第一章 集类与测度

1.1 集合运算与集类

- Ω: 给定的非空集合(全空间)
- **集类**: $\cup \Omega$ 的某些子集为元素的集合称为(Ω 上的)集类
- **单调列**: 设 $\{A_n, n \geq 1\}$ 为一集合序列, 若 $\forall n \geq 1$, 有 $A_n \subset A_{n+1}$ (相应地, $A_n \supset A_{n+1}$), 则称 (A_n) **单调增**(相 应地, **单调减**). 令 $A_n = \bigcup_n A_n$ 或 $A_n = \bigcap_n A_n$, 称 $A \supset A_n$ 的极限, 记为 $A_n \uparrow A$ 或 $A_n \downarrow A$
- **集合的极限**: 对一般的集列 (A_n) , 令

• 上极限:
$$\lim_{n \to \infty} \sup A_n = \overline{\lim_{n \to \infty}} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

• 下极限:
$$\lim_{n\to\infty}\inf A_n = \underline{\lim}_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \cap_{k=n}^{\infty} A_k$$

。 易证:

$$\overline{\lim_{n \to \infty}} A_n = \{ \omega \mid \forall n \ge 1, \exists k(n) \ge n, s.t. \ \omega \in A_{k(n)} \}
\underline{\lim_{n \to \infty}} A_n = \{ \omega \mid \exists n \ge 1, \forall k \ge n, s.t. \ \omega \in A_k \}
\underline{\lim_{n \to \infty}} A_n \subset \overline{\lim_{n \to \infty}} A_n.$$

上述关于集合极限的等价定义比原始定义更易理解.

- 。 若 $\lim_{n\to\infty}A_n=\varliminf_{n\to\infty}A_n$,则称集列 (A_n) 的极限存在,用 $\lim_{n\to\infty}A_n$ 表示.
- 例子: $A_1 = \{0\}, A_2 = \{2\}, A_n = \{(-1)^n\} \ (n \ge 3),$ 则 $\overline{\lim_{n \to \infty}} A_n = \{1, -1\}, \underline{\lim_{n \to \infty}} A_n = \emptyset$
- 。 例子: $A_1=\{1\}, A_2=[2,3], A_n=[-1,\frac{1}{n}] \ (n\geq 3),$ 则 $\overline{\lim_{n\to\infty}}A_n=[-1,0], \underline{\lim_{n\to\infty}}A_n=[-1,0]$
- 集合的划分
 - 若 (A_n) 两两不相交(即 $A_m \cap A_n = \emptyset, \forall m \neq n$), 则常用 $\sum_n A_n$ 表示 $\bigcup_n A_n$
 - 。 若 $\sum_n A_n = \Omega$, 则称 (A_n) 为 Ω 的一个**划分**
 - 。 对任一集列 (A_n) ,令 $B_1 = A_1$, $B_n = A_n A_{n-1}^c \cdots A_1^c \ (n \ge 2)$,可以证明 (B_n) 两两不相交,且 $\bigcup_n B_n = \bigcup_n A_n \ ($ 此处暂省去证明)
- $\Leftrightarrow C_{\cap f} = \{A | A = \bigcap_{i=1}^n A_i, A_i \in C, i = 1, 2, \dots, n, n \ge 1\}, \emptyset$
 - 。 $C_{\cap f}$ 对有限交封闭
 - 。 $C_{\Omega f}$ 是包含C且对有限交封闭的最小集类

• 类似地, 可以定义:

。 $C_{\cup f}$: 用有限并封闭C所得的集类

。 $C_{\Sigma f}$: 用有限不交并封闭C所得的集类

。 C_{δ} : 用可列交封闭C所得的集类

。 C_{σ} : 用可列并封闭C所得的集类

。 $C_{\Sigma\sigma}$: 用可列不交并封闭C所得的集类

• 常用集类

- 。 **π类**: 对有限交封闭
- 半环: $\emptyset \in C$, 对有限交封闭, $A, B \in C \Rightarrow A \setminus B \in C_{\Sigma f}$
- 。 半代数
- 代数(或域): $\Omega \in C$, $\emptyset \in C$, 对有限交封闭, 对取余集封闭 (由此推知,对有限并和差运算也封闭)
- 。 σ 代数: $\Omega \in C$, $\emptyset \in C$, 对可列交封闭, 对取余集封闭 (由此推知,对可列并和差运算也封闭)
- 。 **单调类**: 对单调序列极限封闭
- 。 λ **类**: $\Omega \in C$, 对差运算封闭, 对单调增序列极限封闭(由此推知, 对取余集运算也封闭, 故 $\emptyset \in C$)
- 。 易证: σ 代数为 λ 类, λ 类为单调类

评论

- 上这门课的目的,是想对概率论有更深的认识.第一节课下课问了下老师教学计划,结果发现这门课可以 改叫《测度论》了.
- 集合作为现代数学最基本的概念之一, 真是无处不在啊!
- 。 这里有一个关于集合极限很好的解释. 从直观上解释了我们为什么要引入集合的上下极限的概念?
- 。 **有限**的概念我们在日常生活中接触很多, 但**可数**的概念就需要引入极限, 从**有限**到**可数**是一个很大的跨度.

1.2 单调类定理

• 准备

- 。 设 $\{C_i|i\in I\}$ 为 Ω 上的**一族集类**,若对每个集类 C_i 对某种运算封闭,则 $\cap_i C_i$ 也对这种运算封闭
- 。 $\Diamond \sigma(C) = \bigcap_{g \supset C, g \not\equiv \sigma \cap \Delta} g$. 易证: $\sigma(C)$ 是包含C的最小 σ 代数

- 。 同理, 可以定义m(c)(包含C的最小单调类)和 $\lambda(C)$ (包含C的最小 λ 类)
- 。 易证: 恒有 $m(C) \subset \lambda(C) \subset \sigma(C)$

• 引理

- 。 若C同时为代数和单调类,则C为 σ 代数
- 。 若C同时为 λ 类和 π 类,则C为 σ 代数
- **单调类定理**: 设C为一集类
 - 。 若C为代数,则 $m(C) = \sigma(C)$
 - 。 若C为 π 类, 则 $\lambda(C) = \sigma(C)$
- **定理**1.2.3: 设*C*为一集类

- $\circ m(C) = \sigma(C) \iff A \in C \Rightarrow A^c \in m(C); A, B \in C \Rightarrow A \cap B \in m(C)$
- $\circ \ \lambda(C) = \sigma(C) \iff A, B \in C \Rightarrow A \cap B \in \lambda(C)$
- **定理**1.2.5: 设C为一集类, 若它满足下列条件之一, 则有 $m(C) = \sigma(C)$:
 - $\circ A, B, \in C \Rightarrow A \cap B \in C; A \in C \Rightarrow A^c \in C_{\delta}$
 - $A, B, \in C \Rightarrow A \cup B \in C; A \in C \Rightarrow A^c \in C_{\sigma}$
- $M: \mathbb{R}^T \times \mathbb{R}^$
 - $\sigma(F) = \sigma(G)$ (通常记作 $B(\mathfrak{R})$), **究**中的Borel σ 代数)
 - \circ $m(G) = \sigma(G)$

1.3 测度与非负集函数

- 在本节中我们会
 - 。 定义**非负集函数**及其性质
 - 。 定义可测空间, 测度, 测度空间
 - 。 了解到测度本质上是一个定义在 σ 代数上的非负函数, 且具有单调性, 可减性, 从上连续, 从下连续的性质
- 定义
 - 。 设C为任一包含 \emptyset 集类, 称 $\mu:C\to \mathfrak{R}_+$ 为C上的**非负集函数**.
 - 。 在下述定义中约定: (1) $\mu(\emptyset) = 0$ (2) μ 满足单调性: $A, B \in C, A \subset B \Rightarrow \mu(A) \leq \mu(B)$
 - 有限可加性: $A_i \in C$ $(i \in [n])$, $\sum_{i=1}^n A_i \in C \Rightarrow \mu(\sum_{i=1}^n A_i) = \sum_{i=1}^n \mu(A_i)$
 - σ 可加性: $A_i \in C$ $(i \ge 1)$, $\sum_{i=1}^{\infty} A_i \in C \Rightarrow \mu(\sum_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$
 - 。 半 σ 可加性: $A \in C, A_i \in C$ $(i \ge 1), A \subset \bigcup_{i=1}^{\infty} A_i \Rightarrow \mu(A) \le \sum_{i=1}^{\infty} \mu(A_i)$
 - 。 从下连续: $A_n \in C, A_n \uparrow A, A \in C \Rightarrow \lim_{n \to \infty} \mu(A_n) = \mu(A)$
 - 。 从上连续: $A_n \in C, A_n \downarrow A, A \in C \Rightarrow \lim_{n \to \infty} \mu(A_n) = \mu(A)$
 - 。 在空集中连续: $A_n \in C, A_n \downarrow \emptyset \Rightarrow \lim_{n \to \infty} \mu(A_n) = \mu(\emptyset) = 0$
 - 。 显然: 从上连续 ⇒ 在空集中连续
- 定义
 - 。 我们称(Ω , F)为**可测空间**如果F是 Ω 上的 σ 代数
 - 。 我们称 $\mu:F\to\overline{\mathfrak{R}}_+=[0,+\infty]$ 为 (Ω,F) 上的**测度**, 如果 $(1)\mu(\emptyset)=0$ $(2)\mu$ 满足**可列可加性**或 σ **可加性**
 - 。 设 μ 为可测空间 (Ω, F) 上的测度,则称 (Ω, F, μ) 为**测度空间**
 - 。 若 $\mu(\Omega) < \infty$, 则称 μ 为**有限测度**; 若 $\mu(\Omega) = 1$, 则称 μ 为概率测度; 若存在 $A_n \in F$, $n \ge 1$, 使得

 $\bigcup_{n} A_{n} = \Omega, \, \exists \mu(A_{n}) < \infty, \, \forall n, \,$ 则称 μ 为 σ 有限测度

- 。 例子: $(\mathfrak{R}, B(\mathfrak{R}), \lambda)$, 其中 $B(\mathfrak{R})$ 为Borel σ 代数, λ 为Lebsgue测度,
- 。 有限测度($\mu(\Omega)$ < ∞), 概率测度($\mu(\Omega)$ = 1), σ 有限测度
- 若 $A \in F$, $\mu(A) = 0$, 则称 $A \neq \mu$ 零测集
- 如果任何 μ 零测集的子集都属于F,则称F关于 μ 是完备的,称是(Ω, F, μ)**完备测度空间**
- 定理: 设 (Ω, F, μ) 为一测度空间, 则 μ 满足
 - 单调可减性: $A, B \in F, A \subset B, \mu(B) < \infty \Rightarrow \mu(B \setminus A) = \mu(B) \mu(A)$
 - 。 从下连续. 从上连续
- 评论
 - 非负集函数的定义非常重要,在后面的章节会反复遇到,需牢记且理解.

1.4 外测度与测度的扩张

- 在本节中我们会
 - 研究如何把一半环C上的一个 σ 可加非负集函数扩张称为 σ 代数 $\sigma(C)$ 上的测度
 - 。 定义外测度
- 定义
 - 。 $\Diamond A(\Omega)$ 表示 Ω 中所有子集(包含 \emptyset)构成的集类
 - 。 设 $\mu^*: A(\Omega) \to \overline{\mathfrak{R}}_+$ 为 $A(\Omega)$ 上的一非负集函数,我们称 μ^* 为 Ω 上的**外测度**,如果(1) $A \subset B \subset \Omega \Rightarrow \mu^*(A) \leq \mu^*(B)$ (单调性) (2) $A_n \subset \Omega(n \geq 1) \Rightarrow \mu^*(\bigcup_{n=1}^\infty A_n) \leq \sum_{n=1}^\infty \mu^*(A_n)$ (次 σ 可加性)
 - 。 注意次 σ 可加性和半 σ 可加性区别. 半 σ 可加性是针对一般的集类, 而次 σ 可加性是定义在 $A(\Omega)$ 上的.
- **定理**: $\partial \mu^* \to \Omega$ 上的一外测度. 令

$$U = \{ A \subset \Omega | \forall D \subset \Omega, \mu^*(D) = \mu^*(A \cap D) + \mu^*(A^c \cap D) \}$$

则 μ^* 为 Ω 上的一 σ 代数,且 μ^* 限于U为一测度。我们称U中的元素为 μ^* **可测集**。

• **命题**: 设C为 Ω 上一集类, 且 $\emptyset \in C$. 又设 μ 为C上的一半 σ 可加非负集函数, 且 $\mu(\emptyset) = 0$. 令

$$\mu^*(A) = \inf \left\{ \sum_{n=1}^{\infty} \mu(A_n) | A_n \in C, A \subset \bigcup_{n=1}^{\infty} A_n \right\}, A \subset \Omega$$

则 μ^* 为 Ω 上的外测度, 且 μ^* 限于C与 μ 一致, 我们称 μ^* 为由 μ **引出的外测度**.

- **命题**(1.4.4): 设 μ 为半环C上的一非负集函数(约定 $\mu(\emptyset) = 0$). 则 μ 是 σ 可加的 $\iff \mu$ 为有限可加且半 σ 可加 的
- **引理**(1.4.5): 设C为 Ω 上的一集类, 且 $\emptyset \in C$. 又设 μ 为C上的一半 σ 可加非负集函数, 且 $\mu(\emptyset = 0)$, μ^* 为 μ 引出的外测度. 则A为 μ^* 可测集 $\iff \forall B \in C$, 有 $\mu(B) \ge \mu^*(B \cap A) + \mu^*(B \cap A^c)$
- 引理(1.4.6):
- Caratheodory测度扩张定理: 设C为 Ω 上的一半环, μ 为C上的一 σ 可加非负集函数, 则 μ 可扩张成 $\sigma(C)$ 上的一测度. 若进一步 μ 在C上为 σ 有限, 且 $\Omega \in C_{\sigma}$, 则这一扩张是唯一的, 并且扩张所得的测度在 $\sigma(C)$ 上也是 σ 有限的.

1.5 \Re^n 中的Lebesgue-Stieltjes测度

- 在本节中, 我们将
 - 。 先在 \Re^n 中, 建立Lebesque测度
 - 然后在 \Re^n 中, 在Lebesgue测度的基础上, 建立更一般的Lebesgue-Stieltjes测度
- 设 $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in \Re^n$. 先做以下约定:
 - 。 记 $a \le b$, 如果 $a_i \le b_i$, $\forall i \in [n]$. (a < b类似)
 - \circ \diamondsuit *C* = {(*a*, *b*]|*a* ≤ *b*, *a*, *b* ∈ \Re ^{*n*}}
 - $\circ \ \ \Leftrightarrow \mu((a,b]) = \prod_{i=1}^n (b_i a_i)$
- **引理**(1.5.1): C是**\Re**ⁿ上的半环, μ 是C上的 σ 可加非负集函数.
- **定理**(1.5.2): 易证 $\sigma(C) = B(\mathfrak{R}^n)$. 根据测度扩张定理, 可以将 μ 唯一地扩张成为 $B(\mathfrak{R})$ 上的 σ 有限测度, 称之为Lebesgue测度
- 定义(1.5.3)
 - 。 增函数
 - 设 μ 为 $B(\mathfrak{R}^n)$ 上一 σ 有限测度,则称 μ 为Lebesgue-Stieltjes测度
- 定理(1.5.4):