

# Out-of-distribution Detection with Boundary Aware Learning

Sen Pei<sup>1,2</sup>, Xin Zhang<sup>1,2</sup>, Bin Fan<sup>4</sup>, and Gaofeng Meng<sup>1,2,3</sup>





## Introduction

#### CNNs suffer from over-confidence issue



- > In-distribution features concentrate densely in narrow regions.
- > Almost the whole **feature space** is assigned with high confidence.
- The classifier is expected to detect the boundary of in-distribution.
- The synthetic hard OOD features lead to compact decision boundary.

# Problem Statement: Out-of-distribution detection





- (0)
- (b) Classification with BAL (ours)
- > The in-distribution data is expected to get high confidence.
- > The out-of-distribution data obtains much lower confidence score.
- ➤ No out-of-distribution data is accessible.

## Method

### **Overview: Boundary Aware Learning**



- > RSM: Representation Sampling Module.
- > REM: Representation Extraction Module.
- > RDM: Representation Discrimination Module.

## Insights: Focus on the learning of hard OOD



- > trivial OOD: uniform sampling, since the ID features distribute densely.
- hard OOD: Fast Gradient Sign Method, the boundary of discriminator.

# Experiments

#### **Main Results**

>BAL achieves the state-of-the-art on common benchmarks.

| ID            | OOD           | $\downarrow \mathrm{FPR}$ |       |         |            | $\uparrow \mathrm{AUPR}$ |        |      |                      | ↑ AUPR |         |      |       |        |       |      |
|---------------|---------------|---------------------------|-------|---------|------------|--------------------------|--------|------|----------------------|--------|---------|------|-------|--------|-------|------|
|               | at $95\%$ TPR |                           |       |         | $_{ m in}$ |                          |        |      | $\operatorname{out}$ |        |         |      |       |        |       |      |
|               |               | Soft                      | max b | oaselii | ne[12]     | / AE                     | C[6] / | ODI  | N[25]                | / Ger  | neraliz | ed O | DIN[1 | 5] / E | BAL(c | urs) |
| C-10<br>D-BC  | SVHN          | 59.8                      | 57.2  | 63.6    | 44.2       | 32.6                     | 91.9   | 92.3 | 89.1                 | 94.6   | 99.7    | 87.0 | 92.5  | 83.9   | 88.7  | 99.7 |
|               | LSUN          | 33.4                      | 27.6  | 5.6     | 5.2        | 4.7                      | 96.4   | 97.3 | 98.9                 | 99.0   | 99.5    | 94.0 | 96.3  | 98.7   | 98.9  | 98.9 |
|               | TIN           | 41.1                      | 35.1  | 10.5    | 9.3        | 5.0                      | 95.3   | 96.2 | 98.1                 | 97.9   | 98.2    | 92.2 | 94.0  | 97.8   | 97.4  | 98.0 |
| C-10<br>R-34  | SVHN          | 67.5                      | 57.2  | 64.4    | 12.7       | 11.3                     | 92.2   | 93.4 | 85.8                 | 94.5   | 95.5    | 84.9 | 84.5  | 81.8   | 93.4  | 97.4 |
|               | LSUN          | 54.6                      | 34.6  | 26.2    | 21.3       | 15.8                     | 92.3   | 91.8 | 93.7                 | 94.0   | 93.9    | 88.5 | 92.1  | 93.8   | 93.9  | 94.1 |
|               | TIN           | 55.3                      | 28.7  | 28.0    | 27.4       | 21.6                     | 92.4   | 93.1 | 94.0                 | 94.3   | 93.9    | 88.3 | 90.1  | 92.9   | 92.7  | 93.8 |
| C-100<br>D-BC | SVHN          | 73.3                      | 63.2  | 60.9    | 31.9       | 21.5                     | 85.9   | 89.3 | 90.2                 | 90.7   | 91.5    | 78.5 | 86.7  | 85.2   | 89.5  | 92.8 |
|               | LSUN          | 83.3                      | 66.0  | 58.4    | 23.9       | 11.3                     | 72.4   | 87.4 | 85.0                 | 88.1   | 89.3    | 65.4 | 84.9  | 82.0   | 87.6  | 88.7 |
|               | TIN           | 82.4                      | 59.7  | 56.9    | 22.7       | 12.0                     | 73.0   | 83.7 | 84.7                 | 86.5   | 91.5    | 67.4 | 82.9  | 83.0   | 84.3  | 90.6 |
| C-100         | SVHN          | 79.7                      | 76.5  | 76.5    | 31.2       | 17.3                     | 81.5   | 82.5 | 73.8                 | 85.3   | 87.1    | 74.5 | 79.6  | 74.2   | 85.1  | 89.3 |
| R-34          | LSUN          | 81.2                      | 52.1  | 54.6    | 27.1       | 18.7                     | 76.0   | 80.0 | 82.4                 | 89.0   | 91.5    | 70.1 | 78.4  | 84.1   | 89.0  | 88.7 |
|               | TIN           | 79.6                      | 55.3  | 50.6    | 29.7       | 22.5                     | 79.2   | 87.1 | 86.8                 | 89.3   | 91.6    | 72.3 | 85.6  | 87.0   | 88.0  | 89.8 |
| SVHN<br>D-BC  | LSUN          | 22.9                      | 22.7  | 22.1    | 18.7       | 16.4                     | 96.7   | 95.4 | 95.3                 | 97.2   | 98.5    | 88.0 | 88.7  | 89.3   | 86.3  | 89.3 |
|               | C-10          | 30.7                      | 20.1  | 24.7    | 20.3       | 12.1                     | 95.4   | 93.2 | 92.5                 | 96.0   | 97.3    | 88.5 | 84.7  | 81.7   | 84.2  | 89.9 |
|               | TIN           | 21.2                      | 18.6  | 19.9    | 15.2       | 11.7                     | 97.0   | 96.1 | 95.5                 | 97.3   | 98.5    | 88.9 | 90.7  | 90.1   | 91.6  | 90.6 |
| SVHN<br>R-34  | LSUN          | 25.7                      | 21.0  | 22.2    | 18.1       | 13.5                     | 93.8   | 91.3 | 91.3                 | 96.4   | 97.8    | 84.6 | 86.5  | 85.9   | 89.4  | 92.1 |
|               | C-10          | 21.7                      | 19.5  | 20.0    | 16.7       | 14.8                     | 94.8   | 92.0 | 91.9                 | 97.0   | 97.6    | 86.4 | 87.3  | 87.1   | 88.2  | 89.0 |
|               | TIN           | 21.0                      | 19.3  | 18.0    | 15.4       | 14.3                     | 95.4   | 93.4 | 93.5                 | 96.8   | 98.2    | 86.9 | 88.5  | 88.6   | 89.4  | 89.4 |

## **Ablation of Key Components**

|                                | $\uparrow \mathrm{AUPR}_{in}$ | $\uparrow \mathrm{AUPR}_{out}$ | † AUROC | ↓ FPR 95   |
|--------------------------------|-------------------------------|--------------------------------|---------|------------|
| Softmax baseline               | 95.3                          | 92.2                           | 94.1    | 41.1       |
| $BAL(L_t)$                     | 97.0                          | 96.0                           | 96.6    | 17.9       |
| BAL $(L_t + L_s)$              | 97.1                          | 96.2                           | 96.6    | 9.3        |
| BAL $(L_t + L_u)$              | 97.2                          | 96.3                           | 96.7    | 8.1        |
| <b>BAL</b> $(L_t + L_s + L_u)$ | 98.2                          | 98.0                           | 97.0    | <b>5.0</b> |

### **Visualization Results**



- Classification between dogs and cats.
- Pink: Boundary Aware Learning (BAL).
- > Lime: conventional max-softmax baseline.

Code
<a href="https://github.com/Forev">https://github.com/Forev</a>
erPs/BAL







#### Visualization

https://github.com/Forever Ps/BAL/tree/main/decision boundary/results