Números Reales - Desigualdades - Valor Absoluto

1) Representar en la recta de los números reales, los valores de "x" que satisfacen las siguientes expresiones. Dé la respuesta en forma de intervalo cuando corresponda:

a)
$$x = -2$$
 ó $x = 3$ b) $x \ne -2$ y $x \ne 2$ c) $x \ne 3$ ó $x \ne 2$ d) $x = 1$ y $x = 0$

b)
$$x \neq -2$$
 y $x \neq 2$

c)
$$x \neq 3$$
 \acute{o} $x \neq 2$

d)
$$x = 1$$
 y $x = 0$

e)
$$x+2>5$$

f)
$$2 - x > 3$$

e)
$$x+2>5$$
 f) $2-x>3$ g) $\frac{1}{3}x+\frac{2}{5}>\frac{1}{6}$ h) $\frac{-x}{2}+\frac{5}{3}>\frac{1}{4}$

h)
$$\frac{-x}{2} + \frac{5}{3} > \frac{1}{4}$$

i)
$$-(2-x) \ge x+3$$
 j) $\frac{3}{4}x-\frac{1}{3} > \frac{2}{5}x$ k) $2-(2x-1)3 < 2(1-x)+6$ l) $(-\frac{3}{5}x+1)\frac{2}{3} \ge \frac{1}{15}-2(\frac{x}{3}-\frac{2}{5})$

m)
$$6 < x - 2 \le 7$$

n)
$$2 \le 3x + 1 < 5$$

m)
$$6 < x - 2 \le 7$$
 n) $2 \le 3x + 1 < 5$ ñ) $-2 \le 8 - 2x \le -1$ o) $\frac{1}{4} \le x + \frac{1}{2} < \frac{5}{2}$

o)
$$\frac{1}{4} \le x + \frac{1}{2} < \frac{5}{3}$$

p)
$$-\frac{2}{5} \le \frac{3x}{5} - \frac{x}{10} < 3$$
 q) $\frac{3}{2}(x+4) \ge 2 - \frac{1}{5}(1-4x)$ r) $\frac{x+1}{4} - \frac{x}{3} > 1 + \frac{2x-1}{6}$ s) $-\frac{1}{6}(x+2) \le \frac{x}{2} - \frac{1}{3}$

r)
$$\frac{x+1}{4} - \frac{x}{3} > 1 + \frac{2x-1}{6}$$

$$s) - \frac{1}{6}(x+2) \le \frac{x}{2} - \frac{1}{3}$$

2) Determinar los valores de "x" que satisfagan la desigualdad:

a)
$$x + 2 > 5$$
 o $x + 1 < -2$

a)
$$x+2>5$$
 o $x+1<-2$ b) $x+4>2$ v $x-3<0$ c) $(x+1)(x-2) \ge 0$

$$c)(x+1)(x-2) \ge 0$$

d)
$$(x-4)(x-2) \le 0$$
 e) $\frac{-x+3}{x+1} < 0$

e)
$$\frac{-x+3}{x+1} < 0$$

f)
$$\frac{1}{(x+4)(-x+2)} > 0$$

3) Indicar si la siguiente resolución es V o F, justificando su respuesta:

$$\frac{4}{x} < 3 \implies \frac{4}{x} \times 3x \implies 4 < 3x \implies \frac{4}{3} < \frac{3x}{3} \implies \frac{4}{3} < x$$

4) Hallar los valores de "x" que verifican:
$$a)$$
 $3 < \frac{7}{x}$

b)
$$3 > \frac{7}{x}$$

- 5) Sean A, B y C tres puntos en la recta real y sean sus respectivas coordenadas: -6, -3, 8. Calcular las distancias entre sí, expresándolas con notación de valor absoluto.
- 6) Usar valor absoluto para definir cada intervalo (o par de intervalos) en la recta real:
 - a) Todos los números que distan a lo sumo 10 unidades del 12.
 - b) Todos los números que distan por lo menos 10 unidades del 12.
 - c) Todos los números cuya distancia al -3, es mayor o igual que 4 unidades.
 - d) Todos los números que están a menos de 5 unidades del 7.

Números Reales - Desigualdades - Valor Absoluto

7) Considerando la expresión general: |ax-C|=r, y siguiendo el ejemplo dado, completar tablas similares a la ejemplificada y hacer la representación en la recta numérica de cada uno de los incisos, para cada valor de "a".

(C/a: Centro del intervalo ; |r/a|: radio del intervalo)

f)
$$|ax + 2| \ge 3/4$$
 (para "a"=1; "a"= -1; "a"= 3; "a"=-1/2)

Ejemplo a):

"a"	Expresión dada:					Expresión obtenida:	"Li"	"Ls"
	ax+3 = 1	"C"	"r"	"C/a"	" r/a "	x-C/a = r/a	=(C/a)-(r/a)	=(C/a)+(r/a)
1	1x+3 =1	-3	1	-3	1	x+3 =1	-4	-2
-1	-1x+3 =1	-3	1	3	1	x-3 =1	2	4
3	3x+3 =1	-3	1	-1	1/3	x+1 =1/3	-4/3	-2/3
-2	-2x+3 =1	-3	1	3/2	1/2	x-3/2 =1/2	1	2

Números Reales - Desigualdades - Valor Absoluto

8) a) Con la misma nomenclatura anterior, dados en cada caso 2 valores entre "C", "r", "Li" y "Ls", según se indica en la tabla siguiente, complete los campos faltantes, siendo "a"=1. Indique la solución usando la expresión de valor absoluto y grafique en la recta de los números reales.

a=1	"C/a"	" r/a "	"Li"	"Ls"	Condición	Expresión
a)	4	2			≤	
b)			-3	-1	>	
c)	-2			3	<	
d)		5/3	-5/2		2	
e)	2/5		-1/3		=	
f)		3/2		12/7	≠	

b) Obtenga una expresión que represente el mismo intervalo obtenido en 8a) pero con los siguientes valores de "a" (coeficiente de "x").

	a=1 (Expresión 8a)	a=-1	a=2	a=2/3	a=-1/2
a)					
b)					
c)					
d)					
e)					
f)					

9) Resolver las siguientes inecuaciones en forma algebraica y geométrica, expresando la solución en notación de intervalo:

a)
$$x^2 < 9$$

$$b)x^2 \ge 10$$

a)
$$x^2 < 9$$
 b) $x^2 \ge 10$ c) $4x^2 > 12$

$$d) - 3x^2 \ge -1$$

$$e)2 < |x-4| \le 6$$

$$f)\frac{3}{2} \le |x-1| \le \frac{8}{3}$$

$$g)5 < |-x+2| \le 10$$

e)2<
$$|x-4| \le 6$$
 f) $\frac{3}{2} \le |x-1| \le \frac{8}{3}$ g)5< $|-x+2| \le 10$ h) $\frac{4}{3} \le \left|-\frac{3}{2}x + \frac{2}{5}\right| < 2$

i)
$$|x-4| \le |x+3|$$

i)
$$|x-4| \le |x+3|$$
 j) $|x-1| \le \left|-\frac{3}{2}x + \frac{2}{5}\right|$

10) Escribir cada uno de los intervalos dados como desigualdad: