

HOTEL BOOKING Classification

Presented by:

- Ajwad Almajnuni
- Rehab AL Zaidi
- Reem Alghamdi

Introduction

The purpose of this project is to predict if someone canceled the reservation or not by using Classification algorithms. We worked with data (HOTEL BOOKING).

About Data:

This dataset contains observations for a City Hotel and a Resort Hotel. Each observation represents a hotel booking between the 1st of July 2015 and 31st of August 2017, including booking that effectively arrived.

It's contained:

- 32 Features.
- 119390 Observations.

Preprocessing

Classes imbalance

Cancellation Rate

Repeated Guest and Cancellation

Cancellation Rate by Repeated Guest

Cancellation Rate by Customer Type

Cancellation Rate by Customer Type

What is the cancellation rate for each hotel?

Cancellation Rate By Months

Cancellation Rate By Months

Is the number of changes of the reservation affected by (market segment)?

Models

Models	f1_score		
Models	Train	validation	Test
KNN	0.99	0.57	0.53
Logistic Regression	0.58	0.61	0.61
Random Forest	0.98	0.75	0.74
Decision Tree	0.09	0.21	0.18

Decision Tree

Models

Models	f1_score		
Modets	Train	validation	Test
Voting	0.99	0.74	0.73
Stacking Classifier	0.99	0.57	0.53
AdaBoost	0.35	0.43	0.42
XGBoost (Extreme Gradient Boosting)	0.75	0.74	0.73

KNN Evaluation

precision	recall
0.68	0.48

Logistic Evaluation

precision	recall
0.58	0.65

Random Forest Evaluation

precision	recall
0.78	0.72

Decision Tree Evaluation

precision	recall
1.0	0.12

Voting Evaluation

precision	recall
0.82	0.67

Stacking Evaluation

precision	recall
0.68	0.48

AdaBoost Evaluation

precision	recall
0.80	0.29

XGBoost (Extreme Gradient Boosting) Evaluation

precision	recall
0.79	0.69

Conclusion

In attempts to predict the best model if a person cancels the reservation or not, we made several models to determine the best model.

The best result is XGBoost (Extreme Gradient Boosting)

Train: **0.75**

Validation: 0.74

Test: 0.75

Thank You