PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-024612

(43) Date of publication of application: 27.01.1998

(51)Int.Cl.

B41J 2/175 B41J 2/01

B41J 2/05

(21)Application number: 08-183856

(71)Applicant : CANON INC

(22)Date of filing:

12.07.1996

(72)Inventor: TAJIKA HIROSHI

SHIGA MIKIO MATSUI SHINYA NAGATOMO AKIRA KONO TETSUSHI ISHINAGA HIROYUKI KASHINO TOSHIO

NAKADA YOSHIE

(54) INK JET RECORDING HEAD, STANDARDIZING METHOD OF INK TANK, INK JET RECORDING METHOD, AND INFORMATION PROCESSING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To utilize the difference between characteristics of a new type recording head where an ink tank is separated and the inside of a recording head is separated into two layers via a movable member and a new type ink for the new type recording head, and conventional type recording head and ink to the maximum extent, while maintaining the interchangeability.

SOLUTION: When a conventional type ink is adopted to a combination of a new type recording head 210N and a new type recording device 200N, a new type recording head 210C is driven totally by the recording device 200N side with the condition defined by the conventional type ink. When a new type ink is adopted to a combination of a conventional type recording head 210C and a conventional type recording device 200C, a new type recording head 210N is driven within the

ability range of the conventional type combination. A judging means for judging the type of the mounted recording head and ink tank is provided for each recording device 200N, 200C.

BEST AVAILABLE COPY

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-24612

(43)公開日 平成10年(1998)1月27日

(51) Int.Cl.8		識別記号	庁内整理番号	FΙ			技術表示箇所
B41J	2/175			B41J	3/04	102Z	
	2/01					101Z	
	2/05					103B	
	-•						

審査請求 未請求 請求項の数18 OL (全 28 頁)

		各互明小 不明4	
(21)出願番号	特顯平8 -183856	(71) 出願人 00000	1007
		キヤノ	ノン株式会社
(22)出顧日	平成8年(1996)7月12日	東京都	队工区下丸子3丁目30番2号
		(72)発明者 田鹿	博司
		東京者	『大田区下丸子3丁目30番2号 キヤ
	•	ノンギ	法式会社内
		(72)発明者 志賀	幹夫
		東京都	B大田区下丸子3丁目30番2号 キヤ
		ノン料	村会社内
		(72)発明者 松井	真也
		東京都	8大田区下丸子3丁目30番2号 キヤ
			株式会社内
		(74)代理人 弁理:	上 着林 忠
			最終質に続く

(54) [発明の名称] インクジェット記録ヘッド及びインクタンクの標準化方法、インクジェット記録方法及び情報処理装置

(57)【要約】

【課題】インクタンク別体型であって、可動部材を介して記録へッドの内部が2層に分離されていることで特徴づけられる新規型の記録へッド及び新規型の記録へッド 用の新規型のインクと、在来型の記録へッドやインクとの特徴の差を最大限に活かしつつ、互換性を維持する。【解決手段】在来型のインクを新規型の記録へッド210N及び新規型の記録装置200Nの組合せに適用する場合には、記録装置200N側で全て対応し、在来型のインクに規定された条件で新規型の記録へッド210Cを駆動する。新規型のインクを在来型の記録へッド210Cを駆動する。新規型のインクを在来型の記録へッド210Cと在来型の記録装置200Cとの組合せに適用する場合には、この在来型の組合せでの能力の範囲内で新規型の記録へッド210Nを駆動する。各記録装置200N、200Cには、搭載された記録へッドとインクタンクの種類を判別するための判別手段を設ける。

【特許請求の範囲】

【請求項1】 インクを吐出する第1のインクジェット 記録ヘッドと該第1のインクジェット記録ヘッドに供給 される第1のインクを貯溜するための第1のインクタン クとを互いに着脱自在に搭載可能である第1のインクジ ェット記録装置を含む市場システムに対し、

前記第1のインクジェット記録ヘッドとは異なる第2の インクジェット記録へッドと、

該第2のインクジェット記録へッドに対して着脱自在に 前記第1のインクジェット記録装置とは異なる第2のイ 10 ンクジェット記録装置に搭載され、前記第2のインク記 録ヘッドに供給される第2のインクを貯溜するための第 2のインクタンクと、を提供し、

前記第2のインクジェット記録へッドは、前記第2のイ ンクタンクが装着されることによって前記第2のインク の吐出が可能であり、前記第1のインクジェット記録へ ッドより優れた吐出性能を有し、前記第1のインクタン クが装着されることによって前記第1のインクの吐出も 可能であり、

前記第2のインクは、前記第2のインクジェット記録へ 20 ッドによって吐出可能であり、前記第1のインクより優 れた特性を有し、前記第1のインクジェット記録ヘッド によっても吐出可能であることを特徴とする、インクジ ェット記録ヘッド及びインクタンクの標準化方法。

【請求項2】 前記第2のインクジェット記録ヘッド が、液体を吐出する吐出口と、液体に気泡を発生する気 泡発生領域と、前記気泡発生領域に面して配され、第1 の位置と前記第1の位置よりも前記気泡発生領域から遠 い第2の位置との間を変位可能な可動部材とを有し、該 可動部材は、前記気泡発生領域での気泡発生に基づく圧 30 録ヘッドに装着されているインクタンクの種類に応じ 力によって前記第1の位置から前記第2の位置へ変位す るとともに、前記可動部材の変位によって前記気泡を吐 出口に向う方向の上流よりも下流に大きく膨張させると とで液体を吐出するインクジェット記録ヘッドである、 請求項1に記載のインクジェット記録ヘッド及びインク タンクの標準化方法。

【請求項3】 前記第2のインクジェット記録ヘッド が、液体を吐出する吐出口と、液体に熱を加えることで 該液体に気泡を発生させる発熱体と、前記発熱体に面し て設けられ吐出口側に自由端を有し前記気泡の発生によ 40 ンクジェット記録ヘッドに対する駆動周波数、駆動電 る圧力に基づいて前記自由端を変位させて前記圧力を吐 出口側に導く可動部材と、前記可動部材の前記発熱体に 近い面に沿った上流側から前記発熱体上に液体を供給す る供給路とを有する請求項1に記載のインクジェット記 録ヘッド及びインクタンクの標準化方法。

【請求項4】 前記第2のインクジェット記録ヘッド

吐出口に連通した第1の液流路と、

発熱体を有し液体に熱を加えることで該液体に気泡を発 生させる気泡発生領域を有する第2の液流路と、

前記発熱体に対面するように前記第1の液流路と前記気 泡発生領域との間に配され、吐出口側に自由端を有し、 前記気泡発生領域内での気泡の発生による圧力に基づい て該自由端を前記第1の液流路側に変位させて前記圧力 を前記第1の液流路の吐出口側に導く可動部材と、を有 する請求項1に記載のインクジェット記録ヘッド及びイ ンクタンクの標準化方法。

【請求項5】 前記第2のインクジェット記録装置が前 記各インクジェット記録ヘッドを載置するための載置部 を有し、前記載置部が、前記被記録媒体の表面に平行な 方向に前記インクジェット記録へッドを移動させるキャ リッジを含む請求項1乃至4いずれか1項に記載のイン クジェット記録ヘッド及びインクタンクの標準化方法。 【請求項6】 前記第2のインクジェット記録装置が前 記各インクジェット記録ヘッドを載置するための載置部 を有し、前記載置部に、前記インクジェット記録ヘッド との電気的接続を行うためのコンタクト面が形成されて いる請求項1乃至4いずれか1項に記載のインクジェッ ト記録ヘッド及びインクタンクの標準化方法。

【請求項7】 前記各インクジェット記録ヘッドに、前 記載置部に設けられたコンタクト面と係合し電気的に接 続し得るコンタクト面が形成され、このコンタクト面を 介して当該インクジェット記録ヘッドに装着されている インクタンクの種類の情報が読み出される請求項6に記 載のインクジェット記録ヘッド及びインクタンクの標準 化方法。

【請求項8】 前記第2のインクジェット記録装置が前 記各インクジェット記録ヘッドを載置するための載置部 を有し、前記載置部に載置されているインクジェット記 て、そのインクジェット記録へッドに対する駆動周波 数、駆動電圧、駆動パルス幅の少なくとも1つが変化す る、請求項1乃至4いずれか1項に記載のインクジェッ ト記録ヘッド及びインクタンクの標準化方法。

【請求項9】 前記第2のインクジェット記録装置が前 記各インクジェット記録ヘッドを載置するための載置部 を有し、前記載置部に載置されているインクジェット記 録ヘッドの種類と、そのインクジェット記録ヘッドに装 着されているインクタンクの種類とにに応じて、そのイ 圧、駆動パルス幅の少なくとも1つが変化する、請求項 1乃至4いずれか1項に記載のインクジェット記録へッ ド及びインクタンクの標準化方法。

【請求項10】 前記第2のインクジェット記録装置 が、前記各インクジェット記録ヘッドを載置するための 載置部と、インクジェット記録ヘッドに対して加圧及び 吸引回復を行う回復手段とを有し、前記載置部に載置さ れているインクジェット記録ヘッドに装着されているイ ンクタンクの種類に応じて、そのインクジェット記録へ 50 ッドに対し、吸引のみによる回復を行うか、加圧及び吸 20

引による回復を行うかが選択される、請求項1乃至4いずれか1項に記載のインクジェット記録へッド及びインクタンクの標準化方法。

【請求項11】 前記第2のインクジェット記録装置が、前記各インクジェット記録へッドを載置するための載置部と、インクジェット記録へッドに対して加圧及び吸引回復を行う回復手段とを有し、前記載置部に載置されているインクジェット記録へッドの種類とそのインクジェット記録へッドに装着されているインクタンクの種類に応じて、そのインクジェット記録へッドに対し、吸 10引のみによる回復を行うか、加圧及び吸引による回復を行うかが選択される、請求項1乃至4いずれか1項に記載のインクジェット記録へッド及びインクタンクの標準化方法。

【請求項12】 前記第2のインクジェット記録装置が前記各インクジェット記録へッドを載置するための載置部を有し、前記載置部に載置されているインクジェット記録へッドに装着されているインクタンクの種類に応じて、記録のための画像処理内容が変化する、請求項1乃至4いずれか1項に記載のインクジェット記録システム。

【請求項13】 前記第2のインクジェット記録装置が前記各インクジェット記録へッドを載置するための載置部を有し、前記載置部に載置されているインクジェット記録へッドの種類とそのインクジェット記録へッドに装着されているインクタンクの種類とに応じて、記録のための画像処理内容が変化する、請求項1乃至4いずれか1項に記載のインクジェット記録へッド及びインクタンクの標準化方法。

【請求項14】 インクタンクを分離、交換可能なイン クジェット記録ヘッドに設けられた吐出口からインクを 叶出することによって被記録媒体上に画像を形成するイ ンクジェット記録システムにおけるインクジェット記録 方法であって、前記インクジェット記録システムとし て、第1の記録特性を有する第1のインクジェット記録 ヘッドと前記第1の記録特性とは異なる第2の記録特性 を有する第2のインクジェット記録へッドの少なくとも 2種類のインクジェット記録ヘッドを交換自在に載置可 能な載置部と、前記載置部に載置されたインクジェット 記録ヘッドの種類とそのインクジェット記録ヘッドに装 40 着されたインクタンクの種類を判別する判別手段とを有 するものを使用し、前記判別手段での判別結果に応じ、 前記装着されたインクタンクと前記載置部に載置されて いるインクジェット記録へッドと前記インクジェット記 録システムとの組合せを制約条件として該制約条件の中 で最適の記録条件で記録を行うことを特徴とするインク ジェット記録方法。

【請求項15】 前記第1の記録特性が前記第2の記録 式、ワイヤードット式、サーマル特性に比べて相対的に優れたものであり、前記インクジ などに分類することができる。まェット記録システムが前記第1のインクジェット記録へ 50 走査方法によっても分類される。

ッドの記録特性及び/または前記第1のインクジェット 記録へッドに装着されたインクタンク中のインクの特性 を完全には発揮できない場合には、その旨を利用者に対 して表示して記録を行う請求項14に記載のインクジェ ット記録方法。

【請求項16】 請求項1乃至14に記載のインクジェット記録へッド及びインクタンクの標準化方法の実施において使用され、前記載置部を含む記録装置に対して印字データを出力する情報処理装置において、

前記載置部に載置されているインクジェット記録へッドの種類とそのインクジェット記録へッドに装着されているインクタンクの種類に関する情報を前記記録装置から受け取り、前記載置されているインクジェット記録へッドと装着されているインクタンクの種類に応じた画像処理を行うプリンタドライバを備えることを特徴とする情報処理装置。

【請求項17】 請求項1乃至14に記載のインクジェット記録へッド及びインクタンクの標準化方法の実施に おいて使用され、前記載置部を含む記録装置に対して印字データを出力する情報処理装置において、

前記載置部に載置されているインクジェット記録へッド に装着されているインクタンクの種類に関する情報を前 記記録装置から受け取り、前記装着されているインクタンクの種類に応じた画像処理を行うプリンタドライバを 備えることを特徴とする情報処理装置。

【請求項18】 前記プリンタドライバは、前記画像処理によってRGBデータをCMYKデータに変換して印字データとして前記記録装置に出力するものである、請求項16または17に記載の情報処理装置。

10 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、記録データに応じて被記録媒体にインク液滴を吐出することで記録を行うインクジェット記録システムに関し、特に、異なる吐出原理を使用することなどによって記録特性や動作特性が異なる複数種類のインクジェット記録へッド間での互換性が保たれたインクジェット記録へッド及びインクタンクの標準化方法、インクジェット記録方法及び情報処理装置に関する。

40 [0002]

【従来の技術】ブリンタ、複写機、ファクシミリなど、あるいはコンピュータやワードブロセッサ等を含む複合型電子機器やワークステーションの出力機器として用いられる記録装置は、画像情報に基づいて用紙やブラスチック薄板などの被記録材(記録媒体)に画像を記録していくように構成されている。このような記録装置は、記録媒体上に画像を形成する方法により、インクジェット式、ワイヤードット式、サーマル式、レーザービーム式などに分類することができる。また、画像記録のための走査方法によっても分類される。

[00003]被記録材の搬送方向(副走査方向)と交差する方向に主走査を行なうシリアルスキャン方式を採るシリアルタイプの記録装置においては、被記録材に沿って移動するキャリッジ上に搭載した記録手段によって画像を記録(主走査)し、1行分の記録を終了した後に所定量の紙送り(ビッチ搬送)を行ない、その後に再び停止した被記録材に対して、次の行の画像を記録(主走査)するという動作を繰り返すととにより、被記録材全体の記録が行なわれる。一方、被記録材の搬送方向への副走査のみで記録を行なうラインタイプの記録装置においては、被記録材を所定の記録位置にセットし、一括して1行分の記録を行なった後に、所定量の紙送り(ビッチ搬送)を行ない、さらに、次の行の記録を一括して行なうという動作を繰り返すことにより、被記録材全体の記録が行なわれる。

【0004】上述した各種の記録装置のうち、インクジ ェット記録装置は、記録手段(記録ヘッド)から被記録 材にインクを吐出して記録を行なうものであり、記録手 段のコンパクト化が容易であり、髙精細な画像を髙速で 記録することができ、普通紙に特別の処理を必要とせず に記録することができ、ランニングコストが安く、ノン インパクト方式であるため騒音が少なく、しかも、多色 のインクを使用してカラー画像を記録するのが容易であ るなどの利点を有している。中でも、紙幅方向に多数の 吐出口を配列したライン型の装置は、記録のさらなる高 速化が可能である。特に、インクジェット式の記録手段 (記録ヘッド) のうち、熱エネルギーを利用してインク を吐出させるタイプのものは、エッチング、蒸着、スパ ッタリングなどの半導体製造プロセスを経て電気熱変換 体や電極、液路壁、天板などを基板上形成することによ 30 り、高密度の液路配置(吐出口配置)を有するものを容 易に製造することができ、一層のコンパクト化を図るこ とができる。

【0005】図1は、このような従来のインクジェット記録装置の構成を示す斜視図である。このインクジェット記録装置は、大別すると、紙やシート材などの被記録媒体を載置するための給紙部20と、被記録媒体を給送し排出するためにブラテン39や搬送ローラ36、排紙ローラ41が設けられている給送部と、記録を行なう記録ヘッド7を搭載するキャリッジ部5と、キャリッジ部405の記録ヘッド7をクリーニングし回復動作を行うするクリーニング部6とで構成されている。

【0006】クリーニング部6は、記録ヘッド7のクリーニングを行うポンプ60と、記録ヘッド7の乾燥を防止するために記録ヘッド7をキャッピングするキャップク吐出用の熱エネルギー61と、搬送ローラー36からの駆動力を給紙部20またはポンプ60に切り換える駆動切り替えアーム62とないら構成されている。駆動切り替えアーム62は、給紙対して垂直から1°~4またはクリーニング以外の時には搬送ローラー36の軸コニット71は、イング心を中心に回転する遊星ギア(不図示)を所定位置に固ちて取り付けられている。

定しており、このとき給紙部20およびボンブ60に搬送ローラー36の駆動力は伝達されない。後述するキャリッジ50が移動することで、駆動切り替えアーム62を図1に示した矢印A方向に移動させると、遊星ギアがフリーになり、搬送ローラー36の正転、逆転に応じて遊星ギアが移動し、搬送ローラー36が正転したときはボンでのに駆動力が伝達され、逆転したときはボンで60に駆動力が伝達され、逆転したときはボンで60に駆動力が伝達されるようになっている。長期間にかって記録を行わなかった場合などには、記録へッド7の吐出口内のインクの粘度が高くなって吐出不良なギャップ61で覆いつつボンブ60によってキャップ61で覆いつつボンブ60によってキャップ661でででは出口内に残っていて粘度が高くなったインクなどが取り除かれ、記録へッド7の吐出性能が元に戻り、回復がなされることになる。

【0007】キャリッジ部5は、記録ヘッド7が着脱自在に装着される装着手段としてのキャリッジ50を有している。キャリッジ50は、それぞれシャーシ8に取り付けられたガイド軸81およびガイドレール82に、シート材の搬送方向に対して直角方向に摺動自在に嵌合される。また、キャリッジ50は、シャーシ8に固定されたキャリッジモータ80の出力軸に固着されたブーリと回転自在に軸支されたアイドルブーリ84とにかけまわされたタイミングベルト83の一部位に結合されており、キャリッジモータ80の駆動力により、記録ヘッド7がガイド軸81に沿う方向に往復移動する構成となっている。

【0008】次に、キャリッジ50に装着されることと なる記録ヘッド7について、説明する。図2(a)~(d)は インクタンク一体型の記録ヘッドの構成を示している。 【0009】記録ヘッド7は、インクを吐出するヘッド ユニット71と、ヘッドユニット71に供給するインク を収容するインクタンク73とが一体になったカートリ ッジタイプのものであり、図示下向きにインクを吐出す るようになっている。インクタンク73には、インクを 含浸させたスポンジが詰め込まれている。ヘッドユニッ ト71は、アルミニウムからなるベースプレート72、 シリコンプレート、ヘッド基板、インクを一時的に貯え る液室、インクフィルタ、インクタンク73からのイン クを液室に供給するためのインク供給管80などによっ て構成されている。シリコンプレートおよびヘッド基板 はベースプレート72上に設けられている。シリコンプ レートには、複数個のノズル(吐出口)70が一列に例 えば密度360本/インチで設けられるとともに、イン ク吐出用の熱エネルギーを発生するヒーター素子、電 極、電気配線が形成されている。吐出口70の配列方向 は、駆動上の理由により、記録ヘッド7の主走査方向に 対して垂直から1°~4°傾けられ、このため、ヘッド ユニット71は、インクタンク73に対して傾きを持っ

【0010】ここでヘッドユニット71の構成の詳細に ついて説明する。図3は、ヘッドユニット71の吐出口 70の近傍を示す斜視図である。ヘッドユニット71 は、被記録媒体と所定の間隔をおいて対面する吐出口面 70 aに、所定のビッチで複数の吐出口70が形成され ており、共通液室70cと各吐出口70とを連通する各 液路70 dの壁面に沿ってインク吐出用のエネルギーを 発生するための電気熱変換体(発熱抵抗体など)70e が配設されている。共通液室70 cはインクタンク73 (図2参照)と連通しており、共通液室70cにはイン 10 クタンク73からインクが供給される構成となってい る。インクタンク73から共通液室70cに供給されて 一時的に貯えられたインクは、毛管現象により液路70 dに侵入し、吐出□70bでメニスカスを形成して液路 70 dを満たした状態を保つ。このとき、電気信号であ る記録信号に基づき電気熱変換体70eが通電されて発 熱すると、電気熱変換体70e上のインクが急激に加熱 されて膜沸騰して液路70d内に気泡が発生し、この気 泡の膨張により吐出口70からインクが吐出される。と こでは、エネルギーを発生させるエネルギー発生素子と 20 して、電気熱変換体70eを示したが、これに限らず、 瞬間的に吐出圧力を加える機械的エネルギーを発生する 圧電素子を用いてもよい。なお、電気熱変換体70 eへ 通電するための電気信号は、キャリッジ50に設けられ たフレキシブル基板56(図1参照)を介して、この記 録装置の動作を制御する電気基板(不図示)より与えら れる。

【0011】以上、記録ヘッドの基本的な構成を説明し たが、カラー記録とモノクロ記録との混在の要望、ある いは、記録ヘッドの長寿命化により、記録ヘッドからイ ンクタンクを分離できインクタンクのみを交換すること が可能なものとする構成が、一般化されつつある。本発 明もこのようなインクタンク分離型の記録へッドにおけ る互換性の維持を主題として扱うものである。以下、イ ンクタンクが交換できる構成の記録へッドについて説明

[0012]図4に示すように、インクタンクを交換で きる記録ヘッド170は、インクを吐出するノズル部1 71がホルダ173に一体的に設けられたものである。 ホルダ173は、正面の上から約3分の2および上面に 40 開□を有するとともに、中板174によって2つの領域 に仕切られた筐体であり、それぞれの領域に、ブラック インクを収容するブラックインクタンク175と、イエ ロー、シアン、マゼンタの3色のカラーインクを収容す るカラーインクタンク176が着脱自在に保持される。 これにより、省スペースでカラー記録を可能としてい

【0013】 これらブラックインクタンク175 および カラーインクタンク176のホルダ173への着脱は、 ホルダ173の上記開口から行なわれる。また、ホルダ 50 51は、キャリッジ50上に設けられたガイド501に

173の側面には、図2に示した記録ヘッドと同様に、 ヘッドホルダ51(図6参照)に装着する際にガイドア ーム513に案内される段差状のガイド74と、キャリ ッジ50側のコンタクト部561 (図9参照) との電気 的コンタクト手段となるコンタクト面78と、ストッパ 179とを有し、記録ヘッドが正規位置にない場合に は、コンタクト面78およびキャリッジ50側のコンタ クト部561の、他の部材との当接が防止される。 【0014】ノズル部171は、各色のインクに対応し

て、ブラック用の吐出口群370Bと、イエロー用の吐 出口群370Yと、シアン用の吐出口群370Cと、マ ゼンタ用の吐出口群370Mとに分けられる。各吐出口 群370B,370Y,370C,370Mへは、それぞ れ専用のインク供給管306B,306Y,306C,3 06Mよりインクが供給される。各インク供給管306 B,306Y,306C,306Mにはそれぞれ、ホルダ 173の内部に突出したインク導出管が接続されてお り、ホルダ173にブラックインクタンク175および カラーインクタンク176を装着することで、各インク タンク175,176内のインクが、それぞれインク導 出管およびインク供給管306B,306Y,306C, 306Mを順次経由して、ノズル部171に供給される 構成となっている。

[0015]また図5は、各インクタンク175,17 6の記録ヘッド170への装着方法を示す図である。各 インクタンク175,176には、それぞれ、インクを 記録ヘッド170側に供給するための開口181,18 2が設けられている。特に、カラーインクタンク176 には、イエロー、マゼンタ、シアンの各色に対応して3 つの開口182が設けられている。これら開口181, 182は、インクタンク175,176をホルダ173 に装着したときに上述のインク導出管の先端と当接し、 これによって、インク導出管内にインクが進入すること になる。

【0016】このように構成された記録ヘッド7(図 2) あるいは記録ヘッド170(図4)は、インクジェ ット記録装置のキャリッジ部5に取り付けられ、主走査 方向に駆動される。以下、キャリッジ部5の構成につい て、図6乃至図9を用いて説明する。記録ヘッド7と記 録ヘッド170とは、キャリッジ部5に対する装着部分 の構成は同一であり、以下の説明は、記録ヘッド7と記 録ヘッド170とに共通に適用されるべきものである。 ここでは、インクタンク分離型の記録ヘッド170で代 表して説明する。キャリッジ部5において、記録ヘッド 170の脱着部は、キャリッジ50、ヘッドホルダ5 1、ベースカバー52、フックレバー53、コンタクト パネ54、フックカパー55、フレキシブル基板56、 ラバーパッド57から構成されている。

【0017】図6(a),(b)に示すように、ヘッドホルダ

沿って記録ヘッド170を搭載し、左右にスライドする ように構成されている。ヘッドホルダ51には、記録へ ッド170をガイドするガイド部511と、キャリッジ 50に垂直に立てられた側板502のコンタクト面50 3及び位置決め面504に記録ヘッド170を押し付け る押し圧部512とが設けられている。キャリッジ50 の側板502の位置決め面は3点ある。記録ヘッド17 0のノズル70近傍のベースプレート72上の2点と、 記録ヘッド170のインクタンク73の上方の1点と が、との位置決め面に対応するように構成されている。 【0018】記録ヘッド170に対するキャリッジ50 のコンタクト面503が、この位置決め面504の3点 が形成する三角形の内部に位置するように構成されてい る。ヘッドホルダ51の押し圧部512の押し位置も、 この三角形の内部にある。また、ヘッドホルダ5 1の押 し圧部512の対向位置には、ガイドアーム513が設 けられており、記録ヘッド170をコンタクト面503 から離脱させる際にはこのガイドアーム513が記録へ ッド170に作用する。

【0019】フックレバー53は、キャリッジ50の側 20 板502に、回転可能に取りつけられている。フックレバー53の回転中心にはコンタクトバネ54が設けられており、フックレバー53を図示矢印方向へ付勢している。フックカバー55は、フックレバー53を覆うように取り付けられ、フックカバー53がキャリッジ50から抜けないように保持している。図7(a),(b)に示すように、フックレバー53とヘッドホルダ51は、互いに当接するカム516,531をそれぞれ有しており、フックレバー53の回転によりヘッドホルダ51が左右方向に移動するように構成されている。また、前記コンタ 30クトバネ54の付勢力はフックレバー53を介して、ヘッドホルダ51のヘッド押し圧力になっている。

【0020】キャリッジ50の側板502には、記録へッド170の位置決めを行なうために、ヘッド170のベースプレート72の嵌合穴77a,77bに対応した嵌合ピン505a,505bが設けられ、正確な位置決めを行なうことができるように構成されている。なお図8は、キャリッジ部15を上から見た図である。

【0021】キャリッジ50の側板502に設けられたコンタクト面503には、図9に示すように、記録へッ 40ド170との電気的なコンタクトを確立するために、ゴム硬度30°~50°のシリコンゴム等の弾性体からなるラバーパッド57が設けられている。そして、ラバーパッド57の上に、フレキシブル基板56の導体部にフォーミング可能を施すことで凸形状を形成したコンタクト部561が設けられている。そして、上述したように記録へッド170を装着状態で、記録へッド170のベースプレート72がキャリッジ50の位置決め面504に接した時に、ラバーパッド57が一定量変形するように機成することで、フレキシブル基板56と記録へッド 50

170のコンタクト面78との確実な電気的コンタクトを実現している。なお、この電気的コンタクトによって、記録ヘッド170と記録装置本体との間で、信号線、電力線が相互に結合するとともに、記録ヘッドの種別を示すIDを本体側が認識でき、また、記録ヘッド170内に設けた温度センサによる検出値を本体側が読み出せるようになる。

10

【0022】上記構成において、シート材Pに画像形成する時は、搬送ローラ36およびピンチローラ37によりシート材Pを画像形成する行位置に搬送するとともに、キャリッジモータ80によりキャリッジ50を画像形成する列位置(シート材Pの搬送方向と垂直な方向における位置)に移動させて、シート材Pの画像形成すべき位置を記録ヘッド170に対向させる。その後、電気基板からの記録信号により記録ヘッド170のヘッドユニット71からシート材Pに向けてインクを吐出して画像が形成される。

【0023】以上の構成によって、記録ヘッド170の キャリッジ部5への脱着、保持、位置決め、電気的接続 等が行なわれ、高品位(HQ:ハイクウォリティー)、 高速 (HS:ハイスピード) などの各種印字モードに応 じて記録ヘッド170が所定の駆動周波数で駆動され、 記録が行なわれる。また、キャリッジ部5に装着する記 録ヘッドを交換することにより、各種の記録に対応する ことが可能となる。例えば、モノクロ記録のための単色 の記録ヘッド (モノクロ対応ヘッド) と、ノズル列およ びインクタンクを4つに分割し各タンクを黒、シアン、 マゼンタ、イエローの各色に対応させたカラー対応へっ ドとを用意し、モノクロ記録のみを行なう場合にはモノ クロ対応ヘッドを装着し、カラー記録を行なう場合には カラー対応ヘッドを装着することにより、所望の記録を 行なうことが可能になる。このとき、記録ヘッドのID (種別)を検出し、記録装置本体側が記録ヘッドの種類 を認識して、装着されているヘッドに応じた制御を切り 替えることで、駆動制御、画像処理、信頼性制御、印字 制御などが最適化されるようになっている。具体的に は、駆動条件(駆動電圧、駆動パルス、駆動周波数、駆 動パルスのパルス幅制御(PWM制御)、駆動方式な ど)、回復条件及び回復シーケンス(吸引、予備吐出、 ワイピングなど)、印字制御(紙送り、マスク、パス 数、色処理、ガンマ補正など)、異常動作対応(異常髙 温制御)などが最適化される。

【0024】 このようにバブルジェット技術が多方面の 製品に利用されるにしたがって、近年、次のような要求 がさらに高まってきている。

ト部561が設けられている。そして、上述したように 記録ヘッド170を装着状態で、記録ヘッド170のベ ースプレート72がキャリッジ50の位置決め面504 に接した時に、ラバーパッド57が一定量変形するよう に構成することで、フレキシブル基板56と記録ヘッド 50 がある。また、高品質の画像を得るために、インクの吐 出スピードが速くかつ安定した気泡発生に基づく良好な インク吐出を行える液体吐出方法等を与えるための駆動 条件が提案されている。また、高速記録の観点から、吐 出後における液体の液流路内への充填(リフィル)速度 の大きい液体吐出ヘッドを得るために、流路形状を改良 したものも提案されている。

【0026】 これら各種提案された流路形状の内、流路 構造として図10(a),(b)に示すものが、特開昭63-199972号公報等に記載されている。この公報に記 載されている流路構造やヘッド製造方法は、気泡の発生 10 に伴って発生するバック波(吐出口へ向かう方向とは逆 の方向へ向かう圧力、すなわち、液室12の方向へ向か う圧力) に着目した発明である。このバック波は、吐出 方向へ向かうエネルギーでないため、損失エネルギーと して知られている。

【0027】図10(a),(b)に示す流路形状では、素子 基板1上に発熱体(発熱素子)2が設けられるととも に、発熱体2によって形成される気泡の発生領域よりも 離れ、かつ、発熱体2に関して吐出口18とは反対側に 位置するに弁90が設けられている。この弁90は、板 20 材等を利用する製造方法によって、図10(b)に示すよ うに、液流路10の天井に貼り付いたように初期位置を 持ち、気泡の発生に伴って液流路10内へ垂れ下がる。 図10(a),(b)に示される発明では、上述したバック波 の一部を弁90によって制御し、上流側へのバック波の 進行を抑えることで、エネルギー損失を抑制するとされ ている。しかしながら、気泡の発生する過程を詳細に検 討すると分かるように、吐出すべき液体を保持する流路 10の内部に弁90を設けてバック波の一部を抑制する ことは、液体吐出にとっては実用的なものでない。すな 30 わち、もともとバック波自体は、前述したように吐出に 直接関係しないものである。このバック波が流路10内 に発生した時点では、図10(a)に示すように、気泡の うち吐出に直接関係する圧力はすでに流路10から液体 を吐出可能状態にしている。したがって、バック波、し かもその一部を抑制したからといっても、吐出に大きな 影響を与えないことは明らかである。

【0028】また、上述した従来のインクジェット記録 方法では、インクに接した状態で発熱体が発熱を繰り返 すため、発熱体の表面にインクの焦げによる堆積物が発 40 生するが、インクの種類によってはこの堆積物が多く発 生することで、気泡の発生を不安定にしていまい、良好 なインクの吐出を行うことが困難な場合があった。ま た、吐出すべき液体が熱によって劣化しやすい液体の場 合や発泡が十分に得られにくい液体の場合においても、 吐出すべき液体を変質させず、良好に吐出するための方 法が望まれていた。このような観点から、熱により気泡 を発生させる液体(発泡液)と吐出する液体(吐出液) とを別液体とし、発泡による圧力を吐出液に伝達すると とで吐出液を吐出する方法が、特開昭61-69467 50 は、気泡形成を司る面における面積中心等の気泡下流側

号公報、特開昭55-81172号公報、米国特許第 4,480,259号明細書等の公報に開示されている。 これらの公報では、吐出液であるインクと発泡液とをシ リコンゴムなどの可撓性膜で完全分離し、発熱体に吐出 液が直接接しないようにすると共に、発泡液の発泡によ る圧力を可撓性膜の変形によって吐出液に伝える構成を とっている。このような構成によって、発熱体表面の堆 積物の防止や、吐出液体の選択自由度の向上等を達成し ている。

【0029】しかしながら、前述のように吐出液と発泡 液とを完全分離する構成のヘッドにおいては、発泡時の 圧力を可撓性膜の伸縮変形によって吐出液に伝える構成 であるため、発泡による圧力を可撓性膜がかなり吸収し てしまう。また、可撓性膜の変形量もあまり大きくない ため、吐出液と発泡液とを分離することによる効果を得 ることはできるものの、エネルギー効率や吐出力が低下 してしまうおそれがあった。

[0030]

【発明が解決しようとする課題】上述したように、気泡 (特に膜沸騰に伴う気泡)を液流路中に形成して液体を 吐出する方法では、さらなる吐出特性の向上が望まれて いる。そこで、本発明者らは、液滴吐出の原理に立ち返 り、気泡を利用した新規な液滴吐出方法及びそれに用い られるヘッド等を提供すべく、流路中の可動部材の機構 の原理を解析すると言った液流路中の可動部材の動作を 起点とする第1の技術解析、及び気泡による液滴吐出原 理を起点とする第2の技術解析、さらには、気泡形成用 の発熱体の気泡形成領域を起点とする第3の技術解析を 行った。その結果、気泡(特に膜沸騰に伴う気泡)を液 流路中に形成して液体を吐出する方法での根本的な吐出 特性を、従来では考えられなかった観点から、従来では 予想できない水準に高めることを可能にした。

【0031】すなわち本発明者らは、上述した各解析に よって、可動部材の支点と自由端の配置関係を吐出口側 つまり下流側に自由端が位置する関係にすること、また 可動部材を発熱体もしくは、気泡発生領域に面して配す ることで積極的に気泡を制御する全く新規な技術を確立 し、この新たに得られた技術に基づく発明を特許として 出願した。具体的には、気泡自体が吐出量に与えるエネ ルギーを考慮すると、気泡の下流側の成長成分を考慮す ることが吐出特性を格段に向上できる要因として最大で あること、つまり、気泡の下流側の成長成分を吐出方向 へ効率よく変換させるととこそ吐出効率、吐出速度の向 上をもたらすことが判明し、このことから、気泡の下流 側の成長成分を積極的に可動部材の自由端側に移動させ ることによって、従来の液体吐出方法に比べて極めて高 い技術水準の発明を完成させた。この発明では、気泡を 形成するための発熱領域、例えば電気熱変換体の液体の 流れ方向の面積中心を通る中心線から下流側、あるい

13 の成長にかかわる可動部材や液流路等の構造的要素を勘 案することが好ましいことも分かった。

[0032] さらに本発明者らは、前述した技術に加え て、液流路の構造や発熱体形状を考慮することで、吐出 力を一層向上させつつ、バック波や、液体供給方向とは 逆の方向への気泡の成長成分をさらに抑止し、吐出され る液体の流れを一方向化させる画期的な技術を導き出す に至った。

【0033】ところで、このような新たな吐出原理に基 べたような在来型のインクジェット記録へッドとは、吐 出する液体(インク)の粘度等の物性値や吐出のための 駆動条件(電圧や駆動周波数など)、解像度が異なって いる。したがって、この新たな吐出原理に基づくインク ジェット記録ヘッド(以下、新規型のインクジェット記 録ヘッド)は、それ専用の、新規型のインクジェット記 録装置に装着し、さらにこの新規型のインクジェット記 録ヘッドに適合したインクを使用することによって、そ の特徴を最大限に生かして使用することができる。以下 の説明では、インクジェット記録ヘッドとして、ヘッド 20 に印字した場合であってもブリードやフェザリングが起 ユニットに対してインクタンクが分離可能であってイン クタンクのみを交換することができる、いわゆるタンク 別体型のインクジェット記録へッドのみを考えることと する。

【0034】新規型のインクジェット記録ヘッドは、と の新規型の記録ヘッドに適合した新規型のインクを吐出 するために新規型の記録装置に装着すべきであるといっ ても (同様に在来型の記録ヘッドは在来型のインクを吐 出するために在来型の記録ヘッドに装着するのが本来の 姿である)、インク切れなどの緊急時には、在来型のイ ンクを格納したインクタンクをこの新規型のインクジェ ット記録ヘッドに取り付けこの新規型の記録ヘッドを新 規型の記録装置に装着したり、新規型のインクを在来型 の記録ヘッドや記録装置に用いたりして、急場を防げる ようにすることが望まれる。すなわち、新規型のイン ク、記録ヘッドあるいは記録装置と、在来型のインク記 録ヘッドあるいは記録装置との間に互換性が維持される ようにすることが望まれる。その際、画像データに基づ いて記録装置を駆動するためのプリンタドライバの新し いもの古いものなどとの互換性の維持されるようにする 40 ことが好ましい。

【0035】しかしながら、記録ヘッドの形状のうち記 録装置のキャリッジとの係合部分やインクタンクと記録 ヘッドの係合部分の形状を新規型と在来型とで同一にす るだけでは、両方の種類の互換性は向上しないし、イン ク、記録ヘッド及び記録装置との与えられた組合せの範 囲内で画質、記録速度や信頼性などの条件が一番よくな るような記録条件で記録することも達成することもでき ない。また、不適切なインクが供給されたなどの理由で 記録装置本体や記録ヘッドが破壊するのを未然に防止す 50 用される発泡液とを別々に供給する構成とすることもで

る方法が提案されていない。記録ヘッドの使用途中にイ ンクが切り替わったことにより、これら異なるインクが 混合するなどして障害が生じることもある。インクと、 記録ヘッドや記録装置との間の互換性を向上させ良好な 記録を達成するために、以下に述べるような障害が残っ ている。

【0036】の高速記録対応インクの場合:新規型のイ ンクとして、リフィル特性や定着性を改善するなどして 在来型のインクよりも髙速での印字が可能なもの、すな づくインクジェット記録ヘッドは、従来の技術の欄で述 10 わち高い駆動周波数での吐出が可能なインクを用いる場 合、この新規型のインクを在来型の記録へッドあるいは 記録装置に用いると、想定しているヘッド特性の違いに よる矛盾や、記録装置本体での画像処理、ヘッド制御、 キャリッジ制御などに矛盾を生じることがある。なお、 髙速記録対応インクでは、浸透性、粘度、表面張力など を改善することによって、リフィル特性や定着性が改善 されている。

> 【0037】②普通紙対応インクの場合:新規型インク として、ブリードやフェザリングなどを改良して普通紙 こらないようなインクを用いる場合、このインクを在来 型の記録ヘッドや記録装置で用いると、画像処理、ヘッ ド制御、信頼性制御などに矛盾を生じることがある。な お、普通紙対応インクでは、浸透性、粘度特性、反応性 (熱、光)、極性などを改良することによって、ブリー ド、フェザリング、発色、濃度、定着性などが改良され ている。

> 【0038】③高信頼性対応インクの場合:新規型のイ ンクとして、発一性や固着性、蒸発性などを改良して信 頼性を高めたインクを用いる場合、このインクを在来型 の記録ヘッドや記録装置で用いると、ヘッド制御、信頼 性制御などに矛盾を生じることがある。

> 【0039】 ②高画質対応インクの場合:新規型のイン クとして、発色性や濃度などを改良して高画質化に対応 させたインクを用いる場合、このインクを在来型の記録 ヘッドや記録装置で用いると、画像処理、ヘッド制御、 信頼性制御などに矛盾を生じることがある。なお、高画 質対応インクでは、浸透性、粘度特性、反応性(熱、 光)、極性などを改良することによって、ブリード、フ ェザリング、発色、濃度、定着性などが改良されてい

【0040】上述した新たな吐出原理による新規型のイ ンクジェット記録ヘッドでは、その内部構造において2 層構造となっており、上述の可動部材をはさんで吐出口 側の領域に供給される液体は、主として吐出され、可動 部材より気泡発生領域側の領域供給される液体は、主と して、吐出のための気泡形成に使用される。このような 新規型のインクジェット記録へッドにおいて、主として 吐出されるための吐出液と、吐出のための気泡形成に使 き、これら発泡液と吐出液とを同一の液体とすること も、異なる液体とすることもできる。したがって、記録 ヘッドの内部構造で吐出液と発泡液とが分けられている 場合とそうでない場合では、駆動条件(駆動周波数、駆 動パルス幅、解像度)や異常動作対応(異常高温制御、 吐出口からのインク落ち、不吐出検出など)などの互換 性の面で、新規型の記録ヘッド相互で矛盾を生じること も考えられる。

【0041】発泡液と吐出液とを異なる液体とする場 合、両方の液体が相互に混合可能な液体であるかそうで 10 との矛盾を解決した記録装置を提供することにある。 ないかによっても、動作特性に差が生じ、駆動条件や異 常動作対応などの互換性の面で、新規型の記録ヘッド相 互で矛盾を生じることも考えられる。特に、発泡液と吐 出液とにそれぞれ相互に反応する成分を含ませて、被記 録媒体上でのインクの発色性や定着性を向上させること も考えられるが、この場合には、印字制御(紙送り、マ スク、パス数、色処理、γ補正など)の互換性について も、十分な考慮を払う必要がある。発泡液と吐出液とに 分けた場合、吐出液にはかなりの高粘度の液体を使用す ることも可能になるが、その際には、回復条件及びシー ケンスの互換性(吸引/加圧による回復、予備吐出、吐 出口面のワイピング)についても十分に検討を加えなけ ればならない。

【0042】上述したように、新規型のインクと在来型 の記録ヘッドや記録装置の間で、あるいは在来型の記録 ヘッドと新規型のインクの間で、さらには、各種の新規 型のインクや記録へッド相互間で互換性を維持し、与え られたインク、記録ヘッド及び記録装置との組合せを前 提として最良の記録を行うためには、解決すべき課題が かなり残されている。

[0043] そこで本発明の第1の目的は、上述した記 録ヘッドのような可動部材を介して記録ヘッドの内部が 2層に分離されていることで特徴づけられる新規型の記 録ヘッドを使用しインクの選択の幅が拡大した記録方法 と、在来型の記録ヘッドで在来型のインクを用いる記録 方法との特徴の差を最大現に活かせるようにしながら、 簡単に相互互換が保てるように工夫したインクジェット 記録ヘッド及びインクタンクの標準化方法を提供するこ とにある。

【0044】本発明の第2の目的は、上述した記録へっ ドのような可動部材を介して記録ヘッドの内部が2層に 分離されていることで特徴づけられる新規型の記録へっ ドを使用しインクの選択の幅が拡大した記録方法と、在 来型の記録ヘッドで在来型のインクを用いる単純な記録 方法との間の駆動制御の矛盾を解決する標準化方法と、 この矛盾を解決した記録装置を提供することにある。 【0045】本発明の第3の目的は、上述した記録へッ ドのような可動部材を介して記録ヘッドの内部が2層に

分離されているととで特徴づけられる新規型の記録へッ

来型の記録ヘッドで在来型のインクを用いる単純な記録 方法との間の回復制御の矛盾を解決する標準化方法と、 この矛盾を解決した記録装置を提供することにある。 【0046】本発明の第4の目的は、上述した記録ヘッ ドのような可動部材を介して記録ヘッドの内部が2層に 分離されていることで特徴づけられる新規型の記録へッ ドを使用しインクの選択の幅が拡大した記録方法と、在 来型の記録ヘッドで在来型のインクを用いる単純な記録 方法との間の印字制御の矛盾を解決する標準化方法と、 【0047】本発明の第5の目的は、上述した記録へッ ドのような可動部材を介して記録ヘッドの内部が2層に 分離されていることで特徴づけられる新規型の記録へっ ドを使用しインクの選択の幅が拡大した記録方法と、在 来型の記録ヘッドで在来型のインクを用いる単純な記録 方法とのユーザインタフェース(被記録媒体対応、解像

度、記録方法の設定など)の矛盾を解決するプリンタド

16

[0048]

ライバを提供することにある。

【課題を解決するための手段】本発明のインクジェット 記録ヘッド及びインクタンクの標準化方法は、インクを 吐出する第1のインクジェット記録ヘッドと第1のイン クジェット記録ヘッドに供給される第1のインクを貯溜 するための第1のインクタンクとを互いに着脱自在に搭 載可能である第1のインクジェット記録装置を含む市場 システムに対し、第1のインクジェット記録ヘッドとは 異なる第2のインクジェット記録ヘッドと、第2のイン クジェット記録ヘッドに対して着脱自在に第1のインク ジェット記録装置とは異なる第2のインクジェット記録 30 装置に搭載され、第2のインク記録ヘッドに供給される 第2のインクを貯溜するための第2のインクタンクと、 を提供し、第2のインクジェット記録ヘッドは、第2の インクタンクが装着されることによって第2のインクの 吐出が可能であり、第1のインクジェット記録ヘッドよ り優れた吐出性能を有し、第1のインクタンクが装着さ れることによって第1のインクの吐出も可能であり、第 2のインクは、第2のインクジェット記録へッドによっ て吐出可能であり、第1のインクより優れた特性を有 し、第1のインクジェット記録へッドによっても吐出可 能であることを特徴とする。

【0049】上述したインクジェット記録ヘッド及びイ ンクタンクの標準化方法において、第2のインクジェッ ト記録ヘッドとしては、①液体を吐出する吐出口と、液 体に気泡を発生する気泡発生領域と、気泡発生領域に面 して配され、第1の位置と第1の位置よりも気泡発生領 域から遠い第2の位置との間を変位可能な可動部材とを 有し、該可動部材は、気泡発生領域での気泡発生に基づ く圧力によって第1の位置から第2の位置へ変位すると ともに、可動部材の変位によって気泡を吐出口に向う方 ドを使用しインクの選択の幅が拡大した記録方法と、在 50 向の上流よりも下流に大きく膨張させることで液体を吐 出するもの、②液体を吐出する吐出口と、液体に熱を加えることで該液体に気泡を発生させる発熱体と、発熱体に面して設けられ吐出口側に自由端を有し気泡の発生による圧力に基づいて自由端を変位させて圧力を吐出口側に導く可動部材と、可動部材の発熱体に近い面に沿った上流側から発熱体上に液体を供給する供給路とを有するもの、あるいは、③吐出口に連通した第1の液流路と、発熱体を有し液体に熱を加えることで該液体に気泡を発生させる気泡発生領域を有する第2の液流路と、発熱体に対面するように第1の液流路と気泡発生領域との間にい対面するように第1の液流路と気泡発生領域との間にいた対面するように第1の液流路と気泡発生領域内での気泡の発生による圧力に基づいて自由端を第1の液流路に対でなる。とだけでなく、動部材と、を有するものなどが、例示される。

17

【0050】本発明のインクジェット記録方法は、イン クタンクを分離、交換可能なインクジェット記録ヘッド に設けられた吐出口からインクを吐出することによって 被記録媒体上に画像を形成するインクジェット記録シス テムにおけるインクジェット記録方法であって、インク ジェット記録システムとして、第1の記録特性を有する 20 第1のインクジェット記録ヘッドと第1の記録特性とは 異なる第2の記録特性を有する第2のインクジェット記 録ヘッドの少なくとも2種類のインクジェット記録ヘッ ドを交換自在に載置可能な載置部と、載置部に載置され たインクジェット記録ヘッドの種類とそのインクジェッ ト記録ヘッドに装着されたインクタンクの種類を判別す る判別手段とを有するものを使用し、判別手段での判別 結果に応じ、装着されたインクタンクと載置部に載置さ れているインクジェット記録ヘッドとインクジェット記 録システムとの組合せを制約条件として該制約条件の中 で最適の記録条件で記録を行うことを特徴とする。

[0051] 本発明の情報処理装置は、①上述のインク ジェット記録システムにおいて使用され、載置部を含む 記録装置に対して印字データを出力する情報処理装置に おいて、載置部に載置されているインクジェット記録へ ッドの種類とそのインクジェット記録ヘッドに装着され ているインクタンクの種類に関する情報を記録装置から 受け取り、載置されているインクジェット記録ヘッドと 装着されているインクタンクの種類に応じた画像処理を 行うプリンタドライバを備えることを特徴とする、もし 40 くは、②上述のインクジェット記録システムにおいて使 用され、載置部を含む記録装置に対して印字データを出 力する情報処理装置において、載置部に載置されている インクジェット記録ヘッドに装着されているインクタン クの種類に関する情報を記録装置から受け取り、装着さ れているインクタンクの種類に応じた画像処理を行うプ リンタドライバを備えることを特徴とする。

[0052] 本発明のその他の効果については、以下の 発明の実施の形態の記載から理解される。

【0053】なお、本発明の説明で用いる「上流」「下 50 記録ヘッド210Nも、いずれも装着できるようになっ

流」とは、液体の供給源から気泡発生領域(又は可動部材)を経て、吐出口へ向かう液体の流れ方向に関して、 又はこの構成上の方向に関しての表現として表されてい ス

【0054】また、気泡自体に関する「下流側」とは、主として液滴の吐出に直接作用するとされる気泡の吐出口側部分を代表する。より具体的には気泡の中心に対して、上記流れ方向や上記構成上の方向に関する下流側、又は、発熱体の面積中心より下流側の領域で発生する気泡を意味する。

【0055】本発明における、「記録」とは、文字や図 形等の意味を持つ画像を被記録媒体に対して付与することだけでなく、バターン等の意味を持たない画像を付与 することをも意味するものである。

[0056]

【発明の実施の形態】次に、本発明の実施の形態について、図面を参照して説明する。

【0057】《概要》本発明に基づくこの実施の形態のインクジェット記録システムは、上述の「従来の技術」の欄で述べたような在来型のインクジェット記録へッドと、上述の「発明が解決しようとする課題」の欄で説明した新規の吐出原理に基づく新規型のインクジェット記録へッドに用いることを前提とする新規型のインクと、新規型のインクと、在来型のインクジェット記録へッドに用いることを前提とする新規型のインクと、在来型のインクジェット記録へッドに本来適合している在来型の記録装置(ブリンタ)と、新規型のインクジェット記録へッドにある在来型の記録装置(ブリンタ)と、新規型のインクジェット記録へッド用の新規型の記録装置との間の互換性を保ち、かつ、与えられたインク、記録へッド及び記録装置の組合せに応じてその組合せでの最善の記録がなされるようにしたものである。

【0058】図11は、これらインクと記録へッドと記録装置との組合せバリエーションを説明する図である。インクは、インクタンクに格納されて供給されるものとする。記録装置としては、図1を用いて説明したものと同様のインクジェット記録装置が使用されるものとする。後述するように、記録装置は、一般に、機構系や、制御回路を含む電気回路系などのハードウエア部分と、ハードウエア部分に含まれるCPU(中央処理装置)チップで実行するプログラムなどからなるソフトウエア部分からなり、このソフトウエアは、取り替え可能なROM(読み出し専用メモリ)、あるいはホストコンピュータ側から書き換え可能なEPROM(電気的消去可能ROM)やフラッシュメモリ中に格納されている。

【0059】従来型の記録装置200Cも新規型の記録 装置200Nも、いずれもホストコンピュータ300に 接続され、ホストコンピュータ300から印字データを 受け取るようになっている。これら記録装置200C, 200Nには、従来型の記録へッド210Cも新規型の 記録へッド210Nも、いずれも装着できるようになっ

ている。すなわち、在来型の記録ヘッド2100が在来 型の記録装置200Cのキャリッジ部5(図1参照)に 受容されるように、在来型の記録ヘッド2100の形状 と在来型の記録装置200Cのキャリッジ部の形状が定 められているわけであるが、新規型の記録ヘッド210 Nの形状は、この在来型の記録装置200Cのキャリッ ジ部に受容されるように定められ、新規型の記録装置2 00Nの形状は、両方の記録へッド210C,210N のいずれも受容できるように定められているのである。 記録装置における在来型と新規型の区別は、記録ヘッド 10 に対する動作電圧や駆動信号が、在来型の記録ヘッドを 前提として設計されているか、新規型の記録ヘッドに最 もよく適合するものとして設計されているかである。さ らに、新規型のインクを格納するインクタンク220N も、在来型のインクを格納するインクタンク220C も、記録ヘッド210N,210Cのいずれにも装着で きるようになっている。図11において、インクと記録 ヘッドと記録装置との組み合わせが矢印で示されてい る。

19

【0060】 CCで注意しなければならないことは、在 20 来型の記録装置の設計時には新規型の記録へッドや新規型のインクは存在せず、在来型の記録装置のハードウエア設計には新規型の記録へッドやインクのことは一切反映されていないことである。このため、在来型の記録装置200℃に新規型の記録へッド210Nを装着した場合や新規型のインクを使用する場合には、在来型の記録へッド210℃を装着した場合や在来型のインクを使用する場合と同一の条件で新規型の記録へッド210Nを駆動するか、ソフトウエアを入れ替えて新規型の記録へッド210Nや新規型のインクに対応した条件(ただし 30 ハードウエアの制限内)で駆動できるようにするしかない。

【0061】《新規型の記録へッド(1液流路構成)》 ことで、本実施の形態の記録システムを説明する前に、 本実施の形態で前提とする新規型の記録へッド、すなわ ち上述した新しい吐出原理に基づく液体吐出へッドについて説明する。図12は、このような液体吐出へッドを 液流路方向で切断した断面模式図を示しており、図13 はこの液体吐出へッドの部分破断斜視図を示している。 ことではまず、吐出液と発泡液との区別を行わないいわ 40 ゆる1液流路構成の液体吐出へッドを説明する。

【0062】との液体吐出ヘッドでは、液体を吐出するための吐出エネルギー発生素子として、液体に熱エネルギーを作用させる発熱体2(ここでは40μm×105μmの形状の発熱抵抗体)が素子基板1に設けられており、この素子基板1上に発熱体2に対応して液流路10が配されている。液流路10は吐出口18に連通していると共に、複数の液流路10に液体を供給するための共通液室13に連通しており、吐出口から吐出された液体に見合う量の液体をこの共通液室13から受け取る。

[0063] この液流路10の素子基板上には、前述の発熱体2に対向するように面して、金属等の弾性を有する材料で構成され、平面部を有する板状の可動部材31 が片持梁状に設けられている。この可動部材の一端は液流路10の壁や素子基板上に感光性樹脂などをパターニングして形成した土台(支持部材)34等に固定されている。これによって、可動部材31は保持されると共に支点(支点部分)33を構成している。

【0064】この可動部材31は、液体の吐出動作によ って共通液室13から可動部材31を経て吐出口18側 へ流れる大きな流れの上流側に支点(支点部分;固定 端)33を持ち、この支点33に対して下流側に自由端 (自由端部分) 32を持つように、発熱体2に面した位 置に発熱体2を覆うような状態で発熱体から15 µm程 度の距離を隔てて配されている。この発熱体と可動部材 との間が気泡発生領域となる。なお発熱体、可動部材の 種類や形状および配置はこれに限られることなく、後述 するように気泡の成長や圧力の伝搬を制御しうる形状お よび配置であればよい。なお、上述した液流路10は、 後に取り上げる液体の流れの説明のため、可動部材31 を境にして吐出口18に直接連通している部分を第1の 液流路14とし、気泡発生領域11や液体供給路12を 有する第2の液流路16として、これら2つの領域(第 1の液流路14及び第2の液流路16)に分けて説明す

[0065]発熱体2を発熱させることで、可動部材3 1と発熱体2との間の気泡発生領域11の液体に熱を作用させ、液体に米国特許第4,723,129号明細書に記載されているような膜沸騰現象に基づく気泡を発生させる。気泡の発生に基づく圧力と気泡は可動部材31に優先的に作用し、可動部材31は、図12(b),(c)もしくは図13で示されるように、支点33を中心に吐出口側に大きく開くように変位する。可動部材31の変位若しくは変位した状態によって、気泡の発生に基づく圧力の伝搬や気泡自身の成長が吐出口18側に導かれる。

【0066】 ここで、上述した吐出原理の中で基本的なものを説明する。ここで最も重要な原理の1つは、気泡に対面するように配された可動部材31、が気泡の圧力あるいは気泡自体に基づいて、定常状態の第1の位置から変位後の位置である第2の位置へ変位し、この変位する可動部材31によって、気泡の発生に伴う圧力や気泡自身が、吐出口18が配された下流側へと導かれることである。

【0067】可動部材を用いない従来の液流路構造を模式的に示した図14と、可動部材31を用いた液流路構成を模式的に示す図15とを比較して、この新規の吐出原理をさらに詳しく説明する。ここでは、吐出口方向への圧力の伝搬方向をV、上流側への圧力の伝搬方向をV。として示した。

50 【0068】図14で示されるような従来のヘッドにお

いては、発生した気泡40による圧力の伝搬方向を規制 する構成はない。とのため、気泡40の形成による圧力 伝搬方向は、V,~V,に示すように、それぞれ気泡40 の表面の法線方向となり、さまざまな方向を向いてい る。このうち、液吐出に最も影響を及ぼすⅤ、方向に圧 力伝搬方向の成分を持つものは、V,~V,すなわち気泡 のほぼ半分の位置より吐出口に近い部分の圧力伝搬の方 向成分であり、これらは、吐出効率、吐出力、吐出速度 等に直接寄与する重要な部分である。さらにⅤ₁は吐出 方向 V_{\star} の方向に最も近いため効率よく働き、逆にV」は、V」に向かう方向成分は比較的少ない。

【0069】とれに対して、図15で示されるように上 述の原理に基づいて可動部材を設けた場合には、図14 に示す従来の場合ではさまざまな方向を向いていた気泡 の圧力伝搬方向 V, ~ V, が、可動部材 3 1 によって下流 側(吐出口側)へ導かれ、V_xの圧力伝搬方向に変換さ れ、これにより気泡40の圧力が直接的に効率よく吐出 に寄与することになる。そして、気泡の成長方向自体 も、圧力伝搬方向V,~V,と同様に下流方向に導かれ、 上流より下流で大きく成長する。このように、気泡の成 20 長方向自体を可動部材31によって制御し、気泡の圧力 伝搬方向を制御することで、吐出効率や吐出力また吐出 速度等の根本的な向上を達成することができる。

[0070]図12に戻って、この液体吐出ヘッドの吐 出動作について詳しく説明する。

【0071】図12(a)は、発熱体2に電気エネルギー 等のエネルギーが印加される前の状態であり、発熱体2 が熱を発生する前の状態である。ここで重要なことは、 可動部材31が、発熱体2の発熱によって発生した気泡 40に対し、との気泡の少なくとも下流側部分に対面す 30 る。 る位置に設けられていることである。つまり、気泡40 の下流側が可動部材に作用するように、液流路構造上で は少なくとも発熱体の面積中心3より下流(発熱体2の 面積中心3を通って流路の長さ方向に直交する線より下 流) の位置まで可動部材31が配されている。

【0072】図12(b)は、発熱体2に電気エネルギー などが印加されて発熱体2が発熱し、発生した熱によっ て気泡発生領域11内を満たす液体の一部が加熱され、 膜沸騰に伴う気泡が発生した状態を示している。このと き、可動部材31は、気泡40の発生に基づく圧力によ 40 り、気泡40の圧力の伝搬方向を吐出口方向に導くよう に、第1の位置から第2の位置へ変位する。ととで重要 なことは、前述したように、可動部材31の自由端32 を下流側(吐出口側)に配置し、支点33を上流側(共 通液室側)に位置するように配置して、可動部材31の 少なくとも一部を発熱体2の下流部分すなわち気泡40 の下流部分に対面させることである。

【0073】図12(c)は、気泡40がさらに成長した 状態を示しているが、ことでは、気泡40の発生に伴う 圧力に応じて、可動部材31はさらに変位している。発 50 気泡の体積Wを可動部材31の第1の位置を境に上側を

生した気泡40は、上流より下流に大きく成長するとと もに、可動部材31の第1の位置(点線位置)を越えて 大きく成長している。このように気泡40の成長に応じ て可動部材31が徐々に変位して行くことで、気泡40 の圧力伝搬方向や体積移動のしやすい方向、すなわち自 由端側への気泡の成長方向を吐出口18に均一的に向か わせることができることも、吐出効率を高めていると考 えられる。可動部材31は、気泡や気泡形成に伴う圧力 波を吐出口方向へ導く際もこの伝達の妨げになることは 10 ほとんどなく、伝搬する圧力の大きさに応じて、圧力の 伝搬方向や気泡の成長方向を効率よく制御することがで きる。

【0074】図12(d)は、吐出された液滴45が飛翔 しているとともに、気泡40が、前述した膜沸騰の後、 気泡内部の圧力の減少によって収縮し、消滅する状態を 示している。この状態では、もはや、発熱体2には電気 エネルギーは印加されていない(少なくとも、気泡を維 持するのに必要な程度以上のエネルギーは供給されてい ない)。第2の位置まで変位していた可動部材31は、 気泡の収縮による負圧と可動部材31自身のばね性によ る復元力によって、図12(a)の初期位置(第1の位 置) に復帰する。また、消泡時には、気泡発生領域11 での気泡の収縮体積を補うため、また吐出された液体の 体積分を補うために、上流側(図示B側)、すなわち共 通液室側から、流れV。1,V。2のように、また、吐出口 側から流れのV。のように、液体が流れ込んでくる。 【0075】以上、気泡の発生に伴う可動部材の動作と 液体の吐出動作について説明したが、以下、この液体吐 出ヘッドにおける液体のリフィルについて詳しく説明す

【0076】図12(c)の状態の後、気泡40が最大体 積の状態を経て消泡過程に入ったときには、消泡した体 積を補う体積の液体が、気泡発生領域11に、第1液流 路14の吐出口18側と第2液流路16の共通液室側1 3から流れ込む。

【0077】可動部材31を持たない従来の液流路構造 においては、消泡位置に吐出口側から流れ込む液体の量 と共通液室から流れ込む液体の量は、気泡発生領域より 吐出口に近い部分と共通液室に近い部分との流抵抗の大 きさに起因する(流路抵抗と液体の慣性に基づくもので ある)。このため、吐出口に近い側の流抵抗が小さい場 合には、多くの液体が吐出口側から消泡位置に流れ込 み、メニスカスの後退量が大きくなることになる。特 に、吐出効率を高めるために吐出口に近い側の流抵抗を 小さくして吐出効率を高めようとするほど、消泡時のメ ニスカスMの後退が大きくなり、リフィル時間が長くな って高速印字を妨げることとなっていた。

【0078】これに対して、上述した吐出原理を用いた この液体吐出ヘッドでは、可動部材31を設けたため、

20

W1、気泡発生領域11側をW2とした場合、消泡時に可動部材31が元の位置に戻った時点でメニスカスMの後退は止まり、その後残ったW2の体積分の液体供給は、主に第2の液流路16の流れVoxからの液供給によってなされる。これにより、従来は気泡Wの体積の半分程度に対応した量がメニスカスの後退量になっていたのに対して、ここでは、それより少ないW1の半分程度のメニスカス後退量に抑えることが可能になる。さらに、W2の体積分の液体供給は、消泡時の圧力を利用して、可動部材31の発熱体側の面に沿って主に第2液流路16の10上流側(Vox)から強制的に行うことができるため、より速いリフィルを実現できる。

【0079】 ここで特徴的なことは、従来のヘッドで消泡時の圧力を用いたリフィルを行った場合、メニスカスの振動が大きくなってしまい画像品位の劣化につながっていたのに対し、ここで述べる高速リフィルにおいては、可動部材31によって、吐出口側の第1の液流路14の領域と気泡発生領域11との吐出口側での液体の流通が抑制されるため、メニスカスの振動を極めて少なくすることができることである。

【0080】とのように、本発明が用いる吐出原理によれば、第2の液流路16の液供給路12を介しての気泡発生領域11への強制的なリフィルと、上述したメニスカス後退や振動の抑制によって高速リフィルを達成することで、吐出の安定や高速繰り返し吐出、また記録の分野に用いた場合、画質の向上や高速記録を実現することができる。さらには、従来のインクジェット記録では実現が難しかった顔料系のインクを安定して吐出することも可能にしている。

【0081】上述した液体吐出原理は、さらに次のよう 30 な有効な機能を兼ね備えている。すなわち、気泡の発生による圧力の上流側への伝搬(パック波)が抑制されることである。従来、発熱体上で発生した気泡の内、共通液室側(上流側)の気泡による圧力は、その多くが、上流側に向かって液体を押し戻す力(パック波)になっていた。このパック波は、上流側の圧力と、それによる液移動量、そして液移動に伴う慣性力を引き起こし、これらは液体の液流路内へのリフィルを低下させ高速駆動の妨げにもなっていた。上述した液体吐出原理によれば、まず可動部材31によって上流側へのこれらの作用を抑えられ、リフィル供給性の向上がさらに図られている。【0082】さらに、この新規な吐出原理に基づく液体吐出へッドのさらなる特徴的な構造と効果について、以下に説明する。

【0083】 ことでは、第2液流路の16は、発熱体2の上流に、発熱体2と実質的に平坦につながる(発熱体表面が大きく落ち込んでいない)内壁を持つ液体供給路12を有している。このような場合、気泡発生領域11 および発熱体2の表面への液体の供給は、可動部材31の気泡発生領域11に近い側の面に沿って、V。2のよう

に行われる。このため、発熱体2の表面上に液体がよどむことが抑制され、液体中に溶存していた気体の析出や、消泡できずに残ったいわゆる残留気泡が除去されやすくなり、また、液体への蓄熱が過度に及ぶことが防止される。したがって、より安定した気泡の発生を高速に繰り返し行うことができるようになる。なお、ここでは実質的に平坦な内壁を持つ液体供給路12を持つもので説明したが、これに限らず、発熱体表面となだらかにつながり、なだらかな内壁を有する液供給路であればよく、発熱体上に液体のよどみや、液体の供給に大きな乱流を生じない形状であればよい。

24

【0084】また、気泡発生領域11への液体の供給は、可動部材の側部(スリット35)を介してV。から行われるものもある。しかし、気泡発生時の圧力をさらに有効に吐出口に導くために、図12で示すように気泡発生領域の全体を覆う(発熱体面を覆う)ような大きな可動部材31を用い、可動部材31が第1の位置へ復帰することで、気泡発生領域11と第1の液流路14の吐出口18に近い領域との液体の流抵抗が大きくなるような形態の場合、前述のV。から気泡発生領域11に向かっての液体の流れが妨げられる。しかし、ここで述べているヘッド構造においては、気泡発生領域11に液体を供給するための流れV。があるため、液体の供給性能が非常に高くなり、可動部材31で気泡発生領域11を覆うような吐出効率向上を求めた構造を取っても、液体の供給性能を落とすことがない。

[0085]ところで、可動部材31の自由端32と支点33の位置は、例えば図15で示されるように、自由端が相対的に支点より下流側にある。このような構成のため、前述した発泡の際に気泡の圧力伝搬方向や成長方向を吐出口側に導くなどの機能や効果を効率よく実現できるのである。さらに、この位置関係は吐出に対する機能や効果のみならず、液体の供給の際にも液流路10を流れる液体に対する流抵抗を小さくしでき高速にリフィルできるという効果を達成している。これは図16に示すように、吐出によって後退したメニスカスMが毛管力により吐出口18へ復帰する際や、消泡に対しての液供給が行われる場合に、液流路10(第1の液流路14、第2の液流路16を含む)内を流れる流れS1、S2、S1に対し、逆らわないように自由端と支点33とを配置しているためである。

【0086】補足すれば、図12においては、前述のように可動部材31の自由端32が、発熱体2を上流側領域と下流側領域とに2分する面積中心3(発熱体の面積中心(中央)を通り液流路の長さ方向に直交する線)より下流側の位置に対向するように発熱体2に対して延在している。これによって発熱体の面積中心位置3より下流側で発生する液体の吐出に大きく寄与する圧力、または気泡を可動部材31が受け、この圧力及び気泡を吐出50 口側18に導くことができ、吐出効率や吐出力を根本的

に向上させることができる。さらに、加えて上記気泡の 上流側をも利用して多くの効果を得ている。また、ここ で述べている構成においては、可動部材31の自由端が 瞬間的な機械的変位を行っていることも、液体の吐出に 対して有効に寄与している考えられる。

【0087】《新規型の記録ヘッド(2液流路構成)》 次に、液流路の構成を複流路構成(ここでは2流路構成 とする)とし、熱を加えることで発泡させる液体(発泡 液)と、主として吐出される液体(吐出液)とを分ける ことができる液体吐出ヘッドについて説明する。図17 10 は、2流路構成の液体吐出ヘッドの流路方向の断面模式 図を示しており、図18はこの液体吐出ヘッドの部分破 断斜視図を示している。

【0088】2流路構成の液体吐出ヘッドは、液体に気 泡を発生させるための熱エネルギーを与える発熱体2が 設けられた素子基板1上に、発泡液用の第2の液流路1 6があり、その上に吐出口18に直接連通した吐出液用 の第1の液流路14が配されている。第1の液流路14 の上流側は、複数の第1の液流路14に吐出液を供給す るための第1の共通液室15に連通しており、第2の液 20 流路16の上流側は、複数の第2の液流路16に発泡液 を供給するための第2の共通液室17に連通している。 ただし、発泡液と吐出液を同じ液体とする場合には、共 通液室を一つにして共通化させてもよい。

【0089】第1と液流路14と第2の液流路16との 間には、金属等の弾性を有する材料で構成された分離壁 30が配されており、第1の液流路14と第2の液流路 16とを区分している。なお、発泡液と吐出液とができ る限り混ざり合わない方がよい液体の場合には、この分 離壁30によってできる限り完全に第1の液流路14と 30 第2の液流路16の液体の流通を分離した方がよいが、 発泡液と吐出液とがある程度混ざり合っても問題がない 場合には、分離壁30に完全分離の機能を持たせなくて もよい。

【0090】発熱体2の面方向上方への投影空間(以下 叶出圧発生領域という。: 図17中のAの領域とBの気 泡発生領域11)に位置する部分の分離壁30は、スリ ット35によって吐出口側(液体の流れの下流側)が自 由端で、共通液室(15、17)側に支点33が位置す る片持梁形状の可動部材31となっている。この可動部 40 材31は、気泡発生領域11(B)に面して配されてい るため、発泡液の発泡によって第1の液流路14側の吐 出口18側に向けて開口するように動作する(図中矢印 方向)。図18においても、発熱体2としての発熱抵抗 部と、この発熱抵抗部に電気信号を印加するための配線 電極5とが配された素子基板1上に、第2の液流路16 を構成する空間を介して分離壁30が配置されている。 可動部材31の支点33、自由端32の配置と、発熱体 2との配置の関係については、1流路構成の液体吐出へ ッドと同様にしている。

【0091】また、1流路構成の液体吐出ヘッドで液供 給路12と発熱体2との構造の関係について説明した が、この2流路構成の液体吐出ヘッドにおいても、第2 の液流路16と発熱体2との構造の関係を同じくしてい

【0092】次に、図19を用いて、2流路構成の液体 吐出ヘッドの動作を説明する。

【0093】ヘッドを駆動させるにあたっては、第1の 液流路14に供給される吐出液と第2の液流路16に供 給される発泡液として同じ水系のインクを用いて動作さ せた。

【0094】発熱体2が発生した熱が、第2の液流路1 6の気泡発生領域11内の発泡液に作用することで、1 流路構成の場合と同様に、発泡液に米国特許第4,723,12 9号明細書に記載されているような膜沸騰現象に基づく 気泡40を発生させる。ここでは、気泡発生領域11の 上流側を除く、3方からの発泡圧の逃げがないため、こ の気泡発生にともなう圧力が吐出圧発生部に配された可 動部材31側に集中して伝搬し、気泡の成長をともなっ て可動部材6が図19(a)の状態から図19(b)のように 第1の液流路14側に変位する。との可動部材31の動 作によって第1の液流路14と第2の液流路16とが大 きく連通し、気泡の発生に基づく圧力が第1の液流路の 吐出口側の方向(A方向)に主に伝わる。この圧力の伝 搬と、前述のような可動部材31の機械的変位によって 液体が吐出口18から吐出される。

【0095】次に、気泡が収縮するに伴って可動部材3 1が図19(a)の位置まで戻るとともに、第1の液流路 14では吐出された吐出液体の量に見合う量の吐出液体 が上流側から供給される。この吐出液体の供給は、1流 路構成の場合同様に、可動部材31が閉じる方向である ため、吐出液体のリフィルを可動部材31で妨げること

【0096】2流路構成の液体吐出ヘッドは、可動部材 の変位に伴う発泡圧力の伝搬、気泡の成長方向、バック 波の防止等に関する主要部分の作用や効果については、 1流路構成のものと同じであるが、2流路構成をとるこ とによって、さらに次のような長所がある。すなわち、 上述の構成によると、吐出液と発泡液とを別液体とし、 発泡液の発泡で生じた圧力によって吐出液を吐出すると とができる。このため従来、熱を加えても発泡が十分に 行われにくく吐出力が不十分であったポリエチレングリ コール等の髙粘度の液体であっても、この液体を第1の 液流路に供給し、発泡液に発泡が良好に行われる液体 (エタノール:水=4:6の混合液1~2cP程度等) や低沸点の液体を第2の液流路に供給することで良好に 吐出させることができる。また、発泡液として、熱を受 けても発熱体の表面にコゲ等の堆積物を生じない液体を 選択することで、発泡を安定化し、良好な吐出を行うと

50 とができる。

[0097] さらに、2流路構成の構造においては先の 1流路構成で説明したような効果をも生じるため、さら に高吐出効率、高吐出力で高粘性液体等の液体を吐出す ることができる。また、加熱に弱い液体の場合において もこの液体を第1の液流路に吐出液として供給し、第2 の液流路で熱的に変質しにくく良好に発泡を生じる液体 を供給すれば、加熱に弱い液体に熱的な害を与えること なく、しかも上述のように高吐出効率、高吐出力で吐出 することができる。

[0098] 《記録装置の構成》次に、本実施の形態で 10 使用される記録装置の制御系の構成について説明する。在来型の記録装置200Cと新規型の記録装置200Nでは、例えば、新規型の方が被記録媒体やキャリッジなどを高速で動かすことができるなどの相違点はあるものの、機械的構造部分においては、本質的な差はない。また、これら機械的構造部分を駆動するための制御系や電気回路系の構成も、概ね同様のものであるが、在来型の記録へッドを前提に設計されたものか、新規型の記録へッドの性能を最大限発揮するために設計されたものかで相違する。図20は、これら新規型の記録装置200 20 N、在来型の記録装置200Cに共通に現れる、制御回路の構成を示すブロック図である。以下、これら記録装置を符号200で代表して説明する。

【0099】記録装置200には、キャリッジ50を主 走査方向に移動させるためのCRモータ125と、被記録材104を副走査方向に搬送するためのLFモータ126と、印字面105にまで被記録媒体を給紙するための給紙モータ127が設けられ、さらに、これら各モータ125~127と記録へッド210Cあるいは210Nを駆動するための制御基板121が設けられている。制御基板121は、フレキシブルケーブル56によってキャリッジ50に接続されるともに、電源ユニット122や操作用のフロントパネル123が接続され、必要に応じてオブションインタフェースボード124が接続されるようになっている。さらに、キャリッジ50の位置やベーバーエンドを検出するためのセンサ128,129が制御基板121に接続されている。

【0100】制御基板121上には、外部のホストコンピュータ300との接続を行なうためのインタフェース回路131と、実際の制御動作を実行するマイクロプロセッサ形態のMPU132と、MPU132のためのプログラムなどを格納するマスクROM134と、印字データなどを一時的に格納するためのRAM135と、MPU132からの指示によってCRモータ125を駆動するためのCRモータドライバ136と、MPU132からの指示によってLFモータ126を駆動するためのLFモータドライバ137と、MPU132からの指示によって給紙モータ127を駆動するための給紙モータドライバ138と、上述した各回路や素子を相互に接続するためのゲートアレイ133とが設けられている。M

PU132は、インターフェイス回路131を介してホストコンピュータ300に接続されており、マスクROM134内のプログラムに基づいて記録動作を制御する。具体的にはMPU132は、RAM135内に格納されたホストコンピュータ300からの印字データに基づき、CRモータ125、LFモータ126及び給紙モータ127を制御するとともに、駆動回路部253(図22参照)を介して記録ヘッド210Cあるいは210Nを制御する。また、フロントパネル123には、ディップスイッチ、キースイッチ、発光ダイオードによる表示素子などが設けられている。キャリッジ50には、上述したように記録ヘッド210Cあるいは210Nが取外し可能に搭載されるとともに、状態検出のためのセンサ142や、キャリッジ50の位置を検出するエンコーダ141が設けられている。

【0101】記録ヘッド210C,210Nの物理的形状は、図4を用いて説明した従来の記録ヘッド170と同様である。すなわち、記録ヘッド210C,210Nにはコンタクトポイントが所定のパターンで配列したコンタクト面78が設けられ、記録ヘッド210,210Nがキャリッジ50に装着された際に、このコンタクト面78がキャリッジ50側のコンタクト部561と係合し、フレキシブルケーブル56の配線パターンと記録ヘッドのコンタクトポイントとが所定の対応関係で電気的に確実に接続するようになっている。図21は、記録ヘッドのコンタクト面78でのコンタクトポイント781の配置例を示す図である。

【0102】本実施の形態では、キャリッジ50にどの タイプの記録ヘッドが装着され、また、記録ヘッドにど 30 のタイプのインクタンクが装着されたかは、ID信号に よって識別できるようになっている。すなわち、各記録 ヘッド210N,210Cでは、電気的の接続のための コンタクトポイント781の内のいくつかのポイントを ヘッドID識別用として使用している。そして、ヘッド I D識別用のこれらのコンタクトポイントに現れる電圧 レベルを本体側から読み出すことによって、例えば、モ ノクロ対応ヘッドが装着されているか、カラー対応ヘッ ドが装着されているかが識別されるようになっている。 さらに、装着されるべきインクタンクにもコンタクトボ イントなどの電気的接続回路部分を設け、この電気的接 続回路部分の状態が記録ヘッドの特定のコンタクトポイ ント781を介して記録装置側から読み出せるようにし て、どのタイプのインクタンクが装着されているかを記 録装置本体側で知ることができるようになっている。電 気的接続回路部分をインクタンクに設ける代りに、イン クタンクの特定部位に切れ込み部などを設け、これをメ カニカルスイッチで検出することでインクタンクの種類 を判別するようにしてもよい。

ドライバ138と、上述した各回路や素子を相互に接続 【0103】次に、このインクジェット記録システムでするためのゲートアレイ133とが設けられている。M 50 のソフトウエア構成について、図22を用いて説明す

る。

【0104】ホストコンピュータ300内のソフトウエ アには、記録装置200への印刷を行うワープロソフト などのアプリケーションソフト301と、各アプリケー ションソフト301の管理やファイル管理、システムコ ールの処理などを行うOS(オペレーティングシステ ム) 302と、OS301からの指示によって印字デー タを生成して記録装置200側に送るプリンタドライバ 303とが、含まれている。アプリケーションソフトウ 場合もあるが、いずれにせよ、ホストコンピュータ30 0から記録装置200側への印字データの作成と送信は プリンタドライバ303が一括して実行する。

【0105】 このようにプリンタドライバをデバイスド ライバとして独立させることにより、記録装置200を 細かく制御するためのルーチンをアプリケーションソフ ト301やOS302自体に用意する必要がなくなっ て、全体としての効率が向上している。具体的には、ア プリケーションソフト301やOS302で扱う色情報 は、通常、RGB (R=赤、G=緑、B=青) 3色の各 20 成分の輝度で扱われるが、カラーインクジェットプリン タでは、CMYK (C=シアン、M=マゼンタ、Y=イ エロー、K=黒)の4色の濃度で表わされるから、これ ら色情報の変換が必要である。また、アプリケーション ソフト301側での画像データの解像度とプリンタの解 像度が異なっていたり、階調度が異なることはしばしば あるから、これらの変換も必要である。プリンタドライ バ303は、この種の変換を一手に引き受けることによ って、アプリケーションソフト301やOS302の負 担を軽減している。本実施の形態の場合、ブリンタドラ 30 イバ303は、新規型と在来型との互換性をとるための 処理も実行する。

【0106】一方、記録装置200には、ソフトウエア として、プリンタドライバ303からの印字データを受 け取るともに記録装置200全体の動作の制御を行うた めのコントローラソフトウエア251と、装着された記 録ヘッド210N,210Cに対する駆動信号をコント ローラソフトウエア251の制御によって生成するエン ジンソフトウェア252とが設けられている。

【0107】とのインクジェット記録システムでは、記 40 録装置200に装着された記録ヘッドがどのタイプのも のであるか、どのタイプのインクタンクが装着されてい るかをホストコンピュータ300側に知らせるために、 記録装置200からホストコンピュータ300に対し、 記録ヘッドやインクタンクの種別を知らせるID信号が 出力されるようになっている。なお、インクタンクの種 別は、インクタンクに格納されているインクの種類と対 応している。

【0108】図23は、ホストコンピュータ300と記 録装置200の間で、どのように信号がやり取りされる 50 を終了する。

かを時系列にしたがって示したものである。すなわち、 ホストコンピュータ300は、プリンタドライバ303 に対して印字出力が要求されると、まず、ID信号要求 を発行して記録装置200側に送信し(ステップ40 1)、これを受けて記録装置200は、装着されている 記録ヘッドやインクタンクのID(種別)を確認して (ステップ402)、 ID信号としてホストコンピュー タ300側に送信する(ステップ403)。ホストコン ピュータ300は、ID信号を受信すると(ステップ4 エア301がプリンタドライバ303に直接指示を出す 10 04)、受信したID番号すなわち記録装置200に装 着されている記録ヘッドやインクの種別に応じ、プリン タドライバ303によって色処理を行い(ステップ40 5)、CMYK信号及びモード設定信号を生成して記録 装置200側に送信する(ステップ406)。記録装置 200は、これらCMYK信号及びモード設定信号を受 信すると、モード設定信号の内容を確認し(ステップ4 07)、コントローラソフトウエアによって制御処理を 行い (ステップ408)、被記録媒体に記録を行う(ス テップ409)。

> 【0109】次に、図24を用いて、このインクジェッ ト記録システムを用いて記録を行う際の動作を説明す る.

【0110】まず、記録装置200において、装着され ている記録ヘッドやインクタンクの種類を確認し(ステ ップ411)、ID信号としてホストコンピュータ30 0に通知する(ステップ412)。ホストコンピュータ 300では、プリンタドライバ303によって、記録装 置の状態として記録ヘッドやインクタンクの種類を登録 し(ステップ413)、印刷モードに入る(ステップ4 14)。そして、図25に示すような画面を表示するこ とによって、記録モードの選択をユーザに促し、ユーザ はマニュアルで記録モードを設定する(ステップ41 5)。この際、印字しようとする画像の種類に応じ、画 質と印字時間などをホストコンピュータ300で表示す ることによって、ユーザは記録モードを選択しやすくな る。例えば、パス数とムラやヨレの低減効果との関係を 画面に表示するようにすればよい。そしてプリンタドラ イバ303は、記録ヘッドの種類やインクタンクの種類 (すなわちインクの種類) と記録モードとに整合性があ るかどうかを判定し(ステップ416)、整合性がある 場合にはステップ419に移行する。整合性がない場合 には、図26に示すように、記録ヘッド及び/またはイ ンクタンクの交換を促すメッセージを表示し(ステップ 417)、記録ヘッド及び/またはインクタンクが切り 替わったかどうかを確認してから(ステップ418)、 ステップ419に移行する。ステップ419では、図2 7に示すように、記録装置に装着すべき被記録媒体の種 類をユーザに対して表示し、その後、プリンタドライバ 303による色処理が行われ(ステップ420)、処理

【0111】プリンタドライバ303による色処理の概 要が、図28に示されている。RGBデータが入力する と(ステップ421)、記録モードの設定処理を行い (ステップ422)、引き続いて、RGBデータでの輝 度を濃度に変換する処理(ステップ423)、マスキン グを行う処理(ステップ424)、UCR/BGR処理 (ステップ425)、1次色、2次色別のインク液滴打 ち込み量を補正する処理(ステップ426)、出力デー タにおけるガンマ(ア)補正を行う処理(ステップ42 7)、ディザ拡散などによってハーフトーンを表わすた 10 めの処理(ステップ428)などを順次実行し、各色で とに1ビットあるいは2ビットのCMYKデータとして 出力し(ステップ429)、処理を終了する。これらプ リンタドライバ403での処理においては、当然のこと ながら、記録装置200に装着されている記録ヘッドが 新規型の記録ヘッド210Nなのか在来型の記録ヘッド 2100なのかに応じて、また新規型のインクを格納し たインクタンク220Nが装着されているのか在来型の インクを格納したインクタンク220Gが装着されてい るのかに応じて、適切な処理が行われる。例えば、在来 20 型の記録装置200Cに新規型の記録ヘッド210Nが 装着され新規型のインクが供給されている場合であれ ば、在来型の記録装置2000のハードウエア上の制約 の範囲内で、新規型の記録ヘッド210Nと新規型のイ ンクを用いて最良の記録が得られるような処理が、上述 の各処理でとに実行される。

【0112】《在来型と新規型との互換性の確保》在来 型のインク、記録ヘッド及び記録装置と、新規型のイン ク、記録ヘッド及び記録装置との間で互換性を確保する ために、特に考慮しなければならない点は以下の通りで 30

【0113】(1) コンタクトパッドとヘッドの種類の識 別方法: コンタクトバッドについては、在来型の記録装 置であっても新規型の記録装置であっても、在来型ある いは新規型のいずれの記録ヘッドが装着され、またいず れの種類のインクタンクが装着されているかを判別でき るようにする。もっとも、記録ヘッドの識別方法はコン タクトバッドを用いる方法に限定されるわけではなく、 記録ヘッドの特定位置に切れ込み部などを設けこれをキ ャリッジ部に設けたメカニカルスイッチなどで検出する 40 方法などを用いていもよい。また、コンタクトパッドに おける信号線、制御線、電力線の配置においても、在来 型の記録ヘッドと新規型の記録ヘッドとで矛盾しないよ うにする。ROM等を用いるようにしてもよい。

【0114】(2) 駆動制御関連の条件設定:新規型の記 録ヘッドと在来型の記録ヘッドとでは、記録ヘッド内の 電気熱変換体(発熱体)に印加すべきバルスの最適電力 値が異なっている。そこで、記録装置から記録ヘッドに 印加されるバルスの時間幅が固定されているのであれ

変化させることが望ましい。具体的には、ヘッド側で電 気熱変換体のシート抵抗値を変化させる、あるいは、D C-DCコンバータを用いて記録装置本体側で駆動電圧 を変化させるなどのととが考えられる。特に、在来型の 記録装置との互換性を考えるのであれば、新規型の記録 ヘッドの内部に、DC-DCコンパータやドロップコン バータなどの電圧変換機構を設けることも考えられる。 一方、駆動電圧が一定であれば、パルスの時間幅を変化 させる。記録ヘッドに応じてパルスの時間幅を変化させ る方法としては、記録ヘッドの種類でとの時間幅を記憶 させたパルステーブルを参照する方法、記録ヘッドをい くつかのランクに分類してランクごとの時間幅で駆動す る方法、ワンショットマルチバイブレータ回路を用いる 方法などがある。

【0115】記録ヘッドに応じて駆動方式を変更する場 合、順次駆動、順次分散駆動、分散駆動などの中から駆 動方式を選択し、さらに、同時駆動のブロック数やod d/even制御などを選択する。また、記録ヘッド及 び記録装置本体のタイプに合わせて、適切な破壊防止制 御が行われるようにする。さらに、記録密度が一致する ように、記録ヘッドに応じて駆動周波数の変更、吐出量 の変更、記録方法の変更などを実施する。

【0116】(3) 回復制御関連の条件設定:記録ヘッド と記録装置での回復制御条件との組合せが不適切である と、発一性、泡発生、固着発生、ミスト発生、濡れ発生 など点で不具合が発生することがある。そこで、記録へ ッドの種別に応じて、吸引回数、吸引量、予備吐出回 数、予備吐出間隔、ワイピング回数、ワイピング間隔な どの組合せ、順序を最適化する。

【0117】(4) 印字制御関係の条件設定:在来型の記 緑ヘッドで使用されるインクと新規型の記録ヘッドで使 用されるインクとは、一般には異なる種類のものが使用 され、色濃度、定着性などが異なっている。そこで、印 字ムラやヨレ、スジ、テクスチャー、ブリード、白モヤ などの発生を抑え、定着性を向上させるために、記録へ ッドの種類に応じて、マスク、バス数、キャリッジ速度 (駆動周波数)、紙送り、画像処理(色、γ補正、2値 化)、インク打ち込み量などを最適化する。

[0118]

【実施例】次に、在来型と新規型の間で、記録装置、記 録ヘッド、インクタンク間での互換性を維持しつつ良好 な記録を行う例について、数値を挙げて説明する。記録 装置と記録ヘッド、インクタンクは、それぞれ在来型の 新規型の2通りがあるので、全体としての組合せは8 (=2') 通りあるはずである。実際の使用局面を考え ると、記録ヘッドも消耗品であるもののインクタンクに 比べて交換頻度は小さく、互換性が要求されるのは、イ ンク切れが起きた場合が圧倒的である。そこで、以下の 説明では、表1に示すように、記録ヘッドと記録装置と ば、記録へッドに応じて駆動電圧(パルス電圧)V。。を 50 の組合せは、在来型どうし、あるいは新規型どうしに固 定し、これら記録へッドと記録装置との組合せに対し、 新規型のインクを格納したインクタンク220N、ある いは在来型のインクを格納したインクタンク220Cを 適用する場合について考える。在来型どうしのケース

33

1、新規型どうしのケース2は、本来予定されていた使*

*用方法に基づくものであり、新規型と在来型との組合せであるケース3とケース4は、本来の使用方法ではないが、市場において発生し得る使用方法である。

[0119]

【表1】

	インク	記録ヘッド	記録装置	備考
ケース1	在来型	在来型	在来型	本来の使用方法(在来型)
ケース2	新規型	新規型	新規型	本来の使用方法(新規型)
ケース3	在来型	新規型	新規型	市場で発生する使用方法
ケース4	新規型	在来型	在来型	市場で発生する使用方法

以下、新規型の記録へッドとして図12万至図19に示した新規の吐出原理による記録へッドを使用し、在来型の記録へッドとして、図3及び図4に示した記録へッドを使用した場合について説明する。ここで新規型のイン 20 クは、このような新規型の記録へッドでの吐出を前提としたものであり、在来型のインクは、在来型の記録へッドでの吐出を前提としたものである。

[0120] 《実施例1》 ここでは、新規型のインクとして高速記録対応インクを使用し、新規型の記録ヘッドとして図12乃至図16に示される1流路型の記録ヘッドであってこの高速記録対応インクに対応したものを使用したときの駆動関係の互換性を保つための構成について説明する。

【0121】在来型のインクのリフィル周波数は最高8.0kHzであり、在来型の記録へッド210Cの使用を前提としてこの在来型のインクに適合するものとして設計されている在来型の記録装置200Cは、記録方法として360×360dpi~720×360dpiに適合し、駆動周波数が最大8.0kHz、キャリッジ駆動周波数が8.0kHz(360dpiのとき)あるいは4.0kHz(720dpiのとき)、駆動電圧が24Vという性能のものである。

[0122]一方、新規型のインクは、リフィル周波数が最大 $20.0\,\mathrm{KHz}$ であって、新規型の記録へッド $210\,\mathrm{N}$ の使用を前提としてこの新規型のインクに適合するものとして設計されている新規型の記録装置 $200\,\mathrm{N}$ は、記録方法として $360\times360\,\mathrm{dp}\,\mathrm{i}\sim72.0\times720\,\mathrm{dp}\,\mathrm{i}$ に適合し、駆動周波数が最大 $20.0\,\mathrm{kHz}$ 、キャリッジ駆動周波数が $8.0\,\mathrm{kHz}$ ($360\,\mathrm{dp}\,\mathrm{i}$ のとき)あるいは $4.0\,\mathrm{kHz}$ ($720\,\mathrm{dp}\,\mathrm{i}$ のとき)、駆動電圧が $18\sim24\,\mathrm{V}$ という性能のものである。

[0123] 本来の使用方法であるケース1、ケース2の場合は、それぞれ、上述した記録ヘッド210N,2

10C、記録装置200N,200Cの本来の性能で、 それぞれのインクをその最大リフィル周波数で吐出する 印字を実行する。

20 【0124】在来型のインクと新規型の記録ヘッド21 0 Nと新規型の記録装置200 Nとを組み合わせる場合 (ケース3)には、記録装置200 N側で全て対応するようにする。具体的には、新規型の記録装置200 Nは、本来、360×360 dpi~720×720 dpiの記録方法に適合するものであるが、これを360×360 dpi~720×360 dpiの記録方法で使用する。さらに、記録装置200 Nの駆動周波数は最大20.0 k H z であるがこれを8.0 k H z として使用し、同様に、駆動電圧も24 V とする。キャリッジ駆動周波数は4.0/8.0 k H z のままとする。このようにして、在来型のインクを新規型の記録へッド210 Nと新規型の記録装置200 Nの組合せに適用した場合であっても、記録が行えるようになる。

【0125】一方、新規型のインクを在来型の記録へッド210Cを及び在来型の記録装置200Cの組合せに適用するケース4の場合には、新規型のインクを駆動周波数8.0kHz、駆動電圧24Vで吐出することにより、インクに起因する問題は発生しない。

【0126】《実施例2》とこでは、新規型のインクと 40 して高信頼性対応インクを使用し、新規型の記録ヘッド として図17乃至図19に示される2流路型の記録ヘッ ドであってとの高信頼性対応インクに対応したものを使 用した場合に、回復関係の互換性を保つための構成につ いて説明する。

【0127】在来型のインクは、回復処理の条件として、モード1の回復処理時の吸引量が0.05cc、モード2の回復処理時の吸引量が0.15ccであっていずれも吸引圧を0.5atmとし、予備吐出を、印字中の各ラインごとに10発、印字前後に200発、吸引後50に200発、ワイビングを、印字の10秒ごととペー

ジごとと吸引後に行うことが規定されている。

【0128】との在来型のインクが規定する回復処理を 実行可能な在来型の記録装置200Cは、吸引量が0. 05~0.15cc、吸引圧が0.2~0.5atmであ って、予備吐出の駆動周波数が2~8 k H z であり、1 0×N(Nは自然数)発の予備吐出が可能なものであ る。さらに、ワイピングの方向が片方向でワイピング時 の侵入量は一定であり、ワイビング速度が100mm/ s に固定されているものである。在来型の記録装置20 ヘッド210℃が装着されている。

35

【0129】新規型のインクは、記録ヘッドの加圧回復 を必要とするものであって、回復処理の条件として、モ ード1の回復処理時の吸引量を0.01~0.05ccと し、モード2の回復処理が加圧下で押し出し量を0.1 ~0.5 c c とし、予備吐出を、印字中の各ラインごと に5発、印字前後に50発、吸引後に500発、ワイビ ングを、ページごとと吸引後に行うことが規定されてい る。

実行可能な新規型の記録装置200Nは、加圧回復装置 を備えたものであって、吸引量及び押し出し量が0.0 1~0.5 c c、吸引圧及び加圧が0.2~0.4 a t m である。さらにこの記録装置200Nは、予備吐出の駆 動周波数が1~2kHzであって20×N(Nは自然 数) 発の予備吐出が可能であり、さらに、ワイピングの 方向が片方向でワイビング時の侵入量は一定であり、ワ イピング速度が150mm/sに固定されているもので ある。新規型の記録装置200Nには、上記新規型のイ ンクに適合した新規型の記録ヘッド210Nが装着され 30

【0131】本来の使用方法であるケース1、ケース2 の場合は、上述した記録ヘッド210C,210Nに対 し、記録装置200C、200Nにより、それぞれその 記録インクに規定された回復条件で回復処理を実行す る。ただし、ケース2の場合、記録装置200Nの予備 吐出回数が20×Nで表わされるので、毎ラインの予備 吐出回数を20回、毎ページの予備吐出回数を60回と する。

【0132】在来型のインクと新規型の記録ヘッド21 0 Nと新規型の記録装置200 Nとを組み合わせる場合 (ケース3) には、記録装置200N側で全て対応する ようにする。具体的には、新規型の記録装置200N は、吸引と加圧の両方が可能であるが吸引回復のみを行 うものとし、また、記録装置200Nは吸引圧を0.4 atmまでしか出せず、これは在来型のインクの規定値 に満たないので、吸引回数を増やすことにより、回復処 理を実行する。また、記録装置200Nの制約条件か ら、毎ラインの予備吐出回数も20回とする。

ド210Cと在来型の記録装置200Cの組合せに適用 した場合、在来型の記録装置2000では加圧回復を実 行できないので、この新規型のインクが規定する回復を 行えないことになる。この場合には、新規型のインクを 使用できないことを表示する。

【0134】《実施例3》ここでは、新規型のインクと して高発色の顔料系のインクを使用し、新規型の記録へ ッドとして図17乃至図19に示される2流路型の記録 ヘッドであってこの新規型のインクに対応したものを用 O C には、上記在来型のインクに適合した在来型の記録 10 いる場合に、印字制御関係の互換性を保つための構成に ついて説明する。

【0135】在来型のインクは、CMYK染料インクで あって、反射濃度が普通紙に対し各1.1、専用紙に対 して各1.3であり、ブリードが若干発生し、耐水性を 有しないものである。在来型の記録ヘッド210Cの使 用を前提としてこの在来型のインクに適合するものとし て設計されている在来型の記録装置2000は、印字の 際のパス数として、黒に対して1または4、カラーに対 して2、4または8が選択されるものであって、マスク [0130] この新規型のインクが規定する回復処理を 20 として固定マスクを使用し、通常の画像処理を実行する ものである。

> 【0136】新規型のインクは、CMYK顔料インクで あって、反射濃度が普通紙に対し各1.4、専用紙に対 して各1.6であり、ブリードがなく、耐水性を有する ものである。新規型の記録ヘッド2100の使用を前提 としてこの新規型のインクに適合するものとして設計さ れている新規型の記録装置200Nは、印字の際のパス 数として、黒に対して1、2または4、カラーに対して 1、2、4または8が選択されるものであって、マスク として画像に応じてランダムマスクあるいは固定マスク が選択され、文字と画像とを判別して適応処理による画 像処理を実行するものである。

> 【0137】本来の使用方法であるケース1、ケース2 の場合は、各記録装置2000,200Nは、それぞ れ、その記録装置の性能値で印字制御処理を実行する。 【0138】在来型のインクを新規型の記録ヘッド21 ONと新規型の記録装置200Nの組合せに適用する場 合(ケース3)には、記録装置200N側で全て対応す るようにする。具体的には、新規型の記録装置200N は、パス数を黒に対して1または4、カラーに対して 2、4または8とし、マスクとしてはランダムマスクと 固定マスクのうちの固定マスクを使用し、画像処理とし ては、文字と画像とを判別する適応処理を実行する。と の場合、適応処理を用いているので、在来型のインクと 在来型の記録ヘッド210Cと在来型の記録装置200 Cとを組み合わせた場合に比べ、画質が向上する。

【0139】新規型のインクを在来型の記録ヘッド21 0 C と在来型の記録装置200 C の組合せに適用するケ ース4の場合、在来型の記録装置2000によれば、バ 【0133】一方、新規型のインクを在来型の記録へッ 50 ス数が黒に対して1または4、カラーに対して2、4ま

37

たは8しか選択できず、また、マスクも固定マスクしか 準備されず、画像処理も通常の処理に限られるので、印 字を行うことはできるが、新規型のインクと新規型の記 録ヘッド210Nと新規型の記録装置200Nを組み合 わせた場合に比べて画質等が劣化する。そこで、使用可 であるが画質が低下することをユーザに表示して、印字 を行うようにする。

【0140】以上、本発明の好ましい実施の形態乃至実 施例について説明したが、本発明のおける第1のインク ジェット記録ヘッドとして、ピエゾ素子を用いたヘッド 10 を用いた場合であっても、本発明は適用可能である。

[発明の効果]以上説明したように本発明は、インクタ ンクを分離、交換可能なインクジェット記録ヘッドに設 けられた吐出口からインクを吐出することによって被記 録媒体上に画像を形成するインクジェット記録システム において、異なる記録特性の少なくとも2種類のインク ジェット記録ヘッドを交換自在に載置可能な載置部と、 載置部に載置されたインクジェット記録へッドの種類と そのインクジェット記録ヘッドに装着されたインクタン 20 クの種類を判別する判別手段と、判別されたインクジェ ット記録へッドの種類及びインクタンクの種類に応じ、 可能な範囲で最適設定条件を与える設定手段とを設ける ことにより、新規型のインクと在来型の記録へッドと在 来型の記録装置などの間で、あるいは在来型のインクと 新規型の記録ヘッドと新規型の記録装置などの間で、さ らには、各種の新規型の記録ヘッド相互間で互換性を維 持し、与えられたインク、記録ヘッド及び記録装置との 組合せを前提として最良の記録を行うことが可能になる とにより、画像処理、色材及び記録媒体などの将来にお ける改良に対応できるようになり、また、購入の容易性 や選択性向上し、購入価格が低減し、画質、記録速度及 び信頼性などが向上し、消費電力の低減につながり、ラ ンニングコストが低減するなど、の効果が生じる。

【図面の簡単な説明】

[0141]

【図1】インクジェット記録装置の構成を示す斜視図で ある。

【図2】インクタンク一体型の記録へッドを説明する図 であって、(a)は右側面図、(b)は底面図、(c)は正面 図、(d)は右側面図である。

[図3] ヘッドユニットの吐出口近傍を示す拡大拡大図 である。

【図4】 インクタンクが分離可能な記録へッドを説明す る図であって、(a)は正面図、(b)は側面図、(c)は底面 図である。

【図5】記録ヘッドへのインクタンクの装着方法を示す 斜視図である。

【図6】図1のインクジェット記録装置におけるキャリ ッジの正面図であって、(a)はヘッドを装着する過程を 50 7.170

示す図、(b)は装着後を示す図である。

【図7】図6に示すキャリッジにおけるヘッドの脱着機 構の主要部を示す図であって、(a)は上面図、(b)は正面 図である。

【図8】図6に示すキャリッジの上面図である。

【図9】図6に示すキャリッジに設けられるコンタクト 部及びその周辺の構成を示す図である。

【図10】(a),(b)は従来のインクジェット記録ヘッド における液流路構成を説明する図である

【図 1 1 】記録ヘッドと記録装置との組合せのバリエー ションを説明する図である。

【図12】1流路構成の新規型の記録ヘッドの一例を示 す模式断面図である。

【図13】図12の新規型の記録ヘッドの部分破断斜視 図である。

【図14】在来型の記録へッドにおける気泡からの圧力 伝搬を示す模式図である。

【図15】新規型の記録ヘッドにおける気泡からの圧力 伝搬を示す模式図である。

【図16】新規型の記録ヘッドにおける液体の流れを説 明するための模式図である。

【図17】2流路構成の新規型の記録ヘッドの断面図で

【図18】図17の新規型の記録ヘットの部分破断斜視 図である。

【図19】2流路構成の新規型の記録ヘッドの動作を説 明する図である。

【図20】記録装置の制御回路の構成を示すブロック図 である。

という効果がある。このようにして互換性を維持すると 30 【図21】記録ヘッドでのコンタクト面の構成の一例を 示す図である。

> 【図22】本発明の実施の一形態のインクジェット記録 システムにおけるソフトウエア構成を示すブロック図で ある。

【図23】ホストコンピュータと記録装置との間でやり 取りされる信号を時系列に示す図である。

【図24】インクジェット記録システムでの動作を説明 するフローチャートである。

【図25】利用者に対する表示例を示す図である。

【図26】利用者に対する表示例を示す図である。

【図27】利用者に対する表示例を示す図である。

【図28】プリンタドライバによる色処理を説明する図 である。

【符号の説明】

- 素子基板 1
- 発熱体
- 面積中心 3
- キャリッジ部
- クリーニング部

記録ヘッド

(21)

39

キャップ *****61 10 液流路 7 1 ヘッドユニット 11 気泡発生領域 73 インクタンク 12 供給路 78,503 コンタクト面 共通液室 13 ホルダ 173 14 第1の液流路 記録装置 第1の共通液室 200 15 在来型の記録装置 200C 第2の液流路 16 新規型の記録装置 200N 17 第2の共通液室 210C 在来型の記録ヘッド 吐出口 18,70 新規型の記録ヘッド 10 210N 20 給紙部 220C 在来型のインクタンク 3 1 可動部材 新規型のインクタンク 220N 32 自由端 300 ホストコンピュータ 33 支点 アプリケーションプログラム 301 36 搬送ローラ OS 302 39 プラテン プリンタドライバ 303 40 気泡

【図1】

45

液滴

【図25】

0ピクトリアルモード1 0ピクトリアルモード2

O通常モード

0 白黒モード

【図27】

普通紙、コート紙、ピクトリアル紙 のいずれかをセットしてください

[図14] 【図11】 220C 210C 從来型 從未型配倒装置 200C 300 210N 200N 220N

【図13】

【図26】

ピクトリアルモード1用のヘッドカートリッジを 装着してください 現在のヘッドカートリッジ 通常モード用

【図17】

【図22】

[図18]

【図20】

【図24】

嗣 始 記録ヘッドやインクの 種類の確認 配録装置 200 ホストコンピュータに適知・ 記録装置の状態として、 ッド、インクの種類を登録 ホスト コンピュ 300 印刷モードに入る ユーザがマニュアルで 紀録モードを設定する ヘッド ヤインクの種類と配 録モードとの整合性 を判定 記録ヘッドやインク タンクの切り替えを表示 416 整合性あり 記録ヘッドやインク タンクの切り替えを確認 418 被記録媒体の種類を表示 ドライバによる色処理 終 7

【図28】

フロントページの続き

(72)発明者 長友 彰

東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内

(72)発明者 香野 哲史

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 石永 博之

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 樫野 俊雄

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 中田 佳恵

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
☐ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.