

授课教师: 洪兴建

浙江财经大学数据科学学院

引例

今后国家统计局不再计算和发布全国 70个大中城市房价涨幅的平均数,重 点发布各个城市不同对比基期的分类 指数和总指数。

http://finance.people.com.cn/GB/13936560.htm

引例

人民网北京2月16日电(记者 朱剑红)国家统计局16日公布,《住宅销售价格统计调查方案》(以下简称《新方案》)已于今年1月起开始实施,今后,国家统计局不再计算和发布全国70个大中城市房价涨幅的平均数,重点发布各个城市不同对比基期的分类指数和总指数。依据《新方案》统计的1月份房价数据将在2月18日向社会公布。据国家

- ◆怎么计算70个大中城市房价平均涨幅的?
- ◆为什么不再计算了?

计算方法

总体标志值 (数据)总和 算术平均数 公式 总体单位的总数

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{1 + 1 + \dots + 1}$$

消除个体标志值之间的差异,体现出总体的一般水平。

加权算术平均数

问题

按师生分组	身高x(厘米)	人数f(人)	
老师	226	1	
学生	170	49	
合 计	_	50	

问: 师生的平均身高为多少?

$$\frac{1}{x} = \frac{\sum x_i}{n} = \frac{226 + 170}{2} = 198$$

$$\frac{1}{x} = \frac{\sum x_i f_i}{\sum f_i} = \frac{226 + 170 \times 49}{50} = 171 .12$$

加权算术平均数计算公式

$$\frac{1}{x} = \frac{x_1 f_1 + x_2 f_2 + \dots + x_n f_n}{f_1 + f_2 + \dots + f_n} = \frac{\sum_{i=1}^{n} x_i f_i}{\sum_{i=1}^{n} f_i}$$

分组数据中,x表示各组水平值,f代表各组变量值出现的频数(frequency)。

例1

某厂职工按日产量分组后所得组距数列如下表所示,求该厂职工的平均日产量。

按日产量分 组(千克)	工人数 (人)	组中值x _i	$x_i f_i$
60 以下	10	55	550
60 - 70	19	65	1235
70 - 80	50	75	3750
80 - 90	36	85	3060
90 - 100	27	95	2565
100 – 110	14	105	1470
110 以上	8	115	920
合 计	164	-	13550

$$\overline{x} = \frac{\sum x_i \cdot f_i}{\sum f_i}$$

$$=\frac{13550}{164}=82.62(\div 克)$$

注意点

- 算术平均数取决于变量值(x)和频数 (f) 或频率 (f / Σf) 。
- **2** 权重一般是相对数 $\frac{f_i}{\sum f_i}$ 。 $x = \frac{\sum x_i f_i}{\sum f_i} = \sum \left(x_i \cdot \frac{f_i}{\sum f_i}\right)$

例2

问题:某市2016年市中心和郊区的价格都比2015年上涨了,请问2016年的平均价格是否一定上涨?

按地区	成交价(元/平方米)		成交面积(万平方米)	
分组	2015年	2016年	2015年	2016年
市区	15000	16000	1000	500
郊区	5000	6000	500	1000
合 计	_	_	1500	1500

例2计算

$$\frac{-}{x_{2015}} = \frac{\sum x_i f_i}{\sum f_i} = \frac{15000 \times 10000000 + 5000 \times 5000000}{15000000}$$

= 11667(元/平方米)

$$\frac{-}{X_{2016}} = \frac{\sum_{i} X_{i} f_{i}}{\sum_{i} f_{i}} = \frac{16000 \times 5000000 + 6000 \times 10000000}{15000000}$$

= 9333(元/平方米)

> 结论: 市区、郊区价格都上涨了, 平均价格未必上涨。

▶ 问题:结构优化的含义是什么?

增大有利部分的比重,降低不利部分的比重。

性质

(1) 离差之和等于零 $\sum_{i} \left(x_i - \overline{x}\right) = 0$

推导
$$\sum_{i} (x_i - \bar{x}) = \sum_{i} x_i - n\bar{x} = \sum_{i} x_i - n\frac{\sum_{i} x_i}{n} = 0$$

(2) 离差平方和最小 $\sum (x_i - x)^2$ 的值最小

设c为任意实数 $\sum \left(x_i - \overline{x}\right)^2 \le \sum (x_i - c)^2$

推导
$$\sum (x_i - \bar{x})^2 = \sum ((x_i - c) - (\bar{x} - c))^2 = \sum ((x_i - c)^2 - 2(x_i - c)(\bar{x} - c) + (\bar{x} - c)^2)$$

 $= \sum (x_i - c)^2 - 2(\bar{x} - c)\sum (x_i - c) + \sum (\bar{x} - c)^2 = \sum (x_i - c)^2 - n(\bar{x} - c)^2 \le \sum (x_i - c)^2$

优缺点

- 优点
 - > 推算总体标志总量
 - > 进行代数运算
 - > 抽样中具有良好的稳定性和可靠性
- 缺点
 - 受极值影响较大 张庄有个张干万,两个邻居穷光蛋 加在一起求平均,个个收入超百万