SEMAINE DU 25/01 AU 29/01

1 Cours

Arithmétique

Division dans $\mathbb Z$ Relation de divisibilité. Opérations sur la divisibilité. Relation de congruence. Opérations sur la congruence. Division euclidienne.

Diviseurs et multiples communs PGCD : définition, existence et unicité d'un pgcd positif. Opérations sur le pgcd. Algorithme d'Euclide. Théorème de Bézout. Algorithme d'Euclide étendu. Nombres premiers entre eux. Théorème de Bézout (équivalence). Théorème de Gauss. Corollaire : si a|n et b|n avec $a \land b = 1$, alors ab|n. PPCM : définition, existence et unicité d'un ppcm positif. Relation $(a \lor b)(a \land b) = |ab|$. Opérations sur le ppcm.

Nombres premiers Définition. Lemme d'Euclide. Tout entier n > 1 admet un diviseur premier. Infinité des nombres premiers. Deux entiers sont premiers entre eux si et seulement si ils n'ont aucun diviseur premier commun. Décomposition en facteurs premiers. Valuation p-adique. Lien avec le pgcd et le ppcm.

2 Méthodes à maîtriser

- ▶ Se ramener à des entiers premiers entre eux en factorisant par le pgcd.
- ▶ Résoudre des équations diophantiennes linéaires i.e. du type ax + by = c avec $a, b, c \in \mathbb{Z}$ et x, y des inconnues entières.
- ▶ Caractériser le reste d'une division euclidienne par une relation de congruence.
- ▶ Montrer que deux couples d'entiers ont même pgcd/ppcm en montrant qu'ils se divisent l'un l'autre.
- ▶ Savoir montrer que deux entiers sont premiers entre eux en exhibant une relation de Bézout.

3 Questions de cours

- ▶ Soient a et r des entiers naturels supérieurs ou égaux à 2. Montrer que si $a^r 1$ est premier, alors a = 2 et r est premier.
- ▶ Soient a et b deux entiers naturels non nuls premiers entre eux tels que ab soit une puissance $n^{\text{ème}}$ d'entier naturel. Montrer que a et b sont eux-mêmes des puissances $n^{\text{èmes}}$ d'entiers.
- ▶ Soit p un nombre premier. Montrer que $n^p \equiv n[p]$ pour tout $n \in \mathbb{Z}$.
- ▶ Résoudre une équation diophantienne du type ax + by = c au choix de l'examinateur.