ESC201T : Introduction to Electronics

Lecture 26: Amplifiers-2

B. Mazhari Dept. of EE, IIT Kanpur

Amplifier Schematic

Device Y

$$\begin{split} I_{oy} &= 0 \text{ for } V_{OY} < V_{sat} \\ \text{for } V_{OY} \geq V_{sat} \\ I_{oy} &= 0 \qquad \qquad \text{for } V_{iy} \leq V_{\alpha} \\ &= g_m \times (V_{iy} - V_{\alpha}) \text{ for } V_{iy} > V_{\alpha} \end{split}$$

Ideal Characteristics

How do we use device Y to make an amplifier?

$$I_{oy} = 0 \text{ for } V_{OY} < V_{sat}$$

$$\text{for } V_{OY} \ge V_{sat}$$

$$I_{oy} = 0 \qquad \text{for } V_{iy} \le V_{\alpha}$$

$$= g_m \times (V_{iy} - V_{\alpha}) \text{ for } V_{iy} > V_{\alpha}$$

Will the earlier solution work?

The purpose of biasing network is to operate the device in a region which resembles ideal transistor

 V_{Oy} = -ve which is not possible

Revised Amplifier Schematic

Can we Bias using one dc voltage source only?

$$V_{B} = V_{DD} \times \frac{R_2}{R_1 + R_2}$$

$$I_{oy} = 0 \text{ for } V_{OY} < V_{sat}$$

 $\text{for } V_{OY} \ge V_{sat}$
 $I_{oy} = 0 \qquad \text{for } V_{iy} \le V_{\alpha}$
 $= g_m \times (V_{iy} - V_{\alpha}) \text{ for } V_{iy} > V_{\alpha}$

Device Z

$$\begin{split} I_{oz} &= 0 \text{ for } V_{OZ} < 0.2V\\ \text{for } V_{OZ} &\geq 0.2\\ I_{oz} &= 0 & \text{for } V_{iz} \leq 1V\\ &= 1 \times (V_{iz} - 1V) \text{ for } V_{iz} > 1V \end{split}$$

Circuit is very sensitive to variations in resistor values, power supply, device parameters such as $V\alpha$

$$V_{DD} = 5V; R_2 = 1K; R_1 = 3.95K$$

 $\Rightarrow V_{iz} = 1.01 \Rightarrow I_{OZ} = 10mA$

$$V_{DD} = 5V; R_2 = 0.99K; R_1 = 3.95K$$

 $\Rightarrow V_{iz} = 1.002 \Rightarrow I_{OZ} = 1.9mA$

$$V_{DD} = 5V$$
; $R_2 = 0.98K$; $R_1 = 3.95K$
 $\Rightarrow V_{iz} = 0.994V \Rightarrow I_{OZ} = 0$

Solution

$$R_{D} \longrightarrow V_{DD}$$

$$R_{t} \longrightarrow V_{OZ}$$

$$g_{m}(V_{iZ}-V_{\alpha})$$

$$g_{m}(V_{iZ}-V_{\alpha})$$

$$-V_t + 0 \times R_t + V_{iz} + I_{OZ}R_{SO} = 0$$

Since I_{oZ} vs. V_{iZ} characteristics is very sharp, $V_{iZ} \sim V_{\alpha} = 1V$

$$I_{OZ} \cong \frac{V_t - V_\alpha}{R_{SO}}$$

If V_t changes by 1% due to variation in resistor values then the change in output current is proportional.

Circuit is much less sensitive to variations in circuit parameters

Ac analysis

$$v_S = v_{iz} + g_m v_{iz} R_{SO}$$

$$v_O = -g_m \times R_D \| R_L$$

$$A_{V} = \frac{v_{o}}{v_{s}} = -\frac{g_{m}R_{D}||R_{L}}{1 + g_{m}R_{SO}}$$

Circuit is very sensitive to variations in resistor values, power supply, device parameters such as $\text{V}\alpha$

$$A_V = \frac{v_o}{v_S} = -g_m R_D \| R_L$$

Circuit is much less sensitive to variations in circuit parameters

$$A_{V} = \frac{v_{o}}{v_{s}} = -\frac{g_{m}R_{D}||R_{L}}{1 + g_{m}R_{SO}}$$

But gain is smaller

Simple Solution

For dc, Capacitor C_S acts as open allowing R_{SO} to reduce variations in current

For ac, Capacitor C_S acts as a short circuit (1/j ω C ~0) allowing high voltage gain to be obtained

Device NL:

$$I_o = K \times (V_{in} - V_{\alpha})^2 \text{ for } V_{in} \ge V_{\alpha}$$

$$V_{\alpha} = 1.0V$$
 ; $K = 0.02$

$$V_B = 1.5V$$

$$v_S = 0.3VSin(\omega t)$$

Because of Non-linearity the output waveform is distorted!

Suppose input is reduced to $v_S = 0.1V Sin(\omega t)$

$$v_S = 0.1V Sin(\omega t)$$

Distortion is much smaller if we restrict input voltage to a small value!

Building Amplifiers with non-linear devices

Amplifier will work properly (with small distortion only if we restrict the amplitude of input signal to small values.

How small depends on the nature of nonlinearity. The stronger the non-linearity the lesser the signal amplitude.