Kvantování a formáty čísel

Kurz: Signálové procesory

Autor: Petr Sysel

Lektor: Petr Sysel

3/56 Petr Sysel

Obsah přednášky

Kvantování čísel

Kvantovací šum

Formáty čísel

Pohyblivá řádová čárka

Dynamický rozsah

Přesnost

Operace v pohyblivé čárce

Pevná řádová čárka

Základní vlastnosti

Vyjádření záporných čísel

Operace v pevné řádové čárce

Přetečení

Zaokrouhlení

Porovnání různých formátů

Kvantování signálu

- Při kvantování je signál spojitý v hodnotách vyjádřen pomocí konečného počtu bitů $N_{\rm b}$,
- signál pak může nabývat pouze 2^{Nb} kvantovacích hladin,
- vzdálenost mezi mezi hladinami udává kvantovací krok q roven váze nejnižšího bitu (nejčastěji $q=2^{-N_b+1}$),
- při usekávání (truncation) je hodnota signálu vyjádřena vždy nejbližší nižší hladinou

$$x_{\mathsf{T}}(t) = \lfloor x(t) \rfloor$$

 při zaokrouhlování (rounding) je hodnota signálu vyjádřena vždy nejbližší hladinou

$$x_{\mathsf{R}}(t) = \left[x(t) + \frac{q}{2}\right].$$

Signálové procesory

Vznik kvantovacího šumu

• Rozdíl mezi kvantovaným signálem $x_{Q}(t)$ a původním signálem x(t) se označuje jako kvantovací šum

$$e_{\mathsf{Q}} = X_{\mathsf{Q}} - X,$$

rozsah kvantovacího šumu je v případě usekávání roven

$$-q < e_{\mathsf{T}} \leq 0$$
,

rozsah kvantovacího šumu je v případě zaokrouhlování roven

$$-\frac{q}{2} < e_{\mathsf{R}} \le \frac{q}{2},$$

- charakter kvantovacího šumu závisí i na tvaru kvantovaného signálu,
- pro zjednodušení se uvažuje, že kvantovací šum nabývá hodnot podle rovnoměrného rozdělení pravděpodobnosti (všechny hodnoty jsou stejně pravděpodobné).

Kvantování signálu

Vznik kvantovacího šumu

• Střední hodnota kvantovací chyby je rovna:

$$\mu_{\rm Q} = \int e_{\rm Q} p(e_{\rm Q}) de_{\rm Q}$$

- v případě usekávání je střední hodnota $\mu_{\rm T}=-rac{q}{2}$,
- v případě zaokrouhlení je střední hodnota $\mu_R = 0$.
- Rozptyl kvantovacího šumu je roven:

$$\sigma_{\mathsf{Q}}^2 = \int (e_{\mathsf{Q}} - \mu_{\mathsf{Q}})^2 \, \rho(e_{\mathsf{Q}}) \mathsf{d}e_{\mathsf{Q}} = \frac{q^2}{12} = \sigma_{\mathsf{T}}^2 = \sigma_{\mathsf{R}}^2,$$

 V případě zaokrouhlování je potom poměr signálu od kvantovacího šumu (SQNR) roven:

$$SQNR = 10 \log_{10} \frac{\sigma_x^2}{\sigma_R^2} = 10 \log_{10} \frac{\sigma_x^2}{\frac{q^2}{12}} = 6,02 N_b + 10,79 + 10 \log_{10} \sigma_x^2.$$

Kvantování vstupního signálu

- V případě usekávání bude poměr ještě menší, protože energie šumu je větší díky nenulové střední hodnotě,
- poměr signálu od kvantovacího šumu vzrůstá s počtem bitů,
- poměr signálu od kvantovacího šumu vzrůstá s rozptylem (energií) vstupního signálu,
- rozptyl hodnot vstupního signálu je však omezen rozsahem čísel,
- navíc u některých algoritmů může mít výstupní signál větší rozptyl než vstupní,
- v takovém případě je nutné vstupní signál zeslabit vážením (scaling) koeficientem $\beta < 1$,
- potom

$$SNR = 10 \log_{10} \frac{\beta^2 \sigma_x^2}{\sigma_R^2} = 10,79 + 6,02N + 10 \log_{10} \sigma_x^2 + 20 \log_{10} \beta.$$

Důležitost volby formátu

Je i dnes nutné řešit formát čísel?

• z důvodu ceny?

fixed point		floating point	
TMS320C6421 \$10.10		TMS320C6720 \$7.09	
TMS320C6416	\$205.67	TMS320C6713	\$19.20

• z důvodu přesnosti?

	fixed point	floating point
dynamický rozsah [dB]	90 - 186	1530 - 12282
SQNR [dB]	90 - 186	144 - 318

z důvodu výpočetního výkonu?

fixed point		floating point TMS320C6720 350 MHz	
TMS320C6421 400 MHz		TMS320C6720 350 MHz	
TMS320C6416	1000 MHz	TMS320C6713	300 MHz

Pohyblivá řádová čárka

- Formát v pevné řádové čárce má omezenou přesnost, ale především malý dynamický rozsah,
- proto se používá i formát v pohyblivé řádové čárce (floating point), kdy číslo je vyjádřeno pomocí mantisy a exponentu

mantisa
$$\cdot 2^{\text{exponent}}$$
,

 standard IEEE 754 definuje několik formátů uložení čísel s pohyblivou řádovou čárkou, z nichž nejpoužívanější jsou

formát	znaménko	exponent	mantisa	celkem
základní přesnost	1	8	23	32
dvojinásobná přesnost	1	11	52	64

• pro zvýšení přesnosti je každé číslo normalizováno tak, aby hodnota mantisy byla v rozsahu $1 \le mantisa < 2$, nejvyšší bit však není vyjádřen (tzv. skrytá jednička).

Pohyblivá řádová čárka

Pro vyjádření se používá formát IEEE754.

- mantisa je vyjádřena přímým kódem,
- exponent je povýšen o hodnotu 127, resp. 1023, a poté vyjádřen také přímým kódem.

a b základní přesnost dvojnásobná přesnost
$$y=-1^s\cdot 2^{(exp-127)}\cdot 1, mantisa$$
 $y=-1^s\cdot 2^{(exp-1023)}\cdot 1, mantisa$

Příklady čísel v pohyblivé řádové čárce

```
• Číslo 0,75 normalizujeme vynásobením 2:
  znaménko + 0,
  exponent -1 \ 011111110,
   • číslo -123,745 \cdot 10^{-6} normalizujeme vynásobením 2^{13}:
  znaménko –
  exponent -13 01110011,
   mantisa 1,01371904 .00000011100000110001011,
• po zpětném převodu dostaneme číslo
 123,74499056022614240646362304688 \cdot 10^{-6}
• číslo 6564 \cdot 10^9 normalizujeme vynásobením 2^{-42}:
  znaménko
           +
  exponent 42 10101001,
   mantisa 1,49248080.....01111110000100110011100,
```

16/56 Petr Sysel

KVANTOVÁNÍ A FORMÁTY ČÍSEL

Signálové procesory

Porovnání single a double

hodnota	Matlab	single	double
maximální kladné číslo	realmax	1.7014e+38	1.7977e+308
minimální kladné číslo	realmin	1.1755e-38	2.2251e-308
kvantovací krok (přesnost)	eps(x)	1.1921e-07	2.2204e-16

18/56 Petr Sysel

Možné případy vyjádření v základní přesnosti

Znaménko	Exponent	Mantisa	Význam
0	0 < exp < 255	> 0	normalizované kladné číslo
1	0 < exp < 255	> 0	normalizované záporné číslo
0	0	> 0	denormalizované kladné číslo
1	0	> 0	denormalizované záporné číslo
0	0	0	kladná nula
1	0	0	záporná nula
0	255	0	kladné nekonečno
1	255	0	záporné nekonečno
0	255	> 0	NaN – Not a Number
1	255	> 0	NaN – Not a Number

Dynamický rozsah

- Označme počet bitů mantisy $N_{\rm m}$ a počet bitů exponentu $N_{\rm e}$,
- nejmenší vyjádřitelné kladné číslo

$$x_{min} = 2^{-2^{N_e}},$$

největší vyjádřitelné kladné číslo

$$x_{max} = (2 - 2^{N_{\rm m}}) \cdot 2^{2^{N_{\rm e}}},$$

 dynamický rozsah definovaný jako podíl největšího ku nejmenšímu kladnému číslu

$$R_{FLP} = 20 \log \frac{x_{max}}{x_{min}} = 20 \log \frac{(2 - 2^{N_{m}}) \cdot 2^{2^{N_{e}}}}{2^{-2^{N_{e}}}} \cong 6 \cdot (2^{N_{e}+1} - 1)[dB].$$

20/56

Přesnost

- Naproti tomu přesnost ve smyslu poměr podílu vzdálenosti mezi dvěma nejbližšími čísly ku nižšímu z nich je dána především počtem bitů mantisy,
- uvažujme číslo 1.0000 . . . 0000 · 2^{exp}
- nejbližší vyšší číslo bude 1.0000...0001 · 2^{exp},
- rozdíl mezi nimi (dalo by se říct kvantovací krok) bude $0.0000...0001 \cdot 2^{exp}$,
- potom poměr bude dán

$$20 \log_{10} \frac{0.000...00001 \cdot 2^{exp}}{1.0000...0000 \cdot 2^{exp}} = 20 \log_{10} 0.0000...0001$$
$$= 20 \log_{10} 2^{-N_{m}} \approx 6 \cdot N_{m},$$

• a tento poměr bude přibližně konstantní.

Operace v pohyblivé řádové čárce

- Sčítání
 - sjednotíme exponent obou činitelů tak, že číslo s menším exponentem posuneme vpravo o rozdíl exponentů,
 - provedeme součet mantis,
 - výsledek normalizujeme.
- Odčítání
 - sjednotíme exponent obou činitelů tak, že číslo s menším exponentem posuneme vpravo o rozdíl exponentů,
 - provedeme rozdíl mantis,
 - výsledek normalizujeme.

23/56

Operace v pohyblivé řádové čárce

- Násobení
 - sečteme exponenty obou činitelů,
 - provedeme vynásobení mantis,
 - výsledek normalizujeme.
- Dělení
 - odečteme exponenty obou činitelů,
 - provedeme dělení mantis,
 - výsledek normalizujeme.

- V případě většiny signálových procesorů jsou čísla vyjádřena v pevné řádové čárce,
- číslo je vyjádřeno na pevný počet bitů,
- řádová čárka je pevně umístěna a neposouvá se,
- v pevné řádové čárce lze rozlišit čísla:
 - celá (s těmito pracují procesory pro všeobecné použití),
 - smíšená (jako výsledky některých operací),
 - zlomková (používají se v signálových procesorech),
- označme $N_{\rm b}^+$ počet bitů pro celou část a $N_{\rm b}^-$ počet bitů pro zlomkovou část, počet bitů $N_{\rm b}=N_{\rm b}^++N_{\rm b}^-$,
- potom číslo takto vyjádřené bude

$$x = \sum_{k=-N_{\mathsf{b}}^{-}}^{N_{\mathsf{b}}^{+}} b_{i} \cdot 2^{k}.$$

• Příklady vyjádření $N_{\rm b}^{+} = 3, N_{\rm b}^{-} = 4 (Q3.4)$:

2,4375 010.0111 2,4375,

0,3128 000.0101 0,3125,

9,8456 111.1101 7,8125.

- Omezme se pouze na zlomková čísla s délkou zlomkové části $N_{\rm b}^-=N_{\rm b},\,N_{\rm b}^+=0,$
- nejmenší a největší vyjádřitelné kladné číslo bude

$$x_{\text{min}} = 2^{-N_{\text{b}}^{-}}, x_{\text{max}} = 1 - 2^{-N_{\text{b}}^{-}}$$

poměr obou čísel udává relativní rozsah vyjadřitelných čísel – dynamický rozsah

$$R_{\rm FXD} = 20 \log \frac{x_{\rm max}}{x_{\rm min}} = 20 \log \frac{1 - 2^{-N_{\rm b}^{-}}}{2^{-N_{\rm b}^{-}}} = 20 \log 2^{N_{\rm b}^{-}} = N_{\rm b}^{-} 20 \log 2,$$
 $R_{\rm FXD} \approx 6 \cdot N_{\rm b}^{-} [dB].$

- Poměr signálu ku kvantovacímu šumu $SQNR \approx 6 \cdot N_b$ [dB], kde N_b je délka slova, nepřímo vyjadřuje přesnost zpracování,
- dynamický rozsah $R=20\cdot\log_{10}\frac{x_{max}}{x_{min}}\approx 6\cdot N_{b}$ [dB], kde x_{max} je maximální a x_{min} je minimální vyjádřitelné kladné číslo,
- dynamický rozsah použitého formátu musí odpovídat dynamickému rozsahu zpracovávaného signálu – jinak dojde ke zkreslení,

30/56 Petr Sysel

Signálové procesory

Pevná řádová čárka

- Převod celého čísla:
 - 1. provedeme celočíselné dělení čísla 2,
 - 2. zapíšeme zbytek po dělení (0 nebo 1),
 - 3. pokud výsledek dělení je větší než 0, tak binární číslo posuneme o 1 bit vpravo a pokračujeme bodem 1.
- převod zlomkového čísla:
 - 1. převáděné číslo vynásobíme 2,
 - 2. pokud je výsledek násobení větší než 1, zapíšeme 1 a 1 odečteme,
 - 3. pokud je výsledek násobení menší než 1, zapíšeme 0,
 - 4. pokračujeme bodem 1 dokud není výsledkem 0 nebo nedosáhneme zadaného počtu bitů.

Rozdíly v operacích int × frac

	integer	fractional
megaAVR	mul	fmul
DSP56300	mpy	smpy
TMS320C6000	mpy	smpy

Příklad násobení:

celá čísla		zlomková čísla		
7	0111	0.111	0,875	
× 5	\times 0101	\times 0.101	\times 0,625	
35 =	0010 0011	0.010 0011	≠ 0,546875	

Vyjádření záporných čísel

- V případě čísel se znaménkem se před nejvyšší bit MSB formátu přidává znaménkový bit,
- znaménkový bit vždy vyjadřuje znaménko čísla:
 - 0 kladné číslo,
 - 1 záporné číslo,
- kladné číslo je tak vyjádřeno stejně jako předtím,
- pro vyjádření záporného čísla se pak používají formáty:
 - přímý kód záporná čísla se liší pouze ve znaménkovém bitu,
 - číslo převedeme jako číslo kladné a nastavíme znaménkový bit.
 - jednotkový doplněk záporná čísla jsou vyjádřena doplňkem do 1,
 - číslo převedeme jako číslo kladné a invertujeme všechny bity.
 - dvojkový doplněk záporná čísla jsou vyjádřena doplňkem do 2,
 - číslo převedeme jako číslo kladné,
 - invertujeme všechny bity,
 - k nejnižšímu bitu připočteme 1.

Vyjádření záporných čísel

Přímý kód – číslo je vyjádřeno znaménkem plus zlomková část:

$$+0.8125 \iff 0.1101,$$

 $-0.8125 \iff 1.1101,$

 jednotkový doplněk (inverzní kód) – záporné číslo je vyjádřeno znaménkem a zlomková část je invertována:

$$+0.8125 \iff 0.1101,$$

 $-0.8125 \iff 1.0010,$

 dvojkový doplněk (doplňkový kód) – záporné číslo je vyjádřeno doplňkem do dvojky (lze provézt invertováním všech bitů a přičtením 1 k nejnižšímu bitu):

$$+0.8125 \iff 0.1101,$$

 $-0.8125 \iff 1.0011.$

Výhody a nevýhody vyjádření

- Přímý kód:
- inverzní kód:
 - existují dvě nuly (0.0000, 1.0000),
 - symetrický rozsah $(-(1-2^{-b}); (1-2^{-b}))$
 - v případě některých operací je nutné provádět korekce výsledku podle znaménka operandů,
- dvojkový doplněk:
 - nesymetrický rozsah $(-1; 1-2^{-b})$,
 - existuje pouze jedna nula (0.0000),
 - může dojít ke krátkodobému přetečení a přesto bude výsledek správně.

Výhody a nevýhody vyjádření

Příklad ošetření krátkodobého přetečení:

	přím	ný kód	dvojkov	ý doplněk
0,6875	0.1011	0,6875	0.1011	0,6875
0,5625	0.1001	0,5625	0.1001	0,5625
1,2500	1.0100	-0,2500	1.0100	-0,7500
-0,3750	1.0110	-0,3750	1.1010	-0,3750
0,8750	1.1010	-0,6250	0.1110	0,8750

Signálové procesory

Příklad formátů v pevné řádové čárce se znaménkem

Převod zlomkového čísla ve formátu Q0.n na celé číslo ve formátu Qn.0 je proveden vynásobením hodnotou 2^n . Obrácený převod násobením hodnotou 2^{-n} .

Sčítání a odečítání

Sčítání:

- v přímém kódu je nutné testovat znaménkový bit, přičtení záporného čísla je realizováno odečtením jeho kladného ekvivalentu,
- v doplňkovém kódu je nutné v případě přenosu mimo slovo přičíst 1,
- v dvojkovém doplňku není nutná žádná korekce.

Odčítání:

- v přímém kódu je nutné testovat znaménkový bit, odečtení záporného čísla je realizováno přičtením jeho kladného ekvivalentu,
- v doplňkovém kódu je nutné v případě přenosu mimo slovo odečíst 1,
- v dvojkovém doplňku není nutná žádná korekce.

Při sčítání nebo odčítání dvou čísel stejného znaménka může dojít k tomu, že výsledek nelze zobrazit v daném formátu. Tento jev se označuje jako *přetečení*. Při sčítání nebo odčítání čísel s různým znaménkem přetečení nemůže vzniknout.

Násobení v pevné řádové čárce

Při násobení v pevné řádové čárce má výsledek dvojnásobný počet bitů. Násobení v pevné řádové čárce:

- v přímém kódu násobíme čísla bez znaménka a znaménko výsledku nastavíme podle znamének činitelů – pokud jsou shodná, je znaménko výsledku +, pokud jsou různá, je znaménko výsledku –.
- v doplňkovém kódu jsou záporná čísla nejprve negována a potom násobena jako čísla celá, v případě násobení dvou čísel s různým znaménkem musí být výsledek negován,
- v dvojkovém doplňku je nutné v případě násobení záporným číslem provést korekci – od horního slova odečtu druhého činitele, pokud oba činitelé mají záporné znaménko, musí se odečíst obě.

Chyby způsobené omezení délky slova lze omezit, pokud použijeme zlomkových čísel.

Násobení zlomkových čísel v pevné řádové čárce

Násobení zlomkových čísel v pevné řádové čárce:

- Násobení probíhá jako v případě čísel celých,
- po násobení je nutné provést bitový posun vlevo se saturací.
- Takto je možné realizovat násobení zlomkových čísel i na procesorech, které nepodporují uložení zlomkových čísel.

Při násobení zlomkových čísel v dvojkovém doplňku může dojít k přetečení, pokud násobíme dvě nejmenší čísla $-1 \cdot -1$.

Operace dělení

- Dělení je nejsložitější operace a proto se jí snažíme vyhnout,
- je nutné ho realizovat postupným odečítáním dělitele od dělence,
- velká většina signálových procesorů má sice pro dělení instrukci, ale její
 náročnost je několikanásobná:
 např. u 56F8367 trvá je pro dělení 32 bitů / 16 bitů opakovat instrukci div
 16 krát (16 hodinových cyklů).
- v případě procesorů TMS320C6000 se pro iteraci používá instrukce SUBC podmíněné odečítání (subtract conditional).

Operace dělení

- Dělíme 11 $((1011)_2)$ hodnotou 3 $((0011)_2)$,
- v každé iteraci se pokusíme odečíst dělitel posunutý o 3 bity vlevo
 - pokud bude rozdíl menší než 0, pak se k výsledku zpátky připočte dělenec a součet se posune vlevo o 1 bit,
 - pokud bude rozdíl větší nebo roven
 0, pak se výsledek posune vlevo a zprava se nasune 1,
- u dělení se znaménkem se podělí absolutní hodnoty a znaménko se nastaví podle operandů.

	0000	1011	
	0001	1000	
=	1111	0011	< 0
	0001	0110	
_	0001	1000	
=	1111	1110	< 0
	0010	1100	
	0001	1000	
=	0001	0100	<u>> 0</u>
	0010	1001	
_	0001	1000	
=	0001	0001	<u>> 0</u>
	0010	0011	
	zb.	výsl.	

Přetečení

Přetečení znamená, že výsledek leží mimo rozsah použitého vyjádření čísel. Příklad přetečení v dvojkovém doplňku:

Řešení přetečení:

- 1. číslo po přetečení vynulujeme,
 - vynulování způsobí velkou chybu,
- 2. číslo po přetečení nahradíme největším kladným číslem nebo nejmenším záporným číslem podle znaménka,
 - chyba je mnohem menší,
 - používá se mnohem častěji.

Pro ošetření krátkodobého přetečení mají střadače (akumulátory) signálových procesorů rozšiřující část zvyšující rozsah zobrazitelných čísel.

Neošetřené přetečení (wrap around)

- Pokud hodnota překročí největší vyjádřitelné číslo, dojde k přetečení,
- podobně pokud hodnota je menší než nejmenší vyjadřitelné číslo,
- převodní charakteristika neošetřeného přetečení má tvar pily,
- v signálu vzniknou vyšší harmonické, jejichž úroveň může být značná.

Ošetřené přetečení (saturation)

- Pro ošetření přetečení se používá saturace,
- číslo je číslo větší než největší vyjádřitelné číslo, je jím nahrazeno,
- podobně pokud je číslo menší než nejmenší vyjadřitelné číslo, je jím nahrazeno,
- i v tomto případě vzniknou vyšší harmonické, ale mají mnohem menší úroveň.

49/56

Zaokrouhlení zlomkového čísla

- Useknutí
 - spodní slovo vynulujeme, ponecháme pouze horní slovo.
- Zaokrouhlení dvojkového doplňku
 - k nejvýznamnějšímu bitu spodního slova přičteme 1 a poté spodní slovo vynulujeme,
 - dochází k zaokrouhlování jedním směrem a celkový výsledek by mohl být vychýlený,
 - častěji se používá konvergentní zaokrouhlování.
- Konvergentní zaokrouhlení
 - zaokrouhlení k nejbližšímu sudému číslu,
 - k nejvyššímu bitu spodního slova připočteme 1 a poté spodní slovo vynulujeme,
 - pokud je ve spodním slově nastavený pouze nejvýznamnější bit (ostatní jsou nulové),
 pak 1 přičteme jen v tom případě, že nejnižší bit horního slova je také nastavený,
 - pokud je ve spodním slově nastavený pouze nejvýznamnější bit (ostatní jsou nulové)
 a nejméně významný bit horního slova je nulový, pak 1 nepřičítáme.

Signálové procesory

Zaokrouhlení záporných čísel ve dvojkovém doplňku

Pozor na jednoduchá makra: #define FLOAT2FRAC(x) ((int)(32768*(x)+0.5)) Příklad zaokrouhlení:

-0,34375	-0,34375
0.010 1	0.010 1
doplněk	zaokrouhlení
1.101 0	0.000 1
0.000 1	0.011 0
1.101 1	doplněk
zaokrouhlení	1.100 1
0.000 1	0.000 1
1.110	1.101
-0,25	-0,375

Rozsah různých formátů

MSB váha nejvýznamnějšího bitu (Most Significant Bit), LSB váha nejméně významného bitu (Least Significant Bit). 53/56 Petr Sysel

Signálové procesory

Formáty vyjádření čísel

Důležité vlastnosti formátů:

- pevná řádová čárka
 - menší přesnost, menší rozsah,
 - jednodušší aritmetická logická jednotka,
 - horší návaznost na vyšší programovací jazyky,
 - levnější (v dnešní době je spíše výhodou vyšší výpočetní výkon).
 - MOTOROLA DSP56000, DSP56300, Texas Instruments TMS320C5510, TMS320C6416....
- pohyblivá řádová čárka
 - · větší přesnost,
 - složitější aritmetická logická jednotka,
 - lepší návaznost na vyšší programovací jazyky,
 - dražší (v dnešní době je nevýhodou spíše menší výpočetní výkon),
 - MOTOROLA DSP96000, Texas Instruments TMS320C6711,...

Srovnání pevné řádové čárky a plovoucí řádové čárky

Formát	Rozsah čísel	Dynamický rozsah	Přesnost	
	Pevná řádová čárka –	16 bitů		
Celé BZ	0 až 65 535	96 dB	1	
Celé SZ	−32 768 až 32 767	90 dB	1	
Zlomkové BZ	0 až 0,99998474	96 dB	2^{-16}	
Zlomkové SZ	−1 až 0,99998474	90 dB	2^{-15}	
	Plovoucí řádová čárka			
Základní přesnost	$1.18 \cdot 10^{-38}$ až $3.4 \cdot 10^{38}$	1530 dB	2^{-23}	
Dvojitá přesnost	2^{-1022} až 2^{1024}	12 282 dB	2^{-52}	

BZ – bez znaménka

SZ – se znaménka

55/56 Petr Sysel

Signálové procesory

Požadovaný dynamický rozsah a přesnost

typ signálu	dynamický rozsah	počet bitů
řeč	50 — 60 dB	>13
hudba	$> 110 \; dB$	>16 (24)