Введение в математический анализ.

Содержание

1	Пос	следовательности	2								
	1.1										
	1.2	± 11									
	1.3										
	1.4										
	1.5	¥ - 1 1									
	1.6	Сходимость рядов	5								
	1.7	Признаки сходимости рядов	6								
	1.8	Тесты на сходимость рядов									
2	Φvi	нкции и непрерывность	9								
	2.1	Предел функции	9								
		2.1.1 Предельные точки множества	9								
		2.1.2 Предел функции	10								
		2.1.3 Арифметические действия с пределами	10								
		2.1.4 Односторонние пределы	11								
	2.2	Непрерывность функции	11								
	2.3	Теорема Вейерштрасса	12								
	2.4	Теорема Больцано-Коши	12								
		2.4.1 Обратные функции	13								
	2.5	Замечательные пределы	14								
	2.6	Эквивалентные функции	14								
		2.6.1 о-малое	15								
3	Про	Производные 16									
	3.1	Дифференцируемость и производная	16								
	3.2	Теоремы о среднем	17								
	3.3	Производная и монотонность	17								
	3.4	Правило Лопиталя	17								
	3.5	Формула Тейлора	17								
	3.6	Экстремумы функций	17								
4	Инт	гегралы	17								
	4.1	Первообразная и неопределённый интеграл	$\frac{17}{17}$								
	4.2	Действия с неопределёнными интегралами	18								
	4.3	Площади и определённый интеграл	18								
	4.4	Теорема Барроу и формула Ньютона-Лейбница	18								
	4.5	Интегральные суммы	18								

4.6	Связь между	суммами и	интегралами .	 	 18

Последовательности 1

Предел последовательности

Опр-е. 1.1 (Предел последовательности). $\lim_{n\to\infty}x_n=a$

- При любом $\varepsilon>0$ вне интервала $(a-\varepsilon,a+\varepsilon)$ находится лишь конечное число членов последовательности
- $\forall \varepsilon > 0 \ \exists N \ \forall n > N \ |x_n a| < \varepsilon$

Свойства последовательностей:

- Не может иметь двух различных пределов
- Если имеет предел, то $|x_n| \leqslant M$
- Пределы можно складывать, вычитать, умножать, делить, брать модуль

Св-во (Переход к пределу в неравенстве).

$$\lim_{n \to \infty} x_n = a, \lim_{n \to \infty} y_n = b, \ x_n \leqslant y_n \implies a \leqslant b$$

Доказательство. От противного

Теор. 1.1 (О двух милиционерах).

$$a_n \leqslant c_n \leqslant b_n$$
, $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = A \implies \lim_{n \to \infty} c_n = A$

Доказательство. По определению

1.2 Арифметические операции с пределами

Св-во. Конечные пределы можно складывать, вычитать, умножать, делить (нижний д.б. $\neq 0$) и брать модуль.

Доказательство. С умом подбираем ε и используем ограниченность...

Опр-е. 1.2 (Бесконечный предел).

$$\lim_{n \to \infty} x_n = +\infty \qquad \equiv \qquad \forall E \ \exists N \ \forall n > N \ x_n > E$$

Теор. 1.2. $\ \ \ \, \bot \ \ \, x_n \neq 0. \, \, x_n$ – беск. большая $\iff \frac{1}{x_n}$ – беск. малая

Св-во. Свойства бесконечно малых:

- 1. Беск. малая послед. ограничена
- 2. Сумма, разность, произведение бес. малых беск. малая
- 3. Произвед. беск. малой на ограниченную беск. малая

Арифметические операции с бесконечностями...

1.3 Вещественные числа. Супремум и инфимум.

Опр-е. 1.3 (Вещественные числа).

- Аксиомы поля (9 штук)
- Аксимомы порядка (5 штук)
- Аксиома Архимеда: $\forall x,y>0 \; \exists n \in \mathbb{N} : nx>y$
- Аксиома полноты: Пусть $[a_1,b_1]\supset [a_2,b_2]\supset [a_3,b_3]\supset$ Тогда существует число $c\in\mathbb{R},$ принадлежащее всем отрезкам: $c\in\bigcap_{n=1}^\infty [a_n,b_n]$

Теор. 1.3 (О стягивающихся отрезках).

Пусть $[a_1,b_1]\supset [a_2,b_2]\supset [a_3,b_3]\supset ...$ и $\lim_{n\to\infty}(b_n-a_n)=0$. Тогда пересечение всех отрезков состоит из одной точки: $\{c\}=\bigcap_{n=1}^\infty [a_n,b_n]$, причём $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=c$

Доказательство. По теореме о двух милиционерах

Опр-е. 1.4. \bot *E* – непустое множество sup – наименьшая из верхних границ inf – наибольшая из нижних границ

$$b = \sup E \iff \begin{cases} \forall x \in E & x \leq b \\ \forall \varepsilon > 0 \ \exists x \in E : \ x > b - \varepsilon \end{cases}$$

Теор. 1.4. Всякое непустое ограниченное сверху (снизу) множество имеет sup (inf) Доказательство. Делением отрезка пополам, затем переход к пределу в неравенстве...

Teop. 1.5.

• Монотонно возрастающая ограниченная сверху последовательность сходится.

• Монотонно убывающая ограниченная снизу последовательность сходится.

Доказательство. Супремум...

Teop. 1.6.

- Неограниченная сверху возрастающая последовательность стремится $\kappa + \infty$.
- ullet Неограниченная снизу убывающая последовательность стремится к $-\infty$.

Доказательство. По определению

1.4 Определение числа e

Лемма 1.1 (Неравенство Бернулли).

$$x > -1, n \in \mathbb{N} \implies (1+x)^n \geqslant 1 + nx$$

Доказательство. По индукции

След-е.

$$x > -1, n \in \mathbb{N} \implies \sqrt[n]{1+x} \leqslant 1 + \frac{x}{n}$$

$$\lim_{n \to \infty} \frac{a^n}{n^k} = +\infty \quad a > 1, \ k \in \mathbb{N}$$

$$\lim_{n \to \infty} \sqrt[n]{a} = 1 \quad a > 0$$

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$

$n \rightarrow \infty$ ($n \rightarrow \infty$ ($n \rightarrow \infty$

Теорема Больцано-Вейерштрасса

Св-во.

1.5

$$\{a_n\} \to A \implies \{a_{n_k}\} \to A$$

Доказательство. По определению

Teop. 1.7 (Больцано-Вейерштрасса). Из всякой ограниченной последовательности можно выделить сходящуюся (к конечному пределу) подпоследовательность

Доказательство. Делим содержащий последовательность отрезок пополам так, чтобы в нём оставалась бесконечная подпоследовательность. Далее по теореме о двух милиционерах. \Box

Теор. 1.8 (Расширение теоремы Больцано-Вейерштрасса).

- Из неограниченной сверху последовательности можно выделить подпоследовательность, сходящуюся к $+\infty$.
- Из неограниченной снизу последовательности можно выделить подпоследовательность, сходящуюся к $-\infty$.

След-е. Из любой последовательности можно выделить под-последовательность, имеющую конечный *или бесконечный* предел.

Опр-е. 1.5. Последовательность фундаментальна, если

$$\forall \varepsilon > 0 \ \exists N : \ \forall m, n \geqslant N \ |x_m - x_n| < \varepsilon$$

Свойства:

- 1. Фундаментальная последовательность ограничена
- 2. Сходящаяся последовательность фундаментальна
- 3. Если у фундаментальной последовательности есть сходящаяся подпоследовательность, то исходная последовательность сходится

След-е (Критерий Коши). Последовательность сходится 👄 она фундаментальна

1.6 Сходимость рядов

Опр-е. 1.6.

$$S_n = \sum_{k=1}^n a_k$$

Если последовательность $\{S_n\} \to S$, то последовательность наз. сходящейся, а S – сумма ряда. Если $\{S_n\}$ не имеет предела или *бесконечный* предел, то ряд расходится.

Теор. 1.9 (Необходимое условие сходимости ряда).

Если ряд
$$\sum_{k=1}^{\infty} a_k$$
 сходится, то $\lim_{n\to\infty} a_n = 0$.

Геометрическая прогрессия:

$$S_n = \sum_{k=1}^n aq^{k-1} = a\frac{1-q^n}{1-q}$$

$$\lim_{n\to\infty} S_n = \frac{a}{1-q} \quad \text{при } |q| < 1$$

Гармонический ряд $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$ расходится, т.к. $H_{2^n} \geqslant \frac{1}{2}$

Пример:

$$S_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} = 1 - \frac{1}{n+1}$$

$$\lim_{n \to \infty} S_n = 1$$

Свойства сходящихся рядов:

- 1. Ряд не может иметь двух различных сумм
- 2. В сходящемся ряду можно произвольно расставлять скобки (т.к. это будет подпоследовательность сходящейся последовательности)
- 3. Добавление и отбрасывание конечного членов ряда не влияет на сходимость (но изменяет сумму)
- 4. Сходящиеся ряды можно складывать и вычитать
- 5. Сходящийся ряд можно домножать на константу

1.7 Признаки сходимости рядов

Св-во. Если $a_k \geqslant 0$, а последовательность S_n ограничена сверху, то ряд сходится

Св-во (Признак сравнения). Если $0 \leqslant a_k \leqslant b_k$, то:

$$ullet$$
 если ряд $\sum_{k=1}^{\infty} b_k$ сходится, то ряд $\sum_{k=1}^{\infty} a_k$ сходится

$$ullet$$
 если ряд $\sum_{k=1}^{\infty} a_k$ расходится, то ряд $\sum_{k=1}^{\infty} b_k$ расходится

Пример: ряд
$$\frac{1}{k^2}$$
 сходится. $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$

Пример: ряд $\frac{1}{\sqrt{k}}$ расходится.

Теор. 1.10 (Признак Даламбера). Пусть $a_n > 0$. Тогда:

1. Если
$$\frac{a_{n+1}}{a_n} \leqslant d < 1$$
, то ряд $\sum_{k=1}^{\infty} a_k$ сходится

2. Если
$$\frac{a_{n+1}}{a_n}\geqslant 1$$
, то ряд расходится

3. Пусть
$$d_* = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$
. Тогда:

• Если $d_* < 1$, то ряд сходится

- Если $d_* > 1$, то ряд расходится
- Если $d_* = 1$, то ряд может как сходиться, так и расходиться

Теор. 1.11 (Признак Коши). Пусть $a_n > 0$. Тогда:

1. Если
$$\sqrt[n]{a_n}\leqslant d<1$$
, то ряд $\sum_{k=1}^\infty a_k$ сходится

- 2. Если $\sqrt[n]{a_n} \geqslant 1$, то ряд расходится
- 3. Пусть $q_* = \lim_{n \to \infty} \sqrt[n]{a_n}$. Тогда:
 - Если $d_* < 1$, то ряд сходится
 - Если $d_* > 1$, то ряд расходится
 - Если $d_* = 1$, то ряд может как сходиться, так и расходиться

Теор. 1.12 (Факт).

Если $a_n > 0$ и существует $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$, то также существует и $\lim_{n \to \infty} \sqrt[n]{a_n}$, и они равны.

Теор. 1.13 (Признак Лейбница). Знакочередующийся ряд $a_1 - a_2 + a_3 - a_4 + \dots$ с монотонно убывающим по абсолютной величине членом $a_1 \geqslant a_2 \geqslant a_3 \geqslant \dots > 0$ сходится $\iff \lim_{n \to \infty} a_n = 0$

Доказательство. Построить последовательность вложенных отрезков из частичных сумм $S_{2n-1},\,S_{2n},\,S_{2n+1},\,S_{2n+2}$

Пример – ряд Лейбница:
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots = \frac{\pi}{4}$$

Опр-е. 1.7 (Абсолютная сходимость).

Ряд $\sum_{k=1}^{\infty} a_k$ сходится абсолютно, если ряд $\sum_{k=1}^{\infty} |a_k|$ сходится.

Теор. 1.14. Абсолютно сходящийся ряд сходится, причём $\left|\sum_{k=1}^{\infty}a_k\right|\leqslant\sum_{k=1}^{\infty}|a_k|$

Доказательство. Рассмотреть $0 \leqslant a_k + |a_k| \leqslant 2|a_k|$

Пример: если сходится ряд $\sum_{n=1}^{\infty}a_n^2$, то сходится и ряд $\sum_{n=1}^{\infty}\frac{a_n}{n}$. (доказательство: из $\sqrt{ab}\leqslant \frac{1}{2}(a+b)$)

Свойство: если ряд $\sum_{n=1}^{\infty} a_n$ сходится, а ряд $\sum_{n=1}^{\infty} b_n$ расходится, то ряд $\sum_{n=1}^{\infty} (a_n + b_n)$ расходится (доказательство: *от противного*).

Тесты на сходимость рядов

- Если последовательность имеет конечный предел, то она ограничена.
- Монотонно возрастающая и ограниченная сверху последовательность имеет предел.
- $oldsymbol{arphi}$ Если последовательность $\{x_n\}$ имеет предел, то $\lim_{n o\infty}x_{2n}=\lim_{n o\infty}x_n.$
- Из любой последовательности можно выбрать подпоследовательность, имеющую предел.
- igsim Если ряд $\sum\limits_{n=1}^\infty a_n$ сходится, а ряд $\sum\limits_{n=1}^\infty b_n$ расходится, то ряд $\sum\limits_{n=1}^\infty (a_n+b_n)$ расходится.
- igsim Если ряд $\sum\limits_{n=1}^{\infty}a_n$ сходится, то $\lim\limits_{n o\infty}a_n=0$.
- igsquare Если $\lim_{n o\infty}a_n=0$, то ряд $\sum_{n=1}^\infty a_n$ сходится.
- extstyle ex
- Если последовательность ограничена, то она имеет предел.
- Если последовательность не имеет предела, то она неограничена.
- Если последовательность $\{|a_n|\}$ имеет предел, то последовательность $\{a_n\}$ также имеет предел.
- Если предел $\lim_{n o\infty}(x_n+y_n)$ существует и конечен, то $\lim_{n o\infty}(x_n+y_n)=\lim_{n o\infty}x_n+\lim_{n o\infty}y_n$.
- Из любой последовательности можно выбрать подпоследовательность, имеющую предел.
- \square Если ряды $\sum\limits_{n=1}^{\infty}a_n$ и $\sum\limits_{n=1}^{\infty}b_n$ расходятся, то ряд $\sum\limits_{n=1}^{\infty}(a_n+b_n)$ также расходится.
- igsquare Если $\lim_{n o\infty}a_n=0$, то ряд $\sum_{n=1}^\infty a_n$ сходится.
- \square Если $a_n\leqslant b_n$ при всех n и ряд $\sum\limits_{n=1}^\infty b_n$ сходится, то ряд $\sum\limits_{n=1}^\infty a_n$ также сходится.
- Если последовательность имеет конечный предел, то она ограничена.
- Монотонно возрастающая и ограниченная сверху последовательность имеет предел.
- oxdot Если последовательность $\{|a_n|\}$ имеет предел, то последовательность $\{a_n\}$ также имеет предел.
- extstyle ex
- \square Если ряды $\sum\limits_{n=1}^\infty a_n$ и $\sum\limits_{n=1}^\infty b_n$ расходятся, то ряд $\sum\limits_{n=1}^\infty (a_n+b_n)$ также расходится.
- igsquare Если $\lim_{n o\infty}a_n=0$, то ряд $\sum_{n=1}^\infty a_n$ сходится.
- igsim Если $0\leqslant a_n\leqslant b_n$ при всех n и ряд $\sum\limits_{n=1}^\infty a_n$ расходится, то ряд $\sum\limits_{n=1}^\infty b_n$ также расходится.

Если последовательность ограничена, то она имеет предел.

Если последовательность не имеет предела, то она неограничена.

Если последовательность $\{|a_n|\}$ имеет предел, то последовательность $\{a_n\}$ также имеет предел.

Если предел $\lim_{n\to\infty}(x_n+y_n)$ существует и конечен, то $\lim_{n\to\infty}(x_n+y_n)=\lim_{n\to\infty}x_n+\lim_{n\to\infty}y_n$.

Если ряды $\sum_{n=1}^\infty a_n$ и $\sum_{n=1}^\infty b_n$ расходятся, то ряд $\sum_{n=1}^\infty (a_n+b_n)$ также расходится.

Если $\lim_{n\to\infty}a_n=0$, то ряд $\sum_{n=1}^\infty a_n$ сходится.

Если $a_n\leqslant b_n$ при всех n и ряд $\sum_{n=1}^\infty b_n$ сходится, то ряд $\sum_{n=1}^\infty a_n$ также сходится.

У Если $0\leqslant a_n\leqslant b_n$ при всех n и ряд $\sum_{n=1}^\infty a_n$ расходится, то ряд $\sum_{n=1}^\infty b_n$ также расходится.

2 Функции и непрерывность

2.1 Предел функции

2.1.1 Предельные точки множества

Опр-е. 2.1. Окрестность точки U_a – любой интервал вида $(a-\varepsilon,a+\varepsilon)$ при $\varepsilon>0$

Опр-е. 2.2. Проколотая окрестность $\mathring{U}_a = U_a \setminus \{a\}$

Опр-е. 2.3. Окрестность $+\infty$ – любой луч $(E,+\infty)$

Опр-е. 2.4. Окрестность $-\infty$ – любой луч $(-\infty, E)$

Опр-е. 2.5. a – предельная точка множества $E \subset \mathbb{R}$, если $\mathring{U}_a \cap E \neq \emptyset$ для любой \mathring{U}_a Примеры:

- 1. [a,b] множество предельных точек (a,b)
- 2. $\{a\}$ предельная точка ряда $\{a_n\} \xrightarrow[n \to \infty]{} a$
- 3. \varnothing нет предельных точек у одиночной точки $\{a\} \in \mathbb{R}$

Лемма 2.1 (Утверждение.). Следующие условия равносильны:

- 1. a предельная точка множества E
- 2. В \forall окрестности точки a найдётся бесконечно много точек из E
- 3. \exists такая последовательность точек $x_n \in E \ (x_n \neq a)$, что $\lim_{n \to \infty} x_n = a$

2.1.2 Предел функции

Опр-е. 2.6. Пусть дана функция $f: E \to \mathbb{R}$, заданная на множестве $E \subset \mathbb{R}$. Пусть a – предельная точка множества E. Тогда $\lim_{x\to a} f(x) = A$ (или $f(x) \xrightarrow[x\to a]{} A$), если выполнено любое из равносильных условий:

- 1. Для \forall окрестности U_A \exists такая окрестность \mathring{U}_a , что $f(\mathring{U}_a \cap E) \subset U_A$
- 2. $\forall \varepsilon>0 \;\; \exists \delta>0 \;\; \forall x\in E,$ т.ч. $x\neq a$ и $|x-a|<\delta \implies |f(x)-A|<\varepsilon$ (определение по Коши)
- 3. Для \forall последовательности $\{x_n\}$ точек из E $(x_n \neq a)$, т.ч. $\lim_{n \to \infty} x_n = a \implies \lim_{n \to \infty} f(x_n) = A$ (определение по Гейне)

Замечания к определению предела функции:

- 1. Предел локальное свойство
- 2. Значение f в точке a не участвует в определении
- 3. Если в определении по Гейне \forall последовательность $f(x_n)$ имеет предел, то все эти пределы равны (иначе мы могли бы построить последовательность перемешиванием, и она не имела бы предела)
- 4. В определении по Гейне достаточно ограничиться mолько последовательностями, которые monomonho стремятся к a

Свойства пределов:

- 1. Предел единственный.
- 2. Локальная ограниченность: если $f: E \to \mathbb{R}$, a предельная точка E, $\lim_{x \to a} f(x) = A$ и $A \in \mathbb{R}$, то \exists такая окрестность U_a , что f(x) ограничена на $U_a \cap E$.
- 3. Стабилизация знака: если $f: E \to \mathbb{R}$, a предельная точка E, $\lim_{x \to a} f(x) = A$ и $A \in \mathbb{R} \setminus \{0\}$, то \exists такая окрестность U_a , что знаки f(x) при $x \in \mathring{U}_a \cap E$ и A совпадают.

2.1.3 Арифметические действия с пределами

Пределы двух функций в точке можно складывать, вычитать, перемножать и делить (если предел нижней функции не равен 0).

Теор. 2.1 (Предельный переход в неравенстве). Если

- 1. $f,g:E\to\mathbb{R}, \quad a$ предельная точка E
- 2. $f(x) \leq g(x)$ при всех $x \in E \setminus \{a\}$
- 3. $\lim_{x \to a} f(x) = A$, $\lim_{x \to a} g(x) = B$

Тогда $A \leqslant B$

Teop. 2.2 (Теорема о сжатой функции (аналог теоремы о двух милиционерах)). Если

- 1. $f, g, h: E \to \mathbb{R}, \quad a$ предельная точка E
- 2. $f(x) \leqslant g(x) \leqslant h(x)$ при всех $x \in E \setminus \{a\}$
- 3. $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = A$

Тогда $\lim_{x \to a} g(x) = A$

2.1.4 Односторонние пределы

Опр-е. 2.7 (Монотонная функция). $f: E \to \mathbb{R}$ монотонно возрастает (убывает), если для $\forall x \leqslant y$ выполнено $f(x) \leqslant f(y)$ (или $f(x) \geqslant f(y)$)

Теор. 2.3. Пусть $f: E \to \mathbb{R}, \quad a$ – предельная точка множества $E_1 = E \cap (-\infty, a)$. Тогда:

- Если f возрастает и ограничена сверху, то $\exists \lim_{x \to a^-} f(x)$
- Если f убывает и ограничена chusy, то $\exists \lim_{x \to a-} f(x)$

2.2 Непрерывность функции

Опр-е. 2.8. $f: E \to \mathbb{R}$ непрерывна в точке $a \in E$, если выполнено любое из равносильных условий:

- 1. Если a предельная точка, то $\lim_{x \to a} f(x) = f(a)$
- 2. $\forall \varepsilon > 0 \ \exists \delta > 0$ т.ч. $|x-a| < \delta \implies |f(x)-f(a)| < \varepsilon$
- 3. Для \forall окрестности $U_{f(a)}$ \exists такая окрестность U_a , что $f(U_a \cap E) \subset U_{f(a)}$
- 4. Для \forall послед. точек $\{x_n\}\subset E$ т.ч. $\lim_{n\to\infty}x_n=a\implies\lim_{n\to\infty}f(x_n)=f(a)$

Непрерывные в точке a функции можно складывать, вычитать, умножать и (если $g(a) \neq 0$) делить.

Следствия:

- 1. Многочлены $p(x) = \sum_{k=0}^{n} a_k x^k$ непрерывны на \mathbb{R} .
- 2. Отношения многочленов $\frac{p(x)}{q(x)}$ (рациональные функции) непрерывны во всех точках, в которых знаменатель не обращается в ноль.

Теор. 2.4 (Теорема о стабилизации знака). Если $f: E \to \mathbb{R}$ непрерывна в точке $a \in E$ и $f(a) \neq 0$, то найдётся такая окрестность U_a , что знак $f(x)$ совпадает с $f(a)$.						
Доказательство. Следствие утверждения про пределы						
Теор. 2.5 (Непрерывность композиции). Пусть $f: D \to \mathbb{R}, \ g: E \to \mathbb{R} \ f(D) \subset E$ и f непрерывна в точке $a \in D$, а g непрерывна в точке $f(a)$. Тогда $g \circ f$ непрерывна в точке a .						
Доказательство. Доказывается по определению предела по Гейне. Для пределов было бы неверно, т.к. композиция пределов не обязательно будет пределом композиции, напр. для $f(x)=x\sin\frac{1}{x}~(x\neq 0),~g(y)=\{1\Leftarrow y\neq 0,~0\Leftarrow y=0\}$						
Пример: $\sin x$ непрерывен на \mathbb{R} . Вспомогательное нер-во: если $0 < x < \frac{\pi}{2}$, то $\sin x < x < \operatorname{tg} x$.						
2.3 Теорема Вейерштрасса						
Teop. 2.6 (Вейерштрасса). Непрерывная на <i>отрезке</i> функция: ① ограничена; ② принимает наибольшее и наименьшее значения						
Доказательство. ① от противного: \square неограничена \Rightarrow можно найти $\{x_n\}$ т.ч. $f(x_n) \to +\infty$. Т.к. $\{x_n\}$ – ограничена \Rightarrow по т.Больцано-Вейерштрасса найдётся $x_{n_k} \to c$ ② от противного: \square $f(x) < M$. Рассмотреть $g(x) = \frac{1}{M - f(x)}$						
Расширение теоремы: если функция f непрерывна на $[a,+\infty]$, и \exists конечный предел $\lim_{x\to+\infty}f(x)$, то f ограничена на $[a,+\infty]$.						
2.4 Теорема Больцано-Коши						
Теор. 2.7 (Больцано-Коши). Пусть f непрерывна на $[a,b]$ и значения $f(a)$ и $f(b)$ разных знаков. Тогда $\exists c \in (a,b)$, для которой $f(c)=0$.						
Доказательство. Делением отрезка пополам						
След-е. Пусть f непрерывна на $[a,b]$ и $f(a) < y < f(b)$ или $f(b) < y < f(a)$. Тогда \exists такая точка $c \in (a,b)$, что $f(c) = y$.						
Доказательство. Рассмотреть $g(x) = f(x) - y$						
След-е. Если <i>непрерывная</i> на <i>отрезке</i> функция принимает какие-то два значения, то она принимает и все значения, лежащие между ними.						
След-е. Непрерывный образ отрезка – отрезок						
<i>Доказательство</i> . Теорема Вейерштрасса + теорема Больцано-Коши □						

Teop. 2.8. Непрерывный образ промежутка – промежуток (возможно, другого типа).

Доказательство. Показать, что значения функции
$$(m,M)\subset f\left(\langle a,b\rangle\right)\subset [m,M]$$
, где $m=\inf_{x\in\langle a,b\rangle}f(x),\,M=\sup_{x\in\langle a,b\rangle}f(x)$

- \square Функции f и g определены и непрерывны на [a,b], f(a)=g(a) и f(b)=g(b). Тогда найдется такая точка $c\in(a,b)$, что f(c)=g(c).
- extstyle op Функция f определена и непрерывна на [a,b] и $f(x)^2=1$ при всех $x\in [a,b]$. Тогда либо f(x)=1 при всех $x\in [a,b]$, либо f(x)=-1 при всех $x\in [a,b]$.
- extstyle op Функция f определена и непрерывна на [a,b] и уравнение f(x)=0 имеет на [a,b] конечное число корней: $x_1 < x_2 < x_3 < \dots < x_n$. Тогда на каждом из промежутков (a,x_1) , (x_1,x_2) , (x_2,x_3) , \dots , (x_n,b) функция f сохраняет постоянный знак.
- \square Функция f определена и непрерывна на множестве $E=[a,b]\cap \mathbb{Q}$, f(a)=-1 и f(b)=1. Тогда найдется такая точка $c\in E$, что f(c)=0.

2.4.1 Обратные функции

Опр-е. 2.9 (Обратная функция). Пусть $f: X \to Y$, причём

- 1. $f(x_1) \neq f(x_2)$ при $x_1 \neq x_2$ (инъекция)
- 2. Для $\forall y \in Y$ найдётся такой $x \in X$, что y = f(x) (сюръекция)

Тогда можно определить $g: Y \to X$ так, что

- g(f(x)) = x при всех $x \in X$
- f(q(y)) = y при всех $y \in Y$

Теор. 2.9. Пусть $f:\langle a,b\rangle\to\mathbb{R}$ непрерывна и строго монотонна, $m=\inf_{x\in\langle a,b\rangle}f(x),$ $M=\sup_{x\in\langle a,b\rangle}f(x).$ Тогда:

- 1. f обратима и f^{-1} : $\langle m, M \rangle \rightarrow \langle a, b \rangle$
- 2. f^{-1} строго монотонна
- 3. f^{-1} непрерывна на $\langle m, M \rangle$

Доказательство. 1. Показать, что f инъективна и сюръективна.

- 2. Монотонность f^{-1} от противного.
- 3. Непрерывность f^{-1} показать, что в \forall точке левый и правый пределы равны.

Обратные тригонометрические функции:

arcsin:
$$(\nearrow)$$
 $[-1,1] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
arccos: (\searrow) $[-1,1] \rightarrow [0,\pi]$
arctg: (\nearrow) $\mathbb{R} \rightarrow \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
arctg: (\searrow) $\mathbb{R} \rightarrow (0,\pi)$

Задача 2.1. Доказать, что многочлен нечётной степени всегда имеет корень

 $\ensuremath{\text{Доказатьство}}.$ Показать, что при $x\to\pm\infty$ он принимает значения как >0, так и <0

2.5 Замечательные пределы

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} (x+1)^{1/x} = e$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a \qquad (a > 0)$$

$$\lim_{x \to 0} \frac{(1+x)^p - 1}{x} = p \qquad (p \neq 0)$$

2.6 Эквивалентные функции

Опр-е. 2.10 $(f \sim g$ при $x \to a)$. Пусть $f,g \colon E \to \mathbb{R}, \ a$ — предельная точка E. Если \exists такая окрестность \mathring{U}_a и функция $\varphi \colon E \to \mathbb{R}, \$ что $f(x) = \varphi(x)g(x)$ при всех $x \in \mathring{U}_a \cap E$ и $\lim_{x \to a} \varphi(x) = 1,$ то $f \sim g$ при $x \to a$ (или $f \underset{x \to a}{\sim} g$).

Свойства эквивалентности (при $x \to a$):

- 1. $f \sim f$
- 2. если $f \sim g$, то $g \sim f$
- 3. если $f \sim q$ и $q \sim h$, то $f \sim h$
- 4. если $f_1 \sim g_1$ и $f_2 \sim g_2$, то $f_1 f_2 \sim g_1 g_2$
- 5. если $f_1 \sim g_1$, $f_2 \sim g_2$, причём $f_2(x) \neq 0$ и $g_2(x) \neq 0$ при $x \in \mathring{U}_a$, то $\frac{f_1}{f_2} \sim \frac{g_1}{g_2}$

Замечание: эквивалентности нельзя складывать, т.е. $f_1 \pm f_2 \not\sim g_1 \pm g_2$

Замечательные пределы $(x \to 0)$:

$$x \sim \sin x \sim \operatorname{tg} x \sim \arcsin x \sim \operatorname{arctg} x$$

$$x \sim \ln(1+x)$$

$$1 - \cos x \sim \frac{x^2}{2}$$

$$a^x - 1 \sim x \ln a \qquad (a > 0, a \neq 1)$$

$$(1+x)^p \sim px \qquad (p \neq 0)$$

2.6.1 о-малое

Опр-е. 2.11 (o(f)). Пусть $f,g:E\to\mathbb{R}, a$ – предельная точка E. Если \exists окрестность \mathring{U}_a и функция $\varphi\colon E\to\mathbb{R},$ такая что $f(x)=\varphi(x)g(x)$ при всех $x\in\mathring{U}_a\cap E$ и $\lim_{x\to a}\varphi(x)=0,$ то f=o(g) при $x\to a$ или $f\underset{x\to a}{=}o(g)$

Пример:
$$f = o(1)$$
 \iff $\lim_{x \to a} f(x) = 0$

След-е. Следующие утверждения равносильны:

1.
$$f \sim_{x \to a} g$$

2.
$$f = g + o(g)$$
 при $x \to a$

3.
$$f = q + o(f)$$
 при $x \to a$

Свойства:

1.
$$f \cdot o(g) = o(f \cdot g)$$

- 2. Если f ограничена в \mathring{U}_a , то o(fg) = o(g)
- 3. $o(g) \pm o(g) = o(g)$ (т.к. $s \partial e c b$ равенство означает принадлежность к классу функций)
- 4. Если $f \sim g$, то o(f) = o(g)

Замечательные пределы:

$$\sin x = x + o(x)$$

$$\cos x = 1 - \frac{x^2}{2} + o(x^2)$$

$$a^x = 1 + x \ln a + o(x)$$

$$(1+x)^p = 1 + px + o(x)$$

Если функция |f| непрерывна в точке a, то функция f также непрерывна в точке a.

Если $\lim_{x\to 1} f(x) = +\infty$ и $\lim_{x\to 1} g(x) = +\infty$, то $\lim_{x\to 1} \left(f(x) - g(x)\right) = 0$.

Если функция |f| непрерывна в точке a и f(a) = 0, то функция f также непрерывна в точке a.

Если функция f непрерывна на [-1,1], f(-1) = 4 и f(1) = 2, то для найдется такое g, что |g| < 1 и $f(g) = \pi$.

Если предел $\lim_{x\to 2} f(x)g(x)$ существует, то он равен f(2)g(2).

Функция f удовлетворяет условию $\lim_{x\to 0} f(x) = 3$. Тогда найдется такое $\delta > 0$, что если $0 < |x| < \delta$, то $f(x) \in (2,4)$.

Если оба предела $\lim_{x\to 3} f(x)$ и $\lim_{x\to 3} g(x)$ не существуют, то не существует и предел $\lim_{x\to 3} \left(f(x) + g(x)\right)$.

Если g многочлен, то $\lim_{x\to 5} p(x) = p(5)$.

3 Производные

3.1 Дифференцируемость и производная

Опр-е. 3.1 (Дифференцируемые функции). Пусть $f: \langle a, b \rangle \to \mathbb{R}$ и $x_0 \in \langle a, b \rangle$. f – дифференцируема в точке x_0 , если \exists такое $k \in \mathbb{R}$, что $f(x) = f(x_0) + k(x - x_0) + o(x - x_0)$ при $x \to x_0$.

Опр-е. 3.2. Производной функции f в точке x_0 называется

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Teop. 3.1 (Критерий дифференцируемости).

Пусть $f: \langle a, b \rangle \to \mathbb{R}$ и $x_0 \in \langle a, b \rangle$. Тогда след. утверждения эквивалентны:

- 1. f дифференцируема в точке x_0
- 2. f имеет в точке x_0 конечную производную
- 3. \exists непрерывная в x_0 функция $\varphi \colon \langle a,b \rangle \to \mathbb{R}$ такая, что $f(x) f(x_0) = \varphi(x)(x x_0)$

И если они справедливы, то $k = f'(x_0) = \varphi(x_0)$

Бесконечные производные: $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \pm \infty$

Односторонние производные: $f'_{\pm}(x_0) = \lim_{x \to x_0 \pm} \frac{f(x) - f(x_0)}{x - x_0}$

Теор. 3.2 (Производная композиции). Пусть

1.
$$f: \langle a, b \rangle \to \langle c, d \rangle$$

2.
$$g: \langle c, d \rangle \to \mathbb{R}$$

3. f – дифференцируема в точке $x_0 \in \langle a, b \rangle$ g – дифференцируема в точке $f(x_0)$

Тогда $g \circ f$ дифференцируема в x_0 и $(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$

Теор. 3.3 (Дифференцирование обратной функции). Пусть $f: \langle a, b \rangle \to \mathbb{R}$ строго монотонна и непрерывна, f – дифференцируема в точке $x_0 \in \langle a, b \rangle$ и $f'(x_0) \neq 0$. Тогда обратная функция f^{-1} дифф. в точке $f(x_0)$ и $(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}$

3.2 Теоремы о среднем

Теор. 3.4 (Теорема Ферма). Пусть $f: \langle a, b \rangle \to \mathbb{R}$ дифференцируема в $x_0 \in (a, b)$. Если $f(x_0) = \max_{x \in \langle a, b \rangle} f(x)$ или $f(x_0) = \min_{x \in \langle a, b \rangle} f(x)$, то $f'(x_0) = 0$.

Теор. 3.5 (Теорема Ролля). Пусть $f:[a,b]\to\mathbb{R}$ непрерывна на [a,b] и дифф. на (a,b). Если f(a)=f(b), то \exists такая точка $c\in(a,b)$, что f'(c)=0.

Теор. 3.6 (Теорема Лагранжа). Пусть $f:[a,b]\to\mathbb{R}$ непрерывна на [a,b] и дифф. на (a,b). Тогда \exists такая точка $c\in(a,b)$, что f(b)-f(a)=f'(c)(b-a).

Teop. 3.7 (Теорема Коши). ... «*TODO*»...

- 3.3 Производная и монотонность
- 3.4 Правило Лопиталя
- 3.5 Формула Тейлора
- 3.6 Экстремумы функций

4 Интегралы

4.1 Первообразная и неопределённый интеграл « \mathcal{TODO} »...

- 4.2 Действия с неопределёнными интегралами
- 4.3 Площади и определённый интеграл
- 4.4 Теорема Барроу и формула Ньютона-Лейбница
- 4.5 Интегральные суммы
- 4.6 Связь между суммами и интегралами

