Numerical Analysis Homework 4

Lucas MacQuarrie (20234554) April 2, 2025

Chapter 3

3)

Solution:

We consider theorem 2.1.4.1 on two knots $\{a,b\}$. Denote $P(x) = \frac{f(a)(x-b)}{(a-b)} + \frac{f(b)(x-a)}{(b-a)}$ the interpolating polynomial. We have that for every x there exists $\eta(x)$ such that

$$f(x) - P(x) = \frac{w(x)f''(\eta(x))}{2}.$$

We'll integrate both sides from a to b then solve in parts

$$\int_a^b f(x) - P(x) dx = \int_a^b \frac{(x-a)(x-b)f''(\eta(x))}{2} dx.$$

 $\int_a^b f(x)dx$ is the true integral so we'll just denote it I. $\int_a^b P(x)dx$ is just the trapezoidal rule so we can immediately see that

$$\int_{a}^{b} P(x)dx = \frac{(b-a)(f(b)+f(a))}{2}.$$

Now on the right hand side we recall the following mean value theorem for integrals

Theorem 1. Let f be continuous and g a function which does not change sign on [a,b]. Then there exists c such that

$$\int_{a}^{b} f(x)g(x)dx = f(c) \int_{a}^{b} g(x)dx.$$

By taking f to be $f''(\eta(x))$ and g(x) = (x - a)(x - b) we get that there exists an \tilde{x} such that

$$I - \frac{(b-a)(f(b) + f(a))}{2} = \frac{f''(\bar{x})}{2} \int_{a}^{b} (x-a)(x-b) dx.$$

The integral on the right is

$$\begin{split} \int_{a}^{b} (x-a)(x-b) dx &= \int_{a}^{b} x^{2} - (a+b)x + abdx \\ &= \left[\frac{x^{3}}{3} - (a+b) \frac{x^{2}}{2} + abx \right]_{b}^{a} \\ &= \left[\frac{b^{3}}{3} - (a+b) \frac{b^{2}}{2} + ab^{2} \right] - \left[\frac{a^{3}}{3} - (a+b) \frac{a^{2}}{2} + a^{2}b \right] \\ &= -\frac{b^{3} - 3ab^{2}}{6} - \frac{3a^{2}b - a^{3}}{6} \\ &= -\frac{(b-a)^{3}}{6} \end{split}$$

giving the desired result

$$I - \frac{(b-a)(f(b) + f(a))}{2} = -\frac{(b-a)^3 f''(\bar{x})}{12}.$$

Now, it remains to show that $f''(\eta(x))$ is itself continuous, justifying our use of the mean value theorem. Since

$$f(x) - P(x) = \frac{w(x)f''(\eta(x))}{2}.$$

we can just rearrange to get

$$\frac{2(f(x) - P(x))}{w(x)} = f''(\eta(x)).$$

and we have that $f''(\eta(x))$ is continuous at least on the open interval (a,b). We know that $\eta(x) \in [a,b]$, so $f''(\eta(x))$ is certainly defined on [a,b], but it remains to show that it is continuous, thus we need to verify that the limit exists at the end points $x \to a$ (or b) from within the interval. Since taking the limit of top and bottom is indeterminate $\frac{0}{0}$ we can use lhopitals rule to see the limit is

$$2\frac{f''(\alpha) - P'(\alpha)}{2\alpha - (\alpha + b)} = 2\frac{f''(\alpha) - \left(\frac{f(\alpha) - f(b)}{\alpha - b}\right)}{\alpha - b}$$

for $x \to a$ and

$$2\frac{f''(b) - P'(b)}{2b - (a+b)} = 2\frac{f''(b) - \left(\frac{f(a) - f(b)}{a - b}\right)}{b - a}$$

for $x \to b$. Thus $f''(\eta(x))$ is continuous over [a, b] and we have what was to be shown.

14)

Consider a weight function $\omega(x) \ge 0$ which satisfies (3.6.1a) and (3.6.1b). Show that (3.6.1c) is equivalent to

$$\int_{b}^{a} \omega(x) \, \mathrm{d}x > 0.$$

Hint: The mean-value theorem of integral calculus applied to suitable subintervals of [a, b].

Solution:

3.6.1a) $\omega(x)$ is measurable on [a, b] finite or infinite.

3.6.1b) All moments are finite and exist.

We want to show

$$\int_{b}^{a} \omega(x) \, \mathrm{d}x > 0.$$

if and only if for all nonnegative polynomials on [a, b] s(x)

$$\int_{b}^{a} s(x)\omega(x)dx = 0 \iff s(x) = 0.$$

Suppose $\int_b^a \omega(x) \, dx > 0$ and $\int_b^a s(x) \omega(x) dx = 0$. Then using the integral mean value theorem there exists a $c \in [a,b]$ such that

$$\int_{b}^{a} s(x)w(x)dx = s(c)\int_{b}^{a} w(x)dx = 0$$

so it must be that s(c) = 0. Now since $\omega(x)$ and s(x) are both positive on the whole interval, we can repeat this argument for any suitable subinterval of [a,b]. Since it holds on arbitrary intervals, it must be that s(x) = 0 everywhere on the interval and thus s(x) = 0.

Now suppose for all nonnegative polynomials on [a, b] s(x)

$$\int_{b}^{a} s(x)\omega(x)dx = 0 \iff s(x) = 0.$$

Since $\omega(x)\geqslant 0$ we have that $\int_b^\alpha \omega(x)dx\geqslant 0$ with $\int_b^\alpha \omega(x)dx=0$ if and only if $\omega(x)=0$. Thus to rule out this case and conclude $\int_b^\alpha \omega(x)>0$ suppose that $\omega(x)=0$. Then for any nonnegative polynomial $s(x)\neq 0$ we have $\int_b^\alpha s(x)w(x)dx=0$

but $s(x) \neq 0$. Thus $\int_{b}^{a} \omega(x) dx > 0$. 18)

Consider Gaussian integration in the interval [-1, +1] with the weight function

$$\omega(x) \equiv \frac{1}{\sqrt{1-x^2}}.$$

In this case, the orthogonal polynomials $p_j(x)$ are the classical Chebyshev polynomials $T_0(x) \equiv 1$, $T_1(x) \equiv x$, $T_2(x) \equiv 2x^2 - 1$, $T_3(x) \equiv 4x^3 - 3x$, ..., $T_{j+1}(x) \equiv 2xT_j(x) - T_{j-1}(x)$, up to scalar factors.

(a) Prove that $p_i(x) \equiv (1/2^{j-1})T_i(x)$ for $j \ge 1$. What is the form of the tridiagonal matrix (3.6.19) in this case?

Solution

By linearity we know that $\langle p_n, p_m \rangle = a_n a_m \langle T_n, T_m \rangle = \alpha_{nm} \delta_{nm}$ where $\alpha_{nn} = \begin{cases} a_0^2 \pi, & n = 0 \\ \frac{\alpha_n^2 \pi}{2}, & n \neq 0 \end{cases}$ so p_j is orthogonal so p_j is p_j is p_j is p_j is orthogonal so p_j is orthogonal so p_j is

onal. We want to show that p_j is the sequence of monic orthogonal polynomials for this weight function, thus it will suffice to show that the coeffecient of the term of degree j in T_j is 2^{j-1} . We'll do this by induction: For a base case, see that $T_1(x) = x = 2^{1-1}x$. Then suppose the highest coeffecient of $T_j(x)$ is 2^{j-1} . Then looking at the two term recurrence relation, T_{j+1} must have highest coeffecient $2 \cdot 2^{j-1}$

$$T_{j+1}(x) = \underbrace{2xT_{j}(x)}_{\text{deg}(2xT_{j}(x)) = j+1} - \underbrace{T_{j-1}(x)}_{\text{deg}(T_{j-1}(x)) = j-1}$$

since T_{j-1} has degree j-1 and thus cannot affect the coeffecients of degree j or j+1 in $2xT_j(x)$. It follows that the coeffecient of degree j+1 in T_{j+1} is $2\cdot 2^{j-1}=2^j$ thus by the principle of mathematical induction we have that the highest coeffecient of $T_j(x)$ is 2^{j-1} for all $j\geqslant 1$. Thus $p_j(x)=\frac{1}{2^{j-1}}T_j(x)$ form a sequence of monic orthogonal polynomials as was to be shown.

To show the tridiagonal matrix, we just need to write the recurrence relation for p_i

$$\begin{split} p_{j+1} &= 2^{-j} T_{j+1} \\ &= 2^{-j} 2x T_j(x) - 2^{-j} T_{j-1}(x) \\ &= 2^{-j} 2x 2^{j-1} p_j - 2^{-j} 2^{j-2} p_{j-1}(x) \\ &= x p_j - \frac{1}{4} p_{j-1} \end{split}$$

thus $\delta_i = 0$ and $\gamma_i = \frac{1}{2}$ for all $i \ge 0$ in 3.6.5b). The tridiagonal matrix is thus

$$J_n = \begin{bmatrix} 0 & \frac{1}{2} & 0 & \dots & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & 0 & \frac{1}{2} \\ 0 & \dots & \dots & \frac{1}{2} & 0 \end{bmatrix}$$

(b) For n = 3, determine the equation system (3.6.13). Verify that $w_1 = w_2 = w_3 = \pi/3$. (In the Chebyshev case, the weights w_i are equal for general n.)

Solution: _

Recall that (3.6.13) is

$$\sum_{i=1}^{n} p_k(x_i)w_i = \begin{cases} (p_0, p_0), & k = 0 \\ 0, & k = 1, 2, \dots, n-1 \end{cases}$$

where x_i are the zeros of $p_n(x)$. We should calculate (p_0, p_0) :

$$\begin{split} (p_0, p_0) &= (1, 1) \\ &= \int_{-1}^1 \frac{1}{\sqrt{1 - x^2}} dx \\ &= \left[\arcsin(x) \right]_{-1}^1 \\ &= \frac{\pi}{2} - -\frac{\pi}{2} \\ &= \pi \end{split}$$

We want to find the w_i so we need to calculate both the zeros of p_n and the values of $p_k(x_i)$. I'll find the zeros first. Since p_n is a scaling of T_n , it suffices to find when $T_n(x)=0$ (n=3). Now $T_3(x)=4x^3-3x$ (https://en.wikipedia.org/wiki/Chebyshev_polynomials#Examples Refer to any table of chebyshev polynomials). We see that $T_3(x)$ can be factored as

$$T_3(x) = 4x(x - \frac{\sqrt{3}}{2})(x + \frac{\sqrt{3}}{2})$$

giving us the three roots

$$x_1 = -\frac{\sqrt{3}}{2}, \quad x_2 = 0, \quad x_3 = \frac{\sqrt{3}}{2}.$$

then using the fact that

$$p_0(x) = 1$$

 $p_1(x) = x$
 $p_2(x) = x^2 - \frac{1}{2}$

we get

$$\begin{bmatrix} p_0(x_1) & p_0(x_2) & p_0(x_3) \\ p_1(x_1) & p_1(x_2) & p_1(x_3) \\ p_2(x_1) & p_2(x_2) & p_2(x_3) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ -\frac{\sqrt{3}}{2} & 0 & \frac{\sqrt{3}}{2} \\ \frac{1}{4} & -\frac{1}{2} & \frac{1}{4} \end{bmatrix}$$

and the inverse of this matrix is calculated as

$$\frac{1}{3} \begin{bmatrix} 1 & -\sqrt{3} & 2 \\ 1 & 0 & -4 \\ 1 & \sqrt{(3)} & 2 \end{bmatrix}$$

and thus the w_i are found as

$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & -\sqrt{3} & 2 \\ 1 & 0 & -4 \\ 1 & \sqrt{(3)} & 2 \end{bmatrix} \begin{bmatrix} \pi \\ 0 \\ 0 \end{bmatrix}$$
$$= \frac{1}{3} \begin{bmatrix} \pi \\ \pi \\ \pi \end{bmatrix}$$
$$= \begin{bmatrix} \frac{\pi}{\frac{3}{1}} \\ \frac{\pi}{3} \end{bmatrix}$$

as required.

Solution:

Code

Coding Question:

Evaluate following integrals using Gaussian Quadrature. Compare results by using the 4 point Gaussian Quadrature and the composite 2 point Gaussian Quadrature with 2 subintervals.

$$I_{1} = \int_{-1}^{1} e^{x^{2}} \ln(2 - x) dx$$

$$I_{2} = \int_{1}^{3} \frac{1}{\sqrt{1 + x^{4}}} dx$$

Solution:

import numpy as np
from scipy.integrate import quad

We need to integrate

$$I_{1} = \int_{-1}^{1} e^{x^{2}} \ln(2 - x) dx$$

$$I_{2} = \int_{1}^{3} \frac{1}{\sqrt{1 + x^{4}}} dx$$

over 4 points Gaussian Quadrature and the composite 2 point Gaussian quadrature with 2 subintervals.

 I_1 :

To approximate I_1 I'll use the Legendre polynomials $L_n(x)$ as they already match the intervals. Since we'll use 4 point quadrature, we'll need to evaluate $f_1(x) = e^{x^2} \ln(2-x)$ at the zeros of $L_4(x)$. Recall that they are given in the lecture notes as

$$x_4 = -x_1 = 0.861 \ 136 \ 3116, \quad x_3 = -x_2 = 0.339 \ 981 \ 0436$$

zeros = [-0.8611363116, -0.3399810435, 0.3399810435, 0.8611363116,]

and the weights are given by

$$w_1 = w_4 = 0.3478548451, w_2 = w_3 = 0.6521451549$$

```
weights = [0.3478548451,
0.6521451549,
0.6521451549,
0.3478548451,]
```

Finally we need to evaluate $f_1(x)$ at the zeros

```
def f1(x):
    return np.exp(x**2)*np.log(2-x)
points = [f1(xi) for xi in zeros]
```

Finally approximate the integral as

$$\sum_{i=1}^{n} w_{i} \cdot f(x_{i})$$

```
I1 = np.dot(weights, points)
print("Quadrature =", I1)
wolfram = 1.85572
print("Wolfram's answer=", wolfram)

:Quadrature = 1.8559447713840982
:Wolfram's answer= 1.85572
```

$I_2:$

This part is more complicated. Since the bounds of I_2 is [1,3], we should first split the integral into two parts (since we are doing 2 subintervals) then perform a change of variables such that the integrals are over [-1,1]. Denote $f_2(x)=\frac{1}{\sqrt{1+x^4}}$. Then

$$\int_{1}^{2} f(x) dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x + \frac{3}{2}) dx$$
$$= \frac{1}{2} \int_{-1}^{1} f(\frac{1}{2}x + \frac{3}{2}) dx$$

and

$$\int_{2}^{3} f(x)dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x + \frac{5}{2})dx$$
$$= \frac{1}{2} \int_{-1}^{1} f(\frac{1}{2}x + \frac{5}{2})dx$$

The weights and zeros of the $L_2(x)$ are

$$w_1 = w_2 = 1$$

and

$$x_1 = x_2 = 0.577 \ 350 \ 2692$$

so calculating the quadrature is simply

```
int1_points = [f2(xi*0.5 +1.5) for xi in zeros]
int2_points = [f2(xi*0.5 +2.5) for xi in zeros]

I2 = 0.5 * np.dot(weights, int1_points) + 0.5 * np.dot(weights, int2_points)

print("Quadrature =", I2)
wolfram = 0.594113
print("Wolfram's answer=", wolfram)

:Quadrature = 0.5946956791823543
:Wolfram's answer= 0.594113
```