Sistemas y Señales I

Escuchando el aliasing

Temario: Cap. 1: Item 1.5

Ejemplo: Escuchando el alising

□ Notación Musical

☐ Escala cromática en el rango 440-880 Hz

Sistema equitemperado:

cociente entre las frecuencias de notas separadas 1 semitono es constante e igual a

$$\frac{f_{La\#}}{f_{La}} = 2^{\frac{1}{12}}$$

Nota	Frecuencia [Hz]
La	440
La # - Si <i>b</i>	440×2 ½2
Si	440×2 ^{2/12}
Do	440×2 ^{3/2}
Do # - Re <i>b</i>	440×2 ^{4/2}
Re	440×2 ⁵ / ₁₂
Re # - Mi <i>b</i>	440×2 ⁶ / ₁₂
Mi	440×2 ^½ 2
Fa	440×2 ⁸ / ₂
Fa # - Sol <i>b</i>	440×2 ^{3/2}
Sol	440×2 ¹⁰ / ₁₂
Sol # - La <i>b</i>	440×2 ¹¹ / ₁₂
La	$440 \times 2^{12/12} = 880$

$$x_{1a} = \cos(2\pi F_1 t)$$
 , $F_1 = 440 \text{ Hz}$ nota La

$$x_{2a} = \cos(2\pi F_2 t)$$
 , $F_2 = 440 \frac{3}{2} \text{Hz} = 660 \text{ Hz}$

$$F_{s1} = 10000 \; \mathrm{Hz}$$
 Frecuencia de muestreo adecuada para \mathcal{X}_{1a} y \mathcal{X}_{2a}

$$F_{s1} > 2 \max(F_1, F_2) = 2 \max(440, 660) = 1320 \text{ Hz}$$

$$F_{s2} = 1050 \; \mathrm{Hz}$$
 Frecuencia de muestreo adecuada para \mathcal{X}_{1a} pero inadecuada para \mathcal{X}_{2a}

En efecto, si muestreamos la señal x_{2a} con la frecuencia

$$F_{s2} = 1050 \text{ Hz}$$
 resulta

$$x_2(n) = \cos\left(2\pi F_2 \frac{n}{F_{s2}}\right) = \cos\left(2\pi (F_2 - F_{s2}) \frac{n}{F_{s2}}\right)$$

Es decir, aparece un alias de frecuencia

$$F_{alias} = F_{s2} - F_2 = (1050 - 660) \text{ Hz} = 390 \text{ Hz}$$

Para conocer que nota es en el sistema equitemperado planteamos

$$F_{alias} = 220 \times 2^{\frac{x}{12}}$$

donde x es el número de semitonos por encima del La (220 Hz)

$$F_{alias} = 220 \times 2^{\frac{x}{12}} \Rightarrow \frac{F_{alias}}{220} = 2^{\frac{x}{12}} \Rightarrow \frac{x}{12} = \log_2\left(\frac{F_{alias}}{220}\right)$$
$$\Rightarrow x = 12 \times \log_2\left(\frac{F_{alias}}{220}\right) = 12 \times \log_2\left(\frac{390}{220}\right) = 9.9116$$

La nota que aparece como alias está entonces (aproximadamente) 10 semitonos por encima del *La* (220 Hz), es decir es un *Sol* por debajo del *La* (440 Hz).

El fenómeno de alising genera una nota que está un tono por debajo del *La* (440 Hz), en vez de una quinta por encima.

Fig. 1: Señal $x_{1a}(t)$ y su correspondiente señal muestreada con frecuencia $F_{s1} = 10000 \; \mathrm{Hz}$

Fig. 2: Señal $x_{2a}(t)$ y su correspondiente señal muestreada con frecuencia $F_{s1} = 10000 \; \mathrm{Hz}$

Fig. 3: Señales $x_{1a}(t)$, $x_{2a}(t)$ y sus correspondientes señales muestreadas con frecuencia $F_{s1} = 10000 \text{ Hz}$

Fig. 4: Señales $\mathcal{X}_{1a}(t)$, $\mathcal{X}_{2a}(t)$ y sus correspondientes señales muestreadas con frecuencia $F_{s2} = 1050~{\rm Hz}$. Se muestra también el alias de $\mathcal{X}_{2a}(t)$