Arquiteturas de Alto Desempenho

Gil Teixeira, 88194 Pedro Rodrigues, 92338

Encoder Paralelo

Utilizando sinais foi possível reduzir o número de operações xor para 7.

```
ARCHITECTURE structure OF Parallel4BitEncoder IS
                                                                m[3.0]
SIGNAL s0, s1, s2, s3, s4, s5, s6, s7: STD LOGIC;
                                                                                               \|0000\| \times G = \|000000000\|
BEGIN
                                                                                               \|0\ 0\ 0\ 1\| \times G = \|1\ 1\ 1\ 1\ 1\ 1\ 1\|
    57 <= m(0);
    56 \le m(0) \times m(3);
                                                                                                \parallel 0 \ 0 \ 1 \ 0 \parallel \times G = \parallel 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \parallel
    s5 \leqslant m(0) \times m(2);
    s4 \le s5 \times m(3);
                                                                                              \|0\ 0\ 1\ 1\| \times G = \|1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\|
    s3 \leftarrow m(0) \times m(1);
    s2 \le s3 \times m(3);
                                                                                               \|0\ 1\ 0\ 0\| \times G = \|0\ 0\ 1\ 1\ 0\ 0\ 1\ 1\|
    s1 \leqslant s3 \times m(2);
    s0 <= s1 \times m(3);
    x <= s7 & s6 & s5 & s4 & s3 & s2 & s1 & s0;
END structure;
```

m	B 0001	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110 X	1111 X
x	B 111111	(00000000)	1111111	00001111	11110000	00110011	11001100	00111100	11000011	01010101	(10101010)	01011010	10100101	01100110	(10011001)	01101001	10010110

Decoder Paralelo

mOne =
$$C_3 C_2 (C_1 + C_0) + C_1 C_0 (C_2 + C_3)$$

mZero = $\sim C_3 \sim C_2 (\sim C_1 + \sim C_0) + \sim C_1 \sim C_0$
($\sim C_2 + \sim C_3$)«
MError = $\sim (m_{one} + m_{zero})$
valid = $\sim m_{oError} + \sim m_{1Error} + \sim m_{2Error}$

Custo: 22 Gates Xor

18 Gates And

14 Gates Or

3 Gates NOr

X	B 000000	\$000000C\(\frac{1010101}{\text{X0110011}}\(\frac{10011}{\text{X0110011}}\(\frac{10111101}{\text{X0001111}}\(\frac{1011010}{\text{X00111100}}\(\frac{10111101}{\text{X001111101}}\(\frac{1001111101}{\text{X0001111101}}\(\frac{100111101}{\text{X0001111101}}\(\frac{100111101}{\text{X0001111101}}\(\frac{100111101}{\text{X0001111101}}\(\frac{1001111101}{\text{X0001111101}}\(\frac{1001111101}{\text{X00001111101}}\(\frac{100110101}{\text{X0001111101}}\(\frac{100110101}{\text{X00001111101}}\(\frac{100110101}{\text{X00001111101}}\(\frac{100110101}{\text{X00001111101}}\(\frac{100110101}{\text{X00001111101}}\(\frac{100110101}{\text{X00001111101}}\(\frac{100110101}{\text{X00001111101}}\(\frac{100110101}{\text{X00001111101}}\(\frac{100110101}{\text{X00001111101}}\(\frac{100110101}{\text{X00001111101}}\(\frac{100110101}{\text{X00001111101}}\(\frac{100110101}{\text{X00001111101}}\(\frac{100110101}{\text{X00001111101}}\(\frac{100110101}{\text{X00001111101}}\(\frac{100110101}{X000000000000000000000000000000000000								
m	B 0000	0000	1000	0100	1100 X	0010	1010 X		0110	X 0001 X
٧	B 1									