Logistic Regression Baseline Model Development

The purpose of this notebook is to explore preprocessing techniques beyond the simple data cleaning formalized in the <u>EDA notebook (./EDA.ipynb)</u>.

My main goal is to discover the best sampling method to address the class imbalance present in the target variable. My plan is to build a series of logistic regression models all with the same settings, the only difference being what sampling strategy will be used.

It is most important to successfully classify disloyal customers (label: 1) as much as possible, and it is not necessarily risky to the business to misclassify loyal customers (label: 0), also it is not obvious to me that neither recall nor precision are necessarily more relevant than the other here. So, I will be depending on the F1-score as my primary performance metric through this notebook, and the remaind of the project.

Load and clean data

```
In [3]: ► X_train.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 103904 entries, 0 to 103903
Data columns (total 27 columns):

#	Column	Non-Null Count	Dtype
0	Age	103904 non-null	int64
1	Flight Distance	103904 non-null	int64
2	Inflight wifi service	103904 non-null	int64
3	Departure/Arrival time convenient	103904 non-null	int64
4	Ease of Online booking	103904 non-null	int64
5	Gate location	103904 non-null	int64
6	Food and drink	103904 non-null	int64
7	Online boarding	103904 non-null	int64
8	Seat comfort	103904 non-null	int64
9	Inflight entertainment	103904 non-null	int64
10	On-board service	103904 non-null	int64
11	Leg room service	103904 non-null	int64
12	Baggage handling	103904 non-null	int64
13	Checkin service	103904 non-null	int64
14	Inflight service	103904 non-null	int64
15	Cleanliness	103904 non-null	int64
16	Departure Delay in Minutes	103904 non-null	int64
17	Arrival Delay in Minutes	103904 non-null	float64
18	Female	103904 non-null	float64
19	Male	103904 non-null	float64
20	Business travel	103904 non-null	float64
21	Personal Travel	103904 non-null	float64
22	Business	103904 non-null	float64
23	Eco	103904 non-null	float64
24	Eco Plus	103904 non-null	float64
25	neutral or dissatisfied	103904 non-null	float64
26	satisfied	103904 non-null	float64
dtvn	es: float64(10), int64(17)		

dtypes: float64(10), int64(17)

memory usage: 22.2 MB

Develop baseline model

```
In [5]:
              1
                 def print weights(y:np.array):
              2
                     unique_train, counts_train = np.unique(y_train, return_counts=True)
              3
                     loyal original = round(counts train[0]/(counts train[0]+counts train
              4
                     disloyal original = round(counts train[1]/(counts train[0]+counts train[1])
              5
              6
                     unique_resample, counts_resample = np.unique(y, return_counts=True)
              7
                     loyal resample = round(counts resample[0]/(counts resample[0]+counts
              8
                     disloyal resample = round(counts resample[1]/(counts resample[0]+counts
              9
             10
                     print('Original dataset weights:', loyal_original, disloyal_original)
             11
                     print('Original dataset size:',len(y_train))
             12
                     print('\nResample dataset weights', loyal_resample, disloyal_resample)
                     print('Resample dataset size:', len(y_smote))
             13
```

fit estimator

print classification report

Out[8]:	0.0		1.0	accuracy
	precision	0.933367	0.763805	0.905143
	recall	0.951898	0.695959	0.905143
	f1-score	0.942541	0.728305	0.905143
	sunnort	84923 000000	18981 000000	0 905143

```
In [9]:
                     plot_confusion_matrix(logreg, X_train, y_train, normalize='true')
                     plt.show()
                                                                   0.8
                               0.95
                                                 0.048
                    0.0
                                                                  - 0.6
                 True label
                                                                  - 0.4
                                                  0.7
                   1.0
                                                                  - 0.2
                               0.0
                                                  1.0
                                    Predicted label
```

calculate ROC AUC and plot curve

```
In [12]:
                 # Seaborn's beautiful styling
                 sns.set_style('darkgrid', {'axes.facecolor': '0.9'})
               2
               3
               4
                 # ROC curve for training set
                 plt.figure(figsize=(10, 8))
               5
               6
                 lw = 2
               7
                 plt.plot(train_fpr, train_tpr, color='darkorange',
               8
                           lw=lw, label='ROC curve')
                 plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
               9
              10
                 plt.xlim([0.0, 1.0])
                 plt.ylim([0.0, 1.05])
              11
              12 plt.yticks([i/20.0 for i in range(21)])
              13 plt.xticks([i/20.0 for i in range(21)])
              14 plt.xlabel('False Positive Rate')
              15 plt.ylabel('True Positive Rate')
              16 plt.title('Receiver operating characteristic (ROC) Curve for Training Set
              17 plt.legend(loc='lower right')
              18 | print('Training AUC: {}'.format(auc(train_fpr, train_tpr)))
                 plt.show()
```

Training AUC: 0.9471699866930965

Prototype sampling methods

- SMOTE (synthetic over sampling)
- Tomek Links (under sampling against decision boundary)
- · Near Miss (distance based under sampling)
- Edited Nearest Neighbors (under samplin against decision boundary)
- SMOTETomek (SMOTE/Tomek Link ensemble)
- SMOETENN (SMOTE/Edited Nearest Neighbors Ensemble)

SMOTE

resample data

```
In [13]:
                 from imblearn.over_sampling import SMOTE
               2
                 smote = SMOTE()
                 X_smote, y_smote = smote.fit_resample(X_train, y_train)
               5
                 print weights(y smote)
             Original dataset weights: 0.817 0.183
             Original dataset size: 103904
             Resample dataset weights 0.5 0.5
             Resample dataset size: 169846
In [14]:
                 unique_elements, counts_elements = np.unique(y_train, return_counts=True)
               2 print(unique_elements)
                 print(counts_elements)
             [0. 1.]
             [84923 18981]
```

fit estimator

0.9944599766095351

plot confusion matrix

```
In [16]:
                        plot_confusion_matrix(logreg_smote, X_smote, y_smote, normalize='true')
                        plt.show()
                    2
                                                                       0.8
                     0.0
                                                                      - 0.7
                                                                      - 0.6
                   True label
                                                                      - 0.5
                                                                      - 0.4
                                                                       0.3
                     1.0
                                                                       0.2
                                  0.0
                                                      1.0
                                       Predicted label
```

print classification report

	0.0	1.0	accuracy
precision	0.919067	0.875912	0.896318
recall	0.869176	0.923460	0.896318
f1-score	0.893425	0.899058	0.896318
support	84923.000000	84923.000000	0.896318

Resample dataset size: 169846

Tomek Links

resample data

fit estimator

0.7508259263452878

print classification report

\sim		_	$\Gamma \sim$	2	1
U	u'	U	ız	2	ı

	0.0	1.0	accuracy
precision	0.936407	0.781099	0.90891
recall	0.952116	0.725462	0.90891
f1-score	0.944196	0.752253	0.90891
support	80591.000000	18981.000000	0.90891

Near Miss

resample the data

fit estimator

0.869810080157241

print classification report

Out[27]:		0.0	1.0	accuracy
	precision	0.893693	0.864455	0.87851
	recall	0.859228	0.897793	0.87851
	f1-score	0.876121	0.880808	0.87851
	support	18981.000000	18981.000000	0.87851

Resample dataset weights 0.762 0.238

Resample dataset size: 169846

Edited Nearest Neighbors

resample the data

fit estimator

0.8373544378234661

print classification matrix

Out[32]:	it[32]:		1.0	accuracy
	precision	0.946071	0.848785	0.923498
	recall	0.953933	0.826247	0.923498
	f1-score	0.949986	0.837365	0.923498
	support	60651.000000	18981.000000	0.923498

SMOTETomek

resample the data

fit estimator

0.8972609324005788

print classification report

Out[37]:	0.0		1.0	accuracy
	precision	0.893693	0.864455	0.87851
	recall	0.859228	0.897793	0.87851
	f1-score	0.876121	0.880808	0.87851
	sunnort	18981 000000	18981 000000	0.87851

Resample dataset size: 169846

SMOTENN

resmaple the data

fit estimator

0.9425697164915263

print classification report

Out[42]:	0.0		1.0	accuracy
	precision	0.925627	0.931012	0.929044
	recall	0.885412	0.956019	0.929044
	f1-score	0.905073	0.943350	0.929044
	support	52501.000000	84923.000000	0.929044

Validate sample and select method(s)

- First tried SMOTENN because it had the highest F1, validation however had a ROC AUC of about .06, indicating the model is overfitting the data.
- Next I am trying Near Miss because it only undersamples the majority and had a training F1 score between SMOTE and Edited Nearest Neighbors, the two methods used in SMOTENN.
 Not synthesizing new data, and only undersampling I expect will reduce overfitting.

SMOTENN CV Test

fit cross validated model

```
In [45]:
                   logreg_SMOTENN_CV = LogisticRegressionCV(solver='liblinear',n_jobs=3)
                  logreg SMOTENN CV.fit(X smn,y smn)
    Out[45]: LogisticRegressionCV(n jobs=3, solver='liblinear')
In [46]:
                   smn test pred = logreg SMOTENN CV.predict(X test)
           H
                  smn_test_report = classification_report(y_test,smn_test_pred,output_dict;
                2
                  SMOTENN_CV_report = pd.DataFrame(smn_test_report).iloc[:,0:3]
                  SMOTENN CV report
    Out[46]:
                                0.0
                                             1.0 accuracy
                            0.983513
                                        0.539741
                                                 0.842566
               precision
                  recall
                            0.821144
                                        0.938412
                                                 0.842566
                f1-score
                            0.895024
                                        0.685314
                                                 0.842566
                support 84923.000000 18981.000000 0.842566
```


plot ROC AUC


```
In [49]:  # Calculate the probability scores of each point in the training set

2  SMOTENN_CV_score = logreg_SMOTENN_CV.decision_function(X_test)

3  # Calculate the fpr, tpr, and thresholds for the training set

4  smotenn_cv_fpr , smotenn_cv_tpr, smotenn_cv_thresholds = roc_curve(y_test)

5  smotenn_cv_auc = auc(smotenn_cv_fpr, smotenn_cv_tpr)

6  print('SMOTENN Test AUC: {}'.format(smotenn_cv_auc))
```

SMOTENN Test AUC: 0.9395813825932257

SMOTE CV Test

```
logreg_SMOTE_CV = LogisticRegressionCV(solver='liblinear',n_jobs=3)
In [50]:
                  logreg SMOTE CV.fit(X smote,y smote)
                2
    Out[50]: LogisticRegressionCV(n jobs=3, solver='liblinear')
                   smote test pred = logreg SMOTE CV.predict(X test)
In [51]:
                   smote_test_report = classification_report(y_test,smote_test_pred,output_d
                3
                  SMOTE CV report = pd.DataFrame(smote test report).iloc[:,0:3]
                  SMOTE CV report
    Out[51]:
                                0.0
                                             1.0 accuracy
                            0.973479
               precision
                                        0.603628
                                                 0.873402
                  recall
                            0.868775
                                        0.894105
                                                 0.873402
                f1-score
                           0.918152
                                        0.720698
                                                 0.873402
                support 84923.000000 18981.000000
                                                 0.873402
```


plot ROC AUC

SMOTE Test AUC: 0.9402851542213703

fit cross validated model

Out[54]:

	0.0	1.0	accuracy
precision	0.965721	0.354473	0.682428
recall	0.633951	0.899320	0.682428
f1-score	0.765431	0.508512	0.682428
support	84923.000000	18981.000000	0.682428

plot ROC AUC

Near Miss Test AUC: 0.7619659221996201

Visualize F1, ROC AUC iterative performance

```
In [67]:
               1
                  f1 dict = {
               2
                      'baseline':baseline report.iloc[2,1],
               3
                      'SMOTE':smote report.iloc[2,1],
               4
                      'Tomek Links':tomek report.iloc[2,1],
               5
                      'Near\nMiss':nm report.iloc[2,1],
               6
                      'ENN':enn_report.iloc[2,1],
               7
                      'SMOTETomek':smotek_report.iloc[2,1],
               8
                      'SMOTENN':SMOTENN report.iloc[2,1],
               9
                      'SMOTENN\nTest':SMOTENN_CV_report.iloc[2,1],
              10
                      'SMOTE CV\nTest':SMOTE_CV_report.iloc[2,1],
              11
                      'Near Miss\nTest':nm_test_report.iloc[2,1]
              12
                  f1_dict = dict(sorted(f1_dict.items(), key=lambda item: item[1],reverse=
```


SMOTEENN performs the better on training data than SMOTE, however on the test data SMOTE performs slightly better than SMOTEENN. The gap between train and test F1-score is narrower for SMOTE than SMOTEENN. Inidicating that despite performing slightly worse on the training data SMOTE generalizes to unseen data better than SMOTEENN.

```
In [61]:
               1
                  roc_auc_scores = [
               2
                      baseline_auc,
               3
                       smote_auc,
               4
                      tl_auc,
               5
                      nm_auc,
               6
                       enn_auc,
               7
                       smotek_auc,
               8
                       smotenn_auc,
                      smotenn_cv_auc,
               9
              10
                       smote_cv_auc,
              11
                      nm_cv_auc
              12
                  np.mean(roc_auc_scores)
```

Out[61]: 0.9139823487442532

plot ROC AUC curves

```
In [62]:
               1
                 plt.figure(figsize=(10,8))
               2
                 1w = 2
               3
                 print('Baseline Model AUC: {}'.format(baseline auc))
               4
                 print('SMOTE resample AUC: {}'.format(smote auc))
               7
                 plt.plot(train_fpr, train_tpr, color='darkorange',
               8
                           lw=lw, label='Baseline model ROC curve')
               9
                 plt.plot(smote fpr, smote tpr, color='blue',
                           lw=lw, label='SMOTE ROC curve')
              10
              11
              12
              13
                 print('Tomek Links AUC: {}'.format(tl_auc))
                 print('Near Miss AUC: {}'.format(nm_auc))
              14
              15
              16 plt.plot(tl_fpr, tl_tpr, color='yellow',
              17
                           lw=lw, label='Tomek Links ROC curve')
              18 plt.plot(nm_fpr, nm_tpr, color='gold',
              19
                          lw=lw, label='Near Miss ROC curve')
              20
              21
                 print('Edited Nearest Neighbors AUC: {}'.format(enn_auc))
              22
                 print('SMOTETomek AUC: {}'.format(smotek auc))
              23
              24
              25
                 plt.plot(enn_fpr, enn_tpr, color='red',
              26
                           lw=lw, label='Edited Nearest Neighbors ROC curve')
              27
                 plt.plot(smotek fpr, smotek tpr, color='purple',
              28
                           lw=lw, label='SMOTETomek ROC curve')
              29
              30
              31
                 print('SMOTEENN AUC: {}'.format(smotenn_auc))
                 plt.plot(smotenn fpr, smotenn tpr, color='darkblue',
              32
                           lw=lw, label='SMOTEENN ROC curve')
              33
              34
              35
              36 # Formatting
              37 | plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
              38 plt.xlim([0.0, 1.0])
              39 plt.ylim([0.0, 1.05])
              40 plt.yticks([i/20.0 for i in range(21)])
              41 plt.xticks([i/20.0 for i in range(21)])
              42 plt.xlabel('False Positive Rate', fontsize=14)
              43 plt.ylabel('True Positive Rate', fontsize=14)
              44 plt.title('Training ROC Curve by Resample Strategy',fontsize=18)
              45 plt.legend(loc="lower right")
              46 plt.show()
```

```
Baseline Model AUC: 0.9471699866930965
SMOTE resample AUC: 0.9501178971660749
Tomek Links AUC: 0.9439161672152295
Near Miss AUC: 0.9492465604949281
Edited Nearest Neighbors AUC: 0.7846937445781219
SMOTETOmek AUC: 0.9500785179113276
SMOTEENN AUC: 0.9727681543695383
```



```
In [70]:
                 plt.figure(figsize=(10,8))
               2
                 lw = 2
               3
               4
                 plt.plot(smotenn cv fpr, smotenn cv tpr, color='lightgreen',
                           lw=lw, label=f'SMOTENN Test AUC: {round(smotenn cv auc,3)}')
                 plt.plot(smotenn_fpr,smotenn_tpr,color='green',
               7
                           lw=lw, label=f'SMOTENN Train AUC: {round(smotenn auc,3)}')
               8
               9
                 plt.plot(smote_cv_fpr, smote_cv_tpr, color='yellow',
              10
                           lw=lw, label=f'SMOTE Test AUC: {round(smote_cv_auc,3)}')
              11
                 plt.plot(smote fpr,smote tpr,color='orange',
              12
                           lw=lw, label=f'SMOTE Train AUC: {round(smote_auc,3)}')
              13
              14
                 plt.plot(nm fpr, nm tpr, color='blue',
                           lw=lw, label=f'Near Miss Train AUC: {round(nm auc,3)}')
              15
              16
                 plt.plot(nm_cv_fpr, nm_cv_tpr, color='lightblue',
                           lw=lw, label=f'Near Miss Test AUC: {round(nm cv auc,3)}')
              17
              18
              19
                 # Formatting
              20 | plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
              21 plt.xlim([0.0, 1.0])
              22 plt.ylim([0.0, 1.05])
              23 plt.yticks([i/20.0 for i in range(21)])
                 plt.xticks([i/20.0 for i in range(21)])
              25 plt.xlabel('False Positive Rate', fontsize=14)
              26 plt.ylabel('True Positive Rate', fontsize=14)
              27 plt.title('ROC Curve Train vs Test\nby Resample Strategy',fontsize=18)
              28 plt.legend(loc="lower right")
              29 plt.show()
```


Final Observations

My initial analysis was that SMOTEENN was the strongest performer of all the resample strategies presented here. That is indeed true on the test data alone. Classic SMOTE the second strongest performer on the training data, and performs on the test data *nearly* as well as SMOTEENN, in fact their ROC AUC scores are exactly the same. The difference in F1-score between SMOTE and SMOTEENN is only about 0.04. However the difference in F1 score between train and test for SMOTEENN is 0.26, while the difference for SMOTE is only about 0.18 (see cells below). In other words, in terms of F1-score, SMOTE performs about 8% better than SMOTEENN. The difference is not massive but enough to reconsider SMOTE in lieu of SMOTEENN as the resample strategy to be used moving forward.

In the next development notebook I will use the preprocessing from EDA, and the SMOTE resampling method found here to train and optimize via gridsearching a decision tree and/or random forest. To use as my final model.

```
In [78]: ► # difference in F1 for classic SMOTE and SMOTEENN
2 SMOTE_CV_report.iloc[2,1] - SMOTENN_CV_report.iloc[2,1]
```

Out[78]: 0.035384001257912745