Devoir surveillé n°4

Durée: 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soient E, F deux ensembles, soit $f: E \to F$. Montrer que f est injective si et seulement si :

$$\forall A, A' \in \mathscr{P}(E), \ f(A \cap A') = f(A) \cap f(A').$$

II. À l'abordage.

Soit a et b deux entiers naturels premiers entre eux, et soit r_1 , r_2 deux entiers naturels non nuls. On considère le système de congruences suivant, d'inconnue $n \in \mathbb{N}$:

$$(S) : \begin{cases} n \equiv r_1 [a] \\ n \equiv r_2 [b] \end{cases}$$

- 1) Justifier l'existence de deux entiers u et v tels que au + bv = 1.
- 2) On pose $r_0 = aur_2 + bvr_1$. Montrer que r_0 est une solution de (S).
- 3) Soit $n \in \mathbb{N}$ une solution de (S).
 - a) Montrer que n vérifie $\begin{cases} n \equiv r_0[a] \\ n \equiv r_0[b] \end{cases}$
 - b) En déduire successivement que : a, b, $a \lor b$ et enfin ab sont des diviseurs de $n r_0$.
 - c) En déduire que n vérifie $n \equiv r_0[ab]$.
- 4) Soit n un entier vérifiant $n \equiv r_0[ab]$, n est-il solution de (S)? En déduire l'ensemble des solutions de (S).

5) Application directe:

Une bande de 17 pirates dispose d'un butin composé de N pièces d'or d'égale valeur. Ils décident de se le partager également et de donner le reste au cuisinier (qui n'est, lui, pas un pirate). Celui ci reçoit 3 pièces. Mais une rixe éclate et 6 pirates sont tués. Tout le butin est reconstitué et partagé entre les survivants comme précédemment; le cuisinier reçoit alors 4 pièces.

Dans un naufrage ultérieur, seuls le butin, 6 pirates et le cuisinier sont sauvés. Le butin est à nouveau partagé de la même manière et le cuisinier reçoit 5 pièces. Quelle est alors la fortune minimale que peut espérer le cuisinier lorsqu'il décide d'empoisonner le reste des pirates?

III. Une construction de la fonction racine p-ième.

Dans tout ce problème, x_0 désigne un réel strictement positif, et p un entier strictement supérieur à 1.

On établit ici l'existence de la fonction racine p-ième, il est donc interdit d'utiliser cette fonction (ainsi que l'exponentielle, les logarithmes, le théorème de la bijection, le théorème des valeurs intermédiaires, etc...).

On se bornera donc à utiliser, comme outils d'analyse, les propriétés découlant directement de la définition de la borne supérieure et, éventuellement, des résultats élémentaires de convergence de suite.

On note:

$$A(x_0) = \{ y \in \mathbb{R}_+ \mid y^p \leqslant x_0 \}.$$

- 1) a) Sans utiliser la notion de dérivée, montrer que la fonction « puissance $p \gg : \mathbb{R}_+ \to \mathbb{R}_+, x \mapsto x^p$ est strictement croissante.
 - b) En utilisant la définition d'un intervalle, montrer que l'ensemble $A(x_0)$ est un intervalle de \mathbb{R} .
- 2) Montrer que $A(x_0)$ est non vide.
- 3) a) Montrer que $(1 + x_0)^p \ge 1 + px_0$.
 - b) En déduire que $A(x_0)$ est majoré par $1 + x_0$. Que peut-on en conclure?

On note

$$c = \sup(A(x_0)),$$

et pour tout $n \in \mathbb{N}^*$,

$$u_n = c\left(1 - \frac{1}{n}\right)$$
 et $v_n = c\left(1 + \frac{1}{n}\right)$.

- 4) a) Montrer que 0 < c.
 - Indication: on pour montrer que l'on a toujours $x_0 \in A(x_0)$ ou bien $\frac{1}{x_0} \in A(x_0)$.
 - b) Soit $n \in \mathbb{N}^*$. Justifier l'existence d'un réel $a \in A(x_0)$ tel que $u_n < a \leqslant c$.
 - c) En déduire que pour tout $n \in \mathbb{N}^*$, $u_n \in A(x_0)$ puis que $c^p \leqslant x_0$.
- 5) a) Justifier que pour tout $n \in \mathbb{N}^*$, $v_n^p > x_0$.
 - b) En déduire que $c^p = x_0$. Par définition, le réel c est appelé racine p-ième de x_0 , et noté $\sqrt[p]{x_0}$.

- 6) Soient B et C deux parties de \mathbb{R} , non vides et telles que $B \subset C$, avec C majorée.
 - a) Montrer que B et C admettent des bornes supérieures et que sup $B \leq \sup C$.
 - b) En déduire que la fonction racine p-ième est strictement croissante sur $]0, +\infty[$.

IV. Conjugaison d'applications

Soit E un ensemble et $f: E \to E$ bijective.

La conjugaison par f est l'application Φ_f : $\begin{cases} E^E \to E^E \\ \varphi \mapsto f \circ \varphi \circ f^{-1} \end{cases}$.

- 1) Simplifier $\Phi_f \circ \Phi_g$ pour $g \in E^E$ bijective. Que vaut aussi Φ_{Id_E} ?
- 2) En déduire que Φ_f est une bijection de E^E dans E^E . Que vaut $(\Phi_f)^{-1}$?
- 3) Soient \mathcal{I} , \mathcal{S} , les sous-ensembles de E^E constitués respectivement des injections et des surjections :

$$\mathcal{I} = \{ g : E \to E \mid g \text{ est injective } \} \text{ et } \mathcal{S} = \{ g : E \to E \mid g \text{ est surjective } \}$$

Montrer que \mathcal{I} et \mathcal{S} sont stables par Φ_f , c'est-à-dire que $\Phi_f(\mathcal{I}) \subset \mathcal{I}$ et que $\Phi_f(\mathcal{S}) \subset \mathcal{S}$.

- 4) Montrer que $\Phi_f(\mathcal{I}) = \mathcal{I}$ et que $\Phi_f(\mathcal{S}) = \mathcal{S}$.
- 5) Lorsque φ est bijective, qu'est-ce que $\left(\Phi_f(\varphi)\right)^{-1}$?

— FIN —