

D. Turbiny wiatrowe

Nazwa zadania	Turbiny wiatrowe
Limit czasu	4 sekundy
Limit pamięci	1 gigabajt

Milena została poproszona o zaprojektowanie okablowania nowej przybrzeżnej elektrowni wiatrowej na Morzu Bałtyckim składającej się z N turbin ponumerowanych $0,1,\ldots,N-1$. Jej celem jest zapewnienie, że każda turbina ma połączenie z brzegiem oraz koszt jest możliwie najmniejszy.

Milena ma listę M potencjalnych połączeń, każde łączy dwie turbiny i ma pewien koszt. Ponadto, pobliskie miasto zgodziło się pokryć koszt połączenia do brzegu spójnego przedziału turbin $[\ell,r]$. Czyli każda turbina t w przedziale ($\ell \leq t \leq r$) jest bezpośrednio połączona z brzegiem za darmo. Jeżeli wszystkie potencjalne połączenia zostaną wybudowane, to każda turbina będzie osiągalna z każdej innej. Wynika z tego, że jeżeli przynajmniej jedna turbina zostanie połączona z brzegiem, będzie możliwe połączenie wszystkich turbin z brzegiem. Oczywiście, więcej bezpośrednich połączeń z brzegiem może zmniejszyć koszt okablowania. Tylko darmowe połączenia bezpośrednio łączą turbiny z brzegiem.

Zadaniem Mileny jest wybranie podzbioru potencjalnych połączeń w taki sposób, aby zminimalizować sumaryczny koszt zapewniając jednocześnie, że każda turbina jest połączona z brzegiem (potencjalnie przechodząc przez inne turbiny).

Miasto daje Milenie Q możliwych scenariuszy z przedziałami $[\ell,r]$. Miasto oczekuje, że dla każdego z nich Milena obliczy minimalny koszt.

Wejście

W pierwszym wierszu wejścia znajdują się trzy liczby całkowite N, M i Q.

W każdej z kolejnych M linii znajdują się trzy liczby całkowite u_i , v_i i c_i . W i-tej z nich znajduje się opis potencjalnego połączenia pomiędzy turbinami u_i oraz v_i o koszcie c_i . Połączenia są dwukierunkowe i zawsze łączą dwie różne turbiny. Żadne dwa połączenia nie łączą tej samej pary turbin. Zagwarantowane jest, że po wybudowaniu każdego potencjalnego połączenia, każda turbina będzie osiągalna z każdej innej (bezpośrednio lub pośrednio).

W kolejnych Q wierszach znajdują się dwie liczby całkowite ℓ_i i r_i , opisujące scenariusz, w którym bezpośrednio z brzegiem łączone są turbiny $\ell_i,\ell_i+1,\ldots,r_i$. Może się zdarzyć, że $r_i=\ell_i$, gdzie do brzegu bezpośrednio połączona zostanie tylko jedna turbina.

Wyjście

Wypisz Q wierszy, w każdym z nich znajduje się odpowiedź na scenariusz zawierający jedną liczbę całkowitą, minimalny koszt połączenia turbin tak, że każda jest połączona z brzegiem.

Ograniczenia i punktacja

- $2 \le N \le 100000$.
- $1 \le M \le 100\,000$.
- $1 \le Q \le 200\,000$.
- $0 \le u_i, v_i \le N 1$.
- $u_i
 eq v_i$, między każdą parą turbin istnieje co najwyżej jedno bezpośrednie połączenie.
- $1 \le c_i \le 1\,000\,000\,000$.
- $0 \le \ell_i \le r_i \le N 1$.

Twoje rozwiązanie zostanie przetestowane na kilku grupach testowych, z których każda jest warta określoną liczbę punktów. Każda grupa testowa zawiera zestaw testów. Aby zdobyć punkty dla grupy testowej, należy rozwiązać wszystkie testy w danej grupie testowej.

Grupa	Punkty	Ograniczenia	
1	8	$M=N-1$ oraz i -te połączenie ma $u_i=i$ i $v_i=i+1$, tzn. jeżeli wszystkie połączenia zostaną zbudowane, utworzą ścieżkę $0\leftrightarrow 1\leftrightarrow 2\leftrightarrow\ldots\leftrightarrow N-1$	
2	11	$N, M, Q \leq 2000$ i $\sum (r_i - \ell_i + 1) \leq 2000$	
3	13	$r_i = \ell_i + 1$ dla wszystkich i	
4	17	$1 \leq c_i \leq 2$ dla wszystkich i , tzn. każde połączenie kosztuje 1 albo 2	
5	16	$\sum (r_i-\ell_i+1) \leq 400000$	
6	14	$\ell_i=0$ dla wszystkich i	
7	21	Brak dodatkowych ograniczeń	

Przykłady

W pierwszym przykładzie, dany jest następujący graf potencjalnych połączeń.

Mamy podane trzy scenariusze. W pierwszym scenariuszu turbina 1 jest jedyną, która ma połączenie z brzegiem. W tym przypadku musimy zachować wszystkie połączenia z wyjątkiem połączenia między turbiną 0 a turbiną 2, co daje całkowity koszt 2+3+6+3=14. W kolejnym scenariuszu turbiny 3 i 4 są podłączone do brzegu. W tym przypadku zachowujemy połączenia $(1,0),\ (1,2)$ i (2,4), co daje koszt 8. W trzecim scenariuszu wszystkie turbiny oprócz turbiny 0 są podłączone do brzegu. W tym przypadku wystarczy podłączyć ją do innej turbiny, wybierając połączenie (0,1). Rozwiązania scenariuszy przedstawiono poniżej:

Pierwszy i szósty przykład spełniają ograniczenia grup 2, 5 i 7. Drugi i siódmy przykład spełniają ograniczenia grup 1, 2, 5 i 7. Trzeci przykład spełnia ograniczenia grup 2, 3, 5 i 7. Czwarty przykład spełnia ograniczenia grup 2, 4, 5 i 7. Piąty przykład spełnia ograniczenia grup 2, 5, 6 i 7.

Wejście	Wyjście
5 5 3 1 0 2 0 2 5 1 2 3 3 0 6 2 4 3 1 1 3 4 1 4	14 8 2
5 4 4 0 1 3 1 2 1 2 3 5 3 4 2 0 4 2 3 2 4 2 2	0 6 4 11
7 7 4 6 4 3 1 4 5 3 2 4 0 3 2 5 2 3 4 0 1 1 3 1 0 1 2 3 4 5 5 6	12 10 10 10

We	ejście	Wyjście
7 7 3		5
2 6 1		4
1 0 1		6
0 5 1		
1 2 2		
3 4 1		
5 3 1		
5 4 1		
5 6		
1 3		
3 4		
7 7 4		7
6 4 3		0
1 4 5		12
3 2 4		6
0 3 2		
5 2 3		
4 0 1		
1 3 1		
0 3		
0 6		
0 1		
0 4		

9 13 4 0 1 1	1 14 22
	14
0 1 1	
	22
2 0 3	
1 2 4	24
5 4 4	
2 5 6	
3 1 7	
8 1 4	
6 3 9	
0 3 5	
3 5 3	
4 3 2	
6 2 4	
7 8 5	
1 8	
4 7	
6 7	
1 2	
6 5 1	500000000
0 1 100000000	
1 2 1000000000	
2 3 1000000000	
3 4 1000000000	
4 5 1000000000	
1 1	