Eiercicio 1

1) Se tiene : N = 317 (1000) ; N = 1 (49) ; N + 1 = 0 (3) $N + 1 = 0 (3) \Rightarrow N = -1 (3) \Rightarrow N = 2 (3)$ Queda el sistema de congruencias : N = 317 (1000) N = 1 (49) N = 2 (3)

Como 1000, 49 y 3 son primos entre sí dos a dos por el Teorema Chino del Resto el sistema tiene solución.

2) $M_1 = 3*49 = 147;$ $M_2 = 3*1000 = 3000;$ $M_3 = 49*1000 = 49000$ 1000 = 147*6 + 118; 147 = 118 - 29; 118 = 29*4 + 2; 29 = 2*14 + 1 1 = 29 - 2*14 = 29 - 14(118 - 29*4) = 57*29 - 14*118 = 57(147 - 118) - 14*118 = 57*147 - 71*118 = 57*147 - 71(1000 - 147*6) = 483*147 - 71*1000 Entonces 483*147 = 1 (1000) 3000 = 49*61 + 11; 49 = 11*4 + 5; 11 = 5*2 + 1 1 = 11 - 5*2 = 11 - 2(49 - 4*11) = 9*11 - 2*49 = 9(3000 - 49*61) - 2*49 = 9*3000 - 551*49 Entonces 9*3000 = 1 (49) 49000 = 3*16333 + 1 1 = 49000 - 3*16333 Entonces $49000 \equiv 1$ (3) Por lo tanto $N \equiv 317*483*147 + 1*9*3000 + 2*49000$ (147000) $N \equiv 22632317$ (147000) $\Rightarrow N \equiv 141317$ (147000) 128317 + 5*147000 = 876317

Las 6 soluciones son 141317 + k*147000 con 0 < k < 5

3) Si $n = 3k \implies n^2$ es 3Si $n = 3k + 1 \implies n^2 = (3k + 1)^2 = 9k^2 + 6k + 1 = 3 + 1$ Si $n = 3k + 2 \implies n^2 = (3k + 2)^2 = 9k^2 + 12k + 4 = 3 + 1$

Como N es múltiplo de 3 +2 ⇒ N no puede ser cuadrado perfecto.

Ejercicio 2

- 1) Si I es regular entonces en A/I existe I+y/(I+a)(I+y) = I+a = (I+y)(I+a) $\Rightarrow I + ay = I + a = I + uy \Rightarrow a - ay \in I$; $a - ya \in I$ Si $a - ay \in I \Rightarrow a \in I + ay \Rightarrow I + a = I + ay = (I + a)(I + y)$ Si $a - ya \in I \Rightarrow a \in I + ya \Rightarrow I + a = I + ya = (I + y)(I + a)$ Por lo anterior I + y es el elemento unidad de A / I
- 2) Si A tiene elemento unidad u y I es un ideal de A entonces I + u es el elemento unidad de A / I ya que: (I + a)(I + y) = I + ay = I + a (I + y)(I + a) = I + ya = I + a
- 3) $(r_1,0) + (r_2,0) = (r_1 + r_2,0) \in (R,0); -(r,0) = (-r,0) \in (R,0)$ $(r,0).(x,y) = (rx + 0.x + ry, 0.y) = (rx + ry, 0) \in (R,0)$ $(x,y).(r,0) = (x.r + y.r + x.0, y.0) = (xr + yr, 0) \in (R,0)$ Por lo anterior R x {0} es ideal de R^2

Para ver que R x $\{0\}$ es regular veamos que R^2 tiene elemento unidad: $(x,y).(u,v) = (x,y) \implies (xu + yu + xv, yv) = (x,y) \forall x,y \in R$

$$yv = y \implies v = 1$$
; $xu + yu + xv = x \implies (x + y)u = 0 \implies u = 0$
 $(0,1).(x,y) = (0.x + 1.x + 0.y, 1.y) = (x,y)$
Por lo anterior $(0,1)$ es el elemento unidad de R^2
Sea $f: R \times \{0\} \rightarrow R / f((r,0)) = r$
 f es biyectiva.
 $f((r_1,0) + (r_2,0)) = f((r_1 + r_2,0)) = r_1 + r_2 = f((r_1,0)) + f((r_2,0))$
 $f((r_1,0).(r_2,0)) = f((r_1r_2 + 0.r_2 + r_1.0,0.0)) = f((r_1r_2,0)) = r_1r_2 = f((r_1,0)).f((r_2,0))$
Por las dos igualdades anteriores tenemos que f es homomorfismo. Como es biyectivo es isomorfismo, con lo cual $R \times \{0\}$ es isomorfo a R .

Ejercicio 3

1)
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 6 & 9 & 2 & 5 & 8 & 1 & 4 & 7 \end{pmatrix} = (1397)(2684)$$

 $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 4 & 1 & 8 & 5 & 2 & 9 & 6 & 3 \end{pmatrix} = (1793)(2486)$

Orden de $\sigma = \text{mcm}(4,4) = 4$ Paridad de $\sigma = \text{impar por impar} = \text{par}$ Orden de $\tau = \text{mcm}(4.4) = 4$ Paridad de $\tau = \text{impar por impar} = \text{par}$

2)σ y τ son conjugadas porque su descomposición en ciclos disjuntos es de la misma forma: producto de 2 4-ciclos.

$$\gamma\tau\gamma^{-1} = \gamma(1793)(2486)\gamma^{-1} = \gamma(1793)\gamma^{-1}\gamma(2486)\gamma^{-1} = (\gamma(1)\gamma(7)\gamma(9)\gamma(3))(\gamma(2)\gamma(4)\gamma(8)\gamma(6))$$

= $\sigma = (1397)(2684) = (2684)(1397)$
Una permutación γ posible es aquella tal que : $\gamma(1) = 1; \gamma(7) = 3; \gamma(9) = 9; \gamma(3) = 7; \gamma(2) = 2; \gamma(4) = 6; \gamma(8) = 8; \gamma(6) = 4; \gamma(5) = 5$

Otra permutación
$$\gamma$$
 posible es aquella tal que : $\gamma(1) = 2$; $\gamma(7) = 6$; $\gamma(9) = 8$; $\gamma(3) = 4$; $\gamma(2) = 1$; $\gamma(4) = 3$; $\gamma(8) = 9$; $\gamma(6) = 7$; $\gamma(5) = 5$

Ejercicio 4

- 1) $(Z_3,+,.)$ es un cuerpo
- Si P(x) de $Z_3[x]$ tiene una raíz α , entonces es divisible por $(x \alpha) \Rightarrow P(x) = (x \alpha)Q(x)$ donde $Q(x) \in Z_3[x]$. Por lo tanto P(x) es reducible.

Si P(x) de $Z_3[x]$ tiene grado 2 o 3 y es reducible $\Rightarrow P(x) = (ax + b)Q(x) \Rightarrow x = -ba^{-1}$ es raíz

2)
$$c = 0$$
 $P(x) = x^2 + 1 \Rightarrow P(0) = 1$; $P(1) = 2$; $P(2) = 2 \Rightarrow$ es irreducible $c = 1$ $P(x) = x^2 + x + 1 \Rightarrow P(0) = 1$; $P(1) = 0 \Rightarrow$ es reducible $c = 2$ $P(x) = x^2 + 2x + 1 = (x + 1)^2 \Rightarrow$ es reducible

3) Sea J ideal de $Z_3[x]$ tal que $\langle P(x) \rangle \subset J$

Se tiene que existe $Q(x) / J = \langle Q(x) \rangle$ (alcanza con tomar Q(x) un polinomio de grado mínimo de J) Si grado de Q(x) = 0 entonces $J = Z_3[x]$ En caso contario, como $P(x) \in J = \langle Q(x) \rangle \Rightarrow P(x) = Q(x)H(x)$ Como P(x) es irreducible \Rightarrow H(x) es de grado 0, o sea una constante no nula.

Pero entonces $\langle P(x) \rangle = \langle Q(x) \rangle = J$

4) $P(x) = x^2 + 1$ es irreducible en $Z_3[x] \Rightarrow \langle P(x) \rangle$ es ideal maximal de $Z_3[x]$ Como $Z_3[x]$ es anillo conmutativo, con elemento unidad se tiene que $Z_3[x]$ /<P(x)> es un cuerpo.

$$[P(x)] = [0]$$

$$[x^4 + x^2 + 2x + 1] = [x^2(x^2 + 1) + 2x + 1] = [x^2(x^2 + 1)] + [2x + 1] = [2x + 1]$$