The Laplace Transform

In the linear mathematical models for a physical system such as a spring/mass system or a series electrical circuit, the right-hand member, or input, of the differential equations

$$m\frac{d^2x}{dt^2} + \beta \frac{dx}{dt} + kx = f(t) \qquad \text{or} \qquad L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = E(t)$$

is a driving function and represents either an external force f(t) or an impressed voltage E(t). In Section 5.1 we considered problems in which the functions f and E were continuous. However, discontinuous driving functions are not uncommon. For example, the impressed voltage on a circuit could be piecewise continuous and periodic, such as the "sawtooth" function shown on the left. Solving the differential

$$\frac{d}{dx}x^2 = 2x \qquad \text{and} \qquad \int x^2 \, dx = \frac{1}{3}x^3 + c.$$

Integral Transform If f(x, y) is a function of two variables, then a definite integral of f with respect to one of the variables leads to a function of the other variable. For example, by holding g constant, we see that $\int_{1}^{2} 2xy^{2} dx = 3y^{2}$. Similarly, a definite integral such as $\int_{a}^{b} K(s, t) f(t) dt$ transforms a function f of the variable f into a function f of the variable f. We are particularly interested in an integral transform, where the interval of integration is the unbounded interval f is defined for f of the improper integral f is defined as a limit

$$\int_{0}^{\infty} K(s, t) f(t) dt = \lim_{b \to \infty} \int_{0}^{b} K(s, t) f(t) dt.$$
 (1)

DEFINITION 7.1.1 Laplace Transform

Let f be a function defined for $t \ge 0$. Then the integral

$$\mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt$$
 (2)

is said to be the Laplace transform of f, provided that the integral converges.

EXAMPLE 1 Applying Definition 7.1.

Evaluate $\mathcal{L}\{1\}$.

SOLUTION From (2),

$$\mathcal{L}\{1\} = \int_0^\infty e^{-st}(1) \, dt = \lim_{b \to \infty} \int_0^b e^{-st} \, dt$$
$$= \lim_{b \to \infty} \frac{-e^{-st}}{s} \Big|_0^b = \lim_{b \to \infty} \frac{-e^{-sb} + 1}{s} = \frac{1}{s}$$

provided that s=0. In other words, when s=0, the exponent -sb is negative, and $e^{-sb} \to 0$ as $b \to \infty$. The integral diverges for s < 0.

EXAMPLE 2 Applying Definition 7.1.

Evaluate $\mathcal{L}\{t\}$.

SOLUTION From Definition 7.1.1 we have $\mathcal{L}\{t\} = \int_0^\infty e^{-st} t \, dt$. Integrating by parts and using $\lim_{t\to\infty} te^{-st} = 0$, s=0, along with the result from Example 1, we obtain

$$\mathcal{L}\{t\} = \frac{-te^{-st}}{s} \Big|_{0}^{\infty} + \frac{1}{s} \int_{0}^{\infty} e^{-st} dt = \frac{1}{s} \mathcal{L}\{1\} = \frac{1}{s} \left(\frac{1}{s}\right) = \frac{1}{s^{2}}.$$

EXAMPLE 3 Applying Definition 7.1.

Evaluate (a) $\mathcal{L}\lbrace e^{-3t}\rbrace$ (b) $\mathcal{L}\lbrace e^{5t}\rbrace$

SOLUTION In each case we use Definition 7.1.1.

(a)
$$\mathcal{L}\{e^{-3t}\} = \int_0^\infty e^{-3t} e^{-st} dt = \int_0^\infty e^{-(s+3)t} dt$$
$$= \frac{-e^{-(s+3)t}}{s+3} \Big|_0^\infty$$
$$= \frac{1}{s+3}.$$

The last result is valid for s > -3 because in order to have $\lim_{t\to\infty} e^{-(s+3)t} = 0$ we must require that s + 3 > 0 or s > -3.

EXAMPLE 4 Applying Definition 7.1.

Evaluate $\mathcal{L}\{\sin 2t\}$.

$$\mathcal{L}\{\sin 2t\} = \frac{2}{s^2 + 4}, \qquad s = 0.$$

THEOREM 7.1.1 Transforms of Some Basic Functions

(a)
$$\mathcal{L}\{1\} = \frac{1}{s}$$

(b)
$$\mathcal{L}\{t^n\} = \frac{n!}{s^{n+1}}, \quad n = 1, 2, 3, \dots$$
 (c) $\mathcal{L}\{e^{at}\} = \frac{1}{s-a}$

(c)
$$\mathcal{L}\lbrace e^{at}\rbrace = \frac{1}{s-a}$$

(d)
$$\mathcal{L}\{\sin kt\} = \frac{k}{s^2 + k^2}$$

(e)
$$\mathcal{L}\{\cos kt\} = \frac{s}{s^2 + k^2}$$

(d)
$$\mathcal{L}\{\sin kt\} = \frac{k}{s^2 + k^2}$$

(f) $\mathcal{L}\{\sinh kt\} = \frac{k}{s^2 - k^2}$

(g)
$$\mathcal{L}\{\cosh kt\} = \frac{s}{s^2 - k^2}$$

DEFINITION 7.1.2 Exponential Order

A function f is said to be of exponential order if there exist constants c, M = 0, and T = 0 such that $|f(t)| \le Me^{ct}$ for all t = T.

FIGURE 7.1.3 Three functions of exponential order

THEOREM 7.1.2 Sufficient Conditions fo Existence

If f is piecewise continuous on $[0, \infty)$ and of exponential order, then $\mathcal{L}\{f(t)\}$ exists for s-c.

FIGURE 7.1.4 e^{t^2} is not of exponential order

Evaluate
$$\mathcal{L}{f(t)}$$
 where $f(t) = \begin{cases} 0, & 0 \le t < 3 \\ 2, & t \ge 3. \end{cases}$

FIGURE 7.1.5 Piecewise continuous function in Example 6

SOLUTION The function f, shown in Figure 7.1.5, is piecewise continuous and of exponential order for t = 0. Since f is defined in two pieces, $\mathcal{L}\{f(t)\}$ is expressed as the sum of two integrals:

$$\mathcal{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt = \int_0^3 e^{-st} (0) dt + \int_3^\infty e^{-st} (2) dt$$
$$= 0 + \frac{2e^{-st}}{-s} \Big|_3^\infty$$
$$= \frac{2e^{-3s}}{s}, \qquad s = 0.$$

THEOREM 7.1.3 Behavior of F(s) as $s \to \infty$ If f is piecewise continuous on $[0, \infty)$ and of exponential order and $F(s) = \mathcal{L}\{f(t)\}$, then $\lim_{s \to \infty} F(s) = 0$.

EXERCISES 7.1

In Problems 1–18 use Definition 7.1.1 to find $\mathcal{L}\{f(t)\}$.

9.

FIGURE 7.1.8 Graph for Problem 9

10.

FIGURE 7.1.9 Graph for Problem 10

11.
$$f(t) = e^{t+7}$$

12.
$$f(t) = e^{-2t-5}$$

13.
$$f(t) = te^{4t}$$

14.
$$f(t) = t^2 e^{-2t}$$

15.
$$f(t) = e^{-t} \sin t$$

16.
$$f(t) = e^t \cos t$$

17.
$$f(t) = t \cos t$$

$$18. \ f(t) = t \sin t$$

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES

THEOREM 7.2.1 Some Inverse Transforms

(a)
$$1 = \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}$$

(b)
$$t^n = \mathcal{L}^{-1} \left\{ \frac{n!}{s^{n+1}} \right\}, \quad n = 1, 2, 3, \dots$$
 (c) $e^{at} = \mathcal{L}^{-1} \left\{ \frac{1}{s-a} \right\}$

(c)
$$e^{at} = \mathcal{L}^{-1} \left\{ \frac{1}{s-a} \right\}$$

(d)
$$\sin kt = \mathcal{L}^{-1} \left\{ \frac{k}{s^2 + k^2} \right\}$$

(e)
$$\cos kt = \mathcal{L}^{-1} \left\{ \frac{s}{s^2 + k^2} \right\}$$

(f)
$$\sinh kt = \mathcal{L}^{-1} \left\{ \frac{k}{s^2 - k^2} \right\}$$

(g)
$$\cosh kt = \mathcal{L}^{-1} \left\{ \frac{s}{s^2 - k^2} \right\}$$

EXAMPLE 1 Applying Theorem 7.2.1

Evaluate (a) $\mathcal{L}^{-1}\left\{\frac{1}{e^5}\right\}$ (b) $\mathcal{L}^{-1}\left\{\frac{1}{e^2+7}\right\}$.

(b)
$$\mathcal{L}^{-1} \left\{ \frac{1}{s^2 + 7} \right\}$$
.

SOLUTION (a) To match the form given in part (b) of Theorem 7.2.1, we identify n+1=5 or n=4 and then multiply and divide by 4!:

$$\mathcal{L}^{-1}\left\{\frac{1}{s^5}\right\} = \frac{1}{4!} \mathcal{L}^{-1}\left\{\frac{4!}{s^5}\right\} = \frac{1}{24} t^4.$$

(b) To match the form given in part (d) of Theorem 7.2.1, we identify $k^2 = 7$, so $k = \sqrt{7}$. We fix up the expression by multiplying and dividing b $\sqrt{7}$:

$$\mathcal{L}^{-1}\left\{\frac{1}{s^2+7}\right\} = \frac{1}{\sqrt{7}}\mathcal{L}^{-1}\left\{\frac{\sqrt{7}}{s^2+7}\right\} = \frac{1}{\sqrt{7}}\sin\sqrt{7}t.$$

EXAMPLE 2 Termwise Division and Linearity

Evaluate
$$\mathcal{L}^{-1}\left\{\frac{-2s+6}{s^2+4}\right\}$$
.

SOLUTION We first rewrite the given function of *s* as two expressions by means of termwise division and then use (1):

termwise division
$$\downarrow$$
 linearity and fixing up constants \downarrow

$$\mathcal{L}^{-1}\left\{\frac{-2s+6}{s^2+4}\right\} = \mathcal{L}^{-1}\left\{\frac{-2s}{s^2+4} + \frac{6}{s^2+4}\right\} = -2\mathcal{L}^{-1}\left\{\frac{s}{s^2+4}\right\} + \frac{6}{2}\mathcal{L}^{-1}\left\{\frac{2}{s^2+4}\right\}$$

$$= -2\cos 2t + 3\sin 2t. \quad \leftarrow \text{parts (e) and (d)}$$
of Theorem 7.2.1 with $k=2$

EXAMPLE 3 Partial Fractions: Distinct Linear Factors

Evaluate
$$\mathcal{L}^{-1} \left\{ \frac{s^2 + 6s + 9}{(s - 1)(s - 2)(s + 4)} \right\}$$
.

SOLUTION There exist unique real constants A, B, and C so that

$$\frac{s^2 + 6s + 9}{(s - 1)(s - 2)(s + 4)} = \frac{A}{s - 1} + \frac{B}{s - 2} + \frac{C}{s + 4}$$

$$\mathcal{L}^{-1} \left\{ \frac{s^2 + 6s + 9}{(s - 1)(s - 2)(s + 4)} \right\} = -\frac{16}{5} \mathcal{L}^{-1} \left\{ \frac{1}{s - 1} \right\} + \frac{25}{6} \mathcal{L}^{-1} \left\{ \frac{1}{s - 2} \right\} + \frac{1}{30} \mathcal{L}^{-1} \left\{ \frac{1}{s + 4} \right\}$$

$$= -\frac{16}{5} e^t + \frac{25}{6} e^{2t} + \frac{1}{30} e^{-4t}. \tag{5}$$

7.2.2 TRANSFORMS OF DERIVATIVES

$$\mathcal{L}\lbrace f'(t)\rbrace = sF(s) - f(0).$$

$$\mathcal{L}\lbrace f''(t)\rbrace = s^2F(s) - sf(0) - f'(0).$$

THEOREM 7.2.2 Transform of a Derivative

If $f, f', \ldots, f^{(n-1)}$ are continuous on $[0, \infty)$ and are of exponential order and if $f^{(n)}(t)$ is piecewise continuous on $[0, \infty)$, then

$$\mathcal{L}\{f^{(n)}(t)\} = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \cdots - f^{(n-1)}(0),$$

where $F(s) = \mathcal{L}\{f(t)\}.$

EXAMPLE 5 Solving a Second-Order IVP

Solve $y'' - 3y' + 2y = e^{-4t}$, y(0) = 1, y'(0) = 5.

$$\mathcal{L}\left\{\frac{d^2y}{dt^2}\right\} - 3\mathcal{L}\left\{\frac{dy}{dt}\right\} + 2\mathcal{L}\left\{y\right\} = \mathcal{L}\left\{e^{-4t}\right\}$$

$$s^{2}Y(s) - sy(0) - y'(0) - 3[sY(s) - y(0)] + 2Y(s) = \frac{1}{s+4}$$

$$Y(s) = \frac{s+2}{s^2 - 3s + 2} + \frac{1}{(s^2 - 3s + 2)(s+4)} = \frac{s^2 + 6s + 9}{(s-1)(s-2)(s+4)}.$$
(14)
$$\frac{s^2 + 6s + 9}{(s-1)(s-2)(s+4)} = -\frac{16/5}{s-1} + \frac{25/6}{s-2} + \frac{1/30}{s+4}.$$

$$y(t) = \mathcal{L}^{-1}{Y(s)} = -\frac{16}{5}e^{t} + \frac{25}{6}e^{2t} + \frac{1}{30}e^{-4t}.$$

EXERCISES 7.2

7.2.1 INVERSE TRANSFORMS

In Problems 1—30 use appropriate algebra and Theorem 7.2.1 to find the given inverse Laplace transform

24.
$$\mathcal{L}^{-1}\left\{\frac{s^2+1}{s(s-1)(s+1)(s-2)}\right\}$$

29.
$$\mathscr{L}^{-1}\left\{\frac{1}{(s^2+1)(s^2+4)}\right\}$$
 30. $\mathscr{L}^{-1}\left\{\frac{6s+3}{s^4+5s^2+4}\right\}$

In Problems 31-40 use the Laplace transform to solve the given initial-value problem.

36.
$$y'' - 4y' = 6e^{3t} - 3e^{-t}$$
, $y(0) = 1$, $y'(0) = -1$
37. $y'' + y = \sqrt{2}\sin\sqrt{2}t$, $y(0) = 10$, $y'(0) = 0$

37.
$$y'' + y = \sqrt{2} \sin \sqrt{2}t$$
, $y(0) = 10$, $y'(0) = 0$

What does the Laplace Transform really tell us?

7.3 OPERATIONAL PROPERTIES I

7.3.1 TRANSLATION ON THE s-AXIS

THEOREM 7.3.1 First Translation Theorem

If $\mathcal{L}{f(t)} = F(s)$ and a is any real number, then

$$\mathcal{L}\{e^{at}f(t)\} = F(s-a).$$

FIGURE 7.3.1 Shift on s-axis

For emphasis it is sometimes useful to use the symbolism

$$\mathcal{L}\lbrace e^{at}f(t)\rbrace = \mathcal{L}\lbrace f(t)\rbrace \big|_{s\to s-a}$$

where $s \to s - a$ means that in the Laplace transform F(s) of f(t) we replace the symbol s wherever it appears by s - a.

EXAMPLE 1 Using the First Translation Theorem

Evaluate (a) $\mathcal{L}\{e^{5t}t^3\}$

(a)
$$\mathcal{L}\lbrace e^{5t}t^3\rbrace$$

(b)
$$\mathcal{L}\left\{e^{-2t}\cos 4t\right\}$$
.

SOLUTION The results follow from Theorems 7.1.1 and 7.3.1.

(a)
$$\mathscr{L}\lbrace e^{5t}t^3\rbrace = \mathscr{L}\lbrace t^3\rbrace \big|_{s\to s-5} = \frac{3!}{s^4}\bigg|_{s\to s-5} = \frac{6}{(s-5)^4}$$

(b)
$$\mathcal{L}\lbrace e^{-2t}\cos 4t\rbrace = \mathcal{L}\lbrace \cos 4t\rbrace \big|_{s\to s-(-2)} = \frac{s}{s^2+16} \bigg|_{s\to s+2} = \frac{s+2}{(s+2)^2+16}$$

$$\mathcal{L}^{-1}{F(s-a)} = \mathcal{L}^{-1}{F(s)|_{s\to s-a}} = e^{at}f(t),$$
 (1)

EXAMPLE 2 Partial Fractions: Repeated Linear Factors

Evaluate (a) $\mathcal{L}^{-1} \left\{ \frac{2s+5}{(s-3)^2} \right\}$ (b) $\mathcal{L}^{-1} \left\{ \frac{s/2+5/3}{s^2+4s+6} \right\}$

$$\frac{2s+5}{(s-3)^2} = \frac{2}{s-3} + \frac{11}{(s-3)^2}$$
 (2)

and

$$\mathcal{L}^{-1}\left\{\frac{2s+5}{(s-3)^2}\right\} = 2\mathcal{L}^{-1}\left\{\frac{1}{s-3}\right\} + 11\mathcal{L}^{-1}\left\{\frac{1}{(s-3)^2}\right\}. \tag{3}$$

$$\mathcal{L}^{-1}\left\{\frac{2s+5}{(s-3)^2}\right\} = 2e^{3t} + 11e^{3t}t. \tag{4}$$

EXAMPLE 3 An Initial-Value Problem

Solve $y'' - 6y' + 9y = t^2e^{3t}$, y(0) = 2, y'(0) = 17.

$$\mathcal{L}\{\mathbf{v}''\} - 6\mathcal{L}\{\mathbf{v}'\} + 9\mathcal{L}\{\mathbf{v}\} = \mathcal{L}\{t^2e^{3t}\}$$

$$s^{2}Y(s) - sy(0) - y'(0) - 6[sY(s) - y(0)] + 9Y(s) = \frac{2}{(s-3)^{3}}$$

$$Y(s) = \frac{2s+5}{(s-3)^2} + \frac{2}{(s-3)^5}.$$

$$Y(s) = \frac{2}{s-3} + \frac{11}{(s-3)^2} + \frac{2}{(s-3)^5}.$$

Thus $y(t) = 2\mathcal{L}^{-1} \left\{ \frac{1}{s-3} \right\} + 11\mathcal{L}^{-1} \left\{ \frac{1}{(s-3)^2} \right\} + \frac{2}{4!} \mathcal{L}^{-1} \left\{ \frac{4!}{(s-3)^5} \right\}.$ (8)

$$y(t) = 2e^{3t} + 11te^{3t} + \frac{1}{12}t^4e^{3t}.$$

Solve $y'' + 4y' + 6y = 1 + e^{-t}$, y(0) = 0, y'(0) = 0.

7.3.2 TRANSLATION ON THE t-AXIS

DEFINITION 7.3.1 Unit Step Function

The unit step function $\mathcal{U}(t-a)$ is defined to b

$$\mathcal{U}(t-a) = \begin{cases} 0, & 0 \le t < a \\ 1, & t \ge a. \end{cases}$$

FIGURE 7.3.2 Graph of unit step function

$$f(t) = \begin{cases} g(t), & 0 \le t < a \\ h(t), & t \ge a \end{cases}$$
 (9)

$$f(t) = \begin{cases} 0, & 0 \le t < a \\ g(t), & a \le t < b \\ 0, & t \ge b \end{cases}$$
 (11)

THEOREM 7.3.2 Second Translation Theorem

If $F(s) = \mathcal{L}\{f(t)\}\$ and a = 0, then

$$\mathcal{L}\{f(t-a)\,\mathcal{U}(t-a)\}=e^{-as}F(s).$$

(a) $f(t), t \ge 0$

FIGURE 7.3.6 Shift on t-axis

$$\mathcal{L}^{-1}\left\{e^{-as}F(s)\right\} = f(t-a)\mathcal{U}(t-a). \tag{15}$$

-

We often wish to find the Laplace transform of just a unit step function. This can be from either Definition 7.1.1 or Theorem 7.3.2. If we identify f(t) = 1 in Theorem 7.3.2. then f(t - a) = 1, $F(s) = \mathcal{L}\{1\} = 1/s$, and so

$$\mathcal{L}\{\mathcal{U}(t-a)\} = \frac{e^{-as}}{s}.$$
 (14)

EXERCISES 7.3

TRANSLATION ON THE 5-AXIS

15.
$$\mathcal{L}^{-1}\left\{\frac{s}{s^2+4s+5}\right\}$$

15.
$$\mathcal{L}^{-1}\left\{\frac{s}{s^2+4s+5}\right\}$$
 16. $\mathcal{L}^{-1}\left\{\frac{2s+5}{s^2+6s+34}\right\}$

17.
$$\mathcal{L}^{-1}\left\{\frac{s}{(s+1)^2}\right\}$$

17.
$$\mathscr{L}^{-1}\left\{\frac{s}{(s+1)^2}\right\}$$
 18. $\mathscr{L}^{-1}\left\{\frac{5s}{(s-2)^2}\right\}$

In Problems 21-30 use the Laplace transform to solve the given initial-value problem.

24.
$$y'' - 4y' + 4y = t^3 e^{2t}$$
, $y(0) = 0$, $y'(0) = 0$

25.
$$y'' - 6y' + 9y = t$$
, $y(0) = 0$, $y'(0) = 1$

26.
$$y'' - 4y' + 4y = t^3$$
, $y(0) = 1$, $y'(0) = 0$

27.
$$y'' - 6y' + 13y = 0$$
, $y(0) = 0$, $y'(0) = -3$

28.
$$2y'' + 20y' + 51y = 0$$
, $y(0) = 2$, $y'(0) = 0$

29.
$$y'' - y' = e^t \cos t$$
, $y(0) = 0$, $y'(0) = 0$

30.
$$y'' - 2y' + 5y = 1 + t$$
, $y(0) = 0$, $y'(0) = 4$

7.3.2 TRANSLATION ON THE t-AXIS

In Problems 37–48 find either F(s) or f(t), as indicated.

43.
$$\mathcal{L}^{-1} \left\{ \frac{e^{-2s}}{s^3} \right\}$$

43.
$$\mathcal{L}^{-1}\left\{\frac{e^{-2s}}{s^3}\right\}$$
 44. $\mathcal{L}^{-1}\left\{\frac{(1+e^{-2s})^2}{s+2}\right\}$

45.
$$\mathcal{L}^{-1}\left\{\frac{e^{-s}}{s^2+1}\right\}$$
 46. $\mathcal{L}^{-1}\left\{\frac{se^{-s/2}}{s^2+4}\right\}$

46.
$$\mathcal{L}^{-1}\left\{\frac{se^{-s/2}}{s^2+4}\right\}$$

DERIVATIVES OF A TRANSFORM

THEOREM 7.4.1 Derivatives of Transforms

If
$$F(s) = \mathcal{L}{f(t)}$$
 and $n = 1, 2, 3, \dots$, then

$$\mathcal{L}\lbrace t^n f(t)\rbrace = (-1)^n \frac{d^n}{ds^n} F(s).$$

EXAMPLE 2 An Initial-Value Problem

Solve $x'' + 16x = \cos 4t$, x(0) = 0, x'(0) = 1.

$$X(s) = \frac{1}{s^2 + 16} + \frac{s}{(s^2 + 16)^2}.$$

$$x(t) = \frac{1}{4} \mathcal{L}^{-1} \left\{ \frac{4}{s^2 + 16} \right\} + \frac{1}{8} \mathcal{L}^{-1} \left\{ \frac{8s}{(s^2 + 16)^2} \right\}$$

$$= \frac{1}{4} \sin 4t + \frac{1}{8} t \sin 4t.$$

7.4.2 TRANSFORMS OF INTEGRALS

Convolution If functions f and g are piecewise continuous on the interval $[0, \infty)$, then a special product, denoted by f * g, is defined by the integra

$$f * g = \int_0^t f(\tau) g(t - \tau) d\tau$$
 (2)

and is called the convolution of f and g. The convolution f * g is a function of t.

THEOREM 7.4.2 Convolution Theorem

If f(t) and g(t) are piecewise continuous on $[0, \infty)$ and of exponential order, then

$$\mathcal{L}{f * g} = \mathcal{L}{f(t)} \mathcal{L}{g(t)} = F(s)G(s).$$

EXAMPLE 3 Transform of a Convolution

Evaluate
$$\mathcal{L}\left\{\int_0^t e^{\tau} \sin(t-\tau) d\tau\right\}$$
.

SOLUTION With $f(t) = e^t$ and $g(t) = \sin t$, the convolution theorem states that the Laplace transform of the convolution of f and g is the product of their Laplace transforms:

$$\mathscr{L}\left\{\int_0^t e^{\tau} \sin(t-\tau) d\tau\right\} = \mathscr{L}\left\{e^t\right\} \cdot \mathscr{L}\left\{\sin t\right\} = \frac{1}{s-1} \cdot \frac{1}{s^2+1} = \frac{1}{(s-1)(s^2+1)}.$$