NONLINEAR ANALYSIS TO QUANTIFY MOVEMENT VARIABILITY IN HUMAN-HUMANOID INTERACTION

by

MIGUEL XOCHICALE

A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY

> School of Engineering College of Engineering and Physical Sciences The University of Birmingham 20 May 2019

Abstract

Nonlinear analysis can be applied to investigate the dynamics of time-ordered data. Such dynamics relate to sensorimotor variability in the context of human-humanoid interaction. Hence, this dissertation not only explores questions such as how to quantify movement variability or which methods of nonlinear analysis are appropriate to quantify movement variability but also how methods of nonlinear analysis are affected by real-world time series data (e.g. non-stationary, data length size, sensor sources or noise). Methods are explored to determine embedding parameters, reconstructed state spaces, recurrence plots and recurrence quantification analysis. Additionally, this thesis presents three dimensional surface plots of recurrence quantification analysis with which to consider the variation of embedded parameters and recurrence thresholds. These show that three dimensional surface plots of Shannon entropy might be a suitable approach to understand the dynamics of real-world time series data. This thesis opens new avenues of applications in human-humanoid interaction where humanoid robots can be pre-programmed with nonlinear analysis algorithms to evaluate, for instance, the improvement of movement performances, to quantify and provide feedback of skill learning or to quantify movement adaptations and pathologies.

Acknowledgements

I would like to acknowledge to both the Mexican National Council of Science and Technology and the University of Birmingham that funded my curiosity-driven PhD degree. To Professor Chris Baber for supervising my scientific endeavours and who wisely loosed the leash in any of my explorations so as to take me back at the right time to write up this thesis. To Professor Martin J Russell who, in the first year of my PhD, helped with his acute comments and critics to make a better use of the language of mathematics. To Mourad Oussalah who kindly dedicate his time to discuss my research interests and our collaboration with three peer-reiview conference papers. I would also like to thank to Dr. Dolores Columba Perez Flores for her valuable comments that help me to have a better insight on nonlinear analysis, and to Constantino Antonio Garcia Martinez for developing the nonlinearTseries R package that was of significant help to accelerate the results of this thesis. Last but not least, many thanks to Patricia Herterich, from Library Services of the University of Birmingham, who helped me to find the first published phd dissertations in 1901 and e-thesis in 2011 which allow me to state that this thesis is the first Open Access PhD thesis at the University of Birmingham.

> Miguel Xochicale Birmingham, UK May 2019

Li	st of	figure	s	XV		
1	Intr	roduction				
	1.1	Backg	round	1		
	1.2	Mover	nent variability	3		
		1.2.1	Modelling human movement variability	4		
		1.2.2	Movement variability in human-humanoid interaction	9		
	1.3	Resear	rch questions	13		
	1.4	Outlin	ne of the thesis	15		
	1.5	Public	eations	17		
	1.6	Open	access PhD thesis	18		
2	Qua	antifyii	ng Movement Variability	19		
	2.1	Introd	luction	19		
	2.2	Funda	mentals of time-series analysis	19		
		2.2.1	Linear and non-linear systems	20		
		2.2.2	Stationary and non-stationary signals	20		
		2.2.3	Deterministic and stochastic systems	20		
		2.2.4	Deterministic-chaotic time series	21		
	2.3	Quant	ifving movement variability with nonlinear analysis	21		

		2.3.1	What to quantify in movement variability?	23
		2.3.2	Which methods of nonlinear analysis are appropriate to quantify	
			movement variability?	24
	2.4	Nonlin	near analysis with real-world data	27
		2.4.1	Non-stationarity	28
		2.4.2	Data length	29
		2.4.3	Sampling rate	30
		2.4.4	Noise	30
	2.5	Final	remarks	32
3	Nor	ılinear	Analysis	33
	3.1	Introd	luction	33
	3.2	State	Space Reconstruction Theorem	34
	3.3	Unifor	rm Time-Delay Embedding (UTDE)	35
	3.4	Estima	ation of Embedding Parameters	37
		3.4.1	False Nearest Neighbours (FNN)	39
		3.4.2	Average Mutual Information (AMI)	42
		3.4.3	Overall minimum embedding parameters	44
	3.5	Recon	structed State Space with UTDE	45
	3.6	Recur	rence Plots (RP)	45
		3.6.1	Structures of Recurrence Plots	47
	3.7	Recur	rence Quantifications Analysis (RQA)	49
		3.7.1	Measures of RP based on the recurrence density	49
		3.7.2	Measures of RP based on diagonal lines	49
		3.7.3	Some weaknesses and strengths of RP and RQA	50
		3.7.4	3D surface plots of RQA	51
	3.8	Final :	remarks	54

4	Exp	erime	nts	55
	4.1	Aims		55
	4.2	Partic	ipants	56
		4.2.1	Human-image imitation activities	56
		4.2.2	Human-humanoid imitation activities	56
	4.3	Equip	ment	57
	4.4	Ethics	3	57
	4.5	Exper	iments	57
		4.5.1	Human-image imitation activities	57
		4.5.2	Human-humanoid imitation activities	59
	4.6	Proces	ssing of time series	62
		4.6.1	Raw time-series	62
		4.6.2	Postprocessing time-series	64
		4.6.3	Window size of time-series	64
		4.6.4	Normalization of time-series	65
		4.6.5	Smoothing time-series	65
5	Qua	antifyir	ng Human-Image Imitation Activities	67
	5.1	Introd	luction	67
	5.2	Time	series	68
	5.3	Minim	num Embedding Parameters	71
		5.3.1	Average minimum embedding parameters	73
	5.4	Recon	structed state spaces with UTDE	73
	5.5	Recur	rences Plots	79
	5.6	Recur	rence Quantification Analysis	85
	5.7	Weakr	nesses and strengths of RQA	89
		5.7.1	Sensors and activities	91

		5.7.2	Window size	. 97
		5.7.3	Smoothness	. 97
		5.7.4	Participants	. 100
		5.7.5	Final remarks	. 102
6	Qua	ntifyii	ng Human-Humanoid Imitation Activities	103
	6.1	Introd	luction	. 103
	6.2	Time	series	. 104
	6.3	Minim	num Embedding Parameters	. 107
		6.3.1	Average minimum embedding parameters	. 109
	6.4	Recon	structed state spaces with UTDE	. 109
	6.5	Recur	rences Plots	. 113
	6.6	Recur	rence Quantification Analysis	. 116
	6.7	Weakı	nesses and strengths of RQA	. 119
		6.7.1	Sensors and activities	. 121
		6.7.2	Window size	. 121
		6.7.3	Smoothness	. 125
		6.7.4	Participants	. 125
		6.7.5	Final remarks	. 128
7	Con	clusio	ns and future work	129
	7.1	Concl	usions	. 129
	7.2	Future	e work	. 132
$\mathbf{A}_{]}$	ppen	dix A	Examples of Uniform Time-Delay Embedding	139
	A.1	20 san	nple length vector.	. 139
	Δ 2	Timo	series for horizontal movement of a triavial accelerometer	1/1

Appen	dix B Equipment	145
B.1	NeMEMsi IMU sensors	145
	B.1.1 Issues with IMUs	147
B.2	Time-series preprocessing	148
	B.2.1 Organising Data in Multidimensional Arrays	148
	B.2.2 Data Synchronisation	148
	B.2.3 Time Alignment	149
В.3	NAO – humanoid robot	150
Appen	dix C Experiment Design	151
C.1	Experiment Check List	151
C.2	Information Sheet	151
Appen	dix D Additional Results for HII experiment	157
D.1	Time Series	157
D.2	Embedding parameters	164
	D.2.1 Minimum dimension embedding values	164
	D.2.2 Minimum delay embedding values	169
D.3	RSSs	174
D.4	RPs	183
D.5	RQAs	188
	D.5.1 REC values	188
	D.5.2 DET values	191
	D.5.3 RATIO values	194
	D.5.4 ENTR values	197
Appen	dix E Additional results for HHI experiment	201
E 1	Time Series	201

E.2	Embed	dding parameters	. 208
	E.2.1	Minimum dimension embedding values	. 208
	E.2.2	Minimum delay embedding values	. 211
E.3	RSSs		. 214
E.4	RPs		. 219
E.5	RQAs		. 224
	E.5.1	REC values	. 224
	E.5.2	DET values	. 225
	E.5.3	RATIO values	. 227
	E.5.4	ENTR values	. 228
Appen	dix F	Open Access Code and Data	231
F.1	Code a	and data organisation	. 231
F.2	How re	esults can be replicated	. 232
Refere	nces		233

List of figures

1.1	Thesis outline	16
3.1	State space reconstruction methodology	36
3.2	Uniform time-delay embedding	38
3.3	Minimum dimension embedding values with Cao's method	41
3.4	Minimum delay embedding values with AMI's method	43
3.5	Recurrence Plots	47
3.6	Patterns in Recurrence Plots	48
3.7	3D surface plots	53
4.1	Human-image imitation (HII) activities	59
4.2	Time series for horizontal and vertical arm movements	60
4.3	Human-humanoid imitation activities	61
4.4	Time series duration of horizontal and vertical arm movements	63
5.1	Time series for horizontal arm movements	69
5.2	Time series for vertical arm movements	70
5.3	Box plots for minimum embedding dimensions	72
5.4	Box plots for 1st minimum AMI	72
5.5	RSSs for horizontal arm movements (no beat)	75
5.6	RSSs for horizontal arm movements (with beat)	76

List of figures

5.7	RSSs for vertical arm movements (no beat)	77
5.8	RSSs for vertical arm movements (with beat)	78
5.9	RPs for horizontal arm movements (no beat)	81
5.10	RPs for horizontal arm movements (with beat)	82
5.11	RPs for vertical arm movements (no beat)	83
5.12	RPs for vertical arm movements (with beat) $\dots \dots \dots$	84
5.13	Box plots of RQA values for horizontal arm movements	87
5.14	Box plots for RQA values for vertical arm movements	88
5.15	3D surface plots of RQA metrics	90
5.16	$3\mathrm{D}$ surface plots of RQA metrics for horizontal arm movements with HS01	93
5.17	$3\mathrm{D}$ surface plots of RQA metrics for horizontal arm movements with HS02	94
5.18	$3\mathrm{D}$ surface plots of RQA metrics for vertical arm movements with HS01	95
5.19	3D surface plots of RQA metrics for vertical arm movements with $HS02$	96
5.20	3D surface plots of RQA metrics for different window lengths	98
5.21	3D surface plots of RQA metrics with three levels of smoothness	99
5.22	3D surface plots of RQA metrics with four participants	101
6.1	Time series for horizontal arm movements	.05
6.2	Time series for vertical arm movements	.06
6.3	Box plots of minimum embedding parameters	.08
6.4	RSSs for horizontal arm movements	11
6.5	RSSs for vertical arm movements	.12
6.6	RPs for horizontal arm movements	.14
6.7	RPs for vertical arm movements	.15
6.8	Box plots for RQA values	.18
6.9	3D surface plots for RQA metrics	20
6.10	3D surface plots of RQA metrics for HS01 sensor	22

6.11 3D surface plots of RQA metrics for RS01 sensor	23
6.12 3D surface plots of RQAs metrics with four window lengths	24
$6.13~3 \mathrm{D}$ surface plots of RQA metrics with three levels of smoothness 12	26
6.14 3D surface plots of RQA metrics with three participants	27
A.1 Examples of time series with an IMU	3
B.1 Inertial Measurament Sensor	Ł7
B.2 NAO, humanoid robot from SoftBank	0
C.1 Experiment Check List	52
C.2 Participant Information Sheet (p. 1/4)	3
C.3 Participant Information Sheet (p. 2/4)	4
C.4 Participant Information Sheet (p. 3/4)	5
C.5 Participant Information Sheet (p. 4/4)	6
D.1 Time series for horizontal arm movements (sg0)	8
D.2 Time series for horizontal arm movements (sg1)	9
D.3 Time series for horizontal arm movements (sg2)	0
D.4 Time series for vertical arm movements (sg0)	3 1
D.5 Time series for vertical arm movements (sg1)	52
D.6 Time series for vertical arm movements (sg2)	3
D.7 Minimum embedding dimensions for horizontal arm movements (no beat) 16	i5
D.8 Minimum embedding dimensions for horizontal arm movements (with	
beat)	6
D.9 Minimum embedding dimensions for vertical arm movements (no beat) 16	i 7
D.10 Minimum embedding dimensions for vertical arm movements (with beat) 16	8
$\mathrm{D.11}$ First minimum AMI values for horizontal arm movements (no beat) 17	0'
D 12 First minimum AMI values for horizontal arm movements (with heat) 17	71

List of figures

D.13 First minimum AMI values for vertical arm movements (no beat) 172
$\rm D.14\;First\;minimum\;AMI\;values\;for\;vertical\;arm\;movements\;(with\;beat)$ 173
D.15 RSSs for horizontal normal arm movements (no beat) 175
D.16 RSSs for horizontal normal arm movements (with beat) 176
D.17 RSSs for horizontal faster arm movements (no beat) 177
D.18 RSSs for horizontal faster arm movements (with beat)
D.19 RSSs for vertical normal arm movements (no beat) 179
D.20 RSSs for vertical normal arm movements (with beat)
D.21 RSSs for vertical faster arm movements (no beat)
D.22 RSSs for vertical faster arm movements (with beat)
D.23 RPs for horizontal normal arm movements
D.24 RPs for horizontal faster arm movements
D.25 RPs for vertical normal arm movements
D.26 RPs for vertical faster arm movements
D.27 REC values for horizontal arm movements
D.28 REC values for vertical arm movements
D.29 DET values for horizontal arm movements
D.30 DET values for vertical arm movements
D.31 RATIO values for horizontal arm movements
D.32 RATIO values for vertical arm movements
D.33 ENTR values for horizontal arm movements
D.34 ENTR values for vertical arm movements
E.1 Time series for horizontal arm movements (sg0)
E.2 Time series for horizontal arm movements (sg1) 203
E.3 Time series for horizontal arm movements (sg2)
E.4 Time series for vertical arm movements (sg0)

E.5 Time series for vertical arm movements (sg1)
E.6 Time series for vertical arm movements (sg2)
E.7 Minimum embedding dimensions for horizontal arm movements 20
E.8 Minimum embedding dimensions for vertical arm movements 21
E.9 First minimum AMI values for horizontal arm movements
E.10 First minimum AMI values for vertical arm movements
E.11 RSSs for horizontal normal arm movements
E.12 RSSs for horizontal faster arm movements
E.13 RSSs for vertical normal arm movements
E.14 RSSs for vertical faster arm movements
E.15 RPs for horizontal normal arm movements
E.16 RPs for horizontal faster arm movements
E.17 RPs for vertical normal arm movements
E.18 RPs for vertical faster arm movements
E.19 REC values for horizontal arm movements
E.20 REC values for vertical arm movements
E.21 DET values for horizontal arm movements
E.22 DET values for vertical arm movements
E.23 RATIO values for horizontal arm movements
E.24 RATIO values for vertical arm movement
E.25 ENTR values for horizontal arm movements
E.26 ENTR values for vertical arm movements