Total No. of Questions-8]

[Total No. of Printed Pages-4

B.E. I Semester Examination

BE-I/12(A)

227991

MATHEMATICS-I

Course No. MTH-101

Time Allowed-3 Hours

Maximum Marks-100

DC

Note: Attempt five questions in all, selecting atleast two questions from each section. All carry equal marks. Use of calculator is allowed.

Section - A

- 1. a) If $y\sqrt{1-x^2} = \sin^{-1} x$, prove that $(1-x^2)y_{n+1} (2n+1)xy_n n^2 y_{n-1} = 0 \text{ and hence}$ evaluate $y_n(0)$.
 - b) Find the value of the expression

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}},$$

Where
$$u = \cot^{-1} \left(\frac{x^2 + y^2}{\frac{7}{3} + y^{\frac{7}{3}}} \right)$$

[Turn Over

Find all the asymptotes of the curve:

Find all the asymptotes of the Car.

$$2x^3 - 2xy^2 - x^2y + y^3 - 4x^2 + 8xy - 4x + 1 = 0. \quad (7,7,6)$$

Examine the function

$$f(x,y) = \sin x + \sin y + \sin(x+y)$$
 for extreme values.

- Find the radius of curvature at any point of the curve 6 $r'' = a'' \cos m\theta$.
- Find the position and nature of double points on the curve c) (7,7,6) $x^3 + y^3 = 35xy$.
- 3. Determine the area common to the two parabolas $x^2 = 12y \text{ and } y^2 = 12x$
 - Determine the length of the loop of the curve b) $3ay^2 = x(x-a)^2.$
 - Show that $\beta(m,n)=\beta(m,n+1)+\beta(m+1,n)$ (7,7,6) C)
- Evaluate the integral $\iint_{\mathbb{R}} x^2 y^2 dx dy$ over the region
 - Evaluate the integral $\iiint (x+y+z) dx dy dz$ over the tetrahedron bounded by the planes a)
 - Using gamma function, evaluate $\int_{0}^{\infty} (x \log x)^{n} dx$. (7,7,6)

Section - B

- Express $tan^{-1}(z)$ into real and imaginary parts.
 - a) Expression ($\frac{\pi}{4} + \frac{x}{2}$), then show that $\cosh x \cos x = \frac{1}{4}$
 - Prove that the equation $7x^{2}+2y^{2}+2z^{2}-10xz+10xy+26x-2y+2z-17=0$ $7x^{2}+2y^{2}+2z^{2}-10xz+10xy+26x-2y+2z-17=0$ represents a cone whose vertex is (1,-2,2). (7,7,6)
 - 6. a) Find the equation of the right circular cylinder whose axis is x=2y=-z and radius is 4.
 - b) Solve:

e

ori

the

nes

7,6)

$$\left[y\left(1+\frac{1}{x}\right)+\cos y\right]dx+\left[x+\log x-x\sin y\right]dy=0$$

- c) Solve: $(xy^2 e^{1/x^3}) dx = x^2 y dy$ (7.7.6)
- 7. a) Using variation of parameters technique, solve the differential equation: $y'' + y = \frac{1}{1 + \sin x}$
 - b) Solve: $x^2y'' + 1/xy' + 5y = 4(x^{-1} + x^{-2})$
 - c) Solve: $(D^4 + i)y = x^2 + \sin x \cos x$.

(7.7.5

Sum to infinity the following series:

$$\cos x \sin x - \frac{1}{2} \cos 2x \sin^2 x + \frac{1}{3} \cos 3x \sin^3 x - \dots$$

- Solve $(D^2 2D + 1)y = x \sin x$.
- Find the equation of the sphere through the circle $x^2 + y^2 + z^2 = 9,2x + 3y + 4z = 5$ and the point (1,2,3) (7,7,6)

\$ \$