#### **CHAPTER 4**

4.1 (a) 
$$T_1 = B'C$$
,  $T_2 = A'B$ ,  $T_3 = A + T_1 = A + B'C$ ,  $T_4 = D \oplus T_2 = D \oplus (A'B) = A'BD' + D(A + B') = A'BD' + AD + B'D$   
 $F_1 = T_3 + T_4 = A + B'C + A'BD' + AD + B'D$   
With  $A + AD = A$  and  $A + A'BD' = A + BD'$ :  $F_1 = A + B'C + BD' + B'D$   
Alternative cover:  $F_1 = A + CD' + BD' + B'D$ 



|   | ∖CD |                  |                        | C                       |                           | ,                                 |
|---|-----|------------------|------------------------|-------------------------|---------------------------|-----------------------------------|
|   |     | 00               | 01                     | 11                      | 10                        |                                   |
|   | 00  | $m_{\theta}$     | 1                      | <i>m</i> <sub>3</sub> 1 | 1                         |                                   |
|   | 01  | m <sub>4</sub> 1 | $m_5$                  | $m_7$                   | <sup>m</sup> <sub>6</sub> | , D                               |
| , | 11  | m <sub>12</sub>  | <i>m</i> <sub>13</sub> | m <sub>15</sub>         | 1                         | $\begin{bmatrix} B \end{bmatrix}$ |
| A | 10  | m <sub>8</sub>   | 1                      | 1                       | 1                         |                                   |
|   | _   |                  |                        | D                       |                           | •                                 |

$$F_1 = A + B'C + B'D + BD'$$





 $F_1 = A + CD' + B'D + BD'$ 

55

4.2



$$F = (A + D)(A' + BC) = A'D + ABC + BCD += A'D + ABC$$





F = A'D + ABC + BCD = A'D + ABC

D

- G = A'D' + ABC + BCD' = A'D' + ABC
- **4.3** (a)  $Y_i = (A_iS' + B_iS)E'$  for i = 0, 1, 2, 3
  - **(b)** 1024 rows and 14 columns
- 4.4 (a)





Digital Design - Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

 $\begin{array}{l} \textbf{module} \ \mathsf{Prob}\_4\_6 \ (\textbf{output} \ \mathsf{F}, \ \textbf{input} \ x, \ y, \ z);\\ \textbf{assign} \ \mathsf{F} = (x \ \& \ z) \ | \ (y \ \& \ z) \ | \ (x \ \& \ y);\\ \textbf{endmodule} \end{array}$ 

#### 4.7 (a)

| ABCD   0000   0001   0011   0010   0111   0100   1100   1101   1111   1110   1010   1011   1111   1110   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   1011   10 | 0000<br>0001<br>0010<br>0011<br>0100<br>0101<br>0110<br>0111<br>1000<br>1001<br>1010<br>1011<br>1100<br>1101 | 00                                      | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                   | $CD \qquad 00 \qquad 00 \qquad 01 \qquad 1$ $A \qquad 10 \qquad m_{s} \qquad 1$ $x = A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $     \begin{array}{ccccccccccccccccccccccccccccccccc$                                                                       | 1 1                                                                  | B |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---|
| 1001   1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1110<br>1111                                                                                                 | 00 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                   | $ \begin{array}{c c} AB & CD \\ 00 & & \\ 01 & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $ | $\begin{bmatrix} m_{I} & m_{3} \\ 1 & & \\ m_{5} & m_{7} \\ & & \\ m_{13} & m_{13} \\ 1 & & \\ m_{9} & m_{II} \end{bmatrix}$ | $\begin{bmatrix} 1 & & & \\ & & & \\ 5 & & & \\ & & 1 \end{bmatrix}$ |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                         | A'BC' + ABC + AB'C'<br>$A'B + A(B \oplus C)'$          | - w<br>- x<br>- y |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{matrix} D \\ \oplus B \oplus C \oplus \end{matrix}$                                                                  | D                                                                    |   |

**(b)** 

module Prob\_4\_7(output w, x, y, z, input A, B, C, D); always @ (A, B, C, D) case ({A, B, C, D}) 4'b0000: {w, x, y, z} = 4'b0000;

Digital Design - Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

```
4'b0001:
                    \{w, x, y, z\} = 4'b1111;
     4'b0010:
                    \{w, x, y, z\} = 4'b1110;
     4'b0011:
                    \{w, x, y, z\} = 4'b1101;
     4'b0100:
                    \{w, x, y, z\} = 4'b1100;
                    \{w, x, y, z\} = 4b1011;
     4'b0101:
                    \{w, x, y, z\} = 4b1010;
     4'b0110:
     4'b0111:
                    \{w, x, y, z\} = 4'b1001;
     4'b1000:
                    \{w, x, y, z\} = 4'b1000;
     4'b1001:
                    \{w, x, y, z\} = 4'b0111;
     4'b1010:
                    \{w, x, y, z\} = 4'b0110;
     4'b1011:
                    \{w, x, y, z\} = 4'b0101;
     4'b1100:
                    \{w, x, y, z\} = 4'b0100;
     4'b1101:
                    \{w, x, y, z\} = 4'b0011;
     4'b1110:
                    \{w, x, y, z\} = 4'b0010;
     4'b1111:
                    \{w, x, y, z\} = 4'b0001;
  endcase
endmodule
```

#### Alternative model:

```
module Prob_4_7(output w, x, y, z, input A, B, C, D);
assign w = A;
assign x = A ^ B);
assign y = x ^ C;
assign z = y ^ D;
endmodule
```



Digital Design - Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

59

Alternative model:

D

e = A'CD' + B'C'D'

module Prob\_4\_8(output w, x, y, z, input A, B, C, D); **assign**  $w = (A\&B) | (A \& (\sim C)) \& (\sim D);$ **assign** x = (( B & C) | (( B & C) | (B & ( C)) & (D);assign y = C ^ D; assign z = D; endmodule

| 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                 |                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CD $C$                                                                                                                                                                                                                                                                                                                             | AB $CD$ $OO$ $O1$                                                                                                                                                               | C                                                      |
| 0000         1         1         1         1         1         1         0           0001         0         1         1         0         0         0         0           0010         1         1         0         1         1         0         1           0011         1         1         1         1         0         0         1           0100         0         1         1         0         0         1         1           0101         1         0         1         1         0         1         1           0110         1         0         1         1         1         1         1         1           1000         1         1         1         1         1         1         1         1           1000         1         1         1         1         1         1         1         1 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                             | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                          | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $a = A'C + A'BD + B'C'D' + AB'C'$ $AB \begin{array}{c ccccc} C & C & C \\ \hline 00 & 01 & 11 & 10 \\ \hline 00 & 1 & 1 & 1 & m_2 \\ \hline 01 & 1 & 1 & 1 & 1 \\ \hline 11 & 1 & 1 & 1 & 1 \\ \hline 11 & 1 & 1 & 1 & 1 \\ \hline 12 & m_{I2} & m_{I3} & m_{I5} & m_{I4} \\ \hline 10 & 1 & 1 & 1 & m_{I0} \\ \hline \end{array}$ | $b = A'B' + A'C'D$ $AB \qquad 00 \qquad 01$ $00 \qquad 1$ $01 \qquad m_{d} \qquad m_{f}$ $01 \qquad m_{d} \qquad m_{f}$ $1 \qquad m_{g} \qquad m_{g}$ $1 \qquad 1$ $1 \qquad 1$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                 | $\overline{D}$                                         |



Digital Design - Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

f = A'BC' + A'C'D' + A'BD + AB'C'

D

g = A'CD' + A'B'C' + A'BC' + AB'C'



For a 5-bit 2's complementer with input E and output v:

$$v = E \oplus (A + B + C + D)$$



Note: 5-bit output

Digital Design - Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

61



Note: To decrement the 4-bit number, add -1 to the number. In 2's complement format (add  $F_h$ ) to the number. An attempt to decrement 0 will assert the borrow bit. For waveforms, see solution to Problem 4.52.

4.12

(a)

**(b)** 

| $x y B_{in}$                              | BD                              |                                                         |
|-------------------------------------------|---------------------------------|---------------------------------------------------------|
| 0 0 0<br>0 0 1<br>0 1 0<br>0 1 1<br>1 0 0 | 0 0<br>1 1<br>1 1<br>1 0<br>0 1 | $Diff = x \oplus y \oplus z$ $B_{out} = x'y + x'z + yz$ |
| 1 0 1<br>1 1 0<br>1 1 1                   | 0 0<br>0 0<br>1 1               |                                                         |

- **4.13** Sum *C V* 
  - (a) 1101 0 1
  - **(b)** 0001 1 1
  - **(c)** 0100 1 0
  - **(d)** 1011 0 1
  - **(e)** 1111 0 0
- 4.14 xor AND OR XOR

$$10 + 5 + 5 + 10 = 30 \text{ ns}$$

Digital Design - Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

4.15 
$$C_4 = G_3 + P_3C_3 = G_3 + P_3(G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0)$$
$$= G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0$$

4.16 (a)

$$\begin{split} (C'G'_i + p'_i)' &= (C_i + G_i)P_i = G_iP_i + P_iC_i \\ &= A_iB_i(A_i + B_i) + P_iC_i \\ &= A_iB_i + P_iC_i = G_i + P_iC_i \\ &= A_iB_i + (A_i + B_i)C_i = A_iB_i + A_iC_i + B_iC_i = C_{i+1} \\ (P_iG'_i) \oplus C_i &= (A_i + B_i)(A_iB_i)' \oplus C_i = (A_i + Bi)(A'_i + B'_i) \oplus C_i \\ &= (A'_iB_i + A_iB'_i) \oplus C_i = A_i \oplus B_i \oplus C_i = S_i \end{split}$$

**(b)** 

Output of NOR gate = 
$$(A_0 + B_0)' = P'_0$$
  
Output of NAND gate =  $(A_0B_0)' = G'_0$   
 $S_1 = (P_0G'_0) \oplus C_0$   
 $C_1 = (C'_0G'_0 + P'_0)'$  as defined in part (a)

4.17 (a)

$$\begin{split} (C'_iG'_i + P'_i)' &= (C_i + G_i)P_i = G_iP_i + P_iC_i = A_iB_i(A_i + B_i) + P_iC_i \\ &= A_iB_i + P_iC_i = G_i + P_iC_i \\ &= A_iB_i + (A_i + B_i)C_i = A_iB_i + A_iC_i + B_iC_i = C_{i+1} \end{split}$$

$$(P_iG'_i) \oplus C_i = (A_i + B_i)(A_iB_i)' \oplus C_i = (A_i + B_i)(A'_i + B'_i) \oplus C_i$$
$$= (A'_iB_i + A_iB'_i) \oplus C_i = A_i \oplus B_i \oplus C_i = S_i$$

**(b)** 

Output of NOR gate =  $(A_0 + B_0)' = P'_0$ Output of NAND gate =  $(A_0B_0)' = G'_0$ 

$$\begin{split} S_0 &= (P_0G'_0) \oplus C_0 \\ C_1 &= (C'_0G'_0 + P'_0)' \quad \text{ as defined in part (a)} \end{split}$$

| Inputs<br>ABCD | Outputs wxyz |                                              |        |
|----------------|--------------|----------------------------------------------|--------|
| 0000           | 1001         | $d(A, b, c, d) = \Sigma(10, 11, 12, 13, 14)$ | 1, 15) |
| 0001<br>0010   | 1000<br>0111 |                                              | Í      |
| $0011 \\ 0100$ | 0110<br>0101 |                                              |        |
| 0101<br>0110   | 0100<br>0011 |                                              |        |
| 0111<br>1000   | 0010<br>0001 |                                              |        |
| 1001           | 0000         |                                              |        |





Digital Design - Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

64

**4.20** Combine the following circuit with the 4-bit binary multiplier circuit of Fig. 4.16.



4.21



 $x=(A_0\oplus B_0)'(A_1\oplus B_1)'(A_2\oplus B_2)'(A_3\oplus B_3)'$ 

| XS-3 | Binary |
|------|--------|
| ABCD | wxyz   |
| 0011 | 0000   |
| 0100 | 0001   |
| 0101 | 0010   |
| 0110 | 0011   |
| 0111 | 0100   |
| 1000 | 0101   |
| 1001 | 0110   |
| 1010 | 0111   |
| 1011 | 1000   |
| 1100 | 1001   |
|      | 1 2001 |





|                                                   |                                                                | AB | CD | 00                       | 01                       | 11                                | 10                       | 1                 |
|---------------------------------------------------|----------------------------------------------------------------|----|----|--------------------------|--------------------------|-----------------------------------|--------------------------|-------------------|
| Inputs: <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> | Outpute: D. D. D.                                              |    | 00 | $\mathbf{D}_{0}$ $m_{d}$ | $\mathbf{D}_{1}$ $m_{s}$ | $\mathbf{D}_{3}$ $\mathbf{D}_{3}$ | $D_2$                    | 7                 |
| $D_0 = A'B'C'D'$ $D_1 = A'B'C'D$                  | Outputs: $D_0$ , $D_1$ , $D_9$<br>$D_5 = BC'D$<br>$D_6 = BCD'$ |    | 01 | $D_4$                    | $D_5$                    | D <sub>7</sub>                    | D <sub>6</sub>           | $\Big  \Big _{B}$ |
| $D'_{2} = B'CD'$ $D'_{3} = B'CD$ $D'_{4} = BC'D'$ | $D_8^7 = BCD$ $D_8 = AD'$ $D_8 = AD$                           | A  | 11 | Х                        | <i>m</i> <sub>13</sub> X | <i>m</i> <sub>15</sub> X          | <i>m</i> <sub>14</sub> X |                   |
| $D_4$ – BC $D$                                    | $D_g^{\circ} = AD$                                             | •  | 10 | $\mathbf{D}_{8}$         | $\mathbf{D}_{9}$         | $m_{_{II}}$ X                     | т <sub>10</sub><br>Х     |                   |
|                                                   |                                                                |    |    |                          |                          | D                                 | J                        |                   |



67



#### 4.28 (a)

4.27







5 6 7

Digital Design - Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

 $F_3 = x'z + yz = \Sigma(1, 3, 7)$ 



 $y = D'_0 D_1 + D'_0 D'_2$ 

4.30

|       |       |       | Іпри  | ts    |       |       |       | Outputs |
|-------|-------|-------|-------|-------|-------|-------|-------|---------|
| $D_0$ | $D_1$ | $D_2$ | $D_3$ | $D_4$ | $D_5$ | $D_6$ | $D_7$ | x y z V |
| 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | x x x 0 |
| 1     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0 0 0 1 |
| X     | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 0 0 1 1 |
| X     | X     | 1     | 0     | 0     | 0     | 0     | 0     | 0 1 0 1 |
| X     | X     | X     | 1     | 0     | 0     | 0     | 0     | 0 1 1 1 |
| X     | X     | X     | X     | 1     | 0     | 0     | 0     | 1 0 0 1 |
| X     | X     | X     | X     | X     | 1     | 0     | 0     | 1 0 1 1 |
| X     | X     | X     | X     | X     | X     | 1     | 0     | 1 0 0 1 |
| X     | X     | X     | X     | X     | X     | X     | 1     | 1 1 1 1 |

 $\begin{array}{l} \textit{If } D_2 = 1, \, D_6 = 1, \, \textit{all others} = 0 \\ \textit{Output xyz} = 100 \, \textit{and } V = 1 \end{array}$ 

69

4.31



**4.32** (a)  $F = \Sigma (0, 2, 5, 7, 11, 14)$ 



F

(b) 
$$F = \Pi(3, 8, 12) = (A' + B' + C + D)(A + B' + C' + D')(A + B + C' + D')$$
  
 $F' = ABC'D' + A'BCD + A'B'CD = \Sigma(12, 7, 3)$   
 $F = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15)$ 

| Inputs<br>ABCD | F                  |
|----------------|--------------------|
| 0000           | $1_{F=1}$          |
| 0001           | 1 1                |
| 0010           | $\frac{1}{E-D'}$   |
| 0011           | $0^{F=D'}$         |
| 0100           | $\frac{1}{F} = 1$  |
| 0101           | $1^{F=I}$          |
| 0110           | $\frac{1}{F = D'}$ |
| 0111           | $0^{T-D}$          |
| 1000           | $\frac{1}{F} = 1$  |
| 1001           | $1^{F-I}$          |
| 1010           | $\frac{1}{F=1}$    |
| 1011           | $1^{F-I}$          |
| 1100           | $0_{F=D}$          |
| 1101           | $1^{r-D}$          |
| 1110           | $\frac{1}{F=1}$    |
| 1111           | $1^{F} = I$        |



$$S(x, y, z) = \Sigma(1, 2, 4, 7)$$
  
 $C(x, y, z) = \Sigma(3, 5, 6, 7)$ 



4.34 (a)

|            | A | В | C | D | F  |
|------------|---|---|---|---|----|
|            | 0 | 1 | 1 | 0 | 1  |
| $I_3 = 1$  | Û | 1 | 1 | 0 |    |
| 3          | 0 | 1 | 1 | 1 | 1  |
| $I_5 = 1$  | 1 | 0 | 1 | 0 | 1  |
|            | 1 | 0 | 1 | 1 | 1  |
| I = D      | 0 | 0 | 0 | 0 | 0  |
| $I_0 = D$  | 0 | 0 | 0 | 1 | 1_ |
| , D        | 1 | 0 | 0 | 0 | 0  |
| $I_4 = D$  | 1 | 0 | 0 | 1 | 1  |
| I - D'     | 1 | 1 | 0 | 0 | 1  |
| $I_6 = D'$ | 1 | 1 | 0 | 1 | 0  |

Other minterms = 0  $since I_1 = I_2 = I_7 = 0$ 



 $F(A, B, C, D) = \Sigma(1, 6, 7, 9, 10, 11, 12)$ 

**(b)** 

|            | A | В | C | D | F  |
|------------|---|---|---|---|----|
| $I_1 = 0$  | 0 | 0 | 1 | 0 | 0  |
| $I_1 - 0$  | 0 | 0 | 1 | 1 | 0  |
| $I_2 = 0$  | 0 | 1 | 0 | 0 | 0  |
|            | 0 | 1 | 0 | 1 | 0  |
| I = 1      | 0 | 1 | 1 | 0 | 1  |
| $I_3 = 1$  | 0 | 1 | 1 | 1 | 1  |
| T _ 1      | 1 | 1 | 1 | 0 | 1  |
| $I_7 = 1$  | 1 | 1 | 1 | 1 | 1_ |
| I - D      | 1 | 0 | 0 | 0 | 0  |
| $I_4 = D$  | 1 | 0 | 0 | 1 | 1  |
|            | 0 | 0 | 0 | 0 | 1  |
| $I_0 = D'$ | 0 | 0 | 0 | 1 | 0  |
| I - DI     | 1 | 1 | 0 | 0 | 1  |
| $I_6 = D'$ | 1 | 1 | 0 | 1 | 0  |



Other minterms = 0 since  $I_1 = I_2 = 0$   $F(A, B, C, D) = \Sigma(0, 1, 6, 7, 9, 13, 14, 15)$ 

4.35 (a)



**(b)** 



Digital Design - Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.