11th International Symposium on Machinery and Mechatronics for Agriculture and Biosystems Engineering (ISMAB 2024) 27-29 Sep. 2024, Bali, Indonesia

An Efficient AIoT Framework for Image-Based Behavior Monitoring in Dairy Calves

Po-Lin Chen, Rui-Yuan Liao, Jih-Tay Hsu, Ta-Te Lin

Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan

Introduction

Introduction | Importance of behavior monitoring in dairy calves

Health Issues

- Neonatal calf diarrhea
 - Pneumonia

Detection

- Less active
- Feeding behavior

> Treatment

- Electrolytes, water, antibiotics
 - Diet adjustments

Introduction Automatic behavior monitoring systems

Wearable Sensors

- Precise measurements
- Limited used for newborn dairy calves

Image-based Monitoring

- Non-contact, Low-cost
- Suitable for large-scale monitoring

Introduction | Objectives

- To develop an efficient AIoT framework for image-based behavior monitoring for dairy calves
- 1. An imaging system for continuous monitoring and edge computing
- 2. Deep learning models for video-based behavior recognition
- 3. Post-training model optimization for computation-efficient edge computing
- 4. Long-term experiments to demonstrate our system's effectiveness in real-world farming environments

Materials and Methods

Materials & Methods | System Overview

Materials & Methods | Dairy Calf Behavioral Video Dataset

Nonactive Lying (647)

Active Lying (579)

Nonactive Standing (450)

Active Standing (794)

Drinking (565)

Feeding (653)

Ruminating (709)

Duration	3.2 sec		
Frames	32		
FPS	10		
Resolution	224 x 224		
Channels	RGB		
Location	NTU's Experimental Dairy Farm		

Materials & Methods | Dairy Calf Behavior Recognition Model

Materials & Methods | Performance Analysis

- Predictive Performance
 - Average F1-score

- Hardware Performance
 - Latency
 - Peak Memory Usage

Raspberry Pi 4 Model B

- Processor: Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.8GHz
- RAM: 4GB LPDDR4-3200 SDRAM

Materials & Methods | Post-Training Model Optimization

Post-Training Quantization for reduced computational demand and enhanced inference speed on the edge devices

Quantization	Input	Weights	Output	Size Description		
No Quantization (Float32)	float32	float32	float32	1	Without quantization	
Post-training Float16 Quantization	float32	float16	float32	1/2	Weights are stored in float16	
Post-training Int8 Quantization (float fallback)	float32	int8	float32	1/4	Calculated in int8, but falls back to float if needed	

Materials & Methods | Threshold-Based Calibration

 $\hat{B} = egin{cases} rg \max_{i \in \{1,2,\ldots,7\}} P(B_i), & ext{if } P(B_i) > T_i ext{ for some } i \ ext{null}, & ext{if } P(B_i) \leq T_i ext{ for all } i \end{cases}$

Materials & Methods | Long-term Behavior Monitoring

camera

embedded system

- Location: NTU's Experimental Dairy Farm

- Embedded System: Raspberry Pi- Subject: A newborn Holstein calf

- **Duration:** 18 days

Results and Discussions

Results & Discussions | Behavior Recognition Model Performance

• **Model:** MoViNet-A0, MoViNet-A1, MoViNet-A2

• Quantization: Float32 (No Quantization), Float16 Quantization, Int8 Quantization

Model	Quantization	Latency (ms)	Peak Memory Usage (MB)	Average F ₁ -score
MoViNet-A0 Flo	Float32*	49	49	0.916
	Float16	47	58	0.916
	Int8	35	44	0.312
MoViNet-A1 Flo	Float32*	118	64	0.918
	Float16	98	86	0.918
	Int8	49	50	0.579
MoViNet-A2 F	Float32*	170	97	0.929
	Float16	154	120	0.929
	Int8	78	69	0.764

Results & Discussions | Behavior Recognition Model Performance

- Avg F1-score
 - Float16, Float32
- Latency
 - No more than 100ms (at 10FPS)
- Peak Memory Usage
 - All applicable on Raspberry Pi

Best Choice:

MoViNet-A0 with Float16 Quantization

(F1: **0.916**, Latency: **47ms**, Memory: **49MB**)

- Non-active Lying
- Active Lying
- Non-active Standing
- Active Standing
- Feeding
- Drinking
- Ruminating

- Non-active Lying
- Active Lying
- · Non-active Standing
- · Active Standing
- Feeding
- Drinking
- · Ruminating

- Non-active Lying
- Active Lying
- · Non-active Standing
- Active Standing
- Feeding
- Drinking
- Ruminating

Avg. MAPE after calibration: 10.4%

MoViNet-A0: 11.0%

Avg. RMSE after calibration: 13.1 m/d

MoViNet-A0: 10.8 m/d

Conclusion

Conclusion |

Dairy Calf Behavioral Video Dataset

■ **4,000**+ video clips were collected for training and validation, covering **7** distinct behaviors: Nonactive Lying, Active Lying, Nonactive Standing, Active Standing, Feeding, Drinking, and Ruminating.

Dairy Calf Behavior Recognition Model

- The predictive and hardware performance of various **MoViNet Architectures** (MoViNet-Stream-A0, A1, A2) with different **Post-training Quantization** (Float32, Float16, Int8) were compared.
- The MoViNet-Stream-A0 model with Float16 Quantization, with its low latency of 47ms on 64-bit Raspberry Pi 4 Model B and high F1-score of 0.916, was identified as the most suitable for dairy calf behavior monitoring.

Conclusion |

Long-term Dairy Calf Behavior Monitoring

- An **18-day** behavior monitoring experiment on a Holstein calf was conducted to demonstrate our system's effectiveness at the National Taiwan University's Experimental Dairy Farm.
- After Threshold-based Calibration, the MoViNet-Stream-A0 model with Float16 Quantization model achieved a 11.0% MAPE and a 10.8 min/day RSME.

Thank you for your time

