Séance 11 QCM

B.
$$\frac{1}{(L+1)^2+1}$$
 N $\frac{1}{L^2+1}$ quand $L^{n} + \infty$.

D. Sachant que erf
$$x = \frac{2}{\sqrt{\pi}} \int_{0}^{2} e^{-t^{2}} dt$$

et que 1-erf $x N e^{-x^{2}}$ quand $x \to t \infty$,
$$\int_{2}^{+\infty} e^{-\frac{t^{2}}{2}} dt N e^{-\frac{x^{2}}{2}} quand x \to t \infty$$

on considère
$$z(r) = e^{-|r|}$$

dont la TF vout $\chi(r) = \frac{2}{1+4\pi^2r^2}$

A.
$$\left| TF \left[e^{-1t-2l} \right] \right| = \frac{2}{1+4\pi^2 D^2}$$

C.
$$TF[e^{-\frac{1H}{2}}] = \frac{2}{1+16\pi^2v^2}$$

D. TF[
$$e^{-1+1} \cos \pi t$$
] = $\frac{1}{1+4\pi^2(\sqrt{3}-1)^2} + \frac{1}{1+4\pi^2(\sqrt{3}+1)^2}$

Question 3 on considére un filtre filt) te 2

A. Ce filtre transforme un signal impair en un signal impair B. Ce filtre est équivalent à l'application d'abord d'un dérivée puis d'une filtre avec h(1)= - ====

C. TF[R1(H)] = aDo-5)2 arec aet bréels. on rappelle que TF[e-TT+2] = e-TIP2

D. | R(H) | = 1

Question 4

on considère x(+)=11(+), (+) etx(v), y(v), 7(v) lews. TF y(+1= cos (317 H) & (+)= x(+) * y(+)

A. Z(2) est composé de 2 raies au maximum B. z(+) est périodique de période 3

C. 3(+) = X(3) cos(3TT)

D. d 3(r) = y(r) * (1 8(1+1) - 18(1-1))

Question 5 On considère $\chi(r) = e^{t} \sqrt{(r)}$ $\chi(r) = e^{t} \sqrt{(r)}$ $\chi(r) = \sqrt{(r)}$ $\chi(r) = \sqrt{(r)}$

A. (x(H) * y(H)) (c)=1

B. X(H) * y(H) est pair

 $C\cdot \left(x(t) * 3(t)\right)(c) = 0$

D. d(y(H) * 3(H)) = - y(H) * 3(H)