Conceitos fundamentais de Termologia

■ Testes propostos

- T.1. b
- T.2. b
- T.3. C
- T.4. b
- T.5. a
- T.6. C
- T.7. a
- T.8. d
- T.9. b
- T.10. b
- T.11. h
- T.12. e

CAPITULO 2 Termometria

Exercícios propostos

P.1.

Celsius	Fahrenheit
400 °C	752 °F
37,5 °C	99,5 °F
180 °C	356 °F
−45 °C	−49 °F

- P.2. -11,43 °C ou +11,43 °F
- P.3. 50 °C ou 122 °F
- P.4. -59 °X
- P.5. 60 °C
- **P.6.** a) $\theta_{A} = \frac{5}{8} \theta_{B} 5$
 - b) 55 °A
 - c) 8 °B
 - d) -13,3 °A ou -13,3 °B
- P.7. a) 1ª hipótese a temperatura mínima ocorreu antes da máxima: $\Delta\theta_{\rm C} = 25$ °C
 - 2ª hipótese a temperatura mínima ocorreu depois da máxima: $\Delta\theta_{\rm C} = -25$ °C
 - b) 1ª hipótese a temperatura mínima ocorreu antes da máxima: $\Delta\theta_{\rm F} = 45 \, ^{\circ}\text{F}$
 - 2ª hipótese a temperatura mínima ocorreu depois da máxima: $\Delta\theta_F = -45$ °F

- P.8. a) -15 °C
 - b) -63 °F
 - c) 5 °F
- **P.9.** a) $9\theta = 20H 100$
 - b) 22,2 °C
- **P.10.** a) $\theta = 90p 418$
 - b) 437 °F
- P.11. 234 K
- P.12. 20 K
- P.13. a) 295 K; 306 K
 - b) 11 °C; 11 K

Exercícios propostos de recapitulação

- P.14. a) A temperatura encontrada foi de 39 °C, considerando que a temperatura normal do corpo humano é de cerca de 37°C, o paciente está com febre e, portanto, há razão para o médico se preocupar.
 - b) Tendo temperatura mais elevada que a normal, o doente perde mais rapidamente energia térmica para o ambiente. A energia térmica em trânsito recebe o nome de calor.
- **P.15.** $\theta_C = 0.4\theta_X + 4 \text{ e } 25\theta_F = 18\theta_X + 980$

A indicação na escala X para o zero absoluto será –692,5 °X.

- **P.16.** a) $\theta_{\rm E} = 2\theta_{\rm C} + 20$
 - b) 20 °E; 220 °E
 - c) -20 °C ou -20 °E
 - $-\frac{20}{3}$ °C ou $\frac{20}{3}$ °E
- P.17. 30 °X; 170 °X
- **P.18.** 7.3T = 7D + 14; $0.98 \,^{\circ}\text{C} \,\text{ou} 0.98 \,^{\circ}\text{E}$
- P.19. a) 4,84 cm
 - b) 65 °C
- P.20. a) 12,5 °M
 - b) 50 °M
- P.21. 40 °C

■ Testes propostos

- T.13. b
- T.14. d
- T.15. a
- T.16. b
- T.17. b
- T.18. d
- T.19. C
- T.20. b
- T.21. e
- T.22. C
- T.23. b
- T.24. b

```
T.25. a
```

Dilatação térmica de sólidos e líquidos

■ Exercícios propostos

P.26. a)
$$\alpha_A = 4 \cdot 10^{-4} \, {}^{\circ}\text{C}^{-1}; \ \alpha_B = 2 \cdot 10^{-4} \, {}^{\circ}\text{C}^{-1}$$

b) 200 ${}^{\circ}\text{C}$

 b) A variação do diâmetro do furo não depende do diâmetro da chapa; ela depende do diâmetro inicial do furo.

P.33. 50 °C

■ Exercícios propostos de recapitulação

P.40. Devemos colocar o frasco no caldeirão com água quente. Como o coeficiente de dilatação do zinco é maior que o do vidro, a tampa se dilatará mais que o orifício e será fácil desatarrachá-la.

P.41. 80 °C

P.43. a)
$$\alpha_1 = 1.0 \cdot 10^{-5} \, {}^{\circ}\text{C}^{-1}; \ \alpha_{II} = 2.0 \cdot 10^{-5} \, {}^{\circ}\text{C}^{-1}$$

 b) Como a lâmina está sendo aquecida, na parte superior deve ser utilizado o metal que dilata mais, isto é, o metal II.

P.47. Não há transbordamento. O volume não ocupado por glicerina ao final será 0,057 cm³.

■ Testes propostos

T.41. b