Week 5 – MAC Contd

Internet Technologies COMP90007

Ethernet: A Famous MAC Sub-Layer Case Study

- Classical Ethernet
- Switched Ethernet

Classic Ethernet

- Each type of Ethernet has a maximum cable length per segment.
 - Multiple cable lengths can be connected by repeaters (a physical device which receives, amplifies and retransmits signals in both directions.)

Ethernet MAC

- MAC protocol is 1-persistent CSMA/CD
 - Random delay (backoff) after collision is computed with BEB (Binary Exponential Backoff, i.e., random number 0 and 2ⁱ 1)

Ethernet Frame Format

Frame format is still used with modern Ethernet

1EEE 802.3

Preamble (7B) – synchronisation between sender and receiver

Start of Frame (1B) – FLAG bytes

Dest. & Source addresses – to identify who send, who receive

Type & Length (2B) – specifies which process to give the frame to (0x0800 means data contains IPv4)

Pad(0~46B) – Minimum size of the message of the Ethernet – 64 Bytes CRC (4B) – 32 bits checksum

MAC ADDRESSING

- Source and Destination Addressing can be done at a local or global levels
- The MAC Address provides the unique identifier for a physical interface
- MAC Address is a 48-bit number encoded in the frame
 - □ eg 00:02:2D:66:7C:2C

MAC ADDRESS

Ethernet Performance

Definition

Channel Efficiency =
$$\frac{1}{1 + 2BLe/cF}$$

- F: frame length
- B : bandwidth
- L : cable length
- o c : speed of light
- optimal case of e contention slots per frame
- When cF is large, the channel efficiency will be high.
- Increasing network bandwidth or distance (BL) reduces the efficiency for a given frame size!!

Switched Ethernet

- Hubs wire all lines into a single CSMA/CD domain
- Switches isolate each port to a separate domain
 - Much greater throughput for multiple ports
 - No need for CSMA/CD with full-duplex lines

