PART 2 Date Page (portz) Porobabi lity 29/12/20 · Prediction of outcome (likelihood of an event occurring) Event: specific outcore (combination of outcomes 201 = = = 0.2 o.2 0.5

o o.66

obsolute certainty

of the event NOT occurring to absolute certainty of event occurring Definition:
A - event

P(A) - probability of A. P(A) = Pereffered (favourable)

all (sample space) independent events $P(A \text{ and } B) = P(A) \cdot P(B)$ Eg: El (oce of spode) = Moce). P(spode)

Expected Values

· overage outcome we expect if we sum an experiment many

times .

Ex: fdipping a coin

toud : flif & necord outcome

experiment -> multiple brisk

Ex: coin toss x 20 times = 20 outcome

= 1 experiment with ro brish

Experimental brobabilities Vs Teoretical (true) probabilities

· Love when time probability o apparan equal to experimental probability

is not known.

· esy to compute | · too many coses (condition to take care of

P(A) = successful trials

Expected value of = E(A) = outcome we expect to occur when we wan an exp.

7 Categorical Outcomes $E(A) = P(A) \cdot n$

Ex: desawing and yearde from 20 touch from a leck of carde P(A) = 0.25

E(A) = 0.25 × 20 = 5

We expect 5 grodes in 20 touch. (no quarantee)

-> Nunerical Outcomes

 $E(A) = EP(A) \cdot n(A) = Exifi$

E(X) = A - R(A) + B - R(B) + C - R(C) P(A) = 0.5 e P(B) = 0.4 e P(B) = 0.4 e P(B) = 0.4 e P(C) = 0.1 e P(C) = 0.1 e

= 0.5x10+0.4x20+0.1x100

= 5+8+10=23

· We can use expected values to make predictions about fature posed on post data.

Forequercy

P(A) = sum of top numbers of 2 dice

	1	2	, 3	. 4	, 3	5	6			
1	12	3	14	15		5/	7	1 6 p	wowahl	2
2	3	14	5	16,	17	18		d	rationes	
3	4	5	6	1	8	19	1	cossible	outomer	z 36
4	5	6	7	8	9	10	1			
5	6	7	8	9	10	11				
6	(7)	8	7	10	11	12				

$$P(7) = \frac{6}{36} = \frac{1}{6}$$

$$E(A) = P(z) \cdot 2 + P(3) \cdot 3 + P(4) \cdot 4 \cdot \cdot \cdot P(12) \cdot 12 = 7$$

 $P(E(A)) = P(7) = \frac{1}{6}$ o very untikely

