$10_{128} \ (K10n_{22})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -3u^7 - 3u^6 + 17u^5 + 4u^4 - 31u^3 + 12u^2 + 4b - u + 1, -u^7 - 3u^6 + u^5 + 8u^4 + 3u^3 - 6u^2 + 2a - 9u - 1, u^8 + 4u^7 - 13u^5 - 3u^4 + 15u^3 + 3u^2 + 2u - 1 \rangle$$

$$I_2^u = \langle b^3 - b^2 + 1, a, u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 11 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -3u^7 - 3u^6 + \dots + 4b + 1, -u^7 - 3u^6 + \dots + 2a - 1, u^8 + 4u^7 - 13u^5 - 3u^4 + 15u^3 + 3u^2 + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u\\-u^{3}+u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{2}u^{7} + \frac{3}{2}u^{6} + \dots + \frac{9}{2}u + \frac{1}{2}\\\frac{3}{4}u^{7} + \frac{3}{4}u^{6} + \dots + \frac{1}{4}u - \frac{1}{4} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1\\-\frac{1}{4}u^{7} - \frac{3}{4}u^{6} + \dots + \frac{5}{4}u + \frac{1}{4} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}u^{7} + \frac{3}{2}u^{6} + \dots + \frac{9}{2}u + \frac{1}{2}\\-\frac{3}{4}u^{7} - \frac{7}{4}u^{6} + \dots + \frac{5}{4}u + \frac{1}{4} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{4}u^{7} - \frac{1}{4}u^{6} + \dots + \frac{13}{4}u + \frac{3}{4}\\-\frac{3}{4}u^{7} - \frac{7}{4}u^{6} + \dots + \frac{5}{4}u + \frac{5}{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{4}u^{7} - \frac{3}{4}u^{6} + \dots + \frac{5}{4}u + \frac{5}{4}\\-\frac{1}{2}u^{6} - u^{5} + \dots - 2u + \frac{1}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1\\u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-u^7 \frac{11}{2}u^6 3u^5 + \frac{39}{2}u^4 + \frac{23}{2}u^3 27u^2 6u \frac{23}{2}u^3 27u^2 6u \frac{23}{2}u^3 27u^3 27u^3 6u \frac{23}{2}u^3 27u^3 \frac{23}{2}u^3 \frac{$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^8 + 2u^7 - 7u^6 - 12u^5 + 7u^4 + 2u^3 - 2u^2 - 3u - 1$
c_2, c_5, c_6	$u^8 - 2u^7 + 5u^6 - 6u^5 + 7u^4 - 6u^3 + 2u^2 - u - 1$
c_4, c_9	$u^8 - u^7 - 10u^6 + 7u^5 + 19u^4 + 23u^3 + 12u + 8$
c_7, c_{10}	$u^8 - 4u^7 + 13u^5 - 3u^4 - 15u^3 + 3u^2 - 2u - 1$
c ₈	$u^8 + 16u^7 + 98u^6 + 283u^5 + 381u^4 + 191u^3 - 45u^2 + 10u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3	$y^8 - 18y^7 + 111y^6 - 254y^5 + 135y^4 - 90y^3 + 2y^2 - 5y + 1$
c_2, c_5, c_6	$y^8 + 6y^7 + 15y^6 + 14y^5 - 9y^4 - 30y^3 - 22y^2 - 5y + 1$
c_4, c_9	$y^8 - 21y^7 + 152y^6 - 383y^5 + 79y^4 - 857y^3 - 248y^2 - 144y + 64$
c_7, c_{10}	$y^8 - 16y^7 + 98y^6 - 283y^5 + 381y^4 - 191y^3 - 45y^2 - 10y + 1$
c ₈	$y^8 - 60y^7 + \dots - 190y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.251300 + 0.394571I		
a = 0.381129 - 0.818334I	-1.14011 - 1.32248I	-11.15537 + 1.48485I
b = 1.066800 - 0.340674I		
u = 1.251300 - 0.394571I		
a = 0.381129 + 0.818334I	-1.14011 + 1.32248I	-11.15537 - 1.48485I
b = 1.066800 + 0.340674I		
u = -0.202560 + 0.429200I		
a = -0.93266 + 1.25163I	2.74105 - 2.12062I	-5.41411 + 2.85603I
b = 1.031990 + 0.436432I		
u = -0.202560 - 0.429200I		
a = -0.93266 - 1.25163I	2.74105 + 2.12062I	-5.41411 - 2.85603I
b = 1.031990 - 0.436432I		
u = 0.266855		
a = 1.86561	-0.675825	-14.7130
b = -0.260126		
u = -2.08865 + 0.23775I		
a = 1.276340 - 0.114214I	-14.2177 + 5.8605I	-11.51154 - 2.72065I
b = 2.96514 - 1.78943I		
u = -2.08865 - 0.23775I		
a = 1.276340 + 0.114214I	-14.2177 - 5.8605I	-11.51154 + 2.72065I
b = 2.96514 + 1.78943I		
u = -2.18705		
a = -1.31522	-18.5039	-14.1250
b = -3.86773		

II.
$$I_2^u = \langle b^3 - b^2 + 1, \ a, \ u - 1 \rangle$$

(i) Arc colorings

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ -b^2 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_3 = \begin{pmatrix} b \\ b \end{pmatrix}$$

$$a_3 = \begin{pmatrix} b \\ b \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -b^2 + 1 \\ -b^2 + b + 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $b^2 + 3b 13$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^3 + u^2 - 1$
c_2	$u^3 - u^2 + 2u - 1$
c_4, c_9	u^3
c_5, c_6	$u^3 + u^2 + 2u + 1$
<i>C</i> ₇	$(u-1)^3$
c_8, c_{10}	$(u+1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3	$y^3 - y^2 + 2y - 1$
c_2, c_5, c_6	$y^3 + 3y^2 + 2y - 1$
c_4, c_9	y^3
c_7, c_8, c_{10}	$(y-1)^3$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0	1.37919 - 2.82812I	-10.15260 + 3.54173I
b = 0.877439 + 0.744862I		
u = 1.00000		
a = 0	1.37919 + 2.82812I	-10.15260 - 3.54173I
b = 0.877439 - 0.744862I		
u = 1.00000		
a = 0	-2.75839	-14.6950
b = -0.754878		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u^3 + u^2 - 1)(u^8 + 2u^7 - 7u^6 - 12u^5 + 7u^4 + 2u^3 - 2u^2 - 3u - 1)$
c_2	$(u^3 - u^2 + 2u - 1)(u^8 - 2u^7 + 5u^6 - 6u^5 + 7u^4 - 6u^3 + 2u^2 - u - 1)$
c_4, c_9	$u^{3}(u^{8} - u^{7} - 10u^{6} + 7u^{5} + 19u^{4} + 23u^{3} + 12u + 8)$
c_5, c_6	$ (u^3 + u^2 + 2u + 1)(u^8 - 2u^7 + 5u^6 - 6u^5 + 7u^4 - 6u^3 + 2u^2 - u - 1) $
c_7	$(u-1)^3(u^8 - 4u^7 + 13u^5 - 3u^4 - 15u^3 + 3u^2 - 2u - 1)$
c_8	$(u+1)^3 \cdot (u^8 + 16u^7 + 98u^6 + 283u^5 + 381u^4 + 191u^3 - 45u^2 + 10u + 1)$
c_{10}	$(u+1)^3(u^8 - 4u^7 + 13u^5 - 3u^4 - 15u^3 + 3u^2 - 2u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_3	$(y^3 - y^2 + 2y - 1)$ $\cdot (y^8 - 18y^7 + 111y^6 - 254y^5 + 135y^4 - 90y^3 + 2y^2 - 5y + 1)$
c_2, c_5, c_6	$(y^3 + 3y^2 + 2y - 1)$ $\cdot (y^8 + 6y^7 + 15y^6 + 14y^5 - 9y^4 - 30y^3 - 22y^2 - 5y + 1)$
c_4, c_9	$y^3(y^8 - 21y^7 + \dots - 144y + 64)$
c_7, c_{10}	$(y-1)^3$ $\cdot (y^8 - 16y^7 + 98y^6 - 283y^5 + 381y^4 - 191y^3 - 45y^2 - 10y + 1)$
c ₈	$((y-1)^3)(y^8 - 60y^7 + \dots - 190y + 1)$