Вопросы к теоретическиому зачёту

Треугольники

- 1. Определение треугольника
- 2. Определение равных треугольников
- 3. Признаки равных треугольников (с доказательством)
- 4. Определенеи перпендикуляра к прямой
- 5. Свойство перпендикуляра к прямой (с доказательством)
- 6. Определение биссектрисы треугольника
- 7. Свойство биссектрис тругольника
- 8. Определенеи медианы треугольника
- 9. Свойства медиан треугольника
- 10. Определнеи высоты треугольника
- 11. Свойства высот треугольника
- 12. Определение равнобердренного треугольника
- 13. Свойства равнобедренного треугольника (с доказательством)
- 14. Теорема о сумме углов треугольника (с доказательством)
- 15. Определение внешнего угла треугольника
- 16. Свойство внешнего угла угла треугольника (с доказательством)
- 17. Определения остроугольного, прямоугольного, тупоугольного треугольника
- 18. Теорема о соотношениях между сторонами и углами треугольника (с доказательством)
- 19. Следствия из теоремы о соотношениях между сторонами и углами треугольника (с доказательством)
- 20. Неравенство треугольника и следствие из него (с доказательством)
- 21. Свойства прямоугольного треугольника (с доказательством)
- 22. Признаки прямоугольного треугольника (с доказательством)
- 23. Признаки равенства прямоугольных треугольников (с доказательством)

Параллельные прямые

- 1. Определение параллельных прямых
- 2. Признаки параллельных прямых (с доказательством)
- 3. Свойства параллельных прямых (с доказательством)
- 4. Аксиомы параллельных прямых
- 5. Следствия из аксиом параллельных прямых (с доказательством)

Окружность

- 1. Определение окружности
- 2. Определение хорды окружности
- 3. Опредлеение диаметра окружности
- 4. Определение дуги окружности
- 5. Свойство и признак диаметра, проведённого через середину хорды (с доказательством)
- 6. Свойство и признак угла, опирающегося на диаметр
- 7. Взаимное расположние прямой и окружности
- 8. Определение секущей к окружности
- 9. Определение касательной к окружности
- 10. Свойство касательной к окружности (с доказательством)
- 11. Признак касательной к окружности (с доказательством)
- 12. Свойство отрезков касательных, проведенных из одной точки, к окружности (с доказательством)

Γ MT

- 1. Определение биссектрисы угла
- 2. Свойство биссектрисы угла (с доказательством)
- 3. Определение серединного перпендикуляра к отрезку
- 4. Свойство серединного перпендикуляра к отрезку (с доказательством)
- 5. Следствия из свойства серединного перпендикуляра к отрезку (с доказательством)

Параллелограмм

- 1. Определение параллелограмма
- 2. Свойства параллелограмма (с доказательством)

В параллелограмме противоположные стороны равны.

Дано: ABCD -

Доказать:

AB = CD

BC = AD

параллелограмм

Доказательство:

- 1. По определению параллелограмма ABCD: BC||AD, AB||CD.
- 2. По св-ву $BC\|AD$ и секущей AC: $\angle BCA = \angle CAD$.
- 3. По св-ву $AB\|CD$ и секущей AC: $\angle BAC = \angle ACD$.

4. AC - общая сторона, $\angle BCA = \angle CAD$, $\angle BAC = \angle ACD$,

5. Т.к. в равных треугольниках соответственные элементы равны, то AB = CD, DC = AD.

В параллелограмме противоположные углы равны.

Дано:

ABCD -

Доказать:

параллелограмм

 $\angle ABC = \angle ADC$

 $\angle BAD = \angle BCD$

Доказательство:

- 1. По определению параллелограмма ABCD: BC||AD, AB||CD.
- 2. По св-ву $BC\|AD$ и секущей AC: $\angle BCA = \angle CAD$.
- 3. По св-ву $AB\|CD$ и секущей AC: $\angle BAC = \angle ACD$.
- 4. AC общая сторона, $\angle BCA = \angle CAD$, $\angle BAC = \angle ACD$,

тогда по признаку равенства треугольников (по стороне и прилежащим к ней углам) $\triangle ABC = \triangle CDA.$

- 5. Т.к. в равных треугольниках соответственные элементы равны, то $\angle ABC = \angle ADC$.
- 6. Аналогично доказывается равенство $\triangle ABD = \triangle CDB$ и равенство $\angle BAD = \angle BCD$.

Диагонали параллелограмма точкой пересечения делятся пополам

Дано:

параллелограмм

Доказательство:

1. По определению параллелограмма ABCD:

BC||AD, AB||CD.

- 2. По св-ву $AB\|CD$ и секущей BD: $\angle ABD = \angle BDC$.
- 3. По св-ву $AB\|CD$ и секущей AC: $\angle BAC = \angle ACD$.
- 4. По свойству параллелограмма
- о том, противоположные стороны равны: AB = CD
- 5. AB = CD, $\angle ABD = \angle BDC$, $\angle BAC = \angle ACD$,

тогда по признаку равенства треугольников (по стороне и прилежащим к ней углам) $\triangle ABO = \triangle CDO$.

6. Т.к. в равных треугольниках соответственные элементы равны, то AO = OC, BO = OD.

B

Доказать:

AO = OC, BO = OD

3. Признаки параллелограмма (с доказательством) Если в четырёхугольнике две стороны равны и параллельны, то этот четырёхугольник - параллелограмм.

Дано: ABCD четырёхугольник AB = CDAB||CD|

Доказать:

параллелограмм

ABCD -

Доказательство:

1. По св-ву $AB\|CD$ и секущей BD: $\angle ABD = \angle BDC$.

2. По св-ву $AB\|CD$ и секущей AC: $\angle BAC = \angle ACD$.

3. AB = CD, $\angle ABD = \angle BDC$, $\angle BAC = \angle ACD$,

тогда по признаку равенства треугольников

(по стороне и прилежащим к ней углам) $\triangle ABO = \triangle CDO$.

4. Т.к. в равных треугольниках соответственные элементы равны,

то AO = OC, BO = OD.

5. Т.к. AO = OC, BO = OD, а $\angle AOD = \angle BOC$ как вертикальные углы, то по признаку равенства треугольников (по двум сторонаям и углу между ними) $\triangle AOD = \triangle COB$.

6. Т.к. в равных треугольниках соответственные элементы равны, TO $\angle OAD = \angle OCB$,

а они являются накрестлежащими при прямых BC и AD, секущей AC.

По признаку параллельных прямых $BC\|AD$.

 $BC\|AD$, $AB\|CD$, ABCD - параллелограмм по определению.

Если в четырёхугольнике противоположные стороны попарно равны, то этот четырёхугольник - параллелограмм.

Дано: ABCD четырёхугольник AB = CDBC = AD

Доказательство:

1. AB = CD, BC = AD, AC - общая, то по признаку равенства треугольников (по трем сторонам) $\triangle ABC = \triangle CDA$. 2. Т.к. в равных треугольниках соответственные элементы равны,

TO $\angle BAC = \angle ACD$.

3. $\angle BAC = \angle ACD$ - накрестлежащие при прямых AB и CD, секущей AC. Доказать: По признаку параллельных прямых $AB\|CD$.

4. Т.к. $AB\|CD$ и AB=CD, то по признаку параллелограмма (две стороны равны и параллельны), АВСО - параллелограмм.

Если диагонали четырёхугольника точкой пересечения делятся пополам, то этот четырёхугольник - параллелограмм.

ABCD параллелограмм

Дано: ABCD четырёхугольник AO = OC

Доказательство:

1. $AO = OC, BO = OD, \angle AOB = \angle COD$

как вертикальные угла, то по признаку равенства треугольников (по двум сторонам и углу между ними) $\triangle ABO = \triangle CDO$.

2. Т.к. в равных треугольниках соответственные элементы равны, то $\angle BAC = \angle ACD$, AB = CD

4. Т.к. $AB\|CD$ и AB=CD, то по признаку параллелограмма (две стороны равны и параллельны), АВСО - параллелограмм.

Доказать: ABCD -

параллелограмм

D

B