1. Customer Segmentation

These recommendations are so on point! How does this know me so well?

Segmentation refers to the division of a market or service on the basis of various features that bind every group together. Customer Segments are groups of customers that share common characteristics like industry, number of employees, products, location, etc for B2B marketing and gender, age, preferences, demographics, etc for the B2C market. These segments are then treated with different engagement strategies.

The technique of customer segmentation is dependent on several key differentiators that divide customers into groups to be targeted. Data related to demographics, geography, economic status as well as behavioral patterns play a crucial role in determining the company direction towards addressing the various segments.

Below points will be implemented:

- 1. Import a CSV file into a Pandas DataFrame
- 2. Merge DataFrames
- 3. NumPy
- 4. Dictionary or Lists
- 5. Present charts with Seaborn or Matplotlib
- 6. Usage of Unsupervised Learning
- 7. insights from the project

In the first step of this data science project, we will perform data exploration. We will import the essential packages required for this role and then read our data. Finally, we will go through the input data to gain necessary insights about it.

Let's start by creating two pandas DataFrames out of these files that we can merge so we have features and labels (often also referred to as X and y) for the classification later on.

In [881]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

2. Import CSV file into Pandas Dataframe

```
In [882]:
```

```
1 df_cust=pd.read_csv('Mall_Customers.csv')
```

In [883]:

```
1 df_cust.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):
```

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Genre	200 non-null	object
2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64

dtypes: int64(4), object(1)
memory usage: 7.9+ KB

In [884]:

```
1 df_cust.describe()
```

Out[884]:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

3. Check for Missing values in columns of Dataframe

If our dataset consists of missing values then below two strategies can be followed:

- 1. For Numeric Columns: Replace NaN values with mean values. This is known as **Mean Imputation**
- 2. <u>For Non-Numeric Columns</u>: Mean imputation strategy would not work here. We are going to impute these missing values with the most frequent values as present in the respective columns

```
In [886]:
 1 df_cust.isna().sum()
Out[886]:
CustomerID
                           0
Genre
                           0
                           0
Age
Annual Income (k$)
                           0
Spending Score (1-100)
dtype: int64
In [887]:
 1 df_cust.isnull().sum()
Out[887]:
CustomerID
                           0
Genre
                           0
Age
Annual Income (k$)
                           0
Spending Score (1-100)
dtype: int64
```

Since there are no null values in dataset, we are not required to replace missing values. In case of Mean imputation, we would use the below mean values to replace with the missing values

```
In [888]:
```

```
1 np.mean(df_cust)
```

Out[888]:

CustomerID 100.50
Age 38.85
Annual Income (k\$) 60.56
Spending Score (1-100) 50.20

dtype: float64

In case of <u>Non Numerical column</u>, we can choose the most frequent value of that column using the below, and replace the Null values

```
In [889]:
```

```
1 df_cust['Genre'].value_counts().index[0]
```

Out[889]:

'Female'

In [890]:

```
1 df_cust.head()
```

Out[890]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

In [891]:

```
df_cust[['CustomerID','Genre']].groupby('Genre').count()
```

Out[891]:

CustomerID

Genre	
Female	112
Male	88

In [892]:

```
1 df_cust['Genre'].value_counts()
```

Out[892]:

Female 112 Male 88

Name: Genre, dtype: int64

In [893]:

```
plt.figure(figsize=(6,6))
df_cust['Genre'].value_counts().plot(kind='pie',autopct='%1.0f%%',shadow=True,explode=|
plt.title('Population Distribution')
plt.show()
```

Population Distribution

In [894]:

```
1 df_cust_male=df_cust[df_cust['Genre']=='Male']
2 df_cust_female=df_cust[df_cust['Genre']=='Female']
```

In [895]:

```
plt.figure(figsize=(8,8))
plt.scatter(df_cust_female['Age'],df_cust_female['Spending Score (1-100)'],c='blue',lak
plt.scatter(df_cust_male['Age'],df_cust_male['Spending Score (1-100)'],c='orange',labe]
plt.legend(title='Gender')
plt.xlabel('Age')
plt.ylabel('Age')
plt.ylabel('Spending Score')
plt.title('Relationship of Age with Spending score')
plt.show()
```


Implementation of resuable function for boxplot

In [896]:

```
def boxplot(frame,x,y,*args):
        '''This function helps to plot the boxplot
 2
        frame : dataframe to be used
 3
 4
              : dataframe column for x axis
 5
              : dataframe column for y axis
        *args : to include more features like Title, palette, notch'''
 6
 7
        plt.figure(figsize=(8,8))
 8
 9
        bp=sns.boxplot(data=frame,x=x,y=y,palette=args[0],notch=args[1])
10
        medians = frame.groupby([x])[y].median().sort_values(ascending=False)
        vertical_offset = frame[y].median() * 0.01 # offset from median for display
11
12
13
        for xtick in bp.get_xticks():
            bp.text(xtick,medians[xtick] + vertical_offset,medians[xtick],
14
                    horizontalalignment='center', size='medium', color='blue', weight='semibol
15
16
        plt.title(args[2])
        plt.grid()
17
        plt.show()
18
```

In [897]:

```
boxplot(df_cust,'Genre','Age','rainbow',True,'Age distribution of Male and Female')
```


In [898]:

boxplot(df_cust, 'Genre', 'Annual Income (k\$)', 'autumn', False, 'Annual Income distribution

In [899]:

boxplot(df_cust,'Genre','Spending Score (1-100)','husl',False,'Spending Score distribut

In [900]:

```
sns.heatmap(df_cust.corr(),cmap="YlGnBu", annot=True)
plt.title('Correlation Coefficient Heatmap')
plt.show()
```


Insights on Mall Customers data:

- 1. Total 200 rows and 5 columns, with 1 column as String, and 4 columns as integer
- 2. Minimum Age: 18; Maximum Age: 70; Average Age: ~39
- 3. Number of Females: 112 (56%); Number of Males: 88 (44%)
- 4. Median age of males is 37, and females is 35
- 5. Annual income of Males is more than Females
- 6. Spending Score decreases with Age; Females have more spending score than males in the age group of 60-70 years

Created a new Dataframe df_genre, and apply Merge on Dataframes

```
In [901]:
```

```
1 df_genre=pd.DataFrame({'Genre':['Female','Male'],'Genre_code':[0,1]})
```

```
In [902]:
```

```
1 df_genre.head()
```

Out[902]:

	Genre	Genre_code
0	Female	0
1	Male	1

In [903]:

```
1 # Merge two dataframes
2
3 df_cust=df_cust.merge(df_genre,on='Genre')
```

In [904]:

```
1 df_cust['Genre_code'].value_counts()
```

Out[904]:

0 1121 88

Name: Genre_code, dtype: int64

In [905]:

```
1 df_cust.drop('Genre',axis=1,inplace=True) # Drop the column 'Genre' as only numerical of
```

In [906]:

```
1 df_cust.columns
```

Out[906]:

In [907]:

```
1 df_cust.head()
```

Out[907]:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)	Genre_code
0	1	19	15	39	1
1	2	21	15	81	1
2	9	64	19	3	1
3	11	67	19	14	1
4	15	37	20	13	1

```
In [908]:
```

1 df_cust.drop('CustomerID',axis=1,inplace=True) # Drop column 'CustomerID' as it is not

In [909]:

1 df_cust.head()

Out[909]:

	Age	Annual Income (k\$)	Spending Score (1-100)	Genre_code
0	19	15	39	1
1	21	15	81	1
2	64	19	3	1
3	67	19	14	1
4	37	20	13	1

Apply KMeans Clustering Algorithm on dataframe

In [910]:

1 from sklearn.cluster import KMeans

In [911]:

1 model=KMeans(n_clusters=4)

In [912]:

1 model.fit(df_cust)

Out[912]:

KMeans(n_clusters=4)

In [913]:

1 labels=model.predict(df_cust)

```
In [914]:
 1 labels
Out[914]:
3, 3, 3, 3, 3, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
     1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1,
     3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2,
     3, 3, 3, 3, 3, 3, 3, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0,
     1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0,
     1, 0])
In [915]:
 1 np.unique(labels)
Out[915]:
array([0, 1, 2, 3])
In [916]:
  model.cluster_centers_
Out[916]:
                       , 18.63157895, 0.52631579],
array([[40.39473684, 87.
     [32.69230769, 86.53846154, 82.12820513,
                                   0.46153846],
     [24.82142857, 28.71428571, 74.25
                                   0.5
     [44.89473684, 48.70526316, 42.63157895,
                                   0.37894737]])
In [917]:
 1 model.inertia
Out[917]:
104414.67534220168
```

Visualising with Matplotlib and Seaborn

```
In [918]:

1 df_cust['Labels']=labels
```

In [919]:

```
1 df_cust.head()
```

Out[919]:

	Age	Annual Income (k\$)	Spending Score (1-100)	Genre_code	Labels
0	19	15	39	1	2
1	21	15	81	1	2
2	64	19	3	1	3
3	67	19	14	1	3
4	37	20	13	1	3

In [920]:

```
1 xs=df_cust['Annual Income (k$)']
```

In [921]:

```
1 ys=df_cust['Spending Score (1-100)']
```

In [922]:

```
#Scatter plot using matplotlib

plt.figure(figsize=(8,8))

for i in np.unique(labels):
    plt.scatter(df_cust['Annual Income (k$)'][df_cust['Labels']==i],df_cust['Spending S']

#plt.scatter(xs,ys,c=labels)

plt.legend(np.unique(labels),title='Cluster')

plt.xlabel('Annual Income')

plt.ylabel('Spending Score')

plt.title('KMeans Clustering ( Matplotlib )')

plt.show()
```


In [923]:

```
# Scatter plot using Seaborn

plt.figure(figsize=(8,8))
sns.scatterplot(x=xs,y=ys,hue=labels,palette=['blue','orange','green','red']).set(title plt.legend(title='Cluster')
plt.figure(figsize=(8,8))
plt.show()
```


<Figure size 576x576 with 0 Axes>

Applying Principal Component Analysis (PCA) before using

KMeans

```
In [924]:
1   from sklearn.decomposition import PCA

In [925]:
1   pca=PCA()

In [926]:
1   pca.fit(df_cust)

Out[926]:
PCA()

In [927]:
1   pca.n_components_
Out[927]:
5

In [928]:
1  features=range(pca.n_components_)
```

In [929]:

```
plt.figure(figsize=(8,8))
plt.bar(features,pca.explained_variance_)
plt.xticks(features)

plt.xlabel('PCA Features')
plt.ylabel('variance')
plt.title('Component Analysis for PCA')
plt.show()
```


The above plot shows that 2 features cover the maximum variance, hence 2 principal components can be used to represent the dataset

```
In [930]:
1  pca=PCA(n_components=2)

In [931]:
1  pca.fit(df_cust)

Out[931]:
PCA(n_components=2)

In [932]:
1  transformed=pca.transform(df_cust)
```

In [933]:

1 print(transformed.shape)

(200, 2)

Perform KMeans clustering with 4 clusters on PCA components

In [934]:

```
1 km=KMeans(n_clusters=4,random_state=42)
```

2 km.fit(transformed)

Out[934]:

KMeans(n_clusters=4, random_state=42)

In [935]:

```
df_pca_kmeans=pd.concat([df_cust,pd.DataFrame(transformed)],axis=1)
```

In [936]:

```
1 df_pca_kmeans.head()
```

Out[936]:

	Age	Annual Income (k\$)	Spending Score (1- 100)	Genre_code	Labels	0	1
0	19	15	39	1	2	-32.455595	-32.394271
1	21	15	81	1	2	-0.262964	-56.829392
2	64	19	3	1	3	-66.373704	-2.017585
3	67	19	14	1	3	-58.404529	-8.084938
4	37	20	13	1	3	-52.976781	-10.725858

In [937]:

```
1 df_pca_kmeans.columns.values[-2:]=['Component1','Component2']
```

In [938]:

```
df_pca_kmeans['KMeans_Label']=km.labels_
  x_c=km.cluster_centers_[:,0] # X-cords for centroid
  y_c=km.cluster_centers_[:,1] # Y-cords for centroid
```

In [939]:

```
1 df_pca_kmeans['KMeans_Label'].value_counts()
```

Out[939]:

1 105
 39

334222

Name: KMeans_Label, dtype: int64

In [940]:

```
1 print(km.inertia_)
```

74639.83116755096

In [941]:

```
x=df_pca_kmeans['Component1']
y=df_pca_kmeans['Component2']
plt.figure(figsize=(8,8))
sns.scatterplot(x=x,y=y,hue=df_pca_kmeans['KMeans_Label'],palette=['blue','orange','gress.scatterplot(x=x_c,y=y_c, s=100,linewidths = 50,hue=range(4),palette=['red', 'blue', plt.legend(title='Cluster')
plt.title('KMeans Clustering with PCA')
plt.show()
```


Applying Standardization and PCA on dataset, before using KMeans

```
In [942]:
```

```
1 df_customers=pd.read_csv('Mall_Customers.csv')
```

In [943]:

```
1 df_customers.head()
```

Out[943]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

In [944]:

1 from sklearn.preprocessing import StandardScaler

In [945]:

```
1 scaler=StandardScaler()
```

In [946]:

```
#need to convert 'Genre' column into integer
df_customers_new=df_customers.merge(df_genre, on='Genre')
```

In [947]:

```
1 df_customers_new.head()
```

Out[947]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)	Genre_code
0	1	Male	19	15	39	1
1	2	Male	21	15	81	1
2	9	Male	64	19	3	1
3	11	Male	67	19	14	1
4	15	Male	37	20	13	1

In [948]:

```
df_customers_new.drop('Genre',axis=1,inplace=True)
```

```
In [949]:
 1 scaled_data=scaler.fit_transform(df_customers_new)
In [950]:
 1 np.mean(scaled_data)
Out[950]:
-6.750155989720952e-17
In [951]:
 1 np.std(scaled_data)
Out[951]:
1.0
In [952]:
   pca1=PCA()
In [953]:
 1 pca1.fit(scaled_data)
Out[953]:
PCA()
In [954]:
 1 pca1.explained_variance_
Out[954]:
array([1.99507004, 1.35420929, 0.97725931, 0.67613098, 0.02245601])
In [955]:
   pca1.explained_variance_ratio_
Out[955]:
array([0.39701894, 0.26948765, 0.1944746, 0.13455007, 0.00446875])
```

In [956]:

```
#plt.figure(figsize=(10,6))
plt.figure(figsize=(8,8))
plt.plot(range(1,6),pca1.explained_variance_ratio_.cumsum(),marker='o',linestyle='--')
plt.xlabel('Number of components')
plt.ylabel('Cumulative explained variance')
plt.title('Explained variance by components')
plt.grid()
plt.show()
```


From the above plot, we can observe that 80% variance is explained by 2 components, hence we take two principal components.

In [957]:

```
pca2=PCA(n_components=2)
pca2.fit(scaled_data)
scores_pca=pca2.transform(scaled_data)
```

In [958]:

```
wcss=[] # list to store within cluster sum of squares
for i in range(1,20):
    kmeans_pca=KMeans(n_clusters=i,random_state=42)
    kmeans_pca.fit(scores_pca)
    wcss.append(kmeans_pca.inertia_)
```

In [959]:

```
1 wcss
```

Out[959]:

```
[666.5065869634224,
385.6270335084618,
264.2784589214622,
175.93286483235164,
135.94379609345728,
111.52482520602273,
96.84709551411156,
85.4240313358027,
74.93196812915876,
66.51208146368644,
60.18330336712561,
53.836473475048464,
49.551727410936145,
46.110325094622546,
41.910754075227764,
38.63064798537609,
35.89133550699827,
33.303112996311015,
31.244132603641606]
```

In [960]:

```
#plt.figure(figsize=(10,8))
plt.figure(figsize=(8,8))
plt.plot(range(1,20),wcss,marker='o',linestyle='--')
plt.xlabel('Number of Clusters')
plt.ylabel('WCSS')
plt.title('Kmeans with PCA clustering')
plt.grid()
plt.show()
```

Kmeans with PCA clustering

From the above plot, we can observe that the elbow comes at around cluster 4 and 5. We move forward by taking 4 cluster.

In [961]:

```
kmeans_pca=KMeans(n_clusters=4,random_state=42)
kmeans_pca.fit(scores_pca)
```

Out[961]:

KMeans(n_clusters=4, random_state=42)

In [962]:

```
df_pca_new=pd.concat([df_customers_new,pd.DataFrame(scores_pca)],axis=1)
```

In [963]:

```
1 df_pca_new.columns.values[-2:]=['Component1','Component2']
```

In [964]:

```
1 df_pca_new.head()
```

Out[964]:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)	Genre_code	Component1	Component2
0	1	19	15	39	1	-2.316965	-0.454190
1	2	21	15	81	1	-2.272391	-1.474104
2	9	64	19	3	1	-2.242366	2.726501
3	11	67	19	14	1	-2.214930	2.581676
4	15	37	20	13	1	-2.074081	1.130788

In [965]:

```
1 df_pca_new['Segment_PCA']=kmeans_pca.labels_
2 x_c=kmeans_pca.cluster_centers_[:,0] # X-cords for centroid
```

3 y c=kmeans pca.cluster centers [:,1] # Y-cords for centroid

In [966]:

```
1 df_pca_new.head()
```

Out[966]:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1- 100)	Genre_code	Component1	Component2	Segment_PCA
0	1	19	15	39	1	-2.316965	-0.454190	3
1	2	21	15	81	1	-2.272391	-1.474104	3
2	9	64	19	3	1	-2.242366	2.726501	1
3	11	67	19	14	1	-2.214930	2.581676	1
4	15	37	20	13	1	-2.074081	1.130788	1

•

In [967]:

```
# Number of customers in each cluster

df_pca_new['Segment_PCA'].value_counts().sort_index()
```

Out[967]:

```
60163
```

2 35

Name: Segment_PCA, dtype: int64

In [968]:

```
1 df_pca_new['Segment']=df_pca_new['Segment_PCA'].map({0:'First',1:'Second',2:'Third',3:
```

In [969]:

```
x=df_pca_new['Component1']
y=df_pca_new['Component2']
plt.figure(figsize=(8,8))
sns.scatterplot(x=x,y=y,hue=df_pca_new['Segment'])
sns.scatterplot(x=x_c,y=y_c, s=100,linewidths = 50,hue=range(4),palette=['red', 'blue', plt.legend(title='Cluster')
plt.title('KMeans Clustering with Standardization and PCA')
plt.show()
```

KMeans Clustering with Standardization and PCA

In [970]:

```
print(kmeans_pca.inertia_)
```

175.93286483235164

In [971]:

```
plt.figure(figsize=(6,6))
plt.plot([model.inertia_,km.inertia_,kmeans_pca.inertia_],'^-',linewidth=2, markersize=
plt.annotate('104414.67',xy=(0.01,104414.67534220168))

plt.annotate('74666.28',xy=(1,74666.28056871759))

plt.annotate('175.9',xy=(1.9,5000))

plt.title('Comparison of Inertia values among various KMeans Algo ')

plt.xlabel('Algo')

plt.ylabel('Inertia')

plt.show()
```


Insights using KMeans(4 clusters) before and after Standardization and PCA on Dataset

- 1. The inertia of KMeans model before applying standardization and PCA comes out to be a large value: 104414.67534220168
- 2. The inertia of KMeans model after applying PCA comes out to be a large value: 74666.28056871759
- 3. The inertia of KMeans model after standardizing the data and applying PCA comes out to be a small value: 175.93286483235164

Remarks	Inertia	Algorithm
Very high value of Inertia, means low performance	104414.67534220168	KMeans (simple)
slight decrease in value of Inertia, means performance improved slightly	74666.28056871759	KMeans (with PCA)

KMeans (with Standardisation and PCA)

175.93286483235164

Low value of inertia, means Good performance

This helps us to understand that standardizing the dataset, and then identifying principal components using PCA can greatly improve the performance and credibilty of results provided by our Algorithm.

Android Devices

Online e-commerce and offline market is stashed with variety of Android devices, compatibale to the pocket of every individual as per need. Here we will be going through data on android devices.

This worksheet will be used to showcase:

- 1. Missing Values Handling
- 2. Create Custom Function
- 3. Use of Iterators
- 4. Regular Expression(REGEX)

In [972]:

- 1 import pandas as pd
- 2 import missingno as msno
- 3 import matplotlib.pyplot as plt

In [973]:

```
1 df_device=pd.read_csv('android_devices.csv')
2 df_device.head()
```

Out[973]:

Model	Device	Marketing Name	Retail Branding	
Smartfren Andromax AD681H	AD681H	NaN	NaN	0
FJL21	FJL21	NaN	NaN	1
Panasonic T31	T31	NaN	NaN	2
MediaPad 7 Youth 2	hws7721g	NaN	NaN	3
OC1020A	OC1020A	OC1020A	3Q	4

Handling Missing Values

In [974]:

```
1 df_device.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14546 entries, 0 to 14545
```

Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	Retail Branding	14542 non-null	object
1	Marketing Name	13375 non-null	object
2	Device	14546 non-null	object
3	Model	14546 non-null	object

dtypes: object(4) memory usage: 454.7+ KB

From the above, it can be observed that dataframe columns are of type **Object(Non-Integer)**

In [975]:

```
1 df_device.describe()
```

Out[975]:

	Retail Branding	Marketing Name	Device	Model
count	14542	13375	14546	14546
unique	605	8631	9830	12883
top	Samsung	Galaxy S3	mt5880	LG-P970
freq	1762	38	59	23

In [976]:

```
1 df_device.isna().sum()
```

Out[976]:

Retail Branding 4
Marketing Name 1171
Device 0
Model 0

dtype: int64

From the above data, it can be observed that two columns : 'Retail Branding' and 'Marketing Name' have missing values

In [977]:

```
msno.matrix(df_device,figsize=(8,8),fontsize=10)
plt.title('Matrix for missing values')
plt.show()
```


In [978]:

df_missing=df_device[df_device['Marketing Name'].isna()]

In [979]:

```
1 df_missing['Retail Branding'].value_counts()
```

Out[979]:

Huawei	265
ZTE	212
LGE	118
TCT (Alcatel)	101
Lenovo	100
Motorola	60
Hisense	48
Samsung	47
Coolpad	36
Foxconn	32
Sony Ericsson	19
Acer	12
Dell	12
Enspert	9
Compal	8
Sony	7
Quanta	6
KT Tech	6
Asus	5
HTC	5
Intel	5
ViewSonic	5
Sharp	5
Panasonic	4
Toshiba	4
Archos	4
INQ Mobile	4
Teleepoch	3
Philips SK Tologue	3 3
SK Telesys	3
OpenPeak	3
Pegatron Han Hai Dracisian Industry Co. Ltd.	2
Hon Hai Precision Industry Co., Ltd.	2
Kyocera Technicolor	1
Funai Electric	1
Anydata	1
iRiver	1
Garmin	1
K-Touch	1
JVC KENWOOD Holdings, Inc.	1
Sumitomo Electric Networks	1
Gigabyte	1
Name: Retail Branding, dtype: int64	
name. Recall branaing, acype. 11104	

In [980]:

```
1 df_missing.describe()
```

Out[980]:

	Retail Branding	Marketing Name	Device	Model
count	1167	0	1171	1171
unique	43	0	853	1004
top	Huawei	NaN	msm7225	LG-P920
freq	265	NaN	18	16

In [981]:

```
1 df_device['Retail Branding'].value_counts()
```

Out[981]:

```
1762
Samsung
ZTE
                  1155
Huawei
                  1057
LGE
                  1042
TCT (Alcatel)
                   930
iDea USA
                     1
Mobily
                     1
Next Learning
                     1
Kennex
                     1
                     1
Razer
Name: Retail Branding, Length: 605, dtype: int64
```

Use of Custom function

In [982]:

```
# Custom Function to handle missing values
 2
 3
   def missing values(frame,col):
        '''This function helps to fill in the missing values
4
 5
        frame : Dataframe which consists of missing value
 6
        col : Column of dataframe which consist of missing value'''
 7
        name =[x for x in globals() if globals()[x] is frame][0]
        print('Filling missing values for column {0} in Dataframe {1}: '.format(col,name))
 8
9
        if frame[col].dtypes=='object':
10
            frame[col]=frame[col].fillna(frame[col].value_counts().index[0])
11
        print('Number of remaining missing values in column {0} in Dataframe {1} is : {2}
12
                                                                                             \blacktriangleright
```

In [983]:

```
1 missing_values(df_device,'Retail Branding')
```

Filling missing values for column Retail Branding in Dataframe df_device:
Number of remaining missing values in column Retail Branding in Dataframe df
_device is : 0

In [984]:

```
1 missing_values(df_device,'Marketing Name')
```

Filling missing values for column Marketing Name in Dataframe df_device: Number of remaining missing values in column Marketing Name in Dataframe df_device is: 0

In [985]:

```
1 df_device.isna().sum()
```

Out[985]:

Retail Branding 0
Marketing Name 0
Device 0
Model 0

dtype: int64

In [986]:

```
msno.matrix(df_device,figsize=(8,8),fontsize=10)
plt.title('Matrix for missing values')
plt.show()
```



```
In [987]:
```

```
1 df_device.head(10)
```

Out[987]:

	Retail Branding	Marketing Name	Device	Model
0	Samsung	Galaxy S3	AD681H	Smartfren Andromax AD681H
1	Samsung	Galaxy S3	FJL21	FJL21
2	Samsung	Galaxy S3	T31	Panasonic T31
3	Samsung	Galaxy S3	hws7721g	MediaPad 7 Youth 2
4	3Q	OC1020A	OC1020A	OC1020A
5	7Eleven	IN265	IN265	IN265
6	A.O.I. ELECTRONICS FACTORY	A.O.I.	TR10CS1_11	TR10CS1
7	AG Mobile	AG BOOST 2	BOOST2	E4010
8	AG Mobile	AG Flair	AG_Flair	Flair
9	AG Mobile	AG Go Tab Access 2	AG_Go_Tab_Access_2	AG_Go_Tab_Access_2

Use of REGEX:

The below regex expression searches for a letter/word followed by a space or '-' in column 'Model'

Then it extracts a single letter followed by one or more digit , in parenthesis (), and fill in the values of column 'model number'

The rows where the above format could not be found are filled with Nan in column 'model number'

In [988]:

```
1 df_device['model_number(Regex)']=df_device['Model'].str.extract('\w+\W(\w\d+)')
```

In [989]:

df_device[~df_device['model_number(Regex)'].isna()].sample(10)

Out[989]:

	Retail Branding	Marketing Name	Device	Model	model_number(Regex)
10669	Samsung	Galaxy Tab4 10.0	matisseltevzw	SM-T537V	T537
6665	Lenovo	Lenovo A3300	A3300-T	Lenovo A3300-T	A3300
10067	Samsung	Galaxy S	GT-I9000B	GT-I9000B	19000
6616	Lenovo	IdeaTab A3000	A3000	IdeaTab A3000-H	A3000
3238	Hipstreet	Hipstreet HS- 10DTB8	HS-10DTB8	HS-10DTB8	10
3244	Hipstreet	LS-6001	LS-6001	LS-6001	6001
597	Archos	Bush 5 4G	ac50heplus	Bush Spira C2 5" Smartphone	C2
3130	Haier	HS-10DTB4	HS-10DTB4	HS-10DTB4	10
5600	LGE	LG G Flex2	z2	LG-H959	H959
3316	Hisense	C30	HS8937QC	Hisense C30_02	C30

