

План

Исследование социальных сетей Основные понятия теории графов Понятие сложной сети Моделирование графов Визуализация графов Сети с негативными связями Модель Шеллинга

Исследование социальных сетей

Социальная сеть – динамический граф

(пример: мобильная сеть)

Вершины – пользователи (и группы)

Рёбра – дружба (членство) / связи, отношения

Кластеры – сообщества

Примеры соцсетей:

сети дружбы (Friendship Networks)

• «классические» (Facebook, vk, Одноклассники)

сети общения (Communication Networks)

- мобильные сети
- мессенджеры (Telegram, WhatsApp)
- микроблоги (Twitter)
- почтовые (связь по отправке писем)

информационные сети (Information Networks)

- сам интернет
- интернет-магазин (связь по одинаковым купленным товарам)
- научные сообщества (связь по публикациям)

Какие здесь графы? Какие задачи здесь актуальны (возможны)?

Вершины не обязательно пользователи

http://legacydirs.umiacs.umd.edu/~hadi/cmsc498j/slides/lec-1.pdf

Примеры графов: Web-граф

graph of the BGP (Gateway Protocol) web graph, consisting of major Internet routers (6400 вершин, 13000 рёбер)

Ross Richardson, Fan Chung Graham

Примеры графов: Web-граф

~ 500,000 вершин, Opte, Internet visualization (2005)

Börner и др.

Примеры графов: граф метро

Примеры графов: граф романтических отношений

Примеры графов: сеть взаимодействия белка дрожжей

http://liacs.leidenuniv.nl/~takesfw/SNACS/lecture0.pdf

Примеры графов: Human Disease Network

Болезни связаны, если могут вызываться мутациями одинаковых генов

https://www.pnas.org/content/pnas/104/21/8685.full.pdf

Примеры графов: Facebook

~ 1 млрд вершин

Примеры графов: сеть героев книги

https://networkofthrones.wordpress.com/

Задачи с социальными сетями

- Анализ поведения пользователей
 - о выявление аккаунтов-дубликатов
 - о пользователей нарушающих, склонных нарушать правила, не похожих на других
- Прогнозирование
 - поведения пользователей (когда будет пользоваться услугами, в какую группу вступит, с кем подружится)
 - о предсказание и предотвращение ухода пользователей
 - о предсказание трафика (в каком объёме будет скачивать/закачивать)
- Рекомендация
 - о предсказание эффективности действия рекламы для конкретного пользователя
 - формирование таргетированных предложений (рекламы, по вступлению в группы, заполнению профиля и т.п.)

Задачи с социальными сетями

• Кластеризация

- разбиение пользователей на группы (для более корректного А/В-тестирования, разработки стратегий под группы, более тщательного анализа аудитории)
- о выявление «кругов общения пользователей» (друзей, которых объединяет некоторая сущность, например «друзья по вузу»)
- о выделение сообществ
- о выделение базисов источников информации в блогосфере
- Взаимодействие с другими соцсетями/ресурсами
 - матчинг сетей/графов (установление соответствия между пользователями одной сети и другой)
 - о использование данных соцсети для решения задач других заказчиков
 - скоринг (оценка заёмщика) в банках
 - персональные рекомендации в интернет-магазинах
 - таргетированная реклама в рекламе, СМИ (таргетированные новости)

Задачи с социальными сетями

• Анализ текстов

- о обнаружение недопустимых текстов (оскорблений, рекламы, нарушения закона и т.п.)
- о анализ общественного мнения по постам
- о анализ лояльности к брендам по постам

• Визуализация

- о поиск закономерностей в данных соцсети и их представление анализ общественного мнения по постам
- о научные исследования графов соцсетей

Граф

$$(V, E)$$

$$i, j \in V$$

$$\{i, j\} \in E$$

ребро / дуга

смежные вершины / соседи / друзья (Neighborhood)

Вершины 1 и 2 смежны (adjacent) Рёбра (1, 2) и (1, 3) смежны Вершины 1 и ребро (1, 2) инцидентны

Наука о Сетях	Теория Графов
Сеть	Граф
Узел	Вершина
Связь	Ребро

Граф

матрица сопряжённости

(Adjacency Matrix)

•	1	2	3	4
1		1	1	1
2	1		1	
3	1	1		
4	1			

как правило разреженная

диагональная матрица степеней

	1	2	3	4
1	3			
2		2		
3			2	
4				1

матрица Лапласа

	1	2	3	4
1	3	-1	-1	-1
2	-1	2	-1	
3	-1	-1	2	
4	-1			1

Неориентированные

Ориентированные (digraphs) (где?)

+ взвешенные графы

соседство окрестности

степень

входящая/исходящая степень (indegree/outdegree)

связные компоненты клика максимальная клика кратчайший путь поток диаметр

Двудольные графы (bipartite)

Ещё: фильмы – актёры

Часто называют «affiliation networks»

Научные сообщества

Граф цитирования (ориентированный)

Граф соавторства (неориентированный/двудольный)

Граф сходства статей (с весами)

Плотность графа (Graph Density)

$$\frac{2|E|}{|V|(|V|-1)}$$

Расстояние между вершинами – длина кратчайшего пути между ними

Диаметр – максимальное расстояние (по всем парам вершин графа)

Маршрут в графе — это чередующаяся последовательность вершин и рёбер графа вида

$$v_0, (v_0, v_1), v_1, \dots, (v_{k-1}, v_k), v_k$$

любые два соседние элемента (вершина и ребро) инцидентны

Маршрут замкнут (closed), если $v_0 = v_k$

Путь (Walk) — последовательность рёбер (в неориентированном графе) и/или дуг (в ориентированном графе), такая, что конец одной дуги (ребра) является началом другой дуги (ребра). Или последовательность вершин и дуг (рёбер), в которой каждый элемент инцидентен предыдущему и последующему.

Простой путь (Trail) — путь, все рёбра которого попарно различны

Path – (eng) путь, в котором все вершины и рёбра различны Circuit – (eng) замкнутый простой путь

Цикл – замкнутый простой путь, в котором вершины не повторяются за исключением

$$v_0 = v_k$$

Длина пути – число рёбер в нём

Эйлеров путь – путь, проходящий через все рёбра

Гамильтонов путь – путь, проходящий через все вершины

Сильно связный (strongly connected) – если для любой пары (u,v) вершин, u достижима из v и наоборот

Слабо связный (weakly connected) – если сильно связный после устранения ориентации рёбер

Полные графы (complete graph)

d-регулярные (d-regular)

Дерево – связный граф без циклов

Лес – граф без циклов

родитель (parent), ребёнок (child), лист (leaf)

Направленное дерево (Directed tree)
Направленный ациклический граф (DAG = Directed Acyclic Graph)

Простой граф – без кратных рёбер и петель

Ребро (А, В) – мост, если удаление ребра увеличивает число связных компонент.

Ясно, что на практике определение очень строгое...

Ребро (A, B) – локальный мост, если вершины A и B не имеют общих друзей

~ если удаление увеличивает расстояние между вершинами, как минимум, на 2

пролёт моста (span of a local bridge) – расстояние между вершинами моста после его удаления

Чем полезно для нас?

Ребро (A, B) – локальный мост, если вершины A и B не имеют общих друзей

~ если удаление увеличивает расстояние между вершинами, как минимум, на 2

пролёт моста (span of a local bridge) – расстояние между вершинами моста после его удаления

Это неплохой признак!

Что такое распределение степеней вершин

http://networksciencebook.com/chapter/2#degree

Понятие сложной сети (Complex network)

- 1. Степенные законы распределения степеней вершин (Power law degree distribution)
 - 2. Модель «малого мира»: малый диаметр и т.п. («small world»)

Большая компонента связности (Giant component)

- 3. Высокий коэффициент кластеризации (Hight clustering coefficient)
 - 4. Разреженность (Sparcity)
- 5. Сильные и слабые связи, кластерная структура

CN1: распределение степеней вершин

Безмасштабные (scale-free) сети – в которых степени вершин распределены по степенному закону: доля вершин с k связями ~ $k^{-\gamma}$,

обычно $2 < \gamma < 3$ и для k , начиная с некоторого

M.E.J. Newman «Power laws, Pareto distributions and Zipf's law» // Contemporary Physics, 2005, 46.5, pp. 323–351.

Терминология: безмасштабность (scale-free)

Функция
$$f(z)$$
 безмасштабна, если $f(\alpha z) = \beta f(z)$ как раз степенная...

Случайный граф: степень случайной вершины $\mu \pm \sqrt{\mu}$ Безмасштабный: $\mu \pm \infty$

Степенной закон (power law)

Функция ~
$$p(k) = k^{-\gamma}$$

доминирует, где измеряется «популярность»

Надо смотреть в логарифмическом масштабе

должна быть прямая линия: $\log p(k) = -\gamma \log k$

Aaron Clauset, Cosma Rohilla Shalizi, M. E. J. Newman Power-law distributions in empirical data

Правило Парето (Vilfredo Pareto): 80/20

80% денег зарабатываются 20% населения

Степенные законы ~ fat-tailed / heavytailed / long-tailed / Pareto / Bradford distributions

Закон Ципфа (Zipf's Law)

частота k-й по популярности буквы ~ 1/k

«The Black Swan» by Nassim Taleb

BLACK SWAN

Nassim Nicholas Taleb

«Чёрные лебеди вовсе не редкость»

Шахматные дебюты

http://www.uvm.edu/pdodds/research/papers/others/everything/blasius2009a.pdf

Сеть протеинов

http://networksciencebook.com/chapter/2#degree

CN1: распределение степеней вершин

Degree distributions of the WWW analyzed in [Broder et al '00]

CN2: Модель малого мира

Stanley Milgram (1967)

Добровольцам задание – переслать письмо конкретному человеку: Имя, адрес, род занятий

Но отправлять письмо можно только знакомому дошло (64 из 296), медиана = 6, средний путь = 6.2

S. Milgram «The small-world problem» // Psychology Today, vol. 2, pp. 60-67, 1967

CN2: Модель малого мира

«Мир тесен» = «теория 6 рукопожатий»

Граф	Среднее расстояние между вершинами	
Граф почтовых рассылок (D. Watts, 2001, 48000 вершин)	6	
Граф сообщений в MSN Messenger (J. Lescovec и др. 2007, 240 млн. вершин)	6.6	
Граф Фейсбука (L. Backstrom и др. 2012, 720 млн. вершин)	4.74	

CN2: Модель малого мира

Вся сеть 92.0% на расстоянии <=5, 99.6% на расстоянии <=6.

США 96.0% на расстоянии <=5, 99.7% на расстоянии <=6.

CN3: Коэффициент кластеризации (полноты)

(CF = Clustering Coefficient)

1. Глобальный (Graph clustering coefficient)

1.1. число треугольников / возможное число (число связных троек)

1.2. Среднее локальных коэффициентов (Average node clustering coefficient)

Внимание! Это признак;)

3. Коэффициент кластеризации (clustering coefficient)

2. Локальный (Node clustering coefficient)

для вершины = насколько её соседи близки к образованию клики

число связей у соседей / число возможных связей

$$c(v) = \frac{2 |\{(i, j) \in E : (i, v) \in E, (v, j) \in E\}|}{\deg(v)(\deg(v) - 1)}$$

СГ вершины А – вероятность дружбы двух случайных друзей А

Кстати, Bearman and Moody (2004)

Девочки-подростки с низким коэффициентом кластеризации более склонны к самоубийствам

3. Коэффициент кластеризации

Два способа определения коэффициента кластеризации

https://networkscience.wordpress.com/

3. Коэффициент кластеризации

Network	Nodes	Edges	Expected	Real
Facebook (WOSN)	63731	817035	2809	3500542
Epinions	75879	508837	402	162448
Amazon (TWEB)	403394	3387388	789	3986507
Baidu	415641	3284387	658	14287651
Youtube links	1138499	4942297	109	3049419
Flickr	2302925	33140017	3973	837605842
LiveJournal links	5204176	49174464	1125	310876909
Twitter (MPI)	52579682	1963263821	69410	55428217664

http://liacs.leidenuniv.nl/~takesfw/SNACS/lecture1.pdf

CN4: Разреженность

Большинство реальных графов – разреженные (sparse).

Данные	Число вершин	Средняя степень
WWW (Stanford-Berkeley)	319,717	9.65
Social networks (LinkedIn)	6,946,668	8.87
Communication (MSN IM)	242,720,596	11.1
Coauthorships (DBLP)	317,080	6.62
Internet (AS-Skitter)	1,719,037	14.91
Roads (California)	1,957,027	2.82
Proteins (S. Cerevisiae)	1,870	2.39

из Leskovec et al., Internet Mathematics, 2009

Экспериметр Грановеттера (Granovetter's Experiment) – 1960

«Сила слабых связей»
– мощный механизм социальной мобильности

Люди ищут работу через контакты, но чаще через знакомых, а не друзей

Getting A Job: A Study of Contacts and Careers. — Harvard University/University of Chicago Press, 1974.

Сейчас есть возможность проверить... как формализовать «друг» / «знакомый»

Сеть сотовой связи

(A, B), если были звонки A \to B и B \to A за определённый период «степень дружбы» – число звонков / средняя продолжительность / ...

Картинка как при делении на сообщества;)

Сильные связи (Strong ties) больше отвечают за кластерную структуры Слабые (Weak ties) – соединения сообществ

J. P. Onella et al., «Structure and tie strengths in mobile communication networks» PNAS, vol. 104, pp. 7332-7336, 2007

CN5: Теория связей: Maintained Relationships on Facebook

см. след. слайд

CN5: Теория связей: Maintained Relationships on Facebook

All Friends – все друзья

Reciprocal Communication – двусторонняя активная коммуникация
One-way Communication – односторонняя активная коммуникация
Maintained Relationships – «вовлечённость» – просматривал новости или профиль > 2 раз

Число Данбара

Робин Данбар (Robin Ian MacDonald Dunbar)

стадные приматы

зависимость между уровнем развития новой коры больших полушарий головного мозга и размером стаи

Внутренний круг = 5
Симпатии = 12-15
Полу-регулярная группа = 50
Стабильная социальная группа = 150 (число Данбара)
Друзья друзей (слабые связи) = 500

Сильные связи требуют времени и энергии для их поддержания

Twitter under the microscope. Huberman et al. 2008. arxiv.org/pdf/0812.1045.pdf

Какие факторы доминирующие для создания связей

1. Triadic closure «друг моего друга»

2. Homophily / assortative mixing

Гомофилия – принцип выбора друзей, по которому мы стараемся выбирать из себе подобных и быть похожими на друзей

«похожий на меня по интересам» раса / возраст / хобби

- 3. Тяготение к важным вершинам
 - 4. Случайные связи

Гомофилия

Селекция (Selection) Социальное влияние выбор людей «таких как я» Сам адаптируюсь под других C person person person focus Α A focus person Claire Triadic Literacy Bob Anna Volunteers **Focal** Membership Karate Daniel Club

Оценка гомофилии

Пусть в сообществе p – вероятность быть мужчиной, q = 1 - p – женщиной.

Если выбираем рёбра случайно, то вероятности

$$P(M,M) = p \cdot p$$

$$P(M,F) = p \cdot q$$

$$P(F,M) = q \cdot p$$

$$P(F,F) = q \cdot q$$

Можно сравнить процент дружбы разных полов с 2pq

Оценка гомофилии

Пусть один общий друг порождает вероятность $\,p\,$ подружиться, тогда $\,k\,$ общих друзей – $1-(1-p)^k\,$

Gueorgi, and Watts «Empirical analysis of an evolving social network» // Science, 2006

Оценка социального влияния

Backstrom, et al «Group formation in large social networks: Membership, growth, and evolution» // SIGKDD 2006

CN5: Теория связей Оценка социального влияния

Feedback effects between similarity and social influence in online communities. Crandall, et al., SIGKDD 2008

Моделирование графов модель Пола Эрдёша и Альфреда Реньи (Erdös-Renyi)

Генерация случайных графов:

$$P(d^{\text{in}} = d) = C_{n-1}^d p^d (1-p)^{(n-1)-d}$$

~ сумма n-1 бернуллиевских величин, по ЦПТ

$$norm(np, np(1-p))$$

если
$$(n-1)p = \mu = \text{const}$$
, то $P(d) \xrightarrow[n \to \infty]{} e^{-\mu} \frac{\mu^d}{d!}$

Моделирование графов: модель Эрдёша-Реньи (Erdös-Renyi)

если np>1, то $G_{n,p}$ почти всегда имеет компоненту размера O(n)

если np < 1, то $G_{n,p}$ почти всегда размер компонент не выше $O(\log n)$

Маленький кластерный коэффициент $O(n^{-1})$ Диаметр $O(\log n)$

Моделирование графов Что в реальной жизни...

Моделирование графов: Модель Ваттса-Строгаца (Watts-Strogatz)

Иногда называют моделью «тесного мира»

- 1. Начинаем с указанной конфигурации
- 2. С вероятностью р каждая связь перебрасывается на случайно выбранный узел

Моделирование графов

большая кластеризация и диаметр

малая кластеризация и диаметр

ДЗ Исследовать, когда «похож не реальный граф» (малый диаметр и большой коэффициент кластеризации)

Моделирование графов

Причина малого мира Watts-Strogatz (1998): Гомофилия ⇒ сильно-связные графы (коэф. кластеризации)

это локальная структура

Слабые связи ⇒ короткий путь в другие сообщества

это случайные связи

Связь с вероятностью $\propto d(i,j)^{-q}$ Минимальное ожидаемое время доставки, когда q ~ 2

Моделирование графов: Преимущественное присоединение Barábasi-Albert model (1999)

Создаём вершины 1, 2, ...Когда создана j-я она соединяется с i: i < j

с вероятностью p i-я вершина выбирается случайно:

$$P(j \to i) = \frac{1}{j-1}$$

с вероятностью 1-p

$$P(j \rightarrow i) \propto \deg(i)$$

Приводит к динамике «rich-gets-richer»

$$P(d^{\rm in}=d) \propto d^{-\left(1+\frac{1}{1-p}\right)}$$

Преимущественное присоединение (preferential attachment) – к страницам, которые уже популярны (такой реальный механизм популярности)

Моделирование графов: Barábasi-Albert

Моделирование графов: Barábasi-Albert

Средняя степень –
$$\sim \frac{\ln n_v}{\ln \ln n_v}$$
 коэффициент кластеризации – $\sim \frac{(\ln n_v)^2}{n_v}$

Преимущественное присоединение

Популярность – большая случайность Если «всё переиграть» популярности поменяются Но степенной закон остаётся

Эксперимент: при заходе человек видит число скачиваний песен и нет (много копий сайта)

Видит	Не видит		
«популярные становятся	значительно меньше		
популярнее»	популярность		
причём по-разному!	нет её вариативности по копиям		
	сайта		

Salganik et. al. «Experimental study of inequality and unpredictability in an artificial cultural market. science 2006

Моделирование графов: выбор рёбер (Link Selection Model)

Добавляем вершину: выбираем случайное ребро, присоединяем вершину ребром к одной из вершин выбранного ребра

похожа на предыдущую модель

Copying Model

Добавляем вершину:
выбираем случайную вершину в графе
с вероятностью р соединяем новую с выбранной вершиной
с вероятностью (1 – р) – с вершиной, в которую идёт ребро из выбранной
(выбираем случайно)

Моделирование графов: с помощью кирпичиков

motif (мотиф – кирпичик)

небольшой граф, слишком часто встречающийся как подграф в нашем графе

Subgraph ratio = число вхождений / число вхождений в случайном графе

Subgraph concentration = число вхождений / число вхождений всех подграфов такого размера

Эволюция графов
 Динамика изменений графов

граф	размер / история	описание	
ArXiv Citation Graph	n=29555 e=352807	2003 KDD Cup	
	01.1993 – 04.2003		
Patents Citation Graph	n=3923922, e=16522438	U.S. patent dataset	
	01.1963(1975) – 12.1999		
Autonomous Systems	n≤6474, e≤26467	Граф коммункаций через	
Graph 11.1997 - 01.2000		интернет	
Affiliation Granks		arXiv ⇒ аффилиации	
Affiliation Graphs		(двудольный граф)	

J. Leskovec, J. Kleinberg, C. Faloutsos «Graph evolution: Densification and shrinking diameters» ACM Transactions on Knowledge Discovery from Data (TKDD) 1 (1), 2

https://www.cs.cmu.edu/~jure/pubs/powergrowth-tkdd.pdf

средняя степень вершин / время (считалось const)

рёбра / вершины

Эволюция графов

эффективный диаметр (90% на расстоянии не выше этого)

Эволюция графов

Доля вершин, входящих в большую компоненту связности «giant connected component»

В статье есть модели построения динамических графов «The Forest Fire Model»

есть сокращённая версия

https://www.cs.cornell.edu/home/kleinber/kdd05-time.pdf

Визуализация графов

Spring-embedder methods

вершины – шарики, рёбра – стержни, надо добиться равновесия

Energy-placement methods

определяется функция энергии позиций вершин, минимизируется

B. Baingana and G. B. Giannakis «Centrality-constrained graph embedding» // ICASSP, 2013.

Визуализация графов

J. I. Alvarez-Hamelin et al, «Large scale networks fingerprinting and visualization using the k-core decomposition» // NIPS, 2005

Алгоритм: рекурсивно удалять рёбра степени меньше k, сложность $O(n_{_{\!\scriptscriptstyle V}}+n_{_{\!\scriptscriptstyle e}})$

	вершин	рёбер	+/-	СВЯЗИ
S Q W S	119,217	841,200	85 / 15 %	Support / oppose
Epinions.com	82,144	549,202	77 / 23 %	Trust / Distrust
Slashdot	7,118	103,747	79 / 21 %	Friends / Foe

Guha, et. al. «Propagation of trust and distrust» WWW 2004

Размеченный полный граф сбалансированный (balanced), если каждый треугольник сбалансированный:

Размеченный полный граф сбалансированный ⇔ полностью положительный или разбивается на два сообщества (внутри сообщества все связи +, между сообществами –)

Первая мировая война

Fr: France

Ru: Russia

It: Italy

Ge: Germany

(a) Three Emperors' League 1872-

(b) Triple Alliance 1882

(c) German-Russian Lapse 1890

AH: Austria-Hungary

GB: Great Britain

(d) French-Russian Alliance 1891-

(e) Entente Cordiale 1904

(f) British Russian Alliance 1907

ослабеваем требование сбаланчированности

Размеченный полный граф слабо сбалансирован (Weak Structural Balance Property)

– нет треугольника с ровно двумя положительными рёбрами

⇔ может быть разбит на сообщества (ДЗ доказать)

снимаем ограничение полноты

Граф сбалансирован, если его можно дополнить рёбрами до полного так, что получится полный сбалансированный граф

Результаты остаются: можно предложить метод, который находит разбиение или противоречие

⇔ нет циклов с чётным числом «-»

Сети с негативными связями снимаем ограничение ВСЕ треугольники

можно потребовать «почти все»

Можно предсказывать позитивность / негативность:

Leskovec et. al. «Predicting positive and negative links in online social networks» WWW 2010

Модель Шеллинга (Schelling's model) локальные предпочтения приводят к глобальным патернам

2 запуска, 150×150, 10000 агентов, 8соседство, порог удовлетворения = 3, случайная инициализация

20 и 800 итераций, 150×150, 10000 агентов, 8-соседство, порог удовлетворения = 4, случайная инициализация

Модель Шеллинга (Schelling's model)

http://dewdis.github.io/schelling/

http://faculty.ucr.edu/~hanneman/spatial/schelling/schelling.html

Alexander Tsiatas «Population density and diversity: an update to Schelling's model»

http://cseweb.ucsd.edu/~atsiatas/density.pdf

Итог

Социальные сети ~ анализ общества

= динамические графы
Отличаются от обычных графов!

⇒ понятие сложной сети

Особенности моделирования

Реальные сети не случайны!

Есть разные теории анализа (например, знаковых графов)

Модель Шеллинга ~ модель симпатии в обществе

Что полезно: программирование

igraph - The network analysis package

http://igraph.org/

NetworkX: Python software for network analysis (v1.5)

http://networkx.lanl.gov

Gephi: Java interactive visualization platform and toolkit

http://gephi.org

Что полезно: курсы

Классная курс-книга http://networksciencebook.com/

Очень хороший

Hadi Amiri «Social Media Computing - CMSC 498J»

http://legacydirs.umiacs.umd.edu/~hadi/cmsc498j/syllabus.html

Очень хороший

Gonzalo Mateos «Network Science Analytics»

http://www2.ece.rochester.edu/~gmateosb/ECE442.html

Л.Жуков «Structural Analysis and Visualization of Networks» в ВШЭ

http://leonidzhukov.net/hse/2015/socialnetworks/

Неплохой курс

Frank Takes «Social Network Analysis for Computer Scientists»

http://liacs.leidenuniv.nl/~takesfw/SNACS/

Что полезно: книги

David Easley, Jon Kleinberg «Networks, Crowds, and Markets: Reasoning About a Highly Connected World»

https://www.cs.cornell.edu/home/kleinber/networks-book/networks-book.pdf

Jure Leskovec, Anand Rajaraman, Jeffrey D. Ullman «Mining of Massive Datasets»

http://infolab.stanford.edu/~ullman/mmds/book.pdf

Eric D. Kolaczyk «Statistical Analysis of Network Data: Methods and Models»

M. E. J. Newman «Networks: An Introduction» Oxford U. Press