ST444: Exercise Sheet 3

Part I: Python

- 1. Read in a string and a positive integer n, return a larger string that is n copies of the original string (e.g. "Hi" and $3 \rightarrow$ "HiHiHi").
- 2. Make a two-player Rock-Paper-Scissors game. Ask for players' names first, then ask them to play, make a comparison, print out a message of congratulations to the winner, and finally ask if the players want to start a new game.
- 3. Ask the user for a positive integer and determine whether that number is prime or not.
- 4. Implement the bisection method to find the minimum of a univariate function f. Here f' is assumed unknown.
- 5. Implement the Newton's method to find the minimum of a univariate function f. Here f' and f'' are assumed unknown.

Part II: Optimisation (theory)

- 1. Let f be a convex differentiable function. Prove that any stationary point x^* is a global minimiser of f.
- 2. Let $f: \mathbb{R}^d \to \mathbb{R}$ and $g: \mathbb{R}^d \to \mathbb{R}$ be convex functions. Prove that f+g is also convex. How about f-g? And fg?
- 3. Recall that a set S is convex if for any $x, y \in S$, one also has $tx + (1-t)y \in S$ for any $t \in (0,1)$. Let f be a convex function. Prove that the set of global minimizers of f is a convex set.
- 4. Let $\{x_k\}$ be a sequence in \mathbb{R} that converges to x^* .

The convergence is linear if there is a constant $\rho \in (0,1)$ such that

$$\frac{|x^{k+1}-x^*|}{|x^k-x^*|} \leq \rho, \text{ for all sufficiently large } k.$$

The convergence is quadratic if there is a positive constant C such that

$$\frac{|x^{k+1} - x^*|}{|x^k - x^*|^2} \le C, \text{ for all sufficiently large } k.$$

Determine the convergence rate of the following sequences:

(a)
$$x^k = 1/k$$

(b)
$$x^k = 1 + (0.5)^{2^k}$$

(c)
$$x^k = 1/(k!)$$

- 5. Consider the following two functions: $f(x) = |x^2 2|$ and $g(x) = (x^2 2)^2$. Apply Newton's method to find a (positive) minimiser of f and g. Does it work? Verify your conclusion in Python (using your code from the previous section).
- 6. Consider the problem of minimising $f(\mathbf{x}) := f(x_1, x_2) = (2x_1^2 x_2)^2 + 3x_1^2 x_2$. Let $\mathbf{x}^0 := (1/2, 5/4)^T$.
 - (a) Is the function convex?
 - (b) Determine all the descent directions of f at x^0 .
 - (c) What is the steepest descent direction?
 - (d) Perform one iteration of the steepest descent method using an exact linear search. What is x^1 ?
 - (e) Will it converge to a global optimum?
- 7. Consider the problem of minimising $f(\mathbf{x}) := f(x_1, x_2) = (x_1 + 2x_2 3)^2 + (x_1 2)^2$. Let $\mathbf{x}^0 := (0, 0)^T$.
 - (a) Perform one iteration of Newton's method with an exact line search.
 - (b) Are there any descent directions from x^1 ? Is x^1 optimal?
 - (c) Does the starting point x^0 matter here? Why/why not?
- 8. For coordinate descent algorithm, prove or disprove:
 - (a) Given convex, differentiable f, if we are at a point x such that f(x) is minimized along each coordinate axis, have we found a global minimizer?
 - (b) What if f is convex but non-differentiable?
 - (c) What if f is of the form $f(\mathbf{x}) = g(\mathbf{x}) + h_1(x_1) + \cdots + h_d(x_d)$, where g is convex and smooth and each h_i is convex for $i = 1, \ldots d$?