

Discrete Structures (Monsoon 2022)

Ashok Kumar Das

Associate Professor IEEE Senior Member

Center for Security, Theory and Algorithmic Research International Institute of Information Technology, Hyderabad (IIIT Hyderabad)

E-mail: ashok.das@iiit.ac.in

URL: http://www.iiit.ac.in/people/faculty/ashokkdas
https://sites.google.com/view/iitkgpakdas/

Overview of Hierarchical Access Control

- Hierarchical access control is a fundamental problem in computer and network systems.
- In a hierarchical access control, a user of higher security level class has the ability to access information items (such as message, data, files, etc.) of other users of lower security classes.
- A user hierarchy consists of a number n of disjoint security classes, say, SC_1 , SC_2 , ..., SC_n . Let this set be $SC = \{SC_1, SC_2, ..., SC_n\}$.
- A binary partially ordered relation \geq is defined in SC as $SC_i \geq SC_j$, which means that the security class SC_i has a security clearance higher than or equal to the security class SC_j .

Overview of Hierarchical Access Control

- In addition the relation ≥ satisfies the following properties:
 - ▶ [Reflexive property] $SC_i \ge SC_i$, $\forall SC_i \in SC$.
 - ▶ [Anti-symmetric property] If SC_i , $SC_j \in SC$ such that $SC_i \geq SC_j$ and $SC_i \geq SC_i$, then $SC_i = SC_i$.
 - **[Transitive property]** If SC_i , SC_j , $SC_k \in SC$ such that $SC_i \geq SC_j$ and $SC_j \geq SC_k$, then $SC_i \geq SC_k$.
- If $SC_i \geq SC_j$, we call SC_i as the predecessor of SC_j and SC_j as the successor of SC_i . If $SC_i \geq SC_k \geq SC_j$, then SC_k is an intermediate security class. In this case SC_k is the predecessor of SC_j and SC_i is the predecessor of SC_k .
- In a user hierarchy, the encrypted message by a successor security class is only decrypted by that successor class as well as its all predecessor security classes in that hierarchy.

Overview of Hierarchical Access Control

Figure: A small sample of poset in a user hierarchy.

Applications of Hierarchical Access Control

- Military
- Government schools and colleges
- Private corporations
- Computer network systems
- Operating systems
- Database management systems

Chung et al.'s User Hierarchical Access Control Scheme

Reference

 Y. F. Chung, H. H. Lee, F. Lai and T. S. Chen, "Access control in user hierarchy based on elliptic curve cryptosystem", Information Sciences (Elsevier), vol. 178, no. 1, pp. 230-243, 2008 (2021 SCI Impact Factor: 8.233). [Research Paper Link:

```
https://www.sciencedirect.com/science/article/pii/S0020025507003763]
```

Chung et al.'s User Hierarchical Access Control Scheme

Relationship Building Phase

- CA (central authority) builds a hierarchical structure for controlling access according to the relationships among the nodes in the hierarchy.
- Let $U = \{SC_1, SC_2, \dots, SC_n\}$ be a set of n security classes in the hierarchy. Assume that SC_i is a security class with higher clearance and SC_j a security class with lower clearance, that is, $SC_i \geq SC_i$.
- A legitimate relationship $(SC_i, SC_j) \in R_{i,j}$ between two security classes SC_i and SC_j exists in the hierarchy if SC_i can access SC_j .

Key Generation Phase

CA performs the following steps:

- **Step 1:** Randomly selects a large prime *p*.
- Step 2: Selects an elliptic curve $E_p(a,b)$ defined over Z_p such that the order of $E_p(a,b)$ lies in the interval $[p+1-2\sqrt{p},p+1+2\sqrt{p}]$.
- Step 3: Selects a one-way function $h(\cdot)$ to transform a point into a number and a base point G_j from $E_p(a,b)$ for each security class SC_j $1 \le j \le n$.
- Step 4: For each security class SC_j (1 $\leq j \leq n$), selects a secret key sk_j and a sub-secret key s_j .
- Step 5: For all $\{SC_i|(SC_i,SC_j)\}\in R_{i,j}$, computes the followings: $s_iG_j=(x_{j,i},y_{j,i})$, $h(x_{i,j}||y_{i,j})$, where || is a bit concatenation operator.

Key Generation Phase (Continued...)

• **Step 6:** Finally, computes the public polynomial $f_j(x)$ using the values of $h(x_{i,j}||y_{i,j})$ as

$$f_j(x) = \prod_{SC_i \geq SC_j} (x - h(x_{j,i}||y_{j,i})) + sk_j \pmod{p}$$

- Step 7: Sends sk_j and s_j to the security class SC_j via a secret channel.
- Step 8: Announces $p, h(\cdot), G_j, f_j(x)$ as public.

Key Derivation Phase

In order to compute the secret keys sk_j of all successors, SC_j , the predecessor SC_i , for which the relationships $(SC_i, SC_j) \in R_{i,j}$ between SC_i and SC_j hold, proceeds as follows:

- Step 1: For $\{SC_i|(SC_i,SC_j)\}\in R_{i,j}$, computes the followings: $s_iG_j=(x_{j,i},y_{j,i})$, $h(x_{i,i}||y_{j,i})$.
- Step 2: Computes the secret key sk_j using $h(x_{j,i}||y_{j,i})$ as follows:

$$f_j(x) = \prod_{SC_i \geq SC_j} (x - h(x_{j,i}||y_{j,i})) + sk_j \pmod{p},$$

 $f_j(h(x_{j,i}||y_{j,i})) = sk_j \pmod{p}.$

Key Derivation Phase (Continued...)

Figure: A small sample of poset in a user hierarchy.

Key Derivation Phase (Continued...)

$$f_{j}(x) = \prod_{SC_{i} \geq SC_{j}} [x - h(x_{j,i}||y_{j,i})] + sk_{j} \pmod{p},$$

$$SC_{1} : f_{1}(x) = [x - h(x_{1,0}||y_{1,0})] + sk_{1} \pmod{p}, \text{ where } s_{0} \text{ is given }$$

$$\text{by CA}$$

$$SC_{2} : f_{2}(x) = [x - h(x_{2,1}||y_{2,1})] + sk_{2} \pmod{p},$$

$$SC_{3} : f_{3}(x) = [x - h(x_{3,1}||y_{3,1})] + sk_{3} \pmod{p},$$

$$SC_{4} : f_{4}(x) = [x - h(x_{4,1}||y_{4,1})][x - h(x_{4,2}||y_{4,2})] + sk_{4} \pmod{p},$$

$$SC_{5} : f_{5}(x) = [x - h(x_{5,1}||y_{5,1})][x - h(x_{5,2}||y_{5,2})][x - h(x_{5,3}||y_{5,3})] + sk_{5} \pmod{p},$$

$$SC_{6} : f_{6}(x) = [x - h(x_{6,1}||y_{6,1})][x - h(x_{6,3}||y_{6,3})] + sk_{6} \pmod{p}$$

Key Derivation Phase (Continued...)

To derive the secret key sk_5 of SC_5 by its predecessor class SC_2 , SC_2 needs to do following:

- Computes $s_2G_5 = (x_{5,2}, y_{5,2})$ and then $h(x_{5,2}||y_{5,2})$.
- Determines sk_5 using $h(x_{5,2}||y_{5,2})$ from the public polynomial $f_5(x) = [x h(x_{5,1}||y_{5,1})][x h(x_{5,2}||y_{5,2})][x h(x_{5,3}||y_{5,3})] + sk_5 \pmod{p}$ as $sk_5 = f_5(h(x_{5,2}||y_{5,2})) \pmod{p}$.

Inserting New Security Classes Phase

If a new security class SC_k is inserted into the hierarchy such that $SC_i \geq SC_k \geq SC_j$, then the relationships $(SC_i, SC_k) \in R_{i,k}$ for $SC_i \geq SC_k$ and $(SC_k, SC_j) \in R_{k,j}$ for $SC_k \geq SC_j$ need to be updated into the hierarchy. CA needs the following steps to manage the accessing priority of SC_k in the hierarchy.

- Step 1: Updates the partial relationships R that follows when the security class SC_k joins the hierarchy.
- Step 2: Randomly selects the secret key sk_k , the sub-secret key s_k and the base point G_k for the class SC_k .
- Step 3: For all $\{SC_i|(SC_i,SC_k)\}\in R_{i,k}$ that satisfies $SC_i\geq SC_k$ when the new class SC_k is inserted in the hierarchy, computes $s_iG_k=(x_{k,i},y_{k,i})$, and $h(x_{k,i}||y_{k,i})$.

Inserting New Security Classes Phase (continued...)

• Step 4: Computes the public polynomial $f_k(x)$ as follows:

$$f_k(x) = \prod_{SC_i \geq SC_k} (x - h(x_{k,i}||y_{k,i})) + sk_k \pmod{p}$$

• Step 5: For all $\{SC_i|(SC_i,SC_k)\}\in R_{i,k}$ and $\{SC_k|(SC_k,SC_j)\}\in R_{k,j}$ that satisfy $SC_i\geq SC_k\geq SC_j$ when the new class SC_k is inserted in the hierarchy, computes $s_kG_j=(x_{j,k},y_{j,k}),$ $s_iG_j=(x_{j,i},y_{j,i}),$ $h(x_{j,k}||y_{j,k})$ and $h(x_{j,i}||y_{j,i}).$

Inserting New Security Classes Phase (continued...)

• Step 6: Computes the public polynomial $f'_i(x)$ as follows:

$$f'_{j}(x) = \prod_{SC_{i} \geq SC_{k} \geq SC_{j}} (x - h(x_{j,i}||y_{j,i}))(x - h(x_{j,k}||y_{j,k})) + sk_{j} \pmod{p}$$

• Step 7: Replaces $f_j(x)$ with $f'_j(x)$, and sends sk_k and s_k to SC_k via a secure channel, and announces publicly G_k , $f_k(x)$ and $f'_j(x)$.

Inserting New Security Classes Phase (continued...)

Figure: A small sample of poset in a user hierarchy: when a new security class SC_7 is added into the hierarchy.

Inserting New Security Classes Phase (continued...)

```
SC_1: f_1(x) = [x - h(x_{1,0}||y_{1,0})] + sk_1 \pmod{p}, where s_0 is given by CA
SC_2: f_2(x) = [x - h(x_{2,1}||y_{2,1})] + sk_2 \pmod{p},
SC_3: f_3(x) = [x - h(x_{3,1}||y_{3,1})] + sk_3 \pmod{p},
SC_4: f_4(x) = [x - h(x_{4,1}||y_{4,1})][x - h(x_{4,2}||y_{4,2})] + sk_4 \pmod{p},
SC_5: f_5(x) = [x - h(x_{5,1}||y_{5,1})][x - h(x_{5,2}||y_{5,2})][x - h(x_{5,3}||y_{5,3})]
                    +sk_5 \pmod{p},
SC_6: f'_6(x) = [x - h(x_{6,1}||y_{6,1})][x - h(x_{6,3}||y_{6,3})][x - h(x_{6,7}||y_{6,7})]
                    +sk_6 \pmod{p}
SC_7: f_7(x) = [x - h(x_{7,1}||y_{7,1})] + sk_7 \pmod{p}
```


Removing Existing Security Classes Phase

If an existing member SC_k , such that the relationship $SC_i \geq SC_k \geq SC_j$ breaks up, wants to leave from a user hierarchy, then CA not only directly revokes information related to SC_k , but also alters the accessing relationship between the involved ex-predecessor SC_i and ex-successor SC_j of SC_k . In this phase, CA executes the following steps.

• Step 1: Updates the partial relationship R that follows when SC_k is removed.

Removing Existing Security Classes Phase (Continued...)

- Step 2: For all $\{SC_k | (SC_k, SC_j)\} \in R_{k,j}$ does the followings:
 - Step 2.1: Renews the secret key sk_j as sk'_j and the base point G_j as G'_i of SC_j .
 - Step 2.2: For all $\{SC_i|(SC_i,SC_j)\}\in R_{i,j}$ does the followings:
 - * Step 2.2.1: Renews $\{SC_i|(SC_i,SC_j)\}\in R_{i,j}$ after removing SC_k .
 - * Step 2.2.2: Computes $s_i G'_j = (x_{j,i}, y_{j,i})$.
 - * Step 2.2.3: Computes $h(x_{j,i}, y_{j,i})$.
 - * Step 2.2.4: Computes the public polynomial $f'_i(x)$ as

$$f'_j(x) = \prod_{SC_i \geq SC_i} (x - h(x_{j,i}||y_{j,i})) + sk'_j \pmod{p}$$

- * Step 2.2.5: Replaces $f_j(x)$ with $f'_j(x)$.
- Step 3: Sends sk'_j to SC_j via a secret channel and announces G'_j and $f'_i(x)$ as public.

Removing Existing Security Classes Phase (continued...)

Figure: A small sample of poset in a user hierarchy: when an existing security class SC_3 is removed into the hierarchy.

Removing Existing Security Classes Phase (continued...)

- Before deleting SC_3 , $f_5(x)$ and $f_6(x)$ are formed as
 - $f_5(x) = [x h(x_{5,1}||y_{5,1})][x h(x_{5,2}||y_{5,2})][x h(x_{5,3}||y_{5,3})] + sk_5 \pmod{p}$ $f_6(x) = [x h(x_{6,1}||y_{6,1})][x h(x_{6,3}||y_{6,3})] + sk_6 \pmod{p}.$
- After deleting SC_3 , $f'_5(x)$ and $f'_6(x)$ are formed as $f'_5(x) = [x h(x_{5,1}||y_{5,1})][x h(x_{5,2}||y_{5,2})] + sk'_5 \pmod{p}$ $f'_6(x) = [x h(x_{6,1}||y_{6,1})] + sk'_6 \pmod{p}$.

Creating New Relationships

• Suppose we want to create a new relationship between SC_5 and SC_6 in the hierarchy (Figure 1) such that $SC_2 \geq SC_5 \geq SC_6$.

Figure: The consequent poset after creating $\textit{SC}_5 \geq \textit{SC}_6$ in Figure 1.

Creating New Relationships

 Before creating the relationship SC₂ ≥ SC₅ ≥ SC₆, f₆(x) is formed as follows:

$$f_6(x) = [x - h(x_{6,1}||y_{6,1})][x - h(x_{6,3}||y_{6,3})] + sk_6 \pmod{p}.$$

• After creating the relationship $SC_2 \geq SC_5 \geq SC_6$, updated public polynomial $f_6'(x)$ is formed as follows:

$$f_6'(x) = [x - h(x_{6,1}||y_{6,1})][x - h(x_{6,3}||y_{6,3})] [x - h(x_{6,2}||y_{6,2})][x - h(x_{6,5}||y_{6,5})] + sk_6 \pmod{p}.$$

Revoking Existing Relationships

• Suppose we want to revoke the existing relationship $\{SC_2|(SC_2,SC_5)\in R_{2,5}\}$ in the following figure such that $\{SC_2|(SC_2,SC_5)\notin R_{2,5}\}$

Figure: The consequent poset after revoking $SC_2 \ge SC_5$ in Figure 1.

Revoking Existing Relationships

• Before revoking $\{SC_2|(SC_2,SC_5)\in R_{2,5}\}$, $f_5(x)$ is formed as follows:

$$f_5(x) = [x - h(x_{5,1}||y_{5,1})][x - h(x_{5,2}||y_{5,2})]$$
$$[x - h(x_{5,3}||y_{5,3})] + sk_5 \pmod{p}.$$

• After revoking $\{SC_2|(SC_2,SC_5)\in R_{2,5}\}$, $f_5(x)$ is replaced with the updated $f_5'(x)$ as follows:

$$f'_5(x) = [x - h(x_{5,1}||y_{5,1})][x - h(x_{5,3}||y_{5,3})] + sk'_5 \pmod{p}.$$

after renewing the secret key sk_5' in place of sk_5 .

Changing Secret Keys

- A secret key must be changeable to maximize security.
- To change a secret key sk_j to sk'_j , CA must replace the base point G_i with G'_i and the public polynomial $f_i(x)$ with $f'_i(x)$ as follows.
 - Step 1: Replace the secret key sk_j with sk'_j and the base point G_j with G'_i .
 - Step 2: For all $\{SC_i|(SC_i,SC_j)\}\in R_{i,j}$:
 - * Step 2.1: Determine $s_i G'_j = (x_{j,i}, y_{j,i})$
 - * Step 2.2: Determine $h(x_{j,i}||y_{j,i})$, where || is a bit concatenation operator

Changing Secret Keys (Continued...)

• Step 3: Determine the public polynomial $f'_i(x)$ as follows

$$f'_j(x) = \prod_{SC_i \geq SC_j} [x - h(x_{j,i}||y_{j,i})] + sk'_j \pmod{p}$$

- Step 4: Replace $f_j(x)$ with $f'_j(x)$
- Step 5: Send sk'_j to SC_j via a secret channel, and announce G'_j and $f'_i(x)$

Cryptanalysis and Improvement of Chung et al.'s Scheme

 Ashok Kumar Das, Nayan Ranjan Paul, and Laxminath Tripathy. "Cryptanalysis and improvement of an access control in user hierarchy based on elliptic curve cryptosystem," in *Information Sciences (Elsevier)*, Vol. 209, No. C, pp. 80 - 92, 2012, doi: http://dx .doi.org/10.1016/ j.ins.2012.04.036. (2021 SCI Impact Factor: 8.233) [Research Paper Link: https://www.sciencedirect.com/science/ article/pii/S0020025512003155]