Aplicação do Método de Monte Carlo em OpenMP

Alunos: Ana Veroneze e Gabriel Cardoso

Professora: Andrea Charão

Disciplina: ELC139 - Programação Paralela

Ambiente de execução do programa

Hardware: Intel(R) Core(™) i5-4200u @1.6 GHz, 2 cores físicos e 4 virtuais, Cache L1 de 128KB, L2 de 512KB, L3 de 3MB, 6 GB de RAM.

Software: Linux Ubuntu 16.04 LTS x64

Compilador: gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.4)

Alterações no programa:

Alteração do Makefile: flag -fopenmp

Inclusão da biblioteca omp.h

Utilização das diretivas OpenMP

Pequenas alterações no código: posição de declaração de variáveis, modificações para os experimentos - cálculo do tempo de execução

1^a Solução: Paralelização na main

Objetivo: Dividir o cálculo do percentual de árvores queimadas entre diferentes threads

Onde?

```
// para cada probabilidade, calcula o percentual de árvores queimadas
for (int ip = 0; ip < n probs; ip++) {
   prob spread[ip] = prob min + (double) ip * prob step;
   percent burned[ip] = 0.0;
   rand.setSeed(base seed+ip); // nova seqüência de números aleatórios
   // executa vários experimentos
   for (int it = 0; it < n trials; it++) {</pre>
      // queima floresta até o fogo apagar
      forest->burnUntilOut(forest->centralTree(), prob spread[ip], rand);
      percent burned[ip] += forest->getPercentBurned();
   // calcula média dos percentuais de árvores queimadas
   percent burned[ip] /= n trials;
   // mostra resultado para esta probabilidade
   printf("%lf, %lf\n", prob spread[ip], percent burned[ip]);
```

```
// para cada probabilidade, calcula o percentual de árvores queimadas
#pragma omp parallel private (ip, it)
Forest* forest = new Forest(forest size);
#pragma omp for
for (ip = 0; ip < n probs; ip++) {
        prob spread[ip] = prob min + (double) ip * prob step;
        percent burned[ip] = 0.0;
        rand.setSeed(base seed+ip); // nova següência de números aleatórios
        // executa vários experimentos
        for (it = 0; it < n trials; it++) {</pre>
                // queima floresta até o fogo apagar
                forest->burnUntilOut(forest->centralTree(), prob spread[ip], rand);
                percent burned[ip] += forest->getPercentBurned();
        // calcula média dos percentuais de árvores queimadas
        percent burned[ip] /= n trials;
        // mostra resultado para esta probabilidade
        printf("%lf, %lf\n", prob spread[ip], percent burned[ip]);
```

```
1 #pragma omp parallel private (ip, it)
{
    ...
}
    Variáveis de controle dos laços
```

```
Forest* forest = new Forest(forest_size);
#pragma omp for
for (ip = 0; ip < n_probs; ip++) {
...</pre>
```

```
master thread
 FORK
DO / for loop
                team
  JOIN
       master thread
```

```
// queima floresta até o fogo apagar
forest->burnUntilOut(forest->centralTree(), prob_spread[ip], rand);
percent_burned[ip] += forest->getPercentBurned();
```

2ª Solução: Paralelização na main

Objetivo: Dividir a execução dos experimentos entre diferentes threads

Onde?

```
// executa vários experimentos
for (int it = 0; it < n_trials; it++) {
    // queima floresta até o fogo apagar
    forest->burnUntilOut(forest->centralTree(), prob_spread[ip], rand);
    percent_burned[ip] += forest->getPercentBurned();
}
```

```
1 #pragma omp parallel
{
    ...
}
```

```
Forest* forest = new Forest(forest_size);
#pragma omp for
for (it = 0; it < n_trials; it++) {
    ...
}</pre>
```

#pragma omp critical
percent_burned[ip] += forest->getPercentBurned();

A variável ip controla o laço mais externo, que não pertence a região paralela

Solução encontrada

Experimentos

10 execuções

Programas:

- → firesim sequencial
- → firesim-omp-1 2 e 4 threads
- → firesim-omp-2 2 e 4 threads

Entradas <tamanho-do-problema> <nro. experimentos> <probab. maxima>:

- → 30 5000 101
- → 15 2500 50
- **→** 7 1500 25

Resultados

Sequencial

	Menor tempo (seg)	Maior tempo (seg)	Média (seg)
30 5000 101	105,696849	114,386657	107,953845
15 2500 50	4,504353	4,979517	4,644869
7 1500 25	0,227899	0,281643	0,253136

Resultados

Primeira variação

		Menor tempo (seg)	Maior tempo (seg)	Média (seg)
30 5000 101	2 Thread	93,058603	104,390215	100,167741
	4 Thread	117,134443	142,667820	127966102
15 2500 50	2 Thread	4,035692	5,430337	4,636491
	4 Thread	4,499608	4,664057	4,587158
7 1500 25	2 Thread	3,05426	3,27040	3,20229
	4 Thread	2,78781	2,93931	2,84634

Resultados

Segunda variação

		Menor tempo (seg)	Maior tempo (seg)	Média (seg)
30 5000 101	2 Thread	74,832610	78,126565	76,351045
	4 Thread	72,892472	73,542390	73,223783
15 2500 50	2 Thread	4,146894	4,184084	4,169830
	4 Thread	4,007927	4,245759	4,108193
7 1500 25	2 Thread	3,51614	4,51613	3,75467
	4 Thread	2,56453	3,12280	3,04741

./firesim 30 5000 101

Thread	Speedup V1	Eficiência V1	Speedup V2	Eficiência V2
 2	1.0778	0.5389	1.4138	0.7069
4	0.8435	0.2108	1.4742	0.3685

./firesim 15 2500 50

Thread	Speedup V1	Eficiência V1	Speedup V2	Eficiência V2
2	1.0019	0.5009	1.1307	0.5653
4	1.0126	0.2531	1.1141	0.2785

./firesim 7 1500 25

Thread	Speedup V1	Eficiência V1	Speedup V2	Eficiência V2
2	0.7904	0.3952	0.6742	0.3371
4	0.8893	0.2223	0.8306	0.2076

Conclusão e discussão

```
configuração 1 - versão 2
configuração 2 - versão 1 e sequencial
configuração 3 - versão sequencial
= dados pequenos melhor execução sequencial
Melhoras no desempenho? Não como o esperado.
```