Introduction

Mark Hendricks

Autumn 2024

FINM 36700: Portfolio Management

Outline

Context

Why this class?

- ► Foundations of quant finance
- Cutting-edge tools
- ► Focus on application

Objectives

- Attribution
- ► Risk scenarios
- ► Replication and Decomposition
- ▶ No-arbitrage Pricing
- Forecasting
- ► Portfolio optimization

Tools

Tools include

- ► Parametric and non-parametric methods
- Simulation
- ► Dimension reduction
- ► Machine Learning

Quant Finance

- Know the market
- Model it mathematically
- Estimate it statistically
- Implement it computationally
- ► Communicate your results

Hendricks, Autumn 2024 FINM 36700: Lecture 0 6/

Career areas

- ► Investment allocation
- ► Risk management
- ▶ Trading
- ► Computational finance

Who am I?

- 10+ years of teaching experience.
 - ► Taught at the
 - Master of Financial Math
 - Master of Applied Data Science
 - Booth School of Business
 - Economics Department
 - Associate Senior Instructional Professor in the Department of Mathematics.
- 10+ years of industry experience
 - quant research and implementation for hedge funds
 - consulting for various financial and non-financial firms
 - advising and training for trading firms

Portfolio Management Procedure

- 1. Define the security universe
- 2. Model security risk and performance
- 3. Forecast returns
- 4. Define the portfolio's objective
- 5. Define portfolio's constraints
- 6. Simulate the candidate portfolios
- 7. Optimize among the portfolios
- 8. Assess the constructed portfolio's performance

