Mächtigkeit von LOOP-Programmen

Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen

25. November 2011

Die Programmiersprache LOOP – Syntax

Elemente eines LOOP-Programms

- Variablen x_0 x_1 x_2 ...
- Konstanten -1 0 1
- Symbole ; := $+ \neq$
- Schlüsselwörter LOOP DO END

Die Programmiersprache LOOP – Syntax

Induktive Definition – Induktionsanfang

Zuweisung

Für jedes $c \in \{-1, 0, 1\}$ ist die Zuweisung

$$x_i := x_i + c$$

ein LOOP-Programm.

Die Programmiersprache LOOP – Syntax

Induktive Definition – Induktionsschritte:

Hintereinanderausführung

Falls P_1 und P_2 LOOP-Programme sind, dann ist auch

$$P_1; P_2$$

ein LOOP-Programm.

LOOP-Konstrukt

Falls P ein LOOP-Programm ist, dann ist auch

LOOP
$$x_i$$
 DO P END

ein LOOP-Programm, wobei x_i nicht in P vorkommen darf.

Die Programmiersprache LOOP – Semantik

Ein LOOP-Programm P berechnet eine k-stellige Funktionen der Form $f: \mathbb{N}^k \to \mathbb{N}$.

- Die Eingabe ist in den Variablen x_1, \ldots, x_k enthalten.
- Alle anderen Variablen werden mit 0 initialisiert.
- Das Resultat eines LOOP-Programms ist die Zahl, die sich am Ende der Rechnung in der Variable x₀ ergibt.
- Programme der Form $x_i := x_j + c$ sind Zuweisungen des Wertes $x_j + c$ an die Variable x_i .
- In einem LOOP-Programm P_1 ; P_2 wird zunächst P_1 und dann P_2 ausgeführt.
- Das Programm LOOP x_i DO P END hat folgende Bedeutung:
 P wird x_i mal mal hintereinander ausgeführt.

Die Programmiersprache LOOP – Mächigkeit

Definition

Die durch LOOP-Programme berechenbaren Funktionen werden als *primitiv-rekursiv* bezeichnet.

Vermutung von Hilbert (1926): Die Klasse der primitiv rekursiven Funktionen stimmt mit der Klasse der rekursiven (berechenbaren) Funktionen überein.

Ackermann (1929): Diese Vermutung stimmt nicht!

Die Ackermann-Funktion – Definition

Definition

Die Ackermannfunktion $A: \mathbb{N}^2 \to \mathbb{N}$ ist folgendermaßen definert:

$$A(0, n) = n + 1$$
 für $n \ge 0$
 $A(m+1, 0) = A(m, 1)$ für $m \ge 0$
 $A(m+1, n+1) = A(m, A(m+1, n))$ für $m \ge 0$

Die Ackermann-Funktion – Eigenschaften

Monotonie

- A(m+1, n) > A(m, n)
- A(m, n + 1) > A(m, n)
- $A(m+1, n-1) \ge A(m, n)$ (Übungsaufgabe)

Wenn man den ersten Parameter fixiert ...

- A(1, n) = n + 2,
- A(2, n) = 2n + 3,
- $A(3, n) = 8 \cdot 2^n 3$,

$$A(4, n) = \underbrace{2^{2^{2^{n-2}}}}_{\substack{n+2 \text{ viele} \\ \text{Potenzen}}} -3$$

Bereits $A(4,2) = 2^{65536} - 3$ ist größer als die (vermutete) Anzahl der Atome im Weltraum.

Wachstum der Variableninhalte in einem LOOP-Programm

Definition der Funktion F_P

- Sei P ein LOOP-Programm
- Seien x_0, x_1, \ldots, x_k die Variablen in P.
- Wenn die Variablen initial die Werte $a=(a_0,\ldots,a_k)\in\mathbb{N}^k$ haben, dann sei $f_P(a)$ das (k+1)-Tupel der Variablenwerte nach Ausführung von P.
- Sei $|f_P(a)|$ die Summe der Einträge im (k+1)-Tupel $f_P(a)$.
- ullet Wir definieren nun die Funktion $F_P:\mathbb{N} o \mathbb{N}$ durch

$$F_P(n) = \max \left\{ |f_P(a)| \left| a \in \mathbb{N}^{k+1} \text{ mit } \sum_{i=0}^k a_i \le n \right.
ight\} \ .$$

Intuitiv beschreibt die Funktion F_P das maximale Wachstum der Variablenwerte im LOOP-Programm P.

Ackermannfunktion versus F_P

Wir zeigen nun, dass $F_P(n)$ für alle $n \in \mathbb{N}$ echt kleiner ist als A(m,n), wenn der Parameter m genügend groß in Abhängigkeit von P gewählt wird.

Lemma

Für jedes LOOP-Programm P gibt es eine natürliche Zahl m, so dass für alle n gilt: $F_P(n) < A(m, n)$.

Beachte, für ein festes Programm P ist der Parameter m eine Konstante.

Beweis durch Strukturelle Induktion (Überblick)

Induktionsanfang

- Sei P von der Form $x_i := x_j + c$ für $c \in \{-1, 0, 1\}$.
- Wir werden zeigen: $F_P(n) < A(2, n)$.

Induktionsschritt (1. Art)

- Sei P von der Form P_1 ; P_2 .
- Induktionsannahme: $\exists q \in \mathbb{N} : F_{P_1}(\ell) < A(q,\ell)$ und $F_{P_2}(\ell) < A(q,\ell)$.
- Wir werden zeigen: $F_P(n) < A(q+1, n)$.

Induktionsschritt (2. Art)

- Sei P von der Form LOOP x_i DO Q END.
- Induktionsannahme: $\exists q \in \mathbb{N} : F_Q(\ell) < A(q, \ell)$.
- Wir werden zeigen: $F_P(n) < A(q+1, n)$.

Der Induktionsanfang

- Sei P von der Form $x_i := x_i + c$ für $c \in \{-1, 0, 1\}$.
- Dann gilt $F_P(n) \leq 2n + 1$.
- Somit folgt $F_P(n) < A(2, n)$.

Erläuterung: Vor Ausführung von P könnte gelten $x_j = n$ und alle anderen Variablen haben den Wert 0. Ferner könnte c den Wert 1 haben. Nach Ausführung von P gilt somit $x_i = n+1$ und somit ist die Summe der Variableninhalte $x_i + x_j = 2n+1$. Ein größeres Wachstum der Variableninhalte ist nicht möglich.

Der Induktionsschritt (1. Art)

- Sei P von der Form P_1 ; P_2 .
- Induktionsannahme: $\exists q \in \mathbb{N} : F_{P_1}(\ell) < A(q,\ell)$ und $F_{P_2}(\ell) < A(q,\ell)$.
- Somit gilt

$$F_P(n) \leq F_{P_2}(F_{P_1}(n)) < A(q, A(q, n))$$
.

- Wir verwenden die Abschätzung $A(q, n) \leq A(q + 1, n 1)$.
- Es folgt

$$F_P(n) < A(q, A(q+1, n-1)) = A(q+1, n)$$
.

Der Induktionsschritt (2. Art)

- Sei P von der Form LOOP x_i DO Q END.
- Induktionsannahme: $\exists q \in \mathbb{N} : F_Q(\ell) < A(q, \ell)$.
- Sei $\alpha = \alpha(n)$ derjenige Wert $\{1, \ldots, n\}$ für x_i der $F_P(n)$ maximiert.
- Dann gilt

$$F_P(n) \leq F_Q(F_Q(\dots F_Q(F_Q(n-\alpha))\dots)) + \alpha$$

wobei die Funktion $F_Q(\cdot)$ hier α -fach ineinander eingesetzt ist.

Der Induktionsschritt (2. Art) – Fortsetzung

Bisher haben wir gezeigt

$$F_P(n) \leq F_Q(F_Q(\dots F_Q(F_Q(n-\alpha))\dots)) + \alpha$$
,

wobei die Funktion $F_Q(\cdot)$ hier α -fach ineinander eingesetzt ist.

- Aus der Induktionsannahme folgt $F_Q(\ell) \leq A(q,\ell) 1$.
- ullet Dies wenden wir auf die äußerste Funktion F_Q an und erhalten

$$F_P(n) \leq A(q, F_Q(\dots F_Q(F_Q(n-\alpha))\dots)) + \alpha - 1$$
.

Wiederholte Anwendung liefert

$$F_P(n) \leq A(q, A(q, \dots A(q, A(q, n-\alpha)) \dots))$$

$$\leq A(q, A(q, \dots A(q, A(q+1, n-\alpha)) \dots)) ...)) ...$$

Der Induktionsschritt (2. Art) – Fortsetzung

Bisher haben wir gezeigt

$$F_P(n) \leq A(q, A(q, \dots A(q, A(q+1, n-\alpha)) \dots))$$
.

- Der Definition der Ackermannfunktion entnehmen wir A(q+1, y+1) = A(q, A(q+1, y)).
- Auf die innere Verschachtelung angewendet ergibt sich

$$F_P(n) \leq A(q, A(q, \ldots A(q+1, n-\alpha+1) \ldots))$$
,

wobei die Schachtelungstiefe nur noch $\alpha - 1$ ist.

• Nach weiteren $\alpha - 2$ vielen Anwendungen, folgt

$$F_P(n) \leq A(q+1, n-1) < A(q+1, n)$$
.

Ackermannfunktion nicht LOOP-berechenbar

Satz

Die Ackermannfunktion ist nicht primitiv-rekursiv.

Beweis:

- Angenommen es gibt ein LOOP-Programm, das die Ackermannfunktion berechnet.
- Dann gibt es auch ein LOOP-Programm, das die Funktion B(n) = A(n, n) berechnet. Sei P dieses LOOP-Programm.
- Aus dem Lemma folgt, es gibt $m \in \mathbb{N}$, so dass für jedes $n \in \mathbb{N}$ gilt: $F_P(n) < A(m, n)$.
- Wenn P aufgerufen wird mit Eingabe m, so berechnet P den Funktionswert B(m). Somit gilt $B(m) \leq F_P(m)$.
- Es folgt

$$B(m) \leq F_P(m) < A(m,m) \stackrel{\text{Def. von } B}{=} B(m)$$
.

Widerspruch! Also folgt der Satz.

Schlussfolgerung

Da die Ackermannfunktion (durch eine TM) berechenbar ist, folgt

Korollar

Die Klasse der primitiv-rekursiven Funktionen ist eine echte Teilmenge der rekursiven Funktionen.

Zur Klärung: Technisch beschränken wir uns in diesem Kapitel auf Funktionen $f: \mathbb{N}^k \to \mathbb{N}, \ k \in \mathbb{N}$. Dieselbe Aussage gilt auch für Funktionen der Form $f: \Sigma^* \to \Sigma^*$ über einem beliebigem endlichen Alphabet Σ .

Wir haben die folgenden Turing-mächtigen Rechenmodelle und Programmiersprachen kennen gelernt.

- Turingmaschine (TM)
- k-Band TM
- Registermaschine (RAM)
- eingeschränkte RAM
- WHILE-Programme (und somit C, Java, Pascal, Postscript, etc.)

LOOP-Programme sind hingegen nicht Turing-mächtig.

Church-Turing-These

Die Klasse der TM-berechenbaren Funktionen stimmt mit der Klasse der "intuitiv berechenbaren" Funktionen überein.

In anderen Worten:

Ein Problem kann genau dann "algorithmisch gelöst werden", wenn es eine TM für dieses Problem gibt.

An Stelle des Begriffs "TM" können wir auch jedes andere Turing-mächtige Rechenmodell einsetzen.

Berechenbarkeitslandschaft:

nicht rek. aufz. Probleme, deren Komplement ebenfalls nicht rek. aufz. ist

z.B.
$$H_{
m all}$$

Bedeutende nicht berechenbare Probleme:

- Halteproblem, in verschiedenen Varianten
- Satz von Rice: Aussagen über Eigenschaften von Funktionen, die durch eine gegebene TM berechnet werden, sind nicht entscheidbar
- Schlussfolgerung: Die automatische Verifikation von Programmen in einer TM-mächtigen Programmiersprachen ist nicht möglich
- Hilberts 10. Problem
- Post'sches Korrespondenzproblem

Methoden zum Nachweis von Nicht-Berechenbarkeit:

- Diagonalisierung
- Unterprogrammtechnik
- Satz von Rice
- Reduktion (spezielle Variante der Unterprogrammtechnik)