

Ch1.7.2 基尔霍夫电压定律

杨旭强

哈尔滨工业大学电气工程及自动化学院

1. 基尔霍夫电压定律(简称KVL)表述为: 在集中参数电路中, 任一时刻沿任一回路各支路电压的代数和为零,即

$$\sum u_k = 0$$
 (u_k 表示第 k 条支路电压)

规定参考方向: u_k 参考方向与回路方向相同时, u_k 的前面取"+"号,否则取"-"号。

根据左图,列写KVL方程

回路*l*1:
$$-u_1 + u_2 + u_5 = 0$$

回路*l*2:
$$-u_5 + u_6 + u_7 = 0$$

回路*l*3:
$$u_3 + u_4 - u_6 - u_2 = 0$$

回路*l*4:
$$-u_1 + u_3 + u_4 - u_6 + u_5 = 0$$

2基尔霍夫电压定律的推论

回路
$$l1:-u_1+u_2+u_5=0$$

回路*l*2:
$$-u_5 + u_6 + u_7 = 0$$

回路*l*3:
$$u_3 + u_4 - u_6 - u_2 = 0$$

回路14:
$$-u_1 + u_3 + u_4 - u_6 + u_5 = 0.$$

]
$$_{-}^{+}$$
 回路 $l1: u_2 + u_5 = u_1$

回路*l*2:
$$u_6 + u_7 = u_5$$

回路*l***3**:
$$u_3 + u_4 = u_6 + u_2$$

回路14:
$$u_3 + u_4 + u_5 = u_1 + u_6$$

推论:沿任一回路,各支路电压降(voltage drop)的代数和等于电压升(voltage rise)的代数和,即

$$\sum u_{\scriptscriptstyle{\mathrm{f l}}\!\!\!\perp\!\!\!\perp\!\!\!\!\perp} = \! \sum u_{\scriptscriptstyle{\mathrm{f l}}\!\!\!\perp\!\!\!\perp\!\!\!\perp\!\!\!\perp}$$

3 在集中参数电路中,任意两点之间的电压具有确定值, 与计算路径无关 *u.*.. = *u*.

基尔霍夫电压定律示例

$$u_{15} = u_1 u_{15} = u_2 + u_5$$

$$u_{15} = u_2 + u_6 + u_7$$

回路*l*1:
$$u_1 = u_2 + u_5$$

回路*l*2:
$$u_1 = u_2 + u_6 + u_7$$

$$u_{25} = u_5$$

$$u_{25} = u_1 - u_2$$

$$u_{25} = u_6 + u_7$$

回路*l*1:
$$u_1 - u_2 = u_5$$

回路*13*:
$$u_5 = u_6 + u_7$$

4 KVL方程独立性的讨论

回路 $m1:-u_1+u_2+u_4=0$

回路 $m3: u_3 + u_4 - u_5 - u_2 = 0$

回路m2: $-u_2 + u_3 + u_7 = 0$

 $[7] \overset{+}{u_7}$ 回路 $m4: u_1 - u_3 - u_4 - u_7 = 0$

 $-u_1 + u_3 + u_4 + u_7 = 0$

基尔霍夫电压定律示例

可以验证: 平面电路全部内网孔列的KVL方程是一组

独立方程,其个数为b-n+1个。

选取独立且完备的回路方法:

方法1: 选全部内网孔

方法2:每个新选的回路中要包含独有支路,所选回路

要经过全部支路,不可有遗漏。

1.7 基尔霍夫定律-小结

	定义	变形	独立方程选 取	独立方 程个数	参考方 向	一步解
KCL	$\sum i_k = 0$ 节点 闭合边界	$\sum i_{ar{m}\lambda} = \sum i_{ar{m}ar{u}}$	任意n-1个 节点	n-1	流出流入	适当 选闭 合界
KVL	$\sum u_k = 0$ 回路 网孔	$\sum u_{\text{ебв}} = \sum u_{\text{ебв}}$	全部内网孔两条	b-n+1	沿回路 逆回路	适当 选回 路

【例题1.5】电路如图所示。已 知部分支路电压,求出其它支路 电压。

解:分别对包含待求电压的回路列写KVL方程,并将待求电压写在等号左边得

回路
$$l1: 4V+6V+u_1=0 \Rightarrow u_1=-4V-6V=-10V$$

回路*l*2:
$$-u_1 + u_2 - 2V = 0 \Rightarrow u_2 = u_1 + 2V = -8V$$

回路*l*3:
$$u_3 - 6V - 8V = 0 \Rightarrow u_3 = 6V + 8V = 14V$$

回路**14:**
$$8V + u_4 - u_2 = 0 \Rightarrow u_4 = -8V + u_2 = -16V$$

??如何 一步得到 u₂

【例题1.6】电路如图所示。 已知部分支路电压,求出其 它未知支路电压, u_{14} , u_{15} , u_{52} ,

*u*₅₃ •

解:

回路*l*1:
$$u_{14} = 5V + 6V + 8V = 19V$$

回路*l*2: $u_{15} = u_{14} + u_{45} = 19V - 7V = 12V$

回路*l*3: $u_{52} = u_{51} + u_{12} = -12V + 5V = -7V$

回路*l*4: $u_{53} = u_{54} + u_{43} = 7V - 8V = -1V$

例题1.6图

【例题1.7】电路如图所示。

已知 i_2 =1A, i_7 =2A, u_{13} =-

3V, $u_{24}=5V$, $u_{34}=2V$ 。求

支路1发出的功率

解:对闭合边界S'列KCL 方程

$$i_1 = i_7 - i_2 = 2A - 1A = 1A$$

对回路l1列KCL方程

$$u_{24} + u_{43} + u_{32} = 0 \Rightarrow u_{32} = -u_{24} + u_{34} = -5V + 2V = -3V$$

例题1.7图

对回路12列KCL方程

$$u_{32} + u_{21} + u_{13} = 0 \Rightarrow u_{21} = -u_{32} - u_{13} = 3V + 3V = 6V$$

支路1发出的功率为 $p = -u_{21} \times i_1 = -6V \times 1A = -6W$

【例题1.8】求图示电路中每个电压源发

出的功率。

解: 1根据KVL求得各电阻电压

$$u_1 = 4V + 6V = 10V$$

$$u_2 = 8V + 6V = 14V$$

$$u_3 = 8V - 4V = 4V$$

2 由欧姆定律求出各电阻电流

$$i_1 = \frac{u_1}{20\Omega} = 0.5 \text{A}$$
 $i_2 = \frac{u_2}{40\Omega} = 0.35 \text{A}$ $i_3 = \frac{u_3}{80\Omega} = 0.05 \text{A}$

3对各节点列写KCL方程, 求得各电压源电流

节点①:
$$i_4 = i_1 - i_3 = 0.45$$
A

节点②:
$$i_5 = i_1 + i_2 = 0.85$$
A

节点③:
$$i_6 = i_2 + i_3 = 0.4$$
A

4 计算各电压源发出的功率

$$p_4 = 4V \times i_4 = 1.8W$$

$$p_6 = 6V \times i_5 = 5.1W$$

$$p_8 = 8V \times i_6 = 3.2W$$

【例题1.9】求图示电路中电压源与电流源各自提供的 功率。

1 由回路l1 l2的KVL方程分别求得

$$u_2 = -5V + 1V = -4V$$

 $u_1 = 2\Omega \times 1A + u_2 = -2V$

2 由欧姆定律求得电阻电流

$$i_2 = \frac{u_2}{1\Omega} = -4A$$

$$i_4 = \frac{5V}{5\Omega} = 1A$$

4 电压源和电流源发出功率

3 由节点①的KCL方程求得 流过电压源的电流

$$i_3 = 1A - i_2 + i_4 = 6A$$

 $p_{5V} = 5V \times i_3 = 30 W$
 $p_{1A} = u_1 \times 1A = -2W$

【例题1.10】求图示电路中两个受控电源各自发出的功率。 2Ω

解: 1 对节点②列KCL方程求得 i_1 +2 i_1 =9A \Rightarrow i_1 =3A

2 电阻电压 $u_1 = -(2\Omega \times i_1) = -6V$

例题1.10图

3 利用KVL方程求得受控电流源端口电压

$$u_2 = -3u_1 + u_1 = 12 \text{ V}$$

- 4 受控电流源发出的功率为 $p_{CCCS} = u_2 \times 2i_1 = 72 \text{ W}$
- 5 受控电压源发出的功率为 $p_{VCVS} = 3u_1 \times 2i_2 = -108 \, \text{W}$