

HABIB UNIVERSITY

Data Structures & Algorithms

CS/CE 102/171 Spring 2023

Instructor: Maria Samad

Hash Table Operations – Collision Handling Using Separate Chaining

Student 1:		_
For a hash table with size = 10, and keys. Use Single Chaining with Lin 1. setitem(5) • Hash Function = (key + 5)% 10 • Slot index = (5 + 5)% 10 = 0 • Slot index 0 is free so no collision and slot index 0 gets key = 5		3. setitem(52) • Hash Function = (key + 5)%10 • Slot index = (52 + 5)%10 = 7 • Slot index 7 is free so no collision and slot index 7 gets key = 52
0	0 5 1 2 3 4 5 10 6 7 8 9	0 5 1 2 3 4 5 10 6 7 52 8 9
 4. setitem(6) Hash Function = (key + 5)% 10 Slot index = (6 + 5)% 10 = 1 Slot index 1 is free so no collision and slot index 1 gets key = 6 	 5. setitem(79) Hash Function = (key + 5)%10 Slot index = (79 + 5)%10 = 4 Slot index 4 is free so no collision and slot index 4 gets key = 79 	 6. delitem(52) Hash Function = (key + 5)%10 Slot index = (52 + 5)%10 = 7 Go to slot index 7 to see if key 52 exists over there or not. It does, so it successfully removes the key from that slot index
0 5 1 6 2 3 4 5 10 6 7 52 8 9	0 5 1 6 2 3 4 79 5 10 6 7 52 8 9	0 5 1 6 2 3 4 79 5 10 6 7 8 9

•	Shot much = $(4 + 3)/010 = 9$
•	Slot index 9 is free so no collision
	and slot index 9 gets key = 4

10. setitem(94)

- Hash Function = (key + 5)% 10
- Slot index = (94 + 5)% 10 = 9
- Slot index 9 already has a key, so make a chain of keys and link it slot 9

13. setitem(17)

- Hash Function = (key + 5)% 10
- Slot index = (17 + 5)% 10 = 2
- Slot index 2 is free so no collision and slot index 2 gets key = 17

8. setitem(28)

- Hash Function = (key + 5)% 10
- Slot index = (28 + 5)% 10 = 3
- Slot index 3 is free so no collision and slot index 3 gets key = 28

0	5	
1	5 6	
2		
3	28	
4	79	
2 3 4 5 6	10	
6		
7		
7 8 9		
9	4	

11. delitem(4)

- Hash Function = (key + 5)% 10
- Slot index = (4 + 5)% 10 = 9
- Go to slot index 9 to see if key 4 exists over there or not. It does, so it successfully removes the key from that slot index

14. setitem(57)

- Hash Function = (key + 5)% 10
- Slot index = (57 + 5)% 10 = 2
- Slot index 2 already has a key, so make a chain of keys and link it slot 2

9. getitem(79)

- Hash Function = (key + 5)%10
- Slot index = (79 + 5)% 10 = 4
- Go to slot 4 to see if key = 79exists. It does, so returns True. Table doesn't change

12. delitem(4)

- Hash Function = (key + 5)%10
- Slot index = (4 + 5)% 10 = 9
- Go to slot index 9 to see if key 4 exists over there or not. It does not, as it was removed in step 11, so returns error message

15. setitem(58)

- Hash Function = (key + 5)% 10
- Slot index = (58 + 5)% 10 = 3
- Slot index 3 already has a key, so make a chain of keys and link it slot 3

- Hash Function = (key + 5)% 10
- Slot index = (4 + 5)% 10 = 9
- Go to slot index 9 to see if key 4 exists over there or not. It does not, so returns error message

- 17. setitem(16)
- Hash Function = (key + 5)% 10
- Slot index = (16 + 5)% 10 = 1
- Slot index 1 already has a key, so make a chain of keys and link it slot 1

18. setitem(1)

- Hash Function = (key + 5)% 10
- Slot index = (1 + 5)% 10 = 6
- Slot index 6 is free so no collision and slot index 6 gets key = 1

19. delitem(15)

- Hash Function = (key + 5)% 10
- Slot index = (15 + 5)% 10 = 0
- Go to slot index 0 to see if key 15
 exists over there or not. It does not,
 so returns error message. Table
 remains the same

20. setitem(13)

- Hash Function = (key + 5)% 10
- Slot index = (13 + 5)% 10 = 8
- Slot index 8 is free so no collision and slot index 8 gets key = 13

21. setitem(46)

- Hash Function = (key + 5)% 10
- Slot index = (46 + 5)% 10 = 1
- Slot index 1 already has chain of keys, so add this to the existing chain, and link it with slot 1

Final hash table with chained links looks like:

