### Chapitre 15



### TABLE DES MATIÈRES

| Ι   | Définition et premières propriétés | 2 |
|-----|------------------------------------|---|
| II  | Sous-espaces vectoriels            | 4 |
| III | Familles de vecteurs               | 8 |

### Première partie

# Définition et premières propriétés

**Définition:** Soit E un ensemble muni d'une loi interne + et d'une loi  $\cdot$  définie sur  $\mathbb{K}\times E$  à valeurs dans E où  $\mathbb{K}$  est un corps.

On dit que  $(E,+,\cdot)$  est un  $\underline{\mathbb{K}\text{-espace vectoriel}}$  (ou un <br/>  $\underline{\text{espace vectoriel sur }\mathbb{K}})$  si

- 1. (E,+) est un groupe abélien
- 2. (a)

$$\begin{aligned} \forall u \in E, \forall (\lambda, \mu) \in \mathbb{K}^2, \\ \mu \cdot (\lambda \cdot u) &= (\underbrace{\mu \underbrace{\times}_{\times} \lambda) \cdot u}_{\times \text{ de } \mathbb{K}} \end{aligned}$$

- (b)  $\forall u \in E, 1_{\mathbb{K}} \cdot u = u$
- 3. (a)

$$\forall u \in E, \forall (\lambda, \mu) \in \mathbb{K}^2 \\ (\lambda \cdot u) \underbrace{+ (\mu \cdot u)}_{+ \text{ de } E} = (\lambda \underbrace{+ \mu}_{+ \text{ de } \mathbb{K}}) \cdot u$$

(b)

$$\forall \lambda \in \mathbb{K}, \forall (u, v) \in E^2,$$
$$\lambda \cdot (u + v) = (\lambda \cdot u) + (\lambda \cdot v)$$

Les éléments de E sont alors appelés <u>vecteurs</u> et les éléments de  $\mathbb K$  sont dits <u>scalaires</u>. Par convention,  $\cdot$  est prioritaire sur +.

**Proposition:** Soit  $(E, +, \cdot)$  un  $\mathbb{K}$ -espace vectoriel.

- $$\begin{split} &1. \ \, \forall u \in E, 0_{\mathbb{K}} \cdot u = 0_{E} \\ &2. \ \, \forall \lambda \in \mathbb{K}, \lambda \cdot 0_{E} = 0_{E} \\ &3. \ \, \forall \lambda \in \mathbb{K}, \forall u \in E, \lambda \cdot u = 0_{E} \implies \lambda = 0_{\mathbb{K}} \text{ ou } u = 0_{E} \end{split}$$

**Proposition:** Soit  $(E,+,\cdot)$  un  $\mathbb{K}$ -espace vectoriel et  $u\in E$ . Alors,  $-u=(-1_{\mathbb{K}})\cdot u$ 

3

# Deuxième partie

Sous-espaces vectoriels

**Définition:** Soit  $(E,+,\cdot)$  un  $\mathbb{K}$ -espace vectoriel. Soit  $F\subset E$ . On dit que F est un <u>sous- $\mathbb{K}$ -espace vectoriel</u> de E si

- 1.  $F \neq \emptyset$
- 2.  $\forall (u, v) \in F^2, u + v \in F$
- 3.  $\forall \lambda \in \mathbb{K}, \forall u \in F, \lambda u \in F$

**Proposition:** Avec les notations précédentes,  $(F,+,\cdot)$  est un  $\mathbb{K}$ -espace vectoriel

**Proposition:** Soit  $(E,+,\cdot)$  un  $\mathbb{K}$ -espace vectoriel et  $F\subset E$ . F est un sous-espace vectoriel de  $(E,+,\cdot)$  si et seulement si

- 1.  $F \neq \emptyset$
- 2.  $\forall (\lambda, \mu) \in \mathbb{K}^2, \forall (u, v) \in F^2, \lambda \cdot u + \mu \cdot v \in F$

 $\begin{array}{ll} \textbf{D\'efinition:} & \text{Soient } (E,+,\cdot) \text{ un } \mathbb{K}\text{-espace vectoriel et } (u_1,\dots,u_n) \in E^n. \text{ Une } \underline{\text{combinaison lin\'eaire}} \text{ de } (u_1,\dots,u_n) \text{ est un vecteur de } E \text{ de la forme } \sum_{i=1}^n \lambda_i u_i \text{ où } (\lambda_1,\dots,\lambda_n) \in \mathbb{K}^n \\ \end{array}$ 

#### Remarque:

On peut aussi démontrer que F est un sous-espace vectoriel de E si et seulement si

$$F \neq \varnothing \text{ et } \forall u,v \in F, \forall \lambda \in \mathbb{K}, \lambda u + v \in F$$

#### Remarque (Attention $\triangle$ ):

Une réunion de sous-espaces vectoriels n'est pas un sous-espace vectoriel en général.

**Définition:** Soient F et G deux sous-espaces vectoriels de E. On définit leur <u>somme</u> F+G par

$$F + G = \{x + y \mid x \in F, y \in G\}$$

**Proposition:** Avec les notations précédentes, F+G est le plus petit sous-espace vectoriel de E contenant  $F\cup G$ .

**Définition:** Soit  $(E,+,\cdot)$  un  $\mathbb{K}$ -espace vectoriel et  $(F_i)_{i\in I}$  une famille quelconque non vide de sous-espaces vectoriels de E. On définit  $\sum_{i\in I}F_i$  par

$$\begin{split} \sum_{i \in I} F_i &= \left\{ \sum_{i \in I} x_i \mid (x_i)_{i \in I} \in \prod_{i \in I} F_i; (x_i) \text{ presque nulle } \right\} \\ &= \left\{ \sum_{i \in I} x_i \mid (x_i) \in \prod_{i \in I} F_i; \{i \in I \mid x_i \neq 0_E\} \text{ est fini } \right\} \end{split}$$

 $\sum_{i \in I} F_i$  est l'ensemble de sommes  $\underline{\text{finies}}$  obtenues à partir d'éléments de  $\prod_{i \in I} F_i$ 

**Proposition:** Une somme quelconque de sous-espaces vectoriels est le plus petit sous-espace vectoriel contenant leur réunion.  $\Box$ 

**Définition:** Soient F et G deux sous-espaces vectoriels de E. On dit qu'ils sont en somme directe si

$$\forall u \in F + G, \exists ! (x, y) \in F \times G, u = x + y$$

Dans ce cas, l'espace F+G est noté  $F\oplus G$ 

**Proposition:** Soient  $(E,+,\cdot)$  un  $\mathbb{K}$ -espace vectoriel, F et G deux sous-espaces vectoriels de E

F et G sont en somme directe si et seuelement si  $F \cap G = \{0_E\}$ 

#### Remarque:

Ce résultat est inutile pour l'instant (en l'absence d'arguments dimensionnels) pour prouver un resultat de la forme  $E=F\oplus G$ 

**Définition:** Soit  $(E,+,\cdot)$  un K-espace vectoriel. On dit que F et G sont supplémentaires dans E si

$$E = F \oplus G$$

en d'autres termes,

$$\forall x \in E, \exists ! (y, z) \in F \times G, x = y + z$$

**Définition:** Soit  $(F_i)_{i\in I}$  une famille non vide de sous-espaces vectoriels de  $(E,+,\cdot)$ . On dit qu'ils sont en somme directe si

$$\forall x \in \sum_{i \in I} F_i, \exists ! (x_i)_{i \in I} \in \prod_{i \in I} F_i \text{ presque nulle telle que } x = \sum_{i \in I} x_i$$

Dans ce cas, on écrit  $\bigoplus_{i \in I} F_i$  à la place de  $\sum_{i \in I} F_i$ 

Troisième partie

Familles de vecteurs

**Définition:** Soit  $(E,+,\cdot)$  un  $\mathbb{K}$ -espace vectoriel et  $A\in \mathscr{P}(E)$ . Le <u>sous-espace vectoriel engendré</u> par A est le plus petit sous espace vectoriel V de E tel que  $A\subset V$ . On le note  $\mathrm{Vect}(A)$ 

**Définition:** Soit  $(E,+,\cdot)$  un  $\mathbb{K}$ -espace vectoriel et  $u\in E\setminus\{0_E\}$ . La <u>droite (vectorielle) engendrée</u> par u est  $\mathbb{K}u=\mathrm{Vect}(u)=\mathrm{Vect}(\{u\})$ . Soit  $v\in E$ . On dit que u et v sont <u>colinéaires</u> si  $v\in \mathbb{K}u$ . Si v n'est pas colinéaire à u alors,  $\mathrm{Vect}(u,v)=\mathbb{K}u+\mathbb{K}v$  est appelé <u>plan (vectoriel) engendrée</u> par u et v.

**Proposition:** Soit  $(e_i)_{i\in I}$  un famille non vide de vecteurs d'un K-espace vectoriel  $(E,+,\cdot)$ . Alors,

$$\operatorname{Vect}((e_i)_{i \in I}) = \left\{ \sum_{i \in I} \lambda_i e_i \mid (\lambda_i)_{i \in I} \in \mathbb{K}^I \text{ et } (\lambda_i) \text{ presque nulle } \right\}$$
$$= \sum_{i \in I} \mathbb{K} e_i$$

**Définition:** On dit que  $(e_i)_{i \in I}$  est une famille génératrice de E si

 $E = \operatorname{Vect} ((e_i)_{i \in I})$ 

**Proposition:** Soit  $(e_i)_{i\in I}$  une famille génératrice de E et  $(u_j)_{j\in J}$  une surfamille de  $(e_i)_{i\in I}$  constituée de vecteurs de E:

$$\forall i \in I, \exists j \in J, e_i = u_j$$

Alors,  $(u_j)_{j\in J}$  engendre E.

**Proposition:** Soit  $(e_i)_{i\in I}$  une famille génératrice de E et  $i_0\in I$ 

$$(e_i)_{i \in I \setminus \{i_0\}}$$
 engendre  $E \iff e_{i_0} \in \text{Vect}\left((e_i)_{i \in I \setminus \{i_0\}}\right)$   
 $\iff e_{i_0}$  est une combinaison linéaire des  $e_i$   $(i \in I, i \neq i_0)$ 

**Proposition:** Soit  $(e_i)_{i\in I}$  une famille génératrice de  $E,\,i_0\in I.$ 

9

1. On pose 
$$u_i = \begin{cases} e_i & \text{si } i \neq i_0 \\ \lambda e_{i_0} & \text{sinon} \end{cases}$$
 où  $\lambda \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$ 
Alors,  $(u_i)_{i \in I}$  engendre  $E$ 

2. Soit  $v \in \text{Vect}((e_i)_{i \in I \setminus \{i_0\}})$ .
On pose  $u_i = \begin{cases} e_i & \text{si } i \neq i_0 \\ e_{i_0} + v & \text{sinon} \end{cases}$  où  $\lambda \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$ 

On pose 
$$u_i = \begin{cases} e_i & \text{si } i \neq i_0 \\ e_{i_0} + v & \text{sinon} \end{cases}$$
 où  $\lambda \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$ 

**Définition:** Soit  $(e_i)_{i\in I}$  une famille de vecteurs. On dit que  $(e_i)_{i\in I}$  est <u>libre</u> si aucun vecteur de cette famille n'est une combinaison linéaire des autres vecteurs de cette famille:

$$\forall i \in I, e_i \notin \text{Vect}\left((e_j)_{j \in I \setminus \{i\}}\right)$$

On dit aussi que les  $e_i$  sont <u>linéairement indépendants</u>

$$(e_i)_{i \in I} \text{ est libre} \iff \forall (\lambda_i) \in \mathbb{K}^I \text{ presque nulle }, \left(\sum_{i \in I} \lambda_i e_i = 0_E \implies \forall i \in I, \lambda_i = O_\mathbb{K}\right)$$

**Proposition:** Soit  $(e_i)_{i \in I}$  une famille libre de E. Alors

$$\sum_{i \in I} \mathbb{K} e_i = \bigoplus_{i \in I} \mathbb{K} e_i$$

$$\forall u \in \sum_{i \in I} \mathbb{K}e_i, \exists ! (\lambda_i) \in \mathbb{K}^I$$
 presque nulle telle que  $u = \sum_{i \in I} \lambda_i e_i$ 

En d'autres termes, tout vecteur de E a <u>au plus</u> une décomposition en combinaisons

**Proposition:** Soit  $(e_i)_{i \in I}$  une famille libre de E.

- 1. Toute sous famille de  $(e_i)$  est encore libre
- 2. Soit  $u \in E$ ,  $\mathscr{F} = (e_i \mid i \in I) \cup \{u\}$ .

$$\mathscr{F}$$
 est libre  $\iff u \not\in \operatorname{Vect}(e_i \mid i \in I)$ 

- 3. (a) Quand on remplace un vecteur  $e_i$  par  $\lambda e_i$  avec  $\lambda \neq 0_{\mathbb{K}}$ , la famille obtenue est
  - (b) Quand on remplace un vecteur  $e_i$  par  $v + e_i$  avec  $v \in \text{Vect}(e_j \mid j \neq i)$ , la famille obtenue est libre.

10

**Définition:** Soit  $(e_i)_{i\in I}$  une famille de vecteurs de E. On dit que  $(e_i)$  est une <u>base</u> de E si c'est à la fois une famille libre et génératrice de E; i.e. si

$$E = \bigoplus_{i \in I} \mathbb{K} e_i$$

i.e. si

$$\forall u \in E, \exists ! (\lambda_i) \in \mathbb{K}^I$$
 presque nulle telle que  $u = \sum_{i \in I} \lambda_i e_i$ 

Dans ce cas, on dit que les  $\lambda_i$  sont les coordonnées de u dans la base  $(e_i)_{i\in I}$