${\mathfrak r}_1^{\#2}$	0	0	0	$\frac{4 i}{k (1 + 2 k^2) (r_3 + 2 r_5)}$	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3 k^2 (r_3 + 2 r_5) + 4 t_3}{(k + 2 k^3)^2 (r_3 + 2 r_5) t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$\sigma_{1^-\alpha}^{\#1}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$\tau_{1}^{\#1}\!$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta} \tau_{1}^{\#1}{}_{\alpha\beta}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{\!$	$\frac{1}{k^2 (2r_3+r_5)}$	0	0	0	0	0	0
	$\sigma_{1}^{#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_{1}^{#2} + ^{\alpha}$

					m		
$f_{1}^{#2}$	0	0	0	$-\frac{2}{3}$ Ikt	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>t3</u> 3	0	$-\frac{1}{3}i\sqrt{2}kt_3$
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	<u>2 i k t 3</u> 3
$f_{1}^{\#1}$	0	0	0	0	0	0	0
$\omega_1^{\#_2^2} f_1^{\#_1^1} \alpha \beta$	0	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 (2 r_3 + r_5)$	0	0	0	0	0	0
,	$\omega_1^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} +^{lphaeta}$	$f_1^{\#1} + ^{\alpha\beta}$	$\omega_{1}^{\#_1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_1^{\#2} + ^{lpha}$

	$\sigma_0^{\#1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$ au_{0^{+}}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r}$

Source constraints SO(3) irreps

 $\tau_{0}^{\#1} - 2ik\sigma_{0}^{\#1} = =$

 $t_1^{\#2}\alpha + 2ik\sigma$

3	(1	$+2k^{2}$)	$^{2}t_{3}$			ŭ				+	· +	- a	—		
	$\frac{2k^2}{(1+2k^2)^2t_3}$		2 t ₃	0		0				$\omega_{\iota+1}^{*1}$	2 . f#1	, 2	ω_2^{-1}		
		0		0		0					_				O.
		0		0	_	1 2 _{r2}					$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	$k^2 r_2$
				72					$f_{0}^{\#2}$	0	0	0	0		
	== 0 3	3	М	m)	2	<u> </u>	<u> </u>	24		$f_{0}^{\#1}$	$-i\sqrt{2} kt_3$	$2 k^2 t_3$	0	0
6	+2ik $\sigma_{1}^{\#2^{lpha}}$	0 ==	0 ==	0		0 == _X) 	:#		$\omega_{0}^{\#1}$	t ₃ -	$i \sqrt{2} kt_3$	0	0

 $\tau_2^{\#1}\alpha\beta==0$ Total #:

 $\sigma_{2^{-}}^{\#1}\alpha\beta\chi == 0$

 $\sigma_{1}^{\#2}\alpha\beta==0$

 $\tau_{1}^{\#1}\alpha\beta==0$

 $\tau_{1}^{\#1}{}^{\alpha} == 0$

 ω_{2}^{*1} ω_{2}^{*1} α_{3}^{*1} α_{2}^{*1} α_{3}

0

0

0

0

0

 $\omega_{0}^{#1} + f_{0}^{#1} + f_{0}^{#1} + f_{0}^{#2} + f_{0}^{#2} + f_{0}^{#1} + f_{$

0

?		
?	Quadratic pole	
$\stackrel{k^{\mu}}{\longrightarrow}$	Pole residue:	$\left -\frac{1}{2} \right > 0$
		$r_3 (2r_3+r_5) (r_3+2r_5) p^2$
?	Polarisations:	2

(No massive particles)

?	Quadratic pole				
	Pole residue:	$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$			
?	Polarisations:	2			
?					

Unitarity conditions

 $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$