PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A01N 43/04, A61K 31/70, C07H 21/02, 21/04, C12N 15/00, 15/09, 15/63, 15/70, 15/74, A61N 1/04	A1	(11) International Publication Number: WO 98/02040 (43) International Publication Date: 22 January 1998 (22.01.98)
 (21) International Application Number: PCT/US (22) International Filing Date: 4 April 1997 (0 (30) Priority Data: 08/682,433 17 July 1996 (17.07.96) (71) Applicant: MEDTRONIC, INC. [US/US]; 7000 Cerenue N.E., Minneapolis, MN 55432 (US). (72) Inventors: STOKES, Kenneth, B.; 17581 Eidelwein N.W., Anoka, MN 55304 (US). MORISSETTI Apartment 306, 1101 Paul Parkway, Blaine, MI (US). (74) Agents: PRESTON, Albert, W., Jr. et al.; Woodcocl burn, Kurtz, Mackiewicz & Norris LLP, 46th fit Liberty Place, Philadelphia, PA 19103 (US). 	o4.04.9 Untral A ss Stre E, José N 5543	BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). Published With international search report.

(54) Title: SYSTEM FOR ENHANCING CARDIAC SIGNAL SENSING BY CARDIAC PACEMAKERS THROUGH GENETIC TREATMENT

(57) Abstract

The present invention provides delivery systems for delivering ion channel protein genetic material to cardiac cells in areas adjacent to where an electrode is to be positioned in a patient's heart to improve or correct the signal to noise ratio of cardiac signals, such as the P-wave. More specifically, there is provided a system for delivering sodium ion channel proteins or nucleic acid molecules encoding sodium ion channel proteins to a site in the heart adjacent to an electrode to increase the expression of the same, thereby enhancing the cardiac signal amplitude and enabling improved sensing of cardiac signals by an implanted pacemaker.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikisten
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	lceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yngoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL,	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakatan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EB	Estonia	LR	Liberia	SG	Singapore		

SYSTEM FOR ENHANCING CARDIAC SIGNAL SENSING BY CARDIAC PACEMAKERS THROUGH GENETIC TREATMENT

FIELD OF THE INVENTION

The present invention relates to systems for genetically enhancing cardiac signals for use by cardiac pacemakers and, more particularly, for enhancing the signal to noise ratio of atrial P-waves for improved pacemaker sensing.

BACKGROUND OF THE INVENTION

The cardiac pacemaker is a widely used device for 10 treating various cardiac disorders, e.g., sick sinus syndrome, "brady-tachy syndrome" and heart block. The basic function of the pacemaker is to deliver stimulus pulses to one or more of the patient's heart chambers, as and when needed, to initiate cardiac depolarizations and thus 15 maintain a desired heart rate, or to affect improvements in cardiac output for patients in heart failure. In addition to delivering stimulus pulses, another important feature is the sensing of a patient's heartbeat signals, when they occur spontaneously, for purposes of controlling the 20 stimulus pulse delivery. Thus, the demand pacemaker inhibits delivery of a stimulus pulse and resets the pulse generator in the event of sensing a timely spontaneous beat, i.e., a P-wave which is an atrial depolarization, or a QRS, or just R-wave, which is a ventricular depolarization. For

WO 98/02040

- 2 -

PCT/US97/05556

example, an AAI mode pacemaker both paces and senses in just the atrium, and inhibits delivery of a pace pulse if a timely P-wave is sensed. The inhibit operation necessarily depends upon reliably sensing spontaneous P-waves. In a dual 5 chamber pacemaker, both the P-wave and R-wave are sensed. As examples of dual chamber pacemakers, see U.S. Patents 4,920,965; 4,539,991; and 4,554,921, incorporated herein by reference. A particular purpose of the dual chamber pacemaker may be to treat a block condition, where the 10 patient's natural pacemaker is operating normally, causing timely atrial contractions, but the depolarization signal is not efficiently propagated to the ventricle so as to cause a following ventricular contraction. In such a situation, the dual chamber pacemaker is designed to sense the P-wave, and 15 deliver a synchronized ventricular stimulus pulse, i.e., a pulse which stimulates the ventricle after a timed AV delay which approximates the AV delay of a healthy heart. It is seen that reliable sensing of the P-wave is vital to this type of dual chamber pacing.

20 In yet another type of pacemaker operation, the pacemaker operates in what is referred to a VDD mode, meaning that it paces only in the ventricle, but senses both P-waves and R-waves, i.e., has single chamber pacing but dual chamber sensing. The advantage of this mode is that 25 only one lead need be positioned in the patient's heart, since no pacing pulses are delivered to the atrium. The VDD lead has the normal electrode or electrode pair at its distal end, for positioning in the ventricle; and it has a "floating" electrode (or electrode pair) proximal to the tip 30 and positioned so that it is located in the atrium, for sensing the P-wave. See, for example, U.S. Patent No. 5,127,694. However, since such a floating electrode is not necessarily embedded into or positioned adjacent the myocardium, the sensed P-wave is not as strong as for the 35 case where a separate atrial lead is used, and consequently, the reliability of sensing the P-wave is even less.

- 3 -

Atrial sensing is additionally considered to be a significant problem because of the low P-wave amplitudes commonly available and the presence of relatively large far field QRS and other "noise" signals. It is commonly accepted that atrial P-wave amplitudes are relatively low compared to ventricular R-waves because of the differences in muscle mass near the electrodes. That is, ventricular R-waves are large because there is a large volume of myocardium around the electrode, whereas the atrial signal is small because the underlying tissue is relatively thin. Thus, for any pacing system which senses the P wave, such as an AAI pacer or any dual sense mode pacer, reliably sensing P-waves is a major problem for which improvement has long been sought.

With regard to the source of the P-wave, it is 15 noted that it is not the muscle itself that is sensed, but the electric potentials resulting from the depolarization of several myocardial cells, i.e., a net positive ion flow into myocardial cells through specialized membrane proteins 20 called voltage-gated ion channels, such as the sodium channels. More muscle mass means there are more membrane channels in the area adjacent to the electrodes. However, the muscle mass adjacent to the atrial electrode cannot be increased. But the P-wave could be enhanced if the number 25 of conducting membrane channels within the adjacent muscle mass can be increased. Sodium channels are transmembrane proteins responsible for the rapid transport of Na ions across cell membranes underlying the depolarization of the action potential in many types of cells. In particular, 30 cardiac fast sodium channels are responsible for the fast upstroke or phase 0 of the action potential in myocardial cells. Fozzard, et al., Circ. Res., 1985, 56, 475-485. Recently, a human cardiac voltage-dependent sodium channel, hH1, has been cloned, sequenced, and functionally expressed. 35 Gellens, et al., Proc. Natl. Acad. Sci. USA, 1992, 89, 554-558.

- 4 -

Gene therapy has also recently emerged as a powerful approach to treating a variety of mammalian diseases. Direct transfer of genetic material into myocardial tissue in vivo has recently been demonstrated to 5 be an effective method of expressing a desired protein. For example, direct myocardial transfection of plasmid DNA by direct injection into the heart of rabbits and pigs (Gal, et al., Lab. Invest., 1993, 68, 18-25), as well as of rats (Acsadi, et al., The New Biol., 1991, 3, 71-81), has been 10 shown to result in expression of particular reporter gene products: In addition, direct in vivo gene transfer into myocardial cells has also been accomplished by directly injecting adenoviral vectors into the myocardium. French, et al., Circulation, 1994, 90, 2415-2424, and PCT Publication WO 94/11506.

Pursuant to the above, this invention provides a system for enhancing the cardiac pacemaker atrial and/or ventricular sensing function, i.e., enhancing the signal to noise ratio of cardiac signals, and in particular the sensed 20 P-wave, through concurrent genetic treatment whereby the number of ion channels responsible for depolarization of the atrial or ventricular myocardial cells is increased.

Applicants' invention is directed to delivery systems for introducing ion channel protein genetic material into 25 myocardial cells adjacent to or closest to the position of the atrial or ventricular electrode. In any particular application, the genetic material is placed so as to provide maximum benefit for sensing P-waves, or other cardiac signals, with the pacing lead used, i.e., for an AAI pacing 30 system, a lead which is fixated against the atrial wall.

SUMMARY OF THE INVENTION

In accordance with the above, a primary purpose of Applicants' claimed invention is to provide delivery systems for enhancing cardiac pacemaker signal sensing. In a particular embodiment, the claimed invention provides delivery systems for enhancing cardiac pacemaker P-wave

- 5 -

sensing. Upon identifying a patient in which the signal to noise ratio for atrial or ventricular sensing is problematic, ion channel protein genetic material is selected such that expression of a selected ion channel 5 protein in cells adjacent to the position of the atrial or ventricle electrode corrects or improves the signal to noise ratio for cardiac signal sensing. Preferably, expression of a selected ion channel protein can improve or correct the signal to noise ratio for cardiac signal sensing in either 10 or both the ventricles and atria of all persons with pacemakers, especially those persons which have been diagnosed with a low signal to noise ratio for P-wave Improvement or correction of P-wave sensing can be manifested by an increase in the amplitude of the P-wave, or 15 other characteristic of the cardiac signal, thus resulting in an increase of the signal to noise ratio of the signal sensed in the pacemaker atrial sensing channel. Delivery of the ion channel protein genetic material can be accomplished by adaptation of available pacing leads, such as, for 20 example, AAI or DDD leads, as well as by specific modification of leads and catheters. Delivery of the genetic material may be affected by a pump or may be passive.

The ion channel protein genetic material used in
the system and method of this invention comprises
recombinant nucleic acid molecules comprising a nucleic acid
molecule encoding the ion channel protein inserted into a
delivery vehicle, such as, for example, plasmids or
adenoviral vectors, and the appropriate regulatory elements.

Alternatively, the ion channel protein genetic material
comprises the ion channel protein itself. Expression of the
desired ion channel protein from recombinant nucleic acid
molecules is controlled by promoters, preferably cardiac
tissue-specific promoter-enhancers, operably linked to the
nucleic acid molecule encoding the ion channel protein. The
conduction protein is preferably a sodium ion channel
protein, such as, for example, the voltage-dependent sodium

- 6 -

channel hH1, which is used to correct or improve the signal to noise ratio of cardiac signals, and in particular, atrial P-wave sensing. The ion channel protein genetic material is delivered to specific sites adjacent to the atrial or ventricular electrode within the heart by perfusion or injection of a therapeutically effective amount, which is that amount which corrects or improves the signal to noise ratio of the cardiac signal of the myocardial cells adjacent to the electrode. The therapeutically effective amount can be delivered to the specific site in the heart in a single dose or multiple doses, as desired.

The present invention provides a delivery system for delivering a therapeutically effective amount of a predetermined ion channel protein genetic material to an identified cardiac location adjacent the atrial or ventricular electrode, the genetic material being selected for amplifying the particular cardiac signal, such as, for example, the P-wave, from cardiac cells to which it is delivered, thus improving or correcting the cardiac signal to noise ratio received by the sensing electrode. The delivery system includes the selected genetic material contained in a reservoir, and a catheter or electrode subsystem for delivering the genetic material from the reservoir to the identified cardiac location so as to contact a plurality of cells in the proximity of the sensing electrode.

The delivery system may utilize an external reservoir for providing the genetic material, or alternately may utilize an implantable reservoir. In either embodiment, a controllable pump mechanism may be provided for transferring therapeutic doses of the genetic material from the reservoir, through a catheter or electrode, and to the selected cardiac location. The pump may be a mini or micro pump located within the delivery system. Alternatively, rather than using a pump mechanism, the ion channel protein genetic material can be passively delivered to the appropriate location adjacent the appropriate electrode.

The catheter subsystem may be of a type for direct introduction into the myocardium, as with a transthoracic procedure, or, more preferably, a endocardial catheter having a distal tip portion adapted for positioning and 5 injecting the genetic material into the myocardium from within a heart chamber. In a preferred embodiment, the catheter distal tip has a normally withdrawn helical needle, which is extendable when positioned in the vicinity of the selected site so as to be screwed into the heart. 10 needle is hollow and connects with the catheter lumen so as to receive the pumped genetic material; it has one or more ports located so as to effectively release the genetic material for transduction into the cardiac area adjacent the sensing electrode. In the case of an electrode subsystem, 15 an implantable electrode is used in place of the catheter subsystem, which is able to deliver drugs, such as steroids, or other bioactive agents, such as, for example, ion channel protein genetic material. Such implantable electrodes with drug dispensing capabilities are set forth in U.S. Patents 20 4,711,251, 5,458,631, 4,360,031, and 5,496,360, each of which are incorporated herein by reference. The delivery system can be used for one treatment and then removed, or can be implanted for subsequent treatments, in which latter case it is controllable by an external programmer type 25 device. In another embodiment, the catheter or electrode subsystem may be combined with a pacing lead for sensing the patient's cardiac signals and for providing stimulus pulses.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a flow diagram presenting the primary steps involved in the practice of this invention, including selecting an appropriate genetic material, positioning delivery system against the heart wall, and expressing the genetic material in an appropriate dose into the determined location.

Figure 2 is a schematic representation of a delivery system in accordance with this invention,

- 8 -

illustrating delivery of genetic material into a patient's heart at the chosen location using a catheter subsystem.

Figure 3 is a schematic drawing of the distal portion of a catheter which can be used for injecting a solution carrying chosen genetic material into a patient's heart.

Figure 4 illustrates the distal end of a catheter, having a distal portion which encloses an osmotic pump.

Figure 5A is a schematic representation of a

10 delivery system in accordance with this invention, having a
combined catheter and pacing lead, with a separate pump;
Figure 5B is another embodiment of a combined pacing lead
and delivery catheter having a reservoir located at the
distal end of the catheter.

15 DESCRIPTION OF THE PREFERRED EMBODIMENTS

Applicants' invention provides delivery systems for correcting or improving cardiac signal sensing, especially the signal to noise ratio of the atrial P-wave, thus enhancing pacemaker sensing. A problematic signal to 20 noise ratio for P-waves results from a naturally low amplitude P-wave generated in the atrium, noise from the ventricular QRS complex, muscle noise, noise from other sources, or a combination thereof. The signal to noise ratio is determined by routine and conventional techniques 25 known to the skilled artisan. Once the specific problem has been identified in a particular patient, e.g., in any patient with a pacemaker or who is to receive a pacemaker, ion channel protein genetic material is selected such that expression of a selected ion channel protein corrects or 30 improves the cardiac signal amplitude, thus improving or correcting the cardiac signal to noise ratio. The ion channel protein genetic material comprises either the ion channel protein itself or recombinant nucleic acid molecules comprising a nucleic acid molecule encoding the ion channel 35 protein inserted into a delivery vehicle, such as, for example, plasmid, cosmid, YAC vector, viral vectors, and the

- 9 -

like, and the appropriate regulatory elements. In preferred embodiments of the present invention, the nucleic acid molecule encoding the ion channel protein is the full length coding sequence cDNA of an ion channel protein, and is 5 inserted into a plasmid or adenoviral vector, such as, for example, pGEM3 or pBR322, and Ad5, respectively. The regulatory elements are capable of directing expression in mammalian cells, specifically human cells. The regulatory elements include a promoter and a polyadenylation signal. 10 Expression of the desired ion channel protein is preferably controlled by cardiac tissue-specific promoter-enhancers, operably linked to the nucleic acid molecule encoding the ion channel protein. The ion channel protein is preferably a sodium channel protein, such as, for example, the hH1 15 voltage-regulated sodium channel, which is used to correct or improve the cardiac signal to noise ratio. The ion channel protein genetic material is preferably delivered in a pharmaceutical composition comprising, for example, the ion channel protein genetic material in a volume of 20 phosphate-buffered saline with 5% sucrose. embodiments, the ion channel protein genetic material is delivered with genetic material encoding the Na*/K* pump, which is also inserted into an appropriate delivery vehicle. The ion channel protein genetic material may also be 25 delivered separately or in combination with class I and class IV antiarrhythmic drugs, which have been shown to increase sodium channel mRNA expression. The ion channel protein genetic material is delivered to specific sites within the heart, adjacent to the atrial or ventricular 30 electrode, by perfusion or injection of a therapeutically effective amount, which is that amount which corrects or improves the cardiac signal to noise ratio. Preferably, the therapeutically effective amount corrects or improves the Pwave signal to noise ratio. The therapeutically effective 35 amount can be delivered to the specific site in the heart in single or multiple doses, as desired, using the delivery systems of the invention.

- 10 -

The present invention comprises a delivery system for delivering a therapeutically effective amount of ion channel protein genetic material to a specific cardiac location, adjacent the atrial or ventricular electrode, in 5 such a way as to enhance the amplitude of the cardiac signal, thus improving or correcting the signal to noise ratio. In a first embodiment, the delivery system basically comprises a reservoir subsystem for holding the genetic material, and a catheter subsystem in communication with the 10 reservoir subsystem for placement of the genetic material in and around the identified cardiac location. In another embodiment, the delivery system basically comprises a reservoir subsystem for holding the genetic material, and a electrode subsystem in communication with the reservoir 15 subsystem for placement of the genetic material in and around the identified cardiac location. As seen in the following discussion of several preferred embodiments, the reservoir subsystem and catheter subsystem or electrode subsystem may be separate, or they may be combined. 20 Preferably the reservoir contains up to 25 ml of a genetic material for delivery to the myocardium. In some applications, only a bolus of about 0.1-10 ml, or more preferably 1-5 ml, is delivered to the targeted areas. other applications, such as where ion channel protein is 25 being delivered in repeated doses, 25 ml or more may be used. Also, the genetic material may be diluted in a saline solution, such as, for example, phosphate-buffered saline (PBS), the reservoir holding the diluted solution for controlled delivery. Additionally, it is to be understood 30 that the reservoir and associated control apparatus may be either implantable or external to the body, depending upon the circumstances, e.g., whether metered doses are to be administered to the patient over a period of time, or whether the delivery of the genetic material is essentially 35 a one time treatment.

Referring now to Fig. 1, the primary steps involved in the practice of this invention are shown in the

- 11 -

The illustrated steps are performed following flow diagram. the initial diagnosis of a patient with a problematic P-wave signal to noise ratio, which can result from a low amplitude P-wave generated in the atrium, noise from the ventricular 5 QRS complex, noise from other sources, or a combination thereof. Diagnosis can be accomplished, for example, by electrocardiography procedures. Preferably, the steps are performed in connection with all patients having cardiac pacemakers. As illustrated in block 30, the next step is to 10 select the appropriate ion channel protein genetic material. This selection yields the "preselected genetic material." The ion channel protein genetic material is next prepared, as illustrated in block 31, by either inserting the nucleic acid molecules encoding the appropriate ion channel protein 15 into a delivery vehicle with the appropriate regulatory elements, in the case of a recombinant nucleic acid molecule, or expressing the ion channel protein from an expression vector, in the case of the ion channel protein itself. As shown in block 32, the next step is to prepare 20 and load the delivery system with a therapeutically effective amount of the ion channel protein genetic material. As illustrated in block 33, the next step comprises inserting the catheter, or other delivery subsystem, such as, for example, the electrode subsystem, 25 into the patient's heart and positioning it against the heart wall. As shown in block 34, the next step comprises administering the therapeutically effective amount to the patient by contacting the appropriate location in the heart, adjacent to the atrial or ventricular electrode, using the 30 delivery system described herein. An alternative method of administering the therapeutically effective amount of the ion channel protein genetic material is to directly inject the heart of the patient. The next step, shown in block 35, is to pace the patient in a standard manner, e.g., dual 35 chamber synchronous pacing which includes sensing the patient's P-waves and delivering synchronized ventricular stimulus pulses, or AAI pacing. In accordance with this

WO 98/02040

- 12 -

PCT/US97/05556

step, it may be preferable to adjust the sensitivity of the atrial or ventricular sensing channel in accordance with the observed cardiac signal amplitude. The final step 36, which is optional, is to evaluate the response of the patient to the treatment by, for example, measuring the amplitude of the cardiac signal, such as, for example, the P-wave, by conventional electrocardiographic techniques, such as, for example, by telemetry from the implanted pulse generator. The sensitivity can then be adjusted accordingly.

Referring now to Fig. 2, there is shown an 10 illustrative embodiment of a delivery system useful for certain applications of this invention, e.g., where larger amounts of genetic material alone or in solution are employed. A catheter 38, preferably a transvenous catheter, 15 includes an elongated catheter body 40, suitably an insulative outer sheath which may be made of polyurethane, Teflon, silicone, or any other acceptable biocompatible plastic. The catheter has a standard lumen (illustrated in Fig. 3) extending therethrough for the length thereof, which 20 communicates through to a hollow helical needle element 44, which is adapted for screwing into the patient's myocardium. The outer distal end of helical element 44 is open or porous, thus permitting genetic material in fluid form to be dispensed out of the end, as is discussed in more detail 25 below in connection with Fig. 3. At the proximal end of the catheter, a fitting 46 is located, to which a Luer lock 48 is coupled. Luer lock 48 is coupled to the proximal end of sheath 40 and receives the lumen. A swivel mount 50 is mounted to Luer lock 48, allowing rotation of the catheter 30 relative to Luer lock 52. Luer lock 52 in turn is coupled through control element 54 to a tube 58 which communicates with reservoir 55, suitably through flow control 57 and filter 56. Reservoir 55 holds a supply of the selected genetic material. Control elements 57 and 54 are used for 35 adjustment of the pressure and flow rate, and may be mechanically or electronically controlled. Thus, unit 54 or 57 may be used to control either rate of delivery, or dosage

- 13 -

size, or both. Control unit 54 may be programmed to automatically release predetermined doses on a timed basis. Further, for an implanted system, control unit 54 may be activated from an external programmer as illustrated at 53.

5 Reference is made to international application published under the PCT, International Publication No. WO 95/05781, incorporated herein by reference, for a more detailed description of such a reservoir and catheter combination. It is to be understood that such a system is useful for this invention primarily for applications where larger fluid amounts are to be expressed, e.g., where a diluted saline solution is used to wash or perfuse a selected area.

Referring now to Fig. 3, there is shown in expanded detail a schematic of the distal end of the 15 catheter of Fig. 2, illustrating the interconnection of the helical element 44 with the interior of the catheter. As illustrated, the helical needle 44 is provided with an internal lumen 59 which is in communication with the internal lumen 63L of the lead formed by tube 63. In this 20 embodiment, helical element 44 may also be a pacing electrode, in which case it is formed of conductive material and welded, or otherwise fastened, to tip element 61. element 61 in turn is electrically connected to coil or coils 64, 65, which extend the length of the lead and are 25 connected to a pacemaker. An outer membrane 60 forms the outer wall of elongated catheter body 40, shown in Fig. 2. Further referring to Fig. 3, element 44 has an outlet 75 where the genetic material may be expressed, and holes or ports 76, 77, and 78 may also be utilized for providing 30 exits for the genetic material which is supplied through lumen 59 under a suitable pressure of zero up to about one atmosphere from reservoir 55 (shown in Fig. 2) and the control elements.

In practice, a catheter 38 of the form illustrated in Figs. 2 and 3 is advanced to the desired site for treatment, eg, adjacent the site where the sensing electrode is to be positioned. The catheter may be guided to the

15 pacing art, and are commercially available.

WO 98/02040

- 14 -

PCT/US97/05556

indicated location by being passed down a steerable or guidable catheter having an accommodating lumen, for example as disclosed in U.S. Patent No. 5,030,204; or by means of a fixed configuration guide catheter such as illustrated in U.S. Patent No. 5,104,393. Alternately, the catheter may be advanced to the desired location within the heart by means of a deflectable stylet, as disclosed in PCT Patent Application W0 93/04724, published March 18, 1993, or by a deflectable guide wire as disclosed in U.S. Patent No.

10 5,060,660. In yet another embodiment, the helical element 44 may be ordinarily retracted within a sheath at the time of guiding the catheter into the patient's heart, and extended for screwing into the heart by use of a stylet. Such extensible helical arrangements are well known in the

It is to be understood that other forms of the reservoir subsystems and catheter subsystems are within the scope of this invention. Reservoir embodiments include, for example, drug dispensing irrigatable electrodes, such as those described in U.S. Patent 4,360,031; electrically controllable, non-occluding, body implanting drug delivery system, such as those described in U.S. Patent No. 5,041,107; implantable drug infusion reservoir such as those described in U.S. Patent No. 5,176,641; medication delivery devices such as those described in U.S. Patent 5,443,450; infusion pumps, such as SYNCHROMED® made by Medtronic, Inc.; and osmotic pumps, such as those made by Alza.

Referring now to Fig. 4, there is shown, by way of illustration, another embodiment of a delivery system having a combined catheter and reservoir, useful for applications involving delivery of a relatively small bolus of genetic material, e.g., 1-5 ml. Fig. 4 illustrates the distal end of a catheter, having a distal portion 70 which encloses an osmotic pump. See U.S. Patent 4,711,251, assigned to

35 Medtronic, Inc., incorporated herein by reference. The pump includes an inner chamber 68 and an outer chamber 66, which chambers are separated by an impermeable membrane 67. A

- 15 -

semi-permeable outer membrane 72 forms the outer wall of chamber 66. The tubular portion 74 of the helical member connects to lumen 74L within inner chamber 68. A conductor 80, which runs the length of the catheter, extends into the 5 inner chamber 68 and connects with extension 74E as shown at 74C to provide electrical contact through to element 44, in an application which the element 44 is used as a pacing electrode. A insulating cover 86 encompasses the conductor 80 from the point of contact with the semi-permeable outer 10 membrane 72 distally. A seal 79 is provided at the point where the conductor passes through outer membrane 72 and inner membrane 67. An end cap 73, which may be integral with outer membrane 72 closes the chamber. Alternately, end cap 73 may be constructed to elute a predetermined 15 medication, such as, for example, steroids. Steroids, such as dexamethasone sodium phosphate, beclamethasone, and the like, are used to control inflammatory processes.

In this arrangement, prior to inserting the catheter distal end into the patient's heart, the inner 20 chamber 68 is charged with the genetic material which is to be dispensed into the myocardium. This may be done, for example, by simply inserting a micro needle through end cap 73, and inserting the desired bolus of genetic material into chamber 68. After the chamber 68 is filled and the is 25 catheter is implanted, body fluids will enter chamber 66 through membrane 72 to impart a pressure on the inner chamber 68 via the impermeable membrane 67. This results in a dispensing of the genetic material stored within chamber 68 through the lumen 74L of extension 74E and through the 30 outlet 75 of the helical element 44. Although the preferred needle or element 44 is helical, additional configurations of needles or elements can also be used as known to those skilled in the art.

Still referring now to Fig. 4, there is

35 illustrated another embodiment of a catheter tip useful for delivering a small bolus of the selected genetic material.

In this embodiment, the bolus of material is stored within

WO 98/02040

the hollow interior of distal needle 44, i.e., the interior is the reservoir. The interior reservoir is maintained sealed by use of a soluble material which is normally solid, but which dissolves when subjected to body fluids for a 5 period of time. An example of such material is mannitol. Plugs or globules 81-85 of mannitol are illustrated (by dashed lines) in place to block the two ends of element 44, as well as the ports 76, 77, 78. This may be combined with an osmotic pump, as described in connection with Fig. 3, 10 where the outer chamber is filled with a saline solution which forces the genetic material out of the ports of element 44. Another alternate embodiment, not shown, is to use a stylet which inserted through to the distal end of the catheter, to push a piston which aids in expressing the 15 genetic material into the myocardial cells. Alternatively, the piston can be driven by a micro pump. In another embodiment, the genetic material contacts the myocardial cells by passive delivery.

- 16 -

PCT/US97/05556

Referring now to Fig. 5A, there is shown, by way 20 of illustration, another embodiment of an implantable delivery system comprising a combined pacing lead and delivery catheter, hereinafter referred to simply as a catheter. In this embodiment, the catheter 90 is combined with a pacemaker or pulse generator (not shown) and a source 25 of genetic material such as illustrated by pump 92 which is suitably implanted near the pacemaker. The proximal end 91 of the catheter is connected to the pacemaker in the standard fashion. The genetic material is delivered through connecting tube 93 to a proximal section 88 of the catheter, 30 communicating with lengthwise catheter lumen illustrated at Alternately, the pacemaker head may contain a reservoir and micropump, for providing delivery of the genetic material directly to the lumen 89. The main length of the catheter has an outside sheath of biocompatible insulating 35 material 96, and at least one conductor coil 95 which communicates electrically from the pacemaker to electrode 97 at the distal tip of the catheter. The catheter further

- 17 -

comprises an axially positioned polymeric cannula 94, having lumen 87, through at least a portion of the catheter length and positioned within coil 95, which provides an inner surface for the catheter lumen. The cannula terminates at 5 the distal end of the catheter, just proximal to the tip portion of electrode 97, which is illustrated as having an outer porous surface. Electrode 97 has a central opening, shown covered with the porous electrode material, through which genetic material can pass when the catheter is 10 positioned in the patient. As shown, conductor coil 95 is electrically connected to electrode 97, and connects pace pulses and sensed cardiac signals between the pacemaker and the electrode. Of course, for a bipolar embodiment, the lead/catheter 90 carries a second electrode (not shown), 15 suitably a ring electrode just proximal to electrode 97. Also, as illustrated, a fixation mechanism such as times 98 are employed for fixing or anchoring the distal tip to the heart wall of the patient.

In one embodiment, pump 92 is suitably an osmotic 20 minipump, which pumps fluid contained within through tube 93, into catheter portion 88 and through the lumens 89, 87 to the tip electrode 97. As mentioned previously, the reservoir and pump may alternately be mounted in the pacemaker device itself. In either instance, the genetic 25 material is delivered under very minimal pressure from the reservoir through the lumen of the catheter to the electrode, where it is passed through the electrode central channel to contact myocardial cells. In yet another embodiment, the lumen portion 87 provided by the cannula is 30 utilized as the reservoir. In this embodiment, delivery may either be passive, or with the aid of a micropump (not shown). The genetic material can be preloaded into the cannula, or it can be inserted by a needle just before the catheter is introduced and positioned with the patient.

In another embodiment, as illustrated in Figure 5B, a chamber 99 is provided just proximal from eluting electrode 97, and serves as the reservoir of the genetic

35

- 18 -

material. Insulating material 96 is formed from a selfsealing material such that it may be pierced with a needle,
or the like, and reseal itself, thus allowing introduction
of the genetic material into the chamber prior to

5 implantation. Alternately, insulating material 96 can
contain a port (not shown) through which the needle inserts
the genetic material. In this embodiment, delivery of the
material is without a pump, i.e., passive, the material
draining slowly through the microporous portion of electrode

10 97.

The above described delivery systems can be used, for example, in methods of pacing and enhancing the detectability of sensed cardiac signals. A supply of a genetic material of the class having the property of

15 increasing the expression of ion channels in cardiac cells to which it is delivered is selected. A transvenous catheter, having proximal and distal ends and a pacing electrode at the distal end, is introduced into the patient. The distal end of the catheter is positioned against the

20 patient's heart wall and the genetic material is delivered through the catheter and out of the distal end, to the cardiac cells adjacent the pacing electrode, thereby enhancing cardiac signals produced by the cells. Normal cardiac pacing is carried out with the pacemaker and

25 connected catheter implanted in the patient.

Although a transvenous form of delivery system is preferred, it is to be understood that the invention can employ other methods and devices. For example, a small bolus of selected genetic material can be loaded into a micro-syringe, e.g., a 100 μ l Hamilton syringe, and applied directly from the outside of the heart.

As used herein, the phrase "cardiac signal" refers to any cardiac signal that is detectable and includes, but is not limited to, the P-wave.

As used herein, the phrase "signal to noise ratio" refers to the ratio of the amplitude of the cardiac signal, such as, for example, the P-wave, to the amplitude of the

35

- 19 -

"noise." In addition, the signal to noise ratio can be measured for other cardiac signals as well. Sources of "noise" include, but are not limited to, the QRS complex and muscle noise. It is desirable to establish a high signal to noise ratio, i.e., a signal to noise ratio of greater than 1:1 for unipolar leads and greater than 3:1 for bipolar leads. It is even more preferred to establish a signal to noise ratio greater than 10:1.

As used herein, the phrase "ion channel protein

genetic material" refers to recombinant nucleic acid

molecules encoding an ion channel protein or, alternatively,

an ion channel protein itself, which is used in the methods

and delivery systems of the invention. For chronic

treatment, or long term treatment, the ion channel protein

genetic material will be in the form of recombinant nucleic

acid molecules encoding the ion channel protein. In

contrast, for acute treatment, or short term treatment, the

ion channel protein genetic material will be in the form of

the ion channel proteins themselves.

A "recombinant nucleic acid molecule", as used herein, is comprised of an isolated ion channel protein-encoding nucleotide sequence inserted into a delivery vehicle. Regulatory elements, such as the promoter and polyadenylation signal, are operably linked to the nucleotide sequence encoding the ion channel protein, whereby the protein is capable of being produced when the recombinant nucleic acid molecule is introduced into a cell.

The nucleic acid molecules encoding the ion channel proteins are prepared synthetically or, preferably, from isolated nucleic acid molecules, as described below. A nucleic acid is "isolated" when purified away from other cellular constituents, such as, for example, other cellular nucleic acids or proteins, by standard techniques known to those of ordinary skill in the art. The coding region of the nucleic acid molecule encoding the ion channel protein can encode a full length gene product or a subfragment thereof, or a novel mutated or fusion sequence. The protein

- 20 -

coding sequence can be a sequence endogenous to the target cell, or exogenous to the target cell. The promoter, with which the coding sequence is operably associated, may or may not be one that normally is associated with the coding sequence.

The nucleic acid molecule encoding the ion channel protein is inserted into an appropriate delivery vehicle, such as, for example, an expression plasmid, cosmid, YAC vector, and the like. Almost any delivery vehicle can be 10 used for introducing nucleic acids into the cardiovascular system, including, for example, recombinant vectors, such as one based on adenovirus serotype 5, Ad5, as set forth in French, et al., Circulation, 1994, 90, 2414-2424, which is incorporated herein by reference. An additional protocol 15 for adenovirus-mediated gene transfer to cardiac cells is set forth in WO 94/11506, Johns, J. Clin. Invest., 1995, 96, 1152-1158, and in Barr, et al., Gene Ther., 1994, 1, 51-58, both of which are incorporated herein by reference. Other recombinant vectors include, for example, plasmid DNA 20 vectors, such as one derived from pGEM3 or pBR322, as set forth in Acsadi, et al., The New Biol., 1991, 3, 71-81, and Gal, et al., Lab. Invest., 1993, 68, 18-25, both of which are incorporated herein by reference, cDNA-containing liposomes, artificial viruses, nanoparticles, and the like. 25 It is also contemplated that ion channel proteins be injected directly into the myocardium.

The regulatory elements of the recombinant nucleic acid molecules of the invention are capable of directing expression in mammalian cells, specifically human cells.

30 The regulatory elements include a promoter and a polyadenylation signal. In addition, other elements, such as a Kozak region, may also be included in the recombinant nucleic acid molecule. Examples of polyadenylation signals useful to practice the present invention include, but are not limited to, SV40 polyadenylation signals and LTR polyadenylation signals. In particular, the SV40 polyadenylation signal which is in pCEP4 plasmid

- 21 -

(Invitrogen, San Diego, CA), referred to as the SV40 polyadenylation signal, can be used.

The promoters useful in constructing the recombinant nucleic acid molecules of the invention may be 5 constitutive or inducible. A constitutive promoter is expressed under all conditions of cell growth. Exemplary constitutive promoters include the promoters for the following genes: hypoxanthine phosphoribosyl transferase (HPRT), adenosine deaminase, pyruvate kinase, β -actin, human 10 myosin, human hemoglobin, human muscle creatine, and others. In addition, many viral promoters function constitutively in eukaryotic cells, and include, but are not limited to, the early and late promoters of SV40, the Mouse Mammary Tumor Virus (MMTV) promoter, the long terminal repeats (LTRs) of 15 Maloney leukemia virus, Human Immunodeficiency Virus (HIV), Cytomegalovirus (CMV) immediate early promoter, Epstein Barr Virus (EBV), Rous Sarcoma Virus (RSV), and other retroviruses, and the thymidine kinase promoter of herpes simplex virus. Other promoters are known to those of 20 ordinary skill in the art.

Inducible promoters are expressed in the presence of an inducing agent. For example, the metallothionein promoter is induced to promote (increase) transcription in the presence of certain metal ions. Other inducible promoters are known to those of ordinary skill in the art.

Promoters and polyadenylation signals used must be functional within the cells of the mammal. In order to maximize protein production, regulatory sequences may be selected which are well suited for gene expression in the cardiac cells into which the recombinant nucleic acid molecule is administered. For example, the promoter is preferably a cardiac tissue-specific promoter-enhancer, such as, for example, cardiac isoform troponin C (cTNC) promoter. Parmacek, et al., J. Biol. Chem., 1990, 265, 15970-15976, and Parmacek, et al., Mol. Cell Biol., 1992, 12, 1967-1976. In addition, codons may be selected which are most efficiently transcribed in the cell. One having ordinary

- 22 -

skill in the art can produce recombinant nucleic acid molecules which are functional in the cardiac cells.

Genetic material can be introduced into a cell or "contacted" by a cell by, for example, transfection or 5 transduction procedures. Transfection refers to the acquisition by a cell of new genetic material by incorporation of added nucleic acid molecules. Transfection can occur by physical or chemical methods. Many transfection techniques are known to those of ordinary skill 10 in the art including: calcium phosphate DNA coprecipitation; DEAE-dextran DNA transfection; electroporation; naked plasmid adsorption, and cationic liposome-mediated transfection. Transduction refers to the process of transferring nucleic acid into a cell using a DNA 15 or RNA virus. Suitable viral vectors for use as transducing agents include, but are not limited to, retroviral vectors, adeno associated viral vectors, vaccinia viruses, and Semliki Forest virus vectors.

recombinant nucleic acid molecules can take place in vivo or ex vivo. For ex vivo treatment, cells are isolated from an animal (preferably a human), transformed (i.e., transduced or transfected in vitro) with a delivery vehicle containing a nucleic acid molecule encoding an ion channel protein, and then administered to a recipient. Procedures for removing cells from mammals are well known to those of ordinary skill in the art. In addition to cells, tissue or the whole or parts of organs may be removed, treated ex vivo and then returned to the patient. Thus, cells, tissue or organs may be cultured, bathed, perfused and the like under conditions for introducing the recombinant nucleic acid molecules of the invention into the desired cells.

For in vivo treatment, cells of an animal, preferably a mammal and most preferably a human, are transformed in vivo with a recombinant nucleic acid molecule of the invention. The in vivo treatment may involve systemic intravenous treatment with a recombinant nucleic

- 23 -

acid molecule, local internal treatment with a recombinant nucleic acid molecule, such as by localized perfusion or topical treatment, and the like. When performing in vivo administration of the recombinant nucleic acid molecule, the 5 preferred delivery vehicles are based on noncytopathic eukaryotic viruses in which nonessential or complementable genes have been replaced with the nucleic acid sequence of interest. Such noncytopathic viruses include retroviruses, the life cycle of which involves reverse transcription of 10 genomic viral RNA into DNA with subsequent proviral integration into host cellular DNA. Retroviruses have recently been approved for human gene therapy trials. Most useful are those retroviruses that are replication-deficient (i.e., capable of directing synthesis of the desired 15 proteins, but incapable of manufacturing an infectious particle). Such genetically altered retroviral expression vectors have general utility for high-efficiency transduction of genes in vivo. Standard protocols for producing replication-deficient retroviruses (including the 20 steps of incorporation of exogenous genetic material into a plasmid, transfection of a packaging cell line with plasmid, production of recombinant retroviruses by the packaging cell line, collection of viral particles from tissue culture media, and infection of the target cells with viral 25 particles) are provided in Kriegler, M. "Gene Transfer and Expression, a Laboratory Manual", W.H. Freeman Co., New York (1990) and Murry, E.J. e.d. "Methods in Molecular Biology", Vol. 7, Humana Press, Inc., Clifton, New Jersey (1991).

A preferred virus for contacting cells in certain applications, such as in *in vivo* applications, is the adeno-associated virus, a double-stranded DNA virus. The adeno-associated virus can be engineered to be replication deficient and is capable of infecting a wide range of cell types and species. It further has advantages such as heat and lipid solvent stability, high transduction frequencies in cells of diverse lineages, including hemopoietic cells, and lack of superinfection inhibition thus allowing multiple

PCT/US97/05556 WO 98/02040

- 24 -

series of transductions. Recent reports indicate that the adeno-associated virus can also function in an extrachromosomal fashion.

In preferred embodiments of the present invention, 5 the recombinant nucleic acid molecules comprising nucleic acid molecules encoding the ion channel proteins, or, in the alternative, the ion channel proteins, are delivered to cardiac cells adjacent the atrial or ventricular electrode, or both, using the delivery systems set forth above.

10 Alternatively, the ion channel protein genetic material is delivered to the cardiac cells by direct injection.

In preferred embodiments of the present invention, the nucleic acid molecules encoding the ion channel proteins comprise the full length coding sequence cDNA of an ion 15 channel protein. Preferably, the ion channel proteins are sodium channel proteins; more preferably, the ion channel protein is the voltage-regulated sodium channel hH1. nucleic acid molecule is described in the Gellens, et al., Proc. Natl. Acad. Sci. USA, 1992, 89, 554-558, and White, et 20 al., Mol. Pharmacol., 1991, 39, 604-608 references, both of which are incorporated herein by reference, which contain the full length amino acid sequence and cDNA sequence, respectively.

Introduction of the ion channel-encoding nucleic 25 acid molecules or the ion channel proteins to cardiac cells adjacent the atrial or ventricular electrode will result in increased expression of sodium channels, producing a larger cardiac signal, such as, for example, P-wave, and thus, an improved or corrected signal to noise ratio.

30

Nucleic acid molecules comprising nucleotide sequences encoding hH1 sodium channel are isolated and purified according to the methods set forth in Gellens, et al., Proc. Natl. Acad. Sci. USA, 1992, 89, 554-558, and White, et al., Mol. Pharmacol., 1991, 39, 604-608. 35 nucleic acid and protein sequences of hH1 sodium channel are set forth in SEQ ID NO:1 and SEQ ID NO:2, respectively. is contemplated that nucleic acid molecules comprising

PCT/US97/05556 WO 98/02040

- 25 -

nucleotide sequences that are preferably at least 70% homologous, more preferably at least 80% homologous, and most preferably at least 90% homologous to the ion channel nucleotide sequences described in SEQ ID NO:1 can also be 5 used.

It is understood that minor modifications of nucleotide sequence or the primary amino acid sequence may result in proteins which have substantially equivalent or enhanced activity as compared to the ion channel proteins 10 exemplified herein. These modifications may be deliberate, as through site-directed mutagenesis, or may be accidental such as through mutations in hosts which produce the ion channel proteins. A "mutation" in a protein alters its primary structure (relative to the commonly occurring or 15 specifically described protein) due to changes in the nucleotide sequence of the DNA which encodes it. These mutations specifically include allelic variants. Mutational changes in the primary structure of a protein can result from deletions, additions, or substitutions. A "deletion" 20 is defined as a polypeptide in which one or more internal amino acid residues are absent as compared to the native sequence. An "addition" is defined as a polypeptide which has one or more additional internal amino acid residues as compared to the wild type protein. A "substitution" results 25 from the replacement of one or more amino acid residues by other residues. A protein "fragment" is a polypeptide consisting of a primary amino acid sequence which is identical to a portion of the primary sequence of the protein to which the polypeptide is related.

Preferred "substitutions" are those which are conservative, i.e., wherein a residue is replaced by another of the same general type. As is well understood, naturallyoccurring amino acids can be subclassified as acidic, basic, neutral and polar, or neutral and nonpolar and/or aromatic. 35 It is generally preferred that encoded peptides differing from the native form contain substituted codons for amino acids which are from the same group as that of the amino

30

classes may also be useful.

WO 98/02040

- 26 -

PCT/US97/05556

acid replaced. Thus, in general, the basic amino acids Lys, Arg, and Histidine are interchangeable; the acidic amino acids Asp and Glu are interchangeable; the neutral polar amino acids Ser, Thr, Cys, Gln, and Asn are interchangeable; the nonpolar aliphatic acids Gly, Ala, Val, Ile, and Leu are conservative with respect to each other (but because of size, Gly and Ala are more closely related and Val, Ile and Leu are more closely related), and the aromatic amino acids Phe, Trp, and Tyr are interchangeable.

While Pro is a nonpolar neutral amino acid, it represents difficulties because of its effects on conformation, and substitutions by or for Pro are not preferred, except when the same or similar conformational results can be obtained. Polar amino acids which represent conservative changes include Ser, Thr, Gln, Asn; and to a lesser extent, Met. In addition, although classified in different categories, Ala, Gly, and Ser seem to be interchangeable, and Cys additionally fits into this group, or may be classified with the polar neutral amino acids.

Some substitutions by codons for amino acids from different

Once the nucleic acid molecules encoding the ion channel proteins are isolated and purified according to the methods described above, recombinant nucleic acid molecules are prepared in which the desired ion channel nucleic acid molecule is incorporated into a delivery vehicle by methods known to those skilled in the art, as taught in, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Ed. Cold Spring Harbor Press (1989).

30 Preferred delivery vehicles include, for example, plasmids

Preferred delivery vehicles include, for example, plasmids (Acsadi, et al., The New Biol., 1991, 3, 71-81, and Gal, et al., Lab. Invest., 1993, 68, 18-25, both of which are incorporated herein by reference) and adenovirus (WO 94/11506, Johns, J. Clin. Invest., 1995, 96, 1152-1158, and in Barr, et al., Gene Ther., 1994, 1, 51-58, each of which are incorporated herein by reference). The nucleic acid molecules encoding ion channel proteins, or ion channel

- 27 -

proteins produced therefrom, are delivered to the cardiac cells adjacent to the atrial electrode by the delivery systems of the present invention. Thus, such delivery systems of the present invention are used to contact the cardiac cells adjacent the atrial electrode with recombinant nucleic acid molecules encoding an ion channel protein, or ion channel proteins.

Where the ion channel protein genetic material is in the form of ion channel proteins, such proteins can be prepared in large quantities by using various standard expression systems known to those skilled in the art. Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Ed. Cold Spring Harbor Press (1989), pp. 16.1-16.55, incorporated herein by reference.

The recombinant nucleic acid molecules or ion 15 channel proteins are preferably delivered in a pharmaceutical composition. Such pharmaceutical compositions can include, for example, the recombinant nucleic acid molecule or protein in a volume of phosphate-20 buffered saline with 5% sucrose. In other embodiments of the invention, the recombinant nucleic acid molecule or protein is delivered with suitable pharmaceutical carriers, such as those described in the most recent edition of Remington's Pharmaceutical Sciences, A. Osol, a standard 25 reference text in this field. The recombinant nucleic acid molecule or protein is delivered in a therapeutically effective amount. Such amount is determined experimentally and is that amount which either improves or corrects the Pwave signal to noise ratio by enhancing the P-wave amplitude 30 as a result of the increased expression of sodium channels in the cardiac cells adjacent the atrial or ventricular electrode. The amount of recombinant nucleic acid molecule or protein is preferably between 0.01 μg and 100 mg, more preferably between 0.1 μg and 10 mg, more preferably between 35 1 μg and 1 mg, and most preferably between 10 μg and 100 μg . A single therapeutically effective amount is referred to as a bolus. Where adenovirus vectors are used, the amount of

- 28 -

recombinant nucleic acid molecule is preferably between 10' plaque forming units (pfu) and 10¹⁵ pfu, more preferably between 10⁸ pfu and 10¹⁴ pfu, and most preferably between 10' pfu and 10¹² pfu. A single therapeutically effective amount of ion channel protein genetic material is referred to as a bolus. In some embodiments of the present invention, the delivery of the recombinant nucleic acid molecules or proteins is combined with steroid elution, such as with dexamethasone sodium phosphate, beclamethasone, and the like, to control inflammatory processes.

In some embodiments of the invention, it may be preferred to administer, in addition to ion channel protein genetic material, delivery vehicle encoding the Na'/K' pump. The Na'/K' pump acts to discharge Na' ions from the myocardial 15 cells that have accumulated as a result of the introduction of the ion channel protein genetic material. This treatment can be optional, as determined by the skilled practitioner. cDNA encoding the alpha and beta subunits of the human Na'/K' pump are set forth in Kawakami, et al., J. Biochem., 1986, 20 100, 389-397, and Kawakami, et al., Nuc. Acids Res., 1986, 14, 2833-2844, both of which are incorporated herein by reference. The nucleic acid and amino acid sequences for the alpha subunit are set forth in SEQ ID NO:5 and SEQ ID NO:6, respectively. The nucleic acid and amino acid 25 sequences for the beta subunit are set forth in SEO ID NO:7 and SEQ ID NO:8, respectively. The delivery vehicles for the pump subunits can be constructed from cDNA libraries in the same manner as set forth for hH1, except that the forward primer 5'-ATGGGGAAGGGGGTTGGACGTGAT-3' (SEQ ID NO:9) 30 and reverse primer 5'-ATAGTAGGTTTCCTTCTCCACCCA-3' (SEQ ID NO:10) for the alpha subunit, and the forward primer 5'-ATGGCCCGCGGGAAAGCCAAGGAG-3' (SEQ ID NO:11) and reverse primer 5'-GCTCTTAACTTCAATTTTTACATC-3'(SEQ ID NO:12) for the beta subunit are used. It is understood that other primers can 35 be used in addition to those set forth herein, as is well known to the skilled artisan. A therapeutically effective amount of the genetic material encoding the Na'/K' pump is

delivered to the myocardial cells using the delivery systems described herein. The therapeutically effective amount is determined by the practitioner, and depends upon the results achieved with the ion channel protein genetic material.

In preferred embodiments of the invention, the recombinant nucleic acid molecules encoding the ion channel proteins is delivered with class I and/or class IV antiarrhythmic drugs, such as, for example, verapamil, mexiletine, and the like, or combinations thereof. These 10 drugs may be delivered subcutaneously, intravenously, injected in the immediate vicinity of the atrial electrode, or as determined by the skilled artisan. These drugs may be delivered by one injection, or in multiple injections. amount of antiarrhythmic drugs depends upon the age, weight, 15 sex, and other characteristics of the patient, and is determined empirically by the skilled artisan. Class I and/or class IV antiarrhythmic drugs have been shown to enhance sodium ion channel expression in mammals. Duff, et al., Mol. Pharmacol., 1992, 42, 570-574, and Taouis, et al., 20 J. Clin. Invest., 1991, 88, 375-378, both of which are incorporated herein by reference.

The following examples are meant to be exemplary of the preferred embodiments of the invention and are not meant to be limiting.

25 EXAMPLES

Example 1: Isolation and Purification of Nucleic Acid Molecule Encoding hH1

Nucleic acid molecules encoding hH1 are isolated and purified according to general methods well known to those skilled in the art, and in particular, by the method set forth in Gellens, et al., Proc. Natl. Acad. Sci. USA, 1992, 89, 554-558, incorporated herein by reference. Briefly, a size selected and random-primed adult human cardiac cDNA library constructed in λZAPII (Stratagene) is screened with cDNA probes corresponding to nucleotides 1-4385 and 5424-7076 derived from the rat muscle TTX-I isoform (rSkM2), as set forth in Kallen, et al., Neuron, 1990, 4,

WO 98/02040

- 30 -

PCT/US97/05556

233-242, incorporated herein by reference. Hybridizations are performed at 42°C for 18 hours in 50% formamide, 5X SSPE, 5X Denhardt's solution, 0.1% SDS/salmon sperm DNA, random primed 32P-labeled probe. Filters are washed with 6X 5 standard saline citrate, 0.1% SDS at 65°C. Plaque purified clones are rescued as pBluescript phagemids and sequenced as described in Kallen, et al., Neuron, 1990, 4, 233-242. A full-length hH1 construct is made in pBluescript by sequential ligation of S14 EcoR1-Sac II (nt +1 to +252), C75 10 Sac II-KpnI (nt +253 to +4377), and C92 KpnI-EcoR1 (nt +4378 to +8491) fragments and the full length insert is moved into a modified pSP64T vector, as set forth in White, et al., Mol. Pharmacol., 1991, 39, 604-608, incorporated herein by reference. Nucleotides -151 to -8 of the 5' untranslated 15 region are deleted from the construct using exonuclease III and mung bean nuclease, as set forth in White, et al., Mol. Pharmacol., 1991, 39, 604-608.

Alternatively, cDNA for hH1 may be prepared from fresh cardiac tissue. Briefly, total cellular RNA is 20 isolated and purified (Chomczynsky, et al., Anal. Biochem., 1987, 162, 156-159) from heart tissue, obtained from cardiac transplantation donors, or from salvaged tissue, and selected for poly(A) RNA (Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Ed. Cold Spring Harbor 25 Press (1989), pp. 7.26-7.29). cDNA corresponding to the hH1 sodium channel protein is prepared from the poly(A) cardiac RNA by reverse transcription using a GENEAMP™ PCR kit (Perkin Elmer Cetus, Norwalk, CT), or the like, using random hexamers according to the manufacturer's instructions. 30 specific hH1 nucleic acid molecules are amplified by the polymerase chain reaction (PCR), also using the GENEAMPTM PCR kit, or the like, using forward and reverse primers specific for hH1 according to the manufacturer's instructions. For example, the forward primer for cloning hH1 is preferably 35 5'-ATGGCAAACTTCCTATTACCTCGG-3' (SEQ ID NO:3), and the reverse primer is 5'-CACGATGGACTCACGGTCCCTGTC-3' (SEQ ID NO:4). It is understood that additional primers can be used

- 31 -

for amplification as determined by those skilled in the art.

These primers may be preceded at the 5' terminus by
nucleotide sequences containing endonuclease restriction
sites for easy incorporation into vectors. The specific ion

5 channel nucleic acid molecules can also be amplified by PCR
from human genomic DNA (Stratagene, San Diego, CA). After
cutting the PCR products with the appropriate restriction
endonuclease(s), the PCR products are purified by
phenol:chloroform extractions, or using commercial

10 purification kits, such as, for example, MAGIC™ Minipreps
DNA Purification System (Promega, Madison, WI). The
specific nucleotide sequence of the PCR products is
determined by conventional DNA sequencing procedures, and
the identity of the PCR products confirmed by comparison to
15 the published sequences for the ion channel proteins.

Example 2: Insertion of Ion Channel cDNA into Delivery Vehicles

Preferably, ion channel cDNA is inserted into either plasmid or adenoviral vectors. Plasmid vectors

20 include for example, pGEM3 or pBR322, as set forth in Acsadi, et al., The New Biol., 1991, 3, 71-81, and Gal, et al., Lab. Invest., 1993, 68, 18-25. Adenoviral vectors include for example, adenovirus serotype 5, Ad5, as set forth in French, et al., Circulation, 1994, 90, 2414-2424, and Johns, J. Clin. Invest., 1995, 96, 1152-1158.

Preferably, the primers used to amplify the ion channel nucleic acid molecules are designed with unique endonuclease restriction sites located at the 5' terminus. In the absence of such design, polylinker arms, containing unique restriction sites, can be ligated thereto. After cutting the purified PCR products with the appropriate restriction endonuclease(s), the plasmid vector, comprising a polylinker, is also cut with the same restriction endonuclease(s), affording the ion channel nucleic acid molecule a site at which to ligate. In a similar manner, recombinant adenovirus (Gluzman, et al., in Eukaryotic Viral Vectors, Gluzman, ed., Cold Spring Harbor Press, 1982,

- 32 -

pp.187-192, French, et al., Circulation, 1994, 90, 24142424, and Johns, J. Clin. Invest., 1995, 96, 1152-1158)
containing ion channel cDNA molecules are prepared in
accordance with standard techniques well known to those
skilled in the art.

It is contemplated that variations of the abovedescribed invention may be constructed that are consistent with the spirit of the invention.

PCT/US97/05556 WO 98/02040

- 33 -

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANTS: Ken Stokes Josée Morissette
 - (ii) TITLE OF INVENTION: SYSTEMS FOR ENHANCING CARDIAC SIGNAL SENSING BY CARDIAC PACEMAKERS THROUGH GENETIC TREATMENT
 - (iii) NUMBER OF SEQUENCES: 12
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Woodcock Washburn Kurtz Mackiewicz & Norris LLP
 - (B) STREET: One Liberty Place 46th Floor
 - (C) CITY: Philadelphia (D) STATE: PA

 - (E) COUNTRY: U.S.A.
 - (F) ZIP: 19103
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: WordPerfect 6.1
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: N/A
 - (B) FILING DATE: Herewith
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Paul K. Legaard
 - (B) REGISTRATION NUMBER: 38,534
 - (C) REFERENCE/DOCKET NUMBER: MEDT-0082
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (215) 568-3100
 - (B) TELEFAX: (215) 568-3439
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6048 bases

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
- ATG GCA AAC TTC CTA TTA CCT CGG GGC ACC AGC AGC TTC CGC AGG Met Ala Asn Phe Leu Leu Pro Arg Gly Thr Ser Ser Phe Arg Arg -5
- TTC ACA CGG GAG TCC CTG GCA GCC ATC GAG AAG CGC ATG GCG GAG 90 Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Lys Arg Met Ala Glu 20
- AAG CAA GCC CGC GGC TCA ACC ACC TTG CAG GAG AGC CGA GAG GGG Lys Gln Ala Arg Gly Ser Thr Thr Leu Gln Glu Ser Arg Glu Gly 35 40
- CTG CCC GAG GAG GAG GCT CCC CGG CCC CAG CTG GAC CTG CAG GCC Leu Pro Glu Glu Glu Ala Pro Arg Pro Gln Leu Asp Leu Gln Ala 55

TCC AAA A Ser Lys L	AG CTG CCA ys Leu Pro 65	GAT CTC 1	TAT GGC Tyr Gly	AAT CCA Asn Pro 70	CCC CAA Pro Gln	GAG CTC Glu Lec 7!	1
ATC GGA G	AG CCC CTG lu Pro Leu 80	GAG GAC (Glu Asp I	CTG GAC Leu Asp	CCC TTC Pro Phe 85	TAT AGC Tyr Ser	ACC CAR Thr Gli	ו
AAG ACT T	TC ATC GTA he Ile Val 95	CTG AAT A	AAA GGC Lys Gly	AAG ACC Lys Thr 100	ATC TTC Ile Phe	CGG TTC Arg Phe	2
AGT GCC AG Ser Ala Ti	CC AAC GCC hr Asn Ala 110	TTG TAT (GTC CTC Val Leu	AGT CCC Ser Pro 115	TTC CAC Phe His	CCA GT Pro Val	L
CGG AGA GG Arg Arg A	CG GCT GTG la Ala Val 125	AAG ATT (Lys Ile I	CTG GTT Leu Val	CAC TCG His Ser 130	CTC TTC Leu Phe	AAC ATO Asn Met	:
CTC ATC A' Leu Ile Mo	TG TGC ACC et Cys Thr 140	ATC CTC A	ACC AAC Thr Asn	TGC GTG Cys Val 145	TTC ATG Phe Met	GCC CAC Ala Glr 150	1
CAC GAC CO	CT CCA CCC ro Pro Pro 155	TGG ACC A	Lys Tyr	GTC GAG Val Glu 160	TAC ACC Tyr Thr	TTC ACC	.
Ala Ile T	AC ACC TTT yr Thr Phe 170	Glu Ser I	Leu Val	Lys Ile 175	Leu Ala	Arg Ala))
Phe Cys Le	TG CAC GCG eu His Ala 185	Phe Thr E	Phe Leu	Arg Asp 190	Pro Trp	Asn Trp) i
CTG GAC TT	TT AGT GTG he Ser Val 200	ATT ATC A	Met Ala	TAC ACA Tyr Thr 205	ACT GAA Thr Glu	TTT GTG Phe Val 210	
GAC CTG GG Asp Leu G	GC AAT GTC ly Asn Val 215	TCA GCC T Ser Ala I	Leu Arg	ACC TTC Thr Phe 220	CGA GTC Arg Val	CTC CGG Leu Arg 225	Ī
GCC CTG AM	AA ACT ATA ys Thr Ile 230	TCA GTC A Ser Val I	Ile Ser	GGG CTG Gly Leu 235	AAG ACC Lys Thr	ATC GTG Ile Val 240	
GGG GCC C	TG ATC CAG eu Ile Gln 245	TCT GTG A	Lys Lys	CTG GCT Leu Ala 250	GAT GTG Asp Val	ATG GTC Met Val 255	
CTC ACA G	TC TTC TGC al Phe Cys 260	CTC AGC G Leu Ser V	Val Phe	GCC CTC Ala Leu 265	ATC GGC Ile Gly	CTG CAG Leu Glr 270	ı
CTC TTC AT	TG GGC AAC et Gly Asn 275	CTA AGG C Leu Arg H	His Lys	TGT GTG Cys Val 280	CGC AAC Arg Asn	TTC ACA	•
GCG CTC A	AC GGC ACC sn Gly Thr 290	AAC GGC T Asn Gly S	Ser Val	GAG GCC Glu Ala 295	GAC GGC Asp Gly	TTG GTC Leu Val	
TGG GAA TG	CC CTG GAC er Leu Asp 305	CTT TAC C	CTC AGT Leu Ser	GAT CCA Asp Pro 310	GAA AAT Glu Asn	TAC CTC Tyr Leu 315	ı

CTC Leu	AAG Lys	AAC Asn	GGC Gly	ACC Thr 320	TCT Ser	GAT Asp	GTG Val	TTA Leu	CTG Leu 325	TGT Cys	GGG Gly	AAC Asn	AGC Ser	TCT Ser 330	990
GAC Asp	GCT Ala	GGG Gly	ACA Thr	TGT Cys 335	CCG Pro	GAG Glu	GGC Gly	TAC Tyr	CGG Arg 340	TGC Cys	CTA Leu	AAG Lys	GCA Ala	GGC Gly 345	1035
GAG Glu	AAC Asn	CCC Pro	GAC Asp	CAC His 350	GGC Gly	TAC Tyr	ACC Thr	AGC Ser	TTC Phe 355	GAT Asp	TCC Ser	TTT Phe	GCC Ala	TGG Trp 360	1080
		CTT Leu													1125
		TAT Tyr													1170
		TTC Phe													1215
		ATC Ile													1260
		ACC Thr													1305
		ATG Met													1350
		GTG Val													1395
		CCA Pro													1440
		TCT Ser													1485
AAG Lys	TCT Ser	GAC Asp	TCA Ser	GAA Glu 500	GAT Asp	GGT Gly	CCC Pro	AGA Arg	GCA Ala 505	ATG Met	AAT Asn	CAT His	CTC Leu	AGC Ser 510	1520
CTC Leu	ACC Thr	CGT Arg	GGC Gly	CTC Leu 515	AGC Ser	AGG Arg	ACT Thr	TCT Ser	ATG Met 520	AAG Lys	CCA Pro	CGT Arg	TCC Ser	AGC Ser 525	1565
CGC Arg	GGG Gly	AGC Ser	ATT Ile	TTC Phe 530	ACC Thr	TTT Phe	CGC Arg	AGG Arg	CGA Arg 535	GAC Asp	CTG Leu	GGT Gly	TCT Ser	GAA Glu 540	1620
GCA Ala	GAT Asp	TTT Phe	GCA Ala	GAT Asp 545	GAT Asp	GAA Glu	AAC Asn	AGC Ser	ACA Thr 550	GCG Ala	CGG Arg	GAG Glu	AGC Ser	GAG Glu 555	1665
AGC Ser	CAC His	CAC His	ACA Thr	TCA Ser 560	CTG Leu	CTG Leu	GTG Val	CCC Pro	TGG Trp 565	CCC Pro	CTG Leu	CGC Arg	CGG Arg	ACC Thr 570	1710

- 36 -

					GCT Ala		1755
					TGC Cys		1800
					ACA Thr		1845
					CCG Pro		1890
					ATG Met		1935
					GGA Gly		1980
					GCA Ala		2025
					TGG Trp		2070
					CTG Leu		2115
					CCG Pro		2160
					CTC Leu		2205
					GAG Glu		2250
					GCA Ala		2295
					TTC Phe		2340
					AGC Ser		2385
					CTG Leu		2430
					TGG Trp		2475

- 37 -

	ATC AAG ATC Ile Lys Ile 830				
	CTG GTG CTA Leu Val Leu 845				
	CAG CTC TTT Gln Leu Phe 860				
	GGC CTG CTG Gly Leu Leu 875				
	CTA ATC ATC Leu Ile Ile 890				
	TGG GAC TGC Trp Asp Cys 905				
	TTC TTG CTT Phe Leu Leu 920				
	TTC CTG GCC Phe Leu Ala 935				
	GCC CCT GAT Ala Pro Asp 950				
CTG GCC CTG Leu Ala Leu	GCC CGC ATC Ala Arg Ile 965	CAG AGG GGG Gln Arg Gly	C CTG CGC TTT Leu Arg Phe 970	GTC AAG Val Lys	CGG 2925 Arg 975
	GAT TTC TGC Asp Phe Cys 980				
	GCC CTT GCC Ala Leu Ala 995				
GCC ACC CCC Ala Thr Pro	TAC TCC CCG Tyr Ser Pro 1010	CCA CCC CCA Pro Pro Pro	GAG ACG GAG Glu Thr Glu 1015	AAG GTG Lys Val	CCT 3060 Pro 1020
	AAG GAA ACA Lys Glu Thr 1025				
	CCC GGG GAT Pro Gly Asp 1040				
	TCA GAC ACA Ser Asp Thr 1055				
	ACG GAG GAG Thr Glu Glu 1070				

- 38 -

				CCG GAT Pro Asp 1090			3285
				GAG GCC Glu Ala 1105			3330
				AAA GCG Lys Ala 1120			3375
				AGT TGC Ser Cys 1135			3420
				CTC CTG Leu Leu 1150			3465
				GAG GAC Glu Asp 1165			3510
				GCG GTG Ala Val 1180			3555
				CGC AAG Arg Lys 1195			3600
				TTC ATC Phe Ile 1210			3645
				GAG GAC Glu Asp 1225			3690
				GAG TAT Glu Tyr 1240			3735
				CTG CTC Leu Leu 1255			3780
				GCC TGG Ala Trp 1270			3825
				AGC CTG Ser Leu 1285			3870
				AAG TCA Lys Ser 1300			3915
				TCA CGA Ser Arg 1315			3960
				GCC ATC Ala Ile 1330			4005

AAC Asn	GTC Val	CTC Leu	CTC Leu	GTC TGC Val Cys 1340	CTC Leu	ATC Ile	TTC Phe	TGG CTC Trp Leu 1345	ATC Ile	TTC Phe	AGC Ser	ATC Ile 1350	4050
ATG Met	GGC Gly	GTG Val	AAC Asn	CTC TTT Leu Phe 1355	GCG Ala	GGG Gly	AAG Lys	TTT GGG Phe Gly 1360	AGG Arg	TGC Cys	ATC Ile	AAC Asn 1365	4095
CAG Gln	ACA Thr	GAG Glu	GGA Gly	GAC TTG Asp Leu 1370	CCT Pro	TTG Leu	AAC Asn	TAC ACC Tyr Thr 1375	ATC Ile	GTG Val	AAC Asn	AAC Asn 1380	4140
AAG Lys	AGC Ser	CAG Gln	TG T Cys	GAG TCC Glu Ser 1385	TTG Leu	AAC Asn	TTG Leu	ACC GGA Thr Gly 1390	GAA Glu	TTG Leu	TAC Tyr	TGG Trp 1395	4185
ACC Thr	AAG Lys	GTG Val	AAA Lys	GTC AAC Val Asn 1400	TTT Phe	GAC Asp	AAC Asn	GTG GGG Val Gly 1405	GCC Ala	GGG Gly	TAC Tyr	CTG Leu 1410	4230
GCC Ala	CTT Leu	CTG Leu	CAG Gln	GTG GCA Val Ala 1415	ACA Thr	TTT Phe	AAA Lys	GGC TGG Gly Trp 1420	ATG Met	GAC Asp	ATT Ile	ATG Met 1425	4275
TAT Tyr	GCA Ala	GCT Ala	GTG Val	GAC TCC Asp Ser 1430	AGG Arg	GGG Gly	TAT Tyr	GAA GAG Glu Glu 1435	CAG Gln	CCT Pro	CAG Gln	TGG Trp 1440	4320
GAA Glu	TAC Tyr	AAC Asn	CTC Leu	TAC ATG Tyr Met 1445	TAC Tyr	ATC Ile	TAT Tyr	TTT GTC Phe Val 1450	ATT Ile	TTC Phe	ATC Ile	ATC Ile 1455	4365
TTT Phe	GGG Gly	TCT Ser	TTC Phe	TTC ACC Phe Thr 1460	CTG Leu	AAC Asn	CTC Leu	TTT ATT Phe Ile 1465	GGT Gly	GTC Val	ATC Ile	ATT Ile 1470	4410
GAC Asp	AAC Asn	TTC Phe	AAC Asn	CAA CAG Gln Gln 1475	AAG Lys	AAA Lys	AAG Lys	TTA GGG Leu Gly 1480	GGC Gly	CAG Gln	GAC Asp	ATC Ile 1485	4455
TTC Phe	ATG Met	ACA Thr	GAG Glu	GAG CAG Glu Gln 1490	AAG Lys	AAG Lys	TAC Tyr	TAC AAT Tyr Asn 1495	GCC Ala	ATG Met	AAG Lys	AAG Lys 1500	4500
CTG Leu	GGC Gly	TCC Ser	AAG Lys	AAG CCC Lys Pro 1505	CAG Gln	AAG Lys	CCC Pro	ATC CCA Ile Pro 1510	CGG Arg	CCC Pro	CTG Leu	AAC Asn 1515	4545
AAG Lys	TAC Tyr	CAG Gln	GGC Gly	TTC ATA Phe Ile 1520	TTC Phe	GAC Asp	ATT Ile	GTG ACC Val Thr 1525	AAG Lys	CAG Gln	GCC Ala	TTT Phe 1530	4590
GAC Asp	GTC Val	ACC Thr	ATC Ile	ATG TTT Met Phe 1535	CTG Leu	ATC Ile	TGC Cys	TTG AAT Leu Asn 1540	ATG Met	GTG Val	ACC Thr	ATG Met 1545	4635
ATG Met	GTG Val	GAG Glu	ACA Thr	GAT GAC Asp Asp 1550	CAA Gln	AGT Ser	CCT Pro	GAG AAA Glu Lys 1555	ATC Ile	AAC Asn	ATC Ile	TTG Leu 1560	4680
GCC Ala	AAG Lys	ATC Ile	AAC Asn	CTG CTC Leu Leu 1565	TTT Phe	GTG Val	GCC Ala	ATC TTC Ile Phe 1570	ACA Thr	GGC Gly	GAG Glu	TGT Cys 1575	4725
ATT Ile	GTC Val	AAG Lys	CTG Leu	GCT GCC Ala Ala 1580	CTG Leu	CGC Arg	CAC His	TAC TAC Tyr Tyr 1585	TTC Phe	ACC Thr	AAC Asn	AGC Ser 1590	4770

- 40 -

TGG Trp	AAT Asn	ATC Ile	TTC Phe	GAC TTC Asp Phe 1595	GTG Val	GTT Val	GTC Val	ATC CTC Ile Leu 1600	TCC Ser	ATC Ile	GTG Val	GGC Gly 1605	4815
ACT Thr	GTG Val	CTC Leu	TCG Ser	GAC ATC Asp Ile 1610	ATC Ile	CAG Gln	AAG Lya	TAC TTC Tyr Phe 1615	TTC Phe	TCC Ser	CCG Pro	ACG Thr 1620	4860
CTC Leu	TTC Phe	CGA Arg	GTC Val	ATC CGC Ile Arg 1625	CTG Leu	GCC Ala	CGA Arg	ATA GGC Ile Gly 1630	CGC Arg	ATC Ile	CTC Leu	AGA Arg 1635	4905
CTG Leu	ATC Ile	CGA Arg	GGG Gly	GCC AAG Ala Lys 1640	GGG Gly	ATC Ile	CGC Arg	ACG CTG Thr Leu 1645	CTC Leu	TTT Phe	GCC Ala	CTC Leu 1650	4950
ATG Met	ATG Met	TCC Ser	CTG Leu	CCT GCC Pro Ala 1655	CTC Leu	TTC Phe	AAC Asn	ATC GGG Ile Gly 1660	CTG Leu	CTG Leu	CTC Leu	TTC Phe 1665	4995
CTC Leu	GTC Val	ATG Met	TTC Phe	ATC TAC Ile Tyr 1670	TCC Ser	ATC Ile	TTT Phe	GGC ATG Gly Met 1675	GCC Ala	AAC Asn	TTC Phe	GCT Ala 1680	5040
TAT Tyr	GTC Val	AAG Lys	TGG Trp	GAG GCT Glu Ala 1685	GGC Gly	ATC Ile	GAC Asp	GAC ATG Asp Met 1690	TTC Phe	AAC Asn	TTC Phe	CAG Gln 1695	5085
ACC Thr	TTC Phe	GCC Ala	AAC Asn	AGC ATG Ser Met 1700	CTG Leu	TGC Cys	CTC Leu	TTC CAG Phe Gln 1705	ATC Ile	ACC Thr	ACG Thr	TCG Ser 1710	5130
				GGC CTC Gly Leu 1715									5175
				CCC ACT Pro Thr 1730									5220
				CCA GCC Pro Ala 1745									5265
				TTC CTC Phe Leu 1760									5310
ATC Ile	CTG Leu	GAG Glu	AAC Asn	TTC AGC Phe Ser 1775	GTG Val	GCC Ala	ACG Thr	GAG GAG Glu Glu 1780	AGC Ser	ACC Thr	GAG Glu	CCC Pro 1785	5355
				GAC TTC Asp Phe 1790									5400
TTT Phe	GAC Asp	CCA Pro	GAG Glu	GCC ACT Ala Thr 1805	CAG Gln	TTT Phe	ATT Ile	GAG TAT Glu Tyr 1810	TCG Ser	GTC Val	CTG Leu	TCT Ser 1815	5445
				GCC CTG Ala Leu 1820									5490
				CTC ATC Leu Ile 1835									5535

- 41 -

				TGC Cys 1850	Met					Ala					5580
				TCT Ser 1865	Gly					Leu					5625
				ATG Met 1880	Ala					Lys					5670
				ACA Thr 1895	Leu					Glu					5715
				AGA Arg 1910	Ala					Leu					5760
				TCC Ser 1925	Phe					Gln					5805
CTC Leu	TCC Ser	GAA Glu	GAG Glu	GAT Asp 1940	Ala	CCT Pro	GAG Glu	CGA Arg	GAG Glu 1945	Gly	CTC Leu	ATC Ile	GCC Ala	TAC Tyr 1950	5850
GTG Val	ATG Met	AGT Ser	GAG Glu	AAC Asn 1955	Phe	TCC Ser	CGA Arg	CCC Pro	CTT Leu 1960	Gly	CCA Pro	CCC Pro	TCC Ser	AGC Ser 1965	5895
TCC Ser	TCC Ser	ATC Ile	TCC Ser	TCC Ser 1970	Thr	TCC Ser	TTC Phe	CCA Pro	CCC Pro 1975	Ser	TAT Tyr	GAC Asp	AGT Ser	GTC Val 1980	5940
ACT Thr	AGA Arg	GCC Ala	ACC Thr	AGC Ser 1985	Asp	AAC Asn	CTC Leu	CAG Gln	GTG Val 1990	Arg	GGG Gly	TCT Ser	GAC Asp	TAC Tyr 1995	5985
AGC Ser	CAC His	AGT Ser	GAA Glu	GAT Asp 2000	Leu	GCC Ala	GAC Asp	TTC Phe	CCC Pro 2005	Pro	TCT Ser	CCG Pro	GAC Asp	AGG Arg 2010	6030
				ATC Ile 2015	Val	•	5048								

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2016 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: unknown
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ala Asn Phe Leu Leu Pro Arg Gly Thr Ser Ser Phe Arg Arg

Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Lys Arg Met Ala Glu

Lys Gln Ala Arg Gly Ser Thr Thr Leu Gln Glu Ser Arg Glu Gly 35 40 45

Leu Pro Glu Glu Glu Ala Pro Arg Pro Gln Leu Asp Leu Gln Ala

- 42 -

Ser	Lys	Lys	Leu	Pro 65	qaA	Leu	Tyr	Gly	Asn 70	Pro	Pro	Gln	Glu	Leu 75
Ile	Gly	Glu	Pro	Leu 80	Glu	Asp	Leu	Asp	Pro 85	Phe	Tyr	Ser	Thr	Gln 90
Lys	Thr	Phe	Ile	Val 95	Leu	Asn	Lys	Gly	Lys 100	Thr	Ile	Phe	Arg	Phe 105
Ser	Ala	Thr	Asn	Ala 110	Leu	Tyr	Val	Leu	Ser 115	Pro	Phe	His	Pro	Val 120
Arg	Arg	Ala	Ala	Val 125	Lys	Ile	Leu	Val	His 130	Ser	Leu	Phe	Asn	Met 135
Leu	Ile	Met	Cys	Thr 140	Ile	Leu	Thr	Asn	Cys 145	Val	Phe	Met	Ala	Gln 150
His	Asp	Pro	Pro	Pro 155	Trp	Thr	Lys	Tyr	Val 160	Glu	Tyr	Thr	Phe	Thr 165
Ala	Ile	Tyr	Thr	Phe 170	Glu	Ser	Leu	Val	Lys 175	Ile	Leu	Ala	Arg	Ala 180
Phe	Cys	Leu	His	Ala 185	Phe	Thr	Phe	Leu	Arg 190	Asp	Pro	Trp	Asn	Trp 195
Leu	Asp	Phe	Ser	Val 200	Ile	Ile	Met	Ala	Tyr 205	Thr	Thr	Glu	Phe	Val 210
Asp	Leu	Gly	Asn	Val 215	Ser	Ala	Leu	Arg	Thr 220	Phe	Arg	Val	Leu	Arg 225
Ala	Leu	Lys	Thr	Ile 230	Ser	Val	Ile	Ser	Gly 235	Leu	Lys	Thr	Ile	Val 240
Gly	Ala	Leu	Ile	Gln 245	Ser	Val	Lys	Lys	Leu 250	Ala	Asp	Val	Met	Val 255
Leu	Thr	Val	Phe	Cys 260	Leu	Ser	Val	Phe	Ala 265	Leu	Ile	Gly	Leu	Gln 270
Leu	Phe	Met	Gly	Asn 275	Leu	Arg	His	Lys	Cys 280	Val	Arg	Asn	Phe	Thr 285
Ala	Leu	Asn	Gly	Thr 290	Asn	Gly	Ser	Val	Glu 295	Ala	Asp	Gly	Leu	Val 300
Trp	Glu	Ser	Leu	Asp 305	Leu	Tyr	Leu	Ser	Asp 310	Pro	Glu	Asn	Tyr	Leu 315
Leu	Lys	Asn	Gly	Thr 320	Ser	Asp	Val	Leu	Leu 325	Cys	Gly	Asn	Ser	Ser 330
Asp	Ala	Gly	Thr	Cys 335		Glu	Gly	Tyr	Arg 340	Cys	Leu	Lys	Ala	Gly 345
Glu	Asn	Pro	Asp	His 350	Gly	Tyr	Thr	Ser	Phe 355	Asp	Ser	Phe	Ala	Trp 360
Ala	Phe	Leu	Ala	Leu 365		Arg	Leu	Met	Thr 370	Gln	Asp	Cys	Trp	Glu 375
Arg	Leu	Tyr	Gln	Gln 380		Leu	Arg	Ser	Ala 385	_	Lys	Ile	Tyr	Met 390

PCT/US97/05556

- 43 -

WO 98/02040

Ile	Phe	Phe	Met	Leu 395	Val	Ile	Phe	Leu	Gly 400	Ser	Phe	Tyr	Leu	Val 405
Asn	Leu	Ile	Leu	Ala 410	Val	Val	Ala	Met	Ala 415	Tyr	Glu	Glu	Gln	Asn 420
Gln	Ala	Thr	Ile	Ala 425	Glu	Thr	Glu	Glu	Lys 430	Glu	Lys	Arg	Phe	Gln 435
Glu	Ala	Met	Glu	Met 440	Leu	Lys	Lys	Glu	His 445	Glu	Ala	Leu	Thr	Ile 450
Arg	Gly	Val	Asp	Thr 455	Val	Ser	Arg	Ser	Ser 460	Leu	Glu	Met	Ser	Pro 465
Leu	Ala	Pro	Val	Asn 470	Ser	His	Glu	Arg	Arg 475	Ser	Lys	Arg	Arg	Lys 480
				485					490					495
•				500					505					510
				515					520					525
				530					535					540
				545					550					555
				560					565	•				570
				575					580					585
				590					59 5					600
				605					610					615
				620					625					630
				635					640					645
				650					655					660
				665					670					6/5
				680					685					690
				695					700					705
Ile	Lys	Gln	Gly			Leu	Val	Val	Met 715	Asp	Pro	Phe	Thr	720
	Asn Gln Glu Arg Leu Arg Lys Leu Arg Ala Ser Ser Ala Val Ser Thr Gln Arg Leu Ala	Asn Leu Gln Ala Glu Ala Arg Gly Leu Ala Arg Met Lys Ser Leu Thr Arg Gly Ala Asp Ser His Ser Ala Ala Leu Val Ser Ser His Thr Thr Gln Ala Arg Ala Arg Ala Leu Glu Ala Gln	Asn Leu Ile Gln Ala Thr Glu Ala Met Arg Gly Val Leu Ala Pro Arg Met Ser Lys Ser Asp Leu Thr Arg Arg Gly Ser Ala Asp Phe Ser His His Ser Ala Gln Ala Leu His Val Ser Leu Ser His Leu Thr Thr Pro Gln Ala Pro Arg Ala Leu Leu Glu Glu Ala Gln Arg	Asn Leu Ile Leu Gln Ala Thr Ile Glu Ala Met Glu Arg Gly Val Asp Leu Ala Pro Val Arg Met Ser Ser Lys Ser Asp Ser Leu Thr Arg Gly Arg Gly Ser Ile Ala Asp Phe Ala Ser His His Thr Ser Ala Gln Gly Val Ser Leu Leu Ser His Leu Leu Thr Thr Pro Ser Gln Ala Pro Cys Arg Ala Leu Ser Leu Glu Glu Ser Ala Gln Arg Tyr	Asn Leu Ile Leu Ala 410 Gln Ala Thr Ile Ala 425 Glu Ala Met Glu Met 425 Glu Ala Met Glu Met 440 Arg Gly Val Asp Thr 455 Leu Ala Pro Val Asn 470 Arg Met Ser Ser Gly 485 Lys Ser Asp Ser Glu 500 Leu Thr Arg Gly Leu 500 Leu Thr Arg Gly Leu 515 Arg Gly Ser Ile Phe 530 Ala Asp Phe Ala Asp 545 Ser His His Thr Ser 560 Ser Ala Gln Gly Gln 575 Ala Leu His Gly Leu Gly Ser His Leu Leu Gly	Asn Leu Ile Leu Ala Val Gln Ala Thr Ile Ala Glu Glu Ala Met Glu Met Leu Arg Gly Val Asp Thr Val Leu Ala Pro Val Asn Ser Arg Met Ser Ser Gly Thr Lys Ser Asp Ser Glu Asp Leu Thr Arg Gly Leu Ser Arg Gly Ser Ile Phe Thr 530 Ala Asp Phe Ala Asp Asp Ser His His Thr Ser Leu Ser Ala Gln Gly Gln Pro Ala Leu His Gly Lys Lys Ser His Leu Leu Gly Ala Ser His Leu Leu Arg Pro Thr Thr Pro Ser Glu Glu Gln Ala Pro Cys Val Asp Arg Ala Leu Ser Arg His Glu Glu Ser Arg His Glu Glu Glr Ser Arg His Glu Glu Glr Ser Arg His	Asn Leu Ile Leu Ala Val Val Gln Ala Thr Ile Ala Glu Thr Glu Ala Met Glu Met Leu Lys Arg Gly Val Asp Thr Val Ser Leu Ala Pro Val Asn Ser His Arg Met Ser Ser Gly Thr Glu Asr Ser Asp Ser Glu Asp Gly Leu Thr Arg Gly Leu Ser Arg Arg Gly Ser Ile Phe Thr Phe 530 Ala Asp Phe Ala Asp Asp Glu Ser His His Thr Ser Leu Leu Ser Ala Gln Gly Gln Pro Ser Ala Leu His Gly Lys Lys Asn Val Ser Leu Leu Gly Ala Gly Ser His Leu Leu Arg Pro Val Thr Thr Pro Ser Glu Glu Pro G35 Gln Ala Pro Cys Val Asp Gly Arg Ala Leu Ser Arg Leu Glu Glu Ser Arg Ala Gln Arg Tyr Leu Ile Trp Ile Lys Gln Gly Val Lys Leu	Asn Leu Ile Leu Ala Val Val Ala Gln Ala Thr Ile Ala Glu Thr Glu Ala Met Glu Met Leu Lys Lys Arg Gly Val Asp Thr Val Ser Arg Leu Ala Pro Val Asn Ser His Glu Arg Met Ser Ser Gly Thr Glu Glu Arg Met Ser Ser Glu Asp Gly Pro Leu Thr Arg Gly Leu Ser Arg Thr Arg Gly Ser Ile Phe Thr Phe Arg Ser His His Thr Ser Leu Leu Val Ser Ala Gln Gly Gln Pro Ser Pro Ala Leu His Gly Lys Lys Asn Ser Wal Ser Leu Leu Gly Ala Gly Asp Ser His Leu Leu Arg Pro Val Met Thr Thr Pro Ser Glu Glu Pro Gly Gln Ala Pro Cys Val Asp Gly Phe Arg Ala Leu Ser Arg His Lys Cys Ala Gln Arg Tyr Leu Ile Trp Glu Ile Lys Gln Gly Val Lys Leu Val	Asn Leu Ile Leu Ala Val Val Ala Met 410 Gln Ala Thr Ile Ala Glu Thr Glu Glu Ala Met Glu A425 Glu Ala Met Glu Met Leu Lys Lys Glu Arg Gly Val Asp Thr Val Ser Arg Ser 455 Leu Ala Pro Val Asn Ser His Glu Arg Arg Met Ser Ser Glu Asp Gly Pro Arg 500 Leu Thr Arg Gly Leu Ser Arg Thr Ser Arg Gly Ser Ile Phe Thr Phe Arg Arg 530 Ala Asp Phe Ala Asp Asp Glu Asn Ser Arg Thr Ser 545 Ser His His Thr Ser Leu Leu Val Pro 560 Ser Ala Gln Gly Gln Pro Ser Pro Gly 575 Ala Leu His Gly Lys Lys Asn Ser Thr 590 Val Ser Leu Leu Gly Ala Gly Asp Pro 605 Ser His Leu Leu Arg Pro Val Met Leu 620 Thr Thr Pro Ser Glu Glu Pro Gly Gly Gln Ala Pro Cys Val Asp Gly Phe Glu Arg Ala Leu Glu Glu Ser Arg His Lys Cys Pro 685 Arg Ala Leu Ser Ala Val Ser Val Leu Glu Glu Glu Ser Arg His Lys Cys Pro 685 Arg Ala Leu Ser Arg His Lys Cys Pro 685 Ala Gln Arg Tyr Leu Ile Trp Glu Cys 191 Elys Gln Gly Val Lys Leu Val Val	Asn Leu Ile Leu Ala Val Val Ala Met Ala Met Ala Met Ala Ala Met Ala Me	Asn Leu Ile Leu Ala Val Val Ala Met Ala Tyr Ala Ser Ala Glu Ala Met Glu Ala Met Ala Tyr Ala Glu Ala Met Glu Ala Met Ala Tyr Ala Ser Arg Ser Ser Leu Ala Pro Val Asn Ser His Glu Arg Arg Ser Arg Met Ser Ser Gly Thr Glu Glu Cys Gly Ala Met Ala Met Ser Asp Ser Gly Thr Glu Glu Cys Gly Glu Ala Asp Thr Glu Glu Cys Gly Glu Ala Met Ser Asp Ser Arg Thr Ser Arg Met Ser Asp Ser Glu Asp Gly Pro Arg Ala Met Ser Asp Ser Glu Asp Gly Pro Arg Ala Met Ser Asp Ser Glu Asp Gly Pro Arg Ala Met Ser Gly Eleu Thr Arg Gly Leu Ser Arg Thr Ser Met Lys Ser Arg Gly Ser Ile Phe Thr Phe Arg Arg Arg Asp Ser Ala Asp Phe Ala Asp Asp Glu Asn Ser Thr Ala Ser His His Thr Ser Leu Leu Val Pro Trp Pro Ser Ala Gln Gly Gln Pro Ser Pro Gly Thr Ser Ser Ala Gln Gly Lys Lys Asn Ser Thr Val Asp Ser His Leu Leu Gly Ala Gly Asp Pro Glu Ala Glo Ala Pro Cys Glo Glu Pro Gly Gly Pro Glu Glu Pro Glu Glu Ala Gln Ala Pro Cys Val Asp Gly Phe Glu Glu Pro Glu Glu Arg Arg Arg Arg Arg Arg Arg Arg Arg Asp Ser His Leu Leu Arg Pro Val Met Leu Glu His Glo Ala Pro Cys Val Asp Gly Phe Glu Glu Pro Glu Glu Glu Pro Glu Glu Glu Pro Glu	Asn Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Ala Ala Met Ala Tyr Glu Ala Ala Met Ala Tyr Glu Ala Ala Met Glu Ala Met Glu Met Leu Lys Lys Glu His Glu Ala Ala Met Glu Ala Pro Val Asn Ser Arg Ser Ser Leu Glu Ala Pro Val Asn Ser His Glu Arg Arg Ser Lys Arg Met Ser Ser Gly Thr Glu Glu Cys Gly Glu Asp Arg Met Ser Asp Ser Glu Asp Gly Pro Arg Ala Met Asn Ser Arg Thr Ser Met Lys Pro Son Asp Gly Pro Arg Ala Met Asn Ser Arg Thr Ser Met Lys Pro Son Arg Gly Ser Ile Phe Thr Phe Arg Arg Arg Asp Leu Son Ala Asp Phe Ala Asp Asp Glu Asn Ser Thr Ala Arg Ser His His Thr Ser Leu Leu Val Pro Trp Pro Leu Ser Ala Gln Gly Gly Gly Fro Son Son Ala Leu His Gly Lys Lys Asn Ser Thr Val Asp Cys Son Ala Leu Leu Arg Pro Val Met Leu Glu His Pro Glo Glo For Pro Glu Ala Thr Glu Glu Pro Gly Gly Pro Glu Ala Thr Glu Glu Pro Gly Gly Pro Glu Ala Thr Glu Glu Pro Gly Gly Pro Glu Ala Thr Glu Glu Pro Gly Gly Pro Glu Ala Thr Glu Glu Fro Gly Gly Pro Glu Ala Thr Glu Glu Glu Pro Gly Gly Pro Glu Ala Clu Glu Glu Ser Ala Val Ser Val Leu Thr Ser Ala Gln Ala Pro Cys Val Asp Gly Phe Glu Glu Pro Gly Ala Glu Pro Gly Gly Pro Glu Ala Glu Ala Pro Cys Val Asp Gly Phe Glu Glu Pro Gly Ala Glu Arg Ala Leu Ser Ala Val Ser Val Leu Thr Ser Ala Glu Arg Tyr Leu Ile Trp Glu Cys Cys Pro Ges Cys Trp Ges Glu Gly Val Lys Leu Val Val Met Asp Pro Glu Ala Glu Arg Tyr Leu Ile Trp Glu Cys Cys Pro Leu Ges Cys Ile Lys Glu Gly Val Lys Leu Val Val Met Asp Pro Glu Ala Glu Arg Tyr Leu Ile Trp Glu Cys Cys Pro Leu Ges Cys Ile Lys Glu Gly Val Lys Leu Val Val Met Asp Pro Glu Ala Glu Arg Tyr Leu Ile Trp Glu Cys Cys Pro Leu The Cys Glu Gly	Asn Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Glu Ala Thr Ile Ala Glu Thr Glu Glu Lys Glu Lys Arg Ala Met Ala Thr Ile Ala Glu Thr Glu Glu Lys Glu Lys Arg Ala Met Glu Ala Met Glu Met Ala Thr She Ala Glu Ala Met Glu Met Ala Fro Val Asn Ser Arg Ser Ser Leu Glu Met Ala Pro Val Asn Ser His Glu Arg Arg Ser Lys Arg Arg Arg Met Ser Ser Gly Thr Glu Glu Cys Gly Glu Asp Arg Arg Arg Ser Lys Arg Arg Met Ser Ser Gly Thr Glu Glu Cys Gly Glu Asp Arg Arg Arg Ser Lys Arg Arg Met Ser Ser Gly Thr Glu Glu Cys Gly Glu Asp Arg Arg Arg Ser Lys Arg Arg Met Ser Ser Gly Thr Glu Glu Cys Gly Glu Asp Arg Arg Arg Ser Lys Arg Arg Arg Met Asn His Son Ser Asp Ser Glu Asp Gly Pro Arg Ala Met Asn His Ser Gly Ser Ile Phe Thr Phe Arg Arg Arg Arg Asp Leu Gly Sis Ser Ala Asp Phe Ala Asp Asp Glu Asn Ser Thr Ala Arg Glu Ser His His Thr Ser Leu Leu Val Pro Trp Pro Leu Arg Ser Ala Gln Gly Gln Pro Ser Pro Gly Thr Ser Ala Pro Ser Ala Gln Gly Gln Pro Ser Pro Gly Thr Ser Ala Pro Ser His Leu Leu Gly Ala Gly Asp Pro Glu Ala Thr Ser Glo Ser His Leu Leu Arg Pro Val Met Leu Glu Ala Thr Ser Gln Ala Pro Cys Val Asp Glu Pro Gly Gly Pro Glu Ala Thr Ser Gln Ala Pro Cys Val Asp Gly Phe Glu Glu Pro Gly Ala Glo Ala Pro Cys Val Asp Gly Phe Glu Glu Pro Gly Ala Glo Ala Pro Cys Val Asp Gly Phe Glu Glu Pro Gly Ala Glo Ala Pro Cys Val Asp Gly Phe Glu Glu Pro Gly Ala Glo Ala Pro Cys Val Asp Gly Phe Glu Glu Pro Gly Ala Glo Glu Glu Glu Ser Arg His Lys Cys Pro Pro Cys Trp Asn Ges Glu Glu Glu Glu Ser Arg His Lys Cys Pro Pro Cys Trp Asn Ges Glu Glu Glu Glu Glu Glu Glu Cys Cys Pro Leu Trp Glu Cys Gln Gly Val Lys Leu Val Val Met Asp Pro Phe	Asn Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Glu Gln Gln Ala Thr Ile Ala Glu Thr Glu Glu Lys Glu Lys Arg Phe 425 Glu Ala Met Glu Met Leu Lys Lys Glu His Glu Ala Leu Thr A45 Arg Gly Val Asp Thr Val Ser Arg Ser Ser Leu Glu Met Ser Arg Met Ser Ser Gly Thr Glu Glu Cys Gly Glu Asp Arg Arg Arg Arg Met Ser Ser Glu Asp Gly Pro Arg Ala Met Asn His Leu Thr Arg Gly Leu Ser Arg Thr Ser Met Lys Pro Arg Ser Ser Lys Arg Arg Leu Thr Arg Gly Leu Ser Arg Thr Ser Met Lys Pro Arg Ser Ser Arg Gly Ser Ile Phe Thr Phe Arg Arg Arg Asp Leu Gly Ser Ser His Thr Ser Leu Leu Val Pro Trp Pro Leu Arg Arg Ser Ala Gln Gly Glu Asp Arg Glu Ser Ser Ala Gln Gly Glu Asp Ser Fro Gly Thr Ser Arg Thr Ser Arg Thr Ser Ala Arg Gly Ser Arg Thr Ser Ser Thr Ala Arg Glu Ser Ser His His Thr Ser Leu Leu Val Pro Trp Pro Leu Arg

Leu	Thr	Ile	Thr	Met 725	Cys	Ile	Val	Leu	Asn 730	Thr	Leu	Phe	Met	Ala 735
Leu	Glu	His	Tyr	Asn 740	Met	Thr	Ser	Glu	Phe 745	Glu	Glu	Met	Leu	Gln 750
Val	Gly	Asn	Leu	Val 755	Phe	Thr	Gly	Ile	Phe 760	Thr	Ala	Glu	Met	Thr 765
Phe	Lys	Ile	Ile	Ala 770	Leu	Asp	Pro	Tyr	Tyr 775	Tyr	Phe	Gln	Gln	Gly 780
Trp	Asn	Ile	Phe	Asp 785	Ser	Ile	Ile	Val	Ile 790	Leu	Ser	Leu	Met	Glu 795
Leu	Gly	Leu	Ser	Arg 800	Met	Ser	Asn	Leu	Ser 805	Val	Leu	Arg	Ser	Phe 810
Arg	Leu	Leu	Arg	Val 815	Phe	Lys	Leu	Ala	Lys 820	Ser	Trp	Pro	Thr	Leu 825
Asn	Thr	Leu	Ile	Lys 830	Ile	Ile	Gly	Asn	Ser 835	Val	Gly	Ala	Leu	Gly 840
Asn	Leu	Thr	Leu	Val 845	Leu	Ala	Ile	Ile	Val 850	Phe	Ile	Phe	Ala	Val 855
Val	Gly	Met	Gln	Leu 860	Phe	Gly	Lys	Asn	Tyr 865	Ser	Glu	Leu	Arg	Asp 870
Ser	Asp	Ser	Gly	Leu 875	Leu	Pro	Arg	Trp	His 880	Met	Met	Asp	Phe	Phe 885
His	Ala	Phe	Leu	Ile 890	Ile	Phe	Arg	Ile	Leu 895	Cys	Gly	Glu	Trp	Ile 900
Glu	Thr	Met	Trp	Asp 905	Cys	Met	Glu	Val	Ser 910	Gly	Gln	Ser	Leu	Сув 915
Leu	Leu	Val	Phe	Leu 920	Leu	Val	Met	Val	Ile 925	Gly	Asn	Leu	Val	Val 930
Leu	Asn	Leu	Phe	Leu 935	Ala	Leu	Leu	Leu	Ser 940	Ser	Phe	Ser	Ala	Asp 945
Asn	Leu	Thr	Ala	Pro 950	Asp	Glu	Asp	Arg	Glu 955	Met	Asn	Asn	Leu	Gln 960
Leu	Ala	Leu	Ala	Arg 965	Ile	Gln	Arg	Gly	Leu 970	Arg	Phe	Val	Lys	Arg 975
Thr	Thr	Trp	Asp	Phe 980	Cys	Суз	Gly	Leu	Leu 985	Arg	His	Arg	Pro	Gln 990
Lys	Pro	Ala	Ala	Leu 995	Ala	Ala	Gln	Gly	Gln 1000		Pro	Ser	Cys	Ile 1005
Ala	Thr	Pro	Tyr	Ser 1010		Pro	Pro	Pro	Glu 1015		Glu	Lys	Val	Pro 1020
Pro	Thr	Arg	Lys	Glu 1025		Gln	Phe	Glu	Glu 1030		Glu	Gln	Pro	Gly 1035
Gln	Gly	Thr	Pro	Gly 1040		Pro	Glu	Pro	Val 1045		Val	Pro	Ile	Ala 1050

Val	Ala	Glu	Ser	Asp Thr 1055	Asp	Asp	Gln	Glu Glu 1060	Asp	Glu	Glu	Asn 1065
Ser	Leu	Gly	Thr	Glu Glu 1070	Glu	Ser	Ser	Lys Gln 1075	Gln	Glu	Ser	Gln 1080
Pro	Val	Ser	Gly	Trp Pro 1085	Arg	Gly	Pro	Pro Asp 1090	Ser	Arg	Thr	Trp 1095
Ser	Gln	Val	Ser	Ala Thr 1100	Ala	Ser	Ser	Glu Ala 1105	Glu	Ala	Ser	Ala 1110
Ser	Gln	Ala	Asp	Trp Arg	Gln	Gln	Trp	Lys Ala 1120	Glu	Pro	Gln	Ala 1125
Pro	Gly	Cys	Gly	Glu Thr 1130	Pro	Glu	Asp	Ser Cys 1135	Ser	Glu	Gly	Ser 1140
Thr	Ala	Asp	Met	Thr Asn 1145	Thr	Ala	Glu	Leu Leu 1150	Glu	Gln	Ile	Pro 1155
Asp	Leu	Gly	Gln	Asp Val	Lys	Asp	Pro	Glu Asp 1165	Cys	Phe	Thr	Glu 1170
Gly	Cys	Val	Arg	Arg Cys 1175	Pro	Cys	Cys	Ala Val 1180	Asp	Thr	Thr	Gln 1185
Ala	Pro	Gly	Lys	Val Trp 1190	Trp	Arg	Leu	Arg Lys 1195	Thr	Суз	Tyr	His 1200
Ile	Val	Glu	His	Ser Trp 1205	Phe	Glu	Thr	Phe Ile 1210	Ile	Phe	Met	Ile 1215
Leu	Leu	Ser	Ser	Gly Ala 1220	Leu	Ala	Phe	Glu Asp 1225	Ile	Tyr	Leu	Glu 1230
Glu	Arg	Lys	Thr	Ile Lys 1235	Val	Leu	Leu	Glu Tyr 1240	Ala	Asp	Lys	Met 1245
Phe	Thr	Tyr	Val	Phe Val 1250	Leu	Glu	Met	Leu Leu 1255	Lys	Trp	Val	Ala 1260
Tyr	Gly	Phe	Lys	Lys Tyr 1265	Phe	Thr	Asn	Ala Trp 1270	Cys	Trp	Leu	Asp 1275
Phe	Leu	Ile	Val	Asp Val 1280	Ser	Leu	Val	Ser Leu 1285	Val	Ala	Asn	Thr 1290
Leu	Gly	Phe	Ala	Glu Met 1295	Gly	Pro	Ile	Lys Ser 1300	Leu	Arg	Thr	Leu 1305
Arg	Ala	Leu	Arg	Pro Leu 1310	Arg	Ala	Leu	Ser Arg 1315	Phe	Glu	Gly	Met 1320
Arg	Val	Val	Val	Asn Ala 1325	Leu	Val	Gly	Ala Ile 1330	Pro	Ser	Ile	Met 1335
Asn	Val	Leu	Leu	Val Cys 1340	Leu	Ile	Phe	Trp Leu 1345	Ile	Phe	Ser	Ile 1350
Met	Gly	Val	Asn	Leu Phe 1355	Ala	Gly	Lys	Phe Gly 1360	Arg	Cys	Ile	Asn 1365
Gln	Thr	Glu	Gly	Asp Leu 1370	Pro	Leu	Asn	Tyr Thr 1375	Ile	Val	Asn	Asn 1380

Lys	Ser	Gln	Cys	Glu Ser 1385	Leu	Asn	Leu	Thr Gly 1390	Glu	Leu	Tyr	Trp 1395
Thr	Lys	Val	Lys	Val Asn 1400	Phe	Asp	Asn	Val Gly 1405	Ala	Gly	Tyr	Leu 1410
Ala	Leu	Leu	Gln	Val Ala 1415	Thr	Phe	Lys	Gly Trp 1420	Met	Asp	Ile	Met 1425
Tyr	Ala	Ala	Val	Asp Ser 1430	Arg	Gly	Tyr	Glu Glu 1435	Gln	Pro	Gln	Trp 1440
Glu	Tyr	Asn	Leu	Tyr Met 1445	Tyr	Ile	Tyr	Phe Val 1450	Ile	Phe	Ile	Ile 1455
Phe	Gly	Ser	Phe	Phe Thr 1460	Leu	Asn	Leu	Phe Ile 1465	Gly	Val	Ile	Ile 1470
Asp	Asn	Phe	Asn	Gln Gln 1475	Lys	Lys	Lys	Leu Gly 1480	Gly	Gln	Asp	Ile 1485
Phe	Met	Thr	Glu	Glu Gln 1490	Lys	Lys	Tyr	Tyr Asn 1495	Ala	Met	Lys	Lys 1500
Leu	Gly	Ser	Lys	Lys Pro 1505	Gln	Lys	Pro	Ile Pro 1510	Arg	Pro	Leu	Asn 1515
Lys	Tyr	Gln	Gly	Phe Ile 1520	Phe	Asp	Ile	Val Thr 1525	Lys	Gln	Ala	Phe 1530
Asp	Val	Thr	Ile	Met Phe 1535	Leu	Ile	Cys	Leu Asn 1540	Met	Val	Thr	Met 1545
Met	Val	Glu	Thr	Asp Asp 1550	Gln	Ser	Pro	Glu Lys 1555	Ile	Asn	Ile	Leu 1560
Ala	Lys	Ile	Asn	Leu Leu 1565	Phe	Val	Ala	Ile Phe 1570	Thr	Gly	Glu	Cys 1575
Ile												
	Val	Lys	Leu	Ala Ala 1580	Leu	Arg	His	Tyr Tyr 1585	Phe	Thr	Asn	Ser 1590
Trp		-				_		1585				1590
	Asn	Ile	Phe	1580 Asp Phe	Val	Val	Val	1585 Ile Leu 1600	Ser	Ile	Val	1590 Gly 1605
Thr	Asn Val	Ile	Phe Ser	Asp Phe 1595 Asp Ile	Val Ile	Val Gln	Val Lys	1585 Ile Leu 1600 Tyr Phe 1615	Ser Phe	Ile Ser	Val Pro	Gly 1605 Thr 1620
Thr	Asn Val Phe	Ile Leu Arg	Phe Ser Val	Asp Phe 1595 Asp Ile 1610 Ile Arg	Val Ile Leu	Val Gln Ala	Val Lys Arg	Ile Leu 1600 Tyr Phe 1615 Ile Gly 1630	Ser Phe Arg	Ile Ser Ile	Val Pro Leu	Gly 1605 Thr 1620 Arg 1635
Thr Leu Leu	Asn Val Phe Ile	Ile Leu Arg	Phe Ser Val	Asp Phe 1595 Asp Ile 1610 Ile Arg 1625 Ala Lys	Val Ile Leu Gly	Val Gln Ala Ile	Val Lys Arg	IS85 Ile Leu 1600 Tyr Phe 1615 Ile Gly 1630 Thr Leu 1645	Ser Phe Arg Leu	Ile Ser Ile	Val Pro Leu Ala	1590 Gly 1605 Thr 1620 Arg 1635 Leu 1650
Thr Leu Leu Met	Asn Val Phe Ile Met	Ile Leu Arg Arg	Phe Ser Val Gly Leu	Asp Phe 1595 Asp Ile 1610 Ile Arg 1625 Ala Lys 1640 Pro Ala	Val Ile Leu Gly Leu	Val Gln Ala Ile	Val Lys Arg Arg	Ile Leu 1600 Tyr Phe 1615 Ile Gly 1630 Thr Leu 1645 Ile Gly 1660	Ser Phe Arg Leu Leu	Ile Ser Ile Phe Leu	Val Pro Leu Ala Leu	1590 Gly 1605 Thr 1620 Arg 1635 Leu 1650 Phe 1665
Thr Leu Leu Met	Asn Val Phe Ile Met Val	Ile Leu Arg Arg Ser	Phe Ser Val Gly Leu	Asp Phe 1595 Asp Ile 1610 Ile Arg 1625 Ala Lys 1640 Pro Ala 1655 Ile Tyr	Val Ile Leu Gly Leu Ser	Val Gln Ala Ile Phe	Val Lys Arg Arg Asn	Ile Leu 1600 Tyr Phe 1615 Ile Gly 1630 Thr Leu 1645 Ile Gly 1660 Gly Met 1675	Ser Phe Arg Leu Leu	Ile Ser Ile Phe Leu Asn	Val Pro Leu Ala Leu	1590 Gly 1605 Thr 1620 Arg 1635 Leu 1650 Phe 1665 Ala 1680

Ala	Gly	Trp	Asp	Gly Leu 1715	Leu	Ser	Pro	Ile Leu 1720	Asn	Thr	Gly	Pro 1725
Pro	Tyr	Cys	Asp	Pro Thr 1730	Leu	Pro	Asn	Ser Asn 1735	Gly	Ser	Arg	Gly 1740
Asp	Cys	Gly	Ser	Pro Ala 1745	Val	Gly	Ile	Leu Phe 1750	Phe	Thr	Thr	Tyr 1755
Ile	Ile	Ile	Ser	Phe Leu 1760	Ile	Val	Val	Asn Met 1765	Tyr	Ile	Ala	Ile 1770
Ile	Leu	Glu	Asn	Phe Ser 1775	Val	Ala	Thr	Glu Glu 1780	Ser	Thr	Glu	Pro 1785
Leu	Ser	Glu	Asp	Asp Phe 1790	Asp	Met	Phe	Tyr Glu 1795	Ile	Trp	Glu	Lys 1800
Phe	Asp	Pro	Glu	Ala Thr 1805	Gln	Phe	Ile	Glu Tyr 1810	Ser	Val	Leu	Ser 1815
Asp	Phe	Ala	Asp	Ala Leu 1820	Ser	Glu	Pro	Leu Ile 1825	Arg	Ala	Lys	Pro 1830
Asn	Gln	Ile	Ser	Leu Ile 1835	Asn	Met	Asp	Leu Pro 1840	Met	Val	Ser	Gly 1845
Asp	Arg	Ile	His	Cys Met 1850	Asp	Ile	Leu	Phe Ala 1855	Phe	Thr	Lys	Arg 1860
Val	Leu	Gly	Glu	Ser Gly 1865	Glu	Met	Asp	Ala Leu 1870	Lys	Ile	Gln	Met 1875
Glu	Glu	Lys	Phe	Met Ala 1880	Ala	Asn	Pro	Ser Lys 1885	Ile	Ser	Tyr	Glu 1890
Pro	Ile	Thr	Thr	Thr Leu 1895	Arg	Arg	Lys	His Glu 1900	Glu	Val	Ser	Ala 1905
Met	Val	Ile	Gln	Arg Ala 1910	Phe	Arg	Arg	His Leu 1915	Leu	Gln	Arg	Ser 1920
Leu	Lys	His	Ala	Ser Phe 1925	Leu	Phe	Arg	Gln Gln 1930	Ala	Gly	Ser	Gly 1935
Leu	Ser	Glu	Glu	Asp Ala 1940	Pro	Glu	Arg	Glu Gly 1945	Leu	Ile	Ala	Tyr 1950
Val	Met	Ser	Glu	Asn Phe 1955	Ser	Arg	Pro	Leu Gly 1960	Pro	Pro	Ser	Ser 1965
Ser	Ser	Ile	Ser	Ser Thr 1970	Ser	Phe	Pro	Pro Ser 1975	Tyr	Asp	Ser	Val 1980
Thr	Arg	Ala	Thr	Ser Asp 1985	Asn	Leu	Gln	Val Arg 1990	Gly	Ser	Asp	Tyr 1995
Ser	His	Ser	Glu	Asp Leu 2000	Ala	Asp	Phe	Pro Pro 2005	Ser	Pro	Asp	Arg 2010
Asp	Arg	Glu	Ser	Ile Val 2015								

(2) INFORMATION FOR SEQ ID NO:3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 bases

PCT/US97/05556 WO 98/02040

- 48 -

(B)	TYPE: nucleic	acid
(C)	STRANDEDNESS:	single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATGGCAAACT TCCTATTACC TCGG 24

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 24 bases
 (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

CACGATGGAC TCACGGTCCC TGTC 24

- (2) INFORMATION FOR SEQ ID NO:5:
 - (I) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3069 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
- ATG GGG AAG GGG GTT GGA CGT GAT AAG TAT GAG CCT GCA GCT GTT 45 Met Gly Lys Gly Val Gly Arg Asp Lys Tyr Glu Pro Ala Ala Val
- TCA GAA CAA GGT GAT AAA AAG GGC AAA AAG GGC AAA AAA GAC AGG 90 Ser Glu Gln Glu Asp Lys Lys Glu Lys Lys Glu Lys Lys Asp Arg
- GAC ATG GAT GAA CTG AAG AAA GAA GTT TCT ATG GAT GAT CAT AAA 135 Asp Met Asp Glu Leu Lys Lys Glu Val Ser Met Asp Asp His Lys
- CTT AGC CTT GAT GAA CTT CAT CGT AAA TAT GGA ACA GAC TTG AGC 180 Leu Ser Leu Asp Glu Leu His Arg Lys Tyr Gly Thr Asp Leu Ser
- CGG GGA TTA ACA TCT GCT CGT GCA GCT GAG ATC CTG GCG CGA GAT Arg Gly Leu Thr Ser Ala Arg Ala Ala Glu Ile Leu Ala Arg Asp 65
- GGT CCC AAC GCC CTC ACT CCC CCT CCC ACT ACT CCT GAA TGG ATC Gly Pro Asn Ala Leu Thr Pro Pro Pro Thr Thr Pro Glu Trp Ile 85
- AAG TTT TGT CGG CAG CTC TTT GGG GGG TTC TCA ATG TTA CTG TGG Lys Phe Cys Arg Gln Leu Phe Gly Gly Phe Ser Met Leu Leu Trp 100
- ATT GGA GCG ATT CTT TGT TTC TTG GCT TAT AGC ATC CAA GCT GCT Ile Gly Ala Ile Leu Cys Phe Leu Ala Tyr Ser Ile Gln Ala Ala
- ACA GAA GAG GAA CCT CAA AAC GAT AAT CTG TAC CTG GGT GTG 405 Thr Glu Glu Glu Pro Gln Asn Asp Asn Leu Tyr Leu Gly Val Val 125
- CTA TCA GCC GTT GTA ATC ATA ACT GGT TGC TTC TCC TAC TAT CAA Leu Ser Ala Val Val Ile Ile Thr Gly Cys Phe Ser Tyr Tyr Gln

- 49 -

GAA Glu	GCT Ala	AAA Lys	AGT Ser	TCA Ser 155	AAG Lys	ATC Ile	ATG Met	GAA Glu	TCC Ser 160	TTC Phe	AAA Lys	AAC Asn	ATG Met	GTC Val 165	495
CCT Pro	CAG Gln	CAA Gln	GCC Ala	CTT Leu 170	GTG Val	ATT Ile	CGA Arg	AAT Asn	GGT Gly 175	GAG Glu	AAA Lys	ATG Met	AGC Ser	ATA Ile 180	540
AAT Asn	GCG Ala	GAG Glu	GAA Glu	GTT Val 185	GTG Val	GTT Val	GGG Gly	GAT Asp	CTG Lue 190	GTG Val	GAA Glu	GTA Val	AAA Lys	GGA Gly 195	585
GGA Gly	GAC Asp	CGA Arg	ATT Ile	CCT. Pro 200	GCT Ala	GAC Asp	CTC Leu	AGA Arg	ATC Ile 205	ATA Ile	TCT Ser	GCA Ala	AAT Asn	GGC Gly 210	630
TGC Cys	AAG Lys	GTG Val	GAT Asp	AAC Asn 215	TCC Ser	TCG Ser	CTC Leu	ACT Thr	GGT Gly 220	GAA Glu	TCA Ser	GAA Glu	CCC Pro	CAG Gln 225	675
ACT Thr	AGG Arg	TCT Ser	CCA Pro	GAT Asp 230	TTC Phe	ACA Thr	AAT Asn	GAA Glu	AAC Asn 235	CCC Pro	CTG Leu	GAG Glu	ACG Thr	AGG Arg 240	720
AAC Asn	ATT Ile	GCC Ala	TTC Phe	TTT Phe 245	TCA Ser	ACA Thr	TAA neA	TGT Cys	GTT Val 250	GAA Glu	GGC Gly	ACC Thr	GCA Ala	CGT Arg 255	765
GGT Gly	ATT Ile	GTT Val	GTC Val	TAC Tyr 260	ACT Thr	GGG Gly	GAT Asp	CGC Arg	ACT Thr 265	GTG Val	ATG Met	GGA Gly	AGA Arg	ATT Ile 270	810
GCC Ala	ACA Thr	CTT Leu	GCT Ala	TCT Ser 275	GGG Gly	CTG Leu	GAA Glu	GGA Gly	GGC Gly 280	CAG Gln	ACC Thr	CCC Pro	ATT Ile	GCT Ala 285	855
GCA Ala	GAA Glu	ATT Ile	GAA Glu	CAT His 290	TTT Phe	ATC Ile	CAC His	ATC Ile	ATC Ile 295	ACG Thr	GGT Gly	GTG Val	GCT Ala	GTG Val 300	900
TTC Phe	CTG Leu	GGT Gly	GTG Val	TCT Ser 305	TTC Phe	TTC Phe	ATC Ile	CTT Leu	TCT Ser 310	CTC Leu	ATC Ile	CTT Leu	GAG Glu	TAC Tyr 315	945
ACC Thr	TGG Trp	CTT Leu	GAG Glu	GCT Ala 320	GTC Val	ATC Ile	TTC Phe	CTC Leu	ATC Ile 325	GGT Gly	ATC Ile	ATC Ile	GTA Val	GCC Ala 330	990
AAT Asn	GTG Val	CCG Pro	GAA Glu	GGT Gly 335	TTG Leu	CTG Leu	GCC Ala	ACT Thr	GTC Val 340	ACG Thr	GTC Val	TGT Cys	CTG Leu	ACA Thr 345	1035
CTT Leu	ACT Thr	GCC Ala	AAA Lys	CGC Arg 350	Met	GCA Ala	AGG Arg	AAA Lys	AAC Asn 355	Cys	TTA Leu	GTG Val	AAG Lys	AAC Asn 360	1080
TTA Leu	GAA Glu	GCT Ala	GTG Val	GAG Glu 365	Thr	TTG Leu	GGG Gly	TCC Ser	ACG Thr 370	Ser	ACC Thr	ATC	TGC Cys	TCT Ser 375	1125
GAT Asp	AAA Lys	ACT Thr	GGA Gly	ACT Thr 380	Leu	ACT	CAG Glr	AAC Asn	CGG Arg	Met	ACA Thr	GTG Val	GCC Ala	CAC His 390	1170
ATC Met	TGC Trp	TTI Phe	GAC Asp	AAT Asn 395	Gln	ATC	CAT His	GAA Glu	GCT Ala 400	Asr	ACG Thr	ACA Thr	GAG	AAT Asn 405	1215

- 50 -

CAG AGT GGT GGIn Ser Gly	GTC TCT TTT Val Ser Phe 410	GAC AAG AC Asp Lys Th	T TCA GCT ACC r Ser Ala Thr 415	Trp Leu	GCT 1260 Ala 420
CTG TCC AGA A	ATT GCA GGT Ile Ala Gly 425	CTT TGT AA Leu Cys As	C AGG GCA GTG n Arg Ala Val 430	Phe Gln	GCT 1305 Ala 435
AAC CAG GAA A Asn Gln Glu A	AAC CTA CCT Asn Leu Pro 440	ATT CTT AA Ile Leu Ly	G CGG GCA GTT s Arg Ala Val 445	Ala Gly	GAT 1350 Asp 450
GCC TCT GAG S	TCA GCA CTC Ser Ala Leu 455	TTA AAG TG Leu Lys Cy	C ATA GAG CTG s Ile Glu Leu 460	Cys Cys	GGT 1395 Gly 465
TTC GTG AAG (Ser Val Lys (GAG ATG AGA Glu Met Arg 470	GAA AGA TA Glu Arg Ty	C GCC AAA ATC r Ala Lys Ile 475	Val Glu	ATA 1440 Ile 480
			G TTG TCT ATT n Leu Ser Ile 490	His Lys	
			G TTG GTG ATG u Leu Val Met 505	Lys Gly	
CCA GAA AGG A	ATC CTA GAC Ile Leu Asp 515	CGT TGC AG Arg Cys Se	C TCT ATC CTC r Ser Ile Leu 520	Leu His (GGC 1565 Gly 525
AAG GAG CAG C Lys Glu Gln 1	CCC CTG GAT Pro Leu Asp 530	GAG GAG CT Glu Glu Le	G AAA GAC GCC u Lys Asp Ala 535	Phe Gln	AAC 1620 Asn 540
GCC TAT TTG (Ala Tyr Leu (GAG CTG GGG Glu Leu Gly 545	GGC CTC GG Gly Leu Gl	A GAA CGA GTC y Glu Arg Val 550	Leu Gly	TTC 1665 Phe 555
			G TTT CCT GAA n Phe Pro Glu 565	Gly Phe (
TTT GAC ACT (Phe Asp Thr)	GAC GAT GTG Asp Asp Val 575	AAT TTC CC Asn Phe Pr	T ATC GAT AAT o Ile Asp Asn 580	Leu Cys	PTC 1755 Phe 585
GTT GGG CTC I	ATC TCC ATG Ile Ser Met 590	ATT GAC CC Ile Asp Pr	T CCA CGG GCG O Pro Arg Ala 595	Ala Val 1	CCT 1800 Pro 600
GAT GCC GTG (Asp Ala Val (GGC AAA TGT Gly Lys Cys 605	CGA AGT GC Arg Ser Aa	T GGA ATT AAG l Gly Ile Lys 610	Val Ile !	ATG 1845 Met 615
			T AAA GCT ATT a Lys Ala Ile 625	Ala Lys (
GTG GGC ATC A	ATC TCA GAA Ile Ser Glu 635	GGC ATG GA Gly Asn Gl	G ACC GTG GAA u Thr Val Glu 640	Asp Ile A	GCT 1935 Ala 645
GCC CGC CTC A	AAC ATC CCA Asn Ile Pro 650	GTC AGC CA Val Ser Gl	G GTG AAC CCC n Val Asn Pro 655	Arg Asp	GCC 1980 Ala 660

- 51 -

AAG GCC TG Lys Ala Cy	C GTA GTA s Val Val 665	CAC GGC His Gly	AGT G	GAT CTA Asp Leu 670	AAG Lys	GAC Asp	ATG Met	ACC Thr	TCC Ser 675	2025
GAG CAG CTGGlu Glm Le	GAT GAC QSA qSA L 080	ATT TTG Ile Leu	AAG T Lys T	TAC CAC Tyr His 685	ACT Thr	GAG Glu	ATA Ile	GTG Val	TTT Phe 690	2070
GCC AGG AC	TCC CCT r Ser Pro 695	CAG CAG Gln Gln	AAG C Lys L	TC ATC Leu Ile 700	ATT Ile	GTG Val	GAA Glu	GGC Gly	TGC Cys 705	2115
CAA AGA CA Gln Arg Gl:	G GGT GCT n Gly Ala 710	ATC GTG Ile Val	GCT G Ala V	TG ACT Val Thr 715	GGT Gly	GAC Asp	GGT Gly	GTG Val	AAT Asn 720	2160
GAC TCT CC Asp Ser Pr	A GCT TTG Ala Leu 725	AAG AAA Lys Lys	GCA G Ala A	SAC ATT Asp Ile 730	GGG Gly	GTT Val	GCT Ala	ATG Met	GGG Gly 735	2205
ATT GCT GG	C TCA GAT y Ser Asp 740	GTG TCC Val Ser	AAG C	CAA GCT Gln Ala 745	GCT Ala	GAC Asp	ATG Met	ATT Ile	CTT Leu 750	2250
CTG GAT GA Leu Asp As	AAC TTT Asn Phe 755	GCC TCA Ala Ser	ATT G	TG ACT Val Thr 760	GGA Gly	GTA Val	GAG Glu	GAA Glu	GGT Gly 765	2295
CGT CTG AT Arg Leu Il	C TTT GAT e Phe Asp 770	AAC TTG Asn Leu	AAG A Lys I	AAA TCC Lys Ser 775	ATT Ile	GCT Ala	TAT Tyr	ACC Thr	TTA Leu 780	2340
ACC AGT AA Thr Ser As	C ATT CCC n Ile Pro 785	GAG ATC Glu Ile	ACC C	CCG TTC Pro Phe 790	CTG Leu	ATA Ile	TTT Phe	ATT Ile	ATT Ile 795	2385
GCA AAC AT Ala Asn Il	T CCA CTA e Pro Leu 800	CCA CTG Pro Leu	GGG A	ACT GTC Thr Val 805	ACC Thr	ATC Ile	CTC Leu	TGC Cys	ATT Ile 810	2430
GAC TTG GG Asp Leu Gl	C ACT GAC y Thr Asp 815	ATG GTT Met Val	CCT (GCC ATC Ala Ile 820	TCC Ser	CTG Leu	GCT Ala	TAT Tyr	GAG Glu 825	2475
CAG GCT GA Gln Ala Gl	G AGT GAC u Ser Asp 830	ATC ATG Ile Met	AAG A	AGA CAG Arg Gln 835	CCC Pro	AGA Arg	AAT Asn	CCC Pro	AAA Lys 840	2520
ACA GAC AA Thr Asp Ly	A CTT GTG s Leu Val 845	AAT GAG Asn Glu	CGG (CTG ATC Leu Ile 850	AGC Ser	ATG Met	GCC Ala	TAT Tyr	GGG Gly 855	2565
CAG ATT GG Gln Ile Gl	A ATG ATC y Met Ile 860	Gln Ala	Leu (GGA GGC Gly Gly 865	TTC Phe	TTT Phe	ACT Thr	TAC Tyr	TTT Phe 870	2610
GTG ATT CT Val Ile Le	G GCT GAG u Ala Glu 875	Asn Gly	TTC (CTC CCA Leu Pro 880	ATT Ile	CAC His	CTG Leu	TTG Leu	GGC Gly 885	2655
CTC CGA GI Leu Arg Va	G GAC TGG l Asp Trp 890	Asp Asp	CGC C	TGG ATC Trp Ile 895	Asn	GAT Asp	GTG Val	GAA Glu	GAC Asp 900	2700
AGC TAC GG Ser Tyr Gl	G CAG CAG y Gln Gln 905	Trp Thr	TAT (GAG CAG Glu Gln 910	Arg	TAY TAY	ATC Ile	GTG Val	GAG Glu 915	2745

PCT/US97/05556 WO 98/02040

- 52 -

TTC Phe	ACC Thr	TGC Cys	CAC His	ACA Thr 920	GCC Ala	TTC Phe	TTC Phe	GTC Val	AGT Ser 925	ATC Ile	GTG Val	GTG Val	GTG Val	CAG Gln 930	2790
TGG Trp	GCC Ala	GAC Asp	TTG Leu	GTC Val 935	ATC Ile	TGT Cys	AAG Lys	ACC Thr	AGG Arg 940	AGG Arg	AAT Asn	TCG Ser	GTC Val	TTC Phe 945	2835
				AAG Lys 950											2880
GAG Glu	ACA Thr	GCC Ala	CTG Leu	GCT Ala 965	GCT Ala	TTC Phe	CTT Leu	TCC Ser	TAC Tyr 970	TGC Cys	CCT Pro	GGA Gly	ATG Met	GGT Gly 975	2925
GTT Val	GCT Ala	CTT Leu	AGG Arg	ATG Met 980	TAT Tyr	CCC Pro	CTC Leu	AAA Lys	CCT Pro 985	ACC Thr	TGG Trp	TGG Trp	TTC Phe	TGT Cys 990	2970
GCC Ala	TTC Phe	CCC Pro	TAC Tyr	TCT Ser 995	CTT Leu	CTC Leu	ATC Ile	TTC Phe	GTA Val 1000	Tyr	GAC Asp	GAA Glu	GTC Val	AGA Arg 1005	3015
AAA Lys	CTC Leu	ATC Ile	ATC Ile	AGG Arg 1010	Arg	CGC Arg	CCT Pro	GGC Gly	GGC Gly 1015	Trp	GTG Val	GAG Glu	AAG Lys	GAA Glu 1020	3060
	TAC Tyr		30	69											

(2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH:1023 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: unknown
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

	,		•											
Met 1	Gly	Lys	Gly	Val 5	Gly	Arg	Asp	Lys	Tyr 10	Glu	Pro	Ala	Ala	Val 15
Ser	Glu	Gln	Glu	Asp 20	Lys	Lys	Glu	Lys	Lys 25	Glu	Lys	Lys	Asp	Arg 30
Asp	Met	Asp	Glu	Leu 35	Lys	Lys	Glu	Val	Ser 40	Met	Asp	Asp	His	Lys 45
Leu	Ser	Leu	Asp	Glu 50	Leu	His	Arg	Lys	Tyr 55	Gly	Thr	Asp	Leu	Ser 60
Arg	Gly	Leu	Thr	Ser 65	Ala	Arg	Ala	Ala	Glu 70	Ile	Leu	Ala	Arg	Asp 75
Gly	Pro	Asn	Ala	Leu 80	Thr	Pro	Pro	Pro	Thr 85	Thr	Pro	Glu	Trp	Ile 90
Lys	Phe	Cys	Arg	Gln 95	Leu	Phe	Gly	Gly	Phe 100	Ser	Met	Leu	Leu	Trp 105
Ile	Gly	Ala	Ile	Leu 110	Cys	Phe	Leu	Ala	Tyr 115	Ser	Ile	Gln	Ala	Ala 120
Thr	Glu	Glu	Glu	Pro 125	Gln	Asn	Asp	Asn	Leu 130	Tyr	Leu	Gly	Val	Val 135

	Leu	Ser	Ala	Val	Val 140	Ile	Ile	Thr	Gly	Cys 145	Phe	Ser	Tyr	Tyr	Gln 150
	Glu	Ala	Lys	Ser	Ser 155	Lys	Ile	Met	Glu	Ser 160	Phe	Lys	Asn	Met	Val 165
	Pro	Gln	Gln	Ala	Leu 170	Val	Ile	Arg	Asn	Gly 175	Glu	Lys	Met	Ser	Ile 180
	Asn	Ala	Glu	Glu	Val 185	Val	Val	Gly	Asp	Lue 190	Val	Glu	Val	Lys	Gly 195
	Gly	Asp	Arg	Ile	Pro 200	Ala	Asp	Leu	Arg	Ile 205	Ile	Ser	Ala	Asn	Gly 210
	Cys	Lys	Val	Asp	Asn 215	Ser	Ser	Leu	Thr	Gly 220	Glu	Ser	Glu	Pro	Gln 225
	Thr	Arg	Ser	Pro	Asp 230	Phe	Thr	Asn	Glu	Asn 235	Pro	Leu	Glu	Thr	Arg 240
	Asn	Ile	Ala	Phe	Phe 245	Ser	Thr	Asn	Cys	Val 250	Glu	Gly	Thr	Ala	Arg 255
	Gly	Ile	Val	Val	Tyr 260	Thr	Gly	Asp	Arg	Thr 265	Val	Met	Gly	Arg	Ile 270
	Ala	Thr	Leu	Ala	Ser 275	Gly	Leu	Glu	Gly	Gly 280	Gln	Thr	Pro	Ile	Ala 285
	Ala	Glu	Ile	Glu	His 290	Phe	Ile	His	Ile	Ile 295	Thr	Gly	Val	Ala	Val 300
	Phe	Leu	Gly	Val	Ser 305	Phe	Phe	Ile	Leu	Ser 310	Leu	Ile	Leu	Glu	Tyr 315
	Thr	Trp	Leu	Glu	Ala 320	Val	Ile	Phe	Leu	11e 325	Gly	Ile	Ile	Val	Ala 330
_	Asn	Val	Pro	Glu	Gly 335	Leu	Leu	Ala	Thr	Val 340	Thr	Val	Cys	Leu	Thr 345
•	Leu	Thr	Ala	Lys	Arg 350	Met	Ala	Arg	Lys	Asn 355	Cys	Leu	Val	Lys	Asn 360
					Glu 365					370					3/5
					380					365					His 390
	Met	Trp	Phe	a Asp	395		Ile	His	Glu	Ala 400	Asp	Thr	Thr	Glu	Asn 405
					410					415					Ala 420
					425					430					Ala 435
					440)				445)				Asp 450
	Ala	Sei	Glu	ı Sei	455		Lev	Lys	: Cys	11e	Glu	ı Lev	ı Cys	. Cys	Gly 465

Ser	Val	Lys	Glu	Met 470	Arg	Glu	Arg	Tyr	Ala 475	Lys	Ile	Val	Glu	Ile 480
Pro	Phe	Asn	Ser	Thr 485	Asn	Lys	Tyr	Gln	Leu 490	Ser	Ile	His	Lys	Asn 495
Pro	Asn	Thr	Ser	Glu 500	Pro	Gln	His	Leu	Leu 505	Val	Met	Lys	Gly	Ala 510
Pro	Glu	Arg	Ile	Leu 515	Asp	Arg	Cys	Ser	Ser 520	Ile	Leu	Leu	His	Gly 525
Lys	Glu	Gln	Pro	Leu 530	Asp	Glu	Glu	Leu	Lys 535	Asp	Ala	Phe	Gln	Asn 540
Ala	Tyr	Leu	Glu	Leu 545	Gly	Gly	Leu	Gly	Glu 550	Arg	Val	Leu	Gly	Phe 555
Cys	His	Leu	Phe	Leu 560	Pro	Asp	Glu	Gln	Phe 565	Pro	Glu	Gly	Phe	Gln 570
Phe	Asp	Thr	Asp	Asp 575	Val	Asn	Phe	Pro	Ile 580	Asp	Asn	Leu	Cys	Phe 585
Val	Gly	Leu	Ile	Ser 590	Met	Ile	Asp	Pro	Pro 595	Arg	Ala	Ala	Val	Pro 600
Asp	Ala	Val	Gly	Lys 605	Сув	Arg	Ser	Aal	Gly 610	Ile	Lys	Val	Ile	Met 615
Val	Thr	Gly	Asp	His 620	Pro	Ile	Thr	Ala	Lys 625	Ala	Ile	Ala	Lys	Gly 630
Val	Gly	Ile	Ile	Ser 635	Glu	Gly	Asn	Glu	Thr 640	Val	Glu	Asp	Ile	Ala 645
Ala	Arg	Leu	Asn	Ile 650	Pro	Val	Ser	Gln	Val 655	Asn	Pro	Arg	Asp	Ala 660
Lys	Ala	Суз	Val	Val 665	His	Gly	Ser	Asp	Leu 670	Lys	Asp	Met	Thr	Ser 675
Glu	Glm	Leu	Asp	Asp 680	Ile	Leu	Lys	Tyr	His 685	Thr	Glu	Ile	Val	Phe 690
Ala	Arg	Thr	Ser	Pro 695	Gln	Gln	Lys	Leu	Ile 700	Ile	Val	Glu	Gly	Cys 705
Gln	Arg	Gln	Gly	Ala 710	Ile	Val	Ala	Val	Thr 715	Gly	Asp	Gly	Val	Asn 720
Asp	Ser	Pro	Ala	Leu 725	Lys	Lys	Ala	qeA	Ile 730	Gly	Val	Ala	Met	Gly 735
Ile	Ala	Gly	Ser	Asp 740	Val	Ser	Lys	Gln	Ala 745	Ala	Asp	Met	Ile	Leu 750
Leu	Asp	Asp	Asn	Phe 755	Ala	Ser	Ile	Val	Thr 760	Gly	Val	Glu	Glu	Gly 765
Arg	Leu	Ile	Phe	Asp 770	Asn	Leu	Lys	Lys	Ser 775	Ile	Ala	Tyr	Thr	Leu 780
Thr	Ser	Asn	Ile	Pro 785	Glu	Ile	Thr	Pro	Phe 790	Leu	Ile	Phe	Ile	Ile 795

PCT/US97/05556 WO 98/02040

- 55 -

Ala Asn Ile Pro Leu Pro Leu Gly Thr Val Thr Ile Leu Cys Ile 800 Asp Leu Gly Thr Asp Met Val Pro Ala Ile Ser Leu Ala Tyr Glu 820 Gln Ala Glu Ser Asp Ile Met Lys Arg Gln Pro Arg Asn Pro Lys 830 Thr Asp Lys Leu Val Asn Glu Arg Leu Ile Ser Met Ala Tyr Gly 850 Gln Ile Gly Met Ile Gln Ala Leu Gly Gly Phe Phe Thr Tyr Phe 865 Val Ile Leu Ala Glu Asn Gly Phe Leu Pro Ile His Leu Leu Gly Leu Arg Val Asp Trp Asp Asp Arg Trp Ile Asn Asp Val Glu Asp 890 895 Ser Tyr Gly Gln Gln Trp Thr Tyr Glu Gln Arg Lys Ile Val Glu Phe Thr Cys His Thr Ala Phe Phe Val Ser Ile Val Val Val Gln 920 Trp Ala Asp Leu Val Ile Cys Lys Thr Arg Arg Asn Ser Val Phe 940 935 Gln Gln Gly Met Lys Asn Lys Ile Leu Ile Phe Gly Leu Phe Glu 955 Glu Thr Ala Leu Ala Ala Phe Leu Ser Tyr Cys Pro Gly Met Gly 970 Val Ala Leu Arg Met Tyr Pro Leu Lys Pro Thr Trp Trp Phe Cys 985 Ala Phe Pro Tyr Ser Leu Leu Ile Phe Val Tyr Asp Glu Val Arg 1005 995 Lys Leu Ile Ile Arg Arg Arg Pro Gly Gly Trp Val Glu Lys Glu 1010 1015 Thr Tyr Tyr

- (2) INFORMATION FOR SEQ ID NO:7:
 - (I) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 909 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:
- ATG GCC CGC GGG AAA GCC AAG GAG GAG GGC AGC TGG AAG AAA TTC 45 Met Ala Arg Gly Lys Ala Lys Glu Glu Gly Ser Trp Lys Lys Phe
- ATC TGG AAC TCA GAG AAG AAG GAG TTT CTG GGC AGG ACC GGT GGC Ile Trp Asn Ser Glu Lys Lys Glu Phe Leu Gly Arg Thr Gly Gly 25
- AGT TGG TTT AAG ATC CTT CTA TTC TAC GTA ATA TTT TAT GGC TGC Ser Trp Phe Lys Ile Leu Leu Phe Tyr Val Ile Phe Tyr Gly Cys 135 35

- 56 -

CTG Leu	GCT Ala	GGC Gly	ATC Ile	TTC Phe 50	ATC Ile	GGA Gly	ACC Thr	ATC Ile	CAA Gln 55	GTG Val	ATG Met	CTG Leu	CTC Leu	ACC Thr 60	180
ATC Ile	AGT Ser	GAA Glu	TTT Phe	AAG Lys 65	CCC Pro	ACA Thr	TAT Tyr	CAG Gln	GAC Asp 70	CGA Arg	GTG Val	GCC Ala	CCG Pro	CCA Pro 75	225
GGA Gly	TTA Leu	ACA Thr	CAG Gln	ATT Ile 80	CCT Pro	CAG Gln	ATC Ile	CAG Gln	AAG Lys 85	ACT Thr	GAA Glu	ATT Ile	TCC Ser	TTT Phe 90	270
CGT Arg	CCT Pro	AAT Asn	GAT Asp	CCC Pro 95	AAG Lys	AGC Ser	TAT Tyr	GAG Glu	GCA Ala 100	TAT Tyr	GTA Val	CTG Leu	AAC Asn	ATA Ile 105	315
GTT Val	AGG Arg	TTC Phe	CTG Leu	GAA Glu 110	AAG Lys	TAC Tyr	AAA Lys	GAT Asp	TCA Ser 115	GCC Ala	CAG Gln	AGG Arg	GAT Asp	GAC Asp 120	360
ATG Met	ATT Ile	TTT Phe	GAA Glu	GAT Asp 125	TGT Cys	GGC Gly	GAT Asp	GTG Val	CCC Pro 130	AGT Ser	GAA Glu	CCG Pro	AAA Lys	GAA Glu 135	405
CGA Arg	GGA Gly	GAC Asp	TTT Phe	AAT Asn 140	CAT His	GAA Glu	CGA Arg	GGA Gly	GAG Glu 145	CGA Arg	AAG Lys	GTC Val	TGC Cys	AGA Arg 150	450
TTC Phy	AAG Lys	CTT Leu	GAA Glu	TGG Trp 155	CTG Leu	GGA Gly	AAT Asn	TGC Cys	TCT Ser 160	GGA Gly	TTA Leu	AAT Asn	GAT Asp	GAA Glu 165	495
ACT Thr	TAT Tyr	GGC Gly	TAC Tyr	AAA Lys 170	GAG Glu	GGC Gly	AAA Lys	CCG Pro	TGC Cys 175	ATT Ile	ATT Ile	ATA Ile	AAG Lys	CTC Leu 180	540
AAC Asn	CGA Arg	GTT Val	CTA Leu	GGC Gly 185	TTC Phe	AAA Lys	CCT Pro	AAG Lys	CCT Pro 190	CCC Pro	AAG Lys	AAT Asn	GAG Glu	TCC Ser 195	585
TTG Leu	GAG Glu	ACT Thr	TAC Tyr	CCA Pro 200	GTG Val	ATG Met	AAG Lys	TAT Tyr	AAC Asn 205	CCA Pro	AAT Asn	GTC Val	CTT Leu	CCC Pro 210	630
GTT Val	CAG Gln	TGC Cys	ACT Thr	GGC Gly 215	AAG Lys	CGA Arg	GAT Asp	GAA Glu	GAT Asp 220	AAG Lys	GAT Asp	AAA Lys	GTT Val	GGA Gly 225	675
AAT Asn	GTG Val	GAG Glu	TAT Tyr	TTT Phe 230	GGA Gly	CTG Leu	GGC Gly	AAC Asn	TCC Ser 235	CCT Pro	GGT Gly	TTT Phe	CCT Pro	CTG Leu 240	720
CAG Gln	TAT Tyr	TAT Tyr	CCG Pro	TAC Tyr 245	TAT Tyr	GGC Gly	AAA Lys	CTC Leu	CTG Leu 250	CAG Gln	CCC Pro	AAA Lys	TAC Tyr	CTG Leu 255	765
CAG Gln	CCC Pro	CTG Leu	CTG Leu	GCC Ala 260	GTA Val	CAG Gln	TTC Phe	ACC Thr	AAT Asn 265	CTT Leu	ACC Thr	ATG Met	GAC Asp	ACT Thr 270	810
GAA Glu	ATT Ile	CGC Arg	ATA Ile	GAG Glu 275	TGT Cys	AAG Lys	GCG Ala	TAC Tyr	GGT Gly 280	GAG Glu	AAC Asn	ATT Ile	GGG Gly	TAC Tyr 285	855
AGT Ser	GAG Glu	AAA Lys	GAC Asp	CGT Arg 290	TTT Phe	CAG Gln	GGA Gly	CGT Arg	TTT Phe 295	GAT Asp	GTA Val	AAA Lys	ATT Ile	GAA Glu 300	900

- 57 -

GTT AAG AGC 909 Val Lys Ser

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH:303 amino acids

(B) TYPE: amino acid

- (C) STRANDEDNESS: single
 (D) TOPOLOGY: unknown
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

	(X1)	SEC	MANC	E DE	SCRI	PIIC	/N: 5	EQ 1	ט אכ	7.6.				
Met 1	Ala	Arg	Gly	Lys 5	Ala	Lys	Glu	Glu	Gly 10	Ser	Trp	Lys	Lys	Phe 15
Ile	Trp	Asn	Ser	Glu 20	Lys	Lys	Glu	Phe	Leu 25	Gly	Arg	Thr	Gly	Gly 30
Ser	Trp	Phe	Lys	Ile 35	Leu	Leu	Phe	Tyr	Val 40	Ile	Phe	Tyr	Gly	Cys 45
Leu	Ala	Gly	Ile	Phe 50	Ile	Gly	Thr	Ile	Gln 55	Val	Met	Leu	Leu	Thr 60
Ile	Ser	Glu	Phe	Lys 65	Pro	Thr	Tyr	Gln	Asp 70	Arg	Val	Ala	Pro	Pro 75
Gly	Leu	Thr	Gln	Ile 80	Pro	Gln	Ile	Gln	Lys 85	Thr	Glu	Ile	Ser	Phe 90
Arg	Pro	Asn	Asp	Pro 95	Lys	Ser	Tyr	Glu	Ala 100	Tyr	Val	Leu	Asn	Ile 105
Val	Arg	Phe	Leu	Glu 110	Lys	Tyr	Lys	Asp	Ser 115	Ala	Gln	Arg	Asp	Asp 120
Met	Ile	Phe	Glu	Asp 125	Cys	Gly	Asp	Val	Pro 130	Ser	Glu	Pro	Lys	Glu 135
Arg	Gly	Asp	Phe	Asn 140	His	Glu	Arg	Gly	Glu 145	Arg	Lys	Val	Cys	Arg 150
Phy	ГЛа	Leu	Glu	Trp 155	Leu	Gly	Asn	Cys	Ser 160	Gly	Leu	Asn	Asp	Glu 165
Thr	Tyr	Gly	Tyr	Lys 170	Glu	Gly	Lys	Pro	Cys 175	Ile	Ile	Ile	Lys	Leu 180
Asn	Arg	Val	Leu	Gly 185	Phe	Lys	Pro	Lys	Pro 190	Pro	Lys	Asn	Glu	Ser 195
Leu	Glu	Thr	Tyr	Pro 200	Val	Met	Lys	Tyr	Asn 205	Pro	Asn	Val	Leu	Pro 210
Val	Gln	Cys	Thr	Gly 215	Lys	Arg	Asp	Glu	Asp 220	Lys	Asp	Lys	Val	Gly 225
Asn	Val	Glu	Tyr	Phe 230		Leu	Gly	Asn	Ser 235	Pro	Gly	Phe	Pro	Leu 240
Gln	Туr	Tyr	Pro	Tyr 245	Tyr	Gly	Lys	Leu	Leu 250	Gln	Pro	Lys	Tyr	Leu 255
Gln	Pro	Leu	Leu	Ala 260		Gln	Phe	Thr	Asn 265	Leu	Thr	Met	Asp	Thr 270

- 58 -

Glu Ile Arg Ile Glu Cys Lys Ala Tyr Gly Glu Asn Ile Gly Tyr

Ser Glu Lys Asp Arg Phe Gln Gly Arg Phe Asp Val Lys Ile Glu 290 295

Val Lys Ser

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 bases

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ATGGGGAAGG GGGTTGGACG TGAT 24

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 bases (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

ATAGTAGGTT TCCTTCTCCA CCCA 24

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

ATGGCCCGCG GGAAAGCCAA GGAG 24

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GCTCTTAACT TCAATTTTTA CATC 24

- 59 -

WHAT IS CLAIMED IS:

10

1. A delivery system for delivering a therapeutically effective amount of a predetermined genetic material to myocardial cells of a chosen location of a patient's heart, said genetic material being selected for the function of increasing the amplitude of the patient's cardiac signal so that it can be better sensed by an electrode, comprising:

a supply of said genetic material; reservoir means for containing said genetic material; and

delivery means for delivering said genetic
material from said reservoir to said myocardial cells,
thereby increasing the amplitude of the cardiac signal and
improving the signal to noise ratio that can be sensed by a
pacemaker.

- The delivery system of claim 1, wherein said supply of genetic material comprises a bolus of ion channel
 protein genetic material selected for the function of increasing the amplitude of the cardiac signal.
- 3. The delivery system of claim 1, wherein said delivery means comprises a catheter with a distal end portion, and said reservoir means is located in said distal end portion.
 - 4. The delivery system of claim 3, wherein said distal end portion comprises a hollow helical element forming an interior, and said reservoir means comprises said interior with said supply therein.
- 30 5. The delivery system of claim 1, wherein said delivery means comprises a catheter with a lumen for delivering said genetic material therethrough, said catheter having a distal tip communicating with said lumen for

WO 98/02040

- 60 -

PCT/US97/05556

contacting said plurality of cells in the proximity of said electrode with said genetic material.

- 6. The delivery system of claim 5, wherein said distal tip is a hollow helical needle tip.
- 5 7. The delivery system of claim 5, wherein said catheter is a transvenous endocardial catheter.
 - 8. The delivery system of claim 1, wherein said reservoir contains a supply of 0.1-10 ml of said genetic material.
- 9. The delivery system of claim 1, wherein said delivery means comprises a catheter with a distal portion and an end tip, and wherein said reservoir means is contained in said distal portion, and further comprising force means for forcing said genetic material from said reservoir means and out of said end tip.
 - 10. The delivery system of claim 9, wherein said force means comprises a stylet.
- 11. The delivery system of claim 1, wherein said delivery system comprises a hollow helical screw-in element20 loaded with a bolus of said genetic material.
- 12. The delivery system of claim 11, wherein said element comprises ports for egress of said genetic material into said identified cardiac location when said element is screwed into said location, and further comprising soluble plugs in said ports to maintain them normally closed but which dissolve when said element is positioned within said patient's heart.
 - 13. The delivery system of claim 1, wherein said predetermined genetic material is DNA or RNA, and imparts

- 61 -

chronic change in ion channel expression in said cardiac cells.

- 14. The delivery system of claim 1, wherein said delivery means comprises a catheter with a distal end
 5 portion, and said reservoir means is located in said distal end portion.
 - 15. The delivery system of claim 13, wherein said DNA or RNA encodes an ion channel protein.
- 16. The delivery system of claim 15, wherein said 10 ion channel protein is a sodium channel protein.
 - 17. The delivery system of claim 16, wherein said sodium channel protein is hH1.
- 18. The delivery system of claim 1, wherein said predetermined genetic material is protein, and imparts acute change in sodium channel expression in said cardiac cells.
 - 19. The delivery system of claim 18, wherein said protein is an ion channel protein.
 - 20. The delivery system of claim 19, wherein said ion channel protein is a sodium channel protein.
- 21. The delivery system of claim 20, wherein said sodium channel protein is hH1.
- 22. An implantable delivery system for delivering doses of a therapeutically effective amount of a predetermined genetic material to myocardial cells in a chosen location of a patient's heart, comprising:
 - a supply of genetic material of the class having the property of increasing the expression of ion channels in the myocardial cells to which it is delivered;

- 62 -

a catheter, said catheter having a distal tip portion for engaging the cells of said chosen location and delivering thereto said genetic material;

reservoir means for holding said supply of genetic material and providing it to said distal tip portion of said catheter; and

delivery means for delivering a therapeutically effective amount of said genetic material from said reservoir means through said distal tip portion to said thosen location.

23. The system as described in claim 20, further comprising:

control means for controlling operation of said delivery means to deliver respective said doses.

- 24. The implantable delivery system of claim 23, wherein said control means comprises initiating means for initiating delivery of said genetic material, said initiating means comprising an external programmer.
- 25. The implantable delivery system of claim 23, wherein said control means comprises automatic means for automatically initiating delivery of said genetic material.

20

26. An implantable delivery system for delivering predetermined genetic material to cardiac cells adjacent to a pacing electrode positioned against the inner wall of a patient's heart, comprising:

a supply of genetic material of the class having the property of increasing the expression of ion channels in cardiac cells to which it is delivered;

a catheter, said catheter having a distal tip portion for engaging said cardiac cells and delivering thereto said genetic material;

- 63 -

reservoir means for holding said supply of genetic material and providing it to said distal tip portion of said catheter; and

delivery means for delivering a therapeutically seffective amount of said genetic material from said reservoir means through said distal tip portion to said cardiac cells.

- 27. The implantable delivery system of claim 26, wherein the distal end of said distal tip portion further comprises a pacing electrode.
 - 28. The system as described in claim 26, further comprising:

control means for controlling operation of said delivery means to deliver respective said doses.

- 15 29. The implantable delivery system of claim 26, wherein said control means comprises initiating means for initiating delivery of said genetic material, said initiating means comprising an external programmer.
- 30. The implantable delivery system of claim 26, 20 wherein said control means comprises automatic means for automatically initiating delivery of said genetic material.
- 31. An implantable system for pacing a patient's heart and for delivering a predetermined genetic material to cardiac cells adjacent to a pacing electrode positioned in said patient's heart, comprising:
 - a supply of genetic material of the class having the property of increasing the expression of ion channels in cardiac cells to which it is delivered;
- a catheter, said catheter having proximal and
 distal ends, a lumen through at least a part thereof and
 connecting to said distal end, a pacing electrode positioned
 at said distal end for engaging said patient's heart wall,

- 64 -

said electrode having a channel therethrough in communication with said lumen, and a conductor connecting said proximal end to said electrode,

a pulse generator connected electrically to said conductor at said catheter proximal end for delivering pace pulses to said electrode,

reservoir means for holding said supply of genetic material, and

delivery means for delivering said genetic

no material from said reservoir to said lumen, whereby said

material passes through said lumen and said channel to said

heart wall.

- 32. The implantable system of claim 31, wherein said reservoir is mounted in said pulse generator.
- 33. The implantable system of claim 31, wherein said delivery means is passive.
 - 34. The implantable system of claim 31, wherein said delivery means comprises a pump.
- 35. The implantable system of claim 31, wherein said electrode is substantially concentric with respect to the catheter axis, and the channel passes through the center of said electrode.

FIG. 1

FIG. 2

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/05556

_		
A. CLAS	SSIFICATION OF SUBJECT MATTER	
	Please See Extra Sheet.	
US CL :	514/44; 536/23.1; 435/320.1; 607/120 o International Patent Classification (IPC) or to both national classification and IPC	
	DS SEARCHED	
	neumentation searched (classification system followed by classification symbols)	
U.S. : 5	514/44; 536/23.1; 435/320.1; 607/120	
D	ion searched other than minimum documentation to the extent that such documents are included	in the fields searched
Documentati	ion searched duter dian manufactures constitutions and searched duter dian manufactures constitutions and search distributions and search distributions are searched duter dian manufactures and search distributions are searched duter distributions and search distributions are searched duter distributions.	
Electronic d	ata base consulted during the international search (name of data base and, where practicable,	search terms used)
	: MEDLINE, BIOSIS, EMBASE, DERWENT; APS	
DIALOG	: MEDLINE, BIOSIS, EMBASE, BETTTEN, A	
C. DOC	UMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	US 5,496,360 A (D.A.HOFFMAN) 05 March 1996, see	1-35
Υ		
	abstract	
Υ	US 4,711,251 (K.B. STOKES) 08 December 1987, see	1-35
1	abstract	
	abstruct	
Y	NABEL et al. Recombinant Gene Expression in Vivo Within	1-35
•	Endothelial Cells of the Arterial Wall. Science. Vol. 244,	
	pages 1342-1344, see entire document.	
	pages 1042 10 11, ood on the december	
Y	GELLENS et al. Primary structure and functional expression	1-35
'	of the human cardiac tetrodotoxin-insensitive voltage-	
	dependent sodium channel. Proc. Natl. Acad. Sci. USA.	
ľ	January 1992, Vol. 89, pages 554-558, see entire	
	document.	
Furt	her documents are listed in the continuation of Box C. See patent family annex.	
	and the day of the interest of	ernational filing date or priority
	pocial categories of cited documents: "T" Inter document published after the in- date and not in conflict with the applic comment defining the general state of the art which is not considered "T" Inter document published after the date and not in conflict with the applic principle or theory underlying the in-	\$1100 PAIL CIRCO TO MINICISMENT THE
to	be of particular relevance	e claimed invention cannot be
_	relier document published on or after the international rining units considered novel or cannot be considered	ered to involve an inventive step
ci	ocument which may throw doubts on priority claim(s) or which is ted to establish the publication date of another citation or other 'Y' document of particular relevance; the	e claimed invention cannot be
	ectal reason (as specurou) considered to involve an inventive	elen when the document as
	ceans being obvious to a person skilled in t	ne art
th	ocument published prior to the international filing date but later than "&" document member of the same patent to priority date claimed	
Date of the	actual completion of the international search Date of mailing of the international se	aren report
12 MAY	1 2 JUN 1997	
Name and	mailing address of the ISA/US Authorized of ficer	// 10
Commissi	oner of Patents and Trademarks	(A(1)) / h
Box PCT Washingto	on, D.C. 20231	surs ju
Facsimile !		
Form PCT/	ISA/210 (second sheet)(July 1992)*	•

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/05556

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):
A01N 43/04; A61K 31/70; C07H 21/02, 21/04; C12N 15/00, 15/09, 15/63, 15/70, 15/74; A61N 1/04

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.