Fruen: - Discrete notsy image $v = \{v(i) \mid i \in I\}$ The estimated value NL(V) (i) = pixel i

Wigneted aways of all the pixels in the image.

NL(v)(i) = $\sum_{j \in I} w(i,j) v(j)$ family of weigers $\rightarrow \{w(i,j)\}$ W(i,j) $\rightarrow depends$ on similarity between the pixel i and g. $\sum_{j \in I} w(i,j) = \sum_{j \in I} |o \leq w(i,j) \leq I|$

We discussed some of the key points in the paper regarding the Non Local Means, Understanding of Kernel (Mean, Gaussian) and also meaning of padding. Understanding of Code Implementation:

1) We clear previous commands and run a for loop for covering all the images. After reading an image, we convert only colored images into grayscale images. The Ground Truth we add a particular type of image.

```
clc; %clear all the previous commands;
2 - F for z=1:10
3 -
           filename=strcat('Image',string(z),'.png'); % Files are in format of Image1.png,Image2.png,...Image10.png
            Ground_Truth = imread(filename); % Reading the Ground Truth image file
4 -
           [w,b,r]=size(Ground_Truth); % w,b,r are the respective dimension
5 -
6
           % r=1 => the image is in gray scale
            % r!=1 => the image is in coloured scale and we need to convert in gray
7
8
            % scale
            % from below condition we have converted into the grayscale
9
10 -
           if (r~=1)
11 -
                Ground_Truth=Ground_Truth(:,:,3);
12 -
            % Add Salt & Pepper in the ground truth
13
            Img = imnoise(Ground_Truth, 'gaussian', 0,0.1);
14 -
```

2) a) Gaussian Filter: We apply gaussian filter over the noisy image and obtain the denoised image.

```
% Add Salt & Pepper in the ground truth
noisy = imnoise(Ground_Truth, 'salt & pepper', 0.1);
% Denoising the noisy images using gaussian filter.
Denoised= imgaussfilt(noisy,1);
```

- b) Non Local Filter:
 - i) Making the Gaussian Kernel for our analysis further

```
% Making gaussian kernel
               %standard deviation of gaussian kernel
std=1:
               % sum of all kernel elements (for normalization)
sma=0;
ks= 2*f+1; % size of kernel (same as neighborhood window size)
                      % Initiating kernel with all zeros
ker = zeros(ks,ks);
for x=1:ks % Transversing in the horizontal direction
    for y=1:ks % Transversing in the vertical direction
       width = x-f-1; % horizontal distance of pixel from center(f+1, f+1)
       height = y-f-1; % vertical distance of pixel from center (f+1, f+1)
       ker(x,y) = 100*exp((width+height)*(width+height))/(-2*(std*std));
       sma = sma + ker(x,y);
    end
end
kernel = ker ./ f;
kernel = kernel / sma; % normalization
```

ii) Denoised Image making array of zeros

```
noisex = Img;
noisy = double(noisex);
% Assign a clear output image and intialize all the values with zeros.
Denoised = zeros(m,n);
```

iii) We will have to do padding so that we have to remain consistent on sizes (which reduces after convolution with kernel)

```
%Degree of filtering
h=40;
% Replicate boundaries of noisy image
noisy2 = padarray(noisy,[f,f],'symmetric');
```

iv) Now we have to calculate the values of the denoised image. Some of the formulas we have to keep in mind before writing this part of code are as

follows:

a)

$$NL[v](i) = \sum_{j \in I} w(i, j)v(j),$$

b)

$$E||v(\mathcal{N}_i) - v(\mathcal{N}_j)||_{2,a}^2 = ||u(\mathcal{N}_i) - u(\mathcal{N}_j)||_{2,a}^2 + 2\sigma^2.$$

c)

The pixels with a similar grey level neighborhood to $v(\mathcal{N}_i)$ have larger weights in the average, see Figure 1. These weights are defined as,

$$w(i,j) = \frac{1}{Z(i)} e^{-\frac{||v(\mathcal{N}_i) - v(\mathcal{N}_j)||_{2,a}^2}{h^2}},$$

where Z(i) is the normalizing constant

$$Z(i) = \sum_{i} e^{-\frac{||v(\mathcal{N}_{i}) - v(\mathcal{N}_{i})||_{2,a}^{2}}{h^{2}}}$$

Figure 1. Scheme of NL-means strategy. Similar pixel neighborhoods give a large weight, w(p,q1) and w(p,q2), while much different neighborhoods give a small weight w(p,q3).

```
% Now we'll calculate ouput for each pixel
for i=1:m
    for j=1:n
        im = i+f; % to compensate for shift due to padarray function
        jn= j+f;% neighborhood of concerned pixel (similarity window)
        W1 = noisy2(im-f:im+f, jn-f:jn+f);
        % Boundaries of similarity window for that pixel
        % so that we dont go out of the image boundary, similarity window
        rmin = max(im-t, f+1);
        rmax = min(im+t, m+f);
        smin = max(jn-t, f+1);
        smax = min(jn+t, n+f);
        % Calculate weighted average next
        NL=0; % same as cleared (i,j) but for simplicity
               % sum of all s(i,j)
        % Run loop through all the pixels in similarity window
        for r=rmin:rmax
            for s=smin:smax
                % neighborhood of pixel 'j' being compared for similarity
               W2 = noisy2(r-f:r+f, s-f:s+f);
               % square of weighted euclidian distances
                d2 = sum(sum(kernel.*(W1-W2).*(W1-W2)));
                % weight of similarity between both pixels : s(i,j)
                sij = exp(-d2/(h*h)); % According to the formula discussed in paper.
               % update Z and NL
                Z = Z + sij;
                NL = NL + (sij*noisy2(r,s));
            end
        end
     % normalization of NL
       Denoised(i,j) = NL/Z;
   end
end
```

3) Plotting the Images and Obtaining MSE and PSNR

```
% Plotting the Images of Ground Truth, Noisy, Denoised images.
figure(i);
set(gcf, 'Position', get(0,'ScreenSize'));
subplot(1,3,1),imshow(Ground_Truth),title('Ground Truth Image');
subplot(1,3,2),imshow(noisy),title('Noisy Image');
subplot(1,3,3),imshow(Denoised),title('Denoised Image');

%PSNR calculation and printing the error.
[peaksnr1, snr1] = psnr(Ground_Truth, Denoised);
fprintf('\n The Peak-SNR value between Ground Truth and Denoised of Image %0.4f is %0.4f',i, peaksnr1);

% MSE calculation and printing the error.
err1 = immse(Ground_Truth, Denoised);
fprintf('\n The mean-squared error between Ground Truth and Denoised of Image %0.4f is %0.4f\n',i, err1);
```

Below Part of the Report there tables which shows the values of PSNR and MSE under XX - Filter Type and YY- Noise Type

(XX => Gaussian Filter, Non Local Means Filter; YY=> Salt & Pepper Noise, Gaussian Noise)

Gaussian Filter - Salt & Pepper Noise:

Gaussian Filter - Salt & Pepper Noise Type							
Image No	Filter Type	Noise Type	PSNR	MSE 617.3564			
1	Gaussian	Salt and Pepper	20.2254				
2	Gaussian	Salt and Pepper	20.5743	569.7078			
3	Gaussian	Salt and Pepper	19.5493	721.3542			
4	Gaussian	Salt and Pepper	20.8616	533.2423			
5	Gaussian	Salt and Pepper	18.4341	932.5356			
6	Gaussian	Salt and Pepper	20.8226	538.0462			
7	Gaussian	Salt and Pepper	18.9699	824.3055			
8	Gaussian	Salt and Pepper	18.3875	942.6122			
9	Gaussian	Salt and Pepper	19.8212	677.5821			
10	Gaussian	Salt and Pepper	20.2918	607.995			

Ground Truth Image

Gaussian Filter - Gaussian Noise:

Gaussian Filter - Gaussian Noise Type							
Image No	Filter Type	Noise Type	PSNR	MSE 624.8114 577.0779			
1	Gaussian	Gaussian	20.1733				
2	Gaussian	Gaussian	20.5185				
3	Gaussian	Gaussian	19.4756	733.6992			
4 Gaussian	Gaussian	Gaussian	20.7479	547.3763			
5	Gaussian	Gaussian	18.4428	930.6883			
6	Gaussian	Gaussian	20.9262	525.3582			
7	Gaussian	Gaussian	18.7989	857.4057			
8	Gaussian	Gaussian	18.3689	946.6599			
9	Gaussian	Gaussian	19.7817	683.7763			
10	Gaussian	Gaussian	20.285	608.9415			

Ground Truth Image

Noisy Image

Denoised Image

Ground Truth Image

Noisy Image

Denoised Image

Ground Truth Image

Non Local Means Filter - Salt & Pepper Noise

	Non Local Means Filter - Gaussian Noise Type					
Image No	Filter Type	Error Type	PSNR	MSE 548.4527		
1	Non Local Means	Gaussian	20.7394			
2	Non Local Means	Gaussian	19.8755	669.1591		
3	Non Local Means	Gaussian	18.8967	838.3212		
4	Non Local Means	Gaussian	20.8232	537.9701		
5	Non Local Means	Gaussian	18.732	870.7209		
6	Non Local Means	Gaussian	20.4095	591.7422		
7	Non Local Means	Gaussian	18.5758	902.6039		
8	Non Local Means	Gaussian	18.8732	842.8603		
9	Non Local Means	Gaussian	20.2176	618.4715		
10	Non Local Means	Gaussian	19.9515	657.5578		

Ground Truth Image

Non Local Means Filter - Gaussian Noise

	Non Local Mea				
Image No	Filter Type	Error Type	PSNR	MSE 548.4527 669.1591 838.3212 537.9701	
1	Non Local Means	Gaussian	20.7394		
2	Non Local Means	Gaussian	19.8755		
3	Non Local Means	Gaussian	18.8967		
4	Non Local Means	Gaussian	20.8232		
5	Non Local Means	Gaussian	18.732	870.7209	
6	Non Local Means	Gaussian	20.4095	591.7422	
7	Non Local Means	Gaussian	18.5758	902.6039	
8	Non Local Means	Gaussian	18.8732	842.8603	
9	Non Local Means	Gaussian	20.2176	618.4715	
10	Non Local Means	Gaussian	19.9515	657.5578	

Ground Truth Image

Noisy Image

Denoised Image

Ground Truth Image

Noisy Image

Denoised Image

Ground Truth Image

Noisy Image

Denoised Image

Ground Truth Image

Noisy Image

Denoised Image

Gaussian Filter - Salt & Pepper Noise Type					Gaussian Filter - Gaussian Noise Type				
mage No	Filter Type	Noise Type	PSNR	MSE	Image No	Filter Type	Noise Type	PSNR	MSE
1	Gaussian	Salt and Pepper	20.2254	617.3564	1	Gaussian	Gaussian	20.1733	624.8114
2	Gaussian	Salt and Pepper	20.5743	569.7078	2	Gaussian	Gaussian	20.5185	577.0779
3	Gaussian	Salt and Pepper	19.5493	721.3542	3	Gaussian	Gaussian	19.4756	733.6992
4	Gaussian	Salt and Pepper	20.8616	533.2423	4	Gaussian	Gaussian	20.7479	547.3763
5	Gaussian	Salt and Pepper	18.4341	932.5356	5	Gaussian	Gaussian	18.4428	930.6883
6	Gaussian	Salt and Pepper	20.8226	538.0462	6	Gaussian	Gaussian	20.9262	525.3582
7	Gaussian	Salt and Pepper	18.9699	824.3055	7	Gaussian	Gaussian	18.7989	857.4057
8	Gaussian	Salt and Pepper	18.3875	942.6122	8	Gaussian	Gaussian	18.3689	946.6599
9	Gaussian	Salt and Pepper	19.8212	677.5821	9	Gaussian	Gaussian	19.7817	683.7763
10	Gaussian	Salt and Pepper	20.2918	607.995	10	Gaussian	Gaussian	20.285	608.9415

Non Local Means Filter - Salt and Pepper Type					Non Local Means Filter - Gaussian Noise Type				
Image No	Filter Type	Error Type	PSNR	MSE	Image No	Filter Type	Error Type	PSNR	MSE
1	Non Local Means	Salt and Pepper	24.3235	240.2891	1	Non Local Means	Gaussian	20.7394	548.4527
2	Non Local Means	Salt and Pepper	22.187	392.9896	2	Non Local Means	Gaussian	19.8755	689.1591
3	Non Local Means	Salt and Pepper	20.6923	554.4342	3	Non Local Means	Gaussian	18.8967	838.3212
4	Non Local Means	Salt and Pepper	22.9553	329.2661	4	Non Local Means	Gaussian	20.8232	537.9701
5	Non Local Means	Salt and Pepper	23.3785	298.6968	5	Non Local Means	Gaussian	18.732	870.7209
6	Non Local Means	Salt and Pepper	22.6614	352.3246	6	Non Local Means	Gaussian	20.4095	591.7422
7	Non Local Means	Salt and Pepper	21.6404	445.693	7	Non Local Means	Gaussian	18.5758	902.6039
8	Non Local Means	Salt and Pepper	24.199	247.2747	8	Non Local Means	Gaussian	18.8732	842.8603
9	Non Local Means	Salt and Pepper	23.8523	267.8223	9	Non Local Means	Gaussian	20.2176	618.4715
10	Non Local Means	Salt and Pepper	22.3262	380.5894	10	Non Local Means	Gaussian	19.9515	657.5578

Some of the observations:

- PSNR ranges from 18-22 from various cases.
- Metrics show that the Gaussian Filter performs better than the NLM. Gaussian Filter builds a typical standard gaussian kernel and convulutes with image and hence it's pixels gets smoothened/ type of averaged out, whereas NLM works clearly on finding out the similarity between patches and its neighbourhood and tries to remove noise from them.
- Seeing the Visuals we get that NLM performs better than the Gaussian.
- For Gaussian Type of Noise, I kept the standard deviation as 0.1 and mean as 0 if we increase the Standard Deviation the PSNR usually increases.

References:

https://www.geeksforgeeks.org/cnn-introduction-to-padding/

https://www.youtube.com/watch?v=C zFhWdM4ic

Entire Code Idea was taken from this github repository and tried to rewrite various portions in own version:

https://github.com/Vishwanath1999/nonlocalmeans_denoising_image/blob/master/nlmeans.m

Discussion Collaborators:

- 1) Unnat Dave
- 2) Kamlesh Sawadekar