实验报告 评分:

<u>2020</u>级<u>11_</u>系<u>3</u>班 姓名<u>黄瑞轩</u> 日期<u>2021年4月17日</u> № <u>PB20111686</u>

硅光电池光电特性数据处理

1、硅光电池暗伏安特性测量

在没有光照(全黑)下,测量硅光电池正向偏压时 I-U 特性曲线。下面是本实验的原始数据。

电流表示数/mA	5.0	16.1	27.9	18.4	31.9	46.9	24.8	55.5	44.5	23.4
电压表示数/V	0.6201	0.8751	1.0711	0.9139	1.1277	1.3324	1.022	1.4375	1.3008	0.9979
电流表示数/mA	32.2	37.0	14.2	11.5	21.8	41.0	38.9	25.3	12.6	6.5
电压表示数/V	1.1362	1.2017	0.8349	0.7758	0.9733	1.2583	1.2248	1.0288	0.7961	0.6592

表1 原始数据

由于使用的电流表表盘量程为 100 mA, 而接入的量程为 20 mA, 故要进行换算, 换算后的数据如下表所示。

电流真实测量值/mA	1.00	3.22	5.58	3.68	6.38	9.38	4.96	11.10	8.90	4.68
电压真实测量值/V	0.6201	0.8751	1.0711	0.9139	1.1277	1.3324	1.022	1.4375	1.3008	0.9979
电流真实测量值/mA	6.44	7.40	2.84	2.30	4.36	8.20	7.78	5.06	2.52	1.30
电压真实测量值/V	1.1362	1.2017	0.8349	0.7758	0.9733	1.2583	1.2248	1.0288	0.7961	0.6592

表 2 换算后的数据

得到伏安特性曲线如下。

图 1 得到的伏安特性曲线

2、硅光电池输出特性测量

不加偏压,用溴钨灯照射硅光电池,电阻箱为负载。测量不同 L、 R_L 下硅光电池的工作电压 U,求工作电流 I 和功率 P,绘制 I-U、P- R_L 曲线。原始数据及所计算的 I、P、L 在下表中列出。

水工作电机 I 种功举 I , 坛间 I 已 、 I - I 。 原始 数据 及所 以 异的 I 、 I 、 I 在 下 农 中 列 山 。												
	R_L/Ω	50	200	300	400	500	600	700	800	900	1000	2000
	U/V	0.0128	0.0515	0.0770	0.1027	0.1271	0.1508	0.1732	0.1944	0.2134	0.2302	0.3210
	I/mA	0.2560	0.2575	0.2567	0.2568	0.2542	0.2513	0.2474	0.2430	0.2371	0.2302	0.1605
d = 20 cm	P/mW	0.0033	0.0133	0.0198	0.0264	0.0323	0.0379	0.0429	0.0472	0.0506	0.0530	0.0515
L = 250 lx	R_L/Ω	3000	4000	5000	6000	7000	8000	9000	10000	15000	20000	∞
	U/V	0.3525	0.3676	0.3763	0.3818	0.3857	0.3885	0.3907	0.3923	0.3977	0.4001	0.4063
	I/mA	0.1175	0.0919	0.0753	0.0636	0.0551	0.0486	0.0434	0.0392	0.0265	0.0200	
	P/mW	0.0414	0.0338	0.0283	0.0243	0.0213	0.0189	0.0170	0.0154	0.0105	0.0080	
	R_L/Ω	50	200	300	400	500	600	700	800	900	1000	2000
	U/V	0.0084	0.0336	0.0505	0.0673	0.084	0.1007	0.1173	0.1337	0.1499	0.1659	0.2854
	I/mA	0.1680	0.1680	0.1683	0.1683	0.1680	0.1678	0.1676	0.1671	0.1666	0.1659	0.1427
d = 30 cm	P/mW	0.0014	0.0056	0.0085	0.0113	0.0141	0.0169	0.0197	0.0223	0.0250	0.0275	0.0407
L = 111 1x	R_L/Ω	3000	4000	5000	6000	7000	8000	9000	10000	15000	20000	∞
	U/V	0.3296	0.3491	0.3600	0.3670	0.3718	0.3754	0.3781	0.3803	0.3867	0.3900	0.3973
	I/mA	0.1099	0.0873	0.0720	0.0612	0.0531	0.0469	0.0420	0.0380	0.0258	0.0195	
	P/mW	0.0362	0.0305	0.0259	0.0224	0.0197	0.0176	0.0159	0.0145	0.0100	0.0076	
	R_L/Ω	50	200	300	400	500	600	700	800	900	1000	2000
	U/V	0.0045	0.0186	0.0279	0.0372	0.0465	0.0559	0.0652	0.0744	0.0838	0.093	0.1835
	I/mA	0.0900	0.0930	0.0930	0.0930	0.0930	0.0932	0.0931	0.0930	0.0931	0.0930	0.0918
d = 40 cm	P/mW	0.0004	0.0017	0.0026	0.0035	0.0043	0.0052	0.0061	0.0069	0.0078	0.0086	0.0168
L = 62.5 lx	R_L/Ω	3000	4000	5000	6000	7000	8000	9000	10000	15000	20000	∞
	U/V	0.2593	0.3024	0.3239	0.3363	0.3444	0.3501	0.3543	0.3576	0.3669	0.3713	0.3812
	I/mA	0.0864	0.0756	0.0648	0.0561	0.0492	0.0438	0.0394	0.0358	0.0245	0.0186	
	P/mW	0.0224	0.0229	0.0210	0.0188	0.0169	0.0153	0.0139	0.0128	0.0090	0.0069	
	R_L/Ω	50	200	300	400	500	600	700	800	900	1000	2000
	U/V	0.0029	0.0118	0.0178	0.0237	0.0296	0.0355	0.0415	0.0473	0.0531	0.0594	0.1179
	I/mA	0.0580	0.0590	0.0593	0.0593	0.0592	0.0592	0.0593	0.0591	0.0590	0.0594	0.0590
d = 50 cm	P/mW	0.0002	0.0007	0.0011	0.0014	0.0018	0.0021	0.0025	0.0028	0.0031	0.0035	0.0070
L = 40 lx	R_L/Ω	3000	4000	5000	6000	7000	8000	9000	10000	15000	20000	∞
	U/V	0.1750	0.2268	0.2676	0.2936	0.3098	0.3202	0.3278	0.3331	0.3476	0.3539	0.3675
	I/mA	0.0583	0.0567	0.0535	0.0489	0.0443	0.0400	0.0364	0.0333	0.0232	0.0177	
	P/mW	0.0102	0.0129	0.0143	0.0144	0.0137	0.0128	0.0119	0.0111	0.0081	0.0063	

表 3 原始数据及所要求计算的数据

图 2 不同光强下硅光电池工作电流随工作电压变化的图像

图 3 不同光强下硅光电池功率随负载的变化图像

黄瑞轩 中国科学技术大学

3、 硅光电池开路电压与短路电流测量

测量不同光照下硅光电池的开路电压 U_{oc} 、短路电流 I_{sc} ,绘制 U_{oc} -L、 I_{sc} -L 曲线;给出 U_{oc} -L、 I_{sc} -L 的近似函数关系。原始数据如下表所示。

d/cm	20	25	30	35	40	45	50
L/lx	250.0	160.0	111.1	81.6	62.5	49.4	40.0
$U_{ m oc}/{ m V}$	0.4093	0.4084	0.3993	0.3903	0.3826	0.3753	0.3690
测电流时电压表示数/V	0.0146	0.0127	0.0089	0.0066	0.0047	0.0036	0.0029

表 4 原始数据

根据表 4 中的电压表示数,结合做实验时恒定电阻 $R=50\Omega$,可计算短路电流值如下表所示。

d/cm	20	25	30	35	40 62.5 0.3826 0.094	45	50
L/lx	250.0	160.0	111.1	81.6	62.5	49.4	40.0
$U_{\rm oc}/{ m V}$	0.4093	0.4084	0.3993	0.3903	0.3826	0.3753	0.3690
$I_{\rm sc}/{\rm mA}$	0.292	0.254	0.178	0.132	0.094	0.072	0.058

表 5 处理后的数据

图 4 得到的 Uoc-L 图线

图 5 得到的 Isc-L 图线

4、不同负载下硅光电池输出电压与光照测量

测量不同负载 R_L 的硅光电池输出电压 U 与光照度 L 的关系,绘制 U-L 曲线并分析负载对 U-L 的影响。原始数据及计算得到的 U-L 曲线如下。

_	d/cm	20	25	30	35	40	45	50
100Ω	L/lx	250	160	111.1	81.6	62.5	49.4	40.0
	U/V	0.0266	0.0238	0.0167	0.0124	0.0093	0.0072	0.0059
10000	L/lx	250	160	111.1	81.6	62.5	49.4	40
1000Ω	U/V	0.2311	0.2187	0.1653	0.1216	0.0928	0.0733	0.0586
5000Ω	L/lx	250	160	111.1	81.6	62.5	49.4	40
500002	U/V	0.377	0.3746	0.3597	0.3412	0.3227	0.2967	0.2659
10000Ω	L/lx	250	160	111.1	81.6	62.5	49.4	40
1000022	U/V	0.3952	0.3914	0.3793	0.3676	0.3556	0.3429	0.3311

表 6 原始数据

图 6 不同负载下得到的 U-L 图线

可以看到,负载越大,在同一光照度下硅光电池的输出电压也越大。而且当负载越小时,负载变化对输出电压的变化影响越大。