Metody numeryczne – laboratorium nr 12

Programowanie liniowe – metoda simpleks

Zadanie 1

Napisz skrypt, który będzie wyświetlał na ekranie kolejne tablice, które powstają podczas rozwiązywania zadania programowania liniowego.

Dane wejściowe:

- zmienna A współczynniki ograniczeń,
- zmienna B wyrazy wolne z ograniczeń,
- zmienna Z znaki nierówności,
- zmienna F współczynniki funkcji celu.

Po każdej tablicy powinna być wyświetlana informacja, czy to ostatnia tablica czy nie.

Jeśli to ostatnia tablica, należy wyświetlić następującą odpowiedź:

○ Maksymalna wartość funkcji celu wynosi ..., dla x1 = ..., x2 =, x3 = ...

W odpowiedzi uwzględniamy tylko tyle niewiadomych, ile było w treści zadania, nie wyświetlamy wartości zmiennych dopełniających ani zmiennych sztucznych.

Kolejne etapy algorytmu:

- 1. Sprawdź czy B jest dodatnie (opcja).
- 2. Przygotuj postać kanoniczną i wprowadź związane z nią zmiany w danych wejściowych (opcja).
- 3. Wprowadź zmienne sztuczne i dokonaj stosownych zmian w danych wejściowych (opcja).
- 4. Określ zmienne bazowe: zbuduj wektor Wb w którym przechowasz indeksy zmiennych bazowych (opcja).
- 5. Znajdź Cb dla wektorów bazowych.
- 6. Oblicz wartość funkcji celu: $F0 = Cb^T * B$
- 7. Oblicz wiersz wskaźników: $WW = Cb^T * a_i C_i$
- 8. Sprawdź czy to ostatnia tablica.
 - Jeśli TAK to wypisz na ekranie wartość funkcji celu i wartości dla poszukiwanych zmiennych
 - b. Jeśli NIE to wypisz na ekranie komunikat "To nie jest ostatnia tablica"
 - i. Znajdź kolumnę kluczową (najmniejsza wartość w wierszu wskaźników)
 - ii. Znajdź wiersz kluczowy (obliczenie wskaźnika pomocniczego B/WK -> nie dzielimy przez zero i przez wartość ujemną)
 - iii. Znajdź element rozwiązujący
 - iv. Dokonaj zmiany wektorów bazowych
 - v. Uaktualnij współczynniki Cb
 - vi. Podziel wiersz kluczowy przez element rozwiązujący

- vii. Dokonaj zerowania w elementów w kolumnie kluczowej poza wierszem kluczowym
- viii. Przejdź do punktu 6.

Dane testowe	
Dla wersji podstawowej	Dla wersji z rozszerzeniami
A = [2 1 1 0 0; 3 3 0 1 0; 2 0 0 0 1]; B = [10; 24; 8]; Z = [-1; -1; -1];	A = [2 1; 3 3; 2 0]; B = [10; 24; 8];
E = [300, 200, 0, 0, 0]; $E = [3, 4, 5]$	Z = [-1; -1; -1]; F = [300, 200];
A = [1 2 1 0 0; 1 -2 0 1 0; 2 2 0 0 1]; B = [8;2;10]; Z = [-1;-1;-1]; F = [2, 3, 0, 0, 0];	A = [1 2; -1 2;2 2]; B = [8;-2;10]; Z = [-1;1;-1]; F = [2,3];
Wb = [3, 4, 5] A = [2 1 -1 0 1 0; 3 3 0 1 0 0; 2 0 0 0 0 1]; B = [10; 24; 8]; Z = [-1; -1; 0]; F = [300, 200, 0, 0, -10^6, -10^6];	A = [-2 -1; 3 3; 2 0]; B = [-10; 24; 8]; Z = [-1; -1; 0]; F = [300, 200];
Wb = [5, 4, 6]	