

LTSpice e i circuiti EDM

Salvatore Mattia Cutore Francesco Maria Esposito

Indice

- Suono identificativo di un circuito
- Filtro passa alto
- Filtro passa basso
- LTSpice
- Analisi distorsioni

1 – SUONO DEL CIRCUITO

- abbiamo deciso di simulare un circuito che presenta i famosi tre componenti passivi: R, L e C. Quando la corrente passa per essi si modificano tensione e corrente
- Andando ad analizzare le tensioni in si possono rivelare variazione dell'onda in uscita che può essere trasformata in un'onda sonora

2 – FILTRI

- Un filtro è un circuito elettrico selettivo nei confronti della frequenza dei segnali applicati
- Banda Passante, banda di frequenze in cui il rapporto tra la tensione in uscita e quella in entrata è quasi costante (guadagno tensione)
- Frequenza di taglio, ossia la frequenza che separa la Banda Passante (o Banda Chiara) dalla Banda Attenuata (o Banda Scura) Esistono varie tipologie di filtri e in questo progetto ne analizzeremo esclusivamente due:
 - Filtro passivo passa-basso
 - Filtro passivo passa-alto

3 – FILTRO PASSA ALTO

Fa passare in uscita solo le frequenze più alte della frequenza di taglio F_t

Alte frequenze —— cortocircuito —— uscita.

basse frequenze → circuito aperto → non riescono a passare

4 – FILTRO PASSA BASSO

Fa passare in uscita solo le frequenze più basse della frequenza di taglio F_t

basse frequenze —— cortocircuito —— uscita.

riescono a passare

5 – FREQUENZA DI TAGLIO

La frequenza di taglio si calcola come:

$$F_t = \frac{1}{2\pi RC}$$

 Nel caso in cui si voglia utilizzare un induttore

$$F_t = \frac{R}{2\pi L}$$

6 – LTSPICE

- LTSpice è il simulatore circuitale più usato perché non ha restrizioni di sorta quali: limite di nodi, componenti o sotto circuiti.
- Ha una un'interfaccia dove è possibile inserire una riproduzione digitale dei componenti elettronici in cui tutti i parametri possono essere variati.
- Una volta lanciata la simulazione il puntatore si trasformerà in una sonda che ci mostrerà nell'interfaccia grafica la corrente o la tensione relativa

7 – ATTAK ON TITAN P.A.

il segnale in ingresso sia molto simile a quello in entrata; ciò ci permette di asserire che il file audio originale presenti per lo più frequenze al di sopra la frequenza di taglio.

8 – ATTAK ON TITAN P.B.

Il grafico confermare che le frequenze del file originale si aggirano per lo più a valori maggiori rispetto a suddetta frequenza di taglio; vediamo infatti che il segnale in uscita è molto diverso a quello in entrata

9 – BAD GUY P.A.

a canzone presenta per lo più basse frequenze, quindi quando andremo ad applicare un filtro passa alto vedremo una differenza abbastanza evidente tra il segnale in ingresso e quello in uscita

10 – BAD GUY P.B.

al contrario della traccia precedente, in questo caso il segnale in uscita è molto più simile al segnale in ingresso dopo essere passato da un filtro passa basso rispetto che ad un passa alto.

Conclusioni

- Dopo tre anni di ingegneria abbiamo capito l'importanza dei filtri, anche perché grazie a questo progetto salvatore ha deciso di fare un controllo dall'otorino scoprendo che non sente bene da un orecchio!
- Vi invitiamo a ragionare su quante cose nella vita quotidiana contengano i filtri.

Francesco Esposito Salvatore Cutore

GRAZIE PER L'ATTENZIONE