МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Информационные технологии и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №1 по курсу «Программирование графических процессоров»

Освоение программного обеспечения для работы с технологией CUDA.

Примитивные операции над векторами.

Выполнил: М.А.Трофимов

Группа: 8О-408Б

Преподаватели: К.Г. Крашенинников,

А.Ю. Морозов

Условие

Цель работы. Ознакомление и установка программного обеспечения для работы с программно-аппаратной архитектурой параллельных вычислений(CUDA). Реализация одной из примитивных операций над векторами. **Вариант 8.** Реверс вектора. Подаётся число n и n вещественных чисел. Нужно сделать реверс этих n чисел и вывести с точностью 10 знаков после запятой.

Программное и аппаратное обеспечение

Характеристики GPU "NVIDIA GeForce GTX 950"

CUDA Driver Version / Runtime Version 11.4 / 11.4

CUDA Capability Major/Minor version number: 5.2

Total amount of global memory: 1997 MBytes (2094137344 bytes)

(006) Multiprocessors, (128) CUDA Cores/MP: 768 CUDA Cores GPU Max Clock rate: 1278 MHz (1.28 GHz)

Memory Clock rate: 3305 Mhz

Memory Bus Width: 128-bit

L2 Cache Size: 1048576 bytes

Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536), 65536),

3D=(4096, 4096, 4096)

Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers

Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

Total shared memory per multiprocessor: 98304 bytes Total number of registers available per block: 65536

Warp size: 32

Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

Maximum memory pitch: 2147483647 bytes

Texture alignment: 512 bytes

Характеристики CPU Intel i5-4460

of Cores 4

of Threads 4

Processor Base Frequency 3.20 GHz

Max Turbo Frequency 3.40 GHz

Cache 6 MB Intel® Smart Cache

Bus Speed 5 GT/s

Intel® Turbo Boost Technology 2.0 Frequency 3.40 GHz

TDP 84 W

Характеристики RAM

Total 15 Gi

Swap 2 Gi

Операционная система: Ubuntu 20.04 LTE

<u>IDE</u> Sublime Text 3

Compiler nvcc for cuda 11.4

Метод решения

Общая идея решения в том, что мы просто считываем в память массив, потом копируем его на наше устройство и запускаем ядровую функцию. В ядровой функции каждый тред с общим порядковым номером в ядре не больше n/2 начинает свапать соответствующий противоположный элемент и идти по массиву с шагом равному общему количеству тредов. Потом массив обратно копируется на хост и печатается в stdout.

Описание программы

Всё писалось одним файлом main.cu, в котором 2 функции main и revers_kernel. В main происходит считывание, работа с памятью и вывод, а в revers_kernel уже сам свап элементов, как описано выше. Размер массива хранится в $long\ long\ int$, а вещественный массив в double[n].

Результаты

Конфигурация	тест из 100 чисел	тест из (2^25-1)/2 чисел	тест из 2^25-1 чисел
Ha CPU	1мкс	28.625мс	57.865мс
1,1	14.433мкс	2.09351c	4.165c
1,32	3.1360мкс	94.929мс	194.91мс
64, 64	2.8160мкс	3.2345мс	6.6439мс
64, 512	8.8640мкс	3.2992мс	6.7494мс
512, 512	16.768мкс	3.0804мс	6.1621мс
1024,1024	65.954мкс	2.9872мс	6.1248мс

Выводы

Как видно, для маленьких тестов распараллеливание не ускоряет процесс реверса, а даже замедляется, т.к. запуск ядра на видеокарте требует большего времени, чем сама обработка на тредах. Но для достаточно крупных тестов с достаточно большим количеством тредов ускорение происходит почти в 10св раз. Программирование данной программы оказалось достаточно простой, и особых сложностей не возникло.