Logistic Regression Softmax Regression

Linear Regression

독립변수 X와 종속변수 y 간의 선형상관관계를 모델링 주어진 데이터를 대표하는 하나의 직선(회귀선)을 찾는 것이 목적

$$y = Wx + b$$

Linear Regression

Least Squared Method (최소제곱법, 최소자승법)

잔차 제곱의 총 합이 최소가 되게 하는 파라미터 조합을 찾는 것이 목적 잔차(Residual): 표본집단에서 도출한 회귀식에 의한 예측값과 실제 관측값의 차이 오차(Error): 모집단에서 도출한 회귀식에 의한 예측값과 실제 관측값의 차이 손실 함수: 잔차의 제곱 / 비용 함수: 잔차 제곱의 합 / 목적 함수: 잔차 제곱의 합을 최소로 함

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

optimizer

$$Gradient = \frac{\partial loss}{\partial W}$$

$$W_{new} = W - \alpha \frac{\partial loss}{\partial W}$$

Logistic Regression

독립 변수의 선형 결합으로 종속 변수를 설명

종속 변수가 범주형 데이터

각 독립 변수를 입력으로 받아서 종속 변수의 특정 클래스로 분류하는 것이 목적

입력 값의 범위: [-∞,∞]

출력 값의 범위: [0,1]

일반적으로 이항형 문제(Binary Decision)의 해결에 사용

- 스팸탐지 : 스팸(1), 스팸 아님(0)
- 신용카드 사기 : 사기(1) 사기 아님(0)
- 고객 이탈 : 이탈(1) 이탈 아님(0)

Logistic Regression

- Odds Ratio는 성공 확률이 실패 확률의 몇 배인지를 나타내는 값
 - (성공, 실패) 확률이 각각 (0.8, 0.2)라면 → (Odds Ratio = 4)
 - 성공 확률이 p(x)라면 → 실패 확률은 1 p(x)
 - Odds Ratio = p(x) / (1 p(x))
- 일반적으로 Odds에 로그를 취한 Log-Odds 사용
 - 확률 p₊(x)에 대한 Log-Odds f(x)

Probability	odds	Log-odds	
0.5	1	0	
0.9	9	2.19	
0.999	999	6.9	
0.01	0.0101	-4.6	

$$f(\mathbf{x}) = logit(p_{+}(x)) = log\left(\frac{p_{+}(\mathbf{x})}{1 - p_{+}(\mathbf{x})}\right)$$

$$p_{+}(\mathbf{x}) = \frac{1}{1 + e^{-f(\mathbf{x})}}$$

$$BCE = -\frac{1}{N} \sum_{i=0}^{N} y_i \cdot log(\hat{y}_i) + (1 - y_i) \cdot log(1 - \hat{y}_i)$$

$$cost(W) = -\sum_{j=1}^{k} y_j log(p_j)$$

Logistic Regression

Softmax Regression

SepalLength	SepalWidth	PetalLength	PetalWidth	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
5.8	2.6	4.0	1.2	versicolor
6.7	3.0	5.2	2.3	virginica
5.6	2.8	4.9	2.0	virginica

소프트맥스 함수

$$p_i = rac{e^{z_i}}{\sum_{j=1}^k e^{z_j}} \ \ for \ i=1,2,\dots k$$

$$softmax(z) = [rac{e^{z_1}}{\sum_{j=1}^3 e^{z_j}} \; rac{e^{z_2}}{\sum_{j=1}^3 e^{z_j}} \; rac{e^{z_3}}{\sum_{j=1}^3 e^{z_j}}] = [p_1, p_2, p_3] = \hat{y} =$$
예측값

소프트맥스 비용함수

$$cost(W) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} y_j^{(i)} log(p_j^{(i)})$$

- https://wikidocs.net/59427
- Math4Al