20. Теореми за средните стойности (Рол, Лагранж и Коши). Формула на Тейлър.

1. Теореми за средните стойности

Определение. Казваме, че функцията f има локален максимум (локален минимум) в точката x_0 , ако дефиниционната област на f съдържа такъв отворен интервал $\Delta \ni x_0$, че $f(x) \le f(x_0)$ (съответно $f(x) \ge f(x_0)$) за $x \in \Delta$. Функционалната стойност на $f(x_0)$ наричаме локален максимум (минимум).

По-нататък за удобство локалните максимуми и локалните минимуми ще наричаме локални екстремуми.

Доказателство. Ако функцията f има локален максимум в точката x_0 , то съществува такава околност на x_0 от вида $(x_0 - \delta, x_0 + \delta)$, $\delta > 0$, в която стойностите на f са по-малки от $f(x_0)$. Тогава за $0 < h < \delta$ имаме

$$0 \ge rac{f\left(x_0 + h\right) - f\left(x_0\right)}{h} \longrightarrow f'\left(x_0\right)$$
 при $h \longrightarrow 0$,

откъдето получаваме $f'(x_0) \leq 0$. Аналогично за $0 > h > -\delta$ имаме

$$0 \leq \frac{f\left(x_0 + h\right) - f\left(x_0\right)}{h} \longrightarrow f'\left(x_0\right)$$
 при $h \longrightarrow 0$,

откъдето извеждаме $f'(x_0) \ge 0$. Следователно $f'(x_0) = 0$, което доказва теоремата в случая, когато имаме локален максимум.

Доказателството в точка на минимум е аналогично.

Теорема 2. (**Рол**) Нека функцията f е дефинирана и непрекъсната в затворения интервал [a,b], диференцируема в отворения интервал (a,b) и f (a) = f (b). Тогава съществува такава точка $\xi \in (a,b)$, че $f'(\xi) = 0$.

Доказателство на теоремата на Рол. Тъй като по условие функцията f е непрекъсната в крайния затворен интервал [a,b], то съгласно теоремата на Вайерщрас тя има най-голяма и наймалка стойности. Имаме следните възможности:

- 1) функцията f приема максималната или минималната си стойности в точка ξ , вътрешна за интервала [a,b] (т.е. $\xi \in [a,b]$). Тогава f има локален екстремум в точката ξ и $f'(\xi)=0$ по теорема 1
- 2) функцията f(x) приема максималната и минималната си стойности в точките a и b. Тогава от условието f(a) = f(b) получаваме, че най-голямата и най-малката стойности на функцията f съвпадат, следователно f е константа и f'(x) = 0 за всяко $x \in (a,b)$. С това теоремата е доказана.

Теорема 3. (за крайните нараствания, на Лагранж) Нека функцията f е непрекъсната в затворения интервал [a,b] и диференцируема в отворения интервал (a,b). Тогава съществува такава точка $\xi \in (a,b)$, че

$$f\left(b\right)-f\left(a\right)=f'\left(\xi\right)\left(b-a\right)$$
 (формула за крайните нараствания)

Доказателство. Разглеждаме функцията $h\left(x\right)=f\left(x\right)-kx$, където константата k е подбрана така, че $h\left(a\right)=f\left(a\right)-ka=f\left(b\right)-kb=h\left(b\right)$, т.е. $k=\frac{f\left(b\right)-f\left(a\right)}{b-a}$. Очевидно функцията $h\left(x\right)$ удовлетворява условията на теоремата на Рол, следователно съществува такава точка $\xi\in\left(a,b\right)$, че $h'\left(\xi\right)=f'\left(\xi\right)-k=0$. Оттук получаваме $k=\frac{f\left(b\right)-f\left(a\right)}{b-a}=f'\left(\xi\right)$, което доказва теоремата.

Геометричен смисъл: Да напишем равенството от теоремата във вида

$$\frac{f(b) - f(a)}{b - a} = f'(\xi).$$

Тогава лявата страна на равенството съвпада с ъгловия коефициент на секущата, минаваща през точките (a, f(a)) и (b, f(b)), лежащи на графиката на f(x). Според геометричното тълкуване на производната, дясната страна съвпада с ъгловия коефициент на допирателната към графиката на f(x), прекарана в точката $(\xi, f(\xi))$. Знаем, че ако две прави имат еднакви ъглови коефициенти, те са успоредни. Така получаваме геометричната формулировка на теоремата

Така получаваме геометричната формулировка на теоремата на Лагранж:

Съществува точка в интервала (a,b), допирателната в която е успоредна на хордата, определена от крайните

точки на интервала.

Теорема 4. (Обобщена теорема за крайните нараствания, или теорема на Коши) Heka функциите f и g са дефинирани и непрекъснати в затворения интервал [a,b]. Предполагаме, че f(x) и g(x) са диференцируеми в отворения интервал (a,b) и $g'(x) \neq 0$ за всяко $x \in (a,b)$. Тогава съществува такава точка $\xi \in (a,b)$, че

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

(обобщена формула за крайните нараствания).

Доказателство. Нека първо да отбележим, че условието $g'(x) \neq 0$ за всяко $x \in (a,b)$ ни гарантира $g(b) - g(a) \neq 0$, тъй като по теоремата за крайните нараствания имаме $g(b) - g(a) = g'(\xi_1)(b-a) \neq 0$.

Прилагаме теоремата на Рол за функцията $f\left(x\right)=f\left(x\right)-kg\left(x\right)$, където константата k е подбрана така, че $h\left(a\right)=f\left(a\right)-kg\left(a\right)=f\left(b\right)-kg\left(b\right)$, т.е. $k=\frac{f\left(b\right)-f\left(a\right)}{g\left(b\right)-g\left(a\right)}$. По теоремата на Рол съществува такава точка $\xi\in\left(a,b\right)$, че $h'\left(\xi\right)=f'\left(\xi\right)-kg'\left(\xi\right)=0$. Оттук получаваме, че

$$k = \frac{f(b) - f(a)}{q(b) - q(a)} = \frac{f'(\xi)}{q'(\xi)}.$$

По-нататък ще изложим някои непосредствени следствия от теоремата на Лагранж за крайните нараствания.

Теорема 5. Нека функцията f е дефинирана и диференцируема в отворения интервал (a,b). Ако f'(x) = 0 за всяко $x \in (a,b)$ то f е константа в интервала (a,b).

Доказателство. Фиксираме произволна точка $x_0 \in (a,b)$. По теоремата за крайните нараствания за всяко $x \in (a,b)$ имаме

$$f(x) - f(x_0) = f'(\xi)(x - x_0) = 0,$$

следователно $f(x) = f(x_0)$ за всяко $x \in (a, b)$.

Теорема 6. Ако функцията f е дефинирана и диференцируема в отворения интервал (a,b), то тя е монотонно растяща (намаляваща) в (a,b) тогава и само тогава когато $f'(x) \ge 0$ $(f'(x) \le 0)$ за всяко $x \in (a,b)$.

Доказателство. Достатъчно е да разгледаме случая на монотонно растяща функция, тъй като чрез умножаване с -1 получаваме от монотонно намаляваща функция монотонно растяща и обратно.

Нека f е монотонно растяща диференцируема функция в интервала $x \in (a,b)$. Тогава за произволно $x \in (a,b)$ при достатъчно малки h>0 имаме $\frac{f(x+h)-f(x)}{h}\geq 0$. Оттук след граничен преход при $h\longrightarrow 0$ получаваме $f'(x)\geq 0$. Обратно, нека $f'(x)\geq 0$ за всяко $x\in (a,b)$. Взимаме произволни точки $x_1,x_2\in (a,b)$ удовлетворяващи $x_1< x_2$. По теоремата за крайните нараствания съществува такова $\xi\in (x_1,x_2)$, че

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) \ge 0.$$

Оттук получаваме $f(x_1) \leq f(x_2)$, което доказва, че функцията f е монотонно растяща. С това теоремата е доказана.

2. Формула на Тейлър.

Формула на Тейлор за полиноми. Отначало ще разгледаме случая, когато първоначално зададената функция е полином от ред n, т.е. има вида:

$$p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n.$$

Като извършим n последователни диференцирания, получаваме:

$$p'(x) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1},$$

$$p''(x) = 1.2a_2 + 2.3a_3x + \dots + (n-1)na_nx^{n-2},$$

$$p'''(x) = 1.2.3a_3 + 2.3.4a_4x + \dots + (n-2)(n-1)na_nx^{n-3},$$

$$\dots$$

$$p^{(n)}(x) = 1.2.3\dots n.a_n.$$

Полагайки във всички горни равенства x=0 получаваме, че

$$a_k = \frac{p^{(k)}(0)}{k!}$$
 , $k = 0, \dots, n$

(където, както обикновено, полагаме $p^{(0)}(x) = p(x)$ и 0! = 1).

Горните равенства позволяват полиномът да бъде записан във вида:

$$p(x) = \sum_{k=0}^{n} \frac{p^{(k)}(0)}{k!} x^{k}.$$

Да фиксираме реалното число a . Сега ние ще заменим развитието на p(x) по степени на x с развитие по степените на x-a . За тази цел да положим x-a=y , т.е. да разгледаме помощния полином q(y)=p(a+y). Нека полиномът q да има вида:

$$q(y) = b_0 + b_1 y + b_2 y^2 + \ldots + b_n y^n.$$

Като използуваме изведените по-горе формули, получаваме за коефициентите b_k равенствата:

$$b_k = \frac{q^{(k)}(0)}{k!}$$
 , $k = 0, \dots, n$.

Лесно се доказва (индуктивно), че при всяко естествено k имаме:

$$q^{(k)}(y) = p^{(k)}(a+y),$$

откъдето

$$b_k = \frac{p^{(k)}(a)}{k!}.$$

Нека сега в представянето на q(y) заместим коефициентите b_k с техните равни и променливата y с x-a. Като вземем пред вид, че q(x-a)=p(x) , получаваме:

$$p(x) = \sum_{k=0}^{n} \frac{p^{(k)}(a)}{k!} (x - a)^{k}$$

или, в развит вид

$$p(x) = p(a) + \frac{p'(a)}{1!}(x-a) + \frac{p''(a)}{2!}(x-a)^2 + \dots + \frac{p^{(n)}(a)}{n!}(x-a)^n.$$

Полиноми на Тейлор за n - кратно диференцируема функция. Ред на Тейлор. Нека функцията f е n - кратно диференцируема в точката a от дефиниционната си област. Това означава, че a е вътрешна точка за дефиниционната област, нейните производни до ред n-1 включително съществуват в някаква околност на a, а n - та производна на f е диференцируема в точката a. Тогава по аналогия с формулата от предния пункт ще дефинираме полинома

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + \frac{f'(a)}{1!} (x-a) + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

 $T_n(x)$ се нарича полином на Тейлор от ред n за функцията f(x) в точката a.

Лесно се вижда, че ако функцията f има в точката производни от произволен ред, то полиномите на Тейлор могат да бъдат разглеждани като частични суми на безкрайният ред:

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k,$$

който се нарича ред на Тейлор на функцията f(x) около точката a . Да отбележим, че този ред може да бъде и разходящ.

Лема 1. T_n е единственият полином от степен n, чиито производни в точката a до ред n включително съвпадат със съответните производни на f в тази точка.

Доказателство. Равенствата $T_n^{(k)}(a) = f^{(k)}(a), k = 0, 1, \dots, n$ се проверяват, като диференцираме $T_n(x)$ последователно k пъти и положим в получените равенства x = a. Обратно, ако p(x) е полином от степен n, удовлетворяващ условието на лемата, то, прилагайки за него формулата на Тейлор за полиноми, ще получим, че той съвпада с $T_n(x)$.

За да се оцени колко се отличават стойностите на полиномите на Тейлор в дадена точка x от стойността на функцията в тази точка, се въвежда величината

$$R_n(x) = f(x) - T_n(x),$$

наречена остатъчен член. Тогава можем да напишем формулата

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} + R_{n}(x),$$

наричана обикновено формула на Тейлор. Очевидно остатъчният член $R_n(x)$ представлява грешката във формулата $f(x) \approx T_n(x)$. Ето защо формулата на Тейлор би добила съдържание само, ако имаме израз или оценка за остатъчния член $R_n(x)$. Ние ще посочим различни изрази за него, които водят и до различни варианти на формулата на Тейлор.

Формули на Лагранж и на Коши за остатъчния член.

Нека предположим, че функцията f(x) притежава производни до ред n+1 включително в някаква околност на точката a. Да фиксираме точка x от тази околност и да разгледаме в затворения интервал, определен от точките a и x, помощната функция

$$\varphi(t) = f(x) - \left(\sum_{k=0}^{n} \frac{f^{(k)}(t)}{k!} (x-t)^{k}\right) =$$

$$= f(x) - f(t) - \frac{f'(t)}{1!} (x-t) - \dots - \frac{f^{(n)}(t)}{n!} (x-t)^{n}.$$

Вижда се, че горната формула наподобява израза за $R_n(x)$, в който константата a е заместена с променливата t. Оттук получаваме:

$$\varphi(a) = R_n(x)$$
 $u \qquad \varphi(x) = 0.$

Диференцирайки функцията $\varphi(t)$, имаме:

$$\varphi'(t) = -f'(t) - \left(\frac{f''(t)}{1!}(x-t) - f'(t)\right) - \left(\frac{f'''(t)}{2!}(x-t)^2 - \frac{f''(t)}{1!}(x-t)\right) - \left(\frac{f^{IV}(t)}{3!}(x-t)^3 - \frac{f'''(t)}{2!}(x-t)^2\right) - \dots - \left(\frac{f^{(n+1)}(t)}{n!}(x-t)^n - \frac{f^{(n)}(t)}{(n-1)!}(x-t)^{n-1}\right).$$

Всички събираеми, освен последното, се срещат в тази сума по два пъти с противоположни знаци. Следователно

$$\varphi'(t) = -\frac{f^{(n+1)}(t)}{n!}(x-t)^n.$$

Да положим $\psi(t) = (x-t)^p$, където p е естествено число, което ще изберем допълнително. За двете функции $\varphi(t)$ и $\psi(t)$ ще приложим обобщената теорема за крайните нараствания в интервала [a,x]. Виждаме, че в интервала (a,x) съществува точка ξ , за която е изпълнено:

$$\frac{\varphi(a) - \varphi(x)}{\psi(a) - \psi(x)} = \frac{\varphi'(\xi)}{\psi'(\xi)},$$

откъдето, използувайки стойностите на $\varphi(a)$ и $\varphi(x)$, и израза за φ' , намерени по-горе, получаваме:

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{n!} (x-\xi)^n \cdot \frac{\psi(a) - \psi(x)}{\psi'(\xi)} = \frac{f^{(n+1)}(\xi)}{n!p} (x-\xi)^{n+1-p} (x-a)^p.$$

Тази обща форма на остатъчния член се нарича форма на Шлемилх и Рош. Понякога тя се записва и по друг начин. Да означим

$$\theta = \frac{\xi - a}{x - a} \,.$$

Очевидно θ лежи в интервала (0,1) . Имаме

$$\xi = a + \theta(x - a)$$
 , $x - \xi = (1 - \theta)(x - a)$

и формулата добива вида:

$$R_n(x) = \frac{f^{(n+1)}(a+\theta(x-a))}{n!p} (1-\theta)^{n+1-p} (x-a)^{n+1}.$$

Обикновено се използуват два частни случая на горната формула, които ние ще отбележим специално. Да положим p = n + 1. Получаваме:

Формула на Лагранж за остатъчния член. Нека функцията f(x) притежава производни до ред n+1 включително в някаква околност на точката а и x е точка от тази околност. Тогава в интервала (a,x)((x,a)) съществува точка ξ , за която е в сила равенството

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}.$$

Това е най-често употребяваната форма на остатъчния член. При нея формулата на Тейлор добива вида:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}.$$

В частност, при n=0 получаваме формулата

$$f(x) = f(a) + f'(\xi)(x - a)$$
.

Прехвърляйки f(a) от лявата страна на равенството, виждаме, че изучената по-рано формула за крайните нараствания представлява частен случай на формулата на Тейлор.

Друга често употребявана форма на остатъчния член се получава при p=1 (ние ще я дадем само във формата , в която участвува θ):

Формула на Коши за остатъчния член . При направените по-горе предположения съществува $\theta \in (0,1)$, така че

$$R_n(x) = \frac{f^{(n+1)}(a+\theta(x-a))}{n!} (1-\theta)^n (x-a)^{n+1}.$$