Àlgebra Lineal M1 - FIB

Continguts:

- 5 Matrius, sistemes i determinants
- 6. Espais vectorials -> CANVIS DE BASE
- 7. Aplicacions lineals
- 8. Diagonalització

Anna de Mier Montserrat Maureso

Dept. Matemàtiques Abril 2020

6.5 Bases i dimensió

```
Sigui E un \mathbb{K}-espai vectorial. Un conjunt de vectors B = \{b_1, b_2, \dots, b_n\} és una base d'E si (b1) B és linealment independent (b2) E = \langle b_1, b_2, \dots, b_n \rangle, és a dir, b_1, b_2, \dots, b_n generen E
```

La base canònica

- de \mathbb{K}^n és $\{(1,0,\ldots,0),(0,1,\ldots,0),\ldots,(0,0,\ldots,1)\}$
- ▶ de $\mathcal{M}_{m \times n}(\mathbb{K})$ és la formada per les mn matrius M_{ij} que tenen totes les entrades nul·les excepte la i, j, que és igual a 1
- de $\mathbb{K}_d[x]$ és $\{1, x, x^2, \dots, x^d\}$ (també a $\{x^d, x^{d-1}, \dots, 1\}$ li direm base canònica, caldrà especificar quina usem)

Sigui $B = \{b_1, \ldots, b_n\}$ una base d'E

Proposició

Tot vector d'E s'escriu de manera única com a combinació lineal dels vectors de B

Sigui $v \in E$. Si $v = \alpha_1 b_1 + \cdots + \alpha_n b_n$, diem que

$$\mathbf{v}_{\mathbf{B}} = (\alpha_1, \dots, \alpha_n)$$

és el **vector de coordenades** de v en la base B

Proposició

Sigui $\{u_1,\ldots,u_k\}$ un conjunt de vectors d'E que són LI. Aleshores $k\leq n$

Corol·lari

Tota base d'*E* té *n* elements

Dimensió

Al cardinal de les bases d'un espai vectorial E (o d'un SEV) l'anomenem la **dimensió** de l'espai, denotada **dim(E)**

- Les dimensions dels espais amb els que treballem habitualment són: $\dim(\mathbb{K}^n) = n$, $\dim(\mathcal{M}_{m \times n}(\mathbb{K})) = nm$, i $\dim(\mathcal{P}_d(\mathbb{K})) = d+1$
- ▶ La dimensió del subespai $\{\mathbf{0}_E\}$ és 0
- La dimensió del subespai $\langle u_1, \ldots, u_k \rangle$ donat per generadors és el nombre màxim de vectors LI entre $\{u_1, \ldots, u_k\}$ (que és igual al rang de la matriu que té per columnes les coordenades de u_1, \ldots, u_k)
- La dimensió d'un subespai donat com a solució d'un sistema d'equacions homogeni és el nombre de graus de llibertat del sistema

E e.v. de dimensió n

- · E té com a molt n vectors L.I.
- . Calen almenys n vectors per a generar E.

BSE:

és a dir:

- · n vectors LI. formen base
- · n vectors que generin E, formen base

$$u = 4e_1 + 3e_2$$

$$\psi$$

$$(u)_{B} = {4 \choose 3}$$

$$u = e_1 + e_2$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

Canvi de base

Siguin $B = \{b_1, \dots, b_n\}$ i $B' = \{b'_1, \dots, b'_n\}$ dues bases d'un \mathbb{K} -espai vectorial E. Sigui u un vector d'E Veiem com es relacionen els vectors de coordenades u_B i $u_{B'}$

Anomenem matriu del canvi de la base B a la base B' a la matriu que té per columnes els vectors de coordenades $(b_1)_{B'}, \ldots, (b_n)_{B'}$. La denotem per $P_{B'}^B$

$$P_{B'}^{B} = \begin{pmatrix} \vdots & \vdots & & \vdots \\ (b_1)_{B'} & (b_2)_{B'} & \dots & (b_n)_{B'} \\ \vdots & \vdots & & \vdots \end{pmatrix} \in \mathcal{M}_{\mathfrak{N}}(\mathbb{K})$$

Aleshores

 $u_{B'} = P_{B'}^B u_B$, expressant els vectors de coordenades en columna

$$P_B^{B'} = (P_{B'}^B)^{-1} \quad \text{in que} \quad \left(P_B^B\right)^{-1} (u)_B = (u)_B$$

$$B = \{b_{1}, ..., b_{n}\} \quad B' = \{b_{1}, ..., b_{n}'\} \quad n \in E$$

$$\{u\}_{B} = \begin{cases} x_{1} \\ \vdots \\ x_{n} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{n} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{n} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{1} \\ x_{2} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{2} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{1} \\ x_{2} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{2} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{2} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{2} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{2} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{2} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{2} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{2} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{2} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{2} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{2} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{2} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{2} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3} \\ x_{3} \end{cases} \quad \{u\}_{B} = \begin{cases} x_{1} \\ x_{3}$$

$$\cdot (u)_{B^{1}} = P_{B^{1}}^{B} \cdot (u)_{B} \quad \Leftrightarrow \quad (P_{B^{1}}^{B})^{-1}(u)_{B^{1}} = (u)_{B^{1}}^{B}$$

•
$$(u)_{B} = P_{B}^{B^{\dagger}}(u)_{B^{\dagger}}$$

Per tant:
$$P_B^{BI} = (P_B^B)^{-1}$$

EXEMPLE

$$u = e_1' + e_2'$$

$$(u)_{gl} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$P_{B}^{B'}(u)_{B'} = (u)_{B}: \qquad P_{B'}^{B}(u)_{B} = (u)_{B'}:$$

$$\begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \qquad \begin{pmatrix} 2/5 & -1/5 \\ -1/5 & 3/5 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Exemple 1. \mathbb{R}^2 $B = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \end{pmatrix} \right\}.$ Coordenades de $\left(\frac{1}{0} \right)$ en la base B?

 $C = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}_{1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ base canonice

conec: (u) volem: (u) B

Matrie de canni de base!

Conec B en base C: $P_{C}^{B} = \begin{pmatrix} 1 & -2 \\ 1 & 0 \end{pmatrix}$

 $P_{C}^{B} \cdot (u)_{B} = (u)_{C}$ conec: $P_{C}^{B} \cdot (u)_{C}$

$$(u)_{\beta} = (P_{C}^{\beta})^{-1} \cdot (u)_{C}$$

$$= \begin{pmatrix} 1 & -2 \\ 1 & 0 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1/2 & 1/2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -1/2 \end{pmatrix}$$

$$B = \{2-2x+x^2, 1-x, 2-2x^2\}$$
. Expresseu $\underbrace{x+2x^2}_{p}$ en la base B.

$$C = \{4, x, x^2\} \sim \text{base canonica}$$
.

Conec:
$$P_{C}^{B} = \begin{pmatrix} 2 & 4 & 2 \\ -2 & -1 & 0 \\ 4 & 0 & -2 \end{pmatrix}$$
, $P_{C}^{B} = \begin{pmatrix} p \\ p \end{pmatrix}_{B} = \begin{pmatrix} p \\ p \end{pmatrix}_{C}$
Conec $(P)_{C} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$

$$\begin{array}{lll}
P_{C}^{B} & (\rho)_{B} = (\rho)_{C} & \Rightarrow & (\rho)_{B} = (\rho)_{C}^{B} & \Rightarrow & (\rho)_{C} = \\
& = \begin{pmatrix} 2 & 4 & 2 \\ -2 & -4 & 0 \\ 4 & 0 & -2 \end{pmatrix}^{-1} & \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \dots = \begin{pmatrix} 1 & 1 & 1 \\ -2 & -3 & -2 \\ 1/2 & 1/2 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ -7 \\ 1/2 \end{pmatrix}$$

$$P = x + 2x^{2} = = 3 \cdot (2 - 2x + x^{2}) + (-7) \cdot (1-x) + \frac{1}{2}(2 - 2x^{2}) = .$$

Exemple 3.
$$\mathcal{M}_{2}(\mathbb{R})$$

$$B = \left\{ \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \right\}.$$
 Expresseu $\left(\begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix} \right)$ en la base B.

$$C = \left\{ \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

Convixem:
$$(M)_{c} = \begin{pmatrix} 1 \\ 2 \\ -1 \\ -2 \end{pmatrix}$$

volem:
$$(M)_B = ?$$

Conec:
$$P_{c}^{B} = \begin{pmatrix} 1 & 0 - 1 & 0 \\ 1 & 1 & 0 & 1 \\ -1 & 0 & 2 & 2 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$P_{C}^{B}(M)_{B} = (M)_{C} \Rightarrow (M)_{B} = (P_{C}^{B})^{-1} \cdot (M)_{C} = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 2 & 0 & -1 & 1 \\ -1 & 0 & 2 & 2 \\ 0 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \\ -2 & 1 & -1 & 2 \\ -1 & 0 & -1 & 2 \end{pmatrix} = \begin{pmatrix} -5 & 4 & -6 \\ 3 & -1 & 0 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 4 & -2 & 1 & 2 \\ -3 & -1 & 2 & 1 \\ -4 & 0 & -1 & 2 \end{pmatrix} = \begin{pmatrix} -5 & 4 & -6 \\ 3 & -1 & 0 & -1 \end{pmatrix}$$

Per taut:

$$M = \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix} = (-5) \cdot \begin{pmatrix} 1 & 1 \\ -(0) \end{pmatrix} + 4 \cdot \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} + (-6) \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} + 3 \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$

Exemple 4.
$$\mathbb{R}^2$$

$$B = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \end{pmatrix} \right\}, B' = \left\{ \begin{pmatrix} -1 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \end{pmatrix} \right\}, (\mathbf{u})_B = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$
Calculeu (\mathbf{u}) \mathbf{g} .

$$C = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

conec:
$$P_{c}^{B} = \begin{pmatrix} 1 & -2 \\ 1 & 0 \end{pmatrix}$$
, $P_{c}^{B'} = \begin{pmatrix} -1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B} = \begin{pmatrix} 1 & -2 \\ 1 & 0 \end{pmatrix}$, $P_{c}^{B'} = \begin{pmatrix} -1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$
 $P_{c}^{B'} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$

$$\Rightarrow [u]_{B^{1}} = (p_{c}^{B^{1}})^{-1} p_{c}^{B}(u)_{B} = (-12)^{-1} (1-2) \cdot (-1) = (-24)$$

$$= (52)(1-2)(-1) = (-24)$$

$$= (-16)$$

$$P_{c}^{B} = P_{c}^{C} = P_{c}^{B} = P_{c}^{C} = P_{c}^{B} = P_{c$$

En general:

B1, B2, ..., Br-1, Br bases d'E => PB1 = PBr-1 PBr-2 ... PB2 .PB1 .

ja que:

$$P_{\beta_{r}}^{B_{A}}(u)_{\beta_{4}} = (u)_{\beta_{r}}$$

$$P_{\beta_{r}}^{B_{r-1}}...P_{\beta_{3}}^{B_{2}}.P_{\beta_{3}}^{B_{4}}(u)_{\beta_{4}} = (u)_{\beta_{r}}$$

$$(u)_{\beta_{2}}$$

$$(u)_{\beta_{3}}$$
etc.
$$(u)_{\beta_{3}}$$