# OPERATIONS RESEARCH DIVISION RESEARCH MEMORANDUM

This is a working paper. It may be expanded, modified, or withdrawn at any time.

# RESEARCH TRIANGLE INSTITUTE DURHAM, NORTH CAROLINA

Research Memorandum RM-156-11

## Studies of Decontamination Effectiveness

bу

Joseph T. Ryan and J. D. Douglass, Jr.

5 August 1964

Prepared for

Office of Civil Defense
United States Department of Defense
Office of Civil Defense Contract OCD-OS-64-56
CCD Task 3233B
RTI Project OU-156

#### ABSTRACT

This report examines, by theory and by analysis of real structures, the reductions in intensity inside and outside NFSS buildings that can be brought about by decontaminating the accessible surfaces on and around the buildings. Specifically the report presents the theory and applies the theory to nine different NFSS buildings in order to:

- 1. Determine the intensity reductions that can be achieved by decontamination methods applied to practical situations involving real physical structures.
- 2. Determine the intensity reductions that can be achieved when the detector is located inside a structure and when the detector is located outside the structure.
- 3. Determine the decontamination costs (equipment, water expended, radiation dose received by the decontamination crews) in achieving the intensity reductions.
- 4. Determine the sensitivity of the achieved intensity reduction to the cleaning efficiency of the decontamination operation (and, therefore, to the type of decontamination method).
- 5. Determine the relative importance of the various surfaces (roofs, paved roads, parking lots, etc.) that can be decontaminated to the intensity reduction that can be achieved.

## TABLE OF CONTENTS

e de la companya del companya de la companya del companya de la co

|      |      |                                                          | rage |
|------|------|----------------------------------------------------------|------|
| ABS  | TRAC | T                                                        | ii   |
| I.   | Int  | roduction                                                | 1    |
|      | A.   | Objectives                                               | 1    |
|      | В.   | Decontamination Data                                     | 3    |
|      | C.   | Structures Analyzed                                      | 4    |
|      | D.   | Intensity Reduction Calculation                          | 6    |
|      | E.   | Presentation of Analysis Data                            | 16   |
|      | F.   | Practical Considerations                                 | 16   |
| II.  | Six  | -Floor Apartment Building                                | 25   |
|      | A.   | Analysis Data                                            | 25   |
|      | В.   | Map                                                      | 26   |
|      | C.   | Some Photographs of the Associated Contaminated Surfaces | 27   |
|      | D.   | Applied Strategies                                       | 30   |
|      | E.   | Outside Detector                                         | 31   |
| III. | Six  | -Floor Apartment Building                                | 32   |
|      | A.   | Analysis Data                                            | 32   |
|      | В.   | Мар                                                      | 34   |
|      | C.   | Some Photographs of the Associated Contaminated Surfaces | 35   |
|      | D.   |                                                          | 38   |
| IV.  | Twe  | enty-one Story Office Building                           | 40   |
|      | A.   | Analysis Data                                            | 40   |
|      | В.   | Мар                                                      | 41   |
|      | C.   | Some Photographs of the Associated Contaminated Surfaces | 42   |
|      | D.   | Applied Strategies                                       | 45   |
|      |      |                                                          |      |

## TABLE OF CONTENTS (CONT'D)

|       |                                                             | Page      |
|-------|-------------------------------------------------------------|-----------|
| v.    | General Dyestuff Corporation                                | 46        |
|       | A. Analysis Data                                            | 46        |
|       | В. Мар                                                      | 47        |
|       | C. Some Photograpus of the Associated Contaminated          |           |
|       | Surfaces                                                    | 48        |
|       | D. Applied Strategies                                       | 51        |
| VI.   | High School Gymnasium                                       | 52        |
|       | A. Analysis Data                                            | 52        |
|       | В. Мар                                                      | 53        |
|       | C. Some Photographs of the Associated Contaminated          |           |
|       | Surfaces                                                    | 54        |
|       | D. Applied Strategies                                       | 55        |
| VII.  | Simonds Press Building                                      | 56        |
|       | A. Analysis Data                                            | 56        |
|       | B. Map                                                      | 57        |
|       | C. Some Photographs of the Associated Contaminated          | <b>50</b> |
|       | Surfaces                                                    | 58<br>60  |
|       | D. Applied Strategies                                       | 61        |
|       | E. Cutside Detector                                         | ÜΤ        |
| VIII. | Department of Interior                                      | 62        |
|       | A. Analysis Data                                            | 62        |
|       | В. Мар                                                      | 63        |
|       | C. (Not included in this chapter)                           |           |
|       | D. Applied Strategies                                       | 64        |
|       | E. Outside Detector                                         | 65        |
| IX.   | A Department Store Building                                 | 66        |
|       | A. Analysis Data                                            | 66        |
|       | В. Мар                                                      | 67        |
|       | C. Some Photographs of the Associated Contaminated Surfaces | 68        |
|       |                                                             | 69        |
|       | D. Applied Strategies                                       | 69        |

## TABLE OF CONTENTS (CONT'D)

|      |      |                                                               | Page |
|------|------|---------------------------------------------------------------|------|
| x.   | Be1  | 1 Telephone Building                                          | 70   |
|      | A.   | Analysis Data                                                 | 70   |
|      | В.   | Map                                                           | 71   |
|      | C.   | Some Photographs of the Associated Contaminated Surfaces      | 72   |
|      | D.   | Applied Strategies                                            | 74   |
| XI.  | Par  | ametric Study                                                 | 76   |
|      | A.   | Building Data for Parametric Charts I, II, and III            | 78   |
|      | В.   | Building Data for Parametric Chart IV                         | 78   |
| XII. | Uns  | hielded Detector on Streets                                   | 83   |
|      | A.   | Straight Road                                                 | 83   |
|      | В.   | T - Intersections                                             | 84   |
|      | C.   | Full Four-way Street Intersections                            | 85   |
|      | D.   | Typical Protection Factors of Unshielded Detectors on Streets | 86   |
| REF  | EREN | ICES                                                          | 87   |

## LIST OF FIGURES

| <u>Figure</u> |                                                               | Page |
|---------------|---------------------------------------------------------------|------|
| 1-1           | Location Map of Decontamination Areas                         | 8    |
| 1-2           | Efficiencies of Decontamination Methods                       | 19   |
| 1-3           | Sensitivity of E                                              | 20   |
| 1-4           | Maximum Error if E = .06 is Assumed                           | 21   |
| 1-5           | Error When $f_{i,j} = f_{i,j}^* + E_i$                        | 23   |
| 2-1           | Location Map of Decontamination Areas                         | 26   |
| 2-2           | View of Building from West 182nd Street                       | 27   |
| 2-3           | West 182nd Street                                             | 27   |
| 2-4           | View of Roof                                                  | 28   |
| 2-5           | View of Side Alle                                             | 28   |
| 2-6           | View of Adjacent Roofs                                        | 29   |
| 2-7           | View of Playground and Garden Area                            | 29   |
| 3-1           | Location Map of Decontamination Areas                         | 34   |
| 3-2           | A View of West 52nd Street                                    | 35   |
| 3-3           | A View of Narrow Alley Behind Building                        | 35   |
| 3-4           | View of Garage Roof and Parking Lot                           | 36   |
| 3-5           | View of Tunnel to Rear Alley                                  | 36   |
| 3-6           | View of Building from West 52nd Street                        | 37   |
| 3-7           | View of Roof                                                  | 37   |
| 4-1           | Location Map of Decontamination Areas                         | 41   |
| 4-2           | View of Park Avenue                                           | 42   |
| 4-3           | View of East 49th Street                                      | 42   |
| 4-4           | View of Park Avenue Showing Iron Gate Around<br>Center Island | 43   |

## LIST OF FIGURES (CONT'D)

| <u>Figure</u> |                                                                       | <u>Page</u> |
|---------------|-----------------------------------------------------------------------|-------------|
| 4-5           | View of Sidewalk and Fireplug on East 49th Street                     | 43          |
| 4-6           | View of Roof (Non-contributing surface)                               | 44          |
| 4-7           | A Drain on the Roof                                                   | 44          |
| 5-1           | Location Map of Decontamination Areas                                 | 47          |
| 5-2           | View of Building from Hudson Street                                   | 48          |
| 5-3           | View of Intersection of Hudson Street and<br>Morton Street            | 48          |
| 5-4           | View of Building Roofs Across Leroy Street                            | 49          |
| 5-5           | Playground                                                            | 49          |
| 5-6           | View of Hudson Street and Sidewalk Areas from Roof                    | 50          |
| 5-7           | View of Parking Lot and Adjacent Garage Roof                          | 50          |
| 6-1           | Location Map of Decontamination Areas                                 | 53          |
| 6-2           | View of Building from Bennett Street                                  | 54          |
| 6-3           | Playground                                                            | 54          |
| 7-1           | Location Map of Decontamination Areas                                 | 57          |
| 7-2           | View of Building from S. Walter Street                                | 58          |
| 7-3           | View of Building from Ely Street                                      | 58          |
| 7-4           | View of Building from South Avenue                                    | 59          |
| 7-5           | View of Building from Intersection of South Avenue and Ely Street     | 59          |
| 8-1           | Location Map of Decontamination Areas                                 | 63          |
| 9-1           | Location Map of Decontamination Areas                                 | 67          |
| 9-2           | View of Building from Main Street                                     | 68          |
| 9-3           | View of Building from Capitol Avenue                                  | 68          |
| 10-1          | Location Map of Decontamination Areas                                 | 71          |
| 10-2          | View of Building from Intersection of 11th Street and Chestnut Street | 72          |

## LIST OF FIGURES (CONT'D)

| <u>Figure</u> |                                                       | <u>Page</u> |
|---------------|-------------------------------------------------------|-------------|
| 10-3          | View of Building from Pine Street                     | 72          |
| 10-4          | View of Building from 10th Street and Chestnut Street | 73          |
| 10-5          | View of the Building from 11th Street                 | 73          |
| 11-1          | Location Map of Parametric Study                      | 77          |
| 12-1          | Scraight Road                                         | 83          |
| 12-2          | T - Shaped Street Intersection                        | 84          |
| 12-3          | Full Four-way Intersection                            | 85          |
|               |                                                       |             |
|               |                                                       |             |
|               | LIST OF TABLES                                        |             |
| 12-I          | Straight Road PF's                                    | 83          |
| 12-11         | T - Shaped Intersection PF's                          | 84          |
| 12-111        | Four-way Intersection PF's                            | 85          |
| 12-17         | Typical Street PF's                                   | 86          |

## Studies of Decontamination Effectiveness

#### I. INTRODUCTION

#### A. Objectives

As a radiological countermeasure, decontamination can be employed to achieve one or more different operational objectives. For example, it may be used to accelerate the re-entry and recovery of a contaminated building or building complex. It may be used to reduce the radiation hazard associated with a continuing operation such as a power station or communication link. It may be used to reduce the radiation dose associated with a change in operations, such as H+2 week shelter emergence. In each of these applications and others that may arise, decontamination achieves the objective by removing fallout material and thus reducing the radiation intensity in the neighboring space. The degree to which a particular operational objective is achieved, depends on the effectiveness with which decontamination reduces the intensity. This in turn depends on the amount of fallout material removed from specific contaminated planes as a result of decontaminating those planes, and on the importance of each plane as a contributor to the intensity at the point where the intensity reduction is measured or desired.

This report examines the reduction in intensity that is achieved in a variety of circumstances as a function of the manner in which planes are decontaminated and of the importance of each plane to the intensity at the detector location. In particular, the analyses are formulated to accomplish the following primary objectives:

 Petermine the intensity reductions that can be achieved by decontamination methods applied to practical situations involving real physical structures.

- Determine the intensity reductions that can be achieved when the detector is located inside a structure and when the detector is located outside the structure.
- 3. Determine the decontamination costs (equipment, water expended, radiation dose received by the decontamination crews) in achieving the intensity reductions.
- 4. Determine the sensitivity of the achieved intensity reduction to the cleaning efficiency of the decontamination operation (and, therefore, to the type of decontamination method).
- 5. Determine the relative importance of the various surfaces (roofs, paved roads, parking lots, etc.) that can be decontaminated to the intensity reduction that can be achieved.

To accomplish the above objectives, ten situations were analyzed. Each analysis forms the basis of one of the ten subsequent chapters. Nine analyses, Chapters II through X, investigate the effect on the intensity reduction inside and outside existing NFSS shelters of decontaminating the various accessible contaminated areas in, on, and around the shelter structure. The tenth analysis, Chapter XI, is a parametric study that investigates the height, width, and length effects on the intensity reduction of decontaminating a variety of contiguous contaminated planes.

All analyses are formulated so that the effect of decontaminating any subset of the accessible areas (roofs, street segments, parking lots, etc.) with any level of decontamination effort may be determined quickly and easily. Although the analyses assume a uniform distribution of fallout material, a method by which the results can be modified (or interpreted) for the

situation involving non-uniform distribution, is also presented (Chapter I, Section F).

## B. <u>Decontamination Data</u>

Decontamination efforts are applied to relevant concaminated surfaces and the fallout material removed is estimated using the information developed at USNRDL (References 1, 2, 4, and 5) and Curtiss-Wright (Reference 6). The decontamination effort is measured in terms of the resources required to decontaminate, to a given level, a specified area (square feet) of a specified material (asphalt, concrete, tar paper, ground, etc.). The resources employed are specified by describing:

- (1) The type of equipment used (street flushers, firehoses, etc.);
- (2) The number and capabilities of working personnel required;
- (3) The quantity of resources expended (gallons of water);
- (4) The time required for the decontamination activity; and,
- (5) The radiation dose received by the decontamination crew members

  This specification is restricted to the actual decontaminating activity

  and hence does not include such items as:
  - (1) The time required to transport people and equipment to and from the site;
  - (2) Resources required for the above transportation;
  - (3) Requisite coordinating command and control activities such as radiological monitoring; and,
  - (4) When appropriate, additional resources required to transport the collected fallout material away from the decontaminated site.

In general, when decontaminating a specified structure, three types of surfaces are investigated. First, the roof of the structure itself is decontaminated using firehose teams. This effort normally requires a seven

man team working .1 to .4 hours per thousand square feet to remove 90 to 98 per cent of the fallout material deposited on the roof (Reference 6). Second, the paved ground surfaces (roads, parking lots, and playgrounds) adjacent to the structure are decontaminated. In this case various methods including firehose teams, street flushers, mechanical sweepers and vacuum sweepers are employed. When equipment other than firehoses is used, it normally requires a one man team working .01 to .04 hours per thousand square feet to remove 90 to 98 per cent of the fallout material deposited on the surface (Reference 5). Third, when appropriate, the roofs of adjacent buildings are decontaminated using firehose teams. For each surface, the actual methods employed, times required, and material removed are specified in each study.

### C. Structures Analyzed

As stated earlier, one purpose of this report is to apply decontamination efforts and efficiencies to real physical structures and estimate the intensity reductions that can be accomplished in practical situations. To accomplish this, nine structures were selected from a study of NFSS buildings where methods and accuracies of computing the building protection factors (PF) are analyzed and compared (Reference 3). The structures \( \frac{1}{2} \) selected are:

Chapter II

Six Story Apartment Building 81 West 182nd Street Bronx, N.Y.C.

<sup>1/</sup>The majority of structures considered have protection factors (PF) greater than 40. Because the intensity reduction depends on the shape of the structures and the mass thickness (psf) of walls and roofs, relative to one another, the structure FF can be decreased by appropriately decreasing the psf's of the walls and roofs without changing the intensity reduction factors. This is solely a paper exercise and is pointed out to indicate that the FF's of the structures analyzed are of minor interest and do not restrict the range of application of the analysis data.

Chapter III

Six Story Apartment Building

362 West 52nd Street Manhattan, N.Y.C.

Chapter IV

Twenty-one Story Office Building

310 Park Avenue Manhattan, N.Y.C.

Chapter V

General Dyestuff Corporation Building

435 Hudson Street Manhattan, N.Y.C.

Chapter VI

High School Gymnasium

Bennett Street

Boston, Massachusetts

Chapter VII

Simonds Press Building 37-49 South Avenue

Rochester, New York

Chapter VIII

Department of Interior Building

18th and C Streets, N. W.

Washington, D. C.

Chapter IX

Three Story Department Store Building

619 Main Street Houston, Texas

Chapter X

Bell Telephone Building

1010 Pine Street St. Louis, Missouri

In addition to the above structures, a tenth structure,

Chapter XI

Five Story Parametric Study Building

Fictitious Location,

is included to examine, in a controlled parametric manner, the offect on the intensity reduction of certain factors such as:

- (1) The mass thickness (psf) of interior partitions;
- (2) The roof heights of adjacent buildings:
- (3) The floor on which the detector is located;
- (4) The width of all adjacent streets;
- (5) The solid angle subtended by the apertures; and,
- (6) The mass thickness (psf) of the exterior walls.

In this parametric study, and also in Chapters II, VII, and VIII, the intensity reduction is studied first with the detector located inside the structure and second with the detector located at various positions outside the structure. When the detector is located at ground level outside the structure it is interesting to note that no intensity contribution is received from contaminated roofs of the surrounding structures. This characteristic (from Reference 7) is not expected to be valid when the surrounding structures have low PF's (such as might be encountered in analyzing a shopping center).

## D. <u>Intensity Reduction Calculation</u>

The determination of intensity reduction brought about by decontamination efforts involves the use of several terms (or definitions) whose meaning should be clarified before entering into the individual analyses. terms will be developed and explained using a hypothetical example whose layout is presented in Figure 1-1. The structure of interest occupies one half of a city block and has paved surfaces (roads and parking lots) on all four sides. Two detector locations will be considered: number 1 location is inside the structure and number 2 location is outside the structure in the center of an adjacent street. The effect of decontaminating three surfaces -a roof, a parking lot, and a street segment (numbers 1, 2 and 3 respectively) -on the intensity at the two detector locations will be determined. To determine the intensity reductions, it is necessary to obtain certain numerical factors. In Chapters II through XI, the necessary factors are calculated using the analytical methods presented in the OCD engineering manual, (Reference 7). the following discussion, the intent is to explain the necessary terms and methodology. Therefore elaborate calculations will be avoided and, where necessary, the appropriate numerical factors will be assigned values rather than calculated.



FIGURE 1-1. Location Map of Decontamination Areas EXAMPLE

The first factor to consider in an analysis is the extent to which a contaminated surface is cleaned. When decontamination resources are applied to a specified area, the effect of the effort is measured by the achieved reduction in residual mass level of fallout material. This effect is specified by the fraction of the fallout material deposited on the area that remains on the area after the decontamination operation is completed. Each surface decontaminated will have an associated fraction. The i<sup>th</sup> fraction, associated with the i<sup>th</sup> area, is called the mass reduction factor, E<sub>i</sub>, of the i<sup>th</sup> area. It is defined as follows:

$$E_{i} = \frac{m_{i}^{a}}{m_{i}}, \qquad (1)$$

where  $m_i$  = residual mass deposited on the i<sup>th</sup> area, and  $m_i$  = residual mass remaining on the i<sup>th</sup> area after the area has been decontaminated. Both  $m_i$  and  $m_i$  are assumed to be uniformly distributed over the surface of interest.

If decontamination is not performed, or if no material is removed during the decontamination operation, then  $E_i=1$ . If all of the fallout material is removed in the process, then  $E_i=0$ . In general,  $E_i$  a function of the level of decontamination effort applied to the  $i^{th}$  area, will be less than one and greater than zero. In Figure 1-1, there are three areas to be decontaminated and, therefore there are three mass reduction factors to be considered. If 85 per cent of the fallout material is removed from the roof, surface 1, then  $E_1=.15$ . If 95 per cent of the fallout material is removed from the street segment, then  $E_3=.05$ . If 90 per cent of the fallout material is removed from the parking lot, then  $E_2=.10$ . These factors are taken from curves that relate the mass removed to the effort expended. Examples of such curves, taken from Reference 6, are presented in Figure 1-2.





(Solid Lines)

Firehose

Man Hours/1000 Sq. Ft. -

WASS REDUCTION FACTOR E

Removing a portion of the fallout material deposited on the i<sup>th</sup> area will decrease the radiation intensity in and around the structure. The magnitude of the resultant decrease will depend on both the location of the point where the intensity is measured relative to the location of the decontaminated i<sup>th</sup> area, and on the type and location of structures in the locality. Therefore, in Figure 1-1, the effect of  $\mathbf{E}_2$  = .1 on the intensity at detector location one will be different from the effect of  $\mathbf{E}_2$  = .1 on the intensity at detector location two.

In addition to depending on the locations, the fraction by which the intensity  $\frac{2}{}$  decreases will depend on the fallout material deposited (or remaining) on the other contaminated areas. To determine the composite effect of  $E_i$  on the intensity at detector location j, it is necessary to calculate or measure the point intensity at location j,  $I_j$ , and the portion of the point intensity that is due to the contamination on the ith area,  $I_{i,j}$ . When the distribution of fallout material in neighboring space is specified, these intensities  $I_i$  and  $I_{i,j}$  can be calculated using the methods presented in the OCD engineering manual (Reference 6). Because:

- (1) all contaminated areas contribute independently to the intensity at location j (That is,  $I_j = \sum\limits_{i=i}^{n} I_{i,j}$  where n = 1 number of contributing contaminated areas), and
- (2) the intensity due to the i<sup>th</sup> area is directly proportional to the fallout material on the i<sup>th</sup> area,

the intensity at location  $\,\,j\,\,$  after only the  $k^{\mbox{th}}$  area is decontaminated,  $T_{\,j}^{\,k},\,\,is$ 

$$T_{j}^{k} = T_{j} - (1-E_{k}) T_{k,j}$$
 (2)

 $<sup>\</sup>frac{2}{2}$ All intensities are assumed corrected to eliminate the effect of decay.

Obviously, if all fallout material is removed from the  $\mathbf{k}^{th}$  area (the ideal case where  $\mathbf{E}_{\mathbf{k}}$  = 0 then

$$I_j^k = I_j - I_{k,j} . (3)$$

In this ideal situation, the fractional reduction that has occurred is called  $f_{k,j}^*$ , the <u>ideal intensity reduction factor</u> of the  $k^{th}$  contaminated area relative to the  $j^{th}$  detector location, and is defined as follows:

$$f_{k,j}^* = \frac{I_j - I_{k,j}}{I_j} = 1 - \frac{I_{k,j}}{I_j}$$
 (4)

For each contaminated area and detector location, this factor  $f_{k,j}^*$  is calculated using the methods outlined in the OCD engineering manual (Reference 6). The factor represents the fractional reduction in intensity that can be achieved at detector location j by perfectly decontaminating only the  $k^{th}$  contaminated surface ( $E_k = 0$ ). In Figure 1-1 these factors have been assigned the following representative values:

at detector location 1

surface 1 
$$f_{1,1}^* = .70$$
  
surface 2  $f_{2,1}^* = .88$   
surface 3  $f_{3,1}^* = .75$ 

at detector location 2

surface 1 
$$f_{1,2}^{*} = 1.0$$
  
surface 2  $f_{2,2}^{*} = .92$   
surface 3  $f_{3,2}^{*} = .13$ 

Let the intensity at detector location one be  $I_1$  and the intensity at detector location two be  $I_2$ . Thus, if surface 3, the street segment, is perfectly decontaminated ( $E_3 = 0$ ), then the new intensity at detector one,

$$I_1^3 = f_{3,1}^* I_1 = .75 I_1$$
 , (5)

and the new intensity at detector location two,  $I_2^3$  , is

$$I_2^3 = f_{3,2}^* I_2 = .13 I_2$$
 (6)

That is, by removing all fallout material from surface 3 (and only surface 3), the intensity at detector location one (two) is reduced to 75 (13) per cent of its former value. In contrast, if all fallout material is removed from surface 1 (and only from surface 1) then the intensity at detector location one is reduced to 70% of its former value while the intensity at detector location two is not affected ( $f_{1,2}^* = 1.0$ ).

The ideal intensity reduction factors,  $f_{1,j,k}^*$  form the core of the intensity reduction analyses. At the beginning of each analysis, they are determined for each surface of interest relative to each detector point of interest. In terms of these (the  $f_{i,j}^*$ 's) and the mass reduction factors,  $E_i$ , the intensity reduction at any detector location can be determined for any combination of decontaminated surfaces. To develop the appropriate expression for this, first consider the intensity reduction achieved at detector location j when surface k (and only surface k) is decontaminated with  $E_k \neq 0$ . In this realistic situation, the fraction reduction that has occurred is called  $f_{k,j}$ , the <u>intensity reduction factor</u> of the kth contaminated area relative to the jth detector location, and is defined, using Equation 2, as follows:

$$f_{k,j} = \frac{I_j - (l-E_k) I_{k,j}}{I_j}$$
 (7)

This factor is more conveniently expressed in terms of  $E_k$  and  $f_{k,j}^*$  as follows:

$$f_{k,j} = f_{k,j}^* + (1-f_{k,j}^*) E_k$$
 (8)

In Figure 1-1, as before, let the intensity at detector location one be  $I_1$  and the intensity at detector location two be  $I_2$ . In addition assume that 95% of the fallout material deposited on surface 3 is removed. That is, let  $E_3 = .05$ . As a result of this operation, the new intensity at detector one,  $I_1^3$ , is

$$I_1^3 = (.75 + .25 \times .05) I_1$$
  
= .7625 I<sub>1</sub> , (9)

and the new intensity at detector two,  $I_2^3$ , is

$$I_2^3 = (.13 + .87 \times .05) I_2$$
  
= .1735 I<sub>2</sub> . (10)

Up until now only one surface at a time has been decontaminated. To decontaminate several surfaces simultaneously, it is necessary to introduce one more relationship involving the  $f_{k,j}^*$ 's. From Equation 4, it is easily seen that the actual fractional intensity contribution of the  $i^{th}$  surface to the intensity at detector j can be expressed as follows:

$$\frac{I_{i,j}}{I_{j}} = 1 - f_{i,j}^{*} . \tag{11}$$

Because the sum of all fractional contributions must equal unity, the following relationship is evident.

$$\sum_{i} (1 - f_{i,j}^{*}) = 1.0 \quad . \tag{12}$$

If there are n such surfaces (i = 1, 2, ..., n), this becomes:

$$\sum_{i=i}^{n} f_{i,j}^{*} = n-1 . \qquad (13)$$

Notice, that in Figure 1-1, there are actually four surfaces to be considered: 1, the roof; 2, the parking lot; 3, the street segment; and 4, all others. If the fourth surface ideal intensity reduction factor is  $f_{4,j}^*$ , then the best possible intensity reduction that can be achieved by decontaminating surfaces 1, 2, and 3 with  $E_1 = E_2 = E_3 = 0$  is simply  $1 - f_{4,j}^*$ . That is, the <u>ideal combined intensity reduction factor</u>,  $F_j^*$ , is

$$F_{j}^{*} = 1 - f_{n,j} = 1 - (n-1-\sum_{i=1}^{n-1} f_{i,j}^{*})$$

$$= 1 - m + \sum_{i=1}^{m} f_{i,j}^{*}, \qquad (14)$$

where  $f_{n,j}$  represents the contribution from the surfaces not decontaminated.

Returning to the example in Figure 1-1, consider the best intensity reductions that can be achieved at each detector location when the three surfaces are perfectly decontaminated.

At detector location 1,

$$F_{1}^{*} = \sum_{i=1}^{3} f_{i,1}^{*} + 1 - 3$$

$$= .70 + .88 + .75 - 2$$

$$= .33 . \tag{15}$$

At detector location 2,

$$F_{2}^{*} = \sum_{i=1}^{3} f_{i,2}^{*} + 1 - 3$$

$$= 1 + .92 + .13 - 2$$

$$= 0.5 . (16)$$

That is, if the intensities before any decontamination is performed are  $I_1$  and  $I_2$ , and if surfaces 1, 2, and 3 are perfectly decontaminated, then the intensities after the decontamination is performed are .33  $I_1$  and .05  $I_2$  respectively.

In the realistic situation, where the mass reduction factors are not equal to zero, it is a simple process to show that the <u>combined intensity</u> reduction factor,  $F_j$ , may be obtained from Equation 14 by merely substituting  $f_{i,j}$  in place of  $f_{i,j}^*$ . That is,

$$F_{j} = \sum_{i=1}^{m} f_{i,j} + 1-m$$
, (17)

where, as previously stated,  $f_{i,j}$  is equal to  $f_{i,j}^* + (1-f_{i,j}^*)$   $E_i$ . Equation 17 is the expression that gives the fractional reduction in intensity that results when several surfaces are decontaminated.

To see how closely the ideal situation is approached when practical decontamination methods are employed in Figure 1-1, let  $\rm E_1$  = .15,  $\rm E_2$  = .10, and  $\rm E_3$  = .05. Using Equation 8, the intensity reduction factors are:

At detector location one,

$$f_{1,1} = .70 + .30 \times .15 = .75$$
  
 $f_{2,1} = .88 + .12 \times .10 = .892$   
 $f_{3,1} = .75 + .25 \times .05 = .7625$  (18)

therefore

$$F_1 = .75 + .892 + .7625 - 2$$
  
= .4045 , (19)

out of a possible  $F_1^{*}$  = .33 as determined in Equation 15.

At detector location two,

$$f_{1,2} = 1.0$$
  
 $f_{2,2} = .92 + .08 \times .1 = .928$   
 $f_{3,2} = .13 + .87 \times .05 = .1735$  (20)

therefore

$$F_2 = .1735 + .928 - 1$$
  
= .1015 , (21)

out of a possible  $F_2^* = .05$  as determined in Equation 16.

On the other hand, if only the ground level surfaces (2 and 3) were decontaminated with  $E_2 = .10$  and  $E_3 = .05$ , the following results would be obtained:

At detector location one,

$$f_{2,1} = .88 + .12 \times .10 = .892$$
  
 $f_{3,1} = .75 + .25 \times .05 = .7625$  (22)

therefore

$$F_1 = .7625 + .892 - 1$$
  
= .6545 . (23)

At detector location two,

$$f_{2,2} = .92 + .08 \times .1 = .928$$
  
 $f_{3,2} = .13 + .87 \times .05 = .1735$  (24)

therefore

$$F_2 = .1735 + .928 - 1$$
  
= .1015 . (25)

In the above calculations, the factors that are necessary are the  $f_{i,j}^*$ 's and the  $E_i$ 's. The  $E_i$ 's are obtained from curves and the  $f_{i,j}^*$ 's are calculated

with the techniques used to calculate the protection factor of the structure itself (Reference 7). The combining of these two sets of factors is the primary portion of the analyses presented in Chapters II through XI.

#### E. Presentation of Analysis Data

The results of the analysis of each of the ten structures are presented in summary form in Chapters II through XI. For each analysis, the following material is presented:

- (1) Basic analysis data giving the building address, height of detector. NFSS protection factor, decontamination areas (location type, and size), ideal intensity reduction factors  $(f_{1,j}^*)$  for each decontamination area, practical mass reduction factors  $(E_i)$  for each decontamination area; and practical intensity reduction factors  $(f_{i,j}^*)$ ;
- (2) A map showing the location of the building, the location of surfaces to be decontaminated, and the detector locations;
- (3) Photographs, when available, showing the building, its surroundings, and the areas to be decontaminated;
- (4) When appropriate, a general discussion of unusual factors or items encountered in the analysis; and,
- (5) Descriptions of the strategy for each decontamination area including, for various methods of decontamination, the applicable reference H+l intensity, the man hours of effort, the respective mass and intensity reduction factors (f<sub>i,j</sub> and E<sub>i</sub>), the radiation dose received by the crew members, and the water required for the operation.

## F. Practical Considerations

In this final section, three topics are discussed: (1) on site

postattack measurement of  $f_{i,j}^*$ , (1) sensitivity of  $f_{i,j}$  and  $F_i$  to the value of the mass reduction factor  $E_i$  and appropriate simplified expressions for  $F_j$ , and (3) analysis adjustments to account for weathering in calculations of  $F_j$ . Each topic will be discussed using the example presented in Figure 1-1 and the definitions presented in Section D of this chapter.

Using the methods presented in Reference 7, the OCD engineering manual, the pertinent ideal intensity reduction factors,  $f_{i,j}^*$  and  $F_j^*$ , can be determined for a specific building as easily as the protection factor itself can be calculated. In the postattack environment, however, it may be very desirable to conduct an on-site measurement of the factors  $f_{i,j}^*$  before commencing decontamination operations. The reason for this is that expected weathering will cause a redistribution of fallout material. As a result of this redistribution, the values of the  $f_{i,j}^*$  factors (and, incidentally, the protection factor itself) will change and therefore the effect of decontaminating specified areas with respect to specified detector locations will change. What previously were important areas to decontaminate may become unimportant (and, also, the reverse). Therefore, it would be desirable to check values of the  $f_{i,j}^*$ 's by measurement prior to commencing decontamination operations.

An on-site estimate of important  $f_{i,j}^*$  factors can be made with appropriate directional detectors. This can be seen from the equation for  $f_{i,j}^*$ .

$$f_{i,j}^* = 1 - \frac{I_{i,j}}{I_j}$$
 (4)

Using an omni-directional detector,  $I_j$  can be measured directly. Using an appropriate directional detector,  $I_{i,j}$  can also be measured, although not as accurately as  $I_j$  due to scattering. If such detectors are available, the measurements can be made quickly and easily at the location of interest and

the values of  $f_{i,j}^*$  can be adjusted if they were previously calculated, or estimated if they were not previously calculated.

Once the  $f_{i,j}^*$  values are established, the resultant intensity reduction factor for detector location j can be determined from the equation

$$F_{j} = \sum_{i=1}^{n} (f_{i,j}^{*} + (1 - f_{i,j}^{*}) E_{i}) + 1 - n$$
 (26)

for any desired set of mass reduction factors E<sub>i</sub>. As previously mentioned these factors E, are taken from experimental curves such as those presented in Figure 1-2. To examine the sensitivity of  $F_i$  to the values of  $E_i$  that are selected, it is convenient to begin by examining Equation 26 when all  $E_{i}$  are equal. This situation is illustrated by Figure 1-3 where  $F_{i}$  is presented as a function of  $F_i^*$  for  $E_i = .1$ , .06, and .01. The values for E, were selected from Figure 1-2 to represent high, average, and low values of  $E_i$ . From Figure 1-3, it is obvious that  $F_i$  is sensitive to  $E_i$  when  $F_i^*$ is less than .2. Based on this observation, it is interesting to determine the maximum error that could result if all  $E_{i}$ 's were assumed equal to .06. In this case, the maximum errors would occur if all  $\mathbf{E_i}$ 's were actually equal to .1 or .01 (assuming, from Figure 1-2, .1 > E $_{i}$   $^{\sim}$  .01). These two errors -using E = .06 rather than E = .1 -- are displayed as a function of  $F_{i}^{*}$  in Figure 1-4. Based on Figures 1-3 and 1-4, it is evident that the actual values of  $E_i$  are not very significant in determining  $F_i$  when  $F_i^*$  is greater than .2. Therefore when  $F_{i}^{*}$  is greater than .2 the approximation

$$F_{j} \simeq F_{j}^{*} + (1 - F_{j}^{*}) .06$$
= .94  $F_{j}^{*} + .06$  (27)





is useful for quickly estimating  $F_j$ . This approximation is appropriate in situations where the detector is located inside the building. In that situation, there are several contributing planes -- ground and roof -- of contamination. Each plane will have an appropriate mass reduction factor,  $E_i$ , that is less than .1 and, for most cases (from Figure 1-2) greater than .01. If  $E_i$  was assumed equal to .06 for all planes, then the maximum error in the calculated  $F_j$  would arise in the equally unlikely situation where all  $E_i$ 's were actually .1 (or, .01). In actual situations where all  $E_i$ 's were assumed equal to .06 the actual value of  $E_i$  would lie between .01 and .1, on both sides of .07, and the errors that result from setting  $E_i$  = .06 would tend to cancel out, resulting in an error much less than the maximum errors shown in Figure 1-4.

In contrast to the above situation, when the detector is located externally, there are very few contributing planes -- ground-level surfaces only (Reference 7) -- of contamination. In particular, the plane above which the detector is located is so significant a contributor that  $F_j^*$  can often be assumed equal to the  $f_{i,j}^*$  of that plane. In addition, this  $f_{i,j}^*$  tends to be less than .2, and, in many cases, less than .03. For such circumstances it is convenient to set  $f_{i,j}$  equal to  $f_{i,j}^* + E_i$  rather than  $f_{i,j}^* + (1-f_{i,j}^*) E_i$ . When  $f_{i,j}^*$  is less than .1, and  $E_i$  is less than .1, the error that results from using this approximation,  $f_{i,j} = f_{i,j}^* + E_i$  is always less than 5.3% as shown in Figure 1-5.

When it is desired to predict the effects of weathering or redistribution of fallout material, the preceding discussions are applicable if the value of i, is properly modified. The adjustment of i, is developed from the basic equation for the intensity at detector location j.



$$I_{j} = \sum_{i} I_{i,j} . \qquad (28)$$

If the fallout material is shifted about, the intensity at j becomes,

$$I_{j}^{o} = \sum_{i} k_{i} I_{i,j} , \qquad (29)$$

where  $\mathbf{k}_i$  is the fractional increase or decrease in material deposited on the  $i^{th}$  plane. This expression can also be written as

$$I_j^0 = k_j \sum_i I_{i,j} , \qquad (30)$$

where k is the fractional increase or decrease in intensity at location j due to the redistribution. From Equation 4

$$f_{i,j}^{*} = 1 - \frac{I_{i,j}}{I_{i}}$$
, (4)

the appropriate  $f_{i,j}^*$  after weathering has occurred,  $f_{i,j}^{**}$ , becomes,

$$f_{i,j}^{**} = 1 - \frac{k_i I_{i,j}}{k_j \sum_{i} I_{i,j}}$$
, (31)

or

$$f_{i,j}^{**} = 1 - \frac{k_i}{k_j} (1 - f_{i,j}^*)$$
 (32)

Naturally if the weathering does not change the intensity at location j ( $k_j = 1$ ) then the ideal intensity reduction factors become,

$$f_{i,j}^{**} = i - k_i + k_i f_{i,j}^{*}$$
 (33)

#### II. SIX-FLOOR APARTMENT BUILDING

## A. Analysis Data

Address: 81 West 182nd Street

bronx, N.Y.C.

Detector: 1st Floor

Normal Protection Factor: PF = 45

Decontamination Areas:

1. Roof: 9918 sq.ft. tar and gravel

2. Ground Level: 15,000 sq.ft. asphaltic concrete on West 182nd Street

16,000 sq.ft. asphaltic concrete on Aqueduct Avenue

13,000 sq.ft. asphalt on P.S. 91 playground

Ideal Intensity Reduction Factors:

1. Roof:  $f_{1,1}^* = .641$ 

2. Ground Level:  $f_{2,1}^* = .494$ 

3. Roof and Ground combined:  $f_1^* = f_{1,1}^* + f_{2,1}^* - 1 = .135$ 

Practical Mass Reduction Factors:

1. Roof:  $E_1 = .1$ 

2. Ground Level:  $E_2 = .02$ 

Practical Intensity Reduction Factors Decontaminating:

1. Roof only:  $F_1 = .677$ 

2. Ground Level only:  $F_1 = .504$ 

3. Roof and Ground Level:  $F_1 = .181$ .



principal building

adjacent buildings

detector location i

decontamination area

FIGURE 2-1. Location Map of Decontamination Areas

## C. Some Photographs of the Associated Contaminated Surfaces

FIGURE 2-2



View of Building from W. 182nd Street
(Note: fireplug)

FICURE 2-3



W. 182nd Street (Note: large drain on corner)



<u>View of Roof</u>

FIGURE 2-5



View of Side Alley



View of Adjacent Roofs

FIGURE 2-7



View of Playground and Garden Area

(Note: iron fence around garden)

D. Applied Strategies

1. Roof Decontamination

| EFFECTIVENESS DATA                  | Intensity                                 |                            | (E) Factor (f; ;)     | L, 1        |                | .65       | •       | •      | •      | 69.   | •     |   |                              | .50            | . 50   |       | •     | . 50     |                                       |
|-------------------------------------|-------------------------------------------|----------------------------|-----------------------|-------------|----------------|-----------|---------|--------|--------|-------|-------|---|------------------------------|----------------|--------|-------|-------|----------|---------------------------------------|
| EFFE                                | Macc Ro-                                  | duction                    | duction<br>Factor (E) |             | .01            | .0025     | .03     | .0025  | . 12   | .025  |       |   | .02                          | .0125          | 80.    | .07   | .02   | _        |                                       |
|                                     | or                                        |                            | Water                 | Used        | (gal.)         | 42,300    | 42,300  | 21,300 | 21,300 | 8,400 | 8,400 |   |                              | 13,200         | 13,200 | 1,320 | 1,320 | 219,900  | ion                                   |
| ,                                   | Factor f                                  | 1000)                      | nt. at                | 2 weeks     | (R)            | 1.41      | 1.41    | .71    | .71    | . 28  | . 28  | * | nation                       | 77.            | 77.    | .044  | .044  | 7.33     | ntaminati                             |
| COST DATA<br>Multiplying Factor for | Multiplying Factor<br>Crew Dose (Assuming | H+1 = 1000                 | if decont. at         | 2 days      | (R)            | 14.1      | 14.1    | 7.1    | 7.1    | 2.8   | 2.8   |   | Ground Level Decontamination | 4.4            | 4.4    | 77.   | 77.   | 73.3     | Roof Deco                             |
| 8                                   | Mu                                        | 5                          | Теаш                  | Size        | (Men)          | 7         |         |        |        |       |       |   | d Level                      |                |        |       |       | 9        | vel and                               |
|                                     |                                           | Team                       | hrs. of               | effort      |                | 1.41      | 1.41    | .71    | .71    | . 28  | . 28  |   | 2. Ground                    | 77.            | 77.    | 770.  | 770.  | 7.33     | Ground Level and Roof Decontamination |
| <b>≻</b> 1                          | , , , , , , , , , , , , , , , , , , ,     | Intensity<br>To Which Mass | Reduction Fac-        | tor Applies | (H+1 in r/hr.) | 300       | 3000    | 300    | 3000   | 300   | 3000  |   |                              |                |        | 300   | 3000  | 3000     | 3.                                    |
| STRATEGY                            |                                           | Describtion                |                       |             |                | Hi rohoeo | 2501211 |        |        |       |       |   |                              | Street Flusher |        |       |       | Firehose |                                       |
|                                     | ;                                         | NO.                        |                       |             |                | 1,0       | 1 ta    | י נ    | 1d     | ا ا   | 1£    |   |                              | 2a             | 2.b    | 2c    | 2d    | 2e       |                                       |

1b + 2b . . 14 1d + 2d . . 17 1f + 2d . . 18

Total Man Hours of Effort

Men

Combined Strategies

10.50 5.05 2.05

 $\infty \infty \infty$ 

\* Includes road area and playground.

### E. Outside Detector

- 1. Location of Detector: In center of playground across the street from original building studied.
- 2. Original PF at site of detector ----- 1.39
- 3. f\*'s for individual planes

$$F_2^* = f_{1,2}^* + f_{2,2}^* - 1 = .019$$

### A. Analysis Data

Address: 362 West 52nd St.

Manhattan, N.Y.C.

Detector: 2nd Floor

Normal Protection Factor: PF = 73

### Decontamination Areas:

1. Roof (Primary): 2,400 sq.ft. composition shingle of main building

2. Alleys: 1,400 sq.ft. asphaltic concrete behind building and garage

3. Road Area #1: 6,000 sq.ft. asphaltic concrete in front of building on West 52nd St.

4. Parking ot, Garage Roof, Roof Area #2:

9,200 sq.ft. parking lot of asphaltic concrete adjacent to building

### Ideal Intensity Reduction Factors:

1. Roof (Primary): 
$$f_{1,1}^* = .583$$

2. Alleys: 
$$f_{2,1}^* = .774$$

3. Road Area #1: 
$$f_{3,1}^* = .836$$

4. Parking Lot, Garage Roof, Road Area #2: .950

5. All Decontaminated Areas combined:

$$f_1^* = f_{1,1}^* + f_{2,1}^* + f_{3,1}^* + f_{4,1}^* - 3 = .143$$

### Practical Mass Reduction Factors:

1. Roof (Primary): 
$$E_1 = .028$$

2. Alleys: 
$$E_2 = .100$$

3. Road Area #1: 
$$E_3 = .07$$

4. Parking Lot, Garage Roof, Road Area #2: E<sub>4</sub> = Parking Lot = .0125
Garage Roof = .028

### Practical Intensity Reduction Factors Decontaminating:

- 1. Roof (Primary) only:  $f_{1,1}$  (roof) = .589
- 2. Alleys only:  $f_{2,1}$  (alleys) = .797
- 3. Road Area #1 only:  $f_{3,1}$  (roads) = .848
- 4. Parking Lot, Garage Roof, Road Area #2 only:  $f_{4,1}$  (parking lot, etc.) = .953
- 5. All Decontaminated Areas combined:

$$F_1 = \sum_{i=1}^{4} f_{i1} - 3 = .186$$



principal building

adjacent buildings

dectector location 1

FIGURE 3-1. Location Map of Decontamination Areas

# C. Some Photographs of the Associated Contaminated Surfaces

FIGURE 3-2



A View of West 52nd Street

FIGURE 3-3



A View of the Narrow Alley Behind Building

- 35 -



View of Garage Roof and Parking Lot

FIGURE 3-5



View of Tunnel to Rear Alley



View of Building from West 52 Street

FIGURE 3-7



View of Roof (Hote: 3 foot lip at edge)

D. Applied Strategies

Roof (Primary) Decontamination

| RFFECTIVENESS DATA | Intensity<br>Reduction<br>Factor (f <sub>i,j</sub> )              |                | 95.              | . 59<br>. 59 |                 | .78      | . 78<br>86     | 00.        | . 80        |            |                 | .84            | .84         | .85    | .85      | . 85          | .85  | 28.<br>50.     |        | ري.<br>د | Co.    |
|--------------------|-------------------------------------------------------------------|----------------|------------------|--------------|-----------------|----------|----------------|------------|-------------|------------|-----------------|----------------|-------------|--------|----------|---------------|------|----------------|--------|----------|--------|
| RFFECTIV           | Mass Reduction<br>Factor (E)                                      |                | .025             | . 030        |                 | .02      | .014           | . 10       | 07.         |            |                 | .02            | .0125       | 80.    | .07      | .10           | .07  | .092           | 760.   | 07.      | 07.    |
| \$                 |                                                                   | (gal.)         | 10,000<br>10,000 | 5,000        |                 | 9,900    | 6,900<br>1,200 | •          | 1,200       |            |                 | 1,800          | 1,800       | 300    | 300      |               |      |                | 77     | 27,000   | 77,000 |
| COST DATA          | Crew Dose (Assuming H+1 = 1000)  m if decont. at e 2 days 2 weeks | (g)            | 34               | .17          | nation          | .23      | .23            | . o        | . 04        |            | Decontamination | 90.            | <b>90</b> , | .01    | .01      | 60.           | 60.  | . 12           | 77.    | 06.      | ÷.     |
| COST DATA          | Dose (A H) = H1 = if deco                                         | (E)            | 3. v.            | 1.7          | Decontamination | 2.3      | 2.3            | <b>d</b> • | )<br>4      |            | 1 Decon         | 9.             | 9.          | yeel 1 | <b>-</b> | ٠, ٥          | 6.   | 1.2            | 7 0    |          | ٧. ٥   |
| COS                | Crev<br>Crev<br>Team<br>Size                                      | (Men.)         | _                |              | Alleys De       | 9        |                |            |             | d Area No. | ea No.          | -1             |             |        |          |               |      | <del>, ,</del> | •      | 9        |        |
|                    | Team<br>hrs. of<br>effort                                         |                | 34               | .17          | 2. <u>A</u>     | .23      | . 23           | .04        | . 04        |            | 3. Road An      | 90.            | 90.         | .01    | .01      | 60.           | 60.  | . 12           | 77.    | 06.      | 06.    |
|                    | fy<br>fass<br>Fac-                                                | /hr.)          |                  |              |                 |          |                |            |             |            |                 |                |             |        |          |               |      |                |        |          |        |
|                    |                                                                   | (#+1 in r/hr.) | 3000             | 3000         |                 | 300      | 3000           | 2000       | 3000        |            |                 | 300            | 3000        | 300    | 3000     | 300           | 3000 | 300            | 2000   | 300      | 3000   |
| STRATEGY           | Description                                                       |                | Firehose         |              |                 | Firehose |                |            |             |            |                 | Street Flusher |             |        |          | Mech. Sweeper |      | Vacuum Sweeper |        | Firehose |        |
|                    | No.                                                               | 1.             | la<br>1b         | 1c<br>1d     |                 | 2a       | 2p             | 7 C        | <b>D</b> 77 |            |                 | 3a             | 3p          | 30     | 39       | 3e            | 3£   | 38             | r<br>S | ;<br>ი   | ر<br>ر |

热学

D. Applied Strategies (Cont'd).

\*4. Parking Lot, Garage Roof, Road Area #2 Decontamination

| EFFECTIVENESS DATA                  | Intensity<br>Reduction                  | Factor (f <sub>i,</sub>                 |                                                          |                                                          | 95                                                                 |                                                                       |                         | 26                 |                          |
|-------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------|--------------------|--------------------------|
| EFFECTIV                            | Mass Re-<br>duction                     | Factor (E)                              |                                                          | 028                                                      | 03                                                                 |                                                                       |                         | 028                |                          |
| or                                  |                                         | Water<br>Used<br>(gal.)                 | 5,700                                                    | 5,700                                                    | 5,400                                                              | 5,400                                                                 | 5,400                   | 52400              |                          |
| COST DATA<br>Multiplying Factor for | se (Assuming<br>H+1 = 1000)             | if decont. at 2 days 2 weeks (R) (R)    | 18                                                       | 18                                                       |                                                                    | 75                                                                    |                         |                    | ination                  |
| COST DATA                           | Crew Dose (Assuming H+1 = 1000)         | if decc<br>2 days<br>(R)                | 1.8                                                      | 1.9                                                      | 7.5                                                                | 7.5                                                                   | 7.5                     | 1.8                | Combined Decontamination |
| SI <sub>T</sub>                     | Cre                                     | Team<br>Size<br>(Men)                   | 7                                                        | 7                                                        | 7                                                                  | 7                                                                     |                         | 7                  | mbined                   |
|                                     | Team                                    | hrs, of<br>effort                       | .18                                                      | 18                                                       | 75                                                                 | 18                                                                    |                         |                    | 5. 6                     |
| STRATEGY                            | No. Description Intensity To which Mass | Reduction Factor Applies (H+1 in r/hr.) | 4a -Firehose on RoofStreet Flusher on Road & Parking Lot | 4b Firehose on Roof Street Flusher on Road & Parking Lot | 4c -Firehose on Roof 300<br>Mech. Sweeper on<br>Road & Parking Lot | 4d -Firehose on Rcof - 3000<br>Mech. Sweeper on<br>Road & Parking Lot | 4e Firehose on Roof 300 | 4fFirehose on Roof |                          |

 $\mathring{}^*$ These surfaces are considered to be decontaminated simultaneously because the individual intensity contribution for each surface was not separated in available data.

Total Man Hours

Men

Combined Strategies
1d + 2b + 3d

### IV. TWENTY-ONE STORY OFFICE BUILDING

### A. Analysis Data

Address: 310 Park Avenue

New York City

Detector: 4th Floor

Normal Protection Factor: PF = 276

### Decontamination Areas;

- 1. Park Ave: 110,000 sq.ft. asphaltic concrete 12,000 sq.ft. grass island
- 2. Other Roads: 42,000 sq.ft. asphaltic concrete

### Ideal Intensity Reduction Factors:

- 1. Park Ave.:  $f_{1,1}^* = .433$
- 2. Other Roads:  $f_{2,1}^* = .611$
- 3. All Road Areas:  $F_1^* = .044$

### Practical Mass Reduction Factors:

- 1. Park Ave. (road surface only E = .01):  $E_1 = .17$
- 2. Other Roads:  $E_2 = .02$

### Practical Intensity Reduction Factors Decontaminating:

- 1. Park Ave. Road Surface only:  $f_{1.1} = .56$
- 2. Other Roads:  $f_{2,1} = .62$
- 3. All Road Surfaces:  $F_1 = .18$ .



FIGURE 4-1. Location Map of Decontamination Areas

# C. Some Photographs of the Associated Contaminated Surfaces FIGURE 4-2



View of Park Avenue (Note: Island with Garden in Center of Road)

FIGURE 4-3



View of East 49th Street



# View of Park Avenue Showing Iron Gate Around Center Island

FIGURE 4-



View of Sidewalk and Fireplus on East 49th Street



View of Roof (Non-contributing surface)





A Drain on the Roof

D. Applied Strategies

1. Park Avenue (excluding island) Decontamination

| EPPECTIVENESS DATA | Intensity<br>Reduction<br>Factor (f                                                         | . 50<br>. 51<br>. 56<br>. 50                                                    | .62                                         |                              |                     |                    |
|--------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------|------------------------------|---------------------|--------------------|
| EFFECTIV           | Mass Reduction<br>Pactor (E)                                                                | .12 .14 .17 .11 .11 .                                                           | .02                                         |                              | Hours               |                    |
|                    | Water<br>Used<br>(gal.)                                                                     | 549,000                                                                         | 210,000                                     | uo                           | Total Man Hours     | 114                |
| COST DATA          | Multiplying Factor for Crew Dose (Assuming H+1 ' 1000) if Decont. at 2 days 2 weeks (R) (R) | 183 18.3<br>44 4.4<br>16.5 1.65<br>11.0 1.1                                     | her Road Decontamination 6 7.0 .7 1 4.2 .42 | Road Surface Decontamination | Men                 | 12 2               |
| S02                | Mul<br>Cre<br>Team<br>hrs. of Team<br>effort Size<br>(Men)                                  | 18.3 6<br>4.4 1<br>1.65 1<br>1.10 1                                             | 2. Other Road De .7 6 .42 1                 | A11                          | gies F <sub>1</sub> | .12                |
| STRATEGY           | Description Intensity To which Mass Reduction Fac- tor Applies (H+1 in r/hr.)               | Firehose 3000<br>Mech Sweeper 3000<br>Mech. Sweeper 3000<br>Street Flusher 3000 | Firehose 3000<br>Street Flusher 3000        |                              | Combined Strategies | la + 2a<br>ld + 2b |
|                    | No.                                                                                         | 1a<br>1b<br>1c<br>1d                                                            | 2a<br>2b                                    |                              |                     |                    |

### V. GENERAL DYESTUFF CORPORATION

### A. Analysis Data

Address: 435 Hudson St.

Manhattan, N.Y.C.

Detector: 4th Floor

Normal Protection Factor: PF = 126

### Decontamination Areas:

- 1. Roads: 110,000 sq.ft.
- 2. Parking Lots: 6,000 sq.ft.
- 3. Roofs of Adjacent Buildings: 110,000 sq. ft.

### Ideal Intensity Reduction Factors:

- 1. Roads:  $f_{1,1}^* = .123$
- 2. Parking Lots and Playground:  $f_{2,1}^* = .991$
- 3. Roofs of Adjacent Buildings:  $f_{3.1}^* = .887$
- 4. Above Combined:  $F_1 = .001$

### Practical Mass Reduction Factors:

- 1. Roads:  $E_1 = .02$
- 2. Parking Lots and Playground:  $E_2 = .04$
- 3. Roofs of Adjacent Buildings:  $E_3 = .03$

### Practical Intensity Reduction Factors Decontaminating:

- 1. Roads:  $f_{1,1} = .14$
- 2. Parking Lots and Playground:  $f_{2,1} = .99$
- 3. Roofs of Adjacent Buildings:  $f_{3,1} = .89$
- 4. Above Combined:  $F_1 = .02$
- 5. Roads and Roofs:  $F_1 = .03$

# B. Map



FIGURE 5 -- 1. Location Map of Decontamination Areas

### C. Some Photographs of the Associated Contaminated Surfaces

FIGURE 5-2



# View of Building from Hudson Street. (Note: Sewer drain)

### FIGURE 5-3



View of Intersection of Hudson Street and Morton Street. (Note: brick pavement, fireplus and sever)

FIGURE 5-4



View of Building Poofs Across Lercy Street

FIGURE 5-5



Playeround (Note: two drains in center)



View of Hudson Street and Sidewalk
Areas from Roof

FIGURE 5-7



View of Parking Lot and Adjacent Garage Roor. (Note: depression area on garage roof)

1. Road Area Decontamination

| EFFECTIVENESS DATA | Intensity<br>Reduction<br>Factor (f <sub>i,j</sub> )                 | . 13<br>. 13                     | a.<br>E.         |                                | 66.                       |                           | 68.<br>88. | \$ 68.<br>68.      |   |
|--------------------|----------------------------------------------------------------------|----------------------------------|------------------|--------------------------------|---------------------------|---------------------------|------------|--------------------|---|
| EFFECTIVE          | Mass Reduction Factor (E)                                            | .011                             | .0125            |                                | .02                       |                           | .01        | .03                |   |
|                    | Water<br>Used<br>(gal.)                                              | 200                              | 33,000           | nation                         | 30,000                    | nation                    | 471,000    | 237,000<br>237,000 |   |
| , to to            | e (Assuming H+1 = 1000) if decont at 2 days 2 weeks (R) (R)          | 4.4                              | - <del>-  </del> | Decontamı                      | .1                        | Decontami                 | 15.7       | 7.9                | - |
| COST DATA          | Crew Dose (Assuming R+1 = 1000) m if decont e 2 days 2 wer n) (R) (R | 777-                             | 11               | and Playground Decontamination | 10                        | Buildings Decontamination | 157        | 79                 |   |
| COS                | Crew<br>Crew<br>Size<br>(Men)                                        | -                                |                  | 1                              | 1                         | cent                      | 7          |                    |   |
|                    | Team<br>hrs. of<br>effort                                            | 4.4                              | ii               | Parking Lot                    | 1 . 24                    | Roof of Adja              | 15.7       | 7.9                |   |
|                    | Intensity To which Mass Reduct on Fac- tor Applies (#H in r/ar)      | 300<br>3000<br>300               | 3000             | 2.                             | Any<br>Any                | 3.                        | 3000       | 300<br>3000        | • |
| STRATEGY           | Description To Rection (#                                            | Vacuum Sweeper<br>Street Flusher |                  |                                | Firehose<br>Mech. Sweeper |                           | Firehose   |                    |   |
| *** ·              | No.                                                                  | la<br>Ib                         | 1d               |                                | 2a<br>2b                  |                           | 3a<br>3b   | 3c<br>3 <b>d</b>   |   |

4. Combined Road, Roof, Playground, and Perking Lot Decontamination

| Total Man Hours     | 121          | 1.34    | 57           |
|---------------------|--------------|---------|--------------|
| Men                 | 14           | 2       | <b>o</b>     |
| ří<br>L             | .02          | .12     | .01          |
| Combined Strategies | 1a + 2a + 3a | 1c + 2b | 1c + 2b + 3c |

### VI. HIGH SCHOOL GYMNASIUM

### Analysis Data

Address: Bennett Street

Boston, Mass.

Detector: 2nd Floor

Normal Protection Factor: PF = 116

### Decontamination Areas:

- Roads: 5,000 sq.ft. asphaltic concrete
- Parking Lot: 10,000 sq.ft. dirt
   Playground: 23,750 sq.ft. asphaltic concrete
- Roof: 4,700 sq.ft.

### Ideal Intensity Reduction Factors:

- 1. Roads:  $f_{1,1}^* = .948$ 2. Parking Lot:  $f_{2,1}^* = .789$ 3. Flayground:  $f_{3,1}^* = .767$

- 4. Roof:  $f_{4,1}^* = .513$ 5. Ground Areas (1,2,3):  $F_1^* = .504$ 6. All Areas (1,2,3,4):  $F_1^* = .017$

### Practical Mass Reduction Factors:

- 1. Roads:  $E_1 = .02$
- 2. Parking Lots:  $\frac{\pi}{2}$  = .004
- 3. Playground:  $E_3 = .1$
- 4. Roof:  $E_{\Delta} = .03$

### Practical Intensity Reduction Factors Decontaminating:

- 1. Roads:  $f_{1,1} = .95$
- 2. Parking Lots:  $f_{2,1} = .80$
- 3. Playground:  $f_{3,1} = .80$
- 4. Roof:  $f_{4,1} = .53$
- 5. Ground Areas (1,2,3):  $F_1 = .55$
- 6. All Areas (1,2,3,4):  $F_1 = .08$ .



FIGURE 6-1. Location Map of Decontamination Areas

### C. Some Photographs of the Associated Contaminated Surfaces





View of Building from Bennett St.

Playground

D. Applied Strategies

1. Road Decontamination

| EPFECTI VENESS INTA                 | Intensity                                                | Factor (f <sub>i,j</sub> )              | . 95<br>. 95   |                             | <b>80</b> ,  |                            | 80<br>77<br>77 |                  |                      | 8. 2.                |   |  |
|-------------------------------------|----------------------------------------------------------|-----------------------------------------|----------------|-----------------------------|--------------|----------------------------|----------------|------------------|----------------------|----------------------|---|--|
| EFFECTIV                            | Mass Re-<br>duction                                      | Factor (E)                              | .02<br>.0125   |                             | <b>700</b> . |                            | .02            | .011             | ,,                   | .03                  |   |  |
| 1                                   | M<br>0                                                   | Water<br>Used<br>(gal.)                 | 1,500          |                             |              |                            | 51,000         |                  |                      | 10,080<br>10,060     |   |  |
| Ē                                   | iying factor see (Assuming H+1 = 1000)                   | if decont. at 2 days 2 weeks (R) (R)    | .05<br>.05     | ination                     | 2.9          | ination                    | 1.7            | . 4              | tion                 | .336                 |   |  |
| COST DATA<br>Multiplying Factor for | mittiplying ractor<br>Crew Dose (Assuming<br>H+1 = 1000) | if decont. at 2 days 2 week (R)         | ئن ئن          | Parking Lot Decontamination | 29           | Playground Decontamination | 2.2            | 4.0              | Roof Decontamination | 3.36<br>3.36         |   |  |
| 휭;                                  | Cree                                                     | Team<br>Size<br>(Men)                   | 1              | ing Lot                     | <b>-</b>     | yground                    | 9 -            | •                | Roof De              | <b>7</b>             |   |  |
|                                     | Team                                                     | hrs. of<br>effort                       | .05            | 2. Park                     | 2.9          | 3. <u>Pla</u>              | 1.7            | t - <del>4</del> | 4.                   | .336                 |   |  |
|                                     | Intensity<br>To which Mass                               | Reduction Factor Applies (H+1 in r/hr.) | 3000           |                             | Any          |                            |                |                  |                      | 3000                 | • |  |
| STRATEGY                            | Description.                                             |                                         | Street Flusher |                             | Scraper      |                            | Firehose       | Vacuum oweeper   |                      | Firehose             |   |  |
|                                     | No.                                                      |                                         | la<br>1b       |                             | 2a           |                            | 3a<br>3b       | 3 <b>q</b>       |                      | 4 <del>a</del><br>4p |   |  |

5. Combined Decontamination

| Total Man Hour      | 3.4                               |
|---------------------|-----------------------------------|
| Men                 | 3                                 |
| 되                   | . 52                              |
| Combined Strategies | la + 2a + 3c<br>la + 2a + 3c + 4a |

### VII. SIMONDS PRESS BUILDING

an talah kerinda di kerinda kerinda dan dara 1918 di di dibanda keringa di di

### A. Analysis Data

Address: 37-49 South Avenue

Rochester, N. Y.

Detector: Basement

Normal Protection Factor: PF = 47

### Decontamination Areas:

- 1. Roof: 10,000 sq.ft. composition shingle 5° pitch
- 2. Ground Level: 25,000 sq.ft. asphaltic concrete South Avenue

8,930 sq.ft. brick - South Water Street

1,980 sq.ft. brick - Ely Street

2,800 sq.ft. asphaltic concrete - Parking

880 sq.ft. asphaltic concrete - Ely extension

### Ideal Intensity Reduction Factors:

- 1. Roof:  $f_{1,1}^* = .111$
- 2. Ground Level:  $f_{2,1}^* = .896$
- 3. Roof and Ground combined:  $F_1^* = .007$

### Practical Mass Reduction Factors:

- 1. Roof:  $E_1 = .03$
- 2. Ground Level:  $E_2 = .02$

### Practical Intensity Reduction Factors Decontaminating:

- 1. Roof only:  $f_{1,1} = .137$
- 2. Ground Level only:  $f_{2,1} = .898$
- 3. Roof and Ground Level:  $k_1 = .035$

# B. Map



fire hydrants

principal building

adjacent buildings

detector location t

decontamination area

FIGURE 7-1. Location Map of Decontamination Areas

- 57

### C. Some Photographs of the Associated Contaminated Surfaces

FIGURE 7-2



View of Building from S. Water Street

FIGURE 7-3



View of Building from Ely Street (Note: steep grade)

FIGURE 7-4



View of Building from South Avenue

FIGURE 7-5





View of Building from Intersection of South Avenue and Ely Street

D. Applied Stran gies

Roof Decontamination

| EFFECTIVENESS DATA | Intensity<br>Reduction<br>Factor (f <sub>i,j</sub> )                       | . 13<br>. 14<br>. 14                                 | 06.<br>06.<br>06.                      |
|--------------------|----------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------|
| EFFECTIV           | Mass Reduction<br>Factor (E)                                               | .025<br>.023<br>.03<br>.028                          | .02<br>.0125<br>.02<br>.02             |
| for                | Water<br>Used<br>(gal.)                                                    | 50,100<br>50,100<br>24,900<br>24,900                 | 12,000<br>12,000<br>198,300<br>198,300 |
| Factor             | ssuming<br>1000<br>nt. at<br>2 weeks<br>(R)                                | 1.67<br>1.67<br>.83<br>.83                           | ination .4 .6.61                       |
| COST DATA          | Crew Dose (Assuming H+1 = 1000 m if decont. at e 2 days 2 weeks n) (R) (R) | (Men) (R) (R)  7 16.7 1.67 16.7 1.67 8.3 .83 8.3 .83 | Decontam<br>4.0<br>4.0<br>66.1<br>66.1 |
| SOO W              | Crew<br>Team<br>Size<br>(Men)                                              | 7                                                    | ed Area 1 6                            |
|                    | Team<br>hrs. of<br>effort                                                  | 1.67<br>1.67<br>.83<br>.83                           | 2. Pav<br>.4<br>.6.61<br>6.61          |
| <b>≻i</b>          | Intensity To which Mass Reduction Factor Applies (H+1 in r/hr.)            | 300<br>300<br>300<br>3000                            | 3000<br>3000<br>3000                   |
| STRATEGY           | Description                                                                | Firehose                                             | Street Flusher<br>Firehose             |
|                    | No.                                                                        | 1a<br>1b<br>1c<br>1d                                 | 2a<br>2b<br>2c<br>2d                   |

# 3. Roof and Paved Area Decontamination

| 12.1<br>6.2        |
|--------------------|
| 7                  |
| .03                |
| 1b + 2b<br>1c + 2a |
|                    |

### E. Outside Detector

- 1. Location of Detector: In center of South Avenue about 90 feet from Simonds Press Building.
- 2. Original PF at site of detector----- 1.40
- 3. f\*'s for individual planes:

### VIII. DEPARTMENT OF INTERIOR

### A. Analysis Data

Address: 18th and C Streets, N.W.

Washington, D. C.

Detector: 3rd Floor

Normal Protection Factor: PF = 1090

### Decontamination Areas:

1. Interior Court: 23,400 sq.ft. concrete

2. Ground Level Streets: 800 sq.ft. - 19th St. N.W. 1200 sq.ft. - 18th St. N.W.

### Ideal Intensity Reduction Factors:

1. Interior Court:  $f_{1,1}^* = .392$ 

2. Ground Level Streets:  $f_{2,1}^* = .818$ 

3. Court and Streets combined:  $F_1^* = .21$ 

### Practical Mass Reduction Factors:

1. Interior Court:  $E_1 = .01$ 

2. Ground Level Streets:  $E_2 = .07$ 

### Practical Intensity Reduction Factors Decontaminating:

1. Interior Court only:  $f_{1,1} = .4$ 

2. Streets only:  $f_{2,1} = .83$ 

3. Courts and Streets:  $F_1 = .23$ .

st Section B not included in this chapter inasmuch as no photographs were available.



FIGURE 8-1. Location Map of Decontamination Areas

Applied Strategies ď.

Factor (f<sub>i,j</sub>) EFFECTIVENESS DATA Intensity Reduction Factor (E) Mass Reduction .0025 .01 .04 .02 .10 .07 .07 117,000 (gal.) Water Used Multiplying Factor for Crew Dose (Assuming Interior Court Decontamination days 2 weeks if decont, at 2. Road Area Decontamination .08 .03 .03 .02 H+1 = 10008 .80 .30 .30 .20 COST DATA 39.0 8 (Men) Team Size hrs. of effort Team .08 .03 .03 3.9 Reduction Fac-(H+1 in r/hr.) To which Mass tor Applies Intensity 3000 300 3000 300 3000 3000 3000 STRATEGY Mech. Sweeper Description Firehose

la 1b

.40

.83 .84 .83 .83 .83

900

.002

.02

Interior Court and Road Decontamination . .

| Total Man Hours     | 23.5    | 23.4    |
|---------------------|---------|---------|
| Men                 | 7       | 7       |
| 딥                   | .216    | .224    |
| Combined Strategies | 1b + 2b | 1b + 2d |

Street Flusher

2e 2£ 2<sup>d</sup>

# E. Outside Detector

- 1. Location of Detector: The center of any of the interior court sections.
- 2. Original PF at site of detector----- 1.61
- 3.  $F_2^*$  for court = 0

## IX. A DEPARTMENT STORE BUILDING

## A. Analysis Data

Address: 619 Main Street

Houston, Texas

Detector: 2nd Floor

Normal Protection Factor: PF = 26

### Decontamination Areas:

- 1. Roof: 9,400 sq.ft. tar and gravel
- 2. Road Area: 68,300 sq.ft. asphaltic concrete on surrounding

## Ideal Intensity Reduction Factors:

- 1. Roof:  $\hat{r}_{1,1}^* = .382$
- 2. Road Area:  $f_{2,1}^* = .619$
- 3. Roof and Road Areas combined:  $f_1^* = f_{1,1}^* + f_{2,1}^* 1 = .001$

## Practical Mass Reduction Factors:

- **f.** Roof:  $E_1 = .025$
- 2. Road Area:  $E_2 = .07$

# Practical Intensity Reduction Factors Decontaminating:

- 1. Roof only:  $f_{1,1} = .397$
- 2. Road Area only:  $f_{2,1} = .645$
- 3. Roof and Road Area combined:  $F_1 = f_{1,1} + f_{2,1} 1 = .042$



FIGURE 9-1. Location Map of Decontamination Areas

# C. Some Photographs of the Associated Contaminated Surfaces

A SSETTING

FIGURE 9-2



View of Building From Main Street

FIGURE 9-3



View of Building from Capitol Avenue

D. Applied Strategies

| uo              |  |
|-----------------|--|
| ati             |  |
| nine            |  |
| Decontamination |  |
| con             |  |
|                 |  |
| Roof            |  |
|                 |  |
|                 |  |
|                 |  |

| ## Crew Dose (Assuming Pages   Feam   H+1 = 1000)   Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | STRATECY      | X                                       |      |                       | COST DATA                |                          | for                     | EFFECTIV            | EFFECTIVENESS DATA         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------|-----------------------------------------|------|-----------------------|--------------------------|--------------------------|-------------------------|---------------------|----------------------------|
| Reduction Factory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | Description   | intensity<br>To which Mass              | Team | Cre                   | W Dose (A                |                          |                         | Mass Re-<br>duction | Intensity<br>Reduction     |
| Firehose 300 1.34 7 13.4 1.34 40,200 1.34 300 1.34 1.34 40,200 300 .67 67 67 20,100 300 .27 2.7 .27 8,100 2.7 2.7 .27 8,100 8,100 .27 2.7 .27 8,100 8,100 .27 2.7 .27 8,100 8,100 .27 2.7 .27 8,100 .27 2.7 .27 8,100 .20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 |               | Reduction Factor Applies (H+1 in r/hr.) | 0    | Team<br>Size<br>(Men) | if decc<br>2 days<br>(R) | nt. at<br>2 weeks<br>(R) | Water<br>Used<br>(gal.) | Factor (E)          | Factor (f <sub>i,j</sub> ) |
| 3000   1.34   13.4   1.34   46,200     3000   .67   6.7   67   20,100     3000   .27   2.7   27   8,100     27   2.7   27   8,100     28   20,400     3000   .68   1   6.8   68   20,400     3000   .69   6.8   68   20,400     3000   .07   0.7   2,100     3000   .07   0.7   2,100     3000   .07   2.73   2.73     3000   .02   .03     3000   .02   .02     3000   .02   .03     3000   .02   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03     3000   .03      |   | Firehose      | 300                                     | 1.34 | 7                     | 13.4                     | 1.34                     | 40.200                  | .01                 | .39                        |
| 300 .67 67 67 20,100 300 .27 27 27 300 .27 27 27 300 .27 27 27 300 .27 27 27 8,100  2. Road Area Decontamination  2. Road Area Decontamination  3000 .68 1 6.8 .68 20,400 300 .07 07 2,100 3000 .07 07 2,100 3000 .273 1 27.3 2.73 3000 1.02 10.2 1.02 3000 1.02 10.2 1.02 3000 1.37 1 13.7 1.37 3000 1.37 6 17.2 1.72 51,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |               | 3000                                    | 1.34 |                       | 13.4                     | 1.34                     | 46,200                  | . 0025              | . 38                       |
| 300c .67 .67 .67 .20,100 .27 .27 .27 8,100 .27 .27 .27 8,100 .27 .27 .27 8,100 .27 .27 .27 8,100 .27 .27 .27 8,100 .20 .27 .27 .27 8,100 .20 .20 .20 .20 .20 .20 .20 .20 .20 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |               | 300                                     | .67  |                       | 6.7                      | .67                      | 20,100                  | .03                 | 07.                        |
| 300 .27 .27 .27 8,100  3000 .27 .27 .27 8,100  2. Road Area Decontamination  2. Road Area Decontamination  3000 .68 1 6.8 .68 20,400  3000 .07 .07 2,100  3000 .07 .07 2,100  3000 .2.73 1 27.3 2.73  3000 .2.73 1 27.3 2.73  3000 1.02 1.02  1.02 1.02 1.02  3000 1.37 1 13.7 1.37  3000 1.37 1 3.7 1.37  3000 1.37 6 17.2 1.72 51,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |               | 3000                                    | .67  |                       | 6.7                      | .67                      | 20,100                  | .0025               | .38                        |
| 3000 .27 .27 .27 8,100  r 300 .68 1 6.8 .68 20,400 300 .07 .07 2,100 300 .07 .07 .07 2,100 300 2.73 1 27.3 2.73 300 2.73 1 27.3 2.73 300 1.02 10.2 1.02 300 1.37 1 13.7 1.37 300 1.37 1 13.7 1.37 300 1.72 6 17.2 1.72 51,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |               | 300                                     | .27  |                       | 2.7                      | .27                      | 8,100                   | . 12                | 97.                        |
| 2. Road Area Decontamination  r 300  .68  .68  .68  .68  .68  .07  .07  .07  .07  .07  2,100  .07  .07  .07  .07  2,100  2,73  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3  27.3 |   |               | 3000                                    | .27  |                       | 2.7                      | .27                      | 8,100                   | .025                | 07.                        |
| Street Flusher       300       .68       1       6.8       .68       20,400         3000       .68       .68       .68       20,400         300       .07       .07       .07       2,100         3000       .07       .07       .07       2,100         Mech. Sweeper       300       2.73       1       27.3       2.73         300       1.02       10.2       1.02       1.02         300       1.02       10.2       1.02         1.37       1       13.7       1.37         Firehose       300       1.72       6       17.2       1.72       51,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |               |                                         |      | l Area                | Decontami                | nation                   |                         |                     |                            |
| 3000 . 68 6.8 . 68 20,400   .07 .07 2,100   .07 .07 2,100   .07 .07 2,100   .07 .07 2,100   .07 .07 2,100   .07 .07 2,100   .08 .09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | Street Flushe |                                         | 89.  | 1                     | 6.8                      | . 68                     | 20,400                  | .02                 | . ó3                       |
| 300 .07 .07 .07 2,100 .0300 .07 .07 .07 .2,100 .07 .07 .07 .07 .2,100 .07 .007 .07 .07 .007 .007 .007 .007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |               | 3000                                    | 89.  |                       | 6.8                      | . 68                     | 20,400                  | .012                | . 62                       |
| 3000 .07 .07 .07 2,100 3000 2.73 1 27.3 2.73 3000 1.02 10.2 1.02 3000 1.37 1 13.7 1.37 3000 1.37 6 17.2 1.72 51,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |               | 300                                     | .07  |                       | 0.7                      | .07                      | 2,100                   | .07                 | .65                        |
| 300 2.73 1 27.3 2.73<br>3000 2.73 2.73<br>3000 1.02 10.2 1.02<br>3000 1.37 1 13.7 1.37<br>3000 1.37 6 17.2 1.72 51,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |               | 3000                                    | .07  |                       | 0.7                      | .07                      | 2,100                   | .07                 | .65                        |
| 3000     2.73     27.3     2.73       300     1.02     10.2     1.02       3000     1.37     1 13.7     1.37       3000     1.37     13.7     1.37       300     1.72     6     17.2     1.72       300     1.72     6     17.2     1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | Mech. Sweeper |                                         | 2.73 | -                     | 27.3                     | 2.73                     |                         | .04                 | .63                        |
| 300     1.02     10.2     1.02       3000     1.02     10.2     1.02       300     1.37     1     13.7     1.37       300     1.72     6     17.2     1.72     51,600       300     1.72     6     17.2     1.72     51,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | ı             | 3000                                    | 2.73 |                       | 27.3                     | 2.73                     |                         | .02                 | .63                        |
| 3000     1.02     10.2     1.02       300     1.37     1     13.7     1.37       3000     1.37     13.7     1.37       300     1.72     6     17.2     1.72       400     1.72     6     17.2     1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |               | 300                                     | 1.02 |                       | 10.2                     |                          |                         | .10                 | 99.                        |
| 300     1.37     1     13.7     1.37       3000     1.37     13.7     1.37       300     1.72     6     17.2     1.72     51,600       1.72     6     17.2     1.72     51,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |               | 3000                                    | 1.02 |                       |                          | •                        |                         | .07                 | .65                        |
| 300 1.72 6 17.2 1.72 51,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | Vacuum Sweepe |                                         | 1.37 | ~                     | •                        | •                        |                         | . 092               | .65                        |
| 300 1.72 6 17.2 1.72 51,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |               | 3000                                    | 1.37 |                       | ٠                        | 1.37                     |                         | 60.                 | . 55                       |
| 002 13 67 1 671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | Firehose      | 300                                     | 1.72 | 9                     | 17.2                     | 1.72                     | 51,600                  | . 10                | 99.                        |
| 1.72 1.72 31,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |               | 3000                                    | 1.72 |                       | 17.2                     | 1.72                     | 51,600                  | . 10                | 99.                        |

# Roof and Road Decontamination

| Total Man Hours     | 5.4     |
|---------------------|---------|
| Men                 | 7       |
| 띠                   | .007    |
| Combined Strategies | 1d + 2b |

## BELL TELEPHONE BUILDING

#### A. Analysis Data

Address: 1010 Pine Street

St. Louis, Mo.

Detector: 13th Floor

Normal Protection Factor: PF = 127

## Decontamination Areas:

- 4th Floor Roof: 7,100 sq.ft. composition shingle and tile
- 2. 14th Floor Roof: 700 sq.ft. composition shangle and tile
- Ground Level Roads: 56,400 sq.ft. Chestnut St.

50,000 sq.ft. Market St.

30,000 sq.ft. N: 11 St.

24,000 sq.ft. Pine St.

40,500 sq.ft. N. 40%8t.

- 4. Ground Level Parking Lots: 73,000 sq.ft.5. Ground Level Grass Lawns: 36,100 sq.ft.

## Ideal Intensity Reduction Factors:

- 1. 4th Floor Roof:  $f_{\frac{1}{2},1}^{*} = .73$ 2. 14th Floor Roof:  $f_{\frac{2}{2},1}^{*} = .88$
- 3. Roads:  $f_{3,1}^* = .837$
- 4. Parking Lots:  $f_{4,1}^* = .874$ 5. Grass Lawns:  $f_{5,1}^* = .9896$ 6. All Above:  $F_{1}^* = .31$

## Practical Mass Reduction Factors:

- 1. 4th Floor Roof:  $E_1 = .02$
- 2. 14th Floor Roof:  $\Xi_2 = .02$
- 3. Roads:  $E_3 = .1$
- 4. Purking Lots:  $E_4 = .1$
- 5. Grass Lawns:  $E_5 = .02$

## Practical Intensity Reduction Factors Decontaminating:

- 4th Floor Roof:  $f_{1,1} = .74$
- 2. 14th Floor Roof:  $f_{2,1} = .88$
- 3. 4 and 14th Floor Roofs:  $F_1 = f_{1,1} + f_{2,1} 1 = .62$
- 4. Roads:  $f_{3.1} = .85$
- 5. Parking Lots:  $f_{4,1} = .89$
- 6. Roads and Parking Lots:  $F_1 = .74$
- 7. Roads, Parking Lots, 4 and 14th Floor Roofs: F, = .36.



FIGURE 10-1. Location Mup of Decontamination Areas

# C. Some Photographs of the Associated Contaminated Surfaces

A. market

FIGURE 10-2



View of Building from Intersection of 11th St.

and Chestnut Street

FIGURE 10-3



View of Building from Pine Street



View of Building from 10th St. and Chestnut Street

FIGURE 10-5



View of the Building from 11th Street

| Strategies |   |
|------------|---|
| Ś          | į |
| eq         |   |
| Ė          |   |
| _          | 1 |
| Ω          |   |
| App        |   |
| D.         |   |

4th Floor Roof Decontamination

I

| EFFECTIVENESS DATA           | Intensity<br>Reduction<br>Factor (f <sub>i,j</sub> )            | .74              |                                 | 88.        |                      | .84      | .85     | . 84<br>. 84    |                 | 88.      | 88.<br>88. | 68.            | 68.<br>68. | æ.             | ∞ œ<br>œ |         |                      | 66.                                    |   |
|------------------------------|-----------------------------------------------------------------|------------------|---------------------------------|------------|----------------------|----------|---------|-----------------|-----------------|----------|------------|----------------|------------|----------------|----------|---------|----------------------|----------------------------------------|---|
| EFFECTIV                     | Mass Reduction<br>Factor (E)                                    | .02              |                                 | .02        |                      | .02      | . 10    | .02             |                 | .02      | .02        | Hel I          |            | .02            | .0125    | )       | نستيدنيا بيسو        | .019                                   | • |
| for                          | Water<br>Used<br>(gal.)                                         | 35,400<br>35,400 | <b>1</b>                        | 360<br>360 | ÷                    | 687,000  | 343,500 | 41,100<br>4,110 | <b>.</b>        | 366,000  | 366,000    | <b>ပပင်</b> ်မ | 54, 300    | 21,00          | 21,900   |         |                      |                                        |   |
|                              | ľΛ                                                              | 1.18             | amination                       | 12         | ior                  | 22.9     | 11.45   | 1.37            | nation          | 12.2     | 12.2       | 1.83           | 1.83       | . 73           | . 73     | 600.    | nation               | 4.00                                   |   |
| COST DATA Multiplying Factor | Crew Dose (Assur<br>H+1 = 1000<br>* · if decont.<br>2 days 2 v  | 11.8             | 14th Floor Roof Decontamination | 1.2        | Road Decontamination | .229     | 114.5   | 13.7<br>1.37    | Decontamination | 122      | 122        | 18.3           | 18.3       | 7.3            | 7.3      | 2.      | Lawn Decontamination | 40.0                                   |   |
| OIX                          | Cr<br>Team*<br>Size<br>(Men)                                    | ő                | Floor R                         | 9          | Road De              | 9        |         | <b>~</b>        | Parking Lot     | 9        |            |                | ,          | -              |          |         |                      |                                        |   |
|                              | Team<br>hrs. of<br>effort                                       | 1.18             | 2. 14th                         | . 12       |                      | 22.9     | 11.45   | 1.37            | 4. Park         | 12.2     | 12.2       | 1.83           | 1.83       | . 73           | .73      | · —     | 5. Grass             | 4.00                                   | - |
| _                            | Intensity To Which Mass Reduction Factor Applies (H+1 in r/hr.) | 300<br>3000      |                                 | 3000       |                      | 3000     | 3000    | 3000<br>3000    |                 | 300      | 3000       | 300            | 3000       | 300            | 3000     |         |                      | 3000                                   |   |
| STRATEGY                     | Description In To Weduted tor                                   | Firehose         |                                 | Firehose   |                      | Firehose |         | Street Flusher  |                 | Firehose |            |                | . ,        | Street Flusher |          |         |                      | Scraper (1 pass)<br>Scraper (2 passes) |   |
|                              | o <sub>N</sub>                                                  | la<br>1b         |                                 | 2a<br>2b   |                      | 3a       | 3p      | 3<br>3<br>3     |                 | 4a<br>   | 4p         | 4c             |            |                | 4£       | 90<br>f |                      | 5a<br>5b                               | , |

 $\star$  Only six men would be required to hose this roof inasmuch as firehose connectors are provided inside the building.

6. Combined Strategies

| Total Man Hours     | 7.80    |         | 8.01 |
|---------------------|---------|---------|------|
| Men                 | 12      | 7       | 14   |
| 띠                   | . 62    | . 72    | .34  |
| Combined Strategies | 1b + 2b | 3d + 4g | +    |

## XI. PARAMETRIC STUDY

# Designation of Surfaces which can be Decontaminated

| Surface Number | (See Figure 11-1) | <u>Description</u>           |      |     |     |    |      |
|----------------|-------------------|------------------------------|------|-----|-----|----|------|
| 1              | 9 story building  | north of detector location   | (120 | ft. | х ( | 50 | ft.) |
| 2              | 3 story building  | east of detector location    | (120 | ft. | x 6 | 50 | ft.) |
| 3              | 2 story building  | south of detector location   | (120 | ft. | x 6 | 50 | ft.) |
| 4              | 6 story building  | west of detector location    | (120 | ft. | x 6 | 50 | ft.) |
| 5              | 40 ft. wide road  | west of detector location    |      |     |     |    |      |
| 6              | 40 ft. wide road  | east of detector location    |      |     |     |    |      |
| 7              | 40 ft. wide road  | south of detector location   |      |     | ÷   |    |      |
| 8              | 20 ft. wide alle  | y north of detector location |      |     |     |    |      |
| 9              | Parking lot in N  | E corner                     |      |     |     |    |      |
| 10             | The three unpave  | d fields                     |      |     |     |    |      |

All pavement in the intersections are considered part of the two north-south roadways.



principal building

adjacent building

detector location

decontamination area

FIGURE 11-1. Location Map of Parametric Study

## A. Building Data For Parametric Charts I, II, and III

1. number of stories 10 (detector located on first five)

2. number of asimuthal sectors 12

3. total height of building 100'

4. height of each story 10'

5. roof weight 60 psf

6. exterior wall weight 80 psf

7. windows: sill height 3'

top of window height 8'

(window widths total to about 50% of the exterior wall width)

8. Floor weights are shown on individual charts.

## B. Building Data For Parametric Chart IV.

This building is like that for Charts I, II, and III except for the following:

- 1. North wall of building has no windows
- 2. West side of detector has additional protection from an interior partition (10 PSF).

Parametric Chart I: All Floor Weights = 37 psf

| Values | of | f* i,j |
|--------|----|--------|
|        |    |        |

|                     | floor j | 1     | 2     | 3             | 4     | 5        |
|---------------------|---------|-------|-------|---------------|-------|----------|
| Surface<br>number i | ·       |       |       |               |       |          |
| 1                   |         | 1     | 1     | 1             | 1     | 1        |
| 2                   |         | 1     | 1     | . 999         | . 965 | . 955    |
| 3                   |         | 1     | . 998 | . 930         | .921  | .918     |
| 4                   |         | 1     | 1     | 1             | 1     | <b>1</b> |
| 5                   |         | .803  | .849  | .885          | ,913  | .919     |
| 6                   |         | .787  | .826  | .860          | .847  | , 874    |
| 7                   |         | .795  | . 797 | . 795         | . 984 | .844     |
| 8                   |         | .843  | .899  | . 95 <b>1</b> | . 957 | .972     |
| 9                   |         | . 956 | .930  | .912          | . 958 | .920     |
| 10                  |         | .815  | . 731 | .684          | .680  | . 699    |

| floor (j) | original<br>residual<br>number | original<br>PF |
|-----------|--------------------------------|----------------|
| 1         | .0321899                       | 31.07          |
| 2         | .0265157                       | 37.71          |
| 3         | .0233717                       | 42.79          |
| 4         | .0225117                       | 44.42          |
| 5         | .0208844                       | 47.88          |

Parametric Chart II: All Floor Weights = 17 psf

| Values | of | f* |
|--------|----|----|
|--------|----|----|

| _                   | floor j | 1     | 2                                                                              | 3                                                                     | 4                                                                      | 5                                              |
|---------------------|---------|-------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------|
| Surface<br>number i |         |       | egantelijistika dikumuniya, ir "Afr" digi aktar qaqa-alimak us ik, tiqi antari | P. Paritigue Staglette Hartine Stages   O in 6 th, using a confine of | in a spilled i der <del>spilleding de</del> espilleding de espilleding | an i an <b>di s</b> a man ki <sub>ala</sub> ng |
| 1                   |         | 1     | 1                                                                              | 1                                                                     | 1                                                                      | 1                                              |
| 2                   |         | 1     | 1                                                                              | . 998                                                                 | .970                                                                   | . 946                                          |
| 3                   |         | 1     | . 996                                                                          | . 941                                                                 | . 902                                                                  | . 901                                          |
| 4                   |         | 1     | 1                                                                              | 1                                                                     | 1                                                                      | 1                                              |
| 5                   |         | .805  | .859                                                                           | .891                                                                  | . 924                                                                  | . 930                                          |
| 6                   |         | . 788 | .835                                                                           | .869                                                                  | .884                                                                   | .894                                           |
| 7                   |         | .790  | . 797                                                                          | .810                                                                  | .857                                                                   | .869                                           |
| 8                   |         | . 848 | .891                                                                           | .951                                                                  | . 971                                                                  | . 976                                          |
| 9                   |         | . 956 | . 928                                                                          | . 901                                                                 | . 905                                                                  | . 913                                          |
| 1.0                 |         | .814  | . 695                                                                          | .655                                                                  | . 645                                                                  | . 676                                          |

| floor (j) | original<br>residual<br>number | original<br>PF |
|-----------|--------------------------------|----------------|
| 1         | . 0340460                      | 29.37          |
| 2         | , 0352403                      | 28.38          |
| 3         | . 0289268                      | 34.57          |
| 4         | .0281681                       | 35.50          |
| 5         | .0269712                       | 37.08          |

Values of f\*

|                     | floor j | 1     | 2     | 3     | 4     | 5     |
|---------------------|---------|-------|-------|-------|-------|-------|
| Surface<br>number i |         | is.   |       |       |       | -     |
| 1                   | 1       | 1     | 1     | 1     | 1     | 1     |
| 2                   |         | 1     | 1     | . 999 | . 961 | . 961 |
| 3                   |         | 1     | . 999 | . 923 | . 934 | . 931 |
| 4                   |         | 1     | 1     | 1     | 1     | 1     |
| 5                   |         | .803  | .843  | .881  | . 906 | .911  |
| 6                   |         | . 786 | .819  | .855  | .855  | .860  |
| 7                   |         | . 797 | . 797 | . 785 | .821  | .827  |
| 8                   |         | . 842 | . 906 | . 950 | . 965 | . 969 |
| 9                   |         | . 957 | . 931 | . 920 | . 924 | . 925 |
| 10                  |         | .816  | . 703 | . 703 | . 703 | .715  |

| floor (j) | original<br>residual<br>number | original<br>PF |
|-----------|--------------------------------|----------------|
| 1         | . 0315151                      | 31.73          |
| 2         | .0226001                       | 44.25          |
| 3         | .0209305                       | 47.78          |
| 4         | .0200083                       | 49.98          |
| 5         | .0181717                       | 55.03          |

Parametric Chart IV: All floor weights = 37 psf

| Values | of | * f, , |
|--------|----|--------|
|        |    | 4.4    |

|                     | <b>b</b> |       |       |       |       |       |
|---------------------|----------|-------|-------|-------|-------|-------|
|                     | floor j  | 1     | 2     | 3     | 4     | 5     |
| Surface<br>number i |          |       |       |       |       |       |
| 1                   |          | 1     | 1     | 1     | 1     | 1     |
| 2                   |          | 1     | 1     | . 1   | 1     | . 998 |
| 3                   |          | 1     | . 999 | . 936 | .910  | . 941 |
| 4                   |          | 1.    | 1     | 1     | 1     | 1     |
| 5                   |          | .879  | .893  | .914  | . 931 | . 932 |
| 6                   |          | . 791 | .818  | .869  | .891  | .887  |
| 7                   |          | .737  | .734  | . 737 | .772  | . 793 |
| 8                   |          | .838  | .917  | . 965 | .979  | . 986 |
| 9                   |          | . 951 | . 923 | . 908 | .910  | . 957 |
| 10                  |          | .817  | .694  | . 680 | .658  | .657  |

| floor (j) | original<br>residual<br>number | original<br><b>P</b> F |  |
|-----------|--------------------------------|------------------------|--|
| 1         | . 031735197                    | 31.51                  |  |
| 2         | .025011274                     | 39.98                  |  |
| 3         | . 022059926                    | 45.33                  |  |
| 4         | . 020048274                    | 49.88                  |  |
| 5         | .017455098                     | 57.29                  |  |

## XII. UNSHIELDED DETECTOR ON STREETS

## A. Straight Road

Table 12-I shows computed protection factors for persons standing in the middle of an asphalt street as shown in Figure 12-1 for various widths and lengths of contaminated roadway. All of the radiation intensity at the point is received from fallout on this single piece or road (i.e., within the area designated in Figure 12-1)

TABLE 12-1
Straight Road PF's

| Length (feet) | Width (feet) | PF   |
|---------------|--------------|------|
| 1000          | 60           | 1.57 |
| 200           | 60           | 1.57 |
| 100           | 60           | 1.59 |
| 50            | 60           | 1.71 |
| 1000          | 40           | 1.67 |
| 200           | 40           | 1.67 |
| 100           | 40           | 1.68 |
| 50            | 40           | 1.79 |

FIGURE 12-1

## Straight Road



## B. <u>T - Intersections</u>

Table 12-II shows computed protection factors for persons standing in a T - shaped street intersection as shown in Figure 12-2 for various lengths and widths of the intersecting roads.

TABLE 12-II

T - Shaped Intersection PF's

| Length L <sub>1</sub> (feet) | Length I <sub>2</sub> (feet) | Width (feet)<br>Both Streets | PF   |
|------------------------------|------------------------------|------------------------------|------|
| 500                          | 1000                         | 60                           | 1.54 |
| 100                          | 1000                         | 60                           | 1.54 |
| 50                           | 1000                         | 60                           | 1.55 |
| 0                            | 1000                         | 60                           | 1.57 |
| 50                           | 200                          | 60                           | 1.55 |
| 50                           | 100                          | 60                           | 1.56 |
| 50                           | 50                           | 60                           | 1.57 |
| 500                          | 1000                         | 40                           | 1.63 |
| 100                          | 1000                         | 40                           | 1.63 |
| 50                           | 1000                         | 40                           | 1.64 |
| 0                            | 1000                         | 40                           | 1.67 |

FIGURE 12-2

## T - Shaped Street Intersection



## C. Full Four-way Street Intersections

Table 12-III snows computed protection factors for persons standing in the center of a full four-way intersection for various road widths and lengths as designated in Figure 12-3.

TABLE 12-III

Four-way Intersection PF's

| Length L <sub>j.</sub> (feet) | Length L <sub>2</sub> (feet) | Width (feet) Both Streets | PF   |
|-------------------------------|------------------------------|---------------------------|------|
| 1000                          | 1000                         | 60                        | 1.47 |
| 1000                          | 200                          | 60                        | 1.47 |
| 1000                          | 100                          | 60                        | 1.50 |
| 1000                          | 60                           | 60                        | 1.57 |
| 1000                          | 1000                         | 40                        | 1.50 |
| 1000                          | 200                          | 40                        | 1.51 |
| 1000                          | 100                          | 40                        | 1.54 |
| 1000                          | 40                           | 40                        | 1.67 |

FIGURE 12-3
Full Four-way Intersection



# D. Typical Protection Factors of Unshielded Detectors on Streets

Table 12-IV shows some typical protection factors afforded to unshielded individuals located in the center of various streets and intersections.

TABLE 12-IV

## Typical Street PF's

| Road Width (feet) | Detector Location                 | PF   |
|-------------------|-----------------------------------|------|
| 60                | Center of Straight Road           | 1.57 |
| 60                | Center of T - Shaped Intersection | 1.54 |
| 60                | Center of Four-way Intersection   | 1.47 |
| 40                | Center of Straight Road           | 1.67 |
| 40                | Center of T - Shaped Intersection | 1.63 |
| 40                | Center of Four-way Intersection   | 1.50 |

#### REFERENCES

- 1. W. L. Owen, V. D. Sartor, W. H. VanHorn. Stoneman II Test of Reclamation Performance, Vol. II: Performance Characteristics of Wet Decontamination Procedures. USNRDL-TR-335. San Francisco: United States Naval Radic-logical Defense Laboratory, July 1960.
- 2. H. Lee, V. D. Sartor, W. H. VanHorn. Stoneman II Test of Reclamation Performance, Vol. III: Performance Characteristics of Dry Decontamination Procedures. USNRDL-TR-336. San Francisco: United States Naval Radio-logical Defense Laboratory, June 1959.
- 3. E. L. Hill, et al. Analysis of Survey Data, R-OU-81. Durham, North Carolina: Research Triangle Institute, Operations Research Division, 15 February 1964.
- 4. C. F. Miller. Theory of Decontamination. Part I, USNRDL-460. San Francisco: United States Naval Radiological Defense Laboratory, July 1958.
- 5. W. L. Owen, J. D. Sartor. Radiological Recovery of Land Target Components-Complex I and Complex II. USNRDL-TR-570. San Francisco: United States Naval Radiological Defense Laboratory, 25 May 1960.
- 6. C. H. Wheeler, Jr., M. V. Cammarano. <u>Civil Defense Manual for Radiological Decontamination of Municipalities</u>. Caldwell, New Jersey: <u>Environmental Systems</u>, Curtiss Division, Curtiss-Wright Corporation, August 1963.
- 7. Office of Civil Defense. Shelter Design and Analysis. TR-20. Revised edition. Washington: Office of Civil Defense, Volume I, November 1962 and Volume 2, September 1963.