

Лекция 5

Начало алгебры многочленов

Содержание лекции:

В настоящей лекции мы кратко рассмотрим основные понятия, связанные с кольцом многочленов и операциями в нем. Данная структура является основополагающей ряда разделов математики и часто служит источником нетривиальных примеров для алгебры и анализа.

Ключевые слова:

Многочлен, коэффициенты многочлена, степень многочлена, сумма и произведение многочленов, ассоциированные многочлены, делимость, остаток от деления, корень многочлена.

Авторы курса:

Трифанов А.И.

Москаленко М.А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

5.1 Основные определения

 $Nota\ bene$ Пусть K - некоторое поле.

Многочленом от одной переменной с коэффициентами из поля K будем называть формальную бесконечную сумму следующего вида:

$$f(x) = a_0 + a_1 t + a_2 t^2 + \ldots + a_n t^n + \ldots,$$

в которой отличны от нуля только *некоторые* коэффициенты $a_0, a_1, a_2, \ldots \in K$, а t называется формальной переменной.

Nota bene Множество многочленов от переменной t будем обозначать через K[t]. Пусть далее $f,g\in K[t]$, так что

$$f(t) = \sum_{n=0}^{\infty} a_n t^n, \quad g(t) = \sum_{m=0}^{\infty} b_m t^m,$$

 $\mathbf{C}\mathbf{y}$ ммой двух многочленов f и g называется такой многочлен h=f+g, что

$$h(t) = \sum_{k=0}^{\infty} c_k t^k, \quad c_k = a_k + b_k.$$

Произведением двух многочленов f и g называется такой многочлен p=fg, что

$$p(t) = \sum_{j=0}^{\infty} d_j t^j, \quad d_j = \sum_{i=0}^{j} a_i b_{j-i}.$$

Теорема 5.1. Множество K[t], наделенное операциями сложения и умножения является коммутативным ассоциативным кольцом.

- Прямой проверкой нетрудно убедиться, что K[t] абелева группа по сложению с нейтральным элементом O(t) и обратным для каждого f(t), представляющим собой элемент -f(t).
- Также прямой проверкой можно убедиться, что произведение индуцирует на K[t] структуру коммутативного моноида с нейтральным элементом 1(t).
- Проверим дистибутивность: пусть $f, g, h \in K[t]$, и

$$(f+g)h = \sum_{k=0}^{\infty} d_k t^k, \quad fh = \sum_{n=0}^{\infty} p_n t^n, \quad gh = \sum_{m=0}^{\infty} q_m t^m.$$

тогда имеет место

$$d_k = \sum_{i=0}^k i = 0^k (a_i + b_i) c_{k-i} = \sum_{i=0}^k i = 0^k (a_i c_{k-i}) + \sum_{i=0}^k i = 0^k (b_i c_{k-i}) = p_k + q_k,$$

а это коэффициент многочлена fh + gh.

Nota bene Полное название кольца K[t] звучит так: ассоциативное коммутативное кольцо с единицей.

Лемма 5.1. Пусть $\sigma: K \to K[t]$ определено формулой $\sigma(\alpha) = \alpha + 0 \cdot t + 0 \cdot t^2 + \dots$, тогда σ - вложение.

Прямой проверкой легко убедиться, что σ - гомоморфизм. Пусть далее

$$\alpha \in \ker \sigma \quad \Rightarrow \quad \sigma(\alpha) = \alpha + 0t + \dots = 0 + 0t + \dots \quad \Rightarrow \quad \alpha = 0.$$

Таким образом, σ - вложение.

◀

Nota bene В дальнейшем договоримся записывать $\alpha f(t)$ понимая под этим $\sigma(\alpha) f(t)$

5.2 Делимость в кольце многочленов

Два многочлена f и g называются **ассоциированными** (обозначают $f \sim g$), если $f = \alpha \cdot g$, где $\alpha \in K$, $\alpha \neq 0$.

Лемма 5.2. Ассоциированность - отношение эквивалентности.

Проверим свойства отношения:

- рефлексивность: $f = 1 \cdot f \implies f \sim f$;
- симметричность: $f \sim g \quad \Rightarrow \quad f = \alpha g \quad \Rightarrow \quad g = \frac{1}{\alpha} f \quad \Rightarrow \quad g \sim f;$
- транзитивность:

$$f \sim g$$
, $g \sim h \implies f = \alpha g$, $g = \beta h \implies f = \alpha \beta h \implies f \sim h$.

4

Степенью $\deg(f)$ многочлена $f \in K[t]$ называется максимальный номер его ненулевого коэффициента. Для нулевого многочлена $\theta(t)$ положим $\deg(\theta) = -\infty$. Если $\deg f = n \in \mathbb{N}_0$ то коэффициент a_n называется **сташим коэффициентом** многочлена f.

Лемма 5.3. Пусть $f, g \in K[t]$ тогда имеют место следующие свойства:

$$\deg(fg) = \deg(f) + \deg(g), \quad \deg(f+g) \leq \max\left\{\deg(f), \deg(g)\right\}.$$

Пусть $\deg(f) = n$ и $\deg(g) = m$, и при этом

$$f = \sum_{i=0} a_i t^i$$
 $g = \sum_{j=0} b_j t^j$, $fg = \sum_{k=0} c_k t^k$,

тогда будем иметь

$$c_{n+m} = \sum_{i=0}^{n-1} a_i b_{n+m-i} + a_n b_m + \sum_{i=n+1}^{n+m} a_i b_{n+m-i} = a_n b_m \neq 0.$$

При k>n+m имеем $c_k=0$ и, следовательно, $\deg(fg)=n+m$. Доказательство второго свойства следует из того, что при $k>\max\left\{\deg(f),\deg(g)\right\}$ имеем

$$a_k = b_k = 0 \quad \Rightarrow \quad c_k = a_k + b_k = 0.$$

4

Теорема 5.2. Пусть $f,g \in K[t]$, причем $g \neq 0$, тогда существуют единственные $q,r \in K[t]$, такие что

$$f = qg + r$$
, $\deg(r) < \deg(g)$.

▶

Пусть $\deg(f) = n$ и $\deg(g) = m$, а также

$$f(t) = a_n t^n + \ldots + a_0, \quad g(t) = b_m t^m + \ldots + b_0.$$

Далее используем индукцию по n. При n < m в качестве базы подходит

$$q = 0, \quad r = f.$$

Пусть, дале
е $n \geq m$ и для многочленов степени меньшей
 nутверждеие доказано. Так как

$$f_1(t) = f(t) - \frac{a_n}{b_m} t^{n-m} g(t), \quad \deg(f_1) < n,$$

то по индукционному предположению

$$f_1 = q_1 g + r, \quad \deg(r) < m,$$

но тогда

$$f(t) = \left(q_1(t) + \frac{a_n}{b_m} t^{n-m}\right) g(t) + r(t)$$

- искомое представление для f(t).

Теперь докажем единственность. Пусть

$$q_1g + r_1 = f = q_2g + r_2$$
, $\deg(r_1) < m$, $\deg(r_2) < m$.

Тогда

$$r_1 - r_2 = q(q_2 - q_1).$$

Пусть далее $q_1 \neq q_2$, имеем:

$$\deg((q_2 - q_1)g) = \deg(q_2 - q_1) + \deg(g) \ge m.$$

С другой стороны:

$$\deg(r_1 - r_2) \le \max\left(\deg(r_1), \deg(r_2)\right) < m.$$

Противоречие. Значит $q_1 = q_2$ и $r_1 = r_2$. \blacktriangleleft

Говорят, что многочлен f делится на многочлен g (пишут f : g), если существует такой многочлен h, что f = gh.

Лемма 5.4. Если f : g и g : h, тогда f : h.

Из условия следует, что

$$f = pg, \quad g = qh \quad \Rightarrow \quad f = (pq)h.$$

Лемма 5.5. Пусть f, g : h, тогда

$$\forall p, q \in K[t] \quad (pf + qg) \vdots h.$$

Имеем

$$f = \alpha h, \quad g = \beta h, \quad \alpha, \beta \in K[t] \quad \Rightarrow \quad fp + gq = (\alpha p + \beta q)h.$$

Лемма 5.6. Пусть f : g, причем $f, g \neq 0$, тогда

$$\deg(f) \ge \deg(g).$$

Из условия следует, что

$$f = gh, \quad \in K[t], \quad h \neq 0 \quad \Rightarrow \quad \deg(f) = \deg(g) + \deg(h) \geq \deg(g).$$

Лемма 5.7. Пусть $f : g, f, g \neq 0$ и $\deg(f) = \deg(g)$, тогда $f \sim g$.

Из условий следует $f=gh,\,h\in K[t]$ и

$$deg(g) = deg(f) = deg(g) + deg(h) \implies deg(h) = 0 \implies h \in K.$$

Лемма 5.8. Пусть $f : g, f, g \neq 0$ и g : f, тогда $f \sim g$.

Имеем

$$\deg(f) \ge \deg(g), \quad \deg(g) \ge \deg(f) \quad \Rightarrow \quad \deg(f) = \deg(g).$$

◀

5.3 Корень многочлена

Пусть $f \in K[t]$ и $\alpha \in K$. Число α называется корнем многочлена f степени m, если

$$f(t) \stackrel{\cdot}{:} (t-\alpha)^m, \quad f(t) \not\mid (t-\alpha)^{m+1}.$$

Лемма 5.9. Остаток от деления $f \in K[t]$ на $(t - \alpha)$ равен $f(\alpha)$

▶

По теореме от делении с остатком имеем:

$$f(t) = (t - \alpha)q(t) + r(t), \quad \deg(r) \le \deg(t - \alpha) = 1$$

Следовательно, $r(t) = r \in K$ и

$$f(\alpha) = 0 \cdot q(t) + r.$$

•

Nota bene Если $f \in K[t]$ и α - корень f(t), тогда $f(t) : (t - \alpha)$.

Теорема 5.3. (основная теорема алгебры) Любой многочлен из $\mathbb{C}[t]$ имеет корень из \mathbb{C} .

 $\pmb{Nota~bene}~~\Pi$ усть $f(t) \in \mathbb{C}[t], \, \deg(f) = n$ и c - старший коэффициент f, тогда

$$f(t) = c(t - \alpha_1)(t - \alpha_2) \dots (t - \alpha_n), \quad \alpha_j \in \mathbb{C},$$

причем не обязательно все α_i различны.

Nota bene Рассмотрим автоморфизм $\sigma: \mathbb{C}[t] \to \mathbb{C}[t]$, индуцированный операцией комплексного соряжения в \mathbb{C} :

$$\sigma(f(t)) = \bar{f}(t) = \bar{a}_n t^n + \ldots + \bar{a}_1 t + \bar{a}_0, \quad f(t) = a_n t^n + \ldots + a_1 t + a_0.$$

Лемма 5.10. Пусть $f \in \mathbb{C}[t]$ и $\alpha \in \mathbb{C}$ - корень f кратности m. Тогда $\bar{\alpha}$ - корень \bar{f} той же кратности m.

▶

Из условия леммы имеем:

$$f(t) = (t - \alpha)^m g(t) \quad \Rightarrow \quad \bar{f}(\bar{t}) = (\bar{t} - \bar{\alpha})^m \cdot \bar{g}(\bar{t}).$$

Но это значит, что $\bar{\alpha}$ - корень \bar{f} кратности k не меньшей m. Далее, $\alpha=\bar{\bar{\alpha}}$ - корень $f=\bar{f}$ кратности не меньшей k, откуда k=m. \blacktriangleleft

Теорема 5.4. Многочлен $f \in \mathbb{R}[t]$ степени $\deg(f) = n \ge 1$ со старшим коэффициентом c раскладывается в $\mathbb{R}[t]$ на множители:

$$f(t) = c(t - \alpha_1)^{k_1} \dots (t - \alpha_s)^{k_s} \cdot (t^2 + p_1 t + q_1)^{m_1} \dots (t^2 + p_r t + q_r)^{m_r},$$

$$D(t^2 + p_i t + q_i) = p_i^2 - 4q_i < 0, \quad i = 1 \dots r.$$

Лемма 5.11. Многочлен $f \in \mathbb{R}[t]$ нечетной степени всегда имеет действительный корень.

Согласно предыдущей теореме, сумма кратностей всех комплексных корней f равна $\deg(f)/2$, а сумма кратностей невещественных корней четна. Следовательно, кратность вещественных корней нечетна и значит такие корни есть.

◀