Aula 5 - Camada de Enlace: Switches e VLANs

Diego Passos

Universidade Federal Fluminense

Redes de Computadores II

Na Última Aula...

- Endereçamento e ARP:
 - Camada de enlace tem esquema próprio de endereçamento.
 - Diferente da camada de rede.
 - Usado na comunicação direta entre dispositivos.
 - Endereços **planos**.
 - Interface sai de fábrica com endereço único.
 - Garante unicidade ao se trocar de rede.
 - Há um mapeamento entre endereços das camadas de rede e enlace.
 - Tradução feita através do ARP.

- Ethernet: tecnologia padrão para LANs cabeadas.
 - Simples e barato.
 - Adoção ampla.
 - Evoluiu ao longo do tempo.
- Topologia originalmente em barramento, atualmente estrela.
 - Comunicação intermediada por um switch.
 - Enlaces **full-duplex**.
 - Garante ausência de colisões.
- Serviço sem conexão, não confiável.
- Acesso ao meio via CSMA/CD.

Switch Ethernet

- Dispositivo ativo da camada de enlace.
 - Armazena e encaminha quadros Ethernet.
 - Examina endereços do quadro que chega.
 - Seletivamente, o encaminha para um ou mais enlaces de saída.
 - Utiliza CSMA/CD para acessar enlaces.
- Transparente: hosts não sabem da presença dos switches.
- Plug-and-play, aprendizado automático: não requerem configuração para executar encaminhamento.

Switches e Transmissões Simultâneas

- Hosts têm enlaces dedicados, *full-duplex*, diretos com o *switch*.
- Switches armazenam quadros em buffers internos.
- Protocolo MAC do Ethernet usado em cada enlace, mas não há colisões.
 - Cada enlace é seu próprio domínio de colisão confinado.
- Transmissões entre **A** e **A**' e **B** e **B**' podem ocorrer simultaneamente.

switch with six interfaces (1,2,3,4,5,6)

Switches e Tabelas de Encaminhamento

- Como o switch sabe que **A**' é alcançável pela interface 4?
- E **B**' pela interface 5?
 - Resposta: cada switch possui uma tabela de encaminhamento.
 - Cada entrada da tabela é uma tupla da forma:
 - <MAC, interface, timestamp>.
 - Similar à tabela de roteamento!
- Mas como a entradas são gerenciadas?
 - De forma parecida com um protocolo de roteamento?

switch with six interfaces (1,2,3,4,5,6)

Switches: Auto-aprendizado

- Switch **aprende** quais hosts são alcançáveis por quais interfaces.
 - Quando quadro é recebido, switch aprende localização do emissor.
 - Localização é armazenada na tabela de encaminhamento do switch.

MAC addr	interface	TTL
Α	1	60

Switch table (initially empty)

Switch: Filtragem/Encaminhamento de Quadros

- Quando um quadro chega a uma dada porta do switch:
 - 1. Armazena número de porta, MAC de origem na tabela de encaminhamento.
 - 2. Utiliza MAC de destino como índice da tabela de encaminhamento.
 - 3. Se há uma entrada:
 - 1. Se destino está na mesma porta pela qual quadro chegou, descarte o quadro (Por quê?).
 - 2. Caso contrário, encaminhe o quadro para a porta.
 - 4. Caso contrário, inundação (*i.e.*, replique quadro por todas as portas, exceto pela qual ele chegou).

Auto-aprendizado e Encaminhamento: Exemplo

- A envia quadro destinado a A'.
 - Switch recebe pela porta 1.
 - Armazena mapeamento (A, 1)
 na tabela de encaminhamento.
 - Não conhece localização de A'.
 - Inunda todas as portas (exceto a 1).
- A' envia quadro destinado a A.
 - Switch recebe pela porta 4.
 - Armazena mapeamento (A',
 4) na tabela de encaminhamento.
 - Sabe que A está na porta 1.
 - Envio **seletivo**.

MAC addr	interface	TTL
Α	1	60
Α'	4	60

switch table (initially empty)

Interconectando Switches

• Switches podem ser interconectados.

- Pergunta: quadro de $\bf A$ para $\bf G$ como $\bf S_1$ sabe que deve encaminhar através de $\bf S_4$ e $\bf S_3$?
 - Resposta: auto-aprendizado! (exatamente da mesma forma que no caso com único switch!)

Interconectando Switches: Exemplo de Auto-aprendizado

• Assuma que C envia quadro para I e I envia resposta para C.

• Após estes envios, mostre as tabelas de encaminhamento em S_1 , S_2 , S_3 , S_4 .

Rede Institucional (Possível Arquitetura)

Switches: Vantagens em Relação à Hubs/Repetidores/Barramentos

• Eliminação de colisões:

- Colisões são impossíveis.
- Banda não é desperdiçada.
- Ganho de eficiência.

Possibilidade de enlaces heterogêneos:

- Como cada porta do switch corresponde a um enlace isolado, portas diferentes podem operar em taxas diferentes.
- Garante interoperabilidade entre dispositivos modernos e legados.
- Graças também a grande retro-compatibilidade do Ethernet.

• Facilidade de gerenciamento:

- Como portas são isoladas, é possível desativar portas individualmente.
 - e.g., por conta do mau-funcionamento de um dispositivo.
- Switches modernos também reportam estatísticas sobre cada porta (detalhes no Cap.
 9).

Switches vs. Roteadores

- Ambos utilizam o store-and-forward.
 - Roteadores: dispositivos da camada de rede (examinam cabeçalhos de nível 3).
 - Switches: dispositivos da camada de enlace (examinam cabeçalhos de nível 2).
- Ambos possuem tabelas de encaminhamento/roteamento.
 - Roteadores: computam tabelas usando algoritmos de roteamento, endereços IP.
 - Switches: montam tabelas de encaminhamento utilizando inundação, auto-aprendizagem, endereços MAC.

Switches ou Roteadores? (I)

- Você foi contratado para projetar a infraestrutura de rede interna de uma instituição.
- Qual a melhor opção?
 - Interconectar **todos** os dispositivos em nível 2 (i.e., usando apenas switches)?
 - Ou dividir a rede em sub-redes, interconectadas por roteadores?

Switches ou Roteadores? (II)

- Você foi contratado para projetar a infraestrutura de rede interna de uma instituição.
- Qual a melhor opção?
 - Interconectar **todos** os dispositivos em nível 2 (i.e., usando apenas switches)?
 - Ou dividir a rede em sub-redes, interconectadas por roteadores?
- Resposta: **depende**.
- Cada solução tem seus prós e contras. Exemplos:
 - Roteadores requerem configurações mais complexas, e tempo de processamento é maior.
 - Switches são plug-and-play, e processam apenas até a camada 2.
 - Por outro lado, roteadores proveem melhor isolamento de tráfego.
 - Switches interligados constituem (a princípio) um único grande domínio de broadcast.
 - Possibilidade de tempestade de broadcast.
 - Além disso, problemas como loops são mais difíceis de diagnosticar.
 - Por fim, muitos switches em cascata sobrecarregam tabelas de encaminhamento.

Switches ou Roteadores? (III)

- Em geral, para redes "pequenas" (i.e., com poucos nós), topologias apenas com switches são razoáveis.
- À medida que a rede cresce, o domínio de broadcast único se torna problemático.
 - Em termos de desempenho: quadros em *broadcast* enviados para a rede toda.
 - Em termos de gerência: difícil descobrir fontes de problemas, como endereços duplicados.
 - Em termos de segurança: difícil impedir uso/acesso não autorizado a recursos da rede.

VLANs

VLANs: Motivação

- Considere os seguintes aspectos:
 - Funcionário da CS muda para escritório na EE.
 - É possível mantê-lo "conectado" ao switch da CS?
 - Outra questão: único domínio de broadcast.
 - Todo tráfego de nível 2 (ARP, DHCP, inundações por falta de entrada nas tabelas de encaminhamento) atravessa toda a LAN.
 - Problemas de privacidade/segurança e eficiência.

Virtual Local Area Network

- Switches que possuem capacidades de VLAN podem definir múltiplas
 LANs virtuais usando uma única infraestrutura física.
- VLAN baseada em porta:
 - Portas do switch agrupadas (pelo software de gerenciamento do switch).
- Um único switch físico...

• ... age como **múltiplos** switches virtuais.

VLAN Baseada em Porta

- Isolamento de tráfego: quadros originários das portas 1–8 chegam **apenas** às portas 1–8.
- Alocação dinâmica: portas podem ser alocadas dinamicamente a VLANs.
 - É possível definir VLANs com base nos MACs dos dispositivos.
- Encaminhamento entre VLANs: feito via roteamento (nível 3).
 - Na prática, fabricantes vendem switches que são, também, roteadores.

VLANs Formadas por Múltiplos Switches Físicos

- Porta trunk: transportam quadros entre VLANs definidas sobre múltiplos switches físicos.
 - Quadros encaminhados dentro da mesma VLAN entre switches diferentes não podem ser quadros Ethernet "normais".
 - Precisam armazenar identificador da VLAN.
 - Protocolo 802.1Q adiciona/remove campos adicionais de cabeçalho para quadros transmitidos entre portas *trunk*.

Formato de um Quadro 802.1Q

Resumo da Aula (I)...

- Switch: dispositivo ativo, nível 2, intermediário.
 - **Enlaces dedicados** para cada dispositivo conectado.
 - Paradigma store-and-forward.
 - Examina quadros recebidos, seleciona porta de saída.
 - Transparente para os dispositivos.
 - Permite **transmissões simultâneas**.
- **Aprendizado automático:** descobre sozinho onde estão os dispositivos.
 - Monta uma tabela de encaminhamento.
 - Se não há entrada na tabela: inundação.

- Switches em cascata: podem ser interconectados para estender a rede.
 - Auto-aprendizado continua funcionando.
 - Potencialmente, mais de um MAC associado a cada porta.
 - Pode **esgotar a capacidade** da tabela de encaminhamento.
 - Mais inundações, pior desempenho.
- Várias diferenças em relação aos roteadores.
 - Camada.
 - Encaminhamento baseado em endereços diferentes.
 - Métodos de construção das tabelas.

Resumo da Aula (II)...

- VLANs:
 - Solução para "separar" redes em nível 2, compartilhando mesma infraestrutura física.
 - Separação **puramente lógica**.
 - Define **domínios de broadcast** distintos.
 - Motivações: segurança, desempenho.
- Podem ser definidas com base em:
 - Portas específicas.
 - Tags informadas em cabeçalhos específicos.
- VLANs podem se estender por **vários switches físicos diferentes**.

Leitura e Exercícios Sugeridos

- Switches:
 - Páginas 351 a 355 do Kurose (Seção 5.6 até Subseção 5.6.4, inclusive).
 - Exercício de fixação 15 do capítulo 5 do Kurose.
 - Problemas 27, 28, 32, 34 do capítulo 5 do Kurose.
- VLANs:
 - Páginas 355 a 358 do Kurose (Subseção 5.6.5).
 - Exercícios de fixação 16 e 17 do capítulo 5 do Kurose.

Próxima Aula...

- Iremos finalizar a discussão sobre a camada de enlace.
 - Algumas conclusões.
 - Alguns exemplos práticos.
- Iremos também fazer um apanhado geral do processo de transmissão de um pacote pela Internet.
 - Considerando todas as camadas.
 - Veremos onde a camada de enlace se encaixa.
 - Pequena revisão da matéria vista em Redes I.