2023/6/19 16:47 week8-Normalisation

Normalisation

To remove undesired redundancy from databases (Break one large table into several smaller tables)

Definition: A relation is normalized if all determinants are candidate keys

Problem: Anomalies in Denormalized Data

Student-ID	Course-ID	Fee
130	C200	75
200	C300	100
250	C200	75
425	C400	150
500	C300	100
575	C500	50

Insertion Anomaly: A new course cannot be added until at least one student has enrolled

Deletion Anomaly: If student 425 withdraws, we lose all record of course C400 and its fee

Update Anomaly: If the fee for course C200 changes, we have to change it in multiple records (rows), else the data will be inconsistent.

Functional Dependency

Definitions

Determinants: The lesft hand side of the arrow, e.g. X,Y in (X,Y o Z)

Key and Non-Key attritutes: whether the attribute is part of the primary key or not

Partial functional dependency: a functional dependency of one (or more) non-key attributes upon part but not all of the primary key, e.g. $(Y \to Z)$

Transitive dependency: a functional dependency between 2 (or more) non-key attributes, e.g. (Z o D)

Armstrong's Axioms

Functional dependencies can be identified using Armstrong's Axioms

$$A = (X1, X2, ..., Xn) \ and \ B = (Y1, Y2, ..., Yn)$$

1. Reflexivity: $B\subseteq A\Rightarrow A\rightarrow B$ (自包含)

e.g. Student_ID, name -> name

2. Augmentation: $A \rightarrow B \Rightarrow AC \rightarrow BC$

e.g. Student_ID -> name => Student_ID, surname -> name, surname

3. Transitivity: $A \rightarrow B \ and \ B \rightarrow C \Rightarrow A \rightarrow C$

e.g. ID -> birthdate and birthdate -> age => ID -> age

Normalisation

Steps in Normalisation

2023/6/19 16:47 week8-Normalisation

1. **First Normal Form**-Keep atomic data/Rmove repeating groups
原PK r epeating PK (e.g.含有多个value的列) -> CPK (composite FK) + New separate table</br>
update, delete and insert anomalies still exsits

2. Second Normal Form-Remove partial dependencies

breakdown + FK</br> => update, delete and insert anomalies still exsits

Example: Order-Item (Order#, Item#, Desc, Qty)

3. Third Normal Form-Remove transitive dependencies

breakdown + FK => no anomalies!

Example: Employee (Emp#, Ename, Dept#, Dname)

Normalisation vs Denormalization

Normalisation:

- 1. Contains a minimum amount of redundancy
- 2. Allow users to insert, modify, and delete rows in tables without errors or inconssitencies (anomalies)

Denormalization:

- 1. Specific Quey Speed is super fast
- 2. Extra work on updates to keep redundant data consistent
- 3. Denomalization may be used to improve performance of time-critical operations