Configuration Space (Pre Lecture)

Dr. Neil T. Dantam

CSCI-498/598 RPM, Colorado School of Mines

Spring 2018

Configuration Space

Definition: Configuration

A specification for the position of all points in the system (robot).

Typically a real vector: $q \in \mathbb{R}^n$.

$$q = \left[egin{array}{c} rac{\pi}{3} \ rac{-\pi}{3} \ rac{\pi}{2} \end{array}
ight]$$

Degrees of Freedom

Definition: Degrees of Freedom

The smallest number of real-valued coordinates necessary to represent a configuration.

Typically a natural number: $n \in \mathbb{N}$

Configuration Space

Definition: Configuration Space

The n-dimensional space containing all possible configurations of the robot.

Typically a real vector (sub)space: $\mathcal{Q} \subseteq \mathbb{R}^n$

Outline

Manipulator DoF

Manipulator Kinematics
Joint Transforms
Examples

The Motion Planning Probler

Planar Rigid Bodies

Three parameters: x, y, θ

3D Rigid Bodies

Robot DoF

Joint Types

Figure 2.3: Typical robot joints.

(Lynch and Park. Modern Robotics.)

Joint Constraints DoF

Joint Type	Constraints (2D)	Constraints (3D)	Net DoF
Revolute	2	5	1
Prismatic	2	5	1
Helical	N/A	5	1
Cylindrical	N/A	4	2
Universal	N/A	4	2
Spherical	N/A	3	3

Open vs. Closed Chains

Serial vs. Parallel Manipulators

Grübler's Formula

Mechanism DoF

- ▶ Planar: m = 3
- ▶ 4 links: *N* = 4
- \bullet dof = 3(4 1) (2 + 2 + 2) =3

- ▶ Planar: m = 3
- ▶ 4 links: *N* = 4
- \bullet dof = 3(4 1) (2 + 2 + 2 + 2)

Exercise: Scissor Jack

Simplified Planar Model

- ► Links:
- ► Joints:

Exercise: Human Arm

Kinematic Model

Outline

Manipulator Dol

Manipulator Kinematics Joint Transforms Examples

The Motion Planning Problem

Revolute Joints

Rotating Motion

- $ightharpoonup p_{c}$: Translation from parent p to child c (fixed)
- \hat{u} : Axis of rotation (fixed)
- ϕ : Rotation angle (varying)

rotation

$$PS_c(\phi) = \exp\left(\frac{\phi}{2}\hat{u}\right) + \underbrace{\frac{1}{2}{}^{p}v_c \otimes \exp\left(\frac{\phi}{2}\hat{u}\right)\varepsilon}_{\text{rotation}}$$

Prismatic Joints

Linear / Sliding Motion

- ▶ $^{p}h_{c}$: Rotation from parent p to child c (fixed)
- ▶ û: Axis of translation (fixed)
- ▶ *l*: Translation length (varying)

$$PS_c(\ell) = \exp\left(\frac{\phi}{2}\hat{u}\right) + \underbrace{\frac{1}{2}^{p}v_c \otimes \exp\left(\frac{\phi}{2}\hat{u}\right)\varepsilon}_{\text{rotation}}$$

Helical Joints

Coupled Rotation and Linear Motion

- ▶ k: thread pitch
- ▶ û: Axis (fixed)
- $\blacktriangleright \phi$: Rotation angle (varying)

$$\triangleright \ ^{p}S_{c}(\phi) = \underbrace{\exp\left(\frac{\phi}{2}\hat{u}\right)}_{\text{rotation}} + \underbrace{\frac{1}{2}\left(k\phi\hat{u}\right)\otimes\exp\left(\frac{\phi}{2}\hat{u}\right)\varepsilon}_{\text{translation}}$$

Multi-DoF Joints

Cylindrical: Revolute ⊗ Prismatic

$${}^{p}\mathcal{S}_{c}\left(\ell,\phi\right)={}^{p}\mathcal{S}_{c1}\left(\ell\right)\otimes{}^{c1}\mathcal{S}_{c}\left(\phi\right)$$

Universal: Revolute ⊗ Revolute

$${}^{p}\mathcal{S}_{c}\left(\phi_{0},\phi_{1}\right)={}^{p}\mathcal{S}_{c0}\left(\phi_{0}\right)\otimes{}^{c0}\mathcal{S}_{c}\left(\phi_{1}\right)$$

Spherical: Revolute \otimes Revolute \otimes Revolute

$${}^{p}S_{c}\left(\phi_{0},\phi_{1},\phi_{2}\right)={}^{p}S_{c0}\left(\phi_{0}\right)\otimes{}^{c0}S_{c_{1}}\left(\phi_{1}\right)\otimes{}^{c1}S_{c}\left(\phi_{2}\right)$$

Products of revolute and prismatic joints

Dantam (Mines CSCI, RPM)

Serial Manipulator

Serial Manipulator

Transforms

▶ Relative:
$$S = h + \frac{1}{2}v \otimes h\varepsilon$$

$$\bullet \ ^{a}S_{b} = \exp\left(\frac{\phi_{b}}{2}\hat{\mathbf{k}}\right) + \frac{1}{2}\ell_{b}\hat{\mathbf{i}} \otimes \exp\left(\frac{\phi_{b}}{2}\hat{\mathbf{k}}\right)\varepsilon$$

$$\bullet \ ^{b}S_{c} = \exp\left(\frac{\phi_{c}}{2}\hat{\mathbf{k}}\right) + \frac{1}{2}\ell_{c}\hat{\mathbf{i}} \otimes \exp\left(\frac{\phi_{c}}{2}\hat{\mathbf{k}}\right)\varepsilon$$

$$lacksquare {}^b\mathcal{S}_c = \exp\left(rac{\phi_c}{2}\hat{m{k}}
ight) + rac{1}{2}\ell_cm{\hat{\imath}}\otimes \exp\left(rac{\phi_c}{2}\hat{m{k}}
ight)$$

$$ullet$$
 $^c\mathcal{S}_{\mathrm{ee}}=1+rac{1}{2}\ell_{\mathrm{ee}}\hat{m{\imath}}m{arepsilon}$

▶ Absolute:
$${}^{G}S_{n} = {}^{G}S_{m} \otimes {}^{m}S_{n}$$

$$\qquad {}^{G}\mathcal{S}_{b} = {}^{G}\mathcal{S}_{a} \otimes {}^{a}\mathcal{S}_{b}$$

Anthropomorphic arm

Anthropomorphic arm

Transforms

EOD 510 Packbot

Endeavor Robotics

http://endeavorrobotics.com/products

Packbot Video

EOD 510 Packbot

Endeavor Robotics

http://endeavorrobotics.com/products

Packbot

Transforms

Implementation Notes

Fixed Frame:
$$^{\text{parent}}S_{\text{id}} = S$$

- parent, id: Label
- ► transform S

Revolute Frame:
$$\operatorname{parent}_{\operatorname{did}}(\theta) = \exp\left(\frac{\theta\hat{\boldsymbol{u}}}{2}\right) + \left(\frac{1}{2}v\otimes\exp\left(\frac{\theta\hat{\boldsymbol{u}}}{2}\right)\right)\varepsilon$$

- ▶ parent, id: Label
- ightharpoonup axis of rotation (\hat{u})
- ▶ fixed translation (v)

Prismatic Frame:
$$\operatorname{Parent}_{\operatorname{Sid}}(\ell) = h + \left(\frac{1}{2}\ell\hat{\boldsymbol{u}}\otimes h\right)\boldsymbol{\varepsilon}$$

- parent, id: Label
- ▶ fixed rotation (h)
- ightharpoonup axis of translation (\hat{u})

Links/Obstacles: 3D meshes attach to a frame

Scene/Robot: A set of frames

Outline

Manipulator Do

Manipulator Kinematics
Joint Transforms
Examples

The Motion Planning Problem

Motion Planning Illustration

Find collision free path from start to goal.

Paths

Definition: Path (Mathematical)

A path through configuration space $\mathcal Q$ is a continuous function defining the configuration along a time-independent parameter:

$$\tau:[0,1]\mapsto \mathcal{Q}$$

Definition: Path (Computational)

A path is a sequence of points in configuration space $\mathcal Q$ such that valid transitions exist between subsequent points.

$$au \in \mathcal{Q}^*$$

Collisions and Free Configuration Space

- ▶ Want paths in Collision Free Space
- Usually no explicit representation / parameterization
- ▶ Blackbox collision checking: is-valid: $Q \mapsto \mathbb{B}$
- lacktriangle Obstacle Region: $\mathcal{Q}_{\mathrm{obs}} = \{q \in \mathcal{Q} \mid \neg \mathtt{is-valid}(q)\}$
- lacktriangle Free Space: $\mathcal{Q}_{\mathrm{free}} = \{q \in \mathcal{Q} \mid \mathtt{is}\mathtt{-valid}(q)\}$
- ► Total Space:
 - $\triangleright \mathcal{Q}_{obs} \cap \mathcal{Q}_{free} = \emptyset$
 - $ightharpoonup \mathcal{Q}_{\mathrm{obs}} \cup \mathcal{Q}_{\mathrm{free}} = \mathcal{Q}$

Dynamics vs. Combinatorics

- ▶ What is the challenge?
 - Stability?
 - ► Dimensionality?
- ► Trade-offs:
 - ► Algorithmic completeness
 - Computational efficiency
 - Plan optimality
- ► Different perspectives:
 - Solving differential equations
 - State-space search

Understand the problem to solve.

Piano Mover's Problem

Given: Environment, Robot, Start and Goal configurations

- ightharpoonup World \mathcal{W} in \mathbb{R}^2 or \mathbb{R}^3
- ightharpoonup A robot in \mathcal{W} : either a single or collection of rigid bodies
- ► Configuration space Q for the robot, from which Q_{obs} and Q_{free} are derived.
- ▶ Initial configuration $q_0 \in \mathcal{Q}_{\text{free}}$
- ▶ Goal configuration $q_G \in \mathcal{Q}_{\text{free}}$

Find: A valid path from start q_0 to goal q_G .

Overview of Motion Planning Approaches

High-dimensional / Manipulation Problems

Local

- Start from initial configuration or (possibly invalid) path
- 2. Progressively "improve" the configuration/path, via:
 - Gradient descent
 - ► Hill-Climbing
 - ► Sequential Optimization
 - ► Etc.
- 3. Terminate when:
 - ▶ We reach the goal/ collision free path
 - ▶ Reach a local minimum

Sampling-Based

- 1. Start from initial configuration
- 2. Sample new states in the configuration space
- 3. Add valid states to tree or graph
- 4. Terminate when:
 - We find a path to the goal in the tree/graph
 - ▶ We exhaust a timeout

