In Pursuit | M. Sc. Quantum Science and Technology

About Me

- 1. INTERESTED in understanding the interplay of quantum dynamical processes across various timescales
- 2. ENJOY delving into the theoretical underpinnings of a problem and exploring systems computationally
- 3. INTEND to pursue the development of theoretical and numerical tools in quantum optics and many-body physics

Education History		
Post-Graduate	Technical University of Munich	Oct 2022 - Present
GPA 1.5/5.0 Max. 1.0	M. Sc. Quantum Science and Technology	
Undergraduate	Birla Institute of Technology and Science, Pilani	Aug 2017 - Aug 2021
GPA 8.65/10.0	B.E. Chemical Engg. Minor : Physics	
Higher Secondary	FIITJEE Junior College, Kukatpally, Hyderabad	Apr 2015 - Aug 2017
Percentage : 96.5 $\%$	Grades XI & XII	
Senior Secondary	Delhi Public School, Nacharam, Hyderabad	Mar 2013 - Mar 2015
GPA: 10.0/10.0	Grades IX & X	

Academic Research

Master's Thesis Apr. 2024 - Present

Prof. Frank Pollmann | Technical University of Munich

Numerically studying measurement-induced entanglement transitions, in random quantum circuits of varying local Hilbert-space dimensions, to understand the transition universality and distill a classical analogue of the transition.

Undergraduate Thesis Jan. 2021 - June 2021

Prof. Jeremy Richardson | ETH Zürich

Gauged the efficacy of a spin-mapping-based semiclassical dynamics technique by a Python-based numerical study of the population and coherence dynamics of exciton relaxation in a 1D polymer chain. Formulated a spin-mapping dynamics algorithm for tight-binding polymer chains which conform to SU(2) symmetry.

Work Experience

Student Assistant | HiWi May. 2024 - Present

 $Quantum\ Computing\ and\ Technologies\ Dept.\ |\ Leibniz\ Supercomputing\ Centre\ (LRZ),\ Munich$

Benchmarking C++ and Python-based quantum simulation programs using the QAOA algorithm to solve the Max-Cut problem. Facilitating the integration of the quantum simulation programs into LRZ's HPC infrastructure.

Student Assistant | HiWi Apr. 2023 - Sept. 2023

Prof. Peter Rabl | Walther Meißner Institute, Munich

Compared various numerical integration approaches in stochastic Master equation simulations of a dissipative cascading quantum network, to facilitate simulations of larger system sizes.

Remote Research Assistant Oct. 2021 - Oct. 2022

Dr. Aaron Kelly | Max Planck Institute for the Structure and Dynamics of Matter, Hamburg

Benchmarked a semiclassical mapping-based dynamics method (spin-PLDM) by modelling the interactions between a two-level atomic subsystem and a cavity-modified field.

Remote Research Internship

July 2021 - Sept. 2021

Homepage: https://aamodatre.github.io

Prof. Pengfei Huo | University of Rochester, New York

Numerically compared the performance of standard and spin-based partially linearized density matrix (PLDM) algorithms in calculating linear absorption spectra of a bi-exciton coupled dimer model.

Research Internship May 2019 - July 2019

Prof. Bibek Dash | CSIR Institute of Minerals and Materials Technolgy, India

DFT-based computational designing of triazole-based molecular precursors for selective CO_2 capture. Statistically determined the optimum functional-basis combination to model the CO_2 -triazole interactions with DFT. Studied CO_2 interactions with the aromatic building blocks to propose a new triazole moiety design.

Technical Skills			Languages
Programming	Softwa	re Packages	English (Native/Bilingual)
Python	MATLAB	LAMMPS	German (B1)
C++	Maple	Quantum Espresso	French (Elementary)
Julia/C (Elementary)	Mathematica	Gaussian 09	Marathi Hindi (Native)

C+	lardized	T
Stand	lardized	LOSTS

GRE General Test: 335/340 Quant: 168/170 Verbal: 167/170 Analytical Writing: 5/6	Aug. 2021
TOEFL : 115/120 Reading: 30/30 Listening: 30/30 Speaking: 25/30 Writing: 29/30	Sept. 2021

Undergraduate Teaching Experience		
Teaching Assistant Dr. S. D. Manjare Process Design Principles - I	Aug. 2020 - Dec. 2020	
Teaching Assistant Dr. Radhika Vathsan Quantum Mechanics - II	Aug. 2020 - Dec. 2020	

Featured Undergraduate Projects

Designing Lithium-based metal organic frameworks for hydrogen production

Jan. 2020 - June 2021

Design Project | Dr. Paramita Haldar

Ab initio computational study of graphene-based Li-MOFs, employing density functional theory implementation in Quantum Espresso for electronic structure calculations & reactive molecular dynamics within LAMMPS framework to study hydrogen evolution amongst proposed models.

Study of cavity QED formalism and modern quantum control techniques Study Project | Dr. Raghunath Ratabole

Aug. 2020 - Dec. 2020

Literature survey of modern qubit implementations, entangled state preparation and quantum gate implementations in molecule-coupled cavity systems. Study of field quantization, cavity QED formalism and the applications of Jaynes-Cummings model.

Modelling kinetics of photo-catalytic reactions involved in waste-water treatment Study Project | Dr. Sharad Sontakke

Aug. 2019 - Dec. 2019

Modelled TiO_2 -based photocatalytic degradation of phenol and extraction of Cr and Cu ions with MATLAB. Optimizated TiO_2 catalyst concentration and reaction rates for varying contamination levels.

Study of metal-organic frameworks as tools for adsorptive CO_2 capture $Study\ Project\ |\ Dr.\ Richa\ Singhal$

Jan. 2019 - May. 2019

Literature review of thermodynamic and electronic properties of MOFs. Studied the methodologies and developments in the field of CO_2 capture, focusing on MOFs.

Extracurricular Activitie	es	
Quantum Computing	 Cleared Quantum Open Source Foundation (QOSF) cohort 4 assesment task 	Sept. 2021
	· Completed IBM Quantum's Global Summer School	June 2020, July 2022
Social Groups	Member - Offerings Dept. : PushQuantum	Nov. 2023 - Present
	· Core Member : Kala - Fine Arts Club	Mar. 2018 - May 2020
Hobbies	· Long distance running, and hiking in the Bavarian Alps.	
	· Avid reader of fiction and non fiction literature	

Last Updated November 16, 2024 | Munich, Germany 80939