Théorème 10.11 - dérivée d'une composée par une application linéaire

Soit E, F deux \mathbb{R} -espaces vectoriels normés de dimension finie, u une application linéaire de E dans F, et f une fonction de classe C^1 définie sur un intervalle I de \mathbb{R} à valeurs dans E. Alors $u \circ f$ est une fonction de classe $C^1(I,F)$ et :

$$(u \circ f)' = u \circ f'$$

Théorème 10.12 - dérivée d'une composée par une application bilinéaire

Soit E, F et G trois espaces vectoriels normés de dimension finie, B une application bilinéaire de $E \times F$ vers G, et f et g deux fonctions de classe C^1 sur un intervalle I de \mathbb{R} à valeurs respectives dans E et F. Alors B(f,g) est une fonction de classe $C^1(I,G)$, et :

$$\left(B(f,g)\right)' = B(f',g) + B(f,g')$$

Théorème 10.29 - construction de l'intégrale d'une fonction continue par morceaux

Soit E un espace vectoriel normé de dimension finie, $f \in \mathcal{CM}([a\,;\,b],E)$. Si $(\varphi_n)_{n\in\mathbb{N}}$ est une suite de fonctions en escalier convergeant uniformément vers f, alors la suite $\left(\int_{[a\,;\,b]}\varphi_n\right)_{n\in\mathbb{N}}$ est convergente.

Définition 10.30 - intégrale d'une fonction continue par morceaux

Soit E un espace vectoriel normé de dimension finie, $f \in \mathcal{CM}([a;b],E)$. Il existe par densité de $\mathcal{E}([a;b],E)$ dans $\mathcal{CM}([a;b],E)$ une suite $(\varphi_n)_{n\in\mathbb{N}}$ de fonctions de $\mathcal{E}([a;b])$ convergeant uniformément vers f. On appelle intégrale de f sur [a;b] le vecteur :

$$\int_{[a\,;\,b]} f = \lim_{n \to +\infty} \int_{[a\,;\,b]} \varphi_n$$

Cette intégrale ne dépend pas de la suite de $\mathcal{E}([a;b])^{\mathbb{N}}$ choisie.

Théorème 10.35 - fondamental du calcul intégral

Soit f une fonction continue sur un intervalle I, à valeurs dans un espace vectoriel E de dimension finie. Pour tout $a \in I$, l'application :

$$F: I \longrightarrow \mathbb{R}$$
$$x \longmapsto \int_a^x f(t) \, \mathrm{d}t$$

est l'unique primitive de f (sa dérivée est f) s'annulant en a. F est donc de classe C^1 .

Théorème 10.39 - changement de variable

Soit $f:[a;b]\to E$ continue et φ un \mathcal{C}^1 -difféomorphisme de [a;b] sur $[\varphi(a);\varphi(b)]$.

$$\int_{\varphi(a)}^{\varphi(b)} f(x) \, \mathrm{d}x = \int_a^b f(\varphi(t)) \varphi'(t) \, \mathrm{d}t$$

Théorème 10.42 - intégration d'un o

Soit I un intervalle et E de dimension finie. Soit $f:I\to E$ de classe \mathcal{C}^1 et $g:I\to\mathbb{R}$ de classe \mathcal{C}^1 avec $g'\geq 0$. Supposons pour $a\in I$ que f'=o(g'). Alors :

$$||f(x) - f(a)||_E = o\left(|g(x) - g(a)|\right)$$

Théorème 10.47 - formule de Taylor avec reste intégral

Soit $f \in \mathcal{D}^{n+1}(I,E)$ telle que $f^{(n+1)}$ est continue par morceaux sur l'intervalle I. Pour $a \in I$:

$$\forall x \in I, f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + \int_{a}^{x} \frac{f^{(n+1)}(t)}{n!} (x-t)^{n} dt$$

Théorème 10.48 - inégalité de Taylor-Lagrange

Soit $f \in \mathcal{D}^{n+1}(I, E)$ telle que $f^{(n+1)}$ est continue par morceaux sur l'intervalle I. Soit $[a; b] \subset I$ et M un majorant de $||f^{(n+1)}||_E$ sur [a; b]. Alors :

$$\left\| f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} \right\|_{E} \le M \left| \frac{(b-a)^{n+1}}{(n+1)!} \right|$$

Théorème 10.57 - échange limite-intégrale

Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{C}([a\,;\,b],E)^{\mathbb{N}}$ convergeant uniformément vers f sur $[a\,;\,b]$. Alors :

$$\lim_{n \to +\infty} \int_{[a;b]} f_n = \int_{[a;b]} \lim_{n \to +\infty} f_n$$

Théorème 10.62 - de convergence dominée pour une suite de fonctions

Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{F}([a\,;\,b],\mathbb{K})^{\mathbb{N}}$. Sous réserve des hypothèses suivantes,

- 1. $\forall n \in \mathbb{N}, f_n \in \mathcal{CM}([a;b],\mathbb{K}).$
- **2.** $(f_n)_{n\in\mathbb{N}}$ converge simplement sur [a;b] et sa limite y est continue par morceaux.
- **3.** hypothèse de domination : il existe $\varphi \in \mathcal{CM}([a\,;\,b],\mathbb{R}_+)$ telle que pour tout $n \in \mathbb{N}, |f_n| \leq \varphi$ on peut échanger les symboles "lim" et " \int " :

$$\lim_{n \to +\infty} \int_{[a\,;\,b]} f_n = \int_{[a\,;\,b]} \lim_{n \to +\infty} f_n$$

Théorème 10.62 - de convergence dominée pour une série de fonctions

Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{F}([a\,;\,b],\mathbb{K})^{\mathbb{N}}$. Sous réserve des hypothèses suivantes,

- 1. $\forall n \in \mathbb{N}, f_n \in \mathcal{CM}([a;b], \mathbb{K}).$
- **2.** $(f_n)_{n\in\mathbb{N}}$ converge simplement sur [a;b] et sa somme y est continue par morceaux.
- **3.** la série $\sum_n \int_a^b |f_n(t)| dt$ converge on peut échanger les symboles " \sum " et " \int ":

$$\sum_{n=0}^{+\infty} \int_{[a\,;\,b]} f_n = \int_{[a\,;\,b]} \sum_{n=0}^{+\infty} f_n$$

Théorème 10.66 - primitivation d'une limite uniforme de suite de fonctions

Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{F}(I,E)^{\mathbb{N}}$. Sous réserve des hypothèses suivantes,

- 1. $\forall n \in \mathbb{N}, f_n \in \mathcal{C}^0(I, E)$.
- **2.** $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers une même fonction f sur tout segment inclus dans I.

Pour tout $a \in I$, sur tout segment de I, la suite $(F_n)_{n \in \mathbb{N}}$ des primitives des f_n respectives s'annulant en a converge uniformément vers la primitive de f s'annulant en a.

Théorème 10.66 - dérivation d'une limite uniforme de suite de fonctions

Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{F}(I,E)^{\mathbb{N}}$. Sous réserve des hypothèses suivantes,

- 1. $\forall n \in \mathbb{N}, f_n \in \mathcal{C}^1(I, E).$
- **2.** $(f_n)_{n\in\mathbb{N}}$ converge simplement vers une fonction $f\in\mathcal{CM}(I,E)$
- 3. $(f'_n)_{n\in\mathbb{N}}$ converge uniformément vers une même fonction g sur tout segment inclus dans I.

la fonction f est de classe $C^1(I, E)$ et f' = g.

Théorème 10.73 - dérivation k fois d'une limite uniforme de suite de fonctions

Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{F}(I,E)^{\mathbb{N}}$. Sous réserve des hypothèses suivantes,

- 1. $\forall n \in \mathbb{N}, f_n \in \mathcal{C}^k(I, E).$
- **2.** pour tout $i \in [0, k-1]$, la suite $(f_n^{(i)})_{n \in \mathbb{N}}$ converge simplement vers une fonction $f_i \in \mathcal{CM}(I, E)$
- **3.** $(f_n^{(k)})_{n\in\mathbb{N}}$ converge uniformément vers une même fonction g sur tout segment inclus dans I.

la fonction f est de classe $C^k(I, E)$ et $f^{(k)} = g$.