O Teorema 7 está ilustrado na Figura 3. Quando f é positiva e par, a parte (a) diz que a área sob y=f(x) de -a até a é o dobro da área de 0 até a em virtude da simetria. Lembre-se de que uma integral $\int_a^b f(x) \, dx$ pode ser expressa como a área acima do eixo x e abaixo de y=f(x) menos a área abaixo do eixo x e acima da curva. Assim, a parte (b) diz que a integral é 0, pois as áreas se cancelam.

EXEMPLO 10 Uma vez que $f(x) = x^6 + 1$ satisfaz f(-x) = f(x), ela é par, e portanto

$$\int_{-2}^{2} (x^6 + 1) dx = 2 \int_{0}^{2} (x^6 + 1) dx$$
$$= 2 \left[\frac{1}{7} x^7 + x \right]_{0}^{2} = 2 \left(\frac{128}{7} + 2 \right) = \frac{284}{7}$$

EXEMPLO 11 Já que $f(x) = (\operatorname{tg} x)/(1 + x^2 + x^4)$ satisfaz f(-x) = -f(x), ela é ímpar, e por conseguinte

$$\int_{-1}^{1} \frac{\operatorname{tg} x}{1 + x^2 + x^4} \, dx = 0$$

5.5 Exercícios

1-6 Calcule a integral fazendo a substituição dada.

$$1. \quad \int \cos 3x \, dx, \quad u = 3x$$

2.
$$\int x(4+x^2)^{10} dx, \quad u=4+x^2$$

3.
$$\int x^2 \sqrt{x^3 + 1} \, dx, \quad u = x^3 + 1$$

4.
$$\int \frac{dt}{(1-6t)^4}$$
, $u=1-6t$

5.
$$\int \cos^3 \theta \ \sin \theta \ d\theta, \ \theta = \cos \theta$$

6.
$$\int \frac{\sec^2(1/x)}{x^2} dx$$
, $u = 1/x$

7–48 Calcule a integral indefinida.

7.
$$\int x \operatorname{sen}(x^2) \, dx$$

$$8. \quad \int x^2 e^{x^3} dx$$

9.
$$\int (3x-2)^{20} dx$$

10.
$$\int (3t+2)^{2,4} dt$$

11.
$$\int (x+1)\sqrt{2x+x^2} \, dx$$

12.
$$\int \sec^2 2\theta \, d\theta$$

$$13. \int \frac{dx}{5 - 3x}$$

$$14. \int u\sqrt{1-u^2} \ du$$

15.
$$\int \operatorname{sen} \pi t \, dt$$

$$16. \int e^x \operatorname{sen}(e^x) \, dx$$

$$17. \int \frac{e^u}{(1-e^u)^2} du$$

$$18. \int \frac{\sin \sqrt{x}}{\sqrt{x}} \, dx$$

20. $\int \frac{z^2}{z^3 + 1} dz$

19.
$$\int \frac{a + bx^2}{\sqrt{3ax + bx^3}} dx$$

21. $\int \frac{(\ln x)^2}{x^2} dx$

22.
$$\int \cos^4 \theta \ \sin \theta \ d\theta$$

23.
$$\int \sec^2 \theta \ \tan^3 \theta \ d\theta$$

24.
$$\int \sqrt{x} \, \sin(1 + x^{3/2}) \, dx$$

$$25. \int e^x \sqrt{1 + e^x} \, dx$$

26.
$$\int \frac{dx}{ax+b} \quad (a \neq 0)$$

27.
$$\int (x^2 + 1)(x^3 + 3x)^4 dx$$

28.
$$\int e^{\cos t} \sin t \, dt$$

29.
$$\int 5^t \sin(5^t) dt$$

30.
$$\int \frac{\mathrm{tg}^{-1} x}{1 + x^2} \, dx$$

$$\mathbf{31.} \int e^{\operatorname{tg} x} \sec^2 x \, dx$$

$$32. \int \frac{\operatorname{sen}(\ln x)}{x} \, dx$$

$$33. \int \frac{\cos x}{\sin^2 x} \, dx$$

$$34. \int \frac{\cos(\pi/x)}{x^2} \, dx$$

35.
$$\int \sqrt{\cot x} \csc^2 x \, dx$$

36.
$$\int \frac{2^t}{2^t+3} dt$$

$$37. \int \operatorname{senh}^2 x \cosh x \, dx$$

$$38. \int \frac{dt}{\cos^2 t \sqrt{1 + \lg t}}$$

39.
$$\int \frac{\sin 2x}{1 + \cos^2 x} dx$$

40.
$$\int \frac{\sin x}{1 + \cos^2 x} dx$$

41.
$$\int \cot x \, dx$$

42.
$$\int \operatorname{sen} t \operatorname{sec}^2(\cos t) dt$$

43.
$$\int \frac{dx}{\sqrt{1-x^2} \, \text{sen}^{-1} x}$$

44.
$$\int \frac{x}{1+x^4} dx$$

45.
$$\int \frac{1+x}{1+x^2} \, dx$$

46.
$$\int x^2 \sqrt{2 + x} \, dx$$

47.
$$\int x(2x+5)^8 dx$$

48.
$$\int x^3 \sqrt{x^2 + 1} \, dx$$

49–52 Calcule a integral indefinida. Ilustre e verifique que sua resposta é razoável fazendo o gráfico da função e de sua primitiva (tome C=0).

49.
$$\int x(x^2-1)^3 dx$$

50.
$$\int tg^2\theta \sec^2\theta \ d\theta$$

51.
$$\int e^{\cos x} \sin x \, dx$$

$$52. \int \sin x \cos^4 x \, dx$$

53-73 Avalie a integral definida.

53.
$$\int_0^1 \cos(\pi t/2) dt$$

54.
$$\int_0^1 (3t-1)^{50} dt$$

55.
$$\int_0^1 \sqrt[3]{1 + 7x} \ dx$$

56.
$$\int_0^3 \frac{dx}{5x+1}$$

57.
$$\int_0^{\pi} \sec^2(t/4) dt$$

58.
$$\int_{1/6}^{1/2} \csc \pi t \cot \pi t dt$$

59.
$$\int_{1}^{2} \frac{e^{1/x}}{x^{2}} dx$$

60.
$$\int_0^1 x e^{-x^2} \, dx$$

61.
$$\int_{-\pi/4}^{\pi/4} (x^3 + x^4 \lg x) \, dx$$

62.
$$\int_0^{\pi/2} \cos x \, \text{sen(sen } x) \, dx$$

63.
$$\int_0^{13} \frac{dx}{\sqrt[3]{(1+2x)^2}}$$

64.
$$\int_0^a x \sqrt{a^2 - x^2} \ dx$$

65.
$$\int_0^a x \sqrt{x^2 + a^2} \, dx \quad (a > 0)$$

66.
$$\int_{-\pi/3}^{\pi/3} x^4 \sin x \, dx$$

67.
$$\int_{1}^{2} x \sqrt{x-1} \, dx$$

68.
$$\int_0^4 \frac{x}{\sqrt{1+2x}} \, dx$$

$$69. \int_{e}^{e^4} \frac{dx}{x\sqrt{\ln x}}$$

70.
$$\int_0^{1/2} \frac{\sin^{-1} x}{\sqrt{1 - x^2}} \, dx$$

71.
$$\int_0^1 \frac{e^z + 1}{e^z + z} \, dz$$

72.
$$\int_{0}^{T/2} \sin(2\pi t/T - \alpha) dt$$

73.
$$\int_0^1 \frac{dx}{(1+\sqrt{x})^4}$$

74. Verifique que $f(x) = \sin \sqrt[3]{x}$ é uma função ímpar e use este fato para mostrar que

$$0 \le \int_{-2}^3 \operatorname{sen} \sqrt[3]{x} \, dx \le 1.$$

75-76 Use um gráfico para dar uma estimativa grosseira da área da região que está sob a curva dada. Encontre a seguir a área exata.

75.
$$y = \sqrt{2x + 1}, \ 0 \le x \le 1$$

76.
$$y = 2 \sin x - \sin 2x$$
, $0 \le x \le \pi$

77. Calcule $\int_{-2}^{2} (x+3)\sqrt{4-x^2} dx$ escrevendo-a como uma soma de duas integrais e interpretando uma dessas integrais em termos de uma área.

78. Calcule $\int_0^1 x \sqrt{1-x^4} dx$ fazendo uma substituição e interpretando a integral resultante em termos de uma área.

79. Quais das seguintes áreas são iguais? Por quê?

80. Um modelo para a taxa de metabolismo basal, em kcal/h, de um homem jovem é $R(t) = 85 - 0.18 \cos(\pi t/12)$, em que t é o tempo em horas medido a partir de 5 horas da manhã. Qual é o metabolismo basal total deste homem, $\int_0^{24} R(t) dt$, em um período de 24 horas?

81. Um tanque de armazenamento de petróleo sofre uma ruptura em t = 0 e o petróleo vaza do tanque a uma taxa de $r(t) = 100e^{-0.01t}$ litros por minuto. Quanto petróleo vazou na primeira hora?

82. Uma população de bactérias tem inicialmente 400 bactérias e cresce a uma taxa de $r(t) = (450,268)e^{1.12567t}$ bactérias por hora. Quantas bactérias existirão após 3 horas?

83. A respiração é cíclica e o ciclo completo respiratório desde o início da inalação até o fim da expiração demora cerca de 5 s. A taxa máxima de fluxo de ar nos pulmões é de cerca de 0,5 L/s. Isso explica, em partes, porque a função $f(t) = \frac{1}{2} \sin(2\pi t/5)$ tem sido frequentemente utilizada para modelar a taxa de fluxo de ar nos pulmões. Use esse modelo para encontrar o volume de ar inalado nos pulmões no instante t.

84. A Alabama Instruments Company preparou uma linha de montagem para fabricar uma nova calculadora. A taxa de produção dessas calculadoras após *t* semanas é

$$\frac{dx}{dt} = 5000 \left(1 - \frac{100}{(t+10)^2} \right) \text{ calculadoras/semana.}$$

(Observe que a produção tende a 5 000 por semana à medida que passa o tempo, mas a produção inicial é baixa, pois os trabalhadores não estão familiarizados com as novas técnicas.) Encontre o número de calculadoras produzidas no começo da terceira semana até o fim da quarta semana.

85. Se *f* for contínua e $\int_{0}^{4} f(x) dx = 10$, calcule $\int_{0}^{2} f(2x) dx$.

86. Se f for contínua e $\int_0^9 f(x) dx = 4$, calcule $\int_0^3 x f(x^2) dx$.

87. Se f for contínua em \mathbb{R} , demonstre que

$$\int_{-a}^{b} f(-x) \, dx = \int_{-a}^{-a} f(x) \, dx.$$

Para o caso onde $f(x) \ge 0$ e 0 < a < b, faça um diagrama para interpretar geometricamente essa equação como uma igualdade de áreas.

88. Se f for contínua em \mathbb{R} , demonstre que

$$\int_a^b f(x+c) \, dx = \int_{a+c}^{b+c} f(x) \, dx.$$

Para o caso onde $f(x) \ge 0$, faça um diagrama para interpretar geometricamente essa equação como uma igualdade de áreas.

89. Se a e b forem números positivos, mostre que

$$\int_0^1 x^a (1-x)^b dx = \int_0^1 x^b (1-x)^a dx.$$

90. Se f é contínua em $[0, \pi]$, use a substituição $u = \pi - x$ para demonstrar que

$$\int_0^{\pi} x f(\operatorname{sen} x) \, dx = \frac{\pi}{2} \int_0^{\pi} f(\operatorname{sen} x) \, dx.$$

91. Use o Exercício 90 para calcular a integral

$$\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx.$$

92. (a) Se f é contínua, mostre que

$$\int_0^{\pi/2} f(\cos x) \, dx = \int_0^{\pi/2} f(\sin x) \, dx.$$

(b) Use a parte (a) para calcular $\int_0^{\pi/2} \cos^2 x \, dx = \int_0^{\pi/2} \sin^2 x \, dx$.