How Tight are Malthusian Constraints?

T. Ryan Johnson ¹ Dietrich Vollrath ²

¹University of Houston

²University of Houston

Translation

What is the elasticity (i.e. how tight) of agricultural output with respect to land (i.e. the Malthusian constraint)?

- What we do:
 - Estimate the elasticity using district-level variation in rural density

 Estimate allocation are sense and the sense are sense as a sense at the sense a
 - Estimate elasticity separately for different climate zones, agric. type, etc..
 - Show elasticity is about 2x higher for temperate (0.20-0.30) vs. tropics (0.10-0.15)
 - Show differences are robust w.r.t. data sources, measurement error

Why do you care?

The elasticity determines the degree of decreasing returns to scale for labor/capital in agriculture.

- **Theory**: The higher the elasticity, the more sensitive are real income and the agric. labor share to shocks in population/productivity.
- Evidence: Using epidemiological transition after WWII a la Acemoglu and Johnson (2007), countries with high elasticities had more severe negative effect of rising life expectancy
- Speculation: Informative about historical development (Asia vs. Europe) and contemporary development (delayed development in tropics?).
 Geography as mediator, not cause.

Density and Productivity

Province I contains a set of districts, each denoted by i, with aggregate agricultural production

$$Y_i = A_i X_i^{\beta} \left(K_{Ai}^{\alpha} L_{Ai}^{1-\alpha} \right)^{1-\beta} \tag{1}$$

- A_i is productivity, X_i is land
- K_{Ai} is all other inputs (e.g. capital)
- L_{Ai} is agricultural labor in district i (not a single sector)
- Assume β and α are identical *within* province (but not nec. *across* provinces)

Mobile Factors

The wage and return to capital in each district are given by

$$w = \phi_L \frac{Y_i}{L_{Ai}}$$

$$r = \phi_K \frac{Y_i}{K_{Ai}}$$
(2)

- ϕ_L and ϕ_K are shares of output
- Shares need not equal elasticities
- Shares are identical within province (but not nec. across provinces)
- Capital and labor are mobile within province (but not nec. across provinces)

Solving for Labor Allocations

Given mobility of labor and capital within province,

$$\frac{K_{Ai}}{L_{Ai}} = \frac{w}{r} \frac{\phi_K}{\phi_L}.$$
 (3)

Adding up condition for agricultural labor within province

$$\sum_{i\in I}L_{Ai}=L_{A}.\tag{4}$$

6/37

June 2017

Solve for allocation of labor (relative to land) to district *i*

$$\frac{L_{Ai}}{X_i} = A_i^{1/\beta} \frac{L_A}{\sum_{j \in I} A_j^{1/\beta} X_j}.$$
 (5)

Agricultural Labor Allocation

In log terms:

$$\ln L_{Ai}/X_i = \frac{1}{\beta} \ln A_i + \ln \frac{L_A}{\sum_{j \in I} A_j^{1/\beta} X_j}, \tag{6}$$

where second term is province-specific.

- β can be estimated from elasticity of L_{Ai}/X_i w.r.t. A_i .
- β large (tight), $1/\beta$ small, ag. workers spread evenly w/in province
- β small (loose), $1/\beta$ large, ag. workers concentrated on high A_i
- Ag labor relative to total labor (L_A/L) does not enter
- Expression is not unique to heavily agricultural provinces (or eras)

Using as a Specification

Re-arranging the prior expression and adding some notation:

$$\ln A_{isg} = \alpha_g + \beta_g \ln L_{Aisg} / X_{isg} + \gamma_s + \delta_g' \mathbf{Z}_{isg} + \epsilon_{isg}. \tag{7}$$

- District i, region/state/province s
- g indicates a geographic area (e.g. temperate)
- γ_s, province FE, picks up province-specific term
- Z_{isg} are additional controls
- ϵ_{isg} is error term

Using as a Specification

We moved productivity, A_{isg} and agric. density L_{Aisg}/X_{isg} to opposite sides:

$$\ln A_{isg} = \alpha_g + \beta_g \ln L_{Aisg} / X_{isg} + \gamma_s + \delta'_g \mathbf{Z}_{isg} + \epsilon_{isg}.$$
 (8)

9/37

• Estimating $1/\beta \Rightarrow$ very sensitive to small differences in β

Agricultural Density Data

L_{Aisg} comes from HYDE 3.1 database (Goldewijk et al, 2011)

- Population counts for 5 degree grid-cells built from administrative data
- We aggregate data back to administrative level (e.g. districts)
- Rural population data (not agricultural)
- Main samples based on year 2000

 X_{isq} calculated as area of a given district

Measure of possible agricultural land

 L_{Aisg}/X_{isg} data

- Trim above 99th and below 1st percentiles
- Drop if fewer than 100 total rural residents
- 35,451 total districts from around world

Agricultural Density Data

Agricultural Density Data

Agricultural Productivity Data

A_{isg} is built from Galor and Özak (2016) caloric suitability index

- Data from GAEZ on agro-climatic possible yield (in raw tons) for each crop
- Combine with nutritional information by crop (total calories per raw ton)
- For each grid cell, determine max calories across all crops
- Sum max calories across grid cells in district, divide by total area
- Holds technology assumptions constant
- Trim above 99th and below 1st percentile

Agricultural Productivity Data

Agricultural Productivity Data

Control Variables

Henderson et al (2016) on spatial distribution of economic activity

- Urban activity correlated with (caused by?) high agricultural productivity (in some places)
- Low rural density because of urban activity
- $Corr(\epsilon_{isg}, \ln L_{isg}/X_{isg}) < 0$

Include two controls at the district level in \mathbf{Z}_{isa} for urban/economic activity:

- Night lights density: follows Henderson et al (2016) using Global Radiance Calibrated data
- Urban percent of population: from HYDE

"Temperate" versus "Tropical"

How do we define the geographic types g?

- **Temperate**: suitable for barley, buckwheat, rye, oats, white potatoes, and/or wheat but zero suitability for Tropical crops
- Tropical: suitable for cassava, cowpeas, pearl millet, sweet potatoes, paddy rice, and/or yams but zero suitability for Temperate crops

Measure suitability several ways

- GAEZ suitability indices (0 to 100), OR
- Source of maximum calories in our A_{isa} measure, OR
- Actual harvested area

Definition of geographic type is specific to a province, not a country, so heterogeneity of β within country

Results by Temperate/Tropical

Results by Temperate/Tropical

Results by Climate Zone

Define *g* by looking at specific climate factors, rather than crops grown

- Create samples based on Köppen-Geiger zones
- Three layers: Climate, Precipitation, Temperature
- Each layer has multiple types (e.g. Climate is Equatorial, Arid, ...)
- Create samples where districts have >50% of land in a given type
- \Rightarrow heterogeneity within countries in β

Results by Climate Zone

Results by Political Region

Define *g* by grouping countries based on common usage

- ullet Assumes homogeneity of eta for provinces within countries
- General overlap of geographies and these political regions

Results by Region

Explanations?

Why looser constraints in tropics compared to temperate areas?

- Positive(?): Multiple cropping, longer growing periods, more sun, more rain during growing periods ⇒ land area isn't binding?
- Negative(?): Soil leaching, lack of frost ⇒ land is less useful?
- Neutral(?): Crops have unique requirements for labor inputs versus land inputs?

Working on new project that uses actual crop yields to back out elasticities by crop within a given grid cell, holding geographic conditions constant.

Robustness and questions

- Use province level data (with country FE)
- Use rural density for 1900 from HYDE Results
- Use IPUMS for agricultural population Results
- Use GRUMP for population data Results
- Estimate β for individual provinces Results
- Use cultivated area of land Results
- Maize and soy Results
- Exclude districts with few harvest Ha Results
- Workers not mobile between districts?
- Districts autarkic?
- Elasticity of substitution?
- Measurement error? Slides
- Factor shares? Slides

Back to the model

Aggregate production of agricultural good

$$Y_A = A_A \left(\frac{K_A}{L_A}\right)^{\alpha(1-\beta)} L_A^{1-\beta}, \tag{9}$$

where

$$A_A = \left(\sum_{j \in I} A_j^{1/\beta} X_j\right)^{\beta}$$

and non-agricultural good

$$Y_N = A_N \left(\frac{K_N}{L_N}\right)^{\alpha} L_N. \tag{10}$$

Factor shares and mobility

Land earns zero return

- No effect of β on factor share
- Let ϕ_l and ϕ_K be factor shares of labor and capital in both sectors

Mobility of labor between sectors

$$p_A \phi_L \frac{Y_A}{L_A} = p_N \phi_L \frac{Y_N}{L_N}.$$
 (11)

where p_A and p_N are nominal prices of agric. and non-agric.

Mobility of capital implies $K_A/L_A = K_N/L_N = K/L$.

Preferences

Following Boppart (2014), there exists a utility function such that

$$\ln c_A = \ln \theta_A + (1 - \epsilon) \ln M + (\gamma - 1) \ln p_A + (\epsilon - \gamma) \ln p_N$$
 (12)

is the demand for c_A .

- θ_A is a preference parameter
- M is nominal income
- $0 < \epsilon < 1$ to capture Engel's Law
- $\epsilon > \gamma$ means willingness to substitute between c_{A} and c_{N}

Solving

Agricultural labor share is

$$\frac{L_{A}}{L} = \theta_{A} \left(\frac{L^{\beta \gamma}}{A_{A}^{\gamma} A_{N}^{\epsilon - \gamma} \hat{k}^{\alpha(\epsilon - \beta \gamma)}} \right)^{\frac{1}{1 - \beta \gamma}}$$
(13)

while real income (in agricultural terms, M/p_A)

$$y = \left(\frac{A_A A_N^{\beta(\epsilon - \gamma)} \hat{k}^{\Omega}}{L^{\beta}}\right)^{\frac{1}{1 - \beta \gamma}} \tag{14}$$

29 / 37

where $\hat{k} = (\phi_K K/\phi_L L)$, and $\Omega = \alpha(1 - \beta) + \alpha\beta(\epsilon - \gamma)$

Elasticities

The elasticities of the agricultural labor share (L_A/L) and real income (y) with respect to various shocks,

(a) Agricultural productivity (A_A) :

$$\frac{\partial \ln L_A/L}{\partial \ln A_A} = -\frac{\gamma}{1 - \beta \gamma} \qquad \frac{\partial \ln y}{\partial \ln A_A} = \frac{1}{1 - \beta \gamma}$$
 (15)

(b) Non-agricultural productivity (A_N) :

$$\frac{\partial \ln L_A/L}{\partial \ln A_N} = -\frac{\epsilon - \gamma}{1 - \beta \gamma} \qquad \frac{\partial \ln y}{\partial \ln A_N} = \frac{\beta(\epsilon - \gamma)}{1 - \beta \gamma}$$
(16)

(c) Population (L):

$$\frac{\partial \ln L_A/L}{\partial \ln L} = \frac{\beta \gamma}{1 - \beta \gamma} \qquad \frac{\partial \ln y}{\partial \ln L} = -\frac{\beta}{1 - \beta \gamma}$$
 (17)

are all increasing in absolute value with β .

Speculative implications:

Three settings where the Malthusian constraint might matter

- Effect of Black Death: Large effects on European development (Voigtländer and Voth, 2013a,b) due to tight constraint? Similar epidemics in Asia w/o major changes due to loose constraint?
- Involution: Higher densities and output, but not living standards, in response to productivity (Geertz, 1963; Huang, 1990) due to loose constraint?
- Response to agric. technology/inputs: Necessary increase to match rich countries in TFP/inputs is larger with loose constraint (Eberhardt and Vollrath, 2016a,b)

Empirical implications:

Acemoglu and Johnson (2007) analysis of epidemiological transition:

- WHO (and other) interventions lower mortality rates from many tropical diseases
- They find higher resulting population was negative for income per capita
- According to our theory, the negative effect should be bigger for places with tighter land constraints
- We divide countries in AJ into "loose" and "tight" groups based on country-specific elasticities, run AJ analysis separately for those groups

Empirical implications:

Estimate β separately for each country in Acemoglu and Johnson sample (assumes β is homogenous within country). Divide into two groups based on those estimated β values.

- "Loose": below-median β
- "Tight": above-median β

Run panel regressions separately for both groups of form

$$y_{it} = \alpha + \theta x_{it} + \gamma_i + \delta_t + \epsilon_{it}$$
 (18)

June 2017

33 / 37

for country i and time (decade) t. x_{it} is mortality rate, (log) life expect, or (log) population size. y_{it} is (log) GDP per capita, (log) GDP per worker, or (log) population.

Prediction is that $\theta_{Tight} > \theta_{Loose}$.

Response to mortality rate changes

	Dependent Variable:						
	Log GDP per capita		Log GDP per worker		Log population		
	Loose (1)	Tight (2)	Loose (3)	Tight (4)	Loose (5)	Tight (6)	
	Panel A:						
Mortality rate	0.333 (0.271)	0.723 (0.136)	0.284 (0.262)	0.776 (0.145)	-0.361 (0.186)	-0.597 (0.152)	
p-value $\theta = 0$ p-value $\theta = \theta^{Loose}$ Countries Observations	0.220 16 128	0.000 0.199 16 128	0.281 16 128	0.000 0.102 16 128	0.054 16 128	0.000 0.327 16 128	

Response to life expectancy changes

	Dependent Variable:						
	Log GDP per capita		Log GDP per worker		Log population		
	Loose (1)	Tight (2)	Loose (3)	Tight (4)	Loose (5)	Tight (6)	
	Panel B:						
Log life expectancy	0.067 (0.419)	-1.864 (0.226)	0.051 (0.399)	-1.876 (0.236)	1.520 (0.228)	2.008 (0.223)	
p-value $\theta=0$ p-value $\theta=\theta^{Loose}$ Countries Observations	0.873 16 122	0.000 0.000 16 121	0.899 16 122	0.000 0.000 16 121	0.000 16 122	0.000 0.128 16 121	

Response to population change

	Dependent Variable:						
	Log GDP per capita		Log GDP per worker		Log population		
	Loose (1)	Tight (2)	Loose (3)	Tight (4)	Loose (5)	Tight (6)	
	Panel C:						
Log population	-0.380 (0.125)	-0.776 (0.067)	-0.383 (0.121)	-0.763 (0.062)			
p-value $\theta = 0$ p-value $\theta = \theta^{Loose}$ Countries Observations	0.003 16 128	0.000 0.006 16 128	0.002 16 128	0.000 0.006 16 128			

Conclusion

- Estimate Malthusian constraint elasticity of agricultural output w.r.t. land
 from variation in rural density within provinces
- Constraint is "tight" (0.20-0.30) in temperate areas (N. China, Europe, US/Canada, S. Africa)
- Constraint is "loose" (0.10-0.15) in tropical areas (S. China, SE Asia, C. Africa, S/C America)
- Constraint affects the sensitivity of L_A/L and living standards to population and productivity
- Evidence from epidemiological transition is consistent with our findings and theory
- Implications for the study of historical and contemporary development

Interaction Regression

Combine a given sample with the reference sample (denoted by *Ref*). Run the following regression with interaction terms

$$\ln A_{isg} = \beta \ln L_{Aisg} / X_{isg} + (\beta_g^{Ref} - \beta_g) \ln L_{Aisg} / X_{isg} \times I(Ref)$$

$$+ \gamma_s + \delta_g' \mathbf{Z}_{isg} + (\delta_g^{Ref} - \delta_g)' \mathbf{Z}_{isg} \times I(Ref) + \epsilon_{isg}.$$
(19)

where I(Ref) is an indicator for the reference region. Our hypothesis test is $H_0: \beta_g^{Ref} - \beta_g = 0$, the coefficient on the interaction term for rural density.

Summary statistics

					Percentiles	s:	
	Mean	SD	10th	25th	50th	75th	90th
Rural density (persons/ha)	0.68	1.32	0.02	0.07	0.21	0.62	1.75
Caloric yield (mil cals/ha)	10.65	4.89	4.64	7.01	10.52	13.74	16.79
Urbanization rate	0.34	0.34	0.00	0.00	0.28	0.66	0.85
Log light density	-2.71	3.06	-6.42	-3.81	-2.33	-0.66	0.57

Crops used in productivity calculation

alfalfa, banana, barley, buckwheat, cassava, chickpea, cowpea, drypea, flax, foxtail millet, greengram, groundnut, indica rice, maize, oat, pearl millet, phaselous bean, pigeon pea, rye, sorghum, soybean, spring wheat, sweetpotato, rape, wet/paddy rice, wheat, winter wheat, white potato, and yams

Crop Results

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel A: Samples defined by crop family (wheat vs. rice):

	By suitability:		By max	By max calories:		est area:
	Wheat Only (1)	Rice Only (2)	Wheat > 33% (3)	Rice > 33% (4)	Wheat > 50% (5)	Rice > 50% (6)
Log rural density	0.228 (0.021)	0.132 (0.018)	0.192 (0.016)	0.113 (0.018)	0.205 (0.015)	0.133 (0.012)
p-value $\beta=0$ p-value $\beta=\beta_{\textit{Temp}}$ Countries Observations Adjusted R-square	0.000 91 10661 0.24	0.000 0.000 81 9088 0.20	0.000 83 10768 0.21	0.000 0.001 71 8113 0.18	0.000 74 10708 0.20	0.000 0.000 84 7564 0.18

Crop Results

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel B: Samples with other restrictions (using suitability to distinguish crop families)

	Urban Pop. $< 25K$:		Ex. Euro	Ex. Europe/N. Amer.:		Rural dens. $>$ 25th P'tile:		
	Wheat	Rice	Wheat	Rice	Wheat	Rice		
	Only	Only	Only	Only	Only	Only		
	(1)	(2)	(3)	(4)	(5)	(6)		
Log rural density	0.261	0.143	0.242	0.133	0.281	0.185		
	(0.022)	(0.021)	(0.033)	(0.018)	(0.035)	(0.019)		
$\begin{array}{c} \text{p-value } \beta = 0 \\ \text{p-value } \beta = \beta_{\textit{Temp}} \\ \text{Countries} \\ \text{Observations} \\ \text{Adjusted R-square} \end{array}$	0.000 83 7648 0.29	0.000 0.000 75 6662 0.24	0.000 24 824 0.19	0.000 0.003 70 8826 0.14	0.000 89 7237 0.27	0.000 0.015 77 7082 0.22		

Climate Results

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel A: Climate Zones

	Equatorial (1)	Arid (2)	Temperate (3)	Snow (4)	
Log rural density	0.142 (0.014)	0.219 (0.030)	0.247 (0.048)	0.149 (0.030)	0.124 (0.033)
p-value $\beta=0$ p-value $\beta=\beta^{Hot}$ Countries Observations Adjusted R-square	0.000 61 9312 0.16	0.000 0.004 84 9858 0.22	0.000 0.035 26 540 0.16	0.000 0.850 43 1582 0.14	0.000 0.576 27 1160 0.15

Climate Results

Panel B: Precipitation	n Zones Fully Humid (1)	Dry Summer (2)	Dry Winter (3)	Monsoon (4)	Desert (5)	Steppe (6)
Log rural density	0.185 (0.024)	0.169 (0.018)	0.115 (0.016)	0.130 (0.023)	0.112 (0.040)	0.110 (0.026)
p-value $\beta=0$ p-value $\beta=\beta^{Fully}$ Countries Observations Adjusted R-square	0.000 98 17327 0.21	0.000 0.594 45 3150 0.20	0.000 0.013 74 9224 0.18	0.000 0.090 42 1816 0.20	0.005 0.120 30 364 0.20	0.000 0.034 54 2339 0.19

Climate Results

Panel C: Temperatur	re Zones Hot Summer (1)	Warm Summer (2)	Cool Summer (3)	Hot Arid (4)	Cold Arid (5)
Log rural density	0.142 (0.014)	0.219 (0.030)	0.247 (0.048)	0.149 (0.030)	0.124 (0.033)
$\begin{array}{ll} \text{p-value } \beta = 0 \\ \text{p-value } \beta = \beta^{Hot} \\ \text{Countries} \\ \text{Observations} \\ \text{Adjusted R-square} \end{array}$	0.000 61 9312 0.16	0.000 0.004 84 9858 0.22	0.000 0.035 26 540 0.16	0.000 0.850 43 1582 0.14	0.000 0.576 27 1160 0.15

Region Results

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel A

Excl.	China,	Japan,	Korea

				,	
	North & Western Europe (1)	Eastern Europe (2)	Southern Europe (3)	South & Southeast Asia (4)	Central & West Asia (5)
Log rural density	0.259 (0.036)	0.287 (0.031)	0.272 (0.041)	0.152 (0.026)	0.181 (0.024)
p-value $\beta=0$ p-value $\beta=\beta^{NWEur}$ Countries Observations Adjusted R-square	0.000 16 1684 0.22	0.000 0.539 9 4821 0.32	0.000 0.791 9 1137 0.28	0.000 0.017 13 4312 0.18	0.000 0.072 18 2878 0.20

Region Results

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel B

i and b					
	Temperate	Tropical	Tropical	South	North
	Americas	Americas	Africa	Africa	Africa
Log rural density	0.188	0.113	0.089	0.134	0.249
	(0.030)	(0.016)	(0.014)	(0.071)	(0.014)
p-value $\beta=0$	0.000	0.000	0.000	0.059	0.000
p-value $\beta=\beta^{NWEur}$	0.133	0.000	0.000	0.116	0.827
Countries	5	22	39	4	5
Observations	3796	9373	3181	198	1220
Adjusted R-square	0.20	0.10	0.14	0.20	0.24

Region Results

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel	C

Fallel G	All	Temperate	Sub- Tropical		North &
	China	China	China	Japan	South Ko- rea
	(1)	(2)	(3)	(4)	(5)
Log rural density	0.388 (0.084)	0.508 (0.054)	0.095 (0.026)	0.177 (0.013)	0.162 (0.065)
p-value $\beta=0$ p-value $\beta=\beta^{NWEur}$ Observations Adjusted R-square	0.000 0.156 289 0.26	0.000 0.000 134 0.28	0.000 0.000 155 0.22	0.000 0.034 1198 0.26	0.012 0.192 326 0.22

Results by Province

Baseline results assume β constant within larger sub-samples.

Instead, estimate β individually for each province

- Only provinces with 6 or more districts (1,260 provinces)
- ... so really big SE on any individual estimate
- Then look at pattern of β 's for each sub-sample

Results by Province

				Percentiles:				-
Sample	Prov.	Mean	SD	10th	25th	50th	75th	90th
All provinces	1,183	0.21	0.23	-0.02	0.05	0.18	0.33	0.49
Wheat Suitable	619	0.23	0.23	-0.00	0.08	0.21	0.36	0.50
Rice Suitable	469	0.17	0.24	-0.04	0.03	0.15	0.28	0.43
Wheat cals>33%	457	0.23	0.22	-0.00	0.08	0.21	0.36	0.50
Rice cals>33%	307	0.18	0.21	-0.04	0.03	0.15	0.29	0.41
Wheat area>50%	485	0.22	0.23	-0.01	0.07	0.20	0.36	0.53
Rice area>50%	297	0.18	0.23	-0.04	0.03	0.14	0.29	0.47
Northwest Europe	79	0.26	0.31	0.00	0.08	0.22	0.46	0.62
Eastern Europe	173	0.24	0.20	0.01	0.09	0.23	0.38	0.50
Southern Europe	60	0.27	0.17	0.08	0.16	0.25	0.37	0.50
South and S. East Asia	248	0.20	0.23	-0.03	0.04	0.16	0.31	0.49
Central and West. Asia	163	0.20	0.20	-0.02	0.06	0.16	0.33	0.45
Temperate Americas	87	0.14	0.25	-0.13	0.02	0.10	0.26	0.40
Tropical Americas	195	0.18	0.26	-0.02	0.06	0.17	0.28	0.39
Tropical Africa	118	0.16	0.24	-0.09	-0.01	0.09	0.25	0.51
Southern Africa	11	0.15	0.21	-0.11	-0.05	0.17	0.33	0.34
Northern Africa	49	0.32	0.20	0.06	0.22	0.31	0.42	0.66

Results by Province

Relationship of β to rural density, by province

Return

Labor and capital not mobile

Factors cannot move within province, but output can.

Changes relationship of density and productivity to

$$\ln A_{Ai} = \beta \ln L_{Ai}/X_i + \ln A_{Ni} + \alpha \beta \ln K_i/L_i + \ln p_N/p_A$$

- Night lights provide proxy for A_{Ni} and K_i/L_i ?
- p_N/p_A is province-specific (FE)
- Is correlation of A_{Ni} and K_i/L_i with L_{Ai}/X_i different by climate zone?

Districts are autarkic

Factors and output are immobile within province.

Changes relationship of density and productivity to

$$\ln A_i = \beta \ln L_{Ai}/X_i - \ln L_{Ai}/L_i - \alpha(1-\beta) \ln K_i/L_i + \ln C_{Ai}$$

- Can control for L_{Ai}/L_i using HYDE data
- Night lights provide proxy for K_i/L_i?
- c_{Ai} doesn't vary much and/or proxied by night lights?

Return

Crop Results

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel A: Samples defined by crop family (wheat vs. rice):

	By suitability:		By max	By max calories:		By harvest area:	
	Wheat Only (1)	Rice Only (2)	Wheat > 33% (3)	Rice > 33% (4)	Wheat > 50% (5)	Rice > 50% (6)	
Log rural density	0.254 (0.024)	0.148 (0.019)	0.213 (0.021)	0.120 (0.020)	0.231 (0.020)	0.136 (0.015)	
p-value $\beta=0$ p-value $\beta=\beta^{Wheat}$ Countries Observations Adjusted R-square	0.000 91 9922 0.25	0.000 0.001 79 8396 0.21	0.000 82 10142 0.22	0.000 0.001 71 7411 0.18	0.000 74 9929 0.21	0.000 0.000 84 6810 0.18	

Using Cultivated Area

Cultivated area, X_{isc}^{C} , available from GAEZ. Rural density is

$$\ln L_{Aisc}/X_{isc} = \ln L_{Aisc}/X_{isc}^{C} + \ln X_{isc}^{C}/X_{isc}$$
 (20)

- Regress In A_{isc} on both terms on the right hand-side
- Coefficient on $\ln L_{Aisc}/X_{isc}^{C}$ gives similar results for β
- Controls for percent of land actually being cultivated

Using Cultivated Area

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel A: Samples defined by crop family (wheat vs. rice):

	By suitability:		By max	By max calories:		By harvest area:	
	Wheat Only (1)	Rice Only (2)	Wheat > 33% (3)	Rice > 33% (4)	Wheat > 50% (5)	Rice > 50% (6)	
Log rural density	0.229 (0.024)	0.144 (0.020)	0.191 (0.020)	0.113 (0.021)	0.207 (0.020)	0.142 (0.015)	
p-value $\beta=0$ p-value $\beta=\beta^{Wheat}$ Countries Observations Adjusted R-square	0.000 90 9871 0.20	0.000 0.006 76 8295 0.17	0.000 82 10100 0.17	0.000 0.006 68 7343 0.15	0.000 74 9911 0.16	0.000 0.010 81 6749 0.15	

Province-level Data

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel A: Samples defined by crop family (wheat vs. rice):

	By suitability:		By max calories:		By harvest area:	
	Wheat Only (1)	Rice Only (2)	Wheat > 33% (3)	Rice > 33% (4)	Wheat > 50% (5)	Rice > 50% (6)
Log rural density	0.399 (0.058)	0.070 (0.020)	0.248 (0.030)	0.016 (0.013)	0.368 (0.043)	0.052 (0.021)
p-value $\beta=0$ p-value $\beta=\beta^{Wheat}$ Countries Observations Adjusted R-square	0.000 60 417 0.39	0.000 0.000 65 587 0.27	0.000 70 768 0.29	0.199 0.000 63 617 0.26	0.000 69 797 0.35	0.014 0.000 73 721 0.30

Population Data from 1900

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel A: Samples defined by crop family (wheat vs. rice):

	By suitability:		By max calories:		By harvest area:	
	Wheat Only (1)	Rice Only (2)	Wheat > 33% (3)	Rice > 33% (4)	Wheat > 50% (5)	Rice > 50% (6)
Log rural density	0.294 (0.032)	0.170 (0.025)	0.239 (0.023)	0.149 (0.025)	0.258 (0.026)	0.182 (0.017)
p-value $\beta=0$ p-value $\beta=\beta^{Wheat}$ Countries Observations Adjusted R-square	0.000 91 10644 0.30	0.000 0.002 81 9081 0.25	0.000 83 10774 0.25	0.000 0.007 71 8213 0.22	0.000 74 10689 0.24	0.000 0.014 84 7561 0.22

Above 25th Percentile Harvested Area

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel A: Samples defined by crop family (wheat vs. rice):

	By suitability:		By max calories:		By harvest area:	
	Wheat Only (1)	Rice Only (2)	Wheat > 33% (3)	Rice > 33% (4)	Wheat > 50% (5)	Rice > 50% (6)
Log rural density	0.226 (0.025)	0.140 (0.020)	0.186 (0.017)	0.111 (0.021)	0.213 (0.018)	0.125 (0.013)
p-value $\beta=0$ p-value $\beta=\beta^{Wheat}$ Countries Observations Adjusted R-square	0.000 82 7568 0.22	0.000 0.008 65 6092 0.18	0.000 77 7540 0.19	0.000 0.005 58 5374 0.16	0.000 70 8400 0.19	0.000 0.000 72 5704 0.16

Maize and Soy Results

Dependent Variable in all panels: Log caloric yield (A_{isc})

Samples defined by suitability for each crop:

	Maize suitable AND:			S	oy suitable A	ND:
	Wheat or Rice (1)	Rice Only (2)	Wheat Only (3)	Wheat or Rice (4)	Rice Only (5)	Wheat Only (6)
Log rural density	0.135 (0.015)	0.142 (0.018)	0.209 (0.035)	0.136 (0.015)	0.144 (0.018)	0.216 (0.034)
p-value $\beta=0$ p-value $\beta=\beta^{All}$ Countries	0.000	0.000 0.760 77	0.000 0.011 78	0.000	0.000 0.721 78	0.000 0.004 61
Observations Adjusted R-square	14499 0.12	8365 0.12	6781 0.15	14486 0.12	8220 0.12	6311 0.15

Johnson & Vollrath (UH) Land Constraints June 2017 24/32

Measurement Error

Measurement error ⇒ attentuation bias

- Population data from HYDE may not be accurate for districts
- Is measurement error more pronounced in some places (e.g. tropical areas) and driving results?
- Is true variance of In L_{Aisc}/X_{isc} one-third of measured variance?
- Is rural population mis-stated by factor of > 2 or < 0.5?</p>

Elasticity of Substitution?

What if land and labor do not have elasticity of subs. equal to one?

- Elasticity of output w.r.t. land depends on rural density L_A/X
- With EOS more than one, higher density, lower elasticity
- Do results fit this?
 - South/SE Asia, some SS Afr are high density, low β
 - ..but C/S America, other SS Afr are low density, low β
 - ..but N America lowest density, not highest β

Factor shares

Our β does not correlate well with factor share data

- Fuglie (2010) reports share for "land and structures"
 - 0.22-0.25 share for Brazil, India, Indonesia > our estimates
 - 0.22 share for China, aggregate number?
 - 0.17-0.26 for US, ex-Soviet \approx our estimates
- Hayami, Ruttan, Southworth (1979) for Asia
 - 0.3-0.4 shares for Taiwan, Japan, Korea, Philippines > our estimates
- Clark (2002) for England, long run
 - 0.3-0.35 shares > our estimate for Northwest Europe

Factor Shares

Possible sources of difference

- Biased estimates of β
- Market frictions/wedges for agricultural inputs
- Mis-reporting of land versus labor income
- Difference of aggregate elasticity from farm-specific elasticity/share

Using IPUMS Population Data

39 countries in IPUMS with geographic identifiers for individuals at the "district" level (agglomerations of districts with constant boundaries).

- IPUMS gives industry/occupation and labor force status, so we can measure agricultural worker density, not just rural density. In practice, rural density and ag worker density correlated at 91%, sig at less than 1%
- Counts of residents in each district are presumably more accurate that HYDE or GRUMP, as they are drawn from census.
- Cost is limited coverage of countries, and fewer districts
- Rebuild data on A_{isc} and L_{Aisc} at the level of the IPUMS districts

Using IPUMS Population Data

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel A: Samples defined by crop family (wheat vs. rice):

	By suitability:		By max calories:		By harvest area:	
	Wheat Only	Rice Only	Wheat/ No Rice	Rice No Wheat	Wheat > 50%	Rice > 50%
	(1)	(2)	(3)	(4)	(5)	(6)
Log ag. worker density	0.213 (0.067)	0.025 (0.016)	0.200 (0.056)	0.000 (0.017)	0.223 (0.030)	0.034 (0.014)
p-value $\beta=0$ p-value $\beta=\beta^{Wheat}$ Countries Observations Adjusted R-square	0.004 23 1104 0.50	0.124 0.006 24 2416 0.54	0.002 24 1595 0.39	0.993 0.000 23 2389 0.56	0.000 21 1207 0.37	0.021 0.000 26 1427 0.51

Using GRUMP Population Data

GRUMP (Global Rural-Urban Mapping Project) also provides grid-cell population estimates.

- Define urban/rural differently than HYDE. They denote specific grid-cells as "urban", and any population in that cell is assumed to be urban.
- Inclusion of cells in districts and provinces is identical to HYDE.

Using GRUMP Population Data

Dependent Variable in all panels: Log caloric yield (A_{isc})

Panel A: Samples defined by crop family (wheat vs. rice):

By suitability:		By max calories:		By harvest area:	
Wheat Only	Rice Only	Wheat/ No Rice	Rice No Wheat	Wheat > 50%	Rice > 50%
(1)	(2)	(3)	(4)	(5)	(6)
0.207 (0.041)	0.115 (0.021)	0.176 (0.033)	0.100 (0.017)	0.166 (0.028)	0.140 (0.020)
0.000 86 8734	0.000 0.045 75 6769	0.000 81 8585	0.000 0.041 69 6230	0.000 71 8922	0.000 0.442 82 5844 0.13
	Wheat Only (1) 0.207 (0.041) 0.000 86	Wheat Only Rice Only (1) (2) 0.207 0.115 (0.041) (0.021) 0.000 0.000 0.045 86 75 8734 6769	Wheat Only No Rice (1) (2) (3) 0.207 0.115 0.176 (0.041) (0.021) (0.033) 0.000 0.000 0.000 0.045 86 75 81 8734 6769 8585	Wheat Only Rice Only Wheat/ No Rice No Wheat Rice No Wheat (1) (2) (3) (4) 0.207 0.115 0.176 0.100 (0.041) (0.021) (0.033) (0.017) 0.000 0.000 0.000 0.001 0.045 0.041 0.041 86 75 81 69 8734 6769 8585 6230	Wheat Only Rice Only Wheat/No Rice No Wheat Wheat (1) Rice No Wheat (2) Wheat (3) Wheat (4) Wheat (5) 0.207 0.115 0.176 0.100 0.166 0.041 0.021) 0.033) 0.017) 0.028) 0.000 0.000 0.000 0.000 0.000 0.000 0.045 81 69 71 8734 6769 8585 6230 8922

