10-755: Advanced Statistical Theory I

Fall 2017

Lecture 5: September 18

Lecturer: Alessandro Rinaldo Scribes: Boyan Duan

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

5.1 Lipschitz functions of Gaussians

This section shows that concentration of normal distribution is good in some sense.

Recall: Let $Z \sim N_d(0, \sigma^2 I_d)$. If d = 1, $P(|Z| \ge t) \le 2exp\{-\frac{t^2}{2\sigma^2}\}$.

The following theorm is about multi-dimensional, Lipschitz case.

Theorem 5.1 Let $f: \mathbb{R}^d \to \mathbb{R}$ be L-Lipschitz, let X = f(Z), then

$$X - EX \in SG(\sigma^2 L^2)$$

and

$$P(|f(Z)-Ef(Z)| \geq t) \leq 2exp\{-\frac{t^2}{2L^2\sigma^2}\}$$

Note: L-Lipschitz: $|f(x) - f(y)| \le L||x - y||$, where $||\cdot||$ is euclidean norm

Remark

- 1. The above bound doesn't depend on d!
- 2. Many proofs exists. There's one in the reference book.

One way is to use Gaussian Isoperimetric Inequality (stated as follows).

Let P be distribution of $N_d(0, I_d)$, and let $A \subseteq \mathbb{R}^d$.

If H is a half space (definded as $\{x, < x, \nu > \le 0, \text{ for some unit norm } \nu\}$), and if P(A) = P(H), then

$$P(d(x, A) \ge \epsilon) \le P(d(x, H) \ge \epsilon), \forall \epsilon > 0$$

for $x \sim N(0, I)$. (Note: $d(x, A) = \inf_{y \in A} ||x - y||$)

See book by Massart [PM2007] and book by Ledoux. [ML2005]

5.2 Maximum of Gaussian

In this section, we use the above theorem to show that maximum of Gaussian have the similar tail behavior as Gaussian.

Theorem 5.2 Let $Y \sim N_d(0, \Sigma), \sigma^2 = \max_i \Sigma_{ii}, X = \max_i Y_i \text{ (or } X = \max_i |Y_i|), \text{ then}$

$$P(|X - EX| \ge t) \le 2exp\{-\frac{t^2}{2\sigma^2}\}$$

$$E[X] \sim \sqrt{2\sigma log d}, V[X] \le \sigma$$

Proof: Let Y = AZ, $Z = N_d(0, I_d)$, $\Sigma = AA^T$. Consider function $f : Z \in \mathbb{R}^d \to \max_{i=1,\dots,d} (AZ)_j$. f is L-Lipschitz with $L = \max_i \sqrt{\sum_{j=1}^d A_{ij}^2} = \sigma^2$. Then by Theorem 5.1, proof complete. Now we show 1. f is L-Lipschitz; 2. $L = \max_i \sqrt{\sum_{j=1}^d A_{ij}^2} = \sigma$.

1.
$$\forall Z, Z' \in \mathbb{R}^d$$
, for $i = 1, \dots, d$, $|(AZ)_i - (AZ')_i| = |\sum_j A_{ij}(Z_j - Z'_j)| \le \sqrt{\sum_j A_{ij}^2} ||Z - Z'|| \le L||Z - Z'||$

2.
$$\sum_{i=1}^{d} A_{ij}^2 = E[(\sum_i A_{ij} Z_j)^2] = V[\sum_i A_{ij} Z_j] = V[Y_i] = \sigma^2$$

Remark The theorem is stated for norm $||Y||_{\infty}$. It can be extended to $||Y||_p = (\sum_i |Y_i|^p)^{1/p}, \ p \ge 1$.

Note that Theorem 5.1 can be extend to other distribution, but require a stronger condition on f.

Theorem 5.3 Let X_1, \dots, X_d be independent taking value in $[0,1]^d$. Let $f: \mathbb{R}^d \to \mathbb{R}$ be L-Lipschitz and convex, then

$$P(|f(X) - Ef(X)| \ge t) \le 2exp\{-\frac{t^2}{2L^2}\}$$

For more, see Thm 3.3 in the book "High-dimensional statistics: A non-asymptotic viewpoint".

5.3 Covering and Packing

Background we often want to bound

$$max_{i \in I}X_i$$
,

where I is finit or infinite, $X_i \in SG$ or SE, not necessarily independent.

Example 5.4

• $I = \{1, 2, \cdots\}, X_i \stackrel{iid}{\sim} P$, then

$$\lim_{n\to\infty} P(\max_{i=1,\dots,n} X_i \le t) = \lim_{n\to\infty} [P(X_i \le t)]^n = 0$$

• If $X_i = X$, then for proper t,

$$\lim_{n\to\infty} P(\max_i X_i \le t) = P(X \le t) > 0$$

Recall: Metric space (\mathcal{X}, d)

Example 5.5

- $(\mathbb{R}^d, ||\cdot||_p), p \geq 1$. Especially, $||x||_{\infty} = \max_i |x_i|$
- L_p -space (mostly infinite dimension): \mathcal{X} is a set of functions on [0,1], and $d(f,g) = ||f-g||_p = (\int |f(x)-g(x)|^p dx)^{1/p}$. Especially, $||f-g||_{\infty} = \sup_{x \in [0,1]} |f(x)-g(x)|$.

Definition 5.6 (Covering Number) For $\delta > 0$, a δ -covering or a δ -net of (\mathcal{X}, d) is a subset $\{\theta_1, \dots, \theta_N\} \subset \mathcal{X}$ s.t. $\forall \theta \in \mathcal{X}, \exists \theta_i \text{ s.t. } d(\theta, \theta_i) \leq \delta$. The δ -covering number of (\mathcal{X}, d) is the cardinality of a smallest cover, denoted as $N(\delta, \mathcal{X}, d)$.

Remark

- We assume that $N(\delta, \mathcal{X}, d) < \infty, \forall \delta > 0$, and $\delta < diameter(\mathcal{X}) = \sup_{x, x' \in \mathcal{X}} d(x, x')$.
- Covering means $\mathcal{X} \subset \bigcup_{i=1}^{N} B(\theta_i, \delta)$, where $B(\theta_i, \delta) = \{x \in \mathcal{X} : d(x, \theta_i) \leq \delta\}$.
- $N(\delta, \mathcal{X}, d)$ decreases in δ , and will converge if $\delta \downarrow 0$.
- If $\mathcal{X}' \subset \mathcal{X}$, it is not true that $N(\delta, \mathcal{X}', d) \leq N(\delta, \mathcal{X}, d)$.
- The quantity $log N(\delta, \mathcal{X}, d)$ is also known as metric entropy.

Example 5.7

- $\mathcal{X} = [-1, 1], d(x, y) = |x y|, \text{ then } N(\delta, \mathcal{X}, d) \leq \frac{1}{\delta} + 1.$
- $\mathcal{X} = [-1, 1]^d$, d(x, y) = |x y|, then $N(\delta, \mathcal{X}, d) \leq (\frac{1}{\delta} + 1)^d$. Thus, $log N(\delta, \mathcal{X}, d) \approx dlog(\frac{1}{\delta} + 1)$ (scale linearly in d).
- (Infinite dimensional space) $\mathcal{F} = \{f : [0,1]^d \to \mathbb{R}, L\text{-}Lipschitz\}$, then $log N(\delta, \mathcal{F}, ||\cdot||_{\infty}) \asymp (\frac{L}{\delta})^d$ (scale exponential in d, a reflect of size of space).

Definition 5.8 (Packing Number) A δ -packing of (\mathcal{X}, d) is $\{\theta_1, \dots, \theta_M\} \subseteq \mathcal{X}$ s.t. $d(\theta_i, \theta_j) > \delta, \forall i, j$. The δ -packing number of (\mathcal{X}, d) is the cardinality of a largest packing.

The following lemma bounds covering number between two packing number:

Lemma 5.9 $\forall \delta > 0, M(2\delta, \mathcal{X}, d) \leq N(\delta, \mathcal{X}, d) \leq M(\delta, \mathcal{X}, d)$

Covering number in euclidean space

Theorem 5.10 (Volumetric ratios) Let $||\cdot||, ||\cdot||'$ be two norms in \mathbb{R}^d , with unit balls B and B' ($B = \{x \in \mathbb{R}^d, ||x|| \le 1\}$). Then, the δ -covering number of B in $||\cdot||'$ satisfies

$$(\frac{1}{\delta})^d \frac{vol(B)}{vol(B')} \leq N(\delta, B, ||\cdot||') \leq \frac{vol(\frac{2}{\delta}B + B')}{vol(B')},$$

where $vol(B) = volume \ of \ B$; $\delta B = \{\delta x : x \in B\}(\delta > 0)$; for $a, b > 0, aB + bB' = \{ax + by : x \in B, y \in B'\}$ (Minkowski sum).

Proof: Use the fact that $V_d(\delta B) = \delta^d vol(B)$.

1. (Lower Bound) If $\{x_1, \dots, x_N\}$ is a δ -covering of B in $||\cdot||'$,

$$B \subset \cup_{i=1}^{N} (x_i + \delta B')$$

in which $x_i + \delta B' = \{y : ||x - y||' \le \delta\}$. Since volume is invariant to shift,

$$vol(B) < Nvol(\delta B') = N\delta^d vol(B')$$

Therefore,

$$N(\delta, B, ||\cdot||') \ge (\frac{1}{\delta})^d \frac{vol(B)}{vol(B')}$$

2. (Upper Bound) Let $\{x_1, \cdots, x_M\}$ be a maximum δ -packing of B in $||\cdot||'$, then $\{x_1, \cdots, x_M\}$ is also a δ -covering of B in $||\cdot||'$ (proof by contradiction). Now, the balls $x_i + \frac{\delta}{2}B', i = 1, \cdots, M$ are disjoint and

$$\bigcup_{i=1}^{M} (x_i + \frac{\delta}{2}B') \subset B + \frac{\delta}{2}B'.$$

Take volume on both side,

$$M(\frac{\delta}{2})^d vol(B') \leq (\frac{\delta}{2})^d vol(\frac{2}{\delta}B + B')$$

Therefore,

$$N \le M \le \frac{vol(\frac{2}{\delta}B + B')}{vol(B')}.$$

Remark

1. If $||\cdot|| = ||\cdot||'$, then $dlog(\frac{1}{\delta}) \leq log[N(\delta, B, ||\cdot||)] \leq dlog(1 + \frac{2}{\delta}) \leq dlog(\frac{3}{\delta})$, $(\delta \leq 1)$.

2. If $B' \subseteq B$, B' is unit ball in $||\cdot||$, B is a euclidean unit ball, then

$$N(\delta, B, ||\cdot||) \le (1 + \frac{2}{\delta})^d \frac{vol(B)}{vol(B')}.$$

5.4 Discretization Argument

In this section, we will use covering number to bound $max_{i \in I}X_i$.

Definition 5.11 A random vector X is sub-Gaussian(σ^2) if $\nu^T X \in SG(\sigma^2), \forall \nu \in S^{d-1}$. $(S^{d-1} = \{x \in \mathbb{R}^d, ||x|| = 1\})$

Theorem 5.12 Assume $X \in \mathbb{R}^d$ s.t. $X \in SG(\sigma^2)$ then,

$$E[||X||] \le 4\sigma\sqrt{d}$$

and

$$||X|| \leq 4\sigma\sqrt{d} + 2\sigma\sqrt{2log(\frac{1}{\delta})}$$

with $prob \geq 1 - \delta, \delta \in (0, 1)$.

References

[PM2007] P. MASSART, "Concentration inequalities and model selection," Vol.6. Berlin: Springer, 2007.

[ML2005] M. LEDOUX, "The concentration of measure phenomenon," No. 89. American Mathematical Soc., 2005.