§7.7, 7.9 Ordinary Differential Equations III

illusion

Especially made for zqc

School of Mathematical Science, XMU

Tuesday 25th February, 2025

http://illusion-hope.github.io/25-Spring-ZQC-Calculus/

Lecture 3

(illusion)

Tuesday 25th February, 2025

- 可降阶的高阶微分方程 \leadsto 尤其注意驻定方程 $F(y,y',\cdots,y^{(n)})=0$;
- 高阶线性微分方程 → 线性微分方程组

$$(D^n + a_1D^{n-1} + \dots + a_{n-1}D + a_n)y = f(x) \leadsto \mathbf{y}' = \mathbf{A}(x)\mathbf{y} + \mathbf{f}(x).$$

• 令 $y_1 = y, y_2 = y', \dots, y_n = y^{(n-1)}$ 那么有

$$\frac{d}{dx} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ -a_n(x) & -a_{n-1}(x) & \cdots & -a_1(x) \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ f(x) \end{bmatrix}.$$
(1)

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 900

(illusion)

给定 y' = A(x)y, $A(x) \in C[a,b]$, $x_0 \in (a,b)$.

- 方程的所有解构成 n 维线性空间 $S \rightsquigarrow 叠加原理$;
- 解 y_1, \dots, y_n 构成 S 的一组基 $\Leftrightarrow y_1(x_0), \dots, y_n(x_0)$ 构成 \mathbb{R}^n 的一组基;
- 称矩阵 $\Phi(x)=[y_1,\cdots,y_n]$ 为原方程的基解矩阵,那么对方程的任意解y,都存在常向量 $c\in\mathbb{R}^n$ 满足

$$\boldsymbol{y} = \boldsymbol{\Phi}(x)\boldsymbol{c}.$$

• 设 y_1, \dots, y_n 为上述方程的一个基本解组。设 φ 为 y' = A(x)y + f(x), $A(t) \in C[a,b]$ 的一个特解,那么 y' = A(x)y + f(x) 的任意一个解 y 可以表示为

$$y = c_1 y_1 + \dots + c_n y_n + \varphi. \tag{2}$$

给定 $y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = 0.$

- 方程的所有解构成 n 维线性空间 $S \rightsquigarrow 叠加原理$;
- 解 y_1, \dots, y_n 构成 S 的一组基 $\Leftrightarrow y_1(x_0), \dots, y_n(x_0)$ 构成 \mathbb{R}^n 的一组基;
- n 个线性无关解 y_1,y_2,\cdots,y_n 构成原方程的一个基本解组,那么对方程的 任意解 y,都存在常向量 $c\in\mathbb{R}^n$ 满足

$$\mathbf{y} = [y_1, \cdots, y_n]\mathbf{c} = c_1y_1 + \cdots + c_ny_n.$$

• φ 为 $y^{(n)}+a_1(x)y^{(n-1)}+\cdots+a_{n-1}(x)y'+a_n(x)y=f(t)$ 的一个特解,那么 $y^{(n)}+a_1(x)y^{(n-1)}+\cdots+a_{n-1}(x)y'+a_n(x)y=f(t)$ 通解可表示为

$$y = c_1 y_1 + \dots + c_n y_n + \varphi.$$

给定
$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = 0.$$

• n 个解的 Wronsky 行列式定义为

$$W(x) = \det \begin{bmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \vdots & \vdots & & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{bmatrix}.$$

在系数连续的区间上,要么恒为0 (解线性相关),要么恒不为0 (解线性 无关)。

• Duhamel's Principle: 非齐次方程的解可以由齐次方程的解导出。

$$\mathbf{y} = \mathbf{\Phi}(x)\mathbf{\Phi}^{-1}(x_0)\mathbf{y}_0 + \int_{x_0}^x \mathbf{\Phi}(x)\mathbf{\Phi}^{-1}(\tau)\mathbf{f}(\tau)d\tau.$$

• Liouville 公式

$$W' = \operatorname{tr}[\boldsymbol{A}(x)]W \rightsquigarrow W = W(x_0) \exp\left\{ \int_{x_0}^x \operatorname{tr}[\boldsymbol{A}(t)] dt \right\}.$$

Lecture 3

初等积分方法:

- 可分离变量的微分方程 → 一阶线性微分方程
- 变量代换法: 齐次方程, Bernoulli 方程
- 全微分方程, 积分因子法 → (Chapter 9) 多元函数微分学
- 几类可降阶的高阶微分方程

高阶微分方程:

- 齐次线性微分方程解的结构和性质 ↔ 齐次线性微分方程组
- 非齐次线性微分方程: 常数变易法
- 常系数齐次线性微分方程 → 变系数: Euler 方程
- 两类特殊的常系数非齐次线性微分方程

Preparation

定义复值函数 $z: \mathbb{R} \to \mathbb{C}, z(t) = \varphi(t) + \mathrm{i} \ \psi(t)$,其中 $\varphi(t), \psi(t)$ 都是实值函数,那么类似定义如下概念:

- (1) $\lim_{t \to t_0} z(t) = \lim_{t \to t_0} \varphi(t) + i \lim_{t \to t_0} \varphi(t);$
- (2) z(t) 在 t_0 处连续 $\Leftrightarrow \varphi(t)$, $\psi(t)$ 在 t_0 处连续;
- (3) $z'(t) = \varphi'(t) + i \psi'(t)$.

容易验证下面的求导法则也成立:

- $(\alpha z_1(t) \pm \beta z_2(t))' = \alpha z_1'(t) \pm \beta z_2'(t), \ \alpha, \beta \in \mathbb{R};$
- $(z_1(t)z_2(t))' = z'_1(t)z_2(t) + z_1(t)z'_2(t)$.

Lemma 1

设 $t \in \mathbb{R}$, 那么

$$e^{(z_1+z_2)t} = e^{z_1t} \cdot e^{z_2t}, \ \frac{\mathrm{d}e^{zt}}{\mathrm{d}t} = ze^{zt} \leadsto \frac{\mathrm{d}^n e^{zt}}{\mathrm{d}t^n} = z^n e^{zt}.$$

An important Lemma

Lemma 2

设 $z(x)=\varphi(x)+\mathrm{i}\psi(x)$ 为 $y^{(n)}+a_1(x)y^{(n-1)}+\cdots+a_{n-1}(x)y'+a_n(x)y=0$ 的一个复值解,其中 $\varphi(x),\psi(x),a_i(x)$ $(1\leq i\leq n)$ 均为实值函数,那么

- (1) $\varphi(x), \psi(x)$ 也为原方程的解;
- (2) $\overline{z(x)}$ 也为原方程的解.

Note: 若方程有两解 $z_{1,2} = e^{(a\pm bi)x} = e^{ax}(\cos bx \pm i\sin bx) \leadsto z_3 = e^{ax}\cos bx,$ $z_4 = e^{ax}\sin bx$ 也为原方程的解。且 z_3, z_4 可以表示为 z_1, z_2 的线性组合。

给定 $y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0, \ a_i \in \mathbb{R}.$

对 y'-ay=0 我们已经知道它有形如 e^{ax} 的解,我们考虑待定 λ ,将 $y=e^{\lambda x}$ 带入到方程中,观察 λ 需要满足怎样的条件。容易得到

$$(\lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n) e^{\lambda t} = 0.$$

称 $F(\lambda)=\lambda^n+a_1\lambda^{n-1}+\cdots+a_{n-1}\lambda+a_n=0$ 为该微分方程的一个特征方程。

考虑 $F(\lambda)$ 在 \mathbb{C} 上的标准分解式

$$F(\lambda) = (\lambda - \lambda_1)^{k_1} (\lambda - \lambda_2)^{k_2} \cdots (\lambda - \lambda_s)^{k_s}.$$

Cases I: 如果 $F(\lambda)$ 没有重根,即 $k_1 = \cdots = k_s = 1, s = n$,那么容易观察到 $u = e^{\lambda_i x}$ 都是原方程的解。

10 / 18

为了说明此时 $e^{\lambda_1 x}, \cdots, e^{\lambda_n x}$ 构成一个基本解组,也即解集 $\mathcal S$ 的一组基,我们 考察 Wronsky 行列式

$$W(x) = \det \begin{bmatrix} e^{\lambda_1 x} & e^{\lambda_2 x} & \cdots & e^{\lambda_n x} \\ \lambda_1 e^{\lambda_1 x} & \lambda_2 e^{\lambda_2 x} & \cdots & \lambda_n e^{\lambda_n x} \\ \vdots & \vdots & & \vdots \\ \lambda_1^{n-1} e^{\lambda_1 x} & \lambda_2^{n-1} e^{\lambda_2 x} & \cdots & \lambda_n^{n-1} e^{\lambda_n x} \end{bmatrix}$$

$$= \exp\left\{\sum_{i=1}^{n} \lambda_i x\right\} \prod_{1 \le i \ne j \le n} (\lambda_i - \lambda_j).$$

而在标准分解中我们已经假定 $\lambda_i \neq \lambda_j$ 所以上式不为 0 是显然的。

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 9

11 / 18

Cases II: 现在考虑更一般的情形,即 $F(\lambda)$ 在 $\mathbb C$ 上有重根。先从一个特殊情况 入手,不妨 $\lambda_1=0$,这说明特征方程变为

$$\lambda^{k_1}(\lambda - \lambda_2)^{k_2} \cdots (\lambda - \lambda_s)^{k_s} = 0 \leadsto a_{n-k_1+1} = \cdots = a_n = 0.$$

回到原微分方程, 变为

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-k_1} y^{(k_1)} = 0 \leadsto y^{(k_1)} = 0$$
 in particular!

这说明 $1, x, x^2, \cdots, x^{k_1-1}$ 都是原方程的解,更重要的它们都是线性无关的! 进一步,你可以把它们看成 $1 \cdot e^{0x}, xe^{0x}, \cdots, x^{k_1-1}e^{0x}$ 。这给我们启发:当 λ_t 为 $F(\lambda)$ 的 k 重根时,是否 $1 \cdot e^{\lambda_t x}, xe^{\lambda_t x}, \cdots, x^{k_t-1}e^{\lambda_t x}$ 均为方程的解?

接下来考察 $\lambda_1 \neq 0$,为了化归到我们刚才讨论的 $\lambda_1 = 0$ 的情形,使用变量代换 $y = ze^{\lambda_1 x}$,高阶导数的 Leibniz 公式告诉我们

$$y^{(m)} = (ze^{\lambda_1 x})^{(m)}$$

$$= z^{(m)}e^{\lambda_1 x} + \dots + C_m^k z^{(m-k)} \cdot (\lambda_1^k e^{\lambda_1 x}) + \dots + \lambda_1^m ze^{\lambda_1 x}$$

$$= e^{\lambda_1 x} \left[\sum_{j=0}^m C_m^j z^{(j)} \lambda_1^{m-j} \right].$$

带入原微分方程 $a_0y^{(n)}+a_1y^{(n-1)}+\cdots+a_{n-1}y'+a_ny=0,\ a_0=1$, 即

$$e^{\lambda_1 x} \sum_{m=0}^{n} a_{n-m} \left[\sum_{j=0}^{m} C_m^j z^{(j)} \lambda_1^{m-j} \right] = 0.$$

变量代换 $y = ze^{\lambda_1 x}$ 后我们得到

$$e^{\lambda_1 x} \sum_{m=0}^{n} a_{n-m} \left[\sum_{j=0}^{m} C_m^j z^{(j)} \lambda_1^{m-j} \right] = 0.$$

这个新的微分方程的特征方程无非就是把 $z^{(j)}$ 变成 λ^j ,这巧妙让我们可以使用二项式定理,新的特征方程为

$$\sum_{m=0}^{n} a_{n-m} \left[\sum_{j=0}^{m} C_m^j \lambda^j \lambda_1^{m-j} \right] = \sum_{m=0}^{n} a_{n-m} (\lambda + \lambda_1)^m = G(\lambda) = 0.$$

注意到

$$G(\lambda) = F(\lambda + \lambda_1) \leadsto G(0) = F(0 + \lambda_1) = 0.$$

这就说明变换后我们有解 $z=1,x,x^2,\cdots,x^{k_1-1}$,也就对应上我们想要的 $y=e^{\lambda_t x},xe^{\lambda_t x},\cdots,x^{k_t-1}e^{\lambda_t x}$. 我们于是得到了 n 个解,为了说明它们是线性无关的,下面采用反证法:设存在不全为 0 的数 c_{rj} 满足

$$\sum_{r=1}^{s} (c_{r0} + c_{r1}x + \dots + c_{r,k_r-1}x^{k_r-1})e^{\lambda_r x} := \sum_{r=1}^{s} P_r(x)e^{\lambda_r x} = 0.$$

两边同除 $e^{\lambda_1 x}$ 求导 k_1 次得到

$$(c_{10} + c_{11}x + \dots + c_{1,k_1-1}x^{k_1-1})^{(k_1)} + \left\{ \sum_{r=2}^{s} P_r(x)e^{(\lambda_r - \lambda_1)x} \right\}^{(k_1)} = 0.$$

记为

$$\sum_{r=2}^{s} Q_r(x)e^{(\lambda_r - \lambda_1)x} = 0.$$

→□▶→□▶→■▶→■ → つへの

注意这里如果 $P_r(x)$ 不为 0 的话, $Q_r(x)$ 也必不为0,且保持次数! 对下面的式子两边同除 $(\lambda_2 - \lambda_1)$,再求导 k_2 次,得到

$$\left\{ \sum_{r=2}^{s} Q_r(x) e^{(\lambda_r - \lambda_2)x} \right\}^{(k_2)} = 0 \leadsto \sum_{r=3}^{s} R_r(x) e^{(\lambda_r - \lambda_2)x} = 0.$$

重复这样的操作,直到只剩下一种 r,不妨就设定为 s,那么得到

$$V_s(x)e^{(\lambda_s-\lambda_{s-1})x}=0.$$

但是按照原设定,左边必定是一个非零数,导出矛盾!

Euler's Ordinary Differential Equation

下面我们使用变量代换方法求解一类特殊的变系数高阶齐次线性微分方程

$$x^{n}y^{(n)} + x^{n-1}a_{1}y^{(n-1)} + \dots + xa_{n-1}y' + a_{n}y = 0, a_{i} \in \mathbb{R}.$$

不考虑特解 y=0, 换元 $x=e^t \leadsto t=\ln x (x>0)$.

$$y' = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{1}{x} \frac{\mathrm{d}y}{\mathrm{d}t},$$

$$y'' = -\frac{1}{x^2} \frac{\mathrm{d}y}{\mathrm{d}t} + \frac{1}{x} \frac{\mathrm{d}t}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}t} \left\{ \frac{\mathrm{d}y}{\mathrm{d}t} \right\} = \frac{1}{x^2} \left\{ \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - \frac{\mathrm{d}y}{\mathrm{d}t} \right\},$$

$$y^{(3)} = \frac{1}{x^3} \left\{ \frac{d^3 y}{dt^3} - 3 \frac{d^2 y}{dt^2} + 2 \frac{dy}{dt} \right\}.$$

Euler's Ordinary Differential Equation

设微分算子 D = d/dt. 那么

$$xy' = Dy,$$

 $x^2y'' = (D-1)Dy,$
 $x^3y^{(3)} = (D-2)(D-1)Dy,$
...
 $x^ky^{(k)} = (D-k+1)\cdots(D-1)Dy$?

从而特征方程为

$$(D-n+1)\cdots(D-1)D + a_1(D-n+2)\cdots(D-1)D + \cdots + a_{n-1}D + a_n = 0.$$

(illusion) Lecture 3 Tuesda