1. Grupet (Grupet)

Një grup (G, *) është bashkësi me veprim binar që plotëson:

- Mbyllje: $\forall a, b \in G, a * b \in G$
- Asociativitet: (a * b) * c = a * (b * c)
- Element Neutral $\exists e \in G : a * e = e * a = a$
- Invers: $\forall a \in G, \exists a^{-1} \in G : a * a^{-1} = e$

2. NënGrupet

 $H \subseteq G$ është nëngrup $(H \le G)$ nëse:

- $e \in H$
- $\forall a, b \in H, a * b \in H$
- $\forall a \in H, a^{-1} \in H$

Testi i Shpejtë: $\forall a, b \in H, a * b^{-1} \in H$.

3. Grupet Ciklike

G është ciklik nëse $\exists g \in G$ (gjenerator) i tillë që $G = \langle g \rangle = \{g^n | n \in \mathbb{Z}\}$. G ciklik $\Leftrightarrow \exists g \in G \text{ me } r(g) = |G|$.

4. Klasat Fqinje (Cosets)

Për $H \leq G$ dhe $a \in G$:

- Klasa e majtë: $aH = \{ah | h \in H\}$
- Klasa e djathtë: $Ha = \{ha | h \in H\}$

5. Teorema e Lagranzhit

Nëse $H \leq G$ e fundme, atëherë |H| pjesëton |G|. Numri i klasave fqinje: $[G:H] = \frac{|G|}{|H|}$.

6. Teorema e Vogël e Fermatit

Për p prim dhe $a \in \mathbb{Z}$ me $\gcd(a, p) = 1$:

$$a^{p-1} \equiv 1 \pmod p$$

Përgjigje për pyetjet specifike

- Grupi është ciklik nëse $\exists n \in G \text{ me } r(n) = |G|$.
- Numri gjeneratorëve: $\phi(|G|)$ (funksioni i Euler-it).
- Gjetja e r(n), $\langle n \rangle$ dhe klasave fqinje:
- $\bullet \ r(n) = \min\{k > 0 | n^k = e\}$
- $\langle n \rangle = \{ n^0, n^1, \dots, n^{r(n)-1} \}$
- Klasat fqinje: $a\langle n\rangle$ ku a është elementi më i vogël në G por jo në $\langle n\rangle$
- Eksponenti i grupit: $\max\{r(a)|a\in G\}$.
- Klasat fqinje të $\langle n \rangle$ janë $a \langle n \rangle$ ku a është elementi më i vogël në G por jo në $\langle n \rangle$.