تمرین سری چهارم درس مدارهای مخابراتی

را $y(t)=kx_1(t)x_2(t)$ و خروجی کننده آنالوگ دو ورودی را مطابق شکل زیر مخلوط می کند و خروجی $x_1(t)=A_1\cos\omega_1 t$ و $x_1(t)=A_1\cos\omega_1 t$ یک ثابت است. فرض کنید $x_2(t)=A_2\cos\omega_2 t$

الف) اگر مخلوط کننده ایدهآل باشد، مولفههای فرکانسی خروجی را تعیین کنید.

 $oldsymbol{\psi}$) اگر پورت ورودی گیرنده $oldsymbol{x}_2(t)$ اثر غیرخطی (nonlinearity) مرتبه سوم داشته باشد، چه مولفههای فرکانسی در خروجی ظاهر میشوند؟

ر راهنمایی : سیستم گیرنده میتواند چنین مشخصه ای داشته باشد. $(y(t) \simeq \alpha_1 x(t) + \alpha_2 x^2(t) + \alpha_3 x^3(t)$

 $y(t)\simeq$ ورودی یک سیستم که مشخصه ورودی و خروجی آن را می توان به صورت که مشخصه ورودی یک سیگنال تداخلی با $lpha_1x(t)+lpha_2x^2(t)+lpha_3x^3(t)$ تقریب زد، متشکل از یک سیگنال مطلوب و یک سیگنال تداخلی با مدولاسیون فاز است. آیا در این حالت مدولاسیون تداخلی رخ می دهد ؟

 $(x(t) \simeq A_1 \cos \omega_1 t + A_2 \cos(\omega_2 t + \phi) : (\lambda t)$ (اهنمایی)

FET دارای دامنه نوسیان اسیلاتور 4~V و ترانزیسیتور FET دارای $I_S=5^{\mu A}(1+0.5\cos 10^4t)\cos 10^7t$ و $I_{DSS}=5~mA$ ، $|V_P|=5~V$ را بدست آورید.

 $\omega_S=9 imes 10^7 \, rac{rad}{sec}$ و $g(t)=1^{mV} \, (\, 1+mf(t)\,)$ و $g(t)=1^{mV} \, (\, 1+mf(t)\,)$ و $v_o(t)$ و مدار تنظیم کننده خروجی پهنای باند کافی برای عبور سیگنال را داشته باشد ، $v_o(t)$ را تعیین کنید.

