CS 109 Study Notes

Stephen Koo

March 16, 2013

1 Fundamentals

1.1 DeMorgan's Laws

$$\left(\bigcup_{i=1}^{n} E_{i}\right)^{c} = \bigcap_{i=1}^{n} E_{i}^{c} \qquad \left(\bigcap_{i=1}^{n} E_{i}\right)^{c} = \bigcup_{i=1}^{n} E_{i}^{c}$$

1.2 Axioms of Probability

Axiom 1: $0 \le P(E) \le 1$

Axiom 2: P(S) = 1

Axiom 3: For any sequence of mutually exclusive events E_1, E_2, \ldots

$$P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i)$$

1.3 Inclusion-Exclusion Identity

$$P(E \cup F) = P(E) + P(F) - P(EF)$$

$$P\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{r=1}^{n} (-1)^{(r+1)} \sum_{i_{1} < \dots < i_{r}} P(E_{i_{1}}, E_{i_{2}}, \dots, E_{i_{r}})$$

1.4 Number of Integer Solutions of Equations

There are $\binom{n-1}{r-1}$ distinct positive integer-valued vectors (x_1, x_2, \dots, x_r) satisfying the equation

$$x_1 + x_2 + \dots + x_r = n$$
 $x_i > 0, i = 1, \dots, r$

There are $\binom{n+r-1}{r-1}$ distince nonnegative integer-valued vectors (x_1, x_2, \dots, x_r) satisfying the equation

$$x_1 + x_2 + \dots + x_r = n$$

2 Conditional Probability

$$P(E|F) = \frac{P(EF)}{P(F)} \Leftrightarrow P(EF) = P(E|F)P(F)$$

1

2.1 Generalized Chain Rule

$$P(E_1E_2...E_n) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)...P(E_n|E_1E_2...E_{n-1})$$

2.2 Bayes' Theorem

The many shapes and forms of Bayes' Theorem...

$$P(E) = P(E|F)P(F) + P(E|F^{c})P(F^{c})$$

$$P(F|E) = \frac{P(EF)}{P(E)} = \frac{P(E|F)P(F)}{P(E)}$$

$$P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^{c})P(F^{c})}$$

Fully General Form:

If F_1, F_2, \ldots, F_n comprise a set of mutually exclusive and exhaustive events, then

$$P(F_{j}|E) = \frac{P(E|F_{j})P(F_{j})}{\sum_{i=1}^{n} P(E|F_{i})P(F_{i})}$$

That's odd.

The odds of H given observed evidence E:

$$\frac{P(H|E)}{P(H^c|E)} = \frac{P(H)P(E|H)}{P(H^c)P(E|H^c)}$$

3 Independence

3.1 Definition

Two events are independent if P(EF) = P(E)P(F). Otherwise they are dependent. More generally, events E_1, E_2, \ldots, E_n are independent if for every subset $E_{1'}, E_{2'}, \ldots, E_r$ where $r \le n$ it holds that

$$P(E_{1'}E_{2'}...E_r) = P(E_{1'})P(E_{2'})...P(E_r)$$

3.2 Conditional Independence

Two events E and F are conditional independent given G if

$$P(EF|G) = P(E|G)P(F|G)$$

Dependent events can become independent, and vice-versa, by conditioning on additional information.

4 Random Distributions

4.1 Definitions and Properties

Probability Mass Function:

$$p(a) = P(X = a)$$

Probability Density Function:

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx \qquad P(-\infty < X < \infty) = \int_{-\infty}^{\infty} f(x)dx = 1$$

Cumulative Distribution Function:

$$F(a) = F(X \le a)$$
 where $-\infty < a\infty$

$$F(a) = \sum_{\text{all } x \le a} p(x)$$

$$F(a) = \int_{-\infty}^{a} f(x) dx$$

Density f is the derivative of CDF F: $f(a) = \frac{d}{da}F(a)$

4.2 Joint distributions

Joint Probability Mass Function:

$$p_{X,Y}(a,b) = P(X=a,Y=b)$$

Marginal distributions:

$$p_X(a) = P(X = a) = \sum_{y} p_{X,Y}(a,y)$$
 $p_Y(b) = P(Y = b) = \sum_{x} p_{X,Y}(x,b)$

Joint Cumulative Probability Distribution (CDF):

$$F_{X,Y}(a,b) = F(a,b) = P(X \le a, Y \le b)$$
 where $-\infty < a,b < \infty$

Marginal distributions:

$$F_X(a) = P(X \le a) = P(X \le a, Y < \infty) = F_{X,Y}(a, \infty)$$

$$F_Y(b) = P(Y \le b) = P(X < \infty, Y \le b) = F_{X,Y}(\infty, b)$$

Joint Probability Density Function:

$$P(a_1 < X \le a_2, b_1 < Y \le b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) dy dx$$

$$F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx \qquad f_{X,Y}(a,b) = \frac{\partial^{2}}{\partial a \partial b} F_{X,Y}(a,b)$$

Marginal density functions:

$$f_x(a) = \int_{-\infty}^{\infty} f_{X,Y}(a,y)dy \qquad f_y(b) = \int_{-\infty}^{\infty} f_{X,Y}(x,b)dx$$

4.3 Independent Random Variables

n random variables X_1, X_2, \ldots, X_n are called independent if

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \prod_{i=1}^n P(X_i = x_i)$$
 for all x_1, x_2, \dots, x_n

or analogously for continuous random variables if

$$P(X_1 \le a_1, X_2 \le a_2, \dots, X_n \le a_n) = \prod_{i=1}^n P(X_i \le a_i)$$
 for all a_1, a_2, \dots, a_n

4.4 Convolution

Let X and Y be independent random variables. The convolution of F_X and F_Y is F_{X+Y} :

$$F_{X+Y}(a) = P(X+Y \le a) = \int_{y=-\infty}^{\infty} F_X(a-y) f_Y(y) dy$$

$$f_{X+Y}(a) = \int_{y=-\infty}^{\infty} f_X(a-y) f_Y(y) dy$$

In discrete case, replace $\int_{y=-\infty}^{\infty}$ with \sum_{y} , and f(y) with p(y).

4.5 Conditional Distributions

Conditional PMF of X given Y:

$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

Conditional PDF of X given Y:

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Conditional CDF of X given Y:

$$\begin{split} F_{X|Y}(a|y) &= P(X \leq a, Y = y) = \sum_{x \leq a} p_{X|Y}(x|y) \\ &= \int\limits_{-\infty}^a f_{X|Y}(x|y) dx \end{split}$$

n random variables X_1, X_2, \dots, X_n are conditionally independent given Y if

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n | Y = y) = \prod_{i=1}^n P(X_i = x_i | Y = y)$$
 for all x_1, x_2, \dots, x_n, y

or analogously for continuous random variables if

$$P(X_1 \le a_1, X_2 \le a_2, \dots, X_n \le a_n | Y = y) = \prod_{i=1}^n P(X_i \le a_i | Y = y) \text{ for all } a_1, a_2, \dots, a_n, y$$

It is possible to mix continuous and discrete random variables in conditional distributions. For example let X be a continuous random variable and N be a discrete random variable. Then the conditional PDF of X given N and the conditional PMF of N given X are

$$f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)}$$

$$P_{N|X}(n|x) = \frac{f_{X|N}(x|n)p_N(n)}{f_X(x)}$$

5 Expectation

5.1 Definitions

The expected value for a discrete random variable X is defined as

$$E[X] = \sum_{x:p(x)>0} xp(x)$$

For a continuous random variable X, the expected value is

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

5.2 Properties

If I is an indicator variable for the event A, then

$$E[I] = P(A)$$

Let g(X) be a real-valued function of X.

$$E[g(X)] = \sum_{i} g(x_i)p(x_i) \qquad E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

Let g(X,Y) be a real-valued function of two random variables.

$$E[g(X,Y)] = \sum_{y} \sum_{x} g(x,y) p_{X,Y}(x,y) \qquad E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$$

Linearity:

$$E[aX + b] = aE[X] + b$$

N-th Moment of X:

$$E[X^n] = \sum_{x:p(x)>0} x^n p(x)$$

Expected Values of Sums:

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

Bounding Expectation:

If random variable $X \ge a$ then $E[X] \ge a$.

If $P(a \le X < \infty) = 1$ then $a \le E[X] < \infty$.

If random variables $X \ge Y$ then $E[X] \ge E[Y]$.

5.3 Conditional Expectation

Conditional Expectation of X given Y = y:

$$E[X|Y = y] = \sum_{x} x p_{X|Y}(x|y) \qquad E[X|Y = y] = \int_{-\infty}^{-\infty} x f_{X|Y}(x|y) dx$$

Expectation of conditional sum:

$$E\left[\sum_{i=1}^{n} X_i | Y = y\right] = \sum_{i=1}^{n} E[X_i | Y = y]$$

Expectation of conditional expectations:

$$E[E[X|Y]] = E[X]$$

6 Variance

6.1 Definition

If X is a random variable with mean μ then the variance of X, denoted Var(X), is:

$$Var(X) = E[(X - \mu)^2] = E[X^2] - (E[X])^2$$

6.2 Properties

$$Var(aX + b) = a^2 Var(X)$$

If X_1, X_2, \ldots, X_n are independent random variables, then

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var}(X_i)$$

6.3 Covariance

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]$$

If X and Y are independent, Cov(X, Y) = 0 Properties:

$$Cov(X,Y) = Cov(Y,X)$$
$$Cov(X,X) = Var(X)$$
$$Cov(aX + b, Y) = aCov(X,Y)$$

If X_1, X_2, \dots, X_n and Y_1, Y_2, \dots, Y_m are random variables, then

$$\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}(X_{i}, X_{j})$$

6.4 Correlation

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

Note: $-1 \le \rho(X, Y) \le 1$.

Correlation measures linearity between X and Y.

If $\rho(X,Y) = 0$, X and Y are uncorrelated.

7 Moment Generating Functions

7.1 Definition

Moment Generating Function (MGF) of a random variable X, where $-\infty < t < \infty$, is

$$M(t) = E[e^{tX}]$$

When X is discrete:

$$= \sum_{x} e^{tx} p(x)$$

When X is continuous:

$$=\int_{-\infty}^{\infty}e^{tx}f(x)dx$$

For any n random variables X_1, X_2, \ldots, X_n

$$M(t_1, t_2, \dots, t_n) = E[e^{t_1 X_1 + t_2 X_2 + \dots + t_n X_n}]$$

The individual moment generating function is obtained:

$$M_{X_i}(t) = E[e^{tX}] = M(0, \dots, 0, t, 0, \dots, 0)$$
 where t at ith place

7.2 Properties

$$M^{n}(t) = \left(\frac{d^{n}}{dt^{n}}\right)M(t) = E[X^{n}e^{nX}]$$
$$M^{n}(0) = E[X^{n}]$$
$$M_{X}(t) = M_{Y}(t) \text{ iff } X \sim Y$$

 X_1, X_2, \dots, X_n independent if and only if:

$$M(t_1, t_2, \dots, t_n) = M_{X_1}(t_1)M_{X_2}(t_2)\dots M_{X_n}(t_n)$$

8 Inequalities

8.1 Boole's Inequality

Let E_1, E_2, \ldots, E_n be events with indicator random variables X_i .

$$\sum_{i=1}^{n} P(E_i) \ge P\left(\bigcup_{i=1}^{n} E_i\right)$$

8.2 Markov's Inequality

X is a nonnegative random variable.

$$P(X \ge a) \le \frac{E[X]}{a}$$
 for all $a > 0$

8.3 Chebyshev's Inequality

X is a random variable with $E[X] = \mu$ and $Var(X) = \sigma^2$.

$$P(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}$$
 for all $k > 0$

One-sided inequality:

$$P(X \ge E[X] + a) \le \frac{\sigma^2}{\sigma^2 + a^2}$$
 for any $a > 0$

$$P(X \le E[X] - a) \le \frac{\sigma^2}{\sigma^2 + a^2}$$
 for any $a > 0$

8.4 Chernoff Bound

X is a random variable with MGF M(t).

$$P(X \ge a) \le e^{-ta} M(t)$$
 for all $t > 0$

$$P(X \le a) \le e^{-ta} M(t)$$
 for all $t < 0$

In practice, use the t that minimizes $e^{-ta}M(t)$.

8.5 Jensen's Inequality

If f(x) is a convex function $(f''(x) \ge 0 \text{ for all } x)$ then

$$E[f(x)] \ge f(E[X])$$