

Machine Learning

第12讲 强化学习

Reinforcement Learning

刘峤

电子科技大学计算机科学与工程学院

Roadmap

- Introduction
 - **X** Terminologies.
 - * Rewards, Returns, and Value functions
 - Play games using reinforcement learning
- Value-based learning
 - * Deep Qnetwork (DQN) for approximating Q*(s,a).
 - X Learn the network
 - * parameters using temporal different (TD).
- Policy-based learning.
 - \times Policy network for approximating nt(a|s).
 - * Learn the network parameters using policy gradient.
- Actor-critic method. (Policy network + valtue network.) 自学

12.1 Introduction

12.1.1 Terminologies

Random Variable

- Random variable:
 - * a variable whose values depend on outcomes of a random event.
 - \times Uppercase letter X for random variable.
 - \times Lowercase letter \mathbf{x} for an observed value.
 - * For example, we flipped a coin 4 times and observed:
 - $X_1 = 1$, $X_2 = 1$, $X_3 = 0$, $X_4 = 1$
- Probability Density Function (PDF)
 - ※ PDF provides a relative likelihood that the value of the random variable would equal to that sample.

Expectation

- Random variable X is in the domain \mathcal{X} .
- For continuous distribution, the expectation of f(X) is:

$$\mathbb{E}[f(x)] = \int_{\chi} p(x) \cdot f(x) dx$$

• For discrete distribution, the expectation of f(X) is:

$$\mathbb{E}[f(x)] = \sum_{x \in \mathcal{X}} p(x) \cdot f(x)$$

Random Sampling

- Sample red ball w.p. 0.2, green ball w.p.0.5, and blue ball w.p.0.3.
 - * Randomly sample a ball.
 - * What will be the outcome?

```
from numpy. random import choice
samples = choice( ['R', 'G', 'B'], size=100, p=[0.2, 0.5, 0.3])
print (samples)
['G''G''G''R''R''G''B''G''B''B''B''G''G''R''R''G''B'
'B' 'G' 'B' 'B' 'G' 'R' 'G' 'G' 'G' 'B' 'B' 'R' 'G' 'R' 'G' 'B' 'B'
'R' 'R' 'G' 'R' 'R' 'R' 'R' 'B' 'R' 'B' 'B' 'G' 'G' 'R' 'B' 'G' 'G'
'R' 'B' 'B' 'G' 'G' 'G' 'G' 'B' 'G']
```


Unsupervised Learning

Reinforcement Learning

Objective

$$p_{\theta}(y|x)$$
 $p_{\theta}(x)$ $\pi_{\theta}(a|s)$

$$p_{\theta}(x)$$

$$\pi_{\theta}(a|s)$$

Applications

- Classification
- Inference

→ Prediction

Regression

→ Generation

→ Control

Terminology: state and action

State *s* (this frame)

Action $a \in \{\text{left, right, up}\}\$

Terminology: policy

Setting

policy π • Policy function $\pi:(s,a)\to[0,1]$

$$\pi(a|s) = P(A = a|S = s)$$

 It is the probability of taking action A = a given state s, e.g.,

$$\pi(\text{left}|s) = 0.2$$

$$\pi(\text{right}|s) = 0.1$$

$$\pi(\text{up}|s) = 0.7$$

• Upon observing state S = s, the agent's action A can be random.

using policy $\pi_{\theta}(a|s)$

Terminology: reward

Setting

reward R

- Collect a coin: R = +1
- Win the game: R=+10000
- Touch a Goomba: R =-10000
 - game over
- Nothing happens: R = 0

Terminology: state transition

state transition

- E.g., "up" action leads to a new state.
- State transition can be random.
 - **X** Randomness is from the environment.
 - **XE.g.**, the Goombas' next move is random

$$p(s'|s,a) = P(S'=s'|S=s, A=a)$$

Terminology: agent environment interaction

Randomness in Reinforcement Learning

Actions have randomness.

$$A \sim \pi(\cdot|s)$$

* Given state s, the action can be random, e.g.,

$$\pi(\text{left}|s) = 0.2$$
 $\pi(\text{right}|s) = 0.1$ $\pi(\text{up}|s) = 0.7$

• State transitions have randomness.

$$S' \sim (\cdot | s, a)$$

- \times Given state S = s and action A = a,
 - > the environment randomly generates a new state S'.
- Play the game using AI.

$$s_1, a_1, r_1, s_2, a_2, r_2, \ldots, s_T, a_T, r_T.$$

Reinforcement Learning

- Learning to interact with an environment
 - Robots, games, process control
 - With limited human training
 - * Where the 'right thing' isn't obvious

- Reinforcement Learning:
 - \times Goal: Maximize $\sum_{i=1}^{\infty} \text{Reward}(\text{State}_i, \text{Acton}_i)$
 - \times Data: Reward_i, State_{i+1} = Interact(State_i, Acton_i)

12.1.2 Rewards and Returns

Return

- Definition: Return (aka cumulative future reward).
 - $W_{t} = R_{t} + R_{t+1} + R_{t+2} + R_{t+3} + \dots$ until the game is over.
- Question: Are R and R_{t+1} equally important?
 - * Which of the followings do you prefer?
 - > l give you \$100 right now.
 - > l will give you \$100 one year later.
 - > Or how about: I will give you \$200 one year later.
- Future reward is less valuable than present reward.
 - \times R_{t+1} should be given less weight than R_t .

Return

• Definition: Return (aka cumulative future reward).

$$W U_t = R_t + R_{t+1} + R_{t+2} + R_{t+3} + \dots$$
 until the game is over.

- Definition: Discounted return (aka cumulative discounted future reward).
 - $\times \gamma$: discount rate -- tuning hyper-parameter.

$$W U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \dots$$

- At time step t, the return U_t is random.
 - **X** Two sources of randomness:
 - 1. Action can be random: $P[A = a | S = s] = \pi(a|s)$
 - 2. New state can be random: P[S' = s' | S = s, A = a] = p(s' | s, a)

Randomness in Returns

• Definition: Discounted Return (at time step *t*).

$$W U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \dots$$

- At time step t, the return U_t is random.
 - 1. Action can be random: $P[A = a | S = s] = \pi(a | s)$
 - 2. New state can be random: P[S' = s' | S = s, A = a] = p(s' | s, a)
- For any $i \geq t$, the reward R_i depends on S_i and A_i .
 - \times Thus, given s_t , the return U_t depends on the random variables:
 - $> A_t, A_{t+1}, A_{t+2}, \dots$ and S_{t+1}, S_{t+2}, \dots

12.1.3 Value functions

Action-Value Function Q(s,a)

• Definition: Discounted Return (cumulative discounted future reward).

$$W U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \dots$$

- Definition: Action-value function for policy π
 - $\times U_t$ depends on actions $A_t, A_{t+1}, A_{t+2}, \ldots$ and states S_{t+1}, S_{t+2}, \ldots

 - \mathbb{X} Actions are random: $P[A = a|S = s] = \pi(a|s)$ (Policy function)
 - \aleph States are random: P[S' = s' | S = s, A = a] = p(s' | s, a) (State transition)

Action-Value Function Q(s,a)

• Definition: Discounted Return (cumulative discounted future reward).

$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \dots$$

ullet Definition: Action-value function for policy $oldsymbol{\pi}$

Definition: Optimal action-value function

State-Value Function V(s)

• Definition: Discounted Return (cumulative discounted future reward).

$$W U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \dots$$

ullet Definition: Action-value function for policy π

• Definition: State-value function

$$\times V_{\pi}(s_t) = \mathbb{E}_A[Q_{\pi}(s_t, A)] = \sum_a \pi(a|s_t) \cdot Q_{\pi}(s_t, a)$$
 (if Actions are discrete)

$$\times V_{\pi}(s_t) = \mathbb{E}_A[Q_{\pi}(s_t, A)] = \int \pi(a|s_t) \cdot Q_{\pi}(s_t, a) da$$
 (Actions are continuous)

Understanding the Value Functions

- Action-value function: $Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t | S_t = s_t, A_t = a_t]$
 - \times For policy π , $Q_{\pi}(s, a)$ evaluates how good it is for an agent to pick action a while being in state s.
- State-value function: $V_{\pi}(s_t) = \mathbb{E}_A[Q_{\pi}(s_t, A)]$
 - \times For fixed policy π , $V_{\pi}(s)$ evaluates how good the situation is in state s.
 - \times E_s[$V_{\pi}(s)$] evaluates how good the policy π is.

12.1.4 Play games using reinforcement learning

How does Al control the agent?

- Suppose we have a good policy $\pi(a|s)$.
 - \times Upon observe the state s_t ,
 - \times random sampling: $a_t \sim \pi(\cdot|s_t)$.
- Suppose we know the optimal action-value function $Q^*(s, a)$
 - \times Upon observe the state s_t ,
 - \times choose the action that maximizes the value: $a_t = \operatorname{argmax}_{\mathbf{a}} Q^*(\mathbf{s}_t, \mathbf{a})$.

OpenAI Gym

- Gym is a toolkit for developing reinforcement learning algorithms.
 - % https://gym.openai.com/
- Problem setting 1: Classical control problems

Pendulum

OpenAI Gym

- Gym is a toolkit for developing reinforcement learning algorithms.
- Problem setting 2: Atari Games

Pong

Space Invader

Breakout

OpenAI Gym

- Gym is a toolkit for developing reinforcement learning algorithms.
- Problem setting 3: MuJoCo (Advanced Physics Simulation)

Ant

HalfCheetah

Humanoid

Play CartPole Game

```
import gym
env = gym. make ('CartPole-v0') # 生成环境
state = env. reset()
for t in range (100):
    env. render() # 弹出环境渲染窗口
    print (state) # \[ \int 0.01850658 \quad 0.01749877 \quad -0.03132206 \quad 0.01806279 \]
    action = env. action space. sample() # take a random action
    state, reward, done, info = env. step(action)
    if done: # done == 1 means finished (win or loose)
        print('Mission terminated.')
        break
env. close()
```

Play games using reinforcement learning

• Observe state s_t , make action a_t , environment gives s_{t+1} and reward r_t .

• The agent can be controlled by either $\pi(a|s)$ or $Q^*(s,a)$.

12.2 Value-based Reinforcement learning

Recall: Discounted Return & Action-Value Function

• Definition: Discounted Return (cumulative discounted future reward).

$$W U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \dots$$

- Definition: Action-value function for policy π
 - $\times U_t$ depends on actions $A_t, A_{t+1}, A_{t+2}, \ldots$ and states S_{t+1}, S_{t+2}, \ldots

- \mathbb{X} Actions are random: $P[A = a|S = s] = \pi(a|s)$ (Policy function)
- \mathbb{X} States are random: P[S'=s'|S=s,A=a]=p(s'|s,a) (State transition)

Recall: Action-Value Function Q(s,a)

• Definition: Discounted Return (cumulative discounted future reward).

$$W U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \dots$$

ullet Definition: Action-value function for policy $oldsymbol{\pi}$

Definition: Optimal action-value function

* Whatever policy function T is used, the result of taking at at state st cannot be better than Q* (st, at).

12.2.1 Deep Q Network (DQN)

Approximate the Q Function

- Goal: Win the game (≈ maximize the total reward.)
- Question: If we know $Q^*(s, a)$, what is the best action?
 - \times Obviously, the best action is: $a^* = \underset{a}{\operatorname{argmax}} \ Q^*(s, a)$
- Q* is an indication for how good it is
 - \times for an agent to pick action a while being in state s.
- Challenge: We do not know $Q^*(s, a)$.
- Solution: Deep Q Network (DQN)
 - \times Use neural network Q(s, a; w) to approximate $Q^*(s, a)$.

Deep Q Network (DQN)

- Input shape: size of the screenshot.
- Output shape: dimension of action space.

Question: Based on the predictions, what should be the action?

Apply DQN to Play Game

$$s_{t+2} \sim p(\cdot|s_{t+1}, a_{t+1})$$

$$s_{t+1} \sim p(\cdot|s_t, a_t)$$

$$s_{t+3} \sim p(\cdot|s_{t+2}, a_{t+2})$$

$$s_{t+3} \sim p(\cdot|s_{t+2}, a_{t+2})$$

$$r_t \qquad r_{t+1} \qquad r_{t+1} \qquad r_{t+2}$$

$$a_t = \underset{a}{argmax} Q(s_t, a; \mathbf{w})$$

$$a_{t+1} = \underset{a}{argmax} Q(s_{t+1}, a; \mathbf{w})$$

12.2.2 Temporal Different (TD)

Example

- Alice want to drive from NYC to Atlanta.
 - * Model Q(w) estimates the time cost, e.g., 1000 minutes.
- Question: How do l update the model?
 - \times Make a prediction: q = Q(w), e.g., q = 1000.
 - \times Finish the trip and get the target y, e.g., y = 860.
 - $\# \text{ Loss: } L = \frac{1}{2}(q y)^2$
 - $% \text{ Gradient: } \frac{\partial L}{\partial \mathbf{w}} = \frac{\partial q}{\partial \mathbf{w}} \cdot \frac{\partial L}{\partial q} = (q y) \cdot \frac{\partial Q(\mathbf{w})}{\partial \mathbf{w}}$
 - \times Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L}{\partial \mathbf{w}}|_{\mathbf{w} = \mathbf{w}_t}$

Example

- Alice want to drive from NYC to Atlanta.
 - * Model Q(w) estimates the time cost, e.g., 1000 minutes.
- Question: How do l update the model?
 - * Can we update the model before finishing the trip?
 - * Can we get a better w as soon as we arrived DC?

Temporal Different (TD) Learning

- Model's estimate:
 - **XXIVITY** X NYC to Atlanta: 1000 minutes (estimate).
- Alice arrived at DC; actual time cost:
 - * NYC to DC: 300 minutes (actual).
- Model now updates its estimate:
 - DC to Atlanta: 600 minutes (estimate). (actually)
 600 minutes (estimate)
 Atlanta
 DC
 NYC
 1000 minutes (estimate)

Temporal Different (TD) Learning

- Model's estimate: Q(w) = 1000 minutes.. 900 minute
 - 900 minutes --> TD target
 - Weight in the work with the work with the work with the work in the work with the w
- TD target y = 900 is a more reliable estimate than 1000.

$$\times Loss: L = \frac{1}{2}(Q(\mathbf{w}) - y)^2$$

$$% Gradient: \frac{\partial L}{\partial \mathbf{w}} = (1000 - 900) \cdot \frac{\partial Q(\mathbf{w})}{\partial \mathbf{w}}$$

$$\times$$
 Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \cdot \frac{\partial L}{\partial \mathbf{w}}|_{\mathbf{w} = \mathbf{w}_t}$

600 minutes (estimate)

(actually) 300 minutes

Why does TD Learning Work

Model's estimates:

• Ground truth:

XXIV XYC to Atlanta: 1000 minutes.

* NYC to DC: 300 minutes.

X DC to Atlanta: 600 minutes.

 \times \rightarrow NYC to DC: 400 minutes.

** TD error: $\delta = 400 - 300 = 100$

How to apply TD learning to DQN?

• In the "driving time" example, we have the equation:

$$T_{\text{NYC}\to\text{ATL}} \approx T_{\text{NYC}\to\text{DC}} + T_{\text{DC}\to\text{ATL}}$$

• In deep reinforcement learning:

$$Q(s_t, a_t; \mathbf{w}) \approx r_t + \gamma \cdot Q(s_{t+1}, a_{t+1}; \mathbf{w})$$

How to apply TD learning to DQN?

• Recall: Definition: Discounted Return

- TD learning for DQN:
 - \times DQN's output, $Q(s_t, a_t; \mathbf{w})$, is estimate of $E[U_t]$.
 - \times DQN's output, $Q(s_{t+1}, a_{t+1}; \mathbf{w})$, is estimate of $E[U_{t+1}]$.
 - $% Thus, Q(s_t, a_t; \mathbf{w}) \approx r_t + \gamma \cdot Q(s_{t+1}, a_{t+1}; \mathbf{w})$ Prediction
 TD Target

Train DQN using TD learning

- Prediction: $Q(s_t, a_t; \mathbf{w}_t)$
- TD target:

$$y_t = r_t + \gamma \cdot Q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$$
$$= r_t + \gamma \cdot \max_a Q(s_{t+1}, a; \mathbf{w}_t)$$

- Loss: $L_t = \frac{1}{2}[Q(s_t, a_t; \mathbf{w}) y_t]^2$
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L_t}{\partial \mathbf{w}}|_{\mathbf{w} = \mathbf{w}_t}$

Summary: Value-Based Reinforcement Learning

• Definition: Optimal action-value function

$$Q^*(s_t, a_t) = \max_{\pi} \mathbb{E}[U_t | S_t = s_t, A_t = a_t]$$

- DQN: Approximate Q*(s, a) using a neural network (DQN).
 - \times Q(s, a; w) is a neural network parameterized by w.
 - * Input: observed state s.
 - \times Output: scores for every action $a \in \mathcal{A}$

Temporal Difference (TD) Learning

- Algorithm: One iteration of TD learning.
 - 1. Observe state $S_t = s_t$ and action $A_t = a_t$.
 - 2. Predict the value: $q_t = Q(s_t, a_t; \mathbf{w}_t)$
 - 3. Differentiate the value network: $d_t = \frac{\partial Q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}}|_{\mathbf{w} = \mathbf{w}_t}$
 - 4. Environment provides new state s_{t+1} and reward r_t .
 - 5. Compute TD target: $y_t = r_t + \gamma \cdot \max_a Q(s_{t+1}, a; \mathbf{w}_t)$
 - 6. Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot (q_t y_t) \cdot d_t$

DeepMind's DQN playing Breakout

12.3 Policy-based Reinforcement learning

12.3.1 Policy network

Policy Function Approximation

Recall:Policy function $\pi(a|s)$

- Policy function $\pi(a|s)$ is a probability density function (PDF)
- It takes state *s* as input.
- It output the probabilities for all the actions, e.g.,

$$\pi(\operatorname{left}|s) = 0.2$$

$$\pi(\operatorname{right}|s) = 0.1$$

$$\pi(\operatorname{up}|s) = 0.7$$

• The agent performs an action *a* random drawn from the distribution.

Policy Network $\pi(a|s,\theta)$

- Policy network: Use a neural net to approximate $\pi(a|s)$
 - \mathbb{X} Use policy network $\pi(a|s, \boldsymbol{\theta})$ to approximate $\pi(a|s)$.
 - \times θ : trainable parameters of the neural net.

Policy Network $\pi(a|s,\theta)$

$$\sum_{a \in \mathcal{A}} \pi(a|s, \theta) = 1$$

- Where: $A = \{"left", "right", "up"\}$ is the set of all actions.
 - * That is why we use *softmax* activation

12.3.2 State-Value Function Approximation

Recall: State-Value Function V(s)

• Definition: Discounted Return (cumulative discounted future reward).

$$W U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \dots$$

ullet Definition: Action-value function for policy π

• Definition: State-value function

$$\times V_{\pi}(s_t) = \mathbb{E}_A[Q_{\pi}(s_t, A)] = \sum_a \pi(a|s_t) \cdot Q_{\pi}(s_t, a)$$
 (if Actions are discrete)

$$\divideontimes V_{\pi}(s_t) = \mathbb{E}_A[Q_{\pi}(s_t,A)] = \int \pi(a|s_t) \cdot Q_{\pi}(s_t,a) da$$
 (Actions are continuous)

Policy-Based Reinforcement Learning

Definition: State-value function.

$$W_{\pi}(s_t) = \mathbb{E}_A[Q_{\pi}(s_t, A)] = \sum_a \pi(a|s_t) \cdot Q_{\pi}(s_t, a)$$

- Approximate state-value function.
 - \times Approximate policy function $\pi(a|s_t)$ by policy network $\pi(a|s_t, \boldsymbol{\theta})$
 - \times Approximate value function $V_{\pi}(s_t)$ by:

$$V(s_t; \boldsymbol{\theta}) = \sum_{a} \pi(a|s_t; \theta) \cdot Q_{\pi}(s_t, a)$$

Policy-Based Reinforcement Learning

• Definition: Approximate state-value function.

$$V(s;\theta) = \sum_{a} \pi(a|s;\theta) \cdot Q_{\pi}(s,a)$$

- Policy-based learning: Learn $\boldsymbol{\theta}$ that maximizes $J(\boldsymbol{\theta}) = \mathbb{E}_S[V(S; \boldsymbol{\theta})]$
- How to improve θ ? Policy gradient ascent!
 - * observe state s.
 - \times Update policy by: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \beta \cdot \frac{\partial V(s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$

12.3.3 Policy gradient

• Definition: Approximate state-value function.

$$V(s;\theta) = \sum_{a} \pi(a|s;\theta) \cdot Q_{\pi}(s,a)$$

• Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ

$$\frac{\partial V(s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \frac{\partial \sum_{a} \pi(a|s;\boldsymbol{\theta}) \cdot Q_{\pi}(s,a)}{\partial \boldsymbol{\theta}}$$

$$=\sum_{a} \frac{\partial \pi(a|s;\boldsymbol{\theta}) \cdot Q_{\pi}(s,a)}{\partial \boldsymbol{\theta}}$$
 Push derivative inside the summation

$$= \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a) \text{ Pretend } Q_{\pi} \text{ is independent of } \theta.$$
 (lt may not be true.)

• Definition: Approximate state-value function.

$$V(s;\theta) = \sum_{a} \pi(a|s;\theta) \cdot Q_{\pi}(s,a)$$

• Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ

$$\frac{\partial V(s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \sum_{a} \frac{\partial \pi(a|s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot Q_{\pi}(s,a)
= \sum_{a} \pi(a|s;\boldsymbol{\theta}) \cdot \frac{\partial \log \pi(a|s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot Q_{\pi}(s,a)$$

Chain rule: $\frac{\partial \log[\pi(\boldsymbol{\theta})]}{\partial \boldsymbol{\theta}} = \frac{1}{\pi(\boldsymbol{\theta})} \cdot \frac{\partial \pi(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$

$$\pi(\boldsymbol{\theta}) \cdot \frac{\partial \log[\pi(\boldsymbol{\theta})]}{\partial \boldsymbol{\theta}} = \pi(\boldsymbol{\theta}) \cdot \frac{1}{\pi(\boldsymbol{\theta})} \cdot \frac{\partial \pi(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \frac{\partial \pi(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$

• Definition: Approximate state-value function.

$$V(s;\theta) = \sum_{a} \pi(a|s;\theta) \cdot Q_{\pi}(s,a)$$

• Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ

$$\frac{\partial V(s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \sum_{a} \frac{\partial \pi(a|s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot Q_{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s;\boldsymbol{\theta}) \cdot \frac{\partial \log \pi(a|s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot Q_{\pi}(s,a)$$

$$= \mathbb{E}_{A} \left[\frac{\partial \log[\pi(A|s;\boldsymbol{\theta})]}{\partial \boldsymbol{\theta}} \cdot Q_{\pi}(s,A) \right]$$

Note: This derivation is over-simplified and not rigorous.

Two forms of policy gradient:

$$** Form 1: \frac{\partial V(s; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \sum_{a} \frac{\partial \pi(a|s; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot Q_{\pi}(s, a)$$

$$\text{ ** Form 2: } \frac{\partial V(s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbb{E}_{A \sim \pi(\cdot|s;\boldsymbol{\theta})} \left[\frac{\partial \log \pi(A|s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot Q_{\pi}(s,A) \right]$$

Calculate Policy Gradient for Discrete Actions

• If the actions are discrete, e.g., action space $A = \{"left", "right", "up"\}$

• Use Form 1:
$$\frac{\partial V(s; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \sum_{a} \frac{\partial \pi(a|s; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot Q_{\pi}(s, a)$$

1. Calculate
$$f(a, \theta) = \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s, a)$$
, for every action $a \in \mathcal{A}$

2. Policy gradient:
$$\frac{\partial V(s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = f(\text{"left"},\boldsymbol{\theta}) + f(\text{"right"},\boldsymbol{\theta}) + f(\text{"up"},\boldsymbol{\theta})$$

This approach does not work for continuous actions.

Calculate Policy Gradient for Continuous Actions

• If the actions are continuous, e.g., action space $\mathcal{A} = [0, 1], ...$

• Use Form 2:
$$\frac{\partial V(s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbb{E}_{A \sim \pi(\cdot|s;\boldsymbol{\theta})} \left| \frac{\partial \log \pi(A|s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot Q_{\pi}(s,A) \right|$$

1. Randomly sample an action a according to the PDF $\pi(\cdot|s;\boldsymbol{\theta})$

2. Calculate
$$g(\hat{a}, \boldsymbol{\theta}) = \frac{\partial \log \pi(\hat{a}|s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot Q_{\pi}(s, \hat{a})$$

- Obviously, $\mathbb{E}_A[g(A, \boldsymbol{\theta})] = \frac{\partial V(s; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$
- $g(\hat{a}, \boldsymbol{\theta})$ is an unbiased estimate of $\frac{\partial V(s; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$

Calculate Policy Gradient for Continuous Actions

• If the actions are continuous, e.g., action space $\mathcal{A} = [0, 1], ...$

• Use Form 2:
$$\frac{\partial V(s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbb{E}_{A \sim \pi(\cdot|s;\boldsymbol{\theta})} \left[\frac{\partial \log \pi(A|s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot Q_{\pi}(s,A) \right]$$

- 1. Randomly sample an action a according to the PDF $\pi(\cdot|s;\boldsymbol{\theta})$
- 2. Calculate $g(\hat{a}, \boldsymbol{\theta}) = \frac{\partial \log \pi(\hat{a}|s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot Q_{\pi}(s, \hat{a})$
- 3. Use $g(\hat{a}, \boldsymbol{\theta})$ as an approximation to the policy gradient $\frac{\partial V(s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$
- This approach work for discrete actions.

Update policy network using policy gradient

Algorithm

- 1. Observe the state s_t .
- 2. Randomly sample action a_t according to $\pi(\cdot|s_t; \boldsymbol{\theta}_t)$
- 3. Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate).
- 4. Differentiate policy network: $d_{\theta_t,t} = \frac{\partial \log \pi(a_t|s_t;\theta)}{\partial \theta}|_{\theta=\theta_t}$
- 5. (Approximate) policy gradient: $g(a_t, \boldsymbol{\theta}_t) = q_t \cdot d_{\boldsymbol{\theta}_t, t}$
- 6. Update policy network: $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \beta \cdot g(a_t, \boldsymbol{\theta}_t)$

Algorithm

- 3. Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate). How?
- Option 1: REINFORCE.
 - * Play the game to the end and generate the trajectory:

$$s_1, a_1, r_1, s_2, a_2, r_2, \ldots, s_T, a_T, r_T$$

- lpha Compute the discounted return $u_t = \sum_{k=t}^T \gamma^{k-t} r_k$, for all t.
- \mathbb{X} Since $Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t]$, we can use u_t to approximate $Q_{\pi}(s_t, a_t)$
- \times Therefore: Use $q_t = u_t$

Algorithm

- 3. Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate). How?
- Option 2: Approximate Q_{π} using a neural network.
 - * This leads to the actor-critic method.

Policy-Based Method

• If a good policy function π is known, the agent can be controlled by the policy: randomly sample $a_t \sim \pi$ ($\cdot | s_t$).

• Approximate policy function π (a|s) by policy network π (a|s; θ)

Learn the policy network by policy gradient.

• Policy gradient algorithm learn θ that maximizes $\mathbb{E}_S[V(S; \boldsymbol{\theta})]$

12.4 Actor-Critic Methods

12.4.1 Value Network and Policy Network

State-Value Function Approximation

• Definition: State-value function.

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \cdot Q_{\pi}(s,a) \approx \sum_{a} \pi(a|s;\theta) \cdot q(s,a,\mathbf{w})$$

- Policy network (actor):
 - \times Use neural net π (a|s; θ) to approximate π (a|s)
 - \times θ : trainable parameters of the neural net.
- Value network (critic):
 - \times Use neural net $q(s, a; \mathbf{w})$ to approximate $Q_{\pi}(s, a)$
 - **w**: trainable parameters of the neural net.

Actor: Policy Network $\pi(a|s,\theta)$

- Input: state s, e.g., a screenshot of Super Mario.
- Output: probability distribution over the actions.
- Let $A = \{$ "left", "right", "up" $\}$ be the set of all actions

$$\sum_{a \in \mathcal{A}} \pi(a|s,\theta) = 1$$
 That is why we use softmax activation
$$\text{Dense} \qquad \text{Softmax} \qquad \text{"left", 0.2}$$

$$\text{"up", 0.7}$$

Critic: Value Network $q(s, a; \mathbf{w})$

- Inputs: state s and action a.
- Output: approximate action-value (scalar).

Train the networks

• Definition: State-value function approximated using neural networks.

$$V(s; \boldsymbol{\theta}, \mathbf{w}) = \sum_{a} \pi(a|s; \boldsymbol{\theta}) \cdot q(s, a; \mathbf{w})$$

- Training: Update the parameters θ and \mathbf{w} .
 - \times Update policy network $\pi(a|s; \theta)$ to increase the state-value $V(s; \theta, \mathbf{w})$.
 - > Actor gradually performs better.
 - > Supervision is purely from the value network (critic).
 - \times Update value network q(s, a; w) to better estimate the return.
 - Critic's judgement becomes more accurate.
 - > Supervision is purely from the rewards.

Train the networks

Definition: State-value function approximated using neural networks.

$$V(s; \boldsymbol{\theta}, \mathbf{w}) = \sum_{a} \pi(a|s; \boldsymbol{\theta}) \cdot q(s, a; \mathbf{w})$$

- Training: Update the parameters θ and \mathbf{w} .
 - 1. Observe the state s_t .
 - 2. Randomly sample action a_t according to π ($\cdot \mid s_t; \boldsymbol{\theta}_t$).
 - 3. Perform a_t and observe new state s_{t+1} and reward r_t .
 - 4. Update w (in value network) using temporal difference (TD).
 - 5. Update $\boldsymbol{\theta}$ (in policy network) using policy gradient.

Update value network q using TD

• Compute $q(s_t, a_t; \mathbf{w}_t)$ and $q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$.

• TD target: $y_t = r_t + \gamma \cdot q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$

• Loss: $L(\mathbf{w}) = \frac{1}{2}[q(s_t, a_t; \mathbf{w}) - y_t]^2$

• Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \cdot \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}|_{\mathbf{w} = \mathbf{w}_t}$

Update policy network π using policy gradient

• Definition: State-value function approximated using neural networks.

$$V(s; \boldsymbol{\theta}, \mathbf{w}) = \sum_{a} \pi(a|s; \boldsymbol{\theta}) \cdot q(s, a; \mathbf{w})$$

• Policy gradient: Derivative of $V(s_t; \theta, \mathbf{w})$ w.r.t. θ .

$$\times$$
 Let $g(a, \boldsymbol{\theta}) = \frac{\partial \log \pi(a|s, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot q(s_t, a; \mathbf{w})$

$$\overset{\partial V(s;\boldsymbol{\theta},\mathbf{w})}{\partial \boldsymbol{\theta}} = \mathbb{E}_A[g(A,\boldsymbol{\theta})]$$

- Algorithm: Update policy network using stochastic policy gradient.
 - \times Random sampling: $a \sim \pi(\cdot|s_t; \boldsymbol{\theta}_t)$ (Thus $g(a, \boldsymbol{\theta})$ is unbiased.)
 - \times Stochastic gradient ascent: $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \beta \cdot g(a, \boldsymbol{\theta}_t)$

Summary of Algorithm

- 1. Observe state s_t and randomly sample $a_t \sim \pi$ ($\cdot \mid s_t$; θ_t).
- 2. Perform a_t ; then environment gives new state s_{t+1} and reward r_t .
- 3. Randomly sample $\tilde{a}_{t+1} \sim \pi(\cdot|s_{t+1};\boldsymbol{\theta}_t)$. (Do not perform a_{t+1} !)
- 4. Evaluate value network: $q_t = q(s_t, a_t; \mathbf{w}_t)$ and $q_{t+1} = q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$
- 5. Compute TD error: $\delta_t = q_t (r_t + \gamma \cdot q_{t+1})$
- 6. Differentiate value network: $d_{\mathbf{w},t} = \frac{\partial q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}}|_{\mathbf{w} = \mathbf{w}_t}$
- 7. Update value network: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \delta_t \cdot d_{\mathbf{w},t}$
- 8. Differentiate policy network: $d_{\theta,t} = \frac{\partial \log \pi(a_t|s_t,\theta)}{\partial \theta}|_{\theta=\theta_t}$
- 9. Update policy network: $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \beta \cdot q_t \cdot d_{\boldsymbol{\theta},t}$

Summary of Algorithm

• • • • •

5. Compute TD error:
$$\delta_t = q_t - (r_t + \gamma \cdot q_{t+1})$$

• • • • •

9. Update policy network:
$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \beta \cdot q_t \cdot d_{\boldsymbol{\theta},t}$$

9. Update policy network: $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \beta \cdot \delta_t \cdot d_{\boldsymbol{\theta},t}$

Summary: Policy Network and Value Network

• Definition: State-value function.

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \cdot Q_{\pi}(s,a)$$

Definition: function approximation using neural networks.

 \times Approximate policy function $\pi(a|s)$ by $\pi(a|s; \theta)$ (actor).

 \times Approximate value function $Q_{\pi}(s, a)$ by $q(s, a; \mathbf{w})$ (**critic**).

Roles of Actor and Critic

During training

- \times Agent is controlled by policy network (actor): $a_t \sim \pi(\cdot \mid s_t; \theta)$.
- \times Value network q (critic) provides the actor with supervision.

After training

- \times Agent is controlled by policy network (actor): $a_t \sim \pi(\cdot \mid s_t; \theta)$.
- \times Value network q (critic) will not be used.

Training

- Learning: Update the policy network (actor) by policy gradient.
 - \times Seek to increase state-value: $V(s; \boldsymbol{\theta}, \mathbf{w}) = \sum_{a} \pi(a|s; \boldsymbol{\theta}) \cdot q(s, a; \mathbf{w})$
 - \times Compute policy gradient: $\frac{\partial V(s; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbb{E} \left[\frac{\partial \log \pi(A|s, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot q(s, A; \mathbf{w}) \right]$
 - **X** Perform gradient ascent.
- Learning: Update the value network (critic) by TD learning.
 - \times Predicted action-value: $q_t = q(s_t, a_t; \mathbf{w})$
 - \times TD target: $y_t = r_t + \gamma \cdot q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$
 - \times Gradient: $\frac{\partial (q_t y_t)^2/2}{\partial \mathbf{w}} = (q_t y_t) \cdot \frac{\partial q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}}$
 - * Perform gradient descent.

References

- Reinforcement Learning: An Introduction
 - ※ By Richard S. Sutton and Andrew G. Barto (代码)
- Statistical Reinforcement Learning: Modern Machine Learning Approaches
 - ※ By Masashi Sugiyama (链接)
- Deep Reinforcement Learning (open course)
 - By Shusen Wang
 - * https://www.youtube.com/watch?v=vmkRMvhCW5c

End of the course, wish you have a pleasant journey!