

STATISTICS WITH R

AULA 6 Árvores de decisão

ÁRVORES DE DECISÃO

+ + .

· · • •

-Aprendizagem supervisionada

As técnicas aprendizagem de máquina envolvem diversas finalidades, podendo ser supervisionadas ou não supervisionadas.

-Aprendizagem supervisionada

As técnicas aprendizagem de máquina envolvem diversas finalidades, podendo ser supervisionadas ou não supervisionadas.

Árvores de Decisão

Base de Crédito

História do crédito	Dívida	Garantias	Renda anual	Risco
Ruim	Alta	Nenhuma	< 15.000	Alto
Desconhecida	Alta	Nenhuma	>= 15.000 a <= 35.000	Alto
Desconhecida	Baixa	Nenhuma	>= 15.000 a <= 35.000	Moderado
Desconhecida	Baixa	Nenhuma	> 35.000	Alto
Desconhecida	Baixa	Nenhuma	> 35.000	Baixo
Desconhecida	Baixa	Adequada	> 35.000	Baixo
Ruim	Baixa	Nenhuma	< 15.000	Alto
Ruim	Baixa	Adequada	> 35.000	Moderado
Boa	Baixa	Nenhuma	> 35.000	Baixo
Boa	Alta	Adequada	> 35.000	Baixo
Boa	Alta	Nenhuma	< 15.000	Alto
Boa	Alta	Nenhuma	>= 15.000 a <= 35.000	Moderado

Anatomia da Árvore

FIVD WBA

Mesmo Conceito

. .

Mesmo Conceito, diferentes representações

Quais atributos escolher?

Quais variáveis vão ser usadas em X ordem? E qual vai ser a raiz?

Precisamos da variável que vai *separar* a base de dados o máximo possível.

Quais atributos escolher?

Quais atributos escolher?

E1 High entropy After Splitting E2 E2 Lower entropy E2 Set 2 Set 1

Entropia

A *quantidade esperada de informação* quando observando uma *c*

$$Entropy(S) = \sum_{i=1}^{S} -p_i \log_2 p_i$$

Se X tem 8 possíveis resultados igualmente prováveis então: $H(X) = -\sum_{1/8} \log_2 1/8 = 3$ bits

Entropia

Quanto menos uniforme e mais as probabilidades tendem a o ou 1, **menor** é a entropia

Distribuição: -uniforme

Entropia: -menor

Nó: +puro

Derivada da *teoria da informação* de Claude E. Shannon em 1932

"A Mathematical Theory of Communication"

Esse vai ser nosso critério de avaliação

Ganho da Informação

Ganho de informação - Gain(S,A):

- redução esperada da entropia (da incerteza) após a divisão

S = Base antes da divisão / A = Base após a divisão

Ganho(S,A) = Informação antes da divisão - após a divisão

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

· Ganho da Informação

Ganho de informação - Gain(S,A):

- redução esperada da entropia (da incerteza) após a divisão

S = Base antes da divisão / A = Base após a divisão

Ganho(S,A) = Informação antes da divisão - após a divisão

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

· Ganho da Informação

$$Entropy(S) = \sum_{i=1}^{S} -p_i \log_2 p_i$$

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Cálculo da entropia

Risco

Alto

Alto

Moderado

Alto

Baixo

Baixo

Alto

Moderado

Baixo

Baixo

Alto

Moderado

Baixo

Alto

$$Entropy(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Moderado = 3/14

Baixo = 5/14

Alto = 6/14

$$E(s) = -6/14 * log(6/14; 2) - 3/14 *$$

log(3/14; 2) - 5/14 * log(5/14; 2) = 1,53

Cálculo da entropia

·Ganho da Informação

História do crédito	Risco	
Ruim	Alto	
Desconhecida	Alto	
Desconhecida	Moderado	
Desconhecida	Alto	
Desconhecida	Baixo	
Desconhecida	Baixo	
Ruim	Alto	
Ruim	Moderado	
Воа	Baixo	
Boa	Baixo	
Boa	Alto	
Boa	Moderado	
Воа	Baixo	
Ruim	Alto	

$$Gain(S,A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_{v)}$$

. . .

Quais atributos escolher

História de crédito: 0,26 Dívida: 0,06 Garantias: 0,20 Renda: 0,66

História do crédito	Dívida	Garantias	Renda anual	Risco
Ruim	Alta	Nenhuma	< 15.000	Alto
Desconhecida	Alta	Nenhuma	>= 15.000 a <= 35.000	Alto
Desconhecida	Baixa	Nenhuma	>= 15.000 a <= 35.000	Moderado
Desconhecida	Baixa	Nenhuma	> 35.000	Alto
Desconhecida	Baixa	Nenhuma	> 35.000	Baixo
Desconhecida	Baixa	Adequada	> 35.000	Baixo
Ruim	Baixa	Nenhuma	< 15.000	Alto
Ruim	Baixa	Adequada	> 35.000	Moderado
Boa	Baixa	Nenhuma	> 35.000	Baixo
Boa	Alta	Adequada	> 35.000	Baixo
Boa	Alta	Nenhuma	< 15.000	Alto
Boa	Alta	Nenhuma	>= 15.000 a <= 35.000	Moderado

Outro métodos

- Impureza de Gini

$$I_G(n) = 1 - \sum_{i=1}^{J} (p_i)^2$$
 $\chi_c^2 = \sum \frac{(O_i - E_i)^2}{E_i}$

- Teste qui-quadrado

$$\chi_c^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

FIMP MBA

Comandos no R

- Você vai precisar dos pacotes:
 - Rpart
 - Rpart.plot
 - Caret


```
library(rpart)
library(rpart.plot)

mod1 <- rpart(formula, data = data)

rpart.plot(mod1)</pre>
```

-I/\P MBA

Avaliando o modelo no R

```
library(caret)
#probabilidades
predict(mod1, treino, type = "prob")
#classes
predict(mod1, treino, type = "class")
#medindo
treino$y <- predict(mod1, treino, type = "class")
teste$y <- predict(mod1, teste, type = "class")
confusionMatrix(treino$y, treino$target)
confusionMatrix(teste$y, teste$target)
```


O que você achou da aula de hoje?

Pelo aplicativo da FIAP

(Entrar no FIAPP, e no menu clicar em Experience Survey)

OBRIGADO

