

Model Development Phase Template

Date	21 July 2024
Team ID	Team-740025
Project Title	Unlocking Silent Signals :Decoding Body Language with Mediapipe
Maximum Marks	10 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include a summary and training and validation performance metrics for multiple models, presented through respective screenshots.

Initial Model Training Code (5 marks):

Paste the screenshot of the model traning code

Model Validation and Evaluation Report (5 marks):

Model	Summary	Training and Validation Performance Metrics
-------	---------	--

Model 1	GradientBoostingClassifier model typically include accuracy, precision, recall, F1 score to evaluate its predictive performance and generalization capability.	from sklearn.ensemble import GradientBoostingclassifier afrain; gbc = GradientBoostingclassifier(learning rate=0.02,
Model 2	AdaBoost classifier model commonly include accuracy, precision, recall, F1 score which help assess the model's prediction accuracy and generalizability	from sklearm.ensemble import AdaBoostClassifier #train ada = AdaBoostClassifier() ada.fit(X_train,y_train) #predict y_predicted_ab = ada.predict(X_test) print("Training Accuracy:", ada.score(X_train, y_train)) print("Testing Accuracy:", ada.score(X_test, y_test)) cr = classification_report(y_test, y_predicted_ab) print(ror) false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test,y_predicted_ab) roc_auc = auc(false_positive_rate, true_positive_rate) print("roc_auc",roc_auc) print("noc_auc",roc_auc) print("noc_auc",roc_auc) print("Roc curves = ",roc_auc) precision, recall, thresholds = rpecision_recall_curve(y_test,y_predicted_ab) f1 = f1_score(y_test, y_predicted_ab) Precision_Recall_abs = auc(recall, precision) Precision_Recall_abs = auc(recall, precision) Print("Precision_Recall Curves = ",Precision_Recall_abs) v_02s raining_Accuracy: 0.8328173374613003 Testing_Accuracy: 0.8328173374613003 Testing_Accuracy: 0.8328173374613003 Testing_Accuracy: 0.776173285198556 precision_recall_f1-score_support 0

Model 3	Random forest classifier model often encompass accuracy, precision, recall, F1 score to measure its prediction quality and robustness.	of from sklearn,ensemble import RandomForestClassifier rf = RandomForestClassifier() rf.fit(X train_get numeric data(), y train) y_pred rf = rf.predict(X_test_get_numeric_data()) print("reaining Accuracy:", rf.score(X_test_get_numeric_data(), y_train)) print("reaining Accuracy:", rf.score(X_test_get_numeric_data(), y_test)) ### confusion matrix(y_test, y_pred_rf) ### ### ### ### ### ### ### ### ### #
Model 4	XGB Classifier model typically include accuracy, precision, recall, F1 score to evaluate its prediction performance and generalization ability	from xgboost import XGBClassifier strain xgb = XGBClassifier() xgb.fit(x.train,y_train) spredict y predicted xgb = xgb.predict(x_test) print("Teashing Accuracy:", xgb.score(x_test, y_test)) cr = classification_report(y_test, y_predicted_xgb) print("resting Accuracy:", xgb.score(x_test, y_test)) cr = classification_report(y_test, y_predicted_xgb) print("