1. Optimization Folder - static figures

These are static figures.

¹Painting of Sir William Rowan Hamilton, from https://commons.wikimedia.org/wiki/File:William_Rowan_Hamilton_painting.jpg. See page for author [Public domain], via Wikimedia Commons, mid 19th century.

²The triangle inequality: the sum of the lengths of two sides of a triangle exceeds the length of the third side. from https://commons.wikimedia.org/wiki/File:TriangleInequality.svg. WhiteTimberwolf [CC BY-SA 3.0]., 2013.

³Euler diagram for P, NP, NP-complete, and NP-hard set of problems. Under the assumption that $P \neq NP$, the existence of problems within NP but outside both P and NP-complete was established by Ladner. from https://commons.wikimedia.org/wiki/File:TriangleInequality.svg. Behnam Esfahbod [CC BY-SA 3.0]., 2007.

⁴Network flow example, from . Robert Hildebrand [CC BY-SA 4.0], 2023.

© See page for author [Public domain], via Wikimedia Commons¹

Figure 1.1: Painting of Sir William Rowan Hamilton

Figure 1.2: The triangle inequality: the sum of the lengths of two sides of a triangle exceeds the length of the third side.

© Behnam Esfahbod [CC BY-SA 3.0].³

Figure 1.3: Euler diagram for P, NP, NP-complete, and NP-hard set of problems. Under the assumption that $P\neq NP$, the existence of problems within NP but outside both P and NP-complete was established by Ladner.

© Robert Hildebrand [CC BY-SA 4.0]⁴ **Figure 1.4:** *Network flow example*

2. Optimization folder - source figures

2.1 Source Figures - Optimization Folder

These are figures with source code. .

¹Convexity Definition, from https://github.com/open-optimization/open-optimization-or-book/blob/master/Intro-Math-Programming/baseText/optimization/figures/figures-source/tikz/convexity-definition.tex. Robert Hildebrand CC BY-SA 4.0., 2020.

© Robert Hildebrand CC BY-SA 4.0.¹ **Figure 2.1:** *Convexity Definition*

3. Figures from