B Physikalische Konstanten

Eine Auswahl der wichtigsten Fundamentalkonstanten sind in der folgenden Tabelle zusammengefasst (Quelle: Peter J. Mohr, David B. Newell, and Barry N. Taylor, *CODATA recommended values of the fundamental physical constants: 2014*, Reviews of Modern Physics 88, 035009 (2016)).

Physikalische Konstante	Symbol	Wert	Einheit	rel. Fehler
universelle Konstanten				
Lichtgeschwindigkeit	с	299 792 458	m/s	exakt
Plancksche Konstante	h	$6.626070040(81)\times10^{-34}$	J s	1.2×10^{-8}
h/2π	ħ	$1.054571800(13)\times10^{-34}$	Js	1.2×10^{-8}
		$6.582119514(40)\times10^{-16}$	eV s	6.1×10^{-9}
Gravitationskonstante	G	$6.67408(31) \times 10^{-11}$	$m^3/kg s^2$	4.7×10^{-5}
Induktionskonstante, magnetische Feldkonstante	μ_0	$4\pi \times 10^{-7}$	N/A ²	exakt
Influenzkonstante, elektrische	ϵ_0	$8.854187817\ldots \times 10^{-12}$	F/m	exakt
Feldkonstante, $1/\mu_0 c^2$	$1/4\pi\epsilon_0$	8.987551×10^9	$N m^2/C^2$	exakt
Vakuumimpedanz $1/\mu_0 c^2$	Z_0	376.730 313 461	Ω	exakt
Planck-Masse $\sqrt{\hbar c/G}$	m_{P}	$2.176470(51) \times 10^{-8}$	kg	2.3×10^{-5}
elektromagnetische Konstanten				
Elementarladung	e	$1.6021766208(98)) \times 10^{-19}$	C	6.1×10^{-9}
Magnetisches Flussquant h/2e	Φ_0	$2.067833831(13)\times 10^{-15}$	Vs	6.1×10^{-9}
von Klitzing Konstante $h/e^2 = \mu_0 c/2\alpha$	R_{K}	25 812.807 4555(59)	Ω	2.3×10^{-10}
Leitfähigkeitsquant $2e^2/h$	G_0	$7.7480917310(18) \times 10^{-5}$	S	2.3×10^{-10}
inverses Leitfähigkeitsquant $h/2e^2$	G_0^{-1}	12 906.403 7278(29)	Ω	2.3×10^{-10}
Josephson-Konstante 2 <i>e</i> / <i>h</i>	K_{J}	483 597.8525(30)	GHz/V	6.1×10^{-9}
Bohrsches Magneton eħ/2me	μ_{B}	$927.4009994(57) \times 10^{-26}$	J/T	6.2×10^{-9}
		$5.7883818012(26)\times10^{-5}$	eV/T	4.5×10^{-10}
		$13.996245042(86) \times 10^9$	Hz/T	6.2×10^{-9}
		0.67171405(39)	K/T	5.7×10^{-7}
Kernmagneton $e\hbar/2m_{\rm p}$	μ_{K}	$5.050783699(31) \times 10^{-27}$	J/T	6.2×10^{-9}
		$3.1524512550(15) \times 10^{-8}$	eV/T	4.6×10^{-10}
		$7.622593285(47)\times10^6$	Hz/T	6.2×10^{-9}
		$3.6582690(21) \times 10^{-4}$	K/T	5.7×10^{-7}

Fortsetzung auf nächster Seite

Fortsetzung von letzter Seite

Fortsetzung von letzter Seite	0 1-1-	XX	E' 1	1 1 1 1	
Physikalische Konstante atomare und nukleare Konstanten	Symbol	Wert	Einheit	rel. Fehler	
Feinstrukturkonstante $e^2/4\pi\epsilon_0\hbar c$	α	$7.2973525664(17) \times 10^{-3}$		2.3×10^{-10}	
remstrukturkonstante e /4/160nc	α 1/α	137.035 999 139(31)		2.3×10^{-10} 2.3×10^{-10}	
n 1	,	. ,	1		
Ruhemasse des Elektrons	$m_{\rm e}$	$9.10938356(11) \times 10^{-31}$	kg	1.2×10^{-8}	
	2	$5.48579909070(16) \times 10^{-4}$	u	2.9×10^{-11}	
Ruheenergie des Elektrons	$m_{\rm e}c^2$	$0.510998946(31) \times 10^6$	eV	6.2×10^{-9}	
	$m_{\rm e}c^2$	$8.187\ 105\ 65(10) \times 10^{-14}$	J	1.2×10^{-8}	
Ruhemasse des Protons	$m_{ m p}$	$1.672621898(21) \times 10^{-27}$	kg	1.2×10^{-8}	
		1.007 276 466 879(91)	u	9.0×10^{-11}	
Ruheenergie des Protons	$m_{\rm p}c^2$	$9.382720813(58) \times 10^8$	eV	6.2×10^{-9}	
	$m_{\rm p}c^2$	$1.503\ 277\ 593(18) \times 10^{-10}$	J	1.2×10^{-8}	
Ruhemasse des Neutrons	$m_{\rm n}$	$1.674927471(21)\times 10^{-27}$	kg	1.2×10^{-8}	
		1.008 664 915 88 (49)	u	4.9×10^{-10}	
Ruheenergie des Neutrons	$m_{\rm n}c^2$	$939.5654133(58) \times 10^6$	eV	6.2×10^{-9}	
	$m_{\rm n}c^2$	$1.505\ 349\ 739(19) \times 10^{-10}$	J	1.2×10^{-8}	
Magnetisches Moment des Elektrons	μ_{e}	$-9.284764620(57) \times 10^{-24}$	J/T	6.2×10^{-9}	
	$\mu_{\rm e}/\mu_{\rm B}$	-1.001 159 652 180 91 (26)		2.6×10^{-13}	
Magnetisches Moment des Protons	$\mu_{ m p}$	$1.4106067873(97)\times10^{-26}$	J/T	6.9×10^{-9}	
	$\mu_{\rm p}/\mu_{\rm B}$	$1.5210322053(46)\times10^{-3}$		3.0×10^{-9}	
	$\mu_{\rm p}/\mu_{ m N}$	2.792 847 3508(85)		3.0×10^{-9}	
Massenverhältnis Proton/Elektron	$m_{\rm p}/m_{\rm e}$	1836.152 673 89(17)		9.5×10^{-11}	
spezifische Ladung des Elektrons	$-e/m_{\rm e}$	$-1.758820024(11)\times10^{11}$	C/kg	6.2×10^{-9}	
Rydberg-Konstante $\alpha^2 m_e c/2h$	R_{∞}	10 973 731.568 508(65)	1/m	5.9×10^{-12}	
		$2.179871325(27)\times 10^{-18}$	J	1.2×10^{-8}	
		13.605 693 009(84)	eV	6.1×10^{-9}	
Bohrscher Radius $\alpha/4\pi R_{\infty} = 4\pi\epsilon_0 \hbar^2/m_e e^2$	a_{B}	$5.2917721067(12) \times 10^{-11}$	m	2.3×10^{-10}	
Klassischer Elektronenradius $\alpha^2 a_B$	$r_{ m e}$	$2.8179403227(19)\times 10^{-15}$	m	6.8×10^{-10}	
Compton Wellenlänge des Elektrons $h/m_e c$	λ_{C}	$2.4263102367(11) \times 10^{-12}$	m	4.5×10^{-10}	
physikalisch-chemische Konstanten					
Loschmidtsche Zahl, Avogadro Konstante	$N_{ m A}$	$6.022140857(74)\times10^{23}$	1/mol	1.2×10^{-8}	
Atomare Masseneinheit $1u = 1m_u = \frac{1}{12} m(^{12}C)$ $= 10^{-3} \text{kg mol}^{-1}/N_A$	и	$1.660539040(20)\times10^{-27}$	kg	1.2×10^{-8}	
Faradaysche Konstante $N_{\rm A}e$	F	96 485.332 89(59)	C/mol	6.2×10^{-9}	
Gaskonstante	R	8.314 4598(48)	J/mol K	5.7×10^{-7}	
	Fortsetzung auf nächster Seit				

Fortsetzung von letzter Seite							
Physikalische Konstante	Symbol	Wert	Einheit	rel. Fehler			
Boltzmann-Konstante	k_{B}	$1.38064852(79) \times 10^{-23}$	J/K	5.7×10^{-7}			
Molvolumen eines idealen Gases $RT/$ (bei $T = 273.15 \mathrm{K}, p = 101325 \mathrm{Pa}$)	$pV_{ m m}$	$22.413962(13)\times 10^{-3}$	m ³ /mol	9.1×10^{-7}			
Tripelpunkt des Wassers	T_{t}	273.15	K				
	T_0	272.16	K				
		0	°C				
Stefan-Boltzmannsche Strahlungskonstante $(\pi^2/60)k_{\rm B}^4/\hbar^3c^2$	σ	$5.670367(13)\times10^{-8}$	$W/m^2 K^4$	2.3×10^{-6}			
Wiensche Verschiebungskonstante $b = \lambda_{\max} T$	ь	$2.8977729(17) \times 10^{-3}$	m K	5.7×10^{-7}			
fundamentale physikalische Konstanten – angenommene Werte							
Normaldruck	p_0	101 325	Pa	exakt			
Standard Fallbeschleunigung	g	9.80665	m/s^2	exakt			
konventioneller Wert der Josephson- Konstante ¹	K_{J-90}	483 597.9	GHz/V	exakt			
konventioneller Wert der von Klitzing- Konstante ²	R_{K-90}	25 812.807	Ω	exakt			
Molare Massenkonstante	M_u	1×10^{-3}	kg/mol	exakt			
Molare Masse von ¹² C	$M(^{12}C)$	12×10^{-3}	kg/mol	exakt			

_

Dies ist der international angenommene Wert zur Realisierung des Volts auf der Basis des Josephson-Effekts.

Dies ist der international angenommene Wert zur Realisierung des Ohms auf der Basis des Quanten-Hall-Effekts.