AD-A090 941 NEW YORK STATE DEPT OF ENVIRONMENTAL CONSERVATION ALBANY F/6 13/13 NATIONAL DAM SAFETY PROGRAM. LAKE GEORGE OUTLET DAM (INVENTORY --ETC(U) AUG 80 J B STETSON DACW51-79-C-0001 UNCLASSIFIED NL 1 + 2 .

)B.5

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION N AD-AO 90 947	
Phase I Inspection Report Lake George Outlet Dam Lake Champlain River Basin, Essex County, NY Inventory No. 230	5. TYPE OF REPORT & PERIOD COVERED Phase I Inspection Report National Dam Safety Program 6. PERFORMING ORG. REPORT NUMBER
John B. Stetson	8. CONTRACT OR GRANT NUMBER(*) DACW-51-79-C-0001
Performing organization name and adoress Stetson-Dale Engineering Company Bankers Trust Building Utica, NY 13501	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
New York State Department of Environmental Conservation 50 Wolf Road Albany, NY 12233	12. REPORT DATE 28 August 1980 13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) Department of the Army 26 Federal Plaza New York District, Coff New York, NY 10287	UNCLASSIFIED 15. DECLASSIFICATION/DOWNGRADING SCHEDULE

Approved for public release; Distribution unlimited.

DTIC ELECTE OCT 3 0 1900

Ά

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)
Dam Safety
National Dam Safety Program
Visual Inspection
Hydrology, Structural Stability

Lake George Dam Essex County Ticonderoga Creek Lake Champlain

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This report provides information and analysis on the physical condition of the dam as of the report date. Information and analysis are based on visual inspection of the dam by the performing organization.

The examination of documents and visual inspection of the dam and appurtenant structures did not reveal conditions which constitute an immediate hazard to human life or property. The dam, however, has a number of problem areas which should be investigated further.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

The structural stability analysis indicates unsatisfactory stability for the dam when subjected to forces which could occur during winter operations (including ice loading), the Probable Maximum Flood (PMF), and 1/2 PMF events.

A structural stability investigation of the dam should be started within 6 months to determine the effect of the dam's steel bar anchor system and the uplift forces acting on the base of the dam. Remedial measures should be completed within 2 years to increase the tructural stability of the facility to meet the Corps of Engineers screening criteria.

The hydrologic/hydraulic analysis establishes the spillway capacity as 46% of the Probable Maximum Flood (PMF) with the sluice gates open and 30% of the PMF if the gates remain closed throughout the storm. The dam will be overtopped by 2.72 feet by the PMF with the gates closed or 2.55 feet with the gates opened. However, the spillway is capable of passing the 1/2 PMF under either of these two conditions without the dam being overtopped. Therefore, the spillway is assessed as inadequate according to the Corps of Engineers screening criteria.

The following measures should be completed within one year:

- 1. A warning system should be provided to alert persons that flow in the receiving stream will be increased, when the control gates are opened.
- 2. A flood warning and emergency evacuation plan should be developed and implemented to alert the public should conditions occur which could result in failure of the dam.
- 3. A formalized inspection program should be initiated to develop data on conditions and maintenance operations at the facility.

ſ.			•
1.		LAKE CHAMPLAIN RIVER BASIN	
l.		tional Dam Satey Program.	1-)7
	L	ESSEX COUNTY,	DAM
		ESSEX COUNTY, NEW YORK.	
		WYENTERE IN NET ESC).
#			
-			
	P	PHASE I INSPECTION REP	ORT
		TIONAL DAM SAFETY PRO	
1.	(15)	DAG V151-79-C-80011	
1.			
1. J	John B.	Station	
1- T			0
_ [COPY.	12/156	
I	FILE	NEW YORK DISTRICT CORPS OF ENGINEERS	
I		JULY 1980 3939	70 4
Ì	8	80 10 2	9 018

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

TABLE OF CONTENTS

	<u>Page</u>
Preface	
Assessment of General Conditions	1-11
Overall View of Dam	iii-vi
Section 1 - Project Information	1-4
Section 2 - Engineering Data	5
Section 3 - Visual Inspection	6-7
Section 4 - Operational Procedures	8
Section 5 - Hydrologic/Hydraulic Computations	9-12
Section 6 - Structural Stability	13-17
Section 7 - Assessment/Remedial Measures	18-19

FIGURES

Figure	1	_	Location Map
			Title Sheet - Lake George Gate Installation
			Site Plans & Electrical Details
			Concrete Details
Figure	5	-	Slide Gate Details
Figure	6	-	Trash Rack and Concrete Details
Figure	7	_	Title Sheet - Lake George Outlet Gates
Figure	8	-	Site Plan & Wall Details
Figure	9	-	North Gate Abutment
Figure	10	-	North Gate Abutment as Built
Figure	11	-	South Gate Abutment
Figure	12	-	South Gate Abutment as Built
Figure	13	-	West Wall & Electrical
Figure	14	-	Rock Excavation & Abutment Details
Figure	15	_	Miscellaneous Metal
			Miscellaneous Metal
Figure	17	-	Slide Gate Details
			Contour Map - Uppermost Power Dam
			Lake George Educational Leaflet - (N.Y.S. D.E.C.)
			Lake George Educational Leaflet - (N.Y.S. D.E.C.)
Figure	21	-	Geologic Map

APPENDIX

Field Inspection Report	A
Previous Inspection Report/Relevant Correspondence	8
Hydrologic and Hydraulic Computations	С
Stability Analysis	D
References	E

PHASE I REPORT NATIONAL DAM SAFETY PROGRAM

Name	of	Dam <u>Lake</u>	George Dam, NY230	_
		State Located	New York	
		County Located	Essex	
		Stream	Ticonderoga Creek	
		Date of Inspection	n April 22, 1980	

ASSESSMENT OF GENERAL CONDITIONS

The examination of documents and visual inspection of the dam and appurtenant structures did not reveal conditions which constitute an immediate hazard to human life or property. The dam, however, has a number of problem areas which should be investigated further.

The structural stability analysis indicates unsatisfactory stability for the dam when subjected to forces which could occur during winter operations (including ice loading), the Probable Maximum Flood (PMF), and 1/2 PMF events.

A structural stability investigation of the dam should be started within 6 months to determine the effect of the dam's steel bar anchor system and the uplift forces acting on the base of the dam. Remedial measures should be completed within 2 years to increase the structural stability of the facility to meet the Corps of Engineers screening criteria.

The hydrologic/hydraulic analysis establishes the spillway capacity as 46% of the Probable Maximum Flood (PMF) with the sluice gates open and 30% of the PMF if the gates remain closed throughout the storm. The dam will be overtopped by 2.72 feet by the PMF with the gates closed or 2.55 feet with the gates opened. However, the spillway is capable of passing the 1/2 PMF under either of these two conditions without the dam being overtopped. Therefore, the spillway is assessed as inadequate according to the Corps of Engineers screening criteria.

The following measures should be completed within one year:

- A warning system should be provided to alert persons that flow in the receiving stream will be increased, when the control gates are opened.
- 2. A flood warning and emergency evacuation plan should be developed and implemented to alert the public should conditions occur which could result in failure of the dam.

3. A formalized inspection program should be initiated to develop data on conditions and maintenance operations at the facility.

Dale Engineering Company

John B. Stetson, President

Approved By:/
Date: \$ 28/80

Col. W.M. Smith, Or. New York District Empineer

Overview of Lake George Outlet Dam.

South abutment control gates.

3. North abutment control gate.

• Upstream face of Dam from south abutment.

5. Downstream channel.

6. Railroad bridge 100 feet above dam-

7. Highway bridge 500 feet above Dam.

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM NAME OF DAM - LAKE GEORGE OUTLET DAM ID# - NY 230

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

a. Authority

Authority for this report is provided by the National Dam Inspection Act, Public Law 92-367 of 1972. It has been prepared in accordance with a contract for professional services between Dale Engineering Company and The New York State Department of Environmental Conservation.

b. Purpose of Inspection

The purpose of this inspection is to evaluate the existing condition of the Lake George Outlet Dam and appurtenant structures, owned by the New York State Department of Environmental Conservation, and to determine if the dam constitutes a hazard to human life or property and to transmit findings to the State of New York.

This Phase I inspection report does not relieve an Owner or Operator of a dam of the legal duties, obligations or liabilities associated with the ownership or operation of the dam. In addition, due to the limited scope of services for these Phase I investigations, the investigators had to rely upon the data furnished to them. Therefore, this investigation is limited to visual inspection, review of data prepared by others, and simplified hydrologic, hydraulic and structural stability evaluations where appropriate. The investigators do not assume responsibility for defects or deficiencies in the dam or in the data provided.

1.2 DESCRIPTION OF PROJECT

a. Description of Dam and Appurtenances

The Lake George Outlet Dam is located in the Village of Ticonderoga, approximately 500 feet downstream from the Alexandria Avenue Bridge near the southern boundary of the village. The dam is a concrete and masonry gravity structure approximately 110 feet long with a maximum height of approximately 8 feet. Control gate structures are located on both the north and south abutments of the dam. The south abutment control structure consists of two electrically operated sluice gates, one 8 feet wide by 7 feet high and one 10 feet wide by 7 feet high. The north abutment control structure consists of a single electrically operated sluice gate 10 feet wide by 7 feet high. The principal spillway section of the dam is located between the two control gate structures and is approximately 59 feet wide with a top

width of 5 feet, 10 inches. A walkway traverses the entire structure allowing access across the dam during all but extreme high level flows. The dam is situated on bedrock which is visible both at the downstream face of the spillway section and at the upstream face of the dam when viewed through the water. The dam was formerly used as a source of power for mills owned by the International Paper Company. These mills have been demolished and only the foundation walls and floor slabs now remain at the site.

b. Location

The Lake George Outlet Dam is located in the Village of Ticonderoga, Town of Ticonderoga, Essex County, New York.

Size Classification

The maximum height of the dam is approximately 8 feet. The storage volume of the impoundment is approximately 2,185,000 acre feet. Therefore, the dam is in the Large Size Classification as defined by the Recommended Guidelines for Safety Inspection of Dams.

Hazard Classification

Ticonderoga Creek, the receiving stream from the impoundment, flows through the center of the Village of Ticonderoga. Numerous structures are located along the banks of the creek. The creek is also used for recreational purposes such as fishing, swimming and sunbathing. Therefore, the dam is in the High Hazard Category as defined by the Recommended Guidelines for Safety Inspection of Dams.

Ownership e.

The dam is owned by the New York State Department of Environmental Conservation.

Contact: Regional Director

> New York State Department of **Environmental Conservation**

Box 220

Warrensburg, New York 12885 Telephone: 518-623-3671

Purpose of the Dam f.

The dam is used to regulate the level of Lake George for recreational and environmental purposes.

Design and Construction History

The construction plans included in this report indicate that the dam was reconstructed in 1974. This reconstruction consisted of the removal and replacement of the sluice gates on both the north and

south abutments and the placement of a concrete overlay on the upstream face of the main spillway. This reconstruction program also provided for the blockage of the existing penstocks which formerly fed the paper mill power systems. Earlier inspection reports also included in this report indicate that the masonry dam was originally constructed in 1904 as a source of power for the International Paper Company mills located along the banks of the Ticonderoga Creek. A later report dated July 31, 1920 indicates 1803 as the date of original construction of an earlier dam at this site.

h. Normal Operational Procedures

The facility is operated by the New York State Department of Environmental Conservation. The facility is used to control the level of Lake George by manipulating the sluice gates at the structure. The normal controlled level of Lake George is 3.5 feet on the gauge at Rogers Rock State Park. The "O" reading on the gauge is equivalent to an elevation of 315.93 feet above sea level on the USGS datum.

1.3 PERTINENT DATA

a. Drainage Area

The drainage area of the Lake George Outlet Dam is 231 square miles.

b. Discharge at Dam Site

Peak Recorded Discharges:

March 17, 1977	1370 cfs*
April 9, 1936	1470 cfs

Computed Discharges:

Spillway, Top of Dam (Gates Closed)	1665 cfs	
Spillway, Top of Dam (Gates Open)	3250 cfs	
Gated Drawdown (3 Gates Open 5 Feet)	930 cfs (Water Surf	ace
	Ø Elev. 319	.6)

Elevation (Feet Above MSL)

Top of Dam	323.0
Spillway Crest	319.6
Stream Bed at Centerline of Dam	311.6

d. Reservoir

Length of Normal	Pool	169,000+ F	T
Length of Normal	ruui	103,000 6	

^{*}Measured at USGS Gage 04279000, 1/2 mile downstream of dam.

e. Storage

Top of Dam 2,279,000 Acre Feet Normal Pool 2,185,000 Acre Feet

f. Reservoir Area

Top of Dam 29,000 Acre Spillway Pool 29,000 Acre

g. Dam

Type - Masonry & Concrete Gravity.
Length - 110 Feet.
Height - 8 Feet.
Freeboard Between Normal Reservoir and Top of Dam - 3.4 Feet.
Top Width - 5 Feet, 10 Inches (Measured).
Side Slopes - Upstream - 1 Horizontal, 12 Vertical; Downstream - 1 Horizontal, 4 Vertical.
Zoning - N/A.
Impervious Core - N/A.
Grout Curtain - N/A.

h. Spillway

Type - Broad Crested.
Length - 59 Feet.
Crest Elevation - 319.6
Gates - None.
U/S Channel - Impoundment.
D/S Channel - Natural Rock.

i. Regulating Outlets

2 gates, 10 feet wide x 7 feet high; 1 gate, 8 feet wide x 7 feet high.

SECTION 2 - ENGINEERING DATA

2.1 GEOTECHNICAL DATA

No records of subsurface investigations performed for this structure were available. Former inspection reports for the dam indicate that the dam is founded on bedrock. The visual inspection confirms this statement.

2.2 DESIGN RECORDS

No records were available from the original design of the dam. A complete set of Construction Drawings for the 1974 reconstruction of the sluice gates is included in the report. See Figure 2 through 17.

2.3 CONSTRUCTION RECORDS

No information was available concerning the original construction of the dam.

2.4 OPERATION RECORDS

Records concerning the operation of the dam are kept by the New York State Department of Environmental Conservation in Warrensburg. These records relate basically to lake levels and sluice gate openings which were maintained during the record period.

2.5 EVALUATION OF DATA

The data presented in this report was obtained from the Department of Environmental Conservation files. The information available appears to be reliable and adequate for the Phase I inspection purposes.

SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

a. General

The Lake George Outlet Dam was inspected on April 22, 1980. The Dale Engineering Company Inspection Team was accompanied on the inspection by Charles W. Glass, Engineering Technician for the Department of Environmental Conservation, Region 5 in Warrensburg, New York.

b. Dam

At the time of the inspection, all of the sluice gates controlling the outflow from the impoundment were in the full open position. The water level in the impoundment was ll inches below the top of the principal spillway. This condition allowed visual inspection of the downstream face of the spillway section. However, flow through the sluice gate channels obscured the concrete walls in these areas from view. There was no sign of seepage through the masonry face of the principal spillway. The concrete work in general appeared to be in excellent condition. Visual observation did not disclose physical displacement of the alignment of the structure and there was no visual evidence of structural instability.

c. Appurtenant Structures

Both the north and south abutments of the dam were formerly the site of mills of the International Paper Company. The remains of these mills are still evident on the site. Masonry walls on both sides of the downstream channel were formerly a part of the mill structures. A concrete floor slab is presently visible on the north abutment of the dam. The void below this concrete slab has been filled with debris from the demolition of the mill buildings. The masonry walls along the channel are in satisfactory condition so as not to present a hazard from erosion due to flow in the outlet channel.

d. Control_Outlet

The outlet of the impoundment is controlled by manipulation of the sluice gates located on both the north and south abutments. These sluice gates are electrically operated and were the major portion of the 1974 reconstruction of the dam. The inlet of the sluice gates are equipped with trash racks to prevent floatable material from being lodged in the sluice gate opening. The sluice gates are presently in operating condition.

e. Reservoir Area

Lake George extends approximately 32 miles to the south of the Lake George Outlet Dam. The lake is used extensively for recreational

purposes. The shore of the lake slopes steeply to elevations of over 2200 feet. The lake reaches depths of approximately 175 feet along the east shore. There are no known areas of bank instability along the impoundment.

f. Downstream Channel

The downstream channel of the Ticonderoga Creek is formed in bedrock. No evidence of recent erosion was noted in the channel.

3.2 EVALUATION

The visual inspection revealed that the dam is generally in good condition. The sluice gate structures are in excellent operating condition and the concrete surfaces are similarly in good condition. No deformation of the alignment of the structures was noted in the visual inspection.

SECTION 4 - OPERATIONAL PROCEDURES

4.1 PROCEDURES

The normal operating procedure for this structure is to control the water level in Lake George for recreational and environmental purposes. The sluice gates at the structure are used to regulate the level of the impoundment. Water level readings are made at the gauge at the Rogers Rock Campsite and are relayed to the regional headquarters for the Department of Environmental Conservation at Warrensburg. The gauge readings are interpreted and directions are given to the operator in the Village of Ticonderoga who operates the gates. The procedures for regulating the level is set forth in Section 38, Chapter 1035, Laws of 1957, as amended of the Navigation Law. (See copy of the law on last page of Appendix B.)

4.2 MAINTENANCE OF THE DAM

Maintenance and operation of the dam is controlled by the New York State Department of Environmental Conservation. Visits are made to the site to check on the conditions of the facilities and to operate the sluice gates.

4.3 MAINTENANCE OF OPERATING FACILITIES

The gates controlling the flow are presently in excellent operating condition and are checked at least once a month by the New York State Department of Environmental Conservation.

4.4 DESCRIPTION OF WARNING SYSTEM

No warning system is in effect at present.

4.5 EVALUATION

The dam and appurtenances are inspected at regular intervals by the New York State Department of Environmental Conservation. The facilities are in excellent condition and there is no evidence of deterioration caused by lack of maintenance.

A formalized inspection program should be initiated to develop data regarding the physical conditions of the facility and to document the various maintenance operations which are undertaken at the dam.

A warning system should be installed to alert pesons who may be in the creek channel when the control gates are to be opened. Presently, the operator of the gates must visually determine if persons are in the channel and warn them individually when the gates are to be opened.

Because the dam is in the high hazard classification a flood warning and emergency evacuation plan should be implemented to alert the public, should conditions occur which could result in failure of the dam.

SECTION 5 - HYDROLOGIC/HYDRAULIC

5.1 DRAINAGE AREA CHARACTERISTICS

The Lake George Outlet Dam is located in the south-east corner of Essex County in Ticonderoga, New York. The dam has a drainage area of 231.4 square miles, which is characterized by mountains rising steeply from the lake valley. The reservoir has a surface area of approximately 29,000 acres and outlets into Ticonderoga Creek, which flows in a northerly then easterly direction through Ticonderoga to Lake Champlain.

5.2 ANALYSIS CRITERIA

The purpose of this investigation is to evaluate the dam and spillway with respect to their flood control potential and adequacy. This has been assessed through the evaluation of the Probable Maximum Flood (PMF) for the watershed and the subsequent routing of the flood through the reservoir and the dam's spillway system. The PMF event is that hypothetical flow induced by the most critical combination of precipitation, minimum infiltration loss and concentration of run-off of a specific location that is considered reasonably possible for a particular drainage area. Since the dam is in the Large Dam Category and is a High Hazard, the Recommended Guidelines for Safety Inspection of Dams (Ref. 1) require that the spillway be capable of passing the Probable Maximum Flood.

The hydrologic analysis was performed using the unit hydrograph method to develop the flood hydrograph. Due to the limited scope of this Phase I investigation, certain assumptions based on experience and existing data were used in this analysis and in the determination of the dam's spillway capacity to pass the PMF. In the event that the dam could not pass the Probable Maximum Flood without overtopping, additional analyses are to be performed on potential dam failures if the dam is designated as a High Hazard Classification. This process was done with the concept that if the dam was unable to satisfy this criteria, further refined hydrologic investigations would be required.

The dam is equipped with three sluice gated outlets which are normally operated electrically, but can be manually operated. The New York State Department of Conservation controls the operation of these gates and is required by law to open these gates when the water elevation in the main portion of the lake corresponds to approximately four inches above the spillway elevation. Due to the flow restriction of Alexandria Avenue Bridge under high flows, the water elevation just upstream of the dam may be half a foot or more below the water surface in the main portion of the lake. Two cases were considered in the hydraulic analysis of the spillway capacity. One case assumed the water surface to initially be at the top of spillway elevation and the sluice gates to open when the water surface raised

slightly above this elevation. The second modelled case assumed the sluice gates to remain closed throughout the flood event.

The U.S. Army Corps of Engineers' Hydrologic Engineering Center's Computer Program HEC-1 DB using the Modified Puls Method of flood routing was used to evaluate the dam, spillway capacity, and downstream hazard.

Unit hydrographs were defined by Snyder coefficients, C_t and C_p . Snyder's C_t was estimated to be 1.5 for the steeply sloped drainage area and C_p was estimated to be 0.625. The drainage area was divided into sub-areas to model the variability in hydrologic characteristics within the drainage basin. Due to the length of Lake George, the hydrographs from the sub-basins draining into the lake were lagged to reflect the travel time through the lake. Run-off, routing and flood hydrograph combining was then performed to obtain the inflow into the reservoir.

The Probable Maximum Precipitation (PMP) was 17.5 inches according to Hydrometeorological Report (HMR #33) for a 24-hour duration storm, 200 square mile basin, while loss rates were set at 1.0 inch initial abstraction and 0.1 inches/hour continuous loss rate. The loss rate function yielded 80 percent run-off from the PMF. The peak for the PMF inflow hydrograph was 279,480 cfs and the 1/2 PMF inflow peak was 139,737 cfs. The large storage capacity of the reservoir reduced these peak flows to 5,624 cfs for the PMF and 1,540 cfs for the 1/2 PMF, for the condition with all gates closed. The peak discharge flows for the condition with the gates open were 6,996 cfs for the PMF and 2,932 cfs for the 1/2 PMF.

5.3 SPILLWAY CAPACITY

Under normal operation, water either spills over the central portion of the dam or is wasted through one or more of the the sluice gates. However, for higher flows, water may also spill over the sluice gate abutment sections before the dam abutment walls are overtopped. The central section of the dam is approximately 60 feet in length and acts like a broad-crested weir. Weir coefficients ranging from 2.5 to 3.1 over the heads encountered in routing the PMF were assigned to this section for the spillway rating curve development. For the PMF evaluation, the analysis was performed both with all sluice gates in the closed position, and with all gates opened. Weir coefficients of 2.64 were used for the sluice gate abutment sections and 3.32 for flow over the top of the sluice gates. Discharges through the open gates were taken from an actual rating curve obtained from the Department of Environmental Conversation's Warrensburg office. The total discharge capacity of the structure at the top of dam elevation is 1,665 cfs with the gates closed and 3250 cfs with gates opened.

DISCHARGE CAPACITY (WITH GATES CLOSED)

Flood	Peak Discharge	Capacity as % of Flood Discharge
PMF	5,624 cfs	30%
1/2 PMF	1,540 cfs	108%

DISCHARGE CAPACITY (WITH GATES FULLY OPENED)

<u>Flood</u>	Peak Discharge	Capacity as % of Flood Discharge
PMF	6,996 cfs	46%
1/2 PMF	2,932 cfs	111%

5.4 RESERVOIR CAPACITY

The reservoir storage capacity was estimated from USGS mapping and the New York State Department of Environmental Conservation Educational Leaflet on Lake George.

The resulting estimates of the reservoir storage capacity are shown below:

Top of Dam 2,279,000 Acre Feet Spillway Crest 2,185,000 Acre Feet

5.5 FLOODS OF RECORD

The maximum recorded discharge at the dam site was 1470 cfs on April 9, 1936 (Ref. 18). This occurred during operation of the previous dam and gate structures. The maximum recorded discharge during the operation of the present structure was 1370 cfs on March 17, 1977 (Ref. 19). This discharge was measured at the La Chute U.S.G.S. gage approximately 2,800 feet downstream from the dam. Due to the regulating capability of the outlet gates and the large storage capacity of the lake, the peak discharge from any storm is very much influenced by the initial lake level and the operation of the gates.

5.6 OVERTOPPING POTENTIAL

The HEC-1 DB analysis indicates that the dam will be overtopped as follows:

(WITH GATES CLOSED)

PMF 2.72 Feet 1/2 PMF 0 Feet

(WITH GATES OPENED)

Flood PMF 1/2 PMF Maximum Depth Over Dam
2.55 Feet
0 Feet

Under normal operating conditions the gates would be opened under high flows to control the lake level and discharge.

It should also be noted that historical evidence indicates that the Alexandria Avenue bridge opening acts as a flow restriction under high flows. Therefore, the water elevation in the main portion of the lake would be higher than the water elevation of the portion just upstream of the dam. This condition would further utilize the lakes natural storage capacity and reduce the peak discharges from large floods somewhat. The analysis of the effect of the Alexandria Avenue bridge was not within the scope of this investigation. Any additional hydrologic and hydraulic investigations of the Lake George Outlet Dam should incorporate the effect of the Alexandria Avenue bridge on the attenuation of the studied floods.

5.7 EVALUATION

The hydrologic/hydraulic analysis establishes the spillway capacity as 46% of the Probable Maximum Flood (PMF) with the sluice gates open and 30% of the PMF if the gates remain closed throughout the storm. The dam will be overtopped by 2.72 feet by the PMF with the gates closed or 2.55 feet with the gates opened. However, the spillway is capable of passing the 1/2 PMF under either of these two conditions without the dam being overtopped. Therefore, the spillway is assessed as inadequate according to the Corps of Engineers screening criteria.

SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations

The Lake George Outlet Dam is a masonry and concrete structure sited on a natural rock ledge along the stream outlet from Lake George into Lake Champlain. Foundation bedrock is exposed at and below the downstream toe of the dam.

This dam, constructed in 1903 of masonry, had renovations performed in 1974 which included rebuilding of the northerly and southerly abutment sections, new sluice gates for the abutment sections, and a poured concrete refacing of the dam's upstream side.

At the time of the inspection, the sluice gates were open and discharging, with the level of the upstream impoundment approximately one foot below the crest of the spillway section. The condition of the visible new concrete work is good to excellent, and the downstream masonry face of the dam is fairly good although deterioration of some mortar joints is occurring. No evidence of structural instability was noted. No indication of underdam seepage was apparent although the dam's downstream face was damp from what was believed to be spray from the turbulent discharge through the sluice gates, a condition which would tend to mask a low rate of seepage.

The downstream channel area adjacent to the dam is defined by rock and by sections of now-abandoned masonry walls founded on the area's bedrock. Presumably, the masonry construction represents the remains of mill buildings previously located at this site. Varying degrees of deterioration have affected this masonry but it appears stable without threat to the downstream channel.

A plate girder bridge for a now-abandoned section of railroad crosses the dam's impounding area a short distance upstream. The foundation for the center span (reservoir) piers supporting this bridge consist of timber cribbing placed on stones. Deterioration of the timber was observed.

b. Geology and Seismic Stability

Geologically, the dam site is located near the eastern boundary of the Adirondack Province and about one mile from the southwest corner of the Champlain Section of the Valley and Ridge Province.

The dam's foundation and abutments are sited in bedrock. Bedrock is granitic to syenitic gneiss, and rated as a hard, durable, dense, resistant and impermeable material. Weathering is very minor. Structurally, rock foliation is from approximately horizontal to an

orientation of N8°W with a dip of 10° NE. Three prominent joint sets are present as follows:

<u>Set</u>	<u>Strike</u>	<u>D1p</u>	<u>Spacing</u>
1 2 3	N10E N82E N72W	50-60W 90° 90°	2'-4' 3'-6'; 40" common

With the dam axis having a northeast - southwest orientation, joint Set I is almost parallel to the dam face and dips steeply downstream. Sets 2 and 3 strike at a high angle to the dam. Foliation is either horizontal or dips at a low angle into the dam. This combination of foliation and joints presents the possibility that hydraulic action and frost wedging could remove blocks of rock from the outcrop apron at the toe of the dam. Open joints at the toe were observed during the inspection.

Several faults are located in the vicinity of the dam but none are known to cross the site. (See Geologic Map, Figure 21.) The area is located within Zone 2 of the Seismic Probablility Map but does have the potential of a Zone 3 Designation.

Information on some of the larger earthquakes for the area is tabulated below:

<u>Date</u>	Intensity Modified Mercalli	Location Relative to Dam
1851	III	12 mi. NNE
1855	ΙΛ	32 mi. SW
1867	VII	24 mi. NE
1916	V	16 mi. SW
1931	VII	32 mi. SW
1946	III	16 mi. W
1962	V	19 mi. N

Many earthquakes of lesser intensity are known to have occurred in this region according to the New York State Geologic Survey although none have been in the immediate vicinity of the dam.

c. Stability Evaluation

Design drawings available for review show plan alignment and the cross-section for the dam spillway but do not include information on the properties of the dam and foundation materials, nor stability analysis. As part of the present study, stability evaluations have been performed for the dam spillway section. Actual properties of the dam's construction materials and foundations were not determined as part of this study; where information on properties was necessary for computations but lacking, assumptions felt to be practical were made. The stability computations assumed a structural cross-section

based on dimensions indicated by the plans included in this report. It should be considered that, in areas where deterioration has occurred, section dimensions would be less than indicated by the plans, with some adverse effect on the structural strength expected. The analysis also assumed the dam section to be monolithic, possessing necessary internal resistance to shear and bending occurring as a result of loading.

The results of the stability computations are summarized in the table following this page. The stability analyses are presented in Appendix D.

The engineering studies indicate satisfactory stability against overturning and sliding effects for the dam subject to forces possible during normal summer-type operation (no ice loading). Satisfactory stability is also indicated where seismic effects are imposed onto the normal summer operating condition. The analysis indicates unsatisfactory stability against overturning for the dam subject to forces including ice loading possible during winter operations, according to the Recommended Guidelines for Safety Inspection of Dams (i.e., where the resultant of forces acting on the dam is located outside the middle third of the base, tensile stresses would develop in the dam section, a condition which is structurally undesirable.)

For the 1/2 PMF and PMF conditions, unsatisfactory stability is indicated. Lateral water pressures were calculated from the computed water surface elevations.

Critical to the analysis and resulting indication of stability are the items of uplift water pressure acting on the base of the dam and the relative permeability of the site's foundation rock. For the "normal operating conditions" case, the analysis uplift force was based on a full headwater hydrostatic pressure acting on the dam's upstream corner and a full tailwater hydrostatic pressure acting on the dam's downstream corner. Uplift pressures were assumed to vary linearly between the dam's upstream and downstream corners, and to act upon 100 percent of the dam base. The resulting uplift force represents a condition that is significant to indications of instability.

Uplift as computed for the normal operating condition was also assigned to the flood conditions studied, assuming that uplift pressures would not increase significantly over a relatively short flood stage time period because of an expected low foundation rock permeability. With this assumption for uplift, the winter operating condition represents a loading combination more critical to dam stability than the 1/2 PMF and PMF flood conditions because of the significant effect of ice forces.

RESULTS OF STABILITY COMPUTATIONS

	Loading Condition	Factor of Safety* Overturning Sliding**	ety* Sliding**	Location of Resultant Passing through Base***
Ξ	Water level at spillway elevation, uplift on base (no ice).	2.2	42	0.40b
(5)	Water level at spillway elevation, uplift on base plus 7.5 kip per lineal foot ice load acting.	0.46	‡ l	Outside of base because overturning FS<1
$\widehat{\mathbf{E}}$	Winter water level approximately one foot below spillway elevation, 5 kip per lineal foot ice load acting (approximately one foot thick), uplift on base.	0.71	4 1	Outside of base
(4)	Water elevations against upstream face and downstream face based on 1/2 PMF levels, uplift acting on base as computed for normal operating condition.	1.49	17.±	0.24 b
(5)	Water elevations against upstream face and downstream face based on PMF levels, uplift acting on base as computed for normal operating condition.	71.1	12 <u>+</u>	0.11 b
(9)	Water level at spillway elevation, uplift on base, seismic effect applicable to Zone 2.	1.88	33	0.34b

These factors of safety indicate the ratio of moments resisting overturning to those moments causing over-turning, and the ratio of forces resisting sliding to those causing sliding.

^{**} As determined, applying the friction-shear method.

^{***} Indicated in terms of the dam's base dimension, b, measured from the toe of the dam.

Design information applicable to the 1974 renovation indicates steel dowels (5/8 inch bars) were embedded into the foundation rock within the heel section of the dam. Anchoring at this location increases the dam's resistance to overturning. However, a preliminary analysis indicates that the additional resistance necessary to achieve satisfactory stability under the winter operations loading condition would not be provided by the dowels.

Further studies are required for this dam to evaluate factors critical to its stability, including the presence of uplift, anticipating that it will be necessary to develop measures for improving the stability. A future study should include investigation of the dam's foundation rock to evaluate the rock jointing described under part 6.1.b. of this report. It is also recommended that the studies extend to the railroad bridge behind the dam, evaluating the stability of that structure and its foundations if subject to flood conditions, as a prelude to considering the impact its collapse could have on the dam.

SECTION 7 - ASSESSMENT/REMEDIAL MEASURES

7.1 DAM ASSESSMENT

a. <u>Safety</u>

This Phase I inspection of the Lake George Dam did not indicate conditions which constitute an immediate hazard to human life or property.

The hydrologic/hydraulic analysis establishes the spillway capacity as 46% of the Probable Maximum Flood (PMF) with the sluice gates open and 30% of the PMF if the gates remain closed throughout the storm. However, the spillway is capable of passing the 1/2 PMF without the dam being overtopped under either of these two conditions. Therefore, the spillway is assessed as inadequate.

The following specific safety assessments are based on the Phase 1 Visual Examination, Analysis of Hydrology and Hydraulics, and Structural Stability.

- 1. The stability analysis indicates unsatisfactory stability against overturning for the dam when subjected to forces which could occur during winter operations (including ice loading), the Probable Maximum Flood (PMF), and 1/2 PMF events.
- Normal operation of the facility requires that sluice gates be opened to maintain the optimum level in Lake George. Increased flow in the receiving stream caused by opening of the sluice gates presents a danger to persons using the stream for recreational purposes.
- No warning system is in effect to alert the public, should conditions occur which could result in failure of the dam.

b. Adequacy of Information

The information available is adequate for the Phase I investigation.

c. <u>Urgency</u>

The structural stability investigations should be commenced within 6 months and remedial work necessary to improve the stability should be completed within two years. The remaining items should be attended to within one year.

d. Need for Additional Investigation

Further investigations relative to the structural stability of the facility should be performed to determine appropriate remedial measures necessary to provide stability under the load conditions set forth in the "Recommended Standards for Safety Inspection of Dams."

7.2 RECOMMENDED MEASURES

- 1. A structural stability analysis of the dam should be conducted to determine the effect of the dam's steel bar anchor system and the uplift forces acting on the base of the dam. Remedial measures should be taken to increase the structural stability of the facility to meet the Corps of Engineers Screening Criteria.
- 2. A warning system should be provided to alert persons that flow in the receiving stream will be increased, when the control gates are opened.
- 3. A flood warning and emergency evacuation plan should be implemented to alert the public, should conditions occur which could result in failure of the dam.
- 4. A formalized inspection system should be initiated to develop data on conditions and maintenance operations at the facility.

LAKE GEORGE GATE INSTALLATION

DEPARTMENT OF THE OF THE VORK OF THE O	TITLE SPEET
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 96 B 36 6

•

EDUCATIONAL LEAFLET

Note that is a rest of the first

The Application of the Application of the Property of the Company of the Company

But the second of the second of

THE CONSERVATIONIST

TONGUE MT.

TRAILS

(MAP CONTINUES ON REVERSE PAGE)

FLOATING BATTERY

ACE SET FIRE TOWER BLEV 746

BLACK MT. POINT

ARBUR ISLAMD
— COMMISSION POINT

MAIN

HDQ.

EN ISLAND ISLAND

Lake George

Physical Characteristics

Area Approximately: 28,200 acres

Elevation: 322 feet

Maximum Depth: 187 feet

Length: 32 miles

Maximum Width: 3 miles

Fish Present

Lake Trout

Landlocked Salmon

Rainbow Trout

Brown Trout (Rare)

Cisco

Smallmouth Bass

Largemouth Bass

Northern Pike

Chain Pickerel

Yellow Perch

Bullhead

Sunfish

Rock Bass

Suckers

Various Minnows

Black Crappie

Rainbow Smelt

Hunting in Vicinity

Deer

Ruffed Grouse

Snowshoe Hare

Bear

Fur Bearers

Beaver

Fisher

Otter Mink Red Fox Gray Fox

Muskrat Bobcat Coyote Weasel ISLAND CAMPING

chiles

DEP'T, HDQ.—
GET ISLAND CAMP
PERMITS AT THE

NEAREST ONE

LAKE GEURGE VILLAG

LARE AND PUBLIC CAMPAITS

CON-187

(103 ACRES)

FIGURE 19

LAKE GEORGE ISLANDS

At Lake George there are 47 State-owned islands available for camping. Permits must be obtained for camping on them regardless of the length of stay. Permits are available at three Department headquarters; on Long Island for the southerly part of the Lake, Glen Island for the central part, and Narrow Island at Huletts Landing for the northerly part. The Glen Island and Long Island headquarters can be reached by telephone. Bolton NH 4-9696 is the number for Glen Island and Kattskill Bay NL 6-9426 for Long Island. The telephone number at Narrow Island headquarters is Clemons 2341.

There are 11 State-owned islands used exclusively for picnicking. Picnic areas are also available at the southern end of Long Island, Commission Point and at Black Mt. Point.

5-29-80 M 2399

O.M.E.

FIGURE 2

APPENDIX A
FIELD INSPECTION REPORT

Recorder

J. A. Gomez

N.Y.S.D.E.C. - Warrensburg Office

Dale Engineering Company

F. W. Byszewski

D. F. McCarthy

C. W. Glass

H. Muskatt

Dale Engineering Company

Dale Engineering Company

CHECK LIST VISUAL INSPECTION

PHASE 1

Name Dam Lake George Outlet	County Essex	sex	State New York 10 #	ID # NY 230
Type of Dam Masonry		. Hazard Ca	Hazard Category High	
Date(s) inspection April 22, 1980	Weather Sunny	1	Temperature 50's	
Pool Elevation at Time of Inspection 318.7 +		M.S.L. Tailwa	Tailwater at Time of Inspection Not applicable	t applicable
Inspection Personnel:				
J. A. Gomez Dale	Dale Environting Company	Company		

CONCRETE/MASONRY DAMS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
ANY NOTICEABLE SEEPAGE	None observed	
STRUCTURE TO ABUTMENT/EMBANKMENT JUNCTIONS	Main dam to abutment wall junctions in good condition due to 1974 construction.	Structure ties into walls lining downstream channel.
DRAINS	None observed	
WATER PASSAGES	Reputedly there are several conduits, which are no longer in use, that pass underneath the old mill. The outlet of one such passage was observed downstream of the dam, near dam B; outlet walls were collapsing.	
FOUNDATION	Founded on rock-gneiss, which is quite durable as is evidenced by the little weathering observed of the rock just downstream of the dam.	

CONCRETE/MASONRY DAMS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS Concrete surfaces	Missing some pointing on downstream side Three gates and their ab of masonry dam. Concrete surfaces generally in good condition due to 1974 the upstream face of the refurbishing. Some minor cracks observed was faced with concrete. on top surface of middle (spillway)	Three gates and their abutments were built in August, 1974. At this time, the upstream face of the masonry dam was faced with concrete.
STRUCTURAL CRACKING	None observed	
VERTICAL & HOR; ZONTAL ALIGNMENT	No anomalies observed	
MONOLITH JOINTS	No anomalies observed	
CONSTRUCTION JOINTS	No significant deterioration at construction joints observed.	
STAFF GAGE OF RECORDER	Not applicable	

EMBANKMENT

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS	Not applicable	Area on either side of dam was at one time occupied by a mill. Floor slabs and foundation walls are about all that remains of mill. Large concrete slab on north side
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	Not applicable	of dam. Most of old mill's basement filled with debris. Some subsidence of the ground has occurred in the area where the mill occupied, especially on the north side of the dam. On the downstream end of the
SLOUGHING OR EROSION OF EMBANKHENT AND ABUTMENT SLOPES	Not applicable	slab north of the dam, there is a hole that exposed a void about 3 - 4 feet high.
VERTICAL AND HORIZONTAL ALINEMENT OF THE CREST	Not applicable	
RIPRAP FAILURES	Not applicable	<u>.</u>

EMBANKMENT

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM	Not applicable	**.
ANY NOTICEABLE SEEPAGE	Not applicable	
STAFF GAGE AND RECORDER	Not applicable	
DRAINS	Not applicable	

SHEET

UNGATED SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	Broad-crested weir flow over middle section of dam evidenced by rusting of bottoms of handrails on this section.	
APPROACH CHANNEL	Lake George	Two possible upstream flow constrictions. R.R. bridge just upstream, spanning about 155 feet across water. Bottom chord at approximate elevation 322.5.
DISCHARGE CHANNEL	Discharges into Ticonderoga Creek. Just downstream of dam, creek is lined with masonry walls (old walls of mill) and is very steep.	Alexandria Avenue Bridge. Arched opening - 50 feet wide, 12.5 feet from top of opening to water elevation, 4 feet 8 inches from top of opening to top of bridge.
BRIDGE AND PIERS	Not applicable	

GATED SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE SILL	Built in 1974	
APPROACH CHANNEL	Lake George	
DISCHARGE CHANNEL	Ticonderoga Creek	
BRIDGE AND PIERS	Gate abutments in good condition, built in 1974.	
GATES AND OPERATION EQUIPMENT	Three aluminum gates (two 10 feet wide, Electrical conduit for north gates one 8 feet wide), electrically operated passes 18 inches above the crest Used in spring and to discharge run-off of the main dam (spillway). from heavy rains.	Electrical conduit for north passes 18 inches above the confithe main dam (spillway).

SHEET 8

OUTLET WORKS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	Not applicable	
INTAKE STRUCTURE	Not applicable	
OUTLET STRUCTURE	Not applicable	
OUTLET CHANNEL	Not applicable	•
EMENGENCY GATE	Not applicable	

SHEE

DOMISTREAM CHANNEL

VISUAL EXAMINATION OF	OBSERVAT I OHS	REMARKS OR RECOMMENDATIONS
COMBITION (OBSTRUCTIONS, DEBRIS, ETC.)	Stream is pretty clear to Trout Brook. Channel is lined with masonry walls (old mill walls) just downstream of dam.	
SLOPES	Steep	
APPROXIMATE NO. OF HOMES AND POPULATION	Two trailers approximately 8 feet above the stream just below Dam B. A number of homes are in the vicinity of the confluence with Trout Brook and downstream.	

INSTRUMENTATION

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
MONUMENTATION/SURVEYS	None observed	·
OBSERVATION WELLS	Not applicable	
WEIRS	Not applicable	
PIEZOMETERS	Not applicable	
OTHER	Not applicable	

RESERVOIR

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SLOPES	Slopes of Lake George are quite steep due to mountains surrounding lake.	·
SEDIMENTATION	No excessive sedimentation observed in region just upstream of dam.	
	,	

CHECK LIST ENGINEERING DATA DESIGN, CONSTRUCTION, OPERATION PHASE 1

NAME OF DAM Lake George

01

NY 230

ITEM	REMARKS
AS-BUILT DRAWINGS	1974 N.Y.S.D.E.C. plans
REGIONAL VICINITY MAP	U.S.G.S.
CONSTRUCTION HISTORY	From N.Y.S.D.E.C. Dam Safety files and 1945 Legislative Report.
TYPICAL SECTIONS OF DAM	1974 plans
OUTLETS - PLAN - DETAILS - CONSTRAINTS - DISCHARGE RATINGS	Plan and details - 1974 plans.
RAINFALL/RESERVOIR RECORDS	Lake George Legislative Committee Report, 1945.

ITEM	REMARKS
DESIGN REPORTS	None available
GEOLOGY REPORTS	1945 Legislative Report (General Regional Geology)
DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	None available
MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD	None available
POST-CONSTRUCTION Surveys of Dam	1974 plans (as-built)
BORROW SOURCES	Not applicable

.

ITEM	REMARKS
HONITORING SYSTEMS	None known
MODIFICATIONS	1974 (latest)
HIGH POOL RECORDS	U.S.G.S. gage at Roger's Rock
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	None known
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	None known
MAINTENANCE OPERATION: RECORDS	N.Y.S.D.E.C Warrensburg Office

ITEM	REMARKS
SPILLWAY PLAN	1974 plans
SECTIONS	
DETAILS	
OPERATING EQUIPMENT PLANS & DETAILS	1974 plans

CHECK LIST HYDROLOGIC & HYDRAULIC ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: Lake George		
ELEVATION TO	OP NORMAL POOL (STORAGE CAPACITY): 2,185,000 ac-ft @ elev. 319.	
ELEVATION TO	OP FLOOD CONTROL POOL (STORAGE CAPACITY): Not applicable	
ELEVATION MAXIMUM DESIGN POOL: 2,279,000 ac-ft @ elev. 323 (top of dam)		
ELEVATION TO	OP DAM: 323.5	
CREST:		
a. E	levation 319.6	
ь. т	ype Broad-crested	
c. W	idth 6 feet	
d. L	ength 60 feet	
_ L	ocation Smillover Center of dam	
f. N	umber and Type of Gates $2 - 10$ ft. $x 7$ ft., $1 - 8$ ft. $x 7$ ft.	
OUTLET WORK	une 3 gluice gates	
	ocation 1 - north, 2 - south	
0. L	. 919	
	ntrance Inverts 313 xit Inverts Same as Entrance	
	mergency Draindown Facilities 3 sluice gates	
HYDROMETEOROLOGICAL GAGES:		
a. T	ype None	
b. L	ype None ocation	
c. R	ecords	
	-DAMAGING DISCHARGE: 1470 cfs	

PREVIOUS INSPECTION REPORTS/RELEVANT CORRESPONDENCE

41.25

GENERAL GUIDELINES FOR OPERATION OF LAKE GEORGE OUTLET

LAW

The law regulating the water surface at Lake George, dated March 27, 1957, provides a maximum water surface elevation of 4.00 feet through the year, and a minimum water surface elevation of 2.5 feet from June 1 to December 1, with due allowance for natural fluctuations or emergencies. In addition, the law states that the water surface between June 1 and September 30 is to be an average of 3.5 feet. Water surface elevations are based on the U.S.G.S. Roger Rock Gauge. The law further states that if the level of the lake rises above 4.0 that all gates shall be opened and that if the level of the lake drops below 2.5 from June 1 to December 1, all gates shall be closed.

REGULATION GUIDELINES

In order to satisfy the Legislative mandates and achieve the most desirable lake levels for all interests concerned, the following general guides are given:

- 1. Starting with the winter freeze-up period, try to have the lake elevation at about 2.6 by around December 15. Freeze-up generally starts about mid-December to January 1. By keeping elev. at 2.6 ± for winter period, this allows for spring thaw without requiring a large drop in the water surface. If one were to drop from say 4.0 ± to 2.6 ± while lake is frozen, there would be damage to docks around the lake. One can probably not go too low for freeze-up (say 1.8 or 2.0) because if too much shoreline is exposed damage can occur to docks and retaining walls, etc. from frost heave. Also, gate capacity may not allow for such a drawdown with normal inflow at this time of year.
- 2. Snow surveys are to be made in late January, February, mid-March, and late March. According to this information, provide storage and operate gates to achieve a level of 3.5 ± by May 1. The usual Spring condition will be for the lake to rise about 1.5 ft. from snowmelt and rains in this period--even with the gates discharging relatively large flows. The lake generally will fill by mid-April.
- 3. During May and June with lake at $3.5 \pm$, be alert for sudden rains which have tendency for high runoff and may cause lake to rise \pm 0.5 in this period.

- 4. In Aug., Sept., and Oct., there is often a drawdown (from the acceptable average of 3.5 ±) with lows usually coming near the end of Oct. This is due to lower inflows combined with evaporation losses. By conservation practice try to keep the lake up at 3.5 ± for as long as possible to allow boat owners to bring in boats during Sept., Oct. and beginning of Nov. After this period drawdown lake to winter elevation of 2.6 ± by mid-December.
- 5. In summary, problem areas to watch will be: (1) Spring to allow proper storage for spring runoff; (2) Late Spring and eary summer when the water is high and the ground is usually wet the gates will immediately require full opening if heavy rains occur; (3) Early winter to avoid too high or too low a freeze-up elevation; (4) Conservation during summer to avoid lows during late summer and Fall.

GENERAL NOTES

- The above represent general guidelines and should be refined as experience dictates or conditions change. Unusual conditions (floods, droughts, etc.) will deviate from the above and will have to be handled as best one can.
- 2. The mountainous character and soil of the Lake George Watershed results in a rapid runoff. The discharge capacity of the control structure is rather small in relation to the size of the lake. Therefore, the lake level responds rapidly on inflow but slowly on discharge. For example, an inch of runoff, which can occur in less than 24 hours, will raise the lake about 4.3 inches. At maximum outflow of about 1,200 cfs, it would take four or five days to lower the lake 4.3 inches providing no additional inflow occurs.
- 3. For drought conditions, a low flow release may be required for sewage dilution, process water, and fish life.
- 4. Day-to-day operation of the gates will depend primarily on (1) existing elevation of the lake; (2) rainfall measurements, (3) drainage area conditions such as saturated ground, forzen ground, high or low snow melt potential.

Kolak 4/26/74

See P. 178 por 31. Book on Lake Gronge

LAKE GEORGE - GENERAL GUIDELINES FOR RECORD KEEPING

- Receive daily lake elevation at Rogers Rock Gage obtain 24 hr. precipitation data.
- Plot on graph lake elev. and daily precipitation data keep
 up-to-date also plot daily gate positions.
- When discharge records are available from U.S.G.S. plot daily discharges on above graph.

POLICIES AND PROCEDURES MANUAL TITLE 9500 - WATER RESCURCE MANAGEMENT CHAPTER 9590 - LAKE GEORGE WATER LEVEL MANAGEMENT

Introduction. Since 1957 New York State has had responsibility for overseeing the regulation of the water levels of Lake George. This responsibility was with Department of Transportation until 1968 when it was transferred to the Department of Environmental Conservation. During this time and until recently, the actual operation of the Lake George Outlet Gates, which control Lake George water levels, was done by International Paper Co., Ticonderoga, N.Y. who were the owners of the Outlet Dam. In March of 1974, the Department of Environmental Conservation acquired ownership of the dam and took over the actual operation of the Outlet Gates. The lake level is regulated according to the applicable section of the Navigation Law. The outlet dam was reconstructed in the summer of 1974 by the Department of Environmental Conservation. In 1976 further work is planned to complete the modernization of the outlet gates.

- 9590.1 Authority. Section 38, Chapter 1035, Laws of 1957, as amended, of the Navigation Law.
- 1. The law regulating the water surface at Lake George, dated March 27, 1957, provides for a maximum water surface elevation of 4.00 feet through the . year, and a minimum water surface elevation of 2.5 feet from June 1 to December 1, with due allowance for natural fluctuations or emergencies. In addition, the law states that the water surface between June 1 and September 30 is to be an average of 3.5 feet. Water surface elevations are based on the U.S.G.S. Rogers Rock Gauge. The law further states that if the level of the lake rises above 4.0 that all

gates shall be opened and that if the level of the lake drops below 2.5 from . June 1 to December 1, all gates shall be closed.

9590.2 - Objective.

- 1. To regulate the water level of Lake George as nearly as possible in accordance with the prescribed law and maintain the most desirable lake levels and flow releases for all concerned interests.
- 2. To set forth duties and responsibilities of Departmental units regarding regulation of the water levels of Lake George.

9590.3 - Policy.

- 1. Regulation guidelines will be established and revised as necessary for obtaining as nearly as possible the lake levels as prescribed by law and for the best interests of all concerned parties.
- 2. Adequate records will be maintained to insure proper lake level operation and for analytical and historical purposes.

9590.4 - Procedures.

- 1. Guidelines for Lake Regulation
 - a. Starting with the winter freeze-up period (December 15) the lake elevation will generally be kept on the low side (2.8 +).
 - b. Snow surveys are to be made in late January, February, Mid-March and late March. According to this information, provide storage and operate gates to achieve a level of 3.5 \pm by May 1.
 - c. From May through October keep lake at 3.5 ±.
 - d. By mid-December have lake at lower elevation for winter period.
 - e. Notes:
 - 1. The foregoing general regulation guidelines should be refined as experience dictates or conditions change. Unusual conditions (floods, droughts, etc.) may deviate from the

Guidelines and will have to be handled as best one can.

- Day-to-day operation of the gates will depend primarily on
 existing elevation of the lake; (2) drainage area conditions
 such as saturated ground, frozen ground, high or low snow melt
- 2. Responsibilities for Lake Regulation

potential; (3) rainfall data.

- a. Lake George Field Office, Lake George, N.Y.
 - Obtains and receives all data, makes studies, keeps all records, and makes recommendations for operation and maintenance of gates and dam at Lake George outlet.
 - 2. Reviews and revises lake regulation guidelines as necessary.
 - 3. Directs and supervises snow surveys.
- b. Bureau of Facilities and Construction Management, Hydraulics Section
 - Reviews work and guidelines established by Lake George Office and lends technical assistance when necessary.
- c. Warrensburg District Office
 - 1. Furnishes men and equipment to operate and maintain gates and dam as directed by Lake George office.
 - 2. Furnishes men and equipment to make snow surveys under direction of Lake George office.
- 3. Procedures for Record Keeping, Lake George Office
 - a. Receives from gauge reader (Mr. Cook) daily lake elevation at Rogers Rock.
 - b. . Plots daily lake elevation and daily gate position.
 - c. Receives and plots daily precepitation data from U. S. Weather Bureau.

- d. Plots daily discharge records from U.S.G.S.
- e. Plots above data as nearly as possible on same graph and makes as clear as possible relationship of above data.

8-22-21 3000 (6-1206)

STATE OF NEW YORK DEPARTMENT OF

No.868

State Engineer and Surveyor

ALBANY

Report of a Structure Impounding Water

To assist in carrying out the provisions of Section 22 of the Conservation Law, being Chapter LXV of the Consolidated Laws of New York State, relating to safeguarding life and property and the erection, reconstruction, or maintenance of structures for impounding water. owners of such structures are requested to fill out as completely as possible this report form for each such dam or reservoir owned within the State of New York for which no plans or reports relative thereto are on file in this Department, and to return this report form, together with prints or photographs explanatory thereof to this department.

1. The structure is on Ticonderoga River flowing into Lake Champlain in the
Town of Ticonderoga County of ESSEX and forms the outflow
of Lake George . (Give exact distance and direction from a well-known bridge, dam, village main cross-roads or mouth of a stream)
2. Is any part of the structure built upon or does its pond flood any State lands?
3. The name and address of the owner is International Paper Co.
100-E 42 nd 3t., New York City
4. The structure is used for dirersion of the flow for power for paper milt.
5. The material of the right bank, in the direction with the current, is Solid rock; at the
spillway crest elevation this material has a top slope ofinches vertical to a foot horizontal on the
center line of the structure, a vertical thickness at this elevation offeet, and the top surface extends
for a vertical height offeet above the spillway crest.
6. The material of the left bank is Solid rock; has a top slope of inches
to a foot horizontal, a thickness offeet and a height offeet.
7. The natural material of the bed on which the structure rests is (clay, sand, gravel, boulders, granite, shale, slate, limestone, etc.)
8. State the character of the bed and the banks in respect to the hardness, perviousness, water bearing, effect of exposure to air and to water, uniformity, etc. hard, dense impervious rock.

9. If the bed is in layers, are the layers l	orizontal or inclined? If inclined what is t
direction of the horizontal outeropping relativ	e to the axis of the main structure and the inclination and direction
	prizontal outcropping?
10. What is the thickness of the layers?	
11. Are there any porous seams or fissu	res: No .
12. The watershed at the above structur	e and draining into the pond formed thereby is 183 square mil
13. The pond area at the spillway crest cubic feet of water.	elevation is 28,000 acres and the pond impounds 3. Di
	tream at the structure was
May 354 1924 . (Date) Has the spillway capacity ever bee	n exceeded by a high flow?
	nd otherwise than through the wastes noted under 17 and 18 of the
report?	on, the length and the elevation relative to the spillway crest and t
•	possible wastes
16. State if any damage to life or to an failure of the above structure. Describe the which might be damaged by any failure of structure, giving the lowest elevation of the rewidth of stream openings; and of any emban the character and use made of the ground belonger to the structure.	y buildings, roads or other property could be caused by any possil location, the character and the use of buildings below the structure, he structure; of roads adjacent to or crossing the stream below to adway above the stream bed and giving the shape, the height and to coments or steep slopes that any flood could pass over. Also indicates the structure.
17. Wastes. The spillway of the about held at the right end by a found. well of a crest, and has a top width of	re structure is
	gate outlet) feet wide in the clear by
feet high and the bottom is 9 fe	t below the spillway crest.

Ţ

for a wid	e and Ith of	feet.	•		
			ses which are liable to ca	ause its failure in high flows?	No.
the top to the sp section s wall at	e at the greater width (for a copillway crest, to show a cross so the end of the	st depth; giving the concrete or masonry the length of the sec ection of the apron, e spillway, giving it	height and the depth from spillway at two feet below etion, and the material of giving its width, thickness to heights and thickness.	o scale for each different cross-seem the surface of the foundation, ow the crest), the elevation of the function is constructed ess and material, and show the . Mark each section with a cathe mark and the length of each	the bottom width, he top in reference d; on the spillway abutment or wash spital letter. Also
their ho	rizontal dimer	sions; the abutmen	ts by their top width an	d top lengths from the upstream	n face of the spill-
way sect				•	
-	ks, giving the	depth and width ex	cavated into the banks.		

The above information is correct to the best of my knowledge and belief.

100	≟ខ ≥ ប	4.Suq	Street				
(Address of signer)							

Feb. 16th, 1925 (Date)

International Faner to.
(Signature)

ner should indicate his title or authority)

(NOTICE: After filling out one of these forms as completely as possible for each dam in your district, return it at once to the Conservation Commission, Albany.)

STATE OF NEW YORK CONSERVATION COMMISSION ALBANY

DAM REPORT

3 23/ 100 80 3 - 27	// (Date) , 1940
Conservation Commission,	
Division of Waters.	. •
GENTLEMEN:	
I have the honor to make the following rep	port in relation to the structure known as
the A Mill	Dam.
This dam is situated upon the Qutlat	Give name of stream)
in the Town of Ticanaca gam,	County,
about //2 from the Village (State distance)	or Oity of Time and a second
The distance Stream from the dam, (Up fr down)	to the IPs DCIASS. (Give name of nearest important stream or of a bridge)
is about(State distance)	
The dam is now owned by 12te casting	(Give name and address in full)
and was built in or about the year	nd was extensively repaired or reconstructed
during the year 2.770 is used for	: Water power for factory'A"
As it now stands, the spillway portion of this c	lam is built of Cauche to the Mason of Canada whether of mason of concrete or timber)
and the other portions are built of(State wheth	er of masonry, concrete, earth or timber with or without rock fill)
As nearly as I can learn, the character of the	foundation bed under the spillway portion
of the dam is Beich to a S.	and under the remaining portions such
foundation bed is	

(In the space below, make one sketch showing the form and dimensions of a cross section through the spillway or waste-weir of this dam and outline the abutment, and a second sketch showing the same information for a cross section through the other portion of the dam. Show particularly the greatest height of the dam above the stream bed, its thickness at the top, and thickness at the bottom, as nearly as you can learn.)

The total length of this dam isfeet. The spillway or waste-
weir portion, is aboutfeet long, and the crest of the spillway is
aboutfeet below the abutment.
The number, size and location of discharge pipes, waste pipes or gates which may be used
for drawing off the water from behind the dam, are as follows: Que state of wise, i deep; tea
At the time of this inspection the water level above the dam was
be'ow the crest of the spillway.
(State briefly, in the space below, whether, in your judgment, this dam is in good condition, or bad condition, describing particularly any leaks or cracks or erosions which you may have observed.)
Dallisin your condition; no leaks. Probably no danger would result by structure going out, unless to mills on stream below.
\cdot .
· · · · · · · · · · · · · · · · · · ·
• ·
Reported by
(Address—Street and number, P. O. Box or R. F. D. route)
(Name of place)

]

STATE OF NEW YORK CONSERVATION COMMISSION ALBANY

GEORGE E. VAN KEMMEN,
CHAIGHAN
JAMES W. FLEMING.
JOHN D. MOORE,
COMMISSIONERS
ALBERT E. HOYT,
SECRETARY
JOHN J. FARRELL,
ABST SECRETARY

IN AREWERING PLEASE MEFER. TO PILE HUMBER

June 5, 1912.

Mr. Decker, Assistant Counsel,

Conservation Commission.

Dear Sir: -

Annexed is a communication from Mr. Thomas concerning the International Paper Company at Ticonderoga. I believe this is outside our province and that the only redress for the aggrieved parties is either to obtain an injunction, or to sue the company for damages. Is this correct?

I am about to go out of town until Monday, so you can take this matter up with Deputy Commissioner Fox.

Yours respectfully,

Inspector of Docks and Dams.

ale Rus My

My Kok/C.

J.JN OF FISHAND GAME JAMES W. FLEMING, COMMISSIONER JOHN B. BURNHAM, DEPUTY COMMISSIONER LLEWELLYN LEGGE,

STATE OF NEW YORK CONSERVATION COMMISSION ALBANY

Ticonderoga, N.Y. May 27th 1912.

Conservation Commission,

Albany, N.Y.

Gentlemen;

Mr. B. A. Clifton of Hague, N.Y. made a complaint to me today that the International Paper Co., of this town are using splash boards seven or eight inches wide on top of their dam at the outlet of Lake George, thereby raising the lake.

As I have had no instructions regarding this matter I am refering it to the Commission for their decision.

Respectfully yours,

Protector

Fill out a form as complete as possible for each dam in your district and send to State Conservation Commission, Albany, N. Y.

- 1. Name and address of owners Interactional Prior Company
 2. Date of construction
- 3. Uses of impounded water Form for manifesturing valp unl paper.
- 4. Character of foundation bed. Ledge
- 5. Material of waste spill
- 6. Length of waste and depth below dam.....
- 7. Total length of dam including waste "3" 03 foot: "2" 97 foot: "C" 101 foot.
- 8. Material of dama Engants
- g. Discharges, size and location

Below sketch section of waste and section of dam, with greatest heights and top thickness and bottom thickness. On opposite side sketch general plan of dam and give distance from a bridge or from a tributary stream.

(Signature, address and date.)
International Paper Company, Mr. 110m April 2016, Manager.
April 2016, 1916.

Frimis 100 ft below RR Bridge

Co	Fill out a form as complete as possible for each dam in your district and send to State onservation Commission, Albany, N. Y.
ı.	Name and address of owners 2014 4
2	Data of construction
2.	Uses of impounded water for the first firs
4.	Character of foundation bed Solver 1001
5.	Material of waste spill masoning
6.	Length of waste and depth below dam 3 9 6 X 8 ft 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 ·	Total length of dam including waste / 2/5/1
8.	Material of dam Alone Smasoner constitution
9.	Discharges, size and location one sticil tulk 12 ft, ore
	Below sketch section of waste and section of dam, with greatest heights and top thickness d bottom thickness. On opposite side sketch general plan of dam and give distance from bridge or from a tributary stream.

15H >

	68 11.11	CIY	QI.	DO 08		05247 IRS. DATE	USE	TYPE
•	[] L	neation of	••••	. •	•	Elevatio	ns	
1		ize of Sph nd Outlet	vny			Geometry Rôn-over	of flow section	
•		ELERAL CON ettlement oints	ntulox or	NON-OVERFI.O	Criac Surf	•	Defi 包 Leal	lections
•	l i u	ndermining ownstream			Sett Embo	lement of inkment	.[] Toe	
		lope ENERAL COM	D. OF SP'W	AY AND CUTL	Slop			•
	· [/] s	uxiliary pillway oints	•	•	Conc	ice or rete Sp'way	[] Bas	lling in llway
		echanical quipment		•		rete	Toc Dra	
	i m	aintenance valuation	•			B Haza	ord Class	
1	CONN	ENTS:						

Some leakage through stone masonry on non-overflow Fire chared controls but no serious danger to structure Paper mill no longer in use:

River Basin - Nos. 1-23 on Compilation Sheets County - Nos. 1-62 Alphabetically Year Approved -Inspection Date - Month, Day, Year Apparent use -1. Fish & Wildlife Management 4. 5. 2. Recreation

3. Water Supply

Power

Farm

6. No Apparent Use

Type -

1. Barth with Aux. Service Spillway

2. Earth with Single Conc. Spillway

3. Earth with Single non-conc. Spillway

4. Concrete

5. Other

As-Built Inspection - Built substantially according to approved plans and specifications

Location of Spillway and Outlet Works

1. Appears to meet originally approved plans and specifications.

2. Not built according to plans and specifications and location appears to be detrimental to structure.

3. Not built according to plans and specifications but location does not appear to be detrimental to structure.

Elevations

1. Generally in accordance to approved plans and specifications as determined from visual inspection and use of hand level.

2. Not built according to plans and specifications and elevation changes appear to be detrimental to structure.

3. Not built according to plans and specifications but elevation changes do not appear to be detrimental to structure.

Size of Spillway and Outlet Works

1. Appears to meet originally approved plans and specifications as determined by field measurements using tape measure.

2. Not built according to plans and specifications and changes appear detrimental to structure.

3. Not built according to plans and specifications but changes do not appear detrimental to structure.

Geometry of Non-overflow Structures

1. Generally in accordance to originally approved plans and specifications as determined from visual inspection and use of hand level and tape measure.

2. Not built according to plans and specifications and changes appear detrimental to structure.

3.. Not built according to plans and specifications but changes to not appear detrimental to structure.

General Conditions of Non-Overflow Section

- 1. Adequate No apparent repairs needed or minor repairs which can be covered by periodic maintenance.
- 2. Inadequate Items in need of major repair.

For boxes listed on condition under non-overflow section,

i. Satisfactory.

2. Can be covered by periodic maintenance.

3. Unsatisfactory - Above and beyond normal maintenance.

Adequate - No apparent repairs needed or minor repairs which can be covered by periodic maintenance. Inadequate - Items in need of major repair. For boxes listed conditions listed under spillway and outlet works. Satisfactory. 2. Can be covered by periodic maintenance. · 3. Unsatisfactory - Above and beyond normal maintenance. Dam does not contain this feature. Maintenance Evidence of periodic maintenance being performed. 2. No evidence of periodic maintenance. No longer a dam or dam no longer in use. CLASSIFICAT (S.C.S.) Hazard Classification Downstream CORPS ENGR 亚) (A) Damage to agriculture and county roads. (B) Damage to private and/or public property. (C) Loss of life and/or property. Evaluation - Based on Judgment and Classification in Box Nos. Evaluation for Unsafe Dam Unsafe - Repairable. 2. Unsafe - Not Repairable. Insufficient evidence to declare unsafe. RIVER BASINS COUNTIES (1)LOWER HUDSON LIVINGSTON (2) UPPER HUDSON MADISON (3) MOHAWK STATE HAME: MONROE NEW YORK 26 MONICOMERY (4). LAKE CHAMPLAIN SO HASSAU STATE ABEREVIATION: . NY (5) DELAWARE 31 NEW YORK (6) STATE CODE: SUSQUEHANNA 36 NIAGARA ONLIDA (7) CHEMUNG CODE **COUNTY NAME 54** ONONDAGA (3) OSWEGO 35 OHTARIO (9) **GENESEE** ALBANY 36 OPANGE ALLIGARIY 37 ORIEANS (10)**ALLECHENY** BRO:XX OSWEGO BROOME (11)LAKE ERIE 39 OISEGO CATTARAUGUS WESTERN LAKE ONTARIO 40 PUTHAM (12)6 CAYUGA 41 QUEERS (13) CENTRAL LAKE ONTARIO 7 CHAUTAUQUA 43 RENSSILATE (14)EASTERN LAKE ONTARIO AB RICHLYOND 9 CHENANGO 44 ROCKLAND (15)SAIMON RIVER IO CLINION 45 ST LAWRENCE (16) BLACK RIVER M COLUMBIA 4 SARATOGA (17)WEST ST. LAWRENCE 12 CORTLAND 47 SCHENECTAUY (18)EAST ST. LAWRENCE I'S DELAWARE M DUTCHESS 49 SCHUYLER (19)RACQUETTE RIVER 15 frie SO SENECA (20) ST. REGIS RIVER M ESSEX STEUREN (21) HOUSATORIC IT FRANKLIN 53 SUFFORK S FULTON (22) LONG ISLAND

19 GENESTE

SO GREENE

24 HAMRION

33 HERKIMER

25 KIIIRSON

94 KHIGS

as IEWIS

(23)

(24)

OSKECATCHIE

GRASSE

57 WARREN 58 WASHINGTON 59 WAYNE 40 WISICHESTER

63 SULLIVAN

55 TOWNKINS

64 TIUGA

S UISTER

64 WYOMING " 63 YATES

5.24-71

- 9590.1 Authority. Section 38, Chapter 1035, Laws of 1957, as amended, of the Navigation Law.
- 1. The law regulating the wate surface at Lake George, dated March 27, 1957, provides for a maximum water surface elevation of 4.00 feet through the year, and a minimum water surface elevation of 2.5 feet from June 1 to December 1, with due allowance for natural fluctuations or emergencies. In addition, the law states that the water surface between June 1 and September 30 is to be an average of 3.5 feet. Water surface elevations are based on the U.S.G.S. Rogers Rock Gauge. The law further states that if the level of the lake rises above 4.0 that all gates shall be opened and that if the level of the lake drops below 2.5 from June 1 to December 1, all gates shall be closed.

APPENDIX C HYDROLOGIC AND HYDRAULIC COMPUTATIONS

DRAINAGE BASIN

PROJECT NAME HEN YORK STATE DAM INSPECTIONS	DATE 4-/580
BUBLECT LAKE GEORGE OUTLET	PROJECT NO. 2599
SUB AREA - AREAS	DRAWN BY JPS

		AREA	AREA OF LAKES
SUB AREA	1	9.53 Sa MI	
	2	153.53 Sa MI*	45.32 Sa M
	3	7.87 Sa MI	
	4	11.52 Sa MI	
	5	8.32 Sa MI	
	6	22.30 Sami	
	7	10.49 Sami	
	8	13.57 Sa MI	
	9	12.25 SQMI	
	10	7.88 Sq MI	

* INCLUDES LAKE AREA

Additional area to downstream hazard (trees 8 & 9) 25.82 mi

AREA OF LAKE 29.005.51 ACRES

Contributing Area - Lake George = 231.4 mi2

PROJECT NAME	HEW YORK STATE DAM INSPECTIONS	_ DATE _4.15.80
		PROJECT NO. 2599
		_ DRAWN BY JPG

640 CP

SUB AREA	Ct	L (MI)	LCA(MI)	(LLca).3	tp (HRS)
1	1.5	5.04	2.39	2.11	3.17
2	1.5	3.79	.78	1.37	2.07
3	1.5	6.34	2.16	2.19	3,29
4	1.5	7.31	3.79	2.71	4.07
5	1.5	4.73	2.27	2.04	3.06
6	1.5	7.31	2.27	2, 32	3.48
7	1.5	6.44	3.18	2.47	3.71
8	1.5	6.70	3.37	2.55	3.83
9	1.5	7.46	3.71	2.71	4.07
10	1.5	6.33	2.01	2.14	3.21
					•
		1			
				,	

PROJECT NAME NEW YORK STATE DAM INSPECTIONS	DATE 4.16.80
SUBJECT LAKE GRORGE OUTLET	PROJECT NO. 2879
DEPTH-AREA- DURATION	DRAWN BY JPG

PMF INDEX RAINFALL: 17.5" - 200 SQ MI 24 HR

DURATION	% INDEX	DEPTH
4 Hrs	73%	12.78"
12 HRS	<i>8</i> 8	15.4
24 HRS	99	17.33
48 HRS	104	18.2

PRO	JEC	T NA	ME -			N.	<u>Y.</u>	<u>S,</u>		\mathcal{D}	40	4	I	11	7	ec	土/	لم	15		\mathcal{L}^{S}	<u>8</u>	0			_ D/	\T E _				
UB	JEC	T				L	a i	Ke		G	e	o Z	9	<u>e</u> _			,									PR	OJE(T M	D		
										-			•		hR	04	49	4		1	a k	Ce.				DF	HWA	BY.			
		ŗ	r	ŗ		Ţ	1			•	·····	T	r	T	·	Υ	ر	,	······································	γ	······	······		1	······		1	·····	į į	٠.,	· 4
			ļ		ļ	<u> </u>		ļ		ļ			ļ		.												,				
-		ļ	_	\square	cc.	4	Z	0	4	es	29	13		01		L	K	2		4	01	290	۲	, 7	110	.	hy	di	09	Ra	PA
			+	Ro	m		th	e		Ser.	8-	be	25	n	5	U	211	<u> </u>	Ŀ	e	14	99	e	<u> </u>	10	2	Re	11	ec	/	
		ļ	7	774	\$	t R	au	e/		- 7	1	1226	?	2	h	20	رور	h		*	n	e	_k	26	e.						ph
		ļ	<u> </u>		1	1	1	•	•	1	•	1	1	1	•	i		į l		1	1	•			ļ		l 1		L		
			-		V	= ر	ļ	7	97	Pm	_			19	=	3	Z.,	7	7	se	C	ļ	,	,	4			0			
	•••	ļ	ļ			1	<u> </u>	<u>l</u>	.I	<u> </u>		 	L	m.	=	9	vg	C	ley	pt 1	!	17		91	re.		~	15	5	. :	
		ļ <u>.</u>		ļ	ĻΥ	w	ŧ:	4	<u>;</u> ±;	25	ļ	1	•	•	•	1	3	•	3	ż	ł	•	1	;	: :	į.	:			,	
		<u> </u>		Z	722	ve	<u>/</u>		1	m (-	>	m.	ROC	19	h		Q_{I}	2)	Z	=		. 42 (157			•	
	•••••						ļ	-	ļ	 		 	<u> </u>	Ì		ļ						ļ		······	¥	1 0		ļ.			
	•••••			-	1	ļ	ļ		_	ļ	<u> </u>	<u> </u>	ļ	╂		/_	_	- 1		/	1	-				2	ļ		: :	; · · ·	
		ļ		ļ	ļ		1		2	4.	9 -	ba	5//	‡	-	<u>r</u> z	au	el	<u></u>	113	Σ.					-					
		ļ			 	 	<u> </u>	1	-	<u> </u>	2	-	 	 	<u> </u>					#	Z					16	h	R.			
					ļ	ļ	ļ			<u> </u>	2		 	 	-		O	5,4	00						. 4	O			• ; :	. ;	
		ļ		· · · · · ·	ļ	ļ			ļ	ļ	3	╅	ļ	 -	-			,0				ļ			•	4	1			Α	
		ļ		<u> </u>	-	ł	ļ		ļ	-	45		ļ	 	ļ		•	00		-						5	:	 			
						<u> </u>	-		-	ļ			<u> </u>	ļ		i		00		ļ		ļ			ام ا	6	1				
				ļ	1	 			 -	 	67		 	 		2	; •	עט	:	 		1			1	6	;	<u> </u>			
		ļ		ļ · · · · ·	 		ļ	ļ		ļ	10	·	 -	ļ	ļ			000		ļ		ļ				3	•			: :	
		<u> </u>	ļ	.	 	<u> </u>		ļ	-	 	10	†	 	 -		<i>/</i>)	ارد	000	2	†	-	ļ			. 8	0					
			<u> </u>	 -	<u> </u>	-		-	†	 	 	†	 -	 		 	<u> </u>				ļ <u>-</u>	-					ļ				
			 	 	†	-	 	<u> </u>	-	-	<u> </u>	-	 	 	-		 -			ļ	<u> </u>							ļ	-		
			ļ	†		†	†	-	†		-	†	†	1-	†	ļ	 			 	-	<u> </u>						L			
				ļ	<u>†</u>	†		•		†	ļ	†	 	†	†	-				-											•
			-	•	-	†			ļ	-		Ť	†	 					·····	†								<u>.</u>			
				†	†	†		†	†	1	†	†	<u> </u>	†	1					†		†					!		••••••		
		İ		1 -	†	†			•	†	-	†	1	†			ļ			1								:			
		<u> </u>	1		1				1				1							<u> </u>										1	
				-			ļ	1		<u> </u>	1	1		1	-					-					-	•••••					
							1		1	•		1	<u> </u>	†		<u> </u>													.		
	****							-	Ì											1		•									h
		<u> </u>	1			1				1	Ī						<u> </u>	<u> </u>		<u> </u>					†		†				
1										1	Ī		Ī	Ī								1			•						
		-	<u> </u>	1	"	1	1	-	1	1 -	T	1	1	T	1		T			1		!						1	-		

HÜ.	JECT	INA!	WE								1						Ţ				_					01				
H.	JEC1	-					٤	2.Ke	<u> </u>	_(720	<u> </u>	96	<u>.</u> e_			<u> </u>									PF	(OJE	CT N	o. <u> </u>	
_						\mathcal{E}	100	2.		D	3C	hai	29	<u>e</u> _	<u>(a</u>	٠	De	2/26	_							Df	IAWN	1 8 Y.		
T			····	. 1		,	,		y ~ 1		·····	F	r	· · · · · · · · · · · · · · · · · · ·		r	ž		······	·				I	T		1	T	1	
-			\mathbf{C}	A	5.4		<u>4-</u>		<u> </u>	3	at	ĽS		cl	25	අත		-											ļ	
-		1.		10	U.	0	ue	R.		Si	D 1/	w	یم			E	ev		319	2	P		=	5	2.	5_	ļ	-		
. .								Q.	- 0		4	3/2						_			,			,	Λ		ļ	ļ		
						C	.	ba:	sec	<u>/</u>	on	, 4	41	14	1.	~	7.5	1	a	nq		h	200		1	ro	m	•		•
						H4	n	11	200	K.	01	A	44	H K	au	10	5		K	ng	£	É	e	21	e R			i	ì	
									<u> </u>		ļ					ļ	ļ					· · · · · · · · · · · · · · · · · · ·	ļ				1	i	<u>:</u>	
									: { 	<u>E/</u>	ec	4				H	<u> </u>		 ,) 					2_			į .
4									1	12	-					_			 		_						. .		: 10	
_									1		0		ļ		i	.4	_			•	2,3				<u></u>			cf	క	• •
-									1	:	0			-		4,					.6		:	ļ		7	61	*	:	i
								ļ <u></u>	7	22	,				2.	•••	<u> </u>		ļ		6		ì		1	ì	9/		•	1
								ļ		2.						4				:	16	•		ļ		•	00			
,								ļ	1	24	, .				•	4	:		ļ	2.	7	4	ļ	ļ	:	ł	0.	7		
								ļ	3	2:	5.	ļ	ļ	ļ	•	4	Ţ			2.	8	8	ļ	ļ	1	2/	5	0	<u>;</u>	
					.		<u> </u>	<u> </u>	3	20	.			ļ		4	ļ			3	1	,		<u> </u>	1	25	28	6		
							! }		3	2	7	ļ	ļ	ļ	7.	4	ļ			3	.3	2	ļ			3 9	7	7		
								 	3	2	8	ļ	<u> </u>	ļ		4			ļ	3.	3	2	ļ	ļ	4	48	30	9		· ·
		,							3	2	9	ļ	ļ		9	4				3.	3	2		ļ		56	19	3		·
		• · · · · · · •					ļ	ļ	ļ			ļ	ļ	ļ		<u></u>	ļ			<u> </u>			<u> </u>		<u>.</u>			ļ	:	
1		2		7	100	u	0	ve	R	S	14	CE	7	90	te	\$ (9=	54	ns	20/	C	10	se	1	}			<u>.</u>	·	
				(9	2 /	E/	ev.		120	2.0	D	1	=	28	<u> </u>	<u> </u>	C	=	3	13.	Z	İ			1		<u>.</u>		ļ	
		3		F	64	,	OZ	ex	2	n	711 -	ou	ei	1/	oze	_	5e	Ci	10	M.		0	el	ec	<u>,</u>	32	2/,	O		
							ļ	4	<u> </u>	24	45	1		ļ	C	-	20	1		<u> </u>								1		
							ļ		ļ		<u> </u>	<u> </u>	<u> </u>	<u> </u>					<u> </u>									ļ	ļ	
_						E	//	24	<u></u>			1	٠ ١				Q,					H3				Q,	a	<u>.</u>		
						3	20.	0	ļ		ļ	_	E							ļ		_	<u> </u>					<u></u>		
					ļ	3	21.	٥	ļ		<u></u>	1	_		ļ		23	C	5	<u> </u>		_	Ĺ		<u> </u>	_		ļ		
_						3	22	<u> </u>	<u> </u>			2			<u> </u>	2	63	<u> </u>				1				63	5	C	{s	
						3	23	ļ,	<u> </u>		<u> </u>	3	_			4	83		<u> </u>			2	<u> </u>		18	33	\$		ļ	
						3	24		<u> </u>	ļ 	ļ	4	1			7	44	<u> </u>				3		-	3	3	6			
						3	25	<u></u>	ļ	ļ	l	5		<u> </u>		10	39			<u> </u>		4	ļ		5	1	7	1		
						3	26	,				6				3	6	6			<u> </u>	5			7	2	3		<u> </u>	
						3	27	•				7			1	7	22	<u></u>				6			9	5	1	<u> </u>		
						3	28					89			2	1	03					67			//	98	3		.i	
T						3	20	•				9			9	5	1/1	1				8			14	1	a		1	. 1

ROJECT NAME		1	DATE
UBJECT	Lake Ge	orge Dan	PROJECT NO
	Stage Disc	harge @ Dam	DRAWN BY
	CASE A		
	Elev.	A total over dans	
	3 19.6		
	320.0	38 C13	
	32/	38 c/s	
	322	919	
	323,	1666	
	323 324 325	2585	
	325	3706	
	326	5075	
	327	6650	
	328	8110	
	329	7645	
			

PROJECT NA	ME	V. 4	<u>/</u>		Da	M	I	_	pl	CZ	10	<u>15</u>										D#	ITE_				
UBJECT			ak	e_	Ġ	101	eg	<u>e</u> _					•									PR	OJEC	;T NC)		
		E	W		Dis	ch	izg	<u>.</u>	(a)	Z	a r	n					·					DF	RAWN	BY			
\	1 /	, ,	- #	· 🕁)		2		4					رم	/	سيمآ	_			ſ	Ī	1		[]			
	AII	3) <u></u>	a to		72	2	I.C.	7<	>		⊅€ _/	7	S. C	ん	0	13	0	nc	7			ho	* 1	4	ho	
	Wat	10	J	10	Je.	/		R	200	h		٠ س	he		to	20	O	e	57	1/1	4)	24	.e	/ec	, 3	19	۷.
	war beco	2115	2	0	1	41	1	14	w	Z	09	u	ati	119	>	h	_	1	21	e	14	U	9/	Q	ľα	/	
	the	5	19	Fin	9	Re	حرد	on.	SIL	5/e		La	E	Ź	29	41	07	10		of		14	e	90	2/6	25	
							. 					L	ļ			ļ	ļ	<u>.</u>	į	i ,	Į						
	1.	P	101	w 7	h	204	91		5/4	"C	e:	-9	at	ed	_ <	u	le	75		Ł	Por	1	Z	ar	in.	9	
	<u> </u>	C	47	rue	#	0/10	ررب	19	7	n	5	56	C7	10	L	_5	47	2	116	2	. E	4	D	.5	, C	/ ~1	
	+	4	T	the	95	Su	n e	4	7			2	7 -	P	1	PO		0		W	uć	4	CO	Z	ee.	52	91K
	-	10	<i>y</i>	up		19)	•	7	se.	T.L.	9		15			S .	ي ا	get I	ڪ		as	re	•	OK	CS(4 1	y
													-					-			-						
	2.	1	10	w 4	QU	CZ	_	5	1/1	U	u	6)	21	ei		3,	9.	6	,	1	٦,	59	5	,		
				4	2 =	CA		14	Ż		<i>)</i>						ļ			,							
		$\ddot{\mathcal{C}}$	11	ba	s e	4		m		W	d	4h	(~	5	5)	ai	d	/	le	øď,	Ţ	R	m		
	ļ ;	•		ba "H	an	db	001	-	of		Hy	di	a	u.Si	25	- "	_	KI	ng	£	2	R	2te	K			
	0						ļ	ļ	 -				ļ			ļ	ļ	ļ	!	ļ	ļ	ļ			ė ;	÷	
	3.	F	POLL	,	ove	e.	1	707	- 4	יטי	LZ ;	1	س		5 <i>e</i>	Ci	On	(۷.	<u>e/ (</u>	ev		3.2	? /.	0		
						-	7.	-		**\		_		.6	7				<u></u>			ļ		-		•	*******
	F./	eu.		6	D .	1		4		•••••	C			G			-	H			0			i	0	TO 7,	
								2		_			-		Ź	1	_			_		5		_		10.1	
	319	6		9	45	d's		0			_										-	-			9	45	TC
	32	O.		10	75			4.		2	.5	1		38				_	ļ	-	_	<u> </u>	ļ		11	15	
	32			140	5	-	1	4		2		5		26	1	-		0		<u> </u>		ļ			6	15 63 90	5
	32			173	5		2	4	├ ┤	2	6	•	-	59	μ_		_	/		-	65	<u> </u>		2	3	9¢	>
	32 32 32	3		206	5	_i	3,	4444		2	75	<u> </u>	1	00	4	 	-	2		1	83 34	<u></u>	ļ	3	2	50	<u> </u>
	32			239			7.	7	 	2	2			50 15		 		3	-	2,	70	,	<u> </u>			3:	
	20	و. ا		3/4			2	I		3		P	1	91	4	<u> </u>		4		7	17	<u> </u>		7	7	96	J
	32 32	7.		305 331	3.5		2	4			3	2	1	27	1			6			57			8	13	15	-
	32	5.	!!!	3 %	5	Ī	8	4		3.	32			80				67			28					24	
	32	9.		404	5	ļ	9.	4		3.	32		•	69	1	ļ	L.	8			6.			11,	21	00	
			\ 				ļ		├ ─┤			ļ				ļ	ļ	ļ		ļ		ļ		: , , , , , , , , , , , , , , , , , , ,	: 		
			l i				1			J	i		1		l	1		1	i	1				1	:		

w
;)
4
$\overline{}$
u
, 😘
T)
×

1000		•	-100	(Shyder PA	ALAMETERS	5)					
10:10	(V	I.									
(50.0)	AS	Hid	-0 A M	F F 1	ING ANALYS	IN SI	ALL 3 6	GATES CLOSED			
984)	æ	က (၁) (၂)	တ	8	ψ	ں	Ų	ب	ပ	4	
(500	61	۰.٦									
(9)	7		2	~							
967)	-	2.	٣,	1.	\$.	٠,	3O	٠,			
108)	×		J	္	O	ب	ပ	-			
(6)0	۲ ۲	2	RUNGFF SUE	AREA C							
0010)	Ē		-	22.3	ပ	231.4	ت	J	U		
111)	u.	<u>ن</u>	17.5	73	:.O 33	66	104				
(212)	-			ر	O	ပ	O	1.C	0.1	0	0.01
613)	*	4	-6.625								
014)	×	2.	-0.10	1.6							
015)	¥		200	၁	O	0	0	_			
616)	X,	ボン ・		ROUTE THRU	SUBARE	A 5 TC LI	AKE GEOR	GE			
(11)	_	د	Ų	Ų	-	-					
(010)	Y 1	-	ں	د	ပ	U	ی	-			
017)	X V	()	70°0 :	6.06	355	725	1800	0.06			
623)	77	200	450	2440	224	267	395	257	392	512	392
(12)	77	2	395	586	204	ນ ວ 6	420	•			
(22)	¥	-	009	သ	ij	ت	ت	-			
323)	K 7	AD	DITI	LAG TO	ACCOUNT	FCR TRAN	RAVEL TIME	THROUGH	LAKE		
(720	>	Ç	د	ر	ပ	,- -					
025)	¥1	رن									
(920	×	′ 1	005	0	U	0	0	-			
0<7)	Z	28	S	UBAREA 5							
626)	S.			8.32	ر،	231.4	ن	ں	Ç	-	
024)		c	17.5	23	N N	55	104				
030)	_	4.1	د،	J	ں	ں	ن	٠,	0.1	0	0.01
634)	*	7	.62								
032)	~	2	-0.10	1.6							
033)	¥	_	500								
654)	×	4	DIT	LAG TO	ACCOUNT	FUR TRAVEL	TI	THROUGH	LAKE		
035)	>	ب	ن	ں	U						
0036)	Y 1	ں									
22	¥	(၁	0	a		_			
4070	3		1100								

	- .,		5.53	ن د . ه	231.4	ڊ ر، •	J	U	-	
L	ب		2	S	* *	3				
-		ں	ن	ب	ں	ಲ	-	0.1	ပ	.03
.≰	3.17	5.625								
*	Ņ	-0.10	1.ć							
¥	,	100	ن	ر،	U	U	***			
K1	⋖	DDITIONAL	LAG TO	ACCOUNT	FCR TRAVEL	TINE	THROUGH	LAKE		
>			Ų	ر)	-					
Y 1		· ~1	· : V	1						
.	i Li	200	ی ا	C	u	c	•			
¥		HILD FE SILE	AGEA 2	,	•	•	•			
				j	7 420	(ر	•	•	
-	- ;	4	01.00	و ر ه	7 C) ·	נ	J	-	
L (، د		2 :	io i	N	3	•	,		,
—	to	ပ	သ	ပ	ں	ں	J .		O	0.32
. 4	70.2	6.625								
×	-2.6	-0.10	1.6							
*		000) (17)	C	٠.,	ن	•			
		SOLITION	7 2 4) #		2		
))	ב ב ב		11224	3 . T		7 2 2		
-	ا ا	ا د	.	>	 -					
1	೮	m	-				•			
¥	4	202	ن	J	ں	ن	-			
×	J		HYDROGRA	IFHS AT	LAKE GEORGE					
¥	Ö	300	0	0	ပ	0	_			
K	œ	RUNOFF SUB	AREA 3			ı				
Ξ		-	7.87	Ç	231.4	C	نها	U	-	
٩	ن ۽ ا	17.5	73) න ු .නු		104	1	,	•	
-	Ü	Ü	ں	9 0	ن ر		1.0	0.1	O	6.02
2	3.2	0.625				ı	1	1		
*	-2	-0.10	1.6							
×	l	300	U	u	u	C	-			
K 1	*	10	LAG TO	ACCOUNT	FUR TRAVEL	7 1 M F	THROUGH	IAKE		
>	اب ,) - (-					
, Y) : e	› ^		•					
- - <u>×</u>	ı د.) <u>1</u>	ت. ا	د	C	C. .	•			
: 5	, "	=	A DE A A)	•	,	-			
₹ ₹	٠,-		11.57	C.	7 120	C	(_	.	•	
- 4	• f			פי	• 0) :	٤	י	-	
•				ַ	~ *	3				

55. X -2.0 -3.1° 1.5	(7:5)	,	4.07	90								
Mail	0783	×	2.	0	1. 6							
KI ADDITICKAL LAG TO ACCOUNT FCR TRAVEL TIME THROUGH LAKE 1	(623	¥		ت	فيا	ں	Ų	េ	_		í	
Y	(Co)	¥	•	DUITIC		ACCOUNT	FCR TRA	VEL TIP	•	_		
Notice N	6.1)	>			ပ	ပ						
K	Ū62)	11	r 3	3								
KI	663)	¥	ڊ	766	Þ	ro	ټ	Ö	-			
M	004)	×		UNGFF	AREA 7							
P	G55)	Σ	_		10.49		231.4	0	U	ں	-	
T 3.71 C.625 K	086)	٩	د	17.5	7.5		56	104				
W 3.71 C.625 C C C C C C C C C	(780	-	Ð	د	ر.	U	ပ	ပ	1. C	0.1	O	0.01
X -2.G -G.1G 1.6 K1 RUHGF SUEAREA 10 G -231.4 H 1 7.86 G -231.4 C C C C D 1 H 3.21 G.625 X -2.G -G.1G X 1 100C G C C C C D 1 H 3.21 G.625 X -2.G -G.1G X 1 100C G C C C D 1 K1 ADDITIONAL LAG TO ACCOUNT FOR TRAVEL TIME THROUGH LAKE X 1 C C C C C C C C C C C C C C C C C C	(SSS)	3	۲.	-62								
KI BUHUFF SUEAREA 10 KI RUHUFF SUEAREA 10 F C 17.5	(265)	×	2	C. 1	1.6		•				4	
K1 RUHOFF SUBAREA 10 H 1 1 7-8 8 8 99 104 T 2 17-5 73 88 99 104 T 2 0 0 0 0 0 1 K1 ADDITIONAL LAG TO ACCOUNT FOR TRAVEL TIME THROUGH LAKE K1 ADDITIONAL LAG TO ACCOUNT FOR TRAVEL TIME THROUGH LAKE K1 ADDITIONAL LAG TO ACCOUNT FOR TRAVEL TIME THROUGH LAKE K1 ADDITIONAL LAG TO ACCOUNT FOR TRAVEL TIME THROUGH LAKE K1 ADDITIONAL LAG TO ACCOUNT FOR TRAVEL TIME THROUGH LAKE K1 COMBINE 5 HYDRGGRAFHS (TOTAL INFLOW HYDROGRAPH AT LAKE GEORGE K1 COMBINE 5 HYDRGGRAFHS (TOTAL INFLOW HYDROGRAPH AT LAKE GEORGE K1 ADDITIONAL LAG TO C C C C C C C C C C C C C C C C C C	(060	¥		1000	ن ا	ပ	O	ca	,			
F 17.5 73 88 99 104 T 2 C C C C C C C C C C C C C C C C C C	(161)	7	-	UPIOFF S	•							
F C 17.5 73 88 99 104 1 10.625 X -2.5 0.625 X -2.5 0.62	(26)	£	~	-	7.88		231.4	င	ں	Ü	-	
T 5.2 G. 625 X -2.5 -0.10	093)	Œ.	د,:		73	'n S	65	104				
Mathematical Structure Mathematical Struct	(64)	-	ί,)	ပ	ړن	ں	u	5	J.C	0.1	0	0.05
X -2.9 -6.10 1.6 K 1 100C 0 0 1 X1 ADDITIONAL LAG TO ACCOUNT FOR TRAVEL TIME THROUGH LAKE Y 0 0 0 1 Y 20 0 0 1 1 X1 COMBINE 5 HYDRGGRAFHS (TOTAL INFLOW HYDROGRAPH AT LAKE GEORGE 0 1 1 X1 COMBINE 5 HYDRGGRAFHS (TOTAL INFLOW HYDROGRAPH AT LAKE GEORGE 0 0 1 1 X1 COMBINE 5 HYDRGGRAFHS (TOTAL INFLOW HYDROGRAPH AT LAKE GEORGE 0 0 1 1 X1 COMBINE 5 HYDRGGRAFHS (TOTAL INFLOW HYDROGRAPH AT LAKE GEORGE 0 0 0 1 X1 TOCOL COMBINE 5 HYDRGGRAFHS (TOTAL INFLOW HYDROGRAPH AT LAKE GEORGE COMBINE 5 HYDROGRAFHS (TOTAL INFLOW HYDROGRAPH AT LAKE GEORGE COMBINE 5 HYDROGRAFHS (TOTAL INFLOW HYDROGRAPH AT LAKE GEORGE STAND STAN	(32)	*	ب	6.625			•					
K1 100C C C C C C C C C C C C C C C C C C	(960	×	۲.	-0.10	1.6							
K1 ADDITIONAL LAG TO ACCOUNT FOR TRAVEL TIME THROUGH LAKE Y	097)	¥	-	1000	ပ	0	ပ					
Y j 0 C C 1 K 3 202 0 0 0 1 K1 COMBINE S HYDRGGRAFHS (TOTAL INFLOW HYDROGRAPH AT LAKE GEORGE C C C C 1 K1 2C2 C C C C C 1 LAKE GEORGE K1 AOUTE OVER LAKE GEORGE DAM T T C C C C C C T A Y C O T T C	678)	¥	•	DDITIO	•	ACCOUNT		-	•			
K1 C 3 2 0 0 0 1 LAKE GEORGE K1 COMBINE S HYDRGGRAFHS (TOTAL INFLOW HYDROGRAPH AT LAKE GEORGE C C C 1 1 LAKE GEORGE C C C 1 1 LAKE GEORGE C C C 1 1 LAKE GEORGE C C C C T 1 C C C C C T 1 T C S S C S S C C C C C C C C C	(600	>		5	ن	O	-					
K1 COMBINE 5 HYDRGGRAFHS (TOTAL INFLOW HYDROGRAPH AT LAKE GEORGE K1 2C2 C C C C C C C C C 1 1	1:0)	Y 1	ပ	~1	ſV							
K1 COMBINE 5 HYDRGGRAFHS (TOTAL INFLOW HYDROGRAPH AT LAKE GEORGE K 1 262 C C C C 1 1 262 C C C 1 1 262 C C C C 1 1 262 C C C C C C 1 1 1 1 1 1 1 1 1 1 1 1 1	101)	¥	•		ဘ	၁			~			•
K1 1 262 C C C 1 K1 ROUTE OVER LAKE GEORGE DAM. 1 1 C C 319.6 -1 Y1 T C C C C C -1 Y4 319.6 320 321 322 -323 324 325 326 Y5 C 38 354 919 1666 2565 3705 5075 Y5 C 38 354 919 1666 2565 3705 5075 Y5 C 38 354 919 1666 2565 3705 5075 Y5 C 38 354 910 674000 164000 233400 Y6 C C C C C C C C Y6 C C C C C C C C Y6 C C C C	102)	7	_	OMBINE 5	H YDRCGR	AFHS (TO			_		ORGE DAM)	
K1 ROUTE OVER LAKE GEORGE DAM Y 1 1 0 0 1<	103)	¥	~	'n	Ų	ں		ں	-			
5) Y C 0 0 C 1 1 1 0 C -319.6 -1 6.0 Y1 1 1 0 C -319.6 -1 3.2	104.)	¥	-	E 0	LAKE	EORGE DA!						
6) Y1 1 C C -319.6 -1 7) Y4.319.6 320 321 322323 324 325 326 8) Y4.329 9) Y5 C 38 354 919 1666 2585 3705 5075 9) Y5 9665 1) \$\$5 \times 6300 176000 5/3000 674000 1646000 2334000 1) \$\$5\$ \$\$5 \times 6300 176000 3/3000 674000 1646000 2334000 3) \$\$5 \$\$5 \times 6300 176000 3/3000 1646000 2334000 4) \$\$5 \$\$5 \times 6320 1.5 80	<u>ت</u>	>	(J	0	ပ	•	-					
7) 74, 319.6 320 321 322 323 324 325 326 b) 74, 329 32 32 324 325 325 325 325 326 326 326 326 327 326 326 327	1:6)	11		r,s	ij	ပ	ပ	ں	-319.6	7		
b) 74 329 9) 75 C 38 354 919 1666 25&5 3705 5075 3) 75 9665 5 5 5 6300 17600 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6000 16600 <td>4.7</td> <td></td> <td>19.</td> <td></td> <td>321</td> <td>325</td> <td>323</td> <td>324</td> <td>325</td> <td>326</td> <td>327</td> <td>328</td>	4.7		19.		321	325	323	324	325	326	327	328
9) Y5 C 38 354 919 1666 2585 3705 5075 3) Y5 9665 1) \$\$ 5 63500 1760CC 5730C0 6740CC 10960GC 16460CC 23340UC 2) \$\$ 133 175 2CC 225 25C 275 3CC 325 3) \$\$ 319.0 4) \$0 323 2.6 1.5 80	108)		~									
3) Y5 9665 1) \$\$ 5 63500 1760CC 5/3000 6740CC 10960gC 16460CC 233400C 2) \$\$ 133 175 2CC 225 25C 275 3CC 325 3) \$\$ 319.6 4) \$0 323 2.6 1.5 80	109)		ပ		354	919	1666	2585	3705	5075	0599	8110
1) \$\$ 5 63500 1760CC 5/3000 6740CC 1096000 16460CC 233400C 2) \$E 133 175 2CC 225 25C 275 3CC 325 3) \$\$ 319.0 4) \$0 323 2.6 1.5 80	113)	15	99									
2) SE 133 175 2CC 225 25C 275 3CC 325 3) SS 319.0 4) SD 323 2.6 1.5 80	111)			3000	1760CC	313000		1096000		233400C	3168000	
3) \$\$ 319.0 4) \$0 323 2.6 1.5	112)			25	5 00	225		275		325	350	
14) \$0 323 2.6 1.5	113)		• 1	,			:					
	114)		\sim		7.	S						

(A C

LAKE GEORGE

6115) 61170 61170 61190 61190

1 A U T 0 RTIME 0.1 0 NSTAN ISTAGE 0 ALSMX C.CC ISAME R96 C.00 IFRT INAME CNSTL C.10 ******* RIIDK= 1.00 HONSI R72 C.0.3 IPLT L RAT PEC-108 (SHYDEN FARAMETERS) PMF-DAM GVERTGPPING ANALYSIS WITH ALL 3 GATES CLOSED STRTL 1.00 MULTI-PLAN ANALYSES TO BE PEPFORMED NFLAN= 1 NRTIC= 7 LFTIC= 1.3C C.4G 3.5C C.6C G.8G 1. RAT10 C.00C ე••0 PRECIP DATA R12 R24 R48 88.00 99.00 104.00 METRC 0 TPACE SUB-AREA RUNOFF COMPUTATION 8710K UNIT HYDROGPAPH DATA 3.48 CP=C.63 RECESSION DATA QRESN= -1.10 HYDROGRAPH DATA TRSDA TRSEC 231.40 0.50 JOB SPECIFICATION MMI LOSS DATA ERAIN STRKS F C.50 C.00 LROPT ******** ITAPE S E S IECON 0 SNAF O.LC -2.CC 73.CC C JOPER IDAY ICCMP 0 1.9C 0.30 TAREA 42.30 PMS 17.50 PUNOFF SUBAREA & Z T T Z ISTAG TRSEC COMFUTED BY THE PROSRAM IS 5.685 L-KE EORSE DETKR C.OC 0.20 101 G ر. د.ور SPFE **호** () 보 FLOGE HYDROGRAPH FACKAGE (FEC-1) ULY SAFETY VERSIGE JULY 1972 LAST MODIFICATION 26 FEG 75 经存在的存在的现在分词 医有力的 医多种性病病 医医疗性病病 FTICS= STRE 5 JEYDI. FUN DATESTHUR JUL 17 1923 TIME21020G129 14081

_			COMF	406557. 11512.4C)
1975.	465 83.		LOSS	3.17
VOL= 1.7C 2314. 19	• 14· 57·		EXCS	SUR 16.11 12.94 3.17 406557. (4C9.)(329.)(81.)(11512.4C)
C.63 1	56. 14.	23.	RAIN	16.11
25 25	^ ←		ERICO	SUF
3.4¢ HEPS. CP= C.63 Vi . 2645. 2592.	134.	.75	HR.MR PERICO RAIN	
LAC 3	765. 156.	32.	FLCW PC.0A	
#RA++ 3, E-01-0F-FERTUD CP01-ATES+ LAC= 10EC. 1554.	183.	36.	END-UF-FERIOD FLOW COWF G FC.OA HR.N	
F-FERTUD 1556.	1648. 215.	. 77	EN Lrss	
3. Einu-u OCC.	25¢. 25¢.	52.	EXCS	
	_		RAI	
E II SYDRORES	74.5%	, 0°	r EF TCD	
15	34.	<u>:</u>	í.	
			. «	
			2.	

HYDRGGRAPH ROUTING

CHANNEL	ROUTE TI	KRU SLBAR	EA 5 TO	LAKE GEO	ROF				
	ISTAG	ICCPP	1 E C O M	ITAFE	JPLT	JFRT	INARE	JFRT INAME ISTAGE	IAUTO
	C. S	-	:5	0	Ċ	0	_	o	
			ROUI	ING DATA	_				
OLCSS	CLCSS	9 A K	IRES	ISAME	IOPT	IPMP		LSTR	
0.0	000.0	0.00 0.00 1 1 0	-	-	O	0		6	
	STES	NSTUL	LA6	LAG AMSKK X TSK STORA ISFRAT	×	TSK	STCRA	ISFEAT	
	-	4.5	ξ	0	6.00	6,77	-	ت	

MORMAL DEFTH CHANNEL ROUTING

		50.58 326.C6	28559.82	463.79	28559.82
		36.85	19+98.48 236576.22	402.32	19r9h.48 236576.22
	392.00	25.63 250.86	13283.46	400.84	13283.46 1994U5.C9
	512.00	16.88 217.03	8369.67 166252.72	399.37 414.10	0369.67
SEL	CROSS SECTION COURDINATESSTAZELEV/STAZELEVETC 200.60 420.00 446.06 460.0 496.06 496.00 395.04 497.06 392.06 512.00 392.00 520.62 395.05 586.64 465.06 966.66 426.62	16.19	4807.13	397.89	4827.13
RLNTH SEL 1860. O.COST	#ELEVETC 0 395.00 0 420.90	5.47	2434.72	390.42	2438.72 112955.81
ELNVI ELMAX 592.0 420.0	-STAZELEVZSTA 600.00 490.0 603.00 960.0	2.72	957.41 88519.39	354.95 409.6c	997.41
	CORDINATES— CO 44C.0G 4	1.14	203.75	453.47 468.21	285.75 .927c.o ^c
58(1) 98(2) 98(3) -5668466[8	5S SECTION C 200.60 420.0 320.70 395.0	55.53	39.5 30.5	374.0:	16.0E.88
58 (1) 5 - 5 6 6 8	9 9 9 9	STukabe	OLIFECA	ST ST ST ST ST ST ST ST ST ST ST ST ST S	ft.

of grant evelope.

. . .

LNIT HYDROGRAPH DATA

90	LIIOAA	1. LA6	TO ACCOUNT	FORT	SAVEL TIME	THEOUGH	LAKE	
		ISTAG	ISTAG ICCMF IECON ITAPE JFLT JPRT	IECON	ITAPE	JFLT	JPRT	INAME
		0:3 •	0 0 0 009	0	ပ	Ć)	ဂ	-
				ROU	ROUTING DATA			
9		CLOSS	0 *	IRES	ISAME	IJFI	I FMP	
	() ()	0.000	0 0 0	Ċ	-	~	Ð	
		NSTES	NSTFS NSTOL	٠ ١٨٥		×	TSK	STORA
		(D	1	-	1 6.00	000.0 000.0	000.0	ن
								;

HYDRUGRAPH ROUTING ********

3.8.5 40. .. 401.0 402.0 462.9

MANT UT STASE IS ST BEATS STAGE 15 ST BOKES TU-LAKE MARINUM STANE 15 MARINUM STAGE IS

RADALTER STRUE BS

1 43

******** IAUTO ISTAGE ISFRAT C LSTR ******

SUB-AREA RUNGFF COMPUTATION

R12 R24 R48 c8.00 59.00 104.00 SPFE FMS RC C.CC 17.5C 73.CC TRSPC CUMFUTED BY THE PROGRAM IS C.845 LOSS DATA
EKAIN STRKS RTIOK STRTL CNSTL ALSPX RTIPP
C.30 3.40 1.06 1.06 0.16 6.66 6.71 LEGET STREE DLIKE

#110R= 1.60 RECESSION DATA STRIGE

13.

690. 113. 827. 135. 22. 3.03 HOURS, CP= 0.62 1107. 991. 155. 162. 32. 27. 34 END-OF-FERIOD URDINATES, LAGE 453. 755. 974. 1098. 451. 335. 279. 233. , 33. 36. 974. 219. 46. 755. 335. 55. \$6. 11. U.LT HYDROGRAFA 461. 79. 57°. * !>

16.11 12.94 3.17 153353. (469.)(329.)(81.)(4342.47) COMP 0 LOSS 3.17 EXCS #0.DA HR.MN PERIOD RAIN Suk END-OF-FERICD FLOW NG. DA HR. AN PERIOD HAIN EACS LOSS

HYDRUGRAPH ROUTING

ISTAGE LSTR ISFRAT INAPE STORA 1SK 0.000 JFRT 0 IFPP O ADDITIONAL LAG TO ACCOUNT FOR TRAVEL TIME THROUGH LAKE JPLT C-000 1301 ROUTING DATA SECON STAFE AMSKK 0.000 ISAME IRES LAG ICCPP کام ن•نت NSTOL 3 CLUSS 0.060 ISTAG WSTPS GL USS

SUB-AREA RUNOFF COMPUTATION

1 A U T O INAME ISTAGE JFRT 0 JECON ITAFE JCCPP C RUNOFF SUBAREA 1 ISTAG 183

LOCAL ISAME NONS I R72 C.00 RATIO C.00C PRECIP DATA R12 R24 R48 88.00 99.00 104.00 TRSPC 0.CC HYDROGRAPH DATA SNAF TRSDA C.CC 231.40 TAREA 9.53 SPFE FMS C.CC 17.5C TASH C.CC 17.5C TASH C.CC 17.5C IUHG 1 IHYDG

ڊ د د ALSPX C.CC LUSS DATA PLTKR F. SC STAKE C.CC 14047

CNSTL 0.1C 1.0C ERAIN STRKS RIIOK C.60 0.90 1.80

LVIT HYPROGRAPH DATA

RECESSION DATA -2.10 GRCSN= -C.10

STRICE

RT108≈ 1.60

	822.	143.	25.	
_	.626			
CP= 0.63	1146.	203.	35.	
1.17 HOURS.	1225.	245.	45.	
. A 6 =	1179.	, 88 s	50.	
ာ	1324.			
F-FERIOD	751.	.5.7	71.	12.
35 E10-0	5.5. 761.	. / 27	.5.	15.
HYDROGRAFIE	255.	576.	101.	18.
11/0			12:	

******** ********* ******** ******** *********

HYDROGRAPH ROUTING

16.11 13.01 3.11 175935. (409.)(330.)(79.)(4981.92)

SUR

COMP

RAIN EXCS LOSS

END-CF-FERICD FLOW
COMP 4 FO.DA HR.MN PERIOD

RAIN EXCS LOSS

KELDA MR.RE PERIOD

1 + UTO 0				
1STAGE 0		LSTR	0	1SFRAT 0
INAPE				STORA C.
LAKE JFRT 0		1FRP	0	18K 0.000
ТНКЭЦGН J PLT 0		IOPT	c	×000.0
AVEL TIPE ITAFE 0	ING DATA	ISAME	-	AMSKK 0.cc0
FOR TRIECON	ROUT	IRES	O	LA6
ODITICHAL LAG TO ACCOUNT FOR TRAVEL TIME THADUGH I ISTAG ICCPF IECON ITAFE JPLT 1CO 1 0 0		D A C	0.00	NSTDL 3
AL LAG 151 150		CLCSS	000*0	MSTFS
3001TICA		OLOSS)	

SUB-AREA RUNCEF COMFLIATION

	151/4		IC.PP I	1E CON	LTAFE	JPLT JPRT		INAKE	ISTAGE	IAUTO
				c:	O	C		-	O	o
				HYDROGE	APM DATA					
Bayes	94 01		SNAF	TRSDA	TRSPC				¥DO7 3	_
•		1 155,53	0.0	231.40	231.40 0.00	C.00C	ပ	-	ت -	Ö
				FRECIS	P DATA					
	SPFE	の草・	¥.	R12	47.H	848	R 7.2	R96		
C.C. 17.5(ر د د	17.5(73.06	ဂုဂ္ဂ• ၃၁	20.44	104.00	00.0			

SPFE FMS RA C.CC 17.SC 73.01 TMSFC CUITUTED BY THE PAGURAR IS C.BOS

ALSEX C.CC CNSTL G.1C STRTL 1.00 LOSS DATA ERAIN STRKS RIIOK C.GO C.SC 1.GC UNIT HYDROGRAPH DATA 2.37 CP=0.63 N 14 FTIGE 1.3C 01.1kg STRK C.CC LROPT

Courted 4

FECESSIO: DATA
STRTO= -2.(C GRCSN= -0.10 RTIOR= 1.60

UNIT HYDRCSRAFH 22 END-OF-FERIOD ORDINATES, LAG= 2.07 HOURS, CP= 0.63 VOL= 1.CC 16907. 2076u. 28129. 29795. 25516. 19336. 14652. 11103. 4631. 3061. 2774. 2102. 1593. 1207. 915. 693. 169**67.** 4631. 302.

SUM 16.11 13.94 2.18 3112022. (409.)(354.)(55.)(88122.56) COMP LOSS END-OF-FERIUD FLOW
COMP G #0.DA HR.MN PERIOD RAIN EXCS HR.4K FERICO RAIN EXCS LOSS MO.DA

HYDROGRAFH ROUTING

	TAGE IAUTO	0		LSTR	0	ISPRAT 0
	INAME 15					STORA IS
LAKE	JPRI	0		IFMP	0	TSK C.CCO
THROUGH	JPLT	9		loft	0	c.ece
AVEL TIME	ITAFE	0	ING DATA	ISAFE	0 0.00 0.00 0.0	AMSKK 0.CCO
FOR TR	LECON	0	ROUT	IRES	0	LAG 1
C ACCOUNT	ICCMP	-		AVG	0.00	NSTEL 3
LAGIT	ISTAG	509		CLCSS	000.0	NSTPS
ADD ITIONAL	7			OLGSS	0.0	-

COMBINE HYDROGRAFHS

	JFRT INAME ISTAGE 1AUT	
	JPLT 3	
CRGE	1TAFE 0	
LAKE GE	TECON 0	
RAFES AT	ISTAG ICCPF IECON 1TA 2G2 4 0	
4 HYDROG	151AG	
COMB INE		

20

SUB-AREA RUNGEF COMPUTATION

JFRT INAME ISTAGE 12UTO JPLT ICCMP IECON ITAFE RUNCEF SLBAKEA 3 DELSI

				40	4 6 6 6				

IMVDU			SAAF	TRSDA	TRSPC		1 SNOW	ISAME	LOCAL
-	-	1.67		231.4. 0.56	0.00	00000	E)	-	0
				FRECIP	DATA				
	SFFE	FAS	ex	R12 R24	R24	848	R72	896	
	ر. ر.در	C.66 17.5C	73.00	60.33	**.OC	104.00	00.0	00.0	
0 . 33 312	21 44	<i>y</i> 4 4							

TRSPC CONFUTED BY THE PACERAR IS

41	7]•		
E CE	o		
ALSPX)))		
CWSTL	0.10		
STRTL	1.00		ں "
RTIOK	1.00	DATA	P.TA:
		HYDROGRAPH	CP=1.63
FRAIR	00.0	UNIT	5.29
KTIOL	1.00		16
DLTKR	00°0		
STRKE	00.0		
LRUFT	<u>.</u>		
	STRKE DLTKG KTIOL ERAIN STRKS RTIOK STRTL CNSTL ALSPX	LROFT STRKE DLTKR KTIOL ERAIN STRKS RTIOK STRTL CNSTL ALSPX RTIMF C.CC C.OC C.OC C.OC 0.10 0.00 0.00 0.00 0.00	STRKE DLTKG KTIOL ERAIN STRKS RTIOK STRTL CNSTL ALSFX C.GC C.OC 1.OC C.OC C.OC C.CC UNIT HYGROGRAPH DATA

RIIOR= 1.60 RECESSION DATA -2.CC GRCSN= -0.10 STRICE

	681.	133.	. 92	
VOL = 1.EC	862.	156.	30.	
CP= 0.62	923.	184.	36.	
S.2E HOURS.	972.	217.	45.	æ
LAGE	521.	255.	50.	10,
CRDINATES ,	196.	30C.	58.	11.
CF-FERICD	. 555	354.	.69.	1- 1-
37 END-	380.	417.	Ġ1.	16.
HYDROGRAF			.95	
LI NO	53.	570.	113.	

COMP LOSS EXCS END-OF-FERICD FLOW
COMP Q PO.DA HR.MA PERIOD RAIN LOSS EXCS MC.DA NR.MW FERIOD RAIN

16.11 12.98 3.14 144277. (409.)(330.)(80.)(4085.47)

SUR

***** ********* ********

ADDITIONAL LAG TO ACCOUNT FOR TRAVEL TIME THROUGH LAKE ISTAG ISCOPP IECON ITAFE JPLT JFRT HYDROGRAPH ROUTING

14010	0			
JFRT INAME ISTAGE 1AUTO	.		LSTR	ပ
INAME	-			
			IFFP	
JPLT	0		IOFI	O
IECON ITAFE JPLT	0	ING DATA	ISANE	-
IECON	0	FOUT	IRES	c
ISTAG ICCPP				.GJ*0
ISTAG	300		CLCSS	000.0
			61.555	ຍຸ

TSK STORA ISFRAT

×000.0

LAG AMSKK 2 0.000

NSTES NSTOL

SUB-AREA RUNGEF COMPUTATION

		15TAG 15TAG 4.0	3 100% F	IECCN O	ITA+E	JELT	JFRT 0	INAME 1	ISTAGE	I AUTO	
IHVE	Nuse	e TAREA	SRAF		HYDROGRAPH DATA TRSDA TRSPC	PATIO	HONSI	ISAME	IE LOCAL	ب	

8% C.00 R72 C.00 FRECIF DATA
SPFE PMS RC R12 R24 R48
C.C. 17.5C 73.GC 88.DO .99.DO 164.DO 0.00 0.1.40 0.00 11.52

RTIPP 0.01 CNSTL ALSMX 0.10 C.CC RTIOL ERAIN STRKS HTIOK STRTL 1.DC C.09 C.0G 1.0G 1.0C LROFF STRKA DLTKR CASS CASS

UNIT HYDROGRAPH DATA

1F= 4.07 CP=0.63 NTA= 0

RTIOR= 1.60 RECESSION DATA GRESN= -0.10 -2.00 STATES

SUM 16.11 12.94 3.17 207155. (409.)(329.)(81.)(5865.97) **L05S** EXCS END-OF-FERIOD FLOW RAIN EXCS LGSS COMP G PO.DA HR.MN PERIOD RAIN ******** ******* *******

MO.DA MR.WH FERIOD

244. 244. 63.

COMP 6

HYDROGRAPH ROUTING

ISTAGE IAUTO		ISFRAT 0
INAPE		STORA C.
LAKE JFRT 0	1 P 1 0	TSK C.C00
THROUGH JFL7 0	10FT G	× 000.0
AVEL TIME ITAFE 0	PLUSS CLOSS AVG IRES ISAME IOFT IFMP	MSKK O.CCO
T FOR TR IECON U	ROUT IRES 0	1 6 6
TO ACCOUNT TCCPF	9 > ¥	NSTOL 3
15146 15140 450	CL055	NSTES O
. DD I 7 10A	01.055	

16.11 12.94 3.17 190024. (409.)(329.)(81.)(5380.88) COMP 221. 221. 56. MO.DA HR.MN PERIOD RAIN EXCS LOSS ******* IAUTO RTIPP 0.C1 SUR 16.11 12.94 LOCAL JPRT INAME ISTAGE ALS#X G.CC ISAME R96 C.00 CNSTL 0.1C **** R110R= 1.60 RATIC ISNOW 872 C.00 STRTL 1.00 KTA= C 812 824 848 68.00 99.00 164.00 SUB-AREA RUNCEF COMPLIATION ICCMF IECON ITAFE JFLT LOSS DATA
DLTKR RIIJL ERAIN STRKS RTIOK
5.0C 1.0C C.0O C.0C 1.0C UNIT HYDROGRAFH DATA STRTG# -2.CC GRCSN# -C.10 END-OF-FERIOD FLOW HR.MN FEPIDD RAIN EXCS LCSS COMP Q MO.D HYDROGRAPH DATA SNAP TRSDA TRSPC U.GG 231.40 0.00 PRECIP DATA SPFE PMS RC C.C. 17.5C 73.0C TRSFC COMPUTED BY THE PROGRAM IS ...885 ******* 14REA AURLEE SUBAKEA ? 1046 1 STRKR C.CC 194. 724. 165. IHYDG 1 LROPT 859. 191. MO.OM

SUB-AREA RUNOFF COMPLIATION

11010 INAME ISTAGE JFRT 0 1. LT TECCN ITALE 1CCPF 0 RUMPER SUBAREA 10 ISTAG 1

HYDROGRAPE DATA

	IHYDA	111,	TAREA 7.50	SAAF O.OC	TRS0A 231.40	TRSPC 0.00	RATIC C.UCC	1SNOW C	ISARE	00 AL
TRSPC COMPUTED BY TRA	PRC LR	SPFE C.O.	SPFE PMS C.C. 17.50 TR. PROURAM IS G.EAS	R6 73.00	PRECIP R12 E8.04	DATA R24 55.00	848 194.00	872 0.60	R96 C.30	

					LUSS DATA					
LKCFT	STRKR C.DC	DETKR S. M	RTIOL 1.00	ERAIN C.CC	STRKS R	1.00 1.00	1.0C	CNSTL C.1C	ALSHX C.CC	RT186
			16=	3.21	HYDROGRAPH CP=C.63	DATA NTA=	o			

	684.	125.	23.	
VOL= 1.(C	811.	148.	27.	
CP= 0.63				
3.23 HCURS.				
LAG= 3.2	. 275	247.	45.	, Q
ORDINATES				
•		346.		
36 END-	4 01.	411.	75.	14.
HYDROCRAFH	202.	487.	.00	16.
TI'A	55.	511.	105.	7.

RTIOR= 1.60

RECESSION DATA

-2.00

STRT0=

		٠.
	COMP	SUM 16.11 13.07 3.04 145819. (469.)(332.)(77.)(4129.13)
	\$507	3.04
	EXCS	13.07
	RAIN	16.11
	PERIOD	SUM
	HR. R.	
.o	FLOW FO.DA	
10.	END-OF-PERIOD FLOW COMP G PO.DA HR.MN PERIOD RAIN EXCS LOSS COMP G	
12.	\$\$31	
14.	EACS LCSS	
	R A 17.	
16.	C MC.DA HR.WN FERICO RAIN	
7.	HR. 7.	
	9 VC. DA	

HYDROGRAFH ROUTING

IAUTO		
ISTAGE IAUTO	LSTR	ISPRAT 0
INAME 1		STORA C.
LAKE JPRT 0	9 P 9 D	15K 0.000
THRUUGH JPLT 0	1061	000°0
AVEL TIME ITAPE 0	ING DATA ISAME 1	AMSKK O.CCO
FOR TR	ROUT IRES 0	LAG 2
ADDITIONAL LAG TO ACCOUNT FOR TRAVEL TIME THROUGH LAKE ISTAG ICCMP IECON ITAME JPLT JPRT 16:0 0 0 0	AV6 0.00	NSTOL 3
ISTAG	0.035 0.036	MSTPS .
ADD I 710 h	01.05S	

COMBINE HYDREGRAFHS

IAUTO COMEINE S HYDROGRAPIS (ICTAL INFLOM PYDRIGRAFH AT LAKE GEORGE DAM)
ISTAG ICCMP IECON ITALE JPLT JFRT INAME ISTAGE
200 0 0 0 0 1 ******* *******

ر د د

化化化 化化化 化水 化水	
我我我我我我我我	HYDROGRAPH ROUTING
* * *	

	_	FOUTE CV	1. A.E.	SEORCE	# 4 O							
			1STAG	ICCMP	IECON	ITAPE	JPLT	JFRI	INAME	ISTAGE	IAUTO	
			277	-	0	0	C	J	•	Ç		
					ROU	TING DAT	< <					
		OLOSS	CLOSS	AVG	IRES	ISANE	IOFT	IFRE		LSTR		
		000*6 0*0	000.0	0.00	-	-	0	J	_	0	0.0 9.00 0.00 1 1 0 0 0 0	٠
			NSTPS 1	NSTOL	LAG 0	AMSKK 0.CCO	LAG AMSKK X 0 0.CCO G.CCO	TSK C.C00	TSK STORA ISPRAT C.COD -32C1	ISFRAT -1		
STAGE	315.6/ 327.0:	32C.Ot		321.00	322.00		323.00	324.00		325.CC	326.00	327.CC
FLÚ., 90	0°°°°	38.00		354.00	919.30		1666.00	25.5.00		3705.CC	\$175.00	00"0599
CAFACITY=	ដ	£30CL.		176000.	373000.		. 10960	16. 16	.00397	674000. 1096000. 1646000. 2334000. 31e8000.	31,8000.	
ELEVATION =	133.	175.	۶.	. 206	225.	250.		275.	300.	325.	350.	
	•	CREL 319.6	EL SP.	0.1	SPAID COGN EXPM ELEVL	XF4 6.0		COC CAREA		EXPL 0.0		

EXPD DAMWID 1.5 8C. 10PEL 323.0

328. AT TIME 79.50 HOURS 671. AT TIME 77.00 HOURS 1064. AT TIME 75.00 HOURS 1543. AT TIME 73.50 HOURS 2148. AT TIME 72.00 HOURS 3624. AT TIME 07.50 HOURS 3782. AT TIME 69.50 HOURS PEAK OUTFLOW IS FEAK OUTFLOW IS PEAK SUTFLOW IS PEAK CUTFLCM IS PEAK JUTFLOW IS PEAK OUTILOW IS PEAK GUTFLC. 15

***** ****

OFER ATTO:	SILTIO	4 11 4	PLAN	KATIC 1 C.2C	RATIJ 2 0.30	RATICS AFT RATIC 3 C.40	ICS AFPLIED TO FL IC 3 RATIO 4 C.4G 0.50	FLCWS RATIC 5 C.60	RATIC 6 0.80	RATIG 7
HYDRUSRAFIC AT) (13 9	22.30 27.7c	_ ັ	4647. 131.58)(697C. 197.36)(9293. 263.15)(11616. 328.94)(13940.	18586.	23233.
RCUTED TO	30\$	22.30 57.7e)	_ `	4644.	6966. 197.26)(9289. 263.03)(11612. 328.80)(13936. 394.63)(18576. 526.C?) (23227.
RCUTED TO) (0.0)	22.30 57.76)	,	4571.	6857. 194.16)(9142. 258.88)(11428. 323.60)(13713.	18285.	22856. 647.20)(
HYDROGRAPE AT	395	8.32 21.55)	-~	1859.	2765.	3717.	4647. 131.58)(5576. 157.89) (7435. 210.52) (9293.
RCUTED TO	595	8.32 21.55)	,	1825. 51.68)(2737. 77.51)(3650. 103.35)(4562. 129.19)(5475. 155.03)(7300.	9124.
HYDROGRAPH AT	1.	5.53 24.6c)	•	2629. 55.17)(3134.	4179.	5223. 147.51)(6268. 177.49) (8358.	10447.
ROUTED TO	10£	9.53	- ~	2051. 58.08)(3076. 87.12)(4102. 116.15)(5127. 145.19)(6153.	8264. 232.31) (10255.
HYDRGGRAFF AT	292	153.53	-~	43108. 1226.68)(64662. 1831.01)(86216.	107769. 3051.69)(129323. 3662.02)(172431.	215539.
acuted to) 39 2	153.53	,	41e15. 1184.07)(62723.	83630.	104538. 2960.18)(125445. 3552.21)(167261.	209076.
COMBINED	21.7	193.68	-~	45374. 1398.13)(74063.	98751.	123441. 3455.46)(148129.	197509.	246888. 6991.07)(
HYDRUGRAFF AT	300	7.87	" "	1677.	2516. 71.24)(3354.	4193.	5C31. 142.48)(6769. 189.57) (8386. 237.46)(
Aduted TO	305 ·	7.87 50.30)	-~	1648.	2472.	3295. 93.32)(4119.	4943. 135.98)(6551. 186.64)(8239. 233.29)(
HYDRUGRAFF AT	207	11.52	-~	2173.	3260. 92.31)(4347. 123.08)(5433. 153.85)(6520. 184.62)(8693.	10866.
ACUTED T	,, ;	11.52	ر	2147. *[.&C)(3225.	4254.	5367.	6441.	8588.	10735.

•

.

;

10464.	8544.	8391. 237.60)(279480. 7913.98)(5624.
8323. 235.69) (6835.	6713. 190.08)(223583. 6331.16)(3782. 107.09) (
0243.	5126. 145.16)(\$£35. 142.56) (167684. 223583. 4748.28)(6331.16)(2148. 60.83)(
5202. 147.31)(4272. 120.96)(4195. 118.80)(139737.	1546.
4162. 117.85)(3417.	3356.	111788. 3165.49)(1668. 36.23)(
3121.	2563. 72.58) (2517. 71.28) (83841. 334.11)(671.
¿C.1. 58.92)(1765.	1678.	1 55953. (1582.71) (2	328. 3.28)(
-~		-~	-~	- ~
16.47	7.06	7.68	631.44 599.46)	231.44 599.42)
785) (01	1995 1) 70?	762
14	14		a	
HEDN CKAN. AN	HVORGERAFE AT	RCUTED TO	5 CCMDILED	ROUTED TO

500
Ś
z
TION
TAT
S
_
Z

	TIME	OUR	ň	43.00	3.0	3.0	3.0	43.00	٥.
STATION 500	<	STAGE,FT	397.8	98.	395.6	<u>.</u>	401.0	~	405.9
PLAN 1 S	HAXINUM	FLOWACFS	4644.	Š	8	-	•	8578	N
4		RATIO	07.3	C.30	C.40	0.50	•	08.3	1.00

SUPMARY OF DAY SAFETY ANALYSIS

٠,	FAIR MAIRE O.C.C. 0.00 0.00 0.00 0.00 0.00	
10F OF DAM 323.00 2278960. 1566.	TIME OF MAX OUTFLOW HOURS 75.50 75.00 75.00 75.00 75.00 75.00 75.00 75.00 69.50	1 1
· •	CVER TION CVER TOOP HOURS 0.00 0.00 0.00 44.50	
SFILLWAY CRES 319.60 2185391.	MAXIMUM OUTFLOW CFS 328. 371. 1560. 2148. 5624.	
L VALUE 9.63 393.	MAXIMUM STORAGE AC-FT 2221624. 2239346. 2256917. 2274300. 23294485. 2358018.	
INITIAL VALU 319.63 2185393.	P P P P P P P P P P P P P P P P P P P	
SLEVÄTIOS STORAGE CUTFLOW	######################################	
PLAis 1		

	u	
٠	<u>د</u>	
	Z.	
ٔ	2	
ı	ч	
(5	
Ĺ	u	
	4	
•	Œ	
	ı	

(\$000) (\$000) (\$000) (\$000)	\$ \$ \$		HEC-108 (SV PRF-DAM CVE	YDER	AMETER S		ALL 3 6A				
6000 6000 6000 6000 6000 6000	7 4		PDAM CV	DICE	2 . 2 . 2		Α,				
50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000	7			-	クレコシにす ジとて	ILIE SI	1	GATES OPEN	S FT		
(900) (900) (900) (900)	ය	19E	ن	ند. ۲۳	O	ټ	အ	پ	ပ	4	
(608) (607) (608)	61	S									
(667) (669)	7	-	۲-	-							
(600)	-	~•	٣.	4.	5.	٠,	x.	J.C			
(500)	¥	;	6 00	(,)	Ų	ບ	Ģ	-			
	<u>~</u>	28	RUNCEF SUE	JEAREA C							
(213)	#		-	22.3	Ü	231.4	O	ں	U	*	
011)	ŭ	L.3	17.5	~	S	_	104				
012)	-	ي		و	رن	U	Ö	1.0	0.1	0	0.01
3015)	1	3.43	6.625			•					
3014)	*	-2.0	-0.10	1.4							
(<100	¥		200	ن	o	Ü	0	-			
3016)	7	ت	HANNEL RCI	RCUTE THRU	SUBA	5 TO LAK	KE GEURGE	ìE			
30172	>	<i>(</i>)	- 1			_					
0018)	¥1	-	ပ	U	ں	U	Ü	-1			
0019)	76	0.00	0.04	90°0	392	420	1800	0.06			
3020)	17	200	42	440	00 %	9	395	165	392	512	392
021)	17	520	355	286	707	J	420				
(225)	¥	+	009	၁	0	ပ	ن	-			
1023)	X	¥	DDITIONAL	LAG TO	ACCOUNT	FOR TRAVEL		THROUGH	LAKE		
(520)	>	ပ	0	رن	ပ	-					
3025)	¥1	Ċ	۲	_							
(970)	¥		205	ပ	U	ں	ပ	-			
(27)	7 7	ຂ	S	JEAREA 5							
3058)	ĸ	-	-	8.32	٥	231.4	0	ပ	ں	~	
(6700	<u></u>	r; "	17.5	73	& 3	55	104				
0800	-	U	ပ	<u>ں</u> •	ပ	U	0	٦.	0.1	Ö	0.01
466313	4	3.06	0.625								
0.032)	×	-2.3	-6.10	1.6							
:053)	¥	_	205	ပ	رن	ں	U				
(7293)	*	<	DDITIONAL	LAG TO	ACCOUNT	FCR TRAVE	VEL TIME.	THROUGH	LAKE		
3035)	>	Ü	ပ	ی	ပ	-					
(9500)	۲,	ာ	M	-				,			
(259)	¥		3 0	ا رحم	Ö	ن	ല	,			
1636)	7	ž	_	BAREA 1							

:		-	%¢•3	ب	231.4	Ų	J	U	-	
ů.	• •	17.5	(3	40 70	65	106	i	1	•	
-	ري	ر ن	د. ا	ن	, ()	• (3 •	1,0	0.1	C	.03
¥	3.17	C.625						, ,))
×	ζ,	-0.10	1.6							
¥		100	(i)	ن	ų,	<u>.</u>	-			
2	~	ADDITIONAL	LAG TO	ACCOUNT	FCR TRAVEL	1 1 1 E	THROHEN	1 AKF		
>			:					1		
7.1	i C	רְאּיִּ נּ	· ^	•	•					
×	نیا ا	200	ı (3	Ö	Ψ	Ç	•			
Ž		RUNCFF SUB	SAREA 2	•	1	•	•			
x	_	1 15	153.53	U	231.4	Ü	U	U	-	
4	Ç	17.5	~	20.70	65	104	•	•	•	
-	3	د	ပ	ېت	ပ		1.0	0.1	0	0.32
. #	2.07	0.625				ı	•	•	,	
×	J. 2-	0.1	1.6							
¥	-	200	ت	U	ပ	0	-			
K L	•	ADDITIONAL	LAG 10	ACCOUNT	FOR T	TIME	THROUGH	LAKE		
>	(.)	: 5	ن	0	4		1]		
۲1	0	M								
¥	.4	202	Ų	O	ပ	0	-			
¥	Ç	COMBINE 4	HYDRCGR	AFHS AT	LAKE GEORGE					
×	·æ	300	ယ	U	u	u	-			
7	125	RUNOFF SUB	UBAREA 3)				
X.	~		78.7	0	231.4	0	Ü	U	-	
۵.	ت	17.5	73	80 33	55	104	•	1		
_	ဌ	(J	ن	u	Ų	ပ	٦.٢	0.1	O	0.02
3	3.29	6.625						ı I)))
×	-2.ú		1.6							
¥	_	360	J	ں	ت	ပ				
**	•	ABBITIONAL	LAG TO	ACCOUNT	FOR TRAVEL	7.14E	THROUGH	LAKE		
>		0	ن	J	:	l				
11	ပ	M	2							
×	جب	904	۵	0	ت	Ö	-			
7	CZ	RUNGEF SUE	UEAREA 4			ı	•			
æ	-	~	11.52	ט	231.4	ပ	U	U	•	
4	Ċ	17.5	73	3 0	55	104				
۲	•									

u
: 🤈
X
\circ
Ų,
.9
u
¥
۹,
_

¥ > 5	, , , ,	10.10-	00	J			O	~			
•	≪ 13	DEITIG	. LAG TO	ACCOUNT	FOR T	TRAVEL TI	TIME 1	THROUGH	LAKE		
-	u	M	-	•		-					
		0/	ں	0		Ų	O	_			
—	æ	UNOFF SU	BAREA 7								
		-	16.49	ں	231.	7	ں	ں	U	-	
	ယ	17.5	73	30	6	9 10	104	•	1	•	
_	O	0	ပ	O	_		0	1.0	0.1	0	0.01
	3.71	5.9				1	•	•	•)	
	-2.t	\circ	1.0		•	:					
	42	9	<u>ت</u>	U	_	ن	C	•			
7 7	œ	UNOFF SU	BAREA 10	1		ı)	•			
	_	_	7.88	C	231.1		C	ن	٠	-	
	(2)	17.5	(3	2 0 သ	ý	+-	70	•	•	-	
	د،		U	u	_	ں	Ü	1.0	0.1	0	0.05
	~	G.625		ı			•	•	•	o	•
	-2.3	-0.10	1.6								
	-	1000	د	ت		Ų	0	•			
_	₹	DOITIONAL	LAG 10	ACCOUNT	FOR TE	AVEL	щ	THROUGH	LAKE		
	ب	0		0	•			; ;	•		
_	ر ،	×η	7								
¥	'n		ی	Ů		Ü	0	~			
_	Õ	MB I	FYDRGGRAFHS	AFHS (TOTAL	TAL INFL	.3	>ROGE	AFH AT	LAKE GE	GEORGE DAM)	
	-	2 C	ပ	O			Ö	· •			
<u>~</u>	æ	OUTE OVER	LAKE	GEORGE DAM	*						
	(L)	0			•						
_	_	ပ	כי	ပ		· g. •	י ט	31	-		
•	316.0	319.61	320	321	322	323	M	32	325	326	2 2
•	328	325			•			;		; ; ;	7
S	ن	4	1115	1665	239C	3250	<u>ن</u>	4235	1955	4765	221
^	9726	2)	1	•		3
s	ပ	00	176000		674000	109600	10 16		233400C	3158000	
144	133	25	200	225	250	275	5	300	325	350	
•	319.€								1	•	
_		•	•	1							

LAKE GEORGE

۸,

691163 691173 691183 661133

(6115)

CALCLLATIONS	
NET # CRK	
STREAM	
Ç	1
OF SEGLENCE	
-	
FAEVIER	

	ú	ū	ت	c	0.0	Ü	Ö	Û	ر	•	Ū	300	C	ပ	J	Ö	·	S	C		
										۲		-						¥			
	FF PYDROG	UTE PYDRCGRAPH TO	E HYDROGRAPH T	RUNOFF HYDROGRAPH AT	EYDFCGRA	RUNDEF HYDROGRAPH AT	E HYDROGRA	FF HYDRCGR	CUTE PYDPCGRA	KBINE 4 HYDRO	OFF HYDROGR	UTE HYDRCGRAF	RUNOFF HYDROGRAPH AT	RCUTE HYDROGRAPH TO	FF HYDROGR	RUNOFF HYDROGRAPH AT	E LYDECGRA	INE 5 HYDROGR	HYDROGRA	OF NETHOR	
;																					

******** 1 AUTO LOCAL NSTAN O ISTAGE ALSMX C.CC ISAME R96 C.00 IFRT INAME CNSTL C.1C ******** PEC-1DB (SNYDER PARAMETERS) FWF-DAM OVERTOPPING ANALYSIS WITH ALL 3 GATES OPEN 5 FT. RTIOR= 1.60 BONSE R72 C.00 IPLT 0 JPRT 1.00 STRTL 1.00 AULTI-FLAN ANALYSES TO BE PERFORMED NFLAN= 1 NRTIO= 7 LRTIO= 1 C.3C C.4C G.8D 1. RATIC C.OOC R48 104.00 METRC 0 Trace 0 SUB-AREA RUNDEF COMPUTATION JPLT STRKS RTIOK UNIT HYDROGRAPH DATA JOB SPECIFICATION
THR FAIN ME
O C
NWT LRCPT TR -C-10 HYDROGRAPH DATA TRSDA TRSPC 231.40 0.00 R12 R24 88.00 59.00 RECESSIO, DATA LOSS DATA ERAIN STRKS B. C.OU ******* ITAPE 0 ENC SK≡ SNAP TRSDA G.CC 251.40 IECON 3 -2.45 17.50 73.00 1DAY JOFER DCCMP TFE 8116L 1.00 ******* 1AREA 22.30 STRIGE RUNGEF SUBAREA 6
ISTAG
600 NI W NI W NI W LAKE GEURGE TASEC COMFUTED BY THE PROGRAM IS 0.885 3.20 0LTK8 0.00 10#G SPFE 0.00 S E C DAP SAFETY VERSION JULY 1978 LAST MUDIFICATION 20 FEB 75 RTICS= ;; ;; STRKE IHYCG DATESTHUA JUL 1: 1950 TINES12:44:35 38€ 18€ ******** LROPT

ŔLÞ

			2012		1,1	しつにコニニ コア・ハ	70.0		
130.	502.	1000.	1558.	502. 1088. 1858. 2003.	2461.	2645.	2592.	2314.	•
666.	1435.	1228.	1648.	674.	763.	651.	556.	474.	405.
340.	295.	255.	215.	183.	156.	134.	114.	.25	
71.	, 9¢.	52.	. 44	38.	32.	٠٤٠	23.		

COMP G EXCS LOSS RAIN END-OF-PERICO FLOW
COMP G FO.DA HR.MN PERIOD SUF RAIN EXCS LCSS C MO.DA MR.MN FERIOD

16.11 12.94 3.17 406557. (409.)(329.)(81.)(11512.40)

HYDROGRAPH ROUTING

OUTE	CHAMMEL ROUTE TRRU SLBAREA 5 TO LAKE GEORGE 15740 1600 1600 114FE JPLT JPRT INAME ISTAGE	REA 5 TO	LAKE GEO Itafe	RGE	1892	INAME	ISTAGE	IAUTO
500	-	0	0	6 3	0	-	ပ	0
		80C	ING DATA					
CLOSS	AVG	IRES	ISAME	IOFT	IFEP		LSTR	
000-0	00.0	-	-	0	0		O	
NSTPS	NSTDL	LAG	AMSKK	×	TSK	STORA	ISFRAT	
-	٦	C	0.00	ט ייניניט	0.00	•	c	

THAL DEFTH CHANNEL ROUTIN

		50.58 326.06	28559.82 277897.54	403.29	28559.82
		36.85	19:98.48 236576.22	402.32	19898,48
	392.00	25.63	13283.46 199405.C9	400.84	13283.46 199405.09
	512.00	16.88	8369.67 66202.72	359.37 414.10	8369.67 166262.72
SEL	497.00 392.00	16.19	48C7.13 136782.69 1	397.69	4807.13 136782.09
RENTH SEL 1800. 0.06000	395.00 420.03	5.47 156.91	2438.72 110953.81	396.42 411.16	2438.72 110953.81
592.0 420.C	CROSS SECTION COURDINATESSTAVELEVASTAVELEVETC 200.00 420.00 440.00 400.00 490.00 395.00 497.00 392.00 392.00 520.00 355.00 580.00 400.00 900.00 420.0)	2.72	997.41	354.95 409.68	957.41 88519.39 1
QN(3) EL F.06EE 59	00R01NATES-00 580.00	1.14	25.3.75 69276.69	393.47	25.4.75
GN(1) GN(2)	S SECTION CO 10.00 420.00	15.57	20°0 33°15.98	342.00 486.74	55:15.95
68.C1	CR05 25 25 52	STORAGE	OUTFLOW	STAGE	€E3€

RAXININ STAGE 15	397.				
PANIMUP STAGE IS	598.				
MAAIPUP STAGE IS	399.0				
PAXIMUN STAGE IS	406.3				
MAXIMUM STAGE IS	0 *10 *				٠
MAXIMUM STAGE 15	7.204				
MAXIMUM STAGE IS	405.5				
# ## ## ## ## ## ## ## ## ## ## ## ## #		化化物化物物物物	化物物化物化物化物化	使收在食物食物物食	
			HYDROGRAPH ROUTING		:

	IAUTO	0				
	ISTAGE	0		LSTR	0	ISPRAT
	INAME	<u>-</u>				STORA C.
LAKE	JPRT	0		IFMP	0	15K C.000
THEOUGH	JPLT	0		IOFT	C	×0:0:0
AVEL TIME	ITAFE	0	ING DATA	ISAFE	0 1 6 00.00 0.00	AMSKK 0.000
FOR TR	IECON	0	ROUT	IRES	c	LAG 1
O ACCOURT	ICCPP	-		> 4	ງນ ໍ ນ	NSTDL 3
AL LAG 1	ISTAG	009		CLCSS	030.0	NSTPS
ADDITION				91.055	ນ • ບ ບ	

SUB-AREA RUNGFF COMPLIATION

1AUTO.	40
ISTAGE	LOCAL
INAME I	1SAME
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NONS I
JPLT	RATIO C.OCC
STAFE J	H DATA TRSPC C.CC
ECON 11	IYDROGRAPH DATA TRSDA TRSPC 231.4C C.CC
0 0 16	SNAF G.CC
SUBAREA S ISTAG IO	TAREA 8.32
••	1046 1
RUNOFF	IHYDG

SPFE PMS RC R12 R24 R46 R72 R96 0.00 17.5C 73.GC 68.00 99.OC 104.0C C.CO C.OO PC COMPUTED BY THE PPOGRAM IS U.885					FRECIP	DATA				
0.00 17.50 73.00 88.00 99.00 104.00 C.CO BY THE PPOGRAM IS 0.885		SFFE	PMS	3 E	R12	R24	R45	R72	R96	
BY THE PPOURAR		္ (၁)	17.50	73.00	68.07	30.55	104.00	ກວ• ວ	00.0	
	RSPC COMPUTED BY THE PPOURA	i 15 U.	885							

811FF

ALSHX C.CC

CHSTL L.1C

LOSS DATA
ERAIN STRKS RTIOK STRTL
C.CC C.DC 1.UC 1.JC

DLTKR

LROPT STRKR

0 UNIT HYDRUGPAFH DATA 3.Co CP=C.o3 NI 1 F =

C. Areholi. 3

			COMP
		69C. 113.	5507
		10L= 1.CG 827. 135. 22.	EXCS
		0.62 1 591. 162. 27.	RAIN
	1.60	# d5 * S	FERIOD
	RIIOR= 1.60	3.03 HOUR 1197. 195. 32.	2 2 2
ı		1696. 233.	FLOW FO.DA
	STRIG= -2.(C GRCSN= -0.10	HYDROGRAFH 34 END-OF-FERICD GRDINATES, LAC# 3.03 HOURS, CP= 0.62 VOL= 1.CO 249. 493. 755. 974. 1056. 1107. 991. 827. 481. 461. 451. 455. 279. 233. 195. 162. 135. 79. 65. 55. 40. 38. 32. 27. 22. 13. 11. 9.	END-OF-PERIOD FLOW LCSS COMP Q PO.DA HR.MN PERIOD RAIN EXCS
	-2.50	FERICO 755. 435. 55.	FCSS EI
	STRTG=	34 END-OF-493. 401. 65.	RAIN EXCS
		CR A F H	RAIN
		24.9 24.9 7.9 7.9 7.9 7.9 7.9 7.9	FER 100
		UNIT 92. 576. 94.	TO.DA HR.MW FERIOD
			0 40. 3.

HYDROGRAPH ROUTING

SUN 16.11 12.94 3.17 153353. (409.)(329.)(81.)(4342.47)

COMP 0

1 & U T O		
ISTAGE	LSTR	ISFRAT
INAME		STORA C.
LAKE JFRT O	4 0 6 0	15K C.C00
THROUGH JPLT 0	1061	0.00.0
DDITIONAL LAG TO ACCOUNT FOR TRAVEL TIME THROUGH LAKE ISTAG ICCMP IECON ITAFE JPLT JFRT 550 1 0	ING DATA ISAME 1	AMSKK 0.000
FOR TR	Rout IRES O	LAG 1
TO ACCOUNT ICCPP 1	9 v 6 00.0	NSTOL 3
AL LAG ISTAQ 500	00000	NSTPS
4001110N	0°0 88070	

SUB-AREA RUNDFF COMPLIATION

	ਲ ਹਵ	RUNOFF SUBAREA 1 ISTAG ICCPF 110 C	STAG 1		IECON O	ITAPE C	JPLT JPRT	JERT 0	INAME IS	ISTAGE 0	1 AUTO 0
	SQAAI	10HG	TAREA 9.53	SNA!	HYDROGE TRSDA 231.40	HYDROGRAPH DATA TRSDA TRSPC 231.4C 0.0C	RATIO C.DOC		ISNOW ISAME	LOCAL	
TRSPC CC**UTED BY	SPE PHS C.GC 17.5C 73.	SPE C.C. S.C.	PHS 17.50	20	PRECIP R12 88.US	P DATA R24 99.00	76. 104.00	R72 C.00	896 C.00		

RTIFF	რ ე
ALSMX	13.1
CNSTL	: • •
STRTL	1.00
RIIOK	:: •
STRKS	<u>ئ</u> د.
E PAIN	0.00
RTICL	<u>ت</u> -
bLIK	្ន រ
STRKS	•
LAUPT	;

NTA= C UNIT HYDROGRAFH DATA

RECESSION DATA

			143.		
	VOL* 1.60	. 6.7	171.	30.	
5.0	CP= C.63	-04	203.	35.	
RTIOR= 1.60	3.17 HGURS.	1667	245.	42.	
-6.10	LA6=		280.	50.	
GRCSN#	ORDINATES	. 4 20	343.	• ប្រ	10.
-2. CE	-FERICO	-	. 604	71.	12.
STRTG=	FI 35 END-OF-FERICO ORD		467.	. S.S.	15.
	LYDESCRA		575.	101.	16.
	TI vu	ć		14.5.	۲۱.

SUM 16.11 13.01 3.11 175935. (409.)(330.)(79.)(4981.92) COMF G END-OF-PERIOD FLOW
COMP G MO.DA HR.MK PERIOD RAIN EXCS LOSS

rcss

MO.DA HR.AN PERICO RAIN EXCS

HYDROGRAPH ROUTING

	IAUTO	0					
	ISTAGE	0		LSTR	0	ISFRAT	O
	INAME	_				STORA	:
LAKE	JFRT	0		dadi	0	1SK	0.000
THROUGH	JPLT	c		IOPT	0	×	000.0
AVEL TIME	ITAFE	0	ING DATA	ISAME	-	APSKK	0.00
FOR TR	1 E C O N	0	ROUT	IRES	0	LAG	~
TO ACCOUNT	ICCPP	-		AVG	0 0.000 0.00 0.00	NSTOL	٣
AL LAG.	ISTAG	100		CLOSS	0.000	MSTPS	•
4001110N				OLUSS	0.0		

SUB-AREA RUNCFF COMPLIATION

N O M	UNGFF SI	UBARES 2								
		151AQ 200	100KP	IECON O	17AFE 0	JFLT	JFRT 0	INAPE	ISTAGE C	1 4 U T O
				HYDROS	KAPI DATA					
HYDS	IUH				A TRSPC		HONSI	ISAME	E LOCAL	
-	-	1 153.53	3,60	231.40	JO 0 0	300°3				0
				FREC	IP DATA					
	SPF	PMS		R12	R24		P72	R96		
		17.50	13.00	ີ . ເກີ	00 8 5	174.00	00.0	00.0		

TRSEC COPFUTED BY THE PROGRAM IS LOCK

	RTIMP 0.32		
	ALSMX G.CC		
	CNSTL C.10		
	1.00		ပ
	7.50K	DATA	N T A =
LOSS DATA	STRKS 0.00	HYDRUGRAFH	CP=(63
_	ERAIN C.CG		2.07
	RTIGE 1.00		162
	DLTKR L.JĈ		
	STPKR C.C.		
	LROFT		

RECESSION DATA QRCSN= -0.1

RTIOR= 1.60

-0.10

-2°CC

STRIG=

SUM 16.11 13.94 2.18 3112022. (4C9.)(354.)(55.)(88122.56) COMP Q END-OF-FERICD FLOW
COMP G PO.DA HR.MN PERIOD RAIN EXCS LOSS HR.AN FERIOD RAIN EXCS LOSS MO.OM

HYDROGRAPH ROUTING

IAUIO		
ISTAGE	LSTR	ISPRAT 0
INAME		STORA 1
LAKE JERT	9 9 9 1	TSK C00
THROUGH JPLT 0	10FT 0	029*0
ADDITIONAL LAG TO ACCOUNT FOR TRAVEL TIME THROUGH L ISTAG ICOMP IECON ITAPE JPLT J 2CO 1 0 0 0 ROUTING DATA	ISAME 1	AMSKK 0.000
FOR TR IECON 0 ROUT	IRES	LAG 1
FO ACCOUNT ICOPP	9 7. 0	NSTOL 3
AL LAG 15TA9 2C0	000.00	SALSN
ADDITICA	01.0 C.C	

COMBINE HYDROGRAFHS

U	ຍ	-	ပ	o	ပ	Ð	7	7.7	
IAUTC	ISTAGE	INAME	JPRT	JFLT	ISTAG ICCMP IECON ITAFE	NCCE	ICCMP	ISTAG	
					ORGE	LAKEGE	RAPES AT	SCHUMBER	CC.BELTE

SUB-AREA RUNGFF COMPLIATION

	n	REFF SUF	AREA 3								
		4	18746 1	10 CP F	16 C O N 0	1741E 0	JFLT 0	JFRT	INAME	ISTAGE C	IAUTO
					HYDROGE	APS DATA					
	IFYUG	IUFC	TAREA	SAAF	TRSDA	TRSFC			ISAME	LOCA	_
	-	-	70.7	0.00	231.40	231.40 0.50	0.000	ပ			
					PRECIP	P DATA					
		SPFE	PRS	æ		R 2 4		R72	R96		
		00.0	17.50	13.0C		70° 55	164.00	00.0	00.0		
TRSPL COMFUTED BY THE	HE PROGRI	AP IS C.	E PROGRAM IS 0.885								

CNSTL ALSMY RTEMP C.1C C.CC 0.C2 LOSS DATA
DLTKR RTIOL ERAIN STRKS RTIOK STRTL
C.0C C.0C 1.0C 1.0C UNIT HYDROGRAPH DATA
TF= 3.29 CP=0.63 NTA= C STRKR D.eC LROFT

RECESSION DATA
STRTG= -2.CC GRCSN= -0.13 RTION= 1.60

681. 133. 26. 53. 578. 113. 22.

COMP 9 END-OF-PERIOD FORM FERIOD FLOW HR.MN PERIOD RAIN ENCS LOSS MO.OM SUM 16.11 12.98 3.14 144277. (469.)(330.)(80.)(4085.47)

HYDROGRAPH ROUTING

IAUTO	0				
ISTAGE	ပ		LSTR	0	ISPRAT
INAME	-				STORA C.
LAKE JFRT	0		IFMP	0	15K
THROUGH I	ٺ		IOFT	Ç	× 000
AVEL TIME Itape	0	ING DATA	ISAME	-	AMSKK 0.000
FOR TR	G .	POUT	IRES	0	LAG 2
ADDÍTIONAL LAG TO ACCOUNT FOR TRAVEL TIME I ISTAG ICCMF IECON ITAFE J	-		AVG	0.00	NSTEL 3
AL LAG	300		CLUSS	0.000	NSTFS 0
ADD I 110N			OL.SS	ာ ၁	

SUB-AREA RUNGEE COMPUTATION

						• • • •
						1074. 279. 72. 19.
IAUTO	LOCAL		RTIFE 0.01			VOL 1.CC 1167. 319. 83. 21.
STAGE			ALSMX C.GC			407
APE I	ISAME	R96 C.00				1171. 365. 95.
JFRT INAME ISTAGE	BONSI	R72 C.CO	CNSTL 0.16		RT10R= 1.60	4.05 HCURS, CP= 0.63 1102. 1171. 418. 365. 108. 95.
	KATIG C.00C	848 164.00	STRTL 1.00	A NTA= C	RT 10R	4.65 HG 116 4.15 2.2
JFLT			1.80	DATA	ATA -0.10	
ITAFE	HYDROGRAPH DATA TRSDA TRSFC 231.40 0.CC	PRECIP DATA R12 R24 88.06 99.00	LUSS DATA STRKS G.OC	UNIT HYDROGRAPH DATA	-	11. 13. 13.
IECON 0	HYDROGE TRSDA 231.40	PREC1 R12 88.00	LOSS IN SI	17 HYDR	RECESSION ORCSN=	0801N 781 548 342
I CCMP I	SN SN D	73. R6	ERAIN C.CC	UN 1F= 4.	33.5-	FERIOD 566. 627. 163. 42.
	TAREA 11.52	P#S .55	RTIOL 1.0C	_	STRTG=	END-0F.
ISTAG 18TAG 400	10+6 T +	FE GC 17 S C-645	DLTKR C.OC		ST	DRCGRAFF 45 END-OF-FERICD ORDINATES, LAUSOC. 366. 781. 970. 21. 717. 627. 548. 478. 124. 125. 45. 42. 37. 32. 124. 11. 10.
	I PORMI	SP Course	STRKE C.C.			HYDRCGR 1°C. 821. 213. 55.
	Ī	SPFE C.G. 17 TASPC COMPUTED BY THE PROGRAM IS C.AZS	LROFT			0417 HYB 943. 82. 244. 21.
		FUTED 8				6 ∾
		7 7 8 9				
		TRS				

HYDROGRAPH ROUTING

SUM 16.11 12.94 3.17 207155. (469.)(329.)(81.)(5865.97)

COMP

END-OF-PERICD FLOA COMP Q MO.DA HR.MN PERIOD RAIN EXCS LOSS

RAI! EXCS LCSS

FOLDA HR.ON PERIOD

	I AUTO	0			
	ISTAGE			LSTR	Ü
	INAME	-			
LAKE	JFRT	0		1F*P	0
THROUGH	JFLT	c		IOFT	c
IAVEL TIPE	ITAFE	0	ING DATA	ISAVE	-
FOR TA	IECOM	0	ROUT	IRES	c
ADDITIONAL LAG TO ACCOUNT FOR TRAVEL TIME THROUGH LAKE	ICIME	-		9 A	0::0
AL LAG	ISTAG	4:0		CL 055	003.6
ADDITION				SS 10	J* J

C.COU C. C. 6.4CD LPU BRUNK 45101.

SUB-AREA RUNDEF COMPUTATION

14UT0 0	ň.o		
ISTAGE	LOCAL		
INAME 1	ISAME		
	BONS		
184.0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
JPL7			
TAFE	PH DATA TRSPC 0.CC		
IECON 1	HYDROGRAPH TRSDA 231.45		
[8.001 [8.001]	# C) # C) # C)		
SUBAPEA ? ISTAG I	188EA 13.49		
	1040 1		
SUNOFF	23441		

R72 C.00 FRECIP DATA R48 R48 R48 R8.00 59.00 104.00

SPFE PMS R6 C.OE 17.5G 73.0C TRSPC COMFUTED BY THE PROGRAM IS 0.885

RTIPP C.C1 ALSPX 0.0C CASTL 0.10 LOSS DATA RIJOL ERAIN STRKS RIJOK STRTL C.CO C.OC 1.00 1.00 STRKR C.CC LROPT

UNIT HYGROGRAFH DATA

RTIOR= 1.60 RECESSION DATA -2.CC 9RCSN= -0.10

STRTG=

3.72 HOURS, CP= 0.63 VOL= 1.CC 1121. 1160. 1163. 345. 298. 257. 78. 68. 58. 18. 15. 13. UNIT HYDROGRAFH 41 END-OF-FERICD ORDINATES, LAG= 150. 826. 1609. 724. 624. 400. 724. 142. 122. 106. 91. 37. 32. 28. 24. 21. 53. 639. 191.

SUM 16.11 12.94 3.17 190624. (469.)(329.)(81.)(5380.88) COMP & END-OF-PERIOD FLOW
HR.MN FERIOD RAIN EXCS LOSS COMP G PO.DA HR.MN PERIOD RAIN EXCS LOSS KJ.DA

SUB-AREA RUNCFF COMPLIATION

JERT INAPE ISTAGE LAUTO JPLT PUNTEF SUBAREA 10 15140 ICOPP IECON ITHEE

							COMP Q	145819.
0						684. 125. 23.	5507	3.04
0	COCAL		RT186 0.05			VOL= 1.CC 811. 148. 27.	RAIN EXCS	SUM 16.11 13.07 3.04 145819. (409.)(332.)(77.)(4129.13)
-	ISAME 1	R96 C.30	ALSMX C.CC					16.11
0	SNONS	R72 C.00	CNSTL 0.10		RIIOR= 1.60	S . CP.	PERIOD	SUS
0	8ATIC C.00C	848 104.00	STRTL 1.00	A NTA= 0	RTIOR	3.23 HOURS 996. 206. 38.	E. B.	
0		4 (3	A RT10K 1.00	PH DATA	DATA -C.10	LAG= 948. 247.	PO.DA	
0	HYDROGRAFH DATA TRSDA TRSFC 231.4C 0.5C	PRECIP DATA R12 R2 88.00 99.0	LUSS BATA STRKS C.CC	UNIT HYDRUGPAPH DATA	RECESSION DATA GRCSN= -C.	RAFH 36 END-OF-FERIOD GROINATES, LAG= 4C1. 621. 519. 546 411. 346. 292. 247 75. 63. 53. 41	END-OF-FERIOD FLOW	
U	SMAF 1	9 98 30.54	ERAIN C.CC	UNIT 1F= 3.21	-2.CC	FERIOD GF 621.	LOSS CC	
6	TAREA 7.co	£ 20 C 10	RT10L 1.60	F	STRTG=	11. S.	EXCS LO	
1600	2401	SFFE P 0.05 17. IS 0.865	DLTKR L. UC		in	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	RAIR	
	I II Y D c	3. 48. 02. 7. 04.	STRKR			U-IT HYDROUR 202- 487- 67- 16-	PERIOD	
		O EY THE	LROPT			55. 56. 175.	# # # # # # # # # # # # # # # # # # #	
		TRSPC CO. FUTED BY THE FOLURAN						
		TRSPC						

HYDROGRAPH ROUTING

IAUTO		
ISTAGE	LSTR	ISPRAT C
INAFE		STORA C.
THROUGH LAKE JPLT JFRT	d # d	. 15K
THROUGH JPLT	1901	×0.00
AVEL TIME ITAPE O	ING DATA ISAME	PRSEK 0.00
FOR TR	POUT 1RES	LA6
TO ACCOUNT ICCPP	POUTING DATA QLUSS CLUSS AVG IRES ISAME I	MSTOL 3
AL LAG	0.00.0 0.000	NSTFS
ADDITION	91.055	

COMBINE HYDRIGRAFHS

		ISTAG 202	ICLEP S	IECON 0	ITAPE 0	JPLT	16 RT	INAR	ISTAG ICLWP IECON ITAPE JPLT JFRT INAME ISTAGE IAUTO 2C2 5 0 0 0 0 1 0 0	1 A U T O	
		*********	***	*	*******	_	****	****	*	*******	
				FY DKOG	HYDKOGRAPH ROUTING	TINC					
-	HOUTE OV	EP LAKE ISTAG	CECFCE ICOMP	DAM	ITAFE	OVER LAKE GEOFGE DAM STAFE SPLT SSTAG SCUPP SECON STAFE SPLT		INAPE	JFRT INAME ISTAGE IAUTO .	IAUTO .	
		4:.2	-	C S	O TING DAT	с •		•	0	0	
_	0.0 0.0	0000.0	A & 6	IRES 1	IRES ISAME	101	1 F K P		LSTR		
		NSTPS 1	NSTOL	LAG		AMSKK X 0.ccg 0.cc3		STORA -32C.	TSK STORA ISPRAT		
	315.61 329.00		320.00	321.00		322.06	323.00		324.00	325.00	326.00
-	945.6 <u>°</u> 11216.6		1115.00	1665.39		2396.00	3256.00		4235.00	5350.00	6765.00
. •	+305°.		17/600.	373000.	01400	10560	SC. 164	.0000	2334666.	074505. 109605C. 164600G. 233465G. 3168000.	
133.	175.		200.	225.	250.		275.	300.	325.	350.	
	CREL 315.c		SPETO C	3 3.1 ()	EXFW ELEVL		0.0	CAREA 3.0	ExFL 0.0		

1535. AT TIME 64.00 HOURS

DAM DATA
CUGD EXPD DAMLID
2.6 1.5 EC.

10PEL 323.0

66.00 HOURS 66.50 HOURS 67.00 HOUES 67.30 HOURS 5144. AT TIME 66.00 HOUPS 1940. AT TIME 2399. AT TIME 2932. AT TIME SSEE. AT TIME PEAK OUTFLOW IS PEAK OUTFLOW IS FEAR SUTFLOW IS FEAK GUTFLG# IS FEAR PUTFLOW IS FEAR SUTFLEW IS

CYNC. AT TIME 65.00 HUURS FEAK OUTFLUE IS

FEAK FLOW AND STYRAGE (END OF FEMINE) SUMMARY FOR MULTIFLE FLAN-RATIO ECCNOMIC COMPUTATIONS FLOW FLOW SECOND)
AREA TO CENADE WILE (COURSE MILOMETERS)

OFER-ITO.	ST4110	AREA	P	RATEC 1	RATIG 2	FATICS AFFLIED TO RATIC 3 RATIO		FLOWS FRATEC 5	RATIO 6	RATIG 7	
HYDE: GRAFF AT	1) 2)	42.30 57.76)	_~	4647.	69 197.	263	32	139 394.	185 526.	232	
RGUTED TU	<u> </u>	22.30	-~	4644.	6966.	9289. 263.233	11612. 328.*C)(13536.	18578. 526.(7)(23227.	
RUUTED T.) 169	22.30	۳,	4571. 125.43) (6857. 194.16)(÷142. 258.60)(11426. 323.60)(13713.	18225.	22856. 647.20)(
HYDROGRAFI AT))6 5	8.32	-~	1859. 52.63)(2788.	3717.	4647.	5576.	210.52) (9293. 263.15)(
RGUTED TO	505	21.55)	_~	1225. 51.ek)(2757.	3650.	4562. 129.19)(5475. 155.03)(73CO. 206.70)(9124. 258.38)(
HYDRUGEAFT AT		(33.45 8.02)	-	, 65.18.	5154. 88.75)(4179.	5223.	6268.	8358. 236.66)(10447.	
ROUTED TO	16t)	5.53	- ~	2C51. 5E.G8)(3076.	4102.	5127. 145.19)(6153.	82C4. 232.31)(10255.	
HYDROGRAFF AT	. 2 01.	153.53	-~	43108. 1220.68)(64662. 1831.01)(86216. 2441.35)(107769. 3051.69)(129323. 3662.02)(172431. 4882.70)(215539. 6103.37)(
Autleb Tu	260	153.53	٢ -	41215.	62723.	43436. 2368.14)(104538.	125445.	1672 1. 4736 29) (209676. 5920.36) (
4 COMBINED	2.u.s.	193.68 561.63)	-~	49374. 1395.13)(74063. 2097.24)(98751. 2756.32)(123441.	148129.	197559.	246888. 6991.07)(
HYDROUGHEN AT	, J	78.7	_~	1677.	2516.	3354.	4193.	5C31. 142.48)(6769. 189.57) (8386. 237.46)(
PCUTED T.	300	7.87	£~	1646. 42.66)(2472.	3295. 93.52)(4119.	4543.	6591.	8239. 233.29)(
HYDRIGRAFF AT	्रे अ	11.52	۲ `	2173. 61.54)(3260. 92.31)(4347. 123.68)(5433. 153.85)(6520. 184.62)(8653.	10866.	
POUTED T	U C	11.52	-	2147.	3220.	4524	53:7.	6441.	8588.	16735.	

	~	(5)*(5)	~	€C.oC) (51.15) (121.55)(66.05)(91.15)(121.59)(151.99)(162.39)(243.16)(303.97)(162.39)(243.16)(303.97)(
	, <u>,</u> ,	15.45	-~	2631. 56.92)(3121.	4162.	3121. 4162. 5202. 6243. 8323. 10404. 88.30(117.85)(147.51)(176.77)(235.69)(294.62)(6243.	8323. 235.69)(10464.
6-	1707	7.c8 (i.41)	- `	1709. 46.39)(2563. 72.58) (3417.	2562. 3417. 4272. 5126. 6635. 8544. 72.55)(96.77)(120.56)(145.16)(193.54)(241.93)(5126. 145.16)(6835. 193.54)(8544. 241.93) (
_	ن خ	7.88	_~	1678.	2517. 71.20) (3356. 95.64)(1678. 2517. 3356. 4195. 5035. 6713. 8391. 47.52)(71.2c)(95.64)(116.cD)(142.56)(196.CB)(237.6D)(5035. 142.56)(6713. 196.08) (8391. 237.60)(
	7.7	551.44	-~	55293. 1582.71) (2374.11)(111788.	1 55:93. i3541, 111746. 139737. 167654. 223563. 27948G. (1582.71)(2374.11)(3165.49)(3956.91)(4748.28)(6331.16)(7913.98)(167634.	223583. 6331.16)(27948C. 7913.98) (
	دُاد (531.44	-~	1535.	1535. 1946. 2399. 43.47)(55.10)(67.93)(2399. 67.93) (2932. 83.02)(3522. 99.73)(2932. 3522. \$144. 6996. 83.02)(99.73)(145.66)(198.09)(6996. 198.69)(

FLAN	-	STATION	200
	*AXIPUR	- -	
I	FLOWACES	EFF	I
7.3	7797	24	4
٠,	995	36	4
4	289	56	4
25.3	11612.	c	4
ç	985	21.0	4
08.0	æ	\Box	4
1. CC	227		-

SEPRETY IF DAP SAFETY ABALYSIS

	FAIRE OF FAIRE OF FAIRE OF FAIRE OF CO. OC. OC. OC. OC. OC. OC. OC. OC. OC.	
10F 0F DAM 323.0C 227896C. 3250.	MAX CUTFLO FCURS 64.CD 66.00 66.50 67.CD 66.00	
-	64E8 TION 64E8 TION 64E8 TION 66E8 T	
SFILLDAY CRES 319.6C 2125351. C.	PRIMUR OUTFLOR CFS 1535. 1946. 2539. 2532. 2542. 5144.	
. VALUE 9.60 53.	#AXIRUR STARTE 2234566. 2234566. 2262725. 22552725. 235537.	
INITIAL VALUE 319.60 2185393.	X X X X X X X X X X X X X X X X X X X	
SLEVATION STORAGE CUTFLOW	A R S S S S S S S S S S S S S S S S S S	
	ALLEGIOS GOOD HOLEN MARK LUSS LUST GOOD GOOD COMMISSION GOOD C	

APPENDIX D

STABILITY ANALYSIS

	•
PROJECT NAME LAKE GEORGE DAM	DATE \$ 15/80
BUBJECT STARILITY ANAYSIS	PROJECT NO
	M34 NO MANUEL TO MANUEL TO THE
Assumed Section and Loading Conditions	4
EN '21419, F 2.3 108-38/4 = - 14 3.220 5.88/4	Ed. 226'
Restant the down the	14Km= 825 be f
upliff pressure	,
Case I. WL @ Spillman Elevation	•
ra) Overturning: More resulting due to mass of dam = .15 f2x715	
" (= x7.5 x. 47) (7.5 x 65.) + (= x7.	+ice + upliff (x,w) (3x105) = 62166
FS against austrumina: 28818 = 0.46	(unade)

TEL	315	797	5800
-----	-----	-----	------

PROJECT NAME L. GEORGE	OATE
SUBJECT	PROJECT NO.

(b) Sliding: Shear-friction on plane through base of dam

where T = sheafland of come to rock arrive Sopic (los) u=0.65

STETSON • DALE BANKERS TRUST BUILDING DESIGN BRIEF

PROJECT NAME LI GEOLGE	DATE 5/20/80
SUBJECT	PROJECT NO.
Case Ia. WL Below Spillway Elevations - Winter Conditions -	in accord with regard of sill class. De
(-) Overturning: Mtor resisting = 28.8 Mtor causing = (6.5x.0624) = 2.9 + 30	H.O ice whilt * 6.5 x 6.5) + (5x6') + (6.5x.06.24 x 7.5 1/2 Hilliait 25 of which of the color
FS against overturning	$= \frac{20.8}{40.5} = 0.71 \qquad (unsafe)$
ii) Sliding: FS = (0.65×7.03-65x.0	$\frac{\frac{55}{2}}{\frac{3}{2}} = \frac{55}{63} = 9 \pm \frac{55}{63}$
Position of Reselbent, d = 288-13.7	•
FS against sliding if no ice =	es • 42

7	ر ط
	6

PROJECT NAME	DATE
BUBJECT	PROJECT NO.
	DRAWN BY
Note 78 mil of steel douchs embedded 2's for FS against out to be wity,	into foundation rock at heel
for FS against out to be wify,	resultance to pullar need be-
(62.0-280)"= 4:75 k per down!	
required bond of skel to grout = 47 to 17.1	5k = 102 psi ±
47.(78. possible, but on the high side.
	Also, this only increases FS-1,
	does not bring
	Resultant within
	middle third

PROJECT NAME L. GEORGE	DATE
SUBJECT	PROJECT NO
	DRAWN 8/
ase II. WL Q & PMF Elevation	
(a) Overturning: More resisting due to mass of dan	= 28.8"
More causing due to horize mater press (assume uplift as for normal	ove tupliff =
= (1318×715×25)+(1470×25×25) +8	8 = 4.3 °
FS against overturning = 28.8 = 1.49	
Position of Recultant, R: d= 5Mm = (28.8-19.3.	
= 0.24 b	(not in mid-the

(b) Sliding: Sheen-Friction on plane through base of dam Sheer Friction FS = (12184140)(25) = 17 = (04)

STETSON • DALE BANKERS TRUST BUILDING DESIGN BRIEF

PROJECT NAME	DATE
DUBJECT	PROJECT NO
	DRAWN BY
Case III. NL @ PMF Slevetion	
(a) Overturning: Mor resisting due to mess of dan = 28	
More causing due to horry, water pressure -	tuplict =
More causing due to horry, water present - [(.406x7.5x2)+(.470x2x2x2)] + 8.8	= 24r6 nc
FS against overturning = 28.8 12 = 1.17	
Position of Resultant, R: $d = \frac{\sum M_{40}}{\sum V} = \frac{(288-24.6)^{16}}{\sum_{i=1}^{2}} = \frac{11.6}{7.5} = .11.6$	0.80' from toe
$=\frac{.80}{2.5}=.11$ b	(bild-bin in ten

STETSON • DALE BANKERS TRUST BUILDING DESIGN BRIEF TEL 315-797-5800

PROJECT NAMEL. GEORGE	DATE
BUBJECT	PROJECT NO
	DRAWN BY
Case IV. Normal Operating Condition Plus Seismic Effects	-
Ref. Case I (i.i.) Me roserting overturning = 28.8 K Me causing overturning = 13.2 K	
(a) Overturning	
Additional the due to inertial effect apply coal for horizontal, oùs for vert	on dam mass, r. Lecomes rul
W= (2x3.2x.12x.02x 3) + (2x3.2x.12x.05)	+ (2.4×2
+ (\$ x 2 x 7.5 x.15)(7.5) + (\$ x 2 x 7.5	1.15 Y.005 / 2 x2
= 1.05 + 0.14 + 1.04 = 1.86 "x	, N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
(ii) additional Ma due to inertial effect on reservo	
Ma = (0.30) PowH2 = (0.3)(.73 x.05x.0624x7.5)(75x7.5	s)= 0.29 1K
FS against overturing = (13.2+1.86+0.29)14 = 1.88	
$d = \frac{(2.30)}{(28.8 - 12.32)} = 2.54 = \frac{3.5}{2.24} (b) =$	0.34 b
b) Sliding (i) Additional horize forces causing sliding due to of dam mass plus horize, acceleration of 12. = .05 W +V = (.05)(3.03) + (.73)(.73),000	horiz. acceleration servoir water ps x.outx7.5/75)

FS: 55 : 33

APPENDIX E

REFERENCES

APPENDIX

REFERENCES

- 1. Department of the Army, Office of the Chief of Engineers. National Program of Investigation of Dams; Appendix D: Recommended Guidelines for Safety Inspection of Dams, 1976
- U.S. Nuclear Regulatory Commission: Design Basis Floods for Nuclear Power Plants, Regulating Guide 1.59, Revision 2, August 1977
- 3. Linsley and Franzini: Water Resources Engineering, Second Edition, McGraw-Hill (1972)
- 4. W. Viessman, Jr., J. Knapp, G. Lewis, 1977, 2nd Edition, Introduction to Hydrology
- 5. Ven Te Chow: Handbook of Applied Hydrology, McGraw-Hill, 1964
- 6. The Hydrologic Engineering Center: Computer Program 723-X6-L2010, HEC-1 Flood Hydrograph Package, User's Manual, Corps of Engineers, U.S. Army, 609 Second Street, Davis, California 95616, January 1973
- 7. The Hydrologic Engineering Center, Computer Program: Flood Hydrograph Package (HEC-1) Users Manual For Dam Safety
- 8. Soil Conservation Service (Engineering Division): Urban Hydrology for Small Watersheds, Technical Release No. 55, U.S. Department of Agriculture, January 1975
- 9. H.W. King, E.F. Brater: Handbook of Hydraulics, McGraw-Hill, 5th Edition, 1963
- 10. Ven Te Chow: Open Channel Hydraulics, McGraw-Hill, 1959
- 11. Bureau of Reclamation, United States Department of the Interior, Design of Small Dams: A Water Resources Technical Publication, Third Printing, 1965
- 12. J.T. Riedel, J.F. Appleby and R.W. Schloemer: Hydrometeorological Report No. 33, U.S. Department of Commerce, U.S. Department of Army, Corps of Engineers, Washington, D.C., April 1956. Available from Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
- 13. North Atlantic Regional Water Resources Study Coordinating Committee: Appendix C, Climate, Meteorology and Hydrology, February 1972

- 14. Sherard, Woodward, Gizienski, Clevenger: Earth and Earth Rock Dams, John Wiley and Sons, Inc., 1963
- 15. The University of the State of New York The State Education Department, State Museum and Science Service, Geological Survey: Geologic Map of New York, 1970
- 16. Y.W. Isachsen and W.G. McKendree, 1977, Preliminary Brittle Structures Map of New York, Adirondack Sheet, New York State Museum Map and Chart Series No. 31A
- 17. D.H. Newland and Henry Vaughan, 1942, Guide to the Geology of the Lake George Region, New York State Museum Handbook 19
- 18. Complete Report of the New York State Joint Legislative Committee on Lake George Water Conditions, 1945
- 19. U.S. Geological Survey, Water Resources Division: U.S. Geological Survey Water-Data Report NY-78-1, Water Year 1978, Vol. 1