

UNIVERSIDADE PRESBITERIANA MACKENZIE

FACULDADE DE COMPUTAÇÃO E INFORMÁTICA

ESTRUTURA DE DADOS - PROFA SOLANGE BARROS

FASE 1 - AULA 3

1. Algoritmos de ordenação

Algoritmo de ordenação em ciência da computação é um algoritmo que coloca os elementos de uma dada sequência (vetor) em uma certa ordem -- em outras palavras, efetua sua ordenação completa ou parcial. As ordens mais usadas são: a numérica e a lexicográfica. Principais algoritmos de ordenação:

- Insertion sort
- Selection sort
- Bubble sort
- Comb sort
- Merge sort
- Heapsort
- Shell sort
- Quick sort

2. Método Bubble Sort

O Bubble Sort, ou ordenação "por bolha", é um algoritmo de ordenação dos mais simples. A ideia é percorrer o vetor diversas vezes, de forma que a cada passagem, o maior ou menor número é posicionado no início do vetor. Essa movimentação lembra a forma como as bolhas em um tanque de água procuram seu próprio nível, e disso vem o nome do algoritmo.

No melhor caso, o algoritmo executa $\bf n$ operações relevantes, onde $\bf n$ representa o número de elementos do vetor. No pior caso, são feitas $\bf n^2$ operações. A complexidade desse algoritmo é de ordem quadrática — $O(\bf n^2)$, não sendo recomendado para programas que precisem de velocidade e operem com quantidade elevada de dados.

3. Código padrão

4. Testes

Faremos repetidos testes com esse código. A ideia é contar quantas vezes a comparação sinalizada em amarelo, será executada em diferentes cenários. Para isso, crie um contador dentro do IF sinalizado e exiba o resultado, anotando-o na tabela abaixo. Lembre-se de preencher o vetor com números aleatórios em uma faixa de valores compatível com a quantidade de elementos do vetor (se a faixa for muito pequena, teremos muitos valores repetidos).

Elementos (n)	500	1.000	2.000	4.000	8.000	16.000	32.000	64.000
Qtde. de								
comparações								

5. Atividade para entregar

Você deverá entregar um arquivo .DOC com a tabela comparativa e um gráfico que mostre a curva de crescimento da função que representa esse código.

Ainda, procure na Internet um gráfico resumido que mostre a curva de crescimento de todas as funções assintóticas estudadas (gráfico genérico). Esse gráfico deve estar inserido no arquivo .DOC que você irá entregar.