

Unit 7 Predictive Parsing

Predictive Parsers

- Parser can "predict" which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
- In practice, LL(1) is used

• accomplished using a predictive parsing table M and a stack.

A stringent condition

The grammar must not be left recursive and no two right sides of a production have a common prefix.

Left Recursion

A grammar is *left recursive* if it has a non-terminal A such that there is a derivation.

 $A \Rightarrow A\alpha$ for some string α

Top-down parsing techniques **cannot** handle left-recursive grammars. So, we have to convert our left-recursive grammar into an equivalent grammar which is not left-recursive.

The left-recursion may appear in a single step of the derivation (*immediate left-recursion*), or may appear in more than one step of the derivation.

Immediate Left-Recursion

 $A \rightarrow A \alpha \mid \beta$ where β does not start with A eliminate immediate left recursion $A \rightarrow \beta A'$

 $A' \rightarrow \alpha A' \mid \epsilon$ an equivalent grammar

In general,

$$A \rightarrow \beta_1 A' \mid \dots \mid \beta_n A'$$

$$A' \rightarrow \alpha_1 A' \mid ... \mid \alpha_m A' \mid \epsilon$$
 an equivalent grammar

Left-Recursion -- Problem

- A grammar cannot be immediately left-recursive, but it still can be left-recursive.
- By just eliminating the immediate left-recursion, we may not get a grammar which is not left-recursive.

```
S → Aa | b
A → Sc | d This grammar is not immediately left-recursive,
but it is still left-recursive.
```

$$\underline{S} \Rightarrow Aa \Rightarrow \underline{S}ca$$
 or $\underline{A} \Rightarrow Sc \Rightarrow \underline{A}ac$ causes to a left-recursion

So, we have to eliminate all left-recursions from our grammar

Eliminate Left-Recursion -- Algorithm

```
    Arrange non-terminals in some order: A<sub>1</sub> ... A<sub>n</sub>

- for i from 1 to n do {
       - for j from 1 to i-1 do {
             replace each production
                    A_i \rightarrow A_i \gamma
                        by
                    A_i \rightarrow \alpha_1 \gamma \mid ... \mid \alpha_k \gamma
                    where A_i \rightarrow \alpha_1 \mid ... \mid \alpha_k
      - eliminate immediate left-recursions among A<sub>i</sub> productions
```


Immediate Left-Recursion -- Example

$$E \rightarrow E+T \mid T$$

 $T \rightarrow T^*F \mid F$
 $F \rightarrow id \mid (E)$

eliminate immediate left recursion

$$E \rightarrow T E'$$
 $E' \rightarrow +T E' \mid \epsilon$
 $T \rightarrow F T'$
 $T' \rightarrow *F T' \mid \epsilon$
 $F \rightarrow id \mid (E)$

Predictive Parsing and Left Factoring

• In the grammar

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int \mid int * T \mid (E)$

- Hard to predict because
 - For T two productions start with int
 - For E it is not clear how to predict
- A grammar must be <u>left-factored</u> before use for predictive parsing

Left Factoring

• A predictive parser (a top-down parser without backtracking) insists that the grammar must be *left-factored*.

grammar → a new equivalent grammar suitable for predictive parsing

```
If_stmt \rightarrow if expr then stmt else stmt | if expr then stmt
```

• when we see if, we cannot now which production rule to choose to rewrite *stmt* in the derivation.

Left Factoring (con'd)

In general,

$$A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$$

where α is non-empty and the first symbols of β_1 and β_2 (if they have one)are different.

when processing α we cannot know whether expand

A to
$$\alpha\beta_1$$
 or

A to
$$\alpha\beta_2$$

But, if we re-write the grammar as follows

$$A \rightarrow \alpha A'$$

$$A' \rightarrow \beta_1 \mid \beta_2$$
 so, we can immediately expand A to $\alpha A'$

Left factoring algorithm

• For each non-terminal A with two or more alternatives (production rules) with a common non-empty prefix, let say

$$A \rightarrow \alpha \beta_1 \mid ... \mid \alpha \beta_n \mid \gamma_1 \mid ... \mid \gamma_m$$

convert it into

$$A \to \alpha A' | \gamma_1 | \dots | \gamma_m$$

$$A' \to \beta_1 | \dots | \beta_n$$

Left Factoring example

```
S \longrightarrow if E then S \mid if E then S else S can be rewritten as S \longrightarrow if E then S \supset S' \longrightarrow else S \mid E In KPL
```

```
IfSt ::= KW_IF Condition KW_THEN Statement
    ElseSt
```

```
ElseSt ::= KW_ELSE Statement
ElseSt ::= ε
```


(Non recursive) Predictive parser

Parsing table M

- *M*[*X*, *token*] indicates which production to use if the top of the stack is a nonterminal *X* and the current token is equal to *token*;
- in that case we pop X from the stack and we push all the rhs symbols of the production M[X, token] in reverse order.
- We use a special symbol \$ to denote the end of file. Let *S* be the start symbol

Non recursive Predictive Parser

The input contains the string to be parsed, followed by \$ (EOF)

The stack contains a sequence of grammar symbols, preceded by #, the bottom-of-stack marker.

Initially the stack contains the start symbol of the grammar preceded by \$.

The parsing table is a two dimensional array M[A,a], where A is a nonterminal, and a is a terminal or the symbol \$.

- The parser is controlled by a program that behaves as follows:
- The program determines *X*, the symbol on top of the stack, and a, the current input symbol.
 - These two symbols determine the action of the parser. There are three possibilities:
 - 1. If X = a =\$, the parser halts and announces successful completion of parsing.
- 2. If $X = a \neq \$$, the parser pops X off the stack and advances the input pointer to the next input symbol.
- 3. If X is a nonterminal, the program consults entry M[X,a] of the parsing table M. This entry will be either an X-production of the grammar or an error entry.

If $M[X,a] = \{X \to UVW\}$, the parser replaces X on top of the stack by WVU (with U on top).

If M[X,a] = error, the parser calls an error recovery routine.

Parsing table for grammar $S \rightarrow aSb|c$

	а	b	С	\$	
S	$S \rightarrow aSb$	Error	$S \rightarrow c$	Error	
а	Push	Error	Error	Error	
b	Error	Push	Error	Error	
С	Error	Error	Push	Error	
#	Error	Error	Error	Accept	

LL(1) Parsing Tables. Errors

- Yellow entries indicate error situations
 - Consider the [S,b] entry
 - "There is no way to derive a string starting with b from non-terminal S

Using Parsing Tables

- Method similar to recursive descent, except
 - For each non-terminal S
 - We look at the next token a
 - And chose the production shown at [S,a]
- We use a stack to keep track of pending nonterminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input

LL(1) Parsing Algorithm

LL(1) Parsing Example for aacbb

Stack	Input	Action
S#	aacbb\$	$S \rightarrow aSb$
aSb#	aacbb\$	push
Sb#	acbb\$	$S \rightarrow aSb$
aSbb#	acbb\$	push
Sbb#	cbb\$	$S \rightarrow C$
cbb#	cbb\$	push
bb#	bb\$	push
b#	b \$	push
#	\$	ACCEPT

Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- No table entry can be multiply defined
- We want to generate parsing tables from CFG

Constructing Parsing Tables (Cont.)

- If $A \rightarrow \alpha$, where in the line of A we place α ?
- In the column of t (t is a terminal) where t can start a string derived from α
 - $\alpha \rightarrow^* t \beta$
 - We say that $t \in First(\alpha)$
- In the column of t if α is ε and t can follow an A
 - $S \rightarrow^* \beta A t \delta$
 - We say $t \in Follow(A)$

Computing First Sets

Definition: First(X) = { $t \mid X \rightarrow^* t\alpha$ } \cup { $\epsilon \mid X \rightarrow^* \epsilon$ }

Algorithm sketch:

- 1. for all terminals t do $First(X) \leftarrow \{t\} //if X$ is terminal t
- 2. for each production $X \to \varepsilon$ do First(X) $\leftarrow \{ \varepsilon \}$
- 3. if $X \to A_1 \dots A_n \alpha$ and $\epsilon \in First(A_i)$, $1 \le i \le n$ do
 - add $First(\alpha)$ to First(X)
- 4. for each $X \to A_1 \dots A_n$ s.t. $\varepsilon \in First(A_i)$, $1 \le i \le n$ do
 - add ε to First(X)
- 5. repeat steps 4 & 5 until no First set can be grown

First Sets. Example

• Recall the grammar

```
T \rightarrow FT'
   E \rightarrow T E'
   E' \rightarrow + E \mid \varepsilon
                                       T' \rightarrow *F \mid \varepsilon
   F \rightarrow (E) \mid int
First sets
                                   First(T) = First(F) = \{int, (\}
First( ( ) = { ( }
First()) = { ) }
                                   First(E) = \{int, (\}
First(int) = \{int\}
                                   First(\mathbf{E}') = {+, \varepsilon}
                                  First(T') = {*, \varepsilon}
First(+) = \{+\}
First( * ) = { * }
```


Computing Follow Sets

• Definition:

$$Follow(X) = \{ t \mid S \rightarrow^* \beta X t \delta \}$$

- Intuition
 - If S is the start symbol then $\$ \in \text{Follow}(S)$
 - If $X \to A$ B then $First(B) \subseteq Follow(A)$ and $Follow(X) \subseteq Follow(B)$
 - Also if $B \to^* \epsilon$ then $Follow(X) \subseteq Follow(A)$

Computing Follow Sets (Cont.)

Algorithm sketch:

- 1. Follow(S) \leftarrow { \$ }
- 2. For each production $A \rightarrow \alpha X \beta$
 - add First(β) { ϵ } to Follow(X)
- 3. For each $A \rightarrow \alpha X \beta$ where $\epsilon \in First(\beta)$
 - add Follow(A) to Follow(X)
- repeat step(s) 2, 3 until no Follow set grows

Follow Sets. Example

Recall the grammar

$$E \rightarrow T E'$$
 $T \rightarrow FT'$
 $E' \rightarrow + E \mid \varepsilon$ $T' \rightarrow *F \mid \varepsilon$
 $F \rightarrow (E) \mid int$

Follow sets

```
Follow(+) = { int, ( } Follow(*) = { int, ( } Follow(()) = { int, ( } Follow((
```


Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in First(\alpha)$ do
 - $T[A, t] = \alpha$
 - If $\varepsilon \in First(\alpha)$, for each $t \in Follow(A)$ do
 - $T[A, t] = \varepsilon$
 - If $\varepsilon \in First(\alpha)$ and $\$ \in Follow(A)$ do
 - $T[A, \$] = \varepsilon$

Example

• Grammar G:

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' | \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' | \epsilon$
 $F \rightarrow (E) | int$

It's possible to implement a predictive parser for G

Parsing table

	+	*	()	int	\$
E			E→TE'		E→TE'	
E'	$E' \rightarrow +TE'$			E' → ε		E' → ε
$\mid T \mid$			$T \rightarrow FT'$		T→FT'	
T'	T' → ε	T'→*FT'		T'→ε		T'→ε
F			$F \rightarrow (E)$		F→int	
+	Push					
*		Push				
			Push			
$\left \begin{array}{c} \end{array} \right $				Push		
int					Push	
#						Accept

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
- Most programming language grammars are not LL(1)
- There are tools that build LL(1) tables

