Class 8: Gravitation AP Physics

Timothy Leung, Ph.D.

Olympiads School

Fall/Winter 2017

Files to Download

Please download/print the PDF file

Today's Plan

Gravitational Force

$$\mathbf{F}_g = -\frac{Gm_1m_2}{r^2}$$

Gravitational Potential Energy

• The gravitrational potential energy is defined as:

$$U_g = -\frac{Gm_1m_2}{r}$$

- It has a very similar form to the the equation for \mathbf{F}_g
- $U_g = 0$ at r = 0 and *decrease* as r decreases

Relating Gravitational Potential Energy to Force

• If you know *vector* calculus, you can easily see that gravitational force (\mathbf{F}_g) is the negative gradient of the gravitational potential energy (U_g) :

$$\mathbf{F}_g = -\nabla U_g = -\frac{\partial U_g}{\partial r}\mathbf{\hat{r}}$$

- Even without using vector calculus, you should still see that, like all conservative force, $\Delta F_g = -\Delta U_g$, as we have seen in Class 3
- ullet The direction of ${f F}_g$ always points from high to low potential
 - ullet A falling object is always decreasing in $U_{
 m g}$
 - "Steepest descent": the direction of ${f F}$ is the shortest path to decrease U_{g}
 - Objects traveling perpendicular to **F** has constant U_g

Gravitational Field

A Review

 The concept of gravitational field was studied in Grade 12 Physics, so this should be a review

Think Gravitational Field: What is g?

We generally describe the force of gravity as

$$\mathbf{F}_g = m\mathbf{g}$$

• To find the magnitude of g, we group the variables in Newton's universal gravitation equation:

$$F_g = \underbrace{\left[\frac{Gm_1}{r^2}\right]}_{=g} m_2 = m_2 g$$

• On the surface of Earth, we use use $m_1 = m_{\rm Earth}$ and $r = r_{\rm Earth}$ to compute $g = 9.81 \, {\rm m/s^2}$, or $g = 9.81 \, {\rm N/kg}$ (both units are equivalent)

Gravitational Field

• The intensity of the **gravitational field** ${\bf g}$ generated by a source mass m_s is defined by:

$$g(m_s,r)=\frac{Gm_s}{r^2}$$

ullet Mapping of how m_s influences the gravitational forces on other masses

Quantity	Symbol	SI Unit
Gravitational field intensity	g	N/kg
Universal gravitational constant	G	$N m^2/kg^2$
Mass of source (a point mass)	m_s	kg
Distance from centre of source	r	m

Relating Gravitational Field & Gravitational Force

g itself doesn't do anything until there is another mass m. At which point,
 m experiences a gravitational force related to g by:

$$\mathbf{g} = \frac{\mathbf{F}_g}{m}$$

- \mathbf{F}_g and \mathbf{g} are *vectors* in the same direction: toward the centre of the source mass that created the field
- All vector operations apply

Quantity	Symbol	SI Unit
Gravitational field	g	N/kg
Gravitational force on a mass	$\mathbf{F}_{\mathcal{S}}$	N
Mass inside the gravitational field	m	kg

Relating U_g , \mathbf{F}_g and \mathbf{g}

• Knowing that \mathbf{F}_g and \mathbf{g} only differ by a constant, we can also relate gravitational field to U_g by the gradient operator:

$$\mathbf{g} = \frac{\mathbf{F}_g}{m} = -\nabla \left(\frac{U_g}{m}\right) = -\frac{\partial}{\partial r} \left(\frac{U_g}{m}\right) \hat{\mathbf{r}}$$

- We already know that the direction of g is the same as F_g , i.e.
 - ullet The direction of ${f g}$ is the shortest path to decrease U_g
 - Objects traveling perpendicular to ${f g}$ has constant $U_{\!g}$

Gravitational Field Lines

- The direction of g is towards the centre of the object that created it
- Field lines do not tell the intensity (i.e. magnitude) of g, only the direction

Orbital Velocity

Orbital Energies

- Kinetic Energy
- Gravitational Potential Energy
- Total Energy

Escape Velocity

Kepler's Law of Planetary Motion