

Roll No: Subject Code: RCS302

BTECH (SEM III) THEORY EXAMINATION 2021-22 COMPUTER ORGANIZATION AND ARCHITECTURE

Time: 3 Hours Total Marks: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

Printed Page: 1 of 2

a.	Describe the term addressing mode.					
b.	Compare microinstruction and microprogram.					
c.	Write decimal numbers 35 and -35 in 2's sign magnitude format.					
d.	Define the term Memory Hierarchy in computer system.					
e.	List the components of a typical I/O device interface.					
f.	Explain speed up performance metric for a pipelined processor.					
g.	Write one example of a 1-Address and 2-Address instruction.					

SECTION B

2. Attempt any *three* of the following:

 $7 \times 3 = 21$

a.	Illustrate the designing of 3-bit carry look ahead adder.							
b.	Differentiate between horizontal and vertical microinstruction.							
	A vertical microprogrammed control unit supports 512 instructions	s. The						
	system is using 8 conditional flags and contains 31 control signals. Each							
	instruction on an average required 1 μ operation. Calculate the approximate							
	size of control memory in bytes.							
c.	Discuss the need of virtual memory. Demonstrate its implementation using	g						
	paging.							
d.	Describe serial communication technique in detail. Explain and compare the	e						
	synchronous and asynchronous communication.							
e.	Describe Flynn's classification in detail.							

SECTION C

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a)	Illustrate the process of non-restoring division taking the division of (13)0 by $(3)_{10}$.
(b)	Demonstrate floating-point number representation in computer, also give IEEE
	754 standard 32-bit floating point number format of (12.21) ₁₀ justifying each
	step.

4. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a)	Describe the working of microprogram sequencer with a suitable diagram and									
	tables.									
(b)	Explain	hardwired	control	unit	design	using	its	block	diagram.	
generation of a control signal PC _{in} .										

Explain

Roll No: Subject Code: RCS302

BTECH (SEM III) THEORY EXAMINATION 2021-22 COMPUTER ORGANIZATION AND ARCHITECTURE

5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

Printed Page: 2 of 2

- (a) Explain the interrupt driven I/O technique and design its flowchart in detail along with its merits and demerits.
- (b) Discuss the interrupt processing. Differentiate between the following:
 - (i) Trap vs exception.
 - (ii) Maskable and non-maskable interrupt.

6. Attempt any *one* part of the following:

 $7 \times 1 = 7$

of the

- (a) A computer has a 256 K Byte, 4-way set associative, write back data cache with the block size of 32 Bytes. The processor sends 32-bit addresses to the cache controller. Each cache tag directory entry contains, in addition, address tag, 2 valid bits, 1 modified bit and 1 replacement bit. Solve for the number of bits in the tag field of an address. Explain each step calculation.
- (b) Calculate the number of page faults using optimal page replacement algorithm for the reference string: 1,5,4,3,2,5,1,2,4,3,6,4 if the number of frames in the memory is 3 and 4 illustrating each step.

7. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) (i) Justify the concept of Pipelining using a suitable diagram in a computer system.
 - (ii) There is an instruction pipeline with four stages. The stage delays for each stage is 5 nsec, 6 nsec, 11 nsec, and 8 nsec respectively. Consider the delay of an inter-stage register in the pipeline is 1 nsec. Determine the approximate speedup of the pipeline in the steady state under ideal conditions as compared to the corresponding non-pipelined implementation?
- (b) Explain Cache performance measures. Evaluate the performance of 2-level Cache memory.