

Loss Aversion Estimation in Brand Choice Using MCMC

Haihao Guo

MACSS 2021', Social Science Division, University of Chicago

Research Question

Does Loss Aversion exists in brand choice settings?

Introduction

- Expected Utility Theorem: People's utility is based on the overall gain or loss.
- Prospect Theory: People make decisions based on gain or loss regarding a reference point, and loss always cause a stronger effect on the utility than gain(loss aversion).
- A main stream of literature are focusing on empirically finding the reference point(Homonoff, 2018; Pope & Schweitzer, 2011; Allen, Dechow, Pope, & Wu. 2017)
- Considering heterogeneity(individual differences) may lead to a totally different result, loss aversion may not exist at all, as shown in (Bell & Lattin, 2000)

Heterogeneity Concerns - MCMC

- A more price-responsive consumer (with a steeper response function) tends to have a lower price level as a reference point. This consumer faces a larger proportion of prices above his reference point, thus the response curve is steeper in the domain of losses.
- Mixture of Normal Priors to run the MCMC sampler, where θ_i = (α_{ij}, β_{1i}, β_{2i}, β_{3i}, β_{4i}) follows a multivariate normal distribution and the prior on V_θ is inverted Wishart.

$$\theta \sim N(\theta, V_{\theta})$$

$$V_{\theta} \sim IW(v, V)$$

Multinomial Logit Model

$V_{ijt} = \alpha_{ij} + \beta_{1i} Feat_{jt} + \beta_{2i} Disp_{jt} + \beta_{3i} GAIN_{ijt} + \beta_{4i} LOSS_{ijt}$

- α_{ij} is the intercept for each brand, representing the initial value of brand j to individual I
- β_{1i} , β_{2i} , β_{3i} , β_{4i} are the marginal utility of brand's feature, display, gain and loss.
- β_{3i} < β_{4i} constitutes the evidence for loss aversion. GAIN and LOSS are the gain or the loss that
 consumers receive when the price is below or above the reference price.
- After the model is set up, I could use this model to represent the choice making process. Based on the
 multinomial logit choice model, the probability that consumer i choose brand j at time t can be represented
 by:

$$P_{it}(j) = \frac{e^{V_{ijt}}}{\sum_{k} e^{V_{ikt}}}$$

Assuming homogeneity

Table 3: Cracker Market Estimation Results

		Reference-Dependent Model		
	Null	Memory-based	Stimulus-based	
nabisco:(intercept)	1.962 (0.072)***	2.053 (0.074)***	1.681 (0.074)***	
private:(intercept)	0.169(0.117)	0.788 (0.117)***	0.397 (0.117)***	
sunshine:(intercept)	-0.494 (0.101)***	-0.306 (0.102)**	-0.370 (0.101)***	
price	-3.125 (0.209)***	-	-	
disp	0.092(0.062)	0.285 (0.071)***	0.277 (0.074)***	
feat	0.496 (0.095)***	0.652 (0.112)***	0.679 (0.117)***	
gain	-	-2.801(0.279)***	-1.773(0.270)***	
loss	-	-6.585 (0.262)***	-8.078 (0.319)***	
AIC	6707.427	5390.533	5024.146	
Log Likelihood	-3347.713	-2688.267	-2505.073	
Num. obs.	3292	3292	3292	

Table 4: Yogurt Market Estimation Results

		Reference-Dep	oendent Model
	Null	Memory-based	Stimulus-based
hiland:(intercept)	-3.716 (0.145)***	-3.414 (0.164)***	-2.713 (0.166)***
weight:(intercept)	-0.641 (0.054)***	-0.616 (0.055)***	-0.572 (0.056)***
yoplait:(intercept)	0.735 (0.081)***	1.246 (0.081)***	0.898 (0.088)***
price	-0.367 (0.024)***	-	-
feat	0.491 (0.120)***	0.606 (0.136)***	0.860 (0.149)***
gain	-	-0.158 (0.028)***	-0.266 (0.034)***
loss	-	-1.024 (0.037)***	-1.099 (0.045)***
AIC	5323.776	4230.342	3926.072
Log Likelihood	-2656.888	-2109.171	-1957.036
Num. obs.	2412	2412	2412

Assuming heterogeneity

Table 7: Correlation Matrix-Cracker Market (Memory-based)

	Std Dev	feature	display	gain	loss
feature	0.97	1.00	0.23	-0.38	0.40
display	1.12	0.23	1.00	-0.40	0.71
gain	4.55	-0.38	-0.40	1.00	-0.71
loss	6.28	0.40	0.71	-0.71	1.00

Table 9: Correlation Matrix-Yogurt Market (Memory-based)

	Std Dev	feature	gain	loss
feature	1.33	1.000	-0.27	0.047
gain	0.70	-0.272	1.00	0.388
loss	0.65	0.047	0.39	1.000

Limitations & Future Research

- Data access is limited in the Yogurt and Cracker Market
- The reference point is limited in the price.
- Future research could detect the existence of loss version in other areas other than price(time, seat availability, review loss aversion)

Conclusion

- Reference point and loss aversion would be shown empirically true using the multinomial logit choice model assuming all the people are the same.
- Taking heterogeneity concerns using MCMC Sampler with mixture normal setting would lead to a reduction or even disappear of the Loss Aversion.
- The promotion activities in the store could possibly make people less sensitive about the price change.

References

- Allen, E. J., Dechow, P. M., Pope, D. G., & Wu, G. (2017). Reference-dependent preferences: Evidence from marathon runners. Management Science, 63(6), 1657–1672.
- Bell, D. R., & Lattin, J. M. (2000). Looking for loss aversion in scanner panel data: The confounding effect of price response heterogeneity. Marketing Science, 19(2), 185–200.
- Homonoff, T. A. (2018). Can small incentives have large effects? the impact of taxes versus bonuses on disposable bag use. American Economic Journal: Economic Policy. 10(4), 177–210.
- Pope, D. G., & Schweitzer, M. E. (2011). Is tiger woods loss averse? persistent bias in the face of experience, competition, and high stakes. American Economic Review, 101(1).

Acknowledgement

I sincerely thank Dr. Rick Evans and all classmates of MACS 30250 for helpful comments and suggestions

Contact

• Email: haihao@uchicago.edu

• Git: https://github.com/hihowme