1. (10) Find a generating set for the subspace

$$\left\{ \begin{bmatrix} -r+4t \\ r-s+2t \\ 3t \\ r-t \end{bmatrix} \in \mathbb{R}^4 \right\}, \text{ where } r, s, \text{ and } t \text{ are scalars}$$

2. (10) Find a basis for (a) (5) the column space and (b) (5) the null space of the matrix

$$\begin{bmatrix} 1 & -1 & 2 & 1 \\ 3 & -3 & 5 & 4 \\ 0 & 0 & 3 & -3 \\ 2 & -2 & 1 & 5 \end{bmatrix}$$

- 3. (10) The reduced row echelon form of a matrix A is given. Determine the dimension of
 - (a) (2) Col A
 - (b) (3) Null A
 - (c) (2) Row A

(d) (3)
$$Null A^T$$

$$A = \begin{bmatrix} 1 & 0 & 0 & -4 & 2 \\ 0 & 1 & 0 & 2 & -1 \\ 0 & 0 & 1 & -3 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- 4. (10) The \mathcal{B} -coordinate vector \mathbf{v} is $\mathbf{v}_{\mathcal{B}} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$. Find \mathbf{v} if $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \end{bmatrix} \right\}$
- 5. (10) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ and $C = \{c_1, c_2, \dots, c_n\}$ be bases for \mathbb{R}^n and \mathbb{R}^m , respectively. The matrix

$$[[T(\mathbf{b}_1)]_{\mathcal{C}} [T(\mathbf{b}_2)]_{\mathcal{C}} \dots T[(\mathbf{b}_n)]_{\mathcal{C}}]$$

is called the matrix representation of T with respected to $\mathcal B$ and $\mathcal C$. It is denoted

by
$$[T]_{\mathcal{B}}^{\mathcal{C}}$$
. Let $\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix} \right\}$ and $\mathcal{C} = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\3 \end{bmatrix} \right\}$

- (a) (5) Prove that \mathcal{B} and \mathcal{C} are bases for \mathcal{R}^3 and \mathcal{R}^2 , respectively.
- (b) (5) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation defined by

$$T = \begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x_1 + 2x_2 - x_3 \\ x_1 - x_2 + 2x_3 \end{bmatrix}.$$
 Find $[T]_{\mathcal{B}}^{\mathcal{C}}$.

6. (10) A matrix and a vector are given. Show that the vector is an eigenvector of the matrix and determine the corresponding eigenvalue.

$$\begin{bmatrix} 6 & 5 & 15 \\ 5 & 6 & 15 \\ -5 & -5 & -14 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$

(10) A matrix and its characteristic polynomial are given. Find the eigenvalues of each matrix and determine a basis for each eigenspace

$$\begin{bmatrix} 1 & 6 & -6 & -6 \\ 6 & 7 & -6 & -12 \\ 3 & 3 & -2 & -6 \\ 3 & 9 & -9 & -11 \end{bmatrix}, (t+5)(t+2)(t-1)^2$$

- 8. (10) The trace of a square matrix is the sum of its diagonal entries
 - (a) (4) Prove that if A is a diagonalizable matrix, then the trace of A equals the sum of the eigenvalues of A.
 - (b) (3) Let A be diagonalizable $n \times n$ matrix with characteristic polynomial $(-1)^n(t-\lambda_1)(t-\lambda_2)\dots(t-\lambda_n)$. Prove that the coefficient of t^{n-1} in this polynomial is $(-1)^{n-1}$ times the trace of A.
 - (c) (3) For A as in (b), what is the constant term of the characteristic polynomial of A?
- 9. (10) Two vectors ${\bf u}$ and ${\bf v}$ are given. Compute the norms of the vectors and the distance d between them

$$\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \end{bmatrix} \text{ and } \mathbf{v} = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 3 \end{bmatrix}$$

10. (10) Determine whether the given set is orthogonal

$$\left\{ \begin{bmatrix} 2\\1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\3\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\1 \end{bmatrix} \right\}$$

- 11. (10) Find a basis for the subspace S^{\perp} , where $S = \left\{ \begin{bmatrix} 1\\-1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\-1 \end{bmatrix} \right\}$
- (10) Find the equation of the least-squares line for the given data (1, 21), (3, 32), (9, 38), (12, 41), (15, 51)
- 13. (10) An $n \times n$ matrix C is said to be positive semidefinite if C is symmetric and $\mathbf{v}^T C \mathbf{v} \geq 0$ for every vector $\mathbf{v} \in \mathcal{R}^n$. Prove that, for any matrix A, the matrices AA^T and A^TA are positive semidefinite.

2