- 1. V o F. Justifique.
 - (a) Para cada \mathcal{P} hay $m, n \in \omega$ tal que si dom $\Psi_{\mathcal{P}}^{n,m,\omega} = \omega^n \times \Sigma^{*m}$, entonces \mathcal{P} se detiene partiendo desde cualquier estado.
 - (b) Si $S\subseteq \omega$ es Σ -r.e. y $f:\omega\to \Sigma^*$ es Σ -computable, entonces f(S) es Σ -r.e..
 - (c) $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to \omega$ es Σ -computable sii hay $\mathcal{P} \in Pro^{\Sigma}$ tal que $f = \Psi_{N1 \leftarrow N1 1\mathcal{P}}^{n,m,\omega}$.
- 2. Dar un programa $Q \in \operatorname{Pro}^{\Sigma_p}$ tal que $\operatorname{Dom}(\Psi_Q^{1,0,\Sigma_p^*}) = \omega$ e $\operatorname{Im}(\Psi_Q^{1,0,\Sigma_p^*})$ sea el conjunto

$$\{\mathcal{P} \in \operatorname{Pro}^{\Sigma_p} \mid \text{hay } \alpha \in \Sigma_p^* \text{ tal que } \Psi_{\mathcal{P}}^{1,1,\omega}(0,\alpha) = 0\}.$$

3. Si $f:\omega\to\{\$,!\}^*$ es $\{\$,!\}$ -
r, entonces $T=\{\alpha\in\{\$,!\}^*\mid f(|\alpha|)=\alpha\}$ también es $\{\$,!\}$ -r.e.

Para cada macro usado en (2) y/o (3) dar el predicado o la funcion asociada dependiendo si es un macro de tipo IF o de asignacion.