Soham Chatterjee

Email: sohamc@cmi.ac.in

Course: Parallel Algorithms and Complexity Date: August 25, 2023

Problem 1

Prove that the 6 - Color - Rooted - Tree Algorithm produces a valid 6-coloring of a tree.

Solution: Let L_k denote the number of bits used to represent vertices at k-th iteration. Now for i = 1 we have

$$L_1 = \lceil \log n \rceil + 1 \le 2 \lceil \log n \rceil$$

Now let for i = k - 1 we have $L_{k-1} \le 2\lceil \log^{(k-1)} n \rceil$ and $\lceil \log^{(k)} n \rceil \ge 2$. Now

$$L_k = \lceil \log L_{k-1} \rceil + 1 \le \lceil \log 2 \lceil \log^{(k-1)} n \rceil \rceil + 1 \le 2 \lceil \log^{(k)} n \rceil$$

Hence if $\lceil \log^{(k)} n \rceil \ge 2$ we have $L_k \le 2\lceil \log^{(k)} n \rceil$ Therefore the number of bits to represent the vertices decreases with each iteration and after $O(\log^* n)$ many iteration L_k reaches the value of 3 (The limit L of $\lim_{k\to\infty} L_k = \lim_{k\to\infty} \lceil \log L_{k-1} \rceil + 1$ is the solution of $L = \lceil \log L \rceil + 1$). In those 3 bits the i_v takes 3 possible values and the b_v takes 2 possible values for each vertex v. Hence total number of colors is $3 \times 2 = 6$.

Problem 2

- Prove that every weakly connected component of a pseudoforest contains at most one cycle
- Find a 3 Coloring pseudoforest algorithm in $O(\log^* n)$ time

Solution:

- Suppose there are two cycles C_1 , C_2 in a weakly connected component. Now C_1 and C_2 has to be disjoint cause other wise there will be a vertex in $CC_1 \cap C_2$ from which two edges have gone out side one for the next vertex in C_1 and the other one for the next vertex in C_2 . This is not possible since in a pseudoforest each vertex has out-degree exactly 1. So C_1 and C_2 are disjoint. Since they remain in same weakly connented component for $u \in C_1$ and $v \in C_2$ there exists a path $u \leadsto v$ or $v \leadsto u$. WLOG let the path $u \leadsto v$ exists. Let the path is P. Now there exists an edge $(x,y) = e \in P$ such that $e \notin C_1$ but the tail x of the edge is in C_1 . Now since $x \in C_1$ there is an edge going outward from x towards the next vertex in C_1 . And also the edge (x,y) is going outwards along P. Hence out-degree of x is at least 2. Which is not possible. Hence every weakly connected component of a pseudoforest has at most one cycle.
- After applying 6 Color Rooted Tree if there are more than 3 colors we shift down every color that is replace every non-root node's color with the color of the parent and color the root nodes with something different from the color before shifting and then for a color c we replace c with the smallest color other than c, the color of its child nodes and the color of the parent nodes (we can do this since there are more than 3 colors). In this shifting process total number of color is reduced by 1. Hence after 3 iteration of this shifting process number of colors is reduced to 3. In a shifting process the new coloring can be done for each vertex parallely and removing the color c for each vertex can also be done in parallel. So each shifting process takes constant time. Since we do this shifting process 3 times it takes constant time to reduce the number of colors to 3. Hence to 3 color a tree it takes $O(\log^* n)$ time.

Assignment - 4

Roll: BMC202175

Problem 3

Is Maximum Independent Set for bounded degree graph NP-hard?

Solution: