[ENONCE] Intégration et Fourier

October 21, 2020

Intégration

```
Evaluation :

    Calculs exacts d'intégrales.
    Utilisation d'une méthode approchée pour calculer
        des intégrales.
```

Recommandations:

- Respectez rigoureusement l'interface des fonctions, et les consignes.
- Copiez-collez le code de votre fonction (ne contenant aucun print ou autre effet de bord)
- Utilisez les alias définis ci-dessous.
- Même si vous travaillez à plusieurs, faites un dépôt par personne.

Objectifs:

- Calculer des valeurs exactes d'intégrales
- Mettre en oeuvre une méthode approchée de calcul d'intégrales
- Utiliser le calcul intégral pour calculer des probabilités
- Utiliser la transformée de Fourier pour mettre en oeuvre un filtre

```
import numpy as np
import numpy.random

import matplotlib.pyplot as plt
from scipy.integrate import quad

import time
import random
import math
```

Pour aller plus loin:

Les paragraphes "pour aller plus loin" sont à traiter en seconde lecture, après avoir fini tous les autres points

Introduction

Applications

- Usage 1 : Analyse de données (calcul de probabilités)
- Usage 2 : Traitement du signal (transformée de Fourier)

Points de vues

• Analytiquement, un calcul d'intégrale est un calcul de primitive :

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

où F est **une** primitive quelconque de f.

• Géométriquement, l'intégrale d'une fonction f entre a et b correspond à l'aire sous la courbe :

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} e^{-x^{2}} dx$$

• En tout généralité, l'intégrale est un opérateur de **mesure**, par exemple l'intégrale ci-dessous permet de calculer la longueur d'une ellipse dont les demi-grands axes mesurent a et b:

$$\int_{0}^{2\pi} \sqrt{a^2 \cos^2(t) + b^2 \sin^2(t)} dt$$

```
[6]: x = np.linspace(-2,2,200)
y = np.exp(-x**2)
# print(x)
plt.plot(x,y)
plt.plot(x,np.zeros(200))

x = np.linspace(-1,1,100)
y = np.exp(-x**2)
y[0]=0
y[np.size(y)-1]=0
plt.fill(x,y)
plt.show()
```


Calculs exacts d'intégrales via les primitives

Exercice de CM : "papier-crayon"

•
$$\int_{1}^{2} x dx = \frac{3}{2}$$
•
$$\int_{0}^{\frac{\pi}{2}} \cos(x) dx = 1$$
•
$$\int_{0}^{1} \frac{1}{1+x} dx = \ln(2) \simeq 0.69$$
•
$$\int_{0}^{1} x e^{-x^{2}} dx = \frac{1-e^{-1}}{2} \simeq 0.32$$
•
$$\int_{0}^{\sqrt{\frac{\pi}{2}}} x \cos(x^{2}) dx = \frac{1}{2}$$
•
$$\int_{0}^{\pi} x \cos(x) dx = \pi$$
•
$$\int_{1}^{2} \ln(x) dx = 2 \ln(2) - 1$$

Remarques:

- En général, la valeur exacte d'une intégrale est inaccessible.
- Lorsqu'elle l'est, il faut en profiter!
- Une valeur numérique approchée à une précision arbitraire est généralement accessible.

Méthodes numériques

Fonction "sur l'étagère"

Calcul de l'intégrale :

$$4\int_{0}^{1}\sqrt{1-x^{2}}\,dx$$

[2]: # Utilisation de la fonction `quad` du module `scipy.integrate`

quad retourne un tableau dont le premier élément contient l'intégrale. resultat = 4*quad(lambda x : np.sqrt(1 - x ** 2),0,1)[0]

print(resultat)

3.1415926535897922

Vous pourrez utiliser cette fonction:

- pour vérifier les résultats retournés par vos propres fonctions
- pour les calculs de probabilités
- dans l'application sur la transformée de Fourier

Exercice de TP: Fonction "sur l'étagère"

Vérification des calculs exacts Sept intégrales sont données dans l'exercice de CM de la partie "Calcul exacts".

Vérifiez avec la fonction quad que ces valeurs sont les bonnes.

[]: # Insérez votre code

Calculs de probabilités Dans le calcul des probabilités, la densité de la loi normale de moyenne μ et d'écart type σ est donnée par :

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$

• Soit X une variable aléatoire suivant une loi normale de moyenne $\mu=10$ et d'écart-type $\sigma=2$. Calculez la probabilité :

$$P(X \in [\mu - \sigma, \mu + \sigma])$$

• Soit X une variable aléatoire suivant une loi normale de moyenne $\mu=200$ et d'écart-type $\sigma=50$. Calculez la probabilité :

$$P(X \in [\mu - 2\sigma, \mu + 2\sigma])$$

[]: # Insérez votre code

Appelez l'enseignant pour qu'il valide vos calculs.

Méthode des rectangles

- On découpe l'intervalle d'intégration [a,b] en n parties de même largeur $x_0=a,x_1,\ldots,x_{n-1},x_n=b.$
- On calcule l'aire des rectangles de côtés $[x_k, x_{k+1}], [0, f(x_k)].$
- On fait la somme des aires de ces rectangles :

$$S_n = \sum_{k=0}^{n-1} (x_{k+1} - x_k) f(x_k)$$

Théorème : Si f est continue par morcreaux, alors lorsque n tend vers l'infini, cette somme tend vers l'intégrale.

$$\int_{a}^{b} f(x)dx = \lim_{n \to +\infty} S_n$$

Exercice de CM : "à la calculatrice"

Calculer les premières valeurs approchées par la méthode des rectangles de l'intégrale:

$$\int_{-1}^{1} e^{-x^2} \, dx$$

```
[3]: x = np.linspace(-2,2,200)
y = np.exp(-x**2)
plt.plot(x,y)
plt.plot(x,np.zeros(200))

x = np.array([-1,-0.5,0,0.5,1])
y = np.exp(-x**2)
for k in range(4):
    plt.fill([x[k],x[k],x[k+1],x[k+1]],[0,y[k],y[k],0],color = 'orange')
plt.show()
```


Exercice de TP : Méthode des rectangles

• Implémentez une fonction rect(f,a,b,n) qui retourne la somme :

$$\sum_{k=0}^{n-1} (x_{k+1} - x_k) f(x_k)$$

où les $(x_k)_{1 \le k \le n}$ sont équirépartis dans l'intervalle [a, b].

• Testez votre fonction avec les exemples précédents et comparez avec comparez avec la fonction quad

[1]: # Insérez votre code ici

Déposez votre fonction rect(f,a,b,n) sur Moodle avant la fin de la semaine

Méthode des trapèzes

C'est comme les rectangles . . . mais on fait des trapèzes !

S'il n'y a qu'un seul rectangle pour tout l'intervalle [a, b] pour la fonction f alors son aire est :

$$\frac{(b-a)(f(a)+f(b))}{2}$$

```
x = [-1,-1,0,0]
y = [0,np.exp(-(-1)**2),np.exp(-(0)**2),0]
plt.fill(x,y)
plt.show()
```


Exercice de TP: Méthode des trapèzes

- Comme pour les rectangles, implémentez une fonction trap(f,a,b,n)
- Comparez cette méthode à la précédente en faisant varier le pas.
- Testez votre fonction avec les exemples précédents et comparez avec comparez avec la fonction quad

]: # Insérez votre code

Déposez votre fonction trap(f,a,b,n) sur Moodle avant la fin de la semaine

Pour aller plus loin:

- La méthode des rectangles consiste à approximer la fonction à intéger par une fonction constante. De plus, l'approximation est obtenue par une interpolation "au point de départ a". C'est à dire que $x \mapsto f(x)$ est remplacée par $x \mapsto f(a)$.
- La méthode des trapèzes consiste à approximer la fonction à intéger par une fonction affine.
 De plus, l'approximation affine est obtenue par une interpolation "aux extrémités a et b".
 C'est à dire que x → f(x) est remplacée par la droite joignant les points (a, f(a)) et (b, f(b)).
- La méthode de Simpson consiste à approximer la fonction à intégrer par une parabole. De plus, la parabole est obtenue par une interpolation aux points a, b et $\frac{a+b}{2}$. C'est à dire

que $x\mapsto f(x)$ est remplacée par la parabole interpolant les points $(a,f(a)),\,(\frac{a+b}{2},f(\frac{a+b}{2}))$ et (b,f(b)).

Implémentez la méthode de Simpson et comparez aux précédentes.

Méthode de Monte-Carlo

- L'intégrale permet de calculer la moyenne d'une fonction sur un intervalle.
- Inversement, pour calculer une intégrale, il suffit de faire la moyenne des valeurs prises par la fonction.
- Ce n'est pas très efficace, mais ça fonctionne.

La méthode de Monte-Carlo consiste à prendre n valeurs aléatoires uniformément réparties x_1, \ldots, x_n dans l'intervalle [a, b] et à approximer l'intégrale de f entre a et b par :

$$\frac{1}{b-a} \int_{a}^{b} f(x)dx \simeq \frac{1}{n} \sum_{k=1}^{n} f(x_k)$$

Remarques:

- Le théorème de convergence de cette méthode dépasse le cadre de ce cours (il s'agit essentiellement de la loi des grands nombres)
- La méthode de Monte-Carlo est bien plus générale que le calcul d'intégrales. Elle est très présente en apprentissage automatique.
- La "philosophie Monte-Carlo" consiste à répéter un grand nombre de fois une opération simple.

```
[6]: # Exemple d'utilisation de random
x = np.random.random(5)
print(x)
```

[0.6573301 0.40110871 0.26537501 0.3285386 0.92557562]

Exercice de TP:

Implémentez une fonction montecarlo(f,a,b,n) qui retourne à nouveau l'intégrale de f entre a et b, calculée à partir de la moyenne de n valeurs aléatoires prises par f dans l'intervalle [a,b].

[2]: # Insérez votre code ici

Déposez votre fonction montecarlo (f,a,b,n) sur Moodle avant la fin de la semaine

Pour aller plus loin:

- Pour chacune des trois méthodes d'intégration, déterminez empiriquement la valeur de n donnant le résultat avec une précision de cinq chiffres.
- Comparez les temps de calcul
- Reprenez le code d'une de vos fonctions d'intégration et modifiez-le de manière à avoir deux versions : l'une faisant tous les calculs avec numpy, l'autre n'utilisant pas numpy.
- Comparez les temps de calcul

```
[3]: # Outils pour le TP
# Détermination du temps de calcul
# Calcul vectoriel

N = 1000000 # Ajoutez des 0 et méditez !
tps = time.clock()
som = 0
for i in range(N):
    som += i
tps = time.clock() - tps
print("Résultat : " + str(som) + ", Temps : " + str(tps))

tps = time.clock()
som = np.sum(np.arange(N))
tps = time.clock() - tps
print("Résultat : " + str(som) + ", Temps : " + str(tps))
```

Résultat : 499999500000, Temps : 0.099051

Résultat : 499999500000, Temps : 0.0026779999999998

[4]: # Insérez votre code

Exercice de TP

On considère la fonction $f(x) = \sqrt{1-x^2}$

- Tracez cette fonction sur l'intervalle [0, 1].
- De manière aléatoire, piochez un grand nombre de points de coordonnées (x; y) dans le carré $[0, 1]^2$.
- Sur la figure précédente, lorsqu'un point est sous la courbe affichez-le en rouge, s'il est audessus affichez-le en noir.
- Calculez la proportion de points rouges. Multipliez-la par quatre (ça ne s'invente pas! faites confiance à l'énoncé)
- Calculez l'intégrale $\stackrel{'}{4}\int_0^1\sqrt{1-x^2}dx.$ Hé hé !
- Expliquez :-)

[3]: # Insérez votre code ici

Appelez l'enseignant pour qu'il valide votre représentation graphique.

Introduction à la transformée de Fourier

Idées directrices

- Approximer des fonctions périodiques à l'aide des fonctions trigonométriques
- Représenter des signaux en machine

Exemple

Nous allons étudier une superposition de signaux sinusoïdaux

$$f(x) = 2\sin(x) + 3\sin(2x) + 5\sin(4x)$$

```
[13]: def f(x):
    return 2*np.sin(x) + 3*np.sin(2*x) + 5*np.sin(4*x)

x = np.linspace(0,2*math.pi,500)

plt.plot(x,f(x))
    plt.show()
```


Lorsque l'on considère des fonctions "à base de sinus" :

• Le signal précédent peut être représenté de la manière suivante : (Freq 4, Ampli 5), (Freq 2, Ampli 3), (Freq 1, Ampli 2). La transformée de Fourier permet d'obtenir cette représentation à partir de la fonction via un calcul d'intégrales :

Ampli =
$$\frac{1}{\pi} \int_0^{2\pi} f(x) \sin(\text{Freq } x) dx$$

La formule précédente n'est valable que sous certaines hypothèses, en particulier la fonction doit être 2π -périodique.

• Cette représentation (Freq, Ampli) permet de lisser un bruit éventuel et de tronquer les hautes fréquences. C'est la base de la compression MP3.

Exercice de CM

Calculer à la main quelques amplitudes pour l'exemple précédent.

```
[10]: # Exemple

def b(n,f):
    return 1/math.pi*quad(lambda x:f(x)*math.sin(n*x),0,2*math.pi)[0]

print(b(4,f))
```

5.000000000000001

```
[4, 6, 8, 4, 4, 6, 10, 3, 3, 1]
[3, 5, 8, 3, 8, 4, 8, 3, 10, 8]
```


Exercice de TP:

Sachant que les fréquences sont limitées à N :

- Décomposez le signal bruité en (Freq, Ampli)
- Reconstruisez-le (sans le bruit)
- Coupez les fréquences supérieures à N/2.
- Représentez le tout sur un même graphique

[4]: # Insérez votre code ici

Appelez l'enseignant pour qu'il valide votre représentation graphique.

Attention:

- Pour le TP03, pendant la séance, vous avez 3 exercices à montrer : usage de la fonction quad, graphique du quart de cercle, graphique de Fourier.
- Pour le TP03, avant la fin de semaine, vous avez 3 fonctions à déposer : rect(f,a,b,n), trap(f,a,b,n), montecarlo(f,a,b,n).
- Lors de l'évaluation sur feuille, il vous sera demandé de calculer "à la main", quelques intégrales de manière exacte puis quelques valeurs approchées à l'aide des méthodes précédentes.

[]: