ОГЛАВЛЕНИЕ

Введение	3
Постановка задачи	4
1. Общая информация о криптосистеме Эль-Гамаля	5
1.1 Алгоритм создания открытого и закрытого ключей	6
1.2 Шифрование и расшифрование	6
1.3 Дешифрование	7
2. Алгоритмы решения задачи дискретного логарифмирования	8
Список используемых источников	9

ВВЕДЕНИЕ

В настоящее время в вузах Российской Федерации базовые стандарты обучения для ряда специальностей включают в себя разделы, связанные с изучением методов и средств защиты информации. Для успешного освоения данных тем необходимо понимание принципов и знание основных элементов криптографического преобразования информации.

В Интернете можно найти десятки описаний лабораторных работ, посвященных криптографической системе Эль Гамаля [1 – 3]. К сожалению, подавляющее большинство из них содержат задания учета особенностей Гамаля без Эль реализации схемы длинной арифметики, не требуя обоснований алгоритмов и использования обучающих программ, не затрагивая вопросы криптоанализа. Известно несколько компьютерных обучающих программ, позволяющих быстро шифрования ознакомиться с алгоритмами достаточно полно расшифрования данных, используемыми в традиционных симметричных современных асимметричных криптосистемах. К сожалению, сети Интернет, представленные В программы, не сопровождаются исходными текстами, ограничиваются краткой справочной информацией содержат большое число ошибок и недочетов. В связи с и было принято решение: разработать алгоритм и реализовать свою электронную обучающую программу для изучения криптосистемы Эль Гамаля. Предлагаемый вариант лабораторной работы позволяет, на мой взгляд, преодолеть указанные недостатки.

постановка задачи

- 1. Провести анализ криптографического алгоритма Эль Гамаля.
- 2. Разработать сценарий выполнения лабораторной работы по изучению алгоритма Эль Гамаля.
- 3. Разработать и реализовать обучающую компьютерную программу "El-Gamal_Tutor".

1. ОБЩАЯ ИНФОРМАЦИЯ О КРИПТОСИСТЕМЕ ЭЛЬ-ГАМАЛЯ

Схема Эль-Гамаля (Elgamal) — криптосистема с открытым ключом, основанная на трудности вычисления дискретных логарифмов в конечном поле. Криптосистема включает в себя алгоритм шифрования и алгоритм цифровой подписи. Схема Эль-Гамаля лежит в основе бывших стандартов электронной цифровой подписи в США (DSA) и России (ГОСТ Р 34.10-94, ГОСТ Р 34.10-2001). Схема была предложена Тахером Эль-Гамалем в 1985 году. Эль-Гамаль разработал один из вариантов алгоритма Диффи-Хеллмана. Он усовершенствовал систему Диффи-Хеллмана и получил два алгоритма, которые использовались для шифрования и для обеспечения аутентификации. В отличие от RSA алгоритм Эль-Гамаля не был запатентован и, поэтому, стал более дешевой альтернативой, так как не требовалась оплата взносов за лицензию. Считается, что алгоритм попадает под действие патента Диффи-Хеллмана. Криптографические системы с открытым ключом используют так называемые односторонние функции, которые обладают следующим свойством:

- Если известно x, то f(x) вычислить относительно просто
- ullet Если известно y=f(x), то для вычисления x нет простого (эффективного) пути.

Под односторонностью понимается не теоретическая однонаправленность, а практическая невозможность вычислить обратное значение, используя современные вычислительные средства, за обозримый интервал времени. В основу криптографической системы Эль-Гамаля положена сложность задачи дискретного логарифмирования в конечном поле. Для шифрования используется операция возведения в степень по модулю большого числа. Для дешифрования за разумное время необходимо уметь вычислять дискретный логарифм в конечном поле по простому модулю, что является вычислительно трудной задачей. В криптографической системе с открытым ключом каждый участник располагает как открытым ключом (англ. public key), так и закрытым ключом (англ. private key). В криптографической

системе Эль-Гамаля открытый ключ состоит из тройки чисел, а закрытый ключ состоит из одного числа. Каждый участник создаёт свой открытый и закрытый ключ самостоятельно. Закрытый ключ каждый из них держит в секрете, а открытые ключи можно сообщать кому угодно или даже публиковать их.

1.1 Алгоритм создания открытого и закрытого ключей

Ключи в схеме Эль-Гамаля генерируются следующим образом:

- 1. Генерируется случайное простое число p.
- 2. Выбирается целое число g первообразный корень p.
- 3. Выбирается случайное целое число x, такое, что 1 < x < p.
- 4. Вычисляется $y = g^x \mod p$.
- 5. Открытым ключом является тройка (p, g, y), закрытым ключом число x.

1.2 Шифрование и расшифрование

Предположим, пользователь A хочет послать пользователю Б сообщение . Сообщениями являются целые числа в интервале от 0 до p-1. Алгоритм для шифрования:

- 1. Взять открытый ключ пользователя Б
- 2. Взять открытый текст М
- 3. Выбрать сессионный ключ случайное целое число k такое, что 1 < k < p-1
- 4. Зашифровать сообщение с использованием открытого ключа пользователя Б, то есть вычислить числа: $a = g^k \mod p$, и $b = y^k M \mod p$.

Алгоритм для расшифрования:

- 1. принять зашифрованное сообщение (a, b) от пользователя A
- 2. Взять свой закрытый ключ M
- 3. Применить закрытый клюдч для расшифрования сообщения: $M = b(a^x)^{-1} \bmod p$
- 4. При этом нетрудно проверить, что

$$(a^x)^{-1} \equiv g^{-kx} \pmod{p}$$
, и поэтому $b(a^x)^{-1} \equiv (y^k M) g^{-xk} \equiv (g^{xk} M) g^{-xk} \equiv M \pmod{p}$.

1.3 Дешифрование

Дешифрование - получение открытых данных по зашифрованным в условиях, когда алгоритм расшифрования и его секретные параметры не являются полностью известными и расшифрование не может быть выполнено обычным путем. Алгоритм для дешифрования криптосистемы Эль-Гамаля:

- 1. Перехватить зашифрованное сообщение (a, b).
- 2. Взять открытый ключ p, g, y
- 3. Решить относительно x уравнение $y \equiv g^x \pmod{p}$
- 4. Расшифровать сообщение по формуле $M = b(a^x)^{-1} mod p$

Собственно, самый главный вопрос из этого алгоритма — как по данным (p, g, y) найти x. Эта задача называется задачей дискретного логарифмирования [2].

2. АЛГОРИТМЫ РЕШЕНИЯ ЗАДАЧИ ДИСКРЕТНОГО ЛОГАРИФМИРОВАНИЯ

Рис. 1: Ну это типа Хеллман короч

Литература

- 1. **Гилбарг,** Д. Эллиптические дифференциальные уравнения с частными производными второго порядка / Д. Гилбарг, П. Трудингер. М.: Наука, 1989. 464 с.
- Ильин, В. А. О рядах Фурье по фундаментальным системам функций оператора Бельтрами/В. А. Ильин // Дифференц. уравнения. 1969. Т. 5, № 11. С. 1940–1978.
- 3. **Ильин, В. А.** Некоторые свойства регулярного решения уравнения Гельмгольца в плоской области / В. А. Ильин // Мат. заметки. 1974. Т. 15, № 6. С. 885–890.
- 4. **Ильин, В. А.** Об одном обобщении формулы среднего значения для регулярного решения уравнения Шредингера / В. А. Ильин, Е. И. Моисеев // ИПМ АН СССР, 1977. С. 157–166.
- 5. **Ильин, В. А.** Формула среднего значения для присоединенных функций опера- тора Лапласа / В. А. Ильин, Е. И. Моисеев // Дифференц. уравнения. 1981. Т. 17, \mathbb{N} 10. С. 1908–1910.
- 6. **Моисеев, Е. И.** Формула среднего для собственных функций эллиптического са- мосопряженного оператора второго порядка / Е. И. Моисеев // Докл. АН СССР. 1971. Т. 197, № 3. С. 524–525.
- 7. **Моисеев, Е. И.** Асимптотическая формула среднего значения для регулярного решения дифференциального уравнения / Е. И. Моисеев // Дифференц. уравнения. 1980. Т. 16, \mathbb{N} 5. С. 827–844.

- 8. **Хелгасон, С.** Дифференциальная геометрия и симметрические пространства / С. Хелгасон. М.: Мир, 1964. 534 с.
- 9. **Иванов,** Л. А. О некоторых свойствах оператора Бельтрами в римановой метри- ке / Л. А. Иванов, И. П. Половинкин // Докл. РАН. 1999. Т. 365, № 3. С. 306–309.
- 10. **Йон, Ф.** Плоские волны и сферические средние / Ф. Йон. М.: Иностр. лит., 1958. 158 с.
- 11. **Бицадзе, А. В.** К теории уравнений смешанного типа в многомерных областях / А. В. Бицадзе, А. М. Нахушев // Дифференц. уравнения. 1974. Т. 10, № 12. С. 2184–2191.
- 12. **Гельфанд, И. М.** Обобщенные функции и действия над ними / И. М. Гельфанд, Г. Е. Шилов. М. : Физматлит, 1958. 440 с.
- 13. **Хермандер, Л.** Анализ линейных дифференциальных операторов с частными производными. Т. 1 / Л. Хермандер. М. : Мир, 1986. 464 с.
- 14. **Мешков, В. 3.** К свойствам решений линейных уравнений в частных производных / В. 3. Мешков, И. П. Половинкин // Черноземный альманах научных исследований. Сер. Фундамент. математика. 2007. Вып. 1(5). С. 3–11.
- 15. **Мешков, В. 3.** Разностная формула среднего значения для двумерного линейного гиперболического уравнения третьего порядка / В. 3. Мешков, И. П. Половинкин, М. В. Половинкина, Ю. Д. Ермакова, С. А. Рабееах // ВЕСТНИК ВГУ. СЕРИЯ: ФИЗИКА. МАТЕМАТИКА. 2015. № 3
- 16. **Половинкин, И.П.** К свойствам решений линейных уравнений в частных производных / Половинкин И.П. // Вестник Челябинского государственного университета. Математика. Механика. Информатика. Выпуск 12. 2010. № 23(204) C. 59–66.

- 17. **Половинкин, И.П.** О получении новых формул среднего значения для линейных дифференциальных уравнений с постоянными коэффициентами / Половинкин И.П., Мешков В.З. // Дифференциальные уравнения. 2011 - Т. 47, № 12 С. 1724—1791.
- 18. **Половинкин, И.П.** Дополнения к свойствам средних значений решений линейных дифференциальных уравнений с постоянными коэффициентами / Половинкин И.П., Мешков В.З. // Дифференциальные уравнения. 2011 T. 47, № 11 C. 1669 1671.