Flight Ahead - Advanced Predictive Models for Flight Delays

261 Machine Learning at Scale, December 14, 2023

Team 5-1: Carolyn Dunlap - Phase III Leader Hamsini Sankaran, Jasmine Teo, Siva Thiyagarajan

Outline

- Introduction
- Exploratory Data Analysis
- Modeling Pipeline
- Feature Engineering
- Key Model Results
- Discussion
- Conclusion

Team

Carolyn

Hamsini

Jasmine

Siva

Flight Delays

Problem:

- 20.8% of flights delayed so far in 2023_[1]
- FAA/Nexor estimated total cost of delays was \$28 billion in 2018_[2]
- Flights delays are increasing each year_[1]

Solution:

Large-scale, machine learning model to predict flight delays before they occur

Data

Flights

Weather

Airport Metadata

216 total features 5 years (2015 - 2019) 31,746,841 flights Key target variable:
Departure delay of
more than 15 minutes

Flight Delay Metrics

3-Year Data (2015-2018)

Flight Delay Metrics by Month

Flight Delays by Time of Day and Origin State

Number of Flights Delayed By Departure Time Block

Average Departure Delay by Origin State

Weather & Sky Effects on Flight Delays

Distribution of Sky Conditions

FEW: Few clouds (1/8 to 2/8 of the sky covered)

SCT: Scattered clouds (3/8 to 4/8 of the sky covered)

BKN: Broken clouds (5/8 to 7/8 of the sky covered)

OVC: Overcast clouds (8/8 of the sky covered)

VV: Vertical visibility (sky is completely obscured, often due

to fog or heavy precipitation)

Boxplots of Weather Conditions

Weather Conditions

Our Modeling Pipeline

Feature Engineering Decisions

Exclude features with many missing values Exclude features for data leakage Design new features Impute features having missing values Exclude intercorrelated numerical features Select top features

Derived Feature	Raw Feature				
Flight Frequency	Tail Number				
Flights per day at Destination airport	Day of week, Carrier, Destination				
Flights per day at Origin airport	Day of week, Carrier, Origin				
Average Carrier Delay	Departure Delay, Carrier				
Departure time of the day	Scheduled Departure Time block				
Arrival time of the day	Scheduled Arrival Time Block				
Prior Departure delay (> 2hrs)	Departure Delay				
Holiday (-5/+2 days)	Flight Date				
Few Clouds, Scattered Clouds, Broken Clouds, Over Cast, Vertical	Hourly Sky Conditions				
Visibility					

Final Features

Random Forest Feature Importance

Feature Importance Score

Flight

- Scheduled departure time
- Hourly relative humidity
- Origin airport latitude
- Flight distance
- Origin airport type (large/small)
- Airline carrier
- Cancelled flight
- Previous flight departure delay (yes/no)
- Average carrier delay
- Flight frequency
- Departure time of day
- Flights per day at the origin

Weather

- Hourly Precipitation
- Overcast sky conditions
- Hourly altimeter setting
- Hourly dew point temperature
- Hourly visibility
- Broken clouds sky condition
- Hourly sea level pressure

Results on 5 Years Data

Model	Cross Fold Evaluation						Full Evaluation						
	Train				Validation		Full Training			Blind validation			
	F2 SCORE	RECALL	PRECISION	Training Time (min)	F2 SCORE	RECALL	PRECISION	F2 SCORE	RECALL	PRECISION	F2 SCORE	RECALL	PRECISION
Logistic Regression	0.6360	0.6411	0.6198	22.44	0.6178	0.6200	0.6152	0.6476	0.6411	0.6114	0.4875	0.6560	0.2405
Random Forest	0.6308	0.6264	0.6575	29.06	0.6171	0.6134	0.6418	0.6504	0.6264	0.6330	0.5010	0.6628	0.2534
GBT	0.6111	0.6008	0.6615	23.86	0.5969	0.5869	0.6483	0.6335	0.6008	0.6400	0.4954	0.6435	0.2580
MLP	0.6225	0.6549	0.5309	15.83	0.6204	0.6540	0.5287	0.7645	0.6549	0.5412	0.5111	0.8645	0.1939

Hyper Parameters:

- Logistic Regression: {maxlter=10, regParam=0.01, elasticNetParam=0.7}
- Random Forest: {maxDepth=10, numTrees=20}
- GBT: {maxIter=10, maxDepth=5, maxBins=32}
- MLP: {maxIter=20, layers=[2 hidden layers], blockSize=128}

Best Model Results

Best Model	Parameters	F2 score	Recall	Precision	AUC
MLP	Iteration- 20, Features - 40 Hidden layers - 2 Neurons - [10, 5]	0.5021	0.7536	0.2151	0.5620

Discussion And Future Work

. Best Model:
MLP excels in
predicting flight
delays with F2
score of 50%,
75% recall and
21% precision

4. Deploy the model and integrate it on a flask web application

2.Advanced Feature Engineering

3. Scalability and Adaptability

Cost Analysis

Conclusion

Key takeaways

- Predicted departure delays, enabling airlines to take early action and streamline operations.
- Leveraged advanced key features like weather conditions, carrier delays, flight frequency, previous departure delays, airport characteristics
- Utilized advanced machine learning models, including Multi-Layer Perceptron, Random Forest, Gradient Boosted Decision Trees
- Predicted departure delays, helping airlines to boost efficiency and enhance customer satisfaction, and reduce operational costs.

Thank you!

Questions? Comments? Concerns?

Average Flight Delays Over Time

Missing Values by Feature

Features with >50% missing values

- MonthlyStationPressure
- MonthlyGreatestSnowfallDate
- CANCELLATION_CODE
- DailySnowfall
- DailyAverageWetbulbTemperature
- DailyPeakWindDirection
- DailyMaximumDryBulbTEmperature
- DailyPrecipitation
- Sunrise
- HourlyWindGustSpeed
- SECURITY_DELAY
- BackupDirection
- ShortDurationEndDate
- etc.