Lovely Professional University, Punjab

Course Code	Course Title	Lectures	Tutorials	Practicals	Credits
CSE322	FORMAL LANGUAGES AND AUTOMATION THEORY	3	0	0	3
Course Weightage Course Focus	ATT: 5 CA: 25 MTT: 20 ETT: 50 EMPLOYABILITY				

Course Outcomes: Through this course students should be able to

CO1 :: Understand Concepts and Abstractions for Automata as a Fundamental Computational Model

CO2 :: Understand algebraic formalisms of languages such as regular expressions, context-free grammar.

CO3 :: Compare different types of Grammars and design context free grammars for formal languages

CO4 :: Analyze the properties and structure of context-free languages

CO5:: understand Understand the construction of Push Down Automata, including closure properties and their relationship with parsing techniques.

CO6:: Understand algorithms and computability through the lens of Turing machines and relationship between various computational models

	TextBooks (T)					
Sr No	Title	Author	Publisher Name			
T-1	THEORY OF COMPUTER SCIENCE: AUTOMATA, LANGUAGES & COMPUTATION	K.L.P. MISHRA & N. CHANDRASEKARAN	PRENTICE HALL			
	Reference Books (R)					
Sr No	Title	Author	Publisher Name			
R-1	AUTOMATA, COMPUTABILITY AND COMPLEXITY: THEORY AND APPLICATIONS	ELAINE RICH	PEARSON			
R-2	INTRODUCTION TO AUTOMATA THEORY, LANGUAGES, AND COMPUTATION	HOPCROFT, MOTWANI, ULLMAN	PEARSON			
R-3	INTRODUCTION TO THE THEORY OF COMPUTATION	MICHAEL SIPSER	CENGAGE LEARNING			
R-4	THEORY OF COMPUTATION: A PROBLEM SOLVING APPROACH	KAVI MAHESH	WILEY			
R-5	INTRODUCTION TO FORMAL LANGUAGES, AUTOMATA THEORY AND COMPUTATION	KAMALA KRITHIVASAN, RAMA R.	PEARSON			

An instruction plan is only a tentative plan. The teacher may make some changes in his/her teaching plan. The students are advised to use syllabus for preparation of all examinations. The students are expected to keep themselves updated on the contemporary issues related to the course. Upto 20% of the questions in any examination/Academic tasks can be asked from such issues even if not explicitly mentioned in the instruction plan.

R-6	THEORY OF COMPUTATION	RAJESH K. SHUKLA	CENGAGE LEARNING
R-7	AN INTRODUCTION TO AUTOMATA THEORY AND FORMAL LANGUAGES.	ADESH K. PANDEY	S.K. KATARIA & SONS
R-8	INTRODUCTION TO THEORY OF AUTOMATA, FORMAL LANGUAGES AND COMPUTATION	SATINDER SINGH CHAHAL, GULJEET KAUR CHAHAL	A.B.S.PUBLICATION, JALANDHAR
R-9	AN INTRODUCTIONTO FORMAL LANGUAGES AND AUTOMATA	PETER LINZ	JONES & BARTLETT LEARNING
R-10	CELLULAR AUTOMATA MACHINES: A NEW ENVIRONMENT FOR MODELING	TOMMASO TOFFOLI	MIT Press
R-11	FORMAL LANGUAGES AND AUTOMATION THEORY	STEFAN HOLLOS, J. RICHARD HOLLOS	ABRAZOL PUBLISHING

Other Reading (OR)

		·
Sı	· No	Journals articles as Compulsary reading (specific articles, complete reference)
O	R-1	An Introduction to formal languages and Automata, Peter Linz, Jones & Bartlett Learning, 2001,

Sr No	(Web address) (only if relevant to the course)	Salient Features
RW-1	https://plato.stanford.edu/entries/cellular-automata/	Relevant details covering Introduction to Cellular automata, Notions, Results and Philosophy.
RW-2	http://www.cse.ohio-state.edu/~gurari/theory-bk/theory-bk.html	Ohio State University Link: Informative material on various topics
RW-3	http://www.cs.rpi.edu/academics/courses/spring06/modcomp/	Lecture Slides from Rensselaer Polytechnic Institute (RPI). * Rensselaer is America's oldest technological research university.
RW-4	http://www.theoryofcomputations.com/	Illustrative Examples, Short Questions, Exercises, Assignments and Question Banks on TOC.
RW-5	http://nptel.iitm.ac.in/courses/106106049	Online_Video Lectures, IIT Madras
RW-6	http://theory.csail.mit.edu/	At MIT, there is broad range of TOC topics, including algorithms, complexity theory, cryptography, distributed computing, computational geometry, computational biology, and quantum computing. MIT has the largest TOC research group in the world.

Audio Visu	Audio Visual Aids (AV)					
Sr No	(AV aids) (only if relevant to the course)	Salient Features				
AV-1	https://www.youtube.com/watch? v=tPUWmgFw3QA&index=17&list=PL85CF9F4A047C7BF7	Online Video Lectures, IIT Madras				
AV-2	http://aduni.org/courses/theory/index.php?view=cw	Video Taped lectures based on undergraduate course study of Theory of Computation at the Massachusetts Institute of Technology (MIT).				
AV-3	http://www.cs.uiuc.edu/class/sp10/cs373/lectures/	Online Video Lectures, University of Illinois at Urbana-Champaign				

An instruction plan is only a tentative plan. The teacher may make some changes in his/her teaching plan. The students are advised to use syllabus for preparation of all examinations. The students are expected to keep themselves updated on the contemporary issues related to the course. Upto 20% of the questions in any examination/Academic tasks can be asked from such issues even if not explicitly mentioned in the instruction plan.

Software/E	equipments/Databases	
Sr No	(S/E/D) (only if relevant to the course)	Salient Features
SW-1	dk.brics.automaton 1.11-8	This Java package contains a DFA/NFA (finite-state automata) implementation with Unicode alphabet (UTF16) and support for the standard regular expression operations (concatenation, union, Kleene star) and a number of non-standard ones (intersection, complement, etc.)
SW-2	http://en.wikipedia.org/wiki/Automata-based_programming	Web Link on various ways, to practically implement concepts of TOC/Automata.
SW-3	Visual Automata Simulator 1.2.2	A tool for simulating, visualizing and transforming finite state automata and Turing Machines.
Virtual La	bs (VL)	
Sr No	(VL) (only if relevant to the course)	Salient Features
VL-1	http://www.virlab.virginia.edu/VL/QCA_logic.htm	Virtual Lab from University of Virginia in Charlottesville, VA. Describes how "Quantum-dot Cellular Automata" (QCA's) can be made into MAJORITY, OR, AND, and INVERTER logic gates.
VL-2	http://www.virlab.virginia.edu/VL/QCA_cells.htm	Virtual Lab from University of Virginia in Charlottesville, VA. In computers of the future, transistors may be replaced by assemblies of quantum dots called "Quantum-dot Cellular Automata" (QCA's). This page describes how QCA's can store and move information.

,		
Weeks before MTE	7	
Weeks After MTE	7	
Spill Over (Lecture)	7	

Detailed Plan For Lectures

Week Number	Lecture Number	Broad Topic(Sub Topic)	Chapters/Sections of Text/reference books	Other Readings, Relevant Websites, Audio Visual Aids, software and Virtual Labs	Lecture Description	Learning Outcomes	Pedagogical Tool Demonstration/ Case Study / Images / animation / ppt etc. Planned	Live Examples
Week 1	Lecture 1	FINITE AUTOMATA (Definition and Description of a Finite Automaton)	R-11	RW-3 RW-5 SW-1	Lecture 1: Lecture#0. Lecture 2: Basic description of Strings and Alphabets and Deterministic and Nondeterministic Finite State Machines	Students will learn about Strings and Alphabets	Demonstration with Power Point Presentation, Discussion method	Switch Bulb

ek 1	Lecture 1	FINITE AUTOMATA (Deterministic and Non- deterministic Finite State Machines)	R-2	RW-3 RW-5 SW-1	Lecture 1: Lecture#0. Lecture 2: Basic description of Strings and Alphabets and Deterministic and Nondeterministic Finite State Machines	Students will learn about Strings and Alphabets	Demonstration with Power Point Presentation, Discussion method	Switch Bulb
		FINITE AUTOMATA (Basics of Strings and Alphabets)	R-11	RW-3 RW-5 SW-1	Lecture 1: Lecture#0. Lecture 2: Basic description of Strings and Alphabets and Deterministic and Nondeterministic Finite State Machines	Students will learn about Strings and Alphabets	Demonstration with Power Point Presentation, Discussion method	Switch Bulb
	Lecture 2	FINITE AUTOMATA (Definition and Description of a Finite Automaton)	R-11	RW-3 RW-5 SW-1	Lecture 1: Lecture#0. Lecture 2: Basic description of Strings and Alphabets and Deterministic and Nondeterministic Finite State Machines	Students will learn about Strings and Alphabets	Demonstration with Power Point Presentation, Discussion method	Switch Bulb
		FINITE AUTOMATA (Deterministic and Non- deterministic Finite State Machines)	R-2	RW-3 RW-5 SW-1	Lecture 1: Lecture#0. Lecture 2: Basic description of Strings and Alphabets and Deterministic and Nondeterministic Finite State Machines	Students will learn about Strings and Alphabets	Demonstration with Power Point Presentation, Discussion method	Switch Bulb
		FINITE AUTOMATA (Basics of Strings and Alphabets)	R-11	RW-3 RW-5 SW-1	Lecture 1: Lecture#0. Lecture 2: Basic description of Strings and Alphabets and Deterministic and Nondeterministic Finite State Machines	Students will learn about Strings and Alphabets	Demonstration with Power Point Presentation, Discussion method	Switch Bulb
	Lecture 3	FINITE AUTOMATA (Acceptability of a String by a Finite Automaton)	R-6 R-9	SW-2	Basic description of Transition graph and properties of Transition function	Students will learn about the use of transition function in finite automata	Demonstration with Power Point Presentation, Classr oom Lecture using chalk and talk technique	Thermostats

Week 1	Lecture 3	FINITE AUTOMATA (Transition Graph and Properties of Transition Functions)	T-1	SW-3	Working of finite automata to accept a string	Students will learn whether a string is acceptable or not acceptable by finite automata	White board, Live demonstration using JFLAP, Use of practical exercises using ICT tools and software simulator	Thermostats
Week 2	Lecture 4	FINITE AUTOMATA(The Equivalence of Deterministic and Nondeterministic Finite Automata)	T-1	AV-3	Relation between DFA and NDFA	Students will learn about the relation between DFA and NDFA	Numerical Problem Solving, Self- learning	Thermostats
	Lecture 5	FINITE AUTOMATA (Mealy and Moore Machines)	T-1		Conversion of Mealy to Moore and Moore to Mealy machine	Students will learn how to convert Mealy to Moore and Moore to Mealy machine	White board, Demonstration using JFLAP, Use of practical exercises using ICT tools and software simulator simulator	Switch Bulb and Elevators
		FINITE AUTOMATA (Regular Languages)	R-7		Basic Description of Regular languages	Students will learn about the regular languages	Demonstration with Power Point Presentation, Discussion method	Switch Bulb
	Lecture 6	FINITE AUTOMATA (Minimization of Finite Automata)	T-1 R-5	OR-1	Step by Step procedure to construct minimum automaton	Students will learn to reduce a Complex Finite Automata	White board, Numerical Problem, Discussion method , Self learning Solving	Switch Bulb
Week 3	Lecture 7	REGULAR EXPRESSIONS AND REGULAR SETS (Regular Expressions and Identities for Regular Expressions)	T-1 R-11	RW-3	Representation of regular expression	Students will learn the relation between Finite Automata and Regular Expression	Demonstration with Power Point Presentation	Compiler
		REGULAR EXPRESSIONS AND REGULAR SETS (Finite Automata and Regular Expressions: Transition System Containing null moves)	T-1 R-1 R-4	RW-3	Basics of Regular expressions	Students will become familiar about the regular expression	White board, Demonstration with Power Point Presentation, lassroom Lecture using chalk and talk technique	Finding Patterns in text

Week 3	Lecture 8	REGULAR EXPRESSIONS AND REGULAR SETS (Conversion of Non-deterministic Systems to Deterministic Systems)	T-1		Recognition of Regular expression by NDFA	Students will learn the relation between Non-deterministic Finite Automata and Regular Expressions	White board, Demonstration using JFLAP, simulator, Use of practical exercises using ICT tools and software	Finding patterns in text
		REGULAR EXPRESSIONS AND REGULAR SETS (Algebraic Methods using Arden's Theorem)	T-1		Extension of Arden's Theorem	Students will learn to find the regular expression recognized by a transition system	Numerical Problem Solving	Finding patterns in text
		REGULAR EXPRESSIONS AND REGULAR SETS (Non-deterministic Finite Automata with Null Moves and Regular Expressions)	T-1	RW-4	Construction of Deterministic system equivalent to nondeterministic system	Students will learn the relations between deterministic and non-deterministic system	White board, Demonstration with Power Point Presentation	Finding patterns in text
	Lecture 9	REGULAR EXPRESSIONS AND REGULAR SETS (Equivalence of Two Finite Automata and Two Regular Expressions)	T-1		Description of various properties of regular set	Students will learn that class of regular set is closed under union,concatenation and closure	Demonstration with Power Point Presentation,Nume rical Problem Solving	Finding patterns in text
		REGULAR EXPRESSIONS AND REGULAR SETS (Closure Properties of Regular Sets)	T-1		Description of various properties of regular set	Students will learn that class of regular set is closed under union,concatenation and closure	Demonstration with Power Point Presentation,Nume rical Problem Solving	Finding patterns in text
		REGULAR EXPRESSIONS AND REGULAR SETS (Equivalence between regular languages: Construction of Finite Automata Equivalent to a Regular Expression)	T-1		Relation of Regular Expression and Finite Automata	Students will undersatnd the concept of equivalence between regular expression and finite automata	Demonstration with JFLAP simulator, Use of practical exercises using ICT tools and software simulator simulator	Finding patterns in text
Week 4	Lecture 10				Test 1			
	Lecture 11	REGULAR EXPRESSIONS AND REGULAR SETS (Pumping Lemma for Regular Sets and its Application)	T-1 R-2		Conditions for a string to belong to regular sets and application of Pumping lemma	Students will be able to test whether string belong to regular set or not	Demonstration using JFLAP simulator, Use of practical exercises using ICT tools and software simulator simulator	Finding patterns in text

Week 4	Lecture 12	REGULAR EXPRESSIONS AND REGULAR SETS (Construction of Finite Automata Equivalent to a Regular Expression)	T-1		Subset method	Students will learn the use of subset method	White board, Demonstration using JFLAP, Use of practical exercises using ICT tools and software simulator simulator	Finding patterns in text
		REGULAR EXPRESSIONS AND REGULAR SETS (Properties of Regular Languages)	T-1		Various properties of regular languages along with its usage in pumping lemma	Students will learn the concept of union ,intersection,iteration in regular languages	Demonstration with Power Point Presentation, Discussion method	Finding patterns in text
Week 5	Lecture 13	REGULAR EXPRESSIONS AND REGULAR SETS (Myhill-Nerode Theorem)	R-3	AV-1	Description of Myhill–Nerode theorem for regularity test of a language.	Students will learn about necessary and sufficient condition for a language to be regular.	Demonstration with Power Point Presentation, Discussion method	Tree automata
	Lecture 14	FORMAL LANGUAGES (Derivations and the Language Generated by a Grammar)	T-1		Derivations and languages generated by grammar	Students will learn to derive a language from a given grammar	Demonstration with Power Point Presentation and JFLAP simulator, Discussion method, Use of practical exercises using ICT tools and software	Compiler
		FORMAL LANGUAGES (Definition of a Grammar)	T-1 R-11		Derivations and languages generated by grammar	Students will learn to derive a language from a given grammar	Demonstration with Power Point Presentation and JFLAP simulator, Discussion method, Use of practical exercises using ICT tools and software	Compiler
		FORMAL LANGUAGES (Chomsky Classification of Languages)	T-1		Classification of languages	Students will learn about various types of Formal Languages	Demonstration with Power Point Presentation	Compiler

Week 5	Lecture 14	FORMAL LANGUAGES	T-1	Introduction t	so Students will	Demonstration	Compiler
		(Languages and their Relation)		Grammars an significance		with Power Point Presentation and JFLAP simulator, Discussion method, Use of practical exercises using ICT tools and software	Company
	Lecture 15	FORMAL LANGUAGES (Recursive and Recursively Enumerable Sets)	T-1 R-1	Use of Recursively F Recursively F Languages in undecidability Description o sets and regul grammar	Enumerable about the use of recursive set, Regular Sets and Regular Grammars	Demonstration with Power Point Presentation, Discu ssion method	Compiler
Week 6 Lectur	Lecture 16	FORMAL LANGUAGES (Languages and Automata)	T-1	Hierarchy of	Languages Students will learn about hierarchical relationship of various types of formal Languages and different types of Automata	Demonstration with Power Point Presentation, Discussion method	
		FORMAL LANGUAGES (Chomsky hierarchy of Languages)	T-1	Relation betw types of languages and	the	Demonstration with Power Point Presentation, Discussion method	Elevators
	Lecture 17			Test 2			
	Lecture 18	REGULAR GRAMMARS (Converting Regular Expressions to Regular Grammars)	T-1	Construction grammar for regular expres	a given the	White board, Demonstration with Power Point Presentation, Exploration	Compiler
Week 7	Lecture 19	REGULAR GRAMMARS (Converting Regular Grammars to Regular Expressions)	T-1 R-1	Construction regular expregiven regular	ssion for a derive a regular	White board, Demonstration with Power Point Presentation, Classroom Lecture using chalk and talk technique	Compiler

Week 7	Lecture 19	REGULAR GRAMMARS (Left Linear and Right Linear Regular Grammars)	T-1 R-1		Construction of a regular expression for a given regular grammar	Students will learn to derive a regular expression from a regular grammar	White board, Demonstration with Power Point Presentation	Compiler
				SPII	LL OVER			
Week 7	Lecture 20				Spill Over			
	Lecture 21				Spill Over			
				MI	D-TERM			
Week 8	Lecture 22	CONTEXT- FREE LANGUAGES(Leftmost and rightmost derivations)	T-1 R-11		Different ways of deriving a grammar	Students will learn about the difference between left and right derivation of grammar	White board, Demonstration with Power Point Presentation, Classroom Lecture using chalk and talk technique	
		CONTEXT- FREE LANGUAGES(Language of a CFG)	T-1		Introduction of context free grammar	Students will learn to visualize derivations of Context Free Grammar	White board, Demonstration with Power Point Presentation	
		CONTEXT- FREE LANGUAGES(Derivations Generated by a Grammar)	T-1 R-11		Different Types of Derivation- Left Linear, Right Linear, Derivation Tree	Students will learn about the difference between left and right derivation of grammar, and Derivation Tree	White board, Demonstration with Power Point Presentation, Classroom Lecture using chalk and talk technique	
	Lecture 23	CONTEXT- FREE LANGUAGES(Applications of CFG)	T-1		Applications of context free grammar.	Students will learn about real life examples of Context Free Grammars	Demonstration with Power Point Presentation, Self- learning, Real-life problems An	
	Lecture 24	CONTEXT- FREE LANGUAGES(Sentential forms)	T-1		Sentential forms of context free grammar	Students will learn the importance of sentential forms and its derivation	Demonstration with Power Point Presentation, Exploration	
		CONTEXT- FREE LANGUAGES(Elimination of null and unit productions)	T-1		Method to eliminate null and unit production	Students will learn the concept of reduction of grammars.	White board, Numerical Problem Solving	

Week 9	Lecture 25	CONTEXT- FREE LANGUAGES(Pumping Lemma for CFG)	T-1	Rules of Pumping lemma for Context free languages and applications of pumping lemma	Students will learn to test whether the language is context free or not	using JFLAP, Use	
	Lecture 26	CONTEXT- FREE LANGUAGES(Ambiguity in CFG)	T-1	ambiguity in context free grammar	Students will learn to check whether the grammar is ambiguous or not	Numerical Problem Solving, Classroom Lecture using chalk and talk technique	
	Lecture 27	SIMPLIFICATION OF CONTEXT- FREE GRAMMARS(Construction of Reduced Grammars)	T-1	Different ways to reduce Context Free Grammar	Students will learn the methods to simplify context free grammar	Numerical Problem Solving	
		SIMPLIFICATION OF CONTEXT- FREE GRAMMARS(Greibach Normal Form)	T-1	Description of various types of normal forms for context free grammars	Students learn to reduce the Context free grammars into CNF and GNF	Numerical Problem Solving, Classroom Lecture using chalk and talk technique	
Week 10	Lecture 28	CONTEXT- FREE LANGUAGES(Normal Forms for CFG: Chomsky Normal Form)	T-1	Description of various types of normal forms for context free grammars	Students learn to reduce the Context free grammars into CNF	Numerical Problem Solving, Classroom Lecture using chalk and talk technique	
	Lecture 29	CONTEXT- FREE LANGUAGES(Construction of Reduced Grammars)	T-1		Students will learn the methods to simplify context free grammar	Numerical Problem Solving, Exploration, Self- learning	
	Lecture 30	PUSHDOWN AUTOMATA AND PARSING (Description and Model of Pushdown Automata)	T-1		Students will learn the basics of Push Down Automata	Demonstration with Power Point Presentation, Classroom Lecture using chalk and talk technique	
		PUSHDOWN AUTOMATA AND PARSING (Representation of PDA)	T-1		Students will learn the basics of Push Down Automata	Demonstration with Power Point Presentation, Discussion	

Week 11	Lecture 31	PUSHDOWN AUTOMATA AND PARSING (Acceptance by PDA)	T-1 R-11	Types of acceptance by push down automata	Students will learn the different types of acceptance by PDA	Demonstration with Power Point Presentation, Discussion method
		PUSHDOWN AUTOMATA AND PARSING(Pushdown Automata: NDPDA and DPDA)	T-1	Types of Pushdown Automata	Students will learn the difference between Deterministic PDA and Non Deterministic PDA	Demonstration with Power Point Presentation
		PUSHDOWN AUTOMATA AND PARSING(Context free languages and PDA)	T-1	Conversion of Context free grammar into Push down Automata	Students will learn the relationship between Push Down Automata and Context Free Languages	
		PUSHDOWN AUTOMATA AND PARSING (Comparison of deterministic and non- deterministic versions)	T-1	Types of acceptance by Pushdown Automata	Students will learn to check whether a input string is acceptable by PDA or not	
	Lecture 32	PUSHDOWN AUTOMATA AND PARSING(Pushdown Automata and Context-Free Languages)	T-1	Conversion of Context free grammar into Push down Automata	Students will learn the relationship between Push Down Automata and Context Free Languages	
	Lecture 33	PUSHDOWN AUTOMATA AND PARSING(closure properties)	R-1	Description of the closure properties of CNF	Students will learn the closure properties of CNF	Demonstration with Power Point Presentation
Week 12	Lecture 34	PUSHDOWN AUTOMATA AND PARSING(LL (k) Grammars and its Properties)	T-1	Basics of LL(k) in Parsing and Top down, Bottom up parsing	Students will learn the Purpose of LL(k) in Parsing and difference between Top down and Bottom up Parsing	Demonstration with Power Point Presentation, Classroom Lecture using chalk and talk technique

Week 12	Lecture 34	PUSHDOWN AUTOMATA AND PARSING(LR(k) Grammars and its Properties)	T-1		Basics of LL(k) in Parsing and Top down , Bottom up parsing	Students will learn the Purpose of LL(k) in Parsing and difference between Top down and Bottom up Parsing	Demonstration with Power Point Presentation, Discussion method	
		PUSHDOWN AUTOMATA AND PARSING(PARSING: Top-Down and Bottom-Up Parsing)	T-1		Basics of LL(k) in Parsing and Top down, Bottom up parsing	Students will learn the Purpose of LL(k) in Parsing and difference between Top down and Bottom up Parsing	Demonstration with Power Point Presentation, Classroom Lecture using chalk and talk technique	
	Lecture 35	TURING MACHINES AND COMPLEXITY(Turing Machine Model)	T-1 R-8 R-9 R-11	AV-3	Various ways to represent Turing Machines	Students will learn the basics of Turing Machines	Demonstration with Power Point Presentation, Classroom Lecture using chalk and talk technique	
		TURING MACHINES AND COMPLEXITY (Representation of Turing Machines)	T-1 R-8 R-9	AV-3	Various ways to represent Turing Machines	Students will learn the basics of Turing Machines	Demonstration with Power Point Presentation	
		TURING MACHINES AND COMPLEXITY(Variations of TM)	T-1 R-8 R-9	AV-3	Various ways to represent Turing Machines	Students will learn the basics of Turing Machines	Demonstration with Power Point Presentation, Discussion method	
		TURING MACHINES AND COMPLEXITY(Variations of Turing Machine)	T-1 R-8 R-9	AV-3	Various ways to represent Turing Machines	Students will learn the basics of Turing Machines	Demonstration with Power Point Presentation	
	Lecture 36				Test 3			
	Lecture 37	TURING MACHINES AND COMPLEXITY(Design of Turing Machines)	T-1 R-8 R-9		Methods of designing Turing Machines	Students will learn to design and construct Turing Machines	Demonstration using JFLAP simulator, Use of practical exercises using ICT tools and software	
	Lecture 38	TURING MACHINES AND COMPLEXITY(The Model of Linear Bounded Automaton)	T-1 R-11	VL-1 VL-2	Description of Model of Linear Bounded Automaton	Students will learn the need of Model of Linear Bounded Automaton	Demonstration with Power Point Presentation	

Week 13	Lecture 38	TURING MACHINES AND COMPLEXITY(Power of LBA)	T-1 R-2	VL-1 VL-2	Basics of Linear Bounded Automaton	Students will learn the importance of Linear Bounded Automaton	Demonstration with Power Point Presentation	
		TURING MACHINES AND COMPLEXITY(Non- Deterministic Turing Machines)	T-1	VL-1 VL-2	Description of Non Deterministic Turing Machines	Students will learn the importance of Non Deterministic Turing Machines	Demonstration with Power Point Presentation	
		TURING MACHINES AND COMPLEXITY(Power of Linear Bounded Automaton)	T-1 R-2	VL-1 VL-2	Basics of Linear Bounded Automaton	Students will learn the importance of Linear Bounded Automaton	Demonstration with Power Point Presentation	
		TURING MACHINES AND COMPLEXITY(Cellular automaton)	R-10	RW-1	Basics of cellular Automaton	Students will learn the importance of cellular Automaton	Demonstration with Power Point Presentation, Discussion method	
	Lecture 39	TURING MACHINES AND COMPLEXITY(Halting Problem of Turing Machine)	R-2 R-3 R-8	RW-6 AV-2	Description of Halting Problem	Students will learn the reduction technique used to prove the undecidability in Turing Machine	Demonstration with Power Point Presentation	
		TURING MACHINES AND COMPLEXITY(Post Correspondence Problem)	R-2 R-3 R-8	RW-6 AV-2	Description of Undecidable decision problems	Students will learn about proofs of undecidability	Demonstration with Power Point Presentation	
		TURING MACHINES AND COMPLEXITY (RECURSIVELY ENUMERABLE LANGUAGE)	R-2 R-8		Description of recursively enumerable language	Students will learn about recursively enumerable language	Demonstration with Power Point Presentation, Classroom Lecture using chalk and talk technique	
Week 14	Lecture 40	TURING MACHINES AND COMPLEXITY(Basic Concepts of Computability)	R-5 R-9	RW-2 SW-1	Basics of Computability	Students will learn the use of computability	Demonstration with Power Point Presentation	
		TURING MACHINES AND COMPLEXITY(Decidable and Undecidable languages)	R-5 R-9	RW-2 SW-1	Description of Decidable and Undecidable languages	Students will learn the difference between Decidable and Undecidable languages	Demonstration with Power Point Presentation, Discussion method	

Week 14	Lecture 40	TURING MACHINES AND COMPLEXITY (Computational Complexity: Measuring Time & Space Complexity)	R-5 R-9	RW-2 SW-1	Types of Complexity	Students will learn about variants of Complexity	Demonstration with Power Point Presentation, Discussion method		
			SPILL OVER						
Week 14	Lecture 41				Spill Over				
	Lecture 42				Spill Over				
Week 15	Lecture 43				Spill Over				
	Lecture 44				Spill Over				
	Lecture 45				Spill Over				

Scheme for CA:

CA Category of this Course Code is:A0203 (2 best out of 3)

Component	Weightage (%)	Mapped CO(s)
Test 1	50	CO1, CO2, CO3
Test 2	50	CO3, CO4
Test 3	50	CO5, CO6

Details of Academic Task(s)

Academic Task	Objective	Detail of Academic Task	Nature of Academic Task (group/individuals)	Academic Task Mode	Marks	Allottment / submission Week
Test 1	to test the understanding level of the student for topics covered as mentioned in details.	Test will be mcq based on the content covered till lecture 1 to 9	Individual	Online	30	3 / 4
Test 2	To test the understanding level of the students for topics covered as mentioned in detail	Test 2 will be Mcq based on the Content covered till lecture 16.	Individual	Online	30	5/6

Test 3	To test the	Test 3 will be MCQ based on the Content covered till lecture 35.	Individual	Online	30	11 / 12
	understanding level					
	of the students for					
	topics covered as					
	mentioned in detail.					

MOOCs/ Certification etc. mapped with the Academic Task(s)

Academic Task	Name Of Certification/Online Course/Test/Competition mapped	Туре	Offered By Organisation
Test 1	THEORY OF COMPUTATION	MOOCs	NPTEL
Test 2	THEORY OF COMPUTATION	MOOCs	NPTEL
Test 3	THEORY OF COMPUTATION	MOOCs	NPTEL

Where MOOCs/ Certification etc. are mapped with Academic Tasks: 1. Students have choice to appear for Academic Task or MOOCs etc.

- 2. The student may appear for both, In this case best obtained marks will be considered.