

Real-Time Bird Audio Detection using AI on FPGAs

Mestrado em Engenharia Informática e de Computadores

Rodrigo Lopes da Silva

Orientadores:

Professor Doutor Rui Duarte

Professor Doutor Mário Véstias

Introdução

Motivações

- Aves ajudam a monitorizar biodiversidade e padrões migratórios
- Desafios no levantamento de dados visuais
- Áudio permite recolha de dados sem perturbações
- Redes Neurais em CPU e/ou GPU são exigentes em energia e espaço
- Mobilidade de um sistema embebido com FPGA

Objectivo

- Adaptar um modelo do "Bird Audio Detection Challenge" para hardware
- Estudar a quantização de modelos TensorFlow
- Benchmark da implementação em hardware versus software

Bird Audio Detection Challenge (BAD)

- Queen Mary University of London
- 2016 a 2018
- Concurso com submissões de algoritmos que detetam a presença de sons emitidos por pássaros
- Datasets:
 - Ficheiros WAV de 10 segundos
 - 3 para treino
 - 3 para avaliação

Bird Audio Detection Challenge (BAD)

Nome	Gravações	Tipo de sons	Localização	Utilização
BirdVox-DCASE-20k	20000	Vida selvagem, Pássaros (50%), Noite	Ithaca (NY), USA	Avaliação
Chernobyl	6620	Vida selvagem, Pássaros, Meteorológicos	Chernobyl EZ	Treino
freefield1010	7690	Cidade, Vida selvagem, Pássaros	Várias	Treino
PolandNFC	4000	Veados, Mar, Pássaros, Meteorológicos	Polónia	Avaliação
Warblrb10k	8000	Cidade, Pessoas (com imitações), Pássaros	Inglaterra	Treino
Warblrb10k	2000	Cidade, Pessoas (com imitações), Pássaros	Inglaterra	Avaliação

Fluxo do Projecto

Selecção de algoritmos

- Problemas na escolha de algoritmos:
 - Falta de documentação para por a funcionar os algoritmos encontrados
 - Versões antigas do Python
 - Versões antigas das bibliotecas usadas
- Soluções para as dificuldades encontradas:
 - Actualização para versões mais recentes do Python e bibliotecas
 - Sucesso para 2 algoritmos encontrados:
 - All-Conv-Net-for-BAD
 - microfaune-ai

Treino e Pesos - Floating-point

- Porquê treinar?
 - Se é possível treinar, então Treino com Quantização é uma possibilidade
 - Validar a precisão do modelo segundo a sua documentação
 - Extrair os pesos
 - Validar a implementação em C
- Precisão reportada na documentação:
 - 90.2%
- Precisão pós treino:
 - 90.5%

Replicação do modelo em C

Replicação da célula GRU

Treino e Pesos - Quantização

- Treino com Quantização
- QKeras
 - Biblioteca extensão ao Keras
 - Substituição de layers "Q----"
 - Quantizações independentes entre layers, pesos, activações
- microfaune_ai
 - Adicionado ao ínicio do modelo:
 - QActivation com ReLU → Q(4,0)
 - Conv2D e BatchNormalization
 - QConv2DBatchnorm → Q(4,1)
 - Activação ReLU
 - QActivation com ReLU → Q(4,0)
 - Bidirectional GRU
 - Quantização por truncagem → Q(8,1)
 - Time-Distributed Dense, floating-point

Treino e Pesos - Quantização

Modelo	Validation Accuracy
Original	90.50 %
Quantizado 16 bits	88.60 %
Quantizado 8 bits	85.97 %
Quantizado 4 bits	85.46 %
Quantizado 4 bits / 1 cell	84.91 %
Quantizado 2 bits	65.07 %

Training / Validation Accuracy

High-Level Synthesis

- Ajustes ao código C para migrar para HLS
 - Substituição das transferências de dados entre layers:
 - Pointeiros → AXI Lite e AXI Stream
 - Substituição de Pesos:
 - Floating-point → Quantizados (CNN 4 bits, RNN 8 bits, Pós-RNN Floating-point)
 - Adicionado pós-processamento entre secções e algumas layers do modelo:
 - CNN 4bits → RNN 8bits
 - Outputs Forward GRU e Backward GRU transformados em Bidirectional GRU
 - RNN 8bits → Pós-RNN Floating-point
- Optimizações exploradas:
 - Alterada 1ª Convolução de 1 Filtro e 64 Channels, para 64 Filtros e 64 Channels: 3x3x1x64 → 3x3x64x64
 - 64 acumulações em paralelo nas Convoluções

Arquitectura proposta Hardware / Software

Processing System

- Lógica de utilização do modelo
- Configura os blocos hardware
- Executa layers n\u00e3o quantizadas
- Coloca input e recolhe output das layers hardware da memória externa
- Pós-processamento, conversão de dados entre secções do modelo

Programmable Logic

- Executa layers quantizadas
- 2 blocos hardware, Conv3D e BGRU
- DMAs recolhem input e colocam output das layers hardware na memória externa

Design Software

Resultados

- Modelos comparados
 - Original: Python, floating-point, 64 cells
 - Modified: Python, floating-point, 1 cell
 - **QKeras**: Python, CNN 4 bits, 1 cell
 - **Optimized**: QKeras em HLS, RNN 8 bits por truncagem

Modelo	Precisão (400, 50/50)
Original	89.75%
Modified	86.25%
QKeras	80.00%
Optimized	79.50%

ms	CNN	RNN	Software	Total
ARM	53477	10.52	7.4	53495
Optimized	666	4.65	7.4	679
Speed Up	8025%	226%	100%	7877%

Comparação de desempenho Software vs Optimizado

FPGA	BRAM	DSP	FF	LUT
Optimized	101	0	13971	14366
ZU3CG	216	360	141120	70560
Usage %	46%	0%	9.9%	20.36%

Recursos da FPGA usados

DEMO

Slides Auxiliares

SLIDE – MAPA colorido


```
import numpy as np
from tensorflow import keras
spec = keras.Input(
    shape=[None, 40, 1], dtype=np.float32
x = keras.Conv2D(
    64, (3, 3), padding="same",
    activation=None
)(spec)
x = keras.BatchNormalization(momentum=0.95)(x)
x = keras.ReLU()(x)
```

```
import numpy as np
from gkeras import QConv2DBatchnorm, QActivation
spec = keras.Input(
    shape=[431, 40, 1], dtype=np.float32
x = QActivation(f"quantized_relu(4,0)")(spec)
x = QConv2DBatchnorm(
    64, (3, 3), padding="same", activation=None,
    kernel_quantizer = f"quantized_bits(4,1,1)",
    bias_quantizer = f"quantized_bits(4,1,1)",
    momentum=0.95
)(x)
x = QActivation(f"quantized relu(4,0)")(x)
```

GRU - Tensorflow

```
recurrent kernel = []
bias = []
input bias, recurrent bias = tf.unstack(bias)
def step(cell inputs, cell states):
   """Step function that will be used by Keras RNN backend."""
   h tm1 = cell states[0]
   # inputs projected by all gate matrices at once
   matrix_x = backend.dot(cell_inputs, kernel)
   matrix x = backend.bias add(matrix x, input bias)
   x z, x r, x h = tf.split(matrix x, 3, axis=1)
   # hidden state projected by all gate matrices at once
    matrix inner = backend.dot(h tm1, recurrent kernel)
    matrix inner = backend.bias add(matrix inner, recurrent bias)
    recurrent z, recurrent r, recurrent h = tf.split(matrix inner, 3, axis=1)
   z = tf.sigmoid(x_z + recurrent_z)
   r = tf.sigmoid(x r + recurrent r)
   hh = tf.tanh(x h + r * recurrent h)
   # previous and candidate state mixed by update gate
   h = z * h tm1 + (1 - z) * hh
   return h, [h]
```

```
void gru_tensorflow(gruval* input, gruval* state, gruval* output) {
     // state = (h_tm1 = cell_states[0])
     /* inputs projected by all gate matrices at once */
     // matrix_x = backend.dot(cell_inputs, kernel)
     for (int i = 0; i < KERNEL_COLS; ++i) {</pre>
         matrix_x[i] = 0;
         for (int j = 0; j < KERNEL_ROWS; ++j) {</pre>
             gruval iVal = input[j];
             gruval kVal = kernel[j][i];
             matrix_x[i] += iVal * kVal;
     // matrix_x = backend.bias_add(matrix_x, input_bias)
     for (int i = 0; i < KERNEL_COLS; ++i) { matrix_x[i] += bias[i]; }
     // x_z, x_r, x_h = tf.split(matrix_x, 3, axis=1)
     gruval* x_z = matrix_x + (SPLIT_SIZE * 0);
     gruval* x_r = matrix_x + (SPLIT_SIZE * 1);
     gruval* x_h = matrix_x + (SPLIT_SIZE * 2);
     /* hidden state projected by all gate matrices at once */
     // matrix_inner = backend.dot(h_tm1, recurrent_kernel)
     for (int i = 0; i < KERNEL_COLS; ++i) {</pre>
         matrix_inner[i] = 0;
         for (int j = 0; j < KERNEL_ROWS; ++j) {</pre>
             gruval iVal = state[j];
             gruval kVal = recurrent_kernel[j][i];
             matrix_inner[i] += iVal * kVal;
     // matrix_x = backend.bias_add(matrix_inner, recurrent_bias)
     for (int i = 0; i < KERNEL_COLS; ++i) { matrix_inner[i] += recurrent_bias[i]; }</pre>
     // recurrent_z, recurrent_h = tf.split(matrix_inner, 3, axis=1
     gruval* recurrent_z = matrix_inner + (SPLIT_SIZE * 0);
     gruval* recurrent_r = matrix_inner + (SPLIT_SIZE * 1);
     gruval* recurrent_h = matrix_inner + (SPLIT_SIZE * 2);
     // z = tf.sigmoid(x_z + recurrent_z)
     for (int i = 0; i < SPLIT_SIZE; ++i) { z[i] = sigmoid(x_z[i] + recurrent_z[i]); }</pre>
     // r = tf.sigmoid(x_r + recurrent_r)
     for (int i = 0; i < SPLIT_SIZE; ++i) { r[i] = sigmoid(x_r[i] + recurrent_r[i]); }</pre>
     // hh = tf.tanh(x_h + r * recurrent_h)
     for (int i = 0; i < SPLIT_SIZE; ++i) { hh[i] = tanh(x_h[i] + (r[i] * recurrent_h[i])); }
     // previous and candidate state mixed by update gate
     for (int i = 0; i < OUTPUT_SIZE; ++i) { output[i] = z[i] * state[i] + (1 - <math>z[i]) * hh[i]; }
```

kernel = []

Selecção de algoritmos

All-Conv-Net-for-BAD

- CNN
- Layers:
 - Conv2D
 - BatchNormalization
 - MaxPooling2D, (LPV)
 - Dense, (MPV)
 - Conv1D, (*LPV*)
- Variantes e taxas de precisão:
 - Max Pool Variant (MPV)
 - 85.0 % Paper
 - 87.9 % Treinado
 - Learned Pool Variant (LPV)
 - 88.9 % Paper
 - 86.1 % Treinado

microfaune-ai

- CNN e RNN
- Layers:
 - Conv2D
 - BatchNormalization
 - MaxPooling2D
 - ReduceMax
 - Bidirectional + GRU
 - TimeDistributed + Dense
- Taxas de precisão:
 - 90.2 % Reportado na documentação
 - 90.5 % Treinado

Conv3D Unroll	K. lines	K. cols	16 acc	Cycles	BRAM	DSP	FF	LUT
Ultra96-V2	-	-	-	-	216	360	141120	70560
Baseline	1	1	1	52961606	79	0	881	7161
	1	1	2	33101126	79	0	885	8017
Selected	1	1	4	22067526	150	0	1138	9392
	1	3	1	101509446	79	0	1087	9337
	1	3	2	84959046	79	0	1088	12179
	1	3	4	15447366	458	0	1618	16256
	3	1	1	62891847	79	0	1104	9700
	3	1	2	43031367	79	0	1062	12604
	3	1	4	33101126	150	0	1803	17519
	3	3	1	95992646	79	0	1519	16561
	3	3	2	76132167	79	0	1533	25153
Fastest	3	3	4	1103696	1422	0	2778	38398

Table 5.2: Conv3D IP cycle unrolling cycles exploration.

Bytes	Conv3D_0	Conv3D_1	Conv3D_2	Conv3D_3	Conv3D_4	Conv3D_5	
Bias	128	128	128	128	128	128	
Kernel	18432	18432	18432	18432	18432	18432	
Scale	32	32	32	32	32	32	
Total	18592	18592	18592	18592	18592	18592	111552

Table 5.1: Bytes used by Conv3D weights.

Forward GRU F0 F1 F2 F3 F4 F5

Backward GRU B0 B1 B2 B3 B4 B5

Bidirectional GRU F0 F1 B0 B1 F2 F3 B2 B3 F4 F5 B4 B5

Conv3D Unroll	Cycles	BRAM	DSP	FF	LUT
Ultra96-V2	-	216	360	141120	70560
BGRU IP	186633	22	0	1438	10045

Table 5.4: BGRU IP expected FPGA resource usage.

BGRU_0	BGRU_1	
3	3	
3	3	
192	6	
3	3	
3	3	
3	3	
192	6	
3	3	
402	30	432
	3 3 192 3 3 3 192 3	3 3 3 3 192 6 3 3 3 3 3 3 192 6 3 3

Table 5.3: Bytes used by BGRU weights.

Blocos IP e Auxiliares

Blocos IP e Auxiliares

Blocos IP e Auxiliares

Bidirectional GRU F0 F1 B0 B1 F2 F3 B2 B3 F4 F5 B4 B5

Blocos IP e Auxiliares

Blocos IP e Auxiliares

	Count		Percentage		
	Correct	Incorrect	Correct	Incorrect	
Original	359	41	89.75%	10.25%	
Modified	345	55	86.25%	13.75%	
QKeras	320	80	80.00%	20.00%	
FPGA	318	82	79.50%	20.50%	

Table 6.1: Accuracy between the Original, Modified, QKeras, and FPGA models.

Weights memory	Convolutions	1st GRU	2nd GRU	Non-Quantized	Total
Model w/ 64 cells	111552 B	49920 B	74496 B	66052 B	302020 B
Model w/ 1 cell	111552 B	402 B	30 B	66052 B	178036 B
Reduction Factor	1	124.2	2483.2	1	1.7

Table 6.2: Weights memory usage comparison between a model with 64 GRU cells and 1 GRU cell, using the previously mentioned weights calculations.

UltraScale+ ZU3CG³ MPSoC

- BRAM = 216
- FF = 141120

• **LUT** = 70560

• **DSP** = 360

(b) AES-ACC-U96-JTAG

(a) Avnet Ultra96-V2

Figure 6.1: Target Platform

Milliseconds	Conv 0	Conv 1	Conv 2	Conv 3	Conv 4	Conv 5	Total
Baseline	497.2	502.0	248.6	251.0	124.3	124.4	1635.5
Optimized	188.3	193.1	94.1	96.6	47.1	47.2	666.4
Speed Up Factor	2.64	2.60	2.64	2.60	2.64	2.64	2.63

Table 6.3: Comparison of the milliseconds used in the CNN portion of the model, between Baseline and Optimized.

FPGA Resources	BRAM	DSP	FF	LUT
Baseline	44.5	0	1052	1616
Optimized	85	0	1256	3202
Resources	1.9	1	1.19	1.98
Increment Factor	1.9	1	1.19	1.90

Table 6.4: FPGA resources comparison used in the CNN portion of the model, between baseline and optimized.

Milliseconds	BGRU 0	BGRU 1	Total
Optimized	4.208	0.4396	4.646

Table 6.5: Results of the execution time of both Bidirectional GRUs.

FPGA Resources	BRAM	DSP	FF	LUT
Optimized	10	0	1374	3304

Table 6.6: FPGA resources used in the RNN portion of the model.

Milliseconds	CNN to RNN	RNN to T.Dist.	Total
Optimized	0.577	0.038	0.615

Table 6.7: Execution times taken on pre-processing between CNN, RNN, and final layers.

Milliseconds	Time-Distributed 0	Time-Distributed 1	Reduce Max	Total
Optimized	6.220	1.202	0.009	7.431

Table 6.8: Execution times of the final layers running on CPU.

Milliseconds	CNN	CNN to RNN	RNN	RNN to T.D.	CPU Layers	Total
Baseline	1635.5	0.577	4.646	0.038	7.431	1648.2
Optimized	666.4	0.577	4.646	0.038	7.431	679.1
Speed Up Factor	162.9%	100%	100%	100%	100%	159.2%

Table 6.9: Comparison of the number of milliseconds used in different sections of the model, between Baseline and Optimized.

	CNN	CNN to RNN	RNN	RNN to T.D.	CPU Layers	Total
Optimized	666.4 ms	0.577 ms	4.646 ms	0.038 ms	7.431 ms	679.1 ms
% Time Executing	98.13 %	0.08 %	0.68 %	0.006 %	1.09 %	100 %

Table 6.10: Presenting the percentage of execution time across the multiple sections of the Optimized implementation.

FPGA Resources	BRAM	DSP	FF	LUT
Conv3D IP	85	0	1256	3202
BGRU IP	10	0	1374	3304
Optimized	101	0	13971	14366
ZU3CG FPGA	216	360	141120	70560
Usage %	46%	0%	9.9%	20.36%

Table 6.11: Optimized resource usage.

Milliseconds	CNN	CNN to RNN	RNN	RNN to T.D.	CPU Layers	Total
ARM	53477.6	0	10.52	0	7.431	53495.3
Optimized	666.4	0.577	4.646	0.038	7.431	679.1
Speed	8025%	0%	226%	0%	100%	7877%
Up Factor			,		100,0	

Table 6.12: Comparison of the number of milliseconds used in different sections of the model, between ARM CPU and Optimized.

Resultados e Desempenho

- Original microfaune_ai model without any modification, using float.
- Modified model that only uses 1 GRU cell, without quantization, using float.
- Quantized modified model using QKeras. Note that only the CNN part of the model is quantized at 4 bits with 0 integers, while the rest uses float.
- Quantized modified model, with the RNN portion being quantized with truncation 8 bits with 1 integer, running on the FPGA.

	Count		Percentage		
	Correct	Incorrect	Correct	Incorrect	
Original	359	41	89.75%	10.25%	
Modified	345	55	86.25%	13.75%	
QKeras	320	80	80.00%	20.00%	
FPGA	318	82	79.50%	20.50%	

Table 6.1: Accuracy between the Original, Modified, QKeras, and FPGA models.

Weights memory	Convolutions	1st GRU	2nd GRU	Non-Quantized	Total
Model w/ 64 cells	111552 B	49920 B	74496 B	66052 B	302020 B
Model w/ 1 cell	111552 B	402 B	30 B	66052 B	178036 B
Reduction Factor	1	124.2	2483.2	1	1.7

Table 6.2: Weights memory usage comparison between a model with 64 GRU cells and 1 GRU cell, using the previously mentioned weights calculations.

Milliseconds	CNN	CNN to RNN	RNN	RNN to T.D.	CPU Layers	Total
Baseline	1635.5	0.577	4.646	0.038	7.431	1648.2
Optimized	666.4	0.577	4.646	0.038	7.431	679.1
Speed Up Factor	162.9%	100%	100%	100%	100%	159.2%

Table 6.9: Comparison of the number of milliseconds used in different sections of the model, between Baseline and Optimized.

FPGA Resources	BRAM	DSP	FF	LUT
Conv3D IP	85	0	1256	3202
BGRU IP	10	0	1374	3304
Optimized	101	0	13971	14366
ZU3CG FPGA	216	360	141120	70560
Usage %	46%	0%	9.9%	20.36%

Table 6.11: Optimized resource usage.

Milliseconds	CNN	CNN to RNN	RNN	RNN to T.D.	CPU Layers	Total
ARM	53477.6	0	10.52	0	7.431	53495.3
Optimized	666.4	0.577	4.646	0.038	7.431	679.1
Speed Up Factor	8025%	0%	226%	0%	100%	7877%

Table 6.12: Comparison of the number of milliseconds used in different sections of the model, between ARM CPU and Optimized.

ms	CNN	RNN	Software	Total
Baseline	1635	4.65	7.4	1648
Optimized	666	4.65	7.4	679
Speed Up	163%	100%	100%	159.2%

Comparação de desempenho Baseline vs Optimizado

bytes	Total
Model w/ 64 cells	302 020 B
Model w/ 1 cell	178 036 B
Reduction Factor	169.6%

Comparação de recursos 64 células GRU vs 1 célula

ms	CNN	RNN	Software	Total
ARM	53477	10.52	7.4	53495
Optimized	666	4.65	7.4	679

Comparação de desempenho Software vs Optimizado

FPGA	BRAM	DSP	FF	LUT
Optimized	101	0	13971	14366
ZU3CG	216	360	141120	70560
Usage %	46%	0%	9.9%	20.36%

Recursos da FPGA usados

