Atoms

Daniel Wysocki and Nicholas Jira

Introduction

Neutral Atom

- atomic number Z
- nucleus has charge Ze
- surrounded by Z electrons
 - mass m
 - charge -e

$$H = H_{\text{nucleus}} + H_{\text{electrons}}$$

- H_{nucleus} is the total kinetic and potential energy resulting from the nucleus' electric field on the electrons
- $H_{\text{electrons}}$ is the potential energy resulting from the electrons' mutual repulsion

$$\begin{split} H_{\text{nucleus}} &= \sum_{j=1}^{Z} \left\{ -\frac{\hbar^2}{2m} \nabla_j^2 - \left(\frac{1}{4\pi\varepsilon_0} \right) \frac{Ze^2}{r_j} \right\} \\ H_{\text{electrons}} &= \frac{1}{2} \left(\frac{1}{4\pi\varepsilon_0} \right) \sum_{j \neq k}^{Z} \frac{e^2}{\|\mathbf{r}_j - \mathbf{r}_k\|} \end{split}$$

$$H = \sum_{j=1}^{Z} \left\{ -\frac{\hbar^2}{2m} \nabla_j^2 - \left(\frac{1}{4\pi\varepsilon_0} \right) \frac{Ze^2}{r_j} \right\} + \frac{1}{2} \left(\frac{1}{4\pi\varepsilon_0} \right) \sum_{j \neq k}^{Z} \frac{e^2}{\|\mathbf{r}_j - \mathbf{r}_k\|}$$

$$H\psi = E\psi$$

$$\psi = \psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_Z)$$

Acceptable Solutions to Schrödinger Equation

- electrons are identical fermions, so not all solutions are acceptable
 - no two electrons can occupy the same state

$$\psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_Z)\chi(\mathbf{s}_1,\mathbf{s}_2,\ldots,\mathbf{s}_Z)$$

• $\psi \cdot \chi$ must be anti-symmetric with respect to interchange of two electrons

Solutions to Schrödinger Equation

- only atom with a known analytic solution is Z = 1 (hydrogen)
- approximations must be made for heavier elements

Helium

$$H = \left\{ -\frac{\hbar^2}{2m} \nabla_1^2 - \frac{1}{4\pi\varepsilon_0} \frac{2e^2}{r_1} \right\} + \left\{ -\frac{\hbar^2}{2m} \nabla_2^2 - \frac{1}{4\pi\varepsilon_0} \frac{2e^2}{r_2} \right\} + \frac{1}{4\pi\varepsilon_0} \frac{e^2}{\|\mathbf{r}_1 - \mathbf{r}_2\|}$$

- two hydrogenic Hamiltonians with charge 2e
- electron repulsion term makes things difficult

Ignoring Repulsion

• if we ignore the difficult term, we find

$$\psi(\mathbf{r}_{1}, \mathbf{r}_{2}) = \psi_{n\ell m}(\mathbf{r}_{1})\psi_{n'\ell'm'}(\mathbf{r}_{2})$$

$$E = 4(E_{n} + E_{n'})$$

$$\psi_{0}(\mathbf{r}_{1}, \mathbf{r}_{2}) = \frac{8}{\pi a^{3}} \exp(-2(r_{1} + r_{2})/a)$$

$$E_{0} = 8(-13.6 \,\text{eV}) = -109 \,\text{eV}$$

Helium Ground State

- neglecting electron repulsion we found $E_0 = -109 \,\text{eV}$
- experimentation reveals $E_0 = -78.975 \,\text{eV}$
 - evidently electron repulsion is responsible for an additional $30\,\mathrm{eV}$ of energy

Helium Excited States

 consist of one electron in hydrogenic ground state, and the other in an excited state

$$\psi_{n\ell m}\psi_{100}$$

- if both electrons are in excited states
 - one immediately drops to the ground state
 - releases enough energy to knock the other out of the atom
 - produces helium ion (He⁺)

Helium Excited States

- both symmetric and anti-symmetric spin configurations exist
- anti-symmetric spin configurations (singlet)
 - parahelium
- symmetric spin configuration (triplet)
 - orthohelium
- electrons closer together in symmetric configuration
 - parahelium states have higher energy than orthohelium counterparts

The Periodic Table

- n^2 unique hydrogenic position wave functions with energy E_n
 - $2n^2$ wave functions when spin $(\uparrow\downarrow)$ is considered
- if rows of periodic table corresponded to # shells, they would have lengths 2, 8, 18, 32, 50, ...
 - instead they have lengths 2, 8, 8, 18, 18, ...

• Hydrogen: (1, 0, 0) has \uparrow

- Hydrogen: (1, 0, 0) has \uparrow
- Helium: (1, 0, 0) has $\uparrow \downarrow$

- Hydrogen: (1, 0, 0) has \uparrow
- Helium: (1, 0, 0) has $\uparrow \downarrow$
- Lithium: (1, 0, 0) full, $(2, \ell, 0)$ has \uparrow

Lithium Orbitals

 $(2, \ell, 0)$

- for $n=2, \ell$ can be 0 or 1
- in absence of electron-electron interactions, both have same energy
- in presence of of e-e interactions, higher angular momentum (ℓ) tends to send particle outwards
 - lower ℓ is thus favored

(2,0,0)

18 / 26

- Hydrogen: (1, 0, 0) has \uparrow
- Helium: (1, 0, 0) has $\uparrow \downarrow$
- Lithium: (1, 0, 0) full, (2, 0, 0) has \uparrow

- Hydrogen: (1, 0, 0) has \uparrow
- Helium: (1, 0, 0) has $\uparrow \downarrow$
- Lithium: (1, 0, 0) full, (2, 0, 0) has \uparrow
- Beryllium: (1, 0, 0) full, (2, 0, 0) has $\uparrow \downarrow$

- Hydrogen: (1, 0, 0) has \uparrow
- Helium: (1, 0, 0) has $\uparrow \downarrow$
- Lithium: (1, 0, 0) full, (2, 0, 0) has \uparrow
- Beryllium: (1, 0, 0) full, (2, 0, 0) has $\uparrow \downarrow$
- Boron: (1, 0, 0) full, (2, 0, 0) full, (2, 1, 0) has \uparrow

- Hydrogen: (1, 0, 0) has \uparrow
- Helium: (1, 0, 0) has $\uparrow \downarrow$
- Lithium: (1, 0, 0) full, (2, 0, 0) has \uparrow
- Beryllium: (1, 0, 0) full, (2, 0, 0) has $\uparrow \downarrow$
- Boron: (1, 0, 0) full, (2, 0, 0) full, (2, 1, 0) has \uparrow
- •

- Hydrogen: (1, 0, 0) has \uparrow
- Helium: (1, 0, 0) has $\uparrow\downarrow$
- Lithium: (1, 0, 0) full, (2, 0, 0) has \uparrow
- Beryllium: (1, 0, 0) full, (2, 0, 0) has $\uparrow \downarrow$
- Boron: (1, 0, 0) full, (2, 0, 0) full, (2, 1, 0) has \uparrow
- •
- Neon: (1, 0, 0) full, $\dots (2, 1, 1)$ full, (2, 1, 0) full, (2, 1, -1) full

- Hydrogen: (1, 0, 0) has \uparrow
- Helium: (1, 0, 0) has $\uparrow\downarrow$
- Lithium: (1, 0, 0) full, (2, 0, 0) has \uparrow
- Beryllium: (1, 0, 0) full, (2, 0, 0) has $\uparrow \downarrow$
- Boron: (1, 0, 0) full, (2, 0, 0) full, (2, 1, 0) has \uparrow
- •
- Neon: (1, 0, 0) full, $\dots (2, 1, 1)$ full, (2, 1, 0) full, (2, 1, -1) full
- Sodium: (3, 0, 0) has \uparrow

- Hydrogen: (1, 0, 0) has \uparrow
- Helium: (1, 0, 0) has $\uparrow\downarrow$
- Lithium: (1, 0, 0) full, (2, 0, 0) has \uparrow
- Beryllium: (1, 0, 0) full, (2, 0, 0) has $\uparrow\downarrow$
- Boron: (1, 0, 0) full, (2, 0, 0) full, (2, 1, 0) has \uparrow
- •
- Neon: (1, 0, 0) full, ...(2, 1, 1) full, (2, 1, 0) full, (2, 1, -1) full
- Sodium: (3, 0, 0) has \uparrow
- Magnesium: (3, 0, 0) has $\uparrow\downarrow$

- for the next six (aluminum through argon), $\ell = 1$
 - two for each value of m(-1, 0, +1)
- the next 10 would fill (3, 2, m), but electron-electron interactions change that
 - Potassium and Calcium fill (4, 0, 0)
 - Scandium through Zinc fill (3, 2, m)
- another jump occurs after Krypton, which fills (4, 1, m)
 - Rubidium starts to fill (5, 0, 0)

- $\ell = 0$ is called s
 - "sharp"

- $\ell = 0$ is called s
 - "sharp"
- $\ell = 1$ is called p
 - "principal"

- $\ell = 0$ is called s
 - "sharp"
- $\ell = 1$ is called p
 - "principal"
- $\ell = 2$ is called d
 - "diffuse"

- $\ell = 0$ is called s
 - "sharp"
- $\ell = 1$ is called p
 - "principal"
- $\ell = 2$ is called d
 - "diffuse"
- $\ell = 3$ is called f
 - "fundamental"

- $\ell = 0$ is called s
 - "sharp"
- $\ell = 1$ is called p
 - "principal"
- $\ell = 2$ is called d
 - "diffuse"
- $\ell = 3$ is called f
 - "fundamental"
- the rest come alphabetically after f, skipping over j
 - h, i, k, l, \ldots

• consider the ground state of Carbon

$$(1s)^2(2s)^2(2p)^2$$

- there are two electrons in (1, 0, 0)
- there are two electrons in (2, 0, 0)
- there are two electrons in some combination of

$$(2,1,1),(2,1,0),(2,1,-1)$$

Total Quanta

- in the Carbon example, there are two electrons with $\ell=1$
 - total angular momentum L could be 2, 1, or 0

Total Quanta

- in the Carbon example, there are two electrons with $\ell=1$
 - total angular momentum L could be 2, 1, or 0
- four electrons in the (1s) and (2s) states locked in singlet state with total spin S=0
- remaining two electrons in (2p) state could be in singlet or triplet state
 - total spin quantum number S could be 1 or 0

Total Quanta

- in the Carbon example, there are two electrons with $\ell=1$
 - total angular momentum L could be 2, 1, or 0
- four electrons in the (1s) and (2s) states locked in singlet state with total spin S=0
- remaining two electrons in (2p) state could be in singlet or triplet state
 - total spin quantum number S could be 1 or 0
- grand total J = L + S could be 3, 2, 1, or 0

Hund's Rules

- methods for figuring out the totals
- result written as

$$^{2S+1}L_J$$

• ground state of Carbon is 3P_0

Hund's Rules

- \bullet Consistent with the Pauli principle, the state with the highest total spin (S) will have the lowest energy.
- **2** For a given spin, the state with the highest total orbital angular momentum (L), consistent with overall anti-symmetrization, will have the lowest energy.
- 3 If a subshell (n, ℓ) is no more than half filled, then the lowest energy level has J = |L S|; if it is more than half filled, then J = L + S has the lowest energy.

Thank You

