Esperimentazioni 2 Uso del prisma nello spettroscopio

Modulo di Ottica e Fisica Moderna

TESI:

- determinare l'angolo D di deviazione tra direzione del raggio incidente e quella del raggio emergente

METODO:

- applico la legge di Snell
- considero la geometria del sistema, noto $\boldsymbol{\alpha}$

Spettroscopio di Kirchhoff-Bunsen

- Lo useremo in laboratorio
- E' stato uno strumento fondamentale per l'inizio della fisica atomica
- E' basato sull'uso di un prisma (o reticolo di diffrazione) fissato su una piastra solidale a un goniometro
- Sfrutta un sistema di canocchiali per focalizzare i fasci di luce provenienti dalla sorgente
- La sorgente usata puo' essere una lampada spettrale (vapori di Na, Hg ad alta o bassa pressione) oppure una lampada a spettro continuo che emette luce bianca (led o incandesenza)
- Può analizzare spettri di emissione o assorbimento
- Si può usare per ricavare l'andamento di n=n(λ) per diversi materiali trasparenti

Schema dello spettroscopio

Schema dello spettroscopio

Metodologia d'uso:

- l'osservatore guarda nell'oculare, mette a fuoco l'immagine sulla retina
- se la sorgente consiste in una lampada spettrale vedrà:

- Il canocchiale oculare può essere ruotato
- è solidale a un nonio goniometrico come quello in figura, usato per misurare la posizione angolare del canocchiale

- la fenditura regolabile presente dopo la sorgente permette di avere righe di dimensione variabile
 - righe sottili aiutano a migliorare la precisione ma risucono la luminosità complessiva. La croce è difficile da vedere
 - è possibile illuminare con una lampada esterna il prisma per migliorare la vista
- l'oculare dispone di 2 regolazioni indipendenti
 - una per la messa a fuoco dello spettro
 - una per la messa a fuoco della croce
 - le 2 regolazioni non sono indipendenti

- per la misura dell'indice di rifrazione occorre allineare collimatore e prisma in modo da soddisfare la condizione di deviazione minima
- essa è soddisfatta quando l'angolo D è minimo, ovvero le righe dello spettro deviato dal prisma sono il + vicine possibile alla direzione del fascio incidente
- Metodo operativo:
 - tolgo il prisma per non deviare il raggio
 - ruoto il canocchiale verso sx, inquadro la riga corrispondente alla fenditura (unica perchè senza prisma non ho dispersione della luce) e ne misuro la posizione
 - rimetto il prisma sulla piattaforma rotante, centrandolo sulla medesima e ruoto la piattaforma, seguendo con il canocchiale le righe spettrali, fino a che queste non raggiungono la posizione di minimo
 - fisso la piattaforma rotante per fissare l'angolo i che minimizza D

- fissato il prisma nella posizione che minimizza D si misurano le posizioni angolari di ciascuna riga
- l'angolo di deviazione sarà dato dalla differenza tra posizione della riga e posizione del raggio non deviato
- commenti:
 - l'angolo di deviazione minima dovrebbe essere ottimizzato per ogni componente dello spettro ma la risoluzione dello spettroscopio non è tale da vedere effetti dell'ottimizzazione del risultato
 - prima di effettuare una misura ricordarsi di ottimizzare la messa a fuoco
 - se si hanno a disposizione 2 sorgenti misurare una sola volta la posizione del raggio incidente, poi fissare il prisma e non spostarlo + ma effettuare la misura delle posizioni dello spettro in successione per entrambe le lampade

Misura di n in deviazione minima

• Acquisizione dati:

- misura dell'angolo corrispondente al raggio non deviato (angolo θ_0)
- misura degli angoli corrispondenti a ciascuna riga in deviazione minima per ogni lampada (angolo riga = θ)
- Analisi dati:
 - calcolo D= $\theta \theta_0$
 - calcolo n

lampada	Colore della riga	θ
Mercurio	rosso	
	giallo	
	verde	
	blu	
	viola	
Sodio	rosso	
	giallo	
	verde	
	blu	
	viola	

Andamento di n in funzione di λ

- Fino a questo punto abbiamo posto in relazione n con la corrispondente riga, ma non abbiamo ancora determinato la lunghezza d'onda corrispondente alla riga
- per farlo possiamo usare 2 strumenti:
 - spettroscopio con reticolo di diffrazione
 - spettrofotometro (spettroscopio digitale computerizzato)

 \mathcal{M}

$$M = A + B/2$$

lampada	Colore della riga	angolo θ	$D = \theta - \theta_0$	n	λ
Mercurio	rosso				
	giallo				
	verde				
	blu				
	viola				
Sodio	rosso				
	giallo				
	verde				
	blu				
	viola				

Spettrofotometro

- separa le componenti dello spettro usando un reticolo di diffrazione
- i raggi luminosi colpiscono un sensore ottico calibrato che fornisce intensità e lunghezza d'onda corrispondenti a ciascuna riga
- Poichè il software mostra il grafico intensità vs lunghezza d'onda non è banale identificare univocamente i picchi associandoli alle righe viste con lo spettroscopio

Analisi dei dati e conclusioni

- Combinando le misure effettuate con spettroscopio e spettrofotometro è possibile graficare l'andamento di n in funzione di λ
 - E' possibile usare entrambi i set di dati, con lampada a vapori di
 Hg e a vapori di Na, solo se non si è spostato il prisma (reticolo) tra le diverse lampade
 - I dati possono essere interpolati con una funzione a 2 parametri, che rappresenta un andamento alla Cauchy $n(\lambda) = a + \frac{b}{\lambda^2}$

Cenni sul Reticolo di diffrazione

- figura di intensità del reticolo è data da interferenza tra n sorgenti e diffrazione:
 - picchi di intensità per ogni ordine di massimo con intensità decrescente allontanandosi da punto centrale (θ=0 – massimo di ordine 0).
 - La figura rappresenta la convoluzione della figura di diffrazione con quella di interferenza per una sorgente di luce monocromatica
- se la sorgente è policromatica per ogni massimo si formeranno N picchi, uno per ciascuna componente dello spettro
- quindi si formeranno N spettri, uno per ogni ordine di massimo
- gl<mark>i spettri si possono sovrapporr</mark>e, questo succede tipicamente per ordini superiori al secondo.
 - La figura mostra le righe correspondenti a rosso e viola per spettri di ordine 1,2 e 3.
 - La riga di ordine 3 del viola si trova a un angolo q inferiore a quello in cui troviamo la riga di ordine 3 del rosso

Se il passo del reticolo è p, la riga di lunghezza d'onda λ , per l'ordine di massimo m, si troverà in corrispondenza dell'angolo θ

$$p \sin \theta = m\lambda$$

