Reification by Parametricity

Fast Setup for Proof by Reflection, in Two Lines of Ltac

ITP 2018

Reification

a technique for making proofs check faster (and also more predictably)

Time Spent in my PhD

Reification by Parametricity

or

"A solution to

'my technique for making my proofs check faster is too slow'."

Outline

- Introduction
 - What is proof?
 - When is proof slow?
 - What is proof by reflection?
 - What is reification?
 - When is reification slow or complicated?
- Reification by parametricity
 - What is it?
 - What's special about it?
- What's left?

What is proof?

```
Inductive is even : nat → Prop :=
|even O :is even O
| even SS: \forall x, is even x \rightarrow is even (S(Sx)).
Theorem is even two: is even 2.
Proof. repeat constructor. Qed.
Print is even two.
```

(* is even two = even SS 0 even 0 *)

When is proof slow?

```
Goal is even 9002.
  Time repeat constructor.
    (* 55.966 secs *)
Qed.
Goal is even
  (let x := 100 * 100 * 100 * 100 in
   let y := x * x * x * x in
   y * y * y * y).
 cbv. (* stack overflow *)
Abort.
```

Why is proof slow?

```
Goal is even 9002.
  Time repeat constructor.
    (* 55.966 secs *)
  Show Proof.
  (*even SS 9000 (even SS 8998 ... )*)
 Set Printing All. Check 9002.
  (*S (S (S (S (S (S ... ))))):nat*)
```

```
Inductive is ever
                           nat → Prop :=
|even_O:is_even_leven_SS:∀x,is_ven_
                             \rightarrow is even (S (S x)).
Fixpoint check is even (n : nat) : bool
   := match n with
       | 0 \Rightarrow true
       | S n' \Rightarrow \neg check is even n'
      end.
```

```
Theorem soundness
 : \forall n, check is even n = true \rightarrow is even n.
Goal is even 9002.
 Time repear ructor. (*55.966 s *)
 Undo.
 Time apply soundness; vm compute;
   reflexivity. (* 0.035 s *)
```

Theorem soundness

```
: \forall n, check is even n = true \rightarrow is even n.
Goal is even 9002.
 Time apply soundness; vm compute;
   reflexivity. (* 0.035 secs *)
 Show Proof.
 (* soundness 9002 eq refl *)
```

```
Theorem soundness
 : \forall n, check is even n = true \rightarrow is even n.
Goal is even
        (10*10*10*10*10*10*10*10*10).
 Time apply soundness; vm compute;
         reflexivity.
 (* 174.322 secs *)
```

What is reification?

```
Fixpoint check is ex
                              : nat) : bool
  := match n with
      | 0 ⇒ true
      \mid S n' \Rightarrow \neg ch
                             even n'
     end.
Fixpoint check is even (n : expr)
      : bool
  := match n with
       NatO ⇒ true
        NatS n' ⇒ ¬ check is even n'
        NatMul x y \Rightarrow
         check is even x | | check is even y
     end.
```

What is reification?

```
Inductive expr :=
  NatO: expr
                                Requires
 NatS: expr → expr
                           metaprogramming!
| NatMul : expr → exp
Reify : nat → exp
Reify O
Reify (S n) := NatS (Reify n)
Reify (x*y) \stackrel{\longleftarrow}{:} NatMul (Reify x) (Reify y)
```

What is reification?

Example in Ltac:

```
Ltac reify term :=
  lazymatch term with
    0 => Nat0
  \mid S ?x => let rx := reify x in
             constr: (NatS rx)
  | ?x * ?y => let rx := reify x in
                let ry := reify y in
                constr: (NatMul rx ry)
  end.
```

When is reification complicated?

When binders show up

```
Inductive expr {var : Set} :=
| NatO : expr
| NatS : expr → expr
| NatMul : expr → expr → expr
| Var : var → expr
| LetIn : expr → (var → expr) → expr
```

When is reification complicated?

```
Reify : nat → expr
Reify 0 := Nat0
Reify (S n) := NatS (Reify n)
Reify (x*y) := NatMul (Reify x) (Reify y)
Reify (let x := v in f)
  := LetIn (Reify v)
            (\lambda \times : var, Reify f)
```

Ltac alone admits seven(!) variants of recursing under

binders.

When is reification slow?

When is reification slow?

On big terms

When is reification slow?

On big terms with many binders

Reification by Parametricity

What is reification by parametricity?

Key idea:

The initial and reified terms have the same shape.

Initial term:

 $1 \times 1 = Nat.mul (S O) (S O)$

Reified term:

NatMul (NatS NatO)

(NatS NatO)

What is reification by parametricity?

Key idea:

The initial and reified terms have the same shape.

We can abstract or generalize to get this shape, and specialize or substitute to reify.

What is reification by parametricity?

 Λ N. λ (MUL: N \rightarrow N \rightarrow N) (O: N) (S: N \rightarrow N). MUL (S O) (S O)

Reification by Parametricity: What's special about it?

Concise

Fast

Powerful

open Ltac plugin

OCaml Reification:

```
(*i camlp4deps: "parsing/grammar.cma" i*)
(*i camlp4use: "pa extend.cmp" i*)
open Names
let rec unsafe reify helper
        (mkVar : Constr.t -> 'a)
        (mkO : 'a)
        (mkS : 'a -> 'a)
        (mkOp : 'a -> 'a -> 'a)
        (mkLetIn : 'a -> Name.t -> Constr.t -> 'a -> 'a)
        (gO : Constr.t)
        (as : Constr.t)
        (gOp : Constr.t)
        (gLetIn : Constr.t)
        (unrecognized : Constr.t -> 'a)
        (term : Constr.t)
      let reify rec term =
        unsafe reify helper
          mkVar mkO mkS mkOp mkLetIn gO gS gOp gLetIn unrecognized term in
      let kterm = Constr.kind term in
      if Constr.equal term gO
      then mkO
      else begin match kterm with
      \mid Term.Rel \_ -> mkVar term
      | Term.Var -> mkVar term
      | Term.Cast (term, _, _) -> reify_rec term
      | Term.App (f, args)
        if Constr.equal f gS
        then let x = Array.get args 0 in
             let rx = reify rec x in
             mkS rx
        else if Constr.equal f gOp
        then let x = Array.get args 0 in
             let y = Array.get args 1 in
             let rx = reify rec x in
             let ry = reify rec y in
             mkOp rx ry
        else if Constr.equal f gLetIn
        then let x = Array.get args 2 (* assume the first two args are type
params *) in
             let f = Array.get args 3 in
             begin match Constr.kind f with
             | Term.Lambda (idx, ty, body)
               -> let rx = reify rec x in
                  let rf = reify rec body in
                  mkLetIn rx idx ty rf
               -> unrecognized term
         else unrecognized term
        -> unrecognized term
      end
let unsafe reify
        (cVar : Constr.t)
        (c0 : Constr.t)
```

```
(cS : Constr.t)
                                                                               open Stdarg
        (cOp : Constr.t)
                                                                               open Tacaro
        (cLetIn : Constr.t)
                                                                               open Names
        (dO : Constr.t)
        (qS : Constr.t)
        (qLetIn : Constr.t)
                                                                               open Misctypes
        (var : Constr.t)
                                                                               open Tacinterp
        (term : Constr.t) : Constr.t =
    let mkApp0 (f : Constr.t) =
                                                                               let ltac lcall tac args =
        Constr.mkApp (f, [| var |]) in
    let mkApp1 (f : Constr.t) (x : Constr.t) =
        Constr.mkApp (f, [| var ; x |]) in
    let mkApp2 (f : Constr.t) (x : Constr.t) (y : Constr.t) =
        Constr.mkApp (f, [| var ; x ; y |]) in
    let mkVar (v : Constr.t) = mkAppl cVar v in
    let mkO = mkApp0 cO in
    let mkS (v : Constr.t) = mkApp1 cS v in
    let mkOp (x : Constr.t) (y : Constr.t) = mkApp2 cOp x y in
    let mkcLetIn (x : Constr.t) (y : Constr.t) = mkApp2 cLetIn x y in
    let mkLetIn (x : Constr.t) (idx : Name.t) (ty : Constr.t) (fbody :
        = mkcLetIn x (Constr.mkLambda (idx, var, fbody)) in
    let ret = unsafe reify helper
               mkVar mkO mkS mkOp mkLetIn gO gS gOp gLetIn
               (fun term -> term)
let unsafe Reify
        (cVar : Constr.t)
        (cO : Constr.t)
        (cS : Constr.t)
        (cOp : Constr.t)
        (cLetIn : Constr.t)
        (gO : Constr.t)
        (gS : Constr.t)
        (gOp : Constr.t)
        (gLetIn : Constr.t)
        (idvar : Id.t)
        (varty : Constr.t)
        (term : Constr.t) : Constr.t =
    let fresh set = let rec fold accu c = match Constr.kind c with
     | _ -> Constr.fold fold accu c
in
      | Constr.Var id -> Id.Set.add id accu
      fold Id.Set.empty term in
    let idvar = Namegen.next ident away from
                  idvar
                  (fun id -> Id.Set.mem id fresh set) in
    let var = Constr.mkVar idvar in
    let rterm = unsafe reify cVar cO cS cOp cLetIn gO gS gOp gLetIn var term END;;
    let rterm = Vars.substn vars 1 [idvar] rterm in
    Constr.mkLambda (Name.Name idvar, varty, rterm)
DECLARE PLUGIN "reify"
```

```
(** Stolen from plugins/setoid ring/newring.ml *)
(* Calling a locally bound tactic *)
 TacArg(Loc.tag @@ TacCall (Loc.tag (ArgVar(Loc.tag @@ Id.of string
let ltac apply (f : Value.t) (args: Tacinterp.Value.t list) =
 let fold arg (i, vars, lfun) =
   let id = Id.of string ("x" ^ string of int i) in
    let x = Reference (ArgVar (Loc.tag id)) in
    (succ i, x :: vars, Id.Map.add id arg lfun)
  let ( , args, lfun) = List.fold right fold args (0, [], Id.Map.empty) in
  let lfun = Id.Map.add (Id.of string "F") f lfun in
  let ist = { (Tacinterp.default_ist ()) with Tacinterp.lfun = lfun; } in
  Tacinterp.eval tactic ist ist (ltac lcall "F" args)
let to ltac val c = Tacinterp.Value.of constr c
TACTIC EXTEND quote_term_cps
   | [ "quote term cps" "[" ident(idvar) "," constr(varty) "]"
          constr(cVar) constr(cO) constr(cS) constr(cOp) constr(cLetIn)
         constr(gO) constr(gS) constr(gOp) constr(gLetIn)
         constr(term) tactic(tac) ] ->
      [ (** quote the given term, pass the result to t **)
  Proofview.Goal.enter begin fun gl ->
         let (*env*) = Proofview.Goal.env gl in
         let c = unsafe Reify
                   (EConstr.Unsafe.to constr cVar)
                   (EConstr.Unsafe.to constr cO)
                   (EConstr.Unsafe.to constr cS)
                   (EConstr.Unsafe.to constr cOp)
                   (EConstr.Unsafe.to constr cLetIn)
                   (EConstr.Unsafe.to_constr gO)
                   (EConstr.Unsafe.to constr gS)
                   (EConstr.Unsafe.to constr gOp)
                   (EConstr.Unsafe.to constr gLetIn)
                   (EConstr.Unsafe.to constr varty)
                   (EConstr.Unsafe.to_constr term) in
         ltac apply tac (List.map to ltac val [EConstr.of constr c])
```

Ltac Reification:

```
Definition var for {var : Type} (n : nat) (v : var) := False.
Ltac reify var term :=
  let reify rec term := reify var term in
  lazymatch goal with
  | [ H : var for term ?v |- ] => constr:(@Var var v)
    lazymatch term with
   | 0 => constr: (@NatO var)
    | S ?x => let rx := reify rec x in constr:(@NatS var rx)
    | ?x * ?y => let rx := reify rec x in let ry := reify rec y in constr:(@NatMul var rx ry)
    \mid (dlet x := ?v in ?f)
      => let rv := reify rec v in
         let not x := fresh in
         let not x2 := fresh in
         let rf := lazymatch constr:(
                 fun (x : nat) (not x : var) ( : @var_for var x not_x)
                 => match f return @expr var with
                    | not x2
                      => ltac:(let fx := (eval cbv delta [not x2] in not x2) in
                               clear not x2;
                               let rf := reify rec fx in
                               exact rf)
                    end) with
             | fun _ v' _ => @?f v' => f
             | ?f => error cant elim deps f
             end in
         constr:(@LetIn var rv rf)
    | ?v => error bad term v
    end
  end.
```

Typeclass-based Reification:

```
Local Generalizable Variables x y rx ry f rf.
Section with var.
  Context {var : Type}.
  Class reify of (term : nat) (rterm : @expr var) := {}.
  Global Instance reify NatMul `{reify of x rx, reify of y ry}
    : reify of (x * y) (rx * ry).
  Global Instance reify LetIn `{reify of x rx}
         `{forall y ry, reify of y (Var ry) -> reify of (f y) (rf ry)}
    : reify of (dlet y := x \text{ in } f y) (elet ry := rx \text{ in } rf ry).
  Global Instance reify S `{reify of x rx}
    : reify of (S x) (NatS rx).
  Global Instance reify O
    : reify of O NatO.
End with var.
Ltac Reify x :=
  let c := constr:(fun var => ( : @reify of var x )) in
  lazymatch type of c with
  | forall var, reify_of _ (@?rx var) => rx
  end.
```

Reification by Parametricity:

```
Ltac reify var x :=
match(eval pattern nat, O, S, Nat.mul in x)with ?rx _ _ _ ⇒
constr:(rx (@expr var) NatO NatS NatMul) end.
```

Reification by Parametricity (with binders):

```
Ltac reify var x := match(eval pattern nat, 0, S, Nat.mul, (@Let_In nat nat) in x)with ?rx \_ \_ \_ = \Rightarrow constr:(rx (@expr var) NatO NatS NatMul (\lambda x' f', LetIn x' (\lambda v, f' (Var v)))) end.
```

Reification by Parametricity:

```
1. let x := constr: (1 * 1) in
2. let x := (eval pattern nat, O, S, Nat.mul in x) in
3. let x := match x with ?rx \Rightarrow rx end in
4. let x := constr:(x (@expr var) NatO NatS NatMul) in
5. let x := (eval cbv beta in x) in
   Х
1. x = 1 * 1
2. x = ((\lambda N \circ s m, m (s \circ) (s \circ)) \text{ nat } 0 \text{ S Nat.mul})
3. x = (\lambda N \circ s m, m (s \circ) (s \circ))
4. x = ((\lambda N \circ s m, m (s \circ) (s \circ)) expr NatO NatS NatMul)
5. x = NatMul (NatS NatO) (NatS NatO)
```

Reification by Parametricity: It's Fast

Reification by Parametricity: It's Fast

Reification by Parametricity: It's Fast (TODO: Make 8.8 Graph)

We can commute reduction and reification.

```
dlet x_1 \coloneqq 1 \times 1 in
dlet x_2 \coloneqq x_1 \times x_1 in
dlet x_3 \coloneqq x_2 \times x_2 in
...
dlet x_{100} \coloneqq x_{99} \times x_{99} in
x_{100}
```

big 1 100

```
Inductive count :=
| none | one more (how many : count).
Fixpoint big (x:nat) (n:count) : nat
  := match n with
     | none => x
     one more n'
      => dlet x' := x * x in
         big x' n'
     end.
```

```
Rather than reifying
    dlet x_1 := 1 \times 1 in
    dlet x_2 := x_1 \times x_1 in
    dlet x_3 := x_2 \times x_2 in
    dlet x_{100} := x_{99} \times x_{99} in
    x_{100}
We can instead reify:
     (\lambda (x : \mathbb{N}) (n : \text{count}).
      count_rec (\mathbb{N} \to \mathbb{N}) (\lambda x. x) (\lambda n' big<sub>n'</sub> x.
           dlet x' := x \times x \text{ in } big_{n'}(x')) 1 100
```

100 (NatS NatO)

```
Initial term:
     count_rec (\mathbb{N} \to \mathbb{N}) (\lambda x. x) (\lambda n' \text{ big}_{n'} x.
            dlet x' := x \times x \text{ in } big_{n'} x') 100 1
Abstracted term:
     Λ N. λ MUL O S LETIN.
         count_rec (N \rightarrow N) (\lambda x. x) (\lambda n' big<sub>n'</sub> x.
        LETIN (MUL x x) (\lambda x'. big<sub>n'</sub> x')) 100 (S O)
Reified term:
     count_rec (expr \rightarrow expr) (\lambda x. x)
     (\lambda n' \operatorname{big}_{n'} x. \operatorname{LetIn} (\operatorname{NatMul} x x) (\lambda x'. \operatorname{big}_{n'} (\operatorname{Var} x')))
```

39

What's left?

- Nuances of handling language primitives
 - $\forall/\Pi/\rightarrow$, let ... in ..., match/fix handled by wrapping
 - Top-level λ ad-hoc handling
 - Non top-level λ handled nearly automatically
 - See paper or ask me for details
- Commuting $\beta\iota$ reduction with denotation-correctness proof
 - Seems to require parametricity
 - Future work!

Takeaways (if things went well)

- Reification is useful for making proofs check faster
- Reification by parametricity is
 - based on the insight that reification preserves shape
 - concise
 - powerful (can commute reduction and reification)
 - fast

Thank you Any questions?

Reification and benchmarking code and data available at https://github.com/mit-plv/reification-by-parametricity