Satz 6 Hier haben wir verschiedene Ungleichungen Für Wahrscheinlichkeiten, Erwartungswerte und \mathcal{L}^p -Normen zu Verfügung. Seien X, Y reellwertige Zufallsvariable. Dann gilt folgendes.

(i) Die Markov-Ungleichung – Sei $f: [0, \infty) \to [0, \infty)$ monoton wachsend, $\varepsilon > 0$ so, dass $f(\varepsilon) > 0$. Dann gilt

$$P(|X| \ge \varepsilon) \le \frac{E[f(X)]}{f(\varepsilon)}$$
.

(ii) Die Tschebyscheff-Ungleichung – ist $E[X^2] < \infty$, so gilt

$$P(|X - E[X]|) > \varepsilon) \le \frac{\operatorname{Var}(X)}{\varepsilon^2}$$
.

(iii) Die Hölder-Ungleichung – Für $0 < p, q, r \le \infty$ so, dass $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$ gilt

$$||XY||_r \le ||X||_p ||Y||_q$$
.

(iv) Die Minkowski-Ungleichung – für $1 \le p \le \infty$ gilt

$$||X + Y||_p \le ||X||_p + ||Y||_p$$
.

 $\mbox{\it (v)}$ Das Analogon der Minkowski-Ungleichung im konkaven Fall – für 0

 p < 1 gilt

$$E[|X + Y|^p] \le E[|X|^p] + E[|Y|^p]$$
.

(vi) Eine Abschätzung Normen veschrschiedener \mathcal{L}^p -Räume. Für $p \leq q$ und $X \in \mathcal{L}^q$ gilt

$$||X||_p \leq ||X||_q$$
.

Satz 8 Die Jensen-Ungleichung – sei $g \colon \mathbb{R} \to \mathbb{R}$ konvex und $X \in \mathcal{L}^1$, dann gilt

$$E[g(X)] \ge g(E[X])$$
.

B4A1.1 Haben $X_1(\omega) = \omega$ und $X_2(\omega) = 1 - \omega$ die gleiche Verteilung auf $([0,1], \mathcal{B}([0,1]), \lambda|_{[0,1]})$? Ja. Die Zufallsvariablen X_1 und X_2 auf [0,1] sehen wie in der folgenden Skizze aus.

Es reicht, die Verteilung auf $\{[a,b]\}_{a,b\in\mathbb{Q}}$ zu betrachten. Wegen dem Eindeutigkeitssatz A.16 wird die Verteilung auf ganz $\mathcal{B}([0,1])$ gleich sein. Die Verteilung von X_1 ist $P_\# X_1 = P \circ X_1^{-1}$. Aus der Skizze erkennt man, $X_1^{-1}([a,b]) = [a,b]$, sodass $P_\# X_1([a,b]) = \lambda|_{[0,1]}([a,b]) = b-a$. Da auch X_2 monoton ist, können wir $X_2^{-1}([a,b])$ ebenfalls durch die Urbilder des Grenzen a und b von [a,b] angeben. Da X_2 fallend ist, müssen wir lediglich die Grenzen umdrehen, also $X_2^{-1}([a,b]) = [X_2^{-1}(b), X_2^{-1}(a)] = [1-b, 1-a]$ und $P_\# X_2([a,b]) = \lambda|_{[0,1]}([1-b,1-a]) = 1-a-1+b=b-a=P_\# X_1([a,b])$.

B4A1.2 Gibt es ein Wahrscheinlichkeitsmaß P auf $([0,1],\mathcal{B}([0,1]))$, sodass $X_1(\omega) = \omega$ und $X_2(\omega) = 1 - \omega$ nicht die gleiche Verteilung haben? Siehe handschriftliches Blatt.

B4A1.3 Wenn $X \sim \mathcal{N}(2,2)$ verteilt ist, gilt $P[|X-2| \geq 2] \leq \frac{1}{2}$? Ja. Nach der Tschebyscheff-Ungleichung gilt $P[|X-2| \geq 2] \leq \frac{2}{2^2} = \frac{1}{2}$.

B4A1.4 Jede reellwertige Zufallsvariable, also $X: \Omega \to \mathbb{R}$ messbar hat eine Dichte bezüglich λ ? Nein. Sei X=0. Dann ist X stetig und somit messbar mit P(X=0)=1, also $P=\delta_0$. Da $0=\lambda(\{0\})\neq\delta_0(\{0\})=1$, ist δ_0 nicht absolut stetig bezüglich λ . Nach dem Satz von Radon-Nikodym, so wie er als Korollar 7.34 in (Kle20) steht, besitzt dann δ_0 keine Dichte bezüglich des Lebesgue-Maßes.

B4A1.5 Auf $(\Omega, \mathcal{P}(\Omega))$ sind alle Abbildungen $(\Omega, \mathcal{P}(\Omega)) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ messbar? Ja. Sei $A \in \mathcal{B}(\mathbb{R})$, dann ist $f^{-1}(A) \in \mathcal{P}(\Omega)$, denn in $\mathcal{P}(\Omega)$ sind alle Mengen, die nach A abbilden könnten, drin.

B4A1.6 Für $X \sim \mathcal{N}(0,1)$ und $Y \sim \mathcal{N}(0,2)$ gilt $E[XY] \leq \sqrt{2}$? Ja, denn nach der Cauchy–Schwarz-Ungleichung, also der Hölder-Ungleichung mit r=1 und p=q=2 gilt

$$E[XY] \le ||X||_2 ||Y||_2$$
.

Mit der Definition der \mathcal{L}^p -Norm und weil Quadrate positiv sind haben wir

$$= \sqrt{E[X^2]} \sqrt{E[Y^2]} \,.$$

Die Angabe $X \sim \mathcal{N}(0,1)$ heißt E[X] = E[Y] = 0 und wir können schreiben

$$=\sqrt{E[(X-E[X])^2]}\sqrt{E[(Y-E[Y])^2]}$$
.

Mit der Definition der Varianz ergibt sich

$$= \sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)} .$$

Die Angabe $X \sim \mathcal{N}(0,1)$ heißt, $\mathrm{Var}(X) = 1$ und $\mathrm{Var}(Y) = 2$. Somit folgt

$$=\sqrt{2}$$
.

B4A1.7 N-wertige Zufallsvariable X zu sich selbst unabhängig gilt genau dann, wenn X fast sicher konstant ist. Siehe handschriftliches Blatt.

B4A1.8 Es gilt $E[\mathbb{1}_A\mathbb{1}_B] = E[\mathbb{1}_A]E[\mathbb{1}_B]$ genau dann, wenn A und B unabhängig sind. Ja. Es gelte $E[\mathbb{1}_A\mathbb{1}_B] = E[\mathbb{1}_A]E[\mathbb{1}_B]$. Dann gilt auch $P(A \cap B) = E[\mathbb{1}_{A \cap B}] = E[\mathbb{1}_A\mathbb{1}_B] = E[\mathbb{1}_A]E[\mathbb{1}_B] = P(A)P(B)$. Gelte andererseits, dass A und B unabhängig sind, dann folgt daraus, dass $E[\mathbb{1}_A\mathbb{1}_B] = E[\mathbb{1}_{A \cap B}] = P(A \cap B) = P(A)P(B) = E[\mathbb{1}_A]E[\mathbb{1}_B]$.

B4A1.9 Für X exponentialverteilt mit $\lambda = 1$ gilt $E[X^4] \ge E[X]^4$. Ja. Das gilt mit konvexem $g(x) = x^4$ mithilfe der Jensen-Ungleichung aus Satz 8.

B4A1.10 Gilt $\mu(A)=0$ genau dann, wenn $\nu(A)=0$, dann gibt es ein messbares f, sodass $\mu(A)=\int_A f(\omega)\nu(\mathrm{d}\omega)$? Ja. Denn wenn μ und ν dieselben Nullmengen besitzen gilt insbesondere $\mu\ll\nu$. Da μ und ν als Wahrscheinlichkeitsmaße σ -endlich sind, können wir den Satz von Radon-Nikodym anwenden, nachdem μ eine Dichte bezüglich ν besitzt, also gerade eine Borel-messbare Abbildung, sodass $\mu(A)=\int_A f(\omega)\nu(\mathrm{d}\omega)$.

B4A1.11 Auf $(\omega, \{\Omega, \emptyset\})$ gibt es keine Borel-messbare Abbildung? Doch. Sei f = 0, dann für $A \in \mathcal{B}(\mathbb{R})$

$$f^{-1}(A) = \begin{cases} \emptyset, & 0 \notin A, \\ \Omega, & 0 \in A. \end{cases}$$

Somit gilt für alle $A \in \mathcal{B}(\mathbb{R})$, dass $f^{-1}(A) \in \{\emptyset, \Omega\}$ und folglich ist f Borelmessbar.

B4A1.12 Seien $X \sim \text{Exp}(6)$ und $Y \sim \text{Exp}(\frac{1}{3})$, dann gilt $E[XY] \leq 1$, wobei für $Z \sim \text{Exp}(\lambda)$ gilt $E[Z] = \frac{1}{\lambda}$ und $E[Z^2] = \frac{2}{\lambda^2}$? Ja. Wie bei Aufgabenteil 6 gilt mit der Cauchy-Schwarz-Ungleichung

$$E[XY] \le \sqrt{E[X^2]} \sqrt{E[Y^2]} \,.$$

Mit den Angaben zu den Parametern $\lambda=6$ beziehungsweise $\lambda=\frac{1}{3}$ der Verteilungen von X beziehungsweise Y, sowie dem Hinweis auf dem Blatt ergibt sich

$$= \sqrt{\frac{2}{6^2} \cdot \frac{2}{\left(\frac{1}{3}\right)^2}} = \frac{2}{\frac{6}{3}} = 1.$$

B4A1.13 Ist $q \leq p$ und $X \in L^p(\Omega, \mathcal{F}, P)$, so ist $X \in L^q(\Omega, \mathcal{F}, P)$? Ja. Nach Satz 6.vi gilt $||X||_q \leq ||X||_p < \infty$, da nach Aufgabe $X \in L^p(\Omega, \mathcal{F}, P)$. Da in $L^q(\Omega, \mathcal{F}, P)$ alle P-messbaren $\overline{\mathbb{R}}$ -wertigen Funktionen mit endlicher L^q -Norm sind, ist $X \in \mathcal{L}^q(\Omega, \mathcal{F}, P)$.

B4A2 Seien (X_n) Zufallsvariablen sodass $X_1=0$ und $X_n=\sqrt{n}\mathbbm{1}_{(\frac{1}{n},\frac{2}{n})}$ auf $([0,1],\mathcal{B}([0,1]),\lambda|_{[0,1]}).$

B4A2.1 (X_n) konvergiert in Wahrscheinlichkeit.

B4A2.2 (X_n) konvergiert fast sicher.

B4A2.3 (X_n) konvergiert in L_2 .

B4A2.4 (X_n) ist gleichgradig integrierbar.

Siehe zur Lösung der Aufgabe 2 das handschriftliche Blatt.

B4A3 Seien (X_n) Zufallsvariablen, sodass $X_n(\omega) = \omega^{\frac{1}{n}}$ auf $([0,1], \mathcal{B}([0,1]), P)$, wobei $P \ll \lambda|_{[0,1]}$ mit Dichte $f(\omega) = \frac{1}{2}\omega^{-\frac{1}{2}}$.

B4A2.1 (X_n) konvergiert in Wahrscheinlichkeit. Wir möchten entscheiden, ob (X_n) in Wahrscheinlichkeit konvergiert. Da die Folge $\omega^{\frac{1}{n}}$ für alle $\omega \in (0,1]$ gegen 1 konvergiert, vermuten wir, dass $X_n \xrightarrow{P} 1$. Um das zu prüfen, sei ein $\varepsilon > 0$ vorgegeben. Da für alle $n \in \mathbb{N}$ und alle $\omega \in [0,1]$ gilt, $X_n(\omega) \leq 1$, können wir in der Definition der Konvergenz in Wahrscheinlichkeit die Betragsstriche weglassen. Nach Markov-Ungleichung gilt für alle $n \in \mathbb{N}$

$$\varepsilon P(1 - \omega^{\frac{1}{n}} \ge \varepsilon) \le E[1 - \omega^{\frac{1}{n}}].$$

Mit einsetzen der Dichte vom Aufgabenblatt folgt

$$\int_0^1 \left(1 - \omega^{\frac{1}{n}}\right) \frac{1}{2} \omega^{-\frac{1}{2}} d\omega.$$

Durch Ausmultiplizieren und Integrieren von $\frac{1}{2}\omega^{-\frac{1}{2}}$ erhalten wir

$$= \sqrt{1} - \sqrt{0} + \int_0^1 \frac{1}{2} \omega^{\frac{1}{n} - \frac{1}{2}} d\omega.$$

Ausführen der Wurzel und Erneutes Integrieren liefert

$$=1-\frac{n}{n+2}\omega^{\frac{n+2}{2n}}\bigg|_{0}^{1}$$
.

Indem wir die Grenzen einsetzen und beide Terme auf einen gemeinsamen Nenner bringen, erhalten wir

$$=\frac{2}{n+2}.$$

Da für alle $\varepsilon > 0$ gilt $\lim_n \frac{1}{\varepsilon} \frac{2}{n+2} = 0$ sehen wir, dass (X_n) in Wahrscheinlichkeit konvergiert.

B4A2.2 (X_n) konvergiert fast sicher. Wir möchten uns überlegen, ob $P(\lim \omega^{\frac{1}{n}} < 1) = 0$. Das einzige Problem könnte in einer Umgebung um $\omega = 0$ auftauchen, denn $0^{\frac{1}{n}} = 0$ für alle $n \in \mathbb{N}$. Da $\omega = 0$ jedoch der einzige Punkt ist, sodass $\lim \omega^{\frac{1}{n}} < 1$, ist $\{\lim \omega^{\frac{1}{n}} < 1\}$ in der Tat eine P-Nullmenge.

Somit konvergiert (X_n) fast sicher.

B4A2.3 (X_n) konvergiert aufgrund der Argumentation in Teilaufgabe 1 in L^1 . Es gilt $E[1-\omega^{\frac{1}{n}}]=\frac{2}{n+2}$, was für $n\to\infty$ gegen 0 konvergiert.

B4A2.4 (X_n) ist gleichgradig integrierbar, da es in L^1 konvergiert.

Literatur

[Kle20] Klenke, Achim: Wahrscheinlichkeitstheorie. Springer Spektrum, 2020 (Masterclass)