

# UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENGENHARIA CIVIL PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

# GABRIEL MARTINS JOÃO PAULO RODRIGUES DE ANDRADE

TRABALHO DE DIFERENÇAS FINITAS.

# Prova da média harmônica da permeabilidade

Dados dois volumes (E e D) adjacentes da face e, com permeabilidades  $K_E$  e  $K_D$  temos para a equação da velocidade:



$$\vec{v} = -\frac{K_E}{\mu} \frac{(p_e - p_E)}{\frac{h_E}{2}}$$
 (Equação 1)

$$\vec{v} = -\frac{K_D}{\mu} \frac{(p_D - p_e)}{\frac{h_D}{2}}.$$
 (Equação 2)

Igualando as equações 1 e 2 temos:

$$\frac{K_E}{h_E} (p_e - p_E) = \frac{K_D}{h_D} (p_D - p_e).$$
 (Equação 3)

Isolando o termo  $p_e$ , chega-se à:

$$p_e = \frac{h_E K_D p_D + h_D K_E p_E}{h_E K_D + h_D K_E}.$$
 (Equação 4)

Substituindo a equação 4 na equação 1:

$$\vec{v} = -\frac{2K_E}{\mu h_E} \left[ \frac{h_E K_D p_D + h_D K_E p_E}{h_E K_D + h_D K_E} - p_E \right]. \tag{Equação 5}$$

Após algumas manipulações, a equação 5 pode ser escrita como

$$\vec{v} = -\frac{2}{\mu} \left[ \frac{1}{\frac{h_D}{K_D} + \frac{h_E}{K_E}} \right] (p_D - p_E). \tag{Equação 6}$$

Da mesma forma que as equações 1 e 2, a velocidade pode ser escrita como:

$$\vec{v} = -\frac{K_e}{\mu} \frac{(p_D - p_E)}{\frac{h_D + h_E}{2}}.$$
 (Equação 7)

Igualando as equações 6 e 7 temos:

$$\frac{K_e}{h_D + h_E} = \frac{1}{\frac{h_D}{K_D} + \frac{h_E}{K_E}},$$
 (Equação 8)

o que leva à

$$K_e = \frac{h_D + h_E}{\frac{h_D}{K_D} + \frac{h_E}{K_E}}.$$
 (Equação 9)

Fazendo  $h_D = h_E = h$ , temos:

$$K_e = \frac{2K_D K_E}{K_D + K_E}.$$
 (Equação 10)

Quando  $K_D = K_E = K$ , a equação 10 se torna

$$K_e = K.$$
 (Equação 11)

# Definição da transmissibilidade da face para escoamento monofásico

Para chegarmos ao valor da transmissibilidade na face, se faz necessário aplicar a equação de conservação da massa, dada por (desprezando os efeitos de compressibilidade e gravidade):

$$\nabla \cdot (\vec{v}) = q, \tag{Equação 12}$$

onde q é o termo fonte. Tomando como exemplo o escoamento unidimensional, a equação 12 tem a forma:

$$\frac{\partial}{\partial x} \left( -\frac{K}{\mu} \frac{\partial p}{\partial x} \right) = q.$$
 (Equação 13)

Aplicando o método das diferenças finitas para discretizar a equação 13, chega-se à:

$$-\frac{1}{\mu h_i} \left[ K_{i+1/2} \left( \frac{p_{i+1} - p_i}{h_{i+1/2}} \right) - K_{i-1/2} \left( \frac{p_i - p_{i-1}}{h_{i-1/2}} \right) \right] = q_i, \qquad \text{(Equação 14)}$$

onde

$$\begin{cases} h_{i+1/2} = \frac{h_i + h_{i+1}}{2} \\ h_{i-1/2} = \frac{h_i + h_{i-1}}{2} \end{cases}$$
 (Equação 15)

Os termos da equação 14, que estão dentro dos colchetes, tem a forma da equação 7. Por exemplo, no primeiro termo,  $K_{i+1/2}$  é equivalente a  $K_e$ ,  $h_{i+1/2}$  é equivalente a  $\frac{h_D + h_E}{2}$  e  $p_{i+1} - p_i$  é equivalente a  $p_D - p_E$ . Essa comparação pode ser feita também para o segundo termo dentro dos colchetes. Podemos então generalizar a equação 14 para um determinado elemento E em todas as direções cartesianas da seguinte forma:

$$\sum_{e \in E} T_e \left( p_E - p_D \right) = q_E, \tag{Equação 16}$$

onde  $T_e$  é definida como a transmissibilidade da face e, dada por:

$$T_e = \frac{K_e}{\mu h_E \left(\frac{h_D + h_E}{2}\right)},$$
 (Equação 17)

onde  $K_e$  é dada pela equação 9 e

$$\begin{cases} h_D = \frac{V_D}{A_e} \\ h_E = \frac{V_E}{A_e} \end{cases}$$
 (Equação 18)

onde  $V_D$  e  $V_E$  são os volumes dos elementos D e E respectivamente e  $A_e$  é a área da face e. Se  $h_D=h_E=h$ , a equação 17 se torna

$$T_e = \frac{K_e}{\mu h^2}.$$
 (Equação 19)

# Problema bidimensional (Escoamento em regime permanente)

- Esquema de 1/4 de Cinco Poços.
- Reservatório quadrado de Largura L = 100,
- P\_bloco\_canto\_inferior\_esquerdo = 500,
- P\_bloco\_canto\_superior\_direito = 100.
- Use uma malha quadrilateral com 16 blocos de comprimento h=25.
- O reservatório tem uma barreira no centro do domínio que é representada, por 4 blocos centrais. Para esses use uma permeabilidade de Kb= 1.
- Para o restante dos blocos da malha use Ka=10000.
- Viscosidade unitária



$$K_6 = K_7 = K_{10} = K_{11} = Kb$$
  
 $p_1 = 500$   
 $p_{16} = 100$ 

Quando as permeabilidades dos elementos adjacentes forem diferentes, a permeabilidade na face é dada por  $K_e=\frac{2KaKb}{Ka+Kb}=\frac{2(1)(10000)}{1+10000}\simeq 2$ . Para as transmissibilidades temos os seguintes valores:

- para  $K_e = 2$ :  $T_e = \frac{2}{25^2} = 0.0032 = A$ ;
- para  $K_e = 1$ :  $T_e = \frac{1}{25^2} = 0.0016 = B$ ;
- para  $K_e = 10000$ :  $T_e = \frac{10000}{25^2} = 16 = C$ .

Equações dos blocos

$$p_1 = 500$$

2:

$$C(p_2 - p_1) + A(p_2 - p_6) + C(p_2 - p_3) = 0$$
$$p_2(2C + A) - Cp_1 - Ap_6 - Cp_3 = 0$$

3:

$$C(p_3 - p_2) + A(p_3 - p_7) + C(p_3 - p_4) = 0$$
$$p_3(2C + A) - Cp_2 - Ap_7 - Cp_4 = 0$$

4:

$$C(p_4 - p_3) + C(p_4 - p_8) = 0$$
$$p_4(2C) - Cp_3 - Cp_8 = 0$$

5:

$$C(p_5 - p_1) + A(p_5 - p_6) + C(p_5 - p_9) = 0$$
$$p_5(2C + A) - Cp_1 - Ap_6 - Cp_9 = 0$$

6:

$$A(p_6 - p_2) + A(p_6 - p_5) + B(p_6 - p_7) + B(p_6 - p_{10}) = 0$$
$$p_6(2A + 2B) - Ap_2 - Ap_5 - Bp_7 - Bp_{10} = 0$$

7:

$$A(p_7 - p_3) + A(p_7 - p_8) + B(p_7 - p_6) + B(p_7 - p_{11}) = 0$$
  
$$p_7(2A + 2B) - Ap_3 - Ap_8 - Bp_6 - Bp_{11} = 0$$

8:

$$p_8(2C+A) - Cp_4 - Ap_7 - Cp_{12} = 0$$

9:

$$p_9(2C+A) - Cp_5 - Ap_{10} - Cp_{13} = 0$$

10:

$$p_{10}(2A + 2B) - Ap_9 - Ap_{14} - Bp_6 - Bp_{11} = 0$$

11:

$$p_{11}(2A+2B) - Ap_{12} - Ap_{15} - Bp_7 - Bp_{10} = 0$$

12:

$$p_{12}(2C+A) - Cp_8 - Ap_{11} - Cp_{16} = 0$$

13:

$$p_{13}(2C) - Cp_9 - Cp_{14} = 0$$

14:

$$p_{14}(2C+A) - Cp_{13} - Ap_{10} - Cp_{15} = 0$$

15:

$$p_{15}(2C+A) - Cp_{14} - Ap_{11} - Cp_{16} = 0$$

16:

$$p_{16} = 100$$

#### O sistema de equações obtido é Tp=q, onde a matriz T é

|    | 1   | 2       | 3       | 4   | 5       | 6       | 7       | 8       | 9       | 10      | 11      | 12      | 13  | 14      | 15      | 16  |
|----|-----|---------|---------|-----|---------|---------|---------|---------|---------|---------|---------|---------|-----|---------|---------|-----|
| 1  | 1   |         |         |     |         |         |         |         |         |         |         |         |     |         |         |     |
| 2  | -16 | 32.0032 | -16     |     |         | -0.0032 |         |         |         |         |         |         |     |         |         |     |
| 3  |     | -16     | 32.0032 | -16 |         |         | -0.0032 |         |         |         |         |         |     |         |         |     |
| 4  |     |         | -16     | 32  |         |         |         | -16     |         |         |         |         |     |         |         |     |
| 5  | -16 |         |         |     | 32.0032 | -0.0032 |         |         | -16     |         |         |         |     |         |         |     |
| 6  |     | -0.0032 |         |     | -0.0032 | 0.0096  | -0.0016 |         |         | -0.0016 |         |         |     |         |         |     |
| 7  |     |         | -0.0032 |     |         | -0.0016 | 0.0096  | -0.0032 |         |         | -0.0016 |         |     |         |         |     |
| 8  |     |         |         | -16 |         |         | -0.0032 | 32.0032 |         |         |         | -16     |     |         |         |     |
| 9  |     |         |         |     | -16     |         |         |         | 32.0032 | -0.0032 |         |         | -16 |         |         |     |
| 10 |     |         |         |     |         | -0.0016 |         |         | -0.0032 | 0.0096  | -0.0016 |         |     | -0.0032 |         |     |
| 11 |     |         |         |     |         |         | -0.0016 |         |         | -0.0016 | 0.0096  | -0.0032 |     |         | -0.0032 |     |
| 12 |     |         |         |     |         |         |         | -16     |         |         | -0.0032 | 32.0032 |     |         |         | -16 |
| 13 |     |         |         |     |         |         |         |         | -16     |         |         |         | 32  | -16     |         |     |
| 14 |     |         |         |     |         |         |         |         |         | -0.0032 |         |         | -16 | 32.0032 | -16     |     |
| 15 |     |         |         |     |         |         |         |         |         |         | -0.0032 |         |     | -16     | 32.0032 | -16 |
| 16 |     |         |         |     |         |         |         |         |         |         |         |         |     |         |         | 1   |

e

O vetor de pressões obtido é:

