

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS PADJADJARAN

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

PROGRAM STUDI S-1 TEKNIK INFORMATIKA

Jl. Raya Bandung-Sumedang Km. 21 Jatinangor 45363 Telp./Fax. 022 7794696 http://informatika.unpad.ac.id, e-mail: informatika@unpad.ac.id

UJIAN TENGAH SEMESTER GANJIL 2021/2022

Mata kuliah : Logika Informatika NAMA : PRAMES RAY LAPIAN

Dosen : Drs. Ino Suryana, M.Kom. NPM : 140810210059

Hari, Tanggal: Senin, 19 Oktober 2021 Kelas: A

SOAL No. 1

I. [20] Periksa kalimat berikut: (i). Apakah kalimat berikut proposisi?; (ii). Apa nilai kebenaranya?; (iii). Tentukan kalimat negasinya!

JAWABAN:

- a. Untuk beberapa bilangan bulat n, 500 = n * 25.
 - i. Bukan Proposisi.
 - ii. Tidak diketahui nilai kebenarannya.
 - iii. Tidak ada kalimat negasinya.
- b. Setiap bilangan bulat genap lebih dari empat merupakan penjumlahan dua bilangan prima.
 - i. Proposisi
 - ii. Salah
 - iii. Tidak benar jika setiap bilangan bulat genap lebih dari empat merupakan penjumlahan dua bilangan prima
- c. Tidak ada orang utan hidup di kota.
 - i. Proposisi
 - ii. Benar
 - iii. Tidak benar jika tidak ada orang utan hidup di kota => Ada orang utan hidup di kota.

SOAL No. 2

II. [20] Buktikan ekivalensi (≡) soal a dan b mengunakan cara aljabar (gunakan hukum aljabar proposisi).

JAWABAN:

a.
$$p \land (p \lor q) \equiv p$$

 $p \equiv p //absorbsi$

b.
$$\sim (q \land (p \lor \sim q)) \equiv \sim p \lor \sim q$$

$$(\sim q \lor \sim (p \lor \sim q))$$
 $\equiv \sim p \lor \sim q // \text{ De Morgan}$
 $(\sim q \lor (\sim p \land q))$ $\equiv \sim p \lor \sim q // \text{ De Morgan}$

$$(\neg q \lor \neg p) \land (\neg q \lor q) \equiv \neg p \lor \neg q \text{ // Distributif}$$

$$(\sim q \vee \sim p) \wedge T$$
 $\equiv \sim p \vee \sim q // \text{Negasi}$

$$\sim p \vee \sim q$$
 $\equiv \sim p \vee \sim q // Identitas$

SOAL No. 3

III. [20] Himpunan semesta $S = \{2, 3, 4\}$ dan predikat-predikat:

$$P(x, y) : x + y \le 2y, Q(x) : x \text{ ganjil.}$$

Tentukan nilai kebenaran P(x, y) dan tuliskan langkah-langkah pembuktianya untuk:

JAWABAN:

a. $(x \in S, y \in Q(y)) P(x, y)$.

$$x = \{2, 3, 4\}$$

$$y = {3}$$

$$P(x, y) : x + y \le 2y$$

$$P(2,3): 2 + 3 \le 6 //Benar$$

$$P(3,3): 3 + 3 \le 6 //Benar$$

$$P(4,3): 4 + 3 \le 6 //Salah$$

Untuk $x = \{2,3\}$ bernilai Benar

b. $(x, y \in S) P(x, y)$.

$$x = \{2, 3, 4\}$$

$$y = \{2, 3, 4\}$$

$$P(x, y) : x + y \le 2y$$

$$P(2, 2) : 2 + 2 \le 4 //Benar$$

$$P(2, 3) : 2 + 3 \le 6 //Benar$$

$$P(2, 4): 2 + 4 \le 8 //Benar$$

Untuk x = 2, semua anggota y bernilai Benar

$$P(3, 2): 3 + 2 \le 4 //Salah$$

$$P(3, 3) : 3 + 3 \le 6 //Benar$$

$$P(3, 4): 3 + 4 \le 8 //Benar$$

Untuk x = 3, dan $y = \{3, 4\}$ bernilai Benar

$$P(4, 2) : 4 + 2 \le 4 //Salah$$

$$P(4, 3) : 4 + 3 \le 6 //Salah$$

$$P(4, 4) : 4 + 4 \le 8 //Benar$$

Untuk x = 4, dan y = 4 bernilai Benar

SOAL No. 3

[40] Diberikan dua buah premis berikut:

- (i) Logika sulit atau tidak banyak mahasiswa yang menyukai logika.
- (ii) Jika matematika mudah, maka logika tidak sulit.

Tunjukkan dengan pembuktian argumen (menggunakan tabel kebenaran dan cara kontradiksi) apakah konklusi berikut sah (valid) atau tidak berdasarkan dua premis di atas: Bahwa matematika tidak mudah atau logika sulit.

JAWABAN:

a. Tabel Kebenaran:

p	q	r	p ∨ ~q	r → ~p	~r∨p	$(p \lor \neg q) \land (r \to \neg p)$	$(p \lor \sim q) \land (r \to \sim p) \to (\sim r \lor p)$
T	Т	T	Т	F	Т	F	Т

Τ	Т	F	T	T	Т	T	T		
Т	F	T	Т	F	Т	F	T		
Т	F	F	Т	T	Т	T	T		
F	Τ	Τ	F	Τ	F	F	T		
F	Т	F	F	Т	T	F	Т		
F	F	Т	Т	Т	F	T	F		
F	F	F	T	Т	T	T	T		
	Karena tidak ada Tautologi, maka argument TIDAK SAHIH / TIDAK VALID								

b. Kontradiksi:

$$(p \lor \sim q) \land (r \Rightarrow \sim p) \Rightarrow (\sim r \lor p)$$

Misal:
 $((p \lor \sim q) \land (r \Rightarrow \sim p)) \Rightarrow (\sim r \lor p) = \frac{\text{SALAH}}{\text{Jadi } ((p \lor \sim q) \land (r \Rightarrow \sim p))} = \text{BENAR}$
 $(-r \lor p) = \text{BENAR}$

Karena (\sim r \vee p) = SALAH, maka \sim r = SALAH, r = BENAR, p = SALAH, dan \sim p = BENAR

Sehingga ((p
$$\lor \sim$$
q) \land (r $\Rightarrow \sim$ p))
Menjadi (SALAH $\lor \sim$ q) \land (BENAR \Rightarrow BENAR) = \sim q \land BENAR

Untuk \sim q = BENAR Maka BENAR \wedge BENAR = BENAR ((p \vee \sim q) \wedge (r \rightarrow \sim p)) \rightarrow (\sim r \vee p) (BENAR) \rightarrow (SALAH) = SALAH

Untuk
$$\sim$$
q = SALAH
Maka SALAH \wedge BENAR = SALAH
 $((p \vee \sim q) \wedge (r \rightarrow \sim p)) \rightarrow (\sim r \vee p)$
 $(SALAH) \rightarrow (SALAH) = BENAR$

Karena memiliki kontradiksi yang berbeda, maka argument tersebut TIDAK VALID / TIDAK SAHIH