

Bidirectional LSTM

☑ Edit

A **Bidirectional LSTM**, or **biLSTM**, is a sequence processing model that consists of two LSTMs: one taking the input in a forward direction, and the other in a backwards direction. BiLSTMs effectively increase the amount of information available to the network, improving the context available to the algorithm (e.g. knowing what words immediately follow *and* precede a word in a sentence).

Image Source: Modelling Radiological Language with Bidirectional Long Short-Term Memory Networks, Cornegruta et al

Papers

Search for a paper or author

Paper		Cod	le Resu	lts		Date	Stars 🕈
Semi-Supervised Sequence Modeling with Cross-View Train Christopher D. Manning, Quoc V. Le, Kevin Clark, Minh-Thang Luong	ing	G	00	<u>0</u>	22 Sep	2018	74,681
Learning and Evaluating Contextual Embedding of Source Conditya Kanade, Gogul Balakrishnan, Kensen Shi, Petros Maniatis	ode	G) –		21 Dec	2019	25,954
Sequencer: Deep LSTM for Image Classification Masato Taki, Yuki Tatsunami		G) –		4 May	/ 2022	21,869
Hierarchical Multi-Task Natural Language Understanding fo domain Conversational AI: HERMIT NLU Oliver Lemon, Emanuele Bastianelli, Andrea Vanzo	r Cross-	G) –		2 Oct	2019	15,047
Named Entity Recognition with Bidirectional LSTM-CNNs Eric Nichols, Jason P. C. Chiu		G	00	<u>0</u>	26 Nov	/ 2015	12,193
Deep contextualized word representations Mohit Iyyer, Matt Gardner, Matthew E. Peters, Kenton Lee, Luke Zettlem Christopher Clark, Mark Neumann	oyer,	G		<u>0</u>	15 Feb	2018	12,193
Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions Yu Zhang, Zhifeng Chen, Zongheng Yang, Rif A. Saurous, Ron J. Weiss, Ru Pang, Yonghui Wu, Jonathan Shen, Yuxuan Wang, Mike Schuster, Navdeel Yannis Agiomyrgiannakis, RJ Skerry-Ryan	_	G	00	<u>0</u>	16 Dec	2017	6,965
Massively Multilingual Sentence Embeddings for Zero-Shot Lingual Transfer and Beyond Holger Schwenk, Mikel Artetxe	Cross-	G		<u>0</u>	26 Dec	2018	3,156
JER: An Open-Source Toolkit for Pre-training Models Kiaoyong Du, Wei Lu, Hui Chen, Zhe Zhao, Tao Liu, Xin Zhao, Xi Chen, Qi Ju, Haotang Deng, Jinbin Zhang		G) –	- 12 Sep 2019		2,302	
Dual-path RNN: efficient long sequence modeling for time-c single-channel speech separation Zhuo Chen, Yi Luo, Takuya Yoshioka	lomain	G	00	<u>0</u>	14 Oct	2019	1,553
Showing 1 to 10 of 522 papers Previous	us 1	2	3 4		5	53	Next

Tasks

Task	Papers	Share
Sentiment Analysis	44	5.21%
Language Modelling	42	4.98%
General Classification	41	4.86%
Named Entity Recognition	39	4.62%
NER	31	3.67%
Text Classification	30	3.55%
Question Answering	26	3.08%
Dependency Parsing	20	2.37%
Natural Language Inference	18	2.13%

Usage Over Time

riangle This feature is experimental; we are continuously improving our matching algorithm.

Components

Component	Туре	☑ Edit
LSTM	Recurrent Neural Networks	

Categories

Contact us on: In hello@paperswithcode.com.

Papers With Code is a free resource with all data licensed under CC-BY-SA.

Terms Data policy Cookies policy from ✓ Meta Al