Woods Hole Oceanographic Institution

HYDROGRAPHIC STATION DATA OBTAINED IN THE VICINITY OF GEORGES BANK, MAY AND AUGUST, 1976

by

R. Limeburner, J. A. Vermersch and R. C. Beardsley

August 1978

TECHNICAL REPORT

Prepared for the U.S. Geological Survey under Contract 14-08-0001-15615 and for the National Science Foundation under Grant OCE 76-01813.

WOODS HOLE, MASSACHUSETTS 02543

DTIS QUALITY INSPECTED 8

26/

9950720 016

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited HYDROGRAPHIC STATION DATA OBTAINED IN THE VICINITY OF GEORGES BANK, MAY AND AUGUST, 1976

by

R. Limeburner, J. A. Vermersch, and R. C. Beardsley
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

August 1978

Accesi	on For	
DTIC	ounced	A
By Distrib	ution/	
А	vailability	Codes
Dist	Avail an Speci	
A-1		

TECHNICAL REPORT

Prepared for the United States Geological Survey under Contract No. 14-08-0001-15615 and for the National Science Foundation under Grant OCE-76-01813 (WHOI).

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept., WHOI-78-83.

Approved for Distribution

Valentine Worthington, Chairman Dept. of Physical Oceanography

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

Table of Contents

	<u>Pa</u>	age No.
List	of Figures	1
List	of Tables	4
Absti	ract	5
I.	Introduction	6
II.	Instrumentation	
	A. XBT	6
	B. Calibration Samples	7
	C. CTD and STD	8
	D. Navigation	8
III.	Data Analysis	9
IV.	Error Analysis	10
V.	Data Presentation	13
VI.	Acknowledgements	26
17T T	Hydrographic Data	28

List of Figures

																	Page No.
1.	EASTWARD	cruise	track.														28
2.	OCEANUS																29
3.	EASTWARD																30
4.	OCEANUS																31
5.	EASTWARD														•		32
6.	11	**	11	В							•	•	•		•		33
7.	11	11	n	С				•			•						34
8.	"	11	u	D				•		•			•				35
9.	11	n	11	E									•	•			36
10.	11	11	11	F			•.			•							37
11.	ıı	"	11	G,	H												38
12.	11	. 11	11	I						•	•		•				39
13.	tt .	11	11	J			•	•.	•								40
14.	11	n	n .	K,	,L				•		•	•			•		41
15.	"	*1	11	M		•					•	•	•		•		42
16.	11	11	п	N				•	٠				•		•,	•	43
17.	11	tī	11	0,	, P	, Q		•		•			•	•	•	•	44
18.	OCEANUS	cross	section	Α			•	٠					•		•	•	45
19.	11	11	11	В	•	•		•			•		•	•	•		46
20.	11	11	11	С				•			•		•	•		•	47
21.	11	11	11	D	•		•				•	•	•	•	•	•	48
22.	II	**	n	E			•	•.			•		•	•		•	49
23.	11	**	11	F	•		•		•		•	•	•	•	•	•	50
24.	11	"	11	G	•	•	•	•			•	•	•	•	•	•	51
25.	n	"	11	H	•		•	•				•	•	•	•		52
26.	11	n	11	I	•		•		•		•	•		•	•		53
27.	11	**	11	J		•		•				•		•	•		54
28.	11	11	11	K		•		•			•	•	•		•		55
29.	17	11	11	L		•		•					•				56
30.	11	*1	· u	M				•	•		•.	•			•		57
31.	11	*1	"	N		•	•	•		•					•	•	58
32.	H	11	n,	0	•	•		•	•						•		59

List of Figures (Contd)

																	Page No.
33.	T/S	for	EASTWARD	section	A												60
34.	п	**	"	n	В							•					61
35.	"	"	TI .	IT	C						•	•					62
36.	н	11	11	11	D.					•							63
37.	п	n	11	11	Ε.				•	•		•					64
38.	"	"	**	11	F.					•							65
39.	11	n	n	п	G.												66
40.	н	**	n	"	I.								•				67
41.	11	"	п	11	J.												68
42.	u	tt.	11	11	к.												69
43.	п	11	11	"	L.												70
44.	11	n	п	n	М.									 			71
45.	Ħ	n	11	**	N.												72
46.	н	H .	11	11	0.												73
47.	11	п	п	n ,	Q.												74
48.	T/S	for	OCEANUS	section	Α.										,		75
49.	11	11	11	11	В.	•											76
50.	**	п	"	11	c.												77
51.	11	п	11	11	D.												78
52.	п	11	н	11	Ε.			•									79
53.	**	11	u	11	F.	•											80
54.	11	п	11	71	F.	•											81
55.	n	н	11	11	G.												82
56.	Ħ	п	n	11	н.		•	•									83
57.	н	11	п	п	I.						•	•				,	84
58.	**	11	11	"	J.											ı	85
59.	"	n	u u	n	K.	•	•	•			•						86
60.	11	11	11	n	L.												87
61.	H	"	п	n	L.				•		•				•		88
62.	п	п	n .	п	М.		•	•									89
63.	11	"	11	n	N.				•	•		•					90
64.	н	***	п	11	0.												91

List of Figures (Contd)

																P	age No.
65.	T/S for	OCEANUS	Nor	thea	ıst (Chan	ne:	1	•			•		•			92
66.		D tempera											•		•	•	93
67.	11	11		11	15	met	er	s		•	•	•		•		•	94
68.	"	11		**	30	met	er	s		•				•		•	95
69.	11	11		"	45	met	er	s	•	•			•		•		96
70.	9 11	"		11	60	met	er	s	•		•	•	•		•		97
71.	11	11			75	met	er	s	•		•	•	•		•	•	98
72.	EASTWARD	salinity	at	sui	fac	е.	•				•				•		99
73.	п	11	n	15	met	ers						•		•		•	100
74.	n	11	11	30	met	ers				•	•						101
75.	n	**	11	45	met	ers		•		•		•		•	•	•	102
76.	11	11	11	60	met	ers	•.					•	•		•	•	103
77.	11	11	n	75	met	ers						•		•	•	•	104
78.	OCEANUS	temperatu	re	at :	surf	ace		•	•		•	•	•	•	•	•	105
79.	11	11		" :	15 m	eter	s				•		•	•		•	106
80.	"	**		" :	30 m	eter	s					•	•	•	•	•	107
81.	11	п		" ,	45 m	eter	s	•		•	•	•	•	•.	•	•	108
82.	"	11		11	60 m	eter	S	•.			•	•	•	•			109
83.	п	п		11	75 m	eter	s	•	•	•		•		•.	•		110
84.	OCEANUS	salinity	at	sur	face			€.		•	•			•	•	•	111
85.	11	11	11	15 I	nete	rs.			•.	•		•		•	•		112
86.	II	11	11	30 1	mete	rs.			•.	•		•		•	•	•	113
87.	п	п	**	45 ı	mete	rs.	•	•,	•		•		•	•	•		114
88.	п	11	11	60 ı	nete	rs.	•	•		•				•	•		115
89.	п	"	11	75 ı	mete	rs.	•			•				•	•	•	116

List of Tables

	•	Pa	ge No.
1.	Results of calibration measurements made on both hydro-		
	graphic cruises. The mean and standard deviations are		
	given for the differences between Nansen bottle and the		
	preliminary (i.e., uncorrected) CTD or STD observations.	•	11
2.	Estimated experimental uncertainty in individual T,S,		
	and σ_{t} values		12
3.	Station information listing for Eastward cruise		15
4.	Station information listing for Oceanus cruise		20

Abstract

Two extended cruises were made during May and August, 1976, to measure the regional hydrographic structure in the vicinity of Georges Bank on the New England Continental Shelf. A summary of the hydrographic observations made during Cruise E2B76 on the R/V <u>Eastward</u> and leg 3 of Cruise 13 on the R/V <u>Oceanus</u> are presented in graphic form.

I. Introduction

This report presents preliminary results of two hydrographic cruises made in the Georges Bank region of the New England continental shelf. The principle objectives of the cruises were: (a) to examine the water properties and structure of the shelf/slope front near a NSF-sponsored WHOI moored current meter array located south of Woods Hole, (b) to look for possible overflow through the Great South Channel, and (c) to map the water structure over and around Georges Bank in support of a separate USGS-sponsored moored array experiment being conducted there. The first hydrographic survey was conducted during May 11-21, 1976 on cruise 2B76 of the R/V Eastward, and the second survey during August 12-23, 1976 on cruise 13-3 of the R/V Oceanus. In general, alternate CTD and XBT stations were taken approximately every 5 nautical miles along a cruise track which zigzagged on and off the continental shelf and Georges Bank. The two cruise tracks are shown in figures 1 and 2 together with station locations, the station numbering scheme, and the regional topography. The Eastward cruise track was 1205 nautical miles long and a total of 63 CTD, 36 STD, and 114 XBT stations were made. The Oceanus cruise was 1381 nautical miles long, and a total of 110 CTD and 138 XBT profiles were obtained. The STD and CTD data has been edited and analyzed at WHOI and 2 decibar averaged profile data can be obtained with the XBT data in GATE format from the National Oceanographic Data Center, Washington, D. C. 20235.

II. Instrumentation

A. XBT

During the two cruises, a total of 252 Sippican, Inc. T4, T7, T10 XBT's were launched from the port quarter while the R/V Eastward and

R/V Oceanus were generally underway at 9 knots and 14 knots respectively. A surface salinity sample was taken at each XBT station and surface temperature was measured with a Hewlett-Packard model 2850C quartz crystal temperature sensor. The manufacturer's specifications for accuracy of the XBT are:

Temperature

±.2°C

Depth

±2% of scale or ±5m

Gradient Response

63% of step in 1m

95% of step in 5m

B. Calibration Samples

Salinity samples were obtained during each CTD/STD profile at the surface and at depth for calibration using standard Nansen bottles. The procedure was to attach the Nansen bottle 3m above the CTD or STD fish and lower the instrument to within 10m of the bottom for a continuous down profile. The fish was then raised until the Nansen bottle was located in a zone of minimal salinity gradient as estimated from the analog temperature and conductivity down traces. The winch was stopped and 3 to 5 minutes were allowed for the reversing thermometers to equilibrate before the bottle was tripped. The fish was then raised 3m, the three instrument output frequencies measured and logged, and then the fish was brought back to the surface as the up profile was recorded. The Nansen bottle temperature represents the average of 2 protected thermometer measurements and has an estimated accuracy of ±.005°C.

The salinity of the surface and deep water samples was initially determined on board the R/V Eastward using a Guildline model 8400 Auto-Sal Salinometer with a precision of less than $\pm .001~\%_{\infty}$. The salinometer circulation pump failed during the cruise so the remaining salinity samples

were measured using the WHOI shore salinometer. All salinity samples obtained on the Oceanus cruise were analyzed at WHOI following the cruise.

C. CTD and STD

A Plessy model 9040 CTD fish with a Plessy model 8400 digital data logger was used as the primary profiling instrument on both cruises. An older Plessy model 9040 STD fish was used with the digital data logger as the backup system; some 36 stations were made with this system on the Eastward cruise because of noise in the pressure circuitry of the CTD. Onboard calibration checks of both instruments were made when possible by plotting the temperature and salinity differences between the CTD/STD fish and the Nansen bottle calibration. The CTD was used for the first 7 stations on the Eastward cruise, then the pressure circuitry output started to exhibit 20 decibar amplitude noise. The STD fish was substituted for the next 4 hydrographic stations until a loose connection in the CTD pressure sensor was repaired. The CTD was then used from station 16 to 136, until large noise in the conductivity circuitry occurred. The STD was then used for the remainder of the Eastward cruise. Some sections of the hydrographic profiles obtained on the Eastward cruise were unacceptable because of the above electronic problems. The CTD fish was refurbished after the Eastward cruise and used for all hydrographic stations on the Oceanus cruise even though the temperature sensor was replaced after station 186. A proper assessment of the data quality was made for the NODC files.

D. Navigation

Two Internav Loran-C instruments were continuously monitored on the <u>Eastward</u> cruise, and two Epsco Loran-C instruments were used on the <u>Oceanus</u> cruise. The estimated position error for each station is less than ±.25 nautical miles.

III. Data Analysis

The raw data tapes were first edited for proper header information and file structure using the WHOI computer program "TIDE." A second test of the structural integrity of the data files was made with program "PLSSY" (written by W. Sass) which transcribes the raw data into CTD format and detects any bad scans which are located in the data files. The data was then processed with program "AAA", a multi-level general CTD processing program written by J. Vermersch. This program can be used to (1) apply user-specified calibration constants, (2) correct for sensor time lag, (3) compute salinity, sigma-t and other derived variables, (4) edit up to four variables via first-difference or acceptable range method, and (5) sort the data by pressure to provide a uniform pressure series. The linear corrections determined from the calibration salinity and temperature measurements were then applied to the instrument conductivity and temperature data for the CTD and to salinity and temperature data for the STD. (The calibration results are discussed in the next section and the mean offsets used to correct the CTD or STD data listed in Table 1.) A time lag of 2.5 scans (.625 sec) was used on all station data from both cruises except the data from Eastward cruise stations 41 and 200 where a time lag of 1 scan (.25 sec) was used. Profiles of data associated only with monotonically increasing pressure were created and plotted to indicate the initial data quality of each station. The monotonically increasing pressure profiles indicated "spiking" of the salinity data in areas of strong temperature gradients due to the different time constants associated with the conductivity and temperature sensors of the The spiking effects were minimized by the choice of time-lag given

above, first difference editing of the data, and by pressure sorting at 2 decibar intervals with a least-squares technique which gives the "best" value of each measured or computed variable at the center of each 2-decibar interval. The 2-decibar pressure-sorted data has been submitted in GATE format to NODC and has been used on all subsequent analysis and graphical presentations.

IV. Error Analysis

Table 1 summarizes the mean offsets and standard deviations computed between the Nansen bottle and CTD or STD calibration data. Plots of station number versus offset showed no recognizable calibration drift except near the Eastward CTD station 136, which caused the CTD fish to be replaced with the STD fish. The Oceanus cruise calibration results are given in 2 parts since a faulty CTD temperature sensor was replaced at station 186. The new temperature sensor was then calibrated at WHOI after the cruise. The conductivity offsets listed in Table 1 were computed from the difference between the fish conductivity value and the conductivity associated with the Nansen bottle temperature, salinity, and pressure values. Thus, the conductivity correction was applied to the data before salinity is computed. An estimate of the inherent instrument noise can be made from the unsorted pressure-increasing profile data taken at stations in the well-mixed water above Georges Bank. Salinity showed a maximum variation of $\pm .015$ %. An estimate of the total error in the hydrographic data can be made using the standard deviations of the calibration data. The estimated non-pressure sorted error is given in Table 2.

	Average Offset	Standard Deviation
Eastward CTD		
Temperature	034°C	.089°C
Conductivity	.131 mmho/cm	.060 mmho/cm
Eastward STD		
Temperature	.186°C	.117°C
Salinity	015 %.	.037 %。
Oceanus CTD before station 186		
Temperature	.002°C	.027°C
Conductivity	002 mmho/cm	.022 mmho/cm
Oceanus CTD after station 186		
Temperature	.628°C	.045°C
Conductivity	.016 mmho/cm	.016 mmho/cm

Table 1. Results of calibration measurements made on both hydrographic cruises. The mean and standard deviations are given for the differences between the Nansen bottle and the preliminary (i.e., uncorrected) CTD or STD observations.

	Temperature	Salinity	Sigma-t
Eastward Cruise			
CTD	±.089°C	.058 %。	±.045
STD	±.117°C	.037 %.	±.027
Oceanus Cruise			
CTD	±.027°C	.021 %。	±.016
CTD after station 186	±.045°C	.015 %.	±.012

Table 2. Estimated experimental uncertainty in individual T, S, and $\sigma_{\mbox{\scriptsize t}}$ values.

Approximately 75% of the calibration data was within these estimates and 95% of the data was within twice the error bracket. We note that since these error estimates are based on data taken in minimum gradient layers, significantly larger errors will likely occur in regions of sharp temperature and/or salinity gradients. The resulting salinity spiking problem is somewhat reduced by the smoothing associated with the 2-decibar pressure sorting.

V. Hydrographic Data Presentation

The hydrographic data taken on the two cruises are presented here in three different formats, vertical and horizontal section and T/S diagrams. The vertical cross-sections are drawn with contour intervals of 1°C, 2 %, and .5 in sigma-t and extend to maximum depths of 240m. The temperature sections show more structure than the salinity and sigma-t sections since the former also incorporate the XBT data which was generally taken between CTD/STD hydrocasts. The vertical sections for each cruise are identified by a single letter, and the lettering scheme for each cruise is shown superimposed on the cruise track in figures 3 and 4. T/S diagrams are shown next for the different vertical sections. Different symbols are used to indicate the beginning and ending of each cast and the T/S values at standard depth points of 10 m, 20 m, 30 m, etc. Horizontal plan-view sections are then presented for each cruise at standard depths 0, 15 m, 30 m, 45 m, 60 m, and 75 m. Temperature and salinity contour intervals are also 1°C and .2 %. The Eastward horizontal sections have been complemented with hydrographic data obtained by the U. S. National Marine Fisheries Service research vessel Albatross IV during a simultaneous May, 1976, bottom water survey in the Gulf of Maine. Only discrete water sample data from the Albatross IV cruise is included with the Eastward data in the horizontal sections and the NMFS data was linearly interpolated to our standard depths when necessary. The NMFS data was kindly made available to us by Drs. W. Wright and R. Schlitz.

A listing of standard station information for both <u>Eastward</u> and <u>Oceanus</u> data sets is also included in Tables 3 and 4 for reference.

Table 3. Station information listing for EASTWARD Cruise. SS means surface water sample taken. ND means the CTD/STD data was not digitally recorded. Station q is named EWD "q" T2.5 in GATE format (e.g., Station 12 is EWD 012T2.5)

annin del Magaza.			accompany of a						
Sta.		Time	Tak	T	Water			CTD/	Max Depth
_#		EST	Lat	Long	Depth	SS	XBT	STD	of Cast
1	May 11	0200	40°59.0	71°10.5	47	✓			
2	ray 11	0230	40°55.5	71°12.5	51	∨ √	,		
3		0330	40°49.2	71°16.5	60		√		
3		1740	40°43.0	71°19.5		√,	√,	,	
5		1930	40°37.0	71°17.5	62	√,	√,	√	56
6		2020	40°33.0	71°16.1	65 70	√	√,	,	
7		2128	40°26.8		70	√	√,	\checkmark	74
8		2230	40°22.5	71°13.9	80	√	√		
9		2340		71°13.5	84	√,	√.	\checkmark	90
9		2340	40°18.0	71°11.0	93	√	\checkmark		
10	May 12	0035	40°13.2	71°08.9	116	√	/	/	0.0
11	•	0135	40°08.9	71°07.8	141	√	√	V	88
12		0213	40°04.6	71°06.3	191	∨ ✓	√	,	1.60
13		0326	40°00.6	71°04.0	298		√,	√	168
14		0416	39°56.0	71°04.0		√,	√	,	
15		1303	39°56.0	71°03.4	519	√,	\checkmark	v ′	396
16		2131	39°56.0		518	\checkmark		Y	76
17		2155	39°56.0	71°03.4	518	,		•	96 -
18		2322	39°50.7	71°03.4	518	v',	,)	204
10		2322	39-30.7	71°04.0	823	\checkmark	√		
19	May 13	0030	39°45.9	71°00	1683	√	\checkmark	/	102
20		0130	39°41.1	70°58.5	√2000	√	V ✓	V	192
21		0305	39°36.2	70°57.2	2330	√	√	/	100
22		0332	39°31.9	70°55.5	2380	√	v √	√	188
23		0415	39°26.1	70°53.4	2430	v √	∨ √	,	104
24		0515	39°22	70°52	2545	√ √		√	194
25		0650	39°16.9	70°50	2660	v √	√ /	,	210
26		1550	39°16.8	70°49.8	2675	V	√	√ 	218
27		1940	39°25.0	70°45.8	2530	/	,	ND	
28		2035	39°31.3	70°36		√,	√,		
29		2130	39°36.5	70°28.8	2410	√,	√,		
30		2218	39°42.5	70°22.5	2200	\checkmark	√,		
31		2250	39°47	70°22.3	2000	√,	√,		
32		2336	39°53.5	70°22	1750	\checkmark	√,	,	
-		2330	39 33.3	70 21	730	√	√	√	192
33	May 14	0045	39°58	70°20	685	√	√		
34		0120	40°02.5	70°20	173	√ ·	√	✓	160
35		0220	40° 7.6	70°20	117	√	√	V	100
36		0312	40°12.8	70°19.5	105	√	√	√	100
37		0405	40°18	70°19.1	92	√	√	V	100
38		0453	40°22.4	70°19.3	83	√	√	√	74 .
39		0615	40°30	70°18	65	√	√	V	/4
40		0714	40°35	70°17.9	60	√	√	√	56
41		0820	40°39.2	70° 9.2	48	v	v √	γ	36
42		0847	40°41.3	70° 4.3	45	∨	v √		
43		0931	40°43.1	70°00.1	43	√	v √	√	4.2
44		1030	40°39.7	69°56.4	51	v √	v √	ν	42
45		1127	40°35.1	69°52.0	62	v √	,	/	5.0
46		1207	40°31.5	69°48	69	v √	√ -/	√	56
		•		00 40	UJ	V	V		

16
Table 3 (Contd)

Sta.		Time EST	Lat	Long	Water Depth	SS	XBT	CTD/ STD	Max Depth of Cast
47 48	May 14	1250 1339	40°28 40°24	69°44.5 69°40	72 69	√ √	√ √	√	68
49		1416	40°20.5	69°35.5	73	√,	. √	√	68
50		1501	40°16.9	69°32.1 69°28	76 84	√ √	√ √	√	80
51		1553 1630	40°13 40°8.5	69°27	81	√	,	,	
52 53		1720	40°03	69°28	101	√	√	\checkmark	96
54		1813	39°58	69°27	123	√,	· √	,	400
55		2150	39°53	69°25	1703	√	\checkmark	√	400
56	May 15	0440	39°48.6	69°25	1813	\checkmark	√	✓	286
57		0546	39°43.5	69°24.2 69°55.1	2018 1930	√ √	√	V	200
58		0900 1154	39°55.3 40°06.5	68°27.5	1230	√	•	✓	180
59 60		1257	40°10.5	68°30.0	560	√	√		
61		1355	40°14.6	68°33.7	188	√,	,	√	170
62		1445	40°19.5	68°35	104	\checkmark	√ √	✓	82
63		1535	40°24.4	68°36.8 68°39.4	93 81	√ √	✓	V	02
64 65		1712 1834	40°29.5 40°33.2	68°42.5	67	V	•	√	64
66		1972	40°33.7	68°48.8	70	✓	✓		
67		2001	40°34.3	68°55.7	73	√,	,	\checkmark	72
68		2042	40°34.7	69°02	68	√	✓	✓	84
69		2131 2215	40°34.7 40°34.9	69°07.3 69°14.5	83 64	√	✓	γ	0.1
70 71		2313	40°35.0	69°21.7	59	√		√	60
72		2350	40°35.1	69°26.5	55	√	√		
73	May 16	0017	40°35.4	69°31.5	59	√		√.	58
74	114 10	0318	40°49.3	69°18.9	58	. √	,	√,	54
75		0455	40°49.1	69°08.5	70	√,	√	√,	62 76
76		0617	40°49.2	69°02.5 68°56	76 73	√ √		∨ √	74
77 78		0743 0830	40°49.1 40°48.9	68°50.5	69	√	✓	,	
79		0905	40°49	68°45	67	√		✓	68
80		0957	40°49.8	68°40	59	√,	√	,	68
81		1032	40°50.6	68°34 68°36.8	58 58	√ √	✓	√	00
82 83		$\frac{1117}{1145}$	40°55 40°59.5	68°39.6	44	√	√ .		
84		1224	41°04.6	68°42.1	65	√		✓	72
85		1300	41°05	68°46.9	68	√,	√	,	78
86		1333	41°4.2	68°51.1	72	√	√	√	7.6
87		1409	41°4.1 41°4.5	68°55 69°00.0	85 91	√	V	✓	118
88 89		1452 1522	41°4.1	69°04.2	83	√	√	•	
90		1552	41°4.6	69°07.7	75	√		✓	70
91		1632	41°4.4	69°11.8	58	√,	√		
92		1655	41°4.0	69°16.2	57 45	√ √	√	√ ·	42
93 94		1732 1913	41°3.9 41°13	69°21.8 69°25	43	v √	✓	,	
94 95		2042	41°20.7	69°34.3	27	√	-	\checkmark	22

17
Table 3 (Contd)

Sta. #	<u> </u>	Time EST	Lat	Long	Water Depth	SS	XBT	CTD/ STD	Max Depth of Cast
	Mar. 16	2145	41°22	69°26.9	35	√		\checkmark	28
96 97	May 16	2255	41°25.2	69°17.2	100	√		√	96
98	May 17	0015	41°27	69°10.1	157	√		√	146
99	ray 17	0105	41°24.5	69°3.1	145		√		
L00		0140	41°31.3	68°57.3	154	√		\checkmark	142
-01		0231	41°30	68°53	135	,	\checkmark	,	1.20
_02		0300	41°29.2	68°47.5	150	\checkmark	,	\checkmark	138
L03		0345	41°28	68°42.9	130	,	√	✓	92
.04		0430	41°27	68°37.5	97 86	√ √	√	γ	92
.05 .06		0501 0550	41°24.3 41°20	68°35 68°29.5	66	v √	ν	√	62
.06		0648	41°14.4	68°23.7	57	v √		,	02
.08		0724	41°9.7	68°18.6	40	∨	√		
.09		0805	41°5.6	68°14.5	46	√	,	√	42
10		0850	41°2.3	68°11.2	44	√	√	,	
11		0940	40°57.8	68°06.0	42	√	√		
12		1330	40°00.7	68°4	51	✓	•	✓	50
13		1445	40°53.8	68°01.1	52	✓		√	50
14		1530	40°49.1	67°59	69	✓	\checkmark		
15		1618	40°44.5	67°56	77	✓		✓	72
16		1658	40°39.5	67°53.5	83	✓	✓		
17		1740	40°36	67°52	90	√.		✓	86
18		1830	40°31	67°49	120	√,	√,	,	
19		1930	40°26	67°46	142	√,	√,	\checkmark	132
20		2131	40°21.1	67°43.5	225	√,	√,	,	204
21 22		2104 2254	40°17.2 40°20.2	67°41 67°28.2	1040 490	√ √	√ √	√	394
24		0035	40°21.6	67°16.6	1493	✓	✓	√	386
25		0113	40°24.8	67°16.1	828	√	∨ √	*	300
26		0113	40°28.2	67°18	207	√	/		
27		0216	40°31.2	67°19.1	143	√	,	✓	136
28		0249	40°34.3	67°20.5	123	✓	\checkmark		
29		0316	40°38	67°21.9	100	✓	\checkmark		
30		0404	40°42	67°22.2	98	√		✓	92
31		0509	40°46.7	67°24.2	92	\checkmark	\checkmark		
32		0607	40°51.2	67°25	86	√		✓	84
33		0827	40°56	67°27	75	√,	\checkmark	,	_ ^
34		0915	41°01	67°27.5	69	√,	,	\checkmark	72
35		0954	41°4.5	67°29	61	√,	√	,	F.0
36		1045	41°10.5	67°31	53	\checkmark	/	\checkmark	50
37		1138	41°17	67°36.5	48	√ /	\checkmark	√	40
38 39		1230 1539	41°24 41°15.9	67°34 67°14.7	39 57	√ √	√	V	40
39 40		1636	41°13.9 41°11.2	67°07.2	66	√	√ √		
41		1805	41°6.9	66°57	70	v √	V	✓	60
42		1900	41°3.3	66°49.1	68	√	\checkmark	•	5.0
43		2008	41°00.2	66°41.6	81	√	•	✓	74
44		2040	40°58	66°38.2	98	√	\checkmark	•	
45		2116	40°56.8	66°35.3	120	√		\checkmark	90

18 Table 3 (Contd)

Sta.		Time EST	Lat	Long	Water Depth	SS	ХВТ	CTD/ STD	Max Depth of Cast
146 147	May 1	7 2158 2310	40°54.7 40°52.5	66°35 66°25.4	623 1788	√ √	√	- √	492
148 149	May 1	8 0045 0139	41°00.5 41°8.5	66°17.0 66°9	1783 1590	√ √	√ √	·	
150 151 152 153		0232 0300 0330 0356	41°16.5 41°21 41°25 41°29	66°2.0 66°04.0 66°06 66°7.5	1700 330 134 112	√ √ √	√ √ √		
154 155 156		0431 0449 0642	41°34 41°36.8 41°46	66°10.5 66°13.0 66°2	97 94 100	√ √ √	√ √ √	√	88
157 158 159		0805 0845 1022	42°1.2	65°51.5 65°46.8 65°41.8	135 239 367	√ √ √	√ √	√	292
160 161 162 163		1132 1230 1315 1359	42°15.5	65°37.3 65°31.5 65°33.5 65°36.1	330 118 110 99	√ √ √	√ √	√ √	104
164 165 166		1448 1603 1711	42°17.6 42°14.5	65°41.5 65°45.5 65°49.1	121 209 ∿220	√ √ √	√ . √	,	198
167 168 169		1754 1842 1935	42°10 42°8.2 42°5.9	65°52.1 65°55 65°59	238 1225 228	√ √ √	√	√ √	182 184
170 171 172		2054 2130 2218	41°59.5 41°57	66°2.5 66°7.0 66°11	98 97 90	√ √ √	√ √	√ √	82 76
173 174 175	May 2	2315 0 0000 0038	41°51.3	66°19 66°24.7 66°33.9	85 85 75	√ √	√ √	٧	70
176 177 178		0124 0230 0345	41°50.5 41°50.1	66°41.4 66°51.1 67°7.8	67 65 59	√ √ √	√ √ √		
179 180 181		0515 0618 0705	41°57.1 42°01.7	67°14.9 67°17.2 67°22	61 52 74	√ √ √	√	√ √	52 50
182 183 184		0747 0831 1024	42°13 42°9.8	67°24 67°26.5 67°39.9	191 238 188	√ √ √	√ √	√	220
185 186 187		1211 1317 1344	42°3.0 42°01	67°52.4 67°50.5 67°48.5	207 179 164	√ √ √	✓	√ √	182 156
188 189 190		1355 1646 1732	41°56 41°52.5	67°47.5 67°44.2 67°41.3	81 46 39	√ √ √	√	√ √	74 34
191 192 193		1906 2045 2130	41°41.9 41°45	67°53.5 68°6.1 68°9.5	37 38 51	√ √ /	√ √	√ /	32 80
194 195		2204 2310		68°11.3 68°15.2	82 193	√ √		√ √	178

19
Table 3 (Contd)

Sta.		Time			Water			CTD/	Max Depth
#		EST	Lat	Long	Depth	SS	XBT	STD	of Cast
196	May 21	0005	41°55	68°19.2	203	√		√	186
197	1	0059	41°58	68°22	177	\checkmark	✓		
198		0140	42°01.5	68°25.2	180	√		√	158
199		0242	41°59.1	68°33.7	170	\checkmark	√		
200		0335	41°57.7	68°41.3	166	\checkmark		\checkmark	82
201		0445	41°55.2	68°50	144	\checkmark	√		
202		0551	41°52.9	68°58	163	\checkmark		√	148
203		0700	41°50.6	68°06	178	✓	√		
204		0745	41°48.6	68°13.6	201	\checkmark	\checkmark		
205		0840	41°45	68°22	179	\checkmark		√	164
206		0931	41°43.8	68°29.2	168	√	√		
207		1020	41°41.5	68°35.0	136	\checkmark		√	122
208		1047	41°40.5	68°37.9	88	\checkmark	\checkmark		
209		1100	41°34.8	69°40.5	73	\checkmark		\checkmark	66
210		1131	41°39	69°43	54	\checkmark	✓		
211		1145	41°38	69°45.5	35	√		√	32
212		1220	41°37.0	69°48.5	24	√	\checkmark		
213		1238	41°36	69°51	18	\checkmark		\checkmark	20
214		1345	41°32.5	69°59.3	24	\checkmark			
215		1520	41°27.8	70°13.5	20	\checkmark			
216		1720	41°29.5	70°36.0	20	\checkmark			

Table 4. Station information listing for OCEANUS cruise. SS means surface water sample taken. ND means the CTD/STD data was not digitally recorded. Station "q" is named 013 "q" T2.5 in GATE format (e.g., station 15 is 013 015 T2.5).

HYDROGRAPHIC STATIONS

			***	DROGRAPHIC					Max
Sta.		Time			Water			CTD	Depth
#		EST	Lat	Long	Depth	SS	XBT	STD	of Cast
1	Aug 12	2155	41°17.6	71°00	41	✓	✓		
2	Aug 12	2230	41°09.7	71°01	36	V	√		
3		2310	41°01.3	71°04.1	47	√	√	✓	44
						,	,		
4	Aug 13	0135	40°57.0	71°02.9	52	\checkmark	√	,	E 4
5		0210	40°51.5	71°06.0	59	√,	,	V	54
6 7		0305 0330	40°45.9 40°40.6	71°07.0 71°08.3	58 61	√ √	√	√	54
8		0421	40°36.3	71°09.0	~70	√	✓	,	J -
9		0445	40°30.9	71°10.5	74	√		√	66
10		0608	40°26.3	71°11.0	81	√.	√		•
11		0653	40°22.4	71°13.3	85	√,	,	√	72
12		0801	40°17.1	71°09.5	96	√,	√	,	92
13 14		0822 0927	40°13.2 40°07.9	71°08.1 71°06.4	119 150	√ √	√.	√	92
15		0945	40°04.2	71°05.3	195	v √	V	√	174
16		1155	39°59.7	71°03.5	330	<i>\</i>	√	•	
17		1300	39°56.2	71°03.5	480	✓		✓	192
18		1445	39°56.6	70°48.9	450	√,	· /		
19		1540	39°57.0	70°33.4	~420	√,	√	,	104
20 21		1618 1813	39°59.5 40°04.5	70°23.0 70°23.3	265 153	√ √	√	√	194
22		1841	40°10.3	70°25.0	121	v √	ν	✓	112
23		2025	40°14.9	70°25.3	107	√	√	·	
24		2055	40°20.3	70°24.5	90	\checkmark		√	84
25		2200	40°25.5	70°24.1	75	√,	√		
26 27		2220	40°29.7	70°24.6	69	√,	,		
28		2325 2350	40°34.6 40°40.0	70°23.6 70°23.7	61 55	√ √	√	√	48
20		2330	40 40.0	70 25.7	33	V		,	40
29	Aug 14	0053	40°44.8	70°23.5	50	\checkmark	✓		
30		0123	40°50.3	70°25.4	51	√		\checkmark	44
31		0231	40°54.4	70°19.9	~42	√,	√	. ,	0.0
32 33		0300	40°58.9	70°14.9	33	√,	,	V	22
33 34		0358 0420	40°55.3 40°51.5	70°11.1 70°08.2	29 30	√ √	√	. V	18
35		0505	40°47.1	70°04.2	30	√	√	,	10
36		0530	40°42.5	70°00.6	43	<i>\</i>	•	√	32
37		0614	40°39.0	69°55.9	53	\checkmark	√		
38		0635	40°35.2	69°52.1	61	√,	,	√	56
39		0739	40°30.4	69°47.6	60	√	√	,	68
40 41		0757 0910	40°27.0 40°22.0	69°44.5 69°40.0	70 ∿72	√ √	✓	V	68
42		0930	40°19.4	69°36.5	73	<i>V</i>	V	✓	68
43		1025	40°14.9	69°32.5	80	· √	✓	•	
44		1045	40°10.7	69°28.5	87	√		√	84
45		1204	40°05.3	69°23.5	96	√,	√	,	-
46 47		1217	40°03.0	69°20.5	102	√	,	V	96
48		1354 1433	√39°57.0 39°51.2	√69°15.0 69°09.8	315 1505	√ √.	√	,/	182
40		7.400	JJ J1.2	07 07.0	100	ν.		γ .	102

Table 4 (Contd)

Sta.		Time EST	Lat	Long	Water Depth	SS	XBT	CTD/ STD	Max Depth of Cast
49	Aug 14	1600	∿39°56.1	∿68°55.0	1625	✓	✓		
50	1149 -1	1653	40.00.5	68°41.0	1920	√		✓	170
51		1840	40°06.0	68°38.5	√300	√	√		
52		1903	40°12.5	68°37.5	160	✓		√	150
53		1958	40°17.8	68°36.2	113	√	✓		
54		2025	40°21.8	68°36.9	89	√		\checkmark	80
55		2136	40°27.7	68°36.3	∿88	√	\checkmark		
56		2210	40°34.5	68°36.1	70	√		√	62
57	Aug 15	0120	40°42.8	68°36.2	61	√_	√		
58		0133	40°45.4	68°34.7	60	√		√	54
59		0243	40°47.2	68°42.7	64	√.	√		
60		0307	40°47.1	68°48.1	65	√		\checkmark	58
61		0356	40°48.3	68°54.6	67	√	✓		
62		0418	40°49.4	68°59.9	77	√.		\checkmark	68
63		1124	40°51.0	69°06.2	~71	√,	√	,	
64		1147	40°51.9	69°12.5	67	√,	,	\checkmark	58
65		1308	40°54.0	69°20.3	~47	√,	√	,	4.0
66		1330	40°53.5	69°24.4	45	\checkmark	,	√	40
67		1443	40°54.8	69°29.8	∿37	\checkmark	√,	,	2.4
68		1508	40°54.8	69°36.2	39	\checkmark	√,	\checkmark	34
69		1600	40°56.0	69°42.3	√31 25	√,	√	,	32
70		1617	40°56.5	69°46.7	35	√,	,	√	32
71 72		1736 1810	40°51.4 40°46.5	69°36.3 69°28.2	40 47	√ √	√ √		
73		1828	40°44.3	69°24.0	√43	∨	v √		
73 74		1850	40°44.2	69°17.8	47	v √	∨ √		
75		1904	40°45.5	69°14.4	62	v √	∨ ✓		
76		1940	40°51.9	69°13.9	66	√	√		
77		2011	40°58.0	69°13.6	69	√	√		
78		2052	41°05.0	69°18.8	52	√	,	√	48
79		2143	41°10.5	69°23.1	50	√	√	,	
80		2227	41°18.6	69°25.8	39	√	,	√	36
81		2320	41°19.8	69°22.0	√51	√	√	,	
82		2327	41°20.0	69°19.2	85	√	√		
83		2347	41°20.0	69°14.5	104	✓	√ -		
84		2352	41°20.0	69°11.3	125	√	•	√	118
85	Aug 16	0116	41°22.0	69°04.5	∿158	√	/		
86	.	0150	41°20.8	68°55.8	145	√		\checkmark	138
87		0244	41°22.2	68°49.0	128	✓	√		
88		0308	41°23.6	68°41.0	102	√		\checkmark	96
89		0424	41°20.0	68°36.0	73	√	√		
90		0455	41°16.1	68°31.8	57	\checkmark		\checkmark	52
91		0603	41°12.1	68°27.0	55	\checkmark	✓		
92		0626	41°07.9	68°21.9	47	√.		\checkmark	40
93		0737	41°04.1	68°17.5	43	√.	\checkmark		
94		0815	40°58.5	68°11.8	56	\checkmark	,	√	50
95		0937	40°54.9	68°04.8	63	\checkmark	\checkmark		

Table	4	(Contd)

Sta.		Time EST	Lat	Long	Water Depth	SS	XBT	CTD/ STD	Max Depth of Cast
	7 1.6				59	-		√	50
96	Aug 16	1003	40°52.3	67°59.0	72	V	/	γ	30
97		1107	40°47.4	67°57.0	72	√	√	✓	74
98		1137	40°43.2 40°38.3	67°55.2 67°52.9	86	√	√	γ	74
99		1247	40°34.0	67°49.2	93	v √	V	√	86
100		1305	40°29.8	67°47.5	∿121	v √	✓	γ	00
101		1410 1437	40°24.0	67°44.9	141	v √	Y	√	132
102		1546	40°20.0	67°42.0	~450	v √	✓	γ	132
103 104		1607	40°15.8	67°40.4	1200	v √	Y .	√	190
104		1837	40°17.8	67°25.8	1200	√	✓	•	130
106		1915	40°18.2	67°15.7	1120	√	V	✓	200
107		2020	40°25.2	67°15.1	¹¹²⁰ √732	√	√	,	200
107		2044	40°28.9	67°18.0	143	√	Y	√	126
109		2230	~40°36.0	∿67°22.0	105	v √	√	γ .	120
110		2257	40°41.5	67°23.4	97	√	V	✓	86
111		2346	40°46.5	67°24.0	92	/	✓	•	
111		2340	40 40.5	07 24.0	72	,	,		
112	Aug 17	0005	40°50.9	67°25.1	87	√		√	82
113	Aug 17	0852	40°56.5	67°26.0	~78	√	✓	•	
114		0918	41°01.7	67°26.0	67	√	•	√	62
115		1010	41°05.9	67°27.5	√62	√	✓	,	0.2
116		1010	41°10.8	67°27.5	47	V	,	√	48
117		1130	41°15.0	67°31.5	√48	/	√	•	
118		1153	41°18.5	67°32.2	43	√	,	✓	40
119		2128	41°28.8	67°36.8	35	√		/	32
120		2230	41°32.2	67°25.0	54	√	√	•	
121		2314	41°37.6	67°15.6	47	√	,	√	40
122	Aug 18	0018	41°32.8	67°13.4	53	✓	✓		
123		0040	41°29.8	67°08.5	57	√		✓	52
124		0148	41°25.2	67°05.6	61	√	√		
125		0215	41°21.1	67°00.2	66	√	•	√	64
126		0320	41°16.5	66°56.6	70	✓	✓		
127		0340	41°13.2	66°52.5	72	✓		✓	66
128		0500	41°08.0	66°47.9	72	√	✓		
129		0525	41°04.7	66°44.5	77	√		√	72
130		0640	41°00.2	66°41.5	∿80	✓	√		
131		0703	40°56.0	66°37.9	105	√		√ √	98
132		0813	40°51.5	66°34.2	∿549	✓	√		
133		0836	40°48.5	66°31.0	1800	✓		√	204
134		1123	40°54.2	67°01.0	87	√ √	√		
135		1217	40°50.3	67°15.0	92	\checkmark	√		
136		1259	40°46.8	67°27.5	88	✓	√		
137		1340	40°41.4	67°38.5	79	√	√		
138		1422	40°40.0	67°50.7	81	√	√		
139		1505	40°39.1	68°05.0	88	√	√		
140		1546	40°37.8	68°16.0	84			✓	76
141		1654	40°32.4	68°30.0	82	✓	\checkmark		
142		1725	40°28.2	68°37.1	85	√		√	76
143		1827	40°25.0	68°47.1	81	√	\checkmark		
144		1915	40°23.9	68°57.8	85	√		✓	78
145		2055	40°20.0	69°06.4	90	√	√		

Sta.		Time EST	Lat	Long	Water Depth	SS	XBT	CTD/ STD	Max Depth of Cast
146 147 148	Aug 18	2114 2255 2330	40°18.6 40°15.4 40°15.4	69°13.4 69°24.3 69°33.0	89 81 79	√ √ √	√	√ √	80 76
149 150 151 152 153 154 155 156 157	Aug 19	0018 0046 0130 0156 0235 0304 0400 0430 0500 0530	40°16.1 40°17.5 40°18.6 40°19.4 40°19.6 40°30.4 40°12.9 40°06.1 40°00.0 39°53.5	69°40.8 69°49.6 69°58.9 70°07.3 70°16.0 70°28.2 70°29.9 70°33.5 70°40.0	√79 83 √86 87 √88 90 √115 √135 255 500	√ <p< td=""><td>√ √ √ √ √</td><td>√ √ √</td><td>76 76 84</td></p<>	√ √ √ √ √	√ √ √	76 76 84
159 160 161 162 163 164 165 166	Aug 20	1727 1823 1855 2015 2037 2120 2144 2230 2257	41°04.2 41°08.1 41°11.5 41°15.8 41°19.8 41°24.0 41°28.0 41°33.2 41°37.6	66°21.2 66°23.2 66°24.5 66°25.4 66°28.1 66°30.0 66°31.9 66°34.0	780 ∿146 98 99 94 75 89 85 70	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	√ √ √	√ √ √ √	198 90 78 80
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188	Aug 21	0011 0043 0125 0155 0248 0314 0420 0442 0600 0640 0705 0722 0812 0832 0909 1019 1057 1447 1915 2044 2141 2205 2225	41°37.5 41°38.5 41°38.4 41°39.0 41°39.7 41°41.3 41°41.3 41°49.6 41°55.0 41°55.0 41°58.8 42°03.5 42°10.0 42°12.6 42°15.0 42°12.8 42°11.7 42°06.7 42°09.5 42°09.5 42°07.0 42°04.8	66°24.8 66°11.0 66°04.2 65°57.0 65°49.0 65°42.0 65°36.1 65°25.2 65°16.0 65°27.8 65°30.3 65°34.0 65°37.3 65°46.8 65°52.5 66°00.0 65°49.2 65°55.3 66°01.5 66°06.1	81 87 97 94 110 225 ~1640 1830 1900 ~1845 1550 1075 ~500 120 115 113 224 240 213 240 ~220 209 96	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ ✓	✓ ✓ ✓ ✓ ✓ ✓	84 84 196 196 194 108

24
Table 4 (Contd)

Sta.			Time EST	Lat	Long	Water Depth	SS	XBT	CTD/ STD	Max Depth of Cast
191	Aug	21	2315	42°02.0	66°10.8	93	√		√	88
192	Aug		0001	41°58.8	66°16.7	83	√.	√	,	7.4
193			0021	41°57,2	66°20.4	83	√.	,	√	74
194			0144	41°55.1	66°29.2	85	√,	√	,	70
195			0202	41°54.2	66°34.1	74	√,		√	70
196			0306	41°51.2	66°40.4	69 65	√ √	√	✓	60
197			0326	41°49.0	66°45.5 66°53.4	65	v √	√	,	
198			0435 0459	41°49.7 41°50.0	67°00.5	64	√	,	√	56
199 200			0550	41°52.7	67°03.1	60	√	√		
201			0604	41°55.5	67°05.2	58	√		√	50
202			0657	41°59.2	67°06.6	57	√	√		
203			0718	42°03.6	67°09.0	41	√		√	36
204			0816	42°07.5	67°11.3	63	√,	√	,	1.46
205			0940	42°10.0	67°14.0	155	√	,	\checkmark	146
206			0926	42°10.8	67°12.5	155		√,		
207			0929	42°10.8	67°12.5	155 245	· √	√ √		
208			1000	42°14.8 42°17.7	67°16.8 67°20.1	285	v √	γ	√	250
209 210			1015 1235	42°16.0	67°28.2	268	√	√	•	
211			1301	42°14.9	67°35.0	245	√	•	✓	198
212			1448	42°12.6	67°44.0	∿220 .	√	✓		
213			1517	42°10.0	67°50.1	215	√		√	206
214			1610	42°07.6	67°49.2	205	√,	√	,	174
215			1626	42°04.9	67°48.5	193	√,	,	y /	174
216			1736	42°01.9	67°47.2	165 115	√,	√	√	106
217			2035 2325	42°01.0 41°58.1	67°47.5 67°46.4	57	√	✓	ν	100
218	•		2323	41 30.1	07 40.4	37	ν	,		
219	Aug	23	0117	41°54.8	67°46,2	41	√	√		
220			0130	41°52.2	67°45.1	35	√		√	30
221			0201	41°49.8	67°44.1	36	√,	✓	,	32
222			0216	41°46.8	67°42,4	36	√,	,	√	32
223			0322	41°46.8	67°51.1	35 29	√ √	√	✓	22
224 225			0349 0435	41°42.0 41°42.5	67°55,2 68°04.6	35	√	✓	,	
226			0456	41°43.0	68°10.0	33	√	•	√	34
227			0542	41°45.0	68°11.1	51	√	√		
228			0557	41°45.2	68°15.7	73	1		√	70
229			0648	41°47.6	68°18.1	139	√.	√	,	000
230			0706	41°50.0	68°21.3	219	√,	,	√	200
231			0820	41°52.4	68°23.0	205	√,	√	,	178
232			0843	41°54.9	68°27.1	183	√,	,	√	110
233			1035	41°53,8	68°35.4	174 165	√ √	✓	✓	156
234			$\frac{1100}{1150}$	41°51.1 41°50.0	68°41.3 68°47.4	171	v √	√	,	
235 236			1150 1220	41°49.3	68°54.8	166	V √	,	√	156
237			1336	41°47.0	69°02.5	165	. ✓	√	•	
238			1357	41°46.2	69°07.0	182	√		√	172
239			1446	41°44.9	69°13.8	197	√	✓		
240			1508	41°44.0	69°20.8	176	√		✓	158

25
Table 4 (Contd)

Sta.		Time EST	Lat	Long	Water Depth	SS	XBT	CTD/ STD	Max Depth of Cast
241	23 Aug	1623	41°41.7	69°26.5	150	_/	./		
242	25 Aug	1652	41°39.1	69°32.8	92	1	•	√	86
243		1719	41°37.8	69°35.8	√80	1	1	•	•
244		1733	41°36.8	69°39.0	57	1	•	✓	54
245		1800	41°36.2	69°41.7	41	✓	√		
246		1808	41°35.2	69°43.2	32	√		√	32
247		1915	41°31.1	69°40.3	∿28	1	✓		
248		1933	41°26.0	69°43.5	21			\checkmark	14
249		2018	41°24.6	69°55.5	∿20		\checkmark		
250		2139	41°27.2	70°17.3	∿18	√	\checkmark		
200			11 21.2	, 0 1/.5	-10	•	•		

VI. Acknowledgements

Cruise E2B76 of the R/V Eastward was supported in part by the U. S. Geological Survey under contract 14-08-0001-15615 and in part by the National Science Foundation under grant OCE76-01813 and B. Butman from the USGS and R. Beardsley from WHOI served as co-chief scientists. Other scientific personnel included M. Noble and A. Eliason from the USGS, J. Vermersch from WHOI, W. Brown, E. LaCoursier, and W. Behen from the University of New Hampshire, and C. Patton, D. Grill, R. Hautsch, and R. Shepherd from Brookhaven National Laboratory. supplied the CTD fish, hydro winch, and deck unit while WHOI supplied the STD fish. In addition to the hydrographic work reported here, four bottom moorings were deployed by the University of New Hampshire group and a surface nutrient mapping program was successfully carried out by the Brookhaven group.

Leg 3 of Cruise 13 of the R/V Oceanus was supported in part by the USGS under contract 14-08-0001-15615 and in part by the National Science Foundation under grant OCE76-01813. D. Folger and B. Butman from the USGS and R. Beardsley from WHOI served as co-chief scientists. Other scientific personnel included M. Noble, A. Eliason, M. Bothner, and R. Fabro from the USGS, J. Vermersch, J. Milliman, C. Parmenter, F. Faller, and R. Limeburner from WHOI. The USGS hydrographic profiling equipment was

used. In addition, several USGS current meter moorings were recovered and one deployed, and one University of New Hampshire bottom mooring recovered. A suspended sediment program involving transmission profiling and water sampling was also conducted.

The skill and competence of the officers and crews of both research vessels contributed significantly to the success of the two cruises. Their help is gratefully acknowledged.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

STATION NO. 40 60 60-80 80 DEPTH (meters) 100 100 -120 120 -140 140 -160 160 -180 EAST WARD 180 May 11-21,1976
Section H
TEMPERATURE (°C)
DISTANCE (kilometers)
20
40 200 240 10 20 DISTANCE (nautical miles)

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.

Figure 22.

Figure 23.

Figure 24.

Figure 25.

Figure 26.

Figure 27.

Figure 28.

Figure 29.

Figure 30.

Figure 31.

Figure 32.

40°

BIBLIOGRAPHIC DATA 1. Report No.	1.0	ian ''	I - A second the Nic
****OT 70 00	2.		ent's Accession No.
SHEET WHOI-78-83 Title and Subtitle		5. Report	Date
HYDROGRAPHIC STATION DATA OBTAINED IN THE VICINITY OF		Aug	ust 1978
GEORGES BANK, MAY AND AUGUST, 1976	N THE VICINITI		
. Author(s)		8. Perfor	ming Organization Rept.
R. Limeburner, J. A. Vermersch and R. C. Beardsley		10 Project	10. Project/Task/Work Unit No.
Performing Organization Name and Address		10. 110)	Ct/ Taok/ wone some
Woods Hole Oceanographic Institution			eact/Grant No.
Woods Hole, MA 02543			-08-0001-15615
			E 76-01813
12. Sponsoring Organization Name and Address U. S. Geological Survey National Science Foundation		Cove	of Report & Period red
		Tec	chnical
		14.	
15. Supplementary Notes			
6. Abstracts			
Two extended cruises were made	during May and	August, 1976, to	measure the
regional hydrographic structure in t	the vicinity of	Georges Bank on 1	the New England
Continental Chelf A summary of the	hvdrographic o	bservations made	auring Cruise
E2B76 on the R/V Eastward and leg 3	of Cruise 13 on	the R/V Oceanus	are presenced
in graphic form.			
	•		
17 W 1 D 10 17 Descriptors			
17. Key Words and Document Analysis. 17d. Descriptors			
1. Hydrograph y			
 Hydrography Georges Bank 			
1. Hydrograph y			
 Hydrography Georges Bank 			
 Hydrography Georges Bank 			
 Hydrography Georges Bank 			
 Hydrography Georges Bank 			
 Hydrography Georges Bank Gulf of Maine 			
 Hydrography Georges Bank 			
 Hydrography Georges Bank Gulf of Maine 			
 Hydrography Georges Bank Gulf of Maine 			
 Hydrography Georges Bank Gulf of Maine 			
 Hydrography Georges Bank Gulf of Maine 			
 Hydrography Georges Bank Gulf of Maine 17b. Identifiers/Open-Ended Terms			
 Hydrography Georges Bank Gulf of Maine 17b. Identifiers/Open-Ended Terms 17c. COSATI Field/Group		19. Security Class (Thi	s 21. No. of Pages
 Hydrography Georges Bank Gulf of Maine 17b. Identifiers/Open-Ended Terms		Report) UNCLASSIFIED	116
2. Georges Bank 3. Gulf of Maine 17b. Identifiers/Open-Ended Terms 17c. COSATI Field/Group		Report)	116

1. Hydrography 2. Georges Bank 3. Gulf of Maine I. Limeburner, R. III. Vermersch, J. A. III. Beardaley, R. C. IV. USGS Contract 14-08-0001-15615 V. OCZ 76-Qig13 This card is UNCLASSIFIED	1. Hydrography 2. Gaorges Bank 3. Gulf of Maine 1. Limeburner, R. III. Vermerech, J. A. IIII. Beardslay, R. C. IV. USGS Contract 14-06-0001-15615 V. OCT 76-01013 This card is UNCLASSIFIED
Woods Hole Oceanographic Institution WHOL-78-83 HYDROGRAPHIC STATION DATA GETAIND IN THE VICINITY OF GEORGES BANK, MAY AND AUGUST, 1976 by R. Limbunner, J. A. Vermested and R. C. Beardaley. 116 pages. August 1976. Prepared for the U.S. Geological Survey under Contract H4-08-0001-15815 and for the National Science Foundation under Grant Ocz 76-0181. Two extended cruises were made during May and August, 1976, to measure the regional hydrographic structure in the vicinity of Georges Bank on the Smilland Continental Bhalf. A summary of the hydrographic observations made during Cruise E2876 on the RVV Eservard and leg 3 of Cruise 13 on the RVV Oceanus are presented in graphic form.	Woods Hole Oceanographic Institution HYDROGRAPHIC STATION DATA OBTAINED IN THE VICTAITY OF GENESE BANK, MY AND MUDICAL, 1976 by R. Limbburner, J. A. Vermester, and R. C. Beardaley. 116 pages. August 1976. Prepared for the U.S. Geological Burvey under Contract 140-80-0001-1561s and for the National Science Foundation The extended cruises were made during May and August, 1976, to measure the regional hydrographic structure in the vicinity of Georges Bank on the New England Continental Shelf. A summary of the hydrographic observations made during Cruise E2256 on the RAV Entrucad and log 3 of Cruise 13 on the RV Oceanus are presented in graphic form.
1. Hydrography 2. Georges Bank 3. Gulf of Maine 1. Limeburner, R. III. Vermersch, J. A. III. Baardslay, R. C. IV. USGS CONTEACT 14-08-0001-15615 V. OCZ 76-01813 This card is UNCLASSIFIED	1. Rydrography 2. Georges Bank 3. Gulf of Maine 1. Lineburner, R. 11. Vermersch, J. A. 111. Beardsley, R. C. 1V. USGS Contract 14-08-0001-15615 V. OCT 76-01013 This card is UNCLASSIFIED
Whods Hole Oceanographic Institution HYDROGRAPHIC STATION DATA OBTAINED IN THE VICINITY OF GEORGES BANK, MY AND AUGUST, 1976 by Limbulmer, J. A. Vermetch and R. C. Beardaley. 116 pages. August 1978. Prepared for the U.S. Geological Survey under Contract He-OB-OROU-15611s and for the National Science Foundation under Grant Cor 76-01813. No extended cruises were nade during May and August, 1976, to measure the regional bytorgraphic structure in the vicinity of Georges Bank on the New England Continental Shelf. A summary of the hydrographic observations made during Cruise E2876 on the RVV Eastbard and leg 3 of Cruise 13 on the RV Oceanum are presented in graphic form.	HYDEOCRAPHIC STATION DATA OBTAINED IN THE VICTIVITY OF GEORGES BANK, MY NO AUGUST, 1376 by R. Limburner, J. A. Vermerch and R. C. Beardaley. 116 pages. August 1978. Prepared for the 10.5. Geological Survey under Contract 14-08-0001-15615 and for the Netional Science Foundation under Grant OCE 76-01813. TWO extended cruises were rade during May and August, 1376, to measure the regional hydrographic structure in the vicinity of Georges Bank on the New England Continental Shelf. A summary of the New England observations rade during Cruise 2285 on the RV England 189 3 of Cruise 13 on the RV Oceanus are presented in graphic form.