Micro Interrogation: Architecture des ordinateurs L2 (Drée: 1h00)

Exercice 1 (7 points): Boucles et branchements conditionnels

Soit le code MIPS suivant :

Adresse	Instruction		Explication	Туре
80000000	li \$	st0, 10	\$ † 0 ← 10	I
8000004	etiq1: beq	\$t0, 0, etiq2	Si \$t0 =0 aller à etiq2	I
80000008	addi	\$t0, \$t0, -1	\$t0 ← \$t0 - 1	I
8000000 <i>C</i>	j e	etiq1	Aller à etiq1	J
80000010	li \$	5v0, 1	$v0 \leftarrow 1$ affichage entier	I
80000014	add \$	a0, \$a0, \$t0	\$a0 ← \$a0 + \$t0	R
80000018	syscall		Appel system	
8000001 <i>C</i>	etiq2:			
			En fin du programme \$a0 = 45	

- 1. Déterminer seulement le type de format (R, I, J) de chaque instruction sans la représentation du code machine.
- 2. Expliquer que fait chaque instruction.
- 3. Quel est le contenu du registre \$a0 à la fin de l'exécution du programme?

Exercice 3 (8 points): Calcul des performances du CPU

Une première organisation d'une architecture d'une machine nous donne les CPI (voir table ci-dessous). Cette machine utilise une horloge de 2.0 GHz. Un compilateur a été écrit et nous donne un programme de 100000 instructions pour un logiciel L. Ces instructions sont distribuées de la façon suivante :

Classe	CPI	Nombre d'instructions en %
Arithmétiques	4	40%
Chargements	5	20%
Rangements	4	15%
Branchements	3	15%
Sauts	3	10%

1. Combien de cycle ce logiciel prendra-t-il pour s'exécuter?

Réponse : Nombre de cycle : (0.4*4+0.2*5+0.15*4+0.15*3+0.1*3)*100000 = 395000 cycles

2. Calculer son temps d'exécution nécessaire?

Réponse : Temps d'exécution : $395000(2*10^9) = 197500*10^{-9}$ ns = 197.5μ s

3. Quel est le CPI de ce logiciel sur cette organisation?

Réponse : Le CPI (cycle per instruction) de ce programme, défini comme le rapport entre le nombre de cycles requis pour son exécution et le nombre :

Micro Interrogation: Architecture des ordinateurs L2 (Drée: 1h00)

CPI = 395000/100000 = **3.95**

Exercice (5 points): Arithmétique et Accès mémoire

Écrire une séquence d'instructions MIPS réalisant les opérations suivantes :

Mem[100 + \$s1] = Mem[\$s2] Réponse : lw \$t0, 0(\$s2)

Sw \$t0, 100(\$s1)

\$s0 = Mem[-4 + \$s3] Réponse : lw \$s0, -4(\$s3)

Note: si vous avez besoin d'un registre temporaire, utilisez \$10.