BatSignal: System Design Document

Bryan Young youngb2@wit.edu

Joe Moraal moraalj@wit.edu Zach Thornton thorntonz@wit.edu

Computer Science 2015 Wentworth Institute of Technology

June 24, 2015

Contents

1	Intr	roduction	3
	1.1	1	3
	1.2	Project Executive Summary	3
		1.2.1 System Overview	3
		1.2.2 Design Constraints	3
		1.2.3 Future Contingencies	3
	1.3	Points of Contact	3
	1.4	Project References	3
	1.5		3
		1.5.1 System Specific Definitions	3
			3
		1.5.3 Industry Definitions	3
	1.6		3
2	Sys	tem Architecture	4
	2.1	System Hardware Architecture	4
	2.2		4
	2.3	Internal Communications Architecture	4
3	Hui	man-Machine Interface	4
	3.1	Inputs	4
	3.2	Outputs	4
4	Det	ailed Design	4
	4.1	Hardware Detailed Design	4
			4
			5
			5
	4.2	1	5
\mathbf{A}	Арј	pendix	5

1 Introduction

1.1 Purpose and Scope

This document describes the hardware and software components of the BatSignal distributed sensor network. This document is intended for use by developers implementing BatSignal.

1.2 Project Executive Summary

The BatSignal network is designed to function as a rapid response alert system capable of identifying, by sensor ID, situations of distress or emergency. The system passively collects audio captures from the sensors and analyzes them for keywords or phrases. When the system detects a matching keyword or phrase it dispatches an email to a list of administrators and displays a notification on the system console.

The system is designed to be physically scaled according to the needs of the location of installation. Controller nodes are installed at or near administrative areas with sensor nodes installed in patient rooms, inhabited spaces, common areas, etc. Communication propagate through the BatSignal mesh network allowing nodes to communicate with the controller despite physical distance.

- 1.2.1 System Overview
- 1.2.2 Design Constraints
- 1.2.3 Future Contingencies
- 1.3 Points of Contact
- 1.4 Project References
- 1.5 Glossary

1.5.1 System Specific Definitions

System Specific Definitions

1.5.2 Technical Definitions

Technical Definitions		
CPU	Central Processing Unit	
GPIO	General Purpose Input Output	
GPU	Graphical Processing Unit	
MHz	Mega-Hertz	
USB	Universal Serial Bus	
SoC	System on a Chip	

1.5.3 Industry Definitions

Industry Definitions	
B.A.T.M.A.N	Better Approach to Mobile Ad-hoc Networking

1.6 Document Organization

In the following sections this document will define the overall system architecture followed by more detailed hardware and software architectures.

2 System Architecture

- 2.1 System Hardware Architecture
- 2.2 System Software Architecture
- 2.3 Internal Communications Architecture

3 Human-Machine Interface

The BatSignal Distributed sensor network expects

- 3.1 Inputs
- 3.2 Outputs

4 Detailed Design

4.1 Hardware Detailed Design

4.1.1 Raspberry Pi 2

Both versions of BatSignal nodes target the Raspberry Pi model 2 board. These systems have the following capabilities:

Raspberry Pi 2 Specifications				
Cost:	\$35 USD			
SoC:	Broadcom BCM2836			
CPU:	900MHz quad-core ARM Cortex-A7			
GPU:	Broadcom VideoCore IV, OpenGL ES 2.0, OpenVG 1080p30 H.264			
	high-profile encode/decode			
Memory (SDRAM)iB:	1024 MiB			
USB 2.0 Ports:	4 (via intergrated USB hub and LAN9512)			
Onboard Storage:	Micro Secure Digital / MicroSD slot			
Onboard Network:	10/100 wired Ethernet RJ45			
Real-time Clock:	None			
Power Ratings:	650 mA, (3.0 W)			
Power Source:	5 V (DC) via Micro USB type B or GPIO header			
Size:	85.0mm x 56.0 mm x 17mm			
Weight:	40g			

4.1.2 Wi-Pi WLAN Module

Wi-Pi WLAN Module Specifications			
Cost:	\$15.52		
Physical Interface:	USB 2.0		
Wireless Standards:	IEEE 802.11n		
	Backward compatible with IEEE 802.11g and IEEE 802.11b		
Transmission Speed:	11b: 1/2/5.5/11 Mbps		
	11g: 6/9/12/18/24/36/48/54 Mbps		
	11n: up to 150 Mbps		
Frequency Range:	2.4 to 2.4835 GHz		
Working Channel:	1 to 13		
Transmit Power:	20dBm (max)		
Security Features:	WPA-PSK/WPA2-PSK		
	WPA/WPA2		
	64/128/152 bit WEP Encryption		

4.1.3 Microphone

Microphone Specifications

4.2 Software Detailed Design

A Appendix