Varianti Macchine di Turing

Esistono definizioni alternative di macchina di Turing. Chiamate Varianti.

Tra queste vedremo: MdT a più nastri e MdT non deterministiche.

Mostriamo: tutte le varianti "ragionevoli" hanno la stessa capacità computazionale

IIntroduzione e Motivazioni

Quando proviamo che un MdT ha una certa proprietà non ci poniamo domande del tipo:

- ► Quanto è grande la MdT ?
- Quanto è complesso programmarla?

Per il momento ci interessano solo proprietà esistenziali.

Un esempio

Stayer: MdT in cui la testina può rimanere sulla stessa cella del nastro durante una transizione

Funzione di transizione: $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, S, R\}$ dove S serve ad indicare che la testina rimane ferma

Potere computazionale

Diciamo che il potere computazionale di due modelli è lo stesso se riconoscono la stessa classe di linguaggi

MdT può essere facilmente simulata da stayer (basta non usare la possibilità di stare)

 \Rightarrow

Il potere computazionale di stayer è almeno pari al potere computazionale di MdT convenzionale

Potere computazionale

Rimane da provare:

il potere computazionale di MdT $\grave{\mathrm{e}}$ almeno pari al potere computazionale di Stayer

 \Leftrightarrow

per ogni stayer esiste MdT che riconosce stesso linguaggio

Assumiamo M è stayer e mostriamo MdT M' che simula M

Simulazione

M' definita come M tranne che ogni transizione S è sostituita da due transizioni in M':

- 1. la prima porta M' in uno stato speciale (addizionale) e muove testina a destra (R)
- 2. la seconda ritorna allo stato originale muovendo la testina a sinistra (L) .

Quindi M e M' riconoscono lo stesso linguaggio

Simulazione in generale

In generale:

Quando vogliamo provare che due varianti hanno lo stesso potere computazionale

mostriamo che possiamo simulare una con l'altra

Implementazione della Memoria

In alcune occasioni avremo bisogno di memorizzare l'informazione letta sul nastro

Possiamo usare gli stati per memorizzare informazione

Es. Supponiamo MdT M deve leggere i primi 2 bit del nastro e scriverli alla fine dell'input (al posto dei $2 \perp piú$ a sinistra)

Implementazione della Memoria

Idea:

- Costruiamo una MdT
 M₀₀ che legge i primi 2 bit, cerca la fine dell'input e scrive 00 alla fine dell'input
- ▶ Replichiamo per tutte le possibili coppie: M_{01} , M_{10} , M_{11}
- M: dopo aver letto i primi 2 bit input, si sposta sulla replica corrispondente ai 2 bit letti (e quindi li scrive alla fine dell'input).

Implementazione della Memoria

Nota: questa è una tecnica utilizzabile in generale

Se vogliamo che M memorizzi una sequenza di k simboli possiamo

- ▶ avere una replica per ogni possibile sequenza di k simboli
- ► M si sposta sulla replica che corrisponde alla sequenza mentre la legge

Necessari circa $|\Sigma|^k$ stati aggiuntivi

Macchina di Turing multi-nastro

Una MdT a k nastri è una normale macchina di Turing avente k nastri

- ► Inizialmente l'input compare sul primo nastro e gli altri sono vuoti
- ► La funzione di transizione

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, S, R\}^k$$

muove (in modo indipendente) le testine dei vari nastri

Macchina di Turing multi-nastro

- ▶ Simile a MdT: usa k nastri con $k \ge 1$
- ► Ciascun nastro con propria testina
- ► Istruzione specifica (oltre nuovo stato)
 - ▶ *k* simboli letti
 - k simboli da scrivere
 - ▶ k movimenti delle k testine
- Configurazione iniziale: input su primo nastro, rimanenti nastri vuoti

Es.: MdT multi-nastro

Macchina di Turing multi-nastro

Espressione

$$\delta(q_i, a_1, \ldots, a_k) = (q_j, b_1, \ldots, b_k, D_1, \ldots, D_k)$$

indica che se la MdT a k nastri M

- ▶ si trova nello stato q_i
- ▶ la testina *i* legge a_i , per $i = 1 \dots, k$

allora

- ▶ M va nello stato q_j
- ▶ la testina i scrive b_i e si muove nella direzione $D_i \in \{L, S, R\}$, per $i = 1 \dots, k$

Esempio: MdT a 2 nastri per 0ⁿ1ⁿ

- 1. Scorre primo nastro verso destra fino a primo 1: per ogni 0, scrive un 1 sul secondo nastro
- 2. Scorre primo nastro verso destra e secondo nastro verso sinistra: se simboli letti non uguali, termina in stato non finale
- 3. Se legge \perp su entrambi i nastri, termina in stato finale

MdT e MdT multi-nastro

MdT multinastro sembrerebbero più potenti delle MdT ordinarie

In realtà possiamo mostrare che le due varianti sono equivalenti

Teorema

MdT e MdT multi-nastro sono modelli equivalenti

In un verso: ovvio (MdT è anche MdT multi-nastro)

Immaginiamo i k nastri affiancati, ognuno con indicata la posizione della testina

Dobbiamo codificare questa informazione su un solo nastro

- Concatenare contenuto dei k nastri, su k blocchi consecutivi separati da #
 - ogni blocco ha lunghezza variabile che dipende dal contenuto del nastro corrispondente
 - un elemento marcato nel blocco i-mo indica la posizione della testina i-ma
 - es. testina S punta ad elemento del primo blocco e legge $\dot{\gamma}$: la testina del primo nastro è in questa posizione e legge γ ;
 - ► Alfabeto esteso Γ_2 , t.c. $\dot{a} \in \Gamma_2$ per ogni $a \in \Gamma$

Configurazione iniziale di $S: \#\dot{a}_1...a_n\#\dot{\perp}\#...\dot{\perp}\#,$

- ▶ Per ogni istruzione di MdT multi-nastro *M*, la MdT *S*
 - ► Scorre i k nastri e "raccoglie" informazioni sui k simboli letti
 - ► Applica transizione, scorrendo i *k* nastri e applicando su ciascuno scrittura e spostamento

Es.

Da k=3 a MT ad un nastro

Per ogni mossa del tipo $\delta(q, a_1, ..., a_k) = (s, b_1, ..., b_k, D_1, ..., D_k)$

- ▶ S scorre il nastro verso destra, fino al primo \bot memorizzando nello stato i simboli marcati sui singoli nastri; Memorizzazione: stato aggiuntivo per ogni possibile sequenza di $\le k$ simboli di Γ
- ► la testina si riposiziona all'inizio del nastro,
- poi il nastro viene scorso di nuovo eseguendo su ogni sezione (cioé un nastro di M) le azioni che simulano quelle delle testine di M: scrittura e spostamento.

- ▶ Durante il secondo passaggio S scrive su tutti i simboli "marcati" e
- sposta il marcatore alla nuova posizione della testina corrispondente di M

Nota.

Se una testina di M muove su \perp più a destra del suo nastro allora la testina virtuale (puntino) sul segmento corrispondente del nastro di S si sposta sul delimitatore #

In questo caso, S deve spostare di una posizione tutto il suffisso del nastro a partire da \ddagger fino all'ultimo # a destra.

Dopo, S scrive $\dot{\perp}$ nella prima posizione soggetta a shift (dove c'era $\dot{\#}$).

$$\#a\dot{b}\#xyz\# o \#ab\dot{\#}xyz\# o \#ab\dot{\#}xyz\#$$

Per ogni istruzione di MdT multi-nastro M, la MdT S

- 1. Scorre i k nastri e "raccoglie" informazioni sui k simboli letti
- 2. Applica transizione, scorrendo i *k* nastri e applicando su ciascuno scrittura e spostamento
- 3. Infine la MdT entra nello stato che ricorda il nuovo stato di S e riposiziona la testina all'inizio del nastro.

Molti più stati e mosse, ma S simula M!

Macchina di Turing non deterministica

Una MdT non deterministica (NMdT) $\grave{\mathrm{e}}$ una macchina di Turing avente funzione di transizione

$$\delta: Q \times \Gamma \to P(Q \times \Gamma \times \{L, R\})$$

invece di $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$

Analogamente alla differenza tra DFA e NFA

Macchina di Turing non deterministica

Computazione di una NMdT: ben descritta da albero contenente ogni configurazione raggiungibile dalla iniziale (c_0) su dato input: Se un cammino $(da c_0)$ raggiunge lo stato accetta allora la NMdT

MdT e NMdT

NMdT sembrerebbero più potenti delle MdT ordinarie

In realtà possiamo mostrare che le due varianti sono equivalenti

Teorema

MdT e NMdT sono modelli equivalenti

In un verso: ovvio MdT è anche NMdT

Guardiamo alla computazione di una NMdT N come ad delle configurazioni raggiungibili da quella iniziale c_0 su input w

Idea: per ogni input w,

- ▶ M deve eseguire tutte le possibili computazioni di N su w e
- ▶ accettare sse almeno una raggiunge stato accetta

Alcune delle computazioni di N possono essere infinite

- ⇒ alcuni cammini sono infiniti
- ⇒ Se M esegue la simulazione e segue un cammino infinito, va in loop (anche se su altro cammino raggiungerebbe lo stato accetta)

Alcune delle computazioni di N possono essere infinite

- ⇒ alcuni cammini sono infiniti
- \Rightarrow Se M esegue la simulazione e segue un cammino infinito, va in loop (anche se su altro cammino raggiungerebbe lo stato accetta)

Idea: eseguiamo tutte le simulazioni contemporaneamente! Usando una BFS dell'albero delle computazioni

- 1. Esegui il primo passo di ogni computazione. Se almeno una accetta allora accetta.
- 2. Esegui il secondo passo di ogni computazione. Se almeno una accetta allora accetta.

. . .

i. Esegui il passo i-mo di ogni computazione. Se almeno una accetta allora accetta.

. . .

Simulazione fatta mediante MdT D a 3 nastri.

Inizialmente:

Nastro 1 contiene input di N, Nastri 2 e 3 vuoti

- ► Il nastro 1 contiene sempre la stringa input e non viene mai modificato.
- ► Il nastro 2 contiene una copia del nastro di N corrispondente ad una diramazione della sua computazione non deterministica.
- ► Il nastro 3 serve a tener traccia della posizione di *D* nell'albero della computazione non deterministica di *N*.

Se il nastro 3 contiene la stringa 221 significa che D sta simulando la configurazione C_{14} di N.

da NMdT a MdT : Come è mantenuta la linea di computazione?

N non deterministica \Rightarrow più possibili transizioni da stessa config.

- ▶ Per ogni configurazione di N, MdT D codifica tutte le possibili transizioni e le enumera
- Sia COMP_i = prefisso lungo i di una computazione di N Codifichiamo COMP_i con stringa b₁...b_i di i digit b-ari: b = max numero transizioni possibili da qualsiasi config.
 - ▶ D parte con la configurazione iniziale b_1 = numero della transizione al primo passo di $COMP_i$.
 - Per $2 \le j \le i$, b_j è il numero della transazione attuale al passo j-mo di $COMP_i$

Es. La stringa 421 codifica un prefisso di lunghezza 3 in cui

- ▶ al primo passo N esegue la quarta transizione nella lista delle transizioni possibili (da configurazione iniziale)
- ▶ al secondo passo N esegue la seconda transizione nella lista delle transizioni possibili (da config. raggiunta a passo 1)
- ► al terzo passo N esegue la **prima** transizione nella lista delle transizioni possibili (da conf. passo 2)

Nota: alcune configurazioni possono ammettere meno di b scelte, quindi non tutte le sequenze b-arie rappresentano un prefisso di computazione.

- ▶ b = 3: sul nastro 3 ci saranno stringhe su $\{1, 2, 3\}$.
- ► Successione di stringhe sul nastro 3: 1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, . . .

- ▶ b = 3: sul nastro 3 ci saranno stringhe su $\{1, 2, 3\}$.
- Successione di stringhe sul nastro 3: 1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, ...

Le stringhe in rosso non corrispondono a un prefisso valido di computazione: la macchina D le ignora.

La simulazione di N con D risulta:

- 1. Scrivi 1 sul nastro 3
- 2. Copia input sul nastro 2

La simulazione di N con D risulta:

- 1. Scrivi 1 sul nastro 3
- 2. Copia input sul nastro 2
- 3. Se il nastro 3 contiene la codifica di un prefisso di una computazione di N, allora esegui la transizione corrispondente; se la computazione accetta, allora accetta

La simulazione di N con D risulta:

- 1. Scrivi 1 sul nastro 3
- 2. Copia input sul nastro 2
- 3. Se il nastro 3 contiene la codifica di un prefisso di una computazione di N, allora esegui la transizione corrispondente; se la computazione accetta, allora accetta
- 4. incrementa di 1 il numero b-ario sul nastro 3
- 5. Vai al passo 2.


```
a b a b \( \preceq \) ...

CPU

C B B C C a ...

1 3 2 1 1 \( \preceq \) ...
```

Dettagli costruttivi?

Le costruzioni sono state delineate, non abbiamo dato dettagli per conversione da MdT a k nastri a MdT (a 1 nastro) conversione da NMdT a MdT Perché non dare maggiori dettagli?

Dettagli costruttivi?

Capire cosa fa una MdT data risulta difficile, specialmete se grande Convincersi che una data MdT riconosce un linguaggio é difficile solo guardando la macchina

Se sappiamo che una MdT puó essere costruita, non è necessario costruirla in dettaglio

Diamo meno dettagli, ma diciamo come dovrebbe funzionare!

Dettagli costruttivi?

Capire cosa fa una MdT data risulta difficile, specialmete se grande Convincersi che una data MdT riconosce un linguaggio é difficile solo guardando la macchina

Se sappiamo che una MdT puó essere costruita, non è necessario costruirla in dettaglio

Diamo meno dettagli, ma diciamo come dovrebbe funzionare! Tranne che per divertimento!

Nozione di Computabilità

Abbiamo visto alcune variazioni di M e mostrato equivalenza Esistono varie altre variazioni – tutte equivalenti

Anche altri modelli computazionali sono stati mostrati equivalenti a MdT

Tesi di Church-Turing

Formalizzazioni di nozione di computabilità:

- Alonzo Church (matematico americano) creò un metodo per definire le funzioni computabili, λ–calcolo
- ► Alan Turing creò la Macchina di Turing
- Church, Kleene e Rosser diedero la definizione formale di una classe di funzioni il cui valore può essere ottenuto mediante ricorsione.

Si è dimostrtato che sono equivalenti

Tesi di Church-Turing

Formalizzazioni di nozione di computabilità:

- Alonzo Church (matematico americano) creò un metodo per definire le funzioni computabili, λ-calcolo
- ► Alan Turing creò la Macchina di Turing
- Church, Kleene e Rosser diedero la definizione formale di una classe di funzioni il cui valore può essere ottenuto mediante ricorsione.

Si è dimostrtato che sono equivalenti

Tesi di Church-Turing: "Se esiste un algoritmo per eseguire un calcolo allora questo calcolo può essere eseguito da una MdT (o variante equivalente)"