Числовая функция P, определенная на σ -алгебре \mathcal{A} , называется вероятностью, если выполняются аксиомы:

- 1) $P(A) \geqslant 0$ для любого события $A \in \mathcal{A}$;
- 2) $P(\Omega) = 1;$
- 3) $P\left(\sum_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}P(A_i)$ для любых $A_1,A_2,\ldots\in\mathcal{A}$, таких что $A_i\cdot A_j=\varnothing$ при $i\neq j$.

Если вероятность определяется на алгебре событий, то третья аксиома заменяется на условие: P(A+B)=P(A)+P(B) для любых несовместных событий A и B, принадлежащих \mathcal{A} .

Тройка (Ω, \mathcal{A}, P) называется вероятностным пространством.

Из определения вероятности следует, в частности, что

$$P(\varnothing) = 0; \ P(\overline{A}) = 1 - P(A).$$

Пусть производится опыт с n равновозможными исходами, образующими группу несовместных событий. Исходы, которые приводят к наступлению события A, называются благоприятными событию A. Тогда вероятность события A равна отношению числа m благоприятных исходов к числу n всевозможных исходов данного события:

$$P(A) = \frac{m}{n}$$

Данную формулу называют классическим определением вероятности.

4. Геометрическое определение вероятности

Классическое определение вероятности применимо, если имеется конечное число равновозможных исходов некоторого события. Если же пространство элементарных исходов бесконечно и является всюду плотным множеством, то используется геометрический подход. В его основе вероятности трактуются как «доли» множества благоприятных исходов во множестве всевозможных элементарных исходов:

$$P(A) = \frac{\mu(A)}{\mu(\Omega)}$$

Здесь $\mu(\Omega)$ есть мера фигуры Ω , соответствующей пространству всевозможных исходов, а $\mu(A)$ — мера фигуры, соответствующей множеству благоприятных событию A исходов.

В качестве меры могут выступать длина, площадь или объем в зависимости от размерности задачи. Предполагается, что $\mu(\Omega) > 0$.

Данную формулу называют геометрическим определением вероятности.