A PRESENTATION

Author

Date

Paper available at https://github.com/pmichaillat/latex-presentation

A BASIC TEXT SLIDE

- lorem ipsum dolor sit amet
- consectetur adipiscing elit
- sed do eiusmod tempor incididunt
 - ut labore et dolore magna aliqua
 - ut enim ad minim veniam
- quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat
- duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur

A TEXT SLIDE WITH ALERTS

- 1. sed do eiusmod tempor incididunt
 - ut labore et dolore magna aliqua
 - ut enim ad minim veniam
- 2. ut enim ad minim veniam
- quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat

A TEXT SLIDE WITH ALERTS

- 1. sed do eiusmod tempor incididunt
 - ut labore et dolore magna aliqua
 - ut enim ad minim veniam
- 2. ut enim ad minim veniam
- quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat

A TEXT SLIDE WITH SYMBOLS

- 1. sed do eiusmod tempor ⇒ incididunt
- 2. ut labore et dolore → magna aliqua
- 3. ut enim ad minim veniam when prices ↑
- ut enim ad minim veniam when prices ↓
- 5. now prices →
- quis nostrud exercitation laboris nisi ut aliquip → ex ea commodo consequat
- URL appear as follows: https://github.com/pmichaillat/latex-presentation

A NEW SECTION

A SLIDE WITH A GRAPH

SEVERAL GRAPHS (USE TITLE AS CAPTION)

SEVERAL GRAPHS

SEVERAL GRAPHS

SEVERAL GRAPHS

A SLIDE WITH MATH

• self-employed household $j \in \mathbb{R}$ maximizes utility

$$\int_{0}^{\infty}e^{-\delta t}\ln(c_{j}\left(t\right))+\mathcal{U}(b_{j}\left(t\right)-\mathcal{B}(t))-\frac{\zeta}{2}h_{j}\left(t\right)-\frac{\gamma}{2}\pi_{j}\left(t\right)^{2}dt$$

- consumption index: $c_j(t) = \int_0^1 c_{jk}(t)^{(\epsilon-1)/\epsilon} dk$
- aggregate wealth: $\mathcal{B}(t) = \int_0^1 [b_j(t)]^{\sigma} dj$
- inflation: $\pi_i(t) = \dot{p}_i(t)/p_i(t)$
- subject to budget constraint:

$$\dot{b}_{j}(t) = i(t)b_{j}(t) + p_{j}(t)y_{j}(t) - \int_{0}^{1} p_{k}(t)c_{jk}(t) dk$$

ANOTHER SECTION

A SLIDE WITH A TABLE AND ALERTS AND A LONG TITLE (USE TITLE AS CAPTION)

	<i>m</i> < 0	<i>m</i> = 0	<i>m</i> > 0
<i>u</i> > <i>u</i> *	$g/c < (g/c)^*$	$g/c = (g/c)^*$	$g/c > (g/c)^*$
$u = u^*$	$g/c = (g/c)^*$	$g/c = (g/c)^*$	$g/c = (g/c)^*$
<i>u</i> < <i>u</i> *	$g/c > (g/c)^*$	$g/c = (g/c)^*$	$g/c < (g/c)^*$
α = β	$\varphi\approx\mu$	ω < θ	\mathbb{Q} or \mathbb{N}

A SLIDE WITH A TABLE AND ALERTS AND A LONG TITLE (USE TITLE AS CAPTION)

	<i>m</i> < 0	<i>m</i> = 0	<i>m</i> > 0
$u > u^*$	$g/c < (g/c)^*$	$g/c = (g/c)^*$	$g/c > (g/c)^*$
$u = u^*$	$g/c = (g/c)^*$	$g/c = (g/c)^*$	$g/c = (g/c)^*$
<i>u</i> < <i>u</i> *	$g/c > (g/c)^*$	$g/c = (g/c)^*$	$g/c < (g/c)^*$
$\alpha = \beta$	$\varphi \approx \mu$	ω < θ	\mathbb{Q} or \mathbb{N}

A SLIDE WITH A TABLE AND ALERTS AND A LONG TITLE (USE TITLE AS CAPTION)

	<i>m</i> < 0	<i>m</i> = 0	<i>m</i> > 0
$u > u^*$	$g/c < (g/c)^*$	$g/c = (g/c)^*$	$g/c > (g/c)^*$
$u = u^*$	$g/c = (g/c)^*$	$g/c = (g/c)^*$	$g/c = (g/c)^*$
<i>u</i> < <i>u</i> *	$g/c > (g/c)^*$	$g/c = (g/c)^*$	$g/c < (g/c)^*$
$\alpha = \beta$	$\varphi\approx\mu$	$\omega < \theta$	\mathbb{Q} or \mathbb{N}

