Unsupervised Learning From Examples

Dr. Lotfi ben Othmane University of North Texas

Administrative

- Assignment 1 is due on Feb 20, 2024
- Project phase 1 is due on Feb 22, 2024 Select a project from the provided list
- Quiz 2 is Feb 22, 2024

Learning Agents

Associate Percepts to Outputs/Labels

Supervised vs Unsupervised ML

- Supervised machine learning is about discovering patterns relating data attributes with data labels.
 - The uses are: regression, classification, and forecasting.
- Unsupervised machine learning is about analyzing and clustering datasets.
 - The uses are clustering, dimensionality reduction, and association.

Case Study – Architecture Recovery

- Prescriptive architecture describes the expected architecture of software (often designed one)
- Descriptive architecture is the as-implemented architecture of software
- Descriptive architecture and prescriptive architecture are often different

Case Study – Architecture Recovery – Cont.

- Architecture recovery is the extraction and analysis of a software architecture
- Current tools cluster the software code into packages
- Recovery techniques often are based on the call graph of the software

Graph Clustering

Architecture recovery becomes a clustering problem

Each method defines its own clustering feature

Case Study – Architecture Recovery – Cont.

 Call graph represents the calling relationships between nodes. Each node represents a function (or module) and each edge (f, g) represents calls of function (or module) f to function (or module) g.

Use code analysis tools to extract the CFG.

Application- Compiere

Overview

Compiere ERP+CRM is the leading open source ERP solution for...

Read More

Compiere ERP + CRM Business Solution Web Site »

https://sourceforge.net/projects/compiere/

Case Study – Architecture Recovery – Cont.

Control Flow Graph Generated by WALA

Data Cleaning Challenges

- 1. Code analysis tools add fake nodes.
- 2. Code includes dependency e.g., Java-based code includes JRE java methods.
- 3. Methods may have similar names but in different modules may confuse code analysis.
- 4. The number of clusters is huge, e.g., 2000

Concepts for Software Architecture

- Assumes: well-designed software systems are organized into cohesive subsystems that are loosely interconnected.
- Interconnectivity dependencies between the modules of two distinct subsystems
- Intra-connectivity dependencies between the modules of the same subsystem
- Modularization Quality trade-off between Interconnectivity and Intra-connectivity

Bunch Metric

 Intra-connectivity - Coefficient of number of edges in the cluster to potential number of edges in the cluster

$$A_i = \frac{\mu_i}{N_i^2}$$

• Interconnectivity - Coefficient of number of edges between cluster *i* and cluster *j* to double the number of nodes of cluster *i* multiply by the number of nodes of cluster *j*. (0 if in the same cluster.)

$$E_{i,j} = \frac{\varepsilon_{i,j}}{2 X N_i X N_j}$$

• Modularization Quality - $\begin{cases} \frac{\sum_{i=1}^k A_i}{k} - \frac{\sum_{i,j=1}^k E_{i,j}}{\frac{k(k-1)}{2}} \\ A_1 & (k=1) \end{cases}$

Bunch Metric

It uses hill-climbing and genetic algorithms to solve the optimization problem

Case Study – Compiere - Clusters

Case Study – Compiere - Clusters

- 1. Util main class for utilities
- 2. New Instance when user logs in, creates new instance with respective look & feel and language
- 3. Logger generation and storage of logs
- 4. Secure Engine responsible for implementing security policies within the application and initializing security
- 5. NameValuePair stores/retrieves/modifies user related data
- 6. List Resources lists user resources on login
- 7. Main_CompierePLAF provides look & feel
- 8. **GetLanguage** retrieves the language for user
- 9. Encrypt_SecureEngine provides data encryption capabilities
- 10. Hashing stores hashmap of user data

Clustering Capabilities

So

- Clustering is about
 - Partitioning
 - •
- Metric: Use a distance metric
 - Minimize intra-distance metric
 - Maximize inter-distance metric
- The quality depends on the algorithm and distance metric

Clustering – How the Components of the Car Collaborate

Collaboration is measured by the number of exchanged messages

Clustering – Cluster the ECUs based on functionalities

Which components control the speed increase?

Clustering Using K-means

K-means partition the dataset into k clusters

- Each cluster has cluster center called centroid
- K is an input to the algorithm
- Aims to minimize the sum of the distances between the withincluster data points and associated centroids.

$$\sum_{i=1}^k \sum_{x \in S_i} \| x - y_i \|^2$$

Clustering Using K-means

Algorithm

- 1. Select initial k data points m_1^1 m_2^1 m_k^1
- 2. For each round *t* assign each data point to the nearest cluster *i*

$$C_i^t = \left\{ x_p \colon \| \; x_p - \; m_i^t \; \|^2 \leq \; \| \; x_p - m_j^t \; \|^2 \; \forall \; 1 \leq j \leq k \right\}$$

3. Recompute the means of the clusters

$$m_i^{t+1} = \frac{1}{|C_i^t|} \sum_{x_j \in C_i^t} x_j$$

$$\sum_{i=1}^k \sum_{x \in S_i} \|x - y_i\|^2$$

4. Stop when the assignment no longer change

Exercise: Clustering Using K-means

Cluster the students by age into 2 groups
Select centers 11 and 16 as starting points

Algorithm

- 1. Select initial k data points $m_1^1 m_2^1 \dots m_k^1$
- 2. For each round t assign each data point to the nearest cluster i C_i^t $= \left\{ x_p \colon \| \ x_p m_i^t \ \|^2 \right.$ $\leq \| \ x_p m_i^t \ \|^2 \ \forall \ 1 \leq j \leq k \right\}$
- 3. Recompute the means of the clusters

$$m_i^{t+1} = \frac{1}{|C_i^t|} \sum_{x_j \in C_i^t} x_j$$

4. Stop when the assignment no longer change

Exercise: Clustering Using K-means

$$M_{11}=11$$
 $M_{12}=16$
 $C_{11}=\{1,5,11\}$
 $C_{12}=\{16,23,24,32,51\}$

$$M_{21} = 5.6 \sim 5$$
 $M_{22} = 29.2 \sim 32$
 $C_{21} = \{1,5,11,16\}$
 $C_{22} = \{23,24,32,51\}$

$$M_{21} = 8.25 \sim 11$$
 $M_{22} = 32.5 \sim 32$
 $C_{21} = \{1,5,11,16\}$
 $C_{22} = \{23,24,32,51\}$

(32)

(24)

(23)

Clustering Using K-means

- Frequently use method
- Positive:
 - Easy to understand
 - Efficient
- Negative
 - It is sensitive to outliers
 - You need to specify k
 - It kind of favors balanced datasets

Another Method – Hidden Markov Model

Hidden states

P(Sunny/Umbrella)	P(Rainy/Umbrella)
P(Sunny/No	P(Rainy/No
Umbrella)	umbrella)

Sunday is sunny with P=1

S _{t-1}	S _t	Prob
Sun	Sun	0.9
Sun	Rain	0.1
Rain	Sun	0.3
Rain	Rain	0.7

Sat. Sun. Mond. Tues.

Wed.

What is the probability of Sun on day t?

Conditional Probability

Conditional probability: $P(x,y) = P(x/y) \times P(y)$

Chain rule:
$$P(x_1, x_2, ... x_n) = P(x_1)P(x_2/x_1)P(x_3/x_2, x_1)...$$

= $\prod_{i=1}^{n} P(x_i|x_1 ... x_{i-1})$

X and Y are independent iff $\forall x \in X, y \in Y, P(x, y) = P(x)P(y)$

Markov Models

Transition probabilities Specify how the state evolves over time.

Stationarity assumption: Transition probability is the same at all times

Markov Models

What is the probability of Sun on day t?

The probability at time *t* depends on probability at *t-1* and is independent of previous time steps.

$$P(X_{t}) = \sum P(X_{t}, X_{t-1})$$

$$= \sum P(X_{t}/X_{t-1}) * P(X_{t-1})$$

 X_t is independent of X_{t-2} , X_{t-3} ,...

$$P(X_{t}) \qquad P(X_{t+1}) \qquad P(X_{t+2}) \qquad P(X_{t+3}) \qquad = = -State$$

$$X_{t} \qquad X_{t+1} \qquad X_{t+2} \qquad X_{t+3} \qquad X_{$$

What is the probability of Sun on day 2 given it is sun on day 1?

Sunday is sunny with P=1

S _{t-1}	S _t	Prob
Sun	Sun	0.9
Sun	Rain	0.1
Rain	Sun	0.3
Rain	Rain	0.7

Give it a try

What is the probability of Sun on day 2 given it is sun on day 1?

Sunday is sunny with P=1

S _{t-1}	S _t	Prob
Sun	Sun	0.9
Sun	Rain	0.1
Rain	Sun	0.3
Rain	Rain	0.7

$$P(X_2=Sun) =$$
 $P(X_2=Sun/X_1=Sun)*P(X_1=Sun)$
 $+P(X_2=Sun/X_1=Rain)*P(X_1=Rain)$
 $= 0.9*1.0+0.3*0.0$
 $= 0.9$

Markov Models

•
$$P(X_1=Sun) = 1$$

$$\begin{cases} Sun \\ Rain \end{cases} \begin{cases} 1.0 \\ 0.0 \end{cases} \begin{cases} 0.9 \\ 0.1 \end{cases} \begin{cases} 0.84 \\ 0.16 \end{cases} \begin{cases} 0.804 \\ 0.196 \end{cases} \qquad \begin{cases} 0.75 \\ 0.25 \end{cases}$$

$$P(X_1). P(X_2). P(X_3). P(X_4) P(X_{\infty}) \end{cases}$$
• $P(X_1=Rain) = 1$

$$\begin{cases} 0.0 \\ 1.0 \end{cases} \begin{cases} 0.3 \\ 0.7 \end{cases} \begin{cases} 0.48 \\ 0.52 \end{cases} \begin{cases} 0.588 \\ 0.422 \end{cases} \qquad \begin{cases} 0.75 \\ 0.25 \end{cases}$$

$$P(X_1). P(X_2). P(X_3). P(X_4) P(X_{\infty}) \end{cases}$$

$$0.3 \end{cases}$$

$$0.7 \end{cases} \qquad 0.3 \end{cases}$$

$$0.7 \end{cases} \qquad 0.9 \end{cases}$$

Markov Models

Stationary distribution of P: $P_{\infty+1}(X) = P_{\infty}(X)$

- $P(X_{\infty}=sun) = (0.9 * P(X_{\infty}=sun)) + (0.3 * P(X_{\infty}=rain))$
- $P(X_{\infty}=rain) = (0.1 * P(X_{\infty}=sun)) + (0.7 * P(X_{\infty}=rain))$
- $P(X_{\infty}=rain) + P(X_{\infty}=sun) = 1$
- \Rightarrow P(X_{∞} =sun) = 3 P(X_{∞} =rain)
- From other initial distribution P(X₁)

$$\left\langle \begin{array}{c} p \\ 1-p \end{array} \right\rangle \dots \left\langle \begin{array}{c} 0.75 \\ 0.25 \end{array} \right\rangle$$

$$P(X_1) \dots P(X_{\infty})$$

Hidden Markov Model

What is the probability of Sun on day t given umbrella = true?

Hidden states We know working with $P(S_t | S_{t-1})$ S_{t+1} $S_{\underline{t-1}}$ $P(E_t | S_t)$ E_{t+2} E_{t-2} E_{t-1} E_{t} E_{t+1}

Observations

Hidden Markov Model

- Markov chain/process is a scholastic model describing a sequence of possible events where the probability of each events depends only on the state of the previous event.
- Hidden Markov Model is a probabilistic model where two
 coexistent stochastic processes: the process of moving
 between states and the process of emitting an output
 sequence, characterized by Markov property and the output
 independence.

Franzece and Luliano, 2019

Hidden Markov Model (HMM)

 Usually, the true state is not observed directly

HMM is defined by

- Initial distribution P(X₀)
- Transition model: $P(X_t | X_{t-1})$
- Emission/Sensor model: P(E_t | X_t)

We observe the evidence

Hidden Markov Model (HMM)

What the weather is like at time 1?

S _{t-1}	$P(S_{t} S_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

E for Evidence (Our indicator/ signal of the weather)

S _t	P(E _t S _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

States {rain, sun}

Hidden Markov Model (HMM)

- Time 0 $P(S_0) = <0.5, 0.5>$
- $P(X_t) = \sum P(X_t/X_{t-1}) * P(X_{t-1})$
- The weather like at time 1

$$P(X_1) = <0.9, 0.1> * 0.5 + <0.3, 0.7> * 0.5$$

$$P(X_1) = <0.6, 0.4>$$

S _{t-1}	$P(S_{t} S_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

An HMM is defined by:

• Initial distribution: $P(X_1)$

• Transitions: $P(X_t \mid X_{t-1})$

• Emissions: $P(E_t \mid X_t)$

$P(X_t \mid X_{t-1})$	-1)	
\rightarrow Rain _{t-1}	Rain _t	\bigcirc Rain _{t+1} \longrightarrow
	$\bigvee_{V} P(E_t \mid X_t)$	
Umbrella t-1	Umbrella t	Umbrella t+1

The probability are different form the one on slide 41

	X _t	X _{t+1}	$P(X_{t+1} x_t)$
	+r	+r	0.7
y	+r	-r	0.3
	-r	+r	0.3
	-r	-r	0.7

X _t	E _t	P(E _t X _t)
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Belief Updates

- Let $B(X_t) = P(x_t, e_{1:t})$ be believe at t
- $P(x_t, e_{1:t}) = \sum_{x_{t-1}} P(X_{t-1}, x_t, e_{1:t})$ Consider previous states $= \sum_{x_{t-1}} P(X_{t-1}, e_{1:t-1}) P(x_t | x_{t-1}) P(e_t | x_t)$ $= P(e_t | x_t) \sum_{x_{t-1}} P(x_t | x_{t-1}) P(x_{t-1}, e_{1:t-1})$

$$\Rightarrow B'(X_t) = \sum_{x_{t-1}} P(X_t | x_{t-1}) B(X_{t-1})$$

$$\Rightarrow B(Y_t) = D(x_t | x_t) B'(Y_t)$$

$$P(S_0) = <0.5 \ 0.5 > - We do not know$$

$$P(s_1 | e_1 = +u) = \alpha P(E_1 | S_1) P(S_0)$$

$$= \alpha < 0.9, 0.2 > * < 0.5, 0.5 >$$

$$= \alpha < 0.45, 0.1 >$$

 α is for normalization = sum of the probabilities is 1

X_{t}	E _t	$P(E_t X_t)$
<mark>+r</mark>	<mark>+u</mark>	<mark>0.9</mark>
+r	-u	0.1
<mark>-r</mark>	<mark>+u</mark>	0.2
-r	-u	0.8

X _t	X_{t+1}	$P(X_{t+1} X_t)$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

$$\Rightarrow B'(X_t) = \sum_{x_t} P(X_t | x_{t-1}) B(X_{t-1})$$
$$\Rightarrow B(X_t) = P(e_t | x_t) B'(X_t)$$

$$\Rightarrow B'(X_t) = \sum_{x_t} P(X_{t+1}|x_t) B(X_{t-1})$$

$$\Rightarrow B(X_t) = P(e_t|x_t) B'(X_t)$$

Clustering HMM

- The state-observations probability matrices would be of k clusters, say 2 HMM λ_1 and λ_2
- $\lambda_i = (u^i, A^i, B^i)$ // u is for initial state, A is the state probability matrix and B is for state-observation probability matrix

Distance
$$d(\lambda_1, \lambda_2) \triangleq \|B^{(1)} - B^{(2)}\|$$

$$\triangleq \left\{ \frac{1}{MN} \sum_{j=1}^{N} \sum_{k=1}^{M} \left[b_{jk}^{(1)} - b_{p(j)k}^{(2)} \right]^2 \right\}^{1/2}$$

Levinson et al. 1983

Clustering HMM

A classic method to measure dissimilarity of probability distributions is Kullbak-Leiber divergence:

$$D_{KL}(P||Q) = \sum_{x \in X} P(x) \log \left(\frac{P(x)}{Q(x)}\right)$$

The points could be clustered using portioning algorithms that minimize the average dissimilarity inside the clusters.

HMM Clustering in Python

import hmmlearn.hmm as hmm

```
gHmm = hmm.GaussianHMM(n_components, n_iter)
model = gHmm.fit(Data)
hidden_states = model.predict(Data)
```

model.transmat_: Matrix of transition probabilities between states.

HMM Clustering for Voice Analysis

https://wiki.inf.ed.ac.uk/pub/CSTR/Trajectory Modelling/HTS-Introduction.pdf

Hand-writing Recognition with HMM

Figure 1: Example observation from data set: actual word is "commanding" with the first letter removed

Figure 2: In our Markov model, the hidden variables *Yt* are the 26 letters of the English alphabet and the observed variables are the bitmap images

Conclusions

- Unsupervised machine learning is about analyzing and clustering datasets.
 - The uses are clustering, dimensionality reduction, and association.
- Clustering algorithms use distance metrics to partition the data such that similar items are grouped together.

Thank you

Any Question?