Some Help for the Project

Ralf Sasse and Christoph Sprenger
Institute of Information Security
ETH Zurich

FMSEC Project Help, v.1

Guarded Formulas

All property formulas in Tamarin must be guarded.

Definition (Guarded formula)

A formula φ is guarded if all its quantified subformulas are of the forms:

$$\forall \overline{x}. \ F(\overline{z})@i \Rightarrow \psi \quad \exists \overline{x}. \ F(\overline{z})@i \wedge \psi \quad \text{(and special cases: } (\forall |\exists) \overline{x}. \ F(\overline{z})@i)$$

where F is a fact and \overline{x} and \overline{z} are vectors of variables such that $\overline{x} \subseteq \overline{z} \cup \{i\}$, i.e., all bound variables appear in the fact formula $F(\overline{z})@i$.

Example

Not guarded:

$$\exists Id \ i. \ Create(A, Id, 'I')@i \lor Create(B, Id, 'R')@i$$

Guarded equivalents:

$$(\exists Id\ i.\ Create(A, Id, 'I')@i \land T) \lor (\exists Id\ i.\ Create(B, Id, 'R')@i \land T)$$

 $(\exists Id\ i.\ Create(A, Id, 'I')@i) \lor (\exists Id\ i.\ Create(B, Id, 'R')@i)$

R. Sasse, Ch. Sprenger 2 of 6

Claim and Honesty Facts

Example (Honesty Facts in Security Properties)

Secrecy:

```
\forall A \ M \ i. \ Secret(A, M)@i 
 \Rightarrow (\neg(\exists j. K(M)@j) \lor (\exists X \ j. \ Rev(X)@j \land Honest(X)@i))
```

Non-injective agreement:

```
\forall A \ B \ M \ i. \ Commit(A, B, \langle 'I', 'R', M \rangle) @i

\Rightarrow ((\exists j. \ Running(B, A, \langle 'I', 'R', M \rangle) @j)

\lor (\exists X \ j. \ Rev(X) @j \land Honest(X) @i))
```

- The honesty facts Honest(X) label the same rule (@i) as the main claim fact (e.g., Secret, Commit).
- The properties hold (i.e., secrecy of *M* resp. existence of a *Running* fact) unless an agent that is expected to be honest is compromised in the trace.

R. Sasse, Ch. Sprenger 3 of 6

Roles and Agents in Agreement

Example (Non-injective agreement of initiator with responder)

```
\forall A \ B \ M \ i. \ Commit(A, B, \langle 'I', 'R', M \rangle)@i
\Rightarrow ((\exists j. \ Running(B, A, \langle 'I', 'R', M \rangle)@j)
\vee (\exists X \ j. \ Rev(X)@j \land Honest(X)@i))
```

- Order of 'I' and 'R' fixed, meaning that the agent (A) in the initiator role agrees with the agent (B) in the responder role (on M).
- Order of agents A and B instantiating the initiator and responder roles is swapped.
- Idea is that the first agent name is the one "executing" the claim.

R. Sasse, Ch. Sprenger 4 of 6

Executability Lemmas

- Executability lemmas are so-called existential properties.
- These show the existence of some protocol trace satisfying the formula ...
- ... instead of the usual case where all traces must satisfy the formula.

Example (Executabilty in Tamarin)

Insert the keyword exists-trace between the lemma name and the formula.

```
lemma executablility: exists-trace "...(formula \varphi)..."
```

"There exists a trace that reaches the end of the protocol (expressed by φ)."

R. Sasse, Ch. Sprenger 5 of 6

Syntax Issues: Type Annotations

- You must mark index variables with a hash (#) in quantifications.
- This is not done on our slides to avoid notational clutter.

Example (Secrecy)

```
\forall A \ M \ \#i. \ Secret(A, M)@i 
 \Rightarrow (\neg(\exists \#j.K(M)@j) \lor (\exists X \ \#j. \ Rev(X)@j \land Honest(X)@i))
```

In rewrite rules:

- You must mark all occurrences of a fresh name with a tilde (e.g., ~k) or no occurrence. A similar remark holds for agent names (e.g., \$A)
- A variable that occurs only on the right-hand side of a rule must be marked public, i.e., carry a \$ annotation (e.g. $Fr(sk) \rightarrow !Ltk(\$A, sk)$).
- Generally, you should not annotate elements of messages received in *In* facts with types as this would reduce the scope of the analysis.

R. Sasse, Ch. Sprenger 6 of 6