

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

(Universidad del Perú, Decana de América)

Facultad de Ingeniería de Sistemas e Informática

Escuela de Ingeniería de Software

SIGNATURA: Cálculo I

Semestre: 2022-I

GUÍA DE PRÁCTICA Nº 10

Tema: Derivada de una función compuesta y función inversa.

1. Calcule la función derivada de las siguientes funciones:

GRUPO 10(a,b) GRUPO 9(c,d)

a)
$$f(x) = \cos((x^2 + 3)^2)$$

a)
$$f(x) = \cos((x^2 + 3)^2)$$

b)
$$f(x) = \frac{\cos(x^3-8)}{\sin(3x^2-9)}$$

c)
$$f(x) = \sqrt{1 + \cos^2(3x)}$$

d)
$$f(x) = \sqrt{\sin^2(2x) + \cos^2(3x)}$$

2. Calcule la derivada de las siguientes funciones:

GRUPO 8(a,b) GRUPO 7(c,d)

a)
$$f(x) = \frac{3x}{\sqrt{x^2 + 1}}$$

c)
$$f(x) = \cos(\sin(3x))$$

b)
$$f(x) = e^{\cos^2(3x)}$$

d)
$$f(x) = \tan(e^{x^2+2x} + x^3)$$

3. Calcule la derivada de las siguientes funciones en el punto indicado:

GRUPO 6(a,b) GRUPO 5(c,d)

a)
$$f(x) = \sec(3x^2 - 7x)$$
, $x_0 = 0$

c)
$$f(x) = \sqrt{\tan(x^2\pi)}$$
, $x_0 = \frac{1}{2}$

b)
$$f(x) = 4^{x^3 - 6x^2 + 8x + 2}$$
, $x_0 = 3$

a)
$$f(x) = \sec(3x^2 - 7x)$$
, $x_0 = 0$
b) $f(x) = 4^{x^3 - 6x^2 + 8x + 2}$, $x_0 = 3$
c) $f(x) = \sqrt{\tan(x^2\pi)}$, $x_0 = \frac{1}{2}$
d) $f(x) = \arcsin(\cos(3x + \pi))$, $x_0 = \frac{\pi}{2}$

4. Calcule la derivada de las siguientes funciones en el punto indicado:

GRUPO 4(a,b) GRUPO 3(c,d)

a)
$$f(x) = [2x - 1] \cdot \tan(x \cdot \pi), x_0 = \frac{1}{3}$$

a)
$$f(x) = [2x - 1] \cdot \tan(x \cdot \pi), x_0 = \frac{1}{3}$$
 c) $f(x) = x^2 \cdot [x] + x \cdot [x^2] + [x^3], x_0 = \frac{3}{2}$

b)
$$f(x) = \text{sen}(x + [x]), x_0 = \frac{\pi}{4}$$

b)
$$f(x) = \text{sen}(x + [x])$$
, $x_0 = \frac{\pi}{4}$ d) $f(x) = x \cdot \text{sen}(\frac{\pi}{3} \cdot [x]) + [x] \cdot \text{sen}(x)$, $x_0 = \frac{\pi}{2}$

5. Calcule la derivada de las siguientes funciones en el punto $x_0 = 0$:

GRUPO 2(a,b) GRUPO 1(c,d)

a)
$$f(x) = \begin{cases} x \cdot \sin\left(\frac{x^2}{4}\right), & x < 0 \\ x^2 \sin(x), & x \ge 0 \end{cases}$$

c)
$$f(x) = \tan\left(x + \left[x + \frac{1}{2}\right] \cdot x^2\right)$$

b)
$$f(x) = \begin{cases} x \cdot \left[x + \frac{3}{2} \right], & x < 0 \\ \frac{x}{\left[x + \frac{3}{2} \right]}, & x \ge 0 \end{cases}$$

d)
$$f(x) = \operatorname{sen}^2\left(\left[\left[x - \frac{1}{2}\right]\right] \cdot \frac{\pi}{2}\right) + \cos^2(x \cdot \pi)$$

6. Calcule la derivada de las siguientes funciones en el punto $x_0 = 1$:

a)
$$f(x) = e^{\operatorname{sen}(x^2\pi)}$$

c)
$$f(x) = \ln\left(\cos\left(x \cdot \frac{\pi}{2}\right) - \sin\left(2x \cdot \pi + \frac{\pi}{2}\right)\right)$$

b)
$$f(x) = 7^{e^{2(x-1)} + x}$$

d)
$$f(x) = \ln(\ln(\ln(2e^{x-1} + 1)))$$

7. Calcule la función derivada de la función inversa de las siguientes funciones: GRUPO 8(a,b) GRUPO 7(c,d)

a)
$$f(x) = \text{sen}(4x - 3)$$

c)
$$f(x) = \arctan\left(x^2 - \frac{\pi}{4}\right)$$

b)
$$f(x) = 1 + \sin^2\left(x - \frac{\pi}{2}\right)$$

d)
$$f(x) = \sec(\cos(3x))$$

8. Calcule la función derivada de la función inversa de las siguientes funciones: GRUPO 6(a,b) GRUPO 5(c,d)

a)
$$f(r) = \sqrt{4 - r^2}$$
 $r \in [0, 2]$

a)
$$f(x) = \sqrt{4 - x^2}$$
, $x \in [0, 2]$ b) $f(x) = 4x - x^2$, $x \in [0, 2]$

$$c) f(x) = sen(8x - 1)$$

d)
$$f(x) = 4x - x^2$$
, $x \in [2,4]$

9. Calcule la derivada de la función inversa de las siguientes funciones en el punto indicado:

GRUPO 4(a,b) GRUPO 3(c,d)

a)
$$f(x) = \arcsin(x\pi - 3)$$
, $x_0 = 0$

b)
$$f(x) = \arccos(\frac{\pi}{2} + x), x_0 = \frac{\pi}{4}$$

c)
$$f(x) = \arctan\left(\pi - \frac{x}{2}\right)$$
, $x_0 = \frac{\pi}{4}$

d)
$$f(x) = \arccos(4 - x^2)$$
, $x_0 = \frac{\pi}{2}$

10. Demuestre los siguientes resultados

GRUPO 2(a,b) GRUPO 1(c,d)

a) Si
$$f(x) = \sqrt{9 - x^2}$$
, $x \in [0, 3]$, entonces $\frac{d}{dx} (f^{-1}(x)) = -\frac{x}{f^{-1}(x)}$

b) Si
$$f(x + h) = f(x) + 3xh + h^2$$
, para todos $x, h \in \mathbb{R}$, entonces $\frac{f'(x) - f'(0)}{x} = 3$, para todo $x \in \mathbb{R}$.

11. Suponga que las funciones f y g, y sus derivadas tienen los siguientes valores en x = 2, y x = 3.

x	f(x)	g(x)	f'(x)	g'(x)
2	8	2	$\frac{1}{3}$	-3
3	3	-4	2π	5

Calcular las derivadas de las siguientes funciones en los valores dados de x:

GRUPO 10(a,b) GRUPO 9(c,d)

a)
$$f(x)g(x)$$
, $x = 3$

c)
$$f(g(x))$$
, $x = 2$

b)
$$\frac{f(x)}{g(x)}$$
, $x = 3$

d)
$$\sqrt{(f(x))^2 + (g(x))^2}$$
, $x = 2$

12. Suponga que las funciones *f* y *g*, y sus derivadas tienen los siguientes valores en x = 0, 1, 2, 3. **GRUPO 8**

x	f(x)	g(x)	f'(x)	g'(x)
0	1	5	2	-5
1	3	-2	0	1
2	0	2	3	1
3	2	4	1	-6

Calcular una tabla análoga para las funciones $f \circ g \vee g \circ f$

13. Al desarrollar el binomio de Newton $(1 + x)^n$ obtenemos **GRUPO 7**

$$(1+x)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i}$$

Demostrar

$$a) \sum_{i=1}^{n} i \binom{n}{i} = n \cdot 2^{n-1}$$

b)
$$\sum_{i=2}^{n} i(i-1) {n \choose i} = n \cdot (n-1)2^{n-2}$$

14. Determinar h'(x), si $h(x) = (f \circ g)(x) = f(g(x))$ GRUPO6 (a,b) GRUPO5 (c,d)

Determinar
$$h'(x)$$
, si $h(x) = (f \circ g)(x) = f(g(x))$
a) $f(u) = u^3 - 2u^2 - 5$, $g(x) = 2x - 1$
b) $f(t) = t^5 - t$, $g(t) = 1 - 2\sqrt{t}$

c)
$$f(u) = \frac{b-u}{b+u}$$
, $g(v) = \frac{b+v}{b-v}$

b)
$$f(t) = t^5 - t$$
, $g(t) = 1 - 2\sqrt{t}$

d)
$$f(t) = \frac{1}{t}$$
, $g(t) = a\sqrt{a^2 - t^2}$

15. Hallar la recta tangente y la recta normal al gráfico de la función dada en el punto (a, f(a)), para el valor indicado de a.

GRUPO 4(a,b) GRUPO 3(c,d)

a)
$$f(x) = \frac{3}{(2-x^2)^2}$$
, $a = 0$
b) $f(x) = \frac{(x-1)^2}{(3x-2)^2}$, $a = \frac{1}{2}$
c) $f(x) = \frac{x-2}{\sqrt{3x+6}}$, $a = 1$
d) $f(x) = |\sin 5x|$, $a = \frac{\pi}{3}$

c)
$$f(x) = \frac{x-2}{\sqrt{3x+6}}$$
, $a = 1$

b)
$$f(x) = \frac{(x-1)^2}{(3x-2)^2}$$
, $a = \frac{1}{2}$

d)
$$f(x) = |\sin 5x|, \ a = \frac{\pi}{3}$$

- **16.** Hallar las rectas tangentes al gráfico de f(x) = (x-2)(x+1)(x-3), en los puntos donde el gráfico corta al eje *X*. **GRUPO 2**
- 17. Hallar los puntos en la gráfica de $f(x) = x^2(x-4)^2$, en los cuales la recta tangente es paralela al eje X. GRUPO 1
- **18.** Hallar las rectas tangentes al gráfico de $f(x) = \frac{x+4}{x+3}$ que pasan por el origen.

GRUPO 10

19. Sean f y g dos funciones diferenciables tales que **GRUPO 9**

$$f'(u) = \frac{1}{u}, \qquad f(g(x)) = x$$

Demostrar que g'(x) = g(x).

20. Sean f y g dos funciones diferenciables tales que **GRUPO 8**

$$f'(u) = \frac{1}{u^2 - 1}, \qquad f(g(x)) = x$$

Si $g(2) = \sqrt{2}$, entonces determinar la recta tangente a la gráfica de la función g(x) en el punto $P = (2, \sqrt{2})$.

La vida es buena por dos cosas: descubrir y enseñar matemáticas. Simeón Poisson.