$12a_{0595} \ (K12a_{0595})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{69} + u^{68} + \dots - u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 69 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{69} + u^{68} + \dots - u - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{11} - 3u^{9} + 4u^{7} - u^{5} - 2u^{3} + u \\ u^{11} - 3u^{9} + 4u^{7} - u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{20} + 5u^{18} - 11u^{16} + 10u^{14} + 2u^{12} - 13u^{10} + 9u^{8} - 3u^{4} + u^{2} + 1 \\ u^{22} - 6u^{20} + 17u^{18} - 26u^{16} + 20u^{14} - 13u^{10} + 10u^{8} - u^{6} - 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{8} + 3u^{6} - 3u^{4} + 1 \\ -u^{8} + 2u^{6} - 2u^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{27} + 8u^{25} + \cdots + 4u^{5} - u^{3} \\ -u^{27} + 7u^{25} + \cdots - u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{57} - 16u^{55} + \cdots - u^{5} + u \\ u^{57} - 15u^{55} + \cdots - u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{50} - 13u^{48} + \cdots + u^{2} + 1 \\ -u^{52} + 14u^{50} + \cdots - 6u^{8} - u^{4} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{67} + 72u^{65} + \cdots 8u^3 + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{69} + 37u^{68} + \dots - u + 1$
c_2, c_6	$u^{69} - u^{68} + \dots - u + 1$
c_3	$u^{69} - u^{68} + \dots - 4205u + 841$
c_4, c_5, c_{10} c_{11}	$u^{69} - u^{68} + \dots - u + 1$
c_7, c_{12}	$u^{69} - 3u^{68} + \dots + u + 1$
c_8	$u^{69} - 9u^{68} + \dots - 183u + 13$
<i>c</i> ₉	$u^{69} - 19u^{68} + \dots + 4845u - 283$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{69} - 9y^{68} + \dots + 3y - 1$
c_{2}, c_{6}	$y^{69} - 37y^{68} + \dots - y - 1$
c_3	$y^{69} - 29y^{68} + \dots + 24176227y - 707281$
c_4, c_5, c_{10} c_{11}	$y^{69} + 79y^{68} + \dots - y - 1$
c_7, c_{12}	$y^{69} + 55y^{68} + \dots - 85y - 1$
c_8	$y^{69} - 5y^{68} + \dots + 1535y - 169$
c_9	$y^{69} - 13y^{68} + \dots + 1486623y - 80089$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.007650 + 0.064350I	-3.60184 + 2.81733I	-9.32476 - 5.48757I
u = -1.007650 - 0.064350I	-3.60184 - 2.81733I	-9.32476 + 5.48757I
u = 0.863362 + 0.530746I	0.35930 - 6.77991I	-0.61658 + 10.23881I
u = 0.863362 - 0.530746I	0.35930 + 6.77991I	-0.61658 - 10.23881I
u = -0.835974 + 0.511530I	1.64738 + 3.32051I	3.54071 - 4.43827I
u = -0.835974 - 0.511530I	1.64738 - 3.32051I	3.54071 + 4.43827I
u = -0.879803 + 0.544272I	-7.29269 + 9.02370I	-3.47414 - 8.26985I
u = -0.879803 - 0.544272I	-7.29269 - 9.02370I	-3.47414 + 8.26985I
u = 0.859864 + 0.398364I	-1.45583 - 1.56617I	-5.75209 + 2.95981I
u = 0.859864 - 0.398364I	-1.45583 + 1.56617I	-5.75209 - 2.95981I
u = 1.050990 + 0.067740I	-11.48740 - 4.67055I	-10.85743 + 3.45107I
u = 1.050990 - 0.067740I	-11.48740 + 4.67055I	-10.85743 - 3.45107I
u = 0.763010 + 0.535883I	-3.25699 - 2.16890I	0.53836 + 3.82901I
u = 0.763010 - 0.535883I	-3.25699 + 2.16890I	0.53836 - 3.82901I
u = 0.931899	-1.68818	-4.45100
u = -0.983730 + 0.422361I	-9.02531 + 0.64002I	-6.52857 + 0.I
u = -0.983730 - 0.422361I	-9.02531 - 0.64002I	-6.52857 + 0.I
u = -0.689201 + 0.500960I	2.07105 + 0.85287I	5.34302 - 3.58736I
u = -0.689201 - 0.500960I	2.07105 - 0.85287I	5.34302 + 3.58736I
u = -0.614253 + 0.561310I	-6.54819 - 4.59342I	-1.49782 + 1.94707I
u = -0.614253 - 0.561310I	-6.54819 + 4.59342I	-1.49782 - 1.94707I
u = 0.637725 + 0.530123I	0.99322 + 2.46697I	1.50189 - 3.71848I
u = 0.637725 - 0.530123I	0.99322 - 2.46697I	1.50189 + 3.71848I
u = -1.107000 + 0.388573I	-9.04626 + 0.50923I	0
u = -1.107000 - 0.388573I	-9.04626 - 0.50923I	0
u = -0.137752 + 0.815117I	-10.8743 - 9.4349I	-5.12264 + 5.41104I
u = -0.137752 - 0.815117I	-10.8743 + 9.4349I	-5.12264 - 5.41104I
u = 0.135322 + 0.801855I	-2.99570 + 7.10512I	-2.78124 - 7.18886I
u = 0.135322 - 0.801855I	-2.99570 - 7.10512I	-2.78124 + 7.18886I
u = -0.073813 + 0.807863I	-12.67980 + 0.44790I	-7.20362 + 0.05375I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.073813 - 0.807863I	-12.67980 - 0.44790I	-7.20362 - 0.05375I
u = -0.127650 + 0.782006I	-1.37080 - 3.50950I	0.93203 + 2.31314I
u = -0.127650 - 0.782006I	-1.37080 + 3.50950I	0.93203 - 2.31314I
u = 0.087303 + 0.782586I	-4.38416 + 0.86576I	-5.85927 + 0.77218I
u = 0.087303 - 0.782586I	-4.38416 - 0.86576I	-5.85927 - 0.77218I
u = 1.127960 + 0.449076I	-2.38041 - 2.24656I	0
u = 1.127960 - 0.449076I	-2.38041 + 2.24656I	0
u = -1.142880 + 0.475125I	-2.14308 + 5.59560I	0
u = -1.142880 - 0.475125I	-2.14308 - 5.59560I	0
u = 1.153950 + 0.498640I	-8.24718 - 7.43164I	0
u = 1.153950 - 0.498640I	-8.24718 + 7.43164I	0
u = 1.199180 + 0.389997I	-5.28056 - 0.45902I	0
u = 1.199180 - 0.389997I	-5.28056 + 0.45902I	0
u = -1.209940 + 0.381438I	-7.02202 - 3.10940I	0
u = -1.209940 - 0.381438I	-7.02202 + 3.10940I	0
u = 0.183314 + 0.704841I	-5.44368 + 2.87522I	-1.31258 - 3.07627I
u = 0.183314 - 0.704841I	-5.44368 - 2.87522I	-1.31258 + 3.07627I
u = -1.205010 + 0.410064I	-8.18209 + 3.26828I	0
u = -1.205010 - 0.410064I	-8.18209 - 3.26828I	0
u = 1.218430 + 0.378071I	-14.9696 + 5.4032I	0
u = 1.218430 - 0.378071I	-14.9696 - 5.4032I	0
u = 1.218030 + 0.415989I	-16.5257 - 4.7100I	0
u = 1.218030 - 0.415989I	-16.5257 + 4.7100I	0
u = 1.194350 + 0.489511I	-7.61719 - 5.52009I	0
u = 1.194350 - 0.489511I	-7.61719 + 5.52009I	0
u = -1.188620 + 0.503633I	-4.47624 + 8.24964I	0
u = -1.188620 - 0.503633I	-4.47624 - 8.24964I	0
u = 1.193800 + 0.510098I	-6.11348 - 11.92620I	0
u = 1.193800 - 0.510098I	-6.11348 + 11.92620I	0
u = -1.206320 + 0.487082I	-16.0195 + 4.2556I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.206320 - 0.487082I	-16.0195 - 4.2556I	0
u = -1.198100 + 0.513816I	-14.0097 + 14.3072I	0
u = -1.198100 - 0.513816I	-14.0097 - 14.3072I	0
u = -0.386946 + 0.563275I	-7.28945 + 3.35761I	-1.95583 - 2.56316I
u = -0.386946 - 0.563275I	-7.28945 - 3.35761I	-1.95583 + 2.56316I
u = -0.163148 + 0.605619I	0.62850 - 1.34733I	3.35755 + 4.56273I
u = -0.163148 - 0.605619I	0.62850 + 1.34733I	3.35755 - 4.56273I
u = 0.305258 + 0.505306I	0.08963 - 1.59531I	1.18713 + 4.74981I
u = 0.305258 - 0.505306I	0.08963 + 1.59531I	1.18713 - 4.74981I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{69} + 37u^{68} + \dots - u + 1$
c_2, c_6	$u^{69} - u^{68} + \dots - u + 1$
c_3	$u^{69} - u^{68} + \dots - 4205u + 841$
c_4, c_5, c_{10} c_{11}	$u^{69} - u^{68} + \dots - u + 1$
c_7, c_{12}	$u^{69} - 3u^{68} + \dots + u + 1$
c_8	$u^{69} - 9u^{68} + \dots - 183u + 13$
c_9	$u^{69} - 19u^{68} + \dots + 4845u - 283$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{69} - 9y^{68} + \dots + 3y - 1$
c_2, c_6	$y^{69} - 37y^{68} + \dots - y - 1$
c_3	$y^{69} - 29y^{68} + \dots + 24176227y - 707281$
c_4, c_5, c_{10} c_{11}	$y^{69} + 79y^{68} + \dots - y - 1$
c_7, c_{12}	$y^{69} + 55y^{68} + \dots - 85y - 1$
c_8	$y^{69} - 5y^{68} + \dots + 1535y - 169$
c_9	$y^{69} - 13y^{68} + \dots + 1486623y - 80089$