Deep Learning for Music Analysis and Generation

Introduction

Course

Yi-Hsuan Yang Ph.D. yhyangtw@ntu.edu.tw

Course Website

https://cool.ntu.edu.tw/courses/27790

https://affige.github.io/teaching.html

Outline

- Music & Al
- The course
- Brief intro to Music Information Retrieval (MIR)

Music AI; or Music Information Research (MIR)

Music analysis

- music understanding
- music search
- music recommendation

Music generation

- MIDI generation
- audio generation
- MIDI-to-audio generation

Global Interest in Music Al

(Slide from Rujing Huang, Bob L. T. Sturm, and Andre Holzapfel, "De-centering the West: East Asian Philosophies and the Ethics of Applying Artificial Intelligence to Music," ISMIR 2021)

Positive Use Cases

- Make music easier to play with (i.e., for common people)
 - "democratization" of music creation
- Make musicians' life easier (i.e., for musicians)
 - inspire ideas
 - suggest continuations
 - suggest accompaniments
- Create copyright free music for videos or games
- Music education / learning
- Digital archival

Demo 1: Piano Genie

(Make music easier to play with)

https://magenta.tensorflow.org/pianogenie

Demo 2: Tone Transfer

(Make music easier to play with)

https://sites.research.google/tonetransfer

Demo 3: Magenta Studio

(Make musicians' life easier)

https://magenta.tensorflow.org/studio/

Continue," "Generate 4 bars," "Drumify," "Interpolate," "Groove"

Demo 4: Mixing Style Transfer

(Make musicians' life easier)

https://csteinmetz1.github.io/DeepAFx-ST/

Demo 5: Text-to-Music

(Create copyright free music for videos or games)

https://ai.honu.io/papers/musicgen/

https://huggingface.co/spaces/facebook/MusicGen

MusicGen

This is the demo for <u>MusicGen</u>, a simple and controllable model for music generation presented at: <u>"Simple and Controllable</u> Music Generation".

Duplicate Space for longer sequences, more control and no queue.

Describe your music

peaceful gospel music played by organ

Demo 6: Image-to-Sound by Adobe Firefly

https://www.youtube.com/watch?v=30xueN12guw
https://www.adobe.com/tw/sensei/generative-ai/firefly.html

Future Vision: Adobe Firefly for @AdobeVideo

Demo 7: AI MV

https://www.ziaxaza.com/

Demo 8: KaraSinger

https://jerrygood0703.github.io/KaraSinger/

Lyrics:

In this paper we propose a novel neural network model called Karaoke singer for a less studied singing voice synthesis task named score-free SVS in which the prosody and melody are spontaneously decided by machine.

Demo 9: AI Sandee

https://www.youtube.com/ watch?v=nWTuZIRU80A

「音樂製作人的工作是無法被取代的」。Al vocal 要怎麼唱,能唱得多好,終究需要專業音樂製作人,以人類的美學和經驗去引導 Al,要如何將 Al 昇華到情感面,終究還是需要製作人的能力,以及對音樂的想像力。

作為一個仍在線上的歌手與製作人,由我親自處理自己的Al vocal,讓這首歌傳達出「創作者、歌者不怕 Al 的挑戰」、「我們擁有自己聲音的控制權」等訊息,同時也是「人類的思考和意志,才是人之所以為人」的巨大宣示。

透過聆聽《教我如何做你的愛人》,試著探討:「若 AI 已經能模擬原唱的一切,那麼原唱歌手的價值會是 什麼?」

當 AI 真正學會唱歌之後,就是創作人與歌手,重新理解自身價值的時候了。....by公主

SandeeChan·陳珊妮 公主粉絲團 🤡

1d . @

今天終於能夠揭示這個真相:《教我如何做你的愛人》是陳珊妮的 AI 模型演唱,以及我選擇在白色情人節上架的原因。

順帶一提,MV 今天上線了! (還不快去看)

在 AI 發展熱議的當下,希望透過這首歌,與所有關心創作的人一起思考——如果 AI 的時代必將到來,創作人該在意的或許不是「我們是否會被取代」,而是「我們還可以做些什麼」。... See more

Demo 10: Source Separation

https://www.gaudiolab.com/technology/source-separation

№ Eagles 'Hotel California'

GAUDIO

Music AI: {signal processing, machine learning} + music

Music analysis

- music understanding
- music search
- music recommendation

Music generation

- MIDI generation
- audio generation
- MIDI-to-audio generation

Outline

- Music & Al
- The course
- Brief intro to Music Information Retrieval (MIR)

This Course: Prerequisites

- Graduate level (CommE5070) @ NTU GICE
 - It's **NOT** a music course
 - It's an EE/CS graduate-level course working on music data/problems
- Prerequisites
 - Great interest in music
 - Good background in machine learning & deep learning
 - Good coding experience in python and a deep learning framework such as PyTorch
- If you know little about deep learning → Don't take this course

This Course: Wills and Won'ts

- Will talk about
 - Domain knowledge in music data representation
 - Domain knowledge in music analysis: timbre, rhythm, pitch
 - Deep learning-based music analysis
 - Deep learning-based audio generation
 - Deep learning-based MIDI sequence generation
- Won't talk about
 - Basics in deep learning
 - Applications in other domains

Lecturer

- Lecturer
 - Yi-Hsuan Yang (楊奕軒)
 - https://affige.github.io/
 - yhyangtw@ntu.edu.tw
- Office hour
 - Thursday 9:30-11:30, or by appointment
 - Office: EE2-337 (電二)

Teaching Assistants

TA

- Fischer Yeh (葉軒瑜)
 - fish90510@gmail.com
- Wei-Jaw Lee (李維釗)
 - weijaw2000@gmail.com

Office hour

- Thursday 13:20-14:10, or by appointment
- Office: BL-505 (博理館)

Location & Time

Location: EE2-229

• Time: Thursday 7,8,9

- **7**: 14:20-15:10

- **8**: 15:20-16:10 (i.e., **10** mins earlier)

- **9**: 16:20-17:10 (i.e., **10** mins earlier)

Textbook

(for the music analysis part)

Reference textbook

Meinard Müller Fundamentals of Music Processing Using Python and Jupyter Notebooks

ISBN: 978-3-030-69808-9

Springer, April 2021

https://www.audiolabs-erlangen.de/fau/professor/mueller/bookFMP https://www.audiolabs-erlangen.de/resources/MIR/FMP/C0/C0.html

Related book

 An Introduction to Audio Content Analysis: Applications in Signal Processing and Music Informatics, Wiley

https://github.com/alexanderlerch/pyACAhttps://github.com/alexanderlerch/ACA-Slides

FMP Notebook

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C0/C0.html

Part	Title	Notions, Techniques & Algorithms	HTML	IPYNB
B impyler	<u>Basics</u>	Basic information on Python, Jupyter notebooks, Anaconda package management system, Python environments, visualizations, and other topics	[html]	[ipynb]
O (21) (11) (11)	Overview	Overview of the notebooks (https://www.audiolabs-erlangen.de/FMP)	[html]	[ipynb]
1	Music Representations	Music notation, MIDI, audio signal, waveform, pitch, loudness, timbre	[html]	[ipynb]
2	Fourier Analysis of Signals	Discrete/analog signal, sinusoid, exponential, Fourier transform, Fourier representation, DFT, FFT, STFT	[html]	[ipynb]
3	Music Synchronization	Chroma feature, dynamic programming, dynamic time warping (DTW), alignment, user interface	[html]	[ipynb]

Part	Title	Notions, Techniques & Algorithms	HTML	IPYNB
4	Music Structure Analysis	Similarity matrix, repetition, thumbnail, homogeneity, novelty, evaluation, precision, recall, F- measure, visualization, scape plot	[html]	[ipynb]
5	Chord Recognition	Harmony, music theory, chords, scales, templates, hidden Markov model (HMM), evaluation	[html]	[ipynb]
6	Tempo and Beat Tracking	Onset, novelty, tempo, tempogram, beat, periodicity, Fourier analysis, autocorrelation	[html]	[ipynb]
7	Content-Based Audio Retrieval	Identification, fingerprint, indexing, inverted list, matching, version, cover song	[html]	[ipynb]
8	Musically Informed Audio Decomposition	Harmonic/percussive separation, signal reconstruction, instantaneous frequency, fundamental frequency (F0), trajectory, nonnegative matrix factorization (NMF)	[html]	[ipynb]

Grading Policy

- Grading policy
 - Assignments (60%), 3 times
 - Final Project (40%): for teams of 2 or 3 (recommended)

- Work hard to get high score
 - I don't plan to please the students

Syllabus

- W1. Introduction to the course
- W2. Fundamentals & Music representation
- W3. Analysis I (timbre): Automatic music classification and representation learning
- (HW1: Singer classification)
- W4. Generation I: Source separation
- W5. Generation II: GAN & Vocoders
- W6. Generation III: Synthesis of notes and loops
- (HW2: GAN-based vocoder)
- W7. Analysis II (pitch): Music transcription, Melody extraction, and Chord Recognition
- W8. Analysis III (rhythm): Beat/downbeat tracking

- W9. Generation IV: Symbolic MIDI generation
- (HW3: Pop music Transformer)
- W10. Generation V: Singing voice generation
- W11. Generation VI: Differentiable DSP models and automatic mixing
- W12. Proposal of ideas of final projects
- W13. Generation VII: Symbolic MIDI generation: Advanced Topics
- W14. Generation VIII: Text-to-music generation
- W15. Miscellaneous Topics
- W16. Oral presentation of final projects

Assignments

- Programming (in python) + report (in English)
 - We assume that you have good coding experience in python and a deep learning framework such as PyTorch
 - The assignments can be **quite hard** for deep learning beginners
 - Submit code + model + report
 - NO cheating: Will run plagiarism detector
- HW1: singer classification (accuracy leaderboard)
- HW2: GAN-based vocoder (generation quality leaderboard)
- HW3: Transformer-based piano MIDI generation (quality leaderboard)

NO Cheating

• Once caught: **failure** of the course

Final Project

- For teams of 2 or **3** (recommended)
- Start earlier & form teams
- Deadline for team-up: W10
- Project pitch: W12
- Final presentation: W16
- Deadline for final report: W16+2

Final Project

Music analysis

- music semantic labeling
- music transcription
- source separation

Music generation

- MIDI generation
- audio generation
- MIDI-to-audio generation

genmusic_demo_list

https://github.com/affige/genmusic_demo_list

About

a list of demo websites for automatic music generation research

artificial-intelligence

music-generation

Resources

ML/DL

- http://speech.ee.ntu.edu.tw/~tlkagk/courses.html
- https://www.csie.ntu.edu.tw/~htlin/course/
- https://www.csie.ntu.edu.tw/~yvchen/teaching
- https://courses.cs.washington.edu/courses/cse599i/20au/ (generative models)

Music information research

- https://www.audiolabs-erlangen.de/fau/professor/mueller/teaching/2023w_mpa
- https://musicinformationretrieval.com/
- https://mac.kaist.ac.kr/~juhan/gct634/index.html
- http://www.jordipons.me/apps/teaching-materials/
- https://www.upf.edu/web/smc/audio-signal-processing-for-music-applications

Resources

- Conference proceedings
 - Int'l Soc. Music Information Retrieval Conf. (ISMIR)
 - Int'l Conf. Acoustic, Speech, and Signal Processing (ICASSP)
 - ACM MM, ACM ICMR, ACM SIGIR, IEEE ICME
- Transactions
 - IEEE Trans. Audio, Speech and Language Processing (TASLP)
 - IEEE Trans. Multimedia (TMM)
 - IEEE Trans. Signal Processing (TSP)

Additional Enrollment

https://forms.gle/p6ro7tE9ibMb5S9VA

- Sign up at NTU Cool (選課意願登記)
- AND, Fill the form before 23:59, September 9 (Saturday)
 - DL background
 - Music background
 - Ideas for final project
- Will announce the result the next Tuesday
 - Will only send a mail to those qualified
 - Will also post the result online at https://affige.github.io/teaching.html

Outline

- Music & Al
- The course
- Brief intro to Music Information Retrieval (MIR)