Introduction to Generalized Linear Models

FW8051 Statistics for Ecologists

Department of Fisheries, Wildlife and Conservation Biology

Outline

- Introduction to generalized linear models (today)
- Models for count data (Poisson and Negative Binomial regression)
- Models for Binary data (logistic regression)
- Models for data with lots of zeros

Learning Objectives

- Understand the role of random variables and common statistical distributions in formulating modern statistical regression models
- Be able to fit appropriate models to count data and binary data (yes/no, presence/absence) in both R and JAGS
- . Be able to evaluate model goodness-of-fit
- Be able to describe a variety of statistical models and their assumptions using equations and text and match parameters in these equations to estimates in computer output.

Linear Regression

Often written in terms of "signal + error":

$$y_i = \underbrace{\beta_0 + x_i \beta_1}_{\text{Signal}} + \underbrace{\epsilon_i}_{\text{error}}, \text{ with}$$

$$\epsilon_i \sim N(0, \sigma^2)$$

Possible because the Normal distribution has separate parameters that describe:

• mean:
$$E[Y_i|X_i] = \mu_i = \beta_0 + x_i\beta_1$$

• variance: $Var[Y_i|X_i] = \sigma^2$

Remember: for Poisson, Binomial distributions, the variance is a function of the mean.

Linear Regression

$$Y_i|X_i \sim N(\mu_i, \sigma^2)$$

 $\mu_i = \beta_0 + \beta_1 X_1 + \dots + \beta_n X_n i$

This description highlights:

- 1. The distribution of Y_i depends on a set of predictor variables X_i
- The distribution of the response variable, conditional on predictor variables is Normal
- 3. The mean of the Normal distribution depends on predictor variables (X_1 through X_p) and regression coefficients (the β_1 through β_p)
- 4. The variance is constant and given by σ^2 .

Generalized Linear Models

Generalized linear models further unifies several different regression models:

- General linear model
- Logistic regression
- Poisson regression
- ...

Rather elegant general theory developed for exponential family of distributions

Linear Regression = General Linear Model

Sometimes referred to as: General Linear Model

- t-test (categorical predictor with 2 categories)
- ANOVA (categorical predictor with > 2 categories)
- ANCOVA (continuous and categorical predictor, no interaction so common slope)
- Continuous and categorical variables, with possible interactions

Generalized Linear Models (glm)

Systematic component: $g(\mu_i) = \eta_i = \beta_0 + \beta_1 x_1 + \dots + \beta_D x_D$

Some transformation of the the mean, $g(\mu_l)$, results in a linear model.

- g() is called the link function
- $\eta_i = \beta_0 + \beta_1 x_1 + \dots \beta_p x_p$ is called the linear predictor.
- $\bullet \ \mu_i = g^{-1}(\eta_i) = g^{-1}(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p)$

Random component: $Y_i|X_i \sim f(y_i|x_i), i = 1, ..., n$

- f(y_i|x_i) is in the exponential family (includes normal, Poisson, binomial, gamma, inverse Gaussian)
- $f(y_i|x_i)$ describes unmodeled variation about $\mu_i = E[Y_i|X_i]$

Generalized Linear Models (glm)

Linear Regression:

- f(v_i|x_i) = N(μ_i, σ²)
- $E[Y_i|X_i] = \mu_i = \beta_0 + \beta_1 x_1 + ... \beta_n x_n$
- q(μ_i) = η_i = μ_i, the identity link
- $u_i = a^{-1}(n_i) = n_i = \beta_0 + \beta_1 x_1 + ... \beta_n x_n$

Poisson regression:

- f(v_i|x_i) ~ Poisson(λ_i) • $E[Y_i|X_i] = \mu_i = \lambda_i$
- $a(\mu_i) = n_i = loa(\lambda_i) = \beta_0 + \beta_1 x_1 + \dots \beta_n x_n$
- $\Phi \mu_i = g^{-1}(\eta_i) = \exp(\eta_i) = \exp(\beta_0 + \beta_1 x_1 + ... \beta_n x_n)$

Link functions and sample space

Link functions allow the "structural component" $(\beta_0 + \beta_1 x_1 + \dots \beta_p x_p)$ to live on $(-\infty, \infty)$ while keeping the μ_i consistent with the range of the response variable.

Poisson (counts) = $0.1, 2, ..., \infty$

- q(µ_i) = η_i = loq(λ_i) = β₀ + β₁x₁ + ... β₀x₀, range = (-∞, ∞) $\bullet \ \mu_i = \exp(\beta_0 + \beta_1 x_1 + \dots \beta_n x_n), \text{ range} = [0, \infty]$
- Logistic regression:
 - $g(\mu_i) = \eta_i = log(\frac{p_i}{1-p_i}) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$, range = $(-\infty, \infty)$
 - $\mu_i = g^{-1}(\eta_i) = \frac{\exp^{\eta_i}}{1 + \exp^{\eta_i}} = \frac{\exp^{\beta_0 + \beta_1 x_1 + \dots + \beta_0 x_0}}{1 + \exp^{\eta_0} + \beta_1 x_1 + \dots + \beta_0 x_0}$, range = (0, 1)

Other GLMs

Logistic regression:

- f(v_i|x_i) ~ Bernoulli(p_i)
- \bullet $E[Y_i|X_i] = p_i$
- $g(\mu_i) = \eta_i = logit(p_i) = log(\frac{p_i}{1-p_i}) = \beta_0 + \beta_1 x_1 + \dots \beta_p x_p$ $\mu_i = g^{-1}(\eta_i) = \frac{\exp^{\eta_i}}{1+\exp^{\eta_i}} = \frac{\exp^{\beta_0 + \beta_1 x_1 + \dots \beta_p x_p}}{1+\exp^{\beta_0 + \beta_1 x_1 + \dots \beta_p x_p}}$

By Gary Noon - Flickr. CC BY-SA 2.0. https://commons.wikimedia.org/w/index.php?curid=4077294

- X_i = amount of grassland cover
- Y_i|X_i ~ Poisson(λ_i)
- $\bullet log(\lambda_i) = \beta_0 + \beta_1 X_i$

Because the mean of the Poisson distribution is λ :

- $E[Y_i|X_i] = \lambda_i = \exp(\beta_0 + \beta_1 X_i) = \exp(\beta_0)\exp(\beta_1 X_i)$
- The mean number of pheasants increases by a factor of $exp(\beta_1)$ as we increase X_i by 1 unit.

Assumptions

- Poisson Response: The response variable is a count per unit of time or space, described by a Poisson distribution.
- Independence: The observations must be independent of one another.
- Mean=Variance: By definition, the mean of a Poisson random variable must be equal to its variance.
- 4. Linearity: The log of the mean rate, $log(\lambda)$, must be a linear function of x.

Visually

From Broadening Your Statistical Horizons: https://bookdown.org/roback/bookdown-bysh/

Next Steps

- Understand how Maximum Likelihood is used to fit modern statistical regression models (g1m)
- Be able to fit regression models appropriate for count data in R and JAGS
 - Poisson regression models
 - Quasi-Poisson (R only)
 - Negative Binomial regression
- Interpret estimated coefficients and describe their uncertainty using confidence and credible intervals
- Use simple tools to assess model fit
 - Residuals (deviance and Pearson)
 - Goodness-of-fit tests
- Use deviances and AIC to compare models.
- Use an offset to model rates and densities, accounting for variable survey effort
- Be able to describe statistical models and their assumptions using equations and text and match parameters in these equations to estimates in computer output.