

Independent Samples t-test

Fikile Nkwanyana
Discipline of Public Health Medicine
25 July 2025

Statistical tests for continuous data

Number of groups	Dependent / Independent	Statistical test
One	N/A	One- Sample t-test
Two	Dependent	Paired samples t-test
Two	Independent	Independent samples t-test
Three	Independent	One-way Analysis of Variance

Assume normal distribution

Steps in Hypothesis Testing

- \checkmark Establish H_0 and H_a
- ✓ Set the significance level α (usually 0.05)
- ✓ Choose the appropriate statistical test
- ✓ Calculate the appropriate test statistic
- ✓ Read the relevant critical value from a stats table

✓ Compare the calculated statistics and the critical value.

Steps in Hypothesis Testing (cont)

- ✓ Make a decision regarding $H_{0:}$ If the calculated value is greater that the critical value, we reject H_0 . If not we fail to reject the H_0 .
- ✓ When the null hypothesis is rejected, the outcome is said to be <u>"statistically significant"</u>; when the null hypothesis is not rejected then the outcome is said be "not statistically significant."
- ✓ Draw a conclusion regarding your original research hypothesis based on your decision above.

Learning outcomes

• When to use independent samples t-test

Assumptions

Null and alternative hypotheses

Calculate relevant statistics

Interpret results

When to use Independent samples t-test

Appropriate for comparing means between **two unrelated** groups.

Example:

Assess cholesterol level of women who are on a contraceptive pill and those who are not on a contraceptive pill.

1. Comparing two unrelated groups

2. Dependent variable is normally distributed

3. Equal variances

Two unrelated groups also known as independent groups or unpaired groups.

A person cannot be in both groups.

For example: smokers vs non-smokers

males vs females

discharged vs demised

• Normal distribution of a dependent variable

mean = median = mode

Testing for normality

Shapiro-Wilks test and Kolmogorov-Smirnov test

(significant p-values imply that the data is NOT normally distributed)

If data are not normally distributed

• Transform data

Use a non-parametric equivalent test
 Mann-Whitney U test also known as Wilcoxon
 ranksum test

(not for HMA exercises)

Equal variances

• The **Levene's test** is used to test for equality of variances

SPSS performs the test automatically

(not expected to perform this test for HMA exercises)

Null hypothesis

 Null hypothesis is a hypothesis of no difference, no association or no effect

Null hypothesis: the population means of the two groups are equal

$$H_0: \mu_1 = \mu_2$$

Alternative hypothesis

o Alternative hypothesis is a hypothesis of difference, association or effect

Alternative hypothesis: the population means of the two groups are not equal

$$H_a$$
: $\mu_1 \neq \mu_2$

Relevant statistics

t-test

$$t_{n_1+n_2-2} = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{s_p^2 + s_p^2}{n_1 + n_2}}}$$

Relevant Statistics

pooled variance

$$s_p^2 = \frac{(\mathbf{n}_1 - 1)\mathbf{s}_1^2 + (\mathbf{n}_2 - 1)\mathbf{s}_2^2}{\mathbf{n}_1 + \mathbf{n}_2 - 2}$$

Example 1

• A researcher wants to find out whether exercise or lowcalorie diet reduces cholesterol level.

• She conducts a study and recruit 40 inactive males.

• Randomly assigned 20 into a low-calorie diet and 20 into an exercise program.

Statistical Tests - Example

✓Establish H_o and H_a

$$H_0$$
: $\mu_{diet} = \mu_{exercise}$

$$H_a$$
: $\mu_{diet} \neq \mu_{exercise}$

✓ Set the significance level α (usually 0.05)

Statistical Tests - Examples

✓ Choose the appropriate statistical test

Type of variable analyzed(cholesterol) – continuous Distribution of cholesterol – normal Number of groups – two Independent or dependent - independent

Appropriate test statistic: Two independent samples ttest

Statistical Tests - Examples

Calculate the appropriate test statistic

$$t_{n_1+n_2-2} = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{s_p^2 + s_p^2}{n_1 + n_2}}}$$

Relevant Statistics

pooled variance

$$s_p^2 = \frac{(\mathbf{n}_1 - 1)\mathbf{s}_1^2 + (\mathbf{n}_2 - 1)\mathbf{s}_2^2}{\mathbf{n}_1 + \mathbf{n}_2 - 2}$$

Descriptive Statistics

	mean	standard deviation
Diet	6,14	0,51
Exercise	5,79	0,38

$$s_p^2 = \frac{(\mathbf{n}_1 - 1)\mathbf{s}_1^2 + (\mathbf{n}_2 - 1)\mathbf{s}_2^2}{\mathbf{n}_1 + \mathbf{n}_2 - 2}$$

$$s_1 = 0.51$$
 $s_2 = 0.38$

$$s_p^2 = \frac{(20-1)(0,51)^2 + (20-1)(0,38)^2}{20+20-2}$$

$$s_p^2 = \frac{19 * 0,2601 + 19 * 0,1444}{38}$$

$$=\frac{4,9419+2,7436}{38}$$

$$=\frac{7,6855}{38}=0,202$$

$$t_{n_1+n_2-2} = \frac{x_1 - x_2}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}}$$

$$t_{38;0,05} = \frac{6,14 - 5,79}{\sqrt{\frac{0,202}{20} + \frac{0,202}{20}}}$$

$$t = \frac{0,35}{\sqrt{0,0101 + 0,0101}}$$

$$t = \frac{0,35}{\sqrt{0,0202}}$$

$$t = \frac{0,35}{0,142} = 2,46$$

• Check the critical value associated with the test statistics in the table

Read critical value of t from the stats tables for t-statistics.

TABLE 3—Percentage Points of Student's t Distribution

100 KIS	0.225	2000	Level of Significance for a One-Tailed Test							
Degrees of Freedom	.25	.20	.15	.10	.05	.025	.01	.005	.0005	
(n-1)	P5249	0000	Level	of Signific	ance for a	Two-Taile	d Test	0-00	55/13	
8.00E	.50	.40	.30	.20	.10	.05	.02	.01	.001	
1]	1,000	1.376	1.963	3.078	6.314	12.706	31.821	63,657	636.619	
2	.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	31.598	
3	.765	.978	1.250	1.638	2.353	3.182	4.541	5.841	12.924	
4	.741	.941	1.190	1.533	2.132	2.776	3.747	4.604	8.610	
5	.727	.920	1.156	1.476	2.015	2.571	3.365	4.032	6.869	
6	.718	.906	1.134	1,440	1.943	2.447	3.143	3.707	5.959	
7	.711	.896	1.119	1.415	1.895	2.365	2.998	3,499	5.408	
8	.706	.889	1.108	1.397	1.860	2.306	2.896	3.355	5.041	
9	.703	.883	1.100	1.383	1.833	2.262	2.821	3.250	4,781	
10	.700	.879	1.093	1.372	1.812	2.228	2.764	3.169	4.587	
n1	.697	.876	1.088	1.363	1.796	2.201	2.718	3.106	4.437	
12	.695	.873	1.083	1.356	1.782	2.179	2.681	3.055	4.318	
13	.694	.870	1.079	1.350	1.771	2.160	2.650	3.012	4.221	
14	.692	.868	1.076	1.345	1.761	2.145	2.624	2.977	4.140	
15	.691	.866	1.074	1.341	1.753	2.131	2.602	2.947	4.073	
16	.690	.865	1.071	1.337	1.746	2.120	2.583	2.921	4.015	
17	.689	.863	1.069	1.333	1.740	2.110	2.567	2.898	3.965	
18	.688	.862	1.067	1.330	1.734	2.101	2.552	2.878	3.922	
19	.688	.861	1.066	1.328	1.729	2.093	2.539	2.861	3.883	
20	.687	.860	1.064	1.325	1.725	2.086	2.528	2.845	3.850	
21	.686	.859	1.063	1.323	1.721	2.080	2.518	2.831	3.819	
22	.686	.858	1.061	1.321	1.717	2.074	2.508	2.819	3.792	
23	.685	.858	1.060	1.319	1.714	2.069	2.500	2.807	3.767	
24	.685	.857	1.059	1.318	1.711	2.064	2,492	2.797	3.745	
25	.684	.856	1.058	1.316	1.708	2.060	2.485	2.787	3,725	
26	.684	.856	1.058	1.315	1.706	2.056	2.479	2.779	3.70	
27	.684	.855	1.057	1.314	1.703	2.052	2.473	2.771	3.690	
28	.683	.855	1.056	1.313	1.701	2.048	2.467	2.763	3.674	
29	.683	.854	1.055	1.311	1.699	2.045	2.462	2.756	3.659	
30	.683	.854	1.055	1,310	1.697	2.042	2.457	2.750	3.646	
40	.681	.851	1.050	1.303	1.684	2.021	2.423	2.704	3.551	
60	,679	.848	1.046	1.296	1.671	2.000	2.390	2.660	3,460	
120	.677	.845	1.041	1.289	1.658	1.980	2.358	2.617	3.373	
00	.674	.842	1.036	1.282	1.645	1.960	2.326	2.576	3.291	
1999	107	107.74	1,000	1.606	1.007.00	1,700	6.340	617110	V 140 7 2	

$$t_{38;0,05} = 2,042$$

Since $t_{calc} = 2,46$ is greater than 2,042;

Reject the null hypothesis (average cholesterol level of males who are on a low calorie diet is equal to that of men on an exercise program) if the calculated value of t is greater that the critical value of t.

Conclusion

Cholesterol level amongst males who are in an exercise program differs from cholesterol level of males in a lowcalorie diet program

Estimate range of a p-value

• Check where the calculated value of t lie at the relevant degrees of freedom and level of significance

$$t_{calc} = 2,46$$

• Check where 2,46 lie at 38 degrees of freedom

TABLE 3—Percentage Points of Student's t Distribution

	20	20	Level of Significance for a One-Tailed Test					200	0000	
Degrees of Freedom	,25	.20	.15	.10	.05	.025	.01	.005	.0005	
(n-1)	75.00	9000	Level	of Signific	ance for a	Two-Taile	d Test	00094	5-5-05	
attack.	.50	.40	.30	.20	.10	.05	.02	.01	.001	
1	1,000	1.376	1,963	3.078	6.314	12.706	31.821	63,657	636.619	
2	.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	31.598	
2 3	.765	.978	1.250	1.638	2.353	3.182	4.541	5.841	12.924	
4	.741	.941	1.190	1.533	2.132	2.776	3.747	4.604	8.610	
5	.727	.920	1.156	1.476	2.015	2.571	3.365	4.032	6.869	
6	.718	.906	1.134	1.440	1.943	2.447	3.143	3.707	5.959	
7	.711	.896	1.119	1.415	1.895	2.365	2.998	3,499	5.408	
8	.706	.889	1.108	1.397	1.860	2.306	2.896	3.355	5.041	
9	.703	.883	1.100	1.383	1.833	2.262	2.821	3.250	4,781	
10	.700	.879	1.093	1.372	1.812	2.228	2.764	3.169	4.587	
n1	.697	.876	1.088	1.363	1.796	2.201	2.718	3.106	4.437	
12	.695	.873	1.083	1.356	1.782	2.179	2.681	3.055	4.318	
13	.694	.870	1.079	1.350	1.771	2.160	2.650	3.012	4.221	
14	.692	.868	1.076	1.345	1.761	2.145	2.624	2.977	4.140	
15	.691	.866	1.074	1.341	1.753	2.131	2.602	2.947	4.073	
16	,690	.865	1.071	1.337	1.746	2.120	2.583	2.921	4.015	
17	,689	.863	1.069	1.333	1.740	2.110	2.567	2.898	3.965	
18	.688	.862	1.067	1.330	1.734	2.101	2.552	2.878	3.922	
19	.688	.861	1.066	1.328	1.729	2.093	2.539	2.861	3.883	
20	.687	.860	1.064	1.325	1.725	2.086	2.528	2.845	3.850	
21	.686	.859	1.063	1.323	1.721	2.080	2.518	2.831	3.819	
22	.686	.858	1.061	1.321	1.717	2.074	2.508	2.819	3.792	
23	.685	.858	1.060	1.319	1.714	2.069	2.500	2.807	3.767	
24	.685	.857	1.059	1.318	1.711	2.064	2,492	2.797	3.745	
25	.684	.856	1.058	1.316	1.708	2.060	2.485	2.787	3,725	
26	.684	.856	1.058	1.315	1.706	2.056	2.479	2.779	3.70	
27	.684	.855	1.057	1.314	1.703	2.052	2.473	2.771	3.690	
28	.683	.855	1.056	1.313	1.701	2.048	2.467	2.763	3.674	
29	.683	.854	1.055	1.311	1.699	2.045	2.462	2.756	3.659	
30	.683	.854	1.055	1.310	1.697	2.042	2.457	2.750	3.646	
40	.681	.851	1.050	1.303	1.684	2.021	2.423	2.704	3.551	
60	,679	.848	1.046	1.296	1.671	2.000	2.390	2.660	3.460	
120	.677	.845	1.041	1.289	1.658	1.980	2.358	2.617	3.373	
00	.674	.842	1.036	1.282	1.645	1.960	2.326	2.576	3.291	
22.0	100	1174	1,000	1.202	1.000	1.500	2.520	2010		

• At 38 degrees of freedom; 2,46 lie between 0,02 and 0,01.

Questions?