§5. Расстояние от точки до прямой на плоскости

Пусть на плоскости введена прямоугольная декартова система координат и заданы прямая

Рис. 5.1. К понятию расстояния от точки $M_{\,0\,}$ до прямой L

L: Ax + By + C = 0, (5.1)

а также точка $M_0(x_0, y_0)$, не принадлежащая L.

Расстоянием d от точки M_0 до прямой L называется, как известно, длина отрезка M_0N , где $N(x_1,y_1)$ — проекция точки M_0 на прямую L (рис. 5.1). Из определения проекции вектора на ось следует, что $d=|\operatorname{пp}_{\vec{n}}\overrightarrow{NM_0}|$, где $\vec{n}(A,B)$ — вектор нормали к L. Так как $\operatorname{пp}_{\vec{n}}\overrightarrow{NM_0}=\frac{\vec{n}\cdot\overline{NM_0}}{|\vec{n}|}$, а

$$\overrightarrow{NM}_0 = (x_0 - x_1, y_0 - y_1)$$
, то $d = \frac{|\overrightarrow{n} \cdot \overrightarrow{NM}_0|}{|\overrightarrow{n}|} = \frac{|A(x_0 - x_1) + B(y_0 - y_1)|}{\sqrt{A^2 + B^2}}$ или
$$d = \frac{|Ax_0 + By_0 - (Ax_1 + By_1)|}{\sqrt{A^2 + B^2}}.$$
 (5.2)

Точка $N(x_1, y_1)$ принадлежит L, поэтому её координаты удовлетворяют уравнению (5.1), значит $Ax_1 + By_1 + C = 0$, отсюда имеем $Ax_1 + By_1 = -C$. Подставляя это равенство в (5.2), получим:

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}. (5.3)$$

Пример 5.1. Найти длину стороны квадрата, если одна из его сторон расположена на прямой L: y = -x + 3, а одна из вершин находится в точке A(3, 6).

► Точка A не принадлежит прямой L, ибо её координаты не удовлетворяют уравнению L. Рис. 5.2. К примеру 5.1 Длина стороны квадрата равна расстоянию d от точки A до прямой L (рис. 5.2). Преобразовав уравнение L к виду: x + y - 3 = 0, найдём это расстояние по формуле (5.1): $d = \frac{|3 + 6 - 3|}{\sqrt{1^2 + 1^2}} = \frac{6}{\sqrt{2}} = 3\sqrt{2}$.