

750039 Matemáticas Discretas I **Primer Examen Parcial**

Fecha: Marzo 22, 2018

Versión A

- Esta prueba es INDIVIDUAL.
- Está permitido el uso de una única hoja tamaño oficio.
- Está prohibido el uso de cualquier dispositivo electrónico.
- El intercambio de información relevante a esta prueba con otro estudiante está terminantemente prohibido.
- Cualquier irregularidad con respecto a estas reglas podría ser considerada fraude.
- Responda el examen en los espacios proporcionados. No se aceptarán hojas adicionales.
- No olvide marcar el examen antes de entregarlo.

IMPORTANTE: Soy consciente de que cualquier tipo de fraude en los exámenes es considerado como una falta grave en la Universidad. Al firmar y entregar este examen doy expreso testimonio de que este trabajo fue desarrollado de acuerdo con las normas establecidas. Del mismo modo, aseguro que no participé en ningún tipo de fraude.

Nombre	Código
Firma	Fecha

NO ESCRIBIR NADA BAJO ESTA LÍNEA

1.1	10%	
1.2	10%	
1.3	10%	
2.1	15%	
2.2	20%	
3.1	15%	
3.2	20%	
Total	100%	

1. [30 pts] Un nuevo operador de la lógica proposicional: Δ

Un estudioso de la lógica proposicional se inventa un nuevo operador ternario Δ con la siguiente definición:

$$\Delta(x,y,z) \equiv (x \implies y) \land (y \implies z) \land (z \implies x) \quad [\text{Def.}\Delta]$$

Para cada una de las siguientes expresiones determine si son teoremas o no. Si lo es, demuéstrelo usando el aparato deductivo de la lógica proposicional con esta nueva definición (No vale demostrarlo con tablas de verdad). Si no lo es, argumente porqué no lo es.

1.1. [10 pts]
$$\Delta(false, y, z) \equiv \neg(y \lor z)$$

1.2. [10 pts]
$$\Delta(x, y, y) \equiv (x \equiv y)$$

1.3. [10 pts]
$$\Delta(x, y, z) \implies (x \equiv y)$$

2. [35 pts.] Modelando y demostrando con la lógica proposicional

Considere el argumento siguiente:

(1) Un número entero x es par o impar. (2) Si x es par, entonces x^2 también es par. (3) Si x^2 es par, entonces x^2 no es impar, (C) Por lo tanto, si x^2 es impar, entonces x es impar.

2.1. [15 pts.] Modelaje

Considere las siguientes variables proposicionales:

- px: x es par
- \bullet ix: x es impar
- $px2: x^2 \text{ es par}$
- $ix2: x^2$ es impar

Modele las hipótesis H_1 , H_2 , H_3 y la conclusión, C, en términos de estas variables proposicionales:

- 1. H_1 :
- 2. H_2 :
- 3. H_3 :
- 4. C:

2.2. [20 pts.] Deducción: ¿El argumento es correcto?

Use el aparato deductivo de la lógica proposicional para demostrar que el argumento es correcto, si lo es. Sino, muestre una refutación.

3. [35 pts.] Modelando con la lógica de predicados

Considere el siguiente contexto:

En el mundo de los diplomáticos:

- 1. Existen Diplomáticos expertos en Arte y graduados en Leyes.
- 2. Solamente los arTistas o los Críticos de arte son expertos en arte.
- 3. Los diplomáticos nunca son críticos de arte.
- 4. Además, ningún artista que sea graduado en leyes se desempeña Irresponsablemente.

En consecuencia, hay diplomáticos que no se desempeñan irresponsablemente.

3.1. [15 pts.] Modelaje

Considere los siguientes símbolos de predicados:

- D(x): x es Diplomático
- A(x): x es experto en Arte
- L(x): x es graduado en leyes
- $\blacksquare T(x)$: x es artista
- \blacksquare C(x): x es crítico de arte
- I(x): x es irresponsable

Modele las afirmaciones del argumento, H_1 , H_2 , H_3 , H_4 , y la conclusión, C, en términos de esos símbolos de predicado y de constante:

- 1. H_1 :
- 2. H_2 :
- 3. H_3 :
- 4. H_4 :
- 5. C:

3.2. [20 pts.] Deducción: ¿El argumento es correcto?

Use el aparato deductivo de la lógica de predicados para demostrar que el argumento es correcto, si lo es. Sino, muestre una refutación.