## Text processing

Words and Corpus, text tokenization, stemming, lemmatizing, PoS and NE

Information Retrieval

#### IR and NLP

- Text / natural language is everywhere
  - News, emails, clinical reports, finance reports, ...
- Extracting information from documents is challenging
- Understanding user information needs
- Computing an answer for the user information need

## Natural language parsing

- 1. Word tokenization and sentence delimitation
- 2. Part of speech tagging
- 3. Word sense disambiguation

Terms weighting, Vector space models, language models, word embeddings

4. Named entities

Linking and relation

5. Subjective attributes

Sentiment, emotion, sarcasm, politeness, ...



# Basic Text Processing Words and Corpora

## How many words in a sentence?

- "I do uh main- mainly business data processing"
  - Fragments, filled pauses
- "Seuss's cat in the hat is different from other cats!"
  - Lemma: same stem, part of speech, rough word sense
    - cat and cats = same lemma
  - Wordform: the full inflected surface form
    - cat and cats = different wordforms

## How many words in a sentence?

they lay back on the San Francisco grass and looked at the stars and their

- Type: an element of the vocabulary.
- Token: an instance of that type in running text.
- How many?
  - 15 tokens (or 14)
  - 13 types (or 12) (or 11?)

## How many words in a corpus?

**N** = number of tokens

 $\it V$  = vocabulary = set of types,  $\it |V|$  is size of vocabulary Heaps Law = Herdan's Law =  $\it |V| = kN^{\beta}$  where often .67 <  $\it \beta$  < .75 i.e., vocabulary size grows with > square root of the number of word tokens

|                                 | Tokens = N  | Types =  V  |
|---------------------------------|-------------|-------------|
| Switchboard phone conversations | 2.4 million | 20 thousand |
| Shakespeare                     | 884,000     | 31 thousand |
| COCA                            | 440 million | 2 million   |
| Google N-grams                  | 1 trillion  | 13+ million |

## Corpora

Words don't appear out of nowhere!

A text is produced by

- a specific writer(s),
- at a specific time,
- in a specific variety,
- of a specific language,
- for a specific function.

### Corpora variations

- Language: 7097 languages in the world
- Variety, like African American Language varieties.
  - AAE Twitter posts might include forms like "iont" (I don't)
- Code switching, e.g., Spanish/English, Hindi/English:

```
S/E: Por primera vez veo a @username actually being hateful! It was beautiful:)

[For the first time I get to see @username actually being hateful! it was beautiful:)]
```

```
H/E: dost tha or ra- hega ... dont wory ... but dherya rakhe
["he was and will remain a friend ... don't worry ... but have faith"]
```

- Genre: newswire, fiction, scientific articles, Wikipedia
- Author Demographics: writer's age, gender, ethnicity, SES

## Basic Text Processing Word tokenization

#### Text Normalization

- Every NLP task requires text normalization:
  - 1. Tokenizing (segmenting) words
  - 2. Normalizing word formats
  - 3. Segmenting sentences

### Space-based tokenization

- A very simple way to tokenize
  - For languages that use space characters between words
    - Arabic, Cyrillic, Greek, Latin, etc., based writing systems
  - Segment off a token between instances of spaces
- Unix tools for space-based tokenization
  - The "tr" command
  - Inspired by Ken Church's UNIX for Poets
  - Given a text file, output the word tokens and their frequencies

## Simple Tokenization in UNIX

- (Inspired by Ken Church's UNIX for Poets.)
- Given a text file, output the word tokens and their frequencies

```
Change all non-alpha to newlines
tr -sc 'A-Za-z' '\n' < shakes.txt
        sort
                    Sort in alphabetical order
      | uniq -c
                      Merge and count each type
1945 A
 72 AARON
 19 ABBESS
                     25 Aaron
  5 ABBOT
                      6 Abate
                      1 Abates
                      5 Abbess
                      6 Abbey
                      3 Abbot.
```

#### Scikit-learn Tokenization

```
from sklearn.feature extraction.text import CountVectorizer
corpus = [
     'This is the first document.',
     'This document is the second document.',
     'And this is the third one.',
     'Is this the first document?',
my stop words = {'is', 'the'}
# UNIGRAMS
vectorizer = CountVectorizer(ngram range=(1,1), analyzer='word', stop words = None)
#vectorizer = CountVectorizer(ngram range=(1,1), analyzer='word', stop words = 'english')
#vectorizer = CountVectorizer(ngram range=(1,1), analyzer='word', stop words = my stop words)
# UNIGRAMS and BIGRAMS
#vectorizer = CountVectorizer(ngram range=(1,2), analyzer='word')
# Character GRAMS
#vectorizer = CountVectorizer(ngram range=(3,4), analyzer='char')
X = vectorizer.fit_transform(corpus)
print(vectorizer.get feature names())
print(X.todense())
```

#### Issues in Tokenization

- Can't just blindly remove punctuation:
  - m.p.h., Ph.D., AT&T, cap'n
  - prices (\$45.55)
  - dates (01/02/06)
  - URLs (http://www.stanford.edu)
  - hashtags (#nlproc)
  - email addresses (someone@cs.colorado.edu)
- Clitic: a word that doesn't stand on its own
  - "are" in we're, French "je" in j'ai, "le" in l'honneur
- When should multiword expressions (MWE) be words?
  - New York, rock 'n' roll

Basic Text Processing

Data-driven Word Tokenization (BPE)

## Another option for text tokenization

#### Instead of

- white-space segmentation
- single-character segmentation

Use the data to tell us how to tokenize.

**Subword tokenization** (because tokens can be parts of words as well as whole words)

#### Subword tokenization

- Three common algorithms:
  - Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
  - Unigram language modeling tokenization (Kudo, 2018)
  - WordPiece (Schuster and Nakajima, 2012)
- All have 2 parts:
  - A token **learner** that takes a raw training corpus and induces a vocabulary (a set of tokens).
  - A token segmenter that takes a raw test sentence and tokenizes it according to that vocabulary

#### Byte Pair Encoding (BPE) token learner

Let vocabulary be the set of all individual characters

$$= \{A, B, C, D, ..., a, b, c, d....\}$$

- Repeat:
  - Choose the two symbols that are most frequently adjacent in the training corpus (say 'A', 'B')
  - Add a new merged symbol 'AB' to the vocabulary
  - Replace every adjacent 'A' 'B' in the corpus with 'AB'.
- Until *k* merges have been done.

## BPE token learner algorithm

```
function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V \leftarrow all unique characters in C # initial set of tokens is characters

for i = 1 to k do # merge tokens til k times

t_L, t_R \leftarrow Most frequent pair of adjacent tokens in C

t_{NEW} \leftarrow t_L + t_R # make new token by concatenating

V \leftarrow V + t_{NEW} # update the vocabulary

Replace each occurrence of t_L, t_R in C with t_{NEW} # and update the corpus

return V
```

## Byte Pair Encoding (BPE) Addendum

Most subword algorithms are run inside space-separated tokens.

So we commonly first add a special end-of-word symbol '\_\_\_' before space in training corpus

Next, separate into letters.

#### BPE token learner

Original (very fascinating (\*\*)) corpus:

low low low low lowest lowest newer newer

Add end-of-word tokens, resulting in this vocabulary:

vocabulary

 $\_$ , d, e, i, l, n, o, r, s, t, w

#### BPE token learner

Merge e r to er

```
      vocabulary

      5
      1 o w __
      _, d, e, i, 1, n, o, r, s, t, w, er

      2
      1 o w e s t __

      6
      n e w er __

      3
      w i d er __

      2
      n e w __
```

#### BPE

```
vocabulary
corpus
    1 o w _
                \_, d, e, i, l, n, o, r, s, t, w, er
2 lowest_
6 newer_
3 wider \_
2 new_
Merge er _ to er_
                  vocabulary
 corpus
 5 l o w _ _, d, e, i, l, n, o, r, s, t, w, er, er_
 2 lowest_
 6 newer_
 3 wider_
 2 new_
```

#### **BPE**

```
vocabulary
 corpus
     1 o w _
                      \_, d, e, i, l, n, o, r, s, t, w, er, er\_
 2 lowest_
 6 newer_
 3 wider_
    new_
Merge n e to ne
                     vocabulary
corpus
    1 o w _
                     \_, d, e, i, l, n, o, r, s, t, w, er, er\_, ne
    lowest_
6
  ne w er_
3
  w i d er_
    ne w _
```

#### **BPE**

The next merges are:

## BPE token segmenter algorithm

On the test data, run each merge learned from the training data:

- Greedily
- In the order we learned them
- (test frequencies don't play a role)

So: merge every e r to er, then merge er \_ to er\_, etc.

- Result:
  - Test set "n e w e r \_" would be tokenized as a full word
  - Test set "I o w e r \_" would be two tokens: "low er\_"

### Properties of BPE tokens

Usually include frequent words

And frequent subwords

Which are often morphemes like -est or -er

A morpheme is the smallest meaning-bearing unit of a language

• unlikeliest has 3 morphemes un-, likely, and -est

## Basic Text Processing Word Normalization and other issues

## Character processing and stop-words

- Numbers/dates
- Acronyms
- Multi-language documents
- Stop-words: remove words that are present in all documents
  - a, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on, or, such, that, the, their, then, there, these, they, this, to, was, will...

#### Word Normalization

- Putting words/tokens in a standard format
  - U.S.A. or USA
  - uhhuh or uh-huh
  - Fed or fed
  - am, is, be, are

## Case folding

- Applications like IR: reduce all letters to lower case
  - Since users tend to use lower case
  - Possible exception: upper case in mid-sentence?
    - e.g., *General Motors*
    - Fed vs. fed
    - SAIL vs. sail
- For sentiment analysis, MT, Information extraction
  - Case is helpful (*US* versus *us* is important)

#### Lemmatization

- Represent all words as their lemma, their shared root
  - = dictionary headword form:
  - am, are, is  $\rightarrow$  be
  - car, cars, car's, cars'  $\rightarrow$  car
  - Spanish quiero ('I want'), quieres ('you want')
    - → querer 'want'
  - He is reading detective stories
    - → He be read detective story

## Lemmatization is done by Morphological Parsing

#### Morphemes:

- The small meaningful units that make up words
- Stems: The core meaning-bearing units
- Affixes: Parts that adhere to stems, often with grammatical functions

#### Morphological Parsers:

- Parse cats into two morphemes cat and s
- Parse Spanish *amaren* ('if in the future they would love') into morpheme *amar* 'to love', and the morphological features *3PL* and *future subjunctive*.

## Dealing with complex morphology is necessary for many languages

- e.g., the Turkish word:
- Uygarlastiramadiklarimizdanmissinizcasina
- `(behaving) as if you are among those whom we could not civilize'
- Uygar `civilized' + las `become'

```
+ tir `cause' + ama `not able'
```

- + dik `past' + lar 'plural'
- + imiz 'p1pl' + dan 'abl'
- + mis 'past' + siniz '2pl' + casina 'as if'

## Stemming

Reduce terms to stems, chopping off affixes crudely

This was not the map we found in Billy Bones's chest, but an accurate copy, complete in all things-names and heights and soundings-with the single exception of the red crosses and the written notes.



Thi wa not the map we found in Billi Bone s chest but an accur copi complet in all thing name and height and sound with the singl except of the red cross and the written note

•

#### Porter Stemmer

- Based on a series of rewrite rules run in series
  - A cascade, in which output of each pass fed to next pass
- Some sample rules:

```
ATIONAL \rightarrow ATE (e.g., relational \rightarrow relate)

ING \rightarrow \epsilon if stem contains vowel (e.g., motoring \rightarrow motor)

SSES \rightarrow SS (e.g., grasses \rightarrow grass)
```

#### Sentence Segmentation

- !, ? mostly unambiguous but **period** "." is very ambiguous
  - Sentence boundary
  - Abbreviations like Inc. or Dr.
  - Numbers like .02% or 4.3

Common algorithm: Tokenize first: use rules or ML to classify a period as either (a) part of the word or (b) a sentence-boundary.

An abbreviation dictionary can help

Sentence segmentation can then often be done by rules based on this tokenization.

# Text processing Part of Speech tagging

#### Two classes of words: Open vs. Closed

- Closed class words
  - Relatively fixed membership
  - Usually function words: short, frequent words with grammatical function
    - determiners: a, an, the
    - pronouns: she, he, I
    - prepositions: on, under, over, near, by, ...
- Open class words
  - Usually content words:
    - Nouns, Verbs, Adjectives, Adverbs
    - Plus interjections: oh, ouch, uh-huh, yes, hello



#### Part-of-Speech Tagging

- Assigning a part-of-speech to each word in a text.
- Words often have more than one POS.
- book:
  - VERB: (Book that flight)
  - NOUN: (Hand me that book).

## "Universal Dependencies" Tagset

Nivre et al. 2016

|              | Tag          | Description                                                 | Example                            |
|--------------|--------------|-------------------------------------------------------------|------------------------------------|
| Open Class   | ADJ          | Adjective: noun modifiers describing properties             | red, young, awesome                |
|              | ADV          | Adverb: verb modifiers of time, place, manner               | very, slowly, home, yesterday      |
|              | NOUN         | words for persons, places, things, etc.                     | algorithm, cat, mango, beauty      |
|              | <b>VERB</b>  | words for actions and processes                             | draw, provide, go                  |
|              | <b>PROPN</b> | Proper noun: name of a person, organization, place, etc     | Regina, IBM, Colorado              |
|              | INTJ         | Interjection: exclamation, greeting, yes/no response, etc.  | oh, um, yes, hello                 |
| ass Words    | ADP          | Adposition (Preposition/Postposition): marks a noun's       | in, on, by under                   |
|              |              | spacial, temporal, or other relation                        |                                    |
|              | AUX          | Auxiliary: helping verb marking tense, aspect, mood, etc.,  | can, may, should, are              |
|              | <b>CCONJ</b> | Coordinating Conjunction: joins two phrases/clauses         | and, or, but                       |
|              | DET          | Determiner: marks noun phrase properties                    | a, an, the, this                   |
| [J           | NUM          | Numeral                                                     | one, two, first, second            |
| Closed Class | <b>PART</b>  | Particle: a preposition-like form used together with a verb | up, down, on, off, in, out, at, by |
|              | <b>PRON</b>  | Pronoun: a shorthand for referring to an entity or event    | she, who, I, others                |
|              | <b>SCONJ</b> | Subordinating Conjunction: joins a main clause with a       | that, which                        |
|              |              | subordinate clause such as a sentential complement          |                                    |
| T.           | <b>PUNCT</b> | Punctuation                                                 | ; , ()                             |
| Other        | SYM          | Symbols like \$ or emoji                                    | \$, %                              |
|              | X            | Other                                                       | asdf, qwfg                         |

#### Sample "Tagged" English sentences

- There/PRO were/VERB 70/NUM children/NOUN there/ADV ./PUNC
- Preliminary/ADJ findings/NOUN were/AUX reported/VERB in/ADP today/NOUN 's/PART New/PROPN England/PROPN Journal/PROPN of/ADP Medicine/PROPN

### Why Part of Speech Tagging?

- Can be useful for other NLP tasks
  - Parsing: POS tagging can improve syntactic parsing
  - MT: reordering of adjectives and nouns (say from Spanish to English)
  - Sentiment or affective tasks: may want to distinguish adjectives or other POS
  - Text-to-speech (how do we pronounce "lead" or "object"?)
- Or linguistic or language-analytic computational tasks
  - Need to control for POS when studying linguistic change like creation of new words, or meaning shift
  - Or control for POS in measuring meaning similarity or difference

## Text Processing Named entities

#### Named Entities

- Named entity, in its core usage, means anything that can be referred to with a proper name. Most common 4 tags:
  - PER (Person): "Marie Curie"
  - LOC (Location): "New York City"
  - ORG (Organization): "Stanford University"
  - GPE (Geo-Political Entity): "Boulder, Colorado"
  - Often multi-word phrases
  - But the term is also extended to things that aren't entities:
    - dates, times, prices

### Named Entity tagging

- The task of named entity recognition (NER):
- find spans of text that constitute proper names
- tag the type of the entity.

#### NER output

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

#### Why NER?

- Sentiment analysis: consumer's sentiment toward a particular company or person?
- Question Answering: answer questions about an entity?
- Information Extraction: Extracting facts about entities from text.

#### Summary of basic techniques

Words and Corpus

2.2 + 2.3

Chapter 2, 8

3rd edn. draft chapters!
Speech and
Language
Processing
Dan Jurafsky and James H.

Text normalization

Tokenization

• Stemming, Lemmatization

• Sentence segmentation

2.4

2.4.2 + 2.4.3

2.4.4

2.4.5

PoS and NER

8.1, 8.2, 8.4