1-4、析取范式与合取范式

概念:

文字,析取范式,极小项,主析取范式,合取范式,极大项,主合取范式

文字 设 $A \in \Sigma$ (命题变元集),则A和 \neg A都称为命题符号A的文字,其中前者称为正文字,后者称为负文字。

析取范式

形如

 $A_1 \vee A_2 \vee ... \vee A_n \quad (n \geq 1)$

的公式称为析取范式,其中A_i(i=1,...,n)是由文字组成的合取式。

例: $\bar{x}_{\neg}(p \lor q) \leftrightarrow (p \land q)$ 的析取范式。

 \Leftrightarrow (p $\land \neg$ q) \lor (\neg p \land q)

解:
$$\neg (p \lor q) \leftrightarrow (p \land q)$$

 $\Leftrightarrow (\neg (p \lor q) \rightarrow (p \land q)) \land ((p \land q) \rightarrow \neg (p \lor q))$
 $\Leftrightarrow ((p \lor q) \lor (p \land q)) \land (\neg (p \land q) \lor \neg (p \lor q))$
 $\Leftrightarrow (p \lor (q \lor (p \land q))) \land ((\neg p \lor \neg q) \lor (\neg p \land \neg q))$
 $\Leftrightarrow (p \land (\neg p \lor \neg q)) \lor (q \land (\neg p \lor \neg q))$
 $\Leftrightarrow (p \land \neg q) \lor (q \land \neg p)$

极小项 文字的合取式称为极小项,其中公式中每个命题符号的文字都在该合取式中出现一次。

注: (1) n个命题符号共有2ⁿ个极小项。

(2)极小项的编码。

例:由两个命题变项 p,q 形成的极小项与极大项

极小项		极大项			
公式	成真赋值	名称	公式	成假赋值	名称
$\neg p \land \neg q$ $\neg p \land q$ $p \land \neg q$ $p \land q$	0 0 0 1 1 0 1 1	m_0 m_1 m_2 m_3	<i>p</i> ∨ <i>q p</i> ∨¬ <i>q</i> ¬ <i>p</i> ∨¬ <i>q</i> ¬ <i>p</i> ∨¬ <i>q</i>	0 0 0 1 1 0 1 1	$egin{array}{c} M_0 \ M_1 \ M_2 \ M_3 \end{array}$

由三个命题变项 p,q,r 形成的极小项与极大项.

极小项		极大项			
公式	成真赋值	名称	公式	成假赋值	名称
$\neg p \land \neg q \land \neg r$	0 0 0	m_0	$p \lor q \lor r$	0 0 0	M_0
$\neg p \land \neg q \land r$	0 0 1	m_1	$p \lor q \lor \neg r$	0 0 1	M_1
$\neg p \land q \land \neg r$	0 1 0	m_2^-	$p \vee \neg q \vee r$	0 1 0	M_2^-
$\neg p \land q \land r$	0 1 1	m_3^-	$p \vee \neg q \vee \neg r$	0 1 1	M_3^-
$p \land \neg q \land \neg r$	1 0 0	m_4	$\neg p \lor q \lor r$	1 0 0	M_4°
$p \land \neg q \land r$	1 0 1	m_5	$\neg p \lor q \lor \neg r$	1 0 1	M_5
$p \land q \land \neg r$	1 1 0	m_6	$\neg p \lor \neg q \lor r$	1 1 0	M_6
$p \land q \land r$	1 1 1	m_7°	$\neg p \lor \neg q \lor \neg r$	1 1 1	M_{7}

 m_i 与 M_i 的关系: $\neg m_i \Leftrightarrow M_i$, $\neg M_i \Leftrightarrow m_i$

主析取范式

给定的命题公式的主析取范式是一个与之等价的公式,后者由极小项的析取组成。

例: 求公式 $(p \rightarrow q) \rightarrow r$ 的主析取范式

$$egin{aligned}
kmatrix & (p
ightarrow q)
ightarrow r \\
&
ightarrow (p
ightarrow q)
ightarrow r \\
&
ightarrow ((p
ightarrow q)
ightarrow (r
ightarrow (p
ightarrow - p)
ightarrow (q
ightarrow - q)) \\
&
ightarrow (p
ightarrow q
ightarrow r)
ightarrow (p
ightarrow r)
ighta$$

定理:公式的真值表中真值为1的赋值所对应的极小项的析取,即为此公式的主析取范式。

例: 求p→ q的主析取范式

p	q	$p \rightarrow q$
1	1	1
1	0	0
0	1	1
0	0	1
U	V	1

合取范式

形为

 $A_1 \land A_2 \land ... \land A_n$ (n ≥ 1)的公式称为合取范式,其中每个合取项 $A_1,...,A_n$ 都是由文字组成的析取式。

例: 求 $(p \land (q \rightarrow r)) \rightarrow s$ 的合取范式

解:
$$(p \land (q \rightarrow r)) \rightarrow s$$

$$\Leftrightarrow \neg (p \land (\neg q \lor r)) \lor s$$

$$\Leftrightarrow \neg p \lor (q \land \neg r) \lor s$$

$$\Leftrightarrow$$
 ($\neg p \lor s \lor q$) \land ($\neg p \lor s \neg r$)

极大项 文字的析取式称为极大项,其中公式中每个命题符号的文字都在该析取式中出现一次。

- 注: (1) n个命题符号共有2ⁿ个极大项。
 - (2) 极大项的编码。

实例

由两个命题变项p,q形成的极小项与极大项

极小项		极大项			
公式	成真赋值	名称	公式	成假赋值	名称
$\neg p \land \neg q$ $\neg p \land q$ $p \land \neg q$ $p \land q$	0 0 0 1 1 0 1 1	m_0 m_1 m_2 m_3	$ \begin{array}{c} p \lor q \\ p \lor \neg q \\ \neg p \lor q \\ \neg p \lor \neg q \end{array} $	0 0 0 1 1 0 1 1	$egin{array}{c} M_0 \ M_1 \ M_2 \ M_3 \end{array}$

主合取范式 给定的命题公式的主合取范式是一个与之等价的公式,后者由极大项的合取组成。

例:求 $(p \land q) \lor (\neg p \land r)$ 的主合取范式。

解: $(p \wedge q) \vee (\neg p \wedge r)$

- \Leftrightarrow ((p \wedge q) \vert \neg p) \wedge ((p \wedge q) \vert r)
- \Leftrightarrow $(\neg p \lor q) \land (p \lor r) \land (q \lor r)$
- $\Leftrightarrow ((\neg p \lor q) \lor (r \land \neg r)) \land ((p \lor r) \lor (q \land \neg q)) \land ((q \lor r) \lor (p \land \neg p))$
- $\Leftrightarrow (\neg p \lor q \lor r) \land (\neg p \lor q \lor \neg r) \land (p \lor q \lor r) \land (p \lor \neg q \lor r)$

定理:公式的真值表中真值为0的赋值所对应的极大项的合取,即为此公式的主合取范式。

例: 求p→ q的主合取范式

p	\mathbf{q}	$p \rightarrow q$
1	1	1
1	0	0
0	1	1
0	0	1

解: p→ q

 $\Leftrightarrow \neg p \lor q$

定理:公式的真值表中真值为0的赋值所对应的极大项的合取,即为此公式的主合取范式。

思考: (1) 为什么A ⇔ M_{i1} ∧ M_{i2} ∧... ∧ M_{in} ?

极大项					
公式	成假赋值	名称			
$p \lor q$	0 0	M_0			
$p \lor \neg q$	0 1	M_1			
$\neg p \lor q$	1 0	M_2			
$\neg p \lor \neg q$	1 1	M_3			

(2)真值表中没有真值为0怎么办?

 $A \Leftrightarrow T$

总结

- 析取范式
- 极小项
- 主析取范式
- 合取范式
- 极大项
- 主合取范式