Simulare Examen de bacalaureat 2022 Proba E. d) FIZICĂ – BAREM DE EVALUARE ȘI DE NOTARE VARIANTA 1

Se punctează oricare alte modalități de rezolvare corectă a cerințelor.

Nu se acordă fracțiuni de punct.

Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10

A. MECANICĂ

 SUBIECTUL I
 (10 x 3 puncte = 30 puncte)

 Nr subject
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 Varianta corectă
 a
 c
 d
 a
 c
 d
 c
 b
 c

SUB	EIECTUL II.1	(1	(5 puncte)
	Soluție, rezolvare	\mathcal{S}	Punctaj
a.	Pentru: Reprezentarea forțelor aplicarea principiului fundamental la ambele corpuri $a = \frac{g(m_1 - m_2 \sin \alpha - \mu m_2 \cos \alpha)}{m_1 + m_2} = 6 \text{ m/s}^2$	1p 2p 1p	4p
b.	$T = m_1(g - a)$ rezultat final $T = 1,2$ N	2p 1p	3p
c.	Pentru: $a_1 = -g(\sin\alpha + \mu\cos\alpha)$ v = at $d = v^2/(2 a_1)$ rezultat final $d = 3$ m	1p 1p 1p 1p	4p
d.	Pentru: aplicarea principiului fundamental la echilibru cu masa maximă $m_{1max} = m_2 \left(\sin \alpha + \mu \cos \alpha \right)$ aplicarea principiului fundamental la echilibru cu masa minimă $m_{1min} = m_2 \left(\sin \alpha - \mu \cos \alpha \right)$ rezultat final $m_1 \in [40,60]g$	1p 1p 2p	4p

SUB	IECTUL II.2	(1	5 puncte)
	Soluție, rezolvare		Punctaj
a.	Pentru:		
	Interpretarea graficului și $a = \Delta v / \Delta t$	2p	3p
	rezultat final $a = 9 \text{ m/s}^2$	1p	•
b.	Pentru:		
	Reprezentarea forțelor	1p	4
	$G - F_r = ma$	2p	4p
	$F_r = 0.1 \text{ N}$	1p	
c.	Pentru:		
	Interpretarea geometrică	2p	4
	$d = \frac{(4.5 + 13.5)(1.5 - 0.5)}{(4.5 + 13.5)(1.5 - 0.5)}$ m = 9 m		4p
	$a = \frac{1}{2}$ III = 9 III	2p	
d.	a = 0	1p	
	$mg = Kv_{\text{max}}$	2p	4p
	$v_{max} = 20 \text{ m/s}$	1p	

SUB	IECTUL III.1	15 puncte)
	Soluție, rezolvare	Punctaj
a.	Pentru:	
	-reprezentarea corectă a forțelor:	
	-aplicarea principiului fundamental:	4
	$a = \frac{F - \mu mg}{1 - \mu mg}$	4p
	$a = \frac{a}{m}$	
	$a = 2 \text{ m/s}^2$	
b.	v = at	3р
	v = 4 m/s	3p
c.	Pentru:legea conservării impulsului în ciocnirea plastică:	
	$u = \frac{m_1 v}{m_1 + m_2} = \frac{v}{2}$	
	$m_1 + m_2 = 2$	
	$h = u^2 / 2g$	4p
	rezultat final: $h = 0.2 \text{ m}$	
	1 _p	
d.	Pentru:	
	$T = G\cos\alpha$	
	$\cos \alpha = 1 - (h/l)$	/ln
	rezultat final $T = 8 \text{ N}$	

SUB	IECTUL III.2	(1	5 puncte)
	Soluție, rezolvare		Punctaj
a.	Pentru:		
	$\Delta E_c = L \text{ sau } E_i = E_f + L_{Ff} $	2p	
	$v_0 = \sqrt{2L/m}$	1p	4p
	$v_0 = 20 \text{ m/s}$	1p	
b.	$a = \mu g$	1p	
	$0 = v_0 - at$	1p	
	$\mu = \sqrt{2L/g^2t^2m}$	1	4p
	rezultat final $\mu = 0.2$	1p 1p	
c.	$d = v_0^2 / 2\mu g$	2p	2
	rezultat final $d = 100 \mathrm{m}$	1p	3p
d.	Pentru:		
	$v = v_0 - at_1$	1p	
	$v = v_0 - at_1$ $E_c = mv^2 / 2$	2p	4p
	rezultat final $E_c = 196 \mathrm{J}$	1p	

Simulare Examen de bacalaureat 2022 Proba E. d) FIZICĂ – BAREM DE EVALUARE ȘI DE NOTARE VARIANTA 1

Se punctează oricare alte modalități de rezolvare corectă a cerințelor.

Nu se acordă fracțiuni de punct.

Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10

B. ELEMENTE DE TERMODINAMICĂ

SUBIECTUL I				$(10 \times 3 \text{ puncte} = 30 \text{ puncte})$						
Nr subiect	1	2	3	4	5	6	7	8	9	10
Varianta corectă	b	a	d	С	С	b	d	d	d	c

SUB	BIECTUL II.1		5 puncte)
	Soluție, rezolvare		Punctaj
a.	$m_{O_2} = \frac{\mu_{O_2}}{N_A}$ $m_{O_2} = 5.31 \cdot 10^{-26} \text{ kg}$	2p 1p	3p
b.		1p	
	$v = \frac{N}{N_A}$ $n = \frac{vN_A}{V_2}$, iar $V_2 = V_1$ $n = 2.4 \cdot 10^{25} \text{ m}^{-3}$	1p	4p
	200	1p 1p	
c.	$\rho_3 = \frac{m}{V_3} \\ V_3 = \frac{V_2}{2} = \frac{V_1}{2}$	2p 1p	4p
	$\rho_3 = 2,56 \text{ kg/m}^3$	1p	
d.	$\left \frac{\Delta p}{p_3} = \left \frac{p_1 - p_3}{p_3} \right \right $	1p	
	$ \begin{vmatrix} p_2 = 2p_1 \\ p_3 = 4p_1 \end{vmatrix} $	1p 1p	4p
	$\Delta p/p_3 = 75\%$	1p	

SUB	IECTUL II.2	(15 puncte)
	Soluție, rezolvare	Punctaj
a.	$\frac{p_1}{T_1} = \frac{p_2}{T_2}$)
	$T_1 - T_2$	1
	$p_2 = 2p_1$	4p
	$p_2 = 2 \cdot 10^5 Pa \tag{1}$)
b.	$N_{He} = N_{He} = m_{He}$	9
	$ u_{He} = \frac{n_e}{N_A} = \frac{n_e}{\mu_{He}} $	3p
	$N_{He} = 18,06 \cdot 10^{23}$ molecule)
c.	$m_{amestec}$)
	$v_{fin} = \frac{1}{\mu_{amestec}}$	
	$m_{amestec} = v_{N_2} \mu_{N_2} + m_{He} $	2 4p
C	$v_{He} = \frac{m_{He}}{u_{He}}$	p 4p
	$\mu_{amestec} = 10 \text{ g/mol}$)
d.		p
) 10
	$v_{fin} = v_{N_{\perp}} + v_{He}$	6 4p
	$p_2 \cong 2,66 \cdot 10^5 \mathrm{Pa}$	2

SUB	IECTUL III.1	15 puncte)
	Soluție, rezolvare	Punctaj
a.	Pentru reprezentare corectă în coordonate p – V	
	p_1 p_2 p_1 p_2 p_3 p_4 p_4 p_5 p_7 p_8 p_8 p_9	4p
b.	$L_{total} = A_{arafic} = (p_2 - p_1)(V_2 - V_1)$ 2p	3p
c.	$\frac{L_{total} = 1000 \text{ j}}{T_1}$	
	$ \eta_C = 1 - \frac{T_2}{T_2} $ $ \eta_C = 1 - \frac{p_1 V_1}{p_2 V_2} $ 1p	4p
d.		4.5
	$ \gamma = \frac{c_p}{c_V} \text{ si } R = C_p - C_V, \text{ de unde } C_V = \frac{R}{\gamma - 1} \text{ si } C_p = \gamma C_V $ $ \eta = \frac{10}{95} \cong 10\% $ 1p	4p

SUB	IECTUL III.2	(15 puncte)
	Soluție, rezolvare	Punctaj
a.	$U_3 = \nu C_V T_3$	
	$\frac{V_1}{T_1} = \frac{V_3}{T_3} \Rightarrow T_3 = 3T_1$	4p
	$U_3 \cong 18,7 \text{ MJ}$	1
b.	$Q_{12} = \Delta U_{12} + L_{12} $	1
	$\Delta U_{12} = \nu C_V (T_2 - T_1) = 20\nu R T_1 $ 1p	
	$L_{12} = \frac{(3p_o + p_o)(3V_o - V_o)}{3} = 4p_oV_o = 4\nu RT_1$	4p
	$L_{12} = {2} = 4p_o V_o = 4\nu R I_1$	
	$Q_{12} \cong 59.8 \mathrm{MJ}$	
c.	$L_{total} = A_{grafic} = \frac{(3p_o - p_o)(3V_o - V_o)}{2} = 2p_o V_o = 2\nu R T_1$ 3p	
	$L_{total} \cong 4.9 \text{ MJ}$	4p
d.	$n = \frac{L_{total}}{2}$	1
	Q_{12}	3p
C	$\eta = 1/12 \cong 8,2\%$	

Simulare Examen de bacalaureat 2022 Proba E. d) FIZICĂ – BAREM DE EVALUARE ȘI DE NOTARE VARIANTA 1

Se punctează oricare alte modalități de rezolvare corectă a cerințelor.

Nu se acordă fracțiuni de punct.

Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

SUBIECTUL I $(10 \times 3 \text{ puncte} = 30 \text{ pu})$						uncte)				
Nr subiect	1	2	3	4	5	6	7	8	9	10
Varianta corectă	d	b	b	a	С	d	d	С	a	a

SUB	IECTUL II.1	(1	(5 puncte)
	Soluție, rezolvare	γ	Punctaj
a.	Reprezentare corectă		3p
b.	$E_s = 2E = 40 \text{ V}, r_s = 2 \Omega$ $E_p = 2E = 40 \text{ V}, r_p = \frac{2}{3} \Omega$	1p 1p	
	$I = \frac{E_p}{R + r_p} = 4 \text{ A}, \text{ U=IR}$	1p	4p
	U = 37,33 V	1p	
c.	$I = 3I_1$ $I_1 = 1,33 \text{ A}$	3p 1p	4p
d.	$I_0 = \frac{E}{}$	3p	
	$I_0 = 20A$	1p	4p

SUBIECTUL II.2 (15 puncte)

	SUBJECTUL 11,2	(13 punc	<u>.c)</u>
	Soluție, rezolvare		Punctaj
a.	$R_{s_1} = R_1 + R_2 = 22 \Omega; R_{s_2} = R_3 + R_4 = 18 \Omega; R_p = \frac{R_{s_1} R_{s_2}}{R_{s_2} + R_{s_2}} = 9.9 \Omega$	1p	
	$I_d = \frac{E}{R_p + r} = 0.91 A$ $U = E - I_d r$	1p	4p
	$U = E - I_d r$	1p	
	U = 9,09V	1p	
b.	$R_{p_1} = \frac{R_1 R_3}{R_1 + R_3} = 4.8 \Omega; \ R_{p_2} = \frac{R_2 R_4}{R_2 + R_4} = 4.2 \Omega; \ R_s = R_{p_1} + R_{p_2} = 9 \Omega$	1p	
	$A_{i} = \frac{E}{i}$	2p	4p
S	$I_i = R_s + r$ $I_i = 1A$	1p	
c.	$R_4' = \frac{R_2 R_3}{R_1}$	3p	
	$R_4' = 21\Omega$	1p	4p
d.	U = E	2p	
	U = 10V	1p	3p

SUB	IECTUL III.1	(1	15 puncte)
	Soluție, rezolvare		Punctaj
a.	P	3p	
	$R = \frac{1}{I^2}$	_	4p (
	$R=4\Omega$	1p	
b.	$I_{v} = \frac{U}{R} = 0.2 A$	1p	100
	$I_v - \frac{1}{R_v} = 0.2 \text{ A}$ $I_b = I - I_v = 1 \text{ A}$	1	
	$I_b = I - I_v = 1 A$	1p	4p
	$P_b = UI_b$	1p	1
	$P_h = 30W$	1p	
c.	E = U + I(R + r)	2p	
	E = 36V	1p	3p
d.	$E = U + I_b(R_1 + r)$	1p	
	$R_1=5 \Omega$	1p	4p
	$P_1 = I_b^2 R_1$	1p	→ p
	$P_1 = 5 W$	1p	

SUB	SIECTUL III.2		15 puncte)
	Soluție, rezolvare	C//A.	Punctaj
a.	$I_1 = \frac{E_1}{R_1}$	1p	
	$I_1 = 3A$	lp	4p
	$\begin{aligned} W_1 &= I_1^2 R_1 \Delta t \\ W_1 &= 32400 J \end{aligned}$	1p 1p	
b.		1p	
	$I_3 = 4.5A$	1p	4p
	$ P_2 = E_2 I_3 P_2 = 54W $	1p 1p	
c.	$U_{AB} = E_1 + E_2$ $U_{AB} = 18V$	2p 1p	3p
d.	$U_{AB} = 18V$ $I_2 = \frac{E_2}{R_2} = 4 A$	lp	
	$\begin{vmatrix} I_2' = I_3 + I_2 = 8,5 & A \\ P_2' = E_2 I_2' \end{vmatrix}$	1p 1p	4p
	$P_2 = E_2 I_2$ $P_2' = 102W$	1p	

Simulare Examen de bacalaureat 2022 Proba E. d) FIZICĂ – BAREM DE EVALUARE ȘI DE NOTARE VARIANTA 1

Se punctează oricare alte modalități de rezolvare corectă a cerințelor.

Nu se acordă fracțiuni de punct.

Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10

D. OPTICĂ

 SUBIECTUL I
 (10 x 3 puncte = 30 puncte)

 Nr subiect
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 Varianta corectă
 d
 c
 d
 c
 d
 b
 a
 c
 b
 c

SUB	SIECTUL II.1	(1	(5 puncte)
	Soluție, rezolvare	\mathcal{O}	Punctaj
a.	$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	1p 1p	
	$R_1 \to \infty; R_2 = -20 \text{ cm}$ $C = \frac{1}{2}$		4p
	Rezultat final: $C = 2.5 \text{ m}^{-1}$	1p 1p	
b.	Mersul corect al razelor de lumină pentru situația dată	4p	4p
c.		1p	
	$\overline{x_2} - \overline{x_1} = \overline{f}$		
	$\beta = \frac{y_2}{y_1} = \frac{x_2}{x_1}$	1p	4p
	Rezultate finale: $x_2 = -40 \text{ cm}$; $y_2 = 20 \text{ cm}$	1p	
	Imagine virtuală, dreaptă și de două ori mai mare decât obiectul	1p	
d.	$\frac{1}{f_{apa}} = \left(\frac{n}{n_{apa}} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	2p	3p
	Rezultat final: $f_{apa} = 1,6 \text{ m}$	1p	

SUB	IECTUL II.2	(15 puncte)
	Soluție, rezolvare	Punctaj
a.	$\frac{1}{1} = \frac{1}{1} - \frac{1}{1}$)
	$\int f - x_2 - x_1$	
	$x = f \cdot x_1$	
	$\frac{1}{f} = \frac{1}{x_2} - \frac{1}{x_1}$ $x_2 = \frac{f \cdot x_1}{x_1 + f}$ $d = x_1 + x_2$ 1	9 4p
	$d = x_1 + x_2$,
	Rezultat final: $d = 16 \text{ cm}$	
b.	Mersul corect al razelor de lumină pentru situația dată 3) 3p
c.	Poziția punctului A pe AOP: $\left x_1^A\right = \left x_1\right - y_1$; deci $\left x_1^A\right = 6 \text{ cm}$)
	Pentru punctul A: $\frac{1}{f} = \frac{1}{x_2^A} - \frac{1}{x_1^A}$; deci $x_2^A = 12 \text{ cm}$	4p
	Mărimea imaginii: $\Delta x = x_2^A - x_2$,
	Rezultat final: $\Delta x = 4 \text{ cm}$	
d.	Pentru sistemul alipit: $\frac{1}{f_s} = \frac{1}{x_2^s} - \frac{1}{x_1}$)
	1.	4p
	$C_s = C + C_2$) ^

$C_2 = \frac{1}{f} - \frac{1}{f}$	1p	
Rezultat final: $C_2 = -\frac{25}{3} \mathrm{m}^{-1}$	1p	

SUBIECTUL III.1 (15 puncte) Soluție, rezolvare Punctaj 3p Rezultat final: i = 1 mm1p <u>2</u>p Pentru maximul de ordinul 4: $\delta = 4\lambda$ b. 3p Rezultat final: $\delta = 2 \,\mu\text{m}$ 1p Poziția maximului de ordinul trei: $x_3^{\text{max}} = 3 \cdot i$ c. Poziția celei de-a patra franje întunecate: $x_4^{min} = \frac{(2k+1) \cdot i}{2}$ cu k=31p 4p $d = x_3^{\text{max}} + x_4^{\text{min}}$ 1p Rezultat final: d = 6.5 mm1p Deplasarea sistemului de franje: $\Delta x = \frac{D \cdot e \cdot (n-1)}{2l}$ d. 4p 1p Rezultat final: $\Delta x = 2 \text{ cm}$

SUB	EIECTUL III.2	(1	5 puncte)
	Soluție, rezolvare		Punctaj
a.	$\hat{I} \text{n aer: } i_0 = \frac{D \cdot \lambda}{2l}$	3 p	4p
	Rezultat final: $i_0 = 250 \mu \text{m}$	1p	4 p
b.	Variația relativă a interfranjelor cu dispozitivul în aer: $\varepsilon = \frac{i_{01} - i_0}{i_0}$	2p	4
	$\varepsilon = \frac{D_1 - D}{D}$ Rezultat final: $\varepsilon = 2$	1p 1p	4p
c.	$n_a = \frac{c}{v_a}$	1p	
	$v_a = \frac{c}{n_a}$	1p	3p
	Rezultat final: $v_a = 2.25 \cdot 10^8 \frac{m}{s}$	1p	
d.	Dispozitivul în apă: $i_1 = \frac{i_{01}}{}$	2p	
	$i_{01} = \frac{D_1 \cdot \lambda}{2l}$ Rezultat final: $i_1 = 56, 25 \mu\text{m}$	1p	4p
	103,20 pm	1p	