Fall Real Analysis Willie Xie Fall 2021

CONTENTS CONTENTS

Contents

1 Day 1: The Real Number System 3

1 The Real Number System

 $\mathbb{N} = 1, 2, 3, \dots$

Z = -2, -1, 0, 1, 2

 $\mathbb{Q} = p/q$ where Q is countable and fails to have the least upper bound property

Ex 1.1

 $\alpha \in \mathbb{R}$ where $\alpha^2 = 2$

Let $\alpha = p/q$ where p and q cannot both be even

 $LetsetA = \{x \in \mathbb{Q} \ for x^2 < 2where Aisnonempty and 2 is an upper bound for A \}$

A has no least upper bound in R A has a least upper bound in Q

 \mathbb{R} is the unique ordered field with the least upper bound property. Theorem: \mathbb{R} exists and unique.

Def 1.5

Let S be a set. An order on S is a relation; satisfying 2 axioms:

- Trichotomy: For all $x,y \in S$:
 - \bullet x < y
 - $\bullet x = y$
 - $\bullet x > y$

Transitivity: If x < y and y < z, then x < z.

Def 1.5

An ordered set is a set with an order.

Def 1.7

Let S be an ordered set. Let $E \subset S$.

Anupperbound of Eisa $\beta \in S$ where $x = \beta forall x \in E$.

 $If such a \beta exists, then Eisbounded from above.$

Def 1.8

Let S be an ordered set. Let $E \subset Sbebounded from above$.

 $here exists an \alpha where:$

 $\alpha is an upper bound for Eifx \alpha, then x is not an upper bound for E$ Then $\alpha = sup(E)$. *** Lower Bound in textbook known as an inf(E) *** Example 1.9

Let $S = (1, 2) \cup [3, 4) \cup (5, 6)$ with an order < from \mathbb{R} .

For subsets E of S

- E = (1,2) is bound above and $\sup(E) = 3$
- E = (5,6) is not bounded above so $\sup(E) = DNE$
- E = [3,4) is bounded below $\inf(E) = 3$ and $\sup(E) = DNE$

Observations

If sup E exists, it may or may not exists at E.

If $\alpha exists$, then $\alpha is unique. If <math>\gamma \neq \alpha$, then $\gamma < \alpha$ or $\gamma > \alpha$

Def 1.10

A is an ordered set of S.

A has a least upper bound property if:

• For every nonempty subset $E \subset Sthatisbounded from above, sup(E) exists in S.$

Example 1.1

 $\mathbb Q$ doesn't have a least upper bound property for example $\sqrt(2)$.

Proof is at textbook.

$$z=y-\frac{y^2-2}{y+2}thentakez^2-2=2\frac{2(y^2-2)}{(y+2)^2}$$
 Then compare if $y^2<2$ and $y^2>2$.

• $y^2 < 2isnotanupperboundfor Ey^2 > 2isanupperboundfor E, but not a sup(E)$. ThusE has no least upper bound in Q. However, since E R then $\sqrt{(2)isinE}$.

REFERENCES REFERENCES

References