BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BTECH.

BRANCH: ECE+CS+AIML+EEE

SEMESTER: III/ADD

SESSION: MO/2024

SUBJECT: EC203 DIGITAL SYSTEM DESIGN

TIME: 3 Hours **FULL MARKS: 50**

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.

	es/Data hand book/Graph paper etc. to be supplied to the candidates in the examinat			
Q.1(a)	i) Perform the operation (+12-17) in 2's complement representation. ii) Define each of the following electrical characteristics of logic gates: V_{OH} , V_{IL} , I_{OL} , I_{IH} .	[2+3]	CO 1	BL 1
Q.1(b)		[2+3]	1	2
Q.2(a)	Minimize the following Boolean function using K-Map and further implement using NAND gates:	[5]	2	2
Q.2(b)	F (A, B, C, D) = Σ m (0,4,5,6,8,9) +d (10,11,12,13,14,15) Design the parity bit generator circuit using necessary steps and logic diagram.	[5]	2	3
Q.3(a)	BCD-carry and draw the logic diagram.	[5]	3	2
Q.3(b)	What is decoder? Design a 4:16 decoder circuit using 3:8 decoders and explain the operation.	[5]	3	3
Q.4(a)	(ii) What is shift register? Explain the working of a serial-in-parallel out shift register (4-bit) with necessary inputs and outputs and circuit diagram.	[2+3]	4	2
Q.4(b)	Design a clocked sequential circuit using J-K flip-flop that would go through the following states: $00 \rightarrow 10 \rightarrow 11 \rightarrow 10 \rightarrow 00$	[5]	4	3
	(Follow the steps as: state table, excitation table, simplification and circuit diagram)			
Q.5(a)	What is programmable logic device? Mention the advantages of it. Explain the working of a PLA with a standard logic circuit and diagram.	[5]	4	2
Q.5(b)	Explain the working of an astable multivibrator using any technique and mention the equation for time-period of the output square wave. Write the expression of duty cycle of the output signal.	[5]	5	3

:::::19/11/2024:::::E