

2022.1 - Grupo 1

Dicionários

34

Conjunto chave-valor

```
SINTAXE
                                                ADICIONANDO VALORES
dicionário = {chave1:valor1, chave2:valor2, ...}
                                                dicionário ['chave'] = valor
ex:
                                                ex:
                                                calçado ['Luís'] = 37
 calçado= { 'Joao': 36, 'Maria':34}
ACESSAR VALORES
                                                DELETANDO VALORES
print(dicionário['chave'])
                                                del(dicionário['chave'])
ex:
                                                ex:
 print(calçado['Maria'])
                                                del(dicionário['chave'])
```


Matplotlib

Line Plot

Como criar

```
import matplotlib.pyplot
as plt
    plt.plot(x,y)
    plt.show()
```

<u>USO</u>

tendências e movimentos ao longo do tempo

Scatter Plot

Como criar

```
import matplotlib.pyplot
as plt
    plt.scatter(x,y)
    plt.show()
```

<u>Uso</u>

relação entre **causa e efeito** entre duas variáveis numéricas

Histogram

Como criar

```
import matplotlib.pyplot
as plt
    plt.hist(data,bins)
    plt.show()
```

<u>Uso</u>

distribuição dos dados/frequência

```
Customização: plt.xlabel(), plt.ylabel(), plt.title(), plt.xticks(), plt.yticks(), plt.grid(True)
```


NumPy

IMPORTANDO O NUMPY

import numpy as np

SINTAXE

variavel_lista = np.array([])

ex:

variavel_lista = np.array([1,2,3])

Diagrama de Tipos de Arranjos

FUNÇÕES

np.função()
variavel.função()

ex:

array_1.size
np.delete

Funções Estatísticas e Álgebra Linear

NumPy

Método/Função*	Descrição
sum	Soma todos os elementos de um array ou ao longo de um eixo.
mean	Realiza a média aritmética de todos os elementos do array ou ao longo de um eixo.
std	Calcula o desvio padrão de todos os elementos do <i>array</i> ou ao longo de um eixo.
min, max	Verifica o valor mínimo e máximo entre todos os elementos do <i>array</i> ou ao longo de um eixo.
argmin, argmax	Encontra os índices dos elementos mínimo e máximo, respectivamente.
det	Calcula o determinante de uma matriz.
eig	Calcula os autovalores e os autovetores de uma matriz quadrada.
inv	Calcula a inversa de uma matriz quadrada.
solve	Resolve o sistema linear Ax=b para x, em que A é uma matriz quadrada.
fft	Calcula a transformada discreta de Fourier para uma dimensão.

NumPy

Funções Unárias

Função unária	Descrição
abs, fabs	Calcula o valor absoluto de números inteiros, de ponto flutuante e complexos para todos os elementos.
sqrt	Calcula a raiz quadrada de cada elemento do array.
square	Calculo o quadrado (x²) de cada elemento do array.
exp	Calcula o exponencial (e ^x) de cada elemento do <i>array</i> .
log	Calcula o logaritmo natural (base e) de todos os elementos.
rint	Arredonda os elementos para o inteiro mais próximo, preservando o dtype.
isnan	Retorna um array booleano indicando se cada elemento é vazio - NaN (do inglês <i>Not a Number</i>).
cos, cosh, sin, sinh, tan, tanh	Funções trigonométricas regulares e hiperbólicas.

NumPy

Funções Binárias

Função binária	Descrição
add	Realiza a soma dos elementos correspondentes em arrays.
subtract	Realiza a subtração dos elementos do segundo array do primeiro.
multiply	Realiza a multiplicação vetorial entre os arrays.
divide	Realiza a divisão dos elementos dos arrays.
power	Eleva os elementos do primeiro array pela potência dos elementos equivalentes do segundo array.
greater, greater_equal, less, less_equal, equal, not_equal	Faz uma comparação para todos os elementos resultando em um array booleano (equivalente aos operadores relacionais >, >=, <, <=, == e !=).

Simulações em Python

MÓDULO RANDOM

import numpy as np

- Módulo do Numpy
- Geração de números aleatórios

np.random.rand()

np.random.randint(1,7)

SEED

- Ponto inicial de um algoritmo
- Garante reprodutibilidade

np.random.seed(0)

np.random.randint(1,7)

5

Simulações em Python

PROBABILIDADE

- Abstrata
- Concreta

USANDO LAÇOS

```
for c in range(100):
    print(np.random.randint(1,7))
```

```
for c in range(10000):
    print(np.random.randint(1,7))
```

VISUALIZAÇÃO

```
x = []
for c in range(10000):
    x.append(np.random.randint(1,7))
```

```
x == [5, 3, 5, 2, 5, ...]
```


Simulações em Python

Pandas

IMPORTANDO

import pandas as pd

SERIES

Uma coluna

pd.Series()

pd.Series(x)

EXEMPLO:

import pandas as pd
x = [1, 2, 3]
print(pd.Series(x))

MUDANDO INDEX: 1 2

import pandas as pd

x = [1, 2, 3]
print(pd.Series(x, index = ['a', 'b', 'c']))

a b c

Pandas

DATAFRAME

Dados em tabelas

pd.DataFrame()

DICIONÁRIOS E DATAFRAMES

- chaves são os rótulos das colunas
- valores são as colunas

INDEX

```
dicionario.index =['a1','a2','a3']
```

EXEMPLO:

alunos faltas 50

> 85 73

a2

а3

3

```
import pandas as pd
dicionario = {"alunos": [50, 85,
73], "faltas": [3, 7, 8]}
dados = pd.DataFrame(dicionario)
dados.index =['a1','a2','a3']
print(dados)
```


Pandas

ARQUIVOS CSV

- colocar caminho até arquivo dentro da função
- caso a primeira coluna seja o título de linha, adicionar dentro da função:

```
, index_col = 0)
```

LOC:

Seleciona linha dos dados

```
dicionario.loc[['a2']]
```

Seleciona linha e coluna

```
dicionario.loc[['a2']][['faltas']]
```

ILOC:

```
dicionario.iloc[[1]]
```

```
dados = pd.read_csv('arquivo.csv', index_col = 0))
```

alunos faltas 1 50 3 2 85 7 3 73 8