■ Neural network setting 「NET.txt」

CrossEntropy Square or CrossEntropy BATCH_SIZE 50 Mini batch size **EPOCH 10** Epoch number LAMBDA 0.000000 Load decay (weight decay) EPS 0.001000 Learning rate Optimizer **OPTIMIZER Adam VALIDATION NUM 100** Number of Validation data **ERROR PLOT STEP 10** Graph data output interval(gnuplot format) TEST_SAMPLE 10 Number of test data samples ACCURACY_RATE_PLOT 1 Accuracy plotting Xoptimizer solver is listed on the final page

^{*} Leave the setting of LAMBDA to 0 (there is a problem)

ERROR_PLOT_STEP

The loss value is output to 'error_loss.dat' at the interval specified at the time of learning. gnuplot can display graphs in real time.

set border lc rgb "white"

set grid lc rgb "white" It 2

set key opaque box

set object 1 rect behind from screen 0,0 to screen 1,1 fc rgb "#B8B2C3" fillstyle solid

smooth [unique, csplines, acsplines, bezier, sbezier]

plot 'error_loss.dat' using 1:2 t "varidation" with lines linewidth 2 linecolor rgbcolor "red" replot 'error_loss.dat' using 1:3 t "test sample" with lines linewidth 2 linecolor rgbcolor "blue"

#replot 'error_loss.dat' using 1:2 t "varidation" with lines linewidth 1 linecolor rgbcolor "red" #replot 'error_loss.dat' using 1:3 t "test sample" with lines linewidth 1 linecolor rgbcolor "blue"

pause 10

reread

ACCURACY_RATE_PLOT

Accuracy is output to 'accuracy_rate.dat' at the interval specified at the time of learning. gnuplot can display graphs in real time.

set border lc rgb "white"

set grid lc rgb "white" It 2

set key opaque box

set object 1 rect behind from screen 0,0 to screen 1,1 fc rgb "#B8B2C3" fillstyle solid set key right bottom

smooth [unique, csplines, acsplines, bezier, sbezier]

plot 'accuracy_rate.dat' using 1:2 t "varidation accuracy" with lines linewidth 2 linecolor rgbcolor "red"

replot 'accuracy_rate.dat' using 1:3 t "test sample accuracy" with lines linewidth 2 linecolor rgbcolor "blue"

pause 10

reread

■ Layer setting 「LAYER.txt」

LAYER 4	Number of layers
1 [28, 28]	Input feature map from left, input unit width, input unit height
Each layer setting	g
See layer description	Width and height are numbers when input units are regarded as a matrix
END	

■ Describing layers Fully Connected layer

LAYER_TYPE_FullyConnected/layerName 1 [1, 10] Softmax	From the left, input of feature map, output unit width, output unit height, start function
	 The width and height are the numbers when looking at the input device as a matrix Activation function described on final page

Convolutional layer

LAYER_TYPE_Convolutional/layerName	From the left, input feature map, convolution width,		
20 (5, 5) st 1 ReLU convolution height, stride, activation function			
Convolutional layer			
LAYER_TYPE_Convolutional/layerName	From the left, input feature map, convolution width,		

LAYER_TYPE_DeConvolutional/layerName	From the left, input feature map, convolution width,
20 (5, 5) st 1 ReLU	convolution height, stride, activation function
DeConvolutional layer	
DeConvolutional layer LAYER_TYPE_DeConvolutional/layerName	From the left, input feature map, convolution width

maxPooling layer

LAYER_TYPE_maxPooling/layerName 20 (4, 4) st 4 Identity	From the left, input feature map, convolution width, convolution height, stride, activation function
maxPooling layer	
LAYER_TYPE_maxPooling/layerName	From the left, input feature map, convolution width,
20 (4, 4) st 4 pd 0 Identity	convolution height, stride, padding, activation function

AveragePooling layer LAYER_TYPE_AveragePooling /layerName	From the left, input feature map, convolution width
20 (4, 4) st 4 Identity	convolution height, stride, activation function
B 75 17 17 17 17 17 17 17 17 17 17 17 17 17	
AveragePooling layer LAYER_TYPE_AveragePooling /layerName 20 (4, 4) st 4 pd 0 Identity	From the left, input feature map, convolution widtle convolution height, stride, padding, activation function

Dropout layer

LAYER_TYPE_Dropout/layerName	From	the	left,0.5	is	the	dropout	rate,	activation
0.5 Identity	function	on						

BatchNormalize layer	
LAYER_TYPE_ BatchNormalize/layerName	From the left, 0.999 is the dropout decay, activation
0.999 Identity	function

ReLU

 $\frac{\tanh(x/2)+1}{2}$ Sigmoid

Output UNIT

Activation fun	ction	Loss function	Differentiation of loss function
Identity	h(x) = x	Square	$\frac{\partial E}{\partial w} = y - t$
Softmax h(x	$x(x) = \frac{\exp(x)}{\sum_{j=1}^{n} \exp(x_j)}$	CrossEntropy	$\frac{\partial E}{\partial w} = y - t$

■Optimizer solver

Adam

$$m_{t+1} = \beta_1 m_t + (1 - \beta_1) \nabla E(\mathbf{w}^t)$$

$$v_{t+1} = \beta_2 v_t + (1 - \beta_2) \nabla E(\mathbf{w}^t)^2$$

$$\hat{m} = \frac{m_{t+1}}{1 - \beta_1^t}$$

$$\hat{v} = \frac{v_{t+1}}{1 - \beta_2^t}$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \frac{\hat{m}}{\sqrt{\hat{v}} + \epsilon}$$

 α =0.001, β 1 =0.9, β 2 =0.999, ϵ =10E-8

AdaGrad

$$egin{aligned} h_0 &= \epsilon \ h_t &= h_{t-1} +
abla E(\mathbf{w}^t)^2 \ \eta_t &= rac{\eta_0}{\sqrt{h_t}} \ \mathbf{w}^{t+1} &= \mathbf{w}^t - \eta_t
abla E(\mathbf{w}^t) \end{aligned}$$

 ϵ =10E-8 ,η 0 =0.001

RMSprop

$$egin{aligned} h_t &= lpha h_{t-1} + (1-lpha)
abla E(\mathbf{w}^t)^2 \ \eta_t &= rac{\eta_0}{\sqrt{h_t} + \epsilon} \ \mathbf{w}^{t+1} &= \mathbf{w}^t - \eta_t
abla E(\mathbf{w}^t) \end{aligned}$$

 α =0.99, ϵ =10E-8, η 0=0.01

AdaDelta

$$h_t =
ho h_{t-1} + (1-
ho) \nabla E(\mathbf{w}^t)^2$$
 $v_t = rac{\sqrt{s_t + \epsilon}}{\sqrt{h_t + \epsilon}} \nabla E(\mathbf{w}^t)$ $s_{t+1} =
ho s_t + (1-
ho) v_t^2$ $\mathbf{w}^{t+1} = \mathbf{w}^t - v_t$

 $\rho = 0.95, \epsilon = 10E - 6$

SGD

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t - \eta rac{\partial E(\mathbf{w}^t)}{\partial \mathbf{w}^t}$$

η=0.01