AUTONOMOUS DRONE CONTROL IN ADVERSE CONDITIONS

MHOMEARE

AAU Cybersecurity Student

ALEX

RIFQI

AAU Communication Technologies

Student

ANDRÉ

AAU Cybersecurity Student

Develop an autonomous drone control algorithm that can operate in adverse conditions.

- 1. The drone must navigate to and then hover at a specific location
- 2. It must be able to handle wind forces and a limited battery life
- 3. Your solution interacts with our simulation server and competes against the other teams!

03 04

KNOWN PARAMETERS

COORDINATES

- X, Y, Z coordinates of the target
- X, Y, Z coordinates of the drone

THROTTLE

Controls how much the drone accelerates.

PITCH

Controls how much the drone pitch (Y plane)

ROLL

Controls how much the drone pitch (X plane)

OUR APPROACH

4 STEPS

Getting accustomed to how it works and understanding the objectives.

Set 2 phasing, "takeoff" and "stable",

PHASING

Apply P, I, or D control to throttle, roll, and pitch.

PID CONTROL

WIND COMPENSATION

Counter roll/pitch the wind force

POSSIBLE USE CASES

THANK YOU ARA-EDTH HACKATHON, COPENHAGEN