Image registration

Acknowledgements

- The slides in this talk are based on the following sources:
 - Image Registration and Fusion. Professor Michael Brady, Department of Engineering Science, Oxford University.
 - Image Registration. John Ashburner, Functional Imaging Laboratory, UCL.
 - Image Registration: A Review. Xenios Papademetris, Department of Diagnostic Radiology, Yale School of Medicine.
 - Medical Image Registration. Eren Turgay, University of Kentucky.

Image registration

- Geometric (and Photometric) alignment of one image with another
- Implemented as the process of estimating an optimal transformation between two images.
- Sometimes also known as "Spatial Normalization" (SPM)
- Images may be of same or different types (MR, CT, visible, fluorescence, ...)

Examples of image registration

- Aligning an image taken prior to an operation, to help plan the procedure, with one taken during the operation (for example to avoid use of a stereotactic frame)
- Aligning an image taken now with one taken on a previous occasion (monitor the progression of disease, discover the fact of a disease)
- Aligning two images of different sorts of the same patient (data fusion)

Examples of image registration

- · Aligning the images from two different patients;
- Aligning the images of a subject to an atlas, or, constructing such an atlas from the images of several subjects;
- Aligning the images of patients and aligning those of normals to develop a statistical model of variation associated with a disease;
- Aligning the images from many thousands of subjects around the world as part of a clinical/drug trial

One of the images is taken prior to the operation, in order to plan it; the second while the patient is having the operation: the 6 white dots are the stereotactic frame screwed into the patient's skull.

In this case, a rigid transform suffices

Components of registration

• The registration problem can be formulated as:

$$T = \arg\min\sum_{i} sim(I(\mathbf{x}_k), J(T(\mathbf{x}_k)) \downarrow)$$

- What entities do we match? Features, intensities, ...
- What class of transforms? Rigid, affine, spline warps, ...
- What similarity criterion to use? Normalised cross-correlation,
- What search algorithm to find the minimum T?
- What interpolation method to use? Bilinear, spline, ...

Reference and target datasets

- Feature images (e.g. edge images)
- Landmarks / control points
- Raw intensities
- Combinations of the above

Feature matching

- · Finds the best match between a set of features, such as surfaces and corners
- · Features are extracted in a preprocessing step that may or may not be automated
- · Common features are assumed to have spatial locality

Image intensities

Simplest similarity criterion: conservation of intensity

$$\sum_{i,j} p_{i,j} (i-j)^2$$

This works well in the simplest case; but it is relatively ineffective, even if there is a functional dependence between intensities: as there often is in medical images of differ

Same anatomy but left is T_1 weighted, right is T_2 weighted

Image intensities Image histogram the histogram is the (discrete approximation to the) probability that a pixel has intensity i: $p_i = \frac{1}{N} \left| \left\{ k : I(\mathbf{x}_k) = i \right\} \right|$

Feature types Feature Spaces and Their Attributes RAW INTENSITY - most information BDGES - intrinsic structure, less sensitive to noise Edges [Nack 77] Contours [Medioni 84] Surfaces [Felizzari 8] Surfaces [Felizzari 8] Foints of locally maximum curvature on contour lines [Kanal 81] Centers of windows having locally maximum variances [Moravec 81] Centers of gravity of closed boundary regions [Coshtasby 86] Line intersections [Stockman 82] Found descriptons [Kuhl 82] SYATISTICAL FEATURES - use of all information, good for rigid transformations, assumptions concerning spatial scattering Moment invariants [Coshtasby 85] Centroid/principal axes [Rosenfeld 82] HIGHER LEVEL FEATURES - uses relations and other higher level information, good for inexact and local matching Structural features: graphs of subspattern configurations [Mohr 90] Syntactic features: graphs of subspattern configurations [Mohr 90] Syntactic features: graphs of subspattern patterns [Bunke 90] Semantic networks: scene regions and their relations [Faugeras 81] MATCHING AGAINST MODELS - accurate intrinsic structure, noise in one image only Anatomic atlas [Dann 89] Geographic map [Maitre 87] Object model [Terzopoulos 87] Feature types

Transformation Model · Piecewise affine · Non-rigid or elastic

Rigid

Rigid Transformation Model

- Used for within-subject registration when there is no distortion
- Composed of 3 rotations and 3 translations
- Linear can be represented as a 4x4 matrix

2D Rigid Transforms Translations by t_x and t_y $- x_1 = x_0 + t_x$ $- y_1 = y_0 + t_v$ Rotation around the origin by Θ radians $- x_1 = \cos(\Theta) x_0 + \sin(\Theta) y_0$ $- y_1 = -\sin(\Theta) x_0 + \cos(\Theta) y_0$ Zooms by s_x and s_y $- x_1 = s_x x_0$ $-y_1 = s_y y_0$

3D Rigid-body Transformations

- · A 3D rigid body transform is defined by:
 - 3 translations in X, Y & Z directions
 - 3 rotations about X, Y & Z axes
- · The order of the operations matters

```
\sin\Omega 0 0
                  cos⊕ sin⊕ 0
 1 0 Ytrans
                                          0 0
                                                    -sinO cosO O O
                                                     0
                                                            0
                                  -sin⊖
                                       0 cos⊕ 0
                                                                   0
                  -\sin\Phi \cos\Phi 0
                                                            0
                                                                0 1
Translations
                    Pitch
                                        Roll
                                                           Yaw
                                                       about z axis
                 about x axis
                                   about y axis
```

Affine Transformation Model

- Used for within-subject registration when there is global gross-overall distortion
- More typically used as a crude approximation to fully nonrigid transformation.
- Composed of 3 rotation, 3 translations, 3 stretches and 3 shears.
- Also a linear transformation can be represented as a 4x4 matrix

2D Affine Transforms

- Translations by t_x and t_y
 - $x_1 = x_0 + t_x$
 - $y_1 = y_0 + t_v$
- Rotation around the origin by Θ radians
 - $x_1 = \cos(\Theta) x_0 + \sin(\Theta) y_0$
 - $y_1 = -\sin(\Theta) x_0 + \cos(\Theta) y_0$
- Zooms by s_x and s_y
 - $x_1 = s_x x_0$
 - $y_1 = s_y y_0$

*Shear *x₁ = x₀ + h y₀ *y₁ = y₀

Piecewise Affine Transformation Model

- Simple extension to fully non-rigid transformation
 - Typically use different affine transformation for different parts of the image
- Strictly speaking non-linear

Non-rigid (elastic) transformation model

- Needed for inter-subject registration and distortion correction
- Non-linear i.e. no matrix representation
- · Many different parameterizations e.g.
 - Spline parameterizations (b-splines, thin-plate splines)
 - General diffeomorphisms (e.g. fluid models)
 - Truncated basis function expansion methods (Fourier parameterizations)

Spline warps

- Original image is modeled as a thin sheet subjected to a double bending
- · Selected points (landmarks) are independently displaced
- Displacements have both x and y components, so 2 independent warps are computed
- A smoothness criterion is used to minimize the bending energy required based on a physical model

Elastic models

- Model the original image as an elastic body acted upon by two types of forces
- · External forces drive deformation
- · Internal forces provide constraints

Viscous fluid model

- Problem: elastic deformations do not allow for severe localized extremes
- Solution: model the image as a viscous fluid whose internal forces relax as the image deforms over time
- Risk: increased possibility of mis-registration

Non-linear registration examples

Similarity Metrics

- · Feature-based Methods
 - Distance between corresponding points
 - Similarity metric between feature values
 - Similar curvature, etc
- See also http://www.cs.princeton.edu/~bjbrown/iccv05_course/iccv05_icp_gr.pdf

Similarity metrics (objective functions)

- · Intensity-based Methods
 - Mean Squared Difference
 - Only valid for same modality with properly normalized intensities
 - Joint histogram Wood's metric
 - Mutual Information
 - More general metric which maximizes the clustering of the joint histogram.
 - Normalized Cross-Correlation
 - Allows for linear relationship between the intensities of the two images

Mutual Information

 Algorithms for maximising mutual information (between intensities) have been the most popular for medical image registration to date.

$$MI(I, J | T) = \sum_{i,j} p_{i,j} \log \frac{p_{i,j}}{p_i p_j}$$

Mutual Information

- Used for between-modality registration
- Derived from joint histograms
- Related to entropy

Correlation Based Techniques

Given a two images T & I, 2D normalized correlation function measures the similarity for each translation in an image patch

$$C(u,v) = \frac{\sum_{x} \sum_{y} T(x,y) I(x-u, y-v)}{\sqrt{\sum_{x} \sum_{y} I^{2}(x-u, y-v)}}$$

Correlation must be normalized to avoid contributions from local image intensities.

Correlation Theorem

 Fourier transform of the correlation of two images is the product of the Fourier transform of one image and the complex conjugate of the Fourier transform of the other.

Fourier Transform Based Methods

- · Phase-Correlation
- · Cross power spectrum
- · Power cepstrum

All Fourier based methods are very efficient, only only work in cases of rigid transformation

Similarity Metrics

Similarity Metric	Advantages
Normalized cross-correlation function	accurate for white noise but not tolerant of
[Rosenfeld 82]	local distortions, sharp peak in correlation
	space difficult to find
Correlation coefficient[Svedlow 76]	similar to above but has absolute measure
Statistical correlation and matched fil-	if noise can be modeled
ters[Pratt 78]	
Phase-correlation [De Castro 87]	tolerant of frequency dependent noise
Sum of absolute differences of intensity	efficient computation, good for finding
[Barnea 72]	matches with no local distortions
Sum of absolute differences of contours	can be efficiently computed using "cham-
[Barrow 77]	fer" matching, more robust against local
	distortions - not as sharply peaked
Contour/surface differences[Pelizzari 89]	for structural registration
Number of sign changes in pointwise inten-	good for dissimilar images
sity difference [Venot 89]	
Higher-level metrics: structural matching:	optimizes match based on features or rela-
tree and graph distances [Mohr 90], syn-	tions of interest
tactic matching: automata [Bunke 90]	

Optimisation

- Optimisation involves finding some "best" parameters according to an "objective function", which is either minimised or maximised
- The "objective function" is often related to a probability based on some model

Optimization Methods

- · Gradient Descent
- · Conjugate Gradient Descent
- · Multi-resolution search
- Deterministic Annealing

These topics will be covered in more details in the Data Analysis module (CS2)

Transformation

• Images are re-sampled. An example in 2D:

for $y_0=1...n_{y_0}$ % loop over rows $for \ x_0=1...n_{x_0} \ \% \ loop \ over \ pixels \ in \ row$ $x_1=t_x(X_0,y_0,\mathbf{q}) \ \% \ transform \ according \ to \ \mathbf{q}$ $y_1=t_y(X_0,y_0,\mathbf{q})$ if $1\le x_1\le n_{x_1} \ \& \ 1\le y_1\le n_{y_1}$ then % voxel in range $f_1(x_0,y_0)=f_0(x_1,y_1) \ \% \ assign \ re-sampled \ value$ end % voxel in range end % loop over pixels in row end % loop over rows

• What happens if x_1 and y_1 are not integers?

Hierarchical strategies

- · 'Coarse to fine', general to specific
- · Increasing complexity
 - Data
 - Warp
 - Algorithm/model

Multiresolution

- Most of the optimization methods are applied in a multiresolution scheme. The following is typical:
 - The registration is first run at a crude resolution e.g. the images are first resampled to 6x6x6 mm
 - The results are used to initialize a second stage where the images are resampled at 3x3x3 mm
 - The process is repeated once more with the images resampled to 1.5x1.5x1.5 mm

Non-rigid registration

Looks plausible; but how could you be sure?

Are you prepared to risk your software against getting sued?

SUMMARY: Components of the image registration process

- Reference and target datasets
- Transformation model
- · Similarity Criterion
- · Optimization Method
- · Interpolation method

References

- Friston et al. Spatial registration and normal Human Brain Mapping 3:165-189 (1995).
- Human Brain Mapping 3:165-189 (1995).

 Collignon et al. Automated multi-modality image registration based on information theory. IPMI'95 pp 263-274 (1995).

 Ashburner et al. Incorporating prior knowledge into image registration.

 Neurolmage 6:344-352 (1997).

 Ashburner & Friston. Nonlinear spatial normalisation using basis functions.

 Human Brain Mapping 7:254-266 (1999).

 Thévenaz et al. Interpolation revisited.

 IEEE Trans. Med. Imaging 19:739-758 (2000).

 Andersson et al. Modeling geometric deformations in EPI time series.

 Neuroimage 13:903-919 (2001).