

Towards automating [supervised] machine learning: Benchmarking tools for hyperparameter tuning

Dr. Thorben Jensen tjensen@informationsfabrik.de

INFORMATIONSFABRIK

DIGITAL TREASURE HUNTERS

Finding optimal hyperparameters is important!

Hyperparameters
are "parameters whose values [are] set before the learning process begins.
By contrast, the values of other parameters are derived via training." (wikipedia.org)

Hyperparameter example: depth of neural network

Hyperparameter tuning in supervised machine learning

A week in the life of a data scientist

More data

just arrived.

Please update

your model!

Tuning ...

Re-tuning ...

Re-tuning ...

Simple automation: Grid and Random Search

Grid search

- 1. Select values for each hyperparameter to test
- 2. Try ALL combinations

Random search

- Varies important hyperparameters more!
- More efficient at model tuning

Sequential model-based optimization (SMBO)

- Use fast regression model as proxy for slow ML model:
 - 1. Evaluate some random sets of hyperparameters
 - 2. Build a *regression model*: 'hyperparameters -> loss'
 - 3. Find hyperparameter with lowest loss, according to fast proxy
 - 4. Evaluate real model for hyperparameter, observe loss
 - 5. Update regression model
- Popular options for proxy model:
 - Gaussian Processes
 - Random Forests
 - Tree-structured Parzen Estimators

Gaussian Process

F

https://arxiv.org/pdf/1012.2599.pdf

 From previous samples, fit Gaussian Process: expected value uncertainty range

 Max(acquisition function): good expected value and high uncertainty

3. Use **new observation** to update *Gaussian Process*

4. Repeat from step 2 ...

Gaussian Process live

Gaussian Process live

Random Forest

- Differences to Gaussian Process
 - -Uses Decision Tree Ensemble, e.g. 10 trees
 - -Also works with categorically scaled hyperparameters, e.g. activation function in neural net

Tree-structured Parzen Estimator

Expected Improvement

- L. Test some hyperparameters
- 2. Separate into:

best hyperparameters worse hyperparameters

 For new candidates (vertical lienes), model probability to be in good or bad group

4. Expected improvement for candidate:

P(good) / P(bad)

Algorithms compared

Parzen Estimator

interacting Python also discrete easy configuration library hyperparameters hyperparmeters Gaussian Process Random forest Tree-structured

Which one to choose? \rightarrow benchmark 'em all!

Benchmarked python libraries

- Random Search: own implementation
- Gaussian Process: bayes_opt, skopt
- Random forest: smac
- Tree-structured Parzen Estimator: hyperopt
- Comparing to human expert (3 manual steps)
- Task: classification with xgboost library, early stopping
- 16 core CPU machines
- Structured data sets
 - Iris
 - Real-life dataset for decision support in insurance

Limitations

- Only 2 datasets
- Varying both models and implementations

Result I/II: iris dataset

Result I/II: iris dataset – compared to manual tuning

Result II/II: real-life dataset

Result II/II: real-life dataset – compared to manual

https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf

Literature I/II

Gaussian Process beats Random Search

https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf

Literature II/II

Tree-structured Parzen Estimator

beats Gaussian Process, Random Search (- - -), and Manual Search (--)

Take home messages

- More free weekends: automated tuning beats manual
- SMBO algorithms do not differ much in performance, but in constraints:
 - Scaling of your hyperparameter
 - Interactions between hyperparameter
 - -Algorithms for hyperparameter optimization have hyperparameters...
- Tree-structured Parzen Estimator simple, but surprisingly effective
- Random Search simple, but scalable and reasonably competitive
- Spend your time wisely! → Instead of manual tuning, get more data and features

Towards automating [supervised] machine learning?

TAK

DANK U WEL

谢谢

GRACIAS KÖSZÖNÖM CHOKRANE

TERIMA KASIH THANK YOU

СПАСИБО

VIELEN DANK

GRAZIE

dziękuję MERCI

TESEKKÜR EDERIM

ขอบกุณครับ

TÄNAN

ARIGATÔ

HVALA

Special thanks to Tobias Rippel, Prasanth Sivabalasingam!