1 Question 2 b,c

On trace l'evolution temporelle de $|\psi(t)\rangle$ pour deux valeurs de ϕ dans le code.

Figure 1: $\phi = 0$

Figure 2: $\phi = \frac{\pi}{2}$

Le pulse excite le qubit initialise dans l'etat fondamentale vers l'etat :

$$|\psi_f\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

Pour exciter le qubit vers cet etat on trouve numeriquement $dE_0 = 0.885$ avec les constantes du problemes pose (voir le code)

Figure 3: Coefficients alpha et beta en fonction du temps de pulse

On represente les coefficients $\alpha(t)$ et $\beta(t)$ sur la figure 3 apres avoir resolus les equations differentielles numeriquement avec **scipy.integrate.odeint**. La simulation a bien converger vers l'état finale apres le passage complet du pulse.

Pour les meme deux valeurs de phi, le pulse excite le qubit initialise a l'état fondamentale vers l'état finale : $|\psi_f\rangle=|1\rangle$

Pour exciter le qubit vers cet etat on trouve numeriquement $dE_0=1.77$

Figure 6: Coefficients alpha et beta en fonction du temps de pulse

On voit bien la l'ecart dans les coefficient alpha et beta. La simulation a bien converger vers l'etat finale apres le passage complet du pulse.

2 Question 2 d

Figure 7:

- (a) La premiere impulsion $\pi/2$ fait tourner de $|0\rangle$ vers l'équateur.
- (b) Le vecteur précesse librement autour de l'axe z pendant la durée τ .
- (c) Une deuxième impulsion $\pi/2$ projette la phase acquise sur l'axe z.

On excite le qubit dans l'etat $|\psi_f\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ comme a la question 2 c. Le vecteur accumule une phase $\omega\tau \equiv \pi$, il effectue une rotation autour de l'axe z.

Apres un delai $\tau >> \delta$, on applique le pulse :

$$E' = E_0 e^{-(t-\tau)^2/\delta^2} cos(\omega(t-\tau))$$

Une deuxième impulsion $\pi/2$ où l'intensité E_0 et la durée (δ) sont identiques au premier pulse projette la phase acquise sur l'axe z, on fait une deuxième rotation autour de l'axe x et l'etat finale est $|0\rangle$.

Figure 8: Graphique du passage des pulses en fonction du temps

3 Question 2 e

Figure 9:

- (a) La premiere impulsion $\pi/2$ fait tourner de $|0\rangle$ vers l'équateur.
- (b) Le vecteur n'effectue pas de rotation autour de z.
- (c) Une deuxième impulsion $\pi/2$ fait tourner vers l'etat $|1\rangle$

On considere maintenant un pulse de la forme :

$$E' = E_0 e^{-(t-\tau)^2/\delta^2} \cos(\omega t)$$

Le vecteur d'etat sur la sphere de Bloch n'effectue pas de rotation autour de l'axe z puisque c'est la partie en $cos(\omega\tau)$ qu'on associe au changement de phase lors de la precession autour de z pour un delai τ .

Contrairement au pulse precedent :

se precedent :
$$E' = E_0 e^{-(t-\tau)^2/\delta^2} cos(\omega t - \underbrace{\omega \tau})$$
$$\phi \equiv \omega \tau$$

On excite le qubit dans l'etat $|\psi_f\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ comme a la question 2 c. On reprend de l'etat final au passage de premier pulse. La deuxième impulsion $\pi/2$ de meme intensite et duree que le premier pulse fait tourner vers l'etat final : $|\psi_f\rangle=|1\rangle$