Espacio vectorial euclídeo y hermíticos IV: Aplicaciones ortogonales y unitarias.

1. Consideramos \mathbb{R}^2 con el producto escalar habitual. Escribir las ecuaciones de las siguientes aplicaciones ortogonales con respecto a la base canónica:

a) Simetría con respecto a la recta y = 0.

b) Giro de ángulo $\pi/3$.

2. Consideramos \mathbb{R}^2 con el producto escalar habitual y $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ una aplicación lineal cuya matriz con respecto a la base $\mathcal{B} = \{(1,0),(1,1)\}$ es

$$M_1 = \frac{1}{2} \begin{pmatrix} 0 & 2\sqrt{2} \\ \sqrt{2} & 0 \end{pmatrix}$$
 o $M_2 = \frac{1}{2} \begin{pmatrix} \sqrt{3} - 1 & -2 \\ 1 & 1 + \sqrt{3} \end{pmatrix}$.

Determinar en qué caso f es ortogonal. En caso afirmativo, decidir si corresponde a un giro (en cuyo caso encontrar el ángulo de giro) o a una simetría (en cuyo caso encontrar el eje de simetría).

3. Sea $V = \mathbb{R}^2$. Decide de manera razonada el resultado de componer:

a) Dos rotaciones en V;

b) Dos simetrías en V;

c) Una rotación con una simetría.

4. Describe el efecto geométrico de las siguientes aplicaciones ortogonales de \mathbb{R}^2 :

$$f: \left\{ \begin{array}{l} x' = \frac{1}{2}x - \frac{\sqrt{3}}{2}y \\ y' = \frac{\sqrt{3}}{2}x + \frac{1}{2}y \end{array} \right. \qquad g: \left\{ \begin{array}{l} x' = \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y \\ y' = \frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y. \end{array} \right.$$

Indica qué tipo de aplicación ortogonal es $f \circ g$ (no es necesario indicar sus elementos geométricos).

5. Consideramos \mathbb{R}^2 con el producto escalar habitual. Determinar los endomorfismos ortogonales f de \mathbb{R}^2 que verifican:

a)
$$f^2(x,y) = (x,y)$$
.

b)
$$f^2(x,y) = -(x,y)$$
.

6. Calcular la matriz en la base canónica de \mathbb{R}^3 de:

- a) la simetría respecto del plano x = y.
- **b)** la simetría respecto al plano 2x + y + z = 0.
- c) giro de amplitud $\pi/2$ con eje u=(0,1,1), con la orientación dada por el vector u.

7. Sea $(V, \langle \rangle)$ un espacio vectorial euclídeo de dimensión 3 y $\mathcal{B} = \{u_1, u_2, u_3\}$ una base ortonormal. Consideramos la aplicación lineal $f: V \longrightarrow V$ definida por:

$$3f(u_1) = 2u_1 - 2u_2 + u_3$$
, $3f(u_2) = \alpha u_1 + u_2 - 2u_3$, $3f(u_3) = \beta u_1 + \gamma u_2 + 2u_3$.

Hallar $\alpha, \beta, \gamma \in \mathbb{R}$ de manera que f sea una aplicación ortogonal.

8. Consideramos \mathbb{R}^3 con el producto escalar habitual. Demostrar que los siguientes endomorfismo de \mathbb{R}^3 son ortogonales y estudiar de qué tipo, indicando sus elementos geométricos principales.

a)
$$f(x, y, z) = (z, x, y)$$
.

b)
$$f(x, y, z) = \frac{1}{3}(-x + 2y + 2z, 2x - y + 2z, 2x + 2y - z).$$

9. Determinar cuales de las siguiente aplicaciones de \mathbb{R}^3 (con el producto escalar habitual) son ortogonales. En caso afirmativo clasificarlas geométricamente (no es necesario indicar sus elementos geométricos).

$$a) \ \frac{1}{9} \begin{pmatrix} 1 & 8 & -4 \\ 8 & 1 & 4 \\ -4 & 4 & 7 \end{pmatrix}, \quad b) \ \frac{1}{7} \begin{pmatrix} 2 & 6 & 3 \\ 3 & 2 & -6 \\ 6 & -3 & 2 \end{pmatrix}, \quad c) \begin{pmatrix} \frac{-1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\ \frac{1}{3\sqrt{2}} & \frac{-4}{3\sqrt{2}} & \frac{1}{3\sqrt{2}} \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \end{pmatrix}, \quad d) \begin{pmatrix} \frac{\sqrt{2}-2}{4} & -\frac{\sqrt{2}+2}{4} & \frac{1}{2} \\ -\frac{\sqrt{2}+2}{4} & \frac{\sqrt{2}-2}{4} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}.$$

10. Estudia las siguientes aplicaciones ortogonales de \mathbb{R}^3 indicando sus elementos geométricos:

$$f: \begin{cases} x' = \frac{1}{2}x + \frac{\sqrt{2}}{2}y + \frac{1}{2}z \\ y' = \frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}z \\ z' = \frac{1}{2}x - \frac{\sqrt{2}}{2}y + \frac{1}{2}z. \end{cases} \qquad g: \begin{cases} x' = z \\ y' = -y \\ z' = -x. \end{cases}$$

Estudia la composición $f \circ g$ (no es necesario indicar sus elementos geométricos).

11. Consideramos \mathbb{R}^3 con el producto escalar habitual y tomamos la base $\mathcal{B} = \{u_1, u_2, u_3\}$ de \mathbb{R}^3 donde $u_1 = (1, 1, 0), u_2 = (1, 0, 1)$ y $u_3 = (1, 2, 0)$. Estudiar si son ortogonales los endomorfismos de \mathbb{R}^3 dados en esa base por las matrices

$$M_1 = \begin{pmatrix} 0 & -5 & 1 \\ 0 & 1 & 0 \\ 1 & 3 & 1 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{pmatrix}, \quad M_3 = \begin{pmatrix} 4 & 3 & 6 \\ -1 & -1 & -1 \\ -2 & -2 & -3 \end{pmatrix}.$$

- **12.** Sea $(V, \langle \rangle)$ un espacio vectorial euclídeo o hermítico y $f: V \longrightarrow V$ una aplicación tal que $\langle f(u), f(v) \rangle = \langle u, v \rangle$ para todo $u, v \in V$. Demostrar que f es lineal. (Sugerencia: Calcular ||f(u+v) f(u) f(v)|| y $||f(\alpha u) \alpha f(u)||$).
- **13.** Sea f un endomorfismo de un espacio vectorial euclídeo $(V, \langle \rangle)$ que cumple $\langle u + f(u), u f(u) \rangle = 0$ para todo $u \in V$.
 - a) Comprobar que f es ortogonal.
- b) Supongamos que existe un vector no nulo $v \in V$ tal que f(u) + u es proporcional a v para todo $u \in V$ y la constante de proporcionalidad es no nula. ¿Qué endormorfismo es f?
- **14.** Sea $(V, \langle \ \rangle)$ un espacio vectorial euclídeo o hermítico y $f: V \longrightarrow V$ una aplicación lineal tal que $\|f(u)\| = \|u\|$ para todo $u \in V$. Demostrar que $\langle f(u), f(v) \rangle = \langle u, v \rangle$ para todo $u, v \in V$.
- 15. Sea V un espacio vectorial sobre \mathbb{K} de dimensión n. Se dice que una aplicación lineal $S:V\to V$ es una simetría si $S^2=I_V$. El subespacio $W_1=\mathrm{Ker}(S+I_V)$ es la dirección de la simetría y el subespacio $W_2=\mathrm{Ker}(S-I_V)$ es el subespacio respecto al que se hace la simetría.
- a) Demuestra que una simetría siempre es diagonalizable.
- **b)** Demuestra que $V = \text{Ker}(S + I_V) \oplus \text{Ker}(S I_V)$.
- c) Observa que cada $u \in V$ se escribe de manera única como la suma de un vector en W_1 y otro en W_2 , i.e., $u = w_1 + w_2$ con $w_1 \in W_1$ y $w_2 \in W_2$. Demuestra que $S(u) = w_2 w_1$.
- d) Supongamos que es V un espacio vectorial euclídeo o hermítico. Demuestra que una simetría es autoadjunta si y sólo si $W_1 \perp W_2$ (cuando $W_1 \perp W_2$ se dice que la simetría es ortogonal).
- e) Demuestra que una simetría es una aplicación ortogonal (o unitaria) si y sólo si la simetría es ortogonal.
- **16.** Usando el producto escalar usual en \mathbb{C}^3 :
- a) Encuentra la expresión en coordendas de la simetría ortogonal respecto a la recta $l=\{x-iz=0,y=0\}$. ¿Es unitaria? ¿Es autoadjunta?
- b) Encuentra la expresión en coordendas de la proyección ortogonal sobre la recta $l=\{x-(1+i)z=0,\ y=0\}$. ¿Es autoadjunta?