SOLUCIÓN ightharpoonup En este caso $\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} = -\frac{1}{2}$; así, proy, $\mathbf{u} = -\frac{1}{2}\mathbf{i} - \frac{1}{2}\mathbf{j}$ (vea la figura 4.17).

Figura 4.17

La proyección de 2i - 3j sobre i + j es $-\frac{1}{2}i - \frac{1}{2}j$.

RESUMEN 4.2

• Sean $\mathbf{u} = (a_1, b_1)$ y $\mathbf{v} = (a_2, b_2)$; entonces el **producto escalar** o **producto punto** de \mathbf{u} y \mathbf{v} , denotado por $\mathbf{u} \cdot \mathbf{v}$, está dado por

$$\mathbf{u} \cdot \mathbf{v} = a_1 a_2 + b_1 b_2$$

Si $\mathbf{u} = (a_1, b_1, c_1)$ y $\mathbf{v} = (a_2, b_2, c_2)$, entonces

$$\mathbf{u} \cdot \mathbf{v} = a_1 a_2 + b_1 b_2 + c_1 c_2$$

• El ángulo ϕ entre dos vectores \mathbf{u} y \mathbf{v} en \mathbb{R}^2 es el único número en $[0, \pi]$ que satisface

$$\cos \varphi = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|}$$

- Dos vectores en \mathbb{R}^2 son paralelos si el ángulo entre ellos es 0 o π . Son paralelos si uno es un múltiplo escalar del otro.
- Dos vectores \mathbb{R}^2 son **ortogonales** si el ángulo entre ellos es $\frac{\pi}{2}$. Son ortogonales si y sólo si su producto escalar es cero.
- Sean u y v dos vectores diferentes de cero en R². La proyección de u sobre v es un vector, denotado por proy_v u, que está definido por

$$\operatorname{proy}_{\mathbf{v}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v}$$

El escalar $\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}$ se llama la **componente** de \mathbf{u} en la dirección de \mathbf{v} .

• $proy_v \mathbf{u}$ es paralelo a \mathbf{v} y $\mathbf{u} - proy_v \mathbf{u}$ es ortogonal a \mathbf{v} .