Лабораторная работа №5

Построение графиков

Легиньких Г.А.

Российский университет дружбы народов, Москва, Россия

Докладчик

- Легиньких Галина Андреевна
- НФИбд-02-21
- Российский университет дружбы народов
- · 1032216447@pfur.ru
- https://github.com/galeginkikh

Основная информация

Основная цель работы — освоить синтаксис языка Julia для построения графиков.

Задание

- 1. Используя Jupyter Lab, повторите примеры из раздела 5.2. При этом дополните графики обозначениями осей координат, легендой с названиями траекторий, названиями графиков и т.п.
- 2. Выполните задания для самостоятельной работы (раздел 5.4).

Выполнение лабораторной работы

Для начала я повторила примеры и дробавила, где это было необходимо, обозначения осей координат, легенду с названиями траекторий, названия графиков и т.п. Больше я это нигде прописывать не буду.

Julia поддерживает несколько пакетов для работы с графиками. Использование того или иного пакета зависит от целей, преследуемых пользователем при построении. Стандартным для Julia является пакет Plots.jl.

Основные пакеты для работы с графиками в Julia

Основные пакеты для работы с графиками в Julia

Рис. 1: Способ 1

Опции при построении графика

Опции при построении графика

Рис. 2: Графики исходной функции и её разложения в ряд Тейлора с опциями

Точечный график

Точечный график

Рис. 3: График пятидесяти случайных значений на плоскости с различными опциями отображения

Точечный график

Рис. 4: График пятидесяти случайных значений в пространстве с различными опциями отображения

Аппроксимация данных

Аппроксимация — научный метод, состоящий в замене объектов их более простыми аналогами, сходными по своим свойствам.

Две оси ординат

Иногда требуется на один график вывести несколько траекторий с существенными отличиями в значениях по оси ординат.

Полярные координаты

Полярные координаты

Рис. 7: График функции, заданной в полярных координатах

Параметрический график

Параметрический график кривой на плоскости

Рис. 8: Параметрический график кривой на плоскости

Параметрический график

Параметрический график кривой в пространстве

Рис. 9: Параметрический график кривой в пространстве

График поверхности (использована функция surface())

Рис. 10: График поверхности (использована функция surface())

График поверхности (использована функция plot())

Рис. 11: График поверхности (использована функция plot())

Сглаженный график поверхности

Рис. 12: Сглаженный график поверхности

График поверхности с изменённым углом зрения

Рис. 13: График поверхности с изменённым углом зрения

Рис. 14: График поверхности, заданной функцией

Рис. 15: Линии уровня с заполнением

Рис. 16: График функции

Векторные поля

22/41

Gif-анимация

Рис. 18: Анимированный график поверхности

Гипоциклоида

Гипоциклоида — плоская кривая, образуемая точкой окружности, катящейся по внутренней стороне другой окружности без скольжения.

Рис. 19: Малая окружность гипоциклоиды с добавлением радиуса

Гипоциклоида

В конце сделаем анимацию получившегося изображения.

Errorbars

В исследованиях часто требуется изобразить графики погрешностей измерения. Подключила пакет Statistics.

Использование пакета Distributions

Использование пакета Distributions.

Рис. 22: Гистограмма, построенная по массиву случайных чисел

Подграфики

Определим макет расположения графиков. Команда layout принимает кортеж layout = (N, M), который строит сетку графиков NxM. Например, если задать layout = (4,1) на графике четыре серии, то получим четыре ряда графиков.

28/41

· Задание 1

Рис. 24: Задание 1

Задание 2

Задание 3

· Задание 4

Рис. 27: Задание 4

· Задание 5

Рис. 28: Задание 5.1

```
[46]: x = 3:0.1:6

# Symoutu y1 u y2
y1(x) = n * x
y2(x) = exp(x) * cos(x)

# Nocoponeue appluxo0 c döynn ocamu opdumom
p1 = plot(x, y1.(x), label="y1(x) = nx", color=:blue, xlabel="x", ylabel="y1(x)",
grid=true)
p2 = plot(x, y2.(x), label="y2(x) = exp(x)cos(x)", color=:red, xlabel="x", ylabel="y2(x)",
secondary = true)
# OneOpoxnorn ofGr appluxor
plot(p1, p2, title="Tpainxx")
```


Рис. 29: Задание 5.2

Рис. 31: Задание 7

Рис. 32: Задание 8

Рис. 33: Задание 9

Рис. 34: Задание 10

Рис. 35: Задание 11

Освоила синтаксис языка Julia для построения графиков.