КУРСОВА РАБОТА

СИГНАЛИ И СИСТЕМИ

Студент: Стефан Стоилков

Преподавател: Любомир Ласков фак.№: 123221012, гр.: 43, ФКСТ

Специалност:

Компютърно и софтуерно инженерство

Образователно-квалификационна степен:

бакалавър

София, 2022 г. / 2023 г.

/гл. ас. д-р Св. Антонов/

1

СЪДЪРЖАНИЕ:

- 1. ЗАДАНИЕ
- 2. АНАЛИТИЧНО РЕШЕНИЕ
- 3. РЕЗУЛТАТИ ОТ РЕШЕНИЕТО
- 4. СПИСЪК НА ИЗПОЛЗВАНИТЕ ОЗНАЧЕНИЯ И СЪКРАЩЕНИЯ

1. ЗАДАНИЕ

Даден е следният цифров филтър описан с диференчно уравнение (1), за който:

- 1. Да се определи предавателната функция H(z).
- 2. Да се определи коефициентът на предаване $H(\omega)$.
- 3. Да се определи АЧХ и ФЧХ.
- 4. Да се провери дали филтърът е устойчив.
- 5. Да се начертае структурната схема и нейната канонична форма.

(1)
$$Yn = 10.Xn + 2.Xn - 10 - 1.Xn - 2 + 0.Yn - 10 - 2.Yn - 2$$

2. АНАЛИТИЧНО РЕШЕНИЕ

1.)
$$Y_{N} = 10 \cdot X_{N} + 2 \cdot X_{N-10} - 1 \cdot X_{N-2} + 0 \cdot Y_{N-10} - 2 \cdot Y_{N-2}$$

$$M_{2}b_{2}pullanc} \geq npecopagylance no cuegrama togruya:
(1) Y_{2} = a_{0}X(2) + a_{1}X(2) \cdot 2^{-1} + a_{2}X(2) \cdot 2^{-2} + ... + b_{1}X(2) \cdot 2^{-1} + b_{2}X(2) \cdot 2^{-2} + ... + b_{1}X(2) \cdot 2^{-1} + b_{2}X(2) \cdot 2^{-2} + ... + b_{1}X(2) \cdot 2^{-1} \cdot 2^{-1} \cdot 2^{-2} \cdot 2^{-2$$

3a ga empegerum Noeprymerenvam rea mpegabare Holiv) supurarame lamac mpeoopazybarce mayrabance:

(3) $H(jw) = \frac{a_0 + a_1 e^{-jwt} + a_2 e^{-j2wt} + ... \cdot a_m e^{-jmwt}}{1 - b_1 e^{-jwt} - b_2 e^{-j2wt} - ... - b_p e^{-jpwt}}$ H (jw) = ao +a, cos(wT)+a, cos(2wT)+...+amcos(mwT)-1-b, cos(wT)-b, cos(2wT)-...-bpcos(pwT)+ -j[a1-sin(wt)+a2-sin(2wT)+...+ansin(mwT)] = A+jB +j[b1-sin(wT)+b2-sin(2wT)+...+bpsin(pwT)] = C+jD H(jw) = Y(w) = 10-e-j2wT +2.e-j10wT = 1+2. (cos2wT-jsin2wT) +2. (cos10wT-jsin10wT) = = (10-cosout + 15inout) + (2cosout-215in10ut) = 1+2. (cos2wT-jsin2wT) $\frac{(10-\cos 2\omega T + 2\cos 10\omega T) + j(\sin 2\omega T - 2\sin 10\omega T)}{(1+2\cos 2\omega T) - j2\sin 2\omega T} = A+jB$ Onpregeneure peausiume racum ra H(jw) (AuC), vanue u A = 10-ces 2 wt +2 ces 10 wt B= sinzwT-2sin10wT C=1+2 cos 2wT D= -2 sinzwT

3. РЕЗУЛТАТИ ОТ РЕШЕНИЕТО

1) Tyngalamerna pyragus
$$H(z) = \frac{Y(z)}{1+2\cdot z^{-2}} - \frac{10}{1+2\cdot z^{-2}}$$
2) Loopinguerem ra nyngalare
$$H(yw) = \frac{10 - \cos 2\pi w + 2\cos 2\pi w - 2\sin 2\pi w}{1+2\cos 2\pi w} - \frac{1}{2}\sin 2\pi w - 2\sin 2\pi w}$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}\sin 2\pi w - 2\sin 2\pi w}$$
3) $A4x$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} + \frac{1}{2} + \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\sin 2\pi w}$$

$$|H(jw)| = \sqrt{\frac{10 - \cos 2\pi w + 2\cos 2\pi w}{1+2\cos 2\pi w}} - \frac{1}{2}\cos$$

Tyregalamentama p-a mpagemaluela omnomeruemo real uzacoga wan Koeprynesemom sea npegalasse ynpabiala your baseemo um zaryonha sea Anoie upamiseabal hyrez purmina. 3) A4X novagla kan pumurpom mpanera aununygama Osea curseara bzabucunecom om Terremania ria lacapula curriar. \$4X nereazla nan frumegrem nyanera pazama rea currièrea le zabucunarma our recomonnama rea 4) 3a ga bøge egure penyponber punning yennowrup e secolorique o repeteume sua grancereamene ga ca s единентвана опрински (стейностина B cryrad ne glama repera ra zrances no magni ca no raram om purhlepa e regemeionel. От ступинурнама схена се визесда ге, uzregrewent duriar zabucu one bocque, reciono ce първия Егон в струнтурната ската на импера. Ма представива визушна диаграна на ринигра. cocería ce riznanção za ga ce reaciam

$\frac{1}{H(z)} = \frac{1}{X(z)}$ $\frac{1}{(+2.2^{-2})}$ $\frac{1}{(+2.2^{-2})}$
2) $H(\omega)$ $H(j\omega) = \frac{(16 - \cos 2\omega T) + i(\sin 2\omega T - 2\sin 2\omega T)}{(1 + 2\cos 2\omega T) - j2\sin 2\omega T}$
3) AUX \wedge BUX \wedge BU
5

4. СПИСЪК НА ИЗПОЛЗВАНИТЕ ОЗНАЧЕНИЯ И СЪКРАЩЕНИЯ

