

IBM NALAYATHIRAN 2022

Real-Time River Water Quality Monitoring and Control System

Domain: INTERNET OF THINGS

A PROJECT REPORT

Submitted by

Team ID: PNT2022TMID46026

A DHELIPAN RAJ
S DHILIPKUMAR
A ABDUL FAZIL
K KOUSHIKKARAN

From

SRM TRP ENGINEERING COLLEGE, TIRUCHIRAPPALLI

In fulfilment of project in IBM-NALAYATHIRAN 2022

INDEX

1.INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2.LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3.IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4.REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5.PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6.PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule

7.CODING & SOLUTIONING

- 7.1 Feature 1
- 7.2 Feature 2

8.TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9.RESULTS

9.1 Performance Metrics

10.ADVANTAGES & DISADVANTAGES

11.CONCLUSION

12.FUTURE SCOPE

13.APPENDIX

- 13.1 Source Code
- 13.2 GitHub & Project Demo Link

1.INTRODUCTION

1.1 Project Overview

River Water quality monitoring System

River water which is used as drinking water is a very precious commodity for all human beings. The system consists of several sensors which are used for measuring physical and chemical parameters of water. The parameters such as temperature, pH, and dissolved oxygen of the water can be measured. Using this system a person can detect pollutants from a water body from anywhere in the world. Current water quality monitoring system is a manual system with a monotonous process and is very time-consuming This paper proposes a sensorbased water quality monitoring system. The main components of Wireless Sensor Network (WSN) include a micro-controller for processing the system, communication system for inter and intra node communication and several sensors Real-time data access can be done by using remote monitoring and Internet of Things (IoT) technology Data collected at the IBM cloud Server and verify them to trigger the actions to be performed.

1.2 Purpose

Water quality refers to chemical, physical biological and radio logical characteristics of water. It is a measure of the condition of water relative to the necessities of one or more bio-tic species and or to any human need or purposes . Water quality monitoring is defined as a sampling and analysis of the water in lake, stream, ocean and river and conditions of the water body. Smart water quality monitoring is a process of real-time monitoring and the analysis of water to identify changes in parameters based on the physical, chemical and biological characteristics. Monitoring water quality is clearly important: in our seas, our rivers, on the surface and in our ports, for both companies and the public. It

enables us to assess how they are changing, analyze trends and to inform plans and strategies that improve water quality and ensures that water meets its designated use. There are several indicators determining water quality. These include dissolved oxygen, turbidity, bio indicators, nitrates, pH scale and water temperature. Monitoring water quality helps to identify specific pollutants, a certain chemical, and the source of the pollution. There are many sources of water pollution: wastewater from sewage seeping into the water supply; agricultural practices (e.g., the use of pesticides and fertilizer); oil pollution, river and marine dumping, port, shipping and industrial activity. Monitoring water quality and a water quality assessment regularly provides a source of data identify immediate issues – and their source.

- Identifying trends, short and long-term, in water quality.
- Data collected over a period of time will show trends, for example identifying increasing concentrations of nitrogen pollution in a river or an inland waterway. The total data will then help to identify key water quality parameters.
- Environmental planning methods: water pollution prevention and management.
- Collecting, interpreting and using data is essential for the development of a sound and effective water quality strategy. The absence of real-time data will however hamper the development of strategies and limit the impact on pollution control. Using digital systems and programs for data collection and management is a solution to this challenge.
- Monitoring water quality is a global issue and concern: on land and at sea.
 Within the European Union, the European Green Deal sets out goals for restoring biological biodiversity and reducing water pollution, as well as publishing various directives to ensure standards of water quality.
 Individual nation states, for example France, have also clear regulatory

frameworks requiring the effective monitoring of water quality. In the United States, the Environmental Protection Agency (EPA) enforces regulations to address water pollution in each state. Across the world, countries increasingly understand the importance of effective water quality monitoring parameters and methods.

2.LITERATURE SURVEY

2.1 Existing Problem:

Due to population growth, urbanization ,and climatic change ,competition for water resources is expected to increase, with a particular impact on agriculture, river water. Water will be suitableness to potable water monitoring compound spillage identification done rivers, remote estimation for swimming pools. It holds self-sufficient hubs that unite with the cloud to ongoing water control .The River water needed to be treated before it is used in agriculture fields, hence the parameters affecting the quality of river-water need to be analysed and to be used for water treatment purpose.

2.2 References:

- 1. K.S. Adu-Manu, C. Tapparello, W. Heinzelman, F.A. Katsriku, J.-D. Abdulai Water quality monitoring using wireless sensor networks: Current trends and future research directions ACM Transactions on Sensor Networks (TOSN) (2017).
- 2. S. Thombre, R.U. Islam, K. Andersson, M.S. Hossain IP based Wireless Sensor Networks: performance Analysis using Simulations and Experiments. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 7 (2016).

- 3. Rushikesh Kshirsagar, R.Mudhalwadkar, Saish Kalaskar Design and Development of IoT Based Water Quality Measurement System. The idea about low-cost IOT based portable approach for water quality measurements system. Because of its low-cost approach, everyone can afford to use it to determine quality of water(2019).
- 4. N. Vijayakumar, R. Ramya The real time monitoring of water quality in IoT environment. The parameters such as temperature, PH, turbidity, conductivity, dissolved oxygen of the water can be measured. The measured values from the sensors can be processed by the core controller. The raspberry PI B+ model can be used as a core controller (2015).
- 5. M.Chitra, D. Sadhihskumar, R. Aravindh, M. Murali, R. Vaittilingame IoT based Water Flood Detection and Early Warning System. The collected information (data) from the water level sensor and temperature and humidity sensor passed to Thingview Android application in order to find the flow graph level of the water level in the river and temperature, humidity values and sends SMS to the registered contact mobile numbers (2020).
- 6. Dr.Geetha IoT based real time water quality monitoring system using smart sensor WQM is a cost effective and efficient system designed to monitor drinking water quality with the help of IOT(2020).

2.3 Problem Statement:

The reduce the river water pollution and to monitor the parameters of river water and control measures can impact vegetation, health. The Real time analysis of Indicators of River water (Ph, salinity, nutrients, etc...)

IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas:

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviours and attitudes. It is a useful tool to helps teams better understand their users. Creating an effective solution requires understanding the true problem and the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.

3.2 Ideation & Brainstorming:

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate,

helping each other develop a rich amount of creative solutions. Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

3.3 Proposed Solution:

S.N	Parameter	Description
О		
1	Problem Statement (Problem t	Due to population growth,
	o be solved)	urbanization and climatic change,
		competition for water
		resources
		is expected to increase, with a particul
		ar impact on agriculture, river water.
2	Idea / Solution description	To monitor the water supply we
		implement IoT (Internet of
		Things)setup, for river water quality
		monitoring systems periodically
		checks,dust particles,temperature and
		PH level by sensors and notifies for
		public when the water quality vaires.
3	Novelty / Uniqueness	We use water detection sensor has
		unique advantage.It consumes less
		time to monitor than a manual method
		for checking polluted levels, and
		notifies immediately to reduce
		affected rate of pollution in water.
4	Social Impact / Customer	People who are living in rural areas
	Satisfaction	near to the river will be very satisfied
		with our idea.It will be useful to
		monitor water pollution in specific
		area.So this system prevent people

		from water pollution.It will be used for
		farming purpose to check quality
		water,temperature and PH level.Our
		Impact of this project is also create a
		social satisfaction for farmers too.
5	Business Model (Revenue	It costs low compared to other model.
	Model)	Our real time quality monitoring
		model has sensors easily helps to
		monitor and predict the affected water
		scale easily in farming, drinking water,
		aquaculture, and other industries. It
		notifies by sending directly to the
		corporation and they can further notify
		the people to aware immediately.
		Quick actions can be taken. With the
		help of efficient use of mobile
		network, IoT and continuous
		monitoring it will be revolutionized
		model.
6	Scalability of the Solution	Checking the river water quality for
		providing clean drinking water for the
		people, farming, promoting
		aquaculture, and other industries. It is
		the best replacement for checking
		water quality in laboratories and it is
		user-friendly. If we add more
		advanced sensors in future it can be
		used to monitor multiple levels in
		manapie ie veis in

	water.	It will show continuous real
	time va	lues in maintaining the quality
	of wate	r

3.4 PROBLEM SOLUTION:

Define CS, fit into

1. CUSTOMER SEGMENT(S) Normal people and industrialist are

The temperature of water can be monitored.

The PH level of water is monitored and identified.

5. AVAILABLE SOLUTIONS

- Amount of oxygen dissolved in
- Any kind of chemical substances should be presence in water.

our customer because all the have the basic knowledge in water quality and also they need a pure water. We are targeting the

people who are have the basic knowledge and who need to know the quality of water. As well as who are having water based industries.

6. CUSTOMER CONSTRAINTS

Network availability and available device are the biggest issue face by the customers and they need to spend a time to get daily update, it may high budget for some people. The resources in terms of financialas well as manpower are inadequate.

2. JOBS-TO-BE-DONE / PROBLEM

All the people and industrialist are suffers to know the quality of water and also monitor the PH, Humidity, presence of chemical substances, amount of dissolved oxygen. They are only need the quality of water because impure water should because the various diseases.

9. PROBLEM ROOT CAUSE

RC

The reason for available of this project to monitor the quality of water as well as the various substances are presence in water. We took this project to break the myth of utilizing the technology and also reduce the manpower

7. BEHAVIOUR

Directly related: Find better network availability, calculate the quality and quantity of water and also monitor simultaneously the quality and quantity of water.

Indirectly related: We should make the awareness to all other industries as well as people

4 REQUIREMENT ANALYSIS

4.1 Functional Requirements:

Following are the functional requirements of the proposed s olution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through registered credentials register confirmation e-mails
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP/SMS
FR-3	Log in to the System	Enter the OTP Check the Credentials Check the Access/Server

FR-4	Manage the Modules	Manage the system Admins of user	
		Manage and Monitor Details of	
		System User Manage the User	
		Roles Manage the User Accessibility and User PermissionManage User Details Privacy	
FR-5	Check Process Details	Temperature	
		Details	
		PH	
		Details	
		Turbidity	
		Details	
FR-6	Log out	Save the existing measurements Exit	

4.2 Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description				
NFR-1	Usability	Monitors the flow and quality of				
		ground water, and				
		investigates surface- and				
		ground-water				
		interactions.				
NFR-2	Security	The data and information are secured				
		in the application by				
		using the application				
		firewall.				
NFR-3	Reliability	The Real time sensor output values				
		with future predicted dat				
		storage with output efficiency				

		of 98%. It also	
		gives certainty for aquaculture safety.	
NFR-4	Performance	The performance of system has higher	
		efficiency and environmental friendly.	
NFR-5	Availability	It is available in the form of mobile UI	
		24 x 7 monitoring system.	
NFR-6	Scalability	The system has high scalability. Able	
		to be changed in size or	
		scale to give the best output.	
NFR-7	Stability	The ability of the system to bring itself	
		back to its stable	
		configuration. The stability	
		is high.	
NFR-8	Efficiency	The monitoring system is highly	
		efficient, high	
		mobility with	
		consumption of	
		power.	

5 PROJECT DESIGN

5.1 Data Flow Diagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

ALRONO UNO SCIARO

MOTT

SEMPERATURE SENSOR

BLUMCHTY SCHOOL

BUILDING SERVICE

BUILDING SERVICE

BUILDING SERVICE

WATER GUALITY RENSORS

WATER GUALITY RENSORS

Flow:

- 1. Sensing the water Parameter with sensors and Collecting Water parameter Data using Python.
- 2. Made Several Embedded Connection with Arduino Uno Board and also have some MQTT Service Connection.
- 3. Make IBM Cloud Connectivity and Also with IBM Watson Service.
- 4. Made Connection with RED-Service Node
- 5. Finally End Users can monitor the information through Mobile/Web Platform

miro

5.2 SOLUTION AND TECHNICAL ARCHITECTURE

Summary

This code pattern explains how to build an IOT based river water monitoring and controlling system with some predefined values.

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, managed, and delivered.

Components & Technologies:

Component	Description	Technology
Sensor Data	The data is collected form	ESP32 Wifi module
	the various sensor placed	Raspberry Pi.
	in the river sides.	
Database for Storage	The data/info need to be	MySQL-Oracle
	stored for accessing it in	
	future	
File Storage	File storage requirements	IBM Block Storage or Other
		Storage Service or Local
		Filesystem
Cloud Database	Database Service on	IBM cloud
	Cloud	
Data Storage	File storage requirements	IBM Block Storage
	Sensor Data Database for Storage File Storage Cloud Database	Sensor Data The data is collected form the various sensor placed in the river sides. Database for Storage The data/info need to be stored for accessing it in future File Storage File storage requirements Cloud Database Database Service on Cloud

Application Characteristics:

S.No	Characteristics	Description	Technology
1.	PH level	The PH level of	PH-sensor
	Monitoring	river water can be	
		monitored via	
		placing sensors in	
		rivers.	
2.	Temperatur	The temperature of	Temperature
	e Sensor	river water can be	sensor
		monitored	
3.	Turbidity	Turbidity	Turbidity Sensor
	sensor	monitoring	
		in river and stream	

5.3 User interface

User Type	Functional Requirement (Epic)	Use r Sto ry Numb er	User Story / Task	Acceptance criteria	Prio rity	Release
Customer (Mobileuser)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account /dashboard	High	Sprint-1
		USN- 2	As a user, I will receive confirmatio nemail once I have registered for the application	I can receive confirmation email & clickconfirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Google	I can register & access the dashboard with Google Login	Low	Sprint-2
		USN- 4	As a user, I can register for the application through G mail	I can access through Gmail	Medi um	Sprint-1
	Login	USN- 5	As a user, I can log into the application by entering email & password	Login Details are received to me.	High	Sprint-1
	Interface	USN- 6	As a user, I can log into the application by entering email & password.	Easy Access application	High	Sprint-1
Customer (Web user)	Dashboard	WUS N-7	As a web User, I can get all information	I can easily Understand how touse it.	High	Sprint-1

			(data)(Temp etc)			
Custom erCare Executi ve	View Perspective	CCE	As a Customer care, Ican view the data in graph plots	Easy Understanding of Graphs	High	Sprint-1
Administrator	Risk factor	ADMI N-1	As a Admin, Update must be done at each step and take care of any errors	Heavy Monitoing is Required.	High	Sprint-2

6. PROJECT PLANNING AND SCHEDULING

6.1SPRINT PLANNING & SCHEDULING:

TITLE	DESCRIPTI ON	DATE
Literature Survey & Information Gathering	Literature survey on the selected project is done by gathering information about related details on technical papers and web browsing.	06 OCTOBER 2022
Empathy Map	Prepared Empathy Map Canvas to combine thoughts and pains, gains of the project with all team members.	08 OCTOBER 2022

Ideation	Brainstorming session is conducted with all teammembers to list outall the ideas and prioritise the top 3 ideas.	09 OCTOBER 2022
Proposed Solution	Prepared the proposed solution document, which includes the novelty, feasibility of idea, business model social impact scalability of solution etc.	OCTOBER 2022
Problem Solution Fit	Prepared problem - solution fit document.	30 OCTOBER 2022

6.2 SPRINT DELIVERY SCHEDULE

Product Backlog, Sprint Schedule, and Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Membe rs
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	2	High	Dhelipan raj, Dhilipku mar
Sprint-1		USN-2	As a user, I will receive confirmation emailonce I have registered for the application	1	High	Dhelipan raj, Dhilipku mar
Sprint-2		USN-3	As a user, I can register for the application through Facebook	2	Low	Dhelipan raj, Dhilipku mar
Sprint-1		USN-4	As a user, I can register for the application through Gmail	2	Medium	Dhelipan raj, Dhilipku mar
Sprint-1	Login	USN-5	As a user, I can log into the application byentering email & password	1	High	Dhelipan raj, Dhilipku mar
	Dashboard				High	

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint -2	User interface experience	USN-6	As a user I need a proper user interface for the project which was contain the graphical representation of received data from the sensors	2	High	Dhelipan raj, Dhilipkumar, Abdul fazil,koushik karan
Sprint -2		USN-7	As a user, I can create a IBM cloud account for the data base which should able to store the data and gather the data from the sensors	1	Medium	Dhelipan raj, Dhilipkumar, koushikkaran ,abdul fazil
Sprint -2		USN-8	As I a user I can create node-red app for providing commands to the sensors in the IBMcloud	2	Medium	Dhelipan raj, Dhilipkumar, abdul fazil,koushik karan
Sprint -2		USN-9	As a user, I can create IOT Watson assistant forconverting the sensors data to the digital data	2	Low	Dhelipan raj, Dhilipkumar, Abdul fazil
Sprint -2		USN-10	As a user, I can create a fast to SMS app For providing alert the user which consuming waterwas not have the quality of consumable	1	High	Dhelipan raj, Dhilipkumar
Sprint -2		USN-11	As I a user, I can make cloudant data base in the IBM cloud for storing the data from the sensors for future references	2	High	Dhelipan raj, Dhilipkumar, Abdul fazil
Sprint -3	App interface creation	USN-12	As I a user, I can use the MIT APP INVERTER for creating the user interface which contains interface between of IBM cloud	1	Medium	Dhelipan raj, Dhilipkumar, Abdul fazil, Koushik

					karan
Sprint -3	USN-13	As I am a user, I can create a dashboard which was containing graphical representing the sensors measurements	1	Medium	Dhelipan raj, Dhilipkumar, Abdul fazil, Koushik karan
Sprint -3	USN-14	As I am a user, I can save or delete the previous measurements which was contain the sensor measurements	2	High	Dhelipan raj, Dhilipkumar, Abdul fazil,

					Koush ik karan
Sprint -3	USN-15	As I am a user, I need the devices was properly insulated and the devices was must be a water resistant	2	High	Dhelipan raj, Dhilipku mar, Abdul fazil, Koushik karan
Sprint -3	USN-16	As I am a user, I can create the devices which was implemented in the project should be	1	Low	Dhelipan raj, Dhilipku mar, Abdul fazil, Koushik karan.

Sprint	Functional	User	User Story / Task	Story	Priority	Team
	Requirement	Story		Points		Membe
	(Epic)	Number				rs
			maintain properly with the particular interval of time			
Sprint -3		USN-17	As I am a user, I need a simultaneous data collecting data from the sensors and also savethe received data to the cloudant /cloud dashboard	2	Low	Dhelipan raj, Dhilipku mar, Abdul fazil, Koush

						ik karan
Sprint -3		USN-18	As a user, I can manage the devices which wasimplemented in the project	1	High	Dhelipan raj, Dhilipku mar, Abdul fazil, Koushik karan
Sprint -3	User development	USN-19	As a admin, I can manage all the devices and find the drawbacks and also rectify that	1	High	Dhelipan raj, Dhilipku mar, Abdul fazil, Koushik karan

Sprint -3		USN-20	As a admin, I can manage the devices which was not working not properly I should replacethat device	1	Medium	Dhelipan raj, Dhilipku mar, Abdul fazil, Koush ik karan
Sprint -3		USN-21	As a admin, I can monitor the devices which was sending the correct data or not	1	Low	Dhelipan raj, Dhilipku mar, Abdul fazil, Koush ik karan
Sprint -3		USN-22	As a admin, I can make changes in the user interface which was able to understand the measurements was easily understandable by user/industry person	2	High	Dhelipan raj, Dhilipku mar, Abdul fazil, Koushik karan
Sprint -4	User command centre	USN-23	As a admin, I can create the command option in the user interface and able to perform the devices based on the commands	2	High	Dhelipan raj, Dhilipku mar, Abdul fazil, Koushik

					karan
Sprint -4	USN-24	As a user, I can give the command to the devicewhich was already able understand the command and also perform the function which was mention in the command	2	Medium	Dhelipan raj, Dhilipku mar, Abdul fazil, Koushik karan
Sprint -4	USN-25	As a user, I can need user interface was alwaysbe an eco-friendly which was designed in the user interface	2	Medium	Dhelipan raj, Dhilipku mar, Abdul fazil, Koush ik karan.
Sprint -4	USN-26	As a user, I need a user interface which was contains HTTP command format and also should contain the web page interface	1	High	Dhelipan raj, Dhilipku mar, Abdul fazil,

Project Tracker, Velocity & Burndown Chart:

Sprint	Total Story Points	Durat ion	Spri nt Start Date	Sprint End Date (Planne d)	Story Points Complete d(ason Planned	Sprint Release Date (Actual)
G : .	20	6 D	24.0	20.0	End Date)	27.0 . 2022
Sprint-	20	6 Days	24 Oct 2022	29 Oct 2022	20	27 Oct 2022
Sprint-	20	6 Days	28 Oct 2022	04 Nov 2022	30	30 Oct 2022
Sprint-	20	6 Days	03 Nov 2022	10 Nov 2022	49	04 Nov 2022
Sprint-	20	6 Days	08 Nov 2022	15 Nov 2022	50	09 Nov 2022

VELOCITY

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown chart:

7.CODING AND SOLUTIONING

7.1 NODE RED SERVICE ASSOCIATED WITH IBM CLOUD:

Node Red Dashboard:

8.TESTING

8.1Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	15	0	0	15
Client Application	45	0	0	45
Security	1	0	0	1
Outsource Shipping	2	0	0	2
Exception Reporting	10	0	0	10
Final Report Output	4	0	0	4
Version Control	3	0	0	3

8.2USER ACCEPTANCE TESTING:

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the REAL TIME RIVER WATER QUALITY MONITORING AND CONTROL SYSTEMS

project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resoluti on	Severi ty1	Severi ty2	Severi ty3	Severi ty4	Subtot al
By Design	9	5	4	3	21
Duplicate	2	0	2	0	4

External	3	4	1	2	10
Fixed	10	1	5	17	33
Not	0	0	1	0	1
Reproduce d					
Skipped	0	0	1	2	3
Won't Fix	0	3	3	1	7
Totals	24	13	17	25	79

			NFT - Risk Assessment							
	S.No	Project Name	Scope/feature	Functional Changes	Hardware Changes	Software Changes	Impact of	Load/Voluem Changes	Risk Score	Justification
		REAL TIME RIVER WATER QUALITY MONITORING AND CONTROL SYSTEM				_		_		
	1		New	Low	No Changes	Moderate	3days	>5 to 10%		As we have seen the changes

9.RESULT

9.1PERFROMANCE METRICS:

PERFORMANCE TABLE

PARAMETER	PERFORMANCE	DESCRIPTION
ADMIN TESTING	95%-100%	THE TESTING DONE
		BEFORE IT IS
		DEPLOYED AS AN APP
CUSTOMER	75-85%	THE CUSTOMER NEED
SATISFACTION		TO BE SATISFIED WITH
		THE MOBILE
		APPLICATION

USER INTERFACE	65-85%	THE APP CAN USED BY
		ANYONE.(EASE OF
		ACCESS)
SEVER RESPONSE	50-75%	url - response
DATA VALIDATION	60-80%	VALID DATA FROM THE
WITH NO. OF TEST	(15-30	APP
CASE	TESTCASE)	
ERROR	3-5%	REAL-TIME DELAY
		MAY OCCUR

10. ADVANTAGES AND DISADVANTAGES

ADVANTAGES:

- The prototype developed for water quality maintenance is very beneficial for safeguarding public health and also adds to the clean environment.
- The automation of this water monitoring, cleaning and control process removes the need of manual labor and thus saves time and money.
- The automation of the system makes the control and monitoring process more efficient and effective. Real time monitoring on mobile phone which is possible through the interface of plc with Arduino and Bluetooth module allows remote controlling of the system.

DISADVANTAGES:

- It is difficult to collect the water samples from all the area of thewater body.
- The cost of analysis is very high.
- The lab testing and analysis takes some time and hence the lab results does not reflect real time water quality measurement due to delay in measurement.
- The process is time consuming due to slow process of manual data collection from different locations of the water body.
- The method is prone to human errors of various forms.

11.CONCLUSION

Thus our project is used to Monitoring of Turbidity, PH & Temperature of Water makes use of water detection sensor with unique advantage and existing GSM network. The system can monitor water quality automatically, and it is low in cost and does not require people on duty. So the water quality testing is likely to be more economical, convenient and fast. The system has good flexibility. Only by replacing the corresponding sensors and changing the relevant software programs, this system can be used to monitor other water quality parameters. The operation is simple. The system can be expanded to monitor hydrologic, air pollution, industrial and agricultural production and so on. It has widespread application and extension value. By keeping the embedded devices in the environment for monitoring enables self protection (i.e., smart environment) to the environment. To implement this need to deploy the sensor devices in the environment for collecting the data and analysis. By deploying sensor devices in the environment, we can bring the environment into real life i.e. it can interact with other objects through the network. Then the collected data and analysis results will be available to the end user through the Wi-Fi.

12.FUTURE SCOPE

We use water detection sensor has unique advantage. It consumes less time to monitor than a manual method for checking polluted levels, and notifies immediately to reduce affected rate of pollution in water. People who are living in rural areas near to the river will be very satisfied with our idea. It will be useful to monitor water pollution in specific area. So this system prevent people from water pollution. It will be used for farming purpose to check quality water, temperature and PH level. Our Impact of this project is also create a social satisfaction for farmers too. The scalability of this project gives the addition of more different type of sensors. By interfacing the relay we can control the supply of water. We can also implement as a revenue model. This system could also be implemented in various industrial processes. The system can be modified

according to the needs of the user and can be implemented along with lab view to monitor data on computers.

13.APPENDIX

13.1SOURCE CODE:

PYTHON CODE TO PUBLISH DATA

```
import ibmiotf.application
import ibmiotf.device
import time
import random
import sys
from twilio.rest import Client
import keys
Client = Client(keys.account_sid, keys.auth_token)
organization = "5fcqlp"
deviceType = "MC_Device"
deviceId = "246810"
authMethod = "token"
authToken = "ddfk@123"
pH = random.randint(1, 14)
turbidity = random.randint(1, 1000)
```

temperature = random.randint(0, 100)

def myCommandCallback(cmd):

print("Command Received: %s" % cmd.data['command'])

```
print(cmd)
try:
  deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method":
authMethod,
            "auth-token": authToken}
  deviceCli = ibmiotf.device.Client(deviceOptions)
except Exception as e:
  print("caught exception connecting device: %s" % str(e))
  sys.exit()
deviceCli.connect()
while True:
  pH = random.randint(1, 14)
  turbidity = random.randint(1, 1000)
  temperature = random.randint(0, 100)
  data = {'pH': pH, 'turbid': turbidity, 'temp': temperature}
  def SMS():
    message = Client.messages.create(
       body="ALERT!! THE WATER QUALITY IS DEGRADED",
       from_=keys.twilio_number,
       to = keys.target_number)
    print(message.body)
```

if temperature>70 or pH<6 or turbidity>500:

```
SMS()
```

def myOnPublishCallback():

print("Published pH= %s" % pH, "Turbidity:%s" % turbidity, "Temperature:%s" % temperature)

success = deviceCli.publishEvent("demo", "json", data, qos=0, on_publish=myOnPublishCallback)

if not success:

print("Not Connected to ibmiot")

time.sleep(5)

deviceCli.commandCallback = myCommandCallback

deviceCli.disconnect()

OUTPUT

sms alert:(Twilio Sms Messaging Services):

Sent from your Twilio trial account - The Water is Safe to drink, No issues.

Sent from your Twilio trial account - The Water is UnSafe to drink, The Quality of water is Poor.

```
File Edit Format Run Options Window Help

account_sid = 'ACe34a52c4lb8b15c0f6820fe6eba916e5'
auth_token = '660a4790c19de4db8b34f6fd413fbe8f'
twilio_number='+14254751939'
my_phone_number='+917010681152'
```

PYTHON CODE FOR SMS(Sms.py):

from twilio.rest import

Clientimport Keys

client = Client(Keys.account_sid,

Keys.auth_token)message =

client.messages.create(

body="The Water is UnSafe to drink, The Quality of water is Poor.",

from_=Keys.twilio_number,

to=Keys.my_phone_number

print(message.body)

Mobile App:

13.2GIT-HUB LINK:

https://github.com/IBM-EPBL/IBM-Project-50060-1660891171

Youtube Link:

https://www.youtube.com/watch?v=97XTexOrF0c

G-Drive Link:

 $\frac{https://drive.google.com/drive/folders/1FBYFtZ3VxYyBDbHIHZhMTD2hL9}{GREa6P}$