CSC 544 Data Visualization

Direct Volume Rendering

Slides courtesy of Joshua Levine josh@email.arizona.edu

Limitations of Isosurfaces

- Isosurfacing is "binary"
 - What about points inside isosurface?
 - How does each voxel contributes to image?
- Is a hard, distinct boundary necessarily appropriate for the visualization task?

- Isosurfacing is poor for ...
 - Measured, "real-world" (noisy) data
 - Amorphous, "soft" objects

http://www.cg.informatik.uni-siegen.de/

http://vis.cs.ucdavis.edu/gallery/Yu/combustion/

Why Volume Rendering?

- Allows every voxel to contribute to image
- Provides greater flexibility

Marc Levoy, Display of Surfaces from Volume Data, 1988

- Measured sources of volume data
 - CT (computed tomography)
 - PET (positron emission tomography)
 - MRI (magnetic resonance imaging)
 - Ultrasound
 - Confocal Microscopy

- Synthetic sources of volume data
 - CFD (computational fluid dynamics)
 - Voxelization of discrete geometry

http://www.cs.utah.edu/~bnelson/publications.html

http://opticalengineering.spiedigitallibrary.org/article.aspx?articleid=1088924

Volume Rendering

Pipelines: Isosurfacing vs. Volume Rendering

 DVR: Render volume without extracting any surfaces

Map scalar values to optical properties (color, opacity)

- Needs an optical model
- Solve volume rendering integral for viewing rays into the volume

Volume Ray Casting

Image order approach

Exact Isosurface

Similar to X-rays

maximum intensity projection (MIP)

Pixel Compositing Schemes

Used in PET and Magnetic Resonance Angiograms

color to distinguish structures opacity to show inside

Compositing

$$c = a_f^* c_f + (1 - a_f)^* a_b^* c_b$$

 $a = a_f + (1 - a_f)^* a_b$

$$c = a_f^* c_f + (1 - a_f)^* a_b^* c_b$$

 $a = a_f + (1 - a_f)^* a_b$

$$c = a_f^* c_f + (1 - a_f)^* a_b^* c_b$$

 $a = a_f + (1 - a_f)^* a_b$

$$\begin{array}{c} c_{f} = (0,1,1) \\ a_{f} = 0.4 \end{array} \\ \begin{array}{c} c_{red} = 0.4^{*}0 + (1-0.4)^{*}0.94^{*}0.54 = 0.6^{*}0.94^{*}.54 = 0.30 \\ c_{green} = 0.4^{*}1 + (1-0.4)^{*}0.94^{*}0.4 = 0.6^{*}0.94^{*}.4 = 0.23 \\ c_{blue} = 0.4^{*}1 + (1-0.4)^{*}0.94^{*}0 = .4 \\ a = 0.4 + (1-0.4)^{*}(0.94) = 0.4 + 0.6^{*}0.94) = .964 \end{array} \\ \begin{array}{c} c_{1} = (0,1,0) \\ a_{1} = 0.4 \end{array} \\ \begin{array}{c} c_{2} = (1,0,0) \\ a_{2} = 0.9 \end{array} \\ \begin{array}{c} c_{3} = 0.4 \\ c_{4} = 0.30 \\ c_{5} = 0.4 \\ c_{5} = 0.4 \\ c_{5} = 0.4 \\ c_{5} = 0.4 \\ c_{7} = 0.4 \\ c_{7} = 0.4 \\ c_{7} = 0.4 \\ c_{8} = 0.4 \\ c_{8$$

$$c = a_f^* c_f + (1 - a_f)^* a_b^* c_b$$

 $a = a_f + (1 - a_f)^* a_b$

Cf = (0,1,1)

$$a_f = 0.4$$
 $c = (0.3,0.23,0.4)$
 $a = 0.964$
 $c_1 = (0,1,0)$
 $a_1 = 0.4$
 $c_2 = (1,0,0)$
 $a_2 = 0.9$

$$c = a_f^* c_f + (1 - a_f)^* a_b^* c_b$$

 $a = a_f + (1 - a_f)^* a_b$

Order Matters!

$$c = (0.3, 0.23, 0.4)$$

 $a = 0.964$

c = (0.3, 0.23, 0.23)a = 0.964