Modèle binomial markovien

Propriétés et application à la théorie de la ruine

Présenté par **Olivier Côté**

ACT-7008

24 février 2022

Table des matières

- 1 Processus d'occurence
- 2 Processus du montant des pertes
- 3 Probabilité de ruine sur un horizon fini
- 4 Conclusion

Processus d'occurence

- 1 Processus d'occurence
 - Définitions
 - Exemples d'application
 - Résultats important
 - Fonction génératrice des probabilités
 - Exemple
- 2 Processus du montant des pertes
- 3 Probabilité de ruine sur un horizon fini
- 4 Conclusion

Variable aléatoire d'occurence de sinistre

Nous allons commencer doucement avec une seule suite de variable aléatoire.

Soit I_k une variable aléatoire indiquant la présence d'un sinistre à la période de temps k.

Comme dans Cossette et collab. (2003), on définit $\{I_k, k=0,1,2,\dots\}$ comme étant une chaine de Markov avec les états $\{0,1\}$ et la matrice de transition

$$P = \begin{bmatrix} 1 - (1 - \pi)q & (1 - \pi)q \\ (1 - \pi)(1 - q) & \pi + (1 - \pi)q \end{bmatrix} = \begin{bmatrix} P_{00} & P_{01} \\ P_{10} & P_{11} \end{bmatrix}$$

5/79

Cas limites de π

On a

$$P = \begin{bmatrix} 1 - (1 - \pi)q & (1 - \pi)q \\ (1 - \pi)(1 - q) & \pi + (1 - \pi)q \end{bmatrix}$$

On doit avoir les inégalités suivantes :

$$0 \le 1 - (1 - \pi)q \le 1$$

$$-1\left(\frac{1 - q}{q}\right) \le \pi \le 1$$

$$0 \le (1 - \pi)(1 - q) \le 1$$

$$-1\left(\frac{q}{1 - q}\right) \le \pi \le 1$$

$$-1 \cdot \min\left(\frac{1 - q}{q}, \frac{q}{1 - q}\right) \le \pi \le \frac{1}{q}$$

Cas limites de π

On a

$$P = \begin{bmatrix} 1 - (1 - \pi)q & (1 - \pi)q \\ (1 - \pi)(1 - q) & \pi + (1 - \pi)q \end{bmatrix}$$

On doit avoir les inégalités suivantes :

$$0 \le 1 - (1 - \pi)q \le 1$$

$$-1\left(\frac{1 - q}{q}\right) \le \pi \le 1$$

$$0 \le (1 - \pi)(1 - q) \le 1$$

$$-1\left(\frac{q}{1 - q}\right) \le \pi \le 1$$

$$-1 \cdot \min\left(\frac{1 - q}{q}, \frac{q}{1 - q}\right) \le \pi \le \frac{1}{q}$$

Cas limites de π

On a

$$P = \begin{bmatrix} 1 - (1 - \pi)q & (1 - \pi)q \\ (1 - \pi)(1 - q) & \pi + (1 - \pi)q \end{bmatrix}$$

On doit avoir les inégalités suivantes :

$$0 \le 1 - (1 - \pi)q \le 1$$

$$-1\left(\frac{1 - q}{q}\right) \le \pi \le 1$$

$$0 \le (1 - \pi)(1 - q) \le 1$$

$$-1\left(\frac{q}{1 - q}\right) \le \pi \le 1$$

$$-1 \cdot \min\left(\frac{1 - q}{q}, \frac{q}{1 - q}\right) \le \pi \le \frac{1}{q}$$

Visualisation de la borne minimale

Borne minimale du paramètre π selon q

Figure - Visualisation de π^- selon q

Matrice de transition

Pour la matrice de transition, on peut réécrire

$$P = \begin{bmatrix} 1 - q & q \\ 1 - q & q \end{bmatrix} + \pi \begin{bmatrix} q & -q \\ -(1 - q) & (1 - q) \end{bmatrix} = A + \pi B$$

On a A, B idempotentes et AB = BA = 0. En se servant de ces propriétés, on obtient

$$P^{n} = A + \pi^{n}B = \begin{bmatrix} 1 - (1 - \pi^{n})q & (1 - \pi^{n})q \\ (1 - \pi^{n})(1 - q) & q + \pi^{n}(1 - q) \end{bmatrix}$$

Les probabilités initiales du processus sont

$$P(I_0 = 1) = q = 1 - P(I_0 = 0)$$

Probabilités initiales du processus

Avec les éléments de la dernière diapositive, on obtient

$$P(I_k = 1) = P(I_0 = 1)P_{11}^k + P(I_0 = 0)P_{01}^k$$

$$= qP_{11}^k + (1 - q)P_{01}^k$$

$$= q(q + \pi^k(1 - q)) + (1 - q)(q - \pi^k q)$$

$$= q^2 + q\pi^k(1 - q) + q - q^2 - q\pi^k(1 - q)$$

$$= q$$

Ce qui veut dire que la suite de variable aléatoire est stationnaire (Cossette et collab., 2003). On peut aussi déduire que

$$I_k \sim \text{Bern}(q)$$

Probabilité conditionnelle

À première vue, nous avons une suite de variables aléatoires indépendantes.

Par contre, on constate que la probabilité d'observer une occurrence à une année k sachant une occurrence à l'année j (k>j) fera usage de la matrice de transition

$$P(I_k = 1 | I_j = 1) = P_{11}^{k-j}$$

On introduit une dépendance temporelle entre nos variables bernoullis grâce au paramètre π de notre chaine de markov. ($\pi=0$ rime avec indépendance)

Application du modèle binomial markovien

Le modèle binomial markovien est applicable dans tous les contextes où on croit qu'il y a corrélation entre des occurrences successives.

- Météorologie (Klotz, 1973)
- Marchés boursiers (Dekking et Kong, 2011)
- Génétique (Edwards, 1960)
- Contrôle de la qualité (Dekking et Kong, 2011)

Covariance entre éléments distinct du processus

Nous aurons besoin de la covariance entre I_j et I_{j+h}

$$Cov[I_{j}, I_{j+h}] = E[I_{j}I_{j+h}] - E[I_{j}]E[I_{j+h}]$$

$$= P(I_{j} = 1, I_{j+h} = 1) - P(I_{j} = 1)P(I_{j+h} = 1)$$

$$= P(I_{j+h} = 1|I_{j} = 1)P(I_{j} = 1) - P(I_{j} = 1)P(I_{j+h} = 1)$$

$$= P_{11}^{h}P(I_{j} = 1) - P(I_{j} = 1)P(I_{j+h} = 1)$$

$$= (q + \pi^{h}(1 - q))q - q^{2}$$

$$= q^{2} + \pi^{h}(1 - q)q - q^{2}$$

$$= q(1 - q)\pi^{h}$$

Ce calcul nous sera utile pour la suite.

Corrélation entre éléments distinct du processus

On peut aussi s'intéresser à la corrélation entre I_i et I_{i+h}

$$\rho_P(I_j, I_{j+h}) = \frac{\operatorname{Cov}[I_j, I_{j+h}]}{\sqrt{\operatorname{Var}(I_j)\operatorname{Var}(I_{j+h})}}$$

$$= \frac{\operatorname{Cov}[I_j, I_{j+h}]}{\operatorname{Var}(I_j)} \quad \text{i.d.}$$

$$= \frac{q(1-q)\pi^h}{q(1-q)}$$

$$= \pi^h$$

La corrélation ne dépend pas de q, seulement de π

Somme des v.a. d'occurence

Somme d'occurrences (Cossette et collab., 2003)

On définit

$$M_k = I_1 + \ldots + I_k$$

On dit que M_k obéit à une loi Markov-binomiale avec paramètres k, q et π (paramètre de dépendance).

On a

$$E[M_k] = ka$$

Carte du quiz

On a

$$W_k = \frac{M_k}{k} = \frac{I_1 + \dots + I_k}{k}$$

On veut trouver $E[W_k]$

$$E[W_k] = \frac{1}{k}E[M_k] = \frac{1}{k}kq = q$$

Carte du quiz

17/79

Variance selon la méthode de Cossette et collab. (2003)

Pour la variance, on a

$$Var[M_k] = \sum_{j=1}^k Var[I_j] + 2 \sum_{j=1}^{k-1} \sum_{h=1}^{k-j} Cov[I_j, I_{j+h}]$$

$$= kq(1-q) + 2q(1-q) \sum_{j=1}^{k-1} \sum_{h=1}^{k-j} \pi^h$$

$$= kq(1-q) + 2q(1-q)\pi \sum_{j=1}^{k-1} \frac{1-\pi^{k-j}}{1-\pi}$$

$$= kq(1-q) + \frac{2q(1-q)\pi}{1-\pi} \sum_{j=1}^{k-1} 1-\pi^{k-j}$$

$$= kq(1-q) + \frac{2q(1-q)\pi}{1-\pi} \left((k-1) - \frac{\pi(1-\pi^{k-1})}{1-\pi} \right)$$

Variance selon la méthode de Dekking et Kong (2011)

On calcule le deuxième moment

$$E[M_k^2] = E\left[\left(\sum_{i=1}^k I_i\right)^2\right] = E\left[\sum_{i=1}^k I_i^2 + 2\sum_{1 \le i < j \le n} I_j I_i\right]$$

$$= \sum_{i=1}^k P(I_i = 1) + 2\sum_{1 \le i < j \le n} P(I_j = 1, I_i = 1)$$

$$= kq + 2\sum_{1 \le i < j \le n} P(I_j = 1 | I_i = 1) P(I_i = 1)$$

$$= kq + 2\sum_{1 \le i < j \le n} P_{11}^{j-i} q$$

$$= kq + 2\sum_{1 \le i < j \le n} (q + \pi^{i-j}(1 - q)) q$$

Variance selon la méthode de Dekking et Kong (2011)

$$\begin{split} & \mathrm{E}[M_k^2] = kq + 2 \sum_{1 \le i < j \le n} (q + \pi^{i-j}(1-q))q \\ & = kq + 2 \sum_{1 \le i < j \le n} \left(q^2 + \pi^{i-j}q(1-q) \right) \\ & = kq + 2q^2 \left(\sum_{1 \le i < j \le n} 1 \right) + 2q(1-q) \left(\sum_{1 \le i < j \le n} \pi^{i-j} \right) \\ & = kq + q^2k(k-1) + 2q(1-q) \sum_{1 \le i < j \le n} \pi^{i-j} \\ & = kq + q^2k(k-1) + 2q(1-q) \frac{1-\pi^k - k(1-\pi)}{(1-\pi^{-1})(1-\pi)} \\ & = kq + q^2k(k-1) - \frac{2\pi q(1-q)(1-\pi^k)}{(1-\pi)^2} + \frac{2q(1-q)\pi k}{1-\pi} \end{split}$$

Variance selon la méthode de Dekking et Kong (2011)

$$Var[M_k] = E[M_k^2] - E[M_k]^2$$

$$= kq + q^2 k(k-1) - \frac{2\pi q(1-q)(1-\pi^k)}{(1-\pi)^2} + \frac{2q(1-q)\pi k}{1-\pi} - (kq)^2$$

$$= kq(1-q) - \frac{2\pi q(1-q)(1-\pi^k)}{(1-\pi)^2} + \frac{2q(1-q)\pi k}{1-\pi}$$

Variance de M_k selon Dekking et Kong (2011) et Cossette et collab. (2003)

On peut réarranger pour obtenir l'expression exacte de Cossette et collab. (2003)

$$Var[M_k] = kq(1-q) - \frac{2\pi q(1-q)(1-\pi^k)}{(1-\pi)^2} + \frac{2q(1-q)\pi k}{1-\pi}$$

$$= kq(1-q) + 2q(1-q)\frac{\pi}{1-\pi} \left(k - \frac{(1-\pi^k)}{(1-\pi)}\right)$$

$$= kq(1-q) + 2q(1-q)\frac{\pi}{1-\pi} \left((k-1) - \frac{\pi(1-\pi^{k-1})}{(1-\pi)}\right)$$

Carte du quiz

On veut trouver $Var[W_k]$

$$\begin{aligned} Var[W_k] &= Var[\frac{M_k}{k}] = \frac{1}{k^2} Var[M_k] \\ &= \frac{1}{k^2} \left\{ kq(1-q) + 2q(1-q) \frac{\pi}{1-\pi} \left((k-1) - \frac{\pi(1-\pi^{k-1})}{(1-\pi)} \right) \right\} \\ &= \frac{q(1-q)}{k} + \frac{2q(1-q)}{k} \frac{\pi}{1-\pi} \left((1-\frac{1}{k}) - \frac{\pi\left(1-\pi^{k-1}\right)}{k(1-\pi)} \right) \end{aligned}$$

On constate aisément que

$$\lim_{k \to \infty} Var[W_k] = 0 \quad \text{(utile plus tard)}$$

Carte du quiz

Carte du quiz

Soit une fonction croissante g(.) sur le domaine de X:

$$E[g(X)] = E\left[g(X)1_{\{X \in [0,\alpha[\}]\}} + g(X)1_{\{X \in [\alpha,\infty[\}\}}\right] \quad \forall \alpha > 0$$

$$\geq E\left[g(X)1_{\{X \in [\alpha,\infty[\}]\}}\right]$$

Ensuite, puisque g(.) est une application strictement dans \mathbb{R}^+ , on a

$$E[g(X)] \ge E[g(X)1_{\{X \in [\alpha,\infty[\}\}}]$$

$$\ge E[g(\alpha)1_{\{X \in [\alpha,\infty[\}\}}]]$$

$$= g(\alpha)P(X \ge \alpha)$$

Finalement, on réarrange

Inégalité de Tchebychev

$$P(X \ge \alpha) \le \frac{E[g(X)]}{g(\alpha)}$$

Soit une fonction croissante g(.) sur le domaine de X:

$$E[g(X)] = E\left[g(X)1_{\{X \in [0,\alpha[\}]\}} + g(X)1_{\{X \in [\alpha,\infty[\}\}]}\right] \quad \forall \alpha > 0$$

$$\geq E\left[g(X)1_{\{X \in [\alpha,\infty[\}]\}}\right]$$

Ensuite, puisque g(.) est une application strictement dans \mathbb{R}^+ , on a

$$E[g(X)] \ge E[g(X)1_{\{X \in [\alpha,\infty[\}]\}}]$$

$$\ge E[g(\alpha)1_{\{X \in [\alpha,\infty[\}]\}}]$$

$$= g(\alpha)P(X \ge \alpha)$$

Finalement, on réarrange

Inégalité de Tchebychev

$$P(X \ge \alpha) \le \frac{E[g(X)]}{g(\alpha)}$$

Soit une fonction croissante g(.) sur le domaine de X:

$$E[g(X)] = E\left[g(X)1_{\{X \in [0,\alpha[\}} + g(X)1_{\{X \in [\alpha,\infty[\}\}}] \quad \forall \alpha > 0\right]$$

$$\geq E\left[g(X)1_{\{X \in [\alpha,\infty[\}]}\right]$$

Ensuite, puisque g(.) est une application strictement dans \mathbb{R}^+ , on a

$$E[g(X)] \ge E[g(X)1_{\{X \in [\alpha,\infty[\}]\}}]$$

$$\ge E[g(\alpha)1_{\{X \in [\alpha,\infty[\}]\}}]$$

$$= g(\alpha)P(X \ge \alpha)$$

Finalement, on réarrange

Inégalité de Tchebychev

$$P(X \ge \alpha) \le \frac{E[g(X)]}{g(\alpha)}$$

Inégalité de Tchebychev

$$P(X \ge \alpha) \le \frac{E[g(X)]}{g(\alpha)}$$

Dans notre cas, on a g(u) = u, $X = (W_k - q)^2$ et $\alpha = \varepsilon^2$

$$P((W_k - \mathbf{q})^2 \ge \varepsilon^2) \le \frac{E[(W_k - \mathbf{q})^2]}{\varepsilon^2}$$
$$P(|W_k - E[W_k]| \ge \varepsilon) \le \frac{\text{Var}[W_k]}{\varepsilon^2}$$

Il s'agit d'une inégalité bien connue

Inégalité de Bienaymé-Tchebychev

$$P(|W_k - E[W_k]| \ge \varepsilon) \le \frac{\operatorname{Var}[W_k]}{\varepsilon^2}$$

Carte du quiz

Carte du quiz

1 2 3 4 5
Question 1 2 2 1 1 1
Question 2 1 1 1
Question 3 1 1

Inégalité de Bienaymé-Tchebychev

$$P(|W_k - E[W_k]| \ge \varepsilon) \le \frac{\operatorname{Var}[W_k]}{\varepsilon^2}$$

On a donc

$$0 \le P(|W_k - E[W_k]| \ge \varepsilon) \le \frac{\operatorname{Var}[W_k]}{\varepsilon^2}$$

$$0 \le \lim_{k \to \infty} P(|W_k - E[W_k]| \ge \varepsilon) \le \frac{1}{\varepsilon^2} \lim_{k \to \infty} \operatorname{Var}[W_k]$$

$$0 \le \lim_{k \to \infty} P(|W_k - E[W_k]| \ge \varepsilon) \le 0$$

Par le théorème du sandwich

$$\lim_{k \to \infty} P(|W_k - E[W_k]| \ge \varepsilon) = 0$$

Inégalité de Bienaymé-Tchebychev

$$P(|W_k - E[W_k]| \ge \varepsilon) \le \frac{\operatorname{Var}[W_k]}{\varepsilon^2}$$

On a donc

$$0 \le P(|W_k - E[W_k]| \ge \varepsilon) \le \frac{\operatorname{Var}[W_k]}{\varepsilon^2}$$

$$0 \le \lim_{k \to \infty} P(|W_k - E[W_k]| \ge \varepsilon) \le \frac{1}{\varepsilon^2} \lim_{k \to \infty} \operatorname{Var}[W_k]$$

$$0 \le \lim_{k \to \infty} P(|W_k - E[W_k]| \ge \varepsilon) \le 0$$

Par le théorème du sandwich

$$\lim_{k \to \infty} P(|W_k - E[W_k]| \ge \varepsilon) = 0$$

On a donc

$$\lim_{k \to \infty} P(|W_k - E[W_k]| \ge \varepsilon) = 0$$

Il s'agit précisément de la condition nécessaire et suffisante pour dire

$$W_k \stackrel{\mathbb{P}}{\to} E[W_k]$$

Carte du quiz

Carte du quiz

1 2 3 4 5
Question 1 2 2 2 1 1
Question 2 1 1 1
Question 2 1 1 1
Question 3 1 1 1

Quiz 1.5

Pour interpréter, supposons

$$Cov(I_i, I_{i+h}) = q(1-q)\pi^h \approx 0 \quad \forall h > b$$

où b est une constante relativement élevée. Lorsque k est peu élevé, alors b peut occuper une grande proportion de k.

- La dépendance est locale, mais b/k > 0
- Si ma maison brûle, le coût moyen en sinistre d'incendie de ma rue risque d'augmenter, surtout avec la dépendance.

Lorsque k très élevé, b sera une proportion quasi nulle de k

- La dépendance est locale, mais $b/k \approx 0$.
- Si ma maison brûle, le coût moyen en sinistre de la planète terre ne risque pas d'augmenter, même avec la dépendance

Quiz 1.5

Pour interpréter, supposons

$$Cov(I_i, I_{i+h}) = q(1-q)\pi^h \approx 0 \quad \forall h > b$$

où b est une constante relativement élevée. Lorsque k est peu élevé, alors b peut occuper une grande proportion de k.

- La dépendance est locale, mais b/k > 0
- Si ma maison brûle, le coût moyen en sinistre d'incendie de ma rue risque d'augmenter, surtout avec la dépendance.

Lorsque k très élevé, b sera une proportion quasi nulle de k

- La dépendance est locale, mais $b/k \approx 0$.
- Si ma maison brûle, le coût moyen en sinistre de la planète terre ne risque pas d'augmenter, même avec la dépendance

Quiz 1.5

36/79

Carte du quiz

1 2 3 4 5
Question 1 2 2 2 1 1
Question 2 1 1 1
Question 2 1 1 1
Question 3 1 1 1

37/79

Carte du quiz

Carte du quiz

Quiz 2 et 3

Inégalité de Tchebychev

$$P(X \ge \alpha) \le \frac{E[g(X)]}{g(\alpha)}$$

Dans notre cas, on a $X = M_k$, $\alpha = (1 + \delta)nq$ et $g(u) = e^{tu}$. On obtient

$$P(M_k \ge (1+\delta)nq) \le e^{-t(1+\delta)nq} M_{M_k}(t)$$

$$= \exp \{ln M_{M_k}(t) - t(1+\delta)nq\} \quad \forall t \in \mathbb{R}^+$$

On observe que

$$P(M_k \ge (1+\delta)nq) \le \exp\left\{\inf_{t \in \mathbb{R}^+} \left\{lnM_{M_k}(t) - t(1+\delta)nq\right\}\right\}$$
(1)

Quiz 2 et 3

Nous avons

$$P(M_k \ge (1+\delta)nq) \le e^{\inf_{t \in \mathbb{R}^+} \left\{ ln M_{M_k}(t) - t(1+\delta)nq \right\}}$$
 (2)

On peut optimiser numériquement ou dériver selon t. La dérivée de matrice risque d'être désagréable. On peut aussi continuer de borner

$$egin{aligned} M_{M_k}(t) &= E[e^{tM_k}] \ &\leq E[e^{tkI_1}] \ &= (1-q) + qe^{tk} = M_{M_{
u}^+}(t) \end{aligned}$$

On peut montrer que cette expression est minimisée pour

$$t^* = \frac{1}{k} \ln \left(\frac{1 - q}{kq} \right)$$

Quiz 2 et 3

Nous avons

$$M_{M_k^+}(t^*) = (1-q) + \frac{1-q}{k}$$

On a finalement

$$P(M_k \geq (1+\delta)nq) \leq e^{\inf_{t \in \mathbb{R}^+} \left\{ ln M_{M_k}(t) - t(1+\delta)nq \right\}} \leq e^{ln(1-q+\frac{1-q}{k}) - t(1+\delta)nq}$$

Processus d'occurence — Résultats important

Carte du quiz

Carte du quiz

1 2 3 4 5
Question 1 2 2 2 2 2
Question 2 2 2 2
Question 3 2 2

Exemple numérique avec M_k

Exemple associé à la table 1 de Cossette et collab. (2003)

- Calculer $P(M_k = j)$ pour j = 0, 1, ..., 20
- Utiliser k = 20 et q = 0.1
- \blacksquare Répéter l'exercice pour $\pi=0$ (indépendance), 0.2, 0.4, 0.6 et 0.8

Résolution du problème

Le problème se résout de plusieurs manières

- En utilisant la fonction génératrice des probabilités (Gani, 1982)
- En utilisant la fonction de masse de probabilité (Dekking et Kong, 2011)
- 3 En utilisant une approximation Poisson-Géométrique

46/79

Fonction génératrice des probabilités matricielle

Gani (1982) a proposé d'utiliser la forme suivante pour la fonction génératrice des probabilités de M_k ($0 \le s \le 1$)

$$P_{M_k}(s) = \begin{bmatrix} 1 - q & qs \end{bmatrix} \begin{bmatrix} 1 - (1 - \pi)q & (1 - \pi)qs \\ (1 - \pi)(1 - q) & [(1 - \pi)q + \pi]s \end{bmatrix}^{k-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Il est possible d'exprimer la matrice centrale sous sa forme canonique Gani (1982)

$$P_{M_k}(s) = \begin{bmatrix} 1 - q & qs \end{bmatrix} \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix} \begin{bmatrix} \lambda_1^{k-1} & 0 \\ 0 & \lambda_2^{k-1} \end{bmatrix} \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Où x_1, x_2, y_1 et y_2 sont les composantes des vecteurs propres associés aux vecteurs propres λ_1 et λ_2

Code R pour générer P I

```
matrix_bm <- function(p, pi, s, power = 1, eig = FALSE){</pre>
 if(power <= 0) return(diag(2)) # Condition d'arrêt</pre>
p 00 <- 1- (1-pi) * p
                               # élément 00
p 01 <- (1 - pi) * p * s
                                 # élément 01
p 10 < -(1 - pi) * (1 - p)
                           # élément 10
p 11 <- ((1 - pi) * p + pi) * s # élément 11
mat <- matrix(c(p 00, p 01, # Matrice P
                 p 10, p 11),
               byrow = TRUE,
               nrow = 2) # On poursuit à la prochaine diapo
```

Code R pour générer P II

```
if(eig == TRUE){ # Si on veut utiliser la matrice canonique
  a <- eigen(mat) # On va chercher vecteurs/valeurs propres
 return(a$vectors %*%
                      # Vecteurs propres
  diag(a$values^(power)) %*% # Matrice diagonale avec lambda
  solve(a$vectors))
                           # Inverse des vecteurs propres
## Sinon, on va multiplier manuellement
mat %*%
                             # multiplication matricielle
matrix_bm(p, pi, s,
                             # Même paramètres
         power = power - 1, # (relation récursive)
         eig = FALSE)
                             # fin de la fonction
```

Code R pour $P_{M_k}(s)$ selon l'approche Gani (1982)

```
## fap de
P_M_mat <- function(n, s_tot, p, pi, eig = FALSE){
## Possibilité de vecteur pour s
  sapply(s tot, function(s){
left <- matrix(c(1 - p, p * s), nrow = 1) # Élément de qauche
middle <- matrix bm(p, pi, s, power = n - 1,
                    eig = eig) # Élément du milieu
right <- matrix(c(1, 1), nrow = 2) #Élément de droite
(left %*% middle %*% right)[1, 1] # On retourne
 })
```

Fonction de masse de probabilité explicite

Dekking et Kong (2011) proposent, en jouant avec certaines relations récursives, une forme explicite peu élégante pour la fonction de masse de probabilité de M_k

$$f_{M_k}(j) = \begin{cases} (1-q)(P_{00})^k + qP_{10}(P_{00})^{k-1} & j=k \\ \text{Trop lourd pour cette présentation} & 1 \le j \le k-1 \\ (1-q)P_{01}(P_{11})^{k-1} + q(P_{11})^k & j=k \\ 0, & \text{sinon} \end{cases}$$

Code R pour $f_{M_k}(s)$ selon Dekking et Kong (2011) I

Fonctions utiles aux prochaines diapositives.

```
## Notation de Dekingkong
c_dk <- function(j, k, n, vs, vf, a, b){</pre>
  term1 \leftarrow vs * choose(n - 2 - j, k - 1)
  term2 <- (vs * a + vf * b)/(1 - b) * choose(n - 2 - j, k)
  term3 <- (vf * a * b)/(1 - b)^2 * choose(n - 2 - j, k + 1)
  return(term1 + term2 + term3)
## Notation de Dekingkong
del <-function(a, b){
a*b/((1 - a) * (1 - b))
}
```

Code R pour $f_{M_k}(s)$ selon Dekking et Kong (2011) II

```
## fmp avec notation dekking kong
f M \leftarrow function(n, j, vs, vf = 1 - vs, a, b)
                                 #Hors domaine
  if(j <0 || j > n)return(0)
 if(j == 0)return(vf * (1 -b)^(n - 1)) # Valeur min
 if(j == n)return(vs * (1 -a)^(n - 1)) # Valeur max
 terms <- sapply(0:(j - 1), function(k){
choose(j - 1, k) * del(a, b)^k * c_dk(j = j-1, k = k,
                                   n = n, vs = vs, vf = vf,
                                   a=a, b=b)
})
(1 - b)^{(n - j)} * (1 - a)^{(j - 1)} * sum(terms) #Retourner
```

Processus d'occurence — Exemple

Code R pour $f_{M_k}(s)$ selon Dekking et Kong (2011) III

```
## Notation Cossette 2003 dans la fmp de Dekingkong
f M applied <- function(n, j tot, p, pi){
  mp \leftarrow matrix \ bm(p = p, pi = pi, s = 1, power = 1, eig = FALSE)
  sapply(j tot, function(j){ # Pour chaque j
    term1 \leftarrow ifelse(j == 0, mp[1,1]^n, ifelse(j == n,
                mp[1, 2] * mp[2,2]^n(n-1),
                f_M(n, n - j, vs = mp[1,1], vf = mp[1, 2],
                a = (1 - pi) * p, b = (1 - pi) * (1 - p)))
   term2 <- ifelse(j == 0, mp[2, 1] * mp[1,1]^(n - 1),
                    ifelse(j == n, mp[2,2]^n,
                    f_M(n, n - j, vs = mp[2,1],
                    vf = mp[2, 2], a = (1 - pi) * p,
                    b = (1 - pi) * (1 - p)))
    (1 - p) * term1 + p * term2})
```

Code R pour $P_{M_k}(s)$ selon Dekking et Kong (2011)

On peut se servir de f_{M_k} pour créer une fonction génératrice de probabilité

```
## fap Cossette et collab 2003 avec fmp de Dekina kona
P_M_expl <- function(n, s_tot, p, pi){
  sapply(s_tot, function(s){ # Pour chaque s
    probs <- sapply(0:n, function(j){</pre>
    f_M_applied(n, j, p = p, pi = pi)
    }) # Évaluer les probs
    sum(s^(0:n) * probs) # Appliquer la définition d'une fap
 })
```

Approximation Poisson-Géométrique

Il peut être démontré (Cossette et collab., 2003) que si M_k suit une loi binomiale markovienne stationnaire, alors

$$\lim_{\substack{qk \to \lambda \\ k \to \infty}} M_k \to N = \begin{cases} \sum_{j=1}^K Z_j, & K > 0 \\ 0, & K = 0 \end{cases}$$

Où
$$K \sim \text{Pois}((1-\pi)\lambda)$$
 et $Z_i \sim \text{G\'eo}(1-\pi)$.

- Ainsi, utiliser une approximation Poisson-Géométrique peut nous permettre d'avoir une expression plus familière.
- Par contre, il s'agit d'une approximation qui est possiblement très loin de la réalité.

Code R pour P_N avec l'approximation Poisson-Géométrique

```
P Z <- function(s, pi){
                                              # FGP d.e. 7.
  (1 - pi) * s / (1 - pi * s)
                                             # Géo
P K <- function(s, lam){
                                             # FGP de K
  exp(lam * (s - 1))
                                             # Pois
P N <- function(n, s tot, p, pi){
                                             # FGP de N
  lam <- n * p
  sapply(s tot, function(ss){
    P K(P Z(ss, pi), lam = (1 - pi) * lam) # Loi composée
  })
```

Comparaison entre l'approximation et la distribution exacte

Calcul pour la Table 1 de Cossette et collab. (2003) I

On commence par utiliser la fonction génératrice des probabilité de Gani (1982) et FFT.

```
pi_to_calculate \leftarrow c(0, 0.2, 0.4, 0.6, 0.8)
table1 mk <- sapply(pi to calculate, function(piii){
  f const <- c(0, 1) # Sévérité dégénérée à 1
  aa <- 2^8
                  # Longueur désirée
 nb <- length(f const) # Longueur actuelle</pre>
  ftc <- fft(c(f_const, rep(0, aa - nb))) # FFT sev
  f M k <- Re(fft(P M mat(20, ftc, 0.1, pi = piii, eig = TRUE),
  TRUE))/aa # On inverse avec la fqp de Gani
  return(round(f M k, 6)[1:21])
})
```

Calcul pour la Table 1 de Cossette et collab. (2003) II

On peut ensuite utiliser le format explicite de Dekking et Kong (2011).

Calcul pour la Table 1 de Cossette et collab. (2003) III

Finalement, on peut approximer avec la loi Poisson-Géométrique

```
table1_mk3 <- sapply(pi_to_graph2, function(piii){
  f_const <- c(0, 1)  # Sévérité dégénérée à 1
  aa <- 2^8  # Longueur désirée
  nb <- length(f_const) # Longueur actuelle
  ftc <- fft(c(f_const, rep(0, aa - nb))) # FFT sev
  f_M_k <- Re(fft(P_N(20, ftc, 0.1, pi = piii), TRUE))/aa # On inv
  return(round(f_M_k, 6)[1:21])
})</pre>
```

Reconstitution de la Table 1 de Cossette et collab. (2003)

\overline{j}	$\pi = 0$	$\pi = 0.2$	$\pi = 0.4$	$\pi = 0.6$	$\pi = 0.8$
О	0.121577	0.184591	0.277761	0.414377	0.613109
1	0.270170	0.258218	0.218789	0.151075	0.066393
2	0.285180	0.229564	0.176109	0.120051	0.056652
3	0.190120	0.158101	0.126901	0.092122	0.048010
4	0.089779	0.091064	0.084107	0.068579	0.040413
5	0.031921	0.045603	0.052058	0.049682	0.033794
6	0.008867	0.020308	0.030371	0.035100	0.028072
7	0.001970	0.008155	0.016801	0.024217	0.023165
8	0.000356	0.002979	0.008845	0.016331	0.018987
9	0.000053	0.000996	0.004442	0.010769	0.015456
10	0.000006	0.000305	0.002130	0.006944	0.012493
11	0.000001	0.000086	0.000975	0.004376	0.010025

Table - $P(M_{20} = j)$ pour q = 0.1 et $\pi \in \{0, 0.2, 0.4, 0.6\}$

Processus du montant des pertes

- 1 Processus d'occurence
- 2 Processus du montant des pertes
 - Définition
 - Résultats importants
 - Aggrégation
 - Exemples numériques
- 3 Probabilité de ruine sur un horizon fin
- 4 Conclusion

Modèle binomial markovien composé

Maintenant que nous avons toutes les quantités d'intérêt concernant notre processus d'occurrence de sinsitres, on peut s'intéresser au montant total des pertes associés à ces occurrences.

On définit

$$S_k = \begin{cases} \sum_{j=1}^{M_k} X_j, & M_k > 0 \\ 0, & M_k = 0 \end{cases}$$

On définit (ou rappelle) donc

- \blacksquare X_i fait partie d'une suite de variables aléatoires iid qui représente le montant du *i*^{ème} sinistre.
- \blacksquare M_k représente le nombre total de réclamations sur les k périodes.
- \blacksquare S_{ν} qui représente le montant total des coûts sur les k périodes.

Espérance et variance des coûts S_k

On peut calculer l'espérance comme suit

$$E[S_k] = E[M_k]E[X]$$
$$= kqE[X]$$

La variance s'obtient comme suit

$$Var[S_k] = E[M_k]Var[X] + Var[M_k]E[X]^2$$
$$= kqVar[X] + Var[M_k]E[X]^2$$

Cette quantité a été calculée plus tôt, mais n'a pas été retranscrite ici par soucis de simplicité.

Comparaison des fonctions de répartition selon π

$F_{S_{100}}(s)$ selon la valeur π

q = 0.1 et sévérité $X \sim logarithimque(\beta = 26.51902)$

Exemple numérique avec S_k

Exemple associé à la table 2 de Cossette et collab. (2003)

- Calculer $F_{S_{100}}(j)$ pour j = 0, 1, ..., 300
- $X \sim \text{logarithmique}(\beta = 26.519019)$
- Utiliser k = 20 et q = 0.1
- Répéter l'exercice pour $\pi = 0$ (indépendance), 0.4 et 0.8

Code R pour la Table 2 de Cossette et collab. (2003)

```
beta <- 26.519019
f log <- sapply(1:2e2, function(j)
beta^{j}/(j * (1 + beta)^{j} * log(1 + beta)))
pi for table2 \leftarrow c(0, 0.4, 0.8) # Pi à essayer
table2basic <- sapply(pi_for_table2, function(piiii){
  aa <- 2^10; nb <- length(f log)
  ft_log <- fft(c(0, f_log, rep(0, aa - 1 - nb))) #FFT sev
  f S n <- Re(fft(P M mat(100, ft log, p = 0.1, pi = piiii, eig =
  TRUE))/aa # On inverse
  F S n <- cumsum(f S n)
 F S n[1:301]
})
```

Table 2 de Cossette et collab. (2003)

σ	= 0.8
0 0.000027 0.001967 0.12	21793
5 0.001694 0.015717 0.17	75101
10 0.008407 0.036629 0.21	13830
25 0.073175 0.131571 0.31	4676
50 0.294404 0.341559 0.46	0844
100 0.725822 0.707847 0.68	35624
150 0.920067 0.895331 0.82	28891
200 0.980005 0.967197 0.9	11973
250 0.995436 0.990615 0.95	6810
300 0.998960 0.997439 0.97	9639

Table – $F_{S_k}(s)$ selon différentes valeurs de π et q=0.1

robabilité de ruine sur un horizon fi

- 1 Processus d'occurence
- 2 Processus du montant des pertes
- 3 Probabilité de ruine sur un horizon fini
 - Procédure de simulation pour la probabilité de ruine sur un horizon de temps fini
 - Illustration
- 4 Conclusion

Définition

On approche le problème d'une manière différente, on peut écrire S_k de la manière suivante

$$S_k = \sum_{i=1}^k Y_i$$
 où $Y_i = I_i B_i$

La réserve d'une compagnie au temps *k* s'écrit donc

$$U_k = U_{k-1} + 1 - Y_k$$
 avec une prime par période tel que $1 = (1 + \eta)E[Y]$

La probabilité de ruine pour une compagnie ayant un capital initial $U_0=u$ sur un horizon de temps n est donc

$$\psi(u,n) = 1 - P(U_k \ge 0, \in 1, 2, ..., n)$$

Définition

Pour notre algorithme de simulation pour évaluer la probabilité de ruine sur un horizon de temps fini, nous aurons besoin de s'intéresser davantage à Y_i .

La distribution conditionnelle de Y_j est la suivante (supposant un support strictement positif pour B_j):

$$(Y_j|Y_{j-1}=y)=(I_j|I_{j-1}=\mathbf{1}_{\{y>0\}})B_j$$

Finalement, pour faire des simulations, on utilisera le théorème de la fonction quantile, qui nous permet de simuler une réalisation d'une variable aléatoire quelconque $X^{(1)}$ à l'aide de la réalisation d'une loi uniforme $U^{(1)}$ et de la fonction de répartition inverse F_X^{-1}

$$X^{(1)} = F_X^{-1}(U^{(1)})$$

Algorithme de simulation

Algorithme de simulation pour l'occurence de la ruine

- Initialiser un vecteur $\underline{I} = \{I_0, I_1, \dots, I_k\}$
- Simuler une réalisation I_0 tel que $P(I_0 = 1) = q$
- Pour chaque $j \in \{1, ... k\}$
 - Simuler une réalisation de I_j conditionnellement à la simulation de I_{j-1} (en utilisant que $P(I_j = b | I_{j-1} = a) = P_{ab}$)
 - \triangleright Simuler une réalisation de B_i .
 - Example Calculer la réalisation de Y_j tel que $Y_j = I_j B_j$
 - Retourner $U_j = U_{j-1} + 1 Y_j$
- 4 Retourner $\mathbf{1}_{\{\min(\underline{U})<0\}}$

Soit $R_k(u)$ une variable aléatoire indiquant une ruine après k période avec capital initial u et n le nombre de simulation désiré pour l'algorithme

Algorithme de simulation pour la probabilité de ruine

- Initialiser un vecteur $R_k(u) = \{R_k^{(1)}(u), R_k^{(2)}(u), \dots, R_k^{(n)}(u)\}$
- 2 Pour chaque $j \in \{1, \dots n\}$
 - Simuler une occurrence de ruine sur horizon de temps discret $\tilde{R}_{\nu}^{(j)}(u)$ à l'aide de l'algorithme précédent
- Retourner la probabilité de ruine estimée $\widetilde{\psi}(u,k)=rac{1}{n}\sum_{j=1}^{n}\tilde{R}_{k}^{(j)}(u)$

Code R pour les simulations I

```
## Paramètres pour la simulation
k per <- 50
           # nombre de périodes
n simul <- 50
                   # Quantité de parcours à simuler
eta <- 0.15
                   # Marge de profit désirée
11 <- 13
                   # Capital initial
## Paramètres pour la fréquence et la sévérité
p < -0.3
               # paramètre q de la binomiale markovienne
pi <- 0.2
                   # paramètre de dépendance de la BM
lam <- (p*(1 + eta)) # Paramètre lambda de la loi exponentielle
```

Code R pour les simulations II

```
simuls <- sapply(1:n_simul, function(i){ # Pour chaque simul
 uu <- c(u, rep(0, k_per))
                                            # Vec U k
 ii <- c(rbinom(1, 1, p), rep(0, k_per)) # Vec I
 mat <- matrix bm(p, pi, s =1) # Matrice de transition
  for (k in 1:k_per) { # Pour chaque période
    ## Prob P(I k = 1/I \{k-1\})
    prob <- ifelse(ii[k] == 1, mat[2, 2], mat[1, 2])</pre>
    ii[k + 1] <- rbinom(1, 1, prob) # Simuler I k
    b <- rexp(1, lam) # Simuler la severite
    v <- ii[k + 1] * b # Calculer Y</pre>
    uu[k + 1] \leftarrow uu[k] + 1 - y # U k = U \{k - 1\} + 1 - Y k
 return(uu) # Retourner la suite (U 1, ... U n) simulée
```

Comparaison des fonctions de répartition selon π

Simulations de U_k avec modèle binomial markovien composé

$$q = 0.3, \ \pi = 0.2, \ u = 13, \ \eta = 0.15$$
 et sévérité $X \sim Exp(\lambda = q(1 + \eta))$

Conclusion

- 1 Processus d'occurence
- 2 Processus du montant des pertes
- 3 Probabilité de ruine sur un horizon fini
- 4 Conclusion

Conclusion

Dans cette présentation, nous avons étudié le modèle binomial markovien.

- Nous avons comparé les approches de Cossette et collab. (2003), de Dekking et Kong (2011) et de Gani (1982).
- Nous avons pu étudier le modèle binomial composé avec des exemples numériques
- Nous avons pu aussi étudier les modèles de risques en temps discret

Modèle hinomial markovien

Bibliographie I

- Cossette, H., D. Landriault et □. Marceau. 2003, « Ruin probabilities in the compound markov binomial model », *Scandinavian Actuarial Journal*, vol. 2003, nº 4, p. 301–323.
- Dekking, M. et D. Kong. 2011, « Multimodality of the markov binomial distribution », *Journal of Applied Probability*, vol. 48, n° 4, p. 938–953.
- Edwards, A. 1960, « The meaning of binomial distribution », *Nature*, vol. 186, nº 4730, p. 1074–1074.
- Gani, J. 1982, « On the probability generating function of the sum of markov bernoulli random variables », *Journal of Applied Probability*, vol. 19, n° A, p. 321–326.
- Klotz, J. 1973, « Statistical inference in bernoulli trials with dependence », *The Annals of statistics*, p. 373–379.