Homework 6

Jon Allen

October 24, 2014

4.2 B. If a sequence $(\boldsymbol{x}_n)_{n=1}^{\infty}$ in \mathbb{R}^n satisfies $\sum_{n\geq 1}||\boldsymbol{x}_n-\boldsymbol{x}_{n+1}||<\infty$, show that it is a Cauchy sequence. Let's say $\sum_{n\geq 1}||\boldsymbol{x}_n-\boldsymbol{x}_{n+1}||=L$. Then for every $\varepsilon>0$ there exists some N such that $\sum_{n=1}^{N-1}||\boldsymbol{x}_n-\boldsymbol{x}_{n+1}||>L-\varepsilon$ and by extension $\varepsilon>\sum_{n=N}^{\infty}||\boldsymbol{x}_n-\boldsymbol{x}_{n+1}||>\sum_{k=n}^{m-1}||\boldsymbol{x}_k-\boldsymbol{x}_{k+1}||$ for all $m>n\geq N$. And with the triangle inequality and the observation that our series is telescoping we quickly see that

$$arepsilon > \sum_{k=n}^{m-1} ||oldsymbol{x}_k - oldsymbol{x}_{k+1}|| \geq \left|\left|\sum_{k=n}^{m-1} oldsymbol{x}_k - oldsymbol{x}_{k+1}
ight|
ight| = ||oldsymbol{x}_n - oldsymbol{x}_m||$$

Which is the very definition of a Cauchy sequence. Well almost, I guess to be complete I should point out that $||\boldsymbol{x}_n - \boldsymbol{x}_n|| = 0 < \varepsilon$ and $||\boldsymbol{x}_n - \boldsymbol{x}_m|| = ||\boldsymbol{x}_m - \boldsymbol{x}_n|| < \varepsilon$. So our inequality holds for all $m, n \ge N$, not just $m > n \ge N$

C. (a) Give an example of a Cauchy sequence for which the condition of Exercise B fails.

$$a_n = \frac{(-1)^n}{n}$$

$$\sum_{n\geq 1} \left| \frac{(-1)^n}{n} - \frac{(-1)^{n+1}}{n+1} \right| = \sum_{n\geq 1} \left| (-1)^n \left(\frac{1}{n} - \frac{-1}{n+1} \right) \right|$$
$$= \sum_{n\geq 1} \left| \frac{1}{n} + \frac{1}{n+1} \right|$$
$$> \sum_{n\geq 1} \frac{1}{n} = \infty$$

(b) However, show that every Cauchy sequence $(\boldsymbol{x}_n)_{n=1}^{\infty}$ has a subsequence $(\boldsymbol{x}_{n_i})_{i=1}^{\infty}$ such that $\sum_{i\geq 1} ||\boldsymbol{x}_{n_i} - \boldsymbol{x}_{n_{i+1}}|| < \infty$

First we choose x_{N_1} such that $||x_m - x_n|| < \frac{1}{2}$ for all $m, n \ge N_1$. We then proceed, choosing x_{N_i} such that $||x_m - x_n|| < \frac{1}{2^i}$ for all $m, n \ge N_i$. Now then $\sum_{i \ge 1} ||x_{N_i} - x_{N_i}|| < \sum_{i \ge 1} \frac{1}{2^i} = -1 + \sum_{i \ge 0} \frac{1}{2^i} = -1 + \frac{1}{1 - \frac{1}{2}} = 1 < \infty$ as required.

4.3 B. Let $(a_n)_{n=1}^{\infty}$ be a sequence in \mathbb{R}^k with $\lim_{n\to\infty} a_n = a$. Show that $\{a_n : n \geq 1\} \cup \{a\}$ is closed.

Let's say $A = \{a_n : n \ge 1\} \cup \{a\}$. If A is not closed, then we can form a sequence from the elements of A that converge on some point $b \in \mathbb{R}^k$ where $b \notin A$.

Now lets assume that there is no element in A that is closest to b. Then for every $\varepsilon > 0$ then we could find some L such that $||a_{n_l} - b|| < \varepsilon$ where $n_l \ge L$ and a_{n_l} is a subsequence of a_n . Of course this is the definition of a limit. Unfortunately we know that all subsequences of a_n

must converge to a. Of course $b \notin A$ so $b \neq a$. This contradiction means that we can find some $a_m \in A$ that is closest to b.

Great, now lets say the sequence that converges on \boldsymbol{b} is \boldsymbol{a}_j . Now we know that the distance from any element in A to \boldsymbol{b} is at least $||\boldsymbol{a}_m - \boldsymbol{b}||$. Lets pick $\varepsilon = \frac{||\boldsymbol{a}_m - \boldsymbol{b}||}{2}$. Then for all \boldsymbol{a}_j we have $||\boldsymbol{a}_j - \boldsymbol{b}|| > \varepsilon$ and so \boldsymbol{b} can not be a limit. And so we have closure by contradiction.

D. If A is a bounded subset of \mathbb{R} , show that $\sup A$ and $\inf A$ belong to \overline{A} . Well $\sup A \geq \inf A$ and so $\inf A \leq a_n = \sup A - \frac{1}{n}(\sup A - \inf A) \leq \sup A$ for all $n \in \mathbb{N} \setminus \{0\}$. Notice that $a_n \in A$ for all n and $\lim_{n \to \infty} a_n = \sup A$. Similarly $\inf A \leq b_n = \inf A + \frac{1}{n}(\sup A - \inf A) \leq \sup A$. We see that $b_n \in A$ for every n and $\lim_{n \to \infty} b_n = \inf A$. And so because \overline{A} contains all the limit

points of A then the supremum and infimum are in the closure.

J. Show that if U is open and A is closed, the $U \setminus A = \{x \in U : x \notin A\}$ is open. What can be said about $A \setminus U$?

If U is open, then U' is closed. And since U' is closed and A is closed, then $U' \sqcup A$ is closed. And

If U is open, then U' is closed. And since U' is closed and A is closed, then $U' \cup A$ is closed. And the complement of $U' \cup A$ is open. But notice that the complement of $U' \cup A$ is $U \setminus A$. And so $U \setminus A$ is open as required.

 $A \setminus U$ is equal to the complement of $A' \cup U$ which is the union of two open sets. But we don't know anything about the closure of the union of open sets in general. If $A \cap U = \emptyset$ then $A \setminus U = A$ which is closed. But if A = [0, 2] and U = [1, 2) then $A \setminus U = [0, 1) \cup \{2\}$ which is open.

- K. Suppose that A and B are closed subsets of \mathbb{R}
 - (a) Show that the product set $A \times B = \{(x,y) \in \mathbb{R}^2 : x \in A \text{ and } y \in B\}$ is closed. Lets suppose that $A \times B$ is open. Then there exists some sequence $(\boldsymbol{x}_n)_{n=1}^{\infty}$ such that every $\boldsymbol{x}_n \in A \times B$ and $\lim_{n \to \infty} \boldsymbol{x}_n = \boldsymbol{x}$ where $\boldsymbol{x} \notin A \times B$. We know that \boldsymbol{x}_n only converges to a point if each of it's coefficients converge. So if $\boldsymbol{x} = (x_1, x_2)$ then $\lim_{n \to \infty} x_{k,1} = x_1$. Because A is closed we know that $x_1 \in A$. Similarly $\lim_{n \to \infty} x_{k,2} = x_2$. And again, because B is closed we know that $x_2 \in B$. Well, if $x_1 \in A$ and $x_2 \in B$ then $\boldsymbol{x} = (x_1, x_2) \in A \times B$. Whoops, that contradicts our assumption. I guess $A \times B$ is closed after all.
 - (b) Likewise show that if both A and B are open, then $A \times B$ is open. If A is open, then there exists some sequence a_n where $a_n \in A$ for all n but $\lim_{n \to \infty} a_n = a \notin A$. Similarly, if B is open, then there exists some sequence b_n where $b_n \in B$ for all n but $\lim_{n \to \infty} b_n = b \notin B$. Now we define a sequence $\mathbf{x}_n = (a_n, b_n)$ in $A \times B$. We know that $\lim_{n \to \infty} \mathbf{x}_n = \mathbf{x} = (a, b) \notin A \times B$. And so we have found a sequence in $A \times B$ with a limit outside of $A \times B$ and then by definition $A \times B$ is open.