Calcolo Integrale

March 6, 2023

1 Serie

1.1 Definizione

Una serie $\{S_n\}$ della serie $\{a_n\}$ è la successione delle somme parziali di a_n , ovvero

$$\forall n \in \mathbb{N}, S_n = \sum_{k=0}^n a_k$$

1.2 Carattere di una serie

Una serie, per $n \to \infty$, può fare 3 cose, esattamente come una successione può:

- Divergere: $\sum_{k=0}^{\infty} a_k = \pm \infty$
- Convergere: $\sum_{k=0}^{\infty} a_k \in \mathbb{R}$
- Non convergere: $\nexists \sum_{k=0}^{\infty} a_k$

1.3 Condizione necessaria per la convergenza di una serie

Theorem 1.1 (Condizione necessaria per la convergenza della serie)

$$\sum_{k=0}^{\infty} a_k \in \mathbb{R} \implies a_k \to 0$$

La dimostrazione è alquanto semplice: Se S_n converge per $n \to \infty$, allora

$$\lim_{n \to \infty} S_n = S_{n+1} = S \in \mathbb{R} \implies \lim_{n \to \infty} \sum_{k=0}^{n+1} a_k - \lim_{n \to \infty} \sum_{k=0}^{n} a_k = \lim_{n \to \infty} a_{n+1} = 0$$

Una riformulazione equivalente è la seguente

Theorem 1.2 (Criterio di Cauchy per la convergenza di una serie)

$$\{S_n\}$$
 converge $\iff \forall m > n, S_m - S_n = 0$ definitivamente

Dimostrazione:

Se $\{S_n\}$ converge ad l, allora $|\lim_{n\to\infty} S_n - \lim_{m\to\infty} S_m| = l - l = 0$.

Dimostriamo ora l'implicazione contraria:

 $\forall m > n, S_m - S_n = 0$ definitivamente implica che $\lim_{m \to \infty} S_m - S_n = 0$, il che implica che $\lim_{m \to \infty} S_m = S_n$.

Essendo n fissato (non tendente ad infinito), ne segue che $S_n \in \mathbb{R}$, il che quindi implica che $\lim_{m\to\infty} S_m \in \mathbb{R}$, ovvero che la serie converge

1.3.1 Nota bene

Il criterio non implica che se $a_n \to 0$ allora S_n converge. Un esempio è la serie

$$\sum_{k=1}^{\infty} k^{-1} = \infty$$

1.4 Serie a termini costanti

Theorem 1.3 (Carattere di serie a termini costanti)

$$a_n \ge / \le 0$$
 definitivamente $\implies \lim_{n \to \infty} S_n \in \mathbb{R} \lor = \pm \infty$

Questa proprietà è una semplice conseguenza delle successioni monotone

Corollary 1.3.1

 $\{a_k\}$ definitivamente di segno costante $\land a_k \not\to 0 \implies \{S_n\}$ diverge

Corollary 1.3.2

 $\{S_n\}$ limitata dall'alto/basso $\land \{a_k\}$ definitivamente $\geq / \leq 0 \implies \{S_n\}$ converge

1.5 Serie geometriche

$$\{S_n\}$$
 è una serie geometrica $\iff \forall k \in \mathbb{N} a_k = q^k \land q \in \mathbb{R}$

Theorem 1.4 (Carattere della serie geomtrica) Una serie geometrica ha carattere diverso in base al valore di q, detto ragione della serie:

- q = 0: $\forall n \in \mathbb{N}, S_n = 0$. Converge a 0 per $n \to \infty$
- q = 1: $S_n = n + 1$. Diverge $a \infty per n \to \infty$
- q = -1: Se $2|n, S_n = 1$, in alternativa $S_n = 0$. Non converge per $n \to \infty$
- Per i restanti q, $S_n = \frac{1-q^{n+1}}{1-q}$.

1.5.1 Dimostrazione della formula per il calcolo dell'*n*-esimo valore della serie geomtrica

$$S_n = \sum_{k=0}^n q^k \implies q \cdot S_n = \sum_{k=0}^n q^{k+1} \implies S_n - qS_n = 1 - q^{k+1} = S_n (1 - q) \implies$$
$$S_n = \frac{1 - q^{n+1}}{1 - q}$$

1.6 Serie armoniche

 $\{S_n\}$ è una serie armonica $\iff \forall k \in \mathbb{N}, a_k = k^{\alpha}, \alpha \in \mathbb{R}$

Theorem 1.5 (Convergenza della serie armonica generalizzata)

$$\{S_n\}$$
 converge $\iff \alpha > 1$

La dimostrazione usa il criterio dell'integrale (vedremo la dimostrazione quando parlaremo del criterio)

1.7 Criteri per studiare il carattere di una serie

Theorem 1.6 (Criterio del confronto)

 $\forall \{A_n\}, \{B_n\} \ di \ termini \ a \ segno \ definitivamente \ costante \ , a_n \leq b_n \ definitivamente \ \Longrightarrow$

$$(A_n \to \infty \implies B_n \to \infty) \land (B_n \to l_B \in \mathbb{R} \implies A_n \to l_A \in \mathbb{R})$$

La dimostrazione è alquanto ovvia e la lascio per esercizio al lettore

Theorem 1.7 (Criterio del confronto asintotico)

 $\forall \{A_n\}, \{B_n\}$ di termini a segno definitivamente costante, $\lim_{n\to\infty} \frac{a_n}{b_n} = L$

$$\begin{cases}
A_n \to +\infty & \iff B_n \to \infty & L \in \mathbb{R}^+ \\
B_n \to \infty & \implies A_n \to \infty & L = \infty \\
B_n \to l_B \in \mathbb{R} & \implies A_n \to l_A \in \mathbb{R} & L = 0
\end{cases}$$
(1)

Anche qui la dimostrazione è simile a quella del confronto e la lascio al lettore

Theorem 1.8 (Criterio del rapporto)

 $\{A_n\}$ di termini a segno definitivamente costante, $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$

$$\begin{cases} A_n \to +\infty & L > 1\\ A_n \to l_A \in \mathbb{R} & L < 1\\ Inconcludente & L = 1 \end{cases}$$
 (2)

Dimostrazione: se il limite per $n \to \infty$ del rapporto tende a L < 1, per la completezza di \mathbb{R} esistono $N \in \mathbb{N}, r \in [L, 1)$ tale che $a_{n+1} < ra_n \, \forall n > N$, che iterativamente implica che

$$\forall i \in \mathbb{N}, a_{n+i} < r^i a_n \implies \sum_{i=1}^{\infty} a_{N+i} < \sum_{i=1}^{\infty} r^i a_n$$

Essendo la seconda una serie geometrica con 0 < r < 1, questa converge, e per il criterio del confronto $\{A_n\}$ converge

Theorem 1.9 (Criterio della radice)

 $\{A_n\}$ di termini a segno definitivamente costante, $\lim_{n\to\infty} \sqrt[n]{a_n} = L$

$$\begin{cases} A_n \to +\infty & L > 1\\ A_n \to l_A \in \mathbb{R} & L < 1\\ Inconcludente & L = 1 \end{cases}$$
 (3)

La dimostrazione è simile a quella di prima: se L<1 allora esistono $N\in\mathbb{N}, r\in[L,1)$ tale che $\forall n>N, L^n=a_n< r^n<1$, quindi

$$\sum_{n=N}^{\infty} a_n < \sum_{n=N}^{\infty} r^n$$

Essendo la seconda una serie geomtrica convergente, per il teorema del confronto $\{A_n\}$ converge

Theorem 1.10 (Criterio di Leibniz)

 $\{A_n\}$ con $A_n = \sum_{k=0}^{n} (-1)^k a_k, \{a_n\}$ definitivamente monotona decrescente e di segno costante

$$\implies \{A_n\} \to l_A \in \mathbb{R}$$

Dimostrazione: In quanto la serie è monotona decrescente, ne segue che $|a_n - a_{n+1}| \le |a_n| \forall n$

Da questa idea ne segue facilmente (dimostrabile per induzione) che vale la disugaglianza

$$|a_m - \sum_{i=n+1}^{\infty} a_i| \le |a_m - a_{m+1}| \le |a_m| \forall m$$

Ma in quanto $\lim_{n\to\infty}a_n=0$ abbiamo che

$$\forall m > n > N \in \mathbb{N}, \lim_{n \to \infty} |S_m - S_n| = |a_m - \sum_{i=n+1}^{\infty} \pm a_i| \le a_m = 0$$

Ne consegue per il criterio di Cauchy che la serie converge.

Theorem 1.11 (Criterio della convergenza assoluta)

$$\sum_{i=0}^{\infty} |a_n| \ converge \implies \sum_{i=0}^{\infty} a_n \ converge$$

2 Formule importanti

Definition 2.1 (Formula di approssimazione di Stirling)

$$n! \sim \sqrt{2n\pi} \left(\frac{n}{e}\right)^n$$

Definition 2.2 (e^x come serie)

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

Definition 2.3 (Comportamento asintotico del logaritmo del fattoriale)

$$\lim_{x \to \infty} \frac{\ln x!}{x} = \infty$$

Dimostrazione: Sappiamo che, per $x \to \infty$, $x! > \alpha^x \forall \alpha$ Consideriamo allora tutti gli α nella forma

$$\alpha = e^k, k \in \mathbb{N}$$

Consideriamo ora

$$\lim_{x \to \infty} \frac{\ln e^{kx}}{x} = \frac{kx}{x} = k$$

Poichè ciò vale $\forall k,$ vale per k grande a piacere, di conseguenza per $k\to\infty,$ il che implica che

$$\lim_{x\to\infty}\frac{\ln x!}{x}>\lim_{x\to\infty}\frac{\ln e^{kx}}{x}\to\infty\;\blacksquare$$

Definition 2.4 (e come limite)

$$e = \lim_{x \to \infty} \frac{x}{\sqrt[x]{x!}}$$

Dimostrazione: Usando l'approssimazione di Stirling otteniamo

$$\lim_{x\to\infty}\frac{x}{\sqrt[2x]{2x\pi}}\times\left(\frac{e}{x}\right)^{x\times 1/x}=\lim_{x\to\infty}\frac{x}{\sqrt[2x]{2x\pi}}\times\frac{e}{x}=\lim_{x\to\infty}\frac{e}{\sqrt[x]{2x\pi}^{1/2}}$$

Recall that for $x \to \infty$, $x^{1/x} \sim 1$, we get for $x \to \infty$ that our limit $\sim e/1 = e$ Ricordarsi bene anche limiti notevoli ed espansioni di Taylor-MacLaurin