Robot Localization Simulator

Prateek Garg, Kumar Ashwani, Apurv Verma

April 7, 2012

Acknowledgement

We would like to acknowledege Assistant Professor Apurva Mudgal for helping us understand the difficult Robot Localization Algorithm. His supervision made it appear all very easy. We are also thankful to the ever enthusiastic CGAL community for helping us with the various CGAL issues.

Introduction

A robot is placed at an unknown point inside a simple polygon P. The robot has a map of P and can compute visibility polygon from its current location. The robot must determine its correct location inside the polygon P at a minimum cost of travel distance.

Robot Localization Algorithm I

Input:

Map polygon P, the visibility polygon V.

Output:

The robot localizes to its actual position $h \in H$

- 1: Compute the set of hypotheses H.
- 2: **while** |H| > 1 **do**
- 3: Compute the majority-rule map P_{maj}
- 4: Compute the polygons G_{ij} for each pair of hypotheses, h_i and h_j
- 5: Compute the majority rule map K_i of G_{ij} 's
- 6: Find the edges on the boundary of K_i which are not on the boundary of P_{maj}
- 7: Draw grids and compute the set of coordinates Q_H on these edges.
- 8: Make instance $I_{P,H}$ of $\frac{1}{2}$ -Group Steiner Problem

Robot Localization Algorithm II

- 9: Solve $I_{P,H}$ to compute a half computing path $C \subset P_{maj}$
- 10: Half-Localize by tracing C and making observations at coordinates Q_H
- 11: Move back to the starting location.
- 12: end while

Geometrical Algorithms

Visibility polygon is an indispensable component in the hypothesis generation step of the algorithm. Since CGAL had no inbuilt support for computing visibility polygons we implemented the following two routines for our purposes.

- Visibility Polygon of a point inside a polygon
- Visibility Polygon of an edge of the polygon.

Visibility Polygon of a Point Inside a Polygon I

Definition

Visibility Polygon of Point: p is the bounded polygonal region of all points of the polygon visible from p.

Algorithm

Algorithm

- 1. Collect all the vertices of the polygon which are visible from the point *P*.
- Iterate over the list of visible vertices and for each reflex vertex, compute the spurious vertex introduced in the visibility polygon.
- 3. Finally sort all the vertices in an order so that they form a simple polygon.

Examples I

Figure: Visibility Polygon of Point

Examples II

Figure: Visibility Polygon of Point

Visibility Polygon of an edge of the polygon

Definition

Visibility Polygon of Edge: *e* is the bounded polygonal region of all points of the polygon visible from any point on the edge *e*.

The algorithm for the visibility polygon of an edge has been taken from [Guibas()].

Visibility Polygon of an edge of the polygon

Figure: Visibility Polygon of Edge, Illustration taken from:[Guibas()]

Algorithm I

- 1. Compute the shortest path P_{AC} , from A to C and the shortest path P_{BD} , from B to D. Call this pair 1.
- 2. Similarly compute the shortest path P_{AD} , from A to D and the shortest path P_{BC} , from B to C. Call this pair 2.
- Find out which of these pairs is outward convex. An outward convex pair implies an hourglass shape is formed by the two paths.
- 4. If none of the pairs is outward convex this means that no portion of edge *CD* is visible from any point on edge *AB* and we can completely ignore such an edge.
- 5. If one of the pairs is outward convex then without loss of generality, let pair 1 be the outward convex pair. Now compute the shortest paths P_{AD} and P_{BC} .

Algorithm II

6. Let X be the point where path P_{AD} and P_{AC} split and let W be the point where path P_{BD} and P_{BC} split. Let Y be the next point on the path P_{AD} and Z be the next point on the path P_{BC}. Extending XY we get one extreme point of the portion of CD visible from AB. We repeat this on other side to get the other extreme point.

Shortest Path Calculation I

For the calculation of shortest path between any two vertices of the polygon the following property was exploited.

- ▶ The shortest path must turn only at vertices of the polygon.
- It is possible to move from one vertex to the another only if they are visible to each other.

Visibility Graph I

Definition

Visibility GraphThe visibility graph of a polygon can be formed as follows. Draw a vertex corresponding to each vertex in the polygon. Draw an edge between two vertices if the line joining the corresponding vertices in the polygon lies completely inside the polygon.

Visibility Graph II

Figure: Visibility Graph

Examples

Figure: Visibility Polygon of Edge

Examples

Figure: Visibility Polygon of Edge

Hypothesis Generation

Theorem

A point, P inside a simple polygon sees atleast one edge of the polygon completely.

Definition

Spurious Edge: In the visibility polygon of a point, an edge is called a spurious edge if it is obtained by extending the line joining the point P and a reflex vertex till it meets the polygon.

Theorem

The visibility polygon of a point P has atleast one edge which completely overlaps with an edge of the original polygon.

Algorithm

- 1. Iterate over the edges of the polygon and the edges of the map. and find an edge in the map which has the same length and orientation as an edge in the polygon.
- 2. Translate the visibility polygon such that the matching edge of the map polygon and the visibility polygon coincide.
- For each of the remaining edges of the visibility polygon, check whether a complete match exists or not. If all the remaining edges match, the point where the origin was translated is added to the set of hypotheses.

Examples I

Figure: Hypothesis Generation

Examples II

Figure: Hypothesis Generation

Majority Rule Map

The following example taken from [Apurva Mudgal(2006)] demonstrates the construction of a majority rule map.

Fig. 2.1. (a) A half-localization problem with grid graph G and $H = \{h_1, h_2, h_3, h_4\}$. (b) The majority-rule map for HALF-LOCALIZE(G, H) with two halving paths $(\gamma_0, \gamma_1, \gamma_2)$ and (γ_0, γ_3) .

Figure: Majority Rule Map Construction

Majority Rule Map

 h_1 , h_2 , h_3 , h_4 form the set of hypotheses. Arbitrarily we choose h_1 as the origin .

Next we translate all the remaining hypotheses to h_1 to obtain the overlay arrangement. The overlay arrangement contains the following faces R_0 , R_1 , R_2 , R_3 , R_4 , R_5 , R_6 . Recall from the definition of $Maj(\gamma)$

$$Maj(R_0)=h_1,h_2,h_3,h_4$$
, $Maj(R_1)=h_2,h_3,h_4$, $Maj(R_2)=h_1,h_2,h_3$, $Maj(R_3)=h_3,h_4$ and $Maj(R_4)=h_1,h_2$

In the majority rule map the region R_5 and R_6 are blocked because less than half the hypothesis said that they were traversable. They have been shown in gray.

Algorithm

- The overlay arrangement can be easily constructed using CGAL's inbuilt Arrangement class. Obtain the translates of the polygon by choosing one hypothesis as the origin and shifting other hypothesis to it.
- 2. Insert all these translates in CGAL's inbuilt arrangement to obtain all the faces in the overlay arrangement.
- 3. Faces which belong to atleast half the hypothesis are marked as part of the majority rule map.

Examples I

Figure: Map Polygon with robot position and Visibility Polygon

Examples II

Figure: Majority Rule Map

Connected Component containing Origin in P_{maj}

We need to calculate connected component containing origin in P_{mai} as the robot can only move in this area .

Dual graph of a given planar graph G is a graph which has a vertex corresponding to each face of G and an edge joining two neighbouring faces for each edge in G. We also have a vertex for the unbounded face which is connected to all the faces sharing boundary with unbounded face.

Dual Graph

Figure: (a) Graph G (b) Dual Graph for G

Algorithm for Majority Map

- 1. Prepare a dual graph G of the traversible faces in the P_{maj} .
- 2. Find the vertex(v_0) corresponding to the face containing origin in dual graph G.
- 3. Perform Depth First Search [[BOO()]] from v_0 to obtain all the connected vertices.
- 4. Output the union of the faces corresponding to the connected vertices obtained above.

Examples I

Figure: A Majority Map(blue point represents origin)

Examples II

Figure: Connected Component Containing Origin

Computing the Group Boundaries, G_{ij} I

To compute G_{ij} we first compute F_{ij} . F_{ij} is the face containing origin in the overlay of polygons P_i and P_j . The following diagram taken from [Apurva Mudgal(2006)] demonstrates the notation and the construction.

Computing the Group Boundaries, Gij II

Figure: F_{12}

Algorithm I

To obtain G_{ij} from F_{ij} we draw visibility polygon of type 1 and type 2 edges and take their lower envelope.

Figure: Lower Envelope

Algorithm II

Finding the lower envelope is easy using the CGAL's inbuilt Arrangement class. We find the visibility polygon of each edge of type 1 or type 2 and insert it into an arrangement. Later we check the face which contains the point γ_0 . This face is nothing else but G_{ij} The above algorithm is repeated to obtain G_{i1} , G_{i2} , G_{i3} , G_{i4} , G_{ik} .

Examples I

Figure: Lower Envelope

Examples II

Figure: Lower Envelope

Examples III

Figure: Lower Envelope

Computing the Group Boundaries, K_i I

To obtain K_i we construct the majority rule map of all G_{ij} 's. K_i is a region of special interest because of the special following special property. For proof of it, please refer [Apurva Mudgal(2006)] A robot initially located at h_i half localizes if it crosses the boundary of K_i .

Examples I

For The below map the blue region shows G_{ij} and the combined region of blue and green represents F_{ij} in the overlay arrangement of the polygons P_i and P_j .

Figure: Map Polygon with Hypotheses

Examples II

Figure: G_{02} and F_{02}

Examples III

Figure: G_{01} and F_{01}

Figure: K_1

Computing Reference Points (Q_H)

Definition

Reference Points: are the discrete set of points on the edges of $\partial K_i \cap \partial G_i$ which are used to determine the half localization path of robot [see [Gregory Dudek(1998)]].

Definition

Half Localization Path: is the path travelling along which the robot can eliminate half of the hypotheses by making observations at the reference points.

Examples

Figure: Reference Points in blue color and hypotheses in green color

The reference points shown in the figure are for the hypothesis h_0 . The robot on following the path from h_0 to R_0 can differentiate between hypotheses $\{h_0, h_1, h_2\}$ and $\{h_3, h_4\}$ based on its observation at R_0 . The path shown in black is the half computing path.

Algorithm I

- For every i find those edges in K_i which are not part of the boundary of majority map. These are important edges on which we will find out reference points. Let L_i contains all these edges for a particular i.
- 2. Calculate r_0 (geodesic) radius of the smallest geodesic disk centered on γ_0 that intersects at least half of $L_i's$.
 - 2.1 For all i calculate the minimum distance between γ_0 and any of the line segments of L_i .
 - 2.2 Take the median of all the distances calculated above as the geodesic radius(r_0).
- 3. Let k be the number of hypotheses and R be a sequence of radii $r_0, 2 * r_0, 4 * r_0 \dots, 2^{\lceil \log_2 k \rceil}$.
- 4. For every hypothesis *i* perform the following steps
 - 4.1 Place each line segment σ in L_i on an axis aligned square centered at γ_0 of side length $2*2^j*r_0$ (where j from $(0..\lceil \log_2 k \rceil)$)

Algorithm II

- 4.2 Decompose the square into $k \times k$ grid using k-1 horizontal and vertical lines
- 4.3 Calculate the intersection of the line segment with the grid line. These intersection points are the reference points. Also include end points of the line segment(even if they do not lie on grid) in the set of reference points.

Examples I

Figure: Reference Points in blue color and hypotheses in green color

Examples II

Figure: Reference Points in blue color and hypotheses in green color

Bibliography I

Joseph S. B. Mitchell Craig Tovey Apurva Mudgal, Sven Koenig.

A Near-Tight approximation algorithm for the robot localization problem.

SIAM Journal on Computing, 2006.

Sue Whitesides Gregory Dudek, Kathleen Romanik. Localizing a Robot with Minimum Travel. 1998.

Daniel Leven Micha Sharir Robert E. Tarjan Guibas, Hershberger.

Linear time algorithms for visibility and shortest path problems inside simple polygons.

