LAPLACE TRANSFORM

transform method which is particularly useful in solving linear differential equations. Laplace transform techniques are widely used in engineering fields. The Laplace Transforms can be interpreted as a transformation from the time domain where inputs and outputs are functions of time(t) to the frequency domain where inputs and outputs are functions of complex angular frequency (5.).

Def: Laplace Transform (L.T.)

Let, f(t) be a given function defined for all t>0. The Laplace Transform of f(t) denoted by L[f(t)] is defined as

$$L[f(t)] = \int_{0}^{\infty} e^{-st} f(t) dt = \phi(s)$$

• Problems using definition of Laplace Transform

1) Find Laplace transform of f(+)= +2 0< +<3

= 6 +>3

$$\frac{som}{L[f(t)]} = \int_{0}^{\infty} e^{-St} f(t) dt$$

 $= \int_{0}^{3} e^{-st} f(t) dt + \int_{0}^{\infty} e^{-st} f(t) dt$ $= \int_{0}^{3} e^{-st} f(t) dt + \int_{0}^{\infty} e^{-st} f(t) dt$ $= \int_{0}^{3} e^{-st} f(t) dt + \int_{0}^{\infty} e^{-st} f(t) dt$ $= \int_{0}^{3} f(t) e^{-st} f(t) dt + \int_{0}^{\infty} e^{-st} f(t) dt$

Sundaram

Servicementh Charlettle Trouses

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai)

(Approved by AICTE New Delhi & Gov. of Maharashtra, Affiliated to University of Mumbai)

Notes fear cosbx dx = pax [acosbx + bsinbx] (eax sinbx dx = eax [a sinbx - brosbx 2) Find Laplace Transform of f(t)= cost octon sol 1[f(+)]= (= st f(+) d+ = (est cost dt + (est sint dt (from above formulae a=-s, b=1) = [-st (-scost + sint)] + [+ (-ssint - cost)] = [= TS (-S(OSTI + SIMT)) - 1 (-S(1)+0) + 0 - e-TTS (-SSINTI - COSTI) $= \frac{e^{-11S}}{S^{2}+1} \left(-3(-1)+0\right) - \frac{(-S)}{S^{2}+1} - \frac{e^{-11S}}{S^{2}+1} \left(0-(-1)\right)$ $\frac{e^{-\Pi S}}{S^2+1} \frac{S+S}{S^2+1} \frac{e^{-\Pi S}}{S^2+1}$

Ex. Find Laplace Transform of $1> f(t) = (t-1)^2 \cdot o(t < 1)$ $2> f(t) = Sin2t \cdot o(t < 1)$ $= 2 \cdot 3 \cdot t > 1$ $= 0 \cdot t > 11$

Problemati Charlette Cortes

A. P. SIVYI INSTRUUTE OF TESTINOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

Linearity Property of Laplace Transform

$$L[k_1f_1(+)+k_2f_2(+)] = k_1L[f_1(+)] + k_2L[f_2(+)]$$

aplace Transform of Standard Functions

6)
$$L[sinhat] = a$$
 s^2-a^2

(Note: One can prove all above formulae using definition of Laplace Transform.

Sundaram

FOR EDUCATIONAL USE

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

Fightenish Chilettle Gross

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

3)	L[+31/2]
sen	L Milie D. Miels II a law-arry
	$L[t^{3/2}] - t \overline{)3/2+1} = \overline{)5/2}$
	but \[n = (n-1) \[n-1 \]
	1 [+312] = (5/2-1) [5/2-1
	$= \frac{3/2}{5^{1/2}} \frac{31/2}{5^{1/2}} - \frac{3}{3}(\frac{31}{2} + 1) \frac{31}{2} + \frac{3}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$ $= \frac{3}{2} \frac{31/2}{5^{1/2}} - \frac{3}{2}(\frac{31}{2} + 1) \frac{31}{2} + \frac{3}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$ $= \frac{3}{2} \frac{31/2}{5^{1/2}} - \frac{3}{2}(\frac{31}{2} + 1) \frac{31}{2} + \frac{3}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$
1	S5/2 S5/2 S5/2
	3 √11
	= 3 \sqrt{11} 4 5 \sqrt{2}
	Carnel Lean
4>	L[1]
2 10	1 []] = L[] = 1 1 [+ -1/2] = 1 F/2+1
Sch	[TITE] = JIT
	$\frac{1}{\sqrt{11}} \frac{\sqrt{12}}{\sqrt{12}} = \frac{1}{\sqrt{11}} \times \frac{\sqrt{11}}{\sqrt{12}} = \frac{1}{\sqrt{12}}$
	1(17-1
	ि (तार) = र्रेड .
5	L[VI+Sint]
Soln	1 [.11+3in+]
~	
	= L [Jsin2t/2 + cos2t/2 + 2 sint/2 (ost/2]
	$= L \left[\sqrt{\left(sint_{1} + cost_{2} \right)^{2}} \right]$
1	
	= L[(sint/2+rost/2)]
	x 1/2 , S - 1 + S
	$S^{2}+(\frac{1}{2})^{2}$ $+$ $S^{2}+(\frac{1}{2})^{2}$ $2[S^{2}+\frac{1}{4}]$ $S^{2}+\frac{1}{4}$
Sundaram	FOR EDUCATIONAL USE
	D (N)

(Approved by AICII New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

E) LI cost cosst cosst cost (cos 2+ cos 3+) cost (cos(2++3+) + cos(2+-3+)) cost cosst + cost (os(-+) cost cosst + cost cost (056t + (05(-4t) + (052++ cos(0) cos6t + cos4t + cos2t+1 $\frac{s}{s^2+6^2} + \frac{s}{s^2+4^2} + \frac{s}{s^2+2^2} + \frac{1}{s}$ $\frac{S}{S^2+36} + \frac{S}{S^2+16} + \frac{C}{S^2+4}$ 7) L sint cos4+ cos3+ L[Sint (cos4t cos3t)] = 1 [sint ((057++ cost) sint cos 71 + sint cost sin8+ + sin(-6t) + sin(2+)+sin(0) singt-singt +singt $\frac{8}{s^2+8^2} - \frac{6}{s^2+6^2} + \frac{2}{s^2+2^2}$ FOR EDUCATIONAL USE Sundaram

Separate Charletin Grouss

A. P. SILVII IZSHUPUHO OF TEOILIOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Keligious Jain Minority)

Note: cosho= e0+e-0 · We have, Binomial expansion as

(a ± b) = an ± ngan+b + ngan-2b2 ± ---- bn One can also find nc, nc, -- using Pascal triangle, which is as follows 2 | $-3(a+b)^2 = a^2 + 2ab + b^2$ 3 3 1 \rightarrow $(a+b)^3 = a^3 + 3a^2b + 9ab^2 + b^3$ 4 6 4 1 -> (a+b)4 5 1 -> (a+b) · We'll use above formulae when we need to find Laplace transform of powers of cosine, sine bo also hyperbolic cosine & sine 8 L[cosh4t] 1[(ash++) = 1[(ash+)4] = 1 (et+et)4 = 1 [(et+e+)4] = 1 [(et)4+4(et)3(et)+6(et)2(et)+4(et)(et)3+(et)]

Traditional Charlette Course

A. P. SHAH INSTRUME OF TECHNOLOGY

$$\begin{split} & \lfloor (\cos b^{4}t) \rfloor = 1 \ \lfloor (e^{4t} + 4e^{3t}e^{-t} + 6e^{2t}e^{2t} + 4e^{t}e^{-3t} + e^{-4t}) \\ & = \frac{1}{16} \ \lfloor (e^{4t} + 4e^{2t} + 6 + 4e^{-2t} + e^{4t}) \\ & = \frac{1}{16} \ \lfloor (e^{4t} + 4e^{2t} + 6 + 4e^{-2t} + e^{4t}) \\ & = \frac{1}{16} \ \lfloor (e^{4t} + 4e^{2t} + 6 + 4e^{-2t} + e^{4t}) \rfloor \\ & = \frac{1}{16} \ \lfloor (e^{4t} + 4e^{2t} + 6 + 4e^{-2t} + e^{4t}) \rfloor \end{split}$$

9)
$$L[\sinh^{5}2t]$$

 Sol^{n} $L[\sinh^{5}2t] = L[(\sinh 2t)^{5}]$
 $= L[(e^{2t} - e^{-2t})^{5}]$
 $= \frac{1}{2}[(e^{2t} - e^{-2t})^{5}]$

$$= 11 (e^{2t})^{5} + 5(e^{2t})^{4}(e^{2t}) + 10(e^{2t})^{3}(e^{-2t})^{2} + 10(e^{2t})^{2}(e^{-2t})^{3}$$

$$+ 5(e^{2t})(e^{-2t})^{4} - (e^{-2t})^{5}$$

$$= \frac{1}{32} \left[\frac{1}{s-10} - \frac{5}{s-6} + \frac{10}{s-2} - \frac{10}{s+2} + \frac{5}{s+6} - \frac{1}{s+10} \right]$$

$$\begin{array}{ccc}
& \text{In}^{3} \text{In}^{3} \text{In}^{3} \text{In}^{3} \text{In}^{3} \\
& = \text{In}^{4} \left[\frac{(e^{it} - e^{it})^{3}}{2i} \right] \\
& = \text{In}^{4} \left[\frac{(e^{it} - e^{-it})^{3}}{2i} \right] \\
& = \text{In}^{4} \left[\frac{(e^{it} - e^{-it})^{3}}{2i} \right]
\end{array}$$

Freihannah Gamende Gores

A. P. SIKKI INSHRUHD OF HEGINOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minerity)

$$= \frac{1}{8i^3} L \left[(e^{it})^3 - 3(e^{it})^2 (\bar{e}^{it}) + 3(e^{it}) (\bar{e}^{it})^2 - (\bar{e}^{it})^3 \right]$$

$$= -\frac{1}{8i} L \left[e^{i3t} - 3e^{i2t} \bar{e}^{it} + 3e^{it} \bar{e}^{-i2t} - e^{-i3t} \right]$$

$$= -\frac{1}{8i} L \left[e^{i3t} - 3e^{it} + 3e^{it} - \bar{e}^{-i3t} \right]$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + ----$$

ii)
$$\sin x - x - \frac{x^3}{31} + \frac{x^5}{51}$$

$$\frac{3d^n}{3!} = \frac{3}{3!} + \frac{3}{5!}$$

$$= \lfloor (\pm^{\frac{1}{2}}) - \rfloor \, \lfloor (\pm^{\frac{3}{2}}) + \rfloor \, \lfloor (\pm^{\frac{5}{2}}) - - - - -$$

$$= \frac{\left[\frac{1}{2}+1\right]}{S^{\frac{1}{2}+1}} - \frac{1}{3!} \frac{\left[\frac{3}{2}+1\right]}{S^{\frac{3}{2}+1}} + \frac{1}{5!} \frac{\left[\frac{5}{2}+1\right]}{S^{\frac{3}{2}+1}} - \cdots$$

Sundaram

FOR EDUCATIONAL USE

Warshwarsth Charletin Grouss

A. P. SHATI INSHRIVING OF TEXHINOLOGY

(Approved by AICTE New Delhi & Govt, of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

$$\Rightarrow 1 \left[\sin \sqrt{t} \right] = \frac{3}{6} \frac{1}{8^{3}} \frac{1}{2} \frac{1}{8^{2}} \frac{1}{2} \frac{1}{8^{2}} \frac{1}{8^{2$$

Sundaram

Setn

Tradizantali Charletilis Carleti

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai)
(Religious Jain Minority)