Distribuições discretas:

Distribuição	P(X=x)	$P(X \le x)$	Suporte	E(X)	Var(X)	$M_X(t)$
Bernoulli	$p^x(1-p)^{1-x}$	$\begin{cases} 0 & x < 0 \\ 1 - p & 0 \le x < 1 \\ 1 & 1 \le x \end{cases}$	$x \in \{0, 1\}$ $p \in [0, 1]$	p	p(1-p)	$pe^t - p + 1$
Binomial	$\binom{n}{x}p^x(1-p)^{n-x}$		$x, n \in \mathbb{N}$ $x \le n$ $p \in [0, 1]$	np	np(1-p)	$(pe^t - p + 1)^n$
Geométrica	$p(1-p)^{x-1}$	$\begin{cases} 0 & x < 0 \\ 1 - (1 - p)^{\lfloor x \rfloor} & x \ge 0 \end{cases}$	$x \in \mathbb{N}$ $p \in [0, 1]$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{pe^t - p + 1}$
Poisson	$\frac{e^{-\lambda}\lambda^x}{x!}$		$x \in \mathbb{N}$ $\lambda > 0$	λ	λ	$e^{\lambda(e^t-1)}$

Distribuições contínuas:

Distribuição	f(x)	F(x)	Suporte	E(X)	$\operatorname{Var}(X)$	$M_X(t)$
Uniforme	$\frac{1}{b-a}$	$\begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x < b \\ 1 & b \le x \end{cases}$	$x \in [a, b]$ $a, b \in \mathbb{R}$ $a \le b$	$\frac{a+b}{2}$	$\frac{(a-b)^2}{12}$	$\frac{e^{bt} - e^{at}}{t(b-a)}$
Normal	$\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$		$x, \mu \in \mathbb{R}$ $\sigma > 0$	μ	σ^2	$e^{\mu t + \frac{1}{2}\sigma^2 t^2}$
Exponencial	$\lambda e^{-\lambda x}$	$1 - e^{-\lambda x}$	$x > 0$ $\lambda > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}$
Gama	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$		$x > 0$ $\alpha, \beta > 0$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$	$\left(\frac{\beta}{\beta - t}\right)^{\alpha}$
Beta	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$		$x \in [0, 1]$ $\alpha, \beta > 0$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	

1

Relações amostrais:

Distribuição	Suposições	Relação		
Média	$X \sim N(\mu, \sigma^2)$	$\bar{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$		
Chi-quadrado	$X \sim N(\mu, \sigma^2)$	$\sum_{i=1}^{n} \left(\frac{X_i - \mu_i}{\sigma_i} \right)^2 \sim \chi_{(n)}^2$		
Chi-quadrado	$X \sim N(\mu, \sigma^2)$	$\sum_{i=1}^{n} \left(\frac{X_i - \bar{X}_i}{\sigma} \right)^2 \sim \chi_{(n-1)}^2$		
t-Student	$Z \sim N(0, 1)$ $U \sim \chi^2_{(n)}$	$\frac{Z}{\sqrt{U/n}} \sim t_{(n)}$		
t-Student	$X \sim N(\mu, \sigma^2)$ $S = \frac{\sum_{i=1}^{n} \left(\frac{X_i - \bar{X}_i}{\sigma}\right)^2}{n-1}$	$\frac{\sqrt{n}(\bar{X} - \mu)}{S} \sim t_{(n-1)}$		
F-Snedecor	$U \sim \chi_{(m)}^2$ $V \sim \chi_{(n)}^2$	$\frac{U/m}{V/n} \sim F(m,n)$		