α) Η συνάρτηση f ορίζεται μόνο για $x + 3 \ge 0$, δηλαδή για $x \ge -3$.

Άρα, το πεδίο ορισμού της f είναι: $A_f = [-3, +\infty)$.

Σύμφωνα με το σχήμα η f είναι γνησίως αύξουσα στο $[-3, +\infty)$.

Η συνάρτηση g παριστάνει ευθεία για κάθε πραγματική τιμή του x και είναι γνησίως αύξουσα στο \mathbb{R} , εφόσον είναι της μορφής $y=\alpha x+\beta$ με $\alpha>0$.

β) Οι ρίζες της εξίσωσης $f(x)=g(x) \Leftrightarrow \sqrt{x+3}=3x-1$ είναι οι τετμημένες των κοινών σημείων των C_f και C_g που ανήκουν στο σύνολο $A=A_f\cap A_g=[-3,+\infty)$.

Από το σχήμα παρατηρούμε πως οι γραφικές παραστάσεις τέμνονται στο σημείο (1,2), δηλαδή στο σημείο με τετμημένη x=1 και $1 \in A$.

Άρα, η εξίσωση έχει μοναδική λύση x=1.

β) Εναλλακτική λύση:

Οι ρίζες της εξίσωσης f(x) = g(x) προκύπτουν από τις λύσεις της παρακάτω εξίσωσης

$$\sqrt{x+3} = 3x - 1.$$

Η εξίσωση ορίζεται για $x \ge -3$ και $3x - 1 \ge 0 \Leftrightarrow x \ge \frac{1}{3}$.

 $\sqrt{x+3} = 3x-1$ υψώνουμε και τα δυο μέλη στο τετράγωνο

$$\sqrt{x+3}^2 = (3x-1)^2 \Leftrightarrow x+3 = 9x^2 - 6x + 1 \Leftrightarrow 9x^2 - 7x - 2 = 0.$$

Οι ρίζες του τριωνύμου είναι 1 και $-\frac{2}{9}$. Από τις ρίζες αυτές διαπιστώνουμε με επαλήθευση ότι μόνο η x=1 είναι δεκτή.

Άρα, μοναδική λύση της εξίσωσης f(x) = g(x) είναι η x=1.

γ) i. Η ανίσωση f(x) < g(x) λύνεται γραφικά με το να βρούμε τις τετμημένες, δηλαδή τα x, όπου η C_f είναι κάτω από C_g .

Από το σχήμα προκύπτει πως αυτό συμβαίνει για $x \in (1, +\infty)$.

Αλγεβρικά η ανίσωση λύνεται:

Για
$$3x - 1 \ge 0 \Leftrightarrow x \ge \frac{1}{3}$$
 και $x \ge -3$, έχουμε
$$f(x) < g(x) \Leftrightarrow \sqrt{x + 3} < 3x - 1 \Leftrightarrow \sqrt{x + 3}^2 < (3x - 1)^2 \Leftrightarrow$$

$$x + 3 < 9x^2 - 6x + 1 \Leftrightarrow$$

$$9x^2 - 7x - 2 > 0 \text{ τότε}$$

$$x \in (-\infty, -\frac{2}{9}) \cup (1, +\infty).$$

Σύμφωνα με τους περιορισμούς η ανίσωση αληθεύει για $x \in (1, +\infty)$.

Για
$$3x-1<0 \Leftrightarrow x<\frac{1}{3}$$
 και $x\geq -3$, έχουμε $\sqrt{x+3}<3x-1$ αδύνατη.