Lecture 24

Lema: - Let $f: E \to \mathbb{R}$ be a bounded measurable fundamentable set of finite measure. If $\{\emptyset_i\}^{\mathfrak{P}}$ is any sequence measured by M > 0, jes $\{\emptyset_i\}^{\mathfrak{P}}$ with $\{\emptyset_i\}^{\mathfrak{P}}$ is any sequence of simple functions, bounded by M > 0, jes $\{\emptyset_i\}^{\mathfrak{P}}$ with $\{\emptyset_i\}^{\mathfrak{P}}$ $\{\emptyset_i\}^{\mathfrak{P}}$ on $\{\emptyset_i\}^{\mathfrak{P}}$ with $\{\emptyset_i\}^{\mathfrak{P}}$ $\{\emptyset_i\}^{\mathfrak{P}}$ or almost everywhere at $\{\emptyset_i\}^{\mathfrak{P}}$. Then

(ii) If f=0 a.e., then It $\int_{n\to\infty}^{\infty} \int_{n}^{\infty} f = 0$.

prosti- Com (pln) -> flx) a. e on E.

Set $I_n = \int_E \varphi_n dn = 1$

$$|T_{n} = \exp(m, n) \ge 1,$$

$$|T_{0} - T_{nn}| = |\int \varphi_{n} - \int \varphi_{nn}|$$

$$\leq \int |\varphi_{n} - \varphi_{nn}| + \int |\varphi_{n} - \varphi_{nn}|.$$

$$\leq \int |\varphi_{n} - \varphi_{nn}| + \int |\varphi_{n} - \varphi_{nn}|.$$

$$\leq \int |\varphi_{n} - \varphi_{nn}| + \int |\varphi_{n} - \varphi_{nn}|.$$

$$\leq \int |\varphi_{n} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn} - \varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}|.$$

$$\leq \int |\varphi_{nn}| + 2 M \int |\varphi_{nn}| + 2 M \int |\varphi_$$

[In-Im]
$$\leq \int_{\epsilon} [e_{n} - e_{m}] + 2M\epsilon$$
.
 $\leq \int_{\epsilon} \epsilon + 2M\epsilon$.
 $\leq m(A_{\epsilon}) \epsilon + 2M\epsilon$.
for m_{i} sufficiently large.
In] is a country sequence in R .
Since R is Complete, \mathcal{L}_{i} is a consigned sequence.
It It In exists, is let \mathcal{L}_{i} exists.
This proves (i).

(ii) Suppose f = 0 a.e. on E.

Consider $|In| = \left| \int_{E} \varphi_{n} \right|$ $\leq \int_{A_{E}} |\varphi_{n}| + \int_{E|A_{E}} |\varphi_{n}|$ $= \int_{A_{E}} |\varphi_{n}| + \int_{E|A_{E}} |\varphi_{n}|$

 $\begin{array}{lll}
\leq & & & & & & \\
 & & & & \\
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$

Def: - het f be a bounded function that

is supported on a measurable set of
finite meanine. Then the Lebesgue

Integral of f is defined as

If: = It now In

where { len } is any sequence of
simple functions satisfying: | len (a) | < M

H >) ta

Reach (n) is supported on supp (f). R $(p_n(x) \longrightarrow f(x)$ a.e, as $n \longrightarrow \infty$. (By above Lemma, this limit exists)

claim: If is independent of the limiting segment of the limiting the segment of the limiting integral to be well-defined.

prost.

Let { Yn } be another requerce of Simple functions that is bounded by M'>0 supported on Supp(f). I such that Yn(n) - of f(x) are as n-op.

Let 2n = 9n - 4n + n>1.

Then {n, } is a sequence of simple furtions bounded by M+M', supported on supp (f); such that n(x) -> 0 a.e.

:- {n,} satisfies all the assumptions of the above Lema.

 $\Rightarrow \lim_{n\to\infty} \int (y_n - y_n) = 0.$

 $=) \quad \underset{n\to\infty}{\text{M}} \left(\int \varphi_n - \int \psi_n \right) = 0.$

 $\Rightarrow \underset{n\to\infty}{\mathcal{U}} \int e_n = \underset{n\to\infty}{\mathcal{U}} \int \psi_n.$

The Lebesgue integral of fig well defined.

Pef! Let E = Rd be a meanwable set of

finite measure. Let f be a bounded meamethe
function with m (Supply) < 90, Then

$$\int_{E} f := \int_{f} f x_{E}$$

proposition: - Suppose f, y are measurable of bounded functions supported on sets of finite measure. Then the following properties hold:

(i) but $a,b \in \mathbb{R}$. Then $\int (af+bg) = a \int f + b \int g.$

(ji) (Additive) het E,F GR be disjoint

meeswalle sets. Then

$$\int_{f} f = \int_{f} f + \int_{f} f$$

$$EVF = f$$

(iii) (Monotonicity) If $f \leq g$, then $\int f \leq \int g$.

(iv) (toingular inequality)

If |f| is bounded, supported on a set

$$\left|\int f\right| \leq \int |f|.$$

proof:

Let $\{\varphi_n\}$, $\{P_n\}$ be sequences of simple functions, bounded X supported on supp (f), supp (g) or supertively, such that $f = \iint_{n \to \infty} \int \varphi_n \ Q$ $(\varphi_n \to f = Q_n)$ or $(\varphi_n \to f = Q_n)$ $(\varphi_n \to g = Q_n$

 $\int (af+bg) = \int \int (af+bf)$ $= \int \int \int f + b \int f$

Remaining proputies: EXERCISE.