8 (a)	A geometric progression has a second term of 12 and a sum to infinity of 54. Fit values of the first term of the progression.	nd the possible [4]

(i)	Find an expression, in terms of p , q and n , for S_n .	[3]
(ii)	Given that $S_4 = 40$ and $S_6 = 72$, find the values of p and q .	[2]
(ii)		[2]
(ii)	Given that $S_4 = 40$ and $S_6 = 72$, find the values of p and q .	[2]
(ii)	Given that $S_4 = 40$ and $S_6 = 72$, find the values of p and q .	[2]
(ii)	Given that $S_4 = 40$ and $S_6 = 72$, find the values of p and q .	[2]
(ii)	Given that $S_4 = 40$ and $S_6 = 72$, find the values of p and q .	[2]
(ii)	Given that $S_4 = 40$ and $S_6 = 72$, find the values of p and q .	[2]
(ii)	Given that $S_4 = 40$ and $S_6 = 72$, find the values of p and q .	[2]
(ii)	Given that $S_4=40$ and $S_6=72$, find the values of p and q .	[2]
(ii)	Given that $S_4=40$ and $S_6=72$, find the values of p and q .	[2]
(ii)	Given that $S_4 = 40$ and $S_6 = 72$, find the values of p and q .	[2]
(ii)	Given that $S_4=40$ and $S_6=72$, find the values of p and q .	[2

.....