WHAT IS CLAIMED IS:

1. A process of forming a compound of formula II, comprising:

5

15

25

(a) contacting a compound of formula I with sub-stoichiometric amounts of a platinum catalyst in the presence of a solvent under hydrogen pressure and super-stoichiometric amounts of an acid; wherein:

the platinum catalyst is platinum on charcoal (Pt/C) or Adam's catalyst (platinum(IV)-dioxide, PtO₂);

the solvent is a protic solvent or a mixture of protic and aprotic solvents; ring B is a 4-7 membered non-aromatic carbocyclic or heterocyclic ring consisting of: carbon atoms, 0-3 carbonyl groups, 0-3 double bonds, and 0-2 ring heteroatoms selected from O, N, NR⁶, and S(O)_p, provided that ring B contains other than a S-S, O-O, or S-O bond;

$$\begin{split} R^1 \text{ is Q, -C$_{1-6}$ alkylene-Q, -C$_{2-6}$ alkenylene-Q, or -C$_{2-6}$ alkynylene-Q;} \\ R^2 \text{ is Q, -C$_{1-6}$ alkylene-Q, -C$_{2-6}$ alkenylene-Q, -C$_{2-6}$ alkynylene-Q,} \\ -(CR^aR^{a1})_rO(CR^aR^{a1})_s-Q, -(CR^aR^{a1})_rNR^a(CR^aR^{a1})_s-Q, -(CR^aR^{a1})_rC(O)(CR^aR^{a1})_s-Q, \\ -(CR^aR^{a1})_rC(O)O(CR^aR^{a1})_s-Q, -(CR^aR^{a1})_rC(O)NR^aR^{a1}, \end{split}$$

 $\begin{array}{ll} -(CR^aR^{a1})_rC(O)NR^a(CR^aR^{a1})_s-Q, \ -(CR^aR^{a1})_rS(O)_p(CR^aR^{a1})_s-Q, \ or \\ -(CR^aR^{a1})_rSO_2NR^a(CR^aR^{a1})_s-Q; \end{array}$

Q is, independently at each occurrence, H, a C_{3-6} carbocycle substituted with 0-3 R^d, or a 5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-3 R^d;

 R^3 is H, Cl, F, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, -(CH)_r-phenyl substituted with 0-3 R^d , or -(CH)_r-5-6 membered heterocycle consisting of: carbon atoms and 1-4

5

10

25

heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-3 R^d:

alternatively, when R^2 and R^3 are attached to the same carbon atom, they form a 3-8 membered carbocyclic or heterocyclic spiro ring C substituted with 0-2 R^c and consisting of carbon atoms, 0-4 heteroatoms selected from O, N, and $S(O)_p$, and 0-2 double bonds, provided that ring C contains other than a S-S, O-O, or S-O bond;

alternatively, when R² and R³ are attached to adjacent carbon atoms, together with the carbon atoms to which they are attached they form a 5-7 membered carbocyclic or heterocyclic ring D substituted with 0-2 R^c and consisting of carbon atoms, 0-2 heteroatoms selected from the group consisting of N, O, and S(O)_p, and 0-3 double bonds;

 R^4 is H, C_{1-6} alkyl substituted with 0-1 R^b , C_{2-6} alkenyl substituted with 0-1 R^b , or C_{2-6} alkynyl substituted with 0-1 R^b ;

R⁵ is -CH₂OR^a or -C(O)OR^a;

15 R^6 is Q, $-C_{1-6}$ alkylene-Q, $-C_{2-6}$ alkenylene-Q, $-C_{2-6}$ alkynylene-Q,

 $-(CR^aR^{a1})_rC(O)(CR^aR^{a1})_s-Q$, $-(CR^aR^{a1})_rC(O)-C_{2-6}$ alkenylene-Q,

 $-(CR^aR^{a1})_rC(O)O(CR^aR^{a1})_s-Q$, $-(CR^aR^{a1})_rC(O)NR^aR^{a1}$,

 $-(CR^aR^{a1})_rC(O)NR^a(CR^aR^{a1})_s-Q$, $-(CR^aR^{a1})_rS(O)_p(CR^aR^{a1})_s-Q$, or

-(CRaRa1)_rSO₂NRa(CRaRa1)_s-Q;

20 Ra is, independently at each occurrence, H, C₁₋₆ alkyl, phenyl, or benzyl;

 R^{a1} is, independently at each occurrence, H or C_{1-6} alkyl;

R^{a2} is, independently at each occurrence, C₁₋₆ alkyl, phenyl, or benzyl;

R^b is, independently at each occurrence, C₁₋₆ alkyl substituted with 0-1 R^c, -OR^a,

 $-SR^{a}$, Cl, F, Br, I, =O, CN, NO₂, $-NR^{a}R^{a1}$, $-C(O)R^{a}$, $-C(O)OR^{a}$, $-C(O)NR^{a}R^{a1}$,

 $-C(S)NR^aR^{a1}$, $-NR^aC(O)NR^aR^{a1}$, $-OC(O)NR^aR^{a1}$, $-NR^aC(O)OR^a$, $-S(O)_2NR^aR^{a1}$,

-NRaS(O)₂Ra2, -NRaS(O)₂NRaRa1, -OS(O)₂NRaRa1, -S(O)_pRa2, CF₃, -CF₂CF₃, -CHF₂, -CH₂F, or phenyl;

 R^c is, independently at each occurrence, H, C_{1-4} alkyl, -ORa, Cl, F, Br, I, =O, CF₃, CN, NO₂, -C(O)Ra, -C(O)ORa, -C(O)NRaRa, or -S(O)pRa;

Rd is, independently at each occurrence, C_{1-6} alkyl, $-OR^a$, Cl, F, Br, I, =O, CN, NO_2 , $-NR^aR^{a1}$, $-C(O)R^a$, $-C(O)OR^a$, $-C(O)NR^aR^{a1}$, $-C(S)NR^aR^{a1}$, $-NR^aC(O)NR^aR^{a1}$,

-OC(O)NR^aR^{a1}, -NR^aC(O)OR^a, -S(O)₂NR^aR^{a1}, -NR^aS(O)₂R^{a2}, -NR^aS(O)₂NR^aR^{a1}, -OS(O)₂NR^aR^{a1}, -S(O)_pR^{a2}, CF₃, -CF₂CF₃, C₃₋₁₀ carbocycle, or a 5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p;

- p, at each occurrence, is selected from 0, 1, and 2; r, at each occurrence, is selected from 0, 1, 2, 3, and 4; and s, at each occurrence, is selected from 0, 1, 2, 3, and 4.
- 2. A process according to Claim 1, to form a compound of formula Π, wherein: ring B is:

$$R^{2} \xrightarrow{\downarrow_{\lambda_{i_{1}}}} R^{2} \xrightarrow{\downarrow_{\lambda_{i_{1}}}} R^{2} \xrightarrow{\downarrow_{\lambda_{i_{1}}}} R^{2}$$

R¹ is phenyl substituted with 0-3 R^d;

R² is Q, -C₁₋₆ alkylene-Q, -C₂₋₄ alkenylene-Q, -C₂₋₄ alkynylene-Q,

 $\begin{array}{ll} -C(O)(CR^aR^{a1})_s-Q, -C(O)O(CR^aR^{a1})_s-Q, -C(O)NR^aR^{a1}, -C(O)NR^a(CR^aR^{a1})_s-Q, \\ -S(O)_p(CR^aR^{a1})_s-Q, \text{ or } -SO_2NR^a(CR^aR^{a1})_s-Q; \end{array}$

Q is, independently at each occurrence, H, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydro-2H-pyran-4-yl, or phenyl substituted with 0-2 Rd;

 R^4 is C_{1-4} alkyl;

20 R^5 is $-CH_2OR^a$ or $-C(O)OR^a$;

 $R^6 \text{ is Q, -C}_{1\text{-}6} \text{ alkylene-Q, -C}_{2\text{-}4} \text{ alkenylene-Q, -C}_{2\text{-}4} \text{ alkynylene-Q,} \\ -C(O)(CR^aR^{a1})_s\text{-Q, -C}(O)O(CR^aR^{a1})_s\text{-Q, -C}(O)NR^aR^{a1}, -C(O)NR^a(CR^aR^{a1})_s\text{-Q,} \\ -S(O)_p(CR^aR^{a1})_s\text{-Q, or -SO}_2NR^a(CR^aR^{a1})_s\text{-Q; and} \\ \\$

R^d is, independently at each occurrence, C₁₋₆ alkyl, -OR^a, Cl, F, Br, =O,

- 25 -NR^aR^{a1}, -C(O)R^a, -C(O)OR^a, -C(O)NR^aR^{a1}, -S(O)₂NR^aR^{a1}, -NR^aS(O)₂R^{a2}, -S(O)_pR^{a2}, CF₃ or phenyl.
 - 3. A process according to Claim 2, to form a compound of formula II, wherein:

ring B is:

R¹ is phenyl;

5 R^4 is C_{1-4} alkyl;

 R^5 is $-C(O)OR^a$;

R⁶ is H, methyl, isopropyl, butyl, isobutyl, neopentyl, allyl, 3-butenyl, 2-propynyl, 2-butynyl, 3-butynyl, acetyl, t-butylcarbonyl, 4-pentenoyl, t-butoxycarbonyl, methoxycarbonyl, methylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl,

phenyl, 4-F-phenyl, 4-methoxy-phenyl, cyclopropylmethyl, cyclopentyl, and tetrahydro-2H-pyran-4-yl; and

Ra is C₁₋₄ alkyl.

15 4. A process according to Claim 1, further comprising:

(b) contacting the product from (a) with a hydrogen bromide solution in an acid to yield compound III;

20

5. A process according to Claim 2, further comprising:

PH-7496-NP

(c) contacting the product from (b) with palladium on charcoal catalyst (Pd/C) in the presence of a solvent under hydrogen pressure to yield compound IV; wherein the solvent is a protic solvent or a mixture of protic and aprotic solvents;

III

6. A process according to Claim 1, wherein in (a):

the protic solvent is selected from: methanol, ethanol, propanol, 2-butanol, water, ethylene glycol, propylene glycol, and butylene glycol; and

the aprotic solvent is selected from: tetrahydrofuran, dibutyl ether, 1,2-dimethoxyethane, dimethoxymethane, and diethoxymethane.

15 7. A process according to Claim 6, wherein in (a):

the protic solvent is selected from: methanol, ethanol, propanol, and 2-butanol; and

the aprotic solvent is selected from: tetrahydrofuran and dimethoxymethane.

20

5

10

8. A process according to Claim 7, wherein in (a):

the protic solvent is methanol; and the aprotic solvent is tetrahydrofuran.

25

9. A process according to Claim 1, wherein in (a):

the hydrogen pressure is 10 to 400 psig.

DI	7		~ /	. w.	m
PH	I- /	4	7n)— I	ıP

	10. A process according to Claim 9, wherein in (a):
	the hydrogen pressure is 100 to 300 psig.
5	11. A process according to Claim 10, wherein in (a): the hydrogen pressure is 250 psig.
10	12. A process according to Claim 1, wherein in (a): the acid is selected from: formic acid, acetic acid, chloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, propionic acid, isobutyric acid, hydrochloric acid, and sulfuric acid.
15	13. A process according to Claim 12, wherein in (a): the acid is acetic acid.
20	14. A process according to Claim 2, wherein in (b): the acid is acetic acid or formic acid.
25	15. A process according to Claim 14, wherein in (b): the acid is acetic acid.
	16. A process according to Claim 3, wherein in (c): the protic solvent is selected from: methanol, ethanol, propanol, 2-butanol, water ethylene glycol, propylene glycol, and butylene glycol; and
30	the aprotic solvent is selected from: tetrahydrofuran, dibutyl ether, 1,2-dimethoxyethane, dimethoxymethane, and diethoxymethane.

P.	Н	 74	Q	6	_1	N	P

	and	the protic solvent is selected from: methanol, ethanol, propanol, and 2-butanol;
		the aprotic solvent is selected from: tetrahydrofuran and dimethoxymethane.
5		
	18. A	process according to Claim 17, wherein in (c):
		the protic solvent is methanol; and
		the aprotic solvent is tetrahydrofuran.
10		
	19. A	process according to Claim 3, wherein in (c):
		the hydrogen pressure is 20 to 300 psig.
15	20. A	process according to Claim 19, wherein in (c):
		the hydrogen pressure is 50 to 150 psig.
	21 A	process according to Claim 20, wherein in (c):
20	21. 11	the hydrogen pressure is 100 psig.
		and the grant of t
	22. A	process according to Claim 1, wherein:
25	60%.	the diastereomeric ratio of the product of (a), Compound of formula Π , is at least
	2070.	
	23. A	process according to Claim 22, wherein:
20	900	the diastereomeric ratio of the product of (a), Compound of formula II, is at least
30	80%.	

24. A process according to Claim 3, wherein:

PH-7496-NP

the diastereomeric ratio of the product of (c), Compound of formula IV, is at least 60%; and, the enantiomeric ratio of the product of (c), Compound of formula IV, is at least 60%.

5

25. A process according to Claim 24, wherein:

the diastereomeric ratio of the product of (c), Compound of formula IV, is at least 80%; and

the enantiomeric ratio of the product of (c), Compound of formula IV, is at least 80%.

10

26. A compound of formula III or IV:

$$R^4$$
 R^1
 $NH \cdot HBr$
 R^5
 R^2
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3

15

20

wherein:

ring B is a 4-7 membered non-aromatic carbocyclic or heterocyclic ring consisting of: carbon atoms, 0-3 carbonyl groups, 0-3 double bonds, and 0-2 ring heteroatoms selected from O, N, NR^6 , and $S(O)_p$, provided that ring B contains other than a S-S, O-O, or S-O bond;

$$\begin{split} R^1 \text{ is Q, -C$_{1-6}$ alkylene-Q, -C$_{2-6}$ alkenylene-Q, or -C$_{2-6}$ alkynylene-Q;} \\ R^2 \text{ is Q, -C$_{1-6}$ alkylene-Q, -C$_{2-6}$ alkenylene-Q, -C$_{2-6}$ alkynylene-Q,} \\ -(CR^aR^{a1})_rO(CR^aR^{a1})_s-Q, -(CR^aR^{a1})_rNR^a(CR^aR^{a1})_s-Q, -(CR^aR^{a1})_rC(O)(CR^aR^{a1})_s-Q,} \\ -(CR^aR^{a1})_rC(O)O(CR^aR^{a1})_s-Q, -(CR^aR^{a1})_rC(O)NR^aR^{a1}, \end{split}$$

 $\begin{array}{ll} 25 & -(CR^aR^{a1})_rC(O)NR^a(CR^aR^{a1})_s-Q, \ -(CR^aR^{a1})_rS(O)_p(CR^aR^{a1})_s-Q, \ or \\ & -(CR^aR^{a1})_rSO_2NR^a(CR^aR^{a1})_s-Q; \end{array}$

5

10

15

20

25

Q is, independently at each occurrence, H, a C₃₋₆ carbocycle substituted with 0-3 R^d, or a 5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-3 R^d;

 R^3 is H, Cl, F, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, -(CH)_r-phenyl substituted with 0-3 R^d , or -(CH)_r-5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-3 R^d ;

alternatively, when R² and R³ are attached to the same carbon atom, they form a 3-8 membered carbocyclic or heterocyclic spiro ring C substituted with 0-2 R^c and consisting of carbon atoms, 0-4 heteroatoms selected from O, N, and S(O)_p, and 0-2 double bonds, provided that ring C contains other than a S-S, O-O, or S-O bond;

alternatively, when R² and R³ are attached to adjacent carbon atoms, together with the carbon atoms to which they are attached they form a 5-7 membered carbocyclic or heterocyclic ring D substituted with 0-2 R^c and consisting of carbon atoms, 0-2 heteroatoms selected from the group consisting of N, O, and S(O)_p, and 0-3 double bonds;

 R^4 is H, C_{1-6} alkyl substituted with 0-1 R^b , C_{2-6} alkenyl substituted with 0-1 R^b , or C_{2-6} alkynyl substituted with 0-1 R^b ;

 R^5 is -CH₂OR^a or -C(O)OR^a;

R⁶ is Q, -C₁₋₆ alkylene-Q, -C₂₋₆ alkenylene-Q, -C₂₋₆ alkynylene-Q,

 $-(CR^aR^{a1})_rC(O)(CR^aR^{a1})_s-Q$, $-(CR^aR^{a1})_rC(O)-C_{2-6}$ alkenylene-Q,

 $-(CR^aR^{a1})_rC(O)O(CR^aR^{a1})_s-Q, -(CR^aR^{a1})_rC(O)NR^aR^{a1},$

 $-(CR^aR^{a1})_rC(O)NR^a(CR^aR^{a1})_s-Q$, $-(CR^aR^{a1})_rS(O)_p(CR^aR^{a1})_s-Q$, or

 $-(CR^aR^{a1})_rSO_2NR^a(CR^aR^{a1})_s-Q;$

R^a is, independently at each occurrence, H, C₁₋₆ alkyl, phenyl, or benzyl;

 R^{a1} is, independently at each occurrence, H or C_{1-6} alkyl;

 R^{a2} is, independently at each occurrence, C_{1-6} alkyl, phenyl, and benzyl;

R^b is, independently at each occurrence, C₁₋₆ alkyl substituted with 0-1 R^c, -OR^a,

-SRa, Cl, F, Br, I, =O, CN, NO2, -NRaRa1, -C(O)Ra, -C(O)ORa, -C(O)NRaRa1,

 $-C(S)NR^aR^{a1}$, $-NR^aC(O)NR^aR^{a1}$, $-OC(O)NR^aR^{a1}$, $-NR^aC(O)OR^a$, $-S(O)_2NR^aR^{a1}$,

-NRaS(O)₂Ra2, -NRaS(O)₂NRaRa1, -OS(O)₂NRaRa1, -S(O)_pRa2, CF₃, -CF₂CF₃, -CHF₂, -CH₂F, or phenyl;

R^c is, independently at each occurrence,: H, C₁₋₄ alkyl, -OR^a, Cl, F, Br, I, =O, CF₃, CN, NO₂, -C(O)R^a, -C(O)OR^a, -C(O)NR^aR^a, or -S(O)_pR^a;

 R^d is, independently at each occurrence, C_{1-6} alkyl, $-OR^a$, Cl, F, Br, I, =O, CN, NO_2 , $-NR^aR^{a1}$, $-C(O)R^a$, $-C(O)OR^a$, $-C(O)NR^aR^{a1}$, $-C(S)NR^aR^{a1}$, $-NR^aC(O)NR^aR^{a1}$, $-OC(O)NR^aR^{a1}$, $-NR^aC(O)OR^a$, $-S(O)_2NR^aR^{a1}$, $-NR^aS(O)_2R^{a2}$, $-NR^aS(O)_2NR^aR^{a1}$, $-OS(O)_2NR^aR^{a1}$, $-S(O)_pR^{a2}$, CF_3 , $-CF_2CF_3$, C_{3-10} carbocycle, or a 5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$;

p, at each occurrence, is selected from 0, 1, and 2; r, at each occurrence, is selected from 0, 1, 2, 3, and 4; and s, at each occurrence, is selected from 0, 1, 2, 3, and 4; provided that ring B is other than cyclohexane.

15

10

5

27. A compound of formula III or IV, according to Claim 26, wherein: ring B is:

20

25

R¹ is phenyl substituted with 0-3 R^d;

 $R^2 \text{ is Q, -C}_{1-6} \text{ alkylene-Q, -C}_{2-4} \text{ alkenylene-Q, -C}_{2-4} \text{ alkynylene-Q,} \\ -C(O)(CR^aR^{a1})_s-Q, -C(O)O(CR^aR^{a1})_s-Q, -C(O)NR^aR^{a1}, -C(O)NR^a(CR^aR^{a1})_s-Q, \\ -S(O)_p(CR^aR^{a1})_s-Q, \text{ or -SO}_2NR^a(CR^aR^{a1})_s-Q; \\ \end{array}$

Q is, independently at each occurrence, H, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydro-2H-pyran-4-yl, or phenyl substituted with 0-2 R^d;

 R^4 is C_{1-4} alkyl;

R⁵ is -CH₂OR^a or -C(O)OR^a;

 R^6 is Q, $-C_{1-6}$ alkylene-Q, $-C_{2-4}$ alkenylene-Q, $-C_{2-4}$ alkynylene-Q, $-C(O)(CR^aR^{a1})_s$ -Q, $-C(O)O(CR^aR^{a1})_s$ -Q, $-C(O)NR^aR^{a1}$, $-C(O)NR^a(CR^aR^{a1})_s$ -Q,

PH-7496-NP

 $-S(O)_p(CR^aR^{a1})_s-Q, \ or \ -SO_2NR^a(CR^aR^{a1})_s-Q; \ and$ $R^d \ is, \ independently \ at \ each \ occurrence, \ C_{1-6} \ alkyl, \ -OR^a, \ Cl, \ F, \ Br, \ =O,$ $-NR^aR^{a1}, \ -C(O)R^a, \ -C(O)OR^a, \ -C(O)NR^aR^{a1}, \ -S(O)_2NR^aR^{a1}, \ -NR^aS(O)_2R^{a2},$ $-S(O)_pR^{a2}, \ CF_3 \ or \ phenyl.$

5

28. A compound of formula III or IV, according to Claim 27, wherein:

ring B is:

10

R¹ is phenyl;

 R^4 is C_{1-4} alkyl;

 R^5 is $-C(O)OR^a$;

R⁶ is H, methyl, isopropyl, butyl, isobutyl, neopentyl, allyl, 3-butenyl, 2-propynyl, 2-butynyl, 3-butynyl, acetyl, t-butylcarbonyl, 4-pentenoyl, t-butoxycarbonyl, methoxycarbonyl, methylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, phenyl, 4-F-phenyl, 4-methoxy-phenyl, cyclopropylmethyl, cyclopentyl, or tetrahydro-2H-pyran-4-yl; and

 R^a is C_{1-4} alkyl.

20

15