Parallelism in non-spectral, global GKW

- For global version, radial wavevectors replaced by finite differences and multi-point gyro-average:
- $G=G^\dagger=J_0(k_\perp(\mu)
 ho_s)$ local spectral
- Significant changes to field solve & gyroaverage

$$(G(\mathbf{x}, \mu, \operatorname{sp})f(\mathbf{x}))_i = G_{ij}f_j$$

non-spectral

$$\sum_{\text{sp}} \int d^3 \mathbf{v} \left[Z_s eGf(\mathbf{x}) + F_M \frac{Z_s^2 e^2}{T_s} (GG^{\dagger} - 1) \phi(\mathbf{x}) \right] = 0$$

$$I(k_y, x_i, s) + P_{ij} \phi(k_y, x_j, s) = 0$$

- Advantages: Global profiles, another direction for domain decomposition:
 - 6D distribution
 - 3D fields
 - 5D gyro-averaged fields
 - 4D collisions conservation field
 - 5D domain decomposition
 - 5D MPI Cartesian communicator

$$f(k_y, x, s, \mu, v_{\parallel}, \text{sp})$$

$$\phi(k_y, x, s)$$

$$< \phi > (k_y, x, s, \mu, \text{sp})$$

$$x,s,\mu,v_\parallel,\mathrm{sp} \ x,s,\mu,v_\parallel,\mathrm{sp}$$

Field solve becomes complex, multi-stage MPI

Non-spectral parallel field solve $J_{\ell v_{\parallel}} = \int_{\ell v_{\parallel}} \mathrm{d}v_{\parallel} Z f$ Local integral → 5D field MPI P2P (5D field, 1D com): x buffers $J_{\ell_X} \to J_{I_X}$ $I_{\ell_{\mu,v_{\parallel},\mathrm{sp}}} = \int_{\ell\mu} \mathrm{d}\mu \, G J_{\ell v_{\parallel}} \frac{2\pi B}{m}$ Gyro-av., local int. → 3D field $I_{g_{\mu,e_\parallel,\mathrm{sp}}} = \Sigma_{g\mathrm{sp},gv_\parallel,g\mu} I_{\ell_{\mu,e_\parallel,\mathrm{sp}}}$ MPI Allred. sum (3D field, 3D com) MPI Allgather X (3D field, 1D com) $I_{\ell x, a y} \rightarrow I_{a x, \ell y}$ y scatter (would need double P2P even if polarisation solve not global) $\phi_{gx,\ell y} = -P_{gx,\ell y}^{-1} I_{gx,\ell y}$ Implicit solve (UMF), global in X $\phi_{gx,\ell y} \to \phi_{\ell x,gy}$ x scatter MPI Allgather y (3D field, 1D com) MPI P2P (3D field, 1D com): x buffers $\phi_{\ell_x} \to \phi_{L_x}$ Gyro-av. (store in 5D) $\langle \phi \rangle_i (\mathbf{x}, \mu, \mathrm{sp}) = G_{ij}(\mu, \mathrm{sp}) \phi_i(\mathbf{x})$

- Communicate radial buffer cells before each gyroav.
- Polarization solve implicit
 - Matrix ~ Nx²
 - Uses UMFpack library
 - No radial decomposition
 - Instead parallelise over binormal modes, using Cartesian direction usually used for velocity
 - Allows good scaling
 - MPI Allgather / AllScatter
- 5 MPI communications total
 - Only Allreduce is costly
- Limitation: Gyroradii may cross <=1 proc. boundary

Field solve becomes complex, multi-stage MPI

Non-spectral parallel field solve			
Local integral \rightarrow 5D field $J_{\ell v_\parallel} = \int\limits_{\ell v_\parallel} \mathrm{d}v_\parallel Zf$	2.9		
MPI P2P (5D field, 1D com): x buffers $J_{\ell x} o J_{Lx}$	1.3		
Gyro-av., local int. $ o$ 3D field $I_{\ell_{\mu,\nu_{ },\mathrm{sp}}} = \int\limits_{\ell\mu} \mathrm{d}\muG J_{\ell v_{ }} rac{2\pi B}{m}$	3.8		
MPI Allred. sum (3D field, 3D com) $I_{g_{\mu,c_\parallel,\mathrm{sp}}} = \Sigma_{g\mathrm{sp},gv_\parallel,g\mu} I_{\ell_{\mu,c_\parallel,\mathrm{sp}}}$	5.4		
MPI Allgather X (3D field, 1D com) $I_{\ell x, gy} \to I_{gx, \ell y}$ y scatter (would need double P2P even if polarisation solve not global)	4.5		
Implicit solve (UMF), global in x $\phi_{gx,\ell y} = -P_{gx,\ell y}^{-1}I_{gx,\ell y}$	7.3		
MPI Allgather y (3D field, 1D com) $\phi_{gx,\ell y} \to \phi_{\ell x,gy}$ x scatter	1.3		
MPI P2P (3D field, 1D com): \mathbf{x} buffers $\phi_{\ell x} \to \phi_{I.x}$	0.3		
Gyro-av. (store in 5D) $\langle \phi \rangle_i (\mathbf{x}, \mu, \mathrm{sp}) = G_{ij}(\mu, \mathrm{sp}) \phi_j(\mathbf{x})$	0.2		

Percentages of total runtime for large electromagnetic collisional case on 32,768 processes

Important for good MPI scaling that the runtime fraction of the field solve does not rise

All MPI ops

Buffer cells FD MPI P2P 4D comm v_{\parallel}, μ, s, x 6D dis (2p) f

Single Explicit Step

- Overlap communications with computation
- 7 P2P communications nonblocking (MPI_Startall, MPI_waitall)
 - Each managed by Fortran structure
- 2 MPI Allgather ops
- 2 MPI Allreduce ops (bottleneck)
- Parallel direction gives most efficient scaling: No Integrals or Allreduce
- 12 x 2 MPI derived datatypes for different buffer arrays
- All this allows efficient scaling...

Non-spectral parallel field solve

Local integral \rightarrow 5D field $J_{\ell \nu} = \int\limits_{\mathcal{C}_1} \mathrm{d} c_0 N f$ MPI P2P (50 field, 10 com): x buffers $J_{\ell x} \rightarrow J_{Lx}$ Gyro-av., local int. \rightarrow 3D field $I_{\ell \nu_1 + \rho} = \int\limits_{\mathcal{C}_2} \mathrm{d} \mu \, G J_{\ell \gamma} \frac{2\pi B}{\kappa \ell}$ MPI Allred. sum (3D field, 3D com) $I_{\ell \nu_1 + \rho} = \sum_{g \in \mathcal{G}_2} \mu_{g \in \mathcal{G}_2} J_{\ell \gamma} J_{\ell \gamma} J_{\ell \gamma}$ MPI Allgather x (3D field, 1D com) $I_{\ell x, g \in \mathcal{G}_2} \rightarrow I_{g \in \mathcal{G}_2} J_{\ell \gamma} J_{g \in \mathcal{G}_2}$ (would used double P2P even if polarisation solve not global)

Implicit solve (uwF), global in x $\Phi_{g x, \ell \nu} \rightarrow \Phi_{\ell x, g \nu} \times \text{scatter}$ MPI Allgather y (3D field, 3D com) $\Phi_{g x, \ell \nu} \rightarrow \Phi_{\ell x, g \nu} \times \text{scatter}$

Krook mirror MPI P2P 1D comm $v_{||}$ 6D dis (nvp) f

Collisions conserve, field integrals MPI Allred. sum (4D field, 2D comm)

MPI P2P (3D held, 1D com): X, buffers

Gyro-av. (store in 5D)

Buffer cells FD

MPI P2P

1D comm

5D field (nGAp) $< \phi >$

Krook operator

 $\phi_{S_2} \rightarrow \phi_{T_1}$

 $<\phi>_i(\mathbf{x},\mu,\mathrm{sp})=G_{ii}(\mu,\mathrm{sp})\phi_i(\mathbf{x})$

Nonlinear Terms
FFT in y, FD in x
Need x buffers

Linear Terms (FD) Mat-Vec Multiply

Strong Scaling Performance (HELIOS)

For typical physics problems: electromagnetic collisions (no conservation, no Krook)

Comments on the HELIOS scaling

- Omit timing of the first loop (order of seconds for first MPI calls)
- Scaling breaks down when field solve fraction of runtime increases
 - Inefficient Collectives: large Allreduce and Allgather
 - Use MPI_STATUSES_IGNORE, MPI_IN_PLACE
- Intel MPI and BullX MPI perform differently
 - Intel MPI manages cache better affects memory bandwidth?
 - Intel MPI better at largest collectives
 - BullX good at smaller # of cores
 - Many environment variables to tweak for largest jobs
 - No general optimal settings
 - Each case / code is different
 - Intel MPItune might help?
 - OMP COLL OPT

Large, time (s):	Bull MPI		Intel MPI	
1600 iterations	32K	64K	32K	64K
Field Solve	21	25	26	22
Non Linear	13	07	12	06
Buffer cells f	09	11	10	05
Linear Term	21	11	17	08
Total	70	56	68	43
Efficiency	0.81	0.52	0.82	0.66

Summary (MPI part)

- Explicit Eulerian gyro-kinetics with finite differences on appropriate grids allows parallel domain decomposition in 5 dimensions
- Permits efficient exploitation of the largest present day supercomputers
 - Limited by available resources, not code capability
- Requires complex multi-dimensional MPI
 - multiple communicators
 - multiple derived datatypes
 - persistent non blocking communications (some person-years of development and testing)
- Allows us to do new and interesting physics (e.g. NTM simulations in first part of the talk)