

Neural Distributed Image Compression with Cross-Attention Feature Alignment

Nitish Mital*,1, Ezgi Ozyilkan†,1, Ali Garjani‡,1, Deniz Gunduz*

*Dept. Of Electrical and Electronics Engineering, Imperial College London,

†Dept. Of Electrical and Computer Engineering, New York University,

‡Section of Mathematics, EPFL

1Equal contribution

Imperial College London

System Model: Point-to-Point

Compression

- Lossless
- Lossy

Two competing goals in lossy compression:

- Rate
- Distortion

System Model: Distributed Source Coding (DSC)

- Lossless compression (Slepian and Wolf, 1973)
- Lossy compression (Wyner and Ziv, 1976)

Motivation for DSC

Related Work

Distributed stereo compression (one image at encoder, other at decoder):

- DSIN (S. Ayzik et. al., 2020) patch-match algorithm (not end-to-end differentiable)
- NDIC (Our work, 2022) disentanglement into common and private features

This paper: Combine DSIN and NDIC in a differentiable manner.

Align latent representations of the two images using a cross-attention mechanism!

Architecture

- Align intermediate latents $\mathbf{v}_{x}^{(i)}$ and $\mathbf{v}_{y}^{(i)}$ (in i^{th} layer) using cross-attention module (CAM)
- Generate <u>query</u> \mathbf{Q}_{x} from $\mathbf{v}_{x}^{(i)}$, <u>key</u> \mathbf{K}_{y} and <u>value</u> \mathbf{V}_{y} from $\mathbf{v}_{y}^{(i)}$

- w common information
- \mathbf{v}_{χ} , \mathbf{v}_{γ} private/local information
- Extract \mathbf{w} from \mathbf{y} , send only \mathbf{v}_{x}

Experimental Setup

KITTI Stereo (sync stereo)

Cityscape (sync stereo)

KITTI General (unsync stereo)

Results

Visual Examples

Synchronized stereo cameras

Original image

NDIC

Ours

bpp=0.0912

bpp=0.0725

Unsynchronized stereo cameras

bpp=0.1134

bpp=0.1071

Thanks!

Reach us:

- n.mital@imperial.ac.uk
- eo2135@nyu.edu
- ali.garjani@epfl.ch
- d.gunduz@imperial.ac.uk

Source code at: https://github.com/ipc-lab/NDIC-CAM