tarea 3 nicolas netz

June 14, 2023

1 Laboratorio de métodos aplicados: Tarea 3

Estudiante: Nicolás Netz

N°Mat: 2018458791

 $Correo:\ nnetz 2018@udec.cl$

Prof. Juan Carlos Caro

2 Importar los módulos necesarios y la data

En el presente notebook se utilizan distintas librerías para apoyar los cálculos y las visualizaciones. Además, se incluye una serie de funciones extra, para reutilizar código en distintas celdas.

3 Pregunta 1: Cargar base de datos

Cargue la base de datos y realice los ajustes necesarios para su uso (missing values, recodificar variables, etcetera). Identifique los tipos de datos que se encuentran en la base, realice estadisticas descriptivas sobre las variables importantes (Hint: Revisar la distribuciones, datos faltantes, outliers, etc.) y limpie las variables cuando sea necesario.

	income	kidhome	teenhome	recency	y mntwines	mntfruit	s mntmeatproducts	\
0	58138.0	0	0	58	8 635	8	8 546	
1	46344.0	1	1	38	3 11		1 6	
2	71613.0	0	0	26	426	4	9 127	
3	26646.0	1	0	26	5 11		4 20	
4	58293.0	1	0	94	173	4	3 118	
	mntfishp	roducts	mntsweetpr	oducts	mntgoldprod	s … mar	$ital_together \setminus$	
0		172		88	88	8 	0	
1		2		1	(6 	0	
2		111		21	42	2	1	
3		10		3	!	5 	1	
4		46		27	1!	5 	0	
	$marital_{-}$	widow ed	$lucation_2n$	cycle	education_ba	asic edu	cation_graduation	\
0		0		0		0	1	
1		0		0		0	1	

2	0	0	0	1
3	0	0	0	1
4	0	0	0	0

	education_master	education_phd	mnttotal	${\tt mntregularprods}$	\
0	0	0	1529	1441	
1	0	0	21	15	
2	0	0	734	692	
3	0	0	48	43	
4	0	1	407	392	

acceptedcmpoverall

0	0
1	0
2 3	0
3	0
4	0

[5 rows x 39 columns]

3.1 Notas al leer la data

Se tienen 2205 entradas en 39 columnas, las cuales corresponden a lo indicado en la tabla:

- AcceptedCmp1
- AcceptedCmp2
- AcceptedCmp3
- AcceptedCmp4
- AcceptedCmp5
- Response
- Complain
- DtCustomer
- Education
- Marital
- Kidhome
- Teenhome
- Income
- MntFishProducts
- MntMeatProducts
- MntFruits
- MntSweetProducts
- MntWines
- MntGoldProds
- NumDealsPurchases
- $\bullet \quad Num Catalog Purchases$
- NumStorePurchases
- NumWebPurchases
- NumWebVisitsMonth

- Recency
- Age
- Customer Days
- marital_divorced
- marital married
- marital single
- marital together
- marital widow
- education basic
- education 2n
- education graduation
- education master
- \bullet education_phd
- MntTotal
- z costcontact
- z revenue
- mntregularprods
- acceptedcmpoverall

No se identificaron valores NaN en ninguna de las columnas. A continuación se presentan los estadísticos descriptivos de las variables, para analizar rangos (mínimos y máximos), promedio y count. Lo unico extraño que se identifica es que en la variable mntregularprods hay valores negativos, indicando que una persona recibió dinero al comprar mntregularprods ó algo similar. Debido a esto, se filtran esos valores.

A continuación se presentan los estadísticos descriptivos de las variables.

3.2 Notas sobre estadísticos descriptivos

Se revisó que los valores mínimos y máximos de las distintas variables estén en sus rangos.

Algunas cosas que notar: * mntregularprods tiene valores negativos, por lo que se filtran.

	income	kidhome	teenhome	recency	mntwines	\
count	2205.000000	2205.000000	2205.000000	2205.000000	2205.000000	
mean	51622.094785	0.442177	0.506576	49.009070	306.164626	
std	20713.063826	0.537132	0.544380	28.932111	337.493839	
min	1730.000000	0.000000	0.000000	0.000000	0.000000	
25%	35196.000000	0.000000	0.000000	24.000000	24.000000	
50%	51287.000000	0.000000	0.000000	49.000000	178.000000	
75%	68281.000000	1.000000	1.000000	74.000000	507.000000	
max	113734.000000	2.000000	2.000000	99.000000	1493.000000	
	mntfruits	mntmeatproducts	mntfishpro	ducts mntswe	eetproducts \	\
count	2205.000000	2205.000000	2205.0	00000 2	2205.000000	
mean	26.403175	165.312018	37.7	56463	27.128345	
std	39.784484	217.784507	54.8	24635	41.130468	
min	0.000000	0.000000	0.0	00000	0.000000	
25%	2.000000	16.000000	3.0	00000	1.000000	

50%	8.000000		68.000000	12	.000000	8	.000000	
75%	33.000000		232.000000	50	.000000	34	.000000	
max	199.000000		1725.000000	259	.000000	262	.000000	
	${\tt mntgoldprods}$	•••	marital_togethe		ital_widow	educat	- "	\
count	2205.000000	•••	2205.00000	0 2	205.000000		2205.000000	
mean	44.057143	•••	0.25759	6	0.034467		0.089796	
std	51.736211	•••	0.43741	0	0.182467		0.285954	
min	0.000000	•••	0.00000	0	0.000000		0.000000	
25%	9.000000		0.00000	0	0.000000		0.000000	
50%	25.000000	•••	0.00000	0	0.000000		0.000000	
75%	56.000000	•••	1.00000	0	0.000000		0.000000	
max	321.000000		1.00000	0	1.000000		1.000000	
	education_bas	sic	education_gradu	ation	education_	master	education_phd	\
count	2205.0000	000	2205.0	00000	2205.	000000	2205.000000	
mean	0.0244	190	0.5	04762	0.	165079	0.215873	
std	0.1545	99	0.5	00091	0.	371336	0.411520	
min	0.0000	000	0.0	00000	0.	000000	0.000000	
25%	0.0000	000	0.0	00000	0.	000000	0.000000	
50%	0.0000	000	1.0	00000	0.	000000	0.000000	
75%	0.0000	000	1.0	00000	0.	000000	0.000000	
max	1.0000	000	1.0	00000	1.	000000	1.000000	
	mnttotal	mnt	regularprods ac	cepted	cmpoverall			
count	2205.000000		2205.000000		2205.00000			
mean	562.764626		518.707483		0.29932			
std	575.936911		553.847248		0.68044			
min	4.000000		-283.000000		0.00000			
25%	56.000000		42.000000		0.00000			
50%	343.000000		288.000000		0.00000			
75%	964.000000		884.000000		0.00000			
max	2491.000000		2458.000000		4.00000			

[8 rows x 39 columns]

3.3 Notas sobre la matriz de correlación y la distribución de las variables

En los gráficos de esta sección se revisaron algunas distribuciones de las variables. Notamos que las personas con response = 1 son pocas. Se identifica que la mayoría de las personas no tienen un hijo en la casa, ni un adolescente, o a lo más tienen uno. En términos de rango etario, la mayoría se concentra entre los 40 y los 60 años. La mayoría de las personas tiene un income de entre 40000 y 75000. Notamos que la variable Recency tiene una distribución predominantemente uniforme, sin embargo, la de income tiene más forma de camapana. Es importante notar esto, pues en un análisis de más adelante, se convierte la variable income en tramos. (low, medium y high income).

Al ver la matriz de correlación, se identifican valores con alta correlación (negativa). Las variables con correlación más fuerte son las de tipo num% y mnt%. No hay correlación perfecta.

<Axes: xlabel='recency', ylabel='Count'>

<bound method Text.set_x of Text(0.5, 1.0, 'Response')>

4 Pregunta 2: PCA

Realice un PCA usando las variables de numero de compras y cantidad gastada en los diversos items. En particular, identifique los valores propios y determine el numero optimo de componentes. Luego estime y grafique la distribución de los componentes. Ademas discuta la importancia relativa de las variables sobre cada uno de los componentes estimados. Que se puede concluir de este analisis?

4.1 Respuesta 2: PCA

Se realiza un PCA usando las variables (11 variables): * 'numdealspurchases', 'numwebpurchases', 'numcatalogpurchases', 'numstorepurchases', 'numwebvisitsmonth', 'mntwines', 'mntfinits', 'mntmeatproducts', 'mntfishproducts', 'mntsweetproducts', 'mntgoldprods'

Para utilizar estas variables, que tienen distintas unidades de medida y escalas, se usa la clase

StandardScaler de scikit-learn para aplicar una transformación de estandarización a los datos. (Se le quita la media y se escala a la varianza unitaria).

Notar que no se utilizó la variable mnttotal, pues no es más que la suma de las otras "mnt%" variables anteriores, lo que generaría problemas de especificación.

A partir de este PCA, se obtienen los siguientes valores propios:

variable	valor propio
PCA1	0.4776
PCA2	0.1443
PCA3	0.0745
PCA4	0.0581
PCA5	0.0511
PCA6	0.0458
PCA7	0.0392
PCA8	0.0358
PCA9	0.0291
PCA10	0.0245
PCA11	0.0200

Notamos que, a partir del Scree Plot siguiente, se genera un punto de inflexión con 2 Componentes principales, por lo que se decide usar ese número de componentes (explica el 0.47+0.14=0.62 de la varianza , mientras que si se agrega el tercero se llegaría solo a 0.69 y sólo complicaría el análisis.)

[0.4776 0.1443 0.0745 0.0581 0.0511 0.0458 0.0392 0.0358 0.0291 0.0245 0.0200]

Así, según lo discutido anteriormente, se realiza un nuevo PCA con sólo 2 componentes. Se obtienen los siguientes valores propios:

variable	valor propio
PCA1	0.4776
PCA2	0.1443

Donde la figura siguiente muestra el scree plot.

4.1.1 Sobre la importancia relativa de las variables sobre cada componente estimado.

En la siguiente tabla se presentan los vectores propios. Al analizar estos, podemos ver que las distintas variables (columnas) tienen diferentes importancias relativas sobre los componentes 1 y 2 (filas). Notamos que algunas variables tienen mayor importancia sobre un componente que sobre otro. Esto ayuda a indicar que tal vez un grupo de variables que tiene similar importancia sobre los componentes pertenencen a un grupo. Todo esto se justificaría por los efectos de la varianza a la hora de calcular los componentes.

Tabla con vectores propios

	numdealspurchases	numwebpurchases	numcatalogpurchases	\
PC1	-0.048176	0.249046	0.367340	
PC2	0.643732	0.493824	0.014259	
	numstorepurchases	numwebvisitsmonth	n mntwines mntfruits	\
PC1	numstorepurchases 0.329704	numwebvisitsmonth -0.275900		\

mntmeatproducts mntfishproducts mntsweetproducts mntgoldprods

PC1	0.358649	0.328884	0.317219	0.266472
PC2	-0.123291	-0.141465	-0.112040	0.172859

5 Pregunta 3: PCA 3 componentes

Con los resultados de la Pregunta 2, mantenga los primeros 3 componentes principales y repita el analisis. Graficamente y estadisticamente indique si existen diferencias o relaciones significativas entre los valores de los PCA y las siguientes variables: Income, Kidhome, Education y Recency. Que puede concluir de los resultados?

5.1 Respuesta 3: PCA 3

Se ejecuta el modelo con los 3 componentes principales. Al revisar el scree plot a continuación, se identifica que los componentes principales alcanzan a explicar cerca del 70% de la varianza. La importancia relativa de las variables sobre los componentes se puede ver en la tabla con vectores propios más abajo. Con esa tabla, se puede de identificar grupos de variables que tienen efectos similares sobre los componentes.

variable	valor
PC1	0.47762042
PC2	0.14426904
PC3	0.07451216
PC2	0.14426904

Tabla con vectores propios

	numdealspurchases	numwebpurchases	numcatalogpurch	ases \
PC1	-0.048176	0.249046	0.36	7340
PC2	0.643732	0.493824	0.01	4259
PC3	0.234977	-0.064529	-0.19	0959
	numstorepurchases	numwebvisitsmont	h mntwines mnt	fruits \
PC1	0.329704	-0.27590	0 0.325823 0.	318278
PC2	0.187767	0.40212	6 0.224310 -0.	128922
PC3	-0.264638	0.25684	8 -0.465169 0.	393674
	${\tt mntmeatproducts}$	mntfishproducts m	ntsweetproducts	${\tt mntgoldprods}$
PC1	0.358649	0.328884	0.317219	0.266472
PC2	-0.123291	-0.141465	-0.112040	0.172859
PC3	-0.122385	0.368499	0.348843	0.352605

5.1.1 Valores PCA y Income

Para analizar la relación entre el PCA e Income, se revisa gráficamente la distribución de esta variable para generar 3 grupos. low income [0,25000], medium income [25000, 80000] y high income [80000,max(income)].

En la figura Income by PC1, PC2 se ajustó una regresión a cada grupo sobre los componentes principales 1 y 2. En cada figura se puede ver la recta con la que se ajustó y sus intervalos de confianza. Se puede identificar que estos 3 grupos son significativamente distintos pues ninguna de las rectas ni sus intervalos de confianza del error se intersectan. Se podría hacer el mismo análisis numericamente.

<Axes: title={'center': 'Income Distribution'}, ylabel='Frequency'>

5.1.2 Valores PCA y Kidhome

Se sigue la misma metodología anterior, y se identifica que el grupo de kidhome que no tiene un hijo en casa tiene un comportamiento distinto a los que tienen 1 hijo o más en casa, pues las rectas de regresión son distintas.

5.1.3 Valores PCA y Education

Se identifica que sobre la variable education, el grupo education_basic es significativamente distinto de los demás, sin embargo entre los otros no es posible identificar una diferencia significativa.

5.1.4 Valores PCA y Recency

Se identifica que la distribución de la variable es más bien uniforme, sin embargo, se agrupa en dos partes, quienes tienen bajos valores de recency y quienes tienen altos (0,30) y $(30, \max(\text{recency}))$.

Al ver la figura Recency in Ranges, no se identifica una diferencia significativa de los valores del PCA sobre los grupos.

<Axes: ylabel='Frequency'>

6 Pregunta 4: EFA

A partir del mismo set de variables de la pregunta 2 realice un EFA. En particular determine el numero optimo de factores y las variables que se asocian a cada factor. Tambien discuta si existen variables que no son informativas

En esta sección se usan las variables de la pregunta 2:

- numdealspurchases
- numwebpurchases
- numcatalogpurchases
- numstorepurchases
- numwebvisitsmonthmntwines
- mntfruits
- mntmeatproducts
- mntfishproducts
- mntsweetproducts
- mntgoldprods

Se aplica un Análisis Factorial Exploratorio, donde todas las medidas se relacionan con las variables

latentes. Se utiliza el análisis factorial mediante 'promax'. Notar que los datos no se normalizan como en las secciones anteriores, pues los efectos de escala no influyen en el resultado.

FactorAnalyzer(rotation_kwargs={})

Resultados analisis factorial exploratorio

	Factor1	Factor2	Factor3
numdealspurchases	0.100497	-0.036368	0.588414
numwebpurchases	0.557527	0.178358	0.495534
numcatalogpurchases	0.653613	0.185869	-0.149049
numstorepurchases	0.651740	0.135909	0.053503
numwebvisitsmonth	-0.330337	-0.153133	0.577575
mntwines	1.049109	-0.254270	-0.006035
mntfruits	-0.080855	0.808227	-0.035443
mntmeatproducts	0.455455	0.327126	-0.248123
mntfishproducts	-0.082705	0.837038	-0.056700
mntsweetproducts	-0.028239	0.750323	-0.032244
mntgoldprods	0.202965	0.433575	0.155904

A partir de la tabla anterior "Resultados analisis factorial exploratorio", se identifica la magnitud (en desviaciones estándar) con la que una variable influye en cada factor. Así, se identifica por ejemplo, que el factor 1 se relaciona fuertemente con mntwines, mntmeatproducts, numcatalogpurchases y numstorepurchases.

No se identifica una variable que sea poco informativa, pues todas tienen una influencia de al menos 0.5 en algún factor.

6.0.1 Número optimo de factores

Al ver el Scree Plot anterior, se identifica que el punto de inflexión ocurre con 3 factores. Por lo tanto, el número optimo de factores sería 3.

eta1 =~ mntmeatproducts + mntfishproducts + mntfruits + mntsweetproducts +
mntwines + mntgoldprods

7 Pregunta 5: CFA

Con los resultados obtenidos en la Pregunta 4, proponga un CFA donde cada variable solo se asocia con un factor. Entregue un nombre a cada factor que representa el concepto comun entre todas las variables. Reporte la importancia de cada medida (variable) a cada factor e indique la correlacion entre factores.

Name of objective: MLW Optimization method: SLSQP Optimization successful.

Optimization terminated successfully

Objective value: 0.578

Number of iterations: 134

Params: 1.272 9.880 0.062 1.392 0.037 4.766 923.267 56968.387 3.555 969.835

7.713 1513.135 1326.893 600.494 646.679 57.123 860.163 59.278 0.000

		lval	op		rval	Estimate	Est. Sto	l \
0	mntswee	tproducts	~		luxury	1.000000e+00	6.183852e-01	
1	mnt	goldprods	~		luxury	1.271834e+00	6.501121e-01	
2	mntwines		~		luxury	9.879684e+00	7.121202e-01	
3	numwebpurchases		~		luxury	6.227114e-02	5.729126e-01	
4	mntfruits		~		standard	1.000000e+00	6.944842e-01	_
5	${ t mntfishproducts}$		~		standard	1.391954e+00	7.239692e-01	_
6	numcatalogpurchases		~		discount	1.000000e+00	6.951380e-09)
7			~		discount	3.727229e-02	3.816421e-10)
8	-		~ ~		luxury	6.004945e+02	1.000000e+00)
9	-		~ ~		standard	6.466791e+02	8.997958e-01	
10	10 luxury		~ ~		discount	5.712259e+01	1.207480e+08	3
11			~ ~		standard	8.601630e+02	1.000000e+00)
12	12 standard		~ ~		discount	5.927778e+01	1.046955e+08	3
13	3 discount		~ ~		discount	3.726893e-16	1.000000e+00)
14	numweb	purchases	~ ~	nu	mwebpurchases	4.765706e+00	6.717712e-01	_
15	5 mntfruits		~ ~		mntfruits	9.232667e+02	5.176917e-01	_
16	6 mntwines		~ ~		mntwines	5.696839e+04	4.928848e-01	_
17	numdealspurchases		~ ~	numd	ealspurchases	3.554730e+00	1.000000e+00)
18	8 mntsweetproducts		~ ~	mnt	sweetproducts	9.698352e+02	6.175998e-01	_
19	numcatalogpurchases		~ ~	numcat	alogpurchases	7.712672e+00	1.000000e+00)
20) mntfishproducts		~ ~	mn	tfishproducts	1.513135e+03	4.758687e-01	
21	${ t mntgoldprods}$		~ ~		mntgoldprods	1.326893e+03	5.773543e-01	
	Std. Err	z-value	р	-value				
0	_	_		_				
1	0.051011	24.932414		0.0				
2	0.370492	26.666406		0.0				
3	0.002758	22.575609		0.0				
4	_	_		_				
5	0.051432	27.064099		0.0				
6	_	_		_				
7	0.019476	1.913779	0.	055648				
8	39.874883	15.059466		0.0				
9	33.403132	19.359834		0.0				
10	2.559552	22.317418		0.0				
11	52.802344	16.290242		0.0				
12	2.738448	21.646491		0.0				
13	2.995079	0.0		1.0				
14	0.155897	30.56955		0.0				
15	38.032494	24.275734		0.0				
16	2092.9327	27.219407		0.0				
17	0.10726	33.141284		0.0				

 18
 32.532953
 29.810857
 0.0

 19
 3.004093
 2.567388
 0.010247

 20
 67.841271
 22.304054
 0.0

 21
 45.550396
 29.130224
 0.0

DoF DoF Baseline chi2 chi2 p-value chi2 Baseline CFI \backslash Value 17 28 1271.270989 0.0 7722.513269 0.836992

GFI AGFI NFI TLI RMSEA AIC \
Value 0.835381 0.728863 0.835381 0.731515 0.183172 36.844299

BIC LogLik Value 145.072339 0.57785