

planetmath.org

Math for the people, by the people.

consistent estimator

Canonical name Consistent Estimator
Date of creation 2013-03-22 15:26:34
Last modified on 2013-03-22 15:26:34

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 5

Author CWoo (3771) Entry type Definition Classification msc 62F12

Defines consistent sequence of estimators

Given a set of samples X_1, \ldots, X_n from a given probability distribution f with an unknown parameter $\theta \in \Theta$, where Θ is the parameter space that is a subset of \mathbb{R}^m . Let $U(=U(X_1,\ldots,X_n))$ be an estimator of θ . Allowing the sample size n to vary, we get a sequence of estimators for θ :

$$U_1 = U(X_1),$$

$$\vdots$$

$$U_n = U(X_1, \dots, X_n),$$

$$\vdots$$

We say that the sequence of estimators $\{U_n\}$ consistent (or that U is a consistent estimator of θ), if U_i converges in probability to θ for every $\theta \in \Theta$. That is, for every $\varepsilon > 0$,

$$\lim_{n \to \infty} P(|h_n - \theta| \ge \varepsilon) = 0$$

for all $\theta \in \Theta$.

Remark. Suppose U is an estimator of θ such that the sequence $\{U_n\}$ is consistent. If $\alpha_n \to \alpha \in \mathbb{R}$ and $\beta_n \to \beta \in \mathbb{R}^m$ are two convergent sequences of constants with $0 < |\alpha| < \infty$ and $|\beta| < \infty$, then the sequence $\{V_n\}$, defined by $V_n := \alpha_n U_n + \beta_n$, is consistent, V is an estimator of $\alpha\theta + \beta$.

Proof. First, observe that

$$|V_{n} - (\alpha\theta + \beta)| = |\alpha_{n}U_{n} + \beta_{n} - \alpha\theta - \beta|$$

$$\leq |\alpha_{n}U_{n} - \alpha\theta| + |\beta_{n} - \beta|$$

$$= |\alpha_{n}U_{n} - \alpha_{n}\theta + \alpha_{n}\theta - \alpha\theta| + |\beta_{n} - \beta|$$

$$\leq |\alpha_{n}U_{n} - \alpha_{n}\theta| + |\alpha_{n}\theta - \alpha\theta| + |\beta_{n} - \beta|$$

$$= |\alpha_{n}||U_{n} - \theta| + |\alpha_{n} - \alpha||\theta| + |\beta_{n} - \beta|.$$

This implies

$$P(|V_n - (\alpha\theta + \beta)| \ge \varepsilon)$$

$$\le P(|\alpha_n||U_n - \theta| + |\alpha_n - \alpha||\theta| + |\beta_n - \beta| \ge \varepsilon)$$

$$= P(|U_n - \theta| \ge \frac{\varepsilon - |\beta_n - \beta| - |\alpha_n - \alpha||\theta|}{|\alpha_n|}).$$

As $n \to \infty$, $|\beta_n - \beta| \to 0$, $|\alpha_n - \alpha| |\theta| \to 0$, and $|\alpha_n| \to |\alpha| \neq 0$. So the last expression goes to 0 as $n \to \infty$. Therefore,

$$\lim_{n\to\infty} P(|V_n - (\alpha\theta + \beta)| \ge \varepsilon) = 0,$$

and thus $\{V_n\}$ is a consistent sequence of estimators of $\alpha\theta + \beta$.