COORDINATION IN SOCIAL NETWORKS

Chun-ting Chen

December 7, 2014

MOTIVATION

- Collective action may fail in the presence of incomplete information.
 - Example of collective action
 - Pro-democracy revolution
 - Raising fund for start-ups

MOTIVATION

- Collective action may fail in the presence of incomplete information.
 - Example of collective action
 - Pro-democracy revolution
 - Raising fund for start-ups
 - This presentation will be in terms of Revolution.

MOTIVATION

- Collective action may fail in the presence of incomplete information.
 - Example of collective action
 - Pro-democracy revolution
 - Raising fund for start-ups
 - This presentation will be in terms of Revolution.
- How to make collective action successful if people can act repeatedly?

BACKGROUND

East Germany 1989-1990.

- Collective action is not static
 - Protest leads revolution.
- Public Information is noisy
 - Mass media is controlled by government.
- Information is transmitted within social networks:
 - Church networks

Dynamics of collective action on networks.

- Dynamics of collective action on networks.
- How people obtain sufficient information over time to coordinate their actions.

• Players linked in a fixed and exogenous network.

- Players linked in a fixed and exogenous network.
- Players of two types (Rebel,Inert). They can observe own/neighbor's type.

- Players linked in a fixed and exogenous network.
- Players of two types (Rebel,Inert). They can observe own/neighbor's type.
- Type-contingent action.

- Players linked in a fixed and exogenous network.
- Players of two types (Rebel,Inert). They can observe own/neighbor's type.
- Type-contingent action.
- Pay-off contingent on global type distribution.

- Players linked in a fixed and exogenous network.
- Players of two types (Rebel,Inert). They can observe own/neighbor's type.
- Type-contingent action.
- Pay-off contingent on global type distribution.
- Players choose simultaneously and repeatedly. They can observe own/neighbor's actions.

Look for

 An equilibrium, in which the global type distribution becomes commonly known in finite time.

Look for

 An equilibrium, in which the global type distribution becomes commonly known in finite time.

Result

• Such equilibrium can be constructed under some assumptions.

Public good provision.

- Public good provision.
 - One strand: [Chwe 2000], [Lohmann, 1993,1994], etc

- Public good provision.
 - One strand: [Chwe 2000], [Lohmann, 1993,1994], etc
 - This paper adds network-monitoring

- Public good provision.
 - One strand: [Chwe 2000], [Lohmann, 1993,1994], etc
 - This paper adds network-monitoring
- · Repeated game in networks.

- Public good provision.
 - One strand: [Chwe 2000], [Lohmann, 1993,1994], etc
 - This paper adds network-monitoring
- Repeated game in networks.
 - This paper consider incomplete information and imperfect monitoring

Network

- Let $N = \{1, ..., n\}$ be the set of players.
- G_i is i's neighborhood; G_i is a subset of N such that $i \in G_i$.
- $G = \{G_i\}_i$ is the network.

ASSUMPTION

G is fixed (not random), finite, connected, commonly known, and undirected.

Static *k*-threshold game [Chwe 2000]

- $1 \le k \le n$
- $\theta_i \in \Theta_i = \{Rebel, Inert\}$: i's type
- $\theta \in \Theta = \times_{i \in N} \Theta_i$: type profile
- $\pi \in \Delta\Theta$: the prior

Static *k*-threshold game [Chwe 2000]

- $1 \le k \le n$
- $\theta_i \in \Theta_i = \{Rebel, Inert\}$: i's type
- $\theta \in \Theta = \times_{i \in N} \Theta_i$: type profile
- $\pi \in \Delta\Theta$: the prior
- $A_{Rebel} = \{ revolt, stay \}; A_{lnert} = \{ stay \}$

Static k-threshold game [Chwe 2000], In this presentation,

• Static game payoff for Rebel i: $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i})$

$$u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 1$$
 if $a_{Rebel_i} = \text{revolt}$ and $\#\{j : a_{\theta_j} = \text{revolt}\} \ge k$
 $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = -1$ if $a_{Rebel_i} = \text{revolt}$ and $\#\{j : a_{\theta_i} = \text{revolt}\} < k$

Static k-threshold game [Chwe 2000], In this presentation,

• Static game payoff for Rebel i: $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i})$

$$u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 1$$
 if $a_{Rebel_i} = \mathbf{revolt}$ and $\#\{j : a_{\theta_j} = \mathbf{revolt}\} \ge k$
 $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = -1$ if $a_{Rebel_i} = \mathbf{revolt}$ and $\#\{j : a_{\theta_j} = \mathbf{revolt}\} < k$

$$u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 0$$
 if $a_{Rebel_i} =$ stay

Static k-threshold game [Chwe 2000], In this presentation,

• Static game payoff for Rebel i: $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i})$

$$u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 1$$
 if $a_{Rebel_i} = \mathbf{revolt}$ and $\#\{j : a_{\theta_j} = \mathbf{revolt}\} \ge k$
 $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = -1$ if $a_{Rebel_i} = \mathbf{revolt}$ and $\#\{j : a_{\theta_j} = \mathbf{revolt}\} < k$
 $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 0$ if $a_{Rebel_i} = \mathbf{stay}$

stay is a safe arm; revolt is a risky arm.

Static k-threshold game [Chwe 2000], In this presentation,

• Static game payoff for Rebel i: $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i})$

$$egin{array}{lll} u_{Rebel_i}(a_{Rebel_i},a_{- heta_i}) &=& 1 & ext{if } a_{Rebel_i} = ext{revolt} ext{ and } \#\{j:a_{ heta_j} = ext{revolt}\} \geq k \ u_{Rebel_i}(a_{Rebel_i},a_{- heta_i}) &=& -1 & ext{if } a_{Rebel_i} = ext{revolt} ext{ and } \#\{j:a_{ heta_j} = ext{revolt}\} < k \ u_{Rebel_i}(a_{Rebel_i},a_{- heta_i}) &=& 0 & ext{if } a_{Rebel_i} = ext{stay} \end{array}$$

- stay is a safe arm; revolt is a risky arm.
- Ex-post (Pareto) efficient outcome:
 - If there are at least k Rebels, all Rebels play revolt.
 - Otherwise, all Rebels play stay.

Static k-threshold game [Chwe 2000], In this presentation,

• Static game payoff for Rebel i: $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i})$

$$egin{array}{lll} u_{Rebel_i}(a_{Rebel_i},a_{- heta_i}) &=& 1 & ext{if } a_{Rebel_i} = ext{revolt} ext{ and } \#\{j:a_{ heta_j} = ext{revolt}\} \geq k \ u_{Rebel_i}(a_{Rebel_i},a_{- heta_i}) &=& -1 & ext{if } a_{Rebel_i} = ext{revolt} ext{ and } \#\{j:a_{ heta_j} = ext{revolt}\} < k \ u_{Rebel_i}(a_{Rebel_i},a_{- heta_i}) &=& 0 & ext{if } a_{Rebel_i} = ext{stay} \end{array}$$

- stay is a safe arm; revolt is a risky arm.
- Ex-post (Pareto) efficient outcome:
 - If there are at least k Rebels, all Rebels play **revolt**.
 - Otherwise, all Rebels play stay.
- Relevant information: Whether or not at least k Rebels exist.

Time line (Time is infinite, discrete)

- Nature choose θ initially according to π .
- Players play the static k-threshold game infinitely repeatedly.

ASSUMPTION

- Players know their neighbors' types.
- Players perfectly observe their neighbors' actions.
- π has full support
- Common δ.
- Pay-off is hidden (in this presentation)
- Pay-off could also be noisy or perfectly observable.

- $[Rebels](\theta) = \{j : \theta_j = Rebel\} \text{ for all } \theta \in \Theta.$
- $\#[Rebels](\theta)$: number of Rebels given θ

- $[Rebels](\theta) = \{j : \theta_j = Rebel\}$ for all $\theta \in \Theta$.
- $\#[Rebels](\theta)$: number of Rebels given θ
- θ_{G_i} : i's private information about the state. $(\theta_{G_i} \in \Theta_{G_i} = \prod_{j \in G_i} \Theta_j)$
- $h_{G_i}^m$: the history observed by i up to period m. ($h_{G_i}^m \in H_{G_i}^m = \prod_{s=1}^m \prod_{j \in G_i} A_{\theta_j}$)
- h: an infinite sequence of players' actions. ($h \in H = \prod_{s=1}^{\infty} \prod_{j \in N} A_{\theta_j}$)

- $[Rebels](\theta) = \{j : \theta_j = Rebel\}$ for all $\theta \in \Theta$.
- $\#[Rebels](\theta)$: number of Rebels given θ
- θ_{G_i} : *i*'s private information about the state. $(\theta_{G_i} \in \Theta_{G_i} = \prod_{j \in G_i} \Theta_j)$
- $h_{G_i}^m$: the history observed by i up to period m. ($h_{G_i}^m \in H_{G_i}^m = \prod_{s=1}^m \prod_{j \in G_i} A_{\theta_j}$)
- h: an infinite sequence of players' actions. ($h \in H = \prod_{s=1}^{\infty} \prod_{j \in N} A_{\theta_j}$)
- $\tau_i:\Theta_{G_i}\times\bigcup_0^\infty H_{G_i}^m\to A_{\theta_i}$, *i*'s strategy.
- $\tau = (\tau_1, ..., \tau_i, ..., \tau_n)$: a strategy profile.

- $[Rebels](\theta) = \{j : \theta_j = Rebel\} \text{ for all } \theta \in \Theta.$
- $\#[Rebels](\theta)$: number of Rebels given θ
- θ_{G_i} : *i*'s private information about the state. $(\theta_{G_i} \in \Theta_{G_i} = \prod_{j \in G_i} \Theta_j)$
- $h_{G_i}^m$: the history observed by i up to period m. ($h_{G_i}^m \in H_{G_i}^m = \prod_{s=1}^m \prod_{j \in G_i} A_{\theta_j}$)
- h: an infinite sequence of players' actions. ($h \in H = \prod_{s=1}^{\infty} \prod_{j \in N} A_{\theta_j}$)
- $\tau_i:\Theta_{G_i}\times\bigcup_0^\infty H_{G_i}^m\to A_{\theta_i}$, *i*'s strategy.
- $\tau = (\tau_1, ..., \tau_i, ..., \tau_n)$: a strategy profile.
- $\beta_i^{\pi,\tau}(\theta|h_{G_i}^m)$: i's belief for a θ at period m given τ .

Notations:

- h_{θ}^{τ} : a history generated by τ given θ .
- Call h_{θ}^{τ} a τ_{θ} -path.
- Call $\{h_{\theta}^{\tau}\}_{\theta \in \Theta}$ the τ -path

DEFINITION

The τ -path is approaching ex-post efficient (APEX) \Leftrightarrow

 $\forall \theta$, there is a finite time T^{θ}

such that the actions after T^{θ} in τ_{θ} repeats the static ex-post efficient outcome.

DEFINITION

 $h_{G_i}^m$ is reached by τ -path

 $\exists \theta$ such that $h_{G_i}^m$ is in τ_{θ} -path.

LEMMA

If the τ -path is APEX $\Rightarrow \forall \theta \ \forall i$, there is a finite time T_i^{θ} such that

$$\sum_{\theta: \#[\textit{Rebels}](\theta) \geq k} \beta_i^{\pi,\tau}(\theta|\textit{h}_{G_i}^s) = 1 \ \textit{or} = 0, \ \textit{if} \ s \geq T_i^\theta$$

whenever $h_{G_i}^s$ is reached by τ -path.

DEFINITION (WEAK APEX EQUILIBRIUM)

A weak sequential equilibrium (τ^*, β^*) is APEX $\Leftrightarrow \tau^*$ -path is APEX, and β^* is the belief system consistent with τ^* .

DEFINITION (WEAK APEX EQUILIBRIUM)

A weak sequential equilibrium (τ^*, β^*) is APEX $\Leftrightarrow \tau^*$ -path is APEX, and β^* is the belief system consistent with τ^* .

DEFINITION (APEX EQUILIBRIUM)

A sequential equilibrium (τ^*, β^*) is APEX $\Leftrightarrow (\tau^*, \beta^*)$ is a weak APEX equilibrium and β^* is fully consistent with τ^* [Krep and Wilson 1982].

APEX

• k = n: For all networks, an APEX equilibrium can be found.

THEOREM (k = n)

In any network, if the prior has full support, then for repeated k = n Threshold game, an APEX equilibrium exists whenever δ is sufficiently high.

Sketch of proof:

- Some Inerts neighbors ⇒ play stay forever.
- $\textbf{ 0} \ \, \text{No Inert neighbor} \Rightarrow \text{play } \textbf{revolt} \, \, \text{until stay} \, \text{is observed, and then play } \textbf{stay} \, \text{forever.}$
- **1** There is a finite time T^{θ} such that ex-post efficient outcome repeats afterwards.
- Any deviation ⇒ play stay forever.

DECEMBER 7 2014

APEX

- *k* < *n*: with additional assumptions,
 - acyclic networks (tree networks): a weak APEX equilibrium can be found.
 - cyclic networks: open question.

DEFINITION (PATH IN A NETWORK)

A **path** from node i to node j is a sequence of nodes

$$\{i, m_1, m_2, ..., m_n, j\}$$
 without repetition

such that $i \in G_{m_1}, m_1 \in G_{m_2}, ..., m_n \in G_j$.

DEFINITION (ACYCLIC NETWORK (TREE))

A network is **acyclic** \Leftrightarrow the path from node i to node j is unique for all nodes i, j.

DEFINITION

 θ has **Strong connectedness** \Leftrightarrow for every pair of Rebels, there is a path consisting of Rebels to connect them.

DEFINITION

 π has full support on strong connectedness \Leftrightarrow

 $\pi(\theta) > 0$ if and only if θ has strong connectedness.

I.e. Commonly certainty of strong connectedness.

DEFINITION

 θ has **Strong connectedness** \Leftrightarrow for every pair of Rebels, there is a path consisting of Rebels to connect them.

DEFINITION

 π has full support on strong connectedness \Leftrightarrow

 $\pi(\theta) > 0$ if and only if θ has strong connectedness.

• I.e. Commonly certainty of strong connectedness.

ASSUMPTION

- π has full support on strong connectedness.
 - Without this assumption, the game is reduced to incomplete information game without communication.

Theorem $(k \le n)$

In any acyclic network, if π has full support on strong connectedness, then for repeated $1 \le k \le n$ Threshold game, a weak APEX equilibrium exists whenever δ is sufficiently high.

EQUILIBRIUM CONSTRUCTION

Outline:

Communication by actions

EQUILIBRIUM CONSTRUCTION

Outline:

- Communication by actions
- Communication in the equilibrium
 - Communication protocol
 - In-the-path belief
 - Off-path belief
 - Sketch of proof

COMMUNICATION BY ACTIONS

COMMUNICATION BY BINARY ACTIONS

• Indexing each node i as a distinct prime number x_i . For instance,

COMMUNICATION BY ACTIONS

COMMUNICATION BY BINARY ACTIONS

• Indexing each node i as a distinct prime number x_i . For instance,

Then, in the case of

Rebel 3 report $x_1 \times x_7 \times x_3$ to Rebel 1 by sending a finite sequence

stay, ..., stay,
$$\underbrace{\text{revolt}, \text{stay}, ..., \text{stay}}_{x_1 \times x_7 \times x_3}$$

COMMUNICATION PHASES

COMMUNICATION PHASES

Phases

- **IDENTIFY and SET 1 PROOF. PROOF.**
- ② CD (Coordination period): coordinating the future actions.
- SP and CD alternate finitely.

$$\langle RP \rangle \langle CD \rangle \dots$$

COMMUNICATION PHASES

Phases

- **PP** (Reporting period): revealing the information about θ .
- ② CD (Coordination period): coordinating the future actions.
- Second RP and CD alternate finitely.

$$\underbrace{\langle RP \rangle \langle CD \rangle}_{\text{block}} \dots$$

• Call a complete two phases, $\langle RP \rangle \langle CD \rangle$, a **block**.

25 / 61

In coordination period,

- "three" messages coordinate actions
 - to revolt
 - to stay
 - to continue to next block

• CDt: the CD in t-block

- 1st division: sending message to stay; otherwise continue
- 2nd division: sending message to revolt; otherwise continue

• CD^t: the CD in t-block

- 1st division: sending message to stay; otherwise continue
- 2nd division: sending message to revolt; otherwise continue
- $CD_{p,q}^t$: the p sub-block in q division.
- $\langle CD_{p,q}^t \rangle$: the messages in $CD_{p,q}^t$ are

$$\langle stay \rangle$$
 $s, ..., s, s, s, ..., s$
 $\langle x_i \rangle$ $s, ..., s, \underbrace{r, s, ..., s}_{x_i}$

1st division in CD

• Whenever a Rebel *i* knows $\#[Rebels](\theta) < k$, he plays **stay** afterward.

1st division in CD

• Whenever a Rebel *i* knows $\#[Rebels](\theta) < k$, he plays **stay** afterward.

• ... then nearby Rebel j plays stay afterward

1st division in CD

• Whenever a Rebel *i* knows $\#[Rebels](\theta) < k$, he plays **stay** afterward.

- ... then nearby Rebel j plays stay afterward
- Otherwise,

2ND DIVISION IN CD

• Whenever a Rebel *i* know $\#[Rebels](\theta) \ge k$, he plays

2ND DIVISION IN CD

• Whenever a Rebel *i* know $\#[Rebels](\theta) \ge k$, he plays

• ... then nearby Rebel j play $\langle x_i \rangle$ to inform nearby Rebels, and so on.

2ND DIVISION IN CD

• Whenever a Rebel *i* know $\#[Rebels](\theta) \ge k$, he plays

• ... then nearby Rebel j play $\langle x_i \rangle$ to inform nearby Rebels, and so on.

Otherwise ,

- Communication either stops or continues after a CD.
 - Stopping: If some Rebels learn the relevant information ⇒ all Rebels coordinate to play same actions.
 - Ontinuing: Otherwise, go to the next block.

- Communication either stops or continues after a CD.
 - Stopping: If some Rebels learn the relevant information ⇒ all Rebels coordinate to play same actions.
 - 2 Continuing: Otherwise, go to the next block.

LEMMA

Before a Rebel knows $\#[Rebels](\theta) < k$ or $\#[Rebels](\theta) \ge k$, he will not send **Message to stay** or **Message to revolt** if δ is high enough.

• a "grim trigger".

► Comment

- RP^t : the reporting period at t block
- $\langle RP^t \rangle$: the reporting message

Burning money	$\neg \langle stay \rangle$	$\boldsymbol{s},,\boldsymbol{s},\boldsymbol{r},\boldsymbol{s},,\boldsymbol{s}$
Not burning money	$\langle \text{stay} \rangle$	$\boldsymbol{s},,\boldsymbol{s},\boldsymbol{s},\boldsymbol{s},,\boldsymbol{s}$

- RP^t: the reporting period at t block
- $\langle RP^t \rangle$: the reporting message

Burning money	$\neg \langle stay angle$	$\boldsymbol{s},,\boldsymbol{s},\boldsymbol{r},\boldsymbol{s},,\boldsymbol{s}$
Not burning money	⟨stay⟩	$\mathbf{S},,\mathbf{S},\mathbf{S},\mathbf{S},,\mathbf{S}$

- Gives incentive to burn money between.
 - Burning moneys+message to revolt: coordination to revolt
 - Otherwise, no coordination to revolt

- RP^t: the reporting period at t block
- $\langle RP^t \rangle$: the reporting message

Burning money	$\neg \langle stay angle$	$\boldsymbol{s},,\boldsymbol{s},\boldsymbol{r},\boldsymbol{s},,\boldsymbol{s}$
Not burning money	$\langle stay \rangle$	s,, s, s, s,, s

- Gives incentive to burn money between.
 - Burning moneys+message to revolt: coordination to revolt
 - Otherwise, no coordination to revolt
- How much money should a Rebel burn? Characterization in the next slides.

DECEMBER 7 2014

Information Hierarchy

• Characterizing Rebels' incentives in money burning. • other reason

Ex:

$$0 - 1 - \frac{RB_2}{RB_3} \cdot RB_4 \cdot RB_5 \cdot RB_6 - 7$$

Information Hierarchy

• Characterizing Rebels' incentives in money burning. • other reason

Ex:

$$0 - 1 - RB_2 \cdot RB_3 \cdot RB_4 \cdot RB_5 \cdot RB_6 - 7$$

• Rebel 2 has less incentive: Rebel 2's information can be reported by Rebel 3 to Rebel 4.

DECEMBER 7 2014

Information Hierarchy

$$0 - 1 - RB_2 - RB_3 - RB_4 - RB_5 - RB_6 - 7$$

• At **0**-block, let $\mathbb{R}^0 = \{2, 3, 4, 5, 6\}$

Information Hierarchy

$$0 - 1 - RB_2 - RB_3 - RB_4 - RB_5 - RB_6 - 7$$

$$0 - 1 - RB_2 \cdot \frac{RB_3}{RB_4} \cdot \frac{RB_5}{RB_5} \cdot RB_6 - 7$$

- **1** At **0**-block, let $\mathbb{R}^0 = \{2, 3, 4, 5, 6\}$
- **a** At 1-block, let $R^1 = \{ 3, 4, 5 \}$

Information Hierarchy

$$0 - 1 - RB_2 - RB_3 - RB_4 - RB_5 - RB_6 - 7$$

$$0 - 1 - RB_2 \cdot RB_3 \cdot RB_4 \cdot RB_5 \cdot RB_6 - 7$$

$$0 - 1 - RB_2 \cdot RB_3 \cdot RB_4 \cdot RB_5 \cdot RB_6 - 7$$

- **1** At 0-block, let $\mathbb{R}^0 = \{2, 3, 4, 5, 6\}$
- **a** At 1-block, let $R^1 = \{ 3, 4, 5 \}$
- **3** At 2-block, let $R^2 = \{$ 4 $\}$

The Rebels known by *i* after *t*-block: I_i^t .

THEOREM

Given θ , if

- the network is acyclic
- the state has strong connectedness
- $\Rightarrow \exists t^{\theta} \text{ and } \exists i \in R^{t^{\theta}} \text{ such that } I_i^{t^{\theta}} \supset [Rebels](\theta).$

Thus, ideally, APEX can be attained by

At t block

INFORMATION HIERARCHY

The Rebels known by i after t-block: I_i^t .

THEOREM

Given θ , if

- the network is acyclic
- the state has strong connectedness
- $\Rightarrow \exists t^{\theta} \text{ and } \exists i \in R^{t^{\theta}} \text{ such that } I_i^{t^{\theta}} \supset [Rebels](\theta).$

Thus, ideally, APEX can be attained by

At t block

However, "Pivotal Rebels" will deviate.

INFORMATION HIERARCHY

PIVOTAL PLAYERS

Relevant information: $\#[Rebels](\theta) \ge k$ or $\#[Rebels](\theta) < k$.

DEFINITION (PIVOTAL PLAYER IN RP^t)

i is **pivotal** in RP^t

 \Leftrightarrow

 $i \in R^t$ and i will learn the relevant info before I_i^{t-1} is reported given others' truthful reporting.

INFORMATION HIERARCHY

PIVOTAL PLAYERS

Ex.
$$k = 5$$
.

- Rebel 4 and Rebel 5 are pivotal (Free Rider problem)
- They can manipulate their reporting to save costs.

► Go to discussion

PIVOTAL PLAYERS

Ex.
$$k = 6$$
,

- Rebel 4 is pivotal (given Rebel 5's reporting)
- He can manipulate his reporting to save costs.

STEP 1.

DEFINITION (FREE RIDER IN RP^t)

i is a **free rider** in $RP^t \Leftrightarrow$

- \bullet *i* is pivotal in RP^t
- \bullet *i* will learn $\#[Rebels](\theta)$ before I_i^{t-1} is reported.

DEFINITION (FREE RIDER PROBLEM IN RP^{t})

A free rider problem occurs in $RP^t \Leftrightarrow$ There are more than 2 free riders in RP^t .

STEP 1.

LEMMA

If networks are acyclic, then

- there is a unique PRt where Free Rider Problem may occur.
- there are only two free riders i, j are involved. Moreover $i \in G_i$.
- Moreover, before PR^t and after CD^{t-1} , i, j both certain that they will be involved in free rider problem.

Thus, before RP^t and after CD^{t-1} , pick one of them as a free rider.

STEP 2.

Non-pivotal <i>R</i> ^t Rebels	play	$\langle I_i^{t-1} \rangle$	$\mathbf{s},,\mathbf{s}, \overbrace{\mathbf{r},\mathbf{s},,\mathbf{s}}^{\prod_{j\in I_i^{t-1}}x_j}$
Pivotal R^t Rebels	may play	(1)	$\boldsymbol{s},,\boldsymbol{s},\boldsymbol{s},\boldsymbol{s},,\boldsymbol{r}$
non-R ^t Rebels	play	⟨stay⟩	s,, s, s, s,, s

I.e. Add $\langle 1 \rangle$ into the equilibrium path.

STEP 3.

In the equilibrium path,

LEMMA

If networks are acyclic,

i is pivotal but i is not free rider in RPt

 \Rightarrow

i has learned that $\#[Rebels](\theta) \ge k-1$ in RP^t

LEMMA

If networks are acyclic,

i play $\langle 1 \rangle$ in RP^t

 \Leftrightarrow

i has learned that $\#[Rebels](\theta) > k-1$ in RP^t

STEP 3.

Consequently, if *i* play $\langle 1 \rangle$ in the path

In RP^t , i plays	is <i>i</i> a free rider?	In RP^t , $j \in G_i$ plays	After RP ^t , i knows
⟨1⟩	yes	$\langle \cdot \rangle$	$\#[Rebels](\theta) \ge k$

STEP 3.

Consequently, if *i* play $\langle 1 \rangle$ in the path

In RP^t , i plays	is <i>i</i> a free rider?	In RP^t , $j \in G_i$ plays	After RP^t , i knows
⟨1⟩	yes	$\langle \cdot \rangle$	$\#[\textit{Rebels}](\theta) \geq k$
⟨1⟩	no	⟨1⟩	$\#[\textit{Rebels}](heta) \geq k$

STEP 3.

Consequently, if i play $\langle 1 \rangle$ in the path

In RP^t , i plays	is <i>i</i> a free rider?	In RP^t , $j \in G_i$ plays	After RP^t , i knows
⟨1⟩	yes	$\langle \cdot \rangle$	$\#[\textit{Rebels}](heta) \geq k$
$\langle 1 \rangle$	no	⟨1⟩	$\#[\textit{Rebels}](heta) \geq k$
$\langle 1 \rangle$	no	$\langle stay angle$	$\#[\textit{Rebels}](\theta) < k$

 \Rightarrow *i* can tell the relevant info. after RP^t .

Consequently, pivotal i has to play message to stay or message to revolt

Table : Equilibrium path if i played $\langle 1 \rangle$

In <i>RP</i> ^t	In $CD_{1,1}^t$	In $CD_{1,2}^t$	After CD ^t
i plays	i plays	<i>i</i> plays	
<u></u> (1)	⟨stay⟩	⟨stay⟩	stay
$\langle 1 \rangle$	$\langle \mathbf{x}_i angle$	$\langle stay \rangle$	revolt

BELIEF UPDATING IN EQUILIBRIUM PATH

Table : Belief updating after CD^t , t>0

In RP ^t	In $CD_{1,1}^t$	In $CD_{1,2}^t$	
i plays	i plays	<i>i</i> plays	The events $j \in G_i$ believes with probability one
$\langle I_i^{t-1} \rangle$	$\langle {\sf stay} \rangle$	$\langle {\sf stay} \rangle$	#[Rebels](heta) < k
$\langle I_i^{t-1} \rangle$	$\langle \mathbf{x}_i angle$	$\langle {\sf stay} \rangle$	$\#[\textit{Rebels}](\theta) \geq \textit{k}$
$\langle 1 \rangle$	$\langle {\sf stay} \rangle$	$\langle {\sf stay} \rangle$	#[Rebels](heta) < k
$\langle 1 \rangle$	$\langle \mathbf{x}_i angle$	$\langle stay \rangle$	$\#[\textit{Rebels}](heta) \geq k$

BELIEF UPDATING IN EQUILIBRIUM PATH

Table : Belief updating after CD^t , t>0

In <i>RP</i> ^t	In $CD_{1,1}^t$	In $CD_{1,2}^t$	
i plays	<i>i</i> plays	<i>i</i> plays	The events $j \in G_i$ believes with probability one
√stay⟩	$\langle \mathbf{x}_i \rangle$	⟨stay⟩	$i \notin R^t$
$\langle I_i^{t-1} \rangle$	$\langle \mathbf{x}_i \rangle$	$\langle \mathbf{x}_i angle$	$i \in R^t$

BELIEF UPDATING IN EQUILIBRIUM PATH

Table : Belief updating after CD^t , t>0

In RP ^t	In $CD_{1,1}^t$	In $CD_{1,2}^t$	
i plays	<i>i</i> plays	i plays	The events $j \in G_i$ believes with probability one
⟨stay⟩	$\langle \mathbf{x}_i \rangle$	⟨stay⟩	$i otin R^t$
$\langle I_i^{t-1} \rangle$	$\langle {\sf stay} \rangle$	$\langle {f stay} \rangle$	#[Rebels](heta) < k
$\langle I_i^{t-1} \rangle$	$\langle \mathbf{x}_i angle$	$\langle {f stay} \rangle$	$\#[\textit{Rebels}](\theta) \geq \textit{k}$
$\langle I_i^{t-1} \rangle$	$\langle \mathbf{x}_i \rangle$	$\langle \mathbf{x}_i angle$	$i \in R^t$
$\langle 1 \rangle$	$\langle {\it stay} \rangle$	$\langle \text{stay} \rangle$	#[Rebels](heta) < k
$\langle 1 \rangle$	$\langle \mathbf{x}_i \rangle$	$\langle {\bf stay} \rangle$	$\#[\textit{Rebels}](heta) \geq k$

OFF-PATH BELIEF

OFF-PATH BELIEF

Whenever i detects a deviation, he believes that

for all
$$j \notin G_i$$
, $\theta_j \neq Rebel$

• If he has less than k Rebel-neighbors, he will play **stay** forever.

DECEMBER 7, 2014

OFF-PATH BELIEF

OFF-PATH BELIEF

Whenever i detects a deviation, he believes that

for all
$$j \notin G_i$$
, $\theta_j \neq Rebel$

- If he has less than k Rebel-neighbors, he will play **stay** forever.
- This off-path belief then also serve as another "grim trigger" (belief-grim-trigger).

SKETCH OF PROOF

- The equilibrium path is APEX.
- APEX outcome gives maximum ex-post continuation pay-off after some T.
- Undetectable deviation ⇒ protocol-grim-trigger. Protocol-grim-trigger
- Any deviation will let APEX fail in a positive probability.
- **5** Sufficiently high δ will impede deviation.

DISCUSSION

CYCLIC NETWORK

- From the above steps, an APEX equilibrium for acyclic networks is constructed.
 - At most 2 free riders will occur. Pexample
- Solving Pivotal-player problem for cyclic networks need more elaboration.
 - More than 3 free riders will occur.

- payoff is perfectly observed
 - Play revolt in the first period, then the relevant information revealed.
- payoff is noisy
 - With full support assumption, the existing equilibrium is APEX.
 - Ex.

$$p_{1s} = \Pr(y = y_1 | \# \text{revolt} \ge k)$$

$$p_{1f} = \Pr(y = y_1 | \# \text{revolt} < k)$$

$$p_{2s} = \Pr(y = y_2 | \# \text{revolt} \ge k)$$

$$p_{2f} = \Pr(y = y_2 | \# \text{revolt} < k)$$

$$1 > p_{1s} > 0, 1 > p_{2s} > 0, p_{1f} = 1 - p_{1s}, p_{2f} = 1 - p_{2s}$$
 (1)

FURTHER WORKS

- Cyclic networks.
- ullet A general model in which players can communicate only by their actions to learn the relevant information in finite time when $\delta < 1$, while the communication protocol itself is an equilibrium.
- Equilibrium selection.

APPENDIX-ALT. MODEL

OR, Static *k*-threshold game [Chwe 2000]

• Static game payoff for Rebel i: $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i})$

```
u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 1 if a_{Rebel_i} = \text{revolt} and \#\{j : a_{\theta_j} = \text{revolt}\} \ge k
u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = -1 if a_{Rebel_i} = \text{revolt} and \#\{j : a_{\theta_j} = \text{revolt}\} < k
u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 1 if a_{Rebel_i} = \text{stay} and \#\{j : a_{\theta_j} = \text{revolt}\} \ge k
u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 0 if a_{Rebel_i} = \text{stay} and \#\{j : a_{\theta_j} = \text{revolt}\} < k
```

DECEMBER 7, 2014

If pay-off is observable, an Apex Equilibrium for k = n = 3 in

At 1st period

- At 1st period
 - All Rebels choose revolt.

- At 1st period
 - All Rebels choose revolt.
- After 1st period

- At 1st period
 - All Rebels choose revolt.
- After 1st period
 - If the pay-off is observed as 1, choose revolt afterwards.

- At 1st period
 - All Rebels choose revolt.
- After 1st period
 - If the pay-off is observed as 1, choose revolt afterwards.
 - Otherwise, choose stay afterwards.

If pay-off is observable, an Apex Equilibrium for k = n = 3 in

- At 1st period
 - All Rebels choose revolt.
- After 1st period
 - If the pay-off is observed as 1, choose revolt afterwards.
 - Otherwise, choose stay afterwards.
- Any deviation ⇒

DECEMBER 7 2014

- At 1st period
 - All Rebels choose revolt.
- After 1st period
 - If the pay-off is observed as 1, choose revolt afterwards.
 - Otherwise, choose stay afterwards.
- Any deviation ⇒
 - Choosing stay forever.

If pay-off is hidden, an Apex Equilibrium for k = n = 3 in

At 1st period

If pay-off is hidden, an Apex Equilibrium for k = n = 3 in

- At 1st period
 - Rebel 2 chooses **revolt** if he observes $\theta = (Rebel, Rebel, Rebel)$; Otherwise, chooses **stay** forever.

DECEMBER 7, 2014

- At 1st period
 - Rebel 2 chooses **revolt** if he observes $\theta = (Rebel, Rebel, Rebel)$; Otherwise, chooses **stay** forever.
 - Rebel 1 (or Rebel 3) choose stay.

- At 1st period
 - Rebel 2 chooses **revolt** if he observes $\theta = (Rebel, Rebel, Rebel)$; Otherwise, chooses **stay** forever.
 - Rebel 1 (or Rebel 3) choose stay.
- After 1st period

- At 1st period
 - Rebel 2 chooses **revolt** if he observes $\theta = (Rebel, Rebel, Rebel)$; Otherwise, chooses **stay** forever.
 - Rebel 1 (or Rebel 3) choose stay.
- After 1st period
 - If Rebel 2 chooses revolt in the last period, then Rebel 1 (or Rebel 3) chooses revolt forever;

- At 1st period
 - Rebel 2 chooses **revolt** if he observes $\theta = (Rebel, Rebel, Rebel)$; Otherwise, chooses **stay** forever.
 - Rebel 1 (or Rebel 3) choose stay.
- After 1st period
 - If Rebel 2 chooses revolt in the last period, then Rebel 1 (or Rebel 3) chooses revolt forever;
 - If Rebel 2 chooses stay in the last period, then Rebel 1 (or Rebel 3) chooses stay forever.

- At 1st period
 - Rebel 2 chooses **revolt** if he observes $\theta = (Rebel, Rebel, Rebel)$; Otherwise, chooses **stay** forever.
 - Rebel 1 (or Rebel 3) choose stay.
- After 1st period
 - If Rebel 2 chooses revolt in the last period, then Rebel 1 (or Rebel 3) chooses revolt forever;
 - If Rebel 2 chooses stay in the last period, then Rebel 1 (or Rebel 3) chooses stay forever.
- Any deviation ⇒

EXAMPLE: PAY-OFF IS HIDDEN

If pay-off is hidden, an Apex Equilibrium for k = n = 3 in

- At 1st period
 - Rebel 2 chooses **revolt** if he observes $\theta = (Rebel, Rebel, Rebel)$; Otherwise, chooses **stay** forever.
 - Rebel 1 (or Rebel 3) choose stay.
- After 1st period
 - If Rebel 2 chooses revolt in the last period, then Rebel 1 (or Rebel 3) chooses revolt forever;
 - If Rebel 2 chooses stay in the last period, then Rebel 1 (or Rebel 3) chooses stay forever.
- Any deviation ⇒
 - Choosing stay forever.

- No expected cost to send Message to stay or Message to revolt
- The player who knows the relevant info. is willing to send messages.

- No expected cost to send Message to stay or Message to revolt
- The player who knows the relevant info. is willing to send messages.

- However, sending message to reveal information in RP is costly.
- A free rider problem in PR may occur.

- 0 k = 5
- Only one block (RP and then CD).
- No expected cost in CD.

- 0 k = 5
- Only one block (RP and then CD).
- No expected cost in CD.
- Free riders:

- 0 k = 5
- Only one block (RP and then CD).
- No expected cost in CD.
- Free riders:

Why? By backward induction,

- No expected cost to send Message to stay or Message to revolt in CD.
- If RB₅ report truthfully, RB₄ can wait for that.
- If RB₄ report truthfully, RB₅ can wait for that.

APPENDIX-GOAL OF INFORMATION HIERARCHY

Main goal of Information Hierarchy

• Easing the punishment scheme when monitoring is imperfect.

Ex: k = 4,

- Rebel 1 can only be monitored by Rebel 2.
- Suppose Rebel 2,3,4,5 can coordinate at period T and play revolt forever.
- ullet If Rebel 1 did not burn money at period T-1, Rebel 2 has no incentive to punish him.

$$0 - 1 - RB_2 \cdot RB_3 \cdot RB_4 \cdot RB_5 \cdot RB_6 - 7$$

At 1-block, first let

$$G_i^0 \equiv G_i$$
 $I_i^0 \equiv G_i \cap R^0$

For instance,

$$I_2^0 = \{2,3\}$$
 $G_2^0 = \{1,2,3\}$

$$I_3^0 = \{2,3,4\} \quad G_3^0 = \{2,3,4\}$$

$$0 - 1 - RB_2 \cdot RB_3 \cdot RB_4 \cdot RB_5 \cdot RB_6 - 7$$

Then define

$$\leq^0$$

by

$$i \in \leq^0 \Leftrightarrow \exists j \in \bar{G}_i (I_i^0 \subseteq G_j^0 \cap R^0)$$

• For instance,

$$2\in\leq^0,3\notin\leq^0$$

Since

$$\textit{I}_{2}^{0}=\{2,3\} \qquad \textit{G}_{2}^{0}\cap\textit{R}^{0}=\{2,3\}$$

$$\mathit{I}_{3}^{0}=\{2,3,4\} \hspace{0.5cm} \mathit{G}_{3}^{0}\cap\mathit{R}^{0}=\{2,3,4\}$$

$$0 - 1 - RB_2 \cdot RB_3 \cdot RB_4 \cdot RB_5 \cdot RB_6 - 7$$

At 1-block, let

$$R^1 \equiv \{i \in R^0 | i \notin \leq^0 \} = \{ 3, 4, 5 \}$$

DECEMBER 7, 2014

$$0 - 1 - RB_2 \cdot RB_3 \cdot RB_4 \cdot RB_5 \cdot RB_6 - 7$$

At 2-block, let

$$G_i^1 \equiv \bigcup_{k \in I_i^0} G_k$$

$$I_i^1 \equiv \bigcup_{k \in G_i \cap B^1} I_k^0$$

For instance,

$$I_3^1 = \{2, 3, 4, 5\}$$
 $G_3^1 = \{1, 2, 3, 4, 5\}$

$$\mathit{I}_{4}^{1} = \{2, 3, 4, 5, 6\} \hspace{0.5cm} \mathit{G}_{4}^{1} = \{2, 3, 4, 5, 6\}$$

$$0 - 1 - RB_2 \cdot \frac{RB_3}{RB_3} \cdot \frac{RB_4}{RB_4} \cdot \frac{RB_5}{RB_5} \cdot RB_6 - 7$$

Then define

$$\leq^1$$

by

$$i \in \leq^1 \Leftrightarrow \exists j \in \bar{G}_i (I_i^1 \subseteq G_j^1 \cap R^0)$$

For instance,

$$3\in\leq^1, 4\notin\leq^0$$

Since

$$I_3^1 = \{2, 3, 4, 5\}$$
 $G_3^1 \cap R^0 = \{2, 3, 4, 5\}$
 $I_4^1 = \{2, 3, 4, 5, 6\}$ $G_4^1 \cap R^0 = \{2, 3, 4, 5, 6\}$

$$0 - 1 - RB_2 \cdot RB_3 \cdot RB_4 \cdot RB_5 \cdot RB_6 - 7$$

At 2-block, let

$$\mathbf{R}^2 \equiv \{i \in \mathbf{R}^1 | i \notin \leq^1\} = \{ 4 \}$$

▶ Go back to IH

APPENDIX-≥ 3 FREE RIDERS

More than 3 free riders will occur at a block in cyclic network.

We may pick one of free riders.

► Go to discussion

APPENDIX-≥ 3 FREE RIDERS

More than 3 free riders will occur at a block in cyclic network.

We may pick one of free riders. How to pick?

▶ Go to discussion