Contact:

wulijun3@mail2.sysu.edu.cn fetia@microsoft.com





# Learning to Teach with Dynamic Loss Functions

<sup>1</sup>Lijun Wu, <sup>2</sup>Fei Tian, <sup>2</sup>Yingce Xia, <sup>3</sup>Yang Fan, <sup>2</sup>Tao Qin, <sup>1</sup>Jianhuang Lai and <sup>2</sup>Tie-Yan Liu





**Contact:** wulijun3@mail2.sysu.edu.cn fetia@microsoft.com

## 1. Machine Learning





















Learning of  $f_{\omega}$ 

Students' Learnii

Set Loss

Functions L

Exams

Examili Examili

#### Fixed loss function

# 2. Loss Function Teaching

- Goal:
  - Automatically discover the optimal loss functions for student model training.
- Student model:
  - $f_{\omega}: x \to y$
  - $L(f_{\omega}, D_{train}) =$  $\sum_{\{(x,y)\in D_{train}\}} l(f_{\omega}(x),y)$
  - $m(f_{\omega}(x), y)$ : measure
- Teacher model:
  - $\blacksquare u_{\theta}$
  - $\max_{\alpha} m(f_{\omega}, D_{dev})$



# 3. Teaching Requirement

- **Requirements** of Loss Function Teaching
  - Adaptive
  - Dynamic
- Qualified human teachers are good at: Machine teachers should be :



Adaptive: set different loss functions along different phases of student model training

Self improvement to achieve co-growth with students



- $L_{\phi}(f_{\omega}(x), y)$ , with  $\phi$  as its coefficient
- $L_{\phi} = \sigma(-\log^T p(x) \, \text{W} \vec{y} + b)$
- $\Phi = \{W, b\}$





- Adaptive



- **Dynamic**
- Reward: dev measure



# 4. Challenge & Algorithm

### Gradient-based Optimization for Teacher



## Algorithm/Structure

$$d\omega_T = \frac{\partial \tilde{\mathcal{M}}(f_{\omega_T}, D_{dev})}{\partial \omega_T} = \sum_{(x,y) \in D_{dev}} \frac{\partial \tilde{m}(f_{\omega_T}(x), y)}{\partial \omega_T}.$$
 (3)

Then looping backwards from T and corresponding to Eqn. (1), at each step  $t = \{T - 1, \dots, 1\}$  we

$$d\omega_{t} = \frac{\partial \tilde{\mathcal{M}}(f_{\omega_{t}}, D_{dev})}{\partial \omega_{t}} = d\omega_{t+1} - \eta_{t} \frac{\partial^{2} L_{\mu_{\theta}(s_{t})}(f_{\omega_{t}}, D_{train}^{t})}{\partial \omega_{t}^{2}} d\omega_{t+1}. \tag{4}$$

At the same time, the gradient of  $\tilde{\mathcal{M}}$  w.r.t.  $\theta$  is accumulated at this time step as:

$$d\theta = d\theta - \eta_t \frac{\partial^2 L_{\mu_{\theta}(s_t)}(f_{\omega_t}, D_{train}^t)}{\partial \theta \partial \omega_t} d\omega_{t+1}. \qquad (5)$$

▷ One teacher optimization step

 $\triangleright$  Reversely calculating the gradient  $d\theta$ 

▶ Teach student model

#### Algorithm 1 Training Teacher Model $\mu_{\theta}$

Input: Continuous relaxation  $\tilde{m}$ . Initial value of  $\theta$ . while Teacher model parameter  $\theta$  not converged do

Randomly initialize student model parameter  $\omega_0$ . for each time step  $t = 0, \dots, T - 1$  do

Conduct student model training step via Eqn. (1). end for

 $d\theta = 0$ . Compute  $d\omega_T$  via Eqn. (3). for each time step  $t = T - 1, \dots, 0$  do

Update  $d\theta$  as Eqn. (5). Compute  $d\omega_t$  as Eqn. (4).

Update  $\theta$  using  $d\theta$  via gradient based optimization algorithm. end while

Output: the final teacher model  $\mu_{\theta}$ .



#### 5. Experiments

#### Image Classification Task





#### Neural Machine Translation Task



