Eine Woche, ein Beispiel 9.3. field extension with RS

Goal: construct an equivalence between two categories.

$$RS^{cc} = \begin{cases} Obj: cpt conn RS \\ Mor: non-const holo morphisms \end{cases} \longleftrightarrow \begin{cases} Obj: F/C \text{ field ext s.t.} \\ trdeg_CF = 1 \\ F/C \text{ f.g. as a field} \end{cases} = \text{field}_{C(t)/C}^{op}$$

$$Mor: morphism \text{ as fields/C} \end{cases}$$

$$M(Y)$$

$$\downarrow f$$

$$X$$

$$M(X)$$

which obeys the following slogan:

(ramified) covering \approx (function) field extension

1. For requiring F/C f.g. as a field, we avoid examples like C(t). Do they corresponds to some non-cpt Riemann surface? If so, how to enlarge the category RS ??

2. field cutve means fields over C which are fin ext of C(t) abstractly;

morphisms don't need to fix C(t). Do you have a better name for RS and field a (+)/c?

https://math.stackexchange.com/questions/633628/threefold-category-equivalence-algebraic-curves-riemann-surfaces-and-fields-of https://math.stackexchange.com/questions/1286286/link-between-riemann-surfaces-and-galois-theory

- 1. field of meromorphic functions 2. Galois covering
- 3 valuations
- 4. quadratic extension of C(x): hyperelliptic curve
- 5. miscellaneous.

```
1. field of meromorphic functions
Def. For X RS,
                             M(X) = \{ \text{meromorphic fcts on } X \}

= \{ f : X \longrightarrow | P' \text{ holomorphic } \} - \{ 1_{\infty} \}

\frac{x \text{ cpt}}{\text{conn}} \{ \text{rational fcts on } X \}
Ex Verify that
                            \mathcal{M}(\mathbb{CP}^1) \cong \mathbb{C}(z)
                           M(C/2[i]) = Frac (C[x,y]/(y2-x(x+1)(x-1)))
       Later we will show that, for X ERSCC,
                       \infty + > [(x) \hookrightarrow (X)M) to (X)M \longleftrightarrow (x) \supset E
Ex. For
                   f: \mathbb{CP}' \longrightarrow \mathbb{CP}' z \mapsto z^3
      compute
              1) f^*: \mathbb{C}(T) \hookrightarrow \mathbb{C}(S) [\mathbb{C}(S): \mathbb{C}(T)] & a \mathbb{C}(T)-basis
             2) Gal (C(S)/C(T))
             3) \mathbb{C}(S)^{2/32}
             4) Aut (CP')
Ex. For
                       f: \mathbb{CP}' \longrightarrow \mathbb{CP}' z \longmapsto z + \frac{1}{z},
        do the same work.
Ex. For
                        f: \mathbb{CP}' \longrightarrow \mathbb{CP}' z \longmapsto z^3 - 3z
        compute the same stuff. Why isn't C(S)/C(\tau) Galois this time?
```

Prop. For $d \in \mathbb{N}_{>0}$, $f: Y \to X$ proper holo morphism between conn RSs, $[\mathcal{M}(Y):f^*\mathcal{M}(X)]=d$

Cor. For X cpt conn, $\exists \ C(x) \hookrightarrow M(x) \quad \text{s.t.} \ [M(x): C(x)] < +\infty$ In ptc, F/c fig as a field, trdege F = 1.

To show the proposition, one need the following black box to find a basis. Black box (meromorphic fcts seperate points) $X: RS, x, y \in X \times y$, then

 $\exists g \in \mathcal{M}(X)$ st. $g(x) \neq g(y)$ $g(x), g(y) \in \mathbb{C}$.

 $\exists g \in M(x)$ s.t. $ord_x g = -1$, g(y) = 0. (stronger)

I prefer using Riemann-Roch when X is cpt, and Stein manifold when X is not.

Ex. Using the black box, show that, for X. RS, {x,,..,xn}∈X, ∃g∈M(X) st. ord, g = -1, $g(x_i) \in \mathbb{C}$ $\forall i \in \{2, ..., n\}$ $g(x_i) \neq g(x_j)$ $\forall i \neq j, i, j \in \{2, ..., n\}$

Proof of prop [MIY]: $f^*M(X)$] $\geqslant d$: Fix $x_0 \in X$ s.t. $\#f^{-1}(x_0) = d$. Denote $f^{-1}(x_0) = \{y_1, \dots, y_d\}$. For each i, let $g_i \in \mathcal{M}(Y)$ be a meromorphic fct st. ordx, $g_i = -1$ $g_i(y_j) \in \mathbb{C}$ $\forall j \neq i$ then $\{g_1, \dots, g_d\} \subseteq M(Y)$ are $f^*M(X)$ -linear independent. Check ordy ($\sum f_i q_i$) \approx ordy f_i

 $[\mathcal{M}(Y):f^*\mathcal{M}(X)] \leq d$ Vg EM(Y), need to find a, ef*M(X) s.t. $g^{d} + a_{d-1}g^{d-1} + \cdots + a_{o} = 0$ in M(Y)The fcts $Q_i(z) = (-1)^i \sum_{\substack{\{k_1,\dots,k_1 \in \{i,\dots,d\}\}}} g(z_{k_1}) \cdots g(z_{k_d})$

f'(f(z)) = {z, ..., zd}, multiplicity is counted

satisfy the conditions.

Use Riemann extension theorem to show a (2) ef M(X), see [Donaldson, p148]. By primitive element theorem, $[M(Y):f^*M(X)] \leq d$.