

Roteamento

João Carlos Lopes Fernandes Abril/2018

Cisco Networking Academy® Mind Wide Open®

IP x Protocolo de Roteamento

- O protocolo IP é responsável pelo roteamento das informações na rede
 - A variável ipforwarding indica se o protocolo está executando roteamento ou não
 - Ipforwarding = 0 (n\(\tilde{a}\)o executa roteamento)
 - Ipforwarding = 1 (executa roteamento)
- Os protocolos de roteamento são responsáveis pela divulgação de rotas e atualização das tabelas de roteamento

Roteamento Direto

Origem e Destino na mesma rede

- Várias topologias
 - Lembre-se equipamentos de nível 2 não tratam endereço IP

Roteamento Indireto

Origem e Destino estão em redes diferentes

Roteamento Estático e Dinâmico

- Roteamento Estático
 - Normalmente configurado manualmente
 - A tabela de roteamento é estática
 - As rotas não se alteram dinamicamente de acordo com as alterações da topologia da rede
 - Custo manutenção cresce de acordo com a complexidade e tamanho da rede
 - -Sujeito a falhas de configuração

Roteamento Estático e Dinâmico

- Roteamento Dinâmico
 - Divulgação e alteração das tabelas de roteamento de forma dinâmica
 - Sem intervenção constante do administrador
 - Alteração das tabelas dinamicamente de acordo com a alteração da topologia da rede
 - Adaptativo
 - Melhora o tempo de manutenção das tabelas em grandes redes
 - Mas também está sujeito a falhas

Roteamento Estático - Exemplo

Sistemas Autônomos

- Um SA (Sistema Autônomo) pode ser definido como "Um grupo de redes e roteadores controlados por uma única autoridade administrativa."
- Roteadores em um sistema autônomo seguem as mesma "regras" de roteamento
- Protocolos de roteamento são classificados de acordo com sua atuação

Protocolo Interiores e Exteriores

Protocolos Internos

 São aqueles utilizados para comunicação entre roteadores de um mesmo sistema autônomo

Protocolos Externos

 São aqueles utilizados para comunicação entre roteadores de sistemas autônomos diferentes

Algoritmos de Roteamento

- Os protocolos de roteamento implementam um ou mais algoritmos de roteamento
- Exemplos de Algoritmos
 - -Vetor Distância, Flooding, SPF (Shortest Path First), ...
- Exemplos de protocolos
 - -RIP, OSPF, IGRP, BGP, ...

Vetor-Distância

- Bellman-Ford
- É um algoritmo simples
 - Um roteador mantém uma lista de todos as rotas conhecidas em uma tabela
 - Cada roteador divulga para os seus vizinhos as rotas que conhece
 - Cada roteador selecionas dentre as rotas conhecidas e as divulgadas os melhores caminhos

Vetor-Distância - Métrica

- A escolha do melhor caminho é baseada na comparação da métrica do enlace
 - –Normalmente: Melhor = menor caminho
- A métrica é o custo de envio em um enlace
- Pode ser diferentes informações
 - -Taxa de transmissão em bps
 - -Vazão
 - -Atraso
 - -Número de saltos (no. de *hops*) (+ usado)

Vetor-Distância

Processo

- 1. Quando o roteador executa o "boot" ele armazena na tabela informações sobre cada uma das redes que estão diretamente conectada a ele. Cada entrada na tabela indica uma rede destino, o gateway para a rede e a sua métrica.
- 2. Periodicamente cada roteador envia uma cópia da sua tabela para qualquer outro roteador que seja diretamente alcançável.
- 3. Cada roteador que recebe uma cópia da tabela, verifica as rotas divulgadas e suas métricas. O roteador soma à métrica divulgada o custo do enlace entre ele e o roteador que fez a divulgação. Após, compara cada uma das entradas da tabela divulgada com as da sua tabela de roteamento. Rotas novas são adicionadas, rotas existentes são selecionadas pela sua métrica.

Vetor-Distância ...

- 3.1 Se a rota já existe na tabela e a métrica calculada é menor do que a da rota conhecida, então remove a entrada anterior e adiciona a nova rota divulgada.
- 3.2 Se a rota já existe na tabela e a métrica calculada é igual a da rota conhecida, então não altera a entrada.
- 3.3. Se a rota já existe na tabela e a métrica divulgada é maior do que a da rota conhecida, então verifica se o gateway para desta rota é o mesmo que está fazendo nova divulgação
 - 3.3.1 Se o gateway é o mesmo então altera a métrica para esta rota
 - 3.3.2 Se o gateway não é o mesmo não altera a rota conhecida

Routing Information Protocol (RIP)

- Protocolo interior
- Implementa o algoritmo Vetor Distância
- A métrica utilizada é o número de máquinas intermediárias (no. de hops)
- Não permite o balanceamento de tráfego
- Cada roteador divulga sua tabela periodicamente a cada 30 segundos
- As mensagens divulgadas levam n tuplas contendo

RIP ...

- A divulgação para os vizinhos é realizada por broadcast
 - O router um broadcast em todas as redes diretamente conectadas a ele
- No procedimento normal, se a rota não for atualizada em 180 segundos é considerada inatingível
- A informação de rota inatingível é repassada aos roteadores "vizinhos" (diretamente alcançáveis)

RIP - Exemplo

RIP - Problemas

- Não tem mecanismos de segurança
 - -É suscetível a spoofing
- Não tem controle de "idade" das mensagens
 - –Mensagens "velhas" podem ser processadas após mensagens "novas"
 - Inconsistência nas tabelas de roteamento
- Problemas de laços na divulgação das rotas
- Limitação de número de roteadores intermediários
 - –Métrica = 16, indica rota inalcançável
- Não suporta máscara de subrede

Convergência Lenta

Convergência Lenta

Soluções

Split Horizon

 A informação de roteamento não deve ser divulgada para a máquina que a originou

Poison Reverse

-Aumenta a métrica e coloca em *hold-down*

Hold-Down

 Previne que mensagens de atualização restabeleçam precipitadamente uma rota que caiu.

Frame do RIP

command	version	zero
family of net 1		zero
IP Address of Net 1		
zero		
zero		
distance to net 1		
zero		
family of net 2		zero
IP Address of Net 2		
zero		
zero		
distance to net 2		

