

Trabajo Práctico 2 Análisis de Datos FiuMark

Segundo Cuatrimestre 2020

Fecha de Entrega: 16/02/2021

Integrantes:

Nombre y Apellido	Padrón
Anarella Nicoletta	94.551
Juan Cruz Opizzi	99.807

Link al repositorio:

Introducción

El objetivo del presente informe es mostrar los resultados obtenidos al aplicar distintas técnicas de Machine Learning, sobre el set de datos provisto por FiuMark.

Tomando como punto de partida, el análisis exploratorio previo y el baseline definido para el set inicial, se aplicaron diferentes algoritmos, tanto de preprocesamiento como de predicción de datos, a fin de mejorar las predicciones.

Se buscó predecir si la persona que fue al cine a ver la película Frozen 2 regresará al mismo para ver su secuela, Frozen 3. Los datos sobre los espectadores fueron proporcionados por FiuMark, y la evaluación final de los modelos se realizó generando predicciones sobre registros para los que desconocemos si el espectador regresaría o no.

Modelos de Machine Learning

Preprocesamientos utilizados

A continuación detallamos las distintas funciones de preprocesamiento desarrolladas. Las mismas se encuentran en el archivo preprocessing.py y son reutilizadas por distintos modelos.

Nombre	Descripción	Función de Python
Dataset inicial	Genera el dataset inicial, basado en lo visto en la primer parte del TP. Es decir, mergea los 2 datasets, agregando el campo 'volvería' y 'cant_acompañantes' ('parientes' + 'amigos'). Elimina 'id_ticket', 'fila' y 'nombre'	preprod_tp1(df_datos, df_predict)
Dataset inicial para test de holdout	Este preprocesamiento hace lo mismo que el anterior descrito pero para un solo data frame, esto se hace como reutilizacion de codigo para aplicarlo tanto al set de entrenamiento como al de holdout	prepod_tp1_un_df(df)
Reemplazo edad (métrica)	Reemplaza los valores nulos de 'edad' por la moda, la mediana o media	replace_nulls_edad(df, metrica)
Encoder	Aplica Binary Encoder a los atributos categóricos, para aquellos modelos que lo necesiten, estos atributos son 'tipo_de_sala', 'genero' y 'nombre_sede'	encodear_atributos_categoricos(df)
Normalización	Normaliza todos los atributos numéricos del dataframe	normalizar_atributos_numericos(df)

Modelos utilizados

Hemos aplicado y testeado diferentes modelos de Machine Learning, cuyos resultados procedemos a detallar.

En el tunning de los mismos, hemos utilizado Random Search, para encontrar las mejores combinaciones de hiper-parámetros. Además, al momento de entrenar (y tras obtener los mejores hiperparametros), aplicamos Stratified K-Fold.

Como aclaración, tanto el árbol de decisión como KNN usan un Grid Search para su búsqueda de hiper parámetros en vez de un Random Search. Esto debido a serde

los modelos más simples, rápidos y tener pocos hiperparametros, aparte del modelo en sí servir más como baseline que otra cosa, es decir si los modelos más complejos son demasiado complejos para el modelo o directamente están prediciendo muy mal.

Las métricas utilizadas para evaluar los modelos fueron:

- AUC-ROC
- Matriz de confusión
- Accuracy
- Precisión
- Recall

Nombre	Preprocesamiento	AUC- ROC	Matriz de confusión	Accuracy	Precisión	Recall	F1 Score
KNN	Dataset inicial Reemplazo edad (media) Encoder Normalización	0.9758	TP:69 FP:0 TN:127 FN:5	0.9751	1.0	1.0	0.9650
Support Vector Classifier (SVC)	Dataset inicial Reemplazo edad (media) Normalización Encoder	0.8901	TP:38 FP:4 TN:123 FN:36	0.8010	0.9048	0.9685	0.6552
Árbol de decisión	Dataset inicial Reemplazo edad (media) Encoder	0.8906	TP:57 FP:12 TN:115 FN:17	0.8557	0.8261	0.9055	0.7972
Random Forest	Dataset inicial Reemplazo edad (media) Encoder	0.8660	TP:45 FP:11 TN:116 FN:29	0.8010	0.8036	0.9134	0.6923
Red neuronal	Dataset inicial Reemplazo edad (media) Normalización Encoder	0.8362	TP:33 FP:11 TN:95 FN:22	0.7950	0.7500	0.8962	0.6667
Bagging	Dataset inicial Reemplazo edad (mediana) Encoder	0.8650	TP:43 FP:11 TN:116 FN:31	0.7910	0.7963	0.9134	0.6719
AdaBoost	Dataset inicial Reemplazo edad (media) Encoder	0.9123	TP:60 FP:11 TN:116 FN:14	0.8756	0.8451	0.9134	0.8276
GradientBoost	Dataset inicial Reemplazo edad (media) Encoder	0.9160	TP:57 FP:9 TN:118 FN:17	0.8706	0.8636	0.9291	0.8143
Voting	Dataset inicial Reemplazo edad (mediana) Encoder	0.8536	TP:57 FP:8 TN:119 FN:17	0.8756	0.8769	0.9370	0.8201

Conclusiones

(CONCLUSIÓN) Finalmente luego de poner las tablas TABLA 1 y TABLA 2, nos piden que lleguemos a una conclusión sobre qué modelo recomendamos y por qué y que lo comparemos con respecto al baseline que anteriormente implementamos.

Recomendamos el modelo de KNN ya que fue el modelo que mejor dio en todas las metricas (sin memorizar datos), esto fue debido a la normalización de los datos y el uso de stratified K fold, que dispararon los resultados del modelo.

Si comparamos el modelo con con el baseline de la primera parte, podemos ver una clara mejoría ya que un score 0.97 (basado en AUC ROC) es mucho mejor 0.82 (basado en Accuracy). De hecho el baseline de la primer parte fue nuestro benchmark para saber si nuestros modelos tenían una buena predicción o no, ya que si un modelo no posee un mejor score que un par de if's anidados entonces hay un problema en el feature engineering, o en el entrenamiento o en el set de hiperparametros, etc.