Lista de Exercícios 2

TEOREMAS DA ÁLGEBRA DE BOOLE

Ordem	Teoremas
1	$A \cdot 0 = 0$
2	A . 1 = A
3	$A \cdot A = A$
4	A. $\overline{A} = 0$
5	A + 0 = A
6	A + 1 = 1
7	A + A = A
8	$A + \overline{A} = 1$
9	A + B = B + A
10	$A \cdot B = B \cdot A$
11	A + (B + C) = (A+B) + C
12	A.(B.C) = (A.B).C = A.B.C
13	$A \cdot (B + C) = A \cdot B + A \cdot C$
14	$A + A \cdot B = A$
15	$A + \overline{A} \cdot B = A + B$
16	$A \cdot (\overline{A} + B) = A \cdot B$
17	$A \cdot (A + B) = A$
18	$A + B \cdot C = (A + B) \cdot (A + C)$
20	$A \cdot B + A \cdot \overline{B} = A$
21	$(A + B) \cdot (A + \overline{B}) = A$
22	$A \cdot B + \overline{A} \cdot C = (A + C) \cdot (\overline{A} + B)$
23	$(A+B) \cdot (\overline{A}+C) = A \cdot C + \overline{A} \cdot B$
24	$A \cdot B + \overline{A} \cdot C + B \cdot C = A \cdot B + \overline{A} \cdot C$

Leis de De Morgan

25	$\overline{(X+Y)} = \overline{X}.\overline{Y}$
26	$\overline{(X.Y)} = \overline{X} + \overline{Y}$

Portas Lógicas e Álgebra de Boole

1 − De acordo com a figura 1:

Figura 1

- a) Desenhe a forma de onda da saída x;
- b) Escreva a expressão Booleana da saída x;
- c) Supondo que a entrada A agora é colocada em curto com +5V (nível lógico 1). Desenhe a nova forma de onda da saída x;
- 2- Troque a porta OR da figura 1 por uma porta AND e repita o item a.
- 3 De acordo com a Figura 2:
 - a) Escreva a expressão Booleana para a Figura
 2.a e faça a tabela verdade para todas as possíveis combinações de entrada.
 - b) Escreva a expressão Booleana para a Figura 2.b e faça a tabela verdade para todas as possíveis combinações de entrada.

Figura 2 – a) circuito 1 b) circuito 2

UERGS - Adriane Parraga

4 – Para cada uma das seguintes expressões. Construa os circuitos lógicos correspondente, utilizando portas AND, OR e NOT.

a)
$$x = \overline{AB(C+D)}$$

b)
$$z = \overline{A + B + \overline{C}D\overline{E}} + \overline{B}C\overline{D}$$

c)
$$z = F + G\overline{H}$$

d)
$$z = \overline{A + B} + C\overline{D}$$

5 - Simplifique as expressões abaixo utilizando os teoremas da Álgebra de BOOLE.

a)
$$x = (M + N)(\overline{M} + P)(\overline{N} + \overline{P})$$

b)
$$z = \overline{A}B\overline{C} + AB\overline{C} + B\overline{C}D$$

6. Mostre como $x = AB\overline{C}$ pode ser implementado com uma porta NOR e outra porta NAND cada uma de duas entradas.

7. Prove os teoremas da álgebra de boole 15.

PROBLEMAS

SEÇÕES 4-2 E 4-3

4-1. Simplifique as expressões a seguir usando a álgelleana

(a)
$$x = ABC + \overline{A}C$$

(b)
$$y = (Q + R)(\overline{Q} + \overline{R})$$

(c)
$$w = ABC + A\overline{B}C + \overline{A}$$

(d)
$$q = \overline{RST}(\overline{R+S+T})$$

(e)
$$x = \overline{A}\overline{B}\overline{C} + \overline{A}BC + ABC + A\overline{B}\overline{C} + A\overline{B}C$$

(f)
$$z = (B + \overline{C})(\overline{B} + C) + \overline{A} + B + \overline{C}$$

(g)
$$v = \overline{(C+D)} + \overline{A}C\overline{D} + A\overline{B}\overline{C} + \overline{A}\overline{B}CD + AC\overline{D}$$

4-2. Simplifique o circuito da Fig. 4-41 usando a álgebra na.

Respostas

3)

b)
$$x = \sum 1,0,9,8,3$$

4)

b)
$$x = \bar{A} + \bar{B} + \bar{C}\bar{D}$$

c)
$$x = \bar{A}\bar{B}C + \bar{A}\bar{B}\bar{D} + \bar{A}\bar{B}E + \bar{B}C\bar{D}$$

d)
$$x = \overline{A}\overline{B} + C\overline{D}$$

5)

$$a)x = M\overline{N}P + \overline{M}N\overline{P}$$

b)
$$x = B\bar{c}$$

6) Para resolver, trabalhe a expressão conforme abaixo, usando Demorgan.

$$x = AB\overline{C} = \overline{\overline{ABC}} = \overline{\overline{AB} + \overline{C}} = \overline{\overline{AB} + C}$$

7) utilize de Morgan no próprio teorema e manipule os termos.

Problemas

4.1

a)
$$x = \bar{A}C + BC$$

b)
$$y = Q$$

c)
$$w = \bar{A} + C$$

d)
$$q = \bar{R}\bar{S}\bar{T}$$

e)
$$x = \bar{B}\bar{C} + BC + AC$$

f)
$$z = \bar{B}\bar{C} + BC + A\bar{B}C$$

g)
$$y = \overline{C}\overline{D} + A\overline{C} + \overline{A}\overline{B}C + \overline{A}C\overline{D}$$