UBA – CBC – Física (03)							Final 22/07/11				Tema X					
Apellido:							Nombres:					DNI:				
Grilla de corrección																
	E 1	E 2	E 3	E 4	E 5	E 6	E 7	E 8	E 9	E 10	E 11	E 12	Correctas	Nota final	Corrigió	
T or	non	foron	todo	ontog	do oor	nonzo	n Fla	N GMA OM	aanst	a do 13	l aiamai	oios do	anaián múlt	inla aon una	sola vasnuas	
Lea	ı, por	iavor,	todo	antes	ae con	nenza	r. El e.	xamen	const	a ae 12	ejercu	cios de	opcion múlt	ipie, con una	sola respues	

correcta que debe elegir colocando una cruz en el cuadradito que figura a su izquierda. Se aprueba con un mínimo de 6 respuestas correctas. No se aceptan respuestas en lápiz. Si tiene dudas sobre la interpretación de cualquiera de los ejercicios, le agradeceremos que lo indique en el escrito y explique su interpretación. Puede usar su calculadora. Use g $= 10 \text{ m/s}^2$.

Dispone de 2 horas 30 minutos.

AS - EL - HG

1. Se dispara un proyectil desde el piso ($x_0 = y_0 = 0$) de modo que supera una valla de altura H, situada a una distancia horizontal D del punto de lanzamiento. El ángulo de disparo, a, medido respecto a la horizontal, para que el proyectil alcance su altura máxima al llegar a la valla y pase rasante a ella, debe cumplir:

a) tg
$$\alpha$$
 = 2H/D b) sen α = H/D c) cos α = H/D d) tg α = H/2D e) cos α = D/H f) tg α = 2D/H Resuelto acá

- 2. El gráfico corresponde a dos móviles que se desplazan sobre la misma recta. Sabiendo que en t=0 B marcha delante de A a una distancia D, se cumple que:
- a) La distancia que separa los móviles varía cuadráticamente con el tiempo.
- b) El módulo de la aceleración de A es mayor que el módulo de la aceleración de B.
- c) Los móviles no se encuentran para t>0.
- d) Se produce un solo encuentro para t=D/8 (m/s).
- e) Se producen dos encuentros para t>0.
- f) La distancia que los separa crece linealmente con el tiempo. Resuelto acá

- 3. Una persona que está adentro de un ascensor, está parada sobre una balanza que registra un peso 40% menor al que indicaría si el ascensor estuviera detenido. ¿Cuál de las siguientes posibilidades es correcta para el ascensor en ese momento?
- a) baja cada vez más despacio
- b) sube cada vez más despacio
- c) sube cada vez más rápido

- d) sube con velocidad constante
- e) baja en caída libre
- f) baia con velocidad constante

- Resuelto acá
- 4. Un péndulo ideal está formado por una masa m colgada de un hilo inextensible y sin masa. No hay fricción. Si se aparta la masa 60° respecto de la posición de equilibrio y se la suelta, la tensión del hilo en la posición más baja de la trayectoria valdrá aproximadamente:

a)
$$T = 2 \text{ mg}$$

b)
$$T = 4 \text{ mg}$$

c)
$$T = 3 \text{ mg}$$

d)
$$T = \frac{1}{2} \text{ mg}$$

$$e) T = ma$$

$$f) T = 0$$

Resuelto acá

5. Dos ruedas M y S giran unidas por una correa. La frecuencia de giro de la rueda M es el doble de la frecuencia de giro de la rueda S. Establecer la relación entre ambas para sus radios (R) y módulo de sus velocidades tangenciales (v) respectivas.

a)
$$R_M = 2 R_S y V_M = V_S/2$$

d) $R_M = R_S/2 y V_M = V_S$

b)
$$R_{M} = 2 R_{S} y V_{M} = V_{S}$$

b)
$$R_M = 2 R_S y V_M = V_S$$

e) $R_M = R_S/2 y V_M = 2 V_S$
c) $R_M = 2 R_S y V_M = 2 V_S$
f) $R_M = R_S y V_M = V_S/2$

e)
$$R_M = R_S/2 y V_M = 2 V$$

f)
$$R_M = R_S y V_M = V_S/2$$

Resuelto acá

- 6. Un micro sale a las 12 hs. del km 0. Llega a las 14 al km 100 y se detiene una hora hasta las 15 hs. Finalmente llega al km 320 a las 17 hs. La ruta es rectilínea. Si V_A es la velocidad media entre las 12 y las 14 hs, V_B es la velocidad media entre las 14 y 17 hs y V_C es la velocidad media en todo el recorrido, se cumple que: b) $V_A > V_C > V_B$ c) $V_C > V_A > V_B$ d) $V_C > V_B > V_A$
- a) $V_A > V_B > V_C$

- e) $V_B > V_A > V_C$
- f) $V_B > V_C > V_\Delta$

Resuelto acá

7. El sistema de la figura está compuesto de dos bloques, A y B, de masa 16 kg y 4 kg respectivamente. La superficie horizontal no presenta fricción y el coeficiente de rozamiento estático entre los bloques es 0,5. ¿Cuá es la mínima fuerza F que se debe aplicar a A para que B con caiga por acción de la gravedad?

a) 50 N

b) 100 N

c) 200 N

d) 400 N

e) 800 N

f) 1600 N

Resuelto acá

8. Dos satélites de masas M_A y M_B tienen órbitas circulares alrededor de un planeta (tanto M_A como M_B son mucho menores que la masa del planeta) tal que sus radios al centro del mismo son R_A y R_B respectivamente. Se verifica que $R_A = 2$ R_B y que $M_A = M_B/2$. Si llamamos F_A y F_B al módulo de las fuerzas gravitatorias que el planneta ejerce sobre cada uno de los satélites, y V_A y V_B a las velocidades tangenciales de ambos ¿cuál de las afirmaciones es correcta?

a) El período del satélite A es el doble que el de B, y $F_A = F_B/6$.

b) La aceleración centrípeta de A es la cuarta parte de la de B, y $F_A = F_B/8$.

c) El período del satélite A es la mitad que el de B, y $F_A = F_B/2$.

d) V_A es ocho veces V_B y $F_A = F_B/2$.

e) El período del satélite A es igual al de B, y $F_A = F_B/8$.

f) La aceleración centrípeta de A es igual a la de B, y $F_A = F_B/4$.

Resuelto acá

9. El gráfico de energía potencial de una masa m unida a un resorte horizontal se muestra a la derecha. x representa la elongación o compresión del resorte respecto de su posición no deformada. De las siguientes opciones, ¿cuál es la combinación correcta? (no hay rozamiento ni otra fuerza no-conservativa).

1) La constante elástica del resorte vale 3 x 10⁴ N/m.

2) El trabajo de la fuerza elástica entre x=-2cm y x=2cm es 0J.

3) La fuerza elástica en x=-2cm es de 6N.

4) El trabajo de la fuerza elástica x=-2cm y x=0cm es -6J.

5) La energía cinética de la masa es máxima en x=2cm.

b) 2 y 3

c) 3 v 4

d) 4 y 5

e) 1 y 2

f) 2 y 5

Resuelto acá

10. Una fuerza variable actuó sobre un cuerpo mientras este se desplazaba horizontalmente 2m. El trabajo realizado por dicha fuerza F fue de 150 J. ¿Cuál de los gráficos puede corresponderse con esa fuerza?

Resuelto acá

11. Qué potencia media debe desarrollar una máquina que hace alcanzar una velocidad de 4 m/s a un bloque de 200 kg partiendo del reposo en 8 m de recorrido horizontal? (Suponga aceleración constante y ausencia de rozamiento)

a) 100 W Resuelto acá

b) 200 W

c) 300 W

d) 400 W

e) 500 W

f) 600 W

12. Un pequeño pedazo de acero de volumen V_{Ac} está pegado en una cara de un cubo de madera cuyo volumen es V_M . La relación de volúmenes es $V_{Ac} = V_M/6$. Cuando el cubo se coloca en agua con el acero en la parte inferior, se sumerge hasta 1/3 de altura del cubo. Si se invierte, de manera que el acero quede en la cara superior, el volumen sumergido del cubo será:

a) $V_M/2$

b) V_M

c) $V_M/4$

d) $V_M/3$

e) $V_M/8$

f) $3V_M/4$

Resuelto acá

 $_{\mathsf{Tema}}\,X$

NOTA NMS: Algunos detalles del tema de examen fueron alterados para poder vincularlos a las resoluciones. Por ejemplo las opciones van en letras en lugar de casilleros vacíos como en el original.