# **Applied Machine Learning**

# Feature Selection: Further Techniques



#### Learning goals

- Embedded Feature Selection
- Domain Knowledge
- Multi-objective Optimization
- Boruta Algorithm

### **EMBEDDED FEATURE SELECTION**

- Select features during the learning process
- Explicitly via regularization
  - LASSO/L1
  - Requires a solver that can set weights to zero
- Implicitly by construction of the algorithm
  - Decision-tree based algorithms
  - Can ignore irrelevant features by not selecting them (no guarantee, though)



#### **DOMAIN KNOWLEDGE**

- ID columns
  - Often ordered, can leak time information
  - If they identify a person etc, replace by features describing that person
  - Contains no information that can generalize
- Duplicate features
  - Cause issues for (linear) models
  - Slow down learning
  - Reduce model interpretability



## **MULTI-OBJECTIVE OPTIMIZATION OF FEATURES**

- Optimize two competing Objectives:
  - goodness-of-fit
  - number of variable
- Use global optimization algorithm
  - Evolutionary Algorithm
  - Sparse Bayesian optimization





## **BORUTA (1)**

All-relevant feature selection
Goal: find all features that have affect the prediction

- $\rightarrow$  Can include redundant features
- Idea: use shadow variables to contrast existing features against
- Method: Extend a feature scoring to an iterative testing mechanism



Boruta for those in a Hurry by Miron B. Krusa

# **BORUTA (2)**

- Create a copy of each feature, shuffle these copies
- Pit a random forest on the new dataset
- An attribute is deemed important, if its feature importance is higher than the maximal importance of all randomised attributes
- Repeat steps 1-3 for N iterations
- Execute SHT with the null hypothesis that the importance of a feature is equal to the maximal importance of all randomised attributes
- Repeat steps 1-5 until the feature set is stable



# Wrap-up

#### **TAKEAWAYS**

- There can be multiple goals in feature selection:
  - Single Feature Selection
  - Multiple Feature Selection
  - All-relevant Feature Selection
- Important step for good prediction quality and fast models
- ullet Different feature selection methods have different goals and use different mechanisms  $\to$  model selection problem