COMPUTATION OF $QCoh(B\mathbb{Z}_p)$

I want to describe how to compute QCoh(B \mathbb{Z}_p) over \mathbb{F}_p , where \mathbb{Z}_p is the inverse limit of \mathbb{Z}/p^n in the category of affine schemes, and \mathbb{Z}/p^n is the affine scheme representing the Zariski sheafification of the constant presheaf \mathbb{Z}/p^n . Concretely, \mathbb{Z}/p^n is Spec Fun(\mathbb{Z}/p^n , \mathbb{F}_p) and \mathbb{Z}_p is Spec Cont(\mathbb{Z}_p , \mathbb{F}_p)—with group scheme structure coming from group structure on the profinite set \mathbb{Z}_p .

By examination (or Lurie-Barr-Beck), QCoh(B \mathbb{Z}_p) is the category of comodules over the coalgebra Cont(\mathbb{Z}_p , \mathbb{F}_p). We find this coalgebra/comonad on the dual side as follows. The Fourier-Cartier dual (for category number 0) of \mathbb{Z}_p is \mathbb{G}_m^{\wedge} . Thus we should compare by general theory (because we are studying quasi-coherent sheaves) QCoh(B \mathbb{Z}_p) with QCoh(\mathbb{G}_m^{\wedge}), i.e. the quasicoherent sheaves on the formal scheme of \mathbb{G}_m completed at 1. We will first think of this as subcategory of QCoh(\mathbb{G}_m) supported at 1 and denote it as Γ_* QCoh(\mathbb{G}_m)— these categories are abstractly the same by Greenlees-May duality.

The composition

$$\Gamma_* QCoh(\mathbb{G}_m) \to QCoh(\mathbb{G}_m) \xrightarrow{\pi_*} QCoh(*)$$

where the first functor is inclusion of torsion subcategory and * represents the final object of affine schemes over \mathbb{F}_p , namely Spec \mathbb{F}_p , is left adjoint to $\Gamma_*\pi^{\times}$ —where π^{\times} denotes the right adjoint to π_* . General theory tells us that

$$\Gamma_*\pi^{\times}(\underline{\ }) \cong \Gamma_*\pi^!(\underline{\ }) \cong \pi^*(\underline{\ }) \otimes \Gamma_*\omega_{\mathbb{G}_m} \cong \pi^*(\underline{\ }) \otimes E$$

where E is the injective hull of the residue field of \mathbb{G}_m at 1. Hence $\Gamma_*\pi^\times(\mathbb{F}_p)$ is discrete, and we can compute it as the subspace of

$$\text{Hom}(\mathcal{O}(\mathbb{G}_m), \mathbb{F}_p)$$

on which the function t-1 acts nilpotently (where t is the pullback of the canonical function on \mathbb{A}^1 to \mathbb{G}_m). In other words,

$$\Gamma_* \pi^{\times}(\mathbb{F}_p) \cong \operatorname{colim}_n O(\mu_{p^n})^{\vee} \cong \operatorname{colim}_n O(\mathbb{Z}/p^n) \cong \operatorname{Cont}(\mathbb{Z}_p)$$

with comonad structure given by group structure on \mathbb{Z}_p by examination.

Now as $\Gamma_*\pi_*$ is comonadic (it's a composition of two comonadic functors), we have the equivalence

$$QCoh(B\mathbb{Z}_p) \cong \Gamma_*QCoh(\mathbb{G}_m)$$

(where tensor product on left corresponds to convolution on right—we omit this proof but it's an easy check). Hence $B\mathbb{Z}_p$ is a perfect stack over \mathbb{F}_p and the structure sheaf generates. Therefore

$$QCoh(B\mathbb{Z}_p) \cong Mod H^*(S^1, \mathbb{F}_p)$$

where on the last step we refer to p-adic homotopy theory (as cohomology over \mathbb{F}_p factors through profinite completion).