Paths of analysis*

Synthia

March 3, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: FGI, FGI with protections

Max. paths returned: 5

Max. iterations: 300

Commercial:

- 1. Max. molecular weight 1000 g/mol
- 2. Max. price 1000 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 10

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated we

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

JSON Parameters: {}

2 Paths

 $1~\mathrm{path}$ found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 245.70

Figure 1: Outline of path 1

2.1.1 N-Sulfonylation

Substrates:

- 1. 3-Amino-2,6-dichlorobenzoic acid Combi-Blocks
- 2. 1-Propanesulfonyl chloride available at Sigma-Aldrich

Products:

1. C10H11Cl2NO4S

Typical conditions: THF.rt

Protections: none

Yield: good

Reference: 10.1055/s-0029-1217565 and 10.1002/(SICI)1099-0690(199806)1998:6<945::AID-EJOC945>3.0.CO;2-3 and 10.1055/s-2001-14567 and 10.1016/j.bmc.2014.07.022

Retrosynthesis ID: 14717

2.1.2 Synthesis of O-substituted N-substituted hydroxamic acids

Substrates:

1. C10H11Cl2NO4S

2. n-methoxymethylamine - ChemImpexInternational

Products:

 $1. \ CCCS(=O)(=O)Nc1ccc(Cl)c(C(=O)N(C)OC)c1Cl \\$

 $\textbf{Typical conditions:} \ \, \mathsf{DCC.DMAP} \ \, \mathsf{or} \ \, \mathsf{CDI.TEA.DCM}$

Protections: none

Yield: good

Reference: Patent: WO2007/67333A2, 2007 & 10.1016/j.bmcl.2008.09.100

Retrosynthesis ID: 1152

2.1.3 Synthesis of ketones from Weinreb amides

Substrates:

1. 3-Iodo-7-azaindole - available at Sigma-Aldrich

2. CCCS(=O)(=O)Nc1ccc(Cl)c(C(=O)N(C)OC)c1Cl

Products:

1. CCCS(=O)(=O)Nc1ccc(Cl)c(C(=O)c2c[nH]c3ncccc23)c1Cl

 $\textbf{Typical conditions:} \ 1.RmgBr.THF \ 2.TFA.DCM$

Protections: none

Yield: good

Reference: 10.1021/jm051185t and 10.1021/ol101021v (supporting info)

Retrosynthesis ID: 5060

2.1.4 Iodination of aromatic compounds

Substrates:

 $1. \ \ CCCS(=O)(=O)Nc1ccc(Cl)c(C(=O)c2c[nH]c3ncccc23)c1Cl$

Products:

1. CCCS(=O)(=O)Nc1ccc(Cl)c(C(=O)c2c[nH]c3ncc(I)cc23)c1Cl

Typical conditions: I2 or other iodinating agent e.g. NIS

Protections: none

Yield: good

Reference: DOI: 10.1039/C5SC00964B and 10.1016/j.tetlet.2005.05.117 and

10.1007/s11178-005-0256-1

Retrosynthesis ID: 10697

${f 2.1.5}$ Suzuki coupling of arylboronic acids pinacol esters with aryl iodides

Substrates:

- 1. 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane AOBChem
- $2. \ CCCS(=O)(=O)Nc1ccc(Cl)c(C(=O)c2c[nH]c3ncc(I)cc23)c1Cl \\$

Products:

 $\begin{array}{ll} 1. & CCCS(=O)(=O)Nc1ccc(Cl)c(C(=O)c2c[nH]c3ncc(-c4ccc(Br)cc4)cc23)c1Cl \end{array}$

Typical conditions: Pd catalyst.base.solvent

Protections: none

Yield: good

Reference: 10.1021/cr00039a007 and $10.1007/3418_2012_32$ and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H

Retrosynthesis ID: 25152