

CLAIMS:

1. A process for producing recombinant calf-chymosin which comprises the steps of isolating calf-chymosin gene, cloning the same in bacterial expression vector PET21b, transforming said cloned vector into cells of E.coli, fermenting said E.coli strains to produce pro-chymosin, converting said pro-chymosin to chymosin and subsequently recovering the recombinant calf-chymosin.
2. The process as claimed in claim 1, wherein calf-chymosin gene is obtained by isolating RNA from the fourth stomach of calf tissue, synthesising a first strand of cDNA therefrom by treating the same with a reverse primer such as 5'-TGT GGG GAG AGT GAG GTT CTT GGT C-3' and then with a forward primer such as 5'-ATG AGG TGT CTC GTG GTG CTA CTT 3 and with a reverse primer such as 5'TGT GGT GAC AGT GAG GTT CTT GGT C-3'.
3. The process as claimed in claims 1 and 2 wherein said C DNA is ligated at small site of pBSSK+ plasmid and then transformed into TOP 10 cells of E.coli.
4. The process as claimed in claim 3 wherein said recombinant clones were identified and treated with a forward primer such as 5'-GAT ATA CAT ATG GCT AGC ATC ACT AGG ATC CCT CTG TAC 3' and reverse primer such as 5' GCA GTA AGC TTG ACA GTG TTC CTT GGT CAG CG-3' containing Nde I and Hind III sites to obtain an amplified fragment.
5. The process as claimed in claim 4 wherein said amplified fragment is transformed into cells of E.coli for expressing said chymosin gene.

6. The process as claimed in any of the preceding claims wherein said E.coli cells containing recombinant calf chymosin gene is fermented in a medium containing 12g/L peptone, 24g/L of yeast extract and 10g/L of sodium chloride in the presence of supplements for fermentation and the suspended cells produced on completion of fermentation is lysed, chilled and pH adjusted to 8 before incubating at room temperature and the supernatent containing prochymosin is separated.
7. The process as claimed in claim 6, wherein the pH of said prochymosin containing supernatent is adjusted to 2 at room temperature and further incubated for about 6 hrs with gentle stirring and filtered.
8. The process as claimed in claim 7 wherein the pH of said filtrate is adjusted to about 5 and further incubated, filtered and treated with a solution containing sodium benzoate and thereafter a solution containing and sodium chloride to activate prochymosin to chymosin.
9. The process as claimed in claim 8 wherein the filtrate obtained after the addition of sodium benzoate solution is treated with a solution of sodium chloride under stirring and cooking, and the precipitate suspended in a chilled solution of 0.2M glycine with 0.001M EDTA and thereafter treated with 0.23% solution of sodium benzoate and stored under cooling.
10. The process as claimed in claim 9 wherein said chymosin obtained is formulated with 10% of sodium chloride and 0.2% of Trehalose.

11. Recombinant calf-chymosin having the following amino acid sequence:

MetAlaSerIle ThrArgIle ProLeuTyr LysGlyLysSer LeuArgLys AlaLeuLys
 1 ATGGCTAGCA TCACTAGGAT CCCTCTGTAC AAAGGCAAGT CTCTGAGGAA GGCGCTGAAG
 TACCGATCGT AGTGATCCTA GGGAGACATG TTTCCGTTCA GAGACTCCTT CCGCGACTTC
 GluHisGlyLeu LeuGluAsp PheLeuGln LysGlnGlnTyr GlyIleSer SerLysTyr
 61 GAGCATGGC TTCTGGAGGA CTTCCGTGCAG AAACAGCAGT ATGGCATTAG CAGCAACTAC
 CTCGTACCG AAGACCTCCT GAAGGACGTC TTTGTCGTCA TACCGTAGTC GTCGTTCATG
 SerGlyPheGly GluValAla SerValPro LeuThrAsnTyr LeuAspSer GlnTyrPhe
 121 TCCGGCTTCG GGGAGGTGGC CAGCGTGCCTC CTGACCAACT ACCTGGATAG TCAGTACTTT
 AGGCCGAAGC CCCTCCACCG GTCGCACGGG GACTGGTTGA TGGACCTATC AGTCATGAAA
 GlyLysIleTyr LeuGlyThr ProProGln GluPheThrVal LeuPheAsp ThrGlySer
 181 GGGAAAGATCT ACCTCGGGAC CCCGCCAG GAGTTCACCG TGCTGTTGA CACTGGCTCC
 CCCTCTAGA TGGAGCCCTG GGGCGGGGTC CTCAAGTGGC ACGACAAACT GTGACCGAGG
 SerAspPheTrp ValProSer IleTyrCys LysSerAsnAla CysLysAsn HisGlnArg
 241 TCTGACTTCT GGGTACCCCTC TATCTACTGC AAGAGCAATG CCTGAAAAA CCACCAGCGC
 AGACTGAAGA CCCATGGGAG ATAGATGACG TTCTCGTTAC GGACGTTTT GGTGGTCGCG
 PheAspProArg LysSerSer ThrPheGln AsnLeuGlyLys ProLeuSer IleHisTyr
 301 TTCGACCCGA GAAAGTCGTC CACCTTCCAG AACCTGGCA AGCCCCTGTC TATCCACTAC
 AAGCTGGCT CTTTCAGCAG GTGGAAGGTC TTGGACCCGT TCAGGGACAG ATAGGTGATG
 GlyThrGlyLys MetGlnGly IleLeuGly TyrAspThrVal ThrValSer AsnIleVal
 361 GGGACAGGCCA AGATGCAGGG GATCCTGGC TATGACACCG TCACTGTCTC CAACATTGTG
 CCCTGTCCGT TCTACGTCCC CTAGGACCCG ATACTGTGGC AGTGACAGAG GTTGTAAACAC
 AspIleGlnGln ThrValVal LeuSerThr GlnGluProGly AspValPhe ThrTyrAla
 421 GACATCCAGC AGACAGTAGT CCTGAGCACC CAGGAGCCCG GGGACGTCTT CACCTATGCC
 CTGTAGGTCTG TCTGTCTAC GGACTCGTGG GTCCTGGC CCCTGCAGAA GTGGATAACGG
 GluPheAspGly IleLeuGly MetAlaTyr ProSerLeuAla SerGluVal LeuAspThr
 481 GAATTGACG GGATCCTGGG GATGGCGTAC CCCTCGCTGG CCTCAGAAAGT ACTCGATACC
 CTTAAGCTGC CCTAGGACCC CTACCGCATG GGGAGCGACC GGAGTCTTCA TGAGCTATGG
 GlyPheAspAsn MetMetAsn ArgHisLeu ValAlaGlnAsp ValPheSer ValTyrMet
 541 GGCTTGACA ACATGATGAA CAGGCACCTG CCGAAACTGT TGTACTACTT GTCCGTGGAC
 AspArgAsnGly GlnGlyAsn MetPheThr LeuGlyAlaIle AspProSer TyrTyrThr
 601 GACAGGAATG GGCAGGGAAA CATGTTTAC CTGTCCTTAC CCGTCCCTTT GTACAAATGG
 GlySerLeuHis TrpValPro ValThrVal CTGGGGCCA TCGACCCGTC CTACTACACA
 661 GGGTCCCTGC ACTGGGTGCC CGTGACAGTG CCCAGGGACG TGACCCACGG GCACTGTCAC
 ValThrIleSer GlyValVal ValAlaCys GAGGGTGGCT GTCAGGCCAT CCTGGACACG
 721 GTCACCATCA GCGGTGTGGT TGTGCCCTGT CAGTGGTAGT CGCCACACCA ACACCGGACA
 GlyThrSerLys LeuValGly ProSerSer AspIleLeuAsn IleGlnGln AlaIleGly
 781 GGCACCTCCA AGCTGGTCGG GCCCAGCAGC CCGTGGAGGT TCGACCAGCC CGGGTCGTG
 AlaThrGlnAsn GlnTyrAsp GluPheAsp IleAspCysAsp AsnLeuSer TyrMetPro
 841 GCCACACAGA ACCAGTACGA TGAGTTTGAC CGGTGTGTCT TGGTCATGCT ACTCAAACGT
 ThrValValPhe GluIleAsn GlyLysMet TyrProLeuThr ProSerAla TyrThrSer
 901 ACTGTGGTCT TTGAGATCAA TGGCAAAATG TGACACCAGA AACTCTAGTT ACCGTTTAC
 GlnAspGlnGly PheCysThr SerGlyPhe GlnSerGluAsn HisSerGln LysTrpIle

961 CAGGACCAGG GCTTCTGTAC CAGTGGCTTC CAGAGTGAAA ATCATTCCCA GAAATGGATC
GTCCTGGTCC CGAAGACATG GTCACCGAAG GTCTCACTTT TAGTAAGGGT CTTTACCTAG
LeuGlyAspVal PheIleArg GluTyrTyr SerValPheAsp ArgAlaAsn AsnLeuVal
1021 CTGGGGGATG TTTTCATCCG AGAGTATTAC AGCGTCTTG ACAGGGCCAA CAACCTCGTG
GACCCCCCTAC AAAAGTAGGC TCTCATAATG TCGCAGAAC TGTCCCGGTT GTTGGAGCAC
GlyLeuAlaLys, AlaIle***
1081 GGGCTGGCCA AAGCCATCTG A
CCCGACCGGT TTCGGTAGAC T

13. Recombinant calf-chymosin when produced by a process according to any of the preceding claims.