Beginning Activities for Section 4.2

Mathematical Reasoning: Writing and Proof, Version 3

Beginning Activity 1 (Exploring a Proposition about Factorials)

Notice how the numerical examples calculated in part 1 are used to explore the open sentence " $n! > 2^n$."

1.								
	n	1	2	3	4	5	6	7
	2 ⁿ	2	4	8	16	32	64	128
	n!	1	2	6	24	120	720	5040

- **2.** P(1), P(2), P(3) are false. P(4), P(5), P(6), P(7) are true.
- **3.** Based on the evidence so far, the following proposition appears to be true: For each natural number n with $n \ge 4$, $2^n > n!$.
- **4.** Since (k+1)! is the product of the first k+1 natural numbers, we can think of this as the product of the first k natural numbers times (k+1). This means that (k+1)! is equal to (k+1) times k!.
- **5.** If we multiply both sides of the inequality (k + 1) > 2 by 2^k , we obtain

$$(k+1)2^k > 2 \cdot 2^k$$

 $(k+1)2^k > 2^{k+1}$

6. We have

$$(k+1) \cdot k! > (k+1)2^k$$
 (1)

and from part (5),

$$(k+1)2^k > 2^{k+1} (2)$$

Inequalities (1) and (2) then imply that $(k+1) \cdot k! > 2^{k+1}$ or that $(k+1)! > 2^{k+1}$.

If the argument (and algebra) in parts 4 through 6 are hard to understand, first try to follow along with a specific example such as k = 5. We know that $5! > 2^5$. Although it is possible to do the calculation to show that $6! > 2^6$, pretend we cannot do this and use this numerical example to illustrate the algebraic argument. We would have

$$5! > 2^{5}$$
 $6 \cdot 5! > 6 \cdot 2^{5}$
 $6! > 6 \cdot 2^{5}$
(1)

In addition, 6 > 2 and so

$$6 \cdot 2^5 > 2 \cdot 2^5$$

 $6 \cdot 2^5 > 2^6$ (2)

So using inequalities (1) and (2), we see that $6! > 2^6$.

Beginning Activities for Section 4.2

Mathematical Reasoning: Writing and Proof, Version 3

Beginning Activity 2 (Prime Factors of a Natural Number)

2.
$$20 = 2^2 \cdot 5$$
 $40 = 2 \cdot 20$ $50 = 2 \cdot 5^2$ $150 = 3 \cdot 50$ $40 = 2(2^2 \cdot 5)$ $150 = 3(2 \cdot 5^2)$ $150 = 2 \cdot 3 \cdot 5^2$

- **4.** A natural number n is a composite number provided that there exists a natural number d such that d divides n and $d \ne 1$ and $d \ne n$. This means that there exists a natural number m such that $n = m \cdot d$, 1 < d < n, and 1 < m < n.
- 5. In this section, we will see how to use induction to prove that any composite number can be written as a product of primes. The idea will be to factor a composite number as $n = m \cdot d$, where 1 < d < n, and 1 < m < n. We will then use induction to conclude that m and d can be factored as a product of primes. (This was illustrated in Part (2).) We will need the Second Principle of Mathematical Induction, which is introduced in this section.

