Algorithm setup and proof of convergence:

Figure 1

The **method** is as follows:

- 1) We decide on some group of objects that we want to classify and on the number of classification types.
- 2) We define how we are going to represent each instance (or non-instance) in terms of real-valued vectors of *size n*.
- 3) For each classification type we define a desired real-valued output vector of *size m*.
- 4) We define a size, p, for our hidden layer vector.
- 5) We initialize a $p \times n$ matrix $\theta(1)$ and an $m \times p$ matrix $\theta(2)$ (that will represent our connection weights) with random real numbers.
- 6) We take a *size* n input vector representing an instance of the object we want to classify and we apply $\theta(1)$ to it.
- 7) We are then left with a *size p* vector that represents the summation of the values of all of the hidden node's inputs.
- 8) We input each entry in our vector from (7) into a threshold function and get another *size p* vector.
- 9) We apply steps (6) through (8) to our hidden layer, this time using $\theta(2)$. This results in our *size-m* output vector.
- 10) We compare the output of our neural net to the desired output.

- 11) We make adjustments to values in our $\theta(1)$ and $\theta(2)$ matrices in order to get "better" results for this instance.
- 12) We repeat the process on other instances.

The "Sigmoid Function" method:

-We use the Sigmoid function as our threshold function:

Figure 2: The Sigmoid function for c = 1.

Why the Sigmoid?

We primarily use the Sigmoid because it is "like" a step function yet it is differentiable. The Sigmoid can also be interpreted as a randomization. Lastly, when we use a sigmoid we get an element of confidence in our nets output. Often times an input will cause the net to output more than 1 response ("That looks like a 5 AND an S"). If we used step functions as the threshold device we wouldn't have a notion of which output is the most likely result.

We define the function A: $(R^n \times R^{p*n} \times R^{m*p}) \to R^m$ representing our neural net as follows (We call the function 'A' for "actual output"):

For real valued matrices $\theta(1)$ (p x n) and $\theta(2)$ (m x p) and random input $\xi \in \mathbb{R}^n$:

A
$$(\theta(1), \theta(2), \xi) = S_m (\theta(2) (S_p(\theta(1)(\xi))))$$

Where $S_i: \mathbb{R}^i \to \mathbb{R}^i$ is the Sigmoid function operating component-wise on a length i column vector. For $S_1: \mathbb{R} \to \mathbb{R}$ we simply write S.

For each ξ we have a corresponding $T \in \mathbb{R}^m$ ('T' for "target output") and we wish to

minimize:

$$| E[T - A(\theta(1), \theta(2), \xi)] |$$
 or similarly $E[(T - A(\theta(1), \theta(2), \xi))^2]$

We let $\theta = (\theta(1), \theta(2))$ and define $\phi(\theta, \xi) = (T - A(\theta(1), \theta(2), \xi))^2$ and $J(\theta, \xi) = E[\phi(\theta, \xi)]$.

-We show that $\phi(\theta, \xi)$ is Lipschitz and bounded:

-First We show that $A(\theta, \xi)$ is bounded and Lipschitz:

 $-A(\theta, \xi)$ is clearly bounded since $S(x) \in (0, 1) \ \forall x \in \mathbb{R}$ -Now since $\frac{d}{dx}S(x) = c S(x) (1 - S(x)) < c$ and since $S \in C^{\infty}$ we can invoke the mean value theorem and we have $\forall x, y \in \mathbb{R}$

∃ M such that:

$$\left| \frac{S(x) - S(y)}{x - y} \right| = \left| S'(M) \right| \le c$$

$$|S(x) - S(y)| \le c |x-y|$$

Thus S is Lipschitz and since the composition of Lipschitz functions is again Lipschitz and since linear operators between finite dimensional spaces are Lipschitz we have that $A(\theta, \xi)$ is Lipschitz.

-Also, since
$$|T - A(\theta(1), \theta(2), \xi_1) - (T - A(\theta(1), \theta(2), \xi_2))| = |A(\theta(1), \theta(2), \xi_1) - A(\theta(1), \theta(2), \xi_2)|$$

 $\Rightarrow T - A(\theta(1), \theta(2), \xi)$ is Lipschitz

-Lastly since $f(x) = x^2$ is analytic and has bounded derivative for $x \in (0, 1)$, it is locally Lipschitz. For each of the m positions of the vector: $(T - A(\theta(1), \theta(2), \xi))$ we have $(T_k - A_k(\theta(1), \theta(2), \xi)) \in (0, 1)$ it follows that $\phi(\theta, \xi)$ is Lipschitz and is also clearly bounded.

-For each of our 'm' target outputs, we demand that ξ take on only a finite number of values (in our particular example ξ represents the color information for pixels in an image), and since $\phi(\theta, \xi) \in C^{\infty}$ is bounded and Lipschitz we have:

$$\nabla_{\theta} J\left(\theta,\xi\right) = \nabla_{\theta} \operatorname{E} \left[\phi(\theta,\xi)\right] = \nabla_{\theta} \sum_{\xi \in \Omega} \xi \; \phi(\theta,\xi) \; = \sum_{\xi \in \Omega} \xi \; \nabla_{\theta} \; \phi(\theta,\xi) \; = \operatorname{E} \left[\; \nabla_{\theta} \; \phi(\theta,\xi) \right]$$

We discuss the convergence of our algorithm:

We want to do the following descent algorithm:

$$\begin{aligned} \theta_{n+1} &= \theta_n - \epsilon_n \; \nabla_\theta \, \mathbf{J} \; (\theta_n \; , \; \boldsymbol{\xi}) \\ &\quad \quad \text{-or-} \\ \theta(1)_{n+1} &= \theta(1)_n - \; \epsilon_n \; \nabla_{\theta(1)} \, \mathbf{J} \; (\theta_n \; , \; \boldsymbol{\xi}) \\ \theta(2)_{n+1} &= \theta(2)_n - \; \epsilon_n \; \nabla_{\theta(2)} \, \mathbf{J} \; (\theta_n \; , \; \boldsymbol{\xi}) \end{aligned}$$

- (i) We let ϵ_n be such that $\sum \epsilon_n = \infty$ and $\sum \epsilon_n^2 < \infty$
- (ii) Our model is exogenous since each ξ is independent of θ and so we wish to use

$$\theta_{n+1} = \theta_n + \epsilon_n \Upsilon_n$$
Where $\Upsilon_n = -\nabla_{\theta} \phi(\theta, \xi)$

(iii) We want a feedback function G and sequence of bias terms $\{\beta_k\}$ such that

$$E[\Upsilon_n \mid \mathcal{F}_{n-1}] = G(\theta_n) + \beta_n$$

By our work above, since $\phi(\theta, \xi)$ is Lipschitz and bounded:

$$\nabla_{\theta} E[\phi(\theta, \xi)] = E[\nabla_{\theta} \phi(\theta, \xi)]$$

$$\Rightarrow \nabla_{\theta} E[\phi(\theta_n, \xi) \mid \mathcal{F}_{n-1}] = E[\nabla_{\theta} \phi(\theta_n, \xi) \mid \mathcal{F}_{n-1}]$$

$$\Rightarrow E[\Upsilon_n \mid \mathcal{F}_{n-1}] = -\nabla_{\theta} J(\theta_n, \xi)$$

Thus $G(\theta_n) = -\nabla_{\theta} J(\theta_n, \xi)$ and $\beta_n \approx 0 \ \forall \ n \in \mathbb{Z}^+$

- (iv) $\beta_n = 0 \implies ||\beta_n|| = 0 \implies \sum \epsilon_n ||\beta_n|| < \infty$
- (v) Since ξ can take on only a finite number of values we have

that
$$V_n \leq M$$
 for some $M \in \mathbb{R}^+$ and $\forall n \in \mathbb{Z}^+$

$$\Rightarrow \sum \epsilon_n^2 V_n < \infty$$

(vi) Since we are using a negative gradient procedure where $G(\theta_n) = -\nabla_\theta J(\theta_n, \xi)$ we will converge to to a local minimum which depends on the initial weights, θ_0 and the ODE:

$$\frac{d}{dt}\mathcal{V}(t) = G(\mathcal{V}(t))$$

has a unique limit for each initial condition.

By (i) - (iv) above, the algorithm:

$$\theta_{n+1} = \theta_n - \epsilon_n \nabla_{\theta} \phi(\theta_n, \xi)$$
-or-
$$\theta(1)_{n+1} = \theta(1)_n - \epsilon_n \nabla_{\theta(1)} \phi(\theta_n, \xi)$$

$$\theta(2)_{n+1} = \theta(2)_n - \epsilon_n \nabla_{\theta(2)} \phi(\theta_n, \xi)$$

We have that $\theta_n \to \theta^*$ a.s where θ^* is a local minimum that depends on the initial condition θ_0 .

We calculate $\nabla_{\theta(1)} \phi(\theta, \xi)$ and $\nabla_{\theta(2)} \phi(\theta, \xi)$:

-We define a function called the "hidden output" H: $(R^n \times R^{p*n}) \to R^p$

as
$$\mathbf{H}(\theta(1), \xi) = S_{\theta}(\theta(1) \xi)$$

-We observe:

$$A_k(\theta(1),\ \theta(2),\,\xi\,) = S\left(\textstyle\sum_{j=1}^{h}\,\theta(2)_{k,\,j}\,H_j(\theta(1),\,\xi)\right)$$

and:

$$H_j(\theta(1), \xi) = S \left(\sum_{s=1}^n \theta(1) \right)_{j,s} \cdot \xi_s$$

-For notational simplicity we also define:

$$\overline{H_j}(\theta(1), \xi) = \sum_{s=1}^n \theta(1)_{j,s} \cdot \xi_s$$

(This is the hidden output before application of the Sigmoid)

Now: $\frac{\partial}{\partial \theta(1)_{uv}} \phi(\theta, \xi) = \frac{\partial}{\partial \theta(1)_{uv}} (T - A(\theta(1), \theta(2), \xi))^2$

(and dropping the notation with independent variables we have)

$$\begin{array}{l} \frac{\partial}{\partial\,\theta(1)_{uv}}\;(\;T_k\,\text{-}\,A_k\;)^2 = \frac{\partial}{\partial\,A_k}(\;T_k\,\text{-}\,A_k)^2\;\frac{\partial\,A_k}{\partial\,\theta(1)_{uv}} = \\ = -\,2\;(\;T_k\,\text{-}\,A_k)\;\frac{\partial}{\partial\,\theta(1)_{uv}}A_k \end{array}$$

$$= -2 \left(T_k - A_k \right) \frac{\partial}{\partial \theta(1)_{av}} S \left(\sum_{j=1}^{p} \theta(2)_{k,j} H_j \right)$$

$$= -2 \left(T_k - A_k \right) S \cdot \left(\sum_{j=1}^{p} \theta(2)_{k,j} H_j \right) \frac{\partial}{\partial \theta(1)_{av}} \left(\sum_{j=1}^{p} \theta(2)_{k,j} H_j \right)$$

$$= -2 \left(T_k - A_k \right) S \cdot \left(\sum_{j=1}^{p} \theta(2)_{k,j} H_j \right) \left(\sum_{j=1}^{p} \theta(2)_{k,j} \frac{\partial}{\partial \theta(1)_{av}} H_j \right)$$

$$= -2 \left(T_k - A_k \right) S \cdot \left(\sum_{j=1}^{p} \theta(2)_{k,j} H_j \right) \left(\sum_{j=1}^{p} \theta(2)_{k,j} \frac{\partial}{\partial \theta(1)_{av}} S \left(\sum_{s=1}^{n} \theta(1)_{j,s} \cdot \xi_{s} \right) \right)$$

$$= -2 \left(T_k - A_k \right) S \cdot \left(\sum_{j=1}^{p} \theta(2)_{k,j} H_j \right) \left(\sum_{j=1}^{p} \theta(2)_{k,j} \frac{\partial}{\partial \theta(1)_{av}} S \cdot \left(\sum_{s=1}^{n} \theta(1)_{j,s} \cdot \xi_{s} \right) \right)$$

$$= -2 \left(T_k - A_k \right) S \cdot \left(\sum_{j=1}^{p} \theta(2)_{k,j} S \cdot \left(\overline{H_j} \right) \frac{\partial}{\partial \theta(1)_{av}} \left(\sum_{s=1}^{n} \theta(1)_{j,s} \cdot \xi_{s} \right) \frac{\partial}{\partial \theta(1)_{av}} \left(\sum_{s=1}^{n} \theta(1)_{j,s} \cdot \xi_{s} \right) \right)$$

$$= -2 \left(T_k - A_k \right) S \cdot \left(A_k \right) \left(\sum_{j=1}^{p} \theta(2)_{k,j} S \cdot \left(\overline{H_j} \right) \frac{\partial}{\partial \theta(1)_{av}} \left(\sum_{s=1}^{n} \theta(1)_{j,s} \cdot \xi_{s} \right) \right)$$

$$Observe: \frac{\partial}{\partial \theta(1)_{av}} \left(\theta(1)_{j,s} \cdot \xi_{s} \right) = 0 \text{ if } j \neq u \text{ and } s \neq v$$

$$= -2 \left(T_k - A_k \right) S \cdot \left(A_k \right) \theta(2)_{k,u} S' \cdot \left(\overline{H_u} \right) \xi_v$$

$$\Rightarrow$$

$$\Rightarrow \frac{\partial}{\partial \theta(1)_{av}} \left(T - A \right)^2 = -2 \sum_{k=1}^{10} \left(T_k - A_k \right) S \cdot \left(A_k \right) \theta(2)_{k,u} S' \cdot \left(\overline{H_u} \right) \xi_v$$

$$\Rightarrow \frac{\partial}{\partial \theta(1)_{av}} \left(T - A \right)^2 = -2 \sum_{k=1}^{10} \theta(2)_{k,u} \left(T_k - A_k \right) S' \cdot \left(\overline{H_u} \right) \xi_v S' \cdot \left(A_k \right)$$

$$\left(\text{adding back all notation} \right)$$

$$\left(\frac{\partial}{\partial \theta(1)_{av}} \left(T - A \right) \left(\frac{\partial}{\partial \theta(1)_{av}} \left(T_k - A_k \right) \left(\frac{\partial}{\partial \theta(1)_{av}} \left(\overline{H_u} \right) \right) \right) S' \cdot \left(\overline{H_u} \theta(1), \xi \right) \xi_v S' \cdot \left(A_k (\theta(1), \theta(2), \xi) \right) \right)$$

$$\Rightarrow \nabla_{\theta(1)} \phi(\theta, \xi) = -2 \left(\sum_{k=1}^{n} \theta(2)_{k,u} \left(T_k - A_k (\theta(1), \theta(2), \xi) \right) S' \cdot \left(\overline{H_u} \theta(1), \xi \right) \xi_v S' \cdot \left(A_k (\theta(1), \theta(2), \xi) \right)$$

$$where $E = \theta(2)^T \left(\frac{(T_1 - A_1) * c \left(A_1 \right) \left(1 - A_1 \right)}{c \left(T_2 - A_3 \right) * c \left(A_2 \right) \left(1 - A_3 \right)} \right)$$$

Similarly
$$\Rightarrow \frac{\partial}{\partial \theta(2)_{uv}} \quad \phi(\theta, \xi) = -2 \left(T_u - A_u \right) \frac{\partial A_u}{\partial \theta(2)_{uv}}$$

$$= -2 \left(T_v - A_v \right) \quad S \quad \left(\sum_{k=1}^{p} \theta(2)_{uk} \cdot H_k \right) \frac{\partial}{\partial \theta(2)_{uv}} \quad \sum_{k=1}^{p} \theta(2)_{uk} \cdot H_k$$

$$= -2 \left(T_v - A_v \right) \quad S \quad \left(\sum_{k=1}^{p} \theta(2)_{uk} \cdot H_k \right) \quad H_v$$

$$\Rightarrow \nabla_{\theta(1)} \phi(\theta, \xi) = -2 \begin{pmatrix} (T_1 - A_1) * c (A_1) (1 - A_1) \\ \dots \\ (T_k - A_k) * c (A_k) (1 - A_k) \\ \dots \\ (T_m - A_m) * c (A_m) (1 - A_m) \end{pmatrix} \cdot \mathbf{H}$$

MNIST:

PROCEDURE:

- 1) We set n = 786 so each input node corresponds to a pixel value
- 2) We normalize the pixel values so they are in the range (0.01, 1]
- 3) We set m = 10, where each position corresponds to a possible output
- 4) For each digit 0 9, our desired output is .01 in every position of our output vector except for the position corresponding to the correct digit, which should output .99 (we choose these values over 0 and 1 because the Sigmoid cannot output 0 or 1 and our descent algorithm will be forever chasing impossible outputs)
- 5) We set a value for p (We tried 397 and 800, these are popular for MNIST)
- 6) We initialized the weights in $\theta(1)$ and $\theta(2)$ from normal distributions centered at 0 with standard deviations $\frac{1}{\sqrt{n}}$ and $\frac{1}{\sqrt{p}}$ respectively,
 - being careful to reset any weights that get a 0 value.
- 7) From here we experiment and we need to decide:
 - a. our sequence $\{\epsilon_n\}$
 - b. Value of c in the Sigmoid function (always set to 1 in our experiments):
 - c. How many epochs (number of times to train on each piece of data)

-We clarify a few things here:

- (i) A **restart** is when we initialize our net with random entries in the weight matrices $\theta(1)$ and $\theta(2)$.
- (ii) An **epoch** is when we run through all 60,000 training instances. If we perform k epochs, then we run through our 60,000 training instances k times without restarting.
- (iii) We believe that Theorem 3.3 and empirical results empowers us to perform **multiple epochs** while still maintaining convergence to a local minimum.

It does not matter that training instance $\xi_{k-60,000}$ ($\xi_k \in \text{epoch-2 or greater}$) is correlated with instance ξ_k because:

- a. Our training instances do not depend on the matrices $\theta(i)$.
- b. If we had infinite training instances Theorem 3.3 guarantees convergence to a θ^* (which depends on θ_0). We can view a new epoch as starting from a different set of initial weights which, by construction, must to take us to the same θ^* .
- (iv) For some of our training we use a constant sequence $\{\epsilon_n\}$. We have not proven convergence for constant sequence $\{\epsilon_n\}$, however our results strongly suggest convergence. Furthermore we feel that we could make the argument that our constant sequences $\{\epsilon_n\}$ are in fact decreasing at such a rate where $\sum \epsilon_n = \infty$ and $\sum \epsilon_n^2 < \infty$ hold however the first instance k, such that $\epsilon_k - \epsilon_{k-1} \neq 0$ is such that k > N, where N is the total number of training instances.

RESULTS: We chose 60,000 instances for training and 10,000 for testing. (our decreasing ϵ sequences were always of the form: $\{\epsilon_0, \frac{\epsilon_0}{2}, \frac{\epsilon_0}{3}, ...\}$)

(Restart	Decreasing $\{\epsilon_n\}$	Decrease every n trains	ϵ_0	# hidden nodes	С	Best Accuracy / ♯ epochs	Accuracy
1	No	_	0.1	397	1	12 / 15	97.01 %
2	No	_	0.01	397	1	15 / 20	97.52 %
3	Yes	28, 000	0.05	397	1	23/30	98.05 %
4	Yes	240, 000	.025	397	1	33 / 40	97.86%
5	Yes	180, 000	0.1	800	1	16/20	97.28 %
6	Yes	180, 000	.05	397	1	37 / 40	97.73 %

Analysis: Our best net achieved an accuracy of 98.05%. The following analysis is for this net:

The following graph is the accuracy for every 500 training instances over 1 epoch:

The following graph is the average $\|T - A\|$ every 500 train instances over 1 epoch:

(Average Normed error Vs. Number of training instances) Note: With 0 training the average normed error was 5.003

For each of the 195 failed instances, we have the following:

(Targe	et Number of failed attempts
0	8
1	8
2	25
3	15
4	19
5	26
6	16
7	26
8	22
(9	30

-For each of the 195 failed predictions the table below shows which value was the target and the value that was actually predicted:

```
Target / Prediction \rightarrow 0
                              0
                                 0
                                     0
                                       3
                                                1
                           3
                              2
                                 0
                                                0
                              6
                                     2
                                1
                              0
                     1
                           1
         5
                                                1
                     1 5 10 0
                                                8
                                       1 2
                     2 0 0
                              5
                                 6
                                    4
                                                2
                                12 1
```

Below we show the number of times the correct answer was not predicted to be the second most likely:

(Target	\sharp of times the target was not the second highest output $)$
0	4
1	3
2	6
3	4
4	2
5	8
6	6
7	10
8	9
(9	12

In 131 of the 195 instances where the net predicted the wrong digit, the correct digit was considered the second most-likely candidate. For each of these cases the tables below show which value was the target and which value was actually predicted:

(Target / Prediction →	0	1	2	3	4	5	6	7	8	9	1 (Target	Number of failed attempts \
0	_	0	0	0	0	0	3	0	1	0		0	4
1	0	_	3	1	0	0	0	0	1	0		1	5
2	2	2	_	6	0	1	1	4	3	0		2	19
3	1	0	2	_	0	3	0	2	2	1		3	11
4	1	0	1	0	_	0	5	1	0	9		4	17
5	0	1	0	7	1	_	3	0	3	3		5	18
6	2	2	0	0	3	2	_	0	1	0		6	10
7	0	1	6	0	0	0	0	_	1	8		7	16
8	1	0	0	1	4	2	1	2	_	2		8	13
9	2	1	0	0	9	0	0	4	2	-)) (9	18

-The table below shows how confident (difference between target output and the actual) the net was for each **incorrect** result, for each target.

(Target	(01)	[.12)	[.23)	[.34)	[.45)	[.56)	[.67)	[.78)	[.89)	[.9 - 1.0)
0	4	0	0	0	0	0	0	0	1	3
1	1	0	0	3	0	0	0	3	0	1
2	2	1	6	1	1	0	4	1	2	7
3	2	4	0	0	0	2	2	1	0	4
4	5	1	1	1	1	2	1	2	2	3
5	4	2	2	4	2	2	0	2	1	7
6	2	1	2	2	1	0	1	2	1	4
7	5	1	1	4	0	2	1	6	1	5
8	5	3	2	3	2	1	1	1	2	2
9	4	5	1	3	2	2	2	1	2	8)

-The table below shows how confident (difference between target output and next highest) the net was for each **correct** result:

(Target	(01)	[.12)	[.23)	[.34)	[.45)	[.56)	[.67)	[.78)	[.89)	[.9 - 1.0)
0	3	3	1	3	2	5	5	10	12	928
1	6	2	1	2	2	2	5	10	16	1081
2	6	3	2	4	6	10	9	11	26	930
3	10	3	5	4	0	6	9	11	14	933
4	7	6	3	4	6	5	7	9	21	895
5	8	8	4	5	5	7	10	8	19	782
6	6	6	5	0	4	3	8	6	15	889
7	5	5	2	4	5	4	83	9	13	947
8	10	8	8	7	11	3	9	13	31	852
9	5	4	7	4	6	9	10	8	26	900

-Below is an averaging of all the pixel intensities of all the testing data in which the the net was 90% confident and the prediction was **correct**:

