IEOR 4106, HMWK 7, Professor Sigman

Things to recall when doing this homework: Poisson Arrivals See Time Averages (PASTA) (Page 27–28, in Lecture Notes 13, "Introduction to Continuous-Time Markov Chains"). Little's Law $(l = \lambda w)$.

- 1. Printer with jams: Jobs arrive to a computer printer according to a Poisson process at rate λ . Jobs are printed one at a time requiring iid printing times that are exponentially distributed with rate μ . Jobs that arrive when the server is busy printing wait in a FIFO queue before entering service.
 - Additionally, independently, the printer jams at times $\{s_n : n \geq 1\}$ that form a Poisson process at rate γ : Whenever a jam occurs the job being printed (if any) is removed (and lost), and the printer continues printing the remaining jobs. If the printer is empty of jobs when a jam occurs, then the jam has no effect (i.e., the printer instantly resets). Let X(t) denote the number of jobs at the printer at time t.
 - (a) For a given time t, suppose that $X(t) \geq 1$, and let R denote how long it will take until either the job in service is completed or lost (due to a jam). Argue that $R \sim exp(\mu + \gamma)$.
 - (b) Argue that $\{X(t)\}$ is a Birth and Death process; give the birth rates $\{\lambda_i\}$ and the death rates $\{\mu_i\}$. Give a rate diagram.
 - (c) Set up and solve the Birth and Death Balance Equations for the limiting distribution $(\lambda_j P_j = \mu_{j+1} P_{j+1}, \ j \ge 0)$; what condition on the parameters λ , μ , γ is necessary and sufficient for positive recurrence?
 - (d) Explain why $\{X(t)\}$ is the same Birth and Death process as for a regular FIFO M/M/1 queue with the same arrival rate λ , but a different service-time rate (denoted by $\overline{\mu}$); give its value.
 - (e) What is the average sojourn time (in the printing facility) of a job?
 - (f) What proportion of *time* is the printer printing?
 - (g) What proportion of arriving customers find the printer printing?
 - (h) What proportion of jam times $\{s_n : n \geq 1\}$ cause a removal of a job?
- 2. Inventory model: A retailer starting with $B \geq 2$ headphones, as its inventory level, sells them one at a time according to demand which forms a Poisson process at rate λ : At Poisson arrival time t_n (n^{th} demand request), the inventory level drops down by 1 if the inventory is non-empty. If the inventory level is empty at a request time, then nothing happens; the demand request is "lost". As soon as the inventory level drops down to 0 (initiated by an arrival finding the inventory level equal to 1), it will be re-stocked back up to B after an exponential amount of time L (called the lead time) at rate γ , independent of the past. During those L time units, all demand is lost. Let X(t) denote the inventory level at time t. The state space is $S = \{0, 1, \ldots, B\}$.
 - (a) Argue that $\{X(t)\}$ forms a CTMC (but not a Birth and Death process, why?); find both the holding time rates a_j and the embedded MC transition matrix $P = (P_{i,j})$.
 - (b) Give a rate diagram for this CTMC.
 - (c) Set up and solve the Global Balance Equations for the limiting distribution. "rate out of state j = rate into state j, for each $0 \le j \le B$ ". Here are some of the equations

to help you:

$$\gamma P_0 = \lambda P_1
\lambda P_1 = \lambda P_2
\vdots
\lambda P_B = ?$$

(d) Find the long-run average inventory level;

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t X(s) ds.$$

- (e) What proportion of *time* is the inventory level empty?
- (f) What proportion of demand requests are lost?
- (g) What proportion of demand requests initiate a re-stock?
- (h) Try using $l = \lambda w$ to re-derive (d). HINT: Customers are the headphones.
- 3. Consider a company that is open for an amount of time U_1 , then closed for an amount of time C_1 . Then independently this starts all over: Open for U_2 , closed for C_2 and so on forever with $U_n, C_n, n \ge 1$. Assume that $\{(U_n, C_n) : n \ge 1\}$ are iid, where the U_n are continuous Uniform rvs over (0,5) and the C_n are exponential rvs at rate 1/4 (time is in days).
 - (a) Compute the rate (long run number of times per unit time) that the company opens up.
 - (b) Compute the rate (long run number of times per unit time) that the company closes down.
 - (c) Compute the the long-run proportion of time that the company is open/closed.
- 4. Train dispatching problem; different model: Passengers arrive to a train platform according to a Poisson process at rate μ . A train departs every T time units (T > 0 is a constant), taking all passengers who arrived during the T time units. Suppose further that the train company incurs a cost at the constant rate of c per unit time that each passenger waits, and also incurs a fixed cost of R each time a train departs. This process continues over and over. Our objective in what follows is to compute (using Renewal Reward) the long-run cost rate for the train company. Observe that the cycle lengths are deterministic of length T; T0 in T1, T2 on T3.
 - (a) On average, how many passengers get on a train?
 - (b) On average, what is the waiting time of a passenger? (Hint: Condition on how many Poisson arrivals occur by time T; recall the use of order statistics, etc.)
 - (c) What is the expected waiting cost per cycle per passenger? What is thus E(R)?
 - (d) Now compute E(R)/E(X) = the long-run cost rate for the train company.
 - (e) Find the optimal value of T; the one that minimizes cost.
- 5. Machine Repair Model: Independently, four (4) machines have iid lifetimes exponential at rate μ . When any one of them breaks down, it attends a FIFO **2**-server repair facility that has iid service times exponential at rate λ , and one queue (all together) to wait in.
 - (a) Draw the rate diagram for the B&D process $\{X(t):t\geq 0\}$ defined by X(t)= the number of working machines at time t.
 - (b) Give the B&D balance equations and solve.

Alexandre 082153 MSOR

HW 7: Stochastic

Exercice 1:

- a) Consider a time to such that X(t) > 1, meaning there is a got currently in service. The remaining time until the job in service is either completed or lost is governed by two independent exp
 - "clocks": _ completion clock with rate p

jam clock with rate of

The event that ends the current job is the minimum of these two exponential times The minimum of two independent exponentials with rates is and Y is an exponential of rate is +8. So R N exp(p+)

6) We have a Both & Death proces such that the transition rates imbedirer stakes

1 → 1+1: X. Vi≥0

i - i - 1: p + 6 , Vi > 1 (on departure from thate 0)

c) The stationary distribution $4\pi_{i}$ is $\sqrt{i} \ge 0$ $\lambda \pi_{i} = (\nu + \delta)\pi_{i}$, $\Rightarrow \pi_{i} = \frac{\lambda}{(\nu + \delta)}\pi_{i} = \frac{\lambda}{(\nu + \delta)}\pi_{i}$ Also: $\frac{1}{\sqrt{2}} = A \Rightarrow \mathbb{T}$ $\frac{1}{\sqrt{2}} = A \Rightarrow \mathbb{T}$

- d) It's the same as an MIMIT around with a service rate v = v + x
- e) The average sojour lime for such an MMIA queue is: E[H;]= 1 = 1 (per)-h
- 1) The poportion of the time the printer is printing is analogue to the sever whitegates rate for an
 - WIWIT driver: 6= 7
- h) The proportion of arriving customes that find the printer printing is the same as the proportion of

the time the printer is prenting like confirm this using MSTA: e= 4) Sime yard from a Poiston gross independent of the glue. PASTA applies yet again and g= > Exercise 2: a) The poors (X(1)) is a CTMC because transitions occur due to Poisson events (demands) and expland terms (restock). The states are : 6 : 40, ... 6) The transition rates are: i - i - !: > This is mot a BED poores stree you can jump from state 0 to B directly, collecut having to go throught 1. The embedded chain is: $\{P(0 \rightarrow 8) = P(astock) = 1$ (P(1 → 1-1) = P(demand) = 1 6) $\beta \rightarrow \beta - 1 \rightarrow \beta - 2 \rightarrow \dots \rightarrow \Lambda \rightarrow 0$ c) from 0: Oatplan = ST, at balance: ST, = λT , $\Rightarrow T$, = $\frac{\times}{\lambda}$ To From 1: Outflow = \(\lambda \Pi_{\text{q}}\) at balance: \(\lambda \Pi_{\text{q}} = \lambda \Pi_{\text{s}} = \lambda \Pi_{\text{s}} = \Pi_{\text{q}}\) Itering Va press: T. = T. = ... = T. So we have \(\sum_{10} \pi_{10} \) \(\tau_{10} \) \(\tau_{1 So: { T, = \(\lambda \) + \(\beta \). \(\text{S} \) T, = T, = ... = T, = \(\frac{\dagger}{\lambda} \) T, = \(\frac{\dagger}{\lambda} \) \(\lambda + 6. \(\dagger \) \(\dagger + 6. \(\dagger \) \\ \dagger + 6. \(\dagger \) \(\dagger

Exe	rcise	3:																			
_ \	Lila		Cal	A1	111	(n c	١	CF	۲۱۲	. 0+	· 5 _	0 6	J		A	1		. 10	Efai	- [ي	/ 5
0. /	we	have			WIL.	(11)	/ 50	1.	C-2	, 2			any	2 04	igi. W	(a. v	Maun -	LLW	C] -	0
			LG	m N	txp (·	1/4)		LĿ	ICI :	1/4	: 4	days									
										/4											
	Lon	- aum	nk	of	penin	9 =	# 0	ayeles	Dec.	unit	o <u>l</u>	ine (each	aydı	har	DPU	Calmin	(ود			
		q		q	•	-	1		<u>'</u>					V				V			
							E[U+	C 3													
						-	.5														
6)	Lon	g - run	rete	of c	los in	g =	# of	ayde	PU	unit	નુ	ineu (each	oycli	سا	9974	clasin	ر پ			
				J		-	j				•			•							
							E[u	c]													
							E[น+ 1 .5														
(ء	Long	- rum	pop	otem	9	lu ti	OTL OPE	ad =		[u]			<u>.</u>	5							
	0				q				EN	/3+ ET	c)	6.5		43							
	Lama	4100			-1	W. L	- d			EC]		- 1	- 1					W.	b	1	
	COVING	- cum	Pol	1,00	7	UNL C	ARL U	BRA -	EC	u]+ E	[6]	. 8	CON	9- "	n pr) Par L	7	the	C./III	Tala	
												43									
Exe	rik.	4:																			
_ \						L .		Le			1										
<u>a.)</u>		wors									•			or b	roll.	ax.	- P				
	Cosh	: 1							-	_			3								
		2	- Jix	ced u	ost	\$ K &	ach l	mu	the t	raim	depart	\$									
	On	owere	e. K	. mu	mber e	1 00	usene	us a	er h	in 4	Tu צ	(An	Monte	egus (P).						
			, ,,			đ					f	/	σ.								
.,									_	_											
6)	_	als a		-	-	listri	buted	OUU	- LO,	s L T	m ux	pectal	tien	Cord	r sta	t:stic	of o	. PP),	so)	he av	ory
	Orriv	al tin	me à	T .																	
		the				Т	E	[wai	king (.m.]	= A	. <u>T</u>			100	A =	train	La	e tin	m = 1	
									0			L	7	2	1						
																		(W	oit ,		
																<u></u>		+	—		_
																الحين ا	And a	→ T	train	Lave	tin

