Mechanism design: Multi-parameter environments

Alexandros Voudouris

University of Oxford

- A set of *n* agents
- A finite set Ω of **outcomes**

- A set of *n* agents
- A finite set Ω of **outcomes**
- Each agent i has a private non-negative value $v_i(\omega)$ for every outcome $\omega \in \Omega$

- A set of *n* agents
- A finite set Ω of **outcomes**
- Each agent i has a private non-negative value $v_i(\omega)$ for every outcome $\omega \in \Omega$
- The social welfare of an outcome $\omega \in \Omega$ is $\sum_i v_i(\omega)$

- A set of *n* agents
- A finite set Ω of **outcomes**
- Each agent i has a private non-negative value $v_i(\omega)$ for every outcome $\omega \in \Omega$
- The social welfare of an outcome $\omega \in \Omega$ is $\sum_i v_i(\omega)$

Our goals:

- Incentivize the agents to truthfully report their values
- Choose an outcome that maximizes the social welfare

• There are only n+1 outcomes, corresponding to the number of possible winners (if any)

- There are only n+1 outcomes, corresponding to the number of possible winners (if any)
- In the standard model, the value of each agent is 0 in all n outcomes in which she loses

- There are only n+1 outcomes, corresponding to the number of possible winners (if any)
- In the standard model, the value of each agent is 0 in all n outcomes in which she loses
- This leaves only one unknown parameter per agent, her value for the outcome in which she wins

- There are only n+1 outcomes, corresponding to the number of possible winners (if any)
- In the standard model, the value of each agent is 0 in all n outcomes in which she loses
- This leaves only one unknown parameter per agent, her value for the outcome in which she wins
- In general, the agents might have different values for the possible winners of the item

Multiple indivisible items for sale

- Multiple indivisible items for sale
- The agents might have complex preferences over the possible item combinations

- Multiple indivisible items for sale
- The agents might have complex preferences over the possible item combinations
- For n agents and a set M of m items, the set of outcomes consists of all n-vectors $(X_1, ..., X_n)$ such that $\bigcup_i X_i \subseteq M$ and $X_i \cap X_j = \emptyset$, $\forall i \neq j$

- Multiple indivisible items for sale
- The agents might have complex preferences over the possible item combinations
- For n agents and a set M of m items, the set of outcomes consists of all n-vectors $(X_1, ..., X_n)$ such that $\bigcup_i X_i \subseteq M$ and $X_i \cap X_j = \emptyset$, $\forall i \neq j$
 - There are $(n+1)^m$ different outcomes

- Multiple indivisible items for sale
- The agents might have complex preferences over the possible item combinations
- For n agents and a set M of m items, the set of outcomes consists of all n-vectors $(X_1, ..., X_n)$ such that $\bigcup_i X_i \subseteq M$ and $X_i \cap X_j = \emptyset$, $\forall i \neq j$
 - There are $(n+1)^m$ different outcomes
- Each agent i has a private value $v_i(S)$ for every possible bundle $S \subseteq M$ of items

- Multiple indivisible items for sale
- The agents might have complex preferences over the possible item combinations
- For n agents and a set M of m items, the set of outcomes consists of all n-vectors $(X_1, ..., X_n)$ such that $\bigcup_i X_i \subseteq M$ and $X_i \cap X_j = \emptyset$, $\forall i \neq j$
 - There are $(n+1)^m$ different outcomes
- Each agent i has a private value $v_i(S)$ for every possible bundle $S \subseteq M$ of items
 - Each agent i has 2^m parameters

• A general solution for any environment

- A general solution for any environment
- The VCG (Vickrey-Clarke-Groves) mechanisms implement (truthfully) the social welfare maximizing outcome

- A general solution for any environment
- The VCG (Vickrey-Clarke-Groves) mechanisms implement (truthfully) the social welfare maximizing outcome
- Allocation rule: Maximize the social welfare according to the input

$$x(b) = \arg \max_{\omega \in \Omega} \sum_{i} b_i(\omega)$$

- A general solution for any environment
- The VCG (Vickrey-Clarke-Groves) mechanisms implement (truthfully) the social welfare maximizing outcome
- Allocation rule: Maximize the social welfare according to the input

$$x(b) = \arg \max_{\omega \in \Omega} \sum_{i} b_i(\omega)$$

• Payment rule: For a set of functions h_1, \dots, h_n such that h_i is independent of the bid of agent i,

$$p_i(\boldsymbol{b}) = h_i(\boldsymbol{b}_{-i}) - \sum_{j \neq i} b_j(\boldsymbol{x}(\boldsymbol{b}))$$

Theorem

Every VCG mechanism is truthful and maximizes the social welfare

Theorem

Every VCG mechanism is truthful and maximizes the social welfare

$$u_i(\boldsymbol{b}) = v_i(\boldsymbol{x}(\boldsymbol{b})) - p_i(\boldsymbol{b})$$

Theorem

Every VCG mechanism is truthful and maximizes the social welfare

$$u_i(\mathbf{b}) = v_i(\mathbf{x}(\mathbf{b})) - p_i(\mathbf{b})$$

$$= v_i(\mathbf{x}(\mathbf{b})) - \left(h_i(\mathbf{b}_{-i}) - \sum_{j \neq i} b_j(\mathbf{x}(\mathbf{b}))\right)$$

Theorem

Every VCG mechanism is truthful and maximizes the social welfare

$$u_{i}(\boldsymbol{b}) = v_{i}(\boldsymbol{x}(\boldsymbol{b})) - p_{i}(\boldsymbol{b})$$

$$= v_{i}(\boldsymbol{x}(\boldsymbol{b})) - \left(h_{i}(\boldsymbol{b}_{-i}) - \sum_{j \neq i} b_{j}(\boldsymbol{x}(\boldsymbol{b}))\right)$$

$$= v_{i}(\boldsymbol{x}(\boldsymbol{b})) + \sum_{j \neq i} b_{j}(\boldsymbol{x}(\boldsymbol{b})) - h_{i}(\boldsymbol{b}_{-i})$$

Theorem

Every VCG mechanism is truthful and maximizes the social welfare

$$\begin{aligned} u_i(\boldsymbol{b}) &= v_i\big(\boldsymbol{x}(\boldsymbol{b})\big) - p_i(\boldsymbol{b}) \\ &= v_i\big(\boldsymbol{x}(\boldsymbol{b})\big) - \left(h_i(\boldsymbol{b}_{-i}) - \sum_{j \neq i} b_j\big(\boldsymbol{x}(\boldsymbol{b})\big)\right) \\ &= v_i\big(\boldsymbol{x}(\boldsymbol{b})\big) + \sum_{j \neq i} b_j\big(\boldsymbol{x}(\boldsymbol{b})\big) \underbrace{\left(h_i(\boldsymbol{b}_{-i})\right)}_{\text{independent of } b_i} \end{aligned}$$

Theorem

Every VCG mechanism is truthful and maximizes the social welfare

• The utility of agent *i* is

$$u_{i}(\mathbf{b}) = v_{i}(\mathbf{x}(\mathbf{b})) - p_{i}(\mathbf{b})$$

$$= v_{i}(\mathbf{x}(\mathbf{b})) - \left(h_{i}(\mathbf{b}_{-i}) - \sum_{j \neq i} b_{j}(\mathbf{x}(\mathbf{b}))\right)$$

$$= v_{i}(\mathbf{x}(\mathbf{b})) + \sum_{j \neq i} b_{j}(\mathbf{x}(\mathbf{b})) + h_{i}(\mathbf{b}_{-i})$$
independent of b_{i}

The social welfare according to the true value of agent i and the bids of the other agents

 Agent i cares about the welfare of all agents (based on the reported valuations) and aims to maximize the quantity

$$v_i(\mathbf{x}(\mathbf{b})) + \sum_{j \neq i} b_j(\mathbf{x}(\mathbf{b}))$$

 Agent i cares about the welfare of all agents (based on the reported valuations) and aims to maximize the quantity

$$v_i(\mathbf{x}(\mathbf{b})) + \sum_{j \neq i} b_j(\mathbf{x}(\mathbf{b}))$$

• Since x(b) is such that

$$x(b) \in \arg\max_{\omega \in \Omega} \left\{ b_i(\omega) + \sum_{j \neq i} b_j(\omega) \right\}$$

the best response of agent i is to set $b_i = v_i$

 Agent i cares about the welfare of all agents (based on the reported valuations) and aims to maximize the quantity

$$v_i(\mathbf{x}(\mathbf{b})) + \sum_{j \neq i} b_j(\mathbf{x}(\mathbf{b}))$$

• Since x(b) is such that

$$x(b) \in \arg\max_{\omega \in \Omega} \left\{ b_i(\omega) + \sum_{j \neq i} b_j(\omega) \right\}$$

the best response of agent i is to set $b_i = v_i$

Therefore every agent i truthfully reports her true values

 Agent i cares about the welfare of all agents (based on the reported valuations) and aims to maximize the quantity

$$v_i(\mathbf{x}(\mathbf{b})) + \sum_{j \neq i} b_j(\mathbf{x}(\mathbf{b}))$$

• Since x(b) is such that

$$\boldsymbol{x}(\boldsymbol{b}) \in \arg\max_{\omega \in \Omega} \left\{ b_i(\omega) + \sum_{j \neq i} b_j(\omega) \right\}$$

the best response of agent i is to set $b_i = v_i$

- Therefore every agent i truthfully reports her true values
- The mechanism is designed so that the incentives of the agents are aligned with the goal of maximizing the social welfare

• There are a lot of different VCG mechanisms, depending on how we choose the h-functions

- There are a lot of different VCG mechanisms, depending on how we choose the h-functions
- We would like to have reasonable payment rules, that satisfy a couple of properties:
 - Individual rationality: Every agent has non-negative utility, and therefore incentive to participate
 - No positive transfers: The mechanism does not pay the agents,
 the agents pay the mechanism

Clarke payments: define

$$h_i(\boldsymbol{v}_{-i}) = \max_{\omega \in \Omega} \sum_{j \neq i} v_j(\omega)$$

• Clarke payments: define

$$h_i(\boldsymbol{v}_{-i}) = \max_{\omega \in \Omega} \sum_{j \neq i} v_j(\omega)$$

and, hence

$$p_i(\mathbf{v}) = \max_{\omega \in \Omega} \sum_{j \neq i} v_j(\omega) - \sum_{j \neq i} v_j(\mathbf{x}(\mathbf{v}))$$

Clarke payments: define

$$h_i(\boldsymbol{v}_{-i}) = \max_{\omega \in \Omega} \sum_{j \neq i} v_j(\omega)$$

and, hence

$$p_i(\boldsymbol{v}) = \max_{\omega \in \Omega} \sum_{j \neq i} v_j(\omega) - \sum_{j \neq i} v_j(\boldsymbol{x}(\boldsymbol{v}))$$

- The payment of agent i is the difference between the maximum social welfare of the other agents when she does not participate, and the social welfare when she participates
- Agent i pays the loss in welfare due to her participation

Theorem

A VCG mechanism with Clarke payments satisfies the properties of individual rationality and no positive transfers

Theorem

A VCG mechanism with Clarke payments satisfies the properties of individual rationality and no positive transfers

No positive transfers:

$$p_i(\mathbf{v}) = \max_{\omega \in \Omega} \sum_{j \neq i} v_j(\omega) - \sum_{j \neq i} v_j(\mathbf{x}(\mathbf{v})) \ge 0$$

Clarke payments

Theorem

A VCG mechanism with Clarke payments satisfies the properties of individual rationality and no positive transfers

No positive transfers:

$$p_i(\boldsymbol{v}) = \max_{\omega \in \Omega} \sum_{j \neq i} v_j(\omega) - \sum_{j \neq i} v_j(\boldsymbol{x}(\boldsymbol{v})) \ge 0$$

Individual rationality:

$$u_i(\mathbf{v}) = \sum_j v_j(\mathbf{x}(\mathbf{v})) - \max_{\omega \in \Omega} \sum_{j \neq i} v_j(\omega)$$

Clarke payments

Theorem

A VCG mechanism with Clarke payments satisfies the properties of individual rationality and no positive transfers

No positive transfers:

$$p_i(\boldsymbol{v}) = \max_{\omega \in \Omega} \sum_{j \neq i} v_j(\omega) - \sum_{j \neq i} v_j(\boldsymbol{x}(\boldsymbol{v})) \ge 0$$

Individual rationality:

$$u_{i}(\mathbf{v}) = \sum_{j} v_{j}(\mathbf{x}(\mathbf{v})) - \max_{\omega \in \Omega} \sum_{j \neq i} v_{j}(\omega)$$
$$= \max_{\omega \in \Omega} \sum_{j} v_{j}(\omega) - \max_{\omega \in \Omega} \sum_{j \neq i} v_{j}(\omega) \ge 0$$

Drawbacks of VCG mechanisms

- Preference elicitation: VCG mechanisms demand from each agent to communicate her values for every possible outcome
 - Not practical in many situations: communicating 2^m parameters in the case of combinatorial auctions is impossible, even for small m

Drawbacks of VCG mechanisms

- Preference elicitation: VCG mechanisms demand from each agent to communicate her values for every possible outcome
 - Not practical in many situations: communicating 2^m parameters in the case of combinatorial auctions is impossible, even for small m
- Social welfare maximization might be a hard problem
- Knapsack auctions:
 - each agent i demands w_i items and has a private value v_i
 - the seller has a total amount of W items
 - Even though every agent has only one private parameter, maximizing the social welfare is equivalent to the Knapsack problem, which is NP-hard

Single-Minded Bidders

• Each bidder has a (private) set $T_i \in M$ and there is a private parameter $v_i \in \mathbb{R}^+$ s.t.

$$v_i(S) = \begin{cases} v_i & \text{if } S \supseteq T_i \\ 0 & \text{otherwise} \end{cases}$$

• A bid in this context is a pair (b_i, S_i) .

Single-Minded Bidders

• Each bidder has a (private) set $T_i \in M$ and there is a private parameter $v_i \in \mathbb{R}^+$ s.t.

$$v_i(S) = \begin{cases} v_i & \text{if } S \supseteq T_i \\ 0 & \text{otherwise} \end{cases}$$

- A bid in this context is a pair (b_i, S_i) .
- Next we will talk about the greedy mechanism ..

Sort the bidders s.t.

$$\frac{b_1}{\sqrt{|S_1|}} \ge \frac{b_2}{\sqrt{|S_2|}} \ge \cdots \frac{b_n}{\sqrt{|S_n|}}.$$

- $W = \emptyset$ (W is the set of agents which can get their S_i 's.)
- For i from 1 to n do: if $S_i \cap (\bigcup_{j \in W} S_j) = \emptyset$, add i to W.
- Return the allocation which gives S_i to player i iff $i \in W$.

We'll set $p_i = 0$ if $i \notin W$.

Sort the bidders s.t.

$$\frac{b_1}{\sqrt{|S_1|}} \ge \frac{b_2}{\sqrt{|S_2|}} \ge \cdots \frac{b_n}{\sqrt{|S_n|}}.$$

- $W = \emptyset$ (W is the set of agents which can get their S_i 's.)
- For i from 1 to n do: if $S_i \cap (\bigcup_{j \in W} S_j) = \emptyset$, add i to W.
- Return the allocation which gives S_i to player i iff $i \in W$.

We'll set $p_i=0$ if $i\not\in W$. If $i\in W$, let $\alpha(i)$ be the minimum index such that $S_i\cap S_{\alpha(i)}\neq\emptyset$ and $S_k\cap S_{\alpha(i)}=\emptyset$ for all $k<\alpha(i)$ with $k\neq i$ and $k\in W$.

• Sort the bidders s.t.

$$\frac{b_1}{\sqrt{|S_1|}} \ge \frac{b_2}{\sqrt{|S_2|}} \ge \cdots \frac{b_n}{\sqrt{|S_n|}}.$$

- $W = \emptyset$ (W is the set of agents which can get their S_i 's.)
- For i from 1 to n do: if $S_i \cap (\bigcup_{j \in W} S_j) = \emptyset$, add i to W.
- Return the allocation which gives S_i to player i iff $i \in W$.

We'll set $p_i=0$ if $i\not\in W$. If $i\in W$, let $\alpha(i)$ be the minimum index such that $S_i\cap S_{\alpha(i)}\neq\emptyset$ and $S_k\cap S_{\alpha(i)}=\emptyset$ for all $k<\alpha(i)$ with $k\neq i$ and $k\in W$. That is, $\alpha(i)$ is the first player who lost due to bidder i: if i had not been participating then $\alpha(i)$ would have been in W.

Sort the bidders s.t.

$$\frac{b_1}{\sqrt{|S_1|}} \ge \frac{b_2}{\sqrt{|S_2|}} \ge \cdots \frac{b_n}{\sqrt{|S_n|}}.$$

- $W = \emptyset$ (W is the set of agents which can get their S_i 's.)
- For i from 1 to n do: if $S_i \cap (\bigcup_{j \in W} S_j) = \emptyset$, add i to W.
- Return the allocation which gives S_i to player i iff $i \in W$.

We'll set $p_i=0$ if $i\not\in W$. If $i\in W$, let $\alpha(i)$ be the minimum index such that $S_i\cap S_{\alpha(i)}\neq\emptyset$ and $S_k\cap S_{\alpha(i)}=\emptyset$ for all $k<\alpha(i)$ with $k\neq i$ and $k\in W$. That is, $\alpha(i)$ is the first player who lost due to bidder i: if i had not been participating then $\alpha(i)$ would have been in W. If no such $\alpha(i)$ exists, then we set $p_i=0$. Otherwise, we set

$$p_i = \frac{b_{\alpha(i)}}{\sqrt{|S_{\alpha(i)}|/|S_i|}} = b_{\alpha(i)} \sqrt{\frac{|S_i|}{|S_{\alpha(i)}|}}$$

The Analysis

- The mechanism is polynomial time and outputs a valid allocation.
- Incentive Compatibility: monotonicity and critical payment
- Social Welfare Approximately.

• Monotonicity: increasing b_i or decreasing S_i can only move i earlier in the greedy ordering.

- Monotonicity: increasing b_i or decreasing S_i can only move i earlier in the greedy ordering.
- Critical Payment: if i wins then the price she pays is the smallest x such that i would still win if she had bid (x, S_i) .

- Monotonicity: increasing b_i or decreasing S_i can only move i earlier in the greedy ordering.
- Critical Payment: if i wins then the price she pays is the smallest x such that i would still win if she had bid (x,S_i) . When $\alpha(i)$ doesn't exists. Then there is no other bidder who fails to win due to bidder i. So she is charged 0, the critical payment.

- Monotonicity: increasing b_i or decreasing S_i can only move i earlier in the greedy ordering.
- Critical Payment: if i wins then the price she pays is the smallest x such that i would still win if she had bid (x,S_i) . When $\alpha(i)$ doesn't exists. Then there is no other bidder who fails to win due to bidder i. So she is charged 0, the critical payment. Suppose $\alpha(i)$ does exist. Then i will still win as long as it appears before $\alpha(i)$ in the ordering. Thus the critical payment is x such that $\frac{x}{\sqrt{|S_i|}} = \frac{b_{\alpha(i)}}{\sqrt{|S_{\alpha(i)}|}},$ so we have the critical payment is

$$b_{\alpha(i)}\sqrt{\frac{|S_i|}{|S_{\alpha(i)}|}} = p_i.$$

Both Properties are Enough

Theorem

Any mechanism where losers pay 0 which has both the monotonicity and critical payment properties is incentive compatible.

Both Properties are Enough

Theorem

Any mechanism where losers pay 0 which has both the monotonicity and critical payment properties is incentive compatible.

Proof.

Fix player $i \in [n]$ and all bids other than i's. Let u(b,S) be the utility that player i would get by bidding (b,S), so $u(b,S) = v_i(S) - p_i(b,S)$. By the critical payment, we know $p_i(b,S) = \inf \{x: i \text{ wins with bid } (x,S)\}$.

- non-negative utility: 0 or $v_i p_i(b, T_i) \ge 0$.
- dominant strategy: $u(v_i, T_i) \ge u(b, T_i) \ge u(b, S)$ for all (b, S) with $T_i \subseteq S$ and (b, S) is a winning bid. (Why?)

ullet Easy when (b,S) is a losing bid, since non-negative utility

- ullet Easy when (b,S) is a losing bid, since non-negative utility
- Obvious if $T_i \not\subseteq S$, since receiving a bundle valued zero

- ullet Easy when (b,S) is a losing bid, since non-negative utility
- Obvious if $T_i \not\subseteq S$, since receiving a bundle valued zero
- So for the first part, we just need to show $p_i(b, T_i) \leq p_i(b, S)$. Holds by the monotonicity property and $T_i \subseteq S$.

- ullet Easy when (b,S) is a losing bid, since non-negative utility
- Obvious if $T_i \not\subseteq S$, since receiving a bundle valued zero
- So for the first part, we just need to show $p_i(b,T_i) \leq p_i(b,S)$. Holds by the monotonicity property and $T_i \subseteq S$.
- $u(v_i,T_i)=u(b,T_i)$ when (v_i,T_i) is a winning bid, since (b,T_i) is a winning bid; $p_i(b,T_i)\geq v_i$ if (v_i,T_i) is not a winning bid.

Let OPT be the winners in an optimal allocation, and \boldsymbol{W} be ours.

Let OPT be the winners in an optimal allocation, and \boldsymbol{W} be ours.

Theorem

$$\sum_{i \in \mathsf{OPT}} v_i \leq \sqrt{m} \cdot \sum_{i \in W} v_i.$$

Let OPT be the winners in an optimal allocation, and ${\cal W}$ be ours.

Theorem

$$\sum_{i \in \mathsf{OPT}} v_i \le \sqrt{m} \cdot \sum_{i \in W} v_i.$$

Let $\mathsf{OPT}_i = \{j \in \mathsf{OPT} \mid j \geq i \land T_i \cap T_j \neq \emptyset\}$. Note that $\mathsf{OPT} = \cup_{i \in W} \mathsf{OPT}_i$. (Why?)

Let OPT be the winners in an optimal allocation, and ${\cal W}$ be ours.

Theorem

$$\sum_{i \in \mathsf{OPT}} v_i \le \sqrt{m} \cdot \sum_{i \in W} v_i.$$

Let $\mathsf{OPT}_i = \{j \in \mathsf{OPT} \mid j \geq i \land T_i \cap T_j \neq \emptyset\}$. Note that $\mathsf{OPT} = \cup_{i \in W} \mathsf{OPT}_i$. (Why?)

$$\sum_{j \in \mathsf{OPT}_i} v_j \leq \frac{v_i}{\sqrt{|T_i|}} \sum_{j \in \mathsf{OPT}_i} \sqrt{|T_j|} \leq \frac{v_i}{\sqrt{|T_i|}} \sqrt{|\mathsf{OPT}_i|} \sqrt{\sum_{j \in \mathsf{OPT}_i} |T_j|}.$$

Let OPT be the winners in an optimal allocation, and ${\cal W}$ be ours.

Theorem

$$\sum_{i \in \mathsf{OPT}} v_i \le \sqrt{m} \cdot \sum_{i \in W} v_i.$$

Let $\mathsf{OPT}_i = \{j \in \mathsf{OPT} \mid j \geq i \land T_i \cap T_j \neq \emptyset\}$. Note that $\mathsf{OPT} = \cup_{i \in W} \mathsf{OPT}_i$. (Why?)

$$\sum_{j \in \mathsf{OPT}_i} v_j \leq \frac{v_i}{\sqrt{|T_i|}} \sum_{j \in \mathsf{OPT}_i} \sqrt{|T_j|} \leq \frac{v_i}{\sqrt{|T_i|}} \sqrt{|\mathsf{OPT}_i|} \sqrt{\sum_{j \in \mathsf{OPT}_i} |T_j|}.$$

We have $|\mathsf{OPT}_i| \leq |T_i|$ since $T_j \cap T_{j'} = \emptyset$ (They are both in OPT!).

Let OPT be the winners in an optimal allocation, and ${\cal W}$ be ours.

Theorem

$$\sum_{i \in \mathsf{OPT}} v_i \leq \sqrt{m} \cdot \sum_{i \in W} v_i.$$

Let $\mathsf{OPT}_i = \{j \in \mathsf{OPT} \mid j \geq i \land T_i \cap T_j \neq \emptyset\}$. Note that $\mathsf{OPT} = \cup_{i \in W} \mathsf{OPT}_i$. (Why?)

$$\sum_{j \in \mathsf{OPT}_i} v_j \leq \frac{v_i}{\sqrt{|T_i|}} \sum_{j \in \mathsf{OPT}_i} \sqrt{|T_j|} \leq \frac{v_i}{\sqrt{|T_i|}} \sqrt{|\mathsf{OPT}_i|} \sqrt{\sum_{j \in \mathsf{OPT}_i} |T_j|}.$$

We have $|\mathsf{OPT}_i| \leq |T_i|$ since $T_j \cap T_{j'} = \emptyset$ (They are both in OPT!).

$$\sum_{i \in \mathsf{OPT}} v_i \leq \sum_{i \in W} \sum_{j \in \mathsf{OPT}_i} v_j \leq \sum_{i \in W} v_i \sqrt{m} = \sqrt{m} \sum_{i \in W} v_i.$$