Københavns Universitet. Økonomisk Institut

1. årsprøve 2015 V-1B ex ret

Skriftlig eksamen i Matematik B

Torsdag den 8. januar 2015

Rettevejledning

Opgave 1. For ethvert tal $\alpha \in \mathbf{R}$ betragter vi 3×3 matricen

$$A(\alpha) = \begin{pmatrix} \alpha & 1 & 1 \\ 0 & 2\alpha & 1 \\ 0 & 0 & \alpha \end{pmatrix}.$$

(1) Udregn determinanten for matricen $A(\alpha)$, og bestem de $\alpha \in \mathbf{R}$, for hvilke $A(\alpha)$ er regulær.

Løsning. Vi ser, at det $A(\alpha) = 2\alpha^3$, og da en matrix er regulær, når og kun når determinanten er forskellig fra 0, er $A(\alpha)$ regulær, netop når $\alpha \neq 0$.

(2) Bestem – for ethvert $\alpha \in \mathbf{R}$ – de karakteristiske rødder for matricen $A(\alpha)$, og angiv de tilhørende rodmultipliciteter.

Løsning. Det karakteristiske polynomium P(t) for matricen $A(\alpha)$ er givet ved udtrykket

$$P(t) = \det (A(\alpha) - tE) = (\alpha - t)^{2} (2\alpha - t).$$

Hvis $\alpha = 0$, er der kun en karakteristisk rod, nemlig t = 0, som har rodmultipliciteten rm(0) = 3.

Hvis $\alpha \neq 0$, er der to karakteristiske rødder, nemlig $t = \alpha$, der har rodmultipliciteten $\operatorname{rm}(\alpha) = 2$, og $t = 2\alpha$, der har rodmultipliciteten $\operatorname{rm}(2\alpha) = 1$.

(3) Bestem – for ethvert $\alpha \in \mathbf{R}$ – egenværdierne og egenrummene for matricen $A(\alpha)$. Angiv desuden de tilhørende egenværdimultipliciteter.

Løsning. Hvis $\alpha = 0$, har matricen A(0) kun egenværdien 0. Vi ser, at egenrummet er

$$V(0) = N(A(0)) = \text{span}\{(1,0,0)\},\$$

og at egenværdimultipliciteten er em(0) = 1.

Hvis $\alpha \neq 0$, er der to egenværdier, nemlig α og 2α . Vi finder, at

$$A(\alpha) - \alpha E = \begin{pmatrix} 0 & 1 & 1 \\ 0 & \alpha & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

som reduceres til

$$\left(\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 0 & 1 - \alpha \\ 0 & 0 & 0 \end{array}\right).$$

Hvis $\alpha = 1$, får vi, at

$$V(1) = N(A(1) - E) = \operatorname{span}\{(1, 0, 0), (0, -1, 1)\},\$$

og så er egenværdimultipliciteten em(1) = 2.

Hvis $\alpha \notin \{0,1\}$, kan $A(\alpha) - \alpha E$ reduceres til echelonmatricen

$$\left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right),\,$$

 ${så}$

$$V(\alpha) = N(A(\alpha) - \alpha E) = \operatorname{span}\{(1, 0, 0)\}.$$

Vi ser desuden, at egenværdimultipliciteten er $em(\alpha) = 1$.

Vi undersøger nu situationen for egenværdien 2α . Idet $\alpha \neq 0$, får vi, at

$$A(\alpha) - 2\alpha E = \begin{pmatrix} -\alpha & 1 & 1\\ 0 & 0 & 1\\ 0 & 0 & -\alpha \end{pmatrix},$$

som reduceres til echelonmatricen

$$\left(\begin{array}{ccc} 1 & -\frac{1}{\alpha} & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{array}\right),$$

så

$$V(2\alpha) = N(A(\alpha) - 2\alpha E) = \operatorname{span}\left\{\left(\frac{1}{\alpha}, 1, 0\right)\right\}.$$

Vi ser, at egenværdimultipliciteten er $em(2\alpha) = 1$.

Opgave 2. Vi betragter den funktion $f: \mathbb{R}^2 \to \mathbb{R}$, som er givet ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = -2x^2 + x - 2y - y^2.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

Løsning. Vi får, at

$$\frac{\partial f}{\partial x}(x,y) = -4x + 1$$
 og $\frac{\partial f}{\partial y}(x,y) = -2 - 2y$.

(2) Bestem eventuelle stationære punkter for funktionen f.

Funktionen f har de ene stationære punkt $\left(\frac{1}{4}, -1\right)$.

(3) Bestem Hessematricen f''(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

Vis dernæst, at f er strengt konkav overalt på definitionsmængden \mathbf{R}^2 .

Løsning. Vi ser, at funktionen f har Hessematricen

$$f''(x,y) = \begin{pmatrix} -4 & 0\\ 0 & -2 \end{pmatrix},$$

som klart er negativ definit, og dermed er f strengt konkav.

(4) Bestem værdimængden for funktionen f.

Løsning. Det stationære punkt er et globalt maksimumspunkt for f, og vi finder, at $f\left(\frac{1}{4},-1\right)=\frac{9}{8}=1\frac{1}{8}$.

Vi ser også, at $f(0,y) \to -\infty$ for $y \to \infty$, og dermed ser vi, at funktionen f har værdimængden $R(f) = \left] - \infty, 1\frac{1}{8} \right]$.

(5) Vis, at funktionen $\psi: \mathbf{R}^2 \to \mathbf{R}$, som er defineret ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : \psi(x,y) = \exp\left(-f(x,y)\right),\,$$

er kvasikonveks.

Løsning. Da f er strengt konkav, er g = -f strengt konveks, og da eksponentialfunktionen exp er voksende, er funktioen ψ kvasikonveks.

For ethvert v > 0 betragter vi herefter den kompakte mængde

$$K(v) = \{(x, y) \in \mathbf{R}^2 \mid 0 \le x \le v \land 0 \le y \le 1\}.$$

(6) Bestem integralet

$$I(v) = \int_{K(v)} f(x, y) d(x, y)$$

for et vilkårligt v > 0.

Løsning. Vi får, at I(v) =

$$\int_0^v \left(\int_0^1 (-2x^2 + x - 2y - y^2) \, dy \right) dx = \int_0^v \left[-2x^2 y + xy - y^2 - \frac{1}{3} y^3 \right]_0^1 dx = \int_0^1 \left(-2x^2 + x - \frac{4}{3} \right) dx = \left[-\frac{2}{3} x^3 + \frac{1}{2} x^2 - \frac{4}{3} x \right]_0^v = -\frac{2}{3} v^3 + \frac{1}{2} v^2 - \frac{4}{3} v.$$

(7) Bestem grænseværdien

$$\lim_{v \to 0+} \left(\frac{I(v)}{\tan(2v)} \right).$$

Løsning. Vi kan benytte L'Hôpitals regel, og vi får så, at

$$\lim_{v \to 0+} \left(\frac{I(v)}{\tan(2v)} \right) = \lim_{v \to 0+} \left(\frac{-2v^2 + v - \frac{4}{3}}{2(1 + \tan^2(2v))} \right) = -\frac{2}{3}.$$

Opgave 3. Vi betragter differentialligningen

(*)
$$\frac{dx}{dt} + \left(\frac{t}{\sqrt{1+t^2}}\right)x = \left(\cos t\right)e^{\sin t - \sqrt{1+t^2}}.$$

(1) Bestem den fuldstændige løsning til differentialligningen (*).

Løsning. Idet

$$\int \frac{t}{\sqrt{1+t^2}} dt = \int \frac{1}{2\sqrt{1+t^2}} d(1+t^2) = \sqrt{1+t^2} + k, \text{ hvor } k \in \mathbf{R},$$

får vi – ved at benytte "panserformlen" – at

$$x = Ce^{-\sqrt{1+t^2}} + e^{-\sqrt{1+t^2}} \int e^{\sqrt{1+t^2}} e^{\sin t - \sqrt{1+t^2}} \cos(t) dt =$$

$$Ce^{-\sqrt{1+t^2}} + e^{-\sqrt{1+t^2}} \int e^{\sin t} d(\sin t) = Ce^{-\sqrt{1+t^2}} + e^{-\sqrt{1+t^2}} e^{\sin t},$$

hvor $C \in \mathbf{R}$.

(2) Godtgør, at det for enhver maksimal løsning x=x(t) til (*) gælder, at

$$x(t) \to 0 \text{ for } t \to \pm \infty.$$

Løsning. Dette er klart, thi $e^{\sin t}$ er begrænset, og

$$e^{-\sqrt{1+t^2}} \to 0$$
 for $t \to \pm \infty$.

(3) Bestem differentialkvotienten

$$\frac{dx}{dt}(0)$$

for en enhver maksimal løsning til differentialligningen (*).

Løsning. Vi ser, at

$$\frac{dx}{dt}(0) = \frac{1}{e}.$$

Opgave 4. Vi betragter den funktion $f:]-1, \infty[\to \mathbf{R}$, som er givet ved forskriften

$$\forall x > -1 : f(x) = \ln(x+1) + x^2 e^{2x}.$$

(1) Bestem de afledede f' og f'' af første og anden orden for funktionen f.

Løsning. Man har, at

$$f'(x) = \frac{1}{x+1} + 2xe^{2x} + 2x^2e^{2x}$$

og

$$f''(x) = -\frac{1}{(x+1)^2} + 2e^{2x} + 8xe^{2x} + 4x^2e^{2x}.$$

(2) Bestem Taylorpolynomiet P_2 af anden orden for funktionen f ud fra punktet $x_0 = 0$.

Løsning. Vi har, at

$$P_2(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 = x + \frac{x^2}{2}.$$

(3) Udregn det ubestemte integral

$$\int f(x) \, dx,$$

idet x > -1.

Løsning. Vi får, at

$$\int f(x) dx = (x+1)\ln(x+1) - (x+1) + x^2 \cdot \frac{1}{2}e^{2x} - \int xe^{2x} dx = (x+1)\ln(x+1) - (x+1) + \frac{x^2}{2}e^{2x} - \frac{x}{2}e^{2x} + \frac{1}{4}e^{2x} + k = (x+1)\ln(x+1) - (x+1) + \frac{1}{4}(2x^2 - 2x + 1)e^{2x} + k,$$

hvor $k \in \mathbf{R}$.