```
In [44]:
```

```
import pandas as pd
import numpy as np
```

In [45]:

```
# Step1: Read the train.csv and test.csv data
df_test = pd.read_csv('test.csv')
df_train=pd.read_csv("train.csv")
```

In [46]:

```
df_train.shape
```

Out[46]:

(4209, 378)

In [47]:

```
df_test.shape
```

Out[47]:

(4209, 377)

In [48]:

df_train

Out[48]:

	ID	у	X0	X1	X2	Х3	X4	X5	X6	X8	 X375	X376	X377	X378	X379)
0	0	130.81	k	٧	at	а	d	u	j	0	 0	0	1	0	0	
1	6	88.53	k	t	av	е	d	у	I	0	 1	0	0	0	0	
2	7	76.26	az	w	n	С	d	х	j	х	 0	0	0	0	0	
3	9	80.62	az	t	n	f	d	x	ı	е	 0	0	0	0	0	
4	13	78.02	az	٧	n	f	d	h	d	n	 0	0	0	0	0	
4204	8405	107.39	ak	s	as	С	d	aa	d	q	 1	0	0	0	0	
4205	8406	108.77	j	0	t	d	d	aa	h	h	 0	1	0	0	0	
4206	8412	109.22	ak	٧	r	а	d	aa	g	е	 0	0	1	0	0	
4207	8415	87.48	al	r	е	f	d	aa	- 1	u	 0	0	0	0	0	
4208	8417	110.85	z	r	ae	С	d	aa	g	w	 1	0	0	0	0	

4209 rows × 378 columns

In [49]:

df_test

Out[49]:

	ID	X0	X1	X2	Х3	X4	X5	X6	X8	X10	 X375	X376	X377	X378	X379	X38
0	1	az	٧	n	f	d	t	а	w	0	 0	0	0	1	0	
1	2	t	b	ai	а	d	b	g	У	0	 0	0	1	0	0	
2	3	az	٧	as	f	d	а	j	j	0	 0	0	0	1	0	
3	4	az	I	n	f	d	z	I	n	0	 0	0	0	1	0	
4	5	w	s	as	С	d	у	i	m	0	 1	0	0	0	0	
4204	8410	aj	h	as	f	d	aa	j	е	0	 0	0	0	0	0	
4205	8411	t	aa	ai	d	d	aa	j	у	0	 0	1	0	0	0	
4206	8413	у	٧	as	f	d	aa	d	w	0	 0	0	0	0	0	
4207	8414	ak	٧	as	а	d	aa	С	q	0	 0	0	1	0	0	
4208	8416	t	aa	ai	С	d	aa	g	r	0	 1	0	0	0	0	

4209 rows × 377 columns

In [50]:

df_train.describe()

Out[50]:

	ID	у	X10	X11	X12	X13	X14
count	4209.000000	4209.000000	4209.000000	4209.0	4209.000000	4209.000000	4209.000000
mean	4205.960798	100.669318	0.013305	0.0	0.075077	0.057971	0.428130
std	2437.608688	12.679381	0.114590	0.0	0.263547	0.233716	0.494867
min	0.000000	72.110000	0.000000	0.0	0.000000	0.000000	0.000000
25%	2095.000000	90.820000	0.000000	0.0	0.000000	0.000000	0.000000
50%	4220.000000	99.150000	0.000000	0.0	0.000000	0.000000	0.000000
75%	6314.000000	109.010000	0.000000	0.0	0.000000	0.000000	1.000000
max	8417.000000	265.320000	1.000000	0.0	1.000000	1.000000	1.000000

8 rows × 370 columns

→

In [51]:

```
#extract useful columns for training by removing ID and Y columns
x_train=df_train.iloc[:,2:]
x_test=df_test.iloc[:,1:]
# extract the target column Y
y_train=df_train['y'].values
```

In [52]:

```
x_test
```

Out[52]:

	X0	X1	X2	Х3	X4	X5	X6	X8	X10	X11	 X375	X376	X377	X378	X379	X380
0	az	٧	n	f	d	t	а	w	0	0	 0	0	0	1	0	(
1	t	b	ai	а	d	b	g	у	0	0	 0	0	1	0	0	(
2	az	٧	as	f	d	а	j	j	0	0	 0	0	0	1	0	(
3	az	I	n	f	d	z	I	n	0	0	 0	0	0	1	0	(
4	w	s	as	С	d	У	i	m	0	0	 1	0	0	0	0	(
4204	aj	h	as	f	d	aa	j	е	0	0	 0	0	0	0	0	(
4205	t	aa	ai	d	d	aa	j	у	0	0	 0	1	0	0	0	(
4206	у	٧	as	f	d	aa	d	w	0	0	 0	0	0	0	0	(
4207	ak	٧	as	а	d	aa	С	q	0	0	 0	0	1	0	0	(
4208	t	aa	ai	С	d	aa	g	r	0	0	 1	0	0	0	0	(

4209 rows × 376 columns

→

In [53]:

```
#Check for null in the test and train sets.
x_train.isna().any()
```

Out[53]:

```
X0
        False
X1
        False
Χ2
        False
Х3
        False
Х4
        False
        . . .
X380
        False
X382
        False
X383
        False
X384
        False
X385
        False
Length: 376, dtype: bool
```

In [54]:

```
x_test.isna().any()
```

Out[54]:

```
Χ0
        False
Х1
        False
X2
        False
Х3
        False
Х4
        False
X380
        False
        False
X382
X383
        False
X384
        False
        False
X385
Length: 376, dtype: bool
```

In [55]:

```
#Check for unique values for test and train sets and drop them.
for col in x_train.columns:
    car=len(np.unique(x_train[col]))
    if car==1:
        print(col)
        x_train.drop(col, axis=1,inplace=True)
        x_test.drop(col, axis=1, inplace=True)
```

X11 X93

X107

X233

X235

X268

X289

X290

X293

X297

X330

X347

In [56]:

x_train

Out[56]:

	X0	X1	X2	Х3	X4	X5	X6	X8	X10	X12	 X375	X376	X377	X378	X379	X38(
0	k	٧	at	а	d	u	j	0	0	0	 0	0	1	0	0	(
1	k	t	av	е	d	у	- 1	0	0	0	 1	0	0	0	0	(
2	az	w	n	С	d	x	j	x	0	0	 0	0	0	0	0	(
3	az	t	n	f	d	x	- 1	е	0	0	 0	0	0	0	0	(
4	az	٧	n	f	d	h	d	n	0	0	 0	0	0	0	0	(
4204	ak	s	as	С	d	aa	d	q	0	0	 1	0	0	0	0	(
4205	j	0	t	d	d	aa	h	h	0	0	 0	1	0	0	0	(
4206	ak	٧	r	а	d	aa	g	е	0	1	 0	0	1	0	0	(
4207	al	r	е	f	d	aa	1	u	0	0	 0	0	0	0	0	(
4208	z	r	ae	С	d	aa	g	w	0	0	 1	0	0	0	0	(

4209 rows × 364 columns

→

In [57]:

```
# Import label encoder
from sklearn import preprocessing
# label_encoder object knows how to understand word labels.
label_encoder = preprocessing.LabelEncoder()

for col in x_train.columns:
    typ = df_train[col].dtype
    if typ == 'object':
        # Encode labels in column 'species'.
        x_train[col]= label_encoder.fit_transform(x_train[col])
        x_test[col]= label_encoder.fit_transform(x_test[col])
```

In [58]:

x_train

Out[58]:

	X0	X1	X2	Х3	X4	X5	X6	X8	X10	X12	 X375	X376	X377	X378	X379	X380
0	32	23	17	0	3	24	9	14	0	0	 0	0	1	0	0	(
1	32	21	19	4	3	28	11	14	0	0	 1	0	0	0	0	(
2	20	24	34	2	3	27	9	23	0	0	 0	0	0	0	0	(
3	20	21	34	5	3	27	11	4	0	0	 0	0	0	0	0	(
4	20	23	34	5	3	12	3	13	0	0	 0	0	0	0	0	(
4204	8	20	16	2	3	0	3	16	0	0	 1	0	0	0	0	(
4205	31	16	40	3	3	0	7	7	0	0	 0	1	0	0	0	(
4206	8	23	38	0	3	0	6	4	0	1	 0	0	1	0	0	(
4207	9	19	25	5	3	0	11	20	0	0	 0	0	0	0	0	(
4208	46	19	3	2	3	0	6	22	0	0	 1	0	0	0	0	(

4209 rows × 364 columns

→

In [59]:

x_train.describe()

Out[59]:

	X0	X1	X2	Х3	X4	X5	
count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000	4209.0
mean	29.760751	11.113566	17.306486	2.919696	2.997862	13.340223	6.8
std	13.738338	8.531001	10.899914	1.739912	0.073900	8.250832	2.9
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0
25%	19.000000	3.000000	8.000000	2.000000	3.000000	5.000000	6.0
50%	35.000000	13.000000	16.000000	2.000000	3.000000	15.000000	7.0
75%	43.000000	20.000000	25.000000	5.000000	3.000000	21.000000	9.0
max	46.000000	26.000000	43.000000	6.000000	3.000000	28.000000	11.0

8 rows × 364 columns

→

In [60]:

x_test.shape

Out[60]:

(4209, 364)

In [61]:

 x_test

Out[61]:

	X0	X1	X2	Х3	X4	X5	X6	X8	X10	X12	 X375	X376	X377	X378	X379	X38(
0	21	23	34	5	3	26	0	22	0	0	 0	0	0	1	0	(
1	42	3	8	0	3	9	6	24	0	0	 0	0	1	0	0	(
2	21	23	17	5	3	0	9	9	0	0	 0	0	0	1	0	(
3	21	13	34	5	3	31	11	13	0	0	 0	0	0	1	0	(
4	45	20	17	2	3	30	8	12	0	0	 1	0	0	0	0	(
4204	6	9	17	5	3	1	9	4	0	0	 0	0	0	0	0	(
4205	42	1	8	3	3	1	9	24	0	0	 0	1	0	0	0	(
4206	47	23	17	5	3	1	3	22	0	0	 0	0	0	0	0	(
4207	7	23	17	0	3	1	2	16	0	0	 0	0	1	0	0	(
4208	42	1	8	2	3	1	6	17	0	0	 1	0	0	0	0	(

4209 rows × 364 columns

◀

In [62]:

```
#Perform dimensionality reduction.
from sklearn.decomposition import PCA

sklearn_pca = PCA(n_components=0.95, random_state=420)
sklearn_pca.fit(x_train)
```

Out[62]:

PCA(copy=True, iterated_power='auto', n_components=0.95, random_state=420, svd_solver='auto', tol=0.0, whiten=False)

In [63]:

x_train_transformed=sklearn_pca.transform(x_train)

In [64]:

```
print(x_train_transformed.shape)
```

(4209, 6)

```
In [65]:
```

```
print(x_test.shape)
```

(4209, 364)

In [66]:

```
x_test_transformed=sklearn_pca.transform(x_test)
```

In [67]:

```
print(x_test_transformed.shape)
```

(4209, 6)

In [68]:

```
print(x_test_transformed)
0.3815911
                                                  10.74927236
   6.77829903]
[-16.4185227]
              -6.08780452 -5.81810847
                                      -0.64384353 11.84673987
   0.97206332]
[ 11.31088967 -2.24098735 -5.68320971 15.24959691 -2.7772942
  -2.55753002]
[-13.46766391
               3.52415451 -0.38763446
                                      20.58670915
                                                   9.05195372
   3.60970753]
[ 24.08692488 -6.5122012
                          -6.38950949
                                      12.2127527
                                                   4.55765907
   4.37652389]
[-16.55794181 -5.49565202 -13.7038912
                                       2.25695886
                                                   5.14286793
   1.17658806]]
```

In [69]:

```
from xgboost import XGBRegressor
```

In [70]:

```
# train model using XGBoost
model = XGBRegressor(objective='reg:squarederror', n_estimators=1000)
model.fit(x_train_transformed, y_train)
```

Out[70]:

In [71]:

```
y_pred=model.predict(x_train_transformed)
```

In [72]:

```
from sklearn.metrics import r2_score, mean_squared_error
from math import sqrt
print(sqrt(mean_squared_error(y_train, y_pred)))
```

2.144388503310576

In [73]:

```
#Predict your test_df values using XGBoost
y_test_pred=model.predict(x_test_transformed)
```

In [74]:

```
y_test_pred
```

Out[74]:

```
array([ 81.000244, 97.20449 , 84.81835 , ..., 103.20449 , 108.65345 , 102.384254], dtype=float32)
```