Ax-Grothendieck and Lean

Joseph Hua

May 30, 2022

Contents

1	Introduction	2
2	Model Theory Background 2.1 Languages	2 4 7 8 10
3	3.1 Ring Structures	13 13 14 15 17
5	4.1 Writing down polynomials	20 21 22 24 25
6	6.1 ACF _n is complete (Vaught's test) 6.2 Compactness	26 28 30 31
7	7.1 Proof of Vaught's Test . 7.2 Upwards Löwenheim-Skolem . 7.2.1 Adding distinct constant symbols . 7.2.2 term_model . 7.2.3 Henkinization .	33 34 35 37 38 40

1 Introduction

It is a basic fact of linear algebra that any linear map between vector spaces of the same finite dimension is injective if and only if it is surjective. Ax-Grothendieck says that this is partly true for polynomial maps.

Here are some examples of polynomial maps

- Surjective but not injective: $f: \mathbb{C} \to \mathbb{C} := x \mapsto x^2$
- Neither surjective nor injective: $f: \mathbb{C}^2 \to \mathbb{C}^2 := (x,y) \mapsto (x,xy)$
- Bijective: $f: \mathbb{C}^3 \to \mathbb{C}^3 := (x, y, z) \mapsto (x, y, z + xy)$

One might try very hard to look for an example of an injective polynomial map that is not surjective. Replacing $\mathbb C$ with an arbitrary field, we notice that surjectivity and injectivity coincide on finite fields. Ax-Grothendieck states that over any algebraically closed field, injectivity of a polynomial map implies surjectivity.

2 Model Theory Background

For most definitions and proofs in this section we reference David Marker's book on Model Theory [3]. We introduce the formalisations of the content in lean alongside the theory, walking through the basics of definitions made in the flypitch project [1]. My work is based on a slightly updated (3.33.0) version of the flypitch project, combined with some of the model theory material put in mathlib (which was edited for compatibility).

2.1 Languages

Definition - Language

A language (also known as a signature) L = (functions, relations) consists of

- A sort symbol *A*, which we will have in the background for intuition.
- For each natural number n we have functions n the set of *function symbols* of *arity* n for the language. For some $f \in \text{functions } n$ we might write $f : A^n \to A$ to denote f with its arity.
- For each natural number n we have relations n the set of *relation symbols* of *arity* n for the language. For some $r \in \text{relations } n$ we might write $r \hookrightarrow A^n$ to denote r with its arity.

The flypitch project implements the above definition as

```
structure Language : Type (u+1) := 
 (functions : \mathbb{N} \to \mathsf{Type}\ \mathsf{u}) 
 (relations : \mathbb{N} \to \mathsf{Type}\ \mathsf{u})
```

This says that Language is a mathematical structure (like a group structure, or ring structure) that consists of two pieces of data, a map called functions and another called relations. Both take a natural number and spit out a type (in set theory a set) that consists respectively of all the function symbols and relation symbols of functions narity n.

In more detail: in type theory when we write a:A we mean a is something of type A. We can draw an analogy with the set theoretic notion $a \in A$, but types in lean have slightly different personalities. Hence in the above definitions functions n and relations n are things of type Type u. Type u is a collection of all types at level u, so things of type Type u are types. "Types are of type Type u."

For convenience we single out 0-ary (arity 0) functions and call them *constant* symbols, usually denoting them by c:A. We think of these as 'elements' of the sort A and write c:A. This is defined in lean by

```
def constants (L : Language) : Type u := functions 0
```

This says that constants takes in a language L and returns a type. Following the := we have the definition of constants L, which is the type functions 0.

Example. The language of rings will be used to define the theory of rings, the theory of integral domains, the theory of fields, and so on. In the appendix we give examples:

- The language with just a single binary relation can be used to define the theory of partial orders with the interpretation of the relation as <, to define the theory of equivalence relations with the interpretation of the relation as ∼, and to define the theory ZFC with the relation interpreted as ∈.
- The language of categories can be used to define the theory of categories.
- The language of simple graphs can be used to define the theory of simple graphs

We will only be concerned with the language of rings and will focus our examples around this.

Definition - Language of rings

Let the following be the language of rings:

- The function symbols are the constant symbols 0,1:A, the symbols for addition and multiplication $+, \times : A^2 \to A$ and taking for inverse $-:A \to A$.
- There are no relation symbols.

We can break this definition up into steps in lean. We first collect the constant, unary and binary symbols:

```
/-- The constant symbols in RingLanguage -/
inductive ring_consts : Type u
| zero : ring_consts
| one : ring_consts

/-- The unary function symbols in RingLanguage-/
inductive ring_unaries : Type u
| neg : ring_unaries

/-- The binary function symbols in RingLanguage-/
inductive ring_binaries : Type u
| add : ring_binaries
| mul : ring_binaries
```

These are *inductively defined types* - types that are 'freely' generated by their constructors, listed below after each bar '|'. In these above cases they are particularly simple - the only construc-

tors are terms in the type. In the appendix we give more examples of inductive types

- The natural numbers are defined as inductive types
- Lists are defined as inductive types
- The integers can be defined as inductive types

We now collect all the above into a single definition ring funcs that takes each natural n to the type of n-ary function symbols in the language of rings.

```
/-- All function symbols in RingLanguage-/ def ring_funcs : \mathbb{N} \to \mathsf{Type}\ \mathsf{u} | 0 := ring_consts | 1 := ring_unaries | 2 := ring_binaries | (n + 3) := pempty
```

The type pempty is the empty type and is meant to have no terms in it, since we wish to have no function symbols beyond arity 2. Finally we make the language of rings

```
/-- The language of rings -/ def ring_language : Language := (Language.mk) (ring_funcs) (\lambda n, pempty)
```

We use languages to express logical assertions about our structures, such as "any degree two polynomial over my ring has a root" (in preparation for expressing algebraic closure). In order to do so we must introduce terms (polynomials in our case), formulas (the assertion itself), structures and models (the ring), and the relation between structures and formulas (that the ring satisfies this assertion).

We want to express "all the combinations of symbols we can make in a language". We can think of multivariable polynomials over the integers as such: the only things we can write down using symbols 0, 1, -, +, * and variables are elements of $\mathbb{Z}[x_k]_{k \in \mathbb{N}}$. We formalize this as terms.

2.2 Terms and formulas

Definition - Terms

Let L = (functions, relations) be a language. To make a *preterm* in L with up to n variables we can do one of three things:

For each natural number k < n we create a symbol x_k , which we call a *variable* in A. Any x_k is a preterm (that is missing nothing).

If $f: A^l \to A$ is a function symbol then f is a preterm that is missing l inputs.

$$f(?,\cdots,?)$$

| If t is a preterm that is missing l+1 inputs and s is a preterm that is missing no inputs then we can *apply* t to s, obtaining a preterm that is missing l inputs.

$$t(s,?,\cdots,?)$$

We only really want terms with up to n variables, which are defined as preterms that are missing nothing.

```
inductive bounded_preterm (n : \mathbb{N}) : \mathbb{N} \to \mathsf{Type}\ \mathsf{u} | \mathsf{x}_- : \forall (k : fin n), bounded_preterm 0 | bd_func : \forall {1 : \mathbb{N}} (f : L.functions 1), bounded_preterm 1 | bd_app : \forall {1 : \mathbb{N}} (t : bounded_preterm (1 + 1)) (s : bounded_preterm 0), bounded_preterm 1 | def bounded_term (n : \mathbb{N}) := bounded_preterm L n 0
```

To explain notation

- The second constructor says "for all natural numbers l and function symbols f, bd_func f is something in bounded_preterm 1". This makes sense since bounded_preterm 1 is a type by the first line of code.
- The curley brackets just say "you can leave out this input and lean will know what it is".

To give an example of this in action we can write $x_1 * 0$. We first write the individual parts, which are x_ 1, bd_func mul and bd_func zero. Then we apply them to each other

```
bd_app (bd_app (mul) (x_ 1)) zero
```

Naturally, we will introduce nice notation in lean to replace all of this.

Remark. There are many terminology clashes between model theory and type theory, since they are closely related. The word "term" in type theory refers to anything on the left of a: sign, or anything in a type. Terms in inductively defined types are (as mentioned before) freely generated symbols using the contructors. Analogously terms in a language are freely generated symbols using the symbols from the language.

One can imagine writing down any degree two polynomial over the integers as a term in the language of rings. In fact, we could even make degree two polynomials over any ring (if we had one):

$$x_0x_3^2 + x_1x_3 + x_2$$

Here our variable is x_3 , and we imagine that the other variables represent elements of our ring. To express "any degree (up to) two polynomial over our ring has a root", we might write

$$\forall x_2 x_1 x_0 : A, \exists x_3 : A, x_0 x_3^2 + x_1 x_3 + x_2 = 0$$

Formulas allow us to do this.

Definition - Formulas

Let L be a language. A (classical first order) L-preformula in L with (up to) n free variables can be built in the following ways:

- \perp is an atomic preformula with n free variables (and missing nothing).
- | Given terms t,s with n variables, t=s is a formula with n free variables (missing nothing).
- Any relation symbol $r \hookrightarrow A^l$ is a preformula with n free variables and missing l inputs.

$$r(?,\cdots,?)$$

If ϕ is a preformula with n free variables that is missing l+1 inputs and t is a term with n variables then we can *apply* ϕ to t, obtaining a preformula that is missing l inputs.

$$\phi(t,?,\cdots,?)$$

- If ϕ and ψ are preformulas with n free variables and *nothing missing* then so is $\phi \Rightarrow \psi$.
- If ϕ is a preformula with n+1 free variables and *nothing missing* then $\forall x_0, \phi$ is a preformula with n free variables and nothing missing.

We take formulas to be preformulas with nothing missing. Note that we take the de Brujn index convension here. If ϕ were the formula $x_0 + x_1 = x_2$ then $\forall \phi$ would be the formula $\forall x_0 : A, x_0 + x_1 = x_2$, which is really $\forall x : A, x + x_0 = x_1$, so that all the remaining free variables are shifted down.

We write this in 1ean, and also define sentences as preformulas with 0 variables and nothing missing. Sentences are what we usually come up with when we make assertions. For example x=0 is not an assersion about rings, but $\forall x:A,x=0$ is.

```
inductive bounded_preformula : \mathbb{N} \to \mathbb{N} \to \mathsf{Type} u | bd_falsum {n : \mathbb{N}} : bounded_preformula n 0 | bd_equal {n : \mathbb{N}} (t<sub>1</sub> t<sub>2</sub> : bounded_term L n) : bounded_preformula n 0 | bd_rel {n l : \mathbb{N}} (R : L.relations l) : bounded_preformula n l | bd_apprel {n l : \mathbb{N}} (f : bounded_preformula n (l + 1)) (t : bounded_term L n) : bounded_preformula n l | bd_imp {n : \mathbb{N}} (f<sub>1</sub> f<sub>2</sub> : bounded_preformula n 0) : bounded_preformula n 0 | bd_all {n : \mathbb{N}} (f : bounded_preformula (n+1) 0) : bounded_preformula n 0 | def bounded_formula (n : \mathbb{N}) := bounded_preformula L n 0 | def sentence := bounded_preformula L 0 0
```

Since we are working with classical logic we make everything else we need by use of the excluded $middle^{\dagger}$:

```
/-- \bot is for bd_falsum, \simeq for bd_equal, \Longrightarrow for bd_imp, and \forall' for bd_all -/ /-- we will write \sim for bd_not, \sqcap for bd_and, and infixr \sqcup for bd_or -/ def bd_not \{n\} (f: bounded_formula L n): bounded_formula L n:= f \Longrightarrow \bot def bd_and \{n\} (f<sub>1</sub> f<sub>2</sub>: bounded_formula L n): bounded_formula L n:= \sim(f<sub>1</sub> \Longrightarrow \simf<sub>2</sub>) def bd_or \{n\} (f: bounded_formula L n): bounded_formula L n:= \sim(\forall' \sim f))
```

With this set up we can already write down the sentences that describe rings.

```
/-- Assosiativity of addition -/ def add_assoc : sentence ring_signature := \forall' \forall' \forall' ( (x_ 0 + x_ 1) + x_ 2 \simeq x_ 0 + (x_ 1 + x_ 2) ) /-- Identity for addition -/ def add_id : sentence ring_signature := \forall' ( x_ 0 + 0 \simeq x_ 0 ) /-- Inverse for addition -/ def add_inv : sentence ring_signature := \forall' ( - x_ 0 + x_ 0 \simeq 0 ) /-- Commutativity of addition-/
```

[†]Or rather, we *will* need excluded middle once we start to interpret these sentences.

```
def add_comm : sentence ring_signature := \forall' \forall' ( x_- 0 + x_- 1 \simeq x_- 1 + x_- 0 ) /-- Associativity of multiplication -/ def mul_assoc : sentence ring_signature := \forall' \forall' ( (x_- 0 * x_- 1) * x_- 2 \simeq x_- 0 * (x_- 1 * x_- 2) ) /-- Identity of multiplication -/ def mul_id : sentence ring_signature := \forall' ( x_- 0 * 1 \simeq x_- 0 ) /-- Commutativity of multiplication -/ def mul_comm : sentence ring_signature := \forall' \forall' ( x_- 0 * x_- 1 \simeq x_- 1 * x_- 0 ) /-- Distributibity -/ def add_mul : sentence ring_signature := \forall' \forall' ( (x_- 0 + x_- 1) * x_- 2 \simeq x_- 0 * x_- 2 + x_- 1 * x_- 2 )
```

We later collect all of these into one set and call it the theory of rings.

2.3 Lean symbols for ring symbols

We define bounded_ring_term and bounded_ring_formula for convenience.

```
def bounded_ring_formula (n : \mathbb{N}) := bounded_formula ring_signature n def bounded_ring_term (n : \mathbb{N}) := bounded_term ring_signature n
```

We supply instances of has_zero, has_one, has_neg, has_add and has_mul to each type of bounded ring terms bounded_ring_terms n. This way we can use the lean symbols when writing terms and formulas.

```
instance bounded_ring_term_has_zero {n} :
   has_zero (bounded_ring_term n) := \langle bd_func ring_consts.zero \rangle
instance bounded_ring_term_has_one {n} :
   has_one (bounded_ring_term n) := \langle bd_func ring_consts.one \rangle
instance bounded_ring_term_has_neg {n} : has_neg (bounded_ring_term n) := \langle bd_app (bd_func ring_unaries.neg) \rangle
instance bounded_ring_term_has_add {n} : has_add (bounded_ring_term n) := \langle \lambla x, bd_app (bd_app (bd_func ring_binaries.add) x) \rangle
instance bounded_ring_term_has_mul {n} : has_mul (bounded_ring_term n) := \langle \lambla x, bd_app (bd_app (bd_func ring_binaries.mul) x) \rangle
```

Note that in the above a choice as been made for which side addition and multiplication work on (symbolically), but this won't matter once we interpret into commutative rings.

Since we have multiplication, we also can take terms to powers using npow_rec.

```
instance bounded_ring_term_has_pow {n} : has_pow (bounded_ring_term n) \mathbb{N} := \langle \lambda t n, npow_rec n t \rangle
```

2.4 Interpretation of symbols

In the above we set up a symbolic treatment of logic. In this subsection we try to make these symbols into tangible mathematical objects.

We intend to apply the statement "any degree two polynomial over our ring has a root" to a real, usable, tangible ring. We would like the sort symbol A to be interpreted as the underlying type (set) for the ring and the function symbols to actually become maps from the ring to itself.

Definition – Structures

Given a language L, a L-structure M interpreting L consists of the following

- An underlying type carrier.
- Each function symbol $f: A^n \to A$ is interpreted as a function that takes an n-ary tuple in carrier to something in carrier.
- Each relation symbol $r \hookrightarrow A^n$ is interpreted as a proposition about n-ary tuples in carrier, which can also be viewed as the subset of the set of n-ary tuples satisfying that proposition.

```
structure Structure := (carrier : Type u) (fun_map : \forall \{n\}, L.functions n \to dvector\ carrier\ n \to carrier) (rel_map : \forall \{n\}, L.relations n \to dvector\ carrier\ n \to Prop)
```

The flypitch library uses dvector A $\,$ n for n-ary tuples of terms in A.

Note that rather comically Structure is itself a mathematical structure. This is sensible, since Structure is meant to generalize the algebraic (and relational) definitions of mathematical structures such as groups and rings.

Also note that for constant symbols the interpretation has domain empty tuples, i.e. only the term dvector.nil as its domain. Hence it is a constant map - a term of the interpreted carrier type.

The structures in a language will become the models of theories. For example $\mathbb Z$ is a structure in the language of rings, a model of the theory of rings but not a model of the theory of fields. In the language of binary relations, $\mathbb N$ with the usual ordering \le is a structure that models of the theory of partial orders (with the order relation) but not the theory of equivalence relations (with \le).

Before continuing to formalize "any degree two polynomial over our ring has a root", we stop to notice that structures in a language form suitable objects for a category.

Definition – L-morphism, L-embedding

The collection of all L-structures forms a category with objects as L-structures and morphisms as L-morphisms.

The induced map between the n-ary tuples is called dvector. map. The above says a morphism

is a mathematical structure consisting of three pieces of data. The first says that we have a functions between the carrier types, the second gives a sensible commutative diagram for functions, and the last gives a sensible commutative diagram for relations † .

The notion of morphisms here will be the same as that of morphisms in the algebraic setting. For example in the language of rings, preserving interpretation of function symbols says the zero is sent to the zero, one is sent to one, subtraction, multiplication and addition is preserved. In languages that have relation symbols, such as that of simple graphs, preserving relations says that if the relation holds for terms in the domain, then the relation holds for their images.

Returning to our objective, we realize that we need to interpret our polynomial (a term) is something in our ring. The term

$$x_0x_3^2 + x_1x_3 + x_2$$

Should be a map from 4-tuples from the ring to a value in the ring, namely, taking (a, b, c, d) to

$$ac^2 + bc + d$$

Thus terms should be interpreted as maps $A^n \to A$ for an L-structure A.

Definition – Interpretation of terms

Given L-structure M and a L-term t with up to n-variables. Then we can naturally interpret (a.k.a realize) t in the L-structure M as a map from the n-tuples of M to M that commutes with the interpretation of function symbols.

This is defined by induction on (pre)terms. When the preterm t is a variable x_k , we interpret t as a map that picks out the k-th part of the n-tuple xs. This is like projecting to the n-th axis if the structure looks like an affine line. When the term is a function symbol, then we automatically get a map from the definition of structures. In the last case we are applying a preterm t_1 to a term t_2 , and by induction we already have interpretation of these two preterms

[†]The way to view relations on a structure categorically is to view it as a subobject of the carrier type.

in our structure, so we compose these in the obvious way.

We can finally completely formalize "any (at most) degree two polynomial has a root".

Definition – Interpretation of formulas

Given L-structure M and a L-formula f with up to n-variables. Then we can interpret (a.k.a realize or satisfy) f in the L-structure M as a proposition about n terms from the carrier type.

This is defined by induction on (pre)formulas.

- \perp is interpreted as the type theoretic proposition false.
- | t = s is interpreted as type theoretic equality of the interpreted terms.
- Interpretation of relation symbols is part of the data of an L-structure (rel_map).
- | If f is a preformula with n free variables that is missing l+1 inputs and t is a term with n variables then f applied to t can be interpreted using the interpretation of f and applied to the interpretation of t, both of which are given by induction.
- An implication can be interpreted as a type theoretic implication using the inductively given interpretations on each formula.
- $| \forall x_0, f \text{ can be interpreted as the type theoretic proposition "for each } x \text{ in the carrier set } P$ ", where P is the inductively given interpretation.

We write $M \models f(a)$ to mean "the realization of f holds in M for the terms a". We are particularly interested in the case when the formula is a sentence, which we denote as $M \models f$ (since we need no terms).

```
@[reducible] def realize\_sentence (M : Structure L) (f : sentence L) : Prop := realize\_bounded_formula ([] : dvector M 0) f ([])
```

2.5 Theories

Now we are able to express statements such as "this structure in the language of rings has roots of all degree two polynomials", using interpretation of sentences. A sensible task is to organize algebraic data, such as rings, fields, and algebraically closed fields, in terms of the sentences that axiomatize them. We call these theories.

Note that this is *the whole point of model theory*, we will be able to work with terms, formulas, structures and theories tangibly, as terms in types (or set theoretically as elements of some sets). This allows us to reason about logic itself, and its interaction with the real world.

Definition - Theory

Given a language L, a set of sentences in the language is a theory in that language.

```
def Theory := set (sentence L)
```

Definition - Models, consistent

Given an L-structure M and L-theory T, we write $M \models T$ and say M is a model of T when for all sentences $f \in T$ we have $M \models f$.

```
def all_realize_sentence (M : Structure L) (T : Theory L) := \forall f, f \in T \rightarrow M \models f
```

We say an L-theory is consistent if it has a model.

A model of the theory of rings should be exactly the data of a ring. To show this we must write down the theories of rings, fields, and algebraically closed fields.

Definition - The theories of rings, fields and algebraically closed fields

The theory of rings is just the set of the sentences describing a ring.

```
def ring_theory : Theory ring_signature :=
{add_assoc, add_id, add_inv, add_comm, mul_assoc, mul_id, mul_comm, add_mul}
```

To make the theory of fields we can add two sentences saying that the ring is non-trivial and has multiplicative inverses:

```
def mul_inv : sentence ring_signature := \forall' (x_ 1 \simeq 0) \sqcup (\exists' x_ 1 * x_ 0 \simeq 1)   
def non_triv : sentence ring_signature := \sim (0 \simeq 1)   
def field_theory : Theory ring_signature := ring_theory \cup {mul_inv , non_triv}
```

To make the theory of algebraically closed fields we need to express "every non-constant polynomial has a root". We replace this with the equivalent statement "every monic polynomial has a root". We do this by first making "generic polynomials" in the form of $a_{n+1}x^n+\cdots+a_2x+a_1$, then adding x^{n+1} to it, making it a "generic monic polynomial". The (polynomial) variable x will be represented by the variable x_- 0, and the coefficient a_k for each 0 < k will be represented by the variable x_- k.

We define generic polynomials of degree (at most) n as bounded ring signature terms in n+2 variables by induction on n: when the degree is 0, we just take the constant polynomial x_1 and supply a proof that 1<0+2 (we omit these below using underscores). When the degree is n+1, we can take the previous generic polynomial, lift it up from a term in n+2 variables to n+3 variables (this is lift_succ), then add $x_{n+2}x_0^{n+1}$ at the front.

```
def gen_poly : \Pi (n : \mathbb{N}), bounded_ring_term (n + 2)

| 0 := x_ \langle 1 , _ \rangle

| (n + 1) := (x_ \langle n + 2 , _ \rangle) * (npow_rec (n + 1) (x_ \langle 0 , _ \rangle))

+ bounded_preterm.lift_succ (gen_poly n)
```

Since the type of terms in the language of rings has notions of addition and multiplication (using the function symbols), we automatically have a way of taking (natural number) powers. This is npow_rec.

We proceed to making generic monic polynomials by adding x_0^{n+2} at the front of the generic polynomial.

```
def gen_monic_poly (n : \mathbb{N}) : bounded_term ring_signature (n + 2) := npow_rec (n + 1) (x_0) + gen_poly n 
/-- \forall a_1 \cdots \forall a_n, \exists x_0, (a_n x_0^{n-1} + \cdots + a_2 x_0+ a_1 = 0) -/ def all_gen_monic_poly_has_root (n : \mathbb{N}) : sentence ring_signature := fol.bd_alls (n + 1) (\exists' gen_monic_poly n \simeq 0)
```

We can then easily state "all generic monic polynomials have a root". The order of the variables is important here: the \exists removes the first variable x_0 in the n+2 variable formula gen_monic_poly n \simeq 0, and moves the index of all the variables down by 1, making the remaining expression

```
\exists gen\_monic\_poly \ n \simeq 0
```

a formula in n + 1 variables. The function fol.bd_alls n then adds n + 1 many "foralls" in front, leaving us a formula with no free variables, i.e. sentence.

```
/-- The theory of algebraically closed fields -/
def ACF : Theory ring_signature := field_theory ∪ (set.range
all_gen_monic_poly_has_root)
```

Since all_gen_monic_poly_has_root is a function from the naturals, we can take its set theoretic image (called set.range), i.e. a sentence for each degree n saying "any monic polynomial of degree n has a root".

Lastly, we express the characteristic of fields. Suppose $p:\mathbb{N}$ is a prime. If we view p as a term in the language of rings[†], then we can define the theory of algebraically closed fields of characteristic p as ACF with the additional sentence p=0.

```
\operatorname{def}\ \operatorname{ACF}_p\ \{\mathrm{p}: \mathbb{N}\}\ (\mathrm{h}: \operatorname{nat.prime}\ \mathrm{p}): \operatorname{Theory}\ \operatorname{ring\_signature}:= \operatorname{set.insert}\ (\mathrm{p}\simeq \mathrm{0})\ \operatorname{ACF}
```

To define the theory of algebraically closed fields of characteristic 0, we add a sentence $p+1 \neq 0$ for each natural p.

```
def plus_one_ne_zero (p : \mathbb{N}) : sentence ring_signature := \neg (p + 1 \simeq 0) def ACF_0 : Theory ring_signature := ACF \cup (set.range plus_one_ne_zero)
```

Whilst completeness and soundness for first order logic is about converting between symbolic and semantic deduction, there is another layer of conversion that is often swept under the rug, between the semantics and native mathematics. Before the project began, the part of this project that Kevin and I were most skeptical about was model theory actually producing results that were usable, in the sense of being compatible with mathlib. We can formalize this problem:

- Structures in a language are the same thing as our internal way of describing structures a ring structure is actually a type with instances $0, 1, -, +, \times$.
- Models of theories in a language are the same things as our internal way of describing algebraic objects a model of the theory of rings is actually a ring in lean.
- A model theoretic statement of Ax-Grothendieck holds if and only if an algebraic statement

[†]lean figures this out automatically using nat.cast, which found our instances of has_zero, has_one and has_add.

of Ax-Grothendieck holds. (For fixed characteristic.) mathlib

We informally use the term "internal completeness and soundness" for this kind of phenomenon (coined by Kenny Lau).

3 Internal completeness and soundness for ring theories

In this section and the next we focus on proving internal completeness and soundness results:

Proposition – Internal completeness and soundness

The following are true

- A type *A* is a ring (according to lean) if and only if *A* is a structure in the language of rings that models the theory of rings.
- A type A is a field (according to lean) if and only if it is a model of the theory of fields.
- A type A is an algebraically closed field (of characteristic p) if and only if it is a model of $ACF_{(p)}$.
- (Details later) Ax-Grothendieck stated model theoretically corresponds to the theorem stated internally.

For the purposes of design in lean it is more sensible to split each "if and only if" into seperate constructions, for converting the algebraic objects into their model theoretic counterparts and vice versa. Although rather trivial, converting between these facts takes a bit of work in lean, especially for case of ACF_p where some ground work needs to be done for interpreting gen_monic_poly.

Before we embark on a proof, we list some general facts and tips about working with models:

- Proofs are easier when working in models, so our proofs tend to first translate everything we can to the ring, then prove the property there, making use of existing lemmas in the library for rings.
- An important instance of the above phenomenon is the lack of algebraic properties in the type bounded_ring_terms. For example, addition for polynomials written as terms is *not commutative* until it is interpreted into a structure satisfying commutativity, even though it is true in a polynomial ring.
- Sometimes there is extra definitional rewriting that needs to happen, and dsimp (or something similar) is needed alongside simp.

3.1 Ring Structures

We first make the very obvious observation that given the lean instances of [has_zero] and [has_one] in some type A, we can make interpretations of the symbols ring_consts.zero and ring_consts.one. Similarly for the other symbols:

```
def const_map [has_zero A] [has_one A] : ring_consts \to dvector A 0 \to A | ring_consts.zero _ := 0 | ring_consts.one _ := 1
```

This allows us to make any type with such instances a ring structure:

```
def Structure : Structure ring_signature := Structure.mk A func_map (\lambda n, pempty.elim)
```

Conversely given any ring structure, we can easily pick out the above instances. For example

3.2 Rings

If A is a ring, then surely it is a model of the theory of rings. I have supplied simp with enough lemmas to reduce the definitions until requiring the corresponding property about rings, and I have chosen the sentences to replicate the format of each property from mathlib. For example add_comm below is the internal property for the type A (it is not visible to simp), and it looks exactly like the statement $M \models add_comm$.

```
variables (A : Type*) [comm_ring A]

lemma realize_ring_theory :
    (struc_to_ring_struc.Structure A) ⊨ ring_signature.ring_theory := begin
    intros φ h,
    repeat {cases h},
    { intros a b c, simp [add_assoc] },
    { intro a, simp }, -- add_zero
    { intro a, simp }, -- add_left_neg
    { intros a b, simp [add_comm] },
    { intros a b c, simp [mul_assoc] },
    { intro a, simp [mul_one] },
    { intros a b, simp [mul_comm] },
    { intros a b c, simp [add_mul] }
    end
```

Conversely, given a model of the theory of rings we can supply an instance of a ring to the carrier type. I supply a lemma for each piece of data going into a comm_ring. As an example, we look at add_comm.

```
/- First show that add_comm is in ring_theory -/
lemma add_comm_in_ring_theory : add_comm ∈ ring_theory :=
begin apply_rules [set.mem_insert, set.mem_insert_of_mem] end
```

Since ring_theory was just built as $\{-,-,\dots,-\}$ (syntax sugar for insert, insert, ..., singleton), it suffices just to iteratively try a couple of lemmas for membership of such a construction.

```
lemma add_comm (a b : M) (h : M \= ring_signature.ring_theory) : a + b = b + a :=
begin
  /- M \= ring_theory -> M \= add_comm -/
  have hId : M \= ring_signature.add_comm := h ring_signature.add_comm_in_ring_theory,
  /- M \= add_comm -> add_comm b a -/
  have hab := hId b a,
  simpa [hab]
```

There is some definitional and internal simplification happening in here, but like before, for the most part lean recogizes that realizing the sentence add_comm is the same as having an instance of add_comm.

```
def comm_ring (h : M ⊨ ring_signature.ring_theory) : comm_ring M :=
{
 add
           := add,
 add_assoc := add_assoc h,
 add_left_neg := left_neg h,
 add_comm := add_comm h,
            := mul,
 mul_assoc := mul_assoc h,
 one
           := one,
 left_distrib := mul_add h,
 right_distrib := add_mul h,
 mul_comm := mul_comm h,
}
```

We make use of lean's type class inference system by making the hypothesis of modelling ring_theory an instance using fact.

```
instance models_ring_theory_to_comm_ring {M : Structure ring_signature}
  [h : fact (M = ring_signature.ring_theory)] : comm_ring M :=
models_ring_theory_to_comm_ring.comm_ring h.1
```

This way, we can supply an instance that any model of the theory of fields (as a fact) is a model of the theory of ring (as a fact), and is therefore a commutative ring. We can then extend this commutative ring to a field.

3.3 Fields

Our characterization of fields resembles the structure is_field more than the default field instance; they are equivalent.

```
structure is_field (R : Type u) [ring R] : Prop := (exists_pair_ne : \exists (x y : R), x \neq y) (mul_comm : \forall (x y : R), x * y = y * x) (mul_inv_cancel : \forall {a : R}, a \neq 0 \rightarrow \exists b, a * b = 1)
```

The proof that any field forms a model of the theory of fields is straight forward: since fields are commutative rings, it is a model of ring_theory by our previous work; for the other two sentences we exploit simp and all the lemmas about fields that already exist in mathlib.

```
lemma realize_field_theory :
  Structure K ⊨ field_theory :=
begin
 intros \phi h,
  cases h.
  {apply (comm_ring_to_model.realize_ring_theory K h)},
  repeat {cases h},
     simp only [fol.bd_or, models_ring_theory_to_comm_ring.realize_one,
       struc_to_ring_struc.func_map, fin.val_zero', realize_bounded_formula_not,
       struc_to_ring_struc.binaries_map, fin.val_eq_coe, dvector.last,
       realize_bounded_formula_ex, realize_bounded_term_bd_app,
       realize_bounded_formula, realize_bounded_term,
       fin.val_one, dvector.nth, models_ring_theory_to_comm_ring.realize_zero],
     apply is_field.mul_inv_cancel (K_is_field K) },
  { simp [fol.realize_sentence] },
  end
```

Going backwards is even easier. We prove that any model of field_theory is a model of ring_theory and therefore inherits a comm_ring instance. Given this instance of comm_ring, it then makes sense to ask for a proof of is_field M, which is straightforward:

3.4 Algebraically closed fields

Suppose we have an algebraically field K. We want to show that it is a model of the theory of algebraically closed fields, which given our work so far amounts to showing that for each natural number n we have that all generic monic polynomials of degree n have a root in k. Indeed using is_alg_closed we can obtain such a root for any polynomial, but this requires (internally) making a polynomial corresponding gen_monic_poly n. We first assume the existence of such a polynomial P and that evaluating such a polynomial at some value x is the same thing as realising gen_monic_poly n at (its coefficients and then) x.

```
/-- Algebraically closed fields model the theory ACF-/
lemma realize_ACF : Structure K ⊨ ACF :=
begin
 intros \phi h,
 cases h,
 /- we have shown that K models field_theory -/
 { apply field_to.realize_field_theory _ h },
 { cases h with n h\phi,
   rw \leftarrow h\phi,
    /- goal is now to show that all generic monic polynomials of degree n have a root -/
    simp only [all_gen_monic_poly_has_root, realize_sentence_bd_alls,
      realize_bounded_formula_ex, realize_bounded_formula,
      {\tt models\_ring\_theory\_to\_comm\_ring.realize\_zero],}
    have root := is_alg_closed.exists_root
      (polynomial.term_evaluated_at_coeffs as (gen_monic_poly n)) gen_monic_poly_non_const,
      -- the above is our polynomial P and a proof that it is non-constant
    cases root with x hx,
    rw polynomial.eval_term_evaluated_at_coeffs_eq_realize_bounded_term at hx,
    -- the above is the lemma that evaluating P at x is the same as realizing gen_monic_poly n
    exact \langle x, hx \rangle },
```

In order to interpret gen_monic_poly n as a polynomial, we first note that it is natural to consider n-variable terms in the language of rings as n-variable polynomials over \mathbb{Z} :

```
def mv_polynomial.term {n}: bounded_ring_term n \rightarrow mv_polynomial (fin n) \mathbb{Z} := @ring_term_rec n (\lambda _, mv_polynomial (fin n) \mathbb{Z}) mv_polynomial.X /- variable x_ i -> X i-/ 0 /- zero -/ 1 /- one -/ (\lambda _ p, - p) /- neg -/ (\lambda _ p q, p + q) /- add -/ (\lambda _ p q, p * q) /- mul -/
```

I designed a handy function called ring_term_rec that does "induction on terms in the language of rings", based on bounded_term.rec from the flypitch project. This says that in order to make a multi-variable polynomial in variables n over \mathbb{Z} (mv_polynomial (fin n) \mathbb{Z}) we can just case on the term. If the term is a variable x_ i for some i < n then we interpret that as the polynomial $X_i \in \mathbb{Z}[X_0, \dots, X_{n-1}]$. The only other way we can get terms is by applying function symbols to other terms, hence we interpret the symbols for zero and one as 0 and 1, the symbolic negation of a term by subtracting the inductively given polynomial for the term in the ring, and so on.

Then we use this to make an general algorithm that takes a term t in the language of rings with up

to n+1 variables and a list of n coefficients from a ring A, and returns a polynomial in A[X]. This is designed to treat he first variable X_0 of the associated polynomial as the polynomial variable X, and use the list (dvector) of coefficients $[a_1, \ldots, a_n]$ to evaluate the variables X_1, \ldots, X_n .

```
def polynomial.term_evaluated_at_coeffs {n} (as : dvector A n) (t : bounded_ring_term n.succ) : polynomial A :=  
/- First make a map \sigma : {0, ..., n} \rightarrow {X, as.nth' 0, ..., as.nth n} \subseteq A[X] -/ let \sigma : fin n.succ \rightarrow polynomial A :=  
@fin.cases n (\lambda _, polynomial A) polynomial.X (\lambda i, polynomial.C (as.nth' i)) in  
/- Then this induces a map mv_polynomial.eval \sigma : A[X_0, ..., X_n] \rightarrow A[X] by evaluating coefficients -/  
mv_polynomial.eval \sigma (mv_polynomial.term t)  
/- We evaluate at the multivariable polynomial corresponding to the term t -/
```

It remains to show that this polynomial in A[X] evaluated at some a_0 gives the same value in the ring as the original term, realized at the dvector $[a_0, \ldots, a_n]$. This follows from the following two facts:

- A term t realized at values $[a_0,\ldots,a_n]$ is equal to the polynomial mv_polynomial.term t evaluated at the values $[a_0,\ldots,a_n]$. I called this realized_term_is_evaluated_poly and has a quick proof using ring_term_rec.
- If a multi-variable polynomial is evaluated at (X, a_1, \ldots, a_n) in A[X], then the resulting polynomial is evaluated at a_0 , then this is the same as simply evaluating the multi-variable polynomial at (a_0, \ldots, a_n) . This has a rather uninteresting proof, which I called mv_polynomial. eval_eq_poly_eval_mv_coeffs.

Moving on to the converse, we assume we have a model M of the theory of algebraically closed fields, and a non-constant polynomial p with coefficients in the model (as a field, by our previous work). We want to show that p has a root.

```
variables {M : Structure ring_signature} [hM : fact (M \model ACF)]
instance is_alg_closed : is_alg_closed M :=
begin
   apply is_alg_closed.of_exists_root_nat_degree,
   intros p hmonic hirr hdeg,
   sorry,
end
```

We can feed the coefficients of p to our model theoretic hypothesis, which will give us a root to gen_monic_poly realized at these coefficients, which I call root.

```
instance is_alg_closed : is_alg_closed M :=
begin
  apply is_alg_closed.of_exists_root_nat_degree,
  intros p hmonic hirr hdeg,
  simp only [...] at hM,
  obtain ( _ , halg_closed ) := hM.1,
  set n := polynomial.nat_degree p - 1 with hn,
  /- I call the coefficients xs -/
  set xs := dvector.of_fn (\lambda (i : fin (n + 1)), polynomial.coeff p i) with hxs
  obtain ( root , hroot ) := halg_closed n xs,
  use root, /- root should be the root of p -/
  convert hroot,
  sorry,
```

It suffices to show that root is the root of p. Given the hypotheses, this amounts to equating the (internal) algebraic goal and the model theoretic hypothesis broot about root.

```
/- The goal (at 'convert hroot') -/
polynomial.eval root p = realize_bounded_term (root::xs) (gen_monic_poly n) dvector.nil
```

In order to do this we *could* try to reconstruct p using our previous construction polynomial. term_evaluated_at_coeffs. However, unfortunately I have discovered that generally it can be more straightforward to simply develop each side of the argument (interanal completeness and soundness) seperately. I make use of a result in the library that writes a polynomial evaluated at a root as a sum indexed by its degree:

```
lemma eval_eq_finset_sum (p : R[X]) (x : R) : p.eval x = \Sigma i in range (p.nat_degree + 1), p.coeff i * x ^ i := /- See mathlib. -/
```

Then we can directly compare this to gen_monic_poly realized at the values xs and root. After providing simp with the appropriate lemmas (such as the assumption that p is monic), the goal reduces to

```
root ^ p.nat_degree + (finset.range p.nat_degree).sum (\lambda (x : \mathbb{N}), p.coeff x * root ^ x) = root ^ p.nat_degree + realize_bounded_term (root::dvector.of_fn (\lambda (i : fin (n + 1)), p.coeff \uparrowi)) (gen_poly n) dvector.nil
```

The first monomial pops out on both sides, allowing us to cancel them with congr. It remains to find out how gen_poly n is realised. We extract this as a lemma, which we prove by induction on n, since gen_poly was built inductively. Each part is just a long simp proof which can be found in the source code.

3.5 Characteristic

We omit the details of similar proofs for characteristic as it is not as interesting as the other parts. Here are the lemmas we prove along the way, some of which are convenient to feed to lean as instances

```
instance models_ACF_p_to_models_ACF [hp : fact (nat.prime p)] [hM : fact (M \models ACF_p hp.1)] : fact (M \models ACF) := sorry instance models_ACF_0_to_models_ACF [hM : fact (M \models ACF_0)] : fact (M \models ACF) := sorry lemma models_ACF_p_char_p [hp : fact (nat.prime p)] [hM : fact (M \models ACF_p hp.1)] : char_p M p := sorry
```

4 Internal completeness and soundness for Ax-Grothendieck

In this section we will introduce both Ax-Grothendieck and its model theoretic counterpart. We then investigate internal completeness and soundness for these statements.

Definition – Polynomial maps

Let K be a commutative ring and n a natural (we use K since we are only interested in the case when it is an algebraically closed field). Let $f: K^n \to K^n$ such that for each $a \in K^n$,

$$f(a) = (f_1(a), \dots, f_n(a))$$

for $f_1, \ldots, f_n \in K[x_1, \ldots, x_n]$. Then we call f a polynomial map over K.

For the sake of computation it is simpler to simply assert the data of the n polynomials directly:

```
def poly_map (K : Type*) [comm_semiring K] (n : \mathbb{N}) : Type* := fin n \rightarrow mv_polynomial (fin n) K
```

Then we can take the map on types/sets by evaluating each polynomial

```
def eval : poly_map K n \rightarrow (fin n \rightarrow K) \rightarrow (fin n \rightarrow K) := \lambda ps as k, mv_polynomial.eval as (ps k)
```

Proposition – Ax-Grothendieck

Any injective polynomial map over an algebraically closed field is surjective. In particular injective polynomial maps over $\mathbb C$ are surjective.

```
theorem Ax\_Groth \{n : \mathbb{N}\} \{ps : poly\_map \ K \ n\} \ (hinj : function.injective (poly\_map.eval ps)) : function.surjective (poly\_map.eval ps) := sorry
```

The key lemma to prove this is the Lefschetz principle, which says that ring theoretic statements are true in instances of algebraically closed fields if and only if they are true in all algebraically closed fields (assuming zero or large enough prime characteristic). Lefschetz will be stated and proven in a later section.

An overview of the proof of Ax-Grothendieck follows:

- We want to reduce the statement of Ax-Grothendieck to a model-theoretic one. Then we can apply the Lefschetz principle to reduce to the prime characteristic case.
- To express "for any polynomial map ..." model-theoretically, which amounts to somehow quantifying over all polynomials in n variables, we bound the degrees of all the polynomials, i.e. asking instead "for any polynomial map consisting of polynomials with degree at most d". Then we can write the polynomial as a sum of its monomials, with the coefficients as bounded variables.

- We express injectivity and surjectivity model-theoretically, and prove internal completeness and soundness for these statements.
- We apply Lefschetz, so that it suffices to prove Ax-Grothendieck for algebraic closures of a finite fields. This is quite straight forward.

4.1 Writing down polynomials

Our objective is to state Ax-Grothendieck model-theoretically. Let us assume we have an n-variable polynomial $p \in K[x_1, \ldots, x_n]$. We know that p can be written as a sum of its monomials, and the set of monomials monom_deg_le n d is finite, depending on the degree d of the polynomial p. It can be indexed by

$$\texttt{monom_deg_le_finset n d} := \left\{ f : \texttt{fin n} \to \mathbb{N} \, | \, \sum_{i < n} fi \leq d \right\}$$

Then we write

$$p = \sum_{f \text{ : monom_deg_le n d}} p_f \prod_{i < n} x^{fi}$$

The typical approach to writing a sum like this in lean would be to tell lean that only finitely many of the p_f are non-zero (p_\star is finitely supported - finsupp). However, the API built for this assumes that the underlying type in which the sum takes place is a commutative monoid, which is not the case here, as we will be expressing the above as a sum of terms in the language of rings. This type has addition and multiplication and so on, which we supplied as instances already, but these are neither commutative nor associative. Thus the workaround here was to use list.sumr (my own definition, similar to list.sum) instead, which will take a list of terms in the language of rings, and sum them together.

The below definition is meant to (re)construct polynomials as described above, using free variables to represent the coefficients of some polynomial. This can then be used to express injectivity and surjectivity.

To explain the above, we wish to express the ring term with c many free variables ("in context c")

$$\sum_{f \in \texttt{monom_deg_le n d}} x_{j+s} \prod_{0 \leq i < n} x_{i+p}^{f(i)}$$

- When we write $x_{-} < n$, ... > we are giving a natural n and a proof that n is less than the context/variable bound c_{r} , which we omit here.
- list.map takes the list monom_deg_le n d (which is just monom_deg_le_finset n d as a list instead¹) and gives us a list of terms looking like

$$x_{js} \prod_{i < n} (x_{ip}i)^{fi}$$

one for each $f \in monom_deg_le_finset$ n d.

- Then list.sumr sums these terms together, producing a term in *c* many free variables representing a polynomial.
- To define x_js we take the index of f in the list that f came from and we add s at the end and take the variable $x_{index\ f+s}$.
- To make the product we use non_comm_prod (this makes products indexed by fin n, and works without commutativity or associativity conditions). For each i < n we multiply together x_{i+p} .
- The purpose of adding *s* and *p* is to ensure we are not repeating variables in this expression. They give us control of where the variables begin and end.

In the two situations where these polynomials are used p is taken to be either 0 or n; this makes the realizing variables x_0, \ldots, x_{n-1} or x_n, \ldots, x_{2n-1} represent evaluating the polynomials at values assigned to x_0, \ldots, x_{2n-1} .

The value s in both instances taken to be $j \times |\mathsf{monom_deg_le_finset}|$ n d|+2n, where j will represent the j-th polynomial (out of the n polynomials from poly_map_data). This ensures that the variables between different polynomials in our polynomial map don't overlap.

4.2 Injectivity and surjectivity

We can then express injectivity of a polynomial map.

```
def inj_formula (n d : \mathbb{N}) :
   bounded_ring_formula (n * (monom_deg_le n d).length) :=
let monom := (monom_deg_le n d).length in
-- for all pairs in the domain x_- \in K^n and ...
bd_alls' n _
$
-- ... y_- \in K^n
bd_alls' n _
$
-- if at each p_j
(bd_big_and n
-- p_j x_- = p_j y_-
(\lambda j,
   (poly_indexed_by_monoms n d (j * monom + n + n) n _ _ ) -- note n
```

 $^{^1\}mbox{This}$ uses the axiom of choice, in the form of finset.to_list.

```
 \overset{\simeq}{}_{\text{(poly\_indexed\_by\_monoms n d (j * monom + n + n) 0 \_ \_)}} -- \text{ note 0}  )  \overset{\longrightarrow}{}_{\text{----}} \text{ then }   \overset{\Longrightarrow}{\Longrightarrow}   &-- \text{ at each 0 } \leq \text{ i } < \text{ n, }   \text{(bd\_big\_and n ( } \lambda \text{ i, }   &-- \text{ } x_i = y_i \text{ (where } y_i \text{ is written as } x_{i+n+1})   & \text{ } x_- \langle \text{ i + n , } \dots \rangle \cong \text{ } x_- \text{ ($\langle \text{ i , } \dots \rangle$)}  ))
```

To explain the above, suppose we have p the data of a polynomial map (i.e. for each j < n we have p_j a polynomial). We wish to express "for all $x, y \in K^n$, if px = py then x = y".

- bd_alls' n adds n many $\forall s$ in front of the formula coming after. The first represents $x=(x_n,\ldots,x_{2n-1})$ and the second represents $y=(y_0,\ldots,y_{n-1})=(x_0,\ldots,x_{n-1})$. We choose this ordering since when we quantify this expression we first introduce x, which is of a higher index.
- bd_big_and n takes n many formulas and places \land s between each of them. In particular it expresses px = py, by breaking this up into the data of "for each j < n, $p_jx = p_jy$ ", as well as x = y, by breaking this up into the data of "for each i < n, $x_{i+n} = x_i$ "
- To write $p_j x$ and $p_j y$ we simply find the right variable indices to supply poly_indexed_by_monoms, and we ask for them to be equal.

Surjectivity is similar

```
def surj_formula (n d : N) :
   bounded_ring_formula (n * (monom_deg_le n d).length) :=
let monom := (monom_deg_le n d).length in
-- for all x_ ∈ K<sup>n</sup> in the codomain
bd_alls' n_

$
-- there exists y_ ∈ K<sup>n</sup> in the domain such that
bd_exs' n_

$
-- at each 0 ≤ j < n
bd_big_and n
-- p<sub>j</sub> y_ = x<sub>j</sub>

\( \lambda j, \)
   poly_indexed_by_monoms n d (j * monom + n + n) 0 _
        inj_formula_aux0 inj_formula_aux1
\( \simeq \)
   x_ \( \lambda j + n , \ldots \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\( \)
\(
```

We wish to express "for all $x \in K^n$, there exists $y \in K^n$ such that py = x". Just like bd_alls' n, bd_exs' n adds n many \exists s in front of the formula coming after.

Now we are ready to express Ax-Grothendieck model theoretically and state internal soundness and completeness.

```
theorem realize_Ax_Groth_formula \{n : \mathbb{N}\}:
   (\forall d : \mathbb{N}, Structure K \models Ax_Groth_formula n d)
   \leftrightarrow
   (\forall (ps : poly_map K n),
   function.injective (poly_map.eval ps) \rightarrow function.surjective (poly_map.eval ps)) :=
```

4.3 Completeness and soundness

It is important that the model theoretic statements of the above translate to our statements in lean. We finish by showing 'realize_Ax_Groth_formula'.

Injectivity (and surjectivity)

We only discuss completeness and soundness for injectivity. The same results for surjectivity are very similar. A closer inspection reveals that we actually need two results:

- (realize_inj_formula_of_ring) Given a ring A and a polynomial map, A (as a model of ring_theory) realizes the formula inj_formula evaluated at the coefficients of a polynomial map if and only if the polynomial map over A is injective.
- (realize_inj_formula_of_model) Given a model M of ring_theory and a (huge) list (dvector) of coefficients (representing n polynomials), M realizes the formula inj_formula evaluated at the coefficients of a polynomial map if and only if the polynomial map over M (as a field) is injective.

Clearly these are slightly different lemmas. They are necessary because of the data one has at hand depends on the direction one is working on. In more detail

The function poly_map.coeffs_dvector' takes the polynomial ps and finds all the coefficients of each polynomial in ps and converts that to a dvector. This is the only way we can use the data of ps in terms of realization. Conversely all we have access to on the side of ring structures will be a list of the coefficients, so we need

Both of the above facts are simple to prove, but tiresome to work out.

Now that we have introduced completeness and soundness for Ax-Grothendieck we can move back

and forth between algebra and model theory, so that we can do the following

$$(\text{algebraic}) \ \text{locally finite Ax-G} \\ \downarrow^{(\text{internal}) \ \text{completeness}_p} \\ (\text{model theoretic}) \ \text{locally finite Ax-G} \\ \text{ACF}_p \ \text{is complete} \\ \downarrow^{\text{ACF}_p \ \text{is complete}} \\ (\text{model theoretic}) \ \chi_p \ \text{Ax-G} \xrightarrow{\text{int. soundness}_p} (\text{algebraic}) \ \chi_p \ \text{Ax-G} \\ \downarrow^{\text{Lefschetz χ-change}} \\ (\text{model theoretic}) \ \chi_0 \ \text{Ax-G} \xrightarrow{\text{int. soundness}_0} (\text{algebraic}) \ \chi_0 \ \text{Ax-G} \xrightarrow{\text{case on χ}} (\text{algebraic}) \ \text{Ax-G}$$

The reason that we need to split into cases depending on characteristic (the final two arrows above) is because ACF alone is not a complete theory, but adding in contraints on characteristic makes it so.

Hence the following parts remain: The locally finite part of the proof is given in the next section. The fact that ACF_p and ACF_0 are complete theories and the characteristic-change lemma are usually packaged together in the Lefschetz principle, which we work on in the section after that. The rest of the components of the proof are covered by our work so far.

5 The Locally Finite Case

Since Chris Hughes wrote the proof to this part of the project I will only explain the mathematics behind the proof and not talk about the lean formalization of it.

Definition – Locally finite fields [2]

Let K be a field of characteristic p a prime. Then the following are equivalent definitions for *K* being a *locally finite field*:

- 1. The minimal subfield generated by any finite subset of K is finite.
- 2. $\mathbb{F}_p \to K$ is algebraic. 3. K embeds into an algebraic closure of \mathbb{F}_p .

The important example for us of a locally finite field is an algebraic closure of \mathbb{F}_p . By the following theorem, this is a model of ACF_p satisfying Ax-Grothendieck.

Proof. 1. \Rightarrow 2. Let $a \in K$. Then $\mathbb{F}_p(a)$ is the minimal subfield generated by a, and is finite by assumption. Finite field extensions are algebraic a is algebraic over \mathbb{F}_p .

 $2. \Rightarrow 1$. We show by induction that K is locally finite. Let S be a finite subset of K. If S is empty then $\mathbb{F}_p(S) = \mathbb{F}_p$ and so it is finite. If $S = T \cup s$ and $\mathbb{F}_p(T)$ is finite, then $s \in K$ is algebraic so by some basic field theory we can take the quotient by the minimal polynomial of s giving

$$\mathbb{F}_p(T)[x]/\min(s,\mathbb{F}_p(T)) \cong \mathbb{F}_p(S)$$

The left hand side is finite because it is a finite dimensional vector space over a finite field. Hence *K* is locally finite.

 $2. \Leftrightarrow 3$. These are basic properties of algebraic closures.

Proposition - Ax-Grothendieck for locally finite fields

Let L be a locally finite field. Then any injective polynomial map $f:L^n\to L^n$ is surjective.

Proof. Let $b = (b_1, \ldots, b_n) \in L^n$. Writing $f = (f_1, \ldots, f_n)$ for $f_i \in L[x_1, \ldots, x_n]$ we can find $A \subseteq L$, the set of all the coefficients of all of the f_i when written out in monomials. $A \cup \{b_1, \ldots, b_n\}$ is finite and L is locally finite, so the subfield K generated by it is also finite.

The restriction $f|_{K^n}$ is injective and has image inside K^n since each polynomial has coefficients in K and is evaluated at an element of K^n . An injective endomorphism of a finite set is surjective, hence $b \in K^n = f(K^n)$.

It is important to note that surjectivity does not imply injectivity for locally finite fields. An example:

$$P = x^2 + x + 1 : \overline{\mathbb{F}}_2 \to \overline{\mathbb{F}}_2$$

is a polynomial map between locally finite fields. This is surjective since the algebraic closure has all roots of all polynomials over it. It is *not injective* since this polynomial is separable in characteristic two (its derivative is a unit).

The reason any imitation of the above proof will fail in this direction is that the restriction of a surjective polynomial map is not in general surjective. Let $a \in \overline{F}_2$ be a root of $x^2 + x + 1$. Then

$$P|_{\mathbb{F}(a)}: \mathbb{F}(a) \to \mathbb{F}(a)$$

takes $0, 1 \mapsto 1$ and $a, a + 1 \mapsto 0$. Note that $\mathbb{F}(a)$ is size 4 so we have shown it is neither injective nor surjective.

6 The Lefschetz Principle

Returning to model theory of algebraically closed fields. We begin by introducing the notion of a complete theory:

Definition – Complete theories

An *L*-theory *T* is *complete* when either of the following equivalent definitions hold:

• *T* deduces any sentence of its negation

```
def is_complete' (T : Theory L) : Prop := \forall (\phi : sentence L), T \models \phi \lor T \models \sim \phi
```

• Sentences true in any model are deduced by the theory.

```
def is_complete'' (T : Theory L) : Prop := \forall (M : Structure L) (hM : nonempty M) (\phi : sentence L), M \models T \rightarrow M \models \phi \rightarrow T \models \phi
```

• All models of *T* satisfy the same sentences ("are elementarily equivalent").

Note that the definition is_complete from the flypitch project is stronger than these conditions, and is useful when constructing theories with nice properties[†]. However in practice there is no reason to throw that many sentences into our language, so we use the versions

above.

†Personally, I prefer the word maximal consistent theory for their definition is_complete

Proof. The statement is

```
lemma is_complete''_iff_is_complete' \{T: Theory L\}: is\_complete' T \leftrightarrow is\_complete'' T := sorry
```

The forward direction involves casing on the hypothesis of $T \vDash \phi$ or $T \vDash \neg \phi$, in the first case we are done, and in the second we get a contradiction by ϕ being both true and false in our model M.

```
{ intros H M hM \phi hMT hM\phi, cases H \phi with hT\phi hT\phi, { exact hT\phi }, { have hbot := hT\phi hM hMT, rw realize_sentence_not at hbot, exfalso, exact hbot hM\phi } },
```

On the other hand we need to case on whether T is consistent or not. When T is consistent we can show T deduces ϕ or its negation by checking in that model, otherwise T should deduce anything.

```
{ intros H \phi, by_cases hM : \exists M : Structure L, nonempty M \land M \models T, { rcases hM with \langle M , hM0 , hMT \rangle, by_cases hM\phi : M \models \phi, { left, exact H M hM0 \phi hMT hM\phi }, { right, rw \leftarrow realize_sentence_not at hM\phi, exact H M hM0 _ hMT hM\phi} }, { left, intros M hM0 hMT, exfalso, apply hM \langle M , hM0 , hMT \rangle} }
```

Proposition - Lefschetz principle

Let ϕ be a sentence in the language of rings. Then the following are equivalent:

- 1. Some model of ACF₀ satisfies ϕ . (If you like $\mathbb{C} \models \phi$.)
- 2. $ACF_0 \models \phi$
- 3. There exists $n \in \mathbb{N}$ such that for any prime p greater than n, $ACF_p \models \phi$
- 4. There exists $n \in \mathbb{N}$ such that for any prime p greater than n, some model of ACF_p satisfies ϕ .

The first and last equivalences are due to the theories ACF_p being complete for any p (0 or prime).

To prove the above we need the following

- Vaught's test for showing a theory is complete (this does the first and last equivalences and is needed in the middle equivalence)
- The compactness theorem for the middle equivalence.

In this section we will introduce these notions properly and how they are used. Vaught's test will be proven in a later section. The compactness theorem will not be proven (it was part of the flypitch project).

6.1 ACF_n is complete (Vaught's test)

We want to show that ACF_n is complete. Another way of expressing that a theory T is complete is to ask for models of T to satisfy the same sentences (that they are elementarily equivalent). In particular it is known that isomorphic models satisfy the same sentences.

Definition – Categoricity

Given a language L and a cardinal κ , an L-theory T is called κ -categorical if any two models of T of size κ are isomorphic (recalling the definition of an L-morphism).

```
def categorical (\kappa : cardinal) (T : Theory L) := \forall (M N : Structure L) (hM : M \models T) (hN : N \models T), #M = \kappa \rightarrow #N = \kappa \rightarrow nonempty (M \simeq[L] N)
```

Vaught's test says that categoricity is a useful condition for showing a theory is complete. We check that this holds for ACF_n and uncountable cardinals.

Proposition – Categoricity for ACF_n

If two algebraically closed fields have the same *uncountable* cardinality then they are (non-canonically) isomorphic.

```
lemma ring_equiv_of_cardinal_eq_of_char_eq 
 {K L : Type u} [hKf : field K] [hLf : field L] 
 (hKalg : is_alg_closed K) (hLalg : is_alg_closed L) 
 (p : \mathbb{N}) [char_p K p] [char_p L p] 
 (hK\omega : \omega < #K) (hKL : #K = #L) : nonempty (K \simeq+* L) := sorry
```

Hence ACF_n is κ -categorical for any uncountable cardinal κ .

Proof. This is proven by Chris Hughes and is now part of mathlib. We outline the argument:

Let \mathbb{F} be the minimal field in K and L, which is either finite or \mathbb{Q} and is the same field since they are of the same characteristic.

There exist transcendence bases for K and L respectively, which we can call s and t. Since K and L are both uncountable, the transcendence bases must be of the same cardinality as the fields.

$$\#K = \omega + \#s = \#s$$
 and $\#L = \omega + \#t = \#t$

Then t and s biject, hence we have ring isomorphisms

$$K \cong \mathbb{F}(s) \cong \mathbb{F}(t) \cong L$$

Then we can apply this to show categoricity:

```
lemma categorical_ACF_0 {\kappa} (h\kappa : \omega < \kappa) : fol.categorical \kappa ACF_0 := begin intros M N hM hN hM\kappa hN\kappa, haveI : fact (N \models ACF_0) := \langle hM \rangle, haveI : fact (N \models ACF_0) := \langle hN \rangle, split, apply equiv_of_ring_equiv, apply classical.choice, apply ring_equiv_of_cardinal_eq_of_char_zero, -- the char 0 version of what we showed above repeat { apply_instance }, repeat { cc }, end
```

Another condition we will need for Vaught's test is that there are only infinite models to the theory

```
def only_infinite (T : Theory L) : Prop := \forall (M : Model T), infinite M.1
```

This will hold in our case since algebraically closed fields are infinite. We are now in a position to state Vaught's test.

Proposition - Vaught's Test

Let L be a language and T be a consistent theory in the language L with only infinite models, such that it is κ -categorical for some large enough cardinal κ (see below for details). Then T is a complete theory.

```
lemma is_complete'_of_only_infinite_of_categorical 
 [is_algebraic L] {T : Theory L} (M : Structure L) (hM : M \models T) 
 (hinf : only_infinite T) {\kappa : cardinal} 
 (h\kappa : \forall n, #(L.functions n) \leq \kappa) (h\omega\kappa : \omega \leq \kappa) (hcat : categorical \kappa T) : is_complete' T := sorry
```

This may differ slightly to the statement in other sources; the details behind the choice of these (stronger than usual) hypotheses for Vaught's Test and Upwards Löwenheim-Skolem will be discussed in the section dedicated it their proofs.

We apply Vaught's test in our case to show that the theory of algebraically closed fields of a fixed characteristic is complete. However, before we do so we need a field theory lemma.

Proposition

 ACF_0 is complete and for any prime p, ACF_p is complete.

Proof. The two proofs are similar, so we focus on the characteristic 0 case. According to Vaught's test, we first need to show that ACF_0 is consistent, which we can do my simply giving a model: the algebraic closure of \mathbb{Q} . (For ACF_p we take the algebraic closure of \mathbb{F}_p .) We already have all the tools to make such a model:

- Mathlib has definitions of the rationals rat and finite fields zmod.
- (I lift them to an arbitrary universe level for generality.)
- Mathlib already has a definition of algebraic closure algebraic_closure.
- We showed that any algebraically closed field is a model of ACF and that characteristic n fields are models of ACF_n.

```
def algebraic_closure_of_rat :
   Structure ring_signature :=
Rings.struc_to_ring_struc.Structure algebraic_closure.of_ulift_rat

instance algebraic_closure_of_rat_models_ACF : fact (algebraic_closure_of_rat ⊨ ACF) :=
by {split, classical, apply is_alg_closed_to.realize_ACF }

instance : char_zero algebraic_closure_of_rat := ...

theorem algebraic_closure_of_rat_models_ACF<sub>0</sub> :
   algebraic_closure_of_rat ⊨ ACF<sub>0</sub> :=
models_ACF<sub>0</sub>_iff.2 ring_char.eq_zero
```

The next thing to show is that any model of ACF_0 is infinite. This is true since any algebraically closed field is infinite (I give a proof of this in Rings.ToMathlib.algebraic_closure; it is just considering the roots of the separable polynomial x^n-1 for each 0< n):

```
lemma only_infinite_ACF : only_infinite ACF := by { intro M, haveI : fact (M.1 \models ACF) := \langle M.2 \rangle, exact is_alg_closed.infinite }
```

We need a large cardinal for categoricity. We choose this to be the continuum \mathfrak{c} , the cardinality of \mathbb{C} . It is large enough since for each natural there are only finitely many function symbols of that arity in the language of rings, and of course $\omega \leq \mathfrak{c}$.

Putting the above together we have

```
theorem is_complete'_ACF_0: is_complete' ACF_0:= is_complete'_of_only_infinite_of_categorical instances.algebraic_closure_of_rat instances.algebraic_closure_of_rat_models_ACF_0 -- algebraic closure of \mathbb Q is a model of ACF_0 (only_infinite_subset ACF_subset_ACF_0 only_infinite_ACF) -- alg closed fields are infinite -- pick the cardinal \kappa := c card_functions_omega_le_continuum omega_le_continuum (categorical_ACF_0 omega_lt_continuum)
```

6.2 Compactness

One way of stating compactness is the idea that proofs are finite.

Proposition – Compactness (in terms of deduction)

If T is an L-theory and f is an L-sentence then T deduces ϕ if and only if there is some finite subtheory of T that deduces f.

```
theorem compactness {L : Language} {T : Theory L} {f : sentence L} :  T \vDash f \leftrightarrow \exists \ fs : finset \ (sentence \ L), \ (\uparrow fs : Theory \ L) \vDash (f : sentence \ L) \ \land \ \uparrow fs \subseteq T := sorry
```

Confusingly, this can be found in a file called completeness.lean. The backwards direction of this is obvious since any model of *T* automatically is a model of a finite subset.

There is an alternative formulation of compactness which we do not use for Lefschetz, but is important as a tool for showing that a theory is consistent. The reader may choose to come back to it when it is referred to later on.

Proposition – Compactness (in terms of consistency)

If *T* is an *L*-theory then *T* is consistent if and only if each finite subtheory of *T* is consistent.

```
theorem compactness' {L} {T : Theory L} : is_consistent T \leftrightarrow \forall fs : finset (sentence L), \uparrowfs \subseteq T \rightarrow is_consistent (\uparrowfs : Theory L) :=
```

Often the term "finitely consistent" is used to describe the latter case.

I prove the second statement in Rings. ToMathlib. completeness. lean (using a lemma from flypitch made for the first). The proof I give below is *not exactly* this proof, since I wish to avoid first order logic syntax (\vdash), which is the default layer of definitions used in the flypitch library, and just argue using model theory (\vdash). However the essence of the proof is the same.

Proposition

The two formulations of compactness are equivalent.

Proof. (\Rightarrow) Clearly if T is consistent with a model \mathcal{M} then \mathcal{M} is also a model of any subtheory of T.

For the converse we prove the contrapositive. Suppose T is inconsistent, then $T \vDash \bot$, since proving this requires assuming a model of T. The first version of compactness implies there is a finite subset of T that deduces \bot . This subset cannot be consistent, as any model will satisfy \bot .

 (\Leftarrow) Clearly if a finite subtheory of T deduces a sentence ϕ then any model of T is a model of the subtheory, hence also satisfies ϕ .

For the converse we again prove the contrapositive. *Note that for a theory* Δ *and a sentence* ϕ *we have* $\Delta \nvDash \phi$ *if and only if* $\Delta \cup \{\neg \phi\}$ *is consistent.* We make use of this fact: Suppose all finite subtheories of T do not deduce a sentence ϕ . Then for any finite subtheory $\Delta \subseteq T$, we have $\Delta \nvDash \phi$ and so $\Delta \cup \neg \phi$ is consistent. Then $T \cup \{\neg \phi\}$ is a finitely consistent theory, hence is consistent by the second version of compactness. Hence $T \nvDash \phi$.

6.3 Proving Lefschetz

We are now ready to prove the Lefschetz principle. We begin by showing that if ACF_0 deduces a ring sentence ϕ then ACF_p deduces ϕ for large p. We prove it seperately because it will be used in the converse!

```
theorem characteristic_change_left (\phi : sentence ring_signature) : ACF<sub>0</sub> \models \phi \rightarrow \exists (n : \mathbb{N}), \forall {p : \mathbb{N}} (hp : nat.prime p), n \rightarrow ACF<sub>p</sub> hp \models \phi := sorry
```

Proof. We apply compactness: if ACF_0 deduces ϕ then we must have a finite subtheory of ACF_0 that deduces ϕ . In particular since ACF_0 consisted of the axioms for ACF plus $p+1 \neq 0$ for each $p \in \mathbb{N}$ we know that only finitely many such formulas are needed to deduce ϕ . Hence our n should be the maximum p such that $p+1 \neq 0$ is in our finite subtheory, plus 1.

```
begin
  rw compactness,
  intro hsatis,
```

```
obtain ⟨ fs , hsatis , hsub ⟩ := hsatis,
classical,
obtain ⟨ fsACF , fsrange , hunion, hACF , hrange ⟩ :=
  finset.subset_union_elim hsub,
set fsnat : finset ℕ := finset.preimage fsrange plus_one_ne_zero
      (set.inj_on_of_injective injective_plus_one_ne_zero _) with hfsnat,
use fsnat.sup id + 1,
```

In the above fs is our finite subtheory, fsrange is the part consisting of the formulas $p + 1 \neq 0$, and the other part from ACF is called fsACF.

Let us then suppose that we have a prime that is larger than this n. By design, it should be that ACF_p deduces all the formulas from our finite subtheory, hence ACF_p should deduce ϕ . Supposing that M is a model of ACF_p , it suffices that M deduces ϕ . Since $\mathrm{fs} = \mathrm{fsACF} \cup \mathrm{fsrange}$ deduces ϕ it suffices that M deduces $\mathrm{fsrange}$ (it deduces ACF so it deduces any subset of ACF).

```
intros p hp hlt M hMx hmodel, haveI : fact (M \vDash ACF) := \langle (models_ACF_p_iff'.mp hmodel).2 \rangle, have hchar := (@models_ACF_p_iff _ _ _inst_1 _).1 hmodel, apply hsatis hMx, rw [\leftarrow hunion, finset.coe_union, all_realize_sentence_union], split, { apply all_realize_sentence_of_subset _ hACF, exact all_realize_sentence_of_subset hmodel ACF_subset_ACF_p}, {sorry},
```

It suffices to show that for each q in fsnat (the list of q such that $q+1 \neq 0$ is in the subtheory fs), M satisfies $q+1 \neq 0$. We can then conclude that this is true since M is characteristic p, and q < p. \square

Now for the whole theorem:

```
theorem characteristic_change (\phi : sentence ring_signature) : ACF<sub>0</sub> \models \phi \leftrightarrow (\exists (n : \mathbb{N}), \forall \{p : \mathbb{N}\} \text{ (hp : nat.prime p), } n
```

Proof. It remains to prove the converse. We know that ACF_0 is complete, so either $ACF_0 \models \phi$ or $ACF_0 \models \neg \phi$, and it suffices to refute the latter case.

```
begin split,  \{ \text{ apply characteristic\_change\_left } \}, \\ \{ \text{ intro hn,} \\ \text{ cases is\_complete'\_ACF}_0 \ \phi \text{ with hsatis hsatis,} \\ \{ \text{ exact hsatis } \}, \\ \{ \text{ sorry } \},
```

We can apply the forward direction of Lefschetz, and have that ACF_p deduces $\neg \phi$ for large p. We instantiate these lower bounds, and take any prime p that is larger than their maximum.

```
{ have hm := characteristic_change_left (\sim \phi) hsatis, cases hn with n hn, cases hm with m hm, obtain \langle p , hle , hp \rangle := nat.exists_infinite_primes (max n m).succ,
```

We take the algebraic closure Ω of \mathbb{F}_p as a model of ACF_p , and since p is suitably large, we have that $\Omega \vDash \phi$ and $\Omega \vDash \neg \phi$, which is a contradiction.

7 Vaught's test and Upwards Löwenheim-Skolem

In this section we go back to general model theory, with the goal of proving Vaught's test. However, the proof of Vaught's test relies on a (a variant of) the Upwards Löwenheim-Skolem Theorem. It says the following:

Proposition - Upwards Löwenheim-Skolem

Suppose L is an algebraic language and T is an L-theory. If κ is a sufficiently large cardinal and T has an infinite model, then T has a model of size κ .

```
theorem has_sized_model_of_has_infinite_model [is_algebraic L] {T : Theory L} {$\kappa$ : cardinal} (h$\kappa$ : $\forall$ n, $\#(L.functions n) $\leq \kappa$) (h$\omega$\kappa$ : $\omega $\leq \kappa$) : ($\exists M$ : Structure L, nonempty M $\wedge M$ $\models T $\wedge infinite M$) $\rightarrow $\exists M$ : Structure L, nonempty M $\wedge M$ $\models T $\wedge $\#M$ $= $\kappa$ := sorry
```

This is often stated in terms of starting with an L-structure, and extending it to a larger L-structure, hence the word "upward" in the name. This can be done using the above by taking T to be the set of sentences satisfied by the structure.

7.1 Proof of Vaught's Test

We first apply Upwards Löwenheim-Skolem to prove Vaught's test. Recall the statement:

```
lemma is_complete'_of_only_infinite_of_categorical [is_algebraic L] {T : Theory L} (M : Structure L) (hM : M \vDash T) (hinf : only_infinite T) {\kappa : cardinal} (h\kappa : \forall n, #(L.functions n) \leq \kappa) (h\omega\kappa : \omega \leq \kappa) (hcat : categorical \kappa T) : is_complete' T := sorry
```

Proof. The proof is by contradiction. Suppose T is not complete; this gives us a formula ϕ such that

$$T \nvDash \phi$$
 and $T \nvDash \neg \phi$

which in turn (after unfolding the definition of $T \nvDash \phi$) gives us two models M and N of T such that

$$M \nvDash \phi$$
 and $N \nvDash \neg \phi$

our aim is to adjust these to two models of T of cardinality κ so that they are isomorphic by categoricity, but satisfy different sentences.

We can adjust cardinality using Upwards Löwenheim-Skolem, obtaining models of cardinality κ . This is why we need T to only have infinite models.

```
obtain \langle M', hM'0 , hM' , hMcard \rangle := has_sized_model_of_has_infinite_model h\kappa h\omega\kappa \langle M , hM0 , hM , hinf \langle M , all_realize_sentence_of_subset hM (set.subset_insert _ _) \rangle , obtain \langle N' , hN'0 , hN' , hNcard \rangle := has_sized_model_of_has_infinite_model h\kappa h\omega\kappa \langle N , hN0 , hN , hinf \langle N , all_realize_sentence_of_subset hN (set.subset_insert _ _) \rangle ,
```

By categoricity, M and N are isomorphic as L-structures. We supply a proof that isomorphic structures satisfy the same sentences in Rings.ToMathlib.fol.lean. It follows from a series of proofs by induction on terms and formulas.

```
have hiso := hcat M' N'
  (all_realize_sentence_of_subset hM' (set.subset_insert _ _))
  (all_realize_sentence_of_subset hN' (set.subset_insert _ _)) hMcard hNcard,
rw all_realize_sentence_insert at hM' hN',
rw Language.equiv.realize_sentence _ (classical.choice hiso) at hN',
  exact hN'.1 hM'.1,
end
```

7.2 Upwards Löwenheim-Skolem

Our remaining goal is to prove Upwards Löwenheim-Skolem.

```
theorem has_sized_model_of_has_infinite_model [is_algebraic L] {T : Theory L} \{\kappa : \text{cardinal}\}\ (h\kappa : \forall n, #(L.functions n) \leq \kappa) (h\omega \kappa : \omega \leq \kappa) : (\exists M : \text{Structure L}, nonempty M \land M \vDash T \land \text{infinite M}) \rightarrow \exists M : \text{Structure L}, nonempty M \land M \vDash T \land \#M = \kappa := \text{sorry}
```

The idea of the proof is that we want to design a model of the right size by making a language L_2 extending L_2 and an L_2 -theory L_2 extending L_2 extending L_2 in the sense that any L_2 -model of L_2 reduces down to a L_2 -model of L_2 and L_2 guarantee that any model of L_2 is large enough. Meanwhile, we design an L_2 -model term_model of L_2 , by taking the type of all the L_2 -terms, and quotienting by equality deduced by L_2 (this requires L_2 to be Henkin), guaranteeing that term_model is small enough - it will be bounded by the number of terms, and thus by the number of function symbols in the language.

7.2.1 Adding distinct constant symbols

Suppose we have a language L and a consistent theory T that has an infinite model M, as well as an infinite cardinal κ . Our first goal is to make a consistent theory T_{κ} in a language L_{κ} such that any model of T_{κ} is size at least κ .

The language extended to have κ *many symbols:* For design reasons it is convenient to work generally. We will do the following

- 1. Define the type of language morphisms L1 \rightarrow ^L L2
- 2. Define the sum of two languages L1. sum L2 and the language morphisms into the sum.
- 3. Define the language that has constant symbols indexed by a type α , called of_constants α . In our situation we will take α to be κ out, which is a type of cardinality κ (by the axiom of choice)
- 4. Define the theory distinct_constants α in the language of_constants α that consists of a \neq b for each pair of distinct terms a b : α .
- 5. Define the induced L2-theory from a morphism of languages L1 \rightarrow^L L2 and an L1-theory
- 6. Make the sum of the languages L (from the above hypotheses) and of_constants α . We are interested in taking the union of the induced theory from T and the induced theory from distinct_constants α . We call this theory union_add_distinct_constants T α
- 7. Show that union_add_distinct_constants T α is consistent when T has an infinite model
- (1) A morphism of languages consists of a map on function symbols and a map on relation symbols (for each arity).

```
structure Lhom (L1 L2 : Language) := (on_function : \forall \{n\}, L1.functions n \to L2.functions n) (on_relation : \forall \{n\}, L1.relations n \to L2.relations n)
```

We denote this type by L1 \rightarrow^L L2.

(2) The sum of two languages takes two languages and makes the disjoint sum of the function symbols and relation symbols of each arity.

```
def sum (L1 L2 : Language) : Language := \langle \lambda n, L1.functions n \oplus L2.functions n, \lambda n, L1.relations n \oplus L2.relations n
```

The obvious morphisms into the sum are from the maps into the disjoint sum of types

```
def sum_inl {L L' : Language} : L \rightarrow^L L.sum L' := \langle \lambdan, sum.inl, \lambda n, sum.inl\rangle def sum_inr {L L' : Language} : L' \rightarrow^L L.sum L' := \langle \lambdan, sum.inr, \lambda n, sum.inr\rangle
```

(3) of_constants α sets α as the set of function symbols of arity 0, and makes no other function or relation symbols.

```
def of_constants (\alpha : Type*) : Language := { functions := \lambda n, match n with | 0 := \alpha | (n+1) := pempty end, relations := \lambda _, pempty }
```

(4) We first make a function from the product $\alpha \times \alpha$ to the set of sentences, that takes (x_1, x_2) and returns the sentence $x_1 \neq x_2$. Then the image of the complement of the diagonal in $\alpha \times \alpha$ is the theory we want.

```
def distinct_constants_aux (x : \alpha \times \alpha) : sentence (Language.of_constants \alpha) := \sim (bd_const x.fst \simeq bd_const x.snd) def distinct_constants : Theory (Language.of_constants \alpha) := set.image (distinct_constants_aux_) { x : \alpha \times \alpha | x.fst \neq x.snd }
```

- (5) The theory induced by a language morphism is constructed by taking image of the induced map from L1-sentences to L2-sentences. This in turn is a special case of the induced map on bounded formulas, which is made by induction on bounded formulas and bounded terms. We don't go through the details of this; the code is from flypitch and can be found in language_extension.lean.
- (6) The theory we are interested in is the latter of the following

```
def add_distinct_constants : Theory $ L.sum (Language.of_constants \alpha) := Theory_induced Lhom.sum_inr $ distinct_constants _ def union_add_distinct_constants (T : Theory L) (\alpha : Type u) := (Theory_induced Lhom.sum_inl T : Theory $ L.sum (of_constants \alpha)) \cup add_distinct_constants \alpha
```

It combines the induced theories from the maps into the sum, starting with the theory T we want to build a κ -sized model for and adding κ many symbols to it.

(7) Suppose T is a theory with an infinite model M and α is a type. We want to show

```
lemma is_consistent_union_add_distinct_constants {T : Theory L} (\alpha : Type u) {M : Structure L} (hMinf : infinite M) (hMT : M \models T): is_consistent $ union_add_distinct_constants T \alpha
```

Compactness tells us we only need to show that a finite subset of α is consistent. So we can take our original model M and realize finitely many distinct constant symbols from α in M as distinct elements, as M is infinite. To this end let's suppose we have

```
Tfin \cup con_fin = fs
```

where Tfin and con_fin are respectively finite subsets of T and add_distinct_constants α .

```
rw compactness', intros fs hfsT\alpha, rw model_existence, obtain \langle Tfin, con_fin, hfs, hTfin, h_con_fin \rangle := finset.subset_union_elim hfsT<math>\alpha,
```

We need to pick out all the constant symbols that appeared in con_fin (the details of which we will not go through). We call the set of these constant symbols α_{fin} , and note that it must be finite, hence has an injection into M (by choice).

```
set \alphafin : finset \alpha := constants_appearing_in (of_constants.preimage con_fin) with h\alphafin, let on_\alphafin : \alphafin \hookrightarrow M := classical.choice ((cardinal.le_def \alphafin M).1 (le_of_lt $ cardinal.finset_lt_infinite hMinf)),
```

We can extend this to a full realization of M has a structure in the language L.sum (of_constants α). Since M is non-empty, we can send every symbol not in α _fin to some arbitrary element (by choice). To instantiate the goal with this structure, we make a general function

```
def sum_Structure : Structure (L.sum (of_constants \alpha)) := { carrier := S, fun_map := \lambda n f, sum.cases_on f (\lambda f, S.fun_map f) $ of_constants.fun_map c, rel_map := \lambda n r, sum.cases_on r (\lambda r, S.rel_map r) pempty.elim }
```

which takes a map interpreting the extra constant symbols and produces a structure in the extended language.

```
have hM0 : nonempty M := infinite.nonempty _, set c : \alpha \to M := \lambda x, dite (x \in \alphafin) (\lambda h, on_\alphafin \langlex,h\rangle) (\lambda _, classical.choice hM0) with hc, refine \langle Language.of_constants.sum_Structure c , hM0 , _ \rangle,
```

It remains to show that this structure is a model of the theory fs. That it models a the subset of T is tedious to show but $clean^1$.

```
rw [ ← hfs, finset.coe_union, all_realize_sentence_union],
split,
{ apply all_realize_sentence_of_subset _ hTfin,
    apply Language.of_constants.sum_Structure_Theory_induced hMT },
{ sorry },
```

That it models con_fin requires a lot of rewriting but boils down to the fact that the realization of constant symbols was an injection when restricted to the symbols from con_fin. We omit the rest of the code.

7.2.2 term_model

Recalling that our goal is to construct a model of a fixed cardinality, we can move on to designing our model. In flypitch this construction is called term_model. In brief, given an L-theory T, the structure consists of:

• The collection of *L*-terms with no variables (closed_term L) up to equality as deduced by *T* as the carrier type for the structure. Formally this is the quotient by the relation

$$t \sim s \Leftrightarrow T \models t = s$$

- To interpret function symbols, we need to take a symbol f of arity n and a dvector of closed terms (up to equivalence) and return (the equivalence class of) a closed term. The term we pick is naturally f applied to the previous n closed terms (using bd_apps). One must check that this is respects the equivalence relation.
- Similarly to interpret relation symbols, we need to take a symbol r of arity n and a dvector of closed terms. The term we pick is r applied to the previous n closed terms (using bd_apps_rel).

Of course this construction is not always going to give a model of the theory, since there are theories that have no models. However, in suitable conditions we will have that for any L-sentence ϕ

```
T \vDash \phi if and only if term_model T \vDash \phi
```

These conditions are

- ullet T is a maximal complete theory (called is_complete in flypitch).
- The theory *T* is Henkin, or has the witness property, or *L* has enough constant symbols with respect to *T*:

```
def has_enough_constants (T : Theory L) := \exists(C : \Pi(f : bounded_formula L 1), L.constants), \forall(f : bounded_formula L 1), T \models \exists' f \Longrightarrow f[bd\_const (C f)/0]
```

¹The lemmas used to show that sum_Structure c models the induced theory could be generalized to say that if the interpretation maps agree upon restriction to the smaller language then the extended structure will model the induced theory.

This says for each formula with one free-variable there is a constant symbol that would witness the existence of a term satisfying the formula in any model.

We demonstrate the role of these conditions in the following. To prove

$$T \vDash \phi$$
 if and only if term_model $T \vDash \phi$

for all sentences ϕ , we induct on ϕ . For backwards direction on the \forall case we are showing that

term_model
$$T \vDash \forall x, \phi$$
 implies $T \vDash \forall x, \phi$

Assume $\mathsf{term}_\mathsf{model} \vDash \forall x, \phi$. By **maximality** either $T \vDash \forall x, \phi$ or $T \vDash \exists x, \neg \phi$. It suffices to refute the latter case. Suppose $T \vDash \exists x, \neg \phi$. As T is **Henkin**, there is some constant symbol c such that $T \vDash \neg \phi_c$ where ϕ_c is the sentence with x replaced for c. Since T is **consistent** this implies $T \nvDash \phi_c$, and by the induction hypothesis $\mathsf{term}_\mathsf{model} \nvDash \phi_c$. However, c is realized as some a : $\mathsf{term}_\mathsf{model}$, thus by our assumption $\mathsf{term}_\mathsf{model} \vDash \phi(a)$, and a bit of work shows $\mathsf{term}_\mathsf{model} \vDash \phi_c$, a contradiction.

7.2.3 Henkinization

The above indicates we must extend to a further language and a further theory in the language, such that the extended theory is maximally consistent and Henkin. We start with a consistent theory T_{κ} (which in our situation is the theory with extra κ constant symbols). The first thing to do is to make it Henkin, ensuring it is still consistent, we call the language we extended to L_H and the new L_H -theory T_H . Secondly, we throw in enough formulas to make it maximally consistent, and call this new theory T_m . All of this is done in flypitch and can mostly be found in henkin.lean. An overview follows.

The second step can be done in either of the following ways:

• Since the theory T_H is consistent, it has a L_H -model, hence the set T_m of L_H -sentences satisfied by the L_H -model is a L_H -theory extending T_H . It is maximal by the law of the excluded middle: the model M either satisfies a formula or not, hence

$$M \vDash \phi$$
 or $M \vDash \neg \phi$

 T_m is consistent since M is a model.¹

• We can use Zorn's lemma: the set of consistent L_H -theories extending T_H is non-empty as T is in the set. Any chain of consistent L_H -theories extending T_H is bounded above by a consistent theory since we can take the union of them, and check consistency using compactness. One can check that this set theoretic maximality corresponds to the definition of a maximal consistent theory. Consistency is given for free by Zorn.

In the flypitch project, the setup of first order logic syntax rather than its semantics means the Zorn approach is most natural.

The first step requires recursively defined languages extending one another

$$L_0 \to^L L_1 \to^L \dots$$

and theories in each language such that the induced theories at each level are sub-theories of the next

¹Note that $T \nvDash \phi$ does not imply $T \vDash \neg \phi$ in general. This implication holds if and only if T is complete. Thus we needed to appeal to a model in the above.

Specifically, the inductive step is

```
inductive henkin_language_functions (L : Language.{u}) : \mathbb{N} \to \mathsf{Type} u | inc : \forall {n}, L.functions n \to henkin_language_functions n | wit : bounded_formula L 1 \to henkin_language_functions 0
```

At each step we make a language L_{i+1} inheriting all the function symbols from L_i via inc, and for each L_i -formula ϕ with one free variable, we introduce a new constant symbol wit ϕ for that specific formula.

Then we can then make the new L_{i+1} -theory T_{i+1} by taking the induced theory of T_i and adding a new sentence $\exists \phi \Rightarrow \phi(\text{wit } \phi)$ (as an induced L_{i+1} -sentence) for each L_i -formula ϕ with one free variable.

```
def wit_property {L : Language} (f : bounded_formula L 1) (c : L.constants) :
    sentence L := (∃'f) ⇒ f[bd_const c/0]

def henkin_theory_step {L} (T : Theory L) : Theory $ henkin_language_step L :=
Theory_induced henkin_language_inclusion T ∪
(λ f : bounded_formula L 1,
    wit_property (henkin_language_inclusion.on_bounded_formula f) (wit' f)) '' (set.univ : set $
    bounded_formula L 1)
```

Each T_{i+1} is consistent since T_i is consistent; a model of T_i will be a model of the new theory. Indeed if a : M realizes $\exists \phi$ then we can interpret wit ϕ as a, satisfying the new sentences in T_{i+1} .

Hence we can take the colimit of these languages L_infty (which amounts to a union of the function symbols in set theory)

and take the union of the induced theories in L_infty to be our desired theory T_infty.

- T_infty is consistent since it is finitely consistent (at each step the new theory T_{i+1} is consistent and since the theories form a chain, any finite subset will be a subset of some T_i).
- T_infty is Henkin since any L_infty-formula in one free variable is an induced formula from some L_i , which is witnessed by a constant symbol from L_{i+1} according to theory T_{i+1} , which is embedded in T_infty.

Both of these steps are combined together as

```
def completion_of_henkinization {L} {T : Theory L} (hT : is_consistent T) : Theory
    (henkin_language) := sorry
```

We are now ready to prove Upwards Löwenheim-Skolem sans the part about cardinality.

```
theorem has_sized_model_of_has_infinite_model [is_algebraic L] {T : Theory L} \{\kappa : \text{cardinal}\}\ (h\kappa : \forall n, \#(L.\text{functions } n) \leq \kappa) \ (h\omega\kappa : \omega \leq \kappa) : (\exists M : \text{Structure L, nonempty M} \land M \vDash T \land \text{infinite M}) \rightarrow \exists M : \text{Structure L, nonempty M} \land M \vDash T \land \#M = \kappa := begin rintro <math>\langle M, hM0, hMT, hMinf \rangle,
```

Supposing T is consistent, we can come up with a model M. We can then add κ many constant symbols to form L_{κ} and ensure they are all distinct in theory T_{κ} , which is consistent by our work above.

```
set T\kappa := union_add_distinct_constants T\kappa.out, have hT\kappa_consis := is_consistent_union_add_distinct_constants \kappa.out hMinf hMT,
```

We henkinize T_{κ} then take the maximal consistent L_2 -theory T_2 extending that (where $L_2:= henkin_language$). We know that this is consistent, maximal and Henkin, hence term_model T2 satisfies exactly the formulas that appear in T_2 . However, we need to take the reduct of term_model T2, since we only want an L-structure which models the L-theory T. The reduct simply takes the original carrier set and realizes symbols as the realization of their images in the extended language. This is denoted M[[$\iota: L_0 \to^L L_1$]], where M is an L_1 -structure. We first take the reduct to L_{κ} , then down to L.

```
set T2 := completion_of_henkinization hT\kappa_consis, use (term_model T2)[[ henkin_language_over ]]   [[(Lhom.sum_inl : L \rightarrow<sup>L</sup> L.sum (of_constants \kappa.out))]],
```

It remains to show that this reduct is non-empty and a model of T, which follows from general theory about reducts and API for completion_of_henkinization and term_model.

```
split,
-- the reduction of a non-empty model is non-empty
{ apply fol.nonempty_term_model, exact completion_of_henkinization_is_henkin _, },
split,
-- this reduction models T
{ apply Lhom.reduct_Theory_induced Lhom.sum.is_injective_inl,
    have h := reduct_of_complete_henkinization_models_T hT\(\kappa_consis\),
    simp only [all_realize_sentence_union] at h,
    exact h.1 },
sorry,
```

The final goal is finding the cardinality of term_model, which we explore in the next subsection.

7.2.4 Cardinality of term_model

Our goal is

```
# (term_model T2[[henkin_language_over]][[Lhom.sum_inl]]) = \kappa
```

which says the cardinality of the carrier type of the reduct of term_model T2 to L is κ . We first show # $\kappa \leq (\text{term_model T2[[henkin_language_over]][[Lhom.sum_inl]]})$

To show this, it suffices to show

- The carrier type of any (Language.of_constants $\, \alpha$)-model of distinct_constants $\, \alpha$ is at least size $\, \#\alpha \,$
- The reduct of term_model to Language.of_constants κ .out is a model of distinct_constants κ .out
- The carrier type in the goal (the reduct of term_model to L) equals to the carrier type of the reduct of term_model to Language.of_constants α

The first point follows from our definition of distinct_constants. Suppose M is a (Language.of_constants α)-model of distinct_constants α . Then to show that $\#\alpha \leq \#M$ it suffices to inject α into M by the function taking any $a:\alpha$ to its realization M. constants a.

```
lemma all_realize_sentence_distinct_constants (M : Structure _) (hM : M \vDash distinct_constants \alpha ) : \#\alpha \leq \#M := begin  
rw all_realize_sentence_image at hM, have hf : function.injective (\lambda a, M.constants a), { intros x y hfxy, by_cases hxy : x = y, exact hxy, exfalso, apply hM \langlex,y\rangle hxy, simp only [Structure.constants] at hfxy, simp [bd_const, hfxy] }, apply cardinal.mk_le_of_injective hf, end
```

So we first make the lemma that

```
have hle : \#\kappa.\text{out} \leq \#((\text{term\_model T2})[[\text{henkin\_language\_over}]]  [[(Lhom.sum_inr : _ \rightarrow^L L.sum (of_constants \kappa.\text{out}))]]), { apply all_realize_sentence_distinct_constants, apply Lhom.reduct_Theory_induced Lhom.sum.is_injective_inr, have h := reduct_of_complete_henkinization_models_T hT$\kappa_consis, simp only [all_realize_sentence_union] at h, exact h.2 }, { simp only [fol.Lhom.reduct_coe, cardinal.mk_out] at hle \mathbb{-}, exact hle } },
```

References

- [1] Flypitch project. https://github.com/flypitch/flypitch.
- [2] Stack exchange locally finite fields. https://math.stackexchange.com/questions/633473/locally-finite-field.
- [3] D. Marker. *Model Theory an Introduction*. Springer.