ECE 2300J Recitation Class 2

Renxiang Guan

Pre-class

- Quiz this Thursday! (Usually start around 8:00pm)
 - Content: Chap.2
 - Format: 2~3 questions with simple calculation!
 - Online quiz regulations:
 - At least one camara on showing both computer screen and yourself!
 - Have extra 5 mins to submit. No need to rush.
 - I will be supervising the entire process and to help you set up!

Good luck on the first quiz!

2.1 Recap-Useful Vector theorems

Divergence Theorem:

2.1 Recap-Useful Vector theorems

Stokes Theorem:

2.1 Recap-Useful Vector theorems

Null identities:

Ex.1 Theorems application

• (HW1-5) For vector function $\mathbf{A} = \mathbf{a_r} r^2 + \mathbf{a_z} 2z$, verify the divergence theorem for the circular cylindrical region enclosed by r = 5, z = 0, and z = 4.

Ex.1 Theorems application Cont.

2.2 Electrostatics

Key Requirements:

Field density:

2.2 Electrostatics

Strength-Colomb' s Law

2.2.1 Maxwell's Description

■ Gauss' s Law:

2.2.1 Maxwell's Description

Conservativeness:

Ex.2 Electrostatics

A total charge Q is put on a thin spherical shell of radius b. Determine the electric field intensity at an arbitrary point inside the shell

Ex.2 Electrostatics Cont.

A total charge Q is put on a thin spherical shell of radius b. Determine the electric field intensity at an arbitrary point inside the shell

Ex.2 Electrostatics Cont.

A total charge Q is put on a thin spherical shell of radius b. Determine the electric field intensity at an arbitrary point inside the shell

2.2.2 Dipole

Definition:

■ E.g.:

2.2.2 Dipole

■ Field:

– Vector Form:

– Spherical coordination:

Moment:

2.2.3 Continuous Distributed Charges

Differentiated element:

2.2.3 Continuous Distributed Charges

■ Line:

Surface:

Volume:

2.2.4 Application of Gauss's Law

When to use?

Example:

Determine the electric field intensity of an infinitely long, straight, line charge of a uniform density ρ_{ℓ} in air.

Ex.3 Method 1 – Integration

Determine the electric field intensity of an infinitely long, straight, line charge of a uniform density ρ_{ℓ} in air.

Ex.3 Method 2 – Gauss' s Law

Determine the electric field intensity of an infinitely long, straight, line charge of a uniform density ρ_{ℓ} in air.

2.2.4 Application of Gauss's Law

Some Important Results:

different models	E(magnitude)
infinitely long, line charge	$E = \frac{\rho_{\ell}}{2\pi r \epsilon_0}$
infinite planar charge	$E = \frac{\rho_s}{2\epsilon_0}$
uniform spherical surface charge with radius R	$\begin{cases} E = 0(r < R) \\ E = \frac{Q}{4\pi r^2 \epsilon_0} (r > R) \end{cases}$
uniform sphere charge with radius R	$\begin{cases} E = \frac{Qr}{4\pi R^3}(r < R) \\ E = \frac{Q}{4\pi r^2 \epsilon_0}(r > R) \end{cases}$
infinitely long, cylindrical charge with radius R	$\begin{cases} E = \frac{\rho_v r}{2\epsilon_0} (r < R) \\ E = \frac{\rho_v R^2}{2r\epsilon_0} (r > R) \end{cases}$

Thank You

Credit to Deng Naihao for this slides & information