





# Construção de um Módulo Quântico para o Classificador Baseado em Floresta de Caminhos Ótimos

Maria Angélica Krüger Miranda

Orientador: Prof. Assoc. João Paulo Papa

Coorientador: Prof. Dr. Felipe Fernandes Fanchini



## Sumário

01 02 Introdução Fundamentação

03 Ição Metodologia

04
Experimentos

**05**Resultados

**Teórica** 

<mark>06</mark> Considerações Finais







## Inteligência Artificial







IA Generativa

Recomendação Personalizada Automotivos Autônomos

## Computação Quântica



- ♦ Grande interesse por big techs.
- Possibilidade de resolver novos problemas.
- ◆ Capacidade de lidar melhor com grandes volumes de dados.









#### Problemática



#### Justificativa



- Modelos de aprendizado de máquina são demorados para treinar ainda mais na era big data.
- Os modelos tradicionais não consequem resolver todos os problemas em tempo razoável como as simulações.
- Há poucos modelos tradicionais adaptados ao contexto quântico.

- Estudos apontam que QML apresenta desempenho promissor na resolução de problemas desafiadores.
- Grande interesse e investimento por big techs e empresas bancárias.

## **Objetivos**

> Explorar as técnicas envolvidas no aprendizado de máquina quântico a fim de aplicar a um modelo tradicional e verificar como este se comporta



**Estudar QML e OPF** 



**Testes** 



Implementar módulo



Comparação







## Computação Quântica



#### Mecânica Quântica

- \* "A mecânica quântica é uma estrutura matemática ou um conjunto de regras para a construção de teorias físicas." (Nielsen & Chuang)
- ♦ Estados quânticos são descritos segundo a notação de Dirac e sua representação será usualmente conhecida como kets e bras.
- Qubit: menor unidade de informação na computação quântica

$$|0\rangle$$
  $|1\rangle$  Base Computacional





## Superposição





**Emaranhamento** 

## Computação Quântica

◆ A informação também pode assumir infinitos estados representados como uma combinação linear da base computacional (princípio da superposição)

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$\frac{1}{\sqrt{2}}$$
  $+\frac{1}{\sqrt{2}}$ 

$$|\alpha|^2 + |\beta|^2 = 1$$

$$\frac{1}{\sqrt{2}}\{|\mathbf{M}\rangle+|\mathbf{M}\rangle\}$$





$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$10 \qquad [0]$$

$$X|0\rangle = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$X|0\rangle = |1\rangle$$





## **Portas Quânticas**

|                  | NOME                 | NOTAÇÃO | REPRESENTAÇÃO<br>MATRICIAL                                                                                                                       | ATUAÇÃO NA BASE<br>COMPUTACIONAL                                                                              |  |
|------------------|----------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|
| Portas de 1-qbit | Identidade           | id      | $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$                                                                                                   | $ 0\rangle \rightarrow  0\rangle   1\rangle \rightarrow  1\rangle$                                            |  |
|                  | Porta NOT            | X       | $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$                                                                                                   | $ 0\rangle \rightarrow  1\rangle  1\rangle \rightarrow  0\rangle$                                             |  |
|                  | Porta Y              | Y       | $\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$                                                                                                  | $ 0\rangle \rightarrow i 1\rangle   1\rangle \rightarrow -i 0\rangle$                                         |  |
|                  | Porta Z              | Z       | $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$                                                                                                  | $ \begin{vmatrix}  0\rangle \to  0\rangle \\  1\rangle \to - 1\rangle $                                       |  |
|                  | Porta de<br>Hadamard | Н       | $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$                                                                               | $ 0\rangle \to \frac{ 0\rangle +  1\rangle}{\sqrt{2}}$ $ 1\rangle \to \frac{ 0\rangle -  1\rangle}{\sqrt{2}}$ |  |
|                  | Porta de fase        | S       | $\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \qquad \qquad \begin{vmatrix}  0\rangle \rightarrow  0\rangle \\  1\rangle \rightarrow i 1\rangle$ |                                                                                                               |  |
|                  |                      | S†      | $\begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}$                                                                                                  | $ 0\rangle \rightarrow  0\rangle   1\rangle \rightarrow -i 1\rangle$                                          |  |
|                  | Porta de T           | Т       | $\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$                                                                                          | $ 0\rangle \rightarrow  0\rangle   1\rangle \rightarrow e^{i\pi/4} 1\rangle$                                  |  |
|                  |                      | T†      | $\begin{bmatrix} 1 & 0 \\ 0 & e^{-i\pi/4} \end{bmatrix}$                                                                                         | $ 0\rangle \to  0\rangle   1\rangle \to e^{-i\pi/4}  1\rangle$                                                |  |





## Circuitos Quânticos







## Classificador OPF



## Aprendizado de Máquina

- ◆ Geron (2019) categoriza o sistema de aprendizado em quatro vertentes:
  - **♦** Supervisionado
  - ♦ Não supervisionado
  - ♦ Semissupervisionado
  - ♦ Reforço



#### Classificador OPF

- Classificador baseado em florestas de caminhos ótimos
- Segmenta o vetor de características e modela-o no formato de um grafo
- ★ Modelo supervisionado com grafo completo





### **Classificador OPF - Treinamento**



## Classificador OPF - Classificação



## Aprendizado de Máquina Quântico



## Introdução



 ◆ Schuld e Petruccione (2018) dividem a área de QML em quatro vertentes



## Introdução





◆ O processo de quantum annealing inicia-se com a preparação de um estado fundamental (hamiltoniano) e em seguida busca-se a configuração de menor energia do sistema



#### **QUBO**



- ♦ **QUBO**: Quadratic Unconstrained Binary Optimization
- → Ramo da matemática combinatorial
- ♦ Solução é uma sequência binária que minimiza a função de energia



- x: sequência binária
- w: peso

### **QUBO**





| А  | В  | С  | D  | Е  | F  |
|----|----|----|----|----|----|
| 1  | 1  | 1  | 1  | 0  | 0  |
| 1> | 1> | 1> | 1> | 0> | 0> |

$$|\psi\rangle = |111100\rangle$$

## $|\psi_0\rangle = |000000\rangle$ $|\psi_5\rangle = |000101\rangle$ $|\overline{\psi_{42}}\rangle = |101010\rangle$ $|\psi_{60}\rangle = |111100\rangle$

 $|\psi_{63}\rangle = |111111\rangle$ 

Fundamentação Teórica



#### **FALQON**

- **♦ FALQON**: Feedback Based Quantum Optimization (2022)
- ♦ Técnica utilizada para resolver problemas de otimização
- ♦ Baseado no teorema ótimo de caminho e no teorema de Trotter-Suzuki
- → Implementação utilizando circuitos quânticos variacionais
- ♦ Considere um hamiltoniano Hc que descreve o sistema
- ♦ Segundo o teorema de Trotter-Suzuki afirma que a evolução de um sistema pode ser aproximada por uma sequência de aproximações mais simples

$$H_c = H_1 + H_2$$





## **FALQON**

- ♦ Estado aleatório inicial
- ♦ Hamiltoniano
- ♦ Operador de evolução temporal
- lack Momento angular total na direção x
- ◆ Dinâmica temporal em H<sub>d</sub>



$$H_c = H_1 + H_2$$

$$U_c = e^{-iH_c\Delta t}$$

$$H_d = \sum \sigma_x^i$$

$$U_d(\beta_k) = e^{-iH_d\beta_k\Delta t}$$



#### **FALQON**

- Algoritmo recursivo para cada passo k, em que:
  - 1. Preparar o estado  $|\psi_k
    angle = U_d(eta_k)U_c\cdots U_d(eta_1)U_c|\psi_0
    angle$
  - 2. Medir o valor esperado  $A_k=i\langle\psi_k|H_dH_c-H_cH_d|\psi_k
    angle$
  - 3. Calcular  $eta_{k+1} = -A_k$







03

Metodologia



#### Metodologia

#### **Materiais**

- ♦ Sistema operacional: Windows 11 Home
- **♦ IDE:** Visual Studio Code
- ♦ Gerenciador de ambiente virtual: Pipenv
- **♦ Linguagem de programação**: Python
- ◆ Bibliotecas principais: OPFython, Qiskit e Qutip
- ◆ Base de dados: Boat (Kuncheva, 2005)
- → Hardware: computador pessoal











#### Metodologia

## **Abordagem Proposta**



- → Abordagem clássica: árvore geradora mínima (MST)
- → Abordagem quântica: ciclo hamiltoniano fechado como o problema do caixeiro viajante (TSP) ilustra.
- → Problema: encontrar uma rota de custo mínimo em que percorra todos os vértices uma única vez e retorne ao vértice inicial.
- **→** Restrições:
  - Quantidade de arestas deve ser igual à quantidade de vértices;
  - Cada vértice conterá duas arestas.

## **Modelagem do TSP**

$$H_{c} = \sum_{i} \sum_{j>i} W_{ij} X_{ij} + P_{1} \left( \sum_{i} \sum_{j>i} X_{ij} - n \right)^{2} + P_{2} \left[ \sum_{i} \left( \sum_{j\neq i} X_{ij} - 2 \right)^{2} \right]$$



## **Modelagem do TSP**

$$H_{c} = \sum_{i} \sum_{j>i} W_{ij} X_{ij} + P_{1} \left( \sum_{i} \sum_{j>i} X_{ij} - n \right)^{2} + P_{2} \left[ \sum_{i} \left( \sum_{j\neq i} X_{ij} - 2 \right)^{2} \right]$$

Soma dos pesos das arestas presentes



#### Metodologia

### **Modelagem do TSP**

$$H_{c} = \sum_{i} \sum_{j>i} W_{ij} X_{ij} + \left[ P_{1} \left( \sum_{i} \sum_{j>i} X_{ij} - n \right)^{2} + P_{2} \left[ \sum_{i} \left( \sum_{j\neq i} X_{ij} - 2 \right)^{2} \right] \right]$$

Restrição 1: Número de arestas deve ser igual ao de vértices





#### Metodologia

# **Modelagem do TSP**

$$H_{c} = \sum_{i} \sum_{j>i} W_{ij} X_{ij} + P_{1} \left( \sum_{i} \sum_{j>i} X_{ij} - n \right)^{2} + \left[ P_{2} \left[ \sum_{i} \left( \sum_{j\neq i} X_{ij} - 2 \right)^{2} \right] \right]$$

Restrição 2: Cada vértice deverá conter duas arestas





#### Metodologia

# **Arquitetura Geral**



- ◆ Adicionado um módulo quântico na biblioteca OPFython
- ♦ Biblioteca baseada em orientação a objetos
- Objetivo do módulo: realizar a seleção dos protótipos durante a etapa do treinamento
- Construiu uma nova classe chamada *QSupervised* que herda os métodos de *Supervised* e em seguida sobrescreveu o método \_find\_prototypes

#### Metodologia

# **Arquitetura Geral**











# Introdução



- ◆ Foco dos experimentos foi verificar a convergência do algoritmo FALQON para o estado de menor energia
- ◆ Utilizaram-se dois subconjuntos distintos da base de dados Boat (Kuncheva, 2005)





# **Experimento 01**

 Conjunto de dados composto por oito amostras distribuídas em duas classes









# **Experimento 02**

 Conjunto de dados composto por dez amostras distribuídas em duas classes









# Discussões



- ♦ O menor estado de energia foi alcançado nos dois experimentos
- ♦ A acurácia do modelo quântico e clássica foram iguais
- A integração de um algoritmo de otimização quântica foi possível no classificador baseado em floresta de caminhos ótimos
- ◆ Não foi possível simular utilizando os componentes da biblioteca Qiskit nem em hardware quântico real devido às alterações necessárias no algoritmo FALQON
- Poucos testes e conjunto de treinamento pequeno devido à limitação física

# 05 Considerações Finais



#### Considerações Finais

# Conclusão

- ♦ Adquirir uma compreensão aprofundada dos fundamentos da computação quântica
- Integrar elementos da computação quântica em um modelo de aprendizado de máquina





#### Considerações Finais

## **Trabalhos Futuros**



- ◆ Aprimorar o algoritmo FALQON para que este possa ser simulado utilizando a biblioteca Qiskit e posteriormente em computadores quânticos
- Após adaptar o algoritmo para simulações, executá-lo em hardware quântico real
- ♦ Testar com outras bases de dados
- ♦ Estudar a implementação quântica do problema da MST



## Referências

GERON, A. Mãos à obra: aprendizado de máquina com Scikit-Learn e TensorFlow. 1. ed. [S.l.]: Alta Books, 2019. ISBN 9788550803814.

JORDAN, S. Traveling Santa problem. 2018. Disponível em: http://quantumalgorithmzoo.org/traveling\_santa/. Acesso em: 02 nov. 2023.

KUNCHEVA, L. Artificial data sets. 2005. Disponível em: https://lucykuncheva.co.uk/activities/artificial\_data.htm. Acesso em: 02 nov. 2023.

MAGANN, A. B.; RUDINGER, K. M.; GRACE, M. D.; SAROVAR, M. Feedback-based quantum optimization. Physical Review Letters, v. 129, n. 25, p. 250502, dez. 2022. ISSN 0031-9007, 1079-7114. Disponível em: http://arxiv.org/abs/2103.08619. Acesso em: 02 nov. 2023.



## Referências

NIELSEN, M. A.; CHUANG, I. L. Quantum computation and quantum information. 10th anniversary. ed. United States od America: Cambridge University Press, 2010. ISBN 978-1-107-00217-3.

PAPA, J. P. Classificação o supervisionada de padrões utilizando floresta de caminhos otimos. Tese (Doutorado) — Universidade Estadual de Campinas, Instituto de Computação, 2008. Disponível em: https://hdl.handle.net/20.500.12733/1608859. Acesso em: 02 nov. 2023

RABELO, W. R. M.; COSTA, M. L. M. Uma abordagem pedagógica no ensino da computação quântica com um processador quântico de 5-qbits. Revista Brasileira de Ensino de Física, v. 40, p. e4306, maio 2018. ISSN 1806-1117, 1806-9126. Publisher: Sociedade Brasileira de Física. Disponível em: https://doi.org/10.1590/1806-9126-RBEF-2018-0038. Acesso em: 02 nov. 2023.



# Referências

ROSA, G. H. de; PAPA, J. P. OPFython: A Python implementation for OptimumPath Forest. Software Impacts, p. 100113, 2021. ISSN 2665-9638. Disponível em: https://doi.org/10.1016/j.simpa.2021.100113. Acesso em: 02 nov. 2023.

WAKEHAM, D.; CERONI, J. Feedback-based quantum optimization (FALQON). PennyLane Demos, maio 2021. Disponível em: https://pennylane.ai/qml/demos/tutorial\_falqon/. Acesso em: 02 nov. 2023







# Obrigada!







