CS 228 : Logic in Computer Science

Krishna. S

Recap: Semantics

- ► Each propositional variable is assigned values true/false. Truth tables for each of the operators ∨, ∧, ¬, → to determine truth values of complex formulae.
- $\varphi_1, \dots, \varphi_n \models \psi$ iff whenever $\varphi_1, \dots, \varphi_n$ evaluate to true, so does ψ . \models is read as semantically entails
 - ▶ Recall ⊢, and compare with ⊨
- ▶ Formulae φ and ψ are provably equivalent iff $\varphi \vdash \psi$ and $\psi \vdash \varphi$
- Formulae φ and ψ are semantically equivalent iff $\varphi \models \psi$ and $\psi \models \varphi$

Soundness of Propositional Logic

$$\varphi_1, \ldots, \varphi_n \vdash \psi \Rightarrow \varphi_1, \ldots, \varphi_n \models \psi$$

Whenever ψ can be proved from $\varphi_1, \dots, \varphi_n$, then ψ evaluates to true whenever $\varphi_1, \dots, \varphi_n$ evaluate to true

▶ Assume $\varphi_1, \ldots, \varphi_n \vdash \psi$.

- ▶ Assume $\varphi_1, \ldots, \varphi_n \vdash \psi$.
- ▶ There is some proof (of length k lines) that yields ψ . Induct on k.

- ▶ Assume $\varphi_1, \ldots, \varphi_n \vdash \psi$.
- ▶ There is some proof (of length k lines) that yields ψ . Induct on k.
- ▶ When k=1, there is only one line in the proof, say φ , which is the premise. Then we have $\varphi \vdash \varphi$, since φ is given. But then we also have $\varphi \models \varphi$.

- ▶ Assume $\varphi_1, \ldots, \varphi_n \vdash \psi$.
- ▶ There is some proof (of length k lines) that yields ψ . Induct on k.
- ▶ When k=1, there is only one line in the proof, say φ , which is the premise. Then we have $\varphi \vdash \varphi$, since φ is given. But then we also have $\varphi \models \varphi$.
- Assume that whenever $\varphi_1, \dots, \varphi_n \vdash \psi$ using a proof of length $\leq k 1$, we have $\varphi_1, \dots, \varphi_n \models \psi$.

- ▶ Assume $\varphi_1, \ldots, \varphi_n \vdash \psi$.
- ▶ There is some proof (of length k lines) that yields ψ . Induct on k.
- ▶ When k=1, there is only one line in the proof, say φ , which is the premise. Then we have $\varphi \vdash \varphi$, since φ is given. But then we also have $\varphi \models \varphi$.
- Assume that whenever $\varphi_1, \dots, \varphi_n \vdash \psi$ using a proof of length $\leq k 1$, we have $\varphi_1, \dots, \varphi_n \models \psi$.
- ► Consider now a proof with *k* lines.

▶ How did we arrive at ψ ? Which proof rule gave ψ as the last line?

- ▶ How did we arrive at ψ ? Which proof rule gave ψ as the last line?
- Assume ψ was obtained using $\wedge i$. Then ψ is of the form $\psi_1 \wedge \psi_2$.

- ▶ How did we arrive at ψ ? Which proof rule gave ψ as the last line?
- Assume ψ was obtained using $\wedge i$. Then ψ is of the form $\psi_1 \wedge \psi_2$.
- ▶ ψ_1 and ψ_2 were proved earlier, say in lines $k_1, k_2 < k$.

- ▶ How did we arrive at ψ ? Which proof rule gave ψ as the last line?
- ▶ Assume ψ was obtained using $\wedge i$. Then ψ is of the form $\psi_1 \wedge \psi_2$.
- ψ_1 and ψ_2 were proved earlier, say in lines $k_1, k_2 < k$.
- ▶ We have the shorter proofs $\varphi_1, \ldots, \varphi_n \vdash \psi_1$ and $\varphi_1, \ldots, \varphi_n \vdash \psi_2$

- ▶ How did we arrive at ψ ? Which proof rule gave ψ as the last line?
- ▶ Assume ψ was obtained using $\wedge i$. Then ψ is of the form $\psi_1 \wedge \psi_2$.
- ψ_1 and ψ_2 were proved earlier, say in lines $k_1, k_2 < k$.
- ▶ We have the shorter proofs $\varphi_1, \ldots, \varphi_n \vdash \psi_1$ and $\varphi_1, \ldots, \varphi_n \vdash \psi_2$
- ▶ By inductive hypothesis, we have $\varphi_1, \dots, \varphi_n \models \psi_1$ and $\varphi_1, \dots, \varphi_n \models \psi_2$. By semantics, we have $\varphi_1, \dots, \varphi_n \models \psi_1 \land \psi_2$.

Soundness : Case \rightarrow *i*

Assume ψ was obtained using \rightarrow *i*. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.

Soundness : Case \rightarrow *i*

- ▶ Assume ψ was obtained using \rightarrow i. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.
- ▶ A box starting with ψ_1 was opened at some line $k_1 < k$.

Soundness : Case \rightarrow *i*

- ▶ Assume ψ was obtained using \rightarrow i. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.
- ▶ A box starting with ψ_1 was opened at some line $k_1 < k$.
- ▶ The last line in the box was ψ_2 .

Soundness: Case $\rightarrow i$

- Assume ψ was obtained using \rightarrow *i*. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.
- ▶ A box starting with ψ_1 was opened at some line $k_1 < k$.
- ▶ The last line in the box was ψ_2 .
- ▶ The line just after the box was ψ .

Soundness: Case $\rightarrow i$

- Assume ψ was obtained using \rightarrow *i*. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.
- ▶ A box starting with ψ_1 was opened at some line $k_1 < k$.
- ▶ The last line in the box was ψ_2 .
- ▶ The line just after the box was ψ .
- ▶ Consider adding ψ_1 in the premises along with $\varphi_1, \ldots, \varphi_n$. Then we will get a proof $\varphi_1, \ldots, \varphi_n, \psi_1 \vdash \psi_2$, of length k-1. By inductive hypothesis, $\varphi_1, \ldots, \varphi_n, \psi_1 \models \psi_2$. Using semantics, this is equivalent to $\varphi_1, \ldots, \varphi_n \models \psi_1 \rightarrow \psi_2$

- 1. φ_1 premise
- 2. φ_2 premise
- 3. ψ_1 assumption 4. \vdots
- 5. ψ_2
- 6. $\psi_1 \rightarrow \psi_2 \rightarrow i \ 3-5$

▶ Assume $\varphi_1, \varphi_2 \models \psi$. Is it true that $\varphi_1 \models \varphi_2 \rightarrow \psi$?

- ▶ Assume $\varphi_1, \varphi_2 \models \psi$. Is it true that $\varphi_1 \models \varphi_2 \rightarrow \psi$?
 - ▶ If $\varphi_1 \nvDash \varphi_2 \to \psi$, then there is an assignment α which makes φ_1 true, but $\varphi_2 \to \psi$ false, a contradiction.

- ▶ Assume $\varphi_1, \varphi_2 \models \psi$. Is it true that $\varphi_1 \models \varphi_2 \rightarrow \psi$?
 - ▶ If $\varphi_1 \nvDash \varphi_2 \to \psi$, then there is an assignment α which makes φ_1 true, but $\varphi_2 \to \psi$ false, a contradiction.
- ▶ Assume $\varphi_1 \models \varphi_2 \rightarrow \psi$. Is it true that $\varphi_1, \varphi_2 \models \psi$?

- ▶ Assume $\varphi_1, \varphi_2 \models \psi$. Is it true that $\varphi_1 \models \varphi_2 \rightarrow \psi$?
 - ▶ If $\varphi_1 \nvDash \varphi_2 \to \psi$, then there is an assignment α which makes φ_1 true, but $\varphi_2 \to \psi$ false, a contradiction.
- ▶ Assume $\varphi_1 \models \varphi_2 \rightarrow \psi$. Is it true that $\varphi_1, \varphi_2 \models \psi$?
 - ▶ If $\varphi_1, \varphi_2 \nvDash \psi$, then there is an assignment α which makes φ_1, φ_2 true, but ψ false, a contradiction.

Soundness: Other cases

Do this as homework

Completeness

$$\varphi_1, \ldots, \varphi_n \models \psi \Rightarrow \varphi_1, \ldots, \varphi_n \vdash \psi$$

Whenever $\varphi_1, \ldots, \varphi_n$ semantically entail ψ , then ψ can be proved from $\varphi_1, \ldots, \varphi_n$. The proof rules are complete

▶ Given $\varphi_1, \ldots, \varphi_n \models \psi$

- ▶ Given $\varphi_1, \ldots, \varphi_n \models \psi$
- ▶ Step 1: Show that $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$

- ▶ Given $\varphi_1, \ldots, \varphi_n \models \psi$
- ▶ Step 1: Show that $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$
- ▶ Step 2: Show that $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$

- ▶ Given $\varphi_1, \ldots, \varphi_n \models \psi$
- ▶ Step 1: Show that $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$
- ▶ Step 2: Show that $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$
- ▶ Step 3: Show that $\varphi_1, \ldots, \varphi_n \vdash \psi$

Assume $\varphi_1, \dots, \varphi_n \models \psi$. Whenever all of $\varphi_1, \dots, \varphi_n$ evaluate to true, so does ψ .

- Assume $\varphi_1, \dots, \varphi_n \models \psi$. Whenever all of $\varphi_1, \dots, \varphi_n$ evaluate to true, so does ψ .
- ▶ If $\not\models \varphi_1 \to (\varphi_2 \to (\dots (\varphi_n \to \psi) \dots))$, then ψ evaluates to false when all of $\varphi_1, \dots, \varphi_n$ evaluate to true, a contradiction.

- Assume $\varphi_1, \ldots, \varphi_n \models \psi$. Whenever all of $\varphi_1, \ldots, \varphi_n$ evaluate to true, so does ψ .
- ▶ If $\not\models \varphi_1 \to (\varphi_2 \to (\dots (\varphi_n \to \psi) \dots))$, then ψ evaluates to false when all of $\varphi_1, \dots, \varphi_n$ evaluate to true, a contradiction.
- ▶ Hence, $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots)).$

▶ Given $\models \psi$, show that $\vdash \psi$

- ▶ Given $\models \psi$, show that $\vdash \psi$
- Assume p_1, \ldots, p_n are the propositional variables in ψ . We know that all the 2^n assignments of values to p_1, \ldots, p_n make ψ true.

- ▶ Given $\models \psi$, show that $\vdash \psi$
- Assume p_1, \ldots, p_n are the propositional variables in ψ . We know that all the 2^n assignments of values to p_1, \ldots, p_n make ψ true.
- ▶ Using this insight, we have to give a proof of ψ .

Truth Table to Proof

Let φ be a formula with variables p_1, \ldots, p_n . Let \mathcal{T} be the truth table of φ , and let I be a line number in \mathcal{T} . Let \hat{p}_i represent p_i if p_i is assigned true in line I, and let it denote $\neg p_i$ if p_i is assigned false in line I. Then

- 1. $\hat{p}_1, \dots, \hat{p}_n \vdash \varphi$ if φ evaluates to true in line I
- 2. $\hat{p}_1, \dots, \hat{p}_n \vdash \neg \varphi$ if φ evaluates to false in line *I*

Completeness: Step 2

Truth Table to Proof

Let φ be a formula with variables p_1, \ldots, p_n . Let \mathcal{T} be the truth table of φ , and let I be a line number in \mathcal{T} . Let \hat{p}_i represent p_i if p_i is assigned true in line I, and let it denote $\neg p_i$ if p_i is assigned false in line I. Then

- 1. $\hat{p}_1, \dots, \hat{p}_n \vdash \varphi$ if φ evaluates to true in line I
- 2. $\hat{p}_1, \dots, \hat{p}_n \vdash \neg \varphi$ if φ evaluates to false in line I
- $\hat{p} = p, \hat{q} = q \vdash p \land q$
- $\hat{p} = \neg p, \hat{q} = q \vdash \neg (p \land q)$
- $\hat{p} = p, \hat{q} = \neg q \vdash \neg (p \land q)$
- $\hat{p} = \neg p, \hat{q} = \neg q \vdash \neg (p \land q)$

- ▶ Structural Induction on φ .
- ► Size of a formula = height of its parse tree
- ▶ What is a parse tree?

- **Base** : $\varphi = p$, a proposition. Then
 - $\hat{p} \vdash \varphi$ for $\hat{p} = p$ and
 - $\hat{p} \vdash \neg \varphi$ for $\hat{p} = \neg p$

- **Base** : $\varphi = p$, a proposition. Then
 - $\hat{p} \vdash \varphi$ for $\hat{p} = p$ and
 - $\hat{p} \vdash \neg \varphi \text{ for } \hat{p} = \neg p$
- ▶ Assume for formulae of size $\leq k 1$, and let φ be of size k. Do structural induction by using the structure of φ .

17/2

- **Base** : $\varphi = p$, a proposition. Then
 - $\hat{p} \vdash \varphi \text{ for } \hat{p} = p \text{ and }$
 - $\hat{p} \vdash \neg \varphi \text{ for } \hat{p} = \neg p$
- ▶ Assume for formulae of size $\leq k 1$, and let φ be of size k. Do structural induction by using the structure of φ .
- ▶ Case Negation : $\varphi = \neg \varphi_1$

- **Base** : $\varphi = p$, a proposition. Then
 - $\hat{p} \vdash \varphi$ for $\hat{p} = p$ and
 - $\hat{p} \vdash \neg \varphi$ for $\hat{p} = \neg p$
- Assume for formulae of size $\leqslant k-1$, and let φ be of size k. Do structural induction by using the structure of φ .
- ▶ Case Negation : $\varphi = \neg \varphi_1$
 - Assume φ evaluates to true in line I of \mathcal{T} . Then φ_1 evaluates to false in line I. By inductive hypothesis, $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \varphi_1$.

- **Base** : $\varphi = p$, a proposition. Then
 - $\hat{p} \vdash \varphi$ for $\hat{p} = p$ and
 - $\hat{p} \vdash \neg \varphi$ for $\hat{p} = \neg p$
- Assume for formulae of size $\leqslant k-1$, and let φ be of size k. Do structural induction by using the structure of φ .
- ▶ Case Negation : $\varphi = \neg \varphi_1$
 - Assume φ evaluates to true in line I of \mathcal{T} . Then φ_1 evaluates to false in line I. By inductive hypothesis, $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \varphi_1$.
 - Assume φ evaluates to false in line I of \mathcal{T} . Then φ_1 evaluates to true in line I. By inductive hypothesis, $\hat{p}_1, \ldots, \hat{p}_n \vdash \varphi_1$.

- **Base** : $\varphi = p$, a proposition. Then
 - $\hat{p} \vdash \varphi$ for $\hat{p} = p$ and
 - $\hat{p} \vdash \neg \varphi$ for $\hat{p} = \neg p$
- Assume for formulae of size $\leqslant k-1$, and let φ be of size k. Do structural induction by using the structure of φ .
- ▶ Case Negation : $\varphi = \neg \varphi_1$
 - Assume φ evaluates to true in line I of \mathcal{T} . Then φ_1 evaluates to false in line I. By inductive hypothesis, $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \varphi_1$.
 - Assume φ evaluates to false in line I of \mathcal{T} . Then φ_1 evaluates to true in line I. By inductive hypothesis, $\hat{p}_1, \ldots, \hat{p}_n \vdash \varphi_1$.

 Use the $\neg \neg i$ rule to obtain a proof of $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \neg \varphi_1 = \neg \varphi$.

▶ Case \rightarrow : $\varphi = \varphi_1 \rightarrow \varphi_2$.

- ▶ Case \rightarrow : $\varphi = \varphi_1 \rightarrow \varphi_2$.
 - If φ evaluates to false in line l, then φ_1 evaluates to true and φ_2 to false. Let $\{q_1, \ldots, q_k\}$ be the variables of φ_1 and let $\{r_1, \ldots, r_j\}$ be the variables in φ_2 . $\{q_1, \ldots, q_k\} \cup \{r_1, \ldots, r_j\} = \{p_1, \ldots, p_n\}$.

- ▶ Case \rightarrow : $\varphi = \varphi_1 \rightarrow \varphi_2$.
 - ▶ If φ evaluates to false in line I, then φ_1 evaluates to true and φ_2 to false. Let $\{q_1, \ldots, q_k\}$ be the variables of φ_1 and let $\{r_1, \ldots, r_j\}$ be the variables in φ_2 . $\{q_1, \ldots, q_k\} \cup \{r_1, \ldots, r_j\} = \{p_1, \ldots, p_n\}$.
 - ▶ By inductive hypothesis, $\hat{q}_1, \ldots, \hat{q}_k \vdash \varphi_1$ and $\hat{r}_1, \ldots, \hat{r}_j \vdash \neg \varphi_2$. Then, $\hat{p}_1, \ldots, \hat{p}_n \vdash \varphi_1 \land \neg \varphi_2$.

- ▶ Case \rightarrow : $\varphi = \varphi_1 \rightarrow \varphi_2$.
 - ▶ If φ evaluates to false in line I, then φ_1 evaluates to true and φ_2 to false. Let $\{q_1, \ldots, q_k\}$ be the variables of φ_1 and let $\{r_1, \ldots, r_j\}$ be the variables in φ_2 . $\{q_1, \ldots, q_k\} \cup \{r_1, \ldots, r_j\} = \{p_1, \ldots, p_n\}$.
 - ▶ By inductive hypothesis, $\hat{q}_1, \ldots, \hat{q}_k \vdash \varphi_1$ and $\hat{r}_1, \ldots, \hat{r}_j \vdash \neg \varphi_2$. Then, $\hat{p}_1, \ldots, \hat{p}_n \vdash \varphi_1 \land \neg \varphi_2$.
 - ▶ Prove that $\varphi_1 \land \neg \varphi_2 \vdash \neg (\varphi_1 \rightarrow \varphi_2)$.

▶ Case \rightarrow : $\varphi = \varphi_1 \rightarrow \varphi_2$.

- ▶ Case \rightarrow : $\varphi = \varphi_1 \rightarrow \varphi_2$.
 - If φ evaluates to true in line I, then there are 3 possibilities. If both φ_1, φ_2 evaluate to true, then we have $\hat{p_1}, \dots, \hat{p_n} \vdash \varphi_1 \land \varphi_2$. Proving $\varphi_1 \land \varphi_2 \vdash \varphi_1 \rightarrow \varphi_2$, we are done.

- ▶ Case \rightarrow : $\varphi = \varphi_1 \rightarrow \varphi_2$.
 - ▶ If φ evaluates to true in line I, then there are 3 possibilities. If both φ_1, φ_2 evaluate to true, then we have $\hat{p}_1, \dots, \hat{p}_n \vdash \varphi_1 \land \varphi_2$.

 Proving $\varphi_1 \land \varphi_2 \vdash \varphi_1 \rightarrow \varphi_2$, we are done.
 - If both φ_1, φ_2 evaluate to false, then we have $\hat{p}_1, \dots, \hat{p}_n \vdash \neg \varphi_1 \land \neg \varphi_2$. Proving $\neg \varphi_1 \land \neg \varphi_2 \vdash \varphi_1 \rightarrow \varphi_2$, we are done.

- ▶ Case \rightarrow : $\varphi = \varphi_1 \rightarrow \varphi_2$.
 - ▶ If φ evaluates to true in line I, then there are 3 possibilities. If both φ_1, φ_2 evaluate to true, then we have $\hat{p}_1, \dots, \hat{p}_n \vdash \varphi_1 \land \varphi_2$.

 Proving $\varphi_1 \land \varphi_2 \vdash \varphi_1 \rightarrow \varphi_2$, we are done.
 - If both φ_1, φ_2 evaluate to false, then we have $\hat{p}_1, \dots, \hat{p}_n \vdash \neg \varphi_1 \land \neg \varphi_2$. Proving $\neg \varphi_1 \land \neg \varphi_2 \vdash \varphi_1 \rightarrow \varphi_2$, we are done.
 - Last, if φ_1 evaluates to false and φ_2 evaluates to true, then we have $\hat{p_1}, \dots, \hat{p_n} \vdash \neg \varphi_1 \land \varphi_2$. Proving $\neg \varphi_1 \land \varphi_2 \vdash \varphi_1 \rightarrow \varphi_2$, we are done.

▶ Prove the cases when $\varphi = \varphi_1 \land \varphi_2$ and $\varphi = \varphi_1 \lor \varphi_2$.

On an Example

We know $\models (p \land q) \rightarrow p$. Using this fact, show that $\vdash (p \land q) \rightarrow p$.

- ▶ $p, q \vdash (p \land q) \rightarrow p \text{ (proof 1)}$
- $ightharpoonup \neg p, q \vdash (p \land q) \rightarrow p \text{ (proof 2)}$
- ▶ $p, \neg q \vdash (p \land q) \rightarrow p \text{ (proof 3)}$
- $ightharpoonup \neg p, \neg q \vdash (p \land q) \rightarrow p \text{ (proof 4)}$

Combine the 4 proofs above to give a single proof for $\vdash (p \land q) \rightarrow p$.

Here is the proof for $\vdash (p \land q) \rightarrow p$.

▶ Start with $p \lor \neg p$ (LEM on p)

Here is the proof for $\vdash (p \land q) \rightarrow p$.

- ▶ Start with $p \lor \neg p$ (LEM on p)
- ▶ We have to deliver 2 proofs one starting with p, and the other, starting with $\neg p$ (\lor elimination!)

22/2

- ▶ Start with $p \lor \neg p$ (LEM on p)
- ▶ We have to deliver 2 proofs one starting with p, and the other, starting with $\neg p$ (\lor elimination!)
- ▶ Consider the case of p. Here, do LEM on q, obtaining $q \vee \neg q$.
 - We need two proofs one starting with q, and the other, starting with ¬q (∨ elimination again!)

- ▶ Start with $p \lor \neg p$ (LEM on p)
- ▶ We have to deliver 2 proofs one starting with p, and the other, starting with $\neg p$ (\lor elimination!)
- ▶ Consider the case of p. Here, do LEM on q, obtaining $q \vee \neg q$.
 - We need two proofs one starting with q, and the other, starting with ¬q (∨ elimination again!)
 - In the case where we start with q, we have p, q at our disposal. Use proof 1.

- ▶ Start with $p \lor \neg p$ (LEM on p)
- ▶ We have to deliver 2 proofs one starting with p, and the other, starting with $\neg p$ (\lor elimination!)
- ▶ Consider the case of p. Here, do LEM on q, obtaining $q \vee \neg q$.
 - ▶ We need two proofs one starting with q, and the other, starting with $\neg q$ (\lor elimination again!)
 - In the case where we start with q, we have p, q at our disposal. Use proof 1.
 - ▶ In the case we start with $\neg q$, we have $p, \neg q$. Use proof 3.

- ▶ Start with $p \lor \neg p$ (LEM on p)
- ▶ We have to deliver 2 proofs one starting with p, and the other, starting with $\neg p$ (\lor elimination!)
- ▶ Consider the case of p. Here, do LEM on q, obtaining $q \vee \neg q$.
 - We need two proofs one starting with q, and the other, starting with ¬q (∨ elimination again!)
 - In the case where we start with q, we have p, q at our disposal. Use proof 1.
 - ▶ In the case we start with $\neg q$, we have $p, \neg q$. Use proof 3.
- ▶ Consider the case of $\neg p$. Here, do LEM on q, obtaining $q \lor \neg q$.
 - We need two proofs one starting with q, and the other, starting with ¬q (∨ elimination again!)
 - ▶ In the case where we start with q, we have $\neg p$, q at our disposal. Use proof 2.
 - ▶ In the case we start with $\neg q$, we have $\neg p$, $\neg q$. Use proof 4.

Completeness: Steps 2, 3

▶ Step 2: From $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$, use LEM on all the propositional variables of $\varphi_1, \dots, \varphi_n, \psi$ to obtain $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$.

Completeness: Steps 2, 3

- ▶ Step 2: From $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$, use LEM on all the propositional variables of $\varphi_1, \dots, \varphi_n, \psi$ to obtain $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$.
- ▶ Step 3: Take the proof $\vdash \varphi_1 \to (\varphi_2 \to (\dots (\varphi_n \to \psi) \dots))$. This proof has n nested boxes, the ith box opening with the assumption φ_i . The last box closes with the last line ψ . Hence, the line immediately after the last box is $\varphi_n \to \psi$.

Completeness : Steps 2, 3

- ▶ Step 2: From $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$, use LEM on all the propositional variables of $\varphi_1, \dots, \varphi_n, \psi$ to obtain $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$.
- ▶ Step 3: Take the proof $\vdash \varphi_1 \to (\varphi_2 \to (\dots (\varphi_n \to \psi) \dots))$. This proof has n nested boxes, the ith box opening with the assumption φ_i . The last box closes with the last line ψ . Hence, the line immediately after the last box is $\varphi_n \to \psi$.
- ▶ In a similar way, the (n-1)th box has as its last line $\varphi_n \to \psi$, and hence, the line immediately after this box is $\varphi_{n-1} \to (\varphi_n \to \psi)$ and so on.

Completeness: Steps 2, 3

- ▶ Step 2: From $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$, use LEM on all the propositional variables of $\varphi_1, \dots, \varphi_n, \psi$ to obtain $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$.
- ▶ Step 3: Take the proof $\vdash \varphi_1 \to (\varphi_2 \to (\dots (\varphi_n \to \psi) \dots))$. This proof has n nested boxes, the ith box opening with the assumption φ_i . The last box closes with the last line ψ . Hence, the line immediately after the last box is $\varphi_n \to \psi$.
- ▶ In a similar way, the (n-1)th box has as its last line $\varphi_n \to \psi$, and hence, the line immediately after this box is $\varphi_{n-1} \to (\varphi_n \to \psi)$ and so on.
- Add premises $\varphi_1, \dots, \varphi_n$ on the top. Use MP on the premises, and the lines after boxes 1 to n in order to obtain ψ .

Summary

Propositional Logic is sound and complete.