Summary of TLA⁺

Module-Level Constructs

The Constant Operators

Miscellaneous Constructs

Action Operators

Temporal Operators

User-Definable Operator Symbols

Precedence Ranges of Operators

Operators Defined in Standard Modules.

ASCII Representation of Typeset Symbols

Module-Level Constructs

---- module M -----

Begins the module or submodule named M.

EXTENDS M_1, \ldots, M_n

Incorporates the declarations, definitions, assumptions, and theorems from the modules named M_1, \ldots, M_n into the current module.

Constants C_1, \ldots, C_n (1)

Declares the C_j to be constant parameters (rigid variables). Each C_j is either an identifier or has the form $C(_, ..., _)$, the latter form indicating that C is an operator with the indicated number of arguments.

VARIABLES x_1, \ldots, x_n (1)

Declares the x_i to be variables (parameters that are flexible variables).

ASSUME P

Asserts P as an assumption.

 $F(x_1, \ldots, x_n) \stackrel{\Delta}{=} exp$

Defines F to be the operator such that $F(e_1, \ldots, e_n)$ equals exp with each identifier x_k replaced by e_k . (For n = 0, it is written $F \triangleq exp$.)

 $f[x \in S] \stackrel{\Delta}{=} exp^{(2)}$

Defines f to be the function with domain S such that f[x] = exp for all x in S. (The symbol f may occur in exp, allowing a recursive definition.)

INSTANCE M WITH $p_1 \leftarrow e_1, \ldots, p_m \leftarrow e_m$

For each defined operator F of module M, this defines F to be the operator whose definition is obtained from the definition of F in M by replacing each declared constant or variable p_i of M with e_i . (If m = 0, the WITH is omitted.)

⁽¹⁾ The terminal s in the keyword is optional.

⁽²⁾ $x \in S$ may be replaced by a comma-separated list of items $v \in S$, where v is either a comma-separated list or a tuple of identifiers.

 $N(x_1, \ldots, x_n) \stackrel{\Delta}{=} \text{INSTANCE } M \text{ WITH } p_1 \leftarrow e_1, \ldots, p_m \leftarrow e_m$

For each defined operator F of module M, this defines $N(d_1,\ldots,d_n)!F$ to be the operator whose definition is obtained from the definition of F by replacing each declared constant or variable p_i of M with e_i , and then replacing each identifier x_k with d_k . (If m = 0, the WITH is omitted.)

THEOREM P

Asserts that P can be proved from the definitions and assumptions of the current module.

LOCAL def

Makes the definition(s) of def (which may be a definition or an INSTANCE statement) local to the current module, thereby not obtained when extending or instantiating the module.

Ends the current module or submodule.

The Constant Operators

Logic

```
\begin{array}{lll} \land & \lor & \neg & \Rightarrow & \equiv \\ \text{TRUE} & \text{FALSE} & \text{BOOLEAN} & [\text{the set } \{\text{TRUE, FALSE}\}] \\ \forall \, x \in S \, : \, p^{-(1)} & \exists \, x \in S \, : \, p^{-(1)} \\ \text{CHOOSE} & x \in S \, : \, p & [\text{An } x \text{ in } S \text{ satisfying } p] \end{array}
```

Sets

```
= \neq \in \notin \cup \cap \subseteq \setminus [\text{set difference}]
\{e_1, \dots, e_n\} \qquad [\text{Set consisting of elements } e_i]
\{x \in S : p\} \qquad [\text{Set of elements } x \text{ in } S \text{ satisfying } p]
\{e : x \in S\} \qquad [\text{Set of elements } e \text{ such that } x \text{ in } S]
\text{SUBSET } S \qquad [\text{Set of subsets of } S]
\text{UNION } S \qquad [\text{Union of all elements of } S]
```

Functions

```
\begin{array}{ll} f[e] & [\text{Function application}] \\ \text{DOMAIN } f & [\text{Domain of function } f] \\ [x \in S \mapsto e] \ ^{(1)} & [\text{Function } f \text{ such that } f[x] = e \text{ for } x \in S] \\ [S \to T] & [\text{Set of functions } f \text{ with } f[x] \in T \text{ for } x \in S] \\ [f \text{ EXCEPT } ![e_1] = e_2] \ ^{(3)} & [\text{Function } \widehat{f} \text{ equal to } f \text{ except } \widehat{f}[e_1] = e_2] \end{array}
```

Records

$$\begin{array}{ll} e.h & [\text{The h-field of record e}] \\ [h_1 \mapsto e_1, \ldots, h_n \mapsto e_n] & [\text{The record whose h_i field is e_i}] \\ [h_1 : S_1, \ldots, h_n : S_n] & [\text{Set of all records with h_i field in S_i}] \\ [r \ \text{EXCEPT } !.h = e] & [\text{Record \widehat{r} equal to r except $\widehat{r}.h = e$}] \end{array}$$

Tuples

```
e[i] [The i^{	ext{th}} component of tuple e] \langle e_1, \dots, e_n \rangle [The n-tuple whose i^{	ext{th}} component is e_i] S_1 \times \dots \times S_n [The set of all n-tuples with i^{	ext{th}} component in S_i]
```

⁽¹⁾ $x \in S$ may be replaced by a comma-separated list of items $v \in S$, where v is either a comma-separated list or a tuple of identifiers.

⁽²⁾ x may be an identifier or tuple of identifiers.

^{(3) ![} e_1] or !.h may be replaced by a comma separated list of items ! $a_1 \cdots a_n$, where each a_i is $[e_i]$ or . h_i .

Miscellaneous Constructs

Action Operators

Temporal Operators

User-Definable Operator Symbols

Infix Operators

$+^{(1)}$	_ (1)	* (1)	(2)	o ⁽³⁾	++
÷ (1)	% (1)	^ (1,4)	(1)		
\oplus $^{(5)}$	\ominus ⁽⁵⁾	\otimes	\oslash	\odot	**
< (1)	> (1)	< ⁽¹⁾	≥ ⁽¹⁾	П	//
\prec	>	\preceq	\succeq	\sqcup	^^
«	>>	<:	$:>^{(6)}$	&	&&
			⊒		%%
\subset	\supset		\supseteq	*	$@@^{(6)}$
\vdash	\dashv	=	=	•	##
\sim	\simeq	\approx	\cong	\$	\$\$
\bigcirc	::=	\asymp	Ė	??	!!
\propto	}	\forall			

Postfix Operators (7)

- (1) Defined by the Naturals, Integers, and Reals modules.
- (2) Defined by the *Reals* module.
- (3) Defined by the Sequences module.
- (4) x^y is printed as x^y .
- (5) Defined by the Bags module.
- (6) Defined by the *TLC* module.
- (7) e^+ is printed as e^+ , and similarly for * and *#.

Precedence Ranges of Operators

The relative precedence of two operators is unspecified if their ranges overlap. Left-associative operators are indicated by (a).

Prefix Operators

\neg	4-4		4 - 15	UNION	8-8
ENABLED	4 - 15	\Diamond	4 - 15	DOMAIN	9 - 9
UNCHANGED	4 - 15	SUBSET	8-8	_	12 - 12

Infix Operators

mix Operators							
\Rightarrow	1-1	\leq	5-5	<:	7-7	\ominus	11–11 (a)
$\stackrel{+}{\longrightarrow}$	2-2	«	5-5	\	8-8	_	11–11 (a)
=	2-2	\prec	5-5	\cap	8–8 (a)		11–11 (a)
\sim	2-2	\preceq	5-5	\cup	8–8 (a)	&	13-13 (a)
\wedge	3 - 3 (a)	\propto	5-5		9-9	&&	13-13 (a)
\vee	3 - 3 (a)	\sim	5-5		9-9	\odot	13-13 (a)
\neq	5-5	\simeq	5-5	!!	9-13	\oslash	13-13
\dashv	5-5		5-5	##	9-13 (a)	\otimes	13-13 (a)
::=	5-5	⊑	5-5	\$	9-13 (a)	*	13-13 (a)
:=	5-5		5-5	\$\$	9-13 (a)	**	13-13 (a)
<	5-5	\supseteq	5-5	??	9-13 (a)	/	13-13
=	5-5	\subset	5-5	П	9-13 (a)	//	13-13
=	5-5	\subseteq	5-5	\sqcup	9-13 (a)	\bigcirc	13-13 (a)
>	5-5	\succ	5-5	\forall	9-13 (a)	•	13-13 (a)
\approx	5-5	\succeq	5-5	}	9-14	÷	13-13
\asymp	5-5	\supset	5-5	\oplus	10-10 (a)	0	13-13 (a)
\cong	5-5	\supseteq	5-5	+	10-10 (a)	*	13-13 (a)
÷	5-5	\vdash	5-5	++	10-10 (a)	^	14 - 14
\geq	5-5	F	5-5	%	10 - 11	^^	14 - 14
\gg	5-5	.(1)	5-14(a)	%%	10-11 (a)	.(2)	17-17 (a)
\in	5-5	@@	6-6 (a)		10-11 (a)		
∉	5-5	:>	7 - 7		10-11 (a)		

Postfix Operators

⁽¹⁾ Action composition (\cdot).

⁽²⁾ Record field (period).

Operators Defined in Standard Modules.

Modules Naturals, Integers, Reals

- (1) Only infix is defined in *Naturals*.
- (2) Defined only in *Reals* module.
- (3) Exponentiation.
- (4) Not defined in Naturals module.

Module Sequences

Module FiniteSets

IsFiniteSet Cardinality

Module Bags

Module RealTime

 $RTBound \qquad RTnow \qquad now ext{ (declared to be a variable)}$

Module TLC

:> @@ Print Assert JavaTime Permutations SortSeq

ASCII Representation of Typeset Symbols

```
/ or \ land
                                   Λ
                                                      ⇒ =>
                                   <=> or \equiv
     ~ or \lnot or \neg
\neg
                                                         ==
\in
     \in
                                   \notin
                                                      \neq # or /=
     <<
                                   >>
                                                          Π
                                                      <
                                   >
<
                              >
                                                          <>
     \leq or =< or <=
                                   \geq or >=
     \11
                              >>
                                   \gg
                                                       <sup>+</sup>⊳ -+->
     \prec
                                   \succ
                                                      \preceq
     \preceq
                                   \succeq
                                                          \div
                                  \supseteq
     \subseteq
                                                          \cdot
\subset
     \subset
                                   \supset
                                                         \o or \circ
\sqsubset
                                   \sqsupset
                                                         \bullet
     \sqsubseteq
                                   \sqsupseteq
                                                         \star
                                   -1
     1-
                                                         \bigcirc
\models
     |=
                                   = |
                                                         \sim
     ->
                                  <-
\rightarrow
                              \leftarrow
                                                          \simeq
     \cap or \intersect
                                  \cup or \union
                                                      \asymp \asymp
                              Ш
                                   \sqcup
П
     \sqcap
                                                      ≈ \approx
     (+) or \oplus
                                   \uplus
\oplus
                                                          \cong
     (-) or \ominus
                                   \X or \times
\ominus
                              X
                                                          \doteq
     (.) or \odot
                                   \wr
(•)
                                                          x^v (2)
     (\X) or \otimes
                                   \propto
                                  "s" (1)
     (/) or \oslash
\bigcirc
\exists
     \E
                                   \A
                                                          x^# (2)
Ξ
                                   \AA
     \EE
     ]_v
                                  >>_v
WF_v WF_v
                              SF_v SF_v
                                                  ======= (3)
```

⁽¹⁾ s is a sequence of characters.

⁽²⁾ x and y are any expressions.

⁽³⁾ a sequence of four or more – or = characters.