Introducción

Ricardo Pérez López

IES Doñana, curso 2019/2020

Índice general

1.	Conceptos básicos 1.1. Informática 1.2. Ordenador 1.3. Algoritmo 1.4. Programa 1.5. Lenguaje de programación	3 6 8
2.	Evolución histórica 2.1. Culturas de la programación	
3.	Resolución de problemas mediante programación 3.1. Análisis del problema	8 8 8 8
4.	Paradigmas de programación 4.1. Imperativo	
5.	Lenguajes de programación5.1. Definición5.2. Evolución histórica5.3. Clasificación	
6.	Traductores 6.1. Compiladores	9 9
7.	Entornos integrados de desarrollo 7.1. Terminal	9

1. Conceptos básicos

Pregunta 1

What number is the letter A in the English alphabet?

(Para ver la respuesta pulsa aquí: 1)

1.1. Informática

• Definición:

Informática:

La ciencia que estudia los sistemas de tratamiento automático de la información, también llamados **sistemas informáticos**.

- Estos sistemas están formados por:
 - elementos físicos (hardware)
 - elementos lógicos (**software**) y
 - elementos humanos (profesionales y usuarios).
- El hardware, a su vez, está formado por componentes:
 - Ordenadores
 - Soportes de almacenamiento
 - Redes de comunicaciones
 - ..

1.1.1. Procesamiento automático

El procesamiento automático de la información siempre tiene el mismo esquema de funcionamiento:

• El **objetivo** del procesamiento automático de la información es **convertir los** *datos de entrada* en *datos de salida* mediante un *hardware* que ejecuta las instrucciones definidas por un *software* (programas).

- Los programas gobiernan el funcionamiento del hardware, indicándole qué tiene que hacer y cómo.
- La **Programación** es la ciencia y el arte de diseñar dichos programas.

1.2. Ordenador

1.2.1. Definición

Ordenador:

Un ordenador es una máquina que procesa información automáticamente de acuerdo con un programa almacenado.

- 1. Es una máquina.
- 2. Su función es procesar información.
- 3. El procesamiento se realiza de forma automática.
- 4. El procesamiento se realiza siguiendo un programa (software).
- 5. Este programa está *almacenado* en una memoria interna del mismo ordenador (arquitectura de **Von Neumann**).

1.2.2. Funcionamiento básico

1.2.2.1. Elementos funcionales

- Un ordenador consta de tres componentes principales:
 - 1. Unidad central de proceso (CPU) o procesador
 - Unidad aritmético-lógica (ALU)
 - Unidad de control (UC)

2. Memoria

- Memoria principal o central
 - * Memoria de acceso aleatorio (RAM)
 - * Memoria de sólo lectura (ROM)
- Memoria secundaria o externa

3. Dispositivos de E/S

- Dispositivos de entrada
- Dispositivos de salida

1.2.2.2. Unidad central de proceso (CPU) o procesador

• Unidad aritmético-lógica (ALU):

Realiza los cálculos y el procesamiento numérico y lógico.

Unidad de control (UC):

Ejecuta de las instrucciones enviando las señales a las distintas unidades funcionales involucradas.

1.2.2.3. Memoria

• Memoria principal o central:

Almacena los datos y los programas que los manipulan.

Ambos (datos y programas) deben estar en la memoria principal para que la CPU pueda acceder a ellos.

Dos tipos:

Memoria de acceso aleatorio (RAM):

Su contenido se borra al apagar el ordenador.

- Memoria de sólo lectura (ROM):

Información permanente (ni se borra ni se puede cambiar).

Contiene la información esencial (datos y software) para que el ordenador pueda arrancar.

• Memoria secundaria o externa:

La información no se pierde al apagar el ordenador.

Más lenta que la memoria principal, pero de mucha más capacidad.

1.2.2.4. Dispositivos de E/S

• Dispositivos de entrada:

Introducen datos en el ordenador (ejemplos: teclado, ratón, escáner...)

• Dispositivos de salida:

Vuelcan datos fuera del ordenador (ejemplos: pantalla, impresora...)

• Dispositivos de entrada/salida:

Actúan simultáneamente como dispositivos de entrada y de salida (*ejemplos*: pantalla táctil, adaptador de red...)

- Los dispositivos que acceden a soportes de almacenamiento masivo (las memorias secundarias) también se pueden considerar dispositivos de E/S:
 - Los soportes de **sólo lectura** se leen con dispositivos de entrada (ejemplo: discos ópticos).

 Los soportes de lectura/escritura operan como dispositivos de entrada/salida (ejemplos: discos duros, pendrives, tarjetas SD...).

Esquema básico de un ordenador

- El programa se carga de la memoria secundaria a la memoria principal.
- Una vez allí, la CPU va **extrayendo** las instrucciones que forman el programa y las va **ejecutando** paso a paso, en un bucle continuo que se denomina **ciclo de instrucción**.
- Durante la ejecución del programa, la CPU recogerá los datos de entrada desde los dispositivos de entrada y los almacenará en la memoria principal, para que las instrucciones puedan operar con ellos.
- Al finalizar el programa, los datos de salida se volcarán hacia los dispositivos de salida.

1.2.2.5. Ciclo de instrucción

- En la **arquitectura Von Neumann**, los programas se almacenan en la memoria principal junto con los datos (por eso también se denomina «arquitectura de **programa almacenado**»).
- Una vez que el programa está cargado en memoria, la CPU repite siempre los mismos pasos:
 - 1. (**Fetch**) Busca la siguiente instrucción en la memoria principal.
 - 2. (**Decode**) Decodifica la instrucción (identifica qué instrucción es y se prepara para su ejecución).
 - (Execute) Ejecuta la instrucción (envía las señales de control necesarias a las distintas unidades funcionales).

Ciclo de instrucción

1.2.2.6. Representación de información

1.2.2.6.1. Codificación interna Sistema binario

1.2.2.6.2. Codificación externa ASCII

Unicode

1.3. Algoritmo

1.3.1. Definición

Algoritmo:

Un algoritmo es un método para resolver un problema.

- Está formado por una secuencia de pasos o **instrucciones** que se deben seguir (o **ejecutar**) para resolver el problema.
- La palabra «algoritmo» proviene de **Mohammed Al-Khowârizmi**, matemático persa que vivió durante el siglo IX y reconocido por definir una serie de reglas paso a paso para sumar, restar, multiplicar y dividir números decimales.
- **Euclides**, el gran matemático griego (del siglo IV a. C.) que inventó un método para encontrar el máximo común divisor de dos números, se considera con Al-Khowârizmi el otro gran padre de la Algorítmica (la ciencia que estudia los algoritmos).
- El estudio de los algoritmos es importante porque la resolución de un problema exige el diseño de un algoritmo que lo resuelva.

Resolución de un problema

1.3.2. Características

- Un algoritmo debe ser:
 - **Preciso**: debe indicar el orden de ejecución de cada paso.
 - Definido: si se sigue un algoritmo dos veces, se debe obtener el mismo resultado cada vez.
 - Finito: debe terminar en algún momento, es decir, debe tener un número finito de pasos.

- 1.3.3. Representación
- 1.3.3.1. Ordinograma
- 1.3.3.2. Pseudocódigo

2.1. Culturas de la programación
2.2. Ingeniería del software
3. Resolución de problemas mediante programación
3.1. Análisis del problema
3.2. Especificación
3.3. Diseño del algoritmo
3.4. Codificación del algoritmo en forma de programa
4. Paradigmas de programación
4.1. Imperativo
4.1.1. Estructurado
4.1.2. Orientado a objetos
4.2. Declarativo
4.2.1. Funcional
4.2.2. Lógico
5. Lenguajes de programación 8
5.1. Definición
5.1.1. Sintaxis
5 1 1 1 Notación FRNF

1.3.4. Cualidades deseables

1.5. Lenguaje de programación

2. Evolución histórica

1.3.5. Computabilidad

1.3.6. Corrección

1.3.7. Complejidad

1.4. Programa

- 5.1.2. Semántica
- 5.2. Evolución histórica
- 5.3. Clasificación
- 5.3.1. Por nivel
- 5.3.2. Por generación
- 5.3.3. Por paradigma

6. Traductores

- 6.1. Compiladores
- 6.2. Intérpretes
- 6.2.1. Interactivos (REPL)
- 6.2.2. Por lotes

7. Entornos integrados de desarrollo

- 7.1. Terminal
- 7.1.1. Zsh
- 7.1.2. Oh My Zsh
- 7.1.3. less
- 7.2. Editores de texto
- 7.2.1. Editores vs. IDE
- 7.2.2. Vim y less
- 7.2.3. Visual Studio Code
- 7.2.3.1. Instalación

7.2.3.2. Configuración

7.2.3.3. Extensiones

Respuestas a las preguntas

Respuesta a la Pregunta 1

The letter A is the first letter in the alphabet!

Ţ •

Bibliografía

Joyanes Aguilar, Luis. 2008. Fundamentos de Programación. Aravaca: McGraw-Hill Interamericana de España.