BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI SECOND SEMESTER 2019-20

Dated: 7.1.2020

Course Handout Part II

Course No. : BIO G513

Course Title : Microbial & Fermentation Technology

Instructor In-charge: JAYATI RAY DUTTA

Instructors : Jayati Ray Dutta, Mohammad Wasil & Venkata Manjari

1. Course Description: Metabolic Stoichiometry- energetics, fundamentals of microbes and their morphology, Stoichiometry of cell growth and product formation, fermentation kinetics, phases of growth in batch culture, continuous culture and fed-batch cultures, kinetics of cell growth, product formation and substrate utilization-substrate and product inhibition kinetics, enzyme technology. Industrial Biotechnology- strain selection and improvement, media formulation and sterilization strategies, industrial applications, fermentation and product recovery, preparation of alcohols, antibiotics, organic acids, enzymes, bakery and dairy products, biopharmaceuticals, vaccine production

2. Scope & Objective of the Course:

The course introduces and delineates various aspects of pure and applied microbiology. It mainly dwells upon the basic principles of Fermentation Technology and Downstream Processing, which involve various strategies for strain selection and improvement, media formulation, sterilization, inoculum development, various fermenter configurations and modes of operation, cell harvesting and product recovery, kinetics of growth and enzyme catalyzed reactions. The course also focuses on implications of r-DNA technology and the industrial applications of bioprocesses (Industrial Biotechnology) for the commercial manufacture of value-added biotechnological products like solvents, organic acids, antibiotics, enzymes, biopharmaceuticals etc.

3. Text Book (TB):

"Fermentation Microbiology and Biotechnology" Edited by E.M.T El-Mansi, C.F.A. Bryce, A.L. Demain & A.R. Allman, 3rd edition, (2012), Taylor and Francis Grp., London.

4. Reference Book (RB):

- **1. "Principles of Fermentation Technology"** by Stanbury, Whitaker & Hall, Aditya Books (P) Ltd., New Delhi, IChemE, 3rd edition, (2017).
- **2. 'Bioprocess Engineering: Basic Concepts'** by Michael L. Shuler & F. Kargi, 2nd edition, (2007), Prentice-Hall.
- **3. "Biotechnology: A Text Book of Industrial Microbiology"** 2nd Edition, by W. Crueger & A. Crueger (2005) Panima Publishing Corporation, New Delhi/Bangalore.

5. Course Plan:

Lec.	Learning Objectives Topic to be covered		Ref. to
No.	, i	•	Chapters
1	General Introduction	Introduction to the course & chronological	Chap 1
		development of Biotechnology	(TB, RB I)
2.	Introduction to Applied	Biocatalysis; comparison with synthetic catalysts,	Chap 12
3.	Enzyme Catalysis	Mechanisms, Michaelis-Menten Model for	(TB)
4.		Saturation kinetics. Enzyme Immobilization.	Chap 3 (RB
			II)
5.	Media Formulation &	Complex and synthetic media, Selection of	Chap 4 (RB
6.	Preparation	components, buffers, precursors, pH adjustment	I)
7.	Media/Air sterilization	Media & Air: Batch & Continuous	Chap 5 (RB
8.	And Death Kinetics	In-situ sterilization in fermenter	I)
9.	Isolation, selection and	Enrichment culture, Screening Methods, Culture	Chap 2, 3
10.	improvement of	preservation, Strain improvement: Mutagenesis,	(RB I)
11.	Industrial cultures	Protoplast fusion and r-DNA technology.	
12.	Inocula Development &	Aseptic culture transfer & incubation, inoculum	Chap 2, 5
13.	Fermentation: Microbial	age/size, studies on growth kinetics in batch,	(TB)
14.	Growth	continuous & fed-batch cultures, Applications.	Chap 5, 6
15.	&	Primary & Secondary metabolism and important	(RBI)
16.	Product Formation	biotechnological products and implications.	·

17.	Fermenters:	Ideal bioreactors, Various configurations,	Chap 15		
18.	Configurations & Modes				
19.	of Operation	accessories, Introduction to Mass & Heat Transfer:	(TB) Chap 7 (RB		
20.	or operation	Agitation and aeration, Modes of Reactor	I)		
21.		Operations. Instrumentation and control of	1)		
22.		bioprocesses, Demonstration of various parts with			
23.		•			
24.	Day matrice and accessing	the Laboratory Fermenter.	Chan 10		
-	Downstream processing	Basic principles of <u>Cell Separation</u> : Filtration and	Chap 10		
25.	Basic Concepts on	Centrifugation etc. and	(RB I)		
26.	Product Recovery &	<u>Cell disruption</u> – Mechanical & Non-mechanical	_		
27.	Purification	methods.	(RB II)		
28.		Fundamentals of <u>Cell and Filtrate Processing</u> :			
29.		Precipitation, Centrifugation, Filtration, Dialysis,			
30.		Reverse osmosis, Chromatography, Drying,			
		Crystallization and Product Formulation			
31.		Details of the process, parameters and materials	Chap 8, 9,		
32.	Industrial Biotechnology	for the industrial manufacture of Antibiotics (β-	11, 13 15,		
33.	Illustrations of industrial	lactum), Solvents (acetone) Amino acid (Lysine),	16, 18 (RB		
34.	Processes: Fermentation	Organic acids (Citric acid), Alcohols (Ethanol), Ind.	III)		
35.	& Product recovery steps	Enzymes (Protease/Amylase) and	,		
36.	- with some suitable	Biopharmaceuticals (Insulin/Interferon etc.)			
37.	Examples using process	Microbial Transformations, Microbial leaching.			
38.	flow chart diagrams.	,			
39.	now chart diagrams.				
40.	Medical applications of	Tissue engineering, Heterologous/Therapeutic	Chap 12		
41.	Bioprocess engineering	proteins.	(RB I)		
		•	Chap 15		
			(RB II)		

7. Evaluation Scheme:

EC	Evaluation Component	Duration	Weightage (%)	Date, Time & Venue	Remarks
No.					
1.	Mid-semester	90 min	20	6/3 9.00 - 10.30AM	CB
2.	Lab practical (Evaluation components include: i. Lab quiz based on experiments conducted during class + Attendance ii. Comprehensive quiz		20		ОВ
3.	Presentations/assignments		20		OB
4.	Comprehensive	3 hours	40	12/05 FN	СВ

- **8. Chamber consultation hour**: To be announced in the class.
- **9. Notices:** All notices will be displayed on Course management system.
- **10. Make-up policy:** Make-up decisions will be considered for only genuine cases and validated by proper evidence of illness. No make-up for Lab component and assignments.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.