

FCC Test Report

FCC ID : 2AEUPBHASC052

Equipment : Stick Up Cam Elite

Brand Name : Ring LLC

Model Name : Stick Up Cam Wired

Applicant : Ring LLC

1523 26th St, Santa Monica, CA 90404, USA

Manufacturer : Chicony Electronics Co.,Ltd.

No.69, Sec. 2, Guangfu Rd., Sanchong Dist. New

Taipei City 241 Taiwan

Standard : 47 CFR FCC Part 15.247

The product was received on Jun. 01, 2018, and testing was started from Jun. 18, 2018 and completed on Sep. 24, 2019. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Allen Lin

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL: 886-3-3273456 Page Number : 1 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6

FCC ID: 2AEUPBHASC052

Report Version : 02

Table of Contents

HIST	ORY OF THIS TEST REPORT	3
SUMI	MARY OF TEST RESULT	4
1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Testing Applied Standards	7
1.3	Testing Location Information	7
1.4	Measurement Uncertainty	8
2	TEST CONFIGURATION OF EUT	9
2.1	Test Condition	9
2.2	Test Channel Mode	9
2.3	The Worst Case Measurement Configuration	10
2.4	Accessories and Support Equipment	11
2.5	Test Setup Diagram	13
3	TRANSMITTER TEST RESULT	17
3.1	AC Power-line Conducted Emissions	17
3.2	DTS Bandwidth	19
3.3	Maximum Conducted Output Power	20
3.4	Power Spectral Density	22
3.5	Emissions in Non-restricted Frequency Bands	23
3.6	Emissions in Restricted Frequency Bands	24
4	TEST EQUIPMENT AND CALIBRATION DATA	28
APPE	ENDIX A. TEST RESULTS OF AC POWER-LINE CONDUCTED EMISSIONS	
APPE	ENDIX B. TEST RESULTS OF DTS BANDWIDTH	
APPE	ENDIX C. TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER	
APPE	ENDIX D. TEST RESULTS OF POWER SPECTRAL DENSITY	
APPE	ENDIX E. TEST RESULTS OF EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
APPE	ENDIX F. TEST RESULTS OF EMISSIONS IN RESTRICTED FREQUENCY BANDS	
APPE	ENDIX G. TEST PHOTOS	
PHO1	TOGRAPHS OF EUT V01	

TEL: 886-3-3273456 FAX: 886-3-3270973

Report Template No.: HE1-C10 Ver3.6

FCC ID: 2AEUPBHASC052

Page Number : 2 of 30

Issued Date : Oct. 16, 2019

Report No.: FR852814-03AL

Report Version : 02

History of this test report

Report No.	Version	Description	Issued Date
FR852814-03AL	01	Initial issue of report	Oct. 04, 2019
FR852814-03AL	02	The Manufacturer information was update This report is the latest version replacing for the report issued on Oct. 04, 2019	Oct. 16, 2019

TEL: 886-3-3273456 Page Number : 3 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6

FCC ID: 2AEUPBHASC052

Report Version : 02

Report No.: FR852814-03AL

Summary of Test Result

Report No.: FR852814-03AL

Report Clause	Ref. Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	Antenna Requirement	PASS	FCC 15.203
3.1	15.207	AC Power-line Conducted Emissions	PASS	FCC 15.207
3.2	15.247(a)	DTS Bandwidth	PASS	≥500kHz
3.3	15.247(b)	Maximum Conducted Output Power	PASS	Power [dBm]:30
3.4	15.247(e)	Power Spectral Density	PASS	PSD [dBm/3kHz]:8
3.5	15.247(d)	Emissions in Non-restricted Frequency Bands	PASS	Non-Restricted Bands: >30 dBc
3.6	15.247(d)	Emissions in Restricted Frequency Bands	PASS	Restricted Bands: FCC 15.209

Reviewed by: Sam Tsai

Report Producer: Debby Hung

TEL: 886-3-3273456 Page Number : 4 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6 Report Version : 02

1 General Description

1.1 Information

1.1.1 RF General Information

Frequency Range (MHz)	Bluetooth Mode	Ch. Frequency (MHz)	Channel Number	
2400-2483.5	LE	2402-2480	0-39 [40]	

Report No.: FR852814-03AL

Band	Mode	BWch (MHz)	Nant
2.4-2.4835GHz	BT-LE(1Mbps)	1.0	1TX

Note:

- Bluetooth LE uses a GFSK (1Mbps) modulation for DSSS.
- BWch is the nominal channel bandwidth.

1.1.2 Antenna Information

Ant.	Port	Brand	Model Name	Antenna Type	Connector
1	1	-	Orion Wifi Antenna	PIFA Antenna	Fixed on board

2	.4G	5	G	ВТ		
Frequency (MHz)	Gain (dBi)	Frequency (MHz)	Gain (dBi)	Frequency (MHz)	Gain (dBi)	
2412	0.94	5180	2.68	2402	0.94	
2417	0.94	5200	2.68	2440	0.69	
2422	0.94	5240	2.77	2480	0.10	
2427	0.69	5190	2.68	-	-	
2432	0.69	5230	2.77	-	-	
2437	0.69	5745	3.12	-	-	
2442	0.69	5785	2.65	-	-	
2447	0.69	5825	1.67	-	-	
2452	0.69	5755	3.12	-	-	
2457	0.69	5795	2.65	-	-	
2462	0.69	-	-	-	-	

For 2.4 GHz function:

For IEEE 802.11b/g/n mode (1TX/1RX)

Only Ant. 1 (port 1) can be used as transmitting/receiving antenna.

For 5 GHz function:

For IEEE 802.11a/n mode (1TX/1RX)

Only Ant. 1 (port 1) can be used as transmitting/receiving antenna.

For Bluetooth function:

For Bluetooth mode (1TX/1RX)

Only Ant. 1 (port 1) can be used as transmitting/receiving antenna.

TEL: 886-3-3273456 Page Number : 5 of 30
FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Version

: 02

Report Template No.: HE1-C10 Ver3.6

FCC Test Report

1.1.3 EUT Information

	Operational Condition							
EU	Γ Power T	уре	Fro	m AC Adapter				
EU	Γ Function	า	\boxtimes	Point-to-multipo	oint			Point-to-point
					Type of	EUT		
\boxtimes	Stand-alo	ne						
	Combine	d (EUT where	e the	radio part is full	y integra	ated within	а	another device)
	Combine	d Equipment	- Bra	and Name / Mod	el No.:			
	Plug-in radio (EUT intended for a variety of host systems)							
	Host System - Brand Name / Model No.:							
	Other:							

1.1.4 Mode Test Duty Cycle

Mode	DC	DCF(dB)	T(s)	VBW(Hz) ≥ 1/T
BT-LE(1Mbps)	0.626	2.034	391.25u	3k

1.1.5 Table for Existing Change

This product is an extension of original one reported under Sporton project number: FR852814-02AL Below is the table for the change of the product with respect to the original one.

Modifications	Performance Checking
Two PoE Adapter and Ethernet Cable was added.	AC Conduction data and Radiated
	Emission data 30M to 1G was evaluated

TEL: 886-3-3273456 Page Number : 6 of 30
FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6

FCC ID: 2AEUPBHASC052

Report Version : 02

Report No.: FR852814-03AL

1.2 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR852814-03AL

- 47 CFR FCC Part 15
- ANSI C63.10-2013
- KDB 558074 D01 v05r02
- KDB 414788 D01 v01r01

1.3 Testing Location Information

	Testing Location								
\boxtimes	HWA YA ADD : No. 52, Huaya 1 st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)								
		TEL	:	886-3-327-3456	FAX : 886-3-327-0973				
				Test site Designation	on No. TW1190 with FCC.				
\boxtimes	LIN KOU	ADD	:	No. 30-2, Dingfu Vil., L	inkou Dist., New Taipei City, Taiwan (R.O.C.)				
	TEL: 886-2-2601-1640 FAX: 886-2-2601-1695								
	Test site Designation No. TW1095 with FCC.								

Test Condition	Test Site No.	Test Engineer	Test Environment	Test Date
RF Conducted	TH01-HY	Andy	23.5°C / 65%	21/Jun/2018
Radiated <9k~30M>	03CH02-HY	Jeff	23.5°C / 60%	15/Aug/2018
Radiated <30M~1G>	03CH02-HY	Terry	23.1°C / 59%	18/Jun/2018
AC Conduction	CO04-HY	Andy	23.5°C / 53.8%	25/Jul/2018
AC Conduction <poe adapter=""></poe>	CO04-HY	David	22~22.5°C / 62.1~62.6%	23/Sep/2019
Radiated<30M~1G> <poe adapter=""></poe>	OS03-LK	Chu	26.1~26.3°C / 65.2~65.4%	24/Sep/2019

TEL: 886-3-3273456 Page Number : 7 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6 Report Version : 02

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Report No.: FR852814-03AL

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (9kHz ~ 30MHz)	3.0 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	4.3 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	3.9 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.3 dB	Confidence levels of 95%
Temperature	0.7 °C	Confidence levels of 95%
Humidity	4 %	Confidence levels of 95%

TEL: 886-3-3273456 Page Number : 8 of 30
FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6 Report Version : 02

2 Test Configuration of EUT

2.1 Test Condition

RF Conducted	Abbreviation	Remark
TnomVnom	Tnom	20°C
-	Vnom	120V

2.2 Test Channel Mode

Test Software	DoS
---------------	-----

Mode	Power Setting
BT-LE(1Mbps)	-
2402MHz	Default
2440MHz	Default
2480MHz	Default

TEL: 886-3-3273456 Page Number : 9 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6 Report Version : 02

The Worst Case Measurement Configuration 2.3

The Worst Case Mode for Following Conformance Tests			
Tests Item	AC power-line conducted emissions		
Condition AC power-line conducted measurement for line and neutral			
Operating Mode CTX			
1	Adapter mode		
2	PoE Adapter mode		

The Worst Case Mode for Following Conformance Tests			
Tests Item	DTS Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in Non-restricted Frequency Bands		
Test Condition	Conducted measurement at transmit chains		

The Worst Case Mode for Following Conformance Tests						
Tests Item	Emissions in Restricted Fr	equency Bands				
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.					
Operating Mode < 1GHz	СТХ					
1	Adapter mode					
2	PoE Adapter mode					
Operating Mode > 1GHz	CTX					
	X Plane	X Plane Y Plane Z Plane				
Orthogonal Planes of EUT						
Worst Planes of EUT			V			

TEL: 886-3-3273456 Page Number : 10 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Version Report Template No.: HE1-C10 Ver3.6 : 02

Accessories and Support Equipment 2.4

	Accessories				
Indoor Adapter	Brand Name	DEE VAN ENTERPRISE	Model Name	DSA-15CAB-05 050250	
	Power Rating	I/P: <u>100</u> - <u>240</u> Vac, <u>0.5</u>	_A, O/P: <u>5</u> V	dc, <u>2.5 A</u>	
	Brand Name	ring	Model Name	DSA-15PFL-05 FUS 050250	
Outdoor Adoptor	Power Rating	I/P: 100-240V ~ 0.5A M	AX 50-60Hz; C	D/P: 5V 2.5A	
Outdoor Adapter	DC Power Cord	2.45 meter, non-shielde	d cable, w/o fe	errite core	
AC Power Cord 4.53 meter, non-shielded cable, w/o ferrite core			errite core		
PoE	Brand Name	Phihong	Model Name	POE15M	
Adapter 1	Power Rating	I/P: 100 - 240Vac, 0.8 A, O/P: 56 Vdc, 0.275 A			
DoE Adoptor 2	Brand Name	ONV	Model Name	PSE3010DCG	
PoE Adapter 2	Power Rating	I/P: 100 - 240Vac, 0.8 A	, O/P: 5 Vdc, 2	2.5A	
Adoptor 2	Brand Name	ZTE	Model Name	RJ-AS120150U104-B	
Adapter 2 Power Rating		I/P: 100 - 240Vac,1 A, O/P:12Vdc,1.5A			
USB Cable	Power Rating	2.45 meter, non-shielded cable, w/o ferrite core			
6ft Ethernet Cable	Power Rating	1.8 meter, non-shielded cable, w/o ferrite core			

Reminder: Regarding to more detail and other information, please refer to user manual.

TEL: 886-3-3273456 Page Number : 11 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Version Report Template No.: HE1-C10 Ver3.6 : 02

FCC Test Report

	Support Equipment - RF Conducted						
No.	lo. Equipment Brand Name Model Name FCC ID						
1	Notebook	DELL	E5410	DoC			
2	Adapter for NB	DELL	HA65NM130	DoC			
3	AC Power Source	G.W	APS-9102	-			

Report No.: FR852814-03AL

	Support Equipment - AC Conduction					
No.	Equipment	FCC ID				
1	PoE Adapter	Phihong	POE15M	-		
Z1	802.11ac Dual-Band Z1 Wireless-AC1750 ASUS Gigabit Router		RT-AC66U	MSQ-RTAC66U		
Z2	iPhone 8	Apple	MRRM2TA/A	-		
Z3	Notebook	DELL	D5500	DoC		

	Support Equipment - Radiated Emission					
No.	No. Equipment Brand Name Model Name FCC ID					
Z1	AP Router	Netgear	R6300v2	DoC		
Z2	Z2 iPad APPLE A1538					
Z3	Z3 PoE Adapter Phihong POE15M -					

TEL: 886-3-3273456 Page Number : 12 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6 Report Version : 02

2.5 **Test Setup Diagram**

TEL: 886-3-3273456 Page Number : 13 of 30 : Oct. 16, 2019 FAX: 886-3-3270973 Issued Date

Report Version

: 02

Report Template No.: HE1-C10 Ver3.6

RJ45 Cable

Non-Shielded

1.8+10

Report Version

: 02

Report No.: FR852814-03AL

TEL: 886-3-3273456 Page Number : 14 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6

Test Setup Diagram - Radiated Test < Mode 1> AC Mains Adapter EUT Power Box Turn table Item Connection Shielded Length(m) Remark 1 AC Power line No 2.45 2 DC Power line 8.75 No

Report No.: FR852814-03AL

TEL: 886-3-3273456 Page Number : 15 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6 Report Version : 02

Test Setup Diagram - Radiated Test <Mode 2>

Report No.: FR852814-03AL

FCC

No.	Types of Cables	Shielding on Cable	Length (m)	Remarks
1	RJ45 Cable	Non-Shielded	10	-
2	RJ45 cable	Non-Shielded	1.8	-

TEL: 886-3-3273456 Page Number : 16 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Version

: 02

Report Template No.: HE1-C10 Ver3.6

3 **Transmitter Test Result**

AC Power-line Conducted Emissions 3.1

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5 66 - 56 * 56 - 46 *						
0.5-5	56	46				
5-30	60	50				
Note 1: * Decreases with the logarithm of the frequency.						

3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 **Test Procedures**

	Test Method
•	Refer as ANSI C63.10-2013, clause 6.2 foray power-line conducted emissions.

3.1.4 **Test Setup**

TEL: 886-3-3273456 Page Number : 17 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6 FCC ID: 2AEUPBHASC052

Report Version : 02

FCC Test Report

3.1.5 Test Result of AC Power-line Conducted Emissions

Refer as Appendix A

TEL: 886-3-3273456 Page Number : 18 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6

FCC ID: 2AEUPBHASC052

Report Version : 02

Report No.: FR852814-03AL

3.2 DTS Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit					
Systems using digital modulation techniques:					
■ 6 dB bandwidth ≥ 500 kHz.					

Report No.: FR852814-03AL

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method						
•	For the emission bandwidth shall be measured using one of the options below:						
	Refer as KDB 558074, clause 8.2 (11.8 of ANSI C63.10) DTS bandwidth measurement.						
	Refer as RSS-Gen, clause 6.7 for for occupied bandwidth testing.						
	Refer as ANSI C63.10, clause 6.9.3 for occupied bandwidth testing.						

3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Refer as Appendix B

TEL: 886-3-3273456 Page Number : 19 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Version

: 02

Report Template No.: HE1-C10 Ver3.6

3.3 Maximum Conducted Output Power

3.3.1 Maximum Conducted Output Power Limit

xim	um Conducted Output Power Limit							
•	 If G_{TX} ≤ 6 dBi, then P_{Out} ≤ 30 dBm (1 W) Point-to-multipoint systems (P2M): If G_{TX} > 6 dBi, then P_{Out} = 30 - (G_{TX} - 6) dBm Point-to-point systems (P2P): If G_{TX} > 6 dBi, then P_{Out} = 30 - (G_{TX} - 6)/3 dBm 							
-								
•								
•	Smart antenna system (SAS):							
	- Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm							
	- Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm							
	- Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8$ dB dBm							
.r.p.	Power Limit:							
24	00-2483.5 MHz Band							
•	Point-to-multipoint systems (P2M): P _{eirp} ≤ 36 dBm (4 W)							
•	Point-to-point systems (P2P): $P_{eirp} \le MAX(36, [P_{Out} + G_{TX}]) dBm$							
•	Smart antenna system (SAS)							
	- Single beam: P _{eirp} ≤ MAX(36, P _{Out} + G _{TX}) dBm							
	- Overlap beam: P _{eirp} ≤ MAX(36, P _{Out} + G _{TX}) dBm							
	- Aggregate power on all beams: P _{eirp} ≤ MAX(36, [P _{Out} + G _{TX} + 8]) dBm							

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

TEL: 886-3-3273456 Page Number : 20 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6 Report Version : 02

3.3.3 Test Procedures

	Test Method							
•	Max	imum Peak Conducted Output Power						
		Refer as KDB 558074, clause 8.3.1.1 (11.9.1.1 of ANSI C63.10) RBW ≥ EBW method.						
		Refer as KDB 558074, clause 8.3.1.2 (11.9.1.2 of ANSI C63.10) integrated band power method.						
		Refer as KDB 558074, clause 8.3.1.3 (11.9.1.3 of ANSI C63.10) peak power meter.						
•	Max	imum Average Conducted Output Power						
		Refer as KDB 558074, clause 8.3.2.2 (11.9.2.2 of ANSI C63.10) using a spectrum analyzer.						
	\boxtimes	Refer as KDB 558074, clause 8.3.2.3 (11.9.2.3 of ANSI C63.10) using a power meter.						
•	For	conducted measurement.						
	•	If the EUT supports multiple transmit chains using options given below: Refer as KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.						
	•	If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) $EIRP_{total} = P_{total} + DG$						

Report No.: FR852814-03AL

3.3.4 Test Setup

3.3.5 Test Result of Maximum Conducted Output Power

Refer as Appendix C

TEL: 886-3-3273456 Page Number : 21 of 30
FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6 Report Version : 02

3.4 Power Spectral Density

3.4.1 Power Spectral Density Limit

Power Spectral Density Limit

Report No.: FR852814-03AL

Power Spectral Density (PSD)≤8 dBm/3kHz

3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

Test Method

- Peak power spectral density procedures that the same method as used to determine the conducted output power. If maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option).
 - Refer as KDB 558074, clause 8.4 (11.10 of ANSI C63.10) Method PKPSD.
- For conducted measurement.
 - If The EUT supports multiple transmit chains using options given below:
 - Measure and sum the spectra across the outputs. Refer as KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the NTX output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.

3.4.4 Test Setup

3.4.5 Test Result of Power Spectral Density

Refer as Appendix D

TEL: 886-3-3273456 Page Number : 22 of 30
FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6 Report Version : 02

3.5 Emissions in Non-restricted Frequency Bands

3.5.1 Emissions in Non-restricted Frequency Bands Limit

Un-restricted Band Emissions Limit					
RF output power procedure Limit (dB)					
Peak output power procedure	20				
Average output power procedure	30				

Report No.: FR852814-03AL

- Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.
- Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

Test Method
 Refer as KDB 558074, clause 8.5 (11.11 of ANSI C63.10) for non-restricted frequency bands.

3.5.4 Test Setup

3.5.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix E

TEL: 886-3-3273456 Page Number : 23 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6 Report Version : 02

3.6 Emissions in Restricted Frequency Bands

3.6.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit						
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)			
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300			
0.490~1.705 24000/F(kHz)		33.8 - 23	30			
1.705~30.0 30		29	30			
30~88 100		40	3			
88~216	88~216 150		3			
216~960 200		46	3			
Above 960 500		54	3			

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB / decade). The test report shall specify the extrapolation method used to determine compliance of the ELIT

Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

TEL: 886-3-3273456 Page Number : 24 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6 Report Version : 02

3.6.3 Test Procedures

Test Method

Report No.: FR852814-03AL

- The average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].
- Refer as ANSI C63.10, clause 6.10.3 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.
- For the transmitter unwanted emissions shall be measured using following options below:
 - Refer as KDB 558074, clause 8.6 (11.12 of ANSI C63.10) for restricted frequency bands.
- For the transmitter band-edge emissions shall be measured using following options below:
 - Refer as KDB 558074 clause 8.7.1, When the performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below.
 - Refer as KDB 558074, clause 8.7.2 (6.10.6 of ANSI C63.10) for marker-delta method for band-edge measurements.
 - Refer as KDB 558074, clause 8.7.3 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels.
- Use the following spectrum analyzer settings:
 - Set RBW=100 kHz for f < 1 GHz; VBW=3 * RBW; Sweep = auto; Detector function = peak; Trace = max hold.</p>
 - Set RBW = 1 MHz, VBW= 3MHz for f ≥ 1 GHz for peak measurement. For average measurement, refer as 1.1.4.
- KDB 414788 Open-Field Test Sites and Chamber Correlation Justification.
 - Based on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in regulations; however, an attempt should be made to avoid making measurements in the near field.
 - Open-field site and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

TEL: 886-3-3273456 Page Number : 25 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6 Report Version : 02

3.6.4 **Test Setup**

TEL: 886-3-3273456 Page Number : 26 of 30 : Oct. 16, 2019 FAX: 886-3-3270973 Issued Date

Report Version

: 02

Report Template No.: HE1-C10 Ver3.6

3.6.5 Test Result of Emissions in Restricted Frequency Bands (Below 30MHz)

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

3.6.6 Test Result of Emissions in Restricted Frequency Bands

Refer as Appendix F

TEL: 886-3-3273456 Page Number : 27 of 30
FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Version

: 02

Report Template No.: HE1-C10 Ver3.6

4 Test Equipment and Calibration Data

Instrument for AC Conduction<Mode 1>

		11110000				
Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
EMC Receiver	R&S	ESR	102051	9KHz ~ 3.6GHz	03/May/2018	02/May/2019
LISN	R&S	ENV216	101295	9kHz ~ 30MHz	17/Nov/2017	16/Nov/2018
RF Cable-CON	HUBER+SUHN ER	RG213/U	0761183202000 1	9kHz ~ 30MHz	06/Oct/2017	05/Oct/2018
AC POWER	APC	AFC-11005G	F310050055	47Hz~63Hz 5~300V	NCR	NCR
Impuls Begrenzer Puls e Limiter	SCHWARZBEC K	VTSD 9561-F	9561-F041	9 kHz ~ 30 MHz	12/Oct/2017	11/Oct/2018

NCR : Non-Calibration Require

Instrument for AC Conduction < Mode 2>

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR3	102051	9KHz ~ 3.6GHz	28/May/2019	27/May/2020
LISN	R&S	ENV216	101295	9kHz ~ 30MHz	08/Nov/2018	07/Nov/2019
RF Cable-CON	MTJ	RG142	CB002-CO	9kHz ~ 200MHz	12/Sep/2019	11/Sep/2020
Impuls Begrenzer Puls e Limiter	SCHWARZBEC K	VTSD 9561-F	9561-F041	9 kHz ~ 30 MHz	11/Oct/2018	10/Oct/2019
Software	Sporton	SENSE-EMI	V5.10.5	-	NCR	NCR

NCR: Non-Calibration Require

TEL: 886-3-3273456 Page Number : 28 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6 Report Version : 02

FCC Test Report

Report No. : FR852814-03AL

Instrument for Radiated Test<Mode 1>

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	30MHz ~ 1GHz 3m	20/Oct/2017	19/Oct/2018
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	1GHz ~ 18GHz 3m	27/Oct/2017	26/Oct/2018
Amplifier	Agilent	8447D	2944A11149	100kHz ~ 1.3GHz	29Jun/2017	28/Jun/2018
Microwave Preamplifier	Agilent	8449B	3008A02373	1GHz ~ 26.5GHz	28/Sep/2017	27/Sep/2018
Spectrum Analyzer	Rohde & Schwarz	FSP40	100593	9KHz - 40GHz	12/Dec/2017	11/Dec/2018
EMI Test Receiver	Rohde & Schwarz	ESCS 30	100354	9kHz ~ 2.75GHz	08/Dec/2017	07/Dec/2018
RF Cable-R03m	Jye Bao	RG142	CB017	9kHz ~ 1GHz	19/Jan/2018	18/Jan/2019
RF Cable-high	SUHNER	SUCOFLEX104	MY34918/4	1GHz ~ 40GHz	19/Jan/2018	18/Jan/2019
Bilog Antenna	SCHAFFNER	CBL 6112B	2723	30MHz ~ 1GHz	09/Sep/2017	08/Sep/2018
Broadband Horn Antenna	SCHWARZBEC K	BBHA 9170	BBHA 9170154	18GHz ~ 40GHz	06/Feb/2018	05/Feb/2019
Double Ridged Guide Horn Antenna	SCHWARZBEC K	BBHA 9120D	BBHA 9120 D 1543	1GHz ~ 18GHz	11/May/ 2018	10/May/2019
Preamplifier	MITEQ	TTA1840-35-HG	1864481	18GHz ~ 40GHz	31/Aug/2017	30/Aug/2018
Loop Antenna	TESEQ	HLA 6120	31244	9k-30MHz	29/Mar/2018	28/Mar/2019

TEL: 886-3-3273456 Page Number : 29 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6 Report Version : 02

FCC Test Report

Instrument for Radiated Test < Mode 2>

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
Open Area Test Site	SPORTON	OATS-10	OS03-LK	30 MHz ~ 1 GHz 10m, 3m	15/Apr/2019	14/Apr/2020
Amplifier	HP	8447D	2944A09068	0.1MHz ~ 1.3GHz	20/Dec/2018	19/Dec/2019
Spectrum Analyzer	R&S	FSP	100641	9 kHz ~ 30 GHz	23/Jul/2019	22/Jul/2020
Test Receiver	R&S	ESCS 30	100168	9 kHz ~ 2.75 GHz	12/Dec/2018	11/Dec/2019
Bilog Antenna with 5dB Attenuator	TESEQ & WOKEN	CBL6112D & 00800N1D01N-05	25236 & 007	30 MHz ~ 1 GHz	06/Jul/2019	05/Jul/2020
Turn Table	EMCO	2080	9711-2021	0 ~ 360 degree	NCR	NCR
Antenna Mast	EMCO	2075	9711-2115	1 m ~ 4 m	NCR	NCR
RF Cable-R10m	Woken	CFD400E-LW	OS03-2500	30 MHz ~ 1 GHz	15/May/2019	14/May/2020
Software	Audix	E3	Version:4	-	NCR	NCR

Report No.: FR852814-03AL

NCR : Non-Calibration Require

Instrument for Conducted Test

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
Spectrum Analyzer	R&S	FSV 40	101515	9kHz~40GHz	08/Dec/2017	07/Dec/2018
Power Sensor	Anritsu	MA2411B	1339407	300MHz ~ 40GHz	06/Nov/2017	05/Nov/2018
Power Meter	Anritsu	ML2495A	1517010	300MHz ~ 40GHz	06/Nov/2017	05/Nov/2018
RF Cable-0.2m	HUBER+SUHN ER	SUCOFLEX_10 4	MY10710/4	30MHz ~ 26.5GHz	25/Aug/2017	24/Aug/2018
RF Cable-0.2m	HUBER+SUHN ER	SUCOFLEX_10 4	MY10709/4	30MHz ~ 26.5GHz	25/Aug/2017	24/Aug/2018
RF Cable-1m	HUBER+SUHN ER	SUCOFLEX_10	MY37333/4	30MHz ~ 26.5GHz	26/Jan/2018	25/Jan/2019
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	27/Jul/2017	26/Jul/2018

TEL: 886-3-3273456 Page Number : 30 of 30 FAX: 886-3-3270973 Issued Date : Oct. 16, 2019

Report Template No.: HE1-C10 Ver3.6 Report Version : 02

Note 1: ">20dB" means emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found emissions (No emissions were detected.)

TEL: 886-3-327-3456

FAX: 886-3-327-0973

			0ver	Limit	Read	LISN	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.44	21 08	-25.90	46.98	11.38	9.61	0 09	Average
2	0.44		-25.23	56.98	22.05	9.61	0.09	_
3	0.48	26.54	-19.78	46.32	16.85	9.61		Average
4 MAX	0.48	36.54	-19.78	56.32	26.85	9.61	0.08	QP
5	1.16	18.92	-27.08	46.00	9.31	9.61	0.00	Average
6	1.16	29.37	-26.63	56.00	19.76	9.61	0.00	QP
7	1.25	19.33	-26.67	46.00	9.72	9.61	0.00	Average
8	1.25	29.29	-26.71	56.00	19.68	9.61	0.00	QP
9	2.13	16.82	-29.18	46.00	7.19	9.62	0.01	Average
10	2.13	26.62	-29.38	56.00	16.99	9.62	0.01	QP
11	3.68	17.91	-28.09	46.00	8.20	9.63	0.08	Average
12	3.68	28.30	-27.70	56.00	18.59	9.63	0.08	QP

Note 1: ">20dB" means emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found emissions (No emissions were detected.)

TEL: 886-3-327-3456

FAX: 886-3-327-0973

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973

SPORTON INTERNATIONAL INC. Page No.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 : A4 of A4

EBW-DTS Result Appendix B

Summary

Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
2.4-2.4835GHz	-	-	-	-	-
BT-LE(1Mbps)	713.75k	1.053M	1M05F1D	710k	1.053M

Max-N dB = Maximum 6dB down bandwidth; Max-OBW = Maximum 99% occupied bandwidth; Min-N dB = Minimum 6dB down bandwidth; Min-OBW = Minimum 99% occupied bandwidth;

Result

Mode	Result	Limit	Port 1-N dB	Port 1-OBW
		(Hz)	(Hz)	(Hz)
BT-LE(1Mbps)	-	-	-	-
2402MHz_TnomVnom	Pass	500k	710k	1.053M
2440MHz_TnomVnom	Pass	500k	713.75k	1.053M
2480MHz_TnomVnom	Pass	500k	712.5k	1.053M

Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth;

852814-03

AV Power-DTS Result

Summary

Mode	Power	Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
BT-LE(1Mbps)	6.84	0.00483

Mode	Result	Gain	Power	Power Limit
		(dBi)	(dBm)	(dBm)
BT-LE(1Mbps)	-	-	-	-
2402MHz_TnomVnom	Pass	0.94	6.84	30.00
2440MHz_TnomVnom	Pass	0.69	6.51	30.00
2480MHz_TnomVnom	Pass	0.10	6.13	30.00

PSD-DTS Result Appendix D

Summary

Mode	PD
	(dBm/RBW)
2.4-2.4835GHz	
BT-LE(1Mbps)	-8.65

RBW=3kHz.

Result

Mode	Result	Gain	PD	PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)
BT-LE(1Mbps)	-	-	-	-
2402MHz_TnomVnom	Pass	0.94	-8.65	8.00
2440MHz_TnomVnom	Pass	0.69	-9.87	8.00
2480MHz_TnomVnom	Pass	0.10	-9.52	8.00

RBW=3kHz.

CSE Non-restricted Band-DTS Result

Appendix E

Summary

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
2.4-2.4835GHz	=	-	-	-	-	-	-		-	-	-	-	-
BT-LE(1Mbps)	Pass	2.402004G	6.65	-23.35	147.216M	-37.67	2.399996G	-62.23	2.483672G	-59.41	24.51031G	-53.35	1

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
BT-LE(1Mbps)	-	-	-	-	-	-	-	-	-	-	-	-	-
2402MHz_TnomVnom	Pass	2.402004G	6.65	-23.35	147.216M	-37.99	2.399992G	-52.57	2.483956G	-62.87	15.321579G	-51.56	1
2440MHz_TnomVnom	Pass	2.402004G	6.65	-23.35	147.216M	-37.76	2.398436G	-61.47	2.484244G	-61.91	15.082363G	-52.97	1
2480MHz_TnomVnom	Pass	2.402004G	6.65	-23.35	147.216M	-37.67	2.399996G	-62.23	2.483672G	-59.41	24.51031G	-53.35	1

RSE TX below 1GHz Result_9k~30M

Appendix F.1

Summary

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)	
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-
BT-LE(1Mbps)	Pass	PK	749.74M	41.49	46.00	-4.51	0.95	3	Horizontal	360	1.00	-

RSE TX below 1GHz Result_9k~30M

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)	
BT-LE(1Mbps)	-	-	-	-	-	-	-	-	-	-	-	-
2440MHz	Pass	PK	47.07k	55.37	114.13	-58.76	21.29	3	Horizontal	0	1.00	-
2440MHz	Pass	PK	93.882k	46.50	108.13	-61.63	20.83	3	Horizontal	0	1.00	-
2440MHz	Pass	PK	112.212k	45.36	106.59	-61.23	20.77	3	Horizontal	0	1.00	-
2440MHz	Pass	PK	19.9107M	39.52	69.50	-29.98	23.21	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	9.5826M	38.85	69.50	-30.65	22.01	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	3.3141M	40.59	69.50	-28.91	20.83	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	70.74M	27.76	40.00	-12.24	-15.07	3	Vertical	360	1.00	-
2440MHz	Pass	PK	90.14M	31.36	43.50	-12.14	-12.35	3	Vertical	360	1.00	-
2440MHz	Pass	PK	270.56M	41.00	46.00	-5.00	-6.37	3	Vertical	360	1.00	-
2440MHz	Pass	PK	530.52M	34.07	46.00	-11.93	-2.02	3	Vertical	360	1.00	-
2440MHz	Pass	PK	650.8M	32.49	46.00	-13.51	-0.42	3	Vertical	360	1.00	-
2440MHz	Pass	PK	749.74M	34.53	46.00	-11.47	0.95	3	Vertical	360	1.00	-
2440MHz	Pass	PK	31.94M	24.52	40.00	-15.48	-5.36	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	115.36M	26.63	43.50	-16.87	-8.93	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	650.8M	36.01	46.00	-9.99	-0.42	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	749.74M	41.49	46.00	-4.51	0.95	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	850.62M	39.70	46.00	-6.30	1.99	3	Horizontal	360	1.00	-
2440MHz	Pass	QP	276.38M	36.66	46.00	-9.34	-6.32	3	Horizontal	146	1.00	-

Page No. : F3 of F6

Page No. : F5 of F6

RSE TX below 1GHz Result_30M~1G

Appendix F.2

Summary

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)	
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-
BT-LE(1Mbps)	Pass	PK	749.74M	41.49	46.00	-4.51	0.95	3	Horizontal	360	1.00	-

RSE TX below 1GHz Result_30M~1G

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)	
BT-LE(1Mbps)	-	-	-	-	-	-	-	-	-	-	-	-
2440MHz	Pass	PK	70.74M	27.76	40.00	-12.24	-15.07	3	Vertical	0	1.00	-
2440MHz	Pass	PK	90.14M	31.36	43.50	-12.14	-12.35	3	Vertical	0	1.00	-
2440MHz	Pass	PK	270.56M	41.00	46.00	-5.00	-6.37	3	Vertical	0	1.00	-
2440MHz	Pass	PK	530.52M	34.07	46.00	-11.93	-2.02	3	Vertical	0	1.00	-
2440MHz	Pass	PK	650.8M	32.49	46.00	-13.51	-0.42	3	Vertical	0	1.00	-
2440MHz	Pass	PK	749.74M	34.53	46.00	-11.47	0.95	3	Vertical	0	1.00	-
2440MHz	Pass	PK	31.94M	24.52	40.00	-15.48	-5.36	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	115.36M	26.63	43.50	-16.87	-8.93	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	650.8M	36.01	46.00	-9.99	-0.42	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	749.74M	41.49	46.00	-4.51	0.95	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	850.62M	39.70	46.00	-6.30	1.99	3	Horizontal	360	1.00	-
2440MHz	Pass	QP	276.38M	36.66	46.00	-9.34	-6.32	3	Horizontal	146	1.00	-

Page No. : F4 of F4

RSE TX below 1GHz Result_30M~1G (Mode 2)

Appendix F.3

Summary

Mode	Туре	Freq	Level	Limit	Margin	Factor	Condition	Azimuth	Height
		(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)		(°)	(m)
Mode 2	QK	575M	33.83	37.00	-3.17	-27.65	Horizontal	189	252

		1927031301	1 20000000	Over				100000000000000000000000000000000000000	Antenna	Ant	**************************************	
		Freq	Level	Limit	Line	Level	Loss	Factor	Factor	Pos	Pos	Remark
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB/m	cm	deg	
1	0	32.200	25.64	-4.36	30.00	29.76	0.70	27.00	22.18			Peak
2	0	47.800	25.81	-4.19	30.00	37.77	0.87	26.98	14.15			QP
3	0	125.000	26.65	-3.35	30.00	34.66	1.34	26.71	17.36	100	61	QP
4	0	145.380	25.91	-4.09	30.00	35.06	1.47	26.62	16.00			Peak
5	0	150.060	25.53	-4.47	30.00	35.01	1.52	26.61	15.61			Peak
6	0	200.060	24.21	-5.79	30.00	34.49	1.71	26.39	14.40			Peak

SPORTON INTERNATIONAL INC. Page No. : F2 of F5

				Over	Limit	Read	Cable	Preamp	Antenna	Ant	Table	
		Freq	Level	Limit	Line	Level	Loss	Factor	Factor	Pos	Pos	Remark
	-		dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB/m	cm	deg	
1	0	410.400	32.51	-4.49	37.00	35.46	2.70	27.08	21.43			Peak
2	0	575.000	31.38	-5.62	37.00	32.10	3.26	27.65	23.67			Peak
3	0	675.000	31.19	-5.81	37.00	31.40	3.45	27.66	24.00			Peak
4	0	750.000	31.40	-5.60	37.00	30.80	3.39	27.58	24.79			QP
5	0	850.000	33.04	-3.96	37.00	30.90	4.07	27.41	25.48			QP
6	0	950.000	33.23	-3.77	37.00	30.17	4.14	27.20	26.12			QP

SPORTON INTERNATIONAL INC. Page No. : F3 of F5

		Over	Limit	Read	Cable	Preamp	Antenna	Ant	Table	
Freq	Level	Limit	Line	Level	Loss	Factor	Factor	Pos	Pos	Remark
MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB/m	cm	deg	-
32.030	21.63	-8.37	30.00	25.75	0.70	27.00	22.18			Peak
62.570	20.92	-9.08	30.00	35.42	0.98	26.94	11.46			Peak
108.720	21.51	-8.49	30.00	30.10	1.23	26.78	16.96			Peak
125.000	21.40	-8.60	30.00	29.41	1.34	26.71	17.36			Peak
150.060	21.91	-8.09	30.00	31.39	1.52	26.61	15.61			Peak
200.060	21.44	-8.56	30.00	31.72	1.71	26.39	14.40			Peak
	MHz 32.030 62.570 108.720 125.000 150.060	MHz dBuV/m 32.030 21.63 62.570 20.92 108.720 21.51 125.000 21.40 150.060 21.91	MHz dBuV/m dB 32.030 21.63 -8.37 62.570 20.92 -9.08 108.720 21.51 -8.49 125.000 21.40 -8.60 150.060 21.91 -8.09	Freq Level Limit Line MHz dBuV/m dB dBuV/m 32.030 21.63 -8.37 30.00 62.570 20.92 -9.08 30.00 108.720 21.51 -8.49 30.00 125.000 21.40 -8.60 30.00 150.060 21.91 -8.09 30.00	Freq Level Limit Line Level MHz dBuV/m dB dBuV/m dBuV 32.030 21.63 -8.37 30.00 25.75 62.570 20.92 -9.08 30.00 35.42 108.720 21.51 -8.49 30.00 30.10 125.000 21.40 -8.60 30.00 29.41 150.060 21.91 -8.09 30.00 31.39	Freq Level Limit Line Level Loss MHz dBuV/m dB dBuV/m dBuV dB 32.030 21.63 -8.37 30.00 25.75 0.70 62.570 20.92 -9.08 30.00 35.42 0.98 108.720 21.51 -8.49 30.00 30.10 1.23 125.000 21.40 -8.60 30.00 29.41 1.34 150.060 21.91 -8.09 30.00 31.39 1.52	Freq Level Limit Line Level Loss Factor MHz dBuV/m dB dBuV/m dBuV dB dB 32.030 21.63 -8.37 30.00 25.75 0.70 27.00 62.570 20.92 -9.08 30.00 35.42 0.98 26.94 108.720 21.51 -8.49 30.00 30.10 1.23 26.78 125.000 21.40 -8.60 30.00 29.41 1.34 26.71 150.060 21.91 -8.09 30.00 31.39 1.52 26.61	Freq Level Limit Line Level Loss Factor Factor MHz dBuV/m dB dBuV/m dB dB dB/m 32.030 21.63 -8.37 30.00 25.75 0.70 27.00 22.18 62.570 20.92 -9.08 30.00 35.42 0.98 26.94 11.46 108.720 21.51 -8.49 30.00 30.10 1.23 26.78 16.96 125.000 21.40 -8.60 30.00 29.41 1.34 26.71 17.36 150.060 21.91 -8.09 30.00 31.39 1.52 26.61 15.61	Freq Level Limit Line Level Loss Factor Factor Pos MHz dBuV/m dB dBuV/m dB dB dB/m cm 32.030 21.63 -8.37 30.00 25.75 0.70 27.00 22.18 62.570 20.92 -9.08 30.00 35.42 0.98 26.94 11.46 108.720 21.51 -8.49 30.00 30.10 1.23 26.78 16.96 125.000 21.40 -8.60 30.00 29.41 1.34 26.71 17.36 150.060 21.91 -8.09 30.00 31.39 1.52 26.61 15.61	Freq Level Limit Line Level Loss Factor Factor Pos Pos MHz dBuV/m dB dB dB dB/m cm deg 32.030 21.63 -8.37 30.00 25.75 0.70 27.00 22.18 62.570 20.92 -9.08 30.00 35.42 0.98 26.94 11.46 108.720 21.51 -8.49 30.00 30.10 1.23 26.78 16.96 125.000 21.40 -8.60 30.00 29.41 1.34 26.71 17.36 150.060 21.91 -8.09 30.00 31.39 1.52 26.61 15.61

SPORTON INTERNATIONAL INC. Page No. : F4 of F5

				Over	Limit	Read	Cable	Preamp	Antenna	Ant	Table	
		Freq	Level	Limit	Line	Level	Loss	Factor	Factor	Pos	Pos	Remark
	-	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB/m	cm	deg	9
1	6	500.000	31.15	-5.85	37.00	33.10	3.02	27.56	22.59			Peak
2	0	575.000	33.83	-3.17	37.00	34.55	3.26	27.65	23.67	189	252	QP
3	0	675.000	31.43	-5.57	37.00	31.64	3.45	27.66	24.00			Peak
4	0	750.000	30.61	-6.39	37.00	30.01	3.39	27.58	24.79			Peak
5	0	850.000	30.22	-6.78	37.00	28.08	4.07	27.41	25.48			Peak
6	0	950.000	31.91	-5.09	37.00	28.85	4.14	27.20	26.12			Peak

SPORTON INTERNATIONAL INC. Page No. : F5 of F5

RSE TX above 1GHz Result

Appendix F.4

Summary

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)	
2.4-2.4835GHz	1	-	-	-	-	1	-	1	-	-	1	-
BT-LE(1Mbps)	Pass	AV	2.498G	50.13	54.00	-3.87	32.67	3	Vertical	257	3.19	-

SPORTON INTERNATIONAL INC. Page No. : F1 of F14

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)	
BT-LE(1Mbps)	-	-	-	-	-	-	-	-	-	-	-	-
2402MHz	Pass	AV	2.3874G	49.31	54.00	-4.69	32.26	3	Vertical	252	1.04	-
2402MHz	Pass	AV	2.402G	97.07	Inf	-Inf	32.31	3	Vertical	252	1.04	-
2402MHz	Pass	PK	2.3836G	60.25	74.00	-13.75	32.25	3	Vertical	252	1.04	-
2402MHz	Pass	PK	2.4018G	97.59	Inf	-Inf	32.31	3	Vertical	252	1.04	-
2402MHz	Pass	AV	2.382G	49.27	54.00	-4.73	32.25	3	Horizontal	182	1.03	-
2402MHz	Pass	AV	2.402G	98.72	Inf	-Inf	32.31	3	Horizontal	182	1.03	-
2402MHz	Pass	PK	2.3774G	60.44	74.00	-13.56	32.23	3	Horizontal	182	1.03	-
2402MHz	Pass	PK	2.4018G	99.26	Inf	-Inf	32.31	3	Horizontal	182	1.03	-
2402MHz	Pass	AV	4.80396G	42.40	54.00	-11.60	2.99	3	Vertical	277	1.02	-
2402MHz	Pass	PK	4.80452G	51.25	74.00	-22.75	2.99	3	Vertical	277	1.02	-
2402MHz	Pass	AV	4.8039G	41.08	54.00	-12.92	2.99	3	Horizontal	178	1.01	-
2402MHz	Pass	PK	4.80436G	50.81	74.00	-23.19	2.99	3	Horizontal	178	1.01	-
2440MHz	Pass	AV	2.389998G	49.10	54.00	-4.90	32.28	3	Vertical	257	3.19	-
2440MHz	Pass	AV	2.44G	97.57	Inf	-Inf	32.46	3	Vertical	257	3.19	-
2440MHz	Pass	AV	2.498G	50.13	54.00	-3.87	32.67	3	Vertical	257	3.19	-
2440MHz	Pass	PK	2.3428G	59.45	74.00	-14.55	32.10	3	Vertical	257	3.19	-
2440MHz	Pass	PK	2.4404G	98.14	Inf	-Inf	32.46	3	Vertical	257	3.19	-
2440MHz	Pass	PK	2.4972G	60.36	74.00	-13.64	32.66	3	Vertical	257	3.19	-
2440MHz	Pass	AV	2.34G	49.34	54.00	-4.66	32.10	3	Horizontal	147	1.15	-
2440MHz	Pass	AV	2.44G	96.01	Inf	-Inf	32.46	3	Horizontal	147	1.15	-
2440MHz	Pass	AV	2.4984G	50.13	54.00	-3.87	32.67	3	Horizontal	147	1.15	-
2440MHz	Pass	PK	2.3432G	59.67	74.00	-14.33	32.10	3	Horizontal	147	1.15	-
2440MHz	Pass	PK	2.4404G	96.55	Inf	-Inf	32.46	3	Horizontal	147	1.15	-
2440MHz	Pass	PK	2.483502G	60.76	74.00	-13.24	32.61	3	Horizontal	147	1.15	-
2440MHz	Pass	AV	4.87994G	40.51	54.00	-13.49	3.16	3	Vertical	170	2.10	-
2440MHz	Pass	PK	4.87946G	50.20	74.00	-23.80	3.16	3	Vertical	170	2.10	-
2440MHz	Pass	AV	4.87972G	38.32	54.00	-15.68	3.16	3	Horizontal	180	1.01	-
2440MHz	Pass	PK	4.87952G	48.49	74.00	-25.51	3.16	3	Horizontal	180	1.01	-
2480MHz	Pass	AV	2.48G	95.75	Inf	-Inf	32.60	3	Vertical	261	2.82	-
2480MHz	Pass	AV	2.4988G	50.13	54.00	-3.87	32.67	3	Vertical	261	2.82	-
2480MHz	Pass	PK	2.4802G	96.32	Inf	-Inf	32.60	3	Vertical	261	2.82	-
2480MHz	Pass	PK	2.4964G	60.80	74.00	-13.20	32.66	3	Vertical	261	2.82	-
2480MHz	Pass	AV	2.48G	95.06	Inf	-Inf	32.60	3	Horizontal	191	2.11	-
2480MHz	Pass	AV	2.4988G	50.13	54.00	-3.87	32.67	3	Horizontal	191	2.11	-
2480MHz	Pass	PK	2.4798G	95.60	Inf	-Inf	32.60	3	Horizontal	191	2.11	-
2480MHz	Pass	PK	2.4904G	61.14	74.00	-12.86	32.64	3	Horizontal	191	2.11	-
2480MHz	Pass	AV	4.9598G	42.74	54.00	-11.26	3.33	3	Vertical	172	2.17	-
2480MHz	Pass	PK	4.95964G	51.84	74.00	-22.16	3.33	3	Vertical	172	2.17	-
2480MHz	Pass	AV	4.95995G	39.73	54.00	-14.27	3.33	3	Horizontal	186	1.06	-
2480MHz	Pass	PK	4.96044G	50.52	74.00	-23.48	3.33	3	Horizontal	186	1.06	-

