Derivación implícita de sistemas de ecuaciones

Teorema de la función implícita II. Sean las funciones $w_1 = F(x, y, z)$ y $w_2 = G(x, y, z)$, de clase C^1 en el conjunto abierto no vacío A de \mathbb{R}^3 . Sea $P = (x_0, y_0, z_0) \in A$, un punto para el cual se cumplen las condiciones

DIIT-MIeL

$$F(x_0, y_0, z_0) = G(x_0, y_0, z_0) = 0$$

y

$$\frac{\partial(F,G)}{\partial(y,z)}(x_0,y_0,z_0) = \begin{vmatrix} \frac{\partial F}{\partial y}(x_0,y_0,z_0) & \frac{\partial F}{\partial z}(x_0,y_0,z_0) \\ \frac{\partial G}{\partial y}(x_0,y_0,z_0) & \frac{\partial G}{\partial z}(x_0,y_0,z_0) \end{vmatrix} \neq 0$$

Entonces existe un entorno E_z de z_0 , un entorno E_y de y_0 , un entorno E_x de x_0 , donde $E_x \times E_y \times E_z \subseteq A$, y dos únicas funciones

$$f: E_x \to E_y/y = f(x)$$

у

$$g: E_x \to E_z/z = g(x)$$

($f \ y \ g \ son \ las \ funciones \ implícitas$) ambas de clase \mathcal{C}^1 en E_x , tales que para cada $x \in E_x$ verifican las ecuaciones F(x, f(x), g(x)) = 0 y G(x, f(x), g(x)) = 0, que satisfacen además que $y_0 = f(x_0)$ y $z_0 = g(x_0)$, y cuyas derivadas en x_0 se obtienen a partir del sistema de ecuaciones

$$\begin{cases} \frac{\partial F}{\partial y}(x_0, y_0, z_0) \cdot \frac{df}{dx}(x_0) + \frac{\partial F}{\partial z}(x_0, y_0, z_0) \cdot \frac{dg}{dx}(x_0) = -\frac{\partial F}{\partial x}(x_0, y_0, z_0) \\ \frac{\partial G}{\partial y}(x_0, y_0, z_0) \cdot \frac{df}{dx}(x_0) + \frac{\partial G}{\partial z}(x_0, y_0, z_0) \cdot \frac{dg}{dx}(x_0) = -\frac{\partial G}{\partial x}(x_0, y_0, z_0) \end{cases}$$

El sistema anterior no es otra cosa que las derivadas de w_1 y w_2 respecto de la única variable independiente x.

En el siguiente ejemplo se mostrará la utilidad del Teorema de la función implícita II en un problema geométrico que involucra superficies.

Ejemplo 1. Determinar la ecuación de la recta tangente y del plano normal a la curva C, intersección de las siguientes superficies S_1 y S_2 en el punto P = (1,1,2).

$$C: \begin{cases} S_1: F(x, y, z) = x^2 + y^2 + z^2 - 2z - 2 = 0 \\ S_2: G(x, y, z) = x^2 + y^2 + z^2 - 2y - 4 = 0 \end{cases}$$

Procediendo de forma similar a como se hizo en el Ejemplo 12, es posible asegurar la existencia de las dos funciones implícitas

$$f: E_x \to E_y/y = f(x)$$
 y $g: E_x \to E_z/z = g(x)$

Definidas en algún entorno E_x de centro en $x_0 = 1$. De esta manera, es correcto decir que, por lo menos en forma local, los puntos (x, y, z) de la curva C admiten la forma

Para los valores de $x \in E_x$. Es decir que en las cercanías de P = (1,1,2), la curva C, es la imagen de la función vectorial

$$\alpha(x) = (x, f(x), g(x)) \text{ con } x \in E_x$$

Por otra parte, teniendo en cuenta que $P=(x_0,y_0,z_0)=(1,1,2)$ y que según el Teorema de la función implícita II, resulta $y_0=f(x_0)$ y $z_0=g(x_0)$, se cumple entonces que

$$y_0 = f(1) = 1$$
 y $z_0 = g(1) = 2$

Y de esta manera, queda claro que el punto P es la imagen de la función $\alpha(x)$ en $x_0=1$, es decir

$$\alpha(x_0) = (x_0, f(x_0), g(x_0)) = (1, f(1), g(1)) = (1, 1, 2) = P.$$

Ahora bien, para hallar la ecuación de la recta tangente y del plano normal a C en el punto P, es necesario contar con un vector tangente a esa curva en ese punto, y este vector se obtiene, evaluando la derivada de la parametrización de C en el punto que da lugar a P, que es precisamente $x_0 = 1$. Es decir que un vector tangente a la curva C en P es:

$$|\alpha'(x_0)|_{x_0=1} = \left(1, \frac{df}{dx}(x_0), \frac{dg}{dx}(x_0)\right)\Big|_{x_0=1} = \left(1, \frac{df}{dx}(1), \frac{dg}{dx}(1)\right)$$

Es aquí entonces que surge la necesidad de calcular $\frac{df}{dx}(1)$ y $\frac{dg}{dx}(1)$, para obtener el vector tangente buscado.

Según el Teorema de la función implícita II, estos valores se obtienen a partir del siguiente sistema de ecuaciones:

$$\begin{cases} \frac{\partial F}{\partial y}(1,1,2) \cdot \frac{df}{dx}(1) + \frac{\partial F}{\partial z}(1,1,2) \cdot \frac{dg}{dx}(1) = -\frac{\partial F}{\partial x}(1,1,2) \\ \frac{\partial G}{\partial y}(1,1,2) \cdot \frac{df}{dx}(1) + \frac{\partial G}{\partial z}(1,1,2) \cdot \frac{dg}{dx}(1) = -\frac{\partial G}{\partial x}(1,1,2) \end{cases}$$

Efectuando los cálculos, el sistema asume la apariencia

$$\begin{cases} 2 \cdot \frac{df}{dx}(1) + 2 \cdot \frac{dg}{dx}(1) = -2\\ 0 \cdot \frac{df}{dx}(1) + 4 \cdot \frac{dg}{dx}(1) = -2 \end{cases}$$

DIIT

A partir de la resolución de este, se obtienen los valores buscados. Estos son:

$$\frac{df}{dx}(1) = -\frac{1}{2} \quad y \quad \frac{dg}{dx}(1) = -\frac{1}{2}$$

Así que el vector tangente a C en P es:

$$\alpha'(1) = \left(1, \frac{df}{dx}(1), \frac{dg}{dx}(1)\right) = \left(1, -\frac{1}{2}, -\frac{1}{2}\right)$$

Finalmente, con P y con $\alpha'(1)$, se obtienen las ecuaciones pedidas.

Ecuación de la recta R, tangente a la curva C en el punto P:

$$R: \lambda(t) = P + t \cdot \alpha'(1) = \left(1 + t, 1 - \frac{1}{2}t, 2 - \frac{1}{2}t\right), \ t \in \mathbb{R}.$$

Ecuación del plano π^{\perp} , normal a la curva C en el punto P:

$$\pi^{\perp} \colon (x, y, z) \cdot \left(1, -\frac{1}{2}, -\frac{1}{2}\right) = P \cdot \left(1, -\frac{1}{2}, -\frac{1}{2}\right)$$
$$\pi^{\perp} \colon x - \frac{1}{2}y - \frac{1}{2}z = -\frac{1}{2}$$

Derivación implícita de funciones definidas en un sistema de ecuaciones Dado el sistema:

$$\begin{cases} F_{(x,y,z,u,v,w)} = 0 \\ G_{(x,y,z,u,v,w)} = 0 \\ H_{(x,y,z,u,v,w)} = 0 \end{cases} \qquad P = (x_0, y_0, z_0, u_0, v_0, w_0) \text{ tal que } \begin{cases} F_{(P)} = 0 \\ G_{(P)} = 0 \\ H_{(P)} = 0 \end{cases}$$

Se define como jacobiano del sistema respecto a las variables x, y, z a:

$$\frac{\partial (\overbrace{F,G,H})}{\partial (\underbrace{x,y,z})} = Det \begin{pmatrix} F_x & F_y & F_z \\ G_x & G_y & G_z \\ H_x & H_y & H_z \end{pmatrix} = \begin{vmatrix} F_x & F_y & F_z \\ G_x & G_y & G_z \\ H_x & H_y & H_z \end{vmatrix}$$

Si F, GyH tienen derivadas parciales continuas en un entorno de P y si

$$\frac{\partial(F,G,H)}{\partial(u,v,w)} = Det \begin{pmatrix} F_u & F_v & F_w \\ G_u & G_v & G_w \\ H_u & H_v & H_w \end{pmatrix}_{(P)} = \begin{vmatrix} F_u & F_v & F_w \\ G_u & G_v & G_w \\ H_u & H_v & H_w \end{vmatrix}_{(P)} = \Delta \neq 0$$

entonces existen funciones diferenciables

$$u = u_{(x,y,z)}, v = v_{(x,y,z)}, w = w_{(x,y,z)}$$

con derivadas parciales que se calculan con las fórmulas

$$u_{x(x_{0},y_{o},z_{0})} = -\frac{\frac{\partial(F,G,H)}{\partial(x,v,w)}}{\frac{\partial(F,G,H)}{\partial(u,v,w)}} = -\frac{\begin{vmatrix} F_{x} & F_{v} & F_{w} \\ G_{x} & G_{v} & G_{w} \\ H_{x} & H_{v} & H_{w} \end{vmatrix}_{(P)}}{\begin{vmatrix} F_{u} & F_{v} & F_{w} \\ G_{u} & G_{v} & G_{w} \\ H_{u} & H_{v} & H_{w} \end{vmatrix}_{(P)}} = -\frac{\begin{vmatrix} F_{x} & F_{v} & F_{w} \\ G_{x} & G_{v} & G_{w} \\ H_{x} & H_{v} & H_{w} \end{vmatrix}_{(P)}}{\Delta}$$

$$v_{x(x_{0},y_{o},z_{0})} = -\frac{\frac{\partial(F,G,H)}{\partial(u,x,w)}}{\frac{\partial(F,G,H)}{\partial(u,v,w)}} = -\frac{\begin{vmatrix} F_{u} & F_{x} & F_{w} \\ G_{u} & G_{x} & G_{w} \\ H_{u} & H_{x} & H_{w} \end{vmatrix}_{(P)}}{\begin{vmatrix} F_{u} & F_{v} & F_{w} \\ G_{u} & G_{v} & G_{w} \\ H_{u} & H_{v} & H_{w} \end{vmatrix}_{(P)}} = \frac{\begin{vmatrix} F_{u} & F_{x} & F_{w} \\ G_{u} & G_{x} & G_{w} \\ H_{u} & H_{x} & H_{w} \end{vmatrix}_{(P)}}{\Delta}$$

$$w_{x(x_{0},y_{o},z_{0})} = -\frac{\frac{\partial(F,G,H)}{\partial(u,v,x)}}{\frac{\partial(F,G,H)}{\partial(u,v,w)}} = -\frac{\begin{vmatrix} F_{u} & F_{v} & F_{x} \\ G_{u} & G_{v} & G_{x} \\ H_{u} & H_{v} & H_{x} \end{vmatrix}_{(P)}}{\begin{vmatrix} F_{u} & F_{v} & F_{w} \\ G_{u} & G_{v} & G_{w} \\ H_{u} & H_{v} & H_{w} \end{vmatrix}_{(P)}} = -\frac{\begin{vmatrix} F_{u} & F_{v} & F_{x} \\ G_{u} & G_{v} & G_{x} \\ H_{u} & H_{v} & H_{x} \end{vmatrix}_{(P)}}{\Delta}$$

De manera similar son las fórmulas para

$$u_{y(x_0,y_0,z_0)} = -\frac{\frac{\partial(F,G,H)}{\partial(\mathbf{y},v,w)}}{\frac{\partial(F,G,H)}{\partial(u,v,w)}} = -\frac{\begin{vmatrix} \mathbf{F}_y & F_v & F_w \\ \mathbf{G}_y & G_v & G_w \\ \mathbf{H}_y & H_v & H_w \end{vmatrix}_{(P)}}{\Delta}$$

$$v_{y(x_0,y_0,z_0)} = -\frac{\frac{\partial(F,G,H)}{\partial(u,\mathbf{y},w)}}{\frac{\partial(F,G,H)}{\partial(u,v,w)}} = -\frac{\begin{vmatrix} F_u & F_y & F_w \\ G_u & \mathbf{G}_y & G_w \\ H_u & H_y & H_w \end{vmatrix}_{(P)}}{\Delta}$$

$$w_{y(x_0,y_0,z_0)} = -\frac{\frac{\partial(F,G,H)}{\partial(u,v,y)}}{\frac{\partial(F,G,H)}{\partial(u,v,w)}} = -\frac{\begin{vmatrix} F_u & F_v & F_y \\ G_u & G_v & G_y \\ H_u & H_v & H_y \end{vmatrix}_{(P)}}{\Delta}$$

UNLaM

DIIT

Análisis Matemático II (1033)

$$u_{z(x_0,y_o,z_0)} = -\frac{\frac{\partial(F,G,H)}{\partial(\mathbf{z},v,w)}}{\frac{\partial(F,G,H)}{\partial(u,v,w)}} = -\frac{\begin{vmatrix} \mathbf{F}_z & F_v & F_w \\ \mathbf{G}_z & G_v & G_w \\ \mathbf{H}_z & H_v & H_w \end{vmatrix}_{(P)}}{\Delta}$$

$$v_{z(x_0,y_0,z_0)} = -\frac{\frac{\partial(F,G,H)}{\partial(u,z,w)}}{\frac{\partial(F,G,H)}{\partial(u,v,w)}} = -\frac{\begin{vmatrix} F_u & F_z & F_w \\ G_u & G_z & G_w \\ H_u & H_z & H_w \end{vmatrix}_{(P)}}{\Delta}$$

$$w_{z(x_0,y_0,z_0)} = -\frac{\frac{\partial(F,G,H)}{\partial(u,v,\mathbf{z})}}{\frac{\partial(F,G,H)}{\partial(u,v,w)}} = -\frac{\begin{vmatrix} F_u & F_v & \mathbf{F}_z \\ G_u & G_v & \mathbf{G}_z \\ H_u & H_v & \mathbf{H}_z \end{vmatrix}_{(P)}}{\Delta}$$

Biblioteca digital. Cap 5, p. 196. Cálculo varias variables. W Mora.

Link contenidos pertinentes (Ctrl+Clic mouse para ir al enlace) Khan Academy

En este sitio no hay información sobre este tema