5. CMOS Gates: DC and Transient Behavior

J. A. Abraham

Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 382M.7 – VLSI I Fall 2011

September 12, 2011

Topics

- DC Response
- Logic Levels and Noise Margins
- Transient Response
- Delay Estimation

Transistor Behavior

Behavior in different situations (increase, decrease, or not change).

- 1 If the width of a transistor increases, the current will
- 2 If the length of a transistor increases, the current will
- If the supply voltage of a chip increases, the maximum transistor current will
- 4 If the width of a transistor increases, its gate capacitance will
- If the length of a transistor increases, its gate capacitance will
- 6 If the supply voltage of a chip increases, the gate capacitance of each transistor will

Transistor Behavior

Behavior in different situations (increase, decrease, or not change).

- 1 If the width of a transistor increases, the current will increase
- ② If the length of a transistor increases, the current will decrease
- If the supply voltage of a chip increases, the maximum transistor current will increase
- 4 If the width of a transistor increases, its gate capacitance will increase
- If the length of a transistor increases, its gate capacitance will increase
- If the supply voltage of a chip increases, the gate capacitance of each transistor will not change

DC Response: V_{out} vs. V_{in} for a Gate

Study the response of Inverters

- When $V_{in} = 0 \implies V_{out} = V_{DD}$
- When $V_{in} = V_{DD} \implies V_{out} = 0$
- In between, V_{out} depends on transistor size and current
- By KCL, current must be such that $I_{dsn} = |I_{dsp}|$
- We could solve equations, but graphical solution gives more insight

Transistor Operation

Current through transistor depends on the region of operation

ullet Need to identify for what V_{in} and V_{out} are nMOS and pMOS in Cutoff, Linear or Saturation

nMOS Operation

Cutoff	Linear	Saturated
$V_{gsn} < V_{tn}$	$V_{gsn} > V_{tn}$	$V_{gsn} > V_{tn}$
$V_{in} < V_{tn}$	$V_{in} > V_{tn}$	$V_{in} > V_{tn}$
	$V_{dsn} < V_{gsn} - V_{tn}$	$V_{dsn} > V_{gsn} - V_{tn}$
	$V_{out} < V_{in} - V_{tn}$	$V_{out} > V_{in} - V_{tn}$

$$V_{gsn} = V_{in}$$
$$V_{dsn} = V_{out}$$

pMOS Operation

Cutoff	Linear	Saturated
$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$
$V_{in} > V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$
	$V_{dsp} > V_{gsp} - V_{tp}$	$V_{dsp} < V_{gsp} - V_{tp}$
	$V_{out} > V_{in} - V_{tp}$	$V_{out} < V_{in} - V_{tp}$

$$V_{gsp} = V_{in} - V_{DD}$$
$$V_{dsp} = V_{out} - V_{DD}$$
$$V_{tp} < 0$$

I-V Characteristics

Make pMOS wider than nMOS such that $\beta_n=\beta_p$

$$\beta = \mu C_{ox} \frac{W}{L}$$

Current vs. V_{out} , V_{in}

Load Line Analysis

To find the V_{out} for a given V_{in}

- ullet For a given V_{in} , plot I_{dsn} , I_{dsp} vs. V_{out}
- ullet V_{out} must be where |currents| are equal in the graph below

DC Transfer Curve

Transcribe points on to V_{in} vs. V_{out} plot

Operating Regions

Revisit transistor operating regions

Region	nMOS	pMOS
Α	Cutoff	Linear
В	Saturation	Linear
С	Saturation	Saturation
D	Linear	Saturation
E	Linear	Cutoff

Beta Ratio

- If $\beta_p/\beta_n \neq 1$, switching point will move from $V_{DD}/2$
- Called skewed gate

Analysis of more complex gates

Collapse into equivalent inverter

Noise Margins

How much noise can a gate input see before it does not recognize the input?

Logic Levels

To maximize noise margins

 Select logic levels at unity gain point of DC transfer characteristic

Transient Response

- DC analysis gives the V_{out} if V_{in} is constant
- ullet Transient analysis tells us V_{out} as V_{in} changes
- ullet Input is usually considered to be a step or ramp (from 0 to V_{DD} or vice-versa)

Inverter Step Response

Find the step response of an inverter driving a load capacitance

$$V_{in}(t) = u(t-t_0)V_{DD}$$

$$V_{out}(t < t_0) = V_{DD}$$

$$I_{dsn}(t) = \begin{cases} 0 & t \leq t_0 \\ \frac{\beta}{2}(V_{DD} - V)^2 & V_{out} > V_{DD} - V_t \\ \beta \left(V_{DD} - V_t - \frac{V_{out}(t)}{2}\right) V_{out}(t) & V_{out} < V_{DD} - V_t \end{cases}$$

Delay Definitions

- ullet t_{pdr} : rising propagation delay
 - ullet From input to rising output crossing $V_{DD}/2$
- ullet t_{pdf} : falling propagation delay
 - ullet From input to falling output crossing $V_{DD}/2$
- ullet t_{pd} : average propagation delay

•
$$t_{pd} = (t_{pdr} + t_{pdf})/2$$

- t_r : rise time
 - \bullet From output crossing $0.2~V_{DD}$ to $0.8~V_{DD}$
- t_f : fall time
 - \bullet From output crossing $0.8~V_{DD}$ to $0.2~V_{DD}$
- t_{cdr}: rising contamination delay
 - ullet From input to rising output crossing $V_{DD}/2$
- ullet t_{cdf} : falling contamination delay
 - From input to falling output crossing $V_{DD}/2$
- t_{cd} : average contamination delay
 - $t_{pd} = (t_{cdr} + t_{cdf})/2$

Simulated Inverter Delay

- Solving differential equations by hand too hard
- SPICE simulator solves equations numerically
 - Uses more accurate I-V models too!
- But simulations take time to write

Delay Estimation

- We would like to be able to easily estimate delay
 - Not as accurate as simulation
 - But easier to ask "what if ..."?
- The step response usually looks like a first order RC response with a decaying exponential
- Use RC delay models to estimate delay
 - C = total capacitance on output node
 - Use effective resistance R
 - So that $t_{pd} = RC$
- Characterize transistors by finding their effective R
 - Depends on average current as gate switches

Example: Sizing 3-Input NAND Gate for Equal Rise and Fall Times

Determine the transistor widths to achieve effective rise and fall resistances (times) equal to that of a unit inverter R

Annotate the 3-input NAND gate with gate and diffusion capacitances

Example 3-Input NAND Gate

Determine the transistor widths to achieve effective rise and fall resistances (times) equal to that of a unit inverter R

Annotate the 3-input NAND gate with gate and diffusion capacitances

Example: Sizing Complex Gate

Size the transistors in the circuit below so that it has the same drive strength, in the worst case, as an inverter that has PW = 5 and NW = 3. Use the smallest widths possible to achieve this ratio.

Note: if there are multiple paths through a transistor, use the size for the "worst-case" input combination.

Example: Sizing Complex Gate

Size the transistors in the circuit below so that it has the same drive strength, in the worst case, as an inverter that has PW = 5 and NW = 3. Use the smallest widths possible to achieve this ratio.

This solution does NOT use the smallest widths

Note: if there are multiple paths through a transistor, use the size for the "worst-case" input combination.

Example: Sizing of Complex Gate – Better Solution

Size the transistors in the circuit below so that it has the same drive strength, in the worst case, as an inverter that has PW = 5 and NW = 3. Use the smallest widths possible to achieve this ratio.

Note: if there are multiple paths through a transistor, use the size for the "worst-case" input combination.

Elmore Delay

Finding the delay of ladder networks

- ON transistors look like resistors
- Pullup or pulldown network modeled as RC ladder
- Elmore delay of RC ladder

$$t_{pd} = \sum_{nodes \ i} R_{i-to-source} C_i$$

= $R_1 C_1 + (R_1 + R_2) C_2 + \dots + (R_1 + R_2 + \dots + R_N) C_N$

NOTE: C_i includes all the "off-path" capacitance on nodes that are connected to node i

Example: Delay of 2-Input NAND Using Elmore Formulation

Estimate **rising** and falling propagation delays of a 2-input NAND driving h identical gates

$$t_{pdr} = (6+4h)RC$$

Example: Delay of 2-Input NAND Using Elmore Formulation

Estimate rising and falling propagation delays of a 2-input NAND driving h identical gates

R/2
$$\xrightarrow{\frac{R}{2}}$$
 Y $t_{pdf} = (2C)\frac{R}{2} + \left[(6+4h)C\right]\left(\frac{R}{2} + \frac{R}{2}\right)$ $= (7+4h)RC$

Example of Elmore Delay Calculation

Calculate the Elmore delay from C to F in the circuit. The widths of the pass transistors are shown, and the inverters have minimum-sized transistors

Example of Elmore Delay Calculation

Calculate the Elmore delay from C to F in the circuit. The widths of the pass transistors are shown, and the inverters have minimum-sized transistors

$$Delay = \frac{R}{3}9C + \frac{R}{3}5C + \left(\frac{R}{3} + \frac{R}{3}\right)7C + 3RC = 12.33RC$$
 off-path

Another Example: Elmore Delay Calculation

Use the Elmore delay approximation to find the *worst-case* rise and fall delays at output F for the following circuit. The gate sizes of the transistors are shown in the figure. Assume NO sharing of diffusion regions, and the worst-case conditions for the initial charge on a node.

Input for worst-case rise delay =

Worst-case rise delay =

Input for worst-case fall delay =

Worst-case fall delay =

Delay with Different Input Sequences

Find the delays for the given input transitions (gate sizes shown in figure)

Assumptions: diffusion capacitance is equal to the gate capacitance, the resistance of an nMOS transistor with unit width is R and the resistance of a pMOS transistor with width 2 is also R, and NO sharing of diffusion regions

Off-path capacitances can contribute to delay, and if a node does not need to be charged (or discharged), its capacitance can be ignored

$$ABCD = 0101 \rightarrow ABCD = 1101$$

 $ABCD = 1111 \rightarrow ABCD = 0111$
 $ABCD = 1010 \rightarrow ABCD = 1101$

Delay with Different Input Sequence, Cont'd

Look at the charges on the nodes at the end of the first input of the sequence; only the capacitances of the nodes which would change with the second vector need to be considered

$$ABCD = 0101 \rightarrow ABCD = 1101;$$

Delay = 36RC

$$\begin{array}{l} ABCD = 1111 \rightarrow \\ ABCD = 0111; \\ \text{Delay} = 16\text{RC} \end{array}$$

$$ABCD = 1010 \rightarrow ABCD = 1101;$$

Delay = 43RC

Delay Components

Delay has two parts

Parasitic Delay

- 6 or 7 RC
- Independent of Load

Effort Delay

- 4h RC
- Proportional to load capacitance

Contamination Delay

Minimum (Contamination) Delay

- Best-case (contamination) delay can be substantially less than propagation delay
- Example, If both inputs fall simultaneously
- Important for "hold time" (will see later in the course)

$$t_{cdr} = (3+2h)RC$$

Diffusion Capacitance

- We assumed contacted diffusion on every source/drain
- Good layout minimizes diffusion area
- Example, NAND3 layout shares one diffusion contact
 - Reduces output capacitance by 2C
 - Merged uncontacted diffusion might help too

These general observations can be used for initial estimates of area and performance – using tools to extract parasitics will provide more accurate results for a particular technology