Final 16 de diciembre 2022

- a) Calcular las siguientes integrales

 - a) $\int_0^1 x^2 e^x dx$
b) $\int_0^{\frac{\pi}{2}} \cos(x) \sin(x) dx$
 - b) Determinar si las siguientes integrales convergen o divergen

 - a) $\int_0^1 \frac{1}{2x^4 + 5x^3} dx$ b) $\int_0^{\frac{\pi}{2}} \frac{\cos^2(x)}{x^{\frac{1}{2}}} dx$
- a) Hallar la serie de taylor de $g(x) = cos^2(x)$, alrededor de a = 0 (Ayuda: $2\cos^2(x) = 1 + \cos(2x)$
 - b) Utilizar la regla de la cadena para calcular las derivadas parciales $\frac{\partial g}{\partial s}$ y $\frac{\partial g}{\partial t}$ para g(s,t)=f(x(s,t),y(s,t)), donde f(x,y)=xy y x(s,t)=tcos(s), $y(s,t)=s^3$
- 3) Sea $f(x,y) = \frac{e^x}{x^2 y^2}$
 - a) Dibujar dominio de f

 - b) Calcular las derivadas $\frac{\partial f}{\partial x}$ y $\frac{\partial f}{\partial y}$ c) Dar la ecuación del plano tangente al grafico de f en el punto (0,1)
- 4) Calcular y clasificar los puntos critios de $f(x,y) = 3y^2 2y^3 3x^2 + 6xy$
- a) Enunciar el criterio de convergencia de series alternantes $\sum_{n=0}^{\infty} (-1)^n a_n$, donde $a_n > 0, n \in \mathbb{N}$
 - b) Sea $f: \mathbb{R}^2 \to \mathbb{R}$ una funcion con derivadas parciales continuas ¿Cual es la dirección de máximo crecimiento de f en un punto (a, b) dado