Akademia Techniczno-Humanistyczna w Bielsku-Białej

LABORATORIUM Systemy Monitorowania i Sterowania

Sprawozdanie nr 1

Układy kombinacyjne

GRUPA: 2B / SEMESTR: 5 / ROK: 3

Zadanie L1.12

Skrzyżowanie 2.

Zaprojektować system sterowania światłami na sygnalizatorach w trybie pracy ręcznej. Przez zmianę stanu jednego z czterech przełączników operator może ustawić kolejną fazę świateł. Niewykorzystane ustawienia przełączników powinny włączyć tryb mrugania świateł żółtych.

Kodowanie faz świateł:

W4	W3	W2	W1	Faza
0	0	0	1	1.
0	0	1	1	2.
0	0	1	0	3.
0	1	1	0	4.
0	1	0	0	5.
1	1	0	0	6.
1	0	0	0	7.
1	0	0	1	8.

Kolejność faz świateł:

Na podstawie powyższych informacji wiemy że mamy 4 wejścia:

W1, W2, W3 i W4

oraz 20 wyjść, oznacza to więc że musimy przygotować siatkę zależności zmiennych wejściowych na wyjściowe:

W4	W3	W2	W1	S1_CZER	S1_ZOL	S1_ZIEL	S1P_CZER S1P_2	IEL S2_CZER	S2_ZOL	S2_ZIEL	S2P_CZER	S2P_ZIEL	S3_CZER	S3_ZOL	S3_ZIEL	S3P_CZER	S3P_ZIEL	S4_CZER	S4_ZOL	S4_ZIEL	S4P_CZER	S4P_ZIEL
0	0	0	1		0	C	1	0	1	0	1	0		1	0		0		1	. 0	1	(
0	0	1	1		1	C	1	0	1	1 (1	0	1	0	0		0	1	(0	1	(
0	0	1	0		0	1	. 1	0	0) :	1	0	1	0	0		1	1	(0		
0	1	1	0		0	1	. 1	0	0) :	1	0	1	0	0		1	1	(0		
0	1	0	0		1	C	1	0	0	1 (1	0	1	0	0		0	1	(0	1	(
1	1	0	0		0	C	1	0	1) (1	0	1	1	0		0	1	- 1	. 0	1	(
1	0	0	0		0	C	0	1	1) (0	1		0	1		0		(1	1	(
1	0	0	1		0	C	0	1	1) (0	1		C	1		0		(1	1	(

Na wyżej załączonym obrazie możemy zauważyć, że w tym przypadku jak i w większości przypadków taka siatka jest po prostu zbyt długa i zbyt skomplikowana żeby w taki sposób przedstawiać ją w programie. Rozwiążemy ten problem poprzez zastosowanie siatek Carnough dla każdej zmiennej wyjściowej.

S1_CZER	W2/W1				
W4/W3		00	01	11	10
	00	0	1	0	0
	01	0	0	1	0
	11	1	0	0	0
	10	1	1	0	0

(W4 * !W1!W2) + (!W3 * !W2 * W1) + (!W4*W3*W2*W1)

S1_ZOL	W2/W1				
W4/W3		00	01	11	10
	00	0	0	1	0
	01	1	0	0	0
	11	0	0	0	0
	10	0	0	0	0

S1_ZIEL	W2/W1				
W4/W3		00	01	11	10
	00	0	0	0	1
	01	0	0	0	1
	11	0	0	0	0
	10	0	0	0	0

(!W4 * W2 * !W1)

S1P_CZER	W2/W1				
W4/W3		00	01	11	10
	00	1	1	1	1
	01	1	1	1	1
	11	1	1	1	1
	10	0	0	1	1

(W4*W3*!W2) + (!W4) + (W4*W2)

S1P_ZIEL	W2/W1				
W4/W3		00	01	11	10
	00	0	0	0	0
	01	0	0	0	0
	11	0	0	0	0
	10	1	1	0	0

(W4*!W2)

S2_CZER	W2/W1				
W4/W3		00	01	11	10
	00	0	1	1	0
	01	0	0	0	0
	11	1	0	0	0
	10	1	1	0	0

(W4*!W2*!W1) + (W4*!W3*!W2*W1) + (!W4 * !W3 * W2 * W1)

S2_ZOL	W2/W1				
W4/W3		00	01	11	10
	00	0	0	1	0
	01	1	0	0	0
	11	0	0	0	0
	10	0	0	0	0

(!W4*W3*!W2*!W1) + (!W4*!W3*W2*W1)

S2_ZIEL	W2/W1				
W4/W3		00	01	11	10
	00	0	0	0	1
	01	0	0	0	1
	11	0	0	0	0
	10	0	0	0	0

(!W4*W2*W1)

S2P_CZER	W2/W1				
W4/W3		00	01	11	10
	00	1	1	1	1
	01	1	1	1	1
	11	1	1	1	1
	10	0	0	1	1

(W4*W3*!W2) + (!W4) + (W4*W2)

S2P_ZIEL	W2/W1				
W4/W3		00	01	11	10
	00	0	0	0	0
	01	0	0	0	0
	11	0	0	0	0
	10	1	1	0	0

(W4*!W2)

S3_CZER	W2/W1				
W4/W3		00	01	11	10
	00	0	0	1	1
	01	1	0	0	1
	11	1	0	0	0
	10	0	0	0	0

(W3* !W2* !W1) + (!W4*W2*!W1) + (!W4*!W3*W2*W1)

S3_ZOL	W2/W1				
W4/W3		00	01	11	10
	00	0	1	0	0
	01	0	0	0	0
	11	1	0	0	0
	10	0	0	0	0

(W4*W3*!W2*!W1) + (!W4*!W3*!W2*W1)

S3_ZIEL	W2/W1				
W4/W3		00	01	11	10
	00	0	0	0	0
	01	0	0	0	0
	11	0	0	0	0
	10	1	1	0	0

(W4*!W3*!W2)

S3P_CZER	W2/W1				
W4/W3		00	01	11	10
	00	1	1	1	0
	01	1	1	1	0
	11	1	1	1	1
	10	1	1	1	1

(W2) + (W4*W2) + (!W4*W2*W1)

S3P_ZIEL	W2/W1				
W4/W3		00	01	11	10
	00	0	0	0	1
	01	0	0	0	1
	11	0	0	0	0
	10	0	0	0	0

(!W4*W2*!W1)

S4_CZER	W2/W1				
W4/W3		00	01	11	10
	00	1	0	1	1
	01	1	1	1	1
	11	1	1	1	1
	10	0	0	1	1

(W4) + (W3*!W2) + (!W4*!W3*!W2*!W1)

	W2/W1				
W4/W3		00	01	11	10
	00	0	1	0	0
	01	0	0	0	0
	11	1	0	0	0
	10	0	0	0	0

(W4*W3*!W2*!W1) + (!W4*!W3*!W2*W1)

S4_ZIEL	W2/W1				
W4/W3		00	01	11	10
	00	0	0	0	0
	01	0	0	0	0
	11	0	0	0	0
	10	1	1	0	0

(W4*!W3*!W2)

S4P_CZER	W2/W1				
W4/W3		00	01	11	10
	00	1	1	1	0
	01	1	1	1	0
	11	1	1	1	1
	10	1	1	1	1

(W2) + (W4*W2) + (!W4*W2*W1)

S4P_ZIEL	W2/W1				
W4/W3		00	01	11	10
	00	0	0	0	1
	01	0	0	0	1
	11	0	0	0	0
	10	0	0	0	0

(!W4*W2*!W1)

Oraz aby rozwiązać problem dla każdej kombinacji wejść innej od podanych faz, rozwiążemy jeszcze jedną siatkę dla wszystkich innych opcji.

EXCEPT	W2/W1				
W4/W3		00	01	11	10
	00	0	0	1	0
	01	0	0	1	1
	11	1	1	0	1
	10	0	1	1	0

(W4*W3*!W2) + (W4*!W3*W1) + (!W4*W2*W1) + (W3*W2*!W1)

Kolejnym krokiem będzie przełożenie naszych wzorów do odpowiedniego programu, który zapisze nam nasze dane wejściowe dla urządzenia do formatu możliwego do odczytania przez program PAC.

Dla przykładu, tak wygląda wzór PLC dla S1_CZER

