

Protection des systèmes embarqués

STAGE 2A 2023 - 2024

Yassine HMIMOU

L'École des Ingénieurs Scientifiques

Laboratoire de Conception et d'Intégration des Systèmes

https://www.scattererid.eu/the-lcis-laboratory/

Présentation du laboratoire

- Université Grenoble Alpes
- Octobre 1996, Janvier 2003
- Sûreté et sécurité des systèmes embarqués et distribués
- Modélisation, analyse et supervision des systèmes complexes ouverts
- Systèmes radiofréquences sans fil communicants

https://en.wikipedia.org/wiki/Embedded_system#:~:text=An%20embedded%20 system%20is%20a,larger%20mechanical%20or%20electronic%20system.

INTRODUCTION

- Les systèmes embarqués
- Les attaques matérielles
- > Les attaques par canal auxiliaire
- > Les attaques par injection de faute

Problématique

• Les détecteurs analogiques

• Les détecteurs numériques

> Le détecteur basé sur le retard

> Le détecteur basé sur l'oscillateur en anneau

capteur avec mécanisme de test

Contribution

- 1. La redondance
- 2. Mécanisme de test robuste
- Détection locale des attaques
- Validation continue de la fréquence
- Vérification du bon fonctionnement

Réalisation

Chronogramme de fonctionnement du mécanisme de test

L'École des Ingénieurs Scientifiques

Schéma fonctionnel

- Compter les cycles du capteur
- Spécifier le temps de mesure
- Récupération de la valeur de compte
- Comparaison

Méthodologie théorique (Choix de N)

Signal d'horloge Signal du capteur

$$F_{cap} = \frac{Q * F_{clk}}{N}$$

Signal d'horloge Signal du capteur

$$F_{cap} = \frac{Q * F_{clk}}{N}$$

$$F_{cap} = \frac{(Q+1) * F_{clk}}{N}$$

Méthodologie théorique (Choix de N)

$$\Delta f = f_{obtenue \, sur \, d\'ecalage} - f_{obtenue \, sur \, normal}$$

$$\Delta f = \frac{(Q+1)*F_{clk}}{N} - \frac{Q*F_{clk}}{N} = \frac{F_{clk}}{N}$$

L'erreur donc est la fréquence de l'horloge divisée par le nombre de cycles choisi

$$N > \frac{F_{clk}}{\Delta f}$$

N peut être déterminée en fonction de la marge d'erreur acceptée

Méthodologie théorique (Choix de X)

$$F_{cap} = \frac{Q * F_{clk}}{N}$$

Avec un changement de fréquence de k%

$$F_{cap} \pm k\% = \frac{Q_{new} * F_{clk}}{N}$$

Où Q_{new} est la valeur correspondant à la nouvelle fréquence.

$$X_{-k\%} = \left[\frac{N*(F_{cap} - k\%)}{F_{clk}} \right] - 1$$
 Et $X_{+k\%} = \left[\frac{N*(F_{cap} + k\%)}{F_{clk}} \right] + 1$

Les extrémités de l'intervalle de référence sont déterminés en fonction du changement de fréquence souhaitant détecter

Validation expérimentale

Validation de N pour une erreur de 10 Mhz

F _{clk} (Mhz)	F _{cap} (Mhz)	N	Fréquence calculée par le mécanisme (Mhz)	Δf (Mhz)	N _{min} calculée théoriquement
		2	125	25	
50	100	4	112,5	12,5	5
30	100	7	107,143	7,143	3)
		10/	105	5	
	200	2	225	25	
		4	212,5	12,5	(F)
50		7	207,143	7,143	5
		10	205	5	
	250	2	275	25	
50		4	262,5	12,5	(F)
50		7	257,143	7,143	5
		10	255	5	
50		2	1025	25	
	1000	4	1012,5	12,5	
	1000	7	1007,143	7,143	5
		10	1005	5	

Tant que N ne dépasse pas N théorique, l'erreur ne dépasse pas 10 Mhz

Validation expérimentale

Validation de X pour une variation de 10%

F _{clk} (Mhz)	F _{cap} (Mhz)	types de mesure	N	Q sans variation	Q avec variation	X _{k%} mésurée théoriquement
			2	10	10	9
50	250	Avec variation de -	4	20	19	18
50	230	10 %	7	35	33	31,5
		10 70	10	50	46	45
			2	10	/12	/12
	250	Avec variation de	4	20	23	23
		+ 10 %	7	35	37	39,5
		7 10 70	10	50	\56	56
			2	40	37	/36
50	1000	Avec	4	80	73,5	72
50	1000	variation de - 10 %	7	140	128	126
		10 70	10	200	182	180
50			2	40	43	44
	1000	Avec	4	80	87	88
50	1000	variation de + 10 %	7	140	152	154
		1 10 70	10	200	220	220

 $X_{-k\%}$ $X_{+k\%}$ $X_{-k\%}$ $X_{+k\%}$

Tant que la variation de fréquence ne dépasse pas 10%, la valeur de Q ne sort pas de l'intervalle

Validation expérimentale

Validation du fonctionnement du système

- $F_{clk} = 50 \text{ Mhz}$
- $F_{cap} = 100 \text{ Mhz} \rightarrow 70 \text{ Mhz}$
- N = 10
- $[X_{-k\%}, X_{+k\%}] = [18, 22]$ (pour une variation de 10%)

Conclusion

Un système:

- Capable de surveiller
- Robuste
- Flexible

MERCI

pour votre écoute


```
-- Importation des bibliothèques nécessaires
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.numeric std.all;
use IEEE.std logic unsigned.all;
-- Déclaration de l'entité et des ports entrées et sorties
entity specification de temps de mesure is Port (
        F clk : in STD LOGIC;
                                                                -- Horloge principale
        N : in STD LOGIC VECTOR (3 downto 0);
                                                                -- Nombre de cycles d'horloge
        signal_de_reinitialisation : out STD LOGIC := '0');
                                                                -- Signal de réinitialisation
end specification_de_temps_de_mesure;
-- Définition du fonctionnement
architecture Behavioral of specification de temps de mesure is
    signal cnt : STD LOGIC VECTOR (3 downto 0) := "0001";
                                                                -- Signal pour le compteur
begin
    process (F_clk)
    begin
        if rising edge (F clk) then
            if cnt = N then
                signal_de_reinitialisation <= '1';
                                                               -- Générer le signal de réinitialisation
                cnt <= "0001";
                                                               -- Réinitialiser le compteur
            else
                cnt <= cnt + 1;
                                                               -- Incrémenter le compteur
                                                               -- Maintenir le signal de réinitialisation
                signal de reinitialisation <= '0';
            end if;
        end if;
    end process;
end Behavioral;
```

Annexe 1.2

Name	Value	0.000 ns	100.000 ns	200.000 ns	300.000 ns	400.000 ns	500.000 ns	600.000 ns	700.000
¹ 6 F_clk_s	0								
> ₩ N_s[3:0]	4				<u> </u>		4		
¹⊌ signal_de_reinitialisation_s	1)								


```
-- Importation des bibliothèques nécessaires
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.numeric std.all;
use IEEE.std logic unsigned.all;
-- Déclaration de l'entité et des ports entrées et sorties
entity compteur des cycles du capteur is
   Port ( F cap : in STD LOGIC;
                                                                -- Fréquence du capteur
          signal de reinitialisation : in STD LOGIC;
                                                               -- Signal de réinitialisation
          Q : out STD LOGIC VECTOR (7 downto 0));
                                                                -- Valeur comptée des cycles du capteur
end compteur des cycles du capteur;
-- Définition du fonctionnement
architecture Behavioral of compteur des cycles du capteur is
    signal cnt : STD LOGIC VECTOR (7 downto 0) := "00000001"; -- Signal pour le compteur
   signal signal de reinitialisation dernier : STD LOGIC := '0';
begin
   process(F_cap, signal_de_reinitialisation)
   begin
        if signal de reinitialisation = '1' and signal de reinitialisation dernier = '0' then
            cnt <= "00000001";
                                                                -- Réinitialiser le compteur
        elsif rising edge (F cap) then
            cnt <= cnt + 1;
                                                                -- Incrémenter le compteur
        end if;
        signal de reinitialisation dernier <= signal de reinitialisation ;
    end process;
    Q <= cnt;
end Behavioral;
```

Annexe 2.2

Name	Value	0.000	ns	10.000	ns	20.00	00 ns	30.00	0 ns	40.00) ns	50.000	ns	60.00	0 ns	70.000	ns	80.000	ns	90.000	ns	100.
¼ F_cap_s	1																					
signal_de_reinitialisation_s	0																					
> W Q_s[7:0]	07	01	02	03	04	05	06	07	80 \	09) Oa	Оъ	Oc	Od	(Oe	0£	10	11	12	01	02	03

Annexe 3.1


```
!-- Importation des bibliothèques nécessaires
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
-- Déclaration de l'entité et des ports entrées et sorties
entity stockage_de_la_valeur_du_compteur is
    Port ( Q_in : in STD LOGIC VECTOR (7 downto 0);
                                                                        -- Valeur comptée des cycles du capteur
           F clk : in STD LOGIC;
                                                                        -- Fréquence d'horloge
           signal_de_reinitialisation : in STD LOGIC;
                                                                        -- Signal de réinitialisation
           Q_out : out STD LOGIC VECTOR (7 downto 0) :="00000000");
                                                                        -- Valeur stockée des cycles du capteur
end stockage de la valeur du compteur;
-- Définition du fonctionnement
architecture Behavioral of stockage_de_la_valeur_du_compteur is
    signal Q_reg : STD LOGIC VECTOR (7 downto 0);
begin
    process (F_clk, signal_de_reinitialisation)
        if signal de reinitialisation = '1' then
            Q_out <= Q_reg ;
        elsif rising edge (F_clk) then
            Q_reg <= Q_in;</pre>
        end if;
    end process;
end Behavioral;
```

Annexe 3.2

Name	Value		210.0	00 ns	220.00	00 ns	230.0	00 ns	240.00	00 ns	250.00	00 ns	260.00	00 ns	270.00	00 ns	280.00	00 ns	290.00	00 ns	300.00	00 ns	310.00	00 ns	320.00	0
> ♥ Q_in_s[7:0]	47	2a	2b	2c	2d	2e	2f	X 30	31	32	33	34	35	36	37	38	39	∀ 3a	Зь	3c	3d	Зе	3£	40	41	(
signal_de_reinitialisation_s	1																									
[™] F_clk_s	1																									
> ♥ Q_out_s[7:0]	42	12	\mathbb{X}												2a											

Annexe 4.1


```
-- Importation des bibliothèques nécessaires
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
-- Déclaration de l'entité et des ports entrées et sorties
entity comparateur is
    Port ( Q : in STD_LOGIC_VECTOR (7 downto 0);
                                                                    -- Valeur comptée
           Alarme : out STD LOGIC :='0';
                                                                    -- Alarme signifiant que le capteur fonctionne mal
                                                                    -- L'extrémité supérieure de l'intervalle de référence
           X plus : in STD_LOGIC_VECTOR (7 downto 0);
          X moins : in STD LOGIC VECTOR (7 downto 0));
                                                                    -- L'extrémité inférieure de l'intervalle de référence
end comparateur;
-- Définition du fonctionnement
architecture Behavioral of comparateur is
begin
    process (Q)
    begin
        if Q = "000000000" then
            Alarme <= '0';
        elsif (Q < X_moins or Q > X_plus) then
                                                                    -- Vérification que Q appartient à l'intervalle
                                                                    -- Déclencher l'alarme
            Alarme <= '1';
        end if;
    end process;
end Behavioral;
```

Annexe 4.2

Name	Value	0.000 ns 50.	000 ns 100.0	00 ns 150.000 ns	200.000 ns	250.000 ns	300.000 ns	350.000 ns	400.000 ns	450.000 ns
> W Q_s[7:0]	13	(00	Ж	13	X	14	X		19	
Alarme_s	1									
> • X_plus_s[7:0]	16		100		26	1	16		20.	
> V X_moins_s[7:0]	12						12			


```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity mecanisme de test robuste is Port(
      F clk : in STD LOGIC;
                                                                -- Fréquence de l'horloge
      F cap : in STD LOGIC;
                                                                -- Fréquence du capteur
      N : in STD_LOGIC_VECTOR (3 downto 0);
                                                                -- Nombre de ayales
      X plus : in STD LOGIC VECTOR (7 downto 0);
                                                                -- Extrimité supérieure de l'intervalle de réference
      X moins : in STD LOGIC VECTOR (7 downto 0);
                                                                -- Extrimité inférieure de l'intervalle de réference
      Alarme : out STD LOGIC);
                                                                -- Signal d'alarme
end mecanisme de test robuste;
architecture Structural of mecanisme de test robuste is
   signal signal de reinitialisation : STD_LOGIC;
                                                                -- Signal de réinitialisation
   signal Q in : STD LOGIC VECTOR (7 downto 0);
                                                                -- Le nombre des cycles comptées
   signal Q out : STD LOGIC VECTOR (7 downto 0);
                                                                -- La valeur stockée des cycles comptées
component specification_de_temps_de_mesure is Port (
       F clk : in STD LOGIC;
                                                                -- Horloge principale
       N : in STD LOGIC VECTOR (3 downto 0);
                                                                -- Nombre de cycles d'horloge
       signal_de_reinitialisation : out STD_LOGIC := '0');
                                                               -- Signal de réinitialisation
end component;
component compteur_des_cycles_du_capteur is
   Port ( F cap : in STD_LOGIC;
                                                                -- Fréquence du capteur
          signal de reinitialisation : in STD_LOGIC;
                                                                -- Signal de réinitialisation
          Q : out STD_LOGIC_VECTOR (7 downto 0));
                                                                -- Valeur comptée des cycles du capteur
end component;
component stockage_de_la_valeur_du_compteur is Port(
  Q in : in STD_LOGIC_VECTOR (7 downto 0);
                                                                -- Valeur comptée des cycles du capteur
  F clk : in STD LOGIC;
                                                                -- Fréquence d'horloge
  signal de reinitialisation : in STD LOGIC;
                                                                -- Signal de réinitialisation
  Q out : out STD LOGIC VECTOR (7 downto 0) :="000000000");
                                                               -- Valeur stockée des cycles du capteur
end component;
```

```
component comparateur is
    Port ( Q : in STD LOGIC VECTOR (7 downto 0);
                                                                 -- Valeur comptée
           Alarme : out STD LOGIC :='0';
                                                                 -- Alarme signifiant que le capteur fonctionne mal
           X plus : in STD LOGIC VECTOR (7 downto 0);
                                                                -- L'extrémité supérieure de l'intervalle de référence
           X moins : in STD LOGIC VECTOR (7 downto 0));
                                                                 -- L'extrémité inférieure de l'intervalle de référence
end component;
begin
inst specification de temps de mesure : specification de temps de mesure PORT MAP(
   F clk => F clk,
   N => N
    signal de reinitialisation => signal de reinitialisation);
inst compteur des cycles du capteur : compteur_des_cycles_du_capteur PORT MAP(
   F cap => F_cap,
    signal de reinitialisation => signal de reinitialisation,
   Q => Q in);
inst stockage de la valeur du compteur : stockage de la valeur du compteur PORT MAP(
    Q in => Q in,
   F clk => F clk,
    signal de reinitialisation => signal de reinitialisation,
    Q out => Q out);
inst comparateur : comparateur PORT MAP (
    Q => Q out,
   X plus => X plus,
   X moins => X moins,
   Alarme => Alarme);
end Structural;
```

Annexe 5.2

Name	Value	0.000 ns	100.000 ns	200.000 ns	300.000 ns	400.000 ns	500.000 ns	600.000 ns	700.000 ns	800.000 ns	900.000 ns
¹ ⊌ F_clk_s	0										
₽ F_cap_s	0										
> ₩ N_s[3:0]	а			<u>.</u>			a	Su.	<u>.</u>		
> ₩ X_plus_s[7:0]	16		<u> </u>	*			16	<u> </u>	*		
> ₩ X_moins_s[7:0]	12						12				
Alarme_s	1										