МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа аэрокосмических технологий

Лабораторная работа №3.4.2 Закон Кюри-Вейсса

> Работу выполнил Лохматов Арсений Игоревич Козярский Алексей Сергеевич Дудин Иван Юрьевич Б03-303

1 Теоретическая часть

Цель работы: проверить экспериментально закон Кюри-Вейсса.

Оборудование: катушка самоиндукции с образцом из гадолиния, термостат, частотометр, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

1.1 Экспериментальная установка

Схема установки Для проверки закона Кюри-Вейсса изображена на рисунке 1. Исследуемый ферромагнитный образец (гадолий) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC-автогенератора. Автогенератор собран на полевом транзисторе и смонтирован в виде отдельного блока.

Рис. 1: Схема установки

Гадолиний — хороший проводник электрического тока, а рабочая частота генератора достаточно велика, порядка ~ 50 к Γ ц, поэтому для уменьшения вихревых токов образец изготовлен из мелких кусочков. Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшения электрического контакта между отдельными кусочками образца. Также оно улучшает тепловой контакт между образцом и рабочей жидкостью 3 в термостате. Ртутный термометр 4 используется для приближённой оценки температуры.

При изменении температуры меняется магнитная восприимчивость образца χ , а следовательно, самоиндукция катушки и период колебаний τ автогенератора. Для измерения периода используется частотометр.

Закон Кюри-Вейсса справедлив, если выполнено соотношение

$$\frac{1}{\chi} \sim (T - \theta_p) \sim \frac{1}{(\tau^2 - \tau_o^2)},$$

где τ_o – период колебаний в отсутствии образца.

Температура исследуемого образца всегда несколько отличается от температура дистиллированной воды в сосуде. После того как вода достигла заданной температуры, идёт медленный процесс стабилизации температур образца и воды. Разность их температур контролируется с помощью медно-константановой термопары 6 и цифрового вольтметра. Один из спаев термопары находится в тепловом контакте с образцом, а другой погружён в воду. Концы термопары

подлючены к цифровому вольтметру. Рекомендуется измерять период колебаний автогенератора в тот момент, когда указанная разность температур становится $\leq 0.5~C^{\circ}$. Чувствительность термопары $k=24~\Gamma$ рад/мВ.

2 Практическая часть

В работе предлагается измерить зависимость периода колебаний автогенератора от температуры сердечника катушки и по результатам измерений определить парамагнитную точку Кюри гадолиния.

2.1 Подготовка приборов к работе

- 1. Убедились, что термостат охлаждён и готов к работе. Включем в сеть автогенератор. Включим частотометр, выберем чувствительность входного канала 1/1, установим режим измерения периода. Включим вольтметр для измерения напряжения постоянного тока.
- 2. Оценим допустимую ЭДС термопары, если длпустимая разница температур образца и рабочей жидкости $\Delta T=0.5C^\circ$, а постоянная термопары $k=24\frac{\rm rpag}{\rm MB}$.

В результате получаем, что измерения проводим, когда вольтметр показывает напряжение

$$U \le \frac{0.5}{24} = 0.02 \text{ MB}.$$

2.2 Измерения

1. Исследуем периода колебаний LC-генератора от температуры образца, отмечая период колебаний τ по частотометру, а температуру T - по показанию дисплея термостата.

Проведём измерения в диапазоне от 14 C° до 40 C° через 2 C° . Результаты занесём в таблицу 1.

	$\tau, \cdot 10^{-6} \text{ c}$	T, C°		τ , $\cdot 10^{-6}$ c	T, C°
1	7.931	14.09	8	7.09	28.07
2	7.87	16.10	9	7.063	30.05
3	7.768	18.08	10	7.044	32.05
4	7.611	20.08	11	7.027	34.08
5	7.438	22.05	12	7.018	36.06
6	7.21	24.08	13	7.01	38.03
7	7.142	26.04	14	7.003	40.06

Таблица 1: Результаты измерений

Запишем период колебаний τ_o без образца, указанный на установке.

$$\tau_o = 6.9092 \cdot 10^{-6} \text{ c.}$$

2. Закончив измерения, отключили все приборы.

2.3 Обработка результатов

- 1. Поскольку $\Delta T = 0.5 C^{\circ} \ll T$, то в качестве температуры образца будем считать равной температуре термостата.
- 2. Построим график $(\tau^2 \tau_o^2) = f(T)$, покажем на нём точку Кюри.