Vecteurs - Coordonnées

On se place dans un repère (O; I, J).

Les coordonnées d'un vecteur \vec{u} sont les coordonnées du point M tel que $\vec{u} = \overrightarrow{OM}$.

<u>Remarque</u>: Le repère (O; I, J) peut aussi se noter (O; i; j) où $i = \overrightarrow{OI}$ et $j = \overrightarrow{OJ}$.

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points du plan.

Les coordonnées du vecteur \overrightarrow{AB} sont $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$ noté aussi $(x_B - x_A; y_B - y_A)$.

<u>Propriété</u>: Soient $\vec{u}(x;y)$ et $\vec{v}(x';y')$ deux vecteurs.

 \vec{u} et \vec{v} sont égaux <u>si et seulement si</u> x=x' <u>et</u> y=y'.

Implication directe : Si \vec{u} et \vec{v} sont égaux, alors x=x' et y=y'.

Implication réciproque : Si x=x' et y=y', alors \vec{u} et \vec{v} sont égaux.

Contraposée : Si $x \neq x'$ ou $y \neq y'$, alors \vec{u} et \vec{v} ne sont pas égaux.

• Opération sur les vecteurs

Soient $\vec{u}(x;y)$ et $\vec{v}(x';y')$ deux vecteurs. Les vecteurs suivants ont pour coordonnées

$$\rightarrow \vec{u} + \vec{v} = (x + x'; y + y'),$$

$$k \vec{u} = (kx; ky),$$

 $\underline{\mathsf{Donc}} - \vec{u} = (-x; -y).$

Propriétés : On considère trois vecteurs quelconques \vec{u} , \vec{v} et \vec{w} et deux réels k et k'.

 $\bullet \quad \vec{u} + \vec{v} = \vec{v} + \vec{u}$

- $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- $k(\vec{u}+\vec{v}) = k\vec{u}+k\vec{v}$
- $(k+k')\vec{u} = k\vec{u}+k'\vec{u}$
- $k(k'\vec{u}) = (k \times k')\vec{u}$

• $k\vec{u} = \vec{0}$ si et seulement si k = 0 OU $\vec{u} = \vec{0}$.

Applications:

On considère les points du plan A(1;1), B(3;5) et C(-3;-1) dans un repère (O;I,J).

- 1. Déterminer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{BC} .
- 2. Déterminer les coordonnées du point D tel que $\overrightarrow{AE} = \overrightarrow{BC}$.
- 3. Déterminer les coordonnées du point E tel que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB} + \frac{3}{2} \overrightarrow{BC}$.

Norme d'un vecteur

<u>Définition</u>: La norme d'un vecteur est la longueur de ce vecteur. Il s'agit donc de la distance entre les deux extrémités de la flèche. La norme d'un vecteur \vec{u} est notée $||\vec{u}||$.

Exemple : Pour un vecteur \overrightarrow{AB} , il s'agit simplement de la distance entre A et B, c'est-à-dire AB. Pour les vecteurs de la base orthonormée, on a $\|\vec{i}\|=1$ et $\|\vec{j}\|=1$.

Propriété : Soit un vecteur \vec{u} et k un réel non-nul.

Si k>0, alors la norme du vecteur $k\vec{u}$ est $||k\vec{u}||=k||\vec{u}||$. Mais si k<0, alors $||k\vec{u}||=(-k)||\vec{u}||$. En effet, la norme doit rester <u>positive</u> puisqu'il s'agit d'une distance, et si k<0, alors (-k) est positif. En conclusion, pour tout k réel, $||k\vec{u}||=|k|||\vec{u}||$, (c'est une nouvelle utilisation de la valeur absolue).

<u>Propriété</u>: Soit un vecteur \vec{u} ayant pour coordonnées dans une base orthonormée $\begin{pmatrix} x \\ y \end{pmatrix}$. La norme du vecteur \vec{u} est donnée par la formule $||\vec{u}|| = \sqrt{x^2 + y^2}$.

Application : Dans le cas d'un vecteur \overrightarrow{AB} , on retrouve la formule

$$\|\overrightarrow{AB}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = AB.$$