MA 101 (Mathematics I)

Multivariable Calculus: Hints / Solutions of Tutorial Problem Set - 1

1. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$. Show that $\|\mathbf{x} + \mathbf{y}\| = \|\mathbf{x}\| + \|\mathbf{y}\|$ iff $\mathbf{y} = \mathbf{0}$ or $\mathbf{x} = \alpha \mathbf{y}$ for some $\alpha \ge 0$.

Solution: If $\mathbf{y} = \mathbf{0}$, then $\|\mathbf{x} + \mathbf{y}\| = \|\mathbf{x}\| + \|\mathbf{y}\|$. Also, if $\mathbf{x} = \alpha \mathbf{y}$ for some $\alpha \ge 0$, then $\|\mathbf{x} + \mathbf{y}\| = \|(\alpha + 1)\mathbf{y}\| = (\alpha + 1)\|\mathbf{y}\|$ and $\|\mathbf{x}\| + \|\mathbf{y}\| = \alpha\|\mathbf{y}\| + \|\mathbf{y}\| = (\alpha + 1)\|\mathbf{y}\|$, so that $\|\mathbf{x} + \mathbf{y}\| = \|\mathbf{x}\| + \|\mathbf{y}\|$.

Conversely, let $\|\mathbf{x} + \mathbf{y}\| = \|\mathbf{x}\| + \|\mathbf{y}\|$ and let $\mathbf{y} \neq \mathbf{0}$. Then $\|\mathbf{x} + \mathbf{y}\|^2 = (\|\mathbf{x}\| + \|\mathbf{y}\|)^2$, which gives $\|\mathbf{x}\|^2 + 2 \mathbf{x} \cdot \mathbf{y} + \|\mathbf{y}\|^2 = \|\mathbf{x}\|^2 + 2\|\mathbf{x}\| \|\mathbf{y}\| + \|\mathbf{y}\|^2$ and so $\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\|$. Hence $|\mathbf{x} \cdot \mathbf{y}| = \|\mathbf{x}\| \|\mathbf{y}\|$ and by the equality condition in Cauchy-Schwarz inequality, we get $\mathbf{x} = \alpha \mathbf{y}$ for some $\alpha \in \mathbb{R}$. Since we have $\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\|$, we obtain $\alpha \mathbf{y} \cdot \mathbf{y} = \|\alpha \mathbf{y}\| \|\mathbf{y}\|$, *i.e.* $\alpha \|\mathbf{y}\|^2 = |\alpha| \|\mathbf{y}\|^2$. Since $\|\mathbf{y}\| \neq 0$, we get $\alpha = |\alpha|$ and hence $\alpha \geq 0$.

2. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ and r, s > 0. Show that $B_r[\mathbf{x}] \cap B_s[\mathbf{y}] \neq \emptyset$ iff $\|\mathbf{x} - \mathbf{y}\| \leq r + s$.

Solution: Let us first assume that $B_r[\mathbf{x}] \cap B_s[\mathbf{y}] \neq \emptyset$ Then there exists $\mathbf{z} \in B_r[\mathbf{x}] \cap B_s[\mathbf{y}]$ and so $\|\mathbf{z} - \mathbf{x}\| \leq r$, $\|\mathbf{z} - \mathbf{y}\| \leq s$. Hence $\|\mathbf{x} - \mathbf{y}\| = \|\mathbf{x} - \mathbf{z} + \mathbf{z} - \mathbf{y}\| \leq \|\mathbf{x} - \mathbf{z}\| + \|\mathbf{z} - \mathbf{y}\| \leq r + s$. Conversely, let $\|\mathbf{x} - \mathbf{y}\| \leq r + s$. If $\mathbf{z} = \frac{s}{r+s} \mathbf{x} + \frac{r}{r+s} \mathbf{y}$, then $\mathbf{z} \in \mathbb{R}^m$ and $\|\mathbf{z} - \mathbf{x}\| = \frac{1}{r+s} \|s\mathbf{x} + r\mathbf{y} - r\mathbf{x} - s\mathbf{x}\| = \frac{r}{r+s} \|\mathbf{x} - \mathbf{y}\| \leq r$, i.e. $\mathbf{z} \in B_r[\mathbf{x}]$. Similarly we get $\|\mathbf{z} - \mathbf{y}\| \leq s$ and so $\mathbf{z} \in B_s[\mathbf{y}]$. Hence $\mathbf{z} \in B_r[\mathbf{x}] \cap B_s[\mathbf{y}]$ and therefore $B_r[\mathbf{x}] \cap B_s[\mathbf{y}] \neq \emptyset$.

3. Let (\mathbf{x}_n) be a sequence in \mathbb{R}^m . Show that (\mathbf{x}_n) converges in \mathbb{R}^m iff for each $\mathbf{x} \in \mathbb{R}^m$, the sequence $(\mathbf{x}_n \cdot \mathbf{x})$ converges in \mathbb{R} .

Solution: Let us first assume that (\mathbf{x}_n) converges in \mathbb{R}^m and let $\mathbf{x}_0 \in \mathbb{R}^m$ such that $\mathbf{x}_n \to \mathbf{x}_0$. If $\mathbf{x} \in \mathbb{R}^m$, then for all $n \in \mathbb{N}$, $|\mathbf{x}_n \cdot \mathbf{x} - \mathbf{x}_0 \cdot \mathbf{x}| = |(\mathbf{x}_n - \mathbf{x}_0) \cdot \mathbf{x}| \le ||\mathbf{x}_n - \mathbf{x}_0|| ||\mathbf{x}||$ (by Cauchy-Schwarz inequality). Since $\mathbf{x}_n \to \mathbf{x}_0$, we have $||\mathbf{x}_n - \mathbf{x}_0|| \to 0$ and hence $|\mathbf{x}_n \cdot \mathbf{x} - \mathbf{x}_0 \cdot \mathbf{x}| \to 0$. Therefore $\mathbf{x}_n \cdot \mathbf{x} \to \mathbf{x}_0 \cdot \mathbf{x} \in \mathbb{R}$ and so the sequence $(\mathbf{x}_n \cdot \mathbf{x})$ converges in \mathbb{R} .

Conversely, let the sequence $(\mathbf{x}_n \cdot \mathbf{x})$ converge in \mathbb{R} for each $\mathbf{x} \in \mathbb{R}^m$. Let $\mathbf{x}_n = (x_1^{(n)}, \dots, x_m^{(n)})$ for all $n \in \mathbb{N}$. By the given condition, for each $j \in \{1, \dots, m\}$, the sequence $(\mathbf{x}_j^{(n)}) = (\mathbf{x}_n \cdot \mathbf{e}_j)$ converges in \mathbb{R} . Therefore the sequence (\mathbf{x}_n) converges in \mathbb{R}^m .

4. (a) State TRUE or FALSE with justification: If (\mathbf{x}_n) is a sequence in \mathbb{R}^m having no convergent subsequence, then it is necessary that $\lim_{n\to\infty} \|\mathbf{x}_n\| = \infty$.

Solution: Let r > 0 and if possible, let $S = \{n \in \mathbb{N} : ||\mathbf{x}_n|| \le r\}$ be an infinite set. Then there exists a strictly increasing sequence (n_k) in \mathbb{N} such that $||\mathbf{x}_{n_k}|| \le r$ for all $k \in \mathbb{N}$. This implies that the subsequence (\mathbf{x}_{n_k}) of the sequence (\mathbf{x}_n) is bounded in \mathbb{R}^m and hence by the Bolzano-Weierstrass theorem in \mathbb{R}^m , (\mathbf{x}_{n_k}) has a convergent subsequence. This convergent subsequence is also a convergent subsequence of (\mathbf{x}_n) , which is a contradiction to the given condition. Therefore S is a finite set. Let $n_0 = 1$ if $S = \emptyset$ and $n_0 = \max S + 1$ if $S \neq \emptyset$. Then $||\mathbf{x}_n|| > r$ for all

 $n \geq n_0$ and hence $\lim_{n \to \infty} \|\mathbf{x}_n\| = \infty$. Therefore the given statement is TRUE.

(b) State TRUE or FALSE with justification: If $((x_n, y_n))$ is a bounded sequence in \mathbb{R}^2 such that every convergent subsequence of $((x_n, y_n))$ converges to (0, 1), then $((x_n, y_n))$ must converge to (0,1).

Solution: If possible, let $(x_n, y_n) \not\to (0, 1)$. Then there exists $\varepsilon > 0$ such that $(x_n,y_n)\notin B_{\varepsilon}((0,1))$ for infinitely many $n\in\mathbb{N}$ and hence we can find a strictly increasing sequence (n_k) in \mathbb{N} such that $(x_{n_k}, y_{n_k}) \notin B_{\varepsilon}((0, 1))$ for all $k \in \mathbb{N}$. Since $((x_n, y_n))$ is bounded, its subsequence $((x_{n_k}, y_{n_k}))$ is also bounded and hence by the Bolzano-Weierstrass theorem in \mathbb{R}^2 , $((x_{n_k}, y_{n_k}))$ has a convergent subsequence $((x_{n_{k_l}}, y_{n_{k_l}}))$. Now, $((x_{n_{k_l}}, y_{n_{k_l}}))$ is also a subsequence of $((x_n, y_n))$ and hence by the given condition $(x_{n_{k_l}}, y_{n_{k_l}}) \to (0, 1)$. But this contradicts the fact that $(x_{n_{k_l}}, y_{n_{k_l}}) \notin B_{\varepsilon}((0,1))$ for all $l \in \mathbb{N}$. Hence $(x_n, y_n) \to (0,1)$. Therefore the given statement is TRUE.

5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} \frac{xy}{x^2 - y^2} & \text{if } x^2 \neq y^2, \\ 0 & \text{if } x^2 = y^2. \end{cases}$ Determine all the points of \mathbb{R}^2 where f is continuous

Solution: If $\varphi(x,y)=xy$ and $\psi(x,y)=x^2-y^2$ for all $(x,y)\in\mathbb{R}^2$, then as polynomial functions, $\varphi, \psi : \mathbb{R}^2 \to \mathbb{R}$ are continuous and $\psi(x,y) \neq 0$ for all $(x,y) \in \mathbb{R}^2$ with $x^2 \neq y^2$. Hence f is continuous at each $(x,y) \in \mathbb{R}^2$ with $x^2 \neq y^2$.

Let $(x,y) \in \mathbb{R}^2$ such that $x^2 = y^2 \neq 0$. Then $(x + \frac{x}{n}, y) \to (x,y)$ but $|f(x + \frac{x}{n}, y)| = \frac{n+1}{2+1} \to \infty$ and so $f(x + \frac{x}{n}, y) \not\to 0 = f(x, y)$. Hence f is not continuous at (x, y).

Again, $(\frac{2}{n}, \frac{1}{n}) \to (0, 0)$ but $f(\frac{2}{n}, \frac{1}{n}) = \frac{2}{3}$ for all $n \in \mathbb{N}$, so that $f(\frac{2}{n}, \frac{1}{n}) \not\to 0 = f(0, 0)$. Hence f is not continuous at (0,0).

Therefore the set of points of continuity of f is $\{(x,y) \in \mathbb{R}^2 : x^2 \neq y^2\}$.

6. Let
$$\alpha$$
, β be positive real numbers and let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by
$$f(x,y) = \begin{cases} \frac{|x|^{\alpha}|y|^{\beta}}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Show that f is continuous iff $\alpha + \beta >$

Solution: Let $\alpha + \beta > 1$ and let $((x_n, y_n))$ be any sequence in \mathbb{R}^2 such that $(x_n, y_n) \to (0, 0)$.

Then $x_n \to 0$ and $y_n \to 0$. For all $n \in \mathbb{N}$ for which $(x_n, y_n) \neq (0, 0)$, we have

$$0 \le f(x_n, y_n) \le \frac{(x_n^2 + y_n^2)^{\frac{\alpha}{2}} (x_n^2 + y_n^2)^{\frac{\beta}{2}}}{\sqrt{x_n^2 + y_n^2}} = (x_n^2 + y_n^2)^{\frac{1}{2}(\alpha + \beta - 1)} \text{ and since } f(0, 0) = 0,$$

 $0 \le f(x_n, y_n) \le \frac{(x_n^2 + y_n^2)^{\frac{\alpha}{2}} (x_n^2 + y_n^2)^{\frac{\beta}{2}}}{\sqrt{x_n^2 + y_n^2}} = (x_n^2 + y_n^2)^{\frac{1}{2}(\alpha + \beta - 1)} \text{ and since } f(0, 0) = 0,$ we have $0 \le f(x_n, y_n) \le (x_n^2 + y_n^2)^{\frac{1}{2}(\alpha + \beta - 1)}$ for all $n \in \mathbb{N}$. Since $(x_n^2 + y_n^2)^{\frac{1}{2}(\alpha + \beta - 1)} \to 0$, we get $f(x_n, y_n) \to 0 = f(0, 0)$. This shows that f is continuous at (0, 0). Also, it is clear (by similar arguments given in other examples) that f is continuous at each $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$. Therefore f is continuous.

Conversely, let f be continuous and if possible, let $\alpha + \beta \leq 1$. We have $(\frac{1}{n}, \frac{1}{n}) \to (0, 0)$ but $f(\frac{1}{n},\frac{1}{n}) = \frac{1}{\sqrt{2}}n^{1-(\alpha+\beta)} \not\to 0 = f(0,0)$ (because for $\alpha+\beta=1, f(\frac{1}{n},\frac{1}{n}) \to \frac{1}{\sqrt{2}}$ and for $\alpha+\beta<1$, the sequence $\left(f\left(\frac{1}{n},\frac{1}{n}\right)\right)$ is unbounded). Hence f is not continuous at (0,0), which is a contradiction.

Therefore $\alpha + \beta > 1$.

7. Let $f: S \subseteq \mathbb{R}^2 \to \mathbb{R}$ and let $(x_0, y_0) \in S$. Let $A = \{x \in \mathbb{R} : (x, y_0) \in S\}$ and $B = \{y \in \mathbb{R} : (x_0, y) \in S\}$. Define $\varphi(x) = f(x, y_0)$ for all $x \in A$ and $\psi(y) = f(x_0, y)$ for all $y \in B$. If f is continuous at (x_0, y_0) , then show that $\varphi: A \to \mathbb{R}$ is continuous at x_0 and $\psi: B \to \mathbb{R}$ is continuous at y_0 . Is the converse true? Justify.

Solution: Let (x_n) be a sequence in A such that $x_n \to x_0$ and let (y_n) be a sequence in B such that $y_n \to y_0$. Then (x_n, y_0) , $(x_0, y_n) \in S$ for all $n \in \mathbb{N}$ and $(x_n, y_0) \to (x_0, y_0)$, $(x_0, y_n) \to (x_0, y_0)$. Since f is continuous at (x_0, y_0) , $\varphi(x_n) = f(x_n, y_0) \to f(x_0, y_0) = \varphi(x_0)$ and $\psi(y_n) = f(x_0, y_n) \to f(x_0, y_0) = \psi(y_0)$. Therefore φ is continuous at x_0 and ψ is continuous at y_0 .

The converse is not true, in general. For example, let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \left\{ \begin{array}{ll} \frac{xy}{x^2+y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{array} \right.$

Then f is not continuous at (0,0), since $(\frac{1}{n},\frac{1}{n}) \to (0,0)$ but $f(\frac{1}{n},\frac{1}{n}) = \frac{1}{2} \to \frac{1}{2} \neq 0 = f(0,0)$. However, $\varphi(x) = f(x,0) = 0$ for all $x \in \mathbb{R}$ and $\psi(y) = f(0,y) = 0$ for all $y \in \mathbb{R}$. So $\varphi : \mathbb{R} \to \mathbb{R}$ and $\psi : \mathbb{R} \to \mathbb{R}$ are continuous at 0.

8. If $S = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 3\}$, then determine (with justification) S^0 .

Solution: Let $(x_0, y_0) \in S$ and let $0 < x_0 < 3$. If $r = \min\{x_0, 3 - x_0\}$, then r > 0. Let $(x, y) \in B_r((x_0, y_0))$. Then $|x - x_0| \le \sqrt{(x - x_0)^2 + (y - y_0)^2} < r$. Hence $x - x_0 < r \le 3 - x_0$, which gives x < 3, and $x_0 - x < r \le x_0$, which gives x > 0. Therefore $(x, y) \in S$ and so $B_r((x_0, y_0)) \subseteq S$. Hence $(x_0, y_0) \in S^0$.

Now, let $y \in \mathbb{R}$.

If possible, let $(0,y) \in S^0$. Then there exists r > 0 such that $B_r((0,y)) \subseteq S$. Since $\|(-\frac{r}{2},y) - (0,y)\| = \frac{r}{2} < r$, $(-\frac{r}{2},y) \in B_r((0,y))$ and since $-\frac{r}{2} < 0$, $(-\frac{r}{2},y) \notin S$. Thus we get a contradiction. Hence $(0,y) \notin S^0$.

Again, if possible, let $(3, y) \in S^0$. Then there exists r > 0 such that $B_r((3, y)) \subseteq S$. Since $\|(3 + \frac{r}{2}, y) - (3, y)\| = \frac{r}{2} < r$, $(3 + \frac{r}{2}, y) \in B_r((3, y))$ and since $3 + \frac{r}{2} > 3$, $(3 + \frac{r}{2}, y) \notin S$. Thus we get a contradiction. Hence $(3, y) \notin S^0$.

Therefore $S^0 = \{(x, y) \in \mathbb{R}^2 : 0 < x < 3\}.$