Name :	Utech
Roll No.:	
Invigilator's Signature :	

RF AND MICROWAVE ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) A hollow waveguide behaves as
 - a) Low Pass Filter
 - b) Band Pass Filter
 - c) High Pass Filter
 - d) All Pass Filters.
 - ii) The dominant mode of propagation in a rectangular waveguide is
 - a) TE_{11}

b) TE_{10}

c) TM_{12}

d) TM_{11} .

SS-302 [Turn over

iii)	The cut-off frequency of TM_{10} mode is f_c	= c/2a where	
	c = velocity of light, a = waveguide dimension.		
	a) True b) False.		
iv)	Which of the following modes are change $Ez = Hz = 0$?	aracterized by	
	a) TE b) TM		
	c) TEM d) none of t	hese.	
v)	v) Electromagnetic cavity resonators as energy st devices are used in		
	a) klystron b) direction	al coupler	
	c) circulator d) magic tee	e.	
vi)	Microwave semiconductor devices are basically		
	a) positive resistance device		
	b) negative resistance device		
	c) zero resistance device		
	d) none of these.		
vii)	ii) A microwave circulator is a multiport waveguing junction by which the wave can flow only from the n -t port to $(n+1)$ th port in one direction		
	a) True b) False.		
SS-302	2		

a) Tunnel Diode

- b) MESFET
- c) Gun Diode
- d) IMPATT Diode
- ix) The cavity magnetron uses strapping to
 - a) prevent mode jumping
 - b) improve the phase focusing effect
 - c) ensure bunching
 - d) prevent cathode back-heating.
- x) For the transferred electron effect to occur the separation of energy between the lower and upper valley must be
 - a) much larger than the thermal energy at room temperature
 - b) much lower than the thermal energy at room temperature
 - c) equal to the thermal energy at room temperature
 - d) none of these.
- xi) In a Strip line the dominant mode of propagation is
 - a) TE

b) TM

c) TEM

d) none of these.

SS-302 3 [Turn over

a) $\frac{\lambda}{2}$

b) λ

c) $\frac{3\lambda}{4}$

d) $\frac{\lambda}{4}$

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. Derive the zero property of S matrix.
- 3. Explain the working principle of GUN diode with a suitable diagram.
- 4. A TE_{11} mode is propagating through a circular waveguide. The radius a of the guide is 5 c.m and the guide contains air as dielectric medium. Determine :
 - a) The cut-off frequency
 - b) The wavelength in the guide for an operating frequency of 3GHz. Given : $X_{11} = k_c$. a = 1.841 where k_c is the cut-off wave number.
- 5. Describe the operation of four-port microwave circulator.
- 6. Explain Transit Time and Mode Number of a Reflex Klystron with suitable diagram.

SS-302

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Describe an ideal Directional coupler with the help of a suitable diagram. Define 'Coupling factor' and 'Directivity' in the context of a coupler.
 - b) From the properties of a Directional coupler derive the S matrix of the ideal Directional coupler.
 - c) Describe the working principle of a Faraday rotation isolator with the help of a suitable diagram. 5 + 5 + 5
- 8. a) Make a classification of different types of magnetrons.
 - b) Draw the diagram of a cylindrical magnetron and derive the hull cut-off magnetic equation and the corresponding cut-off voltage.
 - c) An X band pulsed cylindrical magnetron has the following operating parameters:

Anode Voltage V_0 = 26 kV, Beam Current I_0 = 27A

Magnetic flux density $B_0 = 0.336 \text{ Wb}/m^2$

Radius of cathode cylinder a = 5 c.m.

Radius from the centre of the cathode to the edge of the anode b = 10 c.m.

Compute:

- (i) The cyclotron angular frequency
- (ii) The cut-off voltage for a fixed B_0
- (iii) The cut-off magnetic flux density for a fixed V_0 .

5 + 5 + 5

- 9 a) Define quality factor Q of a cavity resonator.
 - b) Derive an expression for the resonance frequency of a rectangular cavity ($a \times b \times d$) for TEmnp mode where the symbols bear the usual significance.
 - c) Draw the equivalent circuit of a cavity coupled by means of an ideal N : 1 transformer and a series inductance LS to a generator having internal impedance Z_g . Hence derive the relation between loaded Q, unloaded Q and external Q of the system.
 - d) Describe critical coupling, overcoupling and undercoupling.
 - e) Draw with variation of VSWR with coupling coefficient.

6

2 + 3 + 2 + 3 + 3 + 2

SS-302

- 10. a) Solve the Helmoholtz equation in Cartesian coordinates.

 Hence discuss the three cases for the propagation constant in the waveguide.
 - b) Define TM mode. For TM_{mn} mode in a rectangular waveguide ($a \times b$). Applying the solution of Helmholtz equation found in part (a) find E_y and H_y .
 - c) Find the phase velocity of the wave for the TM_{mn} mode in the waveguide. 3 + 2 + 1 + 6 + 3
- 11. Write short notes on any *three* of the following: 3×5
 - a) Tunnel Diode
 - b) Gun Diode
 - c) Velocity modulation in Klystron
 - d) Stripline
 - e) Optimum length and Flare angle of a horn antenna.

SS-302