Curtin University – Department of Computing

Assignment Cover Sheet / Declaration of Originality

Complete this form if/as directed by your unit coordinator, lecturer or the assignment specification.

Last name:	Chitete	Student ID:	20169321	
Other name(s):	Tanaka			
Unit name:	Foundations of Computer Science	Unit ID:	COMP1006	
Lecturer / unit coordinator:	Antoni Liang	Tutor:	IDK	
Date of submission:	20/11/2020	Which assignment?	(Leave blank if FA the unit has only one assignment.)	

I declare that:

- The above information is complete and accurate.
- The work I am submitting is *entirely my own*, except where clearly indicated otherwise and correctly referenced.
- I have taken (and will continue to take) all reasonable steps to ensure my work is *not accessible* to any other students who may gain unfair advantage from it.
- I have *not previously submitted* this work for any other unit, whether at Curtin University or elsewhere, or for prior attempts at this unit, except where clearly indicated otherwise.

I understand that:

- Plagiarism and collusion are dishonest, and unfair to all other students.
- Detection of plagiarism and collusion may be done manually or by using tools (such as Turnitin).
- If I plagiarise or collude, I risk failing the unit with a grade of ANN ("Result Annulled due to Academic Misconduct"), which will remain permanently on my academic record. I also risk termination from my course and other penalties.
- Even with correct referencing, my submission will only be marked according to what I have done myself, specifically for this assessment. I cannot re-use the work of others, or my own previously submitted work, in order to fulfil the assessment requirements.
- It is my responsibility to ensure that my submission is complete, correct and not corrupted.

Signature:	TANAKA CHITETE	signature:	20/11/2020
	TANIAKA OLUTETE	Date of	00/4/1/0000

Question 1

р	q	r	(p -> r)	(q -> r)	(p -> r) v (q -> r)
Т	Т	Т	Т	Т	Т
Т	Т	F	F	F	F
Т	F	Т	Т	Т	Т
Т	F	F	F	Т	Т
F	Т	Т	Т	Т	Т
F	Т	F	Т	F	Т
F	F	Т	Т	Т	Т
F	F	F	Т	Т	Т

р	q	r	(p ^ q)	(p ^ q) -> r
Т	Т	Т	Т	Т
Т	Т	F	Т	F
Т	F	Т	F	Т
Т	F	F	F	Т
F	T	T	F	Т
F	Т	F	F	Т
F	F	Т	F	Т
F	F	F	F	Т

Therefore, these statements are logically equivalent

Question 2

- a. $\exists x (\forall y (x \neq y \land Faster(x, y))$, where the domain of x and y is all people and Faster(x, y) denotes that person x runs faster than person y.
- b. $\neg \exists x (\forall y (x \neq y \land \text{Likes}(y, x)))$, where the domain of x and y is all people and Likes(y, x) denotes that person y loves person x
- c. $\exists ! x(King(x))$, where the domain of x is all people and King(x) denotes that person x is a king
- d. $\forall x (\text{Friend}(x, Alice) \lor \exists y (x \neq y \land Friend(y, Alice) \land Friend(x, y))$

Question 3

i.e. Show that
$$(|x|+|y|)^2 \ge |x+y|^2$$

Note: $\forall a \in \mathbb{R}(|b|^2=b^2)$

$$|x|^{2} + 2|x||y| + |y|^{2}$$

$$\geq x^{2} + 2xy + y^{2}, \text{ where } |a| \geq a \text{ and } |b| \geq b$$

$$= (a+b)^{2}$$

$$= |a+b|^{2}$$

$$\therefore (|x|+|y|)^{2} \geq |x+y|^{2}$$

(The Math Sorcerer, 2015)

Question 4

For n > 1, let P(n) denote the statement

$$P(n) \equiv \frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \frac{1}{5 \times 7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$$

Base step

$$P(2) \equiv \frac{1}{1 \times 3} + \frac{1}{3 \times 5} = \frac{2}{2(2) + 1}$$
$$\equiv \frac{1}{3} + \frac{1}{15} = \frac{2}{5}$$
$$\equiv \frac{5}{15} + \frac{1}{15} = \frac{6}{15}$$
$$\equiv \text{True}$$

Inductive step

For an arbitrary k > 2, assuming that P(k) is true, it remains to prove that P(k + 1), given below, holds:

$$P(k+1) \equiv \frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \frac{1}{5 \times 7} + \dots + \frac{1}{(2(k+1)-1)(2(k+1)+1)} = \frac{k+1}{2(k+1)+1}$$

Starting with the LHS of P(k + 1),

$$P(k+1) \equiv \frac{1}{1\times3} + \frac{1}{3\times5} + \frac{1}{5\times7} + \dots + \frac{1}{(2k-1)(2k+1)} + \frac{1}{(2(k+1)-1)(2(k+1)+1)} = \frac{k}{2k+1} + \frac{1}{(2(k+1)-1)(2(k+1)+1)} = \frac{k}{2k+1} + \frac{1}{(2(k+1)-1)(2(k+1)+1)} = \frac{k}{2(k+1)+1} + \frac{1}{2(k+1)+1} = \frac{k}{2(k+1)+1} =$$

we see that the RHS of P(k + 1) follows.

- \therefore By completing the inductive step, we have proven that P(k+1) is true
- \therefore By mathematical induction, we have also proven that for any n>1, the statement P(n) is true
- i.e. We have proven that the implication $P(k) \rightarrow P(k+1)$ is true

(Rosen 2007)

Question 5

- a. ..
- b. ...

Question 6

Definition: A relation R on a set S is called an equivalence relation if it is reflexive, symmetric and transitive

- a. Reflexivity
 - i.e. Show that $a \sim b$

$$zeros(a) = zeros(b)$$

= $zeros(a)$
 $\therefore a \sim b$

 \therefore Since $a \sim b$, R is reflexive

Symmetry

i.e. Show that $a \sim b \rightarrow b \sim a$

$$(a \sim b) \Leftrightarrow \operatorname{zeros}(a) = \operatorname{zeros}(b)$$

 $(b \sim a) \Leftrightarrow \operatorname{zeros}(b) = \operatorname{zeros}(a)$
 $\therefore (a \sim b) \to (b \sim a)$

 \therefore Since $(a \sim b) \rightarrow (b \sim a)$, R is symmetric

Transitivity

i.e. Show that
$$[(a \sim b) \land (b \sim c)] \rightarrow (a \sim c)$$

 $(a \sim b) \Leftrightarrow \operatorname{zeros}(a) = \operatorname{zeros}(b)$
 $(b \sim c) \Leftrightarrow \operatorname{zeros}(b) = \operatorname{zeros}(c)$
 $(a \sim c) \Leftrightarrow \operatorname{zeros}(a) = \operatorname{zeros}(c)$
 $\therefore [(a \sim b) \land (b \sim c)] \rightarrow (a \sim c)$
 $\therefore \operatorname{Since}[(a \sim b) \land (b \sim c)] \rightarrow (a \sim c)$, R is transitive

 \therefore Since R is reflexive, symmetric and transitive, it is an equivalence relation.

(The Math Sorcerer, 2018)

b.
$$[a] = \{s | (10001, s) \in R\}$$
 (Rosen, 2007)

Question 7

- a. ...
- b. ...

Question 8

a. Firstly, we need to select 3 students. The number of ways in which we can select 3 students from the original 9 is given by $C_3^9=84$

Next, we need to select 2 staff members. The number of ways in which we can 2 staff members from the original 6 is given by $C_2^6=15$

Consequently, the number of ways is given by $84 \times 15 = 1260$

- b. ...
- c. ...
- d. ...

Question 9

•••

Question 10

a.
$$a_n = a_{n-1} + a_{n-2} + a_{n-3}$$
 for $n \ge 3$ (Rosen 2007)

b.
$$a_0 = 1$$
, $a_1 = 1$ and $a_2 = 2$ (Rosen 2007)

c.

n	a_n
0	1
1	1
2	2
3	4
4	7
5	13
6	24

(Rosen 2007)

Question 11

a. Suppose that a given bit string is *valid* if it contains the substring 10 and *invalid* otherwise. Moreover, suppose that s is a string of length n-1.

If s is valid, we have two possible options:

- 1. We can append a 0
- 2. We can append a 1

Either way, seeing as the string was already valid, no change to its validity will occur with either option; this accounts for $2a_{n-1}$ good strings of length n.

If s is invalid, we can only form a valid string by appending one more bit, is for the final bit of s to be 1 and then for us to append a 0. Conclusively, this scenario will grant us one valid string for every invalid string with a length of n-1 that concludes with a 1. Seeing as there are 2^{n-1} strings of length n-1 and a_{n-1} of them are valid, there will be a total of $2^{n-1}-a_{n-1}$ strings that are invalid. The only invalid string of length n-1 ends in 0, shown below:

000...000,

so there are $2^{n-1}-a_{n-1}-1$ invalid strings with a length of n-1 which can be modified into a valid string with a length of n

Thus, the total number of valid strings is given by:

$$a_n = 2a_{n-1} + (2^{n-1} - a_{n-1} - 1) = a_{n-1} + 2^{n-1} - 1$$

(foobar512 2016)

b.
$$a_0 = 0$$
, $a_1 = 0$ and $a_2 = 1$

c.

n	a_n
0	0
1	0
2	1
3	4
4	11
5	26
6	57

(foobar512 2016)

Question 12

a. Euler Circuit

No, as not every vertex has even degree. e.g. deg(a) = 3

(Liau 2020)

Euler Path

Yes, a, b, e, d, a, c, d

(Liau 2020)

b. Hamilton Circuit

Yes, a, b, e, d, c, a (Liau 2020)

Hamilton Path

Yes, a, b, e, d, c

(Liau 2020)

Question 13

a. ...

b. ...

c. ...

References

The Math Sorcerer. 2015. *Triangle Inequality for Real Numbers Proof.*https://www.youtube.com/watch?v=lj765RaxreE&ab_channel=TheMathSorcerer

The Math Sorcerer. 2018. How to Prove a Relation is an Equivalence Relation. https://www.youtube.com/watch?v=y-fNHrzcMsg&ab channel=TheMathSorcerer

Rosen, Kenneth. 2007. *Discrete Mathematics and Its Applications*. 6 ed. New York: Mcgraw-Hill.

foobar512. 2016. "Number of bit strings that contain 01". Stack Exchange. https://math.stackexchange.com/questions/2005820/number-of-bit-strings-that-contain-01

Liu, Wanquan. 2020. "Lecture 11. Paths, Circuits & Trees." Slides.