Function Spaces

Lecture 27 - 07/04/21 Cauchy Sequences and Complete Spaces

Recall the definition of a Cauchy sequence in a metric space.

A metric space (X,d) is said to be complete if every Cauchy seq. in X converges.

- → Any convergent sequence is Cauchy.
- → Let A be a closed subspace of a complete metric space (X,d). Then A is complete in the restricted metric.
- → X is complete under the metric d iff it is complete under the standard bounded metric d = min {d, 1}.

Try to prove the above basic facts.

(5.1)

Lemma. X is complete iff every Cauchy sequence in X has a convergent subsequence. Proof let (x_n) be Cauchy and the subseq. $x_{n_k} \rightarrow x$.

For $\varepsilon>0$, let N such that $d(x_n, x_m) < \frac{\varepsilon}{2}$ for all n, m > N.

For sufficiently large k>N, let $d(x_{n_k},x)<\frac{\varepsilon}{2}$.

Then & (xn, x) < E for all n>N, proving the claim.

The other direction is direct.

Theo. IR^k is complete in the Euclidean metric d and the square metric f. (5.2)

Proof Since $P < a < \sqrt{k} P$, IR^k is complete with one metric iff it is complete with the other.

We shall show that (IR^k, p) is complete. Let (X_n) be Cauchy. Then $\{X_n\}$ is a bounded subset of IR^k (Why?).

Let $x_n < M$ for all $n \in \mathbb{N}$. Then $x_n \in [-M, M]^k$ for any k. Since this Subspace is compact (it is closed and bounded), any sequence in it has a convergent subsequence, (x_n) in particular. Using Lemma 5.1 completes the proof.

Lemma. Let $X = \prod_{\alpha \in J} X_{\alpha}$ and (x_n) a sequence of points in X. Then $(5-3) \times_n \to \times$ iff $\prod_{\alpha} (x_n) \to \prod_{\alpha} (x)$ for all $\alpha \in J$.

Proof The forward direction is immediate since T_{α} is a continuous mapsuppose $T_{\alpha}(x_n) \to T_{\alpha}(x)$ for all $\alpha \in J$ Let $U = T_{\alpha}U_{\alpha}$ be a basis element of X containing X. For each α with $U_{\alpha} \neq X_{\alpha}$, let N_{α} such that $T_{\alpha}(x_n) \in U_{\alpha}$ for $n \geq N_{\alpha}$. Letting N be the largest of these N_{α} , then for all $n \geq N$, $x_n \in U$. Therefore, $x_n \to X$

Theo. There is a metric for the product space \mathbb{R}^{ω} with respect to which (5.4) it is complete.

Proof. Let $D(x,y) = \sup_{i} \{ \min \{ d(x,y), i \}_{i} \}$. D induces the product topology.

We claim that \mathbb{R}^{ω} under D is complete. Let (x_n) be Cauchy in \mathbb{R}^{ω} . For fixed i, $(\pi_i(x_n))$ is Cauchy because a $(\pi_i(x), \pi_i(y)) \leq i D(x,y)$. Therefore, $(\pi_i(x_n))$ converges to some a_i . The result follows on using Lemma 5.3.

Completeness is \underline{not} a topological property. For example, (-1,1) is not complete and R is, but the two are homeomorphic.

Def Let (Y,d) be a metric space. If $x = (x_a)_{a \in J}$ and $y = (y_a)_{a \in J}$ are points in Y^J , then $\overline{p}(x,y) = \sup \{\overline{d}(x_a,y_a) : \alpha \in J\}$ defines a metric on Y^J . It is called the uniform metric on Y^J corresponding to the metric of Y^J .

Recall that
$$Y^3 = \{f: J \rightarrow Y\}$$
. Then
$$\overline{p}(f,g) = \sup \{\overline{a}(f(\omega), g(\omega)): \omega \in J\}.$$

Theo. With the above defined notation, if (Y,d) is complete, then so (5.5) is (Y^{J}, \overline{e}) .

Proof Since (Y,d) is complete, so is (Y, J).

Let (f_n) be Cauchy in Y^J For $\alpha \in J$, $\overline{a}(f_n(\alpha), f_m(\alpha)) \leq \overline{e}(f_n, f_m)$.

Therefore, $(f_n(\alpha))$ is Cauchy in (Y,\overline{A}) , and thus convergent (Why?). Let $f_n(\alpha) \to f(\alpha)$ for each α .

Let $\varepsilon>0$. Cauchyness implies that for sufficiently large N, \overline{a} (fn(ω), fm(ω) < $\varepsilon/2$ for n,m \geqslant N and $\alpha\in J$.

Then making m arbitrarily large and using convergence of $(f_n(\alpha))$, $\overline{d}(f_n(\alpha), f(\alpha)) \leq \frac{\epsilon}{2}$ for $n \geq N$ and $\alpha \in J$.

Therefore,

 $\overline{\rho}\left(f_{n},f\right)\leq \frac{\epsilon}{2}/2<\epsilon\quad\text{for}\quad n\geqslant N,$ proving the claim.

Hence forth, denote

 $y^{\times} = \{f: Y \rightarrow X\}$ $\mathcal{E}(X,Y) = \{f: Y \rightarrow X : f \text{ is continuous}\}$ $\mathcal{B}(X,Y) = \{f: Y \rightarrow X : f \text{ is bounded}\}$

Theo Let X be a topological space and (y,d) be a metric space Then (5.6) $\mathcal{C}(X,Y)$ and $\mathcal{B}(X,Y)$ are closed in Y^X under the uniform metric. In particular, if Y is complete, so are $\mathcal{C}(X,Y)$ and $\mathcal{B}(X,Y)$.

(in the uniform metric)

Proof Let $f_n \to f$ in Y^X . We claim that f_n converges uniformly. For each $\varepsilon > 0$, choose N such that $\overline{\rho}(f_s f_n) < \varepsilon$ for all n > N.

Then for all XEX,

 $\overline{a}(f(x), f_n(x)) \leq \overline{e}(f, f_n) < \varepsilon,$

so (fn) converges uniformly to f.

Now, we show that C(X,Y) is closed in Y^X relative to $\overline{\rho}$. Let $(f_n) \in C(X,Y)$ and $f_n \to f$. By the uniform limit theorem, $f \in C(X,Y)$

Showing that B(x,y) is closed is straightforward (using the triangle inequality and uniform convergence)

Lecture 28 - 09/04/21 More on Function Spaces

Def if (Y,d) is a metric space and X is a topological space, $\rho(f,g) = \sup_{x \in X} \{d(f(x),g(x))\}$ defines a metric on B(X,Y), known as the sup metric.

(Why is it a metric?)

- 1. For $f,g \in \mathcal{B}(x,y)$, $\overline{p}(f,g) = \min\{p(f,g), 1\}.$ uniform metric sup metric
- 2. If X is compact, every continuous function $f: X \rightarrow Y$ is bounded. (f(X) is compact, and thus bounded)
- Theo. Let (X, a) be a metric space. There is an isometric embedding of X into (5.7) a complete metric space. (distance-preserving)
 - Proof Consider B(X, IR) and let $x_0 \in X$. For $a \in X$, define $\varphi_a: X \to R$ by $\varphi_a(x) = d(x, a) d(x, x_0)$

 φ_a is bounded for any a EX because $|\varphi_a(x)| \leq d(x_o, a)$.

Define $\varphi \times \rightarrow B(x,R)$ by $\varphi(a) = \varphi_a$.

Because R is complete, so is B(x,R) under the uniform metric, and thus the sup metric.

We show that φ is an isometric embedding of X in $B(X,\mathbb{R})$.

For a, b EX,

$$\varrho(\varphi_a, \varphi_b) = \sup_{x \in X} \{ |\varphi_a(x) - \varphi_b(x)| \} \\
= \sup_{x \in X} \{ |d(x, a) - a(x, b)| \} \\
= d(a,b).$$

so φ is isometric

 φ is injective, continuous, and open (on its image), completing the proof.

Def. Let X be a metric space If $h: X \rightarrow Y$ is an isometric embedding of X into a complete metric space Y, h(X) is a complete metric space (as a subspace of Y), known as the completion of X.

The completion is unique up to isometry.

- Def. A metric space (X,d) is said to be totally bounded if for any E>0, there is a finite covering of X by E-balls.
 - 1. Any totally bounded space is bounded.

 (The converse does not hold consider IR under \overline{a})

2. A compact space is totally bounded

Theo A metric space (X,d) is compact iff it is complete and totally bounded.

Proof. We have already seen that any compact space is complete and totally bounded.

Let X be complete and totally bounded. It suffices to show that X is sequentially compact.

Lfor a metric space, compact \Leftrightarrow sequentially compact \Leftrightarrow limit pt. compact) Let (x_n) be a sequence in X. We shall construct a Cauchy subsequence of (x_n) .

Cover X by finitely many balls of radius 1. Suppose B_1 is one of these balls that contains infinitely many x_n . Let $J_i \subseteq IN$ be the set of indices contained in B_1 .

Given a set J_k of naturals, let J_{k+1} be an infinite subset of J_k such that there is a (/k+1)-ball B_{k+1} that contains X_i for all $i \in J_{k+1}$. (such a J_{k+1} exists by total boundedness) Choose $n_i \in J_i$. Given n_k , choose $n_{k+1} \in J_{k+1}$ such that $n_{k+1} > n_k$ (because J_{k+1} is infinite). For any $i,j \ge k$, $n_i, n_j \in J_k$. That is, x_{n_i} and x_{n_j} are contained in a (/k)-ball. It follows that (x_{n_k}) is Cauchy, and thus convergent, completing the proof.

Def. Let (Y,d) be a metric space and $F \subseteq \mathcal{C}(X,Y)$ For $X_0 \in X$, F is said to be equicontinuous at X_0 if given E>0, there is a neighbourhood U of X_0 such that for all $X \in X$ and $f \in F$, $d(f(X), f(X_0)) < E$.

If J= is equicontinuous at x_0 for each $x_0 \in X$, it is said to be equicontinuous.

If (Y,d) is a metric space, $F \subseteq C(x,Y)$ is said to be pointwise bounded if for each $a \in X$, $F_a = \{f(a) : f \in F\}$ is bounded.

Theo. [Ascoli's Theorem, Classical Version]

(5.9) Let X be a compact space, (\mathbb{R}^n , d) denote Euclidean space in the square metric or Euclidean metric, and give $\mathbb{C}(x,\mathbb{R}^n)$ the corresponding uniform topology. Then $F\subseteq \mathbb{C}(x,\mathbb{R}^n)$ has compact closure if and only if F is equicontinuous and pointwise bounded

Lemma. Let X be any space and (Y,d) be a metric space. If F = C(X,Y) (5.10) is totally bounded under the uniform metric, F is equicontinuous. Proof Let F be totally bounded. Let 0 < E < 1 and $x \in X$. Let S = E/3. Cover F by finitely many S - balls $B(f_1, S)$, ..., $B(f_n, S)$ in C(X, Y). Choose a nbd. U of x_e such that $d(f_1(x), f_1(x_0)) < S$ for all $x \in U$ and $1 \le i \le n$.

Let $f \in \mathcal{F}$. For some i, $f \in B(f_i, S)$.

Therefore,

 \overline{d} (f(x), f(x₀)) < \overline{d} (f(x), f_i(x)) + \overline{d} (f_i(x), f_i(x₀)) + \overline{d} (f_i(x₀), f(x₀)) = 38 = 8,

completing the proof.

Lecture 29 - 14/04/21 Completing the proof of Ascoli's Theorem

Lemma. Let x be a space, (Y, d) a metric space, and suppose both are (5.11) compact. If FCC(x,y) is equicontinuous, then F is totally bounded under the uniform and sup metrics corresponding to d.

Proof Total boundedness under ϱ is equivalent to total boundedness under $\bar{\varrho}$. Let F be equicontinuous. Given E>0, we shall cover F by E-balls in p.

Let S= E/4 For each a EX, choose a nbd Ua Ja such that d(f(x), f(a)) < 8 for all xEUa, fEF.

Cover x by finitely many of the Ua, say Ua, ..., Uak, using compactness.

Cover Y by finitely many open sets Vi_ ..., Vm of diameter < 8 using compactness.

Let J be the set of all functions $\alpha: \{1, ..., k\} \rightarrow \{1, ..., m\}$. Given det, if there exists a feF s.t. f(ai) E Vx(i) for each

i=1, ..., k, choose one such f and label it fx.

Since I is finite, so is the set of far. Let I'be the set of XEJ for which for is defined.

We claim that {Be(fa, E): XEJ'} covers F.

Let fEF. For each i=1,..,k, choose &(i) s.t. f(ai) EVa(i). Then acs! We shall show that fe Bp (fa, E).

Let xEX and i such that xEV; Then

d(f(x), f(a)) < 8 (xEU;)

 $d(f(a_i), f_{\alpha}(a_i)) < \delta$ ($f(a_i), f_{\alpha}(a_i) \in V_{\alpha(i)}$) $d(f_{\alpha}(a_i), f_{\alpha}(x)) < \delta$ ($x \in U_i$)

 $\Rightarrow d(f(x), f_{\alpha}(x)) < 38 \Rightarrow \rho(f, f_{\alpha}) \leq 38 < \epsilon$

completing the proof.

Let us now get to the proof of Ascoli's Theorem. Since X is compact, the sup metric is defined on $\mathcal{C}(X,\mathbb{R}^n)$ and gives the uniform topology. Let $G=\overline{F}$ in $\mathcal{C}(X,\mathbb{R}^n)$

-> Suppose G is compact.

Then G is totally bounded under ρ and $\overline{\rho}$, so it is equicontinuous under d by Lemma 5.10.

Compactness also implies that G is bounded under p, so pointwise bounded under d.

- ⇒ G is equicontinuous and pointwise bounded.
- ⇒ F is equicontinuous and pointwise bounded.
- -> Suppose F is equicontinuous and pointwise bounded.
 - · Given $x_0 \in X$, choose a nbd. U of x_0 such that $d(f(x), f(x_0)) < \frac{E}{3}$ for all $x \in U$, $f \in \mathcal{F}$.

Given $g \in G$, choose $f \in F$ s.t. $e(f,g) < \frac{F}{3}$. (because $G = \overline{F}$) Then $d(g(x), g(x_0)) < \varepsilon$ for all $x \in U$.

Thus, G is equicontinuous. (since g, x, were outsitrary)

• Given a, choose M such that diam $F_a \leq M$.

Given g,g'EG, choose f,f'EF such that

P(f,g) < 1 and P(f',g') < 1 (because $G = \overline{F}$)

Then $d(g(a), g'(a)) \leq M+2 \Rightarrow diam G_a \leq M+2$.

Thus, G is pointwise bounded. (since a is arbitrary)

• We show that there is a compact subspace Y of IRn that contains the union of the sets $g(X):g\in G$. (so we can use Lemma 5.11)

For each a EX, choose a nbd. U_a of a s+ d(g(x),g(a)) < 1 for $x \in U_a$ and $g \in G$. Since X is compact, we can cover it by finitely many $a_1, ..., a_k$. Because the G_{a_i} are bounded, their union is also bounded. Suppose it lies in the ball of radius M in IR^n . Then for all $g \in G$, g(X) is contained in the ball of radius N+1 centered at the origin. Let Y be the closure of this ball. Y is closed and bounded, so is compact.

- * Because G is a closed subspace of the complete space $(C(x,R^n), \rho)$, it is complete.
- Equicontinuity of G, together with compactness of X,Y, implies that G is totally bounded by Lemma 5.11. Therefore, G is compact by Theo. 5.8

Corollary Let X be compact and d denote either the square metric or (5.12) Euclidean metric on \mathbb{R}^n . Give $\mathcal{C}(x,\mathbb{R}^n)$ the uniform topology. Then $F\subseteq \mathcal{C}(x,\mathbb{R}^n)$ if and only if it is closed, bounded under the sup metric ρ , and equicontinuous under d.

___ x ___