
0 1 0 1 10 10 3
3 0 x x xxxx x
```

7 - Read Miss com write back TAG = 001 Índice = 10 Primeiro clock

Figura 20 - simulação parte 16

```
----- CLOCK 00 -----
ENTRADA
WRITE 0 TAG 001 INDICE 2 DADO x
SAIDA
HIT 0
          WRITEBACK 1
ADDRESS_CACHE 6 DADO-CACHE 2
RAM
WREN 1 DADO-IN 2 ADDRESS 30 DADO-RAM 0
CACHE 0
INDICE VALIDO DIRTY LRU TAG DADO
 0 1 0 1 100 0
 1 1 1 1 000 7
2 1 1 0 110 3
3 0 x x xxx x
CACHE 1
INDICE VALIDO DIRTY LRU TAG DADO
 0 1 0 0 101 0
 1 0 0 0 xxx 4
2 1 1 1 111 2
3 0 x x xxx x
```

Figura 21 - simulação parte 17

CLOCK 01						
		CHOC	. 01			
ENTRADA						
WRITE 0 TAG 001 INDICE 2 DADO x						
SAIDA						
HIT 0 WRITEBACK 1						
ADDRESS_CACHE 6 DADO-CACHE 0						
RAM						
WREN 1	DADO-II	O ADI	DRESS	30	DADO-RAM 2	
CACHE ()					
INDICE	VALIDO	DIRTY	LRU	TAG	DADO	
0	1	0	1	100	0	
1	1	1	1	000	7	
	1					
3	0	x	x	xxx	x	
CACHE	L					
INDICE	VALIDO	DIRTY	LRU	TAG	DADO	
0	1	0	0	101	0	
1	0					
2		1				
3		x				

7 - Read Miss com write back TAG = 001 Índice = 10 Segundo clock

Figura 22 - final da simulação

CLOCK 00						
ENTRADA WRITE 0 TAG 001 INDICE 2 DADO x						
WELLE	U IAG U	JI IND.	ICE .	s DAI		
SAIDA						
HIT 1 WRITEBACK 0						
	S CACHE)	
	_					
RAM						
WREN 0	DADO-II	I O ADI	DRES!	5 6 1	DADO-RAM 2	
CACHE	0					
INDICE	VALIDO	DIRTY	LRU	TAG	DADO	
0	1			100	•	
1	1					
2		1				
3		x				
CACHE	1					
INDICE	VALIDO	DIRTY	LRU	TAG	DADO	
0	1	0	0	101	0	
1	0	0				
2	1	0				
3	0			xxx		

Tabela 01 - Pinagem da placa

Entradas				
SW 0 a 2	Dado			
SW 3 a 4	Índice			
SW 5 a 7	Tag			
SW 8	Read ou Write			
SW 17	Clock			
Saídas				
LEDG 0	Hit ou Miss			
LEDG 1	Write back			
LEDG 2	LRU da cache 0 do índice fornecido			
LEDG 3	LRU da cache 1 do índice fornecido			
LEDG 4	Válido da cache 0 do índice fornecido			
LEDG 5	Válido da cache 1 do índice fornecido			
LEDG 6	Dirty da cache 0 do índice fornecido			
LEDG 7	Dirty da cache 1 do índice fornecido			
HEX 0	Dado de saída da cache			
HEX 2	Tag acessada			