Ejercicios Parcial II

Santiago Martínez, Román Contreras

19 de septiembre de 2017

1. Semana V

1.1. Haces y campos tensoriales

Ejercicio 1.1. Sea $\omega = f(x,y)dx + g(x,y)dy$ una 1-forma diferencial en \mathbb{R}^2 . Es decir, f, g son funciones diferenciables sobre \mathbb{R}^2 y dx, dy son las 1-formas duales a los campos $\frac{\partial}{\partial x}, \frac{\partial}{\partial x}$.

duales a los campos $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$.

Decimos que ω determina una ecuación diferencial y que una curva γ : $(-\epsilon, \epsilon) \to \mathbb{R}^2$ es una curva integral de la ecuación diferencial determinada por ω si $\omega(\dot{\gamma}(t)) = 0$ es decir, para todo t el vector $\dot{\gamma}(t)$ yace en el núcleo de la transfomración lineal $\omega_{\gamma(t)}: T_{\gamma(t)} \to \mathbb{R}$. Decimos que ω es exacta si existe una función t tal que t

- 1. Sea γ una curva integral de la ecuación diferencial determinada por ω . Encuentra la ecuación lineal que satisface $\dot{\gamma}(t)$ en términos de f y g.
- 2. Supongamos que $\omega = d(h)$, es decir, ω es exacta. Demuestra que una curva γ es curva integral de ω si y sólo si es una parametrización de un conjuto de nivel de h.
- 3. Sea $h: \mathbb{R}^2 \to \mathbb{R}$ la función dada por $h(q, p) = -\cos(q) + p^2$ (la energía del péndulo matemático). Esboza los conjuntos de nivel de h y encuentra d(h). Encuentra los puntos en donde d(h) es identicamente cero.

Ejercicio 1.2. Demuestra que \mathbb{S}^1 es paralelizable, es decir, que $T\mathbb{S}^1 \cong \mathbb{S}^1 \times \mathbb{R}$ como haces vectoriales sobre \mathbb{S}^1 .

Ejercicio 1.3. ¿ La esfera \mathbb{S}^2 es paralelizable también? Construye un campo vectorial sobre \mathbb{S}^2 con exactamente dos ceros, y otro campo vectorial con exactamente un cero.

Ejercicio 1.4. Demuestra que una variedad M de dimensión n es paralelizable si y sólo si existen n campos vectoriales $\{X_i\}$ definidos sobre todo M tal que para cada punto $p \in M$ los vectores $X_1(p), \ldots, X_n(p)$ forman una base de T_nM .

2. Semana VI

2.1. La esfera

Recuerda que \mathbb{S}^2 es una subvariedad de \mathbb{R}^3 por lo que hereda una métrica riemanniana. Recuerda también que es posible identificar al espacio tangente $T_p\mathbb{S}^2$

con $p^{\perp} = \{v \in \mathbb{R}^3 \mid v \cdot p = 0\}$. Si $M \in O(3)$ es una transformación ortogonal y $x \in \mathbb{S}^2$ entonces $Mx \in \mathbb{S}^2$. De este modo M se restringe a una transformación $M: \mathbb{S}^2 \to \mathbb{S}^2$.

Definicion 2.1. Se dice que una variedad riemanniana es homogénea si para todo par de puntos $p, q \in M$ existe una isometría $f: M \to M$ tal que f(p) = q.

Ejercicio 2.1. 1. Demuestra que para todo $M \in O(3)$ la transformación $M : \mathbb{S}^2 \to \mathbb{S}^2$ es una isometría.

2. Demuestra que para todo par de puntos $p, q \in \mathbb{S}^2$ existe una matriz $M \in O(3)$ tal que Mp = q. Concluye que \mathbb{S}^2 es homogénea. Pista: Demuestra que para todo $p \in \mathbb{S}^2$ existe $M' \in O(3)$ tal que M'p = N, donde N = (0,0,1).

Definicion 2.2. Un marco en T_pM es una base ortogonal de T_pM

Ejercicio 2.2. 1. Sean $\beta_1 = \{v_1, v_2\}$ y $\beta_2 = \{w_1, w_2\}$ dos marcos en $T_N \mathbb{S}^2$ (donde N = (0, 0, 1)). Demuestra que existe $M \in O(3)$ tal que $M(\beta_1) = \beta_2$.

2. Demuestra que para todo par de puntos $p, q \in \mathbb{S}^2$ y todo par de marcos $\beta_1 \subset T_p \mathbb{S}^2$, $\beta_2 \subset T_q \mathbb{S}^2$ existe $M \in O(3)$ tal que Mp = q y $M\beta_1 = \beta_2$.

2.2. El plano hiperbólico

Definicion 2.3. El plano hiperbólico bidimensional \mathbb{H}^2 es la variedad $\mathbb{R}^2_+ = \{(x,y) \in \mathbb{R}^2 \mid y > 0\}$ junto con la métrica

$$g = \frac{1}{y^2} \left(dx \otimes dx + dy \otimes dy \right)$$

Para cada matriz $A \in GL_2(\mathbb{R})$ (matrices invertibles de 2×2 con coeficientes reales) con

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

consideren la transformación de \mathbb{R}^2 dada por

$$Az = \frac{az+b}{cz+d}$$

donde $z \in \mathbb{R}^n$ es pensado como un número complejo.

Ejercicio 2.3. 1. Demuestra que, para toda matriz $A \in GL_2(\mathbb{R})$, la transformación asociada es una isometría de \mathbb{H}^2 .

2. Demuestra que para todo $p \in \mathbb{H}^2$ existe $A \in GL_2(\mathbb{R})$ tal que Ap = i = (0,1). Concluye que \mathbb{H}^2 es homogénea.

Ejercicio 2.4. Calcula el conjunto

$$D = \{ A \in GL_2(\mathbb{R}) \mid Ai = i \}$$

y demuestra que para todo par de marcos $\beta_1, \beta_2 \subset T_i \mathbb{H}^2$ existe $A \in D$ tal que $A\beta_1 = \beta_2$.