ENERGIA SOLAR

CARLOS DA CONCEIÇÃO CASTILHO NETO
FERNANDO ALMEIDA
LUCAS LIEBEL CAMARGO RIBAS

• Células fotovoltaicas são fabricadas com semicondutores (materiais com características intermediárias entre um condutor e um isolante).

• O cristal de silício puro é mal condutor elétrico. Para que a condução seja possível, acrescentam-se porcentagens de outros elementos. Este processo denomina-se dopagem.

• A partir da dopagem do silício com o arsênio ou o fósforo (família 5A), formam-se ligações covalentes entre quatro elétrons e um fica livre, tornando possível a passagem de corrente elétrica (silício tipo N).

• Realizando a dopagem com boro ou gálio (família 3A) ao silício, é obtido um material com falta de elétrons (lacunas) conhecido como silício tipo P.

• A célula solar é composta por uma camada fina de material do tipo N e outra mais espessa de material do tipo P.

• Ao serem unidas formando uma região PN, é formado um campo elétrico devido aos elétrons livres do silício tipo N que ocupam a lacunas do silício tipo P.

• Ao incidir luz sobre a célula fotovoltaica, os fótons fornecem energia aos elétrons, e devido ao campo elétrico gerado pela junção PN, os elétrons são fluem da camada P para a camada N, enquanto as lacunas fluem da camada N para a camada P.

• Fechando-se o circuito com um condutor externo, é gerada uma corrente elétrica, que é mantida enquanto os fótons permanecerem excitando os elétrons.

• Para conectar os condutores externos, são adicionados contatos que diminuem a eficiência da célula, pois causam reflexão e sombra.

• É possível reduzir as perdas por reflexão ao diminuir a quantidade de contatos frontais, contudo, quanto menos condutores, maior o número de elétrons recombinados com os átomos de silício ao perderem a energia adquirida que é transformada em calor, tornando a célula menos eficiente.

• É importante destacar que as células de silício absorvem a radiação em uma estreita faixa do espectro da radiação.

• Tanto a energia de fótons com frequências muito altas como a energia de fótons com frequências muito baixas fazem com que haja liberação de energia em forma de calor, o que diminui a eficiência da célula.

CÉLULAS DE SILÍCIO MONOCRISTALINO

- Consideradas células da primeira geração
- Fabricadas cada uma a partir de um cristal puro de silício
- São as mais eficientes entre as células de silício
- São também são as mais caras

CÉLULAS DE SILÍCIO MONOCRISTALINO

- Eficiência entre 15% e 22%
- Células obtidas em forma de pastilhas finas (entre 0,3 e 0,5 mm de espessura)
- Material mal aproveitado durante o processo
- Painéis desse tipo de célula possuem cerca de 30 anos de vida útil

CÉLULAS DE SILÍCIO POLICRISTALINO

- Fundição de vários cristais de silício em um bloco
- Eficiência entre 14% e 20%
- Mais baratas que as de silício monocristalino
- A quantidade residual de silício menor em comparação com o monocristalino
- Vida útil dos painéis policristalinos superior a 30 anos

CÉLULAS DE SILÍCIO POLICRISTALINO

PAINÉIS DE FILME FINO

- Deposição de camadas finas de material fotovoltaico sobre um substrato
- Camadas muito finas de filme são suficientes para a conversão da radiação solar
- Custo reduzido para a dopagem do material do filme

PAINÉIS DE FILME FINO

• Os painéis de filme fino são categorizados pelo respectivo material fotovoltaico

• Tempo de vida de cerca de 10 anos, em geral

• Eficiências médias entre 7 e 13%, algumas tecnologias atingindo 16%

PAINÉIS DE SILÍCIO AMORFO

• Historicamente possui baixa eficiência

• Utiliza apenas 1% do silício de células de silício cristalino

• Nova técnica chamada "empilhamento" resulta num aumento da eficiência (entre 6 e 10%)

PAINÉIS DE COBRE, ÍNDIO E GÁLIO SELENETO (CIGS)

• Eficiência atual entre 10 e 14%

• Grande potencial em termos de eficiência

Custo elevado do índio

CÉLULAS SOLARES TRANSPARENTES

• Produz energia absorvendo principalmente luz não visível

• Células 66% transparentes ao olho humano

• Constituídas por um plástico que converte luz infravermelha em corrente elétrica

CÉLULAS SOLARES TRANSPARENTES

- O condutor é feito de nanopartículas de prata e de dióxido de titânio
- Têm potencial para ser usadas em janelas inteligentes ou eletrônicos portáteis

COMPARATIVO ENTRE EFICIÊNCIAS

	Eficiência				
Material	Máxima Teórica	Em Laboratório	Produção em Série		
Silício Mono	24,7%	18%	14%		
Silício Poli	19,8%	15%	13%		
Silício Amorfo	15%	10,5%	7,5%		
CIGS	18,8%	14%	10%		

PERDAS DA CÉLULA ELETROVOLTAICA

100%	Irradiação Solar Total
-3,0%	Reflexão e sombreamento dos contatos frontais
-23,0%	Fótons com energia insuficiente na irradiância de ondas compridas
-32,0%	Fótons com energia excedente na irradiância de ondas curtas
-8,5%	Recombinação de elétrons
-20,0%	Gradiente elétrica, especialmente na região do campo elétrico
-0,5%	Resistência em série (perdas térmicas na condução elétrica)
= 13,0%	Energia elétrica utilizável

PAINÉIS SOLARES

BATERIAS

		Densidade	Densidade	Eficiência	Vida	Vida		atura de ação	Aplicações típicas
Tecnologia	Eletrólito	Energética [Wh/kg]	Energética [Wh/L]	ग wհ [%]	útil [anos]	cíclica [ciclos]	Carga padrão [°C]	Descarga [°C]	(exemplos)
Chumbo ácido ⁷ (Pb-ácido)	H ₂ SO ₄	20–40	50-120	80–90	3–20	250-500	-10 a +40	-15 a +50	Uso estacionário, tração, automotiva
Níquel-Cádmio (NiCd)	КОН	30–50	100–150	60–70	3–25	300–700	-20 a +50	-45 a +50	Mesmo tipo de aplicações das baterias chumbo-ácido, ferramentas, veículos elétricos
Níquel-hidreto metálico (NiMH)	КОН	40–90	150–320	80–90	2–5	300–600	0 a +45	-20 a +60	Notebooks, celulares, câmeras fotográficas, veículos elétricos e híbridos, brinquedos
Íon de Lítio (Li-ion, Li-polímero)	Polímeros orgânicos	90–150	230–330	90–95	-	500-1000	0 a +40	-20 a +60	Notebooks, celulares, filmadoras, smart cards, veículos elétricos e híbridos

CONTROLADORES DE CARGA

• Circuitos para proteger e prolongar a vida útil das baterias

Controlador paralelo

SISTEMA FOTOVOLTAICO ISOLADO

SISTEMA FOTOVOLTAICO CONECTADO À REDE

SISTEMA HÍBRIDO

POTENCIAL SOLAR MUNDIAL

O Mercado Fotovoltaico no Mundo

O Brasil instalou 1,2 GW em 2018, totalizando 2,4 GW de capacidade instalada acumulada.

Quais países investiram mais em energia solar fotovoltaica em 2018?

	1º China	45,0 GW
Ξ	2º Índia	10,8 GW
	3° USA	10,6 GW
	4º Japão	6,5 GW
	5º Austrália	3,8 GW
	6º Alemanha	3,0 GW
1-1	7º México	2,7 GW
(0)	8º Coreia do Sul	2,0 GW
C+	9º Turquia	1,6 GW
	10° Holanda	1,3 GW

Quais paises lideram o mundo em potência acumulada?

	1º China	176,1 GW
	2° EUA	62,2 GW
	3º Japão	56,0 GW
	4º Alemanha	45,4 GW
-	5º Índia	32,9 GW
	6º Itália	20,1 GW
200	7º Reino Unido	13,0 GW
*	8º Austrália	11,3 GW
	9º França	9,0 GW
.0	10º Coreia do S	ul 7,9 GW

Fonte: Snapshot of Global PV Markets, IEA PVPS, 2019.

Maior fazenda de energia solar do mundo é inaugurada nos Emirados Árabes Unidos

Com 3,2 milhões de painéis, o Noor Abu Dhabi consegue produzir até 1,18 gigawatts

Tadeu Mattos 0 01/07/2019 às 13:50:00 4

NO BRASIL

Radiação solar global diária - média anual típica

Geração Distribuída **Ranking Estadual** Fonte: ANEEL/ABSOLAR, 2019. Potência Instalada (MW) (%) Minas Gerais & | 3 196,7 19,7% Rio Grande do Sul @ | # 15,9% 158,7 São Paulo 🌦 12,6% 126,2 Mato Grosso @ 64,0 6,4% Santa Catarina 3 | 5º 53,5 5,3% Paraná @ | 6º 52,9 5,3% Rio de Janeiro & 43,9 4,4% Ceará 🐠 43,3 4,3% Goiás = | 9º 37,6 3,8% Mato Grosso do Sul 2 | 10º 29,7 3,0%

Geração Centralizada

Potência instalada (MW) e status da geração centralizada solar fotovoltaica por estado:

Fonte: ANEEL/ABSOLAR, 2019.

MAIORES USINAS DE ENERGIA SOLAR DO BRASIL

- Usina Solar Pirapora Pirapora MG 321 Megawatts
- Usina Solar Nova Olinda Ribeira do Piauí PI 210 Megawatts
- Usina Solar Ituverava Tabocas do Brejo Velho BA 196 Megawatts
- Usina Solar Bom Jesus da Lapa Bom Jesus da Lapa BA 158 Megawatts
- Usina Solar Guaimbê Guaimbê SP 150 Megawatts
- Usina Solar Apodi Quixeré CE I32 Megawatts

COMPLEXO SOLAR PIRAPORA

• O Complexo Solar Pirapora está instalado na cidade homônima localizada no estado de Minas Gerais, e agrupa mais de um milhão de placas solares com capacidade de geração de 321 MW. Trata-se na verdade de um complexo de 11 usinas que ocupam uma área equivalente a 1.500

campos de futebol.

VANTAGENS DA ENERGIA SOLAR

- É totalmente renovável
- Não faz barulho e não polui
- Requer manutenção mínima
- O sistema dura entre 15 e 30 anos
- Fácil de instalar
- Pode ser usada em áreas remotas onde não existe rede de energia

DESVANTAGENS DA ENERGIA SOLAR

- Não pode ser usada durante a noite
- Energia suplementar pode ser necessária em áreas com pouca luz solar
- Alto investimento inicial
- Para armazenar a energia solar é necessário o uso de baterias o que pode encarecer o custo do sistema fotovoltaico como um todo

Cálculos:

O consumo médio mensal observado dos últimos 12 meses foi de:

Descontando 50KWh (consumo mínimo referente ao padrão bifásico, ou seja, independente de haver consumo ou não pela unidade consumidora esta quantidade de energia é cobrada)

O consumo diário é dado pela equação:

Irradiação Média

Considerando que o entre as 11h e as 13h em dias ensolarados a irradiação alcança níveis próximos a 1KWh/m² e que no restante do dia valores inferiores a este podem ser obtidos, consegue-se calcular a quantidade de horas diárias de geração de energia.

Assim a demanda prevista para ser atendida pelos painéis é de:

Assim serão utilizados 6 painéis de 260W totalizando uma potência de 1,56KW. Nota-se também que para se obter o melhor desempenho do sistema "on-grid" os painéis devem ser apontador para o norte geográfico e com a inclinação igual a latitude do local, caso o local de instalação dos painéis possua regiões de sombreamento, pode-se considerar a possibilidade de aumentar a potência dos painéis dimensionada.

Vale destacar que o dimensionamento dos painéis não leva em consideração a demanda de pico ou a demanda instalada, pelo fato de se tratar de um sistema "on-grid", horários que ocorrem uma maior demanda, por exemplo 7KW referentes ao uso de um chuveiro elétrico, a rede de energia irá suprir a demanda restante do qual os painéis não conseguem gerar, no caso 5,52 KW.

Com base na seguinte tabela abaixo consegue-se notar a baixa eficiência que infelizmente os painéis solares ainda possuem, na opção que utilizaremos (260W), sua eficiência é de apenas 16%, isso que em média a dimensão de um painel é aproximadamente 1,5m².

CARATERÍSTICAS ELÉTRICAS

Parâmetros elétricos para STC							
Tipo de módulo			YLxxxC-30b (xxx=P _{max})				
Potência de saída	P _{max}	W	280	275	270	265	260
Tolerância	ΔP _{max}	W	0/+5				
Eficiência do módulo	η _m	%	17,2	16,9	16,6	16,3	16,0
Tensão em P _{max}	V _{mgg}	٧	31,3	30,9	30,5	30,1	29,7
Corrente em P _{max}	Impp	Α	8,96	8,91	8,85	8,79	8,74
Tensão em circuito aberto	V _∞	٧	39,1	38,8	38,6	38,3	38,1
Corrente de curto-circuito	l _{sc}	Α	9,50	9,47	9,43	9,37	9,35

STC: 1000 W/m² irradiância, temperatura do módulo de 25° C, distribuição espectral AM1.5gr de acordo com a norma EN 60904-3. Redução média de eficiência de 1,9% em irradiância de 200 W/m² de acordo com EN 60904-1.

NPUT DATA GALVO 1.5-1		GALVO 2.0-1	GALVO 2.5-1	GALVO 3.1-1		
Recommended PV Power (kWp)		1.2 - 2.4	1.6 - 3.2	2.0 - 3.8	2.5 - 4.5	
Max. usable input current	240 V	13.4 A	17.9 A	16.1 A	20.0 A	
	208 V	13.4 A	17.0 A	16.1 A	18.7 A	
Max. array short circuit current		16.7 A	22.4 A	20.1 A	25.0 A	
Nominal input voltage		26	0 V	330 V		
Min./Max. input voltage		120 V	/ 420 V	165 V / 550 V		
DC startup voltage		140 V 185 V			5 V	
MPP Voltage Range		120 V - 335 V 165 V - 440 V			440 V	
Admissable conductor size (DC)		AWG 14 to AWG 6 - CU / AWG 6 - AL - solid				
Number of DC input terminals		3x DC+ and 3x DC- screw terminals for solid copper or aluminium and stranded / fine stranded copper				

OUTPUT DATA		GALVO 1.5-1	GALVO 2.0-1	GALVO 2.5-1	GALVO 3.1-1		
AC nominal output power		1,500 VA	2,000 VA	2,500 VA	3,100 VA		
Max. output power		1,500 VA	2,000 VA	2,500 VA	3,100 VA		
Max. continuous output current	240 V	6.3 A	8.3 A	10.4 A	12.9 A		
	208 V	7.2 A	9.1 A	12.0 A	14.1 A		
Recommended OCPD/AC breaker size	240 V	10.0 A	15.0 A	15.0 A	20.0 A		
	208 V	10.0 A	15.0 A	15.0 A	20.0 A		
Admissable conductor size (AC)		AWG 14 to AWG 6 - CU / AWG 6 - AL - solid					
Max. output overcurrent protection			20) A			
Grid connection			208 / 240 V				
Frequency			60 Hz				
Frequency range			45 - 65 Hz				
Total harmonic distortion			< 4	%			
Power factor range			0.85 - 1 ind./cap				

*The term Wi-Fi is a registered trademark of the Wi-Fi Alliance.

Vale destacar uma informação muito importante do inversor o MPP Voltage Range, geração a plena carga, comumente conhecido como o seguidor de máxima potência do inversor, tal informação informa que tipo de ligação dos painéis deve ser feita, em série ou em paralelo a fim de manter a tensão gerada dentro desta faixa no caso do modelo 2.0-1 a geração deve estar em a faixa de 120V – 335V.

Como a tensão de operação a plena carga de cada painel é de 29,7V, pode-se ligar todos os seis painéis em série, obtendo uma tensão de entrada no inversor de:

A tensão de circuito aberto do painel (38,1V) é maior que a plena carga, e também deve ser menor que a máxima permitida de entrada do inversor (420V) logo verifica-se:

E a corrente máxima de entrada do inversor é de 17A e a corrente gerada pelos painéis é de 8,74 A, logo todos os parâmetros estão dentro dos limites requeridos pelo inversor.

CARACTERÍSTICAS TÉRMICAS

Temperatura nominal da célula	NOCT	°C	46 +/- 2
Coeficiente de temperatura para P _{max}	γ	%/°C	-0.42
Coeficiente de temperatura para V _∞	$\beta_{V\infty}$	%/°C	-0.30
Coeficiente de temperatura para I _{sc}	α _{lsc}	%/°C	0.04
Coeficiente de temperatura para V _{mpp}	β _{Vmpp}	%/°C	-0.40

Na condição de menor temperatura, a máxima tensão possível nos painéis ocorrera na condição de circuito aberto logo:

$$(-0.30[\%/C]/100) \times 38.1V \times (10C - 25C) = 1.7145 V$$

Como temos 6 módulos em serie temos:

Na condição de maior temperatura, a mínima tensão possível nos painéis ocorrerá na condição de plena carga, logo:

$$(-0,40[\%/C]/100) \times 29,7V \times (80C - 25C) = -6,534V$$

$$Voc = (29,7 - 6,534) * 9 = 139V$$

A stringbox será a interface entre os painéis e o inversor para proteção dos painéis no lado DC do Inversor. As figuras 5 e 6 mostram em detalhes este equipamento. Este quadro contém:

- 1 par de porta-fusível com 1 par de fusíveis 10A já instalado
- 1 chave seccionadora corrente contínua 16 A 660V
- 1 DPS corrente contínua para os polos positivo e negativo
- Caixa elétrica IP40 (instalação interna)
- 5 prensa-cabos já instalados na caixa para passagem dos cabos (entrada, saída e terra)
- Suporta 1 string de até 12 painéis fotovoltaicos
- Caixa IP40 (instalação interna)
- Equipamentos montados em trilho DIN

CUSTO

Inversor Galvo 2.0-1	R\$ 4.700,00
StringBox	R\$ 1.290,00
6 Painéis 260W - Yingli	R\$ 5.800,00
Mão de Obra, Estrutura e Projeto	R\$ 5.000,00
Total	R\$ 16.790,00

Considerando o preço médio de 0,785103 R\$/ kWh encontrado na tarifa de energia da residência, e o a geração média de 164kWh, o valor médio mensal da fatura, que será gerado pelo sistema implementado é:

$$\Delta E = 164 \times 0,785103 = R$ 128,57$$

Assim o tempo de retorno simples é:

A taxa liquida calculada considerando a taxa de juros de 10%a.a e um aumento do custo da tarifa de energia a 3%a.a é:

Il =
$$\left(\frac{1+0,10}{1+0.03}\right)$$
 - 1 = 0,06796 = 6,796%a.a

Assim o tempo de retorno capitalizado fica:

$$Trc = \frac{\log\left(\frac{128,57*12}{(128,57*12) - (16790*0,06796)}\right)}{\log(1+0,06796)} = 20 \ anos$$

GARANTIAS E VIDA ÚTIL DOS COMPONENTES

De acordo com os dados do fabricante do inversor Fronius, a garantia contra defeitos de fabricação do aparelho é de 5 anos, e o tempo estimado de vida útil entre 10 e 15 anos. O fabricante do painel solar oferece uma garantia de 10 anos contra defeito de fabricação e estima que em 25 anos de uso, as placas percam 20% da potência máxima.

China inaugura estrada solar e promete reduzir os índices de poluição no país

- 2km de estrada capaz de gerar 1 milhão de KWh por ano;
- O piso da nova estrada tem 3 camadas: uma isolante na parte inferior, uma de painéis fotovoltaicos no centro, que transformam a luz em energia, e sobre elas o concreto transparente.

Rodovia de Energia Solar é um fracasso na França

- Local de instalação: a região da Normandia, onde os painéis para teste foram instalados, costumam ter apenas 44 dias de sol forte;
- A quantidade de energia gerada foi de 150 mil kWh, caindo para 78 mil em 2018 e 38 mil no início de 2019.

- Garantia infinita;
- 3x mais resistente que uma telha convencional;
- US\$ 22/m²

China planeja usina solar no espaço

- A instalação pode gerar em tese energia em 99% do tempo, com até seis vezes mais eficiência do que uma usina em terra;
- A proposta chinesa é enviar a eletricidade gerada pela usina por meio de micro-ondas ou até mesmo raios laser para uma base na Terra, e distribuí-la.

REFERÊNCIAS

- AMERICAN CHEMICAL SOCIETY. **Transparent solar cells for windows that generate electricity**. [S. l.], I ago. 2012. Disponível em: https://phys.org/news/2012-08-transparent-solar-cells-windows-electricity.html. Acesso em: I jul. 2019.
- MACHADO, Carolina T.; MIRANDA, Fabio S. **Energia Solar Fotovoltaica: Uma Breve Revisão**, [S. l.], p. 126-143, 14 out. 2014. Disponível em: http://rvq-sub.sbq.org.br/index.php/rvq/article/view/664. Acesso em: 30 jun. 2019.
- CÉLULA fotovoltaica transparente pode transformar janela em painel solar. [S. l.], 6 nov. 2017. Disponível em: https://www.portalsolar.com.br/blog-solar/energia-solar/celula-fotovoltaica-transparente-pode-transformar-janela-em-painel-solar.html. Acesso em: 1 jul. 2019.
- DO NASCIMENTO, Cássio Araújo. **PRINCÍPIO DE FUNCIONAMENTO DA CÉLULA FOTOVOLTAICA**. 2004. Monografia (Pós-Graduação Lato-Sensu em Fontes alternativas de energia) Universidade Federal de Lavras, Lavras-MG, 2004. Disponível em: https://www.solenerg.com.br/files/monografia_cassio.pdf. Acesso em: 1 jul. 2019.
- BRAGA, Renata Pereira. **Energia solar fotovoltaica: fundamentos e aplicações**. 2008. Trabalho de Conclusão de Curso Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2008. Disponível em: https://pantheon.ufrj.br/handle/11422/7372. Acesso em: 1 jul. 2019.
- DI SOUZA, Ronilson. **Célula Fotovoltaica O Guia Técnico Absolutamente Completo**. [S. l.], 23 fev. 2017. Disponível em: https://blog.bluesol.com.br/celula-fotovoltaica-guia-completo/. Acesso em: 2 jul. 2019.

REFERÊNCIAS

• PINTO, João Tavares, GALDINO, Marco Antonio. **Manual de Engenharia para Sistema Fotovoltaicos**, Rio de Janeiro, 2014. Disponível em: http://www.cresesb.cepel.br/publicacoes/download/Manual_de_Engenharia_FV_2014.pdf. Acesso em: 28 jun. 2019.