CES-35 – Redes de Computadores e Internet

Laboratório 4: Simulando Rede com Packet Tracer

Nomes: Daniel Araujo Cavassani | (COMP 25)

Data: 23/10/2024

PARTE 1

Ping do PC1 (192.168.0.10) no PC3 (172.16.0.10)

PARTE 2

Ping do Laptop0 (192.168.1.100) no PC1 (172.16.0.3)

PARTE 3

Ping PC1 (172.16.30.2) no PC2 (172.16.10.2)

Ping PC1 (172.16.30.2) no PC3 (172.16.20.2)

Ping PC2 (172.16.10.2) no PC1 (172.16.30.2)

Ping PC2 (172.16.10.2) no PC3 (172.16.20.2)

Ping PC3 (172.16.20.2) no PC2 (172.16.10.2)

Ping PC3 (172.16.20.2) no PC1 (172.16.30.2)

PARTE 4

Ao simularmos uma falha entre RT1 e RT3, os roteadores trocam pacotes entre si para descobrir qual a melhor rota disponível para atingir a rede que se encontra o PC3, que não mais seria a rota direta de RT1 e RT3. Assim, ao descobrir que a nova rota é RT1 para RT2, e de RT2 para RT3, os pacotes passam a ser entregues ao PC3 utilizando-se desta rota alternativa que, no momento, seria a melhor. Ao voltar a conexão entre RT1 e RT3, o algoritmo utilizado para definir as melhores rotas ainda está atuando, e ele encontra a nova melhor rota (que seria a ideal desde antes de ter a falha), que seria uma diretamente de RT1 para RT3. Assim, os pacotes passam a viajar nesta rota, que volta a ser a ideal.

A conclusão que tiramos é que o uso de OSPF faz a s conexões entre roteadores ser mais estável e tolerante a falhas, devido ao cálculo dinâmico que é realizado, de tempos em tempos, para definir-se uma melhor rota até um determinado destino (rede LAN de algum dos roteadores), desde que ainda haja tal rota disponível. Embora ele custe processamento entre os roteadores (executa o algoritmo de Dijkstra para encontrar sempre o "melhor" caminho), ele pode ser muito útil para evitar perda de comunicação desnecessária entre computadores de duas LANs.