

# 1º Curso del Grado en Ingeniería Informática

Fundamentos de Computadores

# Práctica 5

Implementación de un circuito combinacional mediante un dispositivo lógico programable

### **Objetivos**

- Iniciación en el manejo del entorno ISE WebPACK de Xilinx.
- Introducción a la descripción de sistemas digitales en VHDL.
- Implementación de circuitos combinacionales mediante dispositivos lógicos programables.

# Material disponible

PC con el paquete de software Xilinx ISE WebPACK instalado.

## **Especificaciones**

Para medir el ángulo de giro del eje de un motor se ha fijado al mismo un disco dividido en 16 sectores, los cuales han sido codificados usando un código **Gray** de 4 bits, de tal manera que al primer sector (comprendido entre 0º y 22.5º) se le ha asignado la combinación "0000" y al último (comprendido entre 337.5º y 360º) se le ha asignado la combinación "1000".

Al girar el eje, el código del sector del disco que se encuentra situado en un momento dado frente a una posición fija de referencia, es leído por un sensor fotoeléctrico, el cual lo proporciona a su salida mediante la combinación  $G_3G_2G_1G_0$ .

Se desea diseñar dos circuitos combinacionales:

- a) Uno que active las señales **P**, **S**, **T** y **C** cuando el ángulo de giro del eje se encuentre ubicado dentro de los cuadrantes primero, segundo, tercero y cuarto de la circunferencia trigonométrica, respectivamente.
- b) Otro que convierta las señales de los sensores desde código Gray a código binario para señalar el número de sector en el que se encuentra alineado el motor.

### **Proceso operativo**

- 1. Representar la tabla de verdad del sistema descrito en el apartado a.
- Haciendo uso del entorno Xilinx ISE WebPack, modelar en VHDL el circuito descrito en el apartado a, generando la función P mediante una sentencia "when ... else", la S mediante una sentencia "with ... select", la T mediante una sentencia "if ... else" y la C mediante una sentencia "case ... is".
- 3. Ejecutar la simulación de comportamiento del circuito del apartado 2, contrastando los resultados obtenidos con la tabla de verdad del apartado 1.
- 4. Representar la tabla de verdad del sistema descrito en el apartado **b**.
- Haciendo uso del mismo proyecto en el entorno Xilinx ISE WebPack, modelar en VHDL el circuito descrito en el apartado b, generando las salidas a partir de sus expresiones simplificadas en forma de suma de productos.
- 6. Ejecutar la simulación del circuito del apartado 5, contrastando los resultados obtenidos con la tabla de verdad del apartado 4.