Umeå University

Department of Computing Science

Parallel Programming 7.5 p 5DV152

Exercises, Chapter/Topic 1

Submitted 2017-01-26

Author: Lorenz Gerber (dv15lgr@cs.umu.se lozger03@student.umu.se)

Instructor: Lars Karlsson / Mikael Ränner

Contents

1	Introduction	1
2	1.1 - Formulas for block partitioning	1
3	1.2 - Modify 1.1 with non-uniform costs	1
4	1.3 - Tree-structured global sum	1
5	1.4 - Alternative algorithm for 1.3	2
6	1.5 - Generalization of 1.3 and 1.4	2
	6.1 Generalized form or 1.3	2
	6.2 Generalized form of 1.4	3
7	1.6 - Cost anlaysis of global sum algorithms	3
Refe	erences	3

1 Introduction

This report is part of the mandatory coursework. It describes the solutions for several chosen exercises from the course book [?].

2 1.1 - Formulas for block partitioning

The overwhelming idea is to load balance p number of cores with n tasks. Here, we use two functions to obtain block partitioning using a for loop:

```
for (my_i = my_first_i; my_i < my_last_i; my_i++)</pre>
```

The functions my_first_i and my_last_i are used to set the limits in the loop. Besides n, i and p we also need an index for the actual core: k. It is understood that indicies i and k start at 0. The book text hints to start with the case when n is evenly divisible by p:

```
my_first_i = k * n / p

my_last_i = (k + 1) * n / p
```

Testing this expression for n = 10, p = 5, $k = \{0, 1, ..., 4\}$ seems to be correct. Now when n is not even divisible by p, one has to distribute the n mod p tasks for example on the first n mod p cores:

```
my_first_i = k * n / p + (k < n mod p ? k : n mod p)
my_last_i = (k + 1) * n / p + (k + 1 < n mod p ? k + 1 : n mod p)
```

Testing this expression for n = 9, p = 5, $k = \{0, 1, ..., 4\}$ gives the correct results.

3 1.2 - Modify 1.1 with non-uniform costs

The calls happen in parallel. It can be still assumed that k=0 will get the first call, k=1 the second and so on. However, this doesn't really matter as the processing time increases monotonously. Hence the solution in 1.1 will still provide the correct solution.

4 1.3 - Tree-structured global sum

```
divisor = 2
core_diff = 1

while(core_diff < p){
   if(k % divisor == 0)
      receive and add from k + core_diff
   else
      send to k - core_diff
      break

   divisor * 2
   core_diff * 2
}</pre>
```

```
if( k == 0 )
    return final result
```

5 1.4 - Alternative algorithm for 1.3

```
counter = 2
bitmask = 1

while ( counter  k)
        receive and add from k bitwiseXor bitmask
    else
        send to k bitwiseXor bitmask
        break

    bitwiseLeft bitmask
    counter * 2
}

if( k == 0)
    return final result
```

6 1.5 - Generalization of 1.3 and 1.4

6.1 Generalized form or 1.3

```
divisor = 2
core_diff = 1

while(core_diff < p) {
    if(k % divisor == 0)
        if (k + core_diff < p)
            receive and add from k + core_diff
    else
        send to k - core_diff
        break

    divisor * 2
    core_diff * 2
}

if( k == 0 )
    return final result</pre>
```

6.2 Generalized form of 1.4

```
counter = 2
bitmask = 1

while ( counter  k)
        if (k bitwiseXor bitmask < p)
            receive and add from k bitwiseXor bitmask
    else
        send to k bitwiseXor bitmask
        break

    bitwiseLeft bitmask
    counter * 2
}

if( k == 0)
    return final result</pre>
```

7 1.6 - Cost anlaysis of global sum algorithms

The number of receives and additions for core 0 is in the original 'pseudo-code global sum' p-1 and in the tree-structured global sum ceiling (log2 (p)).