Volba periody vzorkování

Popis řešeného problému:

Vzorkovací perioda je časová konstanta, která rozděluje spojitou část obvodu na hodnoty dané v časových intervalech touto konstantou určené. Velikost vzorkovací periody má podstatný vliv na stabilitu diskrétního regulačního obvodu i na jeho další vlastnosti. Její periodu T a kmitočet ω_V nemůžeme volit libovolně dlouhý.

Shannon-Kotelníkův teorém

Základní podmínkou správného vzorkování je požadavek, aby vzorkovací průběh bylo možno převést zpět, tedy rekonstruovat jej na původní průběh bez ztráty informace. Tuto podmínku vyjadřuje tzv. Shannon-Kotelníkův vzorkovací teorém, kterým určuje potřebný vzorkovací kmitočet vzhledem k nejvyššímu kmitočtu spektra vzorkovacího signálu.

Vzorkovací kmitočet ω_V musí být roven nejméně dvojnásobku nejvyššího kmitočtu spektra vzorkovacího kmitočtu ω_m .

Obrázek 1: Amplitudové kmitočtové spektrum pro ω_V≥2ω_m

Není-li podmínka splněna dochází k překrytí sousedních period spektra, což má za následek znehodnocení vzorkovacího signálu.

Obrázek 2: Amplitudové kmitočtové spektrum pro ω_V<2ω_m

Při volbě periody vzorkování je nutno brát v úvahu aspekty:

- Pomocí simulace je možno zjistit kdy se začne zhoršovat regulace.
- Dynamika regulované soustavy má zásadní vliv na volbu periody vzorkování a většina pravidel pro její volbu vychází z dynamických vlastností jako např. doba průtahu, dopravní zpoždění apod.
- Frekvenční spektrum poruchové veličiny poruchová veličina se vyskytuje ve spektru nízkofrekvenčního až středofrekvenčního pásma. Můžeme odstranit vliv poruch až do frekvence ω_m = požadovaná hranice pásma.

$$T \leq \frac{\pi}{\varpi_m}$$

 Výpočetní nároky a časová náročnost komunikace-omezení dolní hranice periody vzorkování z důvodu doby potřebné na výpočet pouze u extrémně složitých regulačních algoritmů a jsou v případě nutnosti řešitelné použitím speciálních rychlých procesů.

Pro regulaci obvyklých fyzikálních veličin v technologických procesech jsou uváděny následující typické hodnoty vzorkovací periody T.

	31 1
Fyzikální veličina	Perioda vzorkování T
průtok	1s
tlak	5s
výška hladiny	10s
teplota	20s

Tabulka 1: Hodnoty vzorkovací periody pro používané fyzikální veličiny

Pro přibližné určení vzorkovací periody lze použít některý ze vztahů, které uvádí následují tabulka 2. Tyto vztahy byly ověřeny simulací a praxí

Tabulka 2: Vztahy pro	určení přibližné hodnoty	periody vzorkování
<i>y</i> ,	,	

Hledisko volby periody vzorkování	určující vztah	pozn.
-	$T = \left(\frac{1}{8} \div \frac{1}{16}\right) f$ $T = \left(\frac{1}{4} \div \frac{1}{8}\right) T_{d}$	soustavy s dominantním dopravní zpožděním
Hledisko volby periody vzorkování	T = (1,2 ÷ 0,35)T _u T = (0,35 ÷ 0,22)T _u	0,1≤ T _u ≤ 1,0 T ≤ 1,0 1,0 ≤ T _u ≤ 10
vyregulování poruchy do ω _m jako u spojitého regulačního obvodu	$T = \frac{\pi}{\varpi_m}$	S(j \opin_m) = 0,01÷ 0,1
výsledky simulace	$T = \left(\frac{1}{6} \div \frac{1}{15}\right) T_{95}$	<u>-</u>

Další vztahy pro určení přibližné hodnoty periody vzorkování:

$$T \approx \frac{T_1}{10}$$

$$T \approx \left(\frac{1}{4} \div \frac{1}{2}\right) \sum_i \tau_i$$

f – vlastní frekvence uzavřené smyčky [Hz]

 T_d – periodu vzorkování T volíme u regulovaných soustav s dopravním zpožděním v závislosti na dopravním zpožděním

T_{..} – doba průtahu

T₉₅ – čas, kdy přechodová charakteristika regulované soustavy dosáhne 95% své ustálené hodnoty

T₁ – největší časová konstanta regulované soustavy

$$\sum_i \tau_i$$
 – součet časových konstant regulované soustavy

Z podstaty odvození číslicových PSD algoritmů je zřejmé, že zmenšováním vzorkovací periody dochází k přiblížení spojité PID regulační funkce. Se zvětšující se periodou vzorkování roste vliv zpoždění v realizaci změny akční veličiny na spojitě probíhající změny regulační odchylky. Při překročení vzorkovací periody do jisté velikosti dojde ke ztrátě stability.

Použitá, případně doporučená literatura:

- 1. Balátě, J.:Automatické řízení. BEN-technická literatura, 2. přepracované vydání, Praha, 2004.
- 2. Vašek, V.:Teorie automatického řízení II. VUT v Brně, Brno, 1990.