获得的答案

Refer theorem 5.2 in the textbook. It states that \mathbf{E}_{TM} is undecidable. It is known that \mathbf{A}_{TM} is Turing recognizable but not co-Turing recognizable.

The complement of $\,E_{_{TM}}\,$ is denoted with $\,\overline{E_{_{TM}}}\,.$ The TM for $\,\overline{E_{_{TM}}}\,$ is as follows:

M="On input <M>,

- 1. For l = 1, 2, 3, ...
 - a. Run M on all strings of length I for I steps.
 - b. If any string is accepted then accept.
- 2. Reject if no string is accepted."

There exists a TM that recognizes $\overline{E_{TM}}$. Thus, E_{TM} is co-Turing recognizable.

Assume that A_{TM} is mapping reducible to E_{TM} . Thus, $\overline{A_{TM}}$ is mapping reducible to $\overline{E_{TM}}$. $\overline{A_{TM}}$ is not Turing recognizable but $\overline{E_{TM}}$ is Turing recognizable which is a contradiction to the theorem 5.28. This a contradiction to the earlier assumption.

Therefore, $\,A_{\scriptscriptstyle TM}^{}\,$ is not mapping reducible to $\,E_{\scriptscriptstyle TM}^{}\,.$