第三节 参数的区间估计

- 一、区间估计的基本概念
- 二、 典型例题
- 三、小结

对于一个未知参数 θ ,利用参数的点估计法可给出 θ 的点估计量. 当样本观测值给定后,可进一步得到 θ 的点估计值. 人们不以得到点估计值为满足,还要求知道它与 θ 的真值有无误差,误差是多少.

即人们希望估计出一个范围,并希望知道这个范围包含参数 θ 真值的可信程度.为此引入估计的另一种形式---区间估计.

在区间估计理论中,被广泛接受的一种观点是置信区间(confidence interval),它由奈曼(Neyman)于1934年引入.

一、区间估计的基本概念

1. 置信区间的定义

设总体 X的分布函数 $F(x;\theta)$ 含有一个未知参数 θ ,对于给定值 α (0 < α < 1),若由样本 X_1, X_2, \cdots , X_n 确定的两个统计量

$$\theta_1 = \theta_1(X_1, X_2, \dots, X_n)$$
 和 $\theta_2 = \theta_2(X_1, X_2, \dots, X_n)$ 满足
$$P\{\theta_1(X_1, X_2, \dots, X_n) < \theta < \theta_2(X_1, X_2, \dots, X_n)\} = 1 - \alpha,$$

则称 $1-\alpha$ 为置信度或置信水平,

称随机区间 (θ_1, θ_2) 是 θ 的置信度(置信水平) 为 $1-\alpha$ 的置信区间, θ_1 和 θ_2 分别称为置信度(置信 水平)为 $1-\alpha$ 的双侧置信区间的置信下限和置信上限 。

关于定义的说明

被估计的参数 θ 虽然未知,但它是一个常数,没有随机性,而区间(θ_1 , θ_2)是随机的.

因此定义中如下表达式

 $P\{\theta_1(X_1, X_2, \dots, X_n) < \theta < \theta_2(X_1, X_2, \dots, X_n)\} = 1 - \alpha$ 的本质是:

随机区间(θ_1 , θ_2)以 $1-\alpha$ 的概率包含着参数 θ 的真值,而不能说参数 θ 以 $1-\alpha$ 的概率落入某区间(θ_1 , θ_2).

例

设总体 $X \sim N(\mu,4)$, μ 未知, X_1, \dots, X_4 是一个样本,则 $\overline{X} \sim N(\mu,1)$.

$$P\{\overline{X}-2<\mu<\overline{X}+2\}=P\{|\overline{X}-\mu|<2\}=2\Phi(2)-1=0.9544.$$

 $\Rightarrow (\overline{X} - 2, \overline{X} + 2)$ 是 μ 的置信度为0.95的置信区间.

(1,5),

 $(-1,3), \forall$

对于一个具体的区间,或者包含真值,或者不包含真值,无概率可言。

另外定义中的表达式

 $P\{\theta_1(X_1, X_2, \dots, X_n) < \theta < \theta_2(X_1, X_2, \dots, X_n)\} = 1 - \alpha$ 还可以描述为:

若反复抽样多次(各次得到的样本容量相等,都是n) 每个样本值确定一个区间(θ_1 , θ_2), 每个这样的区间或包含 θ 的真值或不包含 θ 的真值,

按伯努利大数定理, 在这样多的区间中,

包含 θ 真值的约占 $100(1-\alpha)$ %,不包含的约占 100α %.

例如 若 α = 0.01, 反复抽样 1000次, 则得到的 1000个区间中不包含 θ 真值的约为10个.

置信区间的长度 $\theta_2 - \theta_1$ 反映了估计精度, $\theta_2 - \theta_1$ 越小, 估计精度越高.

 α 反映了估计的可靠度, α 越小, 1- α 越大, 估计的可靠度越高, 同时, $\theta_{2} - \theta_{1}$ 往往增大, 因而估计精度降低.

一般是在保证可靠度的条件下尽可能提高精度。

 α 确定后,置信区间选取方法不唯一,常选最小的一个.

2. 求置信区间的一般步骤(共3步)

(1) 寻求一个样本 $X_1, X_2, ..., X_n$ 的函数: $Z = Z(X_1, X_2, ..., X_n; \theta)$ 其中仅包含待估参数 θ , 并且 Z 的分布已知

且不依赖于任何未知参数(包括 θ).

(2) 对于给定的置信度 $1-\alpha$,定 出两个常数 a,b, 使 $P\{a < Z(X_1, X_2, \dots, X_n; \theta) < b\} = 1-\alpha$.

(3) 若能从 $a < Z(X_1, X_2, ..., X_n; \theta) < b$ 得到等价的不等式 $\theta_1 < \theta < \theta_2$, 其中 $\theta_1 = \theta_1(X_1, X_2, ..., X_n)$, $\theta_2 = \theta_2(X_1, X_2, ..., X_n)$ 都是统计量,那么 (θ_1, θ_2) 就是 θ 的一个置信度为 $1 - \alpha$ 的置信区间。

样本容量 n 固定,置信水平 $1-\alpha$ 增大,置信区间长度增大,可信程度增大,区间估计精度降低.

置信水平 $1-\alpha$ 固定,样本容量 n 增大,置信区间长度减小,可信程度不变,区间估计精度提高.

二、典型例题

例1 设 $X_1, X_2, ..., X_n$ 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,其中 σ^2 为已知, μ 为未知,求 μ 的置信水平为 $1-\alpha$ 的置信区间.

解 因为 \overline{X} 是 μ 的无偏估计,

且
$$U = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1),$$

 $\frac{X-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$ 是不依赖于任何未知参数的,

由标准正态分布的上 α 分位点的定义知

$$P\left\{\left|\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\right| < u_{\alpha/2}\right\} = 1-\alpha,$$

$$\mathbb{P}\left\{\overline{X} - \frac{\sigma}{\sqrt{n}}u_{\alpha/2} < \mu < \overline{X} + \frac{\sigma}{\sqrt{n}}u_{\alpha/2}\right\} = 1 - \alpha,$$

于是得 μ 的一个置信水平为 $1-\alpha$ 的置信区间

$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} u_{\alpha/2}, \ \overline{X} + \frac{\sigma}{\sqrt{n}} u_{\alpha/2}\right).$$

这样的置信区间常写成 $\left(\overline{X}\pm\frac{\sigma}{\sqrt{n}}u_{\alpha/2}\right)$.

其置信区间的长度为 $2 \times \frac{\sigma}{\sqrt{n}} u_{\alpha/2}$.

注意:置信水平为 $1-\alpha$ 的置信区间是不唯一的.

如果在例 1中取 n = 16, $\sigma = 1$, $\alpha = 0.05$,

查表可得
$$u_{\alpha/2} = u_{0.025} = 1.96$$
,

得一个置信水平为 0.95的置信区间 $\left(\overline{X} \pm \frac{1}{\sqrt{16}} \times 1.96\right)$.

由一个样本值算得样本均值的观察值 $\bar{x} = 5.20$,

则置信区间为(5.20±0.49), 即 (4.71, 5.69).

在例 1中如果给定 $\alpha = 0.05$,

则又有
$$P\left\{-u_{0.04} < \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} < u_{0.01}\right\} = 0.95,$$

$$\mathbb{P}\{\overline{X} - \frac{\sigma}{\sqrt{n}}u_{0.01} < \mu < \overline{X} + \frac{\sigma}{\sqrt{n}}u_{0.04}\} = 0.95,$$

故
$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} u_{0.01}, \ \overline{X} + \frac{\sigma}{\sqrt{n}} u_{0.04}\right)$$
也是 μ 的置信水平

为0.95的置信区间.

其置信区间的长度为 $\frac{\sigma}{\sqrt{n}}(u_{0.04}+u_{0.01})$.

比较两个置信区间的长度

$$L_1 = 2 \times \frac{\sigma}{\sqrt{n}} u_{0.025} = 3.92 \times \frac{\sigma}{\sqrt{n}},$$

$$L_2 = \frac{\sigma}{\sqrt{n}}(u_{0.04} + u_{0.01}) = (1.75 + 2.33) \times \frac{\sigma}{\sqrt{n}} = 4.08 \times \frac{\sigma}{\sqrt{n}},$$

显然 $L_1 < L_2$. 置信区间短表示估计的精度高.

说明:对于概率密度的图形是单峰且关于纵坐标轴对称的情况,易证取*a*和*b*关于原点对称时,能使置信区间长度最小.

三、小结

点估计不能反映估计的精度,故而本节引入了区间估计.

置信区间是一个随机区间 (θ_1, θ_2) ,它覆盖未知参数具有预先给定的概率(置信水平),即对于任意的 $\theta \in \Theta$,有 $P\{\theta_1 < \theta < \theta_2\} \geq 1 - \alpha$.

求置信区间的一般步骤(分三步).