WC模拟赛

Day 1 2019年1月

题目名称	石子游戏	车	求和
源文件名	nim	rook	sum
输入文件名	nim.in	rook.in	sum.in
输出文件名	nim.out	rook.out	sum.out
时间限制	1s	1s	2s
空间限制	512MB	512MB	512MB

打开-O2优化, C++语言使用C++11标准(编译参数加上-std=c++11)。

1 石子游戏

1.1 问题描述

Alex和仓鼠在玩游戏。游戏规则如下:桌上有n堆石子,每堆石子有 a_i 个,Alex和仓鼠轮流操作,仓鼠做第一次操作。每次操作时,操作者可以选择一堆石子,并从这堆石子中取出至少一个石子。最后无法操作的人输。可以发现这就是一个Nim游戏。

Alex和仓鼠玩了一会儿后很快就自闭了,因为仓鼠太神仙了,根本打不过。于是他准备安排一下,删去若干堆石子(可以不删,也可以全删,删去一堆石子可以理解为将这堆石子的个数变为0个),使得在双方都采用最优决策的情况下,Alex能赢。

当然,仓鼠十分聪明,如果删去的太多会被仓鼠发现,所以Alex希望留下 尽量多的堆数。

1.2 输入格式

第一行一个整数 n 表示石子堆数。 第二行 n 个整数,分别表示 $a_1, a_2, a_3, ..., a_n$ 。

1.2.1 输出格式

一行1个整数,表示最多能剩下多少堆石子。

1.3 样例

1.3.1 样例输入一

8

19260817

1.3.2 样例输出一

7

1.3.3 样例一解释

删去第三堆石子(石子个数为2的那一堆),剩下7堆。

1.4 数据范围

对于所有数据: $1 \le n \le 500000$, $0 \le a_i \le 500000$ 。 令 $A = \max\{a_1, a_2, ..., a_n\}$ 。

Subtask	n	A	分值
1	≤ 20	≤ 500000	10
2	≤ 100	≤ 100	20
3	≤ 3000	≤ 3000	30
4	≤ 500000	≤ 500000	40

2 车

2.1 问题描述

为了提高象棋水平,你最近再研究如何使用车。你将n个车摆在 $n \times n$ 的棋盘上,每个格子最多摆放一个,并且每行每列和**两条最长的对角线**上至少有一个车。

你发现了这样的方案太多了,一天根本来不及研究,于是打算先睡一觉第二天起来再研究。夜里,棋子都掉在了地上。你想复盘一下前一天研究的成果,可你并不能记得所有的格子的情况了,你只记得有m个格子是**没有**车的,他们的坐标为 $(a_1,b_1),\cdots,(a_m,b_m)$ (下标从0到n-1)。你想知道有多少种满足条件的棋子摆放方式。

由于答案较大, 你只需要输出答案对10007取模。 本题采用多测。

2.2 输入格式

第一行一个正整数 T 表示数据组数。 每组数据第一行两个整数 n, m。 接下来 m 行,每行 2 个整数,表示没有车的格子坐标。

2.2.1 输出格式

共 T 行,每行 1 个整数,表示答案。

2.3 样例

2.3.1 样例输入一

- 3
- 42
- 02
- 3 1
- 42
- 23

WC模拟赛

3 2

103

0 0

44

1 4

2.3.2 样例输出一

6

6

1127

2.3.3 样例一解释

注意坐标从0到n-1。

2.4 数据范围

对于所有数据: 1 \leq T \leq 15, 1 \leq n \leq 100, 0 \leq m \leq 10, 0 \leq $a_i,$ b_i < n_{\circ}

Subtask	T	n	m	分值
1	≤ 5	≤ 10	≤ 8	10
2	≤ 15	≤ 100	= 0	30
3	≤ 15	≤ 32	≤ 8	10
4	= 1	≤ 100	≤ 10	30
5	≤ 15	≤ 100	≤ 10	20

3 求和

3.1 问题描述

给定 N, M, K,输出 $\sum_{i=0}^{N} \sum_{j=0}^{M} \binom{i}{j} \cdot [i \equiv 0 \pmod{2}] \cdot [j \equiv 0 \pmod{2}]$ 对 K 取模的结果。 $\binom{n}{m}$ 表示 n 个物品中选 m 个的方案数)

3.2 输入格式

一行三个正整数 N, M, K。

3.2.1 输出格式

一行1个整数,表示答案。

3.3 样例

3.3.1 样例输入一

2 3 3

3.3.2 样例输出一

0

3.3.3 样例一解释

$$\binom{0}{0} + \binom{0}{2} + \binom{2}{0} + \binom{2}{0} + \binom{2}{2} = 1 + 0 + 1 + 1 = 0 \mod 3$$

3.4 数据范围

对于所有数据: $1 \le N \le 10^9, \, 1 \le M \le 10^6, \, 1 \le K \le 10^9$ 。

Subtask	N	M	K	分值
1	≤ 5000	≤ 5000	$\leq 10^9$	10
2	≤ 200000	≤ 200000	= 998244353	20
3	≤ 10 ⁹	$\leq 10^{6}$	= 998244353	10
4	≤ 10 ⁹	$\leq 10^{6}$	≤ 10 ⁹ ,是奇数	30
5	≤ 10 ⁹	$\leq 10^{6}$	≤ 10 ⁹	30