Sistemas Operacionais - Prof. Rafael R. Obelheiro

Lista de Exercícios — Escalonamento de Processos

Em todos os exercícios de escalonamento, considere que existe um único processador. Caso o exercício envolva disco, considere que existe um único disco que sempre é escalonado por FCFS.

1. **[Silberschatz 1994, 5.3mod]** Considere o seguinte conjunto de processos, onde "tempo CPU" representa a duração do próximo ciclo de CPU:

processo	tempo CPU	prioridade
A	10	3
В	1	1
С	2	3
D	1	4
E	5	2

Os processos chegam na ordem A, B, C, D, E, todos no instante zero.

- (a) Faça diagramas temporais ilustrando a execução desses processos usando FCFS, SJF, prioridade não preemptiva (o menor valor tem a maior prioridade) e *round-robin* (*quantum* = 2). (O valor de prioridade só deve ser considerado no algoritmo de prioridade não preemptiva, e ignorado nos demais.)
- (b) Qual o tempo de retorno de cada processo em cada algoritmo?
- (c) Qual o tempo de espera de cada processo em cada algoritmo? (O tempo de espera é dado pelo tempo que o processo fica esperando em uma fila, sem efetivamente usar nenhum recurso.)
- (d) Quais das escalas resultam no menor e no maior tempo de espera médio para todos os processos? Quais são esses tempos?
- 2. Suponha que os processos do exercício anterior são escalonados por um algoritmo de múltiplas filas com realimentação, onde as filas são escalonadas por prioridade e os processos em cada fila por RR, de acordo com o seguinte esquema:
 - fila 1, *quantum* = 1
 - fila 2, *quantum* = 3
 - fila 3, quantum = 5

Os processos sempre iniciam na fila 1, e mudam de fila caso não tenham encerrado seu ciclo de CPU ao término do *quantum*.

Faça um diagrama de tempo mostrando a execução dos processos e calcule o tempo de espera de cada processo e o tempo médio de espera para o conjunto.

- 3. **[Tanenbaum 1987, 2.20]** Cinco processos estão esperando para serem executados. As durações previstas de seus ciclos de CPU são 9, 6, 3, 5 e *X*. Em que ordem esses processos devem ser executados para minimizar o tempo de retorno médio do conjunto? (Sua resposta dependerá de *X*.)
- 4. [Oliveira 2004, 4.7mod] Quatro programas devem ser executados em um computador monoprocessado. Todos os programas são compostos por dois ciclos de processador e um ciclo de E/S. A entrada e saída de todos os programas é feita sobre a mesma unidade de disco. Os tempos para cada ciclo de cada programa são mostrados abaixo:

Programa	CPU	Disco	CPU
P1	3	8	3
P2	3	10	6
P3	7	6	2
P4	6	10	3

Construa um diagrama de tempo mostrando qual programa está ocupando o processador e o disco a cada momento, até que os quatro programas terminem. Suponha que o algoritmo de escalonamento utilizado seja *round-robin*, com *quantum* de 4 unidades. Quais as taxas de ocupação do processador e do disco?

- 5. [Oliveira 2004, 4.8mod] O que acontece com as duas taxas de ocupação calculadas no problema anterior se for utilizado um disco com o dobro da velocidade de acesso (ou seja, a duração dos ciclos de E/S é dividida por dois)?
- 6. Determine o tempo de espera médio, o tempo de retorno médio e a vazão para as escalas dos exercícios 4 e 5.
- 7. Um sistema possui cinco processos, conforme mostrado na tabela abaixo. Determine o ganho no tempo médio de retorno (em ms) quando esse conjunto de processos é escalonado usando o algoritmo SRTN (shortest remaining time next), em comparação com o algoritmo round-robin com quantum = 30 ms.

	tempo de	instante de
processo	CPU (ms)	chegada (ms)
A	70	0
В	40	10
C	50	10
D	100	0
E	20	20

8. Considere o seguinte conjunto de processos:

	tempo de			
processo	chegada	CPU	disco	CPU
A	5	8	4	4
В	0	6	10	10
C	2	2	8	3

O sistema usa o algoritmo de escalonamento SRTN.

- (a) Construa um diagrama de tempo mostrando qual processo está ocupando o processador e o disco a cada momento.
- (b) Determine a taxa de ocupação do processador e do disco.
- (c) Determine a vazão para a escala produzida.
- 9. Considere o seguinte conjunto de processos:

processo	usuário	CPU	disco	CPU
P1	A	10	4	6
P2	В	8	3	8
P3	Α	6	3	8

O sistema usa o algoritmo de escalonamento por fração justa com quantum = 2, sendo que os processos do usuário A devem receber 50% da CPU, e os processos do usuário B devem receber 50% da CPU.

- (a) Construa um diagrama de tempo mostrando qual processo está ocupando o processador e o disco a cada momento.
- (b) Determine a taxa de ocupação do processador e do disco.
- (c) Determine a vazão para a escala produzida.