

Presented by Group-PCSE25-65

FINAL YEAR PROJECT

TRANSLATING SIGN LANGUAGE TO SPEECH

Project Guide

Dr. Parita Jain

Team Leader

Srishti Upadhyay

Team Member

Tanya Sharma

Team member

Vikas Kumar

Objectives

- To create a model for Gesture Recognition
- 2 To obtain Translation Accuracy
- To create User-Friendly Interface
- To assess Real-Time Performance

This project tends to help specially abled people at workplace, social spaces, etc.

Date: 1 March

Database

https://asllex.org/visualization/? sign=cup

Timeline

JUNE '23

JULY '23

AUGUST'23

SEPTEMBER'
23

OCTOBER' 23

- Study of research paper
- Finding databases
- Exploring NLP and Open-CV

Learning required technology

Learning required technology

Working on the project

Building the model

Timeline

NOVEMBER' 23

DECEMBER'
23

JANUARY' 24 FEBURARY '

MARCH'24

Training the Model

Working on the research paper Working on the research paper

Completion of project

Adding extra features

Timeline

APRIL'24

MAY'24

JUNE'24

Enhancing Reviewing Publishing research research

paper

paper

LITERATURE REVIEW

Sr.	Journals	Year	Techniques	Findings	Shortcomings
No.					
	A Novel Natural Language Processing (NLP)—Based Machine Translation Model for English to Pakistan Sign Language Translation	2020	NLP	 Quantitative results reveal a very promising Bilingual Evaluation Understudy (BLEU) score of 0.78. Comparative analysis shows that our proposed system works well for simple sentences. 	System works well for simple sentences but struggles to translate compound and compound complex sentences correctly.
	sign language using machine learning and artificial intelligence	2020	RCNNCNNNLPML	 The model detects at an accuracy rate of 91% for all given test scenarios. The model was also tested against live video and still was able to identify the gestures. 	For the moment, the system is proposed to be a web application and soon will be made into a mobile application with faster responses and lower processing time. Further, with the introduction of 5G, the response times will be faster
	ATLASLang NMT: Arabic text language into Arabic sign language neural machine translation	2021	 Artificial Neural Network Meural Machine Translatio n (NMT) 	 The average BLEU score of ATLASLang MTS is 0,37. ATLASLang NMT gave an average score of 0,79, which is much closer to the ideal score. 	 The training could be more efficient if the dataset is were expanded. The system uses a limited sign database
	Utalk: Sri Lankan sign language converter mobile app using image processing and machine learning	2020	CVML	 Utalk can perform well in both static and dynamic sign classification. Utalk achieves high precision and recall values (over 0.90) for all the static signs. 	Limited dataset.

S.No	Journals	Year	Techniques	Findings	Shortcomings
	Recognition of Amharic sign language with Amharic alphabet signs using ANN and SVM		ANN SVM	 This paper presents a system that translates Amharic sign language into text using digital image processing and machine learning algorithms. The system can recognize the Amharic alphabet signs with an average accuracy of 80.82% and 98.06%, respectively. The system has four main stages: image preprocessing, segmentation, feature extraction and classification. 	 This work could not work with words, phrases or sentences for the study of sign languages. This project could not develop a system which will work like a two-way communicator to translate sign to text and vice versa.
	2-way Arabic Sign Language Translator using CNNLSTM Architecture and NLP	2020	 s Natural Language Processing (NLP) Deep Learning Neural Network (DLNN) Convolutional Neural Network (CNN) Long Short Term Memory (LSTM) 	mobile device would allow the deaf to explore and interact with more places and people, thus allowing them to have more social experiences.	The model can be connected to a cloud database which holds a crowdsourced gesture library, would ensure that the model
7.	Translating Speech to Indian Sign Language Using Natural Language Processing	2022	• NLP	 The system accepts audio and text as input and matches it with the videos present in the database created by the authors. If matched, it shows corresponding sign movements based on the grammar rules of Indian Sign Language as output; if not, it then goes through the processes of tokenization and lemmatization 	 The training could be more efficient if the dataset is were expanded. The system uses a limited sign database The features of the system could be enhanced by integrating reverse functionality
<u> </u>	Sign Language Recognition Using Gesture Recognition and Natural Language Processing	2021	Literature Survey	 The paper has tried to understand and analyze the approaches of various kinds and the developments which have taken place to make appropriate gesture recognition of the signer. The peculiarities in trying to create a robust system and NLP techniques have also been looked up to generate complete sentences. 	

Gaps Identified

System works well for simple sentences but struggles to translate compound and complex sentences correctly

The features of the system could be enhanced by integrating reverse functionality

###