Table of Laplace and Z Transforms

 Laplace and Z Transforms
 Laplace Properties
 Z Xform Properties

Using this table for Z Transforms with Discrete Indices Shortened 2-page pdf of Laplace Transforms and Properties Shortened 2-page pdf of Z Transforms and Properties

All time domain functions are implicitly=0 for t<0 (i.e. they are multiplied by unit step).

All time domain functions are implicitly=0 for t<0 (i.e. they are multiplied by unit step). Z Domain										
Entry	Laplace Domain	Time Domain (Note)	(t=kT)							
unit impulse	1	δ(t) unit impulse	1							
unit step	$\Gamma(s) = \frac{1}{s}$	γ(t) (Note)	$\frac{z}{z-1}$							
ramp	$\frac{1}{s^2}$	t	$T\frac{z}{(z-1)^2}$							
parabola	$\frac{2}{s^3}$	t²	$T^{2}\frac{z(z+1)}{(z-1)^{3}}$							
t ⁿ (n is integer)	$\frac{n!}{s^{(n+1)}}$	ť								
exponential	$\frac{1}{s+a}$	e ^{-at}	$\frac{z}{z - e^{-aT}}$							
power		$b^k \qquad \left(b = e^{-aT}\right)$	<u>z</u> z-b							
time multiplied exponential	$\frac{1}{(s+a)^2}$	te ^{-at}	$\frac{z}{z - e^{-aT}}$ $\frac{z}{z - b}$ $T \frac{ze^{-aT}}{\left(z - e^{-aT}\right)^2}$							
Asymptotic exponential	$\frac{1}{s(s+a)}$	$\frac{1}{a} \big(1 - e^{-at} \big)$	$\frac{z \left(1-e^{-aT}\right)}{a \left(z-1\right) \left(z-e^{-aT}\right)}$							
double exponential	$\frac{1}{(s+a)(s+b)}$	$\frac{e^{-at}-e^{-bt}}{\left(b-a\right)}$	$\frac{z\big(e^{-aT}-e^{-bT}\big)}{\big(b-a\big)\big(z-e^{-aT}\big)\big(z-e^{-bT}\big)}$							
asymptotic double exponential	$\frac{1}{s(s+a)(s+b)}$	$\frac{1}{ab} \Biggl(1 - \frac{be^{-at} - ae^{-bt}}{\bigl(b-a\bigr)} \Biggr)$								
asymptotic critically damped	$\frac{1}{s(s+a)^2}$	$\frac{1}{a^2} \left(1 - e^{-at} - ate^{-at} \right)$	$\frac{\left(1-e^{-Ta}\left(1+Ta\right)\right)z^2+e^{-Ta}\left(Ta-1+e^{-Ta}\right)z}{a^2\left(z-e^{-Ta}\right)^2\left(z-1\right)}$							
differentiated critically damped	$\frac{s}{(s+a)^2}$	(1 – at) e ^{-at}	$\frac{z\left(z-\left(Ta+1\right)e^{-Ta}\right)}{\left(z-e^{-Ta}\right)^{2}}$							
sine	$\frac{\omega_0}{s^2 + \omega_0^2}$	sin(ω _o t)	$\frac{z \sin(\omega_0 T)}{z^2 - 2z \cos(\omega_0 T) + 1}$							
cosine	$\frac{S}{S^2 + \omega_0^2}$	$\cos(\omega_0 t)$	$\frac{z \left(z - \cos(\omega_0 T)\right)}{z^2 - 2z \cos(\omega_0 T) + 1}$							
decaying sine	$\frac{\omega_d}{\left(s+a\right)^2+\omega_d^2}$	$e^{-at}sin(\omega_d t)$	$\frac{ze^{-aT}sin(\omega_{d}T)}{z^{2}-2ze^{-aT}cos(\omega_{d}T)+e^{-2aT}}$							
decaying cosine	$\frac{s+a}{\left(s+a\right)^2+\omega_d^2}$	$e^{-at} cos(\omega_d t)$	$\frac{z \left(z - e^{-aT} \cos(\omega_d T)\right)}{z^2 - 2z e^{-aT} \cos(\omega_d T) + e^{-2aT}}$							
generic decaying oscillatory	$\frac{Bs + C}{\left(s + a\right)^2 + \omega_d^2}$	$e^{-at} \left(B \cos(\omega_d t) + \frac{C - aB}{\omega_d} \sin(\omega_d t) \right)$								
generic decaying oscillatory (alternate)	$\frac{Bs + C}{\left(s + a\right)^2 + \omega_d^2}$	$\begin{split} Me^{-at}\cos\!\left(\omega_{d}t+\phi\right) \\ M &= \sqrt{B^{2} + \left(\frac{C-aB}{\omega_{d}}\right)^{2}} \\ \varphi &= -atan\!\left(\frac{C-aB}{B\omega_{d}}\right) = -atan2\!\left(C-aB,B\omega_{d}\right) \end{split}$ (Note)								
Z-domain generic decaying oscillatory		$\sqrt{\frac{a^2d^2+b^2-2abc}{d^2-c^2}}\cdot d^n\cdot cos\bigl(\omega_dn+\varphi\bigr)$	$\frac{az^2 + bz}{z^2 + 2cz + d^2}$, $d > 0$							

			$\omega_{d} = acos\left(-\frac{c}{d}\right), \phi = atan\left(\frac{ac - b}{a\sqrt{d^{2} - c^{2}}}\right)$ (Note)						
ı		Prototype Second Order System (ζ<1, underdampded)							
	Prototype 2 nd order lowpass step response	$\frac{\omega_0^2}{s\big(s^2+2\zeta\omega_0s+\omega_0^2\big)}$	$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_0 t} \sin(\omega_0 \sqrt{1 - \zeta^2} t + \phi)$ $\phi = a\cos(\zeta)$	$\frac{z}{z-1} - \frac{1}{\sqrt{1-\zeta^2}} \frac{z^2 \sqrt{1-\zeta^2} + z e^{-\zeta \omega_0 T} \sin\left(\omega_0 \sqrt{1-\zeta^2} T - \phi\right)}{z^2 - 2z e^{-\zeta \omega_0 T} \cos\left(\omega_0 \sqrt{1-\zeta^2} T\right) + e^{-2\zeta \omega_0 T}}$					
				$\phi = a\cos(\zeta)$					
	Prototype 2 nd order lowpass impulse response	$\frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$	$\frac{\omega_0}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_0t}\sin\!\left(\omega_0\sqrt{1-\zeta^2}t\right)$	$\frac{\omega_o}{\sqrt{1-\zeta^2}}\frac{ze^{-\zeta\omega_0T}\sin\left(\omega_o\sqrt{1-\zeta^2}T\right)}{z^2-2ze^{-\zeta\omega_0T}\cos\left(\omega_o\sqrt{1-\zeta^2}T\right)+e^{-2\zeta\omega_0T}}$					
	Prototype 2 nd order bandpass impulse response	$\frac{2\zeta\omega_0s}{s^2+2\zeta\omega_0s+\omega_0^2}$	$\begin{split} &-\frac{2\zeta\omega_0}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_0t}sin\Big(\sqrt{1-\zeta^2}\cdot\omega_0t-\varphi\Big)\\ &-\varphi=acos\big(\zeta\big) \end{split}$	$\begin{split} &-\frac{2\zeta\omega_{0}T}{\sqrt{1-\zeta^{2}}}\frac{-z^{2}\sqrt{1-\zeta^{2}}+ze^{-\zeta\omega_{0}T}\sin\left(\sqrt{1-\zeta^{2}}\cdot\omega_{0}T+\varphi\right)}{z^{2}-2ze^{-\zeta\omega_{0}T}\cos\left(\sqrt{1-\zeta^{2}}\cdot\omega_{0}T\right)+e^{-2\zeta\omega_{0}T}}\\ &\varphi=acos(\zeta) \end{split}$					

Using this table for Z Transforms with discrete indices

Commonly the "time domain" function is given in terms of a discrete index, k, rather than time. This is easily accommodated by the table. For example if you are given a function:

$$f[k] = k$$

Since t=kT, simply replace k in the function definition by k=t/T. So, in this case,

$$f[k] = \frac{t}{T}$$

and we can use the table entry for the ramp

The answer is then easily obtained

$$f[k] = k = \frac{t}{T} \xleftarrow{\quad \mathfrak{Z}} \frac{1}{T} T \frac{z}{\left(z-1\right)^2} = \frac{z}{\left(z-1\right)^2} = F(z)$$

R	ef	<u>-</u>	rei	n	20	S
	·	0	0		,,,	v