On Schemes for Exponential Decay

Hans Petter Langtangen 1,2

Center for Biomedical Computing, Simula Research Laboratory $^{\mathrm{1}}$ Department of Informatics, University of Oslo $^{\mathrm{2}}$

Apr 7, 2015

Goal

The primary goal of this demo talk is to demonstrate how to write talks with DocOnce and get them rendered in numerous HTML formats.

Layout

This version utilizes beamer slides with the theme red_plain.

We aim to solve the (almost) simplest possible differential equation problem

$$u'(t) = -au(t) \tag{1}$$

$$u(0) = I \tag{2}$$

Here,

- ▶ t ∈ (0, T]
- ► a, I, and T are prescribed parameters
- \triangleright u(t) is the unknown function
- ► The ODE (1) has the initial condition (2)

The ODE problem is solved by a finite difference scheme

- ightharpoonup Mesh in time: $0 = t_0 < t_1 \cdots < t_N = T$
- Assume constant $\Delta t = t_n t_{n-1}$
- $ightharpoonup u^n$: numerical approx to the exact solution at t_n

The θ rule,

$$u^{n+1} = \frac{1 - (1-\theta)a\Delta t}{1 + \theta a\Delta t}u^n, \quad n = 0, 1, \dots, N-1$$

contains the Forward Euler ($\theta=0$), the Backward Euler ($\theta=1$), and the Crank-Nicolson ($\theta=0.5$) schemes.

The Forward Euler scheme explained

http://youtube.com/PtJrPEIHNJw


```
How to use the solver function

A complete main program

* Set problem parameters
I = 1.2
a = 0.2
T = 8
dt = 0.25
theta = 0.5
|\pause|
from solver import solver, exact_solution
u, t = solver(I, a, T, dt, theta)
|\pause|
import matpletlib.pyplot as plt
plt plot(t, u, t, exact_solution)
plt.legend(['numerical', 'exact'])
plt.show()
```


The artifacts can be explained by some theory

Exact solution of the scheme:

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta) a \Delta t}{1 + \theta a \Delta t}$.

Key results:

- Stability: |A| < 1
- ► No oscillations: A > 0
- $ightharpoonup \Delta t < 1/a$ for Forward Euler (heta = 0)
- $ightharpoonup \Delta t < 2/a$ for Crank-Nicolson (heta = 1/2)

Concluding remarks:

Only the Backward Euler scheme is guaranteed to always give qualitatively correct results.