

You are writing VERSION 1 of this test. Make sure you have correctly entered your version number ("1") in the correct column on your scan sheet (see p. 2 for details).

Section #1 - These questions are worth two marks each.

- 1. What is the **pH** of a 0.0242 M solution of HNO₃?
 - a. 4.214
 - b. 1.62 Part Mark
 - c. 2.11
 - d. 3.18
 - e. 1.616

Strong acid therefore it fully dissociates.

$$[H_3O^+] = 0.0242$$

$$pH = -log(0.0242)$$

$$pH = 1.616$$

Note the sig. figs. with logs.

- 2. Which of the following will create a **basic solution** in water?
 - i. MgF_2
 - .
 - ii. NH₄CI
 - iii. LiBr
 - iv. NaCHOO
 - V. K_3PO_4

- i. Yes! F is conjugate of weak acid (HF)
- ii. No! NH₄⁺ is conjugate of a weak base (NH₃)
- iii. No! Both are conjugates of a strong acid & base
- iv. Yes! CHOO is the conjugate of weak acid (CHOOH)
- v. Yes! PO_4^{3-} is the conjugate of a weak acid (HPO_4^{2-})

- a. i, iv, v
- b. ii, iii, iv
- c. i, iv Part Mark
- d. ii, iv
- e. iii

- 3. Which of the following statements about the accompanying reaction is **correct**?
 - a. $H_2O + SO_3 \rightarrow H_2SO_4$

H₂O is a Lewis acid

b. $NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$

The solution will be alkaline

c. $SnCl_4 + 2Cl^{-} \rightarrow [SnCl_6]^{2-}$

Cl⁻ is a Lewis base

d. $OH^- + CO_2 \rightarrow HCO_3^-$

CO₂ is a Lewis base

e. $CH_3NH_2 + H_2O \rightarrow CH_3NH_3^+ + OH^-$

H₂O is a Bronsted-Lowry base

- a. False. H₂O is a Lewis base
- b. False. H₃O⁺ is produced. The solution is acidic
- c. True
- d. False. CO₂ accepts electrons from OH⁻ (Lewis acid)
- e. False. Water donates a proton (B.L. acid)
- 4. What is the **pH** of a 0.140M NaOCN solution? (K_a HOCN = 3.5 x 10⁻⁴)
 - a. 7.83
 - b. 8.30
 - c. 9.53
 - d. 12.70
 - e. 6.21
- OCN⁻ H₂O **HOCN** OH-0.140 0 0 $C \mid -x$ +x+xE = 0.140 - xX
- Rule of 100 can simplify 0.140 x to 0.140

$$2.9 \times 10^{-11} = \frac{x^2}{0.140}$$

$$x = 2.0 \times 10^{-6}$$

$$pOH = -\log(2.0 \times 10^{-6})$$

$$pOH = 5.69897$$

$$pH = 14 - 5.69897$$

$$pH = 8.30$$

- 5. Which of the following acids has the **strongest conjugate base?**
 - a. $H_2C_6H_5O_7^{-1}$
- $K_a = 4.0 \times 10^{-7}$
- b. HOC_6H_5 $K_a = 1.0 \times 10^{-10}$
- c. CH₃COOH
- $K_a = 1.8 \times 10^{-5}$
- d. HSO₄⁻
- $K_a = 1.1 \times 10^{-2}$
- e. (CH₃)₃NH⁺
- $K_a = 1.6 \times 10^{-10}$

2

The weaker the acid, the stronger the conjugate base, therefore, look for the acid with the lowest K_a

6. What is the **percent ionization** of 0.250M ascorbic acid? (p K_a = 4.17)

a. 5.1/0	a.	9.1	%
----------	----	-----	---

	HAbs	+	H ₂ O	\rightleftharpoons	Abs	+	H_3O^+
I	0.250				0		0
С	-X				+x		$+_{\mathbf{X}}$
Е	0.250 - x				X		X

$$6.761 \times 10^{-5} = \frac{x^2}{0.250}$$

$$x = 4.111 \times 10^{-3}$$

$$\frac{4.111 \times 10^{-3}}{0.250} \times 100$$
$$= 1.6\%$$

7. Copper metal is currently \$3.00 / lb, while zinc metal is \$1.00 / lb. If you were given 1000 lb of CuO and unlimited, free sulfuric acid, how much money could **you make** by producing copper metal with zinc?

 $CuO(s) + H_2SO_4(aq) \rightarrow CuSO_4(aq) + H_2O(1)$

 $CuSO_4(aq) + Zn(s) \rightarrow ZnSO_4(aq) + Cu(s)$

Molar mass of
$$CuO = 79.545 \text{ g/mol}$$

% comp of copper in
$$CuO = 63.546 / 79.545 \times 100 = 79.89\%$$

Therefore in 1000 lb CuO , there are 798.87 lb Cu

Since it's a 1:1 mole ratio, you can use the ratio of the atomic masses to determine how much Zn you need.

$$798.87 \left(\frac{65.39}{63.546} \right)$$

$$= 822.05 lb Zn$$

Profit =
$$(798.87 \times 3)$$
- (822.05×1)

$$Profit = $1570$$

8. How many **neutrons** are contained in 2.0 g of Cl₂ (g)?

a.
$$4.3 \times 10^{22}$$

b. 4.9×10^{24}

$$2.0g \left(\frac{1molCl_2}{70.906g}\right) \left(\frac{6.022 \times 10^{23} Cl_2}{1molCl_2}\right) \left(\frac{2 \text{ Cl atoms}}{1Cl_2}\right) \left(\frac{18.453 neutrons}{1 \text{ Cl atom}}\right)$$
=6.3x10²³ neutrons

e.
$$9.5 \times 10^{23}$$

9. Hydrogen (4.0 g) and oxygen (32 g) are reacted to give water (18 g). What is the percent yield of this reaction?

b. 90 %
$$4.0g \left| \frac{1mo}{2.025} \right|$$

$$4.0g \left(\frac{1mol}{2.0258g}\right) \left(\frac{2molH_2O}{2molH_2}\right) \left(\frac{18.0148g}{1mol}\right)$$

$$= 35.57gH_2O$$

$$\frac{18g}{35.57g} \times 100$$
= 50%

- 10. Determine the **false** statement:
 - a. Lithium has a half filled sub-shell
 - b. In the outer most shell, Be and He have different number of electrons
 - c. Helium and magnesium both have valence electrons with quantum numbers $I=0,\,m_I=0$ and, $m_s=\pm1/2$ & $\pm1/2$
 - d. The 6s orbital is filled before the 5d
 - e. Silicon has unfilled d orbitals
 - a. TRUE
 - b. False in the outermost shell, both Be and He have 2 electrons
 - c. TRUE
 - d. TRUE
 - e. TRUE

____11. Calculate the **frequency of light** emitted when the electron in a hydrogen atom moves from n = 7 to n = 2.

a.
$$2.89 \times 10^{13}$$

$$E = -R_H \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)$$

c.
$$4.21 \times 10^{15}$$

$$E = -5.0028 \times 10^{-19} J$$
 (emitted)

d.
$$9.01 \times 10^{12}$$

$$E = h v$$

$$v = 7.55 \times 10^{14}$$

____12. Which of the following elements would expect to have the lowest boiling point?

- a. Mg
- b. P₄
- c. Na
- $d. S_8$
- e. Kr

All of the compounds except for Kr are solids at room temp. Kr is a noble gas, therefore it has the lowest boiling point.

____13. Consider the following reaction in the **gas phase**. Which combination of M and E will require the **least amount of energy**?

$$M(g) + E(g) \rightarrow M^+E^-(g)$$

a.
$$M = Rb; E = F$$

b.
$$M = K$$
; $E = I$

c.
$$M = Mg$$
; $E = O$

You need electrons to be easily lost and gained for the reaction to require the least amount of energy. Therefore look for those atoms with the highest electron affinity and lowest ionization energy.

14. Determine the **correct** statement:

- a. A coordinate covalent bond occurs in NH₃
- b. The bond is KCI would be considered polar covalent
- c. SF₄ has a dipole moment
- d. The average P-Cl bond order in PCl₃ is 4/3
- e. The nitrate anion has no resonance structures
 - a. False. In NH₃ there are only covalent bonds, in NH₄⁺ there is a coordinate covalent bond between the 4th hydrogen and nitrogen
 - b. False. KCl would be ionic (metal and non-metal)
 - c. True. Shape is see-saw, therefore non-symmetrical
 - d. False. PCl₃ is trigonal pyramidal and only has single bonds, therefore the Bond Order = 1
 - e. False. There are two single N-O bonds and one double N=O bond, therefore there are resonance structures possible.

____ 15. Rank the following solutions from weakest to strongest (LEFT → RIGHT) electrolyte that can conduct electricity:

- i. KI (aq, 1 M)
- ii. Na₂SO₄ (aq, 1M)
- iii. CH₃OH (I)
- iv. $Ba(OH)_2$ (aq, 1 g)

- i. Fully soluble, 1 cation, 1 anion produced
- ii. Fully soluble, 2 cations, 1 anion produced
- iii. Polar liquid
- iv. Sparingly soluble and less than one mole of substance

- a. i, iii, iv, ii
- b. ii, iv, i, iii
- c. iv, ii, iii, i
- d. iii, iv, i, ii
- e. iv, ii, i, iii

- 16. Select the correct answer that best describes the mechanism that explains why people drinking ground water supply that are composed of insoluble calcium fluoride and calcium carbonate mineral deposits tend to have lower incidents of skeletal fluorosis than other water sources containing only calcium fluoride:
 - a. Pulverized charred animal bone is used as an ion-exchange material for water filtration
 - b. Hydroxyapatite is formed with dissolution of calcium carbonate to trap dissolved fluoride
 - c. Skeletal fluorosis is a beneficial health effect with high level exposure to fluoride that increases bone strength
 - d. The acidification of water by dissolution of calcium carbonate increases the molar solubility of calcium fluoride
 - e. The molar solubility of calcium fluoride is decreased due to the common ion effect

If they are drinking water with both calcium fluoride and calcium carbonate present, then the calcium ions from CaCO₃ will lower the molar solubility of CaF₂ because of the common ion effect.

- A. True but irrelevant to the question
- B. False. Calcium cation and carbonate anion is formed form the dissolution of calcium carbonate
- C. False
- D. Carbonate ion will make the water more alkaline, not more acidic
- E. TRUE

- _ 17. Given the solubility product equilibrium constants below, predict the order of preciptation (FIRST → LAST) of an equimolar mixture of four heavy metal ions in aqueous solution upon addition of increasing amounts of Na₂S (aq):
 - i. K_{sp} for PbS is 3.0 x 10^{-28} ii. K_{sp} for SnS is 1.0 x 10^{-26}
 - iii. K_{sp} for HgS is 2.0 x 10⁻⁵³ iv. K_{sp} for CdS is 8.0 x 10⁻²⁸
 - a. iii, ii, iv, i
 b. ii, iv, i, iii
 c. iv, i, ii, iii

 Order Ksp from lowest to highest.

 NOTE: This question did not have a correct answer. All students will
 - c. IV, I, II, III correct answer. ALL students will e. i, iv, iii, iv

 correct answer. ALL students will receive 2 marks for this question.
 - _18. Correctly identify the **oxidizing agent**, **its oxidation state/number and its stoichiometry** in the following **unbalanced** redox reaction used for removal of dissolved molecular oxygen from boilers that is useful for the prevention of metal corrosion. **Note:** This reaction takes place in acidic conditions.

$$O_2$$
 (aq) + N_2H_4 (aq) $\rightarrow N_2$ (g)

	Oxidizing agent	Oxidation state	Stoichiometric factor
a.	O_2	-4	2
b.	N_2H_4	+2	1
C.	N_2	0	1
d.	N_2H_4	-2	2
e.	O_2	0	1

Oxidation numbers for nitrogen and hydrogen on $N_2H_4 = -2$, +1 Nitrogen gas has an oxidation number of 0, therefore nitrogen has been oxidized.

Since nitrogen is oxidized, then oxygen MUST be reduced, and it is therefore an oxidizing agent (eliminates answers B-D). Oxygen gas has an oxidation number of 0, therefore E is the right answer.

No need to balance the equation.

- 19. Determine the effective **concentration of fluoride (mM)** in solution containing the insoluble calcium fluoride (CaF₂) if its K_{sp} at 25°C is 5.3 x 10⁻⁹:
 - a. 1.1 Part Mark
 - b. 0.14
 - c. 12
 - d. 2.2
 - e. 0.55

	CaF ₂	\rightleftharpoons	Ca ²⁺	+	2F ⁻
Ι			0		0
С			$+_{\mathbf{X}}$		+2x
Е			X		2x

- $5.3 \times 10^{-9} = (x)(2x)^2$
- $x = 1.09 \times 10^{-3} M$
- $2x = F^-$
- $[F^{-}] = 2.2$

20. Identify which reaction(s) will **NOT** generate a **precipitate**?

i.
$$ZnCl_2$$
 (aq) + $(NH_4)_2SO_4$ (aq) \rightarrow

iii.
$$CaCl_2$$
 (aq) + Na_3PO_4 (aq) + $NaOH$ (aq)

v. Nal (aq) + KNO₃ (aq)
$$\rightarrow$$

- i. ZnSO₄ and NH₄Cl are both soluble
- ii. Mg(OH)₂ is a solid
- iii. Ca₃PO₄ is a solid
- iv. $Pb(OH)_2$ is a solid
- v. NaNO₃ and KI are both soluble

_____21. Which of the following represent **correct equilibrium constant expressions** for the given reaction:

a.
$$Cu(NH_3)_4^{2-}$$
 (aq) \rightleftharpoons Cu^{2+} (aq) + $4NH_3$ (aq) $K_c = \begin{bmatrix} Cu^{2+} \end{bmatrix} \bullet [4NH_3]^3 \\ Cu^{2+} (NH_3)_4^{2+} \end{bmatrix}$

b.
$$CO_2(g) + C(s) \rightleftharpoons 2CO(g)$$
 $K_P = \frac{(P_{CO})^2}{P_{CO_2} \bullet P_C}$

c. 2NaHCO₃(s)
$$\rightleftharpoons$$
 Na₂CO₃(s) + CO₂(g) + H₂O(g) $K_p = P_{CO_1} \bullet P_{H_1O}$

d.
$$PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$$
 $K_P = \frac{P_{CI_s}}{P_{CI_s} \bullet P_{CI_s}}$

e.
$$CH_3COOH (aq) + H_2O(I) \iff CH_3COO^- (aq) + H_3O^+ (aq) K_c = \begin{bmatrix} CH_3COO^- & H_3O^+ \\ CH_3COOH & H_2O \end{bmatrix}$$

a.

<mark>d.</mark>

b.

e.

C.

If K >>1 then there needs to be a lot of product and very little reactant left at equilibrium. While A, C and D look similar, D has the greatest difference between starting and final concentrations of both products and reactants.

- 23. Choose the **one false** statement from the following list.
 - a. K_{ow} represents the degree to which a given solute prefers to dissolve in an organic solvent, such as 1-octanol, and is a measure of the lipophilicity of the molecule. S(aq) S(org)
 - b. In the Haber Bosch process, the high temperature is counterproductive, based on the chemistry of the overall reaction, but necessary increase the reaction rate. $3H_2(g) + N_2(g) \rightleftharpoons 2NH_3(g)$ $\Delta H = -46.1 \, kJ \, / \, mol$
 - c. Caffeine extraction requires continuous refreshment of the organic phase to achieve the target decaffination level of the beans in the aqueous phase, because the K_{ow} of the caffeine molecule is so large.
 - d. Overuse of nitrogen-based fertilizers influences the equilibria that include nitrogen species in the biosphere, and has resulted in major environmental impacts in water bodies and wildelife populations.
 - e. Persistent Organic Pollutants (POPs), such as DDT, are resistant to breakdown through natural biochemical pathways, resulting in their bioaccumulation and long-term health risks.
 - a. True
 - b. True
 - c. False. K_{ow} of caffeine is small, therefore it doesn't readily dissolve in the organic phase.
 - d. True
 - e. True

_24. Hydrogen fluoride is a highly reactive gas. It has many industrial uses, but the most familiar property of HF is its ability to react with glass. As a result, HF is used to etch glass, and frost the inner surfaces of light bulbs. Hydrogen fluoride may be produced from H₂ and F₂:

$$H_2(g) + F_2(g) \rightleftharpoons 2HF(g)$$
 Kp = 115

In a particular experiment, 3.00 atm of each of $H_2(g)$ and $F_2(g)$ are placed in a 1.50-L flask. Calculate the **equilibrium partial pressures** of the product, HF.

a.	5.06	atm

b.	8.78	atm
υ.	0.70	aun

	$H_2(g)$	+	$F_2(g)$	\rightleftharpoons	2HF(g)
I	3		3		0
С	-X		-X		+2x
Е	3-x		3-x		2x

$$115 = \frac{(2x)^2}{(3-x)^2}$$

$$\sqrt{115} = \sqrt{\frac{(2x)^2}{(3-x)^2}}$$

$$10.724 = \frac{2x}{3 - x}$$

$$x = 2.5285$$

Pressure HF = 5.06atm

25. For the reversible transformation between butane and isobutane (2-methylpropane), represented below, *K* = 2.50 at 298 K – although net reaction to attain equilibrium is extremely slow.

Butane | Isobutane

Is a reaction mixture at 298 K at equilibrium if [butane] = 0.97 M and [isobutane] = 2.18 M? **If not, in which direction would the reaction need to proceed** to achieve equilibrium?

- a. Under these conditions, $Q_c > K_c$, the reaction proceeds in the reverse direction
- b. Under these conditions, $Q_c < K_c$, the reaction proceeds in the reverse direction
- c. Under these conditions, $Q_c < K_c$, the reaction proceeds in the forward direction
- d. Under these conditions, $Q_c = K_c$, the reaction is at equilibrium
- e. Under these conditions, $Q_c > K_c$, the reaction proceeds in the forward direction

Q=[isobutene]/[butane] Q=2.247

Section #2 - These questions are worth three marks each.

26. In a reaction mixture at a certain temperature, butane and isobutane are in chemical equilibrium when [butane] = 0.20 mol L⁻¹ and [isobutane] = 0.50 mol L⁻¹. Enough isobutane is added to the mixture to increase its concentration by 2.00 mol L⁻¹. What are the concentrations of butane and isobutane after equilibrium is re-established?

b. [butane] =
$$0.7 \,\mathrm{M}$$
 [isobutane] = $2.3 \,\mathrm{M}$

	Butane	\rightleftharpoons	Isobutane
I	0.20		2.50
C	+x		-X
Е	0.20+x		2.50-x

$$2.50 = \frac{2.50 - x}{0.20 + x}$$
$$x = 0.5714$$

[Butane] =
$$0.20 + 0.5714$$

$$[Butane] = 0.77 M$$

$$[Isobutane] = 2.50 - x$$

$$[Isobutane] = 1.928 M$$

27. What **mass of ammonium sulphate** must be added to 350.0 mL of water to create a solution with a pH of 4.70? (K_b NH₃ = 1.8 x 10⁻⁵)

a.
$$3.1 \times 10^1$$
 g

c.
$$5.1 \times 10^{1} \text{ g}$$

e.
$$1.7 \times 10^{1}$$
 g

If pH = 4.70, then $[H_3O^+] = 1.9953 \times 10^{-5}$

	NH ₄ ⁺	+	H_2O	\rightleftharpoons	NH ₃	+	H_3O^+
I	Y			-	0		0
С	-X				+x		+ _X
Е	у-х				X		X

$$5.56 \times 10^{-10} = \frac{x^2}{y - x}$$
But, $x = 1.9953 \times 10^{-5}$

$$5.56 \times 10^{-10} = \frac{(1.9953 \times 10^{-5})^2}{y - 1.9953 \times 10^{-5}}$$

$$0.350L \left(\frac{0.71607mol}{1L}\right) \left(\frac{1mol (NH_4)_2 SO_4}{2mol(NH_4^+)}\right) \left(\frac{132.1392g}{1mol}\right)$$

$$= 16.57g$$

$$y = 0.71607M$$

28. Toxic levels of chromate (CrO₄²-) in water can be removed by reacting it with excess thiolate $(S_2O_4^{2-})$ to generate insoluble $Cr(OH)_3$ as a precipitate that can be filtered. Balance the following redox reaction under alkaline conditions and assign the correct stoichiometry for CrO_4^{2-} (aq) and SO_3^{2-} (aq):

$$CrO_4^{2-}$$
 (aq) + $S_2O_4^{2-}$ (aq) \rightarrow $Cr(OH)_3$ (s) + SO_3^{2-} (aq)

- a. 1 CrO_4^{2-} , 3 SO_3^{2-} b. 2 CrO_4^{2-} , 6 SO_3^{2-} c. 3 CrO_4^{2-} , 5 SO_3^{2-} d. 2 CrO_4^{2-} , 1 SO_3^{2-} e. 5 CrO_4^{2-} , 2 SO_3^{2-}

1/2 Reactions:

$$3e^{-} + 4H_2O + CrO_4^{2-} \rightarrow Cr(OH)_3 + 5OH^{-}$$

$$4OH^{-} + S_2O_4^{2-} \rightarrow 2SO_3^{2-} + 2H_2O + 2e^{-}$$

Overall:

$$2H_2O + 2CrO_4^{2-} + 2OH^- + 3S_2O_4^{2-} \rightarrow 2Cr(OH)_3 + 6SO_3^{2-}$$

- 29. What is the value of the **reaction quotient** (Q) if 20 mL of a 0.15 M solution of Al(NO₃)₃ (aq) is mixed with 5.0 mL of a 0.40 M solution of NaOH (aq). Also, **identify the precipitate** and predict whether the precipitate will be formed given that its K_{sp} at 25°C is 1.3 x 10⁻³³
 - a. Yes, Al(OH)₃ precipitate will be formed since $Q = 6.1 \times 10^{-5}$
 - b. No, Al(OH)₃ precipitate will not be formed since $Q = 6.1 \times 10^{-5}$
 - c. No precipitate will be formed in this reaction as all salts are soluble
 - d. Yes, NaNO₃ precipitate will be formed since $Q = 3.5 \times 10^{-14}$
 - e. No, NaNO₃ precipitate will not be formed since $Q = 3.5 \times 10^{-14}$

$$Al(NO_3)_3 (aq) + 3NaOH(aq) \rightarrow 3NaNO_3(aq) + Al(OH)_3(s)$$

$$Al(OH)_3$$
 (s) \rightleftharpoons $Al^{3+}(aq) + 3OH(aq)$

$$[AI^{3+}] = (0.020L \times 0.15 \text{ M})/0.025$$

= 0.12M

$$[OH^{-}] = (0.005 \times 0.40M)/0.025$$

= 0.08M

$$Q = [Al^{3+}][OH^{-}]^{3}$$

$$Q = 6.1 \times 10^{-5}$$

Q > Ksp, therefore a precipitate forms.

- 30. Which of the following molecules have the same molecular shape?
 - a. GaCl₄- & PCl₄+
 - b. BH₃ & SH₃⁺
 c. BrF₄⁺ & SiF₄

 - d. NH₃ & CH₃⁺ e. PCl₂⁺ & AlCl₂⁺
 - a. Both tetrahedral
 - b. BH₃ is trigonal planar, while SH₃⁺ is trigonal pyramidal
 c. BrF₄⁺ is see saw, while SiF₄ is tetrahedral

 - d. NH₃ is trigonal pyramidal, while CH₃⁺ is trigonal planar e. PCl₂⁺ is bent while AlCl₂⁺ is linear

ROUGH WORK

Some general data are provided on this page and the next page. Other data appear with the questions.

A periodic table is provided on the next page.

$$R = 8.3145 \text{ J/K} \cdot \text{mol} = 0.08206 \text{ L} \cdot \text{atm/K} \cdot \text{mol}$$
 $NA = 6.022 \times 10^{23} \text{ mol}^{-1}$

$$1 \text{ J} = 1 \text{ kg m}^2 \text{ s}^{-2} = 1 \text{ kPa} \cdot \text{L} = 1 \text{ Pa} \cdot \text{m}^3$$
 $1 \text{ m} = 10^9 \text{ nm} = 10^{10} \text{ Å}$

$$1 \text{ cm}^3 = 1 \text{ mL}$$
 $1 \text{ g} = 10^3 \text{ mg} = 10^{-3} \text{ kg}$

1 Hz = 1 cycle/s
$$c = 2.9979 \times 10^8 \text{ m/s}$$

$$h = 6.6256 \times 10^{-34} \text{ J} \cdot \text{s}$$
 $m_e = 9.10 \times 10^{-31} \text{ kg}$

$$\lambda = h / mu = h / p$$

En = -R_H /
$$n^2$$
 = -2.179 × 10^{-18} J / n^2 (R_H is the energy form of the Rydberg constant for H)

$$K_{\rm w} = 1.0 \times 10^{-14} \,(25 \,^{\circ}{\rm C})$$
 K.E. = ½ mu²

TABLE 5.1 Solubility Guidelines for Common Ionic Solids

Follow the lower-numbered guideline when two guidelines are in conflict. This leads to the correct prediction in most cases.

- 1. Salts of group 1 cations (with some exceptions for ${\rm Li}^+$) and the ${\rm NH_4}^+$ cation are soluble.
- 2. Nitrates, acetates, and perchlorates are soluble.
- 3. Salts of silver, lead, and mercury(I) are insoluble.
- 4. Chlorides, bromides, and iodides are soluble.
- 5. Carbonates, phosphates, sulfides, oxides, and hydroxides are insoluble (sulfides of group 2 cations and hydroxides of Ca²⁺, Sr²⁺, and Ba²⁺ are slightly soluble).
- 6. Sulfates are soluble except for those of calcium, strontium, and barium.

18 E 18 €	Se	20.180		39.948					Xe	131.29			2			
> - 2 4	<u>۽</u>	-	<u>8</u>		160	¥	83.80	52	×		98	문	[222]			
15 T	ீட	18.998	2 م	35.453	35	Ŗ	79.904	53	_	126.90	85	At	[210]		ant digits	
≥ 5	့ဝ	15.999	هِ (32.066	8	Se	78.96	52	<u>e</u>	127.60	84	Po	[509]		to 5 signific	
> 15	Z	14.007	5 D	30.974	33	As	74.922	51	Sb	121.75	83	窗	208.98		Atomic weights are based on "2C = 12 and conform to the 1987 IUPAC report values rounded to 5 significant digits.	
> t	့ပ	12.011	[₹] .	28.086	32	Ge	72.61	20	Sn	118.71	82	Pp	207.2		eport value	
≣ 5	^ه ت	10.811	13	26.982	31	Ga	69.723	46	2	114.82	81	F	204.38		37 IUPAC r	
				2	90	Z	62.39	48	3	112.41	90	H	200.59		n to the 190	
S				F	29	$\overline{\mathbf{c}}$	63.546	47	Ag	107.87	6/	Au	196.97		and confort	sotope.
rable Ements				5	28	Ż	58.69	46	В	105.42	82	ద	195.08		n 12C = 126	nost stable
TAE EM				6	27	ပ္ပ	58.933	45	뜐	102.91	11	<u>_</u>	192.22		re based o	licate the n
<u> </u>				Transition Metals 7	26	Fe	55.847	44	Ru	101.07	9/	Os	190.2		weights a	Numbers in [] indicate the most stable isotope.
				Transitio 7	25	M	54.938	43	1c	[98]	75	Re	186.21		Atomi	
PERIODIC TABLE OF THE ELEMENT	1			9	24	ပ်	51.996	42	Mo	95.94	74	>	183.85	106	Unh	[263]
ORIGH &				5	23	>	50.942	41	g	92.906	73	Ta	180.95	105	Unp	[262]
	,			4	22	F	47.88	40	Ž	91.224	72	Ï	178.49	104	Und	[261]
				_"	21	သွ	44.956	36	>	88.906	25	*La	138.91	68	**Ac	227.03
= 8	[‡]	9.0122	2	24.305		Ca	40.078	38	Ś	87.62	26	Ba	137.33	88	Ra	226.03
T 1.00.7	ت ٍ	6.941	Z	22.990	19	¥	39.098	37	8	85.468	22	S	132.91	87	亡	[223]
						.000										_

22

	28	29	8	61	62	အ	2	65	98	29	88	69	70	71
-anthanides	S	4	P	Pm	Sm	Eu	<u>8</u>	2	6	웃	ш	Tm	Yb	3
	140.12	140.91	144.24	[145]	150.36	151.97	151.97 157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
	06	91	82	93	94	95	96	26	86	66	100	101	102	103
Actinides	드	Ра		å	Pu	Am	E S	器	ర	Es	ᇤ	PM	2	ב
	232.04	231.04	238.03	237.05	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[529]	[562]