3. Kernels (22 pts).

(a) (4 pts) To what feature map Φ does the kernel

$$k(\boldsymbol{u}, \boldsymbol{v}) = (\langle u, v \rangle + 1)^3$$

correspond? Assume the inputs have an arbitrary dimension d and the inner product is the dot product.

- Here is my approach: solve this for d=2 such that $u,v\in\mathbb{R}^2$, where $\langle u,v\rangle=\left(u^{(1)}v^{(1)}+u^{(2)}v^{(2)}\right)$, then extrapolate from inputs $\in\mathbb{R}^2$ to inputs $\in\mathbb{R}^d$.
- $(\langle u, v \rangle + 1)^3 = (u^{(1)}v^{(1)} + u^{(2)}v^{(2)} + 1)^3$. This will be messy so let $a = u^{(1)}v^{(1)}$, $b = u^{(2)}v^{(2)}$, and c = 1.
- $\bullet \ (a+b+c)^3 = (a+b+c)^2(a+b+c) = a^3+b^3+c^3+3a^2b+3a^2c+3ab^2+3b^2c+3ac^2+3bc^2+6abc^2+3ab^2+3a^2b+3a^2$
- Here, $\Phi(u) = \frac{\left[(u^{(1)})^3, (u^{(2)})^3, 1, \sqrt{3}(u^{(1)})^2(u^{(1)}), \sqrt{3}(u^{(1)})^2, \right.}{\sqrt{3}(u^{(1)})(u^{(1)})^2, \sqrt{3}(u^{(2)})^2, \sqrt{3}(u^{(1)}), \sqrt{3}(u^{(2)}), \sqrt{6}(u^{(1)})(u^{(2)}) \right]}$

and $\Phi(v)$ is the same, except with "v" in place of "u" $\forall u$.

• NOTE: When attempting to extrapolate this to higher dimensions, I found additional terms not present for \mathbb{R}^2 when experimenting with d=3 and d=4. I successfully detected and characterized this pattern for d=d through a lot of scratch work. For my sake (I can't spend 2+ hours LaTex-ing scratch work) and your sake (a lot of extra reading), I have omitted this scratch work. The feature map can be found on the next page (it takes up enough space I put it on its own page).

• NOTE: I have intentionally formatted this a bit oddly, but it's done with the intent of grouping like elements of the feature map. See explanation below feature map definition for details. Extrapolating our d = 2 feature map to higher, arbitrary dimension d we'll have $\Phi(u) = 0$

$$\left[(u^{(1)})^3, (u^{(2)})^3, ..., (u^{(d)})^3, \\ 1, \\ \sqrt{3}(u^{(1)})^2(u^{(2)}), \sqrt{3}(u^{(1)})^2(u^{(3)}), ..., \sqrt{3}(u^{(1)})^2(u^{(d)}), ..., \sqrt{3}(u^{(d)})^2(u^{(1)}), ..., \sqrt{3}(u^{(d)})^2(u^{(d-1)}), \\ \sqrt{3}(u^{(1)})^2, \sqrt{3}(u^{(2)})^2, ..., \sqrt{3}(u^{(d)})^2, \\ \sqrt{3}(u^{(1)}), \sqrt{3}(u^{(2)}), ..., \sqrt{3}(u^{(d)}), \\ \sqrt{6}(u^{(1)}u^{(2)}), \sqrt{6}(u^{(1)}u^{(3)}), ..., \sqrt{6}(u^{(1)}u^{(d)}), \sqrt{6}(u^{(2)}u^{(3)}), \sqrt{6}(u^{(2)}u^{(4)})..., \sqrt{6}(u^{(d-1)}u^{(d)}), \\ \sqrt{6}(u^{(1)}u^{(2)} \cdots u^{(d-1)}), \sqrt{6}(u^{(1)}u^{(2)} \cdots u^{(d-2)}u^{(d)}), ..., \sqrt{6}(u^{(1)}u^{(3)} \cdots u^{(d-1)}u^{(d)}) \right]$$

- i. The first line of $\Phi(u)$ has d elements
- ii. The second line of $\Phi(u)$ has 1 element
- iii. The third line of $\Phi(u)$ has d(d-1) elements
- iv. The fourth line of $\Phi(u)$ has d elements
- v. The fifth line of $\Phi(u)$ has d elements
- vi. The sixth line of $\Phi(u)$ has $\frac{d(d-1)}{2}$ elements
- vii. The seventh line of $\Phi(u)$ has $\frac{(d-2)(d-1)(d)}{6}$ elements

There end up being a total of $\left[\frac{(d+1)(d+2)(d+3)}{6}\right]$ elements in the feature map $\Phi(u)$.

For example, for d=2 there are 10 elements, which matches what we got for the work at the beginning of the problem. I checked this for higher-dimensional d and it holds. (Again, this comes from the ugly scratch work that isn't worth LaTex-ing).

The feature map $\Phi(v)$ looks the same as $\Phi(u)$ except that all "u's" are replaced with "v's".

Thus the desired feature map has been defined for $k(u,v) = \langle \Phi(u), \Phi(v) \rangle$ and we're done.

(b) (18 pts) Let k_1, k_2 be symmetric, positive-definite kernels over $\mathbb{R}^D \times \mathbb{R}^D$, let $a \in \mathbb{R}^+$ be a positive real number, let $f : \mathbb{R}^D \to \mathbb{R}$ be a real-valued function, and let $p : \mathbb{R} \to \mathbb{R}$ be a polynomial with positive coefficients. For each of the functions k below, state whether it is necessarily a positive-definite kernel. If you think it is, prove it. If you think it is not, give a counterexample.

NOTE: for the remainder of this problem, I'll be using abbreviations to cut down on writing:

- PD = positive definite
- PSD = positive semi-definite
- SPD = symmetric positive definite
- IP = inner product
- i. $k(x,z) = k_1(x,z) + k_2(x,z)$
 - \bullet In this case the function k $\underline{\mathbf{IS}}$ necessarily a PD kernel.
 - Let's prove that k's corresponding kernel matrix is PSD $\forall y_i \in \mathbb{R}^d$.
 - From our notes, we say that a kernel is PD if its kernel matrix is PSD $\forall y$.
 - Since we already have x's in the problem, I'm going to use y for the next part.

Let
$$K_1 = \begin{bmatrix} k_1(y_1, y_1) & k_1(y_1, y_2) & \cdots & k_1(y_1, y_n) \\ k_1(y_2, y_1) & k_1(y_2, y_2) & \cdots & k_1(y_2, y_n) \\ \vdots & \vdots & \ddots & \vdots \\ k_1(y_n, y_1) & k_1(y_n, y_2) & \cdots & k_1(y_n, y_n) \end{bmatrix}$$

Also, define the matrix K_2 similarly, replacing all k_1 's with k_2 's. These matrices – K_1 and K_2 – are the respective kernel matrices for $k_1(x,z)$ and $k_2(x,z)$ respectively.

- We know that $(\boldsymbol{y}^T[K_1 + K_2]\boldsymbol{y}) = (\boldsymbol{y}^T[K_1]\boldsymbol{y}) + (\boldsymbol{y}^T[K_2]\boldsymbol{y})$. Since it is given that k_1 and k_2 are SPD kernels, we know that both kernels are PD kernels, and have kernel matrices $(K_1 \text{ and } K_2)$ that are PSD by definition.
- Therefore, we know that $(\boldsymbol{y}^T[K_1]\boldsymbol{y} \ge 0)$ and $(\boldsymbol{y}^T[K_2]\boldsymbol{y} \ge 0)$ $\implies \boldsymbol{y}^T[K_1 + K_2]\boldsymbol{y} \ge 0 \implies [K_1 + K_2]$ is a PSD kernel matrix $\implies k_1(x,z) + k_2(x,z)$ is a PD kernel \implies the function k(x,z) is necessarily a PD kernel.

ii.
$$k(x,z) = k_1(x,z) - k_2(x,z)$$

- In this case the function k **IS NOT** necessarily a PD kernel.
- Counterexample

Define K_1 and K_2 (kernel matrices for $k_1(x, z)$ and $k_2(x, z)$) as we did in part (i.) of this problem. However, let's specify that $K_2 = 2 \cdot K_1$. Also, let's specify that K_1 and K_2 are both PD matrices.

By definition, K_1 and K_2 must be PSD matrices, but we are looking at a specific case where K_1 and K_2 are both PD. Since {PD matrices} \subset {PSD matrices} this means K_1 and K_2 are still (also) PSD matrices.

• Now, using the kernel matrix for k(x, z), $[K_1 - K_2] = [K_1 - 2 \cdot K_1]$ examining $\left(\boldsymbol{y}^T [K_1 - 2 \cdot K_1] \boldsymbol{y} \right) = \left(\boldsymbol{y}^T [K_1] \boldsymbol{y} \right) - 2 \left(\boldsymbol{y}^T [K_1] \boldsymbol{y} \right)$.

Since we chose K_1 to be PD, we know that $\left(\boldsymbol{y}^T \big[K_1 \big] \boldsymbol{y} \right) > 0 \; \forall \boldsymbol{y} \in \mathbb{R}^d$ and $\boldsymbol{y} \neq \boldsymbol{0}$.

Let $c = (y^T[K_1]y) \implies (c > 0)$. Knowing that c > 0 we can reduce the value of the

kernel matrix for k(x, z) from $\left(\boldsymbol{y}^T \begin{bmatrix} K_1 \end{bmatrix} \boldsymbol{y} \right) - 2 \left(\boldsymbol{y}^T \begin{bmatrix} K_1 \end{bmatrix} \boldsymbol{y} \right)$ down to $\left(c - 2c\right) = -c$. Since $(c > 0) \implies (-c < 0) \implies$ the kernel matrix $[K_1 - K_2] = [K_1 - 2 \cdot K_1]$ is not PSD $\implies k$ is not a PD kernel in this case.

iii.
$$k(x,z) = ak_1(x,z)$$

- In this case the function k **IS** necessarily a PD kernel.
- For this function let's show that its corresponding kernel matrix is PSD.

7

• Let $K_1 = \begin{bmatrix} k_1(y_1, y_1) & k_1(y_1, y_2) & \cdots & k_1(y_1, y_n) \\ k_1(y_2, y_1) & k_1(y_2, y_2) & \cdots & k_1(y_2, y_n) \\ \vdots & \vdots & \ddots & \vdots \\ k_1(y_n, y_1) & k_1(y_n, y_2) & \cdots & k_1(y_n, y_n) \end{bmatrix}$

By definition, since we know that $k_1(x,z)$ is an SPD kernel, we know that its kernel matrix K_1 is PSD for all $\boldsymbol{y}_i \in \mathbb{R}^d$, mathematically notated as $\left(\boldsymbol{y}^T[K_1]\boldsymbol{y}\right) \geq 0$.

- We know that multiplying $a \cdot K_1$ will give a PSD matrix since $\left(\boldsymbol{y}^T [a \cdot K_1] \boldsymbol{y} \right) = a \cdot \left(\boldsymbol{y}^T [K_1] \boldsymbol{y} \right)$ and we know that $\left(\boldsymbol{y}^T [K_1] \boldsymbol{y} \right) \geq 0$. Since a is defined to be a positive real number (in prompt), we know that $(a) \cdot (" \geq 0") \geq 0$, and therefore $a \cdot \left(\boldsymbol{y}^T [K_1] \boldsymbol{y} \right) \geq 0 \implies \left(\boldsymbol{y}^T [a \cdot K_1] \boldsymbol{y} \right) \geq 0 \implies [a \cdot K_1]$ is a PSD matrix.
- Since $[a \cdot K_1]$ is the kernel matrix for $ak_1(x, z)$ and it is a PSD matrix, we know that $k(x, z) = ak_1(x, z)$ is necessarily a PD kernel.

iv. $k(x,z) = k_1(x,z)k_2(x,z)$

- In this case the function k **IS** necessarily a PD kernel.
- We will show this by proving k(x, z) is an IP kernel.
- From the prompt, it's given that k_1 and k_2 are SPD kernels. Using the theorem (given in notes) that [k] is an SPD kernel \iff [k] is an IP kernel] we know that k_1 and k_2 are IP kernels. As such, k_1 and k_2 can each be expressed as an IP of feature maps.
- Using these facts, define $k_1(x,z) = \left[\phi^{(1)}(x)\right]^T \left[\phi^{(1)}(z)\right] = \sum_{j=1}^d \left(\phi_j^{(1)}(x)\right) \left(\phi_j^{(1)}(z)\right)$ $= \left[\left(\phi_1^{(1)}(x)\right) \left(\phi_1^{(1)}(z)\right) + \left(\phi_2^{(1)}(x)\right) \left(\phi_2^{(1)}(z)\right) + \ldots + \left(\phi_d^{(1)}(x)\right) \left(\phi_d^{(1)}(z)\right)\right]$
- Similarly, $k_2(x,z) = \left[\left(\phi_1^{(2)}(x) \right) \left(\phi_1^{(2)}(z) \right) + \left(\phi_2^{(2)}(x) \right) \left(\phi_2^{(2)}(z) \right) + \ldots + \left(\phi_d^{(2)}(x) \right) \left(\phi_d^{(2)}(z) \right) \right]$
- Now, using these definitions, let's see what $k_1(x,z)k_2(x,z)$ is: $k_1(x,z)k_2(x,z) =$

$$\begin{split} & \left[\left(\left(\phi_{1}^{(1)}(x) \right) \left(\phi_{1}^{(2)}(x) \right) \right) \left(\left(\phi_{1}^{(1)}(z) \right) \left(\phi_{1}^{(2)}(z) \right) \right) \right] + \left[\left(\left(\phi_{1}^{(1)}(x) \right) \left(\phi_{2}^{(2)}(x) \right) \right) \left(\left(\phi_{1}^{(1)}(z) \right) \left(\phi_{2}^{(2)}(z) \right) \right) \right] \\ & + \ldots + \left[\left(\left(\phi_{1}^{(1)}(x) \right) \left(\phi_{d}^{(2)}(x) \right) \right) \left(\left(\phi_{d}^{(1)}(z) \right) \left(\phi_{d}^{(2)}(z) \right) \right) \right] + \left[\left(\left(\phi_{2}^{(1)}(x) \right) \left(\phi_{1}^{(2)}(x) \right) \right) \left(\left(\phi_{2}^{(1)}(z) \right) \left(\phi_{2}^{(2)}(z) \right) \right) \right] \\ & + \ldots + \left[\left(\left(\phi_{2}^{(1)}(x) \right) \left(\phi_{d}^{(2)}(x) \right) \right) \left(\left(\phi_{2}^{(1)}(z) \right) \left(\phi_{d}^{(2)}(z) \right) \right) \right] \\ & + \ldots + \left[\left(\left(\phi_{d}^{(1)}(x) \right) \left(\phi_{1}^{(2)}(x) \right) \right) \left(\left(\phi_{d}^{(1)}(z) \right) \left(\phi_{d}^{(2)}(z) \right) \right) \right] + \left[\left(\left(\phi_{d}^{(1)}(x) \right) \left(\phi_{2}^{(2)}(x) \right) \right) \left(\left(\phi_{d}^{(1)}(z) \right) \left(\phi_{2}^{(2)}(z) \right) \right) \right] \\ & + \ldots + \left[\left(\left(\phi_{d}^{(1)}(x) \right) \left(\phi_{d}^{(2)}(x) \right) \right) \left(\left(\phi_{d}^{(1)}(z) \right) \left(\phi_{d}^{(2)}(z) \right) \right) \right] \\ & + \ldots + \left[\left(\left(\phi_{d}^{(1)}(x) \right) \left(\phi_{d}^{(2)}(x) \right) \right) \left(\left(\phi_{d}^{(1)}(z) \right) \left(\phi_{d}^{(2)}(z) \right) \right) \right] \end{aligned}$$

- Thus, to show that $k_1(x,z)k_2(x,z)$ can be expressed as the inner product of two feature maps (and is hence an IP kernel), we can use the above expression of k_1k_2 to show $k_1(x,z)k_2(x,z) = [\psi(x)]^T[\psi(z)]$.
- From the above expression, $\psi(x) =$

$$\begin{bmatrix} \left(\left(\phi_{1}^{(1)}(x) \right) \left(\phi_{1}^{(2)}(x) \right) \right), \left(\left(\phi_{1}^{(1)}(x) \right) \left(\phi_{2}^{(2)}(x) \right) \right), \dots, \left(\left(\phi_{1}^{(1)}(x) \right) \left(\phi_{d}^{(2)}(x) \right) \right), \\ \left(\left(\phi_{2}^{(1)}(x) \right) \left(\phi_{1}^{(2)}(x) \right) \right), \left(\left(\phi_{2}^{(1)}(x) \right) \left(\phi_{2}^{(2)}(x) \right) \right), \dots, \left(\left(\phi_{2}^{(1)}(x) \right) \left(\phi_{d}^{(2)}(x) \right) \right), \\ \dots, \left(\left(\phi_{d}^{(1)}(x) \right) \left(\phi_{1}^{(2)}(x) \right) \right), \left(\left(\phi_{d}^{(1)}(x) \right) \left(\phi_{2}^{(2)}(x) \right) \right), \dots, \left(\left(\phi_{d}^{(1)}(x) \right) \left(\phi_{d}^{(2)}(x) \right) \right) \end{bmatrix}$$

<u>NOTE</u>: the feature map is purposely broken up onto different lines to more clearly illustrate the patterns associated with the indices of the ϕ functions.

- Similarly, $\psi(z)$ will look identical to $\psi(x)$, except all x's will be replaced with z's.
- Since we are able to express $k(x,z) = k_1(x,z)k_2(x,z) = \langle \psi(x), \psi(z) \rangle \ \forall x,z \in \mathbb{R}^d$ we know that k(x,z) is an IP kernel. Using the theorem $(k \text{ is an IP kernel}) \iff (k \text{ is an SPD kernel}), k \text{ must be an SPD kernel}$. Since all SPD kernels are also PD kernels, k must necessarily be a PD kernel.

- v. k(x, z) = f(x)f(z)
 - In this case the function k **IS** necessarily a PD kernel.
 - To begin, here is a definition from course notes: We say $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is an IP kernel is \exists an IP space V and a feature map $\Phi: \mathbb{R}^d \to V$ such that $k(x,z) = \langle \Phi(x), \Phi(z) \rangle \ \forall x,z \in \mathbb{R}^d$.
 - Let's define feature map $\Phi(x) = f(x)$. Since $f(x) : \mathbb{R}^d \to \mathbb{R}$, from the definition of the feature map above $(\Phi : \mathbb{R}^d \to V)$ we can deduce that \mathbb{R} is our IP space V. Similarly, define $\Phi(z) = f(z)$. This f(z) also maps $\mathbb{R}^d \to V$, where V is \mathbb{R} .
 - Now that we've defined $\Phi(x)$ and $\Phi(z)$, we can use the definition to go from $k(x,z) = \langle \Phi(x), \Phi(z) \rangle$ to k(x,z) = f(x)f(z).
 - Since $f(x): \mathbb{R}^d \to \mathbb{R}$ and $f(z): \mathbb{R}^d \to \mathbb{R}$, we know that the result of f(x)f(z) is $a \cdot b = c$, where $[f(x) = a] \in \mathbb{R}$, $[f(z) = b] \in \mathbb{R}$, and $c \in \mathbb{R}$ since the space \mathbb{R} is closed under multiplication. Therefore, we've found a feature map $\Phi: \mathbb{R}^d \to V$ (where V is \mathbb{R}) such that $k(x, z) = f(x)f(z) \ \forall x, z \in \mathbb{R}^d$.
 - Hence, we've shown that k(x, z) is an IP kernel. Invoking the theorem $(k \text{ is an IP kernel}) \iff (k \text{ is an SPD kernel})$, we conclude that k is also an SPD kernel. Since all SPD kernels are also PD kernels, we conclude that k must necessarily be a PD kernel.
- vi. $k(x,z) = p(k_1(x,z))$
 - In this case the function k **IS** necessarily a PD kernel.
 - Definition of a polynomial with degree p is $p(t) = \sum_{i=0}^{p} a_i t^i$. For this problem we're given that $a_i \in \mathbb{R}^+ \ \forall i$.
 - We can express k(x,z) as $p(k_1(x,z))$, where $p(k_1(x,z)) = \sum_{i=0}^{p} a_i (k_1(x,z))^i$ where $\sum_{i=0}^{p} a_i (k_1(x,z))^i = a_0 (k_1(x,z))^0 + a_1 (k_1(x,z))^1 + a_2 (k_1(x,z))^2 + \ldots + a_p (k_1(x,z))^p$.
 - We know, by definition in the prompt, that $k_1(x,z)$ is an SPD kernel. From **part (iv)** of this problem, we've shown the property that the product of two SPD kernels is a PD kernel. We can extend this property to each of the terms $(k_1(x,z))^i$ in our sum. So we know that $(k_1(x,z))^i$ is a PD kernel for $i \in \{1,2,\ldots,p\}$.
 - Now that we know this, we can apply the property shown in **part (iii)** of this problem to know that $a_i(k_1(x,z))^i$ is a PD kernel, since $a_i \in \mathbb{R}^+$ and we've just shown that $(k_1(x,z))^i$ is a PD kernel for $i \in \{1, 2, ..., p\}$.
 - Now that we know each term $a_i(k_1(x,z))^i$ is a PD kernel $\forall i$, we know that each term in the sum $p(k_1(x,z)) = \sum_{i=0}^p a_i(k_1(x,z))^i = a_0(k_1(x,z))^0 + a_1(k_1(x,z))^1 + a_2(k_1(x,z))^2 + \dots + a_p(k_1(x,z))^p$ is a PD kernel. From **part (i)** of this problem, we've shown that the sum of PD kernels is a PD kernel. Applying this to our sum $\sum_{i=0}^p a_i(k_1(x,z))^i$, we know that this is necessarily a PD kernel.