054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

Multi-channel weighted nuclear norm minimization for color image denoising

Anonymous ICCV submission

Paper ID 572

Abstract

Motivated by the weighted Orthogonal Procrustes Problem, we propose a noval weighted Frobenious norm based weighted sparse coding model for non-Gaussian error modeling. We solve this model in an alternative manner. Updating of each variable has closed-form solutions and the overall model converges to a stationary point. The proposed model is applied in real image denoising problem and extensive experiments demonstrate that the proposed model can much better performance (over 1.0dB improvement on PSNR) than state-of-the-art image denoising methods, including some excellant commercial software. The noval weighted Frobeniius norm can perfectly fit the non-Gaussian property of real noise.

1. Introduction

Image denoising is an important step in enhance the quality of images in computer vision systems. It aims to recover the latent clean image x from the observed noisy version y = x + n, where n is often assumed to be additive white Gaussian noise. Most denoising methods [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] are designed for grayscale images, and other color image denoising methods [14] treat equally the R, G, B channels in color images. However, in many computer vision tasks, the multiple channels in natural images being processed often exhibit distinct properties, e.g., contain different noise levels. For example, the noise levels among the R, G, B channels are different in real noisy images due to the on board processing in in-camera imaging pipelines [?]. The This is caused by the color demosaicking during the transformation from raw data to RGB images in the standard in-camera imaging pipeline. Usually, the G channel contains the least noise levels among the three channels. Hence, in order to deal with each channel more effectively, different noise levels should be plugged into different channels for color image denoising.

The non-local self similarity (NSS) property of images has been extensively employed in image restoration tasks such as denoising [1, 2, 3, 4, 5, 7, 8]. Among these methods, the weighted nuclear norm minimization (WNNM) model has achieved the state-of-the-art performance on denoising the additive white Gaussian noise (AWGN) in grayscale images. Though among the most effective methods, how to extend the single channel WNNM model to handle multichannel images such as the real-world color images is still an open problem. Of course the WNNM method can be applied to denoising color images by processing each channel separately, its performance would be largely inferior than jointly processing the RGB channels by concatenating the RGB values into a single vector [14]. Besides, the searching of non-local similar patches would be unstable due to the seperate processing of the RGB images and hence the power of the NSS would be largely reduced. This would also limit the performance of not only WNNM but also other NSS based methods [2, 3, 4, 5, 7]. This fact is also evaluated by our experiments on color image denoising task.

In this paper, we proposed to solve the multi-channel weighted nuclear norm minimization model to perform image denoising on color images. The original WNNM model has closed-form solutions under the weighted nulcear norm proximal operator (WNNP). However, if we add a weighting matrix W to the left of the data term, the resulting multichannel WNNM model no longer has the nice property of closed-form solutions. This makes the problem more chanllging. To solve this problem, we formulate the proposed multi-channel WNNM problem into a linearly constrained non-convex program with an augmented variable. It is also not directly solvable due to the non-convexity of the existance of the weighted nuclear norm. Note that the reformulated model contains two variables with linear constraint. This can be solved by employing the alternating direction method of multipliers (ADMM).

2. Related Work

The WNNM model

$$\min_{\mathbf{X}} \|\mathbf{Y} - \mathbf{X}\|_F^2 + \|\mathbf{X}\|_{*,\mathbf{w}} \tag{1}$$

is firstly proposed for grayscale image denoising problem. How to extend it to deal with color images or hyperspectral

images is still an open problem. This model treat each

3. Multi-channel Weighted Nuclear Norm **Minimization**

$$\min_{\mathbf{X}} \|\mathbf{W}(\mathbf{Y} - \mathbf{X})\|_F^2 + \|\mathbf{X}\|_{*,\mathbf{P}}.$$
 (2)

where

This can be solved by introducing an augmented variable **Z**, and the problem is equivalent to the following problem:

$$\min_{\mathbf{X}, \mathbf{Z}} \|\mathbf{W}(\mathbf{Y} - \mathbf{X})\|_F^2 + \|\mathbf{Z}\|_{*, \mathbf{P}} \quad \text{s.t.} \quad \mathbf{X} = \mathbf{Z}.$$
 (3)

This is a standard convex problem with variables X and Z, which can be solved by the Augmented Lagrange Multipliers (ALM) [15, 16].

The augmented Lagrangian function is

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}, \mathbf{A}) = \|\mathbf{W}(\mathbf{Y} - \mathbf{X})\|_F^2 + \|\mathbf{Z}\|_{*, \mathbf{P}} + \langle \mathbf{A}, \mathbf{X} - \mathbf{Z} \rangle + \frac{\rho}{2} \|\mathbf{X} - \mathbf{Z}\|_F^2$$
(4)

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}, \mathbf{A}) = \|\mathbf{W}(\mathbf{Y} - \mathbf{X})\|_F^2 + \|\mathbf{Z}\|_{*, \mathbf{P}} + \frac{\rho}{2} \|\mathbf{X} - \mathbf{Z} + \frac{1}{\rho} \mathbf{A}\|_F^2$$
(5)

where **A** is the augmented Lagrangian multiplier and $\rho > 0$ is the penalty parameter.

This can be solved by alternative minimization of \mathcal{L} with respect to X and Z, respectively

Update X

$$(\hat{\mathbf{c}}_i)^{(k+1)} = \arg\min_{\mathbf{c}_i} \frac{1}{2} \| (\mathbf{y}_i - \mathbf{D}^{(k)} \mathbf{c}_i) \mathbf{W}_{ii} \|_2^2 + \lambda \| \mathbf{c}_i \|_1.$$
(6)

$$(\hat{\mathbf{c}}_i)^{(k+1)} = \operatorname{sgn}(\mathbf{D}^{\top}\mathbf{y}) \odot \max(|\mathbf{D}^{\top}\mathbf{y}| - \frac{\lambda}{(\mathbf{W}_{ii})^2}, 0), (7)$$

b. update **D**

$$\min_{\mathbf{D}} \frac{1}{2} \| (\mathbf{Y} - \mathbf{D} \mathbf{C}^{(k+1)}) \mathbf{W} \|_F^2 \quad \text{s.t.} \quad \mathbf{D}^\top \mathbf{D} = \mathbf{I}. \quad (8)$$

$$\min_{\mathbf{D}} \| (\mathbf{Y}\mathbf{W}) - \mathbf{D}(\mathbf{C}^{(k+1)}\mathbf{W}) \|_F^2 \quad \text{s.t.} \quad \mathbf{D}^\top \mathbf{D} = \mathbf{I}, \quad (9)$$

$$\hat{\mathbf{D}}^{(k+1)} = \mathbf{V}\mathbf{U}^{\top}, \mathbf{C}\mathbf{W}(\mathbf{Y}\mathbf{W})^{\top} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\top}.$$
c. update \mathbf{W}

$$\mathbf{W}_{ii} = \frac{\frac{1}{N} \sum_{i=1}^{N} \|\mathbf{y}_i - \mathbf{D}\mathbf{c}_i\|_2}{\sigma_{\mathbf{v}_i} \|\mathbf{y}_i - \mathbf{D}\mathbf{c}_i\|_2}$$
(10)

$$\sigma_{\mathbf{y}_i} = \sqrt{\sigma_0^2 - \|\mathbf{y}_i - \mathbf{D}\mathbf{c}_i\|_2^2}$$
 (11)

References

- [1] M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12):3736–3745, 2006. 1
- [2] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image restoration. IEEE International Conference on Computer Vision (ICCV), pages 2272-2279, 2009. 1
- [3] W. Dong, L. Zhang, G. Shi, and X. Li. Nonlocally centralized sparse representation for image restoration. IEEE Transactions on Image Processing, 22(4):1620-1630, 2013. 1
- [4] A. Buades, B. Coll, and J. M. Morel. A non-local algorithm for image denoising. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 60-65, 2005. 1
- [5] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16(8):2080–2095, 2007. 1
- [6] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Color image denoising via sparse 3D collaborative filtering with grouping constraint in luminance-chrominance space. IEEE International Conference on Image Processing (ICIP), pages 313-316, 2007. 1
- [7] J. Xu, L. Zhang, W. Zuo, D. Zhang, and X. Feng. Patch group based nonlocal self-similarity prior learning for image denoising. IEEE International Conference on Computer Vision (ICCV), pages 244-252, 2015. 1
- [8] S. Gu, L. Zhang, W. Zuo, and X. Feng. Weighted nuclear norm minimization with application to image denoising. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2862-2869, 2014. 1
- [9] H. C. Burger, C. J. Schuler, and S. Harmeling. Image denoising: Can plain neural networks compete with BM3D? IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2392-2399, 2012. 1
- [10] U. Schmidt and S. Roth. Shrinkage fields for effective image restoration. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2774-2781, June 2014.
- [11] Y. Chen, W. Yu, and T. Pock. On learning optimized reaction diffusion processes for effective image restoration. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5261-5269, 2015. 1
- [12] S. Roth and M. J. Black. Fields of experts. International Journal of Computer Vision, 82(2):205–229, 2009. 1
- [13] D. Zoran and Y. Weiss. From learning models of natural image patches to whole image restoration. IEEE International Conference on Computer Vision (ICCV), pages 479-486, 2011. 1

- [14] Julien Mairal, Michael Elad, and Guillermo Sapiro. Sparse representation for color image restoration. *IEEE Transactions on image processing*, 17(1):53–69, 2008. 1
- [15] Dimitri P Bertsekas. Nonlinear programming. 1999. 2
- [16] Zhouchen Lin, Risheng Liu, and Zhixun Su. Linearized alternating direction method with adaptive penalty for low-rank representation. *Advances in Neural Information Processing Systems* 24, pages 612–620, 2011. 2