

A 2.7GHz Phase Lock Loop in CMOS 0.18µm Technology

CMOS Analog Integrated Circuit Design Course Project

Supervised by: Dr. Esam Abdel-Raheem

Presented by: Rashid Rashidzadeh

Functional block diagram of a typical PLL

The basic phase-locked loop circuit synchronizes an output signal with an input reference signal

The output signal has the same frequency as the input reference signal with a constant phase difference

Basic Phase-Locked Loop Architecture

PLL Applications

Clock Recovery

Regenerate Clock from input Data

Tracking filter

A narrow-band filter whose center frequency can move

- Frequency Demodulation FM demodulation
- Frequency Synthesis

A frequency synthesizer generates multiples of an accurate reference frequency

Building Blocks of Phase-Locked Loop

- Digital PLL uses logic gates to realize the phase detector
- Analog PLL uses a multiplier to implement the PD

Dynamics of Building Blocks of PLL

Dynamics of Building Blocks of PLL (continued)

Analog Phase Detector

$$A\cos wt \longrightarrow \text{LPF} \longrightarrow Vcnt = \frac{AB}{2}\cos \mathbf{f}$$

$$B\cos(wt + \mathbf{f})$$

Block Diagram of Implemented 2.7 Ghz Analog Phase-Locked Loop

PLL Circuit Implementation

DC Analysis and Operating Points

Three Stage Ring Oscillator and Mixture

Barkhusen criteria for oscillation $\begin{cases} 1 - |H(jw)| \ge 1 \\ 2 - \angle H(jw) \ge 180^{\circ} \end{cases}$

AC analysis

Bode Diagram to see if the oscillation requirements are met. To ensure oscillation in the presence of temperature and process variation gain should be more than two times of the required value

Double Balanced Mixture

Concept of half circuit to calculate $V_{\it out}$

PLL Parameters

Capture Range: The capture range is the range of input frequencies for which an initially unlocked loop will lock on an input signal

Tracking Range: The range of frequencies where the PLL maintains $w_i = w_{osc}$

PLL Parameters

dB

Phase noise: Represents total energy being "concentrated" close to the center frequency of operation. It is specified in FM noise (Hz rms) or dBc/Hz

dBc

Jitter: Represent the same phenomena in time domain and specified in (nsec rms) or degrees rms,

Performance of the designed PLL

Our Design

Center Frequency: 2.7 GHz

Power Dissipation: 0.960µw

Tracking Range: 120Mhz

Capture Range: 84 Mhz

Jitter: 2.6 ps, rms

Supply Voltage: 3 V

Technology: CMOS 0.18µm

Reference Design

Center Frequency: 2 GHz

Power Dissipation: 1.6µw

Tracking Range: 100MHz

Capture Range: 70 MHz

Jitter: 2.8ps,rms

Supply Voltage: 3 V

Technology: CMOS 0.6µm

References

1- A 2-GHz 1.6-mW phase-locked loop

Razavi, B.; Solid-State Circuits, IEEE Journal of, Volume: 32, Issue: 5, May 1997 Pages: 730 – 735

- 2- RF Microelectronics Author: Behzad Razavi, Publisher: Prentice Hall, Nov.1997
- 3- Fractional/Integer-N PLL Basics, Texas Instrument technical Brief SWRA029, www.newwaveinstruments.com/resources/rf_microwave_resources/sections/phase_locked_l oop_pll_design_circuit.htm

4- A low-noise 1.6-GHz CMOS PLL with on-chip loop filter

Parker, J.; Ray, D.;

Custom Integrated Circuits Conference, 1997., Proceedings of the IEEE 1997, 5-8 May 1997 Pages:407 - 410