Likelihood-based inference in temporal hierarchies

Jan Kloppenborg Møller, Hjorleifur G. Bergsteinson, Peter Nystrup, and Henrik Madsen

DTU-Compute - Technical University of Denmark jkmo@dtu.dk

IFF Workshop on Forecast Reconciliation September 8. 2023

Outline

- Introduction
- 4 Heat load forecasting
- 3 Likelihood inference
- Conclusion and Future

Outline

- Introduction
- 2 Heat load forecasting
- 3 Likelihood inference
- 4 Conclusion and Future

Motivation

- Models on different aggregation levels
- Models on each level may not agree
- Reconciliation ensure consistent forecasts
- Reconciliation often improve forecast accuracy on all levels

Reconciliation

The reconciled forecast is calculated by

$$\tilde{\boldsymbol{y}} = (\boldsymbol{S}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{S})^{-1} \boldsymbol{S}^T \boldsymbol{\Sigma}^{-1} \hat{\boldsymbol{y}}$$

where:

- $oldsymbol{ ilde{y}}$: reconciled forecast
- S: the summation matrix
- ullet Σ : a variance-covariance matrix
- $oldsymbol{\hat{y}}$: the base forecast

Regression setting

$$\hat{\boldsymbol{y}} = \boldsymbol{S}\tilde{\boldsymbol{y}} + \boldsymbol{\epsilon}; \quad \boldsymbol{\epsilon} \sim N(\boldsymbol{0}, \boldsymbol{\Sigma})$$

$$\boldsymbol{S} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Choosing the correct variance

Different options for Σ :

- Variance scaling (proportional to volume of level)
- Use observed variance-covariance of base forecast error
- Ignore cross level correlation
- Use shrinkage on the observed variance-covariance (usually preferred).
 I.e.

$$\hat{\Sigma}_s = \lambda \hat{\Sigma} + (1 - \lambda) \operatorname{diag} \hat{\Sigma}$$

Outline

- Introduction
- 4 Heat load forecasting
- 3 Likelihood inference
- 4 Conclusion and Future

Data

- District heating from an area of greater
 Copenhagen
- Clear annual and diurnal variation
- State of the art commercial hourly forecast (1-24 hours ahead)
- 2016 used for initialization

From Bergsteinsson et al. (2021).

A case study

- 1 hour level used as evaluation
- All other levels modeled in the study
- 2, 3, 4, 6, 8, 12, and 24 hours forecast:
 - Recursive Least Square
 - Forecast of ambient temperature
 - Diurnal variation
 - Auto-regressive parts
- Σ_t (60 by 60) estimated using the full variance covariance with shrinkage, and recursive updating.

Work flow of modeling

5. Compute forecast error when observations become available $\hat{Y}_{t+k|t}^{12h}$ 1. Generate base forecasts Input variables 4. Generate reconciled forecasts $\tilde{Y}_{t+k|t}$ 2. Update the covariance matrix 3. Shrinkage $\bullet \quad e_t = Y_t - \hat{Y}_{t|t-1}$ $\hat{\Sigma}_{t-1}$

Some results (RRMSE)

20	17-	-20	19

	2017-2019						
	Base	Expanding	Rolling	Exponential			
	RMSE	Window	Window	Smoothing			
Daily	0.5960	-23.75	-22.49	-23.93			
Twelve-hourly	0.3516	-24.08	-22.83	-24.2			
Eight-hourly	0.3538	-43.51	-42.72	-43.69			
Six-hourly	0.2876	-44.64	-43.75	-44.76			
Four-hourly	0.1765	-36.06	-35.19	-36.37			
Three-hourly	0.1334	-33.03	-32.05	-33.26			
Two-hourly	0.0884	-30.09	-29.07	-30.36			
Hourly	0.0383	-14.75	-13.46	-15.07			

Adapted from Bergsteinsson et al. (2021).

Outline

- Introduction
- 2 Heat load forecasting
- 3 Likelihood inference
- 4 Conclusion and Future

Motivation / Aim

The starting point

$$\tilde{\boldsymbol{y}} = (\boldsymbol{S}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{S})^{-1} \boldsymbol{S}^T \boldsymbol{\Sigma}^{-1} \hat{\boldsymbol{y}}$$

Comments and aim

- ullet Observation appear only through the variance-covariance matrix $oldsymbol{\Sigma}$
- ullet The estimation of Σ include a large number of parameters
- ullet Formulate a parameterized model for obtaining Σ
- Reduce dimension of the parameter space by well-known likelihood techniques

Example

Example: Assume that half year levels generated by

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \epsilon_t,$$

AR(1) models half-year levels and annual levels, i.e. the models

$$\begin{aligned} y_t^{\mathsf{A}} = & \phi_1^{\mathsf{A}} y_{t-1}^{\mathsf{A}} + \epsilon_t^{\mathsf{A}} \\ y_t^{\mathsf{H}} = & \phi_1^{\mathsf{H}} y_{t-1}^{\mathsf{H}} + \epsilon_t^{\mathsf{H}}. \end{aligned}$$

Full setup

$$\boldsymbol{y}_{2t+2|2t} = \begin{bmatrix} y_{2t+2|2t}^{\mathsf{A}} \\ y_{2t+1|2t}^{\mathsf{H}} \\ y_{2t+2|2t}^{\mathsf{H}} \end{bmatrix}; \quad \boldsymbol{\hat{y}}_{2t+2|2t} = \begin{bmatrix} \hat{y}_{2t+2|2t}^{\mathsf{A}} \\ \hat{y}_{2t+1|2t}^{\mathsf{H}} \\ \hat{y}_{2t+2|2t}^{\mathsf{H}} \end{bmatrix}; \quad \boldsymbol{S} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

and e.g. $\mathbf{\Sigma} = \mathsf{Var}[oldsymbol{y}_{2t+2} - oldsymbol{\hat{y}}_{2t+2}]$ can be calculated explicitly.

Choosing the correct variance-covariance

 $\phi_1 = 0.75$

(from Møller et al. (2023))

Modeling of variance-covariance matrix

Σ (some challenges):

- High-dimensional
- High correlations

Some suggestions

- Parametric models for the correlation
- Use statistical methods for reduction

A parametric model

Starting from the bottom level define (Møller et al., 2023)

$$egin{aligned} oldsymbol{\epsilon}_1 &= oldsymbol{u}_1 & ; & oldsymbol{u}_1 \sim N(oldsymbol{0}, oldsymbol{\Sigma}_1), \ oldsymbol{\epsilon}_2 &= oldsymbol{S}_{21} oldsymbol{u}_1 + oldsymbol{u}_2 & ; & oldsymbol{u}_2 \sim N(oldsymbol{0}, oldsymbol{\Sigma}_2), \ oldsymbol{\epsilon}_3 &= oldsymbol{S}_{31} oldsymbol{u}_1 + oldsymbol{S}_{32} oldsymbol{u}_2 + oldsymbol{u}_3 & ; & oldsymbol{u}_3 \sim N(oldsymbol{0}, oldsymbol{\Sigma}_3), \ dots & & & & & & \\ dots & oldsymbol{\epsilon}_K &= oldsymbol{\sum}_{K-1}^{K-1} oldsymbol{S}_{Kj} oldsymbol{u}_j + oldsymbol{u}_K & & & & & & \\ & & & & & & & & \\ oldsymbol{\epsilon}_K &= oldsymbol{\sum}_{K-1}^{K-1} oldsymbol{S}_{Kj} oldsymbol{u}_j + oldsymbol{u}_K & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & &$$

where $Cov[\boldsymbol{u}_i, \boldsymbol{u}_j] = \boldsymbol{0}$, $(i \neq j)$. And

$$oldsymbol{\Sigma}_i^{-1} = oldsymbol{S}_{ii} oldsymbol{S}_{ii}^T,$$

with S_{ii} is an upper triangular matrix.

Estimation

Likelihood

$$l(\boldsymbol{\beta}, \boldsymbol{\alpha}; \boldsymbol{V}) \propto -\frac{T-1}{2} Tr \boldsymbol{\Sigma}^{-1} \boldsymbol{V} + \frac{T-1}{2} \log |\boldsymbol{\Sigma}^{-1}|,$$

where $m{V}$ is the observed variance-covariance matrix, $m{\Sigma}^{-1}$ is parameterized through the model and estimation is done

- Sequentially starting from the bottom level
- Using:
 - a robust EM-like algorithm (solving normal equations) and
 - the Newton method (using the Hessian of the likelihood)

diagonal elements of S_{ii} is estimated in the log-domain.

Shrinkage

A simple modification of the likelihood by introducing weights in the following way:

$$l_s(\Sigma; V, w) = l(\Sigma; w_1V + w_2 \text{blockdiag}V + w_3 \text{diag}V),$$

where $\sum_i w_i = 1$.

Statistical tests

As the method is based on likelihood estimation we have access to

- Wald test for individual parameters or sets of parameters
- Likelihood ratio test for individual parameters or specific hypothesis

In the work we explore

- Wald test for testing if parameters should be zero or equal and confirm using LRT
- Effect of different initial structures

The algorithm, Bottom level

- Estimation.
 - Initialise a variance–covariance structure for the bottom level
 - 2 Iterate between α_{ij} and α_{ii} a fixed number of times
 - Use the result from 2 as initial value for the Newton method.
 - Report the parameter estimates, likelihood, and Hessian.
- Model reduction.
 - Choose in which order to test parameters for removal
 - Calculate the test statistics for the increasing set of parameters until significant and confirm by LRT.
 - Calculate the test statistics for all relevant pairwise comparison and individual parameters that can be set to zero
 - Reduce model, and confirm by likelihood-ratio test.
 - f 3 Report parameters and structure of $m S_{ii}$ and $m S_{ij}$.

The algorithm, Top levels

- Iterate through higher aggregation levels with the lower levels fixed in the same way as the bottom level, now including estimation of β
- Report the final result.

Case study

- Electricity load in Sweden 2016-2020
- 2016-2019 used for estimating mean value structure
- Linear model including annual and diurnal variation
- Double seasonal AR models of the residuals (daily and and weekly)
- Temporal reconciliation of residuals

Some results

	SE		SE1		SE2		SE3		SE4	
	df	RRMSE								
Obs-test	1830	-12.4	1830	-8.5	1830	-9.8	1830	-15.9	1830	-15.3
Obs-train	1830	0.1	1830	4.1	1830	2.1	1830	-2.3	1830	-5.2
Full-Full ₁	402	-4.8	306	-1.7	413	-4.1	413	-5.6	464	-5.5
$Full-Full_2$	402	-5.3	306	0.8	413	-3.1	413	-5.8	464	-6.6
Full-2 ₁	219	-3.8	180	-3.2	237	-4.0	240	-3.9	264	-4.0
Full-22	219	-3.8	180	-2.2	237	-3.8	240	-4.9	264	-3.7
$Null-Null_1$	83	-4.3	77	-2.7	81	-4.1	85	-4.8	85	-4.6
$Null-Null_2$	83	-3.7	77	-0.7	81	-3.1	85	-4.0	85	-4.1
Shrink	0.015	-5.3	0.016	-1.3	0.035	-4.0	0.015	-7.4	0.016	-7.0
Auto-cov.	69	-2.2	49	-2.9	49	-3.5	71	-1.6	71	-2.2
Model-AR1	60	-2.4	60	-3.0	60	-3.2	60	-1.9	60	-2.2
Diag	60	-3.1	60	-2.4	60	-2.6	60	-2.9	60	-2.6

Outline

- Introduction
- 2 Heat load forecasting
- 3 Likelihood inference
- Conclusion and Future

Conclusion / Future

- Parameterized model for the variance-covarince matrix
- Statistical tests and huge reduction in number of parameters
- Similar performance as shrinkage
- Likelihood based inference including algorithms for estimation and testing
- Shrinkage needed

Open

- ullet Error propagation from Σ to the weight matrix?
- ullet Structured models for $oldsymbol{S}_{ii}$ and $oldsymbol{S}_{ij}$

References

- Bergsteinsson H.G., Møller J.K., Nystrup P., Pálsson Ó.P., Guericke D., and Madsen H. (2021). Heat load forecasting using adaptive temporal hierarchies. Applied Energy, 292.
- [2] Møller J.K., Nystrup P., and Madsen H. (2023). Likelihood-based inference in temporal hierarchies. *International Journal of Forecasting, in press*.
- [3] Møller JK, Nystrup P, and Madsen H. (2022) Supplementary material for "Likelihood-based inference in temporal hierarchies. http://people.compute.dtu.dk/jkmo/
- [4] Nystrup, P., Lindström, E., Møller, J. K., and Madsen, H. (2021). Dimensionality reduction in forecasting with temporal hierarchies. *International Journal of Forecasting*, 37(3)
- [5] Nystrup, P., Lindström, E., Pinson, P., and Madsen, H. (2020). Temporal hierarchies with autocorrelation for load forecasting. European Journal of Operational Research, 280, 876-888.

Thank You!

Questions?

