${f X24}-\Phi$ изика дождевых капель

A1^{1.00} Найдите изменение свободной энергии водяного пара, если из него образовать каплю радиуса r. Выразите ответ через r, σ , φ , R, T, ρ_L , μ .

За счет энергии поверхностного натяжения свободная энергия увеличится на

$$\Delta G_{surf} = \sigma A = 4\pi \sigma r^2.$$

С другой стороны, при переходе пара в жидкое состояние его свободная энергия уменьшается на

$$\Delta G_v = \nu RT \ln \varphi,$$

где количество вещества в капле

$$\nu = \frac{4\pi\rho_L r^3}{3\mu}.$$

Здесь мы использовали формулу для изменения свободной энергии пара и тот факт, что для насыщенного пара свободная энергия равна свободной энергии жидкости.

Ответ:

$$\Delta G = 4\pi\sigma r^2 - \frac{4\pi\rho_L}{3\mu}r^3RT\ln\varphi$$

A2^{0.80} Найдите критическое значение радиуса капли r_c , при котором ΔG максимально, а также соответствующее значение ΔG_c . Выразите ответ через $\sigma, \varphi, R, T, \rho_L, \mu$. Найдите численное значение r_c при $\varphi = 1.01$.

Для нахождения максимума найдем производную

$$\frac{\partial \Delta G}{\partial r} = 8\pi\sigma r - \frac{4\pi\rho_L}{\mu} r^2 RT \ln \varphi = 0.$$

Отсюда

$$r_c = \frac{2\sigma\mu}{\rho_L RT \ln \varphi}.$$

Подставляя в формулу для ΔG , получим

$$\Delta G_c = \frac{16\pi}{3} \frac{\sigma^3 \mu^2}{\rho_L^2 R^2 T^2 \ln^2 \varphi} = \frac{4\pi r_c^2 \sigma}{3}.$$

Ответ:

$$r_c = \frac{2\sigma\mu}{\rho_L RT \ln \varphi} = 1.15 \cdot 10^{-7} \text{M}, \quad \Delta G_c = \frac{16\pi}{3} \frac{\sigma^3 \mu^2}{\rho_L^2 R^2 T^2 \ln^2 \varphi}.$$

А3^{0.70} Рассмотрим каплю критического радиуса r_c . Определите время τ , за которое количество молекул в ней увеличится на g. Выразите ответ через r_c , g, p_s , m, k, T, φ . Считайте, что в процессе роста радиус капли не меняется, испарением молекул из капли можно пренебречь. Известно, что на площадь dS поверхности за время dt попадает

$$dN = dtdS \frac{p_v}{\sqrt{2\pi mkT}}$$

молекул. Здесь p_v - давление пара, m - масса молекул, T - температура газа.

Страница 1 из 5 ≈

На всю площадь поверхности капли за время dt попадает

$$dN = 4\pi r_c^2 \frac{p_v}{\sqrt{2\pi mkT}} = 4\pi r_c^2 \frac{p_s \varphi}{\sqrt{2\pi mkT}}$$

молекул. Здесь использовано соотношение $p_v = p_s \varphi$. Поскольку изменением радиуса можно пренебречь, коэффициент пропорциональности постоянен, а значит искомое время

$$\tau = g \left(4\pi r_c^2 \frac{p_s \varphi}{\sqrt{2\pi mkT}} \right)^{-1}.$$

Ответ:

$$\tau = \frac{g\sqrt{2\pi mkT}}{4\pi r_c^2 p_s \varphi}.$$

А4^{0.60} Найдите количество капель J, которые образуются в единицу времени в единице объема перенасыщенного водяного пара. Выразите ответ через σ , φ , p_s , r_c , T, g.

По условию за время au все зародыши в объеме превращаются в капли, поэтому

$$J = \frac{n_c}{\tau} = \frac{4\pi r_c^2 p_s \varphi}{g\sqrt{2\pi mkT}} n \exp\left(-\frac{16\pi}{3kT} \frac{\sigma^3 \mu^2}{\rho_L^2 R^2 T^2 \ln^2 \varphi}\right).$$

Выразим концентрацию пара через давление:

$$n = \frac{p_v}{kT} = \frac{p_s \varphi}{kT},$$

получим

Ответ:

$$J = \frac{4\pi r_c^2}{\sqrt{2\pi mkT}} \frac{p_s^2 \varphi^2}{kT} \frac{1}{g} \exp\left(-\frac{16\pi}{3kT} \frac{\sigma^3 \mu^2}{\rho_L^2 R^2 T^2 \ln^2 \varphi}\right) = \frac{4\pi r_c^2}{\sqrt{2\pi mkT}} \frac{p_s^2 \varphi^2}{kT} \frac{1}{g} \exp\left(-\frac{4\pi r_c^2 \sigma}{3kT}\right).$$

А5^{0.90} Из результатов предыдущего пункта следует, что скорость образования капель очень сильно зависит от коэффициента перенасыщения пара. Определите численно значение коэффициента перенасыщения пара φ , при котором при температуре $T=283 {\rm K}$ в $1 {\rm cm}^3$ воздуха рождается одна капля в секунду. Считайте, что g=100. Остальные численные данные приведены в начале задачи.

Подставим в результат предыдущего пункта выражение для r_c :

$$J = \frac{4\pi p_s^2}{\sqrt{2\pi mkT}} \frac{4\sigma^2 \mu^2}{gkT\rho_L^2 R^2 T^2} \frac{\varphi^2}{\ln^2 \varphi} \exp\left(-\frac{16\pi}{3kT} \frac{\sigma^3 \mu^2}{\rho_L^2 R^2 T^2 \ln^2 \varphi}\right) = J_0 \frac{\varphi^2}{\ln^2 \varphi} \exp\left(-\frac{A}{\ln^2 \varphi}\right),$$

где

$$J_0 = \frac{16\pi p_s^2}{\sqrt{2\pi mkT}} \frac{\sigma^2 \mu^2}{gkT \rho_L^2 R^2 T^2} = 2.37 \cdot 10^{30} \text{M}^{-3} \cdot \text{c}^{-1},$$
$$A = \frac{16\pi}{3kT} \frac{\sigma^3 \mu^2}{\rho_L^2 R^2 T^2} = 106.$$

Нам нужно получить значение $J=10^6 {\rm m}^{-3}\cdot{\rm c}^{-1}$. Численно находим $\varphi\approx 3.86$. Приведем также таблицу значений J при близких значениях φ , видим что рост происходить очень быстро.

Ответ:

$$\varphi = 3.86$$

Страница 2 из 5 ≈

φ	$J_{\rm M}^{-3} \cdot {\rm c}^{-1}$
3.5	$8.4 \cdot 10^{1}$
3.6	$1.61 \cdot 10^{2}$
3.7	$2.34 \cdot 10^4$
3.8	$2.79 \cdot 10^5$
3.9	$2.68 \cdot 10^{6}$

B1^{0.80} Для насыщенного пара, находящегося в равновесии с жидкостью, выразите производную давления по температуре dp_s/dT через p_s , L, R, T, μ . Используя полученный результат, найдите относительное изменение плотности насыщенного водяного пара $\Delta \rho_s/\rho_s$ при малом изменении температуры ΔT . Выразите ответ через ΔT , T, L, μ , R. Вы можете использовать связь малых изменений давления, плотности и температуры идеального газа

$$\frac{\Delta p_s}{p_s} = \frac{\Delta \rho_s}{\rho_s} + \frac{\Delta T}{T}.$$

Зависимость давления насыщенного пара от температуры определяется уравнением Клапейрона-Клаузиуса (считаем, что объем пара много больше соответствующего объема воды при той же температуры):

$$\frac{dp_s}{dT} = \frac{L\mu p}{RT^2}.$$

Используя соотношение из условия, найдем

$$\frac{\Delta \rho_s}{\rho_s} = \frac{\Delta p_s}{p_s} - \frac{\Delta T}{T} = \frac{\lambda \mu p}{RT^2} \Delta T - \frac{\Delta T}{T} = \frac{\Delta T}{T} \left(\frac{\mu L}{RT} - 1 \right).$$

Ответ:

$$\frac{\Delta \rho_s}{\rho_s} = \frac{\Delta T}{T} \left(\frac{\mu L}{RT} - 1 \right).$$

 ${f B2^{0.20}}$ Выразите dQ/dt через dM/dt и L.

Поскольку тепло выделяется только за счет конденсации воды dQ=LdM

Ответ:

$$\frac{dQ}{dt} = L\frac{dM}{dt}$$

 ${\bf B3^{0.30}}$ Используя результат предыдущего пункта и уравнение теплопроводности, выразите разность температур капли и атмосферы, T_r-T , через dM/dt, а также $r,\,L,\,K$.

Из уравнения теплопроводности

$$T_r - T = \frac{1}{4\pi rK} \frac{dQ}{dt} = \frac{L}{4\pi rK} \frac{dM}{dt}.$$

Ответ:

$$T_r - T = \frac{L}{4\pi r K} \frac{dM}{dt}.$$

Страница 3 из 5 ≈

В4^{0.30} Будем считать, что вблизи поверхности капли плотность водяного пара равна плотности насыщенного пара при температуре капли. Считая разности температур и плотностей малыми и используя результаты B1, B3 выразите отношение $(\rho_r - \rho_s)/\rho_s$ (ρ_r - давление пара вблизи поверхности капли) через L, r, K, μ , R, T и dM/dt.

Из результата В1

$$\frac{\rho_r - \rho_s}{\rho_s} = \frac{T_r - T}{T} \left(\frac{\mu L}{RT} - 1 \right).$$

Подставляя в него выражение для разности температур, получим

Ответ:

$$\frac{\rho_r - \rho_s}{\rho_s} = \left(\frac{\mu L}{RT} - 1\right) \frac{L}{4\pi r KT} \frac{dM}{dt}.$$

В5^{0.30} Используя уравнение диффузии, выразите отношение $(\rho_r - \rho_v)/\rho_s$ через $dM/dt, r, D, \rho_s$.

Из уравнения диффузии

$$\rho_v - \rho_r = \frac{1}{4\pi r D} \frac{dM}{dt},$$

Ответ:

$$\frac{\rho_r - \rho_v}{\rho_s} = -\frac{1}{4\pi r \rho_s D} \frac{dM}{dt}$$

B6^{0.60} Исключив из ответов в двух предыдущих пунктах плотность пара вблизи поверхности капли ρ_r , получите выражение для dM/dt. Выразите ответ через φ , μ , R, T, D, p_s , L, K, r.

Вычитая друг из друга выражения из двух последних пунктов, получим

$$\frac{\rho_v - \rho_s}{\rho_s} = \varphi - 1 = \frac{1}{4\pi r} \left(\left(\frac{\mu L}{RT} - 1 \right) \frac{L}{KT} + \frac{1}{\rho_s D} \right) \frac{dM}{dt}.$$

Также выразим плотность насыщенного пара через давление:

$$\rho_s = \frac{\mu p_s}{RT},$$

окончательно получим

Ответ:

$$\frac{dM}{dt} = \frac{4\pi r(\varphi - 1)}{\left(\frac{\mu L}{RT} - 1\right)\frac{L}{KT} + \frac{RT}{\mu p_s D}}$$

B7^{0.50} Скорость увеличения радиуса капли имеет вид

$$\frac{dr}{dt} = \frac{\xi}{r^k}.$$

Определите k и ξ , выразите ответ через φ , ρ_L , μ , R, T, D, p_s , L, K.

Масса капли связана с радиусом соотношением

$$M = \frac{4\pi}{3}\rho_L r^3,$$

поэтому

$$\frac{dM}{dt} = 4\pi \rho_L r^2 \frac{dr}{dt},$$

а значит

$$\frac{dr}{dt} = \frac{1}{4\pi\rho_L r^2} \frac{dM}{dt} = \frac{1}{r\rho_L} \frac{\varphi - 1}{\left(\frac{\mu L}{RT} - 1\right) \frac{L}{KT} + \frac{RT}{\mu p_s D}}$$

Ответ:

$$k=1, \quad \xi=rac{arphi-1}{\left(rac{\mu L}{RT}-1
ight)rac{L}{KT}+rac{RT}{\mu p_s D}}rac{1}{
ho_L}.$$

B8^{0.50} Найдите зависимость радиуса капли от времени. Начальный радиус капли равен r_0 . Выразите ответ через $r_0, \, \xi, \, t$.

Проинтегрируем уравнение

$$r\frac{dr}{dt} = \xi,$$

получим

$$\frac{r^2}{2} - \frac{r_0^2}{2} = \xi t,$$

Ответ:

$$r(t) = \sqrt{r_0^2 + 2\xi t}.$$

В9^{0.50} Пусть начальный радиус капли равен $r_0 = 0.7$ мкм. Найдите численное значение времени, за которое она вырастет до размера $r_1 = 10$ мкм при коэффициенте перенасыщения $\varphi = 1.1$. Остальные численные значения приведены в начале этой части.

Для параметров из условия

$$\xi = 9.04 \cdot 10^{-12} \,\mathrm{m}^2 \cdot \mathrm{c}^{-1}$$

тогда время

Ответ:

$$t = \frac{r_1^2 - r_0^2}{2\xi} = 5.50$$
c.