Министерства науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Вычислительная математика Лабораторная работа № 4 Вариант: 3

> Выполнил: Вильданов Ильнур Наилевич Группа №Р3212

Проверила: Машина Екатерина Алексеевна

Санкт-Петербург 2025 г.

ЦЕЛЬ РАБОТЫ	3
ЗАДАНИЕ	3
ЛИСТИНГ ПРОГРАММЫ	6
ПРИМЕРЫ И РЕЗУЛЬТАТЫ РАБОТЫ ПРОГРАММЫ	7
ВЫВОД	9

Цель работы

Найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

Задание

Вычислительная реализация задачи:

Функция:

$$y = \frac{4x}{x^4 + 3}$$
, $x \in [-2, 0]$ $h = 0.2$

Сформируем таблицу табулирования функции $y = \frac{4x}{x^4 + 3}$ на интервале $x \in [-2, 0]$ с шагом h = 0,2:

i	1	2	3	4	5	6	7	8	9	10	11
x_i	-2	-1,8	-1,6	-1,4	-1,2	-1	-0,8	-0,6	-0,4	-0,2	0
y_i	-0,421	-0,533	-0,669	-0,818	-0,946	-1	-0,938	-0,767	-0,528	-0,266	0

Линейная аппроксимация

Найдем линейное приближение данной функции:

$$\varphi(x,a,b) = ax + b$$

Введем обозначения:

$$SX = \sum_{i=1}^{n} x_i; \quad SXX = \sum_{i=1}^{n} x_i^2; \quad SY = \sum_{i=1}^{n} y_i; \quad SXY = \sum_{i=1}^{n} x_i y_i$$

Вычислим суммы:

$$SX = -(2 + 1.8 + 1.6 + 1.4 + 1.2 + 1 + 0.8 + 0.6 + 0.4 + 0.2) = -11$$

 $SXX = 4.00 + 3.24 + 2.56 + 1.96 + 1.44 + 1.00 + 0.64 + 0.36 + 0.16 + 0.04 + 0 = 15.4$
 $SY = -(0.421 + 0.533 + 0.669 + 0.818 + 0.946 + 1 + 0.938 + 0.767 + 0.528 + 0.266) = -6.886$
 $SXY = 0.842 + 0.9594 + 1.0704 + 1.1452 + 1.1352 + 1 + 0.7504 + 0.4602 + 0.2112 + 0.0532$
 $= 7.627$

Получаем систему линейных уравнений:

$$\begin{cases} aSXX + bSX = SXY \\ aSX + bn = SY \end{cases} \rightarrow \begin{cases} 15,4a - 11b = 7,627 \\ -11a + 11b = -6,886 \end{cases}$$

Из которой по правилу Крамера находим:

$$\begin{cases} \Delta = SXX \cdot n - SX \cdot SX \\ \Delta_1 = SXY \cdot n - SX \cdot SY \\ \Delta_2 = SXX \cdot SY - SX \cdot SXY \end{cases} \rightarrow \begin{cases} a = \frac{\Delta_1}{\Delta} = \frac{7,627 \cdot (-6,886) - (-11) \cdot 7,627}{15,4 \cdot 11 - (-11) \cdot (-11)} = 0,168 \\ b = \frac{\Delta_2}{\Delta} = \frac{15,4 \cdot (-6,886) - (-11) \cdot 7,627}{15,4 \cdot 11 - (-11) \cdot (-11)} = -0,457 \end{cases}$$

Таким образом, аппроксимирующая линейная функция имеет вид:

$$\varphi(x) = 0.168x - 0.457$$

i	1	2	3	4	5	6	7	8	9	10	11
x_i	-2	-1,8	-1,6	-1,4	-1,2	-1	-0,8	-0,6	-0,4	-0,2	0
y_i	-0,421	-0,533	-0,669	-0,818	-0,946	-1	-0,938	-0,767	-0,528	-0,266	0
$\varphi(x_i)$	-0,793	-0,759	-0,726	-0,692	-0,659	-0,625	-0.591	-0,558	-0,524	-0,490	-0,457
ε_i	-0,372	-0.226	-0,057	0,126	0,287	0,375	0,347	0,209	0,004	-0,224	-0,457

$$\varepsilon_i = \varphi(x_i) - y_i$$

Среднеквадратичное отклонение:

$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (\varphi(x_i) - y_i)^2}{n}} = 0,279$$

Квадратичная аппроксимация

Найдем квадратичное приближение данной функции:

$$\varphi(x) = a_2 x^2 + a_1 x + a_0$$

Введем обозначения:

$$SX = \sum_{i=1}^{n} x_i; \quad SXX = \sum_{i=1}^{n} x_i^2; \quad SXXX = \sum_{i=1}^{n} x_i^3; \quad SXXXX = \sum_{i=1}^{n} x_i^4$$

$$SY = \sum_{i=1}^{n} y_i; \quad SXY = \sum_{i=1}^{n} x_i y_i; \quad SXXY = \sum_{i=1}^{n} x_i^2 y_i$$

Вычислим суммы:

$$SX = -11$$

 $SXX = 15,4$
 $SXXX = -24,2$
 $SXXXX = 40,532$
 $SY = -6,886$
 $SXY = 7,627$
 $SXXY = -10,060$

Получаем систему линейных уравнений:

$$\begin{cases} na_0 + a_1SX + a_2SXX = SY \\ a_0SX + a_1SXX + a_2SXXX = SXY \\ a_0SXX + a_1SXXX + a_2SXXXX = SXXY \end{cases} \rightarrow \begin{cases} 11a_0 - 11a_1 + 15, 4a_2 = -6,886 \\ -11a_0 + 15, 4a_1 - 24, 2a_2 = 7,627 \\ 15, 4a_0 - 24, 2a_1 + 40,532a_2 = -10,060 \end{cases}$$

Из которой по правилу Крамера находим:

$$\begin{cases} \Delta = 66,405 \\ \Delta_0 = 0,465 \\ \Delta_1 = 113,960 \\ \Delta_2 = 51,454 \end{cases} \rightarrow \begin{cases} a_0 = \frac{\Delta_0}{\Delta} = \frac{0,465}{66,405} = 0,007 \\ a_1 = \frac{\Delta_1}{\Delta} = \frac{113,960}{66,405} = 1,717 \\ a_2 = \frac{\Delta_2}{\Delta} = \frac{51,454}{66,405} = 0,774 \end{cases}$$

Таким образом, квадратичная аппроксимация функции имеет вид:

$$\varphi(x) = 0.007 + 1.717x + 0.774x^2$$

i	1	2	3	4	5	6	7	8	9	10	11
x_i	-2	-1,8	-1,6	-1,4	-1,2	-1	-0,8	-0,6	-0,4	-0,2	0
y_i	-0,421	-0,533	-0,669	-0,818	-0,946	-1	-0,938	-0,767	-0,528	-0,266	0
$\varphi(x_i)$	-0,331	-0,576	-0,759	-0,880	-0,939	-0,936	-0,871	-0,745	-0,556	-0,305	0,007
$\boldsymbol{\varepsilon_i}$	0,09	-0,043	-0,09	-0,062	0,007	0,064	0,067	0,022	-0,028	-0,039	0,007

Среднеквадратичное отклонение:

$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (\varphi(x_i) - y_i)^2}{n}} = 0.055$$

Выбор наилучшего приближения

Лучшим является квадратичное приближение, поскольку его среднеквадратичное отклонение значительно меньше, чем у линейного:

Графики заданной функции

Листинг программы

```
A, B = np.linalg.solve([[len(X), sx], [sx, sxx]], [sy, sxy])
    sx = sum(X)
    sy = sum(Y)
    sxx = sum(x*x for x in X)
    sxxxx = sum(x**4 for x in X)
    sy = sum(Y)
        [sy, sxy, sxxy, sxxxy]
    A, b = linear_approximation(X, lnY)
    return math.exp(A), b
def logarithmic_approximation(X, Y):
    lnX = [math.log(x) for x in X]
    lnX = [math.log(x) for x in X]
lnY = [math.log(y) for y in Y]
    A, b = linear approximation(lnX, lnY)
    return math.exp(A), b
```

```
def count_correlation(X, Y):
    mx, my = sum(X)/len(X), sum(Y)/len(Y)
    num = sum((x-mx)*(y-my) for x,y in zip(X,Y))
    den = math.sqrt(sum((x-mx)**2 for x in X) * sum((y-my)**2 for y in Y))
    return num/den

def count_R2(Y, PHI):
    m = sum(PHI)/len(PHI)
    ss_res = sum((y - p)**2 for y, p in zip(Y, PHI))
    ss_tot = sum((y - m)**2 for y in Y)
    return 1 - ss_res/ss_tot

def count_sigma(Y, PHI):
    n = len(Y)
    return math.sqrt(sum((y - p)**2 for y,p in zip(Y,PHI)) / n)
```

Примеры и результаты работы программы


```
Выберите способ ввода: консоль - '1', файл - '2': 1
Введите точки в формате `х у`. По окончании ввода введите `q`.
    8.4
1
   8.1
2
3
  10.6
  12.8
5
  13.7
6
  15.9
7
  18.7
8
  22.1
9
  24.0
10 29.3
Выберите способ вывода: консоль - '1', файл - '2': 1
Аппроксимирующая функция: Линейная
```

```
Функция: \phi(x) = 2.284x + 3.800
Среднеквадратичное отклонение: \sigma = 1.368
Коэффициент детерминации: R^2 = 0.958 (Высокая аппроксимация)
Мера отклонения (SSE): S = 18.727
Коэффициент корреляции Пирсона: r = 0.979
Массивы значений:
x_i: 1.000, 2.000, 3.000, 4.000, 5.000, 6.000, 7.000, 8.000,
9.000, 10.000
yi: 8.400, 8.100, 10.600, 12.800, 13.700, 15.900, 18.700,
22.100, 24.000, 29.300
\varphi(x_i): 6.084, 8.367, 10.651, 12.935, 15.218, 17.502, 19.785,
22.069, 24.353, 26.636
\varepsilon_i: -2.316, 0.267, 0.051, 0.135, 1.518, 1.602, 1.085, -0.031,
0.353, -2.664
_____
Аппроксимирующая функция: Полиноминальная 2-й степени
Функция: \varphi(x) = 0.170x^2 + 0.417x + 7.533
Среднеквадратичное отклонение: \sigma = 0.593
Коэффициент детерминации: R^2 = 0.992 (Высокая аппроксимация)
Мера отклонения (SSE): S = 3.522
Массивы значений:
x<sub>i</sub>: 1.000, 2.000, 3.000, 4.000, 5.000, 6.000, 7.000, 8.000,
9.000, 10.000
yi: 8.400, 8.100, 10.600, 12.800, 13.700, 15.900, 18.700,
22.100, 24.000, 29.300
\phi(x_i): 8.120, 9.046, 10.312, 11.916, 13.861, 16.144, 18.767,
21.730, 25.032, 28.673
\varepsilon_i: -0.280, 0.946, -0.288, -0.884, 0.161, 0.244, 0.067, -0.370,
1.032, -0.627
_____
Аппроксимирующая функция: Полиноминальная 3-й степени
Функция: \varphi(x) = 0.008x^3 + 0.031x^2 + 1.059x + 6.810
Среднеквадратичное отклонение: \sigma = 0.575
Коэффициент детерминации: R^2 = 0.993 (Высокая аппроксимация)
Мера отклонения (SSE): S = 3.303
Массивы значений:
x_i: 1.000, 2.000, 3.000, 4.000, 5.000, 6.000, 7.000, 8.000,
9.000, 10.000
yi: 8.400, 8.100, 10.600, 12.800, 13.700, 15.900, 18.700,
22.100, 24.000, 29.300
\varphi(x_i): 7.908, 9.117, 10.489, 12.073, 13.921, 16.084, 18.610,
21.553, 24.961, 28.885
\varepsilon_{i}: -0.492, 1.017, -0.111, -0.727, 0.221, 0.184, -0.090, -0.547,
0.961, -0.415
______
Аппроксимирующая функция: Экспоненциальная
Функция: \phi(x) = 6.792 * e^0.144x
Среднеквадратичное отклонение: \sigma = 0.573
Коэффициент детерминации: R^2 = 0.993 (Высокая аппроксимация)
```

Мера отклонения (SSE): S = 3.284

```
Массивы значений:
x_i: 1.000, 2.000, 3.000, 4.000, 5.000, 6.000, 7.000, 8.000,
9.000, 10.000
yi: 8.400, 8.100, 10.600, 12.800, 13.700, 15.900, 18.700,
22.100, 24.000, 29.300
\varphi(x_i): 7.847, 9.065, 10.472, 12.097, 13.975, 16.144, 18.649,
21.544, 24.888, 28.751
\varepsilon_{i}: -0.553, 0.965, -0.128, -0.703, 0.275, 0.244, -0.051, -0.556,
0.888, -0.549
______
Аппроксимирующая функция: Логарифмическая
Функция: \varphi(x) = 8.474 * ln(x) + 3.561
Среднеквадратичное отклонение: \sigma = 3.190
Коэффициент детерминации: R^2 = 0.773 (Удовлетворительная
аппроксимация)
Мера отклонения (SSE): S = 101.734
Массивы значений:
x_i: 1.000, 2.000, 3.000, 4.000, 5.000, 6.000, 7.000, 8.000,
9.000, 10.000
yi: 8.400, 8.100, 10.600, 12.800, 13.700, 15.900, 18.700,
22.100, 24.000, 29.300
\varphi(x_i): 3.561, 9.435, 12.870, 15.308, 17.199, 18.744, 20.050,
21.181, 22.180, 23.072
\varepsilon_{i}: -4.839, 1.335, 2.270, 2.508, 3.499, 2.844, 1.350, -0.919, -
1.820, -6.228
______
Аппроксимирующая функция: Степенная
Функция: \phi(x) = 6.424 * x^0.562
Среднеквадратичное отклонение: \sigma = 2.382
Коэффициент детерминации: R<sup>2</sup> = 0.874 (Удовлетворительная
аппроксимация)
Мера отклонения (SSE): S = 56.734
Массивы значений:
x_i: 1.000, 2.000, 3.000, 4.000, 5.000, 6.000, 7.000, 8.000,
9.000, 10.000
yi: 8.400, 8.100, 10.600, 12.800, 13.700, 15.900, 18.700,
22.100, 24.000, 29.300
\varphi(x_i): 6.424, 9.486, 11.915, 14.007, 15.880, 17.594, 19.187,
20.683, 22.099, 23.448
\epsilon_{i}: -1.976, 1.386, 1.315, 1.207, 2.180, 1.694, 0.487, -1.417, -
1.901, -5.852
_____
Лучшая аппроксимирующая функция: Экспоненциальная
```

Вывод

Формула: $\phi(x) = 6.792 * e^0.144x$

В ходе выполнения лабораторной работы я изучил методы нахождения функции, являющейся наилучшим приближением заданной табличной функции по методу

наименьших квадратов, выполнил программную реализацию методов и построение функций на графике на языке Python.