BANKRUPTCY DATA PREPROCESSING

Dataset 10,000 rows

65 Features Attribute 1 to 64

Target -Bankruptcy flag

Unbalanced Dataset 200 rows of 1 Rest all 0

Data Preparation:

Checks were performed to look for missing data, None found

Duplicate records:

We identified and removed 59 duplicates using SAS, enhancing data quality for more accurate analysis.

Unbalanced data:

Data was found to be ~97% Target value 0 and ~3% Target value 1

We used the decisions node to specify the correct decision consequences. When dealing with an imbalanced dataset, we want to avoid using model fit measures solely based on statistical measures(mean square error or misclassification), because those measures were not adjusted for the imbalance. Instead, we want to select the champion model according to the bankruptcy use case

Variable transformations:

Applied Logarithmic transformation on Attributes 1 - 64

- Improve interpretability of financial measures by reducing variance
- Making the distribution normal before feeding into models

FINAL ALGORITHM USED IN THE LEADERBOARD - GRADIENT BOOSTING 1

Property	Value
Series Options	
N Iterations	1500
Seed	12345
Shrinkage	0.01
Train Proportion	70
Splitting Rule	
-Huber M-Regression	0.9
-Maximum Branch	2
-Maximum Depth	7
-Minimum Categorical Size	5
-Reuse Variable	1
-Categorical Bins	30
-Interval Bins	100
-Missing Values	Use in search
Performance	RAM
Node	
-Leaf Fraction	0.07
Number of Surrogate Rules	0
Split Size	
Split Search	
Exhaustive	5000
Node Sample	20000
Subtree	

The ROC Index is indicative of the model's strong ability to distinguish between the two classes

FINAL ALGORITHM USED IN THE LEADERBOARD - GRADIENT BOOSTING 2

Evaluation Metric	Score
Average Squared Error	0.015
ROC Index	0.924

47	5b	
	Leaderboard	ROC Index
	Public leaderboard	0.941
	Private leaderboard	0.934

- N Iterations 1500 - Seed 12345 - Shrinkage 0.1 - Train Proportion 90 - Splitting Rule - Huber M-Regression 0.9 - Maximum Branch 2 - Maximum Depth 7 - Minimum Categorical Size 5 - Reuse Variable 1 - Categorical Bins 30 - Interval Bins 100 - Missing Values Use in search - Performance Disk	_				
- N Iterations 1500 - Seed 12345 - Shrinkage 0.1 - Train Proportion 90 - Splitting Rule - Huber M-Regression 0.9 - Maximum Branch 2 - Maximum Depth 7 - Minimum Categorical Size 5 - Reuse Variable 1 - Categorical Bins 30 - Interval Bins 100 - Missing Values Use in search - Performance Disk	Property	Value			
- Seed 12345 - Shrinkage 0.1 - Train Proportion 90 - Splitting Rule - Huber M-Regression 0.9 - Maximum Branch 2 - Maximum Depth 7 - Minimum Categorical Size 5 - Reuse Variable 1 - Categorical Bins 30 - Interval Bins 100 - Missing Values Use in search - Performance Disk	Series Options				
Shrinkage 0.1 Train Proportion 90 Splitting Rule Huber M-Regression 0.9 Maximum Branch 2 Maximum Depth 7 Minimum Categorical Size 5 Reuse Variable 1 Categorical Bins 30 Interval Bins 100 Missing Values Use in search Performance Disk	-N Iterations	1500			
Train Proportion 90 Splitting Rule - Huber M-Regression 0.9 - Maximum Branch 2 - Maximum Depth 7 - Minimum Categorical Size 5 - Reuse Variable 1 - Categorical Bins 30 - Interval Bins 100 - Missing Values Use in search - Performance Disk	Seed	12345			
Splitting Rule	Shrinkage	0.1			
- Huber M-Regression 0.9 - Maximum Branch 2 - Maximum Depth 7 - Minimum Categorical Size 5 - Reuse Variable 1 - Categorical Bins 30 - Interval Bins 100 - Missing Values Use in search - Performance Disk	Train Proportion	90			
- Maximum Branch 2 - Maximum Depth 7 - Minimum Categorical Size 5 - Reuse Variable 1 - Categorical Bins 30 - Interval Bins 100 - Missing Values Use in search - Performance Disk	Splitting Rule				
- Maximum Depth 7 - Minimum Categorical Size 5 - Reuse Variable 1 - Categorical Bins 30 - Interval Bins 100 - Missing Values Use in search - Performance Disk	-Huber M-Regression	0.9			
- Minimum Categorical Size 5 - Reuse Variable 1 - Categorical Bins 30 - Interval Bins 100 - Missing Values Use in search - Performance Disk	-Maximum Branch	2			
- Reuse Variable 1 - Categorical Bins 30 - Interval Bins 100 - Missing Values Use in search - Performance Disk	-Maximum Depth	7			
- Categorical Bins 30 - Interval Bins 100 - Missing Values Use in search - Performance Disk	-Minimum Categorical Size	5			
Interval Bins 100 Missing Values Use in search Performance Disk	-Reuse Variable	1			
Missing Values Use in search Performance Disk	-Categorical Bins	30			
Performance Disk	-Interval Bins	100			
	-Missing Values	Use in search			
	Performance	Disk			
Node	∃Node				
Leaf Fraction 0.001	-Leaf Fraction	0.001			
Number of Surrogate Rules 0	Number of Surrogate Rules	0			
Split Size .	Split Size				
Split Search	Split Search				
Exhaustive 5000	Exhaustive	5000			
Node Sample 20000	Node Sample	20000			
Subtree	3 Subtree				
Assessment Measure Decision	Assessment Measure	Decision			

The ROC Index is indicative of the model's strong ability to distinguish between the two classes

ALGORITHMS TRIED

- Validation metric used for Model Comparison ROC
- ROC achieved lower than the algorithms selected for the leaderboard, ASE used as the secondary metric for model selection
- These metrics suggest that Gradient Boosting not only has the best discriminative ability among the models but also the highest prediction accuracy for the data it was trained on. This combination makes it a strong candidate for both classification and regression tasks, which is why it was picked as the first choice for our problem statement

Model used2	ROC	Average squared error
Gradient boosting	0.944	0.017
HP Forest bagging	0.927	0.0175
HP Forest	0.923	0.0118
HP Neural	0.919	0.01385
HP GLM	0.916	0.015274
Regression	0.888	0.018475
HP SVM-rbf	0.867	0.020827
HP SVM	0.512	0.021326

KEY LEARNINGS

Normalization /Standardizatio

Normalizing or standardizing predictors, especially if they are on different scales: Particularly important for models that are sensitive to the scale of input features.

Feature Engineering Creating new features from the existing data can provide additional insights. For example, ratios or differences between financial metrics might be **more informative** than the raw metrics themselves.

Cross-Validation

K-fold cross-validation can ensure that the model's performance is **consistent** across different subsets of the data.

Feature Selection

Given the large number of predictors (64), feature selection techniques can identify the **most significant predictors**. This could improve model performance and reduce overfitting.

Evaluation Metrics Metrics other than ROC, like
Precision-Recall AUC, F1 score, or
Matthew's correlation coefficient can
also be analysed, given the class
imbalance. These metrics might
provide a more nuanced view of
model performance.

Ensemble models

Ensemble methods like bagging or boosting with different models can improve robustness. Ensembles often yield more **robust predictions** than individual models.

A/B Testing

If used in comparison of different models, preprocessing strategies, and hyperparameter setting etc, ensures that model updates and presentation methods enhance realworld performance and robustness under varying conditions.