Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей Кафедра информатики

ЛАБОРАТОРНАЯ РАБОТА №2

«Логистическая регрессия. Многоклассовая классификация»

 Студент
 А. Ю. Омельчук

 Преподаватель
 М. В. Стержанов

ХОД РАБОТЫ

Задание.

Набор данных ex2data1.txt представляет собой текстовый файл, содержащий информацию об оценке студента по первому экзамену (первое число в строке), оценке по второму экзамену (второе число в строке) и поступлении в университет (0 - не поступил, 1 - поступил).

Набор данных ex2data2.txt представляет собой текстовый файл, содержащий информацию о результате первого теста (первое число в строке) и результате второго теста (второе число в строке) изделий и результате прохождения контроля (0 - контроль не пройден, 1 - контроль пройден).

Набор данных ex2data3.mat представляет собой файл формата *.mat (т.е. сохраненного из Matlab). Набор содержит 5000 изображений 20x20 в оттенках серого. Каждый пиксель представляет собой значение яркости (вещественное число). Каждое изображение сохранено в виде вектора из 400 элементов. В результате загрузки набора данных должна быть получена матрица 5000x400. Далее расположены метки классов изображений от 1 до 9 (соответствуют цифрам от 1 до 9), а также 10 (соответствует цифре 0).

- 1. Загрузите данные ex2data1.txt из текстового файла.
- 2. Постройте график, где по осям откладываются оценки по предметам, а точки обозначаются двумя разными маркерами в зависимости от того, поступил ли данный студент в университет или нет.
- 3. Реализуйте функции потерь $J(\theta)$ и градиентного спуска для логистической регрессии с использованием векторизации.
- 4. Реализуйте другие методы (как минимум 2) оптимизации для реализованной функции стоимости (например, Метод Нелдера Мида, Алгоритм Бройдена Флетчера Гольдфарба Шанно, генетические методы и т.п.). Разрешается использовать библиотечные реализации методов оптимизации (например, из библиотеки scipy).
- 5. Реализуйте функцию предсказания вероятности поступления студента в зависимости от значений оценок по экзаменам.
- 6. Постройте разделяющую прямую, полученную в результате обучения модели. Совместите прямую с графиком из пункта 2.
- 7. Загрузите данные ex2data2.txt из текстового файла.
- 8. Постройте график, где по осям откладываются результаты тестов, а точки обозначаются двумя разными маркерами в зависимости от того, прошло ли изделие контроль или нет.

- 9. Постройте все возможные комбинации признаков x1 (результат первого теста) и x2 (результат второго теста), в которых степень полинома не превышает 6, т.е. 1, x1, x2, x12, x1x2, x22, ..., x1x25, x26 (всего 28 комбинаций).
- 10. Реализуйте L2-регуляризацию для логистической регрессии и обучите ее на расширенном наборе признаков методом градиентного спуска.
- 11. Реализуйте другие методы оптимизации.
- 12. Реализуйте функцию предсказания вероятности прохождения контроля изделием в зависимости от результатов тестов.
- 13. Постройте разделяющую кривую, полученную в результате обучения модели. Совместите прямую с графиком из пункта 7.
- 14.Попробуйте различные значения параметра регуляризации λ. Как выбор данного значения влияет на вид разделяющей кривой? Ответ дайте в виде графиков.
- 15. Загрузите данные ex2data3.mat из файла.
- 16.Визуализируйте несколько случайных изображений из набора данных. Визуализация должна содержать каждую цифру как минимум один раз.
- 17. Реализуйте бинарный классификатор с помощью логистической регрессии с использованием векторизации (функции потерь и градиентного спуска).
- 18. Добавьте L2-регуляризацию к модели.
- 19. Реализуйте многоклассовую классификацию по методу "один против всех".
- 20. Реализуйте функцию предсказания класса по изображению с использованием обученных классификаторов.
- 21.Процент правильных классификаций на обучающей выборке должен составлять около 95%.

Результат выполнения:

1. Код выгрузки данных из файла:

```
file_path = os.path.join(os.path.dirname(__file__), 'data', 'ex2data1.txt')
data = pd.read_csv(file_path, header=None)
X = data.iloc[:, :-1]  # first 2 column
y = data.iloc[:, 2]  # last column
data.head()
```

2. График представлен ниже:

Рисунок 1 – график поступления студентов в университет

3. Код функции потерь и вычисления градиента:

```
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

def cost_function(theta, X, y):
    m = len(y)
    h_theta = sigmoid(np.dot(X, theta))
    # J = (1 / m) * ((-y' * log(h_theta)) - (1 - y)' * log(1 - h_theta));
    J = (1 / m) * ((np.dot(-y.T, np.log(h_theta))) - np.dot((1 - y).T, np.log(1 - h_theta)))
    return J

def gradient(theta, X, y):
    # grad = (1 / m) * (h_theta - y)' * X;
    m = len(y)
    h_theta = sigmoid(np.dot(X, theta))
    return (1 / m) * np.dot((h_theta - y).T, X)
```

4. Функция градиентного спуска:

```
# 4
temp = optimize.fmin_tnc(
    func=cost_function,
```

```
x0=theta.flatten(),
            fprime=gradient,
            args=(X, y.flatten())
        # the output of above function is a tuple whose first element contains the optimized
values of theta
        theta_optimized = temp[0]
        print(theta_optimized)
        temp = optimize.minimize(cost_function, theta.flatten(), (X, y.flatten()),
method='Nelder-Mead')
        print(temp.x)
        # Brovden Fletcher Goldfarb Shanno alghoritm
        theta_optimized = optimize.fmin_bfgs(
            cost_function,
            theta.flatten(),
            gradient,
            (X, y.flatten())
        print(theta_optimized)
```

Результат выполнения:

```
[-25.16131856 0.20623159 0.20147149]
[-25.16130062 0.20623142 0.20147143]
[-25.16133284 0.2062317 0.2014716]
```

5. Код функции:

```
def h0x(X, theta):
    return sigmoid(np.dot(X.T, theta))
```

6. График представлен ниже:

Рисунок 2 — график разделяющей прямой совмещенный с исходными данными

7. Код загрузки второго датасета:

```
file_path = os.path.join(os.path.dirname(__file__), 'data', 'ex2data2.txt')
data = pd.read_csv(file_path, header=None)
X = data.iloc[:, :-1] # first 2 column
y = data.iloc[:, 2] # last column
data.head()
```

8. График приведён ниже:

Рисунок 3 — график результатов тестов, где точки обозначаются двумя разными маркерами в зависимости от того, прошло ли изделие контроль или нет

9. Код реализации:

```
def polynom_multi_var(p1, p2):
    def multiply(x): # 6 combination
        return (x[0] ** p1) * (x[1] ** p2)

    return ['(x1^%s)*(x2^%s)' % (p1, p2), multiply]
# 9
map = {}
for i in range(0, 7):
    for j in range(0, 7):
```

```
if i + j <= 6:
                [key, fn] = polynom_multi_var(i, j)
                map[key] = fn
    \# len(map.keys()) == 28
    XX = []
    for i in X.values:
        a = []
        for key in map.keys():
            a.append(map[key](i))
        XX.append(np.array(a))
    X = np.array(XX)
    10. Код реализации:
       def cost_function_regularized(theta, X, y, lambda_=0):
           m = len(y)
           h_theta = sigmoid(np.dot(X, theta))
           J = (1 / m) * ((np.dot(-y.T, np.log(h_theta))) - np.dot((1 - y).T, np.log(1 - y).T)
h_theta))) + (lambda_ / (2 * m)) * np.sum(theta[1:]**2)
           return J
       def gradient_regularized(theta, X, y, lambda_=0):
           m = len(y)
           grad = np.zeros([m, 1])
           grad = (1 / m) * np.dot(X.T, (sigmoid(np.dot(X, theta)) - y))
           grad[1:] = grad[1:] + (lambda_ / m) * theta[1:]
           return grad
       # Set regularization parameter lambda to 1
       lambda_ = 0.1
       (m, n) = X.shape
       theta = np.zeros((n + 1, 1))
       X = np.hstack((np.ones((m, 1)), X))
       y = y[:, np.newaxis]
       print('Cost at initial theta (zeros): %s', cost_function_regularized(theta, X, y,
lambda_)[0][0])
       print('Expected cost (approx): 0.693')
       output = optimize.fmin_tnc(
           func=cost_function_regularized,
           x0=theta.flatten(),
           fprime=gradient_regularized,
           args=(X, y.flatten(), lambda_)
```

Здесь коэффициент лямбды установлен в 0.1, хотя на курсере он 1 — но при 0.1 Python просто не может посчитать.

print('Reg fmin_tnc: %s' % temp) # theta contains the optimized values

11. Код реализации:

temp = output[0]

)

```
temp = optimize.minimize(cost_function_regularized, theta.flatten(), (X, y.flatten(),
lambda_), method='Nelder-Mead')
    print('Nelder-Mead: %s' % temp.x)

theta_optimized = optimize.fmin_bfgs(
        cost_function_regularized,
        theta.flatten(),
        gradient_regularized,
        (X, y.flatten(), lambda_)
)
    print('Brovden Fletcher Goldfarb Shanno alghoritm: %s' % theta_optimized)
```

12. Код реализован в пункте номер 5.

13. График представлен ниже:

Рисунок 4 – график разделяющей совмещенный с исходными данными (lambda=0.1)

14. Графики представлены ниже

Рисунок 5 — Разделяющая кривая при lambda=0.001

Рисунок 6 – разделяющая кривая при lambda=0.5

15. Код загрузки третьего датасета:

```
file_path = os.path.join(os.path.dirname(__file__), 'data', 'ex2data3.mat')
data = sio.loadmat(file_path)
X = data.get('X')
y = data.get('y')
```

16. Визуализация чисел с 0 до 9

Рисунок 7 – визуализация чисел

17. Код реализации:

```
m = len(y)
X = np.hstack((np.ones((m, 1)), X))
(m, n) = X.shape
lmbda = 0.1
k = 10
theta = np.zeros((k, n))  # initial parameters
print("Cost with zeros theta: ", cost_function_regularized(theta[0], X, y))
print("Gradient with zeros theta: ", gradient_regularized(theta.T, X, y))
```

Результат выполнения (указан только один результат, потому что тетавектор слишком большой, чтобы вставлять его в отчёт):

```
'Cost with zeros theta: ', array([-17.05142064])
```

18. Код реализации:

```
print("Cost with zeros theta: ", cost_function_regularized(theta[0], X, y, lambda_))
print("Gradient with zeros theta: ", gradient_regularized(theta.T, X, y, lambda_))
```

Результат выполнения (указан только один результат, потому что тетавектор слишком большой, чтобы вставлять его в отчёт):

```
'Cost with zeros theta: ', array([-17.05142064])
```

19. Код реализации:

```
for i in range(k):
    digit_class = i if i else 10
    theta[i] = optimize.fmin_cg(
        f=cost_function_regularized,
        x0=theta[i],
        fprime=gradient_regularized,
```

```
args=(X, (y == digit_class).flatten().astype(np.int), lmbda),
    maxiter=50
)
```

20. Код реализации:

```
def predict_number(X, theta):
    return np.argmax(np.dot(X, theta.T))
print("Predicted number: ", predict_number(X[1490], theta), "Real: ", y[1490][0])
```

Результат выполнения:

```
'Predicted number: ', 2, 'Real: ', 2
```

21. Код реализации:

```
pred = np.argmax(np.dot(X, theta.T), axis=1)
pred = [e if e else 10 for e in pred] # convert 0 to 10
predictions = 0
for i in range(len(pred)):
    if pred[i] == y[i][0]:
        predictions += 1

print("Accuracy: ", (predictions / len(y)) * 100)
```

Результат выполнения:

Accuracy: 95.12

Программный код:

```
from __future__ import division
from scipy import optimize
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import os
import scipy.io as sio

def sigmoid(x):
    return 1 / (1 + np.exp(-x))

def cost_function(theta, X, y):
    m = len(y)
    h_theta = sigmoid(np.dot(X, theta))
    # J = (1 / m) * ((-y' * log(h_theta)) - (1 - y)' * log(1 - h_theta));
    J = (1 / m) * ((np.dot(-y.T, np.log(h_theta))) - np.dot((1 - y).T, np.log(1 - h_theta)))
    return J
```

```
def cost function regularized(theta, X, y, lambda =0):
   m = len(y)
   h_theta = sigmoid(np.dot(X, theta))
    J = (1 / m) * ((np.dot(-y.T, np.log(h_theta))) - np.dot((1 - y).T, np.log(1 - h_theta))) +
(lambda_ / (2 * m)) * np.sum(theta[1:]**2)
    return J
def h0x(X, theta):
    return sigmoid(np.dot(X.T, theta))
def polynom multi var(p1, p2):
    def multiply(x): \# 6 combination
        return (x[0] ** p1) * (x[1] ** p2)
    return ['(x1^{s})*(x2^{s})' % (p1, p2), multiply]
def gradient(theta, X, y):
    \# grad = (1 / m) * (h_theta - y)' * X;
   m = len(y)
   h_theta = sigmoid(np.dot(X, theta))
    return (1 / m) * np.dot((h_{theta} - y).T, X)
def gradient_regularized(theta, X, y, lambda_=0):
   m = len(y)
   grad = np.zeros([m, 1])
   grad = (1 / m) * np.dot(X.T, (sigmoid(np.dot(X, theta)) - y))
   grad[1:] = grad[1:] + (lambda_ / m) * theta[1:]
    return grad
def predict number(X, theta):
    return np.argmax(np.dot(X, theta.T))
if __name__ == '__main__':
    # 1
   file_path = os.path.join(os.path.dirname(__file__), 'data', 'ex2data1.txt')
   data = pd.read_csv(file_path, header=None)
   X = data.iloc[:, :-1] # first 2 column
   y = data.iloc[:, 2] # last column
   data.head()
    # 2
   admitted = y == 1
   failed = y != 1
    adm = plt.scatter(X[admitted][0].values, X[admitted][1].values)
   not_adm = plt.scatter(X[failed][0].values, X[failed][1].values)
   plt.xlabel('Exam 1 score')
   plt.ylabel('Exam 2 score')
   plt.legend((adm, not_adm), ('Admitted', 'Not admitted'))
   plt.show()
   # 3
    (m, n) = X.shape
   X = np.hstack((np.ones((m, 1)), X))
```

```
y = y[:, np.newaxis]
   theta = np.zeros((n + 1, 1)) # [[0.] [0.]]
   print('Cost at initial theta (zeros): ', cost_function(theta, X, y)[0][0])
    # test (from an Octave)
   print('Expected gradients (approx): [-0.1000, -12.0092, -11.2628]')
   print('Real gradient: %s' % gradient(theta, X, y))
    # Compute and display cost and gradient with non-zero theta
   test_theta = np.array([[-24], [.2], [.2]])
    print('Expected cost (approx): 0.218')
   print('Cost at test theta: %s' % cost function(test theta, X, y)[0][0])
    # 4
    temp = optimize.fmin tnc(
        func=cost_function,
        x0=theta.flatten(),
        fprime=gradient,
        args=(X, y.flatten())
    # the output of above function is a tuple whose first element contains the optimized values
of theta
    theta_optimized = temp[0]
   print(theta_optimized)
    temp = optimize.minimize(cost_function, theta.flatten(), (X, y.flatten()), method='Nelder-
Mead')
   print(temp.x)
    # Brovden Fletcher Goldfarb Shanno alghoritm
    theta optimized = optimize.fmin bfgs(
        cost_function,
        theta.flatten(),
        gradient,
        (X, y.flatten())
    print(theta_optimized)
    # 5
    print('h0x test')
    print(h0x(np.array([1, 34.62365962451697, 78.0246928153624]), theta_optimized))
    # 6
   plot_x = [np.min(X[:, 1] - 2), np.max(X[:, 2] + 2)]
   plot_y = -1 / theta_optimized[2]*(theta_optimized[0] + np.dot(theta_optimized[1], plot_x))
   mask = y.flatten() == 1
   adm = plt.scatter(X[mask][:, 1], X[mask][:, 2])
   not_adm = plt.scatter(X[~mask][:, 1], X[~mask][:, 2])
    decision boundary = plt.plot(plot x, plot y)
   plt.xlabel('Exam 1 score')
   plt.ylabel('Exam 2 score')
   plt.legend((adm, not_adm), ('Admitted', 'Not admitted'))
   plt.show()
    # 7
   file_path = os.path.join(os.path.dirname(__file__), 'data', 'ex2data2.txt')
   data = pd.read_csv(file_path, header=None)
   X = data.iloc[:, :-1] # first 2 column
    y = data.iloc[:, 2] # last column
    data.head()
```

```
# 8
   passed = y == 1
   failed = y != 1
   psd = plt.scatter(X[passed][0].values, X[passed][1].values)
   not_psd = plt.scatter(X[failed][0].values, X[failed][1].values)
   plt.xlabel('Test 1 score')
   plt.ylabel('Test 2 score')
   plt.legend((psd, not_psd), ('Passed', 'Failed'))
   plt.show()
   # 9
   map = \{\}
   for i in range(0, 7):
       for j in range(0, 7):
           if i + j <= 6:
                [key, fn] = polynom_multi_var(i, j)
                map[key] = fn
   \# len(map.keys()) == 28
   XX = []
   for i in X.values:
       a = []
       for key in map.keys():
            a.append(map[key](i))
       XX.append(np.array(a))
   X = np.array(XX)
   # 10
   # Set regularization parameter lambda to 1
   lambda_ = 0.1
   (m, n) = X.shape
   theta = np.zeros((n + 1, 1))
   X = np.hstack((np.ones((m, 1)), X))
   y = y[:, np.newaxis]
   print('Cost at initial theta (zeros): %s', cost_function_regularized(theta, X, y,
lambda_)[0][0])
   print('Expected cost (approx): 0.693')
   output = optimize.fmin_tnc(
       func=cost_function_regularized,
       x0=theta.flatten(),
       fprime=gradient_regularized,
       args=(X, y.flatten(), lambda_)
   )
   temp = output[0]
   print('Reg fmin tnc: %s' % temp) # theta contains the optimized values
   # 11
   temp = optimize.minimize(cost_function_regularized, theta.flatten(), (X, y.flatten(),
lambda_), method='Nelder-Mead')
   print('Nelder-Mead: %s' % temp.x)
   theta_optimized = optimize.fmin_bfgs(
       cost_function_regularized,
       theta.flatten(),
       gradient_regularized,
        (X, y.flatten(), lambda_)
```

```
)
print('Brovden Fletcher Goldfarb Shanno alghoritm: %s' % theta_optimized)
# 12
print(h0x(X[0], theta_optimized))
print(h0x(X[0], temp.x))
print(h0x(X[0], output[0]))
# 13
u = np.linspace(-1, 1.5, 50)
v = np.linspace(-1, 1.5, 50)
z = np.zeros((len(u), len(v)))
for i in range(len(u)):
    for j in range(len(v)):
        a = [1]
        for key in map.keys():
            a.append(map[key]([u[i], v[j]]))
        z[i, j] = h0x(np.array(a), theta_optimized)
mask = y.flatten() == 1
X = data.iloc[:, :-1]
passed = plt.scatter(X[mask][0], X[mask][1])
failed = plt.scatter(X[~mask][0], X[~mask][1])
plt.contour(u, v, z, 0)
plt.xlabel('Test 1 Score')
plt.ylabel('Test 2 Score')
plt.legend((passed, failed), ('Passed', 'Failed'))
plt.show()
# 14
# TODO: implement charts for different lambda
X = np.array(XX)
X = np.hstack((np.ones((m, 1)), X))
(m, n) = X.shape
correct_identified = 0
for i in range(m):
    if round(h0x(X[i], theta_optimized)) == y[i]:
        correct_identified += 1
print("Correct recognition(%): ", correct_identified / m)
# 15
file_path = os.path.join(os.path.dirname(__file__), 'data', 'ex2data3.mat')
data = sio.loadmat(file_path)
X = data.get('X')
y = data.get('y')
# 16
images = {}
for i in range(len(y)):
    images[y[i][0]] = i # assign the latest index of number image
keys = images.keys()
fig, axis = plt.subplots(1, 10)
for j in range(len(keys)):
    # reshape back to 20 pixel by 20 pixel
```

```
axis[j].imshow(X[images.get(images.keys()[j]), :].reshape(20,
                                                                                   order="F"),
                                                                            20,
cmap="hot")
       axis[j].axis("off")
   plt.show()
   # 17
   m = len(y)
   X = np.hstack((np.ones((m, 1)), X))
   (m, n) = X.shape
   lmbda = 0.1
   k = 10
   theta = np.zeros((k, n)) # initial parameters
   print("Cost with zeros theta: ", cost_function_regularized(theta[0], X, y))
   # print("Gradient with zeros theta: ", gradient_regularized(theta.T, X, y, lambda_))
   # 18
   print("Cost with zeros theta: ", cost_function_regularized(theta[0], X, y, lambda_))
   # print("Gradient with zeros theta: ", gradient_regularized(theta.T, X, y))
   # 19
   for i in range(k):
       digit_class = i if i else 10
       theta[i] = optimize.fmin_cg(
            f=cost_function_regularized,
           x0=theta[i],
           fprime=gradient_regularized,
           args=(X, (y == digit_class).flatten().astype(np.int), lmbda),
           maxiter=50
       )
   # 20
   print("Predicted number: ", predict_number(X[1490], theta), "Real: ", y[1490][0])
   # 21
   pred = np.argmax(np.dot(X, theta.T), axis=1)
   pred = [e if e else 10 for e in pred] # convert 0 to 10
   predictions = 0
   for i in range(len(pred)):
       if pred[i] == y[i][0]:
           predictions += 1
   print("Accuracy: ", (predictions / len(y)) * 100)
```