Chapitre 6 Dérivation (2) Calcul de fonctions dérivées simples et applications

Table 6.1 – Objectifs. À fin de ce chapitre 6...

	Po	ur m'entraîn	er <u>/</u>
Je dois connaître/savoir faire	&	•	Ö
Calcul de fonction dérivées : premiers principes			
les dérivées de fonctions de référence	1		
dérivée d'une somme et d'une multiplication par constante	2	3	
dérivée d'une composée par une fonction affine	4, 5	6	
dérivée d'un produit		35, 36, 37	
dérivée d'un inverse et d'un quotient	42	38, 39, 40	41
Application 1 : équations de tangentes et problèmes			
calcul d'équations réduite de tangentes	7, 8	9	
problèmes inverses	10, 11,	12,	
intersection de tangentes et de courbes	13	14 à 17	18
Application 2 : sens de variation d'une fonction et signe d	de sa dériv	<i>r</i> ée	
sens de variation d'une fonction	19	20, 21, 22	43, 44
extremums d'une expression, point critiques	23, 24	25, 26, 27	
problèmes			28
Application 3 : méthodes numériques pour une résolution	n approch	iée de $f(x) =$	0
algorithme de Newton-Raphson		29, 30, 31	33, 34

2

6.1 Dérivées des fonctions de référence

Définition 6.1

Soit une fonction f définie sur un intervalle $D \in \mathbb{R}$. L'ensemble $D' \subset D$ des abscisses x pour lesquelles f est dérivable en x est le **domaine de dérivabilité**.

La fonction dérivée f' est définie sur D' par f': $x \mapsto f'(x)$.

- Exemple 6.1 Soit c, m et $p \in \mathbb{R}$.
- 1. Soit f définie sur \mathbb{R} par f(x) = c. f est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$: f'(x) = 0.
- 2. Soit g définie sur \mathbb{R} par g(x) = mx + p. g est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$: g'(x) = m.

Démonstration. vu au chapitre 04

Proposition 6.1 — admis. Pour $n \ge 0$ entier positif. La fonction f définie sur \mathbb{R} par $f(x) = x^n$ est dérivable sur \mathbb{R} et $f'(x) = nx^{n-1}$.

Proposition 6.2 — admis. Pour n<0 entier négatif. La fonction f définie sur $]-\infty;0[\,\cup\,]0;+\infty[$ par $f(x)=\frac{1}{x^n}=x^{-n}$ est dérivable sur $]-\infty;0[\,\cup\,]0;+\infty[$ et $f'(x)=-nx^{-n-1}=\frac{-n}{x^{n+1}}$

■ Exemple 6.2

1. (n=1). $f: \mathbb{R} \to \mathbb{R}$, alors f dérivable, et $f': \mathbb{R} \to \mathbb{R}$

$$x \mapsto x = x^1 \qquad \qquad x \mapsto x^{1-1} = 1$$

2. (n=10). $f:\mathbb{R}\to\mathbb{R}$, alors f dérivable, et $f':\mathbb{R}\to\mathbb{R}$

$$x \mapsto x = x^{10}$$
 $x \mapsto 10x^{10-1} = 10x^9$

 $\textbf{3.} \ \ (n=-1) \ f \colon]-\infty; 0[\ \cup\]0; +\infty[\ \rightarrow \mathbb{R}, \ \text{alors} \ f \ \text{d\'erivable, et} \ f' \colon]-\infty; 0[\ \cup\]0; +\infty[\ \rightarrow \mathbb{R} \ \ .$

$$x \mapsto \frac{1}{x} \qquad \qquad x \mapsto \frac{-1}{x^2}$$

4. (n=-10) $f:]-\infty; 0[\cup]0; +\infty[\to \mathbb{R}]$, alors f dérivable, et $f':]-\infty; 0[\cup]0; +\infty[\to \mathbb{R}]$

$$x\mapsto \frac{1}{x^{10}} \qquad \qquad x\mapsto \frac{-10}{x^{11}}$$

Proposition 6.3 — racine carrée. Soit la fonction f définie sur définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}$. f est dérivable sur $]0; +\infty[$ et $f'(x) = \frac{1}{2\sqrt{x}}$

La formule de la dérivée de $f\colon x\mapsto \sqrt{x}=x^{0.5}$, est similaire à la formule de la dérivée de $x\mapsto x^n$. En effet $f'(x)=0.5x^{0.5-1}=0.5x^{-0.5}=\frac{1}{2}\frac{1}{x^{0.5}}=\frac{1}{2\sqrt{x}}$

6.2 Dérivées et opérations

Définition 6.2 — somme et produit par une constante. Soit u et v deux fonctions dévinies sur un intervalle $I. c \in \mathbb{R}$ un réel.

On défini les fonctions (u + v), (cu) sur l'intervalle I par :

- $(u+v): x \mapsto u(x) + v(x)$ (somme)
- $(ku): x \mapsto c \times u(x)$ (multiplier par constante)

Proposition 6.4 Soit $c \in \mathbb{R}$.

Si les fonctions u et v sont dérivable sur I, alors cu et u + v sont aussi dérivables sur I:

- 1. Pour tout $x \in I$, (cu)'(x) = cu'(x). On peut écrire : $\frac{d}{dx}(cu) = c\frac{du}{dx}$.
- 2. Pour tout $x \in I$, (u+v)'(x) = u'(x) + v'(x). On peut écrire $\frac{d}{dx}(u+v) = \frac{d}{dx}u + \frac{d}{dx}v$.

Démonstration. $x \in I$. On pose f = cu et g = u + v

■ Exemple 6.3

- 1. Soit f définie sur \mathbb{R} par $f(x) = 4x^2$. f = 4u ou $u : x \mapsto x^2$. u est dérivable sur \mathbb{R} donc, f est aussi dérivable sur \mathbb{R} et : f'(x) = (4u)'(x) = 4u'(x) = 4(2x) = 8x
- 2. Soit f définie sur \mathbb{R} par $f(x) = x^3 5x$.

f=u+5v ou u et v sont définies sur $\mathbb R$ par $u(x)=x^3$ et v(x)=5x. Donc f est dérivable sur $\mathbb R$ et $f'(x)=(3x^2)-5(1)=3x^2-5$.

3. Soit f définie sur \mathbb{R} par $f(x) = 3x^4 + 2x^3 - 5x^2 + 7x + 6$. f est dérivable sur \mathbb{R} car combinaison linéaire de fonctions dérivables sur \mathbb{R} .

$$f'(x) = 3(4x^3) + 2(3x^2) - 5(2x) + 7(1) + 0 = 12x^3 + 6x^2 - 10x + 7$$

4. Soit f définie sur \mathbb{R}^* par $f(x) = x^2 - \frac{4}{x^2}$. f est dérivable sur \mathbb{R}^* car combinaison linéaire de fonctions chacune dérivable sur \mathbb{R}^* :

$$f'(x) = 2(x) - 4\left(\frac{-2}{x^3}\right) = 2x + \frac{8}{x^3}$$

■ Exemple 6.4 — composée.

- 1. Soit u et v définies sur \mathbb{R} par $u(x)=x^4$ et $v(x)=x^2+3x$. La fonction définie par $f(x)=u(v(x))=u(x^2+3x)=(x^2+3x)^4$ est une fonction composée. On peut aussi écrire $g(x)=v(u(x))=v(x^4)=(x^4)^2+3(x^4)$ est une fonction composée.
- 2. La fonction définie par $f(x) = \sqrt{2-3x}$, peut être regardée une fonction composée f(x) = u(v(x)) ou u et v sont définies par $u(x) = \sqrt{x}$ et v(x) = 2 3x.

Proposition 6.5 — Dérivée d'une composée avec une fonction affine. Soit u une fonction dérivable sur un intervalle J, et soit la fonction affine définie sur I par v(x) = ax + b.

La fonction f définie sur I par f(x) = u(ax + b) est aussi dérivable sur I et on a :

$$f'(x) = au'(ax+b)$$

$$\frac{\mathbf{d}}{\mathbf{d}x}(u(ax+b)) = a\frac{\mathbf{d}u}{\mathbf{d}x}(ax+b)$$

Démonstration.
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{u(a(x+h)+b) - u(ax+b)}{h}$$

$$= \lim_{h \to 0} \frac{u(ax+b+ah) - u(ax+b)}{h}$$

$$= \lim_{h \to 0} a \frac{u(ax+b+ah) - u(ax+b)}{ah}$$

$$= a \lim_{h \to 0} \frac{u(ax+b+ah) - u(ax+b)}{ah}$$

$$= a \lim_{h \to 0} \frac{u(ax+b+h) - u(ax+h)}{h'}$$

$$= au'(ax+b)$$

Nous verrons l'année prochaine que pour
$$f(x) = u(v(x))$$
, la dérivée s'écrit $f'(x) = v'(x)u'(v(x))$, soit $\frac{\mathrm{d}u(v(x))}{\mathrm{d}x} = \frac{\mathrm{d}v}{\mathrm{d}x}\frac{\mathrm{d}u}{\mathrm{d}x}(v(x))$

■ Exemple 6.5

1. Soit f définie sur \mathbb{R} par $f(x) = (2x+1)^3$.

On peut regarder f comme la composée f(x)=u(2x+1) ou u est définie par $u(x)=x^3$. u est dérivable sur $\mathbb R$ avec $u'(x)=3x^2$

f est dérivable sur \mathbb{R} avec $f'(x) = 2u'(2x+1) = 3(2x+1)^2$.

2. Soit f définie sur $]\frac{1}{2}$; $+\infty[$ par $f(x) = \frac{4}{2x+1}$. f est la composée f(x) = u(2x-1) ou u est définie par $u(x) = \frac{4}{x}$. On a $u'(x) = -\frac{4}{x^2}$. f est dérivable et $f'(x) = 2u'(2x-1) = 2\frac{-4}{(2x-1)^2} = -\frac{8}{(2x-1)^2}$ **Définition 6.3** Soit u et v deux fonctions dévinies sur un intervalle I. $c \in \mathbb{R}$ un réel.

On défini les fonctions (uv) et $\frac{1}{v}$ et $\frac{u}{v}$ sur l'intervalle I par :

$$(uv): x \mapsto u(x) \times v(x)$$
 $\left(\frac{1}{v}\right): x \mapsto \frac{1}{v(x)}$ $\left(\frac{u}{v}\right): x \mapsto \frac{u(x)}{v(x)}$

Proposition 6.6 — dérivée d'un produit, de l'inverse et du quotient.

Soit les fonctions u et v sont dérivables pour tout $x \in I$.

- 1. uv est aussi dérivable sur I.
- 2. Si pour tout $x \in I$, $v(x) \neq 0$, alors $\frac{1}{v}$ et $\frac{u}{v}$ sont aussi dérivables sur I et on a :

$$(uv)' = u'v + uv'$$
 $\left(\frac{1}{v}\right)' = \frac{-v'}{(v)^2}$ $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{(v)^2}$

6.3 Application 1 : droites tangentes et approximation affine

f est dérivable en x_0 . T est la tangente à la courbe \mathscr{C}_f : y = f(x) au point $(x_0; f(x_0))$:

$$T: y = f'(x_0)(x - x_0) + f(x_0)$$

Alternativement, pour x au voisinage de x_0 on a $f(x) \approx f'(x_0)(x-x_0) + f(x_0)$

■ Exemple 6.6 — déterminer l'équation d'une tangente.

Soit f définie sur \mathbb{R} par $f(x) = x^2 + 1$, et sa représentation graphique \mathscr{C}_f . Déterminer (algébriquement) l'équation de la tangente à \mathscr{C}_f au point d'abscisse 1.

solution.

$$f(1) = (1)^2 + 1 = 2$$
. $A(1; 2) \in \mathscr{C}_f$

f est dérivable sur \mathbb{R} et f'(x) = 2x

$$f'(1) = 2(1) = 2$$

$$T: y = f'(1)(x-1) + f(1).$$

$$T: y = 2x$$
.

■ Exemple 6.7 — déterminer l'équation d'une tangente.

Soit f définie par $f(x) = \sqrt{10 - 3x}$, et sa représentation graphique \mathscr{C}_f .

- 1. Déterminer le domaine et le domaine de dérivabilité de f.
- 2. Déterminer l'expression de f'(x).
- 3. Déterminer l'équation de la tangente à \mathscr{C}_f au point d'abscisse 3.

solution.

La tangente au point d'abscisse 3 est T: y = f'(3)(x-3) + f(3) $\therefore T: y = -\frac{3}{x}x + \frac{11}{2}$

Année 2023/2024

■ Exemple 6.8 — trouver un autre point de rencontre avec la tangente. Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 + x + 2$ et sa représentation graphique \mathscr{C}_f . Soit T la tangente à \mathscr{C}_f au point d'abscisse 1. Déterminer les coordonnées du point ou T coupe \mathscr{C}_f à nouveau.

solution.

f est dérivable sur \mathbb{R} , et $f'(x) = 3x^2 + 1$

$$f(1) = (1)^3 + (1) + 2 = 4$$
, $A(1; 4) \in \mathcal{C}_f$.

$$f'(x) = 3x^2 + 1$$
, $f'(1) = 3(1)^2 + 1 = 4$.

La tangente T à \mathcal{C}_f au point A est T: y = 4(x-1) + 4 = 4x.

Un point $P(x \; ; \; y)$ est sur \mathscr{C}_f et sur T si ses coordonnées vérifient : $\begin{cases} y = x^3 + x + 2 \\ & \end{cases},$

Donc x est solution de

$$x^3 + x + 2 = 4x$$
. $\therefore x = 1$ ou $x = -2$.

$$x^3-3x+2=0 \\ (x-1)(x^2+x-2)=0 \\ (x-1)(x-1)(x+2)=0$$
 On sait que $x=1$ est solution, on factorise par $(x-1)$

Si x = 1 alors A(1; 4) que l'on connait déjà.

Si x=-2, y=4(-2)=-8. Donc la tangente T rencontre à nouveau \mathscr{C}_f au point B(-2;-8).

■ Exemple 6.9 — trouver une tangente. Soit \mathscr{C}_f la représentation graphique de la fonction f définie sur \mathbb{R} par $f(x) = x^2$. Déterminer l'équation de la tangente à \mathscr{C}_f passant par le point B(2; 3) (extérieur à \mathscr{C}_f).

Démonstration. Soit $a \in \mathbb{R}$, le point $A(a; a^2) \in \mathscr{C}_f$.

$$f'(x) = 2x$$
, donc $f'(a) = 2a$.

La tangente à \mathscr{C}_f au point A a pour équation T_a : $y=2a(x-a)+a^2$.

On cherche $a \in \mathbb{R}$ tel que $B(2; 3) \in T_a$. Donc a vérifie :

$$2a(2-a) + a^2 = 3$$
 . $0 = a^2 - 4a + 3$ $a = 1$ ou $a = 3$

Si a = 1, alors $T_1: y = 2x - 1$ au point $A_1(1; 1)$

Si
$$a = 3$$
, alors T_3 : $y = 6x - 9$ au point $A_3(3; 9)$

6.4 Application 2 : sens de variation d'une fonction

Soit f une fonction dérivable sur l'intervalle [a;b].

Si f est une (strictement) croissante alors pour tout a < x < b: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \geqslant 0$

Si f est une (strictement) décroissante alors pour tout $a < x < b : f'(x) \le 0$.

Si f est constante sur [a; b], alors pour tout a < x < b : f'(x) = 0.

Définition 6.4 Soit \mathscr{C} : y = f(x) la représentation de la fonction f.

On appelle **point critique** tout point $P(x;y) \in \mathscr{C}_f$ tel que :

$$f'(x) = 0$$
 ou f' n'est pas définie

Si f'(x) = 0 et la dérivée change de signe, x est un extremum local.

Si f'(x) = 0 et la dérivée ne change pas de signe, on parle d'un point d'inflection horizontal.

Théorème 6.7 — admis.

Pour une fonction f définie sur intervalle [a;b] et dérivable sur l'intervalle ouvert]a;b[.

- Si pour tout $x \in]a; b[, f'(x) = 0, \text{ alors } f \text{ est constante sur } [a; b]$
- Si pour tout $x \in]a; b[$, f'(x) > 0, alors f est strictement croissante sur [a;b]
- Si pour tout $x \in]a; b[, f'(x) < 0,$ alors f est strictement décroissante sur [a; b]

- Exemple 6.10 Soit la fonction f définie sur \mathbb{R} par $f(x) = -x^3 + 3x^2 + 5$.
- 1. Préciser le domaine de dérivabilité de f ainsi que l'expression de f'(x).
- 2. Dresser le tableau de signe de f' et dresser le tableau de variation de la fonction f.

solution.

1.
$$D' = \mathbb{R}$$
. pour tout $x \in \mathbb{R}$, et $f'(x) = -3x^2 + 6x = -3x(x-2)$

2. Les valeurs critiques

$$f'(x) = 0$$

$$-3x(x-2) = 0$$

$$x = 0 \quad \text{ou} \quad x = 2$$

$$f(0) = -(0)^2 + 3(0)^2 + 5 = 5$$

$$f(2) = -(2)^3 + 3(2)^2 + 5 = 9.$$

x	$-\infty$	0		2		$+\infty$
signe de $f'(x)$	_	0	+	0	_	
variation de f		5		9		•

f est strictement croissante sur l'intervalle [0;2]

f est strictement décroissante sur l'intervalle $]-\infty;0]$ et sur l'intervalle $[2;+\infty[$

- Exemple 6.11 Soit la fonction f définie sur \mathbb{R} par $f(x) = 3x^4 8x^3 + 2$.
- 1. Préciser le domaine de dérivabilité de f ainsi que l'expression de f'(x).
- 2. Dresser le tableau de signe de f' et dresser le tableau de variation de la fonction f.

solution.

1.
$$D' = \mathbb{R}$$
. pour tout $x \in \mathbb{R}$, et $f'(x) = 12x^3 - 24x^3 = 12x^2(x-2)$

2. Les valeurs critiques

$$f'(x) = 0$$

$$12x^{2}(x - 2) = 0$$

$$x = 0 \quad \text{ou} \quad x = 2$$

$$f(0) = 3(0)^{4} - 8(0)^{3} + 2 = 2$$

$$f(2) = 3(2)^{4} - 8(2)^{3} + 2 = -14.$$

x	$-\infty$		0		2		$+\infty$
signe de $12x^2$		+	0	+		+	
signe de $x-2$		_		_	0	+	
signe de $f'(x)$		_	0	_	0	+	
variation de f			_2_	<u></u>	-14	/	<i>y</i>

f est strictment croissante sur l'in-

tervalle $[2;+\infty[$ et strictement décroissante sur l'intervalle $]-\infty;2]$

- Exemple 6.12 Soit la fonction f définie par $f(x) = x + \frac{1}{3x + 2}$.
- 1. Préciser le domaine de f.
- 2. Préciser le domaine de dérivabilité de f ainsi que l'expression de f'(x).
- 3. Dresser le tableau de signe de f' et dresser le tableau de variation de la fonction f.

solution.

Valeur interdite 3x + 2 = 0, $x = -\frac{2}{3}$ donc $D = \mathbb{R} \setminus \{-\frac{2}{3}\}$

f est dérivable sur $D' = \mathbb{R} \setminus \{-\frac{2}{3}\}$

$$f'(x) = 1 - \frac{3}{(3x+2)^2}$$

$$= \frac{(3x+2)^2}{(3x+2)^2} - \frac{3}{(3x+2)^2}$$

$$= \frac{9x^2 + 12x + 4 - 3}{(3x+2)^2}$$

$$= \frac{9x^2 + 12x + 1}{(3x+2)^2}$$

$$= \frac{9(x-r_1)(x-r_2)}{(3x+2)^2}$$

$$factorise$$

$$r_1 = \frac{-2 - \sqrt{3}}{3} \text{ et } r_2 = \frac{-2 + \sqrt{3}}{3}$$

	x	$-\infty$	2	$\frac{-2-\sqrt{3}}{3}$	3	$\frac{-2}{3}$		$\frac{-2+\sqrt{3}}{3}$	<u>3</u>	$+\infty$
	$9x^2 + 12x + 1$		+	0	_		_	0	+	
	$(3x+2)^2$		+		+	0	+		+	
	signe de $f'(x)$		+	0	_		_	0	+	
21	variation de f	/	<i></i>	$f(r_1)$				$f(r_2)$)	*

■ Exemple 6.13 — identifier les points critiques d'une courbe.

Soit \mathscr{C}_f la représentation graphique de la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 3x^2 - 9x + 5$. Déterminer les points crituqes de \mathscr{C}_f .

solution.

 $D = D' = \mathbb{R}$, f est dérivable sur \mathbb{R} et

$$f'(x) = 3x^2 - 6x - 9$$

$$= 3(x - 3)(x + 1)$$
 factoriser

La fonction admet un maximum local

en -1, et un minimum local en x = 3.

$$f(-1) = (-1)^3 - 3(-1)^2 - 9(-1) + 5 = 10$$
 et $f(3) = (3)^3 - 3(3)^2 - 9(3) + 5 = -22$

Les points critiques sont A(-1; 10) et B(3; -22).

6.5 Exercices : calcul de fonctions dérivées

Exercice 1 — Connaître les formules des dérivées de fonctions de référence.

Pour chaque cas, donner le domaine, le domaine de dérivabilité et l'expression de f':

1.
$$f(x) = x^3$$

$$D = \dots$$

$$D = \dots \qquad D' = \dots \qquad f'(x) = \dots$$

$$f'(x) = \dots$$

2.
$$f(x) = \frac{1}{x^2} = x^{-2}$$

$$D = \dots$$

2.
$$f(x) = \frac{1}{x^2} = x^{-2}$$
 $D = \dots$ $D' = \dots$ $f'(x) = \dots$ 3. $f(x) = \frac{1}{x^5} = x^{-5}$ $D = \dots$ $D' = \dots$ $f'(x) = \dots$

$$f'(x) = \dots$$

3.
$$f(x) = \frac{1}{x^5} = x^{-5}$$

$$D = \dots$$

$$D' = \dots \qquad f'(x)$$

$$f'(x) = \dots$$

4.
$$f(x) = x^6$$

$$D = \dots D' = \dots f'(x) = \dots f'(x) = \dots$$

$$D = \dots$$

$$J(x) = \dots$$

5.
$$f(x) = x^7$$

$$D = \dots \qquad D' = \dots \qquad f'(x) = \dots$$

$$D' = \dots$$

$$f(x) = \dots$$

6.
$$f(x) = \frac{1}{x^3} = \dots$$
 $D = \dots$ $D' = \dots$ $f'(x) = \dots$

$$D = \dots$$

7.
$$f(x) = \frac{1}{x^9} = \dots$$
 $D = \dots$ $D' = \dots$ $f'(x) = \dots$

8.
$$f(x) = x^9$$
.

$$D = \dots$$

$$D' = \dots$$

$$D = \dots \qquad D' = \dots \qquad f'(x) = \dots$$

■ Exemple 6.14 — dérivée de somme, ou d'une multiplication par consante.

Donner le domaine de définition puis de dérivabilité et l'expressoin de la dérivée :

1.
$$f(x) = 3x^2 - 2x + 4$$

$$D = \mathbb{R}$$
 et $D' = \mathbb{R}$

combinaison de
$$x\mapsto x^2$$
 et $x\mapsto x$ et $x\mapsto 4$, dérivable sur $\mathbb R$

$$f'(x) = 3(2x) - 2(1) + 0 = 6x - 2$$

2. $f(x) = \sqrt{x} + 2x$

$$D = [0; +\infty[\qquad D' =]0; +\infty[$$

 $f(x)=\sqrt{x}+2x$ $D=[0;+\infty[\qquad D'=]0;+\infty[\qquad D'=]0;+\infty[\qquad combinaison \ de \ x\mapsto \sqrt{x}, \ d\'efinie \ sur \ [0;+\infty[\ et \ d\'erivable \ sur \ \mathbb{R}]$

$$f'(x) = \frac{1}{2\sqrt{x}} + 2(1) = \frac{1}{2\sqrt{x}} + 2$$

3. $f(x) = 7x - \frac{4}{x} + \frac{3}{x^3}$

$$D = \mathbb{R}^*$$
 et $D' = \mathbb{R}^*$

combinaison de $x\mapsto \frac{1}{x}$ et $x\mapsto \frac{1}{x^3}$ définies et dérivables sur et $x \mapsto x$, dérivable sur $\mathbb R$

$$f(x) = 7x - 4x^{-1} + 3x^{-3}$$

$$f'(x) = 7(1) - 4(-x^{-2}) + 3(-3x^{-4})$$

$$f'(x) = 7 + \frac{4}{x^2} - \frac{9}{x^4}$$

$$f'(x) = 7 + \frac{4}{x^2} - \frac{9}{x^4}$$
4.
$$f(x) = \frac{x^2 + 4x - 5}{x} = \frac{x^2}{x} + 4 - \frac{5}{x}$$

$$f(x) = x + 4 - 5x^{-1}$$

$$D = \mathbb{R}^* \quad D' = \mathbb{R}^*$$

$$f'(x) = (1) + 0 - 5(-x^{-2}) = 1 + \frac{5}{x^2}$$

Donner le domaine, le domaine de dérivation et l'expression de la fonction dérivée des fonctions suivantes.

$$f_1(x) = 4x^3 - x$$

$$f_2(x) = 4 - 2x^2$$

$$f_3(x) = 3 - \frac{6}{x}$$

$$f_4(x) = 2x^3$$

$$f_5(x) = x^2 + 3x - 5$$

$$f_6(x) = \frac{x^3 + 5}{x}$$

$$f_7(x) = 7x^2$$

$$f_8(x) = \frac{2x - 3}{x^2}$$

$$f_9(x) = 5x^4 - 6x^2$$

$$f_{10}(x) = x^2 + x$$

$$f_{11}(x) = x^3 + 3x^2 + 4x - 1$$

$$f_{12}(x) = \frac{x^3 + x - 3}{x}$$

Exercice 3 Dérive la fonction donnée et détermine la valeur du nombre dérivé demandé

1.
$$f(x) = x^2$$
, $f'(x) = \dots f'(2) = \dots f'(2) = \dots$

2.
$$f(x) = x^3$$
, $f'(x) = \dots f'(2) = \dots f'(2) = \dots$

3.
$$f(x) = 2x^2 - 3x + 7$$
, $f'(x) = \dots f'(-1) = \dots f'(-1) = \dots$

4.
$$f(x) = 5x^3 - 3x^2 - 2$$
, $f'(x) = \dots f'(-1) = \dots f'(-1) = \dots$

5.
$$f(x) = \frac{8}{x^2}$$
, $f'(x) = \dots f'(9) = \dots f'(9)$

6.
$$f(x) = 2x - \frac{5}{x}$$
, $f'(x) = \dots f'(2) = \dots f'(2)$

7.
$$f(x) = \frac{x^3 - 4x - 8}{x^2}$$
, $f'(x) = \dots f'(-1) = \dots$

Exercice 4

Déterminer l'expression de la fonction composée $x \to f(g(x))$ dans les cas suivants :

2.
$$f(x) = 2x + 7$$
 et $g(x) = x^2$ 4. $f(x) = 3 - 4x$ et $g(x) = \sqrt{x}$ 6. $f(x) = x^2 + 3$ et $g(x) = \frac{2}{x}$

Exercice 5

Pour la fonction composée $f: x \to u(v(x))$, préciser les expressions de u et v dans chaque cas.

1.
$$f(x) = (3x+10)^3$$
 2. $f(x) = \frac{1}{2x+4}$ 3. $f(x) = \sqrt{x^2-3x}$ 4. $f(x) = \frac{10}{(3x-x^2)^3}$

■ Exemple 6.15 — dérivée d'une composée.

Donner le domaine de dérivabilité et l'expressoin de la dérivée dans les cas suivants :

1.
$$f(x)=(5x+3)^3$$

$$D=\mathbb{R} \quad \text{et} \quad D'=\mathbb{R}$$

$$f'(x)=5u'(5x+3)=15(5x+3)^2$$
 $compos\'{e}e\ u(v(x))\ de\ u\colon x\mapsto x^3\ d\'{e}rivable\ sur\ \mathbb{R}\ et\ v\colon x\mapsto 5x+3$

2.
$$f(x) = \frac{1}{2x - 1}$$
 $D = \mathbb{R} \setminus \{\frac{1}{2}\}$ et $D' = \mathbb{R} \setminus \{\frac{1}{2}\}$ $u'(x) = \frac{-1}{x^2}$ $u'(x) = \frac{1}{x}$ dérivable sur \mathbb{R}^* et $v: x \mapsto 2x - 1$ $u'(x) = \frac{-1}{x^2}$

3.
$$f(x) = \sqrt{4x - 1} = u(4x - 1)$$

$$D = \left[\frac{1}{4}; +\infty\right[$$

$$u: x \mapsto \sqrt{x} \text{ n'est pas d\'erivable en } 0$$

$$D' = \left[\frac{1}{4}; +\infty\right[$$

$$f'(x) = 4u'(4x - 1) = \frac{4}{2\sqrt{4x - 1}}$$

$$u'(x) = \frac{1}{2\sqrt{x}}$$

Déterminer le domaine de définition et de dérivation de chaque fonction, ainsi que l'expression de la fonction dérivée f^\prime .

1.
$$f(x) = \frac{1}{3x+6}$$

2. $f(x) = (3x+4)^3$
3. $f(x) = (5-3x)^2$

4. $f(x) = \sqrt{5x-3}$
5. $f(x) = 5x + \sqrt{3x+18}$
6. $f(x) = (ax+b)^3$

7. $f(x) = \frac{5}{(2x-5)^2}$
8. $f(x) = 3x+1+\frac{1}{2x+8}$
9. $f(x) = \sqrt{-3x+12}$

6.5.1 Exercices : Application 1 équations de tangentes

Exercice 7

On donne l'expression de la fonction f de représentation graphique \mathscr{C}_f . Déterminer pour chaque cas l'équation réduite de la tangente à \mathscr{C}_f au point d'abscisse x_0 .

- 1. pour tout x, $f(x) = x 2x^2 + 3$ et $x_0 = 2$.
- **2.** pour tout $x \in \mathbb{R}$, $f(x) = x^3 5x$ et $x_0 = 1$.
- 3. pour tout $x \ge 0$, $f(x) = \sqrt{x} + 1$ et $x_0 = 4$.
- 4. pour tout $x \in \mathbb{R}$, $f(x) = x^3 7x + 5$ aux points d'abscisse 2 et -4.

Exercice 8

- 1. Soit \mathscr{C} : $y = 2x^3 + 3x^2 12x + 1$. Déterminer les équations des tangentes horizontales à \mathscr{C} .
- 2. Déterminer le point de la courbe \mathscr{C} : $y = 2\sqrt{x} + \frac{1}{\sqrt{x}}$ en lequel la tangente à \mathscr{C} est horizontale.
- 3. Soit la fonction f définie sur \mathbb{R} par $f(x) = 2x^3 + kx^2 3$ représentée par \mathscr{C}_f . Déterminer la valeur de k sachant que la tangente à \mathscr{C}_f au point d'abscisse x = 2 est de pente 4.
- 4. Soit la fonction f définie sur \mathbb{R} par $f(x) = 1 3x + 12x^2 8x^3$. Justifier que $A(1; 2) \in \mathscr{C}_f$, puis déterminer l'équation réduite de l'autre tangente à \mathscr{C}_f parallèle à la tangente en A.

Exercice 9

Soit \mathscr{C}_f et \mathscr{C}_g les représentation graphique des fonctions f et g définies sur \mathbb{R} par $f(x) = -x^2 + 4$ et $g(x) = x^2 - 4x + 6$.

- 1. Déterminer le point d'intersection A de \mathscr{C}_f et \mathscr{C}_g .
- 2. Démontrer que \mathscr{C}_f et \mathscr{C}_g ont une tangente commune en A.

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^2 + ax + b$ représentée par \mathscr{C}_f . La tangente à \mathscr{C}_f au point d'abscisse 1 est d'équation réduite y = -2x + 6.

- 1. Justifier que f(1) = 4 et f'(1) = -2.
- 2. En déduire un système d'équations linéaires vérifié par a et b, et le résoudre.

Exercice 11

Soit la fonction f définie sur \mathbb{R} par $f(x) = a\sqrt{1-bx}$ représentée par \mathscr{C}_f . La tangente à \mathscr{C}_f au point d'abscisse -1 est d'équation réduite y = -3x + 5.

- 1. Montrer que f(-1) = 8 et f'(-1) = 3.
- 2. Déterminer un système d'équations vérifiée par a et b.
- 3. Déterminer par substitution de a une équation vérifiée par b et déduire que b=3.
- 4. Déterminer la valeur de a.

Exercice 12 — problème inverse.

Soit \mathscr{C}_f la représentation graphique de la fonction f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$.

La tangente à \mathscr{C}_f au point d'abscisse 0 est d'équation réduite y=3x+1, et que $A(2\ ;\ -13)\in\mathscr{C}_f$.

- 1. Entoure l'équation vraie : (A) f'(2) = -13 (B) f'(-13) = 2 (C) f(-13) = 5 (D) f(2) = -13
- **2.** Justifier que f(0) = 1 et f'(0) = 3.
- 3. Écrire le système vérifié par a, b et c et donner l'expression de la fonction f.

Exercice 13

- 1. Soit \mathscr{C}_f la représentation graphique de la fonction f définie sur \mathbb{R} par $f(x) = x^3$. Soit T_2 la tangente à \mathscr{C}_f au point d'abscisse 2. Déterminer les coordonnées du point où T coupe \mathscr{C}_f à nouveau.
- 2. Soit \mathscr{C}_f la représentation graphique de la fonction f définie sur \mathbb{R} par $f(x) = -x^3 + 2x^2 + 1$. Soit T_{-1} la tangente à \mathscr{C}_f au point d'abscisse -1. Déterminer les coordonnées du point où T_{-1} coupe \mathscr{C}_f à nouveau.
- 3. Soit \mathscr{C}_f la représentation graphique de la fonction f définie sur \mathbb{R}^* par $f(x) = x^3 + \frac{4}{x}$. Soit T_1 la tangente à \mathscr{C}_f au point d'abscisse 1. Déterminer les coordonnées du point où T_1 coupe \mathscr{C}_f à nouveau.
- 4. Soit \mathscr{C}_f la représentation graphique de la fonction f définie sur \mathbb{R} par $f(x) = x^3 4x$. Soit T_1 la tangente à \mathscr{C}_f au point d'abscisse 1. Déterminer les coordonnées du point où T_1 coupe \mathscr{C}_f à nouveau.

Exercice 14 Soit \mathscr{C}_f la représentation graphique de la fonction f définie sur \mathbb{R} par $f(x) = x^2 - x + 9$.

- 1. Soit $a \in \mathbb{R}$. Déterminer l'équation réduite de la tangente à \mathscr{C}_f au point d'abscisse a.
- 2. En déduire les équations réduites de deux tangentes à \mathscr{C}_f qui passent par l'origine O(0; 0) du repère. Préciser les points de contacts de ces tangentes avec \mathscr{C}_f .

Exercice 15

Soit \mathscr{C}_f la représentation graphique de la fonction f définie sur \mathbb{R} par $f(x) = ax^3 + bx^2 + cx + d$. On suppose que les tangentes à \mathscr{C}_f aux points A(0; 1.2) et B(2; 0) sont horizontales.

- 1. Déterminer l'expression de f'
- 2. Donner f(0) et f'(0) et en déduire les valeurs de c et d.

3. Donner
$$f(2)$$
 et $f'(2)$ et en déduire que a et b vérifient
$$\begin{cases} 8a + 4b + 1.2 = 0 \\ 12a + 4b = 0 \end{cases}$$
.

4. Trouver a et b et retrouver l'expression de f.

Exercice 16

Soit \mathscr{C}_f la représentation graphique de la fonction f définie sur \mathbb{R} par $f(x) = x^3$. Déterminer les tangentes à \mathscr{C}_f passant par (-2; 0).

Exercice 17 Soit \mathscr{C}_f la représentation graphique de la fonction f définie sur \mathbb{R} par $f(x) = x^3 + 3x^2 + 2x + 1$.

- 1. Donner le domaine de dérivabilité et l'expression de la dérivée f'.
- 2. Soit $A(a, f(a)) \in \mathcal{C}_f$, et T la tangente à \mathcal{C}_f en A.
 - a) Montrer que T a pour équation $y = (3a^2 + 6a + 2)x 2a^3 3a^2$
 - b) Déterminer le(s) abscisse(s) a pour lesquelles la tangente T est parallèle à D_1 : y = 2x.
 - c) Déterminer le(s) abscisse(s) a pour lesquelles la tangente T est parallèle à D_2 : y=-x.
 - d) Démontrer que la droite D_3 : y = 11x 4 avec \mathscr{C}_f est tangente à \mathscr{C}_f . Préciser le point de contact.

Exercice 18

Soit la fonction f définie sur $]0;+\infty[$ par $f(x)=\frac{8}{x^2}.$

- 1. Tracer à main levée, une représentation graphique de \mathscr{C}_f .
- 2. Soit $a \in \mathbb{R}$. Déterminer l'équation réduite de la tangente T à \mathscr{C}_f au point d'abscisse a.
- 3. Déterminer en fonction de a, les coordonnées des intersections A et B de la tangente T avec les axes du repère.
- 4. Déterminer l'aire du triangle OAB, ainsi que sa limite lorsque $a \to +\infty$.

6.5.2 Exercices : application de la dérivation à l'étude du sens de variation

Exercices du manuel pour associer f et sa dérivée f' pages 143 à 150.

- 15, 16, 17 p143, 25, 27, 28, 26, 21, 22
- De f vers f': 29 et 30
- De f' vers f: 32 et 33, 34, 38, 39, 40, 36
- Entrainement: 54, 57, 58, 70, 73, 79, 80

Exercice 19

Pour chacune des fonctions f suivantes :

- déterminer sa dérivée f', factoriser f' et complétez le tableau de signe de f'.
- déterminer le sens de variation de f et préciser les extremum locaux.

1.
$$f(x) = x^2 - 6x + 1$$

4.
$$f(x) = x^3 + 3x^2 - 2$$

7.
$$f(x) = \frac{1}{4}x^4 - \frac{1}{2}x^3 - x^2$$

2.
$$f(x) = x^3 + 4x - 7$$

5.
$$f(x) = 3x - x^3$$

8.
$$f(x) = x^4 + 2x^3$$

3.
$$f(x) = x^3 + 3x^2 - 9x - 10$$

1.
$$f(x) = x^2 - 6x + 1$$
 | 4. $f(x) = x^3 + 3x^2 - 2$ | 7. $f(x) = \frac{1}{4}x^4 - \frac{1}{2}x^3 - x^2$ | 2. $f(x) = x^3 + 4x - 7$ | 5. $f(x) = 3x - x^3$ | 8. $f(x) = x^4 + 2x^3$ | 9. $f(x) = x^3 - 3x^2 + 2$.

9.
$$f(x) = x^3 - 3x^2 + 2$$

Exercice 20

Pour chacune des fonction définie sur R, déterminez les points critiques et les extremums locaux des fonctions suivantes :

1.
$$f(x) = x^4 - 4x^3 + 1$$

3.
$$f(x) = x^4 - 6x^2 + 8x + 9$$

2.
$$f(x) = x^2(x-1)(x+1)$$

4.
$$f(x) = x^6 - 3x^2$$

Exercice 21

Montrer que les fonctions suivantes sont monotones sur $\mathbb R$ sans d'extremums locaux :

1.
$$f(x) = x^3 - 3x^2 + 3x + 3$$

2.
$$f(x) = -x^5 - 5x^3 - 10x$$

Exercice 22 Pour chacune des fonctions f suivantes :

- ullet préciser le domaine de définition et de dérivabilité et déterminer l'expression de f'
- ramener au même dénominateur pour complétez le tableau de signe de f'.
- déterminer le sens de variation de f et préciser les extremum locaux.

1.
$$f(x) = x + \frac{1}{x}$$

2. $f(x) = x - \frac{4}{x}$

3.
$$f(x) = 4 + \frac{1}{x-2}$$

5.
$$f(x) = x - \sqrt{x}$$

2.
$$f(x) = x - \frac{x}{4}$$

3.
$$f(x) = 4 + \frac{1}{x - 2}$$

4. $f(x) = x - \frac{1}{2x - 1}$
5. $f(x) = x - \sqrt{x}$
6. $f(x) = x^5 + \sqrt{x}$

6.
$$f(x) = x^5 + \sqrt{x}$$

Exercice 23

Soit la fonction f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ avec $a \neq 0$. Quelle est le point critique de f? Sous quelle condition s'agit-il d'un maximum local?

Soit la fonction f définie sur \mathbb{R} par $f(x)=2x^3+ax^2-24x+1$ admet un maximum local en x=-4. Déterminer a.

Exercice 25

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 + ax + b$. On suppose que le point A(-2; 3) est un point critique de \mathscr{C}_f

- 1. Déterminer un système vérifié par a et b et le résoudre.
- 2. En déduire les coordonnées de tous les points critiques de \mathscr{C}_f .

Exercice 26

Soit \mathscr{C}_f la représentation graphique de la fonction f définie sur \mathbb{R} par $f(x) = ax^3 + bx^2 + cx + d$. On suppose que le point A(-1; -7) est un point critique de \mathscr{C}_f , et que la droite T: y = 9x + 2 est tangente à \mathscr{C}_f au point B(0; 2)

Déterminer a, b, c et d.

Exercice 27 — extremums d'une expression.

Déterminer le maximum et le minimum des expressions suivantes.

1.
$$f(x) = x^3 - 6x^2 + 5$$
 pour $-2 \le x \le 5$

2.
$$f(x) = x^3 - 12x - 2$$
 pour $-3 \le x \le 5$

3.
$$f(x) = 4 - 3x^2 + x^3$$
 pour $-2 \le x \le 3$

Exercice 28 — un exemple d'optimisation.

On dispose d'un carton carré de longueur de côté 10 cm. Pour fabriquer une boite sans couvercle on enlève 4 coins carrés identiques de côté x et on relève les bords par pliage.

- 1. Exprime à l'aide de \boldsymbol{x} les dimensions de la boite.
- 2. Montrer que le volume de la boite $f(x) = 4x^3 40x^2 + 100x$.
- 3. Expliquer pourquoi $x \in [0; 5]$.
- 4. Déterminer f' et étudier le sens de variation de f sur [0; 5].
- 5. Déterminer x pour laquelle le volume est maximal et que le maximum vaut $\frac{2000}{7}$.

6.5.3 Application 3: L'algorithme de Newton-Raphson

Préliminaires On considère la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 3x - 5$.

- 1. Calculer f'(x)
- 2. En déduire le sens de variation de f sur [2;3]
- 3. Montrer que l'équation f(x) = 0 admet une solution unique $x^* \in [2;3]$.

L'algorithme de Newton-Raphson permet d'obtenir par itération une valeur approchée d'une solution à une équation du type f(x)=0.

On se donne x_0 une abscisse proche de x^* . On sait que :

- T_0 : $y = f'(x_0)(x x_0) + f(x_0)$ est la tangente à \mathscr{C}_f au point d'abscisse x_0 .
- Au voisinage de x_0 , on sait que $f(x) \approx f'(x_0)(x-x_0) + f(x_0)$

Idée Au lieu de résoudre f(x) = 0, on résout $f'(x_0)(x - x_0) + f(x_0) = 0$:

$$f(x) = 0$$

$$f'(x_0)(x - x_0) + f(x_0) = 0$$

$$f'(x_0)(x - x_0) = -f(x_0)$$

$$x - x_0 = -\frac{f(x_0)}{f'(x_0)}$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

 x_1 obtenue correspond à l'abscisse du point d'intersection de la tangente T_0 avec l'axe des abscisses. Répétons le processus une seconde fois en arrondissant f au voisinage de x_1 :

$$f(x) = 0$$

$$f'(x_1)(x - x_1) + f(x_1) = 0$$

$$\dots = -f(x_1)$$

$$\dots = \dots$$

$$x_2 = x_1 - \dots$$

En poursuivant, on pose $(x_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} x_0 = 4 \\ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \end{cases}$$

- 1. Montrer que pour tout $n \in \mathbb{N}$: $x_{n+1} = \frac{2x_n^3 + 5}{3x_n^2 3}$
- 2. Rentrer la suite sur la calculatrice, et déterminer x_{10} .
- 3. Déterminer la limite de la suite x'. S'agit-il d'une valeur approchée de x^* .

Dans chaque cas, complète une itération et détermine le terme x_1 de l'algorithme de Newton :

- 1. $f(x) = x^3 3$ et $x_0 = 1,7$.
- 2. $f(x) = 3x^2 23$ et $x_0 = 1$.

Exercice 30

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 7x^2 + 8x - 3$.

- 1. Calculer f' et justifier que l'équation f(x) = 0 admet une solution unique sur [5, 6].
- 2. On pose $x_0 = 5$, et (x_n) la suite donnée par l'itération de Newton Raphson.
 - a) Déterminer la relation de récurrence vérifiée par la suite (x_n) .
 - b) En déduire x_2 .

Exercice 31

Dans chaque cas, complète une itération et explique pourquoi l'algorithme de Newton echoue.

- 1. $f(x) = 2x^3 6x^2 + 6x 1$ et $x_0 = 1$.
- 2. $f(x) = 4x^3 12x^2 + 12x 3$ et $x_0 = 1.5$.

■ Exemple 6.16 — Point numworks.

La fonction f définie sur \mathbb{R} par $f(x) = x^3 - 3x + 1$ admet 3 racines.

- 1. Rentrer l'expression f dans le menu fonctions, puis définir la suite de la méthode de Newton par récurrence à l'aide de f et $\frac{df}{dx}$.
- 2. Pour chaque choix de la valeur initiale, calculer quelques termes de la suite et déterminer son comportement pour n grand.
 - a) $x_0 = 1.05$.

- c) $x_0 = 0.95$. d) $x_0 = 0.911$.
- e) $x_0 = 0.91$. f) $x_0 = 0.85$.

b) $x_0 = 1$.

Exercice 32 — Algorithme de Babylone.

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^2 - 2$.

- 1. Donner les zéros de f.
- 2. Montrer que la suite donnée par l'itération Newton-Raphson vérifie la relation de récurrence $x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right).$
- 3. On pose $x_0 = 1$. Déterminer x_5 . Quel semble être la valeur de $\lim_{n \to +\infty} x_n$?

Exercice 33 Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 + 2x^2 + 10x - 20$.

- 1. Calculer la dérivée de la fonction f.
- 2. Montrer que l'équation f(x) = 0 admet une solution unique $x^* \in [1; 2]$.
- 3. Proposer une suite définie par récurrence qui permet d'approcher la solution x^* . Préciser la valeur initiale.
- 4. Complétez le script Python afin que la fonction d'appel newton(x0,n) retourne le terme de rang n de la suite de Newton-Raphson de premier terme x0.

L'algorithme de Newton-Raphson est efficace sous des conditions favorables : le nombre de chiffres corrects donnée par la suite double à chaque itération. Au bout d'une dizaine d'itérations on dépasse la précision de la calculatrice à 10^{-15} .

Deux aspects pratiques doivent être pris en compte : (1) la valeur initiale ne doit pas très éloignée du zéro recherché (2) la dérivée ne s'annule pas.

L'algorithme ne donne pas un encadrement a priori du zéro. On peut néanmoins introduire comme condition d'arrêt $\left|\frac{f(x_n)}{f'(x_n)}\right| < 10^{-p}$.

```
Exercice 34 Soit la fonction f définie sur \mathbb R par f(x)=x^3+x-1.
```

- 1. Déterminer la dérivée de f et montrer que f(x)=0 admet une solution unique sur l'intervalle $x^*\in[0;1]$.
- 2. Proposer une suite de Newton-Raphson définie par récurrence qui permet d'approcher la solution x^* .
- 3. Complétez le script Python afin que la fonction d'appel newton(x0,p) retourne le premier terme de la suite de Newton-Raphson (premier terme x0) qui respecte la condition $\left|\frac{f(x_n)}{f'(x_n)}\right| < 10^{-p}$.

L'algorithme de Newton-Raphson peut rentrer en boucle infinie si la condition d'approximation n'est pas réalisée. À cause de cela, toute mise en œuvre de la méthode de Newton-Raphson doit inclure un le contrôle du nombre d'itérations maximum.

6.5.4 Exercices : dérivées de produit et de quotient et applications

■ Exemple 6.17 — dérivation d'un produit.

Donner le domaine de dérivabilité et l'expression de la dérivée dans les cas suivants :

$$f(x) = \sqrt{x}(2x+1)^3$$

$$produit \ de \ u \colon x \mapsto \sqrt{x} \ d\acute{e} \text{finie sur} \ [0; +\infty[\ et \ d\acute{e} \text{rivable sur} \]0; +\infty[\ et \ v \colon x \mapsto (2x+1)^3 \ d\acute{e} \text{rivable}$$

$$D' = [0; +\infty[$$

$$sur \ \mathbb{R}$$

$$f'(x) = u'(x)v(x) + u(x)v'(x)$$

$$= \frac{1}{2\sqrt{x}}(2x+1)^3 + \sqrt{x} \times 2 \times 3(2x+1)^2$$

$$= \frac{(2x+1)^3}{2\sqrt{x}} + 6\sqrt{x}(2x+1)^2$$

$$f(x) = (8x - 1)(2x^{2} - 5x - 3)$$

$$D' = \mathbb{R}$$

$$f'(x) = (8x - 1)'(2x^{2} - 5x - 3) + (8x - 1)(2x^{2} - 5x - 3)'$$

$$= 8(2x^{2} - 5x - 3) + (8x - 1)(2(2x) - 5(1) + 0)$$

$$= 16x^{2} - 40x - 24 + (8x - 1)(4x - 5)$$
produit de u : $x \mapsto 8x - 1$ et
$$v$$
: $x \mapsto 2x^{2} - 5x - 3$ toutes dérivables sur \mathbb{R}

Exercice 35 Dériver en utilisant la règle de la dérivé d'un produit.

1.
$$f(x) = x^{2}(2x - 1)$$
 | 4. $f(x) = x^{2}(7 - 3x^{2})$ | 7. $f(x) = \sqrt{x}(x^{2} + 1)$ | 8. $f(x) = \sqrt{3}x - 12(x^{2} - 1)$ | 9. $f(x) = (4x - 1)\sqrt{3}x - 15$

2.
$$f(x) = 4x(2x+1)^3$$

3. $f(x) = x^5(3x-1)^2$
5. $f(x) = x^2\sqrt{3} - x$
6. $f(x) = (8-9x)\sqrt{x}$
8. $f(x) = \sqrt{3}x - 12(x^2-1)$
9. $f(x) = (4x-1)\sqrt{3}x - 15$

Exercice 36

 $=48x^2-84x-19$

Soit \mathcal{C}_f la représentation graphique de f. Déterminer la pente de la tangente au point d'abscisse x_0 dans les cas suivants :

- 1. f définie par $f(x) = x^4(1-2x)^2$, au point d'abscisse x = -1.
- 2. f définie par $f(x) = x\sqrt{1-2x}$, au point d'abscisse x = -4.

Exercice 37

Soit la fonction f définie par $f(x) = (x-3)^2 \sqrt{x}$.

- 1. Donner le domaine de définition et le domaine de dérivabilité de f.
- 2. Montrer que pour tout $x \in D'$, $f'(x) = \frac{(x-3)(5x-3)}{2\sqrt{x}}$.

■ Exemple 6.18 — dérivation d'un quotient.

Donner le domaine de dérivabilité et l'expression de la dérivée dans les cas suivants :

$$f(x) = \frac{1+3x}{x^2+1}$$

$$D = \mathbb{R} \quad D' = \mathbb{R}$$

$$f'(x) = \frac{(1+3x)'(x^2+1)-(1+3x)(x^2+1)'}{(x^2+1)^2}$$

$$f'(x) = \frac{(1+3x)'(x^2+1)-(1+3x)(x^2+1)'}{(x^2+1)^2}$$

$$= \frac{3(x^2+1)-(1+3x)2x}{(x^2+1)^2}$$

$$= \frac{3-2x-3x^2}{(x^2+1)^2}$$

$$f(x) = \frac{1-2x}{3x+3}$$

$$D = \mathbb{R} \setminus \{-1\} \quad D' = \mathbb{R} \setminus \{-1\}$$

$$f'(x) = \frac{(1-2x)'(3x+3)-(1-2x)(3x+3)'}{(3x+3)^2}$$

$$= \frac{-2(3x+3)-(1-2x)\times 3}{(3x+3)^2}$$

$$= \frac{-9}{(3x+3)^2}$$

$$f(x) = \frac{1-2x}{(1-2x)^2}$$

$$f'(x) = \frac{1-2x}{(1-2x)^2}$$

$$f'(x) = \frac{1-2x}{(1-2x)^2}$$

$$f'(x) = \frac{(1-2x)\left(\frac{12}{2\sqrt{x}}+4\sqrt{x}\right)}{(1-2x)^4}$$

$$f''(x) = \frac{1}{(1-2x)^3}\left(\frac{1-2x}{2\sqrt{x}}+4\sqrt{x}\frac{2\sqrt{x}}{2\sqrt{x}}\right)$$

$$= \frac{1-2x+8x}{2\sqrt{x}(1-2x)^3}$$

$$= \frac{6x+1}{2\sqrt{x}(1-2x)^3}$$

$$= \frac{6x+1}{2\sqrt{x}(1-2x)^3}$$

$$f''(x) = \frac{1-2x+8x}{2\sqrt{x}(1-2x)^3}$$

$$f''(x) = \frac{1-2x+8x}{2\sqrt{x}(1-2x)^3}$$

$$f''(x) = \frac{6x+1}{2\sqrt{x}(1-2x)^3}$$

$$f''(x) = \frac{1-2x+8x}{2\sqrt{x}(1-2x)^3}$$

$$f''(x) = \frac{1-2x+8x}{2\sqrt{x}(1-2x)^3}$$

Exercice 38

Donner les domaines de définition et de dérivabilité, puis dériver les fonctions suivantes.

1.
$$f(x) = \frac{1+3x}{2-x}$$

2. $f(x) = \frac{x^2-3}{2x+1}$
2. $f(x) = \frac{x}{2x-3}$
4. $f(x) = \frac{x}{x^2-3}$
6. $f(x) = \frac{x^2-3}{3x-x^2}$

Soit \mathcal{C}_f la représentation graphique de f. Déterminer la pente de la tangente au point d'abscisse x_0 dans les cas suivants :

- 1. f définie par $f(x) = \frac{x}{1 2x}$, au point d'abscisse x = 1.
- 2. f définie par $f(x) = \frac{x^3}{x^2 + 1}$, au point d'abscisse x = -1.
- 3. f définie par $f(x) = \frac{\sqrt{x}}{2x+1}$, au point d'abscisse x=4.
- 4. f définie par $f(x) = \frac{x^2}{x^2}$, au point d'abscisse x = -2.

Exercice 40

Soit \mathscr{C}_f la représentation graphique de f donnée par $f(x) = \frac{2\sqrt{x}}{1-x}$.

- 1. Déterminer le domaine et le domaine de dérivabilité de f.
- 2. Montrer que pour tout $x \in D'$, $f'(x) = \frac{x+1}{\sqrt{x}(1-x)^2}$.
- 3. Déterminer les points critiques de \mathscr{C}_f .

Exercice 41

Soit \mathscr{C}_f la représentation graphique de f donnée par $f(x) = \frac{x^2 - 3x + 1}{x + 2}$.

- 1. Déterminer le domaine et le domaine de dérivabilité de f.
- **2.** Montrer que pour tout $x \in D'$, $f'(x) = \frac{x^2 + 4x 7}{(x+2)^2}$.
- 3. Déterminer les points de \mathcal{C}_f ou la tangente est horizontale.

■ Exemple 6.19 — dérivation d'un inverse.

Donner le domaine de dérivabilité et l'expression de la dérivée dans les cas suivants :

$$f(x) = \frac{1}{(5x+3)^2}$$

$$D = D' = \mathbb{R} \setminus \{-\frac{3}{5}\}$$

$$f'(x) = \frac{-((5x+3)^2)'}{((5x+3)^2)^2}$$

$$= \frac{-(5x+3)' \times 2(5x+3)}{(5x+3)^4}$$

$$= \frac{-10(5x+3)}{(5x+3)^4}$$

$$= \frac{-10}{(5x+3)^3}$$
inverse de $v: x \mapsto (5x+3)^2$, dérivable pour $5x+3 \neq 0$.

on applique $(\frac{1}{v})' = \frac{-v'}{v^2}$

$$u(x) = x^2, \text{ on dérive } (u(5x+3))' = 5u'(5x+3)$$
on simplifie le numérateur sans développer le dénominateur $(5x+3)^3$

Exercice 42

Donner les domaines de définition et de dérivabilité, puis dériver les fonctions suivantes :

1.
$$f(x) = \frac{2}{3x - 1}$$

2. $f(x) = \frac{1}{\sqrt{x}}$

3.
$$f(x) = \frac{-5}{x^2 - 1}$$

4. $f(x) = \frac{3}{2 - 3x}$

5.
$$f(x) = \frac{1}{\sqrt{2x-3}}$$

6. $f(x) = \frac{-5}{3x^2+2}$

2.
$$f(x) = \frac{1}{\sqrt{x}}$$

4.
$$f(x) = \frac{3}{2 - 3x}$$

6.
$$f(x) = \frac{-5}{3x^2 + 2}$$

- Exemple 6.20 fonctions rationnelles. Soit la fonction f définie par $f(x) = \frac{x+2}{x-1}$.
- Préciser le domaine de f.
- Préciser le domaine de dérivabilité de f ainsi que l'expression de f'(x).
- Dresser le tableau de signe de f' et dresser le tableau de variation de la fonction f.

solution.

- 1. Valeur interdite x-1=0, x=1 donc $D=\mathbb{R}\setminus\{1\}$
- 2. f est dérivable sur $D' = \mathbb{R} \setminus \{1\}$

3.
$$f'(x) = \frac{(x-1) - (x+2)}{(x-1)^2}$$

= $\frac{-3}{(x-1)^2}$

f est strictement décroissante sur $[-\infty; 0]$ et $\operatorname{sur} [0; +\infty].$

x	$-\infty$ 1	<u>1</u> +∞
-3	_	-
$(x-1)^2$	+ () +
signe de $f'(x)$	_	-
variation de f		

Exercice 43

Pour chacune des fonctions f suivantes :

- préciser le domaine de définition et de dérivabilité
- déterminer sa dérivée f', factoriser le numérateur.
- déterminer le sens de variation de f et préciser les extremum locaux.

1.
$$f(x) = \frac{5x-2}{x+2}$$

1.
$$f(x) = \frac{5x - 2}{x + 2}$$

2. $f(x) = \frac{3 - x}{1 + 4x}$
3. $f(x) = \frac{\sqrt{x}}{x - 1}$
4. $f(x) = \frac{\sqrt{x}}{x^2 + 1}$

5.
$$f(x) = \frac{x}{x^2 + x + 1}$$
6. $f(x) = \frac{5x}{x^2 + x - 1}$

Exercice 44 — entrainement : exercices page 147 du manuel.

Pour chacune des fonctions f suivantes :

- préciser le domaine de définition et de dérivabilité
- déterminer sa dérivée f', factoriser le numérateur.
- déterminer le sens de variation de f et préciser les extremum locaux.

1.
$$f(x) = \frac{-4}{x^2 + 1}$$

3.
$$f(x) = 2x - 3 + \frac{2}{x - 1}$$

1.
$$f(x) = \frac{-4}{x^2 + 1}$$

2. $f(x) = x - 1 + \frac{4}{x - 2}$
3. $f(x) = 2x - 3 + \frac{2}{x - 1}$
4. $f(x) = \frac{x^2 - x - 2}{(x - 1)^2}$
5. $f(x) = \frac{x^2 + 3}{x + 1}$
6. $f(x) = \frac{-x^2 + 8x - 13}{x^2 - 4x + 5}$

2.
$$f(x) = x - 1 + \frac{4}{x - 2}$$

4.
$$f(x) = \frac{x^2 - x - 2}{(x - 1)^2}$$

6.6 Exercices : solutions et éléments de réponse

correction exercice 1.

correction exercice 2. $f_1'(x) = 12x^2 - 1;$ $f_2'(x) = -4x;$ $f_3'(x) = -\frac{1}{6};$ $f_4'(x) = 6x^2;$ $f_5'(x) = 2x + 3;$ $f_6'(x) = 3x - \frac{x^3 + 5}{x^2};$ $f_7'(x) = 14x;$ $f_8'(x) = \frac{2}{x^2} - \frac{2 \cdot (2x - 3)}{x^3};$ $f_9'(x) = 20x^3 - 12x;$ $f_{10}'(x) = 2x + 1;$ $f_{11}'(x) = 3x^2 + 6x + 4;$ $f_{12}'(x) = \frac{3x^2 + 1}{x} - \frac{x^3 + x - 3}{x^2};$

correction exercice 3.

correction exercice 4.

correction exercice 5.

correction exercice 6.

$$f_1'(x) = -\frac{1}{3(x+2)^2}; \quad f_2'(x) = 9(3x+4)^2; \quad f_3'(x) = 6 \cdot (3x-5); \quad f_4'(x) = \frac{5}{2\sqrt{5x-3}}; \quad f_5'(x) = \frac{10\sqrt{x+6}+\sqrt{3}}{2\sqrt{x+6}}; \quad f_6'(x) = 3a(ax+b)^2; \quad f_7'(x) = -\frac{20}{(2x-5)^3}; \quad f_8'(x) = \frac{6x^2+48x+95}{2(x+4)^2}; \quad f_9'(x) = -\frac{\sqrt{3}}{2\sqrt{4-x}};$$

correction exercice 9.
$$A(1,3)$$

correction exercise 12.
$$a = -5$$
, $b = 3$ et $c = 1$.

correction exercice 17. Les tangentes aux points A(-2;1) et B(0,1) ont pour pente 2 et sont parallèles à D_1 . La tangente à C(-2;1) a pour pente -1 et sont parallèles à D_2 . Les tangentes aux points d'abscisse 1 et -3 on pour pente 11. T passe par le point D(1,7) et est tangente à \mathscr{C}_f .

correction exercice 19.

$$f'_{1}(x) = 2x - 6 = 2(x - 3); \quad f'_{2}(x) = 3x^{2} + 4 = 3\left(x^{2} + \frac{4}{3}\right); \quad f'_{3}(x) = 3x^{2} + 6x - 9 = 3(x - 1)(x + 3);$$

$$f'_{4}(x) = 3x^{2} + 6x = 3x(x + 2); \quad f'_{5}(x) = 3 - 3x^{2} = -3(x - 1)(x + 1); \quad f'_{6}(x) = 3x^{2} - 16 = 3\left(x - \frac{4\sqrt{3}}{3}\right)\left(x + \frac{4\sqrt{3}}{3}\right); \quad f'_{7}(x) = x^{3} - \frac{3x^{2}}{2} - 2x = x\left(x - \frac{3}{4} + \frac{\sqrt{41}}{4}\right)\left(x - \frac{\sqrt{41}}{4} - \frac{3}{4}\right); \quad f'_{8}(x) = 4x^{3} + 6x^{2} = 4x^{2}\left(x + \frac{3}{2}\right); \quad f'_{9}(x) = 3x^{2} - 6x = 3x(x - 2);$$

correction exercice 20.

$$f_1'(x) = 4x^3 - 12x^2 = 4x^2(x - 3); \quad f_2'(x) = 4x^3 - 2x = 4x\left(x - \frac{\sqrt{2}}{2}\right)\left(x + \frac{\sqrt{2}}{2}\right); \quad f_3'(x) = 4x^3 - 12x + 8 = 4(x - 1)^2(x + 2); \quad f_4'(x) = 6x^5 - 6x = 6x(x - 1)(x + 1)(x^2 + 1);$$

correction exercice 21.
$$f'_1(x) = 3x^2 - 6x + 3 = 3(x-1)^2$$
; $f'_2(x) = -5x^4 - 15x^2 - 10 = -5(x^2+1)(x^2+2)$;

correction exercice 22.
$$f'_1(x) = 1 - \frac{1}{x^2} = \frac{(x-1)(x+1)}{x^2};$$
 $f'_2(x) = 1 + \frac{4}{x^2} = \frac{x^2+4}{x^2};$ $f'_3(x) = -\frac{1}{x^2-4x+4} = -\frac{1}{(x-2)^2};$ $f'_4(x) = 1 + \frac{2}{4x^2-4x+1} = \frac{4x^2-4x+3}{(2x-1)^2};$ $f'_5(x) = 1 - \frac{0.5}{x^{0.5}} = -1.0 \cdot \left(\frac{0.5}{x^{0.5}} - 1.0\right);$ $f'_6(x) = \frac{0.5}{x^{0.5}} + 5x^4 = 5.0 \cdot \left(\frac{0.1}{x^{0.5}} + 1.0x^4\right);$

correction exercice 35.

$$\begin{split} f_1'(x) &= 6x^2 - 2x = 2x \left(3x - 1\right); \\ f_2'(x) &= 128x^3 + 144x^2 + 48x + 4 = 4 \left(2x + 1\right)^2 \cdot \left(8x + 1\right); \\ f_3'(x) &= 63x^6 - 36x^5 + 5x^4 = x^4 \cdot \left(3x - 1\right) \left(21x - 5\right); \\ f_4'(x) &= -12x^3 + 14x = -2x \left(6x^2 - 7\right); \\ f_5'(x) &= -\frac{x^2}{2\sqrt{3-x}} + 2x\sqrt{3-x} = -\frac{x \left(5x - 12\right)}{2\sqrt{3-x}}; \\ f_6'(x) &= -\frac{27\sqrt{x}}{2} + \frac{4}{\sqrt{x}} = -\frac{27x - 8}{2\sqrt{x}}; \\ f_7'(x) &= \frac{5x^{\frac{3}{2}}}{2} + \frac{1}{2\sqrt{x}} = \frac{5x^2 + 1}{2\sqrt{x}}; \\ f_8'(x) &= \frac{3x^2}{2\sqrt{3x - 12}} + 2x\sqrt{3x - 12} - \frac{3}{2\sqrt{3x - 12}} = \frac{\sqrt{3} \cdot \left(5x^2 - 16x - 1\right)}{2\sqrt{x - 4}}; \\ f_9'(x) &= \frac{6x}{\sqrt{3x - 15}} + 4\sqrt{3x - 15} - \frac{3}{2\sqrt{3x - 15}} = \frac{\sqrt{3} \cdot \left(12x - 41\right)}{2\sqrt{x - 5}}; \end{split}$$

correction exercise 38.
$$f'_1(x) = \frac{7}{(x-2)^2}$$
; $f'_2(x) = \frac{2x(x+1)}{(2x+1)^2}$;

$$f_3'(x) = -\frac{x^2 + 3}{(x^2 - 3)^2};$$

$$f_4'(x) = \frac{2x + 1}{2\sqrt{x}(2x - 1)^2};$$

$$f_5'(x) = \frac{3(x^2 - 2x + 3)}{x^2(x - 3)^2};$$

$$f_6'(x) = -\frac{3x - 2}{2(1 - 3x)^{\frac{3}{2}}};$$

correction exercice 42. $f'_1(x) = -\frac{6}{(3x-1)^2}$;

$$f_2'(x) = -\frac{1}{2x^{\frac{3}{2}}};$$

$$f_3'(x) = \frac{10x}{(x-1)^2 (x+1)^2};$$

$$f_4'(x) = \frac{9}{(3x-2)^2};$$

$$f_5'(x) = -\frac{1}{(2x-3)^{\frac{3}{2}}};$$

$$f_6'(x) = \frac{90x}{(3x^2+2)^4};$$

correction exercice 43.

$$f'_{1}(x) = \frac{12}{(x+2)^{2}};$$

$$f'_{2}(x) = -\frac{13}{(4x+1)^{2}};$$

$$f'_{3}(x) = -\frac{x+1}{2\sqrt{x}(x-1)^{2}};$$

$$f'_{4}(x) = -\frac{3x^{2}-1}{2\sqrt{x}(x^{2}+1)^{2}};$$

$$f'_{5}(x) = -\frac{(x-1)(x+1)}{(x^{2}+x+1)^{2}};$$

$$f'_{6}(x) = -\frac{5(x^{2}+1)}{(x^{2}+x-1)^{2}};$$

$$D = D' = \mathbb{R} \setminus \{-2\}$$
$$f_1'(x) = \frac{12}{(x+2)^2}$$

x	$-\infty$ –	$+\infty$
12	+	+
$(x + 2)^2$	+ () +
signe de $f'_1(x) = \frac{12}{(x+2)^2}$	+	+
variation de f_1		

$$D = D' = \mathbb{R} \setminus \{-\frac{1}{4}\}$$
$$f_2'(x) = -\frac{13}{(4x+1)^2}$$

$$\begin{array}{lll} D = [0;1[\;\cup\;]1;\infty[\\ D' & = &]0;1[\;\cup\;]1;\infty[& \mbox{et} & f_3'(x) & = \\ -\frac{x+1}{2\sqrt{x}(x-1)^2} & & & \end{array}$$

$$D = [0; \infty[$$

$$D' =]0; \infty[\text{ et } f_4'(x) = \frac{1 - 3x^2}{2\sqrt{x}(x^2 + 1)^2}$$

$$D = D' = \mathbb{R}$$

$$f_5'(x) = \frac{-x^2 + 1}{(x^2 + x + 1)^2}$$

	x	$-\infty$		$-\frac{1}{4}$		$+\infty$
	-13		_		_	
	$(4x + 1)^2$		+	0	+	
;	signe de $f_2'(x) = \frac{-13}{(4x+1)^2}$		_		_	
	variation de f_2			*		` .
	x	0		1		$+\infty$
	-x - 1		_		_	
	\sqrt{x}	0	+		+	
	$(x - 1)^2$		+	0	+	
\$	signe de $f_3'(x) = \frac{-13}{(4x+1)^2}$		_		_	·
	variation de f_3	0		*		`_
	x	0		$\sqrt{\frac{1}{3}}$		$+\infty$
	$-3x^2 + 1$		+	0	_	
	\sqrt{x}	0	+		+	
	$(x^2 + 1)^2$		+		+	
si	gne de $f'_4(x) = \frac{1-3x^2}{2\sqrt{x}(x^2+1)}$)2	+	0	_	
	variation de f_4	0		$\frac{3^{0.75}}{4}$		•

x	$-\infty$		-1		1		$+\infty$
$-x^2 + 1$		_	0	+	0	_	
$(x^2 + x + 1)^2$		+		+		+	
signe de $f_5'(x) = \frac{-x^2 + 1}{(x^2 + x + 1)^2}$	2	_	0	+	0	_	·
variation de f_5			-1		$\frac{1}{3}$		*

$$D = D' = \mathbb{R} \setminus \left\{ \frac{-1 - \sqrt{5}}{2}; \frac{-1 + \sqrt{5}}{2} \right\}$$

$$f'_{6}(x) = \frac{-5x^{2} - 5}{(x^{2} + x - 1)^{2}}$$

x	$-\infty$ $\frac{-1}{2}$	$\frac{-\sqrt{5}}{2}$ $\frac{-1}{5}$	$+\frac{\sqrt{5}}{2}$ $+\infty$
$-5x^2 - 5$	_	_	_
$(x^2 + x - 1)^2$	+ () — () +
signe de $f'_6(x) = \frac{-5x^2 - 5}{(x^2 + x - 1)^2}$	_	_	_
variation de f_6			

correction exercice 44.

$$f_1'(x) = \frac{8x}{(x^2+1)^2}; \quad f_2'(x) = \frac{x(x-4)}{(x-2)^2}; \quad f_3'(x) = \frac{2x(x-2)}{(x-1)^2}; \quad f_4'(x) = -\frac{x-5}{(x-1)^3}; \quad f_5'(x) = \frac{(x-1)(x+3)}{(x+1)^2}; \quad f_6'(x) = -\frac{4(x-3)(x-1)}{(x^2-4x+5)^2};$$

8x

$$D = D' = \mathbb{R}$$

$$f_1(x) = \frac{-4}{x^2 + 1}$$

$$f'_1(x) = \frac{8x}{(x^2 + 1)^2}$$

$x^2 + 1$	+ +
signe de $f_1'(x) = \frac{8x}{(x^2+1)^2}$	- 0 +
variation de f_1	-4
x	$-\infty$ 0 2 4 $+\infty$
x(x - 4)	+ 0 0 +
$(x - 2)^2$	+ + 0 + +
signe de $f'_2(x) = \frac{x(x-4)}{(x-2)^2}$	+ 0 - 0 +
variation de f_2	-3 5

$D = D' = \mathbb{R} \setminus \{2\}$
$f_2(x) = x - 1 + \frac{4}{x - 2}$
$f_2'(x) = \frac{x(x-4)}{(x-2)^2}$

$$D = D' = \mathbb{R} \setminus \{1\}$$

$$f_3(x) = 2x - 3 + \frac{2}{x - 1}$$

$$f'_3(x) = \frac{2x(x - 2)}{(x - 1)^2}$$

$$D = D' = \mathbb{R} \setminus \{1\}$$

$$f_4(x) = \frac{x^2 - x - 2}{(x - 1)^2}$$

$$f'_4(x) = \frac{-x + 5}{(x - 1)^3}$$

$$D = D' = \mathbb{R} \setminus \{-1\}$$

$$f_5(x) = \frac{(x^2 + 3)}{x + 1}$$

$$f'_5(x) = \frac{(x - 1)(x + 3)}{(x + 1)^2}$$

$$D = D' = \mathbb{R} \setminus \{-1\}$$

$$f_6(x) = \frac{-x^2 + 8x - 13}{x^2 - 4x + 5}$$

$$f'_6(x) = \frac{-4(x - 3)(x - 1)}{(x^2 - 4x + 5)^2}$$

x	$-\infty$	0	1	2	$+\infty$
2x(x - 2)	+	0 -	_	0	+
$(x - 1)^2$	+	+	0 +		+
signe de $f_3'(x) = \frac{2x(x-2)}{(x-1)^2}$	+	0 -	_	0	+
variation de f_3		-5		3	
x	$-\infty$	1	5		$+\infty$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-∞ +	<u> </u>	5 - 0	_	$+\infty$
		<u> </u>	- 0	_ _ +	+∞
-x + 5		0 +	- 0	- +	+∞

	x	$-\infty$		-3		-1		1	$+\infty$
	(x-1)(x+3)		+	0	_		_	0	+
S	$(x + 1)^2$		+		+	0	+		+
	igne de $f_5'(x) = \frac{(x-1)(x+3)}{(x+1)^2}$	<u>)</u>	+	0	_		_	0	+
	variation de f_5	/	<i></i>	-6	\			2	<i></i>
	x	$-\infty$]	L		3		$+\infty$
sig	-4(x-3)(x-1)		_	()	+	0	_	
	$(x^2 - 4x + 5)^2$		+			+		+	
	gne de $f'_6(x) = \frac{-4(x-3)(x-3)}{(x^2-4x+5)}$	1)	-	()	+	0	_	
	variation de f_6			`* _	-3	/	, 1		