PLC programozás 1.

- I. PLC alapismeretek
- II. Egyszerű logikai vezérlések
- III. Flag
- IV. Timer

1.1. PLC, bevezetés

Általános jellemzők

- Programmable Logic Controller programozható logikai vezérlő
- célszámítógép ipari környezetbe → irányítástechnikai feladatokra (ipari folyamatok vezérlésére, szabályozására)
- ipari kivitelű mikroszámítógép, a régi relés vagy elektronikus huzalozott vezérlések kiváltására → előnye a kevesebb huzalozás, egyszerűbb módosítás
- sok cég gyárt PLC-ket, pl. Siemens, Omron, Festo, Möeller, Sneider, ...
- első PLC → Modicon 1966

<u>Típusai</u>

- méret alapján → kicsi, 10/20 be- és kimenet
 - → közepes, néhány száz be- és kimenet
 - → nagy, több mint ezer be- és kimenet
- felépítés szempontjából
 - → kompakt, a hardver nem módosítható, fix számú bemenet, kimenet
 - → moduláris, a hardver rugalmasan bővíthető modulokból áll → be- és kimenetek száma jelentősen bővíthető

<u>Szabványok</u>

IEC 1131-3 programozási nyelvek, PLC projektek felépítése

1.2. PLC, bevezetés

Hardver felépítés

Nem teljesen a hagyományos számítógép felépítést követik → az adat és program memória külön van választva → Harvard architektúra

<u>CPU</u> central processing unit (központi feldolgozó egység) két részből áll: műveletvégző egység (ALU aritmetic and logic unit) + vezérlő egység (CU control unit)

1.3. PLC, bevezetés

Műveletvégző egység

ALU (aritmetic and logic unit),

- matematikai és logikai műveletek elvégzése

Vezérlőegység

CU (control unit), vezérli az egész számítógép működését

a tárolt program utasításait egyenként, sorban lehívja, dekódolja,
 majd a szükséges vezérlő jeleket előállítja (ALU, memória, I/O felé)

<u>Perifériák</u>

- Input, output vezérlő, illesztő egységek → kapcsolat a külvilággal
- a bemenetek, kimenetek kapcsolatát biztosítja a rendszerrel

Kommunikációs interfészek

- kapcsolat PLC és PC között → PLC-re program feltöltése Lehet: soros port, USB, ...
- PLC-k összekötése egymással, ipari buszok (MODBUS, PROFIBUS, ...)
 - → működés összehangolása, felügyelet, mérés- adatgyűjtés, ...

1.4. PLC bemenetek, kimenetek

Bemenetek

Az irányítás bemenő jelei

- a, kapcsolók, nyomógombok (záró, bontó)
- b, érzékelők pozíció meghatározás, véghelyzet érzékelés
 - mechanikus végállás kapcsolók
 - közelítő kapcsolók (érintésmentes)

induktív (vezető anyag érzékelésére) kapacitív (fémek, szigetelők érzékelése) optikai (fénysorompó) mágneses (reed)

c, szenzorok

jelátalakítók → valamilyen mennyiséget villamos jellé alakítanak át

lehetnek:

- analógak
- digitálisak

mágneses (HALL szenzor)
termikus (termisztor,...)
optikai
mechanikai (nyomás,távolság,sebesség,...)
kémiai (nedvesség, por, ..)

1.5. PLC bemenetek, kimenetek

Kimenetek

Az irányítás kimenő jelei

- jelző készülékek (lámpa, hangjelző, ...)
- beavatkozó készülékek relék, mágnesszelepek, motorok, ...

PLC-k bemenetei, kimenetei

lehetnek:

- digitálisak (két állapot!) → jellemzően 24V DC (vagy 24V AC, 120/230V AC)

1.6. PLC bemenetek, kimenetek

Bemenetek, kimenetek bekötése

1.7. PLC programok

PLC programok

- operációs rendszer (monitor program)
- felhasználói program
 az adott vezérlési feladatot
 hajtja végre

futtatja a felhasználói programokat beolvasás, kiírás irányítása program fejlesztési funkció kommunikációs vonalak kezelése megszakításkezelés

PLC ciklikus program feldolgozása

1.8. PLC címzések

Adatok címzése

- az adatmemóriában tárolt változók:

 ezeket címezni kell (hivatkozni kell rájuk)

címzés lehet: bitenként,
 vagy bájtos, szavas, ...

bemenetek beolvasott értékei kimenetek számított értékei belső változók (flag, merker) speciális változók (időzítő, számláló, ...) rendszer változók

- címzésnél megkülönböztetjük a különböző típusú változókat, általában betűkkel → bemenet – I (input) kimenet – Q vagy O (output) flag/merker – F vagy M vagy MB időzítő – T (timer) számláló – C (counter)

de a különböző típusú változók megkülönböztethetők tisztán számokkal is!
 egyes számtartományok meghatározott típusú változókhoz vannak rendelve, pl.

000-100 bemenetek 101-200 kimenetek 201-300 flag-ek

. . . .

1.9. PLC címzések

Jellemző címzés minták (Festo, Siemens)

- bit címzés: I1.3 → bemeneti memória 1. byte 3. bitje

10.7 → bemeneti mem. 0. byte 7. bitje

O2.0 → kimeneti memória 2. byte 0. bitje

F3.6 \rightarrow flag 3. byte 6. bitje

- byte címzés: IB3 → bemeneti mem. 3. byte

OB2 → kimeneti 2. byte

- szavas címzés: IW4 → bemeneti 4. szó (jellemzően 16 bit)

OW3 → kimeneti 3. szó

- Timer T3 → 3. impulzus időzítő

TON5 → 5. bekapcsolásidőzítő

Jellemző címzés minták (Unitronics)

I1 → 1. digitális bemenet

127 → 27. digitális bemenet

O2 → 2. digitális kimenet

O16 → 16. digitális kimenet

MB4 \rightarrow 4. memory bit \rightarrow flag!

MB18 \rightarrow 18. memory bit \rightarrow flag!

SB2 → 2. rendszer bit (system bit)

TD3 → 3. Timer (bekapcsolásidőzítő)

1.10. PLC programozási nyelvek

1. Feladat

Az L izzó akkor világítson (legyen logikai 1-es értékű) ha A, B és C kapcsolók közül A ÉS B zárt egyszerre, VAGY A ÉS C zárt egyszerre !!

1.11. PLC programozási nyelvek

1. feladat megoldásai

$$L = A * B + A * C$$

Létradiagram (LAD)

Funkcióblokk (FB)

1.12. PLC programozási nyelvek

Grafikus nyelvek

Létradiagram

(LD vagy LAD vagy KOP)

→ záró kapcsoló

bontó kapcsoló (negált bemenet)

kimenet (tekercs)

ÉS fv. → soros kapcsolók

VAGY fv. → párhuzamos kapcs.

Funkcióblokk

(FB vagy FUP)

Sorrendi folyamatábra (SFC)

Szöveges nyelvek

Utasításlista

(STL vagy IL v. AWL)

Magas szintű programozási nyelv (ST vagy SCL)

2.1. Egyszerű logikai vezérlések

1. AND (ÉS) függvény

Az O1 kimenet csak akkor legyen 1-es értékű ha I1 és I2 bemenet értéke egyszerre 1-es

2.2. Egyszerű logikai vezérlések

2. OR (VAGY) függvény

Az O1 kimenet akkor legyen 1-es értékű ha I1 vagy I2 bemenet értéke 1-es

2.3. Egyszerű logikai vezérlések

3. NOT (NEM, tagadás) függvény

Az O1 kimenet akkor legyen 1-es értékű ha I1 bemenet értéke 0

2.4. Egyszerű vezérlési feladatok

1. Feladat

Az O1 kimenet akkor legyen 1-es értékű ha I1 I2 I3 bemenetek közül pontosan 2db értéke 1-es (digitális bemenetek, kimenetek)

Logikai függvény:

$$O1 = \overline{11} * 12 * 13 + 11 * \overline{12} * 13 + 11 * 12 * \overline{13}$$

2.5. Egyszerű vezérlési feladatok

1. feladat megoldásai

$$O1 = \overline{11} * 12 * 13 + 11 * \overline{12} * 13 + 11 * 12 * \overline{13}$$

Létradiagram (LAD)

Utasításlista (STL, FESTO)

OR I1 AND I2 AND I3
OR I1 AND N I2 AND I3
OR I1 AND I2 AND N I3
THEN SET O1
OTHRW RESET O1

Funkcióblokk (FB)

2.6. Egyszerű vezérlési feladatok

2. Öntartás vezérlés

Minta feladat: a "BE" nyomógombot lenyomva "R1" relére feszültséget kapcsolunk, meghúz és feszültség alatt marad ha a nyomógombot felengedjük! Kikapcsolása "KI" nyomógomb megnyomásával történik.

Logikai függvény:

$$O1 = (11 + O1) * 12$$

2.7. Egyszerű vezérlési feladatok

Öntartás vezérlés, megoldás

PLC esetén minden bemenet és kimenet aktuális állapota a memóriában tárolva van. → Bármikor lekérdezhetőek! A kimenetek is (mintha bemenetek lennének)!! A programok:


```
STL (FESTO)

IF (I1 OR O1) AND I2

THEN SET O1

OTHRW RESET O1
```

2.8. Egyszerű vezérlési feladatok

3. Öntartás vezérlés, másképp

Öntartás leprogramozható SET és RESET tekercsek (LAD) vagy SR, RS tárolóval (FB). SET → a kimenet 1 értékű lesz és úgy marad! RESET → a kimenet 0 értékű lesz és úgy marad!

SR, RS tároló működése:

- ha S=1 (és R=0) \rightarrow Set \rightarrow kimenet 1, és így marad (amíg nincs újra Reset)
- ha R=1 (és S=0) \rightarrow Reset \rightarrow kimenet 0, és így marad (amíg nincs újra Set)
- ha S=R=1 (elvileg tiltott !) gyakorlatilag ilyenkor az egyik a domináns ("erősebb") SR tároló → dominánsan Set RS tároló → dominánsan Reset

Logikai függvények:

$$O1_{set} = I1$$
 $O1_{reset} = \overline{I2}$

más
jelöléssel

 $R1_{set} = BE$
 $O1+=I1$
 $R1_{reset} = \overline{KI}$
 $O1-=\overline{I2}$

2.9. Egyszerű vezérlési feladatok

3. Öntartás vezérlés másképp, megoldás

$$R1_{set} = BE$$

$$R1_{reset} = \overline{KI}$$


```
STL (FESTO)

IF BE THEN SET R1

IF N KI THEN RESET R1
```

2.10. Minta feladatok

1. mintafeladat

- a "BE" (I1) nyomógombot lenyomva "R" (O1) meghúz (öntartás!) és indít egy motort.
- "KI" (I2) nyomógomb lenyomására "R" elenged (motor leáll).
- "VEG" (I3) végálláskapcsoló jelzésére a motor szintén leáll.

2.11. Minta feladatok

2. mintafeladat

Az alábbi igazságtáblázat alapján írd meg O1 és O2 kimenetek vezérlésének programját, több nyelven is!

I1	12	13	01	02
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	0	0
1	1	1	1	0

$$O_2 = |_1*|_2 + |_2*|_3$$

2.12. Minta feladatok

2. mintafeladat, megoldás

$$O_1 = 1^* |_2 + |_2^* |_3$$

$$O_2 = |_1*|_2 + |_2*|_3$$


```
STL (FESTO)

IF N I1 AND I2 OR I2 AND I3

THEN SET O1

OTHRW RESET O1

IF I1 AND N I2 OR N I2 AND I3

THEN SET O2

OTHRW RESET O2
```

2.13. Minta feladatok

3. mintafeladat

Egy pneumatikus munkahengert (MH1) kell a következőképpen működtetni:

- kettős működésű munkahenger, monostabil 5/2-es útváltóval vezérelve
- az útváltó mágnesszelepére (MH1_ki, O1) feszültséget kapcsolva a munkahengert kitoljuk, a feszültséget lekapcsolva a munkahengert visszatoljuk alaphelyzetbe.
- a munkahenger két véghelyzetét két végálláskapcsoló jelzi → BENT1 (I3) és KINT1 (I4)
- "START" (I1) nyomógomb lenyomására a munkahengert toljuk ki (mágnesszelepre feszültség).
- ha a munkahengert teljesen kitoltuk → automatikusan azonnal menjen vissza alaphelyzetbe (mágnesszelepről a feszültség lekapcsolása)
- "STOP" (I2) nyomógomb lenyomására a munkahenger azonnal menjen alaphelyzetbe!

2.14. Minta feladatok

3. mintafeladat, megoldás

Itt is kell öntartás !! Mert a végálláskapcsolók csak a végpozíciókban jeleznek, és ne kelljen egyfolytában nyomni a Start ill. Stop gombot


```
STL (FESTO)

IF BENT1 AND START

THEN SET MH1_ki

IF KINT1 OR N STOP

THEN RESET MH1_ki
```

2.15. Minta feladatok

4. mintafeladat

- Ha K1 és K2 kapcsolókat zárjuk → R1 relé feszültséget kap, a relé meghúz és csak akkor enged el ha K3 kapcsolót zárjuk! (öntartás)
- R2 relére feszültséget kell kapcsolni ha K2 vagy K1 zárva
- L izzó világít ha R2 relé működtetve van, de R1 nem

2.16. Minta feladatok

4. mintafeladat, folytatás

- Ha K1 és K2 kapcsolókat zárjuk → R1 relé feszültséget kap, a relé meghúz és csak akkor enged el ha K3 kapcsolót zárjuk ! (öntartás)
- R2 relére feszültséget kell kapcsolni ha K2 vagy K1 zárva
- L izzó világít ha R2 relé működtetve van, de R1 nem

2.17. Minta feladatok

5. mintafeladat

Két pneumatikus munkahengert (MH1, MH2) kell a következőképpen működtetni: (kettős működésű munkahengerek, monostabil 5/2-es útváltókkal vezérelve)

- az útváltók mágnesszelepei → MH1_ki (O1) és MH2_ki (O2)
- a munkahengerek két véghelyzetét jelző végálláskapcsolók → BENT1 (I3) KINT1 (I4) BENT2 (I5) és KINT2 (I6)
- "START" (I1) nyomógomb lenyomására az MH1 munkahengert toljuk ki.
- ha MH1 munkahengert teljesen kitoltuk → automatikusan menjen ki a másik munkahenger is (MH2)
- ha mindkét munkahengert teljesen kitoltuk → automatikusan azonnal menjenek alaphelyzetbe
- "STOP" (I2) nyomógomb lenyomására mindkét munkahenger azonnal menjen alaphelyzetbe!

A munkahengerek mozgása (ciklus diagram)

2.18. Minta feladatok

5. mintafeladat, megoldás

A munkahengerek mozgása (ciklus diagram)

<u>Működtető függvények</u>

- MH1 meghúzatása:

- MH2 meghúzatása:

$$MH2 + = KINT1 * BENT2$$

- MH1 elengedése:

- MH2 elengedése:

$$MH2 - = KINT1 * KINT2 + \overline{STOP}$$

2.19. Minta feladatok

5. mintafeladat, megoldás folytatás

Működtető függvények

STL (FESTO)

- MH1 meghúzatása: MH1 + = START * BENT1 * BENT2
- MH2 meghúzatása:MH2 + = KINT1 * BENT2
- MH1 elengedése: MH1 - = KINT1 * KINT2 + STOP
- MH2 elengedése: MH2 - = KINT1 * KINT2 + STOP

```
IF BENT1 AND BENT2 AND START
THEN SET MH1_ki
IF KINT1 AND BENT2
THEN SET MH2_ki
IF KINT1 AND KINT2 OR N STOP
THEN RESET MH1_ki
RESET MH2 ki
```

2.20. Feladatok

1. feladat

Az alábbi igazságtáblázat alapján írd meg O1 és O2 kimenetek vezérlésének programját, több nyelven is!

I1	12	13	01	O2
0	0	0	1	1
0	0	1	1	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	1
1	0	1	0	0
1	1	0	0	1
1	1	1	0	1

2. feladat

Az alábbi kapcsolásra írd meg a következő vezérlést:

R2 relére feszültséget kell kapcsolni ha
K1 zárva És K2 nyitva És K3 zárva
R1 relére feszültséget kell kapcsolni ha
(K1 nyitva És K3 zárva) Vagy K2 zárva
L izzó világít ha
R1 És R2 relé működtetve van

A program elkészítése

- létra diagramban
- funkcióblokk programnyelven

2.21. Feladatok

3. feladat

Két pneumatikus munkahengert (MH1, MH2) kell a következőképpen működtetni: (kettős működésű munkahengerek, monostabil 5/2-es útváltókkal vezérelve)

- az útváltók mágnesszelepei → MH1_ki (O1) és MH2_ki (O2)
- a munkahengerek két véghelyzetét jelző végálláskapcsolók → BENT1 (I3) KINT1 (I4) BENT2 (I5) és KINT2 (I6)
- "START" (I1) nyomógomb lenyomására az MH1 munkahengert toljuk ki.
- ha MH1 munkahengert teljesen kitoltuk →

MH1 menjen vissza alaphelyzetbe, és automatikusan menjen ki a másik munkahenger (MH2)

- ha MH2 munkahengert teljesen kitoltuk → automatikusan azonnal menjen vissza alaphelyzetbe

A munkahengerek mozgása (ciklus diagram)

2.22. Feladatok

4. feladat

Az alábbi kapcsolásra írd meg a következő vezérlést:

- -Ha K1 És K2 kapcsolókat zárjuk →
 R1 relére feszültséget kapcsolunk, a relé meghúz és csak akkor enged el ha
 K3 kapcsolót zárjuk! (öntartás)
- R2 relére feszültséget kell kapcsolni ha
 K2 Vagy K1 zárva
- L izzó világít ha R2 relé működtetve van, de R1 nem

A program elkészítése

- létra diagramban
- funkcióblokk programnyelven

2.23. Feladatok megoldásai

1. feladat

Az alábbi igazságtáblázat alapján írd meg O1 és O2 kimenetek vezérlésének programját, több nyelven is !

l1	12	13	01	O2
0	0	0	1	1
0	0	1	1	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	1
1	0	1	0	0
1	1	0	0	1
1	1	1	0	1

$$O_2 = |1^*|_2 + |2^*|_3 + |2^*|_3$$

2.24. Feladatok megoldásai

1. feladat, megoldás

O1 =
$$\bar{I}_1 * \bar{I}_2 + \bar{I}_1 * \bar{I}_3$$

O2 = $\bar{I}_1 * \bar{I}_2 + \bar{I}_2 * \bar{I}_3 + \bar{I}_2 * \bar{I}_3$


```
STL (FESTO)

IF N I1 AND I2 OR N I1 AND I3

THEN SET O1

OTHRW RESET O1

IF I1 AND I2 OR I2 AND I3

OR N I2 AND N I3

THEN SET O2

OTHRW RESET O2
```

3.1. Flag (Merker) használata

Flag

```
Flag (Merker): belső segédváltozó (se nem bemenet, se nem kimenet)
Felhasználása:
```

- számolásra (egy számérték tárolására)
- állapot tárolására!

```
Például Festo FC34 PLC → 10000db 16 bites flag (FW0, FW1, FW2, ....FW9999), De ezek használhatók bitenként is → F0.0 F0.1 ....F0.15
F1.0 F1.1 ...F1.15
........
F9999.0 ...... F9999.15
```

1 bites Flag

- állapot tárolására → pl. valami már megtörtént, vagy még nem
- lekérdezhető, mint egy digitális bemenet
- beállítható (Set), törölhető (Reset) mint egy digitális kimenet

```
Festo és Siemens PLC-k esetén F0.0 F0.1 ... F0.7 F1.0 F1.1 ...
```

Unitronics PLC-k esetén a flag helyett a memory bit elnevezés van, és sorba számozza a biteket! MB0 MB1 MB2 MB3 MB21 MB22

3.2. Flag (Merker) használata

1. mintafeladat

Egy pneumatikus munkahengert (MH1) kell a következőképpen működtetni: (kettős működésű munkahenger, monostabil 5/2-es útváltóval vezérelve)

- a munkahenger két véghelyzetét két végálláskapcsoló jelzi → BENT1 (I3) és KINT1 (I4)
- "START" (I1) nyomógomb lenyomása után! a munkahenger folyamatosan menjen ki-be
- "STOP" (I2) nyomógomb lenyomására a munkahenger menjen alaphelyzetbe, és álljon le!

Megoldás Flag (memory bit) felhasználásával:

- egy Flag-et használunk arra hogy tároljuk: a START le volt-e már nyomva
- induláskor a Flag 0 értékű !! (ez nem biztos, célszerű program induláskor törölni !!)
- → ez fogja azt jelenteni, hogy még nem nyomtuk le a START gombot
- "START" nyomógomb lenyomására \rightarrow a Flag értékét 1-be állítjuk \rightarrow munkahenger mozgása
- "STOP" nyomógomb lenyomására a Flag értékét 0-ba állítjuk → munkahenger leállítása
- a munkahengert csak akkor küldjük kinti állásba, ha benti végállásban van ÉS a flag értéke 1-es!

3.3. Flag (Merker) használata

1. mintafeladat megoldása

Unitronics PLC esetén

3.4. Flag (Merker) használata

1. mintafeladat megoldása

Festo PLC esetén


```
STL

IF BENT1 AND START

THEN SET F0.1

IF F0.1 AND BENT1

THEN SET MH1_ki

IF KINT1 OR N STOP

THEN RESET MH1_ki

IF N STOP

THEN RESET F0.1
```


3.5. Flag használata, mintafeladatok

2. mintafeladat

Két pneumatikus munkahengert (MH1, MH2) kell a következőképpen működtetni: (kettős működésű munkahengerek, monostabil 5/2-es útváltókkal vezérelve)

- "START" (I1) nyomógomb lenyomására az MH1 munkahengert toljuk ki.
- ha MH1 munkahengert teljesen kitoltuk → automatikusan menjen ki a másik munkahenger is (MH2)
- ha MH2 munkahengert teljesen kitoltuk → automatikusan azonnal menjen alaphelyzetbe
- ha MH2 munkahenger alaphelyzetbe ment → menjen alaphelyzetbe a másik munkahenger is (MH1)

Működtető függvények

- MH1 meghúzatása: MH1 + = START * BENT1 * BENT2

- MH2 meghúzatása:

- MH1 elengedése:

- MH2 elengedése: MH2 - = KINT2

3.6. Flag használata, mintafeladatok

2. mintafeladat megoldása

A problémát az okozza, hogy flag nélkül, csak a bemeneti jelek alapján nem tudjuk megkülönböztetni t1 és t2 időpontokat (mindkettőnél MH1 kint van és MH2 bent) pedig mást kell csinálni azután !! (t1 bekövetkezésekor → MH2-t ki kell tolni, míg t2 bekövetkezésekor → MH1-t vissza kell tolni)

- egy Flag-et használunk arra hogy tároljuk: MH2 már "kiment" → így a két idő pillanat megkülönböztethető

- induláskor a Flag 0 értékű !! → "START" nyomógomb lenyomására → a Flag értékét 0-ba állítjuk
- ha MH2 már "kiment" a Flag értékét 1-be állítjuk

3.7. Flag használata, mintafeladatok

2. mintafeladat megoldása, folytatás


```
STL

IF BENT1 AND BENT2 AND START
THEN SET MH1_ki
RESET F1.1

IF KINT1 AND BENT2 AND N F1.1
THEN SET MH2_ki

IF KINT2
THEN RESET MH2_ki
SET F1.1

IF KINT1 AND BENT2 AND F1.1
THEN RESET MH1_ki
```


3.8. Flag használata, mintafeladatok

3. mintafeladat

Egy nyomógombbal (NY) vezérlünk egy lámpát (L)

 a nyomógomb minden lenyomására a lámpa állapotot vált!
 (ha le volt kapcsolva akkor felkapcsolódik, ha fel volt kapcsolva akkor lekapcsolódik)

Megoldás:

- -Egy flag segítségével tároljuk a nyomógomb állapotát
- kihasználjuk, hogy a ciklikus program feldolgozás miatt a bemeneti változások érzékelése nem azonnali !! →
- ha NY=1 de Flag=0 (még) → NY felfutó él !!
 → ilyenkor kell a lámpát invertálni

3.9. Feladatok

1. feladat

Két munkahengert (MH1, MH2) kell a következőképpen működtetni:

- kettős működésű munkahengerek, monostabil 5/2-es útváltóval vezérelve
- az útváltók vezérlése mágnesszelepekkel, a következő PLC kimenetekre kötve → O0.0 (MH1 ki) O0.1 (MH2 ki)
- a munkahengerek helyzetét végálláskapcsolók jelzik, a következő PLC bemenetekre kapcsolva →

I0.0 (MH1_bent) I0.1 (MH1_kint) I0.2 (MH2_bent) I0.3 (MH2_kint)

- a munkavégzés "START" nyomógomb megnyomására kezdődik
 START → a PLC I1.0 bemenetére kötve
- a "STOP" nyomógomb megnyomására a munkavégzés leáll, és minden alaphelyzetbe megy vissza

STOP → a PLC I1.1 bemenetére kötve

A program elkészítése

- létra diagramban
- és utasításlistában

3.10. Kezdeti beállítások

A PLC berendezések bemeneti, kimeneti, belső, speciális memória változói bekapcsoláskor meghatározott alapértékeket vesznek fel.

Gyakran van szükség arra, hogy a változók közül néhány más kezdeti értéket vegyen fel a program indulásakor. → Ennek megvalósításához a PLC rendelkeznek speciális (rendszer) változókkal

pl. Festo FC34 PLC

Fl inicializációs flag → csak a legelső program ciklusban 1-es az értéke, azután mindig 0 !!

Unitronics Samba SM43-J-T20 PLC

- SB 2 2. system bit (power-up bit)
 - → csak a legelső program ciklusban 1-es az értéke, ezután mindig 0 !!

Felhasználási példa

4.1. Időzítő (Timer)

Timer

```
Időzítő, késleltető → megvalósítás számlálóval

- késleltetési idő = n * időalap

- n beállításával tudjuk megadni a késleltetést
```

Egyes PLC típusok esetén csak egyféle időalapú timer van, de van amelyik PLC többféle időalapú időzítővel rendelkezik !!

- például a Festo FC34, FC20 PLC-k → 256 db timer (T0, T1, T2,T255), de az időalap mindegyiknél 10ms
- a Siemens S7-200 típusú PLC esetén → szintén 256 db timer, de ezek nem egyformák, háromféle Ti van → 1ms, 10ms, 100ms

Használatuk

- használatuk előtt be kell állítani az időzítést
 - → vagy n értékét kell megadni, vagy közvetlenül a késleltetési időt
- valamilyen logikai feltétellel el kell indítani (mintha kimenet lenne!)
- "figyelni" kell, hogy letelt-e az idő? → lekérdezés (mintha bemenet lenne!)

<u>Időzítő típusok</u>

- bekapcsolás késleltetés → On-Delay Timer
- kikapcsolás késleltetés → Off-Delay Timer
- impulzus időzítő → Pulse Timer
- * Extended Pulse Timer (hasonló mint a Pulse Timer)
- * Accumulated Timer (részidők összegzése ?)

4.2. Időzítő (Timer)

Bekapcsolás késleltetés (TON)

On-Delay Timer

A kimenet csak az indítás után tk idő múlva lesz 1-es

TON jelölése általában (FB ill. LAD)

Impulzus időzítő (TP)

Pulse Timer

Indítás után fix szélességű (tk) impulzust ad a kimenete

TP jelölése általában (FB ill. LAD)

4.3. Időzítő (Timer)

Kikapcsolás késleltetés (TOFF)

Off-Delay Timer A kimenet csak az indítás megszűnése után tk idővel lesz újra 0-ás

TOFF jelölése általában (FB ill. LAD)

4.4. Időzítő, TON

Bekapcsolás késleltetés (TON)

On-Delay Timer, (TON vagy ODT vagy SD vagy TD) A kimenet csak az indítás után tk idő múlva lesz 1-es

pl. Festo FST (LAD)

4.5. Időzítő, TON

1. mintafeladat (bekapcsolás késleltetés)

Egy nyomógombbal (NY) vezérlünk egy lámpát (L)

- a nyomógomb lenyomása után (azt lenyomva tartva) csak 3s leteltével kapcsoljon fel a lámpa
- a nyomógomb elengedésekor azonnal kapcsoljon le a lámpa

4.6. Időzítő, TON

1. mintafeladat, folytatás (bekapcsolás késleltetés)

Egy nyomógombbal (NY) vezérlünk egy lámpát (L)

- a nyomógomb lenyomása után (azt lenyomva tartva) csak 3s leteltével kapcsoljon fel a lámpa
- a nyomógomb elengedésekor azonnal kapcsoljon le a lámpa

4.7. Időzítő, TP

Impulzus időzítő (TP)

S5T#3s

Pulse Timer, (TP vagy T vagy SP vagy TE) Indítás után fix szélességű (tk) impulzust ad a kimenete

pl. Festo FST (LAD)

→ speciális kimenet
Pulse timer coil

pl. Siemens
STEP7 (LAD)

T1

TE1

(SP)

Pulse timer coil

pl. Unitronics VisiLogic (LAD)
Extended pulse timer!

TE1

00:00:03.00

4.8. Időzítő, TP

2. mintafeladat (impulzus időzítő)

Egy nyomógombbal (NY) vezérlünk egy lámpát (L)

- a nyomógomb lenyomása után (azt lenyomva tartva) azonnal kapcsoljon fel a lámpa, de → 5 másodperc után kapcsoljon le !! (mindegy, hogy a nyomógombot előbb, vagy később engedjük fel !)

4.9. Időzítő, TP

3. mintafeladat

Egy pneumatikus munkahengert (MH1) kell a következőképpen működtetni: (kettős működésű munkahenger, monostabil 5/2-es útváltóval vezérelve)

- "START" (I1) nyomógomb lenyomására az MH1 munkahengert (O1) toljuk ki.
- ha MH1 munkahengert teljesen kitoltuk → várakozzon 6 másodpercig →
 - → majd ezután automatikusan menjen alaphelyzetbe

Megoldás impulzus időzítővel

Megoldás bekapcsolás késleltetéssel

4.10. Időzítő, TOFF

Kikapcsolás késleltetés (TOFF)

Off-Delay Timer, (TOFF vagy SF)
A kimenet csak az indítás megszűnése után tk idővel lesz újra 0-ás

pl. Festo FST (LAD)

4.11. Időzítő, TOFF

4. mintafeladat (kikapcsolás késleltetés)

Egy nyomógombbal (NY) vezérlünk egy lámpát (L)

- a nyomógomb lenyomása után azonnal kapcsoljon fel a lámpa
- a nyomógomb elengedésekor nem azonnal, hanem csak 2s elteltével kapcsoljon le a lámpa

Megoldás kikapcsolás késleltetéssel

Megoldás bekapcsolás késleltetéssel

