BÖLÜM 5. χ^2 (Kİ-KARE) ÇÖZÜMLEMESİ

 χ^2 çözümlemesi; beklenen değer ile gözlenen değer arasındaki farkın araştırılması için kullanılır.(Aralarındaki fark anlamlı mı?)

Örneğin; Bir para atma deneyinde

$$y \rightarrow 1/2$$
 $T \rightarrow 1/2$

olasılıkla ortaya çıkar.

n = 100 kez parayı atalım.

Beklenen	50Y	50T	(gözlenen-beklenen)
Gözlenen	45Y	55T	
	-5	5	fark vardır.

 ± 5 birimlik farkın istatistiksel olarak anlamlı olup olmadığı χ^2 çözümlemesi ile test edilir.

 χ^2 çözümlemesinin uygulandığı konular;

- a) Sıklık dağılımları ile olasılık dağılımları arasındaki farkın araştırılmasında χ^2 istatistiği kullanılır. Buna "Uyum İyiliği Testleri"denir.
- **b**) Sayımla belirtilen kitlelerde bağımsızlık kontrolünde kullanılır.

CAPRAZ TABLOLAR

a) Tek Gruplu Çapraz Tablo

Genellikle uyum iyiliği testlerinde kullanılır. Burada incelenen grup belirli bir özelliğe göre düzeylere ayrılmıştır.

Sınıflar	Sıklıklar	
1	f_1	
2	f_2	
3	f_3	
4	f_4 gi	bi.

Kullanılan test istatistiği;

$$\chi^2 = \sum_{i=1}^k \frac{(f_i - f_i')^2}{f_i'}$$

dir. Burada;

 χ^2 : Ki-kare değeri

 f_i : Gözlenen (deneysel) sıklık

 f_i' : Beklenen (kuramsal) sıklık

k : Sınıf sayısı

$$\sum_{i=1}^{k} f_i = \sum_{i=1}^{k} f_i' = n$$

dir.

b) $R \times C$ Çapraz Tablosu

R : Satır sayısı C : Sütun sayısı

Y	1	2		С	Toplam
1	f_{11}	f_{12}		f_{1C}	$n_{1.}$
2 :	f_{21} :	f_{22}		f_{2C}	n _{2.} ∶
R	f_{R1}	f_{R2}	•••	f_{RC}	$n_{R.}$
Toplam	<i>n</i> _{.1}	$n_{.2}$	•••	$n_{.C}$	n

$$\sum_{i=1}^{R} n_{i.} = \sum_{j=1}^{C} n_{.j} = n$$

$$\sum_{i=1}^{R} \sum_{j=1}^{C} f_{ij} = \sum_{i=1}^{R} \sum_{j=1}^{C} f_{ij}' = n$$

$$\chi^{2} = \sum_{i=1}^{R} \sum_{j=1}^{C} \frac{(f_{ij} - f'_{ij})^{2}}{f'_{ij}}$$

 f_{ij} :gözlenen sıklık

 f_{ij}' :beklenen sıklık

Örneğin; lise mezunlarının okuma alışkanlığı üzerinde yapılan bir araştırmada çapraz tablo aşağıdaki gibi olabilir.

	Kitap	Gazete	Dergi	Bilimsel	Toplam
				yayın	
Okuyan	f_{11}	f_{12}	f_{13}	f_{14}	$n_{1.}$
Okumayan	f_{21}	f_{22}	f_{23}	f_{24}	$n_{2.}$
Toplam	$n_{.1}$	$n_{.2}$	$n_{.3}$	$n_{.4}$	n

$$n_{.1} + n_{.2} + n_{.3} + n_{.4} = n_{1.} + n_{2.} = n$$

R=2, $C=4 \rightarrow 2 \times 4$ tipinde bir çapraz tablo

c) 2×2 Çapraz Tablo

R = 2, C = 2 olduğu durumdur.

$$\chi^{2} = \sum_{i=1}^{R} \sum_{j=1}^{C} \frac{\left(f_{ij} - f'_{ij}\right)^{2}}{f'_{ij}}$$

ya da

X	Hasta	Hasta değil	Toplam
Y			
Sigara içiyor	$f_{11} = \boldsymbol{a}$	$f_{12} = {\bf b}$	$n_{1.} = A$
Sigara içmiyor	$f_{21} = \boldsymbol{c}$	$f_{22} = \boldsymbol{d}$	$n_{2.} = \mathbf{B}$
Toplam	$n_{.1} = C$	$n_{.2} = \mathbf{D}$	n

olmak üzere 2 × 2 çapraz tablo için;

$$\chi^2 = \frac{(ad - bc)^2 n}{ABCD}$$

ile hesaplanır.

Not: Bu formül ile beklenen sıklıkların hesaplanması gerekmiyor. Sadece gözlenen sıklıklar kullanılır.

Özellikler

 χ^2 çözümlemesinde aşağıdaki özelliklere dikkat etmek gerekir:

- 1) Yapılacak tahminlerin güvenilir olması için beklenen sıklıkların en az 5 olması istenir. Eğer 5'ten az beklenen (kuramsal) sıklık değeri varsa, bu sıklığın yer aldığı satır ya da sütun tablodaki uygun bir satır ya da sütun ile birleştirilir.
- 2) Yates Düzeltmesi: Uygulamada genellikle denek sayısı n < 50 ve serbestlik derecesi 1 olduğunda Yates düzeltmesi yapılması gerektiği söylenir. Bu durumda χ^2 değişkeninin düzeltilmiş ve düzeltilmemiş değerlerinin karşılaştırılmasında yarar vardır; eğer her iki χ^2 değeri birbirinden çok farklı ise denek sayısı yetersizdir, örneklem genişliği artırılmalıdır.

(a) için;

$$\chi^2 = \sum_{i=1}^k \frac{(|f_i - f_i'| - 0.5)^2}{f_i'}$$

(b) ve (c) için;

$$\chi^2 = \sum_{i=1}^R \sum_{j=1}^C \frac{(|f_{ij} - f'_{ij}| - 0.5)^2}{f'_{ij}}$$

(c) için;

$$\chi^2 = \frac{(|ad - bc| - n/2)^2 n}{ABCD}$$

- 3) i.inci satırdaki gözlenen sıklık ile i.inci satırdaki beklenen sıklık toplamları birbirine eşit olmalıdır. Aynı şekilde j.inci sütundaki gözlenen sıklık ile j.inci satırdaki beklenen sıklık toplamları birbirine eşit olmalıdır.
- 4) 2 × 2 düzeninde çapraz tabloda 5'den az sayıda gözlenen sıklık varsa, önemlilik testi Fisher'in özel eşitliği uygulanarak yapılır.

Sayımla Belirtilen Kitlelerde Bağımsızlık Kontrolü

İki ya da daha çok grubun bağımsız olup olmadığı kontrol edilir. Veriler çapraz tablo üzerinde gösterilebilir.

1. Hipotez kurulur.

 H_0 : Değişkenler bağımsızdır.(Gruplar arası fark yoktur.)

 H_1 : Değişkenler bağımlıdır.(Gruplar arası fark vardır.)

2. Test istatistiği belirlenir.

 $R \times C$ tablosu düzenlenir ve f'_{ij} kuramsal sıklığı (i inci satır, j inci sütuna düşmesi gereken sıklık) şöyle bulunur:

$$f'_{ij} = (p_{i.})(p_{.j})n$$

Burada,

$$p_{i.} = \frac{n_{i.}}{n}$$
 ve $p_{.j} = \frac{n_{.j}}{n}$

dir. Buradan,

$$f'_{ij} = \frac{(n_i)(n_{,j})}{n}$$
, $i = 1, \dots, R(satir)$, $j = 1, \dots, C(s\ddot{u}tun)$

$$\chi^{2} = \sum_{i=1}^{R} \sum_{j=1}^{C} \frac{\left(f_{ij} - f'_{ij}\right)^{2}}{f'_{ij}}$$

R:satır sayısı

C:sütun sayısı

 f_{ij} :gözlenen sıklık

Yates Düzeltmeli Formülü

$$\chi_H^2 = \sum_{i=1}^R \sum_{j=1}^C \frac{(|f_{ij} - f'_{ij}| - 0.5)^2}{f'_{ij}}$$

2 × 2 düzeninde çapraz tablolar için;

$$\chi_H^2 = \frac{(ad-bc)^2 n}{ABCD}$$
, Yates düzeltmeli $\chi_H^2 = \frac{(|ad-bc|-n/2)^2 n}{ABCD}$

3. Yorum ve karar

 $\chi_H^2 > \chi_T^2$ ise H_0 red edilir.

$$\chi^2_{T(\alpha,s'=(R-1)(C-1))}$$
 ile bulunur.

Bir değişkenin ikiden çok düzeyi olduğunda ya da ikiden çok grup karşılaştırıldığında, gruplar arası fark önemli ise, gruplardan hangisinin diğerlerinden önemli derecede farklı olduğunu araştırmak gerekir. Bu nedenle en büyük χ^2 değerine sahip olan grup işlemden çıkarılır. Geriye kalan gruplar için, hipotez kabul edilinceye kadar işlemlere devam edilir.

95

Örnek 5.1. Bir sağlık idarecisi difteri-boğmaca karma aşısı satın alacaktır. Piyasada ayrı firmalara ait 4 aşı vardır ve idareci en etkin olanını seçmek istemektedir. Bunun için bir araştırma yaparak bütün aşıları uygulamış ve sonuçları şöyle bulmuştur. Aşılar arasında fark varmıdır $\alpha = 0.05$ anlam düzeyinde test ediniz.

	Korunan		orunan Korunmayan		
Aşı	f_{ij}	f_{ij}^{\prime}	f_{ij}	f_{ij}^{\prime}	Toplam
1	82	$\frac{123 \times 245}{372} = 82$	41	$\frac{123 \times 127}{372} = 42$	123
2	70	$\frac{94 \times 245}{372} = 62$	24	$\frac{94 \times 127}{372} = 32$	94
3	45	$\frac{65 \times 245}{372} = 43$	20	$\frac{65 \times 127}{372} = 22$	65
4	48	$\frac{90 \times 245}{372} = 59$	42	$\frac{90 \times 127}{372} = 31$	90
Toplam	245	245	127	127	372

- 1. H_0 : Koruyuculuk yönünden aşılar arasında fark yoktur. H_1 : Koruyuculuk yönünden aşılar arasında fark vardır.
- 2. Her bir satır için χ^2 değeri bulunur.

$$\chi_1^2 = \frac{(82 - 81)^2}{81} + \frac{(41 - 42)^2}{42} = 0.036$$

$$\chi_2^2 = \frac{(70-62)^2}{62} + \frac{(24-32)^2}{32} = 3.032$$

$$\chi_3^2 = \frac{(45-43)^2}{43} + \frac{(20-22)^2}{22} = 0.275$$

$$\chi_4^2 = \frac{(48-59)^2}{59} + \frac{(42-31)^2}{31} = 5.954$$

$$\chi_H^2 = \chi_1^2 + \chi_2^2 + \chi_3^2 + \chi_4^2 = 0.036 + 3.032 + 0.275 + 5.954 = 9.297$$

3.
$$\chi^2_{T(0.05,(4-1)\times(2-1)=3)} = 7.815$$

 $\chi_H^2 > \chi_T^2$ olduğundan H_0 red edilir.

Yorum: Aşılar arasında fark olduğu %95 güvenilirlikle söylenebilir.

Şimdi bu farklılığın hangi aşıdan kaynaklandığına bakılmalıdır. Bunun için en büyük χ^2 değerine sahip olan dördüncü aşı analiz dışı bırakılarak, diğer üç aşı arasında fark olup olmadığına bakılır.

Aşı	Korunan	Korunmayan	Toplam
1	82(86)	41(37)	123
2	70(66)	24(28)	94
3	45(45)	20(20)	65
Toplam	197	85	282

$$\chi_1^2 = \frac{(82-86)^2}{86} + \frac{(41-37)^2}{37} = 0.6185$$

$$\chi_2^2 = \frac{(70-66)^2}{66} + \frac{(24-28)^2}{28} = 0.8139$$

$$\chi_3^2 = \frac{(45-45)^2}{45} + \frac{(20-20)^2}{20} = 0$$

$$\chi_H^2 = 0.6185 + 0.8139 = 1.4324$$

$$\chi_{T(0.05,(3-1)\times(2-1)=2)}^2 = 5.99$$

 $\chi_H^2 < \chi_T^2$ olduğundan H_0 red edilemez. 1, 2, 3 nolu aşılar arasında fark yoktur.

Örnek 5.2 100 deney faresi iki gruba ayrılıyor. Birinci gruptaki 53 deney faresine bakteri ve daha sonra standart dozda anti serum veriliyor. İkinci gruptaki 47 fareye ise yalnız bakteri veriliyor. Belirli bir süre geçtikten sonra 81 fare canlı kalıyor. Bakteri ve anti serum verilen 8 fare ölüyor.%5 anlam düzeyinde farelerin ölümünün anti serum etkisinden bağımsız olup olmadığını araştırınız.

	Ölen		Canlı kalan		Toplam
Bakteri ve anti serum	8	10.07	45	42.93	53
Bakteri	11	8.93	36	38.07	47
Toplam		19		81	100

1. H_0 : Fare ölümleri anti serum etkisinden bağımsızdır.

 H_1 : Fare ölümleri anti serum etkisinden bağımsız değildir.

2.
$$\chi_H^2 = \frac{(8-10.07)^2}{10.07} + \frac{(45-42.93)^2}{42.93} + \frac{(11-8.93)^2}{8.93} + \frac{(36-38.07)^2}{38.07} = 1.1198$$

3.
$$\chi^2_{T(0.05, sd=1)} = 3.84$$
 $\chi^2_{H} < \chi^2_{T}$ olduğundan H_0 red edilemez.

Yorum: Fare ölümlerinin anti serum etkisinden bağımsız olduğu %95 güvenilirlikle söylenebilir.

Örnek 5.3 Rasgele olarak seçilen 200 hasta cinsiyet ve kandaki kolestrol miktarına göre aşağıdaki tabloda özetlenmiştir.

	Kandak			
Cinsiyet	Normal Değerlerden Küçük	Normal Değerler İçinde	Normal Değerlerden Büyük	Toplam
Kadın	10(30)	55(50)	35(20)	100
Erkek	50(30)	45(50)	5(20)	100
Toplam	60	100	40	200

 $\alpha=0.01$ anlam düzeyinde cinsiyet ile kandaki kolestrol miktarı arasında ilişki olup olmadığını test ediniz.

1. H_0 : Cinsiyet ile kandaki kolestrol miktarı arasında ilişki yoktur. H_1 : Cinsiyet ile kandaki kolestrol miktarı arasında ilişki vardır.

2.
$$\chi_H^2 = \sum_{i=1}^R \sum_{j=1}^C \frac{\left(f_{ij} - f'_{ij}\right)^2}{f'_{ij}}$$
$$= \frac{(10 - 30)^2}{30} + \frac{(55 - 50)^2}{50} + \dots + \frac{(5 - 20)^2}{20} = 50.167$$

3.
$$\chi_{T(\alpha,sd=(R-1)(C-1)=0.01,(2-1)\times(3-1)=2)}^2 = 9.21$$

 $\chi_H^2 > \chi_T^2$ olduğundan H_0 red edilir.

Yorum: Cinsiyet ile kandaki kolestrol miktarı arasında bir ilişkinin olduğu %99 güvenilirlikle söylenebilir.

Örnek 5.4 Çocukların davranışı normal ve patolojik olarak nitelendirildiğinde aşağıdaki verilere göre gözlemciler arası farklılığı araştırınız.($\alpha = 0.05$)

Psikiyatrist B Psikiyatrist A	Normal	Patolojik	Toplam
Normal	10 = a	8 = b	18 = A
Patolojik	20 = c	9 = <i>d</i>	29 = B
Toplam	30 = C	17 = D	47 = n

1. H_0 : İki gözlemci arasında fark yoktur.

 H_1 : İki gözlemci arasında fark vardır.

n < 50, sd = 1 olduğundan Yates düzeltmesi yapılır.

$$\chi_H^2 = \sum_{i=1}^R \sum_{j=1}^C \frac{(|f_{ij} - f'_{ij}| - 0.5)^2}{f'_{ij}}$$

ya da

$$\chi_H^2 = \frac{(|ad - bc| - n/2)^2 n}{ABCD}$$

$$= \frac{\left(|10 \times 9 - 8 \times 20| - \frac{47}{2}\right)^2 \times 47}{18 \times 29 \times 30 \times 17} = \frac{2162.25 \times 47}{18 \times 29 \times 30 \times 17} = 0.382$$

$$\chi^2_{T(0.05,(2-1)\times(2-1)=1)} = 3.84$$

 $\chi_H^2 < \chi_T^2$ olduğundan H_0 red edilemez.