

Non-Isothermal Displacement Flow of Buoyant Fluids

Shadi Shariatnia+, Hessam Mohammadmoradi*, Kamran Alba+ +Complex Fluids Laboratory, Cullen College of Engineering *Networked Systems Laboratory, Computer Science Department

Introduction

- > This research studies non-isothermal displacement flow of two miscible fluids in an inclined (tilt angle ranging from 0° to 90°) duct.
- > This phenomena is frequently referred to as "lock-exchange" problem. [1,2]
- > The novelty of our research is that we experimentally investigate the influence of temperature gradient on the fingering characteristics and comparing the results with those we get from isothermal case.
- > Both density stable and density unstable displacements are studied.
- > We control dimensionless parameters of the fluid such as Atwood (At) and Peclet (Pe) number to study density stable and density unstable flows.

Figure 1. Schematic of Experimental Setup

specifications	
Length of Pipe	$L = 30 \ cm$
Gate Valve	L = 6 cm
Light fluid	Distilled water
Heavy fluid	dyed water with NaCl
Atwood number	$0.0035 \le At \le 0.01$
Viscosity	$445.56 \le \mu \le 992.88 \ uPa.S$

Motivations

- Oil and gas industry [3,4]
 - Plug cementing
 - Drilling
 - Mud removal
 - Primary cementing in HTHP wells
- Biomedical applications
 - Mucus
 - Biofilms
- Food industries
 - Equipment cleaning
 - Food processing
- Natural systems
 - Oceanography
 - Atmospheric sciences
- Hydraulic fracturing

Results

> High speed and infrared cameras have been applied simultaneously and image processing results indicated below were conducted through a MATLAB code.

Figure 2. Temperature Distribution of Hot Finger

Figure 3. Temperature Distribution in Infrared Camera

Results

Figure 4. Fingering of Light Fluid, At = 0.007

Figure 6. Fingering of Light Fluid, At = 0.007

Figure 5. Fingering of Heavy Fluid, At = 0.007

Figure 7. Fingering of Heavy Fluid, At = 0.007

Figure 8. Multi-Layered Fingering of Heavy Fluid, At = 0.007

References

- [1] A. Wakale, K. Venkatasubbaiah, K. C. Sahu, Computers and Fluids (2015) 54-
- [2] T. Seon, J. Znaien, D. Salin, J. P. Hulin, Physics of Fluids (2007) 19-123603.
- [3] K. Alba, S. M. Taghavi, I. A. Frigaard, Physics of Fluids (2012) 24, 123102-11.
- [4] K. C. Sahu, S. P. Vanka, Computers and Fluids (2011) 199-215.