Bevezetés a méréstechnikába és jelfeldolgozásba

Tihanyi Attila 2007. április 17.

ALAPOK

- Töltés
 - − 1 elektron töltése 1,602-10⁻¹⁹ C
 - 1 C (coulomb) = 6,24·10¹⁸ elemi elektromos töltés.
- Áram I=Q/t
- Feszültség
- Munka W=QU=I t U
- Teljesítmény P=W/t=U I

Ideális feszültséggenerátor

- Minden körülmény esetén pontosan U feszültséget produkál
- Zero belső ellenállás
- Végetlen nagy teljesítmény leadására kéres

Ideális áramgenerátor

- Minden körülmény esetén pontosan I áramot produkál
- Végtelen belső ellenállás
- Végetlen nagy teljesítmény leadására kéres

Valóságos feszültséggenerátor

- Ug <> Uki
- Rg > 0
- Imax = Ug/Rg

Thevenin tétel

A Thevenin tétel szerint bármely aktív kétpólus helyettesíthető egy valóságos feszültséggenerátorral. Az ilyen helyettesítő áramkört Thevenin helyettesítő képnek nevezzük. A Thevenin helyettesítő kép elemeit úgy határozzuk meg, hogy kiszámítjuk a helyettesítendő kétpólus üres járási feszültségét és eredő belső ellenállását, e két adat adja a helyettesítő kép feszültséggenerátorának forrásfeszültségét és belső ellenállását

Valóságos áramgenerátor

- lki <> l
- Rg < végtelen
- Umax=I Rg

Norton tétel

A Norton tétel szerint bármely aktív kétpólus helyettesíthető egy valóságos áramgenerátorral. Az ilyen helyettesítő áramkört Norton helyettesítő képnek nevezzük. A Norton helyettesítő kép elemeit úgy határozzuk meg, hogy kiszámítjuk a helyettesítendő kétpólus rövidzárási áramát és eredő belső ellenállását, e két adat adja a helyettesítő kép áramgenerátorának forrásáramát és belső ellenállását.

Ellenállások

Ellenállások kapcsolásai

 Ellenállások soros kapcsolása

$$R_e = R_1 + R_2 + \dots$$

 Ellenállások párhuzamos kapcsolása

$$G_e = G_1 + G_2 + \dots$$

$$R_e = \frac{1}{1/R_1 + 1/R_2 + \dots}$$

Kapacitás

$$C = \frac{\varepsilon_0 \varepsilon_r A}{d} = \frac{8,85 \cdot 10^{-12} As \cdot 0,02m^2}{Vm \cdot 0,002m} = 8,85 \cdot 10^{-12} \frac{As}{V} = 8,85 pF$$

Kapacitások kapcsolásai

 Kapacitások soros kapcsolása

$$C_e = \frac{1}{1/C_1 + 1/C_2 + \dots}$$

 Kapacitások párhuzamos kapcsolása

$$C_e = C_1 + C_2 + \dots$$

 Egyenáramon szakadás

Induktivitás

$$R_m = \frac{l_m}{\mu_0 \mu_r A} \qquad \mu_0 = 1,257 \cdot 10^{-6} \, \frac{V_S}{Am}$$

$$\Theta = \Phi \cdot R_m$$

Induktivitások kapcsolásai

 Induktivitások soros kapcsolása

$$L_e = L_1 + L_2 + \dots$$

 Induktivitások párhuzamos kapcsolása

$$L_e = \frac{1}{1/L_1 + 1/L_2 + \dots}$$

 Egyenáramon rövidzár

RLC eredő

Mintapéldák

Munkapont

PN átmenetek modellezése

PN átmenetek modellezése

Dióda munkapont

- Feltételezzük, hogy Ud=0,65V
- Ellenálláson eső feszültség Um-Ud azaz 350mV
- Körben folyó áram
 350mV/1Kohm=350uA

- Feltételezzük, hogy Ud=0,65V
- Ellenállásokon eső feszültség 350mV azaz 175mV mindkét ellenálláson
- Körben folyó áram
 175mV/500ohm=350uA

- Feltételezzük, hogy Ud=0,65V
- Ellenálláson eső feszültség Um=1V = 350mV
- Körben folyó áram = 350uA

• $I_{B2} = Ud/R2 = 650uA$

- Feltételezzük, hogy Ud=2,00V
- Ellenálláson eső feszültség Um-Ud azaz

-1V

A körben folyó áram == 0!

- Feltételezzük, hogy Uz=2,7V
- Ellenálláson eső feszültség Um-Ud azaz 1,3V
- Körben folyó áram
 1,3V/1Kohm=1,3mA

Hurok törvény

Csomóponti törvény

- Feltételezzük, hogy Uz=2,7V
- Ellenálláson eső feszültség 1,3V
- Körben folyó áram
 I=1,3V/1Kohm=13mA

• I_{B2}=2,7V/10Kohm=270uA

•
$$I_z=I - I_{R2} = 12,73mA$$

- Feltételezzük, hogy Uz=2,7V
- Ellenálláson eső feszültség 1,3V
- Körben folyó áram
 I=1,3V/200ohm=6,5mA

- $I_{R2}=2,7V/10Kohm=270uA$
- $I_z=I I_{R2} = 6,23mA$

Egyszerű munkapont

Mintapéldák

Négypólusok

Passzív és aktív négypólusok

Négypólusok

Passzív és aktív négypólusok

Bemeneti impedancia Xb=U1/I1 Kiemeneti impedancia Xk=U2/I2 Meredekség m=U2/U1 Áramerősítési tényező β=I2/I1

Négypólusok jellemzés

- U1=Z11*I1 + Z12*I2
- U2=Z21*I1 + Z22*I2
- I1=Y11*U1 Y12*U2
- I2=-Y21*U1 + Y22*U2
- U1 = H11*I1 + H12*U2
- I2 = -H21*I1 + H22*U2

Áram vezérelt áramgenerátor

Bipoláris tranzisztor

- Bemenet PN átmenet
- Kimenet áramgenerátor

Földelt emitteres paraméterek

Mérőkapcsolás

Bipoláris tranzisztor mérés

Bipoláris tranzisztor mérés

Feszültségvezérelt áramgenerátor

MOS tranzisztor

- Bemenet szakadás
- Kimenet áramgenerátor

Mérőkapcsolás

5V

Áramot nem mérünk!

• Ugg = Ug !!!

• $I_d = (U_{DD} - U_d) 150$ ohm

- Ábrázolandó
- I_d(Uds)
 Ugs konstans esetén Ground

Mos tranzisztor

Telítéses üzemmód

$$U_{DS} \ge \left(U_{GS} - V_T\right)$$

$$I_D = \frac{K}{2} (U_{GS} - V_T)^2$$

Trióda üzemmód

$$U_{DS} \le \left(U_{GS} - V_T \right)$$

$$I_D = K \left[(U_{GS} - V_T) \cdot U_{DS} - \frac{U_{DS}^2}{2} \right]$$

MOS tranzisztor mérés

MOS tranzisztor mérés

Optocsatoló

- Bemenet LED PN átmenet
- Kimenet áramgenerátor

Optocsatoló

Áramot nem mérünk

Mérőkapcsolás

- $I_d = (U_{opt1} U_{in})/680$ ohm
- $I_c = (U_{opt2}-U_{out})/2,4Kohm$
- Ábrázolandó
- I_c(U_{out})
 I_d=konstans esetén

Optocsatoló mérés

Optócsatoló mérés

