UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA CURSO DE ENGENHARIA ELÉTRICA

Operação e Formação de Preços

Relatório

Planejamento e Regulação de Mercados de Energia Elétrica

Lucas Budde Mior

Professor: Erlon Finardi

Sumário

_	Introdução	3
2	Questão 1 - Afluência Hidráulica e Demanda de Cada Barra	3
3	Questão 2 - Despacho ótimo de cada usina e custo marginal de cada barra	6
4	Questão 3 e 4 - Contabilização no Mercado de Curto Prazo	8
4	Questão 3 e 4 - Contabilização no Mercado de Curto Prazo4.1 Sem contrato	

1 Introdução

Esse trabalho demonstra a simulação de um sistema elétrico alimentado por uma usina hidrelétrica e 3 térmicas, durante um período de 20 horas. Para o despacho, é utilizado um modelo de otimização implementado em python utilizando a biblioteca Gurobipy. Os cálculos de formação de preço também foram implementados em python, com base no despacho otimizado.

Figura 1: Apresentação do sistema

2 Questão 1 - Afluência Hidráulica e Demanda de Cada Barra

O volume afluente é modelado como uma distribuição uniforme entre 0 e 100hm. Os valores sortados foram os seguintes:

Período	Volume
0	77
1	28
2	17
3	41
4	97
5	18
6	13
7	21
8	95
9	0
10	62
11	4
12	30
13	58
14	23
15	87
16	67
17	60
18	47
19	69

As demandas por barra, por sua vez, são modeladas como uma distribuição normal com média 25 e desvio padrão 2, com exceção da barra 1 que não possui carga. As demandas por barra foram as seguintes:

Período	L1	L2	L3
0	0	24	28
1	0	24	27
2	0	25	23
3	0	22	25
4	0	22	25
5	0	25	27
6	0	24	23
7	0	29	27
8	0	25	24
9	0	25	28
10	0	26	22
11	0	25	25
12	0	26	22
13	0	30	24
14	0	23	24
15	0	24	24
16	0	25	27
17	0	25	21
18	0	27	26
19	0	25	26

3 Questão 2 - Despacho ótimo de cada usina e custo marginal de cada barra

O despacho ótimo obtido pelo modelo de otimização é apresentado a seguir (gerações em MW).

Período	gt1	gt2	gt3	gh	custo
0	30.0	0.0	3.0	19.0	R\$ 63.18
1	30.0	16.2	2.0	2.8	R\$ 197.90
2	30.0	16.3	0.0	1.7	R\$ 248.10
3	30.0	12.9	0.0	4.1	R\$ 129.30
4	19.7	0.0	0.0	27.3	R\$ 19.70
5	30.0	18.2	2.0	1.8	R\$ 255.90
6	30.0	15.7	0.0	1.3	R\$ 270.90
7	30.0	20.0	3.9	2.1	R\$ 251.00
8	23.5	0.0	0.0	25.5	R\$ 23.50
9	30.0	20.0	3.0	0.0	R\$ 372.50
10	30.0	2.2	0.0	15.8	R\$ 71.90
11	30.0	19.6	0.0	0.4	R\$ 332.70
12	30.0	15.0	0.0	3.0	R\$ 177.50
13	30.0	11.8	0.0	12.2	R\$ 91.10
14	30.0	14.7	0.0	2.3	R\$ 208.90
15	29.7	0.0	0.0	18.3	R\$ 29.70
16	30.0	0.0	2.0	20.0	R\$ 76.93
17	30.0	2.0	0.0	14.0	R\$ 71.50
18	30.0	17.3	1.0	4.7	R\$ 119.10
19	30.0	0.0	1.0	20.0	R\$ 68.56

- \bullet gt
1 Geração na Usina Termelétrica 1
- gt2 Geração na Usina Termelétrica 2
- $\bullet~{\bf gt3}$ Geração na Usina Termelétrica 3
- $\bullet\,$ gh Geração na Usina Hidrelétrica

Podemos observar que o otimizador limitou o uso da térmica 3, que praticamente só foi utilizada em períodos de baixa afluência, e priorizou o uso da térmica 1 em relação a 2, além de, obviamente, buscar utilizar a hidrelétrica o quanto possível.

Em seguida foi realizado os cálculo dos custos marginais de operação de cada barra. Para isso utilizou-se o modelo de otimização e incrementou-se a demanda em 1MWh em cada barra. A partir disso calcula-se o excedente de mercado (EM), considerando o CMO de cada barra, e o excedente de mercado devido a transmissão (EMT), considerando o maior dos CMOs para o período. Na tabela a seguir pode-se visualizar os resultados.

periodo	alfa	f12	f13	f32	cmo1	cmo2	cmo3	EM	EMT
0	18.18	4.0	15.0	-10.0	1.88	1.88	5.00	196.81	68.64
1	125.50	-12.2	15.0	-10.0	2.00	2.00	5.00	57.10	14.40
2	185.50	-11.3	13.0	-10.0	2.00	2.00	2.00	-152.10	0.00
3	73.50	-10.9	15.0	-10.0	2.00	2.00	5.00	105.70	12.30
4	0.00	12.3	15.0	-10.0	1.00	1.00	5.00	215.30	109.20
5	179.50	-13.2	15.0	-10.0	2.00	2.00	5.00	4.10	11.40
6	209.50	-11.7	13.0	-10.0	2.00	2.00	2.00	-176.90	0.00
7	161.50	-12.9	15.0	-8.1	5.00	5.00	5.00	29.00	0.00
8	0.00	10.5	15.0	-9.0	1.00	1.00	1.00	25.50	0.00
9	287.50	-15.0	15.0	-10.0	5.00	5.00	5.00	-107.50	0.00
10	37.50	3.8	12.0	-10.0	2.00	2.00	2.00	24.10	0.00
11	263.50	-14.6	15.0	-10.0	3.80	3.80	5.00	-82.70	0.48
12	117.50	-9.0	12.0	-10.0	2.00	2.00	2.00	-81.50	0.00
13	37.50	-1.8	14.0	-10.0	2.00	2.00	2.00	16.90	0.00
14	149.50	-11.7	14.0	-10.0	2.00	2.00	2.00	-114.90	0.00
15	0.00	4.3	14.0	-10.0	1.61	1.61	1.61	47.58	0.00
16	36.93	5.0	15.0	-10.0	1.96	1.96	5.00	183.06	66.88
17	37.50	3.0	11.0	-10.0	2.00	2.00	2.00	20.50	0.00
18	49.50	-10.3	15.0	-10.0	2.00	2.00	5.00	145.90	17.10
19	33.56	5.0	15.0	-10.0	1.88	1.88	5.00	186.43	65.52

4 Questão 3 e 4 - Contabilização no Mercado de Curto Prazo

4.1 Sem contrato

A contabilização com ausência de contrato é apresentada a seguir:

Período	Térmica 1	Térmica 2	Térmica 3	Hidrelétrica	Demanda 2	Demanda 3	EMT
0	56.40	0.00	15.0	26.55	45.12	140.00	-87.16
1	60.00	32.40	10.0	0.00	48.00	135.00	-80.60
2	60.00	32.60	0.0	0.00	50.00	46.00	-3.40
3	60.00	25.80	0.0	0.00	44.00	125.00	-83.20
4	19.70	0.00	0.0	22.00	22.00	125.00	-105.30
5	60.00	36.40	10.0	0.00	50.00	135.00	-78.60
6	60.00	31.40	0.0	0.00	48.00	46.00	-2.60
7	150.00	100.00	19.5	0.00	145.00	135.00	-10.50
8	23.50	0.00	0.0	20.00	25.00	24.00	-5.50
9	150.00	100.00	15.0	0.00	125.00	140.00	0.00
10	60.00	4.40	0.0	24.00	52.00	44.00	-7.60
11	114.00	74.48	0.0	0.00	95.00	125.00	-31.52
12	60.00	30.00	0.0	0.00	52.00	44.00	-6.00
13	60.00	23.60	0.0	16.00	60.00	48.00	-8.40
14	60.00	29.40	0.0	0.00	46.00	48.00	-4.60
15	47.81	0.00	0.0	19.32	38.64	38.64	-10.14
16	58.80	0.00	10.0	32.58	49.00	135.00	-82.61
17	60.00	4.00	0.0	20.00	50.00	42.00	-8.00
18	60.00	34.60	5.0	0.00	54.00	130.00	-84.40
19	56.40	0.00	5.0	30.78	47.00	130.00	-84.81

4.2 Com contrato

O contrato utilizado foi o seguinte:

- $\bullet\,$ Barra 2 Contratou 15 MWh de T_1 e 10 MWh de H
- $\bullet\,$ Barra 3 Contratou 5 MWh de $T_1,$ 10 MWh de $T_2,$ 5 MWh de T_3 e 5 MWh de H

A contabilização com contrato é apresentada a seguir:

Período	Térmica 1	Térmica 2	Térmica 3	Hidrelétrica	Demanda 2	Demanda 3	EMT
0	18.80	-18.80	-10.00	-11.04	-1.88	15.00	-34.16
1	20.00	12.40	-15.00	-40.00	-2.00	10.00	-30.60
2	20.00	12.60	-10.00	-40.00	0.00	-4.00	-13.40
3	20.00	5.80	-25.00	-40.00	-6.00	0.00	-33.20
4	-0.30	-10.00	-25.00	2.00	-3.00	0.00	-30.30
5	20.00	16.40	-15.00	-40.00	0.00	10.00	-28.60
6	20.00	11.40	-10.00	-40.00	-2.00	-4.00	-12.60
7	50.00	50.00	-5.50	-100.00	20.00	10.00	-35.50
8	3.50	-10.00	-5.00	0.00	0.00	-1.00	-10.50
9	50.00	50.00	-10.00	-100.00	0.00	15.00	-25.00
10	20.00	-15.60	-10.00	-16.00	2.00	-6.00	-17.60
11	38.00	36.48	-25.00	-76.00	0.00	0.00	-26.52
12	20.00	10.00	-10.00	-40.00	2.00	-6.00	-16.00
13	20.00	3.60	-10.00	-24.00	10.00	-2.00	-18.40
14	20.00	9.40	-10.00	-40.00	-4.00	-2.00	-14.60
15	15.60	-16.10	-8.05	-12.88	-1.61	-1.61	-18.19
16	19.60	-19.60	-15.00	-6.61	0.00	10.00	-31.61
17	20.00	-16.00	-10.00	-20.00	0.00	-8.00	-18.00
18	20.00	14.60	-20.00	-40.00	4.00	5.00	-34.40
19	18.80	-18.80	-20.00	-6.81	0.00	5.00	-31.81

Os contratos reduziram a quantidade de compra de energia no mercado de curto prazo, mas ocorrem pequenas diferenças em relação a energia contratada e a efetivamente gerada e consumida, a serem sanadas de acordo com a regulamentação do referido mercado.