Ochrana elektronických dokumentov Obhajoba diplomovej práce

Bc. Martin Bajaník

Fakulta informatiky Masarykova univerzita 396204@mail.muni.cz

Brno, 10. februára 2017

Cieľ diplomovej práce

- Poskytnúť ucelený prehľad ochrán, implementovaných v najrozšírenejších formátoch, s dôrazom na ochranu dôvernosti dokumentov založenej na heslách.
- Vytvoriť distribuovaný systém na obnovu zabudnutého hesla.
- Pomocou vytvoreného nástroja zhodnotiť schopnosť formátov odolať útokom hrubou silou a použitelnosť systému na obnovu hesla.

Ochrana elektronických dokumentov

Spôsob ochrany

- Šifrovanie dôvernosť
- Digitálne podpisy autenticita a integrita

Populárne formáty

Šifrovanie na základe hesla

1.

password USER_KEY = KDF(password)

2. A

2.B

KEY = RNG()

MS Office Document Cryptography Structure

Šifrovanie na základe hesla

- Open Office XML (ECMA-376)
- Štandardné šifrovanie (Office 2007)
 - 50 000 iterácií
 - SHA-1
- Agilné šifrovanie (Office 2010 a vyššie)
 - 100 000 iterácií
 - SHA-1
 - Konfigurovateľné užívateľom

Portable Document Format

Šifrovanie na základe hesla

- Samostatný šifrovací modul (Standard Security Handler)
- PDF 1.1 1.3
 - 50 iterácií MD5
- PDF 1.4 1.7
 - 50 iterácií MD5 a 19 iterácií RC4
- PDF 1.7 s modulom verzie 5
 - 1 iterácia SHA-256
- PDF 1.7 s modulom verzie 6
 - 32 iterácií SHA-2 a AES-128

Open Document Format

Šifrovanie na základe hesla

- Verzia 1.0 1.2
 - 1024 iterácií PBKDF2 s HMAC-SHA1 (RFC 2898)
 - Počet iterácií konfigurovateľný

- Klient server architektúra
- Modularita a paralelizmus

00

Návrh systému na obnovu zabudnutého hesla

Obnova hesla dokumentov hrubou silou

Priemerná rýchlosť verifikácie správnosti hesla (počet pokusov za sekundu)

Úvod

Hlavné prínosy práce

- Ucelený popis ochrán implementovaných v populárnych formátoch elektronických dokumentov.
- Zhodnotenie dostupných ochrán a testovanie odolnosti voči útokom hrubou silou.
- Vytvorený funkčný distribuovaný systém na obnovu zabudnutého hesla s dôrazom na:
 - rozšíriteľnosť vďaka modulárnemu prístupu,
 - efektívnosť vďaka paralelizácii na viac úrovniach a
 - jednoduchú použiteľnosť.

Otázky

Ďakujem za pozornosť.

Otázky z posudkov

Úvod

- Co je to veřejná část certifikátu X.509?
- Zajímavé by bylo zmínit, proč byla vybrána MS právě tato fixní hesla (strana 11).
- Jsou násobné podpisy (např. v sekci 3.3:2) na stejné úrovni nebo hierarchicky řazené?

Štandardné vs. agilné šifrovanie

- Binárny formát vs. XML
- Fixné algoritmy a parametre vs. CNG (CryptoAPI: Next Generation)
- Šifrovací kľúč (tzv. intermediate key)
- Integrita (Encrypt then MAC).

Obnova hesla dokumentov hrubou silou

	MS Word 2007	LibreOffice Writer 5.2.2	PDF 1.7 V4 R5
3	< 25 seconds	< 9 seconds	< 6 seconds
4	< 10 minutes	< 4 minutes	< 2.5 minutes
5	< 5 hours	< 2 hours	< 1.1 hours
6	< 5 days	< 2 days	< 1.2 days
7	< 17 weeks	< 7 weeks	< 4.2 weeks
8	< 9 years	< 3.5 years	< 2.1 years

Odhadovaný čas na dokončenie procesu obnovy hesla danej dĺžky.

Ďaľšie ochrany

Ochrana proti zápisu (MS Office)

• Uplatnenie iba z pohľadu UX.

Šifrovanie pomocou asymetrickej kryptografie (PDF)

Dokument šifrovaný pomocou RC4.

Digitalné podpisy

- Microsoft Office a Open Document Format
 - XML Signature Syntax and Processing (W3C)
- Portable Document Format
 - Pokročilá funkcionalita a robustné algoritmy.

Porovnanie implementácii ODT

Apache OpenOffice vs. LibreOffice

	LibreOffice	Apache OpenOffice
checksum-type	SHA-256	SHA-1
algorithm-name	AES-256	Blowfish CFB
start-key-derivation-name	SHA-256	SHA-1
key-derivation-name	PBKDF2	PBKDF2
iteration-count	1024	1024
key-size	32	16

Šifrovanie dokumentov - algoritmy

- Microsoft Office
 - Štandardné šifrovanie AES-128, AES-192, AES-256 (ECB)
 - Agilné šifrovanie Windows OS API (CNG)
- Portable Document Format
 - RC4, AES-128 (CBC)
 - Dĺžky kľúčov 40-128 bitov
- Open Document Format
 - 1.0 a 1.1 Blowfish CFB
 - 1.2 Triple DES, AES-128, AES-192, AES-256 (CBC)
 - XML Encryption Syntax and Processing (W3C)