SubsetMex

Nom du problème	Subset Mex
Fichier d'entrée	entrée standard
Fichier de sortie	sortie standard
Limite de temps	1 seconde
Limite de mémoire	256 megaoctets

Un *multiset* est une collection d'éléments similaire à un set (ensemble), où chaque valeur peut être répétée plusieurs fois. Voici un exemple de multiset :

 $\{0, 0, 1, 2, 2, 5, 5, 5, 8\}$

Étant donné un multiset S ayant pour éléments des entiers positifs ou nuls, et une valeur cible n entière positive ou nulle telle que n n'appartient pas à S, votre but est d'insérer n dans S en utilisant une ou plusieurs fois l'opération suivante, constituée de S étapes :

- 1. Choisir un sous-ensemble (possiblement vide) T de S. Ici, T est un ensemble de nombres distincts qui apparaissent dans S.
- 2. Enlever de S les éléments de T. (Enlever seulement une seule copie de chaque élément.)
- 3. Insérer **mex**(*T*) dans *S*, où **mex**(*T*) est le plus petit entier positif ou nul qui n'appartient pas à *T*. Le nom **mex** vient de "valeur **m**inimale **ex**clue".

Votre but est de trouver le plus petit nombre d'opérations à effectuer pour que n appartienne à S.

Comme la taille de S peut être très grande, S sera donné sous la forme d'une liste $(f_0, ..., f_{n-1})$ de taille n, où f_i représente le nombre de fois où la valeur i apparaît dans S. (Pour rappel, n est l'entier que l'on essaie d'insérer dans S.)

Entrée

La première ligne contient un unique entier t (1 \leq t \leq 200) — le nombre de sous-tests. Chaque sous-test est décrit par les deux points suivants :

- La première ligne de chaque sous-test contient un unique entier n (1 $\leq n \leq$ 50), représentant l'entier devant être inséré dans S.
- La deuxième ligne de chaque sous-test contient n entiers $f_0, f_1, ..., f_{n-1}$ ($0 \le f_i \le 10^{16}$), représentant le multiset S comme mentionné précédemment.

Sortie

Pour chaque test, affichez une unique ligne contenant le nombre minimal d'opérations à réaliser pour satisfaire la condition.

Score

Sous-tâche #1 (5 points): $n \le 2$

Sous-tâche #2 (17 points) : $n \le 20$

Sous-tâche #3 (7 points) : $f_i = 0$

Sous-tâche #4 (9 points) : $f_i \le 1$

Sous-tâche #5 (20 points) : $f_i \le 2000$

Sous-tâche #6 (9 points) : $f_0 \le 10^{16}$ et $f_j = 0$ (pour tout $j \ne 0$)

Sous-tâche #7 (10 points) : Il existe une valeur i pour laquelle $f_i \le 10^{16}$ et $f_j = 0$ (pour tout $j \ne i$)

Sous-tâche #8 (23 points) : Aucune contrainte supplémentaire.

Examples

standard input	standard output
2	4
4	10
0 3 0 3	
5	
4 1 0 2 0	

Commentaire

Initialement, dans le premier exemple, $S = \{1, 1, 1, 3, 3, 3\}$ et notre but est d'avoir 4 dans S. On peut faire les opérations suivantes :

- 1. choisir $T = \{\}$ alors S devient $\{0, 1, 1, 1, 3, 3, 3\}$
- 2. choisir $T = \{0, 1, 3\}$ alors S devient $\{1, 1, 2, 3, 3\}$
- 3. choisir $T = \{1\}$ alors S devient $\{0, 1, 2, 3, 3\}$
- 4. choisir $T = \{0, 1, 2, 3\}$ alors S devient $\{3, 4\}$