${\bf 6}\quad {\bf Chapter}\; {\bf 6} - {\bf Basic}\; {\bf Sequential}\; {\bf Logic}\; {\bf Building}\; {\bf Blocks}$

6.1 Helpfull Stuff

Here are the devices introduced in this chapter.

e are the devices introduced in this chapter.								
Nomenclature:	N-bit register							
Data Input:	N-bits vector $D = d_{N-1} \dots d_1 d_0$.							
Data Output:	N-bit vector $Q = q_{N-1} \dots q_1 q_0$							
Control:	1-bit <i>c</i>							
Status:	none							
Others:	1-bit edge-sensitive clock. 1-bit asynchronous activ						ronous active	
	low res	et.						
	reset	clk		D	Q^+	com	ment	
	0	X	х	X	0	re	eset	
Behavior:	1	0,1,falling	X	X	Q	h	old	
	1	rising	0	X	Q	h	$\overline{\text{old}}$	
	1	rising	1	D	D	lo	oad	
Nomenclature:	N-bit shift register with parallel load							
Data Input:	N-bits vector $D = d_{N-1} \dots d_1 d_0$.							
Data Output:	N-bit vector $Q = q_{N-1} \dots q_1 q_0$							
Control:	2-bits $c = c_1 c_0$							
Status:	none							
Others:	1-bit edge-sensitive clock. 1-bit asynchronous active low reset.							
	reset	clk	С	D	Q	+	comment	
	0	X	XX	Х	0		reset	
	1	0,1,falling	XX	X	Q)	hold	
Behavior:	1	rising	00	X	Q)	hold	
	1	rising	01	х	Q >	> 1	shift right	
				1	_	-	shift left	
	1	rising	10	X	Q <	<1	shift left	

Nomenclature:	N-bit counter with parallel load					
Data Input:	N-bits vector $D = d_{N-1} \dots d_1 d_0$.					
Data Output:	N-bit vector $Q = q_{N-1} \dots q_1 q_0$					
Control:	2-bits $c = c_1 c_0$					
Status:	none					
Others:	1-bit edge-sensitive clock. 1-bit asynchronous active low reset.					
	reset	clk	С	D	Q^+	comment
	0	X	XX	X	0	reset
	1	0,1,falling	XX	X	Q	hold
Behavior:	1	rising	00	X	Q	hold
	1	rising	01	X	D	count up
	1	rising	10	D	D	count up
	1	rising	11	X	D	load
Nomenclature:	three state buffer					
Data Input:	1-bit X.					
Data Output:	1-bit Y					
Control:	1-bit c					
Status:	none					
Others:	none					
Behavior:	Output equals input when $C=1$ otherwise output disconnected from input.					
Nomenclature:	NxM RAM (random access memory)					
Data Input:	M-bit vector $D = d_{M-1} \dots d_1 d_0 \log_2(N)$ -bit address $A =$					
	$a_{loq_2(N)-1} \dots a_1 a_0$					
Data Output:	M-bit vector $D = d_{M-1} \dots d_1 d_0$					
Control:	1-bit CS (chip select), RE (Read enable), WE (write enable)					
Status:	none					
Others:	none					
	A C	S RE W	E	D		Note
	x () x x		Z		RAM deactivated
Behavior:	x 1	0 0	1	Z		RAM deactivated
	A 1	0 1		D		RAM[A] = D (write)
	A 1	1 0		RAM	[A]	D = RAM[A] (read)
	Loft	Right				

	Left	Right
Arithmetic	$x_2 x_1 x_0 0$	$x_3x_3x_2x_1$
Circular	$x_2x_1x_0x_3$	$x_0x_3x_2x_1$
Logical	$x_2x_1x_00$	$0x_3x_2x_1$

6.2 Problems

Plot Complete the timing diagram for the register. You may assume that Q is initially 0.

Plot Let Q_{sr} is the output of a logical shift register (assume that 0 is shifted into the vacated bit position. Let Q_{cnt} is the output of a counter.

Label the mux inputs. Make the resulting circuit operate according to the truth table shows at left.

Complete the timing diagram. Note any changes in the RAMs content.

0	0110
1	1010
2	1101
3	0010
4	1000
5	0001
6	1101
7	1111

Complete the timing diagram. Use the counter control table from page 128. Assume that c1=L and c0=L'.

Complete the timing diagram. Put "u" in spaces where the output is undefined.

Complete the timing diagram. Put "u' in spaces where the output is undefined.

Complete the timing diagram for the following circuit. Note the labels of the signals.

Complete the timing diagram for the following circuit. Note the labels of the signals.

