Investigation: The Laws of Sines and Cosines Algebra 2

We have been looking at how we can use trigonometric ratios (sin, cos, tan) to find missing parts of *right triangles*. In this investigation you will explore the two rules that will help us to find missing parts of *any* triangle, even if it is not a right triangle.

- I. Set up the sketch.
 - A. Open GeoGebra
 - B. Hide the Axes and hide the "Algebra View" (both of these are under the View menu).
 - C. In the Options menu, choose Labeling | All New Objects
 - D. Use the point and segment tools to create a triangle.
 - E. Important: rename the parts of your triangle so that
 - Side a is opposite angle A.
 - Side b is opposite angle B.
 - Side *c* is opposite angle *C*. (*See diagram at right*.)

II. Take measurements

A. Use the measure tool to measure all three angles.

Make sure the measurements are *inside* the triangle.

- B. Click the small arrow on the measure tool and select Distance or Length.
- C. Measure all three sides of the triangle.
- D. On each side of the triangle, do this:
 - i. Right-click the side of the triangle and choose Object Properties...
 - ii. Where it says, Show Label choose "Name & Value."
- E. Your triangle should now look something like this:

III. Explore

- A. Drag the three vertices of the triangle to create a random triangle.
- B. Fill in the table below for the values you see on your screen.
- C. Repeat this with 4 different triangles.

IV. Questions

A. Explain how this table verifies that the Law of Sines works.

B. Explain how this table verifies the Law of Cosines.

	Triangle 1	Triangle 2	Triangle 3	Triangle 4
a				
ь				
С				
A				
В				
С				
sin A				
sin B				
sin C				
$\frac{a}{\sin A}$				
$\frac{b}{\sin B}$				
$\frac{c}{\sin C}$				
a^2+b^2				
$2ab \cdot \cos(C)$				
$a^2 + b^2 - 2ab \cdot \cos(C)$				
c^2				