Aprendizagem estatística em altas dimensões

Florencia Leonardi

Conteúdo

- * Aprendizagem estatística não supervisionada
- * Análise de componentes principais
- st Métodos de agrupamento K-médias
- * Modelos gráficos discretos e contínuos

Aprendizagem estatística não supervisionada

Aprendizagem

$$\mathcal{D} = \{x_1, \dots, x_n\}$$

Método de aprendizagem

• {

Predição

Novos dados:

 \mathcal{X}

g(x)

- A análise de componentes principais pode ser visto como um método não supervisionado, já que ele não utiliza nenhuma informação de variáveis resposta associadas com as variáveis preditoras
- * Ele também é um método de redução de dimensão, e pode ser utilizado como preprocessamento dos dados antes da utilização de métodos de aprendizagem supervisionada
- * O método consiste em *projetar* os vetores de variáveis preditoras num sub-espaço de dimensão menor, de forma a maximizar a variância em cada nova coordenada

$$\mathcal{D} = \{x_1, \dots, x_n\}$$

$$x_i = \begin{pmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ip} \end{pmatrix}, \qquad i = 1, \dots, n$$

$$\begin{pmatrix} x_{12} & \dots & x_{1p} \\ x_{21} & \dots & x_{2p} \\ \vdots & & & \vdots \\ x_{n1} & \dots & x_{np} \end{pmatrix} \begin{pmatrix} \phi_{11} \\ \phi_{21} \\ \vdots \\ \phi_{p1} \end{pmatrix} = \begin{pmatrix} z_{11} \\ z_{21} \\ \vdots \\ z_{n1} \end{pmatrix}$$

Com esta transformação, resumimos a informação das p variáveis preditoras a uma única variável $z \in \mathbb{R}$ por observação

$$\mathbf{X} \in \mathbb{R}^{n \times p} \quad \phi \in \mathbb{R}^p \quad z \in \mathbb{R}^n$$

Qual seria o melhor vetor ϕ para fazer essa transformação?

Procuramos um vetor ϕ que tenha norma 1 e tal que o vetor transformado z tenha a maior variância possível, isto é procuramos

Maximizar
$$\left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{j1} x_{ij} \right)^{2} \right\}$$
 sujeito a $\sum_{j=1}^{p} \phi_{j1}^{2} = 1$

Exemplo: dados de SNPs

Exemplo de redução da dimensão por PCA para dados de SNPs (single nucleotide polymorphisms) de 551 indivíduos pertencentes a três populações (Africanos, Asiáticos do leste e Europeus)

Os dados consistem de 529.631 SNPs com valor no conjunto $\{0,1,2\}$ com a contagem do número de alelos raros em cada posição do genoma

Exemplo: dados de SNPs

Métodos de agrupamento (clustering)

- * Agrupamento se refere a um conjunto amplo de técnicas para encontrar grupos num conjunto de dados
- Quando agrupamos as observações de um conjunto de dados, procuramos particioná-las em grupos distintos, de modo que as observações dentro de cada grupo sejam bastante semelhantes entre si, enquanto as observações em grupos diferentes são bastante diferentes umas das outras

O método K-médias é um método bastante simples para particionar um conjunto de dados em K grupos diferentes e sem superposição.

Denotemos por $C_1, ..., C_K$ os conjuntos de índices das observações em cada grupo. Para ser um agrupamento, estes conjuntos devem satisfazer:

- 1. $C_1 \cup C_2 \cup ... C_K = \{1,...,n\}$. Em outras palavras, cada observação deve pertencer ao menos a um grupo
- 2. $C_k \cap C_{k'} = \emptyset$ para todo $k \neq k'$. Em outras palavras, os grupos não têm interseção, nenhuma observação pertence a mais de um grupo

A ideia por trás do método K-médias é minimizar a variabilidade dentro de cada grupo tanto quanto possível

A variabilidade dentro de cada grupo C_k é uma medida $W(C_k)$ definida de acordo com o problema

Então, o problema consiste em

$$\operatorname{Minimizar}_{C_1,...,C_K} \left\{ \sum_{k=1}^K W(C_k) \right\}$$

Existem várias formas diferentes de definir a medida $W(C_k)$, mas a mais comum envolve a distância euclidiana dada por

$$W(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2,$$

onde $|C_k|$ denota o número de observações no k-éssimo grupo. Logo o problema de otimização para definir o agrupamento pelo método de K-médias é

$$\operatorname{Minimizar}_{C_1, \dots, C_K} \left\{ \sum_{k=1}^K \frac{1}{|C_k|} \sum_{i, i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2 \right\}$$

Algoritmo: agrupamento por K-médias

- 1. Atribua um número, de 1 a K, aleatoriamente a cada uma das observações. Estes servem como inicialização dos grupos.
- 2. Itere os seguintes passos até que os grupos deixem de mudar:
 - a. Para cada um dos K grupos, calcule o centroide. O centroide de cada grupo é o vetor médio das observações em cada grupo.
 - b. Atribua cada observação ao grupo cujo centroide está mais próximo (onde a proximidade é definida em relação à distância euclidiana)

O algoritmo de K-médias encontra um mínimo local em vez do mínimo global. Portanto os resultados dependem do agrupamento inicial (aleatório)

Por este motivo, é importante rodar o algoritmo várias vezes a partir de diferentes agrupamentos.

No final é escolhido o agrupamento ótimo, aquele que minimiza a função objetivo.

Figura do livro An Introduction to Statistical Learning

Exemplo: dados de SNPs

Exemplo: dados de SNPs

- * Os modelos gráficos são modelos de funções de distribuição conjunta de variáveis aleatórias, com certas relações de dependência condicional que são codificadas em grafos
- Um grafo consiste num conjunto de vértices e num conjunto de arestas (pares ordenados de vértices)
- * Num modelo gráfico, cada vértice representa uma variável aleatória e as arestas dão uma representação visual para entender a distribuição conjunta das variáveis
- * Aqui consideraremos modelos com grafos não direcionados, que também são conhecidos como campos aleatórios Markovianos

Formalmente, um grafo é um par ordenado G=(V,E) onde V é um conjunto de vértices e E é um conjunto de arestas (definido como pares de vértices)

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{(1,2), (1,3), (2,3), (3,4), (3,5)\}$$

 $X_{(1,0)}$

Nestes modelos, a ausência de uma aresta entre duas variáveis significa que as variáveis são condicionalmente independentes, dadas todas as outras variáveis

A ausência de uma aresta significa que as variáveis aleatórias correspondentes são condicionalmente independentes dadas as outras variáveis

Neste exemplo temos que

$$X_1 \perp X_5 \mid X_2, X_3, X_4$$

Esta propriedade é conhecida como propriedade de Markov por pares

Suponhamos que observamos uma amostra i.i.d de tamanho n da distribuição conjunta das variáveis aleatórias

X_1	X_2	X_3	X_4	X_5
x_{11}	x_{12}	x_{13}	x_{14}	<i>x</i> ₁₅
		•		
		•		
x_{n1}	x_{n2}	x_{n3}	x_{n4}	x_{n5}

Consideremos primeiramente o caso de variáveis aleatórias discretas

Neste caso, podemos estimar a vizinhança de um nó $v \in V$ a partir de um critério de máxima verossimilhança penalizada

$$\widehat{\mathsf{ne}}(v) = \underset{W \subset V \setminus \{v\}}{\mathsf{arg\,max}} \Big\{ \log \widehat{\mathbb{P}}(x_v^{(1:n)} | x_W^{(1:n)}) - c |A|^{|W|} \log n \Big\}$$

$$\text{onde } \widehat{\mathbb{P}}\left(x_v^{(1:n)} \,|\, x_W^{(1:n)}\right) = \prod_{a_w \in A^W} \prod_{a_v \in A} \hat{p}(a_v \,|\, a_W)^{N(a_v,a_W)}\,, \text{ com } N(a_v,a_W) \text{ o contador do número de } n_v \in A^W$$

ocorrências da configuração (a_v, a_W) na amostra e $\hat{p}(a_v \,|\, a_W)$ a probabilidade condicional estimada

X_1	X_2	X_3	X_4	X_5
x_{11}	x_{12}	x_{13}	x_{14}	<i>x</i> ₁₅
		•		
		•		
x_{n1}	x_{n2}	x_{n3}	x_{n4}	x_{n5}

$\widehat{\mathbb{P}}(x_v^{(1:n)} x_W^{(1:n)}) = \prod_{i=1}^{n} x_i^{(1:n)} = \prod_{i=1}^{n} x_i^{(1:n)} x_i^{(1:n$	$\int \int \hat{p}(a_v a_W)^{N(a_v, a_W)}$
$a_{w} \in$	$A^W a_v \in A$

					in the first of the second			
	X_1		X_2		X_3	X_4	X_5	
	x_{11}		x_{12}		x_{13}	x_{14}	x_{15}	
					•			
					•			
	x_{n1}		x_{n2}		x_{n3}	x_{n4}	x_{n5}	

$$v = 1, \quad W = \{3,4\}$$

$$\widehat{\mathbb{P}}(x_{v}^{(1:n)} | x_{W}^{(1:n)}) = \prod_{a_{W} \in A^{W}} \prod_{a_{v} \in A} \widehat{p}(a_{v} | a_{W})^{N(a_{v}, a_{W})}$$

	and the same	4			100 miles and 10			
	X_1		X_2		X_3	X_4	X_5	
	x_{11}		x_{12}		x_{13}	<i>x</i> ₁₄	x_{15}	
					•			
			,		•			
	x_{n1}		x_{n2}		x_{n3}	x_{n4}	X_{n5}	
į								

$$v = 1$$
, $W = \{3,4\}$ $a_v = 0$, $a_W = \{0,1\}$
 $N(a_v, a_W) = \sum_{i=1}^{n} \mathbf{1}\{x_{i1} = 0, x_{i3} = 0, x_{i4} = 1\}$

$$\widehat{\mathbb{P}}(x_v^{(1:n)} | x_W^{(1:n)}) = \prod_{a_w \in A^W} \widehat{p}(a_v | a_w)^{N(a_v, a_w)}$$

	7				
X_1		X_2	X_3	X_4	X_5
<i>x</i> ₁₁		x_{12}	x_{13}	x_{14}	x_{15}
			•		
x_{n1}		x_{n2}	x_{n3}	x_{n4}	X_{n5}

$$v = 1$$
, $W = \{3,4\}$ $a_v = 0$, $a_W = \{0,1\}$
$$\hat{p}(0_1 | 0_3, 1_4) = \frac{N(0_1, 0_3, 1_4)}{N(0_3, 1_4)}$$

Uma vez estimada a vizinhança de cada nó, podemos estimar o grafo a partir da estimação do conjunto de arestas

$$\widehat{E} = \{(v, w) \in V \times V : v \in \widehat{ne}(w) \text{ ou } w \in \widehat{ne}(v)\}$$

Pode-se demonstrar que $\widehat{\mathrm{ne}}(v)$ converge para $\mathrm{ne}(v)$ quando n vai para infinito, com probabilidade 1, e portanto também \widehat{E} converge para E quando n cresce para infinito, ou seja o estimador do grafo é consistente

Exemplo: modelagem de índices de ações

- * Para ilustrar a aplicação do estimador do grafo consideramos índices de ações correspondentes a 15 países (dados do site https://br.investing.com/indices/world-indices)
- * A amostra consiste de n=530 observações no tempo, onde cada variável corresponde à função indicadora de haver uma mudança positiva a partir do dia anterior, para cada um dos índices considerados
- * Para reduzir a dependência, consideramos um intervalo de 4 dias entre as observações

Exemplo: modelagem de índices de ações

Exemplo: modelagem do fluxo no Rio São Francisco

Exemplo: modelagem do fluxo no Rio São Francisco

Figura do artigo Leonardi et al. (2021). *Independent block* identification in multivariate time series, Journal of Time Series Analysis, 42(1), 2021.

Grafo estimado

- st No caso contínuo, em geral é considerada uma distribuição Gaussiana multivariada com vetor de médias μ e matriz de covariância Σ
- Esta distribuição tem a propriedade que todas as distribuições marginais e condicionais também são Gaussianas
- * A inversa da matriz de covariância Σ^{-1} contem informação sobre as covariâncias entre os vértices i e j, condicionalmente aos outros vértices. Observemos que no caso Gaussiano, a independência e a falta de correlação entre variáveis são propriedades equivalentes

Em particular, se a entrada ij da matriz $\Theta = \Sigma^{-1}$ é igual a zero, então as variáveis i e j são condicionalmente independentes, dadas todas as outras variáveis.

Para estimar o modelo gráfico, utilizamos também um critério de máxima verossimilhança penalizada. Neste caso, a função de verossimilhança está dada por

$$p_{\mu,\Sigma}(x) = \frac{1}{(2\pi)^{p/2} \det[\Sigma]^{1/2}} e^{\frac{1}{2}(x-\mu)^T \Sigma(x-\mu)}$$

Observemos que esta função não depende diretamente de Θ , que é a matriz que tem a informação que nos interessa

Então usamos uma reparametrização da função densidade de probabilidade da Gaussiana multivariada dada por

$$p_{\gamma,\Theta}(x) = \exp\left\{\sum_{s=1}^{p} \gamma_s x_s - \frac{1}{2} \sum_{s,t=1}^{p} \theta_{st} x_s x_t - A(\Theta)\right\}$$

onde
$$A(\Theta) = \frac{1}{2} \log \det[\Theta/(2\pi)], \gamma \in \mathbb{R}^p$$
.

A matriz $\Theta = \Sigma^{-1}$ é chamada de matriz de precisão ou matriz de concentração.

Para estimar a estrutura do grafo, é usual utilizar uma penalidade do tipo LASSO que leve algumas entradas da matriz Θ para zero (o que implica não ter aresta no grafo).

Este critério está dado por

$$\widehat{\Theta} = \arg\max_{\Theta \succeq 0} \left\{ \log \det \Theta - \operatorname{traço}(\mathbf{S}\Theta) - \lambda \rho_1(\Theta) \right\}$$

onde
$$\rho_1(\Theta) = \sum_{s \neq t} |\theta_{st}|$$
 e $\mathbf{S} = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$ é a matriz de covariância empírica. A traço de uma matriz é

definido como a soma dos elementos da diagonal da matriz.

Exemplo de grafos não dirigidos estimados de um conjunto de dados de citometria de fluxo, para p=11 proteínas medida em n=7466 células. As estruturas dos grafos foram estimadas com diferentes valores da constante de penalização