Source:

1 | well defined def

A function is well defined if each element of the domain has exactly one image. Formally,

A function $f: X \to Y$ is a relation f from X to Y satisfying:

- 1. $\forall x \in X$, $\exists y \in Y$ s.t. $(x,y) \in f$ (every element of the domain has an image)
- 2. $\forall x \in X, \forall y_1, y_2 \in Y, (x, y_1), (x, y_2) \in f$ implies $y_1 = y_2$ (each element of the domain has at most one image)

2 | counterexample

$$2.1 \mid f(\frac{a}{b}) = a + b$$

This is actually not a well defined function, because $f(\frac{1}{2})=3$ while $f(\frac{2}{4})=6$, yet $\frac{1}{2}=\frac{2}{4}$. This is actuall a really beautiful counter example.

3 | sources source

- 3.1 | Math Stack Exchange Answer quoting definition
- 3.2 | Math Stack Exchange Answer with counterexample

Exr0n · **2020-2021** Page 1