Rozszerzony Algorytm Euklidesa (z1)

Limit pamięci: 1024 MB Limit czasu: 2.00 s

Dane jest N par liczb całkowitych a oraz b. Twoim zadaniem jest znalezienie dla każdej z tych par takich wartości k, l, d, że d jest największym wspólnym dzielnikiem liczb a i b oraz zachodzi $a \cdot k + b \cdot l = d$.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita N, oznaczająca liczbę zapytań. W kolejnych N wierszach znajduje się po jednym zapytaniu, czyli po dwie liczby całkowite a oraz b.

Wyjście

Dla każdego zapytania wypisz w osobnym wierszu trzy szukane liczby k, l, d, oddzielone pojedynczymi spacjami.

Jeżeli istnieje wiele poprawnych odpowiedzi, Twój program powinien wybrać parę k i l, która minimalizuje wartość |k|+|l|. Jeżeli i w tym przypadku istnieje kilka poprawnych rozwiązań, wybierz takie, gdzie $k \leq l$.

Ograniczenia

 $1 \le N \le 10\,000, 1 \le a, b \le 10^9.$

Wejście	Wyjście
2	-1 1 2
4 6	0 1 17
17 17	

Dwumian Newtona (z2)

Limit pamięci: 1024 MB Limit czasu: 3.00 s

Twoim zadaniem jest obliczenie N zadanych na wejściu Dwumianów Newtona, każdy modulo 10^9+7 . Dwumian Newtona może być wyliczony za pomocą wzoru a!/(b!(a-b)!). Zakładamy, że a i b są liczbami całkowitymi spełniającymi nierówność $0 \le b \le a$.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita N oznaczająca liczbę zapytań. W kolejnych N wierszach znajdują się zapytania, czyli po dwie liczby całkowite a oraz b, oddzielone spacją.

Wyjście

Dla każdego zapytania wypisz w osobnym wierszu wynik szukanego Dwumianu Newtona modulo $10^9 + 7$.

Ograniczenia

 $0 \le N \le 100\,000, 0 \le b \le a \le 1\,000\,000.$

Wejście	Wyjście
3	10
5 3	8
8 1	126
9 5	

Zlicz dzielniki (z3)

Limit pamięci: 1024 MB Limit czasu: 2.00 s

Dane jest N liczb całkowitych. Twoim zadaniem jest policzenie dla każdej z nich liczby jej dzielników. Przykładowo, dla liczby x=18 liczba dzielników wynosi 6, a są to 1,2,3,6,9,18.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba N, oznaczająca liczbę zapytań. W kolejnych N wierszach znajduje się po jednym zapytaniu, czyli po jednej liczbie całkowitej x.

Wyjście

Dla każdego zapytania wypisz w osobnym wierszu liczbę dzielników x.

Ograniczenia

 $1 \le N \le 100\,000$, $1 \le x \le 1\,000\,000$.

Wejście	Wyjście
3	5
16	2
17	6
18	

Funkcja Eulera (z4)

Limit pamięci: 1024 MB Limit czasu: 1.00 s

Funkcję Eulera ϕ dla danej liczby naturalnej x definiujemy jako liczbę dodatnich liczb całkowitych nie większych niż x, które są względnie pierwsze z x.

Przykładowo, dla liczby x=10 wartość $\phi(x)$ wynosi 4, a względnie pierwsze są liczby 1,3,7,9.

Dane jest N liczb całkowitych. Twoim zadaniem jest policzenie dla każdej z nich jej wartości funkcji Eulera.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba N, oznaczająca liczbę zapytań.

W kolejnych N wierszach znajduje się po jednym zapytaniu, czyli po jednej liczbie całkowitej x.

Wyjście

Dla każdego zapytania wypisz w osobnym wierszu wartość funkcji Eulera dla x.

Ograniczenia

 $1 \le N \le 100\,000$, $1 \le x \le 1\,000\,000$.

Wejście	Wyjście
5	1
1	1
2	2
3	2
4	4
5	