COSC221 Assignment 3

Rin Meng Student ID: 51940633

March 26, 2024

Part A) *Proof.* By induction on $n \in \mathbb{Z}^+$. Remark: \mathbb{Z}^+ is the set of all positive integers; $\mathbb{Z}^+ = \{1, 2, \ldots\}$.

Base Case: n=1

 $S(1) = 1 \times 1$ chessboard, so there exists one cell only on that chessboard, which makes it the top-left and the bottom-left cell, where the rook starts and ends at the same cell. Hence, there exists the rook's tour.

Inductive Hypothesis: If our constructed S(n) holds, then there exists some $n \in \mathbb{Z}^+$ such that it satisfies S(n+1) as well.

Inductive Step: $n \to n+1$

 $S(n+1) = (n+1) \times (n+1)$ chessboard. By the given information on page 234 for rook's tour and rook's move, we let $(r, c, x) \in \mathbb{Z}$, then it is true that rook can start at $\langle r, c \rangle$. Then for $n \times n$ chessboard to $(n+1) \times (n+1)$ chessboard, there are two possible movement,

Vertical movement $\Rightarrow \langle r, c \pm x \rangle \rightarrow \langle r, n+1 \rangle$, so this means that $c \pm x = n+1 \Leftrightarrow c = n+1 \pm x$, where $(n+1 \pm x) \in \mathbb{Z}^+$

Horizontal movement $\Rightarrow \langle r \pm x, c \rangle \rightarrow \langle n+1, c \rangle$, so this also means that $r \pm x = n+1 \Leftrightarrow r = n+1 \pm x$, where $(n+1 \pm x) \in \mathbb{Z}^+$

Remark: As shown above, we now know that our movement for both vertical and horizontal are both within the bounds of \mathbb{Z}^+ , because whatever x is, min(r) = n and min(c) = n, and we already know that $n \in \mathbb{Z}^+$. Let us also remind ourselves that $\langle 1, 1 \rangle \Rightarrow$ top-left, $\langle n+1, 1 \rangle \Rightarrow$ top-right, $\langle 1, n+1 \rangle \Rightarrow$ bottom-left and, $\langle n+1, n+1 \rangle \Rightarrow$ bottom-right.

Now to traverse through the board, there are two possible cases:

Case 1: $(n+1) \times (n+1)$ chessboard where $(n+1) \in \mathbb{Z}_{even}$

Then if we let rook start at $\langle 1, 1 \rangle$, we follow a horizontal "zig-zag" pattern below:

$$(1,1) \rightarrow (2,1) \rightarrow \ldots \rightarrow (n,1) \rightarrow \underbrace{(n+1,1)}_{}$$

$$\underbrace{(1,2)}_{\downarrow} \leftarrow (2,2) \leftarrow \ldots \leftarrow (n,2) \leftarrow (n+1,2)$$

$$(1,3) \rightarrow (2,3) \rightarrow \ldots \rightarrow (n,3) \rightarrow \underbrace{(n+1,3)}_{\downarrow}$$
:

$$(1, n+1) \leftarrow (2, n+1) \leftarrow \ldots \leftarrow (n+1, n+1)$$

By this visual, we can clearly see that the rook arrives at the left side every time $c \in \mathbb{Z}_{\text{even}}$, so it is entirely possible that the rook can end up on the bottom-left side, because $c = (n+1) \in \mathbb{Z}_{\text{even}}^+$.

Case 2: $(n+1) \times (n+1)$ chessboard where $(n+1) \in \mathbb{Z}_{\text{odd}}^+$

Then if we let rook start at $\langle 1, 1 \rangle$, we follow a vertical "zig-zag" pattern below:

$$\underbrace{(1,1)}_{\downarrow} \qquad (2,1) \to \underbrace{(\dots)}_{\downarrow} \qquad (n,1) \to \underbrace{(n+1,1)}_{\downarrow}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad (n,\vdots) \qquad \underbrace{(n+1,2)}_{\downarrow}$$

$$(1,n) \to \underbrace{(2,n)}_{\downarrow} \qquad (\dots) \to \underbrace{(n,n)}_{\downarrow} \qquad \underbrace{(n+1,n)}_{\downarrow}$$

$$(1, n+1) \leftarrow (2, n+1) \leftarrow \ldots \leftarrow (n+1, n+1)$$

By this visual, we can clearly see that whenever $r \in \mathbb{Z}_{\text{odd}}$, it will be making a downwards movement, so since $(n+1) \in \mathbb{Z}_{\text{odd}}^+$, we know that

 $n \in \mathbb{Z}_{\mathrm{even}}^+$, that means that it will be making an upwards movement so that it can turn right towards (n+1,1) where it can start moving down again. Note that we have never really visited c=n+1 for these traversal, so let it be known that, after reaching (n+1,n+1), it can go directly to (1,n+1), where the rook will be at the bottom-left of the chessboard.

 \therefore It must be true that the rook's tour exists for an $n \times n$ chessboard, for some $n \in \mathbb{Z}^+$.

for some $n \in \mathbb{Z}^+$.

Part B) 11.36 We know that in a simple graph,

$$directed \Rightarrow density = \frac{|E|}{\frac{n(n-1)}{2}} = \frac{2|E|}{n(n-1)}$$

$$undirected \Rightarrow density = \frac{|E|}{n(n-1)}$$

As a function of n the density of an n-node path means, $|E| \Rightarrow (n-1)$, where n is vertices, so we have,

$$f(n) = \frac{2(n-1)}{n(n-1)} = \frac{2}{n}$$

11.37 As a function of n the density of an n-node cycle means, $|E| \Rightarrow n$, where n is vertices, so we have,

$$f(n) = \frac{2n}{n(n-1)} = \frac{2}{n-1}$$

11.38 As a function of n the density of a graph that consists of $\frac{n}{3}$ disconnected triangles, $|E| \Rightarrow n$, where n is vertices, so we have,

$$f(n) = \frac{2n}{n(n-1)} = \frac{2}{n-1}$$

which is essentially the same as a cycle.

- Part C) Remark: Let it be known that clique 1, clique 2 and clique 3 represents the "clusters" of nodes from left to right respectively in Figure 11.33d
 - 11.54 We can see that each "clusters" or cliques represents its own movie, then there must be at least, 3 movies, but it is also shown that there is two curves on the top of the graph, where the actor from the clique 3, knows actor from clique 1 and clique 2. which means that there must exists at least another 2 movies. Therefore, there must exists, at the minimum, five movies that could be generated by this collaboration network.
 - 11.55 No, it is uncertain. It is entirely possible that there are more than 5 movies generated in this graph because each cliques can have its own subset, where the actors are in another movie different than the minimum 5 movies.

Part D) **11.95**

Proof. By counterexample, assume G is a bipartite graph where,

$$G = \langle L \cup R, E \rangle$$

and where, |L| = |R|, so we can take, $L = \{1, 2\}$ and $R = \{3, 4\}$ and since all nodes from L and R has at least one neighbours, we can construct G such that $E = \{\{1, 3\}, \{2, 4\}\}$, visually:

and we can see that the graph we made, G, consists of two disjoint sets which is absurd, because the original statement say that it is connected.

 \therefore It is disproved that if $G = \langle L \cup R, E \rangle$ where G is a bipartite graph with |L| = |R|, then it is impossible for G to be a connected graph, if there is at minimum, one neighbour for every node in L and R.

End of Assignment 3.