CONCEITOS FUNDAMENTAIS

- Número atômico (Z) = número de prótons.
- Número de massa (A) = número de prótons + número de nêutrons:

$$A = Z + N$$

 Elemento químico é um conjunto de átomos com o mesmo número atômico (Z).

Notação geral de um átomo:

O átomo, no seu estado normal (fundamental), é eletricamente neutro \Rightarrow nº $p = n^{\circ} e^{-}$

Átomo perde
$$e^-$$
 = cátion $\Rightarrow {}_Z^A X^{X+}$
Átomo ganha e^- = ânion $\Rightarrow {}_Z^A X^{X-}$ ions

5) Isóbaros
$$\begin{cases} \neq Z \\ = A \\ \neq N \end{cases}$$

6) Isótonos
$$\begin{cases} \neq Z \\ \neq A \\ = N \end{cases}$$

EXERCÍCIOS DE APLICAÇÃO

- 01 (UNIRIO-RJ) O átomo X é isóbaro do 40 Ca e isótopo do 36 Ar. Assinale o número de nêutrons do átomo X. Dados: Número atômicos: Ar = 18; Ca = 20
- a) 4
- b) 22
- c) 40
- d) 18
- e) 36
- 02 (UMC-SP) Dados os nuclídeos ${}_{a}X^{b}$, ${}_{c}Y^{2c}$ e ${}_{c+2}Z^{d}$, e sabe-se que X e Y são isótopos, Y e Z são isóbaros e X e Z são isótonos. Sabendo que o número de massa de X é igual a 40, os números de nêutrons de Y e Z serão respectivamente iguais a:
- a) 21 e 19
- b) cea
- c) 42 e 21
- d) 19 e 21
- e) 21 e 42

04 (FGV-SP) O elemento h				
a) diferente número de próto b) mesmo número de próto = 2 elétrons, ³ H = 3 elétrons c) mesmo número de próto d) mesmo número de próto ² H = 2 nêutrons, ³ H = 3 nêu e) mesmo número de próto ² H = 1 nêutron, ³ H = 2 nêutron	3 isótopos apresentam en tons, mesmo número de nê ons, mesmo número de nê s). ons, mesmo número de nê ons, mesmo número de e trons).	tre si: êutrons e mesmo r utrons e diferente utrons e diferente r létrons e diferente	número de massa número de elétr número de massa número de nêu	a. ons (¹H = 1 elétron, ²H a. trons (¹H = 1 nêutron,
05 (PUCCAMP-SP) A água átomos de deutério (númo molécula da água pesada, é	ero de massa 2) e pelo is			
a) 10	b) 12	c) 16	d) 18	e) 20
06 (UECE-CE) Dalton, na determinado elemento são À luz dos conhecimentos at a) a hipótese é verdadeira, b) a hipótese é verdadeira, c) a hipótese é falsa, pois químico podem ter massas d) A hipótese é falsa, poi químico podem ter massas	idênticos em massa". uais podemos afirmar que pois foi confirmada pela d pois foi confirmada pela d com a descoberta dos diferentes. com a descoberta dos	: escoberta dos isóto escoberta dos isóto sótopos, verificou-	pos. nos. se que átomos	do mesmo elemento
07 (UNIRIO - RJ) O Cátion N Dados: Número atômico: X		nio. Qual o número	atômico de Y?	
a) 34	b) 52	c) 56	d) 38	e) 54
08 (UFPI-PI) A representa composição nuclear: a) 26 prótons, 26 elétrons e b) 26 elétrons e 30 nêutron c) 26 prótons, 26 elétrons e d) 26 prótons e 26 elétrons e) 26 prótons e 30 nêutrons e) 26 prótons e 30 nêutrons	e 30 nêutrons. s. e 56 nêutrons.	tomo do elemento	o químico ferro	apresenta a seguinte

I. X é isóbaro de Y	idas as seguintes informaçõe e isótono de Z. Itômico 56, número de mass			
III. O número de n O número atômico	nassa de Z é 138.			
a) 53	b) 54	c) 55	d) 56	e) 57
atômico é 14. Sab	_	0 nêutrons, o núm	ons que um certo átomo neutro c ero atômico e o número de mass	-
	ia, isotonia a, isotonia ia, isobaria		C e 40/20 Ca	
abaixo relativa a e Prótons no núcleo Nêutrons no núcle Elétrons em um át Prótons no íon l ⁻ fo Elétrons no íon l ⁻ f	sse isótopo. como de l como de l cormado pelo isótopo cos valores da tabela, de cim 4. 54. 5, 132.		úrbios da tireoide é $^{131}_{53} { m I}$. Comple	ete a tabela
	atomo constituído de 17 pe número de massa iguais a:	orótons, 18 nêutroi	ns e 17 elétrons apresenta, respe	ctivamente,

14 (PUCCAMP-SP) O silício, elemento químico mais abundante na natureza depois do oxigênio, tem granda aplicação na indústria eletrônica. Por outro lado, o enxofre é de importância fundamental na obtenção de description de la contraction de la con					
ácido sulfúrico. Sab	endo-se que o áto	omo $^{28}_{14}{ m Si}$ é isóton	o de uma das varie	edades isotópicas do enxofre, 16S,	
pode-se afirmar que a) 14. b		nxofre tem número c) 30.	de massa: d) 32.	e) 34.	
15 (VUNESP-SP) O í	on $^{39}_{19}K^+$ possui:				
a) 19 prótons.b) 19 nêutrons.c) 39 elétrons.d) número de massa e) número atômico	~				
16 (UFAC-AC) Dois dos átomos X e Y são a) 17X ³⁵ e 17Y ¹⁷ . b) 17X ³⁵ e 17Y ⁴⁰ . c) 17X ³⁵ e 17Y ³⁸ . d) 17X ³⁵ e 17Y ³⁷ . e) 17X ³⁸ e 17Y ³⁹ .		sótopos, tais que 3x	$_{x+2}X^{7x} = _{2x+7}Y^{7x+2}$. O	s números de massa e de prótons	
número atômico igu	ual ao seu número úmero 15 esquece ram átomos isóbai	de chamada e núm eu de somar 2 para ros.	nero de nêutrons 2 obter o número d	naginassem um átomo que tivesse unidades a mais que o número de e nêutrons e, consequentemente,	
"C" de Z = 12. O eler	mento "B" é isóbar	ro de "C". Qual o nú	mero de massa de	que tem 13 nêutrons, e isótono de "A"? e) 24	
	o C tem 94 nêutr	-		número atômico 70 e número de é isóbaro de C e isótono de A. O	
a) 160.	b) 70.	c) 74.	d) 78.	e) 164.	
isótopo do oxigênio	$({}_8{\rm O}^{16})$, o número d	le nêutrons impossi	ível de se encontrar	io (₁ H ¹ , ₁ H ² e ₁ H ³) e de apenas um numa molécula de água é: e) 13	
-	W, que apresenta	_	· ·	ons do átomo Y, que por sua vez é sa, respectivamente, 36 e 84. O	
a) 33 b) 36	c) 39	d) 45	e) 51	

22 (AEU-DF) As partículas fundamentais do átomo são o próton, o nêutron e o elétron. O número de prótons caracteriza o elemento químico e é chamado de número atômico (Z). O número de massa (A) de um átomo corresponde ao total de prótons e nêutrons que o mesmo possui no seu núcleo. O elétron possui carga negativa, o próton positiva e o nêutron não possui carga elétrica.

Com base nessas informações e nos seus conhecimentos sobre o modelo atômico atual, julgue as afirmações a seguir:

- (1) Uma partícula que possui 12 prótons, 10 elétrons e 12 nêutrons é eletricamente neutra.
- (2) Dois átomos neutros que possuem o mesmo número de elétrons pertencem ao mesmo elemento químico.
- (3) O trítio possui 1 próton e 2 nêutrons. O deutério possui 1 próton e 1 nêutron. Estas partículas pertencem a um mesmo elemento químico, apesar de o trítio ser mais pesado do que o deutério.
- (4) O átomo de ferro possui número de massa 56 e 30 nêutrons. Um átomo neutro de ferro possui 26 elétrons.
- (5) Uma partícula positiva que possui 33 prótons e 36 elétrons possui carga positiva e é chamada de cátion.
- 23 (MACKENZIE-SP) Se o isótopo do chumbo que apresenta número de massa 210 forma íons Pb²⁺ e Pb⁴⁺, que possuem respectivamente 80 e 78 elétrons, então o número de nêutrons desse átomo neutro é:
- a) 138
- b) 130
- c) 132
- d) 128
- e) 158
- 24 (PUC-SP) Considere as seguintes informações sobre os átomos A, B e C.
- a) A e B são isótopos.
- b) A e C são isótonos.
- c) B e C são isóbaros.
- d) O número de massa de A é igual a 55.
- e) A soma dos números de prótons de A, B e C é igual a 79.
- f) A soma dos números de nêutrons de A, B e C é igual a 88.

Determine os números atômicos e de massa de A, B e C.

- 25 Quais são os números de prótons (Z), de massa (A), de nêutrons (N) e de elétrons (E) de um átomo de potássio ($^{39}_{19}$ K) em seu estado normal?
- 26 Um átomo é constituído por 21 elétrons e possui número de massa igual a 40. Assinale a alternativa que apresenta seu número atômico e seu número de nêutrons, respectivamente.
- a) 19 e 21.
- b) 21 e 40.
- c) 21 e 21.
- d) 19 e 40.
- e) 21 e 19.
- 27 (MACKENZIE-SP) O número de prótons, de elétrons e de nêutrons do átomo $^{35}_{17}C\ell$ é, respectivamente:
- a) 17, 17, 18
- b) 35, 17, 18
- c) 17, 18, 18
- d) 17, 35, 35
- e) 52, 35, 17

28 (UFV-MG) Os valores corretos de A, B, C, D e E são, respectivamente:

Elemento neutro	Х	Υ
Número atômico	13	D
Número de prótons	Α	15
Número de elétrons	В	15
Número de nêutrons	С	16
Número de massa	27	Е

Os valores corretos A, B, C, D e E são, respectivamente:

a) 13, 14, 15, 16, 31

d) 13, 13, 14, 15, 31

b) 14, 14, 13, 16, 30

e) 15, 15, 12, 30, 31

- c) 12, 12, 15, 30, 31
- 29 (UFLA-MG) Um átomo neutro de determinado elemento químico se transforma num cátion, quando:
- a) encontra-se eletronicamente neutro.
- b) perde prótons do núcleo.
- c) ganha nêutrons na eletrosfera.
- d) perde elétrons da eletrosfera.
- e) seu número de prótons é igual ao seu número de elétrons.
- 30 (UFAL-AL) Os íons representados por $^{23}_{11}Na^+$ e $^{24}_{11}Na^+$ apresentam o mesmo número de:
- a) prótons, somente.
- b) elétrons, somente.
- c) nêutrons, somente.
- d) prótons e elétrons, somente.
- e) prótons, nêutrons e elétrons.

31 (UFSM-RS) Relacione as colunas:

Coluna I	Coluna II
Átomo ou íon	Número de prótons, de elétrons e de nêutrons, respectivamente
1. $^{35}_{17}\text{CI}^-$	a. 1, 1, 0
2. $^{56}_{26}$ Fe	b. 13, 10, 14
3. ¦H	c. 17, 18, 18
4. ²⁷ ₁₃ Al ³⁺	d. 26, 26, 30
5. 31 ₁₅ P	e. 15, 15, 16
	f. 1, 2, 1

A associação correta é:

- a) 1c 2d 3a 4b 5e
- b) 1f 2c 3b 4a 5d
- c) 1c 2e 3b 4d 5f
- d) 1b 2d 3f 4c 5a

32 (UNIDF-DF) As partículas fundamentais do átomo são o próton, o nêutron e o elétron. O número de prótons caracteriza o elemento químico e é chamado de número atômico (Z). O número de massa (A) de um átomo corresponde ao total de prótons e nêutrons que o mesmo possui no seu núcleo. O elétron possui carga negativa, o próton positiva e o nêutron não possui carga elétrica.

Com base nessas informações e nos seus conhecimentos sobre o modelo atômico atual, julgue as afirmações a seguir.

- () Uma partícula que possui 12 prótons, 10 elétrons e 12 nêutrons é eletricamente neutra.
- () Dois átomos neutros que possuem o mesmo número de elétrons pertencem ao mesmo elemento químico.
- () O trítio possui 1 próton e 2 nêutrons. O deutério possui 1 próton e 1 nêutron. Estas partículas pertencem a um mesmo elemento químico, apesar de o trítio ser mais pesado do que o deutério.
- () O átomo de ferro possui número de massa 56 e 30 nêutrons. Um átomo neutro de ferro possui 26 elétrons.
- () Uma partícula positiva que possui 33 prótons e 36 elétrons possui carga positiva e é chamada de cátion.
- **33 (MACKENZIE-SP)** A soma dos prótons, elétrons e nêutrons ($p^+ + e^- + n^\circ$) do átomo $_{2x-2}Q^{4x}$, que possui 22 nêutrons, é igual a:
- a) 62
- b) 58
- c) 74
- d) 42
- e) 92

- 34 (UFSM-RS) Assinale a alternativa correta.
- a) Isótopos de um elemento são átomos com diferentes números atômicos e mesmo número de massa.
- b) Elemento químico é definido como um conjunto de átomos de mesmo número atômico.
- c) O número de massa de um átomo é a soma do seu número de prótons e do seu número de elétrons.
- d) Ocorre íon positivo ou cátion quando o número de prótons é menor que o número de elétrons.
- e) O número atômico pode ser definido pelo número de prótons ou de elétrons do átomo.
- 35 (UFSM-RS) Analise as seguintes afirmativas:
- I. Isótopos são átomos de um mesmo elemento que possuem mesmo número atômico e diferente número de massa.
- II. O número atômico de um elemento corresponde ao número de prótons no núcleo de um átomo.
- III. O número de massa corresponde à soma do número de prótons e do número de elétrons de um elemento. Está(ão) correta(s):
- a) apenas I.
- b) apenas II.
- c) apenas III.
- d) apenas I e II.
- e) apenas II e III.
- **36 (UFV-MG)** Considere as afirmativas abaixo:
- I. Os prótons e os nêutrons são responsáveis pela carga do átomo.
- II. Isótopos apresentam as mesmas propriedades químicas.
- III. Prótons e nêutrons são os principais responsáveis pela massa do átomo.
- IV. A massa atômica é a soma do número de prótons e nêutrons do átomo.São afirmativas corretas:
- .
- a) II e III. b) I e IV.
- c) III e IV.
- d) I e II.
- e) I, II e IV.

- 37 Isótopos e alótropos constituem átomos do mesmo elemento químico, porém têm propriedades diferentes. Conceitue isótopos e alótropos de maneira que você consiga diferenciá-los.
- 38 Um átomo possui 19 prótons, 20 nêutrons e 19 elétrons. Qual dos seguintes átomos é seu isótono?
- a) $^{21}_{19}\mathrm{A}$
- b) $^{20}_{19}\mathrm{B}$
- c) $_{18}^{38}$ C
- d) $_{39}^{58}$ D
- e) $^{39}_{20}\mathrm{E}$
- 39 (UFF-RJ) A tabela seguinte fornece o número de prótons e o número de nêutrons existentes no núcleo de vários átomos.

Átomo	Nº de prótons	N° de nêutrons
а	34	45
b	35	44
С	33	42
d	34	44

Considerando os dados da tabela, o átomo isótopo de a e o átomo que tem o mesmo número de massa do átomo a são, respectivamente:

- a) deb
- b) ced
- c) bec
- d) bed
- e) ceb
- 40 (PUC-MG) Considere os seguintes dados

Átomo	Prótons	Nêutrons	Elétrons
1	40	40	40
II	42	38	42

Os átomos I e II:

- a) são isótopos.
- b) são do mesmo elemento.
- c) são isóbaros.
- d) são isótonos.
- e) têm o mesmo número atômico.

41 (UFPR-PR) Considere os conjuntos de espécies químicas a seguir.

$$A = \left\{ {}^{1}_{1}H, {}^{2}_{1}H, {}^{3}_{1}H \right\} \ B = \left\{ {}^{40}_{20}Ca, {}^{40}_{18}Ar \right\} \ C = \left\{ {}^{3}_{2}He, {}^{4}_{2}He \right\} \ D = \left\{ {}^{13}_{6}C, {}^{13}_{7}N \right\} \ E = \left\{ {}^{3}_{2}He^{+}, {}^{3}_{1}H \right\} \ A = \left\{ {}^{1}_{1}H, {}^{1}_{1}H, {}^{1}_{1}H \right\} \ A = \left\{ {}^{1}_{1}H, {}^{1}_{1}H, {}^{1}_{1}H, {}^{1}_{1}H \right\} \ A = \left\{ {}^{1}_{1}H, {}^{1}_{1}H, {}^{1}_{1}H, {}^{1}_{1}H \right\} \ A = \left\{ {}^{1}_{1}H, {}^{1$$

Com relação aos conjuntos descritos, é correto afirmar:

- () O conjunto C contém apenas isótopos do elemento hélio.
- () Os membros de E apresentam o mesmo número de elétrons, sendo, portanto, isótopos.
- () O conjunto A contém apenas isótopos do elemento hidrogênio.
- () Os membros de B são isóbaros.
- () Os membros de **D** apresentam o mesmo número de nêutrons.
- 42 (UFS-SE) O átomo $^{2X}_{X}A$ é isóbaro do $^{58}_{28}Ni$. O número de nêutrons em A é:
- a) 28
- b) 29
- c) 30
- d) 31
- **43 (PUC-RS)** O isótopo 51 do cromo pode ser usado na medicina para o estudo das hemácias. Os íons Cr²⁺ e Cr³⁺ provenientes desse isótopo diferem quanto ao número:
- a) atômico.
- b) de massa.
- c) de nêutrons.
- d) de elétrons.
- e) de prótons.

- 44 Considere as seguintes informações sobre os átomos X, Y e Z:
- a) X e Z são isótopos
- b) X e Y são isótonos
- c) Y e Z são isóbaros

Sabendo-se que o número de massa de X é 70, o número atômico de Z é 35 e seu número de nêutrons é 33, determine os números atômicos e de massa de todos os elementos.

- 45 Dois átomos X e Y são isótopos, tais que $_{3x+2}X^{7x}$ e $_{2x+7}Y^{7x+2}$. Os números de massa e de prótons dos átomos X e Y são:
- a) $_{17}X^{35}$ e $_{17}Y^{17}$.
- b) $_{17}X^{35}$ e $_{17}Y^{40}$.
- c) $_{17}X^{35}$ e $_{17}Y^{38}$.
- d) ₁₇X³⁵ e ₁₇Y³⁷.
- e) $_{17}X^{35}$ e $_{17}Y^{39}$.
- **46 (FMU-SP)** Considere os seguintes dados referentes aos átomos A, B e C. Os valores de X, Y e Z serão, respectivamente:

- a) 44; 21; 45
- b) 44; 45; 21
- c) 21; 44; 45
- d) 21; 45; 44
- e) 45; 21; 44

47 (UEPG-PR) Sobre os átomos A e B são conhecidos os seguintes dados:								
II. O átomo B te	I. O átomo A tem 21 elétrons e número de massa igual a 40. II. O átomo B tem número atômico 20. III. A e B são átomos isótonos entre si.							
Portanto, poder a) 39	mos afirmar que o b) 40	o número de ma c) 41	assa do átomo B e d) 38	é: e) 37				
massa 160. O á		nêutrons, sendo	-	omo A tem número atômico 70 O átomo B é isóbaro de C e is				
a) 160	b) 70	c) 74	d) 78	e) 164				
49 (UFLA-MG)	As afirmações qu	e se seguem diz	em respeito a do	is elementos A e B.				
II. O número ató III. B é isoeletrô	I. B possui massa atômica igual a 39. II. O número atômico de A é igual a 20. III. B é isoeletrônico com A ⁺ . IV. A e B são isótonos.							
c) o número de	eletrônicos. massa de A é igu elétrons de B é ig nêutrons de A é	gual a 20.						
50 O ânion NO ₃ a) 16	e é isoeletrônico (b) 32	do íon X²+. Logo, c) 33	, o número atômi d) 34	co de X é: e) 63				
				n 118 forma íons Sn ²⁺ e Sn ⁴⁺ , desse átomo neutro é: e) 72	que possuem,			
elétrons e 11 n puro se as partíc a) 21 prótons, 1 b) 20 prótons, 2 c) 10 prótons, 1 d) 11 prótons, 1		oram adicionada s apresentarem a êutrons. êutrons. êutrons. êutrons.	as novas partícul	entam composição atômica: 1 as. O sistema resultante será osição atômica:				

GABARITO

01- Alternativa B

X é isóbaro do 40 Ca logo X possui A = 40. X é isótopo do $_{18}$ Ar, logo X possui Z = 18, com isso temos: $^{40}_{18}$ X, desta forma ficamos com: N = A – Z = 40 – 18 = 22.

02- Alternativa A

X e Y são isótopos logo: a = c

Y e Z são isóbaros logo: 2c = d ou 2a = d

X e Z são isótonos logo: $40 - a = 2a - (a + 2) \rightarrow a = 21$

Neste caso ficamos com:

$$_{21}^{40}X \rightarrow N = 40 - 21 = 19$$

$$^{42}_{21}X$$
 \rightarrow N = 42 – 21 = 21

$$_{23}^{42}X \rightarrow N = 42 - 23 = 19$$

03- Alternativa E

O cátion trivalente perdeu 3 elétrons e ficou com 76 elétrons, logo o átomo neutro tinha 79 elétrons, com isso, o seu nº atômico Z = 79, como N = 118, neste caso temos: A = Z + N = 79 + 118 = 197

04- Alternativa E

Os isótopos apresentam o mesmo número de prótons, como no átomo neutro nº prótons = nº elétrons, logo estes apresentam o mesmo número de elétrons e diferem entre si no número de nêutrons.

05- Alternativa A

Na molécula de água pesada temos H_2O temos cada átomo de hidrogênio representado por 2_1H (N = 1) e cada átomo de oxigênio representado por ${}^{16}_8O$ (N = 8), com isso cada molécula de água apresenta 10 nêutrons.

06- Alternativa C

07- Alternativa C

O cátion bivalente perdeu 2 elétrons e ficou com o mesmo número de elétrons do xenônio, ou seja, com 54 elétrons. Logo, o átomo neutro Y tinha 56 elétrons, sendo assim o seu nº atômico é 56.

08- Alternativa E

 $_{26}^{56}\mathrm{Fe}$ ightarrow 26 prótons, 26 elétrons e 30 nêutrons.

Com isso temos: eletrosfera \rightarrow 26 partículas (elétrons), composição nuclear \rightarrow 56 partículas (26 prótons e 30 nêutrons).

09- Alternativa C

Como $_{56}^{137}$ Y é isótopo de Z que possui n° de massa 138, logo ficamos com: $_{56}^{138}$ Z onde N = 138 – 56 = 82 Como $_{56}^{137}$ Y é isóbaro de X, logo temos $_{Z}^{137}$ X que possui 82 nêutrons (isótono de Z), neste caso temos que: Z = A – N = 137 – 82 = 55

10- Alternativa A

Um íon de carga -3 ganhou 3 elétrons e ficou com 14 elétrons. Logo, o átomo neutro tinha 11 elétrons, ou seja, o seu número atômico (Z) é igual 11. Como este átomo possui 20 nêutrons, com isso temos: A = Z + N = 11 + 20 = 31.

11- Alternativa B

Isótopos (mesmo Z): $^{39}_{19}$ K e $^{40}_{19}$ K

Isóbaros (mesmo A): ${}^{40}_{20}$ Ca e ${}^{40}_{18}$ Ar

Isótonos (mesmo N): $^{39}_{19}\,\mathrm{K}$ (N = 20) e $^{40}_{20}\mathrm{Ca}$ (N = 20)

12- Alternativa A

 $_{53}^{131}\mathrm{I}$ ightarrow 53 prótons, 53 elétrons e 131 – 53 = 78 nêutrons

O íon I⁻ recebeu um 1 elétron e ficou com 54 elétrons.

13- Alternativa D

Número atômico indica o número de prótons (cargas positivas) existentes no núcleo do átomo, que para o átomo neutro é igual ao número de elétrons (cargas negativas) igual a 17.

Número de massa indica a massa total de partículas existentes no núcleo, ou seja, soma do número de prótons mais nêutrons: 17 + 18 = 35 nêutrons.

14- Alternativa C

O átomo de $^{28}_{14}$ Si possui N = 28 – 14 = 14, que por sua vez é isótono do $_{16}$ S, com isso temos que o nº de massa do enxofre é calculado da seguinte forma: A = Z + N = 16 + 14 = 30

15- Alternativa A

 $^{39}_{19}\text{K}^+ \rightarrow$ 19 prótons, 18 elétrons e 20 nêutrons (N = A – Z = 39 – 19 = 20)

16- Alternativa D

Como X e Y são isótopos logo ficamos com: $3x + 2 = 2x + 7 \rightarrow 3x - 2x = 7 - 2 \rightarrow x = 5$

Substituindo x por 5 temos: ${}^{35}_{17}$ X e ${}^{37}_{17}$ Y

17-

O aluno hipotético (A) possui nº atômico (Z) igual ao número de chamada e nº de nêutrons igual a Z +2.

O aluno hipotético (B) cujo número de chamada 15 que é igual ao seu nº atômico e nº de nêutrons igual a 15 sendo que o mesmo é isóbaro de A, ou seja, possuem o mesmo número de massa igual a 30.

Com isso temos: $^{30}_{Z}$ A e N = 2 + Z, calculando o valor de Z: A = Z + N \rightarrow 30 = Z + 2 + Z \rightarrow 28 = 2Z \rightarrow Z = 14 Sendo assim os números de chamada são 14 e 15.

18- Alternativa D

O elemento $_{11}A$ é isótopo de B, logo temos que: $_{11}^{A}B$ como N_{B} = 13, neste caso ficamos com: $_{11}^{24}B$

O elemento $_{11}^{24}$ B é isóbaro de C, com isso temos: $_{12}^{24}$ C que possui: N = A – Z = 24 – 12 = 12 nêutrons

O elemento $^{A}_{11}A$ é isótono de $^{24}_{12}C$ com 12 nêutrons, sendo assim o nº de massa do elemento A é calculado da seguinte forma: $A_{A} = Z + N = 11 + 12 = 23$

19- Alternativa C

O elemento $_{70}^{160}$ A apresenta: N = 160 – 70 = 90, sendo isótono de B que também possui 90 nêutrons.

O elemento $^{160}_{70}{
m A}$ é isótopo de C (N = 94) que também possui Z = 70, com isso temos que: $^{164}_{70}{
m C}$

O elemento $^{164}_{70}\mathrm{C}$ é isóbaro de B (C N = 90), logo Z_B = A – N = 164 – 90 = 74, assim ficamos com: $^{164}_{74}\mathrm{B}$

20- Alternativa E

$${}_{1}^{1}H - {}_{8}^{16}O - {}_{1}^{1}H \rightarrow N_{total} = 0 + 8 + 0 = 8$$

$${}_{1}^{1}H - {}_{8}^{16}O - {}_{1}^{2}H \rightarrow N_{total} = 0 + 8 + 1 = 9$$

$$_{1}^{2}H - _{8}^{16}O - _{1}^{2}H \rightarrow N_{total} = 1 + 8 + 1 = 10$$

$$_{1}^{2}H - _{8}^{16}O - _{1}^{3}H \rightarrow N_{total} = 1 + 8 + 2 = 11$$

$${}_{1}^{3}H - {}_{8}^{16}O - {}_{1}^{3}H \rightarrow N_{total} = 2 + 8 + 2 = 12$$

$${}_{1}^{1}H - {}_{8}^{16}O - {}_{1}^{3}H \rightarrow N_{total} = 0 + 8 + 2 = 10$$

21- Alternativa C

O elemento $^{84}_{36}\mathrm{W}$ é isótopo de Y, logo temos que: $_{36}\mathrm{Y}$

O elemento $_{36}\mathrm{Y}$ possui o mesmo nº de elétrons do cátion X^{3+} , ou seja, 36 elétrons.

O cátion X³⁺ perdeu 3 elétrons e ficou com 36 elétrons, logo o átomo neutro tinha 39 elétrons.

22-

(1) Uma partícula que possui 12 prótons, 10 elétrons e 12 nêutrons é eletricamente neutra.

Falso. Íon cátion pois nº prótons > nº elétrons.

- (2) Dois átomos neutros que possuem o mesmo número de elétrons pertencem ao mesmo elemento químico. Verdadeiro.
- (3) O trítio possui 1 próton e 2 nêutrons. O deutério possui 1 próton e 1 nêutron. Estas partículas pertencem a um mesmo elemento químico, apesar de o trítio ser mais pesado do que o deutério. Verdadeiro.
- (4) O átomo de ferro possui número de massa 56 e 30 nêutrons. Um átomo neutro de ferro possui 26 elétrons. Verdadeiro.
- (5) Uma partícula positiva que possui 33 prótons e 36 elétrons possui carga positiva e é chamada de cátion. Falso. Íon ânion pois nº elétrons > nº prótons.

23- Alternativa D

Cátion Pb^{2+} perdeu 2 elétrons e ficou com 80 elétrons, logo o seu átomo neutro tinha 82 elétrons, ou seja, o seu nº atômico Z = 82, como o nº de massa Z = 210, com isso temos: N = A – Z = 210 – 82 = 128

24-

Dados: $Z_A + Z_B + Z_C = 79$, $N_A + N_B + N_C = 88$, logo temos que: $A_A + A_B + A_C = 167$, com $A_A = 55$ e $A_B = A_C$, então temos: 55 + 2 A = $167 \rightarrow 2$ A = $112 \rightarrow A = 56$, sendo assim ficamos com: $A_B = A_C = 56$

Como os elementos B e C possuem nº de massa aumentado em 1 unidade em relação ao elemento A, com isso deduzimos que: $Z_C = Z_A + 1$ e $N_C = N_A + 1$

Lembrando que: $Z_A + Z_B + Z_C = 79$, substituindo Z_C por $Z_a + 1$ e sabendo que $Z_a = Z_B$ (isótopos), ficamos com: $Z_A + Z_A + Z_A + 1 = 79 \rightarrow 3$ $Z_A = 78 \rightarrow Z_A = 26$. Desta forma temos: $Z_A = Z_B = 26$ e $Z_C = 27$

Com isso ficamos com: $^{55}_{26}A$, $^{56}_{26}B$ e $\,^{56}_{27}C$.

25-

$$_{19}^{39}\,\mathrm{K} \to \mathrm{A} = 39$$
, Z = 19, N = 39 – 19 = 20, 19 prótons e 19 elétrons

26- Alternativa E

Partindo-se do pressuposto que o átomo é neutro, se este possui 21 elétrons logo apresenta 21 prótons, ou seja, o seu número atômico Z = 21, como o seu A = 40, com isso o número de nêutrons é calculado: N = 40 - 21 = 19

27- Alternativa A

$$_{17}^{35}\mathrm{C}\ell \to \mathrm{n}^{\mathrm{o}}$$
 prótons = 17, n^{o} elétrons = 17, N = 35 – 17 = 18

28- Alternativa D

$$_{13}^{27}$$
 X \rightarrow A = 13, B = 13, C = 14

$$_{15}Y \rightarrow D = 15$$
, E = 15 + 16 = 31

29- Alternativa D

Cátion é o átomo que perdeu elétrons e ficou com nº de elétrons maior do que o nº de prótons.

30- Alternativa D

As espécies indicadas apresentam o mesmo número de prótons no núcleo, sendo considerados isótopos, e também o mesmo número de elétrons (10 elétrons).

31- Alternativa A

 $^{35}_{17}\mathrm{C}\ell^-\! \! o$ 17 prótons, 18 elétrons e 18 nêutrons.

 $_{26}^{56}\mathrm{Fe}$ ightarrow 26 prótons, 26 elétrons e 30 nêutrons.

 $_{1}^{1}H\rightarrow$ 1 próton, 1 elétron e 0 nêutron.

 $^{27}_{13}\,\mathrm{A}\ell^{3+}\! \to$ 13 prótons, 10 elétrons e 14 nêutrons.

 $^{31}_{15}P \rightarrow$ 15 prótons, 15 elétrons e 16 nêutrons.

32-

() Uma partícula que possui 12 prótons, 10 elétrons e 12 nêutrons é eletricamente neutra.

Falso. Íon cátion pois apresenta nº prótons maior do que o nº de elétrons.

- () Dois átomos neutros que possuem o mesmo número de elétrons pertencem ao mesmo elemento químico. Verdadeiro.
- () O trítio possui 1 próton e 2 nêutrons. O deutério possui 1 próton e 1 nêutron. Estas partículas pertencem a um mesmo elemento químico, apesar de o trítio ser mais pesado do que o deutério. Verdadeiro.
- () O átomo de ferro possui número de massa 56 e 30 nêutrons. Um átomo neutro de ferro possui 26 elétrons. Verdadeiro.
- () Uma partícula positiva que possui 33 prótons e 36 elétrons possui carga positiva e é chamada de cátion. Falso. Íon ânion pois apresenta nº elétrons maior do que o nº de prótons.

33- Alternativa B

 $4x = 2x - 2 + 22 \rightarrow 4x - 2x = 20 \rightarrow 2x = 20 \rightarrow x = 10$, com isso ficamos com: ${}^{40}_{18}Q$

Portando teremos: $18p + 18e^{-} + 22n = 58$

34- Alternativa B

Elementos químicos idênticos apresentam a mesma identidade, ou seja, o mesmo n° de prótons dado pelo nº atômico.

35- Alternativa D

I. Isótopos são átomos de um mesmo elemento que possuem mesmo número atômico e diferente número de massa.

Verdadeiro.

II. O número atômico de um elemento corresponde ao número de prótons no núcleo de um átomo.

Verdadeiro.

III. O número de massa corresponde à soma do número de prótons e do número de elétrons de um elemento. Falso. Número de massa corresponde à soma do nº de prótons mais nêutrons do núcleo do átomo.

36- Alternativa A

I. Os prótons e os nêutrons são responsáveis pela carga do átomo.

Falso. Somente os prótons pois possuem carga positiva.

II. Isótopos apresentam as mesmas propriedades químicas.

Verdadeiro.

III. Prótons e nêutrons são os principais responsáveis pela massa do átomo.

Verdadeiro.

IV. A massa atômica é a soma do número de prótons e nêutrons do átomo.

Falso. Número de massa é a soma do nº de prótons mais nêutrons do núcleo do átomo.

37-

Isótopos → elementos que possuem o mesmo n° de prótons e nº de massa diferentes.

Ex.: ${}_{1}^{2}H e {}_{1}^{2}H$

Alótropos → substâncias químicas diferentes que apresentam o mesmo elemento químico.

Ex.: O₂ e O₃

38- Alternativa C

Cálculo do nº de massa: A = 19 + 20 = 39Cálculo do nº de nêutrons: N = 39 - 19 = 20

Isótonos apresentam o mesmo nº de nêutrons: ${}^{38}_{18}{
m C}
ightarrow {
m N}$ = 38 – 18 = 20

39- Alternativa A

Isótopo de a apresenta mesmo nº de prótons (34) é o átomo d.

O átomo a possui A = Z + N = 34 + 45 = 78, sendo assim o seu isóbaro com o mesmo nº de massa é o átomo b.

40- Alternativa C

Os átomos I e II apresentam o mesmo nº de massa (80) sendo isóbaros.

41-

() O conjunto C contém apenas isótopos do elemento hélio.

Verdadeiro.

() Os membros de **E** apresentam o mesmo número de elétrons, sendo, portanto, isótopos.

Falso. Mesmo nº de elétrons são isoeletrônicos.

() O conjunto A contém apenas isótopos do elemento hidrogênio.

Verdadeiro.

() Os membros de B são isóbaros.

Verdadeiro.

() Os membros de **D** apresentam o mesmo número de nêutrons.

Falso. Apresentam o mesmo nº de massa (isóbaros).

42- Alternativa B

Cálculo de X: como os átomos são isóbaros, logo $2X = 58 \rightarrow X = 29$

Sendo assim ficamos com: $^{58}_{29}\text{A} \rightarrow \text{N} = 58 - 29 = 29$

43- Alternativa D

As espécies Cr²⁺ e Cr³⁺ diferem entre si no nº de elétrons.

44

O elemento Z possui nº atômico 35 e nº nêutrons 33, com isso temos: A = 35 + 33 = 68, neste caso ficaremos com: ${}^{68}_{35}Z$

O elemento X com A = 70 é isótopo do elemento Z e desta forma teremos: ${}^{70}_{35}$ X \rightarrow N = 70 – 35 = 35

O elemento Y é isóbaro de Z, ou seja, A = 68 e isótono de X, ou seja, N = 35, com isso o elemento Y terá Z = A - N = 68 - 35 = 33, desta forma teremos: ${}^{68}_{33}$ Y

Com isso ficamos com: $^{70}_{35}X$, $^{68}_{33}Y$ e $^{68}_{35}Z$

45- Alternativa D

Os átomos X e Y são isótopos e com isso temos: $3x + 2 = 2x + 7 \rightarrow 3x - 2x = 7 - 2 \rightarrow x = 5$

Substituindo X por 5 ficamos com: ₁₇X³⁵ e ₁₇Y³⁷

46- Alternativa D

A e B são isóbaros com isso temos que: z = 44.

Calculando o nº de nêutrons de A: N = 44 − 20 = 24

Como B e C são isótopos com isso temos que: x = 21

Como A e C são isótonos, logo C possui N = 24.

Calculando o valor de y: y = 24 + 21 = 45

47- Alternativa A

Cálculo no nº de nêutrons de A: N = A - Z = 40 - 21 = 19

Como A e B são isótonos, logo B também apresenta 19 nêutrons.

Cálculo do nº de massa de B: A = Z + N = 20 + 19 = 39

48- Alternativa C

Cálculo do nº de nêutrons de A: N = A - Z = 160 - 70 = 90

Como A e C são isótopos, logo o átomo C também possui Z = 70.

Cálculo do n° de massa de C: A = Z + N = 70 + 94 = 164.

Como B é isóbaro de C, ou seja, possuem mesmo nº de massa (A=164) e B é isótono de A (N=90), com isso calculando o nº atômico do elemento B teremos: Z = A - N = 164 - 90 = 74

49- Alternativa B

Como A possui Z = 20, ou seja, o átomo neutro apresenta 20 elétrons, logo o íon A⁺ tem 19 elétrons.

O átomo A⁺ é isoeletrônico de B, com isso B apresenta também 19 elétrons, ou seja, Z = 19.

Cálculo do nº de nêutrons de B: N = 39 − 19 = 20

Como A e B são isótonos, ou seja, possuem o mesmo n^{o} de nêutrons (N = 20), neste caso calculando o n^{o} de massa de A ficamos com: A = Z + N = 20 + 20 = 40

50- Alternativa D

O ânion NO_3 apresenta 1 N (7 e⁻) + 3 O (8 e⁻) + 1 e⁻ = 7e⁻ + 24e⁻ + 1e⁻ = 32e⁻

O íon X^{2+} é isoeletrônico do NO_3^- , ou seja, possuem o mesmo n^{o} de elétrons (32e⁻), sendo assim, o átomo neutro de X tinha 34 elétrons.

51- Alternativa C

Cátion Sn^{2+} perdeu 2 elétrons e ficou com 48 elétrons, logo o seu átomo neutro tinha 50 elétrons, ou seja, o seu n^{2} atômico Z = 50, como o n^{2} de massa Z = 118, com isso temos: N = A - Z = 118 - 50 = 68

52- Alternativa C

O átomo neutro apresenta nº prótons (carga positiva) igual ao nº elétrons (carga negativa), sendo assim, a adição de novas partículas que não provocam alteração na carga elétrica do átomo deve-se ao nêutron que é uma partícula sem carga elétrica.