群论考试试题

艾鑫

2016年1月8日

$oldsymbol{1}$ 有限群:非循环六阶群 G_6^2

六阶群有两种结构, 其中一个是循环群

$$G_6^1 = \{a, a^2, a^3, a^4, a^5, a^6 = e\}$$
(1)

另外一个就是非循环六阶群 $G_6^2=\{e,a,b,c,d,f\}$,它是最小的非阿贝尔群. 其满足下列关系

$$a^2 = b^2 = c^2 = e, \quad d^2 = f, \quad f^2 = d, \quad fd = df = e$$
 (2)

 G_6^2 的乘法表如下:

G_6^2	e	a	b	c	d	f
e	e	a	b	c	d	$\int f$
a	a	e	d	f	b	c
b	b	f	e	d	c	a
c	c	d	f	e	\overline{a}	b
d	d	c	a	b	f	e
f	f	b	c	a	e	d

(3)

1.1 G_6^2 的构造

 G_6^2 可以通过保持正三角形不变的所有转动对称变换构成,也就是点群 D_3 . 正三角形一共有 6 个对称操作:

- e 恒等变换
- c_{3}^{1},c_{3}^{2} 分别绕中心点 O 逆时针旋转 $2\pi/3$ 和 $4\pi/3$ 角
- c_{2x} , c_{2y} , c_{2z} 分别绕 x,y,z 轴旋转 π 角

在这种构造中, c_{2x} , c_{2y} , c_{2z} 对应于 a,b,c; c_3^1 , c_3^2 对应于 d,f.

 G_6^2 还可以通过置换群 S_3 来构造。置换群的群元有:

$$\begin{pmatrix} 123 \\ 123 \end{pmatrix} = e, \quad \begin{pmatrix} 123 \\ 213 \end{pmatrix} = (12), \quad \begin{pmatrix} 123 \\ 132 \end{pmatrix} = (23) \tag{4}$$

$$\begin{pmatrix} 123 \\ 321 \end{pmatrix} = (31), \quad \begin{pmatrix} 123 \\ 231 \end{pmatrix} = (123), \quad \begin{pmatrix} 123 \\ 312 \end{pmatrix} = (132) \tag{5}$$

其中 (12), (23), (31) 对应于 a, b, c; (123), (132) 对应于 d, f.

1.2 G_6^2 的子群

定义 1 (子群) 群 G 的子集 H 如果在和群 G 相同的乘法规则下也构成群, 则称 H 为群 G 的子群.

对于任意一个群 G,群 $\{e\}$ 和群 G 本身一定是 G 的子群. 其他的子群, 叫做真子群或固有子群. 对于六阶非循环群 G_6^2 的真子群有 4 个:

$$H_1 = \{e, a\}, \quad H_2 = \{e, b\}, \quad H_3 = \{e, c\}, \quad H_4 = \{e, d, f\}$$
 (6)

要判断一个子集 H 是否是子群,关键要看三个地方:一是要看是否有单位元;二是看是否有逆;三是看是否满足封闭性。结合性的满足是自然的,因为 H 是群 G 的子集,群 G 满足结合律,H 必然满足结合律。很容易验证,上面列出的 4 个子群都满足上述条件。

1.3 G_6^2 的分解

群 G 的元素可以按照共轭类或者陪集进行分解. 下面给出共轭的定义.

定义 2 (共轭) 对于群 G 中的两个元素 g_i,g_j , 如果存在另一个元素 $g \in G$ 使 $g_i = gg_ig^{-1}$ 成立, 则称 g_i,g_j 是相互共轭的, 用符号 \sim 表示, 记为 $g_i \sim g_j$.

共轭具有下列的性质:

- 每个元素都与自身共轭, $g_i \sim g_i$; (反身性)
- 如果 $g_i \sim g_i$, 则有 $g_i \sim g_i$; (对称性)
- 如果 $g_i \sim g_i$, $g_i \sim g_k$, 则有 $g_i \sim g_k$. (传递性)

定义 3 (共轭类) 群 G 内彼此共轭的元素集合构成共轭类, 简称类.

群中的每个元素仅属于一个类,因为如果一个元素同时属于两个类,那么由于共轭的传递性,这两个类就可以合并为一个类.由于单位元仅与自己共轭,所以单位元自成一类.通常用记号 [g] 表示群元 g 所在类的元素集合.对于 G_6^2 有三个类:

$$[e] = \{e\}, \quad [a] = \{a, b, c\}, \quad [d] = \{d, f\}$$
 (7)

故可以将 G₆ 按类分解为:

$$G_6^2 = [e] \oplus [a] \oplus [d]. \tag{8}$$

群还可以按照陪集进行分解,下面来对陪集进行定义.

定义 4 (陪集) 设 $H \subset G$ 为群 G 的子群, 令 $g_i \in G, g_i \notin H$, 则集合 $g_i H = \{g_i h | h \in H\}$ 称 为子群 H 的左陪集. 类似的可以定义子群 H 的右陪集 Hg_i .

一般来说, 左陪集不一定和右陪集相等. 对于 G_6^2 , 考虑子群 $H_1 = \{e, a\}$, 则有

$$bH_1 = \{b, f\}, \quad cH_1 = \{c, d\}, \quad H_1b = \{b, d\}, \quad H_1c = \{c, f\}$$
 (9)

如果考虑子群 $H_2 = \{e, d, f\}$, 则有

$$aH_2 = H_2 a = \{a, b, c\} \tag{10}$$

因此有陪集分解

$$G_6^2 = H_1 \oplus bH_1 \oplus cH_1 = H_2 \oplus aH_2$$

= $H_1 \oplus H_1b \oplus H_1c = H_2 \oplus H_2a$. (11)

1.4 G_6^2 的不变子群

首先给出不变子群的定义.

定义 5 (不变子群) 设 H 是群 G 的一个子群, 如果对任意的 $g \in G$ 都有 $gHg^{-1} = H$ 或 gH = Hg, 即 H 的每个左陪集和与其对应的右陪集完全相同, 则子群 H 称为群 G 的不变子 群或正规子群.

关于不变子群有如下定理:

定理 1 (不变子群) 如果 H 是群 G 的不变子群,则 H 一定包含群 G 的一些完整的类. 反之,如果子群 H 包含了群 G 的完整的类,则 H 一定是群 G 的不变子群.

由这个定理知, G_6^2 的子群中, 子群 $H_4=\{e,d,f\}$ 完整的包含了群 G 的类 $\{e\}$, $\{d,f\}$, 因此 G_6^2 的不变子群为 $H_4=\{e,d,f\}$.

1.5 商群 G_6^2/H

如果群 H 是群 G 的不变子群,则可将群 G 分解为下列陪集的直和:

$$G = H \oplus g_1 H \oplus g_2 H \oplus \cdots \oplus g_{l-1} H, \tag{12}$$

其中 $g_iH = Hg_i$. 由此可以定义陪集之间的乘法

$$(g_iH)(g_jH) = g_iHg_jH = g_ig_jHH = g_kH. (13)$$

可以证明, 这样定义的乘法是自洽的. 这样商集

$$G/H = \{H, g_1 H, g_2 H, \cdots, g_{l-1} H\}$$
(14)

构成阶数为 $l = n/n_H$ 的群, 其中 n_H 为不变子群 H 的阶, 这个群就称为群 G 的商群. 对于群 G_6^2 , 它有不变子群 $H = \{e, d, f\}$, 陪集 $M = aH = \{a, b, c\}$, 商群为

$$G_6^2/H = \{H, M\} \tag{15}$$

1.6 G_6^2 的二维表示矩阵

首先给出表示的定义:

定义 6 (群的表示) 如果存在从群 G 到作用在线性向量空间 V 上的算符群 Γ_G 的一个同态,即

$$g \in G \mapsto \Gamma_g \in \Gamma_G,$$
 (16)

其中 Γ_a 是与群元对应的算符, 满足

$$\Gamma_{q_1}\Gamma_{q_2} = \Gamma_{q_1q_2} \tag{17}$$

则算符群 Γ_G 称为群 G 的一个表示, 线性向量空间 V 的维数称为表示的维数. 如果这个同态同时也是同构的, 则该表示称为忠实表示.

如果在 d 维向量空间 V 中选择一组基 $\{e_i, i=1,2,\cdots,d\}$, 则 Γ_g 可以用 $d\times d$ 的矩阵来实现, 具体为

$$\Gamma_g e_i = \sum_{j=1}^d e_j D_{ji}(g) \equiv e_j D_{ji}(g), \quad g \in G, i = 1, 2, \dots, d.$$
(18)

- 1.7 G_6^2 的不可约表示的正交性
- 1.8 G_6^2 的特征标的正交性
- 1.9 G_6^2 的正则表示
- 1.10 G_6^2 的基础表示
- 1.11 G_6^2 的特征标表
- **2** 李群与李代数: SO(3)

测试 2