Adequate set of connectives

Lila Kari

The University of Western Ontario

Adequate set of connectives

• A remarkable property of the standard set of connectives $(\neg, \land, \lor, \rightarrow, \leftrightarrow)$ is the fact that for every truth table

р	q	
1	1	 *
		*
		*
0	0	 *

there is a formula (depending on the variables p, q, \ldots and using only the standard connectives) that has exactly this truth table.

• For every truth table there is Boolean function f(p, q, ...) with exactly this truth table.

Post's observation

- Any set of connectives with the capability to express all truth tables is said to be adequate.
- As Post (1921) observed that the standard connectives are adequate.

Emil Post, 1897-1954

We can show that a set S of connectives is adequate if we can express all the standard connectives in terms of S.

We can show that a set S of connectives is adequate if we can express all the standard connectives in terms of S.

• Formulas $A \to B$ and $\neg A \lor B$ are tautologically equivalent.

We can show that a set S of connectives is adequate if we can express all the standard connectives in terms of S.

- Formulas $A \to B$ and $\neg A \lor B$ are tautologically equivalent.
- Then → is definable in terms of (or is reducible to or can be expressed in terms of) ¬ and ∨.

We can show that a set S of connectives is adequate if we can express all the standard connectives in terms of S.

- Formulas $A \to B$ and $\neg A \lor B$ are tautologically equivalent.
- Then → is definable in terms of (or is reducible to or can be expressed in terms of) ¬ and ∨.
- Similarly, ∨ is definable in terms of ¬ and → because A ∨ B is tautologically equivalent to ¬A → B.

Proof.

For any formulas A, B,

$$\neg A \models \neg A$$

$$A \land B \models A \land B$$

$$A \lor B \models A \lor B$$

$$A \to B \models \neg A \lor B$$

$$A \leftrightarrow B \models (A \to B) \land (B \to A).$$

Proof.

For any formulas A, B,

$$\neg A \models \neg A$$

$$A \land B \models A \land B$$

$$A \lor B \models A \lor B$$

$$A \to B \models \neg A \lor B$$

$$A \leftrightarrow B \models (A \to B) \land (B \to A).$$

All the five standard connectives can be expressed in terms of \neg, \wedge, \vee , therefore $\{\neg, \wedge, \vee\}$ is an adequate set of connectives.

Proof.

For any formulas A, B,

$$\neg A \models \neg A$$

$$A \land B \models A \land B$$

$$A \lor B \models A \lor B$$

$$A \to B \models \neg A \lor B$$

$$A \leftrightarrow B \models (A \to B) \land (B \to A).$$

All the five standard connectives can be expressed in terms of \neg, \wedge, \vee , therefore $\{\neg, \wedge, \vee\}$ is an adequate set of connectives.

Corollary $\{\neg, \land\}, \{\neg, \lor\}, \text{ and } \{\neg, \rightarrow\}$ are adequate.

One connective is enough

Schroder showed in 1880 that each of the standard connectives is definable in terms of a single binary connective \downarrow , where the truth table associated with \downarrow is

р	q	$p \downarrow q$	
1	1	0	
1	0	0	
0	1	0	
0	0	1	

We can express \downarrow in terms of the standard connectives by $p \downarrow q \models \neg p \land \neg q$, and also the standard connectives in terms of \downarrow by

We can express \downarrow in terms of the standard connectives by $p\downarrow q\models \neg p \land \neg q$, and also the standard connectives in terms of \downarrow by

$$\neg p \mid p \downarrow p$$

We can express \downarrow in terms of the standard connectives by $p\downarrow q \models \neg p \land \neg q$, and also the standard connectives in terms of \downarrow by

$$\begin{array}{ccc}
 \neg p & \bowtie & p \downarrow p \\
 p \land q & \bowtie & (p \downarrow p) \downarrow (q \downarrow q)
 \end{array}$$

We can express \downarrow in terms of the standard connectives by $p\downarrow q \models \neg p \land \neg q$, and also the standard connectives in terms of \downarrow by

$$\begin{array}{ccc}
\neg p & \models & p \downarrow p \\
p \land q & \models & (p \downarrow p) \downarrow (q \downarrow q) \\
p \lor q & \models & (p \downarrow q) \downarrow (p \downarrow q)
\end{array}$$

We can express \downarrow in terms of the standard connectives by $p \downarrow q \models \neg p \land \neg q$, and also the standard connectives in terms of \downarrow by

We can express \downarrow in terms of the standard connectives by $p \downarrow q \models \neg p \land \neg q$, and also the standard connectives in terms of \downarrow by

$$\begin{array}{cccc}
\neg p & \models & p \downarrow p \\
p \land q & \models & (p \downarrow p) \downarrow (q \downarrow q) \\
p \lor q & \models & (p \downarrow q) \downarrow (p \downarrow q) \\
p \to q & \models & ((p \downarrow p) \downarrow q) \downarrow ((p \downarrow p) \downarrow q) \\
p \leftrightarrow q & \models & ((p \downarrow p) \downarrow q) \downarrow ((q \downarrow p) \downarrow p).
\end{array}$$

Thus it follows that a single connective \downarrow is adequate.

Consequently, to test a given S for being adequate it suffices to test if \downarrow can be expressed by S.

Sheffer stroke

In 1913 Sheffer showed that the Sheffer stroke | with associated truth table

р	q	p q	
1	1	0	
1	0	1	
0	1	1	
0	0	1	

is also a single binary connective in terms of which the standard connectives can be expressed.

How do we show that a given set S of connectives is not adequate?

How do we show that a given set S of connectives is not adequate? Show that some standard connective cannot be expressed by S.

How do we show that a given set S of connectives is not adequate?

Show that some standard connective cannot be expressed by \mathcal{S} .

Example. The set $S = \{ \land \}$ is not adequate.

How do we show that a given set S of connectives is not adequate?

Show that some standard connective cannot be expressed by \mathcal{S} .

Example. The set $S = \{ \land \}$ is not adequate.

Proof. To see this, note that a formula depending on only one variable and which uses only the connective \wedge has the property that its truth value for a value assignment that makes p=0 is always 0.

How do we show that a given set S of connectives is not adequate?

Show that some standard connective cannot be expressed by \mathcal{S} .

Example. The set $S = \{ \land \}$ is not adequate.

Proof. To see this, note that a formula depending on only one variable and which uses only the connective \land has the property that its truth value for a value assignment that makes p=0 is always 0.

In order to define the negation $\neg p$ in terms of \land , there should exist a formula f depending on the variable p and using only the connective \land such that $\neg p \models f$.

How do we show that a given set S of connectives is not adequate?

Show that some standard connective cannot be expressed by \mathcal{S} .

Example. The set $S = \{ \land \}$ is not adequate.

Proof. To see this, note that a formula depending on only one variable and which uses only the connective \land has the property that its truth value for a value assignment that makes p=0 is always 0.

In order to define the negation $\neg p$ in terms of \land , there should exist a formula f depending on the variable p and using only the connective \land such that $\neg p \models f$.

However, for a value assignment v such that $v(\neg p)=1$, we have v(p)=0 and therefore v(f)=0, which shows that $\neg p$ and f cannot be tautologically equivalent.

A ternary connective

Let us use the symbol τ for the ternary connective whose truth table is given by

р	q	r	τ
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	0

A ternary connective

It is easy to see that for any value assignment v we have

$$v(\tau(p,q,r)) = v(q)$$
 if $v(p) = 1$ and $v(r)$ if $v(p) = 0$.

A ternary connective

It is easy to see that for any value assignment v we have

$$v(\tau(p,q,r)) = v(q)$$
 if $v(p) = 1$ and $v(r)$ if $v(p) = 0$.

This is the familiar if-then-else connective from computer science, namely

if p then q else r

Comments

We can consider now propositional logic based not upon the five common connectives, but upon any adequate set of connectives, for instance $\{\neg, \land\}$.

Let \mathcal{L}_0^p be a sublanguage of \mathcal{L}^p obtained by deleting from \mathcal{L}^p the three connectives $\vee, \rightarrow, \leftrightarrow$, and let $\mathsf{Form}(\mathcal{L}_0^p)$ be the set of formulas of \mathcal{L}_0^p .

Theorem. $Form(\mathcal{L}_0^p) = Form(\mathcal{L}^p)$.

Proof

Proof.

Obviously, $Form(\mathcal{L}_0^p) \subset Form(\mathcal{L}^p)$. Conversely, for $A \in \text{Form}(\mathcal{L}^p)$ we define (by recursion) its translation A_0 into \mathcal{L}_0^p as follows: $A_0 = A$ for atomic variable A. $(\neg A)_0 = \neg A_0$ $(A \wedge B)_0 = A_0 \wedge B_0$ $(A \vee B)_0 = \neg(\neg A_0 \wedge \neg B_0),$ $(A \rightarrow B)_0 = \neg (A_0 \land \neg B_0),$ $(A \leftrightarrow B)_0 = (A \rightarrow B)_0 \land (B \rightarrow A)_0 =$ $= \neg (A_0 \wedge \neg B_0) \wedge \neg (\neg A_0 \wedge B_0)$