Основы параллельного программирования

Посыпкин Михаил Анатольевич

mposypkin@gmail.com

http://parallelprog.blogspot.ru/

План лекции

- Понятие параллельного программирования
- Обзор основных типов параллельных и распределенных систем
- Производительность параллельных программ и основные препятствия к ее повышению

Параллельное программирование

- Приложения требуют увеличения производительности компьютеров.
- Производительность процессора и памяти ограничена физическими характеристиками применяемых материалов.
- Многие задачи содержат независимые компоненты, которые могут решаться одновременно (т.е. параллельно).

Параллельное программирование

Перечисленное приводит к естественному решению — **увеличивать число компонент оборудования**, участвующего в решении задач.

В частности, увеличивается число функциональных устройств одного процессора и общее число процессоров.

Параллельные вычисления — вычисления на системах, содержащих несколько параллельно работающих вычислителей.

Спектр задач параллельного программирования

- Математическое моделирование:
 - Газовая и гидро-динамика.
 - Химическая физика.
 - Процессы в полупроводниках.
 - Имитационное моделирование в экономике.
 - Биология.
- Оптимизация:
 - Дискретное и линейное программирование.
 - Общая задача нахождения экстремума.
- Оптимальный поиск:
 - Дискретная оптимизация.
 - Распознавание образов.
 - Автоматическая верификация и доказательство теорем.

Good Better Best

Параллельные вычислительные системы

- **■Системы с общей памятью** ядра имеют доступ к общему адресному пространству
- **■Системы с распределенной памятью** каждое ядро обладает собственной памятью
- ■GP GPU (General Purpose Graphic Processing Units) графические ускорители (карты), применяемые для задач общего назначения
- ■Гибридные системы

Параллелизм внутри процессора (ядра)

- Различные функциональные устройства.
- Конвейерная обработка.
- Векторные сопроцессоры.

Многопроцессорный параллелизм

В решении задачи принимает участие несколько (более одного) процессоров, взаимодействующих между собой.

Виды многопроцессорного параллелизма.

Общая память

Распределенная память

Архитектура современных ЭВМ

Тип	Описание
Последовательные архитектуры	Один поток команд и данных. В настоящее время практически не встречается в «чистом» виде, но имеет важное значение как основная парадигма разработки программ.
Многоядерные процессоры	Несколько вычислительных ядер, реализованных на одном кристалле. Доминирующая архитектура в современных ПК и рабочих станциях.
Многопроцессорные системы с общей памятью	Несколько (многоядерных) процессоров, имеющих доступ к общему адресному пространству. Типична для мощных вычислительных серверов и рабочих станций.
Многопроцессорные системы с распределенной (гибридной) памятью	Совокупность вычислительных модулей, каждый из которых содержит собственный процессор(ы) и память. Между собой модули соединены высокопроизводительной сетью передачи данных. Классическая кластерная архитектура.

Иерархия памяти

Регистры

Кэш 1-го уровня

Кэш 2(3)-го уровня

Оперативная память

Дисковая память

Многоядерные процессоры Intel

Одно ядро (Pentium-M)

Есть возможность динамического переупорядочивания инструкций (REORDER BUFFER) с целью максимальной загрузки функциональных устройств

Процессор Woodcrest

Общий L2-кэш, TLB и L1-кэш индивидуальн ый для

каждого CPU

Intel Clovertown (серия Xeon 5300)

Два двухядерных модуля Woodcrest

L1 и L2 кэши разные

Texнoлогия Hyper Threading

Общая идея гипертрейдинга состоит в том, чтобы за счет небольшого увеличения сложности и размера процессора обеспечить возможность выполнения двух потоков на ресурсах одного ядра

Технология Hyper Threading

- Каждый физический процессор хранит состояние сразу двух потоков
 - Регистры
 - Контроллер прерываний APIC
 - Некоторые специальные таблицы (ITLB)
- Используются паузы из-за зависимостей по данным и обращений к памяти за счет общего планирования

Технология Hyper Threading

Texнология Turbo Boost

- Turbo Boost это возможность повысить частоту одного или нескольких активно используемых процессорных ядер за счет остальных, которые в данный момент не используются.
- разгон с помощью Turbo Boost не выходит за рамки нормальных условий эксплуатации процессора (все эти показатели постоянно измеряются и анализируются), не грозит перегревом и, следовательно, не требует дополнительного охлаждения.
- Время работы системы в режиме Turbo Boost зависит от рабочей нагрузки, условий эксплуатации и конструкции платформы.

Turbo Boost

Возможности по повышению частоты в зависимости от количества ядер для разных моделей

Процессоры	Intel Core i7-870 2,93 ΓΓц			Intel Core i7-860 2,80 ГГц				Intel Core i5-750 2,66 ΓΓц				
Количество ядер	4			4				4				
Количество активных ядер	1C	2C	3C	4C	1C	2C	3C	4C	1C	2C	зс	4C
Максимальное количество шагов повышения частоты для технологии Intel Turbo Boost	5	4	2	2	5	4	1	1	4	4	1	1
Максимальная частота для технологии Intel Turbo Boost (ГГц)	3,6	3,46	3,2	3,2	3,46	3,33	2,93	2,93	3,2	3,2	2,8	2,8

Intel Core i7 (Nehalem)

Каждое ядро имеет поддержку НТ получается до 12 (в зависимости от модели CPU) виртуальных ядер

Intel Xeon Phi

- Intel MIC (англ. Intel Many Integrated Core Architecture) архитектура многоядерной процессорной системы
- Прототип процессоров архитектуры MIC (кодовое название Knights Ferry) был выпущен в 2010 году.
- В июне 2012 года Intel объявила о ребрендинге процессоров под названием **Xeon Phi**

Особенности Xeon Phi

- Векторное расширение (VPU) для работы с 512-битными векторами (по одному на ядро)
- До 61 вычислительного ядра
- Отдельные кэши 1-го и 2-го уровня на каждом ядре

Архитектура GP GPU

Архитектура TPC (Texture Processing Cluster)

SM – Streaming Multiprocessor

SP – Streaming processor

Streaming Multiprocessor (SM)

NVidia Volta V100

Tesla V100 PCle Tesla V100 SXM2

NVIDIA Volta					
640					
5,120					
7 TFLOPS 7.8 TFLOI					
14 TFLOPS	15.7 TFLOPS				
112 TFLOPS	125 TFLOPS				
32GB /16GB HBM2					
900GB/sec					
Yes					
32GB/sec	300GB/sec				
PCIe Gen3 NVIDIA NV					
PCIe Full Height/Length	SXM2				
250 W	300 W				
Passive					
CUDA, DirectCompute, OpenCL™, OpenACC					
	5,1 7 TFLOPS 14 TFLOPS 112 TFLOPS 32GB /16 900G Ye 32GB/sec PCIe Gen3 PCIe Full Height/Length 250 W Pas CUDA, Dire				

Архитектура HP-Superdome

Архитектура HP-Superdome: общая орагнизация: ccNuma

Архитектура HP-Superdome:

Ячейка - SMP система

Современный NUMA

Векторные операции AVX-512

Одна векторная операция может осуществлять несколько (например 16 операций над данными типа double) операций тактовый цикл, используя 512-битные регистры.

Эволюция:

1997: MMX (64 bit)

1999: SSE (128 bit)

2011: AVX (256 bit)

2013: AVX (512 bit)

Skylake microarchitecture

MOP - макрооперация $\mu - op$ -микрооперация

FMA -Fuse-Multiply-Add

$$A = AC + B$$

$$A = BA + C$$

$$A = BC + A$$

Fuse означает однократное округление – только на этапе формирования результата

С FMA в архитектуре Skylake удается сделать 2 конвейера, 2 операции и 16 чисел 2*(2*16) = 64 инструкции над float или 32 над double

Характеристики MareNostrum

- Пиковая производительность: 94,21 TFlops
- 10240 PowerPC processors
- Оперативная память: 20 Tb
- Дисковая память: 480 Tb
- Коммуникации
 - Myrinet (вычисления)
 - Gigabit Ethernet (загрузка, управление)

Архитектура

Blade Center

29 x IBM Rack

Суперкомпьютер «Ломоносов»

Гибридная архитектура

В качестве основных узлов используются решения ТВ2-XN на базе четырехъядерных и шестиядерных процессоров Intel Xeon X5570 Nehalem и X5670 Westmere.

Суперкомпьютерный комплекс также содержит гибридные узлы
ТВ2-ТІ на базе процессоров Intel Yeon и

TB2-TL на базе процессоров Intel Xeon и NVIDIA Tesla.

Пиковая производительность	1.7 Пфлопс
Число вычислительных узлов x86/GPU	5 104 / 1 065
Число процессоров х86	12 346
Число процессорных ядер x86/GPU	52 168 / 954 840
Число типов вычислительных узлов	8
Основной тип вычислительных узлов	TB2-XN
Процессор основного типа вычислительных узлов	Intel® Xeon X5570 / X5670

Оперативная память	83 TE
Занимаемая площадь (вычислитель)	252 м²
Энергопотребление вычислителя	2,6 МВт
Интерконнект	QDR InfiniBand
Система хранения данных	Трехуровневая с параллельной файловой системой хранения данных
Операционная система	ClustrX T-Platforms Edition

Tect LINPACK (HPL)

Тест состоит в решении системы линейных уравнений с помощью LU-факторизации. Основное время затрачивается на векторные операции типа умножение и сложение. Производительность определяется как количество "полезных" вычислительных операций над числами с плавающей точкой в расчете на 1 секунду, и выражается в Мфлоп/сек (миллионах операций в секунду). Результаты теста используются при составлении рейтинга Тор500.

Тор 500 (43-я редация, июнь 2014)

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
0	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3120000	33862.7	54902.4	17808
2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560640	17590.0	27112.5	8209
3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1572864	17173.2	20132.7	7890
4	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705024	10510.0	11280.4	12660
5	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786432	8586.6	10066.3	3945

Тор 500, редакция июнь 2019

Порог входа — 1.022 PFlops

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	DOE/SC/Oak Ridge National Laboratory United States	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband IBM	2,414,592	148,600.0	200,794.9	10,096
2	DOE/NNSA/LLNL United States	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband IBM / NVIDIA / Mellanox	1,572,480	94,640.0	125,712.0	7,438
3	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93,014.6	125,435.9	15,371
4	National Super Computer Center in Guangzhou China	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000 NUDT	4,981,760	61,444.5	100,678.7	18,482

Суперкомпьютер Summit

Processor: IBM POWER9™ (2/node)

GPUs: 27,648 NVIDIA Volta V100s (6/node)

Nodes: 4,608

Node Performance: 42TF

Memory/node: 512GB DDR4 + 96GB HBM2

Total System Memory: >10PB DDR4 + HBM + Non-

volatile

Interconnect Topology: Mellanox EDR 100G

InfiniBand, Non-blocking Fat Tree

Peak Power Consumption: 13MW

NV Memory/node: 1600GB

Total System Memory: >10PB DDR4 + HBM

+ Non-volatile

Interconnect Topology: Mellanox EDR 100G

InfiniBand, Non-blocking Fat Tree

Peak Power Consumption: 13MW

Грид-системы

Грид (Grid) - согласованная, открытая и стандартизованная среда, которая обеспечивает гибкое, безопасное, скоординированное разделение ресурсов в рамках виртуальной организации. (Я. Фостер, К. Кессельман)

- Гриды рабочих станций объединяют ресурсы простаивающих рабочих станций, домашних компьютеров, серверов (SETI@home).
- Сервисные Гриды совокупность вычислительных ресурсов, доступных в рамках единой политики доступа (EGEE, DEISA).

Гриды рабочих станций

- Используют вычислительные ресурсы простаивающих рабочих станций предприятий и домашних ПК для проведения вычислений;
- Системы для проведения вычислений в рамках Гридов рабочих станций BOINC, XWHEP, Condor;
- Проекты: MilkyWay@home (построение трехмерной модели млечного пути), <u>SETI@home</u> (обработка сигналов с целью обнаружения внеземного разума).

Сервисные Грид-системы

Облачные вычисления

Википедиия: **«Облачные»** вычисления (cloud computing) — это модель обеспечения повсеместного и удобного сетевого доступа по требованию к общему пулу конфигурируемых вычислительных ресурсов (сетям передачи данных, серверам, устройствам хранения данных, приложениям и сервисам), которые могут быть оперативно предоставлены и освобождены с минимальными эксплуатационными затратами и/или обращениями к провайдеру.

Требования к облакам

- 1. Самообслуживание по требованию: потребитель самостоятельно определяет и изменяет вычислительные потребности, такие как серверное время, скорости доступа и обработки данных, объём хранимых данных без взаимодействия с представителем поставщика услуг;
- **2.** Универсальный доступ по сети услуги доступны потребителям по сети передачи данных вне зависимости от используемого терминального устройства;
- **3. Объединение ресурсов** поставщик услуг объединяет ресурсы для обслуживания большого числа потребителей в единый пул для динамического перераспределения мощностей между потребителями в условиях постоянного изменения спроса на мощности;

Требования к облакам

- 4. **Эластичность** услуги могут быть предоставлены, расширены, сужены в любой момент времени, без дополнительных издержек на взаимодействие с поставщиком, как правило, в автоматическом режиме;
- 5. **Учёт потребления**, поставщик услуг автоматически исчисляет потреблённые ресурсы и на основе этих данных оценивает объём предоставленных потребителям услуг.

Типы облачных сервисов

- 1. Software as a service (SaaS) приложения, которые поставляется конечному пользователю в «облачной» инфраструктуре как службы через Internet. Потребителю предоставляется возможность использования прикладного ПО провайдера
- 2. Platform as a service (PaaS) платформа разработки и развертывания приложений поставляется в виде службы для разработчиков, позволяющей быстро создавать и развертывать приложения SaaS.
- **3. Infrastructure as a service (IaaS)** оборудование, такое как вычислительные серверы, системы хранения и сетевые элементы, предоставляются в виде служб.

Примеры облачных сервисов

SaaS	Google Docs
PaaS	Google App Engine
laaS	Amazon Cloud

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПРОИЗВОДИТЕЛЬНОСТИ ПАРАЛЛЕЛЬНЫХ ПРОГРАММ

Ускорение (наблюдаемое)

$$S = \frac{T_s}{T_p}$$

 T_p -время параллельных вычислений

 $T_{\scriptscriptstyle S}$ -время последовательны вычислений

Производительность пиковая и реальная

Пиковая производительность — максимальное количество операций, которые вычислительное устройство может выполнить за единицу времени.

Реальная производительность — количество операций, которое вычислительное устройство реально выполняет.

$$p = \frac{W}{T}$$

Загруженность = (реальная производительность)/(пиковая производительность) n

Линейное и «сверхлинейное» ускорение

Линейное ускорение: S = n.

Эффект «сверхлинейного» ускорения: наблюдаемое ускорение больше числа процессоров: S > n.

Причина — не учитывается загруженность процессоров, либо изменение количества операций.

Закон Амдала

eta -доля последовательных вычислений

W -общий объем работы

$$S \leq \frac{W}{\beta \cdot W + (1 - \beta)W/n} = \frac{n}{\beta \cdot n + (1 - \beta)}$$

$$S \le \frac{n}{\beta \cdot n + (1 - \beta)} \le \frac{1}{\beta}$$

Эффективность

Эффективность — отношение ускорения к числу процессоров. Показывает насколько эффективно используются аппаратные ресурсы.

$$E = \frac{S}{n} \le 1$$

Масштабируемость

Вики: Масштаби́руемость (англ. scalability) в электронике и информатике означает способность системы, сети или процесса справляться с увеличением рабочей нагрузки (увеличивать свою производительность) при добавлении ресурсов (обычно аппаратных). Масштабируемость — важный аспект электронных систем, программных комплексов, систем баз данных, маршрутизаторов, сетей и т. п., если для них требуется возможность работать под большой нагрузкой. Система называется масштабируемой, если она способна увеличивать производительность пропорционально дополнительным ресурсам.

Тест LINPACK (LU-разложение): кластер из 8 компьютеров

Эффективность и ускорение при разном количестве процессоров.

(информация с сайта Кемеровского ГУ)

Информационные зависимости

Зависимость по данным:

```
1: a = 1;
```

2: b = a;

Зависимость по управлению:

```
1: if(a) {
2: x = c + d;
3: y = 1;
4: }
```


Граф зависимостей

Операции, соединенные путем из дуг, не могут выполняться одновременно.

Другие операции могут выполняться одновременно при наличии требуемых функциональных устройств.

Концепция неограниченного параллелизма

Количество процессоров неограниченно.

Концепция может применяться для исследования максимально возможного ускорения.

Упрощенная модель параллельной машины с общей памятью

Процессоры работают синхронно по шагам: на каждом шаге выполняется операция (выборка операндов + арифметичекая операция + запись в память). Шаг занимает 1 такт.

Лемма Брента

Пусть q — число операций алгоритма, выполнение каждой операции занимает в точности одну единицу времени (такт), t — время выполнения на системе с достаточным числом одинаковых процессоров, то на системе, содержащей n процессоров, алгоритм может быть выполнен за время, не превосходящее t + (q - t)/n.

Асимптотические свойства формулы Брента

$$t + \frac{q - t}{1} = q$$

$$t + \frac{q - t}{n} \xrightarrow{n \to \infty} t$$

Количество CPU не CPU I CPU II ограничено 2

Пусть для бесконечного числа процессоров на і-м шаге выполнялось s_i операций, тогда при наличии п процессоров потребуется не более $\left\lceil \frac{s_i}{s_i} \right\rceil$ операций.

$$\left\lceil \frac{s_i}{n} \right\rceil \le \frac{s_i}{n} + 1 - \frac{1}{n} = \frac{s_i - 1}{n} + 1$$

$$t_{n} \leq \sum_{i=1}^{t} \left\lceil \frac{S_{i}}{n} \right\rceil \leq \sum_{i=1}^{t} \left(\frac{S_{i} - 1}{n} + 1 \right) = t + \frac{\sum_{i=1}^{t} \left(S_{i} - 1 \right)}{n} = t + \frac{q - t}{n}$$

СПАСИБО ЗА ВНИМАНИЕ! ЗАДАВАЙТЕ ВОПРОСЫ?

