Bits, Bytes, and Integers – Part 2

Computer Systems 3rd Lecture, 17 Aug, 2023

Borrowed from the Slides of Brian Railing (15-513)

Today: Bits, Bytes, and Integers

- Representing information as bits
- **■** Bit-level manipulations
- Integers
 - Representation: unsigned and signed; negation and addition
 - Conversion, casting, extension, truncation
 - Multiplication, division, shifting
- Byte order in memory, pointers, strings

Encoding "Integers"

Unsigned

Given a bit w bits long...

Given a bit vector
$$x$$
, $B2U(x) = \sum_{i=0}^{w-1} x_i \cdot 2^i$ w bits long...

Signed (twos complement)

B2T(x) =
$$-x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$
 Sign Bit

Examples (w = 5)

±16	8	4	2	1
0	1	0	1	0

$$0 + 8 + 0 + 2 + 0 = 10$$

$$16 + 8 + 0 + 2 + 0 = 26$$

$$-16 + 8 + 0 + 2 + 0 = -10$$

Negation: Complement & Increment

Negate through complement and increase

$$\sim x + 1 == -x$$

■ Why?

Example: x = 15213

	Decimal	He	X	Binary
x	15213	3B	6D	00111011 01101101
~x	-15214	C4	92	11000100 10010010
~x+1	-15213	C4	93	11000100 10010011
У	-15213	C4	93	11000100 10010011

Complement & Increment Examples

$$x = 0$$

	Decimal	Hex	Binary
0	0	00 00	00000000 00000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	00000000 00000000

$$x = T_{\min}$$

	Decimal	Hex	Binary
x	-32768	80 00	10000000 00000000
~x	32767	7F FF	01111111 11111111
~x+1	-32768	80 00	10000000 00000000

Eight negative values: -1, -2, ..., -8

Mathematicians would prefer it if a 4-bit signed number could represent values -8...8, but that's $2^4 + 1$ values, so they won't all fit.

Eight *non*-negative values: 0, 1, ..., 7

What if we made a 4-bit signed number only represent values -7...7? Then we wouldn't be using bit pattern 1000...

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

- Standard Addition Function
 - Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

unsigned char	1110 1101	 E9 + D5	233 + 213

 $UAdd_{w}(u, v)$

Hex Decimaly

•	•	•
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

- Standard Addition Function
 - Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

unsigned char	1	110	1001	E 9	233
	+ 1	101	0101	+ D5	+ 213
	1 1	011	1110	1BE	446
	1	011	1110	BE	190

Hex Decimaly

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Visualizing (Mathematical) Integer Addition

- Integer Addition
 - 4-bit integers u, v
 - Compute true sum
 Add₄(u, v)
 - Values increase linearly with u and v
 - Forms planar surface

Visualizing Unsigned Addition

- Wraps Around
 - If true sum $\geq 2^w$
 - At most once

True Sum

Two's Complement Addition

- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:

```
int s, t, u, v;
 s = (int) ((unsigned) u + (unsigned) v);
 t = u + v
• Will give s == t
                              1110
                                   1001
                                              E9
                                                        -23
                              1101 0101
                                            + D5
                                                       -43
                             1011 1110
                                                        -66
                                             1BE
                                                        -66
                                              BE
```

Visualizing 2's Complement Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

TAdd Overflow

- Functionality
 - True sum requires w+1 bits
 - Drop off MSB
 - Treat remaining bits as 2's comp. integer

Today: Bits, Bytes, and Integers

- Representing information as bits
- **■** Bit-level manipulations
- Integers
 - Representation: unsigned and signed; negation and addition
 - Conversion, casting, extension, truncation
 - Multiplication, division, shifting
- Byte order in memory, pointers, strings

Boolean Algebra

Developed by George Boole in 19th Century

Algebraic representation of logic

And

• Encode "True" as 1 and "Falge" as 0

■ A&B = 1 when both A=1 and B=1

&	0	1
0	0	0
1	0	1

Ι	0	1
0	0	1
1	1	1

Not

Exclusive-Or (Xor)

■ A^B = 1 when either A=1 or B=1, but not both

٨	0	1
0	0	1
1	1	0

General Boolean Algebras

Operate on Bit Vectors

All of the Properties of Boolean Algebra Apply

Example: Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w-1}
- $a_j = 1 \text{ if } j \in A$
 - 01101001 { 0, 3, 5, 6 }
 - **76543210**
 - 01010101 { 0, 2, 4, 6 }
 - *76543210*

Operations

- &	Intersection	01000001	{ 0, 6 }
•	Union	01111101	{ 0, 2, 3, 4, 5, 6 }
^	Symmetric difference	00111100	{ 2, 3, 4, 5 }
~	Complement	10101010	{ 1, 3, 5, 7 }

Bit-Level Operations in C

■ Operations &, |, ~, ^ Available in C

- Apply to any "integral" data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- $\sim 0x41 \rightarrow$
- $\sim 0x00 \rightarrow$
- 0x69 & 0x55 →
- $0x69 \mid 0x55 \rightarrow$

Hex Decimany

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Bit-Level Operations in C

- Operations &, |, ~, ^ Available in C
 - **Opperation** silote aral~data Axvatilable in C
 - Appgy itt, shortnebgfaknsiggedpe
 - Viewlargumentsors, bit are chosigned
 - Argierneants upphied as it it is ectors
- Examples (Charlied bit-wise)
 - Examples (Char data type)
 - $\sim 0x41 \rightarrow 0xBE$
 - $-0\dot{x}00001000001_2 \rightarrow 10111110_2$
 - $\sim 0 \times 00 \rightarrow 0 \times FF$
 - $-00000000_2 \rightarrow 11111111_2$ $0x69 & 0x55 \rightarrow 0x41$
 - - $0110\ 1001_2\ \&\ 0101\ 0101_2\ \to\ 0100\ 0001_2$
 - - $0110\ 1001_2\ |\ 0101\ 0101_2\ \to\ 0111\ 1101_2$

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Contrast: Logic Operations in C

- Contrast to Bi vel Operators
 - Logic Operation
 - View ∩ as "Fa
 - Any
 - . Alw Watch out for && vs. & (and | vs. |)...
 - Ear one of the more common oopsies in
- Examp C programming
 - !0x41
 - !0x00 → UXUT
 - $!!0x41 \rightarrow 0x01$
 - $0x69 \&\& 0x55 \to 0x01$
 - $0x69 \parallel 0x55 \rightarrow 0x01$
 - p && *p (avoids null pointer access)

Logical versus Bitwise

X	!X	!! X	!!X == X
-1	0	1	No
0	1	0	Yes
1	0	1	Yes
2	0	1	No

X	~X	~~X	~~X == X
-1	0	-1	Yes
0	-1	0	Yes
1	-2	1	Yes
2	-3	2	Yes

Today: Bits, Bytes, and Integers

- Representing information as bits
- **■** Bit-level manipulations
- Integers
 - Representation: unsigned and signed; negation and addition
 - Conversion, casting, extension, truncation
 - Multiplication, division, shifting
- Byte order in memory, pointers, strings

Mapping Between Signed & Unsigned

Mappings between unsigned and two's complement numbers:
 Keep bit representations and reinterpret

Relation between Signed & Unsigned

Maintain Same Bit Pattern

Large positive weight becomes

Large negative weight

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned	
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

Conversion Visualized

• 2's Comp. → Unsigned **UMax** Ordering Inversion UMax - 1 Negative → Big Positive TMax + 1Unsigned TMax **TMax** Range 2's Complement Range -2 **TMin**

Signed vs. Unsigned in C

- Constants
 - By default are considered to be signed integers
 - Unsigned if have "U" as suffix
 0U, 4294967259U
- Casting
 - Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

Casting Surprises

- Expression Evaluation
 - If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
 - Including comparison operations <, >, ==, <=, >=

((unsigned)INT MAX)

Examples:

Constant 1	Constant 2	Relation	Evaluatio n
0	0 U	==	Unsigned
-1	0	<	Signed
-1	0 U	>	Unsigned
INT_MAX	INT_MIN	>	Signed
(unsigned) INT_MA X	INT_MIN	<	Unsigned
-1	-2	>	Signed
(unsigned)-1	-2	>	Unsigned
			_

Unsigned

Summary Casting Signed ←→ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting
 2^w

- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Today: Bits, Bytes, and Integers

- Representing information as bits
- **■** Bit-level manipulations
- Integers
 - Representation: unsigned and signed; negation and addition
 - Conversion, casting, extension, truncation
 - Multiplication, division, shifting
- Byte order in memory, pointers, strings

Sign Extension and Truncation

Sign Extension

Make K copies of sign bit

■ Truncation

Sign Extension: Simple Example

Negative number

Truncation: Simple Example

No sign change

 $2 \mod 16 = 2$

$$-16$$
 8 4 2 1 -6 = **1 1 0 1 0**

$$-8$$
 4 2 1 -6 = 1 0 1 0

 $-6 \mod 16 = 26U \mod 16 = 10U = -6$

Sign change

$$10 = \begin{bmatrix} -16 & 8 & 4 & 2 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$-8$$
 4 2 1 -6 = 1 0 1 0

 $10 \mod 16 = 10U \mod 16 = 10U = -6$

$$-16$$
 8 4 2 1 -10 = 1 0 1 1 0

 $-10 \mod 16 = 22U \mod 16 = 6U = 6$

Today: Bits, Bytes, and Integers

- Representing information as bits
- **■** Bit-level manipulations
- Integers
 - Representation: unsigned and signed; negation
 - Conversion, casting
 - Extension, truncation, shifting
 - Addition, multiplication
- Representations in memory, pointers, strings

Shifting

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
 - Equivalent to multiplying by 2^{y}
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Two kinds:
 - "Logical": Fill with 0's on left
 - "Arithmetic": Replicate most significant bit on left
 - Almost equivalent to dividing by 2^{y}
- Undefined Behavior (in C)
 - Shift amount < 0 or ≥ word size

Argument x	01100010
<< 3	<mark>00010</mark> 000
Logical >> 2	<i>00<mark>011000</mark></i>
Arithmetic >> 2	<i>00</i> <mark>011000</mark>

Argument x	10100010
<< 3	<mark>00010</mark> 000
Logical >> 2	<i>00<mark>101000</mark></i>
Arithmetic >> 2	11 <mark>101000</mark>

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for $(TMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

Discard w bits: w bits

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

$$UMult_w(u, v) = u \cdot v \mod 2^w$$

		1110	1001		E9		233
*		1101	0101	*	D5	*	213
1100	0001	1101	1101	C	C1DD		49629
		1101	1101		DD		221

Signed Multiplication in C

Discard w bits: w bits

- Standard Multiplication Function
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same

		1110	1001		E9		-23
*		1101	0101	*	D5	*	-43
0000	0011	1101	1101	03	3DD		989
		1101	1101		DD		-35

Power-of-2 Multiply with Shift

- Operation
 - $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
 - Both signed and unsigned

k

- Examples
 - u << 3 == u * 8
 - (u << 5) (u << 3) == u * 24
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Today: Bits, Bytes, and Integers

- Representing information as bits
- **■** Bit-level manipulations
- Integers
 - Representation: unsigned and signed; negation and addition
 - Conversion, casting, extension, truncation
 - Multiplication, division, shifting
- Byte order in memory, pointers, strings

Byte-Oriented Memory Organization

- Programs refer to data by address
 - Imagine all of RAM as an enormous array of bytes
 - An address is an index into that array
 - A pointer variable stores an address
- System provides a private address space to each "process"
 - A process is an instance of a program, being executed
 - An address space is one of those enormous arrays of bytes
 - Each program can see only its own code and data within its enormous array
 - Wa'll come back to this later ("virtual memory" classes)

Machine Words

Any given computer has a "Word Size"

- Nominal size of integer-valued data
 - and of addresses
- Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2³² bytes)
- Increasingly, machines have 64-bit word size
 - Potentially, could have 16 EB (exabytes) of addressable memory
 - That's 18.4×10^{18} bytes
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Yes, both of these numbers are correct.
This discrepancy is known as the Great
Storage Industry Marketing Lie.
Ask me about it after class if you really want to know.

Addresses Always Specify Byte

Locations

- Address of a word is address of the first byte in the word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Example Data Representations

C Data Type	Data Type Typical 32-bit		x86-64	
char	1	1	1	
short	2	2	2	
int	4	4	4	
long	4	8	8	
float	4	4	4	
double	8	8	8	
pointer	4	8	8	

Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, network packet headers
 - Least significant byte has highest address
 - Little Endian: x86, ARM processors running Android, iOS, and Windows
 - Least significant byte has lowest address

Byte Ordering Example

Example

- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

Big Endian		0x100	0x101	0x102	0x103	
		01	23	45	67	
Little Endia	ın	0x100	0x101	0x102	0x103	
		67	45	23	01	

Representing Integers

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

int A = 15213;

int B = -15213;

long int C = 15213;

Two's complement representation

Examining Data Representations

Code to Print Byte Representation of Data

```
typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
    size_t i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n",start+i, start[i]);
    printf("\n");
}</pre>
```

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

show bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

```
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00
```

Representing Pointers

```
int B = -15213;
int *P = &B;
```


Different compilers & machines assign different locations to objects

Even get different results each time run program

Representing Strings

char S[6] = "18213";

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit i has code 0x30+i
- String should be null-terminated
 - Final character = 0

Compatibility

Byte ordering not an issue

Representing x86 machine code

- x86 machine code is a sequence of bytes
 - Grouped into variable-length instructions, which look like strings...
 - But they contain embedded little-endian numbers...
- Example Fragment

Address	Instruction Code	Assembly Rendition
8048365:	5b	pop %ebx
8048366:	81 c3 ab 12 00 00	add \$0x12ab,%ebx
804836c:	83 bb 28 00 00 00 00	cmpl \$0x0,0x28(%ebx)

- Deciphering Numbers
 - Value:
 - Pad to 32 bits:
 - Split into bytes:
 - Reverse:

```
0x12ab
0x000012ab
00 00 12 ab
ab 12 00 00
```