1.)
$$P(x|w_1) = \sim N(\mu_1 = [0], \Sigma = I)$$

 $P(x|w_2) \sim N(\mu_2 = [1], \Sigma = I)$

$$P(x|w_3) \sim_{0.5} N(H_3 = [0.5], \Sigma = I) + 0.5 N(H_4 = [-0.5])$$

Given eau probable categories. $\Sigma = I$

:
$$P(w_1) = \frac{1}{3}$$
, $P(w_2) = \frac{1}{3}$, $P(w_3) = \frac{1}{3}$

For minimum probability of error classification.

$$P(\text{error}|X) = \min_{k=1}^{\infty} \frac{P(w_2|X) + P(w_3|X)}{P(w_1|X) + P(w_3|X)} \text{ if } x \in w_2$$

$$P(w_1|X) + P(w_2|X) \text{ if } x \in w_3$$

Now,
$$P(w_i^2|x) \equiv P(x|w_i^2) \cdot P(w_i^2) = P(x|w_i^2) \cdot \frac{1}{3}$$

Now,
$$P(w_i^2|x) = P(x|w_i^2) \cdot P(w_i^2|x) + P(w_2|x) \cdot f(x + w_3) \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2$$

$$\Rightarrow P(x|w_1) = \frac{1}{2\pi} \cdot \exp\left[-\frac{1}{2} \cdot \begin{bmatrix} 0.30 \\ 0.3 \end{bmatrix} \cdot \begin{bmatrix} 0.3 \\ 0.3 \end{bmatrix} \right]$$

$$=\frac{1}{2\pi}\exp\{-0.09.\}=0.145456.$$

$$P(x|w_2) = \frac{1}{(2\pi)} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} \cdot \begin{bmatrix} -0.7 & 0 \\ 0 & -0.7 \end{bmatrix} \begin{bmatrix} -0.7 \\ -0.7 \end{bmatrix}\right\}$$

$$= \frac{1}{(2\pi)} \cdot \frac{1}{1} \cdot \exp\left\{-0.49\right\} = 0.0975025.$$

$$P(x|\omega_3) = \frac{0.5}{2\pi} \cdot \frac{1}{1\Sigma 1/2} \cdot \exp\left\{-\frac{1}{2} \cdot \begin{bmatrix} -0.2 & 0 \\ 0 & -0.2 \end{bmatrix} \begin{bmatrix} -0.2 \\ -0.2 \end{bmatrix}\right\}$$

$$+\frac{0.5}{2\pi} \cdot \frac{1}{12112} \cdot \exp\left\{-\frac{1}{2} \cdot \begin{bmatrix} 0.80 \\ 0 - 0.2 \end{bmatrix} \begin{bmatrix} 0.8 \\ -0.2 \end{bmatrix}\right\}$$

$$\Rightarrow p(x|w_3) = \frac{1}{4\pi} \exp\{-0.04\} + \frac{1}{4\pi} \exp\{-0.34\}.$$

= 0.133098

New putting P(x/w,), P(x/w2) and P(x/w3) in

P(error/x) me get.

$$P(error(x)) = min \begin{cases} \frac{1}{3}(0.2306005) & \text{if } x \in W, \\ \frac{1}{3}(0.278554) & \text{if } x \in W_2 \\ \frac{1}{3}(0.2429585) & \text{if } x \in W_3. \end{cases}$$

$$\Rightarrow$$
 P(error | x) = min. $\begin{cases} 0.076866833 & \text{if } x \in \omega_1 \\ 0.09285133 & \text{if } x \in \omega_2 \\ 0.08098616 & \text{if } x \in \omega_3 \end{cases}$

.. X belongs to class 10,
$$\frac{12-ai}{b}$$
 for $i=1,2$
2) lyinen $p(2i|w) = \frac{1}{2b}e^{-\frac{12-ai}{b}}$ $a_1=0, a_2=1$
and equally probable classes. $b=1$

and leadily probable
$$\alpha = \frac{1}{2}$$
.

P(w₁)= $\frac{1}{2}$, $\rho(w_2)=\frac{1}{2}$.

So $\rho(x|w_1)=\frac{1}{2}e^{-|x_1|}$, $\rho(x|w_1)=\frac{1}{2}e^{-|x_2|}$.

P(xlwi) (a) Likelihood Latio:

$$\Rightarrow \frac{P(x|w_1)}{P(x|w_2)} = \frac{1}{1} e^{-|x_1|} = \frac{$$

ë 1x1+1x-11 against x. New Plot of

=
$$\frac{1}{4} \cdot \left[\int_{0.5}^{5} \rho(x|w_{2}) dx \cdot dx \cdot dx \cdot \int_{0.5}^{\infty} \rho(x|w_{1}) dx \right]$$

= $\frac{1}{4} \cdot \left[\int_{-\infty}^{0.5} e^{-1/4} dx \cdot \int_{0.5}^{0.5} e^{-1/4} dx \cdot \int_{0.5}^{0.5}$

DEEPAM SARMAH

2020050

$$= \frac{1}{n+1} \left\{ n\sigma^{2} - \frac{n}{n^{2}} \cdot \sum_{i=1}^{n} vas(x_{i}^{n}) \right\} = \frac{1}{n+1} \left\{ n\sigma^{2} - \frac{n}{n^{2}} \cdot \sum_{i=1}^{n} (x_{i}^{n} - \overline{x})^{2} \right\} = \sigma^{2}$$

The given estimate is unbiased.

4) Given $E[X] = \mu$, $Vas[X] = \sigma^{2}$

a) $E[aX+b] = E[aX] + E[b] = \alpha E[X] + b = \alpha \mu + b$

b) $Vas(aX+b) = a^{2}Vas(X) = a^{2}\sigma^{2}$.

5) Given $P(c|X) = 1 - P(c|x_{0}|X_{0})$.

Now, $P(c) = \int P(c,X_{0}) dx = \int P(c|X_{0}) P(X_{0}) dx$

$$\Rightarrow P(c) = \int (1 - P(c|x_{0}|X_{0})) P(X_{0}) dx = \int P(X_{0}) dx$$

$$\Rightarrow P(c) = 1 - \int P(c|x_{0}|X_{0}) P(X_{0}) dx = \int P(x_{0}) dx$$

Now in Cauchy distribution example of day.

 $P(X_{0}) = \frac{1}{4} \cdot \frac{1}{1+(X_{0}-a)^{2}}$

Likelihood: $P(X_{0}|X_{0}) = \frac{1}{4} \cdot \frac{1}{4} \cdot$

$$\Rightarrow P(x|w_1) P(w_1) = P(x|w_2) P(w_2)$$

$$\Rightarrow \frac{1}{1+(x-a_1)^2} = \frac{1}{1+(x-a_2)^2} = \frac{1}{(x-a_2)^2}$$

$$\Rightarrow (x-a_1)^2 - (x_2-a_1)^2 \Rightarrow (x-a_1+x-a_2)(x-a_1)$$

$$\Rightarrow (x-a_1)^2 - (x_2-a_1)^2 \Rightarrow (x-a_1+x-a_2)(x-a_1)$$

$$\Rightarrow x = \underbrace{a_1+a_2}_{-x+a_2}.$$

$$\therefore P(evror|x) \cdot P(x) dx = \int \min_{x \in A} [P(w_1|x), P(w_2|x)] \cdot P(x)$$

$$\Rightarrow x = \underbrace{a_1+a_2}_{-x+a_2}.$$

$$\Rightarrow P(w_2|x) \cdot P(x) dx + \int P(w_1|x) \cdot P(x) dx$$

$$= \int P(x|w_2) \cdot P(w_2) dx + \int P(x|w_1) \cdot P(w_1) \cdot dx$$

$$= \int P(x|w_2) \cdot P(w_2) dx + \int P(x|w_1) \cdot P(w_1) \cdot dx$$

$$= \int P(x|w_2) \cdot P(w_2) dx + \int \frac{1}{x^2} \int \frac{1}{x^2} \int \frac{1}{x^2} dx$$

$$= \frac{1}{2} \int \frac{1}{x^2} \int \frac{1}{x^2}$$