

(19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(10) DE 103 53 366 B3 2004.11.18

(12)

Patentschrift

(21) Aktenzeichen: 103 53 366.4

(51) Int Cl.: E05F 15/12

(22) Anmeldetag: 14.11.2003

(43) Offenlegungstag: –

(45) Veröffentlichungstag
der Patenterteilung: 18.11.2004

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden.

(71) Patentinhaber:

Magnetic Autocontrol GmbH, 79650 Schopfheim,
DE

(72) Erfinder:

Lais, Lothar, Dipl.-Ing. (FH), 79650 Schopfheim, DE

(74) Vertreter:

Ebert, J., Dipl.-Ing. (FH), Pat.-Anw., 79541 Lörrach

(56) Für die Beurteilung der Patentfähigkeit in Betracht
gezogene Druckschriften:

US2003/00 29 089 A1

EP 02 90 957 B1

(54) Bezeichnung: Antriebsvorrichtung für Durchgangs- oder Durchfahrtssperren und Tür- oder Torantriebe

(57) Zusammenfassung: Es wird eine Antriebsvorrichtung für Durchgangs- oder Durchfahrtssperren und Tür- oder Torantriebe, mit einem bürstenlosen DC-Servomotor vorgeschlagen, bei dem der DC-Servomotor ein Servoregler zugeordnet ist und die Abtriebswelle des DC-Servomotors direkt mit der Abtriebswelle des Sperrelements verbunden ist. Über den Servoregler ist der DC-Servomotor hinsichtlich Drehzahl und Drehmoment etc. in weitem Bereich exakt regelbar und an unterschiedliche Anforderungen anpassbar, so dass für unterschiedlichste Anwendungen der gleiche Motor mit Servoregler eingesetzt werden kann, als ein durchgängiges Antriebssystem geschaffen ist. Durch den Direktantrieb des Sperrelements entfallen Koppel- und Unterstellungsgetriebe, also stör- und verschleißanfällige Teile, so dass weniger Wartungsarbeiten in längeren Zeitabständen erforderlich werden.

Beschreibung

[0001] Die Erfindung betrifft eine Antriebsvorrichtung für Durchgangs- oder Durchfahrtssperren und Tür- oder Torantriebe, mit einem bürstenlosen DC-Servomotor.

Stand der Technik

[0002] Es existieren Antriebsvorrichtungen für Durchfahrtssperren, wie Sperrschränke und andere schwere Sperrelemente, mit bürstenlosem Gleichstrommotor bzw. Servomotor, bei denen der Motor über ein Unterstellungsgetriebe und ein zusätzliches Koppelgetriebe das betreffende Sperrelement antreibt.

[0003] Die Verwendung von bürstenlosen DC-Servomotoren in solchen Antrieben hat unter anderem den Vorteil, dass sie im Vergleich zu Wechselstrommotoren gut regelbar sind. Außerdem weisen sie einen erheblich besseren Wirkungsgrad auf und sind von größerer Dynamik. Die Antriebsvorrichtungen sind in den verschiedensten geographischen Regionen, in denen die Stromversorgung mit unterschiedlich hoher Spannung und mit unterschiedlicher Frequenz bereitgestellt wird, einsetzbar.

[0004] Eine solche Antriebsvorrichtung ist in der veröffentlichten US-Patentanmeldung US 2003/0029089 A1 beschrieben. Zweck des Unterstellungsgtriebes ist es, die hohe Motordrehzahl zu reduzieren und das geringe Antriebsmoment des Antriebsmotors zu vervielfachen. Ein Regelkreis regelt die abgegebene Leistung des Gleichstrommotors entsprechend der für die Bewegung eines Sperrelements erforderlichen, sich möglicherweise während des Bewegungsablaufs ändernden Energie. Das Koppelgetriebe dient der Übertragung der Bewegung des Antriebsmotors auf das Sperrelement. Seine besondere Mechanik bewirkt auch einen sinusoidalen Bewegungsablauf des Sperrelements, so dass die Endpositionen des Sperrelementes sanft angefahren werden. Der Regler für einen Gleichstrommotor ist aber sehr teuer. Außerdem ist die Herstellung bekannter Gleichstrommotoren ebenfalls sehr aufwändig und kostenintensiv. Die zur Kommutierung verwendeten Kohlebürsten einfacher Gleichstrommotoren verschleißt üblicherweise sehr schnell und begrenzen damit die Lebensdauer dieser Gleichstrommotoren. Die Mechanik des Koppelgetriebes ist störend und verschleißanfällig.

[0005] Es ist bekannt, bei Sperren mit einem Drehkreuz oder dergl. als Sperrelement dieses dem Unterstellungsgtriebe nachzuschalten. Bei Klappensperren oder Sperrschränken und dergl. ist dem Unterstellungsgtriebe eine aufwändige Mechanik, meist in Form des Koppelgetriebes nachgeschaltet, um die Drehbewegung des Getriebemotors in eine

Schwenkbewegung des Sperrelements zu überführen. In der EP 0290 957 B1 ist eine Antriebsvorrichtung mit einem Antriebsmotor und nachgeschaltetem Koppelgetriebe beschrieben.

[0006] Personensperren müssen hinsichtlich Sicherheit und Personenschutz hohe Anforderungen erfüllen, Personen dürfen auf keinen Fall gefährdet werden, sie müssen aber andererseits auch sehr reaktionsschnell sein. Die Schließbewegung, um z.B. einer unbefugten Person den Zutritt oder Durchgang abzuschneiden, muss sehr schnell eingeleitet werden können und dann auch schnell ablaufen ohne die betreffende Person zu gefährden. Dabei sind Getriebe und eine aufwendige Mechanik hinderlich und setzen Grenzen.

[0007] Die bekannten Antriebsvorrichtungen weisen eine Vielzahl von mechanischen Teilen auf, die sehr verschleißanfällig sind und in der Folge teure Wartungsarbeiten oder Reparaturen erforderlich machen können, was sich gerade bei hochfrequentierten Durchgangs- oder Durchfahrtssperren besonders nachteilig auswirkt. Solche Sperren sollen möglichst jahrelang problemlos arbeiten und müssen während dieser Zeit eine extrem hohe Bewegungszahl absolvieren. Dabei sind je nach Art der Sperren auch unterschiedliche aber durchweg hohe Sicherheitsanforderungen gerade auch für den Personenschutz zu beachten. Um beispielsweise an Personensperren den unberechtigten Zutritt einer Person unmittelbar hinter einer berechtigten Person, das sogenannte Tailgating, zu verhindern, sind neben der entsprechenden Sensorik schnell reagierende und schnell schließende Sperren notwendig. Schnell schließende Sperren bergen aber ein Verletzungsrisiko für die durchgehenden Personen. Es ist also unabdingbar, dass der Antrieb für das Sperrelement bei Erkennen einer Person im Sperrbereich sofort gestoppt bzw. rückgesetzt werden kann, was ebenfalls eine hohe Belastung der Mechanik zur Folge hat. Als störend wird außerdem das von den bewegten Teilen der Mechanik verursachte Geräusch empfunden. Hinderlich ist das Getriebe weiter, wenn bei einem Stromausfall, die Sperre automatisch geöffnet werden soll.

[0008] Je nach Sicherheitsanforderungen und Frequenzierung werden die unterschiedlichsten Arten von Sperren eingesetzt. Die unterschiedlichen Bauformen bedingen auch unterschiedlichste Motor- und Getriebegrößen und -formen. Diese Vielfalt an Antrieben und Bauteilen erschwert die Logistik beim Hersteller, führt zu nur geringen Stückzahlen und damit zu hohen Kosten und Preisen.

Aufgabenstellung

[0009] Aufgabe der Erfindung ist es, eine Antriebsvorrichtung zu schaffen, welche mit möglichst wenig, verschleißbehafteten Komponenten auskommt, die

ein sanftes Beschleunigen und Abbremsen der bewegten Massen erlaubt und einen möglichst geräuscharmen Lauf der Sperre zulässt. Die neue Antriebsvorrichtung soll für möglichst viele Arten von Durchgangs- und Durchfahrtssperren, insbesondere aber für Personensperren unterschiedlichster Art, geeignet sein und damit die bisher erforderliche Vielfalt an unterschiedlichen Antrieben drastisch einschränken. Idealerweise sollen alle bisher bekannten Arten von Durchgangs- und Durchfahrtssperren weltweit mit einem und demselben Motortyp betrieben werden können. Für den Personenschutz muss der zum Einsatz kommende Servomotor regelbar sein.

[0010] Erfindungsgemäß wird dies dadurch erreicht, dass dem DC-Servomotor ein Servoregler zugeordnet ist und die Abtriebswelle des DC-Servomotors direkt mit der Antriebswelle des Sperrelementes verbunden ist.

[0011] Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.

[0012] Indem für alle Arten von Durchgangssperren der gleiche Motor mit Servoregler einsetzbar wird, können beide wesentlich kostengünstiger und zu vertretbaren Preisen produziert werden.

[0013] Über den Servoregler ist der Motor in seiner Drehzahl exakt regelbar. Das Drehmoment und damit die am zu bewegenden Element aufgebrachte Kraft lässt sich am Servoregler per Software den jeweiligen Anforderungen entsprechend anpassen bzw. begrenzen. Bewegungsprofile, wie ein sanftes Beschleunigen und Abbremsen, lassen sich vorgeben. Durch den Direktantrieb entfallen Untersetzungsgetriebe und Koppelgetriebe, wodurch die Herstellungskosten weiter gesenkt werden. Die Verschleißteile sind auf ein absolutes Minimum reduziert, so dass die Antriebsvorrichtung nahezu geräuschlos läuft. Sie ist universell einsetzbar und an unterschiedlichste Anforderungen weltweit anpassbar. Bei längerer Betriebszeit werden weniger Wartungsarbeiten in längeren Zeitabständen notwendig. Das für die unterschiedlichsten Anwendungsbereiche durchgängige Antriebssystem erleichtert auch die Logistik.

[0014] Die signalabhängige Steuerung des Motors erfolgt bevorzugt über ein kompaktes, aus dem Servoregler und einem Logikteil bestehendes Komplettsteuergerät.

[0015] Vorteilhaft kann das Logikteil als steckbare Logikplatine ausgeführt sein. Indem unterschiedliche Logikplatinen steckbar sind, auf denen unterschiedliche, auf verschiedene Anwendungen gerichtete Bewegungsprofile vorgegeben sind und die je nach Bedarf unterschiedliche Anzahlen von Ein- und Ausgängen, unterschiedliche Bedien- und Anzeigeelemente etc. aufweisen, kann die Antriebsvorrichtung von ei-

ner Basisausführung ausgehend optimal an die unterschiedlichsten Anforderungen und Vorgaben auch direkt vor Ort angepasst werden.

[0016] Ein Gebersystem, welches die benötigten Steuerungssignale liefert, kann vorzugsweise im Motor integriert sein. Es ist dabei von Vorteil, wenn das Motorlager auf der Seite des Gebersystems als Festlager ausgebildet ist, um axiale Abweichungen zu minimieren bzw. ganz zu eliminieren. Der Anschluss des Gebers kann mittels Steckverbindung oder Klemmen z.B. am Motorschild vorgenommen werden, wobei die verwendeten Stecker vorzugsweise verpolungssicher ausgeführt und für den sicheren Betrieb vorzugsweise mit einer Verriegelung versehen werden.

Ausführungsbeispiel

[0017] Ein Ausführungsbeispiel der Erfindung wird im folgenden anhand der anhängenden Zeichnung beispielhaft beschrieben.

[0018] Die einzige Figur zeigt den unteren Teil einer Personensperre mit einer um eine Säule 1 schwenkbaren Klappe 2 als Sperrelement. In der Säule 1d verläuft eine die Schwenkbewegung ausführende, in der Zeichnung nicht sichtbare Welle; sie durchdringt die Platte 3 eines tischartigen Sockels 4 und ist unterhalb der Platte 3 mit einem bürstenlosen DC-Servomotor 5 direkt, also ohne Zwischenschaltung eines Getriebes verbunden. Neben dem Motor 5 ist für den sicheren Betrieb eine Verriegelungseinheit 6 vorgesehen, die das Sperrelement sicher in seiner geschlossenstellungs und seiner Offenstellung hält und die es erlaubt, den Motor 5 bzw. das Sperrelement 2 in jeder Position zu stoppen.

[0019] Für alle Arten von Sperren, insbesondere Personensperren, bei denen das Sperrelement eine reine Dreh- oder Schwenkbewegung auszuführen hat, ist also vorgesehen, einen bürstenlosen DC-Servomotor 5 mit Servoregler als Direktantrieb, also ohne Zwischenschaltung eines Getriebes, einzusetzen, d.h. die Abtriebswelle des DC-Servomotors 5 direkt mit dem Sperrelement 2 zu verbinden. Drehzahl und Drehmoment des Motors 5 sind unabhängig von der Drehrichtung und über den gesamten Verfahrreich beliebig regelbar. Es lassen sich Beschleunigungsprofile mit Beschleunigungs- und Bremsrampen am Beginn bzw. Ende einer Bewegung für ein sanftes Laufverhalten ohne Überschwingen und ohne stoßartige Belastungen in den Endlagen voreinstellen, wobei auch die Positionierung sehr genau erfolgen kann. Die Kommutierung und Lageregelung im Motor kann mittels magnetoresistivem Sensor in Verbindung mit einem Polrad bzw. einem polarisierten Magnetring erfolgen. Je nach erforderlicher Positioniergenauigkeit sind auch alle anderen Systeme, wie Resolver, Encoder, Hallsensoren möglich. Zu-

sätzliche Sensoren oder Endschalter werden für die Positionierung nicht benötigt.

[0020] Die Regelung des Motors erfolgt mittels eines kompakten Komplettsteuergerätes, bestehend aus der eigentlichen Servoreglerplatine, einer Elektronikplatine, welche den Logikteil enthält, und einem Steuerungsgehäuse. Das Steuerungsgehäuse besteht vorzugsweise aus einem Aluminium-Strangpressprofil mit im Profilquerschnitt integrierten Haltevorrichtungen (Schienen) zum Einschieben der Platten- und Schraubkanäle zur Fixierung der seitlichen und des oberen Abdeckbleches. Idealerweise wird eines der seitlichen Abdeckbleche fest mit den Endstufenbausteinen des Servoreglers verbunden und dient dadurch gleichzeitig als Kühlkörper und zur Fixierung der Servoreglerplatine im Steuerungsgehäuse. Servoregler und Logikteil kommunizieren über einen Bus und benötigen daher nur eine Verbindung. Für die Ein- und Ausgangsklemmen, bzw. Stecker, sind in den seitlichen und im oberen Abdeckblech entsprechende Ausbrüche vorgesehen.

[0021] Indem unterschiedlichste, für verschiedene Anwendungsmöglichkeiten und Ausbaustufen ausgelegte und entsprechend angepasste, programmierbare Logikplatinen bereit gestellt werden, kann die gleiche Antriebsvorrichtung durch einfachste Maßnahmen, nämlich durch den Einbau der entsprechenden Logikplatine bzw. durch deren Austausch oder durch Änderungen des Programms, für die jeweilige Anwendung sofort einsatzbereit gemacht werden und auch nachträglich vor Ort problemlos an die jeweiligen Erfordernisse oder Kundenwünsche angepasst werden. Ein eingebauter Spannungsregler macht ein und dieselbe Antriebsvorrichtung einsetzbar für alle Netzspannungen zwischen 100 Volt und 265 Volt und 50 Hz und 60 Hz. Mit einer Steuerung kann ein großer Leistungsbereich abgedeckt werden.

[0022] Eine andere Ausführungsform sieht eine Anschlussspannung von 48 Volt DC vor. In diesem Fall wird dem Komplettsteuergerät ein entsprechender Transformator oder Netzteil vorgeschaltet; das Steuergerät selbst ist weltweit für alle Versorgungsspannungen identisch ausgeführt.

[0023] Eine weitere Ausgestaltung der Erfindung sieht vor, die Ein- und Ausgänge von der eigentlichen Motorsteuerung zu trennen und als eigenständiges Modul zu gestalten. Die Verbindung zur Motorsteuerung/Logikplatine erfolgt in diesem Fall über eine steckbare Busverbindung oder ein steckbares, mehradriges Kabel, z.B. Flachkabel. In dieser Ausgestaltungsform bleibt die empfindliche, mehrlagige Motorsteuerungsplatine, bzw. Logikplatine, beim Anschließen von mechanischen Belastungen verschont; diese Belastungen werden dann von der unempfindlicheren Anschlussplatine des Anschlussmoduls auf-

genommen, eventuelle Beschädigungen durch unsachgemäßen Umgang führen nicht zu Beschädigungen an der teuren Motor-/Logikplatine.

[0024] Im Bedarfsfall kann das Verriegeln des Sperrelements in den Endlagen mittels einer separaten, an den Motor angebauten oder auch vom Motor unabhängigen Verriegelungseinheit bewirkt werden. Im Fall eines Spannungsausfalls wird das Sperrelement, vorzugsweise durch Energiespeicherung im Zwischenkreis des Servoreglers, automatisch in seine Offen-Stellung gebracht, so dass trotz der Störung ein unbehindertes Passieren möglich ist. Dabei hat die Ausführung der Antriebsvorrichtung als Direktantrieb den Vorteil, dass bei Spannungsausfall keine Hemmung durch den Getriebewirkungsgrad (z.B. bei Schneckengetrieben) auftritt. Alternativ kann bei Spannungsausfall auch auf Akku-Betrieb umgeschaltet werden, wozu der Motor dann in Schutzkleinspannung auszuführen ist.

[0025] Andererseits bleibt vorteilhaft die Möglichkeit erhalten, bei zu bewegenden Elementen, die eine kombinierte Bewegung ausführen, wie Sperrschanzen oder Flügel- und Schiebeelemente oder bei größeren Personensperren, wie großen und schweren Karussell-Drehtüren, zwischen dem Servomotor und dem zu bewegenden Element ein Untersetzungsgetriebe und/oder bei Bedarf zusätzlich auch ein Kopfgetriebe zwischenzuschalten.

Bezugszeichenliste

- 1 Säule
- 2 Klappe, Sperrelement
- 3 Platte
- 4 Sockel
- 5 DC-Servomotor
- 6 Verriegelungseinheit

Patentansprüche

1. Antriebsvorrichtung für Durchgangs- oder Durchfahrtssperren und Tür- oder Torantriebe, mit einem bürstenlosen DC-Servomotor, dadurch gekennzeichnet, dass dem DC-Servomotor (5) ein Servoregler zugeordnet ist und die Antriebswelle des DC-Servomotors (5) direkt mit der Antriebswelle des Sperrelements (2) verbunden ist.

2. Antriebsvorrichtung nach Anspruch 1, gekennzeichnet durch ein kompaktes, aus dem Servoregler und einem Logikteil und einem Gehäuse bestehendes Komplettsteuergerät zur signalabhängigen Steuerung des Motors (5).

3. Antriebsvorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass das Logikteil als steckbare Logikplatine ausgeführt ist.

4. Antriebsvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass unterschiedliche Logikplatinen steckbar sind, auf denen unterschiedliche, auf verschiedene Anwendungen gerichtete Bewegungsprofile und Programme vorgegeben sind und die je nach Bedarf unterschiedliche Anzahlen von Ein- und Ausgängen und unterschiedliche Bedien- und Anzeigeelemente aufweisen.

5. Antriebsvorrichtung nach Anspruch 1, gekennzeichnet durch ein in den Motor integriertes Gebersystem, das die benötigten Steuerungssignale liefert.

6. Antriebsvorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass das Motorlager auf der Seite des Gebersystems als Festlager ausgebildet ist.

7. Antriebsvorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass der Anschluss des Gebersystems mittels Steckverbindung oder Klemmen am Motorschild vorgenommen ist.

8. Antriebsvorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Steckverbindung verpolungssicher ausgeführt ist und mit einer Verriegelung versehen ist.

9. Antriebsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Kommutierung und Lageregelung im Motor mittels magnetoresistivem Sensor erfolgt.

10. Antriebsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Kommutierung und Lageregelung im Motor mittels Resolver oder Encoder oder Hallsensoren erfolgt.

11. Antriebsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass zwischen dem Servomotor und dem zu bewegenden Sperrelement ein Koppelgetriebe zwischenschaltbar ist.

12. Antriebsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass zwischen Servomotor und zu bewegendem Element ein Unterstellungsgetriebe und ein Koppelgetriebe zwischenschaltbar sind.

13. Antriebsvorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Ein- und Ausgänge von der eigentlichen Motorsteuerung/Logikplatine getrennt sind und als eigenständiges Modul ausgeführt sind.

14. Antriebsvorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass die Ein- und Ausgänge über eine Steckbare Busverbindung oder ein steckbares, mehradriges Kabel verbindbar sind.

Es folgt ein Blatt Zeichnungen

Anhängende Zeichnungen

Figur