Wyznaczanie całek $\iint_D f(x,y)\,dxdy$ na obszarze $D=D_1-D_2$, gdzie:

$$D_1 = [-1, 1] \times [-1, 1]$$

$$D_2 = \{(x, y) \in R^2 : |x| + |y| \le 1\}$$

przez podział D na $4n^2$ przystających trójkątów i zastosowanie na każdym z tych trójkątów kwadratury 4-go rzędu.

Stosowane oznaczenia:

 $\begin{array}{ll} T & - \operatorname{tr\'ojk\'at}\ o\ \text{wierzchołkach}\ p_0,\, p_1,\, p_2,\ T \subset R^2 \\ \\ P & - \operatorname{pole}\ \operatorname{tr\'ojk\'at}\ T \\ \\ p_{01} & - \operatorname{\'srodek}\ \operatorname{odcinka}\ o\ \operatorname{ko\'ncach}\ p_0\ \mathrm{i}\ p_1,\, \operatorname{czyli}\ p_{01} = \frac{p_0 + p_1}{2} \\ \\ p_{012} & - \operatorname{\'srodek}\ \operatorname{ci\'e\'zko\'s\'ci}\ \operatorname{tr\'ojk\'ata}\ o\ \operatorname{wierzchołkach}\ p_0,\, p_1,\, p_2,\, \operatorname{czyli}\ p_{012} = \frac{p_0 + p_1 + p_2}{3} \end{array}$

 W_n — przestrzeń wielomianów dwóch zmiennych stopnia co najwyżej n.

f — funkcja dwóch zmiennych, całkowalna na T

I(f) – dokładna wartość całki $\iint_T f(x,y) dxdy$

 $S_{swk}(f,T)$ — przybliżona wartość całki $\iint_T f(x,y)\,dxdy$, uzyskana dzięki numerycznej formule całkowej 4-go rzędu

 $S^{[n]}_{swk}(f,T)$ — przybliżona wartość całki $\iint_T f(x,y)\,dxdy$, uzyskana dzięki złożonej formule całkowej 4-go rzędu, w której trójkąt T został podzielony na n^2 przystających trójkątów

 $\{t_1,t_2,\dots,t_{n^2}\}$ — zbiór n^2 przystających trójkątów powstałych w wyniku podziału T

Idea zastosowanej metody numerycznej:

- Dzielimy jednoznacznie trójkąt T na n^2 przystających trójkątów: $\{t_1,t_2,\dots,t_{n^2}\}$.
- Obliczamy: $S_{swk}(f, t_i) \approx \iint_{t_i} f(x, y) dxdy$
- > Sumujemy otrzymane całki: $S_{swk}^{[n]}(f,T) = \sum_{i=1}^{i=n^2} S_{swk}(f,t_i)$

n = 2

n = 3

n = 4

Interpretacja obszaru całkowania D:

Analityczna postać całki $\iint_D f(x,y) dxdy$:

Matematyczne wzory dla zastosowanej metody numerycznej:

Formuła prosta stosowana na pojedynczym trójkącie:

$$S_{swk}(f,T) = \frac{P}{60} \left[27f(p_{012}) + 3(f(p_0) + f(p_1) + f(p_2)) + 8(f(p_{01}) + f(p_{02}) + f(p_{12})) \right]$$

Formuła złożona stosowana na podziale $\{t_1, t_2, ..., t_{n^2}\}$ trójkąta T:

$$S_{swk}^{[n]}(f,T) = \sum_{i=1}^{i=n^2} S_{swk}(f,t_i)$$

Własności implementowanej metody numerycznej:

- > Dla każdego $f \in W_3$ przybliżenie $S_{swk}(f,T)$ jest dokładne, czyli: $S_{swk}(f,T) = I(f)$.
- > Istnieje $f \in W_4$ taki, że $S_{swk}(f,T) \neq I(f)$.
- > Formuła całkowa S_{swk} jest kombinacją liniową formuł całkowych niższego rzędu:

$$S_{swk}(f,T) = \frac{1}{20} \left(9S_s(f,T) + 3S_k(f,T) + 8S_w(f,T) \right)$$

gdzie:

$$S_s(f,T) = Pf(p_{012})$$
 – jest formułą rzędu 2-go, $S_k(f,T) = \frac{P}{3}(f(p_{01}) + f(p_{02}) + f(p_{12}))$ – jest formułą rzędu 2-go, $S_w(f,T) = \frac{P}{12}(f(p_0) + f(p_1) + f(p_2))$ – jest formułą rzędu 3-go.

Błąd bezwzględny przybliżenia dla formuły złożonej spełnia zależność: $\left|S_{swk}^{[n]}(f,T)-I(f)\right|=0(n^{-4}).$

Porównanie metod całkowania na trójkącie:

Na wykładach poznaliśmy 5 różnych formuł całkowych służących do przybliżania całek podwójnych, w sytuacji gdy obszar całkowania T jest trójkątem.

$$S_{s}(f,T) = Pf(p_{012}) - \text{form}$$

$$S_{w}(f,T) = \frac{P}{12}(f(p_{0}) + f(p_{1}) + f(p_{2})) - \text{form}$$

$$S_{k}(f,T) = \frac{P}{3}(f(p_{01}) + f(p_{02}) + f(p_{12})) - \text{form}$$

$$S_{sw}(f,T) = \frac{P}{12}(f(p_{01}) + f(p_{02}) + f(p_{12}) + 9f(p_{012})) - \text{form}$$

$$S_{swk}(f,T) = \frac{P}{60} \binom{27f(p_{012}) + 3(f(p_{0}) + f(p_{1}) + f(p_{2}))}{+8(f(p_{01}) + f(p_{02}) + f(p_{12}))} - \text{form}$$

- formuła rzędu 2-go,
- formuła rzędu 2-go,
- formuła rzędu 3-go,
- formuła rzędu 3-go,
- formuła rzędu 4-go.

Porównanie błędu bezwzględnego wyrażonego w epsilonach dla metod całkowania na trójkącie dla: $f(x,y)=3x^4+3y^4$

Wykres przedstawia błędy bezwzględne przybliżeń całki wyrażone w epsilonach, w funkcji parametru n.

Porównanie czasu obliczeniowego dla metod całkowania na trójkącie dla: $f(x,y)=3x^4+3y^4$

Wykres przedstawia czas wykonania poszczególnych metod całkujących w funkcji parametru n.

Porównanie szybkości zbieżności metod całkowania na trójkącie dla funkcji: $f(x,y)=3x^4+3y^4$

n	S_s	S_w	S_k	S_{sw}	S_{swk}
1					
2	3,4175	2,9091	16,0000	16,0000	16,0000
4	3,8595	3,7447	16,0000	16,0000	16,0000
8	3,9652	3,9372	16,0000	16,0000	16,0000
16	3,9913	3,9844	16,0000	16,0000	16,0000
32	3,9978	3,9961	16,0000	16,0000	16,0000
64	3,9995	3,9990	16,0000	16,0001	16,0000
128	3,9999	3,9998	16,0000	16,0040	16,0000
256	4,0000	3,9999	16,0000	16,2634	16,0002
512	4,0000	4,0000	16,0000	15,7840	16,0037

Tabela przedstawia ilorazy błędów bezwzględnych przybliżeń całki przy podwajanej wartości parametru n. Świadczą one o szybkości zbieżności poszczególnych metod.

Porównanie błędu bezwzględnego wyrażonego w epsilonach dla metod całkowania na trójkącie dla: $f(x,y)=e^{x+2y}$

Wykres przedstawia błędy bezwzględne przybliżeń całki wyrażone w epsilonach, w funkcji parametru n.

Porównanie czasu obliczeniowego dla metod całkowania na trójkącie dla: $f(x,y)=e^{x+2y}$

Wykres przedstawia czas wykonania poszczególnych metod całkujących w funkcji parametru n.

Porównanie metod całkowania na trójkącie dla funkcji: $f(x,y) = e^{x+2y}$

n	S_s	S_w	S_k	S_{sw}	\mathcal{S}_{swk}
1					
2	3,7387	3,9366	11,8806	15,3591	14,6016
4	3,9278	3,9788	14,8158	15,8314	15,5985
8	3,9814	3,9943	15,6922	15,9573	15,8957
16	3,9953	3,9985	15,9223	15,9893	15,9737
32	3,9988	3,9996	15,9805	15,9973	15,9934
64	3,9997	3,9999	15,9948	15,9993	15,9984
128	3,9999	4,0000	16,0074	16,0001	15,9962
256	4,0000	4,0000	15,6099	16,1584	16,0118
512	4,0000	4,0000	16,7839	15,8004	16,0460

Tabela przedstawia ilorazy błędów bezwzględnych przybliżeń całki przy podwajanej wartości parametru n. Świadczą one o szybkości zbieżności poszczególnych metod.

Wnioski na podstawie eksperymentów własnych z zaimplementowaną metodą numeryczną:

- > Najbardziej optymalną strategią podziału obszaru na trójkąty jest podział, w którym parametr n jest potęgą dwójki.
- > Dla pozostałych wartości parametru *n* można spodziewać się pogorszenia jakości przybliżenia wartości całki z powodu ograniczonej precyzji reprezentacji liczb zmiennoprzecinkowych.
- Przeciętnie, dla wartości parametru n=2048, czyli dla około $16.8\cdot 10^6$ trójkątów można otrzymać dokładność przybliżenia na poziomie 10^{-15} .
- Chcąc obliczyć wartość całki dla wielomianów niskiego stopnia, należy rozważyć metodę niższego rzędu niż zaimplementowanej metody S_{swk} . W ten sposób możemy zyskać na czasie wykonania obliczeń.
- > Testy wydajnościowe wykazały, że "wąskim gardłem" w implementacji rozważanej metody numerycznej jest podział obszaru całkowania na przystające trójkąty.