FILETE - ELEMENTE GEOMETRICE. FORTE \$1 MOMENTE

1. Scopul lucrării

Determinarea coeficienților de frecare din filet și dintre suprafața frontală a piuliței și suprafața de reazem.

2. Elemente teoretice

2.1. Elemente geometrice ale filetului

Geometria filetului metric de uz general (figura 1) și dimensiunile nominale sunt stabilite în standardul SR ISO 262:2012, [1]. Figura 2 exemplifică o formă constructivă de șurub de fixare cu cap hexagonal și a unei piulițe.

2.2. Forte și momente

Pentru a crea în tija şurubului o forță axială F este necesar ca asupra piuliței să se acționeze, la cheie, cu un moment de torsiune M_t :

$$M_t = M_{t1} + M_{t2} \tag{1}$$

Fig. 1 Geometria filetului metric

Fig. 2 Şurub cu cap hexagonal, piuliță-forme constructive

unde Mt1 este necesar pentru învingerea frecării dintre spirele filetului:

$$M_{t1} = F \cdot \frac{d_2}{2} \cdot \dagger g(\alpha_2 + \rho') \tag{2}$$

$$\alpha_2 = \operatorname{arctg}\left(\frac{p}{\pi \cdot d_2}\right), [°]$$
 (3)

iar momentul M_{12} este componenta corespunzătoare frecării dintre suprafața frontală a piuliței și suprafața de reazem:

$$M_{12} = \mu_2 \cdot \frac{F}{3} \cdot \frac{D_1^3 - d_g^3}{D_1^2 - d_g^2} \tag{4}$$

unde: μ_1 - coeficientul de frecare dintre flancurile filetului;

$$\mu'_1$$
- coeficientul de frecare aparent, $\mu'_1 = \mu_1/\cos(\beta/2)$ (5)

$$\rho'$$
 - unghiul de frecare aparent, $tg(\rho') = \mu'_1$ (6)

 $\mu_{\rm 2}$ - coeficientul de frecare dintre suprafața frontală a piuliței și suprafața de reazem.

Momentul M_{f1} solicită la torsiune tija şurubului.

3. Determinări experimentale

3.1. Dispozitivul de măsurare

Dispozitivul folosit permite măsurarea forței dezvoltată în tija şurubului la aplicarea unei valori cunoscute pentru momentul la cheie.

Dispozitivul, schematizat în figura 3, se compune din: suportul 4 pe care se montează subansamblul format din şurubul 5, piulița 6, distanțierele 3, arcul dinamometric 2 și comparatorul cu cadran 1.

Fig. 3 Dispozitiv pentru determinarea coeficienților de frecare

Figura 4 prezintă imagini de ansamblu.

Fig. 4 Dispozitivul pentru studiul frecării în filet

Fig. 5 Caracteristica elastică liniară a arcului dinamometric

Prin strângerea piuliței cu cheia dinamometrică, în șurub ia naștere o forță axială care deformează arcul dinamometric, mărimea deformației fiind citită pe scala comparatorului, iar forța axială se determină din caracteristica elastică a arcului prezentată în diagrama din figura 5.

3.2. Determinarea coeficientului de frecare μ₁ din filet 3.2.1 Principiul metodei

Aceste determinări se efectuează cu frecare de rostogolire între piuliță și suprafața de reazem. În acest scop în locașul din suportul 4 se introduce un rulment axial, după care se montează manual piulița 6 până ce atinge inelul rulmentului.

- Strângerea piuliței se realizează cu o cheie dinamometrică care va furniza valoarea momentului total Mt.
- Forța axială dezvoltată în tija şurubului este evaluată folosind caracteristica elastică liniară a arcului dinamometric 2, figura 5.
- Momentul de frecare M_{t2} , din rulmentul axial, se determină în funcție de valoarea forței axiale:

$$M_{12} = F \cdot \frac{d_a}{2} \cdot \mu_r \tag{7}$$

în care diametrul interior al rulmentului axial d_{σ} se măsoară, iar coeficientului de frecare în rulment μ_r se obține din diagrama prezentată în figura 6 în funcție de raportul F/C_0 , unde sarcina statică de bază pentru rulmentul 51305 are valoarea $C_0 = 51$ kN.

Fig. 6 Coeficient ul de frecare global din rulment

- Momentului de frecare din filet $M_{\rm fl}$ se determină ca fiind diferența dintre momentul la cheie și momentul de frecare din rulment:

$$M_{11} = M_1 - M_{12}$$
 (8)

3.2.2. Modul de lucru

- 1) Se măsoară cu şublerul diametrul exterior al şurubului şi se extrag din standard (tabelul 3) valorile pentru pasul p, diametrele d_1 , d_2 şi D_1 , după care se calculează valoarea unghiului α_2 cu relația (3). Pentru mărimea diametrului D_{1p} corespunzător suprafaței de reazem a piuliței se consideră aproximația $D_{1p} = 0.95$ ·S.
- 2) Se măsoară diametrul găurii de trecere da a surubului.
- 3) Se aduce comparatorul cu cadran în poziția "zero".
- 4) Se strânge treptat piulița 6 cu cheia dinamometrică notând valorile diviziunilor indicate de cheie şi de comparator (citirile se fac din $10 \text{ N} \cdot \text{m}$ în $10 \text{ N} \cdot \text{m}$ până la maxim $100 \text{ N} \cdot \text{m}$).
- 5) Momentul de frecare din filet fiind apreciat în baza relației (8), unghiul de frecare aparent ρ ' se obține din relația (2):

$$\rho = \arctan\left(\frac{2 \cdot M_{11}}{F \cdot d_2}\right) - \alpha_2 \tag{9}$$

- 6) Se demontează piulița cu cheia dinamometrică verificând revenirea la poziția inițială a acului indicator al comparatorului.
- 7) Se repetă măsurătorile de cel puțin patru ori.

Tabelul 1 Rezultate experimentale

Nr. crt.	Märimea	U.M.	1	2	3	4
1.	Momentul la cheie M,	N·m				
2.	Indicații comparator	10 ⁻² mm				
3.	Forța axială F	Ν	,			
4.	F/C ₀	-				
5.	Coeficientul de frecare în rulment $\mu_{\rm r}$, (figura 6)					
6.	Momentul de frecare în rulment M_{12} , (relația (7))	N·m				
7.	Momentul de frecare în filet M_{tt} , (relația (8))	N·m				
8.	Unghiul aparent de frecare ρ ', (relația (9))	٥				
9.	Coeficientul aparent de frecare în filet $\mu'_1 = tg(\rho')$	(*)				
10.	Coeficientul de frecare $\mu_1 = \mu'_1 \cdot \cos(\beta/2)$					
11.	Coeficientul de frecare mediu în filet $\overline{\mu}_1$					

3.3. Determinarea coeficientului de frecare µ2 dintre piuliță și soclu 3.3.1. Principiul metodei

- Momentul total M_t va fi obținut prin utilizarea la strângere a unei chei dinamometrice.
- Forța axială dezvoltată în tija şurubului este evaluată folosind caracteristica elastică liniară a arcului dinamometric 2, figura 5.
- Momentul de frecare din filet $M_{\rm fl}$ se determină cu relația (2), în care unghiul de frecare aparent ρ' se calculează cu $\mu_{\rm l}=\overline{\mu}_{\rm l}$ determinat în cazul de la punctul 3.2.
- Momentului de frecare M_{t2} se determină ca diferența dintre momentul la cheie şi momentul de frecare din filet:

$$\mathcal{M}_{t2} = \mathcal{M}_t - \mathcal{M}_{t1} \tag{10}$$

- Coeficientul de frecare μ_2 pe suprafața frontală a piuliței:

$$\mu_2 = \frac{3 \cdot M_{f2}}{F} \cdot \frac{D_{lp}^2 - d_g^2}{D_{lp}^3 - d_g^3}$$
 (11)

3.3.2. Modul de lucru

- 1) Se demontează piulița, se scoate rulmentul axial, se montează o placă de reazem şi se montează din nou piulița manual până la contact.
- 2) Se repetă operațiile de strângere a piuliței ca în cazul măsurătorilor cu frecare de rostogolire între piuliță și suprafața de reazem.
- 3) La terminarea măsurătorilor se demontează cu cheia dinamometrică piulița 6 și se verifică revenirea în poziția inițială a acului indicator al comparatorului cu cadran.
- 4) Se repetă măsurătorile de cel putin patru ori.
- 5) Se determină valoarea medie a coeficientului de frecare dintre piuliță și suprafața de reazem $\overline{\mu}_2$.

Tabelul 2 Rezultate experimentale

Nr.	Märimea	U.M.	1	2	3	4
1.	Momentul la cheie M,	N·m				
2.	Indicații comparator	10 ⁻² mm				
3.	Forța axială F	Z				
4.	Momentul de frecare în filet M_{t1} , (relația (2))	N·m				
5.	Momentul de frecare pe soclu M_{12} , (relația (10))	N·m				
6.	Coeficientul de frecare pe soclu μ_2 , (relația (11))	-				
7.	Coeficientul de frecare mediu $\overline{\mu}_2$	-				

4. Aplicatie

Două table suprapuse asamblate prin n șuruburi montate cu joc, figura T, sunt solicitate static de forta transversală T.

- a) Să se aprecieze valoarea forței de strângere necesară a fi creată de fiecare şurub astfel încât tablele să nu alunece;
- b) Să se aprecieze valoarea momentului de strângere la cheie necesară pentru realizarea forței de strângere determinată la punctul a);
- c) Să se verifie la rezistență șurubul.

Fig. 7 Asamblare cu şuruburi montate cu joc

a) Din condiția de transmitere a forței transversale prin frecare rezultă forța axială necesară a fi creată în tija fiecărui șurub:

$$F_{flable} \ge T \implies n \cdot F \cdot \mu_{fable} = T \cdot k \implies F = \frac{k \cdot T}{n \cdot \mu_{fable}}$$
 (12)

unde: $\mu_{table} = 0,1...0,2$; k = 1,2...1,5; (k - coeficient de siguranță la alunecare între table).

- b) Pentru determinarea valorii momentului la cheie necesară pentru realizarea forței de strângere se utilizează relațiile (1), (2) ... (6). Pentru coeficienții de frecare μ_1 și μ_2 se vor utiliza valorile medii obținute experimental, (tabelul 1 și tabelul 2).
- c) Tija şurubului este solicitată static compus:
 - la tracțiune de forța axială F rezultând tensiunea:

$$\sigma_{1} = \frac{F}{A_{\min}} = \frac{4 \cdot F}{\pi \cdot d_{1}^{2}}, [MP\alpha]$$
 (13)

- la răsucire de momentul M+1, rezultând tensiunea:

$$\tau_t = \frac{M_{t1}}{W_{\text{cmin}}} = \frac{16 \cdot M_{t1}}{\pi \cdot d_1^3}, \text{ [MPa]}$$

Fiind solicitare compusă a unui material tenace (oțel) se consideră tensiunea echivalentă derivată din ipoteza lucrului mecanic modificator de formă:

$$\sigma_{\text{ech}} = \sqrt{\sigma_i^2 + 3 \cdot \tau_i^2} , [\text{MPa}]$$
 (15)

Coeficientul de siguranță se apreciază ca un raport între tensiunea limită la tracțiune și tensiunea echivalentă care, conform definiției, este de tracțiune.

$$C = \frac{R_{p0,2}}{\sigma_{ech}}, \ C \in (1,8...2,2)$$
 (16)

Discutie:

Dacă nu se verifică condiția de rezistență, se poate considera:

- creșterea limitei de curgere Rp0,2 prin:
 - schimbarea mărcii de oțel;
- reducerea tensiunii echivalente prin:
 - mărirea dimensiunii şuruburilor, sau
 - micşorarea forței axiale prin creşterea numărului de şuruburi n.

Bibliografie

- 1. SR ISO 262:2012 Filete metrice ISO pentru uz general. Diametre și pași.
- Gafițanu, M., Crețu, S., Pavelescu, D., ş.a., 1981, Organe de mașini, vol. I, Editura Tehnică, București.
- 3. Shigley, E.J., Mischke, R.C., Budynas, G.R., Molari, G.P., 2005, Progetto e construzione di machine, McGraw-Hill, Milano, New York.

Tabelul 3 Şuruburi şi piulițe cu filet metric

Filet metric normal SR ISO 262:2012				Şurub cu cap hexagonal STAS 4272			
d	р	$d_1 = D_1$	$d_2 = D_2$	S	k	m	dg
6	Ī	4,917	5,350	10	5	6	7
8	1,25	6,647	7,188	13	6	8	9
10	1,5	8,376	9,026	17	7	10	11
12	1,75	10,106	10,863	19	8	12	13
(14)	2	11,835	12,701	22	9	11	15
16	2	13,865	14,701	24	10	16	17
(18)	2,5	15,294	16,376	27	12	15	19
20	2,5	17,294	18,376	30	13	20	21
(22)	2,5	19,294	20,376	32	14	18	23
24	3	20,752	22,051	36	15	24	25
(27)	3	23,752	25,051	41	17	27	28
30	3,5	26,211	27,727	46	19	30	31
(33)	3,5	29,211	30,727	50	20	33	34

Tabelul 4 Materiale pentru asamblări filetate

Simbol grup	ă material	Material: - ISO SR EN 10025 - ISO SR EN 10083		
Şurub	Piulița	- ISO SR EN 10084		
4.6	4	S235, S275		
4.8	4	1C10		
5.6	5	1C15, 1C25, 1C35		
5.8	5	1C35+N		
6.6	6	S355, 1C45		
6.8	6	1C45		
6.9	6	1C55		
8.8	8	17CrNiMo6, 21MnCrMo12		
10.9	10	33CrMo4, 34CrNiMn6		
12.9	12	34MnCrNi15		
14.9	14	28CrTiMn12		