Plan for the day

Introduction

Interpretation

Two sources of variation in the data

Study technique

Introduction to R

Silje Synnøve Lyder Hermansen

17 februar 2025

Plan for the day

Plan for the day

- lecture: uncertainty and interpretation of linear models
 - substantive interest: the size of the effect
 - statistical significance: sources of variation/uncertainty
- chatGPT/chatTutor: how to use AI/LLMs in this class

Introduction

Today's example

What is the effect of electoral systems on parliamentarians resource allocation?

- Members of the European Parliament (MEPs) sit together in one institution, but run for election under different rules
- expectation: more local investment among MEPs in candidate-centered systems (compared to party-centered systems), because of their need for a personal brand
- variables:
 - y: number of constituency-level assistants employed
 - x : candidate vs. party-centered systems

Two views on linear regression

Two views on linear regression

Linear regression summarizes how the average values of a numerical outcome variable vary over subpopulations defined by linear functions of predictors. (Gelman and Hill, 2007, ch 3)

- comparison of means: descriptive approach to regression; makes sense for categorical predictors
- relationship between variables: their correlation; more causal, makes sense for numerical predictors

Regression as a comparison of means

```
df %>%
group_by(OpenList) %>%
reframe("mean_y" = mean(LocalAssistants)) %>%
ungroup %>%
mutate(diff = mean_y - lag(mean_y))
```

```
## OpenList mean_y diff
## <int> <dbl> <dbl>
## 1 0 2.47 NA
## 2 1 3.42 0.949
```

A tibble: 2 x 3

- ▶ MEPs from party-centered systems employ on average 2.47 local assistants
- ▶ MEPs from candidate-centered systems employ on average 3.42 local assistants.
- The difference is 0.95

Relationship between variables

```
##
## Call:
## lm(formula = LocalAssistants ~ OpenList, data = df)
##
## Residuals:
     Min 10 Median 30 Max
## -3.42 -2.42 -0.47 1.53 36.08
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
                2.468
                           0.161 15.35 < 2e-16 ***
## (Intercept)
## OpenList
                0.949 0.234 4.05 5.7e-05 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.2 on 737 degrees of freedom
## Multiple R-squared: 0.0218, Adjusted R-squared: 0.0204
## F-statistic: 16.4 on 1 and 737 DF, p-value: 5.68e-05
```

Relationship between variables

summary(mod)

```
## Call.
## lm(formula = LocalAssistants ~ OpenList, data = df)
## Residuals:
     Min
             10 Median
                           30
                                Max
  -3.42 -2.42 -0.47 1.53 36.08
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                           0.161 15.35 < 2e-16 ***
## (Intercept)
                 2.468
## OpenList
                 0.949
                           0.234 4.05 5.7e-05 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.2 on 737 degrees of freedom
## Multiple R-squared: 0.0218, Adjusted R-squared: 0.0204
## F-statistic: 16.4 on 1 and 737 DF, p-value: 5.68e-05
```

- ▶ MEPs from party-centered systems employ on average 2.47 local assistants
- ► The difference is 0.95.
- ► MEPs from *candidate-centered* systems employ on average 2.47 + 0.95 = 3.42 local assistants.

Interpretation

Interpretation

Linear predictor

```
## Call.
## lm(formula = LocalAssistants ~ OpenList + LaborCost, data = df)
##
## Residuals:
     Min 10 Median
                         30 Max
## -4.49 -1.94 -0.41 1.08 35.00
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.1266 0.2861 14.42 < 2e-16 ***
## OpenList 0.8288 0.2278 3.64 0.00029 ***
## LaborCost -0.0702 0.0102 -6.91 1e-11 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
##
## Residual standard error: 3.1 on 736 degrees of freedom
## Multiple R-squared: 0.0814, Adjusted R-squared: 0.0789
## F-statistic: 32.6 on 2 and 736 DF, p-value: 2.69e-14
```

Stages of interpretaion

- hypothesis testing: direction and signficance
- marginal effect: the relative increase in your predictor wo/accounting for the value of other preditors.
- prediction: fill in the equation for all predictors and calculate the predicted effect
- ► first difference: fill in the equation for two scenarios and calculate the difference in y
- effect plot: fill in the equation for all scenarios relevant to your predictor
- ⇒ as we move to GLMs, the importance of stages 3-6 becomes important

Hypothesis testing

Hypothesis testing

summary (mod2)

```
## Call.
## lm(formula = LocalAssistants ~ OpenList + LaborCost, data = df)
## Residuals:
     Min 10 Median
                         30
                               Max
  -4.49 -1.94 -0.41 1.08 35.00
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.1266 0.2861 14.42 < 2e-16 ***
## OpenList 0.8288 0.2278 3.64 0.00029 ***
## LaborCost -0.0702 0.0102 -6.91 1e-11 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
## Residual standard error: 3.1 on 736 degrees of freedom
## Multiple R-squared: 0.0814, Adjusted R-squared: 0.0789
## F-statistic: 32.6 on 2 and 736 DF, p-value: 2.69e-14
```

► MEPs from candidate-centered systems have on average more local assistants on their payroll

Marginal effect

Marginal effect

The relative increase in your predictor wo/accounting for the value of other predictors.

```
summary (mod2)
##
## Call:
## lm(formula = LocalAssistants ~ OpenList + LaborCost, data = df)
## Residuals:
     Min
            1Q Median
   -4.49 -1.94 -0.41 1.08 35.00
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.1266
                          0.2861 14.42 < 2e-16 ***
## OpenList 0.8288 0.2278 3.64 0.00029 ***
## LaborCost -0.0702
                       0.0102 -6.91 1e-11 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.1 on 736 degrees of freedom
## Multiple R-squared: 0.0814, Adjusted R-squared: 0.0789
## F-statistic: 32.6 on 2 and 736 DF, p-value: 2.69e-14
```

- when labor cost increases with 1 unit (here 1000 euros), the average number of assistants decreases by 0.07
- > je \$0.000dettroaincrease (increase byto10) corresponds to afebruar 2025

Prediction

Prediction

We make predictions by filling in the equation

$$Y_i = \alpha + \beta X_i$$

$$Y_i = 4.13 + 0.95 \times X_i$$

data (observed)

- variables: X and Y
- observations: i is a counter for the observations, refers to the ith observation. i...N

parameters (estimated)

- $ightharpoonup \alpha$ intercept, the value of Y when X == 0
- \triangleright β slope, the increase in Y when X increases by one unit

Creating scenarios

You create a scenario when you fill in values in all the predictors (x).

$$Y_i = \alpha + \beta X_i$$

5.08 = 4.13 + 0.95 × 1

In R:

```
x = 1
# or
scenario <- data.frame(OpenList = 1)</pre>
```

First difference

You create two scenarios and calculate the difference in y

$$Y_i=\alpha+\beta X_i$$
 scenario 1: 4.13 = 4.13 + 0.95 \times 0 scenario 2: 5.08 = 4.13 + 0.95 \times 1

In R:

```
x = c(0, 1)
# or
scenario <- data.frame(OpenList = c(0, 1))</pre>
```

 \Rightarrow The first difference is 0.95.

Effect plot

Prediction

You create a bunch of scenarios covering the entire range of the variable

In R:

```
#Scenario
scenario <- data.frame(OpenList = c(0),</pre>
                        LaborCost = min(df$LaborCost): max(df$LaborCost))
scenario[1:3,]
     OpenList LaborCost
                     3.8
                    4.8
## 2
            Ω
                 5.8
## 3
#Predict
scenario <- scenario %% mutate(preds = predict(mod2, newdata = scenario))</pre>
scenario$preds[1:3]
```

```
The first difference is 0.95
```

3 9 3 8 3 7

[⇒] The first difference can be calculated for any two scenarios of your choice!

Plot

Two sources of variation in the data

Two sources of variation in the data

Two sources of variation in the data

But are these effects statistically significant?

- ► Fundamental uncertainty: The natural randomness in outcomes, even if the true parameters were known (Captured by residual variance).
- ► **Estimation uncertainty:** How precisely are the coefficients estimated? (Captured by the variance-covariance matrix)
- ⇒ the uncertainty of your predictions depend on both

Fundamental uncertainty

Fundamental uncertainty

$$Y_i = \alpha + \beta X 1_i + \beta X 2_i + \sigma^2$$

data (observed)

- variables: X and Y
- observations: i is a counter for the observations, refers to the ith observation. i...N

parameters (estimated)

- $\triangleright \alpha$ intercept, the value of Y when X == 0
- \triangleright β slope, the increase in Y when X increases by one unit
- $ightharpoonup \sigma^2$ variance in the error term; $\sqrt{\sigma^2} = \text{standard deviation}$

Let's rewrite

$$Y \sim g(\theta, \sigma^2)$$

$$\theta = \alpha + \beta X_i + \sigma^2$$

- \triangleright θ : the average value of y
- \triangleright g(): the link function

The normal model

$$Y_i \sim N(\mu_i, \sigma^2)$$

$$\mu_i = \alpha + \beta X_i + \sigma^2$$

- $\triangleright \mu$: mean predicted value
- ► N(): the normal distribution

What are the residuals?

We are always wrong in our predictions, but how wrong are we (in-sample)?

```
df <- df %>% mutate(
    #Predict in sample
preds = predict(mod2, newdata = .),
    #Calculate the difference between expected and observed
residuals = LocalAssistants - preds
)
```

How to describe the residuals?

We describe the residuals by their spread (standard deviation/residual standard error)

```
mean(df$residuals)
```

```
## [1] -9.8e-15
```

mean: with an unbiased estimator, their average is 0

```
sd(df$residuals)
```

```
## [1] 3.1
```

- standard deviation: but their spread can be more or less high
- ▶ here, the average distance from their mean is is a staff size of 3.08 local assistants.
- ⇒ residual standard error

Where is it reported?

summary (mod2)

```
##
## Call.
## lm(formula = LocalAssistants ~ OpenList + LaborCost, data = df)
## Residuals:
     Min
           1Q Median
                                Max
   -4.49 -1.94 -0.41 1.08 35.00
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.1266
                          0.2861
                                  14.42 < 2e-16 ***
## OpenList 0.8288
                          0.2278
                                 3.64 0.00029 ***
## LaborCost -0.0702
                          0.0102 -6.91 1e-11 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
##
## Residual standard error: 3.1 on 736 degrees of freedom
## Multiple R-squared: 0.0814, Adjusted R-squared: 0.0789
## F-statistic: 32.6 on 2 and 736 DF, p-value: 2.69e-14
summary(mod2)$sigma
```

[1] 3.1

⇒ residual standard error is 3.08

Conclusion: fundamental error

- important for predictions and model statistics
- not really for the uncertainty of our estimation of our effect

Estimation uncertainty

Estimation uncertainty

- most research is about the effect of x on y
- \blacktriangleright so, we're interested in the uncertainty of β

The central limit theorem and sampling

A fiction: the assumptions underpinning the uncertainty of the parameters

- assumption that data is a sample from a population
- we could sample many times
- we calculate the same parameter (e.g. mean, differences in means...) in each sample
- they will vary, but will follow a normal distribution
- ⇒ each parameter is a distribution with a mean and a standard deviation

Standard errors

summary (mod2)

```
## Call.
## lm(formula = LocalAssistants ~ OpenList + LaborCost, data = df)
##
## Residuals:
     Min 10 Median
                         30 Max
   -4.49 -1.94 -0.41 1.08 35.00
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.1266 0.2861 14.42 < 2e-16 ***
## OpenList 0.8288 0.2278 3.64 0.00029 ***
## LaborCost -0.0702 0.0102 -6.91 1e-11 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
##
## Residual standard error: 3.1 on 736 degrees of freedom
## Multiple R-squared: 0.0814, Adjusted R-squared: 0.0789
## F-statistic: 32.6 on 2 and 736 DF. p-value: 2.69e-14
```

- mean: average of all the differences in means between the two groups of MFPs: 0.95
- spread: the standard deviation of this distribution is 0.23
- ⇒ a standard error is the standard deviation of a hypothetical distribution

Colinearities

Colinearities

Regression parameters may be correlated

```
mat <-vcov(mod2)
mat
```

```
## (Intercept) OpenList LaborCost
## (Intercept) 0.0819 -0.02846 -0.00244
## OpenList -0.0285 0.05191 0.00018
## LaborCost -0.0024 0.00018 0.00010
```

- reported in the variance-covariance matrix
- diagonal: the variance of the parameter.
 - variance in effect of electoral system: $\sigma^2 = 0.05$
 - **>** standard error in effect of electoral system: $\sqrt{\sigma^2} = 0.23$
- off-diagonal: the covariance of the parameters
 - low correlation between labor cost and electoral system

Estimate

King et al. (2000) make two points

- find interesting scenarios when you interpret
- estimate the uncertainty for the scenarios including
 - standard error (diagonal)
 - covariance (off-diagonal)

⇒ the correlation between variables may mean higher or lower uncertainty than only using the standard error

Simulation

They do this using simulation

- set scenario for all predictors
- draw from the distribution of parameters
- make prediction
- repeat many times
- extract the information and report
 - mean
 - median
 - ▶ mode
 - standard deviation
 - plot the distribution!

Our class

We will see two ways of doing this in R

- ggeffects package: simulates scenarios for us and can be plotted seamlessly \rightarrow effect plots, coefplots and point predictions
- MASS package: the "manual" simulation from a multivariate normal distribution using the variance-covariance matrix. \rightarrow entire vector of simulations; for other plots/purposes

Study technique

Study technique

For this class

- learn by doing!
 - all readings include R examples; code along!
 - my R notebooks
 - then play around with the concepts; also with your own data/former exams
- dialogue with AI (ChatGPT, ChatTutor)

What to ask and not to ask chat for?

R codes

- dont ask for complex codes
 - requires quirey competence on your end
 - you don't learn
- ask it to annotate your scripts
 - explain what each line means
 - dissect all code chunks you find and ask

What to ask and not to ask chat for?

Statistics

- don't ask for a summary of the reading
 - it's not necessarily what we will focus on
 - you don't learn
- ask for definitions
 - ask it to define key concepts you don't understand while you read
 - rephrase definitions and ask it this is a good understanding
- match with your readings
 - upload the PDF and ask specific questions
 - ▶ ask for examples, possibly with R codes
- interpretation
 - copy-paste your model output and ask for an explainer
 - use descriptive statistics to find interesting scenarios, ask it to help you find a plain English intuitive sentence

Your turn

Collaborate with a partner, upload the King et al PDF and dialogue with ChatTutor and/or ChatGPT

- Can you express in layman's terms what a "standard deviation" of a variable is?
- How do you calculate it?
- What are the "residuals" of the regression? How are they calculated?
- What is a variance-covariance matrix?
- What is the role of the variance-covariance matrix in the article (pdf) I uploaded?
- Can you explain what the covariance matrix is good for in this example?
- What is the difference between fundamental and estimation uncertainty?
- ▶ What is the difference between expected and predicted values of Y and how does this relate to the difference between fundamental and estimation uncertainty? When am I interested in one rather than the other?