Scilab Textbook Companion for Thermodynamics by Gaggioli and Obert¹

Created by
Sarvan Dharavath
Chemical engineering
Chemical Engineering
IIT Bombay
College Teacher
None
Cross-Checked by
Bhavani

July 8, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Thermodynamics

Author: Gaggioli and Obert

Publisher: Tata McGraw-Hill

Edition: 3

Year: 1987

ISBN: 0486603611

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Survey of Units and Dimensions	9
2	Fundamental Concepts	12
3	Temperature and the Ideal gas	14
5	The first law and the dynamic open system	16
7	The Second law	18
8	Second and Third law topics	21
9	Properties of the pure substance	23
10	The Pvt relationships	30
11	The Ideal gas and mixture relationships	33
12	Non steady flow friction and availability	45
13	Fluid Flow	52
14	Psychrometrics	64
15	Vapor cycles and processes	74
16	Combustion	80

17 Gas cycles and processes	92
18 Refrigeration	94

List of Scilab Codes

Exa 1.1	Force calculation	9
Exa 1.2	Force calculation	9
Exa 1.3	velocity calculation	10
Exa 1.4	velocity calculation	10
Exa 1.5	Force calculation	11
Exa 1.6	density calculation	11
Exa 2.1	Potential energy calculation	12
Exa 2.2	Absolute energy calculation	12
Exa 3.2	volume calculation	14
Exa 3.3	density calculation	14
Exa 5.2	work done and power calculation	16
Exa 5.3	Area calculation	17
Exa 5.4	Temperature calculation	17
Exa 7.2	Entropy and efficiency calculation	18
Exa 7.3	Entropy calculation	19
Exa 7.4	Energy calculations	19
Exa 8.1	PvsS calculation	21
Exa 8.2	Thermal efficiency calculation	21
Exa 8.3	Loss of available energy calculation	22
Exa 9.1	Internal energy calculation	23
Exa 9.2	Entropy calculation	23
Exa 9.3	Enthalpy calculation	24
Exa 9.4	Heat calculation	24
Exa 9.5	Enthalpy and Quality calculation	25
Exa 9.6	Heat calculation	25
Exa 9.7	Work calculation	26
Exa 9.8	Heat calculation	27
Exa 9.9	Work done calculation	27

Exa 9.10	Quality calculation
Exa 10.1	Pressure calculations
Exa 10.2	volume calculation
Exa 10.3	Pressure calculations
Exa 11.1	Work calculation
Exa 11.2	Kinetic energy calculation
Exa 11.3	Temperature calculation
Exa 11.4	Temperature work and Enthalpy calculations 35
Exa 11.5	Weight calculations
Exa 11.6	Analysis calculations
Exa 11.7	Entropy calculations
Exa 11.8	Internal energy and entropy calculations
Exa 11.9	Pressure and temperature calculations
Exa 11.10	Entropy calculations
Exa 11.11	Entropy calculations
Exa 11.12	Volume and mass calculations
Exa 11.13	Percentage calculation
Exa 11.14	Partial Pressure calculations
Exa 12.1	Work done calculation
Exa 12.2	Friction calculations
Exa 12.3	Energy loss calculations 46
Exa 12.4	Pressure drop calculation
Exa 12.5	Mass rate calculation
Exa 12.6	Loss and effectiveness calculations
Exa 12.7	Loss and effectiveness calculations 49
Exa 12.8	Loss and effectiveness calculations
Exa 13.1	Velocity and area calculations
Exa 13.2	Area calculations
Exa 13.3	Area calculations
Exa 13.4	velocity and flow rate calculations
Exa 13.5	Area calculations
Exa 13.6	Length calculation
Exa 13.7	Change in entropy calculation
Exa 13.8	Pressure calculation
Exa 13.9	Heat calculation
Exa 13.10	Thrust calculation
Exa 13.11	Mass flow rate calculation
Exa 13.12	Mass flow rate calculation

Exa 13.13	Area calculations
Exa 13.14	Area calculations 61
Exa 13.15	Area of discharge calculation 61
Exa 13.16	Pressure drop calculation
Exa 13.17	Mass flow rate calculation
Exa 14.1	Pressure and density calculations 64
Exa 14.2	Moisture content calculation 65
Exa 14.3	Humidity calculations
Exa 14.4	Enthalpy and sigma function calculations 67
Exa 14.5	Enthalpy calculations 67
Exa 14.6	Humidity calculations
Exa 14.7	Enthalpy change calculations 69
Exa 14.8	Enthalpy and temperature calculations
Exa 14.9	Dry bulb calculations
Exa 14.10	Approach calculations
Exa 14.11	Heat calculations
Exa 15.1	Efficiency calculations
Exa 15.2	Efficiency calculations
Exa 15.3	Efficiency calculations
Exa 15.4	Efficiency calculations
Exa 15.5	Efficiency and pressure calculations
Exa 15.6	Efficiency calculations
Exa 16.1	Molecule formulation
Exa 16.2	Molecule formulation
Exa 16.3	Air fuel ratio calculations
Exa 16.4	Mass and energy calculations
Exa 16.6	Percentage calculations
Exa 16.7	Air fuel ratio calculations
Exa 16.8	Air fuel ratio calculations
Exa 16.9	Air fuel ratio calculations 84
Exa 16.10	Air fuel ratio calculations
Exa 16.11	Air fuel ratio calculations
Exa 16.12	Air fuel ratio calculations
Exa 16.13	Equation formulation
Exa 16.14	Higher heating value
Exa 16.15	Lower heating value
Exa 16.16	Heat of reaction
Exa 16 17	Temperature calculations 89

Exa 16.18	Equilibrium calculations	90
Exa 16.19	Dissociation calculations	90
Exa 16.20	Extent of reaction	91
Exa 17.1	Efficiency and air fuel ratio Equilibrium calculations .	92
Exa 18.1	Work and cop calculations	94
Exa 18.2	cop calculation	95
Exa 18.3	work done and cop calculations	95
Exa 18.4	Pressure ratio calculations	96
Exa 18.5	Work done and heat calculations	97
Exa 18.6	hp and cop calculations	99

Survey of Units and Dimensions

Scilab code Exa 1.1 Force calculation

```
1 clc
2 clear
3 //Initialization of variables
4 gc=32.1739 //lbm ft/lbf s^2
5 m=10 //lbm
6 a=10 //ft/s^2
7 //calculations
8 F=m*a/gc
9 //results
10 printf("Force to accelerate = %.3f lbf",F)
```

Scilab code Exa 1.2 Force calculation

```
1 clc
2 clear
3 //Initialization of variables
```

```
4 gc=32.1739 //lbm ft/lbf s^2
5 m=10 //lbm
6 a=gc //ft/s^2
7 //calculations
8 F=m*a/gc
9 //results
10 printf("Force to accelerate = %d lbf",F)
```

Scilab code Exa 1.3 velocity calculation

```
1 clc
2 clear
3 //Initialization of variables
4 v=88 //ft/s
5 //calculations
6 v2=v*3600/5280
7 //results
8 printf("velocity = %d mph", v2)
```

Scilab code Exa 1.4 velocity calculation

```
1 clc
2 clear
3 //Initialization of variables
4 v=88 //ft/s
5 //calculations
6 v2=v*1/5280*3600
7 //results
8 printf("velocity = %d mph",v2)
```

Scilab code Exa 1.5 Force calculation

```
1 clc
2 clear
3 //Initialization of variables
4 F=5e-9 //lbf/ft^2 hr
5 g=32.1739
6 //calculations
7 F2=F*3600*g
8 //results
9 printf("Force without dimensions = %.2e lbm/ft sec", F2)
```

Scilab code Exa 1.6 density calculation

```
1 clc
2 clear
3 //Initialization of variables
4 rho=62.305 //lbf/ft^2
5 g=32.1739 //ft/s^2
6 //calculations
7 gam=rho/g
8 //results
9 printf("Density of water in this system = %.3 f lbf/ft^2",gam)
10 printf("\n Specific weight = %.3 f lbf/ft^2",rho)
```

Fundamental Concepts

Scilab code Exa 2.1 Potential energy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 z=100 //ft
5 m=32.1739 //lbm
6 //calculations
7 PE=m*z
8 //results
9 printf("Potential energy = %.2 f ft-lbm", PE)
```

Scilab code Exa 2.2 Absolute energy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 m0=18.016 //lbm
5 gc=32.1739 //lbm ft/lbf sec^2
6 c=186000*5280
```

```
7 dU=94.4*10^6 //ft-lbf
8 //calculations
9 U=m0/gc *c^2
10 dm= -dU*gc/c^2
11 //results
12 printf("Absolute energy of this mixture = %.2e ft-lbf",U)
13 printf("\n In case b, there is no change in mass")
14 printf("\n Change in mass = %.2e lbm",dm)
15 disp("The answers are a bit different due to rounding off error in textbook.")
```

Temperature and the Ideal gas

Scilab code Exa 3.2 volume calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p=14.7 //psia
5 R0=1545
6 t=460 +60 //R
7 //calculations
8 v=R0*t/(p*144)
9 //results
10 printf("Volume = %.1 f ft^3/mol",v)
```

Scilab code Exa 3.3 density calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p=20 //psia
5 R0=1545
```

```
6 t=460 +100 //R
7 M=28
8 //calculations
9 v=R0*t/(p*144*M)
10 rho=1/v
11 //results
12 printf("density of nitrogen = %.4 f lbm/ft^3",rho)
```

The first law and the dynamic open system

Scilab code Exa 5.2 work done and power calculation

```
1 clc
2 clear
3 //Initialization of variables
4 rate= 5 / lbm / sec
5 Q=50 //Btu/s
6 h2=1020 //Btu/lbm
7 h1=1000 //Btu/lbm
8 V2=50 //ft/s
9 V1 = 100 //ft/s
10 J=778
11 g=32.2 //ft/s^2
12 gc=g
13 Z2=0
14 \ Z1 = 100 \ // ft
15 //calculations
16 \text{ dw=Q/rate } -(h2-h1) -(V2^2-V1^2)/(2*gc*J) -g/gc *(Z2)
      -Z1)/J
17 power=dw*rate
18 //results
```

```
19 printf("work done by the system = \%.1 \, f Btu/lbm",dw)
20 printf("\n Power = \%.1 \, f Btu/s",power)
```

Scilab code Exa 5.3 Area calculation

```
1 clc
2 clear
3 //Initialization of variables
4 V=100 //ft/s
5 v=15 //lbm/ft^3
6 m=5 //lbm/s
7 //calculations
8 A=m*v/V
9 //results
10 printf("Area of inlet pipe = %.2 f ft^2", A)
```

Scilab code Exa 5.4 Temperature calculation

```
clc
clear
//Initialization of variables
P=100 //psia
//calculations
disp("From table B-4")
h=1187.2 //Btu/lbm
t1=328 //F
t2=540 //F
dt=t2-t1
//results
printf("Final temperature of the steam = %d F",t2)
printf("\n Change in temperature = %d F",dt)
```

The Second law

Scilab code Exa 7.2 Entropy and efficiency calculation

```
1 clc
2 clear
3 //Initialization of variables
4 cv=0.175 //Btu/lbm R
5 R0 = 1.986
6 M = 29
7 T2 = 1040 / R
8 \text{ T1} = 520 / \text{R}
9 //calculations
10 cp = cv + R0/M
11 sab=cv*log(T2/T1)
12 sac=cp*log(T2/T1)
13 dqab=cv*(T2-T1)
14 dqca=cp*(T1-T2)
15 dqrev=T2*(sac-sab)
16 eta=(dqab+dqrev+dqca)/(dqab+dqrev)
17 //results
18 printf ("Entropy in ab part = \%.4 \,\mathrm{f} Btu/lbm R", sab)
19 printf("\n Entropy in ac part = \%.4 \, f Btu/lbm R", sac)
20 printf("\n Efficiency = \%.2 f percent", eta*100)
21 disp("The answers are a bit different due to
```

Scilab code Exa 7.3 Entropy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 tc=32 //F
5 \text{ th=80 } //F
6 \text{ mw=5} //\text{lbm}
7 mi=1 //lbm
8 P=14.7 // psia
9 \text{ cp=1}
10 //calculations
11 t= (-144*mi+tc*mi+th*mw)/(mw+mi)
12 ds1=144/(tc+460)
13 ds2=cp*log((460+t)/(460+tc))
14 dsice=ds1+ds2
15 dswater=mw*cp*log((t+460)/(460+th))
16 ds=dsice+dswater
17 //results
18 printf ("Change in entropy of the process = \%.4 f Btu/
     R",ds)
19 disp ("The answer is a bit different due to rounding
      off error in textbook")
```

Scilab code Exa 7.4 Energy calculations

```
1 clc
2 clear
3 //Initialization of variables
4 cp=1
5 T2=60 //F
```

Second and Third law topics

Scilab code Exa 8.1 PvsS calculation

Scilab code Exa 8.2 Thermal efficiency calculation

```
1 clc
2 clear
```

```
3 //Initialization of variables
4 cp=0.25 //Btu/lbm R
5 T0=520 //R
6 T1=3460 //R
7 //calculations
8 dq=cp*(T0-T1)
9 ds=cp*log(T0/T1)
10 dE=dq-T0*ds
11 eta=dE/dq
12 //results
13 printf("Thermal efficiency = %.1f percent",eta*100)
```

Scilab code Exa 8.3 Loss of available energy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 cp=0.25 //Btu/lbm R
5 \text{ T0=520 } / \text{R}
6 \text{ T1} = 3460 //\text{R}
7 dG=21069 //Btu/lbm
8 \text{ dH} = 21502 //\text{Btu/lbm}
9 //calculations
10 dq=cp*(T0-T1)
11 ds=cp*log(T0/T1)
12 dE=dq-T0*ds
13 \text{ eta=dE/dq}
14 \text{ dw=eta*dH}
15 \text{ de=-dG+dw}
16 //results
17 printf("Loss of available energy = %d Btu/lbm", de)
18 disp("The answer is a bit different due to rounding
       off error in textbook")
```

Properties of the pure substance

Scilab code Exa 9.1 Internal energy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 T=32 //F
5 m=1 //lbm
6 J=778.16
7 //calculations
8 disp("From steam tables,")
9 hf=0
10 p=0.08854 //psia
11 vf=0.01602 //ft^3/lbm
12 u=hf-p*144*vf/J
13 //results
14 printf("Internal energy = %.7f Btu/lbm",u)
```

Scilab code Exa 9.2 Entropy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 P=40 //psia
5 //calculations
6 disp("from steam tables,")
7 hf=200.8 //Btu/lbm
8 hg=27 //Btu/lbm
9 T=495 //R
10 ds=(hf-hg)/T
11 //results
12 printf("Change in entropy = %.3 f Btu/lbm R",ds)
```

Scilab code Exa 9.3 Enthalpy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 x=0.35
5 T=18 //F
6 //calculations
7 disp("From table B-14,")
8 hf=12.12 //Btu/lbm
9 hg=80.27 //Btu.lbm
10 hfg=-hf+hg
11 h=hf+x*hfg
12 //results
13 printf("specific enthalpy = %.1f Btu/lbm",h)
```

Scilab code Exa 9.4 Heat calculation

```
1 clc
2 clear
```

```
// Initialization of variables
x=0.35
T=18 //F
T=2=55.5 //F
// calculations
disp("From table B-14,")
hf=12.12 //Btu/lbm
hg=80.27 //Btu.lbm
hfg=-hf+hg
h=hf+x*hfg
h=hf+x*hfg
h=hf+x*hfg
h=hf-x*hfg
from table B-14,")

// results
from table B-14,")

// Btu/lbm
by
h=12.12 //Btu/lbm
hfg=-hf+hg
h=hf+x*hfg
h=hf+x*hfg
Heat required = %.2 f Btu/lbm",dh)
```

Scilab code Exa 9.5 Enthalpy and Quality calculation

```
1 clc
2 clear
3 //Initialization of variables
4 P=1460 //psia
5 T=135 //F
6 P2=700 //psia
7 //calculations
8 disp("From mollier chart,")
9 h=120 //Btu/lbm
10 x=0.83
11 //results
12 printf("enthalpy = %d Btu/lbm",h)
13 printf("\n Qulaity = %.2f",x)
```

Scilab code Exa 9.6 Heat calculation

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ m=1} //\text{lbm}
5 P1 = 144 // psia
6 P2=150 // psia
7 T1 = 360 / F
8 J = 778.16
9 //calculations
10 disp("From table 3,")
11 v1=3.160 // \text{ft }^3/\text{lbm}
12 h1=1196.5 //Btu/lbm
13 u1=h1-P1*144*v1/J
14 h2=1211.4 //Btu/lbm
15 u2=h2-P2*144*v1/J
16 dq=u2-u1
17 //results
18 printf ("Heat transferred = %.1 f Btu/lbm", dq)
```

Scilab code Exa 9.7 Work calculation

```
1 clc
2 clear
3 //Initialization of variables
4 T1=100 //F
5 P2=1000 //psia
6 x=0.6
7 J=778.16
8 //calculations
9 disp("From table 3,")
10 v=0.01613 //ft^3/lbm
11 P1=0.9 //psia
12 wrev=-v*(P2-P1)*144/J
13 dv=0.000051 //ft^3/lbm
14 wcomp=(P2+P1)/2 *dv*144/J
```

Scilab code Exa 9.8 Heat calculation

```
1 clc
2 clear
3 //Initialization of variables
4 pa=1000 //atm
5 ta=100 //F
6 //calculations
7 hf=67.97 //Btu/lbm
8 w=3 //Btu/lbm
9 ha=hf+w
10 disp("from steam table 2,")
11 hc=1191.8 //Btu/lbm
12 qrev=hc-ha
13 //results
14 printf("Heat transferred = %.1f Btu/lbm", qrev)
```

Scilab code Exa 9.9 Work done calculation

```
1 clc
2 clear
3 //Initialization of variables
4 P1=144 //psia
5 T1=400 //F
6 y=0.7
7 //calculations
8 disp("From steam tables,")
```

```
9 h1 = 1220.4 //Btu/lbm
10 s1=1.6050 //Btu/lbm R
11 s2=1.6050 //Btu/lbm R
12 P2=3 //psia
13 sf=0.2008 //Btu/lbm R
14 sfg=1.6855 //Btu/lbm R
15 x = (s1 - sf) / sfg
16 hf = 109.37 / Btu/lbm
17 hfg=1013.2 //Btu/;bm
18 h2=hf+x*hfg
19 \text{ work=h1-h2}
20 \text{ dw=y*work}
21 h2d=h1-dw
22 / results
23 printf("Work done = %d Btu/lbm", work)
24 printf("\n work done in case 2 = \%.1 \, \text{f Btu/lbm}", dw)
25 printf("\n Final state pressure = \%d psia",P2)
26 disp ("The answer is a bit different due to rounding
      off error in textbook")
```

Scilab code Exa 9.10 Quality calculation

```
1 clc
2 clear
3 //Initialization of variables
4 pb=14.696 //psia
5 pa=150 //psia
6 tb=300 //F
7 //calculations
8 disp("From steam tables,")
9 hb=1192.8 //Btu/lbm
10 ha=hb
11 hf=330.51 //Btu/lbm
12 hfg=863.6 //Btu/lbm
13 x=(ha-hf)/hfg
```

```
14 //results
15 printf("Quality of wet steam = %.1f percent",x*100)
```

The Pvt relationships

Scilab code Exa 10.1 Pressure calculations

```
1
2 clc
3 clear
4 //Initialization of variables
5 \text{ m=1} //\text{lbm}
6 \text{ T1} = 212 + 460 / R
7 \text{ sv} = 0.193 // \text{ft}^3/\text{lbm}
8 M = 44
9 a=924.2 //atm ft^2 /mole^2
10 b=0.685 // ft^3/mol
11 R=0.73 //atm ft ^3/R mol
12 //calculations
13 \quad v = sv * M
14 p=R*T1/v
15 p2=R*T1/(v-b) -a/v^2
16 //results
17 disp("For ideal gas case, Table B-6 and for
       vanderwaals case, Table B-8 have been used")
18 printf("\n In vanderwaals equation, pressure = \%.1 \,\mathrm{f}
      atm",p2)
19 printf("\n In ideal gas case, pressure = \%.1 \, f atm",p
```

)

Scilab code Exa 10.2 volume calculation

```
1 clc
 2 clear
3 //Initialization of variables
4 \text{ m=1} //\text{lbm}
5 p = 50.9 / atm
6 t=212+460 / R
 7 R = 0.73
8 //calculations
9 pc=72.9 / atm
10 tc=87.9 +460 //R
11 \text{ pr=p/pc}
12 \text{ Tr=t/tc}
13 z = 0.88
14 \text{ v=z*R*t/p}
15 //results
16 printf("volume = \%.3 f ft^3/mole", v)
```

Scilab code Exa 10.3 Pressure calculations

```
1 clc
2 clear
3 //Initialization of variables
4 t=212+460 //R
5 v=0.193 //ft^3/lbm
6 M=44
7 R=0.73
8 //calculations
9 tc=87.9+460 //F
10 zc=0.275
```

```
11  vc=1.51  //ft^3/mol
12  tr=t/tc
13  vr=v*M/vc
14  vrd=vr*zc
15  z=0.88
16  p=z*R*t/(M*v)
17  //results
18  printf("Pressure = %.1 f atm",p)
```

The Ideal gas and mixture relationships

Scilab code Exa 11.1 Work calculation

```
1 clc
2 clear
3 //Initialization of variables
4 n=1.3
5 \text{ T1} = 460 + 60 / \text{R}
6 P1 = 14.7 // psia
7 P2 = 125 //psia
8 R = 1545
9 M = 29
10 //calculations
11 T2=T1*(P2/P1)^{(n-1)/n}
12 wrev=R/M *(T2-T1)/(1-n)
13 //results
14 printf("Work done = \%d ft-lbf/lbm", wrev)
15 disp("The answer is a bit different due to rounding
      off error in textbook")
```

Scilab code Exa 11.2 Kinetic energy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 P2=10 //psia
5 P1=100 //psia
6 T1=900 //R
7 w=50 //Btu/lbm
8 k=1.39
9 cp=0.2418
10 //calculations
11 T2=T1*(P2/P1)^((k-1)/k)
12 T2=477
13 KE=-w-cp*(T2-T1)
14 //results
15 printf("Change in kinetic energy = %.1 f Btu/lbm", KE)
```

Scilab code Exa 11.3 Temperature calculation

```
1 clc
2 clear
3 //Initialization of variables
4 T1=900 //R
5 P1=100 //psia
6 P2=10 //psia
7 //calculations
8 disp("From table B-9")
9 pr1=8.411
10 pr2=pr1*P2/P1
11 T2=468 //R
12 //results
13 printf("Final temperature = %d R ",T2)
```

Scilab code Exa 11.4 Temperature work and Enthalpy calculations

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ cr=6}
5 p1 = 14.7 // psia
6 \text{ t1=}60.3 \text{ //F}
7 M = 29
8 R=1.986
9 //calculations
10 disp("from table b-9")
11 vr1=158.58
12 u1=88.62 //Btu/lbm
13 pr1=1.2147
14 \text{ vr2=vr1/cr}
15 T2 = 1050 / R
16 u2=181.47 //Btu/lbm
17 pr2=14.686
18 p2=p1*(pr2/pr1)
19 \, dw = u1 - u2
20 h2=u2+T2*R/M
21 / results
22 printf("final temperature = \%d R", T2)
23 printf("\n final pressure = %.1f psia",p2)
24 printf("\n work done = \%.2 \, f \, Btu/lbm", dw)
25 printf("\n final enthalpy = \%.1 f Btu/lbm", h2)
```

Scilab code Exa 11.5 Weight calculations

```
1 clc
2 clear
```

```
3 //Initialization of variables
4 \text{ m1=10} //\text{lbm}
5 \text{ m}2=15 //\text{lnm}
6 p=50 //psia
7 t = 60 + 460 / R
8 M1 = 32
9 M2 = 28.02
10 R0 = 10.73
11 //calculations
12 \, \text{n1} = \text{m1} / \text{M1}
13 \quad n2=m2/M2
14 \times 1 = n1/(n1+n2)
15 	 x2=n2/(n1+n2)
16 \quad M = x1 * M1 + x2 * M2
17 R = RO/M
18 V = (n1+n2)*R0*t/p
19 rho=p/(R0*t)
20 \text{ rho2=M*rho}
21 p1=x1*p
22 p2=x2*p
23 v1 = x1 * V
24 v2 = x2 * V
25 //results
26 disp("part a")
27 printf("Mole fractions of oxygen and nitrogen are %
       .3 f and %.3 f respectively", x1, x2)
28 disp("part b")
29 printf ("Average molecular weight = \%.1 \, \text{f}", M)
30 disp("part c")
31 printf("specific gas constant = \%.4f psia ft^3/lbm R
      ",R)
32 disp("part d")
33 printf("volume of mixture = \%.1 \, \text{ft} \, ^3", V)
34 printf("density of mixture is %.5f mole/ft^3 and %.2
       f \, lbm/ft^3, rho, rho2)
35 disp("part e")
36 printf ("partial pressures of oxygen and nitrogen are
       \%.2 f psia and \%.2 f psia respectively", p1,p2)
```

```
37 clc
38 clear
39 //Initialization of variables
40 \text{ m1} = 10 \text{ //lbm}
41 m2=15 / lnm
42 p = 50 // psia
43 t = 60 + 460 / R
44 M1 = 32
45 \quad M2 = 28.02
46 R0=10.73
47 //calculations
48 \, \text{n1} = \text{m1} / \text{M1}
49 \quad n2 = m2 / M2
50 x1=n1/(n1+n2)
51 	 x2=n2/(n1+n2)
52 M = x1 * M1 + x2 * M2
53 R = 1545/M
54 V = (n1+n2)*R0*t/p
55 \text{ rho=p/(R0*t)}
56 \text{ rho2=M*rho}
57 p1 = x1 * p
58 p2=x2*p
59 v1 = x1 * V
60 v2 = x2 * V
61 pt=p1+p2
62 \text{ vt} = \text{v1} + \text{v2}
63 / results
64 disp("part a")
65 printf ("Mole fractions of oxygen and nitrogen are \%
       .3 f and \%.3 f respectively", x1, x2)
66 disp("part b")
67 printf("Average molecular weight = %.1 f ", M)
68 disp("part c")
69 printf("specific gas constant = \%.4 \, \mathrm{f} lbf ft/lbm R", R
70 disp("part d")
71 printf("volume of mixture = \%.1 \, \text{f ft}^3", V)
72 printf("\n density of mixture is %.5f mole/ft^3 and
```

Scilab code Exa 11.6 Analysis calculations

```
1
2 clc
3 clear
4 //Initialization of variables
5 m1=5.28
6 m2=1.28
7 m3 = 23.52
8 //calculations
9 m = m1 + m2 + m3
10 \, \text{x} \, 1 = \text{m} \, 1 / \text{m}
11 \quad x2=m2/m
12 x3 = m3/m
13 C = 12/44 * m1/m
14 \quad 0 = (32/44 * m1 + m2)/m
15 N=m3/m
16 \quad \text{sum1} = (x1 + x2 + x3) * 100
17 sum2 = (C+N+0)*100
18 //results
19 printf ("From gravimetric analysis, co2 = \%.1 f
       percent, o2 = \%.1 f percent and n2 = \%.1 f percent
       ", x1*100, x2*100, x3*100)
20 printf ("\n From ultimate analysis, co2 = \%.2 f
       percent , o2 = \%.2\,\mathrm{f} percent and n2 = \%.2\,\mathrm{f} percent
```

```
",C*100,O*100,N*100)
21 printf("\n Sum in case 1 = %.1f percent",sum1)
22 printf("\n Sum in case 2 = %.1f percent",sum2)
```

Scilab code Exa 11.7 Entropy calculations

```
1 clc
2 clear
3 //Initialization of variables
4 \times 1 = 1/3
5 n1=1
6 n2=2
7 x2 = 2/3
8 p=12.7 // psia
9 cp1=7.01 //Btu/mole R
10 cp2=6.94 //Btu/mole R
11 R0=1.986
12 T2=460+86.6 //R
13 T1=460 //R
14 p0 = 14.7 // psia
15 //calculations
16 p1 = x1 * p
17 p2=x2*p
18 ds1= cp1*log(T2/T1) - R0*log(p1/p0)
19 ds2= cp2*\log(T2/T1) - R0*\log(p2/p0)
20 S=n1*ds1+n2*ds2
21 //results
22 printf ("Entropy of mixture = \%.2 \, f \, Btu/R", S)
23 printf("\n the answer given in textbook is wrong.
      please check using a calculator")
```

Scilab code Exa 11.8 Internal energy and entropy calculations

```
1 clc
2 clear
3 // Initialization of variables
4 c1=4.97 // Btu/mol R
5 c2=5.02 // Btu/mol R
6 n1=2
7 n2=1
8 T1=86.6+460 //R
9 T2=50+460 //R
10 // calculations
11 du=(n1*c1+n2*c2)*(T2-T1)
12 ds=(n1*c1+n2*c2)*log(T2/T1)
13 // results
14 printf("Change in internal energy = %d Btu",du)
15 printf("\n Change in entropy = %.3 f Btu/R",ds)
```

Scilab code Exa 11.9 Pressure and temperature calculations

```
1 clc
2 clear
3 //Initialization of variables
4 n1=1
5 n2 = 2
6 c1=5.02
7 c2=4.97
8 t1=60 / F
9 t2=100 / F
10 R0 = 10.73
11 p1=30 //psia
12 p2=10 // psia
13 //calcualtions
14 t = (n1*c1*t1+n2*c2*t2)/(n1*c1+n2*c2)
15 V1= n1*R0*(t1+460)/p1
16 \quad V2=n2*R0*(t2+460)/p2
17 V = V1 + V2
```

```
18 pm=(n1+n2)*R0*(t+460)/V
19 //results
20 printf("Pressure of mixture = %.1 f psia",pm)
21 printf("\n Mixing temperature = %.1 f F",t)
```

Scilab code Exa 11.10 Entropy calculations

```
1 clc
2 clear
3 //Initialization of variables
4 T2=546.6 //R
5 \text{ T1} = 520 / \text{R}
6 \text{ T3} = 560 / \text{R}
7 v2 = 1389.2
8 v1=186.2
9 R0 = 1.986
10 c1=5.02
11 c2=4.97
12 n1=1
13 n2 = 2
14 v3=1203
15 //calculations
16 \text{ ds1=n1*c1*log}(T2/T1) + n1*R0*log(v2/v1)
17 ds2=n2*c2*log(T2/T3)+n2*R0*log(v2/v3)
18 ds=ds1+ds2
19 ds3=n1*c1*log(T2/T1)+n2*c2*log(T2/T3)
20 ds4=n2*R0*log(v2/v3)+ n1*R0*log(v2/v1)
21 dss=ds3+ds4
22 //results
23 printf ("Change in entropy for gas 1 = \%.3 \, \text{f Btu/R}",
24 printf ("\n Change in entropy for gas 1 = \%.3 f Btu/R
      ",ds2)
25 printf("\n Net change in entropy = \%.3 \, \text{f Btu/R}", ds)
26 printf("\n In case 2, change in entropy = \%.3 f Btu/R
```

```
",dss)
27 disp("The answer is a bit different due to rounding off error in the textbook")
```

Scilab code Exa 11.11 Entropy calculations

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ m1=1} //\text{lbm}
5 \text{ m}2=0.94 \text{ //lbm}
6 M1 = 29
7 M2 = 18
8 p1=50 // psia
9 p2=100 // psia
10 t1=250 + 460 / R
11 R0=1.986
12 \text{ cpa} = 6.96
13 cpb=8.01
14 //calculations
15 xa = (m1/M1)/((m1/M1) + m2/M2)
16 \text{ xb=1-xa}
17 t2=t1*(p2/p1)^(R0/(xa*cpa+xb*cpb))
18 d=R0/(xa*cpa+xb*cpb)
19 k=1/(1-d)
20 dsa=cpa*log(t2/t1) -R0*log(p2/p1)
21 	ext{ dSa=(m1/M1)*dsa}
22 dSw = -dSa
23 dsw=dSw*M2/m2
24 // results
25 printf ("Final remperature = \%d R", t2)
26 printf("\n Change in entropy of air = \%.3 f btu/mole
      R and \%.5 f Btu/R", dsa, dSa)
27 printf("\n Change in entropy of water = \%.4 \,\mathrm{f} btu/
      mole R and \%.5 f Btu/R", dsw, dSw)
```

28 disp("The answers are a bit different due to rounding off error in textbook")

Scilab code Exa 11.12 Volume and mass calculations

```
1 clc
2 clear
3 //Initialization of variables
4 T=250 + 460 / R
5 p=29.825 //psia
6 \text{ pt=50} //\text{psia}
7 \text{ vg} = 13.821 // \text{ft}^3/\text{lbm}
8 M = 29
9 R = 10.73
10 //calculations
11 pa=pt-p
12 \ V=1/M *R*T/pa
13 \text{ ma=V/vg}
14 \text{ xa=p/pt}
15 \text{ mb} = xa/M *18/(1-xa)
16 //results
17 printf("In case 1, volume occupied = \%.2 \, \text{f} \, \text{ft} \, ^3", V)
18 printf("\n In case 1, mass of steam = \%.2 \, \text{f} lbm steam
19 printf("\n In case 2, mass of steam = \%.3 f lbm steam
       ",mb)
```

Scilab code Exa 11.13 Percentage calculation

```
1 clc
2 clear
3 //Initialization of variables
4 ps=0.64 //psia
```

```
5  p=14.7 //psia
6  M=29
7  M2=46
8  //calculations
9  xa=ps/p
10  mb=xa*9/M *M2/(1-xa)
11  //results
12  printf("percentage = %.1 f percent", mb*100)
```

Scilab code Exa 11.14 Partial Pressure calculations

```
1 clc
2 clear
3 //Initialization of variables
4 ps=0.5069 //psia
5 p=20 //psia
6 m1=0.01
7 m2=1
8 M1=18
9 M2=29
10 //calculations
11 xw= (m1/M1)/(m1/M1+m2/M2)
12 pw=xw*p
13 //results
14 printf("partial pressure of water vapor = %.3 f psia", pw)
```

Chapter 12

Non steady flow friction and availability

Scilab code Exa 12.1 Work done calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p1 = 100 // psia
5 p2=14.7 // psia
6 k = 1.4
7 T1 = 700 / R
8 R=10.73/29
9 V = 50
10 \text{ cv} = 0.171
11 \text{ cp=0.24}
12 R2 = 1.986/29
13 //calculations
14 T2=T1/(p1/p2)^{(k-1)/k}
15 m1=p1*V/(R*T1)
16 \text{ m2=p2*V/(R*T2)}
17 Wrev= cv*(m1*T1 - m2*T2) - (m1-m2)*(T2)*cp
18 //results
19 printf("Work done in case 1 = \%d Btu", Wrev)
```

Scilab code Exa 12.2 Friction calculations

```
1 clc
2 clear
3 //Initialization of variables
4 p1 = 100 // psia
5 p2=10 //psia
6 n=1.3
7 \text{ T1} = 800 //\text{R}
8 \text{ cv} = 0.172
9 R=1.986/29
10 T0=537 //R
11 \text{ cp=0.24}
12 // calculations
13 T2=T1*(p2/p1)^{(n-1)/n}
14 \text{ dwir} = \text{cv} * (T1 - T2)
15 dwr=R*(T2-T1)/(1-n)
16 dq=dwr-dwir
17 dI = -T0*(cp*log(T2/T1) - R*log(p2/p1))
18 //results
19 printf ("The friction of the process per pound of air
       = \%.1 f Btu/lbm, dq)
20 printf("\n Loss of available energy = \%.2 f Btu/lbm",
      dI)
```

Scilab code Exa 12.3 Energy loss calculations

```
1 clc
2 clear
3 //Initialization of variables
4 ms=10 //lbm
```

```
5 den=62.3 //lbm/ft^3
6 \text{ A1=0.0218} // \text{ft}^2
7 \text{ A2=0.00545} // \text{ft}^2
8 p2=50 //psia
9 p1 = 100 // psia
10 gc=32.2 // ft/s^2
11 dz = 30 //ft
12 T0=537 //R
13 T1=620 //R
14 \text{ T2} = 420 / R
15 //calculations
16 \quad V1=ms/(A1*den)
17 V2=ms/(A2*den)
18 df = -144/den*(p2-p1) - (V2^2 -V1^2)/(2*gc) - dz
19 \, dI = -T0/T1 * df
20 \text{ dI2} = -T0/T2 *df
21 //results
22 printf("Friction = \%.1 \, \text{f ft} - \text{lbf/lbm}", df)
23 printf("\n Available energy loss in case a = \%.1 f ft
      -lbf/lbm",dI)
24 printf("\n Available energy loss in case b = \%.1 f ft
      -lbf/lbm",dI2)
```

Scilab code Exa 12.4 Pressure drop calculation

```
1 clc
2 clear
3 //Initialization of variables
4 r=2.5 //in
5 mf=160 //cfm
6 rho=1/14
7 mu=0.0000121
8 v=14 //ft^3/lbm
9 g=32.2 //ft/s^2
10 z=100 //ft
```

```
// calculations
12 A=3.14*(r/12)^2
13 V=mf/A /60
14 Re=(2*r/12)*V*rho/mu
15 disp("From fig 12.4,")
16 f=0.0225/4
17 dp=4*f*(rho)*(V/v)^2 /(2*g*(2*r/12)) *z
18 //dp=2.32
19 // results
20 printf("Pressure drop = %.2 f lbf/ft^2 100 ft",dp)
21 disp("The answer in the textbook is wrong. Please use a calculator to verify it.")
```

Scilab code Exa 12.5 Mass rate calculation

```
1 clc
2 clear
3 //Initialization of variables
4 D=0.0724 // ft
5 gc=32.2 // ft/s^2
6 \text{ rho} = 1/14
7 L=100 //ft
8 \text{ mu2}=1.46*10^{(-10)}
9 dp = 2.32
10 \text{ dia=5} //in
11 rho2=48500
12 vol=14 // ft^3/lbm
13 //calculations
14 \text{ ref=D^3 } *2*dp*gc*rho/(mu2*L)
15 mf=rho2*%pi/4 *(dia/12) *sqrt(mu2)
16 \text{ mfr=mf*vol*60}
17 //results
18 printf("Mass rate of air flow = %d cfm", mfr)
19 disp("The answer is a bit different due to rounding
      off error in textbook")
```

Scilab code Exa 12.6 Loss and effectiveness calculations

```
1 clc
2 clear
3 //Initialization of variables
4 cp=0.25
5 T=3460 //R
6 T0=520 //R
7 dG=1228 //Btu/lbm
8 //calculations
9 hf=cp*(T-T0)-T0*cp*log(T/T0)
10 dC=hf-dG
11 Ec=hf/dG
12 //results
13 printf("Loss of available energy = %d Btu/lbm mixture ",dC)
14 printf("\n Effectiveness of combustion = %.3f ",Ec)
```

Scilab code Exa 12.7 Loss and effectiveness calculations

```
1 clc
2 clear
3 //Initialization of variables
4 cp1=0.25
5 T=3460 //R
6 T0=946.2 //R
7 T00=520 //R
8 dG=1228 //Btu/lbm
9 cp=0.45
10 //calculations
11 dqa=cp1*(T-T0)
```

```
12 w=cp*dqa
13 hf=cp1*(T-T00)-T00*cp1*log(T/T00)
14 heat=w-hf
15 eff=w/hf
16 epower=w/dG
17 //results
18 printf("Loss of available energy = %.1 f Btu/lbm mixture ",heat)
19 printf("\n Efficiency of cycle = %.3 f ",eff)
20 printf("\n Effectiveness of overall cycle = %.2 f", epower)
21 disp("The answer is a bit different due to rounding off error in textbook")
```

Scilab code Exa 12.8 Loss and effectiveness calculations

```
1 clc
2 clear
3 //Initialization of variables
4 p1 = 400 // psia
5 t1=600 //F
6 h1=1306.9 //Btu/lbm
7 b1=480.9 //Btu/lbm
8 p2=50 // psia
9 h2=1122 //Btu/lbm
10 h3=1169.5 //Btu/lbm
11 b3=310.9 //Btu/lbm
12 //calculations
13 disp("All the values are obtained from Mollier chart
      , ")
14 dw13=h1-h3
15 \, dw12 = h1 - h2
16 \quad dasf = b3 - b1
17 \text{ etae=dw13/dw12}
18 eta=abs(dw13/dasf)
```

```
19 dq=dw13+dasf
20 //results
21 printf("Engine efficiency = %.1f percent",etae*100)
22 printf("\n Effectiveness = %.1f percent",eta*100)
23 printf("\n Loss of available energy = %.1f Btu/lbm",dq)
```

Chapter 13

Fluid Flow

Scilab code Exa 13.1 Velocity and area calculations

```
1 clc
2 clear
3 //Initialization of variables
4 h1=1329.1 //Btu/lbm
5 \text{ v1=6.218} // \text{ft}^3/\text{lbm}
6 J=778
7 g = 32.174
8 m=1
9 //calculations
10 p=[80 60 54.6 40 20]
11 h=[ 1304.1 1273.8 1265 1234.2 1174.8]
12 v=[ 7.384 9.208 9.844 12.554 21.279]
13 Fc=1
14 V2=Fc*sqrt(2*J*g*(h1-h))
15 A = m * v . / V2
16 \quad V2 = [0 \quad V2]
17 \quad A = [O \quad A]
18 // results
19 disp('velocity(ft/s)=')
20 disp(V2)
21 disp('Area (ft^2)= ')
```

Scilab code Exa 13.2 Area calculations

```
1 clc
2 clear
3 //Initialization of variables
4 n = 1.4
5 p1 = 50 // psia
6 J = 778
7 \text{ cp} = 0.24
8 \text{ T1} = 520 / \text{R}
9 k=n
10 R=1545/29
11 \quad m=1
12 p2=10 //psia
13 //calculations
14 rpt=(2/(n+1))^(n/(n-1))
15 pt=p1*rpt
16 Vtrev=223.77*sqrt(cp*T1*(1- rpt^((k-1)/k)))
17 \text{ v1} = R*T1/p1/144
18 \text{ vt=v1*(p1/pt)^(1/k)}
19 At=m*vt/Vtrev
20 V2rev = 223.77*sqrt(cp*T1*(1-(p2/p1)^((k-1)/k)))
v2=v1*(p1/p2)^(1/k)
22 \quad A2=m*v2/V2rev
23 //results
24 printf("Area required = \%.5 \, \text{f} \, \text{ft}^2", At)
25 printf("\n Area in case 2 at the exit= \%.5 \, \mathrm{f} \, \mathrm{ft^2}", A2
```

Scilab code Exa 13.3 Area calculations

```
1 clc
2 clear
3 //Initialization of variables
4 J=778
5 g = 32.2
6 pc=54.6 // psia
7 h1=1329.1 //Btu/lbm
8 h2=1265 //btu/lbm
9 V2rev=1790 //ft/s
10 \text{ cv} = 0.99
11 \text{ m=1 } //\text{lbm}
12 \text{ cv2=0.96}
13 //calculations
14 \quad V2d = cv * V2rev
15 \text{ hd} = \text{cv}^2 * (\text{h1} - \text{h2})
16 h2d=h1-hd
17 \text{ v2d} = 9.946
18 \quad A2d=m*v2d/V2d
19 //results
20 printf("Throat area= \%.4 \, f \, ft^2", A2d)
```

Scilab code Exa 13.4 velocity and flow rate calculations

```
1 clc
2 clear
3 //Initialization of variables
4 zm=0.216
5 pm=62.3 //lbm/ft^2
6 p1=0.0736 //lbm/ft^2
7 g=32.2
```

```
8 d=4
9 //calculations
10 H=zm*(pm-p1)/12/p1
11 V=sqrt(2*g*H)
12 m=%pi/4 *d^2 *V*p1
13 //results
14 printf("average velocity = %.1 f ft/sec",V)
15 printf("\n mass flow rate = %.1 f lbm/sec",m)
```

Scilab code Exa 13.5 Area calculations

```
1 clc
2 clear
3 //Initialization of variables
4 p0=50 //psia
5 \text{ T0} = 520 / \text{R}
6 \text{ rho0=0.259 } //\text{lbm/ft}^3
7 p2=10 //psia
8 \text{ mf} = 1 / \text{lbm}
9 //calculations
10 disp("From table B-17,")
11 pr = 0.528
12 \text{ Tr} = 0.833
13 \text{ rhor} = 0.634
14 ps=pr*p0
15 \text{ Ts=Tr*T0}
16 rhos=rho0*rhor
17 Vs=49.1*sqrt(Ts)
18 As=mf/(Vs*rhos)
19 p2r=p2/p0
20 \quad M2 = 1.71
21 \quad V2 = 1.487 * Vs
72 - 72 = 0.632 * Ts
23 \quad A2 = As * 1.35
24 \text{ rho2=rhos*0.317}
```

```
25  // results
26  printf("Area of throat = %.5 f ft^2", As)
27  printf("\n Area of exit = %.5 f ft^2", A2)
```

Scilab code Exa 13.6 Length calculation

```
1 clc
2 clear
3 //Initialization of variables
4 M1=0.2
5 M2=0.4
6 D=0.5 //ft
7 f=0.015
8 //calculations
9 f1=14.5
10 f2=2.31
11 d1=(f1-f2)*D/f
12 //results
13 printf("Length of pipe = %.1 f ft",d1)
```

Scilab code Exa 13.7 Change in entropy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 py=20 //psia
5 px=3.55 //psia
6 R=1.986/29
7 //calculations
8 pr=py/px
9 disp("from table B-19")
10 Mx=2
11 My=0.577
```

```
12 pr2=0.721
13 ds=R*log(1/pr2)
14 //results
15 printf("Change in entropy = %.4 f Btu/lbm R",ds)
```

Scilab code Exa 13.8 Pressure calculation

```
1 clc
2 clear
3 //Initialization of variables
4 pi=50 //psia
5 pe=34.6 // psia
6 //calculations
7 disp("From table B-18 and B-17,")
8 \text{ pr1}=1.35
9 p0f=pi/pr1
10 pfs=0.528*p0f
11 per=pe/pfs
12 \, \text{Me=0.6}
13 p0e=1.19
14 pyx=p0e/pr1
15 \text{ Mx} = 1.64
16 \text{ My} = 0.658
17 px = 0.22*pi
18 py=32.9 //psia
19 p2yx = 0.852
20 \text{ pe2=1.65*pfs}
21 //results
22 printf ("Mach numbers before and after are \%.2\,\mathrm{f} and \%
      .3f respectively", Mx, My)
23 printf("\n Pressure before and after are %.1f psia
      and \%.1 f psia", px, py)
24 printf("\n Exhaust pressure = \%.1 f psia", pe2)
```

Scilab code Exa 13.9 Heat calculation

```
1 clc
2 clear
3 //Initialization of variables
4 T1=550 //R
5 T2 = 2660 / R
6 \text{ ts1=0.207}
7 \text{ ts}2=0.833
8 \text{ cp} = 0.24
9 //calculations
10 \text{ Ts=T1/ts1}
11 \text{ Ts0=T2/ts2}
12 disp("From table B-20")
13 tr1=0.529
14 tr2=0.174
15 	ext{ dq=cp*Ts0*(tr1-tr2)}
16 // results
17 printf("Heat required = %d Btu/lbm",dq)
```

Scilab code Exa 13.10 Thrust calculation

```
1 clc
2 clear
3 //Initialization of variables
4 M1=0.5
5 M2=1
6 A1=0.5 //ft^2
7 A2=1 //ft^2
8 p1=14.7 //psia
9 p2=14.7 //psia
10 k=1.4
```

```
// calculations
thru=p2*144*A2*(1+k*M2^2)-p1*144*A1*(1+k*M1^2)
net=thru-p1*144*(A2-A1)
// results
printf("Internal thrust = %d lbf",thru)
printf("\n Net thrust = %d lbf",net)
disp("The answers are a bit different due to rounding off error in textbook")
```

Scilab code Exa 13.11 Mass flow rate calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p1=50 //psia
5 pr = 0.58
6 //calculations
7 p=p1*pr
8 \text{ s1=1.6585}
9 h1=1174.1 //Btu/lbm
10 \text{ sf} = 0.3680
11 \text{ sfg} = 1.3313
12 \text{ hfg} = 945.3
13 \text{ vg} = 13.746
14 hf=218.82
15 \text{ x= (s1-sf)/sfg}
16 \text{ v2=vg*x}
17 h2=hf+x*hfg
18 V2rev=223.77*sqrt(h1-h2)
19 m=%pi/4 *1/144 *V2rev/v2
20 //results
21 printf("mass flow rate = \%.3 \, \text{f lbm/sec}",m)
```

Scilab code Exa 13.12 Mass flow rate calculation

```
1 clc
2 clear
3 //Initialization of variables
4 k=1.31
5 p1=7200 //lbf/ft^2
6 v1=8.515 // \text{ft }^3/\text{lbm}
7 pr = 0.6
8 m1 = 0.574
9 T1=741 //R
10 //calculations
11 V2rev=8.02*sqrt(k/(k-1) *p1*v1*(1- (pr)^((k-1)/k)))
12 v2=v1*(1/pr)^(1/k)
13 \text{ m=\%pi/4} *1/144 *V2rev/v2
14 \quad C=m/m1
15 T2=T1*(0.887)
16 t = 250 + 460 / R
17 dt=t-T2
18 //results
19 printf("Mass flow rate = \%.3 \, \text{f lbm/sec}",m)
20 printf("\n Meta stable under cooling = %d F", dt)
```

Scilab code Exa 13.13 Area calculations

```
1 clc
2 clear
3 //Initialization of variables
4 C=0.98
5 m=1
6 v=12.55 //ft^3/lbm
7 V=1372 //ft/s
8 //calculations
9 A=m*v/(C*V) *144
10 D=sqrt(A*4/%pi)
```

```
11  // results
12  printf("Area = %.3 f in^2", A)
13  printf("\n diameter = %.2 f in", D)
```

Scilab code Exa 13.14 Area calculations

```
1 clc
2 clear
3 //Initialization of variables
4 nn = 0.95
5 p1 = 50 // psia
6 p2=30 //psia
7 v1=8.515
8 \text{ m=1} //\text{lbm}
9 //calculations
10 cv=sqrt(nn)
11 V2rev=1372
12 V2act=cv*V2rev
13 n=1.283
14 v2=v1*(p1/p2)^(1/n)
15 \text{ A=m*v2/V2act } *144
16 D=sqrt(A*4/%pi)
17 //results
18 printf ("Area = \%.2 \text{ f in } ^2", A)
19 printf("\n diameter = \%.3 \, \text{f in}",D)
```

Scilab code Exa 13.15 Area of discharge calculation

```
1 clc
2 clear
3 //Initialization of variables
4 dFf=110.5 //ft-lbf/lbm
5 Vd=1028 //ft/s
```

```
6 gc=32.2 //ft/s^2
7 p0=100 //psia
8 k=1.4
9 v0=2.08
10 p1=55 //psia
11 p2=99.2 //psia
12 //calculations
13 dFe=0.01*Vd^2 /(2*gc)
14 dF=dFf+dFe
15 V2ig=(p0*144)^(1/k) *v0/(1-1/k) *((p1*144)^(1-1/k) -(p2*144)^(1-1/k)))
16 C2=(V2ig+dF)/V2ig
17 C=sqrt(C2)
18 //results
19 printf("Coefficient of discharge = %.3f",C)
```

Scilab code Exa 13.16 Pressure drop calculation

```
1 clc
2 clear
3 //Initialization of variables
4 dL=1/6 //ft
5 \text{ mf} = 0.430 //\text{lbm/sec}
6 \text{ rho} = 62.4
7 gc=32.2 // ft/s^2
8 d=0.81/12 //ft
9 //calculations
10 V=mf*4/(rho*%pi)
11 VD=V/dL^2
12 Vd=1.92 //ft/s
13 	ext{ dFf = 0.031/(2*gc)} *2.31
14 dFe=0.04*Vd^2 /(2*gc)
15 	 dF = dFf + dFe
16 \text{ dp=rho*}(3.5/(2*gc) + dF)
17 vd22=(2*gc)/rho *dp /(1-(d/dL)^4)
```

Scilab code Exa 13.17 Mass flow rate calculation

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ K} = 0.6003
5 Y1=0.91
6 D1=6.065
7 D2=1.820
8 \text{ rho1} = 0.156
9 p1 = 30
10 p2=20.18
11 //calculations
12 \text{ bet=D2/D1}
13 \text{ m=0.525*K*Y1 *D2^2 *sqrt(rho1*(p1-p2))}
14 C=K*sqrt(1-bet^4)
15 // results
16 printf("mass flow rate = \%.3 \, \text{f lbm/sec}",m)
17 printf("\n Coefficient of discharge = \%.3 \, \text{f}",C)
```

Chapter 14

Psychrometrics

Scilab code Exa 14.1 Pressure and density calculations

```
1 clc
2 clear
3 //Initialization of variables
4 t1=80+460 / R
5 \text{ ps} = 0.5069 // \text{psia}
6 disp("from steam tables,")
7 \text{ vs} = 633.1 // \text{ft}^3/\text{lbm}
8 \text{ phi=0.3}
9 R = 85.6
10 \text{ Ra} = 53.3
11 p = 14.696
12 //calculations
13 tdew=46 //F
14 \text{ pw=phi*ps}
15 \text{ rhos}=1/\text{vs}
16 \text{ rhow=phi*rhos}
17 rhow2= pw*144/(R*t1)
18 pa=p-pw
19 rhoa= pa*144/(Ra*t1)
20 w=rhow/rhoa
21 \text{ mu=phi*(p-ps)/(p-pw)}
```

```
22 \text{ Ws} = 0.622*(ps/(p-ps))
23 \text{ mu}2=w/Ws
24 / results
25 disp("part a")
26 printf("partial pressure of water = \%.5 f psia",pw)
27 printf("\n dew temperature = \%d F", tdew)
28 disp("part b")
29 printf ("density of water = \%.6 \,\mathrm{f~lbm/ft^3}", rhow)
30 printf("\n in case 2, density of water = \%.6 \,\mathrm{f} lbm/ft
      ^3", rhow2)
31 printf("\n density of air = \%.6 \text{ f lbm/ft}^3", rhoa)
32 disp("part c")
33 printf("specific humidity = %.4f lbm steam/lbm air"
       , w)
34 disp("part d")
35 printf ("In method 1, Degree of saturation = \%.3 \,\mathrm{f}", mu
36 printf("\n In method 2, Degree of saturation = \%.3 \,\mathrm{f}"
      , mu2)
```

Scilab code Exa 14.2 Moisture content calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p=14.696 //psia
5 ps=0.0808 //psia
6 ps2=0.5069 //psia
7 phi2=0.5
8 phi=0.6
9 grain=7000
10 //calculations
11 pw=phi*ps
12 w1=0.622*pw/(p-pw)
13 pw2=phi2*ps2
```

Scilab code Exa 14.3 Humidity calculations

```
1 clc
2 clear
3 //Initialization of variables
4 t1=80 / F
5 t2=60 / F
6 p=14.696 // psia
7 \text{ ps} = 0.507 // \text{psia}
8 pss=0.256 //psia
9 \text{ cp} = 0.24
10 disp("From steam tables,")
11 //calculations
12 \text{ ws} = 0.622*\text{pss}/(\text{p-pss})
13 w=(cp*(t2-t1) + ws*1060)/(1060+ 0.45*(t1-t2))
14 \text{ pw=w*p/(0.622+w)}
15 phi=pw/ps
16 \text{ td} = 46 / F
17 // results
18 printf("\n humidity ratio = \%.4 \text{ f lbm/lbm dry air}",w)
19 printf("\n relative humidity = \%.1 f percent", phi
       *100)
20 printf("\n Dew point = \%d F",td)
```

Scilab code Exa 14.4 Enthalpy and sigma function calculations

```
1 clc
2 clear
3 //Initialization of variables
4 W = 0.0065
              //lbm/lbm of dry air
5 t = 80 / F
6 \text{ td}=60 \text{ }/\text{F}
7 //calculations
8 \text{ H=0.24*t+W*}(1060+0.45*t)
9 \text{ sig=H-W*(td-32)}
10 \ Ws = 0.0111
11 H2=0.24*td+Ws*(1060+0.45*td)
12 \text{ sig}2=H2-Ws*(td-32)
13 //results
14 printf("In case 1, enthalpy = \%.2 f Btu/lbm dry air",
15 printf("\n In case 1, sigma function = \%.2 f Btu/lbm
      dry air", sig)
16 printf("\n In case 2, enthalpy = \%.2 \, f Btu/lbm dry
      air", H2)
17 printf("\n In case 2, sigma function = \%.2 f Btu/lbm
      dry air", sig2)
```

Scilab code Exa 14.5 Enthalpy calculations

```
1 clc
2 clear
3 //Initialization of variables
4 t1=30 //F
5 t2=60 //F
6 t3=80 //F
```

```
7 W1=0.00206
8 W2=0.01090
9 //calculations
10 cm1=0.24+0.45*W1
11 H1=cm1*t1+W1*1060
12 cm2=0.24+0.45*W2
13 H2=cm2*t3+W2*1060
14 hf=t2-32
15 dq=H2-H1-(W2-W1)*hf
16 //results
17 printf("In case 1, Enthalpy = %.2 f Btu/lbm dry air", H1)
18 printf("\n In case 2, Enthalpy = %.2 f Btu/lbm dry air", H2)
19 printf("\n Heat added = %.2 f Btu/lbm dry air",dq)
```

Scilab code Exa 14.6 Humidity calculations

```
1 clc
2 clear
3 //Initialization of variables
4 pw = 0.15 / / psia
5 disp("using psychrometric charts,")
6 \text{ tdew} = 46 //F
7 //calculations
8 va=13.74 //ft^3/lbm dry air
9 rhoa=1/va
10 V = 13.74
11 \text{ mw} = 46/7000
12 rhow=mw/V
13 \quad w = 0.00657
14 //results
15 disp("part a")
16 printf("partial pressure of water = \%.2 f psia",pw)
17 printf("\n dew temperature = \%d F", tdew)
```

```
18 disp("part b")
19 printf("density of water = %.6 f lbm/ft^3",rhow)
20 printf("\n density of air = %.4 f lbm/ft^3",rhoa)
21 disp("part c")
22 printf("specific humidity = %.5 f lbm water/lbm air",w)
```

Scilab code Exa 14.7 Enthalpy change calculations

```
1 clc
2 clear
3 //Initialization of variables
4 W1=0.00206 //lbm/lbm dry air
5 W2=0.01090 //lbm/lbm dry air
6 t = 60 / F
7 disp("From humidity charts,")
8 //calculations
9 \, dw = W1 - W2
10 \text{ hs} = 144.4
11 hs2=66.8-32
12 w1 = 14.4 / Btu/lbm
13 ws1=20 //Btu/lbm
14 w2=76.3 //Btu/lbm
15 ws2=98.5 //Btu/lbm
16 \, dwh1 = -(w1 - ws1) / 7000 * hs
17 H1=9.3+dwh1
18 \, dwh2 = (w2 - ws2) / 7000 \, *hs2
19 \text{ H2} = 31.3 + \text{dwh2}
20 \, dwc = dw * (t - 32)
21 dq = H2 - H1 + dwc
22 //results
23 printf("Enthalpy change = \%.2 \, f Btu/lbm dry air",dq)
```

Scilab code Exa 14.8 Enthalpy and temperature calculations

```
1 clc
2 clear
3 //Initialization of variables
4 disp("From psychrometric charts at 50 F and 80 F,")
5 va1=13 // ft^3/lbm dry air
6 va2=13.88 // ft^3/lbm dry air
7 flow = 2000 / cfm
8 //calculations
9 \text{ ma1} = flow/va1
10 \text{ ma2=flow/va2}
11 disp("The two initial states have been multiplied by
       108/262 and distance 2-3 is located")
12 t=62.5//F
13 phi=0.83 //percent
14 //results
15 printf ("humidity = \%.2 \, \text{f} ", phi)
16 printf("\n Temperature = \%.1 f F",t)
```

Scilab code Exa 14.9 Dry bulb calculations

```
1 clc
2 clear
3 //Initialization of variables
4 t=90 //F
5 ts=67.2 //F
6 phi=0.3
7 per=0.8
8 //calculations
9 dep=t-ts
10 dt=dep*per
11 tf=t-dt
12 disp("from psychrometric charts,")
13 phi2=0.8
```

```
//results
frintf("Dry bulb temperature = %.2 f F",tf)
frintf("\n percent humidity = %.2 f",phi2)
```

Scilab code Exa 14.10 Approach calculations

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ m=1} //\text{lbm}
5 t1 = 100 / F
6 t2 = 75 / F
7 db=65 / F
8 disp("From psychrometric charts,")
9 t11=82 / F
10 \text{ phi1} = 0.4
11 H1=30 //Btu/lbm dry air
12 w1=65 //grains/lbm dry air
13 \text{ w2=250} //\text{grains/lbm dry air}
14 //calculations
15 cr=t1-t2
16 appr=t2-db
17 dmf3 = (w2 - w1) *0.0001427
18 hf3=68
19 \text{ hf} 4 = 43
20 H2=62.2
21 H1=30
22 \text{ mf4} = (H1-H2+ dmf3*hf3)/(hf4-hf3)
23 per=dmf3/(dmf3+mf4)
24 //results
25 printf("cooling range = %d F",cr)
26 printf ("\n Approach = %d F", appr)
27 printf("\n amount of water cooled per pound of dry
      air = \%.3 f lbm dry air/lbm dry air", mf4)
28 printf("\n percentage of water lost by evaporation =
```

Scilab code Exa 14.11 Heat calculations

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ mfr}=1
5 water=900 //gallons
6 t2=110 / F
7 t1=80 / F
8 \text{ cp1=1}
9 //calculations
10 mfa=mfr*water*8.33*60
11 mfc=mfa/(60*0.075)
12 \text{ qa=mfa*(t2-t1)}
13 \text{ dH=ga/(mfc*4.5)}
14 \ dH2 = mfr * cp1 * (t2 - t1)
15 H1=23.73
16 H2=5.08
17 f=3.309
18 lnmean = (H1-H2)/log(H1/H2)
19 dtt=(t2-t1)/lnmean
20 \text{ per} = 25
21 //results
22 printf ("flow rate of air = %d lbm/hr. It is equal to
      \%d cfm", mfa, mfc)
23 printf("\n Total heat transferred = \%d Btu/hr", qa)
24 printf("\n Enthalpy = \%.1 f Btu/lbm dry air", dH)
25 printf("\n Using second method, Enthalpy = %.1f Btu/
      lbm", dH2)
26 printf("\n Performance factor = \%.3 \, \text{f}",f)
27 printf("\n logrithamic mean enthalpy difference = \%
      .2f . Estimated low percentage = %d low", dtt, per)
28 disp("The answers are a bit different due to
```

Chapter 15

Vapor cycles and processes

Scilab code Exa 15.1 Efficiency calculations

```
1 clc
2 clear
3 //Initialization of variables
4 p1=600 //psia
5 p2 = 0.2563 // psia
6 t1 = 486.21 //F
7 t2=60 / F
8 \text{ fur} = 0.75
9 //calculations
10 disp("from steam tables,")
11 h1=1203.2
12 hf1=471.6
13 hfg1=731.6
14 h2=1088
15 hf2=28.06
16 hfg2=1059.9
17 \text{ s1}=1.4454
18 \text{ sf1} = 0.6720
19 \text{ sfg1} = 0.7734
20 \text{ s}2=2.0948
21 \text{ sf} 2 = 0.0555
```

```
22 \text{ sfg}2=2.0393
23 \text{ xd}=(s1-sf2)/sfg2
24 \text{ hd=hf2+xd*hfg2}
25 \text{ xa} = 0.3023
26 \text{ ha=hf2+xa*hfg2}
27 \text{ wbc=0}
28 \text{ wda=0}
29 \text{ wcd=h1-hd}
30 \text{ wab=ha-hf1}
31 W=wab+wcd+wbc+wda
32 \text{ Wrev=hfg1- (t2+459.7)*sfg1}
33 etat=(t1-t2)/(t1+459.7)
34 eta=fur*etat
35 // results
36 printf("Thermal efficiency = %d percent", etat*100)
37 printf("\n Furnace efficiency = \%.1f percent", eta
       *100)
```

Scilab code Exa 15.2 Efficiency calculations

```
1 clc
2 clear
3 //Initialization of variables
4 dhab=-123.1
5 etac=0.5
6 ha=348.5
7 etaf=0.75
8 eta=0.85
9 hf=471.6
10 hfg=731.6
11 hc=1203.2
12 dhcd=452.7
13 //calculations
14 dwabs=dhab/etac
15 hbd=ha-dwabs
```

```
16 dwcds=dhcd*eta
17 dqa=hc-hbd
18 etat=(dwcds+dwabs)/dqa
19 eta=etat*etaf
20 //results
21 printf("Thermal efficiency = %.1 f percent",etat*100)
22 printf("\n Overall efficiency = %.1 f percent",eta
*100)
```

Scilab code Exa 15.3 Efficiency calculations

```
1 clc
2 clear
3 //Initialization of variables
4 t = 60 / F
5 J=778.16
6 p1 = 600 // psia
7 p2=0.2563 //psia
8 \text{ etaf} = 0.85
9 //calculations
10 disp("From steam tables,")
11 vf = 0.01604 // \text{ft }^3/ \text{lbm}
12 dw = -vf * (p1 - p2) * 144/J
13 ha=28.06 //Btu/lbm
14 hb=29.84 / Btu/lbm
15 hd=1203.2 / Btu/lbm
16 \text{ he=750.5} //Btu/lbm
17 dqa=hd-hb
18 dqr=ha-he
19 dw=dqa+dqr
20 dwturb=hd-he
21 dwpump=ha-hb
22 etat=dw/dqa
23 eta=etat*etaf
24 // results
```

```
25 printf("Thermal efficiency = %.1f percent",etat*100)
26 printf("\n Overall efficiency = %.1f percent",eta
*100)
```

Scilab code Exa 15.4 Efficiency calculations

```
1 clc
2 clear
3 //Initialization of variables
4 \, dhab = -1.78
5 \text{ etac=0.5}
6 \text{ ha} = 28.06
7 \text{ eta} = 0.85
8 \text{ hf} = 471.6
9 \text{ hfg} = 731.6
10 hd=1203.2
11 dhcd=452.7
12 //calculations
13 dwabs=dhab/etac
14 hbd=ha-dwabs
15 dwcds=dhcd*eta
16 dqa=hd-hbd
17 etat=(dwcds+dwabs)/dqa
18 eta=etat*eta
19 //results
20 printf ("Thermal efficiency = \%.1 f percent", etat*100)
21 printf("\n Overall efficiency = \%.1f percent",eta
      *100)
```

Scilab code Exa 15.5 Efficiency and pressure calculations

```
1 clc
2 clear
```

```
3 //Initialization of variables
4 \text{ sh}=1.6070
5 \text{ ph} = 94.8 // \text{psia}
6 th=324 //F
7 \text{ tr} = 60 //F
8 hh=1186.2
9 pi = 94.8 // psia
10 hi=1399.5
11 \text{ si} = 1.8265
12 //calculations
13 \quad Q=hi-hh
14 Hr = -(tr + 459.7) * (si - sh)
15 \text{ work= Q+Hr}
16 eff=work/Q
17 Qa1=1557.5
18 \text{ W1} = 637.1
19 etat=W1/Qa1
20 \text{ he} = 1374
21 hj = 948
22 Whp=he-hh
23 Wlp=hi-hj
24 \quad \mathtt{Wnet=Whp+Wlp}
25 //results
26 printf ("Thermal efficiency in case 1 = \%.1 f percent",
       eff *100)
27 printf("\n Thermal efficiency in case 1 = \%.1 f
       percent", etat*100)
28 printf("\n High pressure work = \%.1 \, \text{f Btu/lbm}", Whp)
29 printf("\n Low pressure work = \%.1 \, \text{f Btu/lbm}", Wlp)
30 printf("\n Net work = \%.1 \, f \, Btu/lbm", Wnet)
```

Scilab code Exa 15.6 Efficiency calculations

```
1 clc
2 clear
```

```
3 //Initialization of variables
4 p2 = 600 //psia
5 p1=44 // psia
6 te=486.21 //F
7 tb=273.1 //F
8 J = 778.16
9 p3=0.25 // psia
10 //calculations
11 hc = 241.9
12 hj=834.6
13 y = 1 - 0.805
14 v1 = 0.0172
15 \text{ v2}=0.016
16 ha=28.06
17 hd=hc+v1*(p2-p1)*144/J
18 hb=ha+v2*(p1-p3)*144/J
19 hh=1374
20 Qa=hh-hd
21 Qr = (ha - hj) * (1 - y)
22 \text{ etat=}(Qa+Qr)/Qa
23 //results
24 printf("thermal efficiency = \%.1 f percent", etat*100)
```

Chapter 16

Combustion

Scilab code Exa 16.1 Molecule formulation

```
1 clc
2 clear
3 // Initialization of variables
4 per=85
5 // calculations
6 a=per/12
7 b=100-per
8 ad=1.13*a
9 bd=1.13*b
10 // results
11 printf(" Molecule is C %d H %d",ad,bd+1)
```

Scilab code Exa 16.2 Molecule formulation

```
1 clc
2 clear
3 //Initialization of variables
4 per=0.071 //mass fraction of nitrogen
```

```
5 // calculations
6 02=8.74
7 N2=per/2 + 3.76*02
8 Nin=32.85
9 C02=7.333
10 H2o=3
11 So2=0.0312
12 // results
13 printf("Oxygen = %.2 f and Nitrogen = %.2 f",02,N2)
14 printf("\n Equation is C %.3 f H %d + %.2 f O2 + %.2 f
N2 = %.3 f CO2 + %d H2O + %.5 f SO2 + %.2 f N2",CO2
,2*H2o,O2,Nin,CO2,H2o,So2,N2)
```

Scilab code Exa 16.3 Air fuel ratio calculations

```
1 clc
2 clear
3 //Initialization of variables
4 M = 29
5 m1 = 8.74
6 m2 = 32.85
7 fuel=100 //lbm
8 //calculations
9 mass=M*(m1+m2)
10 AF=mass/fuel
11 \quad a2=9.75
12 b2=12.19
13 AF2=mass/(fuel+a2+b2)
14 //results
15 printf ("Air fuel ratio = \%.2 \, \text{f lbm air/lbm fuel}", AF)
16 printf("\n In dry air, Air-fuel ratio = %.1f lbm air
      /lbm fuel as fired", AF2)
```

Scilab code Exa 16.4 Mass and energy calculations

```
1 clc
2 clear
3 //Initialization of variables
4 m1 = 322.3 / Mass of Co2
5 \text{ m2=2} //\text{Mass of SO2}
6 \text{ m3=926} //\text{Mass of N2}
7 basis=121.94 //Basis taken
8 //calculations
9 m = m1 + m2 + m3
10 \text{ ratio=m/basis}
11 dh = 5777 / Btu/mol
12 h1 = dh * 7.364
13 h2=14037
14 h3=130501
15 H=h1+h2+h3
16 hrat=H/basis
17 //results
18 printf("Mass of dry flue gases = \%.2 f lbm dry flue
      gas/lbm fuel ash and moisture free", m/100)
19 printf("\n Mass of dry flue gases = \%.2 f lbm dry
      flue gas/lbm fuel as fired ", ratio)
20 printf("\n Energy carried away = \%.1 f btu/mol coal
      as fired which is same as = \%.1 f Btu/lbm mol
      coal ",H, hrat)
21 disp ("The answers are a bit different due to
      rounding off errors in textbook")
```

Scilab code Exa 16.6 Percentage calculations

```
1 clc
2 clear
3 //Initialization of variables
4 p=14.7 //psia
```

```
5  ps=0.363  //psia
6  n2=7.52  //moles
7  n1=1  //moles
8  //calculations
9  x= (n1+n2)*ps/p /(1-ps/p)
10  n=n1+n2+x
11  y1=n1/n
12  y2=n1/(n1+n2)
13  //results
14  printf("Final orsat composition is %d CO2 + %.2 f H2O + %.2 f N2",n1, x, n2)
15  printf("\n Percentage of co2 on a wet basis = %.1 f percent",y1*100)
16  printf("\n percentage of co2 on a dry basis = %.2 f percent",y2*100)
```

Scilab code Exa 16.7 Air fuel ratio calculations

```
1 clc
2 clear
3 //Initialization of variables
4 N2 = 78.1
5 M = 29
6 co2=8.7
7 co = 8.9
8 x4 = 0.3
9 x5=3.7
10 \times 6 = 14.7
11 //calculations
12 \quad 02 = N2/3.76
13 Z=(co2+co+x4)/8
14 AF = (02+N2)*M/(Z*113)
15 //results
16 printf("Air fuel ratio = %.1f lbm air/lbm fuel", AF)
```

Scilab code Exa 16.8 Air fuel ratio calculations

```
1 clc
2 clear
3 //Initialization of variables
4 basis=100 //lbm
5 \times 1 = 0.6
6 \text{ ash}=12 //\text{lbm}
7 N2 = 79.7
8 M = 29
9 //calculations
10 x = ash/x1
11 C = (1 - x1) * x
12 \quad 02 = N2/3.76
13 a = (14.6+0.2)/(5.83-0.66)
14 AF = (02+N2)*M/(a*100)
15 //results
16 printf("Air fuel ratio = %.1f lbm air/lbm fuel as
      fired", AF)
```

Scilab code Exa 16.9 Air fuel ratio calculations

```
1 clc
2 clear
3 //Initialization of variables
4 N2=78.1 //Moles of Nitrogen
5 M=29 //Molar mass of Air
6 ba=2.12 //Basis
7 x4=0.3 //Moles of Ch4
8 x5=3.7 //Moles of H2
9 x6=14.7 //moles of H2
0 //calculations
```

```
11  02=N2/3.76

12  02=N2/3.76

13  Z=(x4*4+x5*2+x6*2)/17

14  AF=(02+N2)*M/(Z*113)

15  //results

16  printf("Air fuel ratio = %.1 f lbm air/lbm fuel",AF)
```

Scilab code Exa 16.10 Air fuel ratio calculations

```
1 clc
2 clear
3 //Initialization of variables
4 N2=78.1 // Moles of Nitrogen
5 M=29 //Molar mass of Air
6 \text{ ba=2.12} // \text{Basis}
7 \text{ x4=0.3} //\text{Moles of Ch4}
8 \times 5=3.7 //Moles of H2
9 x6=14.7 / moles of H20
10 //calculations
11 \quad 02 = N2/3.76
12 c = 14.7
13 b= x4*4 + x5*2 + x6*2
14 a=b/ba
15 AF = (02+N2)*M/(a*12 + b)
16 // results
17 printf("Air fuel ratio = %.1f lbm air/lbm fuel", AF)
```

Scilab code Exa 16.11 Air fuel ratio calculations

```
1 clc
2 clear
3 //Initialization of variables
4 co2=8.7 //Moles of CO2
```

```
5 co=8.9 // Moles of CO
6 N2=78.1 //Moles of Nitrogen
7 M=29 //Molar mass of Air
8 ba=2.12 //Basis
9 \text{ x4=0.3} //\text{Moles of Ch4}
10 x5=3.7 // Moles of H2
11 x6=14.7 / moles of H20
12 //calculations
13 \quad 02 = N2/3.76
14 c = 14.7
15 Z=2.238
16 X = (Z * 17 - x4 * 4 - x5 * 2) / 2
17 a = co2 + co/2 + x4 + x6/2
18 b=3.764*a
19 AF = (02+N2)*M/(Z*113)
20 //results
21 printf("Air fuel ratio = \%.1f lbm air/lbm fuel", AF)
```

Scilab code Exa 16.12 Air fuel ratio calculations

```
1 clc
2 clear
3 //Initialization of variables
4 x1=8.7 //Moles of Co2
5 x2=8.9 //Moles of CO
6 x3=0.3 //Moles of O2
7 N=78.1 //Moles of N2
8 z=113 //Af factor
9 M=29 //Molar mass of air
10 //calculations
11 co2=(x1+x2+x3)*100/(N+x1+x2+x3)
12 a=2.325
13 AF=103*M/(a*z)
14 //results
15 printf("Air fuel ratio = %.2f",AF)
```

Scilab code Exa 16.13 Equation formulation

Scilab code Exa 16.14 Higher heating value

```
1 clc
2 clear
3 //Initialization of variables
4 dH=-2369859 //Btu
5 r=1.986 //Gas constant
6 dn=5.5 //Change in number of moles
7 T=536.7 //R
8 //calculations
9 dQ=dH+dn*r*T
10 //results
11 printf("Higher heating value = %d Btu",dQ)
```

Scilab code Exa 16.15 Lower heating value

```
1 clc
2 clear
3 //Initialization of variables
4 M2=18 //Molar mass of water
5 M=170 //Molar mass of octane
6 p=0.4593 //Pressure of octane //psia
7 disp("from steam tables,")
8 \text{ vfg} = 694.9
9 J = 778.2
10 m=9*18 //Mass of water
11 u1 = -2363996 //Btu
12 //calculations
13 hfg=1050.4 //Btu/lbm
14 ufg= hfg- p*vfg*144/J
15 \text{ dU=ufg*m}
16 Lhv=u1+dU
17 //results
18 printf("Lower heating value = %d Btu/lbm", Lhv)
19 disp("The answers are a bit different due to
      rounding off error in textbook.")
```

Scilab code Exa 16.16 Heat of reaction

```
1 clc
2 clear
3 // Initialization of variables
4 n1=8 // Moles of CO2
5 n2=9 // Moles of H2O
6 n3=1 // Moles of Octane
7 n4=12.5 // Moles of Oxygen
```

```
8 disp("From Table B-10,")
9 U11=3852 //Internal energy at 1000 R of CO2
10 U12=115 //Internal energy at 537 R of CO2
11 U21=3009 //Internal energy at 1000 R of H2O
12 U22=101 //Internal energy at 537 R of H2O
13 U31=24773 //Internal energy at 1000 R of Octane
14 U32=640 //Internal energy at 537 R of Octane
15 U41=2539 //Internal energy at 1000 R of Oxygen
16 U42=83 //Internal energy at 537 R of Oxygen
17 \text{ H} = -2203389 // \text{heat Btu}
18 //calculations
19 dU1=n1*(U11-U12)+n2*(U21-U22)
dU2=n3*(U31-U32)+n4*(U41-U42)
21 Q = H + dU1 - dU2
22 //results
23 printf("Heat of reaction = %d Btu",Q)
24 disp("The answers are a bit different due to
     rounding off error in textbook.")
```

Scilab code Exa 16.17 Temperature calculations

```
1 clc
2 clear
3 // Initialization of variables
4 n1=8 // Moles of CO2
5 n2=9 // Moles of H2O
6 n3=47 // Moles of N2
7 disp("from table B-10,")
8 h1=118 // Enthalpy of CO2
9 h2=104 // Enthalpy of H2O
10 h3=82.5 // Enthalpy of N2
11 Q=2203279 // Btu
12 // calculations
13 U11=n1*h1+n2*h2+n3*h3
14 U12=U11+Q
```

```
15 T2=5271 //R

16 //results

17 printf("Upon interpolating, T2 = %d R",T2)
```

Scilab code Exa 16.18 Equilibrium calculations

```
1 clc
2 clear
3 //Initialization of variables
4 n1=0.95
5 n2=0.05
6 n3=0.025
7 P = 147 // psia
8 pa=14.7 // psia
9 //calculations
10 n=n1+n2+n3
11 p1=n1/n *P/pa
12 p2=n2/n *P/pa
13 p3=n3/n *P/pa
14 \text{ Kp1} = \text{p1/(p2*p3^0.5)}
15 \text{ Kp2= p1^2} / (p2^2 *p3)
16 //results
17 printf("In case 1, Equilibrium constant = \%.1 \, \mathrm{f} ", Kp1
18 printf("\n In case 2, Equilibrium constant = \%.1 \, \mathrm{f}",
      Kp2)
```

Scilab code Exa 16.19 Dissociation calculations

```
1 clc
2 clear
3 //Initialization of variables
4 kp=5
```

```
5 // calculations
6 x=poly(0,"x")
7 vec=roots(24*x^3 + 3*x-2)
8 x=vec(3)
9 y=poly(0,"y")
10 vec2=roots(249*y^3 +3*y-2)
11 y=vec2(3)
12 // results
13 printf("percentage of dissociation = %.1 f percent", x *100)
14 printf("\n If pressure =10 . degree of dissociation = %d percent", y*100)
```

Scilab code Exa 16.20 Extent of reaction

```
1 clc
2 clear
3 // Initialization of variables
4 x=poly(0,"x")
5 vec=roots(24*x^3 +48*x^2 + 7*x -4)
6 x=vec(3) *100
7 // results
8 printf("Extent of reaction= %d percent",100-x)
```

Chapter 17

Gas cycles and processes

Scilab code Exa 17.1 Efficiency and air fuel ratio Equilibrium calculations

```
1 clc
2 clear
3 //Initialization of variables
4 ha=1033 //Btu/mol air
5 \text{ hbd} = 2992 //Btu/mol air}
6 hc=7823 //Btu/mol air
7 hdd=5142 //Btu/mol air
8 \text{ Hv} = 2733000 // \text{Btu/mol}
9 M = 29
10 //calculations
11 \quad \text{Wt=hc-hdd}
12 Wc=ha-hbd
13 \text{ Net=Wt+Wc}
14 Heat=hc-hbd
15 etat=Net*100/Heat
16 molair=Heat/Hv
17 \text{ mr=molair}*142/M
18 \quad Af = 1/mr
19 //results
20 printf("\n Thermal efficiency = \%.1f percent", etat)
21 printf("\n Moles of fuel burned per mol of air = \%.5
```

Chapter 18

Refrigeration

Scilab code Exa 18.1 Work and cop calculations

```
1 clc
2 clear
3 //Initialization of variables
4 Ta=500 //R
5 Tr=540 //R
6 //calculations
7 cop=Ta/(Tr-Ta)
8 \text{ hp} = 4.71/\text{cop}
9 disp("From steam tables,")
10 ha=48.02
11 \text{ hb} = 46.6
12 hc=824.1
13 hd=886.9
14 \text{ Wc} = -(\text{hd} - \text{hc})
15 We=-(hb-ha)
16 // results
17 printf("Coefficient of performance = %.1f",cop)
18 printf("\n horsepower required per ton of
       refrigeration = \%.3 f hp/ton refrigeration",hp)
19 printf("\n Work of compression = \%.1 \, \text{f Btu/lbm}", Wc)
20 printf("\n Work of expansion = \%.2 \, \text{f} \, \text{Btu/lbm}", We)
```

Scilab code Exa 18.2 cop calculation

```
1 clc
2 clear
3 //Initialization of variables
4 x = 0.8
5 he=26.28 //Btu/lbm
6 hb=26.28 //Btu/lbm
7 pe=98.76 // psia
8 pc=51.68 //psia
9 hc=82.71 //Btu/lbm
10 hf=86.80+0.95
11 //calculations
12 dwisen=-(hf-hc)
13 dwact=dwisen/x
14 hd=hc-dwact
15 \text{ cop=(hc-hb)/(hd-hc)}
16 //results
17 printf ("Coefficient of performance = \%.2 f", cop)
```

Scilab code Exa 18.3 work done and cop calculations

```
1 clc
2 clear
3 // Initialization of variables
4 hc=613.3//btu/lbm
5 hb=138.9//btu/lbm
6 ha=138.9//btu/lbm
7 hd=713.4 //btu/lbm
8 ta=464.7 //R
9 t0=545.7 //R
```

```
10 v=8.150 // ft^3/lbm
11 //calculations
12 Qa=hc-hb
13 Qr=ha-hd
14 Wcd=Qa+Qr
15 cop=abs(Qa/Wcd)
16 hp=abs(4.71/cop)
17 carnot=abs(ta/(t0-ta))
18 rel=abs(cop/carnot)
19 \text{ mass} = 200/Qa
20 C=mass*v
21 //results
22 printf ("Work done = \%.1 \, \text{f Btu/lbm}", Wcd)
23 printf("\n horsepower required per ton of
      refrigeration = \%.3 f hp/ton refrigeration",hp)
24 printf("\n Coefficient of performance actual = \%.2 \,\mathrm{f}
      ",cop)
25 printf("\n Ideal cop = \%.3 \,\mathrm{f}", carnot)
26 printf("\n relative efficiency = \%.3 \, f", rel)
27 printf("\n Mass flow rate = \%.3 \, \text{f lbm/min ton}", mass)
28 printf("\n Compressor capacity = \%.2 \text{ f cfm/ton}",C)
```

Scilab code Exa 18.4 Pressure ratio calculations

```
1 clc
2 clear
3 //Initialization of variables
4 pc=0.6982 //psia
5 pe=0.1217 //psia
6 m=200 //gal/min
7 qual=0.98
8 h1=23.07 //Btu/lbm
9 h2=8.05 //Btu/lbm
10 hw=1071.3
11 //calculations
```

```
12 rp=pc/pe
13 m2=m/0.01602 *0.1388 //Conversion of units
14 \quad m2 = 1670
15 dh=15.02
16 \quad Qa=m2*(h1-h2)
17 h3=h2 + qual*hw
18 \text{ m3} = Qa/(h3-h1)
19 v=0.016+ qual*2444
20 C = m3 * v
21 / results
22 printf ("Pressure ratio = \%.2 \, \text{f}", rp)
23 printf("\n Heat = \%d Btu/min", Qa)
24 printf("\n Water make up required = \%.2 \text{ f lbm/min}", m3
25 printf("\n Volume of vapor entering ejector = %d cfm
26 disp ("The answers are a bit different due to
      rounding off error in textbook")
```

Scilab code Exa 18.5 Work done and heat calculations

```
clc
clear
//Initialization of variables
disp("From fig B-4,")
disp("Appropriate notation from textbook has been used")
disp("All are enthalpy values at different stages")
hc=73.5 //Btu/lbm
hb=26.28 //Btu/lbm
hd=91.58 //Btu/lbm
hc2=190.7 //Btu/lbm
hd2=244.3 //Btu/lbm
hd2=244.4 //Btu/lbm
m1=1 //lbm
```

```
14 \text{ m}2=0.461 //\text{lbm}
15 hc1=73.5 //Btu/lbm
16 hd1=83.35 //Btu/lbm
17 hc2=190.7 //Btu/lbm
18 hd2=244.3 //Btu/lbm
19 hb1=12.55 //Btu/lbm
20 hc22=197.58 //Btu/lbm
21 hd22=224 //Btu/lbm
22 // Calculations
23 w1=hc-hd
24 \quad qa1=hc-hb
25 \text{ cop1} = abs(qa1/(w1))
26 \text{ hp1}=4.71/\text{cop1}
27 \quad w2=hc2-hd2
28 \text{ ga2=hc2-hb2}
29 \quad cop2 = abs(qa2/(w2))
30 \text{ hp2}=4.71/\text{cop2}
31 \text{ qa3=m1*(hc1-hb1)}
32 \text{ w3=m1*(hc1-hd1)} + \text{m2*(hc22-hd22)}
33 \text{ cop3} = \text{abs}(\text{qa3/w3})
34 \text{ hp3} = 4.71/\text{cop3}
35 //results
36 disp("part a")
37 printf ("Work done = \%.2 \, \text{f Btu/lbm}", w1)
38 printf("\n Heat = \%.2 \, f \, Btu/lbm", qa1)
39 printf("\n horsepower required per ton of
       refrigeration = \%.3 f hp/ton refrigeration",hp1)
40 printf ("\n Coefficient of performance actual = \%.2 f
      ",cop1)
41 disp("case 2")
42 printf("\n Work done = \%.1 \, \text{f Btu/lbm}", w2)
43 printf("\n Heat = \%.2 \, f Btu/lbm", qa2)
44 printf("\n horsepower required per ton of
       refrigeration = \%.3 f hp/ton refrigeration",hp2)
45 printf ("\n Coefficient of performance actual = \%.2 \, \mathrm{f}
       ",cop2)
46 disp("part b")
47 printf("\n Work done = \%.1 \, f \, Btu/lbm", w3)
```

```
48 printf("\n Heat = %.2 f Btu/lbm",qa3)
49 printf("\n horsepower required per ton of
      refrigeration = %.3 f hp/ton refrigeration",hp3)
50 printf("\n Coefficient of performance actual = %.2 f
      ",cop3)
```

Scilab code Exa 18.6 hp and cop calculations

```
1 clc
2 clear
3 //Initialization of variables
4 disp("From fig B-4,")
5 disp("Appropriate notation from textbook has been
      used")
6 disp("All are enthalpy values at different stages")
7 ha=44.36 //Btu/lbm
8 hc=18.04 //Btu/lbm
9 hj=197.58 //Btu/lbm
10 hh=213.5 //Btu/lbm
11 hd=hc //Btu/lbm
12 he=190.66 //Btu/lbm
13 hk = 241.25 / Btu/lbm
14 //calculations
15 \text{ m} = (hc-ha)/(ha-hj)
16 hi = (m*hj+hh)/(1+m)
17 Qa=he-hd
18 W=he-hh + (1+m)*(hi-hk)
19 cop = abs(Qa/W)
20 \text{ hp} = 4.71/\text{cop}
21 / results
22 printf("\n horsepower required per ton of
      refrigeration = \%.3 f \text{ hp/ton refrigeration}, hp)
23 printf ("\n Coefficient of performance actual = \%.2 \,\mathrm{f}
      ",cop)
```