Análise Matemática III Equações diferenciais de ordem superior

A. Marime e T.Sambo

29 de Setembro de 2020

Introduçção

Alguns problemas físicos modelados por equações diferenciais da segunda ordem

Introduçção

Alguns problemas físicos modelados por equações diferenciais da segunda ordem

A corrente num circuíto RLC é obtida como a solução da equação diferencial

$$LI'' + RI' + \frac{1}{C}I = E_0\omega\cos\omega t;$$

Introduçção

Alguns problemas físicos modelados por equações diferenciais da segunda ordem

A corrente num circuíto RLC é obtida como a solução da equação diferencial

$$LI'' + RI' + \frac{1}{C}I = E_0\omega\cos\omega t;$$

A equação diferencial

$$my'' + ky = 0$$

modela o movimento harmónico simples.

Definição

Definição

Uma equação diferencial ordinária de segunda ordem é uma equação da forma

Definição

Uma equação diferencial ordinária de segunda ordem é uma equação da forma

$$y'' = f(x, y, y').$$

Definição

Uma equação diferencial ordinária de segunda ordem é uma equação da forma

$$y'' = f\left(x, y, y'\right). \tag{1}$$

Definição

Definição

Uma equação diferencial ordinária de segunda ordem é uma equação da forma

$$y'' = f\left(x, y, y'\right). \tag{1}$$

Definição

Uma equação diferencial ordinária de segunda ordem é chamada de linear quando ela pode ser escrita na forma

Definição

Uma equação diferencial ordinária de segunda ordem é uma equação da forma

$$y'' = f(x, y, y'). \tag{1}$$

Definição

Uma equação diferencial ordinária de segunda ordem é chamada de linear quando ela pode ser escrita na forma

$$y'' + p(x)y' + q(x)y = r(x),$$
 (2)

onde p, q e r são funções de uma variável x.

Definição

Uma equação diferencial ordinária de segunda ordem é uma equação da forma

$$y'' = f(x, y, y'). \tag{1}$$

Definição

Uma equação diferencial ordinária de segunda ordem é chamada de linear quando ela pode ser escrita na forma

$$y'' + p(x)y' + q(x)y = r(x),$$
 (2)

onde $p,\ q$ e r são funções de uma variável x. Se $r(x)\equiv 0$ então (2) se reduz a

$$y'' + p(x)y' + q(x)y = 0, (3)$$

e é chamada de homogênea.

Teorema (Existência e Unicidade)

Teorema (Existência e Unicidade)

Sejam $p(x),\ q(x)$ e r(x) funções contínuas em [a,b]. Dados $x_0\in [a,b]$ e $\delta,\gamma\in\mathbb{R},$ o problema de Cauchy

$$\begin{cases} y'' + p(x)y' + q(x)y = r(x) \\ y(x_0) = \gamma \\ y'(x_0) = \delta \end{cases}$$

possui uma única solução em [a, b].

Teorema (Existência e Unicidade)

Sejam $p(x),\ q(x)$ e r(x) funções contínuas em [a,b]. Dados $x_0\in [a,b]$ e $\delta,\gamma\in\mathbb{R}$, o problema de Cauchy

$$\begin{cases} y'' + p(x)y' + q(x)y = r(x) \\ y(x_0) = \gamma \\ y'(x_0) = \delta \end{cases}$$

possui uma única solução em [a, b].

Teorema

Se y_1, y_2, \dots, y_n são soluções de y'' + p(x)y' + q(x)y = 0 então a combinação linear

$$y = C_1 y_1 + C_2 y_2 + \dots + C_n y_n$$

também é solução.

Definição

Dadas as funções diferenciáveis f(x) e g(x), o wronskiano de f e g é a função

$$W(f,g)(x) = \begin{vmatrix} f(x) & g(x) \\ f'(x) & g'(x) \end{vmatrix} = f(x)g'(x) - g(x)f'(x)$$

Definição

Dadas as funções diferenciáveis f(x) e g(x), o wronskiano de f e g é a função

$$W(f,g)(x) = \left| \begin{array}{cc} f(x) & g(x) \\ f'(x) & g'(x) \end{array} \right| = f(x)g'(x) - g(x)f'(x)$$

Proposição

Se y_1 e y_2 são linearmente independentes em [a,b], então o Wronskiano destas duas funções é diferente de zero, i.e, $W(y_1,y_2)(x) \not\equiv 0$.

Definição

Dadas as funções diferenciáveis f(x) e g(x), o wronskiano de f e g é a função

$$W(f,g)(x) = \begin{vmatrix} f(x) & g(x) \\ f'(x) & g'(x) \end{vmatrix} = f(x)g'(x) - g(x)f'(x)$$

Proposição

Se y_1 e y_2 são linearmente independentes em [a,b], então o Wronskiano destas duas funções é diferente de zero, i.e, $W(y_1,y_2)(x) \not\equiv 0$.

Teorema (Solução Geral)

Se y₁ e y₂ são soluções linearmente independentes da equação diferencial ordinária

$$y'' + p(x)y' + q(x)y = 0$$

então qualquer outra solução dessa equação é da forma

$$y = C_1 y_1(x) + C_2 y_2(x).$$

Exemplo

Mostre que as funções $y_1=x^{1/2}$ e $y_2=x^{-1}$ são soluções da equação

$$2x^2y'' + 3xy' - y = 0.$$

Exemplo

Mostre que as funções $y_1 = x^{1/2}$ e $y_2 = x^{-1}$ são soluções da equação

$$2x^2y'' + 3xy' - y = 0.$$

Resolução:

• Precisamos achar primeiro as derivadas de $y_1 = x^{1/2}$

$$y_1' = \frac{1}{2}x^{-1/2}, \ y_1'' = -\frac{1}{4}x^{-3/2}$$

Exemplo

Mostre que as funções $y_1 = x^{1/2}$ e $y_2 = x^{-1}$ são soluções da equação

$$2x^2y'' + 3xy' - y = 0.$$

Resolução:

• Precisamos achar primeiro as derivadas de $y_1 = x^{1/2}$

$$y_1' = \frac{1}{2}x^{-1/2}, \ y_1'' = -\frac{1}{4}x^{-3/2}$$

Substituindo:

Exemplo

Mostre que as funções $y_1 = x^{1/2}$ e $y_2 = x^{-1}$ são soluções da equação

$$2x^2y'' + 3xy' - y = 0.$$

Resolução:

• Precisamos achar primeiro as derivadas de $y_1 = x^{1/2}$

$$y_1' = \frac{1}{2}x^{-1/2}, \ y_1'' = -\frac{1}{4}x^{-3/2}$$

Substituindo:

$$2x^{2}\left(-\frac{1}{4}x^{-3/2}\right) + 3x\left(\frac{1}{2}x^{-1/2}\right) - x^{1/2} = -\frac{x^{1/2}}{2} + \frac{3x^{1/2}}{2} - x^{1/2} = 0.$$

Exemplo

Mostre que as funções $y_1 = x^{1/2}$ e $y_2 = x^{-1}$ são soluções da equação

$$2x^2y'' + 3xy' - y = 0.$$

Resolução:

• Precisamos achar primeiro as derivadas de $y_1 = x^{1/2}$

$$y_1' = \frac{1}{2}x^{-1/2}, \ y_1'' = -\frac{1}{4}x^{-3/2}$$

Substituindo:

$$2x^{2}\left(-\frac{1}{4}x^{-3/2}\right) + 3x\left(\frac{1}{2}x^{-1/2}\right) - x^{1/2} = -\frac{x^{1/2}}{2} + \frac{3x^{1/2}}{2} - x^{1/2} = 0.$$

• Para provar que $y_2 = x^{-1}$ é solução, notemos que $y_2' = -x^{-2}$ e $y_2'' = 2x^{-3}$. Portanto.

Exemplo

Mostre que as funções $y_1 = x^{1/2}$ e $y_2 = x^{-1}$ são soluções da equação

$$2x^2y'' + 3xy' - y = 0.$$

Resolução:

• Precisamos achar primeiro as derivadas de $y_1 = x^{1/2}$

$$y_1' = \frac{1}{2}x^{-1/2}, \ y_1'' = -\frac{1}{4}x^{-3/2}$$

Substituindo:

$$2x^{2}\left(-\frac{1}{4}x^{-3/2}\right) + 3x\left(\frac{1}{2}x^{-1/2}\right) - x^{1/2} = -\frac{x^{1/2}}{2} + \frac{3x^{1/2}}{2} - x^{1/2} = 0.$$

• Para provar que $y_2 = x^{-1}$ é solução, notemos que $y_2' = -x^{-2}$ e $y_2'' = 2x^{-3}$. Portanto.

$$2x^{2}\left(2x^{-3}\right) + 3x\left(-x^{-2}\right) - x^{-1} = 4x^{-1} - 3x^{-1} - x^{-1} = 0.$$

Exemplo

Conforme vimos no exemplo anterior, y_1 e y_2 são linearmente independente. Portanto,

$$y = C_1 x^{1/2} + C_2 x^{-1},$$

é a solução geral no intervalo $]0,\infty[.$

Exemplo

Conforme vimos no exemplo anterior, y_1 e y_2 são linearmente independente. Portanto,

$$y = C_1 x^{1/2} + C_2 x^{-1},$$

é a solução geral no intervalo $]0, \infty[$.

Teorema (Fórmula de Liouville)

Seja y_1 uma solução particular não nula da equação y''+p(x)y'+q(x)y=0 com p(x) e q(x) funções contínuas no intervalo [a,b], a segunda solução da equação diferencial é dada por

Exemplo

Conforme vimos no exemplo anterior, y_1 e y_2 são linearmente independente. Portanto,

$$y = C_1 x^{1/2} + C_2 x^{-1},$$

é a solução geral no intervalo $]0,\infty[$.

Teorema (Fórmula de Liouville)

Seja y_1 uma solução particular não nula da equação y''+p(x)y'+q(x)y=0 com p(x) e q(x) funções contínuas no intervalo [a,b], a segunda solução da equação diferencial é dada por

$$y_2(x) = \left(\int \frac{1}{y_1^2(x)} e^{-\int p(x)dx} dx\right) y_1(x).$$

Exemplo

Conforme vimos no exemplo anterior, y_1 e y_2 são linearmente independente. Portanto,

$$y = C_1 x^{1/2} + C_2 x^{-1},$$

é a solução geral no intervalo $]0,\infty[$.

Teorema (Fórmula de Liouville)

Seja y_1 uma solução particular não nula da equação y''+p(x)y'+q(x)y=0 com p(x) e q(x) funções contínuas no intervalo [a,b], a segunda solução da equação diferencial é dada por

$$y_2(x) = \left(\int \frac{1}{y_1^2(x)} e^{-\int p(x)dx} dx \right) y_1(x).$$

Ademais, as duas soluções são linearmente independente.

Exemplo

Ache a solução geral da equação

$$(x^2 + 1)y'' - 2xy' + 2y = 0$$

conhecendo sua solução particular y = x.

Exemplo

Ache a solução geral da equação

$$(x^2 + 1)y'' - 2xy' + 2y = 0$$

conhecendo sua solução particular y = x.

Resolução:

• É fácil comprovar que $y_1 = x$ é uma solução;

Exemplo

Ache a solução geral da equação

$$(x^2 + 1)y'' - 2xy' + 2y = 0$$

conhecendo sua solução particular y = x.

- É fácil comprovar que $y_1 = x$ é uma solução;
- Se aplicarmos a fórmula de Liouville obteremos a outra solução. Portanto,

$$y_2(x) = \left(\int \frac{1}{x^2} e^{\int \frac{2x}{x^2 + 1} dx} dx\right) x$$

Exemplo

Ache a solução geral da equação

$$(x^2 + 1)y'' - 2xy' + 2y = 0$$

conhecendo sua solução particular y = x.

- É fácil comprovar que $y_1 = x$ é uma solução;
- Se aplicarmos a fórmula de Liouville obteremos a outra solução. Portanto,

$$y_2(x) = \left(\int \frac{1}{x^2} e^{\int \frac{2x}{x^2 + 1} dx} dx\right) x$$
$$= \left(\int \frac{1}{x^2} e^{\ln(x^2 + 1)} dx\right) x$$

Exemplo

Ache a solução geral da equação

$$(x^2 + 1)y'' - 2xy' + 2y = 0$$

conhecendo sua solução particular y = x.

- É fácil comprovar que $y_1 = x$ é uma solução;
- Se aplicarmos a fórmula de Liouville obteremos a outra solução. Portanto,

$$y_{2}(x) = \left(\int \frac{1}{x^{2}} e^{\int \frac{2x}{x^{2}+1} dx} dx\right) x$$

$$= \left(\int \frac{1}{x^{2}} e^{\ln(x^{2}+1)} dx\right) x$$

$$= \left(\int \frac{x^{2}+1}{x^{2}} dx\right) x = \left(x - \frac{1}{x}\right) x = x^{2} - 1.$$

Exemplo

Ache a solução geral da equação

$$(x^2 + 1)y'' - 2xy' + 2y = 0$$

conhecendo sua solução particular y = x.

Resolução:

- É fácil comprovar que $y_1 = x$ é uma solução;
- Se aplicarmos a fórmula de Liouville obteremos a outra solução. Portanto,

$$y_{2}(x) = \left(\int \frac{1}{x^{2}} e^{\int \frac{2x}{x^{2}+1} dx} dx\right) x$$

$$= \left(\int \frac{1}{x^{2}} e^{\ln(x^{2}+1)} dx\right) x$$

$$= \left(\int \frac{x^{2}+1}{x^{2}} dx\right) x = \left(x - \frac{1}{x}\right) x = x^{2} - 1.$$

• A solução geral da equação $(x^2 + 1)y'' - 2xy' + 2y = 0$ é

$$y = C_1 x + C_2 (x^2 - 1).$$

Teorema

A solução geral de uma equação diferencial linear não homogênea

$$y'' + p(x)y' + q(x)y = r(x)$$
 (4)

é igual a soma $y = y_0 + y_p$, onde y_0 é a solução da equação homogênea correspondente e y_p uma qualquer solução de (4)

Resolução de equações diferenciais lineares homogêneas de segunda ordem com coeficientes constantes

Método da equação característica

Consideremos uma equação diferencial linear da segunda ordem que têm os coefientes $p \in q$ constantes

$$y'' + py' + qy = 0$$

Resolução de equações diferenciais lineares homogêneas de segunda ordem com coeficientes constantes

Método da equação característica

Consideremos uma equação diferencial linear da segunda ordem que têm os coefientes $p \in q$ constantes

$$y'' + py' + qy = 0 (5)$$

Para determinar a sua solução pelo método da equação característica seguem-se os seguintes passos:

Método da equação característica

Consideremos uma equação diferencial linear da segunda ordem que têm os coefientes $p \in q$ constantes

$$y'' + py' + qy = 0 (5)$$

Para determinar a sua solução pelo método da equação característica seguem-se os seguintes passos:

Primeiro: Constroi-se a equação característica correspondente à equação linear (5):

$$k^2 + pk + q = 0$$

Método da equação característica

Consideremos uma equação diferencial linear da segunda ordem que têm os coefientes $p \in q$ constantes

$$y'' + py' + qy = 0 (5)$$

Para determinar a sua solução pelo método da equação característica seguem-se os seguintes passos:

Primeiro: Constroi-se a equação característica correspondente à equação linear (5):

$$k^2 + pk + q = 0 (6)$$

Segundo: Resolve-se a equação (6). Dependendo do sinal do Δ verificam-se os seguintes casos:

Método da equação característica

Consideremos uma equação diferencial linear da segunda ordem que têm os coefientes $p \in q$ constantes

$$y'' + py' + qy = 0 (5)$$

Para determinar a sua solução pelo método da equação característica seguem-se os seguintes passos:

Primeiro: Constroi-se a equação característica correspondente à equação linear (5):

$$k^2 + pk + q = 0 (6)$$

Segundo: Resolve-se a equação (6). Dependendo do sinal do Δ verificam-se os seguintes casos:

Caso 1. Duas Raízes Reais Distintas, k_1 e k_2

Neste caso, a solução geral correspondente é

$$y = C_1 e^{k_1 x} + C_2 e^{k_2 x}; (7)$$

Método da equação característica

Caso 2. Raiz Real Dupla, $k_1=k_2$ Neste caso, a solução geral correspondente é

$$y = (C_1 + C_2 x)e^{k_1 x};$$

Método da equação característica

Caso 2. Raiz Real Dupla, $k_1 = k_2$

Neste caso, a solução geral correspondente é

$$y = (C_1 + C_2 x)e^{k_1 x}; (8)$$

Caso 3. Raízes Complexas, $k_{1,2} = \alpha \pm i\beta$

Neste caso, a solução geral correspondente é

$$y = e^{\alpha x} \left(C_1 \cos \beta x + C_2 \sin \beta x \right) \tag{9}$$

Exemplo

Resolva o problema de Cauchy y'' - 5y' + 4y = 0, y(0) = y'(0) = 1 equação característica: $k^2 - 5k + 4 = 0$;

Exemplo

Resolva o problema de Cauchy $y'' - 5y' + 4y = 0, \ y(0) = y'(0) = 1$

equação característica: $k^2 - 5k + 4 = 0$;

Raízes da equação característica: $k_1 = 1, k_2 = 4;$

Exemplo

Resolva o problema de Cauchy $y'' - 5y' + 4y = 0, \ y(0) = y'(0) = 1$

equação característica: $k^2 - 5k + 4 = 0$;

Raízes da equação característica: $k_1 = 1, k_2 = 4$;

$$y = C_1 e^x + C_2 e^{4x}$$

Exemplo

Resolva o problema de Cauchy y'' - 5y' + 4y = 0, y(0) = y'(0) = 1

equação característica: $k^2 - 5k + 4 = 0$;

Raízes da equação característica: $k_1 = 1$, $k_2 = 4$;

Solução geral:

$$y = C_1 e^x + C_2 e^{4x}$$

Condições iniciais: $y(0) = C_1 + C_2 = 1$

Exemplo

Resolva o problema de Cauchy $y'' - 5y' + 4y = 0, \ y(0) = y'(0) = 1$

equação característica: $k^2 - 5k + 4 = 0$;

Raízes da equação característica: $k_1 = 1$, $k_2 = 4$;

$$y = C_1 e^x + C_2 e^{4x}$$

Condições iniciais:
$$y(0) = C_1 + C_2 = 1$$

 $y'(x) = C_1e^x + 4C_2e^{4x}$

Exemplo

Resolva o problema de Cauchy y'' - 5y' + 4y = 0, y(0) = y'(0) = 1

equação característica: $k^2 - 5k + 4 = 0$;

Raízes da equação característica: $k_1 = 1, k_2 = 4$;

$$y = C_1 e^x + C_2 e^{4x}$$

Condições iniciais:
$$y(0) = C_1 + C_2 = 1$$

 $y'(x) = C_1 e^x + 4C_2 e^{4x}$
 $y'(0) = C_1 + 4C_2 = 1$.

Exemplo

Resolva o problema de Cauchy y'' - 5y' + 4y = 0, y(0) = y'(0) = 1

equação característica: $k^2 - 5k + 4 = 0$;

Raízes da equação característica: $k_1 = 1$, $k_2 = 4$;

Solução geral:

$$y = C_1 e^x + C_2 e^{4x}$$

Condições iniciais:
$$y(0) = C_1 + C_2 = 1$$

 $y'(x) = C_1 e^x + 4C_2 e^{4x}$
 $y'(0) = C_1 + 4C_2 = 1$.

Resolvendo o sistema de equações achamos $C_1 = 1, C_2 = 0.$

Solução: $y = e^x$.

Exemplo

Resolva o problema de Cauchy $y''+2y'+5y=0,\ y(0)=1,\ y'(0)=5$ Resolução:

equação característica: $k^2 + 2k + 5 = 0$;

Exemplo

Resolva o problema de Cauchy $y''+2y'+5y=0,\ y(0)=1,\ y'(0)=5$ Resolução:

equação característica: $k^2 + 2k + 5 = 0$;

Raízes da equação característica: $k_{1,2} = -1 \pm 2i$;

Exemplo

Resolva o problema de Cauchy $y''+2y'+5y=0,\ y(0)=1,\ y'(0)=5$ Resolução:

equação característica: $k^2 + 2k + 5 = 0$;

Raízes da equação característica: $k_{1,2} = -1 \pm 2i$;

$$y = e^{-x}(C_1 \cos 2x + C_2 \sin 2x);$$

Exemplo

Resolva o problema de Cauchy $y''+2y'+5y=0,\ y(0)=1,\ y'(0)=5$ Resolução:

equação característica: $k^2 + 2k + 5 = 0$;

Raízes da equação característica: $k_{1,2} = -1 \pm 2i$;

Solução geral:

$$y = e^{-x}(C_1 \cos 2x + C_2 \sin 2x);$$

Condições iniciais: $y(0) = C_1 = 1$

Exemplo

Resolva o problema de Cauchy $y''+2y'+5y=0,\ y(0)=1,\ y'(0)=5$ Resolução:

equação característica: $k^2 + 2k + 5 = 0$;

Raízes da equação característica: $k_{1,2} = -1 \pm 2i$;

$$y = e^{-x}(C_1 \cos 2x + C_2 \sin 2x);$$

Condições iniciais:
$$y(0) = C_1 = 1$$

 $y'(x) = e^{-x} \left(-C_1 \cos 2x - C_2 \sin 2x - 2C_1 \sin 2x + 2C_2 \cos 2x \right)$

Exemplo

Resolva o problema de Cauchy $y''+2y'+5y=0,\ y(0)=1,\ y'(0)=5$ Resolução:

equação característica: $k^2 + 2k + 5 = 0$;

Raízes da equação característica: $k_{1,2} = -1 \pm 2i$;

$$y = e^{-x}(C_1 \cos 2x + C_2 \sin 2x);$$

Condições iniciais:
$$y(0) = C_1 = 1$$

 $y'(x) = e^{-x} (-C_1 \cos 2x - C_2 \sin 2x - 2C_1 \sin 2x + 2C_2 \cos 2x)$
 $y'(0) = -C_1 + 2C_2 = 5 \Leftrightarrow C_2 = 3;$

Exemplo

Resolva o problema de Cauchy $y''+2y'+5y=0,\ y(0)=1,\ y'(0)=5$ Resolução:

equação característica: $k^2 + 2k + 5 = 0$;

Raízes da equação característica: $k_{1,2} = -1 \pm 2i$;

$$y = e^{-x}(C_1 \cos 2x + C_2 \sin 2x);$$

Condições iniciais:
$$y(0) = C_1 = 1$$

 $y'(x) = e^{-x} (-C_1 \cos 2x - C_2 \sin 2x - 2C_1 \sin 2x + 2C_2 \cos 2x)$
 $y'(0) = -C_1 + 2C_2 = 5 \Leftrightarrow C_2 = 3;$
Solução: $y = e^{-x} (\cos 2x + 3 \sin 2x).$

Método da variação das constantes

$$y'' + p(x)y' + q(x)y = r(x).$$

Método da variação das constantes

Considere a equação diferencial

$$y'' + p(x)y' + q(x)y = r(x). (10)$$

Suponhamos que $y = C_1y_1 + C_2y_2$ seja a solução da equação homogênea

$$y'' + p(x)y' + q(x)y = 0.$$

Método da variação das constantes

Considere a equação diferencial

$$y'' + p(x)y' + q(x)y = r(x). (10)$$

Suponhamos que $y = C_1y_1 + C_2y_2$ seja a solução da equação homogênea

$$y'' + p(x)y' + q(x)y = 0.$$
 (11)

O método de varição das constantes consiste em trocar as constantes C_1 e C_2 por funções $C_1(x)$ e $C_2(x)$ adequadas, de modo que $y = C_1(x)y_1(x) + C_2(x)y_2(x)$ seja uma solução particular de (10).

Método da variação das constantes

Considere a equação diferencial

$$y'' + p(x)y' + q(x)y = r(x). (10)$$

Suponhamos que $y = C_1y_1 + C_2y_2$ seja a solução da equação homogênea

$$y'' + p(x)y' + q(x)y = 0.$$
 (11)

O método de varição das constantes consiste em trocar as constantes C_1 e C_2 por funções $C_1(x)$ e $C_2(x)$ adequadas, de modo que $y = C_1(x)y_1(x) + C_2(x)y_2(x)$ seja uma solução particular de (10). Portanto, as funções $C_1(x)$ e $C_2(x)$ são obtidas do sistema:

$$\begin{cases} C'_1(x)y_1 + C'_2(x)y_2 = 0 \\ C'_1(x)y'_1 + C'_2(x)y'_2 = r(x) \end{cases}$$

Método da variação das constantes

Considere a equação diferencial

$$y'' + p(x)y' + q(x)y = r(x). (10)$$

Suponhamos que $y = C_1y_1 + C_2y_2$ seja a solução da equação homogênea

$$y'' + p(x)y' + q(x)y = 0.$$
 (11)

O método de varição das constantes consiste em trocar as constantes C_1 e C_2 por funções $C_1(x)$ e $C_2(x)$ adequadas, de modo que $y = C_1(x)y_1(x) + C_2(x)y_2(x)$ seja uma solução particular de (10). Portanto, as funções $C_1(x)$ e $C_2(x)$ são obtidas do sistema:

$$\begin{cases} C'_1(x)y_1 + C'_2(x)y_2 = 0 \\ C'_1(x)y'_1 + C'_2(x)y'_2 = r(x) \end{cases}$$

Está garantida a existência da solução deste sistema pois o seu determinante é o Wronskiano de y_1 e y_2 , que é diferente de zero, pois y_1 e y_2 são linearmente independentes.

Exemplo

Resolva

$$y'' + y' = \frac{1}{e^x + 1}$$

Resolução

Equação homogênea correspondente: y'' + y' = 0

Exemplo

Resolva

$$y'' + y' = \frac{1}{e^x + 1}$$

Resolução

Equação homogênea correspondente: y'' + y' = 0 equação característica: $k^2 + k = 0$;

Exemplo

Resolva

$$y'' + y' = \frac{1}{e^x + 1}$$

Resolução

Equação homogênea correspondente: y'' + y' = 0

equação característica: $k^2 + k = 0$;

Raízes da equação característica: $k_1 = 0, k_2 = -1$

Exemplo

Resolva

$$y'' + y' = \frac{1}{e^x + 1}$$

Resolução

Equação homogênea correspondente: y'' + y' = 0

equação característica: $k^2 + k = 0$;

Raízes da equação característica: $k_1 = 0$, $k_2 = -1$

Solução da parte homogênea:

$$y_0 = C_1 + C_2 e^{-x}$$

Exemplo

Resolva

$$y'' + y' = \frac{1}{e^x + 1}$$

Resolução

Equação homogênea correspondente: y'' + y' = 0

equação característica: $k^2 + k = 0$;

Raízes da equação característica: $k_1 = 0$, $k_2 = -1$

Solução da parte homogênea:

$$y_0 = C_1 + C_2 e^{-x}$$

Solução particular: $y_p = C_1(x) + C_2(x)e^{-x}$, onde

$$\begin{cases} C'_1(x) + C'_2(x)e^{-x} = 0 \\ C'_1(x)0 - C'_2(x)e^{-x} = \frac{1}{e^x + 1} \end{cases}$$

Exemplo

Resolva

$$y'' + y' = \frac{1}{e^x + 1}$$

Resolução

pause

Solução particular:
$$C_2'(x) = -\frac{e^x}{e^x+1}$$
 e $C_1'(x) = \frac{1}{e^x+1}$. Assim,

Exemplo

Resolva

$$y'' + y' = \frac{1}{e^x + 1}$$

Resolução

pause

Solução particular:
$$C_2'(x) = -\frac{e^x}{e^x+1}$$
 e $C_1'(x) = \frac{1}{e^x+1}$. Assim,

$$C_2(x) = -\int \frac{e^x dx}{e^x + 1} = \ln(e^x + 1), \ C_1(x) = \int \frac{e^{-x}}{e^{-x} + 1} dx = -\ln(e^{-x} + 1).$$

Exemplo

Resolva

$$y'' + y' = \frac{1}{e^x + 1}$$

Resolução

pause

Solução particular:
$$C_2'(x) = -\frac{e^x}{e^x+1}$$
 e $C_1'(x) = \frac{1}{e^x+1}$. Assim,

$$C_2(x) = -\int \frac{e^x dx}{e^x + 1} = \ln(e^x + 1), \ C_1(x) = \int \frac{e^{-x}}{e^{-x} + 1} dx = -\ln(e^{-x} + 1).$$

Portanto.

$$y_p(x) = -\ln(e^{-x} + 1) - e^{-x}\ln(e^x + 1).$$

Exemplo

Resolva

$$y'' + y' = \frac{1}{e^x + 1}$$

Resolução

pause

Solução particular:
$$C_2'(x) = -\frac{e^x}{e^x+1}$$
 e $C_1'(x) = \frac{1}{e^x+1}$. Assim,

$$C_2(x) = -\int \frac{e^x dx}{e^x + 1} = \ln(e^x + 1), \ C_1(x) = \int \frac{e^{-x}}{e^{-x} + 1} dx = -\ln(e^{-x} + 1).$$

Portanto.

$$y_p(x) = -\ln(e^{-x} + 1) - e^{-x}\ln(e^x + 1).$$

Assim, a solução geral é

Exemplo

Resolva

$$y'' + y' = \frac{1}{e^x + 1}$$

Resolução

pause

Solução particular:
$$C_2'(x) = -\frac{e^x}{e^x+1}$$
 e $C_1'(x) = \frac{1}{e^x+1}$. Assim,

$$C_2(x) = -\int \frac{e^x dx}{e^x + 1} = \ln(e^x + 1), \ C_1(x) = \int \frac{e^{-x}}{e^{-x} + 1} dx = -\ln(e^{-x} + 1).$$

Portanto.

$$y_p(x) = -\ln(e^{-x} + 1) - e^{-x}\ln(e^x + 1).$$

Assim, a solução geral é

$$y = C_1 + C_2 e^{-x} - \ln(e^{-x} + 1) - e^{-x} \ln(e^x + 1)$$

