Edifice dense : tangence des sphères

Selon une direction de l'espace (1D)

Selon deux directions de l'espace (2D)

Maille	Carrée	Losange	
Nombre de sphères	1	1	
Aire	4R ²	4R ² cos30	

Tangence des sphères dans un plan compact

Position des sites d'accueil pour les sphères du plan B

Empilement ABABABA...

Empilement Hexagonal Compact

La maille HC

Représentation éclatée

Représentation compacte

Relation entre a, c et R

Empilement de type ABCABCA..

Empilement compact de type CFC

Relation entre a, c et R dans une maille CFC

Réarrangement des sphères dans un plan non compact

Couche non compacte

Superposition de couches non compactes

Empilement Cubique Simple

Superposition de couches non compactes

La maille Cubique Centré ou cubique mode I

Liaison métallique

Atome ayant cédé ses électrons de valence

« Nuage », « mer » ou « gaz » d'électrons délocalisés

Application d'une force de cisaillement

Après glissement des plans atomiques, la structure cristalline est identique : les métaux peuvent se **déformer de manière plastique** (irréversiblement)

En une phrase :

La liaison métallique est une liaison forte, non directionnelle, dans laquelle les électrons sont délocalisés et qui implique des éléments de faible électronégativité, présentant une faible différence d'électronégativité.

Métal	Rayon Er atomique (nm)	Empilement	Paramètres cristallin	du réseau
			a (nm)	c (nm)
Mg	0,16045	НС	0,3209	0,5210
Zn	0,1332	НС	0,2664	0,4945
Τία,	0,14755	НС	0,2951	0,4679

La maille HC du Mg

a= 0,3209nm

Exemple : Be, Mg, Zn, Cd, $Ti\alpha$, $Co\alpha$.

Métal	Rayon en (nm)	Empilement	Paramètre de réseau a (nm)
Feγ	0,1292	CFC	0,3656
Cu	0,1288	CFC	0,3643
Au	0,1442	CFC	0,4078
Ag	0,1432	CFC	0,4050

Exemple : Al, Ni, **Cu**, **Ag**, Pt, **Au**, Pb, **Fe**γ Coβ

La maille CFC du fer γ

Métal	Rayon en nm	Empilement	Paramètre de réseau a (nm)
Feα	0,1289	CC	0,2976
W	0,1370	CC	0,3165
Мо	0,1362	CC	0,3147
Cr	0,1248	CC	0,2884
Τίβ	0,1431	CC	0,3306

Exemple : le Fer α , W, Mo, Cr, Ti β .

Le Fer α , Atomium de Bruxelles

Exemples de métaux présentant plusieurs variétés allotropiques :

Métal	Rayon at. (nm)	Structure	Paramètres de maille	
			a (nm)	c (nm)
Τi _α ,	0,14755	НС	0,2951	0,4679
Τiβ	0,1431	CC	0,3306	-
$\mathrm{Fe}_{arepsilon}$	0,1292	НС	0,2473	0,3962
Feγ	0,1292	CFC	0,3656	-
Feα	0,1289	CC	0,2976	-
Co _β ,	0,125	НС	0,2507	0,4070
$\operatorname{Co}_{\alpha}$	0,125	CFC	0,3544	-
$\mathbf{Zr}_{\mathbf{\alpha}}$	0,1600	НС	0,3232	0,5148
$\mathbf{Zr}_{\mathbf{\beta}}$	0,1550	CC	0,3545	-

On peut remarquer les différences de rayon ioniques, pour un même métal, entre les structures compactes et non compactes : cela provient de la coordinence différente dans ces structures. En effet, le volume occupé par un atome ou un ion dépend des interactions qu'il engage avec ses voisins, et en premier lieu, de leur nombre. Le rayon dépend donc de la coordinence (et augmente avec elle), ce qui explique ces valeurs différentes.