Vector 1

1. Introduction Vectors

Vectors 2D represent as:

$$v = egin{bmatrix} v_1 \ v_2 \end{bmatrix}$$

Vector 3D:

$$v = egin{bmatrix} v_1 \ v_2 \ v_3 \end{bmatrix}$$

Finding length

to finding the length (magnitude) of the vector by these following formula.

$$||v|| = \sqrt{v_1^2 + v_2^2}$$

Ex1:

If $v = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, its magnitude (length) can be found as:

$$||v|| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5$$

2. Vectors and Linear Combinations

We can scaling the vector by using the constant make it more larger.

$$Linear\ combination:\ cv+dw=c\cdotegin{bmatrix} v_1 \ v_2 \end{bmatrix}+d\cdotegin{bmatrix} w_1 \ w_2 \end{bmatrix}$$

Ex1:

If
$$v = egin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $w = egin{bmatrix} 2 \\ 3 \end{bmatrix}$

For
$$c=2\cap d=3$$

$$cv+dw=2\cdotegin{bmatrix}1\\1\end{bmatrix}+3\cdotegin{bmatrix}2\\3\end{bmatrix}=egin{bmatrix}2\\2\end{bmatrix}+egin{bmatrix}6\\9\end{bmatrix}=egin{bmatrix}8\\11\end{bmatrix}$$

3. Lengths and Dot Products

The length of vector is magnitude and the dot product is an operation that combines two vectors to give a scalar value.

The length formula

$$||v|| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

The dot product formula

$$v \cdot w = v_1 \cdot w_1 + v_2 \cdot w_2 + \dots + v_n \cdot w_n$$

Key Point:

• If $v \cdot w = 0$, the vector are perpendicular

Ex1:

Let v = (1,2) and w = (3,4)Dot product

$$v \cdot w = 1 \cdot 3 + 2 \cdot 4 = 3 + 8 = 11$$

4. Angles Between Vectors

The angle θ between two vectors v and w is determined using the dot product.

Angle formula:

$$\cos heta = rac{v \cdot w}{(||v||||w||)}$$

Key Point:

- If $\cos \theta = 0$, the vector are perpendicular ($\theta = 90$).
- The Schwarz Inequality ensures that: $|v \cdot w| \le ||v|| ||w||$

Ex1:

Let
$$v = egin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 and $w = egin{bmatrix} 3 \\ 1 \end{bmatrix}$

Find $\cos \theta$

1.
$$v \cdot w = 1 \cdot 3 + 3 \cdot 1 = 6$$

2.
$$||v|| = \sqrt{1^2 + 3^2} = \sqrt{10}$$

3.
$$||w|| = \sqrt{3^2 + 1^2} = \sqrt{10}$$

4.
$$\cos \theta = \frac{6}{(\sqrt{10} \cdot \sqrt{10})} = \frac{6}{10} = 0.6$$

Thus that $\theta = \cos^{-1}(0.6)$

5. Unit Vector

A unit vector has length of 1 and points in the same direction as a given vector.

Unit Vector formula:

$$u=rac{v}{||v||}$$

Ex1:

Let v = (3,4)

1. Find
$$||v||=\sqrt{3^2+4^2}=5$$

2. Unit Vector
$$u=rac{1}{5}iggl[rac{3}{4} iggr] = iggl[rac{0.6}{0.8} iggr]$$