به نام خدا

دانشگاه تهران پردیس دانشکدههای فنی دانشکده برق و کامپیوتر

پزدازش زبان های طبیعی

CA5

فاطمه سليقه

11-1914-8

اردیبهشت ماه ۱۳۹۹

سوال ۱ تشخیص اسپم

برای اجرای این بخش از google colab استفاده شده و روی GPU اجرا شده است .

در ابتدا داده ها را از روی فایل spam.csv خوانده که به صورت زیر است:

	v1	v2	Unnamed: 2	Unnamed: 3	Unnamed: 4
575	spam	You have won ?1,000 cash or a ?2,000 prize! To	NaN	NaN	NaN
1221	ham	Prakesh is there know.	NaN	NaN	NaN
3044	ham	Hello, yeah i've just got out of the bath and \dots	NaN	NaN	NaN
2849	ham	She's fine. Good to hear from you. How are you	NaN	NaN	NaN

سپس spam و ham را به 0,1 map می کنیم .

داده ها را به دو بخش train و test تقسیم می کنیم .

استفاده از bert

استفاده مي كنيم .

حال جملات و label های train و test را در ارایه های جداگانه قرار می دهیم . سپس لازم است تا داد ها را tokenize کنیم به همین منظور از تابع bertTokenizer.from_pretrained' استفاده می کنیم و با توجه به لینک مدل pretrained برای bert از مدل 'bert-large-cased'

tokenizer = BertTokenizer.from_pretrained('bert-large-cased', do_lower_case=True)

: موارد زیر را برای تک تک جملات انجام می دهیم:

- ۱. اضافه نمودن [CLS] و [SEP] به جملات
- ۲. تمام جملات باید دارای ماکزیمم اندازه ۱۲۸ باشند بنابراین عمل padding را برای جملات
 کوتاهتر و truncate را برای جملات بلندتر انجام می دهیم .
 - تمام جملات را به صورت کلمه tokenize می کنیم .
 - ۴. تمام جملات را encode می کنیم .

```
tokenizer.encode_plus(
    sent,
    add_special_tokens = True,
    max_length = 128,
    pad_to_max_length = True,
    return_attention_mask = True,
    return_tensors = 'pt',
)
```

حال یک لایه از bert را تعریف می کنیم . که در آن ابتداbert ، hub را به صورت زیر تعریف می کند :

```
self.bert = hub.Module(
    'https://tfhub.dev/google/bert_cased_L-12_H-768_A-12/1',
    trainable=self.trainable,
    name="{}_module".format(self.name)
)
```

سیس ماژول bert از روش زیر داده ها را دریافت می کند و خروجی مورد نظر را می دهد :

```
inputs = [K.cast(x, dtype="int32") for x in inputs]
input_ids, input_mask, segment_ids = inputs
bert_inputs = dict(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids)
result = self.bert(inputs=bert_inputs, signature="tokens", as_dict=True)["pooled_output"]
```

همان طور که می بینیم ورودی باید مجموعه ای از input_mask و input_ids و segment_ids باشد . که با استفاده از تابع tokenizer.encode_plus از جملات ورودی ایجاد می شود .

Bert دو نوع خروجی دارد pooled_output و pooled_output دارد . که pooled_output بازنمایی از sequence_output بازنمایی از تک تک token های جمله ورودی می باشد .

که ما در این مسئله چون می خواهیم جملات را کلاسبندی کنیم از pooled_output استفاده می کنیم .

شبکه به صورت زیر طراحی شده است:

```
bert_output = BertLayer(n_fine_tune_layers=5)(bert_inputs)
dense = tf.keras.layers.Dense(768, activation='relu')(bert_output)
pred = tf.keras.layers.Dense(1, activation='sigmoid')(dense)
```

الف)

۱۰ ایپاک :

AUC: 0.9425278515687401 accuracy: 0.9791304347826087 precision: 0.9685534591194969 recall: 0.8901734104046243 F1: 0.927710843373494

<matplotlib.legend.Legend at 0x7f29aae91fd0>

۲۰ ایپاک :

AUC : 0.9454180249791445

accuracy: 0.98 precision: 0.96875

recall: 0.8959537572254336 F1: 0.9309309309309309

<matplotlib.legend.Legend at 0x7f29a3e5e2e8>

۵۰ ایپاک :

<matplotlib.legend.Legend at 0x7f39857f32b0>

خیر تعداد تکرار بیشتر تاثیر زیادی در بهبود دقت طبقه بند ندارد . تنها ۱ درصد ممکن است تغییر ایجاد کند .

ب) بدون اعمال پیش پردازش های لازم:

AUC: 0.9659511077611532 accuracy: 0.9879931389365352 precision: 0.9813664596273292 recall: 0.9349112426035503 F1: 0.95757575757575

<matplotlib.legend.Legend at 0x7f2410f75d68>

عدم استفاده از پیش پردازش عملکرد را بهتر می کند . استفاده از پیش پردازش باعث باعث ایجاد نوسان در loss می شود . اما عدم استفاده از پیش پردازش باعث کاهش منظم loss شده و دقت و سایر شاخص ها را بهتر می کند . به نظرم علت آن می تواند باشد که همون طور که در درس گفته شده بین کلمات ورودی و خروجی رابطه وجود دارد و حتی حذف stop word ها هم می تواند مفهوم جمله را تغییر دهد .

استفاده از elmo

برای کار با ماژول elmoبه صورت زیر این ماژول را تعریف می کنیم:

```
url = "https://tfhub.dev/google/elmo/2"
embed = hub.Module(url)
```

حال برای استفاده از این ماژول به صورت زیر عمل می کنیم

```
embed(tf.squeeze(tf.cast(x, tf.string)),
    signature="default",
    as_dict=True)["default"]
```

که داده ها را به string تبدیل می کند و چون signature از نوع "default" است ، ورودی را بره صورت tokenize یک sequence دریافت می کند اما اگر signature از نوع "token" باشد وردی را به صورت tokenize شده دریافت می کند .

این مازول ورودی های شبکه را دریافت می کند و خروجی های embed شده با اندازه ۱۰۲۴ می دهد . سپس این خروجی ها را به عنوان ورودی به یک لایه feedforward می دهیم که به صورت زیر تعریف شده است :

```
input_text = Input(shape=(1,), dtype=tf.string)
embedding = Lambda(ELMoEmbedding, output_shape=(1024, ))(input_text)
dense = Dense(1024, activation='relu')(embedding)
pred = Dense(2, activation='softmax')(dense)
model = Model(inputs=[input_text], outputs=pred)
ada = keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.9, beta_2=0.999, amsgrad=False)
model.compile(loss='categorical_crossentropy', optimizer=ada, metrics=['accuracy'])
```

الف)

۱۰ ایپاک :

AUC: 0.9593407915313364 accuracy: 0.9725906277630415 precision: 0.8674698795180723 recall: 0.9411764705882353 F1: 0.9028213166144202

<matplotlib.legend.Legend at 0x7f3e6fab2eb8>

۲۰ ایپاک :

AUC: 0.9576065600064156 accuracy: 0.9743589743589743 precision: 0.8827160493827161 recall: 0.934640522875817 F1: 0.9079365079365078 <matplotlib.legend.Legend at 0x7f3e6e646c18>

۵۰ ایپاک :

AUC: 0.9489354023818115 accuracy: 0.9832007073386384 precision: 0.971830985915493 recall: 0.9019607843137255 F1: 0.9355932203389831

<matplotlib.legend.Legend at 0x7f3e6e1c7b70>

خیر تعداد تکرار بیشتر تاثیر زیادی در بهبود دقت طبقه بند ندارد . تنها ۱ درصد ممکن است تغییر ایجاد کند .

ب) بدون اعمال پیش پردازش های لازم :

AUC: 0.977034259823534

accuracy: 0.9906779661016949 precision: 0.9655172413793104 recall: 0.958904109589041

F1: 0.9621993127147767

<matplotlib.legend.Legend at 0x7f3e6de72fd0>

عدم استفاده از پیش پردازش عملکرد را بهتر می کند . استفاده از پیش پردازش باعث باعث ایجاد نوسان در loss می شود . اما عدم استفاده از پیش پردازش باعث کاهش منظم loss شده و دقت و سایر شاخص ها را بهتر می کند . به نظرم علت آن می تواند باشد که همون طور که در درس گفته شده بین کلمات ورودی و خروجی رابطه وجود دارد و حتی حذف stop word ها هم می تواند مفهوم جمله را تغییر دهد .

ج)

در تشخیص اسپم precidion مهم تر از recall است. در واقع در معیار precision می گوییم که چه تعداد از مواردی را که اسپم تشخیص داده ایم واقعا اسپم هستند و در recall می گوییم که چه تعداد از آن هایی که واقعا اسپم بوده اند را تشخیص داده ایم . بنابراین معیار precision مهم تر است زیرا اگر تعداد زیادی پیام هایی را که اسپم نیستند اسپم تشخیص دهیم ممکن است پیام مهمی باشند و اعتماد کاربر از بین برود .

سوال ۲ تحلیل احساس

استفاده از bert

۱۰ ایپاک :

AUC : 0.8200460829493088

accuracy: 0.8198

precision : 0.8431538787621874
recall : 0.7892857142857143
F1 : 0.8153310104529617

<matplotlib.legend.Legend at 0x7f2591195320>

۲۰ ایپاک :

AUC : 0.8230926779313876

accuracy: 0.8234

precision : 0.8025878003696858
recall : 0.8615079365079366
F1 : 0.8310047846889952

<matplotlib.legend.Legend at 0x7f25923d2400>

۵۰ ایپاک :

AUC : 0.8114375320020483

accuracy: 0.812

precision : 0.7758379888268156
recall : 0.8817460317460317
F1 : 0.825408618127786

<matplotlib.legend.Legend at 0x7f259442b390>

خیر تعداد تکرار بیشتر تاثیر زیادی در بهبود دقت طبقه بند ندارد . تنها ۱ درصد ممکن است تغییر ایجاد کند .

ب) بدون انجام پیش پردازش های لازم:

AUC: 0.8469784785960367

accuracy: 0.847

precision : 0.8415064731267163
recall : 0.8559457302474063
F1 : 0.8486646884272997

<matplotlib.legend.Legend at 0x7f2585f1fa58>

عدم استفاده از پیش پردازش عملکرد را بهتر می کند . استفاده از پیش پردازش باعث باعث ایجاد نوسان در loss می شود . اما عدم استفاده از پیش پردازش باعث کاهش منظم loss شده و دقت و سایر شاخص ها را بهتر می کند . به نظرم علت آن می تواند باشد که همون طور که در درس گفته شده بین

کلمات ورودی و خروجی رابطه وجود دارد و حتی حذف stop word ها هم می تواند مفهوم جمله را تغییر دهد .

elmo استفاده از

۱۰ ایپاک:

AUC : 0.8336172494695475

accuracy: 0.834

precision : 0.8192725909261342
recall : 0.8626135017765495
F1 : 0.8403846153846154

<matplotlib.legend.Legend at 0x7f20746ee2e8>

۲۰ اییاک :

AUC: 0.8363159596928168

accuracy: 0.8356

precision : 0.8800533096401599
recall : 0.7820765890248716
F1 : 0.8281772575250836

<matplotlib.legend.Legend at 0x7f2071b573c8>

۵۰ ایپاک:

AUC : 0.8214115002322757

accuracy: 0.821

precision : 0.8474936278674596 recall : 0.7882259976293955 F1 : 0.8167860798362333

<matplotlib.legend.Legend at 0x7f7faaa2d128>

خیر استفاده از تعداد ایپاک بیشتر دقت را افزایش نمی دهد .

ب) بدون انجام پیش پردازش های لازم:

AUC: 0.812758613406519

accuracy: 0.8128

precision: 0.8142276422764227 recall: 0.8070104754230459 F1: 0.810602994738972

<matplotlib.legend.Legend at 0x7f969efdc898>

سوال ۳ امتیازی

سوال دوم :

elmo تشخیص اسپم با

با دولایه :

AUC : 0.977034259823534

accuracy: 0.9906779661016949 precision: 0.9655172413793104 recall: 0.958904109589041 F1: 0.9621993127147767

<matplotlib.legend.Legend at 0x7f3e6ce7da90>

با پنج لایه:

AUC: 0.9770740043983996 accuracy: 0.985593220338983 precision: 0.9215686274509803 recall: 0.9657534246575342

F1 : 0.94314381270903

<matplotlib.legend.Legend at 0x7f3e6cdcf978>

با ۷ لایه:

AUC: 0.9727219734506241 accuracy: 0.9779661016949153 precision: 0.8703703703703 recall: 0.9657534246575342 F1: 0.9155844155844156

<matplotlib.legend.Legend at 0x7f3e6c0c4ef0>

اگر تعداد لایه ها را از یک به دو افزایش دهیم . تماممعیار ها افزایش پیدا کرده و بهتر عمل می شود اما با افزایش بیشتر تعداد لایه ها نسبت به دو لایه تفاوت زیادی ندارد . حتی ممکن است بدتر عمل شود .

تشخیص اسپم با استفاده از bert:

با دو لایه:

AUC: 0.9758298564332049 accuracy: 0.9922813036020584 precision: 0.9938271604938271 recall: 0.9526627218934911 F1: 0.972809667673716

<matplotlib.legend.Legend at 0x7f2030588b70>

با ۵ و ۷ لایه امکان اجرا وجود نداشت و با خطای حافظه مواجه می شد .

تحلیل احساس با استفاده از bert

با دو لايه:

AUC: 0.7666064741177644

accuracy: 0.7716

precision: 0.7091015510681885 recall: 0.9424348502528199 0.8092852371409485

<matplotlib.legend.Legend at 0x7f258be42cc0>

با ۵ لایه:

AUC: 0.828522441017449 accuracy: 0.8284 precision: 0.784375

recall: 0.9050480769230769 F1: 0.8404017857142858

<matplotlib.legend.Legend at 0x7f40ac642160>

با ۷ لایه:

AUC : 0.7948557948308349

accuracy: 0.7946

precision: 0.7227782832878374 recall: 0.9547275641025641 F1: 0.8227170723286725

<matplotlib.legend.Legend at 0x7f40ac680278>

نتیجه ای مشاهده شده است این است که افزایش تعداد لایه ها لزوما باعث افزایش دقت و بهتر شدن شبکه نمی شود .