Wydział, kierunek:	Imię i nazwisko: Rok:		Grupa:
WFiIS, FT	Marcin Mikołajczyk	4	1
Data wykonania:	Data oddania:		OCENA:
13 października 2025	13 października 2025		

Laboratorium 1 – Stany własne hamiltonianu w 1D — metoda strzałów

Wprowadzenie

Celem ćwiczenia było wyznaczenie stanów własnych jednoelektronowego hamiltonianu w studni kwantowej o długości $L=100\,\mathrm{nm}$, z potencjałem prostokątnym oraz z dodatkowym centralnym dołkiem. Obliczenia wykonano metodą strzałów w oparciu o różnice skończone drugiego rzędu. Otrzymane wyniki porównano z rozwiązaniem analitycznym dla nieskończonej studni potencjału oraz przeanalizowano wpływ lokalnego zaburzenia (dołka) na strukturę poziomów energetycznych.

1 Parametry fizyczne i jednostki

Użyto następujących parametrów:

• długość studni: $L = 100 \,\mathrm{nm}$,

• masa efektywna elektronu: $m = 0.067 m_0$,

• $\hbar = 1$ (jednostki atomowe),

• konwersja energii: 1 a.u. = 27211.6 meV,

• konwersja długości: $1 a_0 = 0.05292 \,\mathrm{nm}$.

Zatem:

$$L_{\rm au} = \frac{100}{0.05292} \approx 1890$$

oraz potencjały w meV przeliczano na jednostki atomowe przez dzielenie przez 27211.6.

2 Dyskretyzacja i metoda strzałów

Siatka: N+1 punktów, $\Delta x = L/N$, z warunkami brzegowymi:

$$\Psi_0 = 0, \quad \Psi_1 = 1.$$

Rekurencja różnic skończonych:

$$\Psi_{i+1} = -(2m)(E - V_i)\Delta x^2 \Psi_i - \Psi_{i-1} + 2\Psi_i.$$

Dla danego E oblicza się $\Psi_N(E)$; miejsca zerowe funkcji $\Psi_N(E)$ wyznaczają wartości własne. Normalizacja:

$$C = \Delta x \sum_{i} \Psi_{i}^{2}, \quad \Psi_{i} \leftarrow \frac{\Psi_{i}}{\sqrt{C}}.$$

Zadanie 1) Studnia bez potencjału, N = 100

Zakres energii: $E \in (0, 35 \,\mathrm{meV})$. Dla nieskończonej studni potencjału:

$$E_n^{(an)} = \frac{\pi^2 n^2 \hbar^2}{2mL^2} = \frac{\pi^2 n^2}{2mL_{\text{au}}^2}.$$

Po przeliczeniu na meV:

$$E_1^{(an)} \approx 0.56 \,\mathrm{meV}, \quad E_2^{(an)} \approx 2.24 \,\mathrm{meV}, \quad E_3^{(an)} \approx 5.04 \,\mathrm{meV}.$$

Rysunek 1: Wykres funkcji falowej od energi
i $\Psi_N(E)$

Na wykresie $\Psi_N(E)$ widać zmiany znaku co około 0.56, 2.24, 5.04 meV – zgodne z przewidywanymi poziomami energetycznymi. Między zerami funkcja zmienia znak, co potwierdza prawidłowe działanie metody strzałów.

Zadanie 1b) Funkcje falowe dla E_0 , $0.95E_0$, $1.05E_0$

Znaleziono przybliżone miejsca zerowe:

zero 1: E $\approx 0.561245 \text{ meV}$

zero 2: $E \approx 2.244429 \text{ meV}$

zero 3: E $\approx 5.047888 \text{ meV}$

zero 4: $E \approx 8.968857 \text{ meV}$

zero 5: $E \approx 14.003466 \text{ meV}$

zero 6: E $\approx 20.146747 \text{ meV}$

zero 7: E $\approx 27.392636 \text{ meV}$

Wybrano drugie miejsce zerowe: E0 = 2.244429 meV

Rysunek 2: Znormalizowana funkcja falowa $\Psi(x)$ dla E = 2.244429 meV blisko miejsca zerowego, oraz dla wartości zwiększonych i zmniejszonych o 5%.

Dla $E = 0.95E_0$ funkcja rośnie monotonicznie i nie osiąga zera przy x = L (zbyt niska energia). Dla $E = 1.05E_0$ funkcja ma nadmiarowe oscylacje. Dla E_0 dokładnie spełnia warunek $\Psi(L) = 0$.

Dokładne dopasowanie energii własnej powoduje spełnienie warunków brzegowych.

Zadanie 2) Bisekcja i porównanie z analitycznym rozwiązaniem

Zastosowano metodę bisekcji z dokładnością $10^{-6}\,\mathrm{meV}$ (czyli $3.7\times10^{-11}\,\mathrm{w}$ a.u.). Obliczono poziomy własne dla N=100 i N=300.

Tabela 1: Porównanie energii własnych numerycznych i dokładnych dla różnych wartości N

i	$E_{\rm num} \ [{\rm meV}]$	$E_{\text{exact}} [\text{meV}]$	$ E_{\text{num}} - E_{\text{exact}} \text{ [meV]}$	N
1	0.561245	0.561292	0.000046	100
2	2.244429	2.245167	0.000738	100
3	5.047888	5.051626	0.003738	100
4	8.968857	8.980669	0.011812	100
5	14.003466	14.032295	0.028829	100
6	20.146747	20.206505	0.059758	100
7	27.392636	27.503298	0.110662	100
1	0.561287	0.561292	0.000005	300
2	2.245085	2.245167	0.000082	300
3	5.051211	5.051626	0.000415	300
4	8.979356	8.980669	0.001313	300
5	14.029090	14.032295	0.003205	300
6	20.199858	20.206505	0.006647	300
7	27.490985	27.503298	0.012314	300

Różnica między rozwiązaniem numerycznym a analitycznym maleje z rosnącym N, co wskazuje

na poprawną zbieżność metody strzałów.

Zadanie 3a), 3b), 3c), 3d) Studnia z centralnym dołkiem potencjału

Potencjał: $V_{N/2} = -W$, z W w zakresie 0–1 eV.

Rysunek 3: 7 najniższych miejsc zerowych w funkcji W od 0 do 1 eV

Dla rosnącego W:

- stany nieparzyste (symetryczne względem środka, bez węzła) obniżają energię, tworząc lokalny poziom związany,
- stany parzyste pozostają niemal niezmienione, ponieważ mają węzeł w centrum (Ψ =0) potencjał w tym punkcie nie wpływa na ich energię.

Dla bardzo dużych W energia stanu podstawowego dąży do wartości ujemnej, a funkcja falowa ogranicza się do wąskiego obszaru wokół środka studni.

Rysunek 4: Funkcje falowe 4 najniższych stanów dla W = 0.5 [eV]

Dla W=0.5 eV stan podstawowy jest silnie zlokalizowany wokół środka, natomiast drugi stan (parzysty) ma węzeł w środku i praktycznie nie jest zaburzony.

Rysunek 5: Funkcje falowe w zależności od W dla 2 najniższych stanów energetycznych

Stany parzyste mają węzeł w x=L/2, co sprawia, że bariera nie ma wpływu na ich funkcje falowe w tym miejscu.

Literatura

[1] Instrukcja do ćwiczenia UPEL MOFiT2, dostęp 13 października 2025