Introduction to Public-Key Cryptography

CUI TINGTING

School of Cypberspace, Hangzhou Dianzi University

November 5, 2023

- 1 Public-Key Cryptography: the idea
- 2 Modular arithmetic
- 3 Further Finite Groups
- 4 Essential Number Theory
- 5 Discrete logarithm

- 1 Public-Key Cryptography: the idea
- 2 Modular arithmetic
- 3 Further Finite Groups
- 4 Essential Number Theory
- 5 Discrete logarithm

Symmetric Cryptography revisited

Two properties of symmetric (secret-key) crypto-systems:

- The same secret key K is used for encryption and decryption
- Encryption and Decryption are very similar (or even identical) functions

CUI TINGTING School of Cypberspace

Symmetric Cryptography: Shortcomings

- **I** Key Distribution Problem: the secret key must be transported securely.
- 2 Number of Keys: n users in the network require $\frac{n(n-1)}{2}$ key pairs, each user stores n-1 keys without KDC.
- 3 No Protection Against Cheating: Alice or Bob can cheat each other, because they have identical keys.

Public-key Cryptography: Motivation

- 1 Key Distribution Problem: No need secure channel
- Number of Keys: reduce key pairs, each user only store one key.
- 3 No Protection Against Cheating: nonrepudiation.

Basic protocol for public-key encryption

Alice Bob
$$(k_{pub}, k_{pr}) = k$$

$$y = e_{k_{pub}}(x)$$

$$y \longrightarrow y \longrightarrow$$

- public key k_{nub} & private key k_{nr} ;
- lacksquare secure depend on: easy to compute k_{pub} from k_{pr} , but hard to comput k_{pr} from k_{pub}
- Good one-way function is needed.

 $x = d_{k_{pr}}(y)$

Public-key Cryptography: Applications

- 1 Encryption: such as RSA, ElGamal, ECC etc. but too slow
- Digital Signature: RSA, DSA, ECDSA etc. perfectly no cheating
- 3 Key-exchange: such as DHKE, ECDHKE etc. to solve key distribution problem
- 4 Important Public-Key Algorithms:
 - Integer-Factorization Schemes
 - Discrete Logarithm Schemes
 - Elliptic Curve (EC) Schemes

- 1 Public-Key Cryptography: the idea
- 2 Modular arithmetic
- 3 Further Finite Groups
- 4 Essential Number Theory
- 5 Discrete logarithm

- $ightharpoonup \mathbb{Z}$: the set of integers: $\{\cdots$ -3, -2, -1, 0, 1, 2, 3, $\cdots\}$
- $ightharpoonup a \in A$: this means that a is an element of a set A
 - $2 \in \mathbb{Z}$: 2 is element of set of integers \mathbb{Z} , or just 2 is an integer
 - $\frac{4}{5} \in \mathbb{Q}$: $\frac{4}{5}$ is a rational number
- ▶ ∀: for all or for every
 - $\forall a \in \mathbb{Z} : a+1 \in \mathbb{Z}$: for every integer a, a+1 is also an integer
- ▶ ∃: there exists
 - $\forall a \in \mathbb{Z}, \exists b \in \mathbb{Z}: a+b=0$ means: for every integer there exists an integer that when added to that integer gives 0
- ▶ $C = A \setminus B$ (set minus): C contains elements of A that are not in B
- \blacktriangleright #A: the cardinality of a set, the number of elements it has
 - # {January, February, ・・・, December} = 12

CUI TINGTING School of Cypberspace

Residue classes modulo n

- ▶ In cryptography we want to work with finite sets
- ▶ One such finite set is the set of integers $\{0, 1, \dots, n-1\}$
- \blacktriangleright We can do arithmetic on them, *modulo* n
- ▶ The underlying mathematics is the theory of residue classes

One writes $\mathbb{Z}/n\mathbb{Z}$ for the set of residue classes modulo n:

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \cdots, \overline{n-1}\}$$

with $\overline{m} = \{k \mid k \equiv m \pmod{n}\}\$ $\#(\mathbb{Z}/n\mathbb{Z}) = n$, We represent \overline{m} of $\mathbb{Z}/n\mathbb{Z}$ by its member in the interval [0, n-1]

Modular addition

- ▶ $\mathbb{Z}/n\mathbb{Z}$ represented by positive integers smaller than n including zero
- ightharpoonup Consider addition modulo n as an operation:
 - (1) $c \leftarrow a + b$
 - (2) if $c \ge n$, $c \leftarrow c n$
- ▶ Notation: $a + b \mod n$ or just a + b
- ▶ Interesting properties
 - the result of $a + b \mod n$ is in $\mathbb{Z}/n\mathbb{Z}$
 - $a + b \mod n = b + a \mod n$: the order does not matter
 - $(a + b \mod n) + c \mod n = (a + (b + c) \mod n) \mod n$: the order of execution does not matter
 - $a + 0 \mod n = a$: adding 0 has no effect
 - $a + b \mod n = 0$ if b = n a. So for every a there is a value b so that their sum is 0

Modular multiplication

- \triangleright Consider now multiplication modulo n as an operation
 - (1) $c \leftarrow a \cdot b$
 - (2) do the result modulo $n: c \leftarrow c \mod n$
- Notation: $a \cdot b \mod n$ or $a \times b$

00000

- Interesting properties:
 - the result of $a \cdot b \mod n$ is in $\mathbb{Z}/n\mathbb{Z}$
 - $a \cdot b \mod n = b \cdot a \mod n$: the order does not matter
 - $((a \cdot b) \mod n \cdot c) \mod n = (a \cdot (b \cdot c) \mod n) \mod n$: the order of execution does not matter
 - $a \cdot 1 \mod n = a$: multiplying by 1 has no effect
 - $a \cdot 0 \mod n = 0$: multiplying by 0 always gives 0
 - $a \cdot b \mod n = 1$ if, \cdots well, hmm, let's keep that for later

- 1 Public-Key Cryptography: the idea
- 2 Modular arithmetic
- 3 Further Finite Groups
- 4 Essential Number Theory
- 5 Discrete logarithm

A group $< G, \circ >$ has the following properties:

- **1** closed. That is, for all $a, b \in G$, it holds that $a \circ b = c \in G$.
- 2 associative. That is, $a \circ (b \circ c) = (a \circ b) \circ c$.
- 3 neutral element (or identity element): $a \circ 1 = 1 \circ a = a$ for all $a \in G$.
- **4** inverse of a: For each $a \in G$ there exists an element $a^{-1} \in G$. such that $a \circ a^{-1} = a^{-1} \circ a = 1$.

A group G is abelian (or commutative) if, furthermore, $a \circ b = b \circ a$ for all $a, b \in G$.

Terminology: Group order

Order of a finite group $\langle G, \circ \rangle$, denoted #G, is a number of elements in G

CUI TINGTING

Examples of groups and non-groups

- ▶ Groups
 - $< \mathbb{Z}, +>, < \mathbb{Q}, +>, < \mathbb{R}, +>, < \mathbb{C}, +>$
 - $< \mathbb{Q} \setminus \{0\}, \cdot>, < \mathbb{R} \setminus \{0\}, \cdot>, < \mathbb{C} \setminus \{0\}, \cdot>$
- ► Non-groups
 - $\langle N, + \rangle$: no neutral element, no inverses
 - $\langle \mathbb{Z} \setminus \{0\}, \cdot \rangle$: elements without inverse
 - $< \mathbb{Q}, \cdot >$: zero has no inverse

Addition modulo n is a group

- ▶ Notation: $\langle \mathbb{Z}/n\mathbb{Z}, + \rangle$
 - the set $\langle \mathbb{Z}/n\mathbb{Z}, + \rangle$ with operation modular addition +
 - if operation is clear from the context, denoted as $\mathbb{Z}/n\mathbb{Z}$
- satisfies all required group properties and is abelian
- $ightharpoonup < \mathbb{Z}/n\mathbb{Z}, +>$ is a group of order n

Multiplication modulo n is a group?

- ▶ Notation: $\langle \mathbb{Z}/n\mathbb{Z}, \times \rangle$
- ▶ 0 has no inverse, so $< \mathbb{Z}/n\mathbb{Z}, \times >$ is not a group
- ▶ maybe removing 0 may fix the problem?

Multiplication table, e.g., for n = 7:

$\mathbb{Z}/7\mathbb{Z}$	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Cyclic behaviour in finite groups

- ▶ Let $a \in A$ with $\langle A, \star \rangle$ a group
 - Consider the sequence:
 - i = 1 : a
 - \bullet $i=2:a\star a$

 - i = n : [n]a (additive) or a^n (multiplicative)
- ▶ In a finite group $\langle A, \star \rangle$:
 - $\forall a \in A$ this sequence is periodic
 - period of this sequence: order of a, denoted ord(a)

Terminology: Order of a group element

The order of a group element a, denoted ord< a >, is the smallest integer k>0 such that $a^k=1$ (multiplicative) or k[a]=0 (additive)

Cyclic groups and generators

- \blacktriangleright Let $g \in \langle A, \star \rangle$
- ightharpoonup Consider the set $[0]g, [1]g, [2]g, \dots$
- ▶ This is a group, called a cyclic group, denoted: $\langle g \rangle$
 - Composition law: $[i]g + [j]g = [i + j \mod \text{ord} < g >]g$
 - Neutral element [0]g
 - Inverse of $[i]g : [\operatorname{ord} < g > -i]g$
- ▶ g is called the generator of this cyclic group
- ▶ Example of cyclic group $\langle \mathbb{Z}/n\mathbb{Z}, + \rangle$
 - generator: g = 1
 - [i]g = i

A subset B of A that is also a group (under the same operation) is called a subgroup of A.

- \blacktriangleright (B,\star) is a subgroup of (A,\star) if
 - B is a subset of A
 - \blacksquare (B,\star) is a group

Lagrange's Theorem

If (B, \star) is a subgroup of (A, \star) : #B divides #A

Case of cyclic Subgroup: $\forall a \in A : \langle a \rangle$ is a subgroup of (A, \star)

Corollary (for order of elements)

For any element $a \in A : \operatorname{ord}(a)$ divedes #A

CUI TINGTING

Example of orders: $<\mathbb{Z}/21\mathbb{Z},+>$

- ▶ Order of $\mathbb{Z}/21\mathbb{Z}$: 21
- ▶ Order of 0: 1
- ▶ Order of 1: 21
- ▶ Order of 2: 21
- ▶ Order of 3: 7
- **...**

Find the smallest i such that $i \cdot x$ is a multiple of n

Fact: order of an element in $< \mathbb{Z}/n\mathbb{Z}, +>$

ord (x) = n/gcd(n,x) with gcd(n,x): the greatest common divisor of x and n

- 1 Public-Key Cryptography: the idea
- 2 Modular arithmetic
- 3 Further Finite Groups
- 4 Essential Number Theory
- 5 Discrete logarithm

Prime numbers and factorization

- A number is prime if it is divisible only by 1 and by itself
- Each number can be written in a unique way as product of primes (possibly multiple times), as in:

$$30 = 2 \cdot 3 \cdot 5$$
 $100 = 2^2 \cdot 5^5$ $12345 = 3 \cdot 5 \cdot 823$

- Finding the prime number factorization is a computationally hard problem
 - Easy for $143 = 11 \cdot 13$ but already hard for $2021 = 43 \cdot 47$
 - Recently, factoring a 250-digit (829 bits) number $n = p \cdot q$ took 2700 Intel Xeon Gold 6130 CPU core-years (2.1GHz)
- One can base public-key cryptosystem on the hardness of factoring

CUI TINGTING

Greatest common divisor

Definition:

gcd(n,m): greatest integer k that divides both n and m

Examples:

$$gcd(20, 15) = 5$$
 $gcd(78, 12) = 6$ $gcd(15, 8) = 1$

- Properties:
 - $\blacksquare gcd(n,m) = gcd(m,n)$
 - \mathbf{p} qcd(n,m) = qcd(n,-m)
 - $\mathbf{g} cd(n,0) = n$

Terminology: relatively prime (or coprime)

If gcd(n, m) = 1, one calls n, m relatively prime or coprime

Euclidean Algorithm

```
Property (assume n > m > 0):
  \mathbf{g} cd(n,m) = qcd(m,n \mod m)
This can be applied iteratively until one of arguments is 0
    gcd(171,111) = gcd(111,171 \mod 111) = gcd(111,60)
                  = \gcd(60,111 \mod 60) = \gcd(60,51)
                  = \gcd(51,60 \mod 51) = \gcd(51,9)
                  = \gcd((9.51 \mod 9) = \gcd(9.6)
                  = \gcd((6,9 \mod 6) = \gcd(6,3)
                  = \gcd((3,6 \mod 3) = \gcd(3,0) = 3
Variant allowing negative numbers :
    gcd(171,111) = gcd(111,171 \mod 111) = gcd(111,-51)
                  = \gcd(51,111 \mod 51) = \gcd(51,9)
                  = \gcd(9,51 \mod 9) = \gcd(9,-3)
                  = \gcd((3.9 \mod 3) = \gcd(3.0) = 3
```

CUI TINGTING

Extended Euclidean Algorithm

The extended Euclidean algorithm returns a pair $x, y \in \mathbb{Z}$ with $n \cdot x + m \cdot y = gcd(n, m)$

Our earlier example:

$$\begin{array}{rcl}
-51 & = & 171 - 2 \cdot 111 \\
9 & = & 111 + 2 \cdot (-51) \\
3 & = & (-51) + 6 \cdot 9 \\
0 & = & (-9) + 3 \cdot 3
\end{array}$$

And now backward substitution:

$$3 = (-51) + 6 \cdot 9$$

$$3 = (-51) + 6 \cdot (111 + 2 \cdot (-51))$$

$$3 = (-51) + 6 \cdot 111 + 12 \cdot (-51)$$

$$3 = 6 \cdot 111 + 13 \cdot (-51)$$

$$3 = 6 \cdot 111 + 13 \cdot (171 - 2 \cdot 111)$$

$$3 = 6 \cdot 111 + 13 \cdot 171 - 26 \cdot 111$$

$$3 = 13 \cdot 171 - 20 \cdot 111$$

< □ > < □ > < ≧ > CUI TINGTING

Invertibility criterion

m has multiplicative inverse modulo n (i.e., in $\mathbb{Z}/n\mathbb{Z}$) iff $\gcd(m,n) = 1$

Note: you can compute inverse with extended Euclidean algorithm!

Corollary

For p a prime, every non-zero $m \in \mathbb{Z}/p\mathbb{Z}$ has an inverse.

Euler's Phi Function

how many numbers in \mathbb{Z}_m are relatively prime to m?

Euler's Phi Function

The number of integers in \mathbb{Z}_m relatively prime to m is denoted by $\Phi(m)$.

Example 1

Let m=6. The associated set is $\mathbb{Z}_6=\{0,1,2,3,4,5\}$. then $\Phi(6) = ?$

Example 2

Let m=5. The associated set is $\mathbb{Z}_5=\{0,1,2,3,4,\}$. then $\Phi(5) = ?$

CUI TINGTING School of Cypberspace

Euler's Phi Function

Theorem 3

Let m have the following canonical factorization

$$m = p_1^{e_1} \cdot p_2^{e_2} \cdots p_n^{e_n},$$

where the p_i are distinct prime numbers and e_i are positive integers, then

$$\Phi(m) = \prod_{i=1}^{n} (p_i^{e_i} - p_i^{e_i-1})$$

Example 4

Let
$$m = 240$$
, so $\Phi(m) = ?$

Fermat's Little Theorem

Theorem 5 (Fermat's Little Theorem)

Let a be an integer and p be a prime, then:

$$a^p \equiv a \pmod{p}$$
.

Especially, in finite fields GF(p), The theorem can be stated in the form:

$$a^{p-1} \equiv 1 \pmod{p}$$
.

furthermore.

$$a^{-1} \equiv a^{p-2} \pmod{p}$$
.

Theorem 6 (Euler)

Let a and m be integers with gcd(a, m) = 1, then:

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$
.

Example

Calculate $2^{2019} \pmod{107}$

- 1 Public-Key Cryptography: the idea
- 2 Modular arithmetic
- 3 Further Finite Groups
- 4 Essential Number Theory
- 5 Discrete logarithm

Multiplicative prime groups

 $(\mathbb{Z}/p\mathbb{Z})^*$ is a circle group of order p-1

Alternative way of seeing it:

- Find a generator $g \in (\mathbb{Z}/p\mathbb{Z})^*$
- Write elements as power of generator: q^i
- Multiplication: find c such that $q^c = q^a \times q^b$
- Clearly: $q^a \times q^b = q^{a+b} = q^{a+b \mod p-1}$
- \blacksquare So $c = a + b \mod p 1$

 $(\mathbb{Z}/p\mathbb{Z})^*$ is just $\mathbb{Z}/(p-1)\mathbb{Z}$ in disguise!

These groups are isomorphic, such as $\langle (\mathbb{Z}/23\mathbb{Z})^*, \times \rangle$ and

$$<(\mathbb{Z}/22\mathbb{Z}),+>$$

4 □ ▶ 4 □ ▶ 4 □ ▶ 4

CUI TINGTING School of Cypberspace

Properties of multiplication in $\langle G \rangle$

- If $A, B \in \langle G \rangle$ then $A \times B \in \langle G \rangle$
- If the order of G modulo p is q, then
 - for any integer $x:G^x=G^{x \mod q}$
 - $G^q = G^0 = 1$
 - $A \times B = G^a \times G^b = G^{a+b} = G^{a+b \mod q}$

Correspondence between $\langle G \rangle$ and $\mathbb{Z}/q\mathbb{Z}$

For every $A \in \langle G \rangle$ there is a number $a \in \mathbb{Z}/q\mathbb{Z}$ such that $A = G^a$

- We call a the exponent of A
- We denote elements of $\langle G \rangle$ as X and their exponents as x
- There is a one-to-one mapping between $\mathbb{Z}/q\mathbb{Z}$ and $\langle G \rangle$

For a black element $i \in \mathbb{Z}/16\mathbb{Z}$, we have a blue element $3^i \in (\mathbb{Z}/16\mathbb{Z})^*$

CUI TINGTING

Any cyclic group $\langle g \rangle$ is isomorphic to $\mathbb{Z}/ord(g)\mathbb{Z}$

Here $g = 8 \in (\mathbb{Z}/103\mathbb{Z})^*$ and ord(g) = 17For each $i \in \mathbb{Z}/17\mathbb{Z}$ we have $8^i \in (\mathbb{Z}/103\mathbb{Z})^*$

CLI TINGTING

For each blue element $3^i \in \langle 3 \rangle$ we have a black element $i \in \mathbb{Z}/16\mathbb{Z}$

- $lacksquare C = A \times B = A \cdot B \mod 17$ maps to $c = a + b \mod 16$
- $lackbox{ } C=A^e \ mod \ 17 \ ext{maps to c} = \mathbf{a} \cdot \mathbf{e} \ ext{mod} \ 16$

CUI TINGTING School of Cypberspace

- **given** x, compute X such that $X = 3^x \mod 17$: exponentiation
- given X, compute x such that $X = 3^x \mod 17$: discrete log
- exponentiation is easy but discrete log is hard in general

CUI TINGTING School of Cypberspace

Thanks & Questions