

# Sucesiones Repasando lo de ayer

Unidad











Límite de sucesiones "Las otras…"

























SUCESIÓN Convergente Divergente Ninguna de las anteriores (las otras)

Definición y concepto de límite

Operaciones con sucesiones Cálculo y propiedades de los límites

### Algunas propiedades de los límites

La suma de dos sucesiones convergentes es otra sucesión convergente, y el límite de la suma de dos sucesiones es la suma de los límites de ambas.

$$\lim_{n\to\infty}a(n)=L$$

$$\lim_{n\to\infty}b(n)=M$$

$$\lim_{n \to \infty} a(n) + b(n) = \lim_{n \to \infty} a(n) + \lim_{n \to \infty} b(n) = L + M$$

El producto de una sucesión convergente por una constante k ∈ R es también convergente, y el límite es igual a k por el límite de la sucesión

$$\lim_{n\to\infty}k.\,a(n)=k.\lim_{n\to\infty}a(n)=k.\,L$$

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                   |      |       |                   |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------------------|-------|
| 2 0,67 4,5 5,17<br>3 1 4,333 5,333<br>4 1,2 4,25 5,45<br>5 1,33 4,2 5,53<br>6 1,43 4,167 5,597<br>7 1,5 4,14 5,64<br>8 1,56 4,125 5,685<br>9 1,6 4,11 5,71<br>10 1,64 4,1 5,74<br>50 1,921 4,02 5,941<br>100 1,96 4,01 5,97                                                             | n    |       | $4 + \frac{1}{n}$ | suma  |
| 3 1 4,333 5,333<br>4 1,2 4,25 5,45<br>5 1,33 4,2 5,53<br>6 1,43 4,167 5,597<br>7 1,5 4,14 5,64<br>8 1,56 4,125 5,685<br>9 1,6 4,11 5,71<br>10 1,64 4,1 5,74<br>50 1,921 4,02 5,941<br>100 1,96 4,01 5,97                                                                                | 1    | 0     | 5                 | 5     |
| 4 1,2 4,25 5,45 5 1,33 4,2 5,53 6 1,43 4,167 5,597 7 1,5 4,14 5,64 8 1,56 4,125 5,685 9 1,6 4,11 5,71 10 1,64 4,1 5,74 50 1,921 4,02 5,941 100 1,96 4,01 5,97                                                                                                                           | 2    | 0,67  | 4,5               | 5,17  |
| 5     1,33     4,2     5,53       6     1,43     4,167     5,597       7     1,5     4,14     5,64       8     1,56     4,125     5,685       9     1,6     4,11     5,71       10     1,64     4,1     5,74       50     1,921     4.02     5,941       100     1,96     4.01     5,97 | 3    | 1     | 4,333             | 5,333 |
| 6 1,43 4,167 5,597 7 1,5 4,14 5,64 8 1,56 4,125 5,685 9 1,6 4,11 5,71 10 1,64 4,1 5,74 50 1,921 4.02 5,941 100 1,96 4.01 5,97                                                                                                                                                           | 4    | 1,2   | 4,25              | 5,45  |
| 7 1,5 4,14 5,64 8 1,56 4,125 5,685 9 1,6 4,11 5,71 10 1,64 4,1 5,74 50 1,921 4.02 5,941 100 1,96 4.01 5,97                                                                                                                                                                              | 5    | 1,33  | 4,2               | 5,53  |
| 8 1,56 4,125 5,685<br>9 1,6 4,11 5,71<br>10 1,64 4,1 5,74<br>50 1,921 4.02 5,941<br>100 1,96 4.01 5,97                                                                                                                                                                                  | 6    | 1,43  | 4,167             | 5,597 |
| 9 1,6 4,11 5,71<br>10 1,64 4,1 5,74<br>50 1,921 4.02 5,941<br>100 1,96 4.01 5,97                                                                                                                                                                                                        | 7    | 1,5   | 4,14              | 5,64  |
| 10 1,64 4,1 5,74<br>50 1,921 4.02 5,941<br>100 1,96 4.01 5,97                                                                                                                                                                                                                           | 8    | 1,56  | 4,125             | 5,685 |
| 50         1,921         4.02         5,941           100         1,96         4.01         5,97                                                                                                                                                                                        | 9    | 1,6   | 4,11              | 5,71  |
| 100 1,96 4.01 5,97                                                                                                                                                                                                                                                                      | 10   | 1,64  | 4,1               | 5,74  |
|                                                                                                                                                                                                                                                                                         | 50   | 1,921 | 4.02              | 5,941 |
| 1000 1,996 4,001 5,997                                                                                                                                                                                                                                                                  | 100  | 1,96  | 4.01              | 5,97  |
|                                                                                                                                                                                                                                                                                         | 1000 | 1,996 | 4,001             | 5,997 |





$$\lim_{n\to\infty}a(n)+b(n)=\lim_{n\to\infty}a(n)+\lim_{n\to\infty}b(n)=L+M$$

$$\lim_{n \to \infty} \frac{2n-2}{n+1} + \left(4 + \frac{1}{n}\right) = \lim_{n \to \infty} \frac{2n-2}{n+1} + \lim_{n \to \infty} 4 + \frac{1}{n} = 2 + 4 = 6$$

$$\lim_{n\to\infty}k.\,a(n)=k.\lim_{n\to\infty}a(n)=k.\,L$$

$$\lim_{n \to \infty} 3 \left\{ \frac{2n-2}{n+1} \right\} = 3. \lim_{n \to \infty} \frac{2n-2}{n+1} = 3.2 = 6$$

## Algunas propiedades de los límites

El producto de dos sucesiones convergentes es otra sucesión convergente, y el límite del producto es el producto de los límites de ambas sucesiones.

$$\lim_{n\to\infty} a(n) \cdot b(n) = \lim_{n\to\infty} a(n) \cdot \lim_{n\to\infty} b(n) = L.M$$

El cociente de dos sucesiones convergentes es otra sucesión convergente, y el límite del cociente es el cociente de los límites de ambas sucesiones, excepto si la del denominador tiene límite 0

$$\lim_{n \to \infty} \frac{a(n)}{b(n)} = \frac{\lim_{n \to \infty} a(n)}{\lim_{n \to \infty} b(n)} = \frac{L}{M} \quad \text{si } M \neq \mathbf{0}$$

| n    | $\frac{2n-2}{n+1}$ | $4+\frac{1}{n}$ | producto |
|------|--------------------|-----------------|----------|
| 1    | 0                  | 5               | 0        |
| 2    | 0,67               | 4,5             | 3,015    |
| 3    | 1                  | 4,333           | 4,333    |
| 4    | 1,2                | 4,25            | 5,1      |
| 5    | 1,33               | 4,2             | 5,586    |
| 6    | 1,43               | 4,167           | 5,959    |
| 7    | 1,5                | 4,14            | 6,21     |
| 8    | 1,56               | 4,125           | 6,435    |
| 9    | 1,6                | 4,11            | 6,576    |
| 10   | 1,64               | 4,1             | 6,724    |
| 50   | 1,921              | 4.02            | 7,72242  |
| 100  | 1,96               | 4.01            | 7,8596   |
| 1000 | 1,996              | 4,001           | 7,986    |

|                           | ente | $+\frac{1}{n}$ cociente | $4+\frac{1}{n}$ | $\frac{2n-2}{n+1}$ | n    |
|---------------------------|------|-------------------------|-----------------|--------------------|------|
|                           | )    | 5 0                     | 5               | 0                  | 1    |
| $c(n) = \frac{2n-2}{n+1}$ | 481  | 1,5 0,1481              | 4,5             | 0,67               | 2    |
| $c(n) = \frac{n+1}{n+1}$  | 307  | 333 0,2307              | 4,333           | 1                  | 3    |
|                           | 823  | ,25 0,2823              | 4,25            | 1,2                | 4    |
|                           | 174  | 1,2 0,3174              | 4,2             | 1,33               | 5    |
| >                         | 428  | 167 0,3428              | 4,167           | 1,43               | 6    |
| $h(n) = 4 + \frac{1}{n}$  | 620  | ,14 0,3620              | 4,14            | 1,5                | 7    |
| $n(n) = 4 + \frac{1}{n}$  | 771  | 125 0,3771              | 4,125           | 1,56               | 8    |
|                           | 892  | ,11 0,3892              | 4,11            | 1,6                | 9    |
|                           | 991  | 1,1 0,3991              | 4,1             | 1,64               | 10   |
|                           | 780  | .02 0,4780              | 4.02            | 1,921              | 50   |
|                           | 888  | .01 0,4888              | 4.01            | 1,96               | 100  |
| c(n)/h(n)                 | 988  | 001 0,4988              | 4,001           | 1,996              | 1000 |



Más propiedades de los límites















Más propiedades de los límites Aparecen algunos problemas...























Límites indeterminados

Ya vimos por qué

$$\lim_{n\to\infty}a(n)=0$$

 $\lim_{n\to\infty}\frac{a(n)}{b(n)}$ 

 $\lim_{n\to\infty}b(n)=0$ 



Es indeterminado



 $\lim_{n\to\infty}a(n).\,b(n)$ 

 $\lim_{n\to\infty}b(n)=\infty$ 

Es equivalente al anterior... es decir, el mismo problema



¿Qué quiere decir que un límite es indeterminado?

Qué el resultado depende de las sucesiones involucradas

# LÍMITES INDETERMINADOS

Un *limite indeterminado* (o *forma indeterminada*), es un límite del cual es imposible determinar en forma inmediata o directa si es finito, infinito o no existe.

Algunas formas indeterminadas son:

$$\frac{0}{0}$$
,  $\frac{\infty}{\infty}$ ,  $0.\infty$ ,  $0^0$ ,  $1^\infty$ ,  $\infty^0$ ,  $\infty - \infty$ 

entendiéndose que se trata de una expresión donde participan dos sucesiones que tienden a 0, 1 o  $\infty$ , según corresponda, y no propiamente una operación entre éstos.



### LÍMITES INDETERMINADOS

**Resolver una indeterminación** (o un límite indeterminado), significa llegar a una decisión acerca del límite indeterminado, es decir, poder afirmar si es finito (cuánto vale), es infinito o no existe

Analicemos otra indeterminación:

$$\lim_{n\to\infty}a(n)=\infty$$

 $\lim b(n) = \infty$ 

¿Cuánto vale  $\lim_{n \to \infty} \frac{a(n)}{b(n)}$ 

 $\lim_{n\to\infty}\frac{a(n)}{b(n)}$ 

Tiene la forma

<u>~</u>

#### FORMAS INDETERMINADAS

Veamos cuatro situaciones:

#### SITUACIÓN 1

$$a(n) = 5n^2 + 1$$
  $\Rightarrow$   $\lim_{n \to \infty} a(n) = \infty$   
 $b(n) = n^2$   $\Rightarrow$   $\lim_{n \to \infty} a(n) = \infty$ 

$$\underset{n\to\infty}{\text{Lim}}\frac{a(n)}{b(n)} = \underset{n\to\infty}{\text{Lim}}\underbrace{5n^2+1}_{n\to\infty}\underbrace{p^2}_{\infty} + \underbrace{\frac{5n^2+1}{n^2}}_{\infty} = \underset{n\to\infty}{\text{Lim}}\frac{5p^2}{p^2} + \underbrace{\frac{1}{n}}_{n\to\infty}$$

$$= \lim_{n \to \infty} 5 + 1 = 0$$

Tenemos un límite  $\frac{\infty}{\infty}$  cuyo resultado es finito y da 5

#### FORMAS INDETERMINADAS

#### SITUACIÓN 3

$$a(n) = 5n^{2} + 1 \Rightarrow \underset{n \to \infty}{\text{Lim }} a(n) = \infty$$
$$b(n) = n \Rightarrow \underset{n \to \infty}{\text{Lim }} a(n) = \infty$$

$$\underset{n\to\infty}{\text{Lim}}\frac{a(n)}{b(n)} = \underset{n\to\infty}{\text{Lim}}\underbrace{5n^2 + 1}_{n\to\infty} \text{ pero...} \quad \underset{n\to\infty}{\text{Lim}}\frac{5n^2 + 1}{n} = \underset{n\to\infty}{\text{Lim}}\frac{5n^2}{n} + \frac{1}{n}$$



Tenemos un límite  $\frac{\infty}{\infty}$  cuyo resultado es infinito

#### FORMAS INDETERMINADAS

#### SITUACIÓN 2

$$a(n) = 5n^2 + 1$$
  $\Rightarrow$   $\lim_{n \to \infty} a(n) = \infty$   
 $b(n) = n^3$   $\Rightarrow$   $\lim_{n \to \infty} a(n) = \infty$ 



#### FORMAS INDETERMINADAS

Tenemos 3 situaciones diferentes que conducen a un límite  $\frac{\infty}{\infty}$  cuyo resultado es distinto

$$\lim_{n\to\infty} a(n) = \infty$$

$$\lim_{n\to\infty} b(n) = \infty$$

$$\lim_{n\to\infty} b(n) = \infty$$

Si 
$$\underset{n\to\infty}{\text{Lim}} \frac{a(n)}{b(n)}$$
 tiene la forma  $\frac{\infty}{\infty}$ 

El límite

finito

infinito

El límite puede resultar:

# ¡PRÓXIMA CLASE!

Algunas técnicas para resolver límites indeterminados