Outer Measure

Definition: The Lebesque Outer Measure of $E \subset \mathbb{R}^d$ is equal to $\inf(\sum_{i=1}^{\infty} |Q_i|)$ where the infimum is taken over all countable collections of closed cubes which cover E. By definition, for every $\epsilon > 0$, there exists a covering $E \subseteq \bigcup_{i=1}^{\infty} Q_i$ with

 $\sum_{j=1}^{\infty} m_*(Q_j) \le m_*(E) + \epsilon.$ Observation 1: Monotonicity: If $E_1 \subseteq E_2$, then $m_*(E_1) \le m_*(E_2)$. Observation 2: Countable sub-additivity If $E = \bigcup_{i=1}^{\infty} E_i$, then

 $m_*(E) \le \sum_{j=1}^{\infty} m_*(E_j).$

Observation 3 If $E \subseteq \mathbb{R}^d$, then $m_*(E) = \inf m_*(\mathcal{O})$, where the infimum is taken over all open sets \mathcal{O} containing E. **Observation 4** If $E = E_1 \cup E_2$, and $d(E_1, E_2) > 0$, then $m_*(E) =$

 $m_*(E_1) + m_*(E_2).$ **Observation 5** If a set E is the countable union of almost disjoint cubes $E = \bigcup_{i=1}^{\infty} Q_i$, then $m_*(E) = \sum_{i=1}^{\infty} |Q_i|$.

Measurable sets and the Lebesgue measure **Lebesgue Measurable** A subset E of \mathbb{R}^d is Lebesgue measurable, if for

m(E) by $m(E) = m_*(E)$. **Property 1** Every open set in \mathbb{R}^d is measurable. **Property 2** If $m_*(E) = 0$, then E is measurable. In particular, if F is a

any $\epsilon > 0$ there exists an open set \mathcal{O} with $E \subseteq \mathcal{O}$ and $m_*(\mathcal{O} - E) \leq \epsilon$.

Lebesgue Measure If E is measurable, we define its *Lebesgue measure*

subset of a set of exterior measure 0, then F is measurable. Property 3 A countable union of measurable sets is measurable.

Property 4 Closed sets are measurable. **Lemma 3.1** If F is closed, K is compact, and these sets are disjoint, then

d(F, K) > 0.**Property 5** The complement of a measurable set is measurable.

Property 6 A countable intersection of measurable sets is measurable. **Theorem 3.2** If E_1, E_2, \ldots , are disjoint measurable sets, and $E = \bigcup_{i=1}^{\infty} E_i$,

then $m(E) = \sum_{j=1}^{\infty} m(E_j)$. **Arrow Notation** If $E_1, E_2, ...$ is a countable collection of subsets of \mathbb{R}^d that increases to E in the sense that $E_k \subseteq E_{k+1}$ for all k, and $E = \bigcup_{k=1}^{\infty} E_k$, then we write $E_k \nearrow E$. Similarly, if E_1, E_2, \ldots decreases to E in the sense that $E_k \supset E_{k+1}$ for all k, and $E = \bigcap_{k=1}^{\infty} E_k$, we write $E_k \searrow E$.

Corollary 3.3 Suppose E_1, E_2, \ldots are measurable subsets of \mathbb{R}^d . 1. If $E_k \nearrow E$, then $m(E) = \lim_{N \to \infty} m(E_N)$.

- 2. If $E_k \setminus E$ and $m(E_k) < \infty$ for some k, then m(E) =
- $\lim_{N\to\infty} m(E_N)$. **Symmetric Difference** The notation $E\triangle F$ stands for the symmetric dif-

ference between the sets E and F, defined by $E \triangle F = (E - F) \cup (F - E)$ which consists of those points that belong to only one of the two sets E or **Theorem 3.4** Suppose E is a measurable subset of \mathbb{R}^d . Then, for every

- 1. There exists an open set \mathcal{O} with $E \subseteq \mathcal{O}$ and $m(\mathcal{O} E) \leq \epsilon$.
- 2. There exists a closed set F with $F \subseteq E$ and $m(E F) \le \epsilon$.
- 3. If m(E) is finite, there exists a compact set K with $K \subseteq E$ and $m(E-K) \leq \epsilon$. 4. If m(E) is finite, there exists a finite union $F = \bigcup_{i=1}^{N} Q_i$ of closed
- cubes such that $m(E\triangle F) < \epsilon$. Invariance properties of Lebesgue measure If E is a measurable set

and $h \in \mathbb{R}^d$, then the set $E_h := \{x + h : x \in E\}$ is also measurable, and $m(E_h) = m(E)$. Also, suppose $\delta > 0$, and denote δE the set $\{\delta x : x \in E\}$. We can then assert δE is measurable whenever E is, and $m(\delta E) = \delta^d m(E)$. Whenever E measurable, so is $-E = \{-x : x \in E\}$ and m(-E) = m(E).

 σ -algebras and Borel sets

under countable unions, countable intersections, and complements. The collection of all subsets of \mathbb{R}^d is a σ -algebra. The collection of all

Definition A σ -algebra of sets is a collection of subsets of \mathbb{R}^d that is closed

Lebesgue measurable sets forms a σ -algebra. **Borel** σ -algebra Denoted $\mathcal{B}_{\mathbb{R}^d}$, the Borel σ -algebra is the smallest σ algebra which contains all open sets. We may also define $\mathcal{B}_{\mathbb{P}^d}$ as the inter-

section of all σ -algebras that contain the open sets. Completion of the Borel algebra From the point of view of Borel sets,

the Lebesgue sets arise as the *completion* of the σ -algebra, that is, by adjoining all subsets of Borel sets of measure zero. This is an immediate consequence of the corollary below. The G_{δ} and F_{σ} sets G_{δ} is the set of all countable intersections of open

sets. F_{σ} is the set of all countable union of closed sets. Both of these collections are in $\mathcal{B}_{\mathbb{D}_d}$. Corollary 3.5 A subset E of \mathbb{R}^d is measurable if and only if E differs from a G_{δ} by a set of measure zero. A subset E of \mathbb{R}^d is measurable if and only if E differs from a F_{σ} by a set of measure zero.

Measurable functions Characteristic function A characteristic function of a set E is defined

by the function $\chi_E(x) = 1$ if $x \in E$ and $\chi_E(x) = 0$ if $x \notin E$. **Step functions** A function f is a step function if it can be written in the form $f = \sum_{k=1}^{N} a_k \chi_{R_k}$ where a_k 's are constants and R_k 's are rectangles.

Simple functions A function f is a simple function if it can be written in the form $f = \sum_{k=1}^{N} a_k \chi_{E_k}$ where a_k 's are constants and each $m(E_k) < \infty$.

Measurable functions A function f defined on a measurable set E of \mathbb{R}^d is **measurable** if for all $a \in \mathbb{R}$, the set $f^{-1}((-\infty, a)) = \{x \in E : f(x) < a\}$

is measurable. We denote the set above by
$$\{f < a\}$$
. This definition is

equivalent to requiring $\{f < a\}, \{f \geq a\}$ or even $\{f \leq a\}$ being measur-**Property 1** f is measurable if and only if $f^{-1}(\mathcal{O})$ is measurable for every

open set \mathcal{O} , and if and only if $f^{-1}(F)$ is measurable for every closed set F. **Property 2** If f is continuous on \mathbb{R}^d , then f is measurable. If f is measurable and finite-valued, and ϕ continuous, then $\phi \circ f$ is measurable. **Property 3** Suppose $\{f_n\}_{n=1}^{\infty}$ is a sequence of measurable functions. Then

 $\sup_n f_n(x)$, $\inf_n f_n(x)$, $\lim \sup_{n \to \infty} f_n(x)$ and $\lim \inf_{n \to \infty} f_n(x)$ are mea-**Property 4** Suppose $\{f_n\}_{n=1}^{\infty}$ is a sequence of measurable functions and

 $\lim_{n\to\infty} f_n(x) = f(x)$, then f is measurable. **Property 5** If f and g are measurable, then the integer powers f^k , k > 1

are measurable. Additionally, f + q and fq are also measurable. **Almost everywhere notation** We shall say two functions f and q de-

fined on a set are equal almost everywhere and write f(x) = g(x) a.e. $x \in E$ if the set $m(\lbrace x : f(x) \neq g(x) \rbrace) = 0$. **Property 6** Suppose f is measurable, and f(x) = g(x) for a.e. x. Then g

is measurable.

Approximation by simple functions or step functions

Theorem 4.1 Suppose f is a non-negative measurable function on \mathbb{R}^d . Then there exist an increasing sequence of non-negative simple functions $\{\phi_k\}_{k=1}^{\infty}$ that converge pointwise to f, namely $\phi_k(x) \leq \phi_{k+1}(x)$ and $\lim_{k\to\infty} \phi_k(x) = f(x)$ for all x.

Theorem 4.2 Suppose f is measurable on \mathbb{R}^d . Then there exist a sequence of simple functions $\{\phi_k\}_{k=1}^{\infty}$ that satisfies $|\phi_k(x)| \leq |\phi_{k+1}(x)|$ and $\lim_{k\to\infty} \phi_k(x) = f(x)$ for all x.

Theorem 4.3 Suppose f is measurable on \mathbb{R}^d . Then there exist a sequence of step functions $\{\psi_k\}_{k=1}^{\infty}$ that converges pointwise to f(x) for almost every Littlewood's three principles

The three principles

- 1. Every set is nearly a finite union of intervals.
- 2. Every function is nearly continuous.
- 3. Every convergent sequence is nearly uniform convergent.

First principle Given by Theorem 3.4 (4). **Second principle (Lusin)** Suppose f is measurable and finite valued on

E with E of finite measure. Then for every $\epsilon > 0$ there exist a closed set F_{ϵ} , with $F_{\epsilon} \subseteq E$ and $m(E - F_{\epsilon}) \leq \epsilon$ and such that $f|_{F_{\epsilon}}$ is continuous. Third principle (Egorov) Suppose $\{f_k\}_{k=1}^{\infty}$ is a sequence of measurable functions defined on a measurable set with $m(E) < \infty$, and assume that

 $f_k \to f$ a.e. on E. Given $\epsilon > 0$, we can find a closed set $A_{\epsilon} \subseteq E$ such that $m(E - A_{\epsilon}) < \epsilon$ and $f_k \to f$ uniformly on A_{ϵ} .

Integration Theory The lebesgue integral is defined successively in four distinct stages: (1)

Simple functions, (2) Bounded functions supported on a set of finite measure, (3) non-negative functions and (4) Integrable functions (the general

Stage one: simple functions

is $|\phi|$ and also, $|\int \phi| \le \int |\phi|$.

Canonical form The canonical form of a simple function ϕ is when we can write $\phi = \sum_{k=1}^{N} a_k \chi_{E_k}$ where all a_k 's are distinct and non-zero. Furthermore, all E_k 's are disjoint. This is a unique representation.

Lebesgue integral of simple functions Define the Lebesgue integral of simple functions to be the value $\int \phi := \sum_{k=1}^{N} a_k m(E_k)$.

Proposition 1.1 The integral of simple functions defined above satisfies the following: Independence of representation, linearity, additivity $(\int_{E \cap F} \phi = \int_{E} \phi + \int_{F} \phi$ whenever $E \cap F = \emptyset$), monotonicity (If $\phi \leq \psi$, then $\int \phi \leq \int \psi$) and the triangle inequality: If ϕ is a simple function, so

Stage two: Bounded functions supported on a set of finite mea-

Support The support of a measurable function is defined to be $\{x: f(x) \neq a\}$ 0). We shall say f is supported on E if f(x) = 0 whenever $x \notin E$. We say f is supported on a set of finite measure if $m(E) < \infty$.

Lemma 1.2 Let f be a bounded function supported on a set E of finite measure. If $\{\phi_k\}_{k=1}^{\infty}$ is any sequence of simple functions bounded by M, supported on E, and with $\phi_k(x) \to f(x)$ for a.e. x, then the limit $\lim_{n\to\infty} \int \phi_k$ exists and if f=0, then the limit $\lim_{n\to\infty} \int \phi_k = 0$.

Lebesgue integral of bounded functions with finite support Let

f be such a function. Then it's lebesgue integral is defined by $\int f =$ **Proposition 1.3** Let f be a bounded function with finite support. Then

the Lebesgue integral over such functions have the properties: Linearity, additivity, monotonicity and the triangle inequality.

Theorem 1.4 (Bounded convergence theorem) Suppose that $\{f_n\}$

is a sequence of measurable functions that are all bounded by M, are supported on a set of finite measure, and $f_n(x) \to f(x)$ for a.e. x. Then f is measurable, bounded and supported on a set of finite measure for a.e.

x and $\int |f_n - f| \to 0$. In particular, $\int f_n \to \int f$. Return to Riemann integrable functions

Theorem 1.5 Suppose f is Riemann integrable on the closed interval [a, b].

Then f is measurable, and $\int_{[a,b]}^{\mathcal{R}} f(x) = \int_{[a,b]}^{\mathcal{L}} f(x) dx$ where the integral denoted by \mathcal{R} represents the standard Riemann integral and the integral on the right hand side represents the Lebesgue integral.

Stage three: non-negative functions

Lebesgue integral of non-negative functions Let f be a non-negative function. Then we define its Lebesgue integral by $\int f(x)dx = \sup_g \int g(x)dx$ where the supremum is taken over all $0 \le g \le f$, and where g is bounded and supported on a set of finite measure. We shall say that f is Lebesgue integral if $\int f(x)dx < \infty$. **Proposition 1.6** The integral of non-negative measurable functions enjoy

(iv) If g integrable and $0 \le f \le g$, then f integrable (vi) If $\int f = 0$ then f(x) = 0 for a.e. x. Is the limit of an integrable always the integral of a limit? No. Consider $f_n(x) = n$ if 0 < x < 1/n and 0 otherwise. Then $f_n(x) \to 0$ for all x, yet $\int f_n(x) = 1$ for all n.

the following properties: (1) Linearity, (2) Additivity, (3) Monotonicity

Lemma 1.7 (Fatou) Suppose $\{f_n\}_{n=1}^{\infty}$ is a sequence of measurable functions with $f_n \geq 0$. If $\lim_{n\to\infty} f_n(x) = f(x)$ for a.e. x, then $\int f \leq \lim \inf_{n\to\infty} \int f_n$.

Corollary 1.8 Suppose f is a non-negative measurable function, and $\{f_n\}$ a sequence of non-negative measurable functions with $f_n(x) \leq f(x)$ and

a sequence of holinegative measurable functions with $f_n(x) \to f(x)$ for almost every x. Then $\lim_{n\to\infty} \int f_n = \int \lim_{n\to\infty} f_n$. Arrow notation for sequences of functions We shall write $f_n \nearrow f$ whenever $\{f_n\}_{n=1}^{\infty}$ is a sequence of measurable functions that satisfies $f_n(x) \le f_{n+1}(x)$ a.e. x, all $n \ge 1$ and $\lim_{n\to\infty} f_n(x) = f(x)$ for a.e. x. Similarly, we shall write $f_n \searrow f$ whenever $f_n(x) \ge f_{n+1}(x)$ a.e. x, all $n \ge 1$ and $\lim_{n\to\infty} f_n(x) = f(x)$ a.e. x. Corollary 1.9 (Monotone convergence theorem) Suppose $\{f_n\}_{n=1}^{\infty}$

Corollary 1.9 (Monotone convergence theorem) Suppose $\{f_n\}_{n=1}^{\infty}$ is a sequence of non-negative measurable functions with $f_n \nearrow f$. Then $\lim_{n\to\infty} \int f_n = \int f$.

Corollary 1.10 Consider a series $\sum_{k=1}^{\infty} a_k(x)$, where $a_k \geq 0$ is measurable for every $k \geq 1$. Then $\int \sum_{k=1}^{\infty} a_k(x) dx = \sum_{k=1}^{\infty} \int a_k(x) dx$.

Stage four: general case

Lebesgue integral of measurable functions Given a measurable function f, we define its Lebesgue integral to be $\int f = \int f^+ - \int f^-$ where $f^+(x) := \max\{f(x), 0\}$ and $f^-(x) := \min\{f(x), 0\}$. We say f is Lebesgue integrable if $\int |f| < \infty$.

Proposition 1.11 The integral of Lebesgue integrable functions is linear, additive, monotonic and satisfies the triangle inequality.

Proposition 1.12 Suppose f is integrable on \mathbb{R}^{d} . Then for every $\epsilon > 0$, we have (1) There exists a set of finite measure B (a ball, for example) such that $\int_{B^{c}} |f| < \epsilon$ and (2) There is a $\delta > 0$ such that $\int_{E} |f| < \epsilon$ whenever $m(E) < \delta$.

Theorem 1.13 (Dominated Convergence Theorem) Suppose $\{f_n\}$ is a sequence of measurable functions such that $f_n(x) \to f(x)$ a.e. x. If $|f_n(x)| \leq g(x)$, where g is integrable, then $\int |f_n - f| \to 0$ and consequently, $\int f_n \to \int f$.

Complex-valued functions

The space L^1 of integrable functions

Definition $L^1(E)$ is a vector space consisting of all Lebesgue integrable functions on $E \subseteq \mathbb{R}^d$ quotiented by the equivalence relation \sim . If $f, g \in L^1$, we say $f \sim g$ if f = g a.e. x.

Norm on L^1 For any integrable function f on $E \subseteq \mathbb{R}^d$ we define the norm of f,

$$||f|| = ||f||_{L^1} = ||f||_{L^1(E)} = \int_E |f(x)| dx$$

Proposition 2.1 Suppose f and g are two functions in $L^1(E)$. Then,

- 1. $||af||_{L^1(E)} = |a| ||f||_{L^1(E)}$ for all $a \in \mathbb{C}$
- 2. $||f + g||_{L^1(E)} \le ||f||_{L^1(E)} + ||g||_{L^1(E)}$

- 3. $||f||_{L^1(E)} = 0$ if and only if $f \sim 0$.
- 4. $d(f,g) = ||f g||_{L^1(E)}$

Theorem 2.2 (Riesz-Fischer) The vector space $L^1(E)$ is complete in its metric.

Theorem 2.4 The following families of functions are dense in $L^1(E)$:

- 1. The simple functions
- 2. The step functions
- $3. \ \,$ The continuous functions of compact support

Invariance Properties If is a function defined on \mathbb{R}^d , the translation of f by a vector $h \in \mathbb{R}^d$ is the function f_h defined by $f_h(x) = f(x-h)$. We have translation invariance of the integral: $\int_{\mathbb{R}^d} f(x-h) dx = \int_{\mathbb{R}^d} f(x) dx$. We have relative invariance of the Lebesgue integral under dilation and reflection: $\delta^d \int_{\mathbb{R}^d} f(\delta x) dx = \int_{\mathbb{R}^d} f(x) dx$ and $\int_{\mathbb{R}^d} f(-x) dx = \int_{\mathbb{R}^d} f(x) dx$. Convolution product The integral $\int_{\mathbb{R}^d} f(x-y)g(y) dy$ is denoted by

(f*g)(x) and is defined as the convolution of f and g. **Proposition 2.5** Suppose $f \in L^1(\mathbb{R}^d)$. Then $||f_h - f||_{L^1} \to 0$ as $h \to 0$.

Differentiation and Integration

Question 1: Suppose $f:[a,b] \to \mathbb{R}$ is integrable, $F(x) := \int_a^x f(t)dt$. Under what conditions is F differentiable (for a.e. x) with F' = f.

Question 2: What conditions on $F:[a,b]\to\mathbb{R}$ guarantee that F' exists (for a.e. x), F' is integrable and $F(b)-F(a)=\int_a^b F'(t)dt$.

Consider the Cantor-Lebesgue function F. $F^{f}(x) = 0$ for a.e. x but $1 = F(1) - F(0) = \int_{0}^{1} F'(x) dx = 0$. Thus, this does not hold for a general class of integrable functions.

Averaging problem Define $F(x) := \int_a^x f(t)dt$ for $x \in [a,b]$. We want to find if $\lim_{h\to 0} (F(x+h)-F(x))/h$ exists. This is equivalent to asking whether

$$\lim_{|I| \to 0, x \in I} \frac{1}{|I|} \int_{|I|} f(t)dt$$

is equal to F'(x) or f(x).

Maximal function For $f \in L^1(\mathbb{R})$, define its maximal function f^* by

$$f^*(x) = \sup_{0 < r < \infty} \frac{1}{2r} \int_{x-r}^{x+r} |f|(t)dt$$

Theorem (Hardy-Littlewood) The maximal function satisfies:

- 1. f^* is measurable
- 2. $f^*(x) < \infty$ for a.e. x
- 3. $m(\{x \in \mathbb{R} : f^*(x) > a\} \le (3/a) \|f^*\|_{L^1(\mathbb{R})}$

Vitali Covering Lemma Suppose B_1, \ldots, B_N is a finite collection of open balls in \mathbb{R}^n . Then there exists subcollection B_{i_1}, \ldots, B_{i_k} such that

- B_{i_1}, \ldots, B_{i_k} disjoint
- $\sum_{j=1}^{k} m(B_{i_j}) \ge (1/3^n) m(\sum_{l=1}^{N} b_l)$

Tchebychev's inequality $m(\{x:f(x)>\alpha\})\leq (1/\alpha)\,\|f\|_{L^1}$ Lebesgue's differentiation theorem If $f\in L^1(\mathbb{R})$, then $\lim_{|I|\to 0, x\in I} 1/|I|\int_I f(y)dy=f(x)$ for almost every x. Absolutely Continuous $F:[a,b]\to\mathbb{R}$ is absolutely continuous if and only if \forall $\epsilon>0$, there exists $\delta>0$ such that if $(a_1,b_1),\ldots,(a_n,b_n)\subseteq [a,b]$

only if $\forall \epsilon > 0$, there exists $\delta > 0$ such that if $(a_1, b_1), \dots, (a_n, b_n) \subseteq [a, b]$ are disjoint intervals with $\sum_{k=1}^{N} (b_k - a_k) < \delta$, then $\sum_{k=1}^{N} |F(b_k) - F(a_k)| < \epsilon$.

We remark that Absolutely continuous implies uniformily continuous which implies normal continuity.

FTOC (General Version) Suppose $F:[a,b]\to\mathbb{R}$ is absolutely continuous, then F'(x) exists for a.e. $x\in[a,b],\ F'$ is integrable and that $F(b)-F(a)=\int_a^bF'(x)dx$. Conversely, if $f:[a,b]\to\mathbb{R}$ is integrable, then $F(x)=\int_a^xf(t)dt$ is absolutely continuous, and F'(x)=f(x) for a.e. x.

Variation of F

$$\operatorname{Var}_{a}^{b}(F) := \sup_{a = x_{0} < \dots < x_{n} = b} \sum_{j=1}^{n} |F(x_{j}) - F(x_{j-1})|$$

If F is absolutely continuous, then it has bounded variation i.e. $\mathrm{Var}_a^b(F)<\infty.$

Fourier Analysis

Hilbert Space \mathcal{H} Define $\mathcal{H} = L^2([-\pi, \pi]; \mathbb{C}) = \{f : [-\pi, \pi] \to \mathbb{C} : f \text{ measurable}\}/\sim \text{ with the inner product,}$

$$\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g}(x) dx$$

Orthonormal Basis The functions $e_n(x) = e^{inx}$ $(n \in \mathbb{Z})$ are orthogonal i.e. $\langle e_n(x), e_m(x) \rangle$ equals 1 if n = m and 0 if $n \neq m$. We can express any $f \in \mathcal{H}$ as

$$f(x) = \sum_{n = -\infty}^{n = \infty} a_n e^{inx}$$

This is called the fourier series where,

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx$$

Each a_n is known as the fourier coefficients.

Theorem Let $f \in L^2([-\pi, \pi]; \mathbb{C})$. Define $a_n := \langle f, e_n \rangle$. Then,

1. The Fourier series of f converges to f in $\mathcal{H},$ i.e.

$$\lim_{N \to \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - \sum_{n=-N}^{N} a_n e^{inx}|^2 dx = 0$$

2. We have Parseval's identity,

$$\sum_{n=-\infty}^{n=\infty} |a_n|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$$

Lemma If $f \in \mathcal{H}$, $\langle f, e_n \rangle = 0$ for all $n \in \mathbb{Z}$, then f = 0 in \mathcal{H} .

Theorem* Let $\{e_n\}_{n=-\infty}^{\infty}$ be an orthonormal set in a separable Hilbert space \mathcal{H} . Then, the following are equivalent:

- 1. Finite linear combinations of elements in $\{e_n\}_{n=1}^{\infty}$ are dense in \mathcal{H}
- 2. If $f \in \mathcal{H}$ and $\langle f, e_n \rangle = 0$ for all n, then f = 0
- 3. If $f \in \mathcal{H}$ and $e_n = \langle f, e_n \rangle$, then $\left\| \sum_{n=-N}^N a_n e_n f \right\| \to 0$
- 4. If $f \in \mathcal{H}$ and $a_n = \langle f, e_n \rangle$, then $||f||^2 = \sum_{n=-\infty}^{\infty} |a_n|^2$

We remark that this theorem plus the previous lemma implies the previous theorem.

Cantor-Lebesgue function

does not satisfy $\int_a^b F'(x)dx = F(b) - F(a)$.

Consider a function $F:[0,1] \to \mathbb{R}$ defined so that: $F_1(x) = \text{continuous}$ increasing function on [0,1] that satisfies $F_1(0) = 0$, $F_1(x) = 1/2$ if $1/3 \le x \le 2/3$, $F_1(1) = 1$, and F_1 linear on C_1 . Similarly, define F_2 using the second iteration of the ternary Cantor set C_2 . This process yields a sequence of uniformily continuous increasing functions so that the sequence converges to a continuous limit F called the Cantor-Lebesgue function. This function is increasing but F'(x) = 0 almost everywhere, is constant on each interval of of the complement of the Cantor set. This function