第四节 函数的单调性、极值和最大最小值

一、函数的单调性

$$\forall x \in (a,b), f'(x) > 0$$

$$\forall x \in (a,b), f'(x) < 0$$

问题:

反过来,若 $\forall x \in (a,b), f'(x) > 0, f(x) \uparrow$?
若 $\forall x \in (a,b), f'(x) < 0, f(x) \downarrow$?

函数的单调性的判定法

$$(1)$$
若 $\forall x \in (a,b), f'(x) > 0, 则 f(x)$ 在 $[a,b]$ 上单调增加 .

$$(2)$$
若 $\forall x \in (a,b), f'(x) < 0, 则 $f(x)$ 在 $[a,b]$ 上单调减少 .$

$$\stackrel{\text{lif}}{\text{lif}} (1) \forall x_1, x_2 \in [a, b], \exists x_1 < x_2,$$

$$\therefore f'(x) > 0$$

$$\therefore f(x_1) - f(x_2) = f'(\xi)(x_1 - x_2) < 0 \quad (x_1 < \xi < x_2)$$

同样的方法可证(2)。

例1 判定
$$y = x - \sin x$$
在 $[0,2\pi]$ 上的单调性 .

$$\therefore y = x - \sin x \in [0,2\pi]$$
上单调增加。

例2 讨论 $y = e^x - x - 1$ 的单调性

解 定义域
$$(-\infty,+\infty)$$
, $y' = e^x - 1$, $x = 0$ 时 $y' = 0$, $x \in (-\infty,0)$, $y' < 0$, $f(x)$ 在 $(-\infty,0]$ 上单调减少, $x \in (0,+\infty)$, $y' > 0$, $f(x)$ 在 $[0,+\infty)$ 上单调增加 .

例3 讨论 $y = \sqrt[3]{x^2}$ 的单调性

$$y' = \frac{2}{3}x^{-\frac{1}{3}} = \frac{2}{3\sqrt[3]{x}},$$

x = 0时 y'不 \exists ;

$$x < 0$$
时, $y' < 0$; $f(x)$ 在 $(-\infty, 0]$ 上单调减少

$$x > 0$$
时, $y' > 0$. $f(x)$ 在 $[0,+\infty)$ 上单调增加

结论: 若函数在其定义域上连续,除有限个点导数不存在的点外,导数存在且连续,则用 f'(x) = 0 的根及 f'(x)不存在的点划分 f(x) 的定义域区间, f(x) 在这些部分区间上的单调性不变。

划分函数 f(x) 的单调区间的步骤:

- (1) 确定函数定义域;
- (3) $\Leftrightarrow f'(x) = 0$, 求出它的根 x_i ;
- (4) 确定 f(x) 的间断点、f'(x)不存在的点 x_{k}
- (5) 用 x_i 、 x_k 把函数的定义域划分为单调区间;
- (6) 把以上结果制成表格。

例4 确定 $f(x) = 2x^3 - 9x^2 + 12x - 3$ 的单调区间

解 定义域 (-∞,+∞)

$$f'(x) = 6x^2 - 18x + 12 = 6(x - 1)(x - 2)$$

$$\phi y' = 0, \ \# x = 1,2;$$

$$x = 1,2$$
将定义域 $(-\infty,+\infty)$ 划分为三个区间 $(-\infty,1)$, $(1,2),(2,+\infty)$.

x	(- ∞ ,1)	1	(1,2)	2	(2,+∞)
f'(x)	+	0	_	0	+
f(x)					

则 f(x)在 $(-\infty,1]$, $[2,+\infty)$ 上单调增加 ,在 [1,2]上单调减少 .

例5 讨论 $y = x^3$ 的单调性

解 定义域
$$(-\infty, +\infty)$$

 $y' = 3x^2 > 0$ (除去 $x = 0$)
∴ $f(x)$ 在 $(-\infty, +\infty)$ 上单调增加

结论: 若 f'(x) 在某区间内的个别点处为零, 在其余各点均为正(或负)时,则 f(x) 在该区间上仍是单调增加(或单调减少)的。

又例 讨论 $y = x + \cos x$ 的单调性 解 定义域 $(-\infty, +\infty)$ $y' = 1 - \sin x > 0$ (除去 $x = 2k\pi + \frac{\pi}{2}, k = 0, \pm 1, \pm 2, \cdots$ 时) ∴ f(x)在 $(-\infty, +\infty)$ 上单调增加 .

利用单调性证不等式

例6 证明
$$x > 1$$
时, $2\sqrt{x} > 3 - \frac{1}{x}$.

$$\Rightarrow f(x) = 2\sqrt{x} - (3 - \frac{1}{x}),$$

则
$$f'(x) = \frac{1}{\sqrt{x}} - \frac{1}{x^2} = \frac{1}{x^2} (x\sqrt{x} - 1).$$

$$\therefore$$
 在 $(1,+\infty)$ 内, $f'(x) > 0$ \therefore $f(x)$ 在 $[1,+\infty)$ 上单调增加

$$\therefore x > 1$$
时, $f(x) > f(1) = 0$

即
$$x > 1$$
时, $2\sqrt{x} > 3 - \frac{1}{x}$.

例7 试证方程 $\sin x = x$ 只有一个实根

提示: 设 $f(x) = \sin x - x$, x = 0 是一个根

$$f'(x) = \cos x - 1 \le 0$$

f(x)在($-\infty$, $+\infty$)上单调减小

二、函数的极值及其求法

若
$$\exists U(x_0,\delta), \forall x \in U(x_0,\delta), f(x) < f(x_0)(f(x) > f(x_0)),$$

则称 $f(x_0)$ 为极大 (小) 值, x_0 为极大 (小) 值点.

$$f(x_2)$$
、 $f(x_5)$ — 极大值, x_2 、 x_5 — 极大值点。

 $f(x_1)$ 、 $f(x_4)$ 、 $f(x_6)$ —极小值, x_1 、 x_4 、 x_6 —极小值点。

- 注:(1) 函数的极大值和极小值是局部性的。如: $f(x_2) < f(x_6)$ 。
 - (2) 函数的极值只能在区间内部取得取得。
 - (3) 若函数在某区间内部有唯一的极值点,则极大值一定是最大值,极小值一定是最小值。

定理1(必要条件)设f(x)在 x_0 点可导, $f(x_0)$ 为极值,则 $f'(x_0) = 0$.

驻点: 使导数为零的点(即方程f'(x) = 0的实根)。

可导函数的极值点一定是驻点,但驻点不一定是极值点。

问题: 怎样才能从驻点中找出极值点?

充分条件

定理2 (第一充分条件)

(1)在 x_0 左侧附近, f'(x) > 0; 在 x_0 右侧附近 f'(x) < 0,则 $f(x_0)$ 为极大值 .

(2)在 x_0 左侧附近, f'(x) < 0; 在 x_0 右侧附近 f'(x) > 0,则 $f(x_0)$ 为极小值。

(3) 如果当 x取 x_0 左右两侧邻近的值时, f'(x)恒为正或恒为负,那么函数 f(x)在 x_0 处没有极值。

定理3 (第二充分条件) 设 $f''(x_0)=0, f'(x_0)=0$,则

$$(1)f''(x_0) < 0$$
时, $f(x_0)$ 为极大值 ;

$$(2) f''(x_0) > 0$$
时, $f(x_0)$ 为极小值 .

证明: (1):
$$f''(x_0) < 0$$
 即 $\lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} < 0$

由极限的保号性可得,在x。的某邻域内有

$$\frac{f'(x) - f'(x_0)}{x - x_0} < 0 \quad (x \neq x_0)$$

$$\nabla \therefore f'(x_0) = 0 \qquad \therefore \frac{f'(x)}{x - x_0} < 0$$

当 $x < x_0$ 时, f'(x) > 0, 当 $x > x_0$ 时, f'(x) < 0,

所以函数f(x) 在 x_0 处取极大值.

同理可证(2)

(3) 例如:
$$f(x) = x^3$$
 , $f(x) = x^4$

例1 求
$$f(x) = x^3 - 3x^2 - 9x + 5$$
的极值 .

$$(1)f'(x) = 3x^2 - 6x - 9 = 3(x+1)(x-3)$$

$$(2)x_1 = -1, x_2 = 3$$
 时, $y' = 0$

法1

$$(3)x$$
在 - 1的左侧附近时, $f'(x) > 0$ $\Rightarrow f(-1) = 10$ 为极大值。 $f'(x) < 0$

$$x$$
在 3的左侧附近时,
$$f'(x) < 0$$
 $\Rightarrow f(3) = -22$ 为极小值 . x 在 3的右侧附近时,
$$f'(x) > 0$$

法2

$$(3)f''(x) = 6x - 6$$

$$f''(-1) = -12 < 0 : f(-1) = 10 为极大值 .$$

$$f''(3) = 12 > 0 : f(3) = -22 为极小值 .$$

例2 求
$$f(x) = (x^2 - 1)^3 + 1$$
的极值 .

$$\mathbf{H}$$
 (1) $f'(x) = 6x(x^2 - 1)^2$

$$(2)x_1 = -1, x_2 = 0, x_3 = 1$$
 时, $y' = 0$

$$(3)f''(x) = 6(x^2 - 1)(5x^2 - 1)$$

$$f''(0) > 0$$
, $f(0) = 0$ 为极小值 .

$$f''(\pm 1) = 0$$
,法二失效,用法一

$$x$$
在 - 1的左侧附近时, $f'(x) < 0$

$$x$$
在 - 1的右侧附近时, $f'(x) < 0$: $f(-1)$ 不是极值 .

$$x$$
在 1的左侧附近时, $f'(x) > 0$

$$x$$
在 1的右侧附近时, $f'(x) > 0$: $f(1)$ 不是极值 .

$$x_1 = -1, x_3 = 1$$
 是函数的驻点。

例3 求 $f(x) = 1 - (x - 2)^{\frac{1}{3}}$ 的极值。

$$\cancel{\mathbb{H}} (1) f'(x) = -\frac{2}{3\sqrt[3]{x-2}} \neq 0$$

$$(2)x = 2时, f'(x)不存在 .$$

$$(3)x \in (-\infty,2)$$
时, $f'(x) > 0$

$$x \in (2,+\infty)$$
时, $f'(x) < 0$

$$\therefore f(2) = 1 为极大值 .$$

例4 如果
$$y = ax^3 + bx^2 + cx + d$$
 满足条件 $b^2 - 3ac < 0$, 则这函数没有极值 .

提示:
$$y' = 3ax^2 + 2bx + c$$
, $\Delta = 4(b^2 - 3ac) < 0$
 $a > 0$, $y' > 0$, 原函数递增
 $a < 0$, $y' < 0$, 原函数递减

三、函数的最大值和最小值

1.f(x)在[a,b]上连续,在[a,b]内可导,求最大值和最[a,b]值.

函数取得最值的点:

- (上) 驻点;
- (2) 区间端点。

例1 求 $y = 2x^3 + 3x^2 - 12x + 14$ 在 [-3,4]上的最大值和最小值。

$$f(x) = 2x^3 + 3x^2 - 12x + 14$$

$$f'(x) = 6x^2 + 6x - 12 = 6(x + 2)(x - 1)$$

$$f(-3) = 23;$$
 $f(-2) = 34;$ $f(1) = 7;$ $f(4) = 142.$

比较得 f(4) = 142 为最大值, f(1) = 7为最小值 .

2. 实际问题中的最大最小值问题

例2 已知铁路每公里货运的 运费 与公路上每公里货运的 运费 之比为 3:5,问 D 选何处,运费 最省?

解设
$$AD = x$$
, 则 $CD = \sqrt{20^2 + x^2}$, C 工厂

运费
$$y = 5k\sqrt{400 + x^2} + 3k(100 - x)$$
 $(0 \le x \le 100)$ $y' = k(\frac{5x}{\sqrt{400 + x^2}} - 3)$

$$\Rightarrow y' = 0$$
, 得 $x = 15(km)$.

$$y\Big|_{x=0} = 400 \ k$$
, $y\Big|_{x=15} = 380 \ k$, $y\Big|_{x=100} = 500 \ k \sqrt{1 + \frac{1}{5^2}}$

因此 AD = x = 15 km 时运费最省 .

注:

- ② 对实际问题,若 f(x) 在定义域区间内部只有一个驻点 x_0 , $f(x_0)$ 就是所要求的最大值或最小值。

例3.某地区防空洞的截面拟建成矩形加半圆

截面的面积为5m².问底宽 x为多少时才能使截面的周长最小,从而使建造时所用的材料最省?

解 周长
$$l = \pi \frac{x}{2} + x + 2y$$

由于最小周长一定存在,且在 (0,+∞)内取得,又驻点唯一,

$$\therefore x = \sqrt{\frac{40}{\pi + 4}} \text{时,} \quad l 最小.$$