2.1. LOGICKÉ OBVODY

Logické obvody – elektronické obvody, ktoré pracujú s dvojhodnotovými premennými

LOG."0" - NIE - FALSE - LOW(L) LOG."1" - ÁNO - TRUE - HIGH(H)

x1, x2, ..., xn - vstupné premenné y1, y2, ..., ym - výstupné premenné

Vstupné slovo (vstup)

X= (x1, x2, ..., xn) 2ⁿ možností Výstupné slovo (výstup)

Y=(y1, y2, ..., ym) 2^m možností

Funkcia - zobrazenie

 $F: X \rightarrow Y$

Logický obvod

- diskrétny dynamický systém, ktorý sa vyznačuje
 - vstupným slovom
 - výstupným slovom
 - správaním obvodu (opis dynamických vlastností)
 - štruktúrou obvodu (súbor logických členov a ich pripojení)

Pri práci s logickými obvodmi existujú tieto úlohy:

ANALÝZA SYNTÉZA

DIAGNOSTIKA (testovanie, kontrola funkcie obvodu)

LOGICKÝ NÁVRH Z HĽADISKA DIAGNOSTIKY (design for testability)

ZABUDOVANÉ PROSTRIEDKY DIAGNOSTIKY

SIMULÁCIA (alebo VERIFIKÁCIA)

Premenné logického obvodu sú definované nad spojitými analógovými veličinami

(napr. napätie).

Hodnotám H a L sú priradené intervaly hodnôt fyzikálnej veličiny

 $H \iff U >= Umax$ $L \iff U =< Umin$

Týmto "elektrickým" úrovniam H a L môžu byť podľa daného kódu priradené logické (boolovské) hodnoty 0 a 1 a to dvoma spôsobmi:

Záporná logika: 0 <=> H Kladná logika: 0 <=> L

<=> L 1 <=> H

ROZDELENIE LOGICKÝCH OBVODOV

a/ podľa funkcie

KOMBINAČNÉ OBVODY

SEKVENČNÉ OBVODY

b/ podľa činnosti v čase

ASYNCHRÓNNE

SYNCHRÓNNE

c/ podľa spôsobu realizácie

S PEVNOU FUNKCIOU

S PROGRAMOVATEĽNOU FUNKCIOU

2.1. LOGICKÉ OBVODY

2.1.1. KOMBINAČNÉ LOGICKÉ OBVODY

Spôsoby zápisu Booleovských funkcií (B-funkcií)

Booleovská funkcia - zobrazenie

$$\begin{array}{c|c}
x_1 \\
x_2 \\
\hline
\\
x_n \\
\hline
\\
\\
\end{array}$$

$$f: \{0, I\}^n \to \{0, I\}$$

$$y_1 = f_1(x_1, x_2, ..., x_n)$$

$$B = f_m(x_1, x_2, ..., x_n)$$

$$B = f_m(x_1, x_2, ..., x_n)$$

1. Úplne definované B-funkcie

2. Neúplne definované B-funkcie

2.1.1.1. Spôsoby zápisu B- funkcií a/ pravdivostná tabuľka

>	neuplue d	efinova	uá f	Lunling
	(na vstup	e sa	nevy	shytun
	trojice	(000) a	(11)

E	Xη	X	X3 \		1/2
0	0	0	0		X
1	0	0		L	0
2	U		0		0
3	U				
4		0	0		0
5		0		\mathbb{N}	
C	1		0		
八五		1	1		X

pravdivostná tabulka neuphne urconej B-funkue

b/ číselný zápis

Pomocou desiatkových ekvivalentov bodov funkcie

$$\frac{\Pr. 1}{M_1 = f_1(x_{1.1}x_{2.1}x_3)} = D(3.5,6.7)$$

$$\frac{(1)}{M_1 = f_1(x_{1.1}x_{2.1}x_3)} = K(0.1.2.4)$$

$$\frac{\Pr. 2}{M_2 = f_2(x_{1.1}x_{1.1}x_3)} = D(3.5,6.6.6.6.7)$$

$$\frac{F_1}{F_0}$$

$$\frac{F_2}{F_0}$$

DE	Хл	Y2	X31	Y	
0	0	0	0	0	
1	O	0	1	0	
2	0	1	0	0	
2 3	0	/		1	
4	1	0	0	1	J
5	ļ	0	1		
Ç	1	(ĺ)	
7	1	(1		

c/ vektorový zápis

$$\frac{Pr.1}{y_1 = f_1(x_1, x_2, x_3)} = (00010111)$$

$$\frac{Pr.2}{y_2 = f_2(x_1, x_2, x_3)} - (x001011x)$$

zodpovedá stĺpcu výstupov pre usporiadanú množinu prvkov vstupnej abecedy

d/ mapový zápis

3 premenné 8 štvorčekov v mape

d/ mapový zápis

3 premenné 8 štvorčekov v mape

•

PPI 2. Logická úroveň a stavba počítačových systémovd/ mapový zápis

d/ mapový zápis

- mapa funkcie s n premennými má 2ⁿ štvorčekov
- každý štvorček v mape pre **n** premenných má práve **n** susedných štvorčekov

PPI 2. Logická úroveň a stavba počítačových systémov

vytváranie máp pre viac vstupných premenných

e/ zápis pomocou výrazu

e/ zápis pomocou výrazu

Výraz vyjadruje, kedy (za akých hodnôt vstupných premenných) funkcia nadobúda hodnotu 1

2.1.1.2. B-FUNKCIE S JEDNOU PREMENNOU

a/
$$n=1$$
 pocet funkció $N=2^{2^n}=2^{2^n}=4$
 $\times 100$ $f_0=0$ - nulová funkcia

 $\times 110$ $f_0=0$ - jednotková funkcia

 $\times 110$ $f_1=1$ - jednotková funkcia

 $\times 110$ $f_2=X$ - opakovanie

 $\times 110$ $f_3=X$ - NEGÁCIA, INVERZIA

 $\times 110$ $f_3=X$ logický člen

 $\times 110$ $f_3=X$ (negátor, invertor)

2.1.1.3. B-FUNKCIE S VIAC PREMENNÝMI

$$X_1 \oplus X_2 \oplus X_3 \oplus \cdots \oplus X_N$$

(-I ak nepairm pocét premennis) ma hodistri I)

2.1.1.4. BOOLOVSKÉ VÝRAZY (B-VÝRAZY)

DEF.

B-VÝRAZ JE REŤAZEC OBSAHUJÚCI PREMENNÉ, LOGICKÉ OPERÁTORY B-ALGEBRY A

ZÁTVORKY.

logické výrazy

(a @ b) <+ (x1x2+x3)

boolovské výrazy

2.1.1.5. BOOLOVSKÁ ALGEBRA (B-ALGEBRA)

Definícia: B-algebra je šestica (B⁽ⁿ⁾, +, ., ⁻, 0, 1), kde

B⁽ⁿ⁾ je množina všetkých B-výrazov

+, , , sú boolovské operátory

0, 1 sú logické hodnoty 0 a 1

2.1.1.5. BOOLOVSKÁ ALGEBRA (B - ALGEBRA)

Pre B – algebru platia tieto ekvivalencie -

Pre ľubovoľné výrazy A,B platí:

 $\overline{A.B} = \overline{A} + \overline{B}$

1.
$$A+B=B+A$$
 Komutatívnosť $A.B=B.A$ 2. $A+(B+C)=(A+B)+C$ Asociatívnosť

$$A.(B.C) = (A.B).C$$

3. $A+B.C = (A+B).(A+C)$ Distributívnost'
 $A.(B+C) = A.B+A.C$

4.
$$A+A+...+A=A$$

 $A.A....A=A$
5. $\overline{A+B}=\overline{A}.\overline{B}$ de Morganové pravidlá

6.
$$\bar{\bar{A}}=A$$
 Pravidlá o dvojnásobnej a viacnásobnej negácii $\bar{\bar{A}}=\bar{A}$

7.
$$A + \bar{A} = 1$$
 Pravidlá o komplemente $A, \bar{A} = 0$

8.
$$A+1=1$$
 Pravidlá o adresívnosti hodnôt O a 1 $A,O=0$

9.
$$A+0=A$$
 Pravidlá o neutrálnosti hodnôt 0 a 1 $A.1=A$

10.
$$(A + B) \cdot (\bar{A} + B) = B$$
 Pravidlá spojovania $A \cdot B + \bar{A} \cdot B = B$

$$A.(A+B) = A$$
12. $A + \overline{A}.B = A + B$

$$A. (\bar{A} + B) = A. B$$

13. $A. B + \bar{A}. C + B. C = A. B + \bar{A}. C$ Konsenzus teorem
 $(\bar{A} + \bar{B}). (\bar{B} + \bar{C}). (A + \bar{C}) = (\bar{A} + \bar{B}). (A + \bar{C})$

2.1.1.5. BOOLOVSKÁ ALGEBRA (B - ALGEBRA)

Príklad: Minimalizácia počtu premenných vo výraze

$$f = xy + \overline{x}y\overline{x} + yw = y(x + \overline{x}y + k)$$

$$= y(x + \overline{x} + k)$$

$$= y(x + \overline{1})$$

$$= y(x + \overline{1})$$

$$= y \cdot \overline{1}$$

$$= y$$

$$= y$$

$$= y$$

$$= y$$

$$= y$$

distr. zakon

$$r=3$$

$$f = \sum_{i} g_{i}$$

Priklad:
$$f = x_1 \overline{x_2} x_3 + \overline{x_1} \overline{x_3} + x_4 = q_1 + q_2 + q_3$$

 q_1 q_2 q_3 $r=3$ $r=2$ $r=1$

$$\frac{\Pr(k|ad)}{h_1} : f = \frac{x_1(x_2 + x_3)(x_3 + x_n + x_5)}{h_2} = \frac{h_1 \cdot h_2 \cdot h_3}{h_2 \cdot r = 2}$$

Priklad:
$$f = X_1(X_2 + X_3)(X_3 + X_1 + X_5) = h_1 \cdot h_2 \cdot h_3$$
 $h_1 \wedge r = 1$
 $h_2 \sim r = 2$
 $h_2 \sim r = 2$
 $h_2 \sim r = 3$

DNF - uplná DNF h₃ ~ $r = 3$
 $h_3 \sim r = 3$

2.1.1.6. NORMÁLNE FORMY B- VÝRAZOV

d/ IREDUNDANTNÁ DNF - DNF, z ktorej nemozno vynechat am jedno pismeno, aby zodpovedala danej funkai - nemozus výraz redukovat e/MINIMALNA DNF - DNF, kt. obsahnje unimining pocet pismen zo vsetleges DNF.

DOSLEDKY : - MDNF ~ IDNF

- SDNF \approx BDNF

2.1.1.6. NORMÁLNE FORMY B- VÝRAZOV

1DNF: f= \(\times_1 \times_3 + \times_1 \times_2 + \times_1 \times_2 + \times_1 \times_2 + \times_1 \times_2 \times_2 + \times_1 \times_2 \times_2 + \times_1 \times_2 \times_2 + \times_1 \times_2 \times_2 \times_3 + \times_1 \times_2 \times_3 \times_2 \times_3 \ti

X1 DO DO F

3 eknivalentné IDNF

MDNF :

3 súciny 2 ektivalentué MDNF

2.1.1.6. NORMÁLNE FORMY B- VÝRAZOV

Ako vypisat (Ú) KNF priamo z mapy:

Negacie spamah

Negacie spamah

nahraait + a opacne $f = (x_1 + x_2 + x_3) \cdot (x_1 + x_2 + x_3) \cdot (x_1 + x_2 + x_3)$ =UKNF

$$f = (x_1 + \overline{x_2} + x_3).(\overline{x_1} + x_2 + \overline{x_3})$$

Priklad: /Odvodenie imjch NF/

a/DNF
$$f = \overline{ab} + a\overline{c} + d$$

$$\Rightarrow NF \sqrt{+} \quad (NF NOP/OR)$$

$$f = (a \sqrt{b}) + (\overline{a} \sqrt{c}) + \overline{c}$$

$$(f = [a \sqrt{b}) + (a \sqrt{c}) + \overline{c}$$

$$(f = [a \sqrt{b}) + (a \sqrt{c}) + \overline{c}$$

$$= (\overline{a} \sqrt{b}) + (\overline{a} \sqrt{c}) + (\overline{a} \sqrt{c}) + \overline{c}$$

$$= (\overline{a} \sqrt{b}) + (\overline{a} \sqrt{c}) + (\overline{a} \sqrt$$

b/KNF:
$$f = (a+b+c)(\bar{a}+\bar{b}+c)d$$

 \Rightarrow NF $1/\sqrt{NF}$ NAND/AND)
$$f = (\bar{\alpha}\uparrow\bar{b}\uparrow c) \cdot (\bar{a}\uparrow\bar{b}+c) \cdot \bar{d}$$

$$\Rightarrow$$
 NF $1/\sqrt{NF}$ NOR/NOR
$$f = (a+b+c)(\bar{a}+\bar{b}+c)d = (\bar{a}+\bar{b}+c)\sqrt{\bar{a}}\sqrt{\bar{b}}\sqrt{$$

2.1.1.6. NORMÁLNE FORMY B- VÝRAZOV

Dôsledky:

- 1. Ak pre danú funkciu sú známe výrazy typu DNF a KNF, tak k nim možno zostaviť ľubovolnú NF typu g1/g2.
- 2. Celkový počet písmen (znakov premenných) v normálnej forme zodpovedá celkovému počtu písmen v DNF a KNF, ktorej je táto odvodená normálna forma podradená.
- 3. Pre každú B funkciu (okrem "0" a "1") existuje aspoň jedna NF každého typu g1/g2.

2.1. LOGICKÉ OBVODY

2.1.2. ANALÝZA LOGICKÝCH KOMBINAČNÝCH OBVODOV

Je to riešenie tejto úlohy:

Je známa štruktúra logického obvodu a je potrebné nájsť a opísať jeho správanie (musí byť známe správanie sa prvkov, ktoré obsahuje štruktúra logického obvodu).

- úloha má vždy jednoznačné riešenie
- správanie obvodu možno zapísať niektorým spôsobom uvedeným v predchádzajúcej kapitole (v 2.1.1.1)