

Boosting technique for power curve prediction

ISEN 619 Course Project

Jay Shah (826008661) Bhaskar Botcha(626009084)

Objective

- To develop an effective learning method for power curve estimation with data collected from various sensors mounted on a wind mast from a wind farm.
- Apply the concepts learnt in class and explore new methods which can capture non-linear relationships seen in real-life sensor data.
- Obtain a test error (RMSE) lower than the industry 'standard', the IEC binning method.

Introduction

 According to DOE, wind energy will power up to 35% of the national demand by 2050, presenting a huge market potential.

Challenges:

- Power generation from a wind farm is highly unpredictable which is quintessential to monitor efficiency and health of turbines
- Part of the uncertainty comes from the dearth of models which can predict wind power generation under dynamic environmental conditions.

Data visualization

ENGINEERING
TEXAS A&M UNIVERSITY

- The power curve from data provided shows significant variability in it's operating region
- The variability cannot be captured with conventional ML models.
 - For example, to capture the high variability in using a linear regression, we impose heavy bias on the system by including many interaction terms which also results in overfitting.
- The variability also suggests that wind speed not the sole contributor to predict the power output, but is affected by a plethora of other environmental factors which are not taken into account.

Power vs wind speed

Nominal power curve

Feature engineering

- ENGINEERING
 TEXAS A&M UNIVERSITY
- A few features like turbulence intensity I and air density ρ are derived from the existing feature set.
- Also, features for month(Mo), meridian(M) and direction vector (D_V) were used in the present implementation.
 - As air density is affected by temperature, and month and time of the day have significant effect on temperature, these variables were added to the feature set.
 - Also, the direction was converted into a vector to effectively capture the direction of wind velocity (improved result in CV)

Direction encoding

Temperature vs month

Boosting model

- For the present implementation, a gradient boosting method was used.
- Gradient boosting combines the weighted outputs of a set of base models to produce the final outcome. (Flowchart in next slide)

Choice of boosting:

— As capturing the high variability in the operating region of the turbine is fairly complex, we try fitting a series of models, where the residuals from the previous model are used to train the consequent models, thereby trying to capture the complex non-linear relationship in the data.

Initial data-set

 $\Psi_3 = \{X, P_{avg}^3\}$

 $\Psi_{\Gamma-1} = \{X, P_{avg}^{\Gamma-1}\}$

 $\Psi_{\Gamma} = \{X, \overline{P_{avg}^{\Gamma}}\}$

Boosting model, contd.

CART-2

CART-Γ

$$P^1_{avg} = P^0_{avg} - \widehat{y_0}$$

 P^1_{avg} are the residual values after fitting CART-0

û	=	$\widehat{\nu_{0}}$	+	$\widehat{\nu_1}$ +	+ $\widehat{y_{\Gamma}}$

Final prediction value \hat{y} is the sum of all predictions after each CART. Each CART has a depth d, where each leaf node is assigned a value q_i . The sum of q_i s gives y_i s and the sum of y_i s gives the total predicted output.

Parameters	Values
Number of trees	1000
Tree depth	8
Learning rate	0.01

Predicted vs True values - XGBoost

Final residual

Boosting model, contd.

- Black-box models like boosting can be analyzed through techniques like Partial Dependency Plots (PDPs) and Individual Conditional Expectation (ICE) plots.
 - PDP plots the change in the average predicted value as specific feature(s) vary over their marginal distribution.
 - ICE plots the estimated conditional expectation curves for each training data, where each curve represents the predicted response as a function of a co-variate, conditional on an observation. (In general, average of all ICE plots gives a PDP plot).

PDP and ICE plots for wind speed

Feature importance plot

Comparative analysis

ENGINEERING
TEXAS A&M UNIVERSITY

- Analysis of different models shows that linear regression has the highest RMSE values.
- As cross-validated RMSE
 was the decision factor in
 deciding the best model,
 Boosting using XGBoost was
 finalized as the best model
 with RMSE=0.03, compared
 to the benchmark RMSE of
 0.045 obtained through IEC
 binning

Conclusion

- In the current implementation, a boosting method was used for power curve prediction with least CV-RMSE and outperforming the industrial standard set by 'IEC binning'.
- The usage of boosting for power curve prediction was not found in literature, but was found to be better in contrast to other popular learning methods.
- Feature engineering was performed and cross-validated results for addition of new variables showed promising results, depicting that wind speed is not the only significant contributor for prediction of the power curve.
- With additional sensor data, few more variables like wind shear can be computed as found in literature, which can help capture the non-linearities better.