Also published as:

US6437947 (B1) DE19740769 (A1)

MAGNETIC DISK, MAGNETIC RECORDING AND REPRODUCING METHOD, AND MAGNETIC **DISK APPARATUS**

Patent number:

JP10255201

Publication date:

1998-09-25

Inventor:

UNO KOJI

Applicant:

FUJITSU LTD

Classification:

- International:

G11B5/012

- european:

Application number: JP19970063205 19970317

Priority number(s):

Abstract of JP10255201

PROBLEM TO BE SOLVED: To increase a recording density without reducing an S/N ratio of reproduced signals by overlapping a first recording region, having a track for recording at an azimuth angle equal to a prescribed value or less, with a track adjacent to a second recording region, having a track for recording at an azimuth angle equal to the prescribed value or more, by a value corresponding to a radius or more and setting respective track pitches at different values.

SOLUTION: When an actuator 1 rotates around a point O, respective angles between a head H and tracks T1-T3 on a magnetic disk 100 are different from each other based on a position of the head H on the magnetic disk 100. By setting a track pitch at an inner peripheral portion A on the magnetic disk 100 at a smaller value than that at an outer peripheral portion C and setting an effective track width at a sum of a width of a read head and a width of a dead space, adverse influence of crosstalk from an adjacent track is suppressed. At an intermediate portion B on the magnetic disk 100, a satisfactory S/N ratio of signals can be retained and a recording density can be improved even when a track pitch at that portion is set at a smaller value than that at the outer peripheral portion C.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-255201

(43)公開日 平成10年(1998) 9月25日

(51) Int.Cl. 6

識別記号

FΙ

G11B 5/012

G11B 5/012

審査請求 未請求 請求項の数34 OL (全 17 頁)

(21)出願番号

特願平9-63205

(22)出願日

平成9年(1997)3月17日

(71)出願人 000005223

富士通株式会社

神奈川県川崎市中原区上小田中4丁目1番

1号

(72)発明者 宇野 廣司

神奈川県川崎市中原区上小田中4丁目1番

1号 富士通株式会社内

(74)代理人 弁理士 伊東 忠彦

(54) 【発明の名称】 磁気ディスク、磁気記録再生方法及び磁気ディスク装置

(57) 【要約】

【課題】 磁気ディスク、磁気記録再生方法及び磁気ディスク装置に関し、再生信号のS/N比を低下させることなく磁気ディスクの記録密度を向上することを目的とする。

【解決手段】 アジマス角度が半径位置に応じて変化するヘッドで信号が記録再生される磁気ディスクであって、所定値以下のアジマス角度で記録されるトラックからなる第1の記録領域と、所定値より大きなアジマス角度で記録されるトラックからなる第2の記録領域と、隣接トラックが半径方向上重複している重複領域とを備え、第1の記録領域内のトラックピッチとは異なるように構成する。

ヘッドの磁気ディスク上の位置に応じたトラックに 対するアジマス角度を説明する図

1

【特許請求の範囲】

【請求項1】 アジマス角度が半径位置に応じて変化するヘッドで信号が記録再生される磁気ディスクであって、

所定値以下のアジマス角度で記録されるトラックからなる第1の記録領域と、

該所定値より大きなアジマス角度で記録されるトラック からなる第2の記録領域と、

隣接トラックが半径方向上重複している重複領域とを備え、

該第1の記録領域内のトラックピッチは第2の記録領域 内のトラックピッチとは異なる、磁気ディスク。

【請求項2】 隣接トラック間に設けられたデッドスペースを更に備え、前記重複領域の幅は、1つのトラックの一方の側に設けられた重複領域の幅とデッドスペースの幅との和と、該1つのトラックの他方の側に設けられた重複領域の幅とデッドスペースの幅との和のうち、小さい方の和に比例する、請求項1記載の磁気ディスク。

【請求項3】 前記第1の記録領域内の重複領域の幅は 第2の記録領域内の重複領域の幅とは異なる、請求項1²⁰ 又は2記載の磁気ディスク。

【請求項4】 前記トラックピッチは、前記アジマス角度に応じて前記第1の記録領域及び前記第2の記録領域のうち少なくとも1つの記録領域内で段階的又は連続的に変化する、請求項 $1\sim3$ のいずれか1項記載の磁気ディスク。

【請求項5】 アジマス角度が磁気ディスクの半径位置 に応じて変化するヘッドで信号を記録再生する磁気記録 再生方法であって、

該磁気ディスク上の第1の記録領域に対しては、所定値 30 以下のアジマス角度で信号を第1のトラックピッチのトラックに記録し、該第1の記録領域とは異なる該磁気ディスク上の第2の記録領域に対しては、該所定値より大きなアジマス角度で該第1のトラックピッチとは異なる第2のトラックピッチで信号を記録する第1のステップと、

該第1の記録領域からは、該所定値以下のアジマス角度 で信号をトラックから再生し、該第2の記録領域から は、該所定値より大きなアジマス角度でトラックから信 号を再生する第2のステップとを含み、40

該第1のステップは、少なくとも該第1の記録領域の一部で隣接トラックが半径方向上重複するように信号を各トラックに記録する、磁気記録再生方法。

【請求項6】 前記第1のステップは、隣接トラック間にデッドスペースが設けられるように信号を各トラックに記録し、前記重複領域の幅は、1つのトラックの一方の側に設けられた重複領域の幅とデッドスペースの幅との和と、該1つのトラックの他方の側に設けられた重複領域の幅とデッドスペースの幅との和のうち、小さい方の和に比例する、請求項5記載の磁気記録再生方法。

2

【請求項7】 前記第1のステップは、前記第1の記録 領域内の重複領域の幅が第2の記録領域内の重複領域の 幅とは異なるように信号を各トラックに記録する、請求 項5又は6記載の磁気記録再生方法。

【請求項8】 前記第1のステップは、前記トラックピッチが前記アジマス角度に応じて前記第1の記録領域及び前記第2の記録領域のうち少なくとも1つの記録領域内で段階的又は連続的に変化するように信号を各トラックに記録する、請求項5~7のいずれか1項記載の磁気記録再生方法。

【請求項9】 前記第1のステップは、大略半径方向上の幅が前記第2のステップが使用するリードヘッドより大きなライトヘッドを使用する、請求項 $5\sim8$ のいずれか1項記載の磁気記録再生方法。

【請求項10】 アジマス角度が磁気ディスクの半径位 置に応じて変化するヘッドで信号を記録再生する磁気記 録再生方法であって、

該磁気ディスク上の第1の記録領域に対しては、所定値以下のアジマス角度で信号を第1のトラックピッチのトラックに記録し、該第1の記録領域とは異なる該磁気ディスク上の第2の記録領域に対しては、該所定値より大きなアジマス角度で該第1のトラックピッチとは異なる第2のトラックピッチで信号を記録する第1のステップと

該第1の記録領域からは、該所定値以下のアジマス角度 で信号をトラックから再生し、該第2の記録領域から は、該所定値より大きなアジマス角度でトラックから信 号を再生する第2のステップとを含み、

該第2のステップは、該第1のステップが使用するライトへッドの中心に対して中心が大略半径方向上オフセットされたリードへッドを使用する、磁気記録再生方法。

【請求項11】 前記第1のステップは、隣接トラック間にデッドスペースが設けられるように信号を各トラックに記録し、前記重複領域の幅は、1つのトラックの一方の側に設けられた重複領域の幅とデッドスペースの幅との和と、該1つのトラックの他方の側に設けられた重複領域の幅とデッドスペースの幅との和のうち、小さい方の和に比例する、請求項10記載の磁気記録再生方法。

【請求項12】 前記第1のステップは、前記第1の記録領域内の重複領域の幅が第2の記録領域内の重複領域の幅とは異なるように信号を各トラックに記録する、請求項10又は11記載の磁気記録再生方法。

【請求項13】 前記第1のステップは、前記第1の記録領域内のトラックピッチが第2の記録領域内のトラックピッチより小さくなるように信号を各トラックに記録する、請求項10~12のいずれか1項記載の磁気記録再生方法。

【請求項14】 前記第1のステップは、大略半径方向 上の幅が前記第2のステップが使用するリードヘッドよ

り大きなライトヘッドを使用する、請求項10~13の いずれか1項記載の磁気記録再生方法。

【請求項15】 アジマス角度が磁気ディスクの半径位 置に応じて変化するヘッドで信号を記録再生する磁気記 録再生方法であって、

該磁気ディスク上の第1の記録領域に対しては、所定値 以下のアジマス角度で信号を第1のトラックピッチのト ラックに記録し、該第1の記録領域とは異なる該磁気デ ィスク上の第2の記録領域に対しては、該所定値より大 きなアジマス角度で該第1のトラックピッチより小さな 10 第2のトラックピッチで信号を記録する第1のステップ

該第1の記録領域からは、該所定値以下のアジマス角度 で信号をトラックから再生し、該第2の記録領域から は、該所定値より大きなアジマス角度でトラックから信 号を再生する第2のステップとを含む、磁気記録再生方

【請求項16】 前記第1のステップは、隣接トラック 間にデッドスペースが設けられるように信号を各トラッ クに記録し、前記重複領域の幅は、1つのトラックの一20 方の側に設けられた重複領域の幅とデッドスペースの幅 との和と、該1つのトラックの他方の側に設けられた重 複領域の幅とデッドスペースの幅との和のうち、小さい 方の和に比例する、請求項15記載の磁気記録再生方 法。

【請求項17】 前記第1のステップは、前記第1の記 録領域内の重複領域の幅が第2の記録領域内の重複領域 の幅とは異なるように信号を各トラックに記録する、請 求項15又は16記載の磁気記録再生方法。

テップが使用するライトヘッドの中心に対して中心が大 略半径方向上オフセットされたリードヘッドを使用す る、請求項15~17のいずれか1項記載の磁気記録再 生方法。

【請求項19】 前記第1のステップは、大略半径方向 上の幅が前記第2のステップが使用するリードヘッドよ り大きなライトヘッドを使用する、請求項15~18の・ いずれか1項記載の磁気記録再生方法。

【請求項20】 アジマス角度が磁気ディスクの半径位 置に応じて変化するヘッドで信号を記録再生する磁気デ 40 ィスク装置であって、

該磁気ディスク上のトラックに信号を記録するライトへ ッドと、

該トラックから信号を再生するリードヘッドと、

該ライトヘッドと該リードヘッドとが、該磁気ディスク の半径方向とは略直交する方向上離間した状態で両方の ヘッドを大略半径方向へ移送する移送機構と、

該移送機構による両方のヘッドの移送量を制御する制御 手段とを備え、

該制御手段は、該磁気ディスク上の第1の記録領域に対 50 第1の記録領域とは異なる該磁気ディスク上の第2の記

しては、該ライトヘッドが、所定値以下のアジマス角度 で信号を第1のトラックピッチのトラックに記録し、該 第1の記録領域とは異なる該磁気ディスク上の第2の記 録領域に対しては、該所定値より大きなアジマス角度で 該第1のトラックピッチとは異なる第2のトラックピッ チで信号を記録し、少なくとも該第1の記録領域の一部 では隣接トラックが半径方向上重複するように該移動機 構を制御すると共に、該第1の記録領域からは、該リー ドヘッドが、該所定値以下のアジマス角度で信号をトラ ックから再生し、該第2の記録領域からは、該所定値よ り大きなアジマス角度でトラックから信号を再生するよ うに該移動機構を制御する、磁気ディスク装置。

【請求項21】 前記制御手段は、前記ライトヘッドが 隣接トラック間にデッドスペースが設けられるように信 号を各トラックに記録し、前記重複領域の幅は、1つの トラックの一方の側に設けられた重複領域の幅とデッド スペースの幅との和と、該1つのトラックの他方の側に 設けられた重複領域の幅とデッドスペースの幅との和の うち、小さい方の和に比例するように前記移送機構を制 御する、請求項20記載の磁気ディスク装置。

【請求項22】 前記制御手段は、前記ライトヘッドが 前記第1の記録領域内の重複領域の幅が第2の記録領域 内の重複領域の幅とは異なるように信号を各トラックに 記録するように前記移送機構を制御する、請求項20又 は21記載の磁気ディスク装置。

【請求項23】 前記制御手段は、前記ライトヘッドが 前記トラックピッチが前記アジマス角度に応じて前記第 1の記録領域及び前記第2の記録領域のうち少なくとも 1 つの記録領域内で段階的又は連続的に変化するように 【請求項18】 前記第2のステップは、前記第1のス 30 信号を各トラックに記録するように前記移送機構を制御 する、請求項20~22のいずれか1項記載の磁気ディ スク装置。

> 【請求項24】 前記ライトヘッドは、大略半径方向上 の幅が前記リードヘッドより大きい、請求項20~23 のいずれか1項記載の磁気ディスク装置。

> 【請求項25】 アジマス角度が磁気ディスクの半径位 置に応じて変化するヘッドで信号を記録再生する磁気デ ィスク装置であって、

該磁気ディスク上のトラックに信号を記録するライトへ ッドと、

該トラックから信号を再生するリードヘッドと、

該ライトヘッドと該リードヘッドとが、該磁気ディスク の半径方向とは略直交する方向上離間した状態で両方の ヘッドを大略半径方向へ移送する移送機構と、

該移送機構による両方のヘッドの移送量を制御する制御 手段とを備え、

該制御手段は、該磁気ディスク上の第1の記録領域に対 しては、該ライトヘッドが、所定値以下のアジマス角度 で信号を第1のトラックピッチのトラックに記録し、該

録領域に対しては、該所定値より大きなアジマス角度で 該第1のトラックピッチとは異なる第2のトラックピッ チで信号を記録するように該移送機構を制御すると共 に、該第1の記録領域からは、該リードヘッドが、該所 定値以下のアジマス角度で信号をトラックから再生し、 該第2の記録領域からは、該所定値より大きなアジマス 角度でトラックから信号を再生するように該移送機構を 制御し、

該リードヘッドは該ライトヘッドの中心に対して中心が 大略半径方向上オフセットされている、磁気ディスク装 10

【請求項26】 前記制御手段は、隣接トラック間にデ ッドスペースが設けられるように信号を各トラックに記 録し、前記重複領域の幅は、1つのトラックの一方の側 に設けられた重複領域の幅とデッドスペースの幅との和 と、該1つのトラックの他方の側に設けられた重複領域 の幅とデッドスペースの幅との和のうち、小さい方の和 に比例するように前記移送機構を制御する、請求項25 記載の磁気ディスク装置。

【請求項27】 前記制御手段は、前記第1の記録領域20 内の重複領域の幅が第2の記録領域内の重複領域の幅と は異なるように信号を各トラックに記録するように前記 移送機構を制御する、請求項25又は26記載の磁気デ ィスク装置。

【請求項28】 前記制御手段は、前記第1の記録領域 内のトラックピッチが第2の記録領域内のトラックピッ チより小さくなるように信号を各トラックに記録するよ うに前記移送機構を制御する、請求項25~27のいず れか1項記載の磁気ディスク装置。

【請求項29】 前記ライトヘッドは、大略半径方向上30 の幅が前記リードヘッドより大きい、請求項25~28 のいずれか1項記載の磁気ディスク装置。

【請求項30】 アジマス角度が磁気ディスクの半径位 置に応じて変化するヘッドで信号を記録再生する磁気デ ィスク装置であって、

該磁気ディスク上のトラックに信号を記録するライトへ ッドと、

該トラックから信号を再生するリードヘッドと、

該ライトヘッドと該リードヘッドとが、該磁気ディスク の半径方向とは略直交する方向上離間した状態で両方の 40 ヘッドを大略半径方向へ移送する移送機構と、

該移送機構による両方のヘッドの移送量を制御する制御 手段とを備え、

該制御手段は、該磁気ディスク上の第1の記録領域に対 しては、該ライトヘッドが、所定値以下のアジマス角度 で信号を第1のトラックピッチのトラックに記録し、該 第1の記録領域とは異なる該磁気ディスク上の第2の記 録領域に対しては、該所定値より大きなアジマス角度で 該第1のトラックピッチより小さな第2のトラックピッ

に、該第1の記録領域からは、該リードヘッドが、該所 定値以下のアジマス角度で信号をトラックから再生し、 該第2の記録領域からは、該所定値より大きなアジマス 角度でトラックから信号を再生するように該移送機構を 制御する、磁気ディスク装置。

【請求項31】 前記制御手段は、隣接トラック間にデ ッドスペースが設けられるように信号を各トラックに記 録し、前記重複領域の幅は、1つのトラックの一方の側 に設けられた重複領域の幅とデッドスペースの幅との和 と、該1つのトラックの他方の側に設けられた重複領域 の幅とデッドスペースの幅との和のうち、小さい方の和 に比例するように前記移送機構を制御する、請求項30 記載の磁気ディスク装置。

【請求項32】 前記制御手段は、前記第1の記録領域 内の重複領域の幅が第2の記録領域内の重複領域の幅と は異なるように信号を各トラックに記録するように前記 移送機構を制御する、請求項30又は31記載の磁気デ ィスク装置。

【請求項33】 前記リードヘッドは、前記ライトヘッ ドの中心に対して中心が大略半径方向上オフセットされ ている、請求項30~32のいずれか1項記載の磁気デ ィスク装置。

【請求項34】 前記ライトヘッドは、大略半径方向上 の幅が前記リードヘッドより大きい、請求項30~33 のいずれか1項記載の磁気ディスク装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は磁気ディスク、磁気 記録再生方法及び磁気ディスク装置に係り、特に高密度 記録再生を行う磁気ディスク、磁気記録再生方法及び磁 気ディスク装置に関する。近年、磁気ディスクの記録密 度が飛躍的に増大している。記録密度の飛躍的な増大の 要因にはいくつかあるが、磁気抵抗素子を用いる磁気抵 抗効果型ヘッド(以下、単にMRヘッドと言う)が実用 化されたことも要因の1つである。MRヘッドは、磁気 抵抗効果により、磁気ディスクに記録されている磁化状 態を高感度で検出することができるので、高密度記録再 生を可能とする。

[0002]

【従来の技術】MRヘッドは、磁気ディスクに記録され ている信号を再生することしかできないため、磁気ディ スクへの信号の記録は、通常薄膜ヘッドで行う。従っ て、磁気ディスク装置には、信号記録のためのライトへ ッドと信号再生のためのリードヘッドとが設けられてい

【0003】ライトヘッドとリードヘッドとは、これら のヘッドを磁気ディスク上の大略半径方向に移動するア クチュエータに設けられている。しかし、これらのヘッ ドはできるだけ近接して設けられているものの、不可避 チで信号を記録するように該移送機構を制御すると共 50 的に、磁気ディスクの半径方向とは略直交する方向上一

定距離離間せしめられている。又、アクチュエータは、 磁気ディスク装置を小型化する要望等から、直線的に移 動する方式より、回動する方式が多用されている。しか し、アクチュエータが回動されると、各ヘッドと磁気デ ィスク上のトラックとの成す角度は、各ヘッドの磁気デ ィスク上の位置によって異なる。例えば、磁気ディスク の内周側の部分と外周側の部分とでは、アジマス角度が 生じる。この結果、各ヘッドはトラックに対して、磁気 ディスク内周側と外周側とでは反対方向にずれてしま う。

【0004】信号再生時に、上記アジマス角度によりリ ードヘッドがトラックに対してずれてしまうと、リード ヘッドはトラックの一部しか走査することができず、本 来走査するべきトラックの隣のトラックの一部も走査し てしまうので、再生信号に雑音が混入してしまい、磁気 ディスクに記録された信号を良好に再生することができ ない。そこで、記録時には幅広のライトヘッドで信号記 録を行い、再生時には幅狭のリードヘッドで信号再生を 行う、所謂ワイドライト/ナローリードが行われる。こ れにより、記録時にはリードヘッドより幅広のライトへ20 ッドで信号がトラックに記録されるので、再生時にアジ マス角度によりリードヘッドがトラックに対してずれて も、リードヘッドは必ず本来走査するべきトラックのみ を走査するので、再生信号の信号対雑音(S/N)比が 向上される。

[0005]

【発明が解決しようとする課題】しかし、上記ワイドラ イト/ナローリードが採用されると、記録時に幅広のラ イトヘッドを用いてトラックが形成されるため、再生信 号のS/N比は向上されるものの、磁気ディスクの記録 30 密度は低下してしまうという問題があった。これは、リ ードヘッドにMRヘッドを用いて高密度記録再生を行う という趣旨に反するものであった。

【0006】又、従来、トラックピッチは、磁気ディス クの記録領域全体にわたって一定に設定されていた。と ころが、トラックピッチは、ライトヘッドの幅と隣接す るトラックからのクロストークを軽減するために必要な デッドスペースの幅との和で決定されるので、隣接トラ ックからのクロストークによる悪影響を防止するために は、トラックピッチを大幅に減少させることはできなか 40 った。つまり、再生信号のS/N比を低下させることな く、磁気ディスクの記録密度を大幅に向上することはで きないという問題もあった。

【0007】そこで、本発明は、再生信号のS/N比を 低下させることなく、磁気ディスクの記録密度を向上す ることのできる、磁気ディスク、磁気記録再生方法及び 磁気ディスク装置を提供することを目的とする。

[0008]

【課題を解決するための手段】上記の課題は、請求項1

ドで信号が記録再生される磁気ディスクであって、所定 値以下のアジマス角度で記録されるトラックからなる第 1の記録領域と、該所定値より大きなアジマス角度で記 録されるトラックからなる第2の記録領域と、隣接トラ ックが半径方向上重複している重複領域とを備え、該第 1の記録領域内のトラックピッチは第2の記録領域内の トラックピッチとは異なる磁気ディスクによって達成で きる。

【0009】請求項2記載の発明では、請求項1におい て、隣接トラック間に設けられたデッドスペースを更に 備え、前記重複領域の幅は、1つのトラックの一方の側 に設けられた重複領域の幅とデッドスペースの幅との和 と、該1つのトラックの他方の側に設けられた重複領域 の幅とデッドスペースの幅との和のうち、小さい方の和 に比例する。

【0010】請求項3記載の発明では、請求項1又は2 において、前記第1の記録領域内の重複領域の幅は第2 の記録領域内の重複領域の幅とは異なる。請求項4記載 の発明では、請求項1~3のいずれかにおいて、前記ト ラックピッチは、前記アジマス角度に応じて前記第1の 記録領域及び前記第2の記録領域のうち少なくとも1つ の記録領域内で段階的又は連続的に変化する。

【0011】上記の課題は、請求項5記載の、アジマス 角度が磁気ディスクの半径位置に応じて変化するヘッド で信号を記録再生する磁気記録再生方法であって、該磁 気ディスク上の第1の記録領域に対しては、所定値以下 のアジマス角度で信号を第1のトラックピッチのトラッ クに記録し、該第1の記録領域とは異なる該磁気ディス ク上の第2の記録領域に対しては、該所定値より大きな アジマス角度で該第1のトラックピッチとは異なる第2 のトラックピッチで信号を記録する第1のステップと、 該第1の記録領域からは、該所定値以下のアジマス角度 で信号をトラックから再生し、該第2の記録領域から は、該所定値より大きなアジマス角度でトラックから信 号を再生する第2のステップとを含み、該第1のステッ プは、少なくとも該第1の記録領域の一部で隣接トラッ クが半径方向上重複するように信号を各トラックに記録 する磁気記録再生方法によっても達成できる。

【0012】請求項6記載の発明では、請求項5におい て、前記第1のステップは、隣接トラック間にデッドス ペースが設けられるように信号を各トラックに記録し、 前記重複領域の幅は、1つのトラックの一方の側に設け られた重複領域の幅とデッドスペースの幅との和と、該 1つのトラックの他方の側に設けられた重複領域の幅と デッドスペースの幅との和のうち、小さい方の和に比例 する。

【0013】請求項7記載の発明では、請求項5又は6 において、前記第1のステップは、前記第1の記録領域 内の重複領域の幅が第2の記録領域内の重複領域の幅と 記載の、アジマス角度が半径位置に応じて変化するヘッ 50 は異なるように信号を各トラックに記録する。請求項8

に比例する。

記載の発明では、請求項5~7のいずれかにおいて、前 記第1のステップは、前記トラックピッチが前記アジマ ス角度に応じて前記第1の記録領域及び前記第2の記録 領域のうち少なくとも1つの記録領域内で段階的又は連 続的に変化するように信号を各トラックに記録する。

【0014】請求項9記載の発明では、請求項5~8の いずれかにおいて、前記第1のステップは、大略半径方 向上の幅が前記第2のステップが使用するリードヘッド より大きなライトヘッドを使用する。上記の課題は、請 求項10記載の、アジマス角度が磁気ディスクの半径位 ¹⁰ 置に応じて変化するヘッドで信号を記録再生する磁気記 録再生方法であって、該磁気ディスク上の第1の記録領 域に対しては、所定値以下のアジマス角度で信号を第1 のトラックピッチのトラックに記録し、該第1の記録領 域とは異なる該磁気ディスク上の第2の記録領域に対し ては、該所定値より大きなアジマス角度で該第1のトラ ックピッチとは異なる第2のトラックピッチで信号を記 録する第1のステップと、該第1の記録領域からは、該 所定値以下のアジマス角度で信号をトラックから再生 し、該第2の記録領域からは、該所定値より大きなアジ 20 マス角度でトラックから信号を再生する第2のステップ とを含み、該第2のステップは、該第1のステップが使 用するライトヘッドの中心に対して中心が大略半径方向 上オフセットされたリードヘッドを使用する磁気記録再 生方法によっても達成できる。

【0015】請求項11記載の発明では、請求項10に おいて、前記第1のステップは、隣接トラック間にデッ ドスペースが設けられるように信号を各トラックに記録 し、前記重複領域の幅は、1つのトラックの一方の側に 設けられた重複領域の幅とデッドスペースの幅との和 と、該1つのトラックの他方の側に設けられた重複領域 の幅とデッドスペースの幅との和のうち、小さい方の和 に比例する。

【0016】請求項12記載の発明では、請求項10又

は11において、前記第1のステップは、前記第1の記

録領域内の重複領域の幅が第2の記録領域内の重複領域 の幅とは異なるように信号を各トラックに記録する。請 求項13記載の発明では、請求項10~12のいずれか において、前記第1のステップは、前記第1の記録領域 内のトラックピッチが第2の記録領域内のトラックピッ 40 チより小さくなるように信号を各トラックに記録する。 【0017】請求項14記載の発明では、請求項10~ 13のいずれかにおいて、前記第1のステップは、大略 半径方向上の幅が前記第2のステップが使用するリード ヘッドより大きなライトヘッドを使用する。上記の課題 は、請求項15記載の、アジマス角度が磁気ディスクの 半径位置に応じて変化するヘッドで信号を記録再生する 磁気記録再生方法であって、該磁気ディスク上の第1の 記録領域に対しては、所定値以下のアジマス角度で信号

記録領域とは異なる該磁気ディスク上の第2の記録領域 に対しては、該所定値より大きなアジマス角度で該第1 のトラックピッチより小さな第2のトラックピッチで信 号を記録する第1のステップと、該第1の記録領域から は、該所定値以下のアジマス角度で信号をトラックから 再生し、該第2の記録領域からは、該所定値より大きな アジマス角度でトラックから信号を再生する第2のステ ップとを含む磁気記録再生方法によっても達成できる。 【0018】請求項16記載の発明では、請求項15に おいて、前記第1のステップは、隣接トラック間にデッ ドスペースが設けられるように信号を各トラックに記録 し、前記重複領域の幅は、1つのトラックの一方の側に 設けられた重複領域の幅とデッドスペースの幅との和 と、該1つのトラックの他方の側に設けられた重複領域

【0019】請求項17記載の発明では、請求項15又 は16において、前記第1のステップは、前記第1の記 録領域内の重複領域の幅が第2の記録領域内の重複領域 の幅とは異なるように信号を各トラックに記録する。請 求項18記載の発明では、請求項15~17のいずれか。 において、前記第2のステップは、前記第1のステップ が使用するライトヘッドの中心に対して中心が大略半径 方向上オフセットされたリードヘッドを使用する。

の幅とデッドスペースの幅との和のうち、小さい方の和

【0020】請求項19記載の発明では、請求項15~ 18のいずれかにおいて、前記第1のステップは、大略 半径方向上の幅が前記第2のステップが使用するリード ヘッドより大きなライトヘッドを使用する。上記の課題 は、請求項20記載の、アジマス角度が磁気ディスクの 半径位置に応じて変化するヘッドで信号を記録再生する 磁気ディスク装置であって、該磁気ディスク上のトラッ クに信号を記録するライトヘッドと、該トラックから信 号を再生するリードヘッドと、該ライトヘッドと該リー ドヘッドとが、該磁気ディスクの半径方向とは略直交す る方向上離間した状態で両方のヘッドを大略半径方向へ 移送する移送機構と、該移送機構による両方のヘッドの 移送量を制御する制御手段とを備え、該制御手段は、該 磁気ディスク上の第1の記録領域に対しては、該ライト ヘッドが、所定値以下のアジマス角度で信号を第1のト ラックピッチのトラックに記録し、該第1の記録領域と は異なる該磁気ディスク上の第2の記録領域に対して は、該所定値より大きなアジマス角度で該第1のトラッ クピッチとは異なる第2のトラックピッチで信号を記録 し、少なくとも該第1の記録領域の一部では隣接トラッ クが半径方向上重複するように該移動機構を制御すると 共に、該第1の記録領域からは、該リードヘッドが、該 所定値以下のアジマス角度で信号をトラックから再生 し、該第2の記録領域からは、該所定値より大きなアジ マス角度でトラックから信号を再生するように該移動機 を第1のトラックピッチのトラックに記録し、該第1の 50 構を制御する磁気ディスク装置によっても達成できる。

【0021】請求項21記載の発明では、請求項20に おいて、前記制御手段は、前記ライトヘッドが隣接トラ ック間にデッドスペースが設けられるように信号を各ト ラックに記録し、前記重複領域の幅は、1 つのトラック の一方の側に設けられた重複領域の幅とデッドスペース の幅との和と、該1つのトラックの他方の側に設けられ た重複領域の幅とデッドスペースの幅との和のうち、小 さい方の和に比例するように前記移送機構を制御する。

【0022】請求項22記載の発明では、請求項20又 は21において、前記制御手段は、前記ライトヘッドが10 前記第1の記録領域内の重複領域の幅が第2の記録領域 内の重複領域の幅とは異なるように信号を各トラックに 記録するように前記移送機構を制御する。請求項23記 載の発明では、請求項20~22のいずれかにおいて、 前記制御手段は、前記ライトヘッドが前記トラックピッ チが前記アジマス角度に応じて前記第1の記録領域及び 前記第2の記録領域のうち少なくとも1つの記録領域内 で段階的又は連続的に変化するように信号を各トラック に記録するように前記移送機構を制御する。

【0023】請求項24記載の発明では、請求項20~20 23のいずれかにおいて、前記ライトヘッドは、大略半 径方向上の幅が前記リードヘッドより大きい。上記の課 題は、請求項25記載の、アジマス角度が磁気ディスク の半径位置に応じて変化するヘッドで信号を記録再生す る磁気ディスク装置であって、該磁気ディスク上のトラ ックに信号を記録するライトヘッドと、該トラックから 信号を再生するリードヘッドと、該ライトヘッドと該リ ードヘッドとが、該磁気ディスクの半径方向とは略直交 する方向上離間した状態で両方のヘッドを大略半径方向 へ移送する移送機構と、該移送機構による両方のヘッド 30 の移送量を制御する制御手段とを備え、該制御手段は、 該磁気ディスク上の第1の記録領域に対しては、該ライ トヘッドが、所定値以下のアジマス角度で信号を第1の トラックピッチのトラックに記録し、該第1の記録領域 とは異なる該磁気ディスク上の第2の記録領域に対して は、該所定値より大きなアジマス角度で該第1のトラッ クピッチとは異なる第2のトラックピッチで信号を記録 するように該移送機構を制御すると共に、該第1の記録 領域からは、該リードヘッドが、該所定値以下のアジマ ス角度で信号をトラックから再生し、該第2の記録領域 40 からは、該所定値より大きなアジマス角度でトラックか ら信号を再生するように該移送機構を制御し、該リード ヘッドは該ライトヘッドの中心に対して中心が大略半径 方向上オフセットされている磁気ディスク装置によって も達成できる。

【0024】請求項26記載の発明では、請求項25に おいて、前記制御手段は、隣接トラック間にデッドスペ ースが設けられるように信号を各トラックに記録し、前 記重複領域の幅は、1つのトラックの一方の側に設けら れた重複領域の幅とデッドスペースの幅との和と、該150項30~32のいずれかにおいて、前記リードヘッド

12

つのトラックの他方の側に設けられた重複領域の幅とデ ッドスペースの幅との和のうち、小さい方の和に比例す るように前記移送機構を制御する。

【0025】請求項27記載の発明では、請求項25又 は26において、前記制御手段は、前記第1の記録領域 内の重複領域の幅が第2の記録領域内の重複領域の幅と は異なるように信号を各トラックに記録するように前記 移送機構を制御する。請求項28記載の発明では、請求 項25~27のいずれかにおいて、前記制御手段は、前 記第1の記録領域内のトラックピッチが第2の記録領域 内のトラックピッチより小さくなるように信号を各トラ ックに記録するように前記移送機構を制御する。

【0026】請求項29記載の発明では、請求項25~ 28のいずれかにおいて、前記ライトヘッドは、大略半 径方向上の幅が前記リードヘッドより大きい。上記の課 題は、請求項30記載の、アジマス角度が磁気ディスク の半径位置に応じて変化するヘッドで信号を記録再生す る磁気ディスク装置であって、該磁気ディスク上のトラ ックに信号を記録するライトヘッドと、該トラックから 信号を再生するリードヘッドと、該ライトヘッドと該リ ードヘッドとが、該磁気ディスクの半径方向とは略直交 する方向上離間した状態で両方のヘッドを大略半径方向 へ移送する移送機構と、該移送機構による両方のヘッド の移送量を制御する制御手段とを備え、該制御手段は、 該磁気ディスク上の第1の記録領域に対しては、該ライ トヘッドが、所定値以下のアジマス角度で信号を第1の トラックピッチのトラックに記録し、該第1の記録領域 とは異なる該磁気ディスク上の第2の記録領域に対して は、該所定値より大きなアジマス角度で該第1のトラッ クピッチより小さな第2のトラックピッチで信号を記録 するように該移送機構を制御すると共に、該第1の記録 領域からは、該リードヘッドが、該所定値以下のアジマ ス角度で信号をトラックから再生し、該第2の記録領域 からは、該所定値より大きなアジマス角度でトラックか ら信号を再生するように該移送機構を制御する磁気ディ スク装置によっても達成できる。

【0027】請求項31記載の発明では、請求項30に おいて、前記制御手段は、隣接トラック間にデッドスペ ースが設けられるように信号を各トラックに記録し、前 記重複領域の幅は、1つのトラックの一方の側に設けら れた重複領域の幅とデッドスペースの幅との和と、該1 つのトラックの他方の側に設けられた重複領域の幅とデ ッドスペースの幅との和のうち、小さい方の和に比例す るように前記移送機構を制御する。

【0028】請求項32記載の発明では、請求項30又 は31において、前記制御手段は、前記第1の記録領域 内の重複領域の幅が第2の記録領域内の重複領域の幅と は異なるように信号を各トラックに記録するように前記 移送機構を制御する。請求項33記載の発明では、請求

10

は、前記ライトヘッドの中心に対して中心が大略半径方 向上オフセットされている。

【0029】請求項34記載の発明では、請求項30~ 33のいずれかにおいて、前記ライトヘッドは、大略半 径方向上の幅が前記リードヘッドより大きい。請求項1 ~3記載の発明によれば、再生信号のS/N比を向上し て、データの信頼性を向上すると共に、高密度記録再生 を実現することができる。請求項4記載の発明によれ ば、磁気ディスクの記録密度を更に向上することができ る。

【0030】請求項5~9記載の発明によれば、再生信 号のS/N比を向上して、データの信頼性を向上すると 共に、高密度記録再生を実現することができる。請求項 10~19記載の発明によれば、再生信号のS/N比を 低下させることなく、高密度記録再生を実現することが できる。請求項20~24記載の発明によれば、再生信 号のS/N比を向上して、データの信頼性を向上すると 共に、高密度記録再生を実現することができる。

【0031】請求項25~34記載の発明によれば、再 生信号のS/N比を低下させることなく、高密度記録再 20 生を実現することができる。従って、本発明によれば、 再生信号のS/N比を低下させることなく、磁気ディス クの記録密度を更に向上することができる。

[0032]

【発明の実施の形態】本発明になる磁気ディスクは、ア ジマス角度が半径位置に応じて変化するヘッドで信号が 記録再生される。磁気ディスクの記録領域は、所定値以 下のアジマス角度で記録されるトラックからなる第1の 記録領域と、この所定値より大きなアジマス角度で記録 されるトラックからなる第2の記録領域とからなる。第30 1の記録領域内と第2の記録領域内とでは、トラックピ ッチが異なる。つまり、第1の記録領域内でのトラック ピッチは、第2の記録領域内でのトラックピッチより小 さいか、或いは、大きい。

【0033】又、隣接トラック間に、デッドスペースを 設けても良い。更に、隣接トラックは、少なくとも第1 及び第2の記録領域のうち一方の一部で、磁気ディスク の半径方向上重複していても良い。本発明になる磁気記 録再生方法及び磁気ディスク装置は、上記本発明になる 磁気ディスクに対して信号の記録再生を行う。

【0034】本発明によれば、再生信号のS/N比を低 下させることなく、磁気ディスクの記録密度を向上する ことが可能である。

[0035]

【実施例】先ず、本発明になる磁気ディスクの第1実施 例を図1~図4と共に説明する。アクチュエータは、磁 気ディスク装置を小型化する要望等から、直線的に移動 する方式より、回動する方式が多用されている。しか し、図1に示すように、アクチュエータ1が点〇を中心 に回動されると、ヘッドHと磁気ディスク100上のト 50 片寄る。このため、隣接トラックからのクロストークの

14

ラックT1~T3との成す角度は、ヘッドHの磁気ディ スク100上の位置によって異なる。例えば、同図中、 Aで示す部分でのヘッドHのトラックT1に対するアジ マス角度がゼロであるとすると、Aで示す部分より磁気 ディスク100の外周側のB、Cで示す部分では、トラ ックT2, T3に対するアジマス角度が生じる。この結 果、ヘッドHはトラックT1~T3に対して、磁気ディ スク100の内周側と外周側とでは反対方向にずれてし まう。尚、図1では、説明の便宜上、ライトヘッド及び リードヘッドをヘッドHで代表して示してあるが、ヘッ ドHのトラックTに対するずれは、ライトヘッド及びリ ードヘッドの両方で生じる。

【0036】信号再生時に、上記アジマス角度によりリ ードヘッドがトラックに対してずれてしまうと、リード ヘッドはトラックの一部しか走査することができず、本 来走査するべきトラックの隣のトラックの一部も走査し てしまうので、再生信号に雑音が混入してしまい、磁気 ディスク100に記録された信号を良好に再生すること ができない。そこで、本実施例では、記録時には幅広の ライトヘッドで信号記録を行い、再生時には幅狭のリー ドヘッドで信号再生を行う、所謂ワイドライト/ナロー リードが行われる。これにより、記録時にはリードヘッ ドより幅広のライトヘッドで信号がトラックに記録され るので、再生時にアジマス角度によりリードヘッドがト ラックに対してずれても、リードヘッドは必ず本来走査 するべきトラックのみを走査するので、再生信号のS/ N比が向上される。

【0037】図2は、アクチュエータ1に設けられたラ イトヘッドWH及びリードヘッドRHが磁気ディスク1 00の内周部分AのトラックT1上に位置する場合を拡 大して示す。図3は、ライトヘッドWH及びリードヘッ ドRHが磁気ディスク100の中間部分BのトラックT 2上に位置する場合を拡大して示す。又、図4は、ライ トヘッドWH及びリードヘッドRHが磁気ディスク10 0の外周部分CのトラックT3上に位置する場合を拡大 して示す。

【0038】本実施例では、ライトヘッドWH及びリー ドヘッドRHが磁気ディスク100の内周部分Aのトラ ックT1上に位置する場合、図2に示すように、各ヘッ ドWH、RHの幅方向とトラックの延在方向とが略直交 し、アジマス角度は略ゼロである。しかし、各ヘッドW H, RHが磁気ディスク100の中間部分B及び外周部 分Cへ移動するにつれて、図3及び図4に示すように、 アジマス角度が増加する。

【0039】又、ライトヘッドWHの幅方向の中心とリ ードヘッドRHの幅方向の中心とが一致している場合、 リードヘッドRHの再生領域は、アジマス角度が増加す る磁気ディスク100の外周側に行く程、ライトヘッド WHの記録領域、即ち、記録されたトラックの端部分に

影響を抑さえるには、少なくとも磁気ディスク100の外周部分Cでは、隣接するトラックの中心線間の距離であるトラックピッチを、ライトヘッドWHの幅と隣接トラックからのクロストークを軽減するためのデッドスペースDSの幅との和に設定する。これにより、アジマス角度により、リードヘッドRHがトラックT3の端部分に片寄ってしまっても、隣接トラックまでは再生されなくいので、隣接トラックからのクロストークの影響は抑制され、再生信号のS/N比を良好に保つことができる。

【0040】他方、磁気ディスク100の内周部分Aで10は、アジマス角度が略ゼロであるため、リードヘッドRHがトラックT1の端部分に片寄ることはなく、トラックT1の中心とリードヘッドRHの中心が略一致する。このため、磁気ディスク100の内周部分Aでは、隣接トラックからのクロストークを軽減するためのデッドスペースDSは不要であり、トラックピッチをライトヘッドWHの幅に設定すれば、隣接トラックからのクロストークの影響を抑さえることができる。つまり、磁気ディスク100の内周部分Aでは、外周部分Cよりトラックピッチを小さく設定しても、再生信号のS/N比を良好20に保つことができるので、S/N比を犠牲にすることなく磁気ディスク100の記録密度を向上することができる。

【0041】従って、本実施例では、磁気ディスク10 0の記録領域のうち、所定値以下のアジマス角度で記録 されるトラックからなる第1の記録領域内のトラックピ ッチを、この所定値より大きなアジマス角度で記録され るトラックからなる第2の記録領域内のトラックピッチ より小さく設定することで、S/N比を犠牲にすること なく磁気ディスク100の記録密度を向上可能である。30 【0042】次に、本発明になる磁気ディスクの第2実 施例を図5~図7と共に説明する。図5~図7中、図1 ~図4と同一部分には同一符号を付し、その説明は省略 する。上記第1実施例で説明したように、ライトヘッド WHの幅方向の中心とリードヘッドRHの幅方向の中心 とが一致している場合、リードヘッドRHの再生領域 は、アジマス角度が増加する磁気ディスク100の外周 側に行く程、ライトヘッドWHの記録領域、即ち、記録 されたトラックの端部分に片寄る。このため、隣接トラ ックからのクロストークの影響を抑さえるには、図1に 40 おいて、少なくとも磁気ディスク100の外周部分Cで は、トラックピッチを、ライトヘッドWHの幅とデッド スペースDSの幅との和に設定する。つまり、磁気ディ スク100の外周部分Cでは、ライトヘッドWHは隣接 トラックが重ならないように信号を記録する。これによ り、アジマス角度により、リードヘッドRHが外周部分 C内のトラックの端部分に片寄ってしまっても、隣接ト ラックまでは再生されないので、隣接トラックからのク ロストークの影響は抑制され、再生信号のS/N比を良 好に保つことができる。

16

【0043】他方、図1において、磁気ディスク100 の内周部分Aでは、アジマス角度が略ゼロであるため、 リードヘッドRHが内周部分A内のトラックの端部分に 片寄ることはなく、走査するトラックの中心とリードへ ッドRHの中心が略一致する。このため、磁気ディスク 100の内周部分Aでは、実効トラック幅ETWをリー ドヘッドRHの幅とデッドスペースDSの幅との和に設 定すれば、隣接トラックからのクロストークの影響を抑 さえることができる。つまり、磁気ディスク100の内 周部分Aでは、外周部分Cよりトラックピッチを小さく 設定しても、再生信号のS/N比を良好に保つことがで きるので、S/N比を犠牲にすることなく磁気ディスク 100の記録密度を向上することができる。そこで、本 実施例では、磁気ディスク100の内周部分Aでは、ラ イトヘッドWHは隣接トラックが重なるように信号を記 録する。

【0044】又、図1において、磁気ディスク100の中間部分Bでは、多少のアジマス角度があるものの、リードヘッドRHが中間部分B内のトラックを走査する場合を比べると少なく、トラックピッチはライトヘッドWHの幅より小さく設定しても、隣接トラックからのクロストークの影響を抑さえることができる。つまり、磁気ディスク100の中間部分Bでは、外周部分Cよりトをリンチを小さく設定しても、再生信号のS/N比を犠牲にすることができる。そこで、本実施例では、磁気ディスク100の中間部分Bでも、ライトヘッドWHは隣接トラックが重なるように信号を記録する。

【0045】図5は、アクチュエータ1に設けられたライトへッドWH及びリードへッドRHが磁気ディスク100の内周部分Aのトラック T_n , T_{n+1} 上に位置する場合を拡大して示す。図6は、ライトへッドWH及びリードへッドRHが磁気ディスク100の中間部分Bのトラック T_n , T_{n+1} 上に位置する場合を拡大して示す。又、図7は、ライトへッドWH及びリードへッドRHが磁気ディスク100の外周部分Cのトラック T_n , T_{n+1} 上に位置する場合を拡大して示す。

【0046】本実施例では、ライトヘッドWH及びリードヘッドRHが磁気ディスク100の内周部分Aのトラック上に位置する場合、図5に示すように、各ヘッドWH,RHの幅方向とトラックの延在方向とが略直交し、アジマス角度はゼロである。しかし、各ヘッドWH,RHが磁気ディスク100の中間部分B及び外周部分Cへ移動するにつれて、図6及び図7に示すように、アジマス角度が増加する。又、ライトヘッドWHが隣接トラックTn,Tn+1を走査する際の隣接トラックTn,T

ち、アジマス角度が小さくなる程大きく設定されている。隣接トラック T_n , T_{n+1} の重なりOLの幅は、アジマス角度が最大となる磁気ディスク100の外周側では最小であり、アジマス角度が最小となる磁気ディスク100の内周側では最大となる。

【0047】隣接トラックTn, Tn+1の重なりOLは、信号再生には使用されない重複領域であるが、この重複領域によりトラックピッチを減少させることができる。隣接トラックからのクロストークの影響は、実効トラック幅ETWを、リードヘッドRHの幅と隣接トラッ10クからのクロストーク軽減のために設けられたデッドスペースDSの幅との和に設定することにより、抑制することができる。尚、磁気ディスク100の外周側では、隣接トラックTn, Tn+1の重なりOLは最小であり、必要であれば隣接トラックからのクロストーク軽減のためのデッドスペースDSが設けられる。

【0048】次に、本発明になる磁気ディスクの第3実 施例を図8~図10と共に説明する。図8~図10中、 図1~図4と同一部分には同一符号を付し、その説明は 省略する。本実施例では、ライトヘッドWHの幅方向の 20 中心とリードヘッドRHの幅方向の中心とが磁気ディス ク100の略半径方向に沿ってオフセットされた状態で 信号が磁気ディスク100に記録されている。この場 合、リードヘッドRHの再生領域は、アジマス角度が減 少する磁気ディスク100の内周側に行く程、ライトへ ッドWHの記録領域、即ち、記録されたトラックの端部 分に片寄る。このため、隣接トラックからのクロストー クの影響を抑さえるには、図1において、少なくとも磁 気ディスク100の内周部分Aでは、トラックピッチ を、ライトヘッドWHの幅と隣接トラックからのクロス 30 トークを軽減するために設けられたデッドスペースDS の幅との和に設定する。つまり、磁気ディスク100の 内周部分Aでは、ライトヘッドWHは隣接トラックが重 ならないように信号を記録する。これにより、リードへ ッドRHが内周部分A内のトラックの端部分に片寄って しまっても、隣接トラックまでは再生されないので、隣 接トラックからのクロストークの影響は抑制され、再生 信号のS/N比を良好に保つことができる。

【0049】他方、図1において、磁気ディスク100の外周側に行く程、アジマス角度が増加するため、リー40ドヘッドRHが外周部分C内のトラックの端部分に片寄ることはなく、走査するトラックの中心とリードヘッドRHの中心が略一致する。このため、磁気ディスク100の外周部分Cでは、実効トラック幅ETWをリードヘッドRHの幅と隣接トラックからのクロストークを軽減するために設けられたデッドスペースDSの幅との和に設定することにより、隣接トラックからのクロストークの影響を抑さえることができる。つまり、磁気ディスク100の外周部分Cでは、内周部分Aよりトラックピッチを小さく設定しても、再生信号のS/N比を良好に保50

18

つことができるので、S/N比を犠牲にすることなく磁気ディスク100の記録密度を向上することができる。そこで、本実施例では、磁気ディスク100の外周部分Cでは、ライトヘッドWHは隣接トラックが重なるように信号を記録する。

【0050】又、図1において、磁気ディスク100の中間部分Bでは、多少のアジマス角度があるものの、リードヘッドRHが中間部分B内のトラックを走査する場合と比べると少なく、トラックピッチはライトヘッドWHの幅より小さく設定しても、隣接トラックからのの投気できる。つまり、磁気ディスク100の中間部分Bでは、内周部分Aよりトを決しても、再生信号のS/N比を犠牲にすることができるので、S/N比を犠牲にすることができる。そこで、本実施例では、磁気ディスク100の中間部分Bでも、ライトヘッドWHは隣接トラックが重なるように信号を記録する。

【0051】図8は、アクチュエータ1に設けられたライトヘッドWH及びリードヘッドRHが磁気ディスク100の内周部分Aのトラック T_n , T_{n+1} 上に位置する場合を拡大して示す。図9は、ライトヘッドWH及びリードヘッドRHが磁気ディスク100の中間部分Bのトラック T_n , T_{n+1} 上に位置する場合を拡大して示す。又、図10は、ライトヘッドWH及びリードヘッドRHが磁気ディスク100の外周部分Cのトラック T_n , T_{n+1} 上に位置する場合を拡大して示す。

【0052】本実施例では、ライトヘッドWH及びリー ドヘッドRHが磁気ディスク100の内周部分Aのトラ ック上に位置する場合、図8に示すように、各ヘッドW H, RHの幅方向とトラックの延在方向とが略直交し、 アジマス角度は最小である。しかし、各ヘッドWH、R Hが磁気ディスク100の中間部分B及び外周部分Cへ 移動するにつれて、図9及び図10に示すように、アジ マス角度が増加する。又、ライトヘッドWHが隣接トラ ック T_n , T_{n+1} を走査する際の隣接トラック T_n , T·n+1 磁気ディスク100の半径方向上の重なりOLの幅 は、磁気ディスク100の外周側に行く程大きく、即 ち、アジマス角度が大きくなる程大きく設定されてい る。隣接トラック T_n , T_{n+1} の重なり O L の幅は、ア ジマス角度が最小となる磁気ディスク100の内周側で は最小であり、アジマス角度が最大となる磁気ディスク 100の外周側では最大となる。

ペースDSの幅との和に設定することにより、抑制することができる。尚、磁気ディスク100の内周側では、隣接トラック T_n , T_{n+1} の重なりOLは最小であり、必要であれば隣接トラックからのクロストーク軽減のためのデッドスペースDSが設けられる。

【0054】隣接トラックからのクロストークの量は、再生周波数に依存し、一般的には再生周波数の低い方が大きくなる。又、磁気ディスクの内周側と外周側とで、記録再生周波数を変えて記録密度の向上を図った場合、記録再生周波数とアジマス角度との関係を最適化することで、記録密度を向上することができる。しかし、記録再生周波数とアジマス角度との関係を最適化することでトラックピッチを設定するだけでは、記録密度を最大限増加させることが難しい場合もある。そこで、本実施例では、ライトヘッドの幅方向の中心とリードヘッドの幅方向の中心とを、記録密度を最適化する際の設計の自由度を増している。

【0055】尚、図6及び図9からわかるように、1つ のトラックを走査するライトヘッドWHの端面と、この 20 トラックに隣接するトラックを走査するリードヘッドR Hの端面との磁気ディスク100の半径方向上の間隔 は、各ヘッドの両端側で必ずしも同じではない。そこ で、上記磁気ディスクの第2及び第3実施例では、各へ ッドの両端側での一方のヘッドの端と他方のヘッドの端 との間隔のうち、小さい方の間隔に比例して隣接トラッ クの重なり〇Lの幅、即ち、重複領域の磁気ディスク1 00の半径方向上の幅を決定している。 つまり、隣接ト ラック間にデッドスペースが設けられると、重複領域の 幅は、1つのトラックの一方の側に設けられた重複領域30 の幅とデッドスペースの幅との和と、この1つのトラッ クの他方の側に設けられた重複領域の幅とデッドスペー スの幅との和のうち、小さい方の和に比例する。各ヘッ ドの両端側での間隔が等しくなる磁気ディスク100の 半径方向上の位置では、図5及び図10に示すように、 重複領域の磁気ディスク100の半径方向上の幅が最大

【0056】上記第1~第3実施例では、磁気ディスクの内周側でのアジマス角度が最小の場合を例に取って説明したが、本発明は、アジマス角度が磁気ディスクの外40周側又は中間部分で最小となる磁気ディスクにも適用可能である。要は、磁気ディスクの記録密度が向上するように、アジマス角度に応じてトラックピッチを変化させれば良い。このため、トラックピッチは、磁気ディスク上に複数の記録領域を設け、アジマス角度に応じて記録領域毎に異なる値に設定しても、アジマス角度に応じて少なくとも1つの記録領域内で段階的又は連続的に変化させても良い。又、トラックピッチは、磁気ディスク上の複数の記録領域にわたって、段階的又は連続的に変化させても良い。

20

【0057】更に、隣接トラックの重なりOLの幅は、磁気ディスクの内周部分又は外周部分で最大となる必要はなく、磁気ディスクの中間部分で最大となる構成であっても良い。隣接トラックの重なりOLの幅が、磁気ディスクの中間部分で最大となる磁気ディスクの実施例を以下に説明する。本発明になる磁気ディスクの第4実施例を図11~図13と共に説明する。図11~図13中、図8~図10と同一部分には同一符号を付し、その説明は省略する。

【0058】本実施例では、上記磁気ディスクの第3実 施例の如く、ライトヘッドWHの幅方向の中心とリード ヘッドRHの幅方向の中心とが磁気ディスク100の略 半径方向に沿ってオフセットされた状態で信号が磁気デ ィスク100に記録されている。この場合、リードヘッ ドRHの再生領域は、アジマス角度が減少する磁気ディ スク100の内周側に行く程、ライトヘッドWHの記録 領域、即ち、記録されたトラックの端部分に片寄る。こ のため、隣接トラックからのクロストークの影響を抑さ えるには、図1において、少なくとも磁気ディスク10 0の内周部分Aでは、トラックピッチを、ライトヘッド WHの幅と隣接トラックからのクロストークを軽減する ために設けられたデッドスペースDSの幅との和に設定 する。つまり、磁気ディスク100の内周部分Aでは、 ライトヘッドWHは隣接トラックが重ならないように信 号を記録する。これにより、リードヘッドRHが内周部 分A内のトラックの端部分に片寄ってしまっても、隣接 トラックまでは再生されないので、隣接トラックからの クロストークの影響は抑制され、再生信号のS/N比を 良好に保つことができる。

【0059】他方、磁気ディスク100の外周側に行く 程、アジマス角度が増加するため、リードヘッドRHが 中間部分B内のトラックの端部分に片寄ることはなく、 走査するトラックの中心とリードヘッドRHの中心が略 一致する。このため、磁気ディスク100の中間部分B では、実効トラック幅ETWをリードヘッドRHの幅と 隣接トラックからのクロストークを軽減するために設け られたデッドスペースDSの幅との和に設定することに より、隣接トラックからのクロストークの影響を抑さえ ることができる。つまり、磁気ディスク100の中間部 分Bでは、内周部分Aよりトラックピッチを小さく設定 しても、再生信号のS/N比を良好に保つことができる ので、S/N比を犠牲にすることなく磁気ディスク10 0の記録密度を向上することができる。そこで、本実施 例では、磁気ディスク100の中間部分Bでは、トラッ クピッチは最小に設定され、ライトヘッドWHは隣接ト ラックが重なるように信号を記録する。

【0060】又、磁気ディスク100の外周部分Cでは、アジマス角度が中間部分Bより更に増加するものの、リードヘッドRHが中間部分B内のトラックの端部50分に片寄る度合いは、内周部分A内のトラックを走査す

る場合と略同じである。このため、外周部分Cでは、トラックピッチを、ライトヘッドWHの幅と隣接トラックからのクロストークを軽減するために設けられたデッドスペースDSの幅との和に設定する。つまり、磁気ディスク100の外周部分Cでは、ライトヘッドWHは隣接トラックが重ならないように信号を記録する。これにより、リードヘッドRHが外周部分C内のトラックの端部分に片寄ってしまっても、隣接トラックまでは再生されないので、隣接トラックからのクロストークの影響は抑制され、再生信号のS/N比を良好に保つことができな

【0061】図11は、アクチュエータ1に設けられた ライトヘッドWH及びリードヘッドRHが磁気ディスク 100の内周部分Aのトラック T_n , T_{n+1} 上に位置する場合を拡大して示す。図12は、ライトヘッドWH及 びリードヘッドRHが磁気ディスク100の中間部分Bのトラック T_n , T_{n+1} 上に位置する場合を拡大して示す。又、図13は、ライトヘッドWH及びリードヘッド RHが磁気ディスク100の外周部分Cのトラック T_n , T_{n+1} 上に位置する場合を拡大して示す。

【0062】本実施例では、ライトヘッドWH及びリー ドヘッドRHが磁気ディスク100の内周部分Aのトラ ック上に位置する場合、図11に示すように、各ヘッド WH,RHの幅方向とトラックの延在方向とが略直交 し、アジマス角度は最小である。しかし、各ヘッドW H, RHが磁気ディスク100の中間部分B及び外周部 分Cへ移動するにつれて、図12及び図13に示すよう に、アジマス角度が増加する。又、ライトヘッドWHが 隣接トラック Tn, Tn+1 を走査する際の隣接トラック T_n, T_{n+1} の磁気ディスク100の半径方向上の重な 30 りOLの幅は、磁気ディスク100の中間部分に向かう 程大きく設定されている。隣接トラックTn, Tn+1の 重なりOLの幅は、アジマス角度が最小と最大の略中間 値となる磁気ディスク100の中間部分では最大であ り、アジマス角度が最大となる磁気ディスク100の外 周側及びアジマス角度が最小となる磁気ディスク100 の内周側に向かうに従って減少する。

【0063】隣接トラックTn, Tn+1の重なりOLは、信号再生には使用されない重複領域であるが、この重複領域によりトラックピッチを減少させることができ40る。隣接トラックからのクロストークの影響は、実効トラック幅ETWを、リードヘッドRHの幅と隣接トラックからのクロストーク軽減のために設けられたデッドスペースDSの幅との和に設定することにより、抑制することができる。尚、磁気ディスク100の内周側及ぶ外周側では、隣接トラックTn, Tn+1の重なりOLは最小であり、必要であれば隣接トラックからのクロストーク軽減のためのデッドスペースDSが設けられる。

【0064】隣接トラックからのクロストークの量は、 再生周波数に依存し、一般的には再生周波数の低い方が 50 22

大きくなる。又、磁気ディスクの内周側と外周側とで、記録再生周波数を変えて記録密度の向上を図った場合、記録再生周波数とアジマス角度との関係を最適化することによりトラックピッチを設定することで、記録密度を向上することができる。しかし、記録再生周波数とアジマス角度との関係を最適化することでトラックピッチを設定するだけでは、記録密度を最大限増加させることが難しい場合もある。そこで、本実施例では、ライトへッドの幅方向の中心とリードへッドの幅方向の中心とを、記録密度を最適化する際の設計の自由度を増している。

【0065】次に、本発明になる磁気ディスク装置の第1実施例を説明する。磁気ディスク装置の第1実施例では、本発明になる磁気記録再生方法の第1実施例を採用する。図14は、磁気ディスク装置の第1実施例の要部を上カバーを取り外して示す平面図である。同図に示す磁気ディスク装置11において、アクチュエータ12がアーム13より支持ばね機構13aを介してその先端に磁気ヘッド14が搭載されており、アーム13の基部がピボット15に回転自在に軸支される。

【0066】アーム13のピボット15の反対側には回動支持部16が形成され、回動支持部16に巻回されたコイル17が設けられる。コイル17の下方には2つのマグネット18a,18bが固定配置される。このコイル17及びマグネット18a,18bによりボイスコイルモータ(VCM)を構成する。このようなアクチュエータ12は、センサレスタイプのスピンドルモータのスピンドル19に固定されて回転される磁気ディスク100に対し、コイル17に配線基板21よりフレキシブルプリント板22を介して通伝することにより磁気へッド14を磁気ディスク100の半径方向に移動させるようにアーム13が回動される。

【0067】磁気ヘッド14は、高記録密度化に対応するものとしてMR素子を用いたMRヘッドが使用されるが、MRヘッドは読み出し専用であることから、書き込み用の薄膜ヘッドと組み合わせた複合薄膜磁気ヘッドが使用される。図15は、複合薄膜磁気ヘッドの構成図を示す。図15(A)は切截断面図、図15(B)は断面図である。図15(A)、(B)に示す複合薄膜磁気ヘッド14は、MRヘッド31が、非磁性基板32上に形成した長方形のMR素子33と、MR素子33の引出し導体層34と、上、下磁気シールド層35a、35bとで構成されている。

【0068】引出し導体層34は、MR素子33の長手 方向に対して所定幅で切除されてMR素子33のMRの 両端に接続されている。MR素子33及び引出し導体層 34は上磁気シールド層35aと下磁気シールド層35 bとの間にあって非磁性絶縁層36で電気的に絶縁され ている。磁気ディスク100に情報の記録を行うための 電磁変換型の記録用ヘッド(インダクティブヘッド)3

7は、MRヘッド31の上磁気シールド35aを下部磁 極とし、その上面に順にアルミナ (Al2O3) を介在 した記録ギャップ38を介して熱硬化樹脂からなる層間 絶縁層39、薄膜コイル導体層(Cu)40及び上部磁 極(NiFe)41を積層し、上部磁極41と下部磁極 (上磁気シールド層) 35aとで形成した記録ギャップ 38によって情報の記録を行う。また、上部磁極41上 には保護絶縁層42が形成される。

【0069】このように、複合薄膜磁気ヘッド14は、 MRヘッド31とインダクティブヘッド37が磁気ディ 10 スク100におけるトラックの長手方向に組み合わされ たもので、インダクティブヘッド37の記録ギャップ3 8とMR素子33とは距離Lのギャップで配置されるこ とになる。尚、磁気ディスク100は、ディスク装置1 1内に複数設けられていても良い。 図16は、磁気デ ィスク装置の第1実施例の制御系の概略構成を示すプロ ック図である。同図に示す磁気ディスク装置11におい て、磁気ディスク100は、DCモータ (DCM) 53 により所定回転数で回転される。VCM54は、図14 に示す如きアクチュエータ12及びアーム13を介し て、磁気ヘッド14を磁気ディスク100の半径方向へ 移動する。磁気ヘッド14は、図15と共に説明した、 MRヘッド31とインダクティブヘッド37とが組み合 わされた複合薄膜磁気ヘッドである。

【0070】磁気ヘッド14のMRヘッド31が磁気デ イスク100から読み出したサーボ信号は、ヘッド集積 回路(IC)56を介してサーボ復調回路57に供給さ れる。サーボ復調回路57は、サーボ信号を位置信号に 変換して、アナログ・デジタル変換器 (ADC) 58に 供給する。ADC58は、位置信号をデジタル位置信号30 に変換してデジタルシグナルプロセッサ (DSP) 59 に供給する。又、DSP59には、トラックピッチ(T PI)情報を予め格納しているTPIテーブル62から 読み出されたTPI情報も供給されている。TPIテー ブル62は、例えばリード・オンリ・メモリ (ROM) 等で構成されており、磁気ディスク100の半径方向上 の位置とTPIとの関係を示すデータを予め格納してい る。従って、DSP59は、ADC58からのデジタル 位置信号に基づいて、TPIテーブル62から対応する TPI情報を読み出す。

【0071】DSP59は、TPIテーブル62からの TPI情報に基づいて、VCM54を駆動するためのデ ジタル制御信号を生成し、デジタル・アナログ変換器 (DAC) 60に供給する。DAC60は、デジタル制 御信号をアナログ制御信号に変換してVCM駆動回路 6 1に供給する。VCM54は、VCM駆動回路61から の駆動信号により駆動される。 DCM制御回路63 は、DCM53を一定速度で回転させるために設けられ ている。

24

の要旨と直接関係がないので、その図示及び説明は省略 する。図17は、DSP59のシーク動作を説明するた めのフローチャートである。同図中、ステップS1は、 ADC58からのデジタル位置信号で示される現在の走 **査位置に基づいて、TPIテーブル62から対応するT** PI情報を読み出す。

【0073】本実施例では、上記磁気ディスクの第1実 施例に対して信号記録及び再生を行うものとする。従っ て、TPIテーブル62には、磁気ディスク100上の 半径位置が外周側から内周側へ行く程トラックピッチが 小さくなるTPI情報が予め格納されている。尚、トラ ックピッチは、磁気ディスク100の内周側へ行く程段 階的に小さくなっても、連続的に小さくなっても良い。

【0074】ステップS2は、TPI情報に基づいて、 制御パラメータを決定する。ステップS3は、ステップ S2で決定された制御パラメータに基づいて、VCM制 御電流値を演算する。ステップS4は、ステップS3で 演算されたVCM制御電流値をDAC60に対して設定 し、VCM54をVCM駆動回路61を介して制御す

【0075】ステップS5は、磁気ヘッド14の磁気デ イスク100上の現在位置を計算する。例えば、磁気デ イスク100上の半径位置は、ADC58からのデジタ ル位置信号に基づいて、ヘッド14が移動した距離を累 積することにより計算する。ステップS6は、ステップ S5で計算された現在位置が目標位置であるか否かを判 定し、判定結果がYESであれば、処理は終了する。他 方、ステップS6の判定結果がNOであれば、処理はス テップS1へ戻る。

【0076】次に、本発明になる磁気ディスク装置の第 2 実施例を説明する。磁気ディスク装置の第2 実施例で は、本発明になる磁気記録再生方法の第2実施例を採用 する。磁気ディスク装置の第2実施例の構成は、上記磁 気ディスク装置の第1実施例の構成と同じであるので、 その図示及び説明は省略する。磁気ディスク装置の第2 実施例では、TPIテーブル62に予め格納されている TPI情報が、磁気ディスク装置の第1実施例の場合と 異なる。

【0077】本実施例では、上記磁気ディスクの第2実 施例に対して信号記録及び再生を行うものとする。従っ て、TPIテーブル62には、磁気ディスク100上の 半径位置が外周側から内周側へ行く程トラックピッチが 小さくなると共に、隣接するトラックの磁気ディスク1 00の半径方向上の重なりOLの幅が、磁気ディスク1 00の内周側へ行く程大きくなるTPI情報が予め格納 されている。尚、トラックピッチは、磁気ディスク10 0の内周側へ行く程段階的に小さくなっても、連続的に 小さくなっても良い。同様に、隣接するトラックの重な りOLの幅は、磁気ディスク100の内周側へ行く程段 【0072】尚、データの記録系及び再生系は、本発明 50 階的に大きくなっても、連続的に大きくなっても良い。

【0078】次に、本発明になる磁気ディスク装置の第3実施例を説明する。磁気ディスク装置の第3実施例では、本発明になる磁気記録再生方法の第3実施例を採用する。磁気ディスク装置の第3実施例の構成は、上記磁気ディスク装置の第1実施例の構成と同じであるので、その図示及び説明は省略する。磁気ディスク装置の第3実施例では、TPIテーブル62に予め格納されているTPI情報が、磁気ディスク装置の第1実施例の場合と異なる。

【0079】本実施例では、上記磁気ディスクの第3実10施例に対して信号記録及び再生を行うものとする。従って、TPIテーブル62には、磁気ディスク100上の半径位置が外周側から内周側へ行く程トラックピッチが大きくなると共に、隣接するトラックの重なりOLの幅が、磁気ディスク100の内周側へ行く程小さくなるTPI情報が予め格納されている。尚、トラックピッチは、磁気ディスク100の内周側へ行く程段階的に大きくなっても、連続的に大きくなっても良い。同様に、降接するトラックの重なりOLの幅は、磁気ディスク100の内周側へ行く程段階的に小さくなっても、連続的に20小さくなっても良い。

【0080】ところで、磁気ディスク上の半径位置によってトラックピッチが異なると、磁気ヘッドの位置感度が変化してしまい、シーク動作中の制御系のループゲインが変化して、適切な制御を行えなくなる可能性もある。この様な場合には、例えば特開平5-282818号公報にて提案されている方法を用いて、他の要因によるバラツキも含めてループゲインを補正することができる。又、TPIテーブル62に予め格納するTPI情報を、磁気ヘッドの位置感度の変化を補正するように設定30しておくことも可能である。

【0081】尚、アジマス角度が磁気ディスクの外周側 又は中間部分でゼロとなる磁気ディスクの場合は、TP Iテーブル62に予め格納されるTPI情報を、磁気ディスク上のトラックピッチの変化に応じて設定すれば良い。又、本発明になる磁気記録再生方法及び磁気ディスク装置は、上記各実施例の如き磁気ディスク装置への適用に限定されるものではないことは、言うまでもない。

【0082】以上、本発明を実施例により説明したが、本発明は上記実施例に限定されるものではなく、本発明 40 の範囲内で種々の変形及び改良が可能であることも言うまでもない。

[0083]

【発明の効果】請求項1~3記載の発明によれば、再生信号のS/N比を向上して、データの信頼性を向上すると共に、高密度記録再生を実現することができる。請求項4記載の発明によれば、磁気ディスクの記録密度を更に向上することができる。

【0084】請求項5~9記載の発明によれば、再生信 クの第4実施例の外周部分号のS/N比を向上して、データの信頼性を向上すると 50 を拡大して示す図である。

26

共に、高密度記録再生を実現することができる。請求項 $10\sim19$ 記載の発明によれば、再生信号のS/N比を低下させることなく、高密度記録再生を実現することができる。請求項 $20\sim24$ 記載の発明によれば、再生信号のS/N比を向上して、データの信頼性を向上すると共に、高密度記録再生を実現することができる。

【0085】請求項25~34記載の発明によれば、再生信号のS/N比を低下させることなく、高密度記録再生を実現することができる。従って、本発明によれば、再生信号のS/N比を低下させることなく、磁気ディスクの記録密度を更に向上することができる。

【図面の簡単な説明】

【図1】 ヘッドの磁気ディスク上の位置に応じたトラックに対するアジマス角度を説明する図である。

【図2】ライトヘッド及びリードヘッドが磁気ディスクの第1実施例の内周部分のトラック上に位置する場合を拡大して示す図である。

【図3】ライトヘッド及びリードヘッドが磁気ディスクの第1実施例の中間部分のトラック上に位置する場合を拡大して示す図である。

【図4】 ライトヘッド及びリードヘッドが磁気ディスクの第1実施例の外周部分のトラック上に位置する場合を拡大して示す図である。

【図5】 ライトヘッド及びリードヘッドが磁気ディスクの第2実施例の内周部分のトラック上に位置する場合を拡大して示す図である。

【図6】ライトヘッド及びリードヘッドが磁気ディスクの第2実施例の中間部分のトラック上に位置する場合を 拡大して示す図である。

【図7】ライトヘッド及びリードヘッドが磁気ディスクの第2実施例の外周部分のトラック上に位置する場合を拡大して示す図である。

【図8】ライトヘッド及びリードヘッドが磁気ディスクの第3実施例の内周部分のトラック上に位置する場合を拡大して示す図である。

【図9】ライトヘッド及びリードヘッドが磁気ディスクの第3実施例の中間部分のトラック上に位置する場合を拡大して示す図である。

【図10】ライトヘッド及びリードヘッドが磁気ディスクの第3実施例の外周部分のトラック上に位置する場合を拡大して示す図である。

【図11】ライトヘッド及びリードヘッドが磁気ディスクの第4実施例の内周部分のトラック上に位置する場合を拡大して示す図である。

【図12】ライトヘッド及びリードヘッドが磁気ディスクの第4実施例の中間部分のトラック上に位置する場合を拡大して示す図である。

【図13】ライトヘッド及びリードヘッドが磁気ディスクの第4実施例の外周部分のトラック上に位置する場合を拡大して示す図である。

28

【図14】	磁気ディスク装置の第1実施例の要部を上た	カ :	* 5 3	DCM	
バーを取り	外して示す平面図である。		5 4	VCM	
【図15】	複合薄膜磁気ヘッドの構成図である。		5 6	ヘッドIC	
【図16】	磁気ディスク装置の第1実施例の制御系の制	既	5 7	サーボ復調回路	
略構成を示	すブロック図である。		5 8	ADC	
【図17】	DSPのシーク動作を説明するためのフロー	_	5 9	DSP	
チャートで	[*] ある。		6 0	DAC	
【符号の説	胡】		6 1	VCM駆動回路	
1 1	磁気ディスク装置		6 2	TPIテーブル	
1 4	複合薄膜磁気ヘッド	10	6 3	DCM制御回路	
3 1	MRヘッド		100	磁気ディスク	
3 7	インダクティブヘッド	*			

【図1】

ヘッドの磁気ディスク上の位置に応じたトラックに 対するアジマス角度を説明する図

【図3】

ライトヘッド及びリードヘッドが磁気ディスクの第1 実施例の中間部分のトラック上に位置する場合を拡大して示す図

【図2】

ライトヘッド及びリードヘッドが磁気ディスクの第1 実施例の内周部分のトラック上に位置する場合を拡大して示す図

【図4】

うイトヘッド及びリードヘッドが磁気ディスクの第1 実施例 の外周部分のトラック Eに位置する場合を拡大して示す図

【図5】

ライトペッド及びり… ドペッドが磁気ディスクの第2実施例 の内周部分のトラック上に位置する場合を拡大して示す図

[図6]

ライトへッド及びリードへッドが磁気ディスクの第2実施例 の中間部分のトラック上に位置する場合を拡大して基す図

【図8】

ライトヘッド及びリードヘッドが磁気ディスクの第3**実施例** の内掲部分のトラック上に位置する場合を拡大して示す図

【図10】

ライトペッド及びリードペッドが磁気ディスクの第3 実施例 の外周部分のトラック上に位置する場合を拡大して示す図

【図12】

ライトペッピ及びリードペッピが幽気ディスクの第1実線例 の中間部分のトラック上に位置する場合を拡大して示す図

【図7】

ライトペッド及びリードペッドが磁気ディスクの第2突施例 の外開部分のトラック上に位置する場合を拡大して示す図

【図9】

ライトヘッド及びリードヘッドが磁気ディスクの第3天施例 の中間部分のトラック上に位置する場合を拡大して示す図

【図11】

ライトペッド及びリードペッドが磁気ディスクの第4集権例 の内閣部分のトラック上に位置する場合を拡大して示す図

【図13】

ライトへッド及びリードへッドが磁気ディスクの第 1実施例 の外周部分のトラック上に位置する場合を拡大して示す図

【図14】

磁気ディスク装置の第1 実施例の要都を上カバーを取り外して示す平面図

【図16】

【図15】

複合薄膜磁気ヘッドの構成図・

【図17】

DSPのシーク動作を説明するためのフローチャート .

