Jared Fisher

Lecture 4a

Announcements

- ► Homework 2: will be due on Wednesday, February 17 (tomorrow)
- ▶ Midterm 1: Thursday, February 25

Midterm

- ► Covers everything from weeks 0-4 (everything up to and including Friday's lab): lecture, lab, homework
- Open book, open note, open Google/internet
- Cannot ask questions or discuss with anyone other than course staff
- Exam is online on Gradescope: multiple choice, T/F, number input, short response, etc.
- Timed at 60 minutes
- ► Two time slots: during class (2:15-3:15ish) or in the evening 8:00-9:00pm. Sign up for your slot with the link provided on the announcement.

Brief Recap

CODE

Didn't get to look over R code last time

Definition: Linear Time Invariant Filter

A linear time-invariant filter with coefficients $\{a_j\}$ for $j=\ldots,-2,-1,0,1,2,3,\ldots$ transforms an input time series $\{U_t\}$ into an output time series $\{V_t\}$ via

$$V_t = \sum_{j=-\infty}^{\infty} a_j U_{t-j}.$$

In the above definition, the coefficients $\{a_j\}$ are often assumed to satisfy $\sum_{j=-\infty}^{\infty}|a_j|<\infty.$

An equal-weighted, two-sided filter

Our smoother from last time is a special case of a linear smoother, where $a_j = \frac{1}{2q+1}$ for j = -q, ..., 0, ...q:

$$\hat{m}_t = \frac{1}{2q+1} \sum_{i=-q}^{q} Y_{t-j}$$

- ► (Sometimes called a "rectangular kernel" as weights are all a constant positive value or zero)
- ► (For a more general definition, see TSA4e 4.7)

Other Filter Choices

Exponential Smoothing

$$\hat{m}_t = \frac{1-\alpha}{\alpha} \left[\alpha Y_t + \alpha^2 Y_{t-1} + \alpha^3 Y_{t-2} + \dots \right]$$

▶ What constraint should there be on α ?

Other Filter Choices

► Binomial Weights

$$a_j = 2^{-q} inom{q}{q/2+j} \quad ext{ for } j \in -rac{q}{2}, -rac{q}{2}+1, ..., -1, 0, 1, ..., rac{q}{2}$$

- ► q=2
- ## [1] 0.25 0.50 0.25
 - ► q=4
- ## [1] 0.0625 0.2500 0.3750 0.2500 0.0625

- ▶ Remember that our main goal is to mathematically manipulate the raw time series so that what remains can be assumed to be stationary.
- Until now we have been estimating the trend and seasonality through models or smoothing
- Instead, we can simply remove the trend and/or seasonality without estimating it by differencing!

- Assume a simple trend model $Y_t = m_t + W_t$, where m_t is the deterministic trend and W_t is white noise.
- \blacktriangleright When m_t is approximately linear, we can look at the differenced series instead:

$$V_t = \nabla Y_t = Y_t - Y_{t-1} = \underbrace{m_t - m_{t-1}}_{pprox const.} + \underbrace{W_t - W_{t-1}}_{no trend}$$

- lacktriangle When m_t is approximately polynomial, consider higher ordered differences: $abla^d Y_t$.
- ▶ The connection: this is a filter with $a_0 = 1$ and $a_1 = -1$, 0 otherwise.

Recall Googling "Google"

Google Trends Data for the query google

Google's First Differences

Google Trends Data for the query google

More stationary than quadratic model?

Google First Differences

Correlogram of First Differences

What Happened?

If
$$Y_t = m_t + W_t$$
, and $m_t = \alpha + \beta t$

$$\nabla Y_{t} = Y_{t} - Y_{t-1}$$

$$= \alpha + \beta t + W_{t} - (\alpha + \beta(t-1) + W_{t-1})$$

$$= \beta + W_{t} - W_{t-1}$$

Using Differences to Forecast

- As per the last slide, if $V_t = \nabla Y_t$ looks like white noise, but with nonzero mean, then that mean is our estimate for β !
- ▶ Then what is our forecast for Y_{t+1} , if we know $Y_1, ..., Y_t$?
- lacktriangle Recall $abla Y_t = Y_t Y_{t-1}$, so $abla Y_{t+1} = Y_{t+1} Y_t$
- ightharpoonup \Rightarrow $Y_{t+1} = \nabla Y_{t+1} + Y_t$, so we need an estimate of ∇Y_{t+1}
- Using the equation on the last slide:

$$E(\nabla Y_{t+1}) = E(\beta + W_{t+1} - W_t) = \beta + 0 + 0 = \beta$$

- ▶ So, $E(Y_{t+1}) = Y_t + \beta$
- $\hat{Y}_{t+1} = Y_t + ar{V}$, where $ar{V}$ is the sample mean of the first differences

Higher Order Differences

What if there is a trend in ∇Y_t ? We can try taking the differences again!

$$\nabla^2 Y_t = \nabla(\nabla Y_t)$$

$$= \nabla(Y_t - Y_{t-1})$$

$$= \nabla(Y_t) - \nabla(Y_{t-1})$$

$$= Y_t - 2Y_{t-1} + Y_{t-2}$$

Higher Order Differences

$$\nabla^{2} Y_{t} = Y_{t} - 2Y_{t-1} + Y_{t-2}$$

$$\nabla^{3} Y_{t} = Y_{t} - 3Y_{t-1} + 3Y_{t-2} - Y_{t-3}$$

$$\nabla^{4} Y_{t} = Y_{t} - 4Y_{t-1} + 6Y_{t-2} - 4Y_{t-3} + Y_{t-4}$$

$$\vdots$$

▶ These remove quadratic trends, cubic trends, quartic trends, and so forth

An Example of "When would I use this?"

- ▶ For $Y_t = m_t + X_t$, say $m_t = m_{t-1} + \delta + W_t$ for $\delta \in R$ and W_t is white noise.
- ▶ Below are 200 examples, where a single possibility is highlighted

An Example of "When would I use this?"

- ▶ This is called a state space model, where the trend has a "random walk with drift",
- ► This can be a complicated model!
- \blacktriangleright But note that there's no trend (m_t) in the first difference, just constants and noise:

$$\nabla Y_{t} = Y_{t} - Y_{t-1}$$

$$= m_{t} + X_{t} - m_{t-1} - X_{t-1}$$

$$= (m_{t-1} + \delta + W_{t}) + X_{t} - m_{t-1} - X_{t-1}$$

$$= \delta + W_{t} + X_{t} - X_{t-1}$$

First Differences

- ► Useful for removing trends that are approximately linear (or polynomial for higher order differences)
- ► We do get forecasts!
- ► However, we get no estimate of the trend (because we removed it without estimating it!)

Seasonal Differencing

We can obtain residuals adjusted for seasonality without fitting a seasonality function by differencing:

$$\nabla_{d} Y_{t} = Y_{t} - Y_{t-d}$$

$$= s_{t} - s_{t-d} + X_{t} - X_{t-d}$$

$$= X_{t} - X_{t-d}$$

... because $s_t = s_{t-d}!$

Air Conditioning Sales

Air Conditioning Sales - $\nabla_{365} Y_t$

```
d365 = diff(Sales, lag = 365)
plot.ts(d365)
```


Air Conditioning Sales - $\nabla_7 \nabla_{365} Y_t$

```
d7d365 = diff(d365, lag = 7)
plot.ts(d7d365)
```


Improvement?

- ▶ While it appears that the variance fluctuates in year cycles, this is obviously much closer to stationary than what we started with!
- ▶ Note however that we lose data when we difference (365+7 datapoints to be precise)

```
length(Sales)
```

```
## [1] 1642
```

length(d7d365)

```
## [1] 1270
```

► This is okay for this problem though as we still have many years of data, and our primary interest is forecasting.

Forecasting with Seasonal Differences

- Let's assume $V_t = \nabla_7 \nabla_{365} Y_t$ shown previously is sufficiently stationary. How would we forecast Y_{t+1} given all data $Y_1, ..., Y_t$?
- ► Note

$$\nabla_{7}\nabla_{365}Y_{t} = \nabla_{7}(Y_{t} - Y_{t-365})$$

$$= (Y_{t} - Y_{t-365}) - (Y_{t-7} - Y_{t-365-7})$$

$$= Y_{t} - Y_{t-365} - Y_{t-7} + Y_{t-365-7}$$

$$= Y_{t} - Y_{t-7} - Y_{t-365} + Y_{t-372}$$

Forecasting with Seasonal Differences

- ► Thus $\nabla_7 \nabla_{365} Y_{t+1} = Y_{t+1} Y_{t-6} Y_{t-364} + Y_{t-371}$
- ▶ And $Y_{t+1} = Y_{t-6} + Y_{t-364} Y_{t-371} + \nabla_7 \nabla_{365} Y_{t+1}$
- ▶ Hence $E(Y_{t+1}|Y_1,...,Y_t) = Y_{t-6} + Y_{t-364} Y_{t-371} + E(\nabla_7\nabla_{365}Y_{t+1}|Y_1,...,Y_t)$
- And we estimate

$$\hat{Y}_{t+1} = Y_{t-6} + Y_{t-364} - Y_{t-371} + \bar{V}$$

where $ar{V}$ is the sample mean of $abla_7
abla_{365} Y_{t+1}$