Yue Su & Dan Sun

Assignment 2

- 1. Generate descriptive statistics and plot histograms for the following three columns: apret, tstsc, and salar.
- Generate Descriptive Statistics

Used R language to generate descriptive statistic table.

```
> Rowname = c("spend", "apret", "top10", "rejr", "tstsc", "pacc", "strat", "salar")
> Columnname = c("Min.", "istQuartile", "Median", "Mean", "3rdQuartile", "Max.", "StdDev", "Count")
> spend = c(as.vector(summary(Retention$spend)), sd(Retention$spend), nrow(Retention))
> top10 = c(as.vector(summary(Retention$top10)), sd(Retention$top10), nrow(Retention))
> rejr = c(as.vector(summary(Retention$top10)), sd(Retention$top10), nrow(Retention))
> tstsc = c(as.vector(summary(Retention$top10)), sd(Retention$top10), nrow(Retention))
> pacc = c(as.vector(summary(Retention$pacc)), sd(Retention$tstsc), nrow(Retention))
> strat = c(as.vector(summary(Retention$pacc)), sd(Retention$pacc), nrow(Retention))
> strat = c(as.vector(summary(Retention$pacc)), sd(Retention$pacc), nrow(Retention))
> salar = c(as.vector(summary(Retention$pacc)), sd(Retention$pacc), nrow(Retention))
> summary = matrix(c(spend, apret, top10, rejr, tstsc, pacc, strat, salar), nrow = 8, ncol = 8, byrow = TRUE, dimnames = list(Rowname, Columnname))
```

Table shown below is the result.

3	Data: Summary								
	row.names	Min.	1stQuartile	Median	Mean	3rdQuartile	Max.	StdDev	Count
1	spend	4125.000	7372.00	9265.00	10970.00	12840.00	35860.00	5500.065580	170
2	apret	18.750	45.37	55.71	56.72	68.69	95.25	18.077097	170
3	top10	8.000	22.00	30.00	38.46	49.50	98.00	23.406393	170
4	rejr	0.000	19.17	27.39	30.65	36.81	84.07	17.098104	170
5	tstsc	48.120	61.11	64.78	66.16	70.45	87.50	6.975306	170
6	pacc	8.964	33.90	40.85	43.17	51.77	76.25	13.105195	170
7	strat	7.200	13.40	16.00	16.09	18.58	29.20	4.006503	170
8	salar	38640.000	54650.00	61150.00	61360.00	67100.00	87900.00	9802.786457	170

Plot Histograms

apret:

ggplot(Retention,aes(apret))+geom_histogram(binwidth=5, fill="LightBlue", colour="Blue")

 $tstsc: \\ ggplot(Retention, aes(tstsc)) + geom_histogram(binwidth=5, \ fill="LightBlue", \ colour="Blue")$

 $salar: \\ ggplot(Retention, aes(salar)) + geom_histogram(binwidth=2000, \ fill="LightBlue", colour="Blue")$

- 2. Perform linear regression of apret on tstsc and salar separately and then of apret on both tstsc and salar.
- tstsc vs. apret

```
R
                             R Console
                                                                 > m2=lm(apret ~ tstsc, data = Retention)
Call:
lm(formula = apret ~ tstsc, data = Retention)
Residuals:
    Min
            1Q Median
                           3Q
-28.490 -7.957
                 1.857
                        7.552 27.278
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                                        <2e-16 ***
(Intercept) -77.3999
                       8.2878 -9.339
                                        <2e-16 ***
tstsc
             2.0271
                       0.1246 16.272
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 11.3 on 168 degrees of freedom
Multiple R-squared: 0.6118,
                             Adjusted R-squared: 0.6095
F-statistic: 264.8 on 1 and 168 DF, p-value: < 2.2e-16
```


From the graph and summary table, we can conclude that variable tstsc and apret has a strong correlation. Tstsc is a significant factor for apret.

salar vs. apret

```
R
                                                                  R Console
> m3=lm(apret ~ salar, data = Retention)
> summary(m3)
Call:
lm(formula = apret ~ salar, data = Retention)
Residuals:
             1Q Median
    Min
                            30
                                   Max
-38.959 -10.170
                  0.362
                        11.151
                                33.965
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.522e+01 6.823e+00
                                  -2.231
                                            0.027 *
             1.173e-03 1.098e-04 10.678
                                           <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 13.99 on 168 degrees of freedom
Multiple R-squared: 0.4043,
                             Adjusted R-squared: 0.4008
              114 on 1 and 168 DF, p-value: < 2.2e-16
F-statistic:
```


From the graph and summary table we can conclude that variable salar and apret has a loose correlation between each other. The points are distributed dispersedly and the R-square is 0.4043, smaller than the linear regression of apret on tstsc.

• tstsc, salar vs. apret

The summary table above indicates that linear regression of apret on both tstsc and salar is a good model. Based on the coefficient values and R-squared values, we can conclude that apret has a strong correlation together with both tstsc and salar.