Announcement

Midterm

- Time: Nov. 4, in class
 - Will be postponed if offline classes are still not allowed by then.
- Location: TBA
- Format
 - Closed-book. You can bring an A4-size cheat sheet and nothing else.
 - Around 5 problems
- Grade
 - 25% of the total grade

Three types of (strong) Al approaches

Probability

AIMA Chapter 13

Uncertainty

- My flight to New York is scheduled to leave at 11:25
 - Let action A_t = leave home t minutes before flight and drive to the airport
 - Will A_t ensure that I catch the plane?

Problems:

- noisy sensors (radio traffic reports, Google maps)
- uncertain action outcome (car breaking down, accident, etc.)
- partial observability (other drivers' plans, etc.)
- immense complexity of modelling and predicting traffic, security line, etc.

Probability

Probability

• Given the available evidence and the choice A_{120} , I will catch the plane with probability 0.92

Subjective or Bayesian probability:

- Probabilities relate propositions to one's own state of knowledge
 - ignorance: lack of relevant facts, initial conditions, etc.
 - laziness: failure to list all exceptions, compute detailed predictions, etc.
- Not claiming a "probabilistic tendency" in the actual situation (traffic is not like quantum mechanics)

Decisions

- Suppose I believe
 - $P(CatchPlane \mid A_{60}, all my evidence...) = 0.51$
 - $P(CatchPlane \mid A_{120}, all my evidence...) = 0.97$
 - $P(CatchPlane \mid A_{1440}, all my evidence...) = 0.9999$
- Which action should I choose?
- Depends on my preferences for, e.g., missing flight, airport food, etc.
- Utility theory is used to represent and infer preferences
- Decision theory = utility theory + probability theory
- Maximize expected utility : $a^* = argmax_a \sum_s P(s \mid a) U(s)$

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the pacman?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - D in $[0, \infty)$
 - L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

- Associate a probability with each value of a random variable
 - Temperature:

_	P(T)			
	T P			
	hot	0.5		
	cold	0.5		

Weather:

P(W)

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

A probability is a single number

$$P(W = rain) = 0.1$$

$$P(W = rain) = 0.1$$
 Shorthand notation: $P(rain) = P(W = rain)$,

• Must have:
$$\forall x \ P(X=x) \ge 0$$
 and $\sum_x P(X=x) = 1$

Joint Distributions

• A *joint distribution* over a set of random variables: $X_1, X_2, ... X_n$ specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

 $P(x_1, x_2, \dots x_n)$

• Must obey: $P(x_1, x_2, \dots x_n) \geq 0$

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Size of distribution for n variables with domain size d?
 - For all but the smallest distributions, cannot write out by hand!

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
 - (Random) variables with domains
 - Joint distributions: say whether assignments (outcomes) are likely
 - Ideally: only certain variables directly interact

Distribution over T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Constraint satisfaction problems:

- Variables with domains
- Constraints: state whether assignments are possible
- Ideally: only certain variables directly interact

Constraint over T,W

Т	W	Р
hot	sun	Т
hot	rain	F
cold	sun	F
cold	rain	Т

Probabilities of events

An event is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- Given a joint distribution over all variables, we can compute any event probability!
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(t) = \sum_{w} P(t, w)$$

$$P(w) = \sum_{t} P(t, w)$$

D	(7	7)
1	$(\tau$)

Τ	Р
hot	0.5
cold	0.5

P	(\overline{W}	
	•		

W	Р
sun	0.6
rain	0.4

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

Conditional Probabilities

The probability of an event given that another event has occurred

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Joint Distribution

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Conditional Distributions

F)(W	T	=	hot	١

W	Р
sun	0.8
rain	0.2

$$P(W|T=cold)$$

W	Р
sun	0.4
rain	0.6

Probabilistic Inference

- Probabilistic inference
 - compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - These represent the agent's beliefs given the evidence
 - P(on time | no reported accidents) = 0.90

Inference by Enumeration

General case:

Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ Query variable: Q Hidden variables: $H_1 \dots H_r$

We want:

$$P(Q|e_1 \dots e_k)$$

Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Inference by Enumeration

- 1. Select the entries consistent with the evidence
- 2. Sum out H to get joint of Query and evidence
- 3. Normalize

- P(W | winter)? sun: 0.5, rain: 0.5
- P(W | winter, hot)? sun: 0.67, rain: 0.33

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

- Obvious problems:
 - Worst-case time complexity O(dⁿ)
 - Space complexity O(dⁿ) to store the joint distribution

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(y)P(x|y) = P(x,y) \iff P(x|y) = \frac{P(x,y)}{P(y)}$$

The Product Rule

$$P(y)P(x|y) = P(x,y)$$

Example:

P(W)

W	Р
sun	0.8
rain	0.2

P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

P(D,W)

D	W	Р
wet	sun	
dry	sun	
wet	rain	
dry	rain	

The Chain Rule

 More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$
$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i|x_1 \dots x_{i-1})$$

Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we'll see later
- In the running for most important AI equation!

Inference with Bayes' Rule

Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

- Example:
 - M: meningitis, S: stiff neck

$$P(+m) = 0.0001$$

$$P(+s|+m) = 0.8$$
 Example givens
$$P(+s|-m) = 0.01$$

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.9999}$$

Bayesian Networks

AIMA Chapter 14.1, 14.2

Additional Reference

- [PRML] Pattern Recognition and Machine Learning, Christopher Bishop, Springer 2006.
 - Chapter 8.1 8.3

Probabilistic Models

- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: making decisions based on expected utility
- How do we build models, avoiding the dⁿ blowup?

Independence

Independence

Two variables X and Y are (absolutely) independent if

$$\forall x,y \qquad P(x,y) = P(x)P(y)$$

- This says that their joint distribution factors into a product of two simpler distributions
- Combine with product rule P(x,y) = P(x|y)P(y) we obtain another form:

$$\forall x,y \ P(x|y) = P(x)$$
 or $\forall x,y \ P(y|x) = P(y)$

- Example: two dice rolls Roll₁ and Roll₂
 - $P(Roll_1=5, Roll_2=5) = P(Roll_1=5)P(Roll_2=5) = 1/6 \times 1/6 = 1/36$
 - $-P(Roll_2=5 \mid Roll_1=5) = P(Roll_2=5)$

Conditional Independence

- Unconditional (absolute) independence is rare
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- lacksquare X is conditionally independent of Y given Z $X \!\perp\!\!\!\perp \!\!\!\perp \!\!\!\perp Y | Z$

```
if and only if:

\forall x,y,z \qquad P(x \mid y,z) = P(x \mid z)
or, equivalently, if and only if
\forall x,y,z \qquad P(x,y \mid z) = P(x \mid z)P(y \mid z)
```

Conditional Independence

- What about this domain:
 - Fire
 - Smoke
 - Alarm (smoke detector)

Conditional Independence

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

Conditional Independence and the Chain Rule

• Chain rule: $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$

Trivial decomposition:

$$P(\mathsf{Traffic}, \mathsf{Rain}, \mathsf{Umbrella}) = P(\mathsf{Rain})P(\mathsf{Traffic}|\mathsf{Rain})P(\mathsf{Umbrella}|\mathsf{Rain}, \mathsf{Traffic})$$

With assumption of conditional independence:

$$P(\mathsf{Traffic}, \mathsf{Rain}, \mathsf{Umbrella}) = P(\mathsf{Rain})P(\mathsf{Traffic}|\mathsf{Rain})P(\mathsf{Umbrella}|\mathsf{Rain})$$

Requires less space to encode!

BayesNets / graphical models help us express conditional independence assumptions

Bayesian Networks: Big Picture

Bayesian Networks: Big Picture

- Full joint distribution tables answer every question, but:
 - Size is exponential in the number of variables
 - Need gazillions of examples to learn the probabilities
 - Inference by enumeration (summing out hiddens) is too slow

- Express all the conditional independence relationships in a domain
- Factor the joint distribution into a product of small conditionals
- Often reduce size from exponential to linear
- Faster learning from fewer examples
- Faster inference (linear time in some important cases)

Bayesian Networks Syntax

Bayesian Networks Syntax

- Nodes: variables (with domains)
- Arcs: interactions
 - Indicate "direct influence" between variables
 - For now: imagine that arrows mean direct causation (in general, they may not!)
 - Formally: encode conditional independence (more later)

No cycle is allowed!

Example: Coin Flips

N independent coin flips

No interactions between variables: absolute independence

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic
- Model 1: independence

Model 2: rain causes traffic

Example: Alarm Network

Variables

■ B: Burglary

A: Alarm goes off

M: Mary calls

■ J: John calls

■ E: Earthquake!

Bayesian Networks Syntax

- A directed, acyclic graph
- Conditional distributions for each node given its *parent variables* in the graph
 - CPT: conditional probability table: each row is a distribution for child given a configuration of its parents
 - Description of a noisy "causal" process

$$P(X|A_1,\cdots,A_n)$$

A Bayes net = Topology (graph) + Local Conditional Probabilities

Example: Coin Flips

$$P(X_1)$$

h	0.5
t	0.5

 $P(X_2)$

h	0.5
t	0.5

$$P(X_n)$$

h	0.5
t	0.5

Example: Traffic

Example: Alarm Network

Number of free parameters in each CPT:

Parent domain sizes

$$d_1, \dots, d_k$$

- Child domain size d
- Each table row must sum to 1

$$(d-1) \Pi_i d_i$$

General formula for sparse BNs

- Suppose
 - n variables
 - Maximum domain size is d
 - Maximum number of parents is k
- Full joint distribution has size $O(d^n)$
- Bayes net has size $O(n \cdot d^{k+1})$
 - Linear scaling with n as long as causal structure is local

Bayesian Networks Semantics

Bayesian networks global semantics

Bayes nets encode joint distributions as product of conditional distributions on each variable:

$$P(X_1,...,X_n) = \prod_i P(X_i \mid Parents(X_i))$$

 $P(b,\neg e, a, \neg j, \neg m) =$ $P(b) P(\neg e) P(a|b,\neg e) P(\neg j|a) P(\neg m|a)$

=.001x.998x.94x.1x.3=.000028

Probabilities in BNs

- Global semantics: $P(X_1,...,X_n) = \prod_i P(X_i \mid Parents(X_i))$
- Chain rule (valid for all distributions): $P(X_1,...,X_n) = \prod_i P(X_i \mid X_1,...,X_{i-1})$
- So for any i, we have: $P(X_i \mid X_1,...,X_{i-1}) = P(X_i \mid Parents(X_i))$
 - Conditional independence: parents "shield" node X_i from the other predecessors
- So the network topology implies that certain conditional independencies hold

Conditional independence semantics

- Every variable is conditionally independent of its non-descendants given its parents
- Conditional independence semantics <=> global semantics

Markov blanket

- A variable's Markov blanket consists of parents, children, children's other parents
- Every variable is conditionally independent of all other variables given its Markov blanket

- JohnCalls independent of Burglary given Alarm?
 - Yes
- JohnCalls independent of MaryCalls given Alarm?
 - Yes
- Burglary independent of Earthquake?
 - Yes

- Burglary independent of Earthquake given Alarm?
 - NO!
 - Given that the alarm has sounded, both burglary and earthquake become more likely
 - But if we then learn that a burglary has happened, the alarm is explained away and the probability of earthquake drops back
- Burglary independent of Earthquake given JohnCalls?
- Any simple algorithm to determine conditional independence?

V-structure

D-separation

Causal Chains

This configuration is a "causal chain"

Global semantics:

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

- Guaranteed X independent of Z? No!
- Guaranteed X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

$$= P(z|y)$$
Yes!

Evidence along the chain "blocks" the influence

Common Cause

This configuration is a "common cause"

Global semantics:

$$P(x, y, z) = P(y)P(x|y)P(z|y)$$

- Guaranteed X independent of Z? No!
- Guaranteed X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$
Yes!

 Observing the cause blocks influence between effects.

Common Effect

Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

D-separation - the General Case

Active / Inactive Paths

- Question: X, Y, Z are non-intersecting subsets of nodes. Are X and Y conditionally independent given Z?
- A triple is active in the following three cases
 - Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
 - Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
 - Common effect (aka v-structure)
 A → B ← C where B or one of its descendents is observed
- A path is active if each triple along the path is active
- A path is blocked if it contains a single inactive triple
- If all paths from X to Y are blocked, then X is said to be "d-separated" from Y by Z
- If d-separated, then X and Y are conditionally independent given Z

Active Triples

Inactive Triples

$$L \! \perp \! \! \perp \! \! T' | T$$
 Yes

$$L \bot\!\!\!\bot B$$
 Yes

$$L \! \perp \! \! \perp \! \! B | T$$

$$L \perp \!\!\! \perp B \mid T$$

 $L \perp \!\!\! \perp B \mid T'$

$$L \! \perp \! \! \perp \! \! B | T, R$$
 Yes

Variables:

R: Raining

■ T: Traffic

■ D: Roof drips

S: I'm sad

• Questions:

Node Ordering

Example: Traffic

Causal direction

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example: Reverse Traffic

Reverse causality?

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example: Burglary

2 edges, 6 free parameters

Example: Burglary

Burglary

Earthquake

Α	P(B A)	
	true	false
true		
false		

false

false

false

3 edges, 7 free parameters

Causality?

- When Bayes nets reflect the true causal patterns: (e.g., Burglary, Earthquake, Alarm)
 - Often simpler (fewer parents, fewer parameters)
 - Often easier to assess probabilities
 - Often more robust: e.g., changes in frequency of burglaries should not affect the rest of the model!
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Umbrella*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence: $P(X_i \mid X_1,...,X_{i-1}) = P(X_i \mid Parents(X_i))$

Example Application: Topic Modeling

Introduction

- A large body of text available online
 - It is difficult to find and discover what we need.
- Topic models
 - Approaches to discovering the main themes of a large unstructured collection of documents
 - Can be used to automatically organize, understand, search, and summarize large electronic archives
 - Latent Dirichlet Allocation (LDA) is the most popular

Plate Notation

Representation of repeated subgraphs in a Bayesian network

Plate Notation

Representation of repeated subgraphs in a Bayesian network

Plate Notation

Representation of repeated subgraphs in a Bayesian network


```
distribution over words for each topic

e.g., sports: [0.1, 0.3, 0.2, ...]
arts: [0.2, 0.3, 0.1, ...]
science: [0.3, 0.4, 0.1, ...]
.....
```


Dirichlet Distribution

Latent Dirichlet Allocation (LDA)

Illustration

Each topic is a distribution of words; each document is a mixture of corpus-wide topics; and each word is drawn from one of those topics.

Illustration

In reality, we only observe documents. The other structures are hidden variables that must be inferred. (We will discuss inference later.)

Topics inferred by LDA

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	$_{ m LIFE}$	HAITI

- A Bayesian network encodes a joint distribution with a directed acyclic graph
 - A CPT captures uncertainty between a node and its parents

- A Markov network (or Markov random field) encodes a joint distribution with an undirected graph
 - A potential function captures uncertainty between a clique of nodes

- Markov network = undirected graph + potential functions
 - For each clique (or max clique), a potential function is defined
 - A potential function is not locally normalized, i.e., it doesn't encode probabilities
 - A joint probability is proportional to the product of potentials

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C} \psi_C(\mathbf{x}_C)$$

where $\psi_C(\mathbf{x}_C)$ is the potential over clique C and

$$Z = \sum_{\mathbf{x}} \prod_{C} \psi_C(\mathbf{x}_C)$$

is the normalization coefficient (aka. partition function).

Nonnegative scores

Conditional independence and Markov blanket in MN

Binary segmentation

Unary potential

- Indicating how likely a pixel is a background vs. foreground
 - Ex: $\psi(\mathbf{x}_i, y_i) = \exp(w^T \phi(\mathbf{x}_i, y_i))$, where $\phi(\mathbf{x}_i, y_i)$ is a feature vector
 - Ex: we may assign a large weight to the feature: $\{\mathbf{x}_i \text{ is dark and } y_i = 0\}$

Pairwise potential

- Encouraging adjacent pixels to have same labels (smoothing)
 - Ex. $\psi(y_i, y_j) = \exp(\alpha I(y_i = y_j))$

• Inferring labels from image pixels

 \mathbf{X}

 \mathbf{Y}

 \mathbf{Y}

Graphical Models

- A graphical model is a probabilistic model for which a graph expresses conditional dependence between random variables
 - Bayesian networks: directed acyclic graph
 - Markov networks: undirected graph
 - Factor graphs, conditional random fields, etc.

Converting Directed to Undirected Graphs (1)

Converting Directed to Undirected Graphs (2)

Additional links (moralization)

$$p(\mathbf{x}) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$$
$$= \frac{1}{Z}\psi(x_1, x_2, x_3, x_4)$$

Bayesian Network -> Markov Network

- Steps
 - 1. Moralization
 - 2. Construct potential functions from CPTs
- The BN and MN encode the same distribution
- Do they encode the same set of conditional independence?

Encoding Conditional Independence

$$\begin{array}{c|c} A \perp \!\!\! \perp B \mid \emptyset \\ A \perp \!\!\! \perp B \mid C \end{array}$$

$$A \not\perp \!\!\!\perp B \mid \emptyset$$

$$A \perp \!\!\!\!\perp B \mid C \cup D$$

$$C \perp \!\!\!\!\perp D \mid A \cup B$$

Encoding Conditional Independence

The set of distributions whose conditional independence can be exactly (i.e., no more, no less) represented by a directed/undirected graph

Markov networks vs. Constraint graphs

 Constraint graphs can be seen as Markov networks with 0/1 potentials

BN/MN vs. Logic

- Which logic is BN/MN more similar to: PL? FOL?
 - Boolean nodes represent propositions
 - No explicit representation of objects, relations, quantifiers

- BN/MN can be seen as a probabilistic extension of PL
- PL can be seen as BN/MN with deterministic CPTs/potentials

Conditional Random Fields

Generative vs. Discriminative Models

Generative models

- A generative model represents a joint distribution $P(X_1, X_2, ..., X_n)$
- Both BN and MN are generative models

Discriminative models

- In some scenarios, we only care about predicting queries from evidence
 - E.g., image segmentation
- A discriminative model represents a conditional distribution $P(Y_1, Y_2, ..., Y_n | X)$
- It does not model P(X)

Conditional Random Fields (CRF)

 An extension of MN (aka. Markov random field) where everything is conditioned on an input

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{C} \psi_{C}(\mathbf{y}_{C}, \mathbf{x})$$

where $\psi_C(y_C, x)$ is the potential over clique C and

$$Z(x) = \sum_{y} \prod_{C} \psi_{C}(y_{C}, x)$$

is the normalization coefficient.

CRF Applications

NLP

- POS tagging
- Named entity recognition
- Syntactic parsing
- CV
 - Image segmentation
 - Posture recognition

Summary

- A Bayesian network encodes a joint distribution
 - Syntax: DAG+CPTs
 - Semantics
 - Global semantics
 - Conditional independence semantics
 - D-separation
- Markov networks
 - Syntax: undirected graph + potentials
 - Semantics
 - Extension: CRF

