

9 Mars 2021 DU Bioinformatique intégrative Module 3: « R et statistiques »

Session 3:

- statistiques pour les données omiques - RStudio et Rmarkdown

Teachers: Claire Vandiedonck, Antoine Bridier-Nahmias

Helpers: Anne Badel, Clémence Réda, Olivier Sand, Jacques van Helden

Plan de la session 3:

- 1. Statistiques pour les données omiques
 - a. Rappels de stats de base
 - b. Problèmes de la dimensionalité des données omiques
- 2. Rstudio et R markdown

1. Statistiques pour les données omiques

Some French-English terms

- barplot = diagramme en bâtons
- co-variate = covariable
- confidence interval (CI) = intervalle de confiance
- density probability =densité de probabilité
- likely = probable
- mean = moyenne
- pairwise = apparié
- power = puissance
- random variable = variable aléatoire
- random/sampling fluctuation = variation d'échantillonnage
- sample = échantillon
- significance = signification
- standard deviation = écart type = racine carrée de la variance
- standard error = standard deviation of the mean = écart type de la moyenne = écart-type rapporté à la racine carrée de la taille de l'échantillon
- threshold = seuil
- variance = variance = dispersion des données autour de la moyenne

Why using stats?

Making sense of data

Aim: identify variables whose variation levels are associated with a phenotype or a covariate of interest (eg: response to stress, to a treatment, survival, mutation, tumor class, time...)

Variable to explain ~ explanatory variables + covariates + residual error

Problems addressed by statistics:

- 1. estimation: of the effects of interest and of how they vary
- 2. testing: = assessing the statistical significance of the observed effects

Deux difficultés dans la mise en évidence d'un effet

1.1. Random variable and sampling

Traits/Variables

Qualitative

■ Nominal = categorical

■ Ordinal = rankable

Quantitative = variable

continuous: uncountable items

discrete : countable items

Random variable

Probability associated to the each value of the variable

♦ characterized by a distribution function of density probability

Population versus sample

Population versus sample

Population versus sample -> sampling fluctuation

1st aim: estimation of population parameters

Estimation with confidence intervals

95% of intervals are expected to span the mean while the other 5% (in red here) do not

Live: sampling fluctuation!

Sampling variation with a Shiny application http://shiny.calpoly.sh/Sampling Distribution/

1.2. Statistical tests

2nd aim: Comparing pouplation parameters

Comparing means of 2 populations X and Y

Population distributions

Y X 8 9 10 11 12 Variance Var(Y) Var(X) 0.71 0.72 Distribution of sample means Sample vs. sample

Two samples data of size 5

Distribution of difference in sample means

Fold Change =
$$\overline{D}$$
 = $\overline{X} - \overline{Y}$

The difference of the means

 $\overline{Y} - \overline{X} = \overline{D}$ is also a random variable

 \blacktriangleright Which distribution is followed by this difference \overline{D} ?

2nd aim: Comparing pouplation parameters

Comparing means of 2 populations X and Y

Distribution of difference in sample means

Fold Change =
$$\overline{D}$$
 = $\overline{X} - \overline{Y}$

The difference of the means

 $\bar{Y} - \bar{X} = \bar{D}$ is also a random variable

Which distribution is followed by this difference \overline{D} ?

H0: no difference = the means are identical H1: there is a difference

2nd aim: Comparing pouplation parameters

Comparing means of 2 populations X and Y

Distribution of difference in sample means

Fold Change =
$$\overline{D} = \overline{X} - \overline{Y}$$

The difference of the means

 $\overline{Y} - \overline{X} = \overline{D}$ is also a random variable

Which distribution is followed by this difference \overline{D} ?

H0: no difference = the means are identical

H1: there is a difference

0

Under H0:
$$\Delta = \mu 1 - \mu 2 = 0$$

= the expected value (esperance) when there is no difference

Distribution of the differences of the means under HO

= the expected value (esperance)

when there is no difference

 \overline{D} can be centered on Δ and reduced by its standard deviation

Z or
$$t = \frac{\overline{D}}{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}$$

$$S_{\overline{X} - \overline{Y}}$$

where
$$s_{\overline{X}-\overline{Y}}^2 = s_{\overline{X}}^2 + s_{\overline{Y}}^2$$

 $\approx s_{\overline{p}}^2/n + s_{\overline{p}}^2/m$

H0: no difference H1: there is a difference

⇒ Z or t is a also random variable centered on 0 under H0

How likely under the null hypothesis is the difference/statistics you observe?

Test theory: rejection criteria

Probability of observing \overline{D} or t or Z under H_0

Boundaries of the no reject area determined by alpha risk

Test theory: alpha and beta risks

Null hypothesis

= no difference

$$\mu_1 = \mu_2$$

 $\Delta = 0$

Alternative hypothesis

= difference

$$\mu_1 \neq \mu_2$$

 $\Delta \neq 0$

Inference errors

Reality

> Test decision	H_0	H_1
no reject of H ₀	$1-\alpha$	$oldsymbol{eta}$
	(TN)	(FN)
reject of H ₀	α	$1-\beta$
	(FP)	(TP)

What does impact power?

1. Power increases with effect size (Δ)

Z or
$$t = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{s_{\overline{X} - \overline{Y}}}$$

where
$$s_{\overline{X}-\overline{Y}}^2 = s_{\overline{X}}^2 + s_{\overline{Y}}^2$$

 $\approx s_{p}^2/n + s_{p}^2/m$

2. Power increases when standard deviation decreases

3. Power increases with sample size

if n increases, Z increases

P-values

The p-value is defined as the probability to obtain, under H0, a value of the statistic (Student t, Z, Chi²...) at least as extreme as the observed value

pvalue = P(| statistics | > observed value /
$$H_0$$
) $\leq \alpha$

- > report always your stat to have the direction effect + give CI of estimated effect size
- \triangleright p-value is automatically computed by software but only to report if reject of H0, i.e significant test at the α risk (otherwise report NS for not significant)
- > the higher your | stat | , the lower your-pvalue

P-value in a Student test

> the higher your stat (eg. |t|), the lower your p-value, the higher your significance

Which statistical test to use?

Mean comparison tests: how to choose?

26 / 70

Comparing more than 2 populations

- 1. Perform a global test
- = one-way ANOVA
- H_0 : all population means are equal H_1 : at least one of the means differs
 - the test compares the ratio of the variance among the sample means to the variance of each sample
 - 2. If significant, perform pair-wise comparisons = post-hoc tests

Linear regression: perfect for more cpmplex situation

It is useful to consider a model for the observed data (on a single trait)

$$Y = \mu + \alpha + \beta + \gamma + ... + error$$

eg. Microarray expression of a single
gene $Y = log2(intensity)$

 μ is the mean over all samples (all conditions)

error is the random error that is a mixture of measurement error and biological variability

the other terms are systematic deviations from the mean, due to the factors of interest (treatments, tissue...) and technical effects (batch, platform,...)

> We test the simplest model:

$$H_0$$
: $Y = \mu + \text{error while } \alpha, \beta \dots = 0$

=> Extendable to more complicated models with several factors and interactions

Practical in live!

- 1. Testing mean comparison for a single trait
- -> impact of sample size, mean difference and variance
- 2. Multiple testing issue

1.3. Introduction to stat-omics: making sense of omic's data

Hétérogénéité des données omiques

Nature des données

- binaires (eg. présence ou absence d'un allèle ou d'un site de liaison)
- catégoriques (séquences de site consensus, isoforme exprimée)
- quantitative discrète (génotypes: 0, 1, 2)
- quantitative continue (niveau d'expression d'un gène ou d'une protéine)

Dimension des données (exemples chez l'homme)

- génome (4x10⁶ de variants bi-alléliques de type SNP)
- transcriptome (20-60 000 gènes, 200 000 transcrits)
- protéome (18 000 protéines, 293 000 peptides)

Données manquantes (4000 protéines)

Structure des données

- corrélations entre les variables mesurées (déséquilibre de liaison, co-expression...)
- corrélations entre les types de données

Des données non-omiques peuvent exister: covariables

- Par exemple, on peut avoir le niveau d'expression par gène pour chaque échantillon
- On peut aussi avoir des données cliniques pour les échantillons incluant le facteur d'intérêt qu'on veut tester et d'autres covariables qui pourraient impacter les niveaux d'expression

> On souhaite expliquer les variations d'expression (variable expliquée) en fonction de covariables cliniques (variables explicatives)

Variable to explain ~ explanatory variables + covariates + residual error

Quels facteurs peuvent expliquer la variation d'un trait?

Variation inter-groupes

- 1. Facteur/covariables d'intérêt => design experimental
 - ✓ conditions expérimentales testées: stimulus, traitement, temps, maladie...
 - √ variabilité génétique: mutation
 - ✓ tissus/type cellulaire...
 - ✓ etc...
- 2. Variation technique: réplicats techniques
 - ✓ experimental: lot, jour, expérimentateur, temperature ambiante...
 - ✓ multiplexage
 - √ variation de plate-forme
 - ✓ etc...

Variation intra-groupes

Variation biologique => réplicats biologiques

fluctuation d'échantillonnage

De l'importance d'un bon design experimental

Les différences entre les conditions peuvent uniquement être testées uniquement si des **REPLICATS** sont inclus

⇒ permettent de determiner quelles differences sont dues aux fluctuations aléatoires d'échantillonage

La structure des données omiques

Les problèmes de diemnsionalité des données

Les problèmes de diemnsionalité des données

Les problèmes de diemnsionalité des données

Les problèmes de diemnsionalité des données

1.4. The 1st issue: multiple testing

The problem

We perform multiple tests = one per feature/trait

 \forall for each feature, we either reject or not H0 at a risk α = PCER = per-comparison error rate

Simulation gene expression samples

Why is this problem so important?

Omics are big data:

A typical microarray or RNA-seq experiment: 10,000 genes

=> as many hypothesis tests

Just one hypothesis test:

For an α = 0.05, we tolerate to reject H₀ wrongly 5% of the times

but for 10,000 tests the number of false positives
goes up to 500
=> too many!!!

Expected value (e-value)

• Expected number of FP = E(FP)= $m\alpha$

Family-wise error rate (FWER)

- P(making an error) = α
- P(not making an error) = 1α
- P(not making an error in m tests)= $(1-\alpha)^m$
- **FWER** = P(making at least 1 error in m tests) = $1 (1-\alpha)^m$

Counting errors

Decision on H ₀	H _o True	H ₁ True	
reject	V (incorrect)	S	R
do not reject	U	T (incorrect)	m-R
	m ₀	m-m ₀	m

m = number of tests

 $R = number of rejected H_0$

 m_0 = number of true H_0

> only m and R are observed!

V = number of type I errors = false positives

By the way, where are:

the false negatives?

the true positives?

the true negatives?

Counting errors

Decision on H ₀	H ₀ True H ₁ True		
reject	V (incorrect)	S	R
do not reject	U	T (incorrect)	m-R
	m ₀	m-m ₀	m

m = number of tests

 $R = number of rejected H_0$

 m_0 = number of true H_0

> only m and R are observed!

V = number of type I errors = false positives

By the way, where are:

the false negatives?

the true positives?

the true negatives?

	H0 True	H1 True
Reject H0	FP	TP
No reject	TN	FN

Controlling the type I error rate

Where to set the threshold of significance to control the type I error rate?

=> Trade-off between type I error and power!!

Storey JD, Tibshirani R. Statistical significance for genomewide studies. PNAS. 2003 100:9440-5. PMID: 12883005; PubMed Central PMCID: PMC170937.

Bonferroni correction

Aim: to control the family-wise error rate (FWER):

- = the error rate across the whole collection/family of hypothesis tests
- = FWER = $P(V \ge 1)$ = probability of ≥ 1 false positive among all tests
- By "adjusting" the p value with the Bonferroni correction

 $\sec \alpha' = \alpha/m$ reject hypotheses if p < α'

✓ E.g. for a type I error rate of 0.05 per experiment (PCER) and m= 10 000 tests: $\alpha' = 0.05/10,000 = 5x10^{-6}$

very popular

the problem for "Omics" experiments: very conservative

=> alternative approaches investigated: very active area of current research in statistics!

False Discovery Rate (FDR)

We focus on positive tests (H_0 rejected):

FDR = proportion of false positive among the set of rejected hypotheses (the "discoveries"):

✓
$$FDR = V/R$$

A related parameter = the False Positive Rate (FPR) ✓ FPR = V/m₀

Decision on H ₀	H _o True	H ₁ True	
reject	V (incorrect)	S	R
do not reject	U	T (incorrect)	m-R
	m ₀	m-m ₀	m

ı	•	
	H0 True	H1 True
Reject H0	FP	TP
No reject	TN	FN

Q values

Qvalue of a gene = expected proportion of false positives when calling that gene significant

- ✓ the q-value depends on the p-value for the test of the gene and on the distribution of the entire set of p-values from the family of tests being considered (Storey and Tibshiriani 2003)
- ✓ Thus, in a microarray study testing for differential expression, if gene X has a q-value of 0.013 it means that 1.3% of genes that show p-values at least as small as gene X are false positives
- ✓ The maths:
 - π_0 : the proportion of true null tests (TN)
 - $\alpha m \pi_0$: the number of false positives (FP)
 - $\alpha m \pi_0 / R$: an estimate of the FDR (V/R)

	H0 True	H1 True	
Reject H0	FP	TP	R
No reject	TN	FN	m-R
	m _o	m-m ₀	m

Benjamini-Hochberg procedure

To control FDR at level δ :

- ✓ order the unadjusted p-values: p1<p2<...<pm</p>
- ✓ find the test with the highest rank, j, for which the p value,

$$p_j \le \delta \frac{j}{m}$$

✓ Declare the tests of rank ≤ j as significant

Example: m = 10 and $\delta = 0.05$

Adj	. P val

Rank (j)	P-value	(j/m)× δ	Reject H ₀ ?	p _j x m /j
1	0.0008	0.005	1	0.008
2	0.009	0.010	1	0.045
3	0.018	0.015	0	0.06
4	0.030	0.020	0	0.075
5	0.032	0.025	0	0.064
6	0.048	0.030	0	0.08
7	0.350	0.035	0	0.5
8	0.781	0.040	0	0.976
9	0.900	0.045	0	1
10	0.993	0.050	0	0.993

Values expected for a uniform distribution of p_i between 0 and delta

1.5. The 2nd issue: estimation of traits distribution (mean and variance)

To estimate or not to estimate?

1. No estimation when using non-parametric tests

- less power if data fit with parametric distribution
- not suitable for designs with several factors

2. Random re-sampling

- ➤ approaching the distribution of p-values/statistics under null hypothesis by permutation (no replacement) of the levels of the factor of interest in the dataset => the empirical pvalue is the probability of observing the pvalue/statistic under the empirical distribution (cannot be lower than 1/1000 if 1000 permutations)
- estimating the CI of the distribution parameters by bootstrap (replacement) of the quantitated trait among all observed values within the dataset without changing the levels of the factor of interest
 - computationally intensive

3. Selecting a distribution law fitting the data

- estimation of mean and variance
- parametric tests

Better estimation when sample size is increased

Transcriptome data: several distribution laws

Microarrays

the abundance of each sequence depends on the fluorescence level

= intensities

- \$\times\$ continuous quantitative variables
- ✓ asymmetrical distribution
- ✓ log2 intensities behave better

log2

Student law

distribution asymétrique à droite -> le passage en log2 donne souvent une distribution 'normale' (**1er sens de**

2-color array:2 samples hybridized

 $Y_{qa} = log2(Red/Green)$

1-color array: 1 sample hybridized

en) Y_{ga} = log2(intensity)
summarized over probes
gene g (or probe) array a

normalisation)

Estimating mean and variance in microarray experiments

Gene expression values are given by fluorescence intensities

- continuous variables
- assumed to fit a Student t distribution (after log2 transformation) of the difference mean

$$t_{\text{gene i}} = \frac{\bar{x}_i}{\tilde{s}_i / \sqrt{n}}$$

but low number of replicates => difficult to estimate the variance

⇒ LIMMA (Linear Model for MicroArray experiments)

• uses a "moderated" t statistics using information from all genes (group of genes g like gene i) to estimate the variance

$$\tilde{t}_{\text{gene i}} = \frac{\overline{M}_i}{\tilde{s}_g/\sqrt{n}}$$

- allows for linear models
- design matrix => the factors to be accounted for in the model
- contrast matrix => which comparisons are of interest
- accounts for multiple testing: computes adjusted p-value (FDR B-H)

Transcriptome data: several distribution laws

RNASeq

L'abondance des transcrits est mesurée par le nombre de lectures cartographies au niveau de la sequence génomique du transcrit

= comptes de lectures

♥ Variable quantitative discrète

Iibrary I

Y_{gl} = counts of reads mapping
to the feature/gene
gene g

Distribution de comptes de RNASeq

=> Il faut utiliser la bonne loi de distribution (Poisson, Négative Binoimale...)

Estimating mean and variance in RNASeq experiments

In RNA-Seq, each feature (gene, exon, isoform) has an expression rate: each segment is sequenced with a low probability

Number of reads from gene g in library i can be captured by a Poisson model (Marioni et al. 2008)

$$r_{ij}$$
 ~Poisson $(\lambda_{ig} = \mu_{ig} k_{ig})$

where

 μ_{ig} is the concentration of the RNA k_{ig} is a normalisation constant

$$\hat{\mu}_{ig} = \frac{r_{ig}}{k_{ig}}$$

$$\lambda_{ig} = \mu_{ig} k_{ig} = E(r_{ij}) = Var(r_{ij})$$

Need to account for extra variability

Poisson distribution accounts for technical variation

But biological noise induces an overdispersion

Convergence on a negative binomial model for count data

 Negative-binomial: probability of k failures before n successes

$$\mathbf{r_{ij}} \sim \mathsf{NB}\left(\alpha, \frac{1}{1+\beta}\right)$$

where α and β are the parameters of a gamma distribution followed by the rates of different samples

Modelling the variation

The example of DESeq and EdgeR

generalized linear model fitting the negative binomial distribution:

```
K_{ij} \sim NB(\mu_{ij}, \alpha_i)
K_{ij}: counts of reads for gene i in sample j
\alpha_i: gene-specific dispersion parameter
\mu_{ij}: fitted mean
```

 $\mu_{ij} = s_j \, q_{ij}$ s_j : sample-specific size parameter q_{ij} : a parameter proportional to the expected true concentration of fragments for sample j

 $> \log_2(q_{ij}) = x_{j.} \beta_i$ $\beta_i : \text{the log2 fold change for gene i for each column (j.) of the model matrix X }$

1.6. The 3rd issue: reducing dimensionality

-> cf. next sessions 4 to 6

1.7. Results of a differential analysis

Table of results for differentially expressed (DE) genes

Gene Name	Class	log2 (Fold Change)			Adj.P.Val
		COX vs PGF	QBL vs PGF	QBL vs COX	
ZFP57	I	2.77	0.00	-2.76	1.22x10 ⁻¹⁴
HLA-DPB2 *	II	-3.19	-3.02	0.17	2.89×10^{-12}
HLA-DQA2	II	-2.45	-1.62	0.82	1.91×10^{-11}
HLA-DQB2	II	-2.74	-2.58	0.16	3.21×10^{-11}
HLA-21 *	I	-2.52	0.36	2.87	1.32×10^{-10}
TNF	III	1.90	1.03	-0.87	4.79×10^{-10}
HLA-DPB1	II	-2.08	-0.90	1.18	6.44x10 ⁻¹⁰
RPL32P1 *	II	-1.52	-1.19	0.33	2.07×10^{-09}
HLA-B	I	-0.06	-1.19	-1.13	6.59x10 ⁻⁰⁹
HLA-A	I	-1.51	-1.86	-0.35	2.30×10^{-08}
HLA-L *	I	-1.29	-1.47	-0.18	2.30×10^{-08}
XXbac-BPG254F23.6	II	-1.59	-1.59	0.00	2.50×10^{-08}
HCG22	I	-1.56	-1.26	0.30	2.96×10^{-08}
XXbac-BPG254F23.5	II	-1.42	-1.61	-0.19	1.33×10^{-07}
LTA	III	1.32	0.57	-0.75	2.04×10^{-07}
NCR3	III	0.87	0.95	0.08	4.95×10^{-07}
HLA-F	I	0.15	-0.90	-1.05	4.95×10^{-07}
HLA-DOA	II	-1.32	-0.89	0.43	5.07×10^{-07}
TAP1	II	0.97	0.08	-0.89	6.86×10^{-07}
LTB	III	-0.95	-0.06	0.89	7.02×10^{-07}
LST1	III	-0.18	0.48	0.66	9.42×10^{-07}
DAQB-335A13.8	I	0.61	-0.02	-0.63	1.12×10^{-06}
TCF19	I	1.11	0.62	-0.49	1.49×10^{-06}
CLIC1	III	1.22	0.57	-0.66	1.49×10^{-06}
HLA-DMA	II	-0.57	-0.89	-0.33	3.52×10^{-06}
BRD2	II	0.78	0.27	-0.51	3.60×10^{-06}
NRM	I	0.77	0.39	-0.38	4.48×10^{-06}
HLA-C	I	0.05	1.11	1.06	4.98×10^{-06}
PSMB9	II	0.42	-0.29	-0.71	6.05×10^{-06}
HCG27	I	0.56	0.06	-0.50	7.01x10 ⁻⁰⁶

Boxplots (or vioplots) for top DE genes

Graphical representation of DE genes

Volcano plots:

X = log2(Fold chnage)

Y = -log10 (pvalue)

Exemple ici chez la souris avec 2 gènes KO versus Wild Type

1.8. Links

Nature series: http://www.nature.com/collections/qqhhqm

There is no disputing the importance of statistical analysis in biological research, but too often it is considered only after an experiment is completed, when it may be too late.

This collection highlights important statistical issues that biologists should be aware of and provides practical advice to help them improve the rigor of their work.

Nature Methods' Points of Significance column on statistics explains many key statistical and experimental design concepts. Other resources include an online plotting tool and links to statistics guides from other publishers.

Image Credit: Erin DeWalt

Statistics in biology

Nature News | Editorial
Number crunch

Nature | Comments and Opinion

Research methods: Know when your numbers are significant

David L. Vaux

Top picks

from nature news

Nature News | News

Scientific method: Statistical errors

Regina Nuzzo

09/03/2021

Points of significance: http://mkweb.bcgsc.ca/pointsofsignificance/

Points of view: http://mkweb.bcgsc.ca/pointsofview

COMMUNICATION + SCIENCE

NATURE METHODS: POINTS OF VIEW

The full collection of a 35 Points of View column is now available. (3 years of Points of View)

PRACTICAL TIPS FOR EFFECTIVE FIGURES

POINTS OF VIEW — HISTORY

In its 2.5 year history, the PoV column has established a significant legacy— it is one of the most frequently accessed parts of Nature Methods. The reason I think is clear: the community sees the value in clear and effective visual communication and acknowledges the need for a forum in which best practices in the field are presented practically and accessibly.

Bang Wong, in collaboration with visiting authors (Noam Shoresh, Nils Gehlenborg, Cydney Nielsen and Rikke Schmidt Kjærgaard), has penned 29 columns in the period of August 2010 to December 2012, covering broad topics such as salience, Gestalt principles, color, typography, negative space, layout, and data integration.

When it was A.C. Greyling's turn to speak at a debate in which Christopher Hitchens and Richard Dawkins already made their points, Greyling said

Circos to represent genomic traits: http://circos.ca/intro/genomic data/

Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes

Rui Chen,^{1,11} George I. Mias,^{1,11} Jennifer Li-Pook-Than,^{1,11} Lihua Jiang,^{1,11} Hugo Y.K. Lam,^{1,12} Rong Chen,^{2,12} Elana Miriami,¹ Konrad J. Karczewski,¹ Manoj Hariharan,¹ Frederick E. Dewey,³ Yong Cheng,¹ Michael J. Clark,¹ Hogune Im,¹ Lukas Habegger,^{6,7} Suganthi Balasubramanian,^{6,7} Maeve O'Huallachain,¹ Joel T. Dudley,² Sara Hillenmeyer,¹ Rajini Haraksingh,¹ Donald Sharon,¹ Ghia Euskirchen,¹ Phil Lacroute,¹ Keith Bettinger,¹ Alan P. Boyle,¹ Maya Kasowski,¹ Fabian Grubert,¹ Scott Seki,² Marco Garcia,² Michelle Whirl-Carrillo,¹ Mercedes Gallardo,^{9,10} Maria A. Blasco,⁹ Peter L. Greenberg,⁴ Phyllis Snyder,¹ Teri E. Klein,¹ Russ B. Altman,^{1,5} Atul J. Butte,² Euan A. Ashley,³ Mark Gerstein,^{6,7,8} Kari C. Nadeau,² Hua Tang,¹ and Michael Sny0@¹/03/2021

Towards an increasing complexity of omics

COMMENTARY TH

The Scientist 15[7]:8, Apr. 2, 2001

'Ome Sweet 'Omics-A Genealogical Treasury of Words

By Joshua Lederberg and Alexa T. McCray

antigenome
bacteriome
basidiome
biome
cardiome
caulome
chondriome
cladome
coelome
epigenome
erythrome
genome
geome

hadrome

histome

immunogenome
immunome
haptenome
karyome
leptome
microbiome
mnemome
mycetome
neurome
odontome
osteome
pharmacogenome
phyllome
physiome

plastidome
plerome
proteinome
proteome
psychome
regulome
rhabdome
rhizome
stereome
thallome
tracheome
transcriptome
trichome
vacuome

Now!

Genomics and Proteomics are the buzzwords of the dawning millennium. There is no counting of www.-ics.com and <a href="www.-ics

2. RStudio et Rmarkdown

- a. A live session!
- b. Optional: A Rmd practical on statistics for omics data