3. 전처리 미션(2): 태양광 발전량 예측

주어진 발전소/시간별 기상, 태양 그리고 발전량 데이터를 통해 태양광 발전량 데이터를 예측하는 분석 모델을 생성해봅니다.

• 데이터 컬럼 소개

컬럼명	설명
ID	발전소 고유 식별자
DATE	날짜 (YYYYMMDD)
HOUR	시간 (24시간 형식)
CAPACITY	발전소 용량(최대 발전량)
GHI	수평면 일사량 (Global Horizontal Irradiance)
DNI	수직면 일사량 (Direct Normal Irradiance)
DHI	확산 일사량 (Diffuse Horizontal Irradiance)
TEMP	체감 온도
CLOUDS	구름의 양 (%로 표현)
DEWPT	이슬점 온도
PRES	기압
RH	상대 습도
SLP	해면 기압 (Sea Level Pressure)
UV	자외선 지수
vis	가시 거리
WIND_DIR	풍향
WIND_SPD	풍속
HUMIDITY	습도
RAIN	강수량
SNOW	적설량
GEN	발전량

3.1 EDA(데이터 탐색)

3.1.1 데이터 불러오기

```
In [ ]: import warnings
         warnings.filterwarnings('ignore')
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         # 데이터 불러오기
         solar = pd.read_csv("./data/solar_data.csv")
         # 데이터 확인
         solar.head()
                   DATE HOUR CAPACITY GHI DNI DHI TEMP CLOUDS DEWPT ...
                                                                                          SLP UV VIS WIND_DIR WIND_SPD HUM
Out[]:
                                                                                   RH
         0 A 20220826
                             0
                                                                          18.6 ...
                                                                                                            282.0
                                                                                                                        1.66
                                     674
                                          0.0
                                               0.0
                                                    0.0
                                                         20.7
                                                                 100.0
                                                                                  91.0
                                                                                        1007.1 0.0 15.0
         1 A 20220826
                                     674
                                          0.0
                                               0.0
                                                         20.3
                                                                 100.0
                                                                                       1007.0 0.0 16.0
                                                                                                            288.0
                                                                                                                        1.69
                                                    0.0
                                                                          18.6 ... 92.0
         2 A 20220826
                                     674
                                          0.0
                                               0.0
                                                    0.0
                                                         20.4
                                                                 100.0
                                                                                  93.0
                                                                                       1006.7
                                                                                              0.0
                                                                                                  16.0
                                                                                                            280.0
                                                                                                                        1.56
            A 20220826
                                     674
                                          0.0
                                               0.0
                                                    0.0
                                                          19.6
                                                                 100.0
                                                                          18.1 ... 94.0 1006.9 0.0 16.0
                                                                                                            273.0
                                                                                                                        1.74
         4 A 20220826
                             4
                                     674
                                          0.0
                                               0.0
                                                         18.7
                                                                 100.0
                                                                          16.2 ... 86.0 1006.7 0.0 16.0
                                                                                                            281.0
                                                                                                                        1.64
                                                   0.0
```

5 rows × 21 columns

• Pandas 데이터프레임과 NumPy 배열에서 큰 숫자가 지수 표현식(e-notation)으로 표시되지 않도록 하려면, Pandas와 NumPy의 출력 옵션을 조 정해야 함

```
In []: # Pandas 설정: 지수 표현식 대신 부동소수점으로 출력 pd.set_option('display.float_format', lambda x: '%.3f' % x)
# NumPy 설정: 지수 표현식 대신 부동소수점으로 출력 np.set_printoptions(formatter={'float_kind': '{:f}'.format})
```

3.1.2 데이터 개요 확인하기

***** MISSION

Dataframe의 info, describe 기능을 활용하여 주어진 데이터를 해석해보기

```
In [ ]: solar_info = solar.info()
          solar_info
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 91975 entries, 0 to 91974
          Data columns (total 21 columns):
           #
               Column
                            Non-Null Count Dtype
                            91975 non-null object
           1
               DATE
                            91975 non-null int64
                HOUR 91975 non-null int64
CAPACITY 91975 non-null int64
GHI 91975 non-null float64
           2
               GHI
                           91975 non-null float64
           5
               DNI
           6
             DHI
                           91975 non-null float64
                           91975 non-null float64
91975 non-null float64
91975 non-null float64
           7
                TEMP
           8
                CLOUDS
           9
               DEWPT
                          91975 non-null float64
           10 PRES
                           91975 non-null float64
           12 SLP 91975 non-null float64
13 UV 91975 non-null float64
14 VIS 91975 non-null float64
15 WIND_DIR 91975 non-null float64
           16 WIND_SPD 91975 non-null float64
           17 HUMIDITY 91975 non-null float64
           18 RAIN
                       91975 non-null float64
                           91975 non-null float64
91975 non-null float64
           19
                SNOW
           20 GEN
          dtypes: float64(17), int64(3), object(1)
          memory usage: 14.7+ MB
```

ut[]:		DATE	HOUR	CAPACITY	GHI	DNI	DHI	TEMP	CLOUDS	DEWPT	PRES	RH
	count	91975.000	91975.000	91975.000	91975.000	91975.000	91975.000	91975.000	91975.000	91975.000	91975.000	91975.000
	mean	20222591.493	11.502	1182.400	178.517	302.873	35.970	5.612	50.710	1.546	984.249	68.522
	std	3401.345	6.930	908.100	256.245	367.596	43.998	12.736	37.931	10.943	33.391	19.969
	min	20220826.000	0.000	56.000	0.000	0.000	0.000	-32.600	0.000	-30.600	859.700	12.000
	25%	20221003.000	5.000	701.000	0.000	0.000	0.000	-4.000	5.000	-6.700	940.500	54.000
	50%	20221110.000	12.000	947.000	0.000	0.000	0.000	8.600	56.000	2.600	999.000	70.000
	75%	20221219.000	18.000	1028.000	358.730	728.290	83.540	15.500	83.000	9.600	1009.500	86.000
	max	20230126.000	23.000	4050.000	947.350	927.160	121.930	38.900	100.000	27.000	1030.900	100.000

♥ 발전소별 요약정보

결과 출력

print("발전소별 용량:\n", max_capacity_per_plant)

```
In []: # 발전소 개수
num_plants = solar['ID'].unique()
print("발전소 개수: ", len(num_plants))

발전소 개수: 25

In []: # 발전소별 최대 용량 추출
max_capacity_per_plant = solar.groupby('ID')['CAPACITY'].max()
```

```
ID
              674
        В
             4050
        C
             701
        D
             2666
        Ε
             720
             2742
        F
        G
             994
        Н
             500
             543
        Ι
        J
             2783
        Κ
             947
              420
       М
             502
       Ν
              56
        0
              900
        Ρ
             705
             974
        Q
             1907
        S
             900
        Τ
             998
       U
             1028
        ٧
             1028
              903
        Χ
             955
             964
       Name: CAPACITY, dtype: int64
In []: # 발전소별 데이터 건수 추출
        data_count_per_plant = solar.groupby('ID').size()
        print("\n발전소별 데이터 건수:\n", data_count_per_plant)
        발전소별 데이터 건수:
        ID
             3679
        Α
        В
             3679
        C
             3679
        D
             3679
        Е
             3679
        F
             3679
        G
             3679
             3679
        Ι
             3679
        J
             3679
        K
             3679
             3679
             3679
       Μ
       Ν
             3679
        0
             3679
        Ρ
             3679
        Q
             3679
             3679
        R
        S
             3679
        Т
             3679
        U
             3679
        ٧
             3679
             3679
       W
             3679
       Χ
             3679
        dtype: int64
        💆 데이터 요약 결과 해석
              본 예제는 실제 기상청, 한국전력 등에서 데이터 제공 서비스를 통해 받은 데이터임으로 이상치는 존재하지 않습니다.
         1. 발전소는 총 25개이며 각각의 최대 발전용량이 다름
```

- 2. 범주형 데이터는 발전소 번호 외 존재하지 않음
- 3. 수치형 데이터의 스케일이 다름
- 4. PRECIP(강수량) 변수에는 결측치 존재
- ☑ GEN이 수치형이기에 회귀(Regression) 분석을 수행함

3.1.3 시각화

발전소별 용량:

1. 수치형 변수 시각화

MISSION

```
In [ ]: # 수치형
        # 'ID', 'DATE', 'HOUR', 'CAPACITY'는 의미가 없는 수치형 데이터이므로 제외
        continuous_columns = solar.columns.difference(['ID', 'DATE', 'HOUR', 'CAPACITY'])
        continuous_columns
'WIND_SPD'],
              dtype='object')
         ♀ 히스토그램
          • 수치형 변수들을 히스토그램으로 시각하여 이상치에 대한 판단
In []: fig, axes = plt.subplots(nrows=5, ncols=4, figsize=(15, 10))
        for i, column in enumerate(continuous_columns):
            row = i // 4
            col = i % 4
            solar[column].plot(kind='hist', bins=20, ax=axes[row, col], color='skyblue', edgecolor='black')
            axes[row, col].set_title(f'Histogram of {column}')
            axes[row, col].set_xlabel(column)
            axes[row, col].set_ylabel('Frequency')
        plt.tight_layout()
        plt.show()
                                             Histogram of DEWPT
                                                                                                     Histogram of DNI
                 Histogram of CLOUDS
                                                                         Histogram of DHI
                                     10000
         20000
                                                                <u> 40000</u>
                                                                                           <u>></u> 40000
                                      5000
          10000
                                                                20000
                                                                                           20000
                      60
                            80
                                             -20
                                                                                   100
                                                                                                    200
                                                                                                        400
DNI
                                                                                                            600
                     CLOUDS
                                                                       Histogram of HUMIDITY
                  Histogram of GEN
                                              Histogram of GHI
                                                                                                    Histogram of PRES
```


💆 수치형 변수 시각화 결과 해석

• 본 예제는 기상청, 한국전력 등으로 부터 제공받은 데이터를 사용함으로 이상치에 대한 검증은 하지 않음'

2. 범주형 변수 시각화

☑ 발전소가 25개이기에 발전소별 발전량을 통해 차이가 있는지 확인해보는 것도 좋을 것 같습니다.

MISSION

발전소/시간별 발전량 평균에 대한 데이터프레임을 생성해보기

```
In []: # 개별 발전소별 발전량 평균 plant_data = solar[solar['ID'] == 'A']
```

```
pd.DataFrame(avg_generation_per_hour).rename(columns={'GEN': 'A'})
Out[]:
                 0.000
            0
                 0.000
            1
            2
                 0.000
            3
                 0.000
                 0.000
            4
                 0.000
            5
                 0.698
            6
            7
                22.963
            8 90.538
            9 196.338
           10 288.899
           11 340.161
           12 344.131
           13 316.607
           14 267.066
           15 162.730
           16
               60.545
           17 10.434
           18
                 0.481
           19
                 0.000
          20
                 0.000
                 0.000
           21
          22
                 0.000
          23
                 0.000
In [ ]: # 발전소별 시간별 발전량 평균 계산
          df_avg_gen = pd.DataFrame()
          for plant in solar['ID'].unique():
               plant_data = solar[solar['ID'] == plant]
avg_generation_per_hour = plant_data.groupby('HOUR')['GEN'].mean().reset_index(drop=True)
tmp = pd.DataFrame(avg_generation_per_hour).rename(columns={'GEN': plant})
               df_avg_gen = pd.concat([df_avg_gen, tmp], axis=1)
```

df_avg_gen.T

avg_generation_per_hour = plant_data.groupby('HOUR')['GEN'].mean().reset_index(drop=True)

Out[]:		0	1	2	3	4	5	6	7	8	9		14	15	16	17	18	19
	Α	0.000	0.000	0.000	0.000	0.000	0.000	0.698	22.963	90.538	196.338		267.066	162.730	60.545	10.434	0.481	0.000
	В	0.000	0.000	0.000	0.000	0.000	0.000	1.529	87.247	399.318	904.729		1572.306	1075.082	470.400	109.694	9.671	0.000
	С	0.000	0.000	0.000	0.000	0.000	0.000	0.522	12.588	63.732	151.807		256.438	145.271	69.294	17.920	1.158	0.000
	D	0.000	0.000	0.000	0.000	0.000	0.000	4.471	78.635	354.808	709.757		791.592	530.086	219.953	49.208	4.816	0.000
	Ε	0.000	0.000	0.000	0.000	0.000	0.000	1.379	22.772	91.746	190.042		230.725	147.812	63.896	14.842	1.482	0.000
	F	0.000	0.000	0.000	0.000	0.000	0.000	5.192	96.988	393.663	756.722		865.318	566.306	236.267	53.788	5.490	0.000
	G	0.000	0.000	0.000	0.000	0.000	0.000	1.449	25.849	118.259	263.482		399.294	284.273	133.304	24.673	1.647	0.000
	Н	0.000	0.000	0.000	0.000	0.000	0.000	0.256	13.339	59.572	119.649		162.798	117.287	57.774	10.805	0.576	0.000
	ı	0.000	0.000	0.000	0.000	0.000	0.000	1.635	26.516	91.853	172.185		196.769	131.404	49.220	9.550	0.709	0.000
	J	0.000	0.000	0.000	0.000	0.000	0.000	1.114	53.443	272.643	650.180		1220.424	940.031	563.906	115.404	3.796	0.000
	K	0.000	0.000	0.000	0.000	0.000	0.000	0.786	17.219	74.701	157.233		236.762	155.652	65.708	10.701	0.682	0.000
	L	0.000	0.000	0.000	0.000	0.000	0.000	0.499	8.995	38.626	88.100		108.910	46.864	15.928	3.106	0.270	0.000
	М	0.000	0.000	0.000	0.000	0.000	0.000	0.540	9.443	40.894	96.593		171.153	114.814	50.020	9.343	0.615	0.000
	N	0.000	0.000	0.000	0.000	0.000	0.000	0.079	1.131	4.671	11.176		17.029	11.558	5.505	1.458	0.164	0.000
	0	0.000	0.000	0.000	0.000	0.000	0.000	0.151	16.009	74.969	173.718		312.936	211.619	94.946	19.369	1.595	0.000
	Р	0.000	0.000	0.000	0.000	0.000	0.000	0.028	10.657	53.443	124.998	•••	249.123	176.841	90.202	20.056	1.390	0.000
	Q	0.000	0.000	0.000	0.000	0.000	0.000	0.311	17.628	84.325	185.906		285.002	186.569	84.654	18.282	1.548	0.000
	R	0.000	0.000	0.000	0.000	0.000	0.000	5.908	91.269	275.379	485.922		399.202	207.849	74.230	15.633	0.922	0.000
	S	0.000	0.000	0.000	0.000	0.000	0.000	0.621	17.153	63.986	136.800		282.207	217.802	116.955	23.576	1.101	0.000
	Т	0.000	0.000	0.000	0.000	0.000	0.000	1.139	24.053	96.336	201.043		333.031	247.627	124.714	29.413	2.273	0.000
	U	0.000	0.000	0.000	0.000	0.000	0.000	0.565	13.139	69.172	190.913		388.744	290.278	137.407	18.024	0.805	0.000
	٧	0.000	0.000	0.000	0.000	0.000	0.000	0.951	25.624	146.254	296.621		282.565	163.035	54.485	9.238	0.631	0.000
	W	0.000	0.000	0.000	0.000	0.000	0.000	2.255	18.528	60.462	131.152		256.877	162.063	65.949	16.604	1.706	0.000
	Х	0.000	0.000	0.000	0.000	0.000	0.000	2.652	21.851	84.581	178.384		296.646	176.682	72.878	17.833	1.815	0.009

Y 0.000 0.000 0.000 0.000 0.000 0.000 2.576 21.392 80.738 170.637 ... 292.997 167.116 68.965 17.030 1.711 0.005

25 rows × 24 columns

Ŷ 시간대별 발전량 그래프(분할)

```
import matplotlib.pyplot as plt

fig, axes = plt.subplots(nrows=5, ncols=5, figsize=(20, 10))
fig.tight_layout(pad=6.0)

for (id_, data), ax in zip(df_avg_gen.T.iterrows(), axes.flatten()):
    data.plot(ax=ax, kind='line')
    ax.set_title(f'ID: {id_}')
    ax.set_xlabel('TIME')
    ax.set_ylabel('AVG GEN')

for i in range(len(df_avg_gen.T), 25):
    fig.delaxes(axes.flatten()[i])

plt.show()
```


Ŷ 시간대별 발전량 그래프(전체)

```
import matplotlib.pyplot as plt

# 그래프 그리기

df_avg_gen.plot(kind='line', figsize=(14, 8))

plt.title('AVG GEN per HOUR')

plt.xlabel('HOUR')

plt.ylabel('AVG GEN')

plt.legend(title='ID')
```


💆 범주형 변수 시각화 결과 해석

- 발전소/시간별 평균 발전량은 최대 발전 용량인 CAPACITY에 따라 달라짐
- 발전량의 동향은 일사량이 가장 많은 11~13시 사이에 가장 많고 시간에 따라 증가했다 감소함

3.2 데이터 전처리

3.2.1 Feature Engineering

Definition

- 알고있는 지식, 도메인 지식 등을 활용
- 보유한 데이터에서 새로운 데이터를 만들어 설명력을 높임

📍 시간 변환

시간 데이터는 모델이 해석하기 적합하지 않습니다. 현재 다루고 있는 데이터가 시간별 날씨 데이터이기에 명확한 주기성을 가지고 있기 때문입니다. 또한 발전량은 정규분포와 같이 증가하다 감소하지만 시간은 0-24로 증가하다가 다시 0이되는 직선의 형태를 나타냅니다. 따라서 이러한 주기성을 담을 수 있도록처리해주어야 합니다.

***** MISSION

날짜와 시간을 합쳐 YYYY-MM-DD HH:MM:SS 형태로 변환

```
In []: solar['DATE_TIME'] = pd.to_datetime(solar['DATE'].astype(str) + ' ' + solar['HOUR'].astype(str) + ':00:00')
solar.drop(columns=['DATE', 'HOUR'], inplace=True)

In []: # 날짜와 시간이 주기성을 갖도록 변환함
date_time = solar['DATE_TIME']
timestamp_s = date_time.map(pd.Timestamp.timestamp)

day = 24*60*60
year = (365.2425)*day

solar['Day sin'] = np.sin(timestamp_s * (2 * np.pi / day))
solar['Day cos'] = np.cos(timestamp_s * (2 * np.pi / year))
solar['Year sin'] = np.sin(timestamp_s * (2 * np.pi / year))
solar['Year cos'] = np.cos(timestamp_s * (2 * np.pi / year))

plt.plot(np.array(solar['Day sin'])[:25])
plt.plot(np.array(solar['Day cos'])[:25])
plt.xlabel('Time [h]')
plt.title('Time of day signal')
```

Out[]: Text(0.5, 1.0, 'Time of day signal')

📍 풍향, 풍속 변환

WIND_DIR는 풍향을 각도로 나타냅니다. 각도는 0부터 360까지 이루어져 있지만, 이는 모델이 학습하기 쉬운 표현이 아닙니다. 현실에서 0도와 360도는 서로 가깝게 보여야 하기 때문입니다. 현재 풍향 및 풍속에 대한 분포는 아래와 같이 나타납니다.

```
In []: plt.hist2d(solar['WIND_DIR'], solar['WIND_SPD'], bins=(50, 50), vmax=400)
  plt.colorbar()
  plt.xlabel('Wind Direction [deg]')
  plt.ylabel('Wind Velocity [m/s]')
```

Out[]: Text(0, 0.5, 'Wind Velocity [m/s]')

분포를 보았을 때, 노란색이 0부터 360까지 펼쳐저 있음을 확인할 수 있다. 이를 앞서 이야기하였던 이해해가 쉬운 변수로 변환하기 위해 풍향, 풍속을 합쳐 바람 벡터로 만들어본다.

```
In []: wv = solar['WIND_SPD']
max_wv = solar['WIND_DIR']*np.pi / 180

solar['Wx'] = wv*np.cos(wd_rad)
solar['Wy'] = wv*np.sin(wd_rad)

solar.drop(columns=['WIND_DIR', 'WIND_SPD'], inplace=True)
# solar['max Wx'] = max_wv*np.cos(wd_rad)
# solar['max Wy'] = max_wv*np.sin(wd_rad)

plt.hist2d(solar['Wx'], solar['Wy'], bins=(50, 50), vmax=400)
plt.colorbar()
plt.xlabel('Wind X [m/s]')
plt.ylabel('Wind Y [m/s]')
ax = plt.gca()
ax.axis('tight')
```

Out[]: (-13.63297358462116, 20.6, -16.104897439381983, 18.764178364133656)

변환된 분포는 이전보다 모델이 이해하기 쉬워 보입니다.

비는 겨울에 잘 내리지 않고, 눈은 여름에 내리지 않습니다. 때문에 계절에 따라 대부분의 데이터가 0으로 분포되어 있습니다. 아래 그래프를 통해 확인하면 그 차이를 더 확실히 알 수 있습니다.

```
In []: # 'DATE_TIME'을 인덱스로 설정
solar.set_index('DATE_TIME', inplace=True)

# 날짜별, 시간별로 SNOW와 RAIN의 합계 계산
df_sum = solar.resample('H').mean()
solar.reset_index(inplace=True)

# 시계열 그래프 생성
plt.figure(figsize=(15, 4))
df_sum['SNOW'].plot(label='Snow', color='red')
df_sum['RAIN'].plot(label='Rain', color='green')
plt.title('Hourly Sum of Snow and Rain')
plt.xlabel('Date Time')
plt.ylabel('Sum')
plt.legend()
plt.show()
```


유의미한 변수이나 대부분이 0인 경우 모델의 해석력이 떨어질 수 있으므로, 두 변수를 하나로 합쳐 새로운 변수로 만들어 보는 것도 좋은 방법입니다.

MISSION

RAIN과 SNOW를 합쳐 하나의 변수 RAIN_SNOW로 만들어보기

```
In []: solar['RAIN_SNOW'] = solar['RAIN'] + solar['SNOW'] solar.drop(columns=['RAIN', 'SNOW'], inplace=True)

In []: # 'DATE_TIME' 을 인덱스로 설정 solar.set_index('DATE_TIME', inplace=True)

# 날짜별, 시간별로 SNOW와 RAIN의 함계 계산 df_sum = solar.resample('H').mean() solar.reset_index(inplace=True)

# 시계열 그래프 생성 plt.figure(figsize=(15, 4)) df_sum['RAIN_SNOW'].plot(label='RAIN_SNOW', color='orange') plt.title('Hourly Sum of RAIN_SNOW') plt.xlabel('Date Time') plt.ylabel('Sum') plt.ylabel('Sum') plt.legend() plt.show()
```


🙎 Feature engineering 결과 해석

• 태양광 발전을 위해 도메인 지식을 활용하여 새로운 변수들을 생성함

3.2.2 시계열 데이터 분할

일반적인 데이터들에 대해서는 랜덤하게 train/validation/test를 구성하지만, 시계열 데이터는 랜덤을 제외하고 시간을 기준으로 분할을 수행합니다.

***** MISSION

plt.tight_layout()

plt.show()

전체 데이터의 날짜 중 70%, 90%가 되는 날을 찾아서 train, validation, test로 구분해보기

```
In []: # 전체 데이터 날짜
        date_array = solar['DATE_TIME'].unique()
        # 전체 데이터 길이 계산
        total_dates = len(date_array)
        # 70%와 90% 위치 계산
        index_70 = int(total_dates * 0.7)
        index_90 = int(total_dates * 0.9)
        # 해당 위치의 날짜 추출
        date_70 = date_array[index_70]
        date_90 = date_array[index_90]
        print(f"70%에 해당하는 날짜: {date_70}")
        print(f"90%에 해당하는 날짜: {date_90}")
        70%에 해당하는 날짜: 2022-12-12T00:00:00.000000000
        90%에 해당하는 날짜: 2023-01-11T16:00:00.000000000
In []: # 데이터 셋 분할
        train_data = solar[solar['DATE_TIME'] < date_70].reset_index(drop=True)</pre>
        validation_data = solar[(solar['DATE_TIME'] >= date_70) & (solar['DATE_TIME'] < date_90)].reset_index(drop=True</pre>
        test_data = solar[solar['DATE_TIME'] >= date_90].reset_index(drop=True)
        print('train data:', train_data.shape)
        print('validation data:', validation_data.shape)
        print('test data:', test_data.shape)
        train data: (64375, 23)
        validation data: (18400, 23)
        test data: (9200, 23)
        ↑ 각 데이터셋의 발전소 분포 시각화
In []: # 각 데이터셋에서 발전소 ID의 비율 계산
        train_ratios = train_data['ID'].value_counts(normalize=True)
        val_ratios = validation_data['ID'].value_counts(normalize=True)
        test_ratios = test_data['ID'].value_counts(normalize=True)
        fig, axes = plt.subplots(1, 3, figsize=(10, 3), sharey=True)
        # Train 데이터셋의 발전소 분포 비율
        axes[0].bar(train ratios.index, train ratios.values)
        axes[0].set_title('Train Dataset')
        axes[0].set_xlabel('ID')
        axes[0].set_ylabel('Ratio')
        # Validation 데이터셋의 발전소 분포 비율
        axes[1].bar(val_ratios.index, val_ratios.values)
        axes[1].set_title('Validation Dataset')
        axes[1].set_xlabel('ID')
        # Test 데이터셋의 발전소 분포 비율
        axes[2].bar(test_ratios.index, test_ratios.values)
        axes[2].set_title('Test Dataset')
        axes[2].set_xlabel('ID')
```


• 모든 데이터셋에서 비율이 동일함

3.2.3 데이터 스케일링

1. 데이터 범위 확인

***** MISSION

train_data의 요약 통계 정보를 확인해보기

In []:	train_	_data.desc	ribe()									
Out[]:		CAPACITY	GHI	DNI	DHI	ТЕМР	CLOUDS	CLOUDS DEWPT		RH	SLP	 ν
	count	64375.000	64375.000	64375.000	64375.000	64375.000	64375.000	64375.000	64375.000	64375.000	64375.000	 64375.0
	mean	1182.400	201.086	321.620	38.484	11.465	43.379	6.174	983.988	68.611	1018.840	 15.10
	std	908.102	277.601	377.353	45.608	9.294	39.775	8.875	32.236	19.371	6.608	 2.9
	min	56.000	0.000	0.000	0.000	-18.400	0.000	-26.500	859.700	14.000	961.500	 0.0
	25%	701.000	0.000	0.000	0.000	7.300	0.000	1.200	950.000	54.000	1015.000	 16.0
	50%	947.000	0.000	0.000	0.000	12.800	42.000	6.700	998.500	70.000	1019.000	 16.00
	75%	1028.000	421.710	763.870	88.980	17.800	85.000	12.500	1008.000	85.000	1024.000	 16.00
	max	4050.000	947.350	927.160	121.930	38.900	100.000	27.000	1030.900	100.000	1034.000	 16.00

8 rows × 21 columns

💆 데이터 범위 확인 결과 해석

• 모든 데이터의 스케일이 다름 ☞ 모두 스케일링 수행

2. 스케일링 수행(훈련 데이터)

***** MISSION

train_data에 알맞은 스케일링 수행해보기

Out[]:		DATE_TIME	ID	GEN	CAPACITY	GHI	DNI	DHI	ТЕМР	CLOUDS	DEWPT		υv	VIS	HUMIDITY	Day sin	Day cos	Year sin
	0	2022-08- 26 00:00:00	А	0.000	0.155	0.000	0.000	0.000	0.682	1.000	0.843		0.000	0.938	0.920	0.500	1.000	0.288
	1	2022-08- 26 01:00:00	Α	0.000	0.155	0.000	0.000	0.000	0.675	1.000	0.843		0.000	1.000	0.870	0.629	0.983	0.287
	2	2022-08- 26 02:00:00	Α	0.000	0.155	0.000	0.000	0.000	0.677	1.000	0.843		0.000	1.000	0.800	0.750	0.933	0.286
	3	2022-08- 26 03:00:00	А	0.000	0.155	0.000	0.000	0.000	0.663	1.000	0.834		0.000	1.000	0.720	0.854	0.854	0.286
	4	2022-08- 26 04:00:00	Α	0.000	0.155	0.000	0.000	0.000	0.647	1.000	0.798	•••	0.000	1.000	0.700	0.933	0.750	0.285
	_	02 aalı																

5 rows × 23 columns

Out[

3. 스케일링 적용(검증, 테스트 데이터)

```
In []: # 검증용 데이터 스케일링 적용
scaled_data = StdScaler.transform(validation_data[scale_columns])
scaled_df = pd.DataFrame(scaled_data, columns=scale_columns)
scaled_val_df = pd.concat([validation_data.drop(scale_columns, axis=1), scaled_df], axis=1)
scaled_val_df.head()
```

]:		DATE_TIME	ID	GEN	CAPACITY	GHI	DNI	DHI	TEMP	CLOUDS	DEWPT	•••	UV	VIS	HUMIDITY	Day sin	Day cos	Year sin
	0	2022-12-12 00:00:00	Α	0.000	0.155	0.000	0.000	0.000	0.257	0.000	0.413		0.000	1.000	0.770	0.500	1.000	1.001
	1	2022-12-12 01:00:00	Α	0.000	0.155	0.000	0.000	0.000	0.265	1.000	0.424		0.000	1.000	0.750	0.629	0.983	1.002
	2	2022-12-12 02:00:00	Α	0.000	0.155	0.000	0.000	0.000	0.293	0.970	0.439		0.000	1.000	0.740	0.750	0.933	1.003
	3	2022-12-12 03:00:00	Α	0.000	0.155	0.000	0.000	0.000	0.295	0.900	0.447		0.000	1.000	0.740	0.854	0.854	1.004
	4	2022-12-12 04:00:00	Α	0.000	0.155	0.000	0.000	0.000	0.295	0.700	0.449		0.000	1.000	0.750	0.933	0.750	1.005

5 rows × 23 columns

```
In []: # 테스트 데이터 스케일링 적용
scaled_data = StdScaler.transform(test_data[scale_columns])
scaled_df = pd.DataFrame(scaled_data, columns=scale_columns)
scaled_test_df = pd.concat([test_data.drop(scale_columns, axis=1), scaled_df], axis=1)
scaled_test_df.head()
```

Out[]:		DATE_TIME	ID	GEN	CAPACITY	GHI	DNI	DHI	ТЕМР	CLOUDS	DEWPT	 υv	VIS	HUMIDITY	Day sin	Day cos	Year sin
	0	2023-01-11 16:00:00	Α	29.616	0.155	0.213	0.646	0.535	0.461	0.470	0.437	 0.108	1.000	0.200	0.067	0.250	1.783
	1	2023-01-11 17:00:00	Α	0.576	0.155	0.043	0.288	0.258	0.342	0.490	0.445	 0.092	1.000	0.210	0.017	0.371	1.785
	2	2023-01-11 18:00:00	Α	0.000	0.155	0.000	0.000	0.000	0.291	0.520	0.428	 0.000	1.000	0.250	0.000	0.500	1.786
	3	2023-01-11 19:00:00	Α	0.000	0.155	0.000	0.000	0.000	0.272	0.540	0.421	 0.000	1.000	0.350	0.017	0.629	1.787
	4	2023-01-11 20:00:00	Α	0.000	0.155	0.000	0.000	0.000	0.260	0.540	0.413	 0.000	1.000	0.460	0.067	0.750	1.788

5 rows × 23 columns

3.3 예측 모델 생성

3.3.1 선형 모델 생성 및 학습 (통계기반)

Linear Regressor

has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
train 정확도: 0.574724099279522

3.3.2 트리기반 모델 생성 및 학습

RandomForest Regressor

```
In []: from sklearn.ensemble import RandomForestRegressor

rf = RandomForestRegressor(random_state=1004)

rf.fit(X_train, y_train)

print('train 정확도 :', rf.score(X_train, y_train))
```

train 정확도 : 0.9925591950154677

3.4 분석모델 성능 평가

데이터 병합 및 분할

3.4.1 성능평가

[₱] MSE

```
In []: # linear regression 모델 성능 평가
print('Linear Regression 성능평가')
y_pred=lr.predict(X_test)
print('test 정확도 :', lr.score(X_test, y_test))

# rf 모델 성능 평가
print('RF 성능평가')
y_pred=rf.predict(X_test)
print('test 정확도 :', rf.score(X_test, y_test))
```

Linear Regression 성능평가 test 정확도: 0.4185674413846484 RF 성능평가 test 정확도: 0.7708083251949461

3.4.2 결과 시각화

```
In [ ]: df_index = total_test_data[['ID','DATE_TIME', 'GEN']]
    df_index
```

```
0 A 2022-12-12 00:00:00 0.000
             1 A 2022-12-12 01:00:00 0.000
             2 A 2022-12-12 02:00:00 0.000
             3 A 2022-12-12 03:00:00 0.000
             4 A 2022-12-12 04:00:00 0.000
         27595 Y 2023-01-26 19:00:00 0.000
         27596 Y 2023-01-26 20:00:00 0.000
               Y 2023-01-26 21:00:00 0.000
         27597
         27598 Y 2023-01-26 22:00:00 0.000
         27599 Y 2023-01-26 23:00:00 0.000
        27600 rows × 3 columns
In [ ]: df_predict = pd.DataFrame({"PREDICT":y_pred})
        df_predict
                PREDICT
Out[]:
             0
                  0.000
             1
                  0.000
             2
                  0.000
                  0.000
                  0.000
         27595
                  0.000
         27596
                  0.000
         27597
                  0.000
         27598
                  0.000
         27599
                  0.000
        27600 rows x 1 columns
In []: df_result = pd.concat([df_index, df_predict], axis=1)
        df_result
                          DATE_TIME GEN PREDICT
Out[]:
             0 A 2022-12-12 00:00:00 0.000
                                               0.000
             1 A 2022-12-12 01:00:00 0.000
                                              0.000
             2 A 2022-12-12 02:00:00 0.000
                                              0.000
             3 A 2022-12-12 03:00:00 0.000
                                               0.000
             4 A 2022-12-12 04:00:00 0.000
                                               0.000
         27595 Y 2023-01-26 19:00:00 0.000
                                              0.000
         27596 Y 2023-01-26 20:00:00 0.000
                                               0.000
         27597 Y 2023-01-26 21:00:00 0.000
                                               0.000
         27598 Y 2023-01-26 22:00:00 0.000
                                               0.000
         27599 Y 2023-01-26 23:00:00 0.000
                                               0.000
        27600 rows × 4 columns
In [ ]: import matplotlib.pyplot as plt
         # 고유 ID 목록 생성 (상위 5개만 선택)
        unique_ids = df_result['ID'].unique()[:5]
         # 5x1 그리드 생성
```

fig, axes = plt.subplots(5, 1, figsize=(20, 10), sharex=True, sharey=True)

Out[]:

DATE_TIME

```
# 각 ID별로 그래프 그리기

for i, ax in enumerate(axes.flatten()):
    id = unique_ids[i]
    # 현재 ID에 해당하는 데이터 필터링
    df_filtered = df_result[df_result['ID'] == id]

# DATE_TIME에 따른 GEN과 PREDICT 그래프 그리기
    sns.lineplot(data=df_filtered, x='DATE_TIME', y='GEN', ax=ax, label='GEN', color='blue')
    sns.lineplot(data=df_filtered, x='DATE_TIME', y='PREDICT', ax=ax, label='PREDICT', color='red')

# 제목 설정
    ax.set_title(f'ID: {id}')
    ax.tick_params(axis='x', rotation=45) # x축 라벨 회전

# 전체 그래프에 대한 레이아웃 조정
plt.tight_layout()
plt.show()
```


3.5 모델 성능 개선

모델의 성능을 개선시키기 위한 방법에는 여러가지가 있습니다. 모델 자체를 변경하여 수행해 볼 수 있고, 모델에 사용된 변수들을 변경해가며 수행해볼수도 있습니다. 그리고 마지막에는 모델의 하이퍼파라미터를 조정(튜닝)하면서 더 나은 결과를 이끌어 낼 수 있습니다. 이번 실습에서는 이를 하나씩 수행해보며 어떤 차이점이 있는지 알아봅니다.

3.5.1 모델 변경

성능이 좋은 트리기반 모델 중 하나인 Xgboost를 사용해봅니다.

[↑] XGBoost

```
In []: from xgboost import XGBRegressor

# 모델 생성 및 훈련

xgb = XGBRegressor(objective='reg:squarederror', n_estimators=100)
xgb.fit(X_train, y_train)
print('train 정확도 :', xgb.score(X_train, y_train))

train 정확도 : 0.9774095519161353

In []: print('test 정확도 :', xgb.score(X_test, y_test))
```

test 정확도 : 0.7487624228024197

3.5.2 Feature selection

사용된 다양한 변수들 중 크게 연관성이 없는 변수거나, 상관관계가 높은 즉, 차이가 없는 변수들은 제거하여 모델의 해석력을 높입니다.

Feature importance

트리 기반의 모델은 입력된 모든 변수를 사용하여 룰이되는 트리를 만들게 됩니다. 이때, 어떤 변수가 주요하게 예측에 사용되었는지를 나타내는 feature importance를 통해 중요도가 낮은 변수를 제거할 수 있습니다.

```
In []: from xgboost import plot_importance
# 피처 중요도 시각화
plot_importance(xgb)
plt.show()
```


₹ 상관계수 행렬

사용된 설명변수 간 상관계수가 높은 변수들은 유사한 정보를 포함하고 있을 가능성이 큽니다. 이런 변수들이 존재할 경우, 트리 모형은 이러한 변수들 중 일부만 선택하여 사용할 가능성이 높습니다. 이로 인해, 상관된 변수들이 많을 경우 정보 중복이 발생할 수 있지만, 이는 직접적인 문제를 일으키기보다는 변수중요도 계산 시 중복된 정보로 인해 과대 평가될 수 있습니다.

- 0.50

- 0.25

-0.50

-0.75

***** MISSION

• Feature importance와 상관계수를 고려하여 설명변수 집합을 새로 구성해보기

```
In [ ]: new_feature = [
             "CAPACITY",
             "DHI",
             "Day cos",
             "UV",
             "HUMIDITY",
             "RH",
             "CLOUDS"
             "Day sin",
             "PRES",
             "Year sin",
             "Year cos",
             "SLP",
             "Wy",
             "Wx"
             "DEWPT"
```

```
In []: X_train_new = scaled_train_data[new_feature]
new_xgb = XGBRegressor(random_state=1004)
```

```
new_xgb.fit(X_train_new, y_train)
print('train 정확도 :', new_xgb.score(X_train_new, y_train))
train 정확도 : 0.9779027533722804

In []: X_test_new = total_test_data[new_feature]
print('test 정확도 :', new_xgb.score(X_test_new, y_test))
test 정확도 : 0.7731196418815911
```

3.5.3 하이퍼 파라미터 조정

모델을 만들때 사용되는 파라미터를 하이퍼파라미터라고 합니다. 아무것도 넣지 않으면 모두 defualt 값으로 설정되나, 데이터 과학자는 이를 미세조정하며 최적의 결과로 이끌어 냅니다.

Xgboost Hyperparameter

OPTUNA

```
In [ ]: import optuna
        from sklearn.model_selection import cross_val_score
        def objective(trial):
            if trial.number == 0:
                params = \{\}
            else:
                params = {
                    'n_estimators': trial.suggest_int('n_estimators', 10, 1000),
                    'max_depth': trial.suggest_int('max_depth', 2, 32, log=True),
                    'min_samples_split': trial.suggest_int('min_samples_split', 2, 100),
                    'min_samples_leaf': trial.suggest_int('min_samples_leaf', 1, 100),
                    'max_features': trial.suggest_categorical('max_features', [1.0, 'sqrt', 'log2']),
                    'random state': 1004
                }
            reg = RandomForestRegressor(**params)
            y train 1d = np.array(y train).ravel()
            return cross_val_score(reg, X_train, y_train_1d, n_jobs=-1, cv=3, scoring='neg_mean_squared_error').mean()
        study = optuna.create_study(direction='maximize')
        study.optimize(objective, n_trials=3)
        print('Number of finished trials:', len(study.trials))
        print('Best trial:', study.best_trial.params)
        [I 2024-06-20 16:19:16,048] A new study created in memory with name: no-name-97f3f251-4348-42a4-9e32-ee545b61f
        425
        [I 2024-06-20 16:19:43,615] Trial 0 finished with value: -20331.521569265653 and parameters: {}. Best is trial
        0 with value: -20331.521569265653.
        [I 2024-06-20 16:20:54,743] Trial 1 finished with value: -20997.44893009703 and parameters: {'n_estimators': 4
        15, 'max_depth': 9, 'min_samples_split': 7, 'min_samples_leaf': 17, 'max_features': 1.0}. Best is trial 0 with
        value: -20331.521569265653.
        [I 2024-06-20 16:21:17,918] Trial 2 finished with value: -24012.885727379147 and parameters: {'n estimators':
        525, 'max_depth': 12, 'min_samples_split': 32, 'min_samples_leaf': 11, 'max_features': 'sqrt'}. Best is trial
        0 with value: -20331.521569265653.
        Number of finished trials: 3
        Best trial: {}
In [ ]: import optuna
        import xgboost as xgb
        from sklearn.model selection import cross val score
        def objective(trial):
            if trial.number == 0:
                params = \{\}
            else:
                params = {
                 'n_estimators': trial.suggest_int('n_estimators', 10, 1000),
                'max_depth': trial.suggest_int('max_depth', 2, 32),
                'learning_rate': trial.suggest_loguniform('learning_rate', 1e-8, 1.0),
                'subsample': trial.suggest_float('subsample', 0.5, 1.0),
                 'colsample_bytree': trial.suggest_float('colsample_bytree', 0.5, 1.0),
                 'min_child_weight': trial.suggest_int('min_child_weight', 1, 300),
                 'reg_lambda': trial.suggest_loguniform('reg_lambda', 1e-8, 100.0),
                'reg_alpha': trial.suggest_loguniform('reg_alpha', 1e-8, 100.0),
                'random_state': 1004
                }
```

```
reg = xgb.XGBRegressor(**params)
             y_train_1d = np.array(y_train).ravel()
             return cross_val_score(reg, X_train_new, y_train_1d, n_jobs=-1, cv=3, scoring='neg_mean_squared_error').mea
        study = optuna.create_study(direction='maximize')
        study.optimize(objective, n_trials=3)
        print('Number of finished trials:', len(study.trials))
        print('Best trial:', study.best_trial.params)
         [I 2024-06-20 16:21:17,933] A new study created in memory with name: no-name-e4e9e7d4-87ad-48e1-b52e-a363e4e81
        1ea
        [I 2024-06-20 16:21:22,713] Trial 0 finished with value: -19694.70516149997 and parameters: {}. Best is trial
        0 with value: -19694.70516149997.
        [I 2024-06-20 16:21:36,797] Trial 1 finished with value: -119566.42778133629 and parameters: {'n_estimators':
        919, 'max_depth': 3, 'learning_rate': 6.115141350537867e-06, 'subsample': 0.6586851890262675, 'colsample_bytre
        e': 0.5756317415241119, 'min_child_weight': 251, 'reg_lambda': 3.348938165321684e-07, 'reg_alpha': 6.094542846
        487083e-06}. Best is trial 0 with value: -19694.70516149997.
        [I 2024-06-20 16:22:40,238] Trial 2 finished with value: -18688.884701060222 and parameters: {'n_estimators':
        501, 'max_depth': 23, 'learning_rate': 0.027024375903933355, 'subsample': 0.9658552656634697, 'colsample_bytre e': 0.7430933784392036, 'min_child_weight': 72, 'reg_lambda': 18.298480059167712, 'reg_alpha': 1.9262649650289
        825e-06}. Best is trial 2 with value: -18688.884701060222.
        Number of finished trials: 3
        Best trial: {'n_estimators': 501, 'max_depth': 23, 'learning_rate': 0.027024375903933355, 'subsample': 0.96585
        52656634697, 'colsample_bytree': 0.7430933784392036, 'min_child_weight': 72, 'reg_lambda': 18.298480059167712,
         'reg_alpha': 1.9262649650289825e-06}
In []: # 좋은 성능의 모델로 개선
        # best_trial = {'n_estimators': 135, 'max_depth': 27, 'learning_rate': 0.12112363453156222, 'subsample': 0.9322
        xgb_best = xgb.XGBRegressor(**study.best_trial.params)
        xgb_best.fit(X_train_new, y_train)
        print('train 정확도 :', xgb_best.score(X_train_new, y_train))
        xgb_best.score(X_test_new, y_test)
        print('test 정확도 :', xgb_best.score(X_test_new, y_test))
```

train 정확도 : 0.9770655313771058 test 정확도 : 0.7980376117867019

💆 성능 개선 결과 해석

- 기존 Random Forest: 0.7708083251949461
- 성능개선 수행: 0.7903444412382243