Neural Networks and Backpropagation

Alipio Jorge (DCC-FCUP)

November 2020

What is a Neural Network?

- When our aim is to learn a classification or a regression model
 - we want a **function** \hat{f} that approximates the unknown function
- **How** do we define this function?
 - A linear function
 - By analogy of similar cases
 - By maximizing estimated probabilities
 - Using a decision tree (or a regression tree)
 - etc.

What is a Neural Network?

- A Neural Network is another way of defining functions
 - can be graphically described
 - but it always corresponds to a mathematical function
- Neural Networks are flexible and powerful
 - but not for all types of data

What is a Neural Network?

- Many types of networks and NN components
 - the Perceptron
 - the Multi-layer Perceptron
 - the Feed-Forward Network
 - Convolutional Neural Networks
 - Recurrent Neural Networks
 - LSTM, BiLSTM, GRU, GAN, ...
 - and multiple combinations of the above

The Perceptron

- A perceptron is the simplest and most fundamental NN unit
 inspired in biological neurons
- It can define simple functions

Figure 1: Binary Perceptron

The Perceptron

Mathematically

$$\hat{y} = step(w_0 + \sum_{i=1}^k w_i.x_i)$$

• the step function gives a binary output depending on threshold

$$step(x) = \begin{cases} 0 & x < \theta \\ 1 & x \ge \theta \end{cases}$$

The Perceptron

- The step is an **activation function**
 - decides if the neuron fires or not
- The **sigmoid** is another activation function
 - very popular
 - good mathematical properties (to see later)

Figure 2: from wikipedia

Activation function sigmoid

- The perceptron becomes a numerical function
 - that can be used for classification

$$\hat{y} = sigmoid(w_0 + \sum_{i=1}^k w_i.x_i)$$

sigmoid is defined as

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

- Side by side preceptrons
 - multivalued functions (non-binary classification)
- Adding a hidden layer
 - fully connected: each node linked to all nodes in nearby layers
 - more expressive functions
 - abstraction layers
- bias weights (intercepts)

- Mathematically
 - although commonly represented as a graph, a NN is a mathematically defined function
 - A two layer example: calculate hidden layer

$$h_j = activ(w_0 + \sum_{i=1}^m w_{ij}^{\mathsf{x}}.x_i)$$

hidden layer

$$h_j = activ(w_{0j}^h + \sum_{i=1}^m w_{ij}^h.x_i) \quad j \in \{1, \dots, m_{hidden}\}$$

output layer

$$o_j = activ(w^o_{0j} + \sum_{i=1}^{m_h} w^o_{ij}.h_i) \quad j \in \{1, \dots, m_{out}\}$$

- classical ANN (Artificial Neural Networks) are MLP
 - Example with irisdata set
 - 4 predictors
 - 3 classees
 - We define previously the **topology** of the network
 - how many layers, how many nodes
 - The learning task is to find the best values for the weights
 - we say learning the weights
 - parameter fitting
 - training the network

```
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
X train, X test, y train, y test =
  train test split(X, y, stratify=y,random state=1)
clf = MLPClassifier(random state=1,
                    hidden layer sizes=(8,),
                    max iter=500,
                    activation='logistic'
                   ).fit(X_train, y_train)
```

- The MLP in this example
- Nodes or units
 - 4 input
 - 8 hidden
 - 3 output
- Weights (including bias weights)
 - 58 + 93
- Activation function
 - sigmoid (logistic)
- Class is given by the highest output (of the three)

Feedforward networks

- MLP are feedforward networks
 - they can have many hidden layers
- Prediction is done from left to right
 - **start** with the example $x = x_1, ..., x_m$
 - assign the values to the input nodes
 - calculate the values of the hidden nodes of the next layer
 - iterate layer by layer until output
 - the prediction is in the output layer

Defining the topology: output

Binary classification

- 1 output node with threshold
- 2 output nodes, choose maximum output

k class classification

- k output nodes, choose maximum
- we can also produce a distribution using softmax

regression

1 output node, numerical value

Defining the topology: input

- Number of input units
 - One per numerical attribute
 - One per binary attribute
 - K-valued attribute
 - One per value (one hot encoding)

Defining the topology: layers

Number of layers

- domain dependent
- as few as possible (simplicity first)
- each layer adds
 - abstractive power (good)
 - overfitting risk (bad)
 - computational effort (bad)

Heuristic

- keep adding layers until learning stops improving
- and while your resources allow
- use cross-validation on the validation set
 - not on the test set

Defining the topology

- Number of units in hidden layers
 - no clear rules
- Some ideas
 - Low level input vars
 - decrease number of hidden nodes
 - High level input vars
 - increase number of hidden vars
 - Small data
 - low number of layers and units
- Trial and error
 - CV, ...
- Heuristic search, Genetic Algorithms, . . .
- Meta learning
 - Learning how to learn

Learning

- How do we train a MLP?
 - algorithm **Backpropagation** (BP)
- BP:
 - given:
 - a set of examples
 - a network topology
 - finds
 - the "best" values for the weights (parameters)

Learning: Backpropagation

- What is the BP algorithm?
 - the aim is to reduce prediction error
 - Init: start the MLP with random weights
 - initial state of the NN
 - Iterate: update weights optimally according to observed errors
 - until convergence or maximum iterations

Learning: Backpropagation

- Backprogation
 - is an optimization algorithm
 - is derived mathematically from first principles

The state space (as many dimensions as parameters)

Backpropagation: in detail

- **Input**: D, topology, learning rate η
- Output: weights (trained model)
- Do
 - for each $x \in D$
 - calculate the outputs ô using feedforward
 - calculate the derivative of error $err = derror(o, \hat{o})$ wrt weights
 - backpropagate derror from output to the first hidden layer
 - update the weights
 - until stopping condition is met (each iteration is an epoch)

Error calculation and propagation

- Output derror units calculated from output values and true values
 - assuming sigmoid activation, using the derivative of logistic

$$DErr_j = O_j(1 - O_j)(T_j - O_j)$$

- Example 9.1 (from Han et al.)
 - $x = (1, 0, 1), o_6 = 0.474, T = 1,$
 - DErr = (0.474)(1 0.474)(1 0.474) = 0.1311

Error calculation and propagation

Hidden layer derror units calculated from next layer k error

$$DErr_j = o_j(1 - o_j) \sum_k DErr_k w_{jk}$$

- Error of unit 4
 - $o_4 = 0.332$, $DErr_6 = 0.1311$, $w_{46} = -0.3$
 - $DErr_4 = 0.332(1 0.332)(0.1311)(-0.3) = -0.0087$

Updating weights

Using error in firing unit

$$\Delta w_{ij} = \eta.DErr_j.o_i, \qquad w_{ij} = w_{ij} + \Delta w_{ij}$$

- $\eta = 0.9$, $DErr_4 = -0.0087$, (old) $w_{14} = 0.2$, $o_1 = x_1 = 1$
- $\Delta w_{ij} = (0.9)(-0.0087)(1) = -0.00783$
- $w_{14} = 0.2 + (-0.00783) = 0.19217$

Foundations of backpropagation

- Learning as optimization
 - objective is to minimize error or loss

$$\min_{w} L(y, \hat{y}) = \sum_{i=1}^{n} (y - \hat{y})^{2}$$

- We can define appropriate loss functions depending on the problem
- Solution is found by deriving E wrt parameters
 - no analytical solution for ANN (c.f. linear regression)

Stopping criteria

- The increments Δ_{ij} are too small
- Error is low enough
- Maximum number of iterations

Foundations of backpropagation

- We use an iterative approach based on gradient descent
 - steepest descent (descida mais rápida)
- backpropagation uses gradient descent
 - start from initial weights (random)
 - move in the space of solutions as indicated by the gradient
 - ullet learning rate η is the size of the step

Limitations

- Local minima
 - BP is an eager algorithm
 - it may miss the global optimum
- Different scales of attributes
 - make learning take longer
 - usually we **normalize** input attributes

Limitations

- Random start
 - initial weights are random
 - usually Gaussian with mean zero
 - a constant would give the same initial output to all cases
- Variability
 - random start may lead to different solutions (local minima)
 - good idea to repeat with different initializations (no fixed seed)

Efficiency

- ullet Given N cases and W weights
- Each **epoch** takes O(N.W) operations
- The number of epochs depends on the data
 - easy problem converges quickly
- and on the number of weights
 - complex networks take longer to converge
 - limiting the number of iterations may be practical

Optimizers

- Backpropagation is the classical ANN optimizer
 - but there are many others
 - Adam is a popular one with Deep Learning
 - the most popular use gradient descent

Explainability

- ANN are opaque models
- We can read:
 - the coefficients of linear regression
 - the rules in a decision tree
 - the probabilities in Naive Bayes
- But the weights of a MLP are
 - not directly interpretable (no easy meaning)
 - combined to obtain an answer
- There are techniques for obtaining explanations from ANN models
 - hot topic
 - XAI: Explainable AI

References

- Books
 - Han, Kamber & Pei, Data Mining Concepts and Techniques, Morgan Kaufman.
- Wikipedia
 - Backpropagation, https://en.wikipedia.org/wiki/Backpropagation