Práctica Dirigida 3 de Análisis Funciojnal

Marcelo Gallardo

Mayo 2024

Especialidad de Matemáticas Pontificia Universidad Católica del Perú

marcelo.gallardo@pucp.edu.pe

1. Sea $a=(a_n)_{n=1}^\infty$ una secuencia de escalares de $p\geq 1$. Suponga que, para toda secuencia $(b_n)_{n\in\mathbb{N}}\in\ell_p$, la serie $\sum_{n=1}^\infty a_nb_n$ es convergente. Pruebe que $a\in\ell_\infty$ si p=1 y que $a\in\ell_q$ si p>1, con 1/q+1/p=1.

Defina

$$\varphi_n: \ell_p \to \mathbb{K}, \ \varphi_n((b_j)_{j \in \mathbb{N}}) = \sum_{j=1}^n a_j b_j.$$

Entonces, si p = 1

$$||\varphi_n|| = \sup_{\|(b_j)\|_1 \le 1} \left| \sum_{j=1}^n a_j b_j \right|$$
$$= \max_{1 \le j \le n} |a_j|.$$

En caso p > 1, usando la desigualdad de Holder:

$$||\varphi_n|| = \sup_{||(b_j)||_p \le 1} \left| \sum_{j=1}^n a_j b_j \right| = \left(\sum_{j=1}^n |a_j|^q \right)^{1/q}.$$

La convergencia de $\sum_n a_n b_n$ asegura que $\{\varphi_n\}_{n\in\mathbb{N}}$ es puntualmente limitada. Luego, dado que ℓ_p es completo, por Banach-Steinhauss, es uniformemente limitada. Como

$$\sup_{n} |a_n| = ||(a_n)_{n \in \mathbb{N}}||_{\infty} < \infty$$

$$\sup_{n} \left\{ \left(\sum_{j=1}^{n} |a_j|^q \right)^{1/q} \right\} = \left(\sum_{j=1}^{\infty} |a_j|^q \right)^{1/q} < \infty,$$

concluimos que

$$(a_n) \in \ell_{\infty} \lor (a_n) \in \ell_q.$$

- **2.** Sea F un subespacio cerrado de un espacio normado $(E, ||\cdot||_E)$.
 - a) Pruebe que $||[x]||=\inf\{||x-y||_E:\ y\in F\}$ es una norma del espacio cociente E/F.
 - b) Pruebe que si $(E, ||\cdot||_E)$ es de Banach entonces $(E/F, ||\cdot||)$ también es de Banach.
 - c) ¿Si E es reflexivo en cociente E/F es reflexivo? Justifique.
 - d) ¿Si $||\cdot||_E$ proviene de un producto interno la norma $||\cdot||$ proviene de un producto interno? Justifique.

Veamos que $||\cdot||$ es una norma. Primero, notemos que está bien definida pues, si tomamos $x, y \in E$ tales que [x] = [y], entonces ||[x]|| = ||[y]||.

Demostración. Por un lado, como $[x] = [y], x - y \in F$. Así,

$$\begin{split} \inf_{z \in F} ||x - z||_E &= \inf_{z \in (y - x) + F} ||x - (z - (y - x))||_E \\ &= \inf_{z \in (y - x) + F} ||y - z||_E \\ &= \inf_{z \in F} ||y - z||_E. \end{split}$$

Se ha usado que x - y + F = F.

Ahora, para la **positividad**, ciertamente como $||\cdot||_E$ es norma, $||[x]|| \ge 0$. Luego, si $[x] = [0], x \in M$. Así,

$$||[x]|| = \inf_{y \in F} ||x - y||_E = \inf_{z \in F} ||z|| = 0$$

pues $x-y\in F$ y $0\in F$. Finalmente, si ||[x]||=0, o sea $\inf_{y\in F}||x-y||=0$, existe $\{x_n\}_{n\in\mathbb{N}}\subset F$ tal que

$$||x - y_n||_E < \frac{1}{n}, \ \forall \ n \in \mathbb{N}.$$

Pero entonces, $||x-y_n||_E \to 0$. Esto es, $y_n \to x$. Al ser F cerrado, $x \in F$. Así, $[x] = [0] = 0_{E/F}$.

Analicemos ahora la **homogeneidad**. Sea $\lambda \in \mathbb{K}$. En particular, consideremos $\lambda \neq 0$ (en dicho caso, trivialmente $\lambda x = 0$ y $[0] = 0_{E/F}$):

$$\begin{split} ||[\lambda x]|| &= \inf_{y \in F} ||\lambda x - y||_E \\ &= \inf_{y \in F} ||\lambda (x - y/\lambda)||_E \\ &= \inf_{y/\lambda \in F} |\lambda| \cdot ||(x - y/\lambda)||_E \\ &= \inf_{z \in F} |\lambda| \cdot ||(x - z)||_E \\ &= |\lambda| \cdot \inf_{z \in E} ||(x - z)||_E \\ &= |\lambda| \cdot ||[x]||. \end{split}$$

Notemos que se ha usado la homogeneidad de $||\cdot||_E$ y el hecho que F es subespacio $(y/\lambda \in F)$ para todo λ no nulo).

Queda únicamente por verse la **desigualdad triangular**. Sean $x,y \in X$. Queremos probar que

$$||[x] + [y]|| \le ||[x]|| + ||[y]||.$$

Tendremos que

$$\begin{split} ||[x] + [y]|| &= ||[x + y]|| \\ &= \inf_{z \in F} ||(x + y) - z||_E \\ &= \inf_{z, w \in F} ||(x + y) - z - w||_E \\ &\leq \inf_{z, w \in F} (||x - z||_E + ||y - w||_E) \\ &= \inf_{z, w \in F} ||x - z||_E + \inf_{z, w \in F} ||y - w||_E \\ &= ||[x]|| + ||[y]||. \end{split}$$

Observación. Se está usando el siguiente hecho. Dados $z, v, w \in F$

$$\inf_{z \in F} ||x - z|| = \inf_{v, w \in F} ||x - (v + w)||.$$

En efecto, como $v + w \in F$

$$\inf_{z \in F} ||x - z|| \le \inf_{v, w \in F} ||x - (v + w)||.$$

Luego, z = z + 0. Tomando w = z y $v = 0 \in F$ se tiene la otra desigualdad.

b) Si $(E, ||\cdot||_E)$ es de Banach, entonces $(E/F, ||\cdot||)$ es de Banach. En efecto, consideremos una sucesión de Cauchy $\{x_n\}$ en E/F. Entonces, existe una subsucesión $\{x_{n_k}\}$ de forma que

$$||[x_{n_{k+1}}] - [x_{n_k}]|| < 2^{-k}.$$

Vamos a construir $z_k \in F$ de forma que $x_{n_k} - z_k$ sea de Cauchy en E. Al ser E de Banach, tendremos que $x_{n_k} - z_k \to z \in E$ y podremos concluir con lo solicitado. Veamos. Sea $z_1 = 0$:

$$\inf_{y \in F} ||(x_{n_1} - z_1) - x_{n_2} - y||_E = \inf_{y \in F} ||x_{n_1} - x_{n_2} - y||_E = ||[x_{n_1}] - [x_{n_2}]|| < \frac{1}{2}.$$

Entonces, existe $z_2 \in F$ de forma que

$$||(x_{n_1}-z_1)-(x_{n_2}-z_2)||_E<\frac{1}{2}.$$

Ahora, como $z_2 \in M$

$$\inf_{y \in F} ||(x_{n_2} - z_2) - x_{n_3} - y||_E = \inf_{y \in F} ||x_{n_2} - x_{n_3} - y||_E = ||[x_{n_2}] - [x_{n_3}]|| < \frac{1}{2^2}.$$

Entonces, existe $z_2 \in F$ de forma que

$$||(x_{n_2}-z_2)-(x_{n_3}-z_3)||_E<\frac{1}{2^2}.$$

Así, sucesivamente, $w_k = x_{n_k} - z_k$ es tal que

$$||w_k - w_{k+1}||_E < \frac{1}{2^k}.$$

Sabemos del Análisis Real que esto implica que w_k es de Cauchy pues

$$||w_m - w_n|| = ||w_m - w_{m+\ell}||$$

$$\leq \sum_{k=1}^{\ell} ||w_m - w_{m+1}||$$

$$\leq \sum_{k=1}^{\ell} \frac{1}{2^{m+k}}$$

$$< \frac{1}{2^{m-1}} \to 0.$$

De esta forma, al ser E completo, $w_k \to w \in E$. Luego,

$$\begin{aligned} ||[x_{n_k}] - [w]|| &= ||[x_{n_k} - z_k] - [w]|| \\ &= ||[w_k] - [w]|| \\ &= \inf_{y \in F} ||w_k - w - y||_E \\ &\leq \inf_{y \in F} ||w_k - w|| + \inf_{y \in F} ||y||_E \\ &\leq ||w_k - w|| \to 0. \end{aligned}$$

Así, $[x_{n_k}]$ es una subsucesión convergente en E/F de $[x_n]$. Finalmente, como $[x_n]$ es de Cauchy, $[x_n]$ es convergente, y así, E/F es de Banach.

c) Ahora, veamos que si E es reflexivo, E/F también lo es. Primero, necesitamos establecer algunos resultados que son probados a continuación.

Lema 1. La proyección $\pi: E \to E/F$ es tal que $\pi': (E/F)' \to E'$ es una isometría.

Lema 2. Todo subespacio cerrado de un espacio reflexivo es reflexivo a su vez.

Lema 3. Un espacio de Banach E es reflexivo si y solamente si E' es reflexivo (curso).

Lema 4. Todo espacio normado reflexivo es de Banach.

Tenemos entonces que E es de Banach por el Lema (4). Luego, E/F es también de Banach por el Ejercicio (b). Por otro lado, $\pi^{'}:(E/F)'\to E'$ es una isometría.

Proposición 5. El espacio (E/F)' puede entonces verse como subespacio cerrado de E'.

Demostración. Sea $\{\pi'(\varphi_n)\}_{n\in\mathbb{N}}$ una sucesión en $\pi'((E/F)')$ que converge a $\psi \in E'$. Como la sucesión es convergente, en particular es de Cauchy. Dado que se tiene que π' es una isometría, φ_n es de Cauchy en (E/F)'. Como (E/F)' es completo $\varphi_n \to \varphi$. Finalmente, por la continuidad de π' , $\pi'(\varphi_n) \to \pi'(\varphi) \in \pi'((E/F)')$.

Luego, como E es reflexivo, por el Lema (3) E' es reflexivo. Usando el Lema (2), por la Proposición (5), tendremos que (E/F)' es reflexivo. Finalmente, nuevamente por el Lema (3), concluimos que E/F es reflexivo.

Queda probar los resultados que se han usado para concluir que E/F es reflexivo. El Lema (1) es consecuencia de la definición (asignación)

$$\pi^{'}(\varphi) \to \psi$$

$$\pi^{'}(\varphi)([x]) = \varphi(\pi(x)) = \varphi([x]).$$

Luego, (3) y (4) son resultados del curso. Queda únicamente por probar entonces el Lema (2).

Demostraci'on. Tenemos $F\subset E$ cerrado y queremos probar que si E es reflexivo, F también. Veamos. Definamos, como de costumbre

$$J_F : F \to F''$$

 $J_E : E \to E''$.

Sea $y_0'' \in F''$. Definimos $\varphi \in E''$ de forma que

$$\varphi(\phi') = y_0''(\phi'|_F), \ \phi' \in E'.$$

Como E es reflexivo, existe $x_0 \in E$ tal que $J_E(x_0) = \varphi$. Si x_0 no perteneciera a F, por los corolarios de Hahn-Banach, al ser F cerrado, existe $\psi \in E'$ tal que $\psi(x_0) \neq 0$ y $\psi(F) = 0$. Luego,

$$\psi(x_0) = J_E(x_0)(\psi) = \varphi(\psi) = y_0''(\psi|_F) = 0$$

lo cual es una contradicción. Así, $x_0 \in F$. Afirmamos ahora que $J_F(x_0) = y_0''$. Al haber tomado y_0'' arbitrario en F'', concluiremos que J_F , el encaje canónico, es sobreyectivo, y así, F es reflexivo. Por Hahn-Banach, para todo $\psi \in F'$, podemos extenderlo a $\tilde{\psi} \in E'$ (continuo) de forma que

$$J_F(x_0)(\psi) = \psi(x_0) = \tilde{\psi}(x_0) = J_E(x_0)(\tilde{\psi}) = \varphi(\tilde{\psi}) = y_0''(\tilde{\psi}|_F) = y_0''(\tilde{\psi}).$$

Dado que ψ y por ende $\tilde{\psi}$ fue arbitrario, se obtiene lo solicitado.

Observación. Se ha usado $|_F$ para denotar la restricción.

d) Si $||\cdot||_E$ proviene de un producto interno, y suponemos que E es de Banach, entonces $||\cdot||$ proviene de un producto interno. Dicho de otra forma, si E es de Hilbert, entonces E/F es de Hilbert también.

Observación. Si E no fuese de Banach, entonces la situación pasa por el espacio $C^0([0,1])$. Este espacio no es de Banach con la norma inducida por el producto interno $\langle f,g\rangle=\int_0^1 f(x)g(x)dx$. En efecto, basta considerar

$$f_n(x) = \begin{cases} 0, & \text{si } x \in [0, 1/2 - 1/n] \\ \frac{n}{2}x - \frac{n}{4} + \frac{1}{2}, & \text{si } x \in [1/2 - 1/n, 1/2 + 1/n] \\ 1, & \text{si } x \in [1/2 + 1/n, 1]. \end{cases}$$

Esta sucesión es de Cauchy pero converge a $f(x) = \begin{cases} 0, & \text{si } 0 \le x \le 1/2 \\ 1, & \text{si } x \in (1/2, 1]. \end{cases}$. Obte-

niendo un cerrado $F \subset (C([0,1]), ||\cdot||_{\langle\cdot,\cdot\rangle})$, como las funciones que se anulan en un cierto punto, el objetivo es ver si la igualdad del paralelogramo se cumple o no.

Pasemos al caso E de Banach y por ende de Hilbert. Ya sabemos que E/F sería de Banach. Solo basta probar que $||\cdot||$ proviene de un producto interno.

Lema 6. E/F es isométricamente isomorfo a F^{\perp} vía la aplicación $\psi: E/F \rightarrow F^{\perp}$, $\psi([x]) = Q(x)$, donde $Q: E \rightarrow F^{\perp}$ es la proyección ortogonal.

Demostraci'on. Como F es cerrado en E (caso completo), F es completo. Luego, podemos aplicar el Teorema 5.2.2 y Teorema 5.2.5 (curso):

$$||[x]|| = \inf_{y \in F} ||x - y||_E = ||x - p||_E = ||q||_E = ||Q(x)||_E, \tag{1}$$

donde x=p+q, con $p\in F$ y $q\in F^{\perp},$ E suma directa de estos dos subespacios previos.

Finalmente, para comprobar que $||\cdot||$ proviene de un producto interno, hay que probar que cumple con la Ley del Paralelogramo:

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Esto es consecuencia de que ϕ es una isometría y que $||\cdot||_E$ satisface la Ley del Paralelogramo. En efecto,

$$||x+y||^2 + ||x-y||^2 = \left(\inf_{z \in F} ||(x+y) - z||_E\right)^2 + \left(\inf_{z \in F} ||(x-y) - z||_E\right)$$
$$= ||(x+y) - p_1||_E^2 + ||(x+y) - p_2||_E^2$$
$$= ||q_1||_E^2 + ||q_2||_E^2$$

donde $p_1, p_2 \in F$ y su existencia queda asegurada por (6), y $q_1, q_2 \in F^{\perp}$ de forma que $Q(x+y)=q_1$ y $Q(x-y)=q_2$. Luego, como $||\cdot||_E$ cumple la igualdad del paralelogramo.

$$||q_1||_E^2 + ||q_2||_E^2 = \frac{||Q(x+y) - Q(x-y)||_E^2}{2} + \frac{||Q(x+y) + Q(x-y)||_E^2}{2}$$

Como la proyecciones son lineales, en particular Q lo es. Así,

$$\frac{||Q(x+y) - Q(x-y)||_E^2}{2} + \frac{||Q(x+y) + Q(x-y)||_E^2}{2} = 2||Q(y)||_E^2 + 2||Q(x)||_E^2.$$

Finalmente, de (1)

$$2||Q(y)||_E^2 + 2||Q(x)||_E^2 = 2||x||^2 + 2||y||^2 = 2(||x||^2 + ||y||^2),$$

tal y como se quería.

3. Pruebe que el cerrado $E = \{ f \in C[0,1] : f(0) = 0 \} \subset C[0,1]$ no es reflexivo.

Lema 7. Sea E reflexivo. Pruebe que todo funcional lineal continuo alcanza su norma. Esto es, para todo $\varphi' \in E'$, existe $x \in E$, ||x|| = 1 tal que $||\varphi|| = |\varphi(x)|$.

Usamos el Lema: sea $\varphi \in E'$ dado por

$$\varphi(f) = \int_0^1 f(t)dt.$$

Si f(0) = 0,

$$\left| \int_0^1 f(t)dt \right| < 1, \forall f.$$

Así, φ nunca alcanza su norma.

4. Pruebe que el espacio ℓ_p para $p \neq 2$ no es de Hilbert.

Supongamos que ℓ_p es un espacio de Hilbert. Entonces debe satisfacer para todos u,v:

$$2\|u\|_p^2 + 2\|v\|_p^2 = \|u + v\|_p^2 + \|u - v\|_p^2.$$

Tomemos $u=e_1=(1,0,\ldots,0,\ldots)$ y $v=e_2=(0,1,0,\ldots,0,\ldots)$. Por lo tanto, por la última igualdad, tenemos

$$4 = 2^{2/p} + 2^{2/p}$$

Necesariamente p=2. Por otro lado, si p=2, es fácil verificar que ℓ_2 es un espacio de Hilbert.

5. Sea E un espacio vectorial real con producto interno. Pruebe que el operador

$$T: E \to E', \ T(x)(y) = \langle x, y \rangle, \ \forall \ x, y \in E$$

está bien definido. Esto es
, $T(x) \in E'$ para todo $x \in E,$ es lineal continuo e isometría.

Claramente T es lineal pues

$$T(x)(\lambda y_1 + y_2) = \langle x, \lambda y_1 + y_2 \rangle = \langle x, \lambda y_1 \rangle + \langle x, y_2 \rangle = \lambda T(x)(y_1) + T(x)(y_2).$$

Luego, es continuo pues, dado $\epsilon > 0$, si tomamos $||y - y_0|| < \delta = \frac{\varepsilon}{||x||}$

$$||T(x)(y) - T(x)(y_0)|| = ||\langle x, y \rangle - \langle x, y_0 \rangle|| = |\langle x, y - y_0 \rangle| < ||x|| \cdot ||y - y_0|| < \varepsilon.$$

Más aún, se trata de una isometría pues

$$||T(x)|| = \sup_{||y|| \le 1} \{ |\langle x, y \rangle| \} = \left\langle x, \frac{x}{||x||} \right\rangle = ||x||.$$

6. Sean $(x_n)_{n\in\mathbb{N}}$ y $(y_n)_{n\in\mathbb{N}}$ dos sucesiones en la bola unitaria cerrada de un espacio de Hilbert. Pruebe que si $\langle x_n, y_n \rangle \to 1$, entonces $||x_n - y_n|| \to 0$.

Tenemos

$$\langle x_n - y_n, x_n - y_n \rangle = \langle x_n, x_n \rangle - \langle x_n, y_n \rangle - \langle y_n, x_n \rangle + \langle y_n, y_n \rangle.$$

Ahora bien, $\langle x_n, x_n \rangle = \langle y_n, y_n \rangle = 1$. Pero, como $\langle x_n, y_n \rangle \to 1$ y $\langle y_n, x_n \rangle = \overline{\langle x_n, y_n \rangle}$, concluimos.

7. Sean $(x_n)_{n\in\mathbb{N}}$ y $(y_n)_{n\in\mathbb{N}}$ dos sucesiones en la bola unitaria cerrada de un espacio de Hilbert. Pruebe que si $\langle x_n, y_n \rangle \to 1$, entonces $||x_n - y_n|| \to 0$.

Procedemos por inducción. Primero, si $[x_1]=[y_1],\ x_1=ay_1$. Luego, como $||x_1||=||y_1||=1,\ |a|=1$. Ahora, supongamos el resultado válido para n=k: $[x_1,\cdots,x_k]=[y_1,\cdots,y_k]$ y $x_n=a_ny_n$ con $|a_n|=1$. Entonces, si $[x_1,...,x_{k+1}]=[y_1,...,y_{k+1}]$

$$y_{k+1} = \sum_{i=1}^{k+1} \lambda_i x_i.$$

Como los vectores son ortogonales entre sí,

$$0 = \langle y_{k+1}, y_j \rangle = \left\langle \sum_{j=1}^{k+1} \lambda_i x_i, a_j x_j \right\rangle = \lambda_j \overline{a}_j.$$

Como $\overline{a}_j \neq 0, \ \lambda_j = 0$ para j=1,...,k. Por ende, $y_{k+1} = \lambda_{k+1} x_{k+1}$ y $|\lambda_{k+1}| = 1$.