Теория графов

Основные понятия и определения.

Опр. Ориентированный граф $G = \langle V, X \rangle$ - конечное непустое множество $V \neq \emptyset, V = \{v_1, \ldots, v_n\}$ вершин графа и множество $X = \{x_1, \ldots x_m\}$ дуг графа, где каждая дуга x_k - упорядоченная пара вершин $x_k = \langle v_i, v_j \rangle$, v_i - начало дуги, v_j - конец дуги. Дуга x_k исходит из v_i , заходит в v_j . Дуга x_k инцидентна вершинам x_i и x_j . Вершина, которая не имеет инцидентных ей дуг - изолированная. Дуга $\langle v_i, v_i \rangle$ - петля.

$$\begin{split} \Gamma_{v_2} &= \{v_1, v_3\} \\ \Gamma_{v_i}^{-1} &= \{v_j \mid \exists < v_j, v_i > \in X\} \\ \Gamma_{v_1}^{-1} &= \{v_2, v_4\} \end{split}$$

Опр. Последовательность дуг графа, такая что начало следующей дуги совпадает с концом предыдущей дуги - путь. Контур - путь, у которого начало первой дуги совпадает с концом последней (замкнутый путь).

 $v_1 \to v_4$ - путь. Описание через дуги: $\{x_5, x_3, x_2\}$, через вершины: $\{v_1, v_2, v_3, v_4\}$. $v_1 \to v_1$ - контур. Описание через дуги: $\{x_5, x_3, x_2, x_1\}$, через вершины: $\{v_1, v_2, v_3, v_4, v_1\}$.

Опр. Путь (контур) - простой, если все его дуги различны.

Опр. Путь (контур) - элементарный, если все его вершины различны (в контуре - кроме первой и последней).

 v_1, v_2, v_1, v_2 - не является ни простым, ни элементарным.

Опр. Неориентированный граф G=< V, Q> - конечное непустое множество $V\neq\emptyset$, $V=\{v_1,\ldots,v_n\}$ вершин графа и множество $Q=\{q_1,\ldots q_m\}$ ребер графа, где каждое ребро $q_k=(v_i,v_i)=\{v_i,v_i\}$.

Опр. Цепь (маршрут) - последовательность ребер, которую заданием ориентации можно превратить в путь.

Опр. Цикл - замкнутая цепь (введением ориентации можно превратить в контур). Цепи и циклы аналогично бывают простые и элементарные.

Орграф	Неор. Граф	
дуга	ребро	
путь	цепь (маршрут)	
контур	цикл	

Граф - иллюстрация бинарных отношений на конечных множествах. Если граф неориентированный, то это симметрическое отношение. Каждому графу соответствует отношение, а каждому отношению соответствует граф.

Матричное задание графов

Способы матричного задания графов:

- 1. матрица смежности;
- 2. матрица инцидентности.

Опр. Матрица смежности ориентированного графа — квадратная матрица порядка n (n - число вершин графа): $A = ||a_{ij}||$ с элементами

$$a_{ij} = egin{cases} 1, \text{если } \exists < v_i, v_j > \in X \\ 0 \text{ в противном случае} \end{cases}$$

Опр. Матрица смежности неориентированного графа — квадратная (симметрическая) матрица порядка n: $A = ||a_{ij}||$ с элементами

$$a_{ij} = \left\{ egin{aligned} 1, \operatorname{если} \exists (v_i, v_j) \in Q \\ 0 & \operatorname{в противном случаe} \end{aligned} \right.$$

Пример 1.

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

Пример 2.

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix}$$

Опр. Матрица инцидентности ориентированного графа — матрица порядка $n \times m$ (n — число вершин графа; m — число его $\frac{\text{ребер}}{\text{дуг}}$) : $B_{n \times m} = \left| \left| b_{ij} \right| \right|$ с элементами

$$b_{ij} = egin{cases} -1$$
, если дуга x_j исходит из v_i 1, если дуга x_j заходит в v_i 0, если дуга x_j не инсцидентна v_i

Опр. Матрица инцидентности неориентированного графа - матрица порядка $n \times m$: $B_{n \times m} = \left| \left| b_{ij} \right| \right|$ с элементами

$$b_{ij} = egin{cases} 1$$
, если ребро q_j инсцидентно v_i 0, если ребро q_j не инсцидентно v_i

3

Пример 3.

$$B = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ v_1 & -1 & 0 & 0 & 0 & 1 \\ v_2 & 1 & -1 & 1 & 0 & 0 \\ v_3 & 0 & 1 & 0 & 1 & 0 \\ v_4 & 0 & 0 & -1 & -1 & -1 \end{pmatrix}$$

Свойство: сумма строк матрицы инцидентности орграфа равна нулевой строке.

$$rg B = n - 1$$

Пример 4.

$$B = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \end{pmatrix}$$

Связность в графе

Опр. Неориентированный граф $G=< V,\ Q>$ - связный, если между любыми его вершинами v_i,v_j существует цепь.

Опр. Компонента связности графа - максимальный связный подграф.

Опр. Матрица связности неориентированного графа — квадратная (симметрическая) матрица порядка $n: S = ||s_{ij}|||$ с элементами

матрица порядка
$$n$$
: $S = ||s_{ij}|||$ с элементами
$$s_{ij} = \begin{cases} 1, \text{если существует цепь из } v_i \text{ в } v_j \\ 0 \text{ в противном случае} \end{cases}$$

Опр. Ориентированный граф $G = \langle V, X \rangle$ - односторонне связный, если для любой пары вершин $v_i, v_j (i \neq j)$ существует путь из v_i в v_j либо из v_j в v_i .

Опр. Ориентированный граф $G = \langle V, X \rangle$ - сильно связный, если для любой пары вершин $v_i, v_j (i \neq j)$ существуют путь и из v_i в v_j и из v_j в v_i .

Аналогично определяются компоненты односторонней и сильной связной.

Опр. Матрица односторонней связности орграфа - квадратная матрица порядка $n:T=||t_{ij}||$ с элементами

$$t_{ij} = egin{cases} 1$$
, если существует путь из v_i в v_j 0 в противном случае

Опр. Матрица сильной связности орграфа - квадратная матрица порядка $n: \bar{S} = \left| |\bar{s}_{ij}| \right|$ с элементами

$$ar{s}_{ij} = egin{cases} 1$$
, если существует путь из v_i в v_j и из v_j в v_i 0 в противном случае

Алгоритм нахождения числа путей длины k.

Число путей длины k из вершины v_i в v_j орграфа G = V, X > c матрицей смежности $A = ||a_{ij}||$ определяет элемент a_{ij}^k матрицы $A^k = = ||a_{ij}^k||$.

Докажем индукцией по k.

- 1. Для k = 1 получаем просто матрицу смежности (в первой степени) $A^k == ||a_{ij}^k||$.
- 2. Предположим, что справедливо: элемент a_{ij}^k матрицы $A^k == ||a_{ij}^k||$ определяет число путей длины k из вершины v_i в v_i (обозначим # $P(v_i, v_i, k)$).
- 3. Докажем справедливость предположения для k+1. $#P(v_i,v_j,k+1) = \#P(v_i,v_1,k)) \cdot \#P(v_1,v_j,1) + \#P(v_i,v_2,k)) \cdot \#P(v_2,v_j,1) + \dots \\ + \#P(v_i,v_n,k)) \cdot \#P(v_n,v_i,1) = a_{i1}^k \cdot a_{1j}^1 + a_{i2}^k \cdot a_{2j}^1 + \dots + a_{in}^k \cdot a_{nj}^1 = a_{ij}^{k+1}$

<u>Алгоритмы Уоршала нахождения матрицы S связности</u> неориентированного графа по матрице смежности A

Этим же алгоритмом находится и матрица T односторонней связности орграфа. Так как матрицы булевы, введем операции:

$$C \vee D = ||c_{ij} \vee d_{ij}||$$
 $C \otimes D = ||c_{ij} \otimes d_{ij}||$ $C * D = ||q_{ij}||$ $q_{ij} = \bigvee_{k=1}^{n} (c_{ik} \otimes d_{kj})$

Первый алгоритм Уоршалла.

$$S = E \vee A \vee A^2 \vee ... \vee A^{n-1}$$

 $A^k = \underbrace{A*A*...*A}_k$; A^k содержит дуги, соединяющие путь из k дуг

Для T аналогично: $T=E\lor A\lor A^2\lor\ldots\lor A^{n-1}$.

Множество дуг - это фактически упорядоченные пары, входящие в отношение ρ : $X=\rho$. Отношение можно задавать матрицей смежности соответствующего графа.

 $Tr\rho$ - транзитивное замыкание отношения ρ - наименьшее транзитивное отношение, содержащее ρ : $Tr\rho = \rho \cup \rho^2 \cup ... \cup \rho^{n-1}$.

Второй алгоритм Уоршалла (итерационный)

$$S^{(0)}, S^{(1)}, \dots, S^{(n)} = S$$

0)
$$S^{(0)} = E \vee A$$
;

......

$$(k) S^{(k)} = ||s_{ij}^{(k)}||, \quad s_{ij}^{(k)} = s_{ij}^{(k-1)} \lor (s_{ik}^{(k-1)} \& s_{kj}^{(k-1)})$$

$$n) S^{(n)} = S.$$

Доказательство.

Обоснуем этот алгоритм. Для этого достаточно доказать, что элемент $s_{ij}^{(k)}=1$ тогда и только тогда, когда существует цепь (путь) из v_i в v_j , проходящая через вершины $\{v_1,\ldots,v_k\}$.

Метод индукции по номеру итерации:

- $1)s_{ij}^{(0)} = a_{ij}$ V E_{ii} нулевая индукция справедлива, т.к. нет промежуточных вершин.
- 2) $s_{ij}^{e+1} \Rightarrow$ существует цепь из v_i в v_j , проходящая через $\{v_1,\dots,v_{e+1}\}$.
- 3) Докажем, что $s_{ij}^{(0)}=1$, т.к. существует цепь из v_i в v_j , проходящая через $\{v_1,\dots,v_e\}$.

$$s_{ij}^{(e)} = s_{ij}^{(e-1)} \vee (s_{ie}^{(e-1)} \& s_{ej}^{(e-1)}) = 1$$

1.
$$s_{ij}^{(e-1)} = 1$$
.

$$\begin{aligned} 2. \ s_{ie}^{(e-1)} &= 1 \Rightarrow v_i \rightarrow v_e : \underbrace{v_i, v_{k_1}, \dots, v_{k_p}}_{e(v_i, \dots, v_{e-1})} \square_e \\ \\ s_{ej}^{(e-1)} &= 1 \Rightarrow v_e \rightarrow v_j : \underbrace{v_e, v_{t_1}, \dots, v_{t_p}}_{e(v_e, \dots, v_j)} v_j \end{aligned}$$

Соединим два пути: $v_i, v_{k_1}, \dots, v_{k_p}, v_e, v_{t_1}, \dots v_{t_p}, v_j$ - цепь (путь), из v_i в v_j , проходящая через вершины $\{v_1, \dots, v_{e-1}, v_e\}$.

Если существует путь (цепь) из v_i в v_j , проходящий через вершины $\{v_1, \dots, v_{e-1}, v_e\}$, то $s_{ij}^{(e)}=1$.

Второй алгоритм имеет вычислительную сложность $O(n^3)$, а первый - $O(n^{n-1})$.

 $\bar{S} = \left| \left| \bar{s}_{ij} \right| \right|$ - матрица сильной связности вычисляется через матрицу односторонней связности T по формуле:

$$\bar{S} = T \& T^T$$
.

Очевидно, что \bar{S} симметрична.

Все дуги контуров графа определяются по формуле

$$K = \bar{S} \& A.$$

Алгоритм компонент связности неориентированного графа по матрице связности S (компонент сильной связности орграфа)

- 1. В матрице S обнуляем столбцы (можно строки), у которых в первой строке стоят единицы. Получаем матрицу S_1 . Соответствующие единиам первой строки номера вершины принадлежат первой компоненте связности, k=1.
- 2. Если $S_1 \not\equiv (0)$, то k = k + 1. Находим не нулевую строку S_1 . Пусть ее номер i_1 . Соответствующие единиам i_1 строки номера вершин принадлежат второй компоненте связности. В матрице S_1 обнуляем столбцы (строки), у которых в строке i_1 стоят единицы.. Получаем матрицу S_2 .

Процесс оканчивается, когда матрица $S_t = (0)$. В этом случае все вершины графа будут принадлежать какой-нибудь компоненте связности.

Пример 1.

$$S = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$k = 1; \{v_1, v_5\}$$

$$S_1 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$k = 2; \{v_2, v_4, v_6, v_9\}$$

0

Пример 2. Для данной матрицы связности компоненты связности очевидны.

Пример 3. По матрице смежности А найдем:

- матрицу односторонней связности,
- матрицу сильной связности,
- матрицу контуров,
- компоненты сильной связности.

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$T = E \vee A \vee A^2 \vee A^3$$

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \vee \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \vee \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \vee \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$T = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

$$\bar{S} = T \& T^T = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \& \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

Следовательно, две компоненты сильной связности:

$$K = \bar{S} \& A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \& \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Цепи и пути в графах

Длина пути (цепи) равна количеству дуг (ребер), содержащихся в нем, причем считаем столько раз, сколько встречается в пути (цепи).

Опр. Граф называется нагруженным, если каждому ребру (v_i, v_j) (дуге) ставится в соответствие число $l_{ij} \ge 0$ (длина/вес).

$$l_{ij}=l(v_i,v_j).$$

Длина пути в нагруженном графе сумме длин дуг, входящих в этот путь: $L = \sum l_{ij}$

Алгоритмы поиска цепей (путей)

- 1) Алгоритм Тэрри поиска цепи (маршрута) в неориентированном графе;
- 2) Алгоритм 'фронта волны' нахождения кратчайшего пути в орграфе;
- 3) Алгоритм нахождения минимального пути в нагруженном орграфе.

Алгоритм Тэрри

- 1. Помечаем направление, в котором проходим ребро.
- 2. По каждому ребру можно идти не более раза в каждом направлении, т.е. не более 2-х раз в разных направлениях.
- 3. Помечаем ребро q_i , по которому в вершину v_i зашли первый раз.
- 4. По помеченному ребру q_i можно идти в противоположном направлении, если другой возможности нет.

Пример. Задача о поливальной машине. Полить все улицы и вернуться на базу $-v_1$.

$$v_1$$
- v_2 - v_3 - v_4 - v_2 - v_4 - v_1 - v_4 - v_3 - v_2 - v_1 .

Построение кратчайшего пути

Опр. Путь из вершины v_i в v_j называется кратчайшим, если он содержит наименьшее количество дуг по сравнению со всеми путями из v_i в v_j .

Будем рассматривать орграф без петель. Найдем кратчайший путь из вершины v_1 в вершину v_t .

Алгоритм 'фронта волны'

- 0) Помечаем вершину v_1 индексом 0; $v_1 \in w_0(v_1)$ фронт волны нулевого уровня.
- 1) Помечаем вершины из $\Gamma w_0(v_1) = \Gamma v_1$ единицей. $\Gamma v_1 = w_1(v_1)$
- k) Помечаем не помеченные ранее вершины из $\Gamma w_{k-1}(v_1)$ индекс k, они принадлежат $w_k(v_1) \subseteq \Gamma(w_{k-1}(v_1))$.

Если через k шагов мы дошли до вершины v_t (до конца), то длина кратчайшего пути равна k. Если через n-l шаг мы не дошли до v_t , то пути из v_i в v_t не существует.

Предположим, на k шаге мы дошли до вершины v_t . Найдем все вершины кратчайшего пути, начиная с последней v_t .

$$v_1 = v_{i_0}, v_{i_1}, v_{i_2}, \dots, v_{i_k} = v_t$$

 $1. \quad v_t = v_{i_k}$

.....

- 2. $v_{i_{k-1}} \in w_{k-1}(v_1) \cap \Gamma^{-1}v_{i_k}$
- 3. $v_{i_{k-2}} \in w_{k-2}(v_1) \cap \Gamma^{-1}v_{i_{k-1}}$

.....

$$k. \ v_1 = v_{i_0} \in w_0(v_1) \cap \Gamma^{-1}v_{i_1}$$

Пример. Задана матрица смежности орграфа. Най ти кратчайший путь из вершины v_1 в вершину v_7 .

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Найдем вершины кратчайших путей.

1.
$$v_{i_4} = v_7$$

2.
$$v_{i_3} \in (w_3(v_1) \cap \Gamma^{-1}v_7) = \{v_6, v_4\} \cap \{v_6, v_4\} = \{v_6, v_4\}$$

3.
$$v_{i_2} \in (w_2(v_1) \cap \Gamma^{-1}v_4) = \{v_2\} \cap \{v_2\} = \{v_2\}$$

 $v_{i_2} \in (w_2(v_1) \cap \Gamma^{-1}v_6) = \{v_2\} \cap \{v_2\} = \{v_2\}$

4.
$$v_{i_1} \in (w_1(v_1) \cap \Gamma^{-1}v_2) = \{v_3, v_5\} \cap \{v_3, v_5, v_7\} = \{v_3, v_5\}$$

5.
$$v_{i_0} \in (w_0(v_1) \cap \Gamma^{-1}v_3) = \{v_1\} \cap \{v_1, v_6\} = \{v_1\}$$

 $v_{i_0} \in (w_0(v_1) \cap \Gamma^{-1}v_5) = \{v_1\} \cap \{v_1, v_3, v_6\} = \{v_1\}$

Кратчайшие пути – длина равна 4:

- 1) v_1, v_3, v_2, v_4, v_7 .
- 2) v_1, v_3, v_2, v_6, v_7 .
- 3) v_1, v_5, v_2, v_4, v_7 .
- 4) v_1, v_5, v_2, v_6, v_7 .

Минимальный путь в нагруженном графе

Опр. Нагруженным называется граф, в котором каждой дуге $\langle v_i, v_j \rangle \in X$ (каждому ребру) ставится в соответствие число $l_{ij} \geq 0$, называемое весом или длинной дуги (ребра). **Опр.** Матрица весов нагруженного графа - квадратная матрица порядка n (n - число вершин) с элементами $C = ||C_{ij}||$.

$$C_{ij} = egin{cases} l_{ij}$$
, если \exists дуга $< v_i, v_j > \ \infty$ в противном случае

Опр. Длина пути в нагруженном орграфе - сумма длин его дуг:

$$L = \sum_{\substack{ ext{по всем} \ ext{дугам пути}}} l_{ij}$$

Опр. Путь из v_i в v_j называется минимальным, если его длина наименьшая по сравнению со всеми путями из v_i в v_j .

Кратчайший путь $v_1 - v_4$ содержит одну дугу, её длина L = 20.

Минимальный путь содержит три дуги, он не является кратчайшим: $v_1-v_2-v_3-v_4$. Его длина L = 2 + 1 + 3 = 6.

Алгоритм нахождения минимального пути в нагруженном графе

 $\lambda_i^{(k)}$ — длина минимального пути из вершины v_1 в v_i , содержащего не более k дуг.

$$\lambda_i^0,\dots,\lambda_i^{(n-1)}$$
 $i{=}1,...,n$ (n-r) вершин 1) Положим $\lambda_i^{(0)}=\infty$ $i{=}2,...,n$

1) Положим
$$\lambda_i^{(0)} = \infty$$
 $i=2,...,r$

$$\lambda_j^{(0)} = 0, \quad j=1,...,n$$

k-1)
$$\lambda_i^{(k)} = min(\lambda_j^{(k-1)} + C_{ji})$$
 $1 \le j \le n$

 $\lambda_i^{(n-1)}$ - длина минимального пути из v_1 в v_i .

Найдем вершины минимального пути $v_1 = v_{i_0}, v_{i_1}, \dots, v_{i_k} = v_t$:

$$\lambda_{i_{k-1}}^{(k-1)} + C_{i_{k-1}i_k} = \lambda_{i_k}^{(k)}$$

$$\lambda_{i_{k-2}}^{(k-2)} + C_{i_{k-2}i_{k-1}} = \lambda_{i_{k-1}}^{(k-1)}$$
....

$$\lambda_{j_0}^{(0)} + C_{i_0 i_1} = \lambda_{i_1}^{(1)}$$

Индексы по столбцам соответствуют номерам вершин минимального пути.

Может существовать несколько путей, тогда перебором находим все так же, как и в алгоритме «фронта волны».

Пример.

$$C = \begin{pmatrix} \infty & \infty & \mathbf{1} & \mathbf{5} & \mathbf{4} & \mathbf{20} \\ \infty & \infty & \infty & \infty & \infty & \mathbf{2} \\ \infty & \mathbf{7} & \infty & \infty & \mathbf{2} & \infty \\ \infty & \mathbf{3} & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & \mathbf{1} & \infty & \mathbf{8} \\ \infty & \infty & \infty & \infty & \mathbf{10} & \infty \end{pmatrix}$$

$\lambda_i^{(0)}$	$\lambda_i^{(1)}$	$\lambda_i^{(2)}$	$\lambda_i^{(3)}$	$\lambda_i^{(4)}$	$\lambda_i^{(5)}$
0	0	0	0	0	0 в v ₁
∞	8	8	8	7	7 в v ₂
8	4 1	1	1	1	1 в v ₃
8	5	5	4	4	4 B V ₄
8	4	3	3	3	3 B V ₅
∞	20	12	10	10	V 9 B V ₆

Последний столбец таблицы - длины минимальных путей из вершины v_1 во все вершины графа.

Минимальный путь из вершины v_1 в v_6 единственный: $v_1 - v_3 - v_5 - v_4 - v_2 - v_6$.

Восстановил последовательность вершин этого пути, выписав следующие соотношения:

$$\lambda_2^{(4)} + C_{26} = \lambda_6^{(5)}$$

$$\lambda_4^{(3)} + C_{42} = \lambda_2^{(4)}$$

$$\lambda_5^{(2)} + C_{54} = \lambda_4^{(3)}$$

$$\lambda_3^{(1)} + C_{35} = \lambda_5^{(2)}$$

$$\lambda_1^{(0)} + C_{13} = \lambda_3^{(1)}$$

Индексы по столбцам соответствуют номерам вершин минимального пути.

Устойчивые подмножества в графе.

В этом разделе будем рассматривать орграфы без петель

Внутренне устойчивые подмножества.

Опр. Подмножество S вершин графа $G = \langle V, X \rangle$ называется внутренне устойчивое, если для любой вершины $v_i \in S$ $S \cap \Gamma v_i = \emptyset$

Опр. Максимальное внутренне устойчивое подмножество графа - подмножество, не являющееся собственным подмножеством никакого другого внутренне устойчивого подмножества этого графа.

Максимальное внутренне устойчивое $\{v_1, v_3, v_4\}$ $\{v_2, v_4\}$ $\{v_3, v_5\}$

Максимально количество вершин в максимальном внутренне устойчивом подмножестве – число внутренней устойчивости.

Метод Магу нахождения внутренне устойчивых подмножеств графа.

Вводим предикаты:

$$\begin{split} v_i &= \texttt{M} \ (1) \Leftrightarrow v_i \epsilon S \\ \alpha \big(v_i, v_j \big) &= \alpha_{ij} = \texttt{M} \ (1) \Leftrightarrow v_j \epsilon \Gamma v_i (< v_i, v_j > \epsilon X) \end{split}$$

 α_{ij} - элементы матрицы смежности графа (И-1, Л-0).

Из определения внутренне устойчивого подмножества графа следует:

$$\forall v_i, v_i (v_i \in \Gamma v_i \text{ или } v_i \in \Gamma v_i) \implies (v_i \notin S \text{ или } v_i \notin S)$$

Запишем истинную формулу на языке логики предикатов:

$$(\forall v_i) (\forall v_j) \left((\alpha_{ij} \lor \alpha_{ji}) \supset (\overline{v_i} \lor \overline{v_j}) \right) = \mathsf{I}$$

$$(\alpha_{ij} \lor \alpha_{ji}) \supset (\overline{v_i} \lor \overline{v_j}) = \neg (\alpha_{ij} \lor \alpha_{ji}) \lor (\overline{v_i} \lor \overline{v_j}) = (\overline{\alpha_{ij}} \& \overline{\alpha_{ji}}) \lor (\overline{v_i} \lor \overline{v_j})$$

$$= (\overline{\alpha_{ij}} \lor \overline{v_i} \lor \overline{v_j}) \& (\overline{\alpha_{ii}} \lor \overline{v_i} \lor \overline{v_j})$$

В силу конечности множества вершин запишем:

$$F=\& \& (\overline{\alpha_{ij}} \lor \overline{v_i} \lor \overline{v_j}) = II$$

$$i=1 \ j=1$$
(*)

Приведем формулу F к сокращенной ДНФ:

$$F = \bigvee_{\substack{ ext{по всем конъюнкциям} \ \text{сокрашенной ЛН}\Phi}} (\overline{v}_{i_1} \& \overline{v}_{i_2} \& \dots \& \overline{v}_{i_k}) = \mathsf{M}$$

Тогда элементарной конъюнкции $(\overline{v}_{i_1} \& \overline{v}_{i_2} \& \dots \& \overline{v}_{i_k})$ соответствует внутренне устойчивое подмножество $V \setminus \{v_{i_1}, v_{i_2}, \dots, v_{i_k}\}$.

Покажем, что формула F позволяет найти все **максимальные** внутренне устойчивые полмножества.

Докажем от противного. Пусть внутренне устойчивое подмножество $V\setminus\{v_{i_1},v_{i_2},...,v_{i_k}\}$ не является максимальным. Тогда можно добавить еще вершину, например v_{i_1} и подмножество $V\setminus\{v_{i_2},...,v_{i_k}\}$ также будет внутренне устойчивым. Но в этом случае в сокращенной ДНФ будут находится одновременно две конъюнкции:

$$\left(\overline{v}_{i_1} \& \overline{v}_{i_2} \& \dots \& \overline{v}_{i_k}\right) \vee \left(\overline{v}_{i_2} \& \dots \& \overline{v}_{i_k}\right) \equiv \left(\overline{v}_{i_2} \& \dots \& \overline{v}_{i_k}\right)$$

Тождество, справедливое по закону поглощения, показывает, что в сокращенной ДНФ может содержаться только одна из этих конъюнкций, соответствующая максимальному внутренне устойчивому подмножеству.

Внешне устойчивые подмножества.

Опр. Подмножество Т вершин графа $G = \langle V, X \rangle, T \subseteq V, V = \{v_1, \dots, v_n\}$ - внешне устойчивое, если для $\forall v_i \notin T$ выполняется $T \cap \Gamma v_i \neq \emptyset$

Опр. Минимальное внешне устойчивое подмножество графа - внешне устойчивое подмножество такое, что никакое другое внешне устойчивое подмножество не является его собственным подмножеством.

Минимальное внешне устойчивое

$$\{v_2, v_3, v_4\}$$

 $\{v_1, v_3, v_4\}$

Метод Магу нахождения внешне устойчивых подмножеств графа.

Вводим предикаты:

$$\begin{aligned} v_i &= \text{ M } (1) \Leftrightarrow v_i \epsilon S \\ \alpha \big(v_i, v_j \big) &= \alpha_{ij} = \text{ M } (1) \Leftrightarrow v_j \epsilon \Gamma v_i (< v_i, v_j > \epsilon X) \end{aligned}$$

 $lpha_{ij}$ - коэффициенты матрицы смежности графа (И-1, Л-0).

Для нахождения внешне устойчивых подмножеств положим $\alpha_{ii}=$ И

Из определения внешне устойчивого подмножества графа следует:

$$\forall v_i (v_i \epsilon T$$
или $\exists v_j : v_j \epsilon T$ и $v_j \epsilon \Gamma v_i)$

Запишем истинную формулу на языке логики предикатов:

$$(\forall v_i) \left(v_i \lor (\exists v_j) (\alpha_{ij} \& v_j) \right) = \mathsf{H}$$

В силу конечности множества вершин запишем:

Приведем формулу F к сокращенной ДН Φ :

$$F = \bigvee_{\substack{\text{по всем конъюнкциям} \\ \text{сокращенной ДН}\Phi}} (v_{i_1} \& v_{i_2} \& \dots \& v_{i_k}) = \mathsf{M}$$

Тогда элементарной конъюнкции $(v_{i_1}\&v_{i_2}\&\dots\&v_{i_k})$ соответствует внутренне устойчивое подмножество $\{v_{i_1},v_{i_2},\dots,v_{i_k}\}$.

Аналогично внутренне устойчивым подмножествам можно показать, что этот метод позволяет найти все минимальные внешне устойчивые подмножества.

Пример

1. Найдем максимальные внутрение устойчивые подмножества по формуле (*).

Максимальные внутрение устойчивые подмножества графа

2. Найдем минимальные внешне устойчивые подмножества по формуле (**).

$$A \lor E = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Из каждой строчки выписываем дизъюнкции - все единицы и переменные без отрицания.

$$(v_1 \lor v_2) \& (v_2 \lor v_3) \& v_3 \& v_4 \& (v_1 \lor v_2 \lor v_4 \lor v_5) = (v_1 \lor v_2) \& v_3 \& v_4 = (v_1 \lor v_2) \& v_3 \& v_4 \& (v_1 \lor v_2) \& (v_1 \lor v$$

Минимальные внешне устойчивые подмножества графа.

Ядро графа - подмножество $\{v_1, v_3, v_4\}$, являющееся одновременно внутренне и внешне устойчивым.

Опр. Ядром называется подмножество вершин графа N, одновременно являющееся внешне и внутренне устойчивым.

$$\forall v_i \in N \quad N \cap \Gamma v_i = \emptyset$$

$$\forall v_i \notin N \quad N \cap \Gamma v_i \neq \emptyset$$

16

Граф может не обладать ядром или обладать несколькими ядрами/

Пример.

Граф обладает двумя ядрами.

Внутренне устойчивые подмножества: $\{v_1\}$, $\{v_2\}$

$$\{v_3\}, \{v_4\}, \{v_1, v_3\}$$

$$\{v_2, v_4\}$$

Внешне устойчивые подмножества: $\{v_1, v_2, v_3, v_4\}$

 $\{v_1,v_3\}$

$$\{v_2, v_4\}$$

2 ядра: $\{v_2, v_4\}$ и $\{v_1, v_3\}$. Граф не обладает ядром

Внутренне устойчивые подмножества: $\{v_1\}, \{v_2\}, \{v_3\}.$

Внешне устойчивые подмножества: $\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_4\}$

Теорема. Для того чтобы подмножество N⊆ V вершин графа было ядром, необходимо и достаточно, чтобы оно было максимальным внутренне и минимальным внешне устойчивым подмножеством.

Доказательство.

Достаточность очевидна.

Докажем необходимость.

Пусть N не является максимальным внутренне устойчивым. Тогда можно добавить еще одну вершину, например v_i , и всё равно $N'=N\cup\{v_i\}$ будет внутренне устойчивым. Из внешней устойчивости N следует, что $N\cap \Gamma v_i\neq\emptyset$, но $N\subseteq N'\Rightarrow N'\cap \Gamma v_i\neq\emptyset$ что противоречит предположению о внутренней устойчивости N'.

Предположим теперь, что N не является минимальным внешне устойчивым. Уберем из него тогда хотя бы одну вершину, получим: $N' = N \setminus \{v_i\}$. Из внешней устойчивости N' получим $N' \cap \Gamma_{v_i} \neq \emptyset$, но $N' \subseteq N \Rightarrow N \cap \Gamma v_i \neq \emptyset$, что противоречит внутренней устойчивости N.

Устойчивость в неориентированных графах

Опр. Внутренне устойчивое подмножество графа - S, в котором никаких две вершины не смежны. Т- внешне устойчивое подмножество графа G = (V, Q), если $\forall v_i \in V, v_i \notin T \exists v_j \in T$: $(v_i, v_j) \in Q$. Ядро - одновременно внутренне и внешне устойчивое подмножество вершин графа.

Максимальные внутренне устойчивые подмножества: $\{v_1, v_3\}$, $\{v_2, v_4\}$, $\{v_4, v_5\}$. Они также являются и минимально внешне устойчивыми, а, следовательно, и ядрами. Но в данном графе есть еще минимальные внешне устойчивые подмножества, не являющиеся внутренне устойчивыми, например $\{v_1, v_4\}$.

Для нахождения максимальных внутренне и минимальных внешне устойчивых подмножеств графа также используется алгоритм Магу: вводится ориентация на ребрах и в ту, и в другую сторону.

Задача.

Как расставить часовых в тюрьме, чтобы их было минимальное количество и все коридоры просматривались?

Найти минимальные внешне устойчивые подмножества графа. если их несколько, выбрать то, которое с наименьшим числом вершин.

Функции на графах. Разбиение графа на уровни.

Рассматриваем орграфы без петель.

Определение. Уровнями $N_0, N_1, ..., N_k$ графа G = (V, X) без контуров называются следующие непустые множества вершин графа

$$N_0 = \{ v_i \middle| v_i \in V, \Gamma v_i = \emptyset \};$$

$$N_1 = \{v_i | v_i \in V \setminus N_0, \Gamma v_i \subseteq N_0\};$$

.....

$$N_k = \{ v_i \middle| v_i \in V \setminus \bigcup_{j=0}^{k-1} N_j, \Gamma v_i \subseteq \bigcup_{j=0}^{k-1} N_j \}.$$

Для последнего уровня $\Gamma^{-1}N_k = \emptyset$.

Пример.

Уровни N_0, N_1, \ldots, N_k образуют разбиение вершин графа: $V = \bigcup_{j=0}^k N_j$

$$N_i \cap N_j = \emptyset, \ i \neq j; \ i,j = 0,...,k$$

<u>Теорема.</u> Если граф не содержит контуров, то его можно разбить на уровни, и обратно, если граф можно разбить на уровни, то он не содержит контуров.

Алгоритм Демукрона разбиения графа без контуров на уровни

$$0) \qquad l^{O} = \begin{pmatrix} l_1^0 \\ l_2^0 \\ \vdots \\ l_n^0 \end{pmatrix}$$

Где l_i^0 - сумма единиц в і-той строке матрицы смежности. Если l_i^0 =0, то вершина $v_i \in N_0$. В этом случае обнуляем і-й столбец матрицы смежности A.

1)
$$l^{1} = \begin{pmatrix} l_{1}^{1} \\ l_{2}^{1} \\ \vdots \\ l_{n}^{1} \end{pmatrix}$$

Где l_i^1 равно сумме единиц в і-той строке матрицы A или *, если l_i^0 =0. Если l_i^1 =0, то вершина $v_i \in N_1$. В этом случае обнуляем і-й столбец матрицы A.

......

$$l^{k} = \begin{pmatrix} l_{1}^{k} \\ l_{2}^{k} \\ \vdots \\ l_{n}^{k} \end{pmatrix}$$

Где $l_i^{\mathbf{k}}$ равно сумме единиц в і-той строке матрицы A или *, если $l_i^{\mathbf{k}-1}=0$ или $l_i^{\mathbf{k}-1}=*$. Если $l_i^{\mathbf{k}}=0$, то вершина $v_i\in N_{\mathbf{k}}$. В этом случае обнуляем і-й столбец матрицы A.

Алгоритм заканчивает работу, когда в матрице A все элементы равны нулю.

Пример

Матрица смежности графа имеет вид

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l^{(0)} & l^{(1)} & l^{(2)} & l^{(3)} & l^{(4)} \\ 0 & * & * & * & * \\ 1 & 0 & * & * \\ 2 & 2 & 1 & 0 & * \\ 2 & 2 & 1 & 0 & * \\ 3 & 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & * & * \\ v_1 \in N_0 & v_2 \in N_1 & v_5 \in N_2 & v_3 \in N_3 & v_4 \in N_4 \end{pmatrix}$$

Используя алгоритм Демукрона, разобьем граф на уровни. Согласно алгоритму, просуммируем элементы каждой строки матрицы смежности. Получим вектор $l^{(0)}$. . $v_1 \in N_0$

Обнулим первый столбец матрицы А

$$A = egin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$
 . Найдем вектор $l^{(1)}$, компоненты которого равны сумме единиц

каждой строки полученной матрицы/ Элемент $l_1^1=*$, так как вершина $v_1\in N_0$. Элемент $l_2^0=0$, следовательно, вершина $v_2\in N_1$.

Аналогично обнуляем соответствующие столбцы матрицы A, а затем вычисляем последовательно векторы l^2 , l^3 , l^4 .

Функции на графах

Опр. Порядковая функция графа — функция, определенная на множестве вершин со значениями во множестве $N_0(N \cup \{0\})$, которая ставит в соответствие каждой вершине номер уровня графа:

$$0: V \rightarrow N \cup \{0\}$$

Порядковая функция существует только для графов без контуров.

Опр. Функция Гранди орграфа — функция, определенная на множестве вершин со значениями в множестве $\mathbb{N} \cup \{0\}$

$$g \colon V \to N \cup \{0\}$$

определяемая следующим образом:

$$g(v_i) = \min$$
 из $\{N \cup \{0\} \setminus g_(v_j) | v_j \in \Gamma_{v_i}\}$ $g(v_i) = 0$, если $\Gamma_{v_i} = \emptyset$.

Функция Гранди может не существовать в графе, имеющем контуры нечетной длины. У графа с контурами может быть несколько различных функций Гранди.

Функции Гранди не существует.

Две функции Гранди: <0,1,0,1> и <1,0,1,0>.

Теорема. Для графов без контуров существует, и притом единственная, функция Гранди.

Доказательство конструктивное, то есть приведем алгоритм построения функции Гранди. Граф без контуров можно разбить на уровни N_0, \ldots, N_k .

- 0) Функция Гранди для вершин уровня N_0 по определению равна нулю: $g(v_i) = 0$
- 1) Для вершин уровня N_1 : $g(v_i) = 1$

•••

k) Дуги, исходящие из вершин уровня N_k , по определению заходят в вершины уровней

 N_0, \ldots, N_{k-1} , для которых значения функции Гранди уже определены. Тогда для вершины $v_i \in N_k$ - строим функцию по определению функции Гранди..

Теорема. Вершины, в которых функция Гранди равна нулю, являются ядром графа. Доказательство:

Пусть $N = \{v_i | g(v_i) = 0\}.$

Вершины, в которых функция Гранди равна нулю, по определению не могут быть смежными, следовательно, N — внутренне устойчивое множество:

$$g(v_i) = 0$$
 и $g(v_i) = 0 \Rightarrow \nexists < v_i, v_i >$ и $\nexists < v_i, v_i >$.

Если $\exists v_i \notin N$, то $\exists < v_i, v_j > -$ дуга графа, причем $v_j \in N$, $g(v_j) = 0$ (по определению функции Гранди). Следовательно, N —внешне устойчивое множество.

Утверждение. Для транзитивного графа без контуров порядковая функция совпадает с функцией Гранди.

Доказательство. Для вершин уровней N_0 и N_1 значения этих двух функций совпадают. Из вершины уровня N_2 дуга исходит в вершину уровня N_1 , а из вершины N_1 в вершину уровня N_0 . Следовательно, из вершины уровня N_2 дуга также исходит в вешину уровня N_0 (из транзитивности). В этом случае по определению значения функции Гранди в вершинах уровня N_2 равно двум и, следовательно, совпадает со значением порядковой функции. Аналогично доказывается для всех следующих уровней.

Утверждение. Ядро транзитивного графа без контуров полностью принадлежит уровню N_0 .

Доказательство следует из предыдущих теоремы и утверждения.

Пример.

1.

Порядковая функция: $O(v_1) = 0$; $O(v_2) = 1$; $O(v_4) = 1$; $O(v_3) = 2$.

Функция Гранди: $g(v_1) = 0$; $g(v_2) = 1$; $g(v_4) = 1$; $g(v_3) = 0$.

Порядковая функция и функция Гранди не совпадают

2. Граф транзитивный порядковая функция совпадает с функцией Гранди

Порядковая функция: $O(v_1) = 0$; $O(v_2) = 1$; $O(v_4) = 1$; $O(v_3) = 2$.

Функция Гранди: $g(v_1) = 0$; $g(v_2) = 1$; $g(v_4) = 1$; $g(v_3) = 2$.

Ядро $-\{v_1\}$ полностью принадлежит уровню N_0 .

Деревья и циклы

Опр. 1. Дерево - связный граф без циклов.

Опр. 2. Дерево - связный граф, у которого число вершин на единицу больше числа ребер.

Опр. 3. Дерево – граф, любые две вершины которого соединены единственной простой цепью.

Опр. 4. Дерево - граф без циклов, но при добавлении любого одного ребра получим ровно один простой цикл.

Вершина, инцидентная только одному ребру - висячая.

Докажем эквивалентность определений 1 и 3.

 $1\Rightarrow 3$: Пусть существует цикл $v_i,v_{i_1},\ldots,v_{i_k},v_j,\ldots,v_{j_k},v_i$. Тогда вершины v_i и v_j соединяют две цепи: $v_i,v_{i_1},\ldots,v_{i_k},v_j$ и v_j,\ldots,v_{j_k},v_i .

 $3 \Rightarrow 1$: Пусть существуют две цепи \Rightarrow строим цикл (см. выше)

Опр. Остовным деревом графа G = (V, Q) называется подграф $D = (V, \bar{Q})$, содержащий все вершины графа G и являющийся деревом.

Алгоритм нахождения остовного дерева связного графа

- 1) $D_1 = (v_{i_1}, \emptyset)$
- 2) $D_2 = (\{v_{i_1}, v_{i_2}\}, \{v_{i_1}, v_{i_2}\})$ добавляем к D_1 вершину v_{i_2} , смежную с v_{i_1} , и соединяем их ребром.

. . .

k) $D_k = D_{k-1} + \{v_{i_k}\} + \{v_{i_j}, v_{i_k}\}$, $j = 1, \ldots, k-1$ – добавляем новую вершину v_{i_k} , смежную хотя бы с одной из ранее выбранных и соответствующую дугу. Продолжаем процесс, пока ни выберем все n вершин графа.

Обоснование: 1) так как каждый раз новая вершина связана с одной из предыдущих - граф связный, 2) без циклов, так как каждая новая вершина висячая.

У графа может быть несколько остовных деревьев.

Рассмотрим нагруженный неориентированный граф G = (V, Q), в котором каждому ребру (v_i, v_j) ставится в соответствие вес $l_{ij} \ge 0$.

Опр. Остовным деревом минимального веса называется остовное дерево с наименьшей суммой весов его ребер.

$$L(D) = l_i j \rightarrow min$$

Алгоритм нахождения остовного дерева минимальной длины(веса):

- 1)Все вершины 1
- 2)Добавляем ребра с минимальным весом, чтобы не было циклов.
- 3)Если уже дерево, процесс окончен, иначе пункт 2.

Обоснование алгоритма. Предположим, что существует остовное дерево S меньшей длины, чем D: L(S) < L(D). В D найдем ребро $q_{d_1} \in D$, $q_{d_1} \notin S$. Добавим его в S, получим ровно один простой цикл. Удалим из этого цикла ребро $q_{s_1} \in S$, $q_{s_1} \notin D$. Получим дерево S_1 . Так как по построению вес $l(q_{d_1}) < l(q_{s_1})$, то $L(S) \ge L(S_1)$. И т.д. Заменим все ребра дерева S на ребра дерева D. Получим цепочку $L(S) \ge L(S_1)$... $\ge L(D)$. Противоречит предположению: L(S) < L(D).

У графа может быть несколько остовных деревьев минимальной длины.

<u> Цикломатическое число графа. Базис циклов.</u>

Опр. Цикломатическое число графа

Алгоритм нахождения базиса цикловсвязного графа G = (V, Q):

1) Строим остовное дерево графа с n-1 ребром (вершин - n)

$$q_{i_1},\ldots,q_{i_{n-1}}$$

2) Добавляем по одному из оставшихся ребер q_{i_n}, \ldots, q_{i_m} к остовному дереву и получаем ровно один простой цикл, который и берем в базис циклов.

Обоснование. 1. Число циклов, построенных по алгоритму, равно

$$m - (n-1) = m - n + 1 = \gamma(G)$$

- хроматическое число графа. Из теоремы следует, что столько циклов в базисе.
- 2.Все циклы независимые, т.к. имеют ребро, которого нет в других циклах.

$$D + q_{i_n} = \mu_1$$

Законы Киргофа для напряжений.

Законы Киргофа для токов ВІ=0

Запишем матрицу инциденций:

$$\begin{pmatrix} q_1 & q_2 & q_3 & q_4 & q_5 & q_6 & q_7 & q_8 \\ v_1 & -8 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ v_2 & 0 & -1 & 1 & 0 & 0 & 0 & 1 & 0 \\ v_3 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 1 \\ v_4 & 1 & 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ v_5 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & -1 \end{pmatrix}$$

$$rgB = n - 1$$

$$\begin{cases} -I_1 + I_2 - I_1 = 0 \\ -I_2 + I_3 + I_7 = 0 \\ -I_3 + I_4 + I_8 = 0 \\ I_1 - I_4 + I_5 = 0 \\ -I_5 + I_6 - I_7 - I_8 = 0 \end{cases}$$

Транспортные сети

Опр. Транспортной сетью называется орграф $G = (V, X), \ V = \{v_1, \dots, v_n\}$, для которого выполняется:

- 1) \exists единственная вершина v_1 (источник): $\Gamma^{-1}v_1 = \emptyset$;
- 2) \exists единственная вершина v_n (сток): $\Gamma v_n = \emptyset$;
- 3) для каждой дуги $< v_i, v_j > \epsilon X$ задана пропускная способность $c(v_i, v_j) = c_{ij} \ge 0$.

Опр. Функцией потока (потоком в транспортной сети G) называется функция $\varphi: X \to R^+ \cup \{0\}$, удовлетворяющая следующим условиям:

- 1) для каждой дуги $\langle v_i, v_i \rangle \in X$ выполняется $0 \le \varphi(v_i, v_i) \le c_{ij} \ \forall i, j = 1, ..., n;$
- 2) для любой промежуточной вершины и:

$$\sum_{v \in \Gamma^{-1}\mathbf{u}} \varphi(v, \mathbf{u}) = \sum_{v \in \Gamma\mathbf{u}} \varphi(\mathbf{u}, v)$$

Опр. Величина потока равна сумме потоков по всем дугам, входящим в сток.

$$\Phi = \sum_{v \in \Gamma^{-1}v_n} \varphi(v, v_n)$$

Эта величина также равна сумме потоков по всем дугам, исходящим из источника

$$\Phi = \sum_{v \in \Gamma v_1} \varphi(v_1, v)$$

Опр. Дуга называется насыщенная, если значение функции потока по ней равно пропускной способности.

Пример.

Транспортная сеть

Функция потока

Дуги
$$< v_1, v_2 >$$
, $< v_1, v_4 >$, $< v_1, v_6 >$, $< v_2, v_4 >$, $< v_4, v_5 >$ - насыщенные.

Опр. Поток называется полным, если любой путь из источника в сток содержит хотя бы одну насыщенную дугу.

Обычно полный поток ищут как приближение к максимальному, в частном случае они могут совпасть, но в общем случае полный используется как начальный для построения максимального.

Опр. Поток называется максимальным, если значение величины потока наибольшее по сравнению со всеми потоками в данной транспортной сети.

Алгоритм построения полного потока:

- 0) Выбираем нулевой поток в качестве начального $\phi_{ij} = 0 \ \, \forall i,j.$
- 1) Проверяем, является ли построенный поток полным, т.е. существует ли путь из $v_1 \to v_n$, не содержащий насыщенных дуг. Если такого пути нет \Rightarrow полный поток построен, если есть, то п.2.
- 2) Вдоль пути, не содержащего насыщенных дуг, увеличиваем поток на одну и ту же величину до тех пор, пока хотя бы одна дуга не станет насыщенной. Переходим к п.1.

Пример. Найти полный поток по данной транспортной сети

Полный поток

Ищем пути, не содержащие насыщенных дуг

1.
$$V_1 - V_2 - V_3 - V_5 - V_6$$

min $\{(6), (2), (6), (5)\} = 2;$
2. $V_1 - V_2 - V_5 - V_6$
min $\{(6-2), (4), (5-2)\} = 3;$
3. $V_1 - V_2 - V_4 - V_6$
min $\{(6-5), (7), (7)\} = 1;$

Величина полного потока $\Phi_{\text{пол}} = 1 + 5 = 6$

Для построения максимального потока введем понятие увеличивающей цепи.

Опр. Увеличивающей цепью называется последовательность вершин транспортной сети из $v_1 \to v_n$:

$$v_1 = u_1, u_2, ..., u_k = v_n$$
, (*)

где < $u_j,$ $u_{(j+1)} > \epsilon X$, либо < $u_{(j+1)},$ $u_j > \epsilon X$, причем для каждой пары вершин цепи < $u_j,$ $u_{(j+1)} >$ определена положительная величина

$$\Delta_{j(j+1)} = \begin{cases} c_{j(j+1)} - \varphi_{j(j+1),} & \text{если} < \mathbf{u}_j, \mathbf{u}_{(j+1)} > \epsilon X \\ \varphi_{(j+1)j}. & \text{если} < \mathbf{u}_{(j+1)}, \mathbf{u}_j > \epsilon X \end{cases}$$

Для увеличивающей цепи найдем величину

$$\Delta = \min_{j=1,\dots,k-1} \Delta_{j(j+1)}$$

Алгоритм поиска максимального потока в транспортной сети:

- 0) Выбираем полный поток в качестве начального (можно любой).
- 1) Проверяем, является ли построенный поток максимальным, т.е. существует ли увеличивающая цепь из $v_1 \to v_n$. Если такой цепи нет \Rightarrow максимальный поток построен, если есть, то п.2.

2) Вдоль увеличивающей цепи изменяем поток на величину Δ , причем если идем по дуге , то увеличиваем на Δ , если против направления дуги уменьшаем на Δ . Переходим к п.1.

Пример. Найти максимальный поток по данной транспортной сети

Возьмём в качестве начального полный поток, построенный в предыдущем примере.

Найдем увеличивающие цепи

1.
$$V_1 - V_3 - V_2 - V_4 - V_6$$

$$\Delta_1 = \min \{ 5_+, 2_-, 6_+, 6_+ \} = 2;$$

2.
$$V_1 - V_3 - V_5 - V_2 - V_4 - V_6$$

$$\Delta_2 = \min \{ (5-2)_+, (6-2)_+, 3_-, (7-3)_+, (7-3)_+ \} = 3;$$

3. Больше цепей нет. $\Phi_{\text{макс}} = 6 + 5 = 6 + 5 = 11$

Максимальный поток

Построим снова полный поток так, чтобы его величина совпала с величиной максимального потока.

1.
$$V_1 - V_2 - V_4 - V_6$$
 min $\{6, 7, 7\} = 6;$
2. $V_1 - V_3 - V_5 - V_6$ min $\{5, 6, 5\} = 5;$
 Φ полн = Φ макс = 11

Задача о портовых перевозках

Имеются портовые города a_1,a_2,\ldots,a_k с запасом некоторого товара d_1,d_2,\ldots,d_k , и города b_1,b_2,\ldots,b_m с потребностью в этом товаре p_1,p_2,\ldots,p_m . Из города a_i в b можно провести не более c_{ij} товара $(i=1,\ldots,k;j=1,\ldots,m)$.

Как максимально обеспечить города b_1, \dots, b_m товаром?

Для решения логистической задачи построим транспортную сеть с вершинами $\{a_1,a,...,a_k,b_1,b,...,b_m,v_1,\ v_2\}$, где v_1 – источник, v_2 – сток. Найдем максимальный поток по транспортной сети. Его значения по дугам соответствуют количеству перевозимого товара.

Двудольный граф. Паросочетания.

Опр. Двудольным графом называется неориентированный граф $G = (U \cup W, Q)$ с множеством вершин $U \cup W$ и множеством ребер Q, причем ребро $(u, w) \in Q \iff u \in U, w \in W$.

Опр. Паросочетание - подмножество рёбер двудольного графа такое, что никакие два ребра не инцидентны одной вершине графа.

Опр. Максимальное паросочетание - паросочетание с наибольшим числом ребер среди всех паросочетаний в данном графе.

Для нахождения максимального паросочетания построим максимальный поток в следующей транспортной сети.

Транспортная сеть: $G_{\text{тр}} = (V, X)$, где $V = \{v_1, v_2\} \cup U \cup W$ $X = \{< u_i, w_j >,$ если $(u_i, w_j) \in Q\} \cup \{< v_1, u_i >\} \cup \{< w_j, v_2 >\}$ для всех $u_i \in U, w_j \in W$. Пропускные способности всех дуг положим равными единице.

Построим максимальный поток. Рёбра графа $G = (U \cup W, Q)$, соответствующие дугам с функцией потока равной единицам, входят в максимальное паросочетание.

Число ребер в максимальном паросочетании равно трем (величина максимального потока), но находится оно неоднозначно, например:

Эйлеровы и Гамильтоновы пути в графе.

Эйлеровы пути

В городе Кёнигсберге протекала река. На ней было два острова, соединенные мостами.

Прогуливаясь по мостам, Эйлер подумал: можно ли обойти все мосты и ровно по одному разу? Нарисовал граф и, обобщив, доказал теорему.

Опр. Эйлеров путь (цикл) – это путь (цикл), содержащий все ребра графа, причем ровно по одному разу.

Опр. Степень вершины - число инцидентных ей ребер (дуг).

Теорема. Эйлеров путь существует тогда и только тогда, когда число вершин с нечетной степенью 0 или 2. Эйлеров цикл существует тогда и только тогда, когда вершин с нечетной степенью нет.

У графа, представленного на рисунке, четыре вершины и все с нечетной степени. Следовательно, обойти все мосты по одному разу нельзя.

Сабли Магомеда. Можно ли обвести контур по одному разу, не отрывая руки? (Да)

Гамильтоновы пути

Опр. Гамильтонов путь (цикл) – это путь (цикл), содержащий все вершины графа, причем ровно один раз. Если цикл, то кроме последней вершины.

Задача. Коммивояжер должен проехать все города побывав в каждом ровно один раз и пройдя минимальный путь.

В этой задачи среди всех Гамильтоновых путей выбирают путь с минимальной длиной.

Примеры.

Существует Гамильтонов путь и цикл, но не существует Эйлеровых.

Существует Эйлеровы путь и цикл, но Гамильтоновых путей нет.

Существует Гамильтоновы путь и цикл, существует Эйлеров путь, но не существует Эйлеров цикл.

Планарные и плоские графы

Опр. Планарный граф - граф, для которого существует изоморфные ему (матрица смежности одна и та же), такой, что его можно нарисовать на плоскости без пересечения рёбер (кроме пересечения в вершинах).

Опр. Плоский граф - нарисованный без пересечений на плоскости планарный граф.

Опр. Грань планарного графа - часть плоскости, ограниченная рёбрами, и внутри нет рёбер и вершин.

 $n - m + \gamma = 2$ - формула Эйлера для плоского графа

В примере: 4-6+4=2 (γ = 4), внешняя грань тоже считается.

Число циклов в базисе: $\gamma - 1$.

<u>Теор.</u> Граф является планарным тогда и только тогда, когда в нем не существует подграфов "1" и "2".

Хроматическое число графа

Опр. Хроматическое число графа ($\gamma(a)$) - минимальное число цветов, в которые можно раскрасить вершины так, что смежные вершины были бы окрашены в разные цвета.

Алгоритм раскраски основывается на нахождении максимальных внутренне устойчивых подмножеств графа (Кофман). Алгоритм переборный –большая вычислительная сложность. Существует множество приближенных алгоритмов меньшей сложности, но цветов в раскраске может получиться больше, чем хроматическое.

Раскраска плоскостей плоского графа (раскраска карт).

Teop. Плоский граф можно раскрасить не более, чем четырьмя цветами.

Доказана теорема с использованием вычислительных средств (написана программа перебора всех вариантов).

Реберная раскраска: Ребра, инцидентные одной вершине раскрашиваются в разные цвета.

Задача сводится к раскраске вершин реберного графа, т.е. графа, вершинами которого являются ребра исходного. Причем вершины соединены ребром, если соответствующие вершинам ребра исходного графа были инцидентны одной вершине.