- 1. [5 marks] Consider the following fixed point function, $g(x) = \frac{4}{x^2 + x 4}$. For roots, -1,2 and -2 find if g(x) is a convergent or a divergent function.
- 2. [5 marks] Proof Newton Raphson method gives a super-linearly convergent g(x).

Jegiven
$$g(n) = \frac{4}{n^2 + n - 4}$$
 $\frac{1}{n^2 + n - 4} = \frac{4}{(2n+3)}$
 $\frac{1}{(n^2 + n - 4)^2}$

for
$$n_{4} = -1$$
, $g(n_{4}) = 0.25 < J$.: Convergent for $n_{4} = 2$, $g(n_{4}) = 5 > 1$.: Divergent for $n_{4} = -2$, $g'(n_{4}) = 3 > 3$.: Divergent

2. Given in the lecture notes.

Name:	Student ID:
	Student ID

- 1. [5 marks] Consider the following fixed point function, $g(x) = \frac{1}{9}(x^3-x^2+9)$. For roots, 1,3 and -3 find if g(x) is a convergent or a divergent function.
- 2. [5 marks] Proof Newton Raphson method gives a super-linearly convergent g(x).

1. given
$$g(n) = \frac{1}{9}(n^3 - n^2 + 9)$$

2. $g'(n) = \frac{3}{9}n^2 - 2n$

for
$$n_{4} = -3$$
, $g'(n_{4}) = \frac{1}{9}$ (1: Convergent for $n_{4} = 3$, $g'(n_{4}) = \frac{1}{9}/3$) 1: Divergent for $n_{4} = -3$, $g'(n_{4}) = \frac{10}{3}/3$ 21: Divergent

2. Given in the lecture hotes.