Search

OMPUTATION MEETS KNOWLEDGE

Services & Resources / Wolfram Forums / MathGroup Archive

MathGroup Archive 2005

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: primitive polynomials

To: mathgroup at smc.vnet.net

Out[14] = True

Out[15] = False

In[15]:= isPrimitive[x,poly,p,deg]

In[16]:= isPrimitive[x+1,poly,p,deg]

Subject: [mg55902] Re: [mg55866] primitive polynomials

From: Daniel Lichtblau <danl at wolfram.com>

```
Date: Sat, 9 Apr 2005 03:55:59 -0400 (EDT)
  References: <200504080536.BAA25150@smc.vnet.net>
  Sender: owner-wri-mathgroup at wolfram.com
xxxxyz at abv.bg wrote:
> Hi,
> How can I check if a given polynomial is primitive in GF(2)?
> Thanks.
Here is code adopted from
http://forums.wolfram.com/mathgroup/archive/1998/Nov/msg00194.html
We assume at the start that the polynomial is irreducible modulo the
prime in question. That can be tested as below.
isIrreducible[x_, poly_, p_] := Module[
   \label{lem:continuous} \mbox{If $[!PrimeQ[p] || !PolynomialQ[poly,x] || Variables[poly]=!=\{x\}, $$}
     Return[False]];
   fax = FactorList[polv.Modulus->p]:
   Length[fax]==2 && fax[[2,2]]==1
For primitive testing we need to know if powers of \boldsymbol{x} are equivalent to 1
modulo certain factors of p^degree-1, where degree is the degree of the
polynomial in question.
<<Algebra
isPrimitive[x\_, poly\_, p\_, deg\_] := Catch[Throw[Module[ \\ \{fax=(p^deg-1)/Map[First,FactorInteger[p^deg-1]]\}, \\
   For [j=1, j \leftarrow Length[fax], j++,
     If [PolynomialPowerMod[x,fax[[j]],{poly,p}]===1, Throw[False]];
     ];
   True
   111
Here is an example from the note at that URL. We work modulo 293. For
your situation you would set the 'p' parameter to 2.
p = 293;
deg = 15;
poly = 38 + 117*x + 244*x^2 + 234*x^3 + 212*x^4 + 142*x^5 + 103*x^6 +
   60*x^7 + 203*x^8 + 124*x^9 + 183*x^10 + 96*x^11 + 225*x^12 +
   123*x^13 + 251*x^14 + x^15;
First we'll check that it is irreducible (it is, because as per that
note it was manufactured in such a way as to be irreducible).
In[14]:= isIrreducible[x,poly,p]
```

So this is not a primitive polynomial. Note that we can construct such a polynomial by testing, instead of x, terms such as x+1, x+2,...

Products & Services

Technologies

Solutions

Learning & Support

Company

Search

poly2 = poly /. $x\rightarrow x-2$;

p= -y ..= -.. . . -p -e -e - - y .. - - .

In[19]:= isPrimitive[x,poly2,p,deg]
Out[19]= True

In addition to the above URL there is information on finite field $\hbox{polynomial manipulation at}\\$

http://forums.wolfram.com/mathgroup/archive/2003/Mar/msg00494.html

Daniel Lichtblau Wolfram Research

References:

primitive polynomials

From: "xxxxyz@abv.bg" <xxxxyz@abv.bg>

• Prev by Date: Re: Having trouble with substitution tile at higher iteration levels--> takes forever!

• Next by Date: Re: Replacement gyrations Previous by thread: **primitive polynomials** Next by thread: Sorting complex points

Products	Services	Learning	Public Resources	Company
Wolfram One	Technical Consulting	Wolfram Language	Wolfram Alpha	Events
Mathematica	Corporate Consulting	Documentation	Demonstrations Project	About Wolfram
Wolfram Alpha Notebook Edition		Wolfram Language Introductory Book	Resource System	Careers
	For Customers	Get Started with Wolfram	Connected Devices Project	Contact
Wolfram Alpha Pro	Online Store	Fast Introduction for	Wolfram Data Drop	
Mobile Apps Finance Platform	Product Registration	Programmers	Wolfram + Raspberry Pi	Connect
System Modeler	Product Downloads	Fast Introduction for Math	Wolfram Science	Wolfram Community
Wolfram Player	Service Plans Benefits	Students Webinars & Training	Computer-Based Math	Wolfram Blog
Wolfram Engine	User Portal	Wolfram U	MathWorld	Newsletter
WolframScript	Your Account	Summer Programs	Hackathons Computational Thinking	
Wolfram Workbench		Videos	VIEW ALL	
Volume & Site Licensing	Support	Books	VIEW //EE	
Enterprise Private Cloud	Support FAQ			
Application Server	Customer Service			
VIEW ALL	Contact Support			