Introduction

Single variable model

Multiple variable

Canalusian

Summary of A tutorial on the free-energy framework for modelling perception and learning by Rafal Bogacz

Marco Casari

University of Turin

Complex system in neuroscience, 12 December 2023

Introduction

Single variable model

Multiple variable

Conclusion

Predictive coding model of Rao and Ballard.

Introduction

Single variable model

Multiple variable model

- Predictive coding model of Rao and Ballard.
- Free-energy model of Friston.

the
free-energy
framework
for modelling
perception
and learning
by Rafal

Marco Casari

Introduction

Single variable model

Multiple variable model

Canalusia

- Predictive coding model of Rao and Ballard.
- Free-energy model of Friston.
- Hebbian plasticity.

Introduction

Single variable model

Multiple variable

- Predictive coding model of Rao and Ballard.
- Free-energy model of Friston.
- Hebbian plasticity.
- Free energy minimization.

Introduction

Single variable model

Multiple variable

Conclusion

1 Local computation.

Introduction

Single variable model

Multiple variable

Canalusia

- Local computation.
- 2 Local plasticity.

Introduction

Single variable model

Multiple variable

- Local computation.
- 2 Local plasticity.
- 3 Basic neuronal computation.

Introduction

Single variable model

Multiple variables

Conclusion

Single variable model

- Feature is a scalar variable $v \in \Omega_v$.
- Stimulus is a scalar variable $u \in \Omega_u$.

Introductio

Single variable model

Multiple variables

- Feature is a scalar variable $v \in \Omega_v$.
- Stimulus is a scalar variable $u \in \Omega_u$.
- Relation between feature and stimulus is a differentiable function $g:\Omega_V\to\Omega_U$.

Introduction

Single variable model

Multiple variable: model

- Feature is a scalar variable $v \in \Omega_v$.
- Stimulus is a scalar variable $u \in \Omega_u$.
- Relation between feature and stimulus is a differentiable function $g: \Omega_V \to \Omega_U$.
- Sensory input p(u|v) is affected by gaussian noise and it has mean g(v) and variance Σ_u .

Introduction

Single variable model

Multiple variable: model

- Feature is a scalar variable $v \in \Omega_v$.
- Stimulus is a scalar variable $u \in \Omega_u$.
- Relation between feature and stimulus is a differentiable function $g: \Omega_V \to \Omega_U$.
- Sensory input p(u|v) is affected by gaussian noise and it has mean g(v) and variance Σ_u .
- Prior knowledge of the feature p(v) follows a gaussian distribution with mean v_p and variance Σ_p .

Single variable model

Exact solution to the inference problem

Bayes theorem:

$$p(v|u) = \frac{p(v)p(u|v)}{p(u)} \quad . \tag{1}$$

Single variable model

Exact solution to the inference problem

Bayes theorem:

$$p(v|u) = \frac{p(v)p(u|v)}{p(u)} \quad . \tag{1}$$

Marginal likelihood of stimuli:

$$p(u) = \int_{\Omega_V} p(v)p(u|v) \, \mathrm{d}v \quad . \tag{2}$$

Introductio

Single variable model

Multiple variable model

Conclusion

• Bayes theorem:

$$p(v|u) = \frac{p(v)p(u|v)}{p(u)} \quad . \tag{1}$$

Marginal likelihood of stimuli:

$$p(u) = \int_{\Omega_v} p(v)p(u|v) \, \mathrm{d}v \quad . \tag{2}$$

• No implementation in simple biological systems.

Industrial continu

Single variable model

Multiple variable

Canalusia

Approximate solution to the inference problem

• Most likely value of the feature is a scalar variable $\phi \in \Omega_{\nu}$.

Multiple variable

Canalusia

Approximate solution to the inference problem

- Most likely value of the feature is a scalar variable $\phi \in \Omega_{\nu}$.
- Equivalent to maximize negative free energy with respect to the feature:

$$F(v,u) = \ln \left(p(v)p(u|v) \right) \quad . \tag{3}$$

Multiple variables model

Conclusio

Approximate solution to the inference problem

- Most likely value of the feature is a scalar variable $\phi \in \Omega_{\nu}$.
- Equivalent to maximize negative free energy with respect to the feature:

$$F(v,u) = \ln (p(v)p(u|v)) \quad . \tag{3}$$

Prediction errors:

$$\varepsilon_p = \frac{v - v_p}{\Sigma_p} \quad , \tag{4}$$

$$\varepsilon_u = \frac{u - g(v)}{\Sigma_u} \quad . \tag{5}$$

Introduction

Single variable model

Multiple variable

Fig. 3 from article: network implementation of the dynamical system

$$\begin{cases} \dot{\phi} = \varepsilon_{u} g'(\phi) - \varepsilon_{p} \\ \dot{\varepsilon}_{p} = \phi - v_{p} - \Sigma_{p} \varepsilon_{p} \\ \dot{\varepsilon}_{u} = u - g(\phi) - \Sigma_{u} \varepsilon_{u} \end{cases}$$
 (6)

Introductio

Single variable model

Multiple variables

Canalusia

Learning model parameters

• Choose model parameters to maximize p(u).

Introduction

Single variable model

Multiple variables model

- Choose model parameters to maximize p(u).
- Equivalent to maximize negative free energy with respect to parameters:

$$\frac{\partial F}{\partial \nu_p} = \frac{\phi - \nu_p}{\Sigma_p} \quad , \tag{7}$$

$$\frac{\partial F}{\partial \Sigma_p} = \frac{1}{2} \left(\frac{(\phi - \nu_p)^2}{\Sigma_p^2} - \frac{1}{\Sigma_p} \right) \quad , \tag{8}$$

$$\frac{\partial F}{\partial \Sigma_u} = \frac{1}{2} \left(\frac{(u - g(\phi))^2}{\Sigma_u^2} - \frac{1}{\Sigma_u} \right) \quad . \tag{9}$$

Introduction

Single variable model

Multiple variables model

Conclusion

- Choose model parameters to maximize p(u).
- Equivalent to maximize negative free energy with respect to parameters:

$$\frac{\partial F}{\partial v_p} = \frac{\phi - v_p}{\Sigma_p} \quad , \tag{7}$$

$$\frac{\partial F}{\partial \Sigma_p} = \frac{1}{2} \left(\frac{(\phi - \nu_p)^2}{\Sigma_p^2} - \frac{1}{\Sigma_p} \right) \quad , \tag{8}$$

$$\frac{\partial F}{\partial \Sigma_u} = \frac{1}{2} \left(\frac{(u - g(\phi))^2}{\Sigma_u^2} - \frac{1}{\Sigma_u} \right) \quad . \tag{9}$$

• Hebbian plasticity is satisfied using prediction errors.

Multiple variable

Canalusia

Learning relation parameter

• Linear relation:

$$g(v,\theta) = \theta v \quad . \tag{10}$$

Single variable model

Learning relation parameter

Linear relation:

$$g(v,\theta) = \theta v \quad . \tag{10}$$

Nonlinear relation:

$$g(v,\theta) = \theta h(v)$$
 . (11)

Introductio

Single variable model

Multiple variables

Conclusion

• Linear relation:

$$g(v,\theta) = \theta v \quad . \tag{10}$$

Nonlinear relation:

$$g(v,\theta) = \theta h(v) \quad . \tag{11}$$

• Gradient of negative free energy for learning:

$$\frac{\partial F}{\partial \theta} = \frac{u - \theta h(\phi)}{\Sigma_u} h(\phi) = \varepsilon_u h(\phi) \quad . \tag{12}$$

Introduction

Single variable model

Multiple

Canalusia

• Minimization of Kullback-Leibler divergence:

$$KL(q(v)||p(v|u)) = \int_{\Omega_v} q(v) \ln \left(\frac{q(v)}{p(v|u)}\right) dv$$
 . (13)

Introduction

Single variable model

Multiple variable model

Conclusion

• Minimization of Kullback-Leibler divergence:

$$KL(q(v)||p(v|u)) = \int_{\Omega_v} q(v) \ln \left(\frac{q(v)}{p(v|u)}\right) dv$$
 . (13)

Definition of negative free energy:

$$F(v,u) = \int_{\Omega_v} q(v) \ln \left(\frac{p(v,u)}{q(v)} \right) dv \quad . \tag{14}$$

Introduction

Single variable model

Multiple variable: model

Conclusion

• Minimization of Kullback-Leibler divergence:

$$KL(q(v)||p(v|u)) = \int_{\Omega_v} q(v) \ln \left(\frac{q(v)}{p(v|u)}\right) dv$$
 . (13)

Definition of negative free energy:

$$F(v,u) = \int_{\Omega_v} q(v) \ln \left(\frac{p(v,u)}{q(v)} \right) dv \quad . \tag{14}$$

• For the models discussed in the paper: $q(v) = \delta(v - \phi)$.

Introduction

Single variable model

Multiple variables model

Fig. 5 from article: example of a model with 2 features and 2 stimuli. Same equations in matrix notation, but local plasticity is not satisfied.

Introductio

Single variable

Multiple variables model

Canalusia

Hierarchical structure implementation

Parallel to structure of cortical areas.

Introductio

Single variable model

Multiple variables model

Conclusion

Hierarchical structure implementation

- Parallel to structure of cortical areas.
- Generalized equations for the inference task:

$$\dot{\vec{\phi}}_i = -\vec{\varepsilon}_i + h'(\vec{\phi}_i) \times \mathbf{\Theta}_{i-1}^{\mathsf{T}} \vec{\varepsilon}_{i-1} \quad , \tag{15}$$

$$\dot{\vec{\varepsilon}}_i = \vec{\phi}_i - \mathbf{\Theta}_i h(\vec{\phi}_{i+1}) - \mathbf{\Sigma}_i \vec{\varepsilon}_i \quad . \tag{16}$$

Generalized equations for the learning task:

$$\frac{\partial F}{\partial \mathbf{\Sigma}_{i}} = \frac{1}{2} (\vec{\varepsilon}_{i} \vec{\varepsilon}_{i}^{\mathsf{T}} - \mathbf{\Sigma}_{i}^{-1}) \quad , \tag{17}$$

$$\frac{\partial F}{\partial \mathbf{\Theta}_{i}} = \vec{\varepsilon}_{i} h(\vec{\phi}_{i+1})^{\mathsf{T}} \quad . \tag{18}$$

Introduction

Single variable model

Multiple variables model

Fig. 7 from article: networks satisfying local plasticity for (a) single variable model and (b) multiple variables model. They implement the generalized dynamical system

$$\begin{cases}
\dot{\vec{\varepsilon}_i} = \vec{\phi}_i - g_i(\vec{\phi}_{i+1}) - \vec{e}_i \\
\dot{\vec{e}_i} = \mathbf{\Sigma}_i \vec{\varepsilon}_i - \vec{e}_i
\end{cases}$$
(19)

Introduction

Single variable model

Multiple variable model

- Stimuli weighted by noise.
- Learn covariance of stimuli.
- Attentional modulation.