Lezione di Informatica Teorica Problemi NP-Completi

Appunti da Trascrizione Automatica

30 giugno 2025

Indice

1	Introduzione ai Problemi NP-Completi 1.1 Richiami su Exact 3-SAT	$\frac{2}{2}$
2	Independent Set (IS) 2.1 Membership in NP	2 2 3 4 4
3	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	5 5 6 6
4	Clique 4.1 Membership in NP	6 7 7 8 8
5	$\begin{array}{llllllllllllllllllllllllllllllllllll$	8 9 9 10 10
6	Conclusioni	11

1 Introduzione ai Problemi NP-Completi

Dopo aver definito la nozione di NP-Completezza, in questa lezione esamineremo diversi problemi noti per essere NP-Completi. L'obiettivo è comprendere cosa significhi per un problema essere NP-Hard e NP-Completo, e come dimostrarlo attraverso riduzioni polinomiali.

1.1 Richiami su Exact 3-SAT

Il problema Exact 3-SAT (o 3-SAT Esatto) è una variante di 3-SAT in cui ogni clausola della formula booleana deve contenere esattamente tre letterali. Ieri era stata lasciata la domanda di dimostrarne l'NP-Hardness.

Dimostrazione dell'NP-Hardness di Exact 3-SAT: Si parte da una formula 3-SAT generica, dove le clausole hanno "al più" tre letterali. Dobbiamo trasformarla in una formula equivalente in cui ogni clausola ha "esattamente" tre letterali. La trasformazione procede clausola per clausola:

- Se una clausola ha esattamente tre letterali, la si copia così com'è.
- Se una clausola ha meno di tre letterali (es. uno o due), si prendono a caso uno o più letterali già presenti in quella clausola e li si replicano fino a raggiungere esattamente tre letterali.

Questa trasformazione è polinomiale e mantiene l'equivalenza semantica della formula. Di conseguenza, se 3-SAT è NP-Hard, anche Exact 3-SAT lo è. Per questa ragione, d'ora in avanti, quando si parlerà di 3-SAT ci si potrà riferire indistintamente alla variante con "al più" o "esattamente" tre letterali, a seconda della convenienza per la riduzione.

2 Independent Set (IS)

L'Independent Set è il primo problema NP-Completo che esaminiamo in dettaglio.

Definizione 2.1 (Independent Set). Dato un grafo non orientato G=(V,E), un Independent Set (IS) $S\subseteq V$ è un sottoinsieme dei suoi nodi tale per cui non esiste alcun arco tra nessuna coppia di nodi in S. Formalmente:

$$\forall u, v \in S, (u, v) \notin E$$

Ogni grafo ammette un Independent Set (es. il set vuoto o un singolo nodo). I problemi interessanti riguardano la ricerca di Independent Set "grandi".

Definizione 2.2 (Independent Set (Problema di Decisione)). Il problema di decisione Independent Set è definito come l'insieme delle coppie $\langle G, K \rangle$ tali che G è un grafo non orientato, K è un numero intero, ed esiste un Independent Set in G di taglia (cardinalità) almeno K.

2.1 Membership in NP

Proposizione 2.1. Il problema Independent Set appartiene alla classe NP.

Dimostrazione. Per dimostrare che IS \in NP, dobbiamo mostrare che esiste una Macchina di Turing Non-Deterministica (MTND) che decide un'istanza in tempo polinomiale. Una MTND può risolvere IS come segue:

1. Guess (Non-Deterministic Choice): La MTND "indovina" (o sceglie in modo non-deterministico) un sottoinsieme S' di nodi di V. Questo può essere fatto in tempo polinomiale (ad esempio, per ogni nodo, decide se includerlo o meno in S').

- 2. Check (Deterministic Verification): La MTND verifica deterministicamente due condizioni:
 - La cardinalità di S' è almeno K: $|S'| \ge K$.
 - Non esistono archi tra coppie di nodi in S': Per ogni coppia di nodi $u,v \in S'$ $(u \neq v)$, verifica che $(u,v) \notin E$.

Se entrambe le condizioni sono soddisfatte, la MTND accetta l'istanza. Altrimenti, la rifiuta.

Entrambi i passaggi (guess e check) possono essere eseguiti in tempo polinomiale rispetto alla dimensione dell'input (numero di nodi e archi del grafo). Quindi, Independent Set \in NP.

2.2 Dimostrazione NP-Hardness: $3SAT \leq_{p} IS$

Per dimostrare che Independent Set è NP-Hard, effettuiamo una riduzione polinomiale da 3-SAT a Independent Set.

Teorema 2.1. $3SAT \leq_p IS$. Di conseguenza, Independent Set è NP-Hard.

Dimostrazione. Sia $\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$ un'istanza di 3-SAT, dove ogni C_i è una clausola con esattamente tre letterali (possiamo usare la variante Exact 3-SAT). Vogliamo costruire una coppia $\langle G, K \rangle$ tale che ϕ è soddisfacibile se e solo se G ha un Independent Set di taglia almeno K. Costruzione della Trasformazione (f):

- 1. Nodi (V'): Per ogni letterale in ogni clausola, creiamo un nodo nel grafo G. Se $C_i = (l_{i1} \lor l_{i2} \lor l_{i3})$, creiamo tre nodi distinti v_{i1}, v_{i2}, v_{i3} per questa clausola. Quindi, se ϕ ha m clausole, G avrà 3m nodi.
- 2. Archi (E'): Gli archi sono di due tipi:
 - Archi di Clausola: Per ogni clausola C_i , aggiungiamo un arco tra ogni coppia di nodi corrispondenti ai letterali della stessa clausola. Ad esempio, per $C_i = (l_{i1} \vee l_{i2} \vee l_{i3})$, aggiungiamo gli archi $(v_{i1}, v_{i2}), (v_{i1}, v_{i3}), (v_{i2}, v_{i3})$. Questo forma un triangolo (una cricca di taglia 3) per ogni clausola.
 - Archi di Contraddizione: Aggiungiamo un arco tra due nodi v_{ij} e v_{kl} se i loro letterali corrispondenti l_{ij} e l_{kl} sono opposti (ad esempio, x_1 e $\neg x_1$).
- 3. Valore K: Il valore K per l'Independent Set è il numero di clausole in ϕ , ovvero K=m.

La costruzione è chiaramente polinomiale in m e nel numero di variabili.

Esempio di Trasformazione: Sia $\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor x_5)$.

Figura 1: Grafo G costruito da ϕ

Correttezza della Riduzione: Dobbiamo dimostrare che ϕ è soddisfacibile se e solo se G ha un Independent Set di taglia m.

2.2.1 \implies (Se ϕ è soddisfacibile, allora G ha un IS di taglia m)

Supponiamo che ϕ sia soddisfacibile. Allora esiste un assegnamento di verità σ che soddisfa ϕ . Costruiamo un insieme S_{σ} nel grafo G come segue: per ogni clausola C_i di ϕ , dato che σ soddisfa C_i , esiste almeno un letterale in C_i che è vero sotto σ . Scegliamo uno di questi letterali veri (arbitrariamente se ce ne sono più di uno) e aggiungiamo il nodo corrispondente a S_{σ} . Poiché ci sono m clausole e scegliamo esattamente un nodo per ogni clausola, la taglia di S_{σ} sarà $|S_{\sigma}| = m$.

Ora, dobbiamo dimostrare che S_{σ} è un Independent Set. Assumiamo per contraddizione che S_{σ} non sia un Independent Set. Questo significa che esistono due nodi $u, v \in S_{\sigma}$ tali che $(u, v) \in E'$. Per costruzione degli archi, questi due nodi u, v possono essere collegati in due modi:

- 1. u e v provengono dalla stessa clausola: Questo è impossibile, perché abbiamo scelto solo un nodo per ogni clausola, e i nodi della stessa clausola sono sempre interconnessi. Se avessimo scelto due nodi dalla stessa clausola, questi sarebbero collegati, ma S_{σ} è costruito selezionando un unico nodo per clausola.
- 2. u e v provengono da clausole diverse, ma i loro letterali sono opposti: Se u e v sono collegati e provengono da clausole diverse, ciò implica che i loro letterali corrispondenti l_u e l_v sono opposti (es. x e $\neg x$). Ma per costruzione di S_σ , sia l_u che l_v devono essere veri sotto l'assegnamento σ . Questo è impossibile, poiché σ è un assegnamento di verità consistente (non può assegnare vero sia a x che a $\neg x$).

Entrambi i casi portano a una contraddizione. Pertanto, S_{σ} deve essere un Independent Set di taglia m.

2.2.2 \iff (Se G ha un IS di taglia m, allora ϕ è soddisfacibile)

Supponiamo che G abbia un Independent Set S di taglia m. Per costruzione, ogni "triangolo" di nodi corrispondente a una clausola C_i forma una cricca di taglia S. Poiché S è un Independent Set, non può contenere più di un nodo da ciascuno di questi triangoli (altrimenti non sarebbe un IS, dato che tutti i nodi in un triangolo sono interconnessi). Poiché |S| = m (il numero di clausole), questo significa che S deve contenere esattamente un nodo da ciascuna delle S triplette di nodi (triangoli) del grafo.

Ora, costruiamo un assegnamento di verità σ_S per le variabili di ϕ basato su S:

- Per ogni variabile x_i , se un nodo corrispondente al letterale x_i è in S, allora $\sigma_S(x_i) = \text{Vero.}$
- Per ogni variabile x_i , se un nodo corrispondente al letterale $\neg x_i$ è in S, allora $\sigma_S(x_i) = \text{Falso}$.
- Se una variabile x_i non ha né x_i né $\neg x_i$ in S, le si può assegnare un valore arbitrario (es. Vero).

Dobbiamo dimostrare che σ_S è un assegnamento consistente. Non può assegnare sia Vero che Falso alla stessa variabile, perché se così fosse, significherebbe che sia x_j che $\neg x_j$ sono rappresentati da nodi in S. Ma per costruzione del grafo, nodi corrispondenti a letterali opposti sono collegati da un arco. Se x_j e $\neg x_j$ fossero entrambi in S, S non sarebbe un Independent Set, il che contraddice l'ipotesi. Quindi σ_S è consistente.

Infine, dobbiamo dimostrare che σ_S soddisfa ϕ . Per ogni clausola C_i , sappiamo che S contiene esattamente un nodo v proveniente dalla tripletta di nodi di C_i . Sia l il letterale corrispondente a v. Per costruzione di σ_S , il valore di verità di l sarà Vero sotto σ_S . Questo significa che ogni clausola C_i contiene almeno un letterale vero, e quindi ϕ è soddisfatta da σ_S .

Poiché la trasformazione è polinomiale e la dimostrazione di equivalenza è valida in entrambi i versi, abbiamo dimostrato che $3SAT \leq_p IS$. Dato che 3-SAT è NP-Hard, anche Independent Set è NP-Hard. Con IS \in NP (dimostrato sopra), concludiamo che Independent Set è NP-Completo.

3 Vertex Cover (VC)

Definizione 3.1 (Vertex Cover). Dato un grafo non orientato G=(V,E), un Vertex Cover (VC) $C\subseteq V$ è un sottoinsieme dei suoi nodi tale per cui ogni arco $(u,v)\in E$ ha almeno un endpoint in C. Formalmente:

$$\forall (u, v) \in E, \quad u \in C \lor v \in C$$

Ogni grafo ammette un Vertex Cover (es. l'intero insieme di nodi V). I problemi interessanti riguardano la ricerca di Vertex Cover "piccoli".

Definizione 3.2 (Vertex Cover (Problema di Decisione)). Il problema di decisione Vertex Cover è definito come l'insieme delle coppie $\langle G, K \rangle$ tali che G è un grafo non orientato, K è un numero intero, ed esiste un Vertex Cover in G di taglia (cardinalità) al più K.

3.1 Membership in NP

Proposizione 3.1. Il problema Vertex Cover appartiene alla classe NP.

Dimostrazione. Simile a Independent Set:

- 1. Guess: La MTND indovina un sottoinsieme C' di nodi di V.
- 2. Check: La MTND verifica deterministicamente:
 - La cardinalità di C' è al più K: $|C'| \leq K$.
 - Ogni arco è coperto da C': Per ogni arco $(u,v) \in E$, verifica che $u \in C'$ oppure $v \in C'$.

Entrambi i passaggi sono polinomiali. Quindi, Vertex Cover \in NP.

3.2 Dimostrazione NP-Hardness: $IS \leq_p VC$

Per dimostrare che Vertex Cover è NP-Hard, effettuiamo una riduzione polinomiale da Independent Set a Vertex Cover. Questa riduzione si basa su un'importante proprietà di dualità.

Lemma 3.1 (Dualità IS-VC). Sia G = (V, E) un grafo non orientato. Un sottoinsieme $S \subseteq V$ è un Independent Set di G se e solo se il suo complemento $V \setminus S$ è un Vertex Cover di G.

Dimostrazione. \Longrightarrow Supponiamo che S sia un Independent Set di G. Dobbiamo dimostrare che $C = V \setminus S$ è un Vertex Cover di G. Assumiamo per contraddizione che C non sia un Vertex Cover. Questo significa che esiste almeno un arco $(u,v) \in E$ tale che nessuno dei suoi endpoint è in C. Se $u \notin C$ e $v \notin C$, allora per definizione di complemento, $u \in S$ e $v \in S$. Ma se $v \in S$ e $v \in S$

Supponiamo che $C = V \setminus S$ sia un Vertex Cover di G. Dobbiamo dimostrare che S è un Independent Set di G. Assumiamo per contraddizione che S non sia un Independent Set. Questo significa che esiste almeno un arco $(u,v) \in E$ tale che entrambi i suoi endpoints u,v sono in S. Ma se $u \in S$ e $v \in S$, allora $u \notin C$ e $v \notin C$. Questo significa che l'arco (u,v) non è coperto da C, il che contraddice la nostra ipotesi che C sia un Vertex Cover. Quindi la nostra assunzione è falsa, e S deve essere un Independent Set.

Il lemma è dimostrato.

Teorema 3.1. $IS \leq_p VC$. Di conseguenza, Vertex Cover è NP-Hard.

Dimostrazione. Sia $\langle G, K \rangle$ un'istanza di Independent Set. Vogliamo costruire una coppia $\langle H, L \rangle$ tale che G ha un Independent Set di taglia almeno K se e solo se H ha un Vertex Cover di taglia al più L.

Costruzione della Trasformazione (f):

- 1. Grafo H: H = G. Il grafo rimane invariato.
- 2. Valore L: L = |V| K, dove |V| è il numero totale di nodi in G (e quindi in H).

Questa trasformazione è chiaramente polinomiale (ricopiare un grafo e fare una sottrazione). Correttezza della Riduzione:

 $3.2.1 \implies (Se G \text{ ha un IS di taglia almeno } K, allora H \text{ ha un VC di taglia al più } L)$

Supponiamo che $\langle G,K\rangle$ sia un'istanza "sì" di Independent Set. Questo significa che esiste un Independent Set S in G tale che $|S| \geq K$. Consideriamo il complemento di S rispetto a V, ovvero $C = V \setminus S$. Per il Lemma di Dualità IS-VC, C è un Vertex Cover di G. Poiché H = G, C è anche un Vertex Cover di G. Poiché G in Vertex Cover di G in Vertex Cover G di taglia al più G quindi G in Vertex Cover.

 $3.2.2 \iff (\text{Se } H \text{ ha un VC di taglia al più } L, \text{ allora } G \text{ ha un IS di taglia almeno } K)$

Supponiamo che $\langle H,L\rangle$ sia un'istanza "sì" di Vertex Cover. Questo significa che esiste un Vertex Cover C in H tale che $|C| \leq L$. Consideriamo il complemento di C rispetto a V_H (i nodi di H), ovvero $S = V_H \setminus C$. Per il Lemma di Dualità IS-VC, S è un Independent Set di H. Poiché G = H, S è anche un Independent Set di G. Calcoliamo la taglia di S: $|S| = |V_H| - |C|$. Dato che $|C| \leq L$, ne segue che $-|C| \geq -L$. Quindi, $|S| = |V_H| - |C| \geq |V_H| - L$. Per costruzione, L = |V| - K, e $|V_H| = |V|$. Sostituendo: $|S| \geq |V| - (|V| - K) = |V| - |V| + K = K$. Questo significa che G ha un Independent Set S di taglia almeno K, quindi $\langle G, K \rangle$ è un'istanza "sì" di Independent Set.

Poiché la trasformazione è polinomiale e la dimostrazione di equivalenza è valida in entrambi i versi, abbiamo dimostrato che $IS \leq_p VC$. Dato che Independent Set è NP-Hard, anche Vertex Cover è NP-Hard. Con $VC \in NP$ (dimostrato sopra), concludiamo che Vertex Cover è NP-Completo.

4 Clique

Definizione 4.1 (Clique). Dato un grafo non orientato G = (V, E), una Clique (o Cricca) $Q \subseteq V$ è un sottoinsieme dei suoi nodi tale per cui ogni coppia di nodi distinti in Q è collegata da un arco. In altre parole, Q forma un sottografo completo. Formalmente:

$$\forall u, v \in Q, u \neq v \implies (u, v) \in E$$

Ogni grafo ammette una Clique (es. il set vuoto o un singolo nodo). I problemi interessanti riguardano la ricerca di Clique "grandi".

Definizione 4.2 (Clique (Problema di Decisione)). Il problema di decisione Clique è definito come l'insieme delle coppie $\langle G, K \rangle$ tali che G è un grafo non orientato, K è un numero intero, ed esiste una Clique in G di taglia (cardinalità) almeno K.

4.1 Membership in NP

Proposizione 4.1. Il problema Clique appartiene alla classe NP.

Dimostrazione. 1. Guess: La MTND indovina un sottoinsieme Q' di nodi di V.

- 2. Check: La MTND verifica deterministicamente:
 - La cardinalità di Q' è almeno $K: |Q'| \ge K$.
 - Tutti i nodi in Q' sono interconnessi: Per ogni coppia di nodi distinti $u, v \in Q'$, verifica che $(u, v) \in E$.

Entrambi i passaggi sono polinomiali. Quindi, Clique \in NP.

4.2 Dimostrazione NP-Hardness: $IS \leq_p Clique$

Per dimostrare che Clique è NP-Hard, effettuiamo una riduzione polinomiale da Independent Set a Clique. Questa riduzione si basa sul concetto di grafo complemento.

Definizione 4.3 (Grafo Complemento). Dato un grafo non orientato G=(V,E), il suo grafo complemento $\bar{G}=(V,\bar{E})$ è un grafo con lo stesso insieme di nodi V, ma con l'insieme di archi \bar{E} tale che $(u,v)\in\bar{E}$ se e solo se $(u,v)\notin E$ (per $u\neq v$). In altre parole, gli archi in \bar{G} sono esattamente gli archi che non esistono in G.

Lemma 4.1 (Relazione IS-Clique nel grafo complemento). Sia G = (V, E) un grafo non orientato. Un sottoinsieme $S \subseteq V$ è un Independent Set di G se e solo se S è una Clique in \overline{G} .

Dimostrazione. \Longrightarrow Supponiamo che S sia un Independent Set di G. Dobbiamo dimostrare che S è una Clique in \bar{G} . Per definizione di Independent Set, per ogni coppia di nodi distinti $u,v\in S$, non esiste un arco (u,v) in E. Per definizione di grafo complemento, se $(u,v)\notin E$, allora $(u,v)\in \bar{E}$. Quindi, per ogni coppia di nodi distinti $u,v\in S$, esiste un arco (u,v) in \bar{E} . Questo significa che S è una Clique in \bar{G} .

 \Leftarrow Supponiamo che S sia una Clique in \bar{G} . Dobbiamo dimostrare che S è un Independent Set di G. Per definizione di Clique, per ogni coppia di nodi distinti $u,v\in S$, esiste un arco (u,v) in \bar{E} . Per definizione di grafo complemento, se $(u,v)\in \bar{E}$, allora $(u,v)\notin E$. Quindi, per ogni coppia di nodi distinti $u,v\in S$, non esiste un arco (u,v) in E. Questo significa che S è un Independent Set in G.

Il lemma è dimostrato.

Teorema 4.1. $IS \leq_p Clique$. Di conseguenza, Clique è NP-Hard.

Dimostrazione. Sia $\langle G, K \rangle$ un'istanza di Independent Set. Vogliamo costruire una coppia $\langle H, L \rangle$ tale che G ha un Independent Set di taglia almeno K se e solo se H ha una Clique di taglia almeno L. Costruzione della Trasformazione (f):

- 1. Grafo H: $H = \bar{G}$. H è il grafo complemento di G.
- 2. Valore L: L = K. Il valore K viene copiato.

La costruzione del grafo complemento può essere fatta in tempo polinomiale (iterando su tutte le possibili coppie di nodi e controllando l'esistenza di un arco in G). Quindi la trasformazione è polinomiale.

Correttezza della Riduzione:

$4.2.1 \implies (Se G \text{ ha un IS di taglia almeno } K, allora H \text{ ha una Clique di taglia almeno } L)$

Supponiamo che $\langle G,K\rangle$ sia un'istanza "sì" di Independent Set. Questo significa che esiste un Independent Set S in G tale che $|S| \geq K$. Per il Lemma di Relazione IS-Clique nel grafo complemento, S è una Clique in \bar{G} . Poiché $H = \bar{G}$, S è una Clique in H. La taglia di S è $|S| \geq K$. Per costruzione, L = K. Quindi, H ha una Clique S di taglia almeno L, il che significa che $\langle H,L\rangle$ è un'istanza "sì" di Clique.

$4.2.2 \iff (Se \ H \text{ ha una Clique di taglia almeno } L, \text{ allora } G \text{ ha un IS di taglia almeno } K)$

Supponiamo che $\langle H,L \rangle$ sia un'istanza "sì" di Clique. Questo significa che esiste una Clique S in H tale che $|S| \geq L$. Per il Lemma di Relazione IS-Clique nel grafo complemento, S è un Independent Set in \bar{H} . Per costruzione, $H = \bar{G}$, quindi $\bar{H} = \overline{\bar{G}} = G$. Pertanto, S è un Independent Set di G. La taglia di S è $|S| \geq L$. Per costruzione, L = K. Quindi, G ha un Independent Set S di taglia almeno S, il che significa che S0 è un'istanza "sì" di Independent Set.

Poiché la trasformazione è polinomiale e la dimostrazione di equivalenza è valida in entrambi i versi, abbiamo dimostrato che $IS \leq_p Clique$. Dato che Independent Set è NP-Hard, anche Clique è NP-Hard. Con Clique \in NP (dimostrato sopra), concludiamo che Clique è NP-Completo.

5 Dominating Set (DS)

Definizione 5.1 (Dominating Set). Dato un grafo non orientato G = (V, E), un Dominating Set (DS) $D \subseteq V$ è un sottoinsieme dei suoi nodi tale per cui ogni nodo $v \in V \setminus D$ è adiacente ad almeno un nodo in D. In altre parole, ogni nodo fuori da D è "dominato" da un nodo in D. Formalmente:

$$\forall v \in V \setminus D, \exists u \in D \text{ tale che } (u, v) \in E$$

Esempio 5.1. Consideriamo il grafo G = (V, E) con $V = \{1, 2, 3, 4, 5\}$ ed $E = \{(1, 2), (1, 3), (2, 3), (3, 4), (4, 5)\}$.

Il sottoinsieme $D = \{3,5\}$ è un Dominating Set.

- Nodo 1: è adiacente a 3 ($\in D$).
- Nodo 2: è adiacente a $3 \in D$.
- Nodo 4: è adiacente a 3 ($\in D$) e 5 ($\in D$).

Tutti i nodi fuori da D sono dominati.

Relazione tra Vertex Cover e Dominating Set: Un Vertex Cover è sempre un Dominating Set. Questo perché se ogni arco (u,v) ha almeno un endpoint in C (VC), allora ogni nodo $x \notin C$ deve per forza avere tutti i suoi vicini in C (altrimenti l'arco che lo collega a un vicino fuori da C non sarebbe coperto). Di conseguenza, ogni nodo $x \notin C$ è dominato da almeno un nodo in C. Tuttavia,

il viceversa non è vero. Nell'esempio precedente, $D = \{3,5\}$ è un Dominating Set di taglia 2. Ma non è un Vertex Cover, perché l'arco (1,2) non è coperto (né 1 né 2 sono in D). Quindi, un Vertex Cover è un caso più "stringente" rispetto a un Dominating Set.

Definizione 5.2 (Dominating Set (Problema di Decisione)). Il problema di decisione Dominating Set è definito come l'insieme delle coppie $\langle G, K \rangle$ tali che G è un grafo non orientato, K è un numero intero, ed esiste un Dominating Set in G di taglia (cardinalità) al più K.

5.1 Membership in NP

Proposizione 5.1. Il problema Dominating Set appartiene alla classe NP.

Dimostrazione. 1. Guess: La MTND indovina un sottoinsieme D' di nodi di V.

- 2. Check: La MTND verifica deterministicamente:
 - La cardinalità di D' è al più K: $|D'| \leq K$.
 - Ogni nodo non in D' è dominato: Per ogni nodo $v \in V \setminus D'$, verifica che esista un nodo $u \in D'$ tale che $(u, v) \in E$.

Entrambi i passaggi sono polinomiali. Quindi, Dominating Set \in NP.

5.2 Dimostrazione NP-Hardness: $VC \leq_p DS$

Per dimostrare che Dominating Set è NP-Hard, effettuiamo una riduzione polinomiale da Vertex Cover a Dominating Set.

Teorema 5.1. $VC \leq_p DS$. Di conseguenza, Dominating Set è NP-Hard.

Dimostrazione. Sia $\langle G = (V, E), K \rangle$ un'istanza di Vertex Cover. Vogliamo costruire una coppia $\langle H = (V_H, E_H), L \rangle$ tale che G ha un Vertex Cover di taglia al più K se e solo se H ha un Dominating Set di taglia al più L.

Costruzione della Trasformazione (f): Il grafo H viene costruito a partire da G come segue:

- 1. Nodi (V_H) : V_H contiene tutti i nodi di V (i nodi originali). Per ogni arco $(u,v) \in E$ di G, aggiungiamo un nuovo nodo "ausiliario" e_{uv} a V_H .
- 2. Archi (E_H) :
 - Tutti gli archi originali di G sono inclusi in E_H .
 - Per ogni nodo ausiliario e_{uv} (corrispondente all'arco (u,v) in G), aggiungiamo archi che lo collegano ai suoi due endpoint originali: (e_{uv},u) e (e_{uv},v) . Non aggiungiamo archi tra i nodi ausiliari.
- 3. Valore L: L = K. Il valore K viene copiato.

Questa costruzione è polinomiale. Se G ha N nodi e M archi, H avrà N+M nodi e M+2M=3M archi.

Esempio di Trasformazione: Sia G il grafo con $V = \{1, 2, 3, 4\}$ ed $E = \{(1, 2), (1, 3), (2, 3), (3, 4)\}$.

Figura 2: Grafo H costruito da G

Correttezza della Riduzione:

 $5.2.1 \implies (\text{Se } G \text{ ha un VC di taglia al più } K, \text{ allora } H \text{ ha un DS di taglia al più } L)$

Supponiamo che $\langle G,K\rangle$ sia un'istanza "sì" di Vertex Cover. Questo significa che esiste un Vertex Cover C in G tale che $|C| \leq K$. Sosteniamo che D = C (usando gli stessi nodi) è un Dominating Set di H. La taglia di D è $|D| = |C| \leq K = L$. Dobbiamo solo dimostrare che D domina tutti i nodi in $H \setminus D$. I nodi in H sono di due tipi: nodi originali (V) e nodi ausiliari (E_{uv}) .

- Nodi originali non in D ($v \in V \setminus D$): Poiché C è un Vertex Cover di G, ogni arco (v,u) $\in E$ incidente a v deve avere il suo altro endpoint $u \in C$ (dato che $v \notin C$). Quindi v è adiacente a $u \in C$. Poiché $C \subseteq D$, v è dominato da $u \in D$.
- Nodi ausiliari (e_{uv}) : Per definizione di Vertex Cover, l'arco (u,v) in G è coperto da C. Questo significa che $u \in C$ oppure $v \in C$. Poiché e_{uv} è collegato sia a u che a v in H, se $u \in C$ allora e_{uv} è dominato da $u \in D$. Se $v \in C$ allora e_{uv} è dominato da $v \in D$. In ogni caso, e_{uv} è dominato da un nodo in D.

Quindi, D=C è un Dominating Set di H di taglia al più L. Perciò, $\langle H,L\rangle$ è un'istanza "sì" di Dominating Set.

 $5.2.2 \iff (\text{Se } H \text{ ha un DS di taglia al più } L, \text{ allora } G \text{ ha un VC di taglia al più } K)$

Supponiamo che $\langle H, L \rangle$ sia un'istanza "sì" di Dominating Set. Questo significa che esiste un Dominating Set D in H tale che $|D| \leq L$. Costruiamo un insieme C' di nodi originali a partire da D. L'idea è convertire i nodi ausiliari in D in nodi originali, se necessario. Sia $C' \subseteq V$ l'insieme dei nodi originali in V che sono in D. Se un nodo ausiliario e_{uv} è in D, allora aggiungiamo u (o v, uno qualsiasi dei due) a C'. In altre parole:

$$C' = (D \cap V) \cup \{u \mid e_{uv} \in D \text{ per qualche } v \in V \text{ e } u \text{ è un endpoint di } (u, v)\}$$

La taglia di C' sarà al più |D| (poiché ogni e_{uv} in D è sostituito da un solo nodo originale in C'), e quindi |C'| < |D| < L = K.

Ora, dobbiamo dimostrare che C' è un Vertex Cover di G. Assumiamo per contraddizione che C' non sia un Vertex Cover di G. Ciò significa che esiste almeno un arco $(x,y) \in E$ in G tale che né x né y sono in C'. Consideriamo il nodo ausiliario e_{xy} in H che corrisponde all'arco (x,y) in G. Per ipotesi, D è un Dominating Set di H. Quindi, e_{xy} deve essere dominato da un nodo in D. Un nodo in D che domina e_{xy} può essere:

1. e_{xy} stesso: Se $e_{xy} \in D$, allora per costruzione di C', uno dei suoi endpoint $(x \circ y)$ sarebbe stato aggiunto a C'. Ma abbiamo assunto che né x né y sono in C'. Questo è una contraddizione.

2. Un nodo originale $v \in V \cap D$ adiacente a e_{xy} : Gli unici nodi originali adiacenti a e_{xy} sono x e y. Se $x \in D$ o $y \in D$, allora per costruzione di C', $x \in C'$ o $y \in C'$. Questo contraddice la nostra assunzione che né x né y sono in C'.

Entrambi i casi portano a una contraddizione. Pertanto, l'assunzione che C' non sia un Vertex Cover è falsa. Quindi, C' è un Vertex Cover di G di taglia al più K. Ciò significa che $\langle G, K \rangle$ è un'istanza "sì" di Vertex Cover.

Poiché la trasformazione è polinomiale e la dimostrazione di equivalenza è valida in entrambi i versi, abbiamo dimostrato che $VC \leq_p DS$. Dato che Vertex Cover è NP-Hard, anche Dominating Set è NP-Hard. Con $DS \in NP$ (dimostrato sopra), concludiamo che Dominating Set è NP-Completo.

6 Conclusioni

Oggi abbiamo esaminato diversi problemi NP-Completi sui grafi, dimostrando la loro NP-Completezza tramite riduzioni polinomiali. Abbiamo visto come i problemi NP-Completi siano tutti interconnessi attraverso queste riduzioni, formando una "catena" di complessità. È fondamentale comprendere il metodo delle riduzioni, la costruzione di un'istanza e la dimostrazione della sua correttezza in entrambi i versi. Per padroneggiare questi concetti, è altamente consigliabile rivedere le dimostrazioni e provare a ricrearle autonomamente.