ANÁLISE DE SOBREVIVÊNCIA Técnicas não-paramétricas

Rivert Oliveira – DEEST – ICEB - UFOP

Roteiro

- Introdução
- Estimação na ausência de censura
- O estimador de Kaplan-Meier
- O estimador de Nelson-Aalen
- O estimador de Tabela de Vida ou Atuarial
- Estimação de quantidades básicas
- Comparação de curvas de sobrevivência

INTRODUÇÃO

Introdução

 No caso de análise de sobrevivência a função de sobrevivência é o principal componente para descrever os dados

- A partir da estimação da função de sobrevivência é possível obter quantidades de interesse como o tempo médio ou mediano de vida, percentis, frações de falha etc.
- A presença de censura dificulta ou impede o uso de técnicas usuais para estatística descritiva

ESTIMAÇÃO NA AUSÊNCIA DE CENSURA

Estimação na ausência de censura

Figura mostrando a distribuição dos tempos de falha de um certo conjunto de itens amostrais (todos falharam).

Na ausência de censura a função taxa de falha no intervalo [400, 500) é estimada por

$$\hat{\lambda}([400,500)) = \frac{P(400 \le T < 500 | T \ge 400)}{500 - 400} = P(400 \le T < 500 | T \ge 400) \frac{1}{100} = \hat{\lambda}([400,500)) = \frac{\# falhas \ no \ intervalo[400,500)}{\# \ de \ itens \ sob \ risco \ em \ t = 400} \frac{1}{100} = \frac{9}{21} = 0,429/100 hs$$

A taxa de falha é de 42,9% durante o período de 100 horas compreendido entre 400 e 500 horas. Ou seja, se 100 itens amostrais sobreviverem além de 400 horas, espera-se que 57 sobrevivam mais 100 horas.

Obs: note que a taxa estimada não é instantânea, portanto grosseira

A Função de Sobrevivência e Quantidades Relacionadas

Na ausência de censura a probabilidade de sobrevivência no tempo t = 400 horas é estimada por

$$\hat{S}(400) = \frac{\text{\# itens sob risco em } t = 400}{\text{\# de total de itens no estudo}} = \frac{21}{54} = 0,389$$

- ▶ 38,9% dos itens sobrevive além de 400 horas.
- A probabilidade de um item sobreviver além de 400 horas é de 0.389
- Observe que a taxa de falha poderia ter sido estimada por

$$\hat{\lambda}([400, 500)) = \frac{S(400) - S(500)}{(500 - 400)S(400)} = \frac{0,389 - 0,222}{100 \cdot 0,389} = 0,0043/h$$

A Função de Sobrevivência e Quantidades Relacionadas

Dbserva-se que a taxa de falha parece ser crescente.

Intervalo {li-ls}	Taxa de falha(%/hora) [li,ls)	Sobrevivência (%) P(T≥l_i)
[0 - 100)	0,037	100,0
[100 - 200)	0,096	96,3
[200 - 300)	0,213	87,0
[300 - 400)	0,432	68,5
[400 - 500)	0,429	38,9
[500 - 600)	0,583	22,2
[600 - 700)	0,800	9,3
[700 - 800)	1	1,9
[800 − ∞)	0	0

O ESTIMADOR DE KAPLAN-MEIER

- A função de sobrevivência é uma função escada. Ela pode ser vista conforme o seguinte:
 - Considere $t'_j s$, j = 1, ..., k falhas distintas como limites de intervalos em \mathbb{R} . Convencione $t_0 = 0$.
 - A probabilidade de um item sobreviver além do limite em t_2 é igual à probabilidade do item sobreviver a t_2 e t_1 .
- Matematicamente, pela regra do produto temos:

$$S(t_2) = P(T \ge t_2, T \ge t_1) = P(T \ge t_2 | T \ge t_1) P(T \ge t_1)$$

$$S(t_2) = [1 - P(t_1 \le T < t_2 | T \ge t_1)] [1 - P(t_0 \le T < t_1 | T \ge t_0)]$$

$$S(t_2) = (1 - q_2)(1 - q_1)$$

- ▶ Por indução $S(t_j) = (1 q_1)(1 q_2) ... (1 q_j), j = 1, ..., k$
- Onde $q_j = P(t_{j-1} \le T < t_j | T \ge t_{j-1}),$

▶ O estimador de Kaplan-Meier de R(t) é definido como:

$$\hat{S}(t) = \left(1 - \frac{d_1}{n_1}\right) \left(1 - \frac{d_2}{2}\right) \dots \left(1 - \frac{d_j}{n_j}\right) = \prod_{j:t_j < t} \left(1 - \frac{d_j}{n_j}\right), \ j = 1, \dots, k$$

k é o número total de falhas distintas

$$\hat{q}_j = \frac{\# falhas \ em \ t_j}{\# \ de \ itens \ sob \ risco \ em \ t_j -}$$

- A tabela de sobrevivência deve ser organizada com as seguintes informações:
 - t_j : tempos de falha distintos ordenados (do menor para o maior). Os limites dos invervalos são os tempos de falha!
 - $b d_j$: número de falhas no tempo t_j
 - n_j : número de itens sob risco (não falhou e não foi censurado) até o tempo t_j –
 - $\hat{S}(t)$ estimativa da função de confiabilidade além do tempo t_i

Tempos, em semanas, observados no estudo de hepatite i (i = 1, ..., n = 29). Os pacientes foram acompanhados por 16 semanas ou até a morte (evento de interesse). O estudo foi um ensaio clínico aleatorizado (tratamentos: controle placebo, esteróide)

- Propriedades do estimador de Kaplan-Meier:
 - Não viciado para amostras grandes
 - É fracamente consistente
 - Converge assintoticamente para um processo gaussiano
 - \blacktriangleright É estimador de máxima verossimilhança de S(t)
- Para construir intervalos de confiança e testar hipóteses o estimador da variância de S(t) é dado por

$$\widehat{Var}[\widehat{S}(t)] = \left[\widehat{S}(t)_{obs}\right]^2 \sum_{j:t_i < t} \frac{d_j}{n_j(n_j - d_j)}$$

No exemplo

$$\widehat{Var}[\widehat{S}_{est}(5)] = [0,698]^2 \left[\frac{3}{14(14-3)} + \frac{1}{9(9-1)} \right] = 0,0163$$

▶ Como $\hat{S}(t)$, para t fixo, tem distribuição assintótica Normal, um IC de $100(1-\alpha)\%$ de confiança para S(t) é dado por

$$IC[S(t), 100(1-\alpha)\%] = \widehat{S}(t) \mp |z_{\alpha/2}| \sqrt{\widehat{Var}} [\widehat{S}(t)]$$

 $z_{\alpha/2}$ é obtido da distribuição normal padrão

No exemplo, para IC[S(t), 95%] temos

$$IC[S(t), 95\%] = 0.698 \mp 1.96\sqrt{0.0163} = (0.45; 0.95)$$

- Para valores extremos de t o intervalo anterior pode apresentar valores fora do conjunto [0,1].
- Kalbfleish e Prentice (1980) sugerem a transformação

$$\widehat{\mathbf{U}}(t) = \log\{-\log[\widehat{\mathbf{S}}(t)]\}$$

cuja variância assintótica é dada por

$$\widehat{Var}[\widehat{\mathbb{U}}(t)] = \frac{\sum_{j:t_j < t} \frac{d_j}{n_j(n_j - d_j)}}{\left[\sum_{j:t_j < t} \log\left(\frac{n_j - d_j}{n_j}\right)\right]^2} = \frac{\sum_{j:t_j < t} \frac{d_j}{n_j(n_j - d_j)}}{\left[\log[\widehat{S}(t)]\right]^2}$$

Neste caso o $IC[S(t), 100(1-\alpha)\%]$ fica:

$$IC[S(t), 100(1-\alpha)\%] = \widehat{S}(t)^{exp\left\{\mp z_{\alpha/2}\sqrt{\widehat{Var}[\widehat{U}(t)]}\right\}}$$

Outras transformações já foram propostas, como por exemplo:

$$\widehat{\mathbf{U}}(t) = \log\{\widehat{\mathbf{S}}(t)\}$$

O ESTIMADOR DE NELSON-AALEN

Estimador de Nelson-Aalen

O estimador de Nelson-Aalen se baseia na função de risco (taxa de falha instantânea) acumulado, isto é:

$$S(t) = \exp\{-\Lambda(t)\}\$$

Destimador da função de risco e sua variância são dados por:

$$\widetilde{\Lambda}(t) = \sum_{j:t_j < t} \left(\frac{d_j}{n_j} \right) e \widehat{Var} \left[\widetilde{\Lambda}(t) \right] = \sum_{j:t_j < t} \left(\frac{d_j}{n_j^2} \right)$$

Os estimadores da função de sobrevivência e da variância da mesma ficam:

$$\tilde{S}(t) = \exp\{-\tilde{\Lambda}(t)\} e \widehat{Var}[\tilde{\Lambda}(t)] = \left[\tilde{S}(t)_{obs}\right]^2 \sum_{j:t_j < t} \left(\frac{d_j}{n_j^2}\right)$$

O ESTIMADOR DE TABELA DE VIDA OU ATUARIAL

Estimador de Tabela de Vida ou Atuarial

Suponha que o eixo do tempo seja dividido em s intervalos definidos pelos pontos de corte t_1, \ldots, t_s . Isto é, $I_j = \begin{bmatrix} t_{j-1}, t_j \end{bmatrix}$ para $j = 1, \ldots, s$, em que $t_0 = 0$ e $t_s = +\infty$. O estimador da tabela de vida é o mesmo de KM, exceto por q_j , o qual é dado por

$$\hat{q}_{j} = \frac{\# \ de \ falhas \ no \ intervalo \left[t_{j-1}, t_{j}\right)}{\left[\# sob \ risco \ em \ t_{j-1}\right] - 1/2 \left[\# censuras \ em \ \left[t_{j-1}, t_{j}\right)\right]}$$

O estimador fica:

$$\hat{S}(t) = \prod_{l=1}^{j} (1 - \hat{q}_{l-1}), t \in I_j,$$

com $j = 1, ..., s e \hat{q}_0 = 0$.

Estimador de Tabela de Vida ou Atuarial

A variância assintótica estimada para $\hat{S}(t)$ é dada por:

$$\widehat{Var}[\hat{S}(t)] \cong \left[\hat{S}(t)_{obs}\right]^2 \sum_{l=1}^{j} \frac{\hat{q}_l}{n_l(1-\hat{q}_l)}, t \in I_j$$

$$com j = 1, ..., s$$

Estimador de Tabela de Vida ou Atuarial

Estimativas da tabela de vida para o grupo esteróide

Intervalo I _j	# sob risco	# de falhas	# de censuras	\widehat{q}_j	$\left(1-\widehat{q}_{j} ight)$	$\widehat{S}(t)$
[0,5)	14	3	2	0,231	0,769	$1 - \hat{q}_{j-1} = 1 - \hat{q}_0$ = 1 - 0 = 1
[5,10)	9	3	0	0,333	0,667	0,769
[10,15)	6	1	2	0,200	0,8	0,513
[15,16)	3	0	3	0	1	0,410

$$\hat{S}(10) = (1-0)\left(1 - \frac{3}{14 - \frac{1}{2}2}\right)\left(1 - \frac{3}{9}\right) = 0,513$$

$$\hat{S}(t \in [0,5))$$

 $\hat{S}(t \in [5,10))$

ESTIMAÇÃO DE QUANTIDADES BÁSICAS

ESTIMAÇÃO DE QUANTIDADES BÁSICAS SOBREVIVÊNCIA

A curva de Kalan- Meier fornece quantidades básicas, por exemplo, a probabilidade de um paciente tratado com esteroides sobreviver a 6 semanas de tratamento.

$$\hat{S}(6|Ester\'oide) = 0,698$$

		grup	o=Esteróio	ie					
time	n.risk	n.event	survival	std.err	lower	95% CI	upper	95%	CI
_1	14	3	0.786	0.110		0.598		1.0	000
5	9	1	0.698	0.128		0.488		0.9	999
7	8	1	0.611	0.138		0.392		0.9	952
8	7	1	0.524	0.143		0.306		0.8	396
10) 6	1	0.437	0.144		0.229		0.8	332

Contudo, deve ser preferida uma interpolação

$$\frac{7-5}{0,611-0,698} = \frac{6-5}{\hat{S}(6|Ester\'oide)-0,698} \Rightarrow$$

 $\hat{S}(6|Ester\'oide) = 0,655$

$$\widehat{Var}[\hat{S}(t)] = \left[\hat{S}(t)_{obs}\right]^2 \sum_{j:t_j < t} \frac{d_j}{n_j(n_j - d_j)}$$

40.0%

ESTIMAÇÃO DE QUANTIDADES BÁSICAS PERCENTIL

Analogamente, podemos obter percentis. Por exemplo, para o percentil 50% $(t_p=t_{50})$, a mediana, temos

A variância assintótica do estimador de percentis (\hat{t}_{50}) é expressa por

$$\operatorname{Var}(\hat{t}_p) = \frac{\operatorname{Var}[\hat{s}(\hat{t}_p)]}{\left[f(\hat{t}_p)\right]^2}$$

Contudo a difícil obtenção de $f(\hat{t}_p)$ é um fator limitador para obtenção da estimativa da variância, usualmente obtida da inversão da região de rejeição de um teste de hipótese para a mediana (Brookmeyer e Crowley, 1982)

ESTIMAÇÃO DE QUANTIDADES BÁSICAS TEMPO MÉDIO DE VIDA

• O estimador tempo médio de vida (\hat{t}_m) é dado pela área sob a curva de sobrevivência

$$\hat{t}_m = t_1 + \sum_{j=1}^{k-1} \hat{S}(t_j) (t_{j+1} - t_j)$$

- em que $t_1 < \cdots < t_k$ são os tempos distintos e ordenados de falha
- Dbs: o tempo médio de vida é subestimado caso o maior tempo de falha observado seja uma censura
- Sua variância assintótica é dada por:

$$\widehat{Var}(\hat{t}_m) = \frac{r}{r-1} \left[\sum_{j=1}^{r-1} \frac{A_j^2}{n_j(n_j - d_j)} \right]$$

- $A_j = \hat{S}(t_j)(t_{j+1} t_j) + \dots + \hat{S}(t_{r-1})(t_r t_{r-1})$
- r é o número de falhas (não falhas distintas!)

ESTIMAÇÃO DE QUANTIDADES BÁSICAS TEMPO MÉDIO DE VIDA RESIDUAL

- O estimador tempo médio de vida residual (vmr) é dado por
 - $\widehat{vmr}(t) = \frac{\text{área sob a curva}\widehat{S}(t) \text{à direita de } t}{\widehat{S}(t)}$
 - Obs: o valor médio residual apresenta limitações similares às do estimador do tempo médio de vida

ESTIMAÇÃO DE QUANTIDADES BÁSICAS

Tempo até a reincidência de tumor sólido em i = 1, ..., n = 10 pacientes (Lee, 1980). O tempo total do estudo foi de 14 meses (não o tempo de acompanhamento).

 $\hat{t}_{50} = 9.6, \hat{t}_m = 10.1, \widehat{Var}(\hat{t}_m) = 2.33 \text{ e } \widehat{vmr}(10) = 3.5$

- Dados de hepatite: a sobrevivência é diferente entre os grupos "Controle" e "Esteróide"? Para responder a esta pergunta os testes comuns são:
 - Logrank (Mantel, 1966):
 - Wilcoxon (generalizado)

Teste LOGRANK

- Sejam duas funções de sobrevivência $S_1(t)$ e $S_2(t)$.
- Sejam $t_1 < t_2 < \cdots < t_k$ os distintos tempo de falha da amostra combinada.
- Suponha que em t_j aconteçam d_j falhas e que n_j indivíduos estejam sob risco em um tempo imediatamente inferior a t_j na amostra combinada e, respectivamente, d_{ij} e n_{ij} na amostra i: i = 1, 2 e j = 1, ..., k.
- lacktriangle Em cada tempo de falha t_j , os dados podem ser dispostos na tabela de contingência

	Gru		
	1	2	
Falha	d_{1j}	d_{2j}	d_{j}
Não Falha	$n_{1j}-d_{1j}$	$n_{2j}-d_{2j}$	$n_j - d_j$
	n_{1j}	n_{2j}	n_j

Teste LOGRANK

Condicional na experiência de falha e censura até o tempo t_j (fixando marginais de coluna) e ao número de falhas no tempo t_j (fixando marginais de linha), a distribuição de d_{2j} é hipergeométrica com média $\omega_{2j} = n_{2j} d_j n_j^{-1}$

$$\omega_{2j} = n_{2j} a_j n_j$$

• e variância

$$(V_j)_2 = n_{2j}(n_j - n_{2j})d_j(n_j - d_j)n_j^{-2}(n_j - 1)^{-1}$$

Se as k tabelas de contingência forem independentes um teste aproximado para a hipótese $H_0: S_1(t) = S_2(t)$ usa a seguinte estatística de teste:

$$T = \frac{\left[\sum_{j=1}^{k} (d_{2j} - \omega_{2j})\right]^{2}}{\sum_{j=1}^{k} (V_{j})_{2}} \stackrel{H_{0}}{\approx} \chi_{1}^{2}$$

Dados de hepatite

$$T = \frac{\left[\sum_{j=1}^{k} (d_{2j} - \omega_{2j})\right]^2}{\sum_{j=1}^{k} (V_j)_2} = 3,67$$

```
survdiff(formula = Surv(tempos, censura) ~ grupo, rho = 0)

N Observed Expected (O-E)^2/E (O-E)^2/V grupo=Controle 15 2 4.81 1.64 3.67 grupo=Esteroide 14 7 4.19 1.89 3.67

Chisq= 3.7 on 1 degrees of freedom, p= 0.06
```

A diferença na sobrevivência entre os grupos é significativa a um nível de significância $\alpha = 0, 1$.

- Exemplo: Dados de Malária
- Estudo: clínico aleatorizado
- Tempo de estudo: 30 dias
- Resposta: tempo decorrido desde a infecção até a morte do camundongo
- Grupos:
 - Grupo I: imunizado para malária 30 dias antes da infeção por malária e esquistossomose
 - Grupo II: infectado por malária
 - Grupo III: infectado por malária e esquistossomose

Grupos	Tempos de sobrevivência
I	7, 8, 8, 8, 8, 12, 12, 17, 18, 22, 30+, 30+, 30+, 30+, 30+, 30+
II	8, 8, 9, 10, 10, 14, 15, 15, 18, 19, 21, 22, 22, 23, 25
III	8, 8, 8, 8, 8, 9, 10, 10, 10, 11, 17, 19

- LOGRANK Generalizado
- Teste: H_0 : $S_1(t) = \cdots = S_g(t)$ $T = v'V^{-1}v \stackrel{H_0}{\approx} \chi_{g-1}^2$
- em que $v = \sum_{j=1}^{k} v_j$ e $V = \sum_{j=1}^{k} V_j$ com

 - $(V_j)_{ii} = n_{ij}(n_j n_{ij})d_j(n_j d_j)n_j^{-2}(n_j 1)^{-1} e$ $(V_j)_{ij} = -n_{ij}n_{lj}d_j(n_j d_j)n_j^{-2}(n_j 1)^{-1}$
 - Para k tabelas de contingência, i, l = 2, ..., g grupos

Exemplo: Dados de Malária

Comparação	T	Valor-p	α
$H_0: S_1(t) = S_2(t) = S_3(t)$	12,6	0,002	0,05
$H_0: S_1(t) = S_2(t)$	2,5	0,114	0,0017
$H_0:S_1(t)=S_3(t)$	7,9	0,005	0,0017
$H_0: S_2(t) = S_3(t)$	8	0,005	0,0017

- Outros testes:
- ► Teste: H_0 : $S_1(t) = S_2(t)$

$$T = \frac{\left[\sum_{j=1}^{k} u_j (d_{2j} - \omega_{2j})\right]^2}{\sum_{j=1}^{k} u_j (V_j)_2}$$

Teste	T	Valor-p	u_j	E feito
Logrank	3,67	0,055	1	Detecção de diferenças considerando todos os tempos
Wilcoxon	3,19	0,074	n_{j}	Reforça detecção de diferenças para tempos menores
Tarone-Ware	3,43	0,064	$\sqrt{n_j}$	Meio termo dos testes acima

É estatisticamente significativa a diferença na sobrevivência entre os grupos!

