Cálculo II - Agrupamento 4

2020/21

Folha 4: Equações Diferenciais Ordinárias (EDO)

- 1. Verifique se as seguintes funções são solução (em \mathbb{R}) das equações diferenciais dadas:
 - (a) $y = \sin x 1 + e^{-\sin x}$ $\frac{dy}{dx} + y \cos x = \frac{1}{2} \sin(2x);$
 - (b) $z = \cos x$ z'' + z = 0;
 - (c) $y = \cos^2 x$ y'' + y = 0;
 - (d) $y = Cx C^2$ $(C \in \mathbb{R})$ $(y')^2 xy' + y = 0.$
- 2. Indique uma equação diferencial para a qual a família de curvas indicada constitui um integral geral.
 - (a) y = Cx, $C \in \mathbb{R}$ (retas do plano não verticais que passam pela origem);
 - (b) y = Ax + B, $A, B \in \mathbb{R}$ (retas do plano não verticais);
 - (c) $y = e^{Cx}$, $C \in \mathbb{R}$.
- 3. Considere a família de curvas sinusoidais definidas por

$$y = A \operatorname{sen}(x + B)$$
 com $A, B \in \mathbb{R}$.

Indique uma EDO de terceira ordem para a qual estas funções constituam uma família de soluções

- 4. (a) Determine a solução geral da equação diferencial $y'' \sin x = 0$.
 - (b) Mostre que a função definida por $\varphi(x) = 2x \operatorname{sen} x$ é uma solução particular da EDO da alínea anterior, que satisfaz as condições $\varphi(0) = 0$ e $\varphi'(0) = 1$.
- 5. Determine a solução geral das seguintes EDOs:
 - (a) $y' \frac{1}{(1+x^2) \arctan x} = 0;$
 - (b) $y' \sqrt{1 x^2} = 0;$
 - (c) $y' \frac{x^4 + x^2 + 1}{x^2 + 1} = 0.$
- 6. Determine um integral geral para cada uma das seguintes EDOs de variáveis separáveis:
 - (a) x + yy' = 0;
 - (b) xy' y = 0;
 - (c) $(t^2 xt^2)\frac{dx}{dt} + x^2 = -tx^2$;
 - (d) $(x^2 1)y' + 2xy^2 = 0$.

- 7. Resolva os seguintes problemas de Cauchy:
 - (a) $xy' + y = y^2$, y(1) = 1/2;
 - (b) $xy + x + y'\sqrt{4 + x^2} = 0$, y(0) = 1;
 - (c) $(1+x^3)y' = x^2y$, y(1) = 2.
- 8. Verifique que as seguintes equações diferenciais são homogéneas e determine um seu integral geral.
 - (a) $(x^2 + y^2)y' = xy$;
 - (b) $y'(1 \ln \frac{y}{x}) = \frac{y}{x}, \quad x > 0.$
- 9. Considere a equação diferencial $y' = \frac{y}{x} (1 + \ln y \ln x), \quad x > 0.$
 - (a) Verifique que se trata de uma equação diferencial homogénea.
 - (b) Determine um integral geral desta EDO.
- 10. Resolva as seguintes equações diferenciais:
 - (a) $\frac{dy}{dx} = \frac{x+y-3}{x-y-1}$;
 - (b) $y' = \frac{y-x}{y-x+2}$.

(Sugestão: Efetue a mudança de variável dada por z = y - x.)

- 11. Resolva as seguintes equações diferenciais exatas:
 - (a) $(2x + \sin y) dx + x \cos y dy = 0$;
 - (b) $(2xy x e^y) dx = (xe^y + y x^2) dy$;
 - (c) $\left(\frac{y}{x} + 6x\right) dx + (\ln x 2) dy = 0$.
- 12. Resolva a equação $e^x \sec y \operatorname{tg} y + y' = 0$ sabendo que ela admite um fator integrante da forma $\mu(x,y) = e^{\beta x} \cos y$.
- 13. Resolva as seguintes equações diferenciais, usando em cada caso um fator integrante apropriado:
 - (a) $y dx + (y^2 x) dy = 0$;
 - (b) $(2y x^3) dx + x dy = 0$.
- 14. Resolva as seguintes equações diferenciais lineares usando fatores integrantes:
 - (a) $y' + 2y = \cos x;$
 - (b) $x^3y' y 1 = 0$;
 - (c) $\frac{1}{x}y' \frac{1}{x^2 + 1}y = \frac{\sqrt{x^2 + 1}}{x}, \quad x \neq 0.$
- 15. Considere a EDO $x^2y' + 2xy = 1$ em $]0, +\infty[$. Mostre que qualquer solução desta EDO tende para zero quando $x \to +\infty$.
- 16. Resolva as seguintes equações diferenciais de Bernoulli:
 - (a) $xy' + y = y^2 \ln x$, x > 0;
 - (b) $y' \frac{y}{2x} = 5x^2y^5$, $x \neq 0$.

- 17. Usando o método da variação das constantes, determine a solução geral das seguintes EDOs lineares:
 - (a) $y' \frac{2y}{x} = x^3$;
 - (b) $y' \operatorname{sen} x + y \cos x = \operatorname{sen}^2 x;$
 - (c) $y' \frac{x}{x^2 + 1}y = \sqrt{x^2 + 1}$, (rever EDO do Ex. 14(c)).
- 18. Encontre as trajetórias ortogonais de cada uma das famílias de curvas indicadas:
 - (a) $x^2 + 2y^2 = C$ (C > 0);
 - (b) $2x + y^2 = C$ $(C \in \mathbb{R});$
 - (c) xy = C $(C \neq 0)$.
- 19. Determine a solução geral das seguintes EDOs lineares:
 - (a) $y' + y = \operatorname{sen} x$;
 - (b) $y'' y + 2\cos x = 0$;
 - (c) y'' + y' = 2y + 3 6x;
 - (d) $y'' 4y' + 4y = x e^{2x}$;
 - (e) $y'' + y' = e^{-x}$;
 - (f) y'' + 4y = tg(2x);
 - (g) $y''' + y' = \sin x$;
 - (h) $y'' + 9y = \sin x e^{-x}$.
- 20. Considere o problema de valores iniciais

$$y'' + 4y' + 4y = \cos(2x)$$
, $y(\pi) = 0$, $y'(\pi) = 1$.

Justifique que este problema possui uma única solução (em \mathbb{R}) e determine-a.

- 21. Resolva o seguinte problema de valor inicial $\begin{cases} y' + y \cos x = \cos x \\ y(0) = 2 \end{cases}$
- 22. Determine a solução geral das seguintes equações diferenciais:
 - (a) $(1+x^2)y' + 4xy = 0$;
 - (b) $y'' + y + 2 \operatorname{sen} x = 0$;
 - (c) $(1+x^2)y' y = 0$;
 - (d) $y''' + 4y' = \cos x$;
 - (e) $y' 3x^2y = x^2$;
 - (f) $y''' 3y' + 2y = 12e^x$.
- 23. Resolva a EDO $xy'' y' = 3x^2$ (Sugestão: Efetue a mudança de variável z = y').
- 24. Considere a EDO linear homogénea (de coeficientes não constantes)

$$(1-x)y'' + xy' - y = 0, \quad x \in]1, \infty[.$$

- (a) Mostre que $\{x, e^x\}$ forma um sistema fundamental de soluções da equação.
- (b) Obtenha a solução geral da EDO.
- (c) Resolva agora a EDO

$$(1-x)y'' + xy' - y = x^2 - 2x + 2, \quad x \in]1, \infty[,$$

começando por verificar que ela admite uma solução do tipo $y = \beta x^2$ para certo $\beta \in \mathbb{R}$.