Convolutional Layers: Space and Time

In our introductory examples

- The non-feature dimension of output y_{llp}

There are different choices we can make when "sliding" the kernel over the input.

These choices impact

- The size of the non-feature dimension of the output
- And, in turn, the time requirements of subsequent layers (because of the size)

Let's do some quick calculations and then show choices for controlling the space consumed by $y_{\rm llp}$.

CNN Math: Time versus number of parameters

In designing a Neural Network we are confronted with choices

- how many layers
- width (number of features) at each layer

When Convolutional layers are included, there are additional choices

- size *f* of filter
- increment with which we slide the kernel over the non-feature dimensions locations

In the absence of a science defined optimal values for the choices

- we resort to empirical studies
- treat the choices as hyper-parameters
- establish a Performance Metric and a set of Benchmark examples
- examine the trade-off between Performance Metric and hyper-parameter choice.

One element in the trade-off involves external costs

- amount of space (memory)
- amount of time

We explore these costs in this section.

Consider input layer $(\ll -1)$ with

- \bullet *N* non-feature dimensions
- ullet $n_{(\ll -1)}$ feature maps/channels

$$||\mathbf{y}_{(\ll-1)}|| = (\dim_{(\ll-1),1} imes \dim_{(\ll-1),2} imes \ldots \dim_{(\ll-1),N} imes n_{(\ll-1)})$$

Layer \ll will apply a Convolution that preserves the non-feature dimensions $||\mathbf{y}_{\mathbf{llp}}|| = (\dim_{(\ll -1),1} \times \dim_{(\ll -1),2} \times \ldots \dim_{(\ll -1),N} \times n_{\mathbf{llp}})$

For simplicity of presentation: consider the case when N=2.

How many weights/parameters does layer \ll consume (i.e, what is size of $igwedge W_{
m llp}$)?

- Each kernel $\mathbf{k}_{\text{llp},j}$
 - lacktriangle Has non-feature dimension $(f_{
 m \club} imes f_{
 m \club})$
 - \blacksquare And "depth" $n_{(\ll -1)}$ (to match the number of input feature maps/channels)
- There are $n_{
 m lue{llp}}$ kernels in layer \ll

So the size of $W_{
m llp}$ (ignoring the optional bias term per output feature map)

$$||ackslash \mathbf{W}_{ackslash \mathbf{llp}}|| = n_{ackslash \mathbf{llp}} * (n_{(\ll -1)} * f_{ackslash \mathbf{llp}})$$

The part of the product that most concerns us is $(n_{
m | llp}*n_{(\ll -1)})$

- $\bullet \;\; \text{Values for} \; n_{\text{llp}}, n_{(\ll -1)} \; \text{in} \; \{32, 64, 256\} \; \text{are not uncommon} \; !$
- $\bullet \;\; \text{Hence} \; || \backslash W_{\backslash llp} || \; \text{is often easily several thousand} \;$
- State of the art image recognition models use several hundred million weights!

How many multiplications (in the dot product) are required for layer \ll ?

- We will ignore additions (the part of the dot product that reduces pair-wise products to a scalar, and for the bias)
- Each kernel $\mathbf{k}_{\backslash \mathbf{llp},j}$ of dimension

$$(f_{\text{llp}} \times f_{\text{llp}} \times n_{(\ll -1)})$$

- Applied over each location in the $(\dim_{(\ll -1),1} imes \dim_{(\ll -1),2})$ non-featuer dimension of the input layer $(\ll -1)$
- There are $n_{
 m \ llp}$ kernels in layer \ll

So the number of multiplications

$$n_{ackslash ext{llp}} * (\dim_{(\ll -1),1} * \dim_{(\ll -1),2}) * (n_{(\ll -1)} * f_{ackslash ext{llp}})$$

Consider a grey-scale image of size $(\dim_{(\ll -1),1}*\dim_{(\ll -1),2})=(1024\times 1024)$

- Lower than your cell-phones camera!
- Easily several million multiplications

Expect the time to train a Neural Network with Convolutional layers to be long!

- That's why GPU's are important in training
- But GPU's have limited memory so space is important too
 - Can control with batch size

All of this ignores the final layer L

- Often a Fully Connected layer implementing Regression or Classification
- With n_L output features
 - ullet e.g., For Classification over classes in set C, $igvee_{(L)}$ is a One Hot Vector of length $n_L=||C||$

Suppose layer
$$(L-1)$$
 has dimension $||\mathbf{y}_{(L-1)}|| = (\dim_{(L-1),1} imes \dim_{(L-1),2} imes n_{(L-1)})$

Before we can use it as input to the Fully Connected Layer ${\cal L}$ we flatten it to a vector of length

$$(\dim_{(L-1),1} * \dim_{(L-1),2} * n_{(L-1)})$$

The number of weights (ignoring biases) and multiplications is

$$||W_L|| = n_{(L)} * (\dim_{(L-1),1} * \dim_{(L-1),2} * n_{(L-1)})$$

- ullet $n_{(L)}*n_{(L-1)}$ on the order of several thousand
- $(\dim_{(L-1),1}*\dim_{(L-1),2})$ on the order of several million, for images

This may not even be feasible!

Padding

In our examples thus far

- When a location in a non-feature dimensions of the input
- Is such that, when the kernel is placed there, it extends beyond the input
- We have added "padding"

This is not strictly necessary

- But has advantage that the size of the non-feature dimension of output $y_{||p|}$ is the same as the input $y_{||-1|}$
- One can simply *not* produce an output for such locations
- It just means the output non-feature dimension shrinks in each dimension by $f_{
 m |llp}-1$
 - Assuming f_{llp} is odd
 - The number of locations in which the kernel extends over the border
 - Is Half of the filter size $(f_{
 m llp}-1)/2$ times two (for each edge)

Stride

Thus far, we have placed the kernel over *each* location in the non-feature dimensions of the input layer.

This, along with padding, ensures that the non-feature dimension of the input and output layers are identical.

In the diagram below

- ullet N=1 non-feature dimensions; length $\dim_1=5$
- n=1 feature
- f=3 kernel size
- we slide the kernel over just the first two locations (for brevity)

Sliding the kernel over each location

$\mathbf{y}_{(l-1)}$ $\mathbf{W}_{(l),1}$ $\mathbf{W}_{(l),2}$ $\mathbf{W}_{(l),3}$ $\mathbf{y}_{(l),1}$ $\mathbf{y}_{(l),1}$

Consider two adjacent locations in the non-feature dimension of the input layer

• The values of the input layer that appear in each dot product overlap

By placing the kernel over *every other* location of the non-feature dimension of the input layer

- We may still be able to recognize features
- And reduce the size of the non-feature dimension of the output layer by a factor of 2 for each dimension.

In the diagram below

- ullet we use stride S=2
- center the kernel over every other location
- ullet reducing the size of the output non-feature dimension $\dim_1'=rac{\dim_1}{2}$

Kernel/Filter

$\mathbf{W}_{(l),1}$	$\mathbf{W}_{(l),2}$	$\mathbf{W}_{(l),3}$
----------------------	----------------------	----------------------

Kernel/Filter

In general, we can choose to choose to pass over (S-1) locations in the non-feature dimension of the input layer

- *S* is called the *stride*
- Up until now: S=1
- But you are free to choose

When the number N of non-feature dimensions is greater than ${\bf 1}$

ullet we apply the stride S to each dimension

Size of output

We can combine choices of Padding and Stride to control the size of the non-feature dimension of the output layer \ll :

Let

- $\dim_{(\ll -1),j}$ denote the number of elements in non-feature dimension j of layer $(\ll -1)$
- ullet denote the number of elements added as padding on each border
- \bullet S denote the stride
- ullet $f_{
 m |llp}$ be the size of the filter (for each non-feature dimension)

Then the number of elements in non-feature dimension j of output layer $\backslash llp$ is

$$\dim_{ackslash ext{llp},j} = rac{\dim_{(\ll -1),j} + 2P - f_{ackslash ext{llp}}}{S} + 1$$

You can see that increasing the stride has the biggest impact on reducing the size of the non-feature dimension of the output.

Pooling layer

There is a layer type with the specific purpose of changing the size of the non-feature dimension of the output.

This is called a Pooling Layer.

A Pooling Layer combines the information from adjacent locations in the non-feature dimension of the input layer.

- The "combining" operation may be average or maximum
- Sacrificing the exact location in the non-feature dimension
- Often in exchange for reduced space

Pooling:

- ullet Selects an N-dimensional region in the non-feature dimensions
 - where each dimension is of length $f_{
 m |llp}$
- Centered at each location in the non-feature dimension
 - Of a single feature map \boldsymbol{j} of the input layer $(\ll -1)$: $\mathbf{y}_{(\ll -1),\ldots,j}$

and produces a value in the corresponding location of output layer \ll

- That summarizes the selected region by applying
 - lacktriangledown pooling operation $p_{
 m \ llp}$ to the selected region
 - typical pooling operations: maximum, average

Here is an illustration of Pooling

- ullet N=2 non-feature dimensions; $\dim_1=\dim_2=4$
- ullet n=2 features
- $f_{||p|} = 2$
- ullet with $\operatorname{stride} S=2$

Conv 2D: Pooling (Max/Average)

/		

A Pooling Layer is similar in some respects to a Convolution.

Recall that the One Dimensional Convolutional Layer (Conv1d) with a single input feature computes the following for output feature/channel j:

The analogous One Dimensional Pooling Layer (Pooling1D) computes

where
$$N'(\ ig| \mathbf{y}_{(\ll -1)}, f_{ig| \mathbf{llp}}, j \)$$

- selects a subsequence of $\mathbf{y}_{(\ll -1)}$ centered at $\mathbf{y}_{(\ll -1),\ldots,j}$
- ullet of length $f_{
 m ll}_{
 m ll}_{
 m ll}$

and $p_{ackslash \mathbf{llp}}$ is a pooling operation

That is, similar to a Convolutional Layer, the Pooling Layer

- Selects a region of length $f_{
 m llp}$
- Centered at each location in the non-feature dimension of the input layer $(\ll -1)$

and produces a value in the corresponding location of output layer \ll

• That summarizes the selected region

Observe that

- There are *no* weights
- No dot product
- Just a pooling operation

Similar to Convolution, we can extend pooling to higher non-feature dimension (N>1) and higher number of input channels $n_{(\ll-1)}>1$.

Suppose the input $\mathbf{y}_{(\ll -1)}$ is (N+1) dimensional of shape $||\mathbf{y}_{(\ll -1)}|| = (\dim_{(\ll -1),1} imes \dim_{(\ll -1),2} imes \ldots \dim_{(\ll -1),N} imes n_{(\ll -1)})$

Pooling with a stride S>1

- "Down samples" the non-feature dimension
- Sacrificing some information about locality

It effectively asks the question

• Does the feature exist in a broader neighborhood of the non-feature dimension

The key difference between Pooling and Convolution (other than the absence of the dot product and kernel weights)

- The pooling operation is applied to each input feature map *separately*
- Versus all the input feature maps at a given location in the non-feature dimension of the input

Pooling operations

- Max pooling
 - Maximum over the selected region
 - Good for answering the question: "Does the feature exist" in the neighborhood
- Average pooling
 - average over the selected region
 - "blurs" the location in the non-feature dimension when it is unimportant or highly variable

Global Pooling

Each feature map j of the input layer $(\mathbf{y}_{(\ll -1),\dots,j})$

- Is summarized by a single value produced by Max Pooling operation p'_{llp}
- *eliminating* the non-feature dimensions
- preserving the number of features

$$ackslash \mathbf{y}_{ackslash \mathbf{llp},j} = p_{ackslash \mathbf{llp}}'(ackslash \mathbf{y}_{(\ll -1),\ldots,j})$$

Conv 2D: Global Pooling (Max/Average)

Notice that each input feature map has been reduced to a single value in the output.

• No non-feature dimension in $y_{||p|}$ (hence no "...")

The Global Pooling operation effectively asks the question

- Does the feature occur anywhere in the feature map?
- Losing information about the exact location in the non-feature dimensions

Global pooling operations

- Global average pooling
 - Maximum over the feature map
- K-Max pooling
 - lacktriangleright replace one dimension of the volume with the K largest elements of the dimension

Kernel size 1

A less obvious way to control the size of $igl y_{igl| igl| igr}$ is to use a kernel with $f_{igr| igl| igr} = 1$

Why might that be?

Recall that a Convolutional Layer

- Preserves the non-feature dimension
- Replaces the channel/feature dimension (number of feature maps)

```
That is\
||\mathbf{y}_{(\ll-1)}|| = (\dim_{(\ll-1),1} \times \dim_{(\ll-1),2} \times \dots \dim_{(\ll-1),N}, \quad \mathbf{n}_{(\ll-1)})
||\mathbf{y}_{||\mathbf{b}}|| = (\dim_{(\ll-1),1} \times \dim_{(\ll-1),2} \times \dots \dim_{(\ll-1),N}, \quad \mathbf{n}_{||\mathbf{b}})
```

A single kernel of size $f_{
m lue{llp}}=1$ in all N non-feature dimensions

- ullet replaces the $n_{(\ll -1)}$ features at each location
- with a sum of the features (weighted by the kernel value corresponding to that feature)

With $n_{
m |llp}$ such kernels at layer \ll , each with $f_{
m |llp}=1$

- ullet the convolution changes the feature dimension from $n_{(\ll -1)}$ to $n_{
 m |llp}$
- without performing any substantial pattern match

Setting n_{llp} much less than $n_{(\ll -1)}$ is thus a convenient way to reduce the feature dimension.

Receptive field

The filter size f_{llp} also plays a role in the space and time requirements of a Convolutional Layer.

It turns out that

- We can achieve the effect of a large $f_{
 m |llp}$
- ullet With a smaller $f_{
 m llp}$ in conjunction with *more* Convolutional Layers

Let's demonstrate this by examining the concept of <u>Receptive field</u> (<u>CNN_Receptive_Field.ipynb</u>)

Review: Controlling the size

Let's summarize our knowledge of controlling the size of $\mathbf{y}_{(\ll -1)}$:

- Controlling the size of non-feature dimensions
 - Increase stride
 - Pooling
 - Global average pooling often used in final Convolutional Layer
- Control number of feature maps per layer
 - Choice of $n_{\text{llp},1}$
 - Kernel size $f_{||} = 1$
 - preserve non-feature dimension
 - $\circ \;\;$ change number of feature maps from $n_{(\ll -1),1}$ to $n_{\c|p,1}$

Striding and Pooling

- increase receptive field
- typically small values (e.g., S=2)
 - limited reduction

Kernel size
$$f_{
m lue{llp}}=1$$

ullet reduction depends on the ratio of $n_{
m ullet llp}$ to $n_{(\ll -1)}$

Interfacing with other layer types

The CNN layer type is the only one (so far) that accepts inputs with non-feature dimensions.

Before we can append

- the output of a CNN layer
 - has non-feature dimensions
- to a layer type that does not process inputs with non-feature dimensions

we must eliminate the non-feature dimension of the CNN layer output.

Two common layer types that eliminate the non-feature dimensions are

- Flatten
- Global Pooling variants (Average, Max)

Note that

- Flatten does not reduce the size
 - each element of the non-feature dimension becomes a feature in the flattened representation
- Global pooling does reduce the size
 - the collection of elements are replaced by a scalar summary (average, max)

If the size if not reduced

• the number of parameters in subsequent layers may be very large.

Consider

- ullet appending a Classifier (e.g., **Dense** layer with $n_{(L)}$ output classes)
- to the output (after removing non-feature dimensions) of the CNN layers
 - call the size $n_{
 m CNN}$

The number of parameters in the Classifier layer is

$$n_{\mathrm{CNN}}*n_{(L)}$$

Thus not reducing n_{CNN} affects the parameter count of succeeding layers.

CNN advantages/disadvantages

Advantages

- Translational invariance
 - feature can be anywhere
- Locality
 - feature depends on nearby features, not the entire set of features
 - reduced number of parameters compared to a Fully Connected layer

Disadvantages

- Output feature map is roughly same size as input
 - lots of computation to compute a single output feature
 - one per feature of input map
 - higher computation cost
 - training and inference
- Translational invariance not always a positive

How many feature maps to use (What value to choose for $n_{||p}$)

Bag of Tricks for Image Classification with CNNs (https://arxiv.org/abs/1812.01187)

Remember that a larger value for $n_{
m |llp}$ will increase space and time requirements.

One rule of thumb:

- For N=2
- With filter size f_{llp}
- The number of elements in the non-feature dimension of input $\mathbf{y}_{(\ll -1)}$ involved in the dot product is

$$e = (n_{(\ll -1)} * f_{\ | \ | \ |} * f_{\ | \ |})$$

- It may not make sense to create *more* than e output features $n_{
 m |llp}>e$
 - We would generate more features than input elements

Inverting convolution

The typical flow for multiple layers of Convolutions

- Is for the non-feature dimension of successive layers to get smaller
- By using stride S>1
- By using Pooling Layers

This brings up the question: Can we invert the process?

• That is, go from a smaller non-featue dimension back to the non-feature dimension of input layer 0

The answer is yes.

This process is sometimes called *Deconvolution* or *Transposed Convolution*.

- In a Deeper Dive, we relate Convolution to Matrix Multiplication
- So the inverting matrix's *dimensions* are the transpose of the matrix implementing the convolution

We will revisit this in the lecture addressing "What is a CNN looking for?"

Technical points

Convolution versus Cross Correlation

- math definition of convolution
 - dot product of input and reversed filter
 - we are doing <u>cross correlation</u>
 (<u>https://en.wikipedia.org/wiki/Convolution</u>)

```
In [4]: print("Done")
```

Done