High Harmonics and (sub-)Attosecond Pulses in Relativistic Regime

Alexander Pukhov,

Sergei Gordienko, Teodora Baeva, Daniel an der Brügge

Institut für Theoretische Physik Uni-Düsseldorf

Conjecture of the Talk

- Theory of HHG in relativistic regime: relativistic γ-spikes and the universal spectrum
- Intense (sub-)attosecond pulses
- Relativistic plasma control for single attosecond pulse selection
- 3D effects: (self-)focusing of HHG in vacuum and spectrum modifications
- Towards vacuum breakdown intensity limit via relativistic HHG

19.10.2007

Important laser-plasma parameters

Dimensionless laser amplitude

$$a = \frac{eA}{mc^2}$$

relativistic when $a \approx 1 \leftrightarrow I\lambda^2 = 1.37 \times 10^{18} \text{ W } \mu\text{m}^2/\text{cm}^2$

Critical plasma density

$$N_{\rm c} = \frac{\omega_0^2 m}{4\pi e^2}$$

$$S = \frac{N}{aN_{c}}$$

Gordienko & Pukhov Phys. Plasmas 12, 043109 (2005)

Historical overview (milestones)

- First observaton of HHG from solid targets: Carman et al., Phys. Rev. Lett. 46, 29 (1981).
 CO₂ laser, 10¹⁶ W/cm².
- First theoretical attempt: Bezzerides et al., Phys. Rev. Lett. 49, 202 (1982). suggested $\omega_{\text{cutoff}} = \omega_{\text{p}}$.
- Doppler effect hypothesis: Bulanov, Naumova, Pegoraro, Phys. Plasmas 1, 745 (1993).
- No sharp cutoff, "selection rules": Lichters, MtV, Pukhov, Phys. Plasmas 3, 3425 (1996).
- Universal spectrum $I_n/I_0 = n^{-8/3}$ and $\omega_{\text{cutoff}} = 4\gamma^3\omega_0$. Baeva, Gordienko, Pukhov, Phys. Rev. E74, 046404 (2006)
- Experimental observation of HHG up to keV energies: Dromey, Zepf et al., Nat. Phys. 2, 456 (2006).

Two mechanims (at least) are involved in HHG

The apparent reflecting point oscillates at relativistic velocities together with the plasma surface

Baeva, Gordienko, Pukhov, Phys. Rev. E74, 046404 (2006), Pukhov, NATURE Physics, Vol. 2, p. 439 (2006).

1. Boundary Condition: $\mathbf{E}_{\tau} = 0$

- External observer sees the reflection at x(t), where $\mathbf{E}_{\tau}(x(t))=0$
- Equation for the Apparent Reflection Point x(t),

$$\mathbf{E}_{\tau}^{i}(x-ct)+\mathbf{E}_{\tau}^{r}(x+ct)=0$$

• x(t) is located within the plasma skin layer

Surface dynamics is defined by relativistic similarity (Gordienko & Pukhov, 2005)

Relativistic γ-Spikes

Baeva, Gordienko, Pukhov, Phys. Rev. E74, 046404 (2006)

Plasma surface velocity $\beta = v_n/c$ is a smooth function. At the maximum it can be approximated by a parabola:

$$\beta(t) \approx \beta_{\text{max}} (1-\omega_0^2 t^2),$$

 $\gamma = 1/\sqrt{1-\beta^2}$ Its γ-factor has a sharp spike of the width

$$\tau \approx 1/\omega_0 \gamma_{\rm max}$$

The Canonical Spectrum

Baeva, Gordienko, Pukhov, Phys. Rev. E74, 046404 (2006)

Reflected radiation spectra in 1D PIC simulations

The Gaussian laser pulse $a=a_0\exp[-(t/\tau)^2]\cos\omega_0 t$ is incident onto an overdense plasma layer with $n=30n_c$.

The color lines correspond to laser amplitudes a_0 =5,10,20.

The broken line marks the analytical scaling $I \sim \omega^{-8/3}$.

VULCAN Experiment: Harmonics down to "Water Window"

B. DROMEY, M. ZEPF, et al., NATURE Physics, Vol. 2, p. 456 (2006).

Figure 3 Unprocessed high harmonic spectrum recorded with the extreme-ultraviolet spectrometer, a, Raw CCD image obtained with the double PMI setup (E = 70 J on target, false colours), b, A lineaut of a. Spectral features: (1) first-order carbon K-edge, (4) region of resolved harmonics around 200th order.

Figure 4 Relative intensity of harmonics normalized to the 238th harmonic (at the carbon K-edge). The lines are fits to the data with the exponent p as a fitting parameter such that $\frac{1}{2}(n)/(238) = n^{-p}/238^{-p}$. The best fit (red line) corresponds to a value of p = 2.5 confirming harmonic production in the relativistic limit. The error

 $I_n \sim n^{-2.5}$

keV harmonics

B. Dromey, M. Zepf et. al. (PRL 2007)

Roll-over scaling confirmed as $\sim \gamma^3$

B. Dromey, M. Zepf et. al. (in press, PRL 2007)

Attosecond pulses

 After proper filtering of HHG one obtains <u>a train of (sub-)attosecond pulses</u>

Source: Baeva, Gordienko, Pukhov, Phys. Rev. E74, 046404 (2006)

19.10.2007

Attosecond Pulse Shape as a Function of Filter Threshold Ω_c

Shortest Pulse Duration

Baeva, Gordienko, Pukhov, Phys. Rev. E74, 046404 (2006)

Pulses can be zeptosecond!

$$\omega_0 \tau_{\text{pulse}} \sim \frac{1}{\gamma_{\text{max}}^3} \sim \frac{1}{a^3}$$

$$\gamma_{\max} = a \cdot f(S)$$

High harmonics: train of attosecond pulses

Yet some applications require single attosecond pulses! Can we extract one pulse from the train?

Surface dynamics vs individual electrons dynamics

Gordienko & Pukhov Phys. Plasmas 12, 043109 (2005)

 Ultra-relativistic similarity theory demands that

$$p_{\tau} \sim a_0$$

$$p_n \sim a_0$$

19.10.2007

pukhov@tp1.uni-duesseldorf.de

Surface dynamics

$$\mathbf{p}_{n} = a_{0} \mathbf{P}_{n}(S, \omega t) \mathbf{p}_{\tau} = a_{0} \mathbf{P}_{\tau}(S, \omega t)$$

$$\mathbf{P}_{n} \sim \mathbf{P}_{\tau} \sim 1$$

Simple algebra shows...

$$\beta_s(t) = \frac{p_n(t)}{\sqrt{m_e^2 c^2 + p_n^2(t) + p_\tau^2(t)}} = \frac{P_n(t)}{\sqrt{P_n^2(t) + P_\tau^2(t)}} - O(a_0^{-2})$$

$$\gamma_s(t) = \frac{1}{\sqrt{1 - \beta_s^2(t)}} = \sqrt{1 + \frac{P_n^2(t)}{P_\tau^2(t)}} + O(a_0^{-2}), \ p_\tau \neq 0$$

(Sub-)attosecond pulse emission

The Condition:

Vector with 2 components!

$$\mathbf{p}_{\tau} = 0$$

Tangential electron momentum at the surface vanishes

Relativistic plasma control via polarization gating

 $\omega t/2\pi$

enforce

$$\mathbf{A}_{\tau} = 0$$

once!

Relativistic plasma control via polarization gating

Baeva, Gordienko, Pukhov, Phys. Rev. E74, 065401R (2000)

Relativistic plasma control

Baeva, Gordienko, Pukhov, Phys. Rev. E74, 065401R (2006)

Simulation parameters:

Driving polarization: $\omega_0=1$, $a_0=20$

Control polarization: $\omega_d=1.25$, $a_d=6$

Phase shift: $\Delta \varphi = \pi/8$

Relativistic plasma control

Baeva, Gordienko, Pukhov, Phys. Rev. E74, 065401R (2006)

Polarization gating (1D-PIC)

Talk by Michael Geissler

a=20, τ =15fs; HH-Pulse: 30-100harmonic; n_0 =90 n_c

Talk by Alexander Tarasevich

Two-Colour HOHG / Atto-Pulses (PIC)

3D Regimes of Relativistic HHG

Daniel an der Brügge and Alexander Pukhov, Phys. Plasmas 14, 093104 (2007)

- Is the local HHG quasi-1d?
- How changes the spectrum over vacuum propagation?
- (Self-)focusing of high harmonics

3D geometry used in simulations

Quasi-1D regime of HHG

Daniel an der Brügge and Alexander Pukhov, Phys. Plasmas 14, 093104 (2007)

 If the focal spot radius R>λ, the local 1D approximation gives excellent results

Spectrum modification during vacuum propagation

Daniel an der Brügge and Alexander Pukhov, in press, Phys. Plasmas 2007

- Lower harmonics diffract faster
 - → vacuum propagation works as a natural filter

$$I(x,\omega) = I_0 \frac{\left(\frac{\omega}{\omega_0}\right)^{-p+2}}{\left(\frac{x}{x_{Rl}}\right)^2 + \left(\frac{\omega}{\omega_0}\right)^2} \left(1 - \frac{1}{a_0} \sqrt[q]{\frac{\omega}{\omega_c}}\right)^2$$

$$\underset{x,a_0 \to \infty}{\approx} \frac{I_0 x_{Rl}^2}{x^2} \left(\frac{\omega}{\omega_0}\right)^{-p+2}$$

3D PIC simulations

Daniel an der Brügge and Alexander Pukhov, in press, Phys. Plasmas 2007

Results indicate natural divergence of HH generated by Gaussian pulses

(Self-)focusing of HH in vacuum

Daniel an der Brügge and Alexander Pukhov, in press, Phys. Plasmas 2007

Attosecond pulses have much higher amplitude at the focus than the driving laser!

3D PIC simulations

Rectification of attosecond pulses during vacuum propagation: simulation with S=const surface

3D attosecond pulse propagation

Daniel an der Brügge and Alexander Pukhov, Phys. Plasmas 14, 093104 (2007)

Gaussian laser spot

Natural self-focusing: the phase of attosecond pulse generation is S-dependent!

19.10.2007

pukhov@tp1.uni-duesseldorf.de

S-dependence of attosecond pulse generation phase

Harmonics Focus Position

Daniel an der Brügge and Alexander Pukhov, in press, Phys. Plasmas 2007

$$x_{\rm sf} = \frac{S_0}{2.7} x_R$$

19.10.2007

pukhov@tp1.uni-duesseldorf.de

40

Talk by Brendan Dromey

Diffraction limited ROM performance

Conclusions

- Theory of high harmonics generation at plasma surfaces is developed.
- 2. The canonical harmonics spectrum is the universal power law $I_n \sim n^{-8/3}$
- 3. Harmonics appear as a train of attosecond pulses
- 4. Relativistic plasma control allows to select a single attosecond pulse
- 5. 3D vacuum propagation can work as a natural filter to rectify the attosecond pulses

Vacuum is not empty

Compton wavelength

$$\lambda_C = \frac{h}{mc}$$

Strong EM fields can bring virtual particles into the real world

$$eE_c\lambda_c \cong 2mc^2$$

Critical laser intensity $I_{\rm C} \sim 5 \times 10^{29} \, {\rm W/cm^2}$.

Virtual particles appear and disappear on Compton lengths

Vacuum polarization: e- e+ pairs are created

Required Laser Energy

To reach the critical intensity at the laser fundamental, $\lambda=1$ µm, one needs 64 MJ energy.

However, the energy scales down when the wavelength decreases:

$$W = \frac{4\pi}{3c} I_C \lambda^3$$

Focusing laser harmonics one can reach the critical intensity using moderate energy lasers

19.10.2007

Coherent Harmonics Focusing: plasma harmonics are phase-locked!

Gordienko, Pukhov, Shorokhov, Baeva, Phys. Rev. Lett. 94, 103903 (2005)

Scaling of the CHF intensity

Gordienko, Pukhov, Shorokhov, Baeva, Phys. Rev. Lett. 94, 103903 (2005)

19.10.2007

pukhov@tp1.uni-duesseldorf.de

4

Conclusions

 Plasma harmonics are phase-locked, coherent, and can be focused to give huge intensities

Universal Plasma Surface Dynamics

