MATH 217 (Fall 2021)

Honors Advanced Calculus, I

Assignment #3

- 1. Let $S \subset \mathbb{R}^N$. Show that $x \in \mathbb{R}^N$ is a cluster point of S if and only if each neighbourhood of x contains an infinite number of points in S.
- 2. Let $S \subset \mathbb{R}^N$ be any set. Show that ∂S is closed.
- 3. Which of the sets below are compact?
 - (a) $\{x \in \mathbb{R}^N : r \le ||x|| \le R\}$ with 0 < r < R;
 - (b) $\{x \in \mathbb{R}^N : r < ||x|| \le R\}$ with 0 < r < R;
 - (c) $\overline{\{(t, \sin\frac{1}{t}) : t \in (0, 2021]\}};$
 - (d) $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$;
 - (e) $\{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}.$

Justify your answers.

- 4. Show that:
 - (a) if $U_1 \subset \mathbb{R}^N$ and $U_2 \subset \mathbb{R}^M$ are open, then so is $U_1 \times U_2 \subset \mathbb{R}^{N+M}$;
 - (b) if $F_1 \subset \mathbb{R}^N$ and $F_2 \subset \mathbb{R}^M$ are closed, then so is $F_1 \times F_2 \subset \mathbb{R}^{N+M}$;
 - (c) if $K_1 \subset \mathbb{R}^N$ and $K_2 \subset \mathbb{R}^M$ are compact, then so is $K_1 \times K_2 \subset \mathbb{R}^{N+M}$.
- 5. Show that a subset K of \mathbb{R}^N is compact if and only if it has the *finite intersection* property, i.e., if $\{F_i : i \in \mathbb{I}\}$ is a family of closed sets in \mathbb{R}^N such that $K \cap \bigcap_{i \in \mathbb{I}} F_i = \emptyset$, then there are $i_1, \ldots, i_n \in \mathbb{I}$ such that $K \cap F_{i_1} \cap \cdots \cap F_{i_n} = \emptyset$.
- 6*. For j = 1, ..., N, let $I_j = [a_j, b_j]$ with $a_j < b_j$, and let $I := I_1 \times \cdots \times I_N$. Determine ∂I . (*Hint*: Draw a sketch for N = 2 or N = 3.)

Due Thursday, September 30, 2020, at 5:00 p.m.; no late assignments.