Лекция 15.

Производная по направлению. Градиент функции.

Рассмотрим некоторое обобщение понятия частной производной функции многих переменных.

Пусть $M_0(x_0, y_0, z_0) \in \mathbb{R}^3$ - внутренняя точка области определения функции f(x, y, z). Пусть задан вектор $e \in \mathbb{R}^3$, $\|e\| = 1$. Тогда $e = (\cos \alpha, \cos \beta, \cos \gamma)$, где α, β, γ - углы между вектором e и осями Ox, Oy и Oz соответственно.

Рассмотрим функцию $g(t)=f(x_0+t\cos\alpha$, $y_0+t\cos\beta$, $z_0+t\cos\gamma$), где $t\in\mathbb{R}$ – вещественный параметр.

Определение 1. Производной функции f(x) по направлению вектора $e=(\cos\alpha,\cos\beta,\cos\gamma)$ в точке $M_0(x_0,y_0,z_0)$ называется производная сложной функции g(t) в точке $t_0=0$, то есть число

$$\frac{\partial f}{\partial e}(M_0) = \lim_{t \to 0} \frac{f(M_0 + te) - f(M_0)}{t} = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = g'(0).$$

Предположим, что функция f(x) дифференцируема в точке M_0 . Тогда функция g(t) дифференцируема в нуле как сложная функция и справедлива формула:

$$\frac{\partial f}{\partial e}(M_0) = f_x'(M_0) \cdot \cos \alpha + f_y'(M_0) \cdot \cos \beta + f_z'(M_0) \cdot \cos \gamma.$$

Для случая функции двух переменных формула принимает вид:

$$\frac{\partial f}{\partial e}(M_0) = f_x'(M_0) \cdot \cos \alpha + f_y'(M_0) \cdot \sin \alpha ,$$

где α - угол между вектором e и осью Ox.

Пусть теперь $x^0=(x_1^0,...,x_n^0)$ - фиксированная точка, внутренняя для области определения функции $f(x)=f(x_1,...,x_n)$, и пусть задан вектор $e,e\in\mathbb{R}^n$ $\|e\|=1$.В этом случае координаты вектора e равны его направляющим косинусам: $e=(\cos\alpha_1,...,\cos\alpha_n)$, где α_i - угол между осью Ox_i и вектором e,i=1,...,n.

Рассмотрим функцию $g(t) = f(x^0 + te) = f(x_1^0 + t\cos\alpha_1,...,x_n^0 + t\cos\alpha_n)$, где $t \in \mathbb{R}$ – вещественный параметр.

Определение 2. Производной функции f(x) по направлению $e = (\cos \alpha_1,...,\cos \alpha_n)$ в точке x^0 называется производная сложной функции g(t) в точке $t_0 = 0$, то есть число

$$\frac{\partial f}{\partial e}(x^0) = \lim_{t \to 0} \frac{f(x^0 + te) - f(x^0)}{t} = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = g'(0). \tag{1}$$

Замечание. Из наличия у функции производной по любому направлению в некоторой точке не следует, вообще говоря, ее дифференцируемость в этой точке.

Например, у функции $f(x) = \begin{cases} \frac{x^4y^2}{x^8+y^4}, & x^2+y^2 \neq 0, \\ 0, & x^2+y^2 = 0 \end{cases}$ производная в точке (0,0) по любому

направлению равна нулю, но функция не является даже непрерывной в этой точке (проверьте!)

Предположим, что функция f(x) дифференцируема в точке x^0 . Тогда функция g(t) дифференцируема в точке $t_0=0$ как сложная функция, и производная (1) легко вычисляется по правилу дифференцирования сложной функции. Получаем формулу:

$$\frac{\partial f}{\partial e}(x^0) = f'_{x_1}(x^0) \cdot \cos \alpha_1 + \dots + f'_{x_n}(x^0) \cdot \cos \alpha_n. \tag{2}$$

Из формулы (2) видно, что производная по направлению есть скалярное произведение вектора e и вектора частных производных функции f(x). Вектор $\operatorname{grad} f(x^0) = (f'_{x_1}(x^0), ..., f'_{x_n}(x^0))$ называется $\operatorname{грadueнmom}$ функции f(x) в точке x_0 .

Таким образом, получаем равенство:

$$\frac{\partial f}{\partial e}(x^0) = (grad \ f(x^0), e). \tag{3}$$

Градиент часто представляют в виде: $grad \ f = \nabla f$ (читается: «набла f»), где $\nabla = \left(\frac{\partial}{\partial x_1},...,\frac{\partial}{\partial x_n}\right)$ - так называемый aбстрактный вектор-оператор градиента.

Отметим кстати, что формулу для дифференциала функции можно записать в следующем виде: $df = (gradf, \Delta x) = (\nabla f, \Delta x)$.

Что характеризует градиент функции? Какими свойствами обладает? Выясним это подробнее.

Лемма 1. Градиент функции (в данной точке) — это вектор, направление которого есть направление наибольшей скорости роста функции, а норма градиента равна этой наибольшей скорости роста.

Доказательство. Из формулы (3) получаем:

$$\frac{\partial f}{\partial e}(x^0) = (\operatorname{grad} f(x^0), e) = \|\operatorname{grad} f\| \cdot \|e\| \cdot \cos(\operatorname{grad} f, e).$$

Поскольку $\cos(\operatorname{grad} f, {}^{\wedge} e) \leq 1$, и достигает своего наибольшего значения 1, когда векторы сонаправлены, то легко видеть, что максимальное значение производной $\frac{\partial f}{\partial e}(x^{0})$

будет в том и только в том случае, когда $e = \frac{grad \ f(x^0)}{\left\|grad \ f(x^0)\right\|}$, то есть когда вектор e совпадает с ортом градиента f (в точке x^0).

Какова же максимальная скорость роста функции f? Из (3), при $e = \frac{grad \ f(x^0)}{\|grad \ f(x^0)\|}$,

получаем:
$$\frac{\partial f}{\partial e}(x^0) = (grad\ f(x^0), \frac{grad\ f(x^0)}{\left\|grad\ f(x^0)\right\|}) = \left\|grad\ f(x^0)\right\|$$
. Лемма доказана.

Замечание. Поскольку, в силу леммы 1, направление и норма градиента есть направление и величина максимальной скорости роста функции (в данной точке), то градиент $\operatorname{grad} f(x)$ не зависит от выбора системы координат.

Рассмотрим теперь направление градиента функции по отношению к её *поверхности* уровня, то есть к геометрическому месту точек, определяемому уравнением: $P_c: f(x) = f(x_1,...,x_n) = c$, где c - некоторая константа.

Лемма 2. Градиент дифференцируемой в точке x^0 функции f(x) ортогонален её поверхности уровня P_c , проходящей через точку x^0 .

Доказательство. Пусть в малой окрестности точки x^0 взята произвольная точка $x, x \in P_c, x - x^0 = \Delta x \neq 0$. В силу дифференцируемости функции f(x) в точке x^0 , имеем: $0 = \Delta f = f(x^0 + \Delta x) - f(x^0) = (grad f(x^0), \Delta x) + \overline{o}(\|\Delta x\|)$. Разделив это равенство на $\|\Delta x\|$, получим:

$$0 = \frac{\Delta f}{\|\Delta x\|} = f'_{x_1}(x^0) \frac{\Delta x_1}{\|\Delta x\|} + \dots + f'_{x_n}(x^0) \frac{\Delta x_n}{\|\Delta x\|} + \frac{\overline{o}(\|\Delta x\|)}{\|\Delta x\|} = (\operatorname{grad} f(x^0), \frac{\Delta x}{\|\Delta x\|}) + \frac{\overline{o}(\|\Delta x\|)}{\|\Delta x\|}.$$

При переходе к пределу при $\Delta x \to 0$ в последнем соотношении вектор $\frac{\Delta x}{\|\Delta x\|}$ превращается в касательный вектор $e_{\text{кас.}}$ в точке x^0 к поверхности P_c , и получается равенство:

 $(grad\ f(x_0), e_{\text{кас.}}) = 0$. Таким образом, $grad\ f(x^0) \perp e_{\text{кас.}}$. В силу произвольности точки $x \in P_c$ отсюда следует, что $grad\ f(x^0) \perp P_c$. Это завершает доказательство леммы.

Частные производные и дифференциалы высших порядков.

Если у функции $f(x) = f(x_1,...,x_n)$ частная производная $\frac{\partial f}{\partial x_k}$ определена в некоторой области $D \subset \mathbb{R}^n$, то она также является функцией n переменных. Может случиться , что эта функция имеет частную производную по переменной x_i в некоторой внутренней точке $x^0 = (x_1^0,...,x_n^0)$ области D. Тогда эту производную $\frac{\partial}{\partial x_i}(\frac{\partial f}{\partial x_k})(x^0) = \frac{\partial^2 f}{\partial x_i\partial x_k}(x^0)$ называют второй частной производной функции f сначала по переменной x_k , а затем по переменной x_i , в точке $x^0 = (x_1^0,...,x_n^0)$ (то есть сначала производится дифференцирование по x_k , а затем по x_i). Если $x_k \neq x_i$, то частная производная второго порядка называется смешанной.

Далее, применяя такое же рассуждение ко второй частной производной, можно определить понятие третьей частной производной, и так деле. Основываясь на этом описании понятия второй частной производной, мы можем ввести следующее общее индуктивное определение:

Определение 3. Если у функции $f(x) = f(x_1,...,x_n)$ определена частная производная (n-1)-го порядка $\frac{\partial^{n-1} f}{\partial x_{i_{n-1}}...\partial x_{i_1}}(x)$ в некоторой области $D \subset \mathbb{R}^n$, и у неё существует частная производная по переменной x_{i_n} в точке $x^0 = (x_1^0,...,x_n^0) \in D$, то эта производная $\frac{\partial}{\partial x_{i_n}}(\frac{\partial^{n-1} f}{\partial x_{i_{n-1}}...\partial x_{i_1}})(x^0)$ называется $\frac{\partial}{\partial x_{i_n}}(\frac{\partial^n f}{\partial x_{i_{n-1}}...\partial x_{i_1}}(x^0)$.

Аналогично частным производным первого порядка, существуют другие обозначения и для частных производных высших порядков. Производные $\frac{\partial^2 f}{\partial x_i \partial x_k}(x^0)$, $\frac{\partial^n f}{\partial x_{i_n} \partial x_{i_{n-1}} ... \partial x_{i_1}}(x^0)$ можно обозначать также $f''_{x_k x_i}$, $f^{(n)}_{x_{i_1} ... x_{i_n}}$ соответственно. Если среди

переменных $x_{i_1},...,x_{i_n}$ не все совпадают, то такая частная производная n - го порядка называется *смешанной*.

Пример 1.
$$f(x, y) = arctg xy;$$
 $\frac{\partial f}{\partial x} = \frac{y}{1 + x^2 y^2}; \frac{\partial f}{\partial y} = \frac{x}{1 + x^2 y^2};$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} (\frac{x}{1 + x^2 y^2}) = \frac{1 - x^2 y^2}{\left(1 + x^2 y^2\right)^2} = \frac{\partial^2 f}{\partial y \partial x} \text{ (Проверьте самостоятельно!)}$$
Пример 2. Пусть $g(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & x^2 + y^2 > 0 \\ 0, & x = y = 0 \end{cases}$. Тогда
$$f_x'(x;y) = \begin{cases} y \frac{4x^2 y^2 + x^4 - y^4}{\left(x^2 + y^2\right)^2}, & x^2 + y^2 > 0 \\ 0, & x = y = 0 \end{cases}; \quad f_y'(x;y) = \begin{cases} x \frac{-4x^2 y^2 + x^4 - y^4}{\left(x^2 + y^2\right)^2}, & x^2 + y^2 > 0 \\ 0, & x = y = 0 \end{cases};$$

Следовательно, для смешанных частных производных второго порядка получаем:

$$f''_{xy}(0;0) = \lim_{y \to 0} \frac{f'_x(0;y) - f'_x(0;0)}{y} = -1; \qquad f''_{yx}(0;0) = \lim_{x \to 0} \frac{f'_y(x;0) - f'_y(0;0)}{x} = 1.$$

(Проверьте самостоятельно все вычисления!).

Рассмотрим теперь понятие n раз дифференцируемой функции, которое также вводится индуктивно.

Определение 4. Функция $f(x) = f(x_1,...,x_n)$ называется дважды дифференцируемой в точке $x^0 = (x_1^0,...,x_n^0)$, если она дифференцируема в некоторой окрестности этой точки, и все её частные производные дифференцируемы в точке x^0 . Аналогично, если функция f(x) (n-1) раз (n>1) дифференцируема в некоторой окрестности точки x^0 , и все её частные производные (n-1)-го порядка дифференцируемы в точке x^0 , то f(x) называется n раз дифференцируемой в точке x^0 .

Из определения 4 вытекает следующее достаточное условие для того, чтобы функция была n раз дифференцируема в данной точке.

Утверждение 1. Для того, чтобы функция f(x) была n раз дифференцируема в данной точке $x^0=(x_1^0,...,x_n^0)$, достаточно, чтобы она (n-1) раз была дифференцируема в некоторой окрестности точки x^0 , и все ее частные производные n-го порядка были непрерывны в самой точке x^0 .

Доказательство. При n=1 получаем достаточное условие дифференцируемости функции в точке. Пусть n>1. Рассмотрим любую из производных (n-1)- го порядка функции f(x). По условию все ее частные производные первого порядка непрерывны в точке x^0 (поскольку они являются производными n-го порядка самой функции f(x)). Согласно достаточному условию дифференцируемости, получаем, что любая производная порядка (n-1) функции f(x) дифференцируема в точке x^0 . Кроме того, сама функция по условию (n-1) раз дифференцируема в окрестности точки x^0 . Следовательно, она n раз дифференцируема в точке x^0 , что и требовалось доказать.

Рассмотрим теперь вопрос о том, зависят ли смешанные частные производные функции f(x) по одному и тому же набору переменных от того, в каком порядке производится последовательное дифференцирование, и при каких условиях они совпадают. В приведённых выше примерах, как мы видели, в одном случае (пример 1) смешанные производные совпадают, а в другом (пример 2) различны. Сформулируем и докажем две теоремы о достаточных условиях равенства смешанных частных производных второго порядка.

Теорема 1 (Юнг). Если функция f(x, y) дважды дифференцируема в точке (x_0, y_0) ,

To
$$\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$$
.

Доказательство. Условие теоремы означает, что частные производные функции f(x,y) определены в некоторой окрестности, и дифференцируемы в самой этой точке. Пусть приращение h достаточно мало, так что точка $(x_0 + h, y_0 + h)$ принадлежит указанной окрестности. Рассмотрим выражение

$$\Phi = \Phi(x_0, y_0; h) = f(x_0 + h; y_0 + h) - f(x_0 + h, y_0) - f(x_0, y_0 + h) + f(x_0, y_0),$$

которое можно представить следующими двумя способами. Во-первых, так:

$$\Phi = [f(x_0 + h; y_0 + h) - f(x_0 + h, y_0)] - [f(x_0, y_0 + h) - f(x_0, y_0)] = \varphi(x_0 + h) - \varphi(x_0), \quad (4)$$
 где $\varphi(x) = f(x, y_0 + h) - f(x, y_0)$. И во-вторых, так:

$$\Phi = [f(x_0 + h; y_0 + h) - f(x_0, y_0 + h)] - [f(x_0 + h, y_0) - f(x_0, y_0)] = \psi(y_0 + h) - \psi(y_0), \quad (5)$$
 где $\psi(y) = f(x_0 + h, y) - f(x_0, y).$

Применяя теорему Лагранжа к дифференцируемой функции $\varphi(x)$ на интервале $(x_0; x_0 + h)$, из (4) получаем:

$$\begin{split} \Phi &= \varphi_x'(x_0 + \theta h) \cdot h = [f_x'(x_0 + \theta h, y_0 + h) - f_x'(x_0 + \theta h, y_0)] \cdot h = \\ &= [f_x'(x_0 + \theta h, y_0 + h) - f_x'(x_0, y_0)] \cdot h - [f_x'(x_0 + \theta h, y_0) - f_x'(x_0, y_0)] \cdot h \,, \end{split}$$

где $\theta \in (0;1)$.

Далее, в последнем выражении в квадратных скобках стоят приращения дифференцируемой в точке (x_0, y_0) функции f_x' , которые можно представить следующим образом:

$$[f'_{x}(x_{0} + \theta h, y_{0} + h) - f'_{x}(x_{0}, y_{0})] = f''_{xx}(x_{0}, y_{0})\theta h + f''_{xy}(x_{0}, y_{0})h + \alpha_{1}\theta h + \alpha_{2}h;$$

$$[f'_{x}(x_{0} + \theta h, y_{0}) - f'_{x}(x_{0}, y_{0})] = f''_{xx}(x_{0}, y_{0})\theta h + \alpha_{3}h,$$

где $\alpha_1, \alpha_2, \alpha_3$ - бесконечно малые при $h \to 0$. Подставляя полученные выражения в формулу для Φ , получаем:

$$\Phi = f_{xx}''(x_0, y_0)\theta h^2 + f_{xy}''(x_0, y_0)h^2 + (\alpha_1\theta h + \alpha_2h)h - f_{xx}''(x_0, y_0)\theta h^2 - \alpha_3h^2.$$

Таким образом,

$$\Phi = f''_{xy}(x_0, y_0)h^2 + \bar{o}(h^2), \quad h \to 0.$$

Совершенно аналогично, используя представление (5), получаем:

$$\begin{split} \Phi &= \psi_y'(y_0 + \widetilde{\theta}h) \cdot h = [f_y'(x_0 + h, y_0 + \widetilde{\theta}h) - f_y'(x_0, y_0 + \widetilde{\theta}h)] \cdot h = \\ &= [f_y'(x_0 + h, y_0 + \widetilde{\theta}h) - f_y'(x_0, y_0)] \cdot h - [f_y'(x_0, y_0 + \widetilde{\theta}h) - f_y'(x_0, y_0)] \cdot h = \\ f_{yx}''(x_0, y_0)h^2 + f_{yy}''(x_0, y_0)\widetilde{\theta}h^2 + (\beta_1 h + \beta_2 \widetilde{\theta}h)h - f_{yy}''(x_0, y_0)\widetilde{\theta}h^2 - \beta_3 h^2 \,. \end{split}$$

Поэтому, уничтожая слагаемые с противоположными знаками, имеем:

$$\Phi = f''_{yx}(x_0, y_0)h^2 + \bar{o}(h^2), \quad h \to 0.$$

Поделив на h^2 и приравнивая правые части данных соотношений, получим:

$$f_{xy}''(x_0, y_0) + \overline{o}(1) = f_{yx}''(x_0, y_0) + \overline{o}(1)$$
,

откуда и следует искомое равенство: $f''_{yx}(x_0, y_0) = f''_{xy}(x_0, y_0)$, так как разность $f''_{yx}(x_0, y_0) - f''_{xy}(x_0, y_0)$ есть бесконечно малая величина. Теорема доказана.

Теорема 2 (Шварц). Если у функции f(x,y) в некоторой окрестности точки (x_0,y_0) существуют частные производные $f'_x, f'_y, f''_{yx}, f''_{xy}$, причём производные f''_{yx}, f''_{xy} непрерывны в точке (x_0,y_0) , то имеет место равенство: $f''_{yx}(x_0,y_0) = f''_{xy}(x_0,y_0)$.

Доказательство. Используем выражение Φ и некоторые выкладки из доказательства теоремы 1. Из условия теоремы о существовании частной производной f_{xy}'' , применяя теорему Лагранжа, получаем:

$$\Phi = [f_x'(x_0 + \theta h, y_0 + h) - f_x'(x_0 + \theta h, y_0)] \cdot h = f_{xy}''(x_0 + \theta h, y_0 + \theta_1 h) \cdot h^2,$$

где $\theta_1 \in (0;1)$.

С другой стороны, поменяв ролями x и y и снова применяя теорему Лагранжа, имеем:

$$\Phi = [f'_{v}(x_0 + h, y_0 + \widetilde{\theta}h) - f'_{v}(x_0, y_0 + \widetilde{\theta}h)] \cdot h = f''_{vx}(x_0 + \theta_2h, y_0 + \widetilde{\theta}h) \cdot h^2,$$

где $\theta_2 \in (0;1)$.

Поделив на h^2 и приравнивая правые части полученных выражений, приходим к равенству:

$$f''_{yx}(x_0 + \theta_2 h, y_0 + \tilde{\theta} h) = f''_{xy}(x_0 + \theta h, y_0 + \theta_1 h)$$
.

При переходе к пределу при $h \to 0$, в силу условия непрерывности этих производных в точке (x_0,y_0) , получаем искомое равенство: $f''_{yx}(x_0,y_0) = f''_{xy}(x_0,y_0)$. Теорема полностью доказана.

Из теоремы 1 выведем достаточное условие равенства смешанных производных высших порядков.

Теорема 3. Пусть функция f(x) m раз (m > 2) дифференцируема в точке x^0 . Тогда её частные производные m- го порядка не зависят от порядка последовательного выполнения операций дифференцирования.

Доказательство. Достаточно показать, что производная $\frac{\partial^m f}{\partial x_{i_m}...\partial x_{i_{k+1}}\partial x_{i_k}...\partial x_{i_1}}(x^0)$ не

зависит от перестановки двух соседних операций дифференцирования, то есть доказать равенство:

$$\frac{\partial^m f}{\partial x_{i_m} ... \partial x_{i_{k+1}} \partial x_{i_k} ... \partial x_{i_1}}(x^0) = \frac{\partial^m f}{\partial x_{i_m} ... \partial x_{i_k} \partial x_{i_{k+1}} ... \partial x_{i_1}}(x^0).$$

С этой целью рассмотрим функцию $F(x) = \frac{\partial^{k-1} f}{\partial x_{i_{k-1}}...\partial x_{i_1}}(x), 1 < k < m$. Из условия теоремы следует, что

- 1) при 1 < k < m-1 функция F(x) дважды дифференцируема в некоторой окрестности точки x^0 ;
 - 2) при k=m-1 функция F(x) дважды дифференцируема в точке x^0 .

Но тогда, по теореме 1, её смешанные частные производные $\frac{\partial^2 F}{\partial x_{i_k}\partial x_{i_{k+1}}}, \frac{\partial^2 F}{\partial x_{i_{k+1}}\partial x_{i_k}}$ при

1 < k < m-1 тождественно совпадают в некоторой окрестности точки x^0 , а при k = m-1 они совпадают в точке x^0 . Это означает, что:

$$1) \ \frac{\partial^{k+1} f}{\partial x_{i_{k+1}} \partial x_{i_k} \dots \partial x_{i_1}} = \frac{\partial^{k+1} f}{\partial x_{i_k} \partial x_{i_{k+1}} \dots \partial x_{i_1}} \quad \text{при } 1 < k < m-1 \ \text{ в некоторой окрестности точки } \ x^0 \,,$$

откуда при дальнейшем дифференцировании по остальным переменным $x_{i_{k+2}},...,x_{i_m}$ получается нужное равенство;

2) при k=m-1 равенство $\frac{\partial^{k+1} f}{\partial x_{i_{k+1}} \partial x_{i_k} ... \partial x_{i_1}} = \frac{\partial^{k+1} f}{\partial x_{i_k} \partial x_{i_{k+1}} ... \partial x_{i_1}}$ в точке x^0 совпадает с искомым равенством.

Теорема доказана.

Из теоремы 3 вытекает следующее простое утверждение.

Следствие. Если функция f(x) m раз $(m \ge 2)$ дифференцируема в точке x^0 , то её частные производные m-го порядка можно записывать в следующей форме:

$$\frac{\partial^m f}{(\partial x_n)^{\alpha_n}...(\partial x_1)^{\alpha_1}}, \text{ где } 0 \leq \alpha_j \leq m, \ \alpha_1 + ... + \alpha_n = m.$$