SECTION A (46 Marks) Answer all questions from this section A

	(i) equation for ionization of methanoic acid in water.	(1 ½ marks)
	(ii) the expression for the acid constant Ka, for methanoic acid.	(½ mark)
	(b) The molar conductivity of 0.1M methanoic acid solution at 25°C is Calculate the: (i) Degree of ionisation of methanoic acid at 25°C (molar conductivit	
	acid at infinite dilution at 25°C is 40 scm² mol-1)	(1 ½ marks)
	(ii) Ionization constant, Ka for methanoic acid at 25°C.	(1 ½ marks)
 2.	Write equations for the reaction of the following oxides with sodium	•
	(a) Chromium (III) oxide.	marks each)

	(b) Beryllium oxide	
	(c) Lead (II) oxide	
3.	Complete the following reaction equations and write the accepted a) $CH_3C \equiv CH$ H_2O/H^+ $H_3^{2^+}60^{\circ}C$	mechanism. (3marks)
	b) сңсн = сн ₂ + нс і — >	(2marks)
4.	(a) State what is meant by the term diagonal relationship?.	(1mark)
	(b) State three reasons why lithium and magnesium resemble.	(1 ½ marks)

	(c) Mention three properties to show the diagonal relationship between magnesium.	en lithium and (3marks)
5.	20cm ³ of a gaseous hydrocarbon, X was exploded with 100cm ³ of oxygexplosion, the volume and cooling of the residual gas was found to be addition of concentrated potassium hydroxide, the volume reduced to (a) Determine the molecular formula of X.	90cm³. On
	(b) X reacts with ammoniacal copper (I) chloride solution. (i) State what is observed	(1mark)
	(ii) Write equation for the reaction that takes place.	(1mark)
6.	(a) Synthetic rubber (Z) was made from monomers with structure. $ \begin{array}{c} {\rm CH_2=CHC=CH_2} \\ {\rm CI} \end{array} $ (i) State the conditions for the reaction.	(1mark)

	(ii) Write the equation leading the formation of Z	(1mark)
	(iii) Name the type of reaction in a(ii)	(½ mark)
	(b) A solution containing 5.0g of Z in 200cm ³ of benzene is four pressure of 34KPa at 17°C. Calculate	nd to have an osmotic
	(i) the molar mass of Z	(2 ½ marks)
	(ii) the number of monomers (n)	(1 ½ marks)
7. 	(a) State Raoult's law of relative lowering of vapour pressure.	(1marks)
	(b)(i) Calculate the vapour pressure of a solution containing 18g in 50g of water at 60°C is 150mmHg.	of glucose (C ₆ H ₁₂ O ₆) (2 ½ marks)
	(ii) State any three assumptions made in b(i)	(1 ½ marks)

8.		undergoes hydrolysis when dissolvor the hydrolysis of sodium prop	
	b) Write the expre	ssion for the hydrogen constant, k	(1mark)
		onstant,Khfor sodium propaonate is tration of hydrogen ions in solutio	
9.	(a) One of the prop (i) Define the term	erties of transition metals is comp	olex ion formation (1mark)
	(ii) Explain why tran	nsition metals form may complexes	s (1 ½ marks)
	(b) Complete the ta	ble below.	(2marks)
Con	nplex ion	Oxidation state of metal ion	Name of complex ion
	Fe(CN) ₆ ³⁻		
(ii)	CuCl ₄ ²⁻		

SECTION B (54 MARKS)

Answer six questions from this section

10.	a) When red lead oxide, Pb_3O_4 was heated with dilute nitric a formed. Write equation for the reaction.	cid, a solid was (2marks)
	(b)The mixture from (a) was filtered and the residue warmed hydrochloric acid.	with concentrated
	(i) State what was observed.	(1mark)
	(ii) Write equation for the reaction	(1 ½ marks)
	(c) The filtrate from (b) was divided into two portions. (i) To the first portion was added aqueous potassium iodide. So observed and write equation for the reaction.	tate what was (2marks)
	(ii) The second portion evaporated to dryness and then heated was observed and write equation for the reaction.	
•••••		

11.	Name reagent(s) that can be used to distinguish between the following compounds and in each case state what is observed.	g pairs of (3marks)
	a) OH and	
	Reagent	
	Observations	
	(b) Ethanoic acid and chloroethanoic acid Reagent	
	Observations.	
	(c) and CH ₂ I Reagent	

	Observations	
12.	(a) State three properties in which manganese differs from magnesic	um. (1 ½ marks)
	(b) Write equation to show the reduction of manganate (VII) ion in (i) Acidic medium	(1 ½ marks)
	(ii) Alkaline medium	(1 ½ marks)
	(c) State what is observed when drops of acidified potassium mangan solution are added to each of the following solutions. In each case, we equation of reaction. (i) Hydrogen peroxide	
	(ii) Hot sodium oxalate solution.	(2marks)

	(d) State one reason why potassium manganate (VII) is not a good in volumetric analysis	primary standard (½ mark)
13.	(a) State three characteristics of a chemical equilibrium.	(1 ½ marks)
	(b) Dinitrogentetraoxide dissociates at 40°C and 1 atm according t equation.	o the following
	$N_2O_{4(g)}$ \geq $2NO_{2(g)}$ $\Delta H = +57 \text{ KJmol}^{-1}$ (i) Write an expression for the equilibrium constant, Kp	(½ mark)
	(ii) Draw a labelled energy level diagram for the reaction in (b)	(2marks)
	(c) The reaction mixture in (b) was found to contain 60% by volume dioxide. Calculate the equilibrium constant Kp at 60°C for the reac	tion.
		(3marks)

	equilibrium.	on of the above (2marks)
4. 	Write equations to show how the following compounds can each case indicate the conditions of reaction. (a) CH ₂ = CH ₂ from CH ₃ CH ₂ COOH	be synthesized and in (3marks)
	(b) CH—CH ₂ — from	(3marks)
	(c) HC≡CH to O CHO	(3marks)

The phase diagram for a mixture of metals P and Q is shown below. 15. 410 -410 390 390 370 В 370 temperature (oC) 350 350 330 330 310 -310 290 290 270 20 80 90 100 30 40 50 %by mass of p Identify the regions A, B, C and D (a) (2marks) (i) (ii) В (iii) C (iv) D (b) State what point M represents. (1mark) Using the diagram, estimate the melting point of: (c) (1mark) (i) P (ii) Describe what would happen if a mixture containing 50% by mass of P and Q is (d) cooled from 410°C to 270°C. (3marks)

(e		rate one difference and one similarity betw re compound difference	een the substance at point M and a
	(ii)	similarity	(1mark)
16.	carbo	ompound Y contains by mass 22.86% oxyger on. Iculate the empirical formula of Y	, 8.57% hydrogen and the rest (2 ½ marks)
		hen 0.30g of Y is vapourised at 80°C and 7 e of 134.77cm³. Determine the molecular f	<u> </u>
		forms a yellow precipitate with 2,4-dinitro Tollen's reagent. Identify Y	phenyl hydrazine and does not reac

	Identify Y.	(1mark)
	(c) Write equation for the formation of the yellow precipitate in (l	o) above.(2marks)
17.	Explain the following observations (a) phenylamine is a weaker base than ethyl amine	(3marks)
	(b) The PH of a 0.1M phenol is 6.5 while that of cyclohexanol is 7	(3marks)
	(c) Hydrofluoric acid is a weaker acid than hydrobromic acid. (3	marks)

THE PERIODIC TABLE

1	2		4									3	4	5	6	7	8
1.0 H 1																1.0 H	4.0 He 2
6.9 Li 3	9.0 Be	described of the Cappaigners of										10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 Ne 10
Na	24.3 Mg 12		27.0 28.1 31.0 32.1 Al Si P S 13 14 15 16									35.4 Cl 17					
39.1 K 19	40.1 Ca 20	Annual State of State	47.9 Ti 22	50.9 V 23	52.0 Cr 24	54.9 Mn 25			1	1	65.7 Zn 30		72.6 Ge 32		The state of the s	79.9 Br 35	83.8 Kr 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40			98.9 Tc 43	101 Ru 44	1	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	1	184 W 74	186 Re 75		1	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89				2 13 2 13 79 135	11 - 1	9 45									2 3 25 3 3 13
		6 11				144 Nd 60		150 Sm 62		157 Gd 64	159 Tb 65	162 Dy 66	165 Ho 67	167 Er 68	169 Tm 69	173 Yb 70	175 Lu 71
			227 Ac 89		231 Pa 91						247 Bk 97		Es	Fm	256 Md 101	No	Lw

♥ ===END===

WELCOME TO SENIOR SIX, YEAR 2018
This is the last page of the printed paper, Page 14