Бакалавриат ЭМИТ, 2024/2025 Случайные процессы в экономике Домашнее задание-1

20 сентября 2024 г.

Задача 1.

Два игрока по очереди подбрасывают монетку; каждый из них видит только результат своего броска. Постройте сигма-алгебры случайных событий, соответствующие случайным экспериментам, в которых экспериментатор имеет доступ к информации о результатах:

- а) Известных первому игроку;
- b) Известных второму игроку;
- с) Известных обоим игрокам одновременно;
- d) Известных хотя бы одному из игроков.

Задача 2.

Пусть A – некоторое множество и $\{B_{\lambda}\}_{{\lambda}\in\Lambda}$ – некоторая система множеств. Докажите следующее равенство:

$$A \bigcup \left(\bigcap_{\lambda \in \Lambda} B_{\lambda}\right) = \bigcap_{\lambda \in \Lambda} \left(A \bigcup B_{\lambda}\right). \tag{1}$$

Подсказка: самый простой способ доказательства в задачах такого типа — это показать два отношения включения: любой элемент, содержащийся в левой части выражения должен принадлежать множеству в правой части и наоборот.

Задача 3.

Покажите, что \mathcal{F} – минимальная σ -алгебра на \mathbb{R} , содержащая все отрезки, совпадает с борелевской σ -алгеброй $\mathcal{B}(\mathbb{R})$.

Задача 4.

Пусть даны множества A, B и C. Выразите следующие множества через A, B и C при помощи операций \cup, \cap, \setminus и \triangle :

- а) Множество элементов, принадлежащих всем трём множествам;
- b) Множество элементов, принадлежащих хотя бы двум из множеств A, B и C;
- с) Множество элементов, принадлежащих ровно двум из множеств A, B и C;
- d) Множество элементов, принадлежащих ровно одному из множеств A, B, но не принадлежащих C.

Задача 5.

Пусть $\{A_i\}_{i=1}^{\infty}$ – некоторый (счётный) набор множеств, являющихся подмножествами Ω . Выразите при помощи операций \cup и \cap с множествами A_i следующие элементы $\omega \in \Omega$:

- а) Элементы, общие для всех A_i в наборе;
- b) Элементы, являющиеся общими для всех $A_{i \geq n}$ (номер n не известен заранее);
- с) Элементы, являющиеся общими для бесконечного количества A_i (например, повторяющиеся в каждом A_i с чётным номером).

Задача 6.

Монетка подкидывается бесконечное количество раз: X_n равно 1, если при n-ом подбрасывании выпадает орел и 0, если решка. Определим набор σ -алгебр: $\mathcal{F}_n := \sigma(X_1, X_2, \dots, X_n), \ \mathcal{H}_n := \sigma(X_n, X_{n+1}, X_{n+2}, \dots)^1$ Приведите по два нетривиальных (отличных от Ω и \emptyset) примера такого события A, что:

- $A \in \mathcal{F}_{2021}$;
- $A \notin \mathcal{F}_{2021}$;
- A лежит в каждой \mathcal{H}_n .

В какие из упомянутых σ -алгебр входят события:

- $X_{37} > 0$;
- $X_{37} > X_{2021}$;
- $X_{37} > X_{2021} > X_1$.

¹Также см. параграф 2.1 в учебнике Клебанера.