

特别说明

此资料来自豆丁网(http://www.docin.com/)

您现在所看到的文档是使用下载器所生成的文档

此文档的原件位于

http://www.docin.com/p-765346.html

感谢您的支持

抱米花

http://blog.sina.com.cn/lotusbaob

Ⅲ 安森美半导体-

三端可调节输出正电压稳压器

LM317 是可调节 3 -端正电压稳压器, 在输出电压范围为 1.2 伏到 37 伏时能够提供超过 1.5 安的电流。此稳压器非常 易于使用,只需要两个外部电阻来设置输出电压。此外还使 用内部限流、热关断和安全工作区补偿使之基本能防止烧断 保险丝。

LM317服务于多种应用场合,包括局部稳压、卡上稳压。 该器件还可以用来制做一种可编程的输出稳压器,或者,通 过在调整点和输出之间接一个固定电阻, LM317 可用作一 种精密稳流器。

- 输出电流超过 1.5 安
- 输出在 1.2 伏和 37 伏之间可调节
- 内部热过载保护
- 不随温度变化的内部短路电流限制
- 输出晶体管安全工作区补偿
- 对高压应用孚空工作
- 表面贴装 D²PAK 形式,和标准 3 引脚晶体管封装
- 避免置备多种固定电压

LM317

三端可调节正电压稳压器

半导体技术数据

T后缀 塑料封装 外壳 221A

散热器表面连接 到引脚 2

管脚: 1.调节 2.Vout 3.Vin

D2T 后缀 塑料封装 外壳 936 (D²PAK)

散热器表面(在外形图中表示为端子 4) 连接到管脚2上

订购信息

	工作	
器件	温度范围	封装
LM317BD2T	T _J =-40 至	表面贴装
LM317BT	+125 ℃	插入安装
LM317D2T	T」=0 至	表面贴装
LM317T	+125 ℃	插入安装

©半导体元件工业有限公司, 2000 第1次修订版

最大额定值

额定值	符号	值	单位
输入输出电压差	V _I -V _O	40	Vdc
功耗			
外壳 221A			110.00000
T _A =+25 ℃	P _D	内部限制	W
结至环境热阻	JA	65	C/W
结至外壳热阻	JC	5.0	C/W
外壳 936(D ² PAK)	2000		10.0000
T _A =+25 ℃	P _D	内部限制	W
结至环境热阻	JA	70	€\M
结至外壳热阻	JC	5.0	C/W
工作结温范围	T	-40 至+125	C
保存温度范围	T _{stg}	-65 至+150	C

电气特性(V_I-V_O=5.0V;对 D2T 和 T 封装 I_O=0.5A; T_J=T_{Iow}至 T_{high}[注 1]; I_{max}和 P_{max}[注 2]; 除非另有规定)

电气特性(VI-VO-5.0V,对 DZI 和 I 到表 IO-0.5A; IJ-Ilow	上 high[行	I]; Imax ∕™	max[/II Z];	际非力生	ML/LE)	
特性	图	符号	最小值	典型值	最大值	单位
电源调整率(注3) T _A =+25 ℃, 3.0V≤V _I -V _O ≤40V	1	Reg _{line}	-	0.01	0.04	%/V
负载调整率(注3) T _A =+25 ℃, 10mA≤I _O ≤I _{max}	2	Reg _{load}				
V ₀ ≤5.0V		18	(40)	5.0	25	mV
V _o ≥5.0V			-	0.1	0.5	%Vo
热调整率 T _A =+25 ℃(注 6),20ms 脉冲		Reg _{therm}	151	0.03	0.07	$%V_{o}/W$
调节管脚电流	3	I _{Adi}	-	50	100	μΑ
调节管脚电流变化, 2.5V≤V _I -V _O ≤40V	1,2	△l _{Adj}	-	0.2	5.0	μΑ
$10\text{mA} \leq I_L \leq I_{\text{max}}, P_D \leq P_{\text{max}}$						(4)
参考电压 3.0V≤V _I -V _O ≤40V	3	V _{ref}	1.2	1.25	1.3	V
$10\text{mA} \leq l_0 \leq l_{\text{max}}, P_D \leq P_{\text{max}}$						
电源调整率(注 3),3.0V≤V _I -V _O ≤40V	1	Reg _{line}	-	0.02	0.07	%V
负载调整率(注 3),10mA≤lo≤l _{max}	2	Reg _{load}		500,000,000	94.000	51000
V ₀ ≤5.0V		0. 800,890 90.0	-	20	70	mV
V _o ≥5.0V			140	0.3	1.5	%Vo
温度稳定性(T _{low} ≤T _J ≤T _{high})	3	Ts	-	0.7	-	%Vo
最小负载电流以保持调整率(V _I -V _O =40V)	3	I _{Lmin}	-	3.5	10	mA
最大输出电流	3	I _{max}	00.000.000	08/00/199		Α
V _I -V _O ≤15V,P _D ≤P _{max} ,T 封装		200000000	1.5	2.2	-	
V _I -V _O =40V,P _D ≤P _{max} , T _A =+25 ℃,T 封装			0.15	0.4	_	
均方根噪声,Vo的百分比,T _A =+25℃,10Hz≤f≤10kHz		N	-	0.003	-	%Vo
纹波抑制,V _O =10V,f=120Hz(注 4)	4	RR				dB
无 C _{Adj}			-	65	-	
$C_{Adj}=10\mu F$			66	80	-	
长期稳定性, $T_{J}=T_{high}$ (注 5),终点测量时	3	S	(AES)	0.3	1.0	%/1.0k
T _A =+25 ℃		<u> </u>		W- /		小时
结至外壳热阻,T封装		R _{JC}	:-::	5.0	3-8	€/M
N.						

注:

- 1. T_{low}到 T_{high} = 0 ℃ 到+125 ℃,对 LM317T,D2T T_{low}到 T_{high} = -40 ℃ 到+125 ℃,对 LM317BT,BD2T
- 2. I_{max}=1.5A, P_{max}=20W
- 3. 电源和负载调整率在恒定结温时规定。热效应引起的 Vo变化必须分别考虑。使用低占空比的脉冲测试。
- 4. 使用 C_{Adj} 时应连接在调节管脚和地之间
- 5. 因为长期稳定性不能在出货前逐片测量, 所以此项指标是对一批批产品平均稳定性的工程估计。
- 6. 集成电路稳压器内的功耗会在管芯上产生温度梯度,影响管芯上各个集成电路元件,该效应可由恰当的集成电路设计和布局技术来减小。热调整率是这些温度梯度在输出电压上的表现,由规定时间内每瓦功率变化引起的输出变化的百分比来衡量。

典型原理图

器件含 29 个晶体管

图 1.电源调整率和 🛮 Adj/电源测试电路

图 2.负载调整率和 🛮 Adj/负载测试电路

图 3. 标准测试电路

图 4.纹波抑制测试电路

*D₁ 使 C_{Adj} 放电,若输出短接到地、

图 7. 调节管脚电流

图 8. 压降电压

图 9. 温度稳定性

图 10. 最小工作电流

图 11. 纹波抑制与输出电压关系曲线

图 12. 纹波抑制与输出电流关系曲线

图 13. 纹波抑制与频率关系曲线

图 14. 输出阻抗

图 15.电源瞬态响应

图 16.负载瞬态响应

应用信息

基本电路工作

LM317 是三端浮动稳压器。工作时,LM317 建立并保持输出与调节端之间 1.25V 的标称参考电压 (Vref) 这一参考电压由 R₁ (见图 17) 转换成编程电流 (I_{PROG}),该恒定电流经 R₂到地。稳压输出电压由下式给出:

$$V_{out} = V_{ref} 1 + \frac{R_2}{R_1} + I_{Adj}R^2$$

因为调节端的电流(I_{Adj})在式中代表误差项,所以 LM317 设计成控制 I_{Adj} 小于 100μA 并使之保持恒定。为达到这一点,所有静态工作电流都返回到输出端。这样就需要最小负载电流。如果负载电流小于最小值,输出电压会上升。

因为 LM317 是浮动稳压器, 所以只有电路两端电压差对性能是重要的, 工作在对地呈高电压也就成为可能。

图 17.基本电路设置

负载调整率

LM317 能提供极良好的负载调整率,但为实现最优性能需要注意几点。编程电阻(R₁)应尽可能连接在与稳压器靠近处,以使与参考电压有效串联的线路压降最小,避免调整率变差。R₂的接地端可以回到靠近负载接地端处,以提供远程接地取样并改进提高负载调整率。

外部电容

建议使用 0.1μ F 片电容或 1.0μ F 钽电容作为输入旁路电容(C_{in})以减小对输入电源阻抗的敏感性。可通过把调节端旁路到地来提高纹波抑制。该电容(C_{Adj})防止输出电压增大时纹波被放大。在 10V应用中, 10μ F 电容能在 120Hz 处改进纹波抑制约 15dB。

尽管 LM317 在无输出电容时是稳定的,但象其它反馈电路一样,某些值的外部电容会引起过份振荡。 1.0μF 钽电容或 25μF 铝电解电容作为输出电容 (C₀) 会消除这一现象并保证稳定性。

保护二极管

当外部电容应用于任何集成电路稳压器时,有时必 须加保护二极管以防止电容在低电流点向稳压器放 电。

图 18 显示了在输出电压超过 25V 或高电容值 $(C_O>25\mu F, C_{Adj}>10\mu F)$ 时带所推荐的保护二极管的 LM317。二极管 D_1 防止输入短路时 C_O 经集成电路放电。二极管 D_2 防止输出短路时电容 C_{Adj} 放电对集成电路放电。二极管 D_1 和 D_2 的组合防止输入短路时 C_{Adj} 通过集成电路放电。

图 18.带保护二极管的电压稳压器

图 19.D²PAK 热阻和最大功耗与 印刷电路板铜箔长度关系曲线

L,铜箔长度(mm)

图 20.带可调限流和输出电压的"实验室"电源

图 21. 可调节电流限流器

图 23.慢接通稳压器

图 22. 5.0V 电子关断稳压器

*D1在输入短路时保护器件

图 24.电流稳压器

外形尺寸

T后缀 塑料封装 外壳 221A-06

注:

- 1. 尺寸和公差按 ANSI Y14.5M,1982。
- 2 控制尺寸: 英寸
- 3. 尺寸 Z 定义了允许壳体和引脚不规则的区域。

尺寸	英寸		亳米		
1,00	最小值	最大值	最小值	最大值	
Α	0.570	0.620	14.48	15.75	
В	0.380	0.405	9.66	10.28	
С	0.160	0.190	4.07	4.82	
D	0.025	0.035	0.64	0.88	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.42	2.66	
н	0.110	0.155	2.80	3.93	
J	0.018	0.025	0.46	0.64	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
N	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
٧	0.045	=	1.15	9 4 0	
Z	-	0.080	Sam S	2.04	

D2T 后缀 塑料封装 外壳 936-03 (D²PAK) 版本B

注:

- 1. 尺寸和公差按 ANSI Y14.5M, 1982。
- 2. 控制尺寸: 英寸。
- 3. 翼片轮廓在尺寸 A 和 K 以内可选。
- 4. 尺寸 U 和 V 为端子 4 立了最小安装面。
- 5. 尺寸 A 和 B 不包括模压毛边或浇口突起。模压毛边 和浇口突起最大不应超过 0.025 (0.635)。

任意倒角 -T 端子 4 サー

尺寸	英寸		亳米		
70.1	最小值	最大值	最小值	最大值	
Α	0.386	0.403	9.804	10.236	
В	0.356	0.368	9.042	9.347	
С	0.170	0.180	4.318	4.572	
D	0.026	0.036	0.660	0.914	
Е	0.045	0.055	1.143	1.397	
F	0.051 参考值		1.295 参考值		
G	0.100	0.100BSC		BSC	
Н	0.539	0.579	13.691	14.707	
J	0.125	0.125 最大		最大	
K	0.050 参考值		1.270 参考值		
L	0.000	0.010	0.000 0.25		
М	0.088	0.102	2.235	2.591	
N	0.018	0.026	0.457	0.660	
Р	0.058	0.078	1.473	1.981	
R	5 参考值		5 参考值		
S	0.116 参考值		2.946 参考值		
U	0.200 最小		5.080 最小		
V	0.250 最小		6.350 最小		

海纳电子资讯网: www fpga arm com

LM317

安森美半导体及 为半导体元件工业有限公司 (SCILLC) 的注册商标、SCILLC 有权不经通知变更其产品,SCILLC 对其产品是否适合特定用途不作任何保证,声明或承诺: SCILLC 亦不承担因应用或使用任何产品或电路而引起的任何责任。并特此声明其不承担任何责任,包括但不限于对附带损失或间接损失的赔偿责任。 典型 参数会因不同的应用而变化,所有操作参数,包括 典型 参数,须经客户的技术专家按其每一应用目的鉴定核准方可生效。SCILLC 并未在其专利权或他人权利项下转授任何许可证。SCILLC 产品的设计、应用和使用授权不含以下目的: 将其产品用于植入人体的任何物体或维持生命的其他器件,或可因其产品的缺陷而引致人身伤害或死亡的其他任何应用。买方保证,如其为此等未经授权的目的购买或使用 SCILLC 的产品,直接或间接导致任何人身伤害或死亡的索偿要求,并从而引起 SCILLC 及其管理人员、雇员、子公司、关联方和分销商的责任,则买方将对该等公司和人员进行赔偿。使该等公司和人员免于由此产生的任何索偿、损失、开支、费用及合理的律师费、即使该索偿要求指称 SCILLC 的设计或制造其产品中有过失,SCILLC 是一家平等机会 / 无歧视行为的雇主。

出版物订购信息

北美资料受理处:

安森美半导体资料分发中心

P.O. Box 5163, Denver, Colorado 80217 美国

电话: 303-675-2175 或 800-344-3860 美国/加拿大免费电话 传真: 303-675-2176 或 800-344-3867 美国/加拿大免费电话

电子邮件: ONlit@hibbertco.com

传真回复热线: 303-675-2167 或 800-344-3810 美国/加拿大免费电话

北美技术支持: 800-282-9855 美国/加拿大免费电话

欧洲:安森美半导体资料分发中心-欧洲服务部

德国 电话: (+1)303-308-7140(星期一至星期五, 下午 2:30-下午 7:00, CET 时间)

电子邮件: ONlit-german@hibbertco.com

法国 电话: (+1)303-308-7141(星期一至星期五, 下午 2:00-下午 7:00, CET 时间) 电子邮件: ONlit-french@hibbertco.com

英国 电话: (+1)303-308-7142(星期一至星期五,中午 12:00-下午 5:00, GMT 时间)

电子邮件。ONlit@hibbertco.com

欧洲免费电话*: 00-800-4422-3781

*可在德国、法国、意大利和英国使用

中/南美洲

西班牙 电话: 303-308-7143(星期一至星期五,上午 8:00-下午 5:00, MST 时间) 电子邮件, ONlit-spanish@hibbertco.com

亚洲/太平洋地区:安森美半导体资料分发中心 - 亚洲服务部

电话: 303-675-2121(星期二至星期五,上午9:00-下午1:00,香港时间)

001-800-4422-3781; 香港/新加坡免费电话

电子邮件: ONlit-asia@hibbertco.com

日本:安森美半导体 日本客户服务中心

4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, 日本 141-0031

电话: 81-3-5740-2745

电子邮件: r14525@onsemi.com

安森美半导体网址: http://onsemi.com.cn

若需要其他信息,请与您当地的销售代表联系。

安森美半导体 ─

LM317CH/D