Introduction to the Theory of Computation Homework #3 Solutions

1. (Problems 2.15 and 2.16) Prove that regular languages are also CFLs. There are several ways to do this, using grammars, push-down automata, and closure under the regular expression operations (union, concatenation, and star). Give all three proofs if you can.

Proof 1: Grammars. The idea is for the variables to represent states of a DFA and move right, leaving terminals behind them, and finally disappear if they correspond to an accepting state. If L = L(M) where M is the DFA (Q, q_0, δ, F) , construct a grammar with variables V = Q, terminals Σ , start symbol $S = q_0$, and the following rules:

$$q \rightarrow aq' \text{ if } \delta(q, a) = q'$$

 $q \rightarrow \epsilon \text{ if } q \in F$

Then a derivation of a word in Σ^* corresponds to an accepting computation of the DFA.

Proof 2: PDAs. Any DFA is a PDA (in fact, a DPDA) which never looks at the stack, never pushes or pops the stack, and accepts by being in an accepting state.

Proof 3: Regular expressions. Remember a language is regular if and only if it can be derived from the languages $\{a\}$ for each $a \in \Sigma$, and \emptyset , using the operations union, concatenation, and star. We showed in class that the CFLs are closed under these three operations: if two languages L_1 , L_2 have start symbols S_1 , S_2 , we can make their union with the start symbol S_1 and the rules S_1 , S_2 , their concatenation with the rule S_1 , S_2 , and S_3 , and S_3 , and S_4 , with S_3 , S_4 , S_5 , S_5 , their concatenation with the rule

Finally, the language $\{a\}$ has the grammar $S \to a$, and \emptyset has the grammar with no rules (and so no way to make a string of terminals from S).

2. (Problem 2.17a) Suppose L is a CFL and R is regular. Show that $L \cap R$ is a CFL.

Proof. The idea is to run the PDA for L and the DFA for R in parallel, just as we constructed a DFA for the intersection of two regular languages by running both their DFAs in parallel. Suppose the PDA for L has finite states Q_1 , stack alphabet Γ , transition function δ_1 , and accepting states F_1 , and the DFA for R has similarly Q_2 , δ_2 , and F_2 . Then we construct a PDA for $L \cap R$ with states $Q = Q_1 \times Q_2$ and transition function $\delta : Q \times \Sigma \times (\Gamma \cup \{\epsilon\}) \to Q \times (\Gamma \cup \epsilon)$, where the new state is $(\delta_1(q_1, a), \delta_2(q_2, a))$ (we assume for simplicity that the PDA for L reads a symbol of the input on every step) and we use δ_1 to determine what, if anything, we push on the stack. Our set of accepting states is $F = F_1 \times F_2$.

3. Inspired by the previous problem, let L be the parenthesis language $\{\epsilon, (), (()), ()(), \ldots\}$ and R the regular language where neither '(' nor ')' can occur more than 3 times in a row. Give a context-free grammar for $L \cap R$.

Solution: The variables will be $V = \{S_0, S_1, S_2\}$ with start symbol $S = S_0$ and rules

$$S_0 \rightarrow (S_1)S_0, \epsilon$$

 $S_1 \rightarrow (S_2)S_1, \epsilon$
 $S_2 \rightarrow ()S_2, \epsilon$

4. Recall that a grammar in *Chomsky normal form* is one where all rules are of the form $A \to BC$ or $A \to a$, where capital and lower-case letters represent variables and terminals respectively. Give a context-free grammar for the language of palindromes over $\{a,b\}^*$, in Chomsky normal form. Remember to generate palindromes of both odd and even length.

Solution: Let $V = \{S, T, U, A, B\}$ with the rules

$$S \rightarrow AU, BT, AA, BB, a, b$$
 $U \rightarrow SA$
 $T \rightarrow SB$
 $A \rightarrow a$
 $B \rightarrow b$

We're just using U and T to simulate the rules $S \to ASA, BSB$.

5. Give a context-free grammar for the *complement* of the set of palindromes over $\{a,b\}^*$. Solution: We need to make sure that we generate at least one pair of symbols which doesn't match. To do this, we'll demand that S, which generates matching pairs, has to make a mismatched pair and turn into another variable T before it can disappear. Then T can make any pair it wants, matching or not. So the rules are

$$S \rightarrow aSa, bSb, aTb, bTa$$

$$T \rightarrow aTa, aTb, bTa, bTb, a, b, \epsilon$$

6. We saw in class that while $\{a^nb^nc^n\}$ is not context-free, it is the intersection of two context-free languages. Is $\{a^nb^nc^nd^n\}$? Is $\{a_1^na_2^n\cdots a_{\nu}^n\}$ with k different symbols?

Solution: $\{a^nb^nc^nd^n\}$ is the intersection of two CFLs, namely $\{a^ib^ic^jd^j\}$ and $\{a^ib^jc^jd^k\}$. More generally, $\{a_1^na_2^n\cdots a_k^n\}$ can be written

$$\{a_1^{n_1}a_2^{n_2}\cdots a_k^{n_k} \mid n_i=n_{i+1} \text{ for even } n\} \cap \{a_1^{n_1}a_2^{n_2}\cdots a_k^{n_k} \mid n_i=n_{i+1} \text{ for odd } n\}$$

Both of these are CFLs since they are concatenations of k/2 or k/2 - 1 CFLs of the form $\{a^nb^n\}$ (with perhaps the regular languages a_1^* and/or a_k^*).

7. (Problem 2.19) If a grammar is in Chomsky normal form, prove that a derivation of a word of length n involves exactly 2n-1 steps (where each step applies one rule in one place).

Proof: Each terminal is made by a rule of the form $A \to a$, so we apply rules of this form n times. We have to make n variables first; since we start with one variable S, and each rule of the form $A \to BC$ increases the number of variables by 1, we apply rules of this type n-1 times.

8. Let G be a grammar in Chomsky normal form with |V| = k variables including the start symbol. Show that if L(G) contains a word of length greater than 2^{k-1} , then L(G) is infinite.

Solution: Since derivations in grammars in Chomsky normal form are binary trees, any such tree with depth k has at most 2^{k-1} leaves (where the depth is the length of the longest path from the root to a leaf, including the start symbol). Conversely, any derivation tree with more than 2^{k-1} leaves has a path of length greater than k. Then by the Pigeonhole Principle, some variable A occurs twice along this path.

It's convenient to use the notation $A \to^* w$ if a variable A can lead to a word w (of variables, terminals, or both) through a series of rules. Then (as in the pumping lemma) there is a derivation $A \to^* vAy$ where v and y cannot both be the empty word. Then if $S \to^* uAz$ and $A \to^* x$, we have $S \to^* uv^i xy^i z$ for all $i \geq 0$. Thus L(G) is infinite.

9. (Problems 2.26 and 2.27 – Tricky!) We saw that the "copy language" $\{ww : w \in \{0,1\}^*\}$ is not context-free. However, surprisingly, its complement is context-free! (Thus it gives an example of a CFL whose complement is not a CFL.) To work towards this, construct context-free grammars for the following languages:

$$\{x \# y : x, y \in \{0, 1\}^* \text{ and } x \neq y\}$$

 $\{xy : x, y \in \{0, 1\}^*, |x| = |y|, \text{ and } x \neq y\}$

Solution: For the first language, we just need to make sure that x and y differ in at least one place. In other words, we can rewrite this language as

$$\Sigma^i 0 \Sigma^* \# \Sigma^i 1 \Sigma^* \cup \Sigma^i 1 \Sigma^* \# \Sigma^i 0 \Sigma^*$$

so that $x_{i+1} \neq y_{i+1}$ (here $\Sigma = \{0,1\}$). We start by generating

$$\Sigma^i\,0\,\#\,\Sigma^i\,1\ \cup\ \Sigma^i\,1\,\#\,\Sigma^i\,0$$

with the grammar

$$S \rightarrow T1, U0$$

 $T \rightarrow 0T0, 0T1, 1T0, 1T1, 0#$
 $U \rightarrow 0U0, 0U1, 1U0, 1U1, 1#$

Then to allow for Σ^* to the left of # and at the end of the word, we add the rules

$$\# \rightarrow 0\#, 1\#$$

 $S \rightarrow S0, S1$

Similarly, we can rewrite the second language as

$$\Sigma^i 0 \Sigma^j \Sigma^i 1 \Sigma^j \cup \Sigma^i 1 \Sigma^j \Sigma^i 0 \Sigma^j$$

so that $x_{i+1} \neq y_{i+1}$. But since $\Sigma^j \Sigma^i = \Sigma^i \Sigma^j$, this is the same as

$$\Sigma^i 0 \Sigma^i \cdot \Sigma^j 1 \Sigma^j \cup \Sigma^i 1 \Sigma^i \cdot \Sigma^j 0 \Sigma^j$$

Now the is and js no longer cross, and each of the languages in this union is the concatenation of two context-free languages. Our grammar is then

$$S \rightarrow TU, UT$$

 $T \rightarrow 0T0, 0T1, 1T0, 1T1, 0$
 $U \rightarrow 0U0, 0U1, 1U0, 1U1, 1$

Finally, taking the union of this language with the regular language of all words of odd length gives the complement of the copy language $\{ww\}$.