

Hydrodynamique appliquée

Mini-projet

décembre 2021

CROGUENNEC Guillaume

DUPONT Ronan

Enseignant : M. Lajoie

1 PREDIMENSIONNEMENT DE L'OUVRAGE

1.1 Conditions de houle au pied de l'ouvrage

Les données sont les suivantes :

Houle au large

Occurrence	Houle au large
10 ans	$H_{m0}=4.0\text{m}, T_p=9.5\text{s}$
50 ans	$H_{m0} = 5.5 \text{m}, T_p = 10.5 \text{s}$
100 ans	H_{m0} =6.0m, T_p =11s

FIGURE 1 – Houle au large

Niveau d'eau

Occurrence	Houle au large
10 ans	NGF+0.5m
50 ans	NGF+0.7m
100 ans	NGF+1.0m

FIGURE 2 - Niveau d'eau

Bathymétrie

La bathymétrie est une pente régulière de 3% de -100m à 0.

Atténuation

Un programme de calcul de propagation de houle a permis d'établir les coefficients d'atténuation suivants au niveau du pied de digue, en tenant compte des effets linéaires combinés de réfraction-diffraction (hors déferlement).

Occurrence	Coefficient d'atténuation entre la hauteur au large et celle au pied de l'ouvrage
10 ans	0.95
50 ans	0.89
100 ans	0.87

FIGURE 3 – Atténuation

En utilisant les tableaux 1 et 3, on peut trouver les hauteurs théoriques au pied de l'ouvrage suivantes :

Ces hauteurs de houle sont physiquement irréelles, car une pente de seulement 3% ne peut pas atténuer une houle à ce point.

On peut déterminer le type de déferlement d'après [2] avec le **nombre d'Irribaren** :

$$\xi_0 = \frac{m}{\sqrt{\frac{H_0}{\lambda_0}}} \tag{1}$$

	Occurrence	Hauteurs théoriques au pied de l'ouvrage
	10 ans	$4 \times 0.95 = 3.8 \text{m}$
	50 ans	$5.5 \times 0.89 = 4.895 \text{m}$
Ì	100 ans	$6 \times 0.87 = 5.22 \text{m}$

FIGURE 4 – Hauteurs théoriques au pied de l'ouvrage

où m est la pente moyenne de la plage, H_0 la hauteur équivalente de houle au large et λ_0 est la longueur d'onde en profondeur infini (d'après [1]) et vaut : $\lambda_0 \approx 1.56T^2$. On obtient donc les nombres suivants :

Occurrence	Nombre d'Irribaren ξ_0
10 ans	0.178
50 ans	0.168
100 ans	0.168

Figure 5 – Nombre d'Irribaren au pied de l'ouvrage

D'après le tableau 5 et la figure 6, on aurait donc un déferlement glissant. Les autres types de déferlements sont des déferlements plongeants, à effondrement et gonflant ou frontal.

FIGURE 6 – Type de déferlement en fonction du nombre d'Irribaren

Question 1.a

En utilisant l'hypothèse des houles régulières, c'est-à-dire des houles dont la période ne change pas, on cherche à déterminer la houle équivalente au large grâce à la formule suivante :

$$H'_{m0\ eq0} = \sqrt{\frac{C_g}{C_{g0}}} H_{m0\ th\acute{e}orique\ au\ pied} \tag{2}$$

Cette formule ne prend pas en compte l'atténuation par réfraction, mais seulement l'effet shoaling grâce à son coefficient. Cette hauteur de houle équivalente correspond donc à la hauteur à imposer à l'entrée d'un canal à houle 2D virtuel permettant de reproduire l'état de mer réel au pied de l'ouvrage.

En se plaçant dans l'hypothèse d'une profondeur infinie on a : $C_g = \frac{c}{2} \left(1 + \frac{2k\pi}{\sinh(2k\pi)} \right)$ ainsi que : $C_{g0} \approx 1.56T/2$.

Et d'après [4], on a :

$$H_{m0} = H_0 \left[\left(1 + \frac{2kh}{\sinh 2kh} \right) \tanh kh \right]^{-\frac{1}{2}}$$
 (3)

Pour trouver c, on part de l'équation de dispersion :

$$w^2 = gk \tanh(kh) \tag{4}$$

avec w la pulsation propre, g la constante gravitationnelle, k le nombre d'onde et h la profondeur. En utilisant :

$$w = \frac{2\pi}{T} \tag{5a}$$

$$k = \frac{2\pi}{\lambda} \tag{5b}$$

$$\lambda = cT \tag{5c}$$

$$h = 4m + \text{surcote} \tag{5d}$$

Avec une surcote de 0.5m, 0.7m et 1m pour respectivement les occurrences de 10 ans, 50ans et 100ans.

L'équation (4) devient donc :

$$\frac{g}{c}\tanh(\frac{2\pi h}{cT}) - \frac{2\pi}{T} = 0\tag{6}$$

Et cela nous permet d'effectuer directement une dichotomie sur c avec (6) dans le programme 3.1.

On obtient les valeurs de hauteurs de houle équivalentes au large :

Occurrence	$H_{m0 \ th\'{e}orique \ au \ pied}$	Hauteur de houle équivalente au large $H'_{m0\ eq0}$
10 ans	4.445 m	4.002 m
50 ans	6.181 m	5.502 m
100 ans	6.928 m	6.002 m

FIGURE 7 – Hauteur de houle équivalente au large

Question 1.b

Les valeurs précédentes correspondent au cas d'une houle régulière, mais si on considère une houle irrégulière il faut utiliser un spectre. En effet, pour une houle irrégulière la période varie, donc on peut faire un spectre sur la pulsation pour obtenir toutes les houles équivalentes suivant la période. On prend donc comme fonction de transfert :

$$H(w) = \sqrt{\frac{C_{g0}}{C_g}}$$

et on utilise le spectre théorique de JONSWAP cité dans [3] :

$$S(w)_{th\acute{e}orique\ au\ pied} = ||H(w)||^2 S'(w)$$

οù

$$S'(w) = \frac{\alpha g^2}{w^2} \exp\left(-\frac{5w_p^4}{4w^4}\right) \gamma^{\exp\left(-\frac{(w-w_p)^2}{2\sigma^2 w_p^2}\right)}$$

où α =8E-3, w_p est la pulsation propre, γ le coefficient de forme du spectre et $\sigma = \begin{cases} 0.09 \text{ si } w \leq w_p \\ 0.07 \text{ si } w > w_p \end{cases}$ On obtient donc les spectres S(w) et S'(w) des 3 houles, avec le programme 3.2, tracés figure 8.

FIGURE 8 – Spectres

Ensuite on calcule les différentes hauteurs H_{m0} avec la formule $H_{m0} = 4\sqrt{m_0}$ où on a : $m_0 = \int_0^{+\infty} S(w)dw$. Pour cela, on utilise simplement la méthode des rectangles avec les valeurs discrètes du spectre que l'on a calculées.

On obtient les hauteurs suivantes figure 9.

Occurrence	Hauteur $H_{m0} = 4\sqrt{m_0}$
10 ans	4.49 m
50 ans	5.65 m
100 ans	6.24 m

FIGURE 9 – Hauteur de houle équivalente au large

On remarque qu'elles sont nettement différentes que sous l'hypothèse d'une houle régulière.

Question 2

La houle centenaire étant la plus "dangereuse", on choisit de déterminer les paramètres dans ce cas-là où $H_{m0}=6.24$ m.

En utilisant les données des tableaux à la page 6 du sujet sur la houle centenaire et en prenant comme profondeur h=5 m, on peut extraire les données figure 10 ci-dessous puis ensuite à l'aide d'excel effectuer des interpolations linéaires sur H_{m0} , H_s et $H_{0.1\%}$ en fonction de $H_{m0 \ large}$:

FIGURE 10 – Interpolation

On obtient les coefficients H_{m0} , H_s et $H_{0.1\%}$ pour la houle centenaire ci-dessous :

$H_{m0 \ th\acute{e}orique \ au \ pied}$	H_s	$H_{0.1\%}$
3.56 m	$3.80 \mathrm{m}$	5.39

Grâce à ces valeurs, il est maintenant possible de dimensionner correctement la hauteur de la digue. En effet les résultats ne sont pas incohérents comme ceux calculés par le programme cité au début.

2 Prédimensionnement d'une digue à talus

Dans cette partie, nous utiliserons les données récupérés dans la correction de la partie 1.

On rappelle la formule de Hudston (7) trouvée à l'aide de [5] :

$$D_{n50} = \frac{H_s}{\Delta (K_D \cot(\alpha))^{1/3}} \text{ ou } M_{50} = \frac{\rho_r H_s^3}{\Delta^3 K_d \cot(\alpha)}$$
 (7)

avec la densité relative déjaugée

$$\Delta = \frac{\rho_r - \rho_\omega}{\rho_\omega}$$

 M_{50} la masse médiane de l'enrochement, K_d un coefficient adimensionnel que nous prenons dans la configuration d'une vague déferlante pour un dommage admis de 0 à 5% ie $K_d = 2.1$, ρ_r et ρ_{ω} les masses volumiques de la roche et de l'eau, α l'angle du talus que nous prendrons à 25 degrés.

Ceci nous mène au dimenssionnement suivant :

Enrochement : Acropodes :
$$M_{50carapace}$$
=6130 kg $M_{50carapace}$ =9174 kg $D_{50carapace}$ =1.48 m $D_{50carapace}$ =1.75 m

or, on a:

$$M_{50filtre} = 0.1 M_{50carapace}$$
 et $D_{50filtre} = \frac{1}{2.2} D_{50carapace}$

d'où,

$$\begin{array}{ll} \textbf{Enrochement:} & \textbf{Acropodes:} \\ M_{50filtre}{=}613 & \text{kg} M_{50filtre}{=}~917~\text{kg} \\ D_{50filtre}{=}0.67~\text{m} & D_{50filtre}{=}0.80~\text{m} \end{array}$$

Enfin le critère de rétention est imposé par :

$$\frac{D_{50filtre}}{50} \le D_{50noyau} \le \frac{D_{50filtre}}{5}$$

on trouve donc:

Enrochement : Acropodes :
$$0.013~\text{m} \le D_{50noyau} \le 0.13~\text{m} \quad 0.016~\text{m} \le D_{50noyau} \le 0.16~\text{m}$$

On utilise ensuite l'équation (8) du manuel EurOtop 2016 pour évaluer le débit de franchissement. Il doit être inférieur à 5 l/m/s pour les conditions les pires soit centennales.

$$\frac{q}{\sqrt{g.H_{m0}^3}} = 0.09e^{-\left(\frac{1.5R_c}{H_{m0}\cdot\gamma_f\cdot\gamma_\beta}\right)^{1.3}}$$
(8)

où q est le débit moyen linéique (donné dans l'énoncé et vaut 5E-3 l/s, $H_{m0} = H_s = 3.41m$ pour la houle centennale (hypothèse de l'énoncé), γ_f un coefficient qui vaut 0.45 pour des acropodes et 0.55 pour de l'enrochement, γ_{β} vaut 1 car on se place dans l'hypothèse où la vague arrive de face. On peut réecrire la formule (8) de la manière suivante équation (9) :

$$R_{c} = \left[-\ln\left(\frac{q}{0.09\sqrt{g.H_{m0}^{3}}}\right) \right]^{\frac{1}{1.3}} \left[\frac{H_{m0}.\gamma_{f}.\gamma_{\beta}}{1.5} \right]$$
(9)

On arrive donc à une hauteur de digue de 5m44 au dessus du niveau d'eau et donc une hauteur de digue de **6.5m NGF**.

où l'on obtient les hauteurs minimales de barrage pour des conditions décennales et cinquantennales :

- **Houle decennale** : 6m au dessus du niveau d'eau avec une surcote de 0.5m si acropodes pour un débit de q=5.41e-1 l/m/s.
- **Houle cinquentenale** : 5.8m au dessus du niveau d'eau avec une surcote de 0.7m si acropodes pour un débit de q=1.9 l/m/s.

En s'aidant du tableau 11,

Hazard type and reason	Mean discharge q (l/s per m)	Max volume V _{max} (I per m)
People at structures with possible violent overtopping, mostly vertical structures	No access for any predicted overtopping	No access for any predicted overtopping
People at seawall / dike crest. Clear view of the sea. $H_{m0} = 3 \ m$ $H_{m0} = 2 \ m$ $H_{m0} = 1 \ m$ $H_{m0} < 0.5 \ m$	0.3 1 10-20 No limit	600 600 600 No limit
Cars on seawall / dike crest, or railway close behind crest $H_{m0} = 3 \ m$ $H_{m0} = 2 \ m$ $H_{m0} = 1 \ m$	<5 10-20 <75	2000 2000 2000
Highways and roads, fast traffic	Close before debris in spray becomes dangerous	Close before debris in spray becomes dangerous

Figure 11 – Tableau piéton

on en déduit à l'aide de H_{m0} =2.71 (houle décennale) ainsi que le débit q calculé précédemment que le piéton ne sera plus en sécurité dès ces **conditions décennales**.

Il est possible de diminuer des débits en ajoutant une berne. En effet, le débit moyen sera ensuite sous la forme (10):

$$\frac{q}{\sqrt{g.H_{m0}^3}} = 0.09e^{-\left(\frac{1.5R_c}{H_{m0}.\gamma_{BB}.\gamma_{\beta}}\right)^{1.3}}$$
(10)

avec γ_{BB} le coefficient qui remplace γ_f et vaut

$$\gamma_{BB} = 0.68 - 4.1c_a - 0.05 \frac{B}{H_{m0pied}}$$

avec B la largeur de la berne.

Cependant, on décidera une technique plus simple pour réduire la côte d'arase. En diminuant l'angle α , on diminuera la pente de la digue qui sera donc plus large. Cela permettra donc de déclencher le déferlement de la vague plus tôt. Par conséquent, il y aura moins d'eau qui franchira

la digue.

En divisant l'angle α par deux (ie $\alpha=13\check{r}$), on aura une hauteur finale de **5.5 NGF**. Le débit de franchissement sera alors de q=4.30 l/m/s ce qui reste inférieur aux 5 l/m/s maximales. Le coût de la digue sera bien supérieur à celui initial mais il n'aurait pas forcément été plus cher

que si nous avions posé une berne.

On peut dessiner le profil de la digue ci-dessous figure 12.

FIGURE 12 – Profil de l'ouvrage

POSE D'UN ÉMISSAIRE AU FOND

Les hypothèses de houle du projet sont décrites par le tableau ci-dessous :

Occurrence	Houle au large
10 ans	H_{m0} =4.0m, T_p =9.5s
50 ans	$H_{m0}=5.5$ m, $T_p=10.5$ s
100 ans	H_{m0} =6.0m, T_p =11s

où notre ouvrage est dimensionné par rapport aux houles centennales d'une hauteur $H_{m0\ au\ pied}=5.22m$.

D'après la théorie linéaire d'Airy, la vitesse orbitale de houle au fond vaut :

$$V = \frac{\omega}{2} \frac{H_{\delta}}{\sinh(kh)}$$

avec ω la pulsation qui vaut $\omega=k\sqrt{gh}$ en faible profondeur. Sa valeur numérique est donc 3.38 m/s

Mais seule "une partie" de cette vitesse est dirigée en travers de l'émissaire. Grâce à une projection (en multipliant simplement par $sin(\alpha)$), on obtient donc que la vitesse orbitale en travers de l'émissaire a une valeur numérique de 1.69 m/s.

Et l'accélération de cette vitesse vaut :

$$a = \frac{dV}{dT}$$

soit 0.31 m/s^2 .

Quant aux nombres adimensionnés, il s'expriment ainsi :

$$KC = \frac{VT}{D}$$

$$R_e = \frac{VD}{\nu}$$

$$\beta = \frac{Re}{KC}$$

avec D toujours le diamètre de l'émissaire et ν le coefficient de viscosité dynamique. Et leurs valeurs numériques sont donc :

$$-$$
 KC= 18.7

$$-R_e = 1.702 * 10^6$$

$$--\beta = 9.1 * 10^4$$

Grâce à ces valeurs, on peut calculer les coefficients d'inertie C_M , de traînée C_D et de portance C_L de l'émissaire :

$$C_M = 3.29 + 3.9 \frac{KC}{170} - 1.2 \left(\frac{KC}{170}\right)^2$$

$$C_D = 2.05 - 2.10 \frac{KC}{150} + 1.05 \left(\frac{KC}{150}\right)^2$$

$$C_L = 5.0 - 8.0 \frac{KC}{70} + 4.0 \left(\frac{KC}{70}\right)^2$$

Leurs valeurs numériques sont les suivantes :

- $-C_{M}=3.7$
- $--C_D=2.3$
- $-C_L=3.1$

Au regard de ces coefficients, on émet l'hypothèse que la digue est un corps fixe dans un milieux oscillant. On peut donc déterminer les efforts par les formules de Morison suivantes :

$$F_x = \rho \omega C_M \frac{dV_T}{dt} + \rho C_D S V_I^2$$

$$F_y = \frac{1}{2}\rho C_L S V_I^2$$

où F_x est l'effort d'inertie et F_y l'effort de traînée. Pour un émissaire de diamètre 1m, on obtient

$$-F_x=9.57*10^3$$
 N

-
$$F_x$$
=9.57 * 10³N
- F_y =3.6 * 10³3N

On constate donc que l'inertie prédomine sur la traînée. Et si le diamètre du tuyau diminue (à 0.3m par exemple), alors l'inertie va encore plus prédominer sur la traînée (on aurait respectivement $2.57 * 10^3$ N et $1.41 * 10^2$ N). Cela paraît logique car la force de traînée décroît très vite lorsque la surface diminue.

Si l'émissaire a un angle de frottement au sol de 30 degrés, il faut que :

$$\frac{F_x}{\sin(30^\circ)} < P - F_z$$

La seule inconnue est la masse dans l'expression du poids (mg), et cela nous permet de déterminer qu'elle doit être d'au moins 1200kg. Et grâce à cette masse, il est possible si l'on connaît la longueur de l'émissaire, de déterminer son épaisseur nécessaire pour un matériau donné.

Néanmoins, pour ce genre de modèles, il y a toujours des aspects négligés. Donc surdimensionner l'émissaire serait une bonne idée. Par exemple, il pourrait être plus grand pour être enfoui d'au moins 1.5 mètres afin de pallier les risques d'érosion.

Références

- [1] DAVID LAJOIE. PROPAGATION DE LA HOULE EN MILEU CÔTIER, Novembre 2020.
- [2] DAVID LAJOIE. Notion de déferlement, Novembre 2020.
- [3] David Lajoie. Les états de mer naturels, chapitre 7 : représentation spectrale des états de mer, Novembre 2020.
- [4] David Lajoie. dLes états de mer naturels, chapitre 7 : évolution de la houle en dehors de la mer du vent, Novembre 2020.
- [5] DAVID LAJOIE. Dimensionnement d'une digue à talus, Novembre 2020.

3 Annexe

3.1 Programme 1a

```
def dichotomie(f,a,b,e):
    delta = 1
    while delta > e:
        m = a + (b - a) / 2
        delta = abs(b - a)
        if f(m) == 0:
            return m
        elif f(a) * f(m) > 0:
            a = m
        else:
            b = m
    return (a+b)/2
cg0=lambda T: 1.56*T/2
k=lambda c,T:2*pi/c/T
cg=lambda c,h,T: c/2*(1+(2*k(c,T)*h)/sinh(2*k(c,T)*h))
HmO=lambda H, c, T, h: H*((1+(4*pi/c/T*h)/sinh(4*pi/c/T*h))*tanh(2*pi/c/T*h))**(-0.5)
def HmOeq(T,H,h):
    f=lambda c: 9.81/c*tanh(2*pi/c/T*h)-2*pi/T
    c=dichotomie(f, 0.1, 100, 0.0001)
    HmOeq=sqrt(cg(c,h,T)/cgO(T))*HmO(H,c,T,h)
    return HmOeq
Hm0eq_10=Hm0eq(9.5,4,4.5)
Hm0eq_50=Hm0eq(10.5,5.5,5.2)
Hm0eq_100=Hm0eq(11,6,5)
    Programme 1b
def sigma(w,wp):
    if w<=wp:</pre>
        return 0.07
    else:
        return 0.09
T=9.5
HmO=4
h=4.5
alpha = 8.1*10**-3
gamma = 2.5
A = alpha*9.81**2
B = 5/4*wp(T)**4
W=linspace(0.001,2,2000)
dx=W[2]-W[1]
#Fonction de transfert
def F(w,H,h):
    T=2*pi/w
```

```
f=lambda c: 9.81/c*tanh(2*pi/c/T*h)-2*pi/T
    c=dichotomie(f, 0.001, 10000, 0.0001)
    return cg0(T)/cg(c,h,T)

#Spectre
Sp = [(A/w**5)*exp(-B/w**4)*gamma**(exp(-((w-wp(T))**2)/(2*sigma(w,wp(T))**2*wp(T)**2))) for w in W]

S=[F(W[i],Hm0,h)*Sp[i] for i in range(len(W))]

m0=sum([dx*s for s in S])
print(4*sqrt(m0))
```