

Chapter 2 Automated Speech Recognition

- a) Problem Classification
- b) Data Analysis
- c) Processing Units
- d) Evaluation
- e) Applications

Literature

- Rabiner, Juang, Fundamental of Speech Recognition, Prentice Hall, ISBN 0-13-015157-2
- http://www.cs.ubc.ca/~murphyk/Bayes/rabiner.pdf
 - A tutorial on hidden Markov models and selected applications in speech recognition
- D. Balentine, D.P. Morgan, How to Build a Speech Recognition Application, Enterprise Integration Group Inc., ISBN 0-9671278-1-5.
- Skript "Automatische Sprachdienste", Urs-Viktor Marti
- > R.O. Duda, P. E. Hart, D.G. Stork, Pattern Classification, Wiley Verlag, ISBN 0-471-05669-3.

Brief History

- > 1946 Sound spectrograph
 - Made analysis easier
 - No time consuming Fourier analysis needed for analysis of sound
- > 1948 Theory for human speech developed
- > 1975 First word recognizer
- > 1980s novel methods developed (HMMs)
- 1986 Large databases acquired
- > 2000 VoiceXML defined by W3C

Linguistic Terms

> Acoustics: analysis from the physic's point of view

- > Phonetics: how do humans produce speech
- > Phonology: divide speech into basic units (phonemes)

Morphology: compose words from morphemes

Syntax: define allowed word sequences

Pragmatics: consider the context

How do WE Speak?

- Vocalization
- > Articulation
 - Active
 - Passive
- > Resonance

How to Synthesize Speech?

Wolfgang Kempelens speaking machine 1791

Voder 1939

How do WE Hear?

Cross-Section of Dynamic Microphone

> Frequency

- In Cochlea there are basilar membranes
- Nerves are activated for different frequencies
- > Pitch
 - Subjective
- Loudness
 - Number of impulses per frequency band
 - Measured in dB
 - Logarithmic to pressure (+3dB=2xPa)

Critical Bands and Frequencies

Length of the basilar membrane = maximum of activation

Logarithmic scale (except until 500 Hz)

Problems in ASR

- > Not everyone speaks the same language
- > Speech is ambiguous
- > Speech evolves
- > Word segmentation is difficult
- Environmental noise
- > Different input devices
- Multi-lingual content

Classify the Problem

- > Spoken data
- Sentences vs. words
 - Less restricted but harder to implement
- > One person vs. multiple persons (speaker dependent)
 - Male/female speaker
 - Consider emotions?
- Speaker identification and verification
- Number of classes (words)

- > Example: Speaker-dependent isolated digit recognition
 - Fully accessible, deterministic, episodic, static, continuous

Analyze the Data

- > Decode the audio format
 - Discrete representation of continuous signal
- > Improve signal
 - Remove echo and noise
 - Filter out high range sounds
 - Normalize sound level
 - Normalize sampling rate

Divide the Problem into Sub-Tasks

Speech signal

> Wave-form

Feature extraction

Transform raw data into real numbers

Features

Classification

> Apply ANN, kNN, GMM, HMM, ...

Alternates

Post-processing

> Use language information

Text

Short-Time Speech Measurements

- Speech signal changes over time
- Spectral properties change
- > Idea: divide signal into several segments
 - Assumption signal is in a steady state in small time frames (windows)
 - Generally agreed, but not 100% correct

Window functions

> Often, Hamming-window is used $\omega_n^N = 0.5 - 0.5 \cos\left(\frac{2\pi n}{N-1}\right)$

Extract the Spectrum

- > It is wise to transform the wave-signal into frequencies
 - Similar to the human basilar membrane
 - Apply Fourier transform (FFT)

Fourier Transformation

Important

f (t)

 $F(\omega)$

Remember: $\omega = 2\pi f$ and i is complex

$f(t): R \to C$

Extracts the frequencies from the spoken signal

$$F_{\omega} = F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$

> Inverse:

Just for information

$$F_t^{-1} = f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(\omega) e^{-i\omega t} dw$$

> Discrete:

$$\hat{x}_k = T \sum_{n=-M}^{N-M-1} x_n e^{-i\omega_k t_n}$$

■ T positive, M – shift, t_n=n*T

Example for a Short Phrase

> Signal

> FFT

FFT with Hamming

Define a frame width

- > Wideband or Narrowband (0.05s vs. 0.005s)
 - Better frequency resolution vs. better time resolution
 - Usual: frame width of 25ms, step size of 10ms

Filter out the Useful Frequencies

- > Humans group frequency groups in one neuron
- Idea: apply a bank of frequency bands (triangular)
 - Usually done at (Hz): 150, 200, 250, 300, 350, 400, 450, 500, then exponentially until 4,000 (6 bands)

Features

- Often used: Mel-frequency cepstral coefficients (MFCCs)
 - Also used for mp3-compression
- > Speech seen as a periodic activation signal of chords e_n is linearly filtered by mouth, tongue, etc. h_n Important
- Mathematically seen as folding f_n = e_n * h_n
- > For ASR the filter is interesting (and its change)
 - It is separated from the activation signal
 - Cepstral coefficients are commonly calculated using the discrete cosine transformation on the logarithms

$$c_q^{(m)} = \sum_{k=1}^K \log e_k^{(m)} \cos \frac{\pi q(2k+1)}{2K}, q = 1, 2, ..., N/2$$

 \mathbf{L} \mathbf{c}_0 is the sound level

MFCC summary

- 1. Divide the signal into overlapping windows (Hamming)
- 2. Apply discrete Fourier transformation
- 3. Generate bank of frequency bands
- 4. Use the logarithm (transform mult. into add.)
- 5. Reduce number of frequency bands
- 6. Decorrelate using the discrete cosine transformation

Reocgnition

- Typically with Hidden Markov Models
- Extension of Markov Chains
 - Markov Chain example:

- Typically the task is to calculate the probability that a sequence of states (e.g., rainy, rainy, sunny) appears.
- In HMMs the states are hidden and only observations are visible

Markov Model Idea

Markov Model Idea

Hidden Markov Models (HMM)

Important

- 1. $S = \{S_1, ..., S_N\}$ set of hidden states. q_t at time t
- 2. $V = \{v_1, ..., v_M\}$ distinct observation symbols (alphabet)
- 3. $A = \{a_{ii} | 1 \le i, j \le N\}$ probability distribution of state transitions $- a_{ii} = p(q_{t+1} = S_i | q_t = S_i)$
- 4. $B = \{b_i(k)|1 \le j \le N, 1 \le k \le M\}$ observation symbol probability distribution

$$- b_j(k) = p(v_k \text{ at } t|q_t = S_j)$$

5. $\pi = \{i | 1 \le i \le N\}$ initial state distribution

HMM (continued)

- > Four states
- > Two observations
- Linear topology

HMM Based Classification

- One HMM for each phoneme (Gaussian probabilities)
- Phoneme models are concatenated to word models
- Then further concatenated to sentence models
- Training using Baum-Welch algorithm
- Testing with Viterbi algorithm

How to use HMMs for ASR

- > Training *n* models
 - Maximize the probabilities that an HMM produces the features

- > Testing
 - Calculate the probabilities that all models produce a given sequence X
 - The one with maximum probability is the winner $argmax_i(P(X|HMM_i))$

