

Linux и облачные вычисления

Мониторинг ресурсов

Мониторинг ресурсов (оперативная память, процессоры, диски). Использование утилиты htop. Архивирование файлов. Поиск данных.

Оглавление

Мониторинг ресурсов

htop

Мониторинг дисков

Команда df

Команда du

Архивирование файлов

Команда tar

Поиск файлов

Команда find

Практическое задание

Дополнительные материалы

Используемая литература

Мониторинг ресурсов

Специалисту, работающему с данными, приходится регулярно следить за размером свободной оперативной памяти. Это связано с тем, что в некоторых библиотеках (например, в Pandas) наборы данных часто целиком располагаются в оперативной памяти, что позволяет ускорить работу с ними. Мониторинг ресурсов оперативной памяти необходим как при единовременных задачах, так и при создании программ, работающих на регулярной основе или в режиме реального времени — чтобы избегать их аварийного завершения.

Также необходимо следить за тем, как расходуются ресурсы процессоров. Дело в том, что многие алгоритмы машинного обучения работают в многопоточном режиме, и при одновременном использовании нескольких таких алгоритмов процессорные мощности могут расходоваться не оптимально. От этого модели машинного обучения работают медленнее. В данном уроке мы будем использовать термин «процессор» как синоним понятия «ядро».

При работе с большими объемами данных, даже если оперативная память и процессоры используются оптимизированно, могут возникать ситуации, когда на сервере образовалось большое количество данных и заканчивается место на диске. Предотвращать такие случаи также позволяет мониторинг свободного дискового пространства.

На этом уроке расскажем о том, как можно контролировать использование оперативной памяти, процессоров и дисков, работая в операционной системе Linux.

htop

Чтобы следить за использованием оперативной памяти и процессоров, удобно пользоваться утилитой **htop** (по функциям она похожа нестандартную утилиту **top**). Она не входит в стандартный дистрибутив Ubuntu, поэтому нужно будет установить ее с помощью команды **sudo apt-get install htop**:

После запуска команды утилита **htop** будет установлена:

```
ubuntu$ sudo apt-get install htop
Reading package lists... Done
Building dependency tree
Reading state information... Done
htop is already the newest version (2.1.0-3).
The following package was automatically installed and is no longer required:
   unzip
Use 'sudo apt autoremove' to remove it.
0 upgraded, 0 newly installed, 0 to remove and 99 not upgraded.
ubuntu$
```

Запустим утилиту с помощью команды **htop** либо **sudo htop**:

```
ubuntu$ htop
```

Появится панель htop с информацией об используемых ресурсах и работающих процессах:

CPU Mem			111		95.5M/	0.7%] 984M]					1 running 0.00 0.00		
Swp						OK/OK]			Uptime: 00:54:59				
PID	USER	PRI	NI	VIRT	RES	SHR	S	CPU%	MEM®	TIME+	Command		
	ubuntu	20	0		4260	3680	R	0.0	0.4	0:00.28			
761	root	20	0	281M	6948	6080	S	0.0	0.7	0:00.05	/usr/lib/accountsservi		
2385	ubuntu	20	0	105M	3280	2268	S	0.0	0.3	0:00.02	sshd: ubuntu@pts/0		
924	root	20	0	545M	28644	17436	5	0.0	2.8	0:00.05	/usr/lib/snapd/snapd		
771	root	20	0	545M	28644	17436	5	0.0	2.8	0:00.73	/usr/lib/snapd/snapd		
1	root	20	0	156M	9200	6836	5	0.0	0.9	0:02.76	/sbin/init		
384	root	19		124M	14656	13956	5	0.0	1.5	0:00.33	/lib/systemd/systemd-j		
413	root	20	0	44424	5504	3272	S	0.0	0.5	0:00.33	/lib/systemd/systemd-u		
414	root	20	0	97708	1928	1752	S	0.0	0.2	0:00.00	/sbin/lvmetad -f		
490	systemd-t	20	0	138M	3352	2824	S	0.0	0.3	0:00.00	/lib/systemd/systemd-t		
459	systemd-t	20	0	138M	3352	2824	S	0.0	0.3	0:00.02	/lib/systemd/systemd-t		
602	systemd-n	20	0	80024	5384	4784	S	0.0	0.5	0:00.01	/lib/systemd/systemd-r		
610	systemd-r	20	0	70616	5212	4656	S	0.0	0.5	0:00.02	/lib/systemd/systemd-:		
902	root	20	0	530M	12816	11144	S	0.0	1.3	0:00.04	/snap/amazon-ssm-agent		
903	root	20	0	530M	12816	11144	S	0.0	1.3	0:00.00	/snap/amazon-ssm-agent		
904	root	20	0	530M	12816	11144	S	0.0	1.3	0:00.00	/snap/amazon-ssm-agent		
911	root	20	0	530M	12816	11144	5	0.0	1.3	0:00.02	/snap/amazon-ssm-agent		
921	root	20	0	530M	12816	11144	5	0.0	1.3	0:00.00	/snap/amazon-ssm-agent		
928	root	20	0	530M	12816	11144	S	0.0	1.3	0:00.00	/snap/amazon-ssm-agent		
929	root	20	0	530M	12816	11144	5	0.0	1.3	0.00 00	/snap/amazon-ssm-agent		

Здесь мы видим, что СРU используется на 0,7 %. В данном инстансе только один процессор, а если бы их было несколько, то они были бы пронумерованы по порядку. Зеленым цветом в диаграмме, показывающей загруженность СРU, обозначается часть времени процессора, занятая процессами с нормальным приоритетом. Остальных цветов на данной диаграмме нет, но о них тоже расскажем. Синим обозначается часть, занятая процессами с низким приоритетом. Красным — процессы с приоритетом ядра. Желтым — время процессора, потраченное на виртуализацию либо невольно «украденное» другими пользователями, которые работают в других виртуальных серверах, но на тех же физических ресурсах, и активно нагружают процессоры.

Далее располагается информация об использовании оперативной памяти (**Mem**): 95,5 Мб из 984 Мб. (В данном примере используется инстанс **t2.micro**, имеющий довольно скромные ресурсы по сравнению с инстансами, которые обычно используют в рабочих условиях. Тем не менее для изучения основных принципов работы в **bash** такой инстанс вполне подходит.)

Мы видим, что диаграмма, отображающая использование оперативной памяти, состоит из трех цветов: зеленого, синего и желтого.

Зеленый цвет показывает используемую оперативную память, синий — буферы и желтый — системный кеш.

Раздел **Swp** показывает использование **swap** (своп) — в данном случае оно нулевое.

Далее располагается информация о процессах. Наиболее информативными здесь будут поля:

- PID id процесса;
- USER пользователь, от чьего имени запущен процесс;
- PRI текущий приоритет процесса;

- RES количество резидентной, то есть не перемещаемой в swap, памяти в килобайтах;
- **SHR** количество разделяемой, то есть **shared**, памяти программы в килобайтах (памяти, которая может быть использована другими приложениями);
- **CPU** % использование процессора в процентах;
- МЕМ % использование процессом памяти в процентах;
- **TIME+** время работы процесса;
- Command команда, которой был запущен процесс.

Более подробное описание программы **htop** можно прочитать по ссылке: http://linux-bash.ru/menusistem/79-htop.html.

Чтобы выйти из программы, нужно нажать F10.

Мониторинг дисков

Команда df

Для мониторинга дисковых ресурсов можно пользоваться утилитами df и du.

Например, вот так можно в удобном виде получить информацию об использовании дискового пространства с помощью программы **df** –**h** (в данном случае –**h**, сокращение от слова *human*, используется для более привычного человеку отображения):

После запуска программы можно увидеть название устройства (диска), общий размер, используемое пространство в абсолютном значении, доступное пространство, используемое пространство в процентах и путь, к которому прикреплено устройство.

```
ubuntu$ df -h
Filesystem
               Size Used Avail Use% Mounted on
               481M
udev
                        0 481M
                                  0% /dev
tmpfs
                99M 728K
                            98M
                                  1% /run
               7.7G 2.3G 5.5G 29% /
/dev/xvda1
               492M
                       0 492M
                                 0% /dev/shm
tmpfs
                                  0% /run/lock
tmpfs
               5.0M
                        0 5.0M
tmpfs
               492M
                       0 492M
                                  0% /sys/fs/cgroup
                           0 100% /snap/core/6350
/dev/loop0
                91M
                      91M
                18M
                              0 100% /snap/amazon-ssm-agent/930
/dev/loop1
                      18M
dev/loop2
                88M
                      88M
                              0 100% /snap/core/5328
                      13M 0 100% /snap/amazon-ssm-agent/495
90M 0 100% /snap/core/6130
                13M
                      13M
/dev/loop3
/dev/loop4
                90M
tmpfs
                99M
                            99M
                                  0% /run/user/1000
ubuntu$
```

Например, на данном скриншоте устройство /dev/xvda1 имеет размер 7,7 Гб, из них использовано 2,3 Гб, доступно 5,5 Гб, использовано 29 %, диск закреплен за корневой директорией ("/").

Команда du

С помощью команды **du** по умолчанию можно узнать размеры всех файлов и папок, находящихся в текущей директории. Команда **du -h** покажет их размеры в удобном для человека формате.

Если нужно посмотреть суммарный объем файлов и папок, находящихся в текущей директории, следует запустить команду **du -s**.

Запустим команду **du -sh**, показывающую суммарный объем файлов и папок в текущей директории (в данном примере это /home/ubuntu):

После запуска команды можно увидеть, что суммарный объем составляет 86 Мб.

```
ubuntu$ du -sh
86M .
ubuntu$
```

Архивирование файлов

Команда tar

С помощью программы **tar** можно сжимать данные (при этом выбирать разные алгоритмы сжатия информации), а также объединять несколько файлов в архив.

Чтобы создать архив под названием **archive.tar.gz**, в котором будет содержаться файл **Shakespeare.txt** (с ним мы уже работали в домашней директории пользователя **ubuntu**), запустим команду **tar –cf archive.tar.gz Shakespeare.txt**. Опция **c** (от слова *create*) в этой команде означает, что нужно создать архив, а опция **f** обозначает файл для архива:

```
ubuntu$ tar -cf archive.tar.gz Shakespeare.txt
```

Посмотрим содержимое домашней директории — там появился файл archive.tar.gz:

```
ubuntu$ ls
Shakespeare.txt create_matrix.py instrument_table.txt
archive.tar.gz header.txt instruments.txt
ubuntu$
```

Чтобы создать сжатый архив, нужно помимо опций **c** и **f** указать опцию **z**. И тогда команда запустится как **tar –zcf archive_z.tar.gz Shakespeare.txt** (здесь мы создаем файл с названием **archive_z.tar.gz**):

```
ubuntu$ tar -zcf archive_z.tar.gz Shakespeare.txt
```

Посмотрим на размер файлов, используя команду du *.gz:

```
ubuntu$ du -h *.gz

12K archive.tar.gz

4.0K archive_z.tar.gz

ubuntu$
```

Видно, что файл archive_z.tar.gz в 3 раза меньше archive.tar.gz.

Извлечь файлы из архива можно с помощью команды **tar –xf archive.tar.gz**. В этой команде вместо опции **c**, использованной при создании архива, применяется опция **x** (от слова **extract**).

Поиск файлов

Команда find

Для поиска файлов удобно использовать команду **find**. Например, можно найти все файлы с расширением .txt в текущей директории с помощью команды **find** *.txt:

```
ubuntu$ find *.txt
```

Результат будет выглядеть так:

```
ubuntu$ find *.txt
Shakespeare.txt
header.txt
instrument_table.txt
instruments.txt
ubuntu$
```

Практическое задание

- 1. Запустить htop и посмотреть, сколько процессоров и оперативной памяти есть на сервере.
- 2. Найти все программы с расширением .ру.
- 3. * Создать и запустить программу на Python, выводящую числа от 0 до 100 включительно.

Запустить **htop** во время выполнения программы и найти выполняемую программу в списке процессов, используя поиск по ключевому слову **python** (использовать средства поиска **htop**).

Дополнительные материалы

- 1. <a href="https://h
- 2. Поиск файлов с помощью find.
- 3. <u>18 примеров команды tar в Linux</u>.

Используемая литература

Для подготовки данного методического пособия были использованы следующие ресурсы:

- 1. <u>НТОР монитор процессов</u>.
- 2. <u>htop продвинутый консольный монитор процессов</u>.
- 3. <u>Команда tar в Linux</u>.