$$3i_1 - i_2 - 2(3 + i_2) = 8$$

และ

$$-3i_1 + 5i_2 + 2(3 + i_2) + 3i_1 = 0$$

เรียบเรียงสมการทั้งสองใหม่

$$3i_1 - 3i_2 = 14 \tag{4.55}$$

และ

$$7i_2 = -6 (4.56)$$

ดังนั้นจากสมการ (4.56) จะได้คำตอบ

$$i_2 = \frac{-6}{7} A$$

และ จากสมการ (4.55)

$$i_1 = \frac{80}{21}$$
 A

หาค่ากระแส i_3 จากสมการเงื่อนไข

$$i_3 = \frac{-27}{7}$$
 A

4.3 การเลือกวิธีวิเคราะห์วงจร

จากหัวข้อที่ผ่านมาสองหัวข้อเราได้ศึกษาวิธีการวิเคราะห์วงจรสองวิธีคือวิธีการวิเคราะห์แบบโนด (หรือปม) ซึ่งจะสร้างสมการในดจาก KCL แล้วหาค่าแรงดันในดเป็นคำตอบ และวิธีการวิเคราะห์แบบเมชซึ่ง จะสร้างสมการเมชจาก KVL แล้วหาคำตอบคือกระแสเมช

ในการวิเคราะห์วงจรใดๆ สามารถเลือกใช้วิธีใดก็ได้ อย่างไรก็ตามมีบางกรณีที่วิธีหนึ่งจะน่าใช้มาก กว่าอีกวิธี เช่นในกรณีที่วงจรมีแต่แหล่งจ่ายแรงดัน ซึ่งอาจจะง่ายกว่าที่จะใช้วิธีการวิเคราะห์หากระแสเมช แต่เมื่อวงจรมีแต่แหล่งจ่ายกระแสก็อาจจะง่ายกว่าหากวิเคราะห์โดยวิธีการวิเคราะห์หาแรงดันโนด

แต่ถ้าวงจรมีทั้งแหล่งจ่ายกระแสและแหล่งจ่ายแรงดัน ในกรณีนี้อาจต้องเปรียบเทียบจำนวนสม การที่ต้องการในแต่ละวิธี หากวงจรมีจำนวนโนดน้อยกว่าจำนวนเมช วิธีการหาแรงดันโนดน่าจะดีกว่า แต่ หากวงจรมีจำนวนเมชน้อยกว่าโนด วิธีหาค่ากระแสเมชก็น่าจะดีกว่า อีกจุดหนึ่งที่ควรจะนำเข้ามาร่วมพิจารณาด้วยก็คือสิ่งที่ต้องการเป็นคำตอบ หากต้องการคำตอบ เป็นกระแสก็ควรเลือกวิธีหากระแสเมช แต่หากต้องการคำตอบส่วนใหญ่เป็นแรงดันก็ควรเลือกวิธีการหาแรง ดันโนด

ตัวอย่าง 4.5 จงหาวิธีที่เหมาะสมในการวิเคราะห์วงจรในรูป Ex4.5 เมื่อต้องการหาค่า

- (ก) แรงดัน v_{ab} ในรูป Ex4.5 (ก)
- (ข) กระแสผ่านตัวต้านทาน R_{2} ในรูป Ex4.5 (ข)
- (ค) กระแส iในรูป Ex4.5 (ค)

วิธีทำ

- (ก) วิธีการหาแรงดันในดเหมาะสมกว่าเนื่องจากเราทราบแรงดัน v_a แล้ว และต้องการหาค่า แรงดัน v_{ab} ดังนั้นต้องการเพียงหนึ่งสมการจาก KCL ที่ในด b
- (ข) วิธีการหากระแสเมชเหมาะสมกว่าเนื่องจากทราบค่ากระแสในเมชขวามือแล้วและต้องการคำตอบ เป็นค่ากระแส เขียนหนึ่งสมการจาก KVL สำหรับเมชซ้ายมือเท่านั้น
- (ค) วงจรนี้มีสี่เมช สองในดบวกในดอ้างอิง อย่างไรก็ตามเราทราบค่ากระแสในสามเมชซึ่งถูกกำหนด โดยแหล่งจ่ายกระแสทั้งสาม ดังนั้นวิธีการหากระแสเมชเหมาะสมกว่า เขียนสมการอีกหนึ่งสมการ จาก KVI

4.4 วิธีการวิเคราะห์วงจรตัวต้านทานโดยใช้โปรแกรมวิเคราะห์วงจร

การใช้โปรแกรมคอมพิวเตอร์มาช่วยในการวิเคราะห์วงจรแบ่งออกเป็นสองลักษณะคือ การนำ โปรแกรมมาช่วยแก้สมการหาคำตอบ เช่นหาเมตริกซ์ผกผัน เป็นต้น อีกลักษณะหนึ่งจะเป็นการจำลองวงจร โดยกำหนดลักษณะการต่อกันขององค์ประกอบต่างๆ (Circuit Topology) ให้กับวงจร กำหนดชนิดของการ วิเคราะห์ คำตอบที่ต้องการ และเงื่อนไขประกอบอื่นๆ แล้วทำการจำลองวงจร การจัดการข้อมูล หลักการที่ ใช้ในการคำนวณ และรูปแบบชนิดของการวิเคราะห์แบบต่างๆ ภายในโปรแกรมเหล่านี้ และรายละเอียด เกี่ยวกับการใช้งานอยู่นอกเหนือขอบเขตของหนังสือเล่มนี้และจะไม่กล่าวถึงในที่นี้ ภาคผนวก จ จะแนะนำ ขั้นตอนเบื้องต้นและตัวอย่างในการใช้โปรแกรมนี้

การกำหนดลักษณะการต่อกันขององค์ประกอบต่างๆในวงจรอาจทำได้โดยการเขียนแฟ้มอินพุท สำหรับโปรแกรมจำลองวงจรนั้น ซึ่งอาจเป็นแฟ้มแบบตัวอักษร (Text File) หรือเป็นแฟ้มแบบแผนภาพวงจร (Circuit Schematic) ก็ได้ ในวิธีแรกเราจะใช้โปรแกรมเขียนและแก้ไขตัวอักษร (Text Editor) ส่วนใน แบบหลังนั้นจะใช้โปรแกรมสำหรับเขียนและแก้ไขแผนภาพวงจร (Schematic Editor) โปรแกรมด้านนี้ใน ปัจจุบันมีจำนวนมาก เช่น โปรแกรม PSPICE (ในปัจจุบันเป็นส่วนหนึ่งของโปรแกรม Orcad) โปรแกรม Electronic Workbench เป็นต้น ซึ่งโปรแกรมเหล่านี้ จะมีโปรแกรมในส่วนของการเขียนและแก้ไขมาให้ด้วย ซึ่งในปัจจุบันนิยมการเขียนและแก้ไขในลักษณะของแผนภาพวงจรมากกว่า นอกจากนี้บางโปรแกรมให้คำ

ตอบในลักษณะการทดลองเทียม (Virtual Experiment) คือมีภาพการต่อวงจรและการใช้เครื่องมือวัดเช่น โวลท์มิเตอร์ทำการวัดที่ตำแหน่งต่างๆ ในวงจร ในหัวข้อนี้จะแนะนำตัวอย่างการใช้โปรแกรมหนึ่งคือ โปรแกรมสำหรับช่วยออกแบบ วิเคราะห์ และจำลองวงจร ชื่อ TINA (Toolkits for Interactive Circuit Analysis) ซึ่งใช้งานค่อนข้างง่ายและมีความสามารถหลากหลายดังจะได้ศึกษาต่อไป

รูปที่ 4.23 วงจรสำหรับการใช้โปรแกรม TINA มาทำการวิเคราะห์

รูปที่ 4.23 แสดงตัวอย่างวงจรที่จะใช้โปรแกรม TINA มาทำการวิเคราะห์ ในวงจรนี้เราต้องการ คำนวณหาค่ากระแสเมชสองค่าคือ i_1 และ i_2 สมการเมชสองสมการคือ

$$5i_1 - 4i_2 = 9 (4.57)$$

และ

$$-4i_1 + 8i_2 = 0 (4.58)$$

แก้สมการทั้งสองจะได้คำตอบ $i_1=3\,$ A และ $i_2=1.5\,$ A

ร**ูปที่** 4.24 วงจรที่วาดโดยใช้โปรแกรมสำหรับเขียนและแก้ไขแผนภาพวงจร

ในการหาคำตอบจากการวิเคราะห์วงจรโดยใช้โปรแกรม TINA จะเริ่มจากการเปิดโปรแกรมสำหรับ เขียนและแก้ไขแผนภาพวงจรขึ้นมาแล้วเขียนองค์ประกอบวงจรต่างๆ จากรูปที่ 4.23 (ดูวิธีการเขียน รูปวงจร ลงในโปรแกรมสำหรับเขียนและแก้ไขแผนภาพวงจรของโปรแกรม TINA ในภาคผนวก จ) หรืออาจศึกษาได้ เองเนื่องจากจะมีลักษณะเหมือนการวาดรูปโดยการนำองค์ประกอบต่างๆ ที่ต้องการมาวางในตำแหน่งที่ ต้องการและเชื่อมต่อเข้าด้วยกันโดยการวาดเส้นเชื่อมต่อ อย่าลืมวาดตำแหน่งกราวด์ของวงจร และตรวจ สอบว่ามีการเชื่อมต่อเกิดขึ้นจริงที่ทุกตำแหน่ง ไม่เช่นนั้นจะได้รับข้อความเตือนว่าเกิดข้อผิดพลาด (Error Message) ขึ้น เมื่อวาดวงจรเสร็จจะได้วงจร ดังแสดงในรูปที่ 4.24 และบันทึกไว้ในชื่อแฟ้มที่ต้องการ ซึ่งจะ

มีนามสกุลเป็น ชื่อแฟ้ม.sch ซึ่งหมายถึงว่าเป็นแฟ้มแผนภาพวงจรนั่นเอง ในโปรแกรมจำลองวงจรทั่วไปจะ ใช้หลักการวิเคราะห์ที่เรียกว่า การวิเคราะห์ในดแบบดัดแปลง (Modified Node Analysis, MNA) ดังนั้นผล จากการคำนวณจะเป็นค่าแรงดันในด ในตัวอย่างนี้เราต้องการค่ากระแสเมช ดังนั้นเราจะใส่แอมป์มิเตอร์ อนุกรมเข้าไปในตำแหน่งที่เราต้องการทราบค่ากระแส ดังแสดงในรูปที่ 4.25

รูปที่ 4.25 วงจรในรูป 4.24 หลังจากใส่แอมป์มิเตอร์เพื่อวัดกระแสเมช

เมื่อได้วงจรเรียบร้อยแล้วจะเป็นการกำหนดชนิดของการวิเคราะห์ ซึ่งในวงจรของเรามีแต่ตัวต้าน ทานและแหล่งจ่ายแบบกระแสตรงดังนั้นเราจะทำการวิเคราะห์กระแสตรง (DC Analysis) (ดูวิธีการเลือก ชนิดของการวิเคราะห์ในภาคผนวก จ) หากไม่กำหนดค่าที่ต้องการทราบโปรแกรมจะคำนวณหาค่ากระแส และแรงดันทุกค่าในวงจร สำหรับวงจรง่ายในตัวอย่างนี้สามารถคำนวณค่าทั้งหมดได้ในเวลาน้อยมาก ดัง นั้นจึงไม่ต้องกำหนดอะไร แต่ในกรณีที่เป็นวงจรขนาดใหญ่มีจำนวนโนดและเมชมากๆ ควรกำหนดค่าที่ ต้องการทราบและแสดงผลเฉพาะค่าที่ต้องการเท่านั้น

เมื่อกำหนดชนิดของการวิเคราะห์แล้ว ก็สั่งให้โปรแกรมทำการจำลองวงจร ซึ่งจะได้ผลนำมาแสดง ในลักษณะของการปรากฏขั้วของโวลท์มิเตอร์ซึ่งเราสามารถนำไปแตะที่โนดใดที่ต้องการทราบค่าก็จะ ปรากฏค่าของแรงดันที่โนดนั้นในกรอบสี่เหลี่ยมซึ่งเปรียบเสมือนการแสดงผลของโวลท์มิเตอร์แบบตัวเลข นั่นเอง และที่แอมป์มิเตอร์จะแสดงค่ากระแสที่ต้องการ เปรียบเทียบกับผลที่ได้โดยการคำนวณจะเห็นว่าได้ ค่าเท่ากัน

ในกรณีที่ใช้โปรแกรมอื่นๆ ในการจำลองวงจร จะต้องเรียนรู้วิธีในการป้อนข้อมูลให้กับโปรแกรมนั้น และการกำหนดเงื่อนไขต่างๆ ในทำนองเดียวกับตัวอย่างข้างต้น

4.5 แบบฝึกหัดท้ายบท

1. พิจารณาวงจรในรูป P4.1 จงหาค่าความต้านทาน $R_{_1}$ และ $R_{_2}$ ที่จะทำให้แรงดัน $v_{_1}=1~$ \vee และ $v_{_2}=2~$ \vee

2. จงหาค่าแรงดันโนด $v_{\scriptscriptstyle a}$ ของวงจรในรูป P4.2

ฐปที่ P4.2

3. จงหาค่ากระแส i_b ของวงจรในรูป P4.3

ลูปที่ P4.3

4. จงหาค่ากระแสเมช i_a และ i_b ของวงจรในรูป P4.4

ฐปที่ P4.4

5. จงหาค่าแรงดัน $v_{_o}$ ของวงจรในรูป P4.5

รูปที่ P4.5

6. จงหาค่าแรงดันในด v_c และค่ากระแส i_x ของวงจรในรูป P4.6 โดยใช้วิธี (ก) วิเคราะห์โนด (ข) วิเคราะห์เมช

ลูปที่ P4.6