

中国软件工程历程与发展

一、软件工程概述

二、中国软件工程

三、若干重要研究方向

四、人才培养

杨芙清

软件工程概述

(一) 背景与概念提出

上世纪六十年代(1960年代)

软件开发和维护 遇到 一系列严重问题

如:需求不明确 软件存在大量缺陷

软件开发成本和项目周期失控

软件难以维护•••••

导致

软件危机

1968年

北大西洋公约组织 (NATO) 科技委员会出资 在德国的南部小城 加尔米施 举行学术会议 会议名称 即为"软件工程"大会

成为

软件工程学科诞生的标志

SOFTWARE ENGINEERING

Report on a conference sponsored by the

NATO SCIENCE COMMITTEE

Garmisch, Germany, 7th to 11th October 1968

Co-chairman: Professor Dr. F. L. Bauer
Co-chairmen: Professor L. Bolliet, Dr. H. J. Helms

Editors: Peter Naur and Brian Randell

January 1969

1968年NATO软件 工程会议报告

会议就软件工程与社会、软件设计、产品、服务、教育、定价等问题 进行了探讨

(二) 软件与软件工程

1. 软件与软件工程的概念

软件

是客观世界中问题空间与解空间的 具体描述 追求 表达能力强、更符合人类思维模式 具有构造性和演化性的计算模型

软件工程

应用 计算机科学理论和技术 以及 工程管理原则和方法 按预算和进度 实现 满足用户要求的 软件产品的定义、开发、发布和维护的工程 或以之为研究对象的学科 (《计算机大百科全书》)

2. 软件工程主要发展历程

软件复用和软件构件技术被视为解决软件危机 的一条现实可行途径 基于构件的软件开发方法成为主流技术之一

1990年代 软件复用和构件 技术受到关注

CASE工具和环境的研制成为热点 面向对象技术开始出现并逐步流行

1980年代 软件开发方法学 成为研究热点

出现了结构化分析和设计方法

软件工程被正式提出 开始注重程序结构的研究 程序设计语言和编译系统 得到应用 1970年代 程序设计方法学 成为研究热点

1960年代 出现了软件危机

中国软件工程

中国软件工程的发展历程

为了满足中国软件产业发展需求 中国自1980年启动软件工程研究与实践 其过程和成果与国际发展趋势一致

1990年代

- •以构件技术为主 线开展前沿研究
- •建立较为全面的 软件工程环境

2000年代

- •提出布局网构软件技 术研究体系
- •建设软件构件库体系
- •建立标准和培养人才

2000

•软件企业开始

尝试工业化生

产技术

2010年以后

- •发展网构软件技术
- •高可信软件技术
- •智能化开发技术

•软件企业开发规 模和技术开始出现 领先势头

·CASE工具和 环境的研发

1980年代

•开展软件开发

1980

方法学研究

1990

•软件企业开始 使用软件工具

北京大学

•软件产业起步

•开发停留在手工作坊式

(二) 早期代表性研究工作

1. 软件自动化系统

南京大学徐家福教授领导的科研团队

- ❖从规约到实现,开发了多个软件自动化系统
 - ➤ 软件自动产生系统NDHD
 - ▶ 软件自动化系统NDAUTO, NDAUTO/SUN
 - ▶ 元级转换系统NDTPS
 - ➤ 算法设计自动化系统NDADAS
 - ➤归纳程序综合系统NDIPS
 - ▶自学习软件自动化系统NDSAIL
 - ➤ 层次式面向对象需求模型NDHOOM及其支撑系统
 - ▶基于NDRDL语言的软件需求分析自动化系统
 - ➤ 面向对象软件需求分析支撑系统NDORASS

北京大学

2. XYZ系统

中科院唐稚松院士领导的科研团队

- ❖XYZ系统是由一个时序逻辑语言XYZ/E,以及围绕该语言的一组软件工具组成
- ❖XYZ/E: 第一个可执行的时序逻辑语言
 - > 主要特征是能直接表示自动机状态转换机制
 - ▶ 具有常见程序语言风格,可实际用于编程运行
 - ▶ 它的统一框架既能表示抽象规范,又能表示各种新的范型,如面向对象程序设计、可视图形程序设计、多媒体、分布式程序设计等

3. MLIRF系统

中科院董韫美院士领导的科研团队

❖形式规约的获取与复用

- > 提出基于复用的文法推断方法
- ➤ 提出一种新的递归函数理论:上下文无关语言上的 递归函数CFRF

❖研究开发了支持系统MLIRF

4. 青鸟工程 北京大学牵头的科研团队

从 "七五"的 11个单位 100多 科技成员 至"八五"的 22个单位 338位 科技成员

(1) 目标

以实用的软件工程技术 为依托 建立 软件产业基础 推行 软件工程化、工业化生产技术和模式 提供 软件工业化生产手段 和设备 形成 规模经济所需的 人才储备、技术储备、产品储备

(2) 青鸟工程 (概况)

软件产业建设的共性、基础性工作

(3) 青鸟软件生产线概念模式图

标准规范

느

质量保证

- 借鉴传统产业经验
- 探索软件生产规律
- 提出软件生产线概念
- 支持软件工业化生产
- 改善软件开发过程
- 提升软件企业能力
- 促进软件产业合理分工

(4) 研发成果

实现软件工程技术从引进、跟踪 到进入先进行列的跨越 推动中国软件产业

从手工作坊到工业化生产的生产方式变革

(5) 网构软件 (Internetware) 互联网环境下软件新范型

2000年 在互联网发展环境下

提出并率先开展研究

面向互联网计算的新型软件——网构软件

网构软件 被列为国家科技计划重要方向 自2002年起连续获得三期973计划项目支持 在国际上产生广泛的学术影响

若干重要研究方向

软件和软件工程的发展

己为中国软件产业发展奠定了良好的基础

当今世界 信息技术创新日新月异

数字化、网络化、智能化深入发展

新应用、新模式不断涌现

对软件和软件工程提出了新的要求

如:可持续演化的软件理论 软件的智能化开发方法 软件定义的云计算平台 人机物融合的软件系统 智能系统中的软件技术

(一) 可持续演化的软件理论

当前,软件所依赖的计算平台发生了巨大变化 软件所处环境、基本范型、作用方式 也发生了巨大变化

需要研究探索 可持续演化的软件理论、方法和技术

新型软件的基本形态如何?

从从

新型软件的运行机理如何?

系本统原

新型软件的生命周期如何?

性性

探 入

如何完成经典软件到新型软件跨越?

寻手

如何构建新型理论范型方法技术体系等?

(二) 软件的智能化开发方法

软件开发方法 从工程化、工业化、群体化 ── 智能化

基于大数据的软件智能开发方法和环境 成为发展目标

北京大学

(三) 软件定义的云计算平台

虚拟化与软件定义 实现资源共享 云际协作(跨云计算) 使服务无边界

四)人机物融合的软件系统

越来越多的设备被网络连接 应用 越来越多地利用设备上的软硬件资源 需要研发 人机物融合的软件技术与系统

应用 形态

A/C应用

人机物融合新应用

支撑上层应用

软件 平台

现有集中式云计算架构与平台难以适应人机物融合应用特征

新平台?

管理底层资源

网络 形态

单机

局域网

互联网

移动互联网

物联网

空天地一体网

人机物融合的新应用 新平台成为发展趋势

(五) 智能系统中的软件技术

智能系统软件不仅仅运行在终端上 而且运行在云端上 需要研究 云-端融合的智能系统软件技术

在各个领域 新型智能应用层出不穷

智能

应

用

智能算

自动驾驶

无人机

医疗诊断

智能安防

新型人工智能算法得到广泛关注

图像识别

自然语言处理

云-端融合的智能系统软件体系结构

智能系统的软件技术发展 提高了计算机系统的智能性

四、人才培养

(一) 中国软件业人力资源分析

"人才是第一资源"、"归根到底靠人才、靠教育"——习近平

软件产业人才得到快速增长

2000年 国发18号文 出台政策 大力发展软件产业 培养软件人才

中国软件业从业人数

从 2002年的 **32万人** 发展到 2017年的 **600万人**

高中 5.10% 专科, 21.80% 本科, 58.60% 硕士 11.90%

软件工程教育为中国软件产业发展

提供了有力的人才支撑

(二) 中国软件工程教育发展历程

为了满足 中国软件产业发展需求 我国自1983年开始探索 软件工程教育

2000年代

2001年建立示 范性软件学院

2010年以后

2011年软件工程 作为一级学科列 入学科目录 2011年工程博士 被列入专业学位 日录

1990年代

1996年开始招收工程硕士研究生

1983年北京大学试办软件 工程专业(本科) 1984年、1985年北京大学 和复旦大学招收两届软件 工程研究生班 1985年北京大学率先招收 软件工程专业博士研究生

1980年代

(三) 软件工程教育体系

1. 科学教育与工程教育

科学教育

提供有价值的 系统基础知识 为日常的实际生活 和 今后所从事的 职业 作好准备 用归纳的方法 训练心智 发展观察能力、推理能力和概括能力 (摘自《赫胥黎论文集》的第3卷《科学与教育》)

工程教育

要适应产业的发展 既要 满足目前承接产业转移 引进技术的需要 也要 为消化吸收先进技术 进而自主创新服务

主要培养从事工程技术研究、设计、开发、服务等创新型工程技术人才

以实现国家经济增长方式的转变 提高国家综合国力与国际竞争力 (摘自《面向创新型国家的工程教育改革研究》)

2. 软件工程教育的 科学教育属性和工程教育属性

科学教育属性

引导学生 对 人类意识与智慧 进行 科学理解 增强 运用软件本质特性

解决 具体问题 的 能力

工程教育属性

引导学生

综合应用 计算机科学 数学 管理等科学原理 借鉴 传统工程的 原则 方法 提炼 固化 知识 创建软件 以提高质量 降低成本

是北京大学

3.构建三类三级的软件工程教育体系

是某人多

4. 软件工程一级学科培养体系

面向国家需求 瞄准国际前沿 坚持自主创新 树立核心价值观 夯实数理基础 增强创新能力

培养 高端 学术型 创新型人才

5. 软件工程专业学位培养体系

(1) 工程硕士

人才培养与产业建设互动 注重 知识、能力、素质 综合提高 的培养体系

教学管理服务平台

特点:体现因材施教 主动学习 个性化培养

注重交叉学科发展

根据技术发展与产业需求 动态调整专业方向和课程设置

(2) 工程博士

校企深度融合、协同创新 构建开放式、国际化的培养环境

培养要求和特色

- 应具有解决重大工程中关键技术 的创新能力
- 强调 工程技术与工程管理的结合 与团队建设紧密结合
- 具有组织交流能力和国际化视野;
- 能面向国家战略需求把握和引领产业发展方向。具有研究产业发展战略的能力

既培养了 工程博士及其创新团队 又带动了 工程硕士与企业团队成员的培养

(四)体会与启示

1. 前瞻性与零距离

当前 技术融合 和 产业发展 的速度惊人 专业设置要具有 前瞻性 才能达到 零距离

新专业不仅使培养的人才能及时适应产业发展的需求,还成为了推动新专业和新产业建设的驱动力

2. 学校、企业的互联互动

探索 产学研结合 的 软件工程教育 新模式 做到学校与企业的 "无缝"联接 产学研用一体化

3. 主动、自主与质量

培养目标

以学生发展为中心

把学生的 能力

以及学生 未来的职业发展

放在 教育的核心地位

培养体系

注重发展交叉学科

以课程体系为核心,逐步形成 注重 知识、能力、素质 综合提高 的培养体系

课程体系

根据生源多元化、岗位多样性 设计出 多层次、多领域、多方向、 模块化、开放式的课程体系 面向产业、面向领域的高层次、实用型 、复合交叉型、国际化人才

以课程体系为核心,逐步形成注重 知识、能力、素质 综合提高 的培养体系

多层次、多领域、多方向、模块化、开放式

使学生能依据个人职业规划,在导师指导下,自主制定个性化的学习计划,激发了学习主动性,从而提高了教学和学习质量。

