TYPE 1 Forward

12 **(b)**

$\Phi\left(\frac{\mu + \sigma - \mu}{\sigma}\right) = 0.8413$	B1	0.8413 (p) seen or implied (can use their own numbers)
$P(z <1) = 0.3413 \times 2 = 0.6826$	M1	finding the correct area i.e. $2p - 1$
$0.6826 \times 800 = 546 \text{ (accept 547)}$ OR	A1 3	correct answer, must be a positive integer
$SR 800 \times 2/3 = 533 \text{ or } 534$	SR B1	for 2/3
	B1	for 533 or 534 or B2 if 533 or 534 and no working

19 (i)
$$P(X>0) = 1 - \Phi\left(\frac{0 - -15.1}{\sqrt{62}}\right)$$
 M1 Standardising, sq rt, no cc

$$= 1 - \Phi(1.918)$$
 M1 Prob < 0.5 after use of normal tables

$$= 1 - 0.9724$$
 A1 [3] Correct answer

22	20p = 1.6 $p = 0.08$	M1		Equation relating 20p to the mean
		A1		Correct <i>p</i> can be implied
	$P(X>2) = 1 - \{(0.92)^{20} + {}^{20}C_1(0.08)(0.92)^{19}$			
	$+\frac{^{20}}{^{10}}C_{1}(0.08)(0.92)^{19}$			
	$+^{20}C_2(0.08)^2(0.92)^{18}$	M1		Bin expression involving $p^x(1-p)^{20-x} {}^{20}C_x$ any p
	= 1 - (0.1887 + 0.3281 + 0.2711)	M1		Subtracting 2 or 3 binomial probs from 1, one of
				which is P(0)
	= 0.212	A1	[5]	Correct answer

28	(i) $P(x > 10.9) = P(z > \frac{10.9 - 11}{0.095})$ = $P(z > -1.0526)$	M1	Standardising, no cc, no sq rt
	= 0.8538 (0.854)	A1 [2]	Rounding to correct answer
	(ii) $P(\text{at least } 2 < 10.9) = 1 - P(0, 1)$	M1	Bin expression with \sum powers = 6, ${}^{6}C_{x}$, $p + q = 1$.
	$= 1 - (0.8538)^6 - {}^6C_1(0.1462)(0.8538)^5$	A1ft	Reasonably correct unsimplified expression ft their (i)
	= 0.215	A1 [3]	Rounding to correct answer

33	(i)	P(X > 20) = P(z > -6.4/3.7) = P(z > -1.730)	M1	Standardising no cc no sq rt
		= 0.9582	A1	Prob rounding to 0.958
		Number of students = 335 or 336	A1ft [3]	Correct answer ft their prob, must be integer
	(ii)	P(very slow) = 0.05	В1	0.05 or 0.95 seen
		$P(0, 1, 2) = (0.95)^8 + {}^{8}C_{1}(0.05)^{1}(0.95)^{7} + {}^{8}C_{2}(0.05)^{2}(0.95)^{6}$ $= 0.6634 + 0.2793 + 0.0515$ $= 0.994$	M1 M1 A1	Binomial term with ${}^{8}C_{r}p^{r}(1-p)^{8-r}$ seen any p Correct expression for P(0, 1, 2), p close to 0.05 Answer rounding to 0.994
		- 0.77 1	[4]	Answer founding to 0.994

(b)
$$P(X < a + 33) = 0.75$$

 $z = 0.674$

M1 Using 0.75 oe
 ± 0.674 seen

M1 Standardising, no cc, must have sq rt

 $a = 3.09$

A1 [4] Correct answer

52 $z_1 = \frac{30 - 28.3}{\sqrt{4.5}} = 0.8014$	M1		Standardising at least one value, sq rt.ess; no cc
$z_2 = \frac{25 - 28.3}{\sqrt{4.5}} = -1.5556$	M1		$\Phi_1 + \Phi_2 - 1$ oe
$\Phi_1 - (1 - \Phi_2) = 0.7884 + 0.9401 - 1$			
= 0.729	A1	[3]	Correct answer

62 (i) $\Phi\left(\frac{84.5-82}{\sqrt{126}}\right)\Phi\left[\frac{83.5-82}{\sqrt{126}}\right]$	M1	Standardising using 83.5 or 84.5, must have square root
$= \Phi(0.2227) - \Phi(0.1336)$ = 0.5883 - 0.5533	M1	Subtracting two probabilities, both > 0.5 or both < 0.5
= 0.0350	A1 3	Correct answer
(ii) $P(x > 87) = 1 - \Phi\left(\frac{87 - 82}{\sqrt{126}}\right) = 1 - \Phi$	M1	Standardising, no cc, must have square root
(0.445) $ = 1 - 0.6718 = 0.3282$	A1	Correct probability
$P(0, 1) = (0.6718)^5 + {}_{5}C_{1}(0.3282)$ $(0.6718)^4$	M1	Any binomial term of form ${}_{5}C_{x}p^{x}(1-p)^{5-x}, x\neq 0$
= 0.471	A1 4	Correct answer
(iii) $P(x < 87) = 0.6718$	M1	Finding $P(x < 87)$, value > 0.5
P(x < k) = 0.9718	M1	Adding 0.3 to their 0.6718 or equivalent
z = 1.908 or 1.909	A1	Correct z
$1.909 = \pm \frac{k - 82}{\sqrt{126}}$	M1	Equation with k , 82 or 81.5 or 82.5, $\sqrt{126}$, and a z -value
k = 103	A1 5	Correct answer rounding to 103

Type 2 Reverse

12 (a)
$$\frac{5.2 - 2s}{s} = -1.282$$
M1 Equation with \pm correct LHS seen here or later, can be μ or s , no cc

B1 ± 1.282 seen accept ± 1.28 or anything in between

M1 solving their equation with recognisable z -value and only 1 unknown occurring twice

 $s = 7.24$ or 7.23
A1 4 correct final answer

19

(ii)
$$z = -1.22$$

 $-1.22 = \frac{0 - \mu}{\sqrt{40}}$

$$\mu = 7.72 \text{ c.a.o}$$

B1
$$z = \pm 1.22$$

M1 an equation in μ , recognisable z, $\sqrt{40}$, no cc

A1 [3] correct answer c.w.o from same sign on both sides

20 (i) $z = 0.674$ $\frac{1002 - \mu}{8} = 0.674$ $\mu = 997$	B1 M1 A1	[3]	\pm 0.674 or rounding to, seen, e.g. 0.6743 Standardising and attempting to solve for μ , must use recognisable z-value, no cc, no sq rt, no sq Correct answer rounding to 997
(ii) $P(2) = 3 \times \frac{225}{900} \times \frac{224}{899} \times \frac{675}{898}$ = 0.140 OR $\frac{225}{900} \frac{225}{900} \frac{25}{3}$	M1 A1	[2]	$900 \times 899 \times 898$ or 900 C ₃ seen in denom Correct answer not 0.141 or 0.14

24 (i) mean = 51	B1	[1]	
(ii) $z = \pm 0.674$	B1		Correct z
$\pm (63 - 51) / \sigma = 0.674$	M1		Standardising, no cc, no $\sqrt{\sigma}$, no σ^2
$\sigma = 17.8$	A1	[3]	Correct answer

-1	•
- 1	

26	(+/-) 1.045, (+/-) 0.313	B1, B1	1 correct <i>z</i> -value, the other correct <i>z</i> -value.
	$20.9 - \mu = -0.313 \ \sigma$ $30 - \mu = 1.045 \ \sigma$	M1	Valid attempt to solve 2 equations relating to μ , σ , 30, 20.9. No $\sqrt{\sigma}$, σ^2
	$\sigma = 6.70$ $\mu = 23.0$	A1 A1 [5]	correct answer

29 (i) $P(X < 2 \mu) = P\left(z < \frac{2\mu - \mu}{\sigma}\right)$	M1	Standardising, and attempt to get 1 variable, no cc, no $\sqrt{\ }$, no sq
$= P(z < \mu/\sigma) = P(z < 5/3)$	A1	$\pm 5/3$ seen oe
= 0.952	A1 [3]	Rounding to correct answer

(ii)
$$P\left(X < \frac{\mu}{3}\right) = P\left(z < \frac{-2\mu}{3\sigma}\right)$$
 M1 standardising attempt resulting in $z \le -\text{some } \mu/\sigma$ allow $\pm \left(\frac{\mu/3 - \mu}{\sigma}\right)$ ± 1.047 seen ± 1.047 seen ± 1.047 seen ± 1.047 seen a minus sign and $\mu = \dots \sigma$

39 (a) $z > \frac{2\mu - \mu}{\sigma} = \frac{\mu}{\sigma} = \frac{7\sigma^2}{3\sigma}$	M1	Standardising attempt resulting in $z > \text{some } \mu/\sigma$
$\frac{7\sigma}{3} = 1.272$	M1 B1	Substituting to eliminate μ or σ 1.272 seen
$\sigma = 0.545$	A1	Both answers correct
$\mu = 0.693$	[4]	

61 $z = -1.036 = \frac{5.6 - 93}{\sigma}$	B1 M1		\pm (1.036 to 1.037) seen Equation with 5.6 or 13.0, 9.3, σ and a z value, no cc
$\sigma = 3.57$	A1	3	Correct final answer

TYPE 3 Binomial----> Normal

$2 (i) c \int_{0}^{5} t(25 - t^{2}) dt = 1$	M1	For equating to 1 and a sensible attempt to integrate
$c\left[\frac{25t^2}{2} - \frac{t^4}{4}\right]_0^5 = 1$	A1	For correct integration and correct limits
$c\left[\frac{625}{2} - \frac{625}{4}\right] = 1 \implies c = \frac{4}{625}$	A1 3	For given answer correctly obtained
(ii) $\int_{ct(25-t^2)dt}^{4} = \left[\frac{25ct^2}{2} - \frac{ct^4}{4}\right]_{ct^2}^{4} = c[136] - c[46]$	M1*	For attempting to integrate f(t) between 2
2 L J2	M1*dep	
$=\frac{72}{125} (0.576)$	A1 3	their value when t = 4 For correct answer
(iii) $\int_{0}^{5} ct^{2} (25 - t^{2}) dt = \left[\frac{4}{625} \times \frac{25t^{3}}{3} - \frac{4}{625} \times \frac{t^{5}}{5} \right]_{0}^{5}$	M1*	For attempting to integrate <i>tf(t)</i> , no limits needed
0 = =0	AI	For correct integrand can have <i>c</i> (or their <i>c</i>)
$=\frac{8}{3}$	M1*dep	For subtracting their value when t=0 from
3	A1 4	their value when t=5 For correct answer
	L	1 of contoot anomor

4 (i)	constant p, independent trials, fixed number of trials, only two outcomes	B1		For an option
		B1	2	For a second option
(ii)	$P(X<4) = 0.72^{14} + {}_{14}C_1 \times 0.28 \times 0.72^{13} + {}_{14}C_2 \times 0.28^2 \times 0.72^{12} + {}_{14}C_3 \times 0.28^3 \times 0.72^{11}$	M1		For adding with some C in P(0 + 1 + 2 + 3) or P(1 + 2 + 3) or P(0 + 1 + 2 + 3 + 4) or P(1 + 2 + 3 + 4)
		M1		For 0.28 and 0.72 to powers which sum to 14
				Need 2 or more terms
	(= 0.0101 + 0.0548 + 0.1385 + 0.2154)	A1		For completely correct unsimplified form
	= 0.419	A1	4	For correct final answer
				NB 0.418 is A0 if PA # 1 or A1 if PA # 2

(iii)
$$\mu = 50 \times 0.28 (= 14)$$
 $\sigma^2 = 50 \times 0.28 \times 0.72 (= 10.08)$

M1 For 14 and 10.08 seen, can be implied

For standardising with or without cc, must have sq root

M1 For continuity correction 17.5 or 18.5 AND a final answer < 0.5

 $= 1 - \Phi(1.417)$
 $= 1 - 0.9218 \text{ or } 0.9217$
 $= 0.0782 \text{ or } 0.0783$

A1 4 For correct answer

NB 0.078 is A0 if RE # 1 or A1 if RE # 2

$5 \mu = 160, \sigma^2 = 96$	B1	For 160 and 96 seen or implied by 9.798
$P(\le 165) = \Phi\left(\frac{164.5 - 160}{\sqrt{96}}\right) = \Phi(0.4593)$		For standardising, must have square root For continuity correction, either 165.5 or 164.5
= 0.677	M1 A1 [5]	For using tables and finding correct area (i.e.> 0.5) For correct answer

(i) $1 - P(0, 1, 2)$ = $1 - ((0.91)^{14} + (0.09)(0.91)^{13} \times {}_{14}C_{1} + (0.09)(0.91)^{13} \times {}_{14}C_{2} + (0.2670 + 0.3698 + 0.2377)$ = $1 - (0.2670 + 0.3698 + 0.2377)$ = 0.126	MI BI BI	4	For 1 – P(0, 1, 2) Correct numerical expression for P(0) or P(1) Correct numerical expression for P(2) Correct answer
(ii) $\mu = 200 \times 0.76 = 152$, $\sigma^2 = 200 \times 0.76 \times 0.24 = 36.48$ P(X > 155) $= 1 - \Phi\left(\frac{155.5 - 152}{\sqrt{36.48}}\right) = 1 - \Phi(1.5795)$ = 1 - 0.7188 = 0.281	B) MI MI MI A)	5	For both mean and variance correct For standardising, with or without ec, must have √ on denom For use of continuity correction 154.5 or 155.5 For finding an area < 0.5 from their z For answer rounding to 0.281

11 (i) $(0.6)^{10} \times (0.4)^{10} \times {}_{20}C_{10}$ = 0.117	M1 A1	2	3 term binomial expression involving 20C _{something} and powers summing to 20 Correct final answer
(ii) P(18, 19, 20) = $(0.6)^{18} (0.4)^2 {}_{20}C_2 + (0.6)^{19} (0.4)^1 {}_{21}C_1 + (0.6)^{20}$ = $0.003087 + 0.000487 + 0.00003635$	M1 A1		Summing three or 4 binomial expressions One correct unsimplified expression allow 0.4 0.6 muddle
= 0.00361	A1		Correct answer
OR using normal approx N(12,4.8) $z = \frac{17.5 - 12}{\sqrt{4.8}}$	M1		Standardising, cc 16.5 or 17.5, their mean, $\sqrt{\text{ (their var)}}$
= 2.51	A1		2.51 seen
Prob = 1 - 0.9940 = 0.0060	A1	3	0.0060 seen must be 0.0060
(iii) $\mu = 150 \times 0.60 = 90$ $\sigma^2 = 150 \times 0.60 \times 0.40 = 36$ P(88 < X < 97)	В1		For seeing 90 and 36
$= \Phi\left(\frac{97.5 - 90}{6}\right) - \Phi\left(\frac{87.5 - 90}{6}\right)$	M1		For standardising, with or without cc, must have sq rt on denom
$= \Phi(1.25) - \Phi(-0.4166)$	M1		one continuity correction 97.5 or 96.5 or 87.5 or 88.5
= 0.8944 - (1 - 0.6616)	A1		0.8944 or 0.6616 or 0.3384 or 0.3944 or 0.1616 seen
= 0.556	M1		subtracting a probability from their standardised 97 prob
	A1	6	correct answer

13 (i)	$P(\geqslant 3) = 1 - P(0, 1, 2)$	M1	For attempt at 1 – P(0, 1, 2) or 1 – P(0, 1, 2, 3) or P(315) or P(415)
	$= 1 - (6/7)^{15} - {}_{15}C_1 (1/7) (6/7)^{14} - {}_{15}C_2 (1/7)^2 (6/7)^{13}$	M1	For 1 or more terms with 1/7 and 6/7 to powers which sum to 15 and $_{15}C_{\text{something}}$
	(=1-0.0990-0.2476-0.2889)	A1	Completely correct unsimplified form
	= 0.365 (accept 0.364)	A1 4	Correct final answer
(ii)	$\mu = 56 \times 1/7 (= 8)$ $\sigma^2 = 56 \times 1/7 \times 6/7 (= 6.857)$	B1	8 and 6.857 or 6.86 or 2.618 seen or implied
	P(more than 7) $= 1 - \Phi\left(\frac{7.5 - 8}{\sqrt{6.857}}\right)$	M1	Standardising attempt with or without cc, must have square root
	$= \Phi\left(\frac{8-7.5}{\sqrt{6.857}}\right) = \Phi(0.1909)$	M1	Continuity correction either 7.5 or 6.5
		M1	Final answer > 0.5 (award this if the long way is used and the final answer is > 0.5)
	= 0.576	A1 5	Correct final answer

M1 A1	2	Expression with 3 terms, powers summing to 7 and a ₇ C term Correct answer
B1		32.5 and 11.375 seen or implied
M1 M1 M1		standardising, with or without cc, must have sq rt for continuity correction 28.5 or 29.5 correct area ie < 0.5 must be from a normal approx
A1	5	correct answer equality or inequality with <i>np</i> and 8
A1	2	correct answer
	A1 B1 M1 M1 M1 M1 M1	A1 2 B1 M1 M1 M1 A1 5 M1

17	(i)	(0.05)(0.75)(0.15) = 0.00563 (9 / 1600)	M1 B1 A1	3	Multiplying 3 probs only, no Cs 0.05 or 0.15 or 1/5 × ½ seen Correct answer
	(ii)	P(at least 8) = P(8, 9, 10) = $_{10}$ C ₈ (0.75) ⁸ (0.25) ² + $_{10}$ C ₉ (0.75) ⁹ (0.25)+(0.75) ¹⁰ = 0.526	B1 M1 A1	3	Binomial expression involving $(0.75)^r(0.25)^{10-r}$ and a C, $r \neq 0$ or 10 Correct unsimplified expression can be implied Correct answer
	(iii)	$\mu = 90 \times 0.75 = 67.5$ $\sigma^2 = 90 \times 0.75 \times 0.25 = 16.875$	В1		90×0.75 (67.5) and $90 \times 0.75 \times 0.25$ (16.875 or 16.9) seen
		$P(X > 60)$ = 1 - $\Phi\left(\frac{60.5 - 67.5}{\sqrt{16.875}}\right) = \Phi(1.704)$	M1		For standardising , with or without cc, must have $\sqrt{}$ on denom For use of continuity correction 60.5 or 59.5
			M1		For finding an area > 0.5 from their z
		= 0.956	A1	5	For answer rounding to 0.956

18	$mean = 200 \times 0.08 = 16$ $var = 14.72$	B1	For both 16 and 14.7 seen
	$P(X \ge 15) = 1 - \Phi\left(\frac{14.5 - 16}{\sqrt{14.72}}\right)$	M1	For standardising, with or without cc, must have $\sqrt{\ }$ in denom
	$=\Phi(0.391)$	M1	For use of continuity correction 14.5 or 15.5
	= 0.652	M1 A1 [5]	For finding a prob > 0.5 from their z , legit For answer rounding to 0.652 c.w.o
19	(i) $P(X>0) = 1 - \Phi\left(\frac{0 - 15.1}{\sqrt{62}}\right)$	M1	Standardising, sq rt, no cc
	$= 1 - \Phi (1.918)$ = 1 - 0.9724	M1	Prob < 0.5 after use of normal tables
	= 0.0276 or answer rounding to	A1 [3]	Correct answer
	(ii) $z = -1.22$	B1	$z = \pm 1.22$
	$-1.22 = \frac{0 - \mu}{\sqrt{40}}$	M1	an equation in μ , recognisable z , $\sqrt{40}$, no cc
	$\mu = 7.72 \text{ c.a.o}$	A1 [3]	correct answer c.w.o from same sign on both sides

21	(i)	P(X < 3) = P(0) + P(1) + P(2) = (0.84) ¹¹ + (0.16)(0.84) ¹⁰ × ¹¹ C ₁ +	M1 M1		Binomial term with ${}^{11}C_rp^r(1-p)^{11-r}$ seen Correct expression for P(0, 1, 2) or P(0, 1, 2, 3)
		$(0.16)^2(0.84)^9 \times {}^{11}C_2$ = 0.1469 + 0.30782 + 0.2931			Can have wrong <i>p</i>
		= 0.748	A1	[3]	Correct final answer. Normal approx M0 M0 A0
	(ii)	$\mu = 125 \times 0.64 = 80$	B1		80 and 28.8 or 5.37 seen
		$\sigma^2 = 125 \times 0.64 \times 0.36 = 28.8$			
		$P(X > 73) = 1 - \Phi\left(\frac{73.5 - 80}{\sqrt{28.8}}\right)$	M1		standardising, with or without cc, must have sq rt in denom
			M1		continuity correction 73.5 or 72.5 only
		$=\Phi\left(1.211\right)$	M1		correct region (> 0.5 if mean > 73.5, vv if mean < 73.5
		= 0.887	A1	[5]	correct answer

23 (i) $\frac{{}^{4}C_{2} \times {}^{7}C_{1}}{{}^{11}C_{3}} = 0.255$	M1		Using 2 combs mult for numerator and 1 comb for denom
3	M1		Correct denom or num unsimplified
	A1		Correct answer
	711		Correct answer
OR $\frac{4}{11} \times \frac{3}{10} \times \frac{7}{9} \times 3$	M1		Multiplying 3 correct probs
11 10 9	M1		Mult by 3 or Σ their 3 options
= 0.255 (14/55) (42/165)	A1	[3]	Correct answer
- 0.233 (14/33) (42/103)			
(ii) $P(3^{rd} \text{ is orange}) = P(P, P, O)$			
+ P(P, O, O) + P(O, P, O)			
+ P(O, O, O)	M1		Summing four 3-factor options with or without
$=\frac{4}{11}\times\frac{3}{10}\times\frac{7}{9}+\frac{4}{11}\times\frac{7}{10}\times\frac{6}{9}$			replacement
$+\frac{7}{11}\times\frac{4}{10}\times\frac{6}{9}+\frac{7}{11}\times\frac{6}{10}\times\frac{5}{9}$	A1		At least 2 correct unsimplified entions
$11^{10^{10^{10^{10^{10^{10^{10^{10^{10^{$	AI		At least 3 correct unsimplified options
$= \left[\frac{14}{165} + \frac{28}{165} + \frac{28}{165} + \frac{7}{33} \right]$			
= 7/11 (0.636	A1		Correct answer. Award B3 if the correct answer is
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			stated with no working.
OR using a tree diagram		[3]	
(iii) $P(P O) = \frac{P(P \cap O)}{P(O)}$	M1		Substituting in cond prob formula with at least one
P(O)	1411		3-factor product in num, and denom their (ii) or
			7/11
P(P,P,O) + P(P,O,O)	3.61		
$=\frac{P(P,P,O)+P(P,O,O)}{P(O)}$	M1		Summing exactly 2 three-factor products in num
28/110 28 4			~
$=\frac{28/110}{7/11}=\frac{28}{70}=\frac{4}{10}=0.4$	A1	[3]	Correct answer
(iv) $\mu = 121 \times \frac{4}{11} = 44$	B1		44 and 28 or 5.29 seen
= =	וע		11 and 20 01 3.27 30011
$\sigma^2 = 121 \times \frac{4}{11} \times \frac{7}{11} = 28$	M1		Standardising, with or without cc, must have sq rt
	1711		on denom
$P(V \in 20) = (38.5 - 44)$) / 1		
$P(X < 39) = \Phi\left(\frac{38.5 - 44}{\sqrt{28}}\right)$	M1		cc either 39.5 or 38.5
$=\Phi(-1.039)$	M1		Correct area "1 – Φ" seen
=1-0.8506			
= 0.149	A1	[5]	Correct answer

25 P(total 7) = P(3,4 or 4,3) = $2/16$	M1	Attempt to find $P(7) + P(8)$
P(total 8) = P(4,4) = 1/16 P(7 or more) = 3/16 Expected 200 $\times \frac{3}{16}$ = 37.5	A1 M1 A1ft [4]	3/16 seen Multiplying their prob by 200 Correct final answer ft their prob

32	mean = $200 \times 2/15$ (= 26.67) (80/3) variance = $200 \times 2/15 \times 13/15$ (= 23.11)(208/9)	B1	mean and variance correct
	$P(21 < X < 35) = $ $P\left(\frac{21.5 - 26.67}{\sqrt{23.11}}\right) < z < \frac{34.5 - 26.67}{\sqrt{23.11}}$	M1 M1	standardising, ±, with or without cc, must have sq rts continuity corrections 20.5 or 21.5, 34.5 or 35.5
	= P(-1.075 < z < 1.629) $= 0.8589 + 0.9483 - 1$ $= 0.807$	M1 A1 [5]	$\Phi_1 + \Phi_2 - 1$ answer rounding to 0.807

35	(i)	constant/given prob, independent trials, fixed/given no. of trials, only two outcomes	B1 B1 [2]	One option correct Three options correct
	(ii)	P(8, 9, 0, 1) =	M1	One term seen involving $(0.3)^x(0.7)^{9-x}(^9C_x)$
		${}^{9}C_{8}(0.3)^{8}(0.7) + (0.3)^{9} + (0.7)^{9} + {}^{9}C_{1}(0.3)(0.7)^{8}$	A1	Correct unsimplified expression
		= 0.196	A1 [3]	Correct answer
	(iii)	mean = $90 \times 0.3 = 27$		
	()	var = 18.9	B1	Expressions for 27 and 18.9 (4.347) seen
		$P(X > 35) = 1 - \Phi\left(\frac{35.5 - 27}{\sqrt{18.9}}\right)$	M1	Standardising one expression, must have sq rt in denom, cc not necessary
		$=1-\Phi(1.955)=0.0253$	M1	Continuity correction applied at least
		$P(X < 27) = \Phi\left(\frac{26.5 - 27}{\sqrt{18.9}}\right) = 1 - \Phi(0.115)$	M1	once $(1 - \Phi_1) + (1 - \Phi_2)$ accept $(0.0329 + 0.5)$ if no cc
		= 0.4542		D. II
		Total prob = 0.480 accept 0.48	A1 [5]	Rounding to correct answer

B1	Correct value for <i>p</i>
M1	Summing 3 binomial probs o.e
A1	Correct unsimplified answer
A1 [4]	Correct answer
	M1

42 (i) $np = 24$, $npq = 4.8$	B1	24 and 4.8 or $\sqrt{4.8}$ seen can be unsimplified
$z = \pm \left(\frac{24.5 - 24}{\sqrt{4.8}}\right) = 0.228$	M1 M1	Standardising, need sq rt, cc not necessary Continuity correction 24.5 or 25.5 used
Prob = 0.590	A1 [4]	Correct answer must be from 24.5

(ii) np and nq both > 5.

B1 [1] Need both

46 $\mu = 250 \times 0.86 = 215$	B1	250×0.86 and $250 \times 0.86 \times 0.14$ seen o.e
$\sigma^2 = 250 \times 0.86 \times 0.14 = 30.1$	M1	Standardising, with or without cc, must have sq rt in denom
$P(X > 210) = 1 - \mathcal{O}\left(\frac{210.5 - 215}{\sqrt{30.1}}\right)$	M1	Continuity correction 210.5 or 209.5 only
$= \mathcal{D}(0.820)$	M1	Correct region (> 0.5) ft their mean
= 0.794	A1 [5]	Correct answer

54	(i)	P(2 < X < 12) = 1 - P(0, 1, 2, 12)	M1		Using binomial with ${}_{12}\mathrm{C}_{\text{something}}$ and powers summing to 12, $\Sigma p = 1$
		$= 1 - (0.35)^{12} - (0.65)(0.35)^{11}_{12}C_1 - (0.65)^2(0.35)^{10}_{12}C_2 - (0.65)^{12}$	A1		Correct unsimplified answer
		= 1 - 0.0065359			
		= 0.993	A1	[3]	Accept 0.994 from correct working only
	(ii)	$1 - (0.87)^n > 0.95$	M1		Equality or inequality in (0.87 or 0.78 or 0.35), power n or $n - 1$, 0.95 or 0.05
		$0.05 > (0.87)^n$	M1		Attempt to solve an equation with a power in (can be implied)
		n = 22	A1	[3]	Correct answer

TYPE 4 Advanced Mix

1 (i) $\bar{x} = 375.3$ $\sigma^{2}_{n-1} = 8.29$	B1 M1 A1	3	For correct mean (3.s.f) For legit method involving <i>n</i> -1, can be implied For correct answer
(ii) $p = 0.19$ or equiv.	B1		For correct p
$0.19 \pm 2.055 \times \sqrt{\frac{0.19 \times 0.81}{200}}$	M1		For correct form $p \pm z \times \sqrt{\frac{pq}{n}}$ either/both sides
V 200	B1		For z = 2.054 or 2.055
0.133 < <i>p</i> < 0.247	A1	4	For correct answer

3 (i)	z = 0.674 or 0.675 allow 0.67 to 0.675	B1	For correct z, can be + or -
	$\frac{52 - \mu}{5} = 0.674$	M1	For an equation relating 52, 5, μ and any $z \neq 0.5987$ or 0.7734 ish
	$\mu = 48.6$	A1	For correct answer
(ii)	$z_1 = \frac{40 - 48.63}{5} = -1.726$	M1	For standardising 40 or 46, 5 or $\sqrt{5}$ in denom or 5^2 with their mean, no cc
	$z_2 = \frac{46 - 48.63}{5} = 0.526$		
	prob = 0.9578 – 0.7005 = 0.2573	M1	For subtracting two probs consistent with their mean ie usually Φ_1 - Φ_2 or
			$(1 - \Phi_1) - (1 - \Phi_2)$ but could be of type $\Phi_1 - (1 - \Phi_2)$ if their mean is in between 40 and 46
	(0.2573) ⁴	M1	For raising their answer above to a power 4
	= 0.00438 or 4.38 x 10 ⁻³ accept 0.00449 x 10 ⁻³ NB 0.0045 gets A0 and RE #1	A1 ft 4	For correct answer

6 (i) z ₁ = 0.02/0.15 = 0.1333	M1		For standardising one value, no cc
$z_2 = -0.08/0.15 = -0.5333$	M1		For standardising the other value, no cc. SR ft on no sq rt
area= Φ (0.1333) – Φ (-0.533) = Φ (0.1333) – [1 - Φ (0.5333)]	M1		For finding correct area (i.e. two Φs - 1)
= 0.5529 + 0.7029 - 1 = 0.256	A1		For correct answer
Prob all $4 = (0.256)^4 (0.00428 \text{ to } 0.00430)$	A1ft	[5]	For correct answer, ft from their (i), if $p<1$, allow 0.0043
(ii)z = ± 1.282 or 1.28 or 1.281	В1		For correct z, + or - or both
$\pm 1.282 = \frac{b}{0.15}$	M1		For seeing an equation involving + or - of their <i>z</i> , <i>b</i> , 0.15 (their <i>z</i> can only be 0.842 or 0.84 or 0.841)
limits between 1.71 and 2.09	A1ft	[3]	both limits needed, ft 1.77 to 2.03 on 0.842 only

7 (i) $1.282 = (5130-\mu)/40.6$	B1 M1		For \pm 1.282 seen, or 1.28, 1.281, not 1.29 or 1.30 For standardising, with or without sq rt, squared,
$\mu = 5080 \ (5078)$ rounding to 5080	A1		no cc For correct answer
(ii) $P(<5000) = \Phi[(5000-5078)/40.6]$ = $\Phi(-1.921)$ = $1 - 0.9727$ = 0.0273 or 2.73%	M1 M1 A1		For standardising, criteria as above, can include cc For correct area found using tables ie < 0.5ft on wrong (i) For correct answer, accept 0.0274
(iii) $\mu = 60$, var = 54 P(fewer than 65) = Φ (64.5 – 60) / $\sqrt{54}$ = Φ (0.6123)	B1 M1 M1		For 60 and 54 seen (could be sd or variance) For using 64.5 or 65.5 in a standardising process For standardising, must have $\sqrt{\text{(their 54)}}$ in denom
= 0.730 accept 0.73	A1	4	For correct answer

8 (i) $1.645 = \frac{50 - 38}{\sigma}$ $\sigma = 7.29$	BI MI AI 3	Using z = +/- 1.645 or 1.65 Equation with 38. 50, o and a recognisable z-value Correct answer
(ii) $z = \frac{30-38}{the\bar{t}r\sigma} (=-1.097)$ $P(z < 30) = 1 + \Phi (1.097)$ = 1 - 0.3637 = 0.136	MI MI AI 3	Standardising, no cc Finding correct area is < 0.5 Correct answer
(iii) 1 – (0.95) ⁹ – 0.370	BI BI 1	(0.95) ⁹ seen ! correct answer

10 (i) heights, weights, times etc of somethin	gB1	1	Any sensible set of data, must be qualified
(ii) $z = 0.64 = \frac{\mu - 10}{\sqrt{21}}$ $\mu = 12.9$	B1 M1	3	$z=\pm0.64$ seen equation relating 10, $\sqrt{21}$, 21, μ and their z or 1 – their z, (must be a recognisable z value ie not 0.77) correct answer
(iii) $z = \frac{22 - 12.9}{\sqrt{21}}$ = 1.986	M1		standardising, with or without sq rt, no cc, must be their mean
$P(X > 22) = 1 - \Phi(1.986)$ = 1 - 0.9765	M1ft		correct area ie < 0.5, ft on their mean >22
$= 0.0235$ $300 \times 0.0235 = 7.05$ answer = 7	M1 A1	4	mult by 300 correct answer, accept 7 or 8 must be integer

14 (i) $z = \pm 1.68$	B1		Number rounding to 1.68 seen
$z = \frac{5.5 - 4.5}{\sigma}$	M1		Standardising and attempting to solve with their z ,; must be z value, no cc, no σ^2 , no $\sqrt{\sigma}$
$\sigma = 0.595 \text{ accept } 25/42$	A1	3	Correct answer
(ii) $z_1 = \frac{3.8 - 4.5}{0.5952} = -1.176$ $z_2 = \frac{4.8 - 4.5}{0.5952} = 0.504$ prob = $\Phi(0.504) - (1-\Phi(1.176))$ = $0.6929 - (1-0.8802)$	M1 A1ft M1		For standardising 3.8 or 4.8, mean 4.5 not 5.5, their σ or $\sqrt{\sigma}$ or σ^2 in denom One correct z-value, ft on their σ Correct area ie $\Phi_1 + \Phi_2 - 1$ or $\Phi_1 - \Phi_2$ if μ taken to be 5.5
= 0.573	A1	4	Correct answer only

		7	D1		10.674
16 ((i)	$-0.674 = \frac{7-\mu}{2.6}$	B1		± 0.674 seen only
		2.6	M1		Standardising must have a recognisable z-
					value, no cc and 2.6
			M1		For solving their equation with
					recognisable z-value, μ and 2.6 not
					1 - 0.674 or 0.326, allow cc
		$\mu = 8.75$	A 1	4	Correct answer
(ii	i)	$P(X > 6.2) = P\left(z > \frac{6.2 - 6.5}{2.6}\right)$	M1		Standardising, no cc on the 6.2
		= P(z > -0.1154)	M1		prob > 0.5
		= 0.546	A1	3	Correct answer

27	(i)	$P(X=2)) = (0.25)^2 \times (0.75)^6 \times {}^{8}C_2$	M1		3 term binomial expression involving ⁸ C something, powers summing to 8
		= 0.311	A1 [[2]	correct answer
	(ii)	$12 \times 0.25 = 3, < 5 \text{ so not possible}$	B1 [[1]	
	(iii)	mean = 40×0.25 (= 10) variance = $40 \times 0.25 \times 0.75$ (= 7.5)	B1		40×0.25 and $40 \times 0.25 \times 0.75$ seen, o.e.
		$P(X \text{ at least } 13) = P\left(z > \frac{12.5 - 10}{\sqrt{7.5}}\right)$	M1		standardising, \pm , with or without cc, must have sq rt
I		$= P(z > 0.913)$ $= 1 - \Phi(0.913)$	M1 M1		continuity correction 12.5 or 13.5 correct area, i.e. < 0.5 legit
		= 1 - 0.8194 = 0.181	A1	[5]	correct answer
			-		
31	(i)	$0.431 = \frac{135 - \mu}{\sigma}$	B1		One ±z-value correct, accept 0.430
			B1		A second $\pm z$ -value correct
		$-0.842 = \frac{127 - \mu}{\sigma}$	M1		Solving two equations relating μ , σ , 135,
					127 and their <i>z</i> -values (must be <i>z</i> -values)
		$\sigma = 6.29$	A1		Correct answer accept 6.28
			A1		Correct answer
		μ = 132		5]	Correct answer
	(ii)	$P(X < 145) = P\left(z < \frac{145 - 132.3}{6.284}\right)$	M1		Standardising no sq rt no cc
		=P(z < 2.023)	M1		Correct use of normal tables
		= 0.978	A1		Answer rounding to 0.978 or 0.979
				3]	2007/
	(;;;)	p = 1/3			
	(111)	P = 1/3 P(at least 2) = 1 – P(0, 1)	M1		Binomial expression with powers summing to 8 and ${}^{8}C_{\text{something.}}$ (any p)
		= 1 - [$(2/3)^8 + {}^8C_1 \times (1/3)^1 (2/3)^7$]	A1		Correct unsimplified expression
		= 0.805	A1	21	Answer rounding to 0.805

[3]

34	(i)	Zotoc: $z = \frac{367 - 320}{21.6} = 2.176$ Ganmor: $z = \frac{367 - 350}{7.5} = 2.267$	M1	Standardising either car's fuel, no cc, no sq, no $\sqrt{}$
		P(Zotoc) = 0.985	A1	Correct answer
		P(Ganmor) = 0.988	A1 [3]	Correct answer
	(ii)	z = 0.23	B1	± 0.23 seen
		$0.23 = \frac{x - 320}{21.6}$	M1	Standardising either car, no cc, no sq rt, no sq
		x = 324.968	Mlind	320 + d - 320 i.e. just <i>d</i> on num
		d = 4.97	A1 [4]	Correct answer, –4.97 gets A0

37 (i) $z = 0.807$	B1	0.807 seen
$0.807 = \frac{10 - 8.2}{\sigma}$	M1	standardising, must have σ , no sq rt, no cc and a z-value
s = 2.23	A1 [3]	correct answer
(ii) $P(> 1 \text{ min from mean}) = P(\text{mod } z > \frac{1}{2.23})$	M1	standardising, their sd, no cc and adding two areas
= P(z > 0.4484) = (1 - 0.6729) × 2	M1	using $1 - \Phi(z)$
= 0.654	A1 [3]	correct answer

(iii) $P(> 2 \text{ longer}) = 1 - P(0, 1, 2 \text{ longer})$	M1	binomial term ${}^{6}C_{x}p^{x}(1-p)^{6-x}$
= 1 - { $(0.79)^6$ + ${}^6C_1(0.21)(0.79)^5$ + ${}^6C_2(0.21)^2(0.79)^4$ }	A1	correct unsimplified answer
= 0.112	A1 [3]	correct answer
(iv) $\mu = 35 \times 0.5 = 17.5$ $\sigma^2 = 35 \times 0.5 \times 0.5 = 8.75$	В1	17.5 and 8.75 or $\sqrt{8.75}$ seen
$P(X < 16) = \Phi\left(\frac{15.5 - 17.5}{\sqrt{8.75}}\right)$	M1 M1	standardising, with or without cc, must have sd in denom continuity correction 15.5 or 16.5 only, seen
$= 1 - \Phi(0.676)$ = 1 - 0.7505	M1	using $1 - \Phi(z)$
= 0.2495 (0.249 or 0.250)	A1 [5]	correct answer
OR ${}^{35}C_00.5^00.5^{35} + {}^{35}C_10.5^10.5^{34} + {}^{35}C_20.5^20.5^{33} +$ = $8582372584/2^{35} = 0.250$	M1 A1 M1 A1 A1	binomial term ${}^{35}C_x0.5^x0.5^{35-x}$ at least 2 correct terms ($x \triangleright 0$) seen summing 16 or 17 terms correct expression correct answer

43 (i) $z = -1.282$	B1	±1.282 or ±1.281 seen
$P(x < 20) = P\left(z < \frac{20 - \mu}{0.8}\right)$	M1	Standardising, no cc, must have 0.8, must be a <i>z</i> -value
$-1.282 = \frac{20 - \mu}{0.8}$ $\mu = 21.0 \text{ cm } (21.0256)$	A1 [3]	Correct answer
μ 21.0 cm (21.0230)	Ai [5]	Correct answer
(ii) $P(21.5 < x < 22.5)$		
$= P\left(\frac{21.5 - 21.03}{0.8}\right) < z < \left(\frac{22.5 - 21.03}{0.8}\right)$	M1	2 attempts at standardising with their mean, must have 0.8 oe
$= \Phi(1.8375) - \Phi(0.5875)$ = 0.9670 - 0.7217	M1	Subtracting 2 Φs ft their mean
= 0.2453	A1	Needn't be entirely accurate, rounding to 0.24 or 0.25
P(<2) = P(0) + P(1)		
$= (0.7547)^4 + (0.2453)^1 (0.7547)^3 {}^{4}C_1$	M1	Binomial term with ${}^{4}C_{r}p^{r}(1-p)^{4-r}$ seen
	M1	$r \neq 0$, any $p < 1$ Bin expression for P(0) + P(1), any $p < 1$
= 0.746	A1 [6]	Accept 3sf rounding to 0.75

44 (i) $z = \pm 1.751$	B1		Correct z
$\pm \frac{20 - \mu}{\mu/4} = 1.751$	M1		Standardising no cc, no sqrt, must be a <i>z</i> -value
$\mu = 13.9$	A1	[3]	Correct answer
(ii) $P(X < 10) = P(z < \pm \frac{10 - 13.91}{13.91/4})$	M1		Standardising attempt with 10, their μ and their $\mu/4$, no cc, no sqrt
= P(z < -1.124) $= 1 - 0.8694$	M1		" $\Phi_1 + \Phi_2 - 1$ ", ft their mean
-1 - 0.8694 = 0.131			
P(10 < X < 20) = 0.96 - 0.131 = 0.829 or 0.830	A1	[3]	Correct answer
(iii) $\mu = 250 \times 0.96 = 240$ $\sigma^2 = 250 \times 0.96 \times 0.04 = 9.6$	B1		240 and 9.6 or sq rt 9.6 seen unsimplified
$P(\ge 235) = 1 - \Phi\left(\pm \frac{234.5 - 240}{\sqrt{9.6}}\right)$	M1 M1		Standardising, with or without cc, must have sq rt in denom Continuity correction 234.5 or 235.5 only
$=\Phi(1.775)$	M1		Correct region > 0.5, ft their mean
= 0.962	A1	[5]	Correct answer

45 (i) $(0.75)^n < 0.06$ $n > 9.78$	M1* M1dep*	Equation or inequality with 0.75 ⁿ and 0.06 or 0.94 seen Attempt at solving by trial and error (can be implied) or using logarithms correctly
n = 10	A1 [3]	Correct answer
(ii) $E(X) = 14 \times 0.75 \text{ or } 10.5$ $\text{Try P}(10) = {}^{14}\text{C}_{10}(0.75)^{10}(0.25)^4 = 0.220$ $P(11) = {}^{14}\text{C}_{11}(0.75)^{11}(0.25)^3 = 0.240$	M1	Evaluating binomial probability for an integer value directly above or below their mean Evaluating the other binomial probability
(mode is) 11	A1 [3]	Correct answer
OR	M1 M1 A1	Evaluating binomial $P(n)$ and $P(n + 1)$ Evaluating binomial $P(10)$, $P(11)$ and $P(12)$ Correct answer

(iii) $P(> 11)$ = ${}^{14}C_{12}(0.75)^{12}(0.25)^2 + {}^{14}C_{13}(0.75)^{13}(0.25)^1 + (0.75)^{14}$	M1 M1	A binomial term of the form ${}^{14}C_n p^n (1-p)^{14-n}$ seen, $n \ne 0$ or 14 Summing binomial P(12, 13, 14) or P(11, 12, 13, 14,)
= 0.281	A1	Correct answer 0.280 – 0.282
$P(3) = {}^{5}C_{3} (0.2811)^{3} (0.7189)^{2}$	M1	A binomial term of the form ${}^5C_3p^3(1-p)^2$ seen, any p
= 0.115	A1 [5]	Correct answer