

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ

A O H M A
20 XENTEMBPIOY 1984

ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ

APIGMOX OYAAQY 679

ΥΠΟΥΡΓΙΚΕΣ ΑΠΟΦΑΣΕΙΣ & ΕΓΚΡΙΣΕΙΣ

Apr. 3. 12651

(4)

Συμμόρφωση προς τις διατάξεις της οδηγίας 70/220/ΕΟΚ του Συμέουλίου των Ευρωπαϊκών Κουνοτήτων της 20ης Μυρτίου 1970 «για την προσέγγιση των νομοθεσιών των Κρατών μελών που αφορούν τα μέτρα που πρέπει να ληφθούν κατά της μόλυνσης του αέρα από τα αέρια που προέρχονται από κινητήρες με τους οποίους είναι εφοδιασμένα τα σχήματα με κινητήρω», όπως τροποποιήθηκε από τις Οδηγίες 74/290/ΕΟΚ, 77/102/ΕΟΚ, 78/655/ΕΟΚ και 83/35/ΕΟΚ.

ΟΙ ΥΠΟΥΡΓΟΙ ΣΟΙΝΊΚΗΣ ΟΙΚΟΝΟΜΊΑΣ ΚΑΙ ΣΥΓΚΟΙΝΩΝΙΩΝ

Έχοντας υπόψη:

α) Τις διατάξεις των παρ. 1 και 3 του άρθρου 1 του Ν. 1338/1983 «Εφαρμογή του κοινοτικού δικαίου» (ΦΕΚ 34/τ. Α'/17.3.83), όπως τροποποιήθηκε από το άρθρο 6 του Ν. 1440/84 (ΦΕΚ 70/τ. Α'/84) «Σαμμετοχή της Ελλάδος....».

β) Τις διατάξεις της παρ. 2 του άρθρου 84 του ΚΟΚ που πυρώθηκε με το Ν. 614/77 (ΦΕΚ 167/Α/77) «περί

χυρώσεως του Κώδικα Οδικής Κυκλοφορίας».

γ) Την υπ' αριθ. ΔΚ. 20959/8.8.84 ποινή απόφαση του Πρωθυπουργού και του Υπουργού Εθνικής Οικονομίας περί αναθέσεως αρμοδιοτήτων στους Υφυπουργούς Εθνικής Οικονομίας Π. Ρουμελιώτη και Α. Γεωργιάδη (ΦΕΚ 545/τ. Β'/ 8.8.84), αποφασίζουμε:

Άρθρο 1.
Η απόφαση αυτή σκοπό έχει τη συμμόρφωση προς τις διατάξεις της οδηγίας 70/220/ΕΟΚ της 20ης Μαρτίου 1970, όπως τροποποιήθηκε και συμπληρώθηκε από τις οδηγίες 74/290/ΕΟΚ της 28ης Μαΐου 1974, 77/102/ΕΟΚ της 30ης Νοεμέρίου 1976, 78/865/ΕΟΚ της 14ης Ιουλίου 1978 και 83/351/ΕΟΚ της 16ης Γουλίου 1978 και 83/351/ΕΟΚ Γουλίου 1978

1978 και 83/351/ΕΟΚ της 16ης Ιουνίου 1983.
Οι οδηγίες 70/220/ΕΟΚ, 74/290/ΕΟΚ, 77/102/ΕΟΚ και 78/665/ΕΟΚ, δημοσιεύτηκαν στην ελληνική γλώσσα στην ειδική έκδοση της Εκίσημης Εφημερίδας των Ευρωπαϊκών Κοινοτήτων, τομέα Βιομηχανικής Πολιτικής (13) στη σελίδα 68, του τόμου 001, στη σελίδα 238 του τόμου 002, στη σελίδα 12 του τόμου 006 και στη σελίδα 172 του τόμου 007 αντίστοιχα, η οδηγία 83/351/ΕΟΚ στη σελίδα 1 του τεύχους L 197/83 της Επίσημης Εφημερίδας των Ευρωπαϊκών Κοινοτήτων.

Αρθρο 2.
1. Ως οχήματα για την εφαρμογή αυτής της απόφασης νοούνται τα οχήματα με πινητήρα με ελεγχήμενη ανάφλεξη ή με κινητήρα με ανάρλεξη δια συμπιέσεως, που προορίζονται να κυκλοφορούν στους δρόμους, με ή χωρίς αμάξωμα, έχουν τουλάχιστον τέσσερεις (4) προχούς, μέγιστα επιτρεπόμενο εάρος τουλάχιστον 400 KG και μέγιστη ταχύτητα από κατασκευής ίση με/ή μεγαλύτερη από 50 KM/H.

2. Δεν υπάγονται στις διατάξεις αυτής της Απόρασης οι ελαυστήρες, τα γεωργικά μηχανήματα και τα μηχανήματα

ζημοσίων έργων.

Αρθρο 3.
1. Δεν επιτρέπεται η άρνηση χορήγησης άδειας χυκλοφορίας οχήματος στην Ελλάδα, ούτε έγκρισης από εθνικής πλευράς ή εγκρίσεως ΕΟΚ, όπως προελέπεται από τα άρθρα 84 έως 88 του Κώδικα Οδικής Κυκλοφορίας ή δελτίου εγκρί-

σεως χαθώς επίσης και η απαγόρευση πώλησης ή χρήσης εχημάτων, σύμφωνα με τα άρθρ. 86 έως 87 του Κ.Ο.Κ., οε όσα οχήματα υπάγονται στις διατάξεις αυτής της Απόφασης και πληρούν τις προδιαγραφές των παραριτημάτων

s.

2. Η βεβαίωση ότι, ο τύπος του οχήματος για τον οποίε ζητείται η έγκριση ανταποκρίνεται στις παραπάνω προδιαγραφές, γίνεται με πιστοποιητικό που εκδίβεται από την αρμόδια Διεύθυνση του Υπουργείου Συγκοινωνιών, σύμφωνα τε το υπόδειγμα του παραρτήματος VII και συνοδεύεται από ολα τα σχετικά έγγραφα και σχέδια που αναφέρονται στο ίδιο παράρτημα. Το πιστοποιητικό αυτό συντάσσεται με βάση τα αποτελέσματα των ελέγχων και δοκιμών που ορίζονται στα παραπάνω παραρτήματα και που γίνονται, είτε από τις αρμόδιες αρχές του Υπουργείου Συγκοινωνιών, αν υπάρχει αυτή η δυνατότητα, είτε από αναγνωρισμένο ειδικό εργαστήριο Κράτους μέλους της ΕΟΚ.

3. Για να εκδοθεί το παραπόνω πιστοποιητικό, υποδάλλεται στην αρμόδια υπηρεσία του Υπουργείου Συγκοινωνιών σγετική αίτηση του κατασκευαστή ή του εξουσιοδοτημένου

αντιπροσώπου του στην Ελλάδα.

"ApSpo 4.

Η αρμόδια υπηρεσία του Υπουργείου Συηκοινωνιών που εγκρίνει το όχημα παίρνει τα απαραίτητα μέτρα για να πληροφορείται οποιαδήποτε τραποποίηση ενός από τα στοιγεία που αναφέρονται στα παραρτήματα της απόφασης.

Σε περίπτωση που η εν λόγω αρμοδία Υπηερσία αποφασία: ότι πρέπει να προδεί σε νέες δοκιμές για το τροποπιτικόνο όμηχα, αυτές συνοδεύονται από νέο πραπτικό.

Η τροποποίηση δεν εγκρίνεται στην περίπτωση που δεν τηρούνται οι προδιαγραφές των παραρτημάτων αυτής της υπόφασης.

'Ap800 5.

Από την 1η Οπτωδρίου 1984, δεν επιτρέπεται η χορήγηση έγκρισης από εθνικής πλευράς, ούτε η έκδοση του δελτίου έγκρισης που προδλέπεται στο άρθρο 8 του Προεδρικού Δια-

ΠΑΡΑΡΤΗΜΑ Ι

ΠΕΔΙΟ ΕΦΑΡΜΟΓΉΣ, ΟΡΙΣΜΟΙ, ΑΙΤΉΣΗ ΕΓΚΡΙΣΕΩΣ ΕΟΚ, ΕΓΚΡΙΣΉ ΕΟΚ, ΠΡΟΔΙΑΓΡΑΦΕΣ ΚΑΙ ΔΟΚΙ-ΜΕΣ, ΕΠΕΚΤΑΣΉ ΤΗΣ ΕΓΚΡΙΣΕΩΣ ΕΟΚ, ΟΜΟΙΟΓΕΝΕΊΑ ΤΗΣ ΠΑΡΑΓΩΓΉΣ, ΜΕΤΑΒΑΤΙΚΈΣ ΔΙΑΤΑΞΕΊΣ

1. ΠΕΔΙΟ ΕΦΑΡΜΟΓΉΣ

Η παρούσα οδηγία ισχύει για τις εκπομπές ρυπαντικών αερίων όλων των υχημάτων με κινητήρα με ηλεκτρική ανάφλεξη, καθώς και των υχημάτων με κινητήρα με ανάφλεξη διά συμπιέσεως, των κατηγυριών M₁ και N₁ (¹), που προβλέπονται στο άρθρο 1.

2. ΟΡΙΣΜΟΙ

Κατά την έννοια της παρουσας οδηγίας, νοούνται ως:

- 2.1 «Τυπος οχήματος», όσον αφορά τον περιορισμό των εκπομπών ρυπαντικών αερίων του κινητήρα, τα οχήματα μι κινητημα που ουν παρουσιάζουν μιπαξύ τους ουσιώδεις διαφορές, όπως:
- 2.1.1. ισιδύναμη αδράνεια, που προσδιορίζεται συναρτήσει της μάζας αναφοράς όπως καθορίζεται στο σημείο 5.1 του παραρτήματος ΙΙΙ,
- 2.1.2 χαμκετηριστικά του κινητήρα και του οχήματος, όπως ορίζονται στα σημεία 1 έως 6 και 8 του παραρτήματος ΙΙ και στο παράρτημα VII.
- 2.2. «Μάζα αναφιγιάς», η μάζα του οχήματος που είναι έτσιμο προς λειτουργία, μείον τη μάζα του οδηγού η οποία οριζεται σε 75 kg, συν 100 kg.
- 2.2.1. «Μάζα του οχήματος που είναι έτοιμο προς λειτουργία», η μάζα που ορίζεται στο σημείο 2.6 του παραρτήματος 1 της οδηγίας 70/156/ΕΟΚ.
- 2.3. «Μέγιστη μάζα»; η μάζα που ορίζεται στο σημείο 2.7 του παραρτήματος Ι της οδηγίας 70/156/ΕΟΚ.
- 2.4 «Αέριοι ρύποι», το μανοξείδιο του άνθρακα, οι υδρογονάνθρακες (εκφραζόμενοι σε CH_{1.85}), καθώς και τα οξι ιδια του αζώτου ι κφραζόμενα σε διοξείδιο του αζώτου (NO₂).
- 2.5. «Στριφαλυθάλημος», οι χώροι οι υποίοι υπάρχουν στο εσωτερικό ή στο εξωτερικό του κινητήρα και οι οποίοι συνδέονται με την ιλαιοπυξίδα με εσωτερικές ή εξωτερικές διόδους διά των υποίων δύνανται να διαφύγουν τα πέρια και οι ατμοι.
- 2.6. «Διάταξη εκκίνησης ψυχρού κινητήρα», διάταξη που εμπλουτίζει πρόσκαιρα το μείγμα αέρα/καυσίμου του κινητήρα και διευκολύνει έτσε την εκκίνησή του.
- 2.7. «Βοηθητική διαταξη εκκινήσεως», μία διάταξη που διευκολύνει την εκκινήση του κινητήρα χωρίς εμπλουτισμό του μείγματος αίμα/καυσίμου: προθερμαντήρες κυλίνδρων, αλλαγές του χρονισμού της αντλίας εγχύσεως, κλπ.

3. ΑΙΤΗΣΗ ΕΓΚΡΙΣΕΏΣ ΕΟΚ

- 3.1. Η αίτηση για την έγκριση ενός τύπου υχήματος, όσον αφορά την εκπομπή αερίων ρύπων του κινητήρα, υποβάλλεται από τυν κατασκευαστή ή τον εντολοδόχο του.
- 3.2. Η αίτηση συνώνει ται από τα ακόλουθα έγγραφα εις τριπλούν, καθώς και από τις ακόλουθας ενδείξεις:

⁽¹⁾ Σύμφωνα με τον ορισμό του σημείου 0.4 του παραρτήματος Ι της οδηγίας 70/156/ΕΟΚ (ΕΕ αριθ. L 42 της 23. 2. 1970, σ. 1).

- 3.2.1. περιγραφή του τύπου του κινητήρει η οποία περιλαμβάνει όλες τις πληροφορίες που απαριθμούνται στο παράρτημα II,
- 3.2.2. σχέδια του θαλάμου καύσεως και του εμβύλου, συμπιριλαμβανομένου και των ελατηρίων του εμβύλου,
- 3.2.3. μέγιστη διαδρομή των βαλβίδων και γωνίες ανοίγματος και κκεισιματός σε σχέση με τα νεκρέ σημεία.
- 3.3. Ένα όχημα αντιπροσωπευτικό του τύπου του οχήματος προς έγκριση πρέπει να παρουσιάζεται στην τεχνική υπηρεσία η οποία είναι επιφορτισμένη με την εκτέλεση των δυκιμών εγκρίσεως που προβλέπονται στο σημείο 5 του παρόντος παραρτήματος.

4. ΕΓΚΡΙΣΉ ΕΟΚ

 Στο πιστοποιητικό εγκρίσεως ΕΟΚ επισυνάπτεται ένα δελτίο σύμφωνο με το υπόδειγμα του παραφτηματος VII.

5. ΠΡΟΔΙΑΓΡΑΦΕΣ ΚΑΙ ΔΟΚΙΜΕΣ

5.1. Γενικά

Τα μέρη του υχήματος που είναι πιθανά να επηρεάσουν την εκπομπή αερίων ρύπων πρέπει να σχεδιάζονται, να κατασκευάζονται και να συναρμολογούνται κατά τέτοιο τρόπο ώστε, υπό κανονικές συνθήκες λειτουργίας και παρα τις δονήσεις στις οποίες μπορεί να υπόκεινται, το όχημα να ανταποκρίνεται στις απαιτήσεις της παρούσιες οδηγίας.

5.2. Περιγραφές των δοκιμών

- 5.2.1. Ανάλογα με την κατηγορία του, το όχημα πρέπει να υποβάλλεται στους ακόλουθους τύπους δοκιμών:
 - τύπους Ι, Η και ΙΙΙ για τα οχήματα που είναι εφοδαισμένα με κινητήρα με ηλεκτρική ανάφλεξη.
 - τύπο Ι για τα σχήματα που είναι εφοδιασμένα με κινητήρα με ανάφλεξη διά συμπιέσεως.
- 5.2.1.1. Δοκιμή τύπου Ι (έλεγχος της μέσης εκπομπής αιρίων ρύπων μετά από εκκίνηση με ψυχρό κινητήρα)
- 5.2.1.1.1. Η δοκιμή αυτή πρέπει να πραγματοποιείται σε όλα τα οχήματα που προβλέπονται στο σημείο 1 και των οποίων η μέγιστη μάζα δεν υπερβαίνει τους 3,5 τόνους.
- 5.2.1.1.2. Το όχημα τοποθετείται επί δυναμομετρικής εξέδρας εφοδιασμένης με σύστημα προσομοίωσης της αντίστασης στην κίνηση και της αδράνειας. Εκτελείται χωρίς διακοπη μια δοκιμή, συνολικής διάρκειας 13 λεπτών η οποία περιλαμβάνει τέσσερις κύκλοις. Κάθε κύκλοις αποτελείται από 15 στάδια [ρελαντί (βραδεία λειτουργία), επιτάτουντη, σταθερη ταχύτητα, επιβράδυνση, κλπ.]. Κατά τη διάρκεια της δοκιμής, τα καυσαέρια του οχήματος αμαιώνονται και το αναλογικό δείγμα συλλέγεται σε έναν ή περισσότεροις σάκοις. Τα καυσαέρια του εξεταζόμελοι οχήματος αμαιώνονται, γίνεται δειγματοληψία και αναλονται σύμφωνα με τη διαδικασια που περιγράφεται κατωτέρω. Μετρέται ο συνολικός όγκος των αμαιωμένων καυσια ρίων.
- 5.2.1.1.3. Η δοκιμή δυξάγεται σύμφωνα με τη μέθοδο που περιγράφεται στο παράρτημα ΙΙΙ. Η συλλογή και η ανάλυση των αιρίων πρέπει να γίνεται σύμφωνα με τις προδιαγραφόμενες μεθόδους. Άλλες μέθοδοι ανάλυσης είναι δυνατό να γίνουν αποδεκτές εάν έχει αποδειχθεί ότι δίνουν ισοούναμα αποτελέσματα.
- 5.2.1.1.4. Με την επιφύλαξη των διατάξεων των παρακάτω σημείων 5.2.1.1.4.2 και 5.2.1.1.5, η δοκιμή πραγματοποιείται τρεις φορές. Για ενα όχημα δεδομένης μάζας αναφοράς, η μάζα του μονοξειδίου του άνθρακα και η συνολικη μάζα υδρογονανθράκων και ιξειδίων του αζώτου που λαμβάνονται πρέπει να είναι μικρότερες από τις τιμές που αναγράφονται στον παρακάτω πίνακα

Merija reviegogića, Ma (kg)	Μοννζείδω) του ανήμεικα L ₁ (γραμμάρια/δοκιμή)	Συνιλική εκαιμαή ιδηκερινετείη νέκου και εξετοίου του αξώτου L2 (γραμμάρια/δεκειμή)
Ma ~ 1 020	5x	19,0
1 020 × Ma × 1 250	67	20,5
$1.250 < Ma \le 1.470$	76	22,0
1 470 < Ma ≤ 1 700	84	23,5
$1700 < Ma \le 1930$	93	25,0
$1930 < Ma \le 2150$	101	26,5
2 150 < Ma	110	28,0

- 5.2.1.1.4.1. Ωστόσο επιτρέπεται, για κάθε έναν από τους ρύπους που αναφέρονται στο σημείο 5.2.1.1.4, ένα μόνο από τα τρία αποτιλίσματα των μιτρήσεων να υπερβαίνει κατά 10 % το πολύ το προδιαγραφόμενο στο εν λόγω σημιίο όριο για το ιξεταζόμενο όχημα, υπό τον όριο ότι ο αριθμητικός μέσως όρις των τριών αποτελεσμάτων είναι κατώτιρκς από το προδιαγραφόμενο όριο. Όταν σημειώνεται υπέρβαση των προδιαγραφομένων ορίων σε περισσότερους από έναν ρύπους (δηλαδή στη μάζα του μονοξειδίου του άνθρακα και στη συνολική μάζα των υδρογονανθράκων και τον οξειδίων του αζώτου), η υπέρβαση επιτρέπεται να σημειώθεί είτε κατά τη διάρκεια μιας και της αυτής δοκιμής είτε κατά τη διάρκεια διαφορετικών δοκιμών (1).
- 5.2.1.1.4.2. Ο αριθμός των δοκιμών που καθορίζεται στο σημείο 5.2.1.1.4 μπορεί, κατόπιν αιτήσεως του κατασκευαστή, να αυξηθεί σε δέκα, υπό την προϋπόθεση ότι ο αριθμητικός μέσος όρος (x̄,) των τριών αποτελεσμάτων που λαμβάνονται για το μονοξιών του αζώτου, περιλαμβάνε ται μεταξύ του 100 και 110 ω της οριακής τιμής. Στην περίπτωση αυτή η απόφαση, μετά από τις δυκιμίς, εξαρτάται αποκλειστικά από το μέσο όρο των αποτελεσμάτων που λαμβάνονται για το σύνολο των δέκα δοκιμών (x̄ < L).</p>
- 5.2.1.1.5. Ο αριθμός των δοκιμών που καθορίζεται στο σημείο 5.2.1.1.4 μειώνεται υπό τους όρους που ορίζονται παρακάτω, όπου V₁ είναι το αποτέλεσμα της πρώτης δοκιμής και V₂ το αποτέλεσμα της δεύτερης δοκιμής για έναν οποιονδηποτί απο τους ρύπους που αναφέρονται στο σημείο 5.2.1.1.4.
- 5.2.1.1.5.1. Εκτιλείται μία μόνο δοκιμή εάν οι τιμές V₁ που λαμβάνονται τόσο από τη μέτρηση της εκπομπής μονοξειδίου του άνθρακα όσο και από τη μέτρηση της συνολικής εκπομπής υδρογονανθράκων και οξειδίων του αζώτου είναι κατώτερες ή ίσες του 0,70 L.
- 5.2.1.1.5.2. Εκτιλούνται μόνο όθο δοκιμές αν, για την εκπομπή μονοξειδίου του άνθρακα όσο και για τη συνολική εκπομπή ιδρογοντινήμακων και οξειδίων του αζώτου, $V_1 \leq 0.85$ L, αλλά συγχρόνως για έναν από τους ρύπους αυτούς, $V_1 > 0.70$ L. Επιπλέον, τόσο για την εκπομπή μονοξειδίου του άνθρακα όσο και για τη συνολική εκπομπή ιδρογονανθρακων και οξειδίων του αζώτου, το V_2 πρέπει να ικανοποιεί τις ακόλουθες απαιτήσεις: $V_1 + V_2 \leq 1.70$ L και $V_2 \leq L$.

⁽¹⁾ Αν για ένα από τα τρία αποτελέσματα που λαμβάνονται, για οποιονδήποτε από τους ρύπους, παρατηρείται υπέρβαση του καθοριζομένου στο σημείο 5.2.1.1.4 ορίου για το προβλεπόμενο όχημα μεγαλύτερη του 10 40, η δοκιμή πρέπει να συντχίζι ται υπό τις συνθήκες που ορίζονται στο σημείο 5.2.1.1.4.2.

Είκοινε Ι Λογικό διάγραμμα της έγκρισης στην ευρωπαϊκή διαδικασία δοκιμής (βλέπε σημεία 5.2)

- 5.2.1.2. Δοκιμή του τύπου ΙΙ (έλεγχος της εκπομπής μονοξειδίου του άνθρακα στο ρελαντί)
- 5.2.1.2.1. Η δοκιμή πρέπει να εκτελείται σε όλα τα οχήματα που προβλέπονται στο παραπάνω σημείο 1, εκτός από τα οχήματα που είναι εφοδιασμένα με κινητήρα με ανάφλεξη διά συμπιέσεως.
- 5.2.1.2.2. Τα καυσαέρια που εκπέμπονται στο ρελαντί δεν πρέπει να περιέχουν περισσότερο από 3,5 % κατ' όγκο μονοξείδιο του άνθρακα. Κατά τη διάρκεια του ελέγχου σύμφωνα με το παράρτημα ΙV, που γίνεται υπό συνθήκες λειτουργίας που διαφέρουν από εκείνες που συνιστά ο κατασκευαστής (θέση των οργάνων ριθμίσεως), η μέγιστη μετρούμενη κατ' όγκο περιεκτικότητα δεν πρέπει να υπερβαίνει το 4,5 %.
- 5.2.1.2.3. Η τήρηση της προδιαγραφής αυτής ελέγχεται με δοκιμή που διεξάγεται σύμφωνα με τη μέθοδο που περιγράφεται στο παράρτημα IV.
- 5.2.1.3. Δοκιμή του τύπου ΙΙΙ (Ελεγχος της εκπομπής αερίων του στροφαλοθαλάμου)
- 5.2.1.3.1. Η δοκιμή αυτή πρέπει να πραγματοποιείται σε όλα τα οχήματα που προβλέπονται στο σημείο Ι, εκτός από εκείνα που είναι εφοδιασμένα με κινητήρα με ανάφλεξη διά συμπιέσεως.
- 5.2.1.3.2. Το σύστημα εξαερισμού του στροφαλοθαλάμου δεν πρέπει να επιτρέπει καμία εκπομπή αερίων από το στροφαλοθάλαμο στην ατμόσφαιρα.
- 5.2.1.3.3. Η τήρηση της προδιαγραφής αυτής ελέγχεται με δοκιμή που διεξάγεται σύμφωνα με τη μέθοδο που περιγράφεται στο παράρτημα V.
- 6. ΕΠΕΚΤΑΣΗ ΤΗΣ ΕΓΚΡΙΣΗΣ ΕΟΚ

: . •

- 6.1. Τύποι οχημάτων με διάφορες μάζες αναφοράς
- 6.1.1. Η έγκριση που χορηγείται σε έναν τύπο οχήματος μπορεί να επεκταθεί, υπό τις παρακάτω συνθήκες, και σε τύπους οχημάτων που δεν διαφέρουν από τον εγκεκριμένο τύπο παρά μόνο ως προς τη μάζα αναφιρής.
- 6.1.1.1. Η έγκριση μπορεί να επεκταθεί στους τύπους οχημάτων των οποίων η μάζα αναφοράς ανταποκρίνεται στο αμέσως ανώτερο ή το αμέσως κατώτερο κλιμάκιο ισοδύναμης αδράνειας.
- 6.1.1.2. Αν η μάζα αντιφοράς του τύπου του οχήματος, για τον οποίο ζητείται η επέκταση της έγκρισης, αντιστοιχτί στη χρησιμοποίηση σφονδύλου ισοδύναμης αδράνειας, βαρύτερου από το σφόνδυλο που χρησιμοποιείται για τον ήδη εγκεκριμένο τύπο οχήματος, η επέκταση της έγκρισης χορηγείται.
- 6.1.1.3. Αν η μάζα αναφοράς του τύπου του οχήματος, για τον οποίο ζητείται η επέκταση της έγκρισης, αντιστοιχεί στη χρησιμοποίηση σφονδύλου ισοδύναμης αδράνειας, ελαφρότερου από το σφόνδυλο που χρησιμοποιείται για τον ήδη εγκεκριμένο τύπο οχήματος, η επέκταση της έγκρισης χορηγείται αν οι μάζες των ρύπων που λαμβάνονται από το ήδη εγκεκριμένο όχημα τηρούν τα προδιαγραφόμενα όρια για το όχημα για το οποίο ζητείται η επέκταση της έγκρισης.
- 6.2. Τύποι οχημάτων με διαφορετικές ολικές σχέσεις μετάδοσης της κίνησης
- 6.2.1. Η έγκριση που χορηγείται σε έναν τύπο σχήματος μπορεί να επεκταθεί και σε τύπους σχημάτων που δεν διαφέρουν από τον εγκεκριμένο τύπο παρά μόνο ως προς την ολική σχέση μετάδοσης της κίνησης υπό τις εξής προϋποθέσεις:
- 6.2.1.1. Για κάθε μία από τις σχέσεις μετάδοσης που χρησιμοποιούνται κατά τη δοκιμή του τύπου I, προσδιορίζεται $\eta \, \text{σχέση} \, E = \frac{V_2 V_1}{V_1}$

όπου V_1 και V_2 είναι αντίστοιχα η ταχύτητα στις $1\,000$ στροφές/λεπτό του κινητήρα του εγκεκριμένου τύπου οχήματος και η ταχύτητα του τύπου του οχήματος για το οποίο ζητείται η επέκταση της έγκρισης.

6.2.2. Αν για κάθε σχέση μετάδοσης προκύπτει E < 8 %, η επέκταση χορηγείται χωρίς επανάληψη των δοκιμών του τύπου I.

- 6.2.3. Αν τουλάχιστον για μία σχέση μετάδοσης προκύπτει Ε > 8.00 καί αν για κάθε σχέση μετάδοσης προκύπτει Ε ≤ 13.00, οι δοκιμές του τύπου Γπρέπει να επαναλαμβανονται, αλλα μπορούν να πραγματοποιούνται σε εργαστήριο της εκλογής του κατασκεινιστή, εφόσον συμφωνει η αρχη που χορηγει την έγκριση. Το πρακτικό των δοκιμών πρέπει να αποστέλλεται στην τεχνική υπηρεσία που είναι επιφορτισμένη με τις δοκιμές.
- 6.3. Τύποι οχημάτων με διαφορετικές μάζες αναφοράς και με διαφορετικές ολικές σχέσεις μετάδοσης της κίνησης

Η έγκριση που χορηγείται σε έναν τύπο οχήματος μπορεί να επεκταθεί και σε τύπους οχημάτων που δεν διαφέρουν από τον εγκεκριμένο τύπο παρά μόνο ως προς τη μάζα αναφοράς και την ολική σχέση μετάδοσης της κίνησης, υπό την επιφύλαξη ότι ανταποκρίνεται στο σύνολο των συνθηκών που αναφέρονται στα ανωτέρω σημεία 6.1 και 6.2.

6.4. Παρατήρηση

Όταν η έγκριση ενός τύπου οχήματος έχει χορηγηθεί δυνάμει των διατάξεων των σημείων 6.1 έως 6.3, η έγκριση αυτή δεν μπορεί να επεκταθεί σε άλλους τύπους οχημάτων.

7. ΟΜΟΙΟΓΕΝΕΊΑ ΤΗΣ ΠΑΡΑΓΩΓΉΣ

- 7.1. Κατά γενικό κανόνα, η ομοιογένεια της παραγωγής, όσον αφορά τον περιορισμό των εκπομπών αερίων ρύπων που προέρχονται από τον κινητήρα, ελέγχεται όπως περιγράφεται στο παράρτημα του δελτίου έγκρισης που περιλαμβάνεται στο παράρτημα VII και, εφόσον απαιτείται, με τις δοκιμές των τύπων Ι, ΙΙ και ΙΙΙ που αναφέρονται στο σημείο 5.2, ή με ορισμένες από τις δοκιμές αυτές.
- 7.1.1. Για τον έλεγχο της ομοιογέντιας, όσον αφορά τη δοκιμή του τύπου Ι, ακολουθείται η εξής διαδικασία:
- 7.1.1.1. Λαμβάνεται ένα όχημα από τη σειρά παραγωγής και υποβάλλεται στη δοκιμή που περιγράφεται στο σημείο 5.2.1.1. Εντούτοις, οι ορμικές τιμές του σημείου 5.2.1.1.4 αντικαθίστανται από τις ακόλουθες οριακές τιμές:

Μάζα αναφοράς Μα (kg)	Μονυξείδιο του άνθρακα L ₁ (γραμμάρια/δοκιμή)	Συνολική εκπομπή υδρυγονανθράκ και οξειδίων του αζώτου L2 (γραμμάρια/δοκιμή)	
Mα ≤ 1 020	70	23,8	
$1020 < M\alpha \le 1250$	80	25,6	
1 250 < $M\alpha \le 1470$	91	27,5	
$1470 < M\alpha \le 1700$	101	29,4	
$1700 < M\alpha \leq 1930$	112	31,3	
$1930 < M\alpha \le 2150$	121	.33,1	
$2150 < M\alpha$	132	35,0	

7.1.1.2. Εάν το ληφθέν όχημα δεν τηρεί τις προδιαγραφές του σημείου 7.1.1.1, ο κατασκευαστής μπορεί να ζητήσει να πραγματοποιηθούν μετρήσεις σε δείγμα οχημάτων που λαμβάνονται από τη σειγά παραγωγής όπου περιλαμβάνεται και το όχημα αυτό. Ο κατασκευαστής καθκρίζει το μέγεθες η του δείγματος. Τα άλλα οχήματα, εκτός του αρχικά ληφθέντος, υποβάλλονται σε μία μόνο δοκιμή του τύπου Ι.

Το αποτέλεσμα που λαμβάνεται υπόψη για το αρχικά ληφθέν όχημα είναι ο αριθμητικός μέσος όρος των αποτελεσμάτων των τριών δοκιμών του τύπου Ι που πραγματοποιούνται στο όχημα αυτό. Ο αριθμητικός μέσος

όρος (λ) των αποτελεσμάτων που λειμβάνονται για το δείγμα και η τυπική απόκλιση S (1) πρέπει να προσδιορίζονται τόσο για την εκπομπή μονοξειδίου του άνθρακα όσο και για τη συνολική εκπομπή υδρογονανθράκων και οξειδίων του αζώτου. Η παραγωγή της σειράς θεωρείται ομοιογενης εάν:

$$\bar{x} + k \cdot S \le L$$

όπου:

- Η οριακή τιμή που καθορίζεται στο σημείο 7.1.1.1 για την εκπομπή μονοξιεδίου του άνθρακα και τη συνολική εκπομπή υδρογονανθρέκων και οξειδίων του αζώτου,
- k: στατιστικός συντελεστής που εξαρτάται από το n και που δίνεται στον κατωτέρω πίνακα:

n	2	3	4	5	6	7	8	9	10
k	0,973	0,613	0,489	0,421	0,376	0,342	0,317	0,296	0,279
n	11	12	13	14	15	16	17	18	19
k	0,265	0,253	0,242	0,233	0,224	0,216	0,210	0,203	0,195

$$ε άν n > 20, K = \frac{0.860}{\sqrt{n}}$$

- 7.1.2. Κατά τη διάρκεια μιας δοκιμής του τύπου ΙΙ ή του τύπου ΙΙΙ που πραγματοποιείται σε ένα όχημα που λαμβάνεται από τη σι.ιρά παραγωγής, πρέπει να πληρούνται οι προϋποθέσεις που αναφέρονται στα σημεία 5.2.1.2.2 και 5.2.1.3.2.
- 7.1.3. Κατά παρέκκλιση των προδιαγραφών του σημείου 3.1.1 του παραρτήματος ΙΙΙ, η τεχνική υπηρεσία που είναι επιφορτισμένη με τον έλεγχο της ομοιογένειας της παραγωγής μπορεί, αν συμφωνεί ο κατασκευαστής, να πραγματοποιήσει τις δοκιμές των τύπων Ι, ΙΙ και ΙΙΙ σε οχήματα που να έχουν διατρέξει λιγότερο από 3 000 km.

8. ΜΕΤΑΒΑΤΙΚΈΣ ΔΊΑΤΑΞΕΙΣ

- 8.1. Για την έγκριση και τον έλεγχο της ομοιογένειας των οχημάτων εκτός από τα οχήματα της κατηγορίας Μ₁, καθώς επίσης και των οχημάτων της κατηγορίας Μ₁ που είναι σχεδιασμένα για τη μεταφορά περισσοτέρων από έξι ατόμων, στα οποία περιλαμβάνεται και ο οδηγός, οι οριακές τιμές για τη συνολική εκπομπή υδρογονανθράκων και οξειδίων του αζώτου είναι εκείνες που προκύπτουν από τον πολλαπλασιασμό των τιμών L₂ που παρουσιάζονται στους πίνακες των σημείων 5.2.1.1.4 και 7.1.1.1 επί το συντελεστή 1,25.
- 8.2. Για τον έλεγχο της ομοιογένειας της παμαγωγής οχημάτων που έχουν εγκριθεί πριν από την Ιη Οκτωβρίου 1984, όσον αφορά την εκπομπή ρύπων σύμφωνα με τις διατάξεις της οδηγίας 70/220/ΕΟΚ, όπως τροποποιήθηκε από την οδηγία 78/665/ΕΟΚ, εφαρμόζονται οι διατάξεις της παραπάνω οδηγίας έως ότου τα Κράτη μέλη εφαρμόσουν το άρθρο 2 παράγραφος 3 της παρούσας οδηγίας.

⁽¹⁾ $S^2 = \sum \frac{(x-\bar{x})^2}{2}$ όπου x ένα οποιοδήποτε από τα n επί μέρους αποτελέσματα.

HAPAPTHMA H

ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΚΙΝΗΤΗΡΑ ΚΑΙ ΠΑΗΡΟΦΟΡΙΕΣ ΕΧΕΤΙΚΕΣ ΜΕ ΤΗ ΔΙΕΊΑΓΩΓΗ ΤΩΝ ΔΟΚΙΜΩΝ $(^1)$

i.	Περιγραφή του κινητήρα
ı.	Κατασκευαστής:
ı.	·
, I.	Αρχή λειτουργίας: ηλεκτρική ανάφλεξη/ανάφλεξη με συμπίεση, τετράχρονη/δίχρονη (²):
1.	Διάμετρος κυλίνδρων: mm
1.5	Διαδρομή: mm
1.6	Αριθμός και διάταξη των κυλίνδρων και σειρά ανάφλεξης:
1.7	Κυβισμός: cm ³
1.8	Σχέση συμπίεσης (3):
1.9	Σχέδια του θαλάμου καύσης και της άνω επιφάνειας του εμβάλου:
1.1	Σύστημα ψύξης: με υγρό/με αέρα (²):
1.1	Υπερπλήρωση: με/χωρίς (²)' περιγραφή του συστήματος:
1.1	Σύστημα εισαγωγής
	Πολλαπλή εισαγωγή:
	Φίλτρο αέρα: Κατασκευαστής:
	Σιγαστήρας εισαγωγής:
1.1.	Διάταξη ανακύκλωσης των αερίων του στροφαλοθαλάμου (περιγραφή και σχήματα):
2.	Πρόσθετες αντιρυπαντικές διατάξεις (αν υπάρχουν, και αν δεν περιλαμβάνονται σε άλλο σημείο)
	Περιγραφή και σχήματα:
3.	Σύστημα τροφοδοσίας
3.1.	Περιγραφή και σχήματα των σωληνώσεων εισαγωγής και των εξαρτημάτων τους [αποσβεστήρας δοιτησεων (Dashpot)], διάταξη αναθέρμανσης, πρόσθετες εισαγωγές αέρα, κλπ.:
·3.2.	Τροφοδοσία καυσίμου
3.2.1	με εξαερωτήρα(ες) (²):
3.2.1	. Κατασκευαστής:
415	
(')	τα τους μη συμβατικούς κινητήρες ή συστήματα, ο κατασκευαστής θα παρέχει στοιχεία ισοδύναμα με εκείνα που ητούνται παρακάτω.
$\binom{2}{3}$	Μανηάφεται η ποιντή όμβοιξη
(3)	(αθυρίζεται η ανυχή.

3.2.1.2.	Тилоς:	
3.2.1.3.	Ρυθμίσεις (1)	
3.2.1.3.1.	Αναβρυτήρες (ζιγκλέρ):	
3.2.1.3.2.	Στενώσεις Βεντούρι:	ή Καμπύλη της παρυχής καυσίμου συναρτήσει της
3.2.1.3.3.	Στάθμη καυσίμου στο δοχείο πλωτήρα:	παικιχής αίτρα και ένδιιξη των οριμκών ρυθμίσεων πρωκιμένου να τηρείται η καμπύλη (1) (2)
3.2.1.3.4.	Βάριος του πλωτήριε:	
3.2.1.3.5.	Βελονωτή βαλβίδα πλωτήρα:	, ·
3.2.1.4.		ουτισμού μείγματος (²):
	Ρύθμιση κλεισίματος (1)	
3.2.1.5.	Αντλία τρικροδισίας Πίεση (¹):	τηριστικό διάγραμμα (¹):
3.2.2	Με διάτιιξη έγχυσης (²) περιγραφή του συστήματος Αρχή λειτουργίας: έγχυση στην πυλλαπλή εισαγωγή/ Προθέλειμος έγχισης/θέλαμος στροβιλισμού (²):	άμεση έγχυση
3.2.2.1.	Αντλία έγχυσης:	••••••
3.2.2.1.1.	Κατασκευαστής:	
3.2.2.1.2.	Τύπος:	
		·
3.2.2.1.3.	ή χαρακτηριστικό διάγραμμα (¹) (²):	
3.2.2.1.3. 3.2.2.1.4.	ή χαρακτηριστικό διάγραμμα (¹) (²):	
	ή χαικατημιστικό διάγραμμα (1) (2): Τρόπις ρύθμισης: στην εξέδρα/στον κινητήρα (2): Χρονισμός της έγχυσης: Καμπίλη έγχυσης:	
3.2.2.1.4.	ή χαικατημιστικό διάγραμμα (1) (2): Τρόπος ρύθμισης: στην εξέδρα/στον κινητήρα (2): Χρονισμός της έγχυσης: Καμπύλη έγχυσης: Ακροφύσιο εγχυτήρα:	
3.2.2.1.4. 3.2.2.1.5.	ή χαικατημιστικό διάγραμμα (1) (2): Τρόπος ρύθμισης: στην εξέδρα/στον κινητήρα (2): Χρονισμός της έγχυσης: Καμπύλη έγχυσης: Ακρυφύσιο εγχυτήρα:	
3.2.2.1.4. 3.2.2.1.5. 3.2.2.2.	ή χαικατημοτικό διάγραμμα (1) (2): Τρόπος ρύθμισης: στην ιξίδρα/στον κινητήρα (2): Χρονισμός της έγχυσης: Καμπύλη έγχυσης: Ακριφύσιο εγχυτήμα: Ρυθμιστής: Κατασκευαστής:	
3.2.2.1.4. 3.2.2.1.5. 3.2.2.2. 3.2.2.3.	ή χαιμακτηριστικά διάγραμμα (1) (2): Τρόπος ρύθμισης: στην εξέδρα/στον κινητήρα (2): Χρονισμός της έγχυσης: Καμπάλη έγχυσης: Ακροφύσιο εγχυτήρα: Ρυθμιστής: Κατασκευαστής:	
3.2.2.1.4. 3.2.2.1.5. 3.2.2.2. 3.2.2.3. 3.2.2.3.1.	ή χαιμακτηριστικά διάγραμμα (1) (2): Τρόπος ρύθμισης: στην ιξίδρα/στον κινητήρα (2): Χρονισμός της έγχυσης: Καιμπάλη έγχυσης: Ακροφύσιο εγχυτήμα: Ρυθμιστής: Κατασκευαστής: Τύπος:	min —
3.2.2.1.4. 3.2.2.1.5. 3.2.2.2. 3.2.2.3. 3.2.2.3.1. 3.2.2.3.2.	ή χαικατηριστικό διάγραμμα (1) (2): Τρόπος ρύθμισης: στην ιξίδρα/στον κινητήρα (2): Χρονισμός της έγχυσης: Καμπύλη έγχυσης: Ακροφύσιο εγχυτήρα: Ρυθμιστής: Κατασκευαστής: Τύπος:	min = 1
3.2.2.1.4. 3.2.2.1.5. 3.2.2.2. 3.2.2.3. 3.2.2.3.1. 3.2.2.3.2. 3.2.2.3.3.	ή χαιμακτηριστικά διάγραμμα (1) (2): Τρόπος ρύθμισης: στην ιξίδρα/στον κινητήρα (2): Χρονισμός της έγχυσης: Καιμπίλη έγχυσης: Ακροφύσιο εγχυτήμα: Ρυθμιστής: Κατασκευαστής: Τύπος: Ταχύτητα διακοπής παμοχής υπό φορτίο: Μέγιστη ταχύτητα χωρίς φορτίο: Ταχύτητα ρελαντί (βραδείας λειτουργίας)	min = 1
3.2.2.1.4. 3.2.2.1.5. 3.2.2.2. 3.2.2.3. 3.2.2.3.1. 3.2.2.3.2. 3.2.2.3.3. 3.2.2.3.4.	ή χαιμακτηριστικά διάγραμμα (1) (2): Τρόπος ρύθμισης: στην ιξίδρα/στον κινητήρα (2): Χρονισμός της έγχυσης: Καιμπίλη έγχυσης: Ακροφύσιο εγχυτήμα: Ρυθμιστής: Κατασκευαστής: Τύπος: Ταχύτητα διακοπής παμοχής υπό φορτίο: Μέγιστη ταχύτητα χωρίς φορτίο: Ταχύτητα ρελαντί (βραδείας λειτουργίας)	min = 1
3.2.2.1.4. 3.2.2.1.5. 3.2.2.2. 3.2.2.3. 3.2.2.3.1. 3.2.2.3.2. 3.2.2.3.3. 3.2.2.3.4. 3.2.2.3.5.	ή χαικατηριστικό διάγραμμα (1) (2): Τρόπος ρύθμισης: στην ιξίδρα/στον κινητήρα (2): Χρονισμός της έγχυσης: Καιμκύλη έγχυσης: Ακροφύσιο εγχυτήρα: Ρυθμιστής: Κατασκευαστής: Τύπος: Ταχύτητα διακοπής παμοχής υπό φορτίο: Μέγιστη ταχύτητα χωρίς φορτίο: Ταχύτητα ρελαντί (βραδείας λειτουργίας) Διάταξη εκκίνησης με ψυχρό κινητήρα: Κατασκευαστής:	min -1

⁽i) Καθορίζεται η ανιχή.
(2) Διαγράφεται η περιττή ένδειξη.

3.2.2.4.3.	Περιγραφή:
3.2.2.5.	Βοηθητική διάταξη εκκίνησης:
3.2.2.5.1.	Κατασκωναστής:
-3.2.2.5.2.	Толос:
3.2.2.5.3.	Περιγραφή:
4.	Χαρακτηριστικά διανομής μείγματος ή ισοδύναμα στοιχεία
4.1.	Λιαδρομή βαλβίδων, γωνίες ανοίγματος και κλεισίματος, ή ισοδύναμα στοιχεία άλλων συστημάτων διανομής σε σχέση με το άνω νεκρό σημείο
4.2.	Διάκενα αναφοράς ή/και ρύθμισης (1):
5.	Ανάφλεξη
5.1.	Τύπος συστήματος ανάφλεξης:
5.1.1.	Κατασκευαστής:
5.1.2.	Τύπος:
5.1.3.	Καμπύλη της προπορείας (αβάνς) κατά την ανάφλεξη (²):
5.1.4.	Χρινισμός (²):
5.1.5.	Λιάκενο των επαφών (πλατινών) $(^2)$ και γωνία εκκέντρου (dwell) $(^1)$ $(^2)$:
6.	Σύστημα εξάτμισης
6.1.	Περιγραφή και σχήματα:
7.	Πρόσθετες πληροφορίες σχετικά με τις συνθήκες δοκιμής
7.1.	Σπινθηριστές (μπουζί)
7.1.1.	Κατασκευαστής:
7.1.2.	Τύπος:
7.1.3.	Διάκενο:
7.2.	Πολλαπλασιαστής
7.2.1.	Κατασκευαστής:
7.2.2.	Τύπος:

Διαγράφεται η περιττή ένδειξη. Καθορίζεται η ανοχή.

7.3.	Hirksmith anabyith
7.3.1.	Κατασκευαστής:
7.3.2.	Τύπος:
8.	Αειτουργικά χαρακτηριστικά του κινητήρα (κατά δήλωση του κατασκευαστή)
8.1.	Στροφές στο ρελαντί (βραδεία λειτουργία):
8.2.	Περιεκτικότητα των καυσαιρίων σε μονιξείδιο του άνθρακα στο ρελαντί-ποσοστό % κατ' όγκο (προδιαγραφή κατασκιυαστη):
x.3.	Στροφές όπου αποδίδεται η μέγιστη ισχύς:
8.4.	Μέγιστη ισχύς: kW (προσδιοριζόμενη σύμφωνα με τη μέθοδο που ορίζεται στο παράρτημα l της οδηγίας 80/1269/ΕΟΚ)
9.	Χρησιμοποιούμενο λιπαντικό
9.1.	Κατασκευαστής:
9.2.	Τύπος:

THE PROPERTY OF STREET

⁽¹⁾ Καθορίζεται η ανοχή.

13

1.1.3

19 min 123

ΠΑΡΑΡΤΉΜΑ ΙΙΙ

ΔΟΚΙΜΗ ΤΟΥ ΤΥΠΟΥ Ι

(Έλεγχος της κατά μέσο όρυ εκπομπής ρύπων σε αστική περιοχη με κυκλοφοριακή συμφόρηση, μετά από εκκίνηση με ψυχρό κινητήρα)

Ι. ΕΙΣΑΓΩΓΗ

Το παρόν παράρτημα περιγράφει τη μέθοδο που πρέπει να ακολουθείται για τη δοκιμή του τύπου Ι που ορίζεται στο σημείο 5.2.1.1 του παραρτήματος Ι.

2. ΚΥΚΛΟΣ ΔΟΚΙΜΗΣ ΣΤΗ ΔΥΝΑΜΟΜΕΤΡΙΚΉ ΕΞΕΔΡΑ

2.1. Περιγραφή του κύκλου

Ο κυκλύς δοκιμής που εκτελείται στη δυναμομετρική εξέδρα παριγράφεται στον ιπόμενο πινικά και παρουσιαζεται στη γραφική παράσταση του συμπληρωματικού παραρτήματος Ι. Ο πίνακας του συμπληρωματικού αυτοιπαραρτήματος δίνει, επίσης, την κατά χρονικά στάδια ανάλυση του κύκλου.

2.2. Γενικές συνθήκες

Αν χριιάζεται, πρέπει να εκτελούνται προκαταρκτικοί κύκλοι δοκιμών για να προσδιοριστεί ο καλύτερος τρόπος χειρισμού των οργάνων επιτάχυνσης και πέδησης, έτσι ώστε ο πραγματικός κύκλος να προσεγγίζει το θεωρητικό κύκλο μέσα στα καθορισμένα όρια.

2.3. Χρήση του κιβωτίου ταχυτήτων

- 2.3.1. Αν η μέγιστη ταχύτητα που μπορεί να επιτευχθεί με την πρώτη σχέση του κιβωτίου ταχυτήτων είναι κάτω απο 15 km/h, χρησιμοποιείται η δεύτερη, τρίτη και τέταρτη σχέση. Μπορούν, επίσης, να χρησιμοποιείκου η δεύτερη, τρίτη και τι ταρτη σχέση όταν οι υδηγιες του κατασκευκατή συνιστούν για την εκκίνηση σε επίπειοι Ισαφος τη δευτερη σχέση, ή όταν ορίζεται ότι η πρώτη σχέση χρησιμοποιείται αποκλειστικά για κίνηση εκτός αμαξιτής οδού, για βραδεία κίνηση ή για ρυμούλκηση.
- 2.3.2. Τα οχήματα που είναι εφοδιασμένα με ημιαυτόματο κιβώτιο ταχυτήτων δοκιμάζονται με τις σχέσεις που κανονικά χρησιμοποιούνται για την οδική κυκλοφορία και ο χειρισμός των ταχυτήτων διενεργείται σύμφωνα με τις οδηγίες του κατασκευαστή.
- 2.3.3. Τα οχήματα που είναι εφοδιασμένα με αυτόματο κιβώτιο ταχυτήτων δοκιμάζονται με την υψηλότερη σχέση («κανονική πορεία»). Ο επιταχυντής (γκάζι) χρησιμοποιείται έτσι ώστε να επιτυγχάνεται η σταθερότερη δυνατή επιτάχυνση, που επιτρέπει στο κιβώτιο την κανονική σειρά αλλαγής μεταξύ των διαφόρων σχέσεων μετάδοσης. Επιπλέον, για τα οχήματα αυτά, τα σημεία αλλαγής ταχύτητας που αναφέρονται στο συμπληρωματικό παράρτημα Ι του παρόντος παραρτήματος δεν ισχύουν και η επιτάχυνση θα πρέπει να συνεχίζεται για όλη τη διάρκεια της περιόδου που αντιπροσωπεύει η ευθεία γραμμή που συνδέει μεταξύ τους το τέλος της περιόδου βραδυπορίας με την αρχή της επόμενης περιόδου σταθερής ταχύτητας. Οι ανοχές που ισχύουν αναφέρονται στο σημείο 2.4.
- 2.3.4. Τα οχήματα που είναι εφοδιασμένα με υπερπολλαπλασιαστή («overdrive»), που μπορεί να χειριστεί ο οδηγός, δοκιμάζονται με το σύστημα αυτό εκτός λειτουργίας.

2.4. Avoyés

- 2.4.1. Επιτρέπεται απόκλιση ±1 km/h μεταξύ της ενδεικνυόμενης ταχύτητας και της θεωρητικής ταχύτητας στα στάδια επιτάχυνσης, σταθερής ταχύτητας και επιβράδυνσης, όταν γίνεται χρήση του συστήματος πέδησης του οχήματος. Αν, χωρίς πέδηση, το όχημα επιβραδύνεται ταχύτερα από όσο προβλέπεται, τότε ισχύουν μόνο οι διατάξεις του σημείου 6.5.3. Όταν αλλάζουν τα στάδια, επιτρέπινται αποκλίσεις ταχύτητας που υπερβαίνουν τις προδιαγραφόμενες τιμές, υπό την προϋπόθεση ότι η διάρκεια των διαπιστουμένων αποκλίσεων δεν υπερβαίνει ποτέ τα 0,5 s κάθε φορά.
- 2.4.2. Οι ανοχές για τους χρόνους είναι ± 0.5 s. Οι παραπάνω ανοχές ισχύουν, επίσης, στην αρχή και στο τέλος κάθε περιόδου αλλαγής ταχύτητας (1).

⁽¹⁾ Πρέπει να σημειωθεί ότι ο παρεχόμενος χρόνος των 2 s περιλαμβάνει τη διάρκεια αλλαγής της σχέσης μετάδοσης και περιθώριο για την ανάκτηση, εφόσον χρειάζεται, τυχόν χαμένου χρόνου του κύκλου.

Κύκλος δοκιμής στη δυναμομετρική εξέδρα

a/a		F.48 -	Exitá-	Ταχύ		ркеих 160е	Συνολι- κός χρό-	Σχέση μετάδοσης που πρέπει να χρησιμοποιεί	
Evep-	Evtoyeus	Στάδιο	χυντη m/s ²	tŋta km/h	EVED- VERIES (1)	(a) G149[HH	νος (a)	bingalitin rifmini taraila rehitmal Xer-	
1	Pelavti	1			11	11	11	6s PM + '5s K ₁ (*)	
2	Επιτάχυνση	2	1,04	0-15	4	4	15	1	
3	Σταθερή ταχύτητα	3		15	8	8	23	1	
4	Επιβράδυνση)	-0,69	15 – 10	2	2	25	1	
5	Επιβράδυνση, κινητή- ρας αποσυμπλεγμένος	4	-0,92	10-0	3	3	28	K ₁ (*)	
6	Ρελαντί	, s			21	21		16 s PM + 5 s K ₁ (*)	
7	Επιτάχυνση) .	0,83	0-15	5	·	54	1	
8	Αλλαγή σχέσης μετά- δοσης (ταχύτητας)	6			2	12	56	·	
9	Επιτάχυνση]	0,94	15-32	5		61	2	
10	Σταθερή ταχύτητα	7		32	24	24	85	2	
11	Επιβράδυνση)	-0,75	32 – 10	8	}	93	- 2	
12	Επιβράδυνση, κινητή- ρας αποσυμπλεγμένος	8	-0,92	10-0	3	} 11	96	K ₂ (*)	
13	Ρελαντί	, 9		j .	21	21	117	16 s PM + 5 s K ₁ (*)	
14	Επιτάχυνση	1	0,83	0-15	5	1)	122	1	
15	Αλλαγή σχέσης μετά- δοσης (ταχύτητας)			.	2		124		
16 .	Επιτάχυνση	10	0,62	15-35	9	26	133	2	
17	Αλλαγή σχέσης μετά- δυσης (ταχύτητας)		, ,		2		135	_	
18	Επιτάχυνση -		0,52	35-50	8		143	3	
19	Σταθερή ταχύτητα	11.		50	12	12	155	· 3	
20	Επιβράδυνση	12,	-0,52	50-35	8	8	163	, , 3 ,	
21	Σταθερή ταχύτητα	13	-	35	13	13	176	3	
22 .	Αλλαγή σχέσης μετά· δοσης (ταχύτητας)]:.		-	2 .		178		
23	Επιβράδυνση	14	-0,86	32-10	7	· 12	185	2	
24	Επιβράδυνση, κινητή- ρας αποσυμπλεγμένος		-0,92	10-0	. 3		188	K ₂ (*)	
25	Pelavil	15	1 42 2 4		7	7	195	7 s PM (*)	

 ^(*) PM: κιβώτιο στο νεκρό σημείο, κινητήρας συμπλεγμένος.
 Κ₁, Κ₂: κιβώτιο στην πρώτη ή δεύτερη σχέση μετάδοσης, κινητήρας αποσυμπλεγμένος.

. . . .

3. ΟΧΗΜΑ ΚΑΙ ΚΑΥΣΙΜΑ

3.1. Δοκιμοζόμενο όχημα

^{2.4.3.} Οι ανοχές για την ταχύτητα και για τους χρόνους συνδυάζονται έτσι όπως αναφέρεται στο συμπληρωματικό παράρτημα Ι του παράντος παραρτήματος.

^{3.1.1.} Το όχημα πρέπει να βρίσκεται σε καλή μηχανική κατάσταση. Πρέπει να είναι ρονταρισμένο και να έχει διατρέξει τουλάχιστον 3 000 km πριν από τη δοκιμή.

- 3.1.2. Η διάταξη της εξάτμισης δεν πρέπει να παρουσιάζει διαρροές που μπορούν να μειώσουν την ποσότητα των συλλιγομίνων αιρίων, που πρέπει να είναι η ίδια με εκείνη που εξέρχεται από τον κινητήρα.
- 3.1.3. Το εργαστήριο μπορεί να ελέγχει τη στεγανότητα του συστήματος εισαγωγής για να αποφευχθεί η μεταβολή των αναλιγιών του μείγματος λόγω τυχαίας εισαγωγής αέρα.
- 3.1.4. Οι ρυθμίσεις του κινητήρα και των οργάνων του οχήματος πρέπει να είναι εκείνες που προβλέπονται από τον κατασκευαστή. Ο όρος αυτός ισχύει ιδίως για τη ρύθμιση του ρελαντί (στριφές και περιεκτικότητα σε CO των καυσαερίων, της διάταξης εκκίνησης με ψυχρό κινητήρα και των συστημάτων καθαρισμού των καυσαερίων.
- 3.1.5. Το δοκιμαζόμενο όχημα, ή ένα ισοδύναμο όχημα, πρέπει να είναι εφοδιασμένο, αν χρειάζεται, με διάταξη για τη μέτρηση των χαρακτηριστικών παραμέτρων που είναι αναγκαίες για τη ρύθμιση της δυναμομετρικής εξέδρας σύμφωνα με τις προδιαγραφές του σημείου 4.1.1.
- 3.1.6. Η τιχνική υπηρεσία που είναι επιφορτισμένη με τις δοκιμές, μπορεί να ελέγχει αν το όχημα έχει λειτουργικά χαρακτηριστικά που συμφωνούν με τις προδιαγραφές του κατασκευαστή και αν μπορεί να χρησιμοποιηθεί για κανονική οδήγηση και, κυρίως, αν μπορεί να ξεκινήσει με κινητήρα ψυχρό ή σε θερμοκρασία λειτουργίας.
- 3.1.7. Όχημα εφοδιασμένο με καταλυτικό μετατροπέα πρέπει να δοκιμάζεται με τον καταλύτη στη θέση του, αν ο κατασκευαστής βεβαιώνει ότι με το εξάρτημα αυτό και με καύσιμο που περιέχει μέχρι 0,4 g μολύβδου ανά λίτρο το όχημα εξακολουθεί να τηρεί τις προδιαγραφές της παρούσας οδηγίας καθ' όλη τη διάρκεια της ζωής του καταλύτη, όπως αυτή προσδιορίζεται από τον κατασκευαστή του οχήματος.

3.2. Καύσιμο

Για τις δοκιμές πρέπει να χρησιμοποιείται το πρότυπο καύσιμο του οποίου τα χαρακτηριστικά δίνονται στο παράρτημα VI.

4. ΕΞΟΠΛΙΣΜΟΣ ΔΟΚΙΜΩΝ

4.1. Δυναμομετρική εξέδρα

- 4.1.1. Η εξέδρα πρέπει να επιτρέπει την προσομοίωση της αντίστασης κατά την πορεία επί οδού και να ανήκει σε έναν από τους δύο ακόλουθους τύπους:
 - εξέδρα με σταθερή καμπύλη απορρόφησης της ισχύος: εξέδρα της οποίας τα φυσικά χαρακτηριστικά δίνουν καμπύλη ισχύος με σταθερό σχήμα,
 - εξέδρα με ρυθμιζόμενη καμπύλη απορρόφησης της ισχύος: η εξέδρα στην οποία μπορούν να ρυθμιστούν δύο τουλάχιστον παράμετροι για τη μεταβολή του σχήματος της καμπύλης.
- 4.1.2. Η ρύθμιση της εξέδρας δεν πρέπει να μεταβάλλεται με το χρόνο. Δεν πρέπει να δημιουργεί δονήσεις που μπορούν να μεταδοθούν στο όχημα και να επηρεάσουν δυσμενώς την κανονική λειτουργία του.
- 4.1.3. Πρέπει να είναι εφοοιασμενη με συστήματα προσομοίωσης της αδράνειας και της αντίστασης κατά την πορεία. Τα συστήματα αυτά πρέπει να είναι συνδεδεμένα με τον εμπρόσθιο κύλινδρο, αν πρόκειται για εξέδρα με δύο κυλίνδρους.
- **4.1.4.** Ακρίβεια
- 4.1.4.1. Η μέτρηση και ανάγνωση της ένδειξης της δύναμης πέδησης πρέπει να είναι δυνατή με ακρίβεια \pm 5 %.
- 4.1.4.2. Στην περίπτωση εξέδρας με σταθερή καμπύλη απορρόφησης ισχύος, η ακρίβεια της ρύθμισης στα 50 km/h πρέπει να είναι ± 5 %. Στην περίπτωση εξέδρας με ρυθμίζομενη καμπύλη απορρόφησης ισχύος, η ρύθμιση της εξέδρας πρέπει να μπορεί να προσαρμόζεται στην απορρυφούμενη ισχύ επί οδού, με ακρίβεια 5 % στα 30, 40 και 50 km/h και 10 % στα 20 km/h. Σε χαμηλότερες ταχύτητες, η ρύθμιση αυτή πρέπει να διατηρεί θετική τιμή.
- 4.1.4.3. Η ολική αδράνεια των περιστρεφόμενων τμημάτων (συμπεριλαμβανόμενης, όταν χρειάζεται, της προσομοιούμενης αδράνειας), πρέπει να είναι γνωστή και πρέπει να αντιστοιχεί προς την τάξη αδράνειας για δοκιμή με ανοχή \pm 20 kg.

- Η ταχύτητα του οχήματος πρέπει να προσδιορίζεται από την ταχύτητα περιστροφής του κυλίνδρου (εμπρόσθιου 4.1.4.4. κυλίνδρου στην περίπτωση εξεδρών με δύο κυλίνδρους). Για ταχύτητες πάνω από 10 km/h πρέπει να μετριέται με akolikaa ± 1 km/h.
- 4.1.5. Ροθμιση της καμπολής απογγώρησης ισχυός της εξεύρας και ρύθμιση της αδράντιας
- Εξέρρα με σταθερή καμπύλη απογρόφησηςισχύος: η πέδη πρέπει να ρυθμίζεται έτσι ώστε να απορροφά την ισχύ 4.1.5.1. που εμφανίζεται στους κινητήριους τροχούς σε σταθερή ταχύτητα 50 km/h. Οι μέθοδοι που πρέπει να εφαρμόζονται για τον προσδιορισμό και ρύθμιση της πέδης περιγράφονται στο συμπληρωματικό παράρτημα 3.
- Εξέδρα με ριθμιζόμενη καμπάλη απιγρόφησης ισχίκς: η πέδη πρέπει να ρυθμίζεται έτσι ώστε να απορροφά την 4.1.5.2. ισχύ που εμφανίζεται στους κινητήριους τροχούς σε σταθερές ταχύτητες 20, 30, 40 και 50 km/h. Οι μέθοδοι που πρέπει να εφαρμόζονται για τον προσδιορισμό και τη ρύθμιση της πέδης περιγράφονται στο συμπληρωματικό παράρτημα 3.
- 4.1.5.3. Αδράνεια -

Για τις εξέδρες ηλεκτρικής προσομοίωσης της αδράνειας, πρέπει να αποδεικνύεται ότι δίνουν ισοδύναμα αποτελέσματα με τα συστήματα μηχανικής προσομοίωσης. Οι μέθοδοι με τις οποίες αποδεικνύεται αυτή η ισοδυναμία περιγράφονται στο συμπληρωματικό παράρτημα 4.

4.2. Σύστημα δειγματοληψίας των καυσαερίων

- Το σύστημα συλλογής των καυσαερίων πρέπει να επιτρέπει τη μέτρηση της πραγματικής μάζας των εκπεμπόμε-4.2.1. νων ρύπων που περιέχονται στα καυσαέρια. Χρησιμοποιείται σύστημα δειγματοληψίας υπό σταθερό όγκο. Προς το σκοπό αυτό, τα καυσαέρια του οχήματος αραιώνονται συνεχώς, υπό ελεγχόμενες συνθήκες, με αέρα του περιβάλλοντος. Για τη μέτρηση της μάξας των εκπεμπόμενων ρύπων με τη μέτκδι αυτή, πρέπει να πληρούνται δύο προϋποθέσεις: αφενός πρέπει να μετριέται ο ολικός όγκος του μείγματος καυσαερίων και αέρα αραιώσεως και αφετέρου να συγκεντρώνεται για ανάλυση ένα αναλυγικό δείγμα του όγκου αυτού. Οι μάζες των εκπεμπόμενων ρύπων καθιρίζονται σύμφωνα με τις συγκεντρώσεις στο δείγμα που υπέστη διάρθωση, ώστε να ληφθεί υπόψη η περιεκτικότητα σε ρύπους του αέρα του περιβάλλοντος, και σύμφωνα με τη συνολική ροή κατά τη διάρκεια της δοκιμής.
- Η ροή διά μέσου του συστήματος πρέπει να είναι επαρκής για να παρεμποδίζεται η συμπύκνωση του νερού, υπό , 4.2.2. οποιεσδήποτε συνθήκες που είναι δυνατό να παρατηρηθούν κατά τη διάρκεια της δοκιμής, όπως καθορίζεται στο συμπληρωματικό παράρτημα 5.
- 4.2.3. Το σχήμα της αρχής λειτουργίας του συστήματος δειγματοληψίας παρουσιάζεται στην παρακάτω εικόνα 1. Το συμπληρωματικό παράρτημα 5 περιγράφει παραδείγματα τριών τύπων συστημάτων δειγματοληψίας υπό σταθερόγ όγκο, που ανταποκρίνυνται στις απαιτήσεις του παρόντος παραρτήματος.
- 4.2.4. Το μείγμα αέρα-καυσαερίων πρέπει να είναι ομοιογενές στη θέση του στελέχους δειγματοληψίας S2.
- 4.2.5. Το στέλεχος αυτό πρέπει να λαμβάνει αντιπροσωπευτικό δείγμα των αραιωμένων καυσαερίων.
- 4.2.6. ..Το σύστημα δειγματιληψίας πρέπει να είναι αεροστεγές. Η σχεδίασή του και τα υλικά κατασκευής πρέπει να μην επηρεάζουν τη συγκέντρωση των ρύπων στα αραιωμένα καυσαέρια. Εάν ένα στοιχείο του συστήματος (εναλλάκτης θερμότητας, ανεμιστήρας, κλπ.) επηρεάζει τη συγκέντρωση ενός οποιουδήποτε αερίου ρύπου στα αραιωμένα αέρια, τότε το δείγμα του ρύπου αυτού πρέπει να λαμβάνεται πριν από τη διέλευσή του μέσα από το στοιχείο αυτό, εφόσον είναι αδύνατο να επιλυθεί το πρόβλημα αυτό.
- Αν το δοκιμαζόμενο όχημα έχει σύστημα εξάτμισης με πολλές εξόδους, οι συνδετήριοι σωλήνες πρέπει να ενώνο- : 4.2.7. νται μεταξύ τους όσο το δυνατή πλησιέστερα προς το όχημα.

. 100

4.1 · 2 · 27 57 5 4 · · grant to the color 4.2.8. 📜 Το συστημά δεν πρέπει να δημιουργεί στην έξοδο ή στις εξόδους της εξάτμισης διακυμάνσεις της στατικής πίεσης πικι να απικλίντην περισσότερα από ± 1,25 kPa από τις διακυμάνσεις της στατικής πίεσης που μετριούνται κατά τη διάρκεια του κυκλου δυκιμών στην εξέδρα, πριν να συνδιελεί με το σύστημα η έξυδος ή οι έξυδοι της εξάτμισης. Αν ο κατασκευαστής το ζητήσει γραπτώς από τη διοικητική αρχή που χορηγεί την έγκριση, αποδεικνύοντας την αναγκαιότητα της μείωσης αυτής, χρησιμοποιείται σύστημα δειγματοληψίας που επιτρέπει τη μείωση των ανοχών αυτών στα ± 0,25 kPa. Η αντίθλιψη πρέπει να μετριέται μέσα στο σωλήνα της εξάτμισης όσο το δυνατό πλησιέστερα προς το άκρο του, ή σε προέκταση της ίδιας διαμέτρου.

Προς την ατμόσφαιρα Προς τη διάταξη εξαγωγής των αερίων και το σύστημα μέτρησης του όγκου Exhiba apthe Letrouptiae tou overtipates detypatelyniae twy kavoaeplan Elabia 1 Θάλαμος ανάμειξης Φίλτρο (προαφετικό) του οχήματος. καισαερίων Είσοδος του αέρα αραίωσης

- 4.2.9. Οι διάφορες βιελβίδες που χρησιμοποιούνται για να κατευθύνουν τη ροή των καυσαερίων πρέπει να είναι ταχείας ρύθμισης και δράσης.
- 4.2.10. Τα δείγματα αερίου συλλέγονται μέσα σε σάκους επαρκούς χωρητικότητας. Οι σάκοι αυτοί κατασκευάζονται από υλικό τέτοιο ώστε η περιεκτικότητα σε αέριους ρύπους να μη μεταβάλλεται περισσότερο από ± 2 90 μετά από απιθηκευσή των αιρίων επί 20 min.

4.3. Εξοπλισμός ανάλυσης

4.3.1. Προδιαγραφές

4.3.1.1. Η ανάλυση των ρύπων πραγματοποιείται με τις παρακάτω συσκευές:

Μονοξείδιο του άνθρακα (CO) και διοξείδιο του άνθρακα (CO₂):

Συσκευή ανάλυσης του τύπου με απορρόφηση υπερύθρων, χωρίς διασπορά (NDIR).

Υδραγανανθγεικές (ΗС) — κινητήρες με ηλεκτρική ανάφλεξη:

Συσκευή ανάλυσης του τύπου ιονισμού με φλόγα (FID), βαθμονομημένη με βάση προπάνιο εκφραζόμενο σε ισοδύναμο ατόμων άνθρακα (C₁).

Υδρογονάνθρακες (ΗС) — ιιχήματα με κινητήρα με ανάφλεξη με συμπίεση:

Συσκευή ανάλυσης του τύπου ιονισμού με φλόγα της οποίας τα στοιχεία ανίχνευσης, οι βαλβίδες, οι σωληνώσεις κλπ., θερμαίνονται στους 190 \pm 10 °C (HFID). Βαθμονομείται με βάση προπάνιο εκφραζόμενο σε ισοδύναμο ατόμων άνθρακα (C_1).

Οξείδια του αζώτου (NO,): είτε συσκευή ανάλυσης του τύπου χημειοφωταύγειας (CLA) με μετατροπέα NO,/NO είτε του τύπου με απορρόφηση συντονισμού υπεριωδών χωρίς διασπορά (NDUVR) με μετατροπέα NO,/NO.

4.3.1.2. Ακρίβεια

Οι συσκευές ανάλυσης πρέπει να έχουν κλίμακα μέτρησης που ανταποκρίνεται στην ακρίβεια που απαιτείται κατά τη μέτρηση των συγκεντρώσεων των ρύπων στα δείγματα καυσαερίων.

Το σφάλμα μέτρησης δεν πρέπει να είναι μεγαλύτερα από \pm 3 %, μη λαμβαναμένης υπόψη της αληθενός τιμής των αερίων βαθμονόμησης. Για συγκεντρώσεις κάτω από 100 ppm το σφάλμα μέτρησης δεν πρέπει να είναι μεγαλύτερο από \pm 3 ppm. Η ανάλυση του δείγματος του αίρα του περιβάλλοντος εκτελείται με την ίδια συσκευή ανάλυσης και με την ίδια κλίμακα μέτρησης όπως η μέτρηση του αντίστοιχου δείγματος των αραιωμένων καυσαερίων.

4.3.1.3. Διαχωριστής ύδατος (ice trap)

Καμία διάταξη ξήμανσης του αερίου δεν πρέπει να χρησιμοποιείται πριν από τις συσκευές ανάλυσης, εκτός και αν είναι αποδεδειγμένο ότι δεν έχει καμία επίδραση στην περιεκτικότητα σε ρύπους του ρεύματος του αερίου.

4.3.2. Ιδιαίτερες προδιαγραφές για τους κινητήρες με ανάφλεξη διά συμπιέσεως

Για τη συνεχή ανάλυση των υδρογονανθράκων (HC) με τον ανιχνευτή ιονισμού με φλόγα (HFID) χρησιμοποιείται θερμαινόμενος αγωγός δειγματοληψίας καθώς και καταγραφέας (R). Η μέση συγκέντρωση των μετρούμενων υδρογονανθράκων προσδιορίζεται με ολοκλήρωση. Κατά τη διάρκεια της δοκιμής, η θερμοκρασία του αγωγού αυτού πρέπει να είναι ρυθμισμένη στους 190 ± 16 °C. Ο αγωγός πρέπει να είναι εφοδιασμένος με θερμαινόμενο φίλτρι (F_{ii}) με ικανότητα συλλυγής 99 % για σωματίδια > 0.3 μm που χρησιμεύει για την αφαίρεση των στερεών σωματιδίων από το συνεχές ρεύμα αερίου που χρησιμοποιείται για την ανάλυση. Η απόκριση του συστήματος δειγματοληψίας (από το στέλεχος δειγματοληψίας μέχρι την είσοδο της συσκευής ανάλυσης) πρέπει να είναι μικρήτερος από 4 s.

Ο ανιχνευτής τύπου HFID πρέπει να χρησιμοποιείται με σύστημα σταθερής παροχής (εναλλάκτης θερμότητας) για την εξασφάλιση αντιπροσωπευτικού δείγματος, εκτός αν υπάρχει αντιστάθμιση για τη διακύμανση της παροχής των συστημάτων CFV ή CFO.

4.3.3. Βαθμονόμηση

Κάθε συσκευή ανάλυσης πρέπει να βαθμονομείται όποτε χρειάζεται και πάντως κατά τη διάρκεια του μήνα που προηγείται της δοκιμής για την έγκριση, καθώς επίσης και μια φορά τουλάχιστον κάθε έξι μήνες για τον έλεγχο της ομοιογένειας της παραγωγής. Το συμπληρωματικό παράρτημα 6 περιγράφει τη μέθοδο βαθμονόμησης που πρέπει να εφαρμόζεται σε κάθε τύπο συσκευής ανάλυσης που αναφέρεται στο σημείο 4.3.1:

4.4. Μέτρηση του όγκου

4.4.1. Η εφαρμοζόμενη μέθοδος μέτρησης του συνολικού όγκου αραιωμένων καυσαερίων στο σύστημα δειγματοληψίας υπό σταθερό όγκο πρέπει να παρουσιάζει ακρίβεια \pm 2 40.

4.4.2. Βαθμονόμηση του συστηματος δειγματοληψίας υπό σταθερό όγκο

Ο εξοπλισμός μέτρησης του όγκου στο σύστημα δειγματοληψίας υπό σταθερό όγκο πρέπει να βαθμονομείται με μέθοδο ικανή να εξασφαλίζει την ακρίβεια και με συχνότητα που να επιτρέπει τη διατήρηση της ακρίβειας αυτής.

Ένα παράδειγμα μεθόδου βαθμονόμησης που δίνει την απαιτούμενη ακρίβεια παρουσιάζεται στο συμπλήρωματικό παράρτημα 6. Στη μέθοδο αυτη, χρησιμοποιείται μία διάταξη μέτρησης της παροχής, δυναμικού τύπου, που είναι κατάλληλη για τις μεγάλες παροχές που συναντώνται κατά τη χρησιμοποίηση του συστήματος δειγματοληψίας υπό σταθερό όγκο. Η διάταξη πρέπει να είναι πιστοποιημένης ακρίβειας και σύμφωνη με ένα επίσημο εθνικό ή διεθνές πρότυπο.

4.5. Αέρια

4.5.1. Καθαρά αέρια

Τα καθαρά αέρια που χρησιμοποιούνται, ανάλυγα με την περίπτωση, για τη βαθμονόμηση και τη λειτουργία του εξοπλισμού πρέπει να πληρούν τις ακόλουθες προϋποθέσεις:

- καθαρό άζωτο (καθαρότητα ≤ 1 ppm C, ≤ 1 ppm CO, ≤ 400 ppm CO₂, ≤ 0,1 ppm NO),
- -- καθαρός συνθετικός αέρας (καθαρότητα < 1 ppm C, < 1 ppm CO, < 400 ppm CO₂, < 0,1 ppm NO), περιεκτικότητα σε οξυγόνο από 18 έως 21 % κατ' όγκο,
- καθαρό οξυγόνο (καθαρότητα > 99,5 % O2 κατ' όγκο).
- καθαρό υδρογόνο (και μείγμα περιέχον υδρογόνο) (καθαρότητα ≤ 1 ppm C, ≤ 400 ppm CO₂).

4.5.2. Αέρια βαθμονόμησης

Τα χρησιμοποιούμενα μείγματα αερίων για τη βαθμονόμηση πρέπει να έχουν την ακόλουθη χημική σύνθεση:

- C₃H₈ και καθαρός συνθετικός αέρας (βλέπε σημείο 4.5.1),
- -- CO και καθαρό άζωτο.
- CO₂ και καθαρό άζωτο,
- ΝΟ και καθαρό άζωτο,

(η αναλογία NO2 σε αυτό το αέριο βαθμονόμησης δεν πρέπει να υπερβαίνει το 5 % της περιεκτικότητας σε NO).

Η πραγματική συγκέντρωση ενός αερίου βαθμονόμησης πρέπει να συμφωνεί με την ονομαστική τιμή με προσέχγιση ± 2 %.

Οι προδιαγραφόμενες στο συμπληρωματικό παράρτημα 6 συγκεντρώσεις μπορούν επίσης να λαμβάνονται με συσκευή ανάμειξης — δοσιμετρίας αερίου, με αραίωση με καθαρό άζωτο, ή με καθαρό συνθετικό αέρα. Η ακρίβεια της διάταξης ανάμειξης πρέπει να είναι τέτοια ώστε η συγκέντρωση των αραιωμένων αερίων βαθμονόμησης να μπορεί να προσδιοριστεί με προσέγγιση ± 2 %.

4.6. Πρόσθετος εξοπλισμός

4.6.1. Θερμοκρασίες

Οι αναφερόμενες στο συμπληρωματικό παράρτημα 8 θερμοκρασίες πρέπει να μετριούνται με ακρίβεια ± 1.5 °C.

4.6.2. Πίεση

Η ατμοσφαιρική πίεση πρέπει να μετριέται με προσέγγιση \pm 0,1 kPa.

4.6.3. Απόλυτη υγρασία

Η απόλυτη υγρασία (Η) πρέπει να μπορεί να προσδιοριστεί με προσέγγιση \pm 5 %.

4.7. Το σύστημα δειγματοληψίας καυσαερίων πρέπει να ελέγχεται με τη μέθοδο που περιγράφεται στο σημείο 3 του συμπληρωματικού παραρτήματος 7. Η μέγιστη επιτρεπτή απόκλιση μεταξύ της εισαγόμενης και μετρούμενης ποσότητας αερίου είναι 5 %.

5. ΠΡΟΕΤΟΙΜΑΣΙΑ ΤΗΣ ΔΟΚΙΜΗΣ

5.1. Προσαρμογή του συστάματος αδρανείας προς τις αδράνειες μετατόπισης του σχήματος

Χρησιμοποιείται σύστημα αδράνειας που επιτρέπει να λαμβάνεται μία ολική αδράνεια των περιστρεφόμενων μαζών που αντιστοιχεί προς το βάρος αναφοράς σύμφωνα με τα εξής όρια:

Μάζα αναφοράς του σχήματος Μα (kg)	Ισοδύναμη μάζα του συστήμα τος αδράνειας Ι (kg)
Mα≤ 750	680
$750 < M\alpha \leq 850$	800
850 < Mα ≤ 1 020	910
I 020 < Mα ≤ I 250	1 130
$1250 < M\alpha \le 1470$	1 360
$1470 < M\alpha \le 1700$	1 590
$1700 < M\alpha \le 1930$	1810
$1930 < M\alpha \le 2150$	2 040
$2150 < M\alpha \le 2380$	2 270
$2380 < M\alpha \le 2610$	2 270
2 610 < Mα	2 270

5.2. Ρόθμιση της πάδης

4.3

Η ρύθμιση της πέδης πραγματοποιείται σύμφωνα με τις μεθόδους που περιγράφονται στο σημείο 4.1.4. Η χρησιμοποιούμενη μέθοδος, οι λαμβανόμενες τιμές (ισοδόναμη αδράνεια, χαρακτηριστική παράμετρος ρύθμισης) αναφέρονται μέσα στο πρακτικό δοκιμής.

5.3. Προετοιρασία του οχήματος

5.3.1. Πριν από τη δοκιμή, το όχημα πρέπει να παραμείνει σε χώρο θερμοκρασίας σταθερής μεταξύ 20 και 30 °C. Ο εγκλιματισμός αυτός πρέπει να διαρκεί τουλάχιστον έξι ώρες και συνεχίζεται μέχρις ότου η θερμοκρασία του λαδιού του κινητήρα και του ψυκτικού υγρού (αν υπάρχει) εξισωθεί με αυτή του χώρου εγκλιματισμού με προσέγγιση ± 2 °C.

Αν το ζητήσει ο κατασκευαστής, η δοκιμή πραγματοποιείται μέσα σε χρονικό διάστημα το πολύ τριάντα ωρών μετά τη λειτουργία του οχήματος στην κανονική του θερμοκρασία.

5.3.2. Η πίσση των ελαστικών πρέπει να είναι εκείνη που καθορίζεται από τον κατασκευαστή και χρησιμοποιείται κατά τη διάρκεια της προκαταρκτικής δοκιμής επί οδού για τη ρύθμιση της πέδης. Στις εξέδρες με δύο κυλίνδρους η πίσση των ελαστικών θα μπορεί να αυξάνεται κατά 50 % το πολό. Η χρησιμοποιούμενη πίσση πρέπει να σημειώνεται στο πρακτικό δοκιμής.

6. ΔΙΑΔΙΚΑΣΙΑ ΔΟΚΙΜΩΝ ΣΤΗΝ ΕΞΕΔΡΑ

6.1. Ιδιαίτερες συνθήκες για την εκτέλεση του κύκλου

- 6.1.1. Κατά τη διάρκεια της δοκιμής, η θερμοκρασία του θαλάμου δοκιμής πρέπει να είναι μεταξύ 20 και 30 °C. Η απόλυτη υγρασία του αέρα (Η) στο χώρο, ή του αέρα εισαγωγής του κινητήρα πρέπει να είναι τέτοια ώστε 5,5 ≤ Η ≤ 12,2 g H₂O/kg ξηρού αέρα.
- 6.1.2. Το όχημα πρέπει να είναι περίπου οριζόντιο κατά τη διάρκεια της δοκιμής, για να αποφεύγεται ανώμαλη κατανομή του καυσίμου.
- 6.1.3. Η δοκιμή πρέπει να πραγματοποιείται με ανασηκωμένο το κάλυμμα του κινητήρα (καπό), εκτός αν αυτό είναι τεχνικά αδύνατο. Αν απαιτείται, για τη διατήρηση της κανονικής θερμοκρασίας του κινητήρα, χρησιμοποιείται βοηθητική διάταξη αερισμού που κατευθύνει αέρα πάνω στο ψυγείο (υδρόψυκτα οχήματα) ή στην είσοδο του αέρα (αερόψυκτα οχήματα).
- 6.1.4. Κατά τη διάρκεια της δοκιμής, πρέπει να καταγράφεται η ταχύτητα συναρτήσει του χρόνου για να μπορεί να ελεγχθεί η ακρίβεια των εκτελουμένων κύκλων.

6.2. Εκκίνηση του κινητήρα

- 6.2.1. Ο κινητήρας τίθεται σε κίνηση μέσω των διατάξεων που προβλέπονται για το σκοπό αυτό, σύμφωνα με τις οδηγίες του κατασκευαστή όπως αυτές αναγράφονται στις οδηγίες χρήσης των οχημάτων μαζικής παραγωγής.
- 6.2.2. Ο κινητήρας μένει στο ρελαντί για 40 s. Ο πρώτος κύκλος δοκιμής αρχίζει στο τέλος της περιόδου των 40 s.

6.3. Pelavti

- 6.3.1. Χειροκίνητο ή ημιαυτόματο κιβώτιο ταχυτήτων
- 6.3.1.1. Κατά τη διάρκεια των περιόδων ρελαντί ο κινητήρας είναι συμπλεγμένος και το κιβώτιο ταχυτήτων στο νεκρό σημείο.
- 6.3.1.2. Για να πραγματοποιηθούν οι επιταχύνσεις σύμφωνα με τον κανονικό κύκλο, 5 s πριν από την επιταχύνση που ακολουθεί κάθε περίοδο ρελαντί, επιλέγεται η πρώτη σχέση μετάδοσης με αποσυμπλεγμένο τον κινητήρα.
- 6.3.1.3. Η πρώτη περίοδος ρελαντί στην αρχή του κύκλου αποτελείται από 6 s ρελαντί, με το κιβώτιο στο νεκρό σημείο και συμπλεγμένο τον κινητήρα, και από 5 s με το κιβώτιο στην πρώτη σχέση μετάδοσης και αποσυμπλεγμένο τον κινητήρα.
- 6.3.1.4. Για τις ενδιάμεσες περιόδους ρελαντί κάθε κύκλου, οι αντίστοιχοι χρόνοι είναι 16 s στο νεκρό σημείο και 5 s με πρώτη σχέση και αποσυμπλεγμένο κινητήρα.
- 6.3.1.5. Μεταξύ δύο διαδοχικών κύκλων, η διάρκεια ρελαντί είναι 13 s, κατά τη διάρκεια των οποίων το κιβώτιο είναι στο νεκρό σημείο και ο κινητήρας συμπλεγμένος.

6.3.2., Αυτόματο κιβώτιο ταχυτήτων

Αφού τεθεί στην αρχική θέση, ο μοχλός επιλογής δεν πρέπει να κινείται καθόλου κατά τη διάρκεια της δοκιμής, εκτός από την περίπτωση που καθορίζεται στυ σημείο 6.4.3.

6.4. Επιταχύνσεις

6.4.1. Οι φάσεις των επιταχύνσεων διεξάγονται με όσο το δυνατό σταθερή επιτάχυνση καθόλη τη διάρκεια της φάσης.

- 6.4.2. Αν μία επιτάχυνση δεν μπορεί να επιτευχθεί μέσα στον καθορισμένο χρόνο, ο συμπληρωματικός χρόνος αφαιρείται από τη χρονική διάρκεια αλλαγής σχέσης μεταδικτης αν είναι δυνατό και, σε περίπτωση αδυναμίας, από την ακόλουθη περίοδο σταθερής ταχύτητας.
- 6.4.3. Αυτόματα κιβώτια ταχυτήτων

Αν μία επιτάχονση δεν μπορεί να επιτειχθεί μέσα στον καθορισμένο χρόνο, ο μοχλός επιλογής πρέπει να χρησιμοποιείται σύμφωνα με τις προδιαγραφές για τα χειροκίνητα κιβότια ταχυτήτων.

6.5. Επιβραδύνσεις

- 6.5.1. Όλες οι επιβραδύνσεις επιτυγχάνονται με τον επιταχυντή (γκάζι) τελείως ελεύθερο και τον κινητήρα συμπλεγμένο. Ο κινητήρας αποσυμπλέκεται, χωρίς να μετακινήθεί ο μοχλός επιλογής, όταν η ταχύτητα πέσει στα 10 km/h.
- 6.5.2. Αν για την επιβράδυνση χρειαστεί περισσότερος χρόνος από τον προβλεπόμενο για τη φάση αυτή, γίνεται χρήση των φρένων του οχήματος για να καταστεί δυνατή η τήρηση του κύκλου.
- 6.5.3. Αν για την επιβράδυνση χρειαστεί λιγότερος χρόνος από τον προβλεπόμενο για τη φάση αυτή, επιτυγχάνεται η σύμπτωση με το θεωρητικό κύκλο διά μιας περιόδου σταθερής ταχύτητας ή ρελαντί, η οποία συνεχίζεται με την επόμενη ενέργεια.
- 6.5.4. Στο τέλος της περιόδου επιβράδυνσης (ακινητοποίηση του οχήματος επί των κυλίνδρων), το κιβώτιο ταχυτήτων τίθεται στο νεκρό σημείο και συμπλέκεται ο κινητήρας.

6.6. Σταθερές ταχύτήτες

- 6.6.1. Πρέπει να αποφεύγεται το μαρσάρισμα («συνεχής άντληση καυσίμου») ή το κλείσιμο της πεταλούδας του επιταχυντή κατά τη μετάβαση από το στάδιο της επιτάχυνσης στο ακόλουθο στάδιο σταθερής ταχύτητος.
- 6.6.2. Κατά τη διάρκεια των περιόδων με σταθερή ταχύτητα, ο επιταχυντής διατηρείται σε σταθερή θέση.

7. ΔΙΑΔΙΚΑΣΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗΣ

7.1. Δειγματοληψία "

Η δειγματοληψία αρχίζει στην αρχή του πρώτου κύκλου δυκιμής, όπως ορίζεται στο σημείο 6.2.2 και τελειώνει στο τέλος της τελευταίας περιόδου ρελαντί του τέταρτου κύκλου.

7.2. Ανάλυση

- 7.2.1. Η ανάλυσή των καυσαερίων που περιέχονται στο σάκο πραγματοποιείται το ταχύτερο δυνατό, και πάντως όχι αργότερα από 20 λεπτά μετά το τέλος του κύκλου δοκιμής.
- 7.2.2. Πριν από κάθε ανάλυση δείγματος, η κλίμακα της συσκευής ανάλυσης που χρησιμοποιείται για κάθε ρύπο μηδεντίζεται με το κατάλληλο αέριο μηδενισμού.
- 7.2.3. Οι συσκευές ανάλυσης ρυθμίζονται κατόπιν, σύμφωνα με τις καμπύλες βαθμονόμησης, με τη βοήθεια των αερίων βαθμονόμησης που έχουν ονυμαστικές συγκεντρώσεις μεταξύ 70 και 100 % της πλήρους κλίμακας.
- 7.2.4. Ελέγχεται, εν συνέχεια, για μια φορά ακόμη ο μηδενισμός των συσκειών ανάλυσης. Αν η ένδειξη διαφέρει πάνω από 2 % της πλήμως κλίμακας από την ένδειξη που λαμβάνεται κατά τη ρύθμιση του σημείου 7.2.2, τότε επαναλαμβάνεται η εργασία.
- 7.2.5. Αναλύονται εν συνεχεία τα δείγματα.

- 7.2.6. Μετά την ανάλυση, ελέγχονται πάλι το μηδέν και οι τιμές ρύθμισης της κλίμακας με τα ίδια αέρια. Αν οι νέες αυτές τιμές δεν διαφέρουν πάνω από 2 % από εκείνες που λαμβάνονται κατά τη ρύθμιση σύμφωνα με το σημείο 7.2.3, τα αποτελέσματα της ανάλυσης θεωρούνται παραδεκτά.
- 7.2.7. Για όλες τις εργασίες που περιγράφονται στο παρόν κεφάλαιο, οι παροχές και πιέσεις των διαφόρων αερίων πρέπει να είναι οι ίδιες που χρησιμοποιήθηκαν κατά τη βαθμονόμηση των συσκευών ανάλυσης.
- 7.2.8. Η ανάγνωση της τιμής που επιλέγεται για τις συγκεντρώσεις καθενός από τους μετρούμενους ρύπους, πραγματοποιείται μετά τη σταθεροποίηση της συσκευής μέτρησης. Οι εκπομπές μάζας υδρογονανθράκων των κινητήρων με ανάφλεξη διά συμπιέσεως υπιλυγίζυνται σύμφωνα με την ολικληρωμένη ένδειξη του ανιχνευτού HFID, διορθωμένη, αν χρειάζεται, για να ληφθεί υπόψη η διακύμανση της παροχής όπως καθορίζεται στο συμπληρωματικό παράρτημα 5.
- 8. ΠΡΟΣΔΙΟΡΙΣΜΌΣ ΤΗΣ ΠΟΣΟΤΉΤΑΣ ΤΩΝ ΕΚΠΕΜΠΟΜΕΝΏΝ ΑΕΡΙΏΝ ΡΥΠΏΝ
- 8.1. 'Ογκος που λαμβάνεται υπόψη

Ο όγκος που λαμβάνεται υπόψη διορθώνεται για να αναχθεί στις συνθήκες: 101,33 kPa και 273,2 K.

8.2. Συνολική μάζα εκπεμπομένων αερίων ρύπων

Προσδιορίζεται η μάζα Μ κάθε ρύπου που εκπέμπεται από το όχημα κατά τη διάρκεια της δοκιμής, από το γινόμενο της συγκέντρωσης κατ' όγκον επί τον όγκο του εξεταζόμενου αερίου, με βάση τις ακόλουθες τιμές πυκνότητας στις παραπάνω συνθήκες αναφοράς:

- για το μονοξείδιο του άνθρακα (CO) d = 1,25 g/l,
- για τους υδρογονάνθρακες (CH_{1,85}) d = 0.619 g/l,
- για τα οξείδια του αζώτου (NO₂) d = 2.05 g/l.

Το συμπληρωματικό παράρτημα 8 δίνει τους σχετικούς υπολογισμούς για τις διαφορετικές μεθόδους, και παραδείγματα για τον προσδειορισμό της ποσότητας εκπεμπομένων αερίων ρύπων.

ΣΥΜΠΛΗΡΩΜΑΤΙΚΌ ΠΑΡΑΡΤΗΜΑ Ι

ΑΝΑΛΎΣΗ ΚΑΤΆ ΣΤΑΔΙΑ ΤΟΥ ΚΎΚΛΟΥ ΛΕΙΤΟΥΡΓΊΑΣ ΓΙΑ ΤΗ ΛΟΚΙΜΉ ΤΟΥ ΤΥΠΟΎ Ι

Ανάλυση κατά στάδια

	Χρόνος		Ποσυστό 4/
Ρελαντί:	• 60 s	30,8	
Ρελαντί, όχημα σε κίνηση, κινητήρας συμπλεγμένος σε μια σχέση μετάδοσης:	9s	4,6	35,4
Αλλαγές «ταχυτητων»:	. 8 s		4,1
Επιταχύνσεις:	36 s		18,5
Πορεία με σταθερή ταχύτητα:	57 s		29,2
Επιβραδύνσεις:	25 s		12,8
•	195 s		100 %0
Ανάλυση με βάση τη χρησιμοποίηση του κιβωτίου ταχυτήτων			
Ρελαντί:	60 s	30,8	
Ριλαντί, όχημα σε κίνηση, κινητήρας συμπλεγμένος σε μια σχέση -	• .	}	35,4
personners personners and the second	95	4,6	
Λλλαγίς «ταχυτήτων»:	88		4,1
Κίνηση με Ιη «ταχύτητα»:	24 s		12,3
Κίνηση με 2η «ταχύτητα»:	53 s		27,2
Κίνηση με 3η «ταχύτητα»:	41 s		21,2
	195 s		100 %

Μέση ταχύτητα κατά τη δοκιμή: 19 km/h.

Μποη ταχυτητά κατά τη συκτμη. 17 και/ π. Πραγματικός χρόνος λειτουργίας: 195 s. Θεωρητική απόσταση που καλύπτεται ανά κύκλο: 1,013 km. Θεωρητική απόσταση για τη δοκιμή (4 κύκλοι): 4,052 km.

ΣΥΜΠΛΗΡΩΜΑΤΙΚΌ ΠΑΡΑΡΤΉΜΑ 2

AYNAMOMETPIKH ESEAPA

Ι. ΟΡΙΣΜΟΣ ΔΥΝΑΜΟΜΕΤΡΙΚΉΣ ΕΞΕΔΡΑΣ ΜΕ ΣΤΑΘΕΡΉ ΚΑΜΠΥΛΉ ΑΠΟΡΡΟΦΉΣΗΣ ΙΣΧΎΟΣ

1.1. Εισαγωγή

Στην περίπτωση που η ολική αντίσταση σε πορεία επί οδού μεταξύ των ταχυτήτων 10 και 50 km/h δεν μπορεί να αναπαραχθεί στην εξέδρα, συνιστάται η χρησιμοποίηση δυναμομετρικής εξέδρας με τα εξής χαρακτηριστικά.

1.2. Ορισμός

1.2.1. Η εξέδρα μπορεί να έχει έναν ή δύο κυλίνδρους.

Ο εμπρόσθιος κύλινδρος πρέπει να κινεί, άμεσα ή έμμεσα, τις μάζες αδρανείας και την πέδη.

1.2.2. Η πέδη ρυθμίζεται για 50 km/h με μια από τις μεθόδους που περιγράφωνται στο σημείο 3, οπότε προσδιορίζεται το Κ σύμφωνα με τον τύπο P = KV³

Η ισχύς (Ρ.) που απορροφάται από την πέδη και τις εσωτερικές τριβές της εξέδρας, από τη ρύθμιση αναφυράς μέχρι την ταχύτητα ιχήματος 50 km/h, έχει ως εξής:

yea V > 12 km/h:

$$P_4 = KV^3 \pm 5\% KV^3 \pm 5\% PV_{50}$$

(δεν επιτρέπονται οι αρνητικές τιμές)

και για V < 12 km/h:

 P_a θα περιλαμβάνεται μεταξύ Ο και $P_a = KV_{12}^3 + 5$ 40 $KV_{12}^3 + 5$ 40 PV_{50}

όπου K είναι μια χαρακτηριστική παράμετρος της δυναμομετρικής εξέδρας και PV_{50} είναι η απορροφούμενη ισχύς στα $50\,km/h$.

2. ΜΕΘΟΔΟΣ ΒΑΘΜΟΝΟΜΗΣΗΣ ΤΗΣ ΚΥΛΙΝΔΡΟΦΟΡΟΥ ΔΥΝΑΜΟΜΕΤΡΙΚΗΣ ΕΞΕΔΡΑΣ

2.1. Εισαγωγή

Το παρόν συμπληρωματικό παράρτημα περιγράφει τη μέθοδο που πρέπει να χρησιμοποιείται για τον προσδιορισμό της ισχύος που απορροφάται από κυλινδροφόρο εξέδρα. Η απορροφούμενη ισχύς περιλαμβάνει την ισχύ που απορροφούν οι τριβές και την ισχύ που απορροφά η πέδη. Η κυλινδροφόρος εξέδρα τίθεται σε λειτουργία με ταχύτητα ανώτερη απο τη μέγιστη ταχύτητα δυκιμής. Κατόπιν, η διάταξη εκκινήσεως της εξέδρας αποσιμπλέκεται. Η ταχύτητα περιστροφής του κινούμενου κυλίνδρου μειώνεται. Η κινητική ενέργεια των κυλίνδρων απορροφάται από την πέδη και τις τριβές. Στη μέθοδο αυτή δεν λαμβάνεται υπόψη η διακύμανση των εσωτερικών τριβών των κυλίνδρων που σημειώνεται με ή γωρίς φυρτίο, ούτε οι τριβές του υπίσθιου κυλίνδρου όταν είναι ελεύθερος.

2.2. Βαθμόνόμηση του δείκτη ισχύος, συναρτήσει της απορροφούμενης ισχύος, στα 50 km/k

Εφαρμόζεται η εξής διαδικασία:

- 2.2.1. Μετριέται η ταχύτητα περιστροφής του κυλίνδρου, αν αυτό δεν έχει ήδη γίνει. Προς το σκοπό αυτό μπορεί να χρησιμοπικηθεί ένας πέμπτος τριοχός, ένα στριφόμετρο ή μια άλλη διάταξη.
- 2.2.2. Τοποθετείται το όχημα στην εξέδρα ή εφαρμόζεται άλλη μέθοδος για την εκκίνηση της εξέδρας.
- 2.2.3. Ανάλογα με την τάξη αδράνειας χρησιμοποιείται σφόνδυλος ή άλλο σύστημα προσομοίωσης της αδράνείας.

- 2.2.4. Προσδίδεται στην εξέδρα ταχύτητα 50 km/h.
- 2.2.5. Σήμειώνεται η ένδειξη της ισχύος (Pi).
- 2.2.6. Η ταχύτητα αυξάνεται στα 60 km/h.
- 2.2.7. Αποσυμπλέκεται η διάταξη εκκίνησης της εξέδρας.
- 2.2.8. Σημειώνεται ο χρόνος επιβράδυνσης της εξέδρας από 55 km/h σε 45 km/h.
- 2.2.9. Ρυθμίζεται η πέδη σε διαφορετική τιμή.
- 2.2.10. Επαναλαμβάνονται οι εργασίες που αναφέρονται στα σημεία 2.2.4 έως 2.2.9 όσες φορές χρειάζεται, για να καλυφθεί όλη η περιοχή των τιμών ισχύος που χρησιμοποιούνται σε πορεία επί οδού.
- 2.2.11. Η απορροφούμενη ισχύς υπολογίζεται σύμφωνα με τον τύπο:

$$P_a = \frac{M_1 (V_1^2 - V_2^2)}{2000 t}$$

όπου:

P. : απορροφούμενη ισχύς σε kW,

 M_1 : ισοδύναμη αδράνεια σε kg (μη λαμβανιμένης υπόψη της αδράνειας του ελεύθηκου πίσω κυλίνδηκου),

V₁ : αρχική ταχύτητα σε m/s (55 km/h = 15,28 m/s),

 V_2 : τελική ταχύτητα σε m/s (45 km/h = 12,50 m/s),

t : χρόνος επιβράδυνσης του κυλίνδρου από 55 km/h σε 45 km/h.

2.2.12. Διάγραμμα της ενδεικνιώμενης (P_i) ισχύος στην ταχύτητα των 50 km/h συναρτήσει της απορροφούμενης ισχύος στην αυτή ταχύτητα.

- 2.2.13. Οι εργασίες που καθορίζονται στα σημεία 2.2.3 έως 2.2.12 πρέπει να επαναλαμβάνονται για όλες τις τάξεις αδράνειας που λαμβάνονται υπόψη.
- 2.3. Βαθμονόμηση του δείκτη ισχύος, συναρτήσει της απορροφούμενης ισχύος, για άλλες ταχύτητες
 Οι διαδικασίες του σημείου 2.2 επαναλαμβάνονται όσες φορές χρειάζεται για τις ταχύτητες που έχουν επιλεχθεί.
- 2.4. Επαλήθευση της καμπύλης απορρόφησης της κυλινδροφόρου εξέδρας από μια ρύθμιση αναφοράς στην ταχύτητα 50 km/h
- 2.4.1. Τοποθετείται το όχημα στην εξέδρα ή εφαρμόζεται άλλη μέθοδος για:την εκκίνηση της εξέδρας.
- 2.4.2. Η εξέδρα ρυθμίζεται για απορροφούμενη ισχύ P_a , στην ταχύτητα 50 km/h.
- 2.4.3. Σημειώνεται η απορροφούμενη ισχύς για ταχύτητες 40, 30, 20 km/h.
- 2.4.4. Χαράζεται η καμπύλη P. (V) και επαληθεύεται ότι τηρεί τις προδιαγραφίς του σημείου 1.2.2.
- 2.4.5. Επαναλαμβάνονται οι εργασίες των σημείων 2.4.1 έων 2.4.4 για άλλες τιμές ισχύος P, στην ταχύτητα 50 km/h και για άλλες τιμές αδράνειας.
- 2.5. Η ίδια διαδικασία πρέπει να εφαρμόζεται για τη βαθμονόμηση ως προς τη δύναμη ή ροπή.
- 3. ΡΥΘΜΙΣΉ ΤΗΣ ΕΞΕΛΡΑΣ
- 3.1. Ρύθμιση συναρτήσει της υποπίεσης
- 3.1.1. η Εισαγωγη

Η μέθοδος αυτή δεν θεωρείται η καλύτερη και δεν πρέπει να εφαρμόζεται παρά μόνο σε εξέδρες με σταθερή καμπόλη απορρόφησης ισχύος, για τον προσδιορισμό της ρύθμισης της απορροφούμενης ισχύος σε ταχύτητα 50 km/h και δεν μπορεί να χρησιμοποιηθεί με τους κινητήρες με ανάφλεξη διά συμπιέσεως.

3.1.2. Εξοπλισμός δοκιμης

Η υποπίεση (ή απόλυτη πίεση) στην πολλαπλη εισιγωγή του οχηματός μετριέται με ακρίβεια \pm 0.25 kPa. Η παράμετρος αυτη καταγράφεται συνέχως η κατά διαστηματά που δεν υπερβαίνουν το ένα δευτερόλεπτο. Η ταχυτητά πρέπει να καταγράφεται συνέχως με ακρίβεια \pm 0.4 km/h.

- 3.1.3. Δοκιμές επί οδού
- 3.1.3.1. Εξακριβώνεται καταρχήν ότι τηρούνται οι διατάξεις του σημείου 4 του συμπληρωματικού παραρτήματος 3.
- 3.1.3.2. Το όχημα τίθεται σε λειτουργία με σταθερή ταχύτητα 50 km/h, και καταγράφονται η ταχύτητα και η υποπίεση (ή η απόλυτη πίεση) όπως αναγράφεται στο σημείο 3.1.2.
- 3.1.3.3. Επαναλαμβάνεται τρεις φορές για κάθε διεύθυνση η εργασία που περιγράφεται στο σημείο 3.1.3.2. Οι εξι εργασίας πρέπει να εκτελούνται μέσα σι. 4 ώρες.
- 3.1.4. Αναγωγή των δεδομένων και κριτήρια αποδοχής
- 3.1.4.1. Εξετάζονται τα αποτελέσματα από τις εργασίες που καθορίζονται στα σημεία 3.1.3.2 και 3.1.3.3 (η ταχύτητα διν πρέπει να είναι μικρότερη από 49,5 km/h ούτε μεγαλύτερη από 50,5 km/h για διάρκεια πάνω από ένα δευτερολεπτο). Για κάθε εργασία, πρέπει να μετριέται η υποπίεση κάθε δευτερολέπτου, και να υπολογίζονται η μέση υποπίεση (Θ) και η τυπική απόκλιση (s). Ο υπολογισμός αυτός πρέπει να γίνεται για 10 τουλάχιστον τιμές υποπιεσης.
- 3.1.4.2. Η τυπική απόκλιση δεν πρέπει να υπερβαίνει το 10 40 της μέσης τιμής $(\bar{\mathbf{v}})$ για κάθε εργασία.
- 3.1.4.3. Υπολογίζεται η μέση τιμή (\bar{v}) για τις $l\xi_1$ εργασίες (3 για κάθι, κατεύθυνση).
- 3.1.5. Ρύθμιση της εξέδρας
- 3.1.5.1. Προκαταρκτικές εργασίες

Εκτελούνται οι εργάσιες που καθορίζονται στα σημεία 5.1.2.2.1 tως <math>5.1.2.2.4 του συμπληρωματικού παραρτήματος 3.

3.1.5.2. Ρύθμιση της πέδης

Αφού το όχημα έλθει σε θερμοκρασία λειτουργίας, τίθεται σε κίνηση με σταθερή τάχύτητα 50 km/h, ριθμίζεται η πέδη ώστε να επιτευχθεί η τιμή υποπίεσης (γ) που πρωτδιορίζεται σύμφωνα με το σημείο 3.1.4.3. Η απόκλιση από την τιμή αυτή δεν πρέπει να υπερβαίνει τα 0,25 kPa. Για την εργασία αυτή, χρησιμοποιούνται οι συσκευίς που χρησιμοποιήθηκαν και για τη δοκιμή επί οδού.

3.2. 'Αλλες μέθοδοι ρύθμισης

Η ρύθμιση της εξέδρας μπύρει να γίνει στη σταθερή ταχύτητα των 50 km/h με τις μεθόδους που περιγράφονται στο συμπληρωματικό παράρτημα 3.

3.3. Εναλλακτική μέθοδος

Αν συμφωνεί ο κατασκευαστής μπορεί να εφαρμοστεί η εξής μέθοδος:

3.3.1. Η πέδη ρυθμίζεται έτσι ώστε να απορροφά την ισχύ που εξασκείται στους κινητήριους τροχούς σε σταθερή ταχύτητα 50 km/h σύμφωνα με τον κατωτέρω πίνακα:

Μάζα αναφοράς του οχήματος: Μα (kg)	Απιρριφούμενη ισχις από την εξέδρα: P ₄ (kW)	
Ma ≤ 750	1,3	
750 < Ma ≤ 850	1,4	
850 < Mα ≤ 1 020	1,5	
1 020 < Ma ≤ 1 250	1,7	
1 250 < Ma ≤ 1 470	1,8	
1 470 < Ma ≤ 1 700	2,0	
1,700 < Ma ≤ 1 930	2,1	
$1930 < M\alpha \le 2150$	2,3	
$2150 < Ma \le 2380$	2,4	
$2380 < M\alpha \le 2610$	2,6	
2 610 < Mα	2,7	

^{3.3.2.} Για οχήματα εκτός απο τα επιβατικά, με μάζα αναφοράς πάνω από 1 700 kg ή για οχήματα των οποίων όλοι οι τροχοί είναι κινητήριοι, οι τιμές ισχύος που αναγράφονται στον πίνακα του σημείου 3.3.1 πολλαπλασιάζονται με το συντελεστή 1,3.

ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΠΑΡΑΡΤΗΜΑ 3

ΑΝΤΙΣΤΑΣΗ ΣΤΗΝ ΠΟΡΕΙΑ ΕΝΟΣ ΟΧΗΜΑΤΟΣ — ΜΕΘΟΔΟΣ ΜΕΤΡΗΣΗΣ ΕΠΙ ΟΔΟΥ — ΠΡΟΣΟΜΟΙΩΣΗ ΕΠΙ ΚΥΛΙΝΑΡΟΦΟΡΟΥ ΕΣΕΑΡΑΣ

I. ANTIKEIMENO

Οι παρακάτω μέθοδοι έχουν ως αντικείμενο τη μέτρηση της αντίστασης στην πορεία ενός οχήματος που κινείται με σταθερή ταχύτητα επί οδού και την προσυμοίωση της αντίστασης αυτής κατά τη διάρκεια δοκιμής σε κυλινδροφόρο εξέδρα σύμφωνα με τις συνθήκες που καθορίζονται στο σημείο 4.1.4.1 του παραρτήματος ΙΙΙ.

2. ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΟΔΟΥ

Η οδός πρέπει να είναι οριζόντια και επαρκούς μήκους για την εκτέλεση των μετρήσεων που καθορίζονται παρακάτω. Η κλίση πρέπει να είναι σταθερή με προσέγγιση \pm 0,1 % και να μην υπερβαίνει το 1,5 %.

3. ΑΤΜΟΣΦΑΙΡΙΚΈΣ ΣΥΝΘΉΚΕΣ

3.1. '**Ανεμος**

Κατά τη διάρκεια της δοκιμής, η μέση ταχύτητα του ανέμου δεν πρέπει να υπερβαίνει τα 3 m/s, με ριπές μικρότερες των 5 m/s. Επιπλέον, η συνιστώσα του ανέμου κάθετα προς την οδό πρέπει να είναι κατώτερη από 2 m/s. Η ταχύτητα του ανέμου πρέπει να μετρείται σε απόσταση 0,7 m πάνω από το οδόστρωμα.

3.2. Yypasia

Η οδός πρέπει να είναι στεγνή.

3.3. Πίεση και θερμοκρασία

Η πυκνότητα του αέρα κατά τη στιγμή της δοκιμής δεν πρέπει να διαφέρει περισσότερο από \pm 7,5 % από τις συνθήκες αναφοράς P=100 kPa, και T=293,2 K.

4. ΚΑΤΑΣΤΑΣΗ ΚΑΙ ΠΡΟΕΤΟΙΜΑΣΙΑ ΤΟΥ ΟΧΗΜΑΤΟΣ

4.1. Ροντάρισμα

Το όχημα πρέπει να ευρίσκεται σε κανονική κατάσταση λειτουργίας και ρύθμισης και να έχει ρονταριστεί για 3 000 km τουλάχιστον. Τα ελαστικά πρέπει να έχουν ρονταριστεί συγχρόνως με το όχημα, ή να έχουν από 90 έως 50 % του βάθους των αυλακώσεων του πέλματος.

4.2. Επαληθέσσεις

Επαληθεύεται άν στα κατωτέρω σημεία το όχημα είναι σύμφωνο με τις προδιαγραφές του κατασκευαστή για την εξεταζόμενη χρήση:

- τροχοί, διακοσμητικά καλύμματα (τάσια), ελαστικά (κατασκευαστής, τύπος, πίεση),
- γεωμετρία του εμπρόσθιου συστήματος κίνησης,
- ρύθμιση της πέδης (εξάλειψη των παρασιτικών τριβών),
- λίπανση του εμπρόσθιου και οπίσθιου συστήματος κίνησης.
- ρύθμιση της ανάρτησης και έδρασης του οχήματος.
- кал.

4.3. Προκαταρκτικές εργασίες για τη δοκιμή

4.3.1. Το όχημα φορτίζεται με τη μάζα αναφοράς του.

Η έδραση του οχήματος πρέπει να είναι εκείνη που λαμβάνεται όταν το κέντρο βάρους του φορτίου κείται στο μέσο της ευθείας που ενώνει τα σημεία «R» των εμπροσθίων πλευρικών θέσιων.

- 4.3.2. Για τις δοκιμές επί οδού, τα παράθυρα του οχήματος είναι κλειστά. Τα ενδεχόμενα καλύμματα κλιματισμού, φανών, κλπ., πρέπει να ευρίσκονται σε θέση εκτός λειτουργίας.
- 4.3.3. Το όχημα πρέπει να είναι καθαρό.
- 4.3.4. Αμέσως πριν τη δοκιμή, το όχημα πρέπει να φέρεται στην κανονική του θερμοκρασία λειτουργίας με κατάλληλο τρόπο.
- ΜΕΘΟΔΟΙ
- 5.1. Μέθοδος διακύμανσης ενεργείας κατά την επιβράδυνση με το κιβώτιο ταχυτήτων στο νεκρό σημείο
- 5.1.1. *Επί οδού*
- 5.1.1.1. Εξοπλισμός μετρήσεως και ανεκτό σφάλμα
 - _ η μέτρηση του χρόνου εκτελείται με σφάλμα μικρότερο του 0,1 s,
 - η μέτρηση της ταχύτητας εκτελείται με σφάλμα μικρότερο του 2 %.
- 5.1.1.2. Διαδικασία της δυκιμής
- 5.1.1.2.1. Το όχημα επιταχύνεται μέχρι μια ταχύτητα που υπερβαίνει κατά 10 km/h την επιλεγμένη ταχύτητα δοκιμής V.
- 5.1.1.2.2. Τίθεται το κιβώτιο ταχυτήτων στο νεκρό σημείο.
- 5.1.1.2.3. Μετριέται ο χρόνος επιβραδύνσεως του οχήματος από την ταχύτητα: $V_2 = V + \Delta V \text{ km/h} \text{ στην ταχύτητα } V_1 = V \Delta V \text{ km/h} \text{: έστω ότι, με } \Delta V \leq 5 \text{ km/h, o χρόνος αυτός είναι } t_1.$
- 5.1.1.2.4. Εκτελείται η ίδια δοκιμή κατά την αντίστροφη κατεύθυνση και προσδιορίζεται ο αντίστοιχος χρόνος t_2 .
- 5.1.1.2.5. Έστω Τι ο μέσος όρος των δύο χρόνων tι και t2.
- 5.1.1.2.6. Οι δοκιμές αυτές επαναλαμβάνονται όσες φορές χρειάζεται ώστε η στατιστική ακρίβεια (p) του μέσου όρου

$$T_i = \frac{1}{n} \sum_{i=1}^{n} T_i$$
 va elvai log ϕ katúterg anó 2 % (p < 2 %).

Η στατιστική ακρίβεια (p) ορίζεται από τον τύπο:

$$p = \frac{t s}{\sqrt{n}} \cdot \frac{100}{T}$$

όπου

- συντιλιστής που δίναται από τον παρακάτω πίνακα,
- n: αριθμός δυκιμών,
- s: τυπική απόκλιση, s = $\sqrt{\sum_{n=1}^{n} \frac{(Ti-T)^2}{n-1}}$

1 3,2 2,8 2,6 2,5 2,4 2,3 2,3 2,2	1 1	1 1.
	2,2 2	,2 2,2 2,2
1 1 n 1,6 1,25 1,06 0,94 0,85 0,77 0,73 0,66	0.4	

5.1.1.2.7. Υπολογίζεται η ισχύς με τον τύπο:

$$P = \frac{M \cdot V \cdot \Delta V}{500 \text{ T}}$$

όπου

Ρ: εκφράζεται σε kW,

V: ταχύτητα της δοκιμής, σε m/s,

ΔV: απόκλιση ταχύτητας σε σχέση με την ταχύτητα V, σε m/s.

Μ: μάζα αναφοράς σε kg.

Τ: χρόνος σε s.

- 5.1.2. Επί εξέδρας
- 5.1.2.1. Εξοπλισμός μέτρησης και ανεκτό σφάλμα

Ο εξυπλισμός πρέπει να είναι ο ίδιος με εκείνον που χρησιμοποιείται για τη δοκιμή επί οδού.

- 5.1.2.2. Λιαδικασία δοκιμής
- 5.1.2.2.1. Τοποθετείται το όχημα επί της κυλινδροφόρου εξέδρες.
- 5.1.2.2.2. Προσαρμόζεται η πίεση των ελαστικών (εν ψυχρώ) των κινητήριων τροχών προς την τιμή που απαιτείται για την κυλινδροφόρο εξέδρα.
- 5.1.2.2.3. Ρυθμίζεται η ισοδύναμη αδράνεια Ι της εξέδρας.
- 5.1.2.2.4. Με κατάλληλη μέθοδο, το όχημα και η εξέδρα φέρονται στη θερμοκρασία λειτουργίας τους.
- 5.1.2.2.5. Εκτελούνται οι εργασίες που περιγράφονται στο σημείο 5.1.1.2 (εκτός από τα σημεία 5.1.1.2,4 και 5.1.1.2.5), με αντικατάσταση του Μ από το Ι στον τύπο του σημείου 5.1.1.2.7.
- 5.1.2.2.6. Ρυθμίζεται η πέδη έτσι ώστε να τηρεί τις προδιαγραφές του σημείου 4.1.4.1 του παραρτήματος ΙΙΙ.
- -5.2. Μέθοδος της μέτρησης της ροπής σε σταθερή ταχύτητα
- 5.2.4. Επί οδού
- 5.2.1.1. Εξοπλισμός μέτρησης και ανεκτό σφάλμα
 - η μέτρηση της ρυπής εκτελείται με μια διάταξη μέτρησης ακρίβειας 2 %,
 - η μέτρηση της ταχύτητας εκτελείται με ακρίβεια 2 %.
- 5.2.1.2. Διαδικασία δυκιμής
- 5.2.1.2.1. Φέρεται το όχημα στην επιλεγμένη σταθερή ταχύτητα V.

- 5.2.1.2.2. Καταγράφεται η ροπή C (ι) και η ταχύτητα επί ένα ελάχιστο χρονικό διάστημα 10 s μέσω εξοπλισμού της τάξεως Ι 000 σύμφωντο με το πρότοπο ISO αριθ. 970.
- 5.2.1.2.3. Οι διακυμάνσεις της ρυπής C (t) και της ταχύτητας συναρτήσει του χρόνου δεν πρέπει να υπερβαίνουν το 5 % κατά τη διάρκεια κάθε δευτερολέπτου του χρόνου καταγραφής.
- 5.2.1.2.4. Η τιμή ροπής που λαμβάνεται υπόψη C_{i1} είναι η μέση ροπή που προσδιορίζεται σύμφωνα με τον ακόλουθο τύπο:

$$C_{t1} = \frac{1}{\Delta t} \int_{t}^{t} C(t)dt$$

- 5.2.1.2.5. Εκτελείται η ίδια δοκιμή σε αντίστροφη κατεύθυνση και προσδιορίζεται το C12-
- 5.2.1.2.6. Έστω C_i ο μέσος όρος των δύο τιμών ροπής C_{i1} και C_{i2} .
- 5.2.2. Επί εξέδρας
- 5.2.2.1. Εξοπλισμός μετρήσεως και ανεκτό σφάλμα
 Ο εξοπλισμός πρέπει να είναι ο ίδιος με εκείνον που χρησιμοποιείται για τη δοκιμή επί οδού. -
- 5.2.2.2. Διαδικασία δοκιμής
- 5.2.2.2.1. Εκτελούνται οι εργασίες που περιγράφονται στα σημεία 5.1.2.2.1 έως 5.1.2.2.4.
- 5.2.2.2.2. Εκτελούνται οι εργασίες που περιγράφονται στα σημεία 5.2.1.2.1 έως 5.2.1.2.4.
- 5.2.2.2.3. Ρυθμίζεται η πέδη έτσι ώστε να ανταποκρίνεται στις προδιαγραφές του σημείου 4.1.4.1 του παραρτήματος III.
- 5.3: Προσδιορισμός της ολοκληρωμένης ροπής κατά τη διάρκεια ενός μεταβαλλόμενου κύκλου δοκιμής
- 5.3.1. Η μέθοδος αυτή αποτελεί ένα προαιρετικό συμπλήρωμα της μεθόδου με σταθερή ταχύτητα που περιγράφεται στο σημείο 5.2.
- 5.3.2. Στη μέθιδα αυτή δυναμικής δοκιμής, προσδιορίζεται η μέση τιμή ροπής Μ. Για να γίνει αυτό, ολοκληρώνονται οι πραγματικές τιμές ροπής συναρτήσει του χρόνου κατά τη διάμκεια καθορισμένου κύκλου λειτουργίας που εκτελείται με το υπό δυκιμή όχημα.

Η ολοκληρωμένη ροπή διαιρείται διά της διαφοράς του χρόνου, πράγμα που δίνει:

$$\overline{M} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} M(t) \cdot dt \, (\mu \epsilon M(t) > 0)$$

Το Μ υπολογίζεται με βάση έξι σειρές αποτελεσμάτων.

Ο ρυθμός δειγματοληψίας του Μ συνιστάται να είναι τουλάχιστον 2 ανά δευτερόλεπτο.

5.3.3. Ρύθμιση της εξέδρας

Η πέδη ρυθμίζεται με τη μέθοδο που περιγράφεται στο σημείο 5.2. Αν η ροπή M στην εξέδρα δεν ανταποκρίνεται στη ροπή M επί οδού, τότε οι ρυθμίσεις της πέδης τροποποιούνται μέχρις ότου οι τιμές αυτές να είναι ίσες με προσέγγιση \pm 5 %.

Σημείωση:

Η μέθοδος αυτή μπορεί να χρησιμοποιείται μόνο για δυναμόμετρα ηλεκτρικής προσομοιώσεως της αδράνειας. ή με δυνατότητα ακριβούς ρυθμίσεως.

5.3.4. Κριτήρια αποδοχής

Η τυπική απόκλιση έξι μετρήσεων δεν πρέπει να υπερβαίνει το 2 % της μέσης τιμής.

5.4. Μέθοδος για τη μέτρηση της επιβράδυνσης με γυροσκοπική πλατφόρμα

5.4.1. *Επί οδού*

- 5.4.1.1. Εξοπλισμός μέτρησης και ανεκτό σφάλμα
 - μέτρηση της ταχύτητας: σφάλμα κατώτερο από 2 %.
 - μέτρηση της επιβράδυνσης: σφάλμα κατώτερο από 1 %.
 - μέτρηση της κλίσης της οδού: σφάλμα κατώτερο από Ι %,
 - μέτρηση του χρόνου: σφάλμα κατώτερο από 0,1 s.

Η έδραση του οχήματος προσδιορίζεται σε μια οριζόντια επιφάνεια αναφοράς' διά συγκρίσεως, είναι δυνατό να ανευρεθεί η κλίση της οδού (α_1) .

5.4.1.2. Διαδικασία δοκιμής

5.4.1.2.1. Επιταχύνεται το όχημα μέχρι μια ταχύτητα που υπερβαίνει κατά 5 km/h τουλάχιστον την επιλεγμένη ταχύτητα V.

5.4.1.2.2. Καταγράφεται η επιβράδυνση μεταξύ των ταχυτήτων V + 0.5 km/h και V = 0.5 km/h.

:5.4.1.2.3. Υπολογίζεται η μέση επιβράδυνση που αντιστοιχεί στην ταχύτητα V σύμφωνα με τον ακόλουθο τύπο:

$$\overline{\gamma}_1 = \frac{1}{t} \int_{\frac{t}{t}}^{t} \gamma(t) dt - g \cdot \sin \alpha_1$$

όπου:

γι: μέση τιμή της επιβράδυντης στην ταχύτητα V κατά μία κατεύθυνση της οδού,

t: χρόνος επιβράδυνσης από V + 0.5 km/h μέχρι V = 0.5 km/h,

γι(ι): η επιβράδυνση που καταγράφεται κατά τη διάρκεια του χρόνου αυτού,

 $g = 9.81 \text{ m.s}^{-2}$

5.4.1.2.4. Εκτελούνται οι ίδιες μετρήσεις κατά την άλλη κατεύθυνση και προσδιορίζεται το $\overline{\gamma}_2$.

5.4.1.2.5.
Ypologiζεται η μέση τιμή
$$\Gamma_i = \frac{\tilde{\gamma}_1 + \tilde{\gamma}_2}{2}$$
 για τη δοκιμή i .

5.4.1.2.6. Διενεργούνται αρκετές δοκιμές όπως προβλέπεται στο σημείο 5.1.1.2.6, με αντικατάσταση του Τ από το

$$\Gamma = \frac{1}{n} \sum_{i=1}^{n} \Gamma_i$$

* 5.4.1.2.7. Υπολογίζεται η μέση αποργοφούμονη δύνομη F = Μ. Γ.

όπου

M: μάζα αναφοράς του οχήματος σε kg,

Γ: μέση επιβράδυνση που υπολογίστηκε προηγουμένως.

- 5.4.2. Επί εξέδρας
- 5.4.2.1. Εξοπλισμός μέτρησης και ανεκτό σφάλμα

Πρέπει να χρησιμοποιείται ο εξοπλισμός μέτρησης που είναι κατάλληλος για την εξέδρα σύμφωνα με τις διατάξεις του σημείου 2 του συμπληρωματικού παραρτήματος 2.

- 5.4.2.2. Διαδικασία δοκιμής
- 5.4.2.2.1. Ρύθμιση της δύναμης πάνω στο σώτρο (ζάντα), σε σταθερή ταχύτητα. Επί κυλινδροφόρου εξέδρας, η υλική αντίσταση είναι της μορφής:

Fαλική = Fενδεικνυόμενη + Fπεριστροφή του κινητήριου άξονα, όπου

F_{ιλική} = F_κ: αντίσταση στην πορεία.

Τότε $F_{\text{ενδεικνυόμενη}} = F_{\text{R}} - F_{\text{περιστροφή του κινητήριου άξιινα, όπου}$

Ενδεικνώμενη είναι η δύναμη που δεικνύεται επί της συσκευής μετρήσεως της κυλινδροφόρου εξέδρας.

 $F_R \leftarrow \eta$ αντίσταση στην πορεία είναι γνωστή.

Η Επεριστροφή του κινητήριου αξύνα θα:

— μετριέται πάνω στην κυλινδροφόρο εξέδρα, αν είναι δυνατόν.

Το δοκιμαζόμενο όχημα, με το κιβώτιο στο νεκρό σημείο, οδηγείται μέσω της εξέδρας στην ταχύτητα δοκιμής. Η αντίσταση στην περιστροφή του κινητήριου άξονα διαβάζεται κατόπιν επί της συσκευής μετρήσεως της κυλινδροφόρου εξέδρας

προσδιορίζεται για τις δυναμομετρικές εξέδρες που δεν επιτρέπουν τη μέτρηση:

Για τις κυλινδροφόρους εξέδρες, η αντίσταση στην περιστριφή $R_{\rm K}$ είναι εκείνη που προσδιορίζεται προηγουμένως επί της οδού.

Για τις εξέδρες με έναν κύλινδρο, η αντίσταση στην περιστροφή R_R είναι εκείνη που προσδιορίζεται επί οδού, πολλαπλασιασμένη επί συντελεστή R ίσο με το λόγο της μάζας του κινητήριου άξονα προς την ολική: μάζα του σχήματός.

Σημείωση:

Το R_R λαμβάνεται από την καμπύλη F = f(V).

ΣΥΜΠΛΗΡΩΜΑΤΙΚΌ ΠΑΡΑΡΤΉΜΑ 4

ΕΛΕΓΧΟΣ ΤΩΝ ΜΗ ΜΗΧΑΝΙΚΩΝ ΑΛΡΑΝΕΙΩΝ

I. ANTIKEIMENO

Η μέθοδος που περιγράφεται στο παρόν συμπληρωματικό παράρτημα επιτρέπει να ελέγχεται ότι η ολική αδράνεια της εξέδρας αποτελεί ικανοποιητική προσομοίωση των πραγματικών τιμών κατά τη διάρκεια των διαφόρων σταδίων του κύκλου δοκιμής.

2. APXH

2.1. Κατάρτιση των εξισώσεων εργασίας

Δεδομένου ότι η εξέδρα υπόκειται στις διακυμάνσεις της ταχύτητας περιστροφής του ή των κυλίνδρων, η δύναμη στην επιφάνεια του ή των κυλίνδρων μπορεί να εκφραστεί από τον τύπο:

$$F = I \cdot \gamma = I_M \cdot \gamma + F_1$$

όπου:

F: δύναμη στην επιφάνεια του ή των κυλίνδρων,

ολική αδράνεια της εξέδρας (ισοδύναμη αδράνεια του οχήματος: βλέπε πίνακα του σημείου 5.1 κατωτέρω),

 $\mathbf{I}_{\mathbf{M}}$: αδράνεια των μηχανικών μαζών της εξέδρας.

γ: επιτάχυνση κατά την εφαπτομένη στην επιφάνεια του κυλίνδηκο.

F_i: δύναμη αδράνειας.

Σημείωση:

Επεξήγηση του τύπου αυτού, όσον αφορά τις εξέδρες με μηχανική προσομοίωση των αδρανειών, παρουσιάζεται σε συμπληρωματικό παράρτημα.

Έτσι, η ολική αδράνεια εκφράζεται από τον τύπο:

$$I = I_M + \frac{F_1}{v}$$

όπόυ:

ΙΜ μπορεί να υπολογιστεί ή να μετρηθεί με τις παραδοσιακές μεθόδους.

Ει μπορεί να μετρηθει στην εξέδρα,

γ μπορεί να υπιλυγιστεί από την επιτρόχια ταχύτητα των κυλίνδρων.

Η ολική αδράνεια «Ι» προσδιορίζεται κατά τη διάρκεια δοκιμής επιτάχυνσης ή επιβράδυνσης με τιμές ανώτερες ή ίσες με εκείνες που λαμβάνονται κατά τη διάρκεια ενός κύκλου δοκιμής.

2.2. Ανεκτό σφάλμα στον υπολογισμό της ολικής αδράνειας

Οι μέθοδοι δοκιμής και υπολογισμού πρέπει να επιτρέπουν τον προσδιορισμό της ολικής αδράνειας 1 με σχετικό σφάλμα ($\Delta I/I$) μικρότερο από 2 %.

A GOVERNMENT OF STREET

عدر فعرا بران حويا معاليا

3. ΠΡΟΔΙΑΓΡΑΦΕΣ

3.1. Η μάζα της προσομοιούμενης ολικής αδράνειας Ι πρέπει να παραμένει η ίδια με τη θεωρητική τιμή της ισοδύναμης αδράνειας (βλέπε σημείο 5.1 του παραρτήματος ΙΙΙ), μέσα στα ακόλουθα όρια:

- 3.1.1. ± 5 % της θεωρητικής τιμής για κάθε στιγμιαία τιμή,
- 3.1.2. ± 2 % της θεωρητικής τιμής για τη μέση τιμή που υπολογίζεται για κάθε εργασία του κύκλου.
- 3.2. Τα όρια που καθορίζονται στο σημείο 3.1.1 μεταβάλλονται κατά ± 50 % για ένα δευτερόλεπτο κατά τη θέση σε κίνηση και, για τα οχήματα με χειροκίνητο κιβώτιο ταχυτήτων, για δύο δευτερόλεπτα κατά τις αλλαγές ταχύτητας.

4. ΔΙΑΔΙΚΑΣΙΑ ΕΛΕΓΧΟΥ

- Ο Ελεγχος διενεργείται κατά τη διάρκεια κάθε δοκιμής σε όλη τη διάρκεια του κύκλου που ορίζεται στο σημείο 2.1 του παραρτήματος ΙΙΙ.
- 4.2. Εντούτοις, ο έλεγχος αυτός δεν είναι απαραίτητος, αν τηρούνται οι διατάξεις του σημείου 3 με στιγμιαίες επιταχύνσεις που είναι τουλάχιστον κατά τρεις φορές ανώτερες ή κατώτερες από τις τιμές που λαμβάνονται κατά τις εργασίες του θεωρητικού κύκλου.

5. ΤΕΧΝΙΚΉ ΣΗΜΕΙΩΣΗ

Παρατηρήσεις για την κατάρτιση των εξισώσεων εργασίας.

5.1. Ισορροπία των δυνάμεων επί οδού:

$$CR = k_1 Jr_1 \frac{d\Theta 1}{dt} + k_2 Jr_2 \frac{d\Theta 2}{dt} + k_3 M \gamma r_1 + k_3 F_s r_1$$

5.2. Ισορροπία των δυνάμεων επί εξέδρας με αδράνειες που έχουν μηχανική προσομοίωση:

$$C_{m} = k_{1} J r_{1} \frac{d\Theta I}{dt} + k_{3} \frac{J Rm}{Rm} \frac{dWm}{dt} r_{1} + k_{3} F_{s} r_{1}$$

$$= k_{1} J r_{1} \frac{d\Theta I}{dt} + k_{3} J \gamma r_{1} + k_{3} F_{s} r_{1}$$

5.3. Ισορροπία των δυνάμεων επί εξέδρας με αδράνειες που έχουν μη μηχανική προσομοίωση:

$$Ce = k_1 Jr_1 \frac{d\Theta I}{dt} + k_3 \left(\frac{J Re}{Re} \frac{dWe}{dt} r_1 + \frac{C_1}{Re} r_1 \right) + k_3 F_s r_1$$

$$= k_1 Jr_1 \frac{d\Theta I}{dt} + k_3 (I_M \gamma + F_1) r_1 + k_3 F_s r_1$$

Στους τύπους αυτούς,

CR: ροκή του κινητήρα επί οδού,

Cm: ροπή του κινητήρα επί εξέδρας με αδράνειες που έχουν μηχανική προσυμοίωση,

Ce: ροπή του κινήτήρα επί εξέδρας με αδράνειες που έχουν ηλεκτρική προσομοίωση,

Jr: ροπή αδράνειας του συστήματος μετάδυσης της κίνησης του υχήματος που μεταφέρεται στους κινητήριους τροχούς.

Jr₂! ροπή αδράνειας των μη κινητήριων τροχών,

JRm: ροπή αδράνειας της εξέδρας με αδράνειες που έχουν μηχανική προσομοίωση,

JRe: ροπή αδράνειας, μηχανική, της εξέδρας με αδράνειες που έχουν ηλεκτρική προσομοίωση,

Μ: μάζα του οχήματος επί οδού, -

Ι: ισοδύναμη αδράνεια της εξέδρας με αδράνειες που έχουν μηχανική προσομοίωση,

ΙΜ: μηχανική αδράνεια της εξέδρας με αδράνειες που έχουν ηλεκτρική προσομοίωση,

F,: συνισταμένη δύναμη σε σταθερή ταχῦτητα,

 C_1 : συνισταμένη ροπή των αδρανειών με ηλεκτρική πρισυμοίωση,

 F_i : συνισταμένη δύναμη των αδρανειών με ηλεκτρική προσομοίωση.

 $\frac{d\Theta 1}{dt}$: γωνιακή επιτάχυνση των κινητήριων τροχών,

 de : γωνιακή επιτάχυνση των μη κινητήριων τροχών,

dWm : γωνιακή επιπάχυνση της εξέδρας με μηχανικές αδράνειες,

 $\frac{dW_c}{dt}$: γωνιακή επιτάχυνση της εξέδρας με ηλεκτρικές αδράνειες,

γ: γραμμική επιτάχυνση,

τι: - ακτίνα υπό φορτίο των κινητήριων τροχών,

r₂: ακτίνα υπό φορτίο των μη κινητήριων τροχών,

Rm: ακτίνα των κυλίνδρων της εξέδρας με μηχανικές αδράνειες,

Re: ακτίνα των κυλίνδρων της εξέδρας με ηλεκτρικές αδράνειες.

 \mathbf{k}_1 : συντελεστής εξαρτώμενος από τη σχέση μετάδοσης ταχύτητας και από διάφορες αδράνειες της μετάδοσης και από την «απόδοση»,

 $k_2 \colon \qquad \text{scan metadosing x } \frac{r_1}{r_2} \ x \ \text{appdosing},$

k₃: σχέση μετάδοσης x «απόδοση».

Αν υποτεθεί ότι και οι δύο τύποι εξέδρες (σημεία 5.2 και 5.3) έχουν τα ίδια χαρακτηριστικά, και γίνει απλοποίηση, λαμβάνεται ο τύπος:

$$k_3 (I_M, \gamma + F_1) r_1 = k_3 I \cdot \gamma \cdot r_1$$

και

$$l = l_M + \frac{F_1}{\gamma}$$

ΣΥΜΠΛΗΡΩΜΑΤΙΚΌ ΠΑΡΑΡΤΗΜΑ 5

ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΑΕΡΙΩΝ

ι. ΕΙΣΑΓΩΓΗ

- 1.1. Πολλοί τύποι συστημάτων δειγματοληψίας επιτρέπουν την τήρηση των προδιαγραφών που αναφέρονται στο σημείο 4.2 του παραρτήματος ΙΙΙ. Τα συστήματα που περιγράφωνται στα σημεία 3.1, 3.2 και 3.3 θεωρούνται αποδεκτά αν ικανοποιούν τα κύρια κριτήρια που αφορούν την αρχή της μεταβλητής αραιώσεως.
- 1.2. Το εργαστήριο πρέπει να αναφέρει, στην έκθεσή του, τον τρόπο δειγματοληψίας που χρησιμοποίησε για να κάνει τη δοκιμή.
- 2. ΚΡΙΤΗΡΙΑ ΠΟΥ ΕΦΑΡΜΟΖΟΝΤΑΙ ΣΤΟ ΣΥΣΤΗΜΑ ΜΕΤΑΒΛΗΤΗΣ ΑΡΑΙΩΣΗΣ ΓΙΑ ΤΗ ΜΕΤΡΗΣΗ ΤΩΝ ΕΚΠΟΜΠΩΝ ΚΑΥΣΑΕΡΙΩΝ

2.1. Πεδίο εφαρμογής

Καθορίζονται τα χαρακτηριστικά λειτουργίας ενός συστήματος δειγματοληψίας καυσαερίων που προορίζεται να χρησιμοποιηθεί για τη μέτρηση των κατά μάζα αληθών εκπομπών από την εξάτμιση ενός οχήματος, σύμφωνα με τις διατάξεις της παρούσας οδηγίας.

Η αρχή της δειγματοληψίας με μεταβλητή αραίωση για τη μέτρηση των κατά μάζα εκπομπών απαιτεί την ικανοποίηση τριών συνθηκών:

- 2.1.1. Τα καυσαέρια του οχήματος πρέπει να αραιώνονται συνεχώς με τον αέρα του περιβάλλοντος κάτω από καθυρισμένες συνθήκες.
- 2.1.2. Ο ολικός όγκος του μείγματος καυσαερίων και αέρα αραίωσης πρέπει να μετριέται με ακρίβεια.
- 2.1.3. Ένα δείγμα σταθερής αναλογίας αραιωμένων καυσαερίων και αέρα αραίωσης συλλέγεται για ανάλυση.

Οι εκπομπές μάζας καθορίζονται σύμφωνα με τις συγκεντρώσεις του αναλογικού δείγματος και τον ολικό όγκο που μετριέται στη διάρκεια της δοκιμής. Οι συγκεντρώσεις του δείγματος διορθώνονται για να ληφθεί υπόψη η περιεκτικότητα του αέρα του περιβάλλοντος σε ρύπους.

2.2. Τεχνική περίληψη

Η εικόνα Ι δίνει το διάγραμμα της αρχής λειτουργίας του συστήματος δειγματοληψίας.

- 2.2.1. Τα καυσαέρια του οχήματος αραιώνονται με επαρκή ποσότητα αέρα του περιβάλλοντος για να αποφευχθεί η συμπύκνωση υδρατμών στο σύστημα δειγματοληψίας και μέτρησης.
- 2.2.2. Το σύστημα δειγματοληψίας των καυσαερίων πρέπει να επιτρέπει τη μέτρηση των μέσων κατ' όγκο συγκεντρώσεων των συστατικών CO2, CO, HC, και NO3 που περιέχονται στα καυσαέρια που εκπέμπονται κατά τη διάρκεια του κύκλου δοκιμής του οχήματος.
- 2.2.3. Το μείγμα αέρα και καυσαερίων πρέπει να είναι ομοιοιγενές στο σημείο που ευρίσκεται το ακροστοιχείο δειγματοληψίας (βλέπε σημείο 2.3.1.2).
- 2.2.4. Το ακροστοιχείο δειγματοληψίας πρέπει να εξάγει ένα αντιπροσωπευτικό δείγμα των αραιωμένων καυσαερίων.

- Το σύστημα πρέπει να επιτρέπει τη μέτρηση του ολικού όγκου των αραιωμένων καυσαερίων του δοκιμαζόμενου οχήματος.
- 2.2.6. Το σύστημα δειγματοληψίας πρέπει να είναι αεροστεγίς. Ο σχεδιασμός του συστήματος δειγματοληψίας με μεταβλητή αραίωση και τα υλικά από τα οποία αποτελείται πρέπει να είναι τέτοια ώστε να μην επηρεάζεται η συγκέντρωση των ρύπων στα αραιωμένα καυσαέρια. Αν ένα από τα στοιχεία του συστήματος (εναλλάκτης θερμότητας, διαχωριστής τύπου «κυκλώνα», ανεμιστήρας κλπ.) τροποποιεί τη συγκέντρωση ενός οποιουδήποτε από τους ρύπους των αραιωμένων αερίων και αν το ελάττωμα αυτό δεν μπορεί να διορθωθεί, τότε το δείγμα αυτού του ρύπου πρέπει να λαμβάνεται πριν από αυτό το στοιχείο.
- 2.2.7. Αν το δοκιμαζόμενο όχημα έχει σύστημα εξάτμισης με πολλές εξόδους, οι σωλήνες συναρμογής πρέπει να είναι συνδεδεμένοι μεταξύ τους με ένα συλλέκτη τοποθετημένον όσο το δυνατό πλησιέστερα στο όχημα.
- 2.2.8. Τα δείγματα των αερίων συλλέγονται μέσα σε σάκους δειγματοληψίας επαρκούς χωρητικότητας ώστε να μην εμποδίζεται η ροή των αερίων κατά τη δειγματόληψία. Οι σάκοι αυτοί πρέπει να κατασκευάζονται από υλικά που δεν αλλοιώνουν τις συγκεντρώσεις των αερίων ρύπων (βλέπε σημείο 2.3.4.4).
- 2.2.9. Το σύστημα μεταβλητής αραίωσης πρέπει να σχεδιάζεται με τρόπο που να επιτρέπει τη δειγματοληψία των καυσαερίων χωρίς να τροποποιεί αισθητά την αντιπίεση στην έξοδο του σωλήνα της εξάτμισης (βλέπε σημείο 2.3.1.1).
- 2.3. Ιδιαίτερες προδιαγραφές
- 2.3.1. Σύστημα συλλογής και αραίωσης των καυσαερίων
- 2.3.1.1. Το μήκος του σωλήνα σύνδεσης της ή των εξόδων της εξάτμισης του οχήματος και του θαλάμου ανάμειξης πρέπει να είναι όσο το δυνατόν μικρότερο. Σε καμιά περίπτωση δεν πρέπει ο σωλήνας:
 - να μεταβάλλει τη στατική πίεση στην ή στις εξόδους της εξάτμισης του δοκιμαζόμενου οχήματος περισσότερο από ± 0,75 kPa στα 50 km/h, ή περισσότερο από ± 1,25 kPa σε όλη τη διάρκεια της δοκιμής, σε σχέση με τις στατικές πιέσεις που καταγράφηκαν όταν δεν υπήρχε τίποτε συνδεδεμένο στις εξόδους της εξάτμισης του οχήματος.
 Η πίεση πρέπει να μετριέται μέσα στο σωλήνα εξόδου της εξάτμισης ή σε μία προέκτασή του με την ίδια διάμετρο όσο το δυνατόν πλησιέστερα στην άκρη του σωλήνα:
 - να τροποποιεί ή να μεταβάλλει τη σύσταση του καυσαερίου.
- 2.3.1.2. Πρέπει να προβλέπεται ένας θάλαμος ανάμειξης μέσα στον υποίο θα αναμιγνύονται τα καυσαέρια του οχήματος και ο αέρας αραίωσης ώστε να δημιουργείται ένα ομοιογενές μείγμα στο σημείο της εξόδου από το θάλαμο.

Η ομοιογένεια του μείγματος σε μία τυχούσα εγκάρσια τομή στη θέση του ακροστοιχείου δειγματοληψίας δεν πρέπει να διαφέρει περισσότερο από ± 2 % από τη μέση τιμή που καταγράφεται σε πέντε τουλάχιστον σημεία ευρισκόμενα σε ίσα διαστήματα πάνω στη διάμετρο του ρεύματος των αερίων. Η πίεση στο εσωτερικό του θαλάμου ανάμειξης δεν πρέπει να διαφέρει περισσότερο από ± 0.25 kPa από την ατμοσφαιρική πίεση, ώστε να ελαχιστοποιούνται οι επιπτώσεις στις συνθήκες που επικρατούν στην έξοδο της εξάτμισης και να περιορίζεται η πτώση της πίεσης μέσα στη συσκευή προετοιμασίας του αέρα αραίωσης, αν αυτή υπάρχει.

2.3.2. Διάταξη αναρρόφησης/ογκομετρική διάταξη

Αυτή η διάταξη μπορεί να έχει μία σειρά σταθερών ταχυτήτων, ώστε να υπάρχει επαρκής παροχή που να ξιποδίζει τη συμπύκνωση των υδρατμών. Γενικά, για να επιτευχθεί το αποτέλεσμα αυτό, η συγκέντρωση του CO₂ στο σάκο δειγματοληψίας των αραιωμένων καυσαερίων πρέπει να διατηρείται σε επίπεδο κάτω του 3 θο κατ' όγκο.

- 2.3.3. Μέτρηση του όγκου
- 2.3.3.1. Η ογκομετρική διάταξη πρέπει να διατηρεί την ακρίβεια της βαθμονόμησής της κατά ± 2 % κάτω από όλες τις συνθήκες λειτουργίας. Αν η διάταξη αυτή δεν μπορεί να αντισταθμίσει τις διακυμάνσεις θερμοκρασίας του μείγματος καυσαερίων-αέρα αραίωσης, στο σημείο μέτρησης, πρέπει να χρησιμοποιηθεί ένας εναλλάκτης θερμότητας για να διατηρηθεί η θερμοκρασία στο επίπεδο της προβλεπόμενης θερμοκρασίας λειτουργίας με ακρίβεια ± 6 °C.

Αν χρειαστεί, μπορεί να χρησιμοποιηθεί ένας διαχωριστής τύπου «κυκλώνα» για την προσταστα της αγλομετρικής διάταξης.

Eixóva I

- 2.3.3.2. Αμέσως πριν την ογκομετρική διάταξη πρέπει να τοποθετηθεί ένας ανιχνευτής θερμοκρασίας. Ο ανιχνευτής αυτός πρέπει να έχει ακρίβεια της τάξης του ± 1 °C και ένα χρόνο απόκρισης 0,1 s για το 62 4b της διακύμανσης μιας δεδομένης θερμοκρασίας (τιμή που μετριέται μέσα σε έλαιο σιλικόνης). 2.3.3.3. Οι μετρήσεις πιισης πρέπει να έχουν ακρίβεια της τάξης των ± 0,4 kPa κατά τη διάρκεια της δυκιμής. 2.3.3.4. Ο προσδιορισμός της πίεσης σε σχέση με την ατμοσφαιρική πίεση πραγματοποιείται πριν και, αν είναι απαραίτητο, μετά την ογκομετρική διάταξη. 2.3.4. Δειγματοληψία αερίων 2.3.4.1. Αραιωμένα καυσαέρια 2.3.4.1.1. Το δείγμα αραιωμένων καυσαερίων λαμβάνεται πριν από τη διάταξη αναρρόφησης αλλά μετά από τις συσκευές προπαρασκευής (άν υπάρχουν). 2.3.4.1.2. Η παροχή δεν πρέπει να διαφέρει περισσότερο από ± 2 % από τη μέση τιμή. 2.3.4.1.3. Η παροχή της δειγματοληψίας πρέπει να είναι τουλάχιστον 5 1/min και το πολύ 0,2 % της παροχής των αραιωμένων καυσαερίων. Ενα ισοδύναμο όριο εφαρμόζεται σε ένα σύστημα δειγματοληψίας σταθερής μάζας. 2.3.4.1.4. 2.3.4.2. Λέρας αραίωσης Λαμβάνεται δείγμα αέρα αραίωσης, υπό σταθερή παροχή, από σημείο που βρίσκεται κοντά στο στόμιο εισα-2.3.4.2.1. γωγής του αέρα του περιβάλλοντος και, αν υπάρχει φίλτρο, μετά από αυτό. Ο αέρας αυτός δεν πρέπει να έχει μυλυνθεί από τα καυσαέρια που προέρχονται από τη ζώνη ανάμειξης. 2.3.4.2.2. Η παροχή δειγματοληψίας του αέρα αραίωσης πρέπει να είναι ανάλογη με εκείνη που χρησιμοποιείται για τα 2.3.4.2.3. αραιωμένα καυσαέρια: 2.3.4.3. Ενέργειες δειγματοληψίας 2.3.4.3.1. Τα υλικά που χρησιμοποιούνται για τις ενέργειες της δειγματοληψίας πρέπει να είναι τέτοια ώστε να μη μεταβάλλουν τη συγκέντρωση των ρύπων. 2.3.4.3.2. Μπορούν να χρησιμοποιούνται φίλτρα για να διαχωρίζουν τα στερεά σωματίδια από το δείγμα. 2.3.4.3.3. Είναι απαραίτητο να υπάρχουν αντλίες για να διοχετεύουν το δείγμα προς τον ή τους σάκους δειγματοληψίας. 2.3.4.3.4. Ρυθμιστές παροχής και μετρητές παροχής είναι απαραίτητοι για να επιτευχθούν οι παροχές που απαιτούνται νια τη δειγματοληψία. 2.3.4.3:5. Αεροστεγείς ταχυσύνδεσμοι μπορούν να χρησιμοποιηθούν ανάμεσα στις τριόδους βάνες και τους σάκους δειγματοληψίας. Οι σύνδεσμοι πρέπει να φράσσονται αυτόματα προς την πλευρά του σάκου. Άλλα συστήματα μπορούν να χρησιμοποιηθούν για να διοχετεύουν τα δείγματα μέχρι τη συσκευή αναλύσεως (πχ. τρίοδοι διακόπτες). Οι διάφορες βάνες που χρησιμοποιούνται για να διοχετεύουν τα αέρια της δειγματοληψίας πρέπει να είναι 2.3.4.3.6. ταχείας ρύθμισης και ενέργειας.
- 2.3.4.4. Αποβήκευση του δείγματος

Τα δείγματα των αερίων πρέπει να συλλέγονται μέσα σε σάκους δειγματοληψίας επαρκούς χωρητικότητας ώστε να μη μειώνεται ο ρυθμός της δειγματοληψίας. Οι σάκοι πρέπει να αποτελούνται από υλικό που να μην αλλοιώνει τη συγκέντρωση των συνθετικών αερίων ρύπων περισσότερο από \pm 2 % μετά από 20 λεπτά.

- 2.4. Συμπληριοματικός εξοπλισμός δειγματοληψίας για τη δοκιμή οχημάτων με κινητήρα ντήζελ
- 2.4.1. Ένα σημείο δειγματοληψίας μετά το θάλαμο ανάμειξης και κοντά σ' αυτόν.
- 2.4.2. Σωληνώσεις και ακροστοιχείο δειγματοληψίας θερμαινόμενα.
- 2.4.3. Ένα θερμαινόμενο φίλτρο ή/και μία θερμαινόμενη αντλία (αυτές οι διατάξεις μπορούν να βρίσκονται κοντά στην πηγή του δείγματος).
- 2.4.4. Ένας ταχυτύνδεσμος που να επιτρέπει την ανάλυση του δείγματος του αέρα του περιβάλλοντος που έχει συλλεγεί στο σάκο.
- 2.4.5. Όλα τα θερμαινόμενα στοιχεία πρέπει να διατηρούνται από το θερμαινόμενο σύστημα σε θερμοκρασία 190 \pm 10 °C.
- 2.4.6. Αν δεν είναι δυνατή η αντιστάθμιση των διακυμάνσεων της παροχής, πρέπει να προβλέπονται εναλλάκτης θερμότητας και διάταξη για τη ρύθμιση της θερμοκρασίας με τα χαρακτηριστικά που ορίζονται στο σημείο 2.3.3.1, ώστε να εξασφαλίζεται η σταθερότητα της παροχής μέσα στο σύστημα και, κατά συνέπεια, η αναλογικότητα του ρυθμού δειγματοληψίας.
- 3. ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΣΥΣΤΗΜΑΤΩΝ
- 3.1. Σύστημα μεταβλητής αραίωσης με αντλία θετικού εκτοπίσματος (σύστημα PDP-CVS) (εικόνα 1)
- 3.1.1. Το σύστημα δειγματοληψίας υπό σταθερό όγκο με αντλία θετικού εκτοπίσματος (PDP-CVS) τηρεί τους όρους του παρόντος παραρτήματος προσδιορίζοντας την παροχή αερίων που διέρχονται από την αντλία υπό σταθερή θερμοκρασία και πίση. Για τη μέτρηση του ολικού όγκου, υπολογίζεται ο αριθμός των στροφών που έκανε η αντλία θετικού εκτοπίσματος η οποία είναι βαθμονομημένη. Το αναλογικό δείγμα λαμβάνεται με μία δειγματοληψία υπό σταθερή παροχή, με τη βιήθεια μιας αντλίας, ενός μετρητή παροχής και μιας βάνας ρύθμισης της παροχής.
- 3.1.2. Η εικόνα 1 δίνει το διάγραμμα της αρχής λειτουργίας ενός τέτοιου συστήματος δειγματοληψίας. Δεδομένου ότι ακριβή αποτελέσματα μπορούν να λαμβάνονται με διάφορες διατάξεις, δεν είναι υποχρεωτικό η εγκατάσταση να είναι αυστηρώς σύμφωνη με το διάγραμμα. Προκειμένου να ληφθούν συμπληρωματικές πληροφορίες και να συντονιστεί η λειτουργία των επί μέρους στοιχείων της εγκατάστασης, μπορούν να χρησιμοποιηθούν πρόσθετα στοιχεία, όπως συσκευές, βάνες, πηνία και διακόπτες.
- 3.1.3. Ο εξοπλισμός συλλογής περιλαμβάνει:
- 3.1.3.1. ένα φίλτρο (D) για τον αέρα αραίωσης, που μπορεί να προθερμαίνεται, αν χρειάζεται. Το φίλτρο αυτό αποτελείται από ένα στρώμα ενεργού άνθρακα μεταξύ δύο στρωμάτων χαρτιού. Χρησιμεύει για να ελαττώνει και να σταθεροποιεί τη συγκέντρωση υδρογονανθράκων που προέρχονται από εκπομπές στο περιβάλλον μέσα στον αέρα αραίωσης.
- 3.1.3.2. ένα θάλαμο ανάμειξης (Μ) στον οποίο αναμειγνύονται ομοιογενώς τα καυσαέρια και ο αέρας
- 3.1.3.3. έναν εναλλάκτη θερμότητας (Η) επαρκούς ικανότητας για να διατηρεί, καθ' όλη τη διάρκεια της δοκιμής, τη θερμοκρασία του μείγματος αέρα/καυσαερίων, η οποία μετριέται ακριβώς πριν από την αντλία θετικού εκτοπίσματος, σταθερή με προσέγγιση ± 6 °C ως προς την προβλεπόμενη τιμή. Το εξάρτημα αυτό δεν πρέπει να μεταβάλλει τη συγκέντρωση σε ρύπους των αραιωμένων αερίων που λαμβάνονται μετά από αυτό για ανάλυση
- 3.1.3.4. μια διάταξη ρύθμισης της θερμοκρασίας (TC) που χρησιμοποιείται για την προθέρμανση του εναλλάκτη θερμότητας πριν από τη δοκιμή και για να διατηρεί τη θερμοκρασία του κατά τη δοκιμή στην προβλεπόμενη τιμή, με προσέγγιση \pm 6 $^{\circ}$ C
- 3.1.3.5. μια αντλία θετικού εκτοπίσματος (PDP) που χρησιμεύει για τη μετακίνηση μιας σταθερής σε όγκο παροχής μείγματος αέρα/καυσαερίων. Η αντλία πρέπει να έχει επαρκή χωρητικότητα για να εμποδίζει τη συμπύκνωση υδρατμών μέσα στο σύστημα υπό οποιεσδήποτε συνθήκες και αν παρουσιαστούν κατά τη διάρκεια της δοκιμής. Για το σκοπό αυτό, χρησιμοποιείται γενικά μια αντλία θετικού εκτοπίσματος:

- 3.1.3.5.1. με χωρητικότητα που είναι διπλάσια από τη μέγιστη παροχή καυσαερίων που σημειώνεται κατά τις φάσεις επιτάχυνσης του κύκλου δοκιμής, ή
- 3.1.3.5.2. που είναι αρκετή για να διατηρεί τη συγκέντρωση του CO₂ μέσα στο σάκο δειγματοληψίας των αραιωμένων καυσπερίων κάτω του 3.40 κατ' όγκο'
- 3.1.3.6. έναν ανιχνευτή θερμοκρασίας (T₁) (ακρίβεια και ορθότητα ± 1 °C), τοποθετημένον αμέσως πριν από την ογκομετρική αντλία. Ο ανιχνευτής αυτός πρέπει να επιτρέπει το συνεχή έλεγχο της θερμοκρασίας του αραιωμένου μείγματος καυσαερίων κατά τη δοκιμή:
- 3.1.3.7. ένα μανόμετρο (G1) (ακρίβεια και ορθότητα \pm 0,4 kPa), τοποθετημένο ακριβώς πριν από την αντλία θετικού εκτοπίσματος, που χρησιμεύει για να καταγράφει τη διαφορά πιέσεως μεταξύ του μείγματος αερίων και του αέρα του περιβάλλοντος:
- 3.1.3.8. ένα άλλο μανόμετρο (G_2) (ακρίβεια και ορθότητα ± 0.4 kPa), τοποθετημένο έτσι ώστε να επιτρέπει την καταγραφή της διαφοράς πίεσης μεταξύ της εισόδου και της εξόδου της αντλίας:
- 3.1.3.9. δύο ακροστοιχεία δειγματοληψίας (S1 και S2) που επιτρέπουν τη λήψη σταθερών δειγμάτων του αέρα αραίωσης και του αραιωμένου μείγματος καυσαερίων/αέρα.
- 3.1.3.10. ένα φίλτρο (F) που χρησιμεύει για την απομάκρυνση των στερεών σωματιδίων από τα αέρια που συλλέγονται για την ανάλυση.
- 3.1.3.11, αντλίες (P) που χρησιμεύουν για τη συλλυγη ενός σταθερού ρεύματος αέρα (αραίωσης), καθώς επίσης και αντλίες (P) που χρησιμεύουν για τη συλλυγη ενός σταθερού ρεύματος αέρα (αραίωσης), καθώς επίσης και
- 3.1.3.12. ρυθμιστές παροχής (N) που χρησιμεύουν για να διατηρούν σταθερή, κατά τη διάρκεια της δοκιμής, την παροχή των δειγμάτων των αερίων που συγκεντρώνουν τα ακροστοιχεία δειγματοληψίας S₁ και S₂. Η παροχή αυτή πρέπει να είναι τέτοια ώστε, στο τέλος της δοκιμής, να υπάρχουν δείγματα επαρκούς ποσότητας για ανάλυση (10 1/min)
- 3.1.3.13. μετρητές παροχής (FL) για τη ρύθμιση και τον έλεγχο της σταθερότητας της παροχής των αερίων για δειγματοληψία κατά τη διάρκεια της δοκιμής'
- 3.1.3.14. βάνες ταχείας ενέργειας (V) που χρησιμεύουν για να διοχετεύουν μια σταθερή παροχή δειγμάτων αερίων είτε προς τους σάκους δειγματοληψίας είτε προς την ατμόσφαιρα'
- 3.1.3.15. αεροστεγείς ταχυσυνδέσμους που παρεμβάλλονται ανάμεσα στις βάνες ταχείας ενέργειας και στους σάκους δειγματοληψίας. Ο σύνδεσμος πρέπει να εμφράσσεται αυτόματα από την πλευρά του σάκου. 'Αλλες μέθοδοι για να διοχετεύεται το δείγμα μέχρι τη συσκευή ανάλυσης μπορούν να χρησιμοποιηθούν (πχ. τρίοδοι διακόπτες)'
- 3.1.3.16. σάκους (Β) για τη συλλογή των δειγμάτων των αραιωμένων καυσαερίων και του αέρα αραίωσης κατά τη διάρκεια της δοκιμής. Πρέπει να έχουν επαρκή χωρητικότητα για να μην ελαττώνουν την παροχή της δειγματοληψίας. Πρέπει να είναι κατασκευασμένοι από υλικό που να μην επηρεάζει ούτε τις μετρήσεις ούτε τη χημική σύνθεση των δειγμάτων των αερίων (πχ. από μεμβράνη πολυαιθυλαινίου-πολυαμιδίου ή φθοριωμένων πολυυδρογονανθράκων)
- 3.1.3.17. έναν ψηφιακό μετρητή (C) που χρησιμεύει για την καταγραφή του αριθμού στροφών που πραγματοποιεί η αντλία θετικού εκτοπίσματος κατά τη δοκιμή.
- 3.1.4. Πρόσθετος εξοπλισμός για τη δοκιμή οχημάτων με κινητήρα με ανάφλεξη διά συμπιέσεως

Για τη δοκιμή οχημάτων με κινητήρα με ανάφλεξη διά συμπιέσεως, σύμφωνα με τις διατάξεις των σημείων 4.3.1.1 και 4.3.2 του παραρτήματος ΙΙΙ, πρέπει να χρησιμοποιούνται οι πρόσθετες συσκευές που περικλείονται από μια διακεκομμένη γραμμή στην εικόνα 1:

Fh: θερμαινόμενο φίλτρο,

S₃: ακροστοιχεία δειγματοληψίας κοντά στο θάλαμο ανάμειξης,

V_h: θερμαινόμενη πολύοδη βάνα,

 ταχυσύνδεσμος που επιτρέπει την ανάλυση του δείγματος αέρα του περιβάλλοντος ΒΑ από τη συσκευή HFID,

- HFID: - θερμαινόμενη συσκευή αναλύσεως του τύπου με ιονισμό με φλόγα,

- Ι, R: συσκευές ολοκλήρωσης και καταγραφής των στιγμιαίων συγκεντρώσεων υδρογονανθράκων,
- Lh: θερμαινόμενος σωλήνας δειγματοληψίας.

Όλα τα θερμαινόμενα στοιχεία πρέπει να διατηρούνται σε θερμοκρασία 190 \pm 10 °C.

3.2. Σύστημα αραιώσεως με σωλήνα Venturi κρίσιμης ροής (σύστημα CFV-CVS) (εικόνα 2)

- 3.2.1. Η χρησιμοποίηση ενός σωλήνα Venturi κρίσιμης ροής, στο πλαίσιο της διαδικασίας δειγματοληψίας υπό σταθερό όγκο, αποτελεί εφαρμογή των αρχών της μηχανικής των ρευστών υπό συνθήκες κρίσιμης ροής. Η παροχή του μεταβλητού μείγματος αέρα αραίωσης και καυσαερίων διατηρείται στην ταχύτητα του ήχου που είναι ευθέως ανάλυγη προς την τετραγωνική ρίζα της θερμοκρασίας των αερίων. Η παροχή ελέγχεται, υπολογίζεται και ολοκληρώνεται συνεχώς καθ' όλη τη δοκιμή. Η χρησιμοποίηση ενός πρόσθετου σωλήνα Venturi για τη δειγματοληψία εξασφαλίζει την αναλογικότητα των αερίων δειγμάτων. Καθώς η πίεση και η θερμοκρασία είναι ίσες στις εισόδους των δύο σωλήνων Venturi, ο όγκος του αερίου που λαμβάνεται για δειγματοληψία είναι ανάλογος προς τον ολικό όγκο του μείγματος αραιωμένων καυσαερίων το οποίο παράγεται, και συνεπώς τηρούνται οι συνθήκες που αναφέρονται στο παρόν παράγτημα.
- 3.2.2. Η εικόνα 2 δίνει το διάγραμμα της αρχής λειτουργίας ενός τέτοιου συστήματος δειγματοληψίας. Δεδομένου ότι ορθά αποτελέσματα μπορούν να επιτευχθούν με διάφορες διατάξεις, δεν είναι υποχρεωτικό η εγκατάσταση να είναι αυστηρώς σύμφωνη με το διάγραμμα. Προκειμένου να ληφθούν συμπληρωματικές πληροφορίες και να συντονιστούν οι λειτουργίες των στοιχείων που συνθέτουν την εγκατάσταση μπυρούν να χρησιμοποιηθούν πρόσθετα στοιχεία όπως συσκευές, βάνες, πηνία και διακόπτες.
- 3.2.3. Ο εξοπλισμός συλλογής περιλαμβάνει:
- 3.2.3.1. ένα φίλτρο (D) για τον αέρα αραίωσης, που μπορεί να πριθερμαίνι.ται τάν χρειάζεται. Το φίλτρο αυτό αποτελείται από ένα στρώμα ενεργού άνθρακα μεταξύ δύο στικομάτων χαρτιού. Χρησιμεύει για να ελαττώνει και να σταθεροποιεί τη συγκέντρωση υδρογονανθράκων που πρυέρχονται από εκπομπές στο περιβάλλον μέσα στον αέρα αραίωσης.
- 3.2.3.2. ένα θάλαμο ανάμειξης (Μ) μέσα στον οποίο τα καισσείρια και ο αέρας αναμειγνύονται ομοιογενός:
- 3.2.3.3. ένα διαχωριστή τύπου «κυκλώνα» (CS) που χρησιμεύει για την απομάκρυνση όλων των σωματιδίων
- 3.2.3.4. δύο ακροστοιχεία δειγματοληψίας (S_1 και S_2) που επιτρέπουν τη λήψη δειγμάτων αέρα αραίωσης και αραιωμένων καυσαερίων
- 3.2.3.6. ενα φίλτρο (F) που χρησιμεύει για την απομάκρυνση των στερεών σωματιδίων από τα αερια που συλλέγονται για την ανάλυση'
- 3.2.3.7. αντλίες (P) που χρησιμεύουν για τη συλλογή ενός μέρους του αέρα και των αραιωμένων καυσαερίων μέσα στους σάκους κατά τη διάρκεια της δοκιμής:
- 3.2.3.8. ένα ρυθμιστή παροχής (N) που χρησιμεύει για να διατηρείται σταθερή η παροχή της δειγματοληψίας του αερίου που πραγματοποιείται κατά τη διάρκεια της δοκιμής με το ακροστοιχείο δειγματοληψίας S₁. Η παροχή αυτή πρέπει να είναι τέτοια ώστε στο τέλος της δοκιμής να υπάρχουν δείγματα επαρκούς ποσότητας για ανάθυση (~10 1/min)*
- 3.2.3.9. έναν αποσβεστήρα (PS) μέσα στο σωλήνα δειγματοληψίας
- 3.2.3.10. μετρητές παροχής (FL) για τη ρύθμιση και τον έλεγχο της παροχής της δειγματοληψίας αερίου κατά τη διάρκεια της δοκιμής
- 3.2.3.11. βάνες ταχείας ενέργειας (V) που χρησιμεύουν για να διοχετεύουν σταθερή παροχή δειγμάτων αερίου είτε προς τους σάκους δειγματοληψίας είτε προς την ατμόσφαιμα:
- 3.2.3.12. αεροστεγείς ταχυσυνδέσμους (Q) που παρεμβάλλονται ανάμεσα στις βάνες ταχείας ενέργειας και στους σάκους δειγματοληψίας. Ο σύνδεσμος πρέπει να εμφράσσεται αυτόματα από την πλευρά του σάκου. Άλλες μέθοδοι για να διοχετεύεται το δείγμα μέχρι τη συσκευή ανάλυσης μπορούν να χρησιμοποιηθούν (πχ. τρίοδω διακόπτες)

- 3.2.3.13. σάκους (Β) για τη συλλογή των δειγμάτων, των αραιωμένων καυσαερίων και αέρα αραίωσης κατά τη δοκιμή. Πρέπει να έχουν επαρκή χωρητικότητα για να μην ελαττώνεται η παροχή της δειγματοληψίας. Πρέπει να είναι κατασκευασμένοι από υλικό που να μην επηρεάζει ούτε τις μετρήσεις ούτε τη χημική σύνθεση των δειγμάτων των αερίων (πχ. από μεμβράνη πολυαιθυλενίου-πολυαμιδίου ή φθοριωμένων πολυοδρογονανθράκων)

- 3.2.3.16. ένα σωλήνα Venturi κρίσιμης ροής (MV) για μετρήσεις, που χρησιμεύει για τη μέτρηση της ογκομετρικής παροχής των αραιωμένων καυσαερίων
- 3.2.3.17. **έναν ανεμιστήρα (BL) επαρκούς ικανότητας για την αναρρόφηση του ολικού όγκου των αραιωμένων καυσαε-**
- 3.2.3.18. το σύστημα δειγματοληψίας CFV-CVS πρέπει να έχει επαρκή ικανότητα να παρεμποδίζει τη συμπύκνωση υδρατμών μέσα στο σύστημα υπό οποιεσδήποτε συνίηκες και αν παρουσιαστούν κατα τη διάρκεια μιας δοκιμής. Προς το σκοπό αυτό, χρησιμοποιείται γενικώς ένας ανεμιστήρας (BL) με ικανότητα:
- 3.2.3.18.1. που είναι διπλάσια από τη μέγιστη παροχή καυσαερίων που σημειώνεται κατά τις φάσεις επιτάχυνσης του κύκλου δοκιμής, ή
- 3.2.3.18.2. που είναι αρκετή για να διατηρεί τη συγκέντρωση του CO₂, μέσα στο σάκο δειγματοληψίας των αραιωμένων καυσαερίων, κάτω του 3 40 κατ' όγκο.
- 3.2.4. Πρόσθετος εξοπλισμός για τη δοκιμή σχημάτων με κινητήρα με ανάφλεξη διά συμπιέσεως

Για τη δοκιμή των οχημάτων με κινητήρα με ανάφλεξη διά συμπιέσεως, σύμφωνα με τις διατάξεις των σημείων 4.3.1.1 και 4.3.2 του παραρτήματος ΙΙΙ, πρέπει να χρησιμοποιούνται οι πρόσθετες συσκευές που περικλείωνται από μια διακεκομμένη γραμμή στην εικόνα 2:

Fh: θερμαινόμενο φίλτρο,

S3: ακροστοιχείο δειγματοληψίας κοντά στο θάλαμο ανάμειξης,

Vh: θερμαινόμενη πολύοδη βάνα,

 ταχυσύνδεσμος που επιτρέπει την ανάλυση του δείγματος αέρα του περιβάλλοντος ΒΑ από τη συσκευή HFID,

HFID: θερμαινόμενη συσκευή ανάλυσης του τύπου με ιονισμό με φλόγα,

Ι, R: συσκευές ολοκλήρωσης και καταγραφής των στιγμιαίων συγκεντρώσεων υδρογονανθράκων,

Lh: θερμαινόμενος σωλήνας δειγματοληψίας.

Όλα τα θερμαινόμενα στοιχεία πρέπει να διατηρούνται σε θερμοκρασία 190 ± 10 °C.

Εάν δεν είναι δυνατή μια αντιστάθμιση των διακυμάνσεων παροχής, πρέπει να προβλέπεται ένας εναλλάκτης θερμότητας (Η) και μια διάταξη για τη ρύθμιση της θερμοκρασίας (ΤС) με τα χαρακτηριστικά που καθορίζωνται στο σημείο 2.2.3 για να εξασφαλίζεται η σταθερότητα της παροχής διαμέσου του σωλήνα Venturi (ΜV) και, επομένως, η αναλυγικότητα της παροχής που διέρχεται από το S₃.

Διάγραμμα συστήματος δειγματοληψίας υπό σταθερόν όγκο με σωλήνα Vesturi κρίσιμης ροής (σύστημα CFV-CVS)

Exriva ?

- 3.3. Σύστημα μεταβλητής αραίωσης με διατήρηση σταθερής παροχής που μετριέται με υποπιεσογόνο όργανο (σύστημα CFO-CVS) (εικόνα 3)
- 3.3.1. Ο εξοπλισμός συλλογής περιλαμβάνει:
- 3.3.1.1. ένα σωλήνα διεγματοληψίας που συνδέει το σωλήνα εξάτμισης του οχήματος με τη διάταξη συλλογής
- 3.3.1.2. μια διάταξη δειγματοληψίας που περιλαμβάνει μια αντλία που χρησιμεύει για την αναρρόφηση ενός αραιωμένου μείγματος καυσαερίων και αέρα:
- 3.3.1.3. ένα θάλαμο ανάμειξης (Μ) μέσα στον οποίο τα καυσαέρια και ο αέρας αναμειγνύονται ομοιογενώς:
- 3.3.1.4. έναν εναλλάκτη θερμότητας (Η) επαρκούς χωρητικότητας για να διατηρεί, καθ' όλη τη διάρκεια της δοκιμής, τη θερμοκρασία του μείγματος αίρα καυσαερίων, η οποία μετριέται ακριβώς πριν από το σύστημα μέτρησης παροχής, σταθερή με προσέγγιση \pm 6 °C.

Η διάταξη αυτή δεν πρέπει να τροποποιεί την περιεκτικότητα σε ρύπους των αραιωμένων αερίων που ελήφθησαν προηγουμένως για ανάλυση.

Εάν, για ορισμένους ρύπους, δεν τηρείται ο όρος αυτός, το δείγμα για τους ρύπους αυτούς πρέπει να λαμβάνεται πριν από το διαχωριστή τύπου «κυκλώνα».

Αν είναι αναγκαίο, προβλέπεται μια διάταξη ρυθμίσεως της θερμοκρασίας (TC) για την προθέρμανση του εναλλάκτη θερμότητας πριν από τη δοκιμή και για να διατηρείται η θερμοκρασία του κατά τη διάρκεια της δοκιμής από την προβλεπόμενη θερμοκρασία, με προσέγγιση \pm 6 °C'

- 3.3.1.5. δύο ακροστοιχεία (S₁ και S₂ που επιτρεπούν τη λήψη τον δειγμάτον, μέσο αντλιόν (P), μετρητόν παροχής (FL) και, αν χρειαζείαι, φικτρών (F) για την εξαγωγή των στερεών σωματιδιών από τα αερία που χρησιμοποιούνται για ανάλυση.
- 3.3.1.6. μια αντλία για τον αέρα αραίωσης και μια άλλη για το αραιωμένο μείγμα αερίων
- 3.3.1.7. μια ογκομετρική διάταξη με υποπισογόνο όργανο:
- 3.3.1.8. έναν ανιχνευτή θερμοκρασίας (T_1) (ακρίβεια και ορθότητα ± 1 °C), τοποθετημένο αμέσως πριν από την ογκομετρική διάταξη. Ο ανιχνευτής αυτός πρέπει να επιτρέπει το συνεχή έλεγχο της θερμοκρασίας του αραιωμένου πείνματος καυσαερίων κατά τη διάρκεια της δοκιμής
- 3.3.1.9. ένα μανόμετρο (G_1) (ακρίβεια και ορθότητα \pm 0,4 kPa), τοποθετημένο ακριβώς πριν την ογκομετρική διάταξη που χρησιμεύει για την καταγραφή της διαφοράς πίεσης μεταξύ του μείγματος αερίων και του αέρα του περιβάλλοντος
- 3.3.1.10. ένα άλλο μανόμετρο (G2) (ακρίβεια και ορθότητα ± 0,4 kPa), τοποθετημένο κατά τρόπο που να επιτρέπει την καταγραφή της διαφοράς πίεσης μεταξύ της εισόδου και της εξόδου του υποπιεσογόνου οργάνου
- 3.3.1.11. ρυθμιστές παροχής (N) που χρησιμεύουν για να διατηρούν σταθερή την παροχή της δειγματοληψίας αερίων κατά τη διάρκεια της δοκιμής με τα ακροστοιχεία δειγματοληψίας S₁ και S₂. Η παροχή αυτή πρέπει να είναι τέτοια ώστε στο τέλος κάθε δοκιμής να υπάρχουν δείγματα επαρκούς ποσότητας για την ανάλυση (~ 10 1/min).
- † 3.3.1.12. μετρητές παροχής (FL) για τη ρύθμιση και Ελέγχο της σταθιμότητας της παροχής της δειγματοληψιας αεριου κατά τη δοκιμή
- 3.3.1.13. βάνες ταχείας ενέργειας (V) που χρησιμείκουν για να διοχετεύουν σταθερή παροχή δειγμάτων αερίων, είτε προς τοις σάκους διιγματοληψίας είτι προς την ατμόσφαιρα
- 3.3.1.14. αεροστεγείς ταχυσυνδέσμους (Q) που παρεμβάλλονται ανάμεσα στις βάνες ταχείας ενέργειας και στους σάκους δείγματοληψίας. Ο σύνδεσμος πρέπει να εμφράσσεται αυτόματα από την πλευρά του σάκου. Άλλες μέθοδοι για να δοιχετεύεται το δείγμα μέχρι τη συσκευή της ανάλυσης μπορούν να χρησιμοποιηθούν (πχ. τρίοδοι διακόπτες).
- 3.3.1.15. σάκους (Β) για τη συλλιγή των δειγμάτων αραιωμένων καυσαερίων και αέρα αραίωσης κατά τη δοκιμή. Πρέπει να έχουν επαρκή χωρητικότητα για να μην ελαττώνεται η παροχή δειγματοληψίας. Πρέπει να είναι κατασκευασμένοι από υλικό που να μην επηρεάζει ούτε τις μετρήσεις υύτε τη χημική σύνθεση των δειγμάτων των αερίων (πχ. από μεμβράνη πολυαιθυλενίου-πολιαμιδίου ή φθυριωμένων πολυυδρογονανθράκων).

ნ Υποπιεσογόνο όργανο تَ Διάγραμμα συστήματος μεταβλητής αραίωσης με διατήρηση μιας σταθερής παροχής με υποπιεσογόνο όργανο (σύστημα CFO-CVS) 2053 Σίστημα αναγγόρησης 0 0 Προς την ατμόσφαιρα Ś, Š Είσοδος του πέρα αραίωσης 🛴 Είσοδος των καισαερίων

ΣΥΜΠΛΗΡΩΜΑΤΙΚΌ ΠΑΡΑΡΤΗΜΑ 6

ΜΕΘΟΔΟΣ ΒΑΘΜΟΝΟΜΗΣΗΣ ΤΟΥ ΕΞΟΠΛΙΣΜΟΥ

Ι. ΧΑΡΑΞΗ ΤΗΣ ΚΑΜΠΥΛΗΣ ΒΑΘΜΟΝΟΜΗΣΗΣ ΤΗΣ ΣΥΣΚΕΥΗΣ ΑΝΑΛΥΣΗΣ

- Κάθε κλίμακα μέτρησης που κανονικά χρησιμοποιείται πρέπει να βαθμονομείται σύμφωνα με τις προδιαγραφές του σημείου 4.3.3 του παραρτήματος ΙΙΙ, με την παρακάτω μέθοδο.
- 1.2. Η καμπύλη βαθμονόμησης καταρτίζεται βάσει πέντε τουλάχιστον σημείων βαθμονόμησης, η απόσταση μεταξύ των οποίων πρέπει να είναι όσο το δυνατόν πιο ομοιόμορφη. Η ονομαστική συγκέντρωση του αερίου βαθμονόμησης με τη μεγαλύτερη συγκέντρωση πρέπει να είναι τουλάχιστον ίση με το 80 % της πλήρους κλίμακας.
- 1.3. Η καμπύλη βαθμονόμησης υπολογίζεται με τη μέθοδο των «ελαχίστων τετραγώνων». Αν το πολυώνυμο που προκύπτει είναι βαθμονόμησης πρέπει να είναι τουλάχιστον ίσος με το βαθμό του πολυωνύμου αυτού συν 2.
- 1.4. Η καμπύλη βαθμονόμησης δεν πρέπει να διαφέρει περισσότερο από 2 % από την ονομαστική τιμή κάθε αερίου βαθμονόμησης.

1.5. Διάγραμμα της καμπύλης βαθμονόμησης

Το διάγραμμα της καμπύλης βαθμονόμησης και των σημείων βαθμονόμησης επιτρέπει να επαληθεύεται η καλή εκτέλεση της βαθμονόμησης. Πρέπει να αναφερονται οι διάφορες χαμακτηριστικές παράμετροι της συσκευής ανάλυσης, ιδίως:

- η κλίμακα,
- η ευαισίησία,
- -- το μηδέν,
- η ημερομηνία της βαθμονόμησης.
- 1.6. Αλλες μέθοδοι (πχ. μέσω υπολογιστή, ηλεκτρονικός διακόπτης αλλαγών κλίμακας κλπ.) μπορούν να χρησιμοποιηθούν, εφόσον αποδεικνύεται επαρκώς, προς την τεχνική υπηρεσία, ότι παρέχουν ισοδύναμη ακρίμεια.

2. ΕΠΑΛΗΘΕΥΣΗ ΤΗΣ ΒΑΘΜΟΝΟΜΗΣΗΣ

- 2.1. Κάθε κλίμακα μέτρησης που κανονικά χρησιμοποιείται πρέπει να επαληθεύεται πριν από κάθε ανάλυση σύμφωνα με τις ακόλουθες διατάξεις.
- 2.2. Η βαθμονόμηση ελέγχεται με τη βοήθεια ενός αερίου μηδενισμού και ενός αερίου βαθμονόμησης του οποίου η ονομαστική τιμή δεν απέχει πολύ από την τιμή που θα υποστεί ανάλυση.
- 2.3. Εάν, για τα δύο εξεταζόμενα σημεία, η διαφορά μεταξύ της θεωρητικής τιμής και της τιμής που λαμβάνεται κατά τη στιγμή της επαλήθευσης δεν υπερβαίνει το ± 5 % της πλήρους κλίμακας, οι παράμετροι ρύθμισης μπορούν να αναπροσαρμοστούν. Στην αντίθετη περίπτωση, πρέπει να καταρτιστεί νέα καμπύλη βαθμονόμησης σύμφωνα με το σημείο Ι του παρόντος παραρτήματος.
- 2.4. Μετά τη δοκιμή; το αέριο μηδενισμού και το ίδιο αέριο βαθμονόμησης χρησιμοποιούνται για ένα νέο έλεγχο. Η ανάλυση θεωρείται ως έγκυρη αν η διαφορά μεταξύ των δύο μετρήσεων είναι κατώτερη από 2 %.

3. ΔΟΚΙΜΗ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ ΤΟΥ ΜΕΤΑΤΡΟΙΙΕΛ ΝΟ,

٠ :

 $^{\prime}$ Η αποτελεσματικότητά του μετατροπέα που χρησιμοποιείται για τη μετατροπή NO_2 σε NO πρέπει να ελέγχεται.

Ο έλεγχος αυτός μπορεί να πραγματοποιείται με έναν οζονιστήρα, σύμφωνα με τη διάταξη δοκιμής της εικόνας 1 και τη διαδικασία που περιγράφεται κατωτέρω.

- 3.1. Η συσκευη ανάλυσης βαθμονομείται στην κλίμακα που χρησιμοποιείται συνηθέστερα σύμφωνα με τις οδηγίες του κατασκευαστή με αέρια μηδενισμού και βαθμονομησης. Το πέριο βαθμονόμησης πρέπει να έχει περιεκτικοτητα σε ΝΟ που να αντιστοιχεί στο 80% περίπου της πλήρους κλίμακας η συγκέντρωση ΝΟ2 στο μείγμα αιρίων πρέπει να είναι κάτω από 5% της συγκεντρώσιως ΝΟ. Η συσκευή ανάλυσης ΝΟ, ρυθμίζεται για λειτουργία με ΝΟ, έτσι ώστε το αέριο βαθμονόμησης να μη διέρχεται από το μετατροπέα. Καταγραφεται η ενδιεκνυφιενή συγκέντρωση.
- 3.2. Με ένα σύνδεσμο Ταυ, προστίθεται συνεχώς οξυγόνο ή συνθετικός αέρας στο ρεύμα αιρίου μέχρις ότου η αναγραφόμενη συγκέντρωση να είναι κατά 10 % περίπου μικρότερη από την αναγραφόμενη συγκέντρωση βαθμονόμησης όπως αυτή καθορίζεται στο σημείο 3.1. Καταγράφεται η αναγραφόμενη συγκέντρωση C. Καθ' όλη την εργασία αυτή, ο οζονιστήρας πρέπει να παραμένει εκτός λειτουργίας.
- 3.3. Τίθεται κατόπιν σε λειτουργία ο οζονιστήρας ώστε να παράγεται αρκετό όζον ώστε η συγκέντρωση ΝΟ να μειωθεί στο 20 % (ελάχιστη τιμή 10 %) της συγκέντρωσης βαθμονόμησης που καθορίζεται στο σημείο 3.1. Καταγραφεία η αναγραφόμενη συγκέντρωση d.
- 3.5. Τίθεται κατόπιν ο οζυνιστήρας εκτός λειτουργίας. Το μείγμα αερίων που ορίζεται στο σημείο 3.2 διασχίζει το μετατροπέα και κατόπιν περνά στη συσκευή ανίχνευσης. Καταγράφεται η αναγραφόμεη συγκέντρωση b.

Εικόνα Ι

- 3.6. Με τον οζονιστήρα πάντοτε εκτός λειτουργίας, διακόπτεται επίσης η προσαγωγή οξυγόνου ή συνθετικού αέρα. Η τιμή ΝΟ, που αναγράφεται στη συσκευή ανάλυσης δεν πρέπει τότε να υπερβαίνει κατά περισσότερο από 5 % την τιμή που καθορίζεται στο σημείο 3.1.
- 3.7. Η αποτελεσματικότητα του μετατροπέα ΝΟ, υπολογίζεται ως ακολούθως:

Αποτελεσματικότητα (%) =
$$(1 + \frac{a-b}{c-d}) \cdot 100$$

- 3.8. Η τιμή που λαμβάνεται δεν πρέπει να είναι κατώτερη του 95 %.
- 3.9. Ο έλεγχος της αποτελεσματικότητας πρέπει να γίνεται τουλάχιστον μια φορά την εβδομάδα.
- 4. ΒΑΘΜΟΝΟΜΗΣΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΥΠΟ ΣΤΑΘΕΡΟ ΟΓΚΟ (ΣΥΣΤΗΜΑ CVS)
- 4.1. Το σύστημα CVS-βαθμονομείται με τη βοήθεια ενός ακριβούς μετρητή παροχής και μιας διάταξης περιορισμού της παροχής. Μετριέται η παροχή στο σύστημα σε διάφορες τιμές πίεσης, καθώς επίσης και οι παράμετροι ρύθμισης του συστήματος, και κατόπιν προσδιορίζεται η σχέση των παραμέτρων αυτών προς τις παροχές.
- 4.1.1. Ο μετρητής παροχής που χρησιμοποιείται μπορεί να είναι διαφόρων τύπων: πχ. βαθμονομημένος σωλήνας Venturi, μετρητής παροχής στρώτης ροής (laminar flow), βαθμονομημένος μετρητής παροχής με στρόβιλο, υπό την προϋπόθεση ότι πρόκειται για συσκευή δυναμικής μέτρησης η οποία, επιπλέον, ανταποκρίνεται στις προδιαγραφές των σημείων 4.2.2 και 4.2.3 του παραρτήματος ΙΙΙ.
- 4 1.2. Στη συνέχεια, παρέχονται στοιχεία για μεθόδους βαθμονόμησης των συσκευών δειγματοληψίας PDP και CFV, βάσει μετρητή παριχής στρωτής ροής που περιέχει την επιθυμητή ακρίβεια, καθώς επίσης και μια στατιστική επαλήθευση της εγκυρότητας της βαθμονόμησης.
- 4.2. Βαθμονόμηση της αντλίας θετικού εκτοπίσματος (PDP)
- 4.2.1. Η διαδικασία [κιθμονόμησης που καθορίζεται κατωτέρω περιγράφει τον εξοπλισμό, τη διάταξη για τη δοκιμή και τις διάφορες παραμέτρους που πρέπει να μετριούντοι για τον προσδιορισμό της παροχής της αντλίας του συστήματος CVS. Όλες οι παράμετροι, που αφορούν την αντλία, μετριούνται ταυτόχρονα με τις παραμέτρους του μετρητή παροχής που είναι συνδεδεμένος εν σειρά με την αντλία. Μπορεί κατόπιν να χαραχεί η καμπύλη της υπολογιζόμενης παροχής (εκφραζόμενη σε m³/min στην είσιδο της αντλίας, υπό απόλυτη θερμοκρασία και πίεση) σε σχέση με μια συνάρτηση συσχέτισης που αντιστοιχεί σε έναν ορισμένο συνδυασμό των παραμέτρων της αντλίας. Κατόπιν, προσδιορίζεται η γραμμική εξίσωση που εκφράζει τη σχέση μεταξύ της παροχής της αντλίας και της συνάρτησης συσχέτισης. Εάν η αντλία του συστήματος CVS έχει πολλές ταχύτητες, γίνεται χωριστή βαθμονόμηση για κάθε χρησιμοποιούμενη ταχύτητα.
- 4.2.2. Αυτή η διαδικασία βαθμονόμησης βασίζεται στη μέτρηση των απόλυτων τιμών των παραμέτρων της αντλίας και των μετρητών παροχής που σχετίζονται με την παροχή σε κάθε σημείο. Τρεις όροι πρέπει να τηρούνται για να εξασφαλίζεται η ακρίβεια και συνέχεια της καμπύλης σύγκρισης:
- 4.2.2.1. οι πίσσεις αυτές της αντλίας πρέπει να μετριούνται σε σημεία μέτρησης πάνω στην ίδια την αντλία και όχι στους εξωτερικούς σωλήνες που συνδέονται με την είσοδο και την έξοδο της αντλίας. Τα σημεία μέτρησης της πίεσης που ευρίσκονται στο άνω και στο κάτω σημείο της μετωπικής πλάκας απαγωγης της αντλίας, υπόκεινται στις πραγματικές πιέσεις που υφίστανται μέσα στο θάλαμο της αντλίας και εκφράζουν επομένως τις απόλυτες διαφορές πίεσης
- 4.2.2.2. κατά τη διάρκεια της βαθμονόμησης πρέπει να διατηρείται σταθερή θερμοκρασία. Ο μετρητής παροχής στρωτής ροής είναι ευαίσθητος στις διακυμάνσεις της θερμοκρασίας εισόδου, οι οποίες προκαλούν διασπορά των μετρουμένων τιμών. Διακυμάνσεις ± 1 °C της θερμοκρασίας είναι αποδεκτές, υπό την προϋπόθεση ότι δημιουργουνται προοδευτικά σε χρονικό διάστημα πολλών λεπτών
- 4.2.2.3. όλοι οι σωλήνες που συνδέουν το μετρητή παροχής και την αντλία CVS πρέπει να είναι στεγανοί.
- 4.2.3. Κατά τη διάρκεια μιας δοκιμής προσδιορισμού των εκπομπών εξάτμισης, η μέτρηση των παραμέτρων αυτών της αντλίας επιτρέπει τον υπολυγισμό της παροχής με τη βοήθεια της εξίσωσης βαθμονόμησης.
- 4.2.3.1. Η εικόνα 2 δίνει ένα παράδειγμα διάταξης δυκιμής. Μπορούν να γίνουν αποδεκτές και εναλλακτικές διατάξεις, υπό την προϋπόθεση ότι εγκρίνονται από τη διοικητική αρχή που παρέχει την έγκριση, ως παρέχουσες παρουμω

ακρίβεια. Αν χρησιμοποιείται η εγκατάσταση που περιγράφεται στην εικόνα 2 του συμπληρωματικού παραρτήματος 5, οι ακόλουθες παράμετροι πρέπει να ευρίσκονται μέσα στα πλαίσια των κατωτέρω ανοχών:

βαρομετρική π ίι ση (διορθωμένη) ($P_{\rm N}$)	± 0,03 kPa,
θερμοκρασία περιβάλλοντος (Τ)	± 0,2 °C,
θερμοκρασία αέρα στην είσοδο του LFE (ETI)	± 0,15 °C,
υποπίεση πριν το LFE (EPI)	± 0,01 kPa,
απώλεια πίεσης διαμέσου του ακροφυσίου του LFE (EDP)	± 0,0015 kPa,
θερμοκρασία του αέρα στην είσεδο της αντλίας CVS (PTI)	± 0,2 °C,
θερμοκρασία του αέρα στην έξοδο της αντλίας CVS (PTO)	± 0,2 °C,
υποπίεση στην είσοδο της αντλίας CVS (PPI)	± 0,22 kPa,
πίεση στην έξοδο της αντλίας CVS (PPO)	± 0,22 kPa,
αριθμός στροφών της αντλίας κατά τη δοκιμή (n)	± Ι στροφή,
διάρκεια της δοκιμής (τουλάχιστον 250 s) (t)	± 0,1 s.

- 4.2.3.2. Μετά τη συναρμολόγηση του συστήματος όπως στην εικόνα 2, ανοίγεται τελείως η βάνα ρύθμισης της παροχής και τίθεται σε λειτουργία η αντλία CVS για 20 min πριν αρχίσουν οι εργασίες βαθμονόμησης.
- 4.2.3.3. Κλείνεται μερικώς η βάνα ρύθμισης της παροχής ώστε να αυξηθεί η υποπίεση στην είσοδο της αντλίας (1 kPa περίπου), ώστε να ληφθούν τουλάχιστον έξι σημεία μέτρησης για το σύνολο της βαθμονόμησης. Το σύστημα αφήνεται να σταθεροποιηθεί επί 3 min και επαναλαμβάνονται οι μετρήσεις.

Eixòva 2

Διάταξη βαθμονόμησης για το σύστημα PDP-CVS EPI DDP Βάνα ρύθμισης Φίλτρο της παροχής Βαλβίδα ομαλοποίησης LFE ETI (αποσβεστήρας) PTI Δείκτης θερμοκρασίας PTO Μανόμετρο Αριθμός στροφών διάρκεια δυκιμής

- 4.2.4. Ανάλυση των αποτελεσμάτων
- 4.2.4.1. Η παροχή αέρα Q, σε κάθε σημείο δοκιμής υπολογίζεται σε m³/min (κανονικές συνθήκες) από τις τιμές του μετρητή παροχής, σύμφωνα με τη μέθοδο που καθορίζεται από τον κατασκευαστή.
- 4.2.4.2. Η παροχή αέρα μετατρέπεται κατόπιν σε παροχή της αντλίας V... εκφραζόμενη σε m³ ανά στροφή, σε απόλυτη θερμοκρασία και πίεση στην είσοδο της αντλίας:

$$V_o = \frac{Q_s}{n} \cdot \frac{T_p}{273.2} \cdot \frac{101.33}{P_p}$$

όπου

 V_o : παροχή της αντλίας σε T_p και P_p , σε m^3/σ τροφή,

Q: παροχή αέρα σε 101,33 kPa και 273,2 K, σε m³/min,

 T_P : θ ερμοκρασία στην είσοδο της αντλίας, σε K,

Ρρ: απόλυτη πίεση στην είσοδο της αντλίας,

n: ταχύτητα περιστροφής της αντλίας σε min - 1.

Εικόνα 3 Διάταξη βαθμονόμησης για το σύστημα CFV-CVS

Για να αντισταθμιστεί η αλληλεπίδραση της ταχύτητας περιστροφής της αντλίας, των διακυμάνσεων της πίεσης σ' αυτή και του ποσοστού ολίσθησης της αγτλίας, η συνάρτηση συσχέτισης (X_o) μεταξύ της ταχύτητας της αντλίας (n), της διαφοράς πίεσης μεταξύ της εισόδου και της εξόδου της αντλίας, και της απόλυτης πίεσης στην έξοδο της αντλίας, υπολογίζεται με τον ακόλουθο τύπο:

$$X_o = \frac{1}{n} / \frac{\Delta P_o}{P_e}$$

όπου

Χ_α: συνάρτηση συσχέτισης,

ΔΡρ: διαφορά πίεσης μεταξύ της εισόδου και της εξόδου της αντλίας (kPa),

 P_e : απόλυτη πίεση στην έξοδο της αντλίας (PPO + P_B) (kPa).

Εκτελείται μια γραμμική προσαρμογή με τη μέθοδο των ελαχίστων τετραγώνων για να ληφθούν οι εξισώσεις βαθμονόμησης που έχουν τον τύπο:

$$V_o = D_o - M(X_o)$$

$$n = A - B(\Delta P_o)$$

D₀, M, A και Β είναι οι σταθερές κλίσεως και τεταγμένης που περιγράφουν τις καμπύλες.

4.2.4.3. Αν το σύστημα CVS έχει πολλές ταχύτητες λειτουργίας, πρέπει να εκτελείται βαθμονόμηση για κάθε ταχύτητα. Οι καμπύλες βαθμονόμησης που λαμβάνονται για τις ταχύτητες αυτές πρέπει να είναι περίπου παράλληλες και οι τιμές τεταγμένης στην αρχή D, πρέπει να αυξάνουν όταν μειώνεται το πεδίο παροχής της αντλίας.

Αν η βαθμονόμηση έχει εκτελεστεί καλά, οι τιμές που υπολογίζονται με την εξίσωση πρέπει να ευρίσκονται μέσα στα πλαίσια του \pm 0.5% από τη μετρούμενη τιμή του $V_{\rm s}$. Οι τιμές του M θα κυμαίνονται από τη μια αντλία στην άλλη. Η βαθμονόμηση πρέπει να εκτελείται κατά τη θέση σε λειτουργία της αντλίας και μετά από κάθε σημαντική εργασία συντήρησης.

- 4.3. Βαθμονόμηση του σωλήνα Venturi κρίσιμης ροής (CFV)
- 4.3.1. Η βαθμονόμηση του σωλήνα Venturi CFV βασίζεται στην εξίσωση παροχής για ένα σωλήνα Venturi κρίσιμης ροής:

όπου

$$Q_s = \frac{K_v \cdot P}{\sqrt{T}}$$

Q, "παροχή,

Κ.: συντελεστής βαθμονόμησης,

P: απόλυτη πίεση (kPa),

Τ: απόλυτη θερμοκρασία (Κ).

Η παροχή αερίου είναι συνάρτηση της πίεσης και της θερμοκρασίας εισόδου.

Η ακόλουθη διαδικασία βαθμονόμησης δίνει την τιμή του συντελεστή βαθμονόμησης προς τις μετρούμενες τιμές πίεσης, θερμοκρασίας και παροχής αέρα.

- 4.3.2. Για τη βαθμονόμηση του ηλεκτρονικού εξοπλισμού του σωλήνα Venturi CFV ακολουθείται η διαδικασία που συνιστά ο κατασκευαστής.
- 4.3.3. Κατά τις αναγκαίες μετρήσεις για τη βαθμονόμηση της παροχής του σωλήνα Venturi κρίσιμης ροής, οι ακόλουθες παράμετροι πρέπει να ευρίσκονται μέσα στα ελαίσια των κατωτέμο αναχών:

βαρομετρική πίεση (διορθωμένη) (Pn)

± 0,03 kPa.

θερμοκρασία του αέρα στην είσοδο του LFE (ΕΤΙ) 🗀

+ 015°C

υποπίεση προ του LFE (EPI)

 \pm 0.01 kPa.

παροχή αέρα (Q_s) $\pm 0,0015$ kPa, παροχή αέρα (Q_s) $\pm 0,5$ %, υποπίεση στην είσοδο του CFV (PPI) $\pm 0,02$ kPa, θερμοκρασία στην είσοδο του σωλήγα Venturi (T_s) $\pm 0,2$ °C.

- 4.3.4. Το σύστημα συναρμολογείται όπως στην εικόνα 3 και ελέγχεται η στεγανότητά του. Οποιαδήποτε διαρροή, μεταξύ της διάταξης μέτρησης της παροχής και του σωλήνα Venturi κρίσιμης ροής, επηρεάζει σημαντικά την ακρίβεια της βαθμονόμησης.
- 4.3.5. Ανοίγεται τελείως η βάνα ρύθμισης της παροχής, τίθεται σε λειτουργία ο ανεμιστήρας και αφήνεται το σύστημα να σταθεροποιηθεί. Καταγράφονται οι τιμές που λαμβάνονται για όλες τις συσκευές.
- 4.3.6. Η βάνα ρύθμισης της παροχής ρυθμίζεται σε διάφορες θέσεις και εκτελούνται τουλάχιστον οκτώ μετρήσεις κατανεμημένες εντός του πεδίου κρίσιμης ροής του σωλήνα Venturi.
- 4.3.7. Οι τιμές που καταγράφονται κατά τη βαθμονόμηση χρησιμοποιούνται για τον προσδιορισμό των κατωτέρω στοιχείων. Η παροχή αέρα Q, σε κάθε σημείο δυκιμής υπολογίζεται βάσει των τιμών του μετρητή παροχής, σύμφωνα με τη μέθοδο που καθορίζεται από τον κατασκευαστή. Υπολογίζεται η τιμή του συντελεστή βαθμονόμησης για κάθε σημείο δοκιμής:

$$K_v = \frac{Q_s \cdot \sqrt{T_v}}{P_v}$$

όπου

Q: παροχή σε m³/min στους 273,2 K και 101,33 kPa,

Τ.: θερμοκρασία στην είσοδο του σωλήνα Venturi (Κ),

P.: απόλυτη πίεση στην είσοδο του σωλήνα Venturi (kPa).

Χαράσσεται μια καμπύλη του Κ, συναρτήσει της πίεσης στην είσοδο του σωλήνα Venturi. Για ροή με την ταχύτητα του ήχου, το Κ, έχει περίπου σταθερή τιμή. Όταν η πίεση μειώνεται (δηλαδή όταν η υποπίεση αυξάνει), ο σωλήνας Venturi αποσυνδέεται και το Κ, μειώνεται. Οι προκύπτουσις διακυμάνσεις του Κ, δεν είναι ανικτές. Ο μέσος όρος του Κ, και η τυπική απόκλιση υπολογίζονται για οκτώ τουλάχιστον σημεία, μέσα στην κρίσιμη πιριοχή. Αν η τυπική απόκλιση υπερβαίνει τα 0,3 % του μέσου όρου το Κ, πρέπει να λαμβάνονται διορθωτικά μέτρα.

ΣΥΜΠΛΗΡΩΜΑΤΙΚΌ ΠΑΡΑΡΤΗΜΑ 7

- ΟΛΙΚΟΣ ΕΛΕΓΧΟΣ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ

- 1. Για τον έλεγχο της συμφωνίας πρις τις προδιαγριφές του σημείου 4.7 του παραρτήματος ΙΙΙ, προσδιορίζεται η ολική ακρίβεια της διάταξης δειγματοληψίας και ανάλυσης CVS, με την εισαγωγή μιας γνωστής μάζας αιρίου ρύπου στο σύστημα, ενώ αυτό λειτουργεί όπως για μια κανονική δοκιμή. Στη συνέχεια, εκτελείται η ανάλυση και υπολογίζεται η μάζα του ρύπου σύμφωνα με τους τύπους του συπληρωματικού παραρτήματος 8, με τη διαφορά ότι ως πυκνότητα του προπανίου λαμβάνεται η τιμή 1,967 g/1 υπό κανονικές συνθήκες. Λύο γνωστές μέθοδοι επαρκούς ακρίβειας περιγράφονται κατωτέρω.
- 2. ΜΕΤΡΉΣΗ ΜΙΑΣ ΣΤΑΘΕΡΉΣ ΠΑΡΌΧΗΣ ΚΑΘΑΡΟΎ ΑΕΡΙΟΎ (CO Ή C_3 Η $_8$) ΜΕ ΕΝΑ ΑΚΡΟΦΎΣΙΟ ΚΡΙΣΙ-ΜΗΣ ΡΌΗΣ
- 2.1. Μια γνωστή ποσότητα καθαρού αερίου (CO ή C₁H_n) εισάγεται στη συσκευή CVS διαμέσου ενός βαθμολογημένου ακροφυσίου κρίσιμης ροής. Αν η πίεση εισόδου είναι αρκετά μεγάλη, η παροχή ο που ρυθμίζεται από το ακροφύσιου είναι ανεξάρτητη από την πίεση εξόδου του ακροφύσιου (συνθήκες κρίσιμης ροής). Αν οι παρατηρούμενες διαφορές υπερβαίνουν το 5 Φο, πρέπει να προσδιοριστεί και να εξαλειφτεί η αιτία της ανωμαλίας. Η συσκευή CVS τίθεται σε λειτουργία όπως για τη μέτρηση των εκπομπών εξατμίσεως, επί 5 Δως 10 λεπτά. Τα αέρια που συλλέγοι τως πιο σακό αναλύονται με τη βοήθεια της κανονικής συσκευής και τα λαμβανομένα αποτελέσματα συγκρίνονται με την περιεκτικότητα των δειγμάτων που είναι ήδη γνωστη.
- 3. ΜΕΤΡΗΣΗ ΜΙΑΣ ΔΕΔΟΜΕΝΗΣ ΠΟΣΟΤΗΤΑΣ ΚΑΘΑΡΟΥ ΛΕΡΙΟΥ (CO 'Η C₃H₄) ΜΕ ΜΙΑ ΒΛΡΟΜΕ-ΤΡΙΚΗ ΜΕΘΟΔΟ
- Για τον έλεγχο της συσκευής CVS με τη βαρομετρική μέθοδο, ακολουθείται η εξής διαδικασία:

χρησιμοποιείται μια μικρή φιάλη, γεμάτη είτε με μονοξείδιο του άνθρακα είτε με προπάνιο, της οποίας προσδιορίζεται το βάρως με ακρίβεια ± 0.01 g. Το σύστημα CVS τίθεται σε λειτουργία όπως για κανονική δικιμή πρωσδιορισμού των εκπομπών εξατμίσεως επί 5 έως 10 λεπτά. Ταυτόχρονα εισάγεται στο σύστημα CO ή προπάνιο, ανάλυγα με την περίπτωση. Η ποσότητα καθαρού αερίου που εισάγεται στη συσκευή πρωσδιορίζεται από τη διαφορά βαρους της φιάλης. Κατόπιν, τα αέρια που συλλέγονται μέσα στο σάκο αναλύονται με το σύστημα που κανονικα χρησιμοποιείται για την ανάλυση των καυσαερίων και τα αποτελέσματα συγκρίνονται με τις τιμές συγκέντρωσης που υπολογιστήκαν προηγουμένως.

ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΠΑΡΑΡΤΗΜΑ 8

ΥΠΟΛΟΓΙΣΜΟΣ ΤΩΝ ΕΚΠΟΜΠΩΝ ΜΑΖΑΣ ΡΥΠΩΝ

Οι εκπομπές μάζας ρύπων υπολογίζονται με την εξής εξίσωση:

 $M_i = V_{mix} \cdot Q_i \cdot k_H \cdot C_i \cdot 10^{-6} \tag{1}$

όπου

Μ.: εκπομπή μάζας του ρύπου ί σε g/δοκιμή,

V_{mis}: όγκος των αραιωμένων καυσαερίων, εκφραζόμενος σε 1/δοκιμή και που έχει αναχθεί σε κανονικές συνθήκες (273,2 °K, 101,33 kPa),

Q: πυκνότητα του ρύπου i σε g/l σε κανονική θερμοκρασία και πίεση (273,2 °K, 101,33 kPa),

kh: συντελεστής διορθώσεως της υγρασίας που χρησιμοποιείται για τον υπολογισμό των εκπομπών μάζας οξειδίων του αζώτου (για HC και CO δεν γίνεται διόρθωση υγρασίας),

 C,: σύγκεντρωση του ρύπου i στα αραιωμένα καυσαέρια, εκφραζομένη σε ppm και διορθωμένη για να ληφθεί υπόψη η συγκέντρωση του ρύπου i που ευρίσκεται στον αέρα αραίωσης.

.1. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΟΓΚΟΥ

- 1.1. Υπολυγισμός του όγκου στην περίπτωση που χρησιμοποιείται σύστημα μεταβλητής αραίωσης με μέτρηση σταθερής παροχής με υποπιεσογόνο όργανο. Καταγράφονται συνεχώς οι παράμετροι που δείχνουν την ογκομετρική παροχή και υπολογίζεται ο συνολικός όγκος για όλη τη διάρκεια της δυκιμής.
- 1.2. Υπολογισμός του όγκου στην περίπτωση που χρησιμοποιείται σύστημα με αντλία θετικού εκτοπίσματος. Ο όγκος των αραιωμένων καυσαερίων που μετριέται στα συστήματα με αντλία θετικού εκτοπίσματος υπολογίζεται με τον τύπο:

$$V = V_o \cdot N$$

όπου

V: όγκος των αραιωμένων καυσαερίων, σε Ι/δοκιμή (πριν τη διόρθωση),

 ν_ο: όγκος αερίων που διακινήθηκε από την αντλία θετικού εκτοπίσματος υπό τις συνθήκες της δοκιμής, σε Ι/στροφή,

Ν: αριθμός στροφών της αντλίας κατά τη διάρκεια της δοκιμής.

1.3. Υπολογισμός του όγκου των αραιωμένων καυσαερίων που έχει αναχθεί σε κανονικές συνθήκες.

Ο όγκος των αραιωμένων καυσαερίων ανάγεται στις κανονικές συνθήκες με τον ακόλουθο τύπο:

$$V_{mix} = V \cdot K_1 \cdot \frac{P_B - P_1}{T_p} \tag{2}$$

όπου

$$K_1' = \frac{273.2 \text{ K}}{101,33 \text{ kPa}} = 2,6961 (\text{K} \cdot \text{kPa}^{-1}).$$
 (3)

Ph: βαρομετρική πίεση στο θάλαμο δοκιμής, σε kPa,

P1: "υποπίεση στην είσοδο της αντλίας θετικού εκτοπίσματος σε σχέση με την πίεση του περιβάλλοντος (kPa),

 T_p : μέση θερμοκρασία των αραιωμένων καυσαερίων που εισέρχονται στην ογκομετρική αντλία κατά τη δοκιμή (K).

2. ΥΠΟΛΟΓΙΣΜΌΣ ΤΗΣ ΛΙΟΡΘΩΜΕΝΉΣ ΣΥΓΚΕΝΤΡΏΣΗΣ ΡΥΠΏΝ ΜΕΣΑ ΣΤΟ ΣΑΚΌ ΛΕΙΓΜΑΤΟΛΗ-ΨΊΑΣ

όπου

 $C_1 = C_e - C_d \left(1 - \frac{1}{DF} \right) \tag{4}$

 C,: συγκέντρωση του μοποίο εστα αματομένα καισται μια, εκφραζομένη σε ppm και διομθομένη για να ληφθεί υπόψη η συγκέντρωση του επου υπάρχει στον αέρα αραίωσης.

 $\mathbf{C}_{\mathbf{c}}$: μετρούμενη συγκέντρωση του ρύπου \mathbf{i} στα αραιωμένα καυσαερια, εκφραζόμενη σε ppm,

 C_d : μ ετρούμενη συγκέντρωση του i στον αέρα που χρησιμοποιείται για την αραίωση, εκφραζόμενη σε ppm.

DF: συντελεστής αραίωσης.

Ο συντελεστής αραίωσης υπολογίζεται ως εξής:

$$DF = \frac{13.4}{C_{CO_2} + (c_{HC} + c_{CO}) \cdot 10^{-4}}$$
 (5)

όπου

 \mathbf{c}_{CO_2} : συγκέντρωση του CO_2 στα αραιωμένα καυσαέρια που περιέχονται στο σάκο δειγματοληψίας, εκφραζόμενη σε \mathbf{v} ο κατ' όγκο,

снс: συγκέντρωση των HC στα αραιωμένα καυσαέρια που περιέχονται στο σάκο δειγματοληψίας, εκφραζόμενη σε ppm ισοδύναμου άνθρακα,

 συγκέντρωση του CO στα αραιωμένα καυσαέρια που περιέχονται στο σάκο δειγματοληψίας, εκφραζόμενη σε ppm.

3. ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΔΙΟΡΘΩΣΗΣ ΥΓΡΑΣΙΑΣ ΓΙΑ ΝΟ

Για τη διόρθωση των επιδράσεων της υγρασίας στα αποτελέσματα που λαμβάνονται για τα οξείδια του αζώτου, εφαρμόζεται ο ακόλουθος τύπος:

$$k_{H} = \frac{1}{1 - 0.0329 \cdot (H - 10.71)} \tag{6}$$

όπου

$$H = \frac{6.211 \cdot R_a \cdot P_d}{P_B - P_B \cdot R_a \cdot 10^{-2}}$$
 (6)

Στους τύπους αυτούς:

Η: απόλυτη υγρασία, εκφραζόμενη σε ς νερού ανά kg ξηρού αέρα,

R.: σχετική υγρασία της ατμόσφαιρας, εκφραζόμενη σε %,

 P_d : πίεση κορεσμένων ατμών στη θερμοκρασία του περιβάλλοντος, εκφραζόμενη σε kPa,

P_B: ατμοσφαιρική πίεση στο θάλαμο δυκιμής, σε kPa.

4. ΠΑΡΑΔΕΙΓΜΑ

4.1. Τιμές δοκιμής

4.1.1. Συνθήκες περιβάλλοντος:

θερμοκρασία περιβάλλοντος: 23 °C = 296,2 K.

βαρομετρική πίεση: P. - 101,33 kPa,

σχετική υγρασία: R. = 60 %,

πίεση κορεσμένων ατμών στους 23 °C: Pa = 3,20 kPa.

4.1.2. Όγκος που έχει μετρηθεί και έχει αναχθεί στις κανονικές συνθήκες (βλέπε σημείο 1)

$$V = 51,961 \text{ m}^3$$

41.3. Τιμές των συγκεντρώσεων που μετρήθηκαν από τις συσκευές ανάλυσης:

	Αι τγμα αραιωμένων καικιαι μιων	Λείγμα αέρα αραίωσης
HC (1)	92 թրու	3,0 ppm
, co	470 ppm	0 ppm
NO,	70 ppm	0 ppm
CO;	1,6 Φυ κατ' όγκο	0,03 4ο κατ' όγκυ

(1) Σε ppm ισοδύναμου άνθρακα

4.2. Υπολογισμοί

4.2.1. Συντιλιατής διόρθωσης υγρασίας (kg) [βλίπι, τυπους (6)]

$$H = \frac{6,211 + R_a + P_d}{P_B - P_d + R_a + 10^{-2}}$$

$$H = \frac{6,211 \cdot 60 \cdot 3,2}{101,33 - (3,2 \cdot 0,60)}$$

$$H = 11,9959$$

$$k_H = \frac{1}{1 - 0.0329 \cdot (H - 10.71)}$$

$$k_{H} = \frac{1}{1 - 0.0329 \cdot (11.9959 - 10.71)}$$

$$k_{H} = 1,0442$$

4.2.2. Συντιλι στης αραιοσης (DF) [[Κλιπι τοπο (5)]

$$DF = \frac{13.4}{c_{CO_2} + (c_{HC} + c_{CO}) \cdot 10^{-4}}$$

$$DF = \frac{13.4}{1.6 + (92 + 470) \cdot 10^{-4}} .$$

$$DF = 8.091$$

4.2.3. Υπολογισμός της διορθωμένης συγκέντρωσης ρύπων στο σάκο δειγματοληψίας:

ΗC, εκπομπές μάζας [[βλέπε τύπους (4) και (1)].

$$C_{i} = C_{e} - C_{d} \left(1 - \frac{1}{DF} \right)$$

$$C_1 = 92 - \frac{3}{5} \left(1 - \frac{1}{8,091} \right)$$

$$C_1 = 89,371$$

$$M_{HC} = C_{HC} \cdot V_{mix} \cdot Q_{HC}$$

$$Q_{HC} = 0.619$$

$$M_{HC} = 89,371 \cdot 51961 \cdot 0,691 \cdot 10^{-6}$$

$$M_{HC} = 2.88$$
 g/δοκιμή HC

CO, εκπομπές μάζας [βλέπε τύπο (1)],

 $M_{co} = C_{co} \cdot V_{mix} \cdot Q_{co}$

 $Q_{CO} = 1.25$

 $M_{CO} = 470 \cdot 51.961 \cdot 1,25 \cdot 10^{-6}$

M₁₁₁ = 30,5 g/δυκιμή CO,

ΝΟ, - εκπομπές μάζας [βλέπε τύπο (1)].

 $M_{NO_k} = C_{NO_k} \cdot V_{mix} \cdot Q_{NO_k} \cdot k_H$

 $Q_{NO_{2}} = 2.05$

 $M_{SO_4} = 70 \cdot 51961 \cdot 2,05 \cdot 1,0442 \cdot 10^{-6}$

Μ_{NO.} = 7,79 g/δοκιμή NO

4.3. Μέτρηση Η Ο για τους κινητήρες ντήζελ

Για τον προσδιορισμό των εκπομπών μάζας από τους κινητήρες με ανάφλεξη διά συμπιέσεως, υπολογίζεται η μέση συγκέντρωση ΗC με τον ακόλουθο τύπο:

$$c_{\varepsilon} = \frac{t_1^2 c_{HC} \cdot dt}{t_2 - t_1} \tag{7}$$

οπου

 $\int_{t_1}^{t_2} c_{HC} \cdot dt =$ ολοκλήρωμα της τιμής που καταγράφηκε από τη θερμαινόμενη συσκευή αναλύσεως FID κατά τη διάρκεια της δοκιμής (t_2-t_1) ,

 c_{ϵ} : συγκέντρωση HC μετρούμενη στα αραιώμενα καυσαέρια σε ppm του C_{1} ,

ce: αντικαθιστά κατευθείαν τη C_{HC} σε όλες τις αντίστοιχες εξισώσεις.

4.4 Παράδειγμα

4.4.1. Τιμές δοκιμής

Συνθήκες περιβάλλοντος:

θερμοκρασία περιβάλλοντος 23 °C = 296,2 K,

βαρομετρική πίεση $P_B = 101,33 \text{ kPa},$

σχετική υγρασία $R_* = 60.95$

πίεση κορεσμένων ατμών στους 23 °C = 3,20 kPa.

Τιμές για την αντλία θετικού εντοπίσματος (PDP)

όγκος της αντλίας (σύμφωνα με τα στοιχεία της βαθμονόμησης) $V_o = 2,439$ 1/στροφή,

υποπίεση P_r = 2,80 kPa,

θερμοκρασία του αερίου $T_p = 51$ °C = 324,2 K,

αριθμός στροφών της αντλίας n = 26 000 στροφές.

Τιμές μετρούμενες από τη συσκευή ανάλυσης

	Δείγμα αραιωμένων καυσαερίων	Δείγμα αέρα αραίωσης	
нс	92 ppm	3,0 ppm	
co	470 ppm	O ppm	
NO.	70 ppm	0 ppm	
CO ₂	1,6 % κατ' όγκο	0,03 % κατ' όγκο	

4:4.2. Υπολογισμός

4.4.2.1. 'Ογκος τον αιρίον (βλίπε τόπο (2))

$$V_{mix} = K_1 \cdot V_o \cdot n \frac{P_{H} - P_L}{T_P}$$

$$V_{mix} = 2,6961 \cdot 2,439 \cdot 26\,000 \cdot \frac{98.53}{324.2}$$

Σημείωση:

Στα συστήματα CFV και τα παρόμοια συστήματα δειγματοληψίας υπό σταθερό όγκο (CVS), ο όγκος μπορεί να διαβάζεται απευθείας στις συσκευές μέτρησης.

4.4.2.2. Συντελεστής διόρθωσης υγρασίας (k_H) [βλέπει τύπο (6)]

$$H = \frac{6.211 \cdot R_a \cdot P_d}{P_B - (P_d \cdot \frac{R_a}{100})}$$

$$H = \frac{6,211 \cdot 60 \cdot 3,2}{101,33 - (3,2 \cdot 0,60)}$$

$$H = 11,99589$$

$$k_{\rm H} = \frac{1}{1 - 0.0329 \cdot (H - 10.71)}$$

$$k_{H} = \frac{1}{1 - 0.0329 \cdot (11.9959 - 10.71)}$$

$$k_H = 1,0442$$

4.4.2.3. Συντελεστής αρκιίωσης (DF) [βλέπε τύπο (5)]

$$DF = \frac{13.4}{c_{CO_2} + (c_{HC} + c_{CO}) \cdot 10^{-4}}$$

$$DF = \frac{13.4}{1.6 + (92.0 + 470) \cdot 10^{-4}}$$

$$DF = 8,091$$

4.4.2.4. Υπολογισμός της διορθωμένης συγκέντρωσης ρύπων στο σάκο δειγματοληψίας ΗC, εκπομπές μάζας [βλέπε τύπους (4) και (1)]

$$C_{i} = C_{e} - C_{d} \left(1 - \frac{1}{DF} \right)$$

$$C_i = 92 - 3 \left(1 - \frac{1}{8.091}\right)$$

$$C_i = 89,372$$

$$M_{HC} = C_{HC} \cdot V_{mix} \cdot Q_{HC}$$

4
 Q_{HC} = 0.619

$$M_{HC} = 89,372 \cdot 51.961 \cdot 0,619 \cdot 10^{-6}$$

ΠΛΡΑΡΤΗΜΑ ΙΥ

ΛΟΚΙΜΗ ΤΟΥ ΤΥΠΟΥ ΙΙ

(Έλεγχος της εκπομπής μονοξειδίου του άνθρακα στο ρελαντί)

Ι. ΕΙΣΑΓΩΓΗ

Το παρόν παράρτημα περιγράφει τη μέθοδο για τη διεξαγωγή της δοκιμής του τύπου II που ορίζεται στο σημείο 5.2.1.2 του παραρτήματος I.

2. ΣΥΝΘΗΚΕΣ ΜΕΤΡΉΣΗΣ

- 2.1. Το καυσιμο είναι το πρότυπο καύσιμο του οποίου τα χαρακτηριστικά δίνονται στο παράρτημα VI.
- 2.2. Η δοκιμή του τύπου ΙΙ πρέπει να πραγματοποιείται αμέσως μετά τον τέταρτο κύκλο λειτουργίας για τη δοκιμή του τύπου Ι, με τον κινητήρα στο ρελαντί, χωρίς χρησιμοποίηση της διάταξης εμπλουτισμού του μείγματος. Αμέσως πριν απο κάθε μετρηση της περιεκτικότητας σε μονοξείδιο του άνθρακα, πρέπει να εκτελείται ένας κύκλος λειτουργίας για τη δοκιμή του τύπου Ι, όπως περιγράφεται στο σημιίο 2.1 του παραρτήματος ΙΙΙ.
- Στα οχήματα με χειροκίνητο ή ημιαυτόματο κιβώτιο ταχυτήτων, η δοκιμή εκτελείται με το κιβώτιο στο νεκρό σημείο και συμπλεγμένο τον κινητήρα.
- 2.4. Για τα οχήματα με αυτόματη μετάδοση, η δοκιμή πραγματοποιείται με το μοχλό επιλογής στη θέση «ουδέτερο» ή «στάση».

2.5. Όργανα ρύθμισης του ρελαντί

2.5.1. Ορισμός

Κατά την έννοια της παρούσας οδηγίας, ως «όργανα ρύθμισης του ρελαντί» νοούνται τα όργανα που επιτρέπουν την τροποποίηση των συνήηκών λειτουργίας στο ρελαντί και τα οποία μπορεί εύκολα να χειριστεί κάποιος που χρησιμοποιεί μόνο τα εργαλεία που αναφέρευνται στο σημείο 2.5.1.1. Συνεπώς δεν θεωρούνται ως όργανα ρύθμισης, ιδίως, οι διατάξεις ρύθμισης της παροχής καυσίμου και αέρα, αφού ο χειρισμός τους απαιτεί την αφαίμεση των πωμάτων ασφάλειας που, φυσιολογικά, αποκλείει κάθε επέμβαση πέραν εκείνης ενός επαγγελματία τεχνίτη.

- 2.5.1.1. Εργαλεία που μπορούν να χρησιμοποιηθούν για το χειρισμό των οργάνων ρύθμισης του ρελαντί: κατσαβίδια (συνήθη ή σταυροκατσάβιδα), κλειδιά (περικοχλίου, επίπεδα ή ρυθμιζόμενα), πένσες, κλειδιά Allen.
- 2.5.2. Προσδιορισμός των σημείων μέτρησης
- 2.5.2.1. Στην αρχή, διεξάγεται μία μέτρηση υπό τις σωθήκες ρυθμισης που χρησιμοποιούνται κατά τη δοκιμή του τύπου Ι.
- 2.5.2.2. Για κάθε όργανο ρύθμισης του οποίου η θέση μπορεί να ποικίλλει κατά συνεχή τρόπο, πρέπει να προσδιορίζονται αρκετές χαρακτηριστικές θέσεις.
- 2.5.2.3. Η μέτρηση της περιεκτικότητας των καυσαερίων σε μονοξείδιο του άνθρακα πρέπει να πραγματοποιείται για όλες τις δυνατές θέσεις των οργάνων ρύθμισης, αλλά, για τα όργανα των οποίων η θέση μπορεί να ποικίλει κατά συνεχή τρόπο, πρέπει να χρησιμοποιούνται μόνον οι θέσεις που ορίζονται στο σημείο 2.5.2.2.
- 2.5.2.4. Η δοκιμή του τύπου ΙΙ θεωρείται ως ικανοποιητική αν τηρείται μία τουλάχιστον από τις ακόλουθες συνθήκες:

- 2.5.2.4.1. καμιά από τις τιμές που μετριούνται σύμφωνα με τις διατάξεις του σημείου 2.5.2.3 δεν υπερβαίνει την οριακή τιμή,
- 2.5.2.4.2. η ανώτατη περιεκτικότητα που λαμβάνεται, όταν μεταβάλλεται κατά συνεχή τρόπο η θέση ενός οργάνου ρύθμισης ενώ τα άλλα όργανα διατηρούνται σταθιμά, δεν υπερβαίνει την οριακή τιμή. Η συνθήκη αυτή πρέπει να τηρείται για τις διάφορες διατάξεις των οργάνων ρύθμισης εκτός από το όργανο του οποίου μεταβάλλουμε τη θέση κατά συνεχή τρόπο.
- 2.5.2.5. Οι δυνατές θέσεις των οργάνων ρύθμισης περιορίζονται,
- 2.5.2.5.1. αφενός, από τη μεγαλύτερη από τις ακόλουθες δύο τιμές: τη χαμηλότερη ταχύτητα περιστροφής με την οποία μπορεί να στρέφεται ο κινητήρας στο ρελαντί, και την ταχύτητα περιστροφής που συνιστάται από τον κατασκευαστή μείον 100 στρ/min,
- 2.5.2.5.2. αφετέρου, από τη μικρότερη από τις ακόλουθες τρεις τιμές: τη μεγαλύτερη ταχύτητα περιστροφής την οποία είναι δυνατόν να προσδώσουμε στον κινητήρα ενεργώντας επί των οργάνων ρύθμισης του ρελαντί, την ταχύτητα περιστροφής που συνιστάται από τον κατασκευαστή συν 250 στρ/min και την ταχύτητα ζεύξης των αυτόματων συμπλεκτών.
- 2.5.2.6. Επιπλέον, οι θέσεις ρύθμισης που δεν συμβιβάζονται με τη σωστή λειτουργία του κινητήρα δεν πρέπει να χρησιμοποιούνται ως σημεία μέτρησης. Ιδιαίτερα, όταν ο κινητήρας είναι εφιδιασμένος με πολλούς εξαιρωτηρες (καρμπυρατέρ), όλοι οι εξαερωτήρες πρέπει να είναι στην ίδια θέση ρύθμισης.
- 3. ΔΕΙΓΜΑΤΟΛΗΨΙΛ ΤΩΝ ΛΕΡΙΩΝ
- 3.1. Το ακροστοιχείο δειγματοληψίας τοποθετείται στο σωλήνα που ενώνει την εξάτμιση του οχήματος με το σάκο και όσο το δυνατό πιό κοντά στην εξάτμιση.
- 3.2. Η συγκέντρωση του μονοξειδίου του άνθρακα (C_{CO}) και του διοξειδίου του άνθρακα (C_{CO}) προσδιορίζεται βάσει των τιμών που αναγράφονται ή καταγράφονται από τη συσκευή μέτρησης, με βάση τις κατάλληλες καμπύλες βαθμονόμησης.
- 3.3. Η διορθωμένη συγκέντρωση μονοξειδίου του άνθρακα στην περίπτωση ενώς τετράχρονου κινητήρα προσδιορίζεται με τον τύπο:

$$C_{CO} \delta \iota o \rho \theta$$
. = $C_{CO} \frac{15}{C_{CO} + C_{CO}}$ (% vol)

3.4. Η διόρθωση της συγκέντρωσης C_{CO} (σημείο 3.2), που προσδιορίζεται σύμφωνα με τους τύπους του σημείου 3.3, δεν είναι αναγκαία αν η ολική τιμή των μετρουμένων συγκεντρώσεων $(C_{CO} + C_{CO})$ είναι τουλάχιστον 15 για τους τετράχρονους κινητήρες.

ΠΑΡΑΡΤΗΜΑ Υ

ΔΟΚΙΜΉ ΤΟΥ ΤΥΠΟΥ ΙΙΙ

(Έλεγχος των εκπομπόιν αερίων του στροφαλιθαλάμου)

1. ΕΙΣΑΓΩΓΗ

Το παρόν παράρτημα περιγράφει τη μέθοδο για τη διεξαγωγή της δοκιμής του τύπου ΙΙΙ που ορίζεται στο σημείο 5.2.1.3 του παραμτηματός Ι.

2. ΓΕΝΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ

- 2:1. Η δοκιμή του τύπου ΙΙΙ εκτελείται σε όχημα με ελεγχόμενη ανάφλεξη που έχει υποβληθεί στις δοκιμές του τύπου Ι και του τύπου ΙΙ.
- 2.2. Οι κινητήρες που υποβάλλονται στη δοκιμή περιλαμβάνουν και τους στεγανούς κινητήρες, εκτός από τους κινητήρες που είναι σχεδιασμένοι κατά τέτοιο τρύπο ώστε τυχόν διαργοή, έστο και ελαφρή, μπορεί να διαταράξει απαράδεκτα τη λειτουργία (πχ.,κινητήρες flat-twin).

3. ΣΥΝΘΗΚΕΣ ΛΟΚΙΜΗΣ

- 3.1. Το ρελαντί πρέπει να ροθμίζεται σύμφωνα με τις οδηγίες του κατασκευαστή.
- 3.2. Οι μετρήσεις πραγματοποιούνται υπό τις ακόλουθες τρεις συνθήκες λειτουργίας του κινητήρα:

Αμθμος 	Ιαχυτητα τον οχηματος (km/h)
1	Ρελαντί
2	50 ± 2
3	50 ± 2·
: Αριθμός	Ισχίς απορριφούμενη από την πέδη
1	Μηδέν
2	Εκείνη που αντιστοιχεί στις ρυθμίσεις για τις δοκιμές του τύπου Ι
3	Εκείνη που αντιστοιχεί στη συνθήκη αριθ. 2, πολλαπλασιασμένη επί το συντελεστή 1,7

4. ΜΕΘΟΔΟΣ ΔΟΚΙΜΗΣ

- 4.1. Υπό τις συνθήκες λειτουργίας που ορίζονται στο σημείο 3.2, ελέγχεται αν το σύστημα επαναρρόφησης των αερίων του στρεκριλοθικλέμου λειτουργεί αποτελισματικά.
- 5. ΜΕΘΟΔΟΣ ΕΛΕΓΧΟΥ ΤΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΕΠΑΝΑΡΡΟΦΉΣΗΣ ΤΩΝ ΛΕΡΙΩΝ ΤΟΥ ΣΤΡΟΦΑΛΟΘΑΛΑΜΟΥ
- ' 5.1. 'Όλα τα ανοίγματα του κινητήρα πρέπει να αφήνονται στην κατάσταση που ευρίσκονται.
 - 5.2. Η πίστη στο στροφαλοθάλαμο μετριέται σε ένα κατάλληλο σημείο. Η μέτρηση πραγματοποιείται από την τρύπα της ράβδου λαδιού με ένα μανόμετρο κεκλιμένου σωλήνα.
 - 5.3. Το όχημα κρίνεται σύμφωνο αν, υπό όλες τις συνθήκες μέτρησης που ορίζονται στο σημείο 3.2, η πίεση που μετριέται στο στροφαλοθάλαμο δεν υπερβαίνει την ατμοσφαιρική πίεση κατά τη στιγμή της μέτρησης.

- 5.4. Στη δοκιμή που εκτελείται σύμφωνα με τη μέθοδο που περιγράφεται παραπάνω, η πίεση στην πολλαπλη εισαγωγή πρέπει να μετριέται με προσέγγιση ± 1 kPa.
- Η ταχύτητα του οχήματος, μετρούμενη στη δυναμομετρική εξέδρα, πρέπει να προσδιορίζεται με προσέγγιση ± 2 km/h.
- 5.6. Η μετρούμενη πίεση στο στροφαλοθάλαμο πρέπει να προσδιορίζεται με προσέγγιση \pm 0.01 kPa.
- 5.7. Αν, για μία από τις συνθήκες μέτρησης που ορίζονται στο σημείο 3.2, η μετρούμενη πίεση στο στροφαλοθάλαμο υπερβαίνει την ατμοσφαιρική πιέση, πραγματοποιείται, αν το ζητησεί ο κατασκευαστής, η συμπληρωματική δοκιμη που καθορίζεται στο σημείο 6.

6. ΜΕΘΟΔΟΣ ΣΥΜΠΛΗΡΩΜΛΤΙΚΗΣ ΔΟΚΙΜΗΣ

- 6.1. Τα ανοίγματα του κινητήρα πρέπει να αφήνονται στην κατάσταση που ευρίσκονται.
- ένας μαλακός σάκος, αδιαπέραστος από τα αίρια του θαλάμου του στροφαλοφόρου, με χωρητικότητα περίπου πέντε λίτρων, συνδέεται με την τρύπα της ράβδου λαδιού. Ο σάκος αυτός πρέπει να είναι κενός πριν από καθι.
 μέτρηση.
- 6.3. Πριν από κάθε μέτρηση ο σάκος φράσσεται. Ο σάκος τίθεται σε επικοινωνία με το στροφαλοθαλαμο επί πέντι λεπτά για κάθε συνθήκη μέτρησης που ορίζεται στο σημείο 3.2.
- 6.4. Το όχημα θεωρείται ως ικανοποιητικό αν, για όλες τις συνθήκες μέτρησης που ορίζονται στο σημείο 3.2, δεν παγνεπρείται καμιά ορατή διόγκωση του σάκου.

6.5. Παρατήρηση

- 6.5.1. Αν η διαμόρφοση του κινητήρα δεν επιτρέπει την πραγματοποίηση της δοκιμής σύμφονα με τη μέθοδο που καθορίζεται στο σημείο 6, οι μετρησίες πραγματοποιούνται σύμφονα με την ίδαι μέθοδο, αλλά με τις ακόλοιλες τροποποιήσεις:
- 6.5.2. πριν από τη δοκιμή, κλείνονται όλα τα ανοίγματα εκτός από εκείνο που είναι αναγκαίο για την ανάκτηση των αερίων
- 6.5.3. ο σάκος τοποθετείται σε ένα κατάλληλο άνοιγμα δειγματοληψίας που δεν προκαλεί πρόσθετη πτόση πίεσης και που ευρίσκεται στο κύκλωμα επαναρρόφησης της διαταξης, κατευθείαν επάνω στο άνοιγμα διακλάδωσης του κινητήρα.

ΠΑΡΑΡΤΗΜΑ VI

ΠΡΟΛΙΑΓΡΑΦΕΣ ΤΩΝ ΠΡΟΤΥΠΩΝ ΚΑΥΣΙΜΩΝ

1. ΤΕΧΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΠΡΟΓΥΠΟΥ ΚΑΥΣΙΜΟΥ ΠΟΥ ΠΡΕΠΕΙ ΝΑ ΧΡΗΣΙ-ΜΟΠΟΙΕΙΤΑΙ ΓΙΑ ΤΗ ΔΟΚΙΜΉ ΤΩΝ ΟΧΗΜΑΤΏΝ ΠΟΥ ΕΊΝΑΙ ΕΦΟΔΙΑΣΜΈΝΑ ΜΕ ΚΙ-ΝΗΤΗΡΑ ΜΕ ΕΛΕΓΧΟΜΕΝΉ ΑΝΑΦΛΕΞΗ

Πρότυπο καύσιμο CEC RF-01-A-80

Τύπος: Βενζίνη σούπερ, με μόλυβδο

	Όρια και μονάδες •	Μέθοδος ASTM
Θεωρητικός δείκτης οκτανίου	Min. 98,0	2 699
Πυκνότητα στους 15 °C	Min. 0,741 kg/l Max. 0,755	1 298
Πίεση ατμών (μέθοδος Reid)	Min. 0,56 bar Max. 0,64	323
Απόσταξη		86
Αρχικό σημείο βρασμού	Min. 24 °C Max. 40	-
10 % του όγκου	Min. 42 Max. 58	
50 46 του όγκου	Min. 90 Max. 110	
90 90 του όγκου	Min. 150 Max. 170	
Τελικό σημείο βρασμού	Min. 185 Max. 205	
Υπόλειμμα	Max. 2 % vol	
Ανάλυση των υδρογονανθράκων		. 1.319
Ολεφίνες	Max. 20 90 vol	
Αρωματικοί	Max. 45	
Κορεσμένοι	Υπόλοιπο	
Αντοχή στην οξείδωση	Min. 480 λεπτά	525
Сорци	Max. 4 mg/100 ml	381
Έριεκτικότητα σε θείο	Max. 0,04 Φο κ.μάζα	1 266, 2 622 n 2 785
Ιεριεκτικότητα σε μόλυβδο	Min. 0,10 g/l Max. 0,40 g/l	3 341
Αναστολέας (Scavenger)	«Motor mix»	•
Οργανική σύνθεση μολύβδου	Δεν προσδιορίζεται	

(1) Για όλες τις παραπάνω ιδιότητες θα υιοθετηθούν ισοδύναμες μέθοδοι ISO, όταν δημοσιευτούν. (2) Οι αναγραφόμενοι αριθμοί αντιπροσωπεύουν τις ολικές εξατμιζόμενες ποσότητες (% ανακτώμενη

(3) Για την παραγωγή του καυσίμου αυτού, πρέπει να χρησιμοποιούνται μόνο οι βασικές βενζίνες που παράγονται συνήθως από τα ευρωπαϊκά διθλιστήρια.

παράγονται συνήθως από τα ευρωπαϊκά διθλιστήρια. Το καύσιμο μπορεί να περιέχει παρεμποδιστές της οξείδωσης και εξουδετερωτές μετάλλων που χρησιμοποιούνται συνήθως για να σταθεροποιηθούν τα προϊόντα βενζίνης των διθλιστηρίων. Η προσθήκη απορρυπαντικών ή διασκορπιστών και ελαιωδών διαλυτών απαγορεύεται. Οι τιμές που αναγράφονται στην προδιαγραφή είναι «πραγματικές τιμές». Για τον καθορισμό των οριακών τιμών ελήφθησαν υπόψη οι όροι του εγγράφου ΛSTM 1) 3244 που ορίζει μια βάση για τις αμφισθητήσεις που αφορούν την ποιότητα των προϊόντων πετρελαίου. Για τον καθορισμό μιας μέγιστης τιμής, ελήφθη υπόψη μια ελάχιστη διαφορά 2R πάνω από το μηδέν. Για τον καθορισμό μιας μέγιστης και ελάχιστης τιμής, η ελάχιστη διαφορά είναι 4R (R = αναπαραγωγιμότητα). Αν και η μέτρητη αυτή είναι αναγκαία για στατιστικούς λόγους, ο κατασκευαστής ενός καυσίμου ποέπει να επιδιώκει υπδενική τιμή όταν η μέγιστη προβλεπομενη τιμή είναι 2R, και να επιδιώκει τη πρέπει να επιδιώκει μηδενική τιμή όταν η μέγιστη προβλεπομενη τιμή είναι 2R, και να επιδιώκει τη μέση τιμή σε περίπτωση που αναφέρονται ανώτατα και κατώτατα όρια. Αν πρέπει να πρυσδιοριστεί αν ένα καύσιμο τηρεί ή όχι τους όρους της προδιαγραφής, εφαρμόζονται οι όροι του εγγράφου ASTM D 3244.

ΤΕΧΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΠΡΟΤΥΠΟΥ ΚΑΥΣΙΜΟΥ ΠΟΥ ΠΡΕΠΕΙ ΝΑ ΧΡΗΣΙ-ΜΟΠΟΙΕΙΤΑΙ ΓΙΑ ΤΗ ΛΟΚΙΜΗ ΤΩΝ ΟΧΗΜΑΤΩΝ ΠΟΥ ΕΙΝΑΙ ΕΦΟΔΙΑΣΜΕΝΑ ΜΕ ΚΙ-ΝΗΤΗΡΑ ΜΕ ΑΝΑΦΛΕΞΗ ΔΙΑ ΣΥΜΠΙΕΣΕΩΣ

Πρότυπο καύσιμο αναφοράς CEC RF-03-A-80

Τύπος: Καύσιμο ντήζελ

	Όρια και μονάδες	Μέθοδος ASTM
Πυκνότητα στούς 15 °C .	Min. 0,835 Max. 0,845	1 298
Δείκτης κητανίου	Min. 51 Max. 57	976
Απόσταξη (²)		86
50 4⁄0 του όγκου	Min. 245 °C	
90 % του όγκου	Min. 320 Max. 340	
Τελικό σημείο βρασμού	Max. 370	
Ιξώδες, 40 °C	Min. 2,5 cSt (mm²/s) Max. 3,5	445
Περιεκτικότητα σε θείο	Min. 0,20 % κ. μά- ζα Max. 0,50	l 266, 2 622 ή 2 785
Εημείο ανάφλεξης	Min. 55 °C	93
Εημείο απόφραξης του φίλτρου εν ψυχρώ	Max. ~5°C	Σχέδιο του CEN αριθ. EN116 ή IP 309
Ανθρακας Conradson επί του υπολείμματος 10 %	Max. 0,30 % κ. μά- ζα	189
Ιεριεκτικότητα σε τέφρα	Max. 0,01 % κ. μά- ζα	482
Ιεριεκτικότητα σε νερό	Μαχ. 0,05 % κ. μά- ζα	95 ή Ι 744
ιιάβρωση ελάσματος χαλκού, 100 °C	Max. 1	130
ιείκτης εξουδετέρωσης (ισχυρό οξύ)	Max. 0,20 mg KOH/g	974
	1	

Για όλες τις παραπάνω ιδιότητες θα υιοθετηθούν ισοδύναμες μέθοδοι ISO, όταν δημοσιευτούν. Οι αναγραφόμενοι αριθμοί αντιπροσωπεύουν τις ολικές εξατμιζόμενες ποσότητες (Φο ανακτώμενη

+ 40 unwlintheimu).

 + νο απωλισικίσα).
 (3) - Για το καίσιμο αυτό δύνανται να χρησιμοποιηθούν άμεσα κλάσματα απόσταξης και βενζίνες πυρόλυσης. Επιτρέπεται η αποθείωση. Το καίσιμο δεν πρέπει να περιέχει κανένα μεταλλικό πρόσθετο.
 (4) Οι αναγραφόμενες τιμές στην προδιαγραφή είναι «πραγματικές τιμές». Για τον καθορισμό των οριακών τιμών, ελήφθησαν υπόψη ο όροι του εγγράφου ASTM D 3244 που ορίζει μία βάση για τις αμφισβητήσεις που αφορούν την ποιότητα των προϊόντων πετρελείου. Για τον καθορισμό μιας μέγιστής τιμής, ελήφθη υπόψη μια ελάχιστη διαφορά 2R πάνω από το μηδέν. Για τον καθορισμό μιας πέγιστες να πια τελέχιστη επισκού είναι 4P (P) - ποπογραφορώνηστες μέγιστης και μιας ελάχιστης τιμής, η ελάχιστη διαφορά είναι 4R (R = αναπαραγωγιμότητα). Αν και η μετρηση αυτή είναι αναγκαία για στατιστικούς λόγους, ο κατασκευαστής ενός καυσίμου πρέπει να επιδιώκει μηδενική τιμή όταν η μέγιστη προβλεπόμενη τιμή είναι 2R και να επιδιώκει τη μέση τιμή σε περίπτωση που αναφέρονται ανώτατα και κατώτατα όρια. Αν πρέπει να προσδιοριστεί αν ένα καύσιμο τηρεί ή όχι τους όρους της προδιαγραφής, εφαρμόζο-

νται οι όροι του εγγράφου ASTM D 3244. (5) Αν πρέπει να υπολυγιστεί η θερμική απόδοση ενός κινητήρα ή ενός οχήματος, η θερμαντική αξία του καύσιμου υπολογίζεται με τον ακόλουθο τύπο: Ειδική εντργεία (θερμαντική αξία) (καθαρή) MJ/kg = $(46,423,8,792 d^2 + 3,170 d) \cdot [1 - (x + y + s)]$

+ 9,420 5 - 2,449 x

όπου nukvotnia otous 15 °C, 1 d

κατά μαζα αναλυγία νερού (9ο διηρημένο διά 100),

κατά μαζα αναλυγία τέφρας (40 διηρημένη διά 100), κατά μάζα αναλυγία θείου (40 διη ... νη διά 100).

ΠΑΡΑΡΤΗΜΑ VII

ΥΠΟΛΕΙΓΜΑ

Μεγιστις διαστασεις: Λ4 (210 × 297 mm)

Ένδειξη της διοικητικής αρχής

ΠΑΡΑΡΤΗΜΑ ΤΟΥ ΛΕΛΤΊΟΥ ΕΓΚΡΙΣΗΣ ΕΟΚ ΕΝΟΣ ΤΥΠΟΥ ΟΧΗΜΑΤΌΣ ΟΣΟΝ ΑΦΟΡΑ ΤΗΝ ΕΚΠΟΜΙΊΗ ΛΕΡΙΩΝ ΡΥΠΩΝ ΑΠΌ ΤΟΝ ΚΙΝΗΤΗΡΑ

(΄Αρθρο 4 παράγραφος 2 και άρθρο 10 της οδηγίας 70/156/ΕΟΚ του Συμβουλίου της 6ης Φεβρουαρίου 1970 πιρί προσεγγίσεως των νυμοθεσιών των Κρατών μελών που αφορούν την έγκριση των οχημάτων με κινητήρα και των ρυμουλκουμένων τους)

Vaht	κεγομένων υπόψη των τροποποιήσεων συμφωνά με την οδηγιά 83/331/ΕΟΚ
Αριθ	μός έγκρισης ΕΟΚ:
1.	Κατηγορία του τύπου του οχήματος (Μ1, Ν1 κλπ.):
2.	Κατασκευμστικό ή εμπορικό σήμα του οχήματος:
3.	Τύπος οχήματος, τύπος κινητήρα:
4.	Όνομα και διεύθηνση του κατασκευαστή:
	·
5.	Ονομα και διεύθυνση τυχόν αντιπροσώπου του κατασκευαστή:
6.	Μάζα του οχήματος έποιμου προς κυκλοφορία:
6.I .	Μάζα αναφοράς του οχήματος:
7.	Μέγιστη τεχνικά αποδεκτή μάζα του οχήματος:
8.	Κιβώτιο ταχυτήτων:
8.1.	Χειροκίνητο ή αυτόματο (1) (2):
8.2.	Αριθμός σχέσεων μετάδοσης:
8.3.	Σχέσεις μετάδοσης (1):
	Πρώτη σχέση Ν/V:
	Λεύτερη σχέση Ν/Υ:
	Τρίτη σχέση Ν/V:
	Τέταρτη σχέση Ν/V:
	Πέμπτη σχέση Ν/V:
	Τελική σχέση μετάδοσης:
	Ελαστικά: διαστάσεις:
	Κινητήριοι τροχοί: εμπρόσθιοι, οπίσθιοι, 4×4 (1)

 ⁽¹⁾ Διαγράφεται η περιττή ένδειξη.
 (2) Στην περίπτωση υχημάτων εφοδιασμένων με αυτόματο κιβώτιο ταχυτήτων, πρέπει να δίνονται όλα τα σχετικά τεχνικά στοιχεία.

8.4		γχος των αποδόσεων κατά την έννοια του σημείου 3.1.6 του παραρτήματος ΙΙΙ
9.		χημα παρουσιάσθηκε προς έγκριση στις:
10.		ική υπηρισία επιφορτισμένη με τη διεξαγωγή των δοκιμών έγκρισης:
11.		ουμηνία του πρακτικού που χορηγήθηκε από την υπηρεπία αυτή:
12.		μός του πρακτικού που χορηγήθηκε από την υπηρεσία αυτή:
13.		κριση χορηγείται/δεν χυρηγείται (¹)
14.	толА	ελέσματα των δοκιμών έγκρισης:
		Ισοδύντμη μάζα του συστηματος αδράντιας:
		Απορροφούμενη ισχύς P ₂ :
		Μέθοδος ρύθμισης:
	14.1.	Δοκιμή του τύπου Ι (¹):
		CO: g/δοκιμή ΗC: g/δοκιμή ΝΟ ₁ : g/δοκιμή
	14.2.	Δοκιμή του τύπου ΙΙ (1):
		CO: %0/vol
	14.3.	Δοκιμή του τύπου ΙΙΙ (¹):
15.	Χρησι	μοποιούμενο σύστημα δειγματοληψίας αερίων:
	15.1.	PDP/CVS(¹)
	15.2.	CFV/CVS(I)
	15.3.	CFO/CVS(1)
16.	Τόπος:	
17.		ιηνία:
8.	Υπογρα	ιφή:,
9.		ρόν παράρτημα επισυνάπτονται τα ακόλοιθα έγγοσιας του σέσουν του στο
	— Ι α μεν	ιντίτυπο του παραρτήματος ΙΙ, δεόντως συμπληρωμένο και συνοδευόμενο από τα αναφερώνε Με διαγράμματα και σχέδια
	1 φ	ωτογραφία του κινητήρα και του χώρου του
	-	

Άρθρο 8. Η απόφαση αυτή ισχύει από την ημερομηνία δημοσίευσής της στην Εφημερίδα της Κυδερνήσεως.

Αθήνα, 29 Αυγούστου 1984

OI YNOYPTOI

TANAL. POYMEALTHE

TYPKOINDNION

MIKOAAOT AKPITIAHE

⁽¹⁾ Διαγράφεται η περιττή ένδειξη.