Sinais e Sistemas Electrónicos

Capítulo 8: O transistor MOS (parte 1)

Sinais e Sistemas Electrónicos – 2021/2022

Sumário

- Introdução;
- Estrutura física e funcionamento do MOSFET;
- Modelo quadrático do NMOS e MOSFET de canal p;
- MOSFET em DC;
- MOSFET como amplificador.

Introdução

O que é um transístor?

Dispositivo semicondutor que pode funcionar como:

Interruptor electrónico

E. Martins, DET Universidade de Aveiro

8.1-3

Sinais e Sistemas Electrónicos - 2021/2022

Introdução

- Transístores são dispositivos de 3 terminais.
- Duas grandes famílias:
 - > transístores bipolares, ou BJT;
 - > transístores de efeito de campo, ou FET.
- De entre os transístores do tipo FET, o MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor, também chamado de IGFET), é o dispositivo mais importante. É o dispositivo base de mais de 99% dos circuitos integrados digitais.

Estrutura física e funcionamento do MOSFET

E. Martins, DET Universidade de Aveiro

8.1-5

Sinais e Sistemas Electrónicos - 2021/2022

Estrutura do MOSFET de canal N

- Dispositivo simétrico: dreno é, por convenção, o terminal de maior tensão (I_{DS} > 0);
- Substrato é ligado à tensão mais baixa do circuito (em geral, GND).

Representação em corte transversal

Funcionamento

E. Martins, DET Universidade de Aveiro

8.1-7

Sinais e Sistemas Electrónicos - 2021/2022

Funcionamento

• Se $V_{GS} = \theta$ então $I_{DS} = \theta$.

• Entre dreno e fonte temos duas junções p-n em oposição: não pode haver condução.

E. Martins, DET Universidade de Aveiro

Funcionamento

• Se $V_{GS} \ge V_T$ então $I_{DS} > 0$.

 Tensão positiva na porta repele lacunas para baixo, criando zona de carga negativa correspondente aos iões receptores que ficam a 'descoberto';

• Quando V_{GS} ultrapassa a *tensão de limiar*, V_T , o campo eléctrico vertical tornase suficiente para atrair electrões livres das regiões da fonte e do dreno para a região debaixo da porta, criando o canal de inversão que é condutor.

E. Martins, DET Universidade de Aveiro

8.1-9

Sinais e Sistemas Electrónicos – 2021/2022

Funcionamento

• Se $V_{GS} \ge V_T$ e V_{DS} pequeno

• Declive de $I_{DS} = f(V_{DS})$ aumenta com V_{GS} : MOSFET funciona como uma resistência controlada por tensão;

 Nestas condições diz-se que o MOSFET está a funcionar na região linear.

Funcionamento

O que acontece para $V_{GS} \ge V_T$ e valores mais elevados de V_{DS} ?

- O canal tende a afunilar junto ao dreno à medida que aumentamos V_{DS};
- O afunilamento vai corresponder a um aumento da resistência do canal.

E. Martins, DET Universidade de Aveiro

8.1-11

Sinais e Sistemas Electrónicos - 2021/2022

Funcionamento

Qual é o efeito deste fenómeno na característica corrente-tensão do MOSFET?

Modelo quadrático e MOSFET de canal p

E. Martins, DET Universidade de Aveiro

8.1-13

Sinais e Sistemas Electrónicos – 2021/2022

Característica I_{DS}-V_{DS} do MOSFET

- Região de operação depende das tensões V_C , V_D e V_S ;
- > Corte: Não existe canal de inversão;
- ightharpoonup Linear ou tríodo Canal de inversão uniforme; condutância entre dreno e fonte é controlada por V_{GS} ;
- > Saturação: Canal estrangulado no dreno; transistor funciona como fonte de corrente controlada por V_{GS} .

Modelo quadrático ou de Shockley

$$I_{DS} = \begin{cases} 0 \; ; \; V_{GS} < V_T \; \; \text{Corte} \\ k \left(2(V_{GS} - V_T) V_{DS} - {V_{DS}}^2 \right) \; ; \; \; V_{GS} \ge V_T \; \; \text{e} \; \; V_{GD} > V_T \quad \text{Linear} \\ k (V_{GS} - V_T)^2 \; ; \; \; V_{GS} \ge V_T \; \; \text{e} \; \; V_{GD} \le V_T \quad \text{Saturação} \end{cases}$$

k é a transconductância do MOSFET, com dimensões de A/V².

Modelo de grande sinal do MOSFET

E. Martins, DET Universidade de Aveiro

8.1-15

Sinais e Sistemas Electrónicos - 2021/2022

MOSFET de canal P (PMOS)

- Substrato n; fonte e dreno p;
- Para induzir um canal é necessário $V_{GS} < 0$, logo $V_T < 0$;
- Portadores de corrente são lacunas;
- As expressões do Modelo Quadrático são aplicáveis desde que se considerem todas as tensões e correntes negativas;
- ... mas como é mais cómodo trabalhar com valores positivos, é preferível trocar os índices das tensões e correntes.
- Terminal de substrato ligado à tensão mais positiva.

Símbolos equivalentes NMOS e PMOS

Daqui para a frente usaremos

estes!

PMOS:

• Quando o terminal de substrato não é representado, ele é assumido ligado à tensão mais baixa (NMOS) ou à tensão mais alta (PMOS) do circuito.

E. Martins, DET Universidade de Aveiro

8.1-17

Sinais e Sistemas Electrónicos – 2021/2022

Exemplos de cálculo: MOSFETs em DC

Exemplo 1

Sabendo que $V_T = 2V$ e $k = 1mA/V^2$, calcular I_{DS} e V_D .

Como $I_G = 0A$, a tensão V_G pode calcular-se usando a expressão do divisor de tensão:

$$V_G = \frac{R_2}{R_1 + R_2} V_{DD} = \frac{1}{3+1} 20 = 5V$$

Como não sabemos se o transístor está linear ou saturado, vamos admitir, arbitrariamente, que está numa das regiões.

$$I_{DS} = k(V_{GS} - V_T)^2$$

E. Martins, DET Universidade de Aveiro

8.1-19

Sinais e Sistemas Electrónicos - 2021/2022

A tensão V_G também se pode escrever como:

$$V_G = V_{GS} + R_S I_{DS}$$

Substituindo nesta expressão a anterior...

$$V_{GS}^2 + \left(\frac{1}{kR_S} - 2V_T\right)V_{GS} + V_T^2 - \frac{V_G}{kR_S} = 0$$

Substituindo valores, obtemos:

$$V_{GS}^2 - 3.63V_{GS} + 2.148 = 0$$

Cujas soluções são:

$$V_{GS} = 2.886V \lor V_{GS} = 0.744V$$

A segunda solução é < V_T = 2V, logo é descartada

Usando a primeira solução

$$I_{DS} = k(V_{GS} - V_T)^2 = 1(2.89 - 2)^2 = 0.79mA$$

 V_D é dado por

$$V_D = V_{DD} - R_D I_{DS} = 20 - 4.7(0.79) = 16.3V$$

Com esta tensão temos

$$V_{GD} = V_G - V_D = 5 - 16.3 = -11.3V < V_T$$

O que confirma que o transístor está efectivamente saturado.

NOTA: Se não se confirmasse o estado saturado do transístor, teríamos que refazer os cálculos considerando-o na região linear.

E. Martins, DET Universidade de Aveiro

8.1-21

Sinais e Sistemas Electrónicos - 2021/2022

Modelo de pequeno sinal do MOSFET (transístor como amplificador)

MOSFET como amplificador

 Na região de saturação i_{DS} só depende de v_{GS}

$$i_{DS} = k(v_{GS} - V_T)^2$$

- O MOSFET funciona como uma fonte de corrente controlada por tensão...
- ... ou um amplificador de transconductância;
- Esta é pois a região adequada para operar o MOSFET como amplificador.

E. Martins, DET Universidade de Aveiro

8.1-23

Sinais e Sistemas Electrónicos - 2021/2022

Exemplo de aplicação: amplificador audio

- ... mas a forma de onda da corrente i_{DS} não aparece igual à da fonte v_{gs} !
- Porquê?

Exemplo de aplicação: amplificador audio

- Para valores de v_{GS} inferiores a
 V_T o transístor corta;
- A solução é *polarizar* o transístor de forma a garantir que $v_{GS} > V_T$ para todos os valores do sinal de entrada.

E. Martins, DET Universidade de Aveiro

8.1-25

Sinais e Sistemas Electrónicos - 2021/2022

Exemplo de aplicação: amplificador audio

- A polarização garante que o MOSFET conduz para todos os valores de v_{gs} .
- Forma de onda de i_{DS} é uma reprodução fiel de v_{gs} .

E. Martins, DET Universidade de Aveiro

Sinais e Sistemas Electrónicos - 2021/2022

(Um parêntesis sobre notação...)

Notar que:

- *I_{DS}* é a corrente DC no dreno;
- i_{ds} é a corrente de sinal no dreno, ou seja corresponde apenas à variação em torno do valor DC;
- i_{DS} é a corrente total no dreno;
- As mesmas considerações são válidas para

$$V_{GS}$$
, v_{gs} e v_{GS} .

Aproximação de pequeno sinal

E. Martins, DET Universidade de Aveiro

- Relação não-linear entre i_{DS} e v_{GS} obriga a que o sinal v_{gs} seja pequeno, de forma a que i_{ds} seja uma reprodução fiel de v_{gs} .
 - Para que a curva i_{DS} / v_{GS} possa ser considerada uma recta de declive g_m no ponto Q é preciso que $v_{gs} << 2(V_{GS} - V_T)$
 - E assim:

$$i_{ds} = g_m v_{gs}$$

Sendo g_m a transconductância do transístor em A/V.

8.1-29

Sinais e Sistemas Electrónicos – 2021/2022

Extremos da tensão de saída

• Para que o MOSFET não saia da região de saturação é necessário

que: $v_{GS \max} - v_{D \min} < V_T$ ou seja $v_{D \min} > v_{GS \max} - V_T$

ullet Para que o MOSFET não corte é preciso que: $v_{D\max} < V_{DD}$

Modelo de pequeno sinal do MOSFET

• Usando a relação exponencial i_{DS} / v_{GS} do MOSFET na região de saturação: $i_{DS}=k(v_{GS}-V_T)^2$

e a aproximação de pequeno sinal: $v_{gs} << 2(V_{GS} - V_T)$

é possível mostrar que $g_m = 2k(V_{GS} - V_T)$ ou $g_m = 2\sqrt{kI_{DS}}$

• Em que r_o surge pelo facto da fonte de corrente não ser, na realidade, ideal (V_A é uma constante).

E. Martins, DET Universidade de Aveiro

8.1-31

Sinais e Sistemas Electrónicos - 2021/2022

Aplicação do modelo de pequeno sinal

Na análise de um amplificador com MOSFET separamos os cálculos da polarização daqueles que dizem respeito ao comportamento com sinal:

- 1) Determinar as tensões de polarização e a corrente de dreno;
- 2) Calcular os valores dos parâmetros do modelo: g_m e r_o .
- 3) Eliminar as fontes de tensão DC, substituindo-as por curtocircuitos (*Princípio da Sobreposição*);
- 4) Substituir o(s) transístor(es) pelo circuito do modelo de pequeno sinal;
- 5) Usar as técnicas adequadas de análise de circuitos para obter ganho, resistência de entrada, etc.