5.5 Сцинтилляционная γ -спектроскопия Eгор Eерсенев

1 Теоретическое введение

В данной работе исследуются сцинтилляционные гамма - спектрометры на основе неорганического кристалла NaI(Tl) и органической сцинтиллирующей пластмассы. При прохождении гамма -квантов через материальную среду образуются электроны , возникающие за счет фотоэффекта, комптоновского рассеяния и рождения электрон-позитронных пар.

1.1 Фотоэффект

Процесс взаимодействия γ -кванта с электроном, связанным с атомом, при котором электрону передается вся энергия гамма-кванта. При этом электрону сообщается кинетическая энергия $T_e = E_{\gamma} - I_i$. Фотоэффект существенен для тяжелых атомов, где он идет с высокой вероятностью даже при высоких энергиях гамма-квантов.

1.2 Эффект Комптона

Упругое рассеяние фотона на свободном электроне, сопровождающееся изменением длины волны фотона. Максимальная энергия образующихся комптоновских электронов соответствует рассеянию на 180и равна

$$E_{max} = \frac{\eta \omega}{1 + \frac{mc^2}{2\eta \omega}} \tag{1}$$

1.3 Процесс образования электрон-позитронных пар

Образование пары проходит вблизи электрона или ядра. При этом энергия образующегося ядра отдачи оказывается малой, так что энергия образования пары практически совпадает с энергией покоя электрона. Появившийся электрон теряет энергию на ионизацию среды. Таким образом, вся энергия электрона остается в детекторе. Позитрон будет двигаться до тех пор, пока не остановится, а затем аннигилирует с электроном среды, в результате чего появятся два гамма-кванта. Далее есть три варианта развития событий:

- 1. оба кванта не вылетают из детектора, и тогда вся энергия первичного гаммакванта остается в детекторе
- 2. один из родившихся квантов покидает детектор
- 3. оба кванта покидают детектор

Таким образом, каждый происходящий процес вносит свой вклад в энергетический спектр излучения.

Энергии пиков максимальных энергий для комптоновского поглощения зависят от энергии пиков полного поглощения как

$$E_{max} = \frac{\hbar\omega}{1 + \frac{m_e c^2}{2\hbar\omega}} \tag{2}$$

Положение пика обратного поглощения вычисляется по формуле

$$E = \frac{\hbar\omega}{1 + \frac{2\hbar\omega}{m_e c^2}} \tag{3}$$

Форма сигнала ФЭУ имеет вид

$$U(t) = const \cdot \exp\left(-\frac{t}{RC}\right) \left(1 - \exp\left(-\frac{t}{\tau_0}\right)\right) \tag{4}$$

2 Эксперимент

Проведем измерения гамма-спектров для всех препаратов:

2.1 ^{60}Co

Рис. 1: Спектр ${}^{60}Co$

Рис. 2: Схема распада ^{60}Co

2.2 ^{137}Cs

Рис. 3: Спектр ^{137}Cs

Рис. 4: Схема распада ^{137}Cs

Квантовая физика Φ МХФ М Φ ТИ

2.3 ^{152}Eu

Рис. 5: Спектр ^{152}Eu

Рис. 6: Спектр ^{152}Eu

Квантовая физика Φ МХФ М Φ ТИ

Рис. 7: Спектр ^{152}Eu

Рис. 8: Схема распада ^{152}Eu

2.4 ^{22}Na

Рис. 9: Спектр ^{22}Na

Рис. 10: Схема распада ^{22}Na

2.5 ^{241}Am

Рис. 11: Спектр ^{241}Am

Рис. 12: Схема распада ^{241}Am

Построим график зависимости теоретического значения комптоновского края от экспериментального:

Построим график зависимости энергетического разрешения спектрометра от обратной энергии.

Рис. 13: Комптоновские края

Рис. 14: Разрешение

Рис. 15: Форма импульса

Отсюда $RC \simeq 1.5 \mu s, \tau \simeq 3.6 \mu s$

3 Вывод

В данной работе был разобран принцип устройства сцинтиллятора. Также был изучен ряд радиоактивных источников и проверены статистические соотношения для разрешающей способности спектрометра.