Homework 6 – Chemical Equilibrium

Name:	
Exercise 6A.7(a)	(5 points)
Establish th	e relation between K and K_C for the reaction: $H_2CO(g) \longleftrightarrow CO(g) + H_2(g)$

Exercise 6A.10(a) (5 points)

The standard Gibbs energy of formation of $\mathrm{NH_3(g)}$ is $-16.5~^{kJ}/_{mol}$ at 298~K. What is the reaction Gibbs energy when the partial pressures of the $\mathrm{N_2}$, $\mathrm{H_2}$, and $\mathrm{NH_3}$ (treated as perfect gases) are 3.0~bar, 1.0~bar, and 4.0~bar, respectively? What is the spontaneous direction of the reaction in this case?

Exercise 6B.1(a) (5 points)

The standard reaction enthalpy of Zn(s) + H₂O(g) \longleftrightarrow ZnO(s) + H₂(g) is approximately constant at +224 $^{kJ}/mol$ from 920 K up to 1280 K. The standard reaction Gibbs energy is +33 $^{kJ}/mol$ at 1280 K. Estimate the temperature at which the equilibrium constant becomes greater than 1.

Exercise 6C.2(a) (15 points)

Devise cells in which the following are the reactions and calculate the standard cell potential in each case. Write your devised cell using line notation (e.g. $Cd|Cd(NO_3)_2(aq)||NiCl_2(aq)|Ni)$

1.
$$Zn(s) + CuSO_4(aq) \longrightarrow ZnSO_4(aq) + Cu(s)$$

2.
$$2 \operatorname{AgCl}(s) + \operatorname{H}_2(g) \longrightarrow 2 \operatorname{HCl}(aq) + a \operatorname{Ag}(s)$$

3.
$$2 H_2(g) + O_2(g) \longrightarrow 2 H_2O(l)$$

Exercise 6C.3(a) (5 points)

Use the Debye-Hückel limiting law and the Nernst equation to estimate the potential of the cell Ag|AgBr(s)|KBr(aq, 0.050~mol/kg)||Cd(NO $_3$) $_2$ (aq, 0.010~mol/kg)|Cd at $25^{\circ}C$.

Exercise 6D.1(a) (10 points)

Calculate equilibrium constants of the following reactions at $25^{\circ}C$ from standard potential data:

1.
$$Sn(s) + Sn^{4+}(aq) \iff 2 Sn^{2+}(aq)$$

2.
$$Sn(s) + 2 AgCl(s) \iff SnCl_2(aq) + 2 Ag(s)$$

Pioneers

By Carol Lynn Pearson

My people were Mormon pioneers. Is the blood still good? They stood in awe as truth Flew by like a dove And dropped a feather in the West. Where truth flies you follow If you are a pioneer. I have searched the skies And now and then Another feather has fallen. I have packed the handcart again Packed it with the precious things And thrown away the rest. I will sing by the fires at night Out there on uncharted ground Where I am my own captain of tens Where I blow the bugle Bring myself to morning prayer Map out the miles And never know when or where Or if at all I will finally say, "This is the place," I face the plains On a good day for walking. The sun rises And the mist clears. I will be all right: My people were Mormon Pioneers.