ST233

AY22/23 Sem 2

github.com/SeekSaveServe

Chapter 1: Basic Concepts of Probability

DEFINITION 1 (EXPERIMENT, SAMPLE SPACE, EVENT)

A statistical experiment is any procedure that produces data or observations.

The sample space, denoted by S, is the set of all possible outcomes of a statistical experiment. The sample space depends on the problem of interest!

A sample point is an outcome (element) in the sample space.

An event is a subset of the sample space.

Union: $A \cup B = x : x \in A \lor x \in B$

Union of n events: $\bigcup_{i=1}^n = x : x \in A_1 \lor x \in A_2...$

Union: $A \cap B = x : x \in A \land x \in B$

Interection of n events: $\cap_{i=1}^n = x: x \in A_1 \land x \in A_2...$

Complement: $A' = x : x \in S \land x \notin A$

Mutually Exclusive: $A \cap B = \emptyset$

MORE EVENT OPERATIONS

(a) $A \cap A' = \emptyset$ (c) $A \cup A' = S$

(b) $A \cap \emptyset = \emptyset$ (d) (A')' = A

(e) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

(f) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

(g) $A \cup B = A \cup (B \cap A')$

(h) $A = (A \cap B) \cup (A \cap B')$

DE MORGAN'S LAW

For any n events A_1, A_2, \ldots, A_n ,

(i) $(A_1 \cup A_2 \cup ... \cup A_n)' = A'_1 \cap A'_2 \cap ... \cap A'_n$

A special case: $(A \cup B)' = A' \cap B'$

(j) $(A_1 \cap A_2 \cap ... \cap A_n)' = A_1' \cup A_2' \cup ... \cup A_n'$

A special case: $(A \cap B)' = A' \cup B'$.

Multiplication

Sequential experiments $n_1 * n_2 * ... * n_r$

outcomes

Permutation: $P_r^n = \frac{n!}{(n-r)!} = n(n-1)...(n-(r-1))$

Addition

Independent

experiments

outcomess

 $n_1 + n_2 + ... + n_r$

Selection and arrangement of r objects out of n. Order is

Combination: $C_r^n = \frac{n!}{r!(n-r)!} = \frac{n(n-1)...(n-(r-1))}{r!}$

Selection of r objects out of n. Order is not considered $C_r^n = C_{n-r}^n$

Axioms and Properties of Probability

1 0 < P(A) < 1

2 P(S)=1

3 $P(A \cup B) = P(A) + P(B)$ if A and B are **mutex** (not to be confused with independence)

4 P(∅)=0

5 $P(A_1 \cup A_2 \cup ...A_n) = \sum_{i=1}^n A_i$

6 P(A')=1-P(A)

 $P(A \cup B) = P(A) + P(B) - P(AB)$

9 $A \subset B \to P(A) \leq P(B)$

8 P(A)= $P(A \cap B) + P(A \cap B')$

10 $P(A_1) = P(A_2) = \dots = P(A_k) \rightarrow forB \subset S, P(B) = \frac{|B|}{|S|}$

Conditional Probability (B occurs given A):

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Multiplication rules

$$P(A \cap B) = P(A)P(B|A)$$
 if $P(A)! = 0$
 $P(A \cap B) = P(B)P(A|B)$ if $P(B)! = 0$

Inverse Probability Formula: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

Independence $A \perp BiffP(A \cap B) = P(A)P(B)$ This implies P(A|B) = P(A) and P(B|A) = P(B)

Partition $A_1, A_2...A_r$ are mutually exclusive and $\sum_{i=1}^{n} A_i = S$

THEOREM 11 (LAW OF TOTAL PROBABILITY)

Suppose $A_1, A_2, ..., A_n$ is a partition of S. Then for any event B, we have

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(A_i) P(B|A_i).$$

$$P(B) = P(A)P(B|A) + P(A')P(B|A')$$

Bayes' theorem

 $P(A_k|B) = \frac{P(B|A)P(A_k)}{P(A)P(B|A) + P(A')P(B|A')}$

Bayes' Theorem(n=2) $P(A|B) = \frac{P(B|A)P(A)}{\sum_{i=1}^n P(A_i)P(B|A_k)}$

Denom is P(B)

P(A|B) = 1 - P(A'|B)

L2:Random Variables

Random variable X is a function from S to RUppercase letters denote random variables Lowercase letters denote observed values of random variables

DEFINITION 3 (PROBABILITY MASS FUNCTION)

For a discrete random variable X, define

$$f(x) = \begin{cases} P(X = x), & \text{for } x \in R_X; \\ 0, & \text{for } x \notin R_X. \end{cases}$$

Then f(x) is known as the probability function (pf), or probability mass function (pmf) of X.

The collection of pairs $(x_i, f(x_i)), i = 1, 2, 3, ...,$ is called the **probability distri**bution of X.

PROPERTIES OF THE PROBABILITY MASS FUNCTION

The probability mass function f(x) of a discrete random variable **must** satisfy:

(1) $f(x_i) > 0$ for all $x_i \in R_X$;

(2) f(x) = 0 for all $x \notin R_X$;

(3) $\sum_{i=1}^{\infty} f(x_i) = 1$, or $\sum_{x_i \in R_Y} f(x_i) = 1$.

For any set $B \subset \mathbb{R}$, we have

 $P(X \in B) = \sum_{n \in D} f(x_i).$

DEFINITION 4 (PROBABILITY DENSITY FUNCTION)

The probability density function of a continuous random variable X, denoted by f(x), is a function that satisfies:

(1) $f(x) \ge 0$ for all $x \in R_X$; and f(x) = 0 for $x \notin R_X$;

(2) $\int_{a}^{b} f(x) dx = 1;$

(3) For any a and b such that a < b,

$$P(a \le X \le b) = \int_a^b f(x) \, \mathrm{d}x.$$

note:
$$P(a < X < b) = P(a \le X \le B)$$

To check that a function is a PDF, check conditions 1 and 2

Cumulative Distribution Function: F(x) = P(X < x)

$$P(a \le b) = P(X \le b) - P(X \le a) = F(b) - F(a-)$$

Deriving CDF from probability distribution

f(x) 1/4 1/2 1/4

We have

$$F(0) = f(0) = 1/4, F(1) = f(0) + f(1) = 3/4, F(2) = f(0) + f(1) + f(2) = 1.$$

Deriving probability distribution from cdf

a
$$F(x) = \begin{cases} 0, & x < 0 \\ 1/4, & 0 \le x < 1 \\ 3/4, & 1 \le x < 2 \end{cases}$$
 • f(1)=P(X=0)=F(0)-F(0-1)= \frac{1}{4} \cdot 0 = \frac{1}{4} \cdot

CDF - Continuous Random Variable

- F(X) assumes different values in R_x when F(X)!=0
- F(X) is always non-decreasing (for discrete varaible too) $x_1 < x_2 \to F(x_1) < F(x_2)$
- · Probability function and CDF is one-to-one and uniquely determined
- 0 < F(x) < 1
- (discrete), 0 < f(x) < 1
- (continuous), f(x) > 0 but f(x) is not necessarily < 1. While the PDF itself cannot exceed 1, there are points within its range that are greater than 1

CDF: CONTINUOUS RANDOM VARIABLE

and

$$f(x) = \frac{\mathrm{d}F(x)}{\mathrm{d}x}.$$

Further

$$P(a \le X \le b) = P(a < X < b) = F(b) - F(a).$$

Find CDF of a continuous random variable

$$f(x) = \begin{cases} \frac{x}{\theta^2} e^{-x^2/(2\theta^2)}, & \text{for } x > 0, \\ 0, & \text{otherwise.} \end{cases}$$

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt = \int_{0}^{x} \frac{t}{\theta^{2}} e^{-t^{2}/(2\theta^{2})} dt$$
$$= \left[-e^{-t^{2}/(2\theta^{2})} \right]_{t=0}^{x} = 1 - e^{-x^{2}/(2\theta^{2})}.$$

Discrete: Expectation (mean) and Variance

•
$$E(X) = \sum_{x \in R_x} x_i f(x_i) = \mu_x$$

Random: Expectation (mean) and Variance

- $E(X) = \mu_x = \int_{-\infty}^{\infty} x f(x) dx = \infty_{x \in R_x} x f(x) dx$
- The mean of X is not necessarily a possible value

Properties of Expectation

- 1 E(aX + b) = aE(x) + b
- 2 E(X + Y) = E(X) + E(Y)
- 3 (discrete) $E[g(x)] = \sum_{x \in R_x} g(x) f(x)$
- 3 (continuous) $E|g(x)|=\int_{x\in R_x}g(x)f(x)dx$ Using properties 1, 2 we have

$$E(a_1X_1 + a_2X_2 + \dots + a_kX + k) = a_1E(X_1) + \dots + a_kE(X_k)$$

Variance

- $Var(X) = \sigma_x^2 = E(X \mu_x)^2 = E(X^2) E(X)^2$
- (discrete) $Var(X) = \sum_{x \in R_x} (x \mu_x)^2 f(x)$
- (continuous) $Var(X)=\int_{-\infty}^{\infty}(x-\mu_x)^2f(x)dx$ V(X) le 0 for any X, V(X)=0 when X is a constant
- Joint Probability Distribution

DEFINITION 5 (DISCRETE JOINT PROBABILITY FUNCTION) Let (X,Y) be a 2-dimensional discrete random variable. Its joint probability (mass) function is defined by

$$f_{X,Y}(x,y) = P(X = x, Y = y),$$

for $(x,y) \in R_{X,Y}$.

PROPERTIES OF THE DISCRETE IOINT PROBABILITY FUNCTION The joint probability mass function has the following properties:

- (1) $f_{X,Y}(x,y) > 0$ for any $(x,y) \in R_{X,Y}$.
- (2) $f_{XY}(x,y) = 0$ for any $(x,y) \notin R_{XY}$
- (3) $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} f_{X,Y}(x_i, y_j) = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} P(X = x_i, Y = y_j) = 1.$ $i=1 \ j=1$ Equivalently, $\sum \sum_{(x,y) \in R_{y,y}} f(x,y) = 1.$
- (4) Let A be any subset of $R_{X,Y}$, then
 - $P((X,Y) \in A) = \sum \sum_{(x,y) \in A} f_{X,Y}(x,y).$

DEFINITION 6 (CONTINUOUS JOINT PROBABILITY FUNCTION) Let (X,Y) be a 2-dimensional continuous random variable. Its joint probability (density) function is a function $f_{XY}(x,y)$ such that

$$P((X,Y) \in D) = \iint_{(x,y)\in D} f_{X,Y}(x,y) \, dy \, dx,$$

for any $D \subset \mathbb{R}^2$. More specifically,

$$P(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f_{X,Y}(x,y) \, \mathrm{d}y \, \mathrm{d}x.$$

PROPERTIES OF THE CONTINUOUS IOINT PROBABILITY FUNCTION The joint probability density function has the following properties:

- (1) $f_{X,Y}(x,y) \ge 0$, for any $(x,y) \in R_{X,Y}$.
- (2) $f_{X,Y}(x,y) = 0$, for any $(x,y) \notin R_{X,Y}$.

(3)
$$\int_{-\infty}^{\infty} \int_{X,Y}^{\infty} f_{X,Y}(x,y) dx dy = 1.$$

Equivalently,
$$\iint_{(x,y)\in R_{X,Y}} f_{X,Y}(x,y) dx dy = 1$$
.

Marginal Probability Distribution

DEFINITION 7 (MARGINAL PROBABILITY DISTRIBUTION)

Let (X,Y) be a two-dimensional random variable with joint probability function $f_{X,Y}(x,y)$. We define the marginal distribution of X as follows.

If Y is a discrete random variable, then for any x, hold x to be constant

$$f_X(x) = \sum_{y} f_{X,Y}(x,y).$$

If Y is a continuous random variable, then for any x,

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}y$$

	y				Row
X	0	1	2	3	Total
0	0	3/84	6/84	1/84	10/84
1	4/84	24/84	(12/84) -	0	40/84
2	12/84	18/84	P	0	30/84
3	4/84	0	0	0	4/84
Column Total	20/84	45/84	18/84	1/84	1

- Each cell is P(X = x, Y = y)
- Column total represents $f_Y(y)$
- Row total represents $f_X(x)$

- Only defined for $f_X(x) > 0$ and $f_Y(y) > 0$
- the summation of the PDF is 1
- $P(Y \le y|X = x) = \int_{-\infty}^{y} f_{Y|X}(y|x)dy$
- $E(Y|X=x) = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy$ Replace bound with actual bounds

Normal Distribution

- $f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- $f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$
- Shape is identical if two curves share the same σ
- Curve flattens as σ increases
- $\Phi(x)$ is the CDF of the normal distribution
- $\Phi(x) = P(x < 2), \Phi(-x) = 1 \Phi(x)$
- $P(|x| < 2) = 2\Phi(x) 1 = p(-2 < x < 2)$
- $P(x_1 < x < x_2) = \Phi(\frac{x_2 \mu}{\sigma}) \Phi(\frac{x_1 \mu}{\sigma})$
- $z = \frac{x-\mu}{\sigma}$ $\phi(z) = f_Z(z)$
- $\Phi(z) = \int_{-\infty}^{z} (\phi(t))dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} (e^{-\frac{t^2}{2}})dt$

Properties of Independent Random Variables

DEFINITION 9 (INDEPENDENT RANDOM VARIABLES) Random variables X and Y are independent if and only if for any x and y,

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Random variables $X_1, X_2, ..., X_n$ are independent if and only if for any

$$f_{X_1,X_2,...,X_n}(x_1,x_2,...x_n) = f_{X_1}(x_1)f_{X_2}(x_2)\cdots f_{X_n}(x_n).$$

- $R_{x,y}$ must be a product space (not a square)
- Any zeroes in the table indicate that $R_{x,y}$ is not product
- If f(x,y) can be easily factorised to c * q(x) * q(y), it is a

PROPERTIES OF INDEPENDENT RANDOM VARIABLES

(1) If A and B are arbitrary subsets of \mathbb{R} , the events $X \in A$ and $Y \in B$ are independent

$$P(X \in A; Y \in B) = P(X \in A)P(Y \in B).$$

In particular, for any real numbers x, y,

$$P(X \le x; Y \le y) = P(X \le x)P(Y \le y).$$

- (2) For arbitrary functions $g_1(\cdot)$ and $g_2(\cdot)$, $g_1(X)$ and $g_2(Y)$ are independent. For
 - X^2 and Y are independent.
 - sin(X) and cos(Y) are independent.
 - e^X and log(Y) are independent.
- (3) Independence is connected with conditional distribution
 - If $f_X(x) > 0$, then $f_{Y|X}(y|x) = f_Y(y)$.
 - If $f_Y(y) > 0$, then $f_{X|Y}(x|y) = f_X(x)$.

Central Limit Theorem

- · Under CLT, sample mean approaches population mean as
- Law of large numbers: $P(|\bar{x} \mu_x| > \epsilon) \to 0$ as n increases
- Symmetric no outliers: 15-20
- Skewed: 30-50, heavily skewed: > 1000
- $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \rightarrow \text{large n, higher accuracy}$

Margin of Error

DIFFERENT CASES

	Population	σ	n	Statistic	E	n for desired E_0 and α
I	Normal	known	any	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	$z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$	$\left(\frac{z_{\alpha/2} \cdot \sigma}{E_0}\right)^2$
п	any	known	large	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	$z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$	$\left(\frac{z_{\alpha/2} \cdot \sigma}{E_0}\right)^2$
ш	Normal	unknown	small	$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$	$t_{n-1;\alpha/2} \cdot \frac{s}{\sqrt{n}}$	$\left(\frac{t_{n-1;\alpha/2}\cdot s}{E_0}\right)^2$
IV	any	unknown	large	$Z = \frac{\overline{X} - \mu}{S/\sqrt{n}}$	$z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$	$\left(\frac{z_{\alpha/2} \cdot s}{E_0}\right)^2$

Confidence Interval

CONFIDENCE INTERVALS FOR THE MEAN

The table below gives the $(1-\alpha)$ confidence interval (formulas) for the population

Case	Population	σ	n	Confidence Interval
I	Normal	known	any	$\bar{x} \pm z_{\alpha/2} \cdot \sigma/\sqrt{n}$
п	any	known	large	$\bar{x} \pm z_{\alpha/2} \cdot \sigma/\sqrt{n}$
ш	Normal	unknown	small	$\overline{x} \pm t_{n-1;\alpha/2} \cdot s / \sqrt{n}$
IV	any	unknown	large	$\bar{x} \pm z_{\alpha/2} \cdot s/\sqrt{n}$

Note that n is considered large when $n \ge 30$.

Alternative pooled variance:

$$s_p^2 = \frac{\sum_{n_1}^{i=1} (x_i - \bar{x})^2 + \sum_{n_2}^{i=1} (y_i - \bar{y})^2}{n_1 + n_2 - 2}$$

Equal Variance Assumption: $\frac{1}{2} < \frac{s_1}{s_2} < 2$

Assumptions

- Normal population (esp for small samples)
- · Random and independent sampling

	Do not reject H ₀	Reject H ₀
H_0 is true	Correct Decision	Type I error
H_0 is false	Type II error	Correct Decision

DEFINITION 1 (Type I vs Type II error)

The rejection of H_0 when H_0 is true is called a **Type I** error.

Not rejecting H_0 when H_0 is false is called a **Type II** error.

DEFINITION 2 (SIGNIFICANCE LEVEL VS POWER)

The probability of making a Type I error is called the level of significance, denoted by α . That is,

$$\alpha = P(\text{Type I error}) = P(\text{Reject } H_0 \mid H_0 \text{ is true}).$$

 $\beta = P(\text{Type II error}) = P(\text{Do not reject } H_0 \mid H_0 \text{ is false}).$

We define $1 - \beta = P(Reject H_0 \mid H_0 \text{ is false})$ to be the **power of the test**.