Raport z ćwiczenia S2

Data: 25.03.2020

Imię i nazwisko: Marcin Michna

Sprawozdanie z ćwiczeń laboratoryjnych powinno składać się z TRZECH części (chyba instrukcja do ćwiczenia określa to inaczej).

REZULTATY

Zanotuj określone w treści ćwiczenia parametry algorytmów, otrzymane rezultaty, itp.

Opc. zamieść listę dodatkowych plików dołączonych do sprawozdania (dodatkowe pliki to np. fragmenty kodu, pliki danych otrzymane w trakcie ćwiczenia, itp.)

ANALIZA i WNIOSKI

Zamieść, określone w treści ćwiczenia, analizę otrzymanych rezultatów (np. statystyczne opracowanie wyników) oraz wnioski. Maksymalnie 1 strona.

• ODPOWIEDZI NA PYTANIA

Zamieść, określone w treści ćwiczenia, odpowiedzi na pytania. Maksymalnie 1 strona.

Spis treści

Raport z ćwiczenia	1
Rezultaty	2
Analiza i wnioski	
Odpowiedzi na pytania	4

Rezultaty

Część I

Część II
 Motion Threshold - 20

 Tau - 2

Lista dodatkowych plików dołączonych do sprawozdania: !!! Brak pliku motion1.avi – zbyt duża waga !!!

main.slx

Analiza i wnioski

• Część I

Należy ustawić wyjściowy typ danych na uint8, dodatkowo w Add zaznaczyć "Saturate in integer overflow".

Dodatkowo aby zwiększyć skuteczność detekcji można zbinaryzować lub przekonwertować obraz do skali szarośći.

• Część II

Motion threshold – minimalna wartość "zmiany" aby została zaliczona jako ruch

Tau – ilość kolorów na obrazie wyjściowym

\sim	1							
()	dп	\cap	IPM	71	na	n۱	/tan	12
\cup	чv		ıcu	∠ 1	Пa	ν	/taii	ıа

- Operacja SAD polega na zmierzeniu podobieństwa pomiędzy blokami obrazu. Obliczana jest za pomocą wartości bezwzględnej pomiędzy każdym pikselem w oryginalnym obrazie i odpowiadającemu mu pikselowi w bloku porównywanym.
- Metody gradientowe opierają się na wykorzystaniu pochodnych przestrzennych i czasowych obrazu, na podstawie których wyznaczany jest przepływ optyczny. Klasyfikowane są na podstawie rzędu pochodnej, którą wykorzystano do obliczeń. Największą popularnością cieszą się metody oparte o pochodne pierwszego rzędu. Metody pierwszego rzędu oparte są na założeniu niezmienności poziomu jasności punktu obrazu, który został zrzutowany na płaszczyznę.