Задача 1. Найти дифференциал функции:

$$f = e^{xy\sin z}$$

•
$$f = \left(xy + \frac{x}{y}\right)^z$$
 в точке $(1; \quad 1; \quad 1)$

Задача 2. Доказать, что функция $f = \ln \left(2 - |x|^{7/6} + |y|^{5/4}\right)$ дифференцируема в нуле.

Задача 3. Доказать, что функция $f = \arctan\left(2x + \sqrt[3]{x^3 - 27y^3}\right)$ недифференцируема в нуле.

Задача 4. Доказать, что функция

$$f = \begin{cases} (x^2 + y^2 \sin(1/(x^2 + y^2)), & \text{если } x^2 + y^2 \neq 0\\ 0, & \text{если } x^2 + y^2 = 0 \end{cases}$$

дифференцируема, но не непрерывно дифференцируема в R^2 .

Задача 5. Доказать, что функция

$$f = \left\{ egin{array}{ll} (x^2 + y^{2lpha}, & \text{если } x, & y - \text{рациональные числа} \\ 0, & \text{если по крайней мере одно из чисел } x, & y \ \text{иррационально} \end{array} \right.$$

при $\alpha > 1/2$ дифференцируема в только в точке (0; 0) и не является непрерывно дифференцируемой в этой точке.

Задача 6. Исследовать на дифференцируемость в нуле функцию f(x; y), f(0, 0) = 0, а при $x^2 + y^2 > 0$ функция задаётся формулой:

•
$$f = \frac{|x^3y|^{1/2}}{(x^2+xy+y^2)^{\alpha}}, \quad \alpha = 1/2, \quad \alpha = 1/4$$

•
$$f = \frac{x^3 y^2}{(x^6 + y^6)^{\alpha}}, \quad \alpha = 1/2, \quad \alpha = 2/3$$

•
$$f = \frac{\sqrt{1+xy} - e^{xy/2}}{(x^2+y^2)^{3/2}}$$

•
$$f = \frac{xe^y - ye^x + y - x + (xy/2)(x-y)}{(x^2 + y^2)^{3/2}}$$

Задача 7. Доказать, что если функция f дифференцируема в точке $(x_1; x_2; \dots; x_n)$, то в этой точке суествует производная $\frac{\partial f}{\partial l}$ по направлению произвольного единичного вектора $\mathbf{l} = (\cos \alpha_1; \cos \alpha_2; \dots; \cos \alpha_n)$, $\sum_{k=1}^n \cos^2 \alpha_k = 1$, причём $\frac{\partial f}{\partial \mathbf{l}} = \sum_{k=1}^n \frac{\partial f}{\partial x_k} \cos \alpha_k$.

Задача 8. Пусть функция f(x), $x \in R^n$ дифференцируема в некоторой точке и \mathbf{l} – произвольный единичный вектор. Доказать, что в этой точке: если $gradf \neq 0$, то производная $\frac{\partial f}{\partial \mathbf{l}}$ достигает наибольшего значения при $\mathbf{l} = \frac{gradf}{|gradf|}$

Задача 9. Найдите производную функции f по направлению вектора $\mathbf l$ в точке:

•
$$f = 2x^2 + 5y^2$$
, $\mathbf{l} = (-1/\sqrt{2}, 1/\sqrt{2})$, $M(1; 1)$

•
$$f = \ln(x^2 + y^2 + z^2)$$
, $\mathbf{l} = (-1/3; 2/3; 2/3)$, $M(1; 2; 1)$

Задача 10. Найти градиент функции в точке:

•
$$f = 1 + x^2y^3$$
, $(-1-; 1)$

$$\bullet \ f = yx^y, \quad (2; \quad 1)$$

•
$$f = \ln (1 = x^2 - 2y^2 - 3z^2)$$
, $M(x_0; y_0; z_0)$, $x_0^2 + 2y_0^2 + 3z_0^2 < 1$

Задача 11. Найти $f_y'(x; x^2)$ для дифференцирумой функции f(x; y), удовлетворяющей условиям $f(x; x^2) = const$, $f_x'(x; x^2) = x$