Histogramas y operaciones sobre Imágenes

Diana Patricia Tobón Vallejo, PhD

Tratamiento de Señales III Facultad de Ingeniería Universidad de Antioquia

Facultad de Ingeniería

Febrero, 2024

Material elaborado por: Hernán Felipe García Arias

Contenido

Operaciones básicas sobre imágenes

Elementos de una imagen

Definición:

Un pixel es el elemento más pequeño en una imagen:

- Intensidad y color
- La posición en la imagen
- En 3D es llamado voxel

Diferentes tipos de imágenes

2D

- Pictures
- Radiographs
- CT slices

3D

- Volumes x, y, z
- Movies x, y, t

4D

■ Volume movie x, y, z, t

Histograma

Definición:

Un histograma es una función que muestra la distribución de los niveles de gris en una imagen.

Cómo medir un histograma

El histograma H de una imagen f se calcula como:

$$H[idx(f(x))] = H[idx(f(x))] + 1, \quad \forall x \in \Omega$$

$$idx(y) = \left\lfloor N_{\text{bins}} \frac{y - y_{\text{Low}}}{y_{\text{High}} - y_{\text{Low}}} \right\rfloor$$
(1)

Efectos de brillo (brightness) y contraste

Ecualización de histograma

Para imágenes con rangos dinámicos pequeños¹, su rango puede ser extendido utilizando una operación pixel-wise:

$$g(x) = K \frac{f(x) - \min(f)}{\max(f) - \min(f)}$$
 (2)

Esta es una operación de mejora visible que redistribuye los valores de intensidad.

¹La variación de los niveles de intensidad está concentrada.

Operaciones pixel-wise

Las operaciones pixel-wise, operan en cada pixel independientemente

- Puede utilizarse una o más imágenes
- Resulta en una nueva imagen con las mismas dimensiones

Operaciones aritméticas

- Suma/resta
- Multiplicación/división

Funciones

- Exponencial/radical
- Logarítmica
- Funciones trigonométricas, etc.

Funciones ejemplo: Corrección Gamma

La corrección gamma es una forma no lineal de cambiar la distribución de los niveles de gris. Ajusta la luminosidad (brillo) de una imagen. $g = f^{\gamma}$, donde γ es una constante.

Warning

Esto cambiará el valor de gris de los pixeles de forma no lineal.

Contenido

Ruido en imágenes

¿Qué es el ruido?

Definicion general

El ruido es información adicional no intencionada que daña la calidad de una imagen.

- Introduce incertidumbre en la interpretación.
- A menudo tiene una naturaleza estadística.
- Siempre presente en los datos del experimento.

Fuentes de ruido y tipos

Fuentes de ruido

- Ruido contable: Origen físico (Poisson)
- Ruido térmico: Dispositivos electrónicos (Gaussiano)
- Ruido de conversión: conversores A/D (Binomial)

Tipos de ruido

Ruido Gaussiano

- Aditivo
- Fácil de modelar

$$N(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\left(\frac{x-\mu}{2\sigma}\right)^2}$$
 (3)

Ruido Poisson

- Multiplicativo
- Para conteo de eventos físicos

$$P_{\lambda}(k) = \frac{\lambda^k}{k!} e^{-\lambda} \tag{4}$$

Ejemplos de ruido

Modelo de ruido - Sal y Pimienta

- Un tipo de ruido atípico
- La fuerza del ruido se da como la probabilidad de un valor atípico
- Aditivo, multiplicativo e independiente

Ejemplo

$$sp(x) = \begin{cases} -1 & x \le \lambda_1 & x \in \mathcal{U}(0,1) \\ 0 & \lambda_1 < x \le \lambda_2 & \lambda_1 < \lambda_2 \\ 1 & \lambda_2 < x & \lambda_1 + \lambda_2 = \text{noise fraction} \end{cases}$$
 (5)

Modelo de ruido - Ruido estructurado

- Correlacionado espacialmente
- Ejemplos: detector de estructura

Ejemplo: modelos de campos aleatorios

El proceso de promediado se implementa mediante convolución.

$$n(x, y) \in \mathcal{N}(\mu, \sigma)$$
 $ns = K * n \quad K = \text{ convolution kernel}$ (6)

Perfiles con ruido Poisson

Relación señal a ruido (SNR)

Es una métrica para describir la incidencia del ruido:

$$SNR = rac{\mu_{ ext{image}}}{\sigma_{ ext{image}}}$$
 $SNR_{db} = 20 \log rac{\mu_{ ext{image}}}{\sigma_{ ext{image}}}$ (7)

SNR = 5

SNR = 2

SNR = 1

SNR para diferentes tiempos de exposición

SNR for Poisson noise: $SNR = \frac{\mu}{\sigma} = \frac{\lambda}{\sqrt{\lambda}} = \sqrt{\lambda} \sim \sqrt{t}$

Pregunta - Histogramas y ruido

¿Qué imagen tiene qué histograma? . . . ¿por qué?

Contenido

Transformaciones afín

Transformaciones afín típicas

Motivación

Estas transformaciones son necesarias cuando:

- Adquirir imágenes en diferentes instantes de tiempo
- Adquirir imágenes con diferentes equipos
- Las imágenes están distorsionadas por el sistema ADQ
- Para alinear data-sets
- Concepto básico
- Operador transformación

Escala

Escalar es volver a muestrear los datos en una cuadrícula con diferentes tamaños de pixeles.

Traslación

El operador traslación

Cada posición del pixel se calcula como:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 (8)

Nota: No se necesita interpolación si t_x y t_y son enteros.

Rotación

El operador rotación

Cada posición del pixel se calcula como:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
(9)

Nota: Siempre se necesita interpolación.

Sesgo

El operador sesgo

Cada posición del pixel se calcula como:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \tan \alpha & 0 \\ \tan \beta & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 (10)

Registro de imágenes

Una aplicación importante de la transformación afínes el registro de imágenes.

Definición

El proceso para alinear dos o más imágenes en el espacio. Requiere:

- Un proceso iterativo para minimizar alguna métrica (MSE, etc.)
- Se aplican diferentes transformaciones afines (traslación, rotación, escala).
- El proceso se beneficia de información a priori.

Aplicaciones

- Adquisiciones de series de tiempo con muestras inestables.
- Fusión de imágenes de datos de diferentes modalidades.

Registro de imágenes

Scene reconstruction

Transformaciones Af'ın

Referencias

Rafael C. Gonzalez and Richard E. Woods. *Digital image processing*. Prentice Hall, Upper Saddle River, N.J., 2008.