Lecture 17: Undecidable Languages

CSC 320: Foundations of Computer Science

Quinton Yong

quintonyong@uvic.ca

Outcomes of TM Computation

Possible outcomes of a TM on an input string \boldsymbol{w} are:

- Accept (halt and accept)
- Reject (halt and reject)
- Loop infinitely (considered non-accept, but not a halt reject)

A Turing machine that halts on every input (never loops) is called a decider

Turing-recognizable and Turing-decidable

If a language L is recognized by some TM, we call L Turing-recognizable

- Halts and accepts on input strings in L
- Halts and rejects or loops infinitely on inputs strings not in L

We say a language L is **Turing-decidable** or **decidable** if there exists a **decider** that recognizes L (we also say that M decides L)

- Halts and accepts on strings in L
- Halts and rejects on strings not in L
- Never loops infinitely

More Decidable Languages / Problems

- $A_{DFA} = \{\langle D, w \rangle \mid D \text{ is a DFA that accepts input string } w\}$
 - Decider takes as input the encoding of a DFA \boldsymbol{D} and a string \boldsymbol{w} and accepts if the DFA \boldsymbol{D} accepts the string \boldsymbol{w} , or rejects otherwise

- $A_{NFA} = \{\langle N, w \rangle \mid N \text{ is an NFA that accepts input string } w\}$
- $A_{REX} = \{\langle R, w \rangle \mid R \text{ is a regular expression that generates string } w\}$
- $E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$
- $EQ_{DFA} = \{\langle A, B \rangle \mid A \text{ and } B \text{ are } DFAs \text{ and } L(A) = L(B)\}$

Question: What languages are not Turing-decidable (undecidable), and how do we prove that a language is undecidable?

Barber Paradox

The barber shaves everyone who doesn't shave themselves.

Who shaves the barber?

- If the barber shaves themself, then the barber doesn't shave the barber...
- If the barber doesn't shave themself, then the barber shaves the barber...

This is a **paradox**. This **barber** does not exist.

Undecidable Languages

- A language *L* is **undecidable** if there does not exist a decider which decides the language.
- That is, it is **impossible** creates a TM (decider) for *L* which
 - Halts and accepts on strings in L
 - Halts and rejects on strings not in L
 - Never loops infinitely on any input
- Our first undecidable language:

$$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w\}$$

• The strings in A_{TM} are all pairs of **any TM** M and **string** w where M accepts when run on input w

Undecidable Languages

$$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w\}$$

- To prove that A_{TM} is **undecidable**, we must prove that it is **impossible** to create a decider for A_{TM}
- That is, show it is impossible to create a TM **H** where:
 - H takes as input another TM M and a string w
 - H halts and accepts if M accepts w
 - H halts and rejects if M does not accept w (i.e. M rejects / loops on input w)
 - *H* never loops forever
- We will prove this by contradiction
 - If we assume a decider for A_{TM} exists, a contradiction occurs

- Assume for a contradiction that A_{TM} is decidable
- That means, we assume a TM H exists where on input $\langle M, w \rangle$:
 - H halts and accepts if M accepts w
 - *H* halts and **rejects** if *M* does not accept (rejects or loops) on *w*

• Using H, we will build a different TM (decider) B_{arber}

• Construct B_{arber} as follows:

 $B_{arber} =$ "On input $\langle M \rangle$, where M is a TM

- Run H on input $\langle M, \langle M \rangle \rangle$
 - See if M accepts the string encoding of itself $\langle M \rangle$
- If H accepts, reject
- If *H* rejects, accepts

• What if we run B_{arber} on its own string encoding $\langle B_{arber} \rangle$?

• What if we run B_{arber} on its own string encoding $\langle B_{arber} \rangle$?

• What if we run B_{arber} on its own string encoding $\langle B_{arber} \rangle$?

- If H decides that B_{arber} accepts $\langle B_{arber} \rangle$, then B_{arber} rejects $\langle B_{arber} \rangle$
- If H decides that B_{arber} does not accept $\langle B_{arber} \rangle$, then B_{arber} accepts $\langle B_{arber} \rangle$
- This is a contradiction

A_{TM} is Undecidable Proof Summary

- Assume for a **contradiction** that A_{TM} is decidable
- Then there is a decider H which decides A_{TM}
 - On input (M, w), H accepts if M accepts w
 H rejects if M does not accept w
- Construct a decider B_{arber} which uses H as a subroutine
 - On input \(\begin{aligned} M \rangle, B_{arber} \) runs \(H \) on input \(\lambda M, \lambda M \rangle \) \(B_{arber} \) accepts if \(H \) accepts
 \(B_{arber} \) rejects if \(H \) accepts
- Running B_{arber} on input $\langle B_{arber} \rangle$ results in a paradox
- Decider B_{arber} cannot exist, which means H cannot exist
- Therefore, A_{TM} is undecidable

Reductions

- We have now proven that A_{TM} is undecidable using diagonalization
- Now that we know that it is impossible to create a decider for A_{TM}
- We can use this knowledge to prove that other languages are undecidable using reductions

Reductions

Suppose **we know** a language A is undecidable and **we want to prove** that a language B is undecidable.

We show a **reduction from A to B**:

- Assume for a contradiction that B is decidable (there exists a **decider for** B)
- We show that if the decider for B exists, we could create a decider for A
- However, from prior knowledge, we already know that *A* is undecidable, so a **decider for** *A* cannot exist (**contradiction**)
- So, decider for B cannot exist. Therefore, B is undecidable.

The Halting Problem

 Does there exist a decider / algorithm, when given a program with any input, determines if the program halts?

 $Halt_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w\}$

- We will show that $Halt_{TM}$ undecidable. That is, no TM R exists where:
 - R takes as input another TM M and a string w
 - R halts and accepts if M halts (i.e. accepts or rejects) when run on w
 - R halts and rejects if M loops infinitely when run on w
 - R never loops infinitely
- We will prove that $Halt_{TM}$ is undecidable using a reduction from A_{TM} to $Halt_{TM}$

- Assume for a contradiction that $Halt_{TM}$ is decidable
- That means, we assume a TM R exists where on input $\langle M, w \rangle$:
 - R halts and accepts if M halts on input w
 - R halts and rejects if M loops infinitely on input w

• We will show that using R, we can build a decider S for A_{TM}

• Recall, a hypothetical decider S for A_{TM} would do the following:

On input $\langle M, w \rangle$:

- accepts if M accepts w
- rejects if M does not accept w (rejects or loops)

• If can somehow build a decider S for A_{TM} , we would have a **contradiction** since A_{TM} is an **undecidable language**

- We can create S by using R as follows:
 - Run R on input $\langle M, w \rangle$
 - If R rejects, that means M loops on w, so S outputs reject
 - If R accepts, that means M halts (accept or reject) on w, so S runs M on w
 - If M accepts w, S outputs accept
 - If M rejects w, S outputs reject

- Verify that S is a decider for A_{TM}
- On input $\langle M, w \rangle$:
 - If M accepts w, S accepts
 - If *M* rejects *w*, *S* rejects
 - If *M* loops on *w*, *S* rejects
- Yes, S is a decider for A_{TM}
- We have a contradiction since a decider for A_{TM} should not exist

- We have shown that if a decider R for $Halt_{TM}$ exists, then we can create a decider for A_{TM}
- This is a contradiction, since A_{TM} is undecidable
- So, the decider R for $Halt_{TM}$ doesn't exist
- Therefore, $Halt_{TM}$ is undecidable