Supervised learning

Aprendizaje Automático para la Robótica Máster Universitario en Ingeniería Industrial

Departamento de Automática

Objectives

- 1. Extend supervised learning algorithms
- 2. Apply supervised learning to real-world problems

Bibliography

• Müller, Andreas C., Guido, Sarah. Introduction to Machine Learning with Python. O'Reilly. 2016

All figures have been taken from https://github.com/amueller/introduction_to_ml_with_ python/blob/master/02-supervised-learning.ipynb

Table of Contents

- Generalization, overfitting and underfitting
- 2. k-Nearest Neighbors
 - k-NN classification
 - Scikit-Learn
 - kNN regression
 - Scikit-Learn
 - Summary
- 3. Linear models
 - Ordinary least squares
 - Linear regression
 - Regularized linear models
 - Ridge regression
 - Lasso regression
 - ElasticNet
 - Regularized linear models comparison
 - Scikit-Learn
 - Linear models for classification
 - Scikit-Learn
 - Summary
- 4. Decision Trees

- Building decision trees
- Controlling complexity of decision trees
- Analyzing decision trees
- Feature importance in trees
- Decision trees in regression
- Scikit-Learn
- Summary
- 5. Ensembles of Decision Trees
 - Ensembles
 - Random forests
 - Analyzing random forests
 - Scikit-Learn
 - Summary: Random forest
 - Gradient boosted regression trees
 - Scikit-Learn
 - Summary
- 6. Support Vector Machines
 - Kernelized Support Vector Machines
 - Support Vector Machines
 - Summary
 - ARIMA

Generalization

Generalization, overfitting and underfitting

Generalization: accurate predictions on unseen data

- i.e. there is no overfitting neither underfitting
- Depends on model complexity and data variability

r models Decision Trees Ensembles of Decision Trees Suppor

k-Nearest Neighbors

k-Nearest Neighbors

k-NN classification (I)

k-NN (k-Nearest Neighbors): Likely, the simplest classifier

- Given a data point, it takes its k closests neighbors
- Same prediction than its neighbors

k-NN does not generate a model

• The whole dataset must be stored

k uses to be an odd number (1-NN, 3-NN, 5-NN, ...)

k-NN classification (II)

k determines the model complexity

- Smoother boundaries in larger k values
- Model complexity decreases with k
- If k equals the number of samples, k-NN always predicts the most frequent class

How to figure out the best k?

k-Nearest Neighbors

k-NN classification (III)

k-Nearest Neighbors classifier

Scikit-learn

sklearn.neighbors.KNeighborsClassifier

Constructor arguments:

- n_neighbors: int, default=5
- metric: string, default='minkowski'
- p: int, default=2 (p = 1 Manhatan distance, p = 2 euclidean distance)

Methods: fit(), predict()

Attributes:

classes_: ndarray (n_samples)

(Scikit-Learn reference)

k-Nearest Neighbors

k-Nearest Neighbors

kNN regression (I)

k-NN regression

Given a data point

- 1. Take the k closest data points
- 2. Predict same target value (r-NN) or averate target value (k-NN)

Performace is measured with a regression metric, by default, R²

k-Nearest Neighbors

kNN regression (II)

k determines boundary smoothness

- I. With k = 1, prediction visits all data points
- 2. With large k values, fit is worse

k-Nearest Neighbors regressor

k-Nearest Neighbors

Scikit-learn

sklearn.neighbors.KNeighborsRegresson

Constructor arguments:

Attributes:

- n_neighbors: int, default=5
- metric: string, default='minkowski'
- p: int, default=2 (p = 1 Manhatan distance, p = 2 euclidean distance)

Methods:fit(),predict()

(Scikit-Learn reference)

k-Nearest Neighbors

Summary

Hyperparameters	Advantages	Disadvantages
k	Simple	Slow with large datasets
Distance	Baseline	Bad performance with
		hundreds or more attri-
		butes
		No model
		Dataset must be stored
		in memory

Linear model (I)

Linear model

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \dots + \beta_n \mathbf{x}_n$$

for a single feature $y = \beta_0 + \beta_1 x_1$, where

- β_0 is the intercept
- β_1 is the slope
- Intepretable model

Lineal models assume a linear relationship among variables

- This limitation can be easely overcomed
- Surprisingly good results in high dimensional spaces

Linear regression

Different linear models for regression

• The difference lies in how β_i parameters are learned

Ordinary Least Squares (OLS): Minimizes mean squared error

OLS does not have any hyperparameter

Linear models

No complexity control

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)^2$$

Linear regression can be used to fit non-linear models

• Just adding new attributes

Regularized linear models

Regularization: Term that penalizes complexity

- Added to the cost function
- Lineal models remain the same
- Train to minimize cost function and coefficients
- Intercepts are not part of regularization

Three regularizations

• LI (Lasso regression), L2 (Ridge regression) and ElasticNet (LI and L2)

Lasso (L1)

$$\alpha \sum_{j}^{n} |\beta_{j}|$$

Ridge (L2)

$$\frac{\alpha}{2} \sum_{j}^{n} \beta_{j}^{2}$$

ElasticNet

$$\alpha \left(\frac{\lambda}{2} \sum_{j}^{n} \beta_{j}^{2} + (1 - \lambda) \sum_{j}^{n} |\beta_{j}| \right)$$

Ridge regression

Ridge regression (or L2 regularization) adds a new term to cost function

$$MSE + \alpha \sum_{i=1}^{n} \beta_i^2$$

 α controls the model complexity

- If $\alpha = 0$ Ridge becomes a regular linear regression
- Optimal α depends on the problem

Ridge by default

Lasso regression (I)

Lasso regression (or L1 regularization) adds a new term to cost function

$$MSE + \alpha \frac{1}{2} \sum_{i=1}^{n} |\beta_i|$$

 α controls the model complexity

- If $\alpha = 0$ Ridge becomes a regular linear regression
- Optimal α depends on the problem

Some coefficiets may be exactly zero

- Implicit feature selection
- Easier interpretation
- Better with large number of attributes

Lasso regression (II)

Dimension Reduction of Feature Space with LASSO

ElasticNet

Lasso and Ridge can be combined

$$\text{MSE} + \alpha \left(\lambda \frac{1}{2} \sum_{i=1}^{n} |\beta_i| + (1 - \lambda) \sum_{i=1}^{n} \beta_i^2 \right)$$

Two hyperparameters

- ullet lpha controls the model complexity
- λ balances between L1 and L2

Regularized linear models comparison

Scikit-learn (I)

sklearn.linear model.LinearRegressior

Constructor arguments:

• fit_intercept: boolean, default=True

Methods:fit(),predict()

- coef_: ndarray (n_features,)
- intercept_: ndarray (n_targets,)
- n_features_in_:int

Scikit-learn (II)

sklearn.linear model.Ridge

Constructor arguments:

- fit_intercept: boolean, default=True
- alpha: float, default=1.0

Methods:fit(),predict()

- coef_: ndarray (n_features,)
- intercept_: ndarray (n_targets,)
- n_features_in_: int

Scikit-learn (IV)

Constructor arguments:

- fit_intercept: boolean, default=True
- alpha: float, default=1.0
- 11_ratio: float, default=0.5

Methods:fit(),predict()

- coef_: ndarray (n_features,)
- intercept_: ndarray (n_targets,)
- n features in :int

Scikit-learn (III)

Constructor arguments:

- fit_intercept: boolean, default=True
- alpha: float, default=1.0

Methods: fit(), predict()

- coef_: ndarray (n_features,)
- intercept_: ndarray (n_targets,)
- n features in :int

Linear models for classification (I)

A linear regression can be used as classifier

- Just compare the prediction with a threshold (o, for instance)
 - If $\hat{y} > 0$, assign class 1
 - If $\hat{v} \le 0$, assign class -1
- The decision boundary for any binary linal classifier is a line, plane or hyperplane

A logistic regression is a generalization of a linear regression

- It is a binary classifier
 - Its output is a probability

$$\mathbf{p} = \sigma \left(\beta_0 + \sum_{i=1}^n \beta_i \mathbf{x}_i \right), \begin{bmatrix} \frac{1}{2} & 0.6 \\ \frac{\pi}{2} & 0.4 \\ 0.2 \\ 0 \end{bmatrix}$$

where $\sigma(t)$ is the logistic function, defined as $\sigma(t) = \frac{1}{1+e^t}$

Linear models for classification (II)

Linear models for classification (III)

The model can be regularized with L1, L2 and ElasticNet

- In Scikit-Learn, regularization strength is given by C
- Lower values of C correspond to smaller regularization strength

Scikit-learn

Constructor arguments:

- penalty: 'lr', 'l2', 'elasticnet', 'none', default='l2'
- fit intercept: boolean, default=True
- alpha: float, default=1.0
- 11 ratio: float, default=0.5

Methods:fit(),predict()

- coef_: ndarray (n_features,)
- intercept_: ndarray (n_targets,)
- n_features_in_:int

Linear models

Summary

Hyperparameters	Advantages	Disadvantages
-	Fast train and predict	No complexity tuning
lpha (L1, L2, ElasticNet)	Scales well to large data-	Limited in low dimen-
	sets	sional spaces
l1_ratio (ElasticNet)	Better in high dimen-	-
	sional spaces	
	Few hyperparameters	
	Interpretable	

Better when the number of features is large compared to the number of samples

Decision trees are a family of algorithms for classification and regression

- They learn a tree data strucure
- Hierarchy of if/else questions (test, or node)
- Decision (terminal node or leaf)

Usually, datasets does not contain binary attributes

- Continous features
- Is feature i larger than value a?

Decision Trees

Building decision trees (I)

Tree learning algorithm

- 1. Begin with the root node
- Searches all possible tests (according to a purity measure)
- 3. The most informative test is taken
- 4. Repeat recursively

Prediction of a new data point

- Classification: Majority class in the partition
- Regression: Average value of target values in the partition

Decision Trees

Building decision trees (II)

Building decision trees (III)

Let \mathfrak{p}_{mk} be the propotion of class k in node m, and Q_m the data in node m

Gini

Log Loss or Entropy

$$G(Q_m) = \sum_l p_{mk} (1-p_{ml})$$

$$H(Q_{m}) = -\sum_{l.} p_{mk}log(p_{ml})$$

Controlling complexity of decision trees

Trees tend to grow until all leaves are pure

- Very big trees in real problems
- Big trees use to be overfitted models

Two strategies to prevent overfitting

- Pre-prunning: Stop the creation of the tree early according to some criteria
 - Maximum depth, number of leaves, minimum number of points in a node, ...
 - Implemented in Sciki-Learn
- Post-prunning: Build the tree and then remove nodes with little information

Decision Trees

Analyzing decision trees

Decision trees is easily explained to nonexperts

- Interpretable models
- Deep trees are overwhelming
- Trick: Observe the path with most data

Decision Trees

Analyzing decision trees

Feature importace is a metric that summarizes features

- Number between o (not used at all) and 1 (perfect prediction)
- Feature importances sum to one
- Useful for feature selection and model interpretation

Some considerations

- It does not inform about the relationship between attribute and target
- It quantifies the importance in the tree
 - Correlated attributes may score low importance

Decision trees in regression

Decision trees are not able to extrapolate

- i. e. to predict outside of the range of the training data
- It is specially important in regression problems

Scikit-learn (I)

sklearn.tree.DecisionTreeClassifier

Constructor arguments:

- criterion: 'gini', 'entropy', 'log_loss', default='gini'
- max_depth: int, default=None
- max_leaf_nodes: int, default=None
- min_samples_leaf: int or float, default=r

Attributes:

- classes_: ndarray (n_classes,)
- feature_importances_: ndarray (n_features,)
- tree_: Tree instance

Methods:fit(),predict(),decision_path(),get_depth(),
get_n_leaves()

(Scikit-Learn reference)

Scikit-learn (II)

sklearn.tree.DecisionTreeRegressor

Constructor arguments:

- criterion: "squared_error",
 "absolute_error",
 default="squared_error"
- max_depth: int, default=None
- max_leaf_nodes: int, default=None
- min_samples_leaf: int or float, default=r

Methods:fit(),predict(),decision_path(),get_depth(),
get_n_leaves()

Attributes:

- feature_importances_: ndarray(n_features,)
- tree_: Tree instance

Summary

Hyperparameters	Advantages		Disadvantages
max_depth	Visualization		Tend to overfit
max_leaf_nodes	Interpretable	bу	Poor generalization
	non-experts		
min_samples_leaf	Invariant to scale		
criterion	Mix of categorial a	and	
	numerical data		

Ensembles

Ensembles, in ML, refers to the combination of several models

For instance, an ensemble of three classifers voting

Two common aprochaes to build ensembles

- Bagging (or bootstrap) samples the dataset with replacement
 - The ensemble make prediction by aggregating its predictors
- Boosting trains models to correct previous models

(Source)

Random forests

Trees have poor generalization

- A tree is good doing his job, but does not generalize well
- Different trees could overfit in differentways
- Idea: Using many trees and averaging their result

Random forest is an algorithm that trains different trees injecting randomness

- Selecting data bootstrap
- Selecting features in each test
 - It does not look for the best test
 - It looks for the best test involving a random subset of features
 - The size of the features subset is a critical hyperparameter

Analyzing random forests (I)

Random forest with five trees

k-Nearest Neighbors Linear models Decision Trees **Ensembles of Decision Trees** Support Vector Machin

Ensembles of Decision Trees

Analyzing random forests (II)

Feature importance can be aggregated

- More informative than single trees
- The algorithms must consider many possible explanations

Analyzing random forests (III)

Random forest classifier with MNIST dataset

st Neighbors Linear models Decision Trees Ensembles of Decision Trees Support V

Ensembles of Decision Trees

Ensembles of Decision Trees: Scikit-learn

sklearn.ensemble.RandomForestClassifier

Same than RandomForestClassifier Constructor arguments:

- n_estimators: int, default=100
- max_features: "sqrt", "log2",
 None, int or float, default="sqrt"
- bootstrap: bool, default=True
- max_samples: int or float, default=None

Methods: fit(), fit_predict()

Attributes:

- feature_importances_: ndarray(n_features,)
- estimators_: List of DecisionTreeClassifier

(Scikit-Learn reference) (See also RandomForestRegressor)

Summary: Random forest

Hyperparameters	Advantages	Disadvantages
Same than trees	Same than trees	Interpretation
Number of trees	High performance	High dimensional data
Pre-pruning	Robust	Sparse data
	Widely used	Memory and CPU
	Parallelized	-

Gradient boosted regression trees (I)

Gradient boosting is an esemble of classification and regression trees

- Based on boosting, builds trees in a serial manner
- One tree corrects the mistakes of the previous one

A set of weak learners is used

- Shallow trees (by default, 3 in Sklearn)
- No data randomization
- Strong pre-pruning

A new hyperparameter: learning rate

- How strongly each tree tries to correct
- High learning rate makes stronger corrections
 - More complex models
- More trees also adds more complexity

State of the art results

- Widely adopted by industry
- Comparable in performance with deep neural networks

n k-Nearest Neighbors Linear models Decision Trees Ensembles of Decision Trees Support Vector Machir

Ensembles of Decision Trees

Gradient boosted regression trees (II)

Feature importances with cancer dataset

The (XGBoost) package provides a high performance implementation of gradient boosted trees

Ensembles of Decision Trees: Scikit-learn

sklearn.ensemble.GradientBoostingClassifier

Constructor arguments:

- n_estimators: int, default=100
- learning_rate: float, default=0.1
 Same than DecisionTreeClassifier

Methods:fit(),predict()

Attributes:

feature_importances_: ndarray(n_features,)

(Scikit-Learn reference) (See also GradientBoostingClassifier)

Summary

Hyperparameters	Advantages	Disadvantages
Same than trees	Very high performance	Slow
Number of trees	Invariant to scale	High dimensional data
Learning rate	Mix of categorial and	Tricky hyperparameter
	numerical data	tuning
		Overfitting

Support Vector Machines

TODO

Support Vector Machines

Kernelized Support Vector Machines

TODO

Scikit-Learn

Support Vector Machines

Scikit-learn

sklearn.cluster.AgglomerativeClustering

Constructor arguments:

• linkage: 'ward', 'complete', 'average', 'single'

Methods:fit(),fit_predict()

Attributes:

- n clusters: int
- labels_: ndarray (n_samples)

(Scikit-Learn reference)

Support Vector Machines

Support Vector Machines

Summary

Hyperparameters Advantages Disadvantages

Algorithms

ARIMA (I)

AR: Autoregressive model

- Current observation depends on the last p observations
- Long term memory

MA: Moving Average model

- Current observation linearly depends on the last q innovations
- Short term memory

$ARMA \mod el = AR + MA$

ARMA(p, q): Two hyperparameters, p and q

AR(p)

$$X_t = c + \sum_{i=1}^p \phi_i X_{t-1} + \epsilon_t$$

MA(q)

$$X_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + ... + \theta_q \epsilon_{t-q}$$

Algorithms

ARIMA (II)

ARIMA = AR + i + MA (AR integrated MA)

- ARIMA(p, d, q)
- Three integer parameters: p, q and d (in practice, low order models)

autoarima: search over p, q and d

