MO405/MC878 - Teoria e Aplicações de Grafos Lista de Exercícios 4

Os exercícios sem marcas são (ou deveriam ser) relativamente simples. Os exercícios marcados com (*) exigem alguma reflexão.... Os exercícios marcados com (**) são mais difíceis.

Observação. A não ser que seja dito o contrário ou óbvio no contexto, nesta lista n e m denotam respectivamente o número de vértices e arestas de um grafo denotado por G.

- 1. Prove ou mostre um contra-exemplo.
 - (a) Todo grafo conexo possui pelo menos m n + 1 circuitos distintos.
 - (b) Uma floresta G possui n c(G) arestas.
 - (c) Um grafo G com m = n é um circuito.
 - (d) Um grafo G com m=n contém exatamente um circuito.
 - (e) Um grafo é uma árvore se e somente se não possui uma aresta-de-corte.
 - (f) Um grafo é uma floresta se e somente se não possui uma aresta-de-corte.
 - (g) Uma floresta é um grafo bipartido.
 - (h) Um grafo G é uma árvore se e somente se m = n 1.
 - (i) Um grafo G é uma árvore se e somente se não possui circuitos.
 - (j) Um grafo G é uma floresta se e somente se m = n c(G).
 - (k) Um grafo G é uma floresta se e somente se não possui circuitos.
 - (1) Um grafo G com m < n possui um componente que é uma árvore.
 - (m) Todo grafo possui uma árvore geradora.
 - (n) Todo grafo possui uma floresta geradora.
 - (o) Se F é um subgrafo acíclico de um grafo conexo G, então existe uma árvore geradora em G que contém as arestas de F.
- 2. Prove que se T é uma árvore com $\Delta(T) \geq 2$ então T possui pelo menos $\Delta(T)$ folhas. Mostre que isto é o melhor possível exibindo um grafo com n vértices e Δ folhas para cada possível n, Δ com $n > \Delta \geq 2$.
- 3. Prove que:
 - (a) G é uma floresta se e somente se todo subgrafo induzido possui vértice de grau menor ou igual a 1;
 - (b) G é uma floresta se e somente se todo subgrafo conexo é um subgrafo induzido.

Por que não posso dizer árvore em vez de floresta nas afirmações acima?

- 4. Seja T uma árvore tal que cada vértice possui grau 1 ou k. Quais são os possíveis valores de |V(T)|?
- 5. Prove que toda árvore não-trivial T possui pelo menos dois conjuntos independentes maximais, com igualdade somente se T for uma estrela.

- 6. Toda árvore é um grafo bipartido! Mostre que toda árvore possui uma folha na maior das classes da bipartição (em ambas se elas têm o mesmo tamanho).
- 7. (*) Um vértice v é dito **paizão**¹ se é adjacente a pelo menos g(v)-1 folhas. É verdade que toda árvore com $n \ge 2$ possui um vértice paizão?
- 8. (*) Prove que se T é uma árvore com k arestas e G é um grafo simples com $\delta(G) \ge k$, então G contém um subgrafo isomorfo a T. Sugestão: use indução em k.
- 9. Suponha que T seja uma árvore na qual todo vértice adjacente a uma folha tem grau pelo menos 3. Prove que T possui duas folhas adjacentes a um mesmo vértice.
- 10. Suponha que T e T' sejam árvores geradoras de um grafo G. Para cada aresta $e \in E(T) E(T')$, prove que existe uma aresta $e' \in E(T') E(T)$ tal que T' + e e' e T e + e' são árvores geradoras de G.
- 11. Sejam g_1, \ldots, g_n inteiros positivos com $n \geq 2$. Prove que existe uma árvore com vértices de graus g_1, \ldots, g_n se e somente se $\sum_{i=1}^n g_i = 2n 2$.
- 12. (*) Seja G um grafo com $n \geq 3$ tal que G v é uma árvore para todo $v \in V(G)$. Determine m em função de n e use isto para determinar G.
- 13. (**) Prove a propriedade de Helly para árvores: sejam T_1, \ldots, T_k subárvores de uma árvore T tais que quaisquer duas dessas árvores possuem um vértice em comum. Prove que existe um vértice comum a **todas** essas subárvores.

Método 1: use indução em k; vai ser preciso fazer duas induções.

Método 2: use indução em |V(T)|; tome uma folha de T e verifique se para alguma das subárvores vale que $V(T_i) = \{v\}$. Se isto não valer, modifique T e as subárvores T_i convenientemente.

Mostre que a afirmação acima não é verdade se T não for uma árvore.

- 14. Seja G um grafo conexo contendo um único circuito, digamos C. Determine o número de árvores geradoras de G.
- 15. Seja G um grafo conexo contendo exatamente dois circuitos C e C'. Determine o número de árvores geradoras de G. Sugestão: esses circuitos podem ter arestas em comum?
- 16. (*) Determine o número de árvores geradoras de $K_{2,n}$ para $n \geq 2$. Sugestão: chame de x e y os vértices da menor parte. Note que em qualquer árvore geradora exatamente um dos vértices da outra parte tem que ser vizinho de x e de y enquanto cada um dos outros vértices é vizinho de x ou de y (mas não de ambos). Conte o número de possibilidades.
- 17. (**) Seja e uma aresta qualquer de K_n onde $n \ge 3$. Prove que o número de árvores geradoras de $K_n e$ é $(n-2)n^{n-3}$. Sugestão: note que por simetria, é irrelevante qual aresta de K_n é removida. Conte o número de pares (f,T) onde T é uma árvore geradora de K_n e $f \in E(T)$. Divida este resultado por ?? para obter o número de árvores geradoras de K_n que contém uma aresta fixa e. O resto deveria ser fácil.

¹Pura falta de imaginação.