Tutorial 1.1: Questions

- 1a. Prove Theorem 1.3.
- b. Prove Theorem 1.4, (c) (g).

Define the following function on \mathbb{R} called the *absolute value function*:

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

- 2. Prove the following statements for $x, y \in \mathbb{R}$ using the correct axioms, definitions and theorems:
 - a. $|x| \ge 0$
 - b. |x| = 0 if and only if x = 0.
 - c. |-x| = |x|
 - d. |xy| = |x||y|
 - e. $|y| < x \Leftrightarrow -x < y < x$ whenever x > 0
 - f. $-|x| \le x \le |x|$
 - g. Triangle inequality: $||x| |y|| \le |x \pm y| \le |x| + |y|$
- 3. Let $x, y, z \in \mathbb{R}$. Which of the following statements are **TRUE** and which are **FALSE**? Motivate your answer by referring to the correct axioms, definitions and theorems.
 - a. $x \le y \Rightarrow xz \le yz$
 - b. $0 < x \le y \Rightarrow \frac{1}{y} \le \frac{1}{x}$
 - c. $x < y < 0 \Rightarrow \frac{1}{y} < \frac{1}{x}$
 - d. $x^2 < 1 \Rightarrow x < 1$
 - e. $x^2 < 1 \Rightarrow -1 < x < 1$
 - f. $x^2 > 1 \Rightarrow x > 1$
- 4. In each of the following questions fill in the \odot with < or >. Motivate your answer by referring to the correct axioms, definitions and theorems.
 - a. $a \ge 3 \Rightarrow \frac{a-2}{7} \cdot \frac{a}{7}$
 - b. $a \ge 1 \Rightarrow \frac{3}{a+1} \odot \frac{3}{a}$
 - c. $a > 1 \Rightarrow \frac{9}{a} \odot \frac{10}{a-1}$
 - d. $a > 1 \Rightarrow \frac{1}{a^2} \boxdot \frac{1}{a}$

e.
$$a \ge 2 \Rightarrow \frac{1}{a^2 - 1} : \frac{1}{a}$$

f. $a > 3 \Rightarrow -\frac{3}{a} : -\frac{2}{a - 1}$

5. Let $x \ge 0$ and $y \ge 0$. Show that $x < y \Leftrightarrow x^2 < y^2$.

* * * * * * *