MATH230: Tutorial Six

Computation and Church Encodings

Key ideas

• Practice β -reduction,

• Encode logic in λ -calculus,

• Encode natural numbers in λ -calculus.

• Encode compound data in λ -calculus.

Relevant notes: Lambda Calculus Slides

Relevant reading: Type Theory and Functional Programming, Simon Thompson

Hand in exercises: 1b, 2, 3b, 4c, 5b

Due Friday @ 5pm to the submission box on Learn.

Discussion Questions

• Compute the normal forms of the following λ -terms:

$$(\lambda x. \ x \ x)(\lambda y. \ \lambda z. \ y \ z \ z)$$

AND TRUE TRUE

Tutorial Exercises

- 1. Compute the normal form for each of the following λ -terms:
 - (a) NOT FALSE
 - (b) OR TRUE FALSE
 - (c) AND FALSE TRUE
 - (d) IMPLIES FALSE TRUE

Only expand those expressions necessary for each step.

2. Write down λ -expressions that represent the propositional binary connectives XOR, NAND, and NOR. Recall that these have the following truth tables.

P	Q	XOR(P,Q)	P	Q	NAND(P,Q)	P	Q	NOR(P,Q)
\overline{T}	T	\overline{F}	T	T	\overline{F}	\overline{T}	T	\overline{F}
T	F	T	T	F	T	T	F	F
F	T	T	F	T	T	F	T	F
F	F	F	F	F	T	F	F	T

- 3. By substituting the explicit λ -expressions (as necessary) and performing β -reduction, determine the normal forms of the following λ -expressions.
 - (a) SUCC ONE
 - (b) SUM ONE ZERO
 - (c) MULT TWO ZERO

Only expand those expressions necessary for each step.

4. We have defined the following λ -expression to construct pairs of λ -expressions:

$$PAIR = \lambda x. \ \lambda y. \ \lambda f. \ f \ x \ y$$

The third input is a built-in place ready to take a selector:

$$FirST = \lambda x. \ \lambda y. \ x$$
 $SecoND = \lambda x. \ \lambda y. \ y$

Reduce these to normal form

- (a) PAIR a b FST
- (b) PAIR a b SND
- (c) PAIR (PAIR a b) (PAIR c d) SND
- 5. Positive rational numbers are solutions to equations of the form bx=a, where $a,b:\mathbb{N}$. Use PAIR to represent positive rational numbers in the λ -calculus and write λ -expressions to compute rational number arithmetic.
 - (a) RAT-SUM to calculate the sum of two rational numbers.
 - (b) RAT-MULT to calculate the product of two rational numbers.
 - (c) RAT-REC(iprocal) to calculate the reciprocal of an integer.