Reductions

0/3 points earned (0%)

You haven't passed yet. You need at least 80% to pass. Review the material and try again! You have 3 attempts every 8 hours.

Review Related Lesson

0/1 points

1. (seed = 489125)

Which of the following problems can be linear-time reduced *to* the standard shortest-paths problem in digraphs with nonnegative weights? Check all that apply.

Given a digraph with positive edge weights and two *sets* of vertices S and T, find a shortest path from any vertex in S to any vertex in T.

This should be selected

Given a digraph with positive edge weights and a vertex s, find the shortest simple cycle that contains s.

This should be selected

Given an undirected graph with arbitrary edge weights, find a negative cycle.

Un-selected is correct

	Given an undirected graph and two vertices s and t, among all paths between s and t, find one that uses the fewest edges.
Corr	ect
Corre	Given a digraph and two vertices s and t, find a path from s to t that uses the fewest edges.
X 2. seed =	0 / 1 points = 511394)
array o	problems are known to have the same asymptotic complexity as sorting an of N real numbers? Assume the quadratic decision tree model of utation. Check all that apply.
	Given an array of N real numbers, determine if any two are equal.
Corr	ect
This	Given a sorted array of N real numbers, determine if any two sum to zero. should not be selected
Corre	Given two arrays of N real numbers, is one a permutation of the other (i.e., they contain exactly the same multiset of numbers)?
	Given N points in the plane, find all sets of 3 or more points that are collinear.
This	should not be selected

	Given an array of N real numbers, find one that occurs more than N/10 times.
Un-se	elected is correct
×	0 / 1 points
3. (seed =	÷ 686011)
	se that 3-SUM has a N^(3/2) lower bound and that 3-SUM linear-time reduces DLLINEAR. Which of the following can you infer? Check all that apply.
	If 3-COLLINEAR can be solved in N^(3/2) time, then so can 3-SUM.
Corre	ect
	3-SUM can be solved in N^(3/2) time.
Un-se	elected is correct
	If 3-COLLINEAR cannot be solved in N^(5/3) time, then neither can 3-SUM.
This	should not be selected
	3-COLLINEAR cannot be solved in N^(5/4) time.
Corre	ect
	If 3-SUM can be solved in N^(3/2) time, then so can 3-COLLINEAR.
This	should not be selected

