Lista 3

Contents

Problem 1																 				1
Problem 2																 				1
Problem 3																 			2	2

Problem 1

Solution.

a. Note that a basis of T_x^*M is $df_1, \ldots, df_k, x_{k+1}, \ldots, x_{2n}$. Then any 2n-form is a multiple of $df_1 \wedge \ldots \wedge df_k \wedge dx_{k+1} \wedge \ldots \wedge d_{2n}$.

Problem 2

Solution.

a. Consider the bundle isomorphism

$$\omega^{\flat}: TM \longrightarrow T^*M$$
$$\nu \longmapsto i_{\nu}\omega$$

Then

$$TN^{\omega} = (\omega^{\flat})^{-1}(Ann(TN)).$$

Since M is the level set of a regular value, there are local coordinates of the form $(\psi^1,\ldots,\psi^k,\chi^{k+1},\ldots,\chi^{2n})$. Vectors tangent to N are expressed only in terms of the vectors $\vartheta_{k+1},\ldots,\vartheta_{2n}$ and thus covectors that vanish on TN are those which vanish on $\vartheta_{k+1},\ldots,\vartheta_{2n}$. We see that a basis for Ann(TN) is given by $d\psi^1,\ldots,d\psi^k$. These generators map to their hamiltonian vector fields under $(\omega^\flat)^{-1}$:

$$\left(\omega^{\flat}\right)^{-1}(d\psi^{i}) = X_{\psi^{i}}$$

So TN^{ω} is generated by the X_{ψ^i} . Notice that an element $\nu \in TM$ is actually in TN iff $\alpha(\nu) = 0 \ \forall \alpha \in Ann(TN)$. Then we see that

$$\begin{split} \mathsf{TN}^\omega \subset \mathsf{TM} &\iff X_{\psi^{\mathfrak{i}}} \in \mathsf{TN} \quad \mathfrak{i} = 1, \dots, k \\ &\iff d\psi^{\mathfrak{j}}(X_{\psi^{\mathfrak{i}}})|_N = 0 \quad \mathfrak{i}, \mathfrak{j} = 1, \dots, k \\ &\iff \omega(X_{\psi^{\mathfrak{i}}}, X_{\psi^{\mathfrak{j}}})|_N = 0 \quad \mathfrak{i}, \mathfrak{j} = 1, \dots, k \\ &\iff \{\psi^{\mathfrak{i}}, \psi^{\mathfrak{j}}\}|_N = 0 \quad \mathfrak{i}, \mathfrak{j} = 1, \dots, k \end{split}$$

b. The matrix $(c^{i,j})$ determines the bundle isomorphism ω^{\sharp} :

Problem 3

Solution. By an analogue argument to Problem 2a we know that Ann(D) is a coisotropic submanifold iff $\{f,g\}=0$ for all $f,g\in I_{Ann(D)}$. Now a vector field X corresponds naturally to an element of the double dual $\xi\in T^*(T^*(M))$ given by $\xi\eta(X)=\eta(X)$ for $\eta\in T^*M$. Notice that if $X\in D$ then $\xi\in Ann(Ann(D))$.