線形制御理論 練習問題 4

2013年5月10日(金)

次の 2 次系の伝達関数の減衰係数 ζ , 自然角周波数 ω_n , ゲイン K , および 2 つの極 $p_1,\,p_2$ を求めよ .

$$G(s) = \frac{1}{LCs^2 + RCs + 1}.$$

ただし, LC=2, RC=3 とする.

解答例

LC = 2, RC = 3 より

$$G(s) = \frac{1}{2s^2 + 3s + 1} = \frac{\frac{1}{2}}{s^2 + \frac{3}{2}s + \frac{1}{2}}.$$

2次系の標準形

$$G(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

と比較すると、

$$K\omega_n^2 = \frac{1}{2}, \quad 2\zeta\omega_n = \frac{3}{2}, \quad \omega_n^2 = \frac{1}{2}.$$

これより,減衰係数 ζ ,自然角周波数 ω_n ,ゲイン K はそれぞれ,

$$\zeta = \frac{3\sqrt{2}}{4}, \quad \omega_n = \frac{\sqrt{2}}{2}, \quad K = 1$$

となる.また,伝達関数の極 p_1 と p_2 は,多項式 $2s^2+3s+1=(2s+1)(s+1)$ の根であり,

$$p_1 = -\frac{1}{2}, \quad p_2 = -1$$

となる.