Lab 1 (Week 1) Linux OS, Virtual Machine and Mininet

CAN201

Dr. Fei Cheng & Dr. Gordon Boateng

Outline

- Linux OS
- Virtual Machine
- Mininet
- Hands-on Practice
- Appendix

Linux Operating System

- Why do we use Linux OS?
 - Windows
 - Macintosh/MacOS
 - Linux
 - ✓ open-source
 - ✓ user friendly, e.g., built-in networking commands
 - √ many free apps networking related

Linux Operating System

- Why do we use Linux OS?
 - Windows
 - Macintosh/MacOS
 - o Linux
 - √ open-source
 - ✓ user friendly, e.g., built-in networking commands
 - ✓ many free apps networking related
- For this module, we mainly use Ubuntu Linux OS.
 - A standard running and testing environment!

• Why do we use VM?

- Why do we use VM?
 - A physical machine can "simulate" multiple VMs (guest Oses, hosts)

- Why do we use VM?
 - A physical machine can "simulate" multiple VMs (guest Oses, hosts)
 - Run Linux guest OS (if your host OS is Windows)

- Why do we use VM?
 - A physical machine can "simulate" multiple VMs (guest Oses, hosts)
 - Run Linux guest OS (if your host OS is Windows)
 - Much safer doing network security lab against VM

- Why do we use VM?
 - A physical machine can "simulate" multiple VMs (guest Oses, hosts)
 - Run Linux guest OS (if your host OS is Windows)
 - Much safer doing network security lab against VM
 - SDN lab-friendly

- Getting VM hypervisor
 - VirtualBox (open-source)
 - ☐ https://www.virtualbox.org/wiki/Downloads
 - VMware (not free)
 - https://www.vmware.com/products/workstation-player.html
 - Other VM hypervisors: QEMU, KVM, UML, etc.

• A Ready-made Ubuntu (20.04 LTS) OVA file "CAN201-Default.ova" has been created, which is located in the "share" folder.

• The ready-made Virtualbox OVA (installing Ubuntu OS) includes the following softwares (which will be used for this module):

Software Name	License number
Wireshark (install on Ubuntu)	Version 3.4.9 or later (open source) https://www.wireshark.org/download.html
Mininet (install on Ubuntu)	Version 2.3.0 or later (open source) http://mininet.org/
Ryu SDN framework (install on Ubuntu)	Version 1 or later (open source) https://ryu-sdn.org/
Python (install on Ubuntu)	Version 3.0 or later (open source) https://www.python.org/downloads/
Snort (install on Ubuntu)	Version 3.0 or later (open source) https://www.snort.org/
Nmap (install on Ubuntu)	Version 7.9 or later (open source) https://nmap.org/

 Mininet: a virtual testbed used for testing network tools and protocols.

- Mininet offers the following features:
 - Fast prototyping for new networking protocols.

- Mininet offers the following features:
 - Fast prototyping for new networking protocols.
 - Simplified testing for complex topologies without the need of buying expensive hardware.

- Mininet offers the following features:
 - Fast prototyping for new networking protocols.
 - Simplified testing for complex topologies without the need of buying expensive hardware.
 - Realistic execution as it runs real code on the Unix and Linux kernels.

- Mininet offers the following features:
 - Fast prototyping for new networking protocols.
 - Simplified testing for complex topologies without the need of buying expensive hardware.
 - Realistic execution as it runs real code on the Unix and Linux kernels.
 - Open-source environment backed by a large community contributing extensive documentation.

1. Create a VM using the given Ubuntu OS image. Call the VM "VM1" and use the Nat network termed "NatNetwork". How to do it? Please refer to the following appendix.

- 1. Create a VM using the given Ubuntu OS image. Call the VM "VM1" and use the Nat network termed "NatNetwork". How to do it? Please refer to the following appendix.
- 2. Create another VM using the same given Ubuntu OS image, name it "VM2" and use the same "NatNetwork". Also refer to the appendix. Hint: change the MAC address for VM2.

- 1. Create a VM using the given Ubuntu OS image. Call the VM "VM1" and use the Nat network termed "NatNetwork". How to do it? Please refer to the following appendix.
- 2. Create another VM using the same given Ubuntu OS image, name it "VM2" and use the same "NatNetwork". Also refer to the appendix. Hint: change the MAC address for VM2.
- 3. Open a terminal on VM1 and type the command "ifconfig" to check VM1's IP address (e.g., like 10.0.1.5). And then you try to use VM2 to ping VM1's IP address: 1) open a terminal on VM2; 2) type this command "ping 10.0.1.5" to see if VM2 can ping VM1.

- 1. Create a VM using the given Ubuntu OS image. Call the VM "VM1" and use the Nat network termed "NatNetwork". How to do it? Please refer to the following appendix.
- 2. Create another VM using the same given Ubuntu OS image, name it "VM2" and use the same "NatNetwork". Also refer to the appendix. Hint: change the MAC address for VM2.
- 3. Open a terminal on VM1 and type the command "ifconfig" to check VM1's IP address (e.g., like 10.0.1.5). And then you try to use VM2 to ping VM1's IP address: 1) open a terminal on VM2; 2) type this command "ping 10.0.1.5" to see if VM2 can ping VM1.

Notice: VM1 and VM2 must have different IP addresses. If in your case they are the same (like, 10.0.1.15), then you must have done sth. wrong!!!

- 1. Create a VM using the given Ubuntu OS image. Call the VM "VM1" and use the Nat network termed "NatNetwork". How to do it? Please refer to the following appendix.
- 2. Create another VM using the same given Ubuntu OS image, name it "VM2" and use the same "NatNetwork". Also refer to the appendix. Hint: change the MAC address for VM2.
- 3. Open a terminal on VM1 and type the command "ifconfig" to check VM1's IP address (e.g., like 10.0.1.5). And then you try to use VM2 to ping VM1's IP address: 1) open a terminal on VM2; 2) type this command "ping 10.0.1.5" to see if VM2 can ping VM1.

Notice: VM1 and VM2 must have different IP addresses. If in your case they are the same (like, 10.0.1.15), then you must have done sth. wrong!!!

Appendix

- (Optional) Copy or Download the Ubuntu image VirtualBox OVA file
- Open VirtualBox software
- Create the virtual machine by importing the OVA file
- Set up the virtual network for the virtual machines
- Run the virtual machine

Copy the Ubuntu OVA file

Download the Ubuntu OVA file

1. OVA file is available:

Baidu Pan (extracting code: c201):

https://pan.baidu.com/s/17l3PSXkNA_4aVwS6ZwED0g?pwd=c201

2. Or copy from the ubuntu computer in the lab SC464.

Open VirtualBox software

Import the Ubuntu OVA file

1. Choose Tools and click Import in VirtualBox

2. Select the OVA file and click Next.

2. Change the VM name from "CAN201-Default" to "VM1".

3. Click Import.

After a while, a new virtual machine option (should be named VM1 rather than CAN201-Default) will appear in the list of VirtualBox.

1. Click Tools and click Preferences.

3. Click OK.

4. Click VM1 and click Settings.

5. Click Network and set Attached to: NAT Network; Name: NatNetwork.

6. Click Advanced and set MAC Address you want. Finally, click OK.

Run the virtual machine

1. Choose VM1 and click the Start.

Run the virtual machine

2. Wait a few seconds.

Run the virtual machine

Ubuntu graphic interface/window shows up.

Entering ubuntu does not require a password, but remember that the administrator password is password.