(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 29 August 2002 (29.08.2002)

PCT

(10) International Publication Number WO 02/066033 A1

PCT/US02/04247 (21) International Application Number;

(51) International Patent Classification?: A61K 31/425

(22) International Filing Date: 6 February 2002 (06.02.2002)

English (25) Filing Language:

S 20 February 2001 (20.02.2001) (30) Priority Data: 60/269,858

English

(26) Publication Language:

(71) Applicant (for all designated States except US): BRIS-TOL-MYERS SQUIBB COMPANY [US/US]; PO. Box 4000, Lawrenceville-Princeton Road, Princeton, NJ 08543

Inventor; and Inventory and Inventory (or US only): LEE, Francis, V.F. [CN/US]; 363 Lang CL, Yardley, PA 19067 (US). 33

(74) Agents: ALGIERI, Aido et al.; Bristol-Myers Squibb Co., P.O. Box 4000, Lawrenceville-Princeton Road, Princeton, NJ 08543 (US).

15 (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, GB, RB, KB, EX, CA, CLI, CN, CO, CR, CU, CA, DE, DK, DM, DZ, EC, EB; IS, RI, GB, GB, GH, GM, RI, RI, RI, U, LI, RI, SP, EK, GK, KR, KZ, LC, LK, LR, LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, CM, PH, PL, PT, RQ, RU, SD, SB, SG, SI, SI, "1, TM, TT, TZ, UA, UG, US, UZ, IBP, VIV, ZA, ZM, ZW.

[84] Designated States (regional): ARIPO patent (GII, GM, RE, LS, MW, MZ, SD, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, Ti, TM, European patent (AT, BE, CII, CY, DE, DK, ES, PI, FR, GM, GH, ET, LU, MC, NI, PT, SE, TR), OAPI patent (BI, BJ, CIF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). 3

Published:

with international search report before the expiration of the time limit for amending the claims and to be republished in the event of receipt of

For two-letter codes and other abbreviations, refer to the "Guid-ance Notes on Codes and Abbreviations" appearing at the begin-ning of each regular issue of the PCT Gazette.

(54) This: EPOTHILONE DERIVATIVES FOR THE TREATMENT OF REFRACTORY TUMORS

(57) Abstract: A method of treating tumors in a mammal, especially a human than have demonstrated resistance to encology with Azarta cotology agents is disclosed. The method is effective where the tumor has initially been unresponsive to taxane therapy or that developed resistance during the country. The method comprising the administration of an epothlione derivative or that developed resistance during the country. The method comprising the administration of an epothlione derivative detreative and effective that the spirit infinite administration of the effect of the property and effective the spirit tumors that have demonstrated resistance to therapy as an administration in that both chemical drawing flue subject epothlione derivatives are advantageous in addition to their enhanced potency and effect where segains tumors that when the spirit tumors that when the spirit tumors that WO 02/066033

WO 02/066033

PCT/US02/04247

EPOTHILONE DERIVATIVES FOR THE TREATMENT OF REFRACTORY TUMORS

Cross-Reference To Related Application

60/269,858, filed February 20, 2001, incorporated herein by reference in its entirety This application claims priority from provisional application serial number

Field of the Invention

The present invention relates to the use of certain potent epothilone analogs in the treatment of tumors that have demonstrated resistance to therapy with other chemotherapeutic agents.

Background of the Invention

Epothilones are macrolide compounds that find utility in the pharmaceutical For example, epothilones A and B having the structures:

Epothilone B Epothilone A

R=Me

may be found to exert microtubule-stabilizing effects similar to paclitaxel (TAXOL®) and hence cytotoxic activity against rapidly proliferating cells, such as tumor cells or Engl., Vol. 35, No.13/14, 1567-1569 (1996); WO93/10121 published May 27, 1993; other hyperproliferative cellular disease, see Hofle et al., Angew. Chem. Int. Ed. and WO97/19086 published May 29, 1997

Engl., Vol. 36, No. 19, 2097-2103 (1997); and Su et al., Angew. Chem. Int. Ed. Engl., Such analogs are disclosed in Hofle et al., Id.; Nicolaou et al., Angew. Chem. Int. Ed. Derivatives and analogs of epothilones A and B have been synthesized and may be used to treat a variety of cancers and other abnormal proliferative diseases.

WO 02/066033 PCT/US02/04247

Vol. 36, No. 19, 2093-2097 (1997). In some instances, epothilone derivatives have demonstrated enhanced properties over the original epothilones A and B. The present invention is concerned with the discovery that two such epothilone derivatives may be utilized to treat certain cancers that have demonstrated resistance to other chemotherapeutic agents, such as oncolytic agents of the taxane family of compounds.

Summary of the Invention

In accordance with the present invention, tumors demonstrating a clinical resistance to treatment with taxane oncology agents may be treated with an epothilone derivative selected from those represented by formula 1:

wherein G, P, Q and R have the meanings given below. The compounds represented by formula I have previously demonstrated significantly enhanced potency over other known chemotherapeutic agents, for example, epothilones A and B above and certain others including those in the taxane series. The compounds represented by formula I are further advantageous in that, unlike most oncology agents, they are efficacious via oral administration.

-2-

WO 02/066033

PCT/US02/04247

Brief Description of the Drawings

Figure 1 is a bar graph showing the cytotoxicity spectrum of a compound of the invention.

Figure 2(A) is a graph showing comparative antitumor activity of two epothilone derivatives in Pat-7 human ovarian carcinoma cells.

Figure 2(B) is a graph showing the dose-response relationship for a compound of the invention.

Figure 3 is a graph showing comparative antitumor activity of two epothilone derivatives in A2780Tax human ovarian carcinoma cells.

Figure 4 is a graph showing comparative antitumor activity of an oral epothilone derivative and an IV epothilone derivative in Pat-7 human ovarian carcinoma cells.

Figure 5 shows structures of several epothilone analogs.

Detailed Description of the Invention

Processes of the present invention provide advantageous treatment for tumors that have demonstrated resistance to treatment with chemotherapeutic agents, such as those of the taxane family. The term "resistance to treatment" as utilized herein includes both tumors that are initially unresponsive to treatment with a chemotherapeutic agent as well as tumors that are initially responsive, but develop resistance over the course of treatment. Compounds useful in the subject method are epothilones, a class of oncology agents. The subject epothilone derivatives are represented by formula I:

PCT/US02/04247 WO 02/066033

P-Q is a carbon-carbon double bond or an epoxide;

R is selected from the group consisting of H, alkyl, and substituted

R' is selected from the group consisting of

G1 is selected from the group consisting of H, halogen, CN, alkyl and

G2 is selected from the group consisting of H, alkyl, and substituted alkyl;

G3 is selected from the group consisting of O, S, and NZ1;

G4 is selected from the group consisting of H, alkyl, substituted alkyl, OZ2, NZ^2Z^3 , $Z^2C=0$, Z^4SO_2 , and optionally substituted glycosyl;

G⁵ is selected from the group consisting of halogen, N₃, NCS, SH, CN, NC, N(Z1)3 and heteroaryl;

G6 is selected from the group consisting of H, alkyl, substituted alkyl, CF,, OZ', SZ', and NZ'Z's;

G' is CZ' or N;

-4-

PCT/US02/04247

G⁸ is selected from the group consisting of H, halogen, alkyl, substituted alkyl, OZ10, SZ10, NZ10Z11;

 G^9 is selected from the group consisting of O, S, -NH-NH- and -N=N-;

G10 is N or CZ12;

G11 is selected from the group consisting of H2N, substituted H2N, alkyl, substituted alkyl, aryl, and substituted aryl;

each Z¹, Z6, Z9, and Z¹1 is, independently, selected from the group consisting of H, alkyl, substituted alkyl, acyl, and substituted acyl;

 \mathbb{Z}^2 is selected from the group consisting of H, alkyl, substituted alkyl, aryl, substituted aryl, and heterocyclyl; each Z3, Z5, Zb, and Z10 is, independently, selected from the group consisting of H, alkyl, substituted alkyl, acyl, substituted acyl, aryl, and substituted aryl;

 Z^4 is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, and heterocyclyl; Z' is selected from the group consisting of H, halogen, alkyl, substituted alkyl, aryl, substituted aryl, OZ3, SZ3, and NZ229; and

Z12 is selected from the group consisting of H, halogen, alkyl, substituted alkyl, aryl, and substituted aryl;

with the proviso that when R1 is

G1, G2, G3 and G4 cannot simultaneously have the following meanings:

G' and G2 is H, G3 is O and G4 is H or Z2C=O wherein Z2 is an alkyl group,

and pharmaceutically acceptable salts thereof and any hydrates, solvates or geometric, optical and stereoisomers thereof.

Preferred compounds in accordance with the present invention are those represented by formula la:

-5

WO 02/066033 PCT/US02/04247

herein

P-Q is a carbon-carbon double bond or an epoxide;

R is H or a methyl group;

G1 is H, an alkyl group, a substituted alkyl group or a halogen atom;

G2 is H, an alkyl group or a substituted alkyl group;

G3 is an O atom, an S atom or an NZ1 group;

Z' is H, an alkyl group, a substituted alkyl group, an acyl group, or a

substituted acyl group;

 G^4 is H, an alkyl group, a substituted alkyl group, an OZ^2 group, an $\mathrm{NZ}^2\mathrm{Z}^3$

group, a Z²C=O group, a Z'SO₂ group or an optionally substituted glycosyl group;

 Z^2 is H, an alkyl group, a substituted alkyl group, an aryl group, a substituted

aryl group or a heterocyclic group;

 \mathbf{Z}^2 is H, an alkyl group, a substituted alkyl group, an acyl group or a

substituted acyl group; and

 Z^4 is an alkyl, a substituted alkyl, an aryl, a substituted aryl or a heterocyclic

group.

with the proviso that G', G2, G3 and G4 cannot simultaneously have the

following meanings:

G¹ and G² is H, G³ is O, and G⁴ is H or Z²C=O wherein Z² is an alkyl group.

A further preferred group of compounds in accordance with the present

•

invention is represented by formula Ib:

WO 02/066033

PCT/US02/04247

wherein.

P-Q is a carbon-carbon double bond or an epoxide;

R is H or a methyl group;

 \boldsymbol{G}^{l} is $\boldsymbol{H},$ an alkyl group, a substituted alkyl group or a halogen atom;

G2 is H, an alkyl group or a substituted alkyl group; and

G5 is a halogen atom, an N3 group, an NCS group, an SH group, a CN group,

an NC group or a heterocyclic group.

Another preferred group of compounds in accordance with the present invention is represented by the formula IIa:

wherein

P-Q is a carbon-carbon double bond or an epoxide;

R is H or a methyl group;

 G^6 is H, an alkyl group, a substituted alkyl group or a CF3, OZ5, SZ5 or NZ5Z6 $\,$

group;

-7-

WO 02/066033 PCT/US02/04247

 Z^{\flat} is H, an alkyl group, a substituted alkyl group, an acyl group or a

arca acy; group,

Z6 is H, an alkyl group or a substituted alkyl group;

G' is a CZ' group or an N atom;

 Z^7 is H, halogen atom, an alkyl group, a substituted alkyl group, an aryl group, or a substituted aryl group, or an $0Z^4,SZ^1$ or NZ^4Z^9 group;

 $\mathbf{Z}^{\mathbf{f}}$ is H, an aikyl group, a substituted alkyl group, an acyl group or a

substituted acyl group;

Z9 is H, an alkyl group or a substituted alkyl group;

 G^8 is H, a halogen atom, an alkyl group, a substituted alkyl group, or an OZ^{10} SZ 10 or NZ $^{10}Z^{11}$ group;

 $Z^{10} \ is \ H, \ an alkyl \ group, \ a \ substituted \ alkyl \ group, \ an \ acyl \ group, \ a \ substituted \ acyl \ group, \ and$

 \mathbf{Z}^{11} is H, an alkyi group, a substituted alkyi group, an acyl group, or a

substituted acyl group. Another group of preferred compounds within the scope of the present

invention is represented by formula IIb:

wherein

P-Q is a carbon-carbon double bond or an epoxide;

R is H or a methyl group;

 G^6 is H, an alkyl group, a substituted alkyl group or a CF_3, OZ^3, SZ^5 or NZ^3Z^6

÷

WO 02/066033

 Z^{\sharp} is H, an alkyl group, a substituted alkyl group, an acyl group or a substituted acyl group;

 Z^6 is H, an alkyl group or a substituted alkyl group; and

G9 is an O or S atom or an -N=N- group.

Another preferred group of compounds in accordance with the present invention is represented by the formula III:

.

P-Q is a carbon-carbon double bond or an epoxide;

R is H or a methyl group;

 G^{10} is an N atom or a $\mbox{\rm CZ}^{12}$ group; and

 Z^{12} is H, a halogen atom, an alkyl group, a substituted alkyl group, an aryl group, or a substituted aryl group.

An additional preferred group of compounds in accordance with the present

invention is represented by the formula IV:

2

PCT/US02/04247

wherein:

P-Q is a carbon-carbon double bond or an epoxide

R is H or a methyl group; and

G¹¹ is an H₂N group, a substituted H₂N group, an alkyl group, a substituted alkyl group, an aryl group or a substituted aryl group.

A particularly preferred group of compounds in accordance with the present invention is represented below:

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-[2-(azidomethyl)-4-thiazolyl]-1-methylethenyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo-[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7, 11-dihydroxy-8,8,10,12,16-penlamethyl-3-[1-mehyl-2-(2-aminomethyl-4-thiazolyl)ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[15-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-[[[(1,1-dimethylethoxy)carbonyl]amino]methyl]-4-thiazolyl]-1-methylethenyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-

[4S-[4R*,7S*,8R*,9R*,1SR*(E)]]-16-[2-]2-[[[(1,1-dimethylethoxy)-]-carbonyl]amino]methyl]-4-thiazolyl]-1-methyl-ethenyl]-4,8-dihydroxy-5,5,7,9,13-pentamethyl-{}]0xa-{}13(Z)-cyclohexadecene-2,6-dione;

[48-[4R*,7S*,8R*,9R*,1SR*(E)]]-16-[2-[2-(2-(2-(aminomethyl)-4-thiazoly]]-1. (methylethenyl]-4,8-dihydroxy-5,5,7,9,13-pentamethyl-1-oxa-1/3(Z)-cyclohexadecene-(2-6-dione;

tetramethyl-3-[1-methyl-2-[2-[(pentanoyloxy)methyl]-4-thiazolyl]ethenyl]-4,17dioxabicyclo[14.1.0]heptadecane-5,9-dione;
[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12-

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12-

[19-[1K, JKY [D, KK, 10S, J.1K, J.KY, J.KY, J. L. Lanydroxy-8, 8, 10, 12 tetramethyl-3-[1-methyl-2-[2-[(naphthoyloxy)methyl]-4-thiazolyl]ethenyl]-4, 17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

WO 02/066033 PCT/US02/04247

[18-{1R*,3R*(E),7R*,108*,11R*,12R*,168*]]-7,11-dihydroxy-3-[2-[[(2-methoxyethoxy)acetyloxy]methyl]-1-methyl-4-thiazolyl]ethenyl]-8,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[15-[1R*,3R*(E),7R*,108*,11R*,12R*,168*]]-7,11-dihydroxy-8,8,10,12-tetramethyl-3-[1-methyl-2-[2-[(N-propionylamino)methyl]]-4-thiazolyl]ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-{1R*,3R*(E),TR*,10S*,11R*,12R*,16S*]]-3-{2-{3-acetyl-2,3-dihydro-2-methylene-4-thiazolyl}-1-methylethenyl]-7,11-dihydroxy-8,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione, N-oxide;

[18-[1R*,3R*(E),7R*,108*,11R*,12R*,168*]]-7,11-dihydroxy-3-[2-[2-(methoxymethyl)-4-thiazolyl]-1-methylethenyl]-8,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[IS-[IR*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-3-[1-methyl-2-[2-(phenoxymethyl)-4-thiazolyl]ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-[2-([cthylthio)methyl]-4-thiazolyl]-1-methylethenyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-[2-(ethoxymethyt),-4-thiazolyl]-1-methylethenyl]-7,11-dihydroxy-8,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,108*,11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12-tetramethyl-3-[1-methyl-2-[2-[(2,3,4,6-tetraacetyl-alpha-glucosyloxy)methyl]-4-thiazolyl]ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,108*,11R*,12R*,168*]]-7,11-dihydroxy-8,8,10,12-tetramethyl-3-[1-methyl-2-[2-[2',3',4',6'-tetraacetyl-beta-glucosyloxy)methyl]-4-thiazolyl]ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12-tetramethyl-3-[1-methyl-2-[2-[(6'-acetyl-alpha-glucosyloxy)methyl]-4-thiazolyl]ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

PCT/US02/04247

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-3-[1-methyl-2-[2-[(p-toluenesulfonyloxy)methyl]-4-thiazolyl]ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-[2-(2-(bromomethyl)-4-thiazolyl]-1-methylethenyl]-7,11-dihydroxy-8,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[IS-[IR*,3R*(E),7R*,10S*,1IR*,12R*,16S*]]-3-[2-(5-bromo-2-methy]-4-thiazoly])-1-methyletheny]]-7,11-dibydroxy-8,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-[2-(cyanomethyl)-4-thiazolyl]-1-methyletheny]]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

 $[48-[4R^\bullet,78^\bullet,8R^\bullet,9R^\bullet,15R^\bullet(E)]]-16-[2-[2-(cyanomethy!)-4-thiazoly!]-1-methyletheny]]-4.8-dihydroxy-5,5,7,9,13-pentamethyl-1-oxa-13(Z)-cyclohexadecene-2,6-dione;$

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-3-[2-(1H-imidazol-1-ylmethyl)-4-thiazolyl]-1-methylethenyl]-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-(2-formyl-4-thiazolyl)-1-methylethenyl]-7,11-dihydroxy-8,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-(2-formyl-4-thiazolyl)-1-methylethenyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14,1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-(2-ethenyl-4-thiazolyl)-1-methylethenyl]-7,11-dihydroxy-8,8,10,12-tetramethyl-4,17-dihydroxy-8,8,10,12-tetramethyl-4,17-dihydroxy-8,8,10,12-tetramethyl-4,17-

[18-{1R*,3R*(E),7R*,108*,11R*,12R*,168*]]-7,11-dihydroxy-3-[2-{2-(methoxyimino)-4-thiazolyl]-1-methylethenyl]-8,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

WO 02/066033 PCT/US02/04247

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12-tetramethyl-3-[1-methyl-2-[2-[[(phenylmethyl)]mino]methyl]-4-thiazolyl]ethenyl]-4,17-dioxabicyclo[14,1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-(2-acetyl-4-thiazolyl)-1-methylethcnyl]-7,11-dihydroxy-8,8,10,12-tetramethyl-4,17-

dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12-tetramethyl-3-[1-methyl-2-(2-oxiranyl-4-thiazolyl)ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[IS-[IR*,3R*(E),7R*,108*,1IR*,12R*,168*]]-7,11-dihydroxy-3-[2-[2-(2-iodoethenyl)4-thiazolyl]-1-methylethenyl]-8,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecanc-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-(2-ethyny]-4-thiazoly])-1-methyletheny]]-7,11-dihydroxy-8,8,10,12-tertamethyl-4,17-

dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[15-{1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-3-{1-methyl-2-{2-{(methylamino)methyl]-4-thiazolyl]ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-[[[2-(dimethylamino)-ethyl]amino]methyl]-4-thiazolyl]-1-methylethenyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-[2-[(dimethylamino)-methyl]-4-thiazolyl]-1-methylethenyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-[2-[Dis(2-methoxy-ethyl)amino]methyl]-4-thiazolyl]-1-methylethenyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[18-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-3-[1-methyl-2-[2-[(4-methyl-1-piperazinyl)methyl]-4-thiazolyl]ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

PCT/US02/04247

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*)]-4-[2-(7,11-dihydroxy-8,8,10,12-tetramethyl-5,9-dioxo-4,17-dioxabicyclo[14.1.0]heptadecan-3-yl)-1-propenyl]-2-thiazolecarboxylic acid; and

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-4-[2-(7,11-dihydroxy-8,8,10,12-tetramethyl-5,9-dioxo-4,17-dioxabicyclo[14.1.0]heptadecan-3-yl)-1-propenyl]-2-thiazolecarboxylic acid methyl ester.

A particularly preferred compound in accordance with the present invention is represented by the formula:

This compound is chemically [1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7, 11-dihydroxy-8,8,10,12,16-pentamethyl-3-[1-methyl-2-(2-aminomethyl-4-thiazolyl)ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione.

The epothilone derivatives represented by formula I above, are known compounds. The compounds and a process for their preparation are disclosed in WO 00/50423. Heretofore, however, there has been no recognition that the subject epothilone derivatives would possess activity in the treatment of tumors resistant to treatment with other known chemotherapeutic agents.

The following are definitions of various terms used to describe the compound represented by formula I above.

The term "alkyl" refers to optionally substituted straight- or branched-chain saturated hydrocarbon groups having from 1 to about 20 carbon atoms, preferably from 1 to about 7 carbon atoms. The expression "lower alkyl" refers to optionally substituted alkyl groups having from 1 to about 4 carbon atoms.

WO 02/066033

are further substituted, such further substituents are selected from the group consisting pyridyl, pyrimidyl and the like. Wherein, as noted above, the substituents themselves of halogen, alkyl, alkoxy, aryl and aralkyl. The definitions given herein for alkyl and selected from alkyl, aryl or aralkyl), alkoxycarbonyl, aryl, substituted aryl, guanidino hydroxy, alkoxy, cycloalkyoxy, heterocylooxy, oxo, alkanoyl, aryl, aryloxy, aralkyl, aralkylsulfonyl, sulfonamido (e.g., SO;NH2), substituted sulfonamido, nitro, cyano, carboxy, carbamyl (e.g., CONH2), substituted carbamyl (e.g., CONH alkyl, CONH example, one to four substituents, such as, halo, trifluoromethyl, trifluoromethoxy, neterocyclothio, alkylthiono, arylthiono, aralkylthiono, alkylsulfonyl, arylsulfonyl, and heterocyclos, such as, indolyl, imidazolyl, furyl, thienyl, thiazolyl, pyrrolidyl, heterocycloamino, disubstituted amino in which the two substituents on the amino aryl, CONH aralkyl or instances where there are two substituents on the nitrogen aralkanoylamino, substituted alkanoylamino, substituted arylamino, substituted The term "substituted alkyl" refers to an alkyl group substituted by, for alkanoyloxy, amino, alkylamino, arylamino, aralkylamino, cycloalkylamino, group are selected from alkyl, aryl, aralkyl, alkanoylamino, aroylamino, aralkanoylamino, thiol, alkylthio, arylthio, aralkylthio, cycloalkylthio, substituted alkyl apply as well to the alkyl portion of alkoxy groups.

The term "alkenyl" refers to optionally substituted unsaturated aliphatic hydrocarbon groups having from 1 to about 9 carbon atoms and one or more double bonds. Substituents may include one or more substituent groups as described above for substituted alkyl.

The term "halogen" or "halo" refers to fluorine, chlorine, bromine and iodine.

The term "ring system" refers to an optionally substituted ring system containing one to three rings and at least one carbon to carbon double bond in at least one ring. Exemplary ring systems include, but are not limited to, an aryl or a partially or fully unsaturated heterocyclic ring system, which may be optionally substituted.

The term "aryl" refers to monocyclic or bicyclic aromatic hydrocarbon groups having from about 6 to about 12 carbon atoms in the ring portion, for example, phenyl, naphthyl, biphenyl and diphenyl groups, each of which may be substituted.

The term "aralkyl" refers to an aryl group bonded to a larger entity through an alkyl group, such as benzyl.

The term "substituted ary!" refers to an aryl group substituted by, for example, arylthiono, alkysulfonyl, sulfonamido, aryloxy and the like. The substituent may be ureido, nitro, cyano, carboxy, carboxyalkyl, carbamyl, alkoxycarbonyl, alkylthiono, heterocycloamino, alkanoylamino, thiol, alkylthio, cycloalkylthio, heterocyclothio, further substituted by one or more members selected from the group consisting of halo, hydroxy, alkyl, alkoxy, aryl, substituted alkyl, substituted aryl and aralkyl. alkanoyloxy, amino, alkylamino, dialkylamino, aralkylamino, cycloalkylamino, one to four substituents such as alkyl; substituted alkyl, halo, trifluoromethyl, rifluoromethoxy, hydroxy, alkoxy, cycloalkyloxy, heterocyclooxy, alkanoyl,

Exemplary substituents include one or more alkyl groups as described above, or one hydrocarbon ring systems, preferably containing 1 to about 3 rings and 3 to about 7 carbocyclic ring. Exemplary groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl, cyclododecyl, and adamantyl. The term "cycloalkyl" refers to optionally substituted saturated cyclic carbon atoms per ring, which may be further fused with an unsaturated C3-C7 or more of the groups described above as substituents for alkyl groups.

optionally be quaternized. The heterocyclic group may be attached at any heteroatom optionally substituted, unsaturated, partially saturated, or fully saturated, aromatic or nonaromatic cyclic group, for example, which is a 4- to 7-membered monocyclic, 7to 11-membered bicyclic, or 10- to 15-membered tricyclic ring system, which has at heterocyclic group containing a heteroatom may have 1, 2 or 3 heteroatoms selected heteroatoms may also optionally be oxidized and the nitrogen heteroatoms may also from nitrogen atoms, oxygen atoms and sulfur atoms, where the nitrogen and sulfur east one heteroatom in at least one carbon atom-containing ring. Each ring of the The terms "heterocycle", "heterocyclic" and "heterocyclo" refer to an

xzepinyl, 4-piperidonyl, pyridyl, N-oxo-pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, isothiazolyl, isothiazolidinyl, furyl, tetrahydrofuryl, thienyl, oxadiazolyl, piperidinyl, oxazolyl, oxazolidinyl, isoxazolinyl, isoxazolyl, thiazolyl, thiadiazolyl, thiazolidinyl indolyl, pyrazolyl, oxetanyl, pyrazolinyl, imidazolyl, imidazolinyl, imidazolidinyl, piperazinyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, 2-oxazepinyl, Exemplary monocyclic heterocyclic groups include pyrrolidinyl, pyrrolyl,

PCT/US02/04247

tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydrothiopyranyl sulfone, morpholinyl, thiomorpholinyl, thiomorpholinyl sulfoxide, thiomorpholinyl sulfone, 1,3-dioxolane and tetrahydro-1, 1-dioxothienyl, dioxanyl, isothiazolidinyl, thietanyl, thiiranyl, triazinyl, and triazolyl, and the like.

coumarinyl, cinnolinyl, quinoxalinyl, indazolyl, pyrrolopyridyl, furopyridinyl (such as benzothienyl, quinuclidinyl, quinolinyl, quinolinyl-N-oxide, tetrahydroisoquinolinyl, furo[2,3-c]pyridinyl, furo[3,1-b]pyridinyl] or furo[2,3-b]pyridinyl), dihydroisoindolyl, Exemplary bicyclic heterocyclic groups include benzothiazolyl, benzoxazolyl, quinazolinyl, tetrahydroquinolinyl, thienofuryl, thienopyridyl, thienothienyl, and the benzpyrazolyl, dihydrobenzofuryl, dihydrobenzothienyl, dihydrobenzothiopyranyl, isoquinolinyl, benzimidazolyl, benzopyranyl, indolizinyl, benzofuryl, chromonyl, dihydrobenzothiopyranyl sulfone, dihydrobenzopyranyl, indolinyl, isochromanyl, benzisoxazolyl, benzodiazinyl, benzofurazanyl, benzothiopyranyl, benzotriazolyl, dihydroquinazolinyl (such as 3,4-dihydro-4-oxo-quinazolinyl), benzisothiazolyl, isoindolinyl, naphthyridinyl, phthalazinyl, piperonyl, purinyl, pyridopyridyl,

"heterocyclic," and "heterocyclo" include one or more substituent groups as described above for substituted alkyl or substituted aryl, and smaller heterocyclos, such as, Exemplary substituents for the terms "ring system," "heterocycle," spoxides, aziridines and the like.

The term "alkanoy!" refers to -C(O)-alkyl.

The term "substituted alkanoyl" refers to -C(O)-substituted alkyl.

The term "heteroatoms" shall include oxygen, sulfur and nitrogen.

The compounds represented by formula I form salts with a variety of organic hydrogen bromide, methanesulfonic acid, hydroxyethanesulfonic acid, sulfuric acid, represented by formula I in an equivalent amount of the acid in a medium in which acetic acid, trifluoroacetic acid, maleic acid, benzenesulfonic acid, toluenesulfonic acid and various others as are recognized by those of ordinary skill in the art of pharmaceutical compounding. Such salts are formed by reacting a compound and inorganic acids. Such salts include those formed with hydrogen chloride, the salt precipitates or in an aqueous medium followed by evaporation.

in addition, zwitterions ("inner salts") can be formed and are included within the term "salts" as used herein. Further, solvates and hydrates of the compounds represented by formula I are also included herein The compounds represented by formula I above may exist as multiple optical, geometric, and stereoisomers. While the compounds shown herein are depicted for one optical orientation, included within the present invention are all isomers and

microtubule-stabilizing agents. Therefore, they are useful in the treatment of a variety of cancers and other proliferative diseases including, but not limited to, the following; It is recognized that the compounds represented by formula I above are

- carcinoma, including that of the bladder, breast, colon, kidney, liver, lung, ovary, pancreas, stomach, cervix, thyroid and skin, including squamous cell
- lymphoma, Hodgkins lymphoma, non-Hodgkins lymphoma, hairy cell lymphoma and lymphocytic leukemia, acute lymphoblastic leukemia, B-cell lymphoma, T-cell hematopoietic tumors of lymphoid lineage, including leukemia, acute Burketts lymphoma;
- hematopoietic tumors of myeloid lineage, including acute and chronic myelogenous leukemias and promyelocytic leukemia;
- tumors of mesenchymal origin, including fibrosarcoma and
- rhabdomyoscarcoma;

other tumors, including melanoma, seminoma, teratocarcinoma,

- tumors of the central and peripheral nervous system, including astrocytoma, neuroblastoma, glioma, and schwannomas; neuroblastoma and glioma;
- tumors of mesenchymal origin, including fibrosarcoma, rhabdomyoscaroma and osteosarcoma; and
- keratoacanthoma, seminoma, thyroid follicular cancer and teratocarcinoma. other tumors, including melanoma, xeroderma pigmentosum,

The foregoing indications are given herein since it cannot be certain which of oncology therapy. "Oncology therapy" refers to treatment of cancer of tumors with the named types of tumors, and others as well, may demonstrate resistance to

PCT/US02/04247 WO 02/066033

chemotherapeutic agent is an oncology agent of the taxane family of compounds. It is oncology therapy with taxane compounds develop resistance over a course of therapy virtually all oncology agents. Further, certain diseases, such as colorectal cancers or and that not all cancers respond to treatment with taxane therapy as is the case with known, for example, that a considerable number of patients initially responsive to chemotherapeutic agents that exert a cytotoxic effect in cells. An example of melanoma, are known to be innately resistant to taxane therapy.

The subject epothilone compounds are highly potent cytotoxic agents capable subject compounds seem to possess the capacity to retain their antineoplastic activity of killing cancer cells at low nanometer concentrations and are approximately twice against human cancers that are naturally insensitive to paclitaxel or have developed as potent as paclitaxel in inducing tubulin polymerization. More important, the resistance to it, both in vitro and in vivo.

21 breast and Pat-7 ovarian carcinoma (clinical isolates, mechanisms of resistance not [1] Paclitaxel-resistant - HCT116/VM46 colorectal (multidrug resistant, MDR), Patsignificant antitumor activity include, without intended limitation the following: Tumors for which the subject epothilone compounds have demonstrated fully known), A2780Tax ovarian carcinoma (tubulin mutation);

[2] Paclitaxel-insensitive - Pat-26 human pancreatic carcinoma (clinical isolate) and M5076 murine fibrosarcoma; and

[3] Paclitaxel sensitive - A2780 ovarian, LS174T and HCT human colon

In addition, the compounds represented by formula I have demonstrated that

immunocompromized mice or rats. Being efficacious upon oral administration is they are orally efficacious versus preclinical human tumor xenografts grown in considered a significant advantage of the subject epothilone derivatives.

by formula I in an amount effective for such treatment. Other therapeutic agents such as those described below may be employed with the subject epothilone compounds in comprising administering to the subject one of the epothilone compounds represented The present invention thus provides a method of treating a subject, preferably demonstrated resistance to therapy with the taxane family of oncologic agents, mammals and especially humans, in need of treatment for a tumor that has

their usual dosages. Such agents may be administered prior to, simultaneously with

or following the subject epothilone compounds.

factors including the subject's age, body weight, general health, sex, diet and the like, may be determined by one of ordinary skill in the art, and includes exemplary dosage compounds may be administered in a frequent regimen, e.g., every two days for five doses, or intermittently, e.g., every four days for three doses or every eight days for administration for a given subject may be varied and will depend upon a variety of An effective amount of the epothilone compounds represented by formula I typically administered in a single dose, but can be given in divided doses since the amounts for a human of from about 0.05 to about 200 mg/kg/day. This dosage is subject compounds are advantageously efficacious via oral administration. The three doses. It will be understood that the specific dose level and frequency of the mode of administration if not oral, severity of the condition and the like.

such as those well known in the art of pharmaceutical formulation and/or called for by employing conventional solid or liquid vehicles or diluents, as well as pharmaceutical The compounds represented by formula I are administered in pharmaceutical excipients, binders, preservatives, stabilizers, flavors, etc.) according to techniques additives of a type appropriate to the mode of desired administration (for example, therapeutic agents as described below, and may be formulated, for example, by compositions containing an amount thereof effective for cancer therapy, and a pharmaceutically acceptable carrier. Such compositions may contain other accepted pharmaceutical practice.

The compounds represented by formula I may be administered by any suitable such as in the form of suppositories; in dosage unit formulations containing non-toxic, elease. Immediate release or extended release may be achieved by the use of suitable charmaceutically acceptable vehicles or diluents. The subject compounds may, for sowders; sublingually; bucally; parenterally, such as by subcutaneous, intravenous, nhalation spray; topically, such as in the form of a cream or ointment; or rectally njectable aqueous or non-aqueous solutions or suspensions); nasally, such as by means, for example, orally, such as in the form of tablets, capsules, granules or example, be administered in a form suitable for immediate release or extended ntramuscular, or intrasternal injection or infusion techniques (e.g., as sterile

WO 02/066033

the case of extended release, by the use of devices such as subcutaneous implants or pharmaceutical compositions comprising the present compounds, or, particularly in osmotic pumps. The subject compounds may also be administered liposomally.

The compounds represented by formula I can also be formulated in compositions such carrier, excipient, binder, preservative, stabilizer, flavor, etc., or with a topical carrier. Suitable dosage forms for the subject epothilone derivatives include, without physiologically acceptable vehicle, carrier, excipient, binder preservative, stabilizer, intended limitation, a orally effective composition such as a tablet, capsule, solution compounded in a conventional manner with a physiologically acceptable vehicle or amount of active substance in these compositions or preparations is preferably such about 500 mg of a compound represented by formula I may be compounded with a compound represented by formula I, one to five treatments per day). They may be or suspension containing about 5 to about 500 mg per unit dosage of a compound as sterile solutions or suspensions for parenteral administration. About 0.1 mg to etc., in a unit dosage form as called for by accepted pharmaceutical practice. The represented by formula I or a topical form (about 0.01% to about 5% by weight that a suitable dosage in the range indicated is obtained.

release tablets which may contain, for example, microcrystalline cellulose, dicalcium phosphate, starch, magnesium stearate and/or lactose and/or other excipients, binders, methyl cellulose (SCMC), maleic anhydride copolymer (e.g. Gantrez), and agents to formulations may also include an excipient to aid mucosal adhesion such as hydroxy may contain, for example, microcrystalline cellulose for imparting bulk, alginic acid Molded tablets, compressed tablets or freeze-dried tablets are exemplary forms that compound(s) with fast dissolving diluents such as mannitol, lactose, sucrose and/or propyl cellulose (HPC), hydroxy propyl methyl cellulose (HPMC), sodium carboxy Exemplary compositions for oral administration include suspensions which or sodium alginate as a suspending agent, methylcellulose as a viscosity enhancer, cyclodextrins. Also included in such formulations may be high molecular weight and sweeteners or flavoring agents such as those known in the art; and immediate extenders, disintegrants, diluents and lubricants such as those known in the art. may be used. Exemplary compositions include those formulating the present excipients such as celluloses (Avicel) or polyethylene glycols (PEG). Such

control release such as polyacrylic acid copolymer (e.g. Carbopol 934). Lubricants, glidants, flavors, coloring agents and stabilizers may also be added for ease of fabrication and use.

Exemplary compositions for nasal aerosol or inhalation administration include solutions in saline which may contain, for example, benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, and/or other solubilizing or dispersing agents such as those known in the art.

Exemplary compositions for parenteral administration include injectable solutions or suspensions which may contain, for example, suitable non-toxic, parentally acceptable diluents or solvents, such as Cremophor® (polyoxyethylated caster oil surfactant), mannitol, 1,3-butanediol, water, Ringer's solution, Lactated Ringer's solution, an isotonic sodium chloride solution, or other suitable dispersing or wetting and suspending agents, including synthetic mono- or diglycerides, and fatty acids, including oleic acid. Exemplary compositions for rectal administration include suppositories which may contain, for example, a suitable non-irritating excipient, such as cocoa butter, synthetic glyceride esters or polyethylene glycols, which are solid at ordinary temperature, but liquefy and/or dissolve in the rectal cavity to release

The compounds of the invention may be administered either alone or in combination with other chemotherapeutic agents or anti-cancer and cytotoxic agents and/or treatments useful in the treatment of cancer or other proliferative diseases. Especially useful are anti-cancer and cytotoxic drug combinations wherein the second drug chosen acts in a different manner or different phase of the cell cycle, e.g. S phase, than the present compounds represented by formula I which exert their effects at the Gr-M phase. Example classes of anti-cancer and cytotoxic agents include, but are not limited to: alkylating agents, such as nitrogen mustards, alkyl sulfonates, nitrosoureas, ethylenimines, and triazenes; antimetabolites, such as folate antagonists, purine analogues, and pyrimidine analogues; antibiotics, such as anthracyclines, bleomycins, mitomycin, dactinomycin, and plicamycin; enzymes, such as L-asparaginase; farnesyl-protein transferase inhibitors; hormonal agents, such as glucocorticoids, estrogens/antiestrogens, androgens/antiandrogens, progestins, and luteinizing hormone-releasing hormone anatagonists, octreotide acetate; microtubule-

WO 02/066033

disruptor agents, such as ecteinascidins or their analogs and derivatives; and epothilones A-F or their analogs or derivatives; plant-derived products, such as vinca alkaloids, epipodophyllotoxins, and topoisomerase inhibitors; prenyl-protein transferase inhibitors; and miscellaneous agents such as, hydroxyurea, procarbazine, mitotane, hexamethylmelamine, platinum coordination complexes such as cisplatin and carboplatin; and other agents used as anti-cancer and cytotoxic agents such as biological response modifiers, growth factors; immune modulators, and monoclonal antibodies. The subject compounds may also be used in conjunction with radiation

The compounds represented by formula I may also be formulated or coadministered with other therapeutic agents that are selected for their particular
usefulness in administering therapies associated with the aforementioned conditions.
For example, the compounds of the invention may be formulated with agents to
prevent nausea, hypersensitivity, and gastric irritation, such as antiemetics, and H₁
and H₂ antihistaminics.

The above therapeutic agents, when employed in combination with the compounds of the present invention, may be used in those amounts indicated in the Physicians' Desk Reference (PDR) or as otherwise determined by one of ordinary skill in the art.

The following example is given without any intended limitation to further illustrate the invention.

xample

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7, 11-dihydroxy-8,8,10,12,16-pentamethyl-3-[1-methyl-2-(2-aminomethyl-4-thiazolyl)ethenyl]-4,17-dioxabicyclo[14,1,0]heptadecane-5,9-dione (BMS-310705).

For administration to rodents, the subject compound was administered in either 1:9 ethanol/water, or 1:1:8 Cremophor®/ethanol/water. Final dilution for parenteral administration was made with water one hour before administration. Final dilution for oral administration was made with 0.25 M sodium phosphate buffer (pH 8.0). Paclitaxel was dissolved in a 50/50 mixture of ethanol and Cremophor® and maintained at 4°C. Final dilution was made immediately prior to injection to prevent undesirable precipitation.

Tumor Cell Lines: HCT 116 human carcinoma and HCT116/V/M46 cells were maintained on McCoy's medium and 10% heat-inactivated fetal bovine serum. A2780 human ovarian carcinoma cells and A2780Tax cells were maintained in IMEM and 10% heat-inactivated fetal bovine serum. This paclitaxel resistant cell line does not overexpress P-glycoprotein but has point mutations in the M40 isotype of beta-tubulin 2. Purified tubulin isolated from these resistant cells is refractory to polymerization by paclitaxel and is thought to account for the resistance to this drug, and collateral sensitivity to microtubule depolymerizing agents, such as vinblastine. All other cell lines were maintained in RPM11640 medium with 10% heat-inactivated fetal bovine serum.

Cytotoxicity Assay: the *in vivo* cytotoxicity was assessed in tumor cells by a tetrazolium-based colorimetric assay at 492 nm. The cells were seeded 24 h prior to drug addition. The reagents were added following a 72 h incubation with serially diluted test compound. Measurements were taken after a further three hours incubation. The results are expressed as median cytotoxic concentration (IC₅₀ values).

Clonogenic Cell Colony-Formation Assay: the potency required for the test compound and paclitaxel to kill clonogenic tumor cells (cells that are able to divide indefinitely to form a colony) in vitro was evaluated by a colony formation assay. The concentration needed to kill 90% of clonogenic cancer cells (IC₉₀) was determined.

Tubulin Polymerization Assay: the potency required for the test compound and paclitaxel to polymerize tubulin isolated from calf brain was evaluated by

WO 02/066033

PCT/US02/04247

published techniques. The effective concentration (EC_{0.01}) was defined as the interpolated concentration capable of inducing an initial slope of optical density (OD) of 0.01 OD/minute rate and is calculated using the formula: $EC_{0.01}$ = concentration/slope. $EC_{0.01}$ values are expressed as the mean with standard deviation obtained from 3 different concentrations.

were pooled at the start of the experiment and each was given a subcutaneous implant tumors, the animals were again pooled before distribution to the various treatment and obtained from donor mice. All tumor implants for efficacy testing were subcutaneous pancreatic carcinoma (from a liver metastasis biopsy). The human tumor xenografts (sc). The required number of animals needed to detect a meaningful response (6-8) of a tumor fragment (~50 mg) with a 13-gauge trocar. For treatment of early-stage control groups. For treatment of animals with advanced-stage disease, tumors were allowed to grow to the pre-determined size window (tumors outside the range were animals were checked daily for treatment related toxicity/mortality. Each group of following the last treatment dose (Wt2). The difference in body weight (Wt2-Wt1) groups. Treatment of each animal was based on individual body weight. Treated ovarian A2780, ovarian A2780Tax and Pat-7 (established from an ovarian tumor subcutaneous transplants in the appropriate mouse strain using tumor fragments excluded) and animals were evenly distributed to various treatment and control In Vivo Antitumor Testing: The following human tumors were utilized: biopsy from a patient who had developed resistance to paclitaxel); and Pat-26 animals was weighed before the initiation of treatment (Wt1) and then again were maintained in Balb/c nu/nu nude mice. Tumors were propagated as provided a measure of treatment-related toxicity.

Tumor response was determined by measurement of fumors with a caliper twice a week until the tumors reached a predetermined "target" size of 0.5 or 1.0 g. Tumor weights (mg) were estimated from the formula:

Tumor weight = (length x width²) + 2

The maximum tolerated dose (MTD) is defined as the dose level immediately above which excessive toxicity (i.e. more than one death) occurred. The MTD was frequently equivalent to the optimal dose (OD). Activity is described at the OD. Treated mice expiring prior to having their tumors reach target size were considered

to have expired from drug toxicity. No control mice expired bearing tumors less than target size. Treatment groups with more than one death caused by drug toxicity were considered to have had excessively toxic treatments and their data were not included in the evaluation of the antitumor efficacy of a compound.

Tumor response end-point was expressed in terms of tumor growth delay (T-C value), defined as the difference in time (days) required for the treated tumors (T) to reach a predetermined target size compared to those of the control group (C). A tumor is defined as "cured" when there is no detectable disease at the time of study termination; the interval between study termination and the end of drug treatment always exceeded 10 times the tumor volume doubling time. Group sizes typically consisted of eight mice in all treatment and control groups. Statistical analyses of response data were carried out using the Gehan's generalized Wilcoxon test.

Cytotoxicity Against Cancer Cells in vitro: as shown in Figure 1, the results demonstrate that the test compound has a broad spectrum of activity against a panel of tumor cell lines in vitro. Of the 8 cells lines tested, 7 have IC₃₀ values in the range of 0.9 nM to 3.5 nM. The highly multi-drug resistant (MDR) colon tumor lines HCT/VM46 had an IC₃₀ value of 11.9 It should be noted that the test drug did substantially overcome the MDR in these cells. This can be seen when it is considered that the ratio of concentration (R/S or resistance ratio) required for paclitaxel to inhibit cell growth by 50% in the resistant cell line vs. the sensitive HCT 116 cell line was 155 fold whereas, in comparison, the ratio for the test drug was only 12.8.

Mechanism of Cytotoxicity - Tubulin Polymerization: The cytotoxic activities of the epothilones, like those of the taxanes, have been linked to stabilization of microtubules, which results in mitotic arrest at the G2/M transition. In this regard, the potency of the test compound was about 2.5-fold more potent than paclitaxel. The tubulin polymerization potency of 4 epothilone compounds is shown in Table 1

WO 02/066033

PCT/US02/04247

. Table 1.	Tubulha Belymeskarkon Botansy of Frörr. Epothflonss Relative to Beeffeard	of Froir Produtions
Analog	Polymerization P Potency, EC ₆₀₁ Pot (μM)	Retio of Polymerization Potency of Analog/Paclitaxel
BMS-310705	7.4	1.7
BMS-247550	3.5	0.4
BMS-212188 (Epothilone A)	thilone A) 2.0	0.4
PMS-205535 (Fnothilone B)	chilone B) 1.8	0.3

Structures of the analogs included in Table 1 are shown in Figure 5.

Antitumor Activity by Parenteral Administration: the test compound was evaluated in a panel of five human tumor xenografts chosen because of their known, well-characterized resistance to paclitaxel. The tumor models (shown in Table 2 below) were as follows: clinically-derived paclitaxel resistant Pat-7 ovarian carcinoma xenograft (mutated tubulin); HCT116/VM46 human colon carcinoma xenograft - multidrug resistant (MDR); clinically-derived paclitaxel-resistant Pat-21 breast carcinoma model; and Pat-26 human pancreatic carcinoma model. The subject compound tested retained its antineoplastic activity and was significantly more active than paclitaxel. These results are shown in Figures 2 and 3, and in Table 3.

i Tolde 2. T	Tumor Okharist Clauses	Confliction	dust i
Tumor	Histology	Paclitaxel sensitivity	Resistance Mechanism(s)
Human			
Pat-7	Ovarian	Resistant	MDR, MRP
A2780Tax	Ovarian	Resistant	Tubulin
			mutation
HCT116/VM46	5 Colon	Resistant	MDR
Pat-21	Breast	Resistant	Unknown
Pat-26	Pancreatic	Refractory	Unknown

Clinical resistance to TAXOL

- 26 -

² MRP = multidrug resistance related protein

	AB	BMS-310705		247550	PACLITAXEL
Tumor Expt.	Rt., schedule	OD' (mg/kg)	rck.	LCK ¹	rck,
Human tumors - in nude mice					
Pat-7 14	IV, q4dx3	∞	2.4	1.8	0.8
A2780Tex 13	IV, q4dx3	01	3.6	3.5	8.0
HCTVM46 40	IV, q4dx3	2.7	2	1.3	0.55
Pat-21 717	IV, q4dx3;37,66	6	Ţ	3.9	6.3
Pat-26 968	IV, q4dx3	9	17	(1.2)	0.4

A formulation experiment was conducted to note the effect of the vehicle utilized. Since the test compound is stable and highly water-soluble, the effect of a simple solution was compared to the same concentration of test drug in the Cremphor®/ethanol/water vehicle described above. No difference was noted.

Antitumor activity by Oral Route of Administration: as the test compound is more stable at neutral pH than at low pH, the evaluation thereof by oral administration (PO) utilized a pH-buffering vehicle (0.25M potassium phosphate, pH 8.0). As shown in Figure 4, using an every 4 days x 3 schedule, the test compound was highly active orally against the Pat-7 human ovarian carcinoma model. As shown in Table 4 below, the orally administered test compound yielded 2.4 LCK at its MTD. A comparison could not be conducted with Paclitaxel since it is typically inactive when administered by the oral route.

, Dellial,	** Anttenior A	नाश्रीकु अधिन्त्री छिप्रक्ष-अप	angenjay enga	£5550	**
			BMS-310703 (PO)		BMS- 247550
Tumor	Expt. No.	Rt, schedule	OD. (mg/kg)	LCK' (cures/total)	ĘĘĘ,
Pest-7	\$ 1	PO, 94dxJ	8	77	61
OD, optimal dose or maximum tolerated dose (MTD). **LCK, gross log cell kill.	maximum tolerated	dose (MTD).			

From the foregoing in vitro experimental evidence, it can be seen that the test compound retains its antincoplastic activity in cancer cells that have developed resistance to paclitaxel, whether through overexpression of the MDR P-glycoprotein or tubulin mutation. From the in vivo evidence, the test compound has clearly demonstrated antitumor activity in all five paclitaxel-resistant tumors evaluated in this

A further advantage of the test compound over the prototypical taxanes is its efficacy by oral administration, producing antitumor activity when given orally that is equivalent to that produced by IV drug administration.

PCT/US02/04247

What is claimed is:

resistance to oncology therapy, comprising administering to said mammal an effective A method of treating a tumor in a mammal, said tumor having demonstrated amount of a composition comprising a pharmaceutically acceptable carrier and an epothilone compound of formula I:

P-Q is a carbon-carbon double bond or an epoxide;

R is selected from the group of H, alkyl, and substituted alkyl;

R1 is selected from the group consisting of

$$G^{4}-G^{3}$$
 G^{5} $G^{4}-G^{7}$ G^{4} G^{5} $G^{10}=C$ G^{10}

R2 is

-30-

G1 is selected from the group consisting of H, halogen, CN, alkyl and

G2 is selected from the group consisting of H, alkyl, and substituted alkyl;

G3 is selected from the group consisting of O, S, and NZ1;

G4 is selected from the group consisting of H, alkyl, substituted alkyl, OZ2,

 $\mathsf{NZ}^2Z^3,\,Z^2C=0,\,Z^4SO_2,\,\text{and optionally substituted glycosyl;}$

G3 is selected from the group consisting of halogen, N3, NCS, SH, CN, NC,

G6 is selected from the group consisting of H, alkyl, substituted alkyl, CF3,

N(Z1)3 and heteroaryl;

0Z', SZ', and NZ'Z';

0Z10, SZ10, NZ10Z11;

G' is CZ' or N;

Ge is selected from the group consisting of H, halogen, alkyl, substituted alkyl,

G9 is selected from the group consisting of O, S, -NH-NH- and -N=N-;

G10 is N or CZ12;

G11 is selected from the group consisting of H2N, substituted H2N, alkyl,

substituted alkyl, aryl, and substituted aryl;

each Z', Z', Z', and Z'1 is, independently, selected from the group consisting

of H, alkyl, substituted alkyl, acyl, and substituted acyl;

Z2 is selected from the group consisting of H, alkyl, substituted alkyl, aryl, substituted aryl, and heterocycle; each Z³, Z⁵, Z⁸, and Z¹⁰ is, independently, selected from the group consisting of H, alkyl, substituted alkyl, acyl, substituted acyl, aryl, and substituted aryl;

Z4 is selected from the group consisting of alkyl, substituted alkyl, aryl,

substituted aryl, and heterocycle;

Z' is selected from the group consisting of H, halogen, alkyl, substituted alkyl, aryl, substituted aryl, OZ8, SZ8, and NZ8Z9; and

Z12 is selected from the group consisting of H, halogen, alkyl, substituted alkyl, aryl, and substituted aryl;

-31-

PCT/US02/04247 WO 02/066033

with the proviso that when R1 is

 $\rm G^{l}$ and $\rm G^{2}$ are H, $\rm G^{3}$ is O, and $\rm G^{4}$ is H or $\rm Z^{2}C=O$ wherein $\rm Z^{2}$ is an alkyl group, and pharmaceutically acceptable salts thereof and any hydrates, solvates or G¹, G², G³ and G⁴ cannot simultaneously have the following meanings: geometric, optical and stereoisomers thereof.

2. The method of claim 1 wherein said compound is of formula Ia:

P-Q is a carbon-carbon double bond or an epoxide;

R is H or a methyl group;

G1 is H, an alkyl group, a substituted alkyl group or a halogen atom;

 ${\rm G}^2$ is H, an alkyl group or a substituted alkyl group;

 G^3 is an O atom, an S atom or an NZ^1 group;

 $\mathbf{Z}^{\mathbf{I}}$ is H, an alkyl group, a substituted alkyl group, an acyl group, or a

 $\rm G^4$ is H, an alkyl group, a substituted alkyl group, an $\rm OZ^2$ group, an $\rm NZ^3Z^3$ substituted acyl group;

 \mathbb{Z}^2 is H, an alkyl group, a substituted alkyl group, an aryl group, a substituted group, a $\rm Z^2C=O$ group, a $\rm Z^4SO_2$ group or an optionally substituted glycosyl group;

 \mathbb{Z}^3 is H, an alkyl group, a substituted alkyl group, an acyl group or a aryl group or a heterocyclic group;

Z' is alkyl, a substituted alkyl, an aryl, a substituted aryl or a heterocyclic

-35

WO 02/066033

PCT/US02/04247

with the proviso that G1, G2, G3 and G4 cannot simultaneously have the

following meanings:

 G^{l} and G^{2} are H, G^{3} is O, and G^{4} is H or $Z^{2}C=O$ wherein Z^{2} is an alkyl group.

The method of claim 1 wherein said compound is of formula Ib:

P-Q is a carbon-carbon double bond or an epoxide;

R is H or a methyl group;

Gi is H, an alkyl group, a substituted alkyl group or a halogen atom;

 G^2 is H, an alkyl group or a substituted alkyl group; and

G⁵ is a halogen atom, an N₃ group, an NCS group, an SH group, a CN group, an NC group or a heterocyclic group.

The method of claim 1 wherein said compound is of formula IIa:

- 33 -

PCT/US02/04247

erein:

P-Q is a carbon-carbon double bond or an epoxide;

R is H or a methyl group;

G6 is H, an alkyl group, a substituted alkyl group or a CF3, OZ3, SZ3 or NZ3Z6

.......

 \mathbf{Z}^{S} is H, an alkyl group, a substituted alkyl group, an acyl group or a

substituted acyl group;

 Z^6 is H, an alkyl group or a substituted alkyl group;

G' is a CZ' group or a N atom;

 Z^2 is H, halogen atom, an alkyl group, a substituted alkyl group, an aryl group, or a substituted aryl group, or an OZ^δ , SZ^δ or $NZ^\delta Z^\delta$ group,

 Z^{δ} is H, an alkyl group, a substituted alkyl group, an acyl group or a

substituted acyl group;

Z9 is H, an alkyl group or a substituted alkyl group;

 G^8 is H, a halogen atom, an alkyl group, a substituted alkyl group or an OZ^{10}, SZ^{10} or $NZ^{10}Z^{11}$ group;

Z¹⁰ is H, an alkyl group, a substituted alkyl group, an acyl group, a substituted

acyl group, an aryl group, or a substituted aryl group; and

 Z^{11} is H, an alkyl group, a substituted alkyl group, an acyl group, or a substituted acyl group.

The method of claim 1 wherein said compound is of formula IIb:

wherein:

- 34 -

WO 02/066033

PCT/US02/04247

P-Q is a carbon-carbon double bond or an epoxide;

R is H or a methyl group;

 G^6 is H, an alkyl group, a substituted alkyl group or a CF_3, OZ^5, SZ^5 or NZ^5Z^6

 Z^{δ} is H, an alkyl group, a substituted alkyl group, an acyl group or a

substituted acyl group;

 Z^6 is H, an alkyl group or a substituted alkyl group; and

G9 is O, S or an -N=N- group.

6. The method of claim I wherein said compound is of formula III:

wherein:

P-Q is a carbon-carbon double bond or an epoxide;

R is H or a methyl group;

 G^{10} is an N atom or a $\ensuremath{\text{CZ}^{12}}$ group; and

 Z^{l2} is H, a halogen atom, an alkyl group, a substituted alkyl group, an aryl

group, or a substituted aryl group.

The method of claim 1 wherein said compound is of formula IV:

-35-

PCT/US02/04247

herein.

P-Q is a carbon-carbon double bond or an epoxide;

R is H or a methyl group; and

 G^{11} is an H_2N group, a substituted H_2N group, an alkyl group, a substituted alkyl group, an aryl group or a substituted aryl group.

 The method of claim 1 wherein said compound is selected from the group consisting of:

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-[2-(azidomethyl)-4-thiazolyl]-1-methylethenyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14,1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7, 11-dihydroxy-8,8,10,12,16-pentamethyl-3-[1-methyl-2-(2-aminomethyl-4-thiazolyl)ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-[2-[[(1,1-dimethylethoxy)carbonyl]amino]methyl]-4-thiazolyl]-1-methylethenyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]hoptadecane-5,9-dione-

WO 02/066033

PCT/US02/04247

[4S-[4R*,7S*,8R*,9R*,15R*(E)]]-16-[2-[2-[[1(1,1-dimethylethoxy)carbonyl]amino]methyl]-4-thiazolyl]-1-methyl-ethenyl]-4,8-dihydroxy-5,5,7,9,13-pentamethyl-1-oxa-13(Z)-cyclohexadecene-2,6-dione;

[4S-[4R*,7S*,8R*,9R*,1SR*(E)]]-16-[2-[2-(aminomethyl)-4-thiazolyl]-1-methylethenyl]-4,8-dihydroxy-5,5,7,9,13-pentamethyl-1-oxa-13(Z)-cyclohexadecene-2,6-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12-tetramethyl-3-[1-methyl-2-[2-[(pentanoyloxy)methyl]]-4-thiazolyl]ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12-tetramethyl-3-[1-methyl-2-[2-[(naphthoyloxy)methyl]]-4-thiazolyl]ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-3-[2-[[(2-methoxyethoxy)acetyloxy]methyl]-1-methyl-4-thiazolyl]ethenyl]-8,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12-tetramethyl-3-[1-methyl-2-[2-{(N-propionylamino)methyl]-4-thiazolyl]ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-(3-acctyl-2,3-dihydro-2-methylene-4-thiazolyl)-1-methylethenyl]-7,11-dihydroxy-8,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione, N-oxide;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-3-[2-[2-(methoxymethyl)-4-thiazolyl]-1-methylethenyl]-8,8,10,12-tetramethyl-4,17-dioxabicyclo[14,1,0]heptadecane-5,9-dione;

PCT/US02/04247

[IS-[IR*,3R*(E),7R*,108*,11R*,12R*,168*]]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-3-[1-methyl-2-[2-(phenoxymethyl)-4-thiazolyl]ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1.S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-[2-[(ethylthio)methyl]-4-thiazolyl]-1-methylethenyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-[2-(ethoxymethyl)-4-thiazolyl]-1-methylethenyl]-7,11-dihydroxy-8,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12-tetramethyl-3-[1-methyl-2-[2-[(2,3,4,6-tetraacetyl-alpha-glucosyloxy)methyl]-4-thiazolyl]ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12-tetramethyl-3-[1-methyl-2-[2-[(2',3',4',6'-tetraacetyl-beta-glucosyloxy)methyl]-4-thiazolyl]ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[18-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12-tetramethyl-3-[1-methyl-2-[2-[(6*-acetyl-alpha-glucosyloxy)methyl]-4-thiazolyl]ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-3-[1-methyl-2-[2-[(p-toluenesulfonyloxy)methyl]-4-thiazolyl]ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[15-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-[2-(bromomethyl),4-thiazolyl]-1-methylethenyl]-7,11-dihydroxy-8,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadccane-5,9-dione;

- 38 -

WO 02/066033

PCT/IIC03/II/T/Jd

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-(5-bromo-2-methy]-4-thiazoly])-1-methyletheny]]-7,11-dihydroxy-8,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-[c-ganomethyl].4-thiazolyl]-1-methylethenyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

 $[48-[4R^*,78^*,8R^*,9R^*,15R^*(E)]]-16-[2-[2-(2-(cyanomethyl)-4-thiazolyl]-1-methylethenyl]-4,8-dihydroxy-5,5,7,9,13-pentamethyl-1-oxa-13(Z)-cyclohexadecene-2,6-dione;$

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-3-[2-[2-(1H-imidazol-1-ylmethyl)-4-thiazolyl]-1-methylethenyl]-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-(2-formyl-4-thiazolyl)-1-methylethenyl]-7,11-dihydroxy-8,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[I.S-[IR*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-(2-formyl-4-thiazolyl)-1-methylethenyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[18-[1R*, 3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-(2-ethenyl-4-thiazoly])-1-methylethenyl]-7,11-dihydroxy-8,8,10,12-tetramethyl-4,17-dihydroxy-8,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dinydroxy-3-[2-[2-(methoxyimino)-4-thiazolyl]-1-methylethenyl]-8,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

.39

PCT/US02/04247

[IS-[IR*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12-tetramethyl-3-[I-methyl-2-[2-[[(phenylmethyl)limino]methyl]-4-thiazolyl]ethenyl]-4,17-dioxabicyclo[14,1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-(2-acetyl-4-thiazolyl)-1-methylethenyl]-7,11-dihydroxy-8,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12-tetramethyl-3-[1-methyl-2-(2-oxiranyl-4-thiazolyl)ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[18-[1R*,3R*(E),7R*,108*,11R*,12R*,168*]]-7,11-dihydroxy-3-[2-[2-(2-iodoethenyl)-4-thiazolyl]-1-methylethenyl]-8,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*)]-3-[2-(2-ethynyl-4-thiazolyl)-1-methylethenyl]-7,11-dihydroxy-8,8,10,12-tetramethyl-4,17dioxabicyclo[14.1.0]heptadecane-5,9-dione; [18-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-3-[1-methyl-2-[2-[(methylamino)methyl]-4-thiazolyl]ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[15-{1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-[2-[[[2-(dimethylamino)ethyl]amino]methyl]-4-thiazolyl]-1-methylethenyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*)]-3-[2-[2-[(dimethylamino)methyl]-4-thiazolyl]-1-methylethenyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

-40-

WO 02/066033

PCT/US02/04247

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-3-[2-[2-[[bis(2-methoxyethyl)amino]methyl]-4-thiazolyl]-1-methylethenyl]-7,11-dibydroxy-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14,1.0]heptadecane-5,9-dione;

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*)]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-3-[1-methyl-2-[2-[(4-methyl-1-piperazinyl)methyl]-4-thiazolyl]ethenyl]-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione;

[18-[1R*,3R*(E),7R*,108*,11R*,12R*,168*]]4-[2-(7,11-dibydroxy-8,8,10,12-tetramethyl-5,9-dioxo-4,17-dioxabicyclo[14.1.0]heptadecan-3-yl)-1-propenyl]-2-thiazolecarboxylic acid; and

[1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*)]-4-[2-(7,11-dihydroxy-8,8,10,12-tetramethyl-5,9-dioxo-4,17-dioxabicyclo[14.1.0]heptadecan-3-yl)-1-propenyl]-2-thiazolecarboxylic acid methyl ester.

The method of claim 8 wherein said compound is [1S-[1R*,3R*(E),7R*,10S*,11R*,12R*,16S*]]-7, 11-dihydroxy-8,8,10,12,16-pentamethyl-3-[1-methyl-2-(2-aminomethyl-4-thiazolyl)ethenyl]-4,17-dioxabicyclo[14,1,0]heptadecane-5,9-dione.

The method of claim 1 wherein said epothilone compound is of formula:

The method of claim 1 wherein said mammal is a human.

-41-

PCT/US02/04247

12. The method of claim 1 wherein the composition containing said epothilone compound is administered parenterally.

The method of claim 12 wherein said epothilone compound is of formula: 5.

The method of claim 1 wherein the composition containing said epothilone compound is administered orally. 4.

The method of claim 14 wherein said epothilone compound is of formula:

16. The method of claim 1 wherein said tumor was initially not responsive to oncology therapy.

oncology therapy, but developed resistance thereto during the course of treatment. 17. The method of claim 1 wherein said tumor was initially responsive to

- 42 -

WO 02/066033

PCT/US02/04247

18. The method of claim 1 wherein said compound is administered simultaneously or sequentially with a chemotherapeutic agent useful in the treatment of cancer or other proliferative diseases.

- 43 -

2/2

WO 02/066033

Figure 1. Cytotoxicity spectrum of BMS-310705 versus a panel of eight tumor cell lines). Bar graphs, on the right, depict the IC₅₀ values of the cell lines listed on the left hand column (top to bottom).

Figure 2. (A) Comparative antitumor activity of IV BMS-310705 and IV BMS-247550 in the Pat-7 human ovarian carcinoma model. Compound was administered at the indicated doses, every 4 days for a total of 3 administrations starting 10 days after tumor implantation Q4D x3;10). Each datum point represents the median tumor weight of 8 mice. (B) Dose-response relationship for BMS-310705 in the Pat-7 tumor model.

Figure 3. Comparative antitumor activity of oral BMS-310705 and IV BMS-247550 versus the A2780Tax human ovarian carcinoma model.
Compound was administered at the indicated doses, every 4 days for a total of 3 administrations starting 13 days after tumor implantation Q4D x3:13). Each datum point represents the median tumor weight of 8 mice.

PCT/US02/04247

WO 02/066033

Figure 4. Comparative antitumor activity of oral BMS-310705 and IV BMS-247550 in the Pat-7 human ovarian carcinoma model. Compound was administered at the indicated doses, every 4 days for a total of 3 administrations starting 10 days after tumor implantation Q4D x3,10). Each datum point represents the median tumor weight of 8 mice.

Days post-tumor implantation

PCT/US02/04247

INTERNATIONAL SEARCH REPORT

A. CLA	CLASSIFICATION OF SUBJECT MATTER	
2 2 2 3 3	:Adir 31/423 :514/365	
According	According to International Patent Classification (IPC) or to both national classification and IPC	national classification and IPC
B. FIEI	PIELDS SEARCHED	
Minimum	Minimum documentation searched (classification system followed by classification symbols)	by classification symbols)
U.S. :	514/365	
Documenta	tion rearched other than minimum documentation to	Decumentation reserbed other than minimum documentation to the extent that such documents are included in the fields reserbed
Electronic	dats base consulted during the international search (s	Electronic data base consulted during the international search (same of data base and, where precticable, search terms used)
STN (RE WEST (P	STN (REG (CHEMICAL STRUCTURE), CA, USPATFUL) WEST (POPUB, USPAT, EPOAB, JPOAB, DWPI)	
ood 3	DOCUMENTS CONSIDERED TO BE RELEVANT	
Category	Citation of document, with indication, where appropriate, of the relevant passages	propriate, of the relevant passages Relevant to claim No.
×	US 5,969,145 A (SCHINZER et al) document.) 19 October 1999, entire 1-18
Х,Р	US 6,242,469 BI (DANISHEFSKY et al) 05 June 2001, see the claims in particular.	t al) 05 June 2001, see the 1-18
]	Further documents are listed in the continuation of Box (C. See parent family annen.
	Special enlagories of clied documents:	"?" Later denument poblished after the international filling take or potenty
	dominant defining the greers state of the art which is not considered to be of particular rederance	date and use the sufficient with the application but shed to endeathed the principle or theory makerying the immedian
: 4: ;	buflet dominant published on or after the international Hing date then meet which may there dendes on priority altim(s) or which is the most which may there dendes on priority altim(s) or which is	considered news or example to considered to involve an investment of the considered and considered to the colors and considered to the colors and considered to the decreases to take a class
	dudat to estabilit line pis-benhem date af amether citation or other special reason (se specified)	"T" dearmant of parliading reference; the chimned invasion cannot be considered to freely an invasion one was the constituted
	decembed referring to an oral disciours, ass, exhibition or other monen	with one or may other cost dontmosts, such combination being derious to a person abilited to the art
	document published getor to the interactional filling data but laser than the princity data claimed	"A" document member of the same palant (Amily
Date of the	Date of the actual completion of the international search	Date of mailing of the international search report
30 MAY 9008	\$00\$	0 3 JUL ZOOZ
Name and Commission Box PCT	Name and mailing address of the ISA/US Commissioner of Patents and Trademarks WorkPCT Workbarten DC eness	Authorized offices.
Faceimile No.	Ph. D.C. 10231	Telephone No. (703) 306-1835

Form PCT/ISA/210 (second sheet) (July 1995)*