Harmonic Analysis

Aakash Jog

2015-16

Contents

1	Lecturer Information	3
2	Required Reading	3
3	Additional Reading	3
Ι	Basic Definitions and Theorems	4
1	Sequences and Series	4
2	Periodic Functions	4
3	Odd and Even Functions	5
ΙΙ	Introduction to Fourier Series	6
1	Real Fourier Series	6

© (§ (§)

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

2	Complex Fourier Series	8
3	Bessel's Inequality	9
4	Riemann-Lebesgue's Lemma	9
5	Dirichlet's Kernel	11
6	Relation between Fourier Coefficients of $f(x)$ and $f'(x)$	15

1 Lecturer Information

Barak Sober

Office: Shenkar Physics 201 E-mail: barakino@gmail.com Telephone: +972 3-640-6024

2 Required Reading

1. Folland, G.B.: Fourier Analysis and its applications, Wadsworth & Brooks/Cole mathematics series, 1992

3 Additional Reading

1. Katznelson, Yitzhak. An introduction to Harmonic analysis. Cambridge University Press, 2004.

Part I

Basic Definitions and Theorems

1 Sequences and Series

Definition 1 (Convergent series). The series $\sum_{n=0}^{\infty} a_n$ is said to converge if the sequence of partial sums $S_N = \sum_{n=0}^{N} a_n$ converges to a finite limit.

Definition 2 (Pointwise convergence of sequence of functions). Let $D \subseteq \mathbb{R}$, and $\{f_n(x): D \to \mathbb{R}\}$ be a sequence of functions. $f_n(x)$ is said to converge pointwise, to a limit function f(x) on D, if $\forall \varepsilon > 0$, $\forall x \in D$, $\exists N \in \mathbb{N}$, such that $\forall n > N$, $|f_n(x) - f(x)| < \varepsilon$.

Definition 3 (Uniform convergence of sequence of functions). Let $D \subseteq \mathbb{R}$, and $\{f_n(x): D \to \mathbb{R}\}$ be a sequence of functions. $f_n(x)$ is said to converge uniformly to f(x) on D if $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, such that, $\forall n > N$, $\forall x \in D$, $|f_n(x) - f(x)| < \varepsilon$.

Theorem 1. If $\{f_n(x)\}_{n=1}^{\infty}$ are continuous functions, and $f_n(x) \xrightarrow{U} f(x)$, then f(x) is also continuous.

Theorem 2. If a sequence of functions converges pointwise as well as uniformly, then the limit function must be the same.

Theorem 3 (Weierstrass M-test). If $|u_k(x)| \le c_k$ on D for $k \in \{1, 2, 3, ...\}$ and the numerical series $\sum_{k=1}^{\infty} c_k$ converges, then the series of functions $\sum_{k=1}^{\infty} u_k(x)$ converges uniformly on D.

2 Periodic Functions

Definition 4 (Periodic functions). A function $f : \mathbb{R} \to \mathbb{R}$ is said to be periodic if $\exists 0 < L \in \mathbb{R}$, such that $\forall x \in \mathbb{R}$,

$$f(x) = f(x+L)$$

If there exists a minimum L, it is called L^* , the fundamental period.

3 Odd and Even Functions

Definition 5 (Odd functions). A function is said to be odd if f(-x) = -f(x).

Odd functions are symmeteric about the origin.

Definition 6 (Even functions). A function is said to be even if f(-x) = f(x).

Odd functions are symmeteric about the y-axis.

Theorem 4. If h(x) is odd,

$$\int_{-L}^{L} h(x) \, \mathrm{d}x = 0$$

Part II

Introduction to Fourier Series

1 Real Fourier Series

Definition 7. Let $f: [-L, L] \to \mathbb{R}$, where L > 0. If $\forall x \in [-L, L]$, then

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi}{L}x\right) + b_n \sin\left(\frac{n\pi}{L}x\right) \right)$$

Theorem 5. Let L > 0, $m \in \mathbb{W}$, $n \in \mathbb{W}$.

Then

$$\int_{-L}^{L} \cos\left(\frac{m\pi}{L}x\right) \cos\left(\frac{n\pi}{L}x\right) dx = \begin{cases} 0 & ; & m \neq n \\ L & ; & m = n \neq 0 \\ 2L & ; & m = n = 0 \end{cases}$$

Proof.

$$E = \int_{-L}^{L} \cos\left(\frac{m\pi}{L}x\right) \cos\left(\frac{n\pi}{L}x\right) dx$$
$$= \int_{-L}^{L} \frac{1}{2} \left(\cos\left((m+n)\frac{\pi}{L}x\right) + \cos\left((m-n)\frac{\pi}{L}x\right)\right) dx$$

 $\frac{\cos(\alpha+\beta)}{2} + \frac{\cos(\alpha-\beta)}{2}$

If $m \neq n$,

$$E = \frac{1}{2} \left(\frac{\sin\left((m+n)\frac{\pi}{L}x\right)}{(m+n)\frac{\pi}{L}} + \frac{\sin\left((m-n)\frac{\pi}{L}x\right)}{(m-n)\frac{\pi}{L}} \right) \Big|_{-L}^{L}$$

$$= 0$$

If $m = n \neq 0$,

$$E = \int_{-L}^{L} \frac{1}{2} \left(\cos \left(2m \frac{\pi}{L} x \right) + 1 \right) dx$$
$$= \frac{1}{2} \int_{-L}^{L} \cos \left(2m \frac{\pi}{L} x \right) dx + \frac{1}{2} x \Big|_{-L}^{L}$$
$$= L$$

If
$$m = n = 0$$
,

$$E = \int_{-L}^{L} \cos(0) \cos(0) dx$$
$$= x|_{-L}^{L}$$
$$= 2L$$

Theorem 6. Let L > 0, $m \in \mathbb{N}$, $n \in \mathbb{N}$.

Then

$$\int_{-L}^{L} \sin\left(\frac{m\pi}{L}x\right) \sin\left(\frac{n\pi}{L}x\right) dx = \begin{cases} 0 & ; & m \neq n \\ L & ; & m = n \end{cases}$$

Theorem 7. Let L > 0, $m \in \mathbb{W}$, $n \in \mathbb{W}$.

Then

$$\int_{-L}^{L} \sin\left(\frac{m\pi}{L}x\right) \cos\left(\frac{n\pi}{L}x\right) dx = 0$$

Assuming f(x) is known, and assuming that it can be integrated term by term,

$$\int_{-L}^{L} f(x) dx = \int_{-L}^{L} \frac{1}{2} a_0 dx + \sum_{n=1}^{\infty} a_n \int_{-L}^{L} \cos\left(n\frac{\pi}{L}x\right) dx + b_n \int_{-L}^{L} \sin\left(n\frac{\pi}{L}x\right) dx$$

$$\therefore \int_{-L}^{L} f(x) dx = \frac{1}{2} \int_{-L}^{L} a_0 dx$$

$$= \frac{1}{2} a_0 \cdot 2L$$

$$\therefore a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$$

Similarly, multiplying the series with $\cos\left(m\frac{\pi}{L}x\right)$ for $m\neq 0$ and integrating,

$$a_m = \frac{1}{L} \int_{L}^{L} f(x) \cos\left(m\frac{\pi}{L}x\right) dx$$

for $m \in \mathbb{N}$. Similarly, for $m \in \mathbb{N} \setminus \{0\}$,

$$b_m = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(m\frac{\pi}{L}x\right) dx$$

Definition 8. The expansion

$$f(x) \approx \frac{1}{2}a_0 + \sum_{i=1}^{\infty} \left(a_n \cos\left(n\frac{\pi}{L}x\right) + b_n \sin\left(n\frac{\pi}{L}x\right) \right)$$

where, for $m \in \mathbb{N}$,

$$a_m = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(m\frac{\pi}{L}x\right) dx$$

and, for $m \in \mathbb{N} \setminus \{0\}$,

$$b_m = \frac{1}{L} \int_{L}^{L} f(x) \sin\left(m\frac{\pi}{L}x\right) dx$$

is called the Fourier Series of f(x).

2 Complex Fourier Series

By Euler's formula,

$$\cos \theta = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right)$$
$$\sin \theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$$

Therefore,

$$\frac{1}{2i} = -\frac{i}{2}$$

Therefore, substituting in the Fourier series,

$$f(x) \approx \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(a_n \frac{1}{2} \left(e^{\frac{in\pi}{L}x} + e^{-\frac{in\pi}{L}x} \right) - b_n \frac{i}{2} \left(e^{\frac{in\pi}{L}x} - e^{-\frac{in\pi}{L}x} \right) \right)$$

$$\approx \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(e^{\frac{in\pi}{L}x} \left(\frac{1}{2}a_n - \frac{i}{2}b_n \right) + e^{-\frac{in\pi}{L}x} \left(\frac{1}{2}a_n + \frac{i}{2}b_n \right) \right)$$

$$\approx \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(e^{\frac{in\pi}{L}x} \left(\frac{1}{2}a_n - \frac{i}{2}b_n \right) \right) + \sum_{n=-\infty}^{1} \left(e^{\frac{in\pi}{L}x} \left(\frac{1}{2}a_n + \frac{i}{2}b_n \right) \right)$$

$$\approx \sum_{n=-\infty}^{\infty} c_n e^{\frac{in\pi}{L}x}$$

3 Bessel's Inequality

Definition 9 (Piecewise continuous functions). $f : \mathbb{R} \to \mathbb{R}$ is said to be piecewise continuous if, for every finite interval [a, b] there is a finite number of discontinuity points, and the one-sided limits at each of these points are also finite.

Definition 10 (Piecewise continuously differentiable functions). $f : \mathbb{R} \to \mathbb{R}$ is said to be piecewise continuously differentiable if it is piecewise continuous, and

$$\lim_{h \to 0^+} \frac{f(x+h) - f(x^+)}{h} < \infty$$

and

$$\lim_{h \to 0^-} \frac{f(x+h) - f(x^-)}{h} < \infty$$

Theorem 8 (Bessel's Inequality). Let f(x) be a piecewise continuous function defined on [-L, L]. Then

$$\frac{1}{2}a_0^2 + \sum_{n=1}^{\infty} a_n^2 + b_n^2 \le \frac{1}{L} \int_{L}^{L} f(x)^2 dx$$

4 Riemann-Lebesgue's Lemma

Theorem 9 (Riemann-Lebesgue's Lemma). If f(x) is piecewise continuous on [-L, L], then

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0$$

Proof. By Bessel's Inequality,

$$\frac{1}{2}a_0^2 + \sum_{n=1}^{\infty} a_n^2 + b_n^2 \le \int_{-L}^{L} f(x)^2 dx$$
$$\therefore \frac{1}{2}a_0^2 + \sum_{n=1}^{\infty} a_n^2 + b_n^2 < \infty$$

As the function is piecewise continuous in [-L, L], its integral from -L to L is finite.

Therefore,

$$\lim_{n \to \infty} a_n^2 \le \lim_{n \to \infty} a_n^2 + b_n^2$$
$$\therefore \lim_{n \to \infty} \le 0$$

Therefore,

$$\lim_{n \to \infty} a_n = 0$$

Similarly,

$$\lim_{n\to\infty}b_n=0$$

Exercise 1.

If f(x) is piecewise continuous on $[-\pi, \pi]$, show that

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \sin\left(\left(n + \frac{1}{2}\right)x\right) dx = 0$$

Solution 1.

$$\sin\left(\left(n + \frac{1}{2}\right)x\right) = \sin(nx)\cos\left(\frac{1}{2}x\right) + \cos(nx)\sin\left(\frac{1}{2}x\right)$$

Therefore, the limit is

$$0 = \lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \cos\left(\frac{1}{2}x\right) \sin(nx) dx$$
$$+ \lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \sin\left(\frac{1}{2}x\right) \cos(nx) dx$$

Let

$$g_1 = f(x)\cos\left(\frac{1}{2}x\right)$$
$$g_2 = f(x)\sin\left(\frac{1}{2}x\right)$$

Therefore,

$$\lim_{n \to \infty} \left(\pi b_n(g_1) + \pi a_n(g_2) \right) = 0$$

Therefore,

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \sin\left(\left(n + \frac{1}{2}\right)x\right) dx = 0$$

5 Dirichlet's Kernel

Definition 11 (Dirichlet kernel).

$$D_m(t) = \frac{1}{2} + \sum_{n=1}^{m} \cos(nt)$$

is called the Dirichlet kernel of order m.

Theorem 10 (Second representation of Dirichlet's kernel). Let $m \in \mathbb{N}$. Then, for $t \neq 2\pi k$, where $k \in \mathbb{Z}$,

$$D_m(t) = \frac{1}{2} + \cos(t) + \cos(2t) + \dots + \cos(mt)$$
$$= \frac{\sin\left(\left(m + \frac{1}{2}\right)t\right)}{2\sin\left(\frac{1}{2}t\right)}$$

Theorem 11. Let

$$S_m(f, x) = \frac{1}{2}a_0 + \sum_{n=1}^{m} a_n \cos(nx) + b_n \sin(nx)$$

Then,

$$S_m(f,x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+t) \left(\frac{1}{2} \sum_{n=1}^{m} \cos(nt) \right) dt$$

Proof.

$$S_{m}(f,x) = \frac{1}{2}a_{0} + \sum_{n=1}^{m} a_{n}\cos(nx) + b_{n}\sin(nx)$$

$$= \frac{1}{2}\left(\frac{1}{\pi}\int_{-\pi}^{\pi} f(s) \,ds\right)$$

$$+ \sum_{n=1}^{m}\left(\frac{1}{\pi}\int_{-\pi}^{\pi} f(s)\cos(ns) \,ds\right)\cos(nx)$$

$$+ \sum_{n=1}^{m}\left(\frac{1}{\pi}\int_{-\pi}^{\pi} f(s)\sin(ns) \,ds\right)\sin(nx)$$

$$= \frac{1}{\pi}\int_{-\pi}^{\pi} f(s)\left(\frac{1}{2} + \sum_{n=1}^{m}\cos(ns)\cos(nx) + \sin(ns)\sin(nx)\right) ds$$

$$= \frac{1}{\pi}\int_{-\pi}^{\pi} f(s)\left(\frac{1}{2} + \sum_{n=1}^{m}\cos(ns)\cos(nx) + \sin(ns)\sin(nx)\right) ds$$

$$= \frac{1}{\pi}\int_{-\pi}^{\pi} f(s)\left(\frac{1}{2} + \sum_{n=1}^{m}\cos(n(s-x))\right) ds$$

Let

$$t = s - x$$
$$\therefore dt = ds$$

Therefore,

$$S_m(f,x) = \frac{1}{\pi} \int_{-\pi-x}^{\pi-x} f(t+x) \left(\frac{1}{2} + \sum_{n=1}^{m} \cos(nt) \right) dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t+x) D_m(t) dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t+x) D_m(-t) dt$$

$$= \frac{1}{\pi} (f(t) * D_m(t))$$

As the function is 2π -periodic, the limits can be changed from $-\pi - x$ and $\pi - x$ to $-\pi$ and π .

Theorem 12 (Dirichlet Theorem). Let $f: [-\pi, \pi] \to \mathbb{R}$ be a piecewise This theorem is also continuously differentiable function. Then, $\forall x \in (-\pi, \pi)$,

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx) = \frac{f(x^-) + f(x^+)}{2}$$

and for $x = \pi$ or $x = -\pi$,

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx) = \frac{f(\pi^-) + f(-\pi^+)}{2}$$

Exercise 2.

Prove that $\forall x \in [0, 1],$

$$x(\pi - x) = \frac{\pi^2}{6} - \sum_{n=1}^{\infty} \frac{1}{n^2} \cos(2nx)$$

Solution 2.

Let the function be extended naturally to $[0, \pi]$. Hence, let the function be extended evenly to $[-\pi, \pi]$.

Therefore as the function is even, the Fourier series of the function is

$$x(\pi - x) \approx \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx)$$

Therefore,

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$
$$= \frac{1}{\pi} \int_{0}^{\pi} x(\pi - x) dx$$
$$= \frac{\pi^2}{3}$$

The integral of
$$\cos x$$
 from 0 to π is zero, i.e. if the limits are π and 0, the function $\sin x$ is

The integral of $\cos x$ from 0 to π is zero.

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} x(\pi - x) \cos(nx) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} (x\pi - x^{2}) \cos(nx) dx$$

$$= \frac{2}{\pi} \left((x\pi - x^{2}) \int \cos(nx) dx - \int (\pi - 2x) \int \cos(nx) dx dx \right) \Big|_{0}^{\pi}$$

$$= \frac{2}{\pi} \left((x\pi - x^{2}) \frac{\sin(nx)}{n} - \int (\pi - 2x) \frac{\sin(nx)}{n} dx \right) \Big|_{0}^{\pi}$$

$$= \frac{2}{\pi} \left(-\int (\pi - 2x) \frac{\sin(nx)}{n} dx \right) \Big|_{0}^{\pi}$$

$$= \frac{2}{\pi} \left((\pi - 2x) \frac{\cos(nx)}{n^{2}} + \int \frac{2\cos(nx)}{n^{2}} dx \right) \Big|_{0}^{\pi}$$

$$= \frac{2}{\pi} (\pi - 2x) \frac{\cos(nx)}{n^{2}} \Big|_{0}^{\pi}$$

$$= \frac{2}{n^{2}} \left((-1)^{n+1} - 1 \right)$$

Therefore,

$$a_n = \begin{cases} -\frac{4}{n^2} & ; & n = 2k \\ 0 & ; & n = 2k+1 \end{cases}$$

Therefore,

$$x(\pi - x) = \frac{\pi^2}{6} - \sum_{k=1}^{\infty} \frac{1}{n^2} \cos(2\pi k)$$

Theorem 13. Let $f[-\pi, \pi] \to \mathbb{R}$ be continuous and $f(-\pi) = f(\pi)$. Let f'(x) be piecewise continuous. Then the Fourier series converges absolutely to some limit and uniformly to f(x).

6 Relation between Fourier Coefficients of f(x)and f'(x)

Theorem 14. Let the Fourier coefficients of f(x) be a_0 , a_n , and b_n . Then, the Fourier coefficients of f'(x) are

$$\alpha_0 = 0$$

$$\alpha_n = nb_n$$

$$\beta_n = -na_n$$

Proof. Assuming f'(x) is integrable,

$$f'(x) \approx \frac{1}{2}\alpha_0 + \sum_{n=1}^{\infty} \alpha_n \cos(nx) + \beta_n \sin(nx)$$

Therefore,

$$\alpha_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x) dx$$
$$= \frac{f(\pi) - f(-\pi)}{\pi}$$
$$= 0$$

$$\alpha_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x) \cos(nx) dx$$
$$= \frac{1}{\pi} f(x) \cos(nx) \Big|_{-\pi}^{\pi} + \frac{n}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

Therefore,

$$\alpha_n = nb_n$$
$$\beta_n = -na_n$$