Analysis 2

Jil Zernt,Lucien Perret May 2024

Integralrechnen

Stammfunktionen

Integraltabelle

ntegraltabelle		
Funktion f(x)	Ableitung f'(x)	Integral F(x)
1	0	x + C
x	1	$\frac{1}{2}x^2 + C$
$\frac{1}{x}$	$-\frac{1}{x^2}$	$\ln x + C$
$x^a \text{ with } a \in \mathbb{R}$	ax^{a-1}	$\frac{x^{a+1}}{a+1} + C$
$\sin(x)$	$\cos(x)$	$-\cos(x) + C$
$\cos(x)$	$-\sin(x)$	$\sin(x) + C$
tan(x)	$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	$-\ln \cos(x) + C$
$\cot(x)$	$-1 - \cot^2(x) = -\frac{1}{\sin^2(x)}$	$\ln(\sin(x)) + C$
e^x	e^x	$e^x + C$
a^x	$\ln(a) \cdot a^x$	$\frac{a^x}{\ln(a)} + C$
ln(x)	$\frac{1}{x}$	$x\ln(x) - x + C$
$\log_a(x)$	$\frac{1}{x \ln(a)}$	$x \log_a(x) - \frac{x}{\ln(a)} + C$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$	$x\arcsin(x) + \sqrt{1 - x^2} + C$
arccos(x)	$-\frac{1}{\sqrt{1-x^2}}$	$x \arccos(x) - \sqrt{1 - x^2} + C$
$\arctan(x)$	$\frac{1}{1+x^2}$	$x\arctan(x) - \frac{1}{2}\ln(1+x^2) + C$

Integrale von Linearkombinationen

Gegeben:

$$\int f(x)dx = F(x) + C, \quad \int g(x)dx = G(x) + C$$

Das unbestimmte Integral der Linearkombination $\lambda_1 f(x) + \lambda_2 g(x)$ ist:

$$\int (\lambda_1 f(x) + \lambda_2 g(x)) = \lambda_2 F(x) + \lambda_2 G(x) + C \quad (\lambda_1, \lambda_2 \in \mathbb{R})$$

Integral von verschobenen Funktionene

Gegeben:

$$\int f(x)\mathrm{d}x = F(x) + C$$

Das unbestimte integral um Betrag k in x-Richtung verschoben ist:

$$\int f(x-k)dx = F(x-k) + C \quad (k \in \mathbb{R})$$

Integrale von gestreckten Funktionen

Gegeben:

$$\int f(x)\mathrm{d}x = F(x) + C$$

Das unbestimmte Integral um Faktor k in x-Richtung gestreckt ist:

$$\int f(k \cdot x) dx = \frac{1}{k} F(k \cdot x) + C \quad (k \neq 0)$$

Partielle Integration

$$\int u'(x)v(x)\mathrm{d}x = u(x)\cdot v(x) - \int u(x), v'(x)\mathrm{d}x$$

Partialbruchzerlegung

• Bestimmung der Nullstellen x_1, x_2, \dots, x_n des Nennerpolynoms q(x) mit Vielfachheiten (einfache Nullstelle, doppelte usw)

Beispiel Integral :
$$\int \frac{1}{x^2 - 1} dx$$

• Zuordnen der Nullstellen x_k vom q(x) zu einem Partialbruch mit unbekannten Koeffizienten $A, B_1, B_2, \ldots, 1 < k < n$:

$$f(x) = \underbrace{\frac{A}{x - x_1}}_{einfache\ Nullstelle\ x_1} + \underbrace{\frac{B_1}{x - x_2} + \frac{B_2}{(x - x_2)^2}}_{doppelte\ Nullstelle\ x_2} + \dots$$

Beispiel:
$$\frac{1}{x^2 - 1} = \frac{A}{x - 1} + \frac{B}{x + 1}$$

 Bestimmung der Koeffizienten: alles auf den Hauptnenner bringen, geignete x-Werte einsetzen

Beispiel:
$$\frac{1}{x^2-1} = \frac{A(x+1) + B(x-1)}{x^2-1}$$

Beispiel:
$$1 = A(x+1) + B(x-1)$$
 $x = 1 bzw. x = -1$
 $B = -\frac{1}{2}$ $A = \frac{1}{2}$

• Werte in Partialbruch einsetzen

$$\frac{1}{2} \cdot \frac{1}{x-1} - \frac{1}{2} \cdot \frac{1}{x+1}$$

• Integral der Partialbrüche berechnen

$$\int \frac{1}{x^2 - 1} dx = \frac{1}{2} \cdot \int \frac{1}{x - 1} dx - \frac{1}{2} \cdot \int \frac{1}{x + 1} dx$$

$$\int \frac{1}{x^2 - 1} dx = \frac{1}{2} \cdot \ln|x - 1| - \frac{1}{2} \cdot \ln|x + 1| + C = \frac{1}{2} \cdot \ln\left|\frac{x - 1}{x + 1}\right| + C$$

Bemerkung

Falls die rationale Funktion $f(x)=\frac{r(x)}{s(x)}$ unecht gebrochen-rational ist, d.h. $\to deg(r(x)) \ge deg(s(x))$ gilt:

Substitution unbestimmtes Integral

• Aufstellen und Ableiten der Substitutionsglichungen:

$$u = g(x), \quad \frac{\mathrm{d}u}{\mathrm{d}x} = g'(x), \quad \mathrm{d}x = \frac{\mathrm{d}u}{g'(x)}$$

• Durchführen der Substitution u=g(x) und $\mathrm{d}x=\frac{\mathrm{d}u}{g'(x)}$ in das integral $\int f(x)\mathrm{d}x$:

$$\int f(x) \mathrm{d}x = \int r(u) \mathrm{d}u$$

• Berechnen des Integrals mit Variable u:

$$\int r(u)\mathrm{d}u = r(u) + C$$

• Rücksubstitution:

$$r(u) + C = r(g(x)) + C$$

Substitution bestimmtes Integral

• Aufstellen und Ableiten der Substitutionsglichungen:

$$u = g(x), \quad \frac{\mathrm{d}u}{\mathrm{d}x} = g'(x), \quad \mathrm{d}x = \frac{\mathrm{d}u}{g'(x)}$$

• Durchführen der Substitution u=g(x) und $\mathrm{d} x=\frac{\mathrm{d} u}{g'(x)}$ in das integral $\int f(x)\mathrm{d} x$:

$$\int_{a}^{b} f(x) dx = \int_{g(a)}^{g(b)} r(u) du$$

• Berechnen des Integrals mit Variable u:

$$\int_{g(a)}^{g(b)} r(u) du = r(u) \Big|_{g(a)}^{g(b)}$$

Mittelwert einer Funktion

Definition des Mittelwert μ der Funktion f(x)auf [a,b]: Höhe des Rechtecks, das

- eine Grundlinie der Länge b-a hat
- der Flächeninhalt des Rechteks der Fläche unter der Kurve f(x) im Intervall [a,b] entspricht

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x$$

Rotationsvolumen

$$V = \pi \int_{a}^{b} (f(x))^{2} \mathrm{d}x$$

Bogenlänge

$$L = \int_a^b \sqrt{1 + (f'(x))^2} \mathrm{d}x$$

Mantelfläche

$$M = 2\pi \int_a^b f(x) \cdot \sqrt{1 + (f'(x))^2} dx$$

Schwerpunkt ebener Fläche

Schwerpunkt $S=(x_s;y_s)$ einer ebenen Fläche mit Flächeninhalt A, eingegrenzt von Kurven y=f(x) und y=g(x) sowie den Geraden x=a und x=b:

$$xs = \frac{1}{A} \int_{a}^{b} x \cdot (f(x) - g(x)) dx$$

$$ys = \frac{1}{2A} \int_a^b x \cdot (f(x)^2 - g(x)^2) dx$$

Berechnen von A ebenfalls durch ein Integral:

$$A = \int_{a}^{b} f(x) - g(x) dx$$

Schwerpunkt Rotationskörper

Die x-Koordinate des Schwerpunkts $S=(x_s;0;0)$ eines Rotationskörpers mit Volumen V, geformt durch Rotation von y=f(x) zwischen [a,b] um x-Achse mit a < b und $f(x) \geq 0$ für alle $a \leq x \leq b$:

$$x_s = \frac{\pi}{V} \int_a^b x \cdot f(x)^2 \mathrm{d}x$$