JEE MAINS

1

d) $\frac{13}{2}$

EE1030

APRIL 29, 2024 - SHIFT - 2

Homa Harshitha Vuddanti (EE24BTECH11062)

QUESTIONS- 16 TO 30 SECTION A

a) 8

SECTION B

b) $\frac{5}{2}$

b) decreases in (-2, 8) and increases in $(-\infty, -2) \cup (8, \infty)$

2) The function $f(x) = \frac{x}{x^2 - 6x - 16}$, $x \in R - \{-2, 8\}$ a) decreases in $(-\infty, -2)$ and increases in $(8, \infty)$

1)	Let A be the point of intersection of the lines $3x + 2y = 14$, $5x - y = 6$ and B be the
	point of intersection of the lines $4x + 3y = 8$, $6x + y = 5$. The distance of the point
	P(5,-2) from the line AB is

c) 2

	c) decreases in $(-\infty, -2) \cup (-2, \infty) \cup (8, \infty)$ d) increases in $(-\infty, -2) \cup (-2, \infty) \cup (8, \infty)$ 3) If $\sin\left(\frac{y}{x}\right) = \ln x + \frac{\alpha}{2}$ is the solution of the differential equation $x\cos\left(\frac{y}{x}\right)\frac{dy}{dx}$ $y\cos\left(\frac{y}{x}\right) + x$ and $y(1) = \frac{\pi}{3}$, then α^2 is equal to					
	a) 9	b) 4	c) 12	d) 3		
4)	4) If the mean and variance of five observations are $\frac{24}{5}$ and $\frac{194}{25}$ respectively and mean of the first four observations is $\frac{7}{2}$, then the variance of the first four observations is equal to					
	a) $\frac{77}{12}$	b) $\frac{105}{4}$	c) $\frac{5}{4}$	d) $\frac{4}{5}$		
5)	Let r and θ respect $z = 2 - i\left(2\tan\frac{5\pi}{8}\right)$, the	ively be the modulus nen (r, θ) is equal to	and amplitude of the	ne complex number		

a) $\left(2\sec\frac{3\pi}{8},\frac{3\pi}{8}\right)$ b) $\left(2\sec\frac{5\pi}{8},\frac{3\pi}{8}\right)$ c) $\left(2\sec\frac{11\pi}{8},\frac{11\pi}{8}\right)$ d) $\left(2\sec\frac{3\pi}{8},\frac{5\pi}{8}\right)$

- 6) Let the slope of the line 45x + 5y + 3 = 0 be $27r_1 + \frac{9r_2}{2}$ for some $r_1, r_2 \in R$ then $\lim_{x\to 3} \left(\int_3^x \frac{8t^2}{\frac{3r_2x}{2} - r_2x^2 - r_1x^3 - 3x} dt \right) \text{ is equal to}$
- 7) Let the area of the region $\{(x, y) : 0 \le x \le 3, 0 \le y \le min\{x^2 + 2, 2x + 2\}\}$ be A. Then 12A is equal to
- 8) Let $f(x) = \sqrt{\lim_{r \to x} \left\{ \frac{2r^2 \left[(f(r))^2 f(x) \overline{f(r)} \right]}{r^2 x^2} r^3 e^{\frac{f(r)}{r}} \right\}}$ be differentiable in $(-\infty, 0) \cup (0, \infty)$ and f(1) = 1. Then the value of ea, such that f(a) = 0, is equal to
- 9) Let for any three distinct consecutive terms a, b, c of an A.P, the lines ax + by + c = 0be concurrent at the point **P** and $\mathbf{Q}(\alpha, \beta)$ be a point such that the system of equations x + y + z = 6 $2x + 5y + \alpha z = \beta$ x + 2y + 3z = 4, has infinitely many solutions. Then $(PQ)^2$ is equal to
- 10) Let $\mathbf{P}(\alpha, \beta)$ be a point on the parabola $y^2 = 4x$. If \mathbf{P} lies on the chord of the parabola $x^2 = 8y$ whose midpoint id $(1, \frac{5}{4})$, then $(\alpha - 28)(\beta - 8)$ is equal to
- 11) Let the set $C \{(x, y) \mid x^2 2^y = 2023, x, y \in N\}$. Then $\sum_{(x,y) \in C} (x + y)$ is equal to
- 12) If $\int_{\pi}^{\frac{\pi}{3}} \sqrt{1 \sin 2x} \, dx = \alpha + \beta \sqrt{2} + \gamma \sqrt{3}$, where α, β and γ are rational numbers, then $3\alpha + 4\beta - gamma$ is equal to
- 13) Let **O** be the origin, and **M** and **N** be the points on the lines $\frac{x-5}{4} = \frac{y-4}{1} = \frac{z-5}{3}$ and $\frac{x+8}{12} = \frac{y+2}{5} = \frac{z+11}{9}$ respectively such that MN is the shortest distance between the given lines. Then $\overrightarrow{OM} \cdot \overrightarrow{ON}$ is equal to 14) Remainder when $64^{32^{32}}$ is divided by 9 is equal to
- 15) Let α, β be the roots of the equation $x^2 \sqrt{6}x + 3 = 0$ such that $Im(\alpha) > Im(\beta)$. Let a, b be integers not divisible by 3 and n be a natural number such that $\frac{\alpha^{99}}{\beta} + \alpha^{99} =$ $3^n(a+ib)$, $i=\sqrt{-1}$. Then n+a+b is equal to