CSCI 190 Discrete Mathematics Applied to Computer Science Exam 2

	Name:	
Last 4 digits of	of your Student ID#:	

Read these instructions before proceeding.

- Closed book. Closed notes. You can use calculator.
- You have **80 minutes** to complete this exam.
- No questions will be answered during the exam or immediately afterwards.
 Answer each question as best you can. Partial credit will be awarded for reasonable efforts. If a question contains an ambiguity or a misprint, then say so in your answer, providing the answer to a reasonable interpretation of the question; give your assumptions.
- Answer the problems on the blank spaces provided for each problem.
- Box your answers.

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Total
(8)	(8)	(8)	(8)	(6)	(12)	(10)	(8)	(8)	(8)	(8)	(8)	(100)

1. (8 pts) Use the Principle of Mathematical Induction to prove that $1 + 4 + 16 + 64 + \cdots + 4^n = (4^{n+1} - 1)/3$ for all $n \ge 0$.

- 2. (8 pts) Give a recursive definition with initial condition(s).
 - a) The function f(n) = (2n)!, n = 0, 1, 2, ... (4 pts)
 - b) The Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, starting from f(0) (4 pts)
- 3. (8 pts)
 - a) Find f(2) and f(3) if f(n) = 3f(n-1) + 5, f(0) = 1. (4 pts)

b) Find f(8) if f(n) = 2f(n/2) + 2, f(1) = 2. (4 pts)

- 4 (8 pts)
- a) Consider a bit string of length 15. How many begin with 100 and end with 010? (4 pts)

b) How many ways are there to seat 7 people around a circular table where two seatings are considered the same when everyone has the same immediate left and immediate right neighbor? (4 pts)

5. (6 pts)

Explain how the Pigeonhole Principle can be used to show that among any 21 integers, at least three must have the same last digit.

6. (12 pts)

- a) How many ways are there to select 4 students from a class of 30 to serve on a committee? (4 pts)
- b) How many ways are there to select 5 students from a class of 35 to hold six different executive positions on a committee? (4 pts)
 - c) How many bit strings of length 14 have equal numbers of 0's and 1's? (4 pts)

7. (10 pts)

a) Use the Pascal's Tringle to expand $(x + y)^5$. Show your work. (5 pts)

b) Find the coefficient of x^4y^6 in the expansion of $(4x - 2y)^{10}$. (5 pts)

8. (8 pts) (a) What is the probability that a card chosen from an ordinary deck of 52 cards is a Queen or Jack?. (4 pts)
(b) What is the probability that a fair coin lands Heads exactly 3 times out of 4 flips? (4 pts)
 9. (8 pts) Suppose you have a class with 30 students — 10 freshmen, 12 sophomores, and 8 juniors. a) You pick three students at random, one at a time. What is the probability that all three are junior? (4 pts)
b) You pick two students at random, one at a time. What is the probability that the second student is a freshman, given that the first is a sophomore? (4 pts)
10. (8 pts) a) In a certain lottery game you choose a set of six numbers out of 33 numbers. Find the probability that none of your numbers match the six winning numbers. (4 pts)
b) An experiment consists of picking at random a bit string of length five. Consider the following events: E ₁ : the bit string chosen begins with 0; E ₂ : the bit string chosen ends with 1.

Determine whether E₁ and E₂ are independent. Show your work. (4 pts)

11. (8 pts) Three coins are tossed.

a) List the elements in the sample space. (4 pts)

b) Find the probability that at least two heads show. (4 pts)

12. (8 pts)

Describe the following sequence recursively. Include initial condition of a_1 .

 a_n = the number of bit strings of length n with at least two consecutive zeros.

a)
$$a_1 = (2 pts)$$

b)
$$a_2 =$$
 (2 pts)

c)
$$\mathbf{a}_{n} =$$
 (4 pts)