Identification and Estimation of Categorical Random Coefficient Models

Zhan Gao ¹ M. Hashem Pesaran ^{1,2}

¹University of Southern California

²Trinity College, University of Cambridge;

Categorical Random Coefficient Model

Suppose the single cross-section observations $\{y_i, x_i, z_i\}_{i=1}^n$, follow the model

$$y_i = x_i \beta_i + \boldsymbol{z}_i' \boldsymbol{\gamma} + u_i$$

where $\beta_i \in \{b_1, b_2, \cdots, b_K\}$ follows the categorical distribution,

$$\beta_i = b_k$$
, w.p. π_k ,

with $\pi_k \in (0,1)$, $\sum_{k=1}^K \pi_k = 1$, $b_1 < b_2 < \cdots < b_K$.

- lacksquare $\gamma \in \mathbb{R}^p$ is homogeneous.
- Assume $\beta_i \perp \boldsymbol{w}_i = (x_i, \boldsymbol{z}_i')'$. The idiosyncratic shock $u_i \sim (0, \sigma_i^2) \perp \boldsymbol{w}_i$. $\beta_i \perp u_i$.
- \blacksquare K is assumed to be **known**.
- Allow for distributions of w_i and u_i are not identical across i while independence across i is maintained.

Goal: Identify and estimate γ and the distributional parameters of β_i , $\boldsymbol{\theta} = (\boldsymbol{\pi}' = (\pi_1, \pi_2, ..., \pi_K), \boldsymbol{b}' = (b_1, b_2, ..., b_K)).$

Identification

Identifying the moments of β_i

Recursively solve the linear systems for $r=2,3,\cdots,2K-1$,

$$\rho_{0,r} \mathbf{E} \left(\beta_i^r \right) + \sigma_r = \rho_{r,0} - \sum_{q=2}^{r-1} {r \choose q} \rho_{0,r-q} \sigma_q \mathbf{E} \left(\beta_i^{r-q} \right),$$

$$\rho_{0,2r} \mathbf{E} \left(\beta_i^r \right) + \rho_{0,r} \sigma_r = \rho_{r,r} - \sum_{q=2}^{r-1} {r \choose q} \rho_{0,2r-q} \sigma_q \mathbf{E} \left(\beta_i^{r-q} \right),$$

with
$$\left|n^{-1}\sum_{i=1}^n \operatorname{E}\left(\tilde{y}_i^r x_i^s\right) - \rho_{r,s}\right| = O\left(n^{-1/2}\right)$$
, $\left|n^{-1}\sum_{i=1}^n \operatorname{E}\left(u_i^r\right) - \sigma_r\right| = O\left(n^{-1/2}\right)$.

Identifying the distribution of β_i

Show the system

$$E(\beta_i^r) = \sum_{k=1}^K \pi_k b_k^r, \ r = 0, 1, 2, \dots, 2K - 1,$$

has a unique solution (π',b') based on a linear recurrence structure, under the conditions

$$b_1 < b_2 < \cdots < b_K$$
, and $\pi_k \in (0,1)$.

Estimation

Two-step estimation procedure

- \blacksquare \sqrt{n} -consistent estimator for γ , then replace γ by $\hat{\gamma}$ in estimation of the distribution of β_i .
 - Let $\boldsymbol{w}_i = (x_i, \boldsymbol{z}_i')'$, $\boldsymbol{\phi} = (\mathrm{E}(\beta_i), \boldsymbol{\gamma}')'$, the least square estimator $\hat{\boldsymbol{\phi}} = \left(n^{-1}\sum_{i=1}^n \boldsymbol{w}_i \boldsymbol{w}_i'\right)^{-1} \left(n^{-1}\sum_{i=1}^n \boldsymbol{w}_i y_i\right)$
- f 2 Generalized method of Moments (GMM) estimator for $m heta = (m \pi', m b')$.
 - The moment conditions,

$$\mathrm{E}\left(\tilde{y}_{i}^{r} x_{i}^{s_{r}}\right) = \sum_{q=0}^{r} \binom{r}{q} \mathrm{E}\left(x_{i}^{r-q+s_{r}}\right) \mathrm{E}\left(u_{i}^{q}\right) m_{r-q},$$

 $s_r = 0, 1, \cdots, S - r$, where S is a user-specific tuning parameter, chosen such that the highest order moments of x_i included is at most S, where S > 2K - 1.

- Sample version, $\hat{g}_{n}^{(r,s_r)}\left(\boldsymbol{\theta},\boldsymbol{\sigma},\hat{\boldsymbol{\gamma}}\right) = \frac{1}{n}\sum_{i=1}^{n}\left[\sum_{q=0}^{r}\binom{r}{q}x_{i}^{r-q+s_r}\sigma_{q}\left[h\left(\boldsymbol{\theta}\right)\right]_{r-q} \hat{\tilde{y}}_{i}^{r}x_{i}^{s_r}\right]$, where $\hat{\tilde{y}}_{i} = y_{i} \boldsymbol{z}_{i}'\hat{\boldsymbol{\gamma}}$.
- $\blacksquare \left(\hat{\boldsymbol{\theta}}', \hat{\boldsymbol{\sigma}}'\right)' = \operatorname{arg\,min}_{\boldsymbol{\theta} \in \Theta, \boldsymbol{\sigma} \in \mathcal{S}} \hat{\boldsymbol{g}}_n \left(\boldsymbol{\theta}, \boldsymbol{\sigma}, \hat{\boldsymbol{\gamma}}\right)' \boldsymbol{A}_n \hat{\boldsymbol{g}}_n \left(\boldsymbol{\theta}, \boldsymbol{\sigma}, \hat{\boldsymbol{\gamma}}\right).$

Theorem 1: Consistency and Asymptotic Normality of ϕ and θ

Under regularity conditions,

- $\hat{\phi}$ is a consistent estimator for ϕ , and $\sqrt{n} \left(\hat{\phi} \phi \right) \rightarrow_d N \left(\mathbf{0}, \mathbf{Q}_{ww}^{-1} \mathbf{V}_{w\xi} \mathbf{Q}_{ww}^{-1} \right)$.
- **2** Let $\eta = (\theta', \sigma')'$ and $\eta_0 = (\theta'_0, \sigma'_0)'$, as $n \to \infty$, $\hat{\eta} \to_p \eta_0$.
- Is Let $\sqrt{n} (\hat{\gamma} \gamma) \rightarrow_d \zeta_{\gamma} \sim N(0, V_{\gamma})$, as $n \rightarrow \infty$,

$$\sqrt{n} \left(\hat{\eta} - \eta_0 \right) \rightarrow_d \left(\mathbf{G}_0' \mathbf{A} \mathbf{G}_0 \right)^{-1} \mathbf{G}_0' \mathbf{A} \left(\zeta + \mathbf{G}_{0,\gamma} \zeta_{\gamma} \right).$$

Multiple Regressors with Random Coefficients

The model

$$y_i = \mathbf{x}_i' \beta_i + \mathbf{z}_i' \gamma + u_i,$$

where the $p \times 1$ vector of random coefficients, $\beta_i \in \mathbb{R}^p$ follows the multivariate distribution

$$\Pr\left(\beta_{i1} = b_{1k_1}, \beta_{i2} = b_{2k_2}, \cdots, \beta_{ip} = b_{pk_p}\right) = \pi_{k_1, k_2, \cdots, k_p},$$

with $k_j \in \{1, 2, \dots, K\}$, $b_{j1} < b_{j2} < \dots < b_{jK}$, and $\sum_{k_1, k_2, \dots, k_p \in \{1, 2, \dots, K\}} \pi_{k_1, k_2, \dots, k_p} = 1$.

- Identification and estimation of the marginal distributions of β_i follow as corollaries.
- The joint distribution can be identified in special cases, p=2 and K=2 for example.

Next Steps

- lacktriangle Determine K. The model is useful when K is not very large.
- Extension to panel and spatial setups.

Monte Carlo Experiments

Data generating process: $y_i = \alpha + x_i\beta_i + z_{i1}\gamma_1 + z_{i2}\gamma_2 + u_i$, for i = 1, 2, ..., n. generate $x_i = (\tilde{x}_{1i} - 2)/2$ where $\tilde{x}_{1i} \sim \mathsf{IID}\chi^2(2)$ for i = 1, 2, ..., n. The additional regressors, z_{ij} , for j=1,2 with homogeneous slopes are generated as $z_{i1}=x_i+v_{i1}$ and $z_{i2}=z_{i1}+v_{i2}$, with $v_{ij}\sim \text{IID }N\left(0,1\right)$, for j=1,2. The error term u_i is generated as $u_i=\sigma_i\varepsilon_i$, where σ_i^2 are generated as $0.5(1 + \text{IID}\chi^2(1))$, and $\varepsilon_i \sim \text{IID}N(0,1)$.

	$\pi = 0.5$			$\beta_L = 1$			$\beta_H = 2$		
\overline{n}	Bias	RMSE	Size	Bias	RMSE	Size	Bias	RMSE	Size
500	-0.0234	0.2384	0.3678	-0.0882	0.6297	0.3217	-0.0216	0.5816	0.2186
1,000	-0.0185	0.1769	0.2981	-0.0362	0.4285	0.2767	-0.0198	0.3216	0.2083
2,000	-0.0069	0.1233	0.2376	-0.0151	0.2274	0.2370	-0.0123	0.1574	0.1828
5,000	-0.0029	0.0677	0.1586	-0.0020	0.0988	0.1504	-0.0060	0.0735	0.1434
10,000	-0.0010	0.0414	0.1112	0.0008	0.0535	0.1060	-0.0032	0.0463	0.1050
100,000	0.0001	0.0114	0.0610	0.0006	0.0135	0.0666	-0.0003	0.0135	0.0620

Heterogeneous Return to Education: An Empirical Application

■ Estimate the Mincerian equation with repeated cross-sectional data by education groups,

$$\log \mathsf{wage}_{it} = \alpha_t + \beta_{it} \mathsf{edu}_{it} + \rho_{1t} \mathsf{exper}_{it} + \rho_{2t} \mathsf{exper}_{it}^2 + \tilde{\boldsymbol{z}}_{it}' \tilde{\boldsymbol{\gamma}}_t + u_{it}, \text{ where } \beta_{it} = \begin{cases} b_{tL} & \mathsf{w.p.} \ \pi_t, \\ b_{tH} & \mathsf{w.p.} \ 1 - \pi_t. \end{cases}$$

- Data: The May and Outgoing Rotation Group (ORG) supplements of the Current Population Survey (CPS) data, 1973 2003.
- Between group heterogeneity ↑ due to the postsecondary education group; Within group heterogeneity ↑ in high school or less education group.

