Introducción al aprendizaje automático y Datasets

Módulo Aprendizaje Máquina (automático)

TC3006C

What is learning?

- Ability to
 - use percepts from the outside world
 - not only for reacting,
 - but for **improving actions** in future events.
- Implies that we know when and how to use this new knowledge.
 - When: pattern detected
 - How: algorithm created.

What is machine learning?

• Example:

- Imagine a supermarket chain with a hundred of stores selling groceries to millions of customers.
- Each sale has a lot of data that can be analyzed and converted into information.
- These information can be used to give people suggestions when buying.
- If we knew who would buy an item, we would just write code for the computer to remind them.
- Because we do not know, we collect data and hope to extract enough information to recommend articles to people.

What is machine learning?

• Example:

- In RoboCup agents play soccer.
- There are 11 players against 11 players.
- Each team has its own strategy for playing soccer.
- If we knew which strategy a team is using, we would play a counter-attack strategy to stop them.
- Because we do not know their strategy, we collect data and try to extract enough information to detect their strategies.
- Once strategies are detected and classified, we could select the best strategy to exploit this knowledge.

What is ML? ...

- The computer algorithm should be able to:
 - Identify patterns in the data (When)
 - Construct a good and useful approximation of the solution to the problem (How)

What is ML? ...

- "Machine learning uses data and answers to discover rules behind a problem" Chollet (2017)
- "Machine learning is programming computers to optimize a performance criterion using example data or past experience."

 Alpaydin, E. (2004)
- Has a model defined for some parameters.
 - Learning is the execution of a computer program to optimize the parameters of the model using training data or past experience.
- Two types of models:
 - Predictive model: predictions in the future.
 - Descriptive model: gain knowledge from data.

What is ML? ...

- "A computer program is said to **learn** from experience *E* with respect to some class of tasks *T* and performance measure *P*, if its performance at tasks in *T*, as measured by *P*, improves with experience *E*." Mitchell, T. (1997)
- Example: handwriting recognition
 - Task *T*: recognizing and classifying handwritten words within images.
 - Performance measure P: percent of words correctly classified
 - Training experience *E*: a database of handwritten words with given classifications

Learning Agent

Learning agents

Feedback

- Components can be learned from appropriate feedback.
 - Example: training Tae Kwon Do, Driving a Taxi.
- Type of feedback:
 - The most important factor in determining the nature of the learning problem.
 - Three cases:
 - 1. Supervised learning
 - 2. Unsupervised learning
 - 3. Reinforcement learning

Supervised Learning

- Learning a function from examples of its inputs and outputs.
 - There is an input X, an output Y, and the task is to learn mapping from input to output.
- Outputs values can be provided
 - By a supervisor someone feed the output.
 - By the environment detected by sensors.
- Examples:
 - Learn a condition-action rule for punching.
 - Learn to differentiate between a dog and a cat.

Supervised Learning

Classification

- Output y is one of a finite set of values
 - Example of sets:
 - · Red, blue, yellow, green
 - Hot, mild, cold
- If set has only two elements is called Boolean (Binary) Classification

Regression

- Output y is a number
 - Examples:
 - Temperature
 - Velocity
- Consistent hypothesis: function h agrees with all the data

12

Regression

2022AD - juresti@tec.mx https://miro.medium.com/max/3200/1*ASYpFfDh7XnreU-ygqXonw.png

Unsupervised learning

- Learning patterns in the input when **no specific output** values are supplied.
- Aim: to find regularities in the input.
- There are two main categories of algorithms:
 - Clustering
 - Discover inherent grouping in data
 - Association
 - Discover rules that describe large portions of data
- Example:
 - Learn to separate colors.
 - Learn when it might rain.
 - Learn how to detect people that will not pay their credit cards.

Semisupervised learning

- Mix between supervised and unsupervised learning
- Some data is labelled usually a very small part
- Labelled data is used to create more data
- Learner learns to:
 - Generate labelled data and to
 - Detect regularities in the input

Reinforcement learning

- The output of the system is a sequence of actions.
- Uses rewards to guide the sequence of actions
- These actions are part of a **policy**.
 - A single action is not important.
 - The policy is what must be learned.
- Agent must learn from reinforcement which actions are best, i.e., the policy.
- Examples:
 - Playing chess.
 - Driving politely.
 - Robot navigation.

Representation of the learned information

- Polynomials
- Propositional logic
- Predicate calculus
- Bayesian networks
- Neural networks
- Etc.

Applications of machine learning

- Learning associations
 - Learn how people associate elements (ex. buying groceries)
- Classification
 - Learn to classify elements in different categories
- Prediction
 - Learn to predict if some action will happen
- Pattern recognition
 - Learn to find familiar patterns (characters, faces, objects, etc.)

- Knowledge extraction
 - Learning a rule from data it explains the data
 - Rules are a form of data compression
- Outlier detection
 - Data that does not belong to a class
- Regression problems
 - Learn the curve that best fits a function to a set of points

ML is multidisciplinary

- Artificial Intelligence
- Bayesian methods
- Computational complexity theory
- Control theory
- Information theory
- Philosophy
- Psychology and neurobiology
- Statistics

Designing a learning system

ML Process

Data Preparation

- Data Wrangling
 - Data might be in different files
 - Cleaning, structuring, enriching raw data
 - Assure quality and useful data
- Data Cleansing
 - Missing values (delete?)
 - Unwanted characters
 - Unwanted elements

- Data Preparation
 - Analysis and optimization of features
 - Select/remove features
 - Consider prediction needs and computation time

https://miro.medium.com/max/666/o*ScsuON73dMJDC9XO.png

Complete data science pipeline

https://developer.ibm.com/articles/ba-intro-data-science-1/

Representing data

Text

Feature representation List of words showing their frequency count

Feature	Count
Subject	1
Material	2
Del	2
Curso	2
From	1

Subject: Material del curso

From: "Jorge Adolfo Ramírez Uresti" <juresti@tec.mx>

To: "Miguel González Mendoza" <mgonza@tec.mx>

Content-Type: multipart/alternative; boundary="000000000000272e505e4cc0f55"

--0000000000000272e505e4cc0f55

Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable

Hola Miguel:

Tan solo un breve mensaje para comentarte que estoy haciendo el material del curso.

Seguimos en contacto,

Jorge

Image

Feature representation

Matrix of color values

Image form Heidari, Shahrokh & Pourarian, Mohammad Rasoul & Gheibi, Reza & Naseri, Mosayeb & Houshmand, Monireh. (2017). Quantum red-green-blue image steganography. International Journal of Quantum Information. 15. 1750039. 10.1142/S0219749917500393.

Objects

Feature representation Set of attribute values

Feature	Value
Color	Black
Legs	4
Tail	Yes
Length	2.4 mts

Representing Data

How to build a dataset

Structured Data

ML models learn from examples

Each example is called an **instance** or pattern

Dataset is formed with multiple examples

Structured Data is organized in rows and columns

A column is called a **feature**

Images, videos and text are called Unstructured Data

https://machine learning mastery.com/wp-content/uploads/2013/12/Table-of-Data-Showing-an-Instance-Feature-and-Train-Test-Datasets.png

Dataset organization and division

Training set is usually 80% of original set

Test set is usually 20%

Validation set is usually 20% of training set

https://miro.medium.com/max/585/o*lbveKaL-MGRgppD8.png

Epoch, batch & iteration

- When data is too big and we can't pass all data to computer at once.
- One Epoch is when an entire dataset is passed forward and backward through the learning model only once.
- Batch size: divide dataset into number of batches or sets or parts.
- Iterations is the number of batches needed to complete one epoch.
- The number of batches is equal to number of iterations for one epoch.

All training samples

https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9

Example datasets

Datasets

- Dataset for regression
 - Iris Data Set
 - https://archive.ics.uci.edu/ml /datasets/iris
- Dataset for classification
 - Wine Data Set
 - https://archive.ics.uci.edu/ml /datasets/wine

Repositories

- UC Irvin <u>https://archive.ics.uci.edu/ml/index.php</u>
- Data set from https://index.okfn.org/place/
- UN http://data.un.org/
- World bank <u>https://data.worldbank.org/</u>

Exploring a dataset

Using pandas

Example code

Class Exercise

- Go into one of the repositories links
- Download a dataset
- Open it in a plain text editor (notepad, nano, pico, etc...) and locate the instances, the features/attributes, the values of the attributes, the labels/classes.
- Now load it into pandas in your own notebook

References

- Alpaydin, Ethem (2004). *Introduction to Machine Learning*. The MIT Press.
- Mitchell, Tom (1997). *Machine Learning*. WCB McGraw-Hill.
- Edwards, Gavin (2018). *Machine Learning, an introduction*. Towards Data Science (https://towardsdatascience.com/machine-learning-an-introduction-23b84d51e6do)