EasyBuild Tech Talk: Yes! You Can Run Your Software on Arm

Chris Edsall (@hpcchris, University of Bristol)

Outline

- Architectures
- ISAs
- Arm
- Arm CPU Implementations
- Systems with Arm CPUs
- Clouds with Arm
- Continuous Integration
- Software
- Vector Instructions
- SVE
- Compilers

The Elephant in the Room – NVIDIA Acquisition

Top 500 Processor Architecture Over Time

Data: top500.org, Chart: The Next Platform

What is an Instruction Set Architecture (ISA)?

• x86_64

aarch64

Credit: Compiler Explorer - https://godbolt.org/

Arm AArch64

- Different ISA to x86_64
- Defines the:
 - Instruction Set: A64
 - Encoding, Endianness, Registers ...
- Variants, e.g.
 - Armv8.1-A e.g. thunderx2
 - Armv8.3-A has SVE, e.g. A64fx
- Business model:
 - Arm licenses the core designs (IP)
 - Small number of architecture licencees
 - The Licensees fabricate SoCs
 - Choose number of fp units, memory controllers, fab and packaging technologies

ARM Origin Story

- BBC Model B
- Acorn Archimedes
- Steve Furber, Sophie Wilson
- @bbcbasicbot

ARM HPC Processors

- Currently available
 - ThunderX2
 - A64fx
 - Ampere
 - Graviton2
- News from HotChips 2020
 - ThunderX3

European Processor Initiative

- Part of €8b EuroHPC Joint Undertaking
- SiPearl
- Codenames
 - Rhea Zeus ARM Neoverse V1 cores, ETA 2021
 - Chronos, Titan

Astra – Sandia National Labs (top500: #244)

Photo: Regina Valenzuela

A64FX

Architecture Features

- Armv8.2-A(AArch64 only)
- SVE512-bit wide SIMD
- 48 computing cores + 4assistant cores
- HBM2 32GiB
- Tofu 6D Mesh/Torus28Gbps x 2 lanes x 10 ports
- PCleGen3 16 lanes

Fabrication Process

- 7nm FinFET
- 8,786M transistors
- 594 package signal pins

Peak Performance (Efficiency)

- >2.7TFLOPS (>90%@DGEMM)
- Memory B/W 1024GB/s (>80%@Stream Triad)

Credit: Fujitsu / RIKEN CCS

Fugaku – RIKEN (top 500 #1)

Apple's next Desktop CPU will be Arm

Credit: Apple.com

New 6-core CPU

5 nanometer process

16-core

11 trillion Operations per second

New 4-core GPU

Secure Enclave

Energy efficency

ThunderX2 ~=Skylake

Green500 Data

• Shaded entries in the table below mean the power data is derived and not meassured.

Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)	Power (kW)	Power Efficiency (GFlops/watts)
4	204	A64FX prototype - Fujitsu A64FX, Fujitsu A64FX 48C 2GHz, Tofu interconnect D, Fujitsu Fujitsu Numazu Plant Japan	36,864	1,999.5	118	16.876
9	1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,299,0	72 415,530	0.0 28,3	335 14.665
172	244	Astra - Apollo 70, Marvell ThunderX2 CN9975-2000 28C 2GHz, 4xEDR Infin HPE Sandia National Laboratories United States		43,640 1,8	333.0	1,193 1.537

software

Software – It Just Works *

- Built from source
 - Beware intrinsics
- Interpreters
 - Python
 - R
 - Julia

Applications - ARCHER Top 10

- Periodic electronic structure:
 - VASP,
 - CASTEP,
 - CP2K
- N-body models:
 - GROMACS,
 - LAMMPS,
 - NAMD
- Grid-based climate modelling:
 - Met Office UM,
 - MITgcm
- Grid-based computational fluid dynamics:
 - SBLI,
 - OpenFOAM

The "Matlab Question" – ISV codes

• Ian Cutress quotes Fujitsu https://www.anandtech.com/show/15885/hpc-systems-special-offer-two-a64fx-nodes-in-a-2u-for-40k

"listed support for quantum chemical calculation software Gaussian 16, molecular dynamics software AMBER, non-linear structure analysis software LS-DYNA."

SIMD instructions - NEON

- Compare with Intel SSE, AVX2, AVX512 etc.
- Porting codes with Intrinsics
 - GROMACS Isambard Hackathon
 - Phylobayes out of the box, needed compiler pragmas
 - IQ-Tree, 100s of intel intrinsics
 - sse2neon
 - SIMD everywhere

Scaleable Vector Extensions (SVE)

Fig. 3: Cycle by cycle example of daxpy with n=3 and hardware vector lengths of 128- and 256-bit

Scalable Vector Extensions (SVE)

- Gem5
- ARMIE
- UoB writing our own simulator

- Vector Length Agnostic code
 - Fujitsu compiler targets A64fx, assumes length 512
 - Cray generates fixed width, but can take the width as a compiler option
 - Arm Compiler only VLA
 - GCC, can do both, defaults to VLA

ARM HPC website

ARM HPC Wiki

- List of apps known to work
- Build instructions

Compilers

- GCC
- Clang
- Arm (based on Clang)
- Cray (classic and Clang based)
- Fujitsu
- NVIDIA HPC SDK (formerly PGI)

Perfromance of Different Compilers - YMMV

Tracking down obscure bugs

https://github.com/pypa/manylinux/issues/735

#Python on #AArch64 sucks. 4K/64K page size difference between distros kills any use of pypi.

Find some time, read issue, comment, help to solve it.

Inconsistent page-size on arm64 · Issue #735 · pypa/manyli...
Hello, tl;dr Debuntu has a 4k page-size and CentOS 7/8 has a 64k page size, so aarch64 manylinux wheels built on the ...

© github.com

Cloud Service Providers with Arm

Amazon Web Services - Graviton 2

- Initial implementation Graviton
- Graviton2 generally available
- Very price/performance competitive

Cluster in the Cloud

- https://cluster-in-the-cloud.readthedocs.io
- Terraform + Ansible
- Multi-cloud (Currently AWS, Google, Oracle)
- Supports Graviton2

HOWTO

- Git clone
- Edit creds
- Terraform apply
- Ssh to login node
- Run EasyBuild

Installing software on your cluster

To make software available across your cluster, the best way is to install it onto the shared filesystem at /mnt/shared. Make sure that all the dependencies for it are available either on the shared filesystem or in the base image you're using. i.e. don't use yum install to provide dependencies.

Consider using a tool like EasyBuild or Spack to manage your software stack.

Monitoring

[[chris@mgmt ~]\$ srun -I --constraint="shape=c6g.4xlarge" -- /bin/bash

Ampere in Oracle Cloud Announcement

Announcing: First ARM Compute Offering

First Half of 2021

- First ARM offering in OCI powered by Ampere Altra Processors
- Easily develop and test ARM workloads in the cloud
- Best price/performance for many workloads
- Flexible VMs and BareMetal with up to 160 cores per instance, single threaded performance at 3.3GHz per core, 1TB of memory and 100Gb/s of bandwidth

Continuous Integration

- Travis (uses Graviton2)
- GitHub Actions (self hosted runner)
- Gitlab Runners
- Buildkite

HPC Clusters

HPE Catalyst Program

- Apollo 70 system
- Three systems in collaboration with the UK academic community
 - Bristol
 - Leicester
 - Edinburgh
- Hardware
 - Marvel ThunderX2
 - Infiniband EDR
 - Soon! 8x v100
- SW environment
 - Arm Compiler / GCC avail.
 - Arm Performance Libraries
 - MPI library: HPE HMPT, OpenMPI avail.

Isambard Project

- World's first production ARM based supercomputer
- GW4 + Met Office + Cray
- Purpose
 - Test limits
 - Platform for development
 - Open to UK academic researchers
 - Hackathons with international collaborators
 - Demonstrate production

Cray PrgEnv

- Modules for the programming environment
 - PrgEnv-cray, PrgEnv-allinea, PrgEnv-gnu
- Compiler wrappers
 - CC
 - CC
 - ftn

Packages already built (manually)

Search docs

ISAMBARD USER GUIDE

Request Account

Connecting to Isambard

Filesystem

Running jobs

Phase 1

Phase 2 - XC50 ARM

Debugging

Profiling

End of life procedures

Applications

- CASTEP
- CovidSim
- CP2K
- Dedalus
- DL_MONTE 2
- Firedrake
- GROMACS
- Hydro3D
- MolPro
- NAMD
- NEMO
- OpenFOAM
- OpenSBLI
- Unified Model
- VASP

```
XΤ
           163
                   156
                         146
                                        10
No pending applications are present
Total placed applications: 42
   Apid ResId
                       User PEs Nodes
                                         Age State Command
1347394 547822 ca-nastases 192
                                    3 22h03m
                                               run chemsh.x
1347421 547833
                     ri-zwu 1312
                                    21 19h57m
                                               run mdrun_mpi
1347583 547870
                   ex-echan 384
                                    6 17h36m
                                               run vasp_std
1347643 547886
               brx-hsenger 16
                                    1 17h29m
                                               run python3
1347761 547916
                                    1 17h10m
                                               run python3
               brx-hsenger 64
1347817 547927
                                    1 17h01m
                                               run python3
                brx-hsenger
1347841 547935
                 ba-rsharpe
                                    1 16h01m
                                               run vasp_std
1347847 547938
                 ba-rsharpe
                                    1 15h56m
                                               run vasp_std
1347853 547941
                 ba-rsharpe
                                    1 15h55m
                                               run vasp_std
1347869 547948 ba-tsmolders 256
                                    4 15h11m
                                               run vasp gam
1347874 547950 ba-tsmolders 256
                                    4 14h59m
                                               run vasp_gam
1347876 547951 ba-tsmolders 256
                                    4 14h58m
                                               run vasp gam
1347878 547952 ba-tsmolders 256
                                    4 14h50m
                                               run vasp_gam
1347885 547953
                   ex-echan 1024
                                    16 13h42m
                                               run vasp_std
1348020 547992 brx-hsenger
                                    1 5h49m
                                               run python3
1348024 547993
               brx-hsenger
                                    1 5h45m
                                               run python3
1348092 547994
               brx-hsenger
                                    1 1h27m
                                               run python3
1348093 547995
                                    1 1h17m
                                               run python3
               brx-hsenger
1348037 547996
               ba-olevorla
                                    1 4h33m
                                               run python
1348039 547997
                                    1 4h33m
               ba-oleyorla
                                               run python
1348038 547999
               ba-oleyorla
                                    1 4h33m
                                               run python
1348059 548005
               ba-oleyorla
                                    1 3h05m
                                               run python
1348060 548006
               ba-oleyorla
                                       3h05m
                                               run python
1348061 548007
               ba-oleyorla
                                    1 3h05m
                                               run python
1348065 548008
               ba-oleyorla
                                    1 3h05m
                                               run python
               ba-olevorla
1348064 548009
                                    1 3h05m
                                               run python
1348068 548010
                   ex-echan 576
                                    9 3h00m
                                               run vasp_std
1348081 548015 ba-tsmolders
                                    1 1h39m
                                               run vasp_std
1348084 548017 ba-tsmolders
                                    1 1h37m
                                               run vasp_std
1348089 548018 brx-hsenger
                                    1 1h30m
                                               run python3
1348088 548019 ba-tsmolders
                                    1 1h30m
                                               run vasp_std
1348091 548020 ba-tsmolders
                                    1 1h28m
                                               run vasp_std
1348095 548021 ba-tsmolders
                                    1 1h10m
                                               run vasp_std
1348098 548022 brx-hsenger
                                    1 1h03m
                                               run python3
                                    1 0h59m
1348100 548023 ba-tsmolders
                                               run vasp_std
1348105 548024
               ba-olevorla
                                       0h56m
                                               run python
1348106 548025
               ba-oleyorla
                                       0h56m
                                               run python
1348108 548026
                  ex-ebaker 512
                                       0h56m
                                               run vasp_std
1348113 548027
                ca-rundlej2
                                    1
                                       0h27m
                                               run cp2k.popt
1348119 548031
               brx-hsenger
                                    1 0h11m
                                               run python3
1348121 548032
                 ex-ebaker 512
                                    8
                                       0h10m
                                               run vasp_std
```

ex-echan 1408

1348123 548033

down rebootq

run vasp std

Isambard2

- Hackathons
- Isambard2 new hardware
 - Double the XC50 164 -> 328 nodes (10k -> 20k cores)
 - Add 72x A64fx (HPE Cray Apollo 80)
 - AMD Rome
 - Intel Cascade Lake
 - NVIDIA V100

How to Access Isambard

- Eligibility
- Process

Credits

- UoB HPC Research group
 - Simon McIntosh-Smith
 - James Price
 - Tom Deacon
 - Andrei Poenaru
- Joe Heaton
- GW4 and Isambard Partners
- Isambard RSE and Ops teams
- Cray
- ARM
- Amazon Web Services
- University of Bristol
 - ACRC Simon Burbidge
 - RSE Group @BristolRSE Matt Williams @milliams

Summary

- Things changing fast in the Arm world
- Performant and price preformant HPC implementations of Arm arch.
- Your software will almost certainly work
- Give it a go!

Questions?

- Twitter: @hpcchris
- Email: chris.edsall@bristol.ac.uk
- Isambard: https://gw4-isambard.github.io/docs/
- CitC: https://cluster-in-the-cloud.readthedocs.io/

Backup Slides

Energy Efficiency

https://chryswoods.github.io/howmuchisenough/

NVIDIA GPUs

