

IEL – protokol k projektu

Vojtěch, Šišma xsisma02

8. listopadu 2022

Obsah

1	Příklad 1	2
		2
	1.2 Řešení	7
2	Příklad 2	8
3	Příklad 3	9
4	Příklad 4	10
5	Příklad 5	11
6	Shrnutí výsledků	12

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
A	80	120	350	650	410	130	360	750	310	190

Zjednodušení obvodu

Obrázek 1: Zjednodušení ${\cal R}_2$ a ${\cal R}_3$

$$R_{23} = \frac{R_2 \times R_3}{R_2 + R_3}$$

$$R_{23} = \frac{650 \times 410}{650 + 410}$$

$$R_{23} = 251.4151\Omega$$

Obrázek 2: Zjednodušení ${\cal R}_6$ a ${\cal R}_8$

$$R_{68} = R_6 + R_8$$
$$R_{68} = 750 + 190$$
$$R_{68} = 940\Omega$$

Obrázek 3: Úprava na hvězdu

$$R_A = \frac{R_5 \times R_{68}}{R_5 + R_{68} + R_7}$$

$$R_A = \frac{360 \times 940}{360 + 940 + 310}$$

$$R_A = 210.1863\Omega$$

$$R_B = \frac{R_5 \times R_7}{R_5 + R_{68} + R_7}$$

$$R_B = \frac{360 \times 310}{360 + 940 + 310}$$

$$R_B = 69.3168\Omega$$

$$R_C = \frac{R_7 \times R_{68}}{R_5 + R_{68} + R_7}$$

$$R_C = \frac{310 \times 940}{360 + 940 + 310}$$

$$R_C = 180.9938\Omega$$

Obrázek 4: Zjednodušení ${\cal R}_A$ a ${\cal R}_B$

$$R_{A23} = R_A + R_{23}$$

 $R_{A23} = 210.1863 + 251.4151$
 $R_{A23} = 461.6014$

$$R_{B4} = R_B + R_4$$

 $R_{B4} = 69.3168 + 130$
 $R_{B4} = 199.9938\Omega$

Obrázek 5: Zjednodušení ${\cal R}_{A23}$ a ${\cal R}_{B4}$

$$R_{A23B4} = \frac{R_{A23} \times R_{B4}}{R_{A23} + R_{B4}}$$

$$R_{A23B4} = \frac{461.6014 \times 199.9938}{461.6014 + 199.9938}$$

$$R_{A23B4} = 139.2077$$

Obrázek 6: Zjednodušení $R_1,\,R_{A23B4}$ a R_C

$$R = R_1 + R_{A23B4} + R_C$$

$$R = 350 + 139.2077 + 180.9938$$

$$R = 6.7020\Omega$$

Obrázek 7: Výsledný obvod

Řešení

Stanovte napětí U_{R5} a proud $I_{R5}.$ Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
D	150	200	200	660	200	550

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

	-							-, -,	-
sk.	U [V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	
D	115	0.6	0.9	50	38	48	37	28	

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{C_2} = U_{C_2} \cdot \sin(2\pi f t + \varphi_{C_2})$ určete $|U_{C_2}|$ a φ_{C_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

		·		•			·		- 2ω /
sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	$L_2 [\mathrm{mH}]$	C_1 [μ F]	C_2 [μ F]	f [Hz]
Α	3	5	12	14	120	100	200	105	70

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

	sk.	U[V]	L [H]	$R [\Omega]$	$ i_L(0) $ [A] $ $
	E	50	30	40	10
		R			
	FL		٦i.		
t = 0 s	Ý		Î. ∟		
s	_		<u>L</u> L		
	٦		200		
			\supset		
υ	\triangle				
1 -	$\overline{\bigcirc}$				

Shrnutí výsledků

Příklad	Skupina	Výsledky
1	A	$U_{R2} = I_{R2} =$
2	D	$U_{R5} = I_{R5} =$
3	D	$U_{R4} = I_{R4} =$
4	A	$ U_{C_2} = \varphi_{C_2} =$
5	E	$i_L =$