Schema Refinement & Normalization Theory

Assignment Project Exam Help

https://politide.com

Add WeChat powcoder Prof. Alex Brodsky Database Systems

What's the Problem

Consider relation obtained (call it SNLRHW) Hourly_Emps(<u>ssn</u>, name, lot, rating, hrly_wages, hrs_worked)

* What if we know rating determines help_wages?

S h	ttps://powco	der.c	B m	W	Н
123-22-3666	Attisheehat	48 powe	8de	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Redundancy

- When part of data can be derived from other parts, we say redundancy exists.
 - Example: the hrly_wage of Smiley can be derived from the hrly_wage of Attishon because they have the same rating and we know rating determines hrly_wage.dd WeChat powcoder
- * Redundancy exists because of of the existence of *integrity constraints*.

What's the problem, again

- * <u>Update anomaly</u>: Can we change W in just the 1st tuple of SMLRWH?
- * Insertion anomaly: What if we want to https://powcoder.com insert an employee and don't know the hourly wage for his rating?
- * <u>Deletion anomaly</u>: If we delete all employees with rating 5, we lose the information about the wage for rating 5!

What do we do?

- * Since constraints, in particular *functional dependencies*, cause problems, we need to study them, and understand when and how they cause redundancy. Project Exam Help
- * When redundant was wrister resimement is needed.
 - Main refinement technique: <u>decomposition</u> (replacing ABCD with day, echat proposition and ABD).
- Decomposition should be used judiciously:
 - Is there reason to decompose a relation?
 - What problems (if any) does the decomposition cause?

Refining an ER Diagram

- Before: 1st diagram translated: since Workers(S,N,L,D,S) name dname Departments(D,M,B)
 - Lots associated with workers. (budget) ssn. Foject Exam Help did Works_In * Suppose all workehttips://powcoder.co **Departments** dept are assigned the same Add WeChat powcoder lot: $D \rightarrow L$
- Can fine-tune this: Workers2(S,N,D,S)Departments(D,M,B,L)

Functional Dependencies (FDs)

- \star A <u>functional dependency</u> (FD) has the form: $X \rightarrow Y$, where X and y are two sets of attributes.
 - Examplesigatimentalyege, Expanchelp
- The FD X→Y is satisfied by a relation instance r if:

 for each pair of tuples trand the r:

$$t1[X] = t2[X]$$
 implies $t1[Y] = t2[Y]$ Add WeChat powcoder

- i.e., given any two tuples in r, if the X values agree, then the Y values must also agree. (X and Y are sets of attributes.)
- Convention: X, Y, Z etc denote sets of attributes, and A, B, C, etc denote attributes.

Functional Dependencies (FDs)

- * *The FD holds* over relation name R if, for every *allowable* instance *r* of R, *r* satisfies the FD.
- * An FD, Assignment Project Lintris Metatement about all allowable relation instances.
 - Must be identified been so serious of application.
 - Given some instance *r*1 of R, we can check if it *violates* some FD *f* or not Add WeChat powcoder
 - But we cannot tell if fholds over R by looking at an instance!
 - This is the same for all integrity constraints!

Example: Constraints on Entity Set

- Consider relation obtained from Hourly_Emps:
 - Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)
- * Notation: We will denote this relation schema by listing the attributes of the

 - This is really the *set* of attributes {S,N,L,R,W,H}.
 Sometimes, we will refer to all attributes of a relation by using the relation name. (e.g., Hourly_Emps for SNLRWH)
- Some FDs on Hourly_Emps:
 - ssn is the key: $S \rightarrow SNLRWH$
 - rating determines $hrly_wages: R \rightarrow W$

One more example

A	В	С		FDs with A as the left side:	Satisfied by the relation
1	1	2 Assign	nment F	Project Exam	instance?
1	1	3		$A \xrightarrow{\bullet} A$	yes
2	1	3 h	ttps://po	wcoder.com	yes
2	1	_	dd We	That powcode	No
	1			$A \rightarrow AB$	yes
				A→AC	No
How many <i>possible</i>				A→BC	No
FDs totally on this relation instance?				A→ABC	No

49.

Violation of FD by a relation

- The FD X→Y is NOT satisfied by a relation instances ignment Project Exam Help
 - There exists a pair of tuples t1 and t2 in r such that t1[X] = t2[X], but $t1[y] \neq t2[y]$

Add WeChat powcoder

i.e., we can find two tuples in *r*, such that X values agree, but Y values don't.

Some other FDs

A	В	С			
1	1	Assig	nment	FD Project Exar	Satisfied by
1	1				
2	1	$\frac{1}{3}$ h	ttps://j	powpoder.com	n yes
	ļ	\ \ \ \	dd W	eChar bowco	No
2	1	2	ida vv	B→C	No
				В→В	Yes
				AC →B	Yes [note!]
				• • •	• • •

Relationship between FDs and Keys

- ❖ Given R(A, B, C).
 - $A \rightarrow ABC$ means that A is a key.
- In general, assignment Project Exam Help
 - X → R mehttps://po/supde/keym
- How about key constraint?
 Add WeChat powcoder
 - $-ssn \rightarrow did$

Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
 - ssn→did, did → lot implies. ssn→lot
 A → BC implies A → B

- https://powcoder.com
 An FD f is <u>logically implied by</u> a set of FDs F, denoted F = f, if for every relationalinstance the following delds:
 - if r satisfies all FD's in F,
 - then r satisfies f
- * *The closure of F, denoted* F is the set of all FDs that are logically implied by *F*.

Reasoning about FDs

- How do we get all the FDs that are logically implied by a given set of FDs? Assignment Project Exam Help
- Armstrong's Axioms (X, Y, Z are sets of attributes): https://powcoder.com
 - Reflexivity: Add W&Chaepowcoder
 - <u>Augmentation</u>: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - <u>Transitivity</u>: If $X \to Y$ and $Y \to Z$, then $X \to Z$

Armstrong's axioms

- Armstrong's axioms are sound and complete inferencesignesefur Project Exam Help
 - Sound: all the derived FDs (by using the axioms) are those logically implied by the given set
 - Complete Add the Chian by worded (by the given set) FDs can be derived by using the axioms.

Example of using Armstrong's Axioms

- * Couple of additional rules (that follow from AA):
 - AA):
 Assignment Project Exam Help
 Union: If $X \to Y$ and $X \to Z$, then $X \to YZ$
 - Decomposititps: If prowered entropy $X \to Y$ and $X \to Z$
- * Derive the above two by using Armstrong's axioms!

Reasoning About FDs (Contd.)

- * Example: Contracts(cid,sid,jid,did,pid,qty,value), and:
 - C is the key: $C \rightarrow CSJDPQV$
 - Project (id) purchases epch part using single contract: $IP \rightarrow C$
 - Dept purchas**httptsn/spowegodtefr@ma**pplier: SD → P
- * JP → C, C → CSJDPQV imply JP → CSJDPQV
 * SD → P implies SD → JP powcoder
- * $SDJ \rightarrow JP$, $JP \rightarrow CSJDPQV$ imply $SDJ \rightarrow CSJDPQV$

Reasoning About FDs (Contd.)

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)
- * Typically, Assignment Projectk Examinated $X \to Y$ is in the closure of a set of FDs F.
- * An efficient checkps://powcoder.com
 - Compute <u>attribute closure</u> of X (denoted X†) wrt F:
 - Set of all attributes A such that $X \to A$ is in F^+
 - ◆ There is a linear time algorithm to compute this.
- ❖ Claim: $F \mid = X \rightarrow Y$ if and only if Y is in X^+
- * Example: Does $F = \{A \rightarrow B, B \rightarrow C, CD \rightarrow E\}$ imply $A \rightarrow E$?
 - i.e, is $A \rightarrow E$ in the closure F^+ ? Equivalently, is E in A^+ ?

Computing X⁺

- Input F (a set of FDs), and X (a set of attributes)
- Output: Result=X+ (under F)
 Method: Assignment Project Exam Help
 - Step 1: Restattps X/powcoder.com
 - Step 2: Take Y Z in F, and Y is in Result, do: Result := Result *union* Z
 - Repeat step 2 until Result cannot be changed and then output Result.

Example of computing X^+

- \star F={A \rightarrow B, AC \rightarrow D, AB \rightarrow C}
- * X=A Assignment Project Exam Help
- Result should be X⁺=ABCD https://powcoder.com

Add WeChat powcoder

Computing F⁺

❖ Given $F=\{A \rightarrow B, B \rightarrow C\}$. Compute F^+ (with attributes A, B, C).

	A	В	C	AB	l		ABC		Attribute closure
A	V	Ąs	S18	nme	nt P	røje	ct Ex	an	nafleapc
В		1	1	ittns	//no	WCC	der.c	or	B+=BC
С			$\sqrt{}$,, ,				C+=C
AB	V	1	\sqrt{I}	Add	WeC	Chat	powe	CO	deB+=ABC
AC		1	$\sqrt{}$				\checkmark		AC+=ABC
ВС		1				1			BC+=BC
ABC	V	V	V		V	V	√ ·		ABC+=ABC

- An entry with $\sqrt{\text{means FD}}$ (the row) \rightarrow (the column) is in F⁺.
- An entry gets $\sqrt{\text{when (the column)}}$ is in (the row)⁺

Check if two sets of FDs are equivalent

- Two sets of FDs are equivalent if they logically imply the same set of FDs.
 - I.e., if Assignment Project Examileent.
- * For example F_2 : For exampl
- * How to test? dd WeChat powcoder
 - Every FD in F_1 is in F_2^+
 - Every FD in F_2 is in F_1 ⁺
- ❖ These two steps can use the algorithm (many times) for X⁺

Summary

- Constraints give rise to redundancy
 - Three anomalies
- * FD is a Assignment Project Exam Help
 - Satisfactiontessippotive oder.com

 - Logical implication
 Add WeChat powcoder
 Reasoning