





#### LINEAR COLLIDER COLLABORATION

Designing the world's next great particle accelerator

## PLASMA BEAM DUMPS

Preliminary studies for EuPRAXIA

Alexandre Bonatto\* (UFCSPA)
Roger P. Nunes (UFRGS)
Denis Perret-Gallix (LAPP-IN2P3/KEK)†



Federal University of Health Sciences of Porto Alegre - UFCSPA - RS, Brazil Beam Physics Group - Medical Physics - DECESA

\*abonatto@ufcspa.edu.br, www.ufcspa.edu.br

† Deceased.

### Introduction

- In this work we present some preliminary studies for the plasma-based deceleration of 5 GeV;
- We show analytical estimates for the beam total energy loss obtained for a half-sine longitudinal and parabolic transverse (HSP) (Bonatto et al. 2015);
- We also show analytical estimates from a model developed for a beam with longitudinal Gaussian profile and compare both models (to be published).
- We focus our attention in the passive case, providing some analytical estimates and 1D PIC simulations for the mentioned case.

## The Model - beam energy loss (passive beam dump)

Half-sine longitudinal and parabolic transverse (HSP):



 Beam total energy loss as a function of the propagated distance s (Bonatto et al, 2015):

$$\frac{U(s)}{U_0} = 1 - k_p s \frac{\pi^3 k_p L (n_b/n_0) \cos^2(k_p L/2)}{\gamma_0 (\pi^2 - k_p^2 L^2)^2} \frac{2}{3} \left[ \frac{k_p^2 r_b^2 - 6 + 24 I_2(k_p r_b) K_2(k_p r_b)}{k_p^2 r_b^2} \right]$$

## Half-sine / Parabolic (HSP) vs. bi-Gaussian beam

- → Gaussian beam length  $L_b = 5.15\sigma_{\xi}$ .
- $\rightarrow$  HSP model can be used to describe a Gaussian beam if they are matched to have the same  $n_b/n_0$  ( $E_z/E_0 \propto n_b/n_0$ );

Half–sine vs. Gaussian |  $k_p\sigma_\xi=1$  ,  $k_p\sigma_r=1$  ,  $k_pL\simeq 0.9~\pi$  ,  $k_pr_b=\sqrt{2}$  ,  $n_b/n_0=1$ 



 $\rightarrow$  Matching condition:  $L_{HSP}=(1/2)\pi^{3/2}\sigma_{\xi}$ , and  $r_{b,HSP}=\sqrt{2}\sigma_{r}$ .

## Half-sine vs. Gaussian beam

 $\rightarrow$  The lower the  $k_p L_b$ , the better is the matching.



#### Half-sine vs. Gaussian beam

- ightarrow Matched HSP has  $L\simeq 2.8\,\sigma_{\xi}~(\sim 84\%~{
  m of~the}$  Gaussian area).
- → Gaussian tails: ~ 8% of the particles on each.
- $\rightarrow$  As  $k_p \sigma_{\xi} \rightarrow \pi$ , the fraction of the later tail reaching an  $E_z/E_0$  accelerating phase increases.
- → This slightly attenuates the beam energy extraction.

→ Comparison (1D):





### **EuPRAXIA**

• Table from "Design of a 5 GeV laser-plasma accelerating module in the quasi-linear regime" (Xiangkun L. et al., 2018)

Typical parameters for the EuPRAXIA Laser-plasma acceleration stage.

|                                     |            | •                      |
|-------------------------------------|------------|------------------------|
| Variable                            | Value      | Unit                   |
| Laser                               |            |                        |
| Strength $a_0$                      | $\sqrt{2}$ |                        |
| Spot size $k_p w_0$                 | 3.3        |                        |
| Duration $k_p \sigma_L$             | $\sqrt{2}$ |                        |
| Peak power $P_{L}$                  | ~150       | TW                     |
| Energy $E_{ m L}$                   | ~15        | J                      |
| Plasma                              |            |                        |
| Density $n_p$                       | 1.5        | $10^{17}~{ m cm}^{-3}$ |
| acc. length $L_{ m acc}$            | ~30        | cm                     |
| Channel depth $\Delta n/\Delta n_c$ | <1ª        |                        |
| Electron                            |            |                        |
| Charge Q                            | 30         | pC                     |
| Energy $E_k$                        | 150        | MeV                    |
| Energy spread $\Delta E/E$          | 0.5        | %                      |
| Beam size $\sigma_x$                | ~1ª        | $\mu$ <b>m</b>         |
| Emittance $\varepsilon_{n,x}$       | 1.0        | $\pi$ mm mrad          |
| Bunch length $\sigma_z$             | 1-3a       | $\mu$ <b>m</b>         |

• We consider a beam with the same parameters, but with higher energy (5 GeV).

## EuPRAXIA

• Better agreement with the model if  $n_b/n_0 \le 10$  (linear, quasilinear regime);

#### **Electron beam:**

Bi-Gaussian profile:

$$\frac{n_b(\xi, r)}{n_0} = \frac{n_b}{n_0} \exp \left[ -\left(\frac{\xi^2}{\sigma_{\xi}^2} + \frac{r^2}{\sigma_r^2}\right) \right] , \begin{cases} \sigma_{\xi} = 1 \sim 3 \,\mu\text{m} \\ \sigma_r = 1 \,\mu\text{m} \end{cases}$$

bunch length

(99% of the beam particles);

- charge = -30 pC;
- energy = 5 GeV (monoenergetic)

## EuPRAXIA

#### Plasma:

- Density chosen according to the desired normalized bunch length  $k_{p}L_{b}$ ;
  - $k_p L_b \to \pi \Rightarrow$  faster / less uniform energy extraction;
  - $k_p L_b \ll \pi \Rightarrow \text{slower / more uniform energy extraction;}$
- Better agreement with the model if  $n_b/n_0 \le 10$  (linear, quasilinear regime);

#### Shorter normalized length:

- $L_b = 5.15\sigma_{\xi}$ ;
- $k_p L_b = \pi$ ;

Faster overall energy extraction, but lower  $E_z/E_0$  over beam tail (higher energy chirp)





Beam tail touches the end of  $E_z/E_0$  decelerating phase

#### Analytical estimate:

- $s^* \sim 0.15$  cm (saturation point);
- $U(s^*)/U_0 \sim 0.40$  (normalized energy)







Shorter normalized length:

• 
$$L_b = 5.15\sigma_{\xi};$$

• 
$$k_p L_b = 2$$
;

Higher  $E_z/E_0$   $\{ \begin{bmatrix} 0.3 \\ 0.3 \end{bmatrix} \}$ 

beam tail is not touching the end of  $E_z/E_\theta$  decelerating phase





EuPraxia – Longitudinal Plot (Detail)

#### <u>Analytical estimate</u>:

- $s^* \sim 0.26$  cm (saturation point);
- $U(s^*)/U_0 \sim 0.43$  (normalized energy)







#### Parameter Set 3 (optimal):

- $L_b = 5.15\sigma_{\xi}$ ;
- $k_p L_b = 2;$
- $s^* \sim 0.26$ ;
- $U(s^*)/U_0 \sim 0.43$ .



 $n_b/n_0$ (Gaussian)

 $E_z/E_0$  (Gaussian)

Energy Loss – EuPRAXIA











## EuPRAXIA - Sim. 1 $(k_pL_b = \pi)$ vs. Sim. 2 $(k_pL_b = 2)$

#### • Sim. 1: $k_p L_b = \pi$ , $\sigma \xi = 3 \ \mu \mathrm{m}$ , $\sigma_r = 1 \ \mu \mathrm{m}$





### • Sim. 2: $k_p L_b = 2$ , $\sigma \xi = 3 \mu \text{m}$ , $\sigma_r = 1 \mu \text{m}$







• Sim. 3: optimal parameters ( $\sigma \xi = 2 \mu \text{m}$ ,  $\sigma \text{r} = 1.3 \mu \text{m}$ )



### Partial conclusions

- Analytical model shows good agreement with PIC simulations in both linear and quasi-linear regimes.
- HSP model can be used to describe the energy loss of a Gaussian beam (better agreement if  $k_p L_b = k_p (5.15\sigma_{\xi}) \leq \pi$ .
- In the passive beam dump, phase space behavior is determined by the chosen normalized beam length  $k_p L_b$ :
  - $k_p L_b = \pi$  : faster extraction, more energy chirp.
  - $k_p L_b < \pi$  : slower extraction, less energy chirp.
- For a 5 GeV beam (EuPRAXIA), it should be possible to extract
   ~ 60% of beam energy in a ~26 cm passive plasma beam
   dump (but particles at the head of the beam preserve their full
   initial energy
- An active beam dump could solve this issue (but it is necessary to check the laser cost to do it.