Duració: 1,5 hores. Respondre els problemes en fulls separats. Raonar les respostes

Pregunta 1. (5 punts).

En una sesión del protocolo de aplicación FTP capturamos una serie de intercambios de segmentos TCP. Se identifica cada intercambio con un número de línea y se incluye información varia como Origen y Destino, puertos TCP, flags activos (SYN, ACK, PSH, FIN), número de secuencia del primer octeto (Seq), número de acknowledge (Ack) y longitud de datos de usuario (Len). NOTA: El protocolo FTP (File Transfer Protocol) es Cliente/Servidor y usa dos puertos en el Servidor, el 21 para control (solicitud de operaciones) y el 22 para transferencia de datos.

No.	Origen	Destino	Puertos	Flags	Núm. Sec.	Núm. Ack.	Longitud segmento
1	Cl	Serv	4484 > 21	[SYN]	Seq= 0	Ack= 0	Len=0
2	Serv	C1	21 > 4484	[SYN, ACK]	Seq= 0	Ack = 1	Len=0
3	Cl	Serv	4484 > 21	[ACK]	Seq= 1	Ack= 1	Len=0
4	Serv	C1	21 > 4484	[PSH, ACK]	Seg= 1	Ack = 1	Len=126
5	Cl	Serv	4484 > 21	[ACK]	Seq= 1	Ack= 127	Len=0
6	Cl	Serv	4484 > 21	[PSH, ACK]	Seq= 1	Ack= 127	Len=13
7	Serv	C1	21 > 4484	[PSH, ACK]	Seq= 127	Ack = 14	Len=34
8	Cl	Serv	4484 > 21	[ACK]	Seq= 14	Ack= 161	Len=0
9	Cl	Serv	4484 > 21	[PSH, ACK]	Seq= 14	Ack= 161	Len=12
10	Serv	C1	21 > 4484	[PSH, ACK]	Seq= 161	Ack= 26	Len=33
11	Cl	Serv	4484 > 21	[ACK]	Seq= 26	Ack= 194	Len=0
12	Cl	Serv	4484 > 21	[PSH, ACK]	Seq= 26	Ack= 194	Len= 27
13	Serv	C1	21 > 4484	[PSH, ACK]	Seq= 194	Ack= 53	Len=27
14	Cl	Serv	4484 > 21	[PSH, ACK]	Seq= 53	Ack= 221	Len=15
15	Serv	Cl	20 > 4485	[SYN]	Seq= 0	Ack = 0	Len=0
16	Cl	Serv	4485 > 20	[SYN, ACK]	Seq= 0	Ack= 1	Len=0
17	Serv	Cl	20 > 4485	[ACK]	Seq= 1	Ack = 1	Len=0
18	Serv	C1	21 > 4484	[PSH, ACK]	Seq= 221	Ack= 68	Len= 29
19	Cl	Serv	4485 > 20	[ACK]	Seq= 1	Ack= 1	Len=1460
20	Cl	Serv	4485 > 20	[ACK]	Seq= 1461	Ack= 1	Len=1460
21	Serv	Cl	20 > 4485	[ACK]	Seq= 1	Ack= 2921	Len=0
22	Cl	Serv	4485 > 20	[FIN, PSH, ACK]	_		Len=635
23	Serv	Cl	20 > 4485	[ACK]	Seq= 1	Ack= 3557	Len=0
24	Serv	Cl	20 > 4485	[FIN, ACK]	Seq= 1	Ack= 3557	Len=0
25	Cl	Serv	4485 > 20	[ACK]	Seq= 3557		Len= 0
26	Cl	Serv	4484 > 21	[ACK]	Seq= 68	Ack= 250	Len= 0
27	Serv	C1	21 > 4484	[PSH, ACK]	Seq= 250		Len=23
28	Cl	Serv	4484 > 21	[ACK]	Seq= 68	Ack= 273	Len=0
29	Cl	Serv	4484 > 21	[PSH, ACK]	Seq= 68	Ack= 273	Len=6
30	Serv	C1	21 > 4484	[PSH, ACK]	Seq= 273		Len=13
31	Serv	C1	21 > 4484	[FIN, ACK]	Seq= 286		Len=0
32	Cl	Serv	4484 > 21	[ACK]	Seq= 74	Ack=287	Len=0
33	Cl	Serv	4484 > 21	[FIN, ACK]	Seq= 74	Ack=287	Len=0
34	Serv	C1	21 > 4484	[ACK]	Seq=	Ack=	Len=

- 1.A ¿Podemos saber en qué máquina (Cliente o Servidor) se ha realizado la captura? ¿Por qué?
- 1.B ¿Cuántos establecimientos y liberaciones de conexión TCP se observan en la captura? Indicar los números de línea.
- 1.C ¿Por qué en los envíos de datos de la conexión con el puerto 21 hay tantos segmentos con el bit de PUSH a 1? ¿Qué pueden significar?
- **1.D** A la vista del volcado, ¿cuál es el valor de la ventana de congestión inicial que usa el cliente en su conexión con el servidor de puerto 20?
- **1.E** Dar la secuencia de envío de datos si el fichero que el cliente sube al servidor ocupa 6 segmentos de 1460 octetos y la ventana de congestión inicial es uno (la habitual en el algoritmo de SS/CA). Indicar el tamaño de la ventana real cada vez que cambie. Suponer que los ACKs se envían en cuanto es posible.
- 1.F Para la secuencia anterior, ¿llegaríamos a entrar en la fase de CA si se pierde una sola vez el cuarto segmento?

Segon control de Xarxes de Computadors (XC), Grau en Enginyeria Informàtica

12/12/2011

Tardor 2011

Duració: 1,5 hores. Respondre els problemes en fulls separats. Raonar les respostes

Pregunta 2. (5 punts)

El client de la figura està connectat al seu ISP a través de la xarxa telefònica amb un módem intern a 56kbps. Suposa que el client es descarrega una pàgina web de 6000 bytes d'un servidor d'Internet. Suposa també: Els retards en Internet són negligibles en comparació als temps de transmissió en l'enllaç de 56 kbps. La MTU és de 1500 bytes; es fa servir l'opció *timestamp* (aquesta opció ocupa 12 bytes). Comenta les suposicions que facis i inventa't les dades que puguin faltar.

- **2.A** Digues quin serà el MSS, quants segments de dades enviarà el servidor i quants bytes de dades portarà cada un d'aquests segments. Quina mida (en bytes) tindran els datagrames que porten les confirmacions?
- 2.B Calcula quin és el temps de transmissió en l'enllaç de 56 kbps d'un segment de dades de mida màxima enviat per el servidor, i del corresponent ack enviat per el client. Dibuixa un diagrama de temps amb 3 eixos: client, ISP i servidor, que mostri la transmissió del segment i de l'ack.
- 2.C Suposa que l'únic retard rellevant és la transmissió dels segments de dades que envia el servidor en l'enllaç de 56 kbps. Dibuixa un diagrama de temps amb 3 eixos: client, ISP i servidor, on es vegin tots els segments que s'envien durant la connexió, i que reflecteixi la suposició anterior. Indica clarament els segments que s'envien: marca amb una G el segment amb el GET de HTTP que envia el client, amb S1, S2... els segments de dades que envia el servidor i A1, A2... les corresponents confirmacions. Indica en el diagrama quins segments portaran el flags de SYN i FIN activats. Indica sobre el diagrama el valor de la finestra de congestió (en segments), en cada instant en que canviï de valor.
- 2.D Suposa que l'únic retard rellevant és la transmissió dels segments de dades que envia el servidor en l'enllaç de 56 kbps (suposa que els temps de transmissió i retards de tots els altres segments és aproximadament igual a 0). Amb l'ajut del diagrama de l'apartar 2.C, estima el temps que durarà la descàrrega de la pàgina web i la velocitat efectiva assolida (punt de vista de l'aplicació).
- **2.E** Amb les aproximacions anteriors i l'ajut del diagrama de l'apartar 2.C, estima el RTT que mesurarà la connexió TCP en el socket del servidor quan arriba cadascuna de les confirmacions dels segments de dades que envia.