ALGORITHMS AND DATA STRUCTURES CHEATSHEET

We summarize the performance characteristics of classic algorithms and data structures for sorting, priority queues, symbol tables, and graph processing.

We also summarize some of the mathematics useful in the analysis of algorithms, including commonly encountered functions; useful formulas and approximations; properties of logarithms; asymptotic notations; and solutions to divide-and-conquer recurrences.

Sorting.

The table below summarizes the number of compares for a variety of sorting algorithms, as implemented in this textbook. It includes leading constants but ignores lower-order terms.

ALGORITH M	CODE	IN PLAC E	STABL E	BEST	AVERAG E	WORS T	REMARKS
selection sort	Selection.jav a	~		½ n²	½ n²	½ n²	n exchanges; quadratic in best case
insertion sort	Insertion.jav a	~	~	n	½ n²	½ n²	use for small or partially-sorted arrays
bubble sort	Bubble.java	~	✓	n	½ n²	½ n²	rarely useful; use insertion sort instead
shellsort	Shell.java	~		n log₃ n	unknown	c <i>n</i> ^{3/2}	tight code; subquadratic
mergesort	Merge.java		~	½ n lg n	<i>n</i> lg <i>n</i>	n lg n	n log n guarantee ; stable
quicksort	Quick.java	~		n lg n	2 <i>n</i> ln <i>n</i>	½ n²	n log n probabilist ic guarantee; fastest in practice
heapsort	Heap.java	✓		n†	2 <i>n</i> lg <i>n</i>	2 <i>n</i> lg <i>n</i>	n log n guarantee ; in place

Priority queues.

The table below summarizes the order of growth of the running time of operations for a variety of priority queues, as implemented in this textbook. It ignores leading constants and lower-order terms. Except as noted, all running times are worst-case running times.

DATA STRUCTURE	CODE	INSERT	DEL- MIN	MIN	DEC- KEY	DELETE	MERGE
array	BruteIndexMinPQ.java	1	n	n	1	1	n
binary heap	IndexMinPQ.java	log n	log n	1	log n	log n	n
<i>d</i> -way heap	IndexMultiwayMinPQ.java	log _d n	$d \log_d n$	1	$\log_d n$	$d \log_d n$	n
binomial heap	IndexBinomialMinPQ.java	1	log n	1	log n	log n	log n
Fibonacci heap	IndexFibonacciMinPQ.java	1	log n†	1	1 [†]	log n†	1

Symbol tables.

The table below summarizes the order of growth of the running time of operations for a variety of symbol tables, as implemented in this textbook. It ignores leading constants and lower-order terms.

		worst case			average case		
DATA STRUCTU RE	CODE	SEARC H	INSER T	DELET E	SEARC H	INSER T	DELET E
sequential search (in an unordered list)	SequentialSearchST.java	n	n	n	n	n	n
binary search (in a sorted array)	BinarySearchST.java	log n	n	n	log n	n	n
binary search tree (unbalance d)	BST.java	n	n	n	log n	log n	sqrt(n)
red-black BST (left- leaning)	RedBlackBST.java	log n	log n	log n	log n	log n	log n
AVL	AVLTreeST.java	log n	log n	log n	log n	log n	log n
hash table (separate- chaining)	SeparateChainingHashST. java	n	n	n	1 [†]	1 [†]	1 [†]
hash table (linear- probing)	LinearProbingHashST.jav a	n	n	n	1 [†]	1†	1 [†]

Graph processing.

The table below summarizes the order of growth of the worst-case running time and memory usage (beyond the memory for the graph itself) for a variety of graph-processing problems, as implemented in this textbook. It ignores leading constants and lower-order terms. All running times are worst-case running times.

PROBLEM	ALGORITHM	CODE	TIME	SPACE
path	DFS	DepthFirstPaths.java	E+V	V
shortest path (fewest edges)	BFS	BreadthFirstPaths.java	E+V	V
cycle	DFS	Cycle.java	E+V	V
directed path	DFS	DepthFirstDirectedPaths.java	E+V	V
shortest directed path (fewest edges)	BFS	BreadthFirstDirectedPaths.java	E+V	V
directed cycle	DFS	DirectedCycle.java	E+V	V
topological sort	DFS	Topological.java	E+V	V
bipartiteness / odd cycle	DFS	Bipartite.java	E+V	V
connected components	DFS	CC.java	E+V	V
strong components	Kosaraju-Sharir	KosarajuSharirSCC.java	E+V	V
strong components	Tarjan	TarjanSCC.java	E+V	V
strong components	Gabow	GabowSCC.java	E+V	V

Eulerian cycle	DFS	EulerianCycle.java	E+V	E+V
directed Eulerian cycle	DFS	DirectedEulerianCycle.java	E+V	V
transitive closure	DFS	TransitiveClosure.java	V (E + V)	V^2
minimum spanning tree	Kruskal	KruskalMST.java	E log E	E+V
minimum spanning tree	Prim	PrimMST.java	Elog V	V
minimum spanning tree	Boruvka	BoruvkaMST.java	E log V	V
shortest paths (nonnegative weights)	Dijkstra	DijkstraSP.java	E log V	V
shortest paths (no negative cycles)	Bellman–Ford	BellmanFordSP.java	V (V + E)	V
shortest paths (no cycles)	topological sort	AcyclicSP.java	V+ E	V
all-pairs shortest paths	Floyd-Warshall	FloydWarshall.java	V^3	V^2
maxflow-mincut	Ford-Fulkerson	FordFulkerson.java	EV(E+V)	V
bipartite matching	Hopcroft-Karp	HopcroftKarp.java	V ^½ (E + V)	V
assignment problem	successive shortest paths	AssignmentProblem.java	$n^3 \log n$	n²

Commonly encountered functions.

Here are some functions that are commonly encountered when analyzing algorithms.

FUNCTION	NOTATION	DEFINITION
floor	[x][x]	greatest integer ≤x≤x
ceiling	[x][x]	smallest integer ≥x≥x
binary logarithm	lgxlg@x or log2xlog2@x	yy such that $2y=x2y=x$
natural logarithm	Inxinia or logexlogeax	yy such that e _y =xey=x
common logarithm	log10xlog10x	yy such that $10y=x10y=x$
iterated binary logarithm	lg∗xlg∗x	00 if $x \le 1; 1 + lg*(lgx)x \le 1; 1 + lg*(lgx)x$ otherwise
harmonic number	HnHn	1+1/2+1/3++1/n1+1/2+1/3++1/n
factorial	n!n!	1×2×3××n1×2×3××n
binomial coefficient	(nk)(nk)	n!k!(n-k)! n!k!(n-k)!

Useful formulas and approximations.

Here are some useful formulas for approximations that are widely used in the analysis of algorithms.

- Harmonic sum: $1+1/2+1/3+...+1/n\sim \ln (1+1/2+1/3+...+1/n\sim \ln (1+1/2+1/3+...+1/n\sim 1)$
- Triangular sum: $1+2+3+...+n=n(n+1)/2\sim n^2/21+2+3+...+n=n(n+1)/2\sim n^2/2$
- Sum of squares: $12+22+32+...+n2\sim n3/312+22+32+...+n2\sim n3/3$
- Geometric sum: If r≠1r≠1,
 - then $1+r+r_2+r_3+...+r_n=(r_{n+1}-1)/(r-1)_{1+r+r_2+r_3+...+r_n=(r_{n+1}-1)/(r-1)_{1+r_2+r_3+r_3+...+r_n=(r_{n+1}-1)/(r-$
 - \circ r=1/2r=1/2: 1+1/2+1/4+1/8+...+1/2n~21+1/2+1/4+1/8+...+1/2n~2
 - o r=2r=2: $1+2+4+8+...+n/2+n=2n-1\sim2n1+2+4+8+...+n/2+n=2n-1\sim2$ n, when nn is a power of 2

- Stirling's approximation: $lg(n!)=lg1+lg2+lg3+...+lgn\sim nlgnlg@(n!)=lg@1+lg@2+lg@3+...+lg@n\sim nlg@n$
- Exponential: $(1+1/n)_n \sim e; (1-1/n)_n \sim 1/e(1+1/n)_n \sim e; (1-1/n)_n \sim 1/e$
- Binomial coefficients: $(nk) \sim nk/k! (nk) \sim nk/k!$ when kk is a small constant
- Approximate sum by integral: If f(x)f(x) is a monotonically increasing function, then $\int_{n0} f(x) dx \le \sum_{i=1}^n f(i) \le \int_{n+1}^n f(x) dx = \sum_{i=1}^n f(i) \le \int_{n+1}^n f(i) dx = \sum_{i=1}^n f(i) \le \int_{n+1}^n f(i) dx = \sum_{i=1}^n f(i) \le \int_{n+1}^n f(i) dx = \sum_{i=1}^n f(i) = \sum_{i=1}^n f(i) \le \int_{n+1}^n f(i) dx = \sum_{i=1}^n f(i) \le \int_{n+1}^n f(i) dx = \sum_{i=1}^n f(i) = \sum_$

Properties of logarithms.

- Definition: $log_ba=clogb@a=c$ means $b_c=abc=a$. We refer to bb as the base of the logarithm.
- Special cases: logbb=1,logb1=0logbbb=1,logbb1=0
- Inverse of exponential: blogbx=xblogb@x=x
- *Product:* logb(x×y)=logbx+logbylogb(x×y)=lo
- Division: logb(x÷y)=logbx-logbylogb@(x÷y)=logb@x-logb@y
- Finite

 product: logb(x1×x2×...×xn)=logbx1+logbx2+...+logbxnlogb(x1×x2×...×xn)=logb(x1+logb(x1+...+logb(x1+x2)+...+logb(x1+x
- Changing bases: logbx=logcx/logcblogbex=logcex/logceb
- Rearranging exponents: Xlogby=ylogbxxlogbioy=ylogbiox
- Exponentiation: logb(xy)=ylogbxlogb(xy)=ylog

Asymptotic notations: definitions.

NAM E	NOTATION	DESCRIPTION	DEFINITION
Tilde	$f(n)\sim g(n)f(n)\sim g(n)$	f(n)f(n) is equal to $g(n)g(n)$ asymptotically (including constant factors)	$\lim_{n\to\infty}f(n)g(n)=1\\ \lim_{n\to\infty}f(n)\\ g(n)=1$
Big Oh	f(n)f(n) is $O(g(n))$ $O(g(n))$	f(n)f(n) is bounded above by $g(n)g(n)$ asymptotically (ignoring constant factors)	there exist constants $c>0c>0$ and $n_0\ge0$ n0 ≥0 such that $0\le f(n)\le c\cdot g(n)0\le f(n)\le c\cdot g(n)$ for all $n\ge n_0 n\ge n_0$
Big Ome ga	$f(n)f(n)$ is $\Omega(g(n))$ $\Omega(g(n))$	f(n)f(n) is bounded below by $g(n)g(n)$ asymptotically (ignoring constant factors)	g(n)g(n) is $O(f(n))O(f(n))$
Big Thet a	$f(n)f(n)$ is $\Theta(g(n))$ $\Theta(g(n))$	f(n)f(n) is bounded above and below by g(n)g(n) asymptotically (ignoring constant factors)	$f(n)f(n) \text{ is}$ both $O(g(n))O(g(n))$ and $\Omega(g(n))O(g(n))$
Little oh	f(n)f(n) is $o(g(n))o$ $(g(n))$	f(n)f(n) is dominated by $g(n)g(n)$ asymptotically (ignoring constant factors)	$\lim_{n\to\infty}f(n)g(n)=0\\ \lim_{n\to\infty}f(n)\\ g(n)=0$
Little ome ga	$f(n)f(n)$ is $\omega(g(n))$ $\omega(g(n))$	f(n)f(n) dominates g(n)g(n) asy mptotically (ignoring constant factors)	g(n)g(n) is $o(f(n))o(f(n))$

Common orders of growth.

NAME	NOTATION	EXAMPLE	CODE FRAGMENT
Constant	0(1)0(1)	array access arithmetic operation function call	op();
Logarithmic	O(logn)O(logn)	binary search in a sorted array insert in a binary heap search in a red-black tree	<pre>for (int i = 1; i <= n; i = 2*i) op();</pre>

Linear	O(n)O(n)	sequential search grade-school addition BFPRT median finding	<pre>for (int i = 0; i < n; i++) op();</pre>
Linearithmic	O(nlogn)O(nlog@n)	mergesort heapsort fast Fourier transform	<pre>for (int i = 1; i <= n; i++) for (int j = i; j <= n; j = 2*j) op();</pre>
Quadratic	O(n2)O(n2)	enumerate all pairs insertion sort grade-school multiplication	<pre>for (int i = 0; i < n; i++) for (int j = i+1; j < n; j++) op();</pre>
Cubic	O(n3)O(n3)	enumerate all triples Floyd–Warshall grade-school matrix multiplication	<pre>for (int i = 0; i < n; i++) for (int j = i+1; j < n; j++) for (int k = j+1; k < n; k++) op();</pre>
Polynomial	O(nc)O(nc)	ellipsoid algorithm for LP AKS primality algorithm Edmond's matching algorithm	
Exponential	20(nc)20(nc)	enumerating all subsets enumerating all permutations backtracking search	

Asymptotic notations: properties.

- Reflexivity: f(n)f(n) is O(f(n))O(f(n)).
- Constants: If f(n)f(n) is O(g(n))O(g(n)) and c>0c>0, then $c\cdot f(n)c\cdot f(n)$ is O(g(n))O(g(n)).
- Products: If $f_1(n)f_1(n)$ is $O(g_1(n))O(g_1(n))$ and $f_2(n)f_2(n)$ is $O(g_2(n))O(g_2(n))$, then $f_1(n)\cdot f_2(n)f_1(n)\cdot f_2(n)$ is $O(g_1(n)\cdot g_2(n))O(g_1(n)\cdot g_2(n))$.
- Sums: If $f_1(n)f_1(n)$ is $O(g_1(n))O(g_1(n))$ and $f_2(n)f_2(n)$ is $O(g_2(n))O(g_2(n))$, then $f_1(n)+f_2(n)f_1(n)+f_2(n)$ is $O(\max\{g_1(n),g_2(n)\})O(\max\{g_1(n),g_2(n)\})$.
- Transitivity: If f(n)f(n) is O(g(n))O(g(n)) and g(n)g(n) is O(h(n))O(h(n)), then f(n)f(n) is O(h(n))O(h(n)).

- Logarithms and polynomials: logbnlogbin is O(nd)O(nd) for every b>0b>0 and every d>0d>0.
- Exponentials and polynomials: n_{d} nd is $O(r_n)O(r_n)$ for every r>0 r>0 and every d>0d>0.
- Factorials: n!n! is $2\Theta(n\log n)2\Theta(n\log n)$.
- Limits: If $\lim_{n\to\infty} f(n)g(n) = c\lim_{n\to\infty} f(n)g(n) = c$ for some constant $0 < c < \infty, \text{ then } f(n)f(n) \text{ is } \Theta(g(n))\Theta(g(n)).$
- Limits: If $\lim_{n\to\infty} f(n)g(n)=0$ $\lim_{n\to\infty} f(n)g(n)=0$, then f(n)f(n) is O(g(n))O(g(n)) but not O(g(n))O(g(n)).
- Limits: If $\lim_{n\to\infty} f(n)g(n) = \infty \lim_{n\to\infty} f(n)g(n) = \infty$, then f(n)f(n) is $\Omega(g(n))\Omega(g(n))$ but not O(g(n))O(g(n)).

Here are some examples.

FUNCTION	o(n2)o(n2)	0(n2)0(n2)	Θ(n2)Θ(n2)	Ω(n2)Ω(n2)	ω(n2)ω(n2)	~2n2~ 2n2	~4n2~ 4n2
log2nlog2@n	✓	✓					
10n+4510n+45	~	~					
2n2+45n+122n2+4 5n+12		~	~	~		~	
$4n_2-2n\sqrt{4n_2-2n_1}$		✓	✓	~			~
3n33n3				~	~		
2 _n 2n				~	~		

Divide-and-conquer recurrences.

For each of the following recurrences we assume T(1)=0T(1)=0 and that n/2n/2 means either $\lfloor n/2 \rfloor \lfloor n/2 \rfloor$ or $\lfloor n/2 \rfloor \lfloor n/2 \rfloor$.

RECURRENCE	T(n)T(n)	EXAMPLE
T(n)=T(n/2)+1T(n)=T(n/2)+1	∼lgn∼lg⊡n	binary search
T(n)=2T(n/2)+nT(n)=2T(n/2)+n	∼nlgn~nlgn	mergesort

T(n)=T(n-1)+nT(n)=T(n-1)+n	~12n2~12n2	insertion sort
T(n)=2T(n/2)+1T(n)=2T(n/2)+1	~n~n	tree traversal
T(n)=2T(n-1)+1T(n)=2T(n-1)+1	~2n~2n	towers of Hanoi
$T(n)=3T(n/2)+\Theta(n)T(n)=3T(n/2)+\Theta(n)$	$\Theta(nlog_{23}) = \Theta(n1.58)\Theta(nlog_{2003}) = \Theta(n1.58)$	Karatsuba multiplicati on
$T(n)=7T(n/2)+\Theta(n_2)T(n)=7T(n/2)+\Theta(n_2)$	$\Theta(\text{nlog}_{27}) = \Theta(\text{n2.81})\Theta(\text{nlog}_{2007}) = \Theta(\text{n2.81})$	Strassen multiplicati on
$T(n)=2T(n/2)+\Theta(nlogn)T(n)=2T(n/2)+\Theta(nlogmn)$	$\Theta(\mathrm{nlog}2\mathrm{n})\Theta(\mathrm{nlog}2\overline{\mathbb{m}}\mathrm{n})$	closest pair

Master theorem.

Let $a \ge 1$ a ≥ 1 , $b \ge 2$ b ≥ 2 , and c > 0 c > 0 and suppose that T(n)T(n) is a function on the non-negative integers that satisfies the divide-and-conquer recurrence $T(n) = aT(n/b) + \Theta(n_c)T(n) = aT(n/b) + \Theta(n_c)$

with T(0)=0 T(0)=0 and $T(1)=\Theta(1)$ $T(1)=\Theta(1)$, where n/b means either $\lfloor n/b \rfloor \lfloor n/b \rfloor$ or either $\lfloor n/b \rfloor \lfloor n/b \rfloor$.

- If c < logbac < logbac, then $T(n) = \Theta(n logba) T(n) = \Theta(n logbac)$
- If $c=\log bac = \log bac = \log bac = \log n$, then $T(n) = \Theta(nc \log n)T(n) = \Theta(nc \log n)$
- If c>logbac>logbaca, then $T(n)=\Theta(n_c)T(n)=\Theta(n_c)$

Remark: there are many different versions of the master theorem. The Akra–Bazzi theorem is among the most powerful.