夏学期第四周作业参考答案

第一题 5-15 设系统的框图如图 5-44 所示。

- (1) 绘制 α =0.5 时的根轨迹;
- (2) 求 α =0.5, K=10 时的系统的闭环极点与相应的 ζ 值;
- (3) 求在 K=1 时, α 分别等于 0, 0.5, 4 的阶跃响应的 σ %与 T_s ,并讨论 α 值大小对 动态性能的影响。

图 5-44 题 5-15 系统框图

解: 系统的特征方程 $s^2 + s + k(1 + \alpha s) = 0$

当
$$\alpha = 0.5$$
时有:1+ $\frac{0.5k(s+2)}{s(s+1)} = 0$

- (1) $G_e(s)$ 中开环极点: $S_1 = 0$ $S_2 = -1$; 开环零点为: $S_3 = -2$
- (2) 根轨迹关于实轴对称,实轴上的根轨迹区间为 $(-\infty, -2)$ $\bigcup (-1,0)$
- (3) 渐进线有一条,为实轴

(4): 出射角:
$$s_1 = 0$$
 $\varphi_1 = 180^\circ$ $s_2 = -1$ $\varphi_2 = 0^\circ$

(5): 与虚轴的交点

有其特征方程: 把j ω_0 带入 $s^2 + (2+K\alpha)s + K = 0$

有实部虚部分别相等
$$K-\omega_0^2=0$$
 可得: $\omega_0=0$; K=0

(6) 可能的分离点:

$$b(s)\frac{da(s)}{ds} - a(s)\frac{db(s)}{ds} = 0$$

已知:
$$a(s) = s^2 + s$$
, $b(s) = 0.5S+1$, 入解得: $s_{1,2} = -2 \pm \sqrt{2}$

经相位条件检验可知: $s_{1,2}$ 满足条件。所以分离点为: $s_{1,2} = -2 \pm \sqrt{2}$ 综上所述,可得根轨迹草图为:

(2) 当 α =0.5,K=10 时 特征方程 s^2 +6s+10=0

极点
$$s_{1,2} = -3 \pm j$$

令S=-
$$\alpha \pm j\beta$$
 则有 α =3; β =1
 $\alpha = \zeta \omega_0 = 3$

$$\beta = \omega_0 \sqrt{1-\zeta^2} = 1$$
 解之得: $\zeta = \frac{3}{\sqrt{10}} = 0.949$

(3) 当K=1时
$$\Phi$$
 (S) = $\frac{1}{S^2 + (1+\alpha) S+1}$

当:
$$\alpha = 0$$
时

$$\Phi$$
 (S) = $\frac{1}{S^2 + S + 1}$
所以:
 $2\zeta\omega_0 = 1$
 $\omega_0^2 = 1$ 解得:
 $\zeta = 0.5$; $\omega_0 = 1$

$$\sigma\% = e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}} \times 100\% = 16.3\%$$

$$t_s = \frac{3}{\zeta \omega_0} = 6$$

当:
$$\alpha = 0.5$$
时

$$\Phi (S) = \frac{1}{S^2 + 1.5S + 1}$$

所以:

$$2\zeta\omega_0 = 1.5$$

$$\omega_0^2 = 1$$
 解得: $\zeta = 0.75$; $\omega_0 = 1$

$$\zeta = 0.75$$
: $\omega_0 = 1$

$$\sigma\% = e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}} \times 100\% = 2.8\%$$

$$t_s = \frac{3}{\zeta \omega_0} = 4$$

$$\stackrel{\underline{\mathsf{M}}}{=}$$
: $\alpha = 4$ 时 Φ (S) $= \frac{1}{S^2 + 5S + 1}$

所以:
$$2\zeta\omega_0 = 5$$

$$\omega_0^2 = 1$$
 解得: $\zeta = 2.5$; $\omega_0 = 1$

此时系统不振荡。

$$\sigma$$
%=0,主导极点 $s = \frac{-5 + \sqrt{21}}{2}$, 对应时间常数 $T = 4.8$, $t_s = 3T = 14.4$

第二题 5-17 设负反馈控制系统中,前向通道传递函数 $G(s) = \frac{K^*}{s^2(s+2)(s+5)}$ $(K^*>0)$,

H(s) = 1

- (1) 概略绘出系统的根轨迹图,并判断闭环系统的稳定性;
- (2) 如果改变反馈通道的传递函数, 使 H(s)=1+2s, 试判断 H(s)改变后的系统稳定性, 研究由于 H(s)改变所产生的效应。

解: (1) 绘制根轨迹图

系统无开环有限零点,系统的开环有限极点为: $p_1=p_2=0$, $p_3=-2$, $p_4=-5$

实轴上根轨迹区间为: [-5, -2]

根轨迹有 4 条渐近线,且 $\sigma_a = -1.75$, $\varphi_a = \pm 45^{\circ}, \pm 135^{\circ}$

根轨迹的分离点 d: $\frac{1}{d} + \frac{1}{d} + \frac{1}{d+2} + \frac{1}{d+5} = 0$, d=-4, 分离角 $\frac{(2k+1)\pi}{l} = \pm \frac{\pi}{2}$

概略绘制系统根轨迹:

(2) H(s)=1+2s 时, 分析系统根轨迹

系统开环传递函数为: $G(s)H(s) = \frac{K_1^*(s+0.5)}{s^2(s+2)(s+5)}$, 其中 $K_1^* = 2K^*$, H(s)的改变使系统增加

了一个开环零点。

系统开环有限零点: z_1 =-0.5,系统的开环有限极点为: p_1 = p_2 =0, p_3 =-2, p_4 =-5 实轴上的根轨迹区间为: $(-\infty, -5)$,[-2, -0.5]

根轨迹有 3 条渐近线, $\sigma_a = \frac{\sum_{i=1}^4 p_i - z_1}{3} = -2.17$, $\varphi_a = \frac{(2k+1)\pi}{3} = \pm \frac{\pi}{3}$, π

根轨迹与虚轴的交点:系统闭环特征方程为 $D(s) = s^4 + 7s^3 + 10s^2 + 2K^*s + K^* = 0$,由劳思表

可解得根轨迹与虚轴得交点为: $s_{1,2} = \pm j2.55, K^* = 22.75$ 。

概略绘制系统根轨迹如下:

由图知: 当 0<K*<22.75 时, 闭环系统稳定。

附加的开环零点 z_1 =-0.5,使系统的根轨迹向 s 平面的左半平面弯曲,因而闭环系统可在 K* 的一定范围内稳定,改善了系统的稳定性。

第三题 5-22 设负反馈控制系统的前向通道传递函数 $G_x(s)$ 和反馈通道传递函数 $H_s(s)$ 分别为

$$G_x(s) = \frac{K_x}{s(s+1)(s+5)}; \qquad H_s(s) = \frac{K_h(s+5)}{s+2}$$

- (1) 确定使闭环系统单位阶跃响应的稳态输出为 1 的 K_h 值;
- (2) 确定使闭环复数极点具有 $\zeta=0.65$ 的 K_xK_h 值;
- (3) 计算系统的 M_p , T_p , T_s 。

解: 开环传递函数为:

$$G_x(s)H_s(s) = \frac{K_x}{s(s+1)(s+5)} \cdot \frac{K_h(s+5)}{s+2} = \frac{K_xK_h(s+5)}{s(s+1)(s+5)(s+2)}$$
$$= \frac{K_xK_h}{s(s+1)(s+2)}; \text{ note: -5 is a closed-loop pole}$$

闭环传递函数 C(s)/R(s):

$$\frac{C(s)}{R(s)} = \frac{G_x(s)}{1 + G_x(s)H(s)} = \frac{\frac{K_x}{s(s+1)(s+5)}}{1 + \frac{K_xK_h(s+5)}{s(s+1)(s+5)(s+2)}} = \frac{K_x(s+2)}{(s+5)[s(s+1)(s+2) + K_xK_h]}$$

(1) K_h 对单位阶跃响应稳态输出为 $1 c(\infty)=1$

$$C(\infty) = \lim_{s \to 0} sC(s) = \lim_{s \to 0} \frac{K_x(s+2)}{(s+5)[s(s+1)(s+2) + K_x K_h]} = \frac{2K_x}{5K_x K_h} = \frac{2}{5K_h} = 1$$

因此, K_h=0.4

- (2) 绘制根轨迹确定 ζ=0.65 的根
 - (1) 开环极点: n=3, p1=0, p2=-1, p3=-2 开环零点: w=0
 - (2) 实轴上的根轨迹: [0, -1], [-2, -∞]

(3) 渐近线:
$$\gamma = \frac{(1+2n)\pi}{3} = \pm 60^{\circ}, \pi$$

$$\sigma_0 = \frac{\sum_{i=1}^3 \operatorname{Re}(p_i)}{3} = -1$$

(4) 实轴上的分离点:
$$\frac{1}{d} + \frac{1}{d+1} + \frac{1}{d+2} = 0 \Rightarrow \begin{cases} d_1 = -0.423 \\ d_2 = -1.577 (abandon) \end{cases}$$

(5) 与虚轴的交点:

$$1 + G(jw)H(jw) = 0 \Rightarrow \begin{cases} w^3 = w \\ K_x K_h = 3w^2 \end{cases} \Rightarrow \begin{cases} w = \pm\sqrt{2} \\ K_x K_h = 6 \end{cases}$$

对
$$\zeta = 0.65$$
, $\eta = \cos^{-1} \zeta = \cos^{-1} 0.65 = 49.5^{\circ}$

共轭复根为 -0.368+j0.431, -0.368-j0.431 有幅值条件计算 $K_x K_h$:

$$K_x K_h = |s - p_1| \cdot |s - p_2| \cdot |s - p_3| = 0.731$$

(3) 由共轭复根 -0.368+j0.431, -0.368-j0.431 可以求出

$$T_s = \frac{3.5}{\zeta \omega_n} = \frac{3.5}{0.368} = 9.51$$
 $\sigma\% = 100e^{-\pi\zeta/\sqrt{1-\zeta^2}}\% = 6.8\%$

$$M_p = 1 + 0.068 = 1.068$$

$$t_p = \frac{\pi}{\omega_d} = \frac{\pi}{0.431} = 7.285$$