

ENGENHARIA DE SOFTWARE

41492-ES

Nuno Sá Couto / Rafael Direito

(nuno.sacouto@ua.pt / rafael.neves.direito@ua.pt)

Department of Electronics, Telecommunications and Informatics (DETI)

UNIVERSITY OF AVEIRO (UA), PORTUGAL

2024

Module 5: Networking and Content Delivery

SECTION 1: NETWORKING BASICS

Networks

IP addresses

IPv4 and IPv6 addresses

IPv4 (32-bit) address: 192.0.2.0

IPv6 (128-bit) address: 2600:1f18:22ba:8c00:ba86:a05e:a5ba:00FF

Classless Inter-Domain Routing (CIDR)

Open Systems Interconnection (OSI) model

Layer	Numbe r	Function	Protocol/Address
Application	7	Means for an application to access a computer network	HTTP(S), FTP, DHCP, LDAP
Presentation	6	 Ensures that the application layer can read the data Encryption ASCI, ICA	
Session	5	Enables orderly exchange of data	NetBIOS, RPC
Transport	4	Provides protocols to support host-to-host communication	TCP, UDP
Network	3	Routing and packet forwarding (routers)	IP
Data link	2	Transfer data in the same LAN network (hubs and switches)	MAC
Physical 1 Transmission and reception of raw bitstreams over a physical medium		Signals (1s and 0s)	

Module 5: Networking and Content Delivery

SECTION 2: AMAZON VPC

Amazon VPC

Amazon VPC

- Enables you to provision a logically isolated section of the AWS Cloud where you can launch AWS resources in a virtual network that you define
- Gives you control over your virtual networking resources, including:
 - Selection of IP address range
 - Creation of subnets
 - Configuration of route tables and network gateways
- Enables you to customize the network configuration for your VPC
- > Enables you to use multiple layers of security

VPCs and subnets

VPCs:

- Logically isolated from other VPCs
- Dedicated to your AWS account
- Belong to a single AWS Region and can span multiple Availability Zones

Subnets:

- Range of IP addresses that divide a VPC
- Belong to a single Availability Zone
- Classified as public or private

IP addressing

- When you create a VPC, you assign it to an IPv4 CIDR block (range of private IPv4 addresses).
- You cannot change the address range after you create the VPC.
- The largest IPv4 CIDR block size is /16.
- The smallest IPv4 CIDR block size is /28.
- IPv6 is also supported (with a different block size limit).
- > CIDR blocks of subnets cannot overlap.

x.x.x.x/16 or 65,536 addresses (max) to x.x.x.x/28 or 16 addresses (min)

Reserved IP addresses

Example: A VPC with an IPv4 CIDR block of 10.0.0.0/16 has 65,536 total IP addresses. The VPC has four equal-sized subnets. Only 251 IP addresses are available for use by each subnet.

YPC: 10.0.0.0/16	
Subnet 1 .0.0.0/24) 251 IP addresses	Subnet 2 (10.0.2.0/24) 251 IP addresses
Subnet 4 (10.0.1.0/24) 251 IP addresses	Subnet 3 (10.0.3.0/24) 251 IP addresses

IP Addresses for CIDR block 10.0.0.0/24	Reserved for
10.0.0.0	Network address
10.0.0.1	Internal communication
10.0.0.2	Domain Name System (DNS) resolution
10.0.0.3	Future use
10.0.0.255	Network broadcast address

Public IP address types

- Add content text
- Public IPV4 address
- > Manually assigned through an Elastic IP address • Avoid using fifth level
- Automatically assigned through the auto-assign public IP address settings at the subnet level

Elastic network interface

- An elastic network interface is a virtual network interface that you can:
 - Attach to an instance.
 - > Detach from the instance, and attach to another instance to redirect network traffic.
- Its attributes follow when it is reattached to a new instance.
- Each instance in your VPC has a default network interface that is assigned a private IPv4 address from the IPv4 address range of your VPC.

Route tables and routes

- A route table contains a set of rules (or routes) that you can configure to direct network traffic from your subnet.
- Each route specifies a destination and a target.
- By default, every route table contains a local route for communication within the VPC.
- Each subnet must be associated with a route table (at most one).

Main (Default) Route Table

Des	tination	Target
10.0	.0.0/16	local

VPC CIDR block

Module 5: Networking and Content Delivery

SECTION 3: VPC NETWORKING

Internet gateway

Network address translation (NAT) gateway

Destination	Target
10.0.0.0/16	local
0.0.0.0/0	igw-id

Destination	Target
10.0.0.0/16	local
0.0.0.0/0	nat-gw-id

VPC sharing

VPC peering

Route Table for VPC A

Destination	Target
10.0.0.0/16	local
10.3.0.0/16	pcx-id

Route Table for VPC B

Destination	Target
10.3.0.0/16	local
10.0.0.0/16	pcx-id

You can connect VPCs in your own AWS account, between AWS accounts, or between AWS Regions.

Restrictions:

- IP spaces cannot overlap.
- Transitive peering is not supported.
- You can only have one peering resource between the same two VPCs.

AWS Site-to-Site VPN

Public subnet route table

Destination	Target
10.0.0.0/16	local
0.0.0.0/0	igw-id

Private subnet route table

Destination	Target
10.0.0.0/16	local
192.168.10.0/24	vgw-id

192,168,10,0/24

AWS Direct Connect

VPC endpoints

Public Subnet Route Table

Destination	Target
10.0.0.0/16	local
Amazon S3 ID	vpcep-id

Two types of endpoints:

- Interface endpoints (powered by AWS PrivateLink)
- Gateway endpoints (Amazon S3 and Amazon DynamoDB)

AWS Transit Gateway

From this...

To this...

Activity: Label this network diagram

Activity: Solution

Module 5: Networking and Content Delivery

SECTION 4: VPC SECURITY

Security groups (1 of 2)

Security groups act at the instance level.

Security groups (2 of 2)

- Security groups have rules that control inbound and outbound instance traffic.
- Default security groups deny all inbound traffic and allow all outbound traffic.
- Security groups are stateful.

Inbound			
Source	Protocol	Port Range	Description
sg- <i>xxxxxxxx</i>	All	АІІ	Allow inbound traffic from network interfaces assigned to the same security group.
			Outbound

Uutbound					
Destination	Protocol	Port Range	Description		
0.0.0.0/0	All	All	Allow all outbound IPv4 traffic.		
::/0	All	All	Allow all outbound IPv6 traffic.		

Custom security group examples

- You can **specify allow** rules, but not deny rules.
- All rules are evaluated before the decision to allow traffic.

Inbound					
Source Protoc		Port Range		Description	
0.0.0.0/0 TCP		80		Allow addre	inbound HTTP access from all IPv4
0.0.0.0/0	TCP	443		Allow inbound HTTPS access from all IPv4 addresses	
Your network's TCF		22 Allow inbound SSH access to Linux instance		inbound SSH access to Linux instances from	
			Oı	utbou	nd
Destination	P	rotocol	Port F	Range	Description
The ID of the security group for your Microsoft SQL Server database servers		TCP	14	33	Allow outbound Microsoft SQL Server access to instances in the specified security group

Network access control lists (network ACLs 1 of 2)

Network ACLs act at the subnet level.

- A network ACL has separate inbound and outbound rules, and each rule can either allow or deny traffic.
- Default network ACLs allow all inbound and outbound IPv4 traffic.
- Network ACLs are stateless.

	Inbound						
Rule	Туре	Protocol	Port Range	Source	Allow/Deny		
100	All IPv4 traffic	All	All	0.0.0.0/0	ALLOW		
	Outbound						
Rule	Туре	Protocol	Port Range	Destination	Allow/Deny		
100	All IPv4 traffic	All	All	0.0.0.0/0	ALLOW		
*	All IPv4 traffic	ΑΙΙ	All	0.0.0.0/0	DENY		

Custom network ACLs examples

- Custom network ACLs deny all inbound and outbound traffic until you add rules.
- You can specify both allow and deny rules.
- Rules are evaluated in number order, starting with the lowest number.

Inbound						
Rule	Туре	Protocol	Port Range	Source	Allow/Deny	
100	HTTPS	TCP	443	0.0.0.0/0	ALLOW	
120	SSH	TCP	22	192.0.2.0/24	ALLOW	
*	All IPv4 traffic	All	All	0.0.0.0/0	DENY	

Outbound .					
Rule	Туре	Protocol	Port Range	Destination	Allow/Deny
100	HTTPS	TCP	443	0.0.0.0/0	ALLOW
120	SSH	TCP	22	192.0.2.0/24	ALLOW
*	All IPv4 traffic	All	All	0.0.0.0/0	DENY

Security groups versus network ACLs

Attribute	Security Groups	Network ACLs
Scope	Instance level	Subnet level
Supported Rules	Allow rules only	Allow and deny rules
State	Stateful (return traffic is automatically allowed, regardless of rules)	Stateless (return traffic must be explicitly allowed by rules)
Order of Rules	All rules are evaluated before decision to allow traffic	Rules are evaluated in number order before decision to allow traffic

Activity: Design a VPC

Scenario: You have a small business with a website that is hosted on an Amazon Elastic Compute Cloud (Amazon EC2) instance. You have customer data that is stored on a backend database that you want to keep private. You want to use Amazon VPC to set up a VPC that meets the following requirements:

- Your web server and database server must be in separate subnets.
- The first address of your network must be 10.0.0.0. Each subnet must have 256 total IPv4 addresses.
- Your customers must always be able to access your web server.
- Your database server must be able to access the internet to make patch updates.
- Your architecture must be highly available and use at least one custom firewall layer.

Module 5: Networking and Content Delivery

SECTION 5: AMAZON ROUTE 53

- Is a highly available and scalable Domain Name System (DNS) web service
- Is used to route end users to internet applications by translating names (like www.example.com) into numeric IP addresses (like 192.0.2.1) that computers use to connect to each other
- Is fully compliant with IPv4 and IPv6
- Connects user requests to infrastructure running in AWS and also outside of AWS
- Is used to check the health of your resources
- Features traffic flow
- > Enables you to register domain names

Amazon Route 53 DNS resolution

Amazon Route 53 supported routing

- Simple routing Use in single-server environments
- Weighted round robin routing Assign weights to resource record sets to specify the frequency
- Latency routing Help improve your global applications
- Geolocation routing Route traffic based on location of your users
- Geoproximity routing Route traffic based on location of your resources
- Failover routing Fail over to a backup site if your primary site becomes unreachable
- Multivalue answer routing Respond to DNS queries with up to eight healthy records selected at random

Use case: Multi-region deployment

Name	Type	Value
example.com	ALIAS	some-elb-name.us-west-2.elb.amazonaws.com
example.com	ALIAS	some-elb-name.ap-southeast- 2.elb.amazonaws.com

Amazon Route 53 DNS failover

Improve the availability of your applications that run on AWS by:

Configuring backup and failover scenarios for your own applications

Enabling highly available multi-region architectures on AWS

Creating h

DNS failover for a multi-tiered web application

Module 5: Networking and Content Delivery

SECTION 6: AMAZON CLOUDFRONT

Content delivery network (CDN)

- Is a globally distributed system of caching servers
- Caches copies of commonly requested files (static content)
- Delivers a local copy of the requested content from a nearby cache edge or Point of Presence
- Accelerates delivery of dynamic content
- Improves application performance and scaling

Amazon CloudFront infrastructure

- Edge locations
- Multiple edge locations
- Regional edge caches

- Edge locations Network of data centers that CloudFront uses to serve popular content quickly to customers.
- Regional edge cache CloudFront location that caches content that is popular enough to stay at an edge I It is located between the origin serv the global edge location.

Amazon CloudFront benefits

- Fast and global
- Security at the edge
- Highly programmable
- Deeply integrated with AWS
- Cost-effective

Amazon CloudFront pricing

Data transfer out

Charged for the volume of data transferred out from Amazon CloudFront edge location to the internet or to your origin.

HTTP(S) requests

Charged for number of HTTP(S) requests.

Invalidation requests

No additional charge for the first 1,000 paths that are requested for invalidation each month. Thereafter, \$0.005 per path that is requested for invalidation.

Dedicated IP custom SSL

\$600 per month for each custom SSL certificate that is associated with one or more CloudFront distributions that use the Dedicated IP version of custom SSL certificate support.