

8-31-05

IPW

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:
Ted Johansson et al.

§ Group Art Unit: 2811

Serial No.: 10/828,712

§ Examiner:

Filed: April 21, 2004

§

Title: Silicon-Germanium Mesa
Transistor

§
§
§
§

Docket No. 068758.0182
Client Ref.: P14802US1/RF/HS

Mail Stop
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

I hereby certify that this correspondence is being deposited with the United States Postal Service as Express Mail No. EV628936597US addressed to: Mail Stop, Commissioner of Patents, Office, P.O. Box 1450, Alexandria, VA 22313-1450, on

8/30/05

Jason Lee Irby

SUBMISSION OF PRIORITY DOCUMENT

Dear Sir:

We enclose herewith a copy of Swedish patent application SE 0103726-6 which is the priority document for the above-referenced patent application previously submitted to the Patent and Trademark Office on July 14, 2004. Applicants also enclose herewith a true copy of the Postcard and Express Mail which indicated the deposit of the package bearing the previously submitted certified priority document.

Respectfully submitted,
BAKER BOTTS L.L.P.
Attorney for Applicants

Andreas Grubert

Andreas Grubert
Limited Recognition No. L0225
Limited Recognition Under 37 C.F.R.
§11.9(b)

Date: August 30, 2005

SEND CORRESPONDENCE TO:
BAKER BOTTS L.L.P.
CUSTOMER ACCOUNT NO. 31625
512.322.2545
512.322.8383 (fax)

PRV

PATENT- OCH REGISTRERINGSVERKET

Patentavdelningen

**Intyg
Certificate**

Härmed intygas att bifogade kopior överensstämmer med de handlingar som ursprungligen ingivits till Patent- och registreringsverket i nedannämnda ansökan.

This is to certify that the annexed is a true copy of the documents as originally filed with the Patent- and Registration Office in connection with the following patent application.

(71) Sökande Telefonaktiebolaget L M Ericsson (publ), Stockholm
Applicant (s) SE

(21) Patentansökningsnummer 0103726-6
Patent application number

(86) Ingivningsdatum 2001-11-09
Date of filing

Stockholm, 2004-05-06

För Patent- och registreringsverket
For the Patent- and Registration Office

Hjördis Segerlund
Hjördis Segerlund

Avgift
Fee 170:-

SILICON-GERMANIUM MESA TRANSISTOR**TECHNICAL FIELD OF THE INVENTION**

The present invention generally relates to the field of silicon IC-technology, and more specifically the invention relates to
5 the formation of an SiGe mesa transistor in a semiconductor process flow, especially designed for bipolar RF-IC's; to the SiGe mesa transistor formed; and to an integrated circuit comprising such an SiGe mesa transistor.

DESCRIPTION OF RELATED ART AND BACKGROUND OF THE INVENTION

10 Advanced silicon bipolar, CMOS or BiCMOS circuits are used today for high-speed applications in the 1-5 GHz frequency range, replacing circuits previously only possible to realize using III-V based technologies. Their major application area is for modern telecommunication systems. The circuits are used mostly
15 for analog functions, e.g. for switching currents and voltages, and for high-frequency radio functions, e.g. for mixing, amplifying, and detecting functions.

To obtain transistors well suited for e.g. telecommunication applications, not only a low transit time (high f_T) is needed,
20 but also a high maximum oscillation frequency (f_{max}), and good linearity are required. Today's silicon bipolar junction transistors (BJT) technology can offer f_T up to 50 GHz, but is reaching its physical limitations because of the trade-off between the thickness and resistivity of the base layer.

25 By adding some (typically 10-20%) germanium into the base of a conventional BJT, the high-frequency characteristics can be improved substantially. The new device is an SiGe (silicon germanium) HBT (heterojunction bipolar transistor) structure.

The base layer structure is usually grown with MBE (Molecular Beam Epitaxy) or CVD (Chemical Vapor Deposition), but it is also possible to implant germanium into the silicon, but with less control of the doping profile. During recent years, SiGe-based
5 transistors have shown record high-frequency performance with regards to f_T and f_{max} (maximum oscillation frequency), see "Enhanced SiGe Heterojunction Bipolar Transistors with 160 GHz- f_{max} " by A. Schüppen et al., IEEE IEDM Tech Dig., p. 743, 1995. For high-frequency applications, e.g. wireless communication,
10 the SiGe HBT can be used to boost performance of existing double-polysilicon RF-ICs and BiCMOS technologies. An extensive review of SiGe epitaxial base technology is given in "SiGe HBT Technology: A New Contender for Si-Based RF and Microwave Circuit Applications" by J.D. Cressler, IEEE TED-46, p. 572, May
15 1998.

SiGe can be added into existing IC-process flows in different ways. Some typical examples of extending a BiCMOS process with SiGe-base transistors can be found in "BiCMOS6G: A high performance 0.35 μm SiGe BiCMOS technology for wireless
20 applications" by A. Monroy et al., IEEE BCTM 1999, p. 121 and in "A 0.24 μm SiGe BiCMOS Mixed-Signal RF Production Technology Featuring a 47 GHz F_T HBT and 0.18 μm L_{eff} CMOS" by S.A. St.Onge et al., IEEE BCTM99, p. 117, 1999.

A simpler, yet feasible method to fabricate high-performance
25 SiGe HBT transistor, is by using epitaxial deposition of the device layers, and then form the device structure by mesa transistor etching, similar to fabrication of compound semiconductor devices (e.g. GaAlAs HBTs). The mesa structures have been widely used to quickly verify concepts and explore
30 device characteristics because of its simplicity and ease of fabrication, see "Si/SiGe HBTs for Applications in Lower Power

ICs" by D. Behammer et al., Solid-State Electronics, Vol. 39, No. 4, p. 471, 1996.

IC-type of circuits generally require more complicated structures than a few transistors, and the mesa concept, 5 discussed in the previous section, is generally not suitable for this. With refined fabrication schemes, such as described in US 5,587,327 to U. König et al. and in US 5,821,149 to A. Schüppen et al., some of the drawbacks can be circumvented. However, a few critical process steps still remain, such as the 10 differential epitaxy (simultaneous epitaxial growth on silicon substrate openings, and deposition of non-epitaxial material on field areas and other structures), and the critical removal of the part of the emitter layer on the extrinsic base areas, which make the concept less feasible for high-volume semiconductor 15 production.

A simpler method to realize and integrate a mesa-type of SiGe HBT transistor into a semiconductor process flow suitable for high-volume production is therefore needed.

SUMMARY OF THE INVENTION

20 Accordingly, it is an object of the present invention to provide a method for integration of a mesa-type of SiGe transistor structure into a conventional process flow, such as a silicon bipolar double-polysilicon process flow.

25 It is a further object of the invention to provide such a method, wherein the epitaxial growth of the mesa layer is simple and easy.

It is a further object of the invention to provide such a method, which requires a minimum of process steps.

- To this end the present invention comprises according to a first aspect a method in the fabrication of a silicon-germanium mesa transistor in a semiconductor process flow, particularly in a process flow designed for a bipolar integrated circuit for radio frequency applications, comprising the steps of:
- providing a p-type doped silicon bulk substrate having an n⁺-type doped subcollector region for the mesa transistor in a surface thereof;
 - depositing epitaxially on the n⁺-type doped subcollector region a silicon layer comprising n-type dopant;
 - depositing epitaxially thereon a silicon layer comprising germanium and p-type dopant;
 - forming in the epitaxial layers field isolation areas, preferably shallow trenches, around, in a horizontal plane, a portion of the epitaxial layers to simultaneously define, preferably by means of etching, an n-type doped collector region on the subcollector; a p-type doped mesa base region on the collector region; and an n-type doped collector plug on the subcollector, but separated from the n-type doped collector region and the p-type doped base region; and
 - forming in the p-type doped base region an n-type doped emitter region for the mesa transistor.

Preferably, the silicon layer comprising germanium and p-type dopant is provided as a multilayer structure including a plurality of layers in a stack. Some of the layers may include intrinsic silicon only.

Carbon may be added to the silicon layer comprising germanium and p-type dopant to retard diffusion of the p-type dopant.

The temperature budget shall during the fabrication of the silicon-germanium mesa transistor be kept at a minimum. Preferably, temperatures are kept below or at about 800 °C subsequent to the deposition of the silicon layer comprising
5 germanium and p-type dopant apart possibly from a step of emitter activation and drive-in. Such emitter activation and drive-in step may be performed at a higher temperature using an RTA (Rapid Thermal Anneal) to electrically activate dopants, and to set the final doping profiles of the emitter-base junction of
10 the SiGe mesa transistor. Typically, the emitter activation and drive-in step is performed at high temperature, e.g. at about 1050 °C, but during a short time of about 5-20 seconds.

Further, the present invention includes according to a second aspect an SiGe mesa transistor fabricated in accordance with the
15 first aspect of the invention.

Still further, the present invention includes according to a third aspect an integrated circuit comprising at least one of the SiGe mesa transistor according to the second aspect of the invention.

20 The deposition of the base layer is made blanket on a wafer with a plain silicon upper layer, which provides for a simpler epitaxial growth with less requirements than prior art techniques.

25 The formation of field isolation areas around, in a horizontal plane, a portion of the epitaxial layers (base and n-well), preferably by means of STI (shallow trench isolation) etching, simultaneously defines the collector region; the mesa base region; and the collector plug of the SiGe mesa transistor. Preferably, the STI etching is performed down to the
30 subcollector.

Using a conventional RF-IC bipolar process flow with shallow trench isolation, the SiGe epitaxial layer for the base is deposited directly after the intrinsic epitaxial layer for the collector. The etching of the shallow trenches simultaneously 5 forms the mesa transistor structure without further additional steps.

Further characteristics of the invention and advantages thereof will be evident from the detailed description of preferred embodiments of the present invention given hereinafter and the 10 accompanying Figs. 1-4, which are given by way of illustration only, and thus are not limitative of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Figs. 1-4 are highly enlarged cross-sectional views of a portion of a semiconductor structure during processing according to a 15 preferred embodiment of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

A preferred method of manufacturing an SiGe mesa transistor is overviewed below with reference to Figs. 1-4.

A substrate 10 consisting of a highly p⁺-doped wafer 11 is 20 provided, on which a low-doped silicon layer 12 of p-type is grown. Alternatively, the p-type wafer can be a homogeneously low-doped p-type wafer (not illustrated).

In layer 12 buried n-doped 31 and p-doped 33 regions are formed by means of (i) forming a thin protective layer of silicon dioxide on the layer 12; (ii) forming a mask thereon by photolithographic methods to define an area for the SiGe mesa transistor; (iii) n⁺-type doping the areas defined by the mask; (iv) removing the mask; (v) heat treating the structure

obtained; (vi) optionally p-type doping the structure; and (vii) exposing the upper surfaces of regions 31 and 33. The region 31 is also referred to as a buried n⁺-doped subcollector.

5 Thereafter, an epitaxial silicon layer 41, preferably 0.6-0.7 µm thick, is grown on the surface, which layer is doped in selected regions to obtain regions of n- and p-type (n-wells and p-wells). The layer is preferable deposited by RP-CVD (reduced pressure chemical vapor deposition) using silane or
10 dichlorosilane. In Fig. 1 the complete layer 41 is n-type doped.

The process now continues according to the present invention with deposition of another epitaxial layer 174, which will form the base of the SiGe mesa transistor.

15 In the simplest version a silicon-germanium layer is epitaxially deposited and doped with p-type dopant. However, in a preferred version an Si/SiGe/Si-profile, as described by Table 1 below, is applied. It consists of a multilayer stack as listed in Table 1 in order of deposition.

20 The base structure can be deposited using a variety of methods: RP-CVD, UHV-CVD or MBE. In each case, the base multilayer 174 is best grown in one deposition sequence or run.

It shall be appreciated that the base layer 174 may comprise fewer or more than five layers with other thicknesses and
25 compositions as long as the silicon-based multilayer 174 comprises germanium and p-type dopant. The germanium and the p-type dopant may be added during the epitaxial growth, but one of them or both may alternatively be added subsequent to the epitaxial growth of a pure silicon layer.

Table 1. Deposited layers for the base structure, in order of deposition (layer 1 being closest to the collector, layer 5 being the top surface layer). In the Table Ångstrom values indicate the thickness of respective layer, i-Si denotes undoped (intrinsic) silicon, percentage values indicate mean germanium concentration in atomic percentages ($Si_{1-x}Ge_x$), and B indicates base doping with boron concentration given in cm^{-3} . For the third layer a graded profile is achieved having a germanium content that varies from 12 to 0 % from bottom to top.

Layer #	Material
1	200 Å i-Si
2	400 Å i-SiGe, 12%
3	250 Å SiGe, 12-0 %, B 5E18
4	250 Å Si, B 5E18
5	400 Å i-Si

When using RP-CVD, the layers 41 and 174 may be grown in one deposition sequence using the same deposition equipment.

In the remaining fabrication process it is essential to keep a strict temperature budget, i.e. the combination of time and temperature, as otherwise the sharp boron doping profile in the base may widen by way of thermally activated diffusion, and the high-frequency properties (e.g. f_T) of the resulting SiGe mesa transistor will degrade. Therefore, at all possible steps, thermal oxidation will be done at temperatures in the low range of what is commonly used for this kind of process steps, preferably not higher than about 800 °C.

As a further precaution to avoid base widening, carbon can be added into the base layer 174 during or subsequent to the epitaxial deposition thereof. Such provisions will retard the boron diffusion and maintain a narrow doping profile after heat 5 treatments. For further details regarding this, reference is made to DE 19652423 (B. Heinemann, G. Lippert, and H. Osten, 1998), which publication hereby is incorporated by reference.

The thickness of the layer 174 is in the example shown in Table 1 1500 Å. In following etching and doping steps this has to be 10 accounted for, and thus implantation energies and etching depths have to be slightly increased compared to a conventional fabrication process, where no base layer 174 is added at this point in the process. Reference is here made to Swedish patent application No. 0101567-6, which is hereby incorporated by 15 reference. However, the thickness of the base layer 174 is so small that any changes of implantation energies and etching depths may not be necessary.

In order to define active regions in the layers 41 and 174 and to isolate these regions shallow trenches are formed. Firstly, 20 an oxide layer 42 is formed on top of the base layer 174 and a silicon nitride layer 43 is deposited thereon. The resulting structure is shown in Fig. 1.

A hard mask is then formed by the steps of patterning and etching away the silicon nitride 43 and oxide 42 layers at areas 25 where the trenches are to be formed. The shallow trenches are then defined by etching the structure using remaining portions of the layers 42 and 43 as hard mask. Simultaneously, an n-type doped collector region (n-well) 41 on top of the subcollector 31; a p-type doped base region 174 for the SiGe mesa transistor 30 thereon; and an n-type doped collector plug 41 on the subcollector 31, but separated from the n-type doped collector

region 41 and the p-type doped base region 174 by the shallow trenches, are defined.

The shallow trenches are later in the process flow filled with oxide 81, see e.g. Fig. 3.

5 It shall be appreciated that the shallow trenches can be formed such that they extend vertically from the upper silicon surface, i.e. the upper surface of layer 174, and down into the subcollector 31 (not illustrated in Figs. 1-4).

10 Next, deep trenches are to be formed around the SiGe mesa transistor for component isolation. The formation of deep trenches is, however, optional.

15 The deep trenches are formed by the steps of (i) forming a hard mask for the deep trenches by depositing a silicon dioxide layer; and patterning and etching this silicon dioxide layer to define openings for the deep trenches; (ii) etching the deep trenches; (iii) removing the remaining portions of the oxide layer; (iv) growing a thin oxide on top of the structure; (v) filling the deep trenches with deposited oxide (the thin grown oxide and the deposited oxide being together denoted by 71) and 20 polysilicon 72; (vi) optionally planarizing the polysilicon; and (vii) etching back the structure to remove all polysilicon from the shallow trench areas. The resulting structure is shown in Fig. 2.

25 Subsequently thereto, the shallow trenches are filled with oxide 81, and the nitride 43 and oxide 42 layers are removed, and so is the deposited oxide on top of the nitride layer 43.

The isolation scheme is further described in the international patent application publication WO 0120664, which is hereby incorporated by reference.

Thereafter, a thermal oxide is grown on exposed silicon surfaces (portions thereof are visible as oxide 111 in Fig. 3).

For the formation of the SiGe mesa transistor an n-type doped low-resistance path from the surface of the wafer to the 5 subcollector 31 is needed. Such a path is formed by photolithographic patterning followed by n-type doping to define a low-resistance collector plug 41, 174 from the upper surface of the structure and down to the subcollector 31. Details of the selection of energy and dose are discussed in WO 9853489, which 10 publication being hereby incorporated by reference. Note that the remaining portion of layer 174 on top of the n-type doped collector plug 41 obtained during etching of the shallow trenches (Fig. 2) achieves an n-type net doping, and the complete collector plug is denoted by 41, 174 in Fig. 3. The 15 oxide layer present on the collector plug 41, 174 is removed.

Subsequently, a thin silicon nitride layer is deposited (remaining portions thereof denoted by 141 in Fig. 3), the purpose of which is to add to the insulator layer 111 deposited in the emitter/base area of the SiGe mesa transistor resulting 20 in lower parasitic capacitance for the base-collector junction; and to serve as an oxidation-resistant mask for the collector plug 41, 174.

Next follow a number of conventional process steps in the fabrication of the SiGe mesa transistor including: (i) 25 formation of an emitter/base opening; (ii) formation of an extrinsic base layer 151; (iii) formation of an oxide layer 152; (iv) formation of an emitter opening within the emitter/base opening; (v) optional formation of a secondary implanted collector 171; (vi) formation of p-type base contact 30 paths 173; (vii) formation of a base oxide 172 in the emitter opening, e.g., by means of depositing a TEOS followed by short

densification in an oxidizing environment at 800 °C (hereby a lower temperature budget can be used); and (viii) formation of nitride sidewall spacers 181; In this last step the thin silicon nitride layer 141 is removed except where contributing 5 to spacers 181 and under the extrinsic base layer 151. The resulting structure is shown in Fig. 3.

The actual side-wall spacers can be formed in a two-step process where the nitride 181 first is removed selective to the oxide 172 in the emitter opening, whereupon exposed silicon on 10 the collector plug (remnants of the epi-base) can be removed if necessary. The emitter is protected by the oxide layer 182 during this etch. The remaining oxide 172 in the emitter opening is then removed.

Thereafter, an n-type doped polysilicon layer is formed and 15 subsequently etched to define contact regions 191 and 192 to the emitter and the collector for the SiGe mesa transistor. Note that the oxide layer 152 on top of the p-type polysilicon layer 151 is removed except beneath the emitter contact region 191.

20 Next, a bi-layer 200, 201 consisting of an oxide and a nitride is deposited on the structure. The structure is then exposed to high temperature to activate and drive-in the previously implanted dopants.

In a preferred embodiment, the heat treatment is performed in 25 nitrogen at about 1050 °C during 5-20 seconds using an RTA (Rapid Thermal Anneal). The purpose of this anneal is to electrically activate the implanted species, and to set the final doping profiles of the emitter-base junction of the SiGe mesa transistor.

Note that the previously deposited silicon oxide 200 and silicon nitride 201 layer remain on the wafer. Their purpose is to stop out-diffusion of the implanted dopants to the surroundings during the heat treatment.

- 5 Also note that this heat treatment being the only one in the process flow subsequent to the deposition of the mesa base layer 174, which is performed at a temperature above about 800 °C.

The n-type dopant in the emitter contact 191 will by diffusion penetrate into the base 174 and form the emitter 202. At the
10 same time the p-type dopant of the layer 151 will diffuse into base contact paths 173. The resulting structure is shown in Fig.
4.

Finally, the structure is etched anisotropically, such that outside spacers are formed; exposed silicon surfaces are
15 optionally provided with silicide to reduce the resistance; and passivation and metal layers are formed.

The process flow thus described for the manufacturing of SiGe mesa transistors has a number of advantages.

The critical deposition of the epitaxial base layer (see Table
20 1) is made blanket on a wafer with a plain silicon upper layer. Other known processes require either selective epitaxial deposition (on exposed silicon areas only on structures partially covered by masks) with small process windows, which put high requirements on the epitaxial growth, or differential
25 deposition (on silicon and oxide areas), where growth parameters on the different areas may differ.

No separate mesa etch is required since this step is combined with the STI-etch. Simultaneously, with the etching of the mesa base 174, the shallow trenches are formed, and the n-type doped

collector region (n-well) and the n-type doped collector plug are defined. Etching the STI down to the buried n+ layer completely isolates the final mesa structure.

The present process flow is easily integrated into existing
5 double-poly process flows.

It will be obvious that the invention may be varied in a plurality of ways. Such variations are not to be regarded as a departure from the scope of the invention. All such modifications as would be obvious to one skilled in the art are
10 intended to be included within the scope of the appended claims.

CLAIMS

1. A method in the fabrication of a silicon-germanium mesa transistor in a semiconductor process flow, particularly in a process flow designed for a bipolar integrated circuit for radio frequency applications, characterized by the steps of:
 - providing a p-type doped silicon bulk substrate (10) having an n'-type doped surface region (31) being a subcollector for the mesa transistor;
 - depositing epitaxially thereon a silicon layer (41) comprising n-type dopant;
 - depositing epitaxially thereon a silicon layer (174) comprising germanium and p-type dopant;
 - forming in said epitaxial layers (41, 174) field isolation areas (81) around, in a horizontal plane, a portion of said epitaxial layers (41, 174) to simultaneously define an n-type doped collector region (41) for the mesa transistor on the subcollector (31); a p-type doped base region (174) for the mesa transistor thereon; and an n-type doped collector plug (41) on the subcollector (31), but separated from the n-type doped collector region (41) and the p-type doped base region (174); and
 - thereafter forming in said p-type doped base region (174) an n-type doped emitter region (202) for the mesa transistor.
2. The method as claimed in claim 1 wherein said field isolation areas (81) are shallow trenches (STI) and said shallow trenches (81) are formed and said n-type doped collector region (41); said p-type doped base region (174); and said n-type doped

collector plug are defined simultaneously by means of a single etching step.

3. The method as claimed in claim 2 wherein etching in said single etching step is performed, in a vertical direction, at 5 least down to said subcollector (31).

4. The method as claimed in any of claims 1-3 wherein said germanium and p-type dopant are added to said silicon layer (174) in-situ during said epitaxial deposition.

5. The method as claimed in any of claims 1-3 wherein said 10 silicon layer (174) comprising germanium and p-type dopant is a multilayer structure.

6. The method as claimed in claim 5 wherein said multilayer structure includes at least one intrinsic silicon layer.

7. The method as claimed in claim 6 wherein said multilayer 15 structure includes at least one silicon-germanium layer between two intrinsic silicon layers.

8. The method as claimed in any of claims 1-7 wherein said silicon layer (174) comprising germanium and p-type dopant is deposited by anyone of the techniques RP-CVD, UHV-CVD and MBE.

20 9. The method as claimed in claim 8 wherein said silicon layer (41) comprising n-type dopant and said silicon layer (174) comprising germanium and p-type dopant are both grown by RP-CVD in a single deposition sequence using the same deposition equipment.

25 10. The method as claimed in any of claims 1-9 wherein carbon is added to said silicon layer (174) comprising germanium and p-type dopant to retard diffusion of said p-type dopant.

11. The method as claimed in any of claims 1-10 wherein the temperature during the fabrication of said silicon-germanium mesa transistor is kept below or at about 800 °C subsequent to the deposition of said silicon layer (174) comprising germanium and p-type dopant apart from during a step of emitter activation and drive-in.
5
12. The method as claimed in claim 11 wherein the step of emitter activation and drive-in is performed using an RTA (Rapid Thermal Anneal) to electrically activate dopants, and to set the final doping profiles of the emitter-base junction of the SiGe mesa transistor
10
13. The method as claimed in claim 11 or 12 wherein the step of emitter activation and drive-in is performed at high temperature, but during a short time of about 5-20 seconds.
14. The method as claimed in any of claims 1-13 wherein deep trenches (72) are formed to surround, in a horizontal plane, said n-type doped collector region (41); said p-type doped base region (174); and said n-type doped collector plug for isolation of said silicon-germanium mesa transistor.
15
15. An SiGe mesa transistor fabricated in accordance with the method as claimed in any of claims 1-14.
20
16. An integrated circuit comprising at least one of the SiGe mesa transistor as claimed in claim 15.

ABSTRACT

A method in the fabrication of a silicon-germanium mesa transistor in a semiconductor process flow comprises the steps of providing a p-type doped silicon bulk substrate (10) having an n-type doped surface region (31) being a subcollector; 5 depositing epitaxially thereon a silicon layer (41) comprising n-type dopant; depositing epitaxially thereon a silicon layer (174) comprising germanium and p-type dopant; forming in the epitaxial layers (41, 174) field isolation areas (81) around, in a horizontal plane, a portion of the epitaxial layers (41, 174) to simultaneously define an n-type doped collector region (41) 10 on the subcollector (31); a p-type doped base region (174) thereon; and an n-type doped collector plug on the subcollector (31), but separated from the n-type doped collector region (41) 15 and the p-type doped base region (174); and forming in the p-type doped base region (174) an n-type doped emitter region.

(Fig. 2)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

1/2

Fig. 1

Fig. 2

2/2

Fig. 3

Fig. 4