

#### Decision Trees, Random Forests and Extra Trees



# Agenda



#### Discussion Flow

- Basic Structure of a Decision Tree
- Building a classification/Regression Tree
- Interpretation in absence of parameters/coefficients
- Implementation in Python
- Overfitting issue with Decision Tree
- Random Forests
- Extra Trees
- Implementation in Python



## **Decision Trees**



#### What does it look like?



#### Questions?!!

- How do we take decisions?
   (Classification/Regression)
- Where do these rules come from ?
- How do we pick rules for splitting at each node?
- When do we stop splitting nodes?



#### How do we take decisions? (Classification)





#### How do we take decisions? (Regression)

- Much simpler than classification
- Simple Average of target at the terminal node becomes your predicted value for that terminal node



#### Where do these rules come from? (Numeric Vars)





#### Where do these rules come from? (Categorical vars)



### How to Select Rules for split? (Classification)

 Among all the rules available, the one which results in a split with most homogeneous system is selected





$$gini\ index = 1 - \sum_{i=1}^{k} p_i^2$$

$$entropy = -\sum_{i=1}^{\kappa} p_i * log(p_i)$$

$$deviance = -\sum_{i=1}^{k} n_i * log(p_i)$$

Note: There is no theoretical favourite among them, its more of matter of convenience in implementation



### Example: Using entropy for rule selection



$$gini\_parent = 1 - ((\frac{8}{15})^2 + (\frac{7}{15})^2) = .498$$





Rule 2 gets selected for higher decrease in gini



 $gini\_new = (\frac{10}{15}) * 0.50 + (\frac{5}{15}) * 0.48 = .493$ 

#### How to Select Rules for split and Make Prediction? (Regression)

- Average of the node is the prediction for the node
- Among all the rules available, the one which results in a split with least Sum of Square of Errors is





### Example: Using SSE for rule selection

| Respons |  |
|---------|--|
| 5       |  |
| 6       |  |
| 12      |  |
| 11      |  |
| 4       |  |
| 8       |  |
| 13      |  |
| 5       |  |
| 6       |  |
| 7       |  |

| Error |
|-------|
| -2.7  |
| -1.7  |
| 4.3   |
| 3.3   |
| -3.7  |
| 0.3   |
| 5.3   |
| -2.7  |
| -1.7  |
| -0.7  |

Prediction 7.7

SSE Parent 92.1



### **Example Contd Rule 1**

| Respons | Error |
|---------|-------|
| 5       | -2.6  |
| 6       | -1.6  |
| 12      | 4.4   |
| 11      | 3.4   |
| 4       | -3.6  |

Prediction 7.6

SSE 1 53.2

SSE new 92

| Response | Error |
|----------|-------|
| 8        | 0.2   |
| 13       | 5.2   |
| 5        | -2.8  |
| 6        | -1.8  |
| 7        | -0.8  |

Prediction 7.8

> SSE 2 38.8



### Example Contd Rule 2

| Respons | Error |
|---------|-------|
| 5       | -0.2  |
| 6       | 0.8   |
| 4       | -1.2  |
| 5       | -0.2  |
| 6       | 0.8   |

| Prediction |  |  |
|------------|--|--|
| 5.2        |  |  |
| 5.2        |  |  |

SSE 1 2.8

SSE new 29.6

| Response | Error |
|----------|-------|
| 12       | 1.8   |
| 11       | 0.8   |
| 8        | -2.2  |
| 13       | 2.8   |
| 7        | -3.2  |

| Prediction<br>10.2 |
|--------------------|
| SSE 2              |
| 26.8               |

Rule 2 gets selected because of higher decrease in SSE



### When do we stop splitting Nodes?

- When does a node become a terminal node?
- When node is completely homogeneous
- When number of observation in the nodes are lower than the specified limit for split
- When all the rules result in a split such that one (or both) child node will have less observation than specified limit for child node
- When number of specified terminal node is reached



### Lets see it in action in Python





#### Issues with a single decision tree

- Susceptible to noisy observations
- Susceptible to noisy variables
- In general overfits the training data



# Random Forests



#### Introduction of random ness in the process

Sample 1=
random smaller
sample of
observations and N
variables

Independent
Decision Tree:
T1

Data =
Large number of
observations and N
variables

. . . .

Independent Decision Tree:

Sample K=
random smaller
sample of
observations and N
variables



Independent
Decision Tree :
Tk



### Contd...: for each tree



# Extra Trees



#### Extra Trees

- Short for extremely randomised trees
- Extension of random forest
- In addition to what we do in random forest, extra trees randomly subset rules as well at each node before selecting the best rule for split
- Work well when there are less noisy features but with noisy ranges/categories



### Lets see it in action in Python



