Statistika

- Donosi zaključke o fenomenima na osnovu uzoraka iz iskustva
 - Individualni slučajevi mogu odstupati od prosečnog (tipičnog)
 - Vršimo posmatranje velikog broja slučajeva da bismo otkrili zakonitost
 - Skup elemenata koji posmatramo se naziva populacija
 - Za svaki element populacije posmatramo određenu numeričku karakteristiku koju nazivamo obeležjem
 - Npr. celokupna proizvodnja fabrike sijalica čini jednu populaciju, a obeležje svake sijalice je "dužina života" izražena u časovima

- Osnovni zadatak statistike: za datu populaciju naći distribuciju datog obeležja
 - Npr. želeli bismo da znamo prosečan životni vek sijalice i koliko jedna individualna sijalica može da odstupa od tog proseka

Uzorak

• Broj elemenata populacije može da beskonačan. Merenje obeležja može da bude skupo, teško i vremenski zahtevno

 Zato se uzima samo jedan (konačan) deo populacije – uzorak

 Pretpostavka je da zaključci dobijeni na osnovu uzorka važe za celu populaciju

• Da bi ovo važilo, uzorak mora biti reprezentativan

Reprezentativan uzorak

- Uzorak je reprezentativan ako način selekcije elemenata ne zavisi od obeležja koje posmatramo
 - Svaki element populacije mora da ima jednaku šansu da uđe u uzorak
 - 2. Uzorak mora da bude dovoljno brojan
- Za tačke izvučene nezavisno jedna od druge iz iste distribucije se kažu da su nezavisne i jednako distribuirane (independent and identically distributed, IID)
- Primer: bacanje novčića. Prvo bacanje novčića ne utiče na ishod drugog bacanja

Estimacija parametara modela

 Donošenje zaključaka često se svodi na ocenu nekih nepoznatih parametara verovatnosne mere, na osnovu podataka

Imamo uzorak

2. Pretpostavimo da uzorak potiče iz neke distribucije $f(x_n|\theta)$ koja zavisi od nekih nepoznatih parametara θ

Normal
$$\mathcal{N}(x^{(n)}|\mu,\sigma^2)$$

3. Naš zadatak jeste da odredimo θ μ , σ

Metod maksimalne verodostojnosti

• Ideja: odabrati θ tako da verovatnoća realizacije dobijenog uzorka $x=\left(x^{(1)},\dots,x^{(N)}\right)$ bude najveća

- Pretpostavke:
 - Svaki element $x^{(n)}$ je odabran iz distribucije $f(x^{(n)}|\theta)$
 - Svaki element je odabran nezavisno jedan od drugog
- Zato, združena verovatnoća odabranog uzorka je:

$$L(\theta) = \prod_{n=1}^{N} f(x^{(n)}|\theta)$$

Metod maksimalne verodostojnosti

- Zadatak: pronaći vrednost θ koja je maksimizuje $L(\theta)$
- U maksimumu je $\frac{\partial}{\partial \theta} L(\theta) = 0$

Metod maksimalne verodostojnosti

- U praksi se minimizuje $-\log L(\theta)$
- Logaritam je monotono rastuća funkcija:

ako je $x_1 < x_2$ onda je $\ln x_1 < \ln x_2$

To znači da je vrednost θ koja maksimizuje ln $L(\theta)$ takođe i vrednost koja maksimizuje $L(\theta)$

- Maksimizacija logaritma ekvivalentna je minimizaciji negativnog logaritma
- Analitička prednost: $\log x \cdot y = \log x + \log y \rightarrow \text{lakše ćemo pronaći izvod}$
- Numerička prednost: umesto računanja proizvoda mnogo malih brojeva (verovatnoća) što može dovesti do underflow-a numeričke preciznosti računara, računaćemo zbir logaritama tih brojeva

ML primer

$$L(\mu, \sigma^2) = p(x|\mu, \sigma^2) =$$

$$\prod_{n=1}^{N} \mathcal{N}(x^{(n)}|\mu,\sigma^2)$$

• Imamo uzorak $x = (x^{(1)}, ..., x^{(N)})$

• **Pretpostavka**: $x^{(i)}$ su uzorkovane nezavisno jedna od druge iz iste distribucije $\mathcal{N}(x^{(n)}|\mu,\sigma^2)$

• **Zadatak**: pronaći parametre modela μ i σ^2

ML primer

$$L(\mu, \sigma^2) = \prod_{n=1}^{N} \mathcal{N}(x^{(n)} | \mu, \sigma^2)$$

$$\log x \cdot y = \log x + \log y$$

$$\ln L(\mu, \sigma^2) = \sum_{n=1}^{N} \ln \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x^{(n)} - \mu)^2}$$

$$\ln L(\mu, \sigma^2) = \sum_{n=1}^{N} \ln \frac{1}{\sqrt{2\pi\sigma^2}} + \sum_{n=1}^{N} \ln \left(e^{-\frac{1}{2\sigma^2}(x^{(n)} - \mu)^2} \right)$$

$$\ln L(\mu, \sigma^2) = \sum_{n=1}^{N} \ln \frac{1}{\sqrt{2\pi\sigma^2}} + \sum_{n=1}^{N} -\frac{1}{2\sigma^2} (x^{(n)} - \mu)^2$$

ML primer

$$\ln L(\mu, \sigma^2) = \sum_{n=1}^{N} \ln \frac{1}{\sqrt{2\pi\sigma^2}} + \sum_{n=1}^{N} -\frac{1}{2\sigma^2} (x^{(n)} - \mu)^2$$

 $\log x/y = \log x - \log y$

$$\ln L(\mu, \sigma^2) = \sum_{n=1}^{N} -\ln(2\pi\sigma^2)^{\frac{1}{2}} + \sum_{n=1}^{N} -\frac{1}{2\sigma^2} (x^{(n)} - \mu)^2$$

 $\log x^y = y \log x$

$$\ln L(\mu, \sigma^2) = -\frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi) - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (x^{(n)} - \mu)^2$$

Određivanje μ

$$\ln L(\mu, \sigma^2) = -\frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi) - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (x^{(n)} - \mu)^2$$

$$\frac{\partial \ln L(\mu, \sigma^2)}{\partial \mu} = \frac{-2\sum_{n=1}^{N} (x^{(n)} - \mu)(-1)}{2\sigma^2} = 0$$

$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x^{(n)}$$

Određivanje σ

$$\ln L(\mu, \sigma^2) = -\frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi) - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (x^{(n)} - \mu)^2$$

$$\frac{\partial \ln L(\mu, \sigma^2)}{\partial \sigma^2} = -\frac{-N}{2\sigma^2} + \frac{\sum_{n=1}^{N} (x^{(n)} - \mu)^2}{2\sigma^2} = 0$$

$$\sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x^{(n)} - \mu_{ML})^2$$