			统计	Lin	路)	***	Home	enork	-7				
(1) 线性支持向量机还可以定义为以下形式:													
]	$\min_{w,b,\xi}$	$\frac{1}{2} w ^2 +$	$-C\sum_{i=1}^{N}$	ξ_i^2								
		s.t.	$y_i (w \cdot x_i)$ $\xi_i \geqslant 0,$			i = 1, 2	$,\cdots,N$						
试求其对偶	1形式		$\zeta_i \geqslant 0$,	t = 1, 2	., , . . .								
47:3		ograv	ge 3	溢数									
1	ا د			•									
_	÷ 11	wllz	+ 0	Z	۶	N - Z	di jy	L; (W·	Xi+b) -I +	5.7-	Z M	3,
支	* 2	7,0,5	Mi	121 0 &		1=1						j=l	
首先音	強すし	U, b.	5 夢	野林	DV1.	υ :							
\sqrt{N}	L =	W) est	N 2	yi	X, =	= 0						
∇_b	L =		2 di	٦ ٢	= 8								
Vz	, 2		2 C	J: -	٠ ١	-)	ur =	= 0					
代入	. L	(W,	b, 3 _r	,dî,	Ni)	र १३	•						
min.	L =	_	1 is	N X 2 Z 24 Jz	z Zî	xj y	i Yj z	z.·z]				
						+.Ui)2		NAMI					
				121									

$$= (M_1 \times 1 + \dots + M_m \times m)^T \cdot (M_1 \times 1 + \dots + M_m \times m)$$

$$= \|M_1 \times 1 + \dots + M_m \times m\|_2^2 \ge 0$$

$$\Rightarrow K^n \stackrel{?}{+} L^{\frac{1}{2}}$$

$$\Rightarrow \|P| = \Re L^{\frac{1}{2}} \times \Re L^{\frac{1}{2}} = 1$$

$$Lemmo : \stackrel{?}{+} A \not> 0, \quad \mathcal{B} \nearrow 0, \quad \mathcal{B} \searrow 0 = A \circ \mathcal{B} \nearrow 0$$

$$\stackrel{?}{+} L \stackrel{?}{+} A \not> 0 \quad \mathcal{B} \nearrow 0, \quad \mathcal{B} \searrow 0 = A \circ \mathcal{B} \nearrow 0$$

$$\stackrel{?}{+} L \stackrel{?}{+} A \not> 0 \quad \mathcal{B} \nearrow 0, \quad \mathcal{B} \searrow 0 = A \circ \mathcal{B} \nearrow 0$$

$$\stackrel{?}{+} L \stackrel{?}{+} A \nearrow 0 \quad \mathcal{B} \nearrow 0, \quad \mathcal{B} \searrow 0 \qquad \mathcal{B} \nearrow 0$$

$$\stackrel{?}{+} L \stackrel{?}{+} A \nearrow 0 \quad \mathcal{B} \nearrow 0, \quad \mathcal{B} \searrow 0 \qquad \mathcal{B} \nearrow 0$$

$$\stackrel{?}{+} L \stackrel{?}{+} A \nearrow 0 \quad \mathcal{B} \nearrow 0, \quad \mathcal{B} \searrow 0 \qquad \mathcal{B} \nearrow 0$$

$$\stackrel{?}{+} L \stackrel{?}{+} A \nearrow 0 \quad \mathcal{B} \nearrow 0, \quad \mathcal{B} \searrow 0 \qquad \mathcal{B} \nearrow 0$$

$$\stackrel{?}{+} L \stackrel{?}{+} A \nearrow 0 \quad \mathcal{B} \nearrow 0 \qquad \mathcal{B} \nearrow 0 \qquad \mathcal{B} \nearrow 0$$

$$\stackrel{?}{+} L \stackrel{?}{+} A \nearrow 0 \qquad \mathcal{B} \nearrow 0 \qquad \mathcal{B} \nearrow 0 \qquad \mathcal{B} \nearrow 0 \qquad \mathcal{B} \nearrow 0$$

$$\stackrel{?}{+} L \stackrel{?}{+} A \nearrow 0 \qquad \mathcal{B} \nearrow 0 \qquad \mathcal{B$$

其中B=UNUT, BY=UAUT 12 C = B/2 diag (x) 8) cT = diag (x). B/2 根据搜收是理: A70 = CACTTO 由平CACTEO,MCACT的特别的 => tr(B/2 diagon A diagon B/2) = tr(CACT) >0 ⇒ x^T (A.B) x 70 => C=AOB>O 对程证学 现假设 P < T附语说均或这 多 P= J时: $K(x, z) = (x \cdot z)^{J} = (x \cdot z)^{J} \cdot (x \cdot z)$ 记P=j 时 Grom 抚持办长^{GD}, 刷有: K(J) = K(J-1), K(1) 根据旧的假设, K^(T) >0, 每P=1时有 K⁰ >0 AB Lemma J& K(T-1). K">0, 30 K">0 因此对子从PHR、都有K(P)大的和K(X,2)是 正定核函数。