الإجابة اللموذجية وصلم التنقيظ لموضوع امتحان : شهادة البكاوريا اختبار مادة: العلوم الفيزيائية الشعبة:العلوم التجريبية دورة:2009

العلامة مجزأة المجموع		عناصر الإجابة	محاور الموضوع
'سبدي		تمرين الأول : (04 نقاط)	ال إد أ / جدول التقدم
		$S_2O_8^{2-}$ معادلة التفاعل $S_2O_8^{2-}$ + $2I_{(aq)}^-$ = $2SO_4^{2-}$	+ I _{2(aq)}
	0.25×4	كميات المادة (مول) التقدم ح/ الجملة	
		0 4×10 ⁻³ 8×10 ⁻³ 0 ع/ ایندانیة	0
		-2x $-3-2x$ $-2x$ $-3-2x$ $-2x$ $-3-2x$ $-$	<u> </u>
1.5		$ x_f = x_f + x_$	x_f
		$\left[S_2 O_8^{\;2-} ight]$ عبارة التركيز المولي اللحظي المحظي $\left[S_2 O_8^{\;2-} ight]$	ب
		ن جدول التقدم الحالة الانتقالية نجد أن كمية مادة شوارد بيروكسوديكبريتات	. م
		$n_{(S_1Q_0^{-2})} = C_1 \times V_1 - x$ متبقية في المزيج هي:	
			I .
	0.25	$V_T=V_1^{}+V_2^{}$ منه التركيز المولي لهذه الشوارد في المزيج الذي جحمه	I
	0.25	$\left[S_2O_8^{2-}\right]_t = \frac{C_1 \times V_1}{V_1 + V_2} - \left[I_2\right]_t : \text{id} n_{(t_2)} = x \text{id} \frac{n_{(S_2O_4^{2-})}}{V_2} = \frac{C_1 \times V_1}{V_2} - \frac{C_1 \times V_2}{V_2} = \frac{C_1 \times V_2}{V_2} - \frac{C_2 \times V_2}{V_2} = \frac{C_2 \times V_2}{V_2} - \frac{C_2 \times V_2}{V_2} = $	×
			环
		$t=0$ قيمة التركيز المولي $\left[S_2 O_8^{2-} ight]$ في اللحظة و	/d
	0.25	$\left[S_2 O_8^{2-} \right]_0 = \frac{C_1 \times V_1}{V_1 + V_2}$ أن تركيز ثنائي اليود في اللحظة $0 = 1$ معدوما فإن	ابه
		$\left[S_2 O_8^{2-1}\right]_0 = \frac{4 \times 10^{-2} mol / l \times 0, 1L}{0.2 L} = 2 \times 10^{-2} mol / L$	
2.5		0,22	
2.0	0.25	ـ أ/ تبرد العينات مباشرة بعد أخذها من المزيج لإبطاء التفاعل والمحافظة	
		لى تركيب العينة على ما هو عليه لحطة فصلها عن المزيج . ب/المعادلة الإجمالية لتفاعل المعاير ة	1
		$2S_2O_3^{2-} = S_3O_6^{2-} + 2e^{-}$	3
	۱ ,	$I_2 + 2e = 2I$	į
		$2S_2O_3^{2-} = S_4O_6^{2-} + 2e$ المعادلة النصفية الأولى	
	0.25	المعادلة النصفية الثانية + 2e = 21 المعادلة النصفية الثانية	
	0.25 0.25×2	$2S_2O_3^{2-} + I_2 = S_4O_6^{2-} + 2I^-$ ilasitik i ikasitik i i	
	D.23×2L		
			12 -

NABIL SOFT

تابع الإجابة اختبار مادة: العلوم الفيزيائية الشعبة: العلوم التجريبية معاور الموضوع العلامة مجزأة C', V', V_0 التركيز المونى لثنائي اليود بدلالة C', V', V_0 $n(S2O_3^{2-}) - 2x = 0$, $n(I_2) - x = 0$, $x = n(I_2) = \frac{n(S2O_3^{2-})}{2}$ is 0.25 $[I_2]_t = \frac{1}{2} \times \frac{C'V'}{V} : \text{add}$ t(min)0 5 10 60 V'(ml)4.0 6.7 8.7 10.4 16.7 3.0 5.0 115 7.8 $[I_2]$ (m.mol/L)12.5 $[I_2] = f(t)$ البيان (البيان مسم 0.25×2 0.25 $v_{(t=20\,\text{min})} = \frac{\Delta[I_2]}{\Delta t} \approx 2.4 \times 10^{-4} \, \text{mol min}^{-1} \, L^{-1}$ 0.25 لتعرين الثاني: (4 نقاط) 0.75 1) المعادلة التفاضلية : $E = u_c + RC \frac{du_c}{dt}$ $E = u_c + u_R \Rightarrow E = u_c + Ri$ $\frac{du_c}{dt} + \frac{1}{RC}u_c = \frac{E}{RC}$ 0.25×3 علالة التفاضلية $u_c(t) = E\left(1 - e^{-\frac{1}{RC}t}\right)$ (2 0.75 $\frac{E}{RC} = \frac{E}{RC}e^{-\frac{1}{RC}t} + \frac{E}{RC} - \frac{E}{RC}e^{-\frac{1}{RC}t} \Rightarrow \frac{E}{RC} = \frac{E}{RC}$ 0.25×3

NABIT SOFT

مة	العلا	عناصر الإجابة
المجموع	مجزاة	
0.75	0.25	: المتحليل البعدي: (3 [RC] = $[R][C] = \frac{[V]}{[A]} \cdot \frac{[q]}{[V]} = \frac{[A][T]}{[A]} = [T]$
0.25	0.25 0.25	RC متجانس مع الزمن مدلوله العملي : هو المدة اللازمة لشحن المكثفة بنسبة %63 - اسمه ثابت الزمن . 4) الجدول :
	0.25	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
0.50	0.25×2	$u_{c}(V)$ $u_{c}(t) = f(t)$ $t(m.s)$
01	0.25	$i(t) = \frac{E}{R} e^{-\frac{1}{RC}t} \qquad (6)$
	0.25×2	$i(\infty) = 0 \qquad \qquad j \qquad \qquad i(o) = \frac{E}{R}$
	0.25	$u_c(\infty) = E$
		التمرين الثالث: (4 نقاط)
01	0.25×2	ا) أ - عنصر مشع : نواة ذرته غير مستقرة تتفكك تلقانيا مصدرة شعاعات eta أو أشعة γ .
	0.25×2	. A للعنصر نظير : ذراته لها أنوية مختلفة في العدد الكتلي A
0.5	0.25×2	${}^{210}_{84}Po \rightarrow {}^{A}_{z}Pb + {}^{4}_{2}He \qquad (2)$ $A = 210 - 4 = 206$
02.50	0.25×3	$Z = 84 - 2 = 82$ $\lambda = \frac{\ln 2}{t_{1/2}} - 1 (3)$
		$\lambda = 5.10^{-3} j^{-1} = 5,78.10^{-8} s^{-1}$

NABIL SOFT

		نتبار مادة : العلوم الفيزيائية بالشعبة : العلوم التجريبية عناصر الإجابة	تابع الإجابة ا
	العلا	عناصر الإجابة	محاور الموضوع
المجموع	مجزاة		
	0.25×4	$A=A_0=\lambda N_0$ ب - $A=A_0e^{-\lambda t}$ و في $A=A_0e^{-\lambda t}$	
	0.23^4		
		$N_O = \frac{A_O}{2} = 1,73.10^{15}$ نواة	•
		74	
		$N = \frac{N_O}{4} = N_O e^{-\lambda t} \qquad - \Rightarrow$	
	0.25×3	1 1 1 1 1 1 1	
	0.25	$\frac{1}{4} = e^{-\lambda t} \Longrightarrow \ln \frac{1}{4} = \ln e^{-\lambda t}$	
		$\ln 4 = \lambda t \implies t = \frac{\ln 4}{\lambda} = 2t_{1/2}$	
		2	
		$t = 0,23.10^8 s = 276j$	
0.25		التمرين الرابع: (4 نقاط)	
9.23	0.25	1) المعلم المركزي الأرضى: مركزه مركز الأرض ومحاورة و موجهة	
		لَثْلَاتُهُ نَجُومُ بَعِيدَةُ	
0.50	0.25×2	(1) $\frac{T^2}{(R+h)^3} = \frac{4\pi^2}{GM_T} : e^{-\frac{2\pi^2}{3}} = \frac{4\pi^2}{GM_T}$	
	3.23	(1.17)	
		(2) $v^2 T^2 = 4\pi^2 (R+h)^2$: $v = \frac{2\pi (R+h)}{T}$: (3)	
0.75	0.25×3	1	
0.73	0.25×3	(2) من $T^2 = \frac{4\pi^2(R+h)^3}{GM_T}$ (1) من	
		$T = \frac{1}{GM_T}$	
		$4\pi^{2}(R+h)^{3}$	
		$v^2 \cdot \frac{4\pi^2(R+h)^3}{GM} = 4\pi^2(R+h)^2$	
		Om_T	
	0.25×2	(3) $v^2 = \frac{GM_T}{(R+h)}$	
02		4) القمر الجيومستقر:	
	0.25×2	* يدور حول الأرض في نفس جهة دورانها حول محورها.	
	0,23~2	* دور حركته يكون مساويا لدور حركة الأرض حول محور ها. 2- م	
		$rac{T^2}{\left(R+h ight)^3} = rac{4\pi^2}{GM_T}$: h حساب الارتفاع	
	0.252	· · · · · · · · · · · · · · · · · · ·	
	0.25×2	$h = \sqrt[3]{\frac{T^2 G M_T}{4\pi^2}} - R$: each	
		$n = \sqrt{\frac{4\pi^2}{4\pi^2}} = R$	
		$h = 35841Km$ $h = 35,841 \times 10^6 m$	
	0.05-0	حساب السرعة ٧: بالتعويض في العلاقة (3)	
	0.25×2	v = 3Km/s : each v = 3070m/s	
		T AM 324 T T T M T M T M T M T M T M T M T M T	
0.50	0.25	$F = 446,33N$: بالتعويض $F = G.\frac{M_T.m_S}{(R+h)^2}$: فوة الجذب	
	0.25	الدوران حول الأرض يمنعه من السقوط (القوة الطاردة المركزية)	
L		(3)-3333333333333	

	-	تابع الإجابة اختبار مادة : العلوم الفيزيانية الشعبة : العلوم التجريبية محاور الموضوع
	- Iلعلا	مداور الموضوع ككك كالعلاصر الإجابة كك كك كك
المجموع	مجزأة	
01.75	0.25×2	التمرين التجريبي: (4 نقاط) 1) أ – لإيثانوات الإيثيل . ب – جدول التقدم:
	0.25	$CH_3C00H + C_2H_5OH = CH_3COOC_2H_5 + H_2O$ الحالة
	0.25	0,2 0,2 و ابتدائية
	0.25	ع انتقالیه ا 0,2-x رانتقالیه ا
	0.25	النهائية $0,2-x$ $0,2-x$ $0,2-x$ $0,2-x$
		جـ - معادلة المعابرة :
	0.25	$CH_3COOH + (Na^+ + OH^-) = (CH_3COO^- + Na^+) + H_2O$
	0.25	$n_{A}=n_{B}=CV'_{BB}$: عند التكافؤ في تفاعل المعايرة -1 (2)
00.00		$n_a = V_b$ في المزيج الكلى:
02.25	0.25	
	0.25	$n_a = 0, 2-x$: $n_a = 0, 2-x$
	0.23	$x = 0, 2 - n_a : e$
		x في الجدول في كل زمن x الجدول في كل زمن ا
	0.25	t(h) 0 4 8 16 20 32 40 48 60
		mol) 0 0,03 0,05 0,08 0,10 0,12 0,13 0,13 0,13
	L	7
	0.25	رسم المنحنى : $x = f(t)$ (انظر الشكل)
		$\tau = \frac{x_f}{x_{\text{max}}} = \frac{0.13}{0.2} = 0.65\frac{1}{2}$
	0.25×2	$x_{\text{max}} = 0,2$
		نستنتج أن التفاعل غير تام .
	0.25×2	$Q_{r_{(rq)}} = \frac{(x_f)^2}{(0, 2 - x_f)^2} = 3{,}14 - \frac{1}{2}$
:		

الإجابة النموذجية وسلم التنقيط لموضوع امتحان: شهادة البكالوريا اختبار مادة: العلوم الفيزيائية الشعبة:العلوم التجريبية دورة:2009

مة	انعلا	محاور الموضوع عناصر الإجابة							
المجموع	مجزاة								
		التمرين الأول : (04 نقاط):							
0.50	0.25	 1 - أ/ - طاقة الربط النووي: الطاقة اللازمة لتماسك النويات. 							
0.25 $1u = \frac{1}{12} m_{(^{12}C)} = \frac{1}{N_A} = 1,66 \times 10^{-27} kg$: برا وحدة الكتل الذرية									
0.25	0.25	$E_{c} = \left[Z.m_{p} + (A-Z)m_{n} - m_{\chi} \right] C^{2} \qquad -2$							
0.50	0.25	$E_t = (92 \times 1,0073 + 143 \times 1,0087 - 234,9935) \times 931,5$ - 3							
	0.25	$E_1 = 1.8.10^3 MeV$							
0.50	0.25	- 4 <u>المعتصر 3 H المعتصر 3 H </u>							
	0.25	E_{i}/A 2,85 7,11 8,32 7,62							
0.25	0.25	5 - النواة الأكثر استقرار [%]							
		لأن طاقة الربط لكل نوية توافق أكبر قيمة في الجدول .							
0.75	0.25	$^{14}_{6}C \rightarrow ^{14}_{7}N + ^{0}_{-1}e$ / 1 (II							
	0.25	$^{2}_{1}H + ^{3}_{2}H \rightarrow ^{4}_{2}He + ^{1}_{0}n$							
	0.25	$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{140}_{54}Xe + ^{94}_{38}Sr + 2^{1}_{0}n$ / ϵ							
0.75	0.25	2 - التحول: أ - إشعاعي 2 - التحول: أ - إشعاعي							
0.75	0.25	ب - المسوى ، - إستوى . ب - اندماج							
	0.23	ج ـ انشطار							
	0.25	3 - الطاقة المحررة من كلّ تفاعل على الترتيب: ب و ج.							
		$E = \left \left(m_f - m_i \right) c^2 \right $							
0.50	$ E_2 = +17,04 MeV$								
0.50	0.25	$ E_3 = +184,7 MeV$							

NAB بلعلوم الفيزيانية الشابة: العلوم الفيزيانية الشابة المعلوم الفيزيانية الشابة المعلوم الفيزيانية المعلوم المعلوم الفيزيانية المعلوم المعلوم

العلامة		عناصر الإجابة
المجموع	مجزأة	
0.50	0.25×2 0.25	i +C- - رسم مخطط الدارة . K . نقاط) - المثيل : i : نشيل : 3 - المعلاقة بين . u . u . u . u . u . u . u . u . u .
0.50	0.25×2	$u_r + u_R = 0 \Rightarrow u_r = -u_R$
0.75	0.25 0.25×2	: المعادلة التفاضلية $u_c+R\frac{dq}{dt}=0$ $u_c+RC\frac{du_c}{dt}=0 \qquad \qquad \frac{du_c}{dt}+\frac{1}{RC}u_c=0$: a , b نعيين قيمة كل من a , b
0.75	0.25 0.25	$ae^{bt} + RCabe^{bt} = 0$ $e^{bt} (a + RCab) = 0 \Rightarrow a + RCab = 0$ $b = -\frac{1}{RC} \Rightarrow b = -666, 7$
0.25	0.25 0.25 0.25	$u_{c}\left(0\right)=a=rac{q_{0}}{C}=6$: عند $t=0$ عند $u_{c}\left(t ight)=Ee^{-rac{1}{RC}t}=6e^{-666.7t}$: u_{c} : u_{c} العبارة الزمنية لـ $u_{c}\left(0 ight)=6V$ عند $t=0$ عند $t=0$
01	0.25 0.25	$b = -\frac{1}{\tau}$ ومنه $b = -\frac{1}{RC}$ $\tau = 1.5 \times 10^{-3} s$ ومنه $uc(\tau) = 0.37E = 2.22V$
	0.25	$b = -\frac{1}{\tau} = -\frac{1}{1.5 \times 10^{-3}} = -666.7$ Hard of the content of the con
01.50	0.25 الرسم 0.25	$\sum \overrightarrow{F}_{ext} = \overrightarrow{P} + \overrightarrow{f} = ma_G$ $: z'z \text{with early }$ $mg - kv = m\frac{dv}{dt} \Rightarrow \frac{dv}{dt} + \frac{k}{m}v - g = 0$ $(1) \dots \frac{dv}{dt} = -\frac{k}{m}v + g \text{with early }$ $z (2) \dots \frac{dv}{dt} = Av + B \text{with early }$

بة الثلمية العلوم التحريبية	اختبار مادة الطوم الفيزيان	تابع الإجابة
-----------------------------	----------------------------	--------------

مة	العلا	عناصر الإجابة	محاور الموضوع
المجموع	مجزأة		
	0.25×2	$A=-rac{k}{m}$ و $B=g$: بالمطابقة بين (1) و (2) نجد	
		v_i و v_i من البيان :	:
		البيان مستقيم لا يمر من المبدأ معادلته من الشكل:	
	0.25	$(3) \ldots a_{ij} = \alpha t + \gamma$	
01.50	0.25	$\alpha = \frac{2-10}{10-0} - 0.8$ $\theta = 10$:	
	0.25	A=lpha=-0.8 : نجد (3) و (2) نجد	
	0.25	$B = \gamma = 10 \Longrightarrow g = 10 ms^{-1}$	
	0.25	$\frac{dv}{dt}=0$: عند بلوغ السرعة الحدية لدينا $0:0$	
		$Av_i + B = 0 \Rightarrow v_i = -\frac{B}{4} = \frac{-g}{-0.8} = \frac{10}{0.8}$	
		$v_t = 12,5ms^{-1}$	
	0.25	: بالتحليل البعدي $rac{k}{m}$ بالتحليل البعدي 3	
		$\frac{k}{m} = \frac{g}{v_i} \Rightarrow \frac{m}{k} = \frac{v_i}{g}$ لدينا	
D. 50	0.25	ومنه وحدة $\frac{m}{k}$ هي الثانية (s) في الجملة الدولية $\left[\frac{m}{k}\right] = \frac{[L][T]^{-1}}{[L][T]^{-2}} = [T]$	
	0.25	s^{-1} ومنه بالمطابقة $\frac{k}{m}$ وحدته $\frac{k}{m} = 0.8$	
1.25	0.25	$k = 80N \cdot sm^{-1}$ ومنه $\frac{k}{m} = 0.8 : k$ -4	
		v(t) = f(t): — النَمتَيل الكيفي لـ : – 5	
25	0.25		

الشعبة: العلوم التجريبية	اختبار مادة : العلوم الفيز وانية	تابع الإجابة
عناصر الإجابة	ع	أهجاور الموضو

العلامة		144	1131	عناصر الإجابة			محاور الموضوع		
المجموع	مجزاة			, 3			C3 3 33		
					***************************************		3		
					:	التمرين الرابع			
		CH₃COOI							
0.50	0.25×2	,	(04) 2 (1)	3 tag		2- جدول التا	-		
	0.25	المعادلة	(117 (17)				0.00		
01	0.25	-11112201	CH 3COOI	$H_{(\alpha q)} + H_{2}O_{(l)} = 0$	CH ₃ COO _{(aq}	$+H_3O_{(aq)}$	***************************************		
U1	0.25	ح ابتدائية	CV	بزيادة	0	0			
	0.25	ح.انتقالية	CV-x	بزيادة	X	x			
	0.25	ح ِنهائية	$CV - x_{eq}$	بزيادة	Xeq	X_{eq}			
			29		cq	eų			
			Г.	ro+1 v c	- 110 v.Fr	n+7 s.l.= 2			
0.50	0.25	$n(H_3O)$	$)_{eq} = X_{eq} = L$	$H_3O^+\Big]_{\!f}V$: او T_3O^+	. 40 3 ri [H 3C	و- عباره ا			
0.50	0.25			x_f	$-\frac{x_f}{}$ $\rightarrow \Gamma$	w 0+1c			
	0,23			$\tau_f = \frac{1}{x_{ms}}$	_= <u></u> _⊃L	$H_3O^+ \Big] = \tau C$			
		$\lceil H \rceil$	0+1 [CH	3000-]	2 -				
0.25	0.25	$K\alpha = \frac{L^{11}}{L}$, o 1, .[en	$\frac{3COO^{-}}{OH}\Big _{f} = \frac{\tau}{1}$	<u>"C</u> :	Kعبارة K			
			[CH3COC]	$[OH]_f$ 1	- τ	<i>a</i>			
					لجدول :	5- أ/ اكمال ا			
		, 1,	(ol^{-1}) 5,62	2 11,40					
	0.25	$A = \frac{1}{C} ("L.m]$	01)	,	, , , , , ,				
	0.23		$\tau^2 = 1.0 \times 10$	0^{-4} 2,0×10 ⁻⁴	10×10 ⁻⁴	16,7×10 ⁻⁴			
	0.25	B =	$\frac{\tau^2}{1-\tau}$ $1,0\times10$	2,000	1000	10,7710			
1		Α 4							
	0.25				A = f(B)	ب/ر سم العبار			
01.75				D	n-f(D)	, , , , , , , , , , , , , , , , , , ,			
	0.25	- To (1)	agld is	→ B	L. 12 .c. 12B	1000 1 /			
	0.23	A = aB (1)	مبدا معادلته	لبيان مستقيم يمر بال	11: K _a cayon	ج/ استنتاج			
				$a = \frac{L}{2}$	$\frac{\Delta A}{\Delta B} = 5,435 \times$	104			
					ΔB				
	0.25	$Ka = \frac{1}{2}$	<u>"C</u> <u> </u>	$\times \frac{\tau^2}{(1-\tau)}$ (2)	ية :	العلاقة النظر			
		1	$-\tau$ C K	$a (1-\tau)$	-				
	0.25		ν	$a = \frac{1}{a}$ نجد (2) نجد (1)	ت الحال تدن (دالمطابقة بد			
	0.23		, A						
				$Ka = \frac{1}{1}$	<u>= 1 84 × 10</u>	ه م نه 5-(
	0.25	$Ka = \frac{1}{5,435 \times 10^4} = 1,84 \times 10^{-5}$							
						_ ,			

NABIL SOFT
تابع الاجابة اختبار مادة: العلوم الفيزيائية الشعبة: العلوم التجريبية

			علوم التجريبية	فيزيائيةالشعبة : الـ عناصر الإ	دة : العلوم ال	اختبار ماد	تابع الإجابة
	العلا	_	'جابة	عناصر الإ		8	محاور الموضوغ
المجموع	مجزأة			_			
					التجريبي :	التمرين	
					جدول التقدم :		
		المعادلة	$CaCO_{3(s)} + 2$	$H_{(aq)}^+ = CO$	$\frac{1}{2(e)} + Ca$	(44) +	$H_{i}, O_{i(l)}$
0.75	0.25	ح الجملة		ت الممادة بالمول		1-17	
	0.25	ح. ابتدائية	2×10 ⁻²	10-2	0	0	بوفرة
		ح إنتقائية	$2 \times 10^{-2} - X$	$10^{-2} - 2X$			بوفرة
	0.25	حنهانية	2×10 ⁻² -X max	$10^{-2} - 2X_{\text{mex}}$	X max	X max	بوفرة
			تقدم لدينا	n(ا x : من جدول ا	$CO_2)$ قة بين		······································
.50	0.25×2			$n=\frac{p}{p}$	$\frac{V}{T}$ on (CC) ₀)=x	
	}			$^{\prime\prime}$ - $_{R}$	1	1	
					ل الجدول :	<u> 3 - إكمال</u>	
	n	(CO_2) mmol	0,92	2,24	2,89		
0.25	0.25	x(mmol)	0,92	2,24	2,89		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			ر x انظر الصفحة 11/	$= f(t) \cdot d\hat{x}$	4- نه	
0.25	0.25			,,,,	7 (0) . 42		
			ل لحظة :	كمية * H المتبقية في كا	الطريقة 2 : 3	- II	
			-			i	
). 50	0.25	$n(H^+)m$	mol 8,0	5,6	$\frac{-1}{4,0}$		
	0.25	x(mr	nol) 1,0	2,2	3,0		
.25	0.25	1		$\frac{1}{n(H^*)} = n_0 - 2x : a$	1	1 1	
						1	
0.25	0.25		$-n0(H^*)-n(H)$	^) م x في كل لحظة ــــــــــــــــــــــــــــــــــــ	ب مقدار الثقد	ا 3 حسا	
0.20	الرسم	^	2	_		- 1	
0.50	0.25			انظر أدناه	" 1 /		
	0.25	İ	في أي لحظة	على نفس مقدار التقدم	-		
0.25	0.25		2	محد :	يد المتفاعل ال	5- تحد	
			$2 \times 10^{-2} - x = 0$	$\Rightarrow x = 2 \times 10^{-2} mol$	ل التقدم لدينا	امن جدو	
Ī			$10^{-2} - 2x = 0 =$	$\Rightarrow x = 0.5 \times 10^{-2} mol$		1	
				هو المتفاعل المحد			
0.25	0.25	$x = \frac{xf}{2}$	$-\Rightarrow x = \frac{5}{2} = 2,5ma$	صف التفاعل: mol	لتنتاج زمن نا	ا 6- اء	
		1 2	2	$t_{\frac{1}{1/2}} = 70S$			
		}		, <u>r</u>		1	
9.25	0.25			حجمية للتفاعل عندي	_	1	
	ļ		$v = \frac{1}{v} \frac{dx}{dx} = \frac{1}{10}$	$\frac{1}{1} \times 3 \times 10^{-5} = 3 \times 10^{-5}$	4 mol.s1 L-1		
			v at 10	•			
						1	

