Biçimsel Diller ve Soyut Makineler

yazılan bir Kattatstafalın Katınının herhanesi bir dile 6 dil reguler ¡Radenin for tanimlamis. d'il olabiliv gada herhango birdil tanımlama ava ciliyla tanmlanan dil olabilir

Regüler Dillerin kapalılık özelliği

- Regüler diller aşağıdaki işlemlerde kapalılık özelliğine sahiptir.
 - Birleşim
 - Gösterim: ∪
 - Kesişim
 - Gösterim: ∩
- Eğer L_1 ve L_2 regüler ise $L_1 \cup L_2$ ve $L_1 \cap L_2$ regulerdir.

Örnek

```
\begin{split} \Sigma &= \{a,b\}. \\ \mathsf{L}_1 &= \{ \ \mathsf{w} \ \mathsf{E} \{a,b\}^* \ | \ \mathsf{w} \ \mathsf{cift} \ \mathsf{sayıda} \ \mathsf{a} \ \mathsf{içerir.} \} \\ &- \ \mathsf{L}_1 \ \mathsf{regular} \ \mathsf{midir}? \\ \mathsf{L}_2 &= \mathsf{L}_2 = \{ \ \mathsf{w} \ \mathsf{E} \{a,b\}^* \ | \ \mathsf{w} \ \mathsf{tek} \ \mathsf{sayıda} \ \mathsf{b} \ \mathsf{içerir.} \} \\ &- \ \mathsf{L}_2 \ \mathsf{regular} \ \mathsf{midir}? \\ \mathsf{L}_1 \cup \mathsf{L}_2 &= ? \\ &- \ \mathsf{L}_1 \cup \mathsf{L}_2 = \{ \mathsf{w} \ \mathsf{E} \{a,b\}^* \ | \ \mathsf{w}, \ \mathsf{cift} \ \mathsf{sayıda} \ \mathsf{a} \ \mathsf{VEYA} \ \mathsf{tek} \ \mathsf{sayıda} \ \mathsf{b} \ \mathsf{içerir.} \} \ \mathsf{L}_1 \bigcap \mathsf{L}_2 = ? \\ &- \ \mathsf{L}_1 \cap \mathsf{L}_2 = \{ \mathsf{w} \ \mathsf{E} \{a,b\}^* \ | \ \mathsf{w}, \ \mathsf{cift} \ \mathsf{sayıda} \ \mathsf{a} \ \mathsf{VE} \ \mathsf{tek} \ \mathsf{sayıda} \ \mathsf{b} \ \mathsf{içerir.} \} \end{split}
```

$L_1 = \{ w \in \{a,b\}^* \mid w \text{ cift sayıda a içerir.} \}$ kümesi için DFA

$L_2 = \{ w \in \{a,b\}^* \mid w \text{ tek sayıda b içerir.} \}$ kümesi için DFA

∨ ve için DFA gerçekleştirme

$$Q_1 \times Q_2$$
.

$$M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$$
 ve

 $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ makineleri verilmiş olsun.

Yeni bir makine ∪ ve ∩ için tasarlamak istiyoruz.

 $M = (Q, \Sigma, \delta, s, F)$ bu makine olsun. Burada

$$Q = Q_1 X Q_2$$

s = (s₁, s₂)

$$\Sigma = \Sigma_1 \cup \Sigma_2$$
.

$$\delta((\mathsf{q}_1,\,\mathsf{q}_2),\,\sigma)=(\delta_1(\mathsf{q}_1,\,\sigma),\,\delta_2(\mathsf{q}_2,\,\sigma))$$

- Birleşim kümesi için, F = ?
 - Cevap
 - Kesişim Kümesiiçin, F = ?

- Cevap:
$$F=F_1 imes F_2$$
 .

$$F=F_1 imes (Q_2$$
 - F_2)

 $F = (F_1 \times Q_2) \cup (Q_1 \times F_2).$

 $L_1 \cup L_2 = \{w \in \{a,b\}^* \mid w, \text{ cift sayıda a VEYA tek sayıda b içerir.}\}$ kümesi için DFA

 $L_1 \cap L_2 = \{w \in \{a,b\}^* \mid w, \text{ cift sayıda a VE tek sayıda b içerir.}\}$ kümesi için DFA

$L_1 \cup L_2 = \{w \in \{a,b\}^* \mid w, \text{ cift sayıda a VEYA tek sayıda b içerir.}\}$ kümesi için DFA

$L_1 \cup L_2 = \{w \in \{a,b\}^* \mid w, \text{ cift sayıda a VEYA tek sayıda b içerir.}\}$ kümesi için DFA

 $L_1 \cup L_2 = \{w \in \{a,b\}^* \mid w, \text{ cift sayıda a VEYA tek sayıda b içerir.}\}$ kümesi için DFA

 $L_1 \cup L_2 = \{w \in \{a,b\}^* \mid w, \text{ cift sayıda a VEYA tek sayıda b içerir.}\}$ kümesi için DFA

$L_1 \cap L_2 = \{w \in \{a,b\}^* \mid w, \text{ cift sayıda a VE tek sayıda b içerir.}\}$ kümesi için DFA

$L_1 \cap L_2 = \{w \in \{a,b\}^* \mid w, \text{ cift sayıda a VE tek sayıda b içerir.}\}$ kümesi için DFA

$L_1 \cap L_2 = \{w \in \{a,b\}^* \mid w, \text{ cift sayıda a VE tek sayıda b içerir.}\}$ kümesi için DFA

 $L_1 \cap L_2 = \{w \in \{a,b\}^* \mid w, \text{ cift sayıda a VE tek sayıda b içerir.}\}$ kümesi için DFA

A = {w | w, en az bir tane 1 içerir ve son 1'i çift sayıda 0 izler} kümesi için DFA

Nondeterministic Finite Automaton (NFA)

- DFA'nın daha genelleştirilmiş biçimidir.
 - Herhangi bir durumda iken bu durumdan bazı geçişler olmayabilir.
 - Bir geçişten birden fazla olabilir.
- Avantaj: Esneklik
 - Tasarım daha kolay hale gelmektedir.

NFA nasıl çaışır?

- NFA'nın başlangıç durumundan başlanarak, ilgili katar izlenip bir kabul durumunda biterse w NFA tarafından kabul edilir.
- NFA tarafından kabul edilen dil, bu NFA tarafından kabul edilen karakter katarlarının kümesidir.

Deterministic computation

Nondeterministic computation

Bu şekilde denemeye devam ederek NFA makinesinin '101' içeren tüm katarları alt katar olarak kabul ettiği görülür.

Örnek A dili 0,1} alfabesinde tanımlıdır ve sondan üçüncü konumda 1 içeren {tüm katarlardan oluşur. (örneğin, 000100, A'nın içindedir ancak 0011 değildir).

NFA A = {w in {0,1}* | w'nin sondan ikinci sembolü 1'dir}

NFA A = $\{w \text{ in } \{0,1\}^* \mid w' \text{nin sondan ikinci}$ sembolü 1'dir $\}$

NFA A = $\{w \text{ in } \{0,1\}^* \mid w' \text{nin sondan ikinci}$ sembolü 1'dir $\}$

NFA A = $\{w \text{ in } \{0,1\}^* \mid w' \text{nin sondan ikinci}$ sembolü 1'dir $\}$

NFA A = $\{w \in \{0,1\}^* \mid w' \text{nin sondan ikinci sembolü}$ 1'dir $\}$

NFA'nın biçimsel tanımı

- NFA M = (Q, Σ , δ , s, F) Burada;
 - Q Durumların sonlu kümesi
 - $-\Sigma$ Giriş alfabesi
 - s Başlangıç durumu
 - F ⊆ Q − Kabul durumları kümesi
 - δ bir durum geçiş fonksiyonudur ve Q X $\Sigma_{\rm e}$ X Q'nin alt kümesidir.
- (p, u, q) δ'de ise, NFA p durumunda u okuyabilir ve q 'ya gider.

NFA'nın biçimsel tanımı (devam)

- $\delta^*(q, w)$ bir durumlar kümesidir ve
- $p \in \delta^*(q, w)$ ise q'dan p'ye w etiketli bir yol vardır.
 - Örnek:
- $\delta^*(q_0, 1) = ?$
 - Cevap: $\{q_0, q_1\}$
- $\delta^*(q_0, 11) = ?$
 - Cevap: $\{q_0, q_1, q_2\}$

NFA kabulü

 δ*(q₀, w) ∩ F kümesi bir boş küme değilse w karakter katarı M makinesi tarafından tanınır.

NFA'nın tanıdığı dil:

• L(M) = {w in Σ^* | w, M tarafından tanınır}.

NFA ve DFA'nın karşılaştırılması

- NFA , DFA'dan daha mı güçlüdür?
 - Cevap: Hayır
- Theorem:
 - Her NFA makinesi için eşdeğer bir DFA vardır.

Eşdeğer DFA'nın bulunması

- NFA M = $(Q, \Sigma, \delta, s, F)$
- DFA M' = (Q', Σ , δ , s', F') Burada:
 - $Q' = 2^{Q}$
 - $s' = \{s\}$
 - $F' = \{P \mid P \cap F \neq \Phi\}$
 - $-\delta(\{p_1, p_2, p_m\}, \sigma) = \delta^*(p_1, \sigma) \cup \delta^*(p_2, \sigma) \cup ... \cup \delta^*(p_m, \sigma)$

Örnek: Eşdeğer DFA'nın bulunması

Boşluk geçişli NFA

• Durumların boşluk kapanması: $\delta^*(q, \Lambda)$.

– gösterim: e-closure(q).

Boşluk kapanması(devam)

Durumun boşluk kapanmasının bulunması:

```
- e-closure(\{s_1, ..., s_m\}) = e-closure(s_1) \cup ... \cup e-closure(s_m)
s' = \text{e-closure}(\{s\}) \text{ olsun ve}
\delta(\{p_1, ..., p_m\}, \sigma) = \text{e-closure}(\delta^*(p_1, \sigma)) \cup ... \cup \text{e-closure}(\delta^*(p_m, \sigma))
```

Örnek

DFA = ?

• Theorem:

- (a) Her regüler ifade için eşdeğer bir NFA vardır.
- (b) Her DFA için eşdeğer bir regüler ifade vardır.

• Theorem:

- (a) Regüler diller sınıfı U operatörü üzerine kapalıdır. .
- (b) Her DFA için eşdeğer bir regüler ifade vardır.

A1 ∪ A2'yi tanımak için bir NFA'nin oluşturulması

A1 ve A2 düzgün dilleri ise A1 U A2 dili de düzenli dildir.

$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 , $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

1.
$$Q = \{q_0\} \cup Q_1 \cup Q_2$$
.

2. The state q_0 is the start state of N.

3.
$$F = F_1 \cup F_2$$
.

$$q \in Q \text{ and any } a \in \Sigma$$

$$\mathbf{4.} \ \delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \\ \delta_2(q,a) & q \in Q_2 \\ \{q_1,q_2\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon. \end{cases}$$

A1 ve A2 düzgün dilleri ise A1 . A2 dili de düzenli dildir.

4. $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\ \delta_2(q, a) & q \in Q_2. \end{cases}$$

$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 , $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

$$N = (Q, \Sigma, \delta, q_1, F_2)$$
 to recognize $A_1 \circ A_2$.

1.
$$Q = Q_1 \cup Q_2$$
.

- **2.** The state q_1
- **3.** The accept states F_2

A1 düzgün dil ise A1* dili de düzenli dildir.

$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 .

 $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* .

- 1. $Q = \{q_0\} \cup Q_1$.
- **2.** The state q_0 is the new start state.
- **3.** $F = \{q_0\} \cup F_1$.