Introduction to Data Wrangling IV

Summer Institute in Data Science Rolando J. Acosta

What to expected today

- Today we will use some of the functions we have learned this week in a case study
 - Join functions
 - regex
- Specifically, we are going to conduct a sentiment analysis on Trump tweets
- Sentiment analysis is the use of natural language processing, text analysis, computational linguistics, and biometrics to systematically identify, extract, quantify, and study affective states and subjective information

• During the 2016 US presidential election, Donald Trump used his twitter account to, among other things, communicate with potential voters

- During the 2016 US presidential election, Donald Trump used his twitter account to, among other things, communicate with potential voters
- On August 2016, Todd Vaziri tweeted:

• David Robinson, a data scientist, conducted an analysis to check if the data supports this claim

- David Robinson, a data scientist, conducted an analysis to check if the data supports this claim
- Today, we will go through David's analysis

- David Robinson, a data scientist, conducted an analysis to check if the data supports this claim
- Today, we will go through David's analysis
- Here is the set up

```
library(tidyverse)
library(lubridate)
library(tidytext)
library(textdata)
library(dslabs)
library(scales)
```

<pre>source</pre>	id_str	text	created_at \$	retweet_count [‡]	in_reply_to_user_id_str	favorite_count [‡]	is_retweet [‡]
1 Twitter Web Client	6971079756	From Donald Trump: Wishing everyone a wonderful h	2009-12-23 12:38:18	28	NA	12	FALSE
2 Twitter Web Client	6312794445	Trump International Tower in Chicago ranked 6th tall	2009-12-03 14:39:09	33	NA	6	FALSE
3 Twitter Web Client	6090839867	Wishing you and yours a very Happy and Bountiful Th	2009-11-26 14:55:38	13	NA	11	FALSE
4 Twitter Web Client	5775731054	Donald Trump Partners with TV1 on New Reality Serie	2009-11-16 16:06:10	5	NA	3	FALSE
5 Twitter Web Client	5364614040	Work has begun, ahead of schedule, to build the gr	2009-11-02 09:57:56	7	NA	6	FALSE

• We are interested in tweets made from an iPhone or an Android during the presidential campaign

- We are interested in tweets made from an iPhone or an Android during the presidential campaign
- Thus, we have to do some wrangling:

- We are interested in tweets made from an iPhone or an Android during the presidential campaign
- Thus, we have to do some wrangling:

 Note that the extract function is similar to the separate function that permits the use of *regex*

- We are interested in tweets made from an iPhone or an Android during the presidential campaign
- Thus, we have to do some wrangling:

- Note that the extract function is similar to the separate function that permits the use of *regex*
- ymd is a date format function from the *lubridate* package

• Now we can employ our visualization skills!

- Now we can employ our visualization skills!
- For each tweet, let us extract the hour it was tweeted and then plot proportion of tweets by device

- Now we can employ our visualization skills!
- For each tweet, let us extract the hour it was tweeted and then plot proportion of tweets by device

```
campaign_tweets %>%
 mutate(hour = hour(with_tz(created_at, "EST"))) %>%
 count(source, hour) %>%
 group_by(source) %>%
 mutate(percent = n / sum(n)) %>%
 ungroup() %>%
 ggplot(aes(hour, percent, fill = source, color = source)) +
 geom_line(size = 0.70) +
 geom_point(shape = 21,
            color = "black",
            size = 3,
            show.legend = FALSE) +
 scale_y_continuous(labels = percent_format()) +
 scale_x_continuous(breaks = seq(0, 20, by = 5),
                    labels = c("12am", "5am", "10am", "3pm", "8pm")) +
 labs(x = "Hour of day (EST)", y = "\% of tweets", color = "") +
 theme_minimal()
```


• Comments?

• The *tidytext* package helps us convert text into a tidy table

- The tidytext package helps us convert text into a tidy table
- The function to do this is the unnest_tokens function

- The tidytext package helps us convert text into a tidy table
- The function to do this is the unnest_tokens function
- Here is a quick example:

example_token

Now let us look at an example from the tweets

```
i <- 3008
campaign_tweets$text[i] %>% str_wrap(width = 65) %>% cat()
Great to be back in Iowa! #TBT with @JerryJrFalwell joining me in
Davenport- this past winter. #MAGA <a href="https://t.co/A5IF0QHnic">https://t.co/A5IF0QHnic</a>
campaign_tweets[i,] %>%
  unnest_tokens(word, text) %>%
  pull(word)
                        "to"
     "great"
                                            "be"
                                                               "back"
                                                                                 "in"
     "iowa"
                                                               "jerryjrfalwell" "joining"
                        "tbt"
                                            "with"
                        "in"
                                            "davenport"
                                                               "this"
                                                                                  "past"
     "me"
     "winter"
                                            "https"
                                                                                  "a5if0qhnic"
                         "maga"
                                                               "t.co"
```

Now let us look at an example from the tweets

```
i <- 3008
campaign_tweets$text[i] %>% str_wrap(width = 65) %>% cat()
Great to be back in Iowa! #TBT with @JerryJrFalwell joining me in
Davenport- this past winter. #MAGA <a href="https://t.co/A5IF00Hnic">https://t.co/A5IF00Hnic</a>
campaign_tweets[i,] %>%
  unnest_tokens(word, text) %>%
  pull(word)
                        "to"
                                                              "back"
     "great"
                                           "be"
                                                                                 "in"
    "iowa"
                                                              "jerryjrfalwell" "joining"
                        "tbt"
                                           "with"
                        "in"
                                           "davenport"
                                                              "this"
                                                                                  "past"
     "me"
    "winter"
                                            "https"
                                                                                  "a5if0qhnic"
                        "maga"
                                                              "t.co"
```

• Note that the function strips characters that are important in the context of Twitter (e.g., @JerryJrFalwell)

Now let us look at an example from the tweets

```
i <- 3008
campaign_tweets$text[i] %>% str_wrap(width = 65) %>% cat()
Great to be back in Iowa! #TBT with @JerryJrFalwell joining me in
Davenport- this past winter. #MAGA <a href="https://t.co/A5IF00Hnic">https://t.co/A5IF00Hnic</a>
campaign_tweets[i,] %>%
  unnest_tokens(word, text) %>%
  pull(word)
                        "to"
                                                              "back"
     "great"
                                           "be"
                                                                                 "in"
    "iowa"
                                                              "jerryjrfalwell" "joining"
                        "tbt"
                                           "with"
                        "in"
                                           "davenport"
                                                              "this"
                                                                                  "past"
     "me"
    "winter"
                                            "https"
                                                                                  "a5if0qhnic"
                        "maga"
                                                              "t.co"
```

- Note that the function strips characters that are important in the context of Twitter (e.g., @JerryJrFalwell)
- A token in the context of Twitter is not the same as in the context of spoken or written English

• Let us fix this:

```
campaign_tweets[i,] %>%
 unnest_tokens(word, text, token = "tweets") %>%
 pull(word)
   "great"
                                                          "be"
                               "to"
   "back"
                               "in"
                                                          "iowa"
                               "with"
                                                          "@jerryjrfalwell"
   "#tbt"
    "joining"
                                "me"
                                                           "in"
[13] "davenport"
                                "this"
                                                           "past"
    "winter"
                                "#maga"
                                                           "https://t.co/a5if0qhnic"
```

• Let us fix this:

```
campaign_tweets[i,] %>%
 unnest_tokens(word, text, token = "tweets") %>%
 pull(word)
                                                          "be"
[1] "great"
                               "to"
   "back"
                               "in"
                                                          "iowa"
                               "with"
   "#tbt"
                                                          "@jerryjrfalwell"
                                "me"
                                                           "in"
[10] "joining"
[13] "davenport"
                                "this"
                                                           "past"
[16] "winter"
                                "#maga"
                                                           "https://t.co/a5if0qhnic"
```

Another minor adjustment, let us remove the links to photos

```
links <- "https://t.co/[A-Za-z\\d]+|&amp;"
campaign_tweets[i,] %>%
  mutate(text = str_replace_all(text, links, "")) %>%
  unnest_tokens(word, text, token = "tweets") %>%
  pull(word)
```

Now we are ready to extract the words for all our tweets

```
tweet_words <- campaign_tweets %>%
  mutate(text = str_replace_all(text, links, "")) %>%
  unnest_tokens(word, text, token = "tweets")
                                                                      in_reply_to_user_id_str
               id_str
                                                                                            favorite_count
                                   created_at
                                                                                                            is_retweet
                                                       retweet_count
                                                                                                                        word
      source
               612063082186174464 | 2015-06-19 20:03:05 | 166
                                                                      NA
      Android
                                                                                            348
                                                                                                            FALSE
                                                                                                                        why
               612063082186174464 | 2015-06-19 20:03:05 | 166
      Android
                                                                      NA
                                                                                            348
                                                                                                            FALSE
                                                                                                                        did
               612063082186174464 | 2015-06-19 20:03:05 | 166
                                                                      NA
                                                                                                                        @danaperino
      Android
                                                                                            348
                                                                                                            FALSE
               612063082186174464 | 2015-06-19 20:03:05 | 166
                                                                      NA
      Android
                                                                                            348
                                                                                                            FALSE
                                                                                                                        beg
      Android
               612063082186174464 | 2015-06-19 20:03:05 | 166
                                                                      NA
                                                                                            348
                                                                                                            FALSE
                                                                                                                        me
```

Now we are ready to extract the words for all our tweets

```
tweet_words <- campaign_tweets %>%
  mutate(text = str_replace_all(text, links, "")) %>%
  unnest_tokens(word, text, token = "tweets")
               id_str
                                                                     in_reply_to_user_id_str
                                                                                           favorite_count
                                   created_at
                                                      retweet_count
                                                                                                          is_retweet
                                                                                                                       word
      source
               612063082186174464 | 2015-06-19 20:03:05 | 166
                                                                     NA
      Android
                                                                                           348
                                                                                                          FALSE
                                                                                                                       why
               612063082186174464 | 2015-06-19 20:03:05 | 166
                                                                     NA
      Android
                                                                                           348
                                                                                                          FALSE
                                                                                                                       did
               612063082186174464 | 2015-06-19 20:03:05 | 166
                                                                     NA
                                                                                                                       @danaperino
      Android
                                                                                           348
                                                                                                          FALSE
               612063082186174464 2015-06-19 20:03:05
                                                                     NA
      Android
                                                                                           348
                                                                                                          FALSE
                                                                                                                       beg
      Android
               612063082186174464 2015-06-19 20:03:05
                                                                     NA
                                                                                           348
                                                                                                          FALSE
                                                                                                                       me
```

What are the most commonly used words?

Now we are ready to extract the words for all our tweets

```
tweet_words <- campaign_tweets %>%
  mutate(text = str_replace_all(text, links, "")) %>%
  unnest_tokens(word, text, token = "tweets")
               id_str
                                                                      in_reply_to_user_id_str
                                                                                            favorite_count
                                   created_at
                                                      retweet_count
                                                                                                           is_retweet
                                                                                                                        word
      source
               612063082186174464 | 2015-06-19 20:03:05 | 166
                                                                      NA
      Android
                                                                                            348
                                                                                                           FALSE
                                                                                                                        why
               612063082186174464 | 2015-06-19 20:03:05 | 166
                                                                      NA
      Android
                                                                                            348
                                                                                                           FALSE
                                                                                                                        did
               612063082186174464 2015-06-19 20:03:05 166
                                                                                                                        @danaperino
      Android
                                                                                            348
                                                                                                           FALSE
               612063082186174464 | 2015-06-19 20:03:05 | 166
                                                                      NA
      Android
                                                                                            348
                                                                                                           FALSE
                                                                                                                        beg
      Android
               612063082186174464 | 2015-06-19 20:03:05 | 166
                                                                      NA
                                                                                            348
                                                                                                           FALSE
                                                                                                                        me
```

What are the most commonly used words?

```
tweet_words %>%
count(word) %>%
arrange(desc(n))
```

```
tweet_words %>%
  count(word) %>%
  arrange(desc(n))
```

*	word \$	n	‡
1	the	2329	
2	to	1410	
3	and	1239	
4	in	1185	
5	i	1143	
6	a	1112	
7	you	999	
8	of	982	
9	is	942	
10	on	874	

• Comments?

• The top words are not very informative!

- The top words are not very informative!
- This is common in text analysis. Luckily, the *tidytext* package has a database of commonly used words called *stop_words*

```
tweet_words <- campaign_tweets %>%
  mutate(text = str_replace_all(text, links, "")) %>%
  unnest_tokens(word, text, token = "tweets") %>%
  filter(!word %in% stop_words\section word)
```

- The top words are not very informative!
- This is common in text analysis. Luckily, the *tidytext* package has a database of commonly used words called *stop_words*

```
tweet_words <- campaign_tweets %>%
   mutate(text = str_replace_all(text, links, "")) %>%
   unnest_tokens(word, text, token = "tweets") %>%
   filter(!word %in% stop_words word)

tweet_words %>%
   count(word) %>%
   top_n(10, n) %>%
   mutate(word = reorder(word, n)) %>%
   arrange(desc(n))
```


Much better!

• After some exploration, here is the final dataset

•	source [‡]	id_str [‡]	created_at \$	retweet_count [‡]	in_reply_to_user_id_str 🕏	favorite_count ‡	is_retweet [‡]	word \$
1	Android	612063082186174464	2015-06-19 20:03:05	166	NA	348	FALSE	@danaperino
2	Android	612063082186174464	2015-06-19 20:03:05	166	NA	348	FALSE	beg
3	Android	612063082186174464	2015-06-19 20:03:05	166	NA	348	FALSE	tweet
4	Android	612063082186174464	2015-06-19 20:03:05	166	NA	348	FALSE	endorsement
5	Android	612063082186174464	2015-06-19 20:03:05	166	NA	348	FALSE	book

Sentiment analysis (SA)

• In sentiment analysis, we assign a word to one or more "sentiments" (e.g., happy)

Sentiment analysis (SA)

- In sentiment analysis, we assign a word to one or more "sentiments" (e.g., happy)
- The textdata package provides a bevy of lexicons to conduct SA

Sentiment analysis (SA)

- In sentiment analysis, we assign a word to one or more "sentiments" (e.g., happy)
- The *textdata* package provides a bevy of lexicons to conduct SA
- We will use the nrc (Mohammad and Turney, 2012) lexicon because it provides several different sentiments

- In sentiment analysis, we assign a word to one or more "sentiments" (e.g., happy)
- The textdata package provides a bevy of lexicons to conduct SA
- We will use the nrc (Mohammad and Turney, 2012) lexicon because it provides several different sentiments

```
nrc <- get_sentiments("nrc") %>%
  select(word, sentiment)
```


 Let us use inner_join to explore a random sample of the words in the tweets and their associated sentiment

```
tweet_words %>%
  inner_join(nrc, by = "word") %>%
  select(source, word, sentiment) %>%
  sample_n(10)
```


• We are ready to perform an analysis comparing Android v iPhone sentiments

- We are ready to perform an analysis comparing Android v iPhone sentiments
- Each tweet has several words, hence assigning a sentiment to each tweet is challenging (but possible!)

- We are ready to perform an analysis comparing Android v iPhone sentiments
- Each tweet has several words, hence assigning a sentiment to each tweet is challenging (but possible!)
- We will conduct a simpler analysis. Specifically, we will compare the frequencies of the sentiments appearing in each device

- We are ready to perform an analysis comparing Android v iPhone sentiments
- Each tweet has several words, hence assigning a sentiment to each tweet is challenging (but possible!)
- We will conduct a simpler analysis. Specifically, we will compare the frequencies of the sentiments appearing in each device
- Time for some wrangling

```
sentiment_counts <- tweet_words %>%
  left_join(nrc, by = "word") %>%
  count(source, sentiment) %>%
  pivot_wider(names_from = "source", values_from = "n") %>%
  mutate(sentiment = replace_na(sentiment, replace = "none"))
```

•	sentiment [‡]	Android [‡]	iPhone [‡]
1	anger	958	528
2	anticipation	910	715
3	disgust	638	322
4	fear	795	486
5	joy	688	535
6	negative	1641	929
7	positive	1806	1473
8	sadness	894	515
9	surprise	518	365
10	trust	1236	990
11	none	11904	10766

```
sentiment_counts <- tweet_words %>%
  left_join(nrc, by = "word") %>%
  count(source, sentiment) %>%
  pivot_wider(names_from = "source", values_from = "n") %>%
  mutate(sentiment = replace_na(sentiment, replace = "none"))
```

•	sentiment [‡]	Android [‡]	iPhone [‡]
1	anger	958	528
2	anticipation	910	715
3	disgust	638	322
4	fear	795	486
5	joy	688	535
6	negative	1641	929
7	positive	1806	1473
8	sadness	894	515
9	surprise	518	365
10	trust	1236	990
11	none	11904	10766

Comments? Thoughts?

```
sentiment_counts <- tweet_words %>%
  left_join(nrc, by = "word") %>%
  count(source, sentiment) %>%
  pivot_wider(names_from = "source", values_from = "n") %>%
  mutate(sentiment = replace_na(sentiment, replace = "none"))
```

•	sentiment 🕏	Android [‡]	iPhone [‡]
1	anger	958	528
2	anticipation	910	715
3	disgust	638	322
4	fear	795	486
5	joy	688	535
6	negative	1641	929
7	positive	1806	1473
8	sadness	894	515
9	surprise	518	365
10	trust	1236	990
11	none	11904	10766

- Comments? Thoughts?
- Should we compare these counts? Is this a "fair" comparison?

```
sentiment_counts <- tweet_words %>%
  left_join(nrc, by = "word") %>%
  count(source, sentiment) %>%
  pivot_wider(names_from = "source", values_from = "n") %>%
  mutate(sentiment = replace_na(sentiment, replace = "none"))
```

•	sentiment ‡	Android [‡]	iPhone [‡]
1	anger	958	528
2	anticipation	910	715
3	disgust	638	322
4	fear	795	486
5	joy	688	535
6	negative	1641	929
7	positive	1806	1473
8	sadness	894	515
9	surprise	518	365
10	trust	1236	990
11	none	11904	10766

- Comments? Thoughts?
- Should we compare these counts? Is this a "fair" comparison?
- The count for Android is 21,988, whereas the count for iPhone is 17,624

```
sentiment_counts <- tweet_words %>%
 left_join(nrc, by = "word") %>%
 count(source, sentiment) %>%
 pivot_wider(names_from = "source", values_from = "n") %>%
 mutate(sentiment = replace_na(sentiment, replace = "none"))
```

•	sentiment [‡]	Android [‡]	iPhone ‡
1	anger	958	528
2	anticipation	910	715
3	disgust	638	322
4	fear	795	486
5	joy	688	535
6	negative	1641	929
7	positive	1806	1473
8	sadness	894	515
9	surprise	518	365
10	trust	1236	990
11	none	11904	10766

- Comments? Thoughts?
- Should we compare these counts? Is this a "fair" comparison?
- The count for Android is 21,988, whereas the count for iPhone is 17,624
- We need to use measure of association to compare the two devices.
- Let us use odds ratio

• Suppose you are interested in two events A and B

- Suppose you are interested in two events A and B
- For example, A can be the event that it rains tomorrow and B the event that its sunny tomorrow

- Suppose you are interested in two events A and B
- For example, A can be the event that it rains tomorrow and B the event that its sunny tomorrow
- We define the odds of A with:

$$Odds of A = \frac{Chances that A happens}{Chances that A does not happen}$$

- Suppose you are interested in two events A and B
- For example, A can be the event that it rains tomorrow and B the event that its sunny tomorrow
- We define the odds of A with:

$$Odds of A = \frac{Chances that A happens}{Chances that A does not happen}$$

- We define the odds of B in a similar way
- Finally, we define the odds ratio of A relative to B with:

$$OR(A,B) = Odds of A/Odds of B$$

- Suppose you are interested in two events A and B
- For example, A can be the event that it rains tomorrow and B the event that its sunny tomorrow
- We define the odds of A with:

$$Odds of A = \frac{Chances that A happens}{Chances that A does not happen}$$

- We define the odds of B in a similar way
- Finally, we define the odds ratio of A relative to B with:

$$OR(A,B) = Odds of A/Odds of B$$

- If OR > 1, then **A** is more frequent than **B** and if OR < 1 the opposite is true
- If OR = 1, then the frequency is the same

```
sentiment_counts %>%
mutate(Android = Android / (sum(Android) - Android),
iPhone = iPhone / (sum(iPhone) - iPhone),
or_android_iphone = Android/iPhone) %>%
arrange(desc(or_android_iphone))
```

•	sentiment ‡	Android [‡]	iPhone ‡	or_android_iphone \$
1	disgust	0.02988290	0.01861057	1.6056957
2	anger	0.04555397	0.03088442	1.4749823
3	negative	0.08065071	0.05564540	1.4493688
4	sadness	0.04238172	0.03010112	1.4079783
5	fear	0.03751239	0.02835803	1.3228133
6	surprise	0.02412669	0.02114839	1.1408288
7	joy	0.03230047	0.03130669	1.0317434
8	anticipation	0.04317298	0.04228517	1.0209956
9	trust	0.05956052	0.05951665	1.0007371
10	positive	0.08948568	0.09120178	0.9811835
11	none	1.18048393	1.56984544	0.7519746 55

• Comments? Thoughts?

•	sentiment ‡	Android [‡]	iPhone \$	or_android_iphone
1	disgust	0.02988290	0.01861057	1.6056957
2	anger	0.04555397	0.03088442	1.4749823
3	negative	0.08065071	0.05564540	1.4493688
4	sadness	0.04238172	0.03010112	1.4079783
5	fear	0.03751239	0.02835803	1.3228133
6	surprise	0.02412669	0.02114839	1.1408288
7	joy	0.03230047	0.03130669	1.0317434
8	anticipation	0.04317298	0.04228517	1.0209956
9	trust	0.05956052	0.05951665	1.0007371
10	positive	0.08948568	0.09120178	0.9811835
11	none	1.18048393	1.56984544	0.7519746 54

- Comments? Thoughts?
- Some interesting differences

	•	sentiment [‡]	Android [‡]	iPhone [‡]	or_android_iphone \$
	1	disgust	0.02988290	0.01861057	1.6056957
	2	anger	0.04555397	0.03088442	1.4749823
3	3	negative	0.08065071	0.05564540	1.4493688
4	4	sadness	0.04238172	0.03010112	1.4079783
	5	fear	0.03751239	0.02835803	1.3228133
(6	surprise	0.02412669	0.02114839	1.1408288
	7	joy	0.03230047	0.03130669	1.0317434
	8	anticipation	0.04317298	0.04228517	1.0209956
9	9	trust	0.05956052	0.05951665	1.0007371
10	0	positive	0.08948568	0.09120178	0.9811835
13	1	none	1.18048393	1.56984544	0.7519746

- Comments? Thoughts?
- Some interesting differences
- Perhaps there is meaning in the order of the sentiments

```
sentiment_counts %>%
mutate(Android = Android / (sum(Android) - Android),
iPhone = iPhone / (sum(iPhone) - iPhone),
or_android_iphone = Android/iPhone) %>%
arrange(desc(or_android_iphone))
```

•	sentiment ‡	Android [‡]	iPhone [‡]	or_android_iphone \$
1	disgust	0.02988290	0.01861057	1.6056957
2	anger	0.04555397	0.03088442	1.4749823
3	negative	0.08065071	0.05564540	1.4493688
4	sadness	0.04238172	0.03010112	1.4079783
5	fear	0.03751239	0.02835803	1.3228133
6	surprise	0.02412669	0.02114839	1.1408288
7	joy	0.03230047	0.03130669	1.0317434
8	anticipation	0.04317298	0.04228517	1.0209956
9	trust	0.05956052	0.05951665	1.0007371
10	positive	0.08948568	0.09120178	0.9811835
11	none	1.18048393	1.56984544	0.7519746

- Comments? Thoughts?
- Some interesting differences
- Perhaps there is meaning in the order of the sentiments
- Are these differences due to chance? (note that we are venturing into inference land)

•	sentiment [‡]	Android [‡]	iPhone [‡]	or_android_iphone
1	disgust	0.02988290	0.01861057	1.6056957
2	anger	0.04555397	0.03088442	1.4749823
3	negative	0.08065071	0.05564540	1.4493688
4	sadness	0.04238172	0.03010112	1.4079783
5	fear	0.03751239	0.02835803	1.3228133
6	surprise	0.02412669	0.02114839	1.1408288
7	joy	0.03230047	0.03130669	1.0317434
8	anticipation	0.04317298	0.04228517	1.0209956
9	trust	0.05956052	0.05951665	1.0007371
10	positive	0.08948568	0.09120178	0.9811835
11	none	1.18048393	1.56984544	0.7519746

- Comments? Thoughts?
- Some interesting differences
- Perhaps there is meaning in the order of the sentiments
- Are these differences due to chance? (note that we are venturing into inference land)
- Let us compute confidence intervals for each sentiment

```
log_or <- sentiment_counts %>%
 mutate(log_or = log((Android / (sum(Android) - Android)) /
                       (iPhone / (sum(iPhone) - iPhone))),
        se = sqrt(1/Android + 1/(sum(Android) - Android) +
                    1/iPhone + 1/(sum(iPhone) - iPhone)),
        conf.low = log_or - qnorm(0.975)*se,
        arrange(desc(log_or))
log_or %>%
 mutate(sentiment = str_to_title(sentiment),
        sentiment = reorder(sentiment, log_or)) %>%
  ggplot(aes(x = sentiment, ymin = conf.low, ymax = conf.high)) +
  geom_hline(yintercept = 0, color = "red2", lty = \overline{2}) +
  geom\_errorbar(width = 0) +
 geom_point(aes(sentiment, log_or),
            shape = 21,
            color = "white",
            fill = "black",
            size = 3) +
  labs(x = "Sentiment", y = "Log odds ratio for association between Android and sentiment") +
  coord_flip() +
  theme_minimal()
```


• Finally, we can explore which specific words are driving these differences

```
tweet_words %>%
 count(word, source) %>%
 pivot_wider(names_from = "source", values_from = "n", values_fill = 0) %>%
 mutate(or = (Android + 0.5) / (sum(Android) - Android + 0.5) /
          ((iPhone + 0.5) / (sum(iPhone) - iPhone + 0.5))) %>%
 inner_join(nrc, by = "word") %>%
 mutate(sentiment = factor(sentiment, levels = log_or$sentiment)) %>%
 mutate(log_or = log(or)) %>%
 mutate(sentiment = str_to_title(sentiment),
        sentiment = reorder(sentiment, log_or)) %>%
 filter(Android + iPhone > 10 & abs(log_or) > 1) %>%
 mutate(word = reorder(word, log_or),
        se = sqrt(1/Android + 1/(sum(Android) - Android) +
                    1/iPhone + 1/(sum(iPhone) - iPhone)),
        conf.low = log_or - qnorm(0.975)*se,
        conf.high = log_or + qnorm(0.975)*se) %>%
 ggplot(aes(word, log_or, fill = log_or < 0, color = log_or < 0, ymin = conf.low, ymax = conf.high)) +
 geom_hline(yintercept = 0, lty = 2) +
 facet_wrap(~sentiment, scales = "free_x", nrow = 2) +
 geom_errorbar(width = 0,
               show.legend = FALSE) +
 geom_point(aes(word, log_or),
            shape = 21,
            color = "white",
            size = 2,
            show.legend = FALSE) +
 labs(y = "Log OR for association between Android and sentiment",
      x = "Word") +
 theme_bw() +
 theme(axis.text.x = element_text(angle = 90, hjust = 1),
       strip.text = element_text(face = "bold"))
```


References

1. Introduction to Data Science: Data analysis and prediction algorithms with R by Rafael A. Irizarry, Chapter 26. https://rafalab.github.io/dsbook/

Referencias en español:

Introducción a la Ciencia de Datos: Análisis de datos y algoritmos de predicción con R por Rafael A. Irizarry, Capítulo 26. https://rafalab.github.io/dslibro/

Your turn!

Click here for the class website