Properties of the Natural Ordering

• ID: $x \le x$

• Transitive: $x \le y \land y \le z \to x \le z$

• Anti-symmetric: $x \leq y \land y \leq x \rightarrow x = y$

• Guaranteed existence: $x \leq y \lor y \leq x$

Proof $x \leq x$

$$x \leq x \leftrightarrow \exists z \in \mathbb{N} \colon x + z = x \to z = 0$$

Proof Transitivity

$$\begin{split} x &\leq y \leftrightarrow \exists w \in \mathbb{N} \colon x + w = y \\ y &\leq z \leftrightarrow \exists r \in \mathbb{N} \colon y + r = z \\ x + w + r &= (x + w) + r = y + r = z \\ \Box \end{split}$$

Proof Anti-symmetry

$$\exists z \in \mathbb{N} \colon x+z = y \land y+z = x$$

$$x+y = x+y+2z$$

$$2z = 0$$

$$z = 0$$

$$\Box$$

Proof Guaranteed Existence:

Doubt

If there is no natural number z such that x+z=y then z=x-y<0, so -z=y-x>0, and y+(-z)=y+(y-x)=x

seems ok