MAS241 - Analysis I

Quiz 3 - May 7, 2019

	Student ID:	Name:		
	Correct answer - 5 points No answer - 2 points Wring answer - 0 points			
In the following questions, every function is a real-valued function defined on a subset of \mathbb{R} .				
OI II	Δ.		Τ	\mathbf{F}
1.	If $\lim_{x\to p} f(x) = q$, then $\lim_{n\to\infty} f(p_n) =$ such that $\lim_{n\to\infty} p_n = p$.	$= q$ for every sequence $\{p_n\}$		
2.	closed set $E \subset \mathbb{R}$.	$f^{-1}(E)$ is closed for every		
	(True. See Corollary of Theorem 4.8.)			
3.	Any uniformly continuous function is bou	nded.		
	(False. Consider $f(x) = x$ on \mathbb{R} .)			
4.	If f is continuous and E is a connected connected.	subset of \mathbb{R} , then $f(E)$ is		
	(True. See Theorem 4.22.)			
5.	There exists a monotonically increasing from continuous at infinitely many points.	unction on (a, b) that is dis-		
	(True. See Remark 4.31.)			
6.	If f is monotonically increasing and d	ifferentiable in (a,b) , then		
	$f'(x) > 0$ for all $x \in (a, b)$.			
	(False. Consider $f(x) = x^3$ on $(-1,1)$.)			
7.	, ,	•		
	(False. The derivative may not exist at the	*		
8.	If $ f(x) - f(y) \le (x - y)^2$ for any $x, y \in \mathbb{R}$ (True. It can be shown that $f'(x) = 0$ for			
9.	If f is differentiable on $[a,b]$, then f' can	*		
	the first kind on (a, b) .			
	(True. See Corollary of Theorem 5.12.)			
10.	. If f is defined on (a,b) and $f^{(n)}(x)$ exists	for a point $x \in (a, b)$, then		
	$f^{(n-1)}(t)$ exists in some neighborhood of x .			
	(True. See the remark below Definition 5			