

发布日期: 29.03.2024 修订日期: 29.03.2024

版本: 1.0

化学品安全技术说明书

按照 GB/T 16483、GB/T 17519 编制。

1. 化学品及企业标识

产品名称: FERRETERO 7018 HO 产品尺寸: 1/8" (3.2 mm)

其他识别方式

SDS 编号:200000021947发布日期:29.03.2024修订日期:29.03.2024

版本 #: 1.0

产品推荐及限制用途

推荐用途: SMAW (熔化极自动保护电弧焊) **限制用途:** 不知道。阅读本安全使用本产品之前。

制造商/进口商/供应商/经销商信息

企业名称: Lincoln Soldaduras de Colombia Ltda.

地址: Calle 6a # 33-23

Bogota D. C. CP 111611

Colombia

联系电话: +57 (1) 364 88 00

联系人: 安全数据表的问题:www.lincolnelectric.com/sds 电弧焊接安全信息:www.lincolnelectric.com/safetv

化学事故应急咨询电话:

 美国/加拿大/墨西哥
 +1 (888) 609-1762

 美国/欧洲
 +1 (216) 383-8962

 亚太地区
 +1 (216) 383-8966

 中东/非洲
 +1 (216) 383-8969

3E接入码: 33398

2. 危险性概述

根据"全球化学品统一分类和标签制度"(GHS)的标准进行分类。

紧急情况概述

性状: 固体 **物理状态:** 固体

危险性说明: 焊接电弧和火花可以点燃可燃和易燃品。 电弧射线可损伤眼睛并灼伤皮肤。

电击会导致死亡。

危险品分类 根据适用的 GHS 危险分类标准不归类为危险物质。

标签要素

危险符号: 无符号

警示词: 无信号词。

SDS_中国 SDS 编号: 200000021947 1/17

发布日期: 29.03.2024 修订日期: 29.03.2024

版本: 1.0

危险性说明: 不适用

防范说明: 不适用

没有分类的其他危害: 电击可致人死亡。如果焊接必须在潮湿的地点或穿湿衣服在金属结构上进

行,或必须在狭窄的位置采用坐、跪或躺的姿势,或者如果存在必然或偶然接触工件的较高风险,请使用以下设备:半自动直流电焊机、直流手动(臂

式) 电焊机或带降压控制的交流电焊机。

焊弧光可伤害眼睛及烧伤皮肤。焊弧及火花可点燃易燃及可燃材料。过度接

触烟雾和气体可能有危险。使用本产品前,阅读并理解制造商的指示,安全

数据表和预防标签。请参阅第8节。

使用条件下形成的物质: 焊条产生的焊接烟尘中可能包含以下成分和/或其复合金属氧化物以及固体

颗粒,或者以下未列出的消耗品、贱金属或贱金属涂层中的其他成分.

成分名称	化学文摘登记号(CAS No.)
二氧化碳	124-38-9
一氧化碳	630-08-0
二氧化氮	10102-44-0
臭氧	10028-15-6
锰	7439-96-5
氟化物(以F)	16984-48-8

3. 成分/组成信息

需报告的有害成分

混合物

成分名称	化学文摘登记号(CAS No.)	含量百分比(%)*
铁	7439-89-6	50 - <80%
二氧化钛 (天然存在的)	13463-67-7	5 - <10%
石灰石	1317-65-3	5 - <10%
二氧化钛 (合成的)	13463-67-7	1 - <5%
锰	7439-96-5	1 - <5%
氟化钙	7789-75-5	1 - <5%
长石	68476-25-5	1 - <5%
氧化铝	1344-28-1	1 - <5%
硅酸钠	1344-09-8	1 - <5%
硅酸钾	1312-76-1	1 - <5%
硅	7440-21-3	0.1 - <1%
羧甲基纤维素,钠盐	9004-32-4	0.1 - <1%
石英	14808-60-7	0.1 - <1%
氧化钾	12136-45-7	0.1 - <1%
氧化铁	1309-37-1	0.1 - <1%
二氧化硅 (无定形)	7631-86-9	0.1 - <1%
氧化锆	1314-23-4	0.1 - <1%

发布日期: 29.03.2024 修订日期: 29.03.2024

版本: 1.0

菱镁 546-93-0 0.1 - <1%

*除气体外,所有组分的浓度均为重量百分比。气体浓度是体积百分比。

成分备注: 术语"危险成分"应解释为在危险通讯标准定义的术语,并不一定意味着一

个焊接危险的存在。该产品可含有额外的非危险组分或可以形成使用的条件

下,额外的化合物。请参阅第2和8的更多信息。

4. 急救措施

与金属烟尘或金属粉末接触,因为在用手向嘴里送的过程中(如喝水、吃饭、抽烟等)会导致颗粒被吸入。如果吸入了,请勿催吐。联系控毒中心。除非控毒中心有其他建议,否则请用水彻底漱口。如果有症状出现,请立即

就医。

吸入: 如果因吸入本品的粉末或烟尘导致呼吸困难,请移至空气新鲜处。如果呼吸

停止,则需进行人工呼吸并立即就医。

皮肤接触: 脱掉污染衣服并用肥皂和清水彻底冲洗皮肤。如果皮肤发红或起水泡,对于

变红或起泡的皮肤,或热烧伤,获得医疗救助一次

眼睛接触: 应使用大量干净的温水从眼睛中冲洗出本品的粉末或烟尘,直至被送到急救

中心。不要让伤者揉搓或紧闭眼睛。立即就医。

弧光会伤害眼睛。如果眼睛接触了弧光,应将伤者移至暗室中,摘掉隐形眼

镜接受治疗,用眼罩罩住眼睛并好好休息。如果症状持续,应就医。

最重要的症状和健康影响

症状: 短期(急性)过度接触烟雾和气体焊接及相关工艺可能可导致身体不适,如

金属烟雾热、头晕、恶心或鼻部、喉咙或眼睛发干或受刺激。可能加重之前

已患有的呼吸疾病(如哮喘、肺气肿等).

长期(慢性)过度接触焊烟可导致肺铁末沉着症(铁在肺部积聚)、中枢神经系统受影响、支气管炎及其他肺部疾病等。欲知详情,请参阅第11获取更

多信息。

> 物理和健康危害,例如但不限于触电,物理应变,辐射烧伤(眼闪光),热 烧伤由于热金属或飞溅和过度暴露于烟雾,气体或粉尘的潜在健康影响使用

本产品的过程中潜在地生成。请参阅第11节以获取更多信息。

对医生的特别提示

处理: 根据症状处理。

5. 消防措施

一般火灾危险: 出厂时,这个产品是不可燃的。然而,焊接电弧和火花以及开放火焰和热表

面与钎焊和软钎焊可以点燃可燃和易燃材料相关联。阅读并理解美国国家标准 Z49.1, "安全在焊接,切割和相关工艺"和美国国家消防协会 NFPA

51B, '标准防火焊接,切割及其它动火'使用本产品之前。

合适的(和不合适的)灭火剂

适用的灭火剂: 由于运,产品不会燃烧。 在周围环境着火时,使用适当的灭火剂。

SDS_中国 SDS 编号: 200000021947 3/17

发布日期: 29.03.2024 修订日期: 29.03.2024

版本: 1.0

从化学品产生的具体危险: 焊接电弧和火花点燃可燃和易燃产品。

灭火注意事项及防护措施

灭火注意事项: 采用标准灭火程序并考虑其他与物质有关的危险。

防护措施: 选择适于灭火的呼吸防护:根据工作场所的通用火灾预防措施来选择。 发生

火灾时, 使用自给式呼吸设备并穿全身防护服。

6. 泄漏应急处理

作业人员防护措施、防护装备和应 急处置程序: 如果空气中的灰尘和/或烟雾存在,使用适当的工程控制,如果需要,个人防护,防止过度曝光。请参考建议在第8节。

泄漏化学品的收容、清除方法及所

使用的处置材料:

用沙或其它惰性吸收剂吸收。 在无风险的情况下,阻止材料流动。 清理立刻泄漏,观察在第8节中的个人防护设备的预防措施。避免产生粉尘。进入

任何下水道,下水道或水源,防止产品。请参阅第13妥善处置。

环境保护措施: 避免释放到环境中。 在确保安全的条件下,采取措施防止进一步的泄漏或溢

出。禁止污染水源或下水道。必须将所有重大泄漏情况通知环保管理人

员。

7. 操作处置与储存

操作注意事项: 避免扬尘。在产生灰尘的地方提供适当的排气通风。

阅读并理解生产商的说明及产品上的预防性标签。索取林肯电气安全出版物,www.lincolnelectric.com/safety. 并参考美国焊接协会(地址为:http://pubs.aws.org. 发布的美国国家标准 Z49.1 "焊接、切割及相关加工的安全性" 及美国政府印刷办公室文献管理局(地址为:www.gpo.gov. 出

版的 OSHA 出版物 2206 (29CFR1910).

安全储存注意事项,包括禁配物: 储存于密封的原装容器中,置于干燥的场所。 按照地方的/地区的/国家法规

的要求存放。 远离禁忌物储存。

8. 接触控制和个体防护

控制参数

职业接触限值:中国

成分名称	类型	容许浓度	来源
二氧化钛(天然存在的) - 总 粉尘	TWA	8 mg/m3	工作场所有害因素职业接触限值 化学有害因素 (GBZ 2.1) (03 2008)
石灰石 - 呼吸性粉尘	TWA	4 mg/m3	工作场所有害因素职业接触限值 化学有害因素 (GBZ 2.1) (03 2008)
石灰石 - 总粉尘	TWA	8 mg/m3	工作场所有害因素职业接触限值 化学有害因素 (GBZ 2.1) (03 2008)
二氧化钛(合成的) - 总粉尘	TWA	8 mg/m3	工作场所有害因素职业接触限值 化学有害因素 (GBZ 2.1) (03 2008)
锰 - 按 MnO2 计	TWA	0.15 mg/m3	工作场所有害因素职业接触限值 化学有害因素 (GBZ 2.1) (03 2008)

发布日期: 29.03.2024 修订日期: 29.03.2024

版本: 1.0

FUE Vide it	I		
氟化钙 - 总粉尘	TWA	1 mg/m3	工作场所有害因素职业接触限值 化学有害因素
			(GBZ 2.1) (03 2008)
氟化钙 - 以 F 计	TWA	2 mg/m3	工作场所有害因素职业接触限值 化学有害因素
			(GBZ 2.1) (03 2008)
氟化钙 - 呼吸性粉尘	TWA	0.7 mg/m3	工作场所有害因素职业接触限值 化学有害因素
			(GBZ 2.1) (03 2008)
氧化铝 - 总粉尘	TWA	4 mg/m3	工作场所有害因素职业接触限值 化学有害因素
			(GBZ 2.1) (03 2008)
硅 - 总粉尘	TWA	8 mg/m3	工作场所有害因素职业接触限值 化学有害因素
			(GBZ 2.1) (08 2019)
石英 - 总粉尘	TWA	0.7 mg/m3	工作场所有害因素职业接触限值 化学有害因素
			(GBZ 2.1) (03 2008)
	TWA	1 mg/m3	工作场所有害因素职业接触限值 化学有害因素
	1 1111		(GBZ 2.1) (03 2008)
石英 - 呼吸性粉尘	TWA	0.3 mg/m3	工作场所有害因素职业接触限值 化学有害因素
			(GBZ 2.1) (03 2008)
	TWA	0.7 mg/m3	工作场所有害因素职业接触限值 化学有害因素
	1 1111		(GBZ 2.1) (03 2008)
石英 - 总粉尘	TWA	0.5 mg/m3	工作场所有害因素职业接触限值 化学有害因素
			(GBZ 2.1) (03 2008)
石英 - 呼吸性粉尘	TWA	0.2 mg/m3	工作场所有害因素职业接触限值 化学有害因素
			(GBZ 2.1) (03 2008)
二氧化硅(无定形) - 总粉尘	TWA	8 mg/m3	工作场所有害因素职业接触限值 化学有害因素
			(GBZ 2.1) (08 2019)
氧化锆 - 按 Zr 计	PC-STEL	10 mg/m3	工作场所有害因素职业接触限值 化学有害因素
			(GBZ 2.1) (03 2008)
	TWA	5 mg/m3	工作场所有害因素职业接触限值 化学有害因素
	1 1111		(GBZ 2.1) (03 2008)
氧化锆 - 总粉尘	TWA	8 mg/m3	工作场所有害因素职业接触限值 化学有害因素
·			(GBZ 2.1) (08 2019)
菱镁 - 总粉尘	TWA	8 mg/m3	工作场所有害因素职业接触限值 化学有害因素
			(GBZ 2.1) (08 2019)
L	I	1	` '

职业接触限值: 美国

成分名称	类型	容许浓度	来源
二氧化钛(天然存在的) - 总	PEL	15 mg/m3	对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR
粉尘			1910. 1000) (02 2006)
二氧化钛(天然存在的)-可	TWA	5 mg/m3	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03
吸入分馏物。			2016)
二氧化钛(天然存在的) - 总	TWA	50 数以百万	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03
粉尘		计每立方英尺	2016)
		空气的粒子的	
二氧化钛(天然存在的)-可	TWA	15 数以百万	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03
吸入分馏物。		计每立方英尺	2016)
		空气的粒子的	
二氧化钛(天然存在的)-总	TWA	15 mg/m3	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03
粉尘			2016)
二氧化钛(天然存在的)-可	TWA	2.5 mg/m3	美国职业暴露限值 (01 2022)
呼吸性细小颗粒			
二氧化钛(天然存在的)-可	TWA	0.2 mg/m3	美国职业暴露限值 (01 2022)
呼吸性纳米颗粒			
石灰石 - 总粉尘	PEL	15 mg/m3	对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR
			1910. 1000) (02 2006)
石灰石 - 可吸入分馏物。	PEL	5 mg/m3	对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR
			1910. 1000) (02 2006)
石灰石 - 可吸入颗粒	TWA	10 mg/m3	美国职业暴露限值 (01 2021)
石灰石 - 可呼吸颗粒物。	TWA	3 mg/m3	美国职业暴露限值 (01 2021)
石灰石 - 总粉尘	TWA	50 数以百万	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (09
		计每立方英尺	2016)
		空气的粒子的	
石灰石 - 可吸入分馏物。	TWA	5 mg/m3	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (09
			2016)

发布日期: 29.03.2024 修订日期: 29.03.2024

版本: 1.0

石灰石 - 总粉尘	TWA	15 mg/m3	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (09 2016)
石灰石 - 可吸入分馏物。	TWA	15 数以百万 计每立方英尺 空气的粒子的	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (09 2016)
二氧化钛(合成的) - 总粉尘	PEL	15 mg/m3	对空气污染物美国 OSHA 表 Z-1 限值(29 CFR 1910. 1000) (02 2006)
二氧化钛(合成的) - 可吸入 分馏物。	TWA	5 mg/m3	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016)
二氧化钛(合成的) - 总粉尘	TWA	50 数以百万 计每立方英尺 空气的粒子的	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016)
二氧化钛(合成的) - 可吸入 分馏物。	TWA	15 数以百万 计每立方英尺 空气的粒子的	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016)
二氧化钛(合成的) - 总粉尘	TWA	15 mg/m3	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016)
二氧化钛(合成的) - 可呼吸 性细小颗粒	TWA	2.5 mg/m3	美国职业暴露限值 (01 2022)
二氧化钛(合成的) - 可呼吸 性纳米颗粒	TWA	0.2 mg/m3	美国职业暴露限值 (01 2022)
锰 - 烟 - 如锰	Ceiling	5 mg/m3	对空气污染物美国 OSHA 表 Z-1 限值(29 CFR 1910. 1000) (02 2006)
锰 - 可吸入粉尘。 - 如锰	TWA	0.1 mg/m3	美国职业暴露限值 (03 2014)
锰-可吸入分馏物。-如锰	TWA	0.02 mg/m3	美国职业暴露限值 (03 2014)
氟化钙 - 以 F 计	TWA	2.5 mg/m3	美国职业暴露限值 (12 2010)
	PEL	2.5 mg/m3	对空气污染物美国 OSHA 表 Z-1 限值(29 CFR 1910. 1000) (02 2006)
氟化钙 - 粉尘	TWA	2.5 mg/m3	美国 OSHA 表 Z-2(29 CFR 1910.1000) (02 200 6)
氧化铝 - 可吸入分馏物。	TWA	1 mg/m3	美国职业暴露限值 (12 2010)
	PEL	5 mg/m3	对空气污染物美国 OSHA 表 Z-1 限值(29 CFR 1910. 1000) (02 2006)
氧化铝 - 总粉尘	PEL	15 mg/m3	对空气污染物美国 OSHA 表 Z-1 限值(29 CFR 1910. 1000) (02 2006)
氧化铝 - 可吸入分馏物。	TWA	15 数以百万 计每立方英尺 空气的粒子的	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016)
	TWA	5 mg/m3	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016)
氧化铝 - 总粉尘	TWA	15 mg/m3	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016)
	TWA	50 数以百万 计每立方英尺 空气的粒子的	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016)
氧化铝 - 可吸入颗粒	TWA	10 mg/m3	美国职业暴露限值 (01 2021)
氧化铝 - 可呼吸颗粒物。 硅 - 总粉尘	TWA PEL	3 mg/m3 15 mg/m3	美国职业暴露限值 (01 2021) 对空气污染物美国 OSHA 表 Z-1 限值(29 CFR
硅 - 可吸入分馏物。	PEL	5 mg/m3	1910. 1000) (02 2006) 对空气污染物美国 OSHA 表 Z-1 限值(29 CFR
	<u> </u>		1910.1000) (02 2006)
硅-可呼吸颗粒物。	TWA	3 mg/m3	美国职业暴露限值 (01 2021)
硅 - 可吸入颗粒	TWA	10 mg/m3	美国职业暴露限值 (01 2021)
硅 - 可吸入分馏物。	TWA	5 mg/m3	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (09 2016)
硅 - 总粉尘	TWA	50 数以百万 计每立方英尺 空气的粒子的	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (09 2016)
	TWA	15 mg/m3	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (09 2016)
硅 - 可吸入分馏物。	TWA	15 数以百万 计每立方英尺 空气的粒子的	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (09 2016)

发布日期: 29.03.2024 修订日期: 29.03.2024

版本: 1.0

石茁 - 吸 λ	TWA	2.4 数以百万	我们。 OSHA 表 Z-3(29 CFR 1910.1000)
石英 - 吸入。	IWA	计每立方英尺	(2000)
		空气的粒子的	(2000)
			4kh 0cm = 7.2 (00 CFD 1010 1000)
	TWA	0.1 mg/m3	我们。 OSHA 表 Z-3(29 CFR 1910.1000)
ester estera bi del di		0.05 / 0	(2000)
石英 - 呼吸性粉尘	TWA	0.05 mg/m3	美国 OSHA 具体限用物质(29 CFR 1910. 1001-
			1050) (03 2016)
	OSHA_ACT	0.025 mg/m3	美国 OSHA 具体限用物质(29 CFR 1910. 1001-
			1050) (03 2016)
石英 - 呼吸性粉尘	PEL	0.05 mg/m3	对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR
			1910.1000) (03 2016)
石英 - 可吸入分馏物。	TWA	0.025 mg/m3	美国职业暴露限值 (02 2020)
二氧化硅(无定形)	TWA	20 数以百万	我们。 OSHA 表 Z-3(29 CFR 1910.1000)
		计每立方英尺	(2000)
		空气的粒子的	
	TWA	0.8 mg/m3	我们。 OSHA 表 Z-3(29 CFR 1910.1000)
	1 11/1		(2000)
二氧化硅(无定形) - 可吸入	TWA	10 mg/m3	美国职业暴露限值 (01 2021)
颗粒		0,	()
二氧化硅(无定形) - 可呼吸	TWA	3 mg/m3	美国职业暴露限值 (01 2021)
三代では、プログルグ ・ウェース	"	5 mg/ m0	ST. I POLICE (VA EVAL)
二氧化硅(无定形) - 总粉尘	TWA	50 数以百万	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (09
二氧化硅 (1 11/1	计每立方英尺	2016)
		空气的粒子的	2010/
二氧化硅(无定形) - 可吸入	TWA		我们。 OSHA 表 Z-3(29 CFR 1910.1000) (09
	TWA	15 数以百万	
分馏物。		计每立方英尺	2016)
		空气的粒子的	and the second s
	TWA	5 mg/m3	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (09
			2016)
二氧化硅(无定形) - 总粉尘	TWA	15 mg/m3	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (09
			2016)
二氧化硅(无定形)	TWA	0.8 mg/m3	我们。 OSHA 表 Z-3(29 CFR 1910.1000) (09
			2016)
	TWA	20 数以百万	我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (09
	1 1111	计每立方英尺	2016)
		空气的粒子的	,
氧化锆 - 按 Zr 计	STEL	10 mg/m3	美国职业暴露限值 (12 2010)
10 H 20 H		5 mg/m3	美国职业暴露限值 (12 2010)
	TWA		•
	PEL	5 mg/m3	对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR
			1910. 1000) (02 2006)
氧化锆 - 可呼吸颗粒物。	TWA	2 mar/m2	美国职业暴露限值 (01 2021)
11.1亿17日,11.17以70171170。		ə <u>III</u> g/ IIIə	70 P P L C C C C C C C C C C C C C C C C C
	TWA	10 mg/m3	美国职业暴露限值 (01 2021)
氧化锆 - 可吸入颗粒	TWA TWA		美国职业暴露限值 (01 2021)
氧化锆 - 可吸入颗粒	-	10 mg/m3	美国职业暴露限值 (01 2021)
氧化锆 - 可吸入颗粒	TWA	10 mg/m3 5 mg/m3	美国职业暴露限值 (01 2021) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016)
氧化锆 - 可吸入颗粒	-	10 mg/m3 5 mg/m3 15 数以百万	美国职业暴露限值 (01 2021) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03
氧化锆 - 可吸入颗粒	TWA	10 mg/m3 5 mg/m3 15 数以百万 计每立方英尺	美国职业暴露限值 (01 2021) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016)
氧化锆 - 可吸入颗粒 氧化锆 - 可吸入分馏物。	TWA	10 mg/m3 5 mg/m3 15 数以百万 计每立方英尺 空气的粒子的	美国职业暴露限值 (01 2021) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016)
氧化锆 - 可吸入颗粒 氧化锆 - 可吸入分馏物。	TWA	10 mg/m3 5 mg/m3 15 数以百万 计每立方英尺	美国职业暴露限值 (01 2021) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016)
氧化锆 - 可吸入颗粒 氧化锆 - 可吸入分馏物。	TWA TWA TWA	10 mg/m3 5 mg/m3 15 数以百万 计每立方英尺 空气的粒子的 15 mg/m3	美国职业暴露限值 (01 2021) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016)
氧化锆 - 可吸入颗粒 氧化锆 - 可吸入分馏物。	TWA	10 mg/m3 5 mg/m3 15 数以百万 计每立方英尺 空气的粒子的 15 mg/m3	美国职业暴露限值 (01 2021) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016)
氧化锆 - 可吸入颗粒 氧化锆 - 可吸入分馏物。	TWA TWA TWA	10 mg/m3 5 mg/m3 15 数以百万 计每立方英尺 空气的粒子的 15 mg/m3 50 数以百万 计每立方英尺	美国职业暴露限值 (01 2021) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016)
氧化锆 - 可吸入颗粒 氧化锆 - 可吸入分馏物。 氧化锆 - 总粉尘	TWA TWA TWA	10 mg/m3 5 mg/m3 15 数以百万 计每立方英尺 空气的粒子的 15 mg/m3 50 数以百万 计每立方英尺 空气的粒子的	美国职业暴露限值 (01 2021) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016)
氧化锆 - 可吸入颗粒 氧化锆 - 可吸入分馏物。 氧化锆 - 总粉尘	TWA TWA TWA	10 mg/m3 5 mg/m3 15 数以百万 计每立方英尺 空气的粒子的 15 mg/m3 50 数以百万 计每立方英尺	美国职业暴露限值 (01 2021) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016) 对空气污染物美国 OSHA 表 Z-1 限值(29 CFR
氧化锆 - 可吸入颗粒 氧化锆 - 可吸入分馏物。 氧化锆 - 总粉尘 菱镁 - 总粉尘	TWA TWA TWA TWA PEL	10 mg/m3 5 mg/m3 15 数以百万 计每立方英尺 空气的粒子的 15 mg/m3 50 数以百万 计每立方英尺 空气的粒子的	美国职业暴露限值 (01 2021) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016) 对空气污染物美国 OSHA 表 Z-1 限值(29 CFR 1910.1000) (02 2016)
氧化锆 - 可吸入颗粒 氧化锆 - 可吸入分馏物。 氧化锆 - 总粉尘 菱镁 - 总粉尘	TWA TWA TWA	10 mg/m3 5 mg/m3 15 数以百万 计每立方英尺 空气的粒子的 15 mg/m3 50 数以百万 计每立方英尺 空气的粒子的	美国职业暴露限值 (01 2021) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR 1910.1000) (02 2006) 对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR 1910.1000)
氧化锆 - 可吸入颗粒 氧化锆 - 可吸入分馏物。 氧化锆 - 总粉尘 菱镁 - 总粉尘	TWA TWA TWA TWA PEL	10 mg/m3 5 mg/m3 15 数以百万 计每立方英尺 空气的粒子的 15 mg/m3 50 数以百万 计每立方英尺 空气的粒子的	美国职业暴露限值 (01 2021) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3(29 CFR 1910.1000) (03 2016) 对空气污染物美国 OSHA 表 Z-1 限值(29 CFR 1910.1000) (02 2016)
氧化锆 - 可吸入颗粒 氧化锆 - 可吸入分馏物。 氧化锆 - 总粉尘 菱镁 - 总粉尘 菱镁 - 可吸入分馏物。	TWA TWA TWA TWA PEL	10 mg/m3 5 mg/m3 15 数以百万 计每立方英尺 空气的粒子的 15 mg/m3 50 数以百万 计每立方英尺 空气的粒子的	美国职业暴露限值 (01 2021) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR 1910.1000) (02 2006) 对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR 1910.1000)
氧化锆 - 可吸入颗粒 氧化锆 - 可吸入分馏物。 氧化锆 - 总粉尘 菱镁 - 可吸入分馏物。 菱镁 - 可呼吸颗粒物。	TWA TWA TWA TWA PEL PEL	10 mg/m3 5 mg/m3 15 数以百万 计每立方英尺 空气的粒子的 15 mg/m3 50 数以百万 计每立方英尺 空气的粒子的 15 mg/m3 5 mg/m3	美国职业暴露限值 (01 2021) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR 1910.1000) (02 2006) 对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR 1910.1000) (02 2006) 对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR 1910.1000) (02 2006) 美国职业暴露限值 (01 2021)
氧化锆 - 可吸入颗粒 氧化锆 - 可吸入分馏物。 氧化锆 - 总粉尘 菱镁 - 可吸入分馏物。 菱镁 - 可吸入分馏物。 菱镁 - 可吸入颗粒	TWA TWA TWA TWA PEL PEL TWA TWA	10 mg/m3 5 mg/m3 15 数以百万 计每立方英尺 空气的粒子的 15 mg/m3 50 数以百万 计每立方英尺 空气的粒子的 15 mg/m3 5 mg/m3	美国职业暴露限值 (01 2021) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR 1910.1000) (02 2006) 对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR 1910.1000) (02 2006) 对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR 1910.1000) (02 2006) 美国职业暴露限值 (01 2021) 美国职业暴露限值 (01 2021)
(1) (1) (1) (1) (1) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	TWA TWA TWA TWA PEL PEL TWA	10 mg/m3 5 mg/m3 15 数以百万 计每立方英尺 空气的粒子的 15 mg/m3 50 数以百万 计每立方英尺 空气的粒子的 15 mg/m3 5 mg/m3	美国职业暴露限值 (01 2021) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR 1910.1000) (02 2006) 对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR 1910.1000) (02 2006) 对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR 1910.1000) (02 2006) 美国职业暴露限值 (01 2021) 美国职业暴露限值 (01 2021)
氧化锆 - 可吸入颗粒 氧化锆 - 可吸入分馏物。 氧化锆 - 总粉尘 菱镁 - 可吸入分馏物。 菱镁 - 可吸入分馏物。 菱镁 - 可吸入颗粒	TWA TWA TWA TWA PEL PEL TWA TWA TWA TWA	10 mg/m3 5 mg/m3 15 数以百万 计每立方英尺 空气的粒子的 15 mg/m3 50 数以百万 计每立方英尺 空气的粒子的 15 mg/m3 5 mg/m3 10 mg/m3 15 mg/m3	美国职业暴露限值 (01 2021) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR 1910.1000) (02 2016) 对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR 1910.1000) (02 2006) 对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR 1910.1000) (02 2006) 美国职业暴露限值 (01 2021) 美国职业暴露限值 (01 2021) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (08 2016)
氧化锆 - 可吸入颗粒 氧化锆 - 可吸入分馏物。 氧化锆 - 总粉尘 菱镁 - 可吸入分馏物。 菱镁 - 可吸入分馏物。 菱镁 - 可吸入颗粒	TWA TWA TWA TWA PEL PEL TWA TWA	10 mg/m3 5 mg/m3 15 数以百万 计每立方英尺 空气的粒子的 15 mg/m3 50 数以百万 计每立方英尺 空气的粒子的 15 mg/m3 5 mg/m3	美国职业暴露限值 (01 2021) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 我们。 OSHA 表 Z-3 (29 CFR 1910.1000) (03 2016) 对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR 1910.1000) (02 2006) 对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR 1910.1000) (02 2006) 对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR 1910.1000) (02 2006) 美国职业暴露限值 (01 2021) 美国职业暴露限值 (01 2021)

发布日期: 29.03.2024 修订日期: 29.03.2024

版本: 1.0

菱镁 - 可吸入分馏物。	TWA	15 数以百万 计每立方英尺 空气的粒子的	我们。 2016)	OSHA 表 Z-3(29 CFR 1910.1000) (09
	TWA	5 mg/m3	我们。 2016)	OSHA 表 Z-3(29 CFR 1910.1000) (09

生物接触限值: 中国

所有组分均未被定义接触限值。

生物接触限值: ACGIH

成分名称	容许浓度	来源
氟化钙 (氟: 采样时间: 下一个工作班前)	2 mg/1 (尿)	ACGIH BEI (03 2013)
氟化钙 (氟: 采样时间: 工作班末)	3 mg/1 (尿)	ACGIH BEI (03 2013)

根据使用条件的其他容许浓度: 中国

成分名称	类型	容许浓度	来源
二氧化碳	PC-STEL	18,000 mg/m3	工作场所有害因素职业接触限值 化学有害因素 (GBZ 2.1)
	TWA	9,000 mg/m3	工作场所有害因素职业接触限值 化学有害因素 (GBZ 2.1)
一氧化碳	MAC	15 mg/m3	工作场所有害因素职业接触限值 化学有害因素 (GBZ 2.1)
	PC-STEL	30 mg/m3	工作场所有害因素职业接触限值 化学有害因素 (GBZ 2.1)
	TWA	20 mg/m3	工作场所有害因素职业接触限值 化学有害因素 (GBZ 2.1)
	MAC	20 mg/m3	工作场所有害因素职业接触限值 化学有害因素 (GBZ 2.1)
二氧化氮	PC-STEL	10 mg/m3	工作场所有害因素职业接触限值 化学有害因素 (GBZ 2.1)
	TWA	5 mg/m3	工作场所有害因素职业接触限值 化学有害因素 (GBZ 2.1)
臭氧	MAC	0.3 mg/m3	工作场所有害因素职业接触限值 化学有害因素 (GBZ 2.1)
锰 - 按 MnO2 计	TWA	0.15 mg/m3	工作场所有害因素职业接触限值 化学有害因素 (GBZ 2.1)
氟化物(以F)-以F计	TWA	2 mg/m3	工作场所有害因素职业接触限值 化学有害因素 (GBZ 2.1)

根据使用条件的其他容许浓度:美国

成分名称	类型	容许洋	农度	来源
二氧化碳	TWA	5,000 ppm		美国职业暴露限值 (12 2010)
	STEL	30,000 ppm		美国职业暴露限值 (12 2010)
	PEL	5,000 ppm	9,000 mg/m3	对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR
				1910. 1000) (02 2006)
一氧化碳	TWA	25 ppm		美国职业暴露限值 (12 2010)
	PEL	50 ppm	55 mg/m3	对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR
				1910. 1000) (02 2006)
二氧化氮	TWA	0.2 ppm		美国职业暴露限值 (02 2012)
	Ceiling	5 ppm	9 mg/m3	对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR
				1910. 1000) (02 2006)
臭氧	PEL	0.1 ppm	$0.2~\mathrm{mg/m3}$	对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR
				1910. 1000) (02 2006)
	TWA	0.05 ppm	•	美国职业暴露限值 (03 2014)
	TWA	0.10 ppm		美国职业暴露限值 (03 2014)

发布日期: 29.03.2024 修订日期: 29.03.2024

版本: 1.0

	TWA	0.08 ppm	美国职业暴露限值 (03 2014)
	TWA	0.20 ppm	美国职业暴露限值 (02 2020)
锰 - 烟 - 如锰	Ceiling	5 mg/m3	对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR
			1910. 1000) (02 2006)
锰 - 可吸入粉尘。 - 如锰	TWA	0.1 mg/m3	美国职业暴露限值 (03 2014)
锰-可吸入分馏物。-如锰	TWA	0.02 mg/m3	美国职业暴露限值 (03 2014)
氟化物(以F)-以F计	TWA	2.5 mg/m3	美国职业暴露限值 (12 2010)
	PEL	2.5 mg/m3	对空气污染物美国 OSHA 表 Z-1 限值 (29 CFR
			1910.1000) (02 2006)
氟化物(以F)-粉尘	TWA	2.5 mg/m3	美国 OSHA 表 Z-2(29 CFR 1910.1000) (02
			2006)

适当的工程控制

通风:使用足够通风的地方在弧,火焰或热源,保持烟雾和气体从工人呼吸 区域和一般区域。列车运营商保持他们的头出来的烟雾。保持接触尽可能 低。

个人防护措施,如个体防护装备 一般信息:

接触指南: 为了减少过度接触的可能性,请采用充分通风和个人防护设备 (PPE) 等控制措施。过度接触是指超过适用局部限制,即美国政府工业卫生 学家会议(ACGIH)安全阈值(TLV)或职业安全与健康管理局(OSHA)所允 许的接触限值(PEL)。工作场所的接触程度应通过主管工业卫生评估加以确 定。除非确认接触程度低于适用局部限制(即 TLV 或 PEL,以最低值为 准),否则需要使用呼吸器。如果缺乏控制措施,且过度接触一种或多种复 合成分,比如烟雾或大气尘粒,都可能导致潜在的健康危害。根据 ACGIH、 TLV 和生物接触指数 (BEI) 规定, "展示符合 ACGIH 规定的几乎所有工人均 可反复接触且无不良健康影响的条件"。ACGIH进一步指出,TLV-TWA应作为 健康危害控制指南,而非安全接触与危险接触之间的分界线。请参阅第10部 分,了解可能存在健康危害的成分信息。 焊材和材料接合可以含有铬为一 无意微量元素。含有铬的材料可以产生六价铬(六价铬)等铬化合物的一些 量在通风的副产物。在2018年,美国政府工业卫生的美国会议(ACGIH)降 低了六价铬的阈限值(TLV)从每立方米空气(50 微克/立方米)50 微克到 0.2 微克/立方米。在这些新的限制,在或TLV以上六价铬暴露可能在不提供 足够的通风的情况下是可能的。六价铬化合物对 IARC 和 NTP 列表作为冒充肺 癌和鼻窦癌的风险。工作场所的条件是独特的和焊接烟尘风险水平的变化。 职场暴露评估必须由有资质的专业,如工业卫生学家进行,以确定是否暴露 低于适用范围和必要的防止过度暴露时提出建议。

眼睛/面部防护:

戴上头盔或使用面罩带过滤器遮光罩号 12 或更暗开放弧过程 - 或跟随在 ANSI Z49.1,第 4 节规定,根据你的流程和设置的建议。埋弧焊或电渣过程 没有具体遮光罩建议。通过提供良好的相应的屏幕和闪光护目镜盾等。

皮肤和身体防护 手防护:

戴防护手套. 可由手套供应商推荐合适的手套。

其他:

防护服: 戴上防护手套,头部和身体保护装置,以防止辐射伤害,明火,热表面,火花和电击。见 Z49.1。焊接时至少包括焊工的手套和防护面罩,在焊接,钎焊和焊接时,可能包括护臂,围裙,帽子,肩部保护以及深色大衣。 戴上干燥的手套,无孔或裂缝。 训练操作人员不要让带电部件或电极接触皮肤。。。 如果是潮湿的衣服或手套。 使用干胶合板,橡胶垫或其他干燥的绝缘材料将工件和地面隔离。

呼吸系统防护:

使用充足的通风设备和局部排气系统,让烟尘和气体远离您的呼吸区和一般 区域。除非暴露评估显示以下为合适的暴露极限,否则应使用合格的呼吸

发布日期: 29.03.2024 修订日期: 29.03.2024

版本: 1.0

器。

卫生措施: 使用本品时禁止饮食或吸烟。 保持良好的个人卫生习惯,如操作物料后且在

饮食及/或吸烟前洗手。定期清洗工作服以去除污染物。废弃不能清理的受污染的鞋类。 通过从焊工头盔内(如果佩戴)或工人的呼吸区域采集空气样本来确定工人所接触的烟气成分和含量。如果接触量高于限值,请改善通风。请参考 ANSI/AWS F1.1、F1.2、F1.3 及 F1.5,该资料可从美国焊接协会获

得, 地址为: www.aws.org.

9. 理化特性

外观: 带突出助焊涂层的钢条.

物理状态: 固体 **性状:** 固体

颜色: 无可得到的数据 气味: 无可得到的数据 气味阈值: 无可得到的数据 无可得到的数据 pH 值: 熔点/凝固点: 无可得到的数据 初沸点和沸程: 无可得到的数据 闪点: 无可得到的数据 蒸发速率: 无可得到的数据 易燃性(固体、气体): 无可得到的数据

燃烧上限/下限或爆炸限值

燃烧极限 - 上限 (%): 无可得到的数据 燃烧极限 - 下限(%): 无可得到的数据 爆炸极限-上限: 无可得到的数据 爆炸极限-下限: 无可得到的数据 蒸气压: 无可得到的数据 蒸气密度: 无可得到的数据 密度: 无可得到的数据 相对密度: 无可得到的数据

溶解性

在水中的溶解度:无可得到的数据溶解度(其它):无可得到的数据分配系数(辛醇/水):无可得到的数据自燃温度:无可得到的数据分解温度:无可得到的数据黏度:无可得到的数据

10. 稳定性和反应性

反应性: 该产品是使用,储存和运输在正常条件下不反应的。

化学稳定性: 正常条件下物料稳定。

发布日期: 29.03.2024 修订日期: 29.03.2024

版本: 1.0

可能的危险反应: 在正常条件下无害。

应避免的条件: 防止受热或受污染。

禁配物: 强酸。 强氧化性物质。 强碱

的金属类型、过程和程序及所用焊条。影响操作人员可能接触到的烟雾和气体的成分和含量的其他因素还包括:焊接金属的涂层(如油漆、电镀或锌镀等)、焊工人数及工作区大小、通风质量和流量、焊工头部和烟羽的相对位置以及空气中含有的污染物(如清洗或除油过程中产生的氯化碳氢化合蒸

汽)。

当使用焊条时,产生的烟气分解物在百分比与形式上与第 3 节所列的成分不同。正常操作下的分解物包括第 3 节列出的挥发、反应或氧化产物,以及上述出自金属基材和涂层的物质。通常,弧焊过程中产生的烟雾成分包括铁氧化物、锰及其他焊接耗材或金属基材中含有的金属。含有铬耗材或金属基材的焊烟中可能存在六价铬化合物。在含有氟化物的耗材的焊烟中可能存在气态或微粒氟化物。气态反应物可能包括一氧化碳及二氧化碳。弧焊辐射可能形成臭氧及氮氧化物。

11. 毒理学信息

一般信息: 国际癌症研究机构 (International Agency for Research on Cancer,

IARC)已经确定焊接烟雾和焊接产生的紫外线辐射对人体具有致癌性(第1组)。据 IARC 研究显示,焊接烟雾导致肺癌,并且已经查明与肾癌关系密切。据 IARC 研究显示,焊接产生的紫外线辐射会导致眼部黑色素瘤。 IARC 将刨削、硬钎焊、碳弧或等离子弧切割以及软钎焊认定为与焊接密切相关的工艺。使用本产品前,请阅读并理解生产商的使用说明、《安全数据表》和

警告标签。

可能的接触途径信息

吸入: 焊材使用有关的潜在的慢性健康危害最适用于吸入途径暴露。请参阅第 11 吸

入报表。

皮肤接触: 弧光可烧伤皮肤。已有报告皮肤癌的案例。

眼睛接触: 弧光可伤害眼睛。

食入: 正常使用情况下,通过食入引起的健康伤害尚未发现也不易发生。

与物理,化学和毒理特性相关的症状

SDS 中国 SDS 编号: 200000021947 11/17

发布日期: 29.03.2024 修订日期: 29.03.2024

版本: 1.0

吸入:

在正常使用期间不预期呼吸暴露于存在于该焊接电极中的结晶二氧化硅。 已知呼吸过度暴露于空气传播的结晶二氧化硅会引起矽肺,这是一种能够导致肺纤维化的形式,可以是进行性的并且可能导致死亡。 结晶二氧化硅在IARC(国际癌症研究机构)和 NTP(国家毒理学计划)名单上作为对人类的癌症风险。 注意: 所有区域当局不使用相同的标准为化学品分配致癌分类。例如,欧盟(EU)CLP 不需要将结晶二氧化硅分类为致癌化合物。 短期(急性)过度接触烟雾和气体焊接及相关工艺可能可导致身体不适,如金属烟雾热、头晕、恶心或鼻部、喉咙或眼睛发干或受刺激。可能加重之前已患有的呼吸疾病(如哮喘、肺气肿等). 长期(慢性)过度接触焊烟可导致肺铁末沉着症(铁在肺部积聚)、中枢神经系统受影响、支气管炎及其他肺部疾病等.

毒理学效应信息

急性毒性 (列出所有可能的接触途径)

经口

产品: 未分类

组分:

 铁
 LD 50 (鼠): 98.6 g/kg

 石灰石
 LD 50 (大鼠): 6, 450 mg/kg

 氟化钙
 LD 50 (鼠): 4, 250 mg/kg

 硅酸钠
 LD 50 (鼠): 1.1 g/kg

羧甲基纤维素,钠盐 LD 50 (大鼠): 2,700 mg/kg

经皮

产品: 未分类

吸入

产品: 未分类

组分:

羧甲基纤维素,钠盐 LC 50 (大鼠,4 h): 5,800 mg/m3

重复剂量毒性

产品: 未分类

皮肤腐蚀/刺激

产品: 未分类

严重眼损伤/眼刺激

产品: 未分类

呼吸或皮肤过敏

产品: 未分类

致癌性

产品: 弧光。已有报告皮肤癌的案例。

国际癌症研究机构(IARC)对人类的致癌风险评估的专著:

二氧化钛(天然存 总体评估: 2B. 可能对人有致癌作用.

在的)

二氧化钛(合成 总体评估: 2B. 可能对人有致癌作用.

的)

石英 总体评估: 1. 人类致癌物

发布日期: 29.03.2024 修订日期: 29.03.2024

版本: 1.0

生殖细胞致突变性

体外

产品: 未分类

体内

产品: 未分类

生殖毒性

产品: 未分类

特异性靶器官毒性--次接触

产品: 未分类

特异性靶器官毒性-反复接触

产品: 未分类

吸入危害

产品: 未分类

其它影响: 有机聚合物可以以各种焊接材料的制造中使用。过度暴露于它们的分解的副

产品,可能会导致被称为聚合物烟雾热的条件。聚合物烟雾热通常发生在 4 ~8 小时暴露在流感的演示样症状,包括轻度肺有刺激性,或在不增加体温。曝光的体征可包括增加的白细胞计数。症状通常会很快解决,通常持续

不超过最高 48 小时以上。

使用条件下与物理、化学和毒理特性相关的症状

吸入: 组分:

锰 过度锰烟雾可能会影响大脑和中枢神经系统,造成缺乏协调,说话困难,手臂

或腿震颤。这种情况可能是不可逆转的。

使用条件下其他毒理信息:

急性毒性

经口 组分:

氟化物(以F)

LD 50 (鼠): 4,250 mg/kg

吸入

组分:

 二氧化碳
 LC 罗 (人类, 5 min): 90000 ppm

 一氧化碳
 LC 50 (鼠, 4 h): 1300 ppm

 二氧化氮
 LC 50 (鼠, 4 h): 88 ppm

臭氧 LC罗(人类, 30 min): 50 ppm

其它影响:

组分:

二氧化碳 窒息

一氧化碳 羧氧血红蛋白血症 二氧化氮 下呼吸道刺激症状

12. 生态学信息

生态毒性

SDS_中国 SDS 编号: 200000021947 13/17

发布日期: 29.03.2024 修订日期: 29.03.2024

版本: 1.0

急性水生毒性:

鱼

产品: 不被分类.

组分:

氟化钙 LC 50 (96 h): 340 mg/1

硅酸钠 LC 50 (大肚魚 (Gambusia affinis), 96 h): 1,800 mg/1

水生无脊椎动物

产品: 不被分类.

组分:

锰 EC50 (水蚤 (水蚤), 48 h): 40 mg/1

氟化钙 EC50 (Daphnia magna; Daphnia sp., 48 h): 270 mg/1

硅酸钠EC50 (水蚤 (Ceriodaphnia dubia), 48 h): 22.94 - 49.01 mg/l羧甲基纤维素, 钠盐EC50 (水蚤 (Ceriodaphnia dubia), 48 h): 46.04 - 165.37 mg/l

慢性水生毒性:

鱼

产品: 不被分类.

水生无脊椎动物

产品: 不被分类.

对水生植物的毒性

产品: 不被分类.

持久性和降解性

生物降解

产品: 无可得到的数据

潜在的生物累积性

生物富集系数 (BCF)

产品: 无可得到的数据

土壤中的迁移性: 无可得到的数据

13. 废弃处置

一般信息: 废物的产生,应避免或最小化尽可能的。当实际,在符合环保要求,符合监

管方式回收。按照所有适用的联邦,州,省,和当地的要求,在处理非再生

产品。

废弃化学品: 该产品被列为危险废料进行处理。焊接耗材 及/或焊接过程中产生的副产品

(包括但不限于残渣、灰尘等)可能含有可滤出水平的重金属,如钡或铬。 在处理前,必须根据美国环保署毒性滤出程序(TCLP)分析一份有代表性的 样品,以确定是否有超过规定阈值水平的成分。请根据联邦、州或地方法规

丢弃任何产品、残余物、一次性容器或衬垫物。

污染包装物: 在适合的处置和废弃设施内,按照可用的法律法规要求,以及废弃时的产品

特性,废弃处置内容物/容器。

14. 运输信息

SDS_中国 SDS 编号: 200000021947 14/17

发布日期: 29.03.2024 修订日期: 29.03.2024

版本: 1.0

CNDG

联合国危险货物编号(UN号)或识

别号(ID号):

正式运输名称: NOT DG REGULATED

运输危险性分类

类别: NR 标签: -EmS No.:

包装类别: – 海洋污染物: – 否

运输注意事项: 未受管制。

IMDG

联合国危险货物编号(UN号)或识

别号 (ID 号):

正式运输名称: NOT DG REGULATED

运输危险性分类

类别: NR 标签: -EmS No.:

包装类别: – 海洋污染物: – 否

IATA

联合国危险货物编号(UN号)或识

别号(ID号):

联合国运输名称: NOT DG REGULATED

运输危险性分类:

类别:NR标签:-包装类别:-海洋污染物:否只可空运:允许。

15. 法规信息

国家危险废物名录

氟化钙 列入。

高毒物品目录 (卫生部办公厅 2003 年版)

锰列入。氟化钙列入。

剧毒化学品目录 (2002年第2号)

易制毒化学品管理条例 国务院令第 445 号 附表:易制毒化学品的分类和品种目录 第一类, 第二类, 第三类 不受管控

中国. CWC. 各类监控化学品名录 (监控化学品管理条例, 第 190 号, 1995 年 12 月 27 日, 经修正) 不受管控

易制爆危险化学品名录(公安部,2011年版,二〇一一年十一月二十五日)

不受管控

发布日期: 29.03.2024 修订日期: 29.03.2024

版本: 1.0

中国受控消耗臭氧层物质清(环境保护部,发展改革委,工业和信息化部公告 2010年 第72号)

不受管控

危险化学品名录 (国家安全生产监督管理局2003年第1号)

不受管控

名录状态:

AU AIICL: 己列入或符合物质名录的法规要求

DSL: 一个或多个组件未上市或获豁免遵守上市。

NDSL: 一个或多个组件未上市或获豁免遵守上市。

ONT INV: 已列入或符合物质名录的法规要求 IECSC: 已列入或符合物质名录的法规要求

ENCS (JP):
一个或多个组件未上市或获豁免遵守上市。

ISHL (IP):
一个或多个组件未上市或获豁免遵守上市。

PHARM (TP):
一个或多个组件未上市或获豁免遵守上市。

KECI (KR):已列入或符合物质名录的法规要求INSQ:已列入或符合物质名录的法规要求NZIOC:已列入或符合物质名录的法规要求PICCS (PH):已列入或符合物质名录的法规要求TCSI:已列入或符合物质名录的法规要求毒性物质控制法案:已列入或符合物质名录的法规要求

CH NS: 一个或多个组件未上市或获豁免遵守上市。

TH ECINI: 一个或多个组件未上市或获豁免遵守上市。

VN INVL: 一个或多个组件未上市或获豁免遵守上市。

EU INV: 一个或多个组件未上市或获豁免遵守上市。

16. 其他信息

定义:

修订日期: 29.03.2024

补充信息: 如需其它资料敬请垂讯。

参考文献: 按照 GB/T 16483、GB/T 17519 编制。

免责声明: Lincoln Electric Company 要求各终端用户及本 SDS 的接收人认真学习。另

请浏览 www.lincolnelectric.com/safety。如果必要,可咨询工业卫生学家或其他专家来了解此信息,保护环境并保护工人免受与本品的处理或使用相关的潜在危害。截至上述显示的修改日期,本信息被认为是准确的。但是,我们不做明示或暗示的保证。由于使用条件或方法并不在 Lincoln Electric 的控制范围之内,因此我们不承担因使用本品所导致的责任。监管要求可能会发生变化,且各地的要求也可能各不相同。用户仍需遵守所有适用的联邦、州、省

及当地法律法规。

发布日期: 29.03.2024 修订日期: 29.03.2024

版本: 1.0

2024©林肯全球保留所有版权。