

Lecture 19: Partial Derivatives.

MA2032 Vector Calculus

Lecturer: Larissa Serdukova

School of Computing and Mathematical Science University of Leicester

November 2, 2022

Lagrange Multipliers

- Sometimes we need to find the extreme values of a function whose **domain is constrained** to lie within some particular subset of the plane for example, a disk, a closed triangular region, or along a curve.
- We saw an instance of this situation in **Example 5 of the previous lecture 18**.
- Today we explore a powerful method for finding extreme values of constrained functions: the method of Lagrange multipliers.

• The method says that the **local extreme values** of a function f(x, y, z) whose variables are subject to a **constraint** g(x, y, z) = 0 are to be found on the surface g = 0 among the points where

$$\nabla f = \lambda \nabla g$$

- for some scalar λ (called a **Lagrange multiplier**).
- To explore the method further and see why it works, we first make the following observation, which we state as a **theorem**.

THEOREM 12—The Orthogonal Gradient Theorem

Suppose that f(x, y, z) is differentiable in a region whose interior contains a smooth curve

C:
$$\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$
.

If P_0 is a point on C where f has a local maximum or minimum relative to its values on C, then ∇f is orthogonal to C at P_0 .

Proof We show that ∇f is orthogonal to the curve's tangent vector \mathbf{r}' at P_0 . The values of f on C are given by the composition f(x(t), y(t), z(t)), whose derivative with respect to t is

$$\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} + \frac{\partial f}{\partial z}\frac{dz}{dt} = \nabla f \cdot \mathbf{r}'.$$

At any point P_0 where f has a local maximum or minimum relative to its values on the curve, df/dt = 0, so

$$\nabla f \cdot \mathbf{r}' = 0.$$

• By dropping the z-terms in Theorem 12, we obtain a similar result for **functions of two variables**.

COROLLARY At the points on a smooth curve $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$ where a differentiable function f(x, y) takes on its local maxima and minima relative to its values on the curve, $\nabla f \cdot \mathbf{r}' = 0$.

- Theorem 12 is the key to the method of Lagrange multipliers.
- Suppose that f(x, y, z) and g(x, y, z) are differentiable and that P_0 is a point on the surface g(x, y, z) = 0 where f has a local maximum or minimum value relative to its other values on the surface.
- We assume also that $\nabla g \neq 0$ at points on the surface g(x, y, z) = 0.
- Then f takes on a local maximum or minimum at P_0 relative to its values on every differentiable curve through P_0 on the surface g(x, y, z) = 0.

- Therefore, ∇f is **orthogonal to the tangent vector** of every such differentiable curve through P_0 .
- So is ∇g , moreover (because ∇g is **orthogonal to the level surface** g = 0).
- Therefore, at P_0 , ∇f is some scalar multiple λ of ∇g .

The Method of Lagrange Multipliers

Suppose that f(x, y, z) and g(x, y, z) are differentiable and $\nabla g \neq \mathbf{0}$ when g(x, y, z) = 0. To find the local maximum and minimum values of f subject to the constraint g(x, y, z) = 0 (if these exist), find the values of x, y, z, and λ that simultaneously satisfy the equations

$$\nabla f = \lambda \nabla g$$
 and $g(x, y, z) = 0.$ (1)

For functions of two independent variables, the condition is similar, but without the variable z.

• Some care must be used in applying this method. An extreme value may not actually exist.

Example 1

Find the greatest and smallest values that the function f(x,y)=xy takes on the ellipse $\frac{x^2}{8}+\frac{y^2}{2}=1$.

Solution We want to find the extreme values of f(x, y) = xy subject to the constraint

$$g(x, y) = \frac{x^2}{8} + \frac{y^2}{2} - 1 = 0.$$

To do so, we first find the values of x, y, and λ for which

$$\nabla f = \lambda \nabla g$$
 and $g(x, y) = 0$.

The gradient equation in Equations (1) gives

$$y\mathbf{i} + x\mathbf{j} = \frac{\lambda}{4}x\mathbf{i} + \lambda y\mathbf{j},$$

from which we find

$$y = \frac{\lambda}{4}x$$
, $x = \lambda y$, and $y = \frac{\lambda}{4}(\lambda y) = \frac{\lambda^2}{4}y$,

so that y = 0 or $\lambda = \pm 2$. We now consider these two cases.

Case 1: If y = 0, then x = y = 0. But (0, 0) is not on the ellipse. Hence, $y \neq 0$.

Case 2: If $y \neq 0$, then $\lambda = \pm 2$ and $x = \pm 2y$. Substituting this in the equation g(x, y) = 0 gives

$$\frac{(\pm 2y)^2}{8} + \frac{y^2}{2} = 1$$
, $4y^2 + 4y^2 = 8$ and $y = \pm 1$.

The function f(x, y) = xy therefore takes on its extreme values on the ellipse at the four points $(\pm 2, 1), (\pm 2, -1)$. The extreme values are xy = 2 and xy = -2.

The Geometry of the Solution The level curves of the function f(x, y) = xy are the hyperbolas xy = c (Figure 14.56). The farther the hyperbolas lie from the origin, the larger the absolute value of f. We want to find the extreme values of f(x, y), given that the point (x, y) also lies on the ellipse $x^2 + 4y^2 = 8$. Which hyperbolas intersecting the ellipse lie farthest from the origin? The hyperbolas that just graze the ellipse, the ones that are tangent to it, are farthest. At these points, any vector normal to the hyperbola is normal to the ellipse, so $\nabla f = y\mathbf{i} + x\mathbf{j}$ is a multiple $(\lambda = \pm 2)$ of $\nabla g = (x/4)\mathbf{i} + y\mathbf{j}$. At the point (2, 1), for example,

$$\nabla f = \mathbf{i} + 2\mathbf{j}, \quad \nabla g = \frac{1}{2}\mathbf{i} + \mathbf{j}, \quad \text{and} \quad \nabla f = 2\nabla g.$$

At the point (-2, 1),

$$\nabla f = \mathbf{i} - 2\mathbf{j}, \quad \nabla g = -\frac{1}{2}\mathbf{i} + \mathbf{j}, \quad \text{and} \quad \nabla f = -2\nabla g.$$

Example 2

Find the maximum and minimum values of the function f(x, y) = 3x + 4y on the circle $x^2 + y^2 = 1$.

Solution We model this as a Lagrange multiplier problem with

$$f(x, y) = 3x + 4y,$$
 $g(x, y) = x^2 + y^2 - 1$

and look for the values of x, y, and λ that satisfy the equations

$$\nabla f = \lambda \nabla g: \quad 3\mathbf{i} + 4\mathbf{j} = 2x\lambda \mathbf{i} + 2y\lambda \mathbf{j}$$
$$g(x, y) = 0: \quad x^2 + y^2 - 1 = 0.$$

The gradient equation in Equations (1) implies that $\lambda \neq 0$ and gives

$$x = \frac{3}{2\lambda}, \qquad y = \frac{2}{\lambda}.$$

These equations tell us, among other things, that x and y have the same sign. With these values for x and y, the equation g(x, y) = 0 gives

$$\left(\frac{3}{2\lambda}\right)^2 + \left(\frac{2}{\lambda}\right)^2 - 1 = 0,$$

SO

$$\frac{9}{4\lambda^2} + \frac{4}{\lambda^2} = 1$$
, $9 + 16 = 4\lambda^2$, $4\lambda^2 = 25$, and $\lambda = \pm \frac{5}{2}$.

Thus,

$$x = \frac{3}{2\lambda} = \pm \frac{3}{5}, \quad y = \frac{2}{\lambda} = \pm \frac{4}{5},$$

and f(x, y) = 3x + 4y has extreme values at $(x, y) = \pm (3/5, 4/5)$.

By calculating the value of 3x + 4y at the points $\pm (3/5, 4/5)$, we see that its maximum and minimum values on the circle $x^2 + y^2 = 1$ are

$$3\left(\frac{3}{5}\right) + 4\left(\frac{4}{5}\right) = \frac{25}{5} = 5$$
 and $3\left(-\frac{3}{5}\right) + 4\left(-\frac{4}{5}\right) = -\frac{25}{5} = -5$.

The Geometry of the Solution The level curves of f(x, y) = 3x + 4y are the lines 3x + 4y = c (Figure 14.57). The farther the lines lie from the origin, the larger the absolute value of f. We want to find the extreme values of f(x, y) given that the point (x, y)

also lies on the circle $x^2 + y^2 = 1$. Which lines intersecting the circle lie farthest from the origin? The lines tangent to the circle are farthest. At the points of tangency, any vector normal to the line is normal to the circle, so the gradient $\nabla f = 3\mathbf{i} + 4\mathbf{j}$ is a multiple $(\lambda = \pm 5/2)$ of the gradient $\nabla g = 2x\mathbf{i} + 2y\mathbf{j}$. At the point (3/5, 4/5), for example,

$$\nabla f = 3\mathbf{i} + 4\mathbf{j},$$

$$\nabla f = 3\mathbf{i} + 4\mathbf{j}, \qquad \nabla g = \frac{6}{5}\mathbf{i} + \frac{8}{5}\mathbf{j}, \quad \text{and} \quad \nabla f = \frac{5}{2}\nabla g.$$

Lagrange Multipliers with Two Constraints

- Many problems require us to find the extreme values of a differentiable function f(x, y, z) whose variables are subject to **two constraints**.
- If the constraints are $g_1(x,y,z)=0$ and $g_2(x,y,z)=0$ and g_1 and g_2 are differentiable, with ∇g_1 not parallel to ∇g_2 , we find the constrained local maxima and minima of f by introducing two Lagrange multipliers λ and μ .
- That is, we locate the points P(x,y,z) where f takes on its constrained extreme values by finding the values of x, y, z, λ , and μ that **simultaneously satisfy** the three equations

$$\nabla f = \lambda \nabla g_1 + \mu \nabla g_2, \quad g_1(x, y, z) = 0, \quad g_2(x, y, z) = 0$$
 (2)

Lagrange Multipliers with Two Constraints

Example 3

The plane x + y + z = 1 cuts the cylinder $x^2 + y^2 = 1$ in an ellipse. Find the points on the ellipse that lie closest to and farthest from the origin.

Solution We find the extreme values of

$$f(x, y, z) = x^2 + y^2 + z^2$$

(the square of the distance from (x, y, z) to the origin) subject to the constraints

$$g_1(x, y, z) = x^2 + y^2 - 1 = 0$$
 (3)

$$g_2(x, y, z) = x + y + z - 1 = 0.$$
 (4)

The gradient equation in Equations (2) then gives

$$\nabla f = \lambda \nabla g_1 + \mu \nabla g_2$$

$$2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k} = \lambda(2x\mathbf{i} + 2y\mathbf{j}) + \mu(\mathbf{i} + \mathbf{j} + \mathbf{k})$$

$$2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k} = (2\lambda x + \mu)\mathbf{i} + (2\lambda y + \mu)\mathbf{j} + \mu\mathbf{k}$$

or

$$2x = 2\lambda x + \mu, \qquad 2y = 2\lambda y + \mu, \qquad 2z = \mu. \tag{5}$$

The scalar equations in Equations (5) yield

$$2x = 2\lambda x + 2z \Rightarrow (1 - \lambda)x = z,$$

$$2y = 2\lambda y + 2z \Rightarrow (1 - \lambda)y = z.$$
 (6)

Equations (6) are satisfied simultaneously if either $\lambda = 1$ and z = 0 or $\lambda \neq 1$ and $x = y = z/(1 - \lambda)$.

If z = 0, then solving Equations (3) and (4) simultaneously to find the corresponding points on the ellipse gives the two points (1, 0, 0) and (0, 1, 0). This makes sense when you look at Figure 14.59.

If x = y, then Equations (3) and (4) give

$$x^{2} + x^{2} - 1 = 0$$
 $x + x + z - 1 = 0$
 $2x^{2} = 1$ $z = 1 - 2x$
 $x = \pm \frac{\sqrt{2}}{2}$ $z = 1 \mp \sqrt{2}$.

The corresponding points on the ellipse are

$$P_1 = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1 - \sqrt{2}\right)$$
 and $P_2 = \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 1 + \sqrt{2}\right)$.

Here we need to be careful, however. Although P_1 and P_2 both give local maxima of f on the ellipse, P_2 is farther from the origin than P_1 .

The points on the ellipse closest to the origin are (1, 0, 0) and (0, 1, 0). The point on the ellipse farthest from the origin is P_2 . (See Figure 14.59.)