Hierarchical Image-Text Representations

Aksenov Yaroslav

Definition 1. A function $f:(X, \preceq_X) \to (Y, \preceq_Y)$ is an order-embedding if for all $u, v \in X$, $u \preceq_X v$ if and only if $f(u) \preceq_Y f(v)$

Partial order

Order-Embeddings of Images and Language (Vendrov at al. 2016)

$$x \preceq y$$
 if and only if $igwedge_{i=1}^N x_i \geq y_i$ $E(x,y) = ||\max(0,y-x)||^2$ $\sum_{u,v)\in P} E(f(u),f(v)) + \sum_{(u',v')\in N} \max\{0,lpha-E(f(u'),f(v'))\}$

WordNet – pairs of (common, specific)

Poincaré Embeddings for Learning Hierarchical Representations (Nickel, Kiela 2017)

(a) Intermediate embedding after 20 epochs

(b) Embedding after convergence

$$d(\boldsymbol{u}, \boldsymbol{v}) = \operatorname{arcosh} \left(1 + 2 \frac{\|\boldsymbol{u} - \boldsymbol{v}\|^2}{(1 - \|\boldsymbol{u}\|^2)(1 - \|\boldsymbol{v}\|^2)} \right)$$

Poincaré Embeddings for Learning Hierarchical Representations (Nickel, Kiela 2017)

$$d(oldsymbol{u},oldsymbol{v}) = \|oldsymbol{u} - oldsymbol{v} + oldsymbol{r}\|^2$$
 – translational distance

			Dimensionality					
			5	10	20	50	100	200
WORDNET Reconstruction	Euclidean	Rank MAP	3542.3 0.024	2286.9 0.059	1685.9 0.087	1281.7 0.140	1187.3 0.162	1157.3 0.168
	Translational	Rank MAP	205.9 0.517	179.4 0.503	95.3 0.563	92.8 0.566	92.7 0.562	91.0 0.565
	Poincaré	Rank MAP	4.9 0.823	4.02 0.851	3.84 0.855	3.98 0.86	3.9 0.857	3.83 0.87
WORDNET Link Pred.	Euclidean	Rank MAP	3311.1 0.024	2199.5 0.059	952.3 0.176	351.4 0.286	190.7 0.428	81.5 0.490
	Translational	Rank MAP	65.7 0.545	56.6 0.554	52.1 0.554	47.2 0.56	43.2 0.562	40.4 0.559
	Poincaré	Rank MAP	5.7 0.825	4.3 0.852	4.9 0.861	4.6 0.863	4.6 0.856	4.6 0.855

Poincaré Embeddings for Learning Hierarchical Representations (Nickel, Kiela 2017)

Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry (Nickel, Kiela 2018)

(a) Geodesics in the Poincaré disk.

(b) Lorentz model of hyperbolic geometry.

Lorenz model of hyperbolic space

$$\langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}} = \langle \mathbf{x}_{space}, \mathbf{y}_{space} \rangle - x_{time} \ y_{time}$$

$$\mathcal{L}^{n} = \{ \mathbf{x} \in \mathbb{R}^{n+1} : \langle \mathbf{x}, \mathbf{x} \rangle_{\mathcal{L}} = -1/c \ , \ c > 0 \}$$

$$\mathcal{T}_{\mathbf{z}} \mathcal{L}^{n} = \{ \mathbf{v} \in \mathbb{R}^{n+1} : \langle \mathbf{z}, \mathbf{v} \rangle_{\mathcal{L}} = 0 \}$$

$$\|\mathbf{x}\|_{\mathcal{L}} = \sqrt{|\langle \mathbf{x}, \mathbf{x} \rangle_{\mathcal{L}}|}$$
 $\mathbf{x}_{space} = rac{sinh(\sqrt{c} \, \|\mathbf{v}_{space}\|)}{\sqrt{c} \, \|\mathbf{v}_{space}\|} \mathbf{v}_{space}$

Вопросы