Exact Analysis of the Cache Behavior of Nested Loops [2]

Simon Bihel

simon.bihel@ens-rennes.fr

Monday 22nd January, 2018

University of Rennes I École Normale Supérieure de Rennes

Introduction

- Predict cache behavior (i.e. count misses) for performance evaluation
- Exact prediction can be done with simulation but it is expensive
- Models permit simpler computations

Table of contents

- 1. Context
- 2. Cache Analysis Model
- 3. Extensions
- 4. Evaluation

Context

Memory Hierarchies

- 2 levels, one access at a time, no distinction between reads and writes
- Least Recently Used replacement policy

Memory Hierarchies

- 2 levels, one access at a time, no distinction between reads and writes
- Least Recently Used replacement policy

2 kinds of cache misses

Interior misses Independent to the initial cache state.

Boundary misses Depend on the initial cache state.

Polyhedral Model

Object	Mathematical Representation
An iteration point	ℓ
The ith array reference	$R_i = (Y^{(j)}, F_i, S_h)$
The access made by R_i at ℓ	(R_i,ℓ)
The array element accessed by R_i at ℓ	$e_i = Y^{(j)}[F_i(\ell)]$
The byte address of e_i	$m_i = \mu_j + \mathcal{L}_j(F_i(\ell)) \cdot \beta_j$
The block address of m_i	$b_i = \mathcal{B}(m_i)$
The cache set to which b_i maps	$s_i = \mathcal{S}(b_i)$

• An iteration point is an array of indexes.

Presburger Arithmetic

Subset of first order logic

Constraints Equalities or inequalities

Operators \neg , \wedge and \vee

Quantifiers \forall and \exists

Used to describe cache structure and accesses

Cache Analysis Model

Valid Iteration Point

Express that every index is in the boundaries of its loop.

$$\ell \in \mathcal{I} \stackrel{\text{def}}{=} \bigwedge_{i=0}^{d-1} 0 \leqslant \ell_i < n_i \tag{1}$$

Ordering of Accesses

Having an access being done before another means that:

• the iteration point is preceding;

$$(R_{u}, \ell) \triangleleft (R_{v}, m) \stackrel{\text{def}}{=} \ell \in \mathcal{I} \land m \in \mathcal{I} \land$$

$$(\bigvee_{i=0}^{d-1} (\ell_{i} < m_{i} \land \bigwedge_{j=0}^{i-1} \ell_{j} = m_{j}) \lor$$

$$(\bigwedge_{j=0}^{d-1} \ell_{j} = m_{j} \land u < v))$$
(2)

Ordering of Accesses

Having an access being done before another means that:

- the iteration point is preceding;
- or the reference is preceding.

$$(R_{u}, \ell) \triangleleft (R_{v}, m) \stackrel{\text{def}}{=} \ell \in \mathcal{I} \land m \in \mathcal{I} \land$$

$$(\bigvee_{i=0}^{d-1} (\ell_{i} < m_{i} \land \bigwedge_{j=0}^{i-1} \ell_{j} = m_{j}) \lor$$

$$(\bigwedge_{j=0}^{d-1} \ell_{j} = m_{j} \land u < v))$$
(2)

Memory-Cache Mapping

Direct mapping.

- Express boundaries of memory address with cache set's boundaries addresses.
- Take into account memory block boundary alignments.

Boundary Misses

Initial state dependent misses.

• There is an access for a certain cache set s;

$$((R_{u}, i) \in \text{BoundMiss}(\mathbb{L}, \mathbb{C}_{in})) \stackrel{\text{def}}{=} i \in \mathcal{I} \land$$

$$\exists d, s : \text{Map}(\mathcal{L}_{x}(F_{u}(i)), d, s) \land$$

$$\neg (\exists e, j, v : (R_{v}, j) \lhd (R_{u}, i) \land$$

$$\text{Map}(\mathcal{L}_{y}(F_{v}(j)), e, s)) \land$$

$$\mathbb{C}_{in}(s) \neq \mathcal{B}(\mathcal{L}_{x}(F_{u}(i))) \tag{7}$$

 ${\cal L}$ is a layout function (offset of an array element). ${\cal B}$ is the block address function.

Boundary Misses

Initial state dependent misses.

- There is an access for a certain cache set s;
- it is the first;

$$((R_{u}, i) \in \text{BoundMiss}(\mathbb{L}, \mathbb{C}_{in})) \stackrel{\text{def}}{=} i \in \mathcal{I} \land$$

$$\exists d, s : \text{Map}(\mathcal{L}_{x}(F_{u}(i)), d, s) \land$$

$$\neg (\exists e, j, v : (R_{v}, j) \lhd (R_{u}, i) \land$$

$$\text{Map}(\mathcal{L}_{y}(F_{v}(j)), e, s)) \land$$

$$\mathbb{C}_{in}(s) \neq \mathcal{B}(\mathcal{L}_{x}(F_{u}(i))) \tag{7}$$

 ${\cal L}$ is a layout function (offset of an array element). ${\cal B}$ is the block address function.

Boundary Misses

Initial state dependent misses.

- There is an access for a certain cache set s;
- it is the first;
- the cache set does not correspond to the correct memory block.

$$((R_{u}, i) \in \text{BoundMiss}(\mathbb{L}, \mathbb{C}_{in})) \stackrel{\text{def}}{=} i \in \mathcal{I} \land$$

$$\exists d, s : \text{Map}(\mathcal{L}_{x}(F_{u}(i)), d, s) \land$$

$$\neg (\exists e, j, v : (R_{v}, j) \lhd (R_{u}, i) \land$$

$$\text{Map}(\mathcal{L}_{y}(F_{v}(j)), e, s)) \land$$

$$\mathbb{C}_{in}(s) \neq \mathcal{B}(\mathcal{L}_{x}(F_{u}(i))) \tag{7}$$

 ${\cal L}$ is a layout function (offset of an array element). ${\cal B}$ is the block address function.

Interior Misses

Two properties to have an interior miss for memory block b:

- there is an earlier access with a different memory block mapping to the same cache set;
- there is no access to b between the two access.

Extensions

Imperfect Loop Nests

Transformation [1] with guards on statements.

```
do i = 0, n-1
                                         do i = 0, n-1
     do j = 0, n-1
                                           do j = 0, n-1
S0: x = C[i,j];
                                           do k = 0, n-1
     do k = 0, n-1
                                      S0: if (k == 0) x = C[i,j];
S1: x = x + A[i,k]*B[k,j];
                                      S1: x = x + A[i,k]*B[k,j];
     end
                                      S2:
                                            if (k == n-1) C[i,j] = x;
S2: C[i,j] = x;
                                             end
                                          end
     end
   end
                                         end
```

Use ifs conditions to express valid accesses.

A-way Set-associativity

Complicated formula and not efficient.

"Will require more consideration."

$$((R_{u},i) \in IntMiss) \stackrel{\text{def}}{=} i \in \mathcal{I} \land$$

$$\exists d,s : Map(\mathcal{L}_{x}(F_{u}(i)),d,s) \land$$

$$\exists e_{0},j_{0},v_{0} : (R_{v_{0}},j_{0}) \lhd (R_{u},i) \land$$

$$Map(\mathcal{L}_{y_{0}}(F_{v_{0}}(j_{0})),e_{0},s) \land$$

$$(\exists e_{1},\ldots,e_{A-1} :$$

$$\bigwedge_{a=1}^{A-1} (\exists j_{a},v_{a} : (R_{v_{0}},j_{0}) \lhd (R_{v_{a}},j_{a}) \lhd (R_{u},i) \land$$

$$Map(\mathcal{L}_{y_{a}}(F_{v_{a}}(j_{a})),e_{a},s)) \land$$

$$d \neq e_{0} \neq \cdots \neq e_{A-1}) \land$$

$$\neg(\exists k,w : (R_{v_{0}},j_{0}) \lhd (R_{w},k) \lhd (R_{u},i) \land$$

$$Map(\mathcal{L}_{z}(F_{w}(k)),d,s))$$

12/17

(9)

Non-linear Data Layouts

Express the data layout's binary manipulations in a Presburger formula.

Evaluation

Evaluation Method

- Experimental evaluation
- Comparison with (specially written) cache simulator
- Multiple programs used to evaluate every extension
- All loop permutations tested
- Start with empty cache

General Results

- Same number of misses
- Different classification (cold and replacement misses)

Conclusion

Conclusion

- Mathematical description for more flexibility in computations
- Exploits the regularities of loop nests
- Future work: mix simulation and model-based computation to leap-frog loop nests

 Assuming one memory access at a time and no distinction between reads and writes seems reasonable

- Assuming one memory access at a time and no distinction between reads and writes seems reasonable
- The evaluation convinced me even if I first expected a more formal approach

- Assuming one memory access at a time and no distinction between reads and writes seems reasonable
- The evaluation convinced me even if I first expected a more formal approach
- Code non-available

- Assuming one memory access at a time and no distinction between reads and writes seems reasonable
- The evaluation convinced me even if I first expected a more formal approach
- Code non-available
- Still computationally expensive

- Assuming one memory access at a time and no distinction between reads and writes seems reasonable
- The evaluation convinced me even if I first expected a more formal approach
- Code non-available
- Still computationally expensive
- I believe other policies than LRU could be implemented but the complexity would explode with an A-way set-associativity

- Assuming one memory access at a time and no distinction between reads and writes seems reasonable
- The evaluation convinced me even if I first expected a more formal approach
- Code non-available
- Still computationally expensive
- I believe other policies than LRU could be implemented but the complexity would explode with an A-way set-associativity
- Same problem of complexity with more levels of hierarchy

- Assuming one memory access at a time and no distinction between reads and writes seems reasonable
- The evaluation convinced me even if I first expected a more formal approach
- Code non-available
- Still computationally expensive
- I believe other policies than LRU could be implemented but the complexity would explode with an A-way set-associativity
- Same problem of complexity with more levels of hierarchy
- Sometimes confusing variables names between sections

References i

N. Ahmed, N. Mateev, and K. Pingali.

Synthesizing transformations for locality enhancement of imperfectly-nested loop nests.

International Journal of Parallel Programming, 29(5):493–544, 2001.

S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck. **Exact analysis of the cache behavior of nested loops.**

ACM SIGPLAN Notices, 36(5):286–297, 2001.