Foundations of Modern Optics

Dimitris Papazoglou

dpapa@materials.uoc.gr

Materials Science and Technology Department University of Crete

Licenses

This educational material is subject to the Creative Commons license and in particular:

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

-For educational materials, such as images, subject to another type of license, the license is expressly stated.

2

Basic principles

Electromagnetism

Maxwell Equations

$$\nabla \cdot \mathbf{D} = \rho, \quad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \cdot \mathbf{B} = 0, \quad \nabla \times \mathbf{H} = \mathbf{j} + \frac{\partial \mathbf{D}}{\partial t}$$

Electric and magnetic properties are described using 3+3 vectors!

Why do we need so many vectors?

Interaction of field with matter

Material equations

Vacuum permittivity $\mathbf{D} = \varepsilon_o \mathbf{E} + \mathbf{P}$ $\mathbf{B} = \mu_o (\mathbf{H} + \mathbf{M})$

vacuum permeability

permittivity

dielectric constand

isotropic

$$\mathbf{D} = \varepsilon \mathbf{E} = \varepsilon_r \varepsilon_o \mathbf{E}$$
$$\mathbf{B} = \mu \mathbf{H} = \mu_r \mu_o \mathbf{H}$$

magnetic permeability

relative magnetic permeability

Electrically isotropic Magnetically isotropic

 $\mathbf{B}//\mathbf{H}$

Electrically anisotropic Magnetically isotropic

 $\mathbf{D}/\!/\mathbf{E}$

Electrically isotropic Magnetically anisotropic

Maxwell equations (integral form)

$$\iiint\limits_{V} \nabla \cdot \mathbf{D} \, dv = \iiint\limits_{V} \rho \, dv \Longrightarrow \bigoplus\limits_{s} \mathbf{D} \cdot \mathbf{n} \, ds = q$$

$$\iiint\limits_{V} \nabla \cdot \mathbf{B} \, dv = 0 \Longrightarrow \bigoplus\limits_{s} \mathbf{B} \cdot \mathbf{n} \, ds = 0$$

$$\iint_{S} (\nabla \times \mathbf{E}) \cdot \mathbf{n} \, ds = -\iint_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{n} \, ds \Rightarrow \oint_{I} \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial}{\partial t} \iint_{S} \mathbf{B} \cdot \mathbf{n} \, ds$$

$$\iint_{S} (\nabla \times \mathbf{H}) \cdot \mathbf{n} \, ds = \iint_{S} \mathbf{j} \cdot \mathbf{n} \, ds + \iint_{S} \frac{\partial \mathbf{D}}{\partial t} \cdot \mathbf{n} \, ds \Rightarrow \oint_{L} \mathbf{H} \cdot d\mathbf{l} = I + \frac{\partial}{\partial t} \iint_{S} \mathbf{D} \cdot \mathbf{n} \, ds$$

H/M wave equation

Derivation of the wave equation for an isotropic material

$$\nabla \times (\nabla \times \mathbf{E}) = -\nabla \times \frac{\partial \mathbf{B}}{\partial t} = -\frac{\partial}{\partial t} (\nabla \times \mathbf{B})$$

$$\mathbf{B} = \mu \mathbf{H}$$

$$\nabla \times (\nabla \times \mathbf{E}) = \nabla \cdot (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E}$$

$$\Rightarrow \mathbf{D} = \varepsilon \mathbf{E}$$

$$\rho = 0, \ \mathbf{j} = \mathbf{0} \Rightarrow \nabla \cdot \mathbf{E} = 0$$

$$-\nabla^2 \mathbf{E} = -\mu \frac{\partial}{\partial t} (\frac{\partial}{\partial t} \mathbf{D}) \Rightarrow \nabla^2 \mathbf{E} - \varepsilon \mu \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0$$

wave equation

$$\varepsilon\mu = \frac{1}{\upsilon^2} \Rightarrow \upsilon = \frac{1}{\sqrt{\varepsilon\mu}} = \frac{1}{\sqrt{\varepsilon_r \mu_r}} \frac{1}{\sqrt{\varepsilon_o \mu_o}} = \frac{c}{\sqrt{\varepsilon_r \mu_r}}$$
 light velocity in vacuum

light velocity

Energy law of the E/M field. Poynting vector

$$\iint_{S} (\mathbf{E} \times \mathbf{H}) \cdot \mathbf{n} \, dS + \iiint_{V} (\mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t} + \mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t}) \, dv + \iiint_{V} \mathbf{j} \cdot \mathbf{E} \, dv = 0$$

Energy flow of E/M radiation

Electric and Magnetic energy density

Losses

$$S = E \times H$$

Poynting vector

Harmonic plane waves

harmonic plane wave

$$\mathbf{A} = \mathbf{A}_o e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}$$

$$\nabla \cdot \mathbf{A} = i\mathbf{k} \cdot \mathbf{A}, \quad \nabla \times \mathbf{A} = i\mathbf{k} \times \mathbf{A}, \quad \frac{\partial \mathbf{A}}{\partial t} = -i\omega \mathbf{A}, \quad \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\omega^2 \mathbf{A}$$

$$\mathbf{k} \cdot \mathbf{r} = (k_x \hat{\mathbf{x}} + k_y \hat{\mathbf{y}} + k_z \hat{\mathbf{z}}) \cdot (x \hat{\mathbf{x}} + y \hat{\mathbf{y}} + z \hat{\mathbf{z}}) = k_x x + k_y y + k_z z$$

$$\nabla \cdot \mathbf{A} = \mathbf{A}_{o} e^{-i\omega t} \left(\frac{\partial}{\partial x} \hat{\mathbf{x}} + \frac{\partial}{\partial y} \hat{\mathbf{y}} + \frac{\partial}{\partial z} \hat{\mathbf{z}} \right) \cdot e^{i\mathbf{k}\cdot\mathbf{r}} =$$

$$= \mathbf{A}_{o} e^{-i\omega t} i \left(k_{x} \hat{\mathbf{x}} + k_{y} \hat{\mathbf{y}} + k_{z} \hat{\mathbf{z}} \right) e^{i\mathbf{k}\cdot\mathbf{r}}$$

$$\Rightarrow \nabla \cdot \mathbf{A} = i\mathbf{k} \cdot \mathbf{A}$$

$$\begin{split} \nabla\times\mathbf{A} &= \nabla\times[\mathbf{A}_{o}e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}] = \\ e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}\nabla\times\mathbf{A}_{o} - \mathbf{A}_{o}\times\nabla e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} = \\ &= -e^{-i\omega t}\mathbf{A}_{o}\times\nabla e^{i\mathbf{k}\cdot\mathbf{r}} = i\,\mathbf{k}\times\mathbf{A} \end{split}$$

Assuming that our E/M wave is plane and harmonic

$$\mathbf{D} = \mathbf{D}_{o} e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}, \quad \mathbf{E} = \mathbf{E}_{o} e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}, \quad \mathbf{B} = \mathbf{B}_{o} e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}, \quad \mathbf{H} = \mathbf{H}_{o} e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}$$

Maxwell equations a simplified:

$$\nabla \cdot \mathbf{D} = \rho, \quad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \cdot \mathbf{B} = 0, \quad \nabla \times \mathbf{H} = \mathbf{j} + \frac{\partial \mathbf{D}}{\partial t}$$

$$\Rightarrow i \mathbf{k} \cdot \mathbf{D} = 0, \quad i \mathbf{k} \times \mathbf{E} = i\omega \mathbf{B}$$

$$i \mathbf{k} \cdot \mathbf{B} = 0, \quad i \mathbf{k} \times \mathbf{H} = -i\omega \mathbf{D}$$

$$\mathbf{k} \cdot \mathbf{D} = 0 \Rightarrow \mathbf{k} \perp \mathbf{D}$$

$$\mathbf{k} \cdot \mathbf{B} = 0 \Longrightarrow \mathbf{k} \perp \mathbf{B}$$

$$\mathbf{k} \times \mathbf{E} = \omega \mathbf{B} \Rightarrow \mathbf{k} \perp \mathbf{B}, \ \mathbf{E} \perp \mathbf{B}$$

$$\mathbf{k} \times \mathbf{H} = -\omega \mathbf{D} \Rightarrow \mathbf{k} \perp \mathbf{D}, \mathbf{H} \perp \mathbf{D}$$

in isotropic materials

D//**E**, **B**//**H**

we then get:

$$\mathbf{k} \perp \mathbf{D} \Rightarrow \mathbf{k} \perp \mathbf{E}$$

$$\mathbf{k} \perp \mathbf{B} \Rightarrow \mathbf{k} \perp \mathbf{H}$$

ISOTROPIC MATERIALS

ANISOTROPOIC MATERIALS

D//**E**, **B**//**H**

 $\mathbf{B}//\mathbf{H}$

D//E

Electrically anisotropic Magnetically isotropic

Electrically isotropic Magnetically anisotropic

Electrically anisotropic Magnetically anisotropic

 $\mathbf{k} \perp \mathbf{D}, \ \mathbf{k} \perp \mathbf{B}, \ \mathbf{E} \perp \mathbf{B}, \ \mathbf{H} \perp \mathbf{D}$

Pointing vector in isotropic materials (harmonic fields)

isotropic materials

$$D/\!\!/E, B/\!\!/H \Rightarrow \begin{cases} k \perp D \Rightarrow k \perp E \\ k \perp B \Rightarrow k \perp H \end{cases}$$

Plane harmonic waves

$$\mathbf{A} = \mathbf{A}_o e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}$$

$$|\mathbf{S}| = n \,\varepsilon_o \, c \, |\mathbf{E}|^2$$

The H/M field of the optical wave oscillates much faster than the response time of our detector!

How do we detect H/M radiation?

The oscillation period of the Poynting vector is <2 fs in the visible range.

No detector is so fast.

In fact, we measure the **average** value of the energy transferred from the optical wave over **many oscillation periods**.

Intensity

The average, over time, value of the Poynting vector magnitude is called intensity

$$I \equiv \langle |\mathbf{S}| \rangle_{t} = n \,\varepsilon_{o} \, c \, \langle |\mathbf{E}|^{2} \rangle_{t} \tag{W/m^{2}}$$

For harmonic waves:

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}_{o}(\mathbf{r})\cos(\omega t) \Rightarrow$$

$$\left\langle \left| \mathbf{E} \right|^{2} \right\rangle_{t} = \left| \mathbf{E}_{o} \right|^{2} \left\langle \cos^{2}(\omega t) \right\rangle_{t} = \left| \mathbf{E}_{o} \right|^{2} \left\langle \frac{1}{2} [1 + \cos(2\omega t)] \right\rangle_{t} = \frac{1}{2} \left| \mathbf{E}_{o} \right|^{2} \Rightarrow$$

$$I = \frac{1}{2} n \,\varepsilon_o \, c \left| \mathbf{E}_o \right|^2$$

Intensity

$$I = \frac{1}{2} n \,\varepsilon_o \, c \left| \mathbf{E}_o \right|^2$$

Spectrum of the electromagnetic radiation

E/M radiation sources

Electrodynamics

Accelerating charges

Alternating currents

There is no lower frequency limit

Quantum mechanical

Energy transitions

vibrations

Electromagnetic radiation spectrum

300 km Radiofrequencies 300 m 30 cm **Microwaves**

1 kHz

1 Mhz

1 Ghz

300 μm

1 Thz

Infrared (IR)

Optical properties

Refractive index

The refractive index is correlated to the **propagation velocity** of an iso-phase surface of an E/M wave

$$n \equiv \frac{c}{\upsilon} = \sqrt{\varepsilon_r \mu_r} \cong \sqrt{\varepsilon_r} \quad (\mu_r \approx 1)$$

depends on frequency

Dispersion

The velocity of E/M radiation in a dielectric medium depends on frequency

Souce: wikipedia

Dimitris Papazoglou dpapa@materials.uoc.gr

Dispersion: Classical approach

- The dielectric is not continuous but consists of a large number of atoms that can be polarized.
- O The variable electric field E(t) of the E/M wave "drives" the atoms into a forced oscillation.
- \circ Each oscillator has a natural resonance frequency ω_o

$$\mathbf{D} = \boldsymbol{\varepsilon}_o \mathbf{E} + \mathbf{P}$$

$$\mathbf{P} = \boldsymbol{\varepsilon}_o \boldsymbol{\chi}_e \mathbf{E}$$

electric susceptibility can be a tensor in anisotropic materials

Dispersion: Classical approach

Isotropic material

This model is mathematically equivalent to a forced oscillator

displacement harmonic field
$$m_{e}\frac{d^{2}x}{dt^{2}}=-k\;x+q_{e}E_{o}e^{i\omega t}$$
 restoring force *

$$\left. \begin{array}{l}
 m_e \frac{d^2 x}{dt^2} = -k x \\
 x(t) = x_o e^{i\omega_o t}
 \end{array} \right\} \Rightarrow -m_e x_o \omega_o^2 e^{i\omega_o t} = -k x_o e^{i\omega_o t} \Rightarrow k = m_e \omega_o^2$$

$$m_{e} \frac{d^{2}x}{dt^{2}} = -m_{e} \omega_{o}^{2} x + q_{e} E_{o} e^{-i\omega t}$$

$$x(t) = x_{o} e^{-i\omega t}$$

$$\Rightarrow$$

$$-m_e \omega^2 x_o e^{-i\omega t} = -m_e \omega_o^2 x_o e^{-i\omega t} + q_e E_o e^{-i\omega t} \Longrightarrow$$

$$x_o = \frac{q_e}{m_e} \frac{1}{\omega_o^2 - \omega^2} E_o$$

$$P(t) = Nq_e x(t) \Rightarrow P(t) = \frac{Nq_e^2}{m_e} \frac{1}{\omega_o^2 - \omega^2} E_o e^{-i\omega t}$$

$$D(t) = \varepsilon_o E(t) + P(t) = \varepsilon_o \varepsilon_r E(t)$$

$$\varepsilon_r = 1 + \frac{Nq_e^2}{\varepsilon_o m_e} \frac{1}{\omega_o^2 - \omega^2}$$

Dimitris Panazoalou, dnana@materials uoc ai

$$m_{e} \frac{d^{2}x}{dt^{2}} = -m_{e} \omega_{o}^{2} x - m_{e} \gamma \frac{dx}{dt} + q_{e} E_{o} e^{-i\omega t}$$

$$\Rightarrow x(t) = x_{o} e^{-i\omega t}$$

$$-m_e \omega^2 x_o e^{-i\omega t} = -m_e \omega_o^2 x_o e^{-i\omega t} + i m_e \gamma \omega x_o e^{-i\omega t} + q_e E_o e^{-i\omega t} \Rightarrow$$

$$x_o = \frac{q_e}{m_e} \frac{1}{\omega_o^2 - \omega^2 - i\gamma\omega} E_o$$

$$P(t) = Nq_e x(t) \Rightarrow P(t) = \frac{Nq_e^2}{m_e} \frac{1}{\omega_o^2 - \omega^2 - i\gamma\omega} E_o e^{-i\omega t}$$

$$D(t) = \varepsilon_o E(t) + P(t) = \varepsilon_o \varepsilon_r E(t)$$

$$\varepsilon_{r} = 1 + \frac{Nq_{e}^{2}}{\varepsilon_{o}m_{e}} \frac{1}{\omega_{o}^{2} - \omega^{2} - i\gamma\omega}$$

$$\varepsilon_{r} = 1 + \frac{Nq_{e}^{2}}{\varepsilon_{o}m_{e}} \frac{1}{\omega_{o}^{2} - \omega^{2} - i\gamma\omega} = \varepsilon' + i\varepsilon''$$

Dielectric constant can have an imaginary part

Therefore, the refractive index in the presence of absorption is complex

$$\varepsilon_r = (n+i\kappa)^2 \Rightarrow \begin{cases} \varepsilon' = n^2 - \kappa^2 \\ \varepsilon'' = 2n\kappa \end{cases}$$

$$n = \sqrt{\frac{1}{2}\sqrt{(\varepsilon'^2 + \varepsilon''^2)} + \varepsilon'}, \quad \kappa = \sqrt{\frac{1}{2}\sqrt{(\varepsilon'^2 + \varepsilon''^2)} - \varepsilon'}$$

Abbe number

Glass dispersion is categorized by the Abbe number:

$$V \equiv \frac{n(\lambda_Y) - 1}{n(\lambda_B) - n(\lambda_R)}$$

$$\lambda_R \equiv 486 \, nm$$

$$\lambda_{Y} \equiv 589 \, nm$$

$$\lambda_R \equiv 656 \, nm$$

Normal dispersion in the visible

Modeling the refractive index

Cauchy's equation

$$n(\lambda) = B + \sum_{n} \frac{C_n}{\lambda^{2n}} \cong B + \frac{C}{\lambda^2}$$

good model in the visible

Cauchy constants for various glasses		
Material	В	C (μm²)
Fused silica	1.4580	0.00354
Borosilicate glass BK7	1.5046	0.00420
Barium crown glass BaK4	1.5690	0.00531
Barium flint glass BaF10	1.6700	0.00743
Dense flint glass SF10	1.7280	0.01342

Modeling the refractive index

Sellmeier equation

$$n^{2}(\lambda) = 1 + \sum_{i} \frac{B_{i}\lambda^{2}}{\lambda^{2} - C_{i}} \cong 1 + \frac{B_{1}\lambda^{2}}{\lambda^{2} - C_{1}} + \frac{B_{2}\lambda^{2}}{\lambda^{2} - C_{2}} + \frac{B_{3}\lambda^{2}}{\lambda^{2} - C_{3}}$$

ВК7	Value
B_1	1.03961212
B_2	0.231792344
B_3	1.01046945
C_1	6.00069867×10 ⁻³ μm ²
C_2	2.00179144×10 ⁻² μm ²
C_3	1.03560653×10² μm²

Bob Mellish/Wikipedia

http://refractiveindex.info/

Imaginary part of the refractive index and absorption

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}_{o}e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}$$

$$\mathbf{k} = \tilde{n}k_{o}\hat{\mathbf{n}}$$

$$\tilde{n} = n + i\kappa$$

$$\Rightarrow \mathbf{E}(\mathbf{r},t) = \mathbf{E}_{o}e^{i(\tilde{n}k_{o}\hat{\mathbf{n}}\cdot\mathbf{r}-\omega t)} \Rightarrow$$

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}_o e^{-\kappa k_o \hat{\mathbf{n}} \cdot \mathbf{r}} e^{i(nk_o \hat{\mathbf{n}} \cdot \mathbf{r} - \omega t)}$$

$$\hat{\mathbf{n}} = \hat{\mathbf{z}} \Rightarrow \mathbf{E}(z,t) = \mathbf{E}_o e^{-\kappa k_o z} e^{i(nk_o z - \omega t)} \Rightarrow I(z) = I(0)e^{-2\kappa k_o z}$$

$$I(z) = I(0)e^{-az}$$

$$a = 2\kappa k_o = \frac{4\pi\kappa}{\lambda_o} (cm^{-1})$$

absorption coefficient

Penetration depth *d*:

the depth at which the intensity of the radiation inside the material falls to 1/e (about 37%) of its original value just beneath the surface.

$$d \equiv \frac{1}{a} = \frac{\lambda_o}{4\pi\kappa}$$

water (@ 550nm)
$$a \sim 5.10^{-4} cm^{-1} \Rightarrow d \sim 20m$$

$$a \sim 1.5 \cdot 10^6 \, cm^{-1} \Rightarrow d \sim 6.6 \, nm$$

Polarization of light

Polarization refers to the orientation of the electric field at a plane transverse to the propagation direction

Circularly polarized

Linear Polarization

$$\mathbf{E} = \mathbf{E}_{x} + \mathbf{E}_{y} = (E_{x}^{o} \hat{\mathbf{x}} + E_{y}^{o} \hat{\mathbf{y}}) \cdot e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)} =$$

$$= E_{o}(\cos \theta \, \hat{\mathbf{x}} + \sin \theta \, \hat{\mathbf{y}}) \cdot e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}$$

The polarization plane is the plane defined by **E**, **z**

Elliptical polarization

$$\mathbf{E}_{x} = E_{x}^{o} e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)} \hat{\mathbf{x}}
\mathbf{E}_{y} = E_{y}^{o} e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t + \varepsilon)} \hat{\mathbf{y}}$$

$$\Rightarrow \mathbf{E} = (E_{x}^{o} \hat{\mathbf{x}} + E_{y}^{o} e^{i\varepsilon} \hat{\mathbf{y}}) e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}$$

The field vector **E** describes an ellipse in the transverse plane

rotation handedness: Phase diagram

Dimitris Papazoglou dpapa@materials.uoc.gr

$\sin \varepsilon > 0$

$\sin \varepsilon < 0$

Circularly polarized light

Special case of elliptically polarized:

$$E_x^o = E_y^o = E_o, \quad \varepsilon = \pm \frac{\pi}{2}$$

$$\left. egin{aligned} \mathbf{E}_{x} &= E_{o} e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} \hat{\mathbf{x}}, \\ \mathbf{E}_{y} &= E_{o} e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t\pm\frac{\pi}{2})} \hat{\mathbf{y}} \end{aligned} \right\} \Longrightarrow$$

$$\mathbf{E} = E_o(\hat{\mathbf{x}} + e^{\pm i\frac{\pi}{2}}\hat{\mathbf{y}})e^{i(\mathbf{k}\cdot\mathbf{r} - \omega t)}$$
$$= E_o(\hat{\mathbf{x}} \pm i\hat{\mathbf{y}})e^{i(\mathbf{k}\cdot\mathbf{r} - \omega t)}$$

right-handed circularly polarized

circularly polarized

The vector **E** describes a circle on the transverse plane

Polarizer

An optical element that selectively absorbs the **E** field component that is vertical to its axis.

$$\mathbf{E}_{out} = a_{//}(\mathbf{E}_{in} \cdot \hat{\mathbf{p}})\hat{\mathbf{p}} + a_{\perp}(\mathbf{E}_{in} \cdot \hat{\mathbf{p}}_{\perp})\hat{\mathbf{p}}_{\perp}$$
component that propagates through

typical values

Ideal polarizer:

$$a_{ij} = 1$$
 $a_{ij} = 0$
 $\Rightarrow \mathbf{E}_{out} = (\mathbf{E}_{in} \cdot \hat{\mathbf{p}}) \hat{\mathbf{p}}$

Non-ideal polarizer

$$I(\theta) = I_o(H_{\perp} + H_{\parallel} \cos^2 \theta)$$