SEMAINE 10

INTÉGRALE SUR UN SEGMENT. FONCTIONS INTÉGRABLES

EXERCICE 1:

Soit $x = (x_n)_{n \in \mathbb{N}^*}$ une suite à valeurs dans [0,1]. Pour tout entier naturel non nul n et toute partie A de [0,1], on note N(A,n) le nombre d'indices $k \in [1,n]$ tels que $x_k \in A$.

On dit que la suite x est **équirépartie** si, pour tous réels a et b vérifiant $0 \le a < b \le 1$, on a

$$\lim_{n \to +\infty} \frac{N(]a, b[, n)}{n} = b - a.$$

Montrer que la suite x est équirépartie si et seulement si, pour toute fonction $f:[0,1] \to \mathbb{R}$ continue par morceaux (c.p.m.), on a

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(x_k) = \int_0^1 f.$$
 (*)

Remarquons d'abord que, pour tout $n \in \mathbb{N}^*$ et pour toute partie A de [0,1], on a $N(A,n) = \sum_{k=1}^n \chi_A(x_k)$, où χ_A est la fonction caractéristique de A.

Pour tout entier naturel non nul n et toute fonction f continue par morceaux sur [0,1], posons $S_n(f) = \frac{1}{n} \sum_{k=1}^n f(x_k)$.

• Supposons la relation (*) vraie pour toute fonction f continue par morceaux sur [0,1]; avec $f = \chi_{a,b}$ (fonction en escalier), on obtient

$$\lim_{n \to +\infty} S_n(f) = \lim_{n \to +\infty} \frac{N\big(]a,b[,n\big)}{n} = \int_0^1 \chi_{]a,b[} = b-a \;,$$

d'où la propriété d'équirépartition.

• Réciproquement, supposons la suite équirépartie.

Soit d'abord $f:[0,1]\to\mathbb{R}$ en escalier, soit $(0=a_0,a_1,\cdots,a_m=1)$ une subdivision de [0,1] subordonnée à f, soit λ_j la valeur (constante) de f sur $]a_j,a_{j+1}[$ $(0 \le j \le m-1)$. On a alors

$$\int_0^1 f = \sum_{j=0}^{m-1} (a_{j+1} - a_j) \,\lambda_j$$

et, comme $f = \sum_{j=0}^{m-1} \lambda_j \; \chi_{]a_j,a_{j+1}[} + \sum_{j=0}^m f(a_j) \; \chi_{\{a_j\}},$ on a

$$S_n(f) = \sum_{j=0}^{m-1} \lambda_j \frac{N(]a_j, a_{j+1}[, n)}{n} + \sum_{j=0}^m f(a_j) \frac{N(\{a_j\}, n)}{n}.$$

Or, par hypothèse, $\lim_{n\to+\infty} \frac{N(]a_j, a_{j+1}[, n)}{n} = a_{j+1} - a_j$ pour tout $j \in [0, m-1]$.

Il reste à prouver que, pour tout $a \in [0,1]$, $\lim_{n \to +\infty} \frac{N\left(\{a\},n\right)}{n} = 0$. Pour cela, il suffit de constater que, si $a \in]0,1[$,

$$N\big(\{a\},n\big)=N\big(]0,1[,n\big)-N\big(]0,a[,n\big)-N\big(]a,1[,n\big)$$

et, pour a = 0 et a = 1,

$$0 \le N(\{0\}, n) + N(\{1\}, n) = n - N([0, 1], n).$$

Soit maintenant $f:[0,1]\to\mathbb{R}$, continue par morceaux. On sait que f est limite uniforme d'une suite de fonctions en escalier sur [0,1]. Donc, si on se donne $\varepsilon > 0$, on peut trouver $g:[0,1] \to \mathbb{R}$ en escalier telle que $\|f-g\|_{\infty} \leq \frac{\varepsilon}{3}$. D'après ce qui précède, on peut trouver

un entier
$$N$$
 tel que, pour tout $n \geq N$, on ait $\left| S_n(g) - \int_0^1 g \right| \leq \frac{\varepsilon}{3}$. Or, pour tout n ,

$$\left| S_n(f) - \int_0^1 f \right| \le |S_n(f) - S_n(g)| + \left| S_n(g) - \int_0^1 g \right| + \left| \int_0^1 g - \int_0^1 f \right|.$$

De
$$||f-g||_{\infty} \leq \frac{\varepsilon}{3}$$
, on déduit que $\left|\int_0^1 g - \int_0^1 f\right| \leq \int_0^1 |g-f| \leq \frac{\varepsilon}{3}$ et

$$|S_n(f) - S_n(g)| = \frac{1}{n} \left| \sum_{k=1}^n \left(f(x_k) - g(x_k) \right) \right| \le \frac{1}{n} \cdot n \cdot \frac{\varepsilon}{3} = \frac{\varepsilon}{3} ,$$

$$\mathrm{donc},\,\mathrm{pour}\ n\geq N,\,\mathrm{on}\ \mathrm{a}\ \left|S_n(f)-\int_0^1f\right|\leq \varepsilon,\,\mathrm{ce}\ \mathrm{qui}\ \mathrm{prouve}\ \mathrm{que}\ \lim_{n\to +\infty}S_n(f)=\int_0^1f.$$

EXERCICE 2:

Soit f une bijection continue et strictement croissante de \mathbb{R}_+ vers lui-même.

a. Montrer que, pour tout $a \in \mathbb{R}_+$, $\int_0^a f + \int_0^{f(a)} f^{-1} = a f(a)$.

On commencera par traiter le cas où f est de classe C^1 . Dans le cas général, on montrera la dérivabilité de la fonction $\varphi: a \mapsto \int_0^{f(a)} f^{-1} - a f(a)$.

- **b.** Montrer que, pour tous $(a,b) \in \mathbb{R}^2_+$, $\int_0^a f + \int_0^b f^{-1} \ge ab$.
- a. Si f est supposée de classe \mathcal{C}^1 , une simple dérivation par rapport à la variable a permet de conclure.

Dans le cas général, essayons aussi de dériver par rapport à la variable a. Le terme $\int_{-\infty}^{\infty} f$ est dérivable, de dérivée f(a). Les termes $\int_0^{f(a)} f^{-1}$ et af(a), pris séparément, ne sont pas, en général, dérivables, mais étudions leur différence $\varphi(a)$ (cf. énoncé) et formons un taux d'accroissement.

$$\varphi(a+h) - \varphi(a) = \int_{f(a)}^{f(a+h)} f^{-1} - (a+h) f(a+h) + a f(a) .$$

Pour h > 0, il est facile d'écrire un encadrement de l'intégrale :

$$a(f(a+h)-f(a)) \le \int_{f(a)}^{f(a+h)} f^{-1} \le (a+h)(f(a+h)-f(a)),$$

d'où l'on tire sans difficulté

$$-f(a+h) \leq \frac{\varphi(a+h) - \varphi(a)}{h} \leq -f(a) \;, \quad \text{donc} \quad \lim_{h \to 0^+} \frac{\varphi(a+h) - \varphi(a)}{h} = -f(a)$$

car f est continue au point a. On obtient de même, pour h < 0,

$$-f(a) \leq \frac{\varphi(a+h) - \varphi(a)}{h} \leq -f(a+h) \;, \quad \text{donc} \quad \lim_{h \to 0^-} \frac{\varphi(a+h) - \varphi(a)}{h} = -f(a).$$
 Finalement, φ est dérivable sur \mathbb{R}_+ , de dérivée $-f$, donc la fonction

Finalement, φ est dérivable sur \mathbb{R}_+ , de dérivée -f, donc la fonction $g: a \mapsto \int_0^a f + \int_0^{f(a)} f^{-1} - a f(a)$ est dérivable, de dérivée nulle. Elle est donc constante sur \mathbb{R}_+ , et g(0) = 0, ce qui répond à la question.

b. Fixons $a \geq 0$. Pour tout $b \in \mathbb{R}_+$, posons $\psi(b) = \int_0^a f + \int_0^b f^{-1} - ab$. La fonction ψ est dérivable, de dérivée $\psi'(b) = f^{-1}(b) - a$. La croissance stricte des fonctions f et f^{-1} permet d'affirmer que

$$\psi'(b) > 0 \iff b > f(a)$$
.

On en déduit sans peine que $\psi(b)$ est minimal lorsque b=f(a) et sa valeur est alors $\psi(f(a))=g(a)=0$ d'après le **a.**, ce qui prouve l'inégalité à démontrer.

EXERCICE 3:

Pour tout $f \in \mathcal{E} = \mathcal{C}([a,b],\mathbb{R})$ et tout réel non nul p, on pose $\mu_p(f) = \left(\frac{1}{b-a} \int_a^b |f|^p\right)^{\frac{1}{p}}$: moyenne d'ordre p de la fonction |f| sur [a,b].

- 1. Calculer $\lim_{p\to+\infty}\mu_p(f)$.
- **2.** Montrer que, si $f \in \mathcal{E} = \mathcal{C}([a,b],\mathbb{R})$ ne s'annule pas sur [a,b], alors

$$\lim_{p \to 0} \mu_p(f) = \exp\left(\frac{1}{b-a} \int_a^b \ln|f(x)| \, dx\right) .$$

1. Si f = 0, alors $\mu_p(f) = 0$ pour tout p. Excluons désormais ce cas.

Soit $M = \max_{[a,b]} |f| > 0$. Soit $\varepsilon > 0$. Alors, par continuité, il existe un segment $[\alpha,\beta]$ de longueur non nulle sur lequel $|f| \ge (1-\varepsilon)M$.

Alors, pour tout p > 0,

$$\int_{a}^{b} |f|^{p} \ge (\beta - \alpha) \cdot (1 - \varepsilon)^{p} M^{p}, \quad \text{d'où} \quad \mu_{p}(f) \ge \left(\frac{\beta - \alpha}{b - a}\right)^{\frac{1}{p}} (1 - \varepsilon) M.$$

Or,
$$\lim_{p \to +\infty} \left(\frac{\beta - \alpha}{b - a} \right)^{\frac{1}{p}} = 1$$
, donc

$$\exists P \in \mathbb{R}_+^* \quad \forall p \in \mathbb{R} \qquad p \ge P \Longrightarrow \mu_p(f) \ge (1 - \varepsilon)^2 M$$

Pour $p \geq P$, on a alors $(1 - \varepsilon)^2 M \leq \mu_p(f) \leq M$. On en déduit que

$$\lim_{p \to +\infty} \mu_p(f) = M = \max_{[a,b]} |f| = N_{\infty}(f) .$$

b. Il s'agit de montrer que $\lim_{p\to 0}\mu_p(f)=e^J$, où $J=\frac{1}{b-a}\int_a^b\varphi$, avec $\varphi=\ln|f|$. La fonction |f| est continue et strictement positive sur le segment [a,b], donc φ est bornée sur [a,b]: $|\varphi(x)|\leq k$ sur [a,b]. La fonction $u\mapsto \frac{e^u-1-u}{u^2}$ étant prolongeable par continuité en zéro, il existe un réel positif M tel que $\forall y\in\varphi\bigl([a,b]\bigr)$ $\left|\frac{e^y-1-y}{y^2}\right|\leq M$.

Alors, pour $|p| \le 1$, on a

$$\left| \left(\mu_p(f) \right)^p - 1 - p J \right| = \frac{1}{b-a} \left| \int_a^b \left(e^{p\varphi} - 1 - p \varphi \right) \right| \le \frac{M p^2}{b-a} \left(\int_a^b \varphi^2 \right) \le M k^2 p^2.$$

On peut donc écrire $\mu_p(f)^p = e^{p \ln \mu_p(f)} = 1 + Jp + O(p^2)$, d'où $p \ln \mu_p(f) = Jp + O(p^2)$, donc $\lim_{p \to 0} \ln \mu_p(f) = J$ et enfin $\lim_{p \to 0} \mu_p(f) = e^J$, ce qu'il fallait démontrer.

Le nombre $\mu_0(f) = \lim_{p \to 0} \mu_p(f)$ est la moyenne géométrique de |f| sur [a,b].

EXERCICE 4:

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 telle que $\forall t \in \mathbb{R}$ $f''(t) \geq m$, où m est un réel strictement positif.

Montrer qu'il existe une constante C "universelle" (c'est-à-dire indépendante de m et de la fonction f) telle que

$$\forall (a,b) \in \mathbb{R}^2 \qquad \left| \int_a^b e^{if(t)} dt \right| \le \frac{C}{\sqrt{m}}.$$

On pourra commencer par prouver que f admet un minimum en un point t_0 et on majorera $\left| \int_{t_0}^{t_1} e^{if(t)} dt \right| \text{ indépendamment du réel } t_1.$

Source : Antoine CHAMBERT-LOIR, Stéfane FERMIGIER, Vincent MAILLOT, Exercices de mathématiques pour l'Agrégation, Analyse 1, Éditions Masson, ISBN 2-225-84692-8

Soit a un réel. D'après le théorème des accroissements finis, on a, pour tout réel t,

$$f'(t) = f'(a) + (t - a) f''(c)$$
, avec $c \in [t, a]$ ou $[a, t]$.

Donc.

- pour $t \ge a$, on a $f'(t) \ge f'(a) + m(t-a)$;
- pour $t \le a$, on a $f'(t) \le f'(a) + m(t-a)$.

Il en résulte que $\lim_{-\infty} f' = -\infty$ et $\lim_{+\infty} f' = +\infty$. Comme f' est continue et strictement croissante, il existe un unique point t_0 tel que $f'(t_0) = 0$ et il est clair que c'est le minimum global de la fonction f.

Quitte à translater f, on peut supposer que $t_0 = 0$ et chercher à majorer $\left| \int_0^a e^{if(t)} dt \right|$ indépendamment du réel a.

• Supposons a>0. Posons $I=\int_0^a e^{if(t)}\,dt$. Pour tout $\varepsilon>0$, on peut écrire, en intégrant par parties :

$$\begin{split} I &= \int_0^\varepsilon e^{if(t)} \, dt + \int_\varepsilon^a e^{if(t)} \, dt \\ &= \int_0^\varepsilon e^{if(t)} \, dt + \int_\varepsilon^a \frac{1}{i \, f'(t)} \left(i \, f'(t) \, e^{if(t)} \right) dt \\ &= \int_0^\varepsilon e^{if(t)} \, dt + \frac{e^{if(a)}}{i \, f'(a)} - \frac{e^{if(\varepsilon)}}{i \, f'(\varepsilon)} - i \int_\varepsilon^a e^{if(t)} \, \frac{f''(t)}{f'(t)^2} \, dt \; . \end{split}$$

Pour $\varepsilon \geq a$, on a bien sûr $|I| \leq \int_0^a |e^{if(t)}| dt = a \leq \varepsilon$ et, si $\varepsilon > a$, on a

$$\begin{split} |I| & \leq \varepsilon + \frac{1}{f'(a)} + \frac{1}{f'(\varepsilon)} + \int_{\varepsilon}^{a} \frac{f''(t)}{f'(t)^{2}} dt \\ & = \varepsilon + \frac{1}{f'(a)} + \frac{1}{f'(\varepsilon)} - \left[\frac{1}{f'(t)}\right]_{\varepsilon}^{a} = \varepsilon + \frac{2}{f'(\varepsilon)} \;. \end{split}$$

On a donc $|I| \le \varepsilon + \frac{2}{f'(\varepsilon)}$ pour tout $\varepsilon > 0$, mais $f'(\varepsilon) \ge m\varepsilon$, donc $\forall \varepsilon > 0$ $|I| \le \varepsilon + \frac{2}{m\varepsilon}$, puis $|I| \le \min_{\varepsilon > 0} \left(\varepsilon + \frac{2}{m\varepsilon}\right)$. Recherchons donc ce minimum : une petite étude de fonction, laissée au lecteur, montre qu'il est atteint pour $\varepsilon = \sqrt{\frac{2}{m}}$ et vaut $\frac{2\sqrt{2}}{\sqrt{m}}$. On a ainsi obtenu la majoration

$$\forall a \in \mathbb{R}_+ \qquad \left| \int_0^a e^{if(t)} dt \right| \le \frac{2\sqrt{2}}{\sqrt{m}}.$$

 \bullet Si a<0,on applique ce qui précède à la fonction $\,g:t\mapsto g(t)=f(-t)\,\,$ qui vérifie aussi $\,g''\geq m$ et g'(0)=0, donc

$$\left| \int_0^a e^{if(t)} \; dt \right| = \left| \int_0^{-a} e^{ig(u)} \; du \right| \leq \frac{2\sqrt{2}}{\sqrt{m}} \; .$$

 \bullet Pour tous a et b réels, on a alors

$$\left| \int_a^b e^{if(t)} \; dt \right| \leq \left| \int_0^a e^{if(t)} \; dt \right| + \left| \int_0^b e^{if(t)} \; dt \right| \leq \frac{4\sqrt{2}}{\sqrt{m}} \; ,$$

d'où le résultat demandé avec $C = \frac{4}{\sqrt{2}}$.

EXERCICE 5:

Soit \mathcal{E} l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$, de classe \mathcal{C}^1 , telles que les fonctions f' et $g: t \mapsto tf(t)$ soient de carré intégrable sur IR.

- a. Vérifier que \mathcal{E} est un espace vectoriel.
- **b.** Soit $f \in \mathcal{E}$. Montrer que f est de carré intégrable et que

$$\int_{\mathbb{R}} f^2 \le 2 \left(\int_{\mathbb{R}} f'^2 \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}} g^2 \right)^{\frac{1}{2}}.$$

c. Étudier les cas d'égalité.

- a. Une fonction f appartient à \mathcal{E} si et seulement si les fonctions f' et $g: t \mapsto tf(t)$ (qui dépendent linéairement de f) appartiennent à l'espace vectoriel $L^2(\mathbb{R})$, donc \mathcal{E} est un s.e.v. de l'espace $\mathcal{C}^1(\mathbb{R},\mathbb{R}).$
- **b.** L'inégalité $f(t)^2 \leq g(t)^2$, vraie pour $|t| \geq 1$, montre que $f \in L^2(\mathbb{R})$.

Posons $I=\int_{\mathbb{R}}f'^2$ et $J=\int_{\mathbb{R}}g^2$. La fonction $t\mapsto t\,f(t)\,f'(t)$ est intégrable sur \mathbb{R} comme produit de deux fonctions de carré intégrable et l'inégalité de Cauchy-Schwarz montre que

$$(f'|g) = \left| \int_{-\infty}^{+\infty} t \, f(t) \, f'(t) \, dt \right| \le \sqrt{IJ} = N_2(f') \cdot N_2(g) \,. \tag{*}$$

Or, une intégration par parties montre que, pour tous réels A et B

$$\int_{A}^{B} f(t)^{2} dt = \left[t f(t)^{2} \right]_{A}^{B} - 2 \int_{A}^{B} t f(t) f'(t) dt.$$
 (**)

Les fonctions f^2 et $t\mapsto t\,f(t)\,f'(t)$ étant intégrables sur \mathbbm{R} , l'expression $t\,f(t)^2$ admet une limite finie l lorsque t tend vers $+\infty$. Si on avait $l\neq 0$, alors $g(t)^2=t^2\,f(t)^2$ aurait une limite infinie en $+\infty$, ce qui contredit l'intégrabilité de g^2 sur \mathbb{R} . On a donc $\lim_{t\to +\infty} t f(t)^2 = 0$ et, de même, $\lim_{t\to -\infty} t f(t)^2 = 0$.

De (**), on déduit alors que $\int_{\mathbb{R}} f^2 = -2 \int_{-\infty}^{+\infty} t f(t) f'(t) dt$, d'où, en vertu de (*), l'inégalité demandée.

c. L'égalité a lieu si et seulement s'il y a égalité ci-dessus dans (*) (Cauchy-Schwarz), c'est-à-dire si et seulement si les fonctions f' et g sont liées, donc si f' = 0 (f constante) ou si f est solution d'une équation différentielle de la forme

$$\lambda x' + tx = 0 \tag{E}$$

(t: variable, x: fonction inconnue).

Les fonctions constantes autres que la fonction nulle sont à exclure. Les solutions de (E) sont les fonctions de la forme $t\mapsto C\cdot e^{-\frac{t^2}{2\lambda}}$ $(C\in\mathbb{R})$. On ne conservera que les valeurs strictement positives de λ (sinon, la fonction f n'appartient pas à \mathcal{E}). On obtient donc les

fonctions

$$f: t \mapsto C \cdot e^{-\alpha t^2}$$
 $(\alpha \in \mathbb{R}^*_+, C \in \mathbb{R})$.

EXERCICE 6:

Dans cet exercice, on admettra le lemme suivant (théorème de Hardy) : $si \sum u_n$ est une série convergente à termes positifs, alors la série de terme général $v_n = \sqrt[n]{u_0 u_1 \cdots u_{n-1}}$ est convergente.

Soit $f: \mathbb{R}_+ \to \mathbb{R}_+^*$ une fonction continue. On suppose que la fonction $\frac{1}{f}$ est intégrable sur \mathbb{R}_+ .

Pour tout $x \in \mathbb{R}_+$, on pose $F(x) = \int_0^x f(t) dt$. On définit enfin g par

$$g(0) = \frac{1}{f(0)}$$
 et $\forall x \in \mathbb{R}_+^*$ $g(x) = \frac{x}{F(x)}$.

- **1.** Pour tout $n \in \mathbb{N}$, on pose $a_n = F(n+1) F(n)$. Démontrer l'inégalité $\frac{1}{a_n} \leq \int_n^{n+1} \frac{dt}{f(t)}$. Conséquence pour la série $\sum_{n} \frac{1}{a_n}$?
- 2. Montrer que la série $\sum g(n)$ est convergente.
- **3.** En déduire que la fonction g est intégrable sur \mathbb{R}_+ .
- 4. S'il reste du temps... démontrer le théorème de Hardy : pour cela, on pourra écrire $\prod_{k=0}^{n-1}u_k=\frac{1}{(n+1)^n}\prod_{k=0}^{n-1}\left(\frac{(k+2)^{k+1}}{(k+1)^k}\;u_k\right).$

Source : Jean-Marie ARNAUDIÈS, L'intégrale de Lebesque sur la droite, Éditions Vuibert, ISBN 2-7117-8904-7

1. On a $a_n = \int_n^{n+1} f(t) dt$ (a_n est strictement positif) et l'inégalité de Cauchy-Schwarz donne

$$a_n\left(\int_n^{n+1}\frac{dt}{f(t)}\right)=\left(\int_n^{n+1}f(t)\,dt\right)\left(\int_n^{n+1}\frac{dt}{f(t)}\right)\geq \left(\int_n^{n+1}dt\right)^2=1\;,$$

d'où l'inégalité voulue. La fonction $\frac{1}{f}$ étant intégrable sur $[0,+\infty[$, la série de terme général $\int_n^{n+1} \frac{dt}{f(t)}$ converge, il en est donc de même de la série $\sum_n \frac{1}{a_n}$.

2. On a F(x) > 0 pour x > 0, donc g est bien définie sur \mathbb{R}_+ , elle est par ailleurs dérivable sur \mathbb{R}_+^* et continue en zéro. Par l'inégalité arithmético-géométrique, on a, pour tout entier naturel n non nul,

$$\frac{1}{g(n)} = \frac{F(n)}{n} = \frac{1}{n} \sum_{k=0}^{n-1} a_k \ge \left(\prod_{k=0}^{n-1} a_k\right)^{\frac{1}{n}},$$

donc $g(n) \le \left(\prod_{k=0}^{n-1} \frac{1}{a_k}\right)^{\frac{1}{n}}$ et, d'après le théorème de Hardy, la série de terme général g(n) est convergente.

3. La fonction g étant à valeurs positives, l'intégrabilité de g sur \mathbb{R}_+ équivaut à la convergence de la série de terme général $c_n = \int_n^{n+1} g(t) dt$. Or, la fonction g est de classe \mathcal{C}^1 sur $[1, +\infty[$ et, si on prouve que sa dérivée g' est intégrable sur $[1, +\infty[$, la série $\sum_n c_n$ sera de même nature que la série $\sum_n g(n)$, donc convergente (eh oui, c'est un théorème au programme!). On a $g'(x) = \frac{1}{F(x)} - \frac{x f(x)}{F(x)^2}$ sur \mathbb{R}_+^* .

Posons $I = \int_0^{+\infty} \frac{dx}{f(x)} > 0$. Pour tout réel x strictement positif, l'inégalité de Cauchy-Schwarz donne

$$\left(\int_0^x \frac{dt}{f(t)}\right) \left(\int_0^x f(t) dt\right) \ge \left(\int_0^x dt\right)^2 = x^2 ,$$

d'où $F(x) \geq \frac{x^2}{I}$. On a donc $\frac{1}{F(x)} \leq \frac{I}{x^2}$ et la fonction $\frac{1}{F}$ est intégrable sur $[1, +\infty[$. Par ailleurs, une intégration par parties (écrite ici sur des intégrales indéfinies) donne $\int \frac{x}{F(x)} dx = -\frac{x}{F(x)} + \int \frac{dx}{F(x)}$; on a $\lim_{x \to +\infty} \frac{x}{F(x)} = 0$ et la fonction $\frac{1}{F}$ est intégrable sur $[1, +\infty[$, il en résulte que la fonction $x \mapsto \frac{x}{F(x)^2}$ (à valeurs positives) est intégrable sur $[1, +\infty[$. On a ainsi prouvé l'intégrabilité sur $[1, +\infty[$ de la fonction g', c.q.f.d.

4. On vérifie l'égalité proposée par l'énoncé. On a donc

$$\left(\prod_{k=0}^{n-1} u_k\right)^{\frac{1}{n}} = \frac{1}{n+1} \cdot \prod_{k=0}^{n-1} \left(\frac{(k+2)^{k+1}}{(k+1)^k} u_k\right)^{\frac{1}{n}} \le \frac{1}{n(n+1)} \cdot \sum_{k=0}^{n-1} \frac{(k+2)^{k+1}}{(k+1)^k} u_k$$

par l'inégalité arithmético-géométrique. Posons alors $w_n = \sum_{k=0}^{n-1} \frac{(k+2)^{k+1}}{(k+1)^k} u_k$ et

$$v_n = \Big(\prod_{k=0}^{n-1} u_k\Big)^{\frac{1}{n}}$$
. Alors, pour tout $N \in \mathbb{N}^*$,

$$\sum_{n=1}^{N} v_n \leq \sum_{n=1}^{N} \frac{1}{n(n+1)} w_n = \sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{n+1}\right) w_n = \sum_{n=1}^{N} \frac{w_n}{n} - \sum_{n=2}^{N+1} \frac{w_{n-1}}{n}$$

$$= \sum_{n=2}^{N} \frac{w_n - w_{n-1}}{n} + w_1 - \frac{w_N}{N+1}$$

$$\leq \sum_{n=2}^{N} \left(1 + \frac{1}{n}\right)^n u_{n-1} + 2u_0 \leq e \sum_{n=0}^{N-1} u_n.$$

 $\operatorname{car} \left(1 + \frac{1}{n}\right)^n \le e \text{ pour tout } n \in \mathbb{N}^*.$

Ainsi, la convergence de $\sum_n u_n$ entraı̂ne la convergence de $\sum_n v_n$, et on a, plus précisément, la majoration $\sum_{n=1}^{\infty} v_n \leq e \sum_{n=0}^{\infty} u_n$ (inégalité de Carleman).