Optimizing Linear Algebra Performance for Programmers

Elliot Fiske

April 5, 2016

1 Multiplying Many Matrices and One Vector

Consider the following matrix operation:

$$Result = \underbrace{\mathbf{A} * \mathbf{B} * \mathbf{C} * \mathbf{D} * \mathbf{E}}_{100 \text{ by } 100} * \underbrace{\vec{x}}_{100 \text{ by } 1}$$
(1)

If this operation was done programmatically, with a compiler that evaluated each operation left-to-right, there would be over 4 million multiplication operations:

$$\underbrace{100*100*100*4}_{\text{4 instances of multiply-}} + \underbrace{100*100}_{\text{1 instance of}} = 4,010,000$$

$$\underbrace{100*100*100*100*}_{\text{1 instance of}}$$

$$\underbrace{100*100*100*}_{\text{matrix}}$$

$$\underbrace{100*100*}_{\text{matrix}}$$

However, if we instead first evaluate $\mathbf{E} * \vec{x}$, then evaluate $\mathbf{D} * (\mathbf{E} * \vec{x})$, etc. there will be just over 1 million multiplication operations:

$$\underbrace{100 * 100 * 4}_{\text{4 instances of multiply-}} + \underbrace{100 * 100 * 100}_{\text{1 instance of multiply-}} = 1,040,000 \tag{3}$$
4 instances of multiply-
ing a 100x100 matrix
by a 100x100
matrix

I used Eigen and C++ to practically test this, timing how long it took to do the approach from Equation 2 vs. the approach from Equation 3 with various matrix sizes.

Matrix Dimension	Slow Method Time (μ s)	Fast Method Time (μs)
10	162	52
50	13,291	738
100	32,515	2561
300	537,397	17,399
1000	19,730,814	173,000

Table 1: Timing the dumb way vs. the smart way

For each dimension, the 'smart' method is orders of magnitude faster, becoming better as the dimension increases.

2 Calculating the Inverse of a Matrix

Consider the following matrix operation:

$$Result = \vec{x}^T * \mathbf{A}^T * \mathbf{B}^{-1} * \mathbf{A} * \vec{x}$$
 (4)

One approach is to simply calculate the inverse of ${\bf B}$ then multiply it with the rest of the terms. However, calculating the inverse of a matrix is a very expensive operation. Instead, consider rearranging the equation like so:

$$\mathbf{B}b = \mathbf{A} * \vec{x}$$

$$Result = \vec{x}^T * \mathbf{A}^T * b$$
(5)

It is a much cheaper operation to solve a $\mathbf{A}\vec{x} = \mathbf{B}$ matrix problem than it is to find an inverse of a matrix. I used Eigen and C++ to practically test this, timing how long it takes to do the approach from Equation 4 vs. the approach from Equation 5.

Below a 50x50 matrix, the two methods are fairly equal in running time. However, at dimension 100 and above the solve() method is cleary superior.

Matrix Dimension	$inverse()$ Time (μs)	$solve()$ Time (μs)
10	61	70
50	278	267
100	670	935
300	9599	17,104
1000	320,196	244,522

Table 2: Using inverse() vs. using solve()