Chapitre 8

Fonction exponentielle

I. Définition et propriétés de $x \mapsto e^x$

1) <u>Définition</u>

Pour tout réel a de $]-\infty;+\infty[$, il existe un unique réel b de $]0;+\infty[$ tel que $\ln(b)=a$.

Cette propriété permet de définir une nouvelle fonction dite « réciproque » de la fonction logarithme népérien.

Définition:

La fonction **exponentielle**, notée **exp**, est définie sur l'ensemble des réels.

On admet que cette fonction **exp** est continue.

Pour tout x de \mathbb{R} , on associe le réel y de $]0;+\infty[$ tel que :

$$y = \exp(x) \iff x = \ln(y)$$

Notations:

On rappelle que le nombre e est tel que $\ln e = 1$.

Pour tout entier relatif m, on a $\ln(e^m) = m$, ce qui signifie $e^m = \exp(m)$; on convient d'étendre cette écriture à tout réel x.

Ainsi, on écrit $\exp(x) = e^x$ « **exponentielle** de x est égale à **e** exposant x ».

2) Propriétés

<u>Propriétés :</u>

• Pour tout réel x et pour tout réel y strictement positif :

$$y = e^x \Leftrightarrow \ln(y) = x$$
 et $e^x \leqslant y \Leftrightarrow x \leqslant \ln(y)$

Par conséquent, $e^x = e^y \Leftrightarrow x = y$

- Pour tout réel x, $e^x > 0$, c'est-à-dire « l'exponentielle est toujours strictement positive ».
- Pour tout réel x, $\ln(e^x) = x$.
- Pour tout réel x strictement positif, $e^{\ln x} = x$.

Exemples:

- $e^x = 1 \Leftrightarrow x = \ln(1) \Leftrightarrow x = 0$
- $\ln(e^{-5}) = -5$ et $e^{\ln\sqrt{2}} = \sqrt{2}$
- $e^x = 1.3 \Leftrightarrow x = \ln(1.3)$
- $e^x = -3$ n'a pas de solution
- Pour résoudre l'équation $e^{3x+1} = e^{2x-3}$, on résout 3x+1=2x-3 soit x=-4.

Représentation graphique 3)

Dans un repère orthonormal, les courbes représentant les fonctions ln et exp sont symétriques par

rapport à la droite Δ d'équation y=x.

Règles de calcul 4)

Propriétés:

Pour tous les réels a et b, et tout entier relatif n:

$$e^{a+b}=e^a\times e^b$$

$$e^{-a} = \frac{1}{e^a}$$

$$e^{a+b} = e^a \times e^b$$
 ; $e^{-a} = \frac{1}{e^a}$; $e^{a-b} = \frac{e^a}{e^b}$; $e^{na} = (e^a)^n$

$$e^{na} = (e^a)^n$$

Démonstration:

D'une part $\ln(e^{a+b})=a+b$. D'autre part $\ln(e^a\times e^b)=\ln(e^a)+\ln(e^b)=a+b$.

Donc $\ln(e^{a+b}) = \ln(e^a \times e^b)$. Et par conséquent, $e^{a+b} = e^a \times e^b$.

Les autres règles de calcul se déduisent facilement de la première règle.

Remarque:

Pour tout réel x :

$$e^{x} \times e^{-x} = 1$$
 ; $e^{2x} = (e^{x})^{2}$; $e^{3x} = (e^{x})^{3}$

$$e^{2x} = (e^x)^2$$

$$e^{3x} = (e^x)^3$$

Exemples:
•
$$e^{3+\ln 2} = e^3 \times e^{\ln 2} = e^3 \times 2 = 2e^3$$

•
$$e^{1-x} = e \times e^{1} = e \times 2 = e^{1}$$

• $e^{1-x} = e \times \frac{1}{e^x} = \frac{e}{e^x}$
• $e^{5+2x} = e^5 \times e^{2x} = e^5 (e^x)^2$
• $e^{3a-5} = \frac{e^{3a}}{e^5}$

•
$$e^{5+2x} = e^5 \times e^{2x} = e^5 (e^x)^2$$

•
$$e^{3a-5} = \frac{e^{3a}}{e^5}$$

II. Fonction exp et limites

1) <u>Dérivée et sens de variation</u>

Théorème:

La fonction exponentielle est dérivable sur R et sa dérivée est elle-même :

$$\exp'(x) = \exp(x)$$

En conséquence, la fonction exp est strictement croissante sur IR.

Démonstration :

On admet que la fonction exp est dérivable sur IR.

La composée $f = \ln \circ \exp$ est donc dérivable sur \mathbb{R} .

Or
$$f(x) = (\ln e^x) = \ln (e^x) = x$$
 pour $x \in \mathbb{R}$. Donc $f'(x) = 1$.

Mais par dérivée d'une fonction composée $f'(x) = \ln'(\exp(x)) \times \exp'(x) = \frac{1}{\exp(x)} \times \exp'(x)$.

Ainsi
$$1 = \frac{1}{\exp(x)} \times \exp'(x) \iff \exp'(x) = \exp(x)$$

Remarques:

Pour tout réels a et b:

•
$$e^a < e^b \Leftrightarrow a < b$$

•
$$e^a \le e^b \Leftrightarrow a \le b$$

Exemple:

Résolvons dans \mathbb{R} l'inéquation $e^{2x+1} < e^{3x-3}$.

$$e^{2x+1} < e^{3x-3}$$
 équivaut à $2x+1 < 3x-3$ soit $x > 4$.

L'ensemble S des solutions de l'inéquation est donc : $S =]4; +\infty[$

2) Limites

Théorèmes:

$$\lim_{x \to +\infty} e^x = +\infty \qquad \text{et} \qquad \lim_{x \to -\infty} e^x = 0$$

L'axe des abscisses est asymptote horizontale à la courbe \mathcal{C}_{exp} de la fonction exponentielle en $-\infty$.

x	$-\infty$		0		1		+∞
f'(x)		+		+		+	
f(x)	0	1	1	1	e	1	+∞

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty \; ; \; \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty \; ; \; \lim_{x \to -\infty} x \, e^x = 0$$

A l'infini, l'exponentielle de *x* l'emporte sur toute puissance de *x*.

Démonstrations :

• Soit $h(x)=e^x-x$ sur \mathbb{R} , de dérivée $h'(x)=e^x-1$; h(x) est minimum en 0 et h(0)=1, positif.

Donc, pour tout réel x, $e^x - x > 0 \Leftrightarrow e^x > x$.

Or, $\lim_{x \to +\infty} x = +\infty$, donc, **par comparaison**, on obtient :

$$\lim_{x\to+\infty} e^x = +\infty$$

x		0		$+\infty$
h'(x)	_	0	+	
h(x)		1	/	•

- Si $x \mapsto -\infty$, alors $-x \mapsto +\infty$. En posant X = -x, alors $\lim_{x \to +\infty} e^x = \lim_{x \to +\infty} e^{-x} = \lim_{x \to +\infty} \frac{1}{e^x}$. Or si $\lim_{x \to +\infty} e^x = +\infty$; donc, par inverse, $\lim_{x \to +\infty} \frac{1}{e^x} = 0$. Ainsi, $\lim_{x \to -\infty} e^x = 0$.
- Comme $\frac{e^x}{x} = \frac{e^x}{\ln(e^x)} = \frac{X}{\ln(X)}$ avec $X = e^x$, on utilise $\lim_{X \to +\infty} \frac{\ln(X)}{X} = 0$.

Si $x \mapsto +\infty$, alors $e^x \mapsto +\infty$, donc, **par composée**, $\lim_{x \to +\infty} \frac{x}{e^x} = 0$.

Comme $e^x > 0$ et x > 0 lorsque $x \mapsto +\infty$, par inverse, on obtient $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$.

• Si $x \mapsto -\infty$ et en posant X = -x, on obtient $\lim_{x \to -\infty} x e^x = 0$

Remarques:

• $\frac{e^x}{x}$ est le coefficient directeur de la droite (OM), lorsque M est le point d'abscisse x de la courbe représentant exp.

Or $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$. Graphiquement, cela signifie donc que la droite (OM) « tend vers » l'axe des ordonnées lorsque x tend vers $+\infty$.

En effet, on sait que (exp)'=exp, donc le nombre dérivé de la fonction exp en exp0 est égal à exp0 = 1.

D'où $\frac{e^x - e^0}{x - 0}$ tend vers 1 quand x tend vers 0.

III. Exponentielle d'une fonction : e'

On considère une fonction u définie et dérivable sur un intervalle I. On désire étudier la composée $\exp \circ u$, notée e^u .

1) <u>Sens de variation de</u> e^u

Théorème:

Les fonctions u et e^u ont même sens de variation sur l'intervalle I.

Démonstration :

Comme la fonction exponentielle est strictement croissante sur IR, par composée :

- si la fonction u est croissante sur I, alors la fonction e^u est croissante sur I.
- si la fonction u est décroissante sur I, alors la fonction e^u est décroissante sur I.

Exemple:

Soit la fonction u connue par sa courbe \mathcal{C}_u , définie sur $\mathbb{R}\setminus\{2\}$. Alors e^u est aussi définie sur $\mathbb{R}\setminus\{2\}$ et a même sens de variation que u.

Comme $u(5) = \ln 8$ alors $e^{u(5)} = e^{\ln 8} = 8$

2) Limites de e

Théorème:

 α désignant un réel ou $+\infty$ ou $-\infty$, d'après le théorème sur la limite d'une fonction composée :

• si la limite de u en α est $+\infty$, alors la limite de e^u en α est $+\infty$;

si
$$\lim_{x \to \alpha} u(x) = +\infty$$
, alors $\lim_{x \to \alpha} e^{u(x)} = +\infty$

• si la limite de u en α est $-\infty$, alors la limite de e^u en α est 0;

si
$$\lim_{x \to \alpha} u(x) = -\infty$$
, alors $\lim_{x \to \alpha} e^{u(x)} = 0$

• si la limite de u en α est un nombre l, alors la limite de e^u en α est e^l ;

si
$$\lim_{x \to a} u(x) = l$$
, alors $\lim_{x \to a} e^{u(x)} = e^{l}$

Exemple:

On reprend la fonction u représentée ci-dessus.

- $\lim_{x \to +\infty} u(x) = 1 \quad \text{donc} \quad \lim_{x \to +\infty} e^{u(x)} = e^1 = e$
- $\lim_{x \to -\infty} u(x) = 0 \text{ donc } \lim_{x \to -\infty} e^{u(x)} = e^{0} = 1$
- $\lim_{x \to 2} u(x) = +\infty$ donc $\lim_{x \to 2} e^{u(x)} = +\infty$
- $\lim_{x \to 2^+} u(x) = + \infty$ donc $\lim_{x \to 2^+} e^{u(x)} = 0$

Dérivée de e^u 3)

Théorème:

Soit *u* une fonction définie et dérivable sur un intervalle *I*.

La fonction e^u est dérivable sur I et sa dérivée est $(e^u)'=e^u\times u'$.

Démonstration:

La fonction u étant dérivable sur I, on peut appliquer le théorème de dérivation d'une fonction composée à la fonction composée $\exp \circ u$.

Ainsi, pour tout réel x de I, on obtient $(\exp \circ u)'(x) = \exp'(u(x)) \times u'(x) = e^{u(x)} \times u'(x)$.

4) Application au calcul de primitives

Théorème:

- Une primitive sur R de la fonction exp est la fonction exp.
- Si u est une fonction dérivable sur un intervalle I, une primitive sur I de la fonction $e^u \times u'$ est la fonction e^{u} .

Exemples:

- Si $f(x) = e^x 3x$, alors $f'(x) = e^x 3$.
- Si $f(x) = e^{-2x+1} + 2$, alors $f'(x) = -2e^{-2x+1}$. Si $f(x) = e^{x^2+1}$, alors $f'(x) = 2xe^{x^2+1}$
- Posons $f(x)=4e^x-x$; une primitive de f est $x \mapsto 4e^x-\frac{x^2}{2}$.
- Posons $f(x)=4e^{4x-1}$; une primitive de f est $x \mapsto e^{4x-1}$.

IV. Exponentielle de base $a: x \mapsto a^x$

Définition et sens de variation

Notation a^b

a étant un réel strictement positif et b un réel quelconque :

$$e^{b \times \ln a}$$
 existe et $e^{b \times \ln a} = (e^{\ln a})^b = a^b$.

Ainsi $a^b = e^{b \times \ln a}$, avec a > 0.

Les règles de calcul sur les puissances s'appliquent.

Propriétés:

Pour tous réels a > 0 et a' > 0, et tous réels b et b':

$$1^{b} = 1 ; (aa')^{b} = a^{b} \times a'^{b} ; a^{b} \times a^{b'} = a^{b+b'}$$

$$\frac{a^{b}}{a'^{b}} = \left(\frac{a}{a'}\right)^{b} ; \frac{a^{b}}{a^{b'}} = a^{b-b'} ; (a^{b})^{b'} = a^{bb'}$$

Remarque:

 $\ln a^b = b \ln a$

Cette formule, connue lorsque b est un entier, est également vraie lorsque b est un réel quelconque. En effet, $\ln a^b = \ln e^{b \ln a} = b \ln a$.

6

Exemples:
•
$$5^{\sqrt{2}} \times 5^{1-\sqrt{2}} = 5^{\sqrt{2}+(1-\sqrt{2})} = 5^{1} = 5$$

•
$$\frac{6^{0.6}}{2^{0.6}} = \left(\frac{6}{2}\right)^{0.6} = 3^{0.6}$$

•
$$\frac{6^{0.6}}{2^{0.6}} = \left(\frac{6}{2}\right)^{0.6} = 3^{0.6}$$

• $\left(7^{\frac{4}{5}}\right)^{1.25} = 7^{\frac{4}{5} \times 1.25} = 7^1 = 7$

Fonction a^x

Définition:

Soit *a* un réel strictement positif et différent de 1. La fonction $x \mapsto a^x$ est définie par $a^x = e^{x \ln a}$.

Conséquence:

$$\overline{\text{Si } f(x)} = a^x = e^{x \ln a}$$
, alors $f'(x) = (\ln a) \times e^{x \ln a} = (\ln a) \times a^x$.

Or, pour tout réel x, on a $a^x > 0$; donc la dérivée est du signe de $\ln a$.

On en déduit facilement les variations de a^x .

Théorème:

Si a > 1, alors $\ln a > 0$:

la fonction $x \mapsto a^x$ est strictement croissante sur \mathbb{R} .

$$\lim_{x \to +\infty} a^x = +\infty \text{ et } \lim_{x \to -\infty} a^x = 0$$

• Si 0 < a < 1, alors $\ln a < 0$:

la fonction $x \mapsto a^x$ est strictement décroissante sur \mathbb{R} .

$$\lim_{x \to +\infty} a^x = 0 \text{ et } \lim_{x \to -\infty} a^x = +\infty$$

7

Exemples:

- Si $f(x)=3^x$, alors $f'(x)=3^x \ln 3$.
- La fonction $x \mapsto 3^x$ est strictement croissante sur \mathbb{R} (car 3>1).
- La fonction $x \mapsto \left(\frac{1}{2}\right)^x$ est strictement décroissante sur \mathbb{R} (car $\frac{1}{2} < 1$).
- $\lim_{x \to -\infty} \left(\frac{3}{2} \right)^x = 0 \text{ et } \lim_{x \to +\infty} \left(\frac{3}{2} \right)^x = +\infty \text{ (car } \frac{3}{2} > 1 \text{).}$ $\lim_{x \to -\infty} \left(\frac{3}{5} \right)^x = +\infty \text{ et } \lim_{x \to +\infty} \left(\frac{3}{5} \right)^x = 0 \text{ (car } \frac{3}{5} < 1 \text{).}$

Lien avec les suites géométriques 2)

Caractérisation:

Une suite est géométrique, de raison a, si et seulement si, la croissance relative entre deux termes consécutifs est constante et égale à a-1.

Remarques:

$$u_{n+1} = a \times u_n \Leftrightarrow \frac{u_{n+1} - u_n}{u_n} = \frac{a \times u_n - u_n}{u_n} = a - 1$$
.

Comme
$$u_n = u_0 \times a^n$$
, si $a > 0$ et $u_0 > 0$, on peut écrire : $u_n = e^{\ln u_0} \times e^{n \ln a} = e^{n \ln a + \ln u_0} = e^{An + B}$, avec $A = \ln a$ et $B = \ln u_0$.

Théorème et définition :

Pour tout réel a > 0 et $n \in \mathbb{N}^*$.

L'équation $x^n = a$, admet une unique solution **positive** $x = a^{\frac{1}{n}} = \sqrt[n]{a}$ appelée **racine** n-ième de a.

Démonstration:

On considère un réel x > 0 tel que $x^n = a$.

On a donc:
$$(x^n)^{\frac{1}{n}} = a^{\frac{1}{n}}$$
, soit $x = a^{\frac{1}{n}}$.

Ainsi $a^{\frac{1}{n}}$ est l'unique réel strictement positif dont la puissance *n*-ième est égale à *a*.

Exemple:

 $(16)^{\frac{1}{4}}$ est le nombre strictement positif dont la puissance quatrième est égale à 16.

Donc:
$$(16)^{\frac{1}{4}} = \sqrt[4]{16} = 2$$
 (car $2^4 = 16$)

Définition:

Soit $n \in \mathbb{N}^*$.

La moyenne géométrique de n nombres positifs x_1 , x_2 ,..., x_n est le nombre :

$$(x_1 \times x_2 \times ... \times x_n)^{\frac{1}{n}}$$

Exemple:

La moyenne géométrique des nombres 4, 2 et 1 est égale à 2 car :

$$(4\times2\times1)^{\frac{1}{3}}=8^{\frac{1}{3}}=2$$