ĐẠI HỌC QUỐC GIA THÀNH PHỐ HÒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA KHOA HỌC VÀ KĨ THUẬT MÁY TÍNH

BÁO CÁO THÍ NGHIỆM LAB 5

Môn: Hệ thống số

GVHD: Trần Hoàng Quốc Bảo

Lớp L07 Nhóm 02:

Thành viên	MSSV
Hoàng Thị Ngọc Anh	2210053
Lê Hoàng Ngọc Hân	2210935
Nguyễn Quốc Nhựt	2212481
Nguyễn Mạnh Tuấn	2213786

1. Thiết kế, mô phỏng và lắp mạch MOD-4 Synchronous DOWN Counter sử dụng D FlipFlop

1.1 Thiết kế:

Thiết kế mạch theo yêu cầu:

- Step 1: Xác định cơ chế hoạt động của mạch:
 Synchronous Counter | DOWN Counter
- Step 2: Xác định FlipFlop:

D FlipFlop

Negative Edge Trigger

- Step 3: Xác định số FlipFlop cần hiện thực:
 - Gọi n là số FlipFlop cần thực hiện, như vậy ta có 2ⁿ 1 số trạng thái có thể xảy ra mà FF đếm được.
 - $\circ~$ Như vậy số trạng thái được yêu cầu $\leq~2^n~-1$
 - Số State xảy ra của mạch yêu cầu: 4
 - O Vậy mạch thiết kế cần có 2 FF để hoạt động.
- Step 4: Xác định State cần thể hiện và sự thay đổi của trạng thái:

$$0011_2 \text{ (initial)} \rightarrow 0010_2 \rightarrow 0001_2 \rightarrow 0000_2 \rightarrow 0011_2 \text{ (initial)}$$

Sơ đồ thay đổi trạng thái của mạch hoạt động:

• Step 5: Bảng trạng thái của mạch yêu cầu.

Curren	nt State	Inp	ut	Next State		
QB	QA	DB DA		QB	QA	
0	0	1	1	1	1	
0	1	0	0	0	0	
1	0	0	1	0	1	
1	1	1	0	1	0	

Trong đó A là LSB và B là MSB.

• Step 6: Lập bảng K-Map và thể hiện biểu thức rút gọn cho kết nối.

Bảng K-Map cho đầu vào D(A):

QA QB	0	1
0	1	0
1	1	0

Biểu thức cho D(A): D(A) = QA' Sơ đồ chân kết nối đầu ra Q và đầu vào D(A)

Bảng K-Map cho đầu vào D(B):

Biểu thức cho D(B): D(B) = QA'QB' + QAQBSơ đồ chân kết nối đầu ra Q và đầu vào D(B)

• Step 7: Sơ đồ thiết kế toàn bộ mạch yêu cầu:

1.2 Mô phỏng Logisim:

Hình mạch trên mô phỏng Logisim:

1.3 Lắp mạch:

Hình mạch lắp trên Tickit

Link video demo nói về mạch hoạt động trên Tickit: Bấm vào đây

2. Thiết kế, mô phỏng, và lắp mạch 8-to-1 Multiplexer sử dụng IC 74151:

2.1 Thiết kế

Vẽ lại sơ đồ mạch nguyên lý 8-to-1 Multiplexer gồm các cổng luận lý dựa theo các chân của IC74151 thực tế:

Yêu cầu kết nối chân:

 $D2 \to Clock$

 $D5 \rightarrow LSB \stackrel{\circ}{\sigma} bài 1$

 $D6 \rightarrow MSB \mathring{o} bài 1$

Bảng sự thật (Truth Table):

	Input Select		Strobe	Output Y
A	В	С	Suoc	Output 1
X	Х	Х	1	0
0	0	0	0	D0
0	0	1	0	D1
0	1	0	0	D2
0	1	1	0	D3
1	0	0	0	D4
1	0	1	0	D5
1	1	0	0	D6
1	1	1	0	D7

2.2 Mô phỏng

Hình thiết kế IC 74151 trên Logisim (kết nối với bài 1):

Link video demo hoạt động IC74151 trên Logisim: <u>Bấm vào đây</u>

2.3 Lắp mạch

Hình mạch lắp trên DS Kit:

Link video demo nói về mạch lắp trên DS Kit: Bấm vào đây

3. Thiết kế và mô phỏng mạch 3-to-8 Decoder sử dụng IC74138:

3.1 Thiết kế

Vẽ lại sơ đồ mạch nguyên lý 3-to-8 Decoder gồm các cổng luận lý dựa theo các chân của IC74138 trong Logisim:

Bảng chân trị của mạch 3-to-8 Decoder IC74138 theo Logisim:

OE1	OE2	OE3	A2	A1	A0	Y 7	Y6	Y5	Y4	Y 3	Y2	Y 1	Y0
1	0	0	0	1	0	1	1	1	1	1	1	1	1
0	0	1	1	0	0	1	1	1	0	1	1	1	1
0	0	1	0	0	1	1	1	1	1	1	1	0	1
0	0	1	1	1	1	0	1	1	1	1	1	1	1
1	1	0	1	0	1	1	1	1	1	1	1	1	1
0	0	1	0	1	1	1	1	1	1	0	1	1	1
0	1	0	0	0	0	1	1	1	1	1	1	1	1
0	0	1	1	1	0	1	0	1	1	1	1	1	1

3.2 Mô phỏng Logisim

Hình mạch mô phỏng trên Logisim

Video demo mạch hoạt động trên Logisim: <u>Bấm vào đây</u>

4. Thiết kế và mô phỏng mạch 8-bit magnitude comparator sử dung IC7485:

4.1 Thiết kế

Cho các giá trị 8-bit sau:

•
$$A = 54_{10} = 00110110_2$$
, $B = 79_{10} = 01001111_2$

•
$$A = 88_{10} = 01011000_2$$
, $B = 200_{10} = 11001000_2$

•
$$A = 133_{10} = 10000101_2$$
, $B = 183_{10} = 10110111_2$

•
$$A = 22_{10} = 00010110_2$$
, $B = 22_{10} = 00010110_2$

$$\bullet \quad A = 115_{10} = 01110011_2, B = 78_{10} = 01001110_2$$

•
$$A = 35_{10} = 00100011_2$$
, $B = 253_{10} = 111111101_2$

Hoàn thành bảng chân trị của mạch 8-bit magnitude comparator IC7485 theo Logisim (Trong đó A0 và B0 là LSB):

A0	A1	A2	A3	A4	A5	A6	A7	В0	B1	B2	В3	B4	B5	В6	B7	YGT	YLT	YE Q
0	1	1	0	1	1	0	0	1	1	1	1	0	0	1	0	0	1	0
0	0	0	1	1	0	1	0	0	0	0	1	0	0	1	1	0	1	0
1	0	1	0	0	0	0	1	1	1	1	0	1	1	0	1	0	1	0
0	1	1	0	1	0	0	0	0	1	1	0	1	0	0	0	0	0	1
1	1	0	0	1	1	1	0	0	1	1	1	0	0	1	0	1	0	0
1	1	0	0	0	1	0	0	1	0	1	1	1	1	1	1	0	1	0

4.2 Mô phỏng Logisim

Hình mạch thiết kế trên Logisim

Link video demo mạch so sánh các số đã cho trên Logisim: Bấm vào đây

5. Thiết kế và mô phỏng MOD-5 Synchronous DOWN Counter sử dụng D FlipFlop

5.1 Thiết kế:

Thiết kế mạch theo yêu cầu:

- Step 1: Xác định cơ chế hoạt động của mạch:
 - Synchronous DOWN Counter
- Step 2: Xác định FlipFlop:

D Flip Flop

Positive Edge Trigger

• Step 3: Xác định số FlipFlop cần hiện thực:

- O Gọi n là số FlipFlop cần thực hiện, như vậy ta có $2^n 1$ số trạng thái có thể xảy ra mà FF đếm được.
- 0 Như vậy số trạng thái được yêu cầu $\leq 2^n 1$
- Số State xảy ra của mạch yêu cầu: 5
- Vậy mạch thiết kế cần có 3 FF để hoạt động.
- Step 4: Xác định State cần thể hiện và sự thay đổi của trạng thái:

$$100_2$$
 (initial) $\longrightarrow 011_2 \longrightarrow 010_2 \longrightarrow 001_2 \longrightarrow 100_2$ (initial)

Sơ đồ thay đổi trạng thái của mạch hoạt động:

• Step 5: Bảng trạng thái của mạch yêu cầu.

	(Current stat	e		Input		Next state		
CLK	QC	QB	QA	DC	DB	DA	QC	QB	QA
1	0	0	0	1	0	0	1	0	0
1	0	0	1	0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	1
1	0	1	1	0	1	0	0	1	0
1	1	0	0	0	1	1	0	1	1
↑	1	0	1	0	0	0	X	X	X
1	1	1	0	0	0	0	X	X	Х
↑	1	1	1	0	0	0	X	X	х

Trong đó A là LSB và C là MSB.

- Step 6: Lập bảng K-Map và thể hiện biểu thức rút gọn cho kết nối.
 - o Bảng K-Map cho đầu vào D(C):

Table Template	B'A'	В'А	BA	BA'
C'	1	0	0	0
С	0	X	X	X

Biểu thức cho D(C): D(C)=A'B'C'

Sơ đồ chân kết nối đầu ra Q và đầu vào D(C):

○ Bảng K-Map cho đầu vào D(B):

Table Template	B'A'	В'А	BA	BA'
C'	0	0	1	0
С	1	X	X	X

Biểu thức cho D(B): D(B)= C+AB Sơ đồ chân kết nối đầu ra Q và đầu vào D(B):

O Bảng K-Map cho đầu vào D(A):

Table Template	B'A'	B'A	BA	BA'
C'	0	0	0	1
С	1	X	X	X

Biểu thức cho D(A): D(A)= C+BA' Sơ đồ chân kết nối đầu ra Q và đầu vào D(A):

• Step 7: Sơ đồ thiết kế toàn bộ mạch yêu cầu:

5.2 Mô phỏng Logisim:

Hình mạch trên mô phỏng Logisim:

Link Video demo mạch hoạt động trên Logisim: Bấm vào đây

6. Thiết kế, mô phỏng và lắp mạch Synchronous Counter sử dụng D FlipFlop dựa theo trạng thái sau:

6.1 Thiết kế:

Thiết kế mạch theo yêu cầu:

- Step 1: Xác định cơ chế hoạt động của mạch:
 Synchronous Counter
- Step 2: Xác định FlipFlop:

D FlipFlop

Positive Edge Trigger

- Step 3: Xác định số FlipFlop cần hiện thực:
 - Gọi n là số FlipFlop cần thực hiện, như vậy ta có 2ⁿ 1 số trạng thái có thể xảy ra mà FF đếm được.
 - o Như vậy số trạng thái được yêu cầu $\leq 2^n 1$
 - o Số State xảy ra của mạch yêu cầu: 4

- Vậy mạch thiết kế cần có 3 FF để hoạt động.
- Step 4: Xác định State cần thể hiện và sự thay đổi của trạng thái:

$$010_2$$
 (initial) $\rightarrow 101_2 \rightarrow 011_2 \rightarrow 100_2 \rightarrow 010_2$ (initial)

Sơ đồ thay đổi trạng thái của mạch hoạt động:

• Step 5: Bảng trạng thái của mạch yêu cầu.

	(Current stat	e		Input		Next state		
CLK	QC	QB	QA	DC	DB	DA	QC	QB	QA
1	0	0	0	Х	X	X	Х	X	Х
1	0	0	1	X	X	X	X	X	Х
1	0	1	0	1	0	1	1	0	1
1	0	1	1	1	0	0	1	0	0
1	1	0	0	0	1	0	0	1	0
1	1	0	1	0	1	1	0	1	1
1	1	1	0	X	X	X	X	X	Х
1	1	1	1	X	X	X	X	X	X

Trong đó A là LSB và C là MSB.

- Step 6: Lập bảng K-Map và thể hiện biểu thức rút gọn cho kết nối.
 - Bảng K-Map cho đầu vào D(C):

	B'A'	B'A	BA	BA'
C'	X	X	1	1
С	0	0	X	X

Biểu thức cho D(C): D(C)=B

o Bảng K-Map cho đầu vào D(B):

	B'A'	B'A	BA	BA'
C'	X	X	0	0
С	1	1	X	X

Biểu thức cho D(B): D(B)=B'

Sơ đồ chân kết nối đầu ra Q và đầu vào D(B):

o Bảng K-Map cho đầu vào D(A):

	B'A'	B'A	BA	BA'
C'	X	X	0	1
С	0	1	X	X

Biểu thức cho D(A): D(A)=B'A+A'B Sơ đồ chân kết nối đầu ra Q và đầu vào D(A):

• Step 7: Sơ đồ thiết kế toàn bộ mạch yêu cầu:

6.2 Mô phỏng Logisim:

Hình mạch trên mô phỏng Logisim:

Link Video demo mạch hoạt động trên Logisim: Bấm vào đây

6.3 Lắp mạch:

Hình mạch lắp trên Tickit:

Link video demo nói về mạch hoạt động trên Tickit: <u>Bấm vào đây</u>