Introduction

31

32

- Throughout the paper, every time we speak about matrices we mean binary matrices (also called 01-matrices) and we omit the word binary. If we speak about a *pattern*, we again mean a binary matrix and we use the word in order to distinguish among more matrices as well as to indicate relationship.
- When dealing with matrices, we always index rows and column starting with one and when we speak about a row r, we simply mean a row with index r. A line is a common word for both a row and a column. When we order a set of lines, we first put all rows and then all columns. For $M \in \{0,1\}^{m \times n}$, [m] is a set of all rows and [m+n] is a set of all lines, where m-th element is the last row. This goes with the usual notation.
- Notation 1. For $n \in \mathbb{N}$ let $[n] := \{1, 2, ..., n\}$ and for $m \in \mathbb{N}$, where $n \leq m$ let $[n, m] := \{n, n + 1, ..., m\}$.
- Notation 2. For a matrix $M \in \{0,1\}^{m \times n}$ and $L \subseteq [m+n]$ let M[L] denote a submatrix of M induced by lines in L.
- Notation 3. For a matrix $M \in \{0,1\}^{m \times n}$, $R \subseteq [m]$ and $C \subseteq [n]$ let M[R,C] denote a submatrix of M induced by rows in R and columns in C. Furthermore, for $r \in [m]$ and $c \in [n]$ let $M[r,c] := M[\{r\}, \{c\}] = M[\{r,c+m\}]$.
- Definition 1. We say a matrix $M \in \{0,1\}^{m \times n}$ contains a pattern $P \in \{0,1\}^{k \times l}$ as a submatrix and denote it by $P \leq M$ if there are $R \in [m]$ and $C \in [n]$ such that |R| = k, |C| = l and for every $r \in R$ and $c \in C$ if P[r,c] = 1, then M[R,C][r,c] = 1.
- This does not necessarily mean P=M[R,C] as M[R,C] can have more one-entries than P does.
- Notation 4. For a matrix $M \in \{0,1\}^{m \times n}$ and $L \subseteq [m+n]$ let $M_{\preceq}[L]$ denote a matrix acquired from M by applying following operation for each $l \in L$:
- If l is the first row in L then we replace the first l rows by one row that is a bitwise OR of replaced rows.
- If l is the first column in L then we replace the first l-m columns by one column that is a bitwise OR of replaced columns.
- Otherwise, we take l's predecessor $l' \in L$ in the standard ordering and replace lines [l'+1, l] by one line that is a bitwise OR of replaced lines.
- Notation 5. For a matrix $M \in \{0,1\}^{m \times n}$, $R \subseteq [m]$ and $C \subseteq [n]$ let $M_{\preceq}[R,C] := M_{\preceq}[R \cup \{c+m|c \in C\}]$.
- Definition 2. We say a matrix $M \in \{0,1\}^{m \times n}$ contains a pattern $P \in \{0,1\}^{k \times l}$ as an interval minor and denote it by $P \leq M$ if there are $R \in [m]$ and $C \in [n]$ such that |R| = k, |C| = l and for every $r \in R$ and $c \in C$ if P[r,c] = 1, then $M_{\leq}[R,C][r,c] = 1$.
- Observation 1. For all matrices M and P, $P \leq M \Rightarrow P \leq M$.

- Observation 2. For all matrices M and P, if P is a permutation matrix, then $P \leq M \Leftrightarrow P \leq M$.
- Proof. If we have $P \leq M$, then there is a partitioning of M into rectangles and for
- each one-entry of P there is at least one one-entry in the corresponding rectangle
- of M. Since P is a permutation matrix, it is sufficient to take rows and columns
- having at least one one-entry in the right rectangle and we can always do so.
- Together with Observation 1 this gives us the statement.

of 0.1 Characterizations

- Definition 3. A walk in a matrix M is a sequence of some of its entries, beginning in the top left corner and ending in the bottom right one. If an entry M[i,j] is
- in the sequence, the next one is either M[i+1,j] or M[i,j+1].
- Definition 4. We call a binary matrix M a walking matrix if there is a walk in
- M such that all one-entries of M are contained on the walk.

of oize 2×2

- Theorem 3. Let $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, then for all $M: P \not\preceq M \Leftrightarrow M$ is a walking matrix.
- Proof. Since P is a permutation matrix, $P \not\preceq M \Leftrightarrow P \not\leq M$ and it is easy to see $P \not\leq M \Leftrightarrow M$ is a walking matrix.
- Theorem 4. Let $P = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, then for all $M \in \{0, 1\}^{m \times n}$: $P \not \preceq M \Leftrightarrow$ there exist a row r and a column c such that (see Figure 1)
- M[[r-1], [c-1]] is empty,
- M[[r-1], [c+1, n]] is empty,
- M[[r+1,m],[c-1]] is empty and
 - M[[r, m], [c, n]] is a walking matrix.

Figure 1: Characterization of a matrix avoiding $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ as an interval minor.

- Proof. \Rightarrow If $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \not\preceq M$, then M is a walking matrix and we set r=c=1. Otherwise, there are one-entries M[r,c'] and M[r',c] such that r' < r and c' < c. If there is a one-entry in regions $M[[r-1],[c-1]],\ M[[r-1],\ [c+1,n]]$ or M[[r+1,m],[c-1]] then $P \preceq M$. If M[[r,m],[c,n]] is not a walking matrix then it contains $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and we again get a contradiction.
- \Leftarrow For contradiction, assume that M described in Figure 1 contains P as an interval minor. It means that there is a partition of the matrix into four quadrants such that there is at least one one-entry in each quadrant besides the bottom right one. If the matrix is partitioned above the r-th row, then

there is only one column containing one-entries and it is not possible for both top quadrants to have a one-entry. Similarly, if the matrix is partitioned to the left of the c-th column, there is only one row containing one-entries and there is no one-entry in either top-left or bottom-left quadrant. Therefore, the partitioning lies bellow the r-th row and to the right of the c-th column, but if the quadrants contain one-entries, there is a $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ interval minor in M', which is a contradiction with it being a walking matrix.

78 79

83

84

85

89

90

72

73

74

75

76

To characterize matrices avoiding $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ as an interval minor, we first need to define a few useful terms.

Definition 5. For $M \in \{0,1\}^{m \times n}$ and $r \in [m], c \in [n]$ we say M[r,c] is

- top-left empty if M[[r-1], [c-1]] is an empty matrix,
- top-right empty if M[[r-1], [c+1, n]] is empty,
- bottom-left empty if M[[r-1], [c+1, n]] is empty,
- bottom-right empty if M[[r-1], [c+1, n]] is empty.

Lemma 5. Let $P = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ and let $M \in \{0, 1\}^{m \times n}$ avoid P as an interval minor, then there exists a row r and a column c such that M[r, c] is either

- 1. both top-left empty and bottom-right empty and $[r, c] \notin \{[1, n], [m, 1]\}$ or
- 2. both top-right empty and bottom-left empty and $[r, c] \notin \{[1, 1], [m, n]\}$.

 \square Proof.

Theorem 6. Let $P = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, then for all $M \colon P \not\preceq M \Leftrightarrow M$ looks like one of the matrices in Figure 2, where $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \not\preceq M_1$, $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \not\preceq M_2$, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \not\preceq M_3$ and $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \not\preceq M_4$.

Figure 2: Characterization of a matrix avoiding $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ as an interval minor.

94 Proof.

 $95 \Rightarrow$ We proceed by induction by the size of M.

If $M \in \{0,1\}^{2\times 2}$ then it either avoids $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ or $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ and we are done.

For bigger M there is, from Lemma 5, "the element". Assume the first case (top-right and bottom-left empty (will change this when I have some notation)). If M_1 is non-empty, then $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \not\preceq M_2$; otherwise, $P \preceq M$. Similarly, $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \not\preceq M_1$ if M_2 is non-empty. If one of them is empty, the other is a smaller matrix avoiding P as an interval minor and by induction hypothesis, it can be partitioned. Adding empty rows and columns does not break any condition and we get a partitioning of the whole M.

Without loss of generality, let us assume M looks like the left matrix in Figure 2. For contradiction, assume $P \leq M$. In that case, we can partition M into four quadrants such that there is at least one one-entry in each of them. It does not matter where we partition it, every time we either get $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \leq M_1$ or $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \leq M_2$, which is a contradiction.

$\mathbf{0.0}$ 0.1.2 Matrices of size 2×3

Theorem 7. Let $P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, then for all $M: P \not\preceq M \Leftrightarrow M = M_1 \oplus_h M_2$ where $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \not\preceq M_1$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \not\preceq M_2$.

Proof. \Rightarrow Let e = [r, c] be the top-most one-entry of M. If $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \preceq M[[m], [c-1]]$, together with e it forms P. If $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \not\preceq M[[m], [c, n]]$ then we are done. Let us assume it is not the case and let $e_{0,0}$, $e_{1,1}$ be any two one-entries forming the forbidden pattern. Symmetrically, let $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \preceq M[[m], [c]]$ and let $e_{0,1}$, $e_{1,0}$ be any two one-entries forming the forbidden pattern. Now if we take $e_{0,0}$, $e_{0,1}$ and $e_{1,0}$ or $e_{1,1}$ with bigger row, we get the forbidden pattern P as an interval minor of M.

 \Leftarrow For contradiction, let us assume $P \leq M$ and $M = M_1 \oplus_h M_2$. If $P \leq M$, look at the one-entry of M where the bottom one-entry of P is mapped. If it is in M_1 then $P \not\preceq M$ because $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \not\preceq M_1$. Otherwise, $P \not\preceq M$ because $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \not\preceq M_2$.

Lemma 8. Let $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, then for all $M: P \not\preceq M \Rightarrow M = M_1 \oplus_h M_2$ where

1. $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \not\preceq M_1$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \not\preceq M_2$ or

2. $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \not\preceq M_1$ and $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \not\preceq M_2$.

119

120

121

122

123

125

126

Proof. Let e = [r, c] be the top-most one-entry of M. If $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \preceq M[[m], [c-1]],$ together with e it would be the whole P. Similarly, $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \not\preceq M[[m], [c+1, n]].$ For contradiction with the statement, let $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \preceq M[[m], [c]]$ and $e_{0,0}$, $e_{1,1}$ (none of them equal to e, since e lies in the top-right corner) be any two one-entries forming the pattern. Symmetrically, let $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \preceq M[[m], [c, n]]$ and $e_{0,1}$, $e_{1,0}$ be any two one-entries forming the pattern. In that case $e_{0,0}$, e, $e_{0,1}$ and $e_{1,0}$ or $e_{1,1}$ with bigger row give us the forbidden pattern P as an interval minor of M. \square

Theorem 9. Let $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, then for all $M: P \not\preceq M \Leftrightarrow M$ looks like the matrix in Figure 3 and $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \not\preceq M_1$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \not\preceq M_2$.

Figure 3: Characterization of a matrix avoiding $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ as an interval minor.

 \Rightarrow From Lemma 8 we know $M = M'_1 \oplus_h M'_2$ where $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \not\preceq M'_1$ and 136 $\binom{0}{1}\binom{1}{0} \not\preceq M_2'$. The second case would be dealt with symmetrically. From 137 Theorem 4 we have that M'_1 can be characterized exactly like $M[[m], [c_2-1]]$ 138 and $M[[m], [c_2, n]]$ forms a walking matrix. The only problem with our claim 139 would be if there were two different columns having a one-entry above the 140 r-th row. In that case, those two one-entries together with a one-entry in 141 the r-th row between the columns c_1 and c_2 and a one-entry in the c_1 -th 142 column above the r-th row form P as an interval minor. 143

 \Leftarrow The bottom-middle one-entry of P can not be mapped anywhere but to the r-th row, but in that case there are at most two columns having one-entries above it.

144

145

146

147

0.2 Extremal function

Notation 6. Let M be a matrix. We denote |M| the weight of M, the number of one-entries in M.

Usually |M| stands for a determinant of matrix M. However, in this paper we do not work with determinants at all so the notation should not lead to misunderstanding.

Definition 6. For a matrix P we define $Ex(P, m, n) := \max\{|M||M \in \{0, 1\}^{m \times n}, P \not\leq \mathbb{I} \}$ 155 M. We denote Ex(P, n) := Ex(P, n, n).

Definition 7. For a matrix P we define $Ex_{\preceq}(P, m, n) := max\{|M||M \in \{0, 1\}^{m \times n}, P \not\preceq M\}$. We denote $Ex_{\prec}(P, n) := Ex_{\prec}(P, n, n)$.

Observation 10. For all P, m, n; $Ex_{\prec}(P, m, n) \leq Ex(P, m, n)$.

Observation 11. If $P \in \{0,1\}^{k \times l}$ has a one-entry at position [a,b], then

$$Ex(P,m,n) \geq \left\{ \begin{array}{ll} m \cdot n & k > m \lor l > m \\ (k-1)n + (l-1)m - (k-1)(l-1) & otherwise. \end{array} \right.$$

Observation 12. The same holds for $Ex_{\prec}(P, m, n)$.

Definition 8. $P \in \{0,1\}^{k \times l}$ is (strongly) minimalist if

$$Ex(P,m,n) = \left\{ \begin{array}{ll} m \cdot n & k > m \lor l > m \\ (k-1)n + (l-1)m - (k-1)(l-1) & \text{otherwise.} \end{array} \right.$$

Definition 9. $P \in \{0,1\}^{k \times l}$ is weakly minimalist if

$$Ex_{\preceq}(P,m,n) = \left\{ \begin{array}{ll} m \cdot n & k > m \lor l > m \\ (k-1)n + (l-1)m - (k-1)(l-1) & \text{otherwise.} \end{array} \right.$$

Observation 13. If P is strongly minimalist, then P is weakly minimalist.

161 0.2.1 Known results

Fact 14. 1. (1) is strongly minimalist.

- 2. If $P \in \{0,1\}^{k \times l}$ is strongly minimalist and there is a one-entry in the last row in the c-th column, then $P' \in \{0,1\}^{k+1 \times l}$, which is created from P by adding a new row having a one-entry only in the c-th column, is strongly minimalist.
- 3. If P is strongly minimalist, then after changing a one-entry into a zeroentry it is still strongly minimalist.

Fact 15. Let $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ have l columns, then P is weakly minimalist.

Proof. Let $M \in \{0,1\}^{m \times n}$ be a matrix avoiding $P = \{1\}^{2 \times l}$ as an interval minor and $A_i = \{j \in [n] | \text{weight of } M[[i], \{j\}] > 0 \land \text{weight of } M[[i+1,m], \{j\} > 0] \}$. Clearly $|A_i| \leq l-1$, otherwise $P \leq M$. Let b_j denote the number of one-entries in the j-th column. Each column j of M appears in at least $b_j - 1$ of sets A_i , $0 \leq i \leq m-2$. It follows that

weight of
$$M = \sum_{j=0}^{n} b_j = \sum_{j=0}^{n} (b_j - 1) + n \le \sum_{i=0}^{m-2} |A_i| + n \le (l-1)(m-1) + n$$

170

This result is indeed very important because it shows that there are matrices like $\binom{11}{11}$, which are weakly minimalist, although it is known they are not strongly minimalist.

Fact 16. Let $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ have l columns, then P is weakly minimalist.

Proof. Let $M \in \{0,1\}^{m \times n}$ be a matrix avoiding $P = \{1\}^{3 \times l}$ as an interval minor and $A_i = \{j \in [n] | \text{ weight of } M[[i-1], \{j\}] > 0 \land \text{ weight of } M[[i+1,m], \{j\} > 0 \land M[i,j] \text{ one-entry}]\}$. Clearly $|A_i| \leq l-1$, otherwise $P \leq M$. Let b_j denote the number of one-entries in the j-th column. Each column j of M (for which $b_j \geq 2$) appears in exactly $b_j - 2$ of sets A_i , $1 \leq i \leq m-1$. It follows that

weight of
$$M = \sum_{j=0}^{n} b_j = \sum_{j=0}^{n} (b_j - 2) + 2n \le \sum_{j=1}^{m-2} |A_j| + 2n \le (l-1)(m-2) + 2n$$

175