

Joint Swift-INTEGRAL Observations and Plans

Neil Gehrels & Jack Tueller - NASA/GSFC

INTEGRAL Workshop
Sardinia
October 17, 2007

Swift GRB from April 20

BAT prompt emission XRT afterglow lightcurve

Outline

Long GRBs

Collapsar Understanding

Short GRBs

Afterglow

Reduced Trigger Threshold

Hard X-ray Sky Survey

Long GRBs

Kouveliotou et al. 1993

6.29	050904	2.35	070110
5.47	060927	2.31	070506
5.3	050814	2.30	060124
5.11	060522	2.28	050922C
4.9	060510B	2.04	070611
4.41	060223A	1.95	050315
4.27	050505	1.71	050802
4.05	060206	1.55	051111
3.97	050738	1.51	060502A
3.91	060210	1.50	070306
3.71	060605	1.49	060418
3.69	060906	1.44	050318
3.53	060115	1.31	061121
3.44	061110B	1.29	050126
3.43	060707	1.26	061007
3.36	061222B	1.17	070209
3.34	050908	0.97	070419A
3.24	050319	0.94	051018
3.21	060926	0.84	070318
3.21	060526	0.83	050624
3.08	050507A	0.76	061110A
2.95	070411	0.70	060904B
2.90	050401	0.65	050416A
2.82	050603	0.62	070612A
2.71	060714	0.61	050525A
2.68	060604	0.54	060729
2.41	050820A	0.44	060512
2.58	070529	0.325	060614
2.43	060905	0.209	060205
2.35	061109A	0.033	060319

60 Swift Long GRB Redshifts

$< z > = 2.3$

GRB 050505

$z = 4.27$
Duration = 60 s

XRT

z	GRB	Optical/IR Brightness
6.29	050904	J = 18 @ 3 hrs
5.6	060927	I = 16 @ 2 min
5.3	050814	K = 18 @ 23 hrs
5.11	060522	R = 21 @ 1.5 hrs
4.9	060510B	J = 19 @ 2 hr
4.41	060223A	V = 18 @ 1 min
4.05	060206	V = 17 @ 1 min

GRB 060218: GRB + Supernova

Super-long GRB - ~35 minutes
BAT, XRT, UVOT during GRB
 $z = 0.033$ $d = 145$ Mpc
SN 2006ej: SN Ib/c
 $E_{iso} = \text{few} \times 10^{49}$ erg - **underluminous**
 $E_{peak} = 5$ keV (XRF)

Campagne et al., Mazzali et al., Pinu et al., Soderberg et al.

Short GRBs

Short GRB - Current Status

Swift short GRB observations

- 18 short bursts detected (+ 2 from HETE)
- 78% with X-ray afterglow detected by XRT (95% long GRBs)
- 28% with optical detection (58% long GRBs)
- ~50% with host IDs

~1/2 shorts accompanied by soft extended emission up to 100 sec

Redshift range from $z = 0.2$ to ~ 2

- $\langle z \rangle_{\text{short}} = 0.6$
- $\langle z \rangle_{\text{long}} = 2.3$

Afterglow weaker than long GRBs

- $\langle F_X \rangle_{\text{short}} = 7 \times 10^{-10}$ erg cm $^{-2}$ s $^{-1}$ (@ $t_0 + 90$ s)
- $\langle F_X \rangle_{\text{long}} = 3 \times 10^{-9}$ erg cm $^{-2}$ s $^{-1}$ (@ $t_0 + 90$ s)

Short GRB Redshifts

6.29	050904	2.04	070611
5.47	050927	1.95	050915
5.3	050914	1.71	050902
5.11	050822	1.55	051111
4.9	050510B	1.51	050502A
4.41	050233A	1.50	070306
4.27	050505	1.49	060418
4.05	050206	1.44	050313
3.97	050730	1.31	061121
3.91	050210	1.29	050126
3.71	050605	1.26	061007
3.69	050906	1.13	060403
3.53	050115	1.17	070209
3.44	051108	0.97	070419A
3.43	050707	0.94	051016B
3.36	051222B	0.94	070319
3.34	050908	0.83	050924
3.24	050319	0.73	061217
3.21	050926	0.76	061110A
3.21	050526	0.79	050904B
3.08	050607A	0.65	050415A
2.95	070411	0.62	070512A
2.90	050401	0.61	050525A
2.82	050503	0.55	051223A
2.71	050714	0.54	060729
2.65	050606	0.44	050532
2.61	050209	0.41	061210
2.59	070526	0.29E	050902
2.45	050909	0.25E	050724
2.45	051109A	0.22E	051109E
2.38	070618	0.22E	060618
2.31	070526	0.22E	060617
2.30	050424	0.14E	061204
2.04	050223C	0.09E	050905
2.04	050223D	0.03E	050925

red = short GRBs

Three Groups

Swift GRBs (mostly)

Faint Short Hosts Large Distances

Short GRB Beaming

Bustows et al

Typical *Swift* X-ray Lightcurves

Puzzling Data

- Many GRBs do not show jet breaks
- In many other cases, optical and X-ray breaks are not coincident
- Complex shape of afterglow lightcurves makes jet break hard to find

Some argue that there is some evidence for achromatic breaks in many Swift GRBs

Curran et al. 2007

Achromatic Jet Break - GRB 060526

$z=3.21$
jet angle = 7°

Flai et al. 2007

GRB 060729 - Long Afterglow

Limit on jet angle
 $\theta > 23^\circ$

(Sari et al. equation
 $n = 0.1 \text{ cm}^{-3}$
 $\text{eff}_\gamma = 0.2$)

$E_j > 2 \times 10^{51} \text{ erg}$

$$E > 2 \times 10^{51} \text{ erg}$$

14-2010

1000 JOURNAL OF CLIMATE

卷之三

644

THE BIRDS OF THE SOLOMON ISLANDS

272 *Journal of Health Politics, Policy and Law*

Willingale et al. 2007

New Initiatives

- GRBs from slew data
 - Collaboration with Grindlay group
 - Extra ~10 GRBs/yr
- Lower BAT trigger thresholds
 - 1-2 spacecraft slews per day
 - Real GRBs recognized by XRT/UVOT detection
 - Coincidence with nearby galaxies
 - Real GRB rate unknown, perhaps 20 GRBs/yr

BAT Fluence and Flux Limits

BAT Fluence and Flux Limits

lower thresholds

BAT Sky Survey

BAT Hard X-ray Survey

color coded by type
size proportional to log BAT rate

Survey Results and Implications

- At 22 months 526 sources are detected
- Sensitivity is ~1 mCrab all sky
- Errors still dominated by statistics
- Early results
 - 15 gamma-ray blazars (one at $z=3$)
 - 3 symbiotic stars
 - Absorbed AGN (Sy 2's) are ~60% of BAT AGN
 - ⇒ Absorbed systems dominate AGN population in unbiased samples
- Implications
 - First complete knowledge of local AGN population
 - 7% of luminous ($-L^*$) galaxies in local universe have AGN

