Lecture 2D: Modular Arithmetic II

UC Berkeley EECS 70 Summer 2022 Tarang Srivastava

Announcements!

- Read the Weekly Post
- HW 2 and Vitamin 2 have been released, due Today (grace period Fri)
- No lecture, OH, or Discussions on July 4th

UC Berkeley EECS 70 - Tarang Srivastava

Repeated Squaring

How to find $x^y \pmod{m}$ for large exponents.

Example:
$$4^{42} \pmod{7}$$

$$4^{0} = 1$$
 $4^{1} = 4$
 $4^{2} = 16 = 2$
 $4^{4} = (4^{2})^{2} = (2)^{2} = 4$
 $4^{8} = (4^{4})^{2} = (4)^{2} = 16 = 2$
 $4^{16} = (4^{16})^{2} = (4^{16})^{2} = (4^{16})^{2} = 16 = 2$

Recap

- a = bg + V
- Division Algorithm a,b a= bg + V
- Greatest Common Divisor (GCD) Definition
- GCD Algorithm: Application and Proof gcal(x, y) = gcal(x) x mody)
- Every number has a unique prime factorization
 52= 13.2.2
- Mod as a Space: Defined Addition, Subtraction, Multiplication and Division
- Definition of Coprime gcd(い) コート
- Definition of Inverse and division via multiplying inverse
- Extended Euclid's Algorithm to find inverse axty = 1
- Repeated Squaring

Bijections

f: A -> 13

fla)= 22

A bijection is a function for which every $b \in B$ has a unique pre-image $a \in A$ such that f(a) = b. Note that this consists of two conditions:

- 1. f is *onto*: every $b \in B$ has a pre-image $a \in A$.
 - " injective "
- 2. f is one-to-one: for all $a, a' \in A$, if f(a) = f(a') then a = a'.

FUNCTION a • a • **b** • **b** • b• $C \bullet$ $C \bullet$ C • •3 d● d● d● • 4 **Injective** Surjective **Bijective** (one-to-one and onto) (one-to-one) (onto)

Bijections Examples

g is an inure of f if
g(f(25) = n +>c

A bijection is a function for which every $b \in B$ has a unique pre-image $a \in A$ such that f(a) = b. Note that this consists of two conditions:

- 1. f is *onto*: every $b \in B$ has a pre-image $a \in A$.
- 2. f is one-to-one: for all $a, a' \in A$, if f(a) = f(a') then a = a'.

$$f: A \rightarrow B$$
 and f is injective $|A| \leq |B|$

$$f$$
 is surjective $|A| \ge |B|$

$$fij$$
 bijlation fij by fij by fij fij

$$f(n) = 2^{2}$$

$$f(n) = n^{2}$$

$$f(n) = 2^{2}$$

$$f(n) = 2x$$

$$\text{Ihuge } \frac{1}{2}x$$

$$f(n) = 2x^3 - 2x$$

$$f(n) = 6$$

$$f(1) = 0$$

Surjectie

A Useful Lemma

$$f(x) = ax \quad (m \omega n)$$
 a ad $m = caprin$
 $f: \{0,1,..., m-1\} \rightarrow \{0,1,..., m-1\}$

Claim: $f(x) = ax \pmod{m}$ where a and m are coprime is a bijection.

Restated: The sequence 1a, 2a, 3a, ..., (m-1)a is a reordering of the numbers $\{1, 2, ..., m-1\}$.

Proof:

Assume for contradiction that
$$f$$
 is not a bijection. In then, f is, f is a contradiction that f is not a bijection. In then, f is a contradiction that f is not a bijection. In the f is a bijection.

Assume for contradiction that f is not a bijection.

In the f is a bijection.

In the f is a bijection.

In the f is a bijection.

Existence of an Inverse

Goal:

Jx & man

are 31 may m

Thm: if a and m are coprime, then a has an inverse in mod m

Proof:

Consider the sequence from before $|\alpha, 2a, ..., (m-1)a|$ We know this sequence is a bijection to $\{1, 2, ..., m-1\}$ if a and m are coprime. I some you into sequence that unpos to $\{1, 2, ..., m-1\}$ Thus, $\{1, 2, ..., m-1\}$ $\{1, 2, ..., m-1\}$

A Necessary Lemma

Lemma: $\frac{d}{dx}$ and m being coprime is a <u>necessary</u> condition for $\frac{d}{dx} = \frac{dx}{dx} = \frac{dx}{dx}$ bijection.

Proof: if gcala, m) >1 then a 2005 Nt have an inverse (mod is) Prove directly. Let d= gcd (a, m) and a has an inuse (mod m) ay $\equiv 1$ (mod m) $\Rightarrow ay = mk + 1$ KEZ. Since, dea at alm we also know along and almk \Rightarrow decrease Lec. 18 ay-mk=1 striss d 1, So, d must be equal to 1. Thus, a. and in are coprine.

UC Berkeley EECS 70 - Tarang Srivastava

Inverse is Unique (From Discussion 2C Q3E)

Suppose $x, x' \in \mathbb{Z}$ are both inverses of a modulo m. Is it possible that $x \not\equiv x' \pmod{m}$?

```
Suppose x as x^{\prime} are Modern's of a modern's then,

ax = ax^{\prime} = 1
xax = xax^{\prime}
x = xax^{\prime}
x = x^{\prime}
x = x^{\prime}
```

What makes prime numbers so special?

- 52 → 2·2·13 1. Building blocks of all numbers ← all numbers have a prime factorization
- 2. Given a prime p any number that's not a multiple of p is coprime to p i.e. gcd(x, p) = 1 for all x that is not a multiple of p.

Thus, the inverse always exists in modulo p

Fermat's Little Theorem Examples

Thm: For any prime *p* and any *a* in {1, 2, ..., *p*-1}, we have $a^{p-1} \equiv 1 \pmod{p}$.

Examples: $4^6 \pmod{7}$, $4^{42} \pmod{7}$

$$4^{42} \equiv (4^6)^7$$
 by FLT $= 1^7$ $= 1^7$ $= 1^7$

Fermat's Little Theorem Proof

Thm: For any prime p and any a in $\{1, 2, ..., p-1\}$, we have $a^{p-1} \equiv 1 \pmod{p}$. Proof:

$$[\alpha, 2a, 3a, ..., (p-1)a]$$
 is a readwing of $[1, 2, 3, ..., p-1]$
 $[a, 2a, 3a, ..., (p-1)a] = [1, 2, 3, ..., (p-1)]$
 $[a, 2a, 3a, ..., (p-1)a] = [1, 2, 3, ..., (p-1)]$
 $[a, 2a, 3a, ..., (p-1)a] = [1, 2, 3, ..., (p-1)a]$
 $[a, 2a, 3a, ..., (p-1)a] = [1, 2, 3, ..., (p-1)a]$
 $[a, 2a, 3a, ..., (p-1)a] = [1, 2, 3, ..., (p-1)a]$
 $[a, 2a, 3a, ..., (p-1)a] = [1, 2, 3, ..., (p-1)a]$
 $[a, 2a, 3a, ..., (p-1)a] = [1, 2, 3, ..., (p-1)a]$
 $[a, 2a, 3a, ..., (p-1)a] = [1, 2, 3, ..., (p-1)a]$
 $[a, 2a, 3a, ..., (p-1)a] = [1, 2, 3, ..., (p-1)a]$
 $[a, 2a, 3a, ..., (p-1)a] = [1, 2, 3, ..., (p-1)a]$
 $[a, 2a, 3a, ..., (p-1)a] = [1, 2, 3, ..., (p-1)a]$
 $[a, 2a, 3a, ..., (p-1)a] = [1, 2, 3, ..., (p-1)a]$
 $[a, 2a, 3a, ..., (p-1)a] = [1, 2, 3, ..., (p-1)a]$
 $[a, 2a, 3a, ..., (p-1)a] = [1, 2, 3, ..., (p-1)a]$
 $[a, 2a, 3a, ..., (p-1)a] = [1, 2, 3, ..., (p-1)a]$
 $[a, 2a, 3a, ..., (p-1)a] = [1, 2, 3, ..., (p-1)a]$
 $[a, 2a, 3a, ..., (p-1)a] = [1, 2, 3, ..., (p-1)a]$

Chinese Remainder Theorem (CRT) Example

Find a x in mod 30 such that it satisfies the following equations $x \equiv 1 \pmod{2}$. $x \equiv 2 \pmod{3}$. $x \equiv 3 \pmod{5}$

$$x \equiv 1 \pmod{2}, \quad x \equiv 2 \pmod{3}, \quad x \equiv 3 \pmod{5}$$
 $x \equiv 1 \pmod{2}, \quad x \equiv 2 \pmod{3}, \quad x \equiv 3 \pmod{5}$
 $x \equiv 1 \pmod{2}, \quad x \equiv 2 \pmod{2}, \quad x \equiv 3 \pmod{2}, \quad x \equiv 3 \pmod{2}, \quad x \equiv 3 \pmod{3}, \quad$

UC Berkeley EECS 70 - Tarang Srivastava

Chinese Remainder Theorem

Chinese Remainder Theorem: Let $n_1, n_2, ..., n_k$ be positive integers that are coprime to each other. Then, for any sequence of integers a_i there is a unique integer x between 0 and $N = \prod_{i=1}^k n_i$ that satisfies the congruences:

```
\begin{cases} x & \equiv a_1 \pmod{n_1} \\ \vdots & \equiv \vdots \\ x & \equiv a_i \pmod{n_i} \\ \vdots & \equiv \vdots \\ x & \equiv a_k \pmod{n_k} \end{cases}
```

Given $N_1, N_2, ..., N_R$ that are captime to each other. $N = N_1 \cdot N_2 \cdot ... \cdot N_R$ \exists a unique solution $\Sigma \in \{0, 1, ..., N-1\}$ that solutions

$$\gcd(x, y) = ax + by$$