```
22222
          ASSIGNMENT 07
                          22222
%%%%%%%% PROBLEM 01 %%%%%%%%%%%%
fprintf('\nOutput for problem 01:\n')
clc
k=48;s0=50;r=.12;s1=60;s2=42;t=.5;
u=s1/s0;d=s2/s0;
Cu=max(s1-k,0); Cd=max(s2-k,0);
delta=(Cu-Cd)/(s0*(u-d));
C_0=delta*s0*(1-u*exp(-r*t))+Cu*(exp(-r*t))
p=(exp(r*t)-d)/(u-d);
C_1 = \exp(-r*t)*(p*Cu+(1-p)*Cd)
if(C_0-C_1<10^-12)</pre>
  fprintf('\t\t\same value\n\n\n')
end
clear
%%%%%%%% PROBLEM 02 %%%%%%%%%%%%
fprintf('\nOutput for problem 02:\n')
s0=30;k=30;u=1+.08;d=1-.1;r=.05;
s1=s0*u;s2=s0*d;s11=s0*u*u;s12=s0*u*d;s22=s0*d*d;
T=4/12;L=2;t=T/L;
Cuu = (max(30-s11,0))^2;
Cud=(\max(30-s12,0))^2;
Cdd = (max(30-s22,0))^2;
p=(exp(r*t)-d)/(u-d);
Cu=max(exp(-r*t)*(p*Cuu+(1-p)*Cud),(max(30-s1,0))^2);
Cd=max(exp(-r*t)*(p*Cud+(1-p)*Cdd),(max(30-s2,0))^2);
C01=exp(-r*t)*(p*Cu+(1-p)*Cd);
```

```
fprintf('\n\nAmericano: %f\n\n',C01);
Cu = \exp(-r*t)*(p*Cuu+(1-p)*Cud);
Cd = exp(-r*t)*(p*Cud+(1-p)*Cdd);
C02=exp(-r*t)*(p*Cu+(1-p)*Cd);
fprintf('Europa: %f\n\n',C02);
if(abs(C01-C02)<10^-8)
   disp('No need to exercise early')
end
응응응응응응응응응응
fprintf('\nN-Step Binomial Tree\n\n')
c=zeros(1000,1000);
p=(exp(r*t)-d)/(u-d);
for j=L+1:-1:1
   for i=1:j
      if(j==L+1)
         c(i,j)=(\max(30-s0*u^{(L-i+1)*d^{(i-1)},0)})^2;
      else
         c(i,j)=exp(-r*t)*(p*c(i,j+1)+(1-p)*c(i+1,j+1));
      end
   end
end
for i1=1:i-1
      fprintf('
                      ')
   end
  for j=i:L+1
      fprintf(" %10.6f",c(i,j))
   end
   disp(' ')
end
%%%%%%%% PROBLEM 03 %%%%%%%%%%%%
fprintf('\nOutput for problem 03:\n')
clear
s0=40; k=40; r=.04; v=.3; T=0.5;L=5%input('Step size= ');
c=zeros(1000,1000);
t=T/L;
u=exp(v*sqrt(t))
```

```
d=1/u
p=(exp(r*t)-d)/(u-d)
for j=L+1:-1:1
   for i=1:j
      if(j==L+1)
         c(i,j)=(\max(s0*u^{(L+1-i)*d^{(i-1)-k,0)});
      else
         c(i,j)=exp(-r*t)*(p*c(i,j+1)+(1-p)*c(i+1,j+1));
      end
   end
end
fprintf('Option Value: %f \n\nThe %d step binomial tree is:\n
n', c(1,1), L
for i=1:L+1%%%%%%%%%% Tree Printing %%%%%%% Print na korleo hobe
   for i1=1:i-1
      fprintf('
                     ')%%%%%%%%%% Space Printing
   end
  for j=i:L+1
      fprintf(" %10.6f",c(i,j))
   end
   disp('')
end
fprintf('\nOutput for problem 04:\n')
disp('')
clear
s=[30.2\ 32\ 31.1\ 30.1\ 30.2\ 30.3\ 30.6\ 33\ 32.9\ 33\ 33.5\ 33.5\ 33.7\ 33.5
33.2]';
n=length(s)-1;
for i=1:n
   u(i) = log(s(i+1)/s(i));
```

```
end
SD=sqrt(sum(u.*u)/(n-1)-(sum(u))^2/(n*(n-1)));%(u*u')
Volatility=SD/sqrt(5/252)
Standard Error=Volatility/(sgrt(2*n))
fprintf('\nOutput for problem 05:\n')
disp('')
clear
k=5; r=.04; v=.2; T=.5; s(1)=5; ic=0; L=1000; R=10^4; m=10^3; step=[L:m:R];
for n=step
   phi=randn(n,1);t=T/n;
   for i=1:n
      s(i+1)=s(i)*exp((r-.5*v*v)*t+v*phi(i)*sqrt(t));
      p(i) = (\max(k-s(i), 0)) * \exp(-i*r*t);
      c(i) = (\max(s(i)-k,0))*\exp(-i*r*t);
          N(x) = (1 + Erf(x/?2))/2
                              N(-d1)=1-N(d1)
   end
   ic=ic+1;s0=s(ic);
   Call(ic)=mean(c);Put(ic)=mean(p);
                                 응응응응
                                         Option Values
   CallParity(ic)=Call(ic)+s0;PutParity(ic)=Put(ic)+k*exp(-r*T);; %%
Parity Checking
   d1=(log(s0/k)+(r+v^2/2)*T)/(v*sqrt(T));
                                       d2=d1-(v*sqrt(T));
   Nd1=(1+erf(d1/sqrt(2)))/2;
                                    Nd2=(1+erf(d2/sqrt(2)))/2;
   C0(ic)=s0*Nd1-k*exp(-r*T)*Nd2;
                               P0(ic)=k*exp(-r*T)*(1-Nd2)-
s0*(1-Nd1);
end
CallOption____Put__CallParity__PutParity__CO____PO_Error=[Call'
Put' CallParity' PutParity' C0' P0',abs(CallParity'-PutParity')] %%%
Parity checking
plot(step,Call,'*',step,Put,'d',step,CallParity,step,PutParity,step,C0,'*',step,P0
PutParity'), 'h')
legend('Call','Put','CallParity','PutParity','Exact_C','Exact_P','Error')
title('Figure showing all the derivatives')
xlabel('Steps')
ylabel('Value of the derivatives')
Output for problem 01:
C\_0 =
```

 $C_1 =$ 6.9639 Same value Output for problem 02: Americano: 5.392846 Europa: 5.392846 No need to exercise early N-Step Binomial Tree 5.392846 0.278467 0.000000 13.243528 0.705600 32.490000 Output for problem 03: L = 5 u = 1.0995 d =0.9095 p =0.4974 Option Value: 3.922904

The 5 step binomial tree is:

6.9639

Volatility =

0.2047

Standard_Error =

0.0387

CallOption	Put	_CallParity_	_PutParityC0		P0_Error =	
0.0243	0.2103	5.0243	5.1113	0.3314	0.2323	0.0870
0.8793	0.0011	5.8843	4.9021	0.3343	0.2303	0.9822
0.0966	0.0219	5.1082	4.9229	0.3381	0.2276	0.1853
0.0010	0.2052	4.9901	5.1062	0.3250	0.2369	0.1161
0.3394	0.0055	5.3422	4.9065	0.3330	0.2312	0.4357
0.8753	0.0026	5.8568	4.9036	0.3206	0.2401	0.9532
0.1170	0.0341	5.1408	4.9351	0.3454	0.2226	0.2057
0.0170	0.2763	5.0034	5.1773	0.3235	0.2381	0.1739
0.3284	0.0067	5.3393	4.9077	0.3378	0.2278	0.4316
0.3141	0.0418	5.3052	4.9428	0.3262	0.2361	0.3624

Published with MATLAB® R2018b