

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA MEXICALI

Formato para Prácticas de Laboratorio

PROGRAMA EDUCATIVO	PLAN DE ESTUDIO	CLAVE DE UNIDAD DE APRENDIZAJE	NOMBRE DE LA UNIDAD DE APRENDIZAJE
LSC	2009-2	11294	Programación Estructurada

PRÁCTICA No.	LABORATORIO DE	Licenciados en Sistemas Computacionales	DURACIÓN (HORAS)
5	NOMBRE DE LA PRÁCTICA	Arreglos Bidimensionales	2

1. INTRODUCCIÓN

El manejo de Arreglos bidimensionales es muy importante debido a que permiten manipular información del mismo tipo para varios elementos, proporcionando una forma más eficaz para crear programas más estructurados, ayudando así a resolver problemas donde un mismo tipo de dato se tendría que leer repetidamente para varios elementos también del mismo tipo.

2. OBJETIVO (COMPETENCIA)

El alumno elaborara programas de cómputo aplicando los arreglos bidimensionales para la resolución de problemas prácticos, donde se aprecie la ventaja de la utilización de los mismos.

3. FUNDAMENTO

Como ya se había visto en prácticas anteriores, un arreglo es una colección de posiciones de almacenamiento de datos, donde cada una tiene el mismo tipo de dato y el mismo nombre. Cada posición de almacenamiento es llamada un elemento del arreglo.

En los arreglos se empieza a guardar la información desde la posición cero 0 y termina en una menos de la cantidad de elementos.

Los arreglos pueden ser Unidimensionales o Multidimensionales.

En esta ocasión nos enfocaremos a los arreglos multidimensionales los cuales son aquellos que tienen más de una dimensión (subíndice), su forma más sencilla es la de 2 dimensiones llamados arreglos bidimensionales comúnmente conocidos como Matrices, que tienen una estructura de renglones y columnas. Por cada renglón se tienen n columnas.

Formuló	Revisó	Autorizó
LSC. Natalia Rodríguez Castellón	I.C. Josefina Mariscal Camacho	Dr. David Isaías Rosas Almeida
Nombre y Firma del Maestro	Nombre y Firma del Responsable de Programa Educativo	Nombre y Firma del Director / Representante de la Dirección

Fecha de efectividad:

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA MEXICALI

Formato para Prácticas de Laboratorio

Declaración:

tipo nombre_arreglo[#ren][#col];

Donde:

tipo = Puede ser cualquier tipo de valores, como int, float, char, long int, etc..

nombre_arreglo = Al nombre que se le va a dar al arreglo, siempre y cuando se sujete a las reglas de declaración de variables.

[#ren] = Representa la cantidad de renglones que va a tener la matriz.

[#col] = Representa la cantidad de columnas que va a tener la matriz.

Ejemplo:

int matriz[4][4];

Inicialización:

1) Desde su declaración: int matriz[4][4]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};

esto tendría el siguiente efecto:

matriz

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

El compilador automáticamente los asigna moviendo primero las columnas de cada renglón y después avanza al siguiente renglón, y así sucesivamente.

2) Por medio del usuario (teclado):

```
for(x=0;x<4;x++)
for(y=0;y<4;y++)
{
  printf("Introduce un número para la posición [%d][%d]: ",x,y);
  scanf("%d",&matriz[x][y]);
}</pre>
```

Para mostrar la información de esta misma matriz con estructura de renglones y columnas basta con utilizar el siguiente código:

```
for(x=0;x<4;x++) {
for(y=0;y<4;y++) {
printf("%d\t",matriz[x][y]);
}
printf("\n");
```


UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA MEXICALI

Formato para Prácticas de Laboratorio

4. PROCEDIMIENTO (DESCRIPCIÓN)		
A) EQUIPO NECESARIO	MATERIAL DE APOYO	

Computadoras con Linux instalado

Práctica impresa y apuntes de clase

B) DESARROLLO DE LA PRÁCTICA

El alumno realizara el programa correspondiente al día de la clase.

Martes

Escribir un programa que lea un matriz de enteros de 4 filas y 4 columnas enseguida muestre por pantalla la sumatoria de todos los valores de la matriz, y enseguida mostrar todos los valores que sean <= que el promedio, así como indicar en que posiciones se encuentran, también deberá mostrar aquellos números que sean primos y en que posiciones se encuentran. El programa deberá repetirse mientras el usuario lo desee.

Jueves

Escribir un programa que lea una matriz de 4 filas y 4 columnas, la visualice por pantalla y a continuación genere una segunda matriz de 4 x 2 en donde la primera columna contenga el total de cada una de las columnas, y en la segunda columna el total de cada una de las filas. Deberá mostrar la matriz resultante. El programa deberá repetirse mientras el usuario lo desee. Ejemplo

Viernes

Escribir un programa que solicite el número de renglones y el número de columnas que contendrá la matriz, registrar los números y después mostrar todos los números impares que se encuentran en ella así como indicar en que posiciones de encuentran, la sumatoria de los mismos y además si la sumatoria es un numero primo mostrar su raíz cuadrada.

C) CÁLCULOS (SI APLICA) Y REPORTE

Se revisarán los programas haciendo pruebas 1 o más veces.

5. RESULTADOS Y CONCLUSIONES

El alumno será capaz de elaborar programas estructurados utilizando arreglos unidimensionales y arreglos multidimensionales.

6. ANEXOS

Las prácticas se realizaran dependiendo del día que corresponda la clase.

Fecha de efectividad:

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA MEXICALI

Formato para Prácticas de Laboratorio

7. REFERENCIAS