Annuities and Discount Factors

Teng-Jui Lin
Department of Chemical Engineering, University of Washington
Process Design

Annuities give same amount of cash flow for each consecutive year

Ex. Verify that the future value F_n of annuities with each transaction value of A for n consecutive years is

$$oxed{F_n = A\left[rac{(1+i)^n-1}{i}
ight]}$$

where *i* is the annual interest rate.

- Annuities A series of uniform value cash transactions in consecutive years
- ullet Hint: nth partial sum of geometric series: $S_n = a_1 rac{1-r^n}{1-r}$

Discount factor converts money value between the present, future, and annuities

Discount factor for converting A to F

$$F_n = A \left\lceil rac{(1+i)^n - 1}{i}
ight
ceil$$

Notation

Discount factors are derived from known discount factors

Ex. Derive the discount factor for converting A to P.

Common discount factors are tabulated

Turton Table 9.1

Conversion	Symbol	Common Name	Formula
P to F	F/P	Single payment compound amount factor	$(1+i)^n$
F to P	P/F	Single payment present worth factor	$\frac{1}{(1+i)^n}$
A to F	F/A	Uniform series compound amount factor; Future worth of annuity	$oxed{ rac{(1+i)^n-1}{i} }$
F to A	A/F	Sinking fund factor	$egin{array}{c} 1 \ \hline (1+i)^n-1 \end{array}$
P to A	A/P	Capital recovery factor	$\frac{i(1+i)^n}{(1+i)^n-1}$
A to P	P/A	Uniform series present worth factor; Present worth of annuity	$\frac{(1+i)^n-1}{i(1+i)^n}$

Example of using discount factor as a conversion factor

Turton Ex. 9.14 A lottery winner will receive \$200,000/year for the next 20 years.

- (a) What is the equivalent present value of the winnings if there is a secure investment opportunity providing 7.5% p.a.?
- (b) What rate of return in part (a) would be needed for a present value of \$2.5 million?