

Faculty of Engineering and Technology Electrical and Computer Engineering Department

Computer Communication Lab ENEE 4113

Experiment No. 1 pre-lab

Normal Amplitude Modulation

Prepared by:

Abdel Rahman Shahen 1211753

Partners:

Mahmoud Awad

Instructor: Dr. Ashraf Rimawi

Section: 2

Date: 3/6/2024

Title: Theoretical Analysis of Normal Amplitude Modulation and Demodulation

Introduction:

This prelab report delves into the theoretical foundations of Normal Amplitude Modulation (AM) and Demodulation, pivotal techniques in the realm of communications for transmitting and retrieving information over varying distances

Objective:

To explore and articulate the theoretical and mathematical concepts of Normal Amplitude Modulation and Demodulation, elucidating the principles and equations that define their operation.

Theoretical Background:

Normal Amplitude Modulation (AM):

Definition and Principles:

AM is a technique used in electronic communication, primarily for transmitting audio and video signals through a carrier wave. The basic principle involves varying the strength (amplitude) of the carrier wave in direct proportion to that of the signal wave, without altering the carrier's frequency.

Mathematical Representation:

The mathematical formula for a modulated signal can be represented as:

$$s(t) = \left[A_c + m(t)
ight]\cos(2\pi f_c t)$$

where:

s(t) is the AM signal,

Ac is the amplitude of the carrier wave,

m(t) represents the message or information signal,

fc is the frequency of the carrier wave, t is time.

Spectrum of AM Wave:

An AM wave consists of a carrier and two sidebands. The spectrum can be analyzed to show these components, with the sidebands containing the actual information being transmitted.

Modulation Index:

The modulation index (m) is a key concept in AM, defined as the measure of the extent of modulation applied to the carrier wave.

Power Distribution in AM:

The total power of an AM signal is distributed among the carrier and the sidebands.

Demodulation of AM Waves:

Envelope Detector:

The envelope detector is a simple, commonly used method for demodulating AM signals. It captures the variations in the envelope of the modulated signal, which corresponds to the original message signal.

Coherent demodulation:

Coherent demodulation is a technique used to decode information from a modulated carrier wave by leveraging a reference signal that is phase-locked to the carrier.

Mathematical Principle of Demodulation:

Coherent demodulation retrieves m(t) from $S(t) = [A + m(t)] \cos(2 \text{ Pi Fc t})$ using a synchronized carrier for high-fidelity signal recovery.

An envelope detector extracts m(t) from $S(t) = [A + m(t)] \cos(2 \text{ Pi Fc t})$ by rectifying the signal and smoothing it with a low-pass filter.

Title: practical Analysis of Normal Amplitude Modulation and Demodulation

Circuit design:

The whole circuit design including all about AM communication

Normal Am modulation

coherent demodulation

envelop detector demodulation

Results:

Note: stop time = 10.

@ k < 1 = 0.7:

@ k = 1:

@ k > 1 = 4: File Tools View Simulation Help ^ C (1)) \$\infty \infty \inom{\text{\text{in}} \infty \infty \infty \infty \infty \infty \in × S(f):

Note: m(t) got a lot of noise I tried to look for a reason but I couldn't find any