406 056

406056

AZUSA PLANT

STRUCTURAL MATERIALS DIVISION

INVESTIGATION OF STRESS-CORROSION CRACKING OF HIGH-STRENGTH ALLOYS

A Report To

FRANKFORD ARSENAL

Contract DA-04-495-ORD-3069

Report No. L0414-01-23/May 1963/Copy No.

12

AEROJET-GENERAL CORPORATION

ÁZUSA, CALIFORNIA

This is the twenty-third in a series of informal monthly progress reports submitted in partial fulfillment of Contract DA-04-495-ORD-3069. It constitutes the seventh monthly progress report for the one-year continuation of the original two-year program.

This report covers the period 1 April through 30 April 1963. It was written by R. B. Setterlund who was supervised by A. Rubin.

AEROJET-GENERAL CORPORATION

P. L. Jordan, Head

Metallics and Refractories Dept. Structural Materials Division

NOTE: The information contained herein is regarded as preliminary and subject to further checking, verification, and analysis.

I. OBJECTIVES

The objectives of this program are outlined below:

- A. Investigation of the stress-corrosion cracking characteristics of at least three new high-strength alloys of interest for rocket motor case applications. These alloys are 6Al-4V titanium, 18%-nickel maraging steel, and 20%-nickel maraging steel, in addition to limited testing of vacuum-melted 9Ni-4CO steel.
- B. Study of the environmental parameters that could affect the rate and extent of stress-corrosion cracking.
- C. Determination of the effect of material parameters (composition, strength level, welding, and microstructure) on stress-corrosion susceptibility.
- D. Continuation of the evaluation of protective coatings and other techniques for preventing stress-corrosion cracking.

II. SUMMARY

Results obtained to date indicate that the 6Al-4V titanium alloy is immune to stress-corrosion cracking in the annealed, quenched and aged and as-welded conditions.

The 20%-nickel maraging steel is found to be highly susceptible to stress-corrosion cracking in the annealed-and-aged condition. Welding and aging the material causes it to become more susceptible; all failures occur in the heat-affected zone of the weld. When the alloy is cold-worked 50 or 75% before aging, the resistance to stress-corrosion cracking is greatly increased.

The 18%-nickel maraging steel was also found to be susceptible to stress-corrosion cracking. While the 18%-nickel grade was found to have a longer time-to-failure than the annealed-and-aged 20%-nickel steel in the distilled water,

II Summary (cont.)

salt water, seacoast air, trichloroethylene, and 140°F water-saturated air environments, it showed some failures in tap water, chromate solution and soluble oil solutions where the 20%-nickel grade was not affected. As with the 20%-nickel steel it was found that prior cold-working decreased the stress-corrosion cracking susceptibility.

Fifteen coating systems designed to prevent stress-corrosion cracking are under evaluation over H-ll steel, heat-treated to give high failure susceptibility. The most promising systems are the two inhibited epoxy and one pure vinyl system.

III. WORK PROGRESS

A. INTRODUCTION

Since the initiation of the original test program, two years ago, to investigate the stress-corrosion cracking characteristics of high-strength alloys, a number of new high-strength steels have been receiving increased attention for use in constructing rocket motor cases. The third-year test program is directed to the study of three of these new alloys, as well as of one titanium alloy presently being used for the same application.

The test environments, substantially the same as those evaluated in the original two-year investigation, are as follows: (1) distilled water; (2) tap water; (3) salt water; (4) sodium dichromate-inhibited water; (5) soluble oil-inhibited water; (6) air; (7) high humidity atmosphere; (8) trichloroethylene; (9) cosmoline; and (10) solid propellant. These are considered to be environments representative of those to which rocket motor cases would normally be exposed during fabrication, processing, and storage. One additional environment is included in the new program, that of sea-coast atmospheric exposure.

The test methods being used in this investigation employ bent-beam, U-bend, and center-notched specimens. Evaluation of results includes microstructural studies, using both standard metallographic and electron microscopic techniques, to attempt to associate the failure mechanism with specific microstructural characteristics of the materials.

III Work Progress, A (cont.)

An evaluation of protective coatings and surface treatments to prevent stress-corrosion cracking is also being conducted.

B. PROGRAM STATUS

During the period covered by this report, four more groups of bent-beam samples of maraging steels were placed in test. These are: Group I-4 on 9 April, Group I-2 on 15 April, Group H-W on 30 April, and Group I-W on 8 May. (These code numbers refer to Table I designations of processing condition,) These bent-beam samples are now in test in all environments except seacoast atmospheric exposure. Seacoast testing on these four groups of specimens will start on 20 May.

Center-notch testing of the maraging steels has been continued during the last monthly period. Also, evaluation of the mechanical properties of one heat of 9Ni-4Co vacuum cast alloy has been made (Code J-1 in Table 1); stress-corrosion testing of this material will start within the next month.

Chemical and mechanical properties of the four materials being evaluated in the program are shown in Tables 2 through 4.

Results of the bent-beam and center-notch tests run to date are shown in Tables 5 through 18. Microexaminations of bent-beam failures of welded-and-aged 20%-nickel maraging steel indicate that all failures occur in the weld heat-affected-zone. A section made of a failed specimen of welded 18%-nickel steel indicates that the failure occurs in the weldment. In both the 18%- and 20%-nickel steels failures of annealed samples are of an intergranular branching pattern as indicated in earlier reports. When either the 18%- or 20%-nickel steels were cold-worked before aging, it was found that its susceptibility to stress-corrosion cracking was reduced and, at the same time, the mode of cracking changed from intergranular to possible cracking along the slip planes. This effect was most clearly shown with the 20%-nickel grade of maraging steel. Photomicrographs of both of these types of failures were included in the last quarterly report.

The results of the coating evaluation program is shown in Table 19. Fifteen different coatings are under test in three environments: aerated 3% N Cl

III Work Progress, B (cont.)

solution, 140°F water-saturated air, and outdoor seacoast exposure. As can be seen in Table 19, no single coating has been able to prevent stress-corrosion cracking in all three environments completely. However, based on data accumulated to date, the best coatings, two inhibited-epoxy systems, 454-1-1 and 463-1-5 and pure vinyl Type 33, have significantly delayed failure of highly susceptible H-11 steel specimens and are considered to be very promising.

IV. FUTURE WORK

Work will continue along the guidelines of the master plan shown in Table 1. Both bent-beam and center-notched specimens will be tested to fulfill as much as possible of this schedule. Only the 9Ni-4Co alloy remains to be tested. This testing will be only exploratory due to the lateness of the delivery of the alloy.

Metallographic sections of selected cracked samples have been photographed and presented in the last quarterly report. In addition, photomicrographs will be made on cracked 18%- and 20%-nickel maraging steel welded samples.

Three samples were studied by means of the electron microscope, utilizing fracture replicas. Selected fractographs were presented in the last quarterly report. For the final report an additional set of fractographs are being prepared using a failed sample of annealed-and-aged 18%-nickel maraging steel.

V. BUDGET

The expenditure rate for the month of April was 272 hours, leaving 207 hours for the final two months of May and June.

I			
1			
I			
I			
I			ronments
			Number of Test Environments
			Number
Ţ.			
The state of the s			
Ĺ			

	سے آ					
	e Total	유유 <u></u> 8	22222 22	<i>ะะะะ</i> สมมาสม <i>พ</i>	\$ B\$	8 5
	Sea Coast Atmosphere	_ mmal &	~~~~~	wwwannaanl &	mm 6	9 <u>8</u>
	Ambient	ııal a	พพพฟ ผู	พพพพฯสสฯสพา	5 PM	1 4
	Solid Propellant	nm 110	222 June 1	<i>ພ</i> ພພພ	6 10 M	' º
ents	Cosmoline	พพ๗เ๑	2000 M	8888111118 X	n ml vo	'l <i>3</i>
st Environments	Trichloro- ethylene	ζησια	とことと	22222 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	MM/0	' <i>5</i>
Number of Test	High	ന:M al a	とととと は	<i>พพพพพพพพพพพพ</i> 8	ろろる	81 ·8
Ĭ,	4% Soluble Oil Solution	กคลเอ	<i>ພ</i> ພພພ ସୁ	22 N N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	~~I	1 5
	0.2% Sodium Dichromate Solution	nnalo	रुरुरु व	22000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	nm 0	' <u>'</u>
	3% NaCl Solution	wwalb	บบบบ น	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ろうろ	77 88
	Tap	wwalo	25 Junuary	www	mm1 40	'l <i>#</i>
	Distilled	*๛๛๛๛	ಬಬಬ್ಬು ಟೆ	พพพพพพพพพพ พพพพพพพพพพพพพพพพพพพพพพพพพพ	N PM V	1 2
	Specimen Code	G-2 G-8	H-2 H-2 H-3		J-7 J-2	
	Strength Level, 0.2% Offset Yield (psi)	138,000 163,000 135,000	291,000 321,000 298,300 To be tested	283,000 202,400 225,000 249,500 257,400 2531,000 325,200 374,400 To be tested	To be tested To be tested	
	Processing Condition St (Titanium Content of Maraging Steel Shown)	Annealed Quenched and Aged Welded Totaj	Annealed and Aged 50% CW and Aged 75% CW and Aged Welded and Aged Total	Annealed & Aged (0.66% TI) 59% CW & Aged (0.59% TI) 59% CW & Aged (0.65% TI) Annealed & Aged (0.59% TI) 59% CW & Aged (0.10% TI) Annealed & Aged (0.52% TI) Annealed & Aged (1.00% TI) 59% CW & Aged (1.00% TI) Welded & Aged (0.50% TI) Welded & Aged (0.50% TI)	Aged (0.25-0.30% C) Aged (0.40-0.45% C) Total	Application of Various Protective Coatings Total
	A110y	641-4v tiţan:um	20%-Nickel Mareging Steel	18%-Nickel Maraging Steel	9 Ni-4 Co Vacuum- Cast Alloy	H-11 Steel (Coating Tests)

mber of renliests tests conducted

									M111-C	ertified	Mill-Certified Analysis,						
Supplier	lier	Heat No.	D	Wn	ы	s	Si	Ä	ප	ω	A	ಕ	Ą	Zz	Ţ	නී	В
Alleghen	Allegheny-Ludlum	W-24254	0.009	0.09	0.002	0.005		20.41	1	ı	0.29	0.39	r	0.002	1,40	0.004	0.003
		W-24178	0.012	0.01	0,003	0.005		18.69	8.90	4.92	0.029	ı	1	0.003	0.62	90.00	0,002
		L477	0.018	0.002	900.0	0,004		18.29	9.10	4.95	0.089	1	1	400.0>	0.40	<0.0006	<0.005
7	~	844	0.029	0.002	0.004	0.008		18.51	8.48	4.92	680.0	1	ı	<0.00 ⁴	0.52	<0.0006	<0.003
Alleghen	411egheny-Ludlum	924	0.020	0.002	900.0	0,005	ō.01₺	18.60	9.05	4.90	0.078	1	ı	<0.004	1.8	<0.0006	< 0.003
Republic Steel		3960502	0.020	0.08	0.007	900.0	0.15	18.48	1.00	48.4	0.21	;	0.10	0.035		Added	0,0036
					l			Trans	verse Me	Transverse Mechanical	Properties (Aerojet Tests	3 (Aero	jet Tests				
Heat No.	Prior Condition		Aging Treatment	Table 1		0.2%-Offset Yield Strength, ksi	fset tth. ksi	Tensile	Ultimate Tensile Strength.	h. ksi	% Elongation in 2 in.		Reduction in Area.%	Crack-G	Crack-Growth Energy (Gc), inlb/in.	rgy 12 R	Hardness
W-24254			none	ı		128.5			170.7	1	7.5		53				1
	Annealed	-100°F	보	hr H-1	ı	291.3			302.2		ω.		17		58.3		54
		ā	one	1		184.0			201.6		5		50		,		39
 -		850°F	, th	H-2	Q	321.0			327.1		8		52		22.7		55.5
<u> </u>		ä	one			205.7			220.9		9		91		ı		71
	75% CW	850°F	850 ^o F 4 hr	H-3	2	298:5			308.8		2.5		13		15.7		55
>		ű	one	'		124.4			146.7		3.5		25				1
W-24254			+850°F 4	hr H-W	м	245.0			252.0		1.5		2		1		1
W-24178			one			102.0			153.3		14.8		62		•		30.5
			, 3 hr	I-1	7	283.0			294.0		80		38		552.0		53.5
→			one	ı		1.701			189.0		3.5		17				36.5
W-24178			, 3 hr	I-3	23	323.8			328.4		1.5		8		220.0		55
LL+1	50% CW		one	1		169.3			196.9		6.5		04				38.5
LL+1 ·			, 3 hr	I-5	5	278.0			280.7		CU.		80		435.0		55.0
844			one			105.3			150.3		옃.		45		,		30.5
			, 3 hr	9-I	9	255.4			265.9		5		0,		654.0		52
→			one			175.5			199.8		4.5		47.5		,		38
8111			, 3 hr	I7	7	331.0			332.5		1.5		7		525.0		55
924			one			128.3			174.7		5.5		84		,		36
9			, 3 hr		82	323.3			330.0		2.5		27		402.0		56
⇒			one			192.2			217.0		2.5		017		1		댸
944			, 3 hr		ο.	354.4			354.9		٦		1.5		156.5		58
3960502			one	•		119.5			143.5		Ŀ		55		•		29.5
t			, 3 hr		†	249.9			254.7		4		37		670.0		50.5
- 12-1	50% CM	ជ	one			166.2			182.9		5.5		.58.5		,		35.5
		900°F	, 3 br	I-2	໙	302.5			508.1		4		56		321.0		52.5
>	Welded	Ĭ,	one	•		124.5			1,45.0		4.5		74		1.		1
3960502	Welded	900°F	, 3 hr	M-I	M	236.6			242.0		OI:		20		ı		

* faterial received in the 50% cold-worked condition and annealed at 1500°F in the laboratory.

CHEMICAL ANALYSIS AND MECHANICAL PROPERTIES OF 6A1-4V TITANIUM

					Chemical			* %		
	<u> </u>	<u>Al</u>	<u></u>	02	N ₂		I ₂	<u>Ti</u>	Fe	Other
Aerojet analysis	0.3	6.1	4.1	0.083	0.014	80	ppm	Bal	0.16	0.18
					Mechan	ical	Prope	rties	(Transv	
					ld Streng .2% Offse psi		Stre	mate ngth si	Elon- gation	R _c Hard- ness
Annealed										
Mill report				1	31,900		141	400,	12	33.5
Aerojet test				1	38,000		143	,800	14	34
Notched tensile	e stre	ngth					128	,500 ⁻	-	-
1675°F 1 hour, W.	રુ. age	1 900°	F 8 hoi	ur						
Aerojet test				1	62,700		176	,800	7	38.5
Notched tensile	e stre	ngth					132	,000	_	-
Welded										
Aerojet test				1	31,500 ^{**;}	X-	135	,200	9.5	33.0

^{*}Titanium Metals Corporation HT 4141.

^{**}Using as-fatigue-cracked sample of Figure 3.

^{***} Tensile failures in parent metal.

CHEMICAL ANALYSIS AND MECHANICAL PROPERTIES OF 9Ni-4CO VACUUM CAST ALLOY

Mill Certified Chemical Analysis*

<u>C</u>	<u>Mn</u>	<u>P</u>	<u>s</u>	<u>Si</u>	<u>Co</u>	<u>Ni</u>	Cr	<u>Mo</u>	$\overline{\Lambda}$
0.30	0.23	0.006	0.007	0.02	4.10	8.65	0.43	0.35	0.10

Mechanical Properties (Transverse) Aerojet Tests

Condition	Yield Strength (0.2% Offset) ksi		Elongation %	% Reduction of Area	Rc Hardness
(Austenitized 1550°F in argon - oil quenched 2 hours double temper at temperatures shown)					
400 ⁰ F	190.3	230.3	8	52	48
600°F	184.6	203.0	7	54	43
800°F	172.4	186.7	9	59	41
1000°F	176.7	187.1	11	60	40.5

^{*}Republic Heat 3950924

TABLE 5 BENT BEAM TESTS, STRESS-CORROSION, CRACKING IN AERATED DISTILLED WATER

Material	Variable	Code No.**	Yield Strength ksi	Failed/ Tested		time, hours Range
6Al-4V Titanium	Annealed	G-1	138.0	o/3 ^{***}	-	NF1700
6Al-4V Titanium	Quenched & Aged	G-2	163.0	0/3	-	NF1700
6Al-4V Titanium	As-welded	G-W	135.0	0/2	-	NF750
20%-Ni Maraging Steel	Annealed & Aged	H-l	291.3	3/3	11	10.2-18
	50% CW & Aged	H-2	321.0	1/3	330	330-nf1600
V	75% CW & Aged	H-3	293.3	3/3	2918-	1284-3450
20%-Ni Maraging Steel	Welded & Aged	H-W	245.0	3/3	83	23-200
18%-Ni Maraging Steel	Annealed & Aged	I-4	249.9	3/3	68	60-85
		I - 6	255.4	0/3	-	NF1200
		I-l	283.0	3/3	34.5	20.5-46.5
	Annealed & Aged	I-8	323.2	3/3	24	20-27.5
V	50% CW & Aged	I-5	278.0	0/3		NF1200
18%-Ni Maraging Steel		I-2	302.5	0/3	-	NF840
		I-7	331.0	0/3	-	NF1200
-		I3	323.0	4/4	625	440-988
\bigvee	50% CW & Aged	I - 9	354.4	1/3	668	668-NF1200
18%-Ni Maraging Steel	Welded & Aged	W-I	236.6	3/3	343	310-360

Nötes:

^{*}All samples stressed to give a maximum outer fiber stress of 75% of the 0.2% offset yield strength.

^{**} Refers to code letter in master schedule, Table 1.

^{***} Indicates no failures of three samples exposed.

TABLE 6

BENT BEAM TESTS, STRESS-CORROSION CRACKING IN AERATED TAP WATER *

Material	Variable	Code No.	Yield Strength <u>ksi</u>	Failed/ Tested		Time, hours Range
6Al-4V Titanium	Annealed	G-l	138.0	0/3***	-	NF1700
6Al-4V Titanium	Quenched & Aged	G-2	163.0	0/3	-	NF1700
6Al-4V Titanium	As-welded	G-W	135.0	0/2	-	NF750
20%-Ni Maraging Steel	Annealed & Aged	H-l	291.3	0/3	-	NF3100
	50% CW & Aged	H-2	321.0	1/3	330	330-NF1600
\bigvee	75% CW & Aged	H-3	298.3	2/3	2200	1284-NF3100
20%-Ni Maraging Steel	Welded & Aged	H-W	245.0	3/3	5.2	3.3-6.5
18%-Ni Maraging Steel	Annealed & Aged	I-4	249.9	0/3	-	NF980
	Annealed & Aged	I-l	283.0	2/3	350	325-NF2000
	50% CW & Aged	I - 2	302.5	0/3	-	NF840
	50% CW & Aged	I-3	323.0	0/3	-	NF2000
18%-Ni Maraging Steel	Welded & Aged	I-W	236.6	0/3	-	NF400

^{*}All samples stressed to give a maximum outer fiber stress of 75% of the 0.2% offset yield strength.

^{**} Refers to code letter in the master schedule, Table 1.

^{***}Indicates no failures of three samples exposed.

BENT BEAM TESTS, STRESS-CORROSION CRACKING IN AERATED SALT WATER *

Material	Variable	Code No.**	<u>KSl</u>	Tested	Mean	Time, hours Range
6Al-4V Titanium	Annealed	G-l	138.0	0/3***	-	NF1700
6Al-4V Titanium	Quenched & Aged	G-2	163.0	0/3	-	NF1700
6Al-4V Titanium	As-welded	G-W	135.0	0/2	_	NF750
20%-Ni Maraging Steel	Annealed & Aged	H-l	291.3	3/3	7.3	6-8.5
	50% CW & Aged	H-2	321.0	0/3	-	NF1600
\bigvee	75% CW & Aged	H-3	298.3	0/3	-	NF3100
20%-Ni Maraging Steel	Welded & Aged	H-W	245.0	3/3	0.8	0.75-0.85
18%-Ni Maraging Steel	Annealed & Aged	I-4	249.9	3/3	430	140-700
).		I-6	255.4	0/2	-	NF1200
	\bigvee	I-l	283.0	3/3	51.5	19-100
	Annealed & Aged	I-8	323.2	2/2	6.5	6-7
	50% CW & Aged	I-5	278.0	0/2	-	NF1200
,		I - 2	302.5	0/3	-	NF840
		I-7	331.0	0/2	-	NF1200
	1/	I-3	323.0	2/3	1290	1000-NF2000
\bigvee	50% CW & Aged	I - 9	254.4	2/2	20	20-20
18%-Ni Maraging Steel	Welded & Aged	I-W	236.6	4/4	121	115-139

Notes:

^{**} Refers to code letter in master schedule, Table 1.

^{***} Indicated no failures of three samples exposed.

TABLE 8

BENT BEAM TESTS, STRESS-CORROSION CRACKING IN AERATED 0.25% SODIUM DICHROMATE *

Material	Variable	Code No.**	Yield Strength ksi	Failed/ Tested	Failure Mean	Time, hours Range
6Al-4V Titanium	Annealed	G-l	138.0	o/3 ^{***}	-	NF1700
6Al-4V Titanium	Quenched & Aged	G-2	163.0		-	NF1700
6Al-4V Titanium	As-welded	GW	135.0	0/2	-	NF750
20%-Ni Maraging Steel	Annealed & Aged	H-l	291.3	1/3	1.0	1-NF3100
	50% CW & Aged	H-2	321.0	0/3	-	NF1600
\ /	75% CW & Aged	H-3	298.3	0/3	-	NF3100
20%-Ni Maraging Steel	Welded & Aged	H-W	245.0	0/3	-	NF 500
18%-Ni Maraging Steel	Annealed & Aged	I-4	249.9	0/3	-	nf980
<u> </u>	Annealed & Aged	I-l	283.0	3/3	117	100-150
	50% CW & Aged	I-2	302.5	0/3	-	NF840
\/	50% CW & Aged	I-3	323.0	0/3	-	NF2000
18%-Ni Maraging Steel	Welded & Aged	I-W	236.6	0/3	-	NF400

^{*}All samples stressed to give a maximum outer fiber stress of 75% of the 0.2% offset yield strength.

^{**} Refers to code letter in master schedule, Table 1.

^{***} Indicated no failures of three samples exposed.

TABLE 9

BENT BEAM TESTS, STRESS-CORROSIÓN CRACKING IN $^{4\%}$ SOLUBLE OIL SOLUTION *

Material	Variable	Code No.	Yield Strength ksi	Failed/.	Failure'. Mean	Time, hours Range
6Al-4V Titanium	Annealed	G-l	138.0	0/3***	<u>.</u>	NF1700
6Al-4V Titanium	Quenched & Aged	G-2	163.0		-	NF1700
6Al-4V Titanium	As-Welded	G-W	135.0	0/2	-	NF750
20%-Ni Maraging Steel	Annealed & Aged	H-l	291.3	0/2	-	NF2000
20%-Ni Maraging Steel	50% CW & Aged	H-2	321.0	0/3		NF1600
20%-Ni Maraging Steel	75% CW & Aged	H-3	298.8	0/3	-	NF2000
20%-Ni Maraging Steel	Welded & Aged	H-W	245.0	0/3	-	NF 500
18%-Ni Maraging Steel	Annealed & Aged	I-)4	249.9	0/3	-	NF980
	Annealed & Aged	I-l	283.0	3/3	417	400-450
	50% CW & Aged	I-2	302.5	0/3	-	NF840
\bigvee	50% CW & Aged	I-3	323.0	0/3	-	NF2000
18%-Ni Maraging Steel	Welded & Aged	W-I	236.6	0/3	-	NF400

^{*}All samples stressed to give a maximum outer fiber stress of 75% of the 0.2% offset yield strength.

^{**} Refers to code letter in master schedule, Table 1.

^{***} Indicates no failures of three samples exposed.

TABLE 10

BENT BEAM TESTS, STRESS-CORROSION CRACKING IN 140 $^{\rm O}{\rm F}$ MOISTURE-SATURATED AIR $^{\rm *}$

Material	Variable	Code No.**	ksi	Tested	Failure Mean	Time, hours
6Al-4V Titanium	Annealed	G-l	138.0	o/3 ^{***}	-	NF1700
6Al-4V Titanium	Quenched & Aged	G-2	163.0	0/3	-	NF1700
6Al-4V Titanium	As-welded	G-W	135.0	0/2	-	NF750
20%-Ni Maraging Steel	Annealed & Aged	H-l	291.3	3/3	100	22-174
	50% CW & Aged	H-2	321.0	1/3	1410	1410-NF1600
\bigvee	75% CW & Aged	H-3	298.3	3/3	1200	1080-1860
20%-Ni Maraging Steel	. Welded & Aged	H-W	245.0	3/3	10	1-14
18%-Ni Maraging Steel	Annealed & Aged	I-4	249.9	3/3	370	170-475
	<u> </u>	I - 6	255.4	3/3	280	212-362
	\bigvee	I-l	283.0	3/3	21	20.5-21.5
	Annealed & Aged	I-8	323.2	3/3	56.5	25.5-72
j.	50% CW & Aged	I - 5	278.0	0/3	-	NF1200
		I-2	302.5	2/3	360	340-nf840
		I-7	331.0	0/3	-	NF1200
	\bigvee	I-3	323.0	3/3	260	245-290
\bigvee	50% CW & Aged	I - 9	354.4	3/3	833	560-1010
18%-Ni Maraging Steel	. Welded & Aged	W-I	236.6	3/3	131	115-139

Notes:

 $^{^{*}}$ All samples stressed to give a maximum outer fiber stress of 7% of the 0.2% offset yield strength.

^{**} Refers to code letter in master schedule, Table 1.

^{***} Indicates no failures of three samples exposed.

Report No. IO414-01-23

I

.

1

7

1

TABLE 11

BENT BEAM TESTS, STRESS-CORROSION CRACKING IN TRICHLOROETHYLENE IMMERSION *

			Yield			
Material	Variable	Code No.	Strength ksi	Failed/ Tested	Failure Mean	Time, hours Range
6Al-4V Titanium	Annealed	G-1	138.0	0/3	-	NF1150
6Al-4V Titanium	Quenched & Aged	G-2	163.0	0/3	-	NF1150
6Al-4V Titanium	As-welded	G-W	135.0	0/2	-	NF1150
20%-Ni Maraging Steel	Annealed & Aged	H-l	291.3	3/3	742	550-960
	50% CW & Aged	H-2	321.0	0/3	-	NF1150
\bigvee	75% CW & Aged	H-3	293.3	0/3		NF1150
20%-Ni Maraging Steel	Welded & Aged	H-W	245.0	3/3	48	40-64
18%-Ni Maraging Steel	Annealed & Aged	I-l	283.0	2/3	610	550-NF1150
	50% CW & Aged	I-2	302.5	0/3	-	NF480
\bigvee	50% CW & Aged	I-3	323.0	0/3	-	NF1150
18%-Ni Maraging Steel	Welded & Aged	I-W	236.6	0/3	-	NF400

Table 11

Notes:

 $^{^{\}star}$ All samples stressed to give maximum outer fiber stress of 7% of 0.2% offset yield strength.

^{**} Refers to code letter in master schedule, Table 1.

^{***} Indicates no failures of three samples exposed.

BENT BEAM TESTS, STRESS-CORROSION CRACKING IN COSMOLINE IMMERSION*

Material	Variable	Code No.**	Yield Strength ksi	Failed/ Tested	Failure Mean	Time, hours Range
6Al-4V Titanium	Annealed	G-l	138.0	0/3 ^{***}	-	NF1700
6Al-4V Titanium	Quenched & Aged	G-2	163.0	0/3	-	NF1700
6Al-4V Titanium	As-welded	G-W	135.0	0/2	-	NF750
20%-Ni Maraging Steel	Annealed & Aged	H-ll	291.3	0/3	-	NF2000
	50% CW & Aged	H - 2	321.0	0/3	-	NF1000
	75% CW & Aged	н-3	293.3	0/3	-	NF2000
20%-Ni Maraging Steel	Welded & Aged	H-W	245.0	0/0		_
18%-Ni Maraging Steel	Annealed & Aged	I-4	249.9	0/3	-	NF980
	Annealed & Aged	I-1	283.0	0/3	-	NF2000
	50% CW & Aged	I - 3	323.0	0/3	-	NF2000
y 18%-Ni Maraging Steel	Welded & Aged	W-I	236.6	0/0	_	-

Notes:

^{*} All samples stressed to give maximum outer fiber stress of 75% of 0.2% offset yield strength.

^{**} Refers to code letter in master schedule, Table 1.

^{***} Indicates no failures of three samples exposed.

TABLE 13

BENT BEAM TESTS, STRESS-CORROSION CRACKING IN LABORATORY AIR*

Material	Variable	Code**	Yield Strength ksi	Failed/ Tested	Failure Mean	Time, hours Range
6Al-4V Titanium	Annealed	G-1	138.0	0/0	-	-
6Al-4V Titanium	Quenched & Aged	G-2	163.0		-	-
6Al-4V Titanium	As-welded	G-W	135.0	0/2***	_	NF750
20%-Ni Maraging Steel	Annealed & Aged	H-1	291.3		-	NF3100
	50% CW & Aged	H-2	321.0	0/2	-	NF1600
\bigvee	75% CW & Aged	H-3	293.3	0/3	-	NF3100
20%-Ni Maraging Steel	Welded & Aged	H-W	245.0	0/3	-	NF170
18%-Ni Maraging Steel	Annealed & Aged	I-4	249.9	0/0	-	-
		I-6	255.4	0/2	-	NF1200
	\bigvee	I-l	283.0	0/3		NF2000
	Annealed & Aged	I-8	323.2	0/1	-	NF1200
	50% CW & Aged	I-5	278.0	0/1	-	NF1200
5		I - 2	302.5	0/0	-	-
		I-7	331.0	0/2		NF1200
	\bigvee	I-3	323.0	0/3	-	NF2000
\bigvee	50% CW & Aged	I - 9	354.4	0/2	-	NF1200
18%-Ni Maraging Steel	Welded & Aged	I-W	336.6	0/3	-	NF400

Notes:

^{*}All samples stressed to give a maximum outer fiber stress of 75% of the 0.2% offset yield strength.

^{**} Refers to code letter in master schedule, Table 1.

^{***}Indicates no failures of two samples exposed.

TABLE 14

BENT BEAM TESTS, STRESS-CORROSION CRACKING IN SEACOAST ATMOSPHERIC EXPOSURE*

Material		Codex No.	Yield Strength ksi	Failed/ Tested	Failure Mean	Time, hours Range
6Al-4V Titanium	Annealed	G-1	138.0	0/3***		NF1400
6Al-4V Titanium	Quenched & Aged	G-2	163.0	0/3	-	NF1400
6Al-4V Titanium	As-welded	G-W	135.0	0/2	-	NF1400
20%-Ni Maraging Steel	Annealed & Aged	H-l	291.3	3/3	140	116-188
	50% CW & Aged	H-2	321.0	3/3	1034	800-1150
\bigvee	75% CW & Aged	H-3	293.3	3/3	1000	860-1150
20%-Ni Maraging Steel	Welded & Aged	H-W	245.0	0/0	-	~
18%-Ni Maraging Steel	Annealed & Aged	I-6	255.4	0/2	-	NF1400
1	Annealed & Aged	I-1	283.0	6/6	380	312-450
	Annealed & Aged	1-8	323.2	2/2	700	350-1050
	50% CW & Aged	I - 5	278.0	0/2	-	NF1400
		I-2	302.5	0/0	-	~
		I-7	331.0	0/2	-	NF1400
,	V	I-3	323.0	0/3	-	NF1400
	50% CW & Aged	I - 9	354.4	0/2	-	NF1400
18%-Ni Maraging Steel	Welded & Aged	I-W	236.6	0/0	-	~

Notes:

^{*}All samples stressed to give a maximum outer fiber stress of 75% of 0.2% offset yield strength.

^{**} Refers to code letter in master schedule, Table 1.

^{***} Indicates no failures of three samples exposed.

CENTER NOTCH TESTS, STRESS-CORROSION CRACKING IN 0.25% SODIUM DICHROMATE

Material	Variable	Code No.	$\underbrace{^{K_{C}}_{\text{ksi}} \underbrace{\text{in}}}$	Failed/ Tested	Failure Mean	Time, hours Range
6Al-4V Titanium	Annealed	G-l	85.0	0/2**	-	NF100
6Al-4V Titanium	Quenched & Aged	G-2	86.2	0/2	-	NF100
20%-Ni Maraging Steel	Annealed & Aged	H-l	39.3	0/2	-	NF200
20%-Ni Maraging Steel	50% CW & Aged	H-2	24.5	0/0	-	
20%-Ni Maraging Steel	75% CW & Aged	H-3	20.5	0/2	-	NF100
18%-Ni Maraging Steel	Annealed & Aged	I-4	133.0	0/1	-	NF100
ľ	Annealed & Aged	I-l	121.0	1/1	67.9	-
	Annealed & Aged	I - 8	103.8	1/1	37.7	-
	50% CW & Aged	I-5	107.2	0/1	-	NF200
		I-2	92.2	0/0	-	-
	\bigvee	I-7	119.0	0/2	-	NF100
18%-Ni Maraging Steel	50% CW & Aged	I-3	76.4	1/1	33.2	-

^{*}All samples given direct load of 75% of K.

^{**} Refers to code letter in master schedule, Table 1.

^{***} Indicates no failures of two samples tested.

TABLE 16

CENTER NOTCH TESTS, STRESS-CORROSION CRACKING IN 3% SODIUM CHLORIDE SOLUTION

Material	Variable	Code*	$\frac{{\rm K_c}}{{\rm ksi}\sqrt{\rm in}}$	Tested	Failure Mean	Time, hours Range
6Al-4V Titanium	Annealed	G-1	85.0	0/2***	-	NF100
6Al-4V Titanium	Quenched & Aged	G-2	86.2	0/2	-	NF100
20%-Ni Maraging Steel	Annealed & Aged	H-l	39•3 ^{****}	1/1	4.2	-
		H-1	39.3	2/2	7.2	6.6-7.8
		H-1	39.3 *****	1/1	8.2	-
	Annealed & Aged	H-1	39.3	*1/1	12.7	-
\downarrow	50% CW & Aged	H-2	24.5	2/2	14.0	8.20
20%-Ni Maraging Steel	75% CW & Aged	H-3	20.5	2/2	40.2	34.4-46
18%-Ni Maraging Steel	Annealed & Aged	I-4	133.0	1/1	7.8	-
		I-4	133.0	2/2	12.3	9.5-15.2
		I-4	133.0	1/1	64	-
ļ	j	I - 6	129.5	3/3	22	10-35
		1-1	121.0	2/2	20.6	18-23
	Annealed & Aged	I-8	103.2	2/2	8.8	8.3-9.3
ļ.	50% CW & Aged	I-5	107.2	2/2	13.4	12.5-14.2
		I-2	92.2	2/2	7.2	7.2-7.2
	,	I-7	119.0	3/3	9.9	4.4-12.9
	\downarrow	I-3	76.4	2/2	5•9	5.0-6.9
18%-Ni Maraging Steel	50% CW & Aged	I - 9	64.4	2/2	4.5	5.0-4.0

 $^{^{*}}_{\rm all}$ samples given direct load of 75% of K $_{\rm c}$ except as noted.

^{**} Refers to code letter in master schedule, Table 1.

^{***}Indicates no failures of two samples tested.

Tested at 83% of Kc.

Tested at 60% of K.

^{******} Tested at 27% of $\rm K_c$.

CENTER NOTCH TESTS, STRESS-CORROSION CRACKING IN DISTILLED WATER*

Material	Variable	Code No.	$\overset{K}{\underset{\text{ksi}}{\bigvee}}\overset{\text{in}}{\text{in}}$	Failed/ Tested	Failure Mean	Time, hours Range
6Al-4V Titanium	Annealed	G-l	85.0	0/3**	-	NF100 ·
6Al-4V Titanium	Quenched & Aged	G-2	86.2	0/3	-	NF100
20%-Ni Maraging Steel	Annealed & Aged	H-l	39.3	3/3	5.1	4.6-6.6
20%-Ni Maraging Steel	50% CW & Aged	H-2	24.5	0/0	-	-
20%-Ni Maraging Steel	75% CW & Aged	H-3	20.5	1/3	121	121-NF300
18%-Ni Maraging Steel	Annealed & Aged	I-4	133.0	0/0		
	Annealed & Aged	I - 6	129.5	0/1	-	NF200
	Annealed & Aged	I-l	121.0	3/3	85.3	83-87
	50% CW & Aged	I - 5	107.2	0/1	•••	NF200
· }		I-2	92.2	2/2	17.1	16.6-17.6
		I-7	119.0	0/0	-	-
\bigvee	\bigvee	I-3	76.4	2/2	13.2	12.6-13.8
18%-Ni Maraging Steel	50% CW & Aged	I - 9	64.4	0/0	-	-

^{*}All samples given direct load of 75% of $\rm K_{\rm c}$

^{**}Refers to code letter in master schedule, Table 1.

^{***}Indicates no failures of three samples tested.

TABLE 18

CENTER NOTCH TESTS, STRESS-CORROSION CRACKING IN 4% SOLUBLE OIL SOLUTION *

Material	Variable	Code No.**	K ksi√in	Failed/ Tested	Failure Mean	hours Range
6Al-4V Titanium	Annealed	G-l	85.0	o/1 ^{***}	-	NF100
6Al-4V Titanium	Quenched & Aged	G-2	86.2	0/1	-	NF100
20%-Ni Maraging Steel	Annealed & Aged	H-l	39.3	0/2	-	NF200
20%-Ni Maraging Steel	Annealed & Aged	H-2	24.5	0/0	-	-
20%-Ni Maraging Steel	75% CW & Aged	H-3	20.5	0/1		NF100
18%-Ni Maraging Steel	Annealed & Aged	I-4	133.0	0/1	-	NF100
	Annealed & Aged	I-1	121.0	0/0	-	
\bigvee	50% CW & Aged	I2	92.2	0/0	-	-
18%-Ni Maraging Steel	50% CW & Aged	I-3	76.4	0/0	-	-

Notes:

Table 18

 $[\]overset{*}{\text{All}}$ samples given direct load of 75% of K_{c} .

^{**} Refers to code letter in master schedule, Table 1.

^{***}Indicates no failure of one sample tested.

		Aerated	erated 3% NaCl Solution	Solution	140°F Saturated Air	Saturate	ed Air		Seacoast	Seacoast Exposure
		Failure	Failure	Failure Time, hr	Failure	Failure	Time, hr	Failure *	Failur	Failure Time, hr
Surface Condition	Coating	Ratio	Mean	Range	Ratio	Mean	Range	Ratio	Mean	Range
Surface ground	None (control)	t1/ti	1.6	0.8-2.5	2/2	1 9	64 48-70	2/2	911	911-911
or sanded	Polyurethane	3/3**	149	144-168	9/9	3500	2830-5500	1/2	250	250-NF 900
	Inhibited epoxy 454-1-1	0/5	,	NF 1200	3/3**	2720	2590-2850	2/0	,	NF 900
	Inhibited epoxy 463-1-5	6/2	ι	NF 31.00	3/3	929	926-004	0/2	ı	NF 900
	Inhibited epoxy 463-4-8	3/3	550	525-578	3/3	845	289-1512	1	1	ı
	Epoxy 463-1-5 over 454-1-1	***7/0	ı	NF 5860	* ^{†/†}	4000	2590-4950	ı	1	•
	Zinc silicate, Type 4	2/2	1.2	0.8-1.6	2/5	₄ 22	147-696		971	116-NF 900
	80% aluminum epoxy	2/5	1.00	100-100	2/2	30	16-45	2/2	099	550-780
	70% titanium epoxy	2/2	150	140-160	2/2	198	136-256		720	720-NF 900
Sand-blasted	None (control)	2/2	18.5	14-23	1/1	26.5	1		188	1
	Pure vinyl	٥/5		NF 1500	1/2	029	670-NF 1500		ı	NF 900
	Zinc silicate, Type 4	z/5	7 7	10-18	2/0	1	NF 1500		ı	NF 900
	Epoxy over zinc silicate, Type 4	2/2	77	1.5-153	2/2	513	422-50h	0/1	,	NF 900
	Inorganic zinc, Type ll	2/2	687	674-702	2/2	821	723-819	₹/0		NF 900
	Epoxy 188 over inorganic zinc ll	2/2	54	42-56	٥/5		NF 2160	,	•	
	Organic zinc XL-4-245	2/2	214	27-400	2/2	992	742-790	1	,	
	Modified vinyl system	2/5	550	520-583	2/2	049	455-850	1/2	450	450-NF 900

* Ratio of number failed to number exposed.

^{**} Data taken from earlier work; samples not in current testing.