Problem Set #2 5/5 points (100%)

Quiz, 5 questions

✓ Congratulations! You passed!

Next Item

1/1 points

5/5 points (100%)

Quiz, 5 questions

1.

Consider a directed graph with distinct and nonnegative edge lengths and a source vertex s. Fix a destination vertex t, and assume that the graph contains at least one s-t path. Which of the following statements are true? [Check all that apply.]

re true? [Check all that apply.]		
The shortest (i.e., minimum-length) s - t path might have as many as $n-1$ edges, where n is the number of vertices.		
Correct		
The shortest s - t path must include the minimum-length edge of G .		
Un-selected is correct		
There is a shortest <i>s-t</i> path with no repeated vertices (i.e., a "simple" or "loopless" such path).		
Correct		
The shortest s - t path must exclude the maximum-length edge of G .		
Un-selected is correct		

1/1 points

5/5 points (100%)

Quiz, 5 questions

2.

Consider a directed graph G with a source vertex s, a destination t, and nonnegative edge lengths. Under what conditions is the shortest s-t path guaranteed to be unique?

	When all edges lengths are distinct positive integers and the graph ${\it G}$ contains no directed cycles.
	When all edge lengths are distinct positive integers.
	None of the other options are correct.
0	When all edge lengths are distinct powers of 2.

Correct

Two sums of distinct powers of two cannot be the same (imagine the numbers are written in binary).

path.

1/1 points

5/5 points (100%)

Quiz, 5 questions

3.

Consider a directed graph G=(V,E) and a source vertex s with the following properties: edges that leave the source vertex s have arbitrary (possibly negative) lengths; all other edge lengths are nonnegative; and there are no edges from any other vertex to the source s. Does Dijkstra's shortest-path algorithm correctly compute shortest-path distances (from s) in this graph?

	Only if we add the assumption that \emph{G} contains no directed cycles with negative total weight.		
	Never		
0	Always		
Correct			
One approach is to see that the proof of correctness from the videos still works. A slicker solution is to notice that adding a			
positive constant M to all edges incident to s increases the length			
of every s - v path by exactly M , and thus preserves the shortest			

Maybe, maybe not (depends on the graph)

1/1 points

5/5 points (100%)

Quiz, 5 questions

4.		
Consider a directed graph G and a source vertex S . Suppose G has some negative edge lengths but no negative cycles, meaning G does not have a directed cycle in which the sum of the edge lengths is negative. Suppose you run Dijkstra's algorithm on G (with source S). Which of the following statements are true? [Check all that apply.]		
It's impossible to run Dijkstra's algorithm on a graph with negative edge lengths.		
Un-selected is correct		
Dijkstra's algorithm might loop forever. Un-selected is correct		
Dijkstra's algorithm always terminates, but in some cases the paths it computes will not be the shortest paths from <i>s</i> to all other vertices.		
Correct Nonnegativity of the edge lengths was used in the correctness proof for Dijkstra's algorithm; with negative edge lengths, the algorithm is no longer correct in general.		

Dijkstra's algorithm always terminates, and in some cases the
paths it computes will be the correct shortest paths from s to
all other vertices.

Correct

See Question 3.

1/1 points

5/5 points (100%)

Quiz, 5 questions

5.

negativ negativ algoritl	ler a directed graph G and a source vertex s . Suppose G contains a ve cycle (a directed cycle in which the sum of the edge lengths is ve) and also a path from s to this cycle. Suppose you run Dijkstra's hm on G (with source s). Which of the following statements are Check all that apply.]
	Dijkstra's algorithm always terminates, and in some cases the paths it computes will be the correct shortest paths from s to all other vertices.
Un-s	elected is correct
	Dijkstra's algorithm might loop forever.
Un-s	elected is correct
	Dijkstra's algorithm always terminates, but in some cases the

Correct

It's impossible to run Dijkstra's algorithm on a graph with a negative cycle.

paths it computes will not be the shortest paths from s to all

Un-selected is correct

other vertices.

6 of 6