

TECHNICAL USER'S MANUAL FOR:

MICROSPACE®

PC/104 plus

SmartCore

MSM-P5/P3 SEN / SEV MSM-P5/P3 XEN / XEV

Nordstrasse 11/F CH- 4542 Luterbach

Tel.: ++41 (0)32 681 58 00 Fax: ++41 (0)32 681 58 01 Email: support@digitallogic.com

Homepage: http://www.digitallogic.com

COPYRIGHT © 1998- 2003 BY DIGITAL-LOGIC AG

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, in any form or by any means, electronic, mechanical, optical, manual, or otherwise, without the prior written permission of DIGITAL-LOGIC AG.

REVISION HISTORY:

Product Version MSM-Px-XEV	Product Version MSM-Px-SEV	BIOS Version	Doc. Version	Date/Vis:	Modification: Remarks, News, Attention:
	V3.4	V1.14	V1.0	12.99 FK	Initial Version with TX-Chipsset
	V3.5A	V1.14	V1.1	03.2000 STP	New designs, updates, corrections
	V3.6C	V2.2xc	V1.2	10.2000 STP	Setup, connectors, SODIMM, new address and logo, etc
V1.1	V3.7c	V2.34	V1.4	08.2001 STP	P3 added, jumpers, etc
V1.1	V3.7	V2.36	V1.5	09.2001 STP	New layouts, IrDA, CF, etc.;
V1.2	V3.8	V2.37	V1.5A	11.2001 KUF	Currents, BAT-Lifetime, Boottime New XEV Product V1.1 added
V1.2	V3.9	V2.37	V1.6	08.2003 KUF	Div. modifications made: - Safety regulations added - J46,J47,J50 corrected - Schematics for V3.9 added
V1.2	V3.9	V2.50	V1.6A	10.2003 DAR	- Mechanical dimensions added

ATTENTION

- 1. All information in this manual and the product are subject to change without prior notice.
- 2. Read this manual prior installation of the product.
- 3. Read the security information carefully prior installtion of the product.
- 4. READ CHAPTER 2.10 TO UNDERSTAND THE INCOMPATIBILITIES COMPARED TO THE STANDARD PC-AT DESIGN!

Product Registration:

Please register your product at:

http://www.digitallogic.com -> SUPPORT -> mailservice

After registration, you will receive driver & software updates, errata information, customer information and news from DIGITAL-LOGIC AG products automatically.

Table of Contents

1 Pretace		6
1.1 Tra	ademarks	6
1.2 Di:	sclaimer	6
1.3 En	vironmental Protection Statement	6
	planation of Symbols	
	r Your Safety	
	mited Two Year Warranty	
	•	
	ew	
2.1 Sta	andard Features	11
2.2 Ur	nique Features	11
	SMP5 / P3 SEV	
	SMP5 / P3 - X/SEV specifications	
	dering codes examples	
	OS History	
	is product is "YEAR 2000 CAPABLE"	
2.7 Th	IIS PRODUCT IS YEAR 2000 CAPABLE	11
	echanical Dimensions	18
2.8.1	MSM-P5/P3-SEV Boardversion from V3.9 with SODIMM	
2.8.2	MSM-P5/P3-XEV with soldered memory	
	eneral view of the mechanical dimensions with PIII processor	
2.10 l	MSMP5 / P3 SEV Incompatibilities to a standard PC/AT	21
	Related Application Notes	
	Thermoscan	
2.13 l	High frequency Radiation (to meet EN55022/EN61000)	24
2 DC/104	Bus Signals	25
3 PC/104	DUS SIGNAIS	20 00
	rpansion Bus	
3.1.1	Addressing PCI devices on the DLAG products:	28
4 Detaile	d System Description	<i>2</i> 9
	ower Requirements	
	PU, Boards and RAMs	
4.2.1	CPUs of this MICROSPACE Product	
4.2.2	Numeric Coprocessor	
4.2.3	DRAM Memory	
	terface	
4.3.1	Keyboard AT compatible and PS/2 Mouse	
	Line Printer Port LPT1	
4.3.3	Serial Ports COM1-COM2	33
4.3.4	Floppy Disk Interface	34
4.3.5	Speaker Interface	35
4.4 Cc	ontrollers	35
4.4.1	Interrupt Controllers	35
4.5 Tir	mers and Counters	35
4.5.1	Programmable Timers	
4.5.2	Battery backed clock (RTC)	36
4.5.3	External battery assembling:	38
4.5.4	Watchdog	38
4.6 BI	OS	39
4.6.1	ROM-BIOS Sockets	
4.6.2	EEPROM Memory for Setup	
4.6.3	BIOS CMOS Setup	40
4.6.4	CMOS Setup Harddisk List	
4.7 CM	MOS RAM Map	41
4.7.1	Harddisk PIO Modes	47

4.8 EEPROM saved CMOS Setup	
4.9 Download the VGA-BIOS and the CORE-BIOS	
4.9.1 VGA BIOS Download Function	
4.10.1 System Memory Map	
4.10.2 System I/O map	
4.11 BIOS Data Area Definitions	
4.12 VGA, LCD	
4.12.1 VGA / LCD Controller 69000 (69030)	
4.12.2 VGA / LCD BIOS for 69000 (69030)	
4.12.3 Display Modes Supported	
4.12.4 VGA/LCD BIOS Support	
4.12.6 Memory 69000/69030 Color STN-DD Panels	
4.12.7 Memory 69000/69030 Mono STN-DD Panels	
4.12.8 Video Input	
4.13 HiQ Video Multimedia Support	
4.14 Video Input with the SAA7111 VIP	82
4.15 Boot time	
4.16 Suspend / resume- time	85
5 Description of the connectors	87
•	
6 Jumper locations on the board	
6.1 The jumpers on MSMP5/P3-SEN/SEV V3.9/V3.8	101
6.3 The jumpers on MSMP5/P3-XEN/SEV, since V1.1/V1.2	
• •	
7 LED criterions:	107
8 Cable interface	108
8.1 The harddisk cable 44pin	
8.2 The COM 1/2 serial interface cable	
8.3 The printer interface cable (P4)	
8.4 The Micro Floppy interface cable	
8.5 Remote function	
9 Software	112
9.1 The software compatibility of the MICROSPACE PC	
9.2 Software tools and drivers for the MICROSPACE PC	
10 100/10 Ethernet LAN	114
10.1 Intel 82559 Ethernet chip	114
10.1.2 Driver installation WINDOWS 95	
10.1.3 Driver installation WINDOWS 98SE	
10.1.4 Driver installation WINDOWS NT	
10.1.5 Driver installation WINDOWS 2000	115
10.1.6 EEPROM update	
10.2 Intel 82559ER Ethernet chip	
10.2.1 Installation example for MSDOS Novell 4.11	
10.2.2 Driver installation WINDOWS 95	
10.2.4 Driver installation WINDOWS NT	
10.2.5 Driver installation WINDOWS 2000	
10.2.6 EEPROM update	
10.3 Compact Flash (CF)	117
10.4 IrDA	
10.4.1 BIOS Settings	
10.4.2 Installation Windows 2000	
11) // 2 Inctallation \/\/Inda\\\c\\\C\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

10.4.4 Remark for Windows ME	118
11 Special Peripherals, Configuration	119
12 Building a system12.1 Starting up the system	
13 Thermal Specifications	
14 Diagnostics	128
15 Core BIOS	129
16 Suspend-Mode / Supply	129
17 Assemblings view 17.1 MSM-P5/P3-SEV Boardversion V3.8/V3.9 17.2 MSM-P5/P3-SEV Boardversion V3.7x 17.3 MSM-P5/P3-XEV Boardversion V1.1/V1.2	130 132
18 INDEX	136

1 Preface

This document is for integrators and programmers of systems based on the MICROSPACE-Computer family. It contains information on hardware requirements, interconnections, and details of how to program the system. The specifications given in this manual were correct at the time of printing; advances mean that some may have changed in the meantime.

The information contained in this document is, to the best of our knowledge, entirely correct. However, DIGITAL-LOGIC AG, cannot accept liability for any inaccuracies or the consequences thereof, of for any liability arising from the use or application of any circuit, product decribed herein, as seen fit by DIGITAL-LOGIC AG without further notice.

1.1 Trademarks

Digital-Logic , Digital-Logic-Logo, MICROSPACE, smartModule are registered trademarks owned worldwide by Digital-Logic AG Luterbach (Switzerland). In addition, this document may include names, company logos, and trademarks which are registered trademarks and are therefore proprietary to their respective owners.

1.2 <u>Disclaimer</u>

DIGITAL-LOGIC AG makes no representations or warranties with respect to the contents of this manual and specifically disclaims any implied warranty of merchantability or fitness for any particular purpose. DIGITAL-LOGIC AG shall under no circumstances be liable for incidental or consequential damages or related expenses resulting from the use of this product, even if it has been notified of the possibility of such damage. DIGITAL-LOGIC AG reserves the right to revise this publication from time to time without obligation to notify any person of such revisions

1.3 <u>Environmental Protection Statement</u>

This product has been manufactured to satisfy environmental protection requirements where possible. Many of the components used (structural parts, printed circuit baords, connectors, batteries, etc.) are capable of being recycled.

Final disposition of this product after its service life must be accomplished in accordance with applicable country, state, or local laws or regulations.

1.4 Explanation of Symbols

CE Conformity

This symbol indicates that the product described in this manual is in compliance with all applied CE standards. Please refer also to the section "Applied Standards" in this manual.

Caution, Electric Shock!

This symbol and title warn of hazards due to electrical shocks (> 60V) when touching products or parts of them. Failure to observe the precautions indicated and/or prescribed by the law may endanger your life/health and/or result in damage to your material. Please refer also to the section "High Voltage Safety Instructions" on the following page.

Warning, ESD Sensitive Device!

This symbol and title inform that electronic boards and their components are sensitive to static electricity. Therefore, care must be taken during all handling operations and inspections of this product, in order to ensure product integrity at all times. Please read also the section "Special Handling and Unpacking Instructions" on the following page.

Warning!

This symbol and title emphasize points which, if not fully understood and taken into consideration by the reader, may endanger your health and/or result in damage to your material.

Note...

This symbol and title emphasize aspects the reader should read through carefully for his or her own advantage.

This symbol and title warn of general hazards from mechanical, electrical, chemical failure. This may Endager your life/health and/or result in damage to your material.

1.5 For Your Safety

Your new Digital-Logic product was developed and tested carefully to provide all features necessary to ensure its compliance with electrical safety requirements. It was also designed for a long fault-free life. However, the life expectancy of your product can be drastically reduced by improper treatment during unpacking and installation. Therefore, in the interest of your own safety and of the correct operation of your new Digital-Logic product, you are requested to conform with the following guidelines.

Warning!

All operations on this device must be carried out by sufficiently skilled personnel only.

Caution, Electric Shock!

Before installing your new Digital-Logic product, always ensure that your mains power is switched off. This applies also to the installation of piggybacks or peripherials. Serious electrical shock hazards can exist during all installation, repair and maintenance operations with this product. Therefore, always unplug the power cable and any other cables which provide external voltages before performing work.

ESD Sensitive Device!

Electronic boards and their components are sensitive to static electricity. Therefore, care must be taken during all handling operations and inspections of this product, in order to ensure product integrity at all times.

1.6 <u>Limited Two Year Warranty</u>

DIGITAL-LOGIC AG warrants the hardware and software products it manufactures and produces to be free from defects in materials and workmanship for one year following the date of shipment from DIGITAL-LOGIC AG, Switzerland. This warranty is limited to the original purchaser of product and is not transferable.

During the one year warranty period, DIGITAL-LOGIC AG will repair or replace, at its discretion, any defective product or part at no additional charge, provided that the product is returned, shipping prepaid, to DIGITAL-LOGIC AG. All replaced parts and products become property of DIGITAL-LOGIC AG.

Before returning any product for repair, customers are required to contact the company.

This limited warranty does not extend to any product which has been damaged as a result of accident, misuse, abuse (such as use of incorrect input voltages, wrong cabling, wrong polarity, improper or insufficient ventilation, failure to follow the operating instructions that are provided by DIGITAL-LOGIC AG or other contingencies beyond the control of DIGITAL-LOGIC AG), wrong connection, wrong information or as a result of service or modification by anyone other than DIGITAL-LOGIC AG. Neither, if the user has not enough knowledge of these technologies or has not consulted the product manual or the technical support of DIGITAL-LOGIC AG and therefore the product has been damaged.

Except, as expressly set forth above, no other warranties are expressed or implied, including, but not limited to, any implied warranty of merchantability and fitness for a particular purpose, and DIGITAL-LOGIC AG expressly disclaims all warranties not stated herein. Under no circumstances will DIGITAL-LOGIC AG be liable to the purchaser or any user for any damage, including any incidental or consequential damage, expenses, lost profits, lost savings, or other damages arising out of the use or inability to use the product.

2 OVERVIEW

2.1 Standard Features

The MICROSPACE PC/104 is a miniaturized modular device incorporating the major elements of a PC/AT compatible computer. It includes standard PC/AT compatible elements, such as:

- Powerful PENTIUM™ 166MHz up to 266MHz (including MMX support!) or **PENTIUM-III** (with 300 to 700MHz)
- BIOS ROM
- DRAM XEV 32 or 64 MBytes soldered SDRAM onboard SEV 32 256 MByte SODIMM 144pin up to 256MB
- 256k second level cache
- Timers
- DMA
- Real-time clock with CMOS-RAM and 10year battery buffer
- LPT1 parallel port
- COM1-, COM2- RS2332 serial port 16C550 comp.
- Speaker interface
- AT-keyboard interface or PS/2-keyboard interface
- Floppy disk interface
- AT-IDE harddisk interface
- VGA/LCD video interface
- PC/104 embedded BUS
- PS/2 mouse interface
- Power management functions AMP and ACPI
- 2 channel USB

2.2 Unique Features

The MICROSPACE MSMP5 / P3 SEN/SEV and XEN/XEV includes all standard PC/AT functions plus unique DIGITAL-LOGIC AG enhancements, such as:

- LAN Ethernet, INTEL 82559 or 82559ER -> standard
- Video Input with framegrabber (optional since V3.7x)
- Single 5 volt supply
- Watchdog
- Power-fail
- EEPROM for setup and configuration
- Fast IrDA
- Compact Card holder typ 1
- UL approved parts
- Remote Function

2.3 MSMP5 / P3 SEV Block Diagram

2.4 MSMP5 / P3 - X/SEV specifications

CPU:	Specification
CPU MSM-P5-xxx	INTEL PENTIUM-MMX
CPU MSM-P3-xxx	INTEL PENTIUM III
Compatibility:	8086 – Pentium
1. Level Cache:	16k data and 16k code
2. Level Cache:	256kByte
Socket:	SmartCore 320pin
Clock MSM-P5-xxx	166/266MHz
MSM-P3-xxx	300 – 700MHz
FSB	66MHz
Powermanagement	Yes, AMP1.2 and ACPI
FPU:	Integrated

Chipset:	Specification
Nordbridge	TX430 /BX440 from INTEL
Southbridge	PIIX4 from INTEL
LAN	82C559 INTEL
Audio	Not on board
Firewire IEEE1394	Not on board
Video: MSM-P5-xxx	CT69000 (2Mbyte)
MSM-P3-xxx	CT69030 (4Mbyte)
Framegrabber/TV-Input	Philips SAA7111 (Option)

Memory	Specification
Main Memory	
MSM-Px- SEV/N	SDRAM, 64Bit, up to 256Mbyte in two SODIMM144 socket
MSM-Px- XEV/N	SDRAM, 64Bit, up to 64Mbyte direct soldered onboard
Flash-BIOS	256kByte Flash
Setup EEPROM	2kByte for CMOS-backup in batterless applications
Flash-VideoBIOS:	Serial-Flash
Video RAM	
MSM-P5-SEV	Separate 2Mbyte
MSM-P3-SEV	Separate 4Mbyte

Video controller	Specification
Controller	CT69000 / CT69030
Videomemory	2/4Mbyte
Channel 1	CRT VGA up to 1248 x 1024 pixels
Channel 2	TFT
Bootup-Resolution	640 x 480 / 800 x 600 / 1024 x 768 VGA bios depending
2D-Grafic	Integrated accelerator
3D-Grafic	Not available
Direct-X Version	Not available
PnP	Not available

External Interface	Specification
Videointerfaces USB V1.1 LPT1: COM1: COM2: Keyboard: Mouse: Floppy: Harddisk: Speaker: ISA-Bus: PCI-Bus:	CRT1, LCD for TFT and STN 2 channels V1.1 available Internal RS232 RS232 PS/2 PS/2 PS/2 26pin FCC Interface for TEAC Minifloppy 1 channel 44pin RM2.0mm ATAIDE-cable 0.1Watt Speaker PC/104 PC/104plus
Powersupply:	
Input voltage: Input inrush current: Protection: Spec. 3.3Volt Power Output:	Nom. 5V Tolerance +/- 3% Typ. 4 Amp., inrush current 10Amp. for powerup of 10ms. Not integrated, EMI filtered must be added external None Max. 1Amp. for LCD and Peripherals
Power Consumption	Specification
At 5V (with 32Mbyte) MSM-P5-SEV MSM-P5-SEN MSM-P3-SEV MSM-P3-SEN Standby Poweroff	typical 2.0 Amp. at 266MHz typical 1.7Amp. at 266MHz typical 2.5Amp. at 400MHz typical 2.2Amp. at 400MHz Typical 0.5 Amp. Typical 10mA
Physical Characteristics	Specification PC/104plus
Dimensions:	Length: 91mm Depth: 99mm Height: 25mm
Weight:	170gr
Operating Environment	Specification
Relative Humidity:	5 - 90% non condensing IEC68-2-30 at -20° to +50 ℃ operating
Vibration operating:	IEC68-2-6 10-50Hz, 0.075mm and 55-500Hz, 1.0G
Vibration nonoperating:	IEC68-2-6 10-50Hz, 0.15mm and 55-500Hz, 2.0G
Shock operating:	IEC68-2-27 10G, 11ms ½ sine
Shock nonoperating: Altitude	IEC68-2-27 50G, 11ms, ½ sine IEC68-2-13 4571meter operating
Temperature operating	IEC68-2-1,2,14: MSM-P5-Sxx Standard -25 ℃ to +60 ℃ MSM-P3-Sxx Standard -25 °C to +50 °C
Extended Temp. option	MIL-810-501/502 see separate table below
Temperature storage	IEC68-2-1,2,14: -65 °C to +125 °C *)

^{*)} The backupbattery is limited on –40 $^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$ operating and storage temperature !

Operating Temperature	Specification: MIL-810-501 MIL-810-502
Extended temperature	
range:	
MSM-P5-SEV 166MHz	-40 ℃ to +70 ℃
MSM-P5-SEV 266MHz	-40℃ to +60℃
MSM-P3-SEV 300MHz	-40 ℃ to +70 ℃
MSM-P3-SEV 400MHz	-40℃ to +60℃
MSM-P3-SEV 700MHz	-40℃ to +50℃
MSM-P5-SEN 166MHz	-40 ℃ to +85 ℃
MSM-P5-SEN 266MHz	-40℃ to +85℃
MSM-P3-SEN 300MHz	-40℃ to +85℃
MSM-P3-SEN 400MHz	-40℃ to +70℃

EMI / EMC Tests Specification

If all signals are externaly filtered and assembled into a closed metalic case!

MSM-P3-SEN 700MHz -40℃ to +60℃

EMC emission EN61000-6-2:2001	
Conducted disturbance	EN55022 Class B
Radiated disturbance	EN55022 Class B
EMC immunity EN61000-6-2	
Electrostatic discharge (ESD)	EN61000-4-2
	Voltage = 4kV contact / 8kV air, Criteria A
Radiated RF-Field	EN61000-4-3
	Level = 10V/m , Criteria A
Electrical fast transients (Burst)	EN61000-4-4
	Grade 2: DC-Powerlines = 1000V (5/50ns)
	Grade 2: AC-Powerlines = 2000V (5/50ns)
	Grade 2: Signallines = 500V (5/50ns)
	Criteria B
Surge	EN61000-4-5
	Grade 2: DC-Powerlines = 1kV, (1.2/50us)
	Grade 2: AC-Powerlines = 2kV, (1.2/50us)
	Criteria B
Conducted disturbances	EN61000-4-6
	Voltage = 10V coupled by case, Criteria A

Security:		
e1:	Not planed	
UL	Not planed	
ETS 301	Not planed	
CE/SEV	Yes	
Safety	AR385-16	

Any information is subject to change without notice.

2.5 Ordering codes examples

With SODIMM-Holder form memory modules

MSMP5SEV-166	with 0MB DRAM SODIMM ,166 MHz,VGA/LCD, LAN, -25 ℃ to +70 ℃ BurnIn proofed
MSMP5SEV-266	with 0MB DRAM SODIMM ,266 MHz,VGA/LCD, LAN, -25 $^{\circ}\!\text{C}$ to +70 $^{\circ}\!\text{C}$ BurnIn proofed
MSMP5SEN-266	with 0MB DRAM SODIMM ,266 MHz, no VGA, LAN, -25 ℃ to +70 ℃ BurnIn proofed
MSMP3SEV-300 MSMP3SEV-400 MSMP3SEV-700	with 0MB DRAM SODIMM ,300 MHz,VGA/LCD, LAN, -25 $^{\circ}$ C to +70 $^{\circ}$ C BurnIn proofed with 0MB DRAM SODIMM ,400 MHz,VGA/LCD, LAN, -25 $^{\circ}$ C to +70 $^{\circ}$ C BurnIn proofed with 0MB DRAM SODIMM ,700 MHz,VGA/LCD, LAN, -25 $^{\circ}$ C to +70 $^{\circ}$ C BurnIn proofed
MSMP3SEN-400	with 0MB DRAM SODIMM ,400 MHz,no VGA, LAN, -25 ℃ to +70 ℃ BurnIn proofed

With onboard soldered SDRAM memories

MSMP5XEV-166-32 wit	th 32MB SDRAM, 166 MHz,VGA/LCD, LAN, -25 °C to +70 °C BurnIn proofed
MSMP5XEV-266-64 wit	th 64MB SDRAM, 266 MHz,VGA/LCD, LAN, -25 °C to +70 °C BurnIn proofed
MSMP5XEN-266-64 wit	th 64MB SDRAM, 266 MHz, no VGA, LAN, -25 ℃ to +70 ℃ BurnIn proofed
MSMP3XEV-400-64 wit	th 64MB SDRAM, 300 MHz,VGA/LCD, LAN, -25 °C to +70 °C BurnIn proofed th 64MB SDRAM, 400 MHz,VGA/LCD, LAN, -25 °C to +70 °C BurnIn proofed th 64MB SDRAM, 700 MHz,VGA/LCD, LAN, -25 °C to +70 °C BurnIn proofed
MSMP3XEN-400-64 wit	th 64MB SDRAM, 400 MHz.no VGA, LAN, -25 ℃ to +70 ℃ BurnIn proofed

-E28 Extended temperature version -25 °C to +85 °C BurnIn proofed at 166 MHz

MSMCK Cable Kit

2.6 BIOS History

Version:	Date:	Status:	Modifications:
1.01	Oct.98.	Beta Test AMI	Y2K tested, EEPROM Support corrected
1.02	Nov.98	Beta Test	Keyboardless booting is now working
1.10	May 1999	Beta Test	Desktop BIOS initialisation
1.11	Aug 1999	Released AMI	Modified for 266MHz CPU
1.13	Nov 1999	Released	Watchdog support added. Default data for boot
			without battery
1.14	Dec 2000	Released	PCI table updated
2.20	April 2000	Released AMI	Intermediate Version
2.3x	May - Aug 2001	Development Vers.	
2.36	Sept.2001	Beta Vers.	
2.37	Nov. 2001	Released Phoenix	New BIOS Version
2.50	Dez 2002		New BIOS Version

2.7 This product is "YEAR 2000 CAPABLE" W. ...

This DIGITAL-LOGIC product is "YEAR 2000 CAPABLE". This means, that upon installation, it accurately stores, displays, processes, provides and/or receives date data from, into, and between 1999 and 2000, and the 20. and 21. centuries, including leap year calculations, provided that all other technology used in combination with said product properly exchanges date data with it. DIGITAL-LOGIC makes no representation about individual components within the product should be used independently from the product as a whole. You should understand that DIGITAL-LOGIC's statement that an DIGITAL-LOGIC product is "YEAR 2000 CAPABLE" means only that DIGITAL-LOGIC has verified that the product as a whole meet this definition when tested as a stand-alone product in a test lab, but dies not mean that DIGITAL-LOGIC has verified that the product is "YEAR 2000 CAPABLE" as used in your particular situation or configuration. DIGITAL-LOGIC makes no representation about individual components, including software, within the product should they be used independently from the product as a whole.

DIGITAL-LOGIC customers use DIGITAL-LOGIC products in countless different configurations and in conjunction with many other components ans systems, and DIGITAL-LOGIC has no way to test wheter all those configurations and systems will properly handle the transition to the year 2000. DIGITAL-LOGIC encourages its customers and others to test whether their own computer systems and products will properly handle the transition to the year 2000.

The only proper method of accessing the date in systems is indirectly from the Real-Time-Clock via the BIOS. The BIOS in DIGITAL-LOGIC computerboards contain a century checking and maintenance feature the checks the laest two significant digits of the year stored in the RTC during each BIOS request (INT 1A) to read the date and, if less than '80' (i.e. 1980 is the first year supported by the PC), updates the century byte to '20'. This feature enables operating systems and applications using BIOS date/time services to reliably manipulate the year as a four-digit value.

2.8 Mechanical Dimensions

2.8.1 MSM-P5/P3-SEV Boardversion from V3.9 with SODIMM

MSMP5 / P3SEV Version V3.9

Unit: mm (millimeter)
Tolerance: +/- 0.1mm

Date: 22.10.2003 Author: BRR

2.8.2 MSM-P5/P3-XEV with soldered memory

MSMP5 / P3XEV Version V1.2

Unit: mm (millimeter)
Tolerance: +/- 0.1mm

Date: 22.10.2003 Author: BRR

2.9 <u>General view of the mechanical dimensions with</u> <u>PIII processor</u>

2.10 MSMP5 / P3 SEV Incompatibilities to a standard PC/AT

No incompatibilities are observed.

2.11 Related Application Notes

#	Description
80	High frequency Radiation (to meet EN55022)
84	Power consumption on Pentium / any other boards with
	attached drives (HDD, CD)
97	SODIMM 256MB support

→ Application Notes are available at http://www.digitallogic.com ->support, or on any Application CD from DIGITAL-LOGIC.

2.12 Thermoscan

2.13 High frequency Radiation (to meet EN55022/EN61000)

Since the PC/104 CPU modules are very high integrated embedded computers, no peripheral lines are protected against the radiation of high frequency spectrum. To meet a typical EN55022 requirement, all peripherals, they are going outside of the computer case, must be filtered externally.

Typical signals, they must be filtered:

Keyboard: KBCLK, KBDATA, VCC Mouse: MSCLK, MSDATA, VCC

COM1/2/3/4: All serial signals must be filtered LPT: All parallel signals must be filtered

CRT: red,blue,green, hsynch, vsynch must be filtered

Typical signals, they must not be filtered, since they are internaly used:

IDE: connected to the harddisk Floppy: connected to the floppy LCD: connected to the internal LCD

1. For peripheral cables:

Use for all DSUB connector a filtered version. Select carefully the filter specifications. Place the filtered DSUB connector directly frontside and be sure that the shielding makes a good contact with the case.

9pin DSUB connector from AMPHENOL: FCC17E09P 820pF 25pin DSUB connector from AMPHENOL: FCC17B25P 820pF

2. For stackthrough applications:

Place on each peripheral signal line, they are going outside, a serial inductivity and after the inductivity a capacitor of 100pF to 1000pF to ground. In this case, no filtered connectors are needed. Place the filter directly under or behind the onboard connector.

Serial Inductivity: TDK HF50ACB321611-T 100Mhz, 500mA, 1206 Case

Ground capacitor: Ceramic Capacitor with 1000pF

Power supply:

Use a currentcompensated dualinductor on the 5V supply

SIEMENS B82721-K2362-N1 with 3.6A, 0.4mH

3 PC/104 Bus Signals

Please note, that may not all of the signals are available on this board (check chapter 5 "Description of the connectors")

AEN, output

Address Enable is used to degate the microprocessor and other devices from the I/O channel to allow DMA transfers to take place. **low = CPU Cycle**, **high = DMA Cycle**

BALE, output

Address Latch Enable is provided by the bus controller and is used on the system board to latch valid addresses and memory decodes from the microprocessor. This signal is used so that devices on the bus can latch LA17..23. The SA0..19 address lines latched internally according to this signal. BALE is forced high during DMA cycles.

/DACK[0..3, 5..7], output

DMA Acknowledge 0 to 3 and 5 to 7 are used to acknowledge DMA requests (DRQO through DRQ7). They are **active low**. This signal indicates that the DMA operation can begin.

DRQ[0..3, 5..7], input

DMA Requests 0 through 3 and 5 through 7 are asynchronous channel requests used by peripheral devices and the I/O channel microprocessors to gain DMA service (or control of the system). A request is generated by bringing a DRQ line to an active level. A DRQ line must be held high until the corresponding DMA Request Acknowledge (DACK/) line goes active. DRQO through DRQ3 will perform 8-Bit DMA transfers; DRQ5-7 are used for 16 accesses.

/IOCHCK, input

IOCHCK/ provides the system board with parity (error) information about memory or devices on the I/O channel. **low = parity error, high = normal operation**

IOCHRDY, input

I/O Channel Ready is pulled low (not ready) by a memory or I/O device to lengthen I/O or memory cycles. Any slow device using this line should drive it low immediately upon detecting its valid address and a Read or Write command. Machine cycles are extended by an integral number of one clock cycle (67 nanoseconds). This signal should be held in the range of 125-15600nS. **low = wait, high = normal operation**

/IOCS16, input

I/O 16 Bit Chip Select signals the system board that the present data transfer is a 16-Bit, 1 wait-state, I/O cycle. It is derived from an address decode. /IOCS16 is **active low** and should be driven with an open collector (300 ohm pull-up) or tri-state driver capable of sinking 20mA. The signal is driven based only on SA15-SAO (not /IOR or /IOW) when AEN is not asserted. In the 8 Bit I/O transfer, the default transfers a 4 wait-state cycle.

/IOR, input/output

I/O Read instructs an I/O device to drive its data onto the data bus. It may be driven by the system micro-processor or DMA controller, or by a microprocessor or DMA controller resident on the I/O channel. This signal is **active low**.

/IOW, input/output

I/O Write instructs an I/O device to read the data on the data bus. It may be driven by any microprocessor or DMA controller in the system. This signal is **active low**.

IRQ[3 - 7, 9 - 12, 14, 15], input

These signals are used to tell the microprocessor that an I/O device needs attention. An interrupt request is generated when an IRQ line is **raised from low to high**. The line must be held high until the microprocessor acknowledges the interrupt request.

/Master, input

This signal is used with a DRQ line to gain control of the system. A processor or DMA controller on the I/O channel may issue a DRQ to a DMA channel in cascade mode and receive a /DACK.

/MEMCS16, input

MEMCS16 Chip Select signals the system board if the present data transfer is a 1 wait-state, 16-Bit, memory cycle. It must be derived from the decode of LA17 through LA23. /MEMCS16 should be driven with an open collector (300 ohm pull-up) or tri-state driver capable of sinking 20mA.

/MEMR input/output

These signals instruct the memory devices to drive data onto the data bus. /MEMR is active on all memory read cycles. /MEMR may be driven by any microprocessor or DMA controller in the system. When a microprocessor on the I/O channel wishes to drive /MEMR, it must have the address lines valid on the bus for one system clock period before driving /MEMR active. These signals are **active low**.

/MEMW, input/output

These signals instruct the memory devices to store the data present on the data bus. /MEMW is active in all memory read cycles. /MEMW may be driven by any microprocessor or DMA controller in the system. When a microprocessor on the I/O channel wishes to drive /MEMW, it must have the address lines valid on the bus for one system clock period before driving /MEMW active. Both signals are **active low**.

OSC, output

Oscillator (OSC) is a high-speed clock with a 70 nanosecond period (14.31818 MHz). This signal is not synchronous with the system clock. It has a 50% duty cycle. OSC starts 100µs after reset is inactive.

RESETDRV, output

Reset Drive is used to reset or initiate system logic at power-up time or during a low line-voltage outage. This signal is active high. When the signal is active all adapters should turn off or tri-state all drivers connected to the I/O channel. This signal is driven by the permanent Master.

/REFRESH, input/output

These signals are used to indicate a refresh cycle and can be driven by a microprocessor on the I/O channel. These signals are **active low**.

SAO-SA19, LA17 - LA23 input/output

Address bits 0 through 19 are used to address memory and I/0 devices within the system. These 20 address lines, allow access of up to 1MBytes of memory. SAO through SA19 are gated on the system bus when BALE is high and are latched on the falling edge of BALE. LA17 to LA23 are not latched and addresses the full 16 MBytes range. These signals are generated by the microprocessors or DMA controllers. They may also be driven by other microprocessor or DMA controllers that reside on the I/0 channel. The SA17-SA23 are always LA17-LA23 address timings for use with the MSCS16 signal. This is advanced AT96 design. The timing is selectable with jumpers LAxx or SAxx.

/SBHE, input/output

Bus High Enable (system) indicates a transfer of data on the upper byte of the data bus, XD8 through XD15. Sixteen-Bit devices use /SBHE to condition data-bus buffers tied to XD8 through XD15.

SD[O..15], input/output

These signals provide bus bits 0 through 15 for the microprocessor, memory, and I/0 devices. DO is the least-significant Bit and D15 is the most significant Bit. All 8-Bit devices on the I/O channel should use DO through D7 for communications to the microprocessor. The 16-Bit devices will use DO through D15. To support 8-Bit device, the data on D8 through D15 will be gated to DO through D7 during 8-Bit transfers to these devices; 16-Bit microprocessor transfers to 8-Bit devices will be converted to two 8-Bit transfers.

/SMEMR input/output

These signals instruct the memory devices to drive data onto the data bus for the first MByte. /SMEMR is active on all memory read cycles. /SMEMR may be driven by any microprocessor or DMA controller in the system. When a microprocessor on the I/O channel wishes to drive /SMEMR, it must have the address lines valid on the bus for one system clock period before driving /SMEMR active. The signal is **active low**.

/SMEMW, input/output

These signals instruct the memory devices to store the data present on the data bus for the first MByte. /SMEMW is active in all memory read cycles. /SMEMW may be driven by any microprocessor or DMA controller in the system. When a microprocessor on the I/O channel wishes to drive /SMEMW, it must have the address lines valid on the bus for one system clock period before driving /SMEMW active. Both signals are active low.

SYSCLK, output

This is a 8 MHz system clock. It is a synchronous microprocessor cycle clock with a cycle time of 167 nano-seconds. The clock has a 66% duty cycle. This signal should only be used for synchronization.

TC output

Terminal Count provides a pulse when the terminal count for any DMA channel is reached. The TC completes a DMA-Transfer. This signal is expected by the onboard floppy disk controller. Do not use this signal, because it is internally connected to the floppy controller.

/OWS, input

The Zero Wait State (/OWS) signal tells the microprocessor that it can complete the present bus cycle without inserting any additional wait cycles. In order to run a memory cycle to a 16-Bit device without wait cycles, /OWS is derived from an address decode gated with a Read or Write command. In order to run a memory cycle to an 8-Bit device with a minimum of one-wait states, /OWS should be driven active one system clock after the Read or Write command is active, gated with the address decode for the device. Memory Read and Write commands to an 8-Bit device are active on the falling edge of the system clock. /OWS is **active low** and should be driven with an open collector or tri-state driver capable of sinking 2OmA.

12V +/- 5%

used only for the flatpanel supply.

GROUND = 0V

used for the entire system.

VCC, +5V +/- 0.25V

for logic and harddisk/floppy supply.

→ For further Informations about PC/104 and PC/104plus, please refer to the PC/104 specification manual which is available on the internet. http://www.digitallogic.com (manuals)

3.1 Expansion Bus

The bus currents are as follows:

Output Signals:	IOH:	IOL:
D0 - D16	8 mA	8 mA
A0 - A23	8 mA	8 mA
MR, MW, IOR, IOW, RES, ALE, AEN, C14	8 mA	8 mA
DACKx, DRQx, INTx, PSx, OPW	8 mA	8 mA

Output Signals:	Logic Family:	Voltage:
	ABT-Logic	ABT-Logic
Input Signals:	ViH (min.) = 2.15 V	Vil (max.) = 0.85 V

3.1.1 Addressing PCI devices on the DLAG products:

DEVICE	IDSEL	PIRQ	#REG	#GNT	Remarks
PIIX4	AD18				
SLOT 1	AD20	A/B/C/D			For additional cards (peripheral boards)
SLOT 2	AD21	B/C/D/A			For additional cards (peripheral boards)
SLOT 3	AD22	C/D/A/B			For additional cards (peripheral boards)
SLOT 4	AD23	D/A/B/C			For additional cards (peripheral boards)
VGA	AD31				Onboard devices
SCSI	AD30	В	1	1	Onboard devices
LAN	AD29	Α	0	0	Onboard devices
PCMCIA	AD28	C/D	2	2	Onboard devices
PCI-PCI bridge	AD27		3	3	Onboard devices
ISDN	AD26	В	1	1	Onboard devices

4 DETAILED SYSTEM DESCRIPTION

This system has a system configuration based on the ISA architecture. Check the I/O and the Memory map in this chapter.

4.1 Power Requirements

The power is connected through the PC/104 power connector; or the separate power connector on the board. The supply uses only the +5 Volts and ground connection.

<u>Warning:</u> Make sure that the power plug is wired correctly before supplying power to the

board! A built-in diode protects the board against reverse polarity.

Tolerance of 5V supply: 5 volts \pm 5%; Power-fail signal starts at \pm 10 % of 5 volt norm and generates a

reset status for the MICROSPACE PC.

Testenvironment for powerconsumption measurement:

Peripheries:

Harddisk Hitachi Mod-DK23AA-60 DLAG: 890005 Monitor Compaq Mod-460 PS/2-KB Logitech Mod-iTouch Keyboard PS/2-MS Logitech Mod-M-CAA43 Floppy TEAC Mod-FD-05HF

Software:

MS-DOS V6.22 Win2000, WinME HCT for Win2000 v9.5 BM v1.033d Current consumption @ 5Volt supply at -30 °C/+25 °C/+85 °C

Mode	Memory	DLAG-Nr.	-30 °C	+25 <i>°</i> C	+85 ℃
MSMP5-SEV-266MHz (D	MSMP5-SEV-266MHz (DLAG: 801562)				
DOS: C:\	64 MB	890644 SDRAM	2140	2070	1290
	128 MB	890646 SDRAM	2160	2090	1300
	256 MB	890647 SDRAM	2440	2430	1520
DOS: EDIT running	64 MB	890644 SDRAM	2140	2090	1290
Autoexec.bat	128 MB	890646 SDRAM	2160	2110	1300
	256 MB	890647 SDRAM	2460	2460	1520
Win2000: Desktop	64 MB	890644 SDRAM	1290	1280	1290
	128 MB	890646 SDRAM	1300	1290	1110
	256 MB	890647 SDRAM	1560	1530	1320
Win2000: HCT v9.5	64 MB	890644 SDRAM	2490	2430	1460
System\Stress\SystemStress	128 MB	890646 SDRAM	2450	2380	1520
	256 MB	890647 SDRAM	2830	2810	1670

MSMP5-SEV-266MHz

At +85 ℃ the CPU runs at a lower speed to protect the CPU from overheating!

Current consumption @ 5Volt supply at -30 °C/+25 °C/+85 °C

Mode	Memory	DLAG-Nr.	-30 °C	+25℃	+85 ℃
MSMP5-SEN-266MHz (D		<i>57)</i>	[mA]	[mA]	[mA]
DOS: C:\	64 MB	890644 SDRAM	1910	1960	1130
	128 MB	890646 SDRAM	1930	1980	1092
	256 MB	890647 SDRAM	1930	2160	1320
DOS: EDIT running	64 MB	890644 SDRAM	1900	2000	1130
Autoexec.bat	128 MB	890646 SDRAM	1950	2010	1090
	256 MB	890647 SDRAM	1930	2191	1320
Win2000: Desktop	64 MB	890644 SDRAM	1090	1120	940
	128 MB	890646 SDRAM	1140	1130	910
	256 MB	890647 SDRAM	1120	1330	1120
Win2000: HCT v9.5	64 MB	890644 SDRAM	2210	2560	2110
System\Stress\SystemStress	128 MB	890646 SDRAM	2200	2390	2010
	256 MB	890647 SDRAM	2150	2750	2210

MSMP5-SEN-266MHz

At +85 ℃ the CPU runs at a lower speed to protect the CPU from overheating!

Current consumption @ 5Volt supply at -30 °C/+25 °C/+85 °C

Mode	Memory	DLAG-Nr.	-30 °C	+25℃	+85 ℃
MSMP3-SEV-400MHz (D	LAG: 8018	00)	[mA]	[mA]	[mA]
DOS: C:\	64 MB	890644 SDRAM	2690	2770	1800
	128 MB	890646 SDRAM	2700	2780	1810
	256 MB	890562 SDRAM	3040	3110	2040
DOS: EDIT running	64 MB	890644 SDRAM	2710	2790	1810
AUTOEXEC.BAT	128 MB	890646 SDRAM	2720	2800	1810
	256 MB	890562 SDRAM	3060	3130	2040
Win2000: Desktop	64 MB	890644 SDRAM	1530	1660	1590
	128 MB	890646 SDRAM	1540	1650	1610
	256 MB	890562 SDRAM	1810	1930	1830
Win2000: HCT v9.5	64 MB	890644 SDRAM	3210	2970	1980
System\Stress\Systemstress	128 MB	890646 SDRAM	3230	3270	2210
	256 MB	890562 SDRAM	3520	3420	2360

MSMP3-SEV-400MHz

At +85 ℃ the CPU runs at a lower speed to protect the CPU from overheating!

Current consumption @ 5Volt supply at -30 °C/+25 °C/+85 °C

Current consumption (-0 0/100		
Mode	Memory	DLAG-Nr.	-25 °C	+25 <i>°</i> C	+85 ℃
MSMP3-SEN-400C (DLA	AG: 801810)		[mA]	[mA]	[mA]
DOS: C:\	64 MB	890644 SDRAM	2550	2820	1770
	128 MB	890646 SDRAM	2580	2820	1760
	256 MB	890562 SDRAM	2890	3140	2030
DOS: EDIT running	64 MB	890644 SDRAM	2570	2840	1770
Autoexec.bat	128 MB	890646 SDRAM	2590	2840	1760
	256 MB	890562 SDRAM	2920	3160	2030
Win2000: Desktop	64 MB	890644 SDRAM	1410	1620	1920
	128 MB	890646 SDRAM	1430	1410	1700
	256 MB	890562 SDRAM	2700	1740	2020
Win2000: HCT v9.5	64 MB	890644 SDRAM	3060	3120	3420
System\Stress\Systemstress	128 MB	890646 SDRAM	3080	3180	3470
	256 MB	890647 SDRAM	3350	3270	3550

MSMP3-SEN-400MHz

At +85 ℃ the CPU runs at a lower speed to protect the CPU from overheating!

4.2 CPU, Boards and RAMs

4.2.1 CPUs of this MICROSPACE Product

Processor:	Type:	Clock:	ock: Landmark MHz:	
P5-166MHz	Intel	166 MHz	166 MHz	900
P5-266MHz	Intel	266 MHz	266 MHz	1500

4.2.2 <u>Numeric Coprocessor</u>

Is always integrated into the Pentium CPUs.

4.2.3 DRAM Memory

Speed:	70ns
Size:	soldered onboard TSOP DRAMs
	SODIMM 144pin
Bits:	32 Bit
Capacity:	32, 64 MBytes
	SODIMM (up to 256MB)
Bank:	1, 2

4.3 Interface

4.3.1 Keyboard AT compatible and PS/2 Mouse

Pin	Signal
Pin 1	Speaker out
Pin 2	GND
Pin 3	Ext. reset input
Pin 4	VCC
Pin 5	Keyb. Data
Pin 6	Keyb. Clock
Pin 7	GND
Pin 8	Ext. Battery
Pin 9	Mouse Clock (PS/2)
Pin 10	Mouse Data (PS/2)

4.3.2 Line Printer Port LPT1

A standard bi-directional LPT port is integrated into the MICROSPACE PC.

Further information about these signals is available in numerous publications, including the IBM technical reference manuals for the PC and AT computers and from some other reference documents.

The current is: IOH = 12 mA IOL = 24mA

The SMC 37C672 may be programmed via software commands.

In the NEW BIOS version, this selection may be controlled with the BIOS setup screen.

4.3.3 <u>Serial Ports COM1-COM2</u>

The serial channels are fully compatible with 16C550 UARTS. COM1 is the primary serial port, and is supported by the board's ROM-BIOS as the PC-DOS 'COM1' device. The secondary serial port is COM2; it is supported as the 'COM2' device.

Standard: COM 1/2: SMC 37C672: 2 x 16C550 compatible serial interfaces

Serial Port Connectors COM1, COM2

Pin	Signal Name	Function	in/out	DB25 Pin	DB9 Pin
1	CD	Data Carrier Detect	in	8	1
2	DSR	Data Set Ready	in	6	6
3	RXD	Receive Data	in	3	2
4	RTS	Request To Send	out	4	7
5	TXD	Transmit Data	out	2	3
6	CTS	Clear to Send	in	5	8
7	DTR	Data TerminalReady	out	20	4
8	RI	Ring Indicator	in	22	9
9	GND	Signal Ground		7	5

The serial port signals are compatible with the RS232C specifications.

4.3.4 Floppy Disk Interface

The onboard floppy disk controller and ROM-BIOS support one or two floppy disk drives in any of the standard PC-DOS and MS-DOS formats shown in the table .

Supported Floppy Formats

Capacity	Drive size	Tracks	Data rate	DOS version
1.2 MB	5-1/4"	80	500 KHz	3.0 - 6.22
720 K	3-1/2"	80	250 KHz	3.2 - 6.22
1.44 M	3-1/2"	80	500 KHz	3.3 - 6.22

Floppy Interface Configuration

The desired configuration of floppy drives (number and type) must be properly initialized in the board's CMOS - configuration memory. This is generally done by using DEL or F2 at bootup time.

Floppy Interface connector

The table shows the pinout and signal definitions of the board's floppy disk interface connector. It is identical in pinout to the floppy connector of a standard AT. Note that, as in a standard PC or AT, both floppy drives are jumpered to the same drive select: as the 'second' drive. The drives are uniquely selected as a result of a swapping of a group of seven wires (conductors 10-16) that must be in the cable between the two drives. The seven-wire swap goes between the computer board and drive 'A'; the wires to drive 'B' are unswapped (or swapped a second time). The 26 pin high density (1mm pitch FCC) connector has only one drive and motor select. The onboard jumper defines the drive A: or B:. Default is always A:.

Floppy Disk Interface Technology

We only support CMOS drives. That means that the termination resistors are 1 Kohm. 5 1/4"-drives are not recommended (TTL interface).

The 26 pin Connector: FFC/FPC 0.3mm thick 1.0mm (0.039") pitch (MOLEX 52030 Serie)

Floppy Disk Interface Connector

FD26: Pin	Signal Name	Function	in/out
1	VCC	+5 volts	
2	IDX	Index Pulse	in
3	VCC	+5 volts	
4	DS2	Drive Select 2	out
5	VCC	+5 volts	
6	DCHG	Disk Change	in
10	M02	Motor On 2	out
12	DIRC	Direction Select	out
14	STEP	Step	out
16	WD	Write Data	out
17	GND	Signal grounds	
18	WE	Write Enable	out
19	GND	Signal grounds	
20	TRKO	Track 0	in
21	GND	Signal grounds	
22	WP	Write Protect	in
23	GND	Signal grounds	
24	RDD	Read Data	in
25	GND	Signal grounds	
26	HS	Head Select	out

4.3.5 Speaker Interface

One of the board's CPU device provides the logic for a PC compatible speaker port. The speaker logic signal is buffered by a transistor amplifier, and provides approximately 0.1 watt of audio power to an external 8 ohm speaker. Connect the speaker between VCC and speaker output to have no quiescient current.

4.4 <u>Controllers</u>

4.4.1 <u>Interrupt Controllers</u>

An 8259A compatible interrupt controller, within the chipset, provides seven prioritized interrupt levels. Of these, several are normally associated with the board's onboard device interfaces and controllers, and several are available on the AT expansion bus.

Interrupt:	Sources:	Onboard used:
IRQ0	ROM-BIOS clock tick function, from timer 0	yes
IRQ1	Keyboard controller output buffer full	yes
IRQ2	Used for cascade 2. 8259	yes
IRQ3	COM2 serial port	yes
IRQ4	COM1 serial port	yes
IRQ5	LPT2 parallel printer (if present)	no *
IRQ6	Floppy controller	yes
IRQ7	LPT1 parallel printer	yes
IRQ8	Battery backed clock	yes
IRQ9	Free for user	no *
IRQ10	Free for user	no *
IRQ11	Free for user	no *
IRQ12	PS/2 mouse	yes
IRQ13	Math. coprocessor	yes
IRQ14	Harddisk IDE / SCSI	yes
IRQ15	Free for user	no *

^{*} It may depends on the LAN configuration

4.5 <u>Timers and Counters</u>

4.5.1 Programmable Timers

An 8253 compatible timer/counter device is also included in the board's ASIC device. This device is utilized in precisely the same manner as in a standard AT implementation. Each channel of the 8253 is driven by a 1.190 MHz clock, derived from a 14.318 MHz oscillator, which can be internally divided in order to provide a variety of frequencies.

Timer 2 can also be used as a general purpose timer if the speaker function is not required.

Timer Assignment

Timer	Function
0	ROM-BIOS clock tick (18.2 Hz)
1	DRAM refresh request timing (15 μs)
2	Speaker tone generation time base

4.5.2 <u>Battery backed clock (RTC)</u>

An AT compatible date/time clock is located within the chipset. The device also contains a CMOS static RAM, compatible with that in standard ATs. System configuration data is normally stored in the clock chip's CMOS RAM in a manner consistent with the convention used in other AT compatible computers.

Connect an external Lithium battery to J24. Make sure to use the correct polarity!

The battery-backed clock can be set by using the DIGITAL-LOGIC AG SETUP at boot-time.

4.5.2.1 <u>Battery-Lifetime of Version V3.3 - V3.7c</u>

Battery specs:		Lowest temp. -40 ℃	Nominal temp. +20 ℃	Highest temp. +85 ℃
Manufacturer:	PANASONIC			
Type:	CR2032			
Capacity versus temp.:	5μΑ	48mAh	48mAh	48mAh
Voltage versus temp. :	5μΑ	2.9V	3.0V	3.1V
Nominal values:	3.0V / 48mAh / -40 °C+85 °C			

Information taken from the datasheet of PANASONIC CR2032

PRODUCT:	Temperatur ℃	Battery voltage V	VCC (+5V) switched ON μΑ	VCC (+5V) Switched OFF μΑ
MSMP5/3 version 3.7c				
Battery current:	+25℃	2.9	0	2.58
	-40℃	2.8	0	1.89
	+85℃	2.93	0	9.24
Battery-Lifetime:	+25℃		>10 years	2.1 years
	-40℃		> 10 years	2.9 years
	+85℃		0.5 years	0.5 years

4.5.2.2 <u>Bettery-Lifetime of Version V3.8</u>

Battery specs:		Lowest temp. -40°C	Nominal temp. +20 ℃	Highest temp. +85 ℃
Manufacturer:	MAXELL			
Type:	ER10/28			
Capacity vers. Temp:	5uA	410mAh	410mAh	410mAh
Voltage vers. Temp.	5uA	3.5V	3.6V	3.8V
Nominal values:	3.6V / 410mAh / -55℃~+85℃			

Information taken from the datasheet of MAXELL ER10/28

PRODUCT:	Temperatur ℃	Battery voltage V	VCC (+5V) switched ON μΑ	VCC (+5V) switched off μΑ
MSMP5/3 version 3.8				
Battery current:	+25℃	3.6	0	2.8
	-40℃	3.5	0	2.0
	+85℃	3.8	0	9.8
Battery-Lifetime:	+25℃		>10 years	>10 year
	-40℃		>10 years	> 10 year
	+85℃		>10 years	4.5 year

4.5.3 External battery assembling:

If customer wants to connect an external battery (check for the appropriate connector in the chapter **DESCRIPTION OF THE CONNECTORS**), then some precautions have to be made:

- To prevent, that the external battery gets charged from the board, a diode has to be assembled in serial from the battery to the connector
 - This is not necessary anymore since boardversion V3.8 (Schottky- diode included onboard)
- The RTC device (PIIX4) defines a voltage level of 2.0V...3.6V, so do use an external battery, which will be in this range (inclusive the diode which is already assembled onboard since V3.8)

4.5.4 Watchdog

The watchdog timer detects a system crash and performs a hardware reset. After power up, the watchdog is always disabled as the BIOS does not send strobes to the watchdog. In case that the user wants to take advantage of the watchdog, the application must produce a strobe at least every 800 ms. If no strobe occures within the 800 ms, the watchdog resets the system.

To program the watchdog in user application DIGITAL-LOGIC AG has implemented a special BIOS extension in interrupt 15h (function: EBh).

Calling this function by setting a 1 in the AL- Register, turns on the watchdog and performs a strobe. Calling the same function with a 0 in the AL-Register, turns off the watchdog.

The following part has to be implemented in the users application:

Watchdog on: The application has to call interrupt 15h function EBh and set a 1 into the AL-register at least every 800 ms.

Watchdog off: The application has to call interrupt 15h function EBh and set a 0 into the AL-register within 800 ms after the last strobe has been sent while the watchdog was still in func-

tion (if the watchdog is not turned off in time, it will reset the system again!).

See also chapter 11

4.6 BIOS

4.6.1 ROM-BIOS Sockets

An EPROM socket with 8 Bit wide data access normally contains the board's AT compatible ROM-BIOS. The socket takes a 29F020 EPROM (or equivalent) device. The board's wait-state control logic automatically inserts four memory wait states in all CPU accesses to this socket. The ROM-BIOS sockets occupies the memory area from C0000H through FFFFFh; however, the board's ASIC logic reserves the entire area from C0000H through FFFFFh for onboard devices, so that this area is already usable for ROM-DOS and BIOS expansion modules. Consult the appropriate address map for the MICROSPACE MSMP5SEN/SEV ROM-BIOS sockets.

4.6.1.1 Standard BIOS ROM

DEVICE: 29F020 PLCC32

MAP: E0000 - FFFFFh Core BIOS 128k

C0000 - CBFFFh VGA BIOS 32k

CC000 - CFFFFh reserved

4.6.2 <u>EEPROM Memory for Setup</u>

The EEPROM is used for setup and configuration data, stored as an alternative to the CMOS-RTC. Optionally, the EEPROM setup driver may update the CMOS RTC, if the battery is running down and the checksum error would appear and stop the system. The capacity of the EEPROM is 2 kByte.

Organisation of the 2048Byte EEPROMs:

Address MAP:	Function:
0000h	CMOS-Setup valid (01=valid)
0001h	Keymatrix-Setup valid (01=valid)
0003h	Flag for DLAG-Message (FF=no message)
0010h-007Fh	Copy of CMOS-Setup data
0080h-00FFh	reserved for AUX-CMOS-Setup
0100h-010Fh	Serial-Number
0110h-0113h	Production date (year/day/month)
0114h-0117h	1. Service date (year/day/month)
0118h-011Bh	2. Service date (year/day/month)
011Ch-011Fh	3. Service date (year/day/month)
0120h-0122h	Booterrors (Autoincremented if any booterror occurs)
0123h-0125h	Setup Entries (Autoincremented on every Setup entry)
0126h-0128h	Low Battery (Autoincremented everytime the battery is low, EEPROM -> CMOS)
0129h-012Bh	Startup (Autoincremented on every poweron start)
0130h	Number of 512k SRAM
0131h	Number of 512k Flash
0132h/0133h	BIOS Version (V1.4 => [0132h]:= 4, [0133h]:=1)
0134h/0135h	BOARD Version (V1.5 => [0124h]:=5, [0125h]:=1)
0136h	BOARD TYPE ('M'=PC/104, 'E'=Euro, 'W'=MSWS, 'S'=Slot, 'C'=Custom)
0137h	CPU TYPE
	(01h=ELAN300/310, 02h=ELAN400, 03h=486SLC, 04h=486DX, 05h=P5).
0200h-03FFh	Keymatrix-Setup data
0200h-027Fh	Keymatrix Table
0400h-07FFh	Free for Customer's use

4.6.3 BIOS CMOS Setup

If wrong setups are memorized in the CMOS-RAM, the default values will be loaded after resetting the RTC/CMOS-RAM with the CMOS-RESET jumper. If the battery is down, it is always possible to start the system with the default values from the BIOS.

WARNING:

On the next setup pages (switch with TAB) the values for special parameters are modifiable. Normally the parameters are set correctly by DIGITAL-LOGIC AG. Be very careful in modifying any parameter since the system could crash. Some parameters are dependent on the CPU type. The cache parameter is always available, for example. So, if you select too few wait states, the system will not start until you reset the CMOS-RAM using the RAM-Reset jumper, but the default values are reloaded. If you are not familiar with these parameters, do not change anything!

4.6.4 CMOS Setup Harddisk List

Use type 48 and type 49 for user defined harddisk entries. Enter the sectors, cylinders and the number of heads. Select AUTODETECT in order to autoidentify the harddisk parameters.

4.7 CMOS RAM Map

Systems based on the industry-standard specification include a battery backed Real Time Clock chip. This clock contains at least 64 bytes of non-volatile RAM. The system BIOS uses this area to store information including system configuration and initialization parameters, system diagnostics, and the time and date. This information remains intact even when the system is powered down.

The BIOS supports 128 bytes of CMOS RAM. This information is accessible through I/O ports 70h and 71h. CMOS RAM can be divided into several segments:

- Locations 00h 0Fh contain real time clock (RTC) and status information
- Locations 10h 2Fh contain system configuration data
- Locations 30h 3Fh contain System BIOS-specific configuration data as well as chipset-specific information
- Locations 40h 7Fh contain chipset-specific information as well as power management configuration parameters

The following table provides a summary of how these areas may be further divided.

Beginning	Ending	Checksum	Description
00h	0Fh	No	RTC and Checksum
10h	2Dh	Yes	System Configuration
2Eh	2Fh	No	Checksum Value of 10h - 2Dh
30h	33h	No	Standard CMOS
34h	3Fh	No	Standard CMOS - SystemSoft Reserved
40h	5Bh	Yes	Extended CMOS - Chipset Specific
5Ch	5Dh	No	Checksum Value of 40h - 5Bh
5Eh	6Eh	No	Extended CMOS - Chipset Specific
6Fh	7Dh	Yes	Extended CMOS - Power Management
7Eh	7Fh	No	Checksum Value of 6Fh - 7Dh

Location	Description		
00h	Time of day (seconds) specified in BCD		
01h	Alarm (seconds) specified in BCD		
02h	Time of Day (minutes) specified in BCD		
03h	Alarm (minutes) specified in BCD		
04h	Time of Day (hours) specified in BCD		
05h	Alarm (hours) specified in BCD		
06h	Day of week specified in BCD		
07h	Day of month specified in BCD		
08h	Month specified in BCD		
09h	Year specified in BCD		
0Ah	Status Register A		
	Bit 7 = Update in progress		
	Bits 6-4 = Time based frequency divider		
	Bits 3-0 = Rate selection bits that define the periodic in-		
	terrupt rate and output frequency.		
0Bh	Status Register B		
	Bit 7 = Run/Halt 0 Run		
	1 Halt		
	Bit 6 = Periodic Timer		
	0 Disable 1 Enable		
	Bit 5 = Alarm Interrupt		
	0 Disable		
	1 Enable Bit 4 = Update Ended Interrupt		
	Bit 4 = Update Ended Interrupt 0 Disable		
	1 Enable		
	Bit 3 = Square Wave Interrupt 0 Disable		
	1 Enable		
	Bit 2 = Calendar Format		
	0 BCD		
	1 Binary Bit 1 = Time Format		
	0 12-Hour		
	1 24-Hour		
	Bit 0 = Daylight Savings Time 0 Disable		
	1 Enable		
0Ch	Status Register C		
	Bit 7 = Interrupt Flag		
	Bit 6 = Periodic Interrupt Flag		
	Bit 5 = Alarm Interrupt Flag		
	Bit 4 = Update Interrupt Flag		
	Bits 3-0 = Reserved		
0Dh	Status Register D		
	Bit 7 = Real Time Clock		
	0 Lost Power 1 Power		
Continued			

Location	Description		
0Eh	CMOS Location for Bad CMOS and Checksum Flags		
	bit 7 = Flag for CMOS Lost Power		
	0 = Power OK		
	1 = Lost Power		
	bit 6 = Flag for CMOS checksum bad		
	0 = Checksum is valid 1 = Checksum is bad		
0Fh	Shutdown Code		
10h	Diskette Drives		
1011	bits 7-4 = Diskette Drive A		
	0000 = Not installed		
	0001 = Drive A = 360 K		
	0010 = Drive A = 1.2 MB		
	0011 = Drive A = 720 K		
	0100 = Drive A = 1.44 MB		
	0101 = Drive A = 2.88 MB		
	bits 3-0 = Diskette Drive B		
	0000 = Not installed 0001 = Drive B = 360 K		
	0001 = Drive B = 300 K		
	0011 = Drive B = 720 K		
	0100 = Drive B = 1.44 MB		
	0101 = Drive B = 2.88 MB		
11h	Reserved		
12h	Fixed (Hard) Drives		
	bits 7-4 = Hard Drive 0, AT Type		
	0000 = Not installed		
	0001-1110 Types 1 - 14		
	1111 = Extended drive types		
	16-44. See location 19h.		
	bits 3-0 = Hard Drive 1, AT Type		
	0000 = Not installed 0001-1110 Types 1 - 14		
	1111 = Extended drive types 16-44.		
	See		
	location 2Ah.		
	See the <i>Fixed Drive Type Parameters Table</i> in Chapter 2 for information on drive types 16-44.		
13h	Reserved		

Location	Description		
14h	Equipment		
	bits 7-6 = Number of Diskette Drives 00 = One diskette drive 01 = Two diskette drives 10, 11 = Reserved		
	bits 5-4 = Primary Display Type 00 = Adapter with option ROM 01 = CGA in 40 column mode 10 = CGA in 80 column mode 11 = Monochrome		
	bits 3-2 = Reserved bit 1 = Math Coprocessor Presence 0 = Not installed 1 = Installed		
	bit 0 = Bootable Diskette Drive 0 = Not installed 1 = Installed		
15h	Base Memory Size (in KB) - Low Byte		
16h	Base Memory Size (in KB) - High Byte		
17h	Extended Memory Size in (KB) - Low Byte		
18h	Extended Memory Size (in KB) - High Byte		
19h	Extended Drive Type - Hard Drive 0 See the <i>Fixed Drive Type Parameters Table</i> in Chapter 2 for information on drive types 16-44.		
1Ah	Extended Drive Type - Hard Drive 1 See the Fixed Drive Type Parameters Table in Chapter 2 for information on drive types 16-44.		
1Bh	Custom and Fixed (Hard) Drive Flags bits 7-6 = Reserved bit 5 = Internal Floppy Diskette Controller 0 = Disabled 1 = Enabled bit 4 = Internal IDE Controller 0 = Disabled		
	1 = Enabled bit 3 = Hard Drive 0 Custom Flag 0 = Disable 1 = Enabled		
	bit 2 = Hard Drive 0 IDE Flag 0 = Disable 1 = Enabled		
	bit 1 = Hard Drive 1 Custom Flag 0 = Disable 1 = Enabled		
	bit 0 = Hard Drive 1 IDE Flag 0 = Disable 1 = Enabled		

Location	Description		
1Ch	Reserved		
1Dh	EMS Memory Size Low Byte		
1Eh	EMS Memory Size High Byte		
1Fh - 24h	Custom Drive Table 0		
	These 6 bytes (48 bits) contain the following data:		
	Cylinders Landing Zone 10 bits Write Precomp 10 bits Heads Sectors/Track 8 bits		
1Fh	Byte 0 bits 7-0 = Lower 8 Bits of Cylinders		
20h	Byte 1 bits 7-2 = Lower 6 Bits of Landing Zone bits 1-0 = Upper 2 Bits of Cylinders		
21h	Byte 2 bits 7-4 = Lower 4 Bits of Write Precompensation bits 3-0 = Upper 4 Bits of Landing Zone		
22h	Byte 3 bits 7-6 = Reserved bits 5-0 = Upper 6 Bits of Write Precompensation		
23h	Byte 4 bits 7-0 = Number of Heads		
24h	Byte 5 bits 7-0 = Sectors Per Track		
25h - 2Ah	Custom Drive Table 1 These 6 bytes (48 bits) contain the following data:		
	Cylinders Landing Zone 10 bits Write Precomp 10 bits Heads Sectors/Track 8 bits		
25h	Byte 0 bits 7-0 = Lower 8 Bits of Cylinders		
26h	Byte 1 bits 7-2 = Lower 6 Bits of Landing Zone bits 1-0 = Upper 2 Bits of Cylinders		
27h	Byte 2 bits 7-4 = Lower 4 Bits of Write Precompensation bits 3-0 = Upper 4 Bits of Landing Zone		

Location	Description		
28h	Byte 3 bits 7-6 = Reserved bits 5-0 Upper 6 Pite of Write Procemponentian		
001-	bits 5-0 = Upper 6 Bits of Write Precompensation Byte 4		
29h	bits 7-0 = Number of Heads		
2Ah	Byte 5 bits 7-0 = Sectors Per Track		
2Bh	Boot Password		
ZDII	bit 7 = Enable/Disable Password 0 = Disable Password 1 = Enable Password bits 6-0 = Calculated Password		
2Ch	SCU Password bit 7 = Enable/Disable Password 0 = Disable Password 1 = Enable Password bits 6-0 = Calculated Password		
2Dh	Reserved		
2Eh	High Byte of Checksum - Locations 10h to 2Dh		
2Fh	Low Byte of Checksum - Locations 10h to 2Dh		
30h	Extended RAM (KB) detected by POST - Low Byte		
31h	Extended RAM (KB) detected by POST - High Byte		
32h	BCD Value for Century		
33h	Base Memory Installed bit 7 = Flag for Memory Size 0 = 640KB 1 = 512KB bits 6-0 = Reserved		
34h	Minor CPU Revision Differentiates CPUs within a CPU type (i.e., 486SX vs 486 DX, vs 486 DX/2). This is crucial for correctly determining CPU input clock frequency. During a power on reset, Reg DL holds minor CPU revision.		
35h	Major CPU Revision Differentiates between different CPUs (i.e., 386, 486, Pentium). This is crucial for correctly determining CPU input clock frequency. During a power on reset, Reg DH holds major CPU revision.		
36h 40h-7Fh	Hotkey Usage bits 7-6 = Reserved bit 5 = Semaphore for Completed POST bit 4 = Semaphore for 0 Volt POST (not currently used) bit 3 = Semaphore for already in SCU menu bit 2 = Semaphore for already in PM menu bit 1 = Semaphore for SCU menu call pending bit 0 = Semaphore for PM menu call pending Definitions for these locations vary depending on the chipset.		

LBA Mode:

4.7.1 Harddisk PIO Modes

Block Mode Transfer:

(Multi-Sector)

Block mode boots IDE drive performance by increasing the amount of data transferred.

No Block Mode: 512 Byte per interrupt

Block Mode: up to 64 kByte per interrupt

of addressing data on a disk drive. In the standard ST506 (MFM) ISA hard disk, data is accessed via

LBA (logical block addressing) is a new method

a cylinder - head - sector format.

LBA Mode disabled: max. 528 MByte per Disk

LBA Mode enabled: max. 8 Gbyte per Disk

Attention:

The BIOS enables the LBA Mode only, if the harddisk was formatted on a system with enabled LBA. If the drive (capacity > 528MB) is formatted on a system with disabled LBA, the Core BIOS will never enable

the LBA mode!

The maximum parameters are: 1024 Cyl., 16 heads, 63 Sec/Track

32Bit Transfer: Some operating system can handle two 16Bit word as

one 32Bit access. This accelerates the IDE transfer.

<u>Advanced PIO Modes:</u> PIO-Mode: Timing: Transferspeed: Remarks:

IDE 2 MByte/sec Slowest I/O 0 600ns **IDE** 5.5MByte/sec 383ns Standard I/O 1 **EIDE** 2 8.3MByte/sec 240ns Fast I/O, Mem. 11,3MByte/sec **IORDY Protocol EIDE** 3 180ns 16,6MByte/sec EIDE 4 120ns IORDY Protocol **EIDE** DMA 1 160ns 13,3MByte/sec DRQ, ATA-2

<u>Warning:</u> Always begin with the PIO-Mode 0 in the manual mode (not autodetect)

to test a new drive or if you have troubles in the automatic mode. The autodetect mode of some drives select wrong PIO modes.

4.8 EEPROM saved CMOS Setup

The EEPROM has different functions, as listed below:

- Backup of the CMOS-Setup values.
- Storing system informations like: version, production date, customisation of the board, CPU type.
- Storing user/application values.

The EEPROM will be updated automatically after exiting the BIOS setup menu. The system will operate also without any CMOS battery. While booting up, the CMOS is automatically updated with the EEPROM values.

Press the Esc-key while powering on the system before the video shows the BIOS message and the CMOS will **not** be updated.

This would be helpful, if wrong parameters are stored in the EEPROM and the setup of the BIOS does not start.

If the system hangs or a problem appears, the following steps must be performed:

- 1. Reset the CMOS-Setup (use the jumper to reset or disconnect the battery for at least 10 minutes).
- 2. Press Esc until the system starts up.
- 3. Enter the BIOS Setup:
 - a) load DEFAULT values
 - b) enter the settings for the environment
 - c) exit the setup
- 4. Restart the system.
- The user may access the EEPROM through the INT15 special functions. Refer to the chapter SFI functions.
- The system information are read only information. To read, use the SFI functions.

4.9 Download the VGA-BIOS and the CORE-BIOS

Before downloading a BIOS, please check as follows:

- Select the SHADOW option in the BIOS, for a BIOS and VGA (if this option is available).
- Disable the EMM386 or other memory managers in the CONFIG.SYS of your bootdisk.
- Make sure, that the DOWN_xxx.EXE programm and the BIOS to download are on the same path and directory!
- Boot the DOS without config.sys & autoexec.bat -> press "F5" while starting DOS boot.
- Is the empty diskspace, where the down.exe is located, larger than 64kB (for safe storage)
- Is the floppydisk not write-protected

Start the DOWNLOADING Tool with:

- Start the corresponding download tool. Refer to the table to see which tool fits in, each productgroup has its own download tool. Do never use the wrong one!

Product:	BIOS-Core download	VGA-BIOS download	BIOS-Ext. download
File-Extension:	*.COR	*.V40 , *.V45 *.V48	*.BIN
		depending on the product	
BIOS Size:	128k	32k	32k
Addressrange:	E0000 - FFFFFh	C0000 – C7FFFh	C8000 - CFFFFh
MSM-P5S	AMI82602.EXE	DOWN_000.EXE	-
MSM-P5SV / SEV			
AMI- BIOS			
MSM-P5/P3SN / SEN	AMI82602.EXE	-	-
AMI- BIOS			
MSM-P5S / MSM-P3xxx	PHLASH.EXE	DOWN_000.EXE	-
MSM-P5SV / SEV	PLATFORM.BIN	DOWN_030.EXE (69030) ***	
PHOENIX- BIOS			
MSM-P5SN / SEN / MSM-P3xxx	PHLASH.EXE	-	-
PHOENIX- BIOS	PLATFORM.BIN		

Remarks:

^{**} Core- file has to be renamed as written in brackets

^{***} If downloading with DOWN 030.EXE, disable first in BIOS /Memory Cache/Cache Video Bios Area

4.9.1 VGA BIOS Download Function

The BIOS for the VGA must be downloaded, before a LCD is connected. This could be also a new LCD- display, which needs a corresponding VGA- BIOS.

How to download a VGA- BIOS:

- 1. Restart the system with the SHADOW enabled (if available) and no EMM386 loaded.
- 2. Check, if you find the DOWN xxx.EXE and the *.V40 / *.000 files on your disk, to get downloaded.
- 3. Refer to the VGABIOS.DOC for more information about the VGABIOS files.
- 4. Insert the floppydisk with the program DOWN xxx.EXE and all VGA-Drivers.
- 5. Start DOWN xxx.EXE.
- 6. Check, if the DOWN program has identified the product and the shadow correctly.
- 7. Select the function PROGRAMM VGA- BIOS.
- 8. Select the VGA- BIOS out of the proposed file list (UP/DOWN arrows) and press ENTER.
- 9. Check, if the new VGA- header is displayed on the VGA- INFO- screen.
- 10. After proceeding, switch off the power and restart the board (cold start).

If the download does not work:

- Check, if no EMM386 is loaded.
- Check, if no peripheral card is in the system, which occupies the same memory range. Disconnect this card.
- If the download is stopped or not completed, make only a warm boot and repeat the steps or download another file. As the video is may shadowed, everything is visible and a cold boot would clear the screen and nothing would be visible afterwards.

If the screen flickers or is misaligned after reboot:

- The previously loaded VGA- BIOS is not corresponding 100% or works only on the LCD properly.

If the screen is dark after the reboot of the system:

A new system BIOS must be programmed. Ask DIGITAL-LOGIC AG for the binary file.

If the previous version is still programmed:

- Switch off the board and do not make a warm boot due to the fact that the data may are still in the shadow stored.

4.10 Memory

4.10.1 System Memory Map

The PENTIUM™-100 CPU used as central processing unit on the MICROSPACE has a memory address space which is defined by 32 address bits. Therefore, it can address 1 GByte of memory. The memory address MAP is as follows:

CPU Pentium

Address:	Size:	Function / Comments:
000000 - 09FFFFh	640 KBytes	Onboard DRAM for DOS applications
0A0000 - 0BFFFFh	128 KBytes	CGA, EGA, LCD Video RAM 128kB
0C0000 - 0CBFFFh	48 KBytes	VGA BIOS selected by the hardware
0CC000 - 0CFFFFh	16 KBytes	BIOS extensions selected by the hardware
0D0000 - 0D4000h	16 KBytes	free for user
0D4000 - 0D8000h	16 KBytes	free for user
0D8000 - 0DFFFFh	32 KBytes	free for user
0E0000 - 0EFFFFh	64 KBytes	Core BIOS selected by the PIIX4 chipset
0F0000 - 0FFFFFh	64 KBytes	Core BIOS selected by the PIIX4 chipset
100000 - 1FFFFFh	1 MByte	DRAM for extended onboard memory
200000 - FFFFFFh	14 MBytes	DRAM for extended onboard memory

The possible system memory sizes (DRAM) are:

32 MB	MSMP5SEN/SEV-xxx-32M	32 MB Memory
64 MB	MSMP5SEN/SEV-xxx-64M	64 MB Memory
0 MB	MSMP5 / 3P SEN/SEV-xxx-0M	SODIMM 144pin

4.10.2 System I/O map

The following table shows the detailed listing of the I/O port assignments used in the MICROSPACE board:

I/O Ad- dress	Read/Write Status	Description
0000h	R/W	DMA channel 0 address byte 0 (low), then byte 1
0001h	R/W	DMA channel 0 word count byte 0 (low), then byte 1
0002h	R/W	DMA channel 1 address byte 0 (low), then byte 1
0003h	R/W	DMA channel 1 word count byte 0 (low), then byte 1
0004h	R/W	DMA channel 2 address byte 0 (low), then byte 1
0005h	R/W	DMA channel 2 word count byte 0 (low), then byte 1
0006h	R/W	DMA channel 3 address byte 0 (low), then byte 1
0007h	R/W	DMA channel 3 word count byte 0 (low), then byte 1
0008h	R	DMA channel 0-3 status register bit 7 = 1 Channel 3 request bit 6 = 1 Channel 2 request bit 5 = 1 Channel 1 request bit 4 = 1 Channel 0 request bit 3 = 1 Terminal count on channel 3 bit 2 = 1 Terminal count on channel 2 bit 1 = 1 Terminal count on channel 1 bit 0 = 1 Terminal count on channel 0

I/O Ad- dress	Read/Write Status	Description
0008h	W	DMA channel 0-3 command register
		bit 7 = DACK sense active high/low
		0 low
		1 high
		bit 6 = DREQ sense active high/low
		0 low 1 high
		bit 5 = Write selection
		0 Late write selection
		1 Extended write selection
		bit 4 = Priority
		0 Fixed 1 Rotating
		bit 3 = Timing
		0 Normal
		1 Rotating
		bit 2 = Controller enable/disable
		0 Enable 1 Disable
		1 Disable bit 1 = Memory-to-memory enable/disable
		0 Disable
		1 Enable
		bit 0 = Reserved
0009h	W	DMA write request register
000Ah	R/W	DMA channel 0-3 mask register
		bits 7-3 = Reserved
		bit 2 = 0 Clear bit Set bit
		1 Set bit bits 1-0 = Channel Select
		00 Channel 0
		01 Channel 1
		10 Channel 2
		11 Channel 3
00Bh	W	DMA channel 0-3 mode register
		bits 7-6 = 00 Demand mode
		01 Single mode 10 Block mode
		11 Cascade mode
		bit 5 = 0 Address increment select
		1 Address decrement select
		bit 4 = 0 Disable auto initialization 1 Enable auto initialization
		bits 3-2 = Operation type
		00 Verify operation
		01 Write to memory
		10 Read from memory 11 Reserved
		bits 1-0 = Channel select
		00 Channel 0
		01 Channel 1
		10 Channel 2
		11 Channel 3

I/O Ad- dress	Read/Write Status	Description
000Ch	W	DMA clear byte pointer flip/flop
000Dh	R	DMA read temporary register
000Dh	W	DMA master clear
000Eh	W	DMA clear mask register
000Fh	W	DMA write mask register
0020h	W	Programmable Interrupt Controller - Initialization Command Word 1 (ICW1) provided bit 4 = 1 bits 7-5 = 000
0021h	W	Used for ICW2, ICW3, or ICW4 in sequential order afterICW1 is written to port 0020h ICW2 bits 7-3 = Address A0-A3 of base vector address for interrupt controller bits 2-0 = Reserved (should be 000) ICW3 (for slave controller 00A1h) bits 7-3 = Reserved (should be 0000) bits 2-0 = 1 Slave ID ICW4 bits 7-5 = Reserved (should be 000) bit 4 = 0 No special fully nested mode 1 Special fully nested mode 1 Special fully nested mode 01 Non buffered mode 01 Non buffered mode 10 Buffered mode/slave 11 Buffered mode/master bit 1 = 0 Normal EOI 1 Auto EOI bit 0 = 0 8085 mode 1 8080 / 8088 mode

I/O Ad- dress	Read/Write Status	Description
0021h	R/W	PIC master interrupt mask register (OCW1)
		bit 7 = 0 Enable parallel printer interrupt bit 6 = 0 Enable diskette interrupt bit 5 = 0 Enable hard disk interrupt bit 4 = 0 Enable serial port 1 interrupt bit 3 = 0 Enable serial port 2 interrupt bit 2 = 0 Enable video interrupt bit 1 = 0 Enable kybd/pointing device/RTC interrupt bit 0 = 0 Enable interrupt timer
0021h	W	PIC OWC2 (if bits 4-3 = 0)
		bit 7 = Reserved bits 6-5 = 000 Rotate in automatic EOI mode (clear) 001 Nonspecific EOI 010 No operation 011 Specific EOI 100 Rotate in automatic EOI mode (set) 101 Rotate on nonspecific EOI command 110 Set priority command 111 Rotate on specific EOI command 111 Rotate on specific EOI command bits 4-3 = Reserved (should be 00) bits 2-0 = Interrupt request to which the command applies
0020h	R	PIC interrupt request and in-service registers programmed by OCW3 Interrupt request register bits 7-0 = 0 No active request for the corresponding interrupt line 1 Active request for the corresponding interrupt line Interrupt in-service register bits 7-0 = 0 Corresponding interrupt line not currently Corresponding interrupt line is aurently
		1 Corresponding interrupt line is currently being serviced
0021h	W	PIC OCW3 (if bit 4 = 0, bit 3 = 1) bit 7 = Reserved (should 0) bits 6-5 = 00 No operation 01 No operation 10 Reset special mask 11 Set special mask bit 4 = Reserved (should be 0) bit = Reserved (should be 1) bit 2 = 0 No poll command 1 Poll command bits 1-0 = 00 No operation 01 Operation 10 Read interrupt request register on next read at port 0020 h 11 Read interrupt in-service register on next read at port

I/O Ad- dress	Read/Write Status	Description
0022h	R/W	Chipsset Register Address
0023h	R/W	Chipsset Register Data
0040h	R/W	Programmable Interrupt Time read/write counter 0, keyboard controller channel 0
0041h	R/W	Programmer Interrupt Timer channel 1
0042h	R/W	Programmable Interrupt Timer miscellaneous register channel 2
0043h	W	Programmable Interrupt Timer mode port - control word register for counters 0 and 2 bits 7-0 = Counter select 00
0048h	R/W	Programmable interrupt timer
0060h	R	Keyboard controller data port or keyboard input buffer
0060h	W	Keyboard or keyboard controller data output buffer

I/O Ad- dress	Read/Write Status	Description
0064h	R	Keyboard controller read status
		bit 7 = 0 No parity error
		1 Parity error on keyboard transmission
		bit 6 = 0 No timeout
		1 Received timeout
		bit 5 = 0 No timeout 1 Keyboard transmission timeout
		bit 4 = 0 Keyboard inhibited
		1 Keyboard not inhibited
		bit 3 = 0 Data
		1 Command
		bit 2 = System flag status bit 1 = 0 Input buffer empty
		1 Input buffer full
		bit 0 = 0 Output buffer empty
		1 Output buffer full
0064h	W	Keyboard controller input buffer
0070h	R	CMOS RAM index register port and NMI mask
		bit 7 = 1 NMI disabled
		bits 6-0 = 0 CMOS RAM index
0071h	R/W	CMOS RAM data register port
0080h	R/W	Temporary storage for additional page register
0080h	R	Manufacturing diagnostic port (this port can access POST checkpoints)
0081h	R/W	DMA channel 2 address byte 2
0082h	R/W	DMA channel 2 address byte 2
0083h	R/W	DMA channel 1 address byte 2
0084h	R/W	Extra DMA page register
0085h	R/W	Extra DMA page register
0086h	R/W	Extra DMA page register
0087h	R/W	DMA channel 0 address byte 2
0088h	R/W	Extra DMA page register
0089h	R/W	DMA channel 6 address byte 2
008Ah	R/W	DMA channel 7 address byte 2
008Bh	R/W	DMA channel 5 address byte 2
008Ch	R/W	Extra DMA page register
008Dh	R/W	Extra DMA page register
008Eh	R/W	Extra DMA page register
008Fh	R/W	DMA refresh page register

I/O Ad- dress	Read/Write Status	Description
		for the slave programmable interrupt controller. The bit ose of addresses 0020h - 0021h except where indicated.
00A0h	R/W	Programmable interrupt controller 2
00A1h	R/W	Programmable interrupt controller 2 mask bit 7 = 0 Reserved bit 6 = 0 Enable hard disk interrupt bit 5 = 0 Enable coprocessor execution interrupt bit 4 = 0 Enable mouse interrupt bits 3-2 = 0 Reserved bit 1 = 0 Enable redirect cascade bit 0 = 0 Enable real time clock interrupt
00C0h	R/W	DMA channel 4 memory address bytes 1 and 0 (low)
00C2h	R/W	DMA channel 4 transfer count bytes 1 and 0 (low)
00C4h	R/W	DMA channel 5 memory address bytes 1 and 0 (low)
00C6h	R/W	DMA channel 5 transfer count bytes 1 and 0 (low)
00C8h	R/W	DMA channel 6 memory address bytes 1 and 0 (low)
00CAh	R/W	DMA channel 6 transfer count bytes 1 and 0 (low)
00CCh	R/W	DMA channel 7 memory address bytes 1 and 0 (low)
00CEh	R/W	DMA channel 7 transfer count bytes 1 and 0 (low)
00D0h	R	Status register for DMA channels 4-7 bit 7 = 1 Channel 7 request bit 6 = 1 Channel 6 request bit 5 = 1 Channel 5 request bit 4 = 1 Channel 4 request bit 3 = 1 Terminal count on channel 7 bit 2 = 1 Terminal count on channel 6 bit 1 = 1 Terminal count on channel 5 bit 0 = 1 Terminal count on channel 4
00D0h	W	Command register for DMA channels 4-7
		bit 7 = 0 DACK sense active low 1 DACK sense active high bit 6 = 0 DREQ sense active low 1 DREQ sense active high
		bit 5 = 0 Late write selection 1 Extended write selection
		bit 4 = 0 Fixed Priority 1 Rotating Priority
		bit 3 = 0 Normal Timing 1 Rotating Timing
		bit 2 = 0 Enable controller 1 Disable controller
		bit 1 = 0 Disable memory-to-memory transfer 1 Enable memory-to-memory transfer
		bit 0 = Reserved

I/O Ad- dress	Read/Write Status	Description
00D2h	W	Write request register for DMA channels 4-7
00D4h	W	Write single mask register bit for DMA channels 4-7 bits 7-3 = 0 Reserved bit 2 = 0 Clear mask bit, 1 Set mask bit bits 1-0 = Channel select 00 Channel 4 01 Channel 5 10 Channel 6 11 Channel 7
00D6h	W	Mode register for DMA channels 4-7 bits 7-6 = 00 Demand mode 01 Single mode 10 Block mode 11 Cascade mode bit 5 = 0 Address increment select 1 Address decrement select bit 4 = 0 Disable auto initialization 1 Enable auto initialization bits 3-2 = Operation type 00 Verify operation 01 Write to memory 10 Read from memory 11 Reserved bits 1-0 = Channel select 00 Channel 4 01 Channel 5 10 Channel 6 11 Channel 7
00D8h	W	Clear byte pointer flip/flop for DMA channels 4-7
00DAh	R	Read Temporary Register for DMA channels 4-7
00DAh	W	Master Clear for DMA channels 4-7
00DCh	W	Clear mask register for DMA channels 4-7
00DEh	W	Write mask register for DMA channels 4-7
00F0h	W	Math coprocessor clear busy latch
00F1h	W	Math coprocessor reset
00F2h - 00FFh	R/W	Math coprocessor
0140h –	R/W	SCSI Controller if installed
014Fh		
		h are reserved for use with a secondary hard drive. See or bit definitions.
0170h	R/W	Data register for hard drive 1
0171h	R	Error register for hard drive 1
0171h	W	Precomposition register for hard drive 1
0172h	R/W	Sector count - hard drive 1

I/O Ad- dress	Read/Write Status	Description
0173h	R/W	Sector number for hard disk 1
0174h	R/W	Number of cylinders (low byte) for hard drive 1
0175h	R/W	Number of cylinders (high byte) for hard drive 1
0716h	R/W	Drive/head register for hard drive 1
0177h	R	Status register for hard drive 1
0177h	W	Command register for hard drive 1
01F0h	R/W	Data register base port for hard drive 0
01F1h	R	Error register for hard drive 0 Diagnostic mode bits 7-3 = Reserved bits 2-0 = Errors 0001 No errors 0010 Controller error 0110 ECC device error 0101 Control processor error Operation mode bit 7 = Block 0 Bad block 1 Block not bad bit 6 = Error 0 No error 1 Uncorrectable ECC error bit 5 = Reserved bit 4 = ID 0 ID located 1 ID not located bit 3 = Reserved bit 2 = Command 0 Completed 1 Not completed bit 1 = Track 000 0 Not found 1 Found bit 0 = DRAM 0 Not found 1 Found (CP-3022 always 0)
01F1h	W	Write precomposition register for hard drive 0
01F2h	R/W	Sector count for hard disk 0
01F3h	R/W	Sector number for hard drive 0
01F4h	R/W	Number of cylinders (low byte) for hard drive 0
01F5h	R/W	Number of cylinders (high byte) for hard drive 0

I/O Ad- dress	Read/Write Status	Description
01F6h	R/W	Drive/Head register for hard drive 0 bit 7 = 1 bit 6 = 0 bit 5 = 1 bit 4 = Drive select 0 First hard drive 1 Second hard drive bits 3-0 = Head select bits
01F7h	R	Status register for hard drive 0 bit 7 = 1 Controller is executing a command bit 6 = 1 Drive is ready bit 5 = 1 Write fault bit 4 = 1 Seek operation complete bit 3 = 1 Sector buffer requires servicing bit 2 = 1 Disk data read completed successfully bit 1 = Index (is set to 1 at each disk revolution) bit 0 = 1 Previous command ended with error
01F7h	W	Command register for hard drive 0
0200h - 020Fh	R/W	Game controller ports
0201h	R/W	I/O data - game port
0220h –	R/W	Soundport AD1816 reserved
022Fh		
	es 0278h - 027A Idresses 0378h	h are reserved for use with parallel port 2. See the bit defi-037Ah.
0278h	R/W	Data port for parallel port 2
0279h	R	Status port for parallel port 2
0279h	W	PnP Address register (only for PnP devices)
027Ah	R/W	Control port for parallel port 2
02B0h – 02BFh	R/W	Digital I/O for Latch, WDOG, Control
	es 02E8h - 02EF addresses 03F8	Fh are reserved for use with serial port 4. See the bit defini- 8h - 03FFh.
02E8h	W	Transmitter holding register for serial port 4
02E8h	R	Receive buffer register for serial port 4
02E8h	R/W	Baud rate divisor (low byte) when DLAB = 1
02E9h	R/W	Baud rate divisor (high byte) when DLAB = 1
02E9h	R/W	Interrupt enable register when DLAB = 0
02EAh	R	Interrupt identification register for serial port 4
02EBh	R/W	Line control register for serial port 4
02ECh	R/W	Modem control register for serial port 4
02EDh	R	Line status register for serial port 4
02EEh	R	Modem status register for serial port 4
02EFh	R/W	Scratch register for serial port 4 (used for diagnostics)
		Continued

I/O Ad- dress	Read/Write Status	Description
$\mbox{I/O}$ addresses 02F8h - 02FFh are reserved for use with serial port 2. See the bit definitions for $\mbox{I/O}$ addresses 03F8h - 03FFh.		
02F8h	W	Transmitter holding register for serial port 2
02F8h	R	Receive buffer register for serial port 2
02F8h	R/W	Baud rate divisor (low byte) when DLAB = 1
02F9h	R/W	Baud rate divisor (high byte) when DLAB = 1
02F9h	R/W	Interrupt enable register when DLAB = 0
02FAh	R	Interrupt identification register for serial port 2
02FBh	R/W	Line control register for serial port 2
02FCh	R/W	Modem control register for serial port 2
02FDh	R	Line status register for serial port 2
02FEh	R	Modem status register for serial port 2
02FFh	R/W	Scratch register for serial port 2 (used for diagnostics)
0300h –	R/W	ISA- LAN controller, if installed
031Fh		(otherwise free for the user)
I/O addresses 0372h - 0377h are reserved for use See the bit definitions for 03F2h - 03F7h.		h are reserved for use with a secondary diskette controller. F2h - 03F7h.
0372h	W	Digital output register for secondary diskette drive control- ler
0374h	R	Status register for secondary diskette drive controller
0375h	R/W	Data register for secondary diskette drive controller
0376h	R/W	Control register for secondary diskette drive controller
0377h	R	Digital input register for secondary diskette drive controller
0377h	W	Select register for secondary diskette data transfer rate
0378h	R/W	Data port for parallel port 1
0379h	R	Status port for parallel port 1 bit 7 = 0 Busy bit 6 = 0 Acknowledge bit 5 = 1 Out of paper bit 4 = 1 Printer is selected bit 3 = 0 Error bit 2 = 0 IRQ has occurred bit 1-0 = Reserved

I/O Ad- dress	Read/Write Status	Description
037Ah	R/W	Control port for parallel port 1 bits 7-5 = Reserved bit 4 = 1
03B0h - 03B8h	R/W	Various video registers
	s 03BCh - 03Bl Idresses 0378h	Eh are reserved for use with parallel port 3. See the bit defi- - 037Ah.
03BCh	R/W	Data port - parallel port 3
03BDh	R/W	Status port - parallel port 3
03BEh	R/W	Control port - parallel port 3
03C0h - 03CFh	R/W	Video subsystem (EGA/VGA)
03C2h - 03D9h	R/W	Various CGA and CRTC registers
03E0h	R/W	PCCARD Address select
03E1h	R/W	PCCARD Data transfer with 365SL controller
	es 03E8h - 03EF addresses 03F8	Th are reserved for use with serial port 3. See the bit defini- 3h - 03FFh.
03E8h	W	Transmitter holding register for serial port 3
03E8h	R	Receive buffer register for serial port 3
03E8h	R/W	Baud rate divisor (low byte) when DLAB = 1
03E9h	R/W	Baud rate divisor (high byte) when DLAB = 1
03E9h	R/W	Interrupt enable register when DLAB = 0
03EAh	R	Interrupt identification register for serial port 3
03EBh	R/W	Line control register for serial port 3
03ECh	R/W	Modem control register for serial port 3
03EDh	R	Line status register for serial port 3
03EEh	R	Modem status register for serial port 3
03EFh	R/W	Scratch register for serial port 3 (used for diagnostics)
03F2h	W	Digital output register for primary diskette drive controller bits 7-6 = 0 Reserved bit 5 = 1 Enable drive 1 motor bit 4 = 1 Enable drive 0 motor bit 3 = 1 Enable diskette DMA bit 2 = 0 Reset controller bit 1 = 0 Reserved bit 0 = 0 Select drive 0 1 Select drive 1

I/O Ad- dress	Read/Write Status	Description	
03F4h	R	Status register for primary diskette drive controller bit 7 = 1 Data register is ready bit 6 = 0 Transfer from system to controller 1 Transfer from controller to system bit 5 = 1 Non-DMA mode bit 4 = 1 Diskette drive controller is busy bits 3-2 = Reserved bit 1 = 1 Drive 1 is busy bit 0 = 1 Drive 0 is busy	
03F5h	R/W	Data register for primary diskette drive controller	
03F6h	R	Control port for primary diskette drive controller bits 7-4 = Reserved bit 3 = 0 Reduce write current 1 Head select enable bit 2 = 0 Disable diskette drive reset 1 Enable diskette drive reset bit 1 = 0 Disable diskette drive initialization 1 Enable diskette drive initialization bit 0 = Reserved	
03F7h	R	Digital input register for primary diskette drive controller bit 7 = 1 Diskette drive line change bit 6 = 1 Write gate bit 5 = Head select 3 / reduced write current bit 4 = Head select 2 bit 3 = Head select 1 bit 2 = Head select 0 bit 1 = Drive 1 select bit 0 = Drive 0 select	
03F7h	W	Select register for primary diskette data transfer rate bits 7-2 = Reserved bits 1-0 = 00	
for these add	lresses also ap	oly to serial ports 2, 3, and 4.	
03F8h	W	Transmitter holding register for serial port 1 - Contains the character to be sent. Bit 0, the least significant bit, is the first bit sent. bits 7-0 = Data bits 0-7 when the Divisor Latch Access Bit (DLAB) is 0	
03F8h	R	Receive buffer register for serial port 1 - Contains the character to be received. Bit 0, the least significant bit, is the first bit received. bits 7-0 = Data bits 0-7 when the Divisor Latch Access Bit (DLAB) is 0	

I/O Ad- dress	Read/Write Status	Description
03F8h	R/W	Baud rate divisor (low byte) - This byte along with the high byte (03F9h) store the data transmission rate divisor. bits 7-0 = Data bits 0-7 when the Divisor Latch Access Bit (DLAB) is 1
03F9h	R/W	Baud rate divisor (high byte) - This byte along with the low byte (03F8h) store the data transmission rate divisor. bits 7-0 = Bits 8-15 when DLAB = 1
03F9h	R/W	Interrupt enable register bits 7-4 = Reserved bit 3 = 1
03FAh	R	Interrupt identification register - serial port 1 bits 7-3 = Reserved bits 2-1 = Identify interrupt with highest priority 00
03FBh	R/W	Line control register - serial port 1 bit 7 = Divisor Latch Access (DLAB) 0 Access receiver buffer, transmitter holding register, and interrupt enable register 1 Access divisor latch bit 6 = 1 Set break enable. Forces serial output to spacing state and remains there bit 5 = Stick parity bit 4 = Even parity select bit 3 = Parity enable bit 2 = Number of stop bits bit 1 = Word length 00 5-bit word length 01 6-bit word length 10 7-bit word length 10 7-bit word length 11 8-bit word length
03FCh	R/W	Modem control register - serial port 1 bits 7-5 = Reserved bit 4 = 1

I/O Ad- dress	Read/Write Status	Descri	ption	
03FDh	R	Line status register - serial port 1		
		bit 7 = Reserved		
		bit 6	= 1	Transmitting shift and holding registers empty
		bit 5	= 1	Transmitter shift register empty
		bit 4	= 1	Break interrupt
		bit 3	= 1	Framing error
		bit 2	= 1	Overrun error
		bit 0	= 1	Data ready
03FEh	R	Modem status register - serial port 1		
		bit 7	= 1	Data Carrier Detect
		bit 6		
		bit 5	= 1	Data Set Ready
		bit 4	= 1	Clear To Send
		bit 3	= 1	
		bit 2	= 1	Trailing Edge Ring Indicator
		bit 1	= 1	Delta Data Set Ready
		bit 0	= 1	Delta Clear To Send
03FFh	R/W	Scratch register - serial port 1 (used for diagnostics)		
0A79h	W	PnP Da	ata write r	register (only for PnP devices)

4.11 BIOS Data Area Definitions

The BIOS Data Area is an area within system RAM that contains information about the system environment. System environment information includes definitions associated with hard disks, diskette drives, keyboard, video, as well as other BIOS functions. This area is created when the system is first powered on. It occupies a 256-byte area from 0400h - 04FFh. The following table lists the contents of the BIOS data area locations in offset order starting from segment address 40:00h.

Location	Description	
00h - 07h	I/O addresses for up t	o 4 serial ports
08h - 0Dh	I/O addresses for up t	o 3 parallel ports
0Eh - 0Fh	Segment address of e	extended data address
10h - 11h	Equipment list	
	bits 15-14 = Nur	nber of parallel printer adapters
	00	 Not installed
	01	= One
	10	= Two
	11	= Three
	bits 13-12 = Res	served
	bits 11-9 = Number of	serial adapters
	00	 Not installed
	001	= One
	010	= Two
	011	= Three
	100	= Four
	bit 8 = Reserved	
	bits 7-6 = Number of	diskette drives
	00 =	One drive
	01 =	Two drives
	bits 5-4 = Initial video	o mode
	00 =	EGA or PGA
	01 =	40 x 25 color
	10 =	80 x 25 color
	11 =	80 x 25 monochrome
	bit 3 = Reserved	
	` '	g device present
	bit 1 = (1) Math c	oprocessor present
	bit 0 = (1) Diskett	e drive present
12h	Reserved for port test	ing by manufacturer
	bits 7-1 = Reserved	
	bit 0 = (0) Non-te	st mode
	(1) Test m	
13h	Memory size in kiloby	tes - low byte
14h	Memory size in kiloby	tes - high byte

Location	Description		
15h - 16h	Reserved		
17h	Keyboard Shift Qualifier States bit 7 = Insert mode bit 6 = CAPS lock bit 5 = Numlock bit 4 = Scroll Lock bit 3 = Either Alt key bit 2 = Either control key bit 1 = Left Shift key bit 0 = Right shift key 0 = not set / 1 = set		
18h	Keyboard Toggle Key States bit 7 = (1) Insert held down bit 6 = (1) CAPS lock held down bit 5 = (1) Num Lock held down bit 4 = (1) Scroll Lock held down bit 3 = (1) Control+Num Lock held down bit 2 = (1) Sys Re held down bit 1 = (1) Left Alt held down bit 0 = (1) Left Control held down		
19h	Scratch area for input from Alt key and numeric keypad		
1Ah - 1Bh	Pointer to next character in keyboard buffer		
1Ch - 1Dh	Pointer to last character in keyboard buffer		
1Eh - 3Dh	Keyboard Buffer. Consists of 16 word entries.		
3Eh	Diskette Drive Recalibration Flag bit 7 = (1) Diskette hardware interrupt occurred bits 6-4 = Not used bits 3-2 = Reserved bit 1 = (0) Recalibrate drive B bit 0 = (0) Recalibrate drive A		

Location	Description
3Fh	Diskette Drive Motor Status
	bit 7 = Current operation
	0 = Write or Format
	1 = Read or Verify
	bit 6 = Reserved
	bits 5-4 = Drive Select
	00 = Drive A 01 = Drive B
	01 = Drive B bits 3-2 = Reserved
	0 = Disable
	1 = Enabled
	bit 1 = Drive B Motor Status
	0 = Off
	1 = On
	bit 1 = Drive A Motor Status
	0 = Off
	1 = On
40h	Diskette Drive Motor Timeout
	Disk drive motor is powered off when the value via the INT 08h
	timer interrupt reaches 0.
41h	Diskette Drive Status
	bit 7 = Drive Ready
	0 = Ready
	1 = Not ready
	bit 6 = Seek Error 0 = No error
	1= Error occurred
	bit 5 = Controller operation
	0 = Working
	1 = Failed
	bits 4-0 = Error Codes
	00h = No error
	01h = Invalid function requested 02h = Address mark not located
	03h = Write protect error
	04h = Sector not found
	06h = Diskette change line active (door
	opened)
	08h = DMA overrun error 09h = Data boundary error
	09n = Data boundary error 0Ch = Unknown media type
	10h = ECC or CRC error
	20h = Controller failure
	40h = Seek operation failure
	80h = Timeout
42h - 48h	Diskette Controller Status Bytes
49h	Video Mode Setting
4Ah - 4Bh	Number of Columns on screen
4Ch - 4Dh	Size of Current Page, in bytes
4Eh - 4Fh	Address of Current Page

Location	Description		
50h - 5Fh	Position of cursor for each video page. Current cursor position is stored two bytes per page. First byte specifies the column, the second byte specifies the row.		
60h - 61h	Start and end lines for 6845-compatible cursor type. 60h = starting scan line, 61h = ending scan line.		
62h	Current Video Display Page		
63h - 64h	6845-compatible I/O port address for current mode 3B4h = Monochrome 3D4h = Color		
65h	Register for current mode select		
66h	Current palette setting		
67 - 6Ah	Address of adapter ROM		
6Bh	Last interrupt the occurred		
6Ch - 6Dh	Low word of timer count		
6Eh - 6Fh	High word of timer count		
70h	Timer count for 24-hour rollover flag		
71h	Break key flag		
72h - 73h	Reset flag 1243h = Soft reset. Memory test is bypassed.		
74h	Status of last hard disk operation 00h = No error 01h = Invalid function requested 02h = Address mark not located 03h = Write protect error 04h = Sector not found 05h = Reset failed 08h = DMA overrun error 09h = Data boundary error 0Ah = Bad sector flag selected 0Bh = Bad track detected 0Dh = Invalid number of sectors on format 0Eh = Control data address mark detected 0Fh = DMA arbitration level out of range 10h = ECC or CRC error 11h = Data error corrected by ECC 20h = Controller failure 40h = Seek operation failure 80h = Timeout AAh = Drive not ready BBh = Undefined error occurred CCh = Write fault on selected drive E0h = Status error or error register = 0		
75h	FFh = Sense operation failed Number of hard drives		
76h - 77h	Work area for hard disk		
, 0.1 , , 111	TTOIR GIOG IOI HUIG GIOR		

Location	Description		
78h - 7Bh	Default parallel port timeout values		
7Dh - 7Fh	Default serial port timeout values		
80h - 81h	Pointer to start of keyboard buffer		
82h - 83h	Pointer to end of keyboard buffer		
84h - 88h	Reserved for EGA/VGA BIOS		
8Ah	Reserved		
8Bh	Diskette drive data transfer rate information bits 7-5 = Data rate on last operation 00 = 500 KBS 01 = 300 KBS 10 = 250 KBS bits 5-4 = Last drive step rate selected bits 3-2 = Data transfer rate at start of operation 00 = 500 KBS 01 = 300 KBS 10 = 250 KBS		
001	bits 1-0 = Reserved		
8Ch	Copy of hard status register		
8Dh	Copy of hard drive error register		
8Eh	Hard drive interrupt flag		
8Fh	Diskette controller information bit 7 = Reserved bit 6 = (1) Drive confirmed for drive B bit 5 = (1) Drive B is multi-rate bit 4 = (1) Drive B supports line change bit 3 = Reserved bit 2 = (1) Drive determined for drive A bit 1 = (1) Drive B is multi-rate bit 0 = (1) Drive B supports line change		
90h - 91h	Media type for drives		
	bits 7-6 = Data transfer rate 00 = 500 KBS 01 = 300 KBS 10 = 250 KBS bit 5 = (1) Double stepping required when 360K diskette inserted into 1.2MB drive bit 4 = (1) Known media is in drive		
	bit 3 = Reserved bits 2-0 = Definitions upon return to user applications 000 = Testing 360K in 360K drive 001 = Testing 360K in 1.2 MB drive 010 = Testing 1.2 MB in 1.2 MB drive 011 = Confirmed 360K in 360K drive 100 = Confirmed 360K in 1.2 MB 101 = Confirmed 1.2 MB in 1.2 MB drive 111 = 720K in 720K drive or 1.44 MB in 1.44 MB		

Location	Description		
92h - 93h	Scratch area for diskette media. Low byte for drive A, high byte for drive B.		
94h - 95h	Current track number for both drives. Low byte for drive A, high byte for drive B.		
96h	Keyboard Status bit 7 = (1) Read ID bit 6 = (1) Last code was first ID bit 5 = (1) Force to Num Lock after read ID bit 4 = (1) Enhanced keyboard installed bit 3 = (1) Right ALT key active bit 2 = (1) Right Control key active bit 1 = (1) Last code was E0h bit 0 = (1) Last code was E1h		
97h	Keyboard Status bit 7 = (1) Keyboard error bit 6 = (1) Updating LEDs bit 5 = (1) Resend code received bit 4 = (1) Acknowledge received bit 3 = Reserved bit 2 = (1) Caps lock LED state bit 1 = (1) Num lock LED state bit 0 = (1) Scroll lock LED state		
98h - 99h	Offset address of user wait flag		
9Ah - 9Bh	Segment address of user wait flag		
9Ch - 9Dh	Wait count, in microseconds (low word)		
9Eh - 9Fh	Wait count, in microseconds (high word)		
A0h	Wait active flag bit 7 = (1) Time has elapsed bits 6-1 = Reserved bit 0 = (1) INT 15h, AH = 86h occurred		
A1h - A7h	Reserved		
A8h - ABh	Pointer to video parameters and overrides		
ACh - FFh	Reserved		
100h	Print screen status byte		

4.11.1.1 <u>Compatibility Service Table</u>
In order to ensure compatibility with industry-standard memory locations for interrupt service routines and miscellaneous tabular data, the BIOS maintains tables and jump vectors.

Location	Description
FE05Bh	Entry Point for POST
FE2C3h	Entry point for INT 02h (NMI service routine)
FE3FEh	Entry point for INT 13h (Diskette Drive Services)
FE401h	Hard Drive Parameters Table
FE6F1h	Entry point for INT 19h (Bootstrap Loader routine)
FE6F5h	System Configuration Table
FE739h	Entry point for INT 14h (Serial Communications)
FE82Eh	Entry point for INT 16h (Keyboard Services)
FE897h	Entry point for INT 09h (Keyboard Services)
FEC59h	Entry point for INT 13h (Diskette Drive Services)
FEF57h	Entry point for INT OEh (Diskette Hardware Interrupt)
FEFC7h	Diskette Drive Parameters Table
FEFD2h	Entry point for INT 17h (Parallel Printer Services)
FF065h	Entry point for INT 10h (CGA Video Services)
FF0A4h	Video Parameter Table (6845 Data Table - CGA)
FF841h	Entry point for INT 12h (Memory Size Service)
FF84Dh	Entry point for INT 11h (Equipment List Service)
FF859h	Entry point for INT 15h (System Services)
Location	Description
FFA6Eh	Video graphics and text mode tables
FFE6Eh	Entry point for INT 1Ah (Time-of-Day Service)
FFEA5h	Entry Point for INT 08h (System Timer Service)
FFEF3h	Vector offset table loaded by POST
FFF53h	Dummy Interrupt routine IRET Instruction
FFF54h	Entry point for INT 05h (Print Screen Service)
FFFF0h	Entry point for Power-on
FFFF5h	BIOS Build Date (in ASCII)
FFFFEh	BIOS ID

4.12 VGA, LCD

4.12.1 VGA / LCD Controller 69000 (69030)

69000 High Performance Flat Panel / CRT HiQVideoTM Accelerator with Integrated Memory

- Highly integrated Flat Panel and CRT GUI Accelerator & Multimedia Engine, Palette/DAC, Clock Synthesizer, and integrated frame buffer
- Integrated High performance SDRAM memory. 2MB integrated memory, 83 MHz SDRAM operation
- HiQColorTM Technology implemented with TMED (Temporal Modulated Energy Distribution)
- Hardware Windows Acceleration
- Integrated composite NTSC / PAL Support
- Hardware Multimedia Support
- High-Performance Flat Panel Display resolution and color depth at 3.3V
- 36-bit direct interface to color and monochrom, single drive (SS), and dual drive (DD), STN & TFT panels
- Advanced Power Management features minimize power usage in:
 - Normal operation
 - Standby (Sleep) modes
 - Panel-Off Power-Saving Mode
- VESA Standards supported
- Fully Compatible with IBM[®] VGA
- Driver Support for Windows 3.1, Windows 95/98, Windows NT3.1/NT4.0

4.12.2 <u>VGA / LCD BIOS for 69000 (6</u>9030)

VGA BIOS

The 65555 and 69000 VGA BIOS (hereafter referred to as 69000 BIOS) is an enhanced, high performance BIOS that is used with the 69000 VGA Flat Panel/CRT Controller to provide an integrated Flat panel VGA solution. The BIOS is optimized for 69000 VGA Flat Panel/CRT Controller and provides:

Full compatibility with the IBM VGA BIOS

Support for monochrome LCD, 640x480, 800x600, 1024x768 and 1280x1024 TFT or STN displays.

Optional support for other displays.

Supports VESA BIOS Extensions, including VBE 2.0, VBE/DDC 1.0, and VBE/PM 1.0.

Supports either VESA local bus or PCI bus

Extended BIOS functions which offer easy access to 69000 control ler features and capabilities

Support for simultaneous display

44K BIOS supports 8 panels

48K BIOS supports 16 panels

High Performance Integrated Memory

The integrated SDRAM memory can support up to 83MHz operation, thus increasing the available memory bandwidth for the graphics subsystem. The result is support for additional high color / high resolution graphics modes combined with real-time video acceleration. This additional bandwidth also allows more flexibility in the other graphics functions intensely used in Graphics User Interface (GUIs) such as MicrosoftTM WindowsTM.

Versatile Panel Support

The 69000 support a wide varety of monochrome and color Single-Panel, Single-Drive (SS) and Dual-Panel, Dual-Drive (DD), standard and high-resolution, passive STN and active matrix TFT/MIM LCD, and EL panels. With HiQColorTM technology, up to 256 gray scales are supported on passive STN LCDs. Up to 16.7M different colors can be displayed on passive STN LCDs and up to 16.7M colors on 24bit active matrix LCDs.

The 69000 offers a varety of programmable features to optimize display quality. Vertical centering and streching are provided for handling modes with less than 480 lines on 480-line panels. Horizontal and vertical streching capabilities are also available for both text and graphics modes for optimal display of VGA text and graphics modes on 800x600, 1024x768 and 1280x1024 panels.

Low Power Consumption

The 69000 uses a variety of advanced power management features to reduce power consumption of the display sub-system and to extend battery life. optimized for 3.3V operation, the 69000 internal logic, bus and panel interfaces operate at 3.3V but can tolerate 5V operation.

Software Compatibility / Flexibility

The 69000 is fully compatible with the VGA standard at both the register and BIOS levels. DIGITAL-LOGIC supply a fully VGA compatible BIOS, end-user utilities and drivers for common application programs.

Acceleration for All Panels and All Mode

The 69000 graphics engine is designed to support high performance graphics and video acceleration for all supported display resolutions, display types, and color modes. There is no compromise in performance operating in 8, 16, or 24 bpp color modes allowing true acceleration while displaying up to 16.7M colors.

4.12.3 Display Modes Supported

The 69000 supports the modes which appear in the table below.

Resolution	Color (bpp)	Refresh Rates (Hz)
640x480	8	60, 75, 85
640x480	16	60, 75, 85
640x480	24	60, 75, 85
800x600	8	60, 75, 85
800x600	16	60, 75, 85
800x600	24	60, 75, 85
1024x768	8	60, 75, 85
1024x768	16	60, 75, 85
1280x1024	8	60

4.12.4 VGA/LCD BIOS Support

Each LCD display needs a specific adapted VGA-BIOS. This product is equipped with the CRT standard VGABIOS.

To connect a LCD display to this product, you need to perform the following:

1. Check the LCD_OVERVIEW.PDF if the LCD BIOS is available.
Get the latest VGA-BIOS at our webpage http://www.digitallogic.com

IF THE LCD BIOS IS AVAILABLE:

- 2. In the FLATPANEL-SUPPORT documentation the connection between the LCD and this product will be described.
- 3. DOWNLOAD the corresponding LCD-BIOS with the utility DOWN_000.EXE
 Go the the section 4.8.2 DOWNLOAD THE VGABIOS in this manual and follow those steps.
- 4. Restart the system and check the VGA-BIOS header message. The LCD name must be visible for only a short time. The VGABIOS message appears as first info page on the screen.
- 5. Stop the system, connect the LCD to the system and restart again
- 6. If on the LCD no image appears, as soon as the monitor begins to show the first text, stop the system immediately, otherways the LCD will get damaged.
- 7. Check the LCD connection again.

FOR A NEW LCD TYPE, NOT AVAILABLE NOW:

If the LCD BIOS for your LCD is not available, DIGITAL-LOGIC will adapt the LCD and provide you with one working cable. To initialise this, we need the following points from you:

- 1. An order to adapt the LCD (for the costs ask your sales contact)
- 2. Send the LCD panel, a datasheet, a connector to the LCD and the inverter for the backligth

ATTENTION:

DIGITAL-LOGIC AG is never responsible for a damaged LCD display. Even when there are mistakes in the BIOS or in any documentation for the LCD.

4.12.5 <u>Memory 69000/69030 CRT/TFT Panels</u>

Hor. Resol.	Vert. Resol.	Color bpp	Refr. Hz	DCLK Mhz	MEM kByte	Cursor kByte	FB/C kByte	FB/M kByte	Video Input	Total with	Total w/o
									kByte	Video	Video
640	480	8	60	25.175	300	4.2	0	0	300	604	304
640	480	8	72	31.500	300	4.2	0	0	300	604	304
640	480	8	75	31.500	300	4.2	0	0	300	604	304
640	480	8	85	36.000	300	4.2	0	0	300	604	304
640	480	16	60	25.175	600	4.2	0	0	300	904	604
640	480	16	72	31.500	600	4.2	0	0	300	904	604
640	480	16	75	31.500	600	4.2	0	0	300	904	604
640	480	16	85	36.000	600	4.2	0	0	300	904	604
							_				
640	480	24	60	25.175	900	4.2	0	0	300	1204	904
640	480	24	72	31.500	900	4.2	0	0	300	1204	904
640	480	24	75	31.500	900	4.2	0	0	300	1204	904
640	480	24	85	36.000	900	4.2	0	0	300	1204	904
000	000		60	40.000	400	4.0	_		000	770	470
800	600	8	60	40.000	469	4.2	0	0	300	773	473
800	600	8	72	50.000	469	4.2	0	0	300	773	473
800	600	8	75	49.500	469	4.2	0	0	300	773	473
800	600	8	85	56.250	469	4.2	0	0	300	773	473
000	000	10		40.000	000	4.0	_	_	000	1010	0.40
800	600	16	60	40.000	938	4.2	0	0	300	1242	942
800	600	16	72	50.000	938	4.2	0	0	300	1242	942
800	600	16	75	49.500	938	4.2	0	0	300	1242	942
800	600	16	85	56.250	938	4.2	0	0	300	1242	942
800	600	24	60	40.000	1406	4.2	0	0	300	1710	1410
800	600	24	72	50.000	1406	4.2	0	0	300	1710	1410
800	600	24	75	49.500	1406	4.2	0	0	300	1710	1410
800	600	24	85	56.250	1406	4.2	0	0	300	1710	1410
000	000		- 00	30.230	1400	7.2	- 0		300	1710	1410
1024	768	16	60	65.000	1536	4.2	0	0	300	1840	1540
1024	768	16	70	75.000	1536	4.2	0	0	300	1840	1540
1024	768	16	75	78.750	1536	4.2	0	0	300	1840	1540
1024	768	16	85	94.500		4.2	0	0	300	1840	1540
	, , ,			0000							10.0
1024	768	24	60	65.000	2304	4.2	0	0	300	2608	2308
1024	768	24	72	75.000	2304	4.2	0	0	300	2608	2308
1024	768	24	75	78.750	2304	4.2	0	0	300	2608	2308
1024	768	24	85	94.500	2304	4.2	0	0	300	2608	2308
							_				
1280	1024	16	60	108.0	2560	4.2	0	0	300	2864	2564
1280	1024	16	70	128.0	2560	4.2	0	0	300	2864	2564
1280	1024	16	75	135.0	2560	4.2	0	0	300	2864	2564
1280	1024	16	85	157.5	2560	4.2	0	0	300	2864	2564
1280	1024	24	60	108.0	3840	4.2	0	0	300	4144!	3844
1280	1024	24	72	128.0	3840	4.2	0	0	300	4144!	3844
1280	1024	24	75	135.0	3840	4.2	0	0	300	4144!	3844
1280	1024	24	85	157.5	3840	4.2	0	0	300	4144!	3844

[!] Means not possible resolution with the 4Mb Video RAM

4.12.6 <u>Memory 69000/69030 Color STN-DD Panels</u>

Hor. Resol.	Vert. Resol.	Color bpp	Refr. Hz	DCLK Mhz	MEM kByte	Cursor kByte	FB/C kByte	FB/M kByte	Video Input	Total with	Total w/o
1100011	. 1000					in Dyro			kByte	Video	Video
640	480	8	60	25.175	300	4.2	120	0	300	724	424
640	480	8	72	31.500	300	4.2	120	0	300	724	424
640	480	8	75	31.500	300	4.2	120	0	300	724	424
640	480	8	85	36.000	300	4.2	120	0	300	724	424
640	480	16	60	25.175	600	4.2	120	0	300	1024	724
640	480	16	72	31.500	600	4.2	120	0	300	1024	724
640	480	16	75	31.500	600	4.2	120	0	300	1024	724
640	480	16	85	36.000	600	4.2	120	0	300	1024	724
640	480	24	60	25.175	900	4.2	120	0	300	1324	1024
640	480	24	72	31.500	900	4.2	120	0	300	1324	1024
640	480	24	75	31.500	900	4.2	120	0	300	1324	1024
640	480	24	85	36.000	900	4.2	120	0	300	1324	1024
800	600	8	60	40.000	469	4.2	188	0	300	960	660
800	600	8	72	50.000	469	4.2	188	0	300	960	660
800	600	8	75	49.500	469	4.2	188	0	300	960	660
800	600	8	85	56.250	469	4.2	188	0	300	960	660
800	600	16	60	40.000	938	4.2	188	0	300	1429	1129
800	600	16	72	50.000	938	4.2	188	0	300	1429	1129
800	600	16	75	49.500	938	4.2	188	0	300	1429	1129
800	600	16	85	56.250	938	4.2	188	0	300	1429	1129
800	600	24	60	40.000	1406	4.2	188	0	300	1898	1598
800	600	24	72	50.000	1406	4.2	188	0	300	1898	1598
800	600	24	75	49.500	1406	4.2	188	0	300	1898	1598
800	600	24	85	56.250	1406	4.2	188	0	300	1898	1598
1024	768	16	60	65.000	1536	4.2	307	0	300	2147	1847
1024	768	16	70	75.000	1536	4.2	307	0	300	2147	1847
1024	768	16	75	78.750	1536	4.2	307	0	300	2147	1847
1024	768	16	85	94.500	1536	4.2	307	0	300	2147	1847
1024	768	24	60	65.000	2304	4.2	307	0	300	2915	2615
1024	768	24	72	75.000	2304	4.2	307	0	300	2915	2615
1024	768	24	75	78.750	2304	4.2	307	0	300	2915	2615
1024	768	24	85	94.500	2304	4.2	307	0	300	2915	2615
1000	4004	10	00	100.0	0500	4.0	F40	_	000	0070	0070
1280	1024	16	60	108.0	2560	4.2	512	0	300	3376	3676
1280	1024	16	70	128.0	2560	4.2	512	0	300	3376	3676
1280	1024	16	75	135.0	2560	4.2	512	0	300	3376	3676
1280	1024	16	85	157.5	2560	4.2	512	0	300	3376	3676
1000	1004	0.4	60	100.0	2040	4.0	E10		200	46501	40501
1280	1024	24	60	108.0	3840	4.2	512	0	300	4656!	4356!
1280	1024	24	72	128.0	3840	4.2	512	0	300	4656!	4356!
1280	1024	24	75	135.0	3840	4.2	512	0	300	4656!	4356!
1280	1024	24 sible resu	85	157.5	3840	4.2	512	0	300	4656!	4356!

[!] Means not possible resolution with the 4Mb Video RAM

4.12.7 <u>Memory 69000/69030 Mono STN-DD Panels</u>

Hor.	Vert.	Color	Refr.	DCLK	MEM	Cursor	FB/C	FB/M	Video	Total	Total
Resol.	Resol.	bpp	Hz	Mhz	kByte	kByte	kByte	kByte	Input	with	w/o
									kByte	Video	Video
640	480	8	60	25.175	300	4.2	0	38	300	642	342
640	480	8	72	31.500	300	4.2	0	38	300	642	342
640	480	8	75	31.500	300	4.2	0	38	300	642	342
640	480	8	85	36.000	300	4.2	0	38	300	642	342
640	480	16	60	25.175	600	4.2	0	38	300	942	642
640	480	16	72	31.500	600	4.2	0	38	300	942	642
640	480	16	75	31.500	600	4.2	0	38	300	942	642
640	480	16	85	36.000	600	4.2	0	38	300	942	642
640	480	24	60	25.175	900	4.2	0	38	300	1242	942
640	480	24	72	31.500	900	4.2	0	38	300	1242	942
640	480	24	75	31.500	900	4.2	0	38	300	1242	942
640	480	24	85	36.000	900	4.2	0	38	300	1242	942
800	600	8	60	40.000	469	4.2	0	59	300	832	532
800	600	8	72	50.000	469	4.2	0	59	300	832	532
800	600	8	75	49.500	469	4.2	0	59	300	832	532
800	600	8	85	56.250	469	4.2	0	59	300	832	532
800	600	16	60	40.000	938	4.2	0	59	300	1300	1000
800	600	16	72	50.000	938	4.2	0	59	300	1300	1000
800	600	16	75	49.500	938	4.2	0	59	300	1300	1000
800	600	16	85	56.250	938	4.2	0	59	300	1300	1000
800	600	24	60	40.000	1406	4.2	0	59	300	1769	1469
800	600	24	72	50.000	1406	4.2	0	59	300	1769	1469
800	600	24	75	49.500	1406	4.2	0	59	300	1769	1469
800	600	24	85	56.250	1406	4.2	0	59	300	1769	1469

[!] Means not possible resolution with the 4Mb Video RAM

4.12.8 Video Input

As described above, the onboard VGA controller C&T69000 is capable to handle a 16-Bit wide video input data stream, generated by the video input chip from PHILIPS SAA7111A. This chip communicates with a kind of I²C bus to the PCI VGA chip.

Up to three analog inputs can be connected to the SAA7111A with the actual software. The three input channels are VIN1, VIN2 and VIN3. All of them are composite video input sources (CVBS). Each input signal you will find at the connector J25, splitted with the VGA output signals. Most of used video cameras are supplyed by +12V input voltage.

Connect the camera to the video input

You have to connect both cables of the video camera with one of the three input channels at J25.

Channel	Video signal	Video ground
Input channel Vvin1	J25, Pin 7	J25, Pin 1
Input channel Vvin2	J25, Pin 5	J25, Pin 1
Input channel Vvin3	J25, Pin 3	J25, Pin 1

Software drivers

There isn't a need of a special driver for video input support. You will find a demo-software for Windows '95 on the DIGITAL LOGIC CD.

With this program we can support only Windows '95 with resolution of 640x480 and 800x600. Other resolutions or OS are not supported at this time.

After starting the tool, there isn't any video input picture on the screen first. Choose the right input channel number in the menu context to enable the video mode.

Please read the readme- file on our cd to get more detailed information and the way how to proceed.

4.13 HiQ Video Multimedia Support

The 69000 uses independent multimedia capture and display systems on chip. The capture system places data in display memory (usually off screen) and the display system places the data in a window on the screen.

The capture system can receive data from the video portin the 422 YUV format. The YUV data are served from the VideoInputProcessor (VIP) type SAA7111A. The VIP converts the analog CVBS information, coming from a videocamera, into the YUV digital information.

The YUV input data can also be scaled down in the 69000 bevor storage in the display memory. Capture of input data may also be double buffered for smoothing and to prevent image tearing. To better support MPEG2 (DVD) video decompression, the 69000 includes a line buffer to directly support the native format of MPEG2 data of 720 pixels wide.

The capture engine also supports image mirroring and rotation for camera support. This feature is important for applications such as video teleconferencing because it allows the image movements to appear on the display as it actually occurs.

The display system can independently place YUV data from anywhere in the display memory into an on-screen window which can be any size and located at any pixel boundary (YUV data is converted to RGB "on-the-fly"). This is important for the 69000 since the video must be stored in the integrated 2MB frame buffer and thus optimized to require very little space. Interlanced and non-interlanced data are both supported in the capture and display system.

Display Modes Supported

The 69000 supports the modes which appear in the table below.

Resolution:	Color (bpp)	Refresh Rates (Hz)
640 x 480	8	60, 75, 85
640 x 480	16	60, 75, 85
640 x 480	24	60, 75, 85
800 x 600	8	60, 75, 85
800 x 600	16	60, 75, 85
800 x 600	24	60, 75, 85
1024 x 768	8	60, 75, 85
1024 x 768	16	60, 75, 85
1280 x 1024	8	60

4.14 Video Input with the SAA7111 VIP

- Four analog inputs, internal analog source selectors, e.g. 4 CVBS or 2 Y/C or (1 Y/C and 2 CVBS)
- Two analog preprocessing channels
- Fully programmable static gain for the main channels or automatic gain control for the selected CVBS or Y/C channel
- Switchable white peak control
- Two built-in analog anti-aliasing filters
- Two 8-bit video CMOS analog-to-digital converters
- On-chip clock generator
- Line-locked system clock frequencies
- Digital PLL for horizontal-sync processing and clock generation
- Requires only one crystal (24.576 MHz) for all standards
- Horizontal and vertical sync detection
- Automatic detection of 50 and 60 Hz field frequency, and automatic switching between PAL and NTSC standards
- Luminance and chrominance signal processing for PAL BGHI, PAL N, PAL M, NTSC M, NTSC N, NTSC 4.43, SECAM
- User programmable luminance peaking or aperture correction
- Cross-colour reduction for NTSC by chrominance comb filtering
- PAL delay line for correcting PAL phase errors
- Real time status information output (RTCO)
- Brightness Contrast Saturation (BCS) control on-chip
- The YUV (CCIR-601) bus supports a data rate of:
 - 864 □fH = 13.5 MHz for 625 line sources
 - 858 □fH = 13.5 MHz for 525 line sources.
- Data output streams for 16, 12 or 8-bit width with the following formats:
 - YUV 4:1:1 (12-bit)
 - YUV 4:2:2 (16-bit) = used on the product
 - YUV 4:2:2 (CCIR-656) (8-bit)
 - RGB (5, 6, and 5) (16-bit) with dither
 - RGB (8, 8, and 8) (24-bit) with special application.
- Odd/even field identification by a non interlace CVBS input signal
- Fix level for RGB output format during horizontal blanking
- 720 active samples per line on the YUV bus
- One user programmable general purpose switch on an output pin
- Built-in line-21 text slicer
- A 27 MHz Vertical Blanking Interval (VBI) data bypass programmable by I 2 C-bus for INTERCAST applications
- Power-on control
- Two via I 2 C-bus switchable outputs for the digitized CVBS or Y/C input signals AD1 (7 to 0) and AD2 (7 to 0)
- Chip enable function (reset for the clock generator and power save mode up from chip version 3)
- Compatible with memory-based features (line-locked clock)
- Boundary scan test circuit complies with the 'IEEE Std. 1149.11990' (ID-Code = 0 F111 02 B)
- I2C-bus controlled (full read-back ability by an external controller)
- Low power (0.5 W), low voltage (3.3 V), small package (LQFP64)
- 5 V tolerant digital I/O ports.

4.14.1.1 Operation of the SAA7111A VideoInput Processor

The SECAM-processing contains the following blocks:

Baseband 'bell' filters to reconstruct the amplitude and phase equalized 0 and 90 □ FM-signals

Phase demodulator and differentiator (FM-demodulation)

Pe-emphasis filter to compensate the pre-emphasised input signal, including frequency offset compensation (DB or DR white carrier values are subtracted from the signal, controlled by the SECAM-switch signal). The burst processing block provides the feedback loop of the chroma PLL and contains;

Burst gate accumulator

Colour identification and killer

Comparison nominal/actual burst amplitude (PAL/NTSC standards only)

Loop filter chrominance gain control (PAL/NTSC standards only)

Loop filter chrominance PLL (only active for PAL/NTSC standards)

PAL/SECAM sequence detection, H/2-switch generation

Increment generation for DTO1 with divider to generate stable subcarrier for non-standard signals.

The chrominance comb filter block eliminates crosstalk between the chrominance channels in accordance with the

PAL standard requirements. For NTSC colour standards the chrominance comb filter can be used to eliminate crosstalk from luminance to chrominance (cross-colour) for vertical structures. The comb filter can be switched off if desired. The embedded line delay is also used for SECAM recombination (cross-over switches). The resulting signals are fed to the variable Y-delay compensation, RGB matrix, dithering circuit and output interface, which contains the VPO output formatter and the output control logic.

Luminance processing

The 8-bit luminance signal, a digital CVBS format or a luminance format (S-VHS, HI8), is fed through a switchable prefilter. High frequency components are emphasized to compensate for loss. The following chrominance trap filter (f0 = 4.43 or 3.58 MHz centre frequency selectable) eliminates most of the colour carrier signal, therefore, it must be bypassed for S-video (S-VHS and HI8) signals. The high frequency components of the luminance signal can be peaked (control for sharpness improvement via I2C-bus) in two band-pass filters with selectable transfer characteristic. This signal is then added to the original (unpeaked) signal. A switchable amplifier achieves common DC amplification, because the DC gains are different in both chrominance trap modes. The improved luminance signal is fed to the BCS control located in the chrominance processing block.

RGB matrix

Y, Cr and Cb data are converted after interpolation into RGB data in accordance with CCIR-601 recommendations. The realized matrix equations consider the digital quantization:

R = Y + 1.371 Cr

G = Y 0.336 Cb 0.698 Cr

B = Y + 1.732 Cb.

After dithering (noise shaping) the RGB data is fed to the output interface within the VPO-bus output formatter.

VBI-data bypass

For a 27 MHz VBI-data bypass the offset binary CVBS signal is upsampled behind the ADCs. Upsampling of the CVBS signal from 13.5 to 27 MHz is possible, because the ADCs deliver high performance at 13.5 MHz sample clock. Suppressing of the back folded CVBS frequency components after upsampling is achieved by an interpolation filter. The TUF block on the digital top level performs the upsampling and interpolation for the bypassed CVBS signal.

VPO-bus (digital outputs)

The 16-bit VPO-bus transfers digital data from the output interfaces to a feature box or a field memory, a digital colour space converter (SAA7192 DCSC), a video enhancement and digital-to-analog processor (SAA7165 VEDA2) or a colour graphics board (Targa-format) as a graphical user interface.

Please read the readme- file on our cd to get more detailed information and the way how to proceed.

4.15 Boot time

System Boot-Times

Definitionen/Boot-Medium	Quick Boot*	Normal Boot
MSMP5-SEV-266MHz (DLAG: 801562)	time [s]	time [s]
From Floppydisk:		
Boot from Setup-Disk1 MS-DOS v6.22 ot "Starting MS-DOS"-Prompt.	12	23
Boot from Setup-Disk1 MS-DOS v6.22 to "Welcome Setup Screen"-	35	45
Prompt.		
Boot from "(Sys a:)-Disk" to "A:/>"-Prompt.	18	29
From Harddisk-Hitachi Mod-DK233AA-60:		
Boot from Harddisk to "Starting MS-DOS"Prompt.	12	23
Boot from Harddisk to "Win2000: Windows-Login"-Prompt.	49	59
From CompactFlash ONT-0515-0006 64MB		
Boot from CF to "Starting MS-DOS"-Prompt.	12	23
Boot from CF to "C:\>"-Prompt.	23	32

Boot-Timings with MSM-P5SEV-266MHz

*Default-Settings

System Boot Times

Definitionen/Boot-Medium	Quick Boot*	Normal Boot
MSMP3-SEV-400MHz (DLAG: 801800) with 128 MB SDRAM (890646)	Zeit [s]	Zeit [s]
From Floppydisk:		
Boot from Setup-Disk1 MS-DOS v6.22 to "Starting from MS-DOS"-Prompt.	16	28
Boot from Setup-Disk1 MS-DOS v6.22 to "Welcom Setup Screen"-Prompt.	38	48
Boot from "(Sys a:)-Disk" to "A:/>"-Prompt.	23	34
From Harddisk-Hitachi Mod-DK233AA-60:		
Boot from Harddisk to Anzeige "Starting MS-DOS"Prompt.	15	26
Boot from Harddisk to "Win2000: Windows-Login"-Prompt.	52	60
From CompactFlash ONT-0515-0006 64MB		
Boot from CF to "Starting MS-DOS"-Prompt.	16	27
Boot from CF to "C:\>"-Prompt.	23	30

Boot-Timings with MSMP3-SEV-400C (v3.7c)

*Default-Settings

4.16 Suspend / resume- time

The following tables show the average accesstime of the product:

"Save to Disk" (Partition: phdisk /create 150'000)

Definitionen	Mode	Timet	S2D-Strom		
MSMP5-SEV-266MHz (DLAG: 801562)	Suspend/Resume	[s]	[mA]		
SUSPEND					
MS-DOS v6.22 "C:\>"	Mit 64MB SDI	RAM (DL	_AG: 890644)		
Save To Harddisk	Suspend	7	40		
Save To CompactFlash CF	Suspend	*	Nok-		
Win98SE-Desktop	Mit 64MB SDF	RAM (DL	AG: 890646)		
Save To CompactFlash CF	Suspend	*	Nok-		
WinME-Desktop	Mit 128MB SDF	RAM (DL	AG: 890646)		
Save To Harddisk	Suspend	18	40		
RESUME					
MS-DOS v6.22 "C:\>"	Mit 64MB SDI	RAM (DL	AG: 890644)		
Resume from Harddisk	Resume	8	Full power-		
Resume from CompactFlash CF	Resume	*	Nok-		
WinME-Desktop	p Mit 128MB SDRAM (DLAG: 89064				
Resume from Harddisk	Resume	31	Full power-		

[&]quot;Save to Disk"with MSM-P5SEV-266MHz

Hinweis:

Jumper: J48 open, J49 close

Bemerkungen

- Win2000 (W2K): Bei <Herunterfahren>, bootet es automatisch neu!

- LED-D16 (VCC-SUSX) blinkt.

"Save to Disk" (Partition: phdisk /create 150'000)

Definitionen	Modus	Zeit	S2D-Strom
MSMP3-SEV-400MHz (DLAG: 801800)	Suspend/Resume	[s]	[mA]
SUSPEND			
MS-DOS v6.22 "C:\>"	Mit 64MB SDF	RAM (DL	_AG: 890644)
Save To Harddisk	Suspend	9	390
Save To CompactFlash CF	Suspend	*	Nok-
Win98SE-Desktop	Mit 64MB SDF	RAM (DL	AG: 890646)
Save To CompactFlash CF	Suspend	*	Nok-
Win2000-Desktop	Mit 128MB SDI	RAM (DI	AG: 890646)
Save To Harddisk	Suspend	**	-
·			
RESUME			
MS-DOS v6.22 "C:\>"	Mit 64MB SDF	RAM (DL	AG: 890644)
Resume from Harddisk	Resume	11	Full power-
Resume from CompactFlash CF	Resume	*	Nok-
Win2000-Desktop	Mit 128MB SDF	RAM (DI	AG: 890646)
Resume from Harddisk	Resume	**	-

[&]quot;Save to Disk" with MSMP3-SEV-400C (v3.7c)

Probleme

CF*

- geht nicht. Ich habe schon Probleme mit "phdisk /create"

Win2000 (W2K)**

- "Save to Disk (S2D)"
 - Monitor schaltet aus
 - Kein S2D-Anzeige
 - Kann nicht "wecken" mit BWRBTN-Taste.
 Power OFF/ON => Bootet NEU.
- Keine Standby-Funktion zum auswählen (Bei Herunterfahren-Fenster).

WinME

- OK

5 DESCRIPTION OF THE CONNECTORS

Flat cable

44pin IDE is: IDT Terminal for Dual Row (2.00mm grid) and 1.00mm flat cable
All others are: IDT Terminal for Dual Row 0.1" (2.54mm grid) and 1.27mm flat cable

Connector	Texture	Pin	Remarks
J02	USB 1	4	2.54mm
J03	IDE	2x22	2mm
J06	Floppy	26	FCC micro
J12	COM2	2x5	2.54mm
J13	COM1	2x5	2.54mm
J14	LPT1	2x13	2.54mm
J15	PC104	104	2.54mm
J18	PC104+	120	2mm
J21	LCD	2x25	2mm
J24	Keyboard, mouse, utility	2x5	2.54mm
J25	VGA / LCD	2x5	2.54mm
J31	Power	2	2.54mm
J32	Power, PM,	2x4	2.54mm
J37	LAN	4	2.54mm
J42	LAN- LED's	3	2.54mm
J46	IrDA (ok)	4	2.54mm
J50	USB 2 (since boardversion V3.8)	4	2.54mm
U61	SODIMM (since boardversion V3.5A)	144	0.8mm
X1	Compact Card (since boardversion V3.5A), optional	50	

J13 Serial Port COM1

Header onboard:	D-SUB connector::	Signal
Pin 1	Pin 1	= DCD
Pin 2	Pin 6	= DSR
Pin 3	Pin 2	= RxD
Pin 4	Pin 7	= RTS
Pin 5	Pin 3	= TxD
Pin 6	Pin 8	= CTS
Pin 7	Pin 4	= DTR
Pin 8	Pin 9	= RI
Pin 9	Pin 5	= GND
Pin10		= open

J12 Serial Port COM2

Header onboard:	D-SUB connector:	Signal
Pin 1	Pin 1	= DCD
Pin 2	Pin 6	= DSR
Pin 3	Pin 2	= RxD
Pin 4	Pin 7	= RTS
Pin 5	Pin 3	= TxD
Pin 6	Pin 8	= CTS
Pin 7	Pin 4	= DTR
Pin 8	Pin 9	= RI
Pin 9	Pin 5	= GND
Pin10		= open

J6 Floppy Disk interface connector

FD26:			
Pin	Signal Name	Function	in/out
		T dilotion	iii/out
1	VCC	+5 volts	
2	IDX	Index Pulse	in
3	VCC	+5 volts	
4	DS2	Drive Select 2	out
5	VCC	+5 volts	
6	DCHG	Disk Change	in
10	M02	Motor On 2	out
12	DIRC	Direction Select	out
14	STEP	Step	out
16	WD	Write Data	out
17	GND	Signal grounds	
18	WE	Write Enable	out
19	GND	Signal grounds	
20	TRKO	Track 0	in
21	GND	Signal grounds	
22	WP	Write Protect	in
23	GND	Signal grounds	
24	RDD	Read Data	in
25	GND	Signal grounds	
26	HS	Head Select	out

IDE interface <u>J3</u>

Pin	Signal	Pin	Signal
Pin 1	= Reset (active low)	Pin 2	= GND
Pin 3	= D7	Pin 4	= D8
Pin 5	= D6	Pin 6	= D9
Pin 7	= D5	Pin 8	= D10
Pin 9	= D4	Pin 10	= D11
Pin 11	= D3	Pin 12	= D12
Pin 13	= D2	Pin 14	= D13
Pin 15	= D1	Pin 16	= D14
Pin 17	= D0	Pin 18	= D15
Pin 19	= GND	Pin 20	= (keypin) NC
Pin 21	= NC	Pin 22	= GND
Pin 23	= IOW (active low)	Pin 24	= GND
Pin 25	= IOR (active low)	Pin 26	= GND
Pin 27	= IORDY	Pin 28	= ALE / Master-Slave
Pin 29	= DACK	Pin 30	= GND
Pin 31	= IRQ14	Pin 32	= IOCS16 (active low) NC
Pin 33	= ADR1	Pin 34	= NC
Pin 35	= ADR0	Pin 36	= ADR2
Pin 37	= CS0 (active low)	Pin 38	= CS1 (active low)
Pin 39	= LED (active low)	Pin 40	= GND
Pin 41	= VCC Logic	Pin 42	= VCC Motor
Pin 43	= GND	Pin 44	= AT/XT NC

<u>J14 Printerport (Centronics)</u>
The printer connector provides an interface for 8 Bit centronics printers.

Header onboard:	D-SUB connector:	Signal
Pin 1	Pin 1	= Strobe
Pin 3	Pin 2	= Data 0
Pin 5	Pin 3	= Data 1
Pin 7	Pin 4	= Data 2
Pin 9	Pin 5	= Data 3
Pin 11	Pin 6	= Data 4
Pin 13	Pin 7	= Data 5
Pin 15	Pin 8	= Data 6
Pin 17	Pin 9	= Data 7
Pin 19	Pin 10	= Acknowledge
Pin 21	Pin 11	= Busy
Pin 23	Pin 12	= paper end
Pin 25	Pin 13	= select
Pin 2	Pin 14	= autofeed
Pin 4	Pin 15	= error
Pin 6	Pin 16	= init printer
Pin 8	Pin 17	= shift in (SI)
Pin 10,12,14,16,18	Pin 18 - 22	= left open
Pin 20,22,24	Pin 23 - 25	= GND

J31 Power supply only connector 2pin

Pin	Signal	Pin	Signal
Pin 1	= VCC	Pin 2	= GND

J32 Power supply

Pin	Signal	Pin	Signal
Pin 1	= GND	Pin 2	= VCC
Pin 3	= LID	Pin 4	= (+12V)
Pin 5	= (EXTSMI)	Pin 6	= PWRBTN
Pin 7	= GND	Pin 8	= VCC

APM-signals are LOW active

J2 USB 1 connector

Pin	Signal	Pin	Signal
Pin 1	= VCC		
Pin 2	= USB-P0-		
Pin 3	= USB-P0+		
Pin 4	= GND		

J50 USB 2 connector

Pin	Signal	Pin	Signal
Pin 1	= VCC		
Pin 2	= USB-P0-		
Pin 3	= USB-P0+		
Pin 4	= GND		

New since V3.8

J24 Keyboard PS/2/-Mouse Utility connector

Attention: The speaker must be connected to VCC, to have a low inactive current in the speaker!

Pin	Signal	Pin	Signal
Pin 1	= Speaker Out	Pin 2	= Ground
Pin 3	= Reset In	Pin 4	= VCC
Pin 5	= Keyboard Data	Pin 6	= Keyboard Clock
Pin 7	= Ground	Pin 8	= Ext. Lithium battery
			(see also chapter 4.5.3)
Pin 9	= PS/2 Mouse Clock	Pin10	= PS/2 Mouse Data

The Utility connector must be wired to a standard AT-female connector:

Frontside AT-Keyboard (female)

Solderside AT-Keyboard (female)

PS/2 Frontside (female)

Connector and adapter

	Mini- DIN PS/2 (6 PC)	DIN 41524 (5 PC)	Remarks
Shield	Shield	Shield	KEYBOARD
DATA	1	2	
GND	3	4	
VCC (+5V)	4	5	
CLK	5	1	
	Mini- DIN PS/2 (6 PC)		
VCC (+5V)	4		MOUSE
DATA	1		
GND	3		
CLK	5		

J21 LCD connector

VGA-LCD Interface (flatpanel signals):

Pin	Signal	Pin	Signal
1	M / DE	2	FLM
3 5	Enable BKL (TTL)	4	LP
5	VCC-Panel 3.3V / 5V (controlled by J45)	6	GND
7	Enable VEE (TTL)	8	Shift Clock
9	Enable VDD (TTL)	10	P0
11	P1	12	P2
13	P3	14	P4
15	P5	16	P6
17	P7	18	P8
19	P9	20	P10
21	P11	22	P12
23	P13	24	P14
25	P15	26	GND
27	P16	28	P17
29	P18	30	P19
31	P20	32	Activity Output 3.3V (not used)
33	P21	34	P22
35	P23	36	P24
37	P25	38	P26
39	P27	40	P28
41	P29	42	P30
43	P31	44	GND
45	P32	46	P33
47	P34	48	P35
49	VCC +5V	50	+12V (supply externally)

J46 IrDA connector (new since V3.6A)

Pin	Signal	Pin	Signal
Pin 1	Vcc		
Pin 2	IRTX	Pin 60	SMC37C672
Pin 3	IRRX	Pin 59	SMC37C672
Pin 4	GND		

- Fast IrDA is directly connected to the SUPER I/O and drivers have to be written by the customer
- Since BIOS version V2.36, standard- IrDA can be accessed through this connector

J25 VGA monitor (CRT-Signals)

J25 Heade	J25 Header			ity DSUB
	10 Pin -M	Signal	Pin	Signal
	Pin 2	VGA red	Pin 1	Red
	Pin 4	VGA green	Pin 2	Green
	Pin 6	VGA blue	Pin 3	Blue
	Pin 8	Horizontal Synch	Pin 13	H-Synch
	Pin 9	Vertical Synch	Pin 14	V-Synch
			Pin 5 + 11	Bridged
	Pin 1	Ground	Pin 5, 6, 7, 8	Ground
	Pin 3	Video Input 3		
	Pin 5	Video Input 2		
	Pin 7	Video Input 1		
	Pin 10	Video Clock In		

VideoIn is optional since V3.7x

The VGA-CRT signals from J25 must be wired to a standard VGA HiDensity DSub connector (female): The LCD signals must be wired panel specific.

J37 10/100 BASE-T interface connector

J37 Pin *	Signal	RJ-45 Pin	Signal
Pin 1	= TX+	Pin 1	= TX+
Pin 2	= TX-	Pin 2	= TX-
Pin 3	= RX+	Pin 3	= RX+
Pin 4	= RX-	Pin 6	= RX-

J42 LAN LED's connector

Pin	Signal	Remarks
Pin 1	LINKED	330Ω at Vcc included
Pin 2	Vcc	
Pin 3	ACTIVE (LED on board)	330Ω at Vcc included

^{*} These signals are ready to connect directly to a RJ-45 connector.

J15 PC/104 BUS interface

Pin	A:	B:	C:	D:
0			Ground	Ground
1	IOCHCK	Ground	SBHE	MEMCS16
2	SD7	RESET	LA23	IOCS16
3	SD6	+5V	LA22	IRQ10
4	SD5	IRQ9	LA21	IRQ11
5	SD4	NC	LA20	IRQ12
6	SD3	DRQ2	LA19	IRQ15
7	SD2	(-12V)	LA18	IRQ14
8	SD1	0WS	LA17	DACK0
9	SD0	+12V	MEMR	DRQ0
10	IOCHRDY	Ground NC	MEMW	DACK5
11	AEN	SMEMW	SD8	DRQ5
12	SA19	SMEMR	SD9	DACK6
13	SA18	SIOW	SD10	DRQ6
14	SA17	SIOR	SD11	DACK7
15	SA16	DACK3	SD12	DRQ7
16	SA15	DRQ3	SD13	+5 Volt
17	SA14	DACK1	SD14	MASTER
18	SA13	DRQ1	SD15	Ground
19	SA12	REF	Ground	Ground
20	SA11	SYSCLK		
21	SA10	IRQ7		
22	SA9	IRQ6		
23	SA8	IRQ5		
24	SA7	IRQ4		
25	SA6	IRQ3		
26	SA5	DACK2		
27	SA4	TC		
28	SA3	ALE		
29	SA2	+5 Volt		
30	SA1	OSC		
31	SA0	Ground		
32	Ground	Ground		

J18 PC/104+ BUS interface

Pin	Α	В	С	D
1	GND/5.0V KEY2	Reserved	+5	AD00
2	VI/O	AD02	AD01	+5V
3	AD05	GND	AD04	AD03
4	C/BE0*	AD07	GND	AD06
5	GND	AD09	AD08	GND
6	AD11	VI/O	AD10	M66EN
7	AD14	AD13	GND	AD12
8	+3.3V	C/BE1*	AD15	+3.3V
9	SERR*	GND	SB0*	PAR
10	GND	PERR*	+3.3V	SDONE
11	STOP*	+3.3V	LOCK*	GND
12	+3.3V	TRDY*	GND	DEVSEL*
13	FRAME*	GND	IRDY*	+3.3V
14	GND	AD16	+3.3V	C/BE2*
15	AD18	+3.3V	AD17	GND
16	AD21	AD20	GND	AD19
17	+3.3V	AD23	AD22	+3.3V
18	IDSEL0	GND	IDSEL1	IDSEL2
19	AD24	C/BE3*	VI/O	IDSEL3
20	GND	AD26	AD25	GND
21	AD29	+5V	AD28	AD27
22	+5V	AD30	GND	AD31
23	REQ0*	GND	REQ1*	VI/O
24	GND	REQ2*	+5V	GNT0*
25	GNT1*	VI/O	GNT2*	GND
26	+5V	CLK0	GND	CLK1
27	CLK2	+5V	CLK3	GND
28	GND	INTD*	+5V	RST*
29	+12V	INTA*	INTB*	INTC*
30	-12V	Reserved	Reserved	GND/3.3V KEY2

Notes:

- 1. The shaded area denotes power or ground signals.
- 2. The KEY pins are to guarantee proper module installation. Pin-A1 will be removed and the female side plugged for 5.0V I/O signals and Pin-D30 will be modified in the same manner for 3.3V I/O. It is recommended that both KEY pins (A1 and D30) be electrically connected to GND for shielding.

DLAG boards have them as NC

Onboard used signals (not for external use):

IRQ3, IRQ4 COM1 /2 IRQ7 LPT1 IRQ6 FD IRQ14 HD

IRQ12 PS/2 Mouse IRQ13 Coprocessor

TC FD DACK2 and DRQ2 FD

U61 SO-DIMM (Small Outline- Dual Inline Memory Module), 144pins

Pin	Normal	Description	Pin	Normal	Description
1	VSS	Ground	73	/OE	Description
2	VSS	Ground	74	n/c	Not connected
3	DQ0		75	VSS	1
4	DQ0 DQ32	Data 0	76		Ground
5		Data 32	77	VSS	Ground
	DQ1	Data 1		n/c	
6	DQ33	Data 33	78	n/c	
7	DQ2	Data 2	79	n/c	
8	DQ34	Data 34	80	n/c	5 VD0
9	DQ3	Data 3	81	VCC	+5 VDC
10	DQ35	Data 35	82	VCC	+5 VDC
11	VCC	+5 VDC	83	DQ16	Data 16
12	VCC	+5 VDC	84	DQ48	Data 48
13	DQ4	Data 4	85	DQ17	Data 17
14	DQ36	Data 36	86	DQ49	Data 49
15	DQ5	Data 5	87	DQ18	Data 18
16	DQ37	Data 37	88	DQ50	Data 50
17	DQ6	Data 6	89	DQ19	Data 19
18	DQ38	Data 38	90	DQ51	Data 51
19	DQ7	Data 7	91	VSS	Ground
20	DQ39	Data 39	92	VSS	Ground
21	VSS	Ground	93	DQ20	Data 20
22	VSS	Ground	94	DQ52	Data 52
23	/CAS0	Column Address Strobe 0	95	DQ21	Data 21
24	/CAS4	Column Address Strobe 4	96	DQ53	Data 53
25	/CAS1	Column Address Strobe 1	97	DQ22	Data 22
26	/CAS5	Column Address Strobe 5	98	DQ54	Data 54
27	VCC	+5 VDC	99	DQ23	Data 23
28	VCC	+5 VDC	100	DQ55	Data 55
29	A0	Address 0	101	VCC	+5 VDC
30	A3	Address 3	102	VCC	+5 VDC
31	A1	Address 1	103	A6	Address 6
32	A4	Address 4	104	A7	Address 7
33	A2	Address 2	105	A8	Address 8
34	A5	Address 5	106	A11	Address 11
35	VSS	Ground	107	VSS	Ground
36	VSS	Ground	108	VSS	Ground
37	DQ8	Data 8	109	A9	Address 9
38	DQ40	Data 40	110	A12	Address 12
39	DQ9	Data 9	111	A10	Address 10
40	DQ41	Data 41	112	A13	Address 13
41	DQ10	Data 10	113	VCC	+5 VDC
42	DQ42	Data 42	114	VCC	+5 VDC
43	DQ11	Data 11	115	/CAS2	Column Address Strobe 2
44	DQ43	Data 43	116	/CAS6	Column Address Strobe 6
45	VCC	+5 VDC	117	/CAS3	Column Address Strobe 3
46	VCC	+5 VDC	118	/CAS7	Column Address Strobe 7
47	DQ12	Data 12	119	VSS	Ground
48	DQ12	Data 44	120	/VSS	Ground
49	DQ13	Data 13	121	DQ24	Data 24
50	DQ15	Data 45	122	DQ24	Data 56
51	DQ45	Data 14	123	DQ36	Data 25
52	DQ14 DQ46	_	123	DQ25	Data 57
53		Data 46	125		
54	DQ15	Data 15		DQ26	Data 26
55	DQ47	Data 47	126 127	DQ58	Data 58
	VSS	Ground		DQ27	Data 27
56	VSS	Ground	128	DQ59	Data 59

Pin	Normal	Description	Pin	Normal	Description
57	n/c		129	VCC	+5 VDC
58	n/c		130	VCC	+5 VDC
59	n/c		131	DQ28	Data 28
60	n/c		132	DQ60	Data 60
61	DU	Don't use	133	DQ29	Data 29
62	DU	Don't use	134	DQ61	Data 61
63	VCC	+5 VDC	135	DQ30	Data 30
64	VCC	+5 VDC	136	DQ62	Data 62
65	DU	Don't use	137	DQ31	Data 31
66	DU	Don't use	138	DQ63	Data 63
67	/WE	Read/Write	139	VSS	Ground
68	n/c	Not connected	140	VSS	Ground
69	/RAS0	Row Address Strobe 0	141	SDA	
70	n/c	Not connected	142	SCL	
71	/RAS1	Row Address Strobe 1	143	VCC	+5 VDC
72	n/c	Not connected	144	VCC	+5 VDC

Information taken from "The Hardware Book"

X1 Compact card, typ1

Pin	Signal
Pin 01	= GND
Pin 02	= D3
Pin 03	= D4
Pin 04	= D5
Pin 05	= D6
Pin 06	= D7
Pin 07	= CS0 (active low)
Pin 08	= (A10) NC
Pin 09	= GND
Pin 10	= (A9) NC
Pin 11	= (A8) NC
Pin 12	= (A7) NC
Pin 13	= Vcc
Pin 14	= (A6) NC
Pin 15	= (A5) NC
Pin 16	= (A4) NC
Pin 17	= (A3) NC
Pin 18	= ADR2
Pin 19	= ADR1
Pin 20	= ADR0
Pin 21	= D0
Pin 22	= D1
Pin 23	= D2
Pin 24	= IOCS16 (active low) NC
Pin 25	= (CD2) NC
Pin 26	= (CD1) NC
Pin 27	= D11
Pin 28	= D12
Pin 29	= D12
Pin 30	= D14
Pin 31	= D15
Pin 32	= CS1 (active low)
Pin 33	= (Vs1) NC
Pin 34	= IOR (active low)
Pin 35	= IOW (active low)
Pin 36	= Vcc
Pin 37	= IRQ
Pin 38	= Vcc
Pin 39	= CEL NC
Pin 40	= (VS2) NC
Pin 41	= Reset (active low)
Pin 42	= IOCHRDY (active low)
Pin 43	= (INPACK-) NC
Pin 44	= Vcc
Pin 45	= LED (active low) NC
Pin 46	= (PDIAG) NC
Pin 47	= D8
Pin 48	= D9
Pin 49	= D3
Pin 50	= GND
Div 05	_ 311 D

Pin order (solder view)

Pin 25	Pin 1
Pin 50	Pin 26

6 JUMPER LOCATIONS ON THE BOARD

Jumper locations on the board

The figure shows the location of all jumper blocks on the MSMP5SEN/SEV board. The numbers shown in this figure are silk screened on the board so that the pins can easily be located. This chapter refers to the individual pin for these jumpers. The default jumper settings are indicated with asterisks. Be careful when you change some jumpers.

Some jumpers are soldering bridges, you need a miniature soldering station with vacuum pump.

The Jumpers

Jumper	Texture	1-2 = open	2-3 = closed	Rem
J28	Supply PCI bus	1-2 = +5V	2-3 = +3.3V	
	Buffers are not switched, only signal			
	(J18 pin B6)			
J30	RTC reset	open = reset	closed = running	
J44	Watchdog	1-2 = enabled	2-3 = disabled	
J45	LCD supply	1-2 = +5V	2-3 = +3.3V	
J47	CPU select	1-2 = P3	2-3 = P5	V3.7x
J48	Mainswitch manually set	1-2 = OFF	2-3 = ON	V3.7x
J49	Mainswitch controlled by	1-2 = CPU (SUSC)	2-3 = J48	V3.7x

Settings written in bold are defaults!

6.1 The jumpers on MSMP5/P3-SEN/SEV V3.9/V3.8

6.2 The jumpers on MSMP5/P3-SEN/SEV, since V3.7x

6.3 The jumpers on MSMP5/P3-XEN/SEV, since V1.1/V1.2

7 **LED** CRITERIONS:

LED	Color	Function
D01	Green	Run OK
D02	Red	Primary HDD
D17	Red	LAN ACTIVE

smartCore			
	3V	Green	3.3V OK
	3V SUS	Green	3.3V suspend OK
	1.8V	Green	1.8 V OK

8 <u>Cable interface</u>

8.1 The harddisk cable 44pin

IDT Terminal for Dual Row (2.00 mm grid) and 1.00 mm flat cable. 44 pins = 40 pins signal and 4 pins power.

Max. length for the IDE cable is 30 cm.

ATTENTION:

Check the pin 1 marker of the cable and the connector before you power on. Refer to the technical manual of the used drives, because a wrong cable will immediately destroy the drive and/or the MICROSPACE MSMP5SEN/SEV board. There is no warranty in this case! Without the technical manual you may not connect this type of drive.

The 44pin IDE connector on the drives are normally composed of the 44 pins and 2 open pins and 4 test pins, 50 pins in total. Leave the 4 test pins unconnected.

8.2 The COM 1/2 serial interface cable

DT terminal for dual row 0.1" (2.54 mm grid) and 1.27 mm flat cable.

ATTENTION:

- Do not short-circuit these signal lines.
- Never connect any pins either on the same plug or to any other plug on the MICROSPACE MSMP5SEN/SEV. The +/-10 volts will destroy the MICROSPACE core logic immediately. No warranty in this case!
- Do not overload the output: max. output current converters: 10 mA

8.3 The printer interface cable (P4)

IDT terminal for dual row 0.1" (2.54mm grid) and 1.27 mm flat cable

ATTENTION:

- Maximum length of this cable is 6 meters.
- Prevent short-circuits.
- Never apply power to these signals, the MICROSPACE MSMP5SEN/SEV will be destroyed.

8.4 The Micro Floppy interface cable

8.5 Remote function

Use a Null- modem cable to connect COM1 of the DLAG- board to COM1 (COM2) port of the host- PC.

These are the minimum requirements:

PC1	DSub 1 connector	DSub 2 connector	PC2
Receive Data	2	3	Transmit Data
Transmit Data	3	2	Receive Data
Data Terminal Ready	4	6	Data Set Ready
System Ground	5	5	System Ground
Request to Send	7	8	Clear to Send

When the option REMOTE is enabled in the BIOS, start the program HOSTKEY.EXE on the host- PC. After that, start the DLAG board and one will see the context on the host – PC.

Usage: HOSTKEY [/? | /Cx | /Sxx | /NOF | /V]

```
where /?
                            = this screen
      /C1
                            = COM1 (DEFAULT)
      /C2
                            = COM2
                            = 9600 baud
      /S96
                            = 19200 baud
      /S192
      /S384
                            = 38400 baud
      /S576
                            = 57600 baud
      /S1152
                            = 115200 baud (DEFAULT)
                            = do not check for floopy disk when loading HOSTKEY
      /NOF
      /V
                            = verbose mode, display HOSTKEY messages
```

Example:

HOSTKEY /C1 /S384 /V

Control-X to exit. CTRL-ALT-F10 to reboot target.

NOTE:

- Chipset BX has **no** USB support while in REMOTE mode
- Chipset TX has USB support while in REMOTE mode

9 SOFTWARE

9.1 The software compatibility of the MICROSPACE PC

The CPU PENTIUM is fully compatible to other PC-standard CPUs. The Intel chipsets are also fully PC-compatible. No incompatibilities are known.

Tested Software:

MICROSOFT:	DOS	V3.3, V4.x , V5.0, V6.2, V6.22
MICROSOFT:	WIN	V3.1, Win95, WIN98, NT4.0
NOVELL:	PALMDOS Novell DOS 7.0	V1.0
INTEL:	RMX	
Software Haus:	MOSY	
Software Haus:	RTX-DOS	
Quantum:	QNX	V3.0, V4.0
NOVELL:	NW-Lite	V1.x
NOVELL:	NETx	V3.11, V4.x
NOVELL:	ODI services	V1.x and V2.x
IBM:	OS/2	V2.0, Wap 3.0

Application programs:

All software DIGITAL-LOGIC AG has tested so far are compatible and run without problems.

9.2 Software tools and drivers for the MICROSPACE PC

On the MICROSPACE Application CD you will find all tools and drivers you will need to work with the card. If you are not sure about the topicality of the software, please visit our homepage at http://www.digitallogic.com to get the latest releases!

10 100/10 ETHERNET LAN

Required programs and drivers are located on our CD in the directory x:\DRIVERS\NETWORK\INTEL\

10.1 Intel 82559 Ethernet chip

- Create a directory C:\LAN100 on your harddisk.
- Copy the programs and drivers of x:\DRIVERS\NETWORK\INTEL\82559\ onto your HD.

10.1.1 <u>Installation example for MSDOS Novell 4.11</u>

- run "setup.exe" in the directory c:\lan100\...
- choose "install network drivers"
- choose "Novell"
- choose "DOS odi client"
- choose "continue installation"
- the settings in this menu are optional (preferred server (optional); frame type = 802.2)
- press F10
- select a name for the directory of you choice, for example: "c:\network"
- press enter
- choose "modify autoexec.bat"
- exit setup

Change the file "startpro.bat" of c:\network in:

c: cd \network Isl e100bodi ipx.odi cd dos vIm cd \

Copy the directory x:\drivers\network\intel\client\dos from our product CD into the directory c:\network\

10.1.2 Driver installation WINDOWS 95

- Copy Intel Pro100+ drivers on HDD (x:\drivers\network\intel\82559).
- De-install all network drivers under Windows95 in system and software folders and restart Windows.
 Networkcard Pro10 PCI will be auto-detected and all drivers can be installed (of the copied directory).
- Restart Windows and there is a failure message.
- Call up the networkcard-preferences in the devicemanager and update the drivers.
- Choose the Intel 8255x-based PCI Ethernet Adapter (10/100) out of the list.
- Shut down Windows and switch off the power supply unit.
- Boot up again and the network is installed.

10.1.3 <u>Driver installation WINDOWS 98SE</u>

- Update the driver from the Intel® PRO/10+PCI device in the device manager.
- Choose the option "select list with drivers".
- Choose the "Intel 8255xx based Ethernet PCI Adapter(10/100)".
- Go on. If you get a failure report, press ok.
- If the PC hangs, switch off/on the power.
- After reboot, you must activate the Intel 8255xx driver in the device manager.

10.1.4 Driver installation WINDOWS NT

Please note, that one has to write the whole directory path, when NT asks for the new driver installation. Windows NT does not search automatically for a new directory.

Installing another driver:

Select the path, where the driver is located, especially where the OEM- inf file is located.

E.g. on our DLAG- CD x:\drivers\network\intel

10.1.5 Driver installation WINDOWS 2000

- Update the driver from the Intel® PRO/10+PCI device in the device manager.
- Choose the option "select list with drivers".
- Choose the "Intel 8255xx based Ethernet PCI Adapter(10/100)".
- Go on.

10.1.6 **EEPROM update**

Do not use this function, if the EEPROM is not corrupted!

To download the data into the EEPROM, make the following steps:

- start MSDOS
- change into the directory: c:\lan100\utility\e2prom\...
- type the following string: eeupdate -all lan100.eep lan100.dat

Now the EEPROM is updated again.

10.2 Intel 82559ER Ethernet chip

Create a directory C:\network on your harddisk.

Copy the programs and drivers of x:\DRIVERS\NETWORK\INTEL\82559ER\ onto your HD.

10.2.1 <u>Installation example for MSDOS Novell 4.11</u>

Make sure, that the following directories are in the directory c:\network:

- x:\drivers\network\intel\82559er\drivers
- x:\drivers\network\intel\client\dos

Create a *.bat file in the route C:\, with the name "startpro.bat".

The file has the following contents:

c: cd network cd drivers lsl e100bodi ipxodi cd.. cd dos vlm cd \

Start the file "startpro.bat".

10.2.2 <u>Driver installation WINDOWS 95</u>

- Copy Intel Pro100+ driver on HD (x:\drivers\network\intel\82559ER).
- De-install all networkdrivers under Windows95 in system and software folders and restart Windows. Networkcard Pro10 PCI will be auto-detected and all drivers can be installed (of the copied directory).

10.2.3 Driver installation WINDOWS 98SE

- Update the driver from the Intel® PRO/10+PCI device in the device manager.
- Choose the option "select list with drivers".
- Choose the "Intel 8255xx based Ethernet PCI Adapter(10/100)".
- Go on. If you get a failure report, press ok. If the PC hangs switch off / on the power.
- After reboot you must activate the Intel 8255xx driver in the device manager.

10.2.4 Driver installation WINDOWS NT

Please note, that one has to write the whole directory path, when NT asks for the new driver installation. Windows NT does not search automatically for a new directory.

Installing another driver:

Select the path, where the driver is located, especially where the OEM- inf file is located.

E.g. on our DLAG- CD x:\drivers\network\intel

10.2.5 Driver installation WINDOWS 2000

- Update the driver from the Intel® PRO/10+PCI device in the device manager.
- Choose the option "select list with drivers".
- Choose the "Intel 8255xx based Ethernet PCI Adapter(10/100)".
- Go on.

10.2.6 EEPROM update

Do not use this function, if the EEPROM is not corrupted!

To download the datas in the EEPROM, make the following steps:

- copy the folder << x:\drivers\network\intel\82559er\eeupdate >> to a floppy disk.
- start MSDOS
- type the following string:

a:\eeupdate -all -device=1209 generic.eep generic.dat

Now the EEPROM is updated again.

10.3 Compact Flash (CF)

Procedure to prepare a CF to be bootable:

DOS:

- 1. Check, if CF gets recognized in the BIOS setup
- 2. Use FDISK to erase partition
- 3. Use FDISK to create a new partition
- 4. Use FORMAT to format the CF
- 5. Use SYS to copy the system files onto the CF
- You might set the parameters manually (CYL/SEC/HEAD/LBA/etc)
- Not every CF on the market might get recognized. They might behave differently in starting time.

10.4 IrDA

Since BIOS version V2.36, standard- IrDA can be accessed through the connector X46.

10.4.1 BIOS Settings

I/O Device Configuration:

Serial Port B: Auto oder Enabled

Mode: IRDA
Base I/O Adress: 2F8
Interrupt: IRQ 3

10.4.2 Installation Windows 2000

- When booting Windows, an "internal infrared device" will be detected and installed
- Go to the device manager and delete this device. Do not re-boot but add a new device: Infrared device

Hewlett Packard

HP- infrared communication

Reboot Windows 2000

10.4.3 Installation Windows 98 and Windows ME

- The IrDA- device will be automatically detected and treated as a serial infrared connection in the NETWORK folder
- 2. After installing, execute the program Ins_IRDA.EXE (will set permanently the values in the registers) You might copy the program IRDA.EXE in the AUTOSTART folder. This program will always direct the proper IrDA port when starting Windows.

10.4.4 Remark for Windows ME

Windows ME does not support virtual COM ports anymore. Therefore, not all IrDA devices will be supported.

There is a manual fix possible to install a virtual COM port under Windows ME:

- Go to SYSTEM / HARDWARE / NO, CHOOSE HARDWARE IN LIST / OTHER COMPONENTS
- Choose MICROSOFT / INFRARED DEVICE

(Here follows the GERMAN version, as the English words may differed ;-): Systemsteuerung / Hardware / "Nein, Hardware in der Liste wählen" "Andere Komponente" anwählen Hersteller "Microsoft" Modell "Infrarot-Uebertragungsgerät" auswählen)

After installing, do not re-boot

- Start REGEDIT.EXE and follow the path:
 HKEY LOCAL MACHINE\Enum\INFRARED\COM\ROOT&INFRARED&0000
- Double click on **PORT NAME** and increase the value of the COM- port to the next higher one (e.g. COM5)
- Confirm with OK end exit REGEDIT.EXE
- Reboot Windows ME

11 SPECIAL PERIPHERALS, CONFIGURATION

11.1 <u>The Special Function Interface for MICROSPACE</u> <u>Computers SFI</u>

All functions are performed by starting the SW-interrupt 15hex with the following arguments:

11.1.1 INT 15h SFR Functions

Function:	WRITE TO EEPROM
Number:	E0h
Description:	Writes the Data byte into the addressed User-Memory-Cell from the serial EEPROM. The old value is automatically deleted.
Input Values:	AH = E0h Function Request AL Databyte to store BX Address in the EEPROM (0-1024 Possible) SI 1234h User-Password (otherwise EEP is write-protected) DLAG-Password for access to the DLAG-Memory-Cells
Output Values:	None, all registers are preserved.

Function:	READ FROM EEPROM
Number:	E1h
Description:	Reads the Data byte from the addressed User-Memory-Cell of the serial EEPROM.
Input Values:	AH = E1h Function Request BX Address in the EEPROM (0-1024 Possible) SI 1234h User-Password DLAG-Password for access to the DLAG-Memory-Cells
Output Values:	AL read databyte

Function:	WRITE SERIALNUMBER
Number:	E2h
Description:	Writes the Serialnumber from the serial EEPROM into the addressed DLAG-Memory-Cell. The old value is automatically deleted.
Input Values:	AH = E2h Function Request DX,CX,BX Serialnumber (Binary, not Ascii) SI Password
Output Values:	None, all registers are preserved.

Function:	READ SERIALNUMBER
Number:	E3h

Description: Reads the serialnumber from the board into the serial EEPROM.

Input Values: AH = E3h

Function Request

Output Values: DX,CX,BX Se-

rialnumber (Binary, not Ascii)

Function:	WRITE PRODUCTION DATE & RESET DLAG-COUNTERS
Number:	E4h
Description:	Writes the production date into the addressed DLAG-Memory-Cell from the serial EEPROM. The old value is automatically deleted. If the Password is also in DX, the counters will be resettet (=0).
Input Values:	AH = E4h Function Request BX Year (1997 => BH=19, BL=97) CH Month (112) CL Day of Month (131) SI Password DX Password, if counters should be resetted, otherwise no password.
Output Values:	None, all registers are preserved.

Function:	READ PRODUCTION DATE
Number:	E5h
Description:	Reads the production date from the board in the serial EEPROM.
Input Values:	AH = E5h Function Request
Output Values:	BX Year (1997 => BH=19, BL=97) CH Month (112) CL Day of Month (131)

Function:	CHANGE VALUE IN KEYMATRIX
Number:	E6h NOT AVAILABLE ON THIS BOARD!
Description:	Writes the data byte into the Keymatrix table from the EEPROM.
Input Values:	AH = E6h Function Request AL New Value to store in the table BX Address in the Keymatrix table in the EEPROM
Output Values:	None, all registers are preserved.

Function:	TRANSFER K	KEYMATRIX TO EEPROM
Number:	E7h	NOT AVAILABLE ON THIS BOARD!
Description:	Transfers the	Keymatrix table from the Keyboard controller to the serial EEPROM.
Input Values:	AH = E7h	Function Request
Output Values:	None, all regis	sters are preserved.

Function:	WRITE INFO2 TO THE EEPROM
Number:	F0h (PHOENIX)
	E8h (AMI)
Description:	Writes the information bytes into the serial EEPROM.
Input Values:	AH = F0h Function Request (PHOENIX)
	AH = E8h Function Request (AMI)
	AL Board Type (M= PC/104, E=Euro, W=MSWS, S=Slot,
	C=Custom)
	DI CPU Type (1=ELAN310, 2=ELAN400, 3=486SLC, 4=486DX, 5=P5)
	BX Board Version (Ex: V1.5 => BH=1, BL=5)
	CX BIOS Version (Ex: V3.0 => CH=3, CL=0)
	DH Number of 512k Flash
	DL Number of 512k SRAM
	SI Password
Output Values:	None, all registers are preserved.

Function:	READ INFO2 FROM THE EEPROM
Number:	E9h
Description:	Reads the information bytes out of the serial EEPROM.
Input Values:	AH = E9h Function Request
Output Values:	AL Board Type (M= PC/104, E=Euro, W=MSWS, S=Slot, C=Custom) DI CPU Type (1=ELAN310, 2=ELAN400, 3=486SLC, 4=486DX, 5=P5) BX Board Version (Ex: V1.5 => BH=1, BL=5) CX BIOS Version (Ex: V3.0 => CH=3, CL=0) DH Number of 512k Flash DL Number of 512k SRAM

 Function:
 READ INFO3 FROM THE EEPROM

 Number:
 EAh

 Description:
 Reads the information bytes out of the serial EEPROM.

 Input Values:
 AH = EAh Function Request

 Output Values:
 AX counter of BOOTERRORS counter of SETUP ENTRIES counter of LOW BATTERY ERROR

Function: WATCHDOG
Number: EBh

Description: Enables, strobes and disables the WATCHDOG. After power-up, the

counter of BOOT UP SYSTEM

Watchdog is always disabled. Once the Watchdog has been enabled, the user application must per-

form a strobe at least every 800ms, other- wise the watchdog performs a hardware reset.

Input Values: AH = EBh Function Request AL 00 Disable Watchdog

01..FE Enable Watchdog

FF Strobe Watchdog

Output Values: None, all registers are preserved.

BL

 Function:
 READ TEMPERATURE OF LM75

 Number:
 ECh
 NOT AVAILABLE ON THIS BOARD!

 Description:
 Reads the temperature from the LM75.

 Input Values:
 AH = ECh
 Function Request

 Output Values:
 AL
 temperature

00 =>value OK, otherwise NOK

Function: SET POWERSAVE

Number: EDh

Description: Sets Powersave options.

Input Values: AH = EDh Function Request

AL 00 => LCD Powersave

BL Bit 2

LCD-VDD on/off NOT AVAILABLE

Bit 1

LCD-VEE on/off NOT AVAILABLE

Bit 0

LCD-Backl, on/off NOT AVAILABLE

01 => HD0 Powersave

AVAILABLE

BL 0 The drive will immediately go to the Standby mode.

1 The drive will immediately go to the active mode.

2 The drive will immediately go to the standby mode.

If the sector count registers is zero then the timer will be disabled. If the sector count register is non-zero the timer will be enabled

and initialized with the sector count value.

3 The drive will immediately go to the active mode. If the sector count registers is zero then the timer will be disabled. If the sector count register is non-zero the timer will be enabled and initialized with the sector count value.

5 If the drive is in active mode, the sector count registers will be set to 0FFh. If the drive is in, going to, or recovering from the standby

mode, the sector count register will be set to 000h.

6 The drive enters the sleep mode. Either a soft- or hardware reset is required to recover from this mode. The drive will then go to the

standby mode.

02 => HD1 Powersave BL Same as HD0 Powersave

Output Values: None, all registers are preserved

Function:	LED SV	VITCH-STATUS
Number:	EEh	NOT AVAILABLE ON THIS BOARD!
Description:	Sets LE	D and reads the switches.
Input Values:	AH = EI AL	Eh Function Request 01 Set LEDs only 02 Reads Switches only 03 Set LEDs and read Switches
	BL	Only for Set LED mode used LEDs Bit X is LED X
Output Values:	AL	Switches, if mode is set, otherwise all registers are preserved.

Function:	INFORMATION ABOUT INT15-SUPPORT ON THE BOARD
Number:	EEh
Description:	Gives informations about the supported interrupt 15 functions.
Input Values:	AH = EFh Function Request AL Number of Interrupt, where you need information SI Password, if you want information about a password saved Interrupt
Output Values:	BX Interrupt-Information Word BH Version number of Interrupt (0 = not supported) If there is a Password-saved Interrupt, a zero is shown, if the password is wrong. BL Second-Version number.

12 BUILDING A SYSTEM

To build up a system based on your board, you should prepare the following equipments:

- A stable power supply of 5V (> 3 ampères), depending on the cpu, memory, etc.
- Assemble CPU with the proper clk- settings and cooling (fan) depending on board.
- If necessary, a 12V power supply for LCD or onboard sound.
- $^{-}$ 8 ohm speaker for an executed beep code (if available on the board). One may use a capacity of $1\mu F$ connected to VCC depending on the board.
- A micro- floppy disk drive (3,5") with a PC floppy cable (26 pin) or a standard FDD with appropriate cable converter. You need at least one floppy to boot for the first time.
- A harddisk IDE 2,5" or 1,8" with the appropriate cable (44 pin and 2mm grid). Do not use a too long a cable to avoid accessing problem as the IDE controller is may not able to drive the HDD.
- Connect a LCD or a monitor.
- Use an AT-compatible keyboard (5 PC) or (6 PC {PS/2} with an appropriate adapter).
- If desired, connect a mouse to it (COM or PS/2 if usable on the board).
- Connect a battery (Lithium 3V or NiMH 3.6V depending on the board) to store the data in the BIOS.
- If using SODIMM's, please refer to our overview list, which is also on our CD. Cleaning the contacts on the SODIMM and the socket with e.g. pure alcohol is highly recommended to may eliminate memory errors.
- SODIMM with MSM-P5SEV:

Boardversion 3.6B:

Since production lot week 41- 2000, SODIMM (SDRAM) are working with maximum 32MB modules from MCT.

EDO- and FP- RAM are working up to 128MB. Every module has to be ordered and assembled at DLAG. Board and smartCore have to be adjusted to fulfil the use with these RAM's.

Boardversion 3.6C:

SDRAM, EDO- and FP- RAM are working up to 128MB.

12.1 Starting up the system

Power-up the system and wait for the BIOS to show the BIOS activity on the screen. The BIOS diagnoses the system and displays the size of the memory being tested. Note: you may can not bypass the memory test depending on the BIOS producer.

CMOS-SETUP

If the CMOS configuration is incorrect, the BIOS tells you to enter the setup screen by pressing a key. Select the correct options with the arrow keys and save them.

BIOS setup	F2
Change values	SPACE /
	ENTER
Jump	ARROWS
Save	F10
Back / exit	ESC

BEEP CODE:

BIOS Beeper		
1	One short beep before boot	
1-2	Search for option ROMs. One long, two short beeps on checksum failure	
2-2-3-1	Test for unexpected interrupts	
2-1-2-3	Check ROM copyright notice	
1-3-4-1	RAM failure on ad- dress line <i>xxxx</i>	
1-3-4-3	RAM failure on data bits <i>xxxx</i> of low byte of memory bus	
1-3-1-1	Test DRAM refresh	
1-3-1-3	Test 8742 Keyboard Controller	
1-2-2-3	BIOS ROM checksum	
1-2-3-1 1-2-3-3 1-3-3-1 1-4-1-1	Timer failure DMA controller failure RAM failure RAM failure on data bits xxxx of high byte	
1-4-2-1	of memory bus CMOS failure, use SETUP	

13 THERMAL SPECIFICATIONS

Each product will undergo a BurnIn-Test of 10 cycles of 30 min. between the operating temperatures of -25 °C to +60 °C or higher if extended ranges are requested.

The critical point is to meet the max. T(case) temperature of the CPU .

This temperature is specified by 90 °C for the SQFP-case. The tables below show the allowable ambient temperature at various airflows and with different heatsink configurations.

CPU: 166MHz Clock: 166MHz T (case) = 90°C Power Consumption: 7W

Temp. ambient	Measured Heatsink Temp. by Ta=20 ℃	no Airflow 0 m/sec	Airflow 3 m/sec	Airflow 6 m/sec	Active cooled -E27
Heatsink horiz.	64℃	45℃	52℃	55℃	
Heatsink vert.	58℃	50℃	53℃	55℃	

13.1 Thermal analysis for case integration

Since the integrated heatsink is unidirectional, the airflow must be exactly in the direction of the heatrails. If possible, mount the board vertically, so that the heatrails show up/down. The self produced airflow is around 3m/sec in this case.

Special attention must be given to the mounting of the PC-product in a fully closed case/box. The thermal energy will be stored in the inner room of this environment.

If the case may have a fan:

- 1. The hot air must be exchanged with a filtered fan by cool air from outside.
- 2. The hot air must be cooled with a heat exchanger.

If the case may not have any fan or opening to exchange the hot air:

- 1. The heatsink of the CPU must be mounted directly to a heatsink integrated in the case. The thermal energy does not go through the air. It will be conducted directly through the alloy of the heatsink outside.
- 2. Diminish the thermal energy production by reducing the CPU performance. Ex. using 66MHz clock only.

14 DIAGNOSTICS

14.1 Failures and hints

14.1.1 Other, so far not identified problems

A. If the display works:

- 1. Check if you have a bootable floppy or harddisk
- 2. Check the CMOS parameter with the setup tools
- 3. Reset the CMOS RAM with the reset jumper
- 4. Re-enter the correct values with Setup

B. If no display on the screen is available:

- 1. Check the power circuitry
- 2. Check the polarities of the cables
- 3. Measure the voltage of the power supply under load and offload
- 4. Measure the current between the supply and the MICROSPACE PC
- 5. Connect a floppy: does the bezel LED light blink?
- 6. Does the harddisk spindle motor start?
- 7. Reset the CMOS-RAM

C. If the error appears again

- 1. Contact your nearest DIGITAL-LOGIC distributor for Technical Support.
- 2. Or fill out the support request form (SRF) on the Internet: http://www.digitallogic.com / Support

15 CORE BIOS

More details are available in the separate BIOS manual on our CD and homepage!

16 Suspend-Mode / Supply

The BIOS allows to suspend the whole system. The BWRBTN- or LID- signals start the suspend procedure (by connecting temporary to the ground).

The BIOS save the memory and all states of the peripheral chips to a file on the harddisk, finished by stoping the power.

The whole system is stopped now and the power consumption is down.

By initiating the LID- or BWRBTN- signals again, the system starts to resume.

The BIOS starts the power, the CPU begins to work, the BIOS read the suspendfile from the harddisk.

All peripherals and the memory are restored and the system begins to work exactly at that point, where the suspend mode had been started.

See also chapter 4.16 for measured values.

17 **ASSEMBLINGS VIEW**

17.1 MSM-P5/P3-SEV Boardversion V3.8/V3.9

17.2 MSM-P5/P3-SEV Boardversion V3.7x

17.3 MSM-P5/P3-XEV Boardversion V1.1/V1.2

18 <u>INDEX</u>

1		l	
10/100 BASE-T interface	95	I/O map	53
100/10 Ethernet LAN	115	IDE interface	90
		Input Signals	29
		interrupt 15H	120
Α		<u>IrDA</u>	93, 118
<u>'</u>			,
Addressing PCI devices	29		
		J	
В		Jumper Locations	101
D	27	-	
Battery BEEP CODE	37 127	K	
BIOS CMOS	41		
BIOS ROM	40	Keyboard PS/2	33, 91
Block Diagram	12	Reyboard FS/2	33, 91
	126		
Building a system Bus currents	25, 29	L	
Bus currents	23, 29		
		LAN LED's connector	95
С		LCD connector	93
		LCD Controller	75
CMOS	41	LED criterions	108
CMOS Setup	49	LPT1	33
CMOS-SETUP	126		
Compact card	100	M	
Compact Flash (CF)	118	IVI	
Connectors	88	11 MAD	50
Core BIOS	130	memory address MAP	52
CRT Displays	76	Mouse Utility connector	91
D		Р	
Diagnostics	129	PC/104 BUS interface	96
Download the VGA-BIOS	50	PC/104+ BUS interface	97
DRAM	33	power	30
		Power supply	91
_		Printer	33
E		printer interface cable	111
		<u>Printerport</u>	90
EEPROM Memory for Setup	40	PS/2	92
External battery assembling	39		
_		R	
F			110
	25	Remote function	113
Floppy disk interface	35		113 40
Floppy disk interface Floppy Disk Interface	89	Remote function	
Floppy disk interface		Remote function	
Floppy disk interface Floppy Disk Interface Floppy Disk Interface Connector	89	Remote function ROM-BIOS	40
Floppy disk interface Floppy Disk Interface	89	Remote function ROM-BIOS Security	15
Floppy disk interface Floppy Disk Interface Floppy Disk Interface Connector H	89 35	Remote function ROM-BIOS Security serial interface cable	15 110
Floppy disk interface Floppy Disk Interface Floppy Disk Interface Connector H harddisk cable	89 35	Remote function ROM-BIOS S Security serial interface cable Serial Ports	15 110 34, 89
Floppy disk interface Floppy Disk Interface Floppy Disk Interface Connector H harddisk cable Harddisk list	89 35 109 48	Remote function ROM-BIOS Security serial interface cable Serial Ports SFI	15 110 34, 89 120
Floppy disk interface Floppy Disk Interface Floppy Disk Interface Connector H harddisk cable	89 35	Remote function ROM-BIOS Security serial interface cable Serial Ports SFI SODIMM	15 110 34, 89 120 126
Floppy disk interface Floppy Disk Interface Floppy Disk Interface Connector H harddisk cable Harddisk list	89 35 109 48	Remote function ROM-BIOS Security serial interface cable Serial Ports SFI SODIMM SO-DIMM	15 110 34, 89 120 126 98
Floppy disk interface Floppy Disk Interface Floppy Disk Interface Connector H harddisk cable Harddisk list	89 35 109 48	Remote function ROM-BIOS Security serial interface cable Serial Ports SFI SODIMM	15 110 34, 89 120 126

Speaker Special Function Interface Specifications	36 120 13
U	
USB Utility Connector	91 92

