CIS 635 Knowledge Discovery & Data Mining

ML Models: Decision Tree

- Another non-parametric model
 - Recall k-NN, its an in memory model; right?

- Another non-parametric model
 - Recall k-NN, its an in memory model; right?
- Decision Tree is our second example

- Another non-parametric model
 - Recall k-NN, its an in memory model; right?
- Decision Tree is our second example
 - Those are with CS background are already aware of BST
 - Whiteboarding

- Another non-parametric model
 - Recall k-NN, its an in memory model; right?
- Decision Tree is our second example
 - Those are with CS background are already aware of **BST**
 - Whiteboarding

- Concepts and Principles
- Let's learn through an example

- Data records for two animal classes:
 - O Bunny and Cat

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny

- What feature should we use to split records?

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny

- What feature should we use to split records?
- nb of legs is useless as there is no variation.

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny

- What feature should we use to split records?
- nb of legs is useless as there is no variation.
- We can use the 'weight(lb)' feature.

nb of legs	weight (lb)	animal
4 •	2.1	Bunny
4	7	Cat
4 •	1.7	Bunny
4	9	Cat
4 "	2.75	Bunny

nb of legs	weight (lb)	animal
4 -	2.1	Bunny
4	7	Cat
4 -	1.7	Bunny
4	9	Cat
4	2.75	Bunny

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4 -	1.7	Bunny
4	9	Cat
4	2.75	Bunny

nb of legs	weight (lb)	animal
4 -	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny

nb of legs	weight (lb)	animal
4 -	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny

nb of legs	weight (lb)	animal
4 -	2.1	Bunny
4	7	Cat
4 -	1.7	Bunny
4	9	Cat
4	2.75	Bunny

nb of legs	weight (lb)	animal
4 -	2.1	Bunny
4	7	Cat
4 •	1.7	Bunny
4	9	Cat
4	2.75	Bunny

- Can we identify groups?

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny

- Let's find a split point.

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny

- Create branches

weight (lb)	animal
2.1	Bunny
7	Cat
1.7	Bunny
9	Cat
2.75	Bunny
	2.1 7 1.7 9

- Create branches

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny

- What if we used a threshold=2.5?

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny

- What if we used a threshold=2.5?

- What metrics are used for split point determination?

- What metrics are used for split point determination?

Entropy

Gini Impurity

Information Gain

The idea is quite simple, choose the one that make classes more separable.

- How about this configuration?
- We have data points for an additional animal class "Chicken"

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny
2	2.5	Chicken
2	3	Chicken

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny
2	2.5	Chicken
2	3	Chicken

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny
2	2.5	Chicken
2	3	Chicken

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny
2	2.5	Chicken
2	3	Chicken

- Prediction Time

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny
2	2.5	Chicken
2	3	Chicken

2	4	??

2	4	??

2	4	??

You may have multiple trees

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny
2	2.5	Chicken
2	3	Chicken

nb of legs	weight (lb)	animal
4	2.1	Bunny
4	7	Cat
4	1.7	Bunny
4	9	Cat
4	2.75	Bunny
2	2.5	Chicken
2	3	Chicken

Entropy and Information Gain

Entropy

- What metrics are used for split point determination?

Entropy (discrete variable) : $H(X) = -\sum_{i=1}^n p(x_i) \log_b p(x_i)$

Entropy

What metrics are used for split point determination?

$$IG(T, a) = H(T) - H(T|a),$$

where $\mathbf{H}(T|a)$ is the conditional entropy of T given the value of attribute a.

How to randomize Trees?

How to randomize Trees?

Through

- Random sampling of data points
- Random sampling of features
- Randomizing feature combinations

How to randomize Trees?

Through

- Random sampling of data points
- Random sampling of features
- Randomizing feature combinations

Essentially we can generate many trees for a dataset.

QA