Espérance mathématique

Shockwave (fiche en cours de construction)

Calcul pratique de l'espérance mathématique d'une variable aléatoire

 1^{er} cas X est une variable aléatoire discrète prenant un nombre fini ou dénombrables de valeurs x_k avec les probabilités p_k (p_k vérifiant $\sum_k p_k = 1$):

$$E(X) = \sum_{k} x_k p_k.$$

 2^{eme} cas X est une variable aléatoire continue de densité de probabilité $f_X(x)$ donnée :

$$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx.$$

 3^{eme} cas X est une variable aléatoire mixte prenant les valeurs x_k avec les probabilités p_k et de densité de probabilité $f_X(x)$ au sens : $f_X(x) = \sum_k p_k \delta(x - x_k) + f_{X_c}(x)$:

$$E(X) = \sum_{k} x_k p_k + \int_{-\infty}^{+\infty} x f_{X_c}(x) dx.$$

Théorème de transfert

Il s'agit de calculer l'espérance mathématique de Y = g(X) uniquement à partir de la loi de probabilité P_X de la variable aléatoire X sans avoir à calculer la loi de probabilité P_Y de la variable aléatoire Y.

 1^{er} cas X est une variable aléatoire discrète prenant un nombre fini ou dénombrables de valeurs x_k avec les probabilités p_k (p_k vérifiant $\sum_k p_k = 1$), la variable aléatoire Y = g(X) est une variable aléatoire discrète :

$$E(Y) = \sum_{k} g(x_k) p_k.$$

 2^{eme} cas X est une variable aléatoire continue de densité de probabilité $f_X(x)$ donnée, Y est une variable aléatoire de nature quelconque :

$$E(X) = \int_{-\infty}^{+\infty} g(x) f_X(x) dx.$$

Shockwave 1

Shockwave 2