Inferência: Teste de Hipóteses

PRI5003 - Lab 6

Instituto de Relações Internacionais - Universidade de São Paulo

11 de Maio de 2017

Outline

Alguns conceitos básicos

5 Passos para o Teste de Hipóteses

Após a decisão

Intervalo de Confiança e Nível de Significância

Stata

Definição

Teste de hipóteses

Conjunto de regras para tomada de decisão com base nas evidências

- Formulação inicial por Fisher não implica em uma decisão formal. Neyman e Pearson, críticos de Fisher, introduzem as noções de tomada de decisão e de hipótese alternativa.
- Fisher sempre discordou da abordagem de Neyman e Pearson, e a síntese que conhecemos hoje provavelmente não agradaria nenhum dos 3.

Tipos de hipóteses

- ► Hipótese nula H₀: É a hipótese sendo testada. Tradicionalmente, uma afirmação cética que postula que "o efeito é nulo", "não há alteração", "não há associação" ou "não há diferença".
- Hipótese alternativa H_a: O que podemos concluir se rejeitarmos a hipótese nula. Também chamada de hipótese de pesquisa.

Enquanto H_0 é expressa por uma valor particular do parâmetro (ex.: $H_0: \mu=0$), H_a é expressa por um intervalo de valores (ex.: $H_a: \mu>0$)

Os 5 passos

- 1. Verificar suposições
- 2. Definir hipóteses
- 3. Calcular estatística-teste
- 4. Calcular p-valor
- 5. Conclusão

Suposições

- Amostra aleatória
- ▶ Tipo de distribuição
- ► Tamanho da amostra

Hipóteses

- O teste avalia a evidência que temos sobre a hipótese nula!
- ▶ Os dados contradizem H_0 ?
- $ightharpoonup P(Dados|H_0)$
- ightharpoonup É importante escolher uma H_0 que seja substantivamente relevante.
- Muitas pesquisas adotam o padrão de $H_0: \mu=0$, por exemplo, sem muita reflexão.
- ► Exemplo Agresti: Se quisermos saber se a proporção de homens que ocupam posições de liderança é maior do que a de mulheres, qual seria uma hipótese nula razoável?

Estatística-teste

- ▶ Qual é a diferença entre o valor suposto do parâmetro (H_0) e o valor que você observou na sua pesquisa (em e.p.)?
- ► Medida pela escala t (médias) e z (proporções)

Médias

$$t = rac{ar{y} - \mu_0}{ep}$$
, em que $ep = rac{s}{\sqrt{n}}$

Proporções

$$z=rac{\hat{\pi}-\pi_0}{ep}$$
, em que $ep=\sqrt{rac{\pi_0(1-\pi_0)}{n}}$

P-Valor

- ▶ Qual é o peso da evidência contra H_0 ?
- ► Testes diferentes usam estatísticas diferentes; o p-valor é padronizado para estar sempre entre 0 e 1
- ▶ Teste unilateral $H_a: \mu > \mu_0$ ou $H_a: \mu < \mu_0$
- ▶ Teste bilateral $H_a: \mu \neq \mu_0$

Conclusão

- Duas abordagens: relatar o p-valor (Fisher) ou tomar decisão (Neyman-Pearson)?
- Relatar o p-valor: distância entre o valor observado e o valor suposto dado por H₀.
- \blacktriangleright Tomar decisão: comparar estatística-teste com valor crítico e p-valor com nível α
- ightharpoonup Cuidado para não "aceitar" H_0
- ▶ Nível α : probabilidade de erro (mais sobre isso adiante)

Tipos de erro

- **Erro Tipo I**: rejeitar H_0 quando ela é verdadeira
- **Erro Tipo II**: Não rejeitar H_0 quando ela é falsa

Tradicionalmente, dá-se mais atenção ao Erro Tipo I do que ao Erro Tipo II.

Tipos de erro

TABLE 6.5: The Four Possible Results of Making a Decision in a Test	
Type I and Type II Errors Are the Two Possible Incorrect Decisions	

		Decision	
		Reject H ₀	Do not reject H_0
Condition of H_0	H_0 true H_0 false	Type I error Correct decision	Correct decision Type II error

Intervalo de confiança e nível de significância

FIGURE 6.8: Relationship between Confidence Interval and Significance Test. The 95% confidence interval does not contain the H_0 value μ_0 when the sample mean falls more than 1.96 standard errors from μ_0 , in which case the test statistic |z| > 1.96 and the *P*-value < 0.05.

Comandos no Stata

Teste de média

ttest $variável = [valor de H_0]$

Teste de proporção

 $prtest \ variável = [valor de \ H_0]$

Comandos no Stata

```
. ttest gdp cap = 5000
One-sample t test
Variable
                       Mean
                              Std. Err. Std. Dev. [95% Conf. Interval]
             Obs
             102
                                          6603.27
                                                   4586.328
                                                              7180.339
 gdp cap
                   5883.333
                           653.8212
   mean = mean(gdp cap)
                                                                1 3510
                                                           t. =
Ho: mean = 5000
                                           degrees of freedom =
                                                                  101
  Ha: mean < 5000
                   Ha: mean != 5000
                                                 Ha: mean > 5000
 Pr(T < t) = 0.9101
                     Pr(|T| > |t|) = 0.1797
                                                   Pr(T > t) = 0.0899
```

Comandos no Stata

```
. prtest chga_demo = .8
One-sample test of proportion
                                   chga demo: Number of obs =
                                                                    102
   Variable
                  Mean Std. Err.
                                                    [95% Conf. Interval]
  chga_demo
               .5490196
                        .0492689
                                                    . 4524544
                                                               . 6455848
   p = proportion(chga demo)
                                                           z = -6.3369
Ho: p = 0.8
    Ha: p < 0.8
                      Ha: p != 0.8
                                                      Ha: p > 0.8
Pr(Z < z) = 0.0000 Pr(|Z| > |z|) = 0.0000
                                                     Pr(Z > z) = 1.0000
```