Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Visualization and Dimensionality Reduction

Class Logistics and Agenda

- Dimensionality Reduction
 - · PCA
 - Randomized PCA
 - Images Representation with PCA

Class Overview, by topic

Last time: visualization

Our first @ResearchMark meme

Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful

Purpose:

- Avoid curse of dimensionality
- Select subsets of independent features
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

Techniques

- Principle Component Analysis
- Non-linear PCA
- Stochastic Neighbor Embedding

I invented PCA... and Social Darwinism

Aside: Eigen Vectors are your friend!

?

Three Blue One Brown:

https://www.youtube.com/watch?v=PFDu9oVAE-g

Goal is to find a projection that captures the largest amount of variation in data

- Find the **eigenvectors** of the **covariance** matrix
- keep the "k" largest eigenvectors

covariance

151.5 132.4

132.4 118.3

optional: unit std

 $attribute_2$

Transform data using dot product between point and principle component (eigenvector)

attribute₁

This projection is called a **Transform** known as the **Karhunen-Loève Transform (KLT)**

Explained Variance

- Each principle component explains a certain amount of variation in the data.
- This explained variation is **encoded** in the **eigenvalues** of each **eigenvector**

 $r_q = \frac{\sum_{j=1}^q \lambda_j}{\sum_{\forall i} \lambda_i}$ sum of all eigenvalues

Genetic profiles distilled to 2 components

- Need more help with the PCA algorithm (and python)?
 - check out Sebastian Raschka's notebooks:
- http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/principal_component_analysis.ipynb

Or check out PCA for dummies:

https://georgemdallas.wordpress.com/ 2013/10/30/principal-componentanalysis-4-dummies-eigenvectorseigenvalues-and-dimension-reduction/

Explained variance by different principal components

Dimension Reduction

04. Dimension Reduction and Images. ipynb

PCA biplots

Other Tutorials:

http://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html#example-decomposition-plot-pca-vs-lda-py

http://nbviewer.ipython.org/github/ogrisel/notebooks/blob/master/Labeled%20Faces%20in%20the%20Wild%20recognition.ipynb

Self Test ML2b.1

Principal Components Analysis works well for categorical data by design.

- A. True
- B. False
- C. It doesn't but people do it anyway

Mutual Correspondence Analysis

	Eye Color			Еу	re Col	or			A1	A2
1	Blue		1	1	0	0		1	0.79	-0.30
2	Brown	OHE	2	0	1	0	~PCA	2	-0.60	-0.13
3	Blue		3	1	0	0		3	0.79	-0.30
4	Hazel		4	0	0	1		4	0.24	0.99
5	Brown		5	0	1	0		5	-0.60	-0.13
6	Brown		6	0	1	0		6	-0.60	-0.13

Dimensionality Reduction: Randomized PCA

- Problem: PCA on all that data can take a while to compute
 - What if the number of instances is gigantic?
 - What if the number of dimensions is gigantic?
- What if we partially construct the covariance matrix with a lower rank matrix?
 - By transforming our table data, A, with another orthogonal matrix, Q, we can approximate the covariance matrix, but with lower rank
 - Gives a matrix with typically good enough precision of actual eigenvectors, like using SVD. QQ^TA is surrogate

Example Objective
$$\|\boldsymbol{A} - \boldsymbol{Q}\boldsymbol{Q}^*\boldsymbol{A}\| \leq \left[1 + 11\sqrt{k+p} \cdot \sqrt{\min\{m,n\}}\right] \sigma_{k+1}$$

Halko, et al., (2009) Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions. https://arxiv.org/pdf/0909.4061.pdf

Image Processing and Representation

Kyle % \infty \infty

Q:

38

1,602

♥ 6,046

₾

Images as data

- an image can be represented in many ways
- most common format is a matrix of pixels
 - each "pixel" is BGR(A)

Image Representation

need a compact representation

grayscale

0.3*R+0.59*G+0.11*B, "luminance"

gray

1	4	2	5	6	9
1	4	2	5	5	9
1	4	2	8	8	7
3	4	3	9	9	8
1	0	2	7	7	9
1	4	3	9	8	6
2	4	2	8	7	9

Numpy Matrix 2 4 2 8 7

image[rows, cols]

		1 1					
ı	G[1	4	2	5	6	9
\mathbb{B}	1	4	2	5	6	9	9
1	4	2	5	6	9	9	7
1	4	2	5	5	9	7	8
1	4	2	8	8	7	8	9
3	4	3	9	9	8	9	6
1	0	2	7	7	9	6	9
1	4	3	9	8	6	9	Т
2	4	2	8	7	9	<u> </u>	_

Numpy Matrix image[rows, cols, channels]

Image Representation, Features

Problem: need to represent image as table data

need a compact representation

1	4	2	5	6	9
1	4	2	5	5	9
1	4	2	8	8	7
3	4	3	9	9	8
1	0	2	7	7	9
1	4	3	9	8	6
2	4	2	8	7	9

Image Representation, Features

Problem: need to represent image as table data

need a compact representation

Solution: row concatenation (also, vectorizing)

. . .

Row N 9 4 6 8 8 7 4 1 3 9 2 1 1 5 2 1 5 9 1

Self test: 3a-1

- When vectorizing images into table data, each "feature column" corresponds to:
 - a. the value (color) of pixel
 - b. the spatial location of a pixel in the image
 - c. the size of the image
 - d. the spatial location and color channel of a pixel in an image

Dimension Reduction with Images

Demo

Images Representation in PCA and Randomized PCA

04.Dimension Reduction and Images.ipynb

For Next Lecture

- Next Lecture:
 - Finish Dimension Reduction Demo
 - Crash-course Image Feature Extraction