

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I.

Année 2018 - 2019

C4: MODÉLISATION CINÉMATIQUES DES SYSTÈMES COMPOSÉS DE CHAINES DE SOLIDES

TD 10 - Cinématique des solides (C4-4)

8 Janvier 2019

Compétences

- Analyser: Apprécier la pertinence et la validité des résultats:
 - o unités du système international;
 - o homogénéité des grandeurs.
- Modéliser : Proposer un modèle de connaissance et de comportement :
 - Solide indéformable;
 - o référentiel, repère;
 - équivalence solide/référentiel;
 - o vecteur-vitesse angulaire de deux référentiels en mouvement l'un par rapport à l'autre";
- Résoudre : Proposer un modèle de connaissance et de comportement
 - Modélisation plane;
 - Torseur cinématique;

1 Mécanisme d'ouverture de porte en accordéon

La figure 1 ci-dessous représente une porte "accordéon" motorisée. L'extrémité A du battant 1 est en liaison pivot avec les murs du bâtiment 0. L'extrémité C du battant 2 se déplace dans un rail. Elle est reliée à un maillon de la chaîne 3 qui est mise en mouvement par un moto-réducteur 4. Le maillon C se déplace à vitesse constante v. On considère la phase de fermeture de la porte, (à l'instant initial les points A et C sont confondus). On note a les largeurs AB et BC des battants.

FIGURE 1 – Système d'ouverture de porte en accordéon

1. Paramétrage:

- Associer un repère aux solides 0, 1 et 2;
- · paramétrer leur position relative.

2. Mouvement, par rapport au bâtiment 0, du maillon de chaîne relié au battant :

Caractériser ce mouvement par son torseur cinématique en fonction de $v: \{\mathcal{V}_{(3/0)}\}$ au point C.

3. Mouvement du battant 1 par rapport au bâtiment 0:

Donner en fonction du temps, de a et v:

- le vecteur rotation : $\overrightarrow{\Omega}(1/0)$ (on écrira la fermeture géométrique);
- la vitesse du point A : $\overrightarrow{V}(A \in 1/0)$ et la vitesse du point B : $\overrightarrow{V}(B \in 1/0)$.

4. Mouvement du battant 2 par rapport au bâtiment 0

Déterminer en fonction de θ , $\dot{\theta}$ et a:

- la vitesse du point C : $\overrightarrow{V}(C \in 2/0)$;
- le vecteur rotation : $\overrightarrow{\Omega}(2/0)$;
- le vecteur rotation : $\overrightarrow{\Omega}(2/1)$;
- la trajectoire de G centre d'inertie de 2 dans R_0 , (le point G se trouve au milieu du battant);
- la vitesse de G : $\overrightarrow{V}(G \in 2/0)$, en dérivant ses cordonnées dans R0 puis en utilisant la relation de champ des vitesses :
- l'accélération de G : $\overrightarrow{\Gamma}$ ($G \in 2/0$).