

Computer Logic Midterm

DO: T=2 ms tw=1 (1/2)100% = 50%

D2: T = 8 ns $t_n = 4$ $(\frac{4}{8}) 1094. = 50\%$ For example: D1: D3: $T \approx 16$ $t_n = 8$ $t_n = 4$ $t_n = 8$ $t_n = 8$ t

6) The sequence of numbers count the time tw and represent colorns for different D1: T=4 ns tw=2 (2) too% = 50% autpats given the inputs Do, D, De, and D3.

2. See wavedrom diagrams at attached doc.

a) sparallel - one time interval T=1 = $\begin{bmatrix} .25 \text{ Ms} \end{bmatrix}$

6) frequency = 4 MHz D:= D.D.D. T= 1 = 1 = .25 us

1 bit per . 25 ms 30 15 (.25) = 3.75 ms to transfer each D;

So total will be Dix. 25 us to complete transfer.

Chapter 2

computer Logic Midterm

١.

1					
à	1024/				
	= 512/2	0			
	256/2	0	1		
	128/2	0		,	
	64/2	0	100	000	0000
	32/2	0			
	16/2	0			
	8/2	0			
	9/2	0			
	2/2	0			

6)
$$B \times 16^{3} + B \times 16^{2} + B \times 16^{1} + B \times 16^{0}$$

= $1/\times 16^{3} + 1/\times 16^{2} + 1/\times 16^{1} + 1/\times 16^{1}$
= $48059 - decircl$
 $48059/2$ 1 197/2 1
 $24029/2$ 1 93/2 1
 $12014/2$ 0 46/2 0 [01110111011]
 $6007/2$ 1 23/2 1

11/2

5/2

2/2

1/2

0

-100000000000

0

3003/2

750/2

1501/2 1

375/2 1

2.

a) 65535/16	15 = F
1095/16	15 = F
255/16	15 = F
15/16	15 = F

1/2 1-

6) 100010001000 8 8 8 8 = [8888] :41

0

FFFF

0

图

3. from out & in our 6) 000 110 () a) 1 Ichange 1 Ichange 001 111 111 000 3 changes I Ichange I Ichange Oll Ichange | 1 Charge
Olo 2change | 0 Charges
Oll Ichange | 1 011 101 110 I Ichange I Ichange 010 100 I I change I I change 1+2+1+3+1+2+1+3 000 = 14 bit changes 8-6:+ 8-6:+ 7 |+ |+ |+ |+ |+ |+ |+ | 8x15 1200 = 8 bit changes 41:

>									C				
>	Chapter 4									60			
>	1.						11			alen /		. 4	PA
>	ABCD + ABCD + BACD =								6)			0	
>							a nep	(0,0)	AD	00	01	(11)	10
>	A	B	(D	X				00		ĀBĒD	ABCD	ĀĒCĀ
>	0	0	0	0	OFF				00			000	
>	0	٥	0	1	OFF				01	ABCD	ABCD	ABCD	ABCD
2	0	0	1	0	OFF				JAx	1/4		- 4	
/	0	0	1	1	ON					ABCO	ABCD	ABCD	ABCD
	0	1	0	0	OFF								
>	0	1	0	0	OFF				10	ARED	ABCD	ABCD	ABCP
>	0	1	1	1	ON								
>	1	0	0	0	OFF				Simplified	5-500	col	1	
>	1	0	0		OFF				21-191-1103				
>	1	0	1	0	OFF								
>	1	0	1	1	ON				c) Stoc	ks A o	ind B	shou	ld be
>	1	1	0	0	OFF				elami	nated	from	the po	rtfolio
>	1	1	0		OFF				becar	use the	prof :	t only	depends
>	1		1	0	OFF				on (and D),		
>			11		ION								
-													
5													
5													
>													
5													

. 园

2.5


```
2a) Output of a XOR gate with D0 and D1 ad inputs:
```

```
{ signal: [
{ name: "D0", wave: 'lhlhlhlhlhlhlhlhlh' },
{ name: "D1", wave: 'l.h.l.h.l.h.l.h.' },
{ name: "X", wave: 'lh.l.h.l.h.l.h.l' }
]}
```


2b) Output of a XOR gate with D2 and D3 ad inputs:

```
{ signal: [
{ name: "D2", wave: 'l...h..l..h...' },
{ name: "D3", wave: 'l...h....' },
{ name: "X", wave: 'l...h.....' }
]}
```

D3 _____

2c) Output of a XOR gate with D0 and D1 ad inputs

```
{ signal: [
{ name: "XOR1", wave: 'lh.l.h.l.h.l.h.l' },
{ name: "XOR2", wave: 'l...h.....' },
{ name: "EN", wave: 'l...h..l...' },
{ name: "AND", wave: 'l...hl.hl...' }
]}
```


Chapter 3

2. Output of a XOR gate with D0 and D1 ad inputs

```
{ signal: [
{ name: "D0", wave: 'lhlhlhlhlhlhlh' },
{ name: "D1", wave: 'l.h.l.h.l.h.' },
{ name: "XNOR", wave: 'hl.h.l.h.l.h' }
]}
D0
D1
XNOR
```