(2) Cofinita
$$\int A = IR \quad (A \text{ es denso en IR})$$
G abto si G es finito
$$A^{1} = IR$$
K cerrado si K es finito
$$(\tilde{G} K = X, p)$$

(3) (a que tiene como base
$$B = \{ [a,b) : a,b \in \mathbb{R}^{6} \}$$

 $Int(A) = (-\infty, -\sqrt{2}) \cup [\sqrt{2}, 3)$
 $A = (-\infty, -\sqrt{2}) \cup \{0\} \cup [\sqrt{2}, 3] \cup \{1, 1, 2, 3\}$
 $A' = (-\infty, -\sqrt{2}) \cup [\sqrt{2}, 3]$

- $\begin{array}{l}
 \boxed{A} & \boxed{A} & = (-\infty, -\sqrt{2}) \cup (\sqrt{2}, 3) \\
 A & = (-\infty, -\sqrt{2}] \cup [\sqrt{2}, 3] \cup \text{suc.} \cup \sqrt{6} \\
 A' & = (-\infty, -\sqrt{2}] \cup [\sqrt{2}, 3]
 \end{array}$
 - 2) Int $A = \emptyset$ porque un abierto es el que su compl. es finito. A = X $A' = \emptyset$ si esto está bien
 - 3) Int $A = (-\infty, -\sqrt{2}) \cup [\sqrt{2}, 3)$ $\overline{A} =$

Munitario (debena ser cerrado) es unión de dos abiertos xD.

7.

i) Sea
$$x \in U\overline{A_i} \Rightarrow \exists i \in I, x \in \overline{A_i} \Rightarrow \exists i \in I \forall u \in U_x : u \cap A_i \neq \emptyset$$

 $\Rightarrow u \cap (U\overline{A_i}) \neq \emptyset \Rightarrow x \in \overline{UA_i}$
 $i \in I$

- ii) Sea n = card(I). Procedemos por inducción • Si n = 2, veamos que $A, B \subset X \Rightarrow \overline{A} \cup \overline{B} = \overline{A} \cup \overline{B}$ Por i) $\overline{A} \cup \overline{B} \subset \overline{A} \cup \overline{B}$. (una) $\cup (u \cap B)$ Sea ahora $x \in \overline{A} \cup \overline{B} \Rightarrow \forall u \in \mathcal{U}_X$, $\overline{u} \cap (\overline{A} \cap \overline{B}) \neq \emptyset \Rightarrow \forall u \in \overline{A} \Rightarrow x \in \overline{A} \Rightarrow x \in \overline{A} \Rightarrow x \in \overline{B}$
- Si n>2: $A_1,...,A_n \subset X$, $U\overline{A_i} = U\overline{A_i}$ Sea $A:=A_1$, $B=A_2 \cup ... \cup A_n$. Por el caso n=2subconjuntos se tiene que $\overline{A} \cup \overline{B} = \overline{A} \cup \overline{B}$; pero por ind. en n, $\overline{B} = \overline{A_2} \cup ... \cup \overline{A_n}$. En consecuencia $\overline{A} \cup \overline{B} = \overline{A_1} \cup \overline{A_2} \cup ... \overline{A_n}$. Por tanto, $\overline{A_1} \cup ... \cup \overline{A_n} = \overline{A_1} \cup \overline{A_2} \cup ... \cup \overline{A_n}$
- iii) $A_n = \frac{1}{n+1}$, $n \in \mathbb{N}$, A_n cerrado en \mathbb{R} para la top. usual $\Longrightarrow \overline{A_n} = A_n$. Luego \mathbb{Q} $A_n = \mathbb{Q}$ $A_n = \mathbb{Q}$ $A_n = \mathbb{Q}$ $A_n = \mathbb{Q}$ $A_n = \mathbb{Q}$
- iv) (uando hay una cantidad infinita no es lo mismo un "para todo existe" que un "existe para todo".

En efecto,
$$\{(a,-a)\}=A \cap ([a,a+\epsilon) \times [-a,-a+\epsilon)\}$$

 $\epsilon > 0$, $K \cap A = (\bigcup_{p \in A} fp^{\epsilon}) \cap K$ abto. en $A = (\bigcup_{p \in A} fp^{\epsilon}) \cap K$ abto. en $A = (\bigcup_{p \in A} fp^{\epsilon}) \cap K$

9. i)
$$A_x$$
 (para entender to mejor to vamos a Hamar A_{x_0})

 A_{x_0} abto. en Y :

Sea $y_0 \in A_{x_0} \Rightarrow (x_0, y_0) \in A$; como A es abto $\exists U_{x_0} \times V_y \in A$
 $\in U_{(x_0, y_0)}$ con $U_{x_0} \in \beta_{x_0, x}$, $V_y \in \beta_{y_0, x}$, $U_{x_0} \times V_y \in A$

abto. $abto$. $1x_0 \times V_y \in A$
 $\Rightarrow P^T_z(U_{x_0} \times V_y) = V_y \in A_{x_0} \Rightarrow Y_0 \in Int(A_{x_0})$
 $Y_y \in A_{x_0} \Rightarrow Y_0 \in$

Iqual para ver que Ay abto. en X.

ii) Contraejemplo: (0,1) x (0,1) con el orden l'exicografico.