Instructor

- Instructor: 이태진 (Tae-Jin Lee)
 - **★** Office: 1st Engineering Bldg. 23430B
 - * Tel: 031-290-7149
 - * Email: tjlee@skku.edu
 - * WWW: http://nesl.skku.ac.kr
 - * TA: 김경민 (Kyoung Min Kim), 최은진 (Eun-Jin Choi)
 - ➤ Office: Network System Lab (1st Engineering Bldg 23420)
 - > Tel: 031-290-7982
 - > Email: sisrla@skku.edu, ej.choi@skku.edu

Textbook

■ Text:

* "Data Communications and Networking," by B. Forouzan, McGraw Hill, 2013

Reference:

- * J. Kurose and K. W. Ross, "Computer Networking," Pearson, 2017
- * W. Stallings, "Data and Computer Communications," Prentice Hall, 2013

Course

Evaluation:

* Attendance: 10 %

* Assignment: 25 %

> HW + Term project

* Midterm exam: 30 %

* Final exam: 35 %

Objectives and Plan

Objectives

- (1) To discuss the fundamental concepts and technologies relating with the physical layer and data link layer of communication networks/systems
- (2) To learn the basic concepts and design principles on computer/communication networks

Plan

- ★ Introduction & Layers (Ch 1-2)
- ★ Physical Layer (Ch 3-8)
 - Digital/Analog Transmission, Multiplexing, Switching
- ★ Data Link Layer (Ch 9-13)
 - ➤ Error Detection/Correction, Media Access Control (MAC), Ethernet
 - Wireless LAN (WiFi) (Ch 14 Optional)

Vision of Communications/Networks

Anybody, Anywhere,

Anytime, Anything...

Source: proxim

Internet Appliances

Web-enabled toaster +

weather forecaster

IP picture frame

http://www.ceiva.com/

Tweet-a-watt:

monitor energy use

Slingbox: watch,

control cable TV remotely

Internet refrigerator

Internet phone

WiFi+NFC Bunny

Smart speaker

Internet

Protocol

communication protocol

protocols define

time

- Message format
- Order of msgs sent and received among network entities, and
- Actions taken on msg transmission, reception

Protocol Layering

- Layering
 - *Splits a complex system into pieces
 - Modularization
 - > Easy maintenance and update

Network Protocol Layers

- Application: supporting network applications
 - * HTTP, SMTP, FTP
- Transport: (guaranteed) transporting of application layer messages from source to destination process
 - * TCP, UDP
- Network: routing of datagrams from source to destination
 - * IP, routing protocols
- Data link: data(frame) transfer between neighboring network elements (links)
 - * Ethernet, PPP, Wireless LAN
- Physical: bits "on the wire"

Computer Networks

Data Communications

Transmission of Message

Data Communications vs. Computer Networks

- Data Communications
 - * Focuses on
 - ➤ Physical Layer
 - ➤ Data Link Layer

- Computer Networks
 - * Focuses on
 - ➤ Network Layer
 - > Transport Layer
 - ➤ Application Layer

- ★ Transmission media-dependent issues
- Network and above layers issues

- Closely related with each other!
- introduction to issues and concepts of data communication & networking
 - chapter 1 and 2

Part 1: Overview of Data Comm. and Networking

- introduction to issues and concepts of data communication & networking
- chapter 1 and 2

1.1 Data Communications

- Communication
 - **★Sharing information**: local or remote
 - ★Telecommunication: communication at a distance

(tele is Greek for far)

- Data
 - ★Information presented in whatever form
- Data comm.
 - *Exchange of data between two devices via some form of transmission medium such as a wire cable
- Effectiveness of a data communication system depends on four fundamental characteristics
 - **★ Delivery**: must deliver data to the correct destination
 - *Accuracy: must deliver data accurately
 - *Timeliness: must deliver data in a timely manner
 - *Jitter: variation in the packet arrival time, uneven delay in the delivery of audio or video packets

- Message: information (data) to be communicated
- 2. Sender: device that sends the data messages
- 3. Receiver: device that receives the data messages
- Transmission medium: physical transmission path between sender and receiver
- 5. Protocol
 - *A set of rules that govern data communications
 - *An agreement between the communicating devices

- 1.1.2 Data Representation: information today comes in different forms(1) Text
- Represented as a sequence of bits
- Different sets of bit patterns have been designed to represent text symbols *code
- Prevalent coding system
 - *Unicode
 - >32 bits for a symbol or character 📃
 - ➤ See Appendix A
 - Korean Character: 11,172 √ 가 (0xAC01, 44032) ~ 및 (0x D7A3, 55203)
 - Alphabet : 26

 √ A (0x0041, 65) ~ Z (0x005A, 90)
 - *ASCII(American Standard Code for Information Interchange)
 - ≥ 127 char in Unicode
 - ➤ Basic Latin

ASCII Code

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	`
1	01	Start of heading	33	21	!	65	41	A	97	61	a
2	02	Start of text	34	22	**	66	42	В	98	62	b
3	03	End of text	35	23	#	67	43	С	99	63	c
4	04	End of transmit	36	24	Ş	68	44	D	100	64	d
5	05	Enquiry	37	25	*	69	45	E	101	65	e
6	06	Acknowledge	38	26	ھ	70	46	F	102	66	f
7	07	Audible bell	39	27	1	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	Н	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	OA	Line feed	42	2A	*	74	4A	J	106	6A	j
11	OB	Vertical tab	43	2B	+	75	4B	K	107	6B	k
12	OC.	Form feed	44	2 C	,	76	4C	L	108	6C	1
13	OD	Carriage return	45	2 D	_	77	4D	M	109	6D	m
14	OE	Shift out	46	2 E		78	4E	N	110	6E	n
15	OF	Shift in	47	2 F	/	79	4F	0	111	6F	0
16	10	Data link escape	48	30	0	80	50	P	112	70	p
17	11	Device control 1	49	31	1	81	51	Q	113	71	q
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	ສ	115	73	s
20	14	Device control 4	52	34	4	84	54	Т	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	v	118	76	v
23	17	End trans, block	55	37	7	87	57	W	119	77	w
24	18	Cancel	56	38	8	88	58	X	120	78	x
25	19	End of medium	57	39	9	89	59	Y	121	79	У
26	1A	Substitution	58	ЗА	:	90	5A	Z	122	7A	z
27	1B	Escape	59	3 B	;	91	5B	[123	7B	{
28	1C	File separator	60	3 C	<	92	5C	١	124	7C	ı
29	1D	Group separator	61	ЗD	=	93	5D]	125	7D	}
30	1E	Record separator	62	3 E	>	94	5E	^	126	7E	~
31	1F	Unit separator	63	3 F	?	95	5F	_	127	7F	

ASCII Code

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
128	80		160	AO	á	192	CO	L	224	EO	_
129	81	Ç ü	161	A1	í	193	C1	_ _	225	E1	cx B
130	82	é	162	A2	ó	194	C2		226	E2	Г
131	83	â	163	A3	ú	195	C3	T -	227	E3	п
132	84	ä	164	A4	ñ	196	C4	Г	228	E4	Σ
133	85	à	165	A5	Ñ	197	C5	+	229	E5	0
134	86	å	166	A6	2	198	C6	<u>⊤</u> =	230	E6	μ
135	87	ç	167	A7	۰	199	C7	F ⊪	231	E7	τ
136	88	ê	168	A8	č	200	C8	II L	232	E8	ф
137	89	ë	169	A9	ر د	201	C9		233	E9	•
138	8A	è	170	AA	¬	202	CA	ᄩ	234	EA	Ω
139	8B	ĭ	171	AB	1-2	203	СВ		235	EB	<u></u> ح
140	8C	î	172	AC		204	CC	╬	236	EC	
141	8 D	ì	173	AD	ŞCII (Copes	CD	=	237	ED	ø
142	8 E	Ä	174	AE	«	206	CE	#	238	EE	ε
143	8 F	Å	175	AF	»	207	CF	"	239	EF	n
144	90	É	176	во		208	DO	ш	240	FO	=
145	91	æ	177	B1	******	209	D1	ᆕ	241	F 1	±
146	92	Æ	178	B2		210	D2	π	242	F2	_
147	93	ô	179	В3		211	DЗ	"L	243	FЗ	≤
148	94	ö	180	В4	i	212	D4	L	244	F4	ſ
149	95	ò	181	B5		213	D5	F	245	F5	j
150	96	û	182	В6	i i	214	D6	Г	246	F6	÷
151	97	ù	183	В7	 TI	215	D7	#	247	F7	*
152	98	ÿ	184	В8	7	216	D8	-	248	F8	
153	99	Ö	185	В9		217	D9	L	249	F9	-
154	9A	ΰ	186	BA	ii	218	DA	Г	250	FA	
155	9B	¢	187	вв	า ก	219	DB	Ė	251	FB	4
156	9C	£	188	вc	귀 	220	DC	_	252	FC	ъ.
157	9D	¥	189	BD	Ш	221	DD	Ī	253	FD	£
158	9E	R.	190	BE	Ŧ	222	DE	Ī	254	FE	-
159	9F	f	191	BF	٦	223	DF		255	FF	

(2) Numbers

- Are also represented by bit patterns
- Code such as ASCII is not used
 - *directly converted to a binary number to simplify mathematical operations
- See Appendix B

(3) Images

- Presented by bit patterns
- A matrix of pixels (picture elements)

- *Pixel: small dot, size of pixel depends on the resolution
- *Each pixel is assigned a bit pattern
 - ➤ Black and white: 1-bit pattern is enough
 - needs more bits to present multi levels of gray scale
 - ➤ Color images
 - RGB
 - √ pixel is decomposed into three primary colors: red, green, blue
 - √ intensity of each color is assigned a bit pattern (usually 8 bits)
 - YCM
 - √ color is made of a combination of yellow, cyan, and magenta

(4) Audio

- Representation of sound or music
 - **★** Continuous entity, not discrete
 - ★May be converted to digital

(5) Video

- Representation of picture or video
 - *****Continuous entity
 - ★May be converted to digital
- 1.1.3 Direction of Data Flow
- Communication between two devices
 - *Simplex
 - ➤ Communication is unidirectional like a one-way street
 - · Keyboard or monitor

- *Half-duplex
 - ➤ Bidirectional, but not at the same time like a one-lane road
 - walkie-talkies and CB (citizens band) radios

b. Half-duplex

- ➤ Both stations can transmit and receive simultaneously like a two-way street
- ➤ Signals going in either direction share the capacity of the link
 - telephone network

1.2 Networks

- Network
 - *Interconnection of a set of devices capable of communication
 - * Device can be
 - ➤ a host (computer, laptop, cellular phone etc.)
 - ➤ a connecting device (router, switch, modem)
 - *Devices are connected using wired or wireless media

- 1.2 Networks
- 1.2.1 Network Criteria
- A network must meet a certain number of criteria
 - *Performance
 - Can be measured in many ways
 - Transit time or response time
 - General measures: throughput and delay
 - > Depends on a number of factors
 - No. of users, type of transmission medium, capabilities of hardware and software
 - *Reliability
 - > Frequency of failure
 - Recovery time from a failure, network's robustness in a catastrophe
 - *Security
 - > Protecting data from unauthorized access or damage

- 1.2.2 Physical Structures
- (1) Type of Connection
- Link
 - *Physical communication pathway to transfer data from one device to another
 - ➤ Wired: copper wire, optical fiber
 - ➤ Wireless: microwave or satellite links
- Two types
 - *Point-to-point
 - **★**Multipoint (or multidrop)
- Point-to-Point
 - *PTP connection provides a dedicated link between two devices
 - *Entire capacity of the channel is reserved for two devices

Link

a. Point-to-point

- Multipoint (multidrop)
 - *More than two specific devices share a single link
 - ★Channel capacity is shared among the devices
 - ➤ Spatially shared
 - Several devices can use the link simultaneously
 - ➤ Time shared
 - Users must take turns

- (2) Physical Topology
- The way in which a network is laid out physically
- Geometric representation of the relationship of all the links and devices
 - **★**Usually called nodes

i) Mesh

- Every device has a dedicated point-to-point link to every other device
 - *'Dedicated'
 - The link carries traffic only between the two devices
 - *Need n(n-1)/2 links in a network with n devices
 - **★** Every device must have *n*−1 input/output ports
- Advantages
 - *Each connection can carry its own data
 - *Robust

- F
- Single failure does not incapacitate the entire system
- *Privacy, security
 - ➤ Messages travel along a dedicated line
- *Easy fault identification and fault isolation
- Disadvantages
 - * Difficult to install and reconfigure
 - **★Bulk of the wiring**
 - **★Expensive** connection cost
- Usually implemented in a limited fashion
 - **★**Ex: network of telephone regional offices

- i) Mesh (Cont.)
- Figure 1.4 A fully connected mesh topology (five devices)

- ii) Star
- F
- F
- Each device has a dedicated PTP link only to a central controller
 - *A hub or a switch
 - *Controller acts as an exchange
- Characteristics
 - *Less expensive than a mesh
 - *Easy to install and reconfigure
 - *Robust
 - ➤ If one link fails, only that link is affected
 - ➤ But, depends on one single point of failure, hub/switch
 - ★More cabling is required than in some other topologies (bus/ring)
- Figure 1.5 A star topology connecting four stations

iii) Bus

- Multipoint configuration
 - ⋆One long cable acts as a backbone to link all devices
- Because of signal attenuation, there is a limit on
 - ★The number of taps a bus can support
 - ★The distance between the taps
- Characteristics
 - **★**Ease of installation
 - **★Uses less cabling than mesh/star topologies**
 - *Difficult to reconfigure
 - ➤ Designed to be optimally efficient at installation
 - *Fault in the bus cable stops all transmission
- Figure 1.6 A bus topology connecting three stations

iv) Ring

- Each device has a dedicated point-to-point line only with the two devices on either side of it
 - *Signal is passed along the ring in one direction, from device to device
 - *Each device incorporates a repeater
- Characteristics
 - *Relatively easy to install and reconfigure
 - ★ Media and traffic constraint
 - **★**Fault isolation is simplified (alarm)
 - ★Break in a simple ring can disable the entire network Dual ring
- Figure 1.7 A ring topology connecting six stations

cf. Hybrid

■ Hybrid topology: a star backbone with three bus networks

1.3 Network Types

- We use a few criteria such as
 - *Size, geographical coverage, and ownership
- 1.3.1 Local Area Network (LAN)
 - *Usually privately owned and connects some hosts in a single office, building, or campus
 - ➤ Can be as simple as two PCs and a printer in someone's home office
 - Or can extend throughout a company and include audio and video devices
 - *Each host in a LAN has an identifier, an address
 - ➤ That uniquely defines the host in the LAN
 - >A packet sent by a host to another host carries both
 - The source host's address and
 - The destination host's address

1.3.1 LAN (cont.)

- *In the past, all hosts in a network were connected through a common cable
- *Today, most LANs use a smart connecting switch
- *Figure 1.8 An isolated LAN in the past and today

a. LAN with a common cable (past)

b. LAN with a switch (today)

1.3.2 Wide Area Network (WAN)

- Also a connection of devices capable of communication
- Has a wider geographical span, spanning a town, a state, a country, or even the world
- Interconnects connecting devices
 - **★**Such as switches, routers, or modems
- Normally created and run by communication companies and leased by an organization that uses it
- Two distinct examples of WANs today
 - *Point-to-point WANs
 - **★Switched WANs**

1.3.2 WAN (cont.)

(1) Point-to-Point WAN

A network that connects two communicating devices through a transmission media

(2) Switched WAN

A combination of several point-to-point WANs that are connected by switches

1.3.2 WAN (cont.)

(3) Internetwork (internet)

- When two or more networks are connected, they become an internet, or internetwork
- Figure 1.11 An internetwork made of two LANs and one point-to-point WAN

Figure 1.12
 A heterogeneous network
 made of WANs and LANs

1.3.3 Switching

- An internet is a switched network in which a switch connects at least two links together
- A switch needs to forward data from a network to another network when required
- Two most common types of switched networks
 - **★**Circuit-switched networks
 - *Packet-switched networks

(1) Circuit–Switched Network

- A dedicated connection, a circuit, is always available between the two end systems
- Very common in telephone networks in the past
 - *Part of the telephone network today is a packet-switched network
- Figure 1.13 A circuit-switched network

*Four voice communications can be supported at the same time

- 1.3.3 Switching (cont.)
- (2) Packet-Switched Network
- In computer network, the communication between the two ends is done in blocks of data called packets
- Instead of continuous communication between two telephone sets in circuit—switched networks,
 - *Data packets are individually exchanged between the two computers
- Each router has both store and forwarding functions
 - *A packet is an independent entity that can be stored and sent later
- In general, a packet-switched network is more efficient than a circuit-switched network
 - *But, packets may experience some delays 📃
- Figure 1.14 A packet-switched network

1.3.4 The Internet

- An internet (note the lowercase i)
 - ⋆Two or more networks that can communicate with each other
- The Internet (uppercase I)
 - **★Worldwide network**
- Figure 1.15 The Internet Today
 - *Backbone
 - *Provider network
 - *Customer network
 - *Peering point
 - ★Internet service provider (ISP)

1.3.5 Accessing the Internet

- The Internet today is an internetwork that allows any user to become part of it
- The user, however, needs to be physically connected to an ISP

(1) Using Telephone Networks

- *Dial-up service
 - ➤ Be very slow and cannot be used for telephone (voice) connection
- **★** Digital subscriber line (DSL) service
 - ➤ Provides higher speed Internet services to residences and small offices
 - ➤ Allows the line to be used simultaneously for voice and data

(2) Using Cable Networks

*Provides a higher speed connection, but the speed varies depending on the number of neighbors that use the same cable

(3) Using Wireless Networks

*With the growing wireless WAN access, a household or a small business can be connected to the Internet through a wireless WAN

(4) Direct Connection to the Internet

- *A large organization or a large corporation can become a local ISP
 - ▶ leases a high-speed WAN from a carrier provider and connects itself to a regional ISP

- 1.4 Internet History
- 1.4.1 Early History
- Before 1960, there were some communication networks, such as telegraph and telephone networks
- (1) Birth of Packet-Switched Networks
 - *In 1961 at MIT, Leonard Kleinrock firstly presented the theory of packet switching for burst traffic
 - *At the same time, Paul Baran at Rand Institute and Donald Davies at National Physical Lab. in England, published some papers about packet—switched net
- (2) Advanced Research Projects Agency Network (ARPANET)
 - *In the mid-1960s
 - ➤ ARPA(Advanced Research Projects Agency) in the DoD(Department of Defense) was interested in finding a way to connect computers
 - So that the researchers they funded could share their findings
 - *In 1967
 - > ARPA presented ARPANET, a small network of connected computers
 - ➤ Use IMP(Interface Message Processor) as a switching node
 - **★By 1969**
 - >A network connecting 4 nodes was constructed

1.4.2 Birth of the Internet

(1) TCP/IP

- *In 1973, Vint Cerf and Bob Kahn
 - ➤ Proposed transmission control protocol (TCP) which later to be split into two protocols: TCP and Internet protocol (IP)
- **★In Oct. 1977**
 - ➤ An internet consisting of three different networks was successfully demonstrated
- *In 1981
 - ➤ UC Berkeley modified the UNIX operating system to include TCP/IP
- *In 1983
 - ➤ Instead of ARPANET protocols, TCP/IP became the official protocol for the ARPANET

(2) MILNET

- **★In 1983, ARPANET split into two networks**
 - ➤ Military network (MILNET) for military users
 - ➤ ARPANET for non-military users

1.4.2 Birth of the Internet (cont.)

(3) CSNET

- *In 1981
 - ➤ Computer Science Network (CSNET) sponsored by the National Science Foundation (NSF) was created
- *By the mid-1980s
 - ➤ Most U.S. universities with computer departments were part of CSNET

(4) NSFNET

- *In 1986
 - With the success of CSNET, the NSFNET as a backbone was constructed
 - Connect five super computer centers located throughout the U.S.
 - Access to the backbone with a 1.544 Mbps data rate
- ★In 1990, NSFNET replaced ARPANET
- *In 1995
 - ➤ NSFNET reverted back to its original concept of a research network

(5) ANSNET

*In 1991, a nonprofit organization Advanced Network & Services (ANS) built a new, high-speed backbone Advanced Network Services Network (ANSNET)

1.4.3 Internet Today

■ What has made the Internet so popular is the invention of new applications

(1) World Wide Web

★The 1990s saw the explosion of Internet applications due to the World Wide Web (WWW) invented at CERN by Tim Berners-Lee

(2) Multimedia

- *Multimedia applications such as
 - ➤ voice over IP (telephony), voice over IP (Skype)
 - ▶ view sharing (YouTube), and
 - ➤TV over IP (PPLive)
 - ➤ Video on demand (Netflix)
- *Have increased the number of users and the amount of time each user spends on the network

(3) Peer-to-Peer Applications

★Be a new area of communication with a lot of potential

1.5 Standards and Administration

1.5.1 Internet Standards

- A specification begins as an Internet draft
- An Internet draft is a working document (a work in progress) with no official status and a six-month lifetime
- Upon recommendation from the Internet authorities, a draft may be published as a Request for Comment (RFC)

(1) Maturity Levels

- A RFC falls into one of six maturity levels
 - *proposed standard, draft standard, Internet standard, historic, experimental, and informational

1.5.1 Internet Standards (cont.)

(2) Requirement Levels

- RFCs are classified into five requirement levels
 - *Required, recommended, elective, limited use, and not recommended
 - > Required
 - Must be implemented by all Internet systems to achieve minimum conformance

```
\sqrt{19} IP & ICMP (Chap. 19)
```

> Recommended

- Is not required for min conformance
- It is recommended because of its usefulness

```
√ FTP and TELNET (Ch. 26)
```

> Elective

- Is not required and not recommended
- A system can use it for its own benefit

≻Limited Use

- Should be used only in limited situations
- Most of the experimental RFCs fall under this category

➤ Not Recommended

- Inappropriate for general use
- Normally a historic (deprecated) RFC may fall under this category

1.5.2 Internet Administration

- Various groups that coordinate Internet issues have guided this growth and development
- Appendix G gives the addresses, e-mail addresses, and telephone numbers for some of these groups
- Figure 1.17 Internet administration.

- **★Internet Society (ISOC)**
- **★Internet Architecture Board (IAB)**
- ★Internet Engineering Task Force (IETF)
- ★Internet Research Task Force (IRTF)

1.5.2 Internet Administration (cont.)

- Internet Society (ISOC)
 - *An international, nonprofit organization formed in 1992 to provide support for the Internet standards process
- Internet Architecture Board (IAB)
 - **★**Technical advisor to the ISOC
- Internet Engineering Task Force (IETF)
 - *A forum of working groups managed by the Internet Engineering Steering Group (IESG)
 - *Responsible for identifying operational problems and proposing solutions to these problems
- Internet Research Task Force (IRTF)
 - *A forum of working groups managed by the Internet Research Steering Group (IRSG)
 - *Focuses on long-term research topics related to Internet protocols, applications, architecture, and technology