PHY 211 Recitation 11

February 19, 2020

origin to the

1 Motion on a curve

Consider a car travelling along a curved road at a constant speed.

Problem 1(a). Pick an origin for your xy coordinate system, then draw and label it O on the figure to the right. Draw the position vector at the start of the curve, and draw another one near the end of the curve. Then find the displacement $\Delta \vec{x} = \vec{\chi}_f - \vec{\chi}_o$

Along what direction does the average velocity vector

point? Since view Ax. Vare points the same way of Ax

Problem 1(b). Now, on the figure to the right, draw instantaneous velocity vectors at the same two points you used above. Draw the change in velocity $\Delta \vec{\mathbf{v}} = \vec{v}_{\mathbf{f}} - \vec{v}_{\mathbf{o}}$ Along what direction does the average acceleration

Since aux = Dt, Tone points the

Problem 1(c). Repeat the previous exercise, but make your second point much closer to the first. If you could continue to shrink Δt , which direction would the instantaneous acceleration point?

Note that a points inwords, towards
the center of the yath, and is and a become perpendicular

1 if as At shrinks

2 Circular motion

Problem 2(a). A fairground ride spins its occupants inside a flying saucer-shaped container. Draw a picture of the motion, and at different points, draw the velocity and acceleration vectors of a ride occupant.

Problem 2(b). What is the magnitude of an occupant's velocity (in m/s) when spinning at a frequency of f revolutions per minute if the ride has a radius r?

Problem 2(c). What is the centripetal acceleration of an occupant with this velocity?

$$a_c = \frac{v^2}{r}$$
, so $a_c = \frac{(2\pi r f/60s)^2}{r} = \frac{4\pi^2 f^2}{3600s^2} r$

Problem 2(d). What force causes this acceleration?

Problem 2(e). If the horizontal circular path the riders follow has an $r = 8.00 \,\mathrm{m}$ radius, at how many revolutions per minute are the riders subjected to a centripetal acceleration equal to that of gravity?

Shet
$$\int$$
 from before, $a_c = \frac{4\pi^2 f^2}{3600s^2} r$. If $a_c = g$, we can solve for f .

$$g = \frac{4\pi^2 f^2}{3600s^2} r$$
, or $f = \sqrt{\frac{3600s^2}{4\pi^2}r} = \sqrt{\frac{(3600s^2)(9.87/s^2)}{4\pi^2}}$

$$\approx \frac{10.6 \text{ reymin}}{10.6 \text{ reymin}}$$

A runner taking part in the 200 m dash must run around the end of a track that has a circular arc with a radius of curvature of 30.0 m.

Problem 3(a). Draw a picture of the motion and draw the velocity and acceleration vectors as she is taking the turn, assuming she takes it at constant speed.

Problem 3(b). Now instead draw the velocity and acceleration vectors in two other scenarios: one where she is speeding up, and the other where she is slowing down.

V. Mai

or Slowing down

Problem 3(c). If the runner runs the race at a constant speed and completes the 200 m dash in 23.2 s, what is her centripetal acceleration as she runs the curved portion of the track?

$$a_c = \frac{v^2}{V} = \frac{(8.6 \%^2)}{30m} = 2.48 \%^2$$

G since v is constant, ne know v = \frac{200n}{21.25} = 8.6 \frac{75}{5}

Problem 3(d). What force causes this acceleration?

FN D

The only force on the rowner that points along the ground is Static friction between her feet and the ground