

Département de génie des procédés

Travaux Dirigés de chimie générale (S1)

Série 1

Exercice 1:

- 1. Quel est le nombre d'électrons, de protons et de neutrons que possèdent les éléments suivants : ${}^{12}_{6}\alpha$, ${}^{28}_{14}Si$, ${}^{14}_{6}\beta$, ${}^{79}_{35}Br$, ${}^{35}_{17}Cl^{-}$, ${}^{32}_{16}S^{2-}$, ${}^{238}_{92}U$, ${}^{208}_{82}Pb$, ${}^{56}_{26}Fe^{3+}$
- 2. Déterminer le symbole de : α, β, quels sont, parmi ces éléments, ceux qui sont des isotopes ?

Exercice 2:

Quelle est la masse d'un atome des éléments suivants : le sodium, l'or, l'aluminium ?

Exercice 3:

Il y a 2.8 x 10^{22} atomes de cuivre 29Cu (63g/mole) dans une pièce de cuivre de 3g.

🖔 Combien y en a-t-il : d'électrons, de protons et de neutrons dans cette pièce ?

Quelles sont leurs contributions à la masse totale de la pièce ?

Exercice 4:

Calculer le nombre de moles de molécules de saccharose (C₁₂H₂₂O₁₁) dans un cube de sucre de 3g.

Exercice 5:

- 1. Quel est le nombre d'atome contenu dans 100 mg d'Or ?
- 2. Lequel des échantillons suivants, contient le plus d'argent : 5g d'Ag, 5uma d'Ag ou 5.10²² atomes d'Ag ?

Exercice 6:

Parmi les 3 pièces métalliques de masse 3g suivantes, laquelle qui contient le plus grand nombre d'atomes : (Al, Cr, Cu) ?

Exercice 7:

Un échantillon d'oxyde de cuivre CuO a une masse m = 1,59 g.

Combien y a-t-il de moles et de molécules de CuO et d'atomes de Cu et de O dans cet échantillon ?

On donne:

- Masse molaires : $\mathbf{Na} = 23 \text{ g.mol}^{-1}$, $\mathbf{Au} = 197 \text{ g.mol}^{-1}$, $\mathbf{Ag} = 107.9 \text{ g.mol}^{-1}$, $\mathbf{Al} = 27 \text{ g.mol}^{-1}$, $\mathbf{Cr} = 52 \text{ g.mol}^{-1}$, $\mathbf{Cu} = 63.5 \text{ g.mol}^{-1}$, $\mathbf{O} = 16 \text{ g.mol}^{-1}$.
- Masse de l'électron : $\mathbf{m}_{\acute{e}} = 9.109 \text{ x } 10^{-28} \text{ g}$, Masse du proton : $\mathbf{m}_{p} = 1.673 \text{ x } 10^{-24} \text{ g}$, Masse du neutron : $\mathbf{m}_{n} = 1.675 \text{ x } 10^{-24} \text{ g}$.
- Nombre d'Avogadro : $N = 6.023.10^{23}$.

Département de génie des procédés

Travaux Dirigés de chimie générale (S1)

Série 2

Exercice 1:

- 1. Etablir pour un atome hydrogénoïde (noyau de charge + Ze autour duquel gravite un électron), l'expression de l'énergie totale en fonction du rayon de l'orbite dans l'état stationnaire.
- 2. En tenant compte des hypothèses de Bohr, établir les formules donnant :
 - a) Le rayon de l'orbite de rang n.
 - b) L'énergie du système noyau-électron correspondant à cette orbite.
 - c) Exprimer le rayon et l'énergie totale de rang n pour l'hydrogénoïde en fonction des mêmes grandeurs relatives à l'atome d'hydrogène.
- 3. Calculer en eV et en joules, l'énergie des quatre premiers niveaux de l'ion hydrogénoïde Li²⁺, sachant qu'à l'état fondamental, l'énergie du système noyau-électron de l'atome d'hydrogène est égale à -13,6 eV.
- 4. Quelle énergie doit absorber un ion Li²⁺, pour que l'électron passe du niveau fondamental au premier niveau excité ?
- 5. Si cette énergie est fournie sous forme lumineuse, quelle est la longueur d'onde λ du rayonnement capable de provoquer cette transition ?

On donne:

Li (Z=3), $eV = 1,6.10^{-19}$ Joules, $h = 6,62.10^{-34}$ J.s, $c = 3.10^8$ m.s⁻¹

Exercice 2:

Pour les atomes suivant (lire sur le tableau périodique les informations manquantes) :

3Li, 6C, 7N, 12Mg, 14Si, P, Sc, 28Ni, 30Zn, 40Zr, Pb, I, 58Te, 79Au.

- 1. Donner les configurations électroniques à l'état fondamental correspondant.
- 2. Utiliser les cases quantiques pour déterminer la configuration électronique de la couche de valence correspondante.
- 3. Déduire le nombre d'électrons de valence.
- 4. Donner les quatre nombres quantiques et déterminer la famille et la période auxquelles ils appartiennent (situer ces atomes dans la classification périodique).

Exercice 3:

Donner les configurations électroniques des ions suivants : 24Cr³⁺, 26Fe²⁺, 27Co²⁺, 28Ni²⁺.

Exercice 4:

- 1. Classer par ordre de rayon croissant : 12Mg²⁺, 18Ar, 35Br⁻, 20Ca²⁺.
- 2. Classer par ordre d'énergie d'ionisation croissante : 11Na, 11Na⁺, 10Ne, 8O.

Département de génie des procédés

Travaux Dirigés de chimie générale (S1)

Série 3

Exercice 1:

Déterminer le nombre d'oxydation des espèces suivantes et indiquer dans quel couple redox ces espèces interviennent.

1.	Cu ²⁺ ; Cu; Cu ⁺	(NO de Cu)
2.	Cr ³⁺ ; Cr ₂ O ₇ ²⁻ ; CrO ₄ ²⁻	(NO de Cr)
3.	MnO ₄ -; Mn ²⁺	(NO de Mn)
4.	Cl ₂ ; Cl ⁻ ; ClO ₄ -; ClO-	(NO de Cl)
5.	H_2O ; O_2	(NO de O)
6.	BrO3 ⁻ ; Br ⁻ ; Br2	(NO de Br)
7.	LiH; H ₂	(NO de H)
8.	$Hg ; Hg_2Cl_2 ; Hg^{2+}$	(NO de Hg)

Exercice 2:

Pour chaque couple, écrire la demi-équation redox correspondant et indiquer l'espèce qui joue le rôle d'oxydant ou de réducteur.

- 1. Cu²⁺/Cu
- 2. $Cr_2O_7^{2-}/Cr^{3+}$
- 3. H_2O_2/H_2O
- 4. O₂ / H₂O
- 5. I₂ / I⁻
- 6. **PbBr**₂ / **Pb**
- 7. IO_{3}^{-}/I_{2}
- 8. Nb_2O_5/Nb
- 9. PdCl₄²⁻ / Pd
- 10. Cu²⁺ /CuCl

Exercice 3:

Equilibrer les réactions d'oxydoréduction suivantes :

1.	$Al(s) + H_2O(l) \rightarrow Al(OH)_4(aq) + H_2(g)$	(en milieu basique)
2.	$MnO_4^-(aq) + Fe_2^+(aq) \rightarrow Mn_2^+(aq) + Fe_3^+(aq)$	(en milieu acide)
3.	$Al(s) + S(s) \rightarrow Al(OH)_3(s) + HS^{-}(aq)$	(en milieu basique)

Département de génie des procédés

Corrigés -Travaux Dirigés de chimie générale

(S1)

Série 1

Exercice 1:

1.

Elément	nombre d'électrons	nombre de protons	nombre de neutrons
$^{12}_{6}\alpha$	6	6	12-6=6
$^{28}_{14}Si$	14	14	28-14=14
¹⁴ / ₆ β	6	6	14-6=8
39 Br	35	35	44
³⁵ ₁₇ Cl ⁻	17+1=18	17	18
$16^{32} S^{2}$	16+2=18	16	16
$_{92}^{238}$ U	92	92	146
²⁰⁸ ₈₂ Pb	82	82	126
26^{6}Fe^{3+}	26-3=23	26	30

Le symbole de $^{12}\alpha = ^{12}C$; $^{14}\beta = ^{14}C$; les isotopes du carbone comportent tous 6 électrons et 6 protons : carbone 12(6 neutrons), et carbone 14 (8 neutrons)

Exercice 2:

masse atome= Z x m protons+(A-Z) x m neutron+ Z x m électrons

Nous prendrons par exemple l'élément Sodium (11Na)

1 mole =
$$6,02.10^{23}$$
 atomes --> 23 g
1 atome --> ? g

Donc si Na atomes pèsent 23 g alors un atome de sodium pèse 3,8.10⁻²³ g

Exercice 3:

- Chaque atome de cuivre a 29 électrons car Z = 29. Le nombre total d'électrons est donc 29 électrons par atome x $(2.8 \times 10^{22} \text{ atomes})$

$$= 8.1 \times 10^{23}$$
 électrons

La masse d'un électron est 9.11×10^{-28} g, ainsi la masse totale des électrons présents est : $(8.1 \times 10^{23} \text{ électrons}) \times (9.11 \times 10^{-28} \text{g}) = 7.4 \times 10^{-4} \text{g}$

- Ce qui signifie que l'ensemble des électrons ne représente que 0.74mg ; les noyaux de cuivres sont responsables de pratiquement toute la masse.

Exercice 4:

Calculer la masse molaire moléculaire du saccharose. M=12x12+1x22+11x16 = 342 g/mol

Donc le nombre de moles de molécules de saccharose $X = 8.8 \times 10^{-3}$ mol.

Exercice 5:

•Le nombre d'atome contenu dans 100 mg d'Or :

Nombre d'atomes X= Nombre de moles x Nombre d'Avogadro

Soit le nombre d'atome dans 100 mg est = $(0.1/197) \times 6,02.10^{23} = 3.06 \times 10^{20}$ atomes.

•Lequel des échantillons suivants, contient le plus d'argent : 5g d'Ag, 5uma d'Ag ou 5.10²² atomes d'Ag?

- Le nombre de moles d'argent pour 5g

107.9 g -----> 1 mol 5 g ---->
$$X_1$$
 mol

$$X_1 = (5x1)/107.9$$
 ----> $X_1 = 46.3x10^{-3}$ mol

- Pour 5uma

5 uma d'Ag -----> 5 uma=
$$5x1.6603x 10^{-24}$$
g Pour le ¹²C 1 uma= $(12)/(12*6.023.10^{23})=0.166*10^{-23}$ g

Pour le
12
C ---- \rightarrow 12g----- \rightarrow 1mol Xg ----- \rightarrow at

$$X_2(\text{mol}) = (5x1.66x10^{-24}x1)/107.9$$

Pour $5x10^{22}$ atomes ---- $\rightarrow X_3$ (mol)= $5x10^{22}/N_a$

Comparer X1, X2 et X3.

Exercice 6:

Nombre d'atomes : 3g de Al, 3g de Cr et 3g de Cu

Nous prendrons par exemple l'élément Al

Nombre de mol de 3 g Al

X = (3x1)/27 = 0.11 mol

Nombre d'atomes X = (3/27) x Nombre d'Avogadro

Exercice 7:

Nombre de mole de CuO : n= m/MCuO = 1,59/(63,54+16) = 0,01999 moles

Nombre de molécules de CuO = (m/MCuO). $N = 0.12.10^{23}$ molécules

Nombre d'atomes de Cu = nombre d'atomes de $O = (m/MCuO) \cdot N = 0.12 \times 10^{23}$ atomes