Latent Semantic Analysis

Hongning Wang CS@UVa

VS model in practice

- Document and query are represented by <u>term</u> vectors
 - Terms are not necessarily <u>orthogonal</u> to each other
 - Synonymy: car v.s. automobile
 - Polysemy: fly (action v.s. insect)

TABLE 1. Sample term by document matrix.^a

	Access	Document	Retrieval	Information	Theory	Database	Indexing	Computer	REL	МАТСН
Doc 1	x	х	x			x	x		R	
Doc 2				x*	x			x*		М
Doc 3			x	x*				x*	R	M

^{*}Query: "IDF in computer-based information look-up"

Choosing basis for VS model

- A concept space is preferred
 - Semantic gap will be bridged

How to build such a space

- Automatic term expansion
 - Construction of thesaurus
 - WordNet
 - Clustering of words
- Word sense disambiguation
 - Dictionary-based
 - Relation between a pair of words should be similar as in text and dictionary's descrption
 - Explore word usage context

How to build such a space

- Latent Semantic Analysis
 - Assumption: there is some underlying latent semantic structure in the data that is partially obscured by the randomness of word choice with respect to retrieval
 - It means: the observed term-document association data is contaminated by random noise

How to build such a space

 Solution Imagine this is *true* concept-document matrix Low rank matrix approximation Matrix of corrupted observations Underlying low-rank matrix Sparse error matrix Imagine this is our observed term-document matrix

Random noise over the word selection in each document

Latent Semantic Analysis (LSA)

- Low rank approximation of term-document matrix $C_{M \times N}$
 - Goal: remove noise in the observed termdocument association data
 - Solution: find a matrix with rank k which is closest to the original matrix in terms of Frobenius norm

$$\hat{Z} = \underset{Z|rank(Z)=k}{\operatorname{argmin}} \|C - Z\|_{F}$$

$$= \underset{Z|rank(Z)=k}{\operatorname{argmin}} \sqrt{\sum_{i=1}^{M} \sum_{j=1}^{N} (C_{ij} - Z_{ij})^{2}}$$

Basic concepts in linear algebra

Symmetric matrix

$$-C = C^T$$

- Rank of a matrix
 - Number of linearly independent rows (columns) in a matrix $C_{M \times N}$
 - $-rank(C_{M\times N}) \le \min(M, N)$

Basic concepts in linear algebra

- Eigen system
 - For a square matrix $C_{M\times M}$
 - If $Cx = \lambda x$, x is called the right eigenvector of C and λ is the corresponding eigenvalue
- For a symmetric full-rank matrix $C_{M \times M}$
 - We have its eigen-decomposition as
 - $C = Q\Lambda Q^T$
 - where the columns of Q are the orthogonal and normalized eigenvectors of C and Λ is a diagonal matrix whose entries are the eigenvalues of C

Basic concepts in linear algebra

Singular value decomposition (SVD)

$$C_k = U \qquad \Sigma_k \qquad V^T$$

- We define $C_{M\times N}^k = U_{M\times k} \Sigma_{k\times k} V_{N\times k}^T$
 - where we place Σ_{ii} in a descending order and set $\Sigma_{ii}=\sqrt{\lambda_i}$ for $i\leq k$, and $\Sigma_{ii}=0$ for i>k

Latent Semantic Analysis (LSA)

Solve LSA by SVD

$$C_k = U$$

- 1. Perform SVD on document-term adjacency matrix
- 2. Construct $C_{M\times N}^k$ by only keeping the largest k singular values in Σ non-zero

$$-D_{M\times M} = C_{M\times N} \times C_{M\times N}^T$$

- D_{ij} : document-document similarity by counting how many terms co-occur in d_i and d_j
- $D = (U\Sigma V^T) \times (U\Sigma V^T)^T = U\Sigma^2 U^T$
 - Eigen-decomposition of document-document similarity matrix
 - d_i' s new representation is then $\left(U\Sigma^{\frac{1}{2}}\right)_i$ in this system(space)
 - In the lower dimensional space, we will only use the first k elements in $\left(U\Sigma^{\frac{1}{2}}\right)_i$ to represent d_i
- The same analysis applies to $T_{N\times N}=C_{M\times N}^T\times C_{M\times N}$

Geometric interpretation of LSA

- $C_{M \times N}^{k}(i, j)$ measures the relatedness between d_i and w_j in the k-dimensional space
- Therefore

$$-\operatorname{As} C_{M\times N}^{k} = U_{M\times k} \Sigma_{k\times k} V_{N\times k}^{T}$$

- $-d_i$ is represented as $\left(U_{M\times k}\Sigma_{k\times k}^{\frac{1}{2}}\right)_i$
- $-w_j$ is represented as $\left(V_{N\times k}\Sigma_{k\times k}^{\frac{1}{2}}\right)_i$

Latent Semantic Analysis (LSA)

What are those dimensions in LSA

Principle component analysis

CS@UVa CS6501: Information Retrieval 15

Latent Semantic Analysis (LSA)

- What we have achieved via LSA
 - Terms/documents that are closely associated are placed near one another in this new space
 - Terms that do not occur in a document may still close to it, if that is consistent with the major patterns of association in the data
 - A good choice of concept space for VS model!

LSA for retrieval

Project queries into the new document space

$$-\tilde{q} = qV_{N\times k}\Sigma_{k\times k}^{-1}$$

- Treat query as a pseudo document of term vector
- Cosine similarity between query and documents in this lower-dimensional space

LSA for retrieval

Discussions

- Computationally expensive
 - Time complexity $O(MN^2)$
- Empirically helpful for recall but not for precision
 - Recall increases as k decreases
- Optimal choice of k
- Difficult to handle dynamic corpus
- Difficult to interpret the decomposition results

LSA beyond text

Collaborative filtering

User item matrix stores for each user the

rating for the items

New York	i,	i ₂	<i>i</i> ₃	i ₄	i ₅	1444	i _{ss}
u ₁	2	0	3	2	5	***	1
u ₂	0	4	0	0	0	***	5
u_3	0	2	0	0	0	***	4
u ₄	1	0	4	2	4		2
	***		· ·		· · · ·		***
u _k	2	(4	(4	***	1
	Pre	dicting	unkno	↑ wn ratii	ngs		

LSA beyond text

Eigen face

LSA beyond text

Cat from deep neuron network

One of the neurons in the artificial neural network, trained from still frames from unlabeled YouTube videos, learned to detect cats.

What you should know

- Assumption in LSA
- Interpretation of LSA
 - Low rank matrix approximation
 - Eigen-decomposition of co-occurrence matrix for documents and terms
- LSA for IR