

Noise Robust Speech Recognition for Search and Rescue Domain

Masters Thesis Colloquium, 5th April'23

Sangeet Sagar | M.Sc. Language Science & Technology

Supervisors

Prof. Dr. Josef van Genabith (UdS, DFKI)

Dipl. Inf. Bernd Kiefer (DFKI)

Advisor

Prof. Dr. Mirco Ravanelli (Concordia Uni., Mila-Quebec Al Institute)

Contents

- 1. Introduction
- 2. Motivation and Contribution
- 3. Literature Survey
- 4. Technical Background
- 5. Dataset
- 6. Training Strategy
- 7. Results & Analysis
- 8. Conclusion & Future works

Introduction

- Technology: keys to touch → touch to voice
- ASR- translation of spoken utterances
- Challenges
 - low resource languages
 - accent, dialect differences
 - domain mismatch
 - noisy surrounding

Rescue Domain.

Motivaton & Contribution

Motivation

- Dedicated to "A-DRZ: Setting up the German Rescue Robotics Center" project
- Objective: Efficient disaster response with situational-aware robots.
- Need: High-risk scenarios exceed human capacity, require robot aid.
- Solution: Power robots with spoken language understanding (SLU).

A-DRZ: speech processing component [1]

Contribution

- 1. Lack of SAR speech data
- 2. Robustness to SAR noises
 - Multi-condition training approach & Speech enhancement module integration
- Release of *RescueSpeech* dataset
 - First publicly released audio dataset in the SAR domain
 - ~2 hours of annotated speech material

Literature Survey & SpeechBrain toolkit

SpeechBrain

- Open-source conversational AI toolkit based on PyTorch
- Flexible, replicable, and easy-to-use with well-documented features.
- Offers unique and flexible data-loading techniques- JSON & CSV
- Ease of convenience: python train.py hparams.yaml
- All models trained and results evaluated are contributed to SpeechBrain.

Technical Background

Technical Background (ASR)

End2end Models

• aligns input speech frames with text transcriptions

Attention-based Encoder-Decoder model

By marginalizing over alignments, we get a distribution over outputs.

h e I I o

e I I o

helo

Technical Background (ASR)

UNIVERSITÄT DES SAARLANDES Deutsches Forschungszentrum für Künstliche Intelligenz GmbH

End2end Architectures

CRDNN

Wav2Vec2.0

Technical Background (Speech Enhc.)

- SepFormer: Transformer-based neural network
 - Encoder
 - Masking network
 - Decoder

Masking network

SepFormer block diagram that combines IntraTransformer and InterTransformer to model short-term and long-term dependencies.

Evaluation Metrics

Speech recognition

•
$$WER = \frac{I+S+D}{N}$$

- where,
 - I : # insertion
 - S: # substitution
 - D: # deletions
 - N: # words in ref. text

Speech enhancement

- Intrusive
 - SI-SNRi (scale-invariant signal-to-noise ratio)
 - SI-SDRi (scale-invariant signal to distortion ratio)
 - PESQ (Perceptual Evaluation of Speech Quality) [-0.5 to 4.5]
 - STOI (Short-time objective intelligibility) [0-1]
- Non-intrusive
 - DNSMOS (Deep noise suppression- Mean Opinion Score)
 - SIG (speech quality)
 - BAK (background noise quality) 1 5
 - OVRL (overall quality)

Dataset Description

Pre-training

- Pre-train ASR and enhancement models
- CRDNN, Wav2vec2.0, WavLM
 - CommonVoice (DE)
- SepFormer
 - DNS4
 - 150 noise types (-5, 15 dB)

	CommonVoice10.0		D	NS4
	HRS	#Utts.	HRS	#Utts.
Train	739.17	466189	1317	1186019
Valid	26.97	16067	6.67	5965
Test	27.15	16067	5.17	921

Dataset Description

The **RescueSpeech** Dataset

- Fine-tune ASR and enhancement models
- Simulated SAR exercises
- Noise types:
 - emergency vehicle siren
 - breathing
 - engine
 - chopper
 - static radio noise

	Clean		N	oisy
	HRS	#Utts.	HRS	#Utts.
Train	1.02	1543	4.84	3000
Valid	0.26	387	1.43	900
Test	0.32	484	1.40	900

1. ASR training

- a. CRDNN seq2seq with beam-search + LM
- b. Wav2vec2.0 CTC with greedy decoder
- c. WavLM CTC with greedy decoder
- d. Whisper (no pre-training needed)

2. Speech enhancement training

a. SepFormer

3. Training strategies

a) Multi-condition training

3. Training strategies

(b) Model-combination I: Independent training

- 3. Training strategies
 - (c) Model-combination I: Joint training

Results & Discussion

Pre-training Performance

- **ASR** dataset used- German CommonVoice (1200h)
- **Speech Enhancement** dataset used- DNS4 (1300h)

Comparison of WER on CommonVoice test set

ASR Model	WER
CRDNN	7.92
Wav2vec2	9.54
WavLM	8.98

Evaluation on DNS4 2022 baseline dev set using DNSMOS

	Model	\mathbf{SIG}	BAK	OVRL
D !:	Noisy	2.984	2.560	2.205
Baseline model	→ NSNet2 [77]	3.014	3.942	2.712
	SepFormer	2.999	3.076	2.437

ASR Performance

- 1st attempt to noise robust speech recognition
 - Dataset used- RescueSpeech

WER comparison on RescueSpeech dataset

	ASR Model	clean	noisy
Due too in in a	CRDNN	57.05	86.48
Pre-training	Wav2vec2	50.03	86.45
	WavLM	49.81	83.82
	Whisper	28.41	61.86
	CRDNN	24.47	59.52
Clean training	Wav2vec2	22.16	65.65
	WavLM	21.67	61.13
	Whisper	28.39	56.60
	CRDNN	27.45	57.95
Multi-cond. training	Wav2vec2	23.91	60.61
	WavLM	22.48	55.53
	Whisper	29.75	62.53

Combining ASR and Speech

Enhancement

- 2nd & 3rd attempt to noise robust speech recognition
 - Dataset used- RescueSpeech

Speech enhancement performance on the RescueSpeech noisy test set

	Model	Model Comb. II			
	Comb. I	CRDNN	wav2vec2	WavLM	Whisper
SI-SNRi	5.624	6.145	5.913	5.959	6.137
SDRi	5.278	5.668	5.465	5.475	5.686
PESQ	2.249	2.304	2.259	2.270	2.296
STOI	0.816	0.823	0.822	0.820	0.822

WER achieved with independent training (Model Comb. I) and joint training (Model Comb. II)

ASR Model	Model Comb. I	Model Comb. II
CRDNN	56.62	56.02
Wav2vec2	50.39	51.58
WavLM	48.25	50.04
Whisper	29.97	33.19

Log-power spectrogram of clean, noisy, and SepFormerenhanced utterances (-5 dB)

PESQ, SDRi, SI-SNRi vs SNR of SepFormer enhanced utterances

Conclusion

- Addressed challenges: lack of speech data, robustness to SAR noises, and conversational speech
- Introduced **RescueSpeech**: a new German speech dataset for robust speech recognition in noisy environments
- Proposed multiple training strategies involving fine-tuning pretrained models on in-domain data
- Tested cutting-edge self-supervised models (Wav2Vec2, WavLM, and Whisper) but best model-**Whisper** only achieved WER of 29.97%, highlighting the need for further research in this domain.

Future work

- Consider channel characteristics in speech recognition model design and training.
- Extend dataset to include other languages (English, French, Italian, Spanish).
- Use data augmentation techniques to generate more SAR data.
- Test and compare with other Speech Enhancement models.
- Address issues with highly emotional speech.
- Address additional noise types (foot stomping, structural, interference noises).

Project Demo

https://sangeet2020.github.io/

References

- 1. Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., Morais, R., Saunders, L., Tyers, F. M., & Weber, G. (2019). Common Voice: A Massively-Multilingual Speech Corpus. arXiv. https://doi.org/10.48550/arXiv.1912.06670
- 2. Dubey, H., Gopal, V., Cutler, R., Aazami, A., Matusevych, S., Braun, S., Eskimez, S. E., Thakker, M., Yoshioka, T., Gamper, H., & Aichner, R. (2022). ICASSP 2022 Deep Noise Suppression Challenge. arXiv. https://doi.org/10.48550/arXiv.2202.13288
- 3. Ravanelli, M., Parcollet, T., Plantinga, P., Rouhe, A., Cornell, S., Lugosch, L., Subakan, C., Dawalatabad, N., Heba, A., Zhong, J., Chou, J., Yeh, S., Fu, S., Liao, C., Rastorgueva, E., Grondin, F., Aris, W., Na, H., Gao, Y., . . . Bengio, Y. (2021). SpeechBrain: A General-Purpose Speech Toolkit. arXiv. https://doi.org/10.48550/arXiv.2106.04624
- 4. Ravanelli, M., Parcollet, T., Plantinga, P., Rouhe, A., Cornell, S., Lugosch, L., Subakan, C., Dawalatabad, N., Heba, A., Zhong, J., Chou, J., Yeh, S., Fu, S., Liao, C., Rastorgueva, E., Grondin, F., Aris, W., Na, H., Gao, Y., . . . Bengio, Y. (2021). SpeechBrain: A General-Purpose Speech Toolkit. arXiv. https://doi.org/10.48550/arXiv.2106.04624
- 5. Titouan Parcollet, Mirco Ravanelli. The Energy and Carbon Footprint of Training End-to-End Speech Recognizers. 2021. ffhal-03190119
- 6. Subakan, C., Ravanelli, M., Cornell, S., Bronzi, M., & Zhong, J. (2020). Attention is All You Need in Speech Separation. arXiv. https://doi.org/10.48550/arXiv.2010.13154

Appendix- Whisper ASR

- Trained on 680K hrs of multilingual data.
- Directly learns mapping between utterances and transcriptions
- Model: encoder-decoder transformer

Appendix- WavLM

UNIVERSITÄT
DES
SAARLANDES

Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

- Trained on 94K hrs of English data.
- Model: Transformer based
 - CNN as feature encoder

