TVAILIC.

Math 237 – Linear Algebra

Version 1

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V1. Let V be the set of all polynomials with the operations, for any $f, g \in V, c \in \mathbb{R}$,

$$f \oplus g = f' + g'$$
$$c \odot f = cf'$$

(here f' denotes the derivative of f).

- (a) Show that this scalar multiplication \odot distributes over vector addition \oplus .
- (b) Determine if V is a vector space or not. Justify your answer.

V3. Determine if the vectors $\begin{bmatrix} 8\\21\\-7 \end{bmatrix}$, $\begin{bmatrix} -3\\-8\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\-3\\2 \end{bmatrix}$, and $\begin{bmatrix} 4\\11\\-5 \end{bmatrix}$ span \mathbb{R}^3 .

V4.	Determine if the set of all lattice point	ts, i.e. $\{(x,y) \mid x \text{ and } y \text{ are integers} \}$ is a subs	space of \mathbb{R}^2 .
V1:		V3:	V4:

Name:	

Math 237 – Linear Algebra

Version 2

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V1. Let V be the set of all real numbers with the operations, for any $x, y \in V$, $c \in \mathbb{R}$,

$$x \oplus y = \sqrt{x^2 + y^2}$$

$$c \odot x = cx$$

- (a) Show that the vector addition \oplus is associative.
- (b) Determine if V is a vector space or not. Justify your answer.

V3. Determine if the vectors $\begin{bmatrix} 8 \\ 21 \\ -7 \end{bmatrix}$, $\begin{bmatrix} -3 \\ -8 \\ 3 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix}$, and $\begin{bmatrix} 4 \\ 11 \\ -5 \end{bmatrix}$ span \mathbb{R}^3 .

V4. Determine if $\left\{ \begin{bmatrix} x \\ y \\ 0 \\ z \end{bmatrix} \mid x, y, z \in \mathbb{R} \right\}$ a subspace of \mathbb{R}^4 .

Math 237 – Linear Algebra

Version 3

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V1. Let V be the set of all real numbers with the operations, for any $x, y \in V, c \in \mathbb{R}$,

$$x \oplus y = \sqrt{x^2 + y^2}$$

$$c \odot x = cx$$

- (a) Show that the vector addition \oplus is associative.
- (b) Determine if V is a vector space or not. Justify your answer.

V3. Determine if the vectors
$$\begin{bmatrix} 2\\0\\-2\\0 \end{bmatrix}$$
, $\begin{bmatrix} 3\\1\\3\\6 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$, and $\begin{bmatrix} 1\\2\\0\\1 \end{bmatrix}$ span \mathbb{R}^4 .

V4.	Let W be the set of all complex number	pers $a + bi$ where $a = 2b$.	Determine if W is a s	subspace of \mathbb{C} .
V1:		V3:		V4:

Math 237 – Linear Algebra

Version 4

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V1. Let V be the set of all polynomials with the operations, for any $f, g \in V, c \in \mathbb{R}$,

$$f \oplus g = f' + g'$$
$$c \odot f = cf'$$

(here f' denotes the derivative of f).

- (a) Show that this scalar multiplication \odot distributes over vector addition \oplus .
- (b) Determine if V is a vector space or not. Justify your answer.

V3. Determine if the vectors $\begin{bmatrix} 8\\21\\-7 \end{bmatrix}$, $\begin{bmatrix} -3\\-8\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\-3\\2 \end{bmatrix}$, and $\begin{bmatrix} 4\\11\\-5 \end{bmatrix}$ span \mathbb{R}^3 .

V4.	Determine if the set of all lattice point	ts, i.e. $\{(x,y) \mid x \text{ and } y \text{ are integers} \}$ is a subs	space of \mathbb{R}^2 .
V1:		V3:	V4:

Name:	

Math 237 – Linear Algebra

Version 5

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V1. Let V be the set of all real numbers with the operations, for any $x, y \in V$, $c \in \mathbb{R}$,

$$x \oplus y = \sqrt{x^2 + y^2}$$

$$c \odot x = cx$$

- (a) Show that the vector addition \oplus is associative.
- (b) Determine if V is a vector space or not. Justify your answer.

$$\mathbf{V3.} \quad \text{Does span} \left\{ \begin{bmatrix} 2\\-1\\4\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\3\\5\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\5\\1\\-3 \end{bmatrix} \right\} = \mathbb{R}^5?$$

V4. Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ with terminal points on the plane x+y+z=0. Determine if W is a subspace of \mathbb{R}^3 .

V1: V3: V4:

Name:

Math 237 – Linear Algebra

Version 6

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V1. Let V be the set of all real numbers with the operations, for any $x, y \in V$, $c \in \mathbb{R}$,

$$x \oplus y = \sqrt{x^2 + y^2}$$

$$c \odot x = cx$$

- (a) Show that the vector addition \oplus is associative.
- (b) Determine if V is a vector space or not. Justify your answer.

V3. Determine if the vectors
$$\begin{bmatrix} -3\\1\\1 \end{bmatrix}$$
, $\begin{bmatrix} 5\\-1\\-2 \end{bmatrix}$, $\begin{bmatrix} 2\\0\\-1 \end{bmatrix}$, and $\begin{bmatrix} 0\\2\\-1 \end{bmatrix}$ span \mathbb{R}^3

V4.	Determine if the set of all lattice point	ts, i.e. $\{(x,y) \mid x \text{ and } y \text{ are integers} \}$ is a subs	space of \mathbb{R}^2 .
V1:		V3:	V4: