2. zápočtový test (45 minut)

Úvod do praktické fyziky NOFY055

Příklad 1

Zadání:

V tabulce jsou uvedeny výsledky měření periody kmitů matematického kyvadla. Pro větší přesnost byla vždy změřena doba 10 kmitů $10\,T$.

n	10T (s)
1	17.8
2	18.1
3	18.0
4	17.8
5	17.9
6	17.8
7	18.0
8	18.1
9	17.9
10	17.7

- (a) Vypočítejte odhad očekávané hodnoty μ_T a odchylky σ periody T.
- (b) Jaký typ neurčitosti je vypočítaná odchylka σ (typ A nebo B)?
- (c) Přesnost měření času (standardní odchylku) odhadujeme jako $0.05~\mathrm{s}$. Jaká je velikost dodatečné chyby, kterou je zatížená perioda T?
- (d) Jaký typ neurčitosti je tato dodatečná chyba (typ A nebo B)?
- (e) Vypočítejte celkovou neurčitost σ_C měření periody T.
- (f) Vypočítejte chybu odhadu μ_T očekávané hodnoty periody T.
- (g) Zapište výsledek měření ve správném tvaru.

(10 bodů)

Řešení:

(a) V prvním kroku je potřeba vydělit všechny naměřené hodnoty $10\,T$ deseti. Odhad očekávané hodnoty μ_T vypočítáme jako aritmetický průměr naměřených period T_n .

$$\mu_T = \bar{T} = \frac{1}{10} \sum_{n=1}^{10} T_n = 1.791 \text{ s}$$

Odchylku 1 měření periody vypočítáme jako nepředpojatý odhad standardní odchylky.

$$\sigma_A = \sqrt{\frac{1}{9} \sum_{n=1}^{10} (T_n - \bar{T})^2} = 0.014 \text{ s}$$

- (b) Odchylka σ_A má původ v náhodných jevech a je tedy neurčitostí typu A.
- (c) Čas, tj. 10 period kmitů, měříme standardně s přesností 0.1 s. Odhad $\sigma=0.05$ s je polovinou této přesnosti. Každá hodnota periody T je tudíž zatížena dodatečnou chybou $\sigma_B=0.005$ s, která je 10krát nižší než v případě měření 10 period kmitů.
- (d) Odchylka σ_B je dána odhadem přesnosti měřicí metody a je tedy neurčitostí typu B.
- (e) Celková neurčitost měření periody T je dána odmocninou ze součtu kvadrátů neurčitostí typu A a B.

$$\sigma_C = \sqrt{\sigma_A^2 + \sigma_B^2} = 0.015 \text{ s}$$

(f) Každou hodnotu T_n tedy známe s chybou σ_C . Chyba odhadu očekávané hodnoty je dána chybou aritmetického průměru.

$$\sigma_{\bar{T}} = \frac{\sigma_C}{\sqrt{10}} = 0.005$$

(g) Výsledek měření periody zapíšeme ve správném tvaru jako $T=(1.791\pm0.005)~\mathrm{s}.$

Příklad 2

Zadání:

Arrheniovskou závislost difúzního koeficientu na teplotě D(T) jsme nafitovali pomocí vztahu:

 $D = \nu_0 \exp\left(-\frac{Q}{kT}\right),\,$

kde $k=1.38\times 10^{-23}JK^{-1}$ je Boltzmannova konstanta.

Výsledkem fitu jsou parametry:

$$\nu_0 = 120.5 \times 10^9 \ {\rm cm^2 \ s^{-1}}$$
a $Q = 6.033 \times 10^{-20} \ {\rm J}$

s chybami
$$\sigma_{\nu_0}=33.9\times 10^9~\rm cm^2~s^{-1}$$
 a $\sigma_Q=0.320\times 10^{-20}~\rm J$

a kovariancí parametrů ν_0 a Qrovnou $\mathrm{cov}(\nu_0,Q) = -1.068 \times 10^{-10}~\mathrm{J~cm^2~s^{-1}}.$

Vypočítejte difúzní koeficient pro teplotu $T_x = 600 \text{ K}$ (očekávanou hodnotu a chybu) a zapište výsledek ve správném tvaru.

(5 bodů)

Řešení:

Spočítejme hodnotu difúzního koeficientu D pro teplotu $T_x=600~\mathrm{K}.$

$$D = \nu_0 \exp\left(-\frac{Q}{kT_x}\right) = 0.083 \times 10^9 \text{ cm}^2 \text{ s}^{-1}$$

Chybu σ_D určíme pomocí metody přenosu chyb s uvážením, že parametry ν_0 a Q nejsou nezávislé, a tudíž mají nenulovou kovarianci.

$$\sigma_D^2 = \left(\frac{\partial D}{\partial \nu_0} \sigma_{\nu_0}\right)^2 + \left(\frac{\partial D}{\partial Q} \sigma_Q\right)^2 + 2\operatorname{cov}(\nu_0, Q) \left(\frac{\partial D}{\partial \nu_0}\right) \left(\frac{\partial D}{\partial Q}\right)$$

$$\sigma_D^2 = \left[\exp\left(-\frac{Q}{kT_x}\right) \sigma_{\nu_0}\right]^2 + \left[\nu_0 \exp\left(-\frac{Q}{kT_x}\right) \frac{-\sigma_Q}{kT_x}\right]^2$$

$$+ 2\operatorname{cov}(\nu_0, Q) \exp\left(-\frac{Q}{kT_x}\right) \nu_0 \exp\left(-\frac{Q}{kT_x}\right) \frac{-\sigma_Q}{kT_x}$$

$$\sigma_D = \sqrt{\left(\frac{D}{\nu_0} \sigma_{\nu_0}\right)^2 + \left(D\frac{\sigma_Q}{kT_x}\right)^2 - 2\operatorname{cov}(\nu_0, Q) \frac{D^2}{\nu_0} \frac{\sigma_Q}{kT_x}} = 0.055 \times 10^9 \text{ cm}^2 \text{ s}^{-1}$$

Výsledek zapíšeme ve správném tvaru jako $D = (0.08 \pm 0.05 \times 10^9 \text{ cm}^2 \text{ s}^{-1}.$