Wärme- und Stoffübertragung I

Advektiver Stofftransport und Herleitung der Erhaltungsgleichungen

Prof. Dr.-Ing. Reinhold Kneer Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Lernziele

Massentransport im bewegten System

• Unterscheidung von diffusivem und advektivem Stofftransport

https://deacademic.com/dic.nsf/dewiki/751301

Massentransport durch Advektion

Massentransport durch Diffusion

Massentransport durch Advektion und Diffusion

Transportmechanismen

Massentransport = von Komponente i

Komponente *i* durch Advektion

Massentransport von + Massentransport von Komponente *i* durch Diffusion

$$\dot{m}_{i}^{"} = \dot{m}_{i,Adv}^{"} + j_{i,Diff}^{"}$$

- Advektion: Massentransport in Strömungsrichtung als Folge der Fluidströmung
- Diffusion: Massentransport in alle Richtungen als Folge von Konzentrationsgradienten und mikroskopischen Molekülbewegungen

Annahme:

- Massenströme komponentenweise betrachten
- Unterscheidung zwischen dem diffusiven und advektiven Transport

- $\triangleright u_A$: Mittlere Geschwindigkeit der Komponente A
- $\triangleright u_B$: Mittlere Geschwindigkeit der Komponente B
- > u: Mittlere Strömungsgeschwindigkeit (Geschwindigkeit vom Gesamtmassenstrom)

Bestimmung von mittlere Gesamtgeschwindigkeit:

$$\dot{m}_{\text{ges}} = \dot{m}_A + \dot{m}_B$$

$$\bar{\rho} u = \rho_A u_A + \rho_B u_B$$

$$u = \left(\frac{\rho_A}{\bar{\rho}}\right) u_A + \left(\frac{\rho_B}{\bar{\rho}}\right) u_B$$

$$u = \sum_i \xi_i u_i$$

Der Gesamtmassenstrom ist die Summe aus advektivem und diffusivem Massenstrom:

$$\dot{m}_i$$
" = $\dot{m}''_{i,Adv} + j''_{i,Diff}$

u ist eine massengemittelte

Geschwindigkeit

Bestimmung des Diffusionsstroms:

$$\dot{m}''_{i} = \dot{m}''_{i,Adv} + \dot{J}''_{i,Diff}$$

$$\rho_{i}u_{i} = \rho_{i}u + j''_{i}$$

Die Diffusionsgeschwindigkeit ist die Abweichung der Komponentgeschwindigkeit zur gemittelten Gesamtgeschwindigkeit

Bestimmung von Diffusionsstrom:

$$\dot{m}''_{i} = \dot{m}''_{i,Adv} + \dot{J}''_{i,Diff}$$

$$\rho_{i}u_{i} = \rho_{i}u + j_{i,i}$$

$$j_i^{"}=\rho_i(u_i-u)$$

Gesamt-Diffusionsstrom als Summe aller

Komponenten:

Tenten:
$$\sum_{i=1}^{n} j_i = \sum_{i=1}^{n} \rho_i u_i - \sum_{i=1}^{n} \rho_i u$$

$$= \overline{\rho} u = \sum_{i} \rho_i u_i$$

Beispiel: 1D-Stationäre Strömung ohne Quelle

Bilanz um Kontrollvolumen:

$$\mathbf{0} = \dot{m}_{i,x} - \dot{m}_{i,x+dx}$$

$$0 = \dot{m}''_{i,x} \cdot dy \cdot dz - \dot{m}''_{i,x+dx} \cdot dy \cdot dz$$

Taylorreihenentwicklung:

$$\dot{m}_{i,x+dx} = \left[\dot{m}''_{i,x} + \frac{\partial}{\partial x} (\dot{m}''_{i,x}) \cdot dx \right] \cdot dy \cdot dz$$

$$\eta h''_{i,x} \cdot dy \cdot dz - \left[\dot{m}'_{i,x} + \frac{\partial}{\partial x} (\dot{m}''_{i,x}) \cdot dx \right] \cdot dy \cdot dz = 0$$

$$-\frac{\partial}{\partial x}(\dot{m}^{\prime\prime}{}_{i,x})=0$$

Beispiel: 1D-Stationäre Strömung ohne Quelle

Bilanz um Kontrollvolumen:

$$-\frac{\partial}{\partial x}(\dot{m}^{\prime\prime}{}_{i,x})=0$$

$$\dot{m}''_{i} = \xi_{i} \cdot \rho \cdot u + j_{i}''$$

 \dot{m} ", im Bilanz einsetzen:

$$\frac{\partial}{\partial x} \left(\xi_i \cdot \rho \cdot u + j''_{i,x} \right) = 0$$

Summenregel und Kettenregel einsetzen:

$$\rho u \frac{\partial \xi_i}{\partial x} + \xi_i \frac{\partial (\rho u)}{\partial x} + \frac{\partial j''_{i,x}}{\partial x} = 0$$

Ficksches Gesetz:

$$j''_{i,x} = -\rho D \frac{\partial \xi_i}{\partial x}$$

$$\rho u \frac{\partial \xi_i}{\partial x} + \xi_i \frac{\partial (\rho x)}{\partial x} + \rho D \frac{\partial^2 \xi_i}{\partial x^2} = 0$$

= 0: 1-D Kontinuitätsgleichung

Beispiel: 3D-Stationäre Strömung ohne Quelle

Bilanz um Kontrollvolumen:

$$\frac{\partial}{\partial x} \left(\dot{m}^{\prime\prime}{}_{i,x} \right) + \frac{\partial}{\partial y} \left(\dot{m}^{\prime\prime}{}_{i,y} \right) + \frac{\partial}{\partial z} \left(\dot{m}^{\prime\prime}{}_{i,z} \right) = \mathbf{0}$$

$$\dot{m}''_i = \xi_i \cdot \rho \cdot u + j_i''$$

 \dot{m} "_i in Bilanz einsetzen:

$$\frac{\partial}{\partial x} \left(\xi_i \cdot \rho \cdot u + j''_{i,x} \right) + \frac{\partial}{\partial y} \left(\xi_i \cdot \rho \cdot v + j''_{i,y} \right) + \frac{\partial}{\partial z} \left(\xi_i \cdot \rho \cdot w + j''_{i,z} \right) = \mathbf{0}$$

Auftrennung der Terme mit Hilfe von Summenregel und Kettenregel:

$$\rho u \frac{\partial \xi_{i}}{\partial x} + \xi_{i} \frac{\partial (\rho u)}{\partial x} + \frac{\partial j''_{i,x}}{\partial x} + \rho v \frac{\partial \xi_{i}}{\partial y} + \xi_{i} \frac{\partial (\rho v)}{\partial y} + \frac{\partial j''_{i,y}}{\partial y} + \rho w \frac{\partial \xi_{i}}{\partial z} + \xi_{i} \frac{\partial (\rho w)}{\partial z} + \frac{\partial j''_{i,z}}{\partial z} = 0$$

Beispiel: 3D-Stationäre Strömung ohne Quelle

Bilanz um Kontrollvolumen:

DGL umordnen: Advektive Ströme

$$\rho u \frac{\partial \xi_{i}}{\partial x} + \rho v \frac{\partial \xi_{i,y}}{\partial y} + \rho w \frac{\partial \xi_{i}}{\partial z} + \xi_{i} \left[\frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} \right]$$

$$= -\left(\frac{\partial j''_{i,x}}{\partial x} + \frac{\partial j''_{i,y}}{\partial y} + \frac{\partial j''_{i,z}}{\partial z} \right) = 0 \text{ (Kontinuitätsgleichung!)}$$

Diffusive Ströme

Ficksches Gesetz:

$$j_{i,x} = -\rho D \frac{\partial \xi_i}{\partial x}$$

Analogie zwischen Energie- und Stofftransport

Energietransport:

$$\rho u c_p \frac{\partial T}{\partial x} + \rho v c_p \frac{\partial T}{\partial y} + \rho w c_p \frac{\partial T}{\partial z} = \chi \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right)$$

Entdimensionierung:

$$\overset{\downarrow}{a} = \frac{\lambda}{\rho c_p} = \frac{\nu}{Pr}$$

Prandtl-Zahl

$$Pr = \frac{v}{a} = \frac{Diffusiver\ Impulstransport}{Diffusiver\ W\"{a}rmetransport}$$

Nusselt-Zahl

$$Nu = \frac{\alpha \cdot L}{\lambda}$$

 $Nu(Re, Pr, Geometrie) \Rightarrow \alpha$

Stofftransport:

$$p u \frac{\partial \xi_i}{\partial x} + p v \frac{\partial \xi_{i,y}}{\partial y} + p w \frac{\partial \xi_i}{\partial z} = p D \left(\frac{\partial^2 \xi_i}{\partial x^2} + \frac{\partial^2 \xi_{i,y}}{\partial y^2} + \frac{\partial^2 \xi_i}{\partial z^2} \right)$$
Entdimensionierung:
$$D = \frac{v}{v}$$

Schmidt-Zahl

$$Sc = \frac{v}{D} = \frac{\eta}{\rho D} = \frac{Diffusiver\ Impulstransport}{Diffusiver\ Massentransport}$$

Sherwood-Zahl

$$Sh = \frac{g \cdot L}{\rho \cdot D}$$

 $Sh(Re,Sc,Geometrie) \Rightarrow g$

Massentransport = Stoffübergangskoeffizient • Fläche • Treibende Potential

Verständnisfragen

Bennen Sie das treibende Potential der Diffusion und der advektiven Stoffübertragung?

Welche Kennzahl der Stoffübertragung kann als Analogon zur Prandtl-Zahl in der Wärmeübertragung betrachtet werden?

Warum ist die Summe aller Diffusionsströme gleich Null?

