Levels of Abstraction

- Behavioral Level :Module can be implemented in terms of the desired design algorithm without concern for the hardware implementation details. Very similar to C programming
- Dataflow Level: Module designed by specifying dataflow. The designer is aware of how data flows between hardware registers and how the data is processed in the design
- ♣ Gate Level: Module implemented in terms of logic gates like (and ,or) and interconnection between gates
- Switch Level: Module implemented with switches and interconnects. Lowest level of Abstraction

EC3057D Modeling and Testing of Digital Systems Winter 20

Basic Unit (Module)

- A module is the basic building block in Verilog.
- * In Verilog a module is declared by the keyword "module".
- * Elements are grouped into modules to provide the common functionality that is used at many places in the design.
- * A module provides the necessary functionality to the higher-level block through its port interface (inputs and outputs).
- * A corresponding keyword "endmodule" must appear at the end of the module definition.

EC3057D Modeling and Testing of Digital Systems Winter 20

EC3057D Modeling and Testing of Digital Systems Winter 20

Structure of a module

- The <module name> is an identifier that uniquely names the module.
- The <port list> is a list of input, inout and output ports which are used to connect to other modules.
- The <declarations> section specifies data objects as registers, memories and wires as wells as procedural constructs such as functions and tasks.
- + The <statements> may be initial constructs, always constructs, continuous assignments or instances of modules.

EC3057D Modeling and Testing of Digital Systems Winter 2021

Modules (Cont...)

- → Modules CANNOT be nested.
- * The process of creating objects from a module template is called **instantiation** and the objects are called **instances**.
- + One module can instantiate another module.
- Module instantiation is like creating actual objects (Instances) from the common template (module definition).
- ★ Each instance of module has all the properties of that module.
- * Module instantiations are used for:
 - connecting different parts of the designs, and
 - connecting test bench to the design.

EC3057D Modeling and Testing of Digital Systems Winter 202


```
Multiplexer 4x1 - Design

i module mux4x1_str(output y, input s0,s1,i0,i1,i2,i3);

wire s0bar,s1bar,w1,w2,w3,w4;

and A1(w1,s1,s0,i3);
and A2(w2,s1,s0bar,i2);
and A3(w3,s1bar,s0,i1);
and A4(w4,s1bar,s0bar,i0);

10 not W1(s1bar,s1);
11 not W2(s0bar,s0);
12
13 or O1(y,w1,w2,w3,w4);
14
15 endmodule

BCMNTD Modeling and Testing of Digital Systems Watter 2021
```

```
Multiplexer 4x1 - Testbench

1 module tb_mux4x1_str;
2
3 wire ty;
4 reg sel0, sel1, x0,x1,x2,x3;
5
6 mux4x1_str DUT(ty, sel0, sel1, x0,x1,x2,x3);
7
8 initial
9 begin
10 sel0=0; sel1=0; x0=0; x1=0; x2=0; x3=0;
11 #10;
12 sel0=0; sel1=0; x0=0; x1=0; x2=0; x3=1;
13 #10;
14 sel0=0; sel1=0; x0=0; x1=0; x2=1; x3=0;
15 .....
16 .....
17 ....
18 .....
19 ....
20 end
21
22 endmodule
```



```
Testbench

1 module tb_mux4x1_2x1_str;
2
3 wire ty;
4 reg sel0, sel1, x0,x1,x2,x3;
5
6 mux4x1_2x1_str_DUT(ty, sel0, sel1, x0,x1,x2,x3);
7
8 initial
9 begin
10 sel0=0; sel1=0; x0=0; x1=0; x2=0; x3=0;
11 #10;
12 sel0=0; sel1=0; x0=0; x1=0; x2=0; x3=1;
13 #10;
14 sel0=0; sel1=0; x0=0; x1=0; x2=1; x3=0;
15 ....
16 ....
17 ....
18 ....
19 ....
20 end
21
22 endmodule

ECMOTD Modeling and Tening of Digital Systems Water 2021
```


Behavioral Modelling

- + Behavioral modeling represents digital circuits at a functional and algorithmic level.
- * Behavioral description use the keyword always followed by a list of procedural assignment statements.
- * The target output of procedural assignment statement must be of the reg data type.

ECWSTD Modeling and Testing of Digital Systems Winter 2021

```
1 //Behavioral modelling of 2x1 Mux
2 module mux2xi_beh(output reg out,input a,b,sel);
3 always @ (a or b or sel)
5 begin
6 if (sel)
7 out = a;
8 else
9 out = b;
10 end
11
12
13
14 endmodule

Homework
Behavioral Modelling of Mux 4x1
and Mux &x1

ECMRTD Modeling and Tening of Digital Systems Water 2021
```