CHAPTER 2 Groups

1. Basic Definitions

Before giving the formal definition of a group, we would rather present some concrete examples.

1.1. Examples.

- (a) Consider the addition of integers. From the numerous properties of this binary operation, we single out the following ones.
 - (i) + is a binary operation on Z, so, for any $a, b \in Z$, we have $a + b \in Z$.
 - (ii) For all $a, b, c \in \mathbb{Z}$, we have (a + b) + c = a + (b + c).
 - (iii) There is an integer, namely $0 \in \mathbb{Z}$, which has the property a+0=a for all $a \in \mathbb{Z}$.
 - (iv) For all $a \in \mathbb{Z}$, there is an integer, namely -a, such that a + (-a) = 0.
- (b) Consider the multiplication of positive real numbers. Let \mathbb{R}^+ be the set of positive real numbers. Here the multiplication enjoys properties apalogous to the ones above.
 - (i) \cdot is a binary operation on \mathbb{R}^+ , so, for any $a,b\in\mathbb{R}^+$; we have $a\cdot b\in\mathbb{R}^+$.
 - (ii) For all $a, b, c \in \mathbb{R}^+$, we have $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
 - (iii) There is a positive real number, namely $1 \in \mathbb{R}^+$, which has the property $a \cdot 1 = a$ for all $a \in \mathbb{R}^+$.