Guia de Experimento 1: Função de Transferência e Circuito RLC

Laboratório de Teoria de Controle September 2, 2025

1 Objetivos

- Aprender a definir funções de transferência no Python.
- Analisar respostas temporais de sistemas de primeira e segunda ordem.
- Observar o efeito do fator de amortecimento em sistemas de segunda ordem.
- Entender a equação diferencial de um circuito RLC série.
- Relacionar parâmetros do circuito (R, L, C) à dinâmica do sistema.

2 Materiais e Ferramentas

- Computador com Python instalado.
- Bibliotecas Python: control, matplotlib, numpy.
- Editor de código (VS Code, Spyder, Jupyter Notebook, etc.).

3 Prática

3.1 Configuração Inicial

Instale as bibliotecas necessárias:

```
pip install control matplotlib numpy
```

Importe as bibliotecas no Python:

```
import control as ctrl
import matplotlib.pyplot as plt
import numpy as np
```

3.2 Circuito RLC Série

Figure 1: Circuito RLC

Considere o circuito série RLC na Figura 1 com entrada $V_{in}(t)$ e corrente de série i(t). A tensão no capacitor é $v_C(t)$, no indutor $v_L(t)$ e no resistor $v_R(t)$.

$$V_{in}(t) = v_R(t) + v_L(t) + v_C(t)$$

3.3 Atividades

- 1. Encontre a equação diferencial de $V_{in}(t)$ de acordo com a Lei das Tensões de Kirchhoff.
- 2. Obtenha a função de transferência $\frac{V_C(s)}{V_{in}(s)}$.
- 3. Simule a resposta da função de transferência para uma entrada degrau unitário considerando $R=50\,\Omega,\,L=10\,\mathrm{mH}$ e $C=10\,\mu\mathrm{F}.$
- 4. Para valores L e C dados, encontre os valores de R para se obter uma resposta: subamortecida, criticamente amortecida e superamortecida.
- 5. Simule estas respostas e compare.

Componente	Tensão-corrente	Corrente-tensão	Tensão-carga	Impedância Z(s) = V(s)/I(s)	Admitância Y(s) = I(s)/V(s)
— (— Capacitor	$v(t) = \frac{1}{C} \int_0^t i(\tau) d\tau$	$i(t) = C\frac{dv(t)}{dt}$	$v(t) = \frac{1}{C}q(t)$	$\frac{1}{Cs}$	Cs
-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	v(t) = Ri(t)	$i(t) = \frac{1}{R}v(t)$	$v(t) = R \frac{dq(t)}{dt}$	R	$\frac{1}{R} = G$
Indutor	$v(t) = L \frac{di(t)}{dt}$	$i(t) = \frac{1}{L} \int_0^t v(\tau) d\tau$	$v(t) = L \frac{d^2 q(t)}{dt^2}$	Ls	$\frac{1}{Ls}$

Nota: Os seguintes conjuntos de símbolos e unidades são usadas ao longo deste livro: v(t) = V (volts), i(t) = A (ampères), q(t) = Q (coulombs), C = F (farads), $R = \Omega$ (ohms), G = U (mhos), C = F (farads), C = F (farads), C = F (ohms), C = F (farads), C = F (ohms), C = F (farads), C = F (fara