LCE0216 Introdução à Bioestatística Florestal 10. Teste de hipóteses

Profa. Dra. Clarice Garcia Borges Demétrio Monitor: Eduardo E. R. Junior

Escola Superior de Agricultura "Luiz de Queiroz" Universidade de São Paulo

Piracicaba, 05 de junho de 2018

Inferência estatística

Dado a caracterização da população por meio de uma distribuição de probabilidades, há dois principais objetivos:

- Estimar os parâmetros dessa população;
- ► **Testar** hipóteses (afirmações) sobre esses parâmetros.

Testes de hipóteses

$$X \sim ext{Distribuição}(heta)$$
 $\begin{cases} ext{H}_0: heta = heta_0 & ext{(hipótese nula)} \\ ext{H}_a: heta
eq heta_0 & ext{(hipótese alternativa)} \end{cases}$

Tipos de erro:

- ▶ Rejeitar H_0 , quando H_0 é verdadeira (erro tipo I);
- ▶ Não rejeitar H_0 , quando H_0 é falsa (erro tipo II).

	H_o verdadeira	H_o falsa
Não rejeitar H_0	Decisão correta	Erro tipo II (β)
Rejeitar H_0	Erro tipo I (α)	Decisão correta

Hoje a noite você vai a uma festa. A previsão do tempo diz que há 80% de probabilidade de chuva. Você leva guarda-chuva?

 $\begin{cases} H_0: \text{ vai chover hoje a noite} \\ H_a: \text{ Não vai chover hoje a noite} \end{cases}$

Erro tipo I: Você rejeita H_0 , acredita que não vai chover, foi sem guarda-chuva e se molha.

Erro tipo II: Você não rejeita H_0 , acredita que vai chover, leva guarda-chuva e passa a noite toda carregando um guarda-chuva sem usá-lo.

Conceitos

- Hipóteses: Estabelecem as crenças (afirmações) a serem testadas. São definidas a partir do conhecimento do problema e podem ser do tipo simples ou composta;
- Nível de significância (α): associado a regra de decisão. É a probabilidade de se cometer erro tipo I,
 P(rejeitar H₀ | H₀ é verdadeira);
- Estatística do teste: Uma estatística que depende do parâmetro de interesse, mas que sua distribuição seja conhecida e independa desse parâmetro;
- ▶ **Regra da decisão:** Regra que estabelece, com base nos dados obtidos e no nível de significância, quando *H*₀ será rejeitada;
- ▶ **Nível descritivo (p-valor):** Probabilidade de se obter estatísticas mais extremas para rejeição de H₀ do que aquela fornecida pela amostra.

Tipos de hipóteses

► Hipóteses simples:

$$H_0$$
: $\theta = \theta_0$ versus H_a : $\theta = \theta_a$;

► Hipóteses compostas:

▶ Unilateral (à esquerda): H_0 : $\theta = \theta_0$ versus H_a : $\theta < \theta_0$;

▶ Unilateral (à direita): H_0 : $\theta = \theta_0$ versus H_a : $\theta > \theta_0$;

▶ Bilateral: H_0 : $\theta = \theta_0$ versus H_a : $\theta \neq \theta_0$;

Passos para construção de um teste de hipósteses

- **1** Formule as hipóteses, nula (H_0) e alternativa (H_a) ;
- Identifique a estatística (estimador) adequada. Conhecer, ao menos assintoticamente, a distribuição amostral desse estimador;
- 3 Fixe o nível de significância (α), probabilidade do erro tipo I e construa a regra de decisão;
- 4 Use as observações da amostra para calcular o valor da estatística do teste;
- 5 Compare o valor da estatística calculado na amostra com as regiões da regra de decisão, para rejeitar ou não a hipótese nula.

Tipos de testes de hipóteses

Nesse curso serão apresentados os procedimentos para testar hipóteses relacionadas a:

- Testes para proporção;
- Testes para média:
 - com variância conhecida;
 - com variância desconhecida;
- Testes para comparação de variâncias;
- ► Testes para comparação de médias:
 - dados pareados (dependentes);
 - dados não-pareados (independentes);
- Testes em tabelas de contigência.

1

Testes para proporção

Construção do teste

- ▶ População: $X = \{0(\text{fracasso}), 1(\text{sucesso})\}; X \sim \text{Bernoulli}(\pi);$
- Hipóteses:

$$\begin{cases} H_0: \pi = \pi_0 & \text{(hipótese nula)} \\ H_a: \pi \neq \pi_0 & \text{(hipótese alternativa)} \end{cases}$$

► Com base em uma amostra de tamanho n, $n \to \infty$, sob H_0 , sabe-se que

$$\hat{P} \sim N(\pi_0, \pi_0(1 - \pi_0)/n);$$

$$Z = \frac{\hat{P} - \pi_0}{\sqrt{\pi_0(1 - \pi_0)/n}} \sim N(0, 1)$$

Compara-se a estatística do teste

$$z_{calc} = \frac{\hat{p} - \pi_0}{\sqrt{\pi_0 (1 - \pi_0)/n}}$$

com um quantil z_{tab} da distribuição normal padrão, que represente o indicado pela hipótese alternativa.

Exemplo 1: Um produtor precisa decidir pela compra ou não de sementes fornecidas por um distribuidor, que afirma que a proporção de germinação de sementes é $\pi=0,94$. Para tanto ele observou a proporção de germinação de uma amostra aleatória simples de 100 sementes e encontrou o valor $\hat{p}=0,93$. Com base nesse resultado o produtor poderia discordar do distribuidor?

- ► Assuma um nível de significância de 5%;
- ► Teste a desigualdade (≠) e se o distribuidor está sendo muito otimista (<);</p>
- ▶ Determine em regras de decisão em termos das proporções amostrais e calcule o valores de *p*.

Exemplo 2: Após vários anos de acompanhamento de parcelas permanentes, uma engenheira florestal concluiu que, das árvores que morrem num fragmento florestal, 75% são devido ao abafamento da copa por cipós. No ano seguinte ocorreu um período prolongado de intensa seca e 30 árvores morreram durante o ano, das quais 24 mortes podem ser atribuídas ao efeito dos cipós. A engenheira florestal afirma que a proporção de árvores que morreram devido aos cipós (*p*) foi maior neste ano de seca intensa do que nos anos anteriores. Verifique a afirmação utilizando o nível de 5% de significância.

Teste para média

Construção do teste (variância conhecida)

- ► População: $X \sim N(\mu, \sigma^2)$, σ^2 conhecido;
- Hipóteses:

$$\begin{cases} H_0: \mu = \mu_0 & \text{(hipótese nula)} \\ H_a: \mu \neq \mu_0 & \text{(hipótese alternativa)} \end{cases}$$

ightharpoonup Com base em uma amostra de tamanho n, sob H_0 , sabe-se que

$$\bar{X} \sim N(\mu_0, \sigma^2/n);$$

$$Z = \frac{\bar{X} - \mu_0}{\sqrt{\sigma^2/n}} \sim N(0, 1)$$

Compara-se a estatística do teste

$$z_{calc} = \frac{\bar{x} - \mu_0}{\sqrt{\sigma^2/n}}$$

com um quantil z_{tab} da distribuição normal padrão, que represente o indicado pela hipótese alternativa.

Exemplo 3: Uma balança para encher pacotes de sementes automaticamente está programada para produzir pacotes com peso médio de 20 kg e desvio padrão de 0,20 kg.

Periodicamente é feita uma inspeção para verificar se o peso médio está sob controle. Para este fim, foi selecionada uma amostra de 8 pacotes de sementes, cujos resultados foram:

20,3	19,8	20,3	19,7	19,8	19,7	19,8	19,8

Teste a hipótese que a a balança se desregulou e está produzindo um peso médio inferior a 20 kg, assumindo que a variância permanece inalterada. Use o nível de significância de 5%.

Construção do teste (variância desconhecida)

- ▶ População: $X \sim N(\mu, \sigma^2)$;
- ► Hipóteses:

$$\begin{cases} H_0: \mu = \mu_0 & \text{(hipótese nula)} \\ H_a: \mu \neq \mu_0 & \text{(hipótese alternativa)} \end{cases}$$

 \triangleright Com base em uma amostra de tamanho n, sob H_0 , sabe-se que

$$\bar{X} \sim N(\mu_0, \sigma^2/n)$$
; e como σ^2 é desconhecido,

$$T = \frac{\bar{X} - \mu_0}{\sqrt{S^2/n}} \sim t_{(n-1)}, \quad S^2 = \frac{\sum_{i=1}^n X_i^2 - (\sum_{i=1}^n X_i)^2/n}{n-1}$$

Compara-se a estatística do teste

$$t_{calc} = \frac{\bar{x} - \mu_0}{\sqrt{s^2/n}}$$

com um quantil t_{tab} da distribuição t de Student com n-1 graus de liberdade, que represente o indicado pela hipótese alternativa.

Exemplo 3 (revisitado): Uma balança para encher pacotes de sementes automaticamente está programada para produzir pacotes com peso médio de 20 kg e desvio padrão de 0,20 kg. Periodicamente é feita uma inspeção para verificar se o peso médio está sob controle. Para este fim, foi selecionada uma amostra de 8 pacotes de sementes, cujos resultados foram:

20,3 19,8 20,3	19,7	19,8	19,7	19,8	19,8
----------------	------	------	------	------	------

Teste a hipótese que a a balança se desregulou e está produzindo um peso médio inferior a 20 kg. Use o nível de significância de 5%.

Exemplo 4: Um cientista deseja saber se o pH de um solo é ácido. Ele toma uma amostra de 10 unidades e obteve os valores de pH:

5,8	6,0	7,0	6,2	6,2
7,1	6,4	5,5	5,8	5,9

Tire uma conclusão supondo nível de significância de 5%.

Exemplo 4: Um cientista deseja saber se o pH de um solo é ácido. Ele toma uma amostra de 10 unidades e obteve os valores de pH:

5,8	6,0	7,0	6,2	6,2
7,1	6,4	5,5	5,8	5,9

Tire uma conclusão supondo nível de significância de 5%.

Observação: A escala de pH vai do 1 ao 14, sendo 7 a neutralidade, abaixo de 7 a acidez e acima de 7 a alcalinidade.

Inferência para duas populações

Conceitos iniciais

Interesse

Dadas duas populações, caracterizadas em uma mesma família de distribuições, o objetivo nesse caso é **testar afirmações comparativas sobre os parâmetros das duas populações**.

Descrição das populações,

$$X_1 \sim \text{Distribuição}(\theta_1)$$

 $X_2 \sim \text{Distribuição}(\theta_2)$

Hipóteses de interesse,

$$\begin{cases} H_0: \theta_1 = \theta_2 & \text{(hipótese nula)} \\ H_a: \theta_1 \neq \theta_2 & \text{(hipótese alternativa)} \end{cases}$$

Conceitos iniciais

Com relação a alguma variável contínua, podemos considerar que as populações são iguais? 3

Teste para comparação de variâncias

Construção do teste

População:

$$X_1 \sim N(\mu_1, \sigma_1^2)$$

 $X_2 \sim N(\mu_2, \sigma_2^2);$

► Hipóteses:

$$\begin{cases} H_0: \sigma_1 = \sigma_2 \ \Rightarrow \ \frac{\sigma_1}{\sigma_2} = 1 & \text{(hipótese nula)} \\ < & < \\ H_a: \sigma_1 \neq \sigma_2 \ \Rightarrow \ \frac{\sigma_1}{\sigma_2} \neq 1 & \text{(hipótese alternativa)} \end{cases}$$

Construção do teste

► Considerando amostras aleatórias de X_1 e X_2 independentes, de tamanho n_1 e n_2 , respectivamente. Sob H_0 , sabe-se que

$$F = \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1); \quad \text{em que}$$

$$S_j^2 = \frac{\sum_{i=1}^n X_{ji}^2 - (\sum_{i=1}^n X_{ji})^2 / n}{n - 1}, \quad j = 1, 2.$$

Na prática, considera-se o cálculo da estatística F de tal forma que $F = S_1^2/S_2^2 > 1$, ou seja, utiliza-se como numerador a maior variância amostral observada.

Compara-se a estatística do teste

$$F_{calc} = s_1^2/s_2^2,$$

com a região critíca (RC) construída de tal forma que $P(F \in RC) = \alpha$. Para hipóteses bilaterais, a RC é dada por $(0, F_{tab}^{-1}) \cup (F_{tab}, \infty)$, em que $P(F > F_{tab}) = \alpha/2$.

Exemplo 5: Um grupo de pesquisadores tem interesse em comparar se a proliferação de fungos em plantas tem relação com determinados tipos de solo. Para isso, os pesquisadores mensuraram as áreas atacadas por fungos em 13 árvores com tipo de solo A e 9 árvores com tipo de solo B. Os resultados obtidos foram

Tipo de solo A	Tipo de solo B
$\sum_{i=1}^{13} x_{1i} = 104 \text{cm}^2$	$\sum_{i=1}^{9} x_{2i} = 63 \text{cm}^2$
$\sum_{i=1}^{13} x_{1i}^2 = 997 \text{cm}^4$	$\sum_{i=1}^{9} x_{2i}^2 = 497 \text{cm}^4$

Pode-se considerar que as àreas atacadas por fungos nos diferentes tipos de solo possuem a mesma variabilidade?

4

Teste para comparação de médias

Conceitos iniciais

Dados pareados vs dados não pareados

- Dados pareados (dependentes): São casos em que é razoável supor que há correlação entre as observações das diferentes populações. Nesse curso, apresenta-se testes apenas para quando essa dependência se dá em pares. Exemplos:
 - Experimentos do tipo antes e depois;
 - Diferentes mensurações em uma mesma unidade amostral.
- Dados não pareados (independentes): São casos em que é razoável supor a independência entre as observações das diferentes populações.

Construção do teste (dados pareados)

▶ População: Nesse caso, como a amostra se dá por pares (X_1, X_2) , considera-se as diferenças $D = X_2 - X_1$,

$$D = X_2 - X_1 \sim N(\mu_D, \sigma_D^2).$$

Retornando a um problema de uma única população, conforme visto anteriormente.

Hipóteses:

$$\begin{cases} H_0: \mu_D = \mu_2 - \mu_1 = 0 & \text{(hipótese nula)} \\ H_a: \mu_D = \mu_2 - \mu_1 \neq 0 & \text{(hipótese alternativa)} \end{cases}$$

► Com base em uma amostra pareada de tamanho n, sob H_0 , sabe-se que

$$ar{D} = ar{X}_2 - ar{X}_1 \sim N(0, \sigma_D^2/n)$$
; e como σ_D^2 é desconhecido, $T = rac{ar{X}_2 - ar{X}_1}{\sqrt{S_D^2/n}} \sim t_{(n-1)}$, $S_D^2 = rac{\sum_{i=1}^n (D_i)^2 - (\sum_{i=1}^n D_i)^2/n}{n-1}$

Exemplo 6: Um pesquisador deseja verificar se a altura de uma árvore em pé, medida usando-se o método trigonométrico (aproximado), não difere da altura da árvore medida no chão. Com esse objetivo, mediu as alturas das árvores pelo método trigonométrico, derrubou-as e mediou novamente suas alturas.

no	Árvore em pé (A)	Árvore no chão (B)	Diferença (D=B-A)
1	20,4	21,7	1,3
2	25,4	26,3	0,9
3	25,6	26,8	1,2
4	26,6	26,2	-0,4
5	28,6	27,3	-1,3
6	28,7	29,5	0,8
7	29,0	32,0	3,0
8	29,8	30,9	1,1
9	30,5	32,3	1,8
10	30,9	32,3	1,4
11	31,1	31,7	0,6
12	25,6	28,1	2,5

Pode-se considerar que a altura obtida pelo método aproximado equivale-se a altura real (obtida derrubando-se a árvore)?

Exemplo 6: Um pesquisador deseja verificar se a altura de uma árvore em pé, medida usando-se o método trigonométrico (aproximado), não difere da altura da árvore medida no chão. Com esse objetivo, mediu as alturas das árvores pelo método trigonométrico, derrubou-as e mediou novamente suas alturas.

n ^o	Árvore em pé (A)	Árvore no chão (B)	Diferença (D=B-A)
1	20,4	21,7	1,3
2	25,4	26,3	0,9
3	25,6	26,8	1,2
4	26,6	26,2	-0,4
5	28,6	27,3	-1,3
6	28,7	29,5	0,8
7	29,0	32,0	3,0
8	29,8	30,9	1,1
9	30,5	32,3	1,8
10	30,9	32,3	1,4
11	31,1	31,7	0,6
12	25,6	28,1	2,5

Pode-se considerar que a altura obtida pelo método aproximado equivale-se a altura real (obtida derrubando-se a árvore)? $\sum D_i = 12,9 \text{ e} \sum D_i^2 = 28,45.$

Construção do teste (dados não pareados) Variâncias iguais

Populações:

$$X_1 \sim N(\mu_1, \sigma^2)$$
 e $X_2 \sim N(\mu_2, \sigma^2)$;

► Hipóteses:

$$\begin{cases} H_0 \colon \mu_1 = \mu_2 \ \Rightarrow \ \mu_d = \mu_2 - \mu_1 = 0 & \text{(hipótese nula)} \\ \begin{matrix} < & < \\ H_a \colon \mu_1 \neq \mu_2 \ \Rightarrow \ \mu_d = \mu_2 - \mu_1 \neq 1 \\ > & > \end{matrix} & \text{(hipótese alternativa)} \end{cases}$$

Construção do teste (dados não pareados) Variâncias iguais

► Considerando amostras aleatórias de X_1 e X_2 independentes, de tamanho n_1 e n_2 , respectivamente, e os estimadores

$$\bar{X}_j = \frac{\sum_{i=1}^n X_{ji}}{n_i}; \quad S_j^2 = \frac{\sum_{i=1}^n X_{ji}^2 - (\sum_{i=1}^n X_{ji})^2/n}{n-1}, \quad j = 1, 2.$$

Sob H_0 e como σ^2 é desconhecido, sabe-se que

$$\begin{split} \bar{X}_d &= \bar{X}_2 - \bar{X}_1 \sim N\left(0, \sigma^2\left(\frac{1}{n_2} + \frac{1}{n_1}\right)\right); \\ T &= \frac{\bar{X}_d - \mu_d}{\hat{\sigma}_{\bar{X}_d}} = \frac{\bar{X}_2 - \bar{X}_1}{\sqrt{S^2/(\frac{1}{n_2} + \frac{1}{n_1})}} \sim t_{(n_2 + n_1 - 2)} \\ \text{em que} \quad S^2 &= \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_2 + n_1 - 2} \end{split}$$

Construção do teste (dados não pareados) Variâncias iguais

Portanto, considera-se como estatística do teste

$$t_{calc} = \frac{\bar{x}_2 - \bar{x}_1}{\sqrt{s^2/(\frac{1}{n_2} + \frac{1}{n_1})}}, \text{ em que } s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_2 + n_1 - 2}.$$

- ▶ Para um nível de significância α , a região crítica (RC) é construída de tal forma que $P(t_{(n_1+n_2-2)} \in RC) = \alpha$.
 - Para hipóteses uniterais: $P(t_{(n_1+n_2-2)} > t_{tab}) = \alpha;$
 - Para hipóteses bilaterais: $P(-t_{tab} < t_{(n_1+n_2-2)} < t_{tab}) = 1 \alpha.$

Exemplo 5 (revisitado): Um grupo de pesquisadores tem interesse em comparar se a proliferação de fungos em plantas tem relação com determinados tipos de solo. Para isso, os pesquisadores mensuraram as áreas atacadas por fungos em 13 árvores com tipo de solo A e 9 árvores com tipo de solo B. Os resultados obtidos foram

Tipo de solo A	Tipo de solo B
$\sum_{i=1}^{13} x_{1i} = 104 \text{cm}^2$	$\sum_{i=1}^{9} x_{2i} = 63 \text{cm}^2$
$\sum_{i=1}^{13} x_{1i}^2 = 997 \text{cm}^4$	$\sum_{i=1}^{9} x_{2i}^2 = 497 \text{cm}^4$

Pode-se considerar que a área média obtida com o tipo de solo A é maior que a obtido com o tipo de solo B?

Construção do teste (dados não pareados) Variâncias desiguais

Populações:

$$X_1 \sim N(\mu_1, \sigma_1^2)$$
 e $X_2 \sim N(\mu_2, \sigma_2^2)$;

► Hipóteses:

$$\begin{cases} H_0 \colon \mu_1 = \mu_2 \ \Rightarrow \ \mu_d = \mu_2 - \mu_1 = 0 & \text{(hipótese nula)} \\ \begin{matrix} < & < \\ H_a \colon \mu_1 \neq \mu_2 \ \Rightarrow \ \mu_d = \mu_2 - \mu_1 \neq 1 \\ > & > \end{matrix} & \text{(hipótese alternativa)} \end{cases}$$

Construção do teste (dados não pareados) Variâncias desiguais

▶ Considerando amostras aleatórias de X_1 e X_2 independentes, de tamanho n_1 e n_2 , respectivamente, e os estimadores

$$\bar{X}_j = \frac{\sum_{i=1}^n X_{ji}}{n_i}; \quad S_j^2 = \frac{\sum_{i=1}^n X_{ji}^2 - (\sum_{i=1}^n X_{ji})^2/n}{n-1}, \quad j = 1, 2.$$

Sob H_0 e como σ^2 é desconhecido, sabe-se que

$$\begin{split} \bar{X}_d &= \bar{X}_2 - \bar{X}_1 \sim N\left(0, \left(\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right)\right); \\ T &= \frac{\bar{X}_d - \mu_d}{\hat{\sigma}_{\bar{X}_d}} = \frac{\bar{X}_2 - \bar{X}_1}{\sqrt{(S_1^2/n_1 + S_2^2/n_2)}} \overset{\text{\tiny aprox}}{\sim} t_{(v)} \\ \text{em que} \quad v &= \frac{(S_1^2/n_1 + S_2^2/n_2)^2}{(S_1^2/n_1)^2/(n_1 - 1) + (S_2^2/n_2)^2/(n_2 - 1)} \end{split}$$

Construção do teste (dados não pareados) Variâncias desiguais

Portanto, considera-se como estatística do teste

$$t_{calc} = \frac{\bar{x}_d - \mu_d}{\hat{\sigma}_{\bar{X}_d}} = \frac{\bar{x}_2 - \bar{x}_1}{\sqrt{(s_1^2/n_1 + s_2^2/n_2)}}$$

- ▶ Para um nível de significância α , a região crítica (RC) é construída de tal forma que $P(t_v \in RC) = \alpha$.
 - Para hipóteses uniterais: $P(t_{(v)} > t_{tah}) = \alpha$;

 $P(-t_{tab} < t_{(v)} < t_{tab}) = 1 - \alpha.$

Sendo os graus de liberdade v, o inteiro mais próximo de

$$\frac{(s_1^2/n_1+s_2^2/n_2)^2}{(s_1^2/n_1)^2/(n_1-1)+(s_2^2/n_2)^2/(n_2-1)}$$

Exemplos

Exemplo 6: Um grupo de pesquisadores tem interesse em em verificar qual espécie de árvore produz vigas de madeira com maior resistência. Tomando-se 15 vigas de madeira de uma espécie A e 20 de uma espécie B, obtêm-se os resultados

	Espécie A	Espécie B
Média	70,5Mpa	84,3Mpa
Variância	81,6Mpa ²	210,8Mpa ²

Qual espécie de árvores produz vigas de madeira com maior resistência? Utilize um nível de significância de 10%.

5

Testes em tabelas de contigência

- ► Tabelas de contingência:
 - ► Contagem de sobrevivência de enxertos de ameixeiras ⇒ comparar duas épocas de plantio

Distribuição conjunta das frequências das variáveis época de plantio e sobrevivência de enxertos de ameixeiras

Época	Raízes		Total
	Sobreviventes	Mortas	
Fora da primavera	263	217	480
Na primavera	115	365	480
Total	378	582	960

- ► Tabelas de contingência:
 - Contagem de plantas segregando para dois caracteres: ciclo e virescência (formação de cloroplastos nas pétalas, originando plantas verdes), numa progênie da espécie X

Ciclo	Virescência		Total
	Normal	Virescente	
Tardio	3470	910	4380
Precoce	1030	290	1320
Total	4500	1200	5700

► Tabelas de contingência:

A	I	3	Total
	B_1	B_2	
$\overline{A_1}$	π_{11}	π_{12}	π_{1} .
A_2	π_{21}	π_{22}	π_2 .
Total	$\pi_{\cdot 1}$	$\pi_{\cdot 2}$	π

- Hipótese de homogeneidade das duas distribuições binomiais
 - ► Contagem de sobrevivência de enxertos de ameixeiras ⇒ comparar duas épocas de plantio

Distribuição conjunta das frequências das variáveis época de plantio e sobrevivência de enxertos de ameixeiras

Época	Raízes		Total
_	Sobreviventes	Mortas	
Fora da primavera	263	217	480
Na primavera	115	365	480
Total	378	582	960

$$H_0: \pi_{1j}=\pi_{2j}$$

$$H_a:\pi_{1j}\neq\pi_{2j}$$

 H_0 : a proporção de sobreviventes na primavera é igual a proporção de sobreviventes fora dela

- Hipótese de independência entre as variáveis
 - Contagem de plantas segregando para dois caracteres: ciclo e virescência (formação de cloroplastos nas pétalas, originando plantas verdes), numa progênie da espécie X

Ciclo	Virescência		Total
	Normal	Virescente	
Tardio	3470	910	4380
Precoce	1030	290	1320
Total	4500	1200	5700

$$H_0: \pi_{ij} = \pi_{i}.\pi_{.j}$$
$$H_a: \pi_{ij} \neq \pi_{i}.\pi_{.j}$$

 H_0 : a proporção de elementos classificados na categoria i da variável A e categoria j da variável B é igual ao produto das marginais dessa categoria

Estatística do teste

$$\chi^2_{cal} = \sum_{i=1}^{s} \sum_{j=1}^{r} \frac{(n_{ij} - e_{ij})^2}{e_{ij}},$$

em que

 n_{ij} é a frequência observada de elementos na categoria i da variável A e categoria j da variável B, e_{ij} é a frequência esperada de elementos nessa categoria, dada por:

$$e_{ij}=\frac{n_{i\cdot}n_{\cdot j}}{n},$$

 $n_{i\cdot}$, $n_{\cdot j}$ e $n_{\cdot\cdot}$ representam as frequências marginais e o total da tabela de contingência a ser analisada.

Distribuição associada

$$\chi^2 \sim \chi^2_{(s-1)\times(r-1)}$$

Rejeita-se H_0 se $\chi^2_{cal} > \chi^2_{tab}$

- Hipótese de homogeneidade das duas distribuições binomiais
 - ► Contagem de sobrevivência de enxertos de ameixeiras ⇒ comparar duas épocas de plantio

Distribuição conjunta das frequências das variáveis época de plantio e sobrevivência de enxertos de ameixeiras

Época	Raízes		Total
-	Sobreviventes	Mortas	
Fora da primavera	263	217	480
Na primavera	115	365	480
Total	378	582	960

$$H_0: \pi_{1j} = \pi_{2j}$$

$$H_a:\pi_{1j}\neq\pi_{2j}$$

 H_0 : a proporção de sobreviventes na primavera é igual a proporção de sobreviventes fora dela

- Hipótese de independência entre as variáveis
 - Contagem de plantas segregando para dois caracteres: ciclo e virescência (formação de cloroplastos nas pétalas, originando plantas verdes), numa progênie da espécie X

Ciclo	Virescência		Total
	Normal	Virescente	
Tardio	3470	910	4380
Precoce	1030	290	1320
Total	4500	1200	5700

$$H_0: \pi_{ij} = \pi_{i}.\pi_{.j}$$
$$H_a: \pi_{ij} \neq \pi_{i}.\pi_{.j}$$

 H_0 : a proporção de elementos classificados na categoria i da variável A e categoria j da variável B é igual ao produto das marginais dessa categoria

Teste de qui-quadrado de aderência

Aplicação à teoria Mendeliana

```
ervilhas com sementes amarelas lisas ervilhas com sementes verdes rugosas \}\Rightarrow ervilhas amarelas lisas (l
```

```
Autofecundação \Rightarrow F_2 \left\{ \begin{array}{l} amarelas \ lisas \ (9/16) \\ verdes \ lisas \ (3/16) \\ amarelas \ rugosas \ (3/16) \\ verdes \ rugosas \ (1/16) \end{array} \right.
```

Teste de qui-quadrado de aderência

Frequências observadas das quatro classes fenotópicas geradas por autofecundação de plantas dihíbridas da F_1

Tipos de	Frequências	Frequências
ervilhas	observadas	esperadas sob H_0
Amarelas lisas	315	$312,75 = 556 \times (9/16)$
Verdes lisas	108	$104,25 = 556 \times (3/16)$
Amarelas rugosas	101	$104,25 = 556 \times (3/16)$
Verdes rugosas	32	$34,75 = 556 \times (1/16)$
Total	556	556

Avaliar se o padrão de segregação dos caracteres envolvidos segue aquele proposto pela segunda lei de Mendel.

$$H_0$$
: $\pi_1 = 9/16$, $\pi_2 = 3/16$; $\pi_3 = 3/16$, $\pi_4 = 1/16$ H_a : pelo menos uma das igualdades é falsa

Teste de qui-quadrado de aderência

Estatística do teste

$$\chi_{cal}^2 = \sum_{i=1}^m \frac{(n_i - e_i)^2}{e_i},$$

em que

 \emph{m} é o número de categorias da variável qualitativa \emph{n}_i é a frequência observada

 $\boldsymbol{e_i}$ é a frequência esperada , supondo a hipótese nula verdadeira

Rejeita-se H_0 se $\chi^2_{cal} > \chi^2_{tab}$