Hidrogeología: Propiedades de los Acuíferos

Oscar García-Cabrejo

Escuela de Ingeniería Geológica Universidad Pedagógica y Tecnológica de Colombia

Acuíferos

Definición

Partes de un Acuífero

Acuíferos

Definición

Partes de un Acuífero

Potencial de Fluido

Acuíferos

Definición

Partes de un Acuífero

Potencial de Fluido

Ley de D'arcy

Acuíferos

Definición

Partes de un Acuífero

Potencial de Fluido

Ley de D'arcy

Propiedades

Conductividad Hidraúlica

Compresibilidad

Coeficiente de Almacenamiento

Acuíferos

Definición

Unidad Geológica (UG), parte de una UG, o grupo de UG que permiten el almacenamiento y movimiento de agua y de la(s) cual(es) es posible extraer agua de forma económica. (Definición similar a la de reserva.)

Partes

Capa Acuífera

Partes

- Capa Acuífera
- Capa Confinante

Partes

- Capa Acuífera
- Capa Confinante
- Zona de Recarga

Partes

- Capa Acuífera
- ► Capa Confinante
- ▶ Zona de Recarga
- Zona de Descarga

Capa(s) Acuífera

 Capa(s) o litología(s) que permite almacenamiento y movimiento de agua.

Capa(s) Acuífera

- Capa(s) o litología(s) que permite almacenamiento y movimiento de agua.
- Almacenamiento: Porosidad (primaria, secundaria, terciaria) y configuración geológica.

Capa(s) Acuífera

- Capa(s) o litología(s) que permite almacenamiento y movimiento de agua.
- Almacenamiento: Porosidad (primaria, secundaria, terciaria) y configuración geológica.
- Flujo de Agua:
 Conductividad hidraúlica,
 configuración geológica

Capa(s) Confinante(s)

 Capa(s) o litología(s) que no permiten el movimiento de agua

Capa(s) Confinante(s)

- Capa(s) o litología(s) que no permiten el movimiento de agua
- ► Permiten alma-cenamiento

Capa(s) Confinante(s)

- Capa(s) o litología(s) que no permiten el movimiento de agua
- Permiten alma-cenamiento
- Capa Confinante de Flujo Bajo (Capa Semiconfinante): Permite flujo parcial de agua

Capa(s) Confinante(s)

- Capa(s) o litología(s) que no permiten el movimiento de agua
- ► Permiten alma-cenamiento
- Capa Confinante de Flujo Bajo (Capa Semiconfinante): Permite flujo parcial de agua
- Sello superior e inferior de acuífero

Zonas de Recarga

 Áreas de la cuenca hidrográfica que permiten la infiltración de agua

Zonas de Recarga

- Áreas de la cuenca hidrográfica que permiten la infiltración de agua
- Infiltración depende del tipo y uso del suelo

Zonas de Recarga

- Áreas de la cuenca hidrográfica que permiten la infiltración de agua
- Infiltración depende del tipo y uso del suelo
- Identificada durante etapa del balance hídrico (geología de campo, mapa de tipo y uso de suelos)

Zonas de Descarga

 Áreas de la cuenca hidrográfica donde la(s) capa(s) acuífera(s) aportan/extran agua de las corrientes superficiales

Zonas de Descarga

- Áreas de la cuenca hidrográfica donde la(s) capa(s) acuífera(s) aportan/extran agua de las corrientes superficiales
- Zona Descarga: durante verano

Zonas de Descarga

- Áreas de la cuenca hidrográfica donde la(s) capa(s) acuífera(s) aportan/extran agua de las corrientes superficiales
- Zona Descarga: durante verano
- Zona descarga se convierte en zona de recarga durante invierno

Zonas de Descarga

- Áreas de la cuenca hidrográfica donde la(s) capa(s) acuífera(s) aportan/extran agua de las corrientes superficiales
- Zona Descarga: durante verano
- Zona descarga se convierte en zona de recarga durante invierno
- ► Zonas de Descarga

 Procesos físicos que involucran flujo: Flujo de agua, flujo eléctro-magnético, flujo de calor

- Procesos físicos que involucran flujo: Flujo de agua, flujo eléctro-magnético, flujo de calor
- ► Común Denominador: Movimiento ocurre de zonas de alta a baja T, alto a bajo Voltaje

- Procesos físicos que involucran flujo: Flujo de agua, flujo eléctro-magnético, flujo de calor
- Común Denominador: Movimiento ocurre de zonas de alta a baja T, alto a bajo Voltaje
- Funciones Potenciales

- Procesos físicos que involucran flujo: Flujo de agua, flujo eléctro-magnético, flujo de calor
- Común Denominador: Movimiento ocurre de zonas de alta a baja T, alto a bajo Voltaje
- Funciones Potenciales
- ► Flujo de Agua: Potencial de Fluido definido por Hubbert 1940

Definición

Potencial se define como una cantidad física que se puede medir en cada punto de un sistema de flujo, que tiene la propiedad que el flujo siempre ocurre de las regiones de potencial alto a las regiones de potencial bajo sin importar la dirección en el espacio.

Definición

Potencial se define como una cantidad física que se puede medir en cada punto de un sistema de flujo, que tiene la propiedad que el flujo siempre ocurre de las regiones de potencial alto a las regiones de potencial bajo sin importar la dirección en el espacio.

Ejemplos

Experimento de Darcy: Cabeza hidraúlica (Requiere análisis)

Definición

Potencial se define como una cantidad física que se puede medir en cada punto de un sistema de flujo, que tiene la propiedad que el flujo siempre ocurre de las regiones de potencial alto a las regiones de potencial bajo sin importar la dirección en el espacio.

Ejemplos

- Experimento de Darcy: Cabeza hidraúlica (Requiere análisis)
- Elevación

Definición

Potencial se define como una cantidad física que se puede medir en cada punto de un sistema de flujo, que tiene la propiedad que el flujo siempre ocurre de las regiones de potencial alto a las regiones de potencial bajo sin importar la dirección en el espacio.

Ejemplos

- Experimento de Darcy: Cabeza hidraúlica (Requiere análisis)
- Elevación
- Presión de fluido

En busca del Potencial . . .

Casos

En busca del Potencial ...

- Casos
- Función Potencial: Debería incluir cabeza y gravedad

En busca del Potencial . . .

- Casos
- Función Potencial: Debería incluir cabeza y gravedad
- Mejor Forma: Ecuación de energía

En busca del Potencial ...

- Casos
- Función Potencial: Debería incluir cabeza y gravedad
- Mejor Forma: Ecuación de energía

Ecuación de Bernoulli

La energía en dos puntos sobre una línea de flujo deben cumplir:

$$\underline{\text{Energia}} = \underline{\text{Energia} + \text{P\'erdidas}} \tag{1}$$

Ecuación de Bernoulli

Energía en un fluido está representada por:

 Energía potencial (por estar presente en un campo gravitatorio)

Ecuación de Bernoulli

Energía en un fluido está representada por:

- Energía potencial (por estar presente en un campo gravitatorio)
- Energía de-presión (debida a la columna de agua)

Ecuación de Bernoulli

Energía en un fluido está representada por:

- Energía potencial (por estar presente en un campo gravitatorio)
- Energía de-presión (debida a la columna de agua)
- Energía cinética (por estar en movimiento)

Ecuación de Bernoulli

Energía en un fluido está representada por:

- Energía potencial (por estar presente en un campo gravitatorio)
- Energía de-presión (debida a la columna de agua)
- Energía cinética (por estar en movimiento)
- Energía Interna (disponible para reacciones químicas)

Energía Potencial

Energía que tiene un cuerpo por estar a una altura z en un campo gravitacional:

$$E_{\text{Pot}} = F \cdot d = mg \cdot z$$

Energía de-Presión

Energía que tiene un fluido debido a la acción de la columna de agua suprayacente:

$$E_{\text{Pre}} = P \cdot V = \rho g h_{\text{Col H2O}} \cdot V = m g h_{\text{Col H2O}}$$
 (3)

Energía de-Presión

Energía que tiene un fluido debido a la acción de la columna de agua suprayacente:

$$E_{\text{Pre}} = P \cdot V = \rho g h_{\text{Col H2O}} \cdot V = m g h_{\text{Col H2O}}$$
 (3)

Energía Cinética

La energía que tiene un fluído por encontrarse en movimiento:

$$E_{\mathsf{Cin}} = \frac{1}{2} m v^2$$

Energía Interna

Energía que posee un fluido para la ocurrencia de reacciones químicas:

$$U = H - W \tag{5}$$

donde U es la energía interna, Q es el calor agregado al sistema y W es el trabajo realizado por el sistema.

Energía Interna

Energía que posee un fluido para la ocurrencia de reacciones químicas:

$$U = H - W \tag{5}$$

donde U es la energía interna, Q es el calor agregado al sistema y W es el trabajo realizado por el sistema.

Pregunta

Cuáles tipos de Energía son importantes?

Energía Total

Suma de 4 componentes:

$$\underbrace{\mathsf{Energ(a\ Total}}_{\mathsf{Punto\ 1}} = \underbrace{\mathsf{Energ(a\ Total} + \mathsf{P\'erdidas}}_{\mathsf{Punto\ 2}} \tag{6}$$

La cual se convierte en:

$$mgz_{1} + mgh_{\text{Col H2O},1} + \frac{1}{2}mv_{1}^{2} + U_{1} =$$

$$mgz_{2} + mgh_{\text{Col H2O},2} + \frac{1}{2}mv_{2}^{2} + U_{2} + \text{P\'erdidas}$$

$$(7)$$

Energía Total - Incompleta

Sabiendo que la velocidad v del agua subterránea es baja, y que para el caso de acuíferos de agua dulce las reacciones químicas no liberan grandes cantidades de energía:

$$mgz_1 + mgh_{Col\ H2O,1} = mgz_2 + mgh_{Col\ H2O,2} + Pérdidas$$
 (8)

Energía Total - Incompleta

Sabiendo que la velocidad v del agua subterránea es baja, y que para el caso de acuíferos de agua dulce las reacciones químicas no liberan grandes cantidades de energía:

$$mgz_1 + mgh_{Col H2O,1} = mgz_2 + mgh_{Col H2O,2} + Pérdidas$$
 (8)

y si calculamos la energía total (incompleta) por unidad de masa se tiene:

$$gz_1 + gh_{Col H2O,1} = gz_2 + gh_{Col H2O,2} + Pérdidas$$
 (9)

la variable $g(z_1 + h_{\text{Col H2O},1})$ se denomina Potencial de Fluido. Variable $z_1 + h_{\text{Col H2O},1}$ se denomina Nivel Piezométrico.

1856 Henry D'arcy realizó experimentos para diseñar filtros en Dijon (Francia)

- 1856 Henry D'arcy realizó experimentos para diseñar filtros en Dijon (Francia)
- ► Experimento de Laboratorio

Filtros

- 1856 Henry D'arcy realizó experimentos para diseñar filtros en Dijon (Francia)
- ► Experimento de Laboratorio
 - Resultados Empíricos \rightarrow Ecuación sencilla

Experimento

- Q: Caudal de Entrada (= salida)
- A: Sección transversal
- z: Elevación sobre datum arbitrario
- -Datum ► h: Nivel de agua
 - Δ/: distancia horizontal entre piezómetros

Fuente: http://hydrogeologistswithoutborders.org

Fuente: http://hydrogeologistswithoutborders.org

Resultados

$$lacksquare$$
 $Q\sim\Delta h,~Q\sim1/\Delta l,~Q\sim A$

Ley empírica

$$Q \sim \frac{A\Delta h}{\Delta l}$$
 (10)

Ecuación:

$$Q = -K \frac{A\Delta h}{\Delta l} = -KA \frac{dh}{dl}$$

Fuente: http://hydrogeologistswithoutborders.org

Ecuación

 Conductividad Hidraúlica Constante de proporcionalidad K depende de material y fluido

Fuente: Autor

Ecuación

- Conductividad Hidraúlica
 Constante de
 proporcionalidad K depende
 de material y fluido
- ► Gradiente Hidraúlico: I = dh/dl

Fuente: Autor

Ecuación

- Conductividad Hidraúlica
 Constante de
 proporcionalidad K depende
 de material y fluido
- ▶ Gradiente Hidraúlico: I = dh/dl
- Forma alternativa:

$$Q = -KAI$$

Fuente: Autor

2 Velocidades

Se pueden definir 2 velocidades

2 Velocidades

- ► Se pueden definir 2 velocidades
- Descarga(Caudal) Específica

$$v = \frac{Q}{A} \tag{13}$$

2 Velocidades

- Se pueden definir 2 velocidades
- Descarga(Caudal) Específica

$$v = \frac{Q}{A} \tag{13}$$

VELOCIDAD APARENTE

2 Velocidades

Velocidad Real

$$v_R = \frac{Q}{A\phi} \qquad (14)$$

donde ϕ =porosidad

2 Velocidades

Velocidad Real

$$v_R = \frac{Q}{A\phi} \qquad (14)$$

donde $\phi =$ porosidad

► Aφ: Área efectiva de flujo

TV y Novelas Hidrogeológico

 George Pinder: Profesor Hidrogeología Universidad de Princenton USA

Fuente: Profesor Google

Fuente: Profesor Google

TV y Novelas Hidrogeológico

- George Pinder: Profesor Hidrogeología Universidad de Princenton USA
- Caso de Woburn, MA 1982: Efectos en la salud (leucemia, arritmias cardíacas, problemas inmunológicos y neurológicos) por posible contaminación del agua de pozo.

www.georgepinder.com

TV y Novelas Hidrogeológico

 Juicio con testimonio experto de George Pinder (trabajó para los buenos)

www.georgepinder.com

TV y Novelas Hidrogeológico

- Juicio con testimonio experto de George Pinder (trabajó para los buenos)
- George Pinder en audiencia:
 Velocidad del agua
 subterránea es:

$$v = \frac{Q}{A} \tag{15}$$

TV y Novelas Hidrogeológico

► Los malos sabían que

$$v_R = rac{Q}{A\phi}$$
 (16)

TV y Novelas Hidrogeológico

Los malos sabían que

$$v_R = \frac{Q}{A\phi} \qquad (16)$$

Resultado: Los buenos perdieron el juicio

4日 > 4周 > 4 至 > 4 至 >

TV y Novelas Hidrogeológico

Los malos sabían que

$$v_R = rac{Q}{A\phi}$$
 (16)

- Resultado: Los buenos perdieron el juicio
- George Pinder despedido de la Universidad.

Six, Six, Six, the number of the Beast

► Hay 7 pecados capitales, pero . . .

Fuente: la famosa wikipedia

Six, Six, Six, the number of the Beast

- ► Hay 7 pecados capitales, pero . . .
- ► Solo hay 6 propiedades de un acuífero . . .

Fuente: la famosa wikipedia

Fuente: la famosa wikipedia

Six, Six, Six, the number of the Beast

- Hay 7 pecados capitales, pero . . .
- ► Solo hay 6 propiedades de un acuífero . . .
- Que uds necesitan saber para salvarse en este curso

Hell and Fire

- Fluido: Densidad, viscosidad, compresibilidad
- Medio Poroso: Porosidad, permeabilidad, compresibilidad

Fuente: la famosa wikipedia al rescate

Conductividad Hidraúlica

 Constante de proporcionalidad K depende del material y fluido

Conductividad Hidraúlica

- Constante de proporcionalidad K depende del material y fluido
- Considere experimento de D'arcy con agua y miel

Conductividad Hidraúlica

- Constante de proporcionalidad K depende del material y fluido
- Considere experimento de D'arcy con agua y miel
 - Mantenga ΔI y Δh constantes

Conductividad Hidraúlica

- Constante de proporcionalidad K depende del material y fluido
- Considere experimento de D'arcy con agua y miel
 - Mantenga ΔI y Δh constantes
- $ightharpoonup Q_{\mathsf{Agua}} > Q_{\mathsf{Miel}}$

 $Fuente:\ http://hydrogeologists without borders.org$

Permeabilidad

Propiedad intrínseca del medio para permitir flujo de cualquier fluido

Permeabilidad

- Propiedad intrínseca del medio para permitir flujo de cualquier fluido
- Experimentos: $Q \sim d^2$, $Q \sim \rho g$, $Q \sim 1/\mu$

 ${\sf Fuente:\ http://hydrogeologists without borders.org}$

Permeabilidad

- Propiedad intrínseca del medio para permitir flujo de cualquier fluido
- Experimentos: $Q \sim d^2$, $Q \sim \rho g$, $Q \sim 1/\mu$
 - Ley de D'arcy:

$$Q = -\frac{Cd^2\rho g}{\mu} \frac{dh}{dl}$$

 $Fuente:\ http://hydrogeologists without borders.org$

< 마 > < 라 > < 분 > < 분 > ... 본

Permeabilidad

► De la Ley de D'arcy:

$$K = \frac{Cd^2\rho g}{\mu} \tag{18}$$

 ${\sf Fuente:\ http://hydrogeologists without borders.org}$

Permeabilidad

► De la Ley de D'arcy:

$$K = \frac{Cd^2\rho g}{\mu} \tag{18}$$

Propiedad del medio poroso (Permeabilidad) $k = Cd^2$

Permeabilidad

De la Ley de D'arcy:

$$K = \frac{Cd^2\rho g}{\mu} \tag{18}$$

Propiedad del medio poroso (Permeabilidad) $k = Cd^2$

Propiedad del fluido:
 viscosidad dinámica μ/ρ

Temologica de Colombia

Conductividad Hidraúlica

La conductividad hidraúlica está definida como:

$$K = \frac{k\rho g}{\mu} \tag{19}$$

Fuente: Prof. Google

 $({\tt https://www.researchgate.net/publication/25767296})$

Fuente: Profesor Google (https://opentextbc.ca)

Definición

 Cambio en volumen (o deformación) causado por cambio en esfuerzo

Fuente: http://images.slideplayer.com/10/2770826/

Definición

- Cambio en volumen (o deformación) causado por cambio en esfuerzo
- Mecánica de Sólidos:

 Módulo de Elasticidad $E = d\sigma/d\epsilon$

Fuente: http://images.slideplayer.com/10/2770826/

Fuente: http://images.slideplayer.com/10/2770826/

Definición

- Cambio en volumen (o deformación) causado por cambio en esfuerzo
- Mecánica de Sólidos: Módulo de Elasticidad $E = d\sigma/d\epsilon$
- Compresibilidad

$$Cr = \frac{1}{E} = \frac{d\epsilon}{d\sigma}$$

Compresibilidad del H₂O

 Esfuerzo se transmite en un fluido mediante presión

Fuente: http://www.cradle-cfd.com

Compresibilidad del H₂O

- ► Esfuerzo se transmite en un fluido mediante presión
- Incremento Δp causa Disminución ΔV

Fuente: http://www.cradle-cfd.com

Fuente: http://www.cradle-cfd.com

Compresibilidad del H₂O

- Esfuerzo se transmite en un fluido mediante presión
- Incremento Δp causa
 Disminución ΔV
- ► Compresibilidad del agua:

$$\beta = -\frac{dV_{\rm H_2O}/V_{\rm H_2O}}{dp} \quad (21)$$

(- requerido para
$$\beta > 0$$

Compresibilidad del Agua

lacktriangle Relación lineal entre $dV_{
m H_2O}/V_{
m H_2O}$ y dp

Fuente: http://www1.lsbu.ac.uk

Compresibilidad del Agua

- Relación lineal entre $dV_{\rm H_2O}/V_{\rm H_2O}$ y dp
- \blacktriangleright β es pendiente

Fuente: http://www1.lsbu.ac.uk

Fuente: http://www1.lsbu.ac.uk

Compresibilidad del Agua

- Relación lineal entre $dV_{\rm H_2O}/V_{\rm H_2O}$ y dp
- \triangleright β es pendiente
- β es constante para rangos de presiones y Temperaturas en aguas subterráneas

Compresibilidad de Agua

Fuente: http://www1.lsbu.ac.uk

Fuente: http://www1.lsbu.ac.uk

Compresibilidad de Agua

- ho $eta_{
 m H_2O} = 4.4 imes 10^{-10} \ {
 m m^2/N}$
- Dependencia con presión:

$$\beta = \frac{d\rho/\rho}{d\rho} \qquad (22)$$

Integración ecuación anterior:

$$\rho = \rho_0 \exp \left[\beta(p - p_0)\right]$$

Fuente: environment.uwe.ac.uk

Esfuerzo Efectivo

- Esfuerzo sobre medio poroso saturado:
 - 1. Compresión agua en los poros (β)
 - 2. Compresión de los granos minerales
 - 3. Reubicación granos minerales

Esfuerzo Efectivo

 Definición: A partir del balance de fuerzas

$$\sigma_{e} = \sigma_{T} - p \tag{24}$$

Fuente: http://images.slideplayer.com

Esfuerzo Efectivo

 Definición: A partir del balance de fuerzas

$$\sigma_{e} = \sigma_{T} - p \tag{24}$$

O en términos de cambios:

$$d\sigma_e = d\sigma_T - dp \qquad (25)$$

Esfuerzo Efectivo

• En muchos problemas $d\sigma_T \approx 0$

Esfuerzo Efectivo

- En muchos problemas $d\sigma_T \approx 0$
- Esto implica: $d\sigma_e \approx -dp$

Esfuerzo Efectivo

- ► En muchos problemas $d\sigma_T \approx 0$
- Esto implica: $d\sigma_e \approx -dp$
- Presión $p = \rho g h$ y por ende:

$$dp = \rho g dh = -d\sigma_e \quad (26)$$

Medio Poroso

Extendiendo la definición de compresibilidad al medio poroso:

$$\alpha = \frac{-dV_T/V_T}{d\sigma_e} \tag{27}$$

donde V_T es el volumen total.

Medio Poroso

Extendiendo la definición de compresibilidad al medio poroso:

$$\alpha = \frac{-dV_T/V_T}{d\sigma_e} \tag{27}$$

donde V_T es el volumen total.

El volumen total está definido como $V_T = V_S + V_V$

Medio Poroso

Extendiendo la definición de compresibilidad al medio poroso:

$$\alpha = \frac{-dV_T/V_T}{d\sigma_e} \tag{27}$$

donde V_T es el volumen total.

- El volumen total está definido como $V_T = V_S + V_V$
- ightharpoonup donde V_{ν} volumen de vacios

Medio Poroso

▶ Los cambios de volumen se pueden expresar como:

$$dV_T = dV_S + dV_V \tag{28}$$

Medio Poroso

Los cambios de volumen se pueden expresar como:

$$dV_T = dV_S + dV_V (28)$$

► $dV_S \approx 0$

Medio Poroso

Los cambios de volumen se pueden expresar como:

$$dV_T = dV_S + dV_v \tag{28}$$

 $ightharpoonup dV_S pprox 0$ El cambio del volumen de los minerales es pequeño durante extracción

Medio Poroso

Los cambios de volumen se pueden expresar como:

$$dV_T = dV_S + dV_v \tag{28}$$

- $dV_S \approx 0$ El cambio del volumen de los minerales es pequeño durante extracción
- Y por lo tanto $dV_T \approx dV_v$

Medio Poroso

Compresibilidad del Suelo

Medio Poroso

- Compresibilidad del Suelo
- Ecuación:

$$lpha = -rac{db/b}{d\sigma_e} = -rac{de/(1+e_0)}{d\sigma_e}$$
 (29)

Medio Poroso

- Compresibilidad del Suelo
- Ecuación:

$$\alpha = -\frac{db/b}{d\sigma_e} = -\frac{de/(1+e_0)}{d\sigma_e}$$
(29)

▶ Int. Geom. Pendiente gráfica deformación ϵ vs esfuerzo σ_e

σ

σ

σ

σ

Medio Poroso

▶ Hidrogeología: variaciones temporales de σ_e son pequeñas

Medio Poroso

- ▶ Hidrogeología: variaciones temporales de σ_e son pequeñas
- $ightharpoonup \alpha$ se puede considerar constante

Medio Poroso

- ▶ Hidrogeología: variaciones temporales de σ_e son pequeñas
- $ightharpoonup \alpha$ se puede considerar constante
- Valores típicos para arenas/arcillas (Tabla)

Acuífero

Compresibilidad del suelo: concepto 1D

- ► Compresibilidad del suelo: concepto 1D
- **Suposición**: σ_e actúa verticalmente

- Compresibilidad del suelo: concepto 1D
- ▶ Suposición: σ_e actúa verticalmente
- Pregunta: Es cierto?

- Compresibilidad del suelo: concepto 1D
- ▶ Suposición: σ_e actúa verticalmente
- Pregunta: Es cierto?
- σ_T : producido por peso roca + H_2O suprayacentes

Acuífero

h ↓: Durante extracción de agua cerca del Pozo

Acuífero

h ↓: Durante extracción de agua cerca del Pozo

$$ightharpoonup p\downarrow
ightarrow \sigma_e \uparrow$$

- h ↓: Durante extracción de agua cerca del Pozo
- $ightharpoonup p \downarrow
 ightharpoonup \sigma_e \uparrow$
- ▶ $b \downarrow \rightarrow$ Espesor de la capa disminuye en zona de influencia de bombeo.

Definición

▶ El coeficiente de almacenamiento S es el volumen de agua que un volumen unitario de acuífero libera del almacenamiento por unidad de descenso del nivel piezométrico:

$$S_{s} = \frac{V_{\rm H_2O}}{V_{\rm Ac} \times \Delta h} \tag{30}$$

Desarrollo

ightharpoonup Compactación del acuífero: vol. H_2O expulsada = reducción vol. acuífero

- Compactación del acuífero: vol. H₂O expulsada = reducción vol. acuífero
- $ightharpoonup dV_{H_2O,V} = -dV_T = \alpha V_T d\sigma_e$

- Compactación del acuífero: vol. H₂O expulsada = reducción vol. acuífero
- $dV_{\mathrm{H_2O},V} = -dV_T = \alpha V_T d\sigma_{\mathrm{e}}$
- $dV_{\mathrm{H}_2\mathrm{O},V} = \alpha V_T \rho g dh$

- Compactación del acuífero: vol. H₂O expulsada = reducción vol. acuífero
- $D dV_{\mathrm{H_2O},V} = -dV_T = \alpha V_T d\sigma_{\mathrm{e}}$
- $dV_{\mathrm{H}_2\mathrm{O},V} = \alpha V_T \rho \mathsf{gdh}$
- ▶ De la definición dh = -1, $dV_{\rm H_2O,V} = \alpha V_T$

Desarrollo

 Compresibilidad de agua: vol. H₂O expulsada por incremento en vol. H₂O

- Compresibilidad de agua: vol. H₂O expulsada por incremento en vol. H₂O

- Compresibilidad de agua: vol. H₂O expulsada por incremento en vol. H₂O
- $dV_{\mathrm{H_2O},C} = -\beta V_{\mathrm{H_2O}} dp$
- $V_{\mathrm{H_2O},C} = \phi V_T$

- Compresibilidad de agua: vol. H₂O expulsada por incremento en vol. H₂O
- $dV_{\rm H_2O,C} = -\beta V_{\rm H_2O} dp$
- $V_{\mathrm{H}_2\mathrm{O},C} = \phi V_T$
- $dp = \rho g dh$

- Compresibilidad de agua: vol. H₂O expulsada por incremento en vol. H₂O
- $dV_{\mathrm{H_2O},C} = -\beta V_{\mathrm{H_2O}} dp$
- $V_{\mathrm{H}_2\mathrm{O},C} = \phi V_T$
- $dp = \rho g dh$
- $dV_{\mathrm{H}_2\mathrm{O},C} = -\beta \phi V_T \rho g dh$

Desarrollo

lacktriangle Por definición dh=-1 y $V_T=1$ entonces $dV_{
m H_2O,C}=eta\phi
ho g$

- Por definición dh=-1 y $V_T=1$ entonces $dV_{\mathrm{H_2O},\mathcal{C}}=\beta\phi\rho g$
- Volumen total de agua liberado del almacenamiento

$$dV_{\rm H_2O} = dV_{\rm H_2O,V} + dV_{\rm H_2O,C} \tag{31}$$

Desarrollo

y reemplazando la definición de cada uno de estos volúmenes:

$$S_s = \rho g(\alpha + \phi \beta) \tag{32}$$

Coeficiente de Almacenamiento

Coeficiente de Almacenamiento

► El Coeficiente de Almacenamiento se define como:

$$S = S_s \times b \tag{33}$$

donde b es el espesor del acuífero.

Coeficiente de Almacenamiento

Coeficiente de Almacenamiento

► El Coeficiente de Almacenamiento se define como:

$$S = S_s \times b \tag{33}$$

donde b es el espesor del acuífero.

Por qué definimos S?

Coeficiente de Almacenamiento

Coeficiente de Almacenamiento

► El Coeficiente de Almacenamiento se define como:

$$S = S_s \times b \tag{33}$$

donde b es el espesor del acuífero.

- Por qué definimos S?
- Esto es lo que estimamos con las pruebas de bombeo

Transmisividad

T = Kb(34)

Transmisividad

T = Kb(34)

 \triangleright Por qué se define T?

Transmisividad

