

Thyristor Module

Preliminary data

I _{TRMS}	=	2x300 A	
I _{TAVM}	=	2x128 A	
$\mathbf{V}_{RRM,DRM}$	=	800-1800	V

$\mathbf{V}_{\mathtt{RSM}}$	\mathbf{V}_{RRM}	Туре
$\mathbf{V}_{\mathtt{DSM}}$	$\mathbf{V}_{\mathtt{DRM}}$	
٧	V	
900	800	MCC 122-08io1
1300	1200	MCC 122-12io1
1500	1400	MCC 122-14io1
1700	1600	MCC 122-16io1
1900	1800	MCC 122-18io1

Symbol	Conditions	Conditions		
I _{TRMS}	T _C = 85°C; 180° sine	9	300 128	A A
I _{TSM}	$T_{VJ} = 45^{\circ}C$ $V_R = 0$	t = 10 ms (50 Hz), sin t = 8.3 ms (60 Hz), sin		A A
	$T_{VJ} = T_{VJM}$ $V_R = 0$	$t = 10 \text{ ms} (50 \text{ Hz}), \sin t = 8.3 \text{ ms} (60 \text{ Hz}), \sin t = 8$		A A
l ² dt	$T_{VJ} = 45^{\circ}C$ $V_R = 0$	t = 10 ms (50 Hz), sin t = 8.3 ms (60 Hz), sin		A ² s A ² s
	$T_{VJ} = T_{VJM}$ $V_R = 0$	t = 10 ms (50 Hz), sin t = 8.3 ms (60 Hz), sin		
(di/dt) _{cr}	$T_{VJ} = T_{VJM}$ f = 50Hz, t _P = 200µs	repetitive, I _T = 500 A	150	A/µs
	$V_D = {}^2/_3 V_{DRM}$ $I_G = 0.5 A$ $di_G/dt = 0.5 A/\mu s$	non repetitive, $I_T = 500$	A 500	A/µs
(dv/dt) _{cr}	$T_{VJ} = T_{VJM};$ $R_{GK} = \infty;$ method 1 (l	$V_{DR} = {}^{2}/_{3} V_{DRM}$ linear voltage rise)	1000	V/µs
P _{GM}	$T_{VJ} = T_{VJM}$ $I_T = I_{TAVM}$	t _P = 30 μs t _P = 500 μs	120 60	W
P _{GAV}			8	W
V _{RGM}			10	V
T _{VJ} T _{VJM} T _{stg}			-40+125 125 -40+125	°C °C °C
V _{ISOL}	50/60 Hz, RMS I _{ISOL} ≤ 1 mA	t = 1 min t = 1 s	3000 3600	V~ V~
M _d	Mounting torque (M Terminal connection	•	2.25-2.75/20-25 4.5-5.5/40-48	
Weight	Typical including sc	rews	125	g

Features

- International standard package
- Direct copper bonded Al₂O₃-ceramic base plate
- Planar passivated chips
- Isolation voltage 3600 V~
- UL registered, E 72873
- Keyed gate/cathode twin pins

Applications

- Motor control
- Power converter
- Heat and temperature control for industrial furnaces and chemical processes
- · Lighting control
- Contactless switches

Advantages

- Space and weight savings
- Simple mounting
- Improved temperature and power cycling
- Reduced protection circuits

Dimensions in mm (1 mm = 0.0394")

Data according to IEC 60747 and refer to a single thyristor/diode unless otherwise stated.

Symbol	ymbol Conditions Cha		racteristic Values	
I _{RRM} , I _{DRM}	$T_{VJ} = T_{VJM}$; $V_R = V_{RRM}$; $V_D = V_{DRM}$	10	mA	
V_T, V_F	I _T , I _F = 120 A; T _{VJ} = 25°C	1.13	V	
V _{T0}	T_{VJ} = 125°C; For power-loss calculations only T_{VJ} = T_{VJM}	0.85 2	V mΩ	
V _{GT}	$V_D = 6 \text{ V};$ $T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = -40^{\circ}\text{C}$	1.4 1.6	V	
I _{GT}	$V_D = 6 \text{ V};$ $T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = -40^{\circ}\text{C}$	150 200	mA mA	
V _{GD}	$T_{VJ} = T_{VJM}; V_D = {}^2/_3 V_{DRM}$	0.2 10	V mA	
l,	$T_{VJ} = 25^{\circ}\text{C}$; $t_P = 10 \ \mu\text{s}$, $V_D = 6 \ V$ $I_G = 0.45 \ A$; $di_G/dt = 0.45 \ A/\mu\text{s}$	300	mA	
I _H	$T_{VJ} = 25^{\circ}C; V_{D} = 6 V; R_{GK} = \infty$	200	mA	
t _{gd}	$T_{VJ} = 25^{\circ}C; V_D = \frac{1}{2} V_{DRM}$ $I_G = 0.45 A; di_G/dt = 0.45 A/\mu s$	2	μs	
t _q	$T_{VJ} = T_{VJM}; \ I_T = 120 \ A, \ t_P = 200 \ \mu s; \ -di/dt = 10 \ A/\mu styp.$ $V_R = 100 \ V; \ dv/dt = 20 \ V/\mu s; \ V_D = ^2/_3 \ V_{DRM}$	150	μs	
Q _s I _{RM}	$T_{VJ} = T_{VJM}$; I_T , $I_F = 200 \text{ A}$, $-\text{di/dt} = 50 \text{ A/}\mu\text{s}$	330 180	μC A	
R_{thJC}	per thyristor/diode; DC current per module per thyristor/diode; DC current typ.	0.2 0.1 0.1	K/W K/W K/W	
d _s d _A a	Creepage distance on surface Strike distance through air Maximum allowable acceleration	12.7 9.6 50	mm mm m/s²	

Optional accessories for modules

Keyed gate/cathode twin plugs with wire length = 350 mm, gate = yellow, cathode = red
Type **ZY 180L** (L = Left for pin pair 4/5)
Type **ZY 180R** (R = right for pin pair 6/7)
UL Styles 1385,
CSA Class 5851, File 41234