

Title of the Project: INTRUSION DETECTION USING DEEP LEARNING(LSTM)

PROF:SUMAIYA THASEEN

NAME: RAHUL ANAND

REG NO:18BIT0436

❖ Technique/algorithm used and why it was chosen (motivation)

PAPER:1.

- •We utilize the LSTM organization to hold long haul conditions among separated highlights and evade the angle disappearing issue.
- •We propose to utilize the drop-interface regularization method on the covered up toconcealed weight grids inside the LSTM to keep away from the overfitting issue.
- •We enhance the model's hyper-boundaries dependent on experimentation. The proposed half and half model is assessed utilizing the open UNSW-NB15 dataset for interruption location and afterward contrasted and cutting edge models utilizing the UNSW-NB15 dataset and an extra dataset of interruption recognition, ISCX2012.

PAPER:2.

- •We proposed an assault discovery strategy utilizing IDS, which depends on Spark ML and the Conv-LSTM network. It is a novel mixture approach, which consolidates both profound and shallow learning ways to deal with abuse their qualities and conquer diagnostic overheads.
- •We assessed our IDS on the ISCX-UNB dataset and examined the parcel catch record (pcap) with Spark; prior scientists didn't consider or assess crude bundle datasets.

- •We contrast our half and half IDS and best in class IDS frameworks dependent on customary ML.
- •The recreation results show that our IDS can distinguish network abuses precisely in 97.29% of cases and outflanks cutting edge approaches during 10-overlap cross-approval tests.
- •Our proposed IDS outflanks existing methodologies as well as accomplish mass adaptability while seriously lessening the preparation time, generally speaking giving a further extent of exactness with a low likelihood of bogus alerts.

PAPER:3.

Interruption Detection System (IDS) is one of the significant issues in network security. IDSs are worked to distinguish both known and obscure pernicious assaults. A few AI calculations are utilized broadly in IDS, for example, neural organization, SVM, KNN and so on. In any case, these calculations have still a few restrictions, for example, high bogus positive and bogus caution rate. In this paper, our commitment is to manufacture a classifier of IDS following profound learning approach. We locate the most appropriate enhancer among six streamlines for Long Short-Term Memory Recurrent Neural Network (LSTM RNN) model are utilized to IDS. Through our analyses, we found that LSTM RNN model with Nadam analyzer beats to past works. We exhibit our methodology is truly effectiveness to interruption identification with precision is 97.54%, recognition rate is 98.95%, and the bogus caution rate is sensible with 9.98%.

PAPER:4.

Our principle commitments for planning interruption recognition frameworks as portrayed in this paper have two sections: the presentation of a framework call language displaying approach and another gathering method. To the best of the creators' information, our strategy is the first to present the idea of a language model, particularly utilizing LSTM, to irregularity based IDS. The framework call language model can catch the semantic significance of each call and its connection to other framework calls. Also, we proposed an inventive and basic group technique that can more readily fit to IDS plan by zeroing in on bringing down bogus alert rates. We indicated its exceptional exhibition by contrasting it and existing condition of-theart strategies and showed its power and over-simplification by investigates different benchmarks.

❖ Architecture/ model/pseudocode developed

Fig. 2. A common structure of LSTM.

PAPER:2.

Figure 1. An overview of the proposed ID model.

PAPER:3.

Intermittent Neural Network (RNN) is a famous model in Deep Learning field. This model has applied effectively to perceive creating picture and text; machine decipher with superior. Notwithstanding, RNN has the inconvenience. It can't catch long haul reliance. It causes disappearing angle plunge. Consequently, Hochrieter and Schiemidbuher proposed Long Momentary Memory (LSTM), which can learn long haul conditions. LSTM is intended to defeat disappearing inclination drop since it keeps away from longterm reliance issue. To recall data forlong timeframes, we supplant every regular shrouded hub by LSTM cell. LSTM cell is shown in Fig.

PAPER:4.

Figure 1: Overview of the proposed method.

Figure 2: System-call language model.

PAPER:5.

❖ Datasets analyzed in the paper with the performance results

PAPER:1.

Class Name	#Instances	Distribution Percentage
Normal	1,958,467	87.94%
Exploits	33,422	1.50%
DoS	11,716	0.53%
Backdoor	1,959	0.09%
Analysis	2,069	0.09%
Fuzzers	19,578	0.88%
Generic	187,598	8.42%
Reconnaissance	10,871	0.49%
Shellcode	1,187	0.05%
Worms	134	0.01%
Total	2,227,001	100%
		34

Table 2. Distribution of training and testing sets

CLASS NAME	Training set (70%)	Testing set (30%)
Normal	1370880	587587
Exploits	23275	10147
DoS	8281	3435
Backdoor	1371	588
Analysis	1440	629
Fuzzers	13712	5866
Generic	131435	56163
Reconnaissance	7608	3263
Shellcode	811	376
Worms	87	47
Total	1558900	668101

Table 3. Confusion Matrix of Normal and Abnormal Classification

	Normal	Abnormal	Total
Normal	583,129	4,458	587,587
Abnormal	14,307	66,207	80,514
Total	597,436	70,665	668,101

Table 4. Confusion Matrix of All Types of Attacks Classification.

	Normal	Exploits	DoS	Backdoor	Analysis	Fuzzers	Generic	Reconnaissance	Shellcode	Worms	Total
Normal	586,579	53	8	2	14	928	0	1	2	0	587,587
Exploits	146	8,074	1,351	10	17	241	79	197	31	1	10,147
DoS	29	2,270	965	7	5	87	40	14	17	1	3,435
Backdoor	0	331	137	38	6	74	0	0	2	0	588
Analysis	87	257	132	3	61	76	13	0	0	0	629
Fuzzers	1,637	429	146	6	16	3,625	3	3	1	0	5,866
Generic	15	466	163	2	3	22	55,478	5	8	1	56,163
Reconnaissance	9	535	182	1	0	5	3	2,527	0	1	3,263
Shellcode	6	44	5	1	0	4	6	0	310	0	376
Worms	0	36	0	0	0	3	1	0	0	7	47
Total	588,508	12,495	3,089	70	122	5,065	55,623	2,747	371	11	668,101

Table 5. Performance Metrics of Normal and Abnormal Classification

	Precision	Recall	F1-score	Accuracy
Normal	0.98	0.99	0.98	
Abnormal	0.94	0.82	0.88	97.17%
Weighted avg.	0.97	0.97	0.97	

Table 6. Performance Metrics of Normal and Other Types of Attacks Classification

	Precision	Recall	F-score	Accuracy
Normal	1	1	1	
Exploits	0.64	0.8	0.71	
DoS	0.32	0.27	0.29	
Backdoor	0.5	0.07	0.12	
Analysis	0.44	0.09	0.15	
Fuzzers	0.71	0.61	0.66	00.430/
Generic	1	0.99	0.99	98,43%
Reconnaissance	0.93	0.77	0.84	
Shellcode	0.82	0.79	0.81	
Worms	0.5	0.09	0.15	
Weighted Avg.	0.98	0.98	0.98	

1 1

Table 2. Summary of the ISCX-IDS 2012 dataset (daily traffic).

Days	Date	Description	Size (GB)
Friday	11 June 2010	Normal, hence no malicious activity	16.1
Saturday	12 June 2010	Infiltrating the network from inside and normal activity	4.22
Sunday	13 June 2010	Infiltrating the network from inside and normal activity	3.95
Monday	14 June 2010	HTTP denial of service and normal activity	6.85
Tuesday	15 June 2010	Distributed denial of service using an IRC Botnet	23.04
Wednesday	16 June 2010	Normal, hence no malicious activity	17.6
Thursday	17 June 2010	Brute force SSH and normal activity	12.3

Table 3. Distribution of ISCX-IDS 2012 training and testing dataset.

Dataset/Network Flows	#Feature	Training		Testing	
ISCX-UNB Saturday	8	85,222	1353	45,889	1353
ISCX-UNB Monday	8	108,945	2451	58,664	1320
ISCX-UNB Tuesday	8	347,308	24,295	187,012	13,083
ISCX-UNB Wednesday	8	339,470	0	182,793	0
ISCX-UNB Thursday	8	255,054	3381	137,338	1822

Note: For both set: left—Benign, right—Malicious.

Table 4. Distribution of the data for the second stage classifier.

Input	#Features	Attack Category
Training set	8	HTTP DoS, DDoS, and Botnet
Test set	8	Brute force SSH, HTTP DoS, DDoS, Botnet, and Brute force SSH

PAPER:3.

List of relevance features
back, land, neptune, pod, smurt, teardrop,
apache2, back, land, mailbomb, Neptune, podm processtable, smurf
ipsweep, nmap, portsweep, satan, mscan,
saint
ftpwrite, guespasswd, imap, multihop, phf,
spy,warezclient, Warezmaster, httptunnel,
named, sendmail, snmpgetattack, xlock, xsnoop
bufferiverflow, loadmodule, perl, rootkit, ps, snmpguess, sqlattack, worm, xterm

TABLE 4
The average classification performance of each attack

Optimizer	DoS	Probe	R2L	U2R	Normal
RMSprop	0.9672	0.59131	0.51041	0.5	0.89945
Adagrad	0.98272	0.63132	0.56719	0	0.91213
Adadelta	0.98131	0.5819	0.52	0	0.81508
Adam	0.98288	0.60313	0.51401	0	0.90597
Adamax	0.98362	0.68257	0.66236	0.5	0.94464
Nadam	0.98435	0.77034	0.66702	0.5	0.95716

TABLE 5
The average classification performance

Optimizer	Accuracy	Recall	FAR	Precision	Efficiency
RMSprop	0.9496	0.97709	0.15361	0.95987	7.0753
Adagrad	0.96786	0.99142	0.12277	0.96887	8.5766
Adadelta	0.94401	0.99074	0.23128	0.9422	5.40848
Adam	0.95915	0.98723	0.1287	0.9675	8.20554
Adamax	0.97376	0.98621	0.10642	0.97595	9.30781
Nadam	0.9754	0.9895	0.0998	0.9769	9.9808

Table 1: Summary of datasets used for experiments

	No	rmal	At	tack	
Benchmark	# training	# validation	# type	# attack	
ADFA-LD	833	4372	6	746	
KDD98	1364	5459	10	41	
UNM-lpr	627	3136	1	2002	

Figure 3: ROC curves from the ADFA-LD. Left shows the result from our three system-call language models with different parameters and two baseline classifiers. Right illustrates the results from different ensemble methods.

Figure 4: ROC curves from the KDD dataset and UNM dataset. Left is the evaluation about the KDD dataset. Right is the evaluation about UNM dataset using the model trained with the KDD98 dataset and the UNM dataset.

PAPER:5.

KDD Cup 1999 dataset has been used to measure a performance of IDS in many researches. Although the dataset is old, it is good to compare the IDS models. Because there are lots of performance measurement results with the same dataset. That is the main reason why we chooesed KDD Cup 1999 dataset.

TABLE 1 Category of the attacks

Category	Attacks
DoS	back, land, neptune, pod, smurf, teardrop
R2L	ftp-write, guess-passwd, imap, multihop, phf,
	spy, warezclient, warezmaster
U2R	buffer-overflow, loadmodule, perl, rootkit
Probe	ipsweep, nmap, portsweep, satan

TABLE 2 Efficiency by the learning rate

	0.0001	0.001	0.01	0.1
DR	0.998	0.984	0.877	0.979
FAR	0.817	0.512	0.413	0.479
Efficiency	1.222	1.921	2.124	2.045

TABLE 3 Efficiency by the hidden layer size

Size	DR	FAR	Efficiency
10	0.68	0.849	0.800942285
20	0.949	0.497	1.90945674
30	0.966	0.202	4.782178218
40	0.984	0.311	3.163987138
50	0.995	0.293	3.395904437
60	0.951	0.282	3.372340426
70	0.951	0.233	4.081545064
80	0.993	0.133	7.466165414
90	0.985	0.227	4.339207048

TABLE 4
Result summary

	DR	FAR	Efficiency
Best	0.989583	0.07781	12.692786
Worst	0.984807	0.129093	7.663612
Average	0.9879003	0.1003805	10.005282

❖ Any comparison done with the previous techniques to specify that the proposed method is superior

PAPER:1.

Model	Dataset	Accuracy (%)
Basic CNN [33]	ISCX2012	94.26%
Inception CNN [33]	ISCX2012	94.74%
LSTM [33]	ISCX2012	93.72%
GRU [33]	ISCX2012	94.30%
TSDL model [22]	UNSW-NB15	89.134%
Proposed CNN-WDLSTM model	UNSW-NB15	97.17%

Table 8. Average execution time of detection for one instance in milliseconds.

Model	Average execution time
TSDL model [22]	0.003372
CNN-WDLSTM Model	0.002383

Table 9. Accuracy results of detecting normal and abnormal traffic for TSDL and CNN-WDLSTM models traffic using 10-fold cross validation.

Model	Correctly Classified	Incorrectly Classified	Accuracy
Model	Instances	Instances	(%)
TSDL [22]	212,007	24,316	89.711
CNN-WDLSTM	229,173	7,150	96.975

PAPER:2.

Classifier	Precision	Recall	F1-Score	FAR	DR	Stage
SVM	0.6835	0.6515	0.6786	15.27	0.65	1
DT	0.7930	0.8012	0.7965	11.29	0.82	1
GBT	0.8529	0.8632	0.8612	8.13	0.85	1
RF	0.8919	0.8875	0.8845	5.72	0.89	1
Conv-LSTM	0.9725	0.9750	0.9729	0.71	0.97	2

The most significant boost that we experienced is with the Conv-LSTM network, which manages to accurately detect misuse in up to 97% of cases. The superior feature extraction of CNN and

long-term dependencies between non-linear features is the reason behind this significant performance

improvement. Implementation details are given in Supplementary Materials.

PAPER:3.

TABLE 6 Comparison to other IDS classifiers

Classifier	Precision	DR	Accuracy	FAR
FNN [17]	92.47	86.89	97.35	2.65
GNNN [17]	87.08	59.12	93.05	12.46
RBNN [17]	69.56	59.12	93.05	12.46
Jordan ANN [17]	-	62.9	-	37.09
RNN with				
Hessian-free [7]	-	95.37	-	2.1
LSTM RNN				
with SGD [8]	-	98.88	96.93	10.04
Our classifier	97.69	98.95	97.54	9.98

As examined before, the proposed technique additionally has phenomenal transportability. Rather than elective strategies, our proposed technique causes noteworthy littler preparing overhead since it doesn't have to manufacture information bases or word references to keep a possibly exponential measure of examples. Our technique is reduced and light in that the size of the space needed to spare boundaries is little. The general preparing and surmising measures are likewise proficient and quick, as our strategies can be actualized utilizing productive successive network duplications.

PAPER:5.

TABLE 5
Comparison with other algorithms

	DR(%)	FAR(%)	Accuracy(%)
GRNN	59.12	12.46	87.54
PNN	96.33	3.34	96.66
RBNN	69.83	6.95	93.05
KNN	45.74	46.49	90.74
SVM	87.65	6.12	90.4
Bayesian	77.6	17.57	88.46
LSTM-RNN	98.88	10.04	96.93