Acids, Bases And Salts

RASES /

PRASHANT KIRAD

ACID	L
Usually sour in taste.	Ī
Turns blue litmus paper red.	ŀ
Gives hydrogen ions in solution pH < 7	
e.g. Hydrochloric Acid (HCl),	l
Acetic Acid (CH₃COOH)	١

Bitter in taste and soapy to touch.
Turns red litmus paper blue.
Gives hydroxyl ions in solution
pH > 7
eg. Sodium Hydroxide (NaOH)

Importani					
ı	Natural Source	Acid	Natural Source	Acid	
I	Vinegar	Acetic acid	Sour milk (Curd)	Lactic acid	
	Orange	Citric acid	Lemon	Citric acid	
	Tamarind	Tartaric acid	Ant sting	Methanoic acid	
	Tomato	Oxalic acid	Nettle sting	Methanoic acid	

INDICATORS: A chemical compound that changes its colour in presence of an acid or a base.

OLFACTORY: substances whose odour changes in acidic or basic medium are called Olfactory indicators. eg- Vanilla, Onion. clove oil. base (no smell), acid (smell remains)

Natural: (found in nature)

Indicator	Neutral solution	Reac. with Acid	Reac. with Base
Litmus	Pale purple (Mauve)	Red	Blue
Hydrangea flowers	Blue	Blue	pink
Turmeric	yellow	yellow	Red

Synthetic: (from chemical proesses)

Indicator	Reac. with Acid	Reac. with Base
Phenolphthalein	Colourless	pink
Methyl Orange	Red	yellow

• Strong acids release more H^+ ions, while weak acids release fewer H^+ ions. The same applies to bases.

Dilution occurs when an acid or base is mixed with water, reducing the concentration of H_3O^+ or OH^- ions per unit volume, making the acid or base less concentrated.

diluted acid - small amount of acid (solute) dissolved in a large amount of water (solvent) Concentrated acid - large amount of acid dissolved in a small amount of water.

Importance of pH in daily life:

- Digestion: The stomach uses hydrochloric acid with a pH of 1 to 3 to break down food.
- Soil: Plants thrive in soil with a pH of 6.3 to 7.3. If soil is too acidic, adding lime helps; if too basic, gypsum is added.
- Tooth Decay: Bacteria in the mouth make it acidic, leading to tooth decay. Toothpaste, being basic, balances the mouth's pH.
- Blood: Blood functions best with a pH between 7.0 to 7.8.
- Plants and Animals: They prefer specific pH levels, with most plants growing best in soil around pH 7.
- Bee Stings: Baking soda neutralizes the acidity caused by bee stings.
- Acid Rain: Pollution can cause rain to become acidic, harming fish and other animals.

Salts

alts are ionic compounds composed of positively charged ions (cations) and negatively charged ions (anions), These ions are held together by ionic bond

Litmus solution is a purple dye from lichen, used as an indicator

Chemical Properties of Acid:

Base with Metal Metal + Base → Salt + Hydrogen Gas

eg; $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$ {Hydrogen gas evolved; indicates a reaction with the base}

Base with Non-Non-Metallic Oxide + Base \rightarrow Salt + Water

Metal Oxide

{Neutralization reaction; forms

eq; $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$ salt and water, indicating acidic

eg; $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$ salt and water, indicating acidic nature of non-metal oxide}.

Base + Acid → Salt + Water NaOH + HCl → NaCl + H2O

Chemical Properties of Acids:

Acid with Metal eg: $Zn + 2HCl \rightarrow ZnCl_2 + H_2$

{Hydrogen gas evolved; bubbles in soap solution ignite with a popping sound when a burning candle is brought near.}

Metal Carbonate eg: $Na_2CO_3 + 2HCI \rightarrow 2NaCI + CO_2 + H_2O$ {Carbon dioxide turns lime water milky, indicating its presence}

Metal Hydrogencarbonate eg: $NaHCO_3 + HCI \rightarrow NaCI + CO_2 + H_2O$

{Carbon dioxide turns lime water milky, indicating its presence.}

Metallic Oxide eg: $CuO + 2HCl \rightarrow CuCl_2 + H_2O$ {The solution turns blue-green, indicating the formation of copper(II) chloride.}

Strength of Acids and bases:

- Strength of Acid and Base can be estimated using universal indicator.
- It shows different colours at different concentrations of H+ ions in the solution.

P(potenz)H: pH is a measure of the concentration of hydrogen ions in solution. {power of hydrogen}

H: strong acid + strong base are neutral (pH 7). strong acid + weak base are acidic (pH < 7), strong base + weak acid are basic (pH > 7).

Sodium Chloride (NaCl) HCl + NaOH → NaCl + H2O (Neutral)

 Found in seawater and rock salt deposits
 Used in food seasoning, raw material for chemicals like NaOH,.

Sodium Hydroxide (NaOH) $2NaCl + 2H_2O \rightarrow 2NaOH + Cl_2 + H_2$ (Basic) (Chlor-alkali process)

- Produced by electrolysis of brine
- At anode: Cl2 (uses Water treatment, PVC, disinfectants)
- At cathode: H2 gas (uses Fuels, margarine.)
- Near cathode: NaOH solution is formed (Soap, paper, textiles.)

Figure 2.8 Important products from the chlor-alkali process

Sodium Hydrogen Carbonate (NaHCO₃) NaCl + H2O + CO2 + NH₃ → NH4Cl + NaHCO₃ (Basic)

- Produced using sodium chloride, water, and carbon dioxide
- (Basic)
 Used in bakng powder, antacids, soda-acid fire extinguisher.

Sodium Carbonate $2NaHCO_3 \rightarrow Na_2CO_3 + CO_2 + H_2O$ Baking Soda (Na_2CO_3) (Basic)

- Obtained by heating sodium hydrogen carbonate and recrystallization
- Used in glass, soap, and paper industries, and to remove water hardness.

Calcium Oxychloride (CaOCl2)

 $Ca(OH)_2 + Cl_2 \rightarrow CaOCl_2 + H_2O$ Bleaching powder

- · Produced by reacting chlorine with slaked lime
- Used for bleaching in textile and paper industries,

Hemihydrate $(CaSO_4 \cdot \frac{1}{2}H_2O)$

Calcium Sulphate $CaSO_4 \cdot 2H_2O$ (gypsum) $\rightarrow CaSO_4 \cdot \frac{1}{2}H_2O$ (Plaster of Paris) + 1½H2O (Neutral)

- Found as gypsum in natural deposits
- Used for removing permanent hardness of water.

Sodium Carbonate Decahydrate Na2CO3 + 10H2O → Na2CO3·10H2O (Basic) (Na₂CO₃·10H₂O) Washing Soda

- Produced by recrystallization of sodium carbonate
 - Used as washing soda, in glass, soap, and paper industries, and for removing permanent hardness of water.

Copper(II) Sulphate $CuSO_4.5H_2O$ (blue) $\rightarrow CuSO_4$ (white) + $5H_2O$ (CuSO₄·5H₂O) (Acidic)

Are the Crystals of Salts really Dry?

- Copper sulphate, contain water molecules in their crystal structure, known as water of crystallisation.
- When copper sulphate crystals are heated, they lose their water of crystallisation and turn from blue to white.
- Rehydration: Adding water back to the white, anhydrous copper sulphate restores its blue color.
- Chemical Formula: The hydrated form of copper sulphate is represented as CuSO4.5H2O, indicating it has five water molecules per formula unit..

Chapter ka KAZAANA:

- Indicators + pH scale
- Chlor Alkali Process

 POP, Washing, Baking Soda (Specially Baking Soda)