Modeling Mechanical Systems * "ALL MODEUS ARE WRONG, BUT SOME ARE USEFUL"

L. HOX & F=ma un jun jun jung (Double integrator) A Common method to standardize: State-space

State-Space Form

$$\overrightarrow{x} = A \overrightarrow{x} + B \overrightarrow{u} \quad (\text{state eqn.})$$

$$\overrightarrow{y} = C \overrightarrow{x} + D \overrightarrow{u} \quad (\text{output eqn.})$$

$$\overrightarrow{x} = \begin{pmatrix} \overrightarrow{x_1} \\ \overrightarrow{x_2} \end{pmatrix}$$

$$\overrightarrow{x} = \begin{pmatrix} \overrightarrow{x_1} \\ \overrightarrow{x_2} \\ \overrightarrow{x_2}$$

Mass-Spring-Damper:

$$\frac{1}{\left(\frac{\dot{x}_{1}}{\dot{x}_{2}}\right)} = \left(\frac{0}{-k/m} - \frac{1}{c/m}\right) \left(\frac{\chi_{1}}{\chi_{2}}\right) + \left(\frac{0}{1/m}\right) u$$

$$y = \left(\frac{1}{2} + \frac{0}{2}\right) \left(\frac{\chi_{1}}{\chi_{2}}\right) + \left(\frac{0}{2} + \frac{0}{2}\right) u$$

•

Automobile supension:

for a master on aquations body m, n degrees of freedom suspension K13 [m,] y, wheel (m2) - 1 y2 $F_{k_1} = c \left(\dot{y}, -\dot{y}_2 \right)$ tite $(\pm\sqrt{2})$ = $+\sqrt{2}$ $F_4 = k_1(3y) = |k_1(y_1 - y_2)|$ $\frac{mass 1:}{m_1 \dot{y}_1' = -F_{k_1} - F_{c_1}}$ $\frac{m_1 \dot{y}_1' = -F_{k_1} - F_{c_2}}{m_2 \dot{y}_1' = -F_{k_1} - F_{c_2}}$ $\frac{mass 2:}{m_2 \dot{y}_2' = F_{k_1} + F_{c_1} - F_{k_2}}$ $\frac{mass 2:}{m_2 \dot{y}_2' = F_{k_1} + F_{c_2} - F_{k_2}}$ $F_{k_1} + F_{c_2} - F_{k_2}$ $F_{k_2} + F_{k_1} + F_{k_2}$ $F_{k_1} + F_{k_2} - F_{k_2}$ $F_{k_1} + F_{k_2} - F_{k_2}$ $F_{k_1} + F_{k_2} - F_{k_2}$ $F_{k_2} + F_{k_1} + F_{k_2}$ $F_{k_1} + F_{k_2} - F_{k_2}$ $F_{k_2} + F_{k_1} + F_{k_2}$ $F_{k_2} + F_{k_2}$ $F_{k_1} + F_{k_2} - F_{k_2}$ $F_{k_2} + F_{k_2}$ $F_{k_1} + F_{k_2} - F_{k_2}$ $F_{k_2} + F_{k_1}$ $F_{k_2} + F_{k_2}$ $F_{k_2} + F_{k_2$ $m_1 \dot{g}_1 = -F_{k_1} - F_{c}$ $m_1 \dot{g}_1 = -k_1 (y_1 - y_2) - c (\dot{y}_1 - \dot{y}_2)$

 $M, \dot{y}_1 = \bigcirc k_1(y_1 - y_2) \bigcirc c(\dot{y}_1 - \dot{y}_2)$ $m_2 \dot{y_2} = F + k_1 (y_1 - y_2) + C (\dot{y_1} - \dot{y_2}) - k_2 \dot{y_2}$ $m_2 \dot{y_1} = F(-)k_1 (y_2 - y_1) (-) ((y_2 - y_1) (-) (y_2 -$ RULE: ALWAYS (), always starting w/ the variable of that man.

Exercise:
$$y_1$$
 k_2 k_2 k_3 k_4 k_5 k_6 k_1 k_2 k_2 k_4 k_5 k_6 k_6 k_1 k_2 k_4 k_6 k_6 k_6 k_7 k_8 k_8