# **Project Portfolio**

# **Dhruv Shah**

**32-666-3379** 

□ dhruv.shah.1017@gmail.com

## **Realtime 3D Print Monitoring**

#### 2021 - 2022 | Theoretical & Applied Mechanics Group

**Objective:** Address the defects which arise during 3D printing process by instrumenting a printer with a closed-loop optical monitoring system equipped with a computer vision model to detect and classify abnormal states.



**Skills:** Computer vision, deep learning, FDM 3D printing, Docker containerization, Python (PyTorch, TensorFlow, OpenCV), CAD

**Similar Projects:** Fire hazard detection during autonomous inspections in maritime machinery spaces using robotic quadruped platform

# **Attrition Forecasting using Machine Learning**

## 2024 - Present | Naval Surface Warfare Center - Philadelphia Division

**Objective:** Optimize organization resources by forecasting employee attrition using neural networks. This involved preprocessing large amounts of time-series feature sets to identify a time-dependent probability that an employee may leave the organization either through separation or retirement.



Skills: Deep learning, Python (TensorFlow/Keras, SHAP, Pandas, Dash), Tableau, PowerBI

# **Project Portfolio**

# **Dhruv Shah**

**32-666-3379** 

⊠dhruv.shah.1017@gmail.com

## **Automated Resuscitator for COVID-19 Emergency Use**

#### 2020 - 2021 | Theoretical & Applied Mechanics Group

**Objective:** To address the demand for ventilators at the onset of the COVID-19 pandemic, a team was assembled at Drexel University to design and manufacture an inexpensive and portable respiratory device which automates resuscitation with an FDA-approved bag-valve mask. I led the design and manufacturing efforts for this team.





### Design

- Automate mechanical compression
- Incorporate performance requirements



**Stabilize** 

- Utilize computational analysis tools
- Design components to withstand loads



Manufacture

- Identify manufacturability constraints
- Reduce mass/cost

Skills: CAD, digital design, FDM 3D printing, closed-loop sensory feedback control

# **Centrifugal Nuclear Thermal Rocket**

## 2022 - 2023 | Drexel University Senior Capstone in Partnership with NASA MSFC

**Objective:** As part of senior design project with NASA Marshall Space Flight Center, my team and I designed a prototype fuel element for NASA's theorized concept of a nuclear thermal propulsion engine.



Skills: CAD, GD&T Analysis, Python, CNC Machining, SLM 3D Printing

**Published Work:** I co-authored a paper which was presented at the 2023 Nuclear and Emerging Technologies for Space (NETS) conference, hosted by the American Nuclear Society: *Parametric Analysis of the Design Point for a Centrifugal Nuclear Thermal Rocket Fuel Element*