INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

1 - LÓGICA E MÉTODOS DE PROVA

- 1.1) Lógica Proposicional
- 1.2) Lógica de Primeira Ordem
- 1.3) Métodos de Prova

PROVA DE TEOREMAS

- Questões importantes na matemática:
 - quando é que um argumento matemático está correto?
 - que métodos podem ser usados para construir argumentos matemáticos?
- Um teorema é uma declaração (conjectura) que se pode mostrar que é verdadeira.
 - Também chamados de "proposições", "fatos" ou "resultados".
- Mostra-se que um teorema é verdadeiro com uma sequência de declarações que formam um argumento chamado de prova.

PROVA DE TEOREMAS & CC

- Os métodos de prova que veremos não servem apenas para provar teoremas matemáticos.
- Também possuem aplicações diretas em CC, como, por exemplo:
 - verificar a correção de programas
 - determinar se um sistema operacional é seguro
 - produzir inferências na área de Inteligência Artifical
 - mostrar a consistência das especificações de um sistema computacional
 - verificar a correção de protocolos (de rede, de segurança, etc...)
 - provar resultados teóricos em CC
 - **•** (...)

PROVA DE TEOREMAS

- Objetivo da Prova ou Demonstração:
 - estabelecer a verdade de um teorema
- A construção de provas exige métodos que derivem novas declarações a partir daquelas já conhecidas.

TEOREMAS NA LÓGICA PROPOSICIONAL

- Na Lógica Proposicional, teoremas são tautologias.
- **P** Teorema mais comum: $p \rightarrow q$
 - p e q são proposições compostas
 - p é a hipótese
 - q é a conclusão
- Técnicas usuais de prova:
 - tabelas-verdade
 - inviáveis para muitas variáveis proposicionais
 - dedução formal:
 - $p \rightarrow q$ só será teorema se for uma tautologia · (sempre que p for V, q também deverá ser)
 - $oldsymbol{ ilde{\rho}}$ neste caso, é possível deduzir q a partir de p

PROVAS

- As declarações utilizadas em uma prova podem incluir:
 - axiomas ou postulados:
 - proposições que assume-se que são verdadeiras
 - tautologias
 - "verdades evidentes"
 - teoremas já provados previamente
 - as hipóteses do teorema a ser provado
 - proposições derivadas das anteriores através de regras de inferência

REGRAS DE INFERÊNCIA

- Regras de inferência:
 - modos de "tirar conclusões" a partir de afirmações prévias
 - "amarram" os passos de uma prova
- Justificam os passos usados para mostrar que uma conclusão segue logicamente de um conjunto de hipóteses.

- Regra de inferência fundamental: modus ponens
 - **•** baseada na tautologia: $(p \land (p \rightarrow q)) \rightarrow q$
 - $m{ ilde{ ilde{p}}}$ escrita na forma: p p
 ightarrow q

 $\therefore q$

- hipóteses em uma coluna e conclusões sob uma barra
- o símbolo : significa "portanto"
- "se é conhecido que tanto uma implicação quanto sua hipótese são V, então a conclusão desta implicação é V".

Exemplo:

- Suponha que sejam verdadeiras:
 - a implicação: "Se fizer sol hoje, eu irei à praia."
 - e a sua hipótese: "Hoje o dia está ensolarado."
- Então, por modus ponens, segue que é verdadeira a conclusão da implicação:
 - "Eu irei à praia."

Exemplo:

- Assuma que é verdadeira a implicação:
 - "Se n > 3, então $n^2 > 9$ ".
- Então, se soubermos que n é maior do que 3, segue, por modus ponens, que:
 - " n^2 é maior do que 9."

- Tabela a seguir (=>):
 - outras importantes regras de inferência da Lógica Proposicional.
- Todas podem ser facilmente verificadas com tabelas-verdade.
- A seguir, exemplos de argumentos que utilizam estas regras.

Regra	Tautologia	Nome
$\therefore \frac{p}{p \vee q}$	p o (p ee q)	Adição
$\therefore \frac{p \wedge q}{p}$	$(p \land q) o p$	Simplifi cação
$\begin{array}{ c c c c c }\hline & p \\ & \vdots & \frac{q}{p \wedge q} \\ \hline \end{array}$	$((p) \land (q)) \to (p \land q)$	Conjunção
$\begin{array}{ c c }\hline p\\ p \to q\\ \therefore q\\ \end{array}$	$[p \land (p \to q)] \to q$	Modus Ponens
$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \neg p \end{array} $	$[\neg q \land (p \to q)] \to \neg p$	Modus Tollens
$\begin{array}{ c c }\hline p \to q \\ \frac{q \to r}{p \to r} \\ \therefore \overline{p \to r} \end{array}$	$[(p \to q) \land (q \to r)] \to (p \to r)$	Silogismo hipotético
$ \begin{array}{c c} p \lor q \\ \vdots & \frac{\neg p}{q} \end{array}$	$[(p \lor q) \land \neg p] \to q$	Silogismo disjuntivo
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$[(p \lor q) \land (\neg p \lor r)] \to (q \lor r)$	Resolução

■ Exemplo 1(/3): Determine qual regra de inferência é a base para o argumento: "Está nublado agora. Portanto, ou está nublado ou está chovendo agora."

Solução:

- Sejam as proposições:
 - p: "Está nublado agora."
 - q: "Está chovendo agora."
- Então este argumento tem a forma:

$$\therefore \frac{p}{p \vee q}$$

Ou seja, este argumento usa a regra da adição.

Exemplo 2(/3): Determine qual regra de inferência é a base para o argumento: "Está nublado e chovendo agora. Portanto, está nublado agora."

Solução:

- Sejam as proposições:
 - p: "Está nublado agora."
 - q: "Está chovendo agora."
- Então este argumento tem a forma:

$$\therefore \frac{p \wedge q}{p}$$

Ou seja, este argumento usa a regra da simplificação.

INFERÊNCIAS NA LÓGICA PROPOSICIONAL

- Exemplo 3(/3): Determine qual regra de inferência é usada no argumento: "Se chover hoje, então hoje nós não teremos churrasco. Se não tivermos churrasco hoje, então teremos churrasco amanhã. Portanto, se chover hoje, então nós teremos churrasco amanhã."
 - Sejam as proposições:
 - p: "Vai chover hoje."
 - q: "Não teremos churrasco hoje."
 - r: "Teremos churrasco amanhã."
 - Então este argumento tem a forma:

$$p \to q$$

$$\frac{q \to r}{p \to r}$$

Ou seja, este é um silogismo hipotético.

- Em Lógica Proposicional, um argumento tem uma forma válida se:
 - sempre que as hipóteses são V, a conclusão também é V
- Logo, mostrar que q segue logicamente das hipóteses p_1, p_2, \ldots, p_n :
 - é o mesmo que mostrar que é verdadeira a implicação:

$$p_1 \wedge p_2 \wedge \cdots \wedge p_n \to q$$

- Quando há várias premissas, várias regras de inferência podem ser necessárias para mostrar que um argumento é válido.
- Nota:
 - cada argumento deve ser mostrado passo a passo
 - a razão para cada passo deve ser declarada explicitamente.

■ Exemplo 1(1/2): Mostre que as hipóteses "Não está fazendo sol esta tarde e está mais frio do que ontem", "Nós iremos nadar somente se fizer sol", "Se nós não formos nadar, então nós vamos velejar", e "Se nós formos velejar, então estaremos em casa no final da tarde." levam à conclusão: "Nós estaremos em casa no final da tarde."

- Sejam as proposições:
 - p: "Está fazendo sol esta tarde."
 - q: "Está mais frio do que ontem."
 - r: "Nós iremos nadar."
 - s: "Nós iremos velejar."
 - t: "Estaremos em casa no final da tarde."
- **●** Então as hipóteses são: $\neg p \land q$, $r \rightarrow p$, $\neg r \rightarrow s$, e $s \rightarrow t$.
- E a conclusão é simplesmente: t. (\Rightarrow)

■ Exemplo 1(2/2): (Hipóteses: $\neg p \land q$, $r \rightarrow p$, $\neg r \rightarrow s$, $s \rightarrow t$) (Conclusão: t)

Uma demonstração de que as hipóteses levam à conclusão:

Passo	Justificativa
1. $\neg p \wedge q$	Hipótese
2 . ¬ <i>p</i>	1, Simplifi cação
3. $r o p$	Hipótese
4. ¬ <i>r</i>	2, 3, Modus Tollens
\int 5. $\neg r \rightarrow s$	Hipótese
6. <i>s</i>	4, 5, Modus Ponens
7. $s \rightarrow t$	Hipótese
8. <i>t</i>	6, 7, Modus Ponens

■ Exemplo 2(1/2): Mostre que as hipóteses "Se você me enviar um email, eu termino de escrever o programa", "Se você não me enviar um email, então eu vou dormir cedo", e "Se eu for dormir cedo, então eu vou acordar revigorado." levam à conclusão: "Se eu não terminar de escrever o programa, então eu vou acordar revigorado."

- Sejam as proposições:
 - p: "Você me envia um email."
 - q: "Eu termino de escrever o programa."
 - r: "Eu vou dormir cedo."
 - s: "Eu vou acordar revigorado."
- Então as hipóteses são: $p \rightarrow q$, $\neg p \rightarrow r$, e $r \rightarrow s$.
- **●** E a conclusão desejada é: $\neg q \rightarrow s$. (\Rightarrow)

▶ Exemplo 2(2/2): (Hipóteses: $p \rightarrow q$, $\neg p \rightarrow r$, $r \rightarrow s$) (Conclusão: $\neg q \rightarrow s$)

A sequência a seguir mostra que as hipóteses levam à conclusão desejada:

Passo	Justificativa
1. $p \rightarrow q$	Hipótese
$ 2. \neg q \rightarrow \neg p $	1, Contrapositiva
$igg $ 3. $\neg p ightarrow r$	Hipótese
$igg $ 4. $\neg q ightarrow r$	2, 3, Silogismo Hipotético
$\int 5. \ r \to s$	Hipótese
	4, 5, Silogismo Hipotético

Podemos inserir uma tautologia em qualquer passo de uma prova.

Exemplo 3(a): A proposição "Meu cliente é canhoto. Mas, se o diário não desapareceu, então meu cliente não é canhoto. Portanto, o diário desapareceu." é válida?

- Proposições simples:
 - p: "Meu cliente é canhoto."
 - q: "O diário desapareceu."
- **●** Argumento: $[p \land (\neg q \rightarrow \neg p)] \rightarrow q$
- Prova:

Passo	Justificativa	
1. p	Hipótese	
2. $\neg q \rightarrow \neg p$	Hipótese	
	Tautologia	
4. $p \rightarrow q$	2, 3, Modus Ponens	
5. <i>q</i>	1, 4, Modus Ponens	

Exemplo 3(b): Note que a prova do exemplo anterior pode ser simplifcada com o uso da regra de inferência adequada:

● Argumento: $[p \land (\neg q \rightarrow \neg p)] \rightarrow q$

Prova:

Passo	Justificativa	
1. p	Hipótese	
2. $\neg q \rightarrow \neg p$	Hipótese	
3. <i>q</i>	1, 2, Modus Tollens	

- Note que a validade da proposição depende apenas de sua forma lógica:
 - não tem nada a ver com o fato de seus componentes serem ou não realmente verdadeiros
 - no exemplo anterior, ainda não sabemos se o diário realmente desapareceu ou não

Exemplo 4: Verifi que a validade da proposição:

"Se a taxa para importação diminuir, o comércio interno aumentará. Ou a taxa federal de desconto diminuirá ou o comércio interno não irá aumentar. A taxa para importação vai diminuir. Portanto, a taxa federal de desconto vai diminuir."

Proposições simples:

p: "A taxa para importação vai diminuir."

g: "O comércio interno vai aumentar."

r: "A taxa federal de desconto vai diminuir."

Argumento: $[(p \rightarrow q) \land (r \lor \neg q) \land p] \rightarrow r$

Prova:

Passo	Justificativa
1. $p \rightarrow q$	Hipótese
2. $r \vee \neg q$	Hipótese
3 . <i>p</i>	Hipótese
4 . <i>q</i>	1, 3, Modus Ponens
5. <i>r</i>	2, 4, Silogismo Disjuntivo

- Exemplo 5(1/3): "Você está a ponto de sair para o trabalho de manhã e descobre que está sem óculos. Você sabe os fatos a seguir. Onde estão os seus óculos?"
 - Se meus óculos estão sobre a mesa da cozinha, então eu os vi no café da manhã.
 - 2. Eu estava lendo o jornal na sala ou eu estava lendo o jornal na cozinha.
 - Se eu estava lendo o jornal na sala, então meus óculos estão sobre a mesa de café.
 - 4. Eu não vi meus óculos no café da manhã.
 - 5. Se eu estava lendo meu livro na cama, então meus óculos estão sobre a mesinha de cabeceira.
 - 6. Se eu estava lendo o jornal na cozinha, então meus óculos estão sobre a mesa da cozinha.

- Exemplo 5(2/3): "Onde estão os seus óculos?"
- Solução:
 - Proposições simples ("idéias atômicas"):
 - p: "Meus óculos estão sobre a mesa da cozinha"
 - q: "Eu vi meus óculos no café da manhã"
 - r: "Eu estava lendo o jornal na sala"
 - s: "Eu estava lendo o jornal na cozinha"
 - t: "Meus óculos estão sobre a mesa do café"
 - u: "Eu estava lendo meu livro na cama"
 - v: "Meus óculos estão sobre a mesinha de cabeceira"
 - Argumento:
 - (a) $p \rightarrow q$
 - (b) $r \vee s$
 - (c) $r \rightarrow t$
 - (d) $\neg q$
 - (e) $u \rightarrow v$
 - (f) $s \rightarrow p$

Exemplo 5(3/3): "Onde estão os seus óculos?"

Solução:

Argumento:

- (a) $p \rightarrow q$
- (b) $r \vee s$
- (c) $r \rightarrow t$
- (d) $\neg q$
- (e) $u \rightarrow v$
- (f) $s \rightarrow p$

Prova:

Passo	Justificativa
1 . ¬ <i>p</i>	a, d, Modus Tollens
2. ¬s	f, 1, Modus Tollens)
3. r	b, 2, Silogismo Disjuntivo
4. <i>t</i>	c, 3, Modus Ponens

NOTA 1: USO DE TABELAS-VERDADE

- Note que uma demonstração por tabela-verdade seria possível para o exemplo anterior.
 - Mas exigiria a análise de $2^7 = 128$ possiblidades. (!!)
 - Por isto, é melhor aplicar as regras de inferência (mesmo que seja um processo de tentativa e erro).

NOTA 2: PREMISSAS FALSAS

Note que um argumento correto pode levar a uma conclusão incorreta se uma ou mais premissas falsas forem usadas.

Exemplo:

- O argumento:
 - Se $\sqrt{2} > \frac{3}{2}$, então: $(\sqrt{2})^2 > (\frac{3}{2})^2$.
 - ightharpoonup Ora, sabemos que: $\sqrt{2} > \frac{3}{2}$.
 - **●** Consequentemente: $2 = (\sqrt{2})^2 > (\frac{3}{2})^2 = \frac{9}{4}$
- tem um formato válido, baseado em Modus Ponens.
- No entanto, a conclusão deste argumento é falsa.
- Ocorre que a premissa " $\sqrt{2} > \frac{3}{2}$ ", usada neste argumento, é falsa
 - o que signifi ca que a conclusão podia mesmo ser falsa.

NOTA 3: FALÁCIAS (1/4)

- Nota 3: Um erro comum em uma demonstração consiste na utilização de falácias.
 - Falácias parecem-se com regras de inferência, mas são baseadas em contingências em vez de tautologias.

Exemplo de falácia 1(/2):

- A proposição $[(p \rightarrow q) \land q] \rightarrow p$ é Falsa quando p é Falso e q é Verdadeiro.
- Um erro comum consiste em tratá-la como uma tautologia.
 - Raciocínio conhecido como "falácia de afirmar a conclusão".

NOTA 3: FALÁCIAS (2/4)

Exemplo: Será que o argumento a seguir é válido?

"Se você resolver todos os problemas da lista de exercícios, então você vai aprender Matemática Discreta. Você aprendeu Matemática Discreta. Portanto, você resolveu todos os problemas da lista de exercícios."

Resposta:

- Defi nindo as proposições:
 - p: "Você resolveu todos os problemas da lista de exercícios."
 - q: "Você aprendeu Matemática Discreta."
- ▶ Vemos que o argumento consiste em: se $p \rightarrow q$ e q, então p
 - que é a "falácia de afi rmar a conclusão".
- De fato, é plenamente possível que você aprenda MD sem resolver toda a lista:
 - você pode, por ex., ler o texto, assistir às aulas, resolver alguns (mas não todos) os problemas da lista, resolver outros exercícios, etc.

NOTA 3: FALÁCIAS (3/4)

Exemplo de falácia 2(/2):

- A proposição $[(p \to q) \land \neg p] \to \neg q$ é Falsa quando p é Falso e q é Verdadeiro.
- Muitos argumentos incorretos a usam como regra de inferência.
 - Raciocínio conhecido como "falácia de negar a hipótese".

NOTA 3: FALÁCIAS (4/4)

- Exemplo: Assuma que é correto que: "Se você resolver todos os problemas da lista de exercícios, então você vai aprender Matemática Discreta."
 - Então, "Se você não resolveu todos os problemas da lista",
 - será que é correto concluir que: "você não aprendeu MD"??

Resposta:

- "Falácia de negar a hipótese".
- É possível que você tenha aprendido MD mesmo que você não tenha resolvido todos os problemas da lista...

Inferências na Lógica de Predicados (1/6)

Regra de Inferência	Nome	Nota
$\forall x P(x)$	Instanciação Universal	c específi co
P(c)		
P(c) para um c arbitrário	Generalização Universal	c arbitrário
$ \therefore \forall x P(x)$		
$\exists x P(x)$	Instanciação Existencial	c específi co
$\therefore P(c)$ para algum elemento c		(mas não conhecido)
P(c) para algum elemento c	Generalização Existencial	c específi co
$\exists x P(x)$		e conhecido

INFERÊNCIAS NA LÓGICA DE PREDICADOS (2/6)

Exemplo 1: Mostre que as premissas "Todos nesta turma de Fundamentos já cursaram Cálculo" e "Manoel é um estudante nesta turma" implicam na conclusão "Manoel já cursou Cálculo".

Declarações básicas:

- F(x): "x está nesta turma de Fundamentos"
- C(x): "x já cursou Cálculo"

Premissas:

- \blacktriangleright $\forall x (F(x) \rightarrow C(x))$
- F(Manoel)
- Estabelecendo a conclusão a partir das premissas:

Passo	Justificativa
1. $\forall x(F(x) \rightarrow C(x))$	Premissa
2. $F(Manoel) \rightarrow C(Manoel)$	Instanciação universal de (1)
3. F(Manoel)	Premissa
4. C(Manoel)	(2), (3), Modus Ponens

Inferências na Lógica de Predicados (3/6)

- Exemplo 2(1/2): Mostre que as premissas "Tem um estudante nesta turma que não leu o livro-texto" e "Todos nesta turma se saíram bem na primeira prova" implicam na conclusão "Alguém que se saiu bem na primeira prova não leu o livro-texto".
 - Declarações básicas:
 - T(x): "x está nesta turma"
 - \triangle L(x): "x leu o livro-texto"
 - P(x): "x se saiu bem na primeira prova"
 - Premissas:
 - Conclusão:
 - $\Rightarrow \exists x (P(x) \land \neg L(x))$
 - Estabelecendo a conclusão a partir das premissas (⇒)

Inferências na Lógica de Predicados (4/6)

Exemplo 2(2/2):

● Premissas: $\exists x (T(x) \land \neg L(x))$ e $\forall x (T(x) \rightarrow P(x))$

● Conclusão: $\exists x (P(x) \land \neg L(x))$

Estabelecendo a conclusão a partir das premissas:

Passo	Justificativa
1. $\exists x (T(x) \land \neg L(x))$	Premissa
2. $T(a) \wedge \neg L(a)$	Instanciação existencial de (1)
3 . $T(a)$	Simplifi cação de (2)
4. $\forall x (T(x) \rightarrow P(x))$	Premissa
5. $T(a) \rightarrow P(a)$	Instanciação Universal de (4)
6. $P(a)$	(3), (5), Modus Ponens
7. $\neg L(a)$	Simplifi cação de (2)
8. $P(a) \wedge \neg L(a)$	Conjunção de (6) e (7)
9. $\exists x (P(x) \land \neg L(x))$	Generalização Existencial de (8)

INFERÊNCIAS NA LÓGICA DE PREDICADOS (5/6)

- Nota 1: É comum que apareçam tanto uma regra de inferência proposicional quanto uma para quantificadores.
 - Por exemplo, Instanciação Universal e Modus Ponens são frequentemente usadas juntas:
 - ullet combinando $\forall x(P(x) \rightarrow Q(x))$ e P(c),
 - \cdot onde c é um elemento do UD
 - ullet obtemos que Q(c) é Verdadeiro.

INFERÊNCIAS NA LÓGICA DE PREDICADOS (6/6)

Nota 2:

- Muitos teoremas em Matemática omitem o quantificador no momento de defi nir que uma propriedade vale para todos os elementos de um conjunto.
 - Por exemplo, o real signifi cado de:
 - · "Se x > y, onde x e y são números reais positivos, então $x^2 > y^2$ "
 - é: "Para todos os números reais positivos x e y, se x > y, então $x^2 > y^2$ ".
- Além disto, é comum que a lei de generalização universal seja usada sem menção explícita:
 - o primeiro passo da prova envolve a seleção de um elemento geral do UD
 - passos subseqüentes mostram que este elemento tem a propriedade em questão
 - então, conclui-se que este teorema vale para todos os elementos do UD (generalização universal).

PROVANDO TEOREMAS MATEMÁTICOS

- Tarefa difícil.
- Veremos uma "bateria" de diferentes métodos de prova.
 - Relembrando:

" $p \rightarrow q$ só não é Verdadeiro quando p é V e q é F."

Nota:

- O inteiro n é par se existe um inteiro k tal que n=2k
- O inteiro n é impar se existe um inteiro k tal que n=2k+1

PROVAS DIRETAS

- **Princípio**: para provar $p \rightarrow q$:
 - 1. assumir que *p* é verdadeiro
 - 2. usar regras de inferência e teoremas já provados para mostrar que *q* também deve ser V.
- **Exemplo:** prove o teorema: "se n é ímpar, então n^2 é ímpar" **Prova:**
 - assuma a hipótese: n é ímpar
 - então: n = 2k + 1, onde k é um inteiro
 - segue que:

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

- portanto: n^2 é impar
 - (1 a mais do que 2 vezes um inteiro)

PROVAS INDIRETAS

Princípio: mostrar que a contrapositiva de $p \rightarrow q$:

$$\neg q \rightarrow \neg p$$

é Verdadeira, usando outras técnicas de demonstração.

- Exemplo: prove o teorema: "se 3n + 2 é impar, então n é impar"
 Prova:
 - assuma que a conclusão desta implicação (n é impar) é F
 - então: n = 2k, para algum k
 - segue que: 3n+2=3(2k)+2=6k+2=2(3k+1)
 - de modo que: 3n+2 é par
 - logo, uma vez que a negação da conclusão implica que a hipótese é F, a implicação original é V.

Provas por Vácuo

- **Princípio**: $p \rightarrow q$ é Verdadeiro se p é Falso, de modo que:
 - pode-se provar $p \Rightarrow q$ estabelecendo que p é sempre falso.
- **●** Usadas para provar casos especiais de teoremas do tipo $\forall nP(n)$.
- **Exemplo:** mostre que a proposição P(0) é Verdadeira, onde P(n) é "se n > 1, então $n^2 > n$ ".

Prova:

- P(0) é a implicação: "se 0 > 1, então $0^2 > 0$ "
- uma vez que a hipótese é Falsa:
 - ullet a implicação P(0) é automaticamente Verdadeira.

PROVAS TRIVIAIS

- **Princípio**: $p \rightarrow q$ é Verdadeiro se q é V, de modo que:
 - pode-se provar $p \Rightarrow q$ apenas estabelecendo que q é sempre \vee .
- Importantes quando casos especiais de teoremas precisam ser provados (por ex.: em provas por casos e na indução matemática).
- **Exemplo:** Seja P(n) dada por:

P(n): "se a e b são inteiros positivos com $a \ge b$, então $a^n \ge b^n$ ". Mostre que a proposição P(0) é Verdadeira.

Prova:

- P(0) é: "se $a \ge b$, então $a^0 \ge b^0$ "
- uma vez que $a^0 = b^0 = 1$, a conclusão de P(0) é Verdadeira. \square
 - Note que a hipótese, " $a \ge b$ ", não é necessária.

ESTRATÉGIAS DE PROVA

- Primeiro, tentamos uma prova direta.
- Quando não há modo óbvio de seguir com uma prova direta, às vezes uma prova indireta funciona tranquilamente...
- **Nota**: O número real r é **racional** se existem inteiros p e q, com $q \neq 0$, tais que r = p/q.
 - Um número real que não é racional é chamado de irracional.

ESTRATÉGIAS DE PROVA

Exemplo: Prove que a soma de dois números racionais é sempre racional.

Prova:

- tentando uma prova direta...
- ullet sejam r e t números racionais
- então, existem inteiros:
 - ho p e q, com $q \neq 0$, tais que: r = p/q
 - $u \in v$, com $v \neq 0$, tais que: t = u/v
- ullet daí, adicionando r e t:

$$r + t = \frac{p}{q} + \frac{u}{v} = \frac{p \cdot v + q \cdot u}{q \cdot v}$$

- ullet como $q \neq 0$ e $v \neq 0$, segue que $q.v \neq 0$
- ullet isto signifi ca que r+t é racional
- (nossa tentativa direta deu certo...)

 \Box

ESTRATÉGIAS DE PROVA

Exemplo: Prove que se n é um inteiro e n^2 é ímpar, então n é ímpar

Prova:

- tentando uma prova direta:
 - n^2 é ímpar $\Rightarrow \exists k$ tal que $n^2 = 2k + 1$
 - ightharpoonup será que isto serve para mostrar que n é impar??
 - ora, resolvendo para n, obtemos: $\pm \sqrt{2k+1}$
 - o que não é muito útil...
- prova indireta:
 - ightharpoonup assumimos que n^2 não é ímpar
 - ightharpoonup então n=2k
 - ullet elevando os dois lados ao quadrado: $n^2=4k^2=2(2k^2)$
 - ullet o que implica que n^2 é par.

OUTRAS TÉCNICAS

- Provas por contradição:
 - assuma que $p \rightarrow q$ seja F
 - ullet isto é: que p seja V e q seja F
 - com regras de inferência, derive uma contradição desta hipótese.
 - $r \wedge \neg r$, por exemplo
- **Exemplo 1:** Prove que $\sqrt{2}$ é irracional.

Provas por contradição

- **Exemplo 1:** Provar que p: " $\sqrt{2}$ é irracional" é V.
 - assuma que $\neg p$ é V, ou seja: $\sqrt{2}$ é racional
 - logo, existem inteiros a e b tais que $\sqrt{2} = a/b$
 - onde a e b não têm fatores em comum
 - ullet mas, como $\sqrt{2}=a/b$, segue que $2=a^2/b^2$
 - logo, $2b^2 = a^2$
 - o que signifi ca que a^2 é par
 - portanto: a é par
 - então, a = 2c, para algum inteiro c
 - ightharpoonup portanto: $2b^2=4c^2$ de modo que $b^2=2c^2$
 - ullet ou seja: b^2 é par e b é par também
 - contradição: assumimos que a e b não tinham fatores em comum
 - portanto: p é que é V.

Provas por contradição

- Contradição em provas indiretas:
 - ullet mostrar que p
 ightarrow q é V demonstrando que $\neg q
 ightarrow \neg p$ é V
 - usando contradição:
 - supor que $\neg q$ é V e que $\neg p$ é F
 - usar os passos da prova direta de $\neg q \to \neg p$ para mostrar que $\neg p$ deve ser V também
 - contradição! $(p \land \neg p)$
- **Exemplo 2:** Provar que: "Se 3n + 2 é impar, então n é impar."
 - ullet vamos assumir que 3n+2 é ímpar e que n não é ímpar
 - ullet mas já vimos que, se n é par, então 3n+2 é par
 - ullet isto contradiz a hipótese de que 3n+2 é ímpar, completando a prova

PROVAS POR CASOS

Princípio: $p_1 \lor p_2 \lor \ldots \lor p_n \to q$ é equivalente a:

$$(p_1 \to q) \land (p_2 \to q) \land \ldots \land (p_n \to q)$$

• ou seja: provar cada um dos $p_i \rightarrow q$ individualmente

- **Exemplo:** Use a prova por casos para mostrar que |xy| = |x||y|, onde x e y são reais.

$$|x| = -x$$
, se $x \le 0$

PROVAS POR CASOS

Exemplo (1/2): Mostre que |xy| = |x||y|.

Prova:

- Sejam:
 - p: "x e y são números reais"
- Note que p é equivalente a $p_1 \lor p_2 \lor p_3 \lor p_4$, onde:
 - p_1 : " $x \ge 0 \land y \ge 0$ "
 - p_2 : " $x \ge 0 \land y < 0$ "
 - p_3 : " $x < 0 \land y \ge 0$ "
 - p_4 : " $x < 0 \land y < 0$ "

PROVAS POR CASOS

Exemplo (2/2): Mostre que |xy| = |x||y|.

4 casos para provar:

- 1. $p_1 \rightarrow q$ é V, pois:

 - ullet de modo que: |xy| = xy = |x||y|
- 2. $p_2 \rightarrow q$ é V, pois:
 - se $x \ge 0$ e y < 0, então $xy \le 0$
 - **•** de modo que: |xy| = -xy = x.(-y) = |x||y|
- 3. $p_3 \rightarrow q$ é V, pois:
 - se x < 0 e $y \ge 0$, então $xy \le 0$
 - **9** de modo que: |xy| = -xy = (-x).y = |x||y|
- 4. $p_4 \rightarrow q$ é V, pois:
 - ullet se x < 0 e y < 0, então xy > 0
 - **•** de modo que: |xy| = xy = (-x).(-y) = |x||y|

- Provas de teoremas que são bicondicionais.
- **9** Usar a tautologia: $(p \leftrightarrow q) \Leftrightarrow [(p \rightarrow q) \land (q \rightarrow p)]$
- Ou seja, "p se e somente se q" pode ser provada ao serem provadas as implicações:
 - "se p, então q"
 - "se q, então p"

Exemplo: Prove o teorema: "O inteiro n é impar sse n^2 é impar."

Prova:

- Teorema da forma: "p sse q", aonde:
 - p é dado por: "n é ímpar"
 - q é dado por: " n^2 é ímpar"
- Temos que provar $p \rightarrow q$ e $q \rightarrow p$.
- O que já foi feito:
 - slide 43 (provas diretas)
 - slide 49 (estratégias de prova)

Pode-se ter que mostrar que várias proposições são equivalentes:

$$p_1 \leftrightarrow p_2 \leftrightarrow \cdots \leftrightarrow p_n$$

Um modo de provar que eles são mutuamente equivalentes é usar a tautologia:

$$[p_1 \leftrightarrow p_2 \leftrightarrow \cdots \leftrightarrow p_n] \leftrightarrow [(p_1 \to p_2) \land (p_2 \to p_3) \land \cdots \land (p_n \to p_1)]$$

- Muito mais eficiente do que provar todos contra todos...
- Qualquer encadeamento de declarações é igualmente válido.

Exemplo: Mostre que as afirmações a seguir são equivalentes:

 p_1 : n é um inteiro par

 p_2 : n-1 é um inteiro ímpar

 p_3 : n^2 é um inteiro par

Prova:

■ Mostrar que são V as implicações: $p_1 \rightarrow p_2$, $p_2 \rightarrow p_3$ e $p_3 \rightarrow p_1$

■ Mostrando $p_1 \rightarrow p_2$ (prova direta):

• n é par
$$\Rightarrow$$
 $n=2k$ \Rightarrow $n-1=2k-1=2(k-1)+1$

■ Mostrando $p_2 \rightarrow p_3$ (prova direta):

■ Mostrando $p_3 \rightarrow p_1$ (prova indireta):

ullet ou seja, devemos provar que: "se n não é par, então n^2 não é par"

já provado [slide 43 (provas diretas)]

TEOREMAS COM QUANTIFICADORES

- Muitos teoremas são propostos como proposições que envolvem quantificadores.
- Veremos alguns dos métodos mais importantes para provar teoremas deste tipo.

Provas de existência

- Muitos teoremas são asserções de que existem objetos de um tipo em particular:
 - ou seja, são proposições da forma: $\exists x P(x)$
- Modos de provar estes teoremas:
 - Provas **construtivas**: encontrar elemento a tal que P(a) é V
 - Provas não-construtivas: mostrar que a negação da proposição implica em uma contradição.

PROVAS DE EXISTÊNCIA

Exemplo: Mostre que existe um inteiro positivo que pode ser escrito como a soma de cubos de inteiros positivos de duas formas diferentes.

Solução:

Após uma busca computacional, descobrimos que:

$$1729 = 10^3 + 9^3 = 12^3 + 1^3$$

 Uma vez que conseguimos apresentar um inteiro positivo com a característica descrita, a prova está concluída.

Provas de existência

Exemplo: Mostre que existem números irracionais x e y tais que x^y é racional.

Solução:

- Sabemos que $\sqrt{2}$ é irracional.
- Agora considere o número $\sqrt{2}^{\sqrt{2}}$:
 - ullet se ele for racional, já temos x e y irracionais com x^y racional
 - ullet mas se ele for irracional, podemos re-escolher x e y como:

$$x = \sqrt{2}^{\sqrt{2}}$$
 e $y = \sqrt{2}$
 $\Rightarrow x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = 2$

- um dos dois casos demonstra o que foi pedido.
- Prova não-construtiva: mostramos que existe um par de números com a propriedade, mas não sabemos qual dos dois é o certo. (!)

PROVAS DE UNICIDADE

- Alguns teoremas afirmam que um elemento com a propriedade especificada existe e é único.
 - Ou seja: existe exatamente um elemento com esta propriedade.
- Logo, uma prova de unicidade tem duas partes:
 - 1. **Existência:** mostra-se que um elemento x com a propriedade desejada existe.
 - 2. **Unicidade:** mostra-se que, se $y \neq x$, então y não possui a propriedade desejada.
 - Nenhum outro elemento tem esta propriedade.
- **●** Mesmo que provar: $\exists x (P(x) \land \forall y (y \neq x \rightarrow \neg P(y)))$

PROVAS DE UNICIDADE

Exemplo: Mostre que todo inteiro tem uma única inversa aditiva.

Solução:

- Se p é um inteiro, p+q=0 para o inteiro q=-p.
 - Logo: existe um inteiro q tal que p + q = 0.
- Agora, seja um inteiro $r \neq q$ tal que p + r = 0.
 - Então: p+q=p+r.
 - Só que, subtraindo p de ambos os lados, segue que: q = r
 · o que contradiz a hipótese q ≠ r
 - Logo, só existe um único inteiro q tal que p + q = 0.

- Podemos mostrar que uma declaração do tipo $\forall x P(x)$ é falsa com um contra-exemplo.
 - Ou seja, um exemplo de x para o qual P(x) é falsa.
- Procuramos um contra-exemplo sempre que encontramos uma declaração do tipo $\forall x P(x)$ que:
 - acreditamos ser falsa,
 - tenha resistido a muitas tentativas de prova.

Exemplo: Mostre que é falsa a declaração:

"Todo inteiro positivo é igual à soma dos quadrados de três inteiros".

Solução:

Possível com os 6 primeiros inteiros positivos:

$$1 = 0^2 + 0^2 + 1^2$$
 $2 = 0^2 + 1^2 + 1^2$ $3 = 1^2 + 1^2 + 1^2$
 $4 = 0^2 + 0^2 + 2^2$ $5 = 0^2 + 1^2 + 2^2$ $6 = 1^2 + 1^2 + 2^2$

- Porém, não conseguimos fazer o mesmo com 7:
 - os únicos quadrados que poderíamos usar são: 0, 1 e 4
 (aqueles que não excedem 7)
 - uma vez que não há maneira de combinar estes 3 números para somar 7, concluímos que 7 é mesmo um contra-exemplo.
- E a declaração acima é falsa.

- Um erro comum é achar que (apenas) um ou mais exemplos são suficientes para concluir que uma declaração é verdadeira.
- **Atenção**: não importa quantos exempos indiquem que P(x) é V:
 - a quantificação $\forall x P(x)$ ainda pode ser falsa...

Exemplo: Será que é verdade que todo inteiro positivo é a soma de 18 inteiros elevados à quarta potência??

Solução:

- Observa-se que todos os inteiros até 78 podem mesmo ser escritos desta maneira (!!).
- Daí, se decidíssemos que já havíamos verificado o suficiente, chegaríamos a uma conclusão errada, pois:
 - 79 não é a soma de 18 quartas potências.

- Mais comuns: erros em aritmética ou álgebra básica.
- Cada passo de uma prova matemática deve ser correto.
- A conclusão deve seguir logicamente dos passos que a precederam.
 - Muitos erros resultam da inclusão de passos que não seguem logicamente dos anteriores.

■ Exemplo 1: O que está errado com a "prova" abaixo para 1=2?

"Prova:" (a e b são dois inteiros positivos iguais)

Passo

1.
$$a = b$$

2.
$$a^2 = ab$$

3.
$$a^2 - b^2 = ab - b^2$$

4.
$$(a - b)(a + b) = b(a - b)$$

5.
$$a + b = b$$

6.
$$2b = b$$

7.
$$2 = 1$$

Justificativa

Dado

Multiplicando os 2 lados de (1) por a

Subtraindo b^2 dos 2 lados de (2)

Fatorando ambos os lados de (3)

Dividindo ambos os lados de (4) por a-b

Substituindo a por b em (5) (pois a = b)

Dividindo ambos os lados de (6) por b

■ Exemplo 1: O que está errado com a "prova" abaixo para 1=2?

"Prova:" (a e b são dois inteiros positivos iguais)

Passo	Justificativa
1. $a = b$	Dado
2. $a^2 = ab$	Multiplicando os 2 lados de (1) por \boldsymbol{a}
3. $a^2 - b^2 = ab - b^2$	Subtraindo b^2 dos 2 lados de (2)
4. $(a - b)(a + b) = b(a - b)$	Fatorando ambos os lados de (3)
5. $a + b = b$	Dividindo ambos os lados de (4) por $a-b$
6. $2b = b$	Substituindo a por b em (5) (pois $a=b$)
7. 2 = 1	Dividindo ambos os lados de (6) por b

- "Solução:"
 - Todos os passos são válidos, com exceção do passo 5, em que houve uma divisão por zero.

Exemplo 2: O que está errado com esta "prova"?

"Teorema:" Se n^2 é positivo, então n é positivo.

"Prova:"

- ullet suponha que n^2 é positivo,
- uma vez que a implicação "Se n é positivo, então n^2 é positivo" é verdadeira, podemos concluir que n é positivo.

"Solução:"

- Falácia de afirmar a conclusão:
 - sejam P(n): "n é positivo" e Q(n): " n^2 é positivo"
 - ullet esta "prova" conclui P(n) a partir de Q(n) e $\forall n(P(n) \rightarrow Q(n))$
- Contra-exemplo: n = -1.

Exemplo 3: O que está errado com esta "prova"?

"Teorema:" Se n não é positivo, então n^2 não é positivo.

"Prova:"

- suponha que n não é positivo,
- uma vez que a implicação "Se n é positivo, então n^2 é positivo" é verdadeira, podemos concluir que n^2 não é positivo.

"Solução:"

- Falácia de negar a hipótese:
 - sejam P(n): "n é positivo" e Q(n): " n^2 é positivo"
 - ullet esta "prova" conclui $\neg Q(n)$ a partir de $\neg P(n)$ e de $\forall n(P(n) \rightarrow Q(n))$
- Contra-exemplo: n = -1.

Um erro comum de assumir hipóteses não justificadas ocorre em provas por casos, aonde nem todos os casos são considerados...

- Exemplo: O que está errado com esta "prova"?
 - "Teorema:" Se x é um número real, então x^2 é um real positivo.
 - "Prova:"
 - sejam:
 - p_1 : "x é positivo"
 - p_2 : "x é negativo"
 - provando $p_1 \rightarrow q$:
 - ullet quando x é positivo, x^2 é positivo, pois é o produto de dois positivos
 - provando $p_2 \rightarrow q$:
 - ightharpoonup quando x é negativo, x^2 é positivo, pois é o produto de dois negativos
- "Solução:" o suposto "teorema" é falso, pois está faltando o caso:
 - p_3 : "x = 0"

- Erro particularmente desagradável: falácia chamada de "usar a questão".
- Consiste em basear um ou mais passos de uma prova na verdade daquilo que está sendo provado.
 - Ou seja: provar uma declaração usando ela mesma (ou uma outra equivalente a ela).
 - Também chamada de raciocínio circular.

Exemplo: O argumento a seguir supostamente mostra que n é um inteiro par sempre que n^2 é um inteiro par. Será que está correto??

Suponha que n^2 é par. Então $n^2=2k$ para algum inteiro k. Seja n=2l para algum inteiro l. Isto mostra que n é par.

Solução:

- Nada na prova permite concluir n possa ser escrito como 2l.
- Isto é equivalente ao que está sendo provado ("n é par").
- Note que o resultado em si é correto: apenas o método de prova está errado.

ERROS COMUNS: COMENTÁRIOS FINAIS

- Cometer erros em provas é parte do processo de aprendizagem.
- Quando cometer um erro que seja encontrado por outros, certifique-se de não cometê-lo de novo.
- Mesmo matemáticos profissionais cometem erros em provas.
 - Diversas provas incorretas enganaram muitas pessoas durante anos antes que erros sutis fossem encontrados nelas...
- Note que não existe um algoritmo para provar teoremas.
- A construção de provas deve ser aprendida através da experiência.
- Ainda veremos muitas provas ao longo deste curso...

NOTA: TIPOS DE TEOREMAS

- Lema: teorema simples usado na prova de outros teoremas.
 - Teoremas complicados são mais fáceis de provar quando sub-divididos em uma série de lemas a serem provados individualmente.
- Corolário: proposição que é consequência imediata de um teorema recém provado.
- Conjectura: declaração cujo valor-verdade não é conhecido.
 - Se for encontrada uma prova para a conjectura, ela se torna um teorema.

MÉTODOS DE PROVA

Final deste item.

Dica: fazer exercícios sobre Métodos de Prova...