Algebra & Analyza

Jaromir Kligl

February 2025

Contents

Ι	Analyza	5
1	1. Hodina1.1 Najdete Prim. Funkci1.2 Najdete Prim. Funkci1.3 Vyreste s per partes	5 5 5
2	 2. Hodina 2.1 S vyuzitim metody substituce, integrujte 2.2 Integrujte s metodou rozkaldu na parcialni zlomky 	6 6
3	3. hodina 3.1 Urcete obsah plochy	7 7 7
4	 4. hodina 4.1 Urcete objem telesem daneho funkci	7 7
Π	Algebra	8
5	1. Hodina 5.1 Na \mathbb{Z} je dana Operace \circ	8 8 8 8
6	2. hodina 6.1 jsou grupoidy $(\mathbb{Z}_2; \oplus)$ a $(\{1, -1\}; \odot)$ izomorfni? 6.2 jsou grupoidy $(\{a, b, c, \}; \odot)$ a $(\{1, 2, 3\}; \star)$ izomorfni? 6.3 Je Grupa $(\mathbb{Z}_{10}; \oplus)$ cyklicka? 6.4 Pro grupu $(\mathbb{Z}_{10}; \oplus)$ urcete nejmepsi podgrupu 6.5 Urcete vsechny generatory grupy $(\mathbb{Z}_6; \oplus)$	9 9 9 9 9 10 10 10
7	3. hodina	11

8	4. ł	nodina	12
	8.1	Na mnozine $A = \{1,2,7\}$ je dana permutace	12
	8.2	Pro permutace urcete zda	12
	8.3	Vyjadrete permutaci jako soucin disjunktnich cylku	12
	8.4	Na mnozine $A = \{1,2,3,4\}$ naleznete	12
	8.5	Rozhodnete paritu permutace	12
	8.6	Pro podgrupu $G = (\{0,2,4,6,8\}; \oplus) \text{ grupy } (\mathbb{Z}_{10}, \oplus) \ldots \ldots$	13
	8.7	Urcete index G z minuleho prikladu	
9	5. I	Hodina	14
	9.1	Rozhodnete, zda jsou grupy rozlozitelne	14
	9.2	Pro grupu (\mathbb{Z}_6,\oplus) ukazte ze je rozlozitelna	14
	9.3	Rozhodnete zda se jedna o homomorfismus	
	9.4	Naleznete nejaky homomorfismus	15
	9.5	Naleznete zda jsou dane podgrupy normalni	15
	9.6	Rozhodnete, zda se jedna o homomorfismus	15

Predmluva

Tento text slouzi jako studentska sbirka prikladu. Veskere prikaldy byly prevzane z hodin Elisky Foltasove. Tento text neni officialni studijni material, pokud jsem nejaky priklad prepsal spatne, neberu za to zodpovednost.

Part I

Analyza

1 1. Hodina

1.1 Najdete Prim. Funkci

$$\int \frac{(x-1)^2}{\sqrt{x}} dx \qquad \int (x+\frac{1}{x^2})^2 dx$$

$$\int \frac{x+1}{x-1} dx \qquad \int \frac{2x^3 - 3x^2 + 5x^2 + 5x - 4}{x-2} dx$$

$$\int \sqrt{x} \cdot (1+\sqrt[3]{x}) dx$$

1.2 Najdete Prim. Funkci

$$\int \left(\frac{\sin^2 x}{\cos x}\right) dx \qquad \qquad \int \sin^2 x + \cos^2 x \, dx$$

$$\int \frac{1 + \sin^2 x}{1 - \cos^2 x} \, dx \qquad \qquad \int \tan^2 x \, dx$$

1.3 Vyreste s per partes

$$\int \ln x \, dx \qquad \int x^2 \cdot e^x \, dx$$

$$\int x \cdot \cos x \, dx \qquad \int x^3 \cdot \ln x \, dx$$

$$\int \frac{\ln x}{x} \, dx$$

2 2. Hodina

2.1 S vyuzitim metody substituce, integrujte

$$\int (5x-1)^3 dx \qquad \int \frac{5x}{(x^2+4)^3} dx$$

$$\int \sqrt[3]{4x-7} dx \qquad \int \frac{1}{\sqrt{1+\ln x}} dx$$

$$\int \frac{\sqrt{1+\ln x}}{x} dx \qquad \int \frac{\ln^4 x}{x} dx$$

$$\int e^{3-2x} dx \qquad \int x \cdot e^{x^2} dx$$

$$\int e^{1+\sin x} dx \qquad \int \frac{e^{\frac{1}{x}}}{x^2} dx$$

$$\int \cot(2x+1) dx$$

$$\int \sin^3 x \cdot x dx$$

2.2 Integrujte s metodou rozkaldu na parcialni zlomky

$$\int \frac{5}{x^2 - 9x + 14} dx \qquad \int \frac{3x + 7}{x^2 + 2x - 15} dx$$

$$\int \frac{4x^2 - x - 15}{x^3 - 4x^2 - x + 4} dx \qquad \int \frac{x^2 + 1}{x^3 - x} dx$$

$$\int \frac{3x^2 + 30x - 120}{x^3 - 5x^2 - 4x + 20} dx$$

3. hodina 3

3.1 Urcete obsah plochy

plocha je ohranicena funkci $y=-x^2+4$ a osou x.

3.2 Urcete obsah plochy

ohraniceny funkcema:

- 1. $f(x): y = x^2 x + 1$
- 2. $g(x): y = -x^2 + 3x$

4. hodina

Urcete objem telesem daneho funkci.

Za pouziti vzorce:

$$\pi \int_{a}^{b} (f(x))^{2} dx$$

1) $f(x): \frac{1}{x^3}$ $a = \frac{1}{2}; b = 1$ 2) $g(x): \cos x$ $a = 0; b = \frac{\pi}{2}$

$$a = \frac{1}{2}; b = 1$$

$$a=0; b=\frac{\pi}{2}$$

Urcete hodnotu nevlastniho integralu. Pokud konver-4.2 guje

$$\int_{1}^{\infty} \frac{dx}{x+1}$$

$$\int_{-\infty}^{2} e^{2x} dx$$

Part II

Algebra

5 1. Hodina

5.1 Na $\mathbb Z$ je dana Operace \circ

$$a \circ b : 3a + 3b$$

Overte:

- a) Asociativitu
- b) Komutativitu
- c) ma (\mathbb{Z},\circ) neutralni prvek?
- d) na (\mathbb{Z}, \circ) inverze?

5.2 Dopl
nte tabulku tak aby $G = (\{a,b,c\}; \spadesuit)$

•	a	b	c
a	a	c	a
b			b
c			

- 1. G byl grupoid s neutralnimi prvky
- 2. G byl grupoid s inverznimi prvky
- 3. G byla pologrupa
- 4. G byla Grupa

5.3 je
$$B = \{2k | k \in \mathbb{N}_0\}$$
 podgrupou $(\mathbb{Z}; \oplus)$

5.4 je dana struktura: $(\mathscr{A}; \diamondsuit)$

$$\diamondsuit: a \diamondsuit b = b$$

O jakou strukturu se jedna?

6 2. hodina

Pred resenim si zopakujte znalost pojmu:

- homomorfismus (grupoidu, grup atd..), izomorfismus
- generator grupy
- rad prvku
- Caleyho graf
- 6.1 jsou grupoidy $(\mathbb{Z}_2;\oplus)$ a $(\{1,-1\};\odot)$ izomorfni?
- 6.2 jsou grupoidy $(\{a,b,c,\};\odot)$ a $(\{1,2,3\};\star)$ izomorfni?

\odot	a	b	С
a	a	c	a
b	c	a	b
С	a	b	c

*	1	2	3
1	1	3	2
2	2	3	1
3	3	1	2

6.3 Je Grupa $(\mathbb{Z}_{10}; \oplus)$ cyklicka?

V kladnem priklade urcete jeji generator a rady vsech prvku.

- 6.4 Pro grupu $(\mathbb{Z}_{10}; \oplus)$ urcete nejmepsi podgrupu
 - Obsahujici prvek 2
 - Obsahujici prvek 3
- 6.5 Urcete vsechny generatory grupy $(\mathbb{Z}_6; \oplus)$

6.6 Jen nasledujíci obrazek Cayleho graf?

V kladnem pripade naleznete odpovidajici grupu.

- 6.7 Zakreslete Cayleho graf grupy $(\mathbb{Z}_{12}; \oplus)$ s generujici mnozinou $\{2,3\}$
- 6.8 Na mnozine $A = \{1,2,3,4,5\}$ jsou zadany permutace.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix}$$

$$\psi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 5 & 4 \end{pmatrix}$$

Zapiste permutace $\sigma \circ \psi$ a $\psi \circ \sigma$.

6.9 Pro predchozi mnozinu A urcete:

- 1. jednotku grupy $(S_A; \circ)$, kde S_A je mnozina vsech permutaci na A a \circ je operace skaladni permutaci
- 2. inverzni prvky k σ a ψ

7 3. hodina

Hodina 2. odpadla takze jsme pocitaly priklady z hodiny 2.

8 4. hodina

8.1 Na mnozine $A = \{1,2,7\}$ je dana permutace

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 3 & 2 & 4 & 6 & 1 & 5 \end{pmatrix}$$

Urcete rozklad A dany σ a zakrteslete ho.

8.2 Pro permutace urcete zda

- 1. Jde o cyklus?
- 2. Pokud ano, jeho delku.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 3 & 4 & 5 & 6 & 7 & 2 & 8 & 9 & 10 \end{pmatrix}$$

$$\phi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 10 & 3 & 4 & 1 & 9 & 5 & 6 & 2 & 7 & 8 \end{pmatrix}$$

8.3 Vyjadrete permutaci jako soucin disjunktnich cylku

$$\phi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 10 & 3 & 4 & 1 & 9 & 5 & 6 & 2 & 7 & 8 \end{pmatrix}$$

8.4 Na mnozine $A = \{1,2,3,4\}$ naleznete

takove dvojice¹, aby soucin nebyl cyklus.

8.5 Rozhodnete paritu permutace

2

$$\omega = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 10 & 4 & 5 & 6 & 3 & 8 & 7 & 1 & 9 & 2 \end{pmatrix}$$

$$\xi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 10 & 4 & 5 & 2 & 6 & 3 & 8 & 7 & 1 & 9 \end{pmatrix}$$

 $^{^{1}\}mathrm{Tohle}$ rozlustil socka.

 $^{^2{\}rm Z}$ duvodu meho prepisu me uteklo cislo 2 tak jsem ho doplnil, na 2 nejvic pravdepodobne pozice aspon z jednohu prikladu vznikly 2.

- 8.6 Pro podgrupu $G=(\{0,\!2,\!4,\!6,\!8\};\oplus)$ grupy (\mathbb{Z}_{10},\oplus) naleznete leve a prave tridy G.
- 8.7 Urcete index G z minuleho prikladu.

9 5. Hodina

Pojmy k hodine:

- Rozlozitelna grupa izomorfni s direktnim soucinem svych dvou ruznych podgrup
- nerozlozitelna grupa jeji rad je mocninou prvocisla
- Normalni podgrupa H leve a prave tridy jsou shodne: $a\cdot H=H\cdot: \forall a\in G^3$
- 9.1 Rozhodnete, zda jsou grupy rozlozitelne
 - 1. (\mathbb{Z}_6, \oplus)
 - 2. (\mathbb{Z}_5, \oplus)
 - 3. (\mathbb{Z}_9, \oplus)
- 9.2 Pro grupu (\mathbb{Z}_6, \oplus) ukazte ze je rozlozitelna.
- 9.3 Rozhodnete zda se jedna o homomorfismus

(pripadne izomorfismus)

- 1. $f_1(x) = x, (\mathbb{Z}, \oplus) \to (\mathbb{R}, \oplus)$
- 2. $f_2(x) = x, (\mathbb{Z}, \oplus) \to (\mathbb{N}, \oplus)$
- 3. $f_3(x) = 2x, (\mathbb{Z}_3, \oplus) \to (\mathbb{Z}_6, \oplus)$
- 4. $f_4(x) = x, (\mathbb{Z}_3, \oplus) \to (\mathbb{Z}_6, \oplus)$

³Pismeno G rozlustil vasnivi resitel Socka

9.4 Naleznete nejaky homomorfismus

ze
$$(\mathbb{Z}_6, \oplus) \to (\mathbb{Z}_3, \oplus)$$

9.5 Naleznete zda jsou dane podgrupy normalni

- (\mathbb{R}_6, \odot) v $(\mathbb{R} \setminus \{0\}, \odot)$,
- $(\{id, (1,2)\}, \circ) \text{ v } (\mathbb{S}_3, \odot),$

9.6 Rozhodnete, zda se jedna o homomorfismus

pripadne urcete kernel

- 1. $f_1(x) = 2x + 1, (\mathbb{Z}, \oplus) \to (\mathbb{R}, \oplus)$
- 2. $f_2(x) = \log |x|, (\mathbb{Q} \setminus \{0\}, \odot) \to (\mathbb{R}, \oplus)$
- 3. $f_3(x) = |x|, (\mathbb{R}, \oplus) \to (\mathbb{R} \setminus \{0\}, \oplus)$
- 4. $f_4(x) = 2^x, (\mathbb{R}, \oplus) \to (\mathbb{R} \setminus \{0 \odot)$