

Differenzverstärker

18. April 2021

Florian Tietjen Eric Antosch

Inhaltsverzeichnis

1	Grundschaltung eines Differenzverstärkers	3
	1.1 Dimensionierung des R_E -Widerstands	3
2	Differenzverstärkung	4
3	Wechselspannungsansteuerung	6
	3.1 Einfache Wechselspannungsansteuerung	6
	3.2 Doppelte Wechselspannungsansteuerung	7

1 Grundschaltung eines Differenzverstärkers

Aufgabe 1.0

Bei dieser Aufgabe soll die Grundschaltung eines Differenzverstärkers mit zwei BC546B-Transistoren mit beiden Basen an GND beschrieben werden.

Abbildung 1: Grundschaltung eines Differenzverstärkers

1.1 Dimensionierung des R_E -Widerstands

Wir wollen nun zunächst unseren R_E -Widerstand mithilfe der gegebenen Formeln berechnen:

$$R_E = \frac{U_B - U_{BE}}{2 \cdot I_C} \tag{1}$$

Wir erhalten mit dem Einsetzen der Werte für $I_C=1mA,\,U_B=0V$ und $U_{BE}=0,7V$ ungefähr einen Widerstandswert von $R_E=350\Omega$. Da unser Widerstand R_E aus der E12-Reihe sein soll, wählen wir mit 470Ω den passenden Widerstandswert.

2 Differenzverstärkung

Aufgabe 2.0

In dieser Aufgabe wollen wir die Differenzverstärkung unserer Grundschaltung ermitteln, indem wir den linken Transistor nun von einer Spannungsquelle ansteuern lassen.

Abbildung 2: Versuchsaufbau

Wir nutzen nun die DC-Sweep-Analyse von LTSpice um die Spannung der Ue-Quelle linear von -0.5V bis 0.5V wachsen zu lassen. Aus der Vorlesung kennen wir die Bedeutung von U_d , welches die Differenz der Potentiale an den Basen der beiden Transistoren darstellt.

$$Placeholder$$
 (2)

Tragen wir nun die Ströme durch die beiden Transistoren gegen die Differenzspannung U_d ab, so entsteht folgendes Bild:

Abbildung 3: Darstellung der Kollektorströme gegen die Differenzspannung U_d

2 DIFFERENZVERSTÄRKUNG

Wir erkennen sowohl eine ziemlich genaue Übereinstimmung der Diagramme aus der Vorlesung als auch aus den Praktikumsaufgaben. Bei einer Differenzspannung von $U_d=0V$ erhalten wir zudem unsere $I_C=1mA$, die wir in Aufgabe 1 bereits verwendet haben.

3 Wechselspannungsansteuerung

Aufgabe 3.0

Bei diesem Versuch werden nun zunächst nur der linke, dann beide Transistoren mit einer Wechselspannung angesteuert.

Abbildung 4: Versuchsaufbau Wechselspannungsansteuerung

3.1 Einfache Wechselspannungsansteuerung

Wir stellen zunächst U_e auf eine sinusförmige Wechselspannungsquelle mit einer Amplitude von $\hat{u}=10mV$ und einer Frequenz von f=1kHz um. Darüberhinaus fügen wir nun noch zwei R_C -Widerstände in das Schaltbild mit je $R_{C1,2}=1\text{k}\Omega$ Betrachten wir nun die Kollektorspannung beider Transistoren, so erkennen wir, dass beide Signale perfekt um 180° verschoben sind.

Abbildung 5: Entstehendes Bild der einfachen Wechselspannungsansteuerung

3.2 Doppelte Wechselspannungsansteuerung

Wir verbinden nun die Basis des rechten Transistor nicht mehr mit GND sondern ebenfalls mit der Spannungsquelle U_e . Wir passen dabei die Amplitude nun so an, dass beide Signale ähnliche Spitzenwerte erreichen wie bei Teilversuch 1.

