Logik I Übungsblatt 1

Aufgabe 1. Sei \mathcal{L} die Sprache $\{c\}$, wobei c ein Konstantensymbol sein soll, weiter sei $\mathcal{L}^{<} = \mathcal{L} \cup \{<\}$, $\mathcal{L}^{+} = \mathcal{L} \cup \{+\}$ und $\mathcal{L}^{<,+} = \mathcal{L} \cup \{<,+\}$ für ein zweistelliges Relationssymbol < und ein zweistelliges Funktionssymbol +. Wir betrachten Strukturen \mathfrak{Z}_n , deren Grundmenge die ganzen Zahlen \mathbb{Z} sind und die c durch die ganze Zahl $n \in \mathbb{Z}$ interpretieren. Eine Struktur \mathfrak{Z}_n kann zu einer $\mathcal{L}^{<,+}$ -Struktur $\mathfrak{Z}_n^{<,+}$ erweitert werden indem + bzw. < mit den üblichen Interpretationen belegt werden. Die Strukturen $\mathfrak{Z}_n^{<}$ und \mathfrak{Z}_n^{+} sind entsprechend zu verstehen. Zeigen Sie:

- a) $\mathfrak{Z}_n \cong \mathfrak{Z}_m$ für jedes $n, m \in \mathbb{Z}$.
- b) Für alle $n,m\in\mathbb{Z}$ existiert genau ein Isomorphismus zwischen $\mathfrak{Z}_n^<$ und $\mathfrak{Z}_m^<$.
- c) $\mathfrak{Z}_n^{<,+} \cong \mathfrak{Z}_m^{<,+} \Leftrightarrow n = m$.
- d) Wann gilt $\mathfrak{Z}_n^+ \cong \mathfrak{Z}_m^+$?

Aufgabe 2. Sei \mathcal{L} eine Sprache und seien \mathcal{A} und \mathcal{B} zwei \mathcal{L} -Strukturen. Wir sagen, dass \mathcal{B} eine Substruktur (auch Unterstruktur) von \mathcal{A} ist (kurz $\mathcal{B} \subseteq \mathcal{A}$) wenn das Folgende gilt:

- a) $B \subseteq A$.
- b) Für jede Konstante $c \in \mathcal{L}$ sei $c^{\mathcal{A}} = c^{\mathcal{B}}$.
- c) Für jedes n-stellige Funktionssymbol $f \in \mathcal{L}$ gelte $f^{\mathcal{B}} = f^{\mathcal{A}} \upharpoonright B^n$ und B ist unter $f^{\mathcal{B}}$ abgeschlossen.
- d) Für jedes m-stellige Relationssymbol $R \in \mathcal{L}$ soll gelten, dass $R^{\mathcal{A}} \cap B^m = R^{\mathcal{B}}$.

Zeigen Sie, dass der Durchschnitt einer Familie von Unterstrukturen von \mathcal{A} entweder leer, oder selbst wieder eine Unterstruktur von \mathcal{A} ist. Folgern Sie, dass zu jeder nicht leere Menge $S\subseteq\mathcal{A}$ eine kleinste Unterstruktur von \mathcal{A} existiert die S enthält, die sogenannte von S erzeugte Unterstruktur.

Aufgabe 3. Sei \mathcal{L} eine Sprache. Zeigen Sie, dass ein echtes Anfangsstück einer \mathcal{L} -Formel keine \mathcal{L} -Formel is.

Aufgabe 4. Beweisen oder widerlegen Sie: Für jede Sprache \mathcal{L} , jede \mathcal{L} -Struktur \mathcal{A} , jede \mathcal{A} -Belegung β und jedes Paar von \mathcal{L} -Formeln φ , ψ gilt: Wenn die Variable x nicht frei in ψ vorkommt, folgt

$$\mathcal{A} \vDash (\varphi \to \psi)[\beta] \Rightarrow \mathcal{A} \vDash (\exists x \, \varphi \to \psi)[\beta].$$

Hinweis: Gilt $\mathcal{A} \models \varphi[\beta]$ genau dann wenn $\mathcal{A} \models \exists x \varphi[\beta]$?

Abgabe bis Donnerstag, den 11.04, 10:00 Uhr

Die Ubungsblätter sollen zu zweit bearbeitet und abgegeben werden.

Web-Seite: https://www.uni-muenster.de/IVV5WS/WebHop/user/bboisson/de/L1/