

Composition and Deployment of Complex Container-Based Application Architectures on Multi-Clouds

DI4R

Lisbon, Portugal October 2018

Andy S. Alic¹, Marica Antonacci², Ignacio Blanquer¹, Miguel Caballer¹, Giacinto Donvito², Álvaro López³, Germán Moltó¹

¹Universitat Politècnica de València

²Istituto Nazionale di Fisica Nucleare

³Consejo Superior de Investigaciones Científicas

The Problem. The Why.

- Universal infrastructure support
 - Or at least close to
 - Bare clouds, Kubernetes clusters, Mesos/Marathon clusters, Docker Swarm
- Let's speak the same (descriptive) language
- Academia+industry standard
- Extensible
- Approachable to non-IT fellows

TOSCA

- Topology and
 Orchestration
 Specification for
 Cloud
 Applications
- Standard created by the OASIS Consortium

TOSCA main web page: https://www.oasis-open.org/committees/tc home.php?wg abbrev=tosca#overview Committee full list: https://www.oasis-open.org/committees/membership.php?wg abbrev=tosca

TOSCA template general skeleton


```
tosca_definition_version: tosca_simple_yaml_1_0
description: Insert your description here
imports:
    # List your imports, each on a new line, each line starting with a hyphen
topology_templates:
    inputs:
        # List your inputs, each on a new line
    node_templates:
        # List your nodes, each on a new line
    outputs:
        # List outputs, each on a new line
```

TOSCA example


```
node_templates:
    mesos_master_server:
      type: tosca.nodes.indigo.Compute
      capabilities:
        scalable:
          properties:
            min_instances: 1
            max_instances: 1
            count: 1
            default_instances: 1
        os:
          properties:
            gpu_driver: true
            cuda_support: true
            image: "ubuntu-16.04"
            instance_type: "q5.large"
        endpoint:
```

```
endpoint:
      properties:
        dns_name: mesosserverpublic
        private_ip: true
        ports:
          marathon_port:
            protocol: tcp
            source: 8443
        secure: false
        network_name: PUBLIC
   host:
      properties:
        num_gpus: 1
        mem_size: "2 GB"
        Num_cpus: 2
properties
```

Topology building/composing

- One can use
 - A simple text editor
 - Even Notepad would do
 - A GUI
 - Eclipse Winery
 - OpenTosca
 - Cloudify
 - Alien4Cloud

Alien4Cloud

- Portal to graphically edit YAML-based TOSCA templates
- Built in Java + HTML5 (Spring Boot, Angular)
- Open Source on Github; Apache 2.0
 - https://github.com/alien4cloud
- Extensible Plugin based
 - Easy to add new orchestrators
 - An orchestrator creates the actual infrastructure using a TOSCA topology Defined by the user

DEEP

Today's focus

Alien4Cloud in DEEP

- User's entry point
- Plugin to communicate with our Orchestrator
- Freely at (as bundle Alien4Cloud + plugin, under Apache 2.0)
 - indigo-dc/alien4cloud-deep on
 - indigodatacloud/alien4cloud-deep on
- Next, video deployment Jupyter+Tensorflow on Mesos/Marathon
 - Use GPUs
 - 3 x Virtual Machines
 - 1 x Mesos Master to control (running Marathon too)
 - 1 x **Mesos Slave** doing the hard work
 - 1 x Load Balancer Marathon-LB (HAProxy) exposed to internet

Alien4Cloud in action

Thank you!

Want more? Check us on:

→ https://deep-hybrid-datacloud.eu/

→ @DEEP_eu

What's the idea

- Standardizes the language to describe:
 - The structure of an IT Service (its topology model)
 - How to orchestrate operational behavior (plans such as build, deploy, patch, shutdown, etc.)
 - Declarative model that spans applications, virtual and physical infrastructure