

www.python.pro.br

Twitter: @renzoprobr

Email: renzo@python.pro.br

Roteiro - Grafos

Definição Nomenclatura Lista de Arcos Lista de Adjacências Mapa de Adjacências Matriz de Adjacências Análise geral Caminho entre 2 pontos Exercício *

Email: renzo@python.pro.br Twitter: @renzoprobr

Grafo

Estrutura de dados que contém Vértices Cada vértice pode se conectar com outros através de arcos (edges)

Pode ser orientado (directed) ou não - dígrafo (undirected) *

Grafo

Figure 14.1: Graph of coauthorship among some authors.

Grafo

Figure 14.2: Example of a directed graph representing a flight network. The endpoints of edge UA 120 are LAX and ORD; hence, LAX and ORD are adjacent. The in-degree of DFW is 3, and the out-degree of DFW is 2.

Nomenclatura

- Adjacentes ou vizinhos: vértices conectados por arcos
- Origem de um arco: vértice de onde parte um arco
- Destino de um arco: vértice onde chega um arco
- Vértice incidente de um arco: é origem ou destino*

Nomenclatura

Grau de um vértice: número de arcos incidentes

Grau de entrada: número de arcos em que vértice é destino

Grau de saída: número de arcos em que vértice é origem

Grafo Esparso: poucos arcos

Grafo Denso: muitos arcos*

pythonpro

Nomenclatura

Caminho (path): sequência de vértices, arcos, que leva de um vértice a outro

Ciclo: caminho que começa e termina no mesmo vértice

Arcos paralelos: possuem msm des e ori

Self-loop: arco cuja origem e destino são ==

Simples: grafo sem arcos paralelos ou self-loop

*

Lista de Arcos

Mais simples, mas talvez não eficiente Vértices em uma lista e arcos em outra

Lista de Arcos - Análise

Operation	Running Time
<pre>vertex_count(), edge_count()</pre>	<i>O</i> (1)
vertices()	O(n)
edges()	O(m)
get_edge(u,v), degree(v), incident_edges(v)	O(m)
insert_vertex(x), insert_edge(u,v,x), remove_edge(e)	<i>O</i> (1)
remove_vertex(v)	O(m)

Table 14.2: Running times of the methods of a graph implemented with the edge list structure. The space used is O(n+m), where n is the number of vertices and m is the number of edges.

Lista de Adjacencias

Arcos criados em listas relacionadas a vértices

(a)

Lista de Adjacências

Operation	Running Time		
<pre>vertex_count(), edge_count()</pre>	<i>O</i> (1)		
vertices()	O(n)		
edges()	O(m)		
$get_edge(u,v)$	$O(\min(\deg(u),\deg(v)))$		
degree(v)	<i>O</i> (1)		
incident_edges(v)	$O(\deg(v))$		
$insert_vertex(x)$, $insert_edge(u,v,x)$	<i>O</i> (1)		
remove_edge(e)	<i>O</i> (1)		
remove_vertex(v)	$O(\deg(v))$		

Table 14.3: Running times of the methods of a graph implemented with the adjacency list structure. The space used is O(n+m), where n is the number of vertices and m is the number of edges.

Mapa de Adjacencias

Arcos em mapas relacionados com vértice

oposto

Mapa de Adjacencias - Análise

Consegue encontrar arco(u,v) em O(1) se comparado com anterior *

Matriz de Adjacencias

Arcos numerados em Matriz Quadrada

			0	1	2	3
u		0		e	g	
v	-	1	e		f	
w		2	g	f		h
Z	-	3			h	
			(b)			

Matriz de Adjacencias

Ocupa muito espaço para grafos esparsos Ruim para Inserção de elementos porque tem que construir nova matriz Boa para acesso*

Análise Geral

Operation	Edge List	Adj. List	Adj. Map	Adj. Matrix
vertex_count()	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
edge_count()	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
vertices()	O(n)	O(n)	O(n)	O(n)
edges()	O(m)	O(m)	O(m)	O(m)
get_edge(u,v)	O(m)	$O(\min(d_u,d_v))$	O(1) exp.	<i>O</i> (1)
degree(v)	O(m)	<i>O</i> (1)	O(1)	O(n)
incident_edges(v)	O(m)	$O(d_v)$	$O(d_{v})$	O(n)
$insert_vertex(x)$	<i>O</i> (1)	<i>O</i> (1)	O(1)	$O(n^2)$
remove_vertex(v)	O(m)	$O(d_v)$	$O(d_{v})$	$O(n^2)$
$insert_edge(u,v,x)$	<i>O</i> (1)	<i>O</i> (1)	O(1) exp.	<i>O</i> (1)
remove_edge(e)	<i>O</i> (1)	<i>O</i> (1)	O(1) exp.	<i>O</i> (1)

Caminho entre dois pontos

pythonpro

Caminho entre dois pontos

Criar conjunto de vértices visitados

Criar pilha caminho

Incluir vértice de origem a visitados e em caminho

Adicionar arcos de origem em pilha se já não houver sido visitado *

pythonpro

Caminho entre dois pontos

Desempilhar primeiro arco Verificar seu oposto e se ele é igual a destino Se for, retornar caminho, se não, repetir procedimento com esse vértice *

Exercício

Implementar grafo não orientado
Utilizar Mapa de Adjacências
Será utilizado no próximo exercício
Slides de testes:

https://github.com/pythonprobr/estrutura-de-dados/blob/main/aula_09/testes_gr afo.py

pythonpro

Email: renzo@python.pro.br

Twitter: @renzoprobr

Obrigado

renzo@python.pro.br @renzoprobr

