M 431: Assignment 5

Nathan Stouffer

Grade school cosets

Problem. Fix $n \in \mathbb{N}$ and consider $H := n\mathbb{Z} := \{nk \mid k \in \mathbb{Z}\}$, which is clearly a subgroup of $G := \mathbb{Z}$ (with the +). Briefly describe the coset decomposition of G. Crayon it for n = 4.

Proof. A coset of $H:=n\mathbb{Z}$ is $jH:=\{j+nk\mid k\in\mathbb{Z}\}$ for an element $j\in G$. We first claim that there is a unique coset for any $0\leq j< n$. To prove this, pick any $j,j'\in\{0,1,2,...,n-1\}\subset\mathbb{N}$. We show that if $jH\cap j'H\neq\emptyset$ then we must have j=j', which is equivalent to showing that each j has a unique coset. Suppose we have $jH\cap j'H\neq\emptyset$, then there exists some $m\in jH,j'H$. That is, m=j+nk=j'+nk' for some $k,k'\in\mathbb{Z}$. From this, we can say that j-j'=n(k'-k) which is to say that $n\mid j-j'$. But we know j,j' to differ by at most n-1 (since $j,j'\in\{0,1,...,n-1\}$). So we must have j=j' to satisfy $n\mid j-j'$. Then there is a unique coset for every $0\leq j< n$.

Now we show that for any $\overline{j} \in \mathbb{Z} \setminus \{0,1,...,n-1\}$, $\overline{j}H = jH$ for some $0 \leq j < n$. This will prove that we have identified all the cosets in the previous paragraph. Suppose we have $\overline{j} \in \mathbb{Z} \setminus \{0,1,...,n-1\}$, then $\overline{j}H = \{\overline{j} + n\overline{k} \mid \overline{k} \in \mathbb{Z}\}$. But we can write \overline{j} as j + nk for some $k \in \mathbb{Z}$ (by quotient remainder theorem if we really need to get into it!) so then $\{\overline{j} + n\overline{k} \mid \overline{k} \in \mathbb{Z}\} = \{j + nk + n\overline{k} \mid k, \overline{k} \in \mathbb{Z}\} = \{j + n(k + \overline{k}) \mid k, \overline{k} \in \mathbb{Z}\} = jH$ for some $0 \leq j < n$. Therefore, for any $\overline{j} \notin \{0,1,...,n-1\} \subset \mathbb{Z} =: G$ actually has a coset equal to the coset of some $j \in \{0,1,...,n-1\}$. Thus, we have identified all the cosets.

Here is the crayon depiction of the cosets of $4\mathbb{Z}$.

Figure 1: Depicting the cosets of $4\mathbb{Z}$

Alternating group

Problem. Let A_5 stand for all the permutations in S_5 that can be written as a composition of an even number of 2-cycles. You can take for granted that A_5 is a subgroup of S_5 . Find all possible orders of elements of A_5 .

Proof. First recall that any map $f \in S_5$ can be decomposed into a union of disjoint cycles with length less than or equal to 5. Also note that the order of an element $f \in A_5$ is the smallest natural number m to satisfy $f^m = id$. We claim that members of $A_5 \le S_5$ are exactly those maps in S_5 which are the union of odd cycle lengths. First we show that there exist maps in A_5 with odd cycle lengths 1, 2, 3 and 5. Since $A_5 \le S_5$, we know $id \in A_5$ which contains cycles of length 1. All of $(12)(23), (12)(34), (12)(23)(34)(45) \in A_5$ for they are a composition of an even number of transpositions. To see verification that (12)(23), (12)(23)(34)(45) reduce to cycles lengths of 3 and 5 respectively, see Figure 2. The map (12)(34) is already simplified as the union of two disjoint 2-cycles.

Figure 2: Showing the existence of odd cycle lengths in A_5

We now argue that now maps with a cycle length of 4 cannot appear in A_5 . Suppose we have a map $f \in S_5$ such that f contains a 4-cycle. Then the cycle can be represented as $(a_1a_2a_3a_4)=(a_1a_2a_3)(a_3a_4)=(a_1a_2)(a_2a_3)(a_3a_4)$ The composition of an odd number of transpotions. Indeed, no other decomposition exsts that preserves equality so $f \notin A_4$.

Therefore, the possible orders of elements in A_5 are 1, 2, 3, 5, and 6. We gain 1, 2, 3, and 5 from our examples and 6 by the map which is a composition of a 2 and 3 cycles (evenness will be preserved since even + even is even).

Page 64 — Problem 16

Problem. If G is a finite abelian group and $a_1, a_2, ..., a_n$ are all its elemnts, show that $x = a_1 a_2 \cdots a_n$ must satisfy $x^2 = e$.

Proof. Sorry for the lack of rigor on this problem, I'm rushing to get stuff done today. For this problem, we begin with $x=a_1a_2\cdots a_n$ and wonder what the value of $x^2=a_1a_2\cdots a_na_1a_2\cdots a_n$ is. Since G is abelian, we can rearrange $a_1a_2\cdots a_na_1a_2\cdots a_n$ so that each element a_i is next to its inverse a_i^{-1} in G. By the inverse property of a group we have $x^2=e^n=e$, which was the goal.

Page 64 — Problem 15

Problem. If p is prime, show that the only solutions of $x^2 \equiv 1 \mod p$ are $x \equiv 1 \mod p$ or $x \equiv -1 \mod p$.

Proof. Consider two cases: p=2 and p>2. Let's begin with p=2; we wish to solve $x^2\equiv 1 \mod 2$. Note that $1\equiv -1 \mod 2$ so we only need to show one equivalence. The only options for x are numbers congruent to 0 or 1 mod 2. Certainly $0^2\equiv 0 \mod 2$ is not congruent to 1 mod 2. But $1^2=1$ is clearly congruent to 1 mod 2.

Let's now consider the case where p>2. We want to find x such that $x^2\equiv 1 \mod p \iff p\mid (x^2-1)=(x-1)(x+1)$. But since p>2 we have the equivalent statement that $p\mid (x-1)$ or $p\mid (x+1)$. This is exactly $x\equiv 1 \mod p$ or $x\equiv -1 \mod p$, so the statement is proved.

Page 65 — Problem 18

Problem. Using the results from previous problems, prove that if p is an odd prime number than $(p-1)! \equiv -1 \mod p$.

Proof. Take the finite, abelian group $U_p:=\{k\in\mathbb{Z}_p\mid (k,p)=1\}$ with multiplication modulo p (discussed in lecture). Since p is prime $U_p=\{1,2,\ldots p-1\}$. By problem 16, the product of every element in U_p squared must be the identity element. For our group U_p this means $(p-1)!^2\equiv 1\mod p$. But then problem 15 tells us that we must have one of $(p-1)!\equiv 1\mod p$, $(p-1)!\equiv 1\mod p$.

It remains to be shown that we must have only $(p-1)! \equiv -1 \mod p$ but I struggled to prove this. I leave it to be marked off.