## Let's start!

#### Today's Goals

- Understand where NLP comes from
- Learn about the different steps of preprocessing
- Understand the use of
  - parts of speech,
  - parsing, and
  - named entities



#### Text is an exploding data source

Exabytes = 1M TB

120<sub>[</sub>

- You read ~9000 words per day
- = 200.000.000 words in a lifetime
- $\bullet$  = 0.4 GB of data

60

44 billion GB of new data each day

60-80% GROWTH/YEAR

UNSTRUCTURED DATA

STRUCTURED DATA

Bocco2017

## NLP is booming



#### So, what's NLP anyway?



#### The two sides of NLP



informed linguistic hypotheses large-scale statistical analysis



#### A very Brief History of NLP



approx. 1980s

2015

#### Structure of NLP

Extract information from text: topics, trends

Classify text sentiment, content type, author profile

Generate text: translations, automated responses





#### Two Uses of NLP



# Linguistic Analysis

## Examples of Analysis



# Pre-processing

```
<div id="text">I've been in New York
in 2011, but didn't like it. I
preferred Los Angeles.</div>
```

# GOAL: MINIMIZE VARIATION

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
  - numbers
  - lemmas vs. stems
- Remove unwanted words
  - stopwords
  - content words (use POS tagging!)
- join collocations

I've been in New York in 2011, but didn't like it. I preferred Los Angeles.



- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
  - numbers
  - lemmas vs. stems
- Remove unwanted words
  - stopwords
  - content words (use POS tagging!)
- join collocations

I've been in New York in 2011, but didn't like it.

I preferred Los Angeles.

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
  - numbers
  - lemmas vs. stems
- Remove unwanted words
  - stopwords
  - content words (use POS tagging!)
- join collocations

I 've been in New York in 2011, but did n't like it.

I preferred Los Angeles .

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
  - numbers
  - lemmas vs. stems
- Remove unwanted words
  - stopwords
  - content words (use POS tagging!)
- join collocations

```
i 've been in new york in 0000, but did n't like it.
```

i preferred los angeles .

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
  - numbers
  - lemmas vs. stems
- Remove unwanted words
  - stopwords
  - content words (use POS tagging!)
- join collocations

```
i have be in new york in 0000, but do not like it.
```

i prefer los angeles.

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
  - numbers
  - lemmas vs. stems
- Remove unwanted words
  - stopwords
  - content words (use POS tagging!)
- join collocations

- i new york 0000, like
- i prefer los angeles.

- Remove formatting (e.g. HTML)
- Segment sentences

new york 0000 like

Tokenize words

prefer los angeles

- Normalize words
  - numbers
  - lemmas vs. stems
- CONTENT = (NOUN, VERB, NUM)
- Remove unwanted words
  - stopwords
  - content words (use POS tagging!)
- join collocations



- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
  - numbers
  - lemmas vs. stems
- Remove unwanted words
  - stopwords
  - content words (use POS tagging!)
- join collocations

new york 0000 like

prefer los angeles

```
<div id="text">I've been in New York
in 2011, but didn't like it. I
preferred Los Angeles.</div>
```



"BAG OF WORDS"

new york 0000 like

prefer los\_angeles

# Parts of Speech

Grassfed highland Chianina beef with handcut fries and 29,—seasonal micro greens

Rich, tender, golden-brown beef with crisp 18, fries and tender greens

Savory beef with delicious fries 12,—and tasty salad

#### ADJs = price?





| Open class words                                      | Closed class words                                                | Other                                   |
|-------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|
| ADJ adjectives: awesome, red                          | ADP adpositions: over, before                                     | <b>PUNCT</b> punctuation marks: !, ?, – |
| ADV adverbs: quietly, where, never                    | Aux auxiliary/modal verbs: have (been), could (do), will (change) | SYM symbols: %,<br>\$, :)               |
| INTJ interjections: ouch, shhh                        | <b>CCONJ</b> coordinating conjunctions: <i>and, or, but</i>       | x other: pffffrt                        |
| Noun nouns: book, war                                 | DET determiners: a, they, which                                   |                                         |
| <b>PROPN</b> proper nouns: Rosa, Twitter              | NUM numbers. Exactly what you would think it is                   |                                         |
| <b>VERB</b> full verbs: (she) codes, (they) submitted | PART particles: 's                                                |                                         |
|                                                       | PRON pronouns: you, her, myself                                   |                                         |
| 36                                                    | <b>SCONJ</b> subordinating conjunctions: <i>since, if, that</i>   | Rocconi                                 |

show {VERB, NOUN}

```
PART Show
Show
Show
Show
```

```
show show show show
```

Structured prediction: depends on the POS of a previous word



# Parsing

## Dependency Parsing

Facebook eventually acquire (Facebook, acquired WhatsApp after WhatsApp) hard negotiations.

WhatsApp was acquired acquire(Facebook,
by Facebook.
WhatsApp)

Facebook subsidiary acquire (WhatsApp, WhatsApp to acquire new look) look.



## Dependency Parsing



## Dependency Parsing

ac1: adjectival clause

advc1: adverbial clause modifier

advmod: adverbial modifier
amod: adjectival modifier
appos: appositional modifier

aux: auxiliary

case: case marking

**cc**: coordinating conjunction **ccomp**: clausal complement

clf: classifier

compound: compound

conj. conjunct cop: copula

csubj: clausal subject

dep: unspecified dependency

det: determiner

dislocated: dislocated elements

dobj: cirect object expl: expletive

**fixed**: fixed multiword expression

flat: flat multiword expression

goeswith: goes with iobj: idirect object

list: list marker

nmod: nominal modifier
nsubj
nominal subject
nummod: numeric modifier

obl: oblique nominal
orphan: orphan

parataxis: parataxis
punct: punctuation

reparandum: overridden disfluency

root: Dot

vocative: vocative

<sup>41</sup>**xcomp**: open clausal complement



#### Nancy gave Don a cold Big Mac

root



#### Support The Guardian

Subscribe →

Contribute ightarrow



News Opinion Sport Culture Lifestyle More~

Travel ► UK Europe US

#### Observer spring breaks City breaks

18888888888

Jane Dunford, Chris Moss, Mary Novakovich, Cella Topping

Mon 4 Feb 2019 11.00 GMT





#### Spring breaks: 5 of the best cities in Europe



#### Places:

```
{'Ada',
 'Antigone',
 'Belgrade',
 'Berlin',
 'Constitución',
 'Danube',
 'Florence',
 'France',
 'Mikser',
 'Rome',
 'Santa Cruz',
 'Savamala',
 'Schlachtensee',
 'Serbia',
 'Spain',
 'Tezga',
 'Ville',
 'Wannsee'}
```





| NE                                                 | Example |
|----------------------------------------------------|---------|
| PERSON                                             |         |
| NORP (Nationality OR Religious or Political group) |         |
| FAC (facility)                                     |         |
| ORG (organization)                                 |         |
| GPE (GeoPolitical Entity)                          |         |
| LOC (locations, such as seas or mountains)         |         |
| PRODUCT                                            |         |
| EVENT (in sports, politics, history, etc.)         |         |
| WORK_OF_ART                                        |         |
| LAW                                                |         |
| LANGUAGE                                           |         |
| DATE                                               |         |
| TIME                                               |         |
| PERCENT                                            |         |
| MONEY                                              |         |
| QUANTITY                                           |         |
| ORDINAL                                            |         |
| €ARDINAL (numbers)                                 | Bocconi |

# Wrapping up

#### Take Home Points

- NLP is a subfield of AI, using ML on linguistic problems to explore, predict, and generate text
- Preprocessing removes noise and unwanted variation
- Parts of speech (POS) denote a word's grammatical category
- Parsing denotes a word's grammatical function
- Named entities categorize a noun's semantic type

