

Programmierwettbewerb 2013/2014

Preisverleihung

Wettbewerbs-Team

Übersicht

111 athe dual

- Problemstellung
- Eingereichte Lösungen
- Lösungen im Detail
- Testumgebung
- Testfälle
- Auswertung
- Ergebnis

Problemstellung

- Zusammensetzung einer Menge von Quadraten mit Kantenlängen von 1-9 und minimalem Umfang
- Laufzeit 10 Minuten
- Programmiersprache frei wählbar

Eingereichte Lösungen

- 4 Teilnehmer
- Lösungen
 - → 2 x Java, 2x C / C++
 - → alle eingereichten Lösungen sind funktional und produzieren Ergebnisse
- Parallelisierung
 - → 2 Lösungen parallelisiert

- Java (27 Dateien, 1698 Zeilen Sourcecode)
- Verschiedene Lösungsansätze laufen parallel (7 implementiert)
 - → Basis-Algorithmus: Alle Quadrate nebeneinander
 - → Varianten von "Tetris": Es werden Spielfelder aller möglichen Breiten zwischen einem Lower- und einem Upperbound mit verschiedenen Strategien gespielt
 - → Kombinatorik (Permutationen)
 - →Intelligentes Einfügen kleiner Quadrate
 - → Zufall
- Iteratives Rausschreiben der bislang besten Lösung

- C++
- Eine Lösung wird iterativ nach einem Greedy-Algorithmus zusammengesetzt
- Der Fokus lag in der Erstellung einer Utility Klasse (ursprünglich waren mehrere Lösungen vorgesehen)

Mark grid cells located at $coords$ as used (use sz as marker for output)				
Calculate new extent of solution: $ext \leftarrow ext + 4 * sz - 2 * cp$				
	Update bounding box of solution			
	For all square sizes $sz_x=1$ to 9 ascending			
	For all relevant cells (x, y) in proximity of $coords$			
select $list_a$ from lists of candidate coords for square size sz_x and contact point count cp				
	Remove obsolete entry (x,y) from $list_a$			
	Calculate new number of contact points cp_x for a square of size sz_x at cell (x,y)			
select $list_b$ from lists of candidate coords for square size sz_x and contact point count cp_x				
Insert new entry (x, y) to $list_b$				

	select list from lists of candidate coordinates for square size sz and contact point count cp					
	$coords_{best} \leftarrow$ first coordinates entry of $list$ or \varnothing if $list$ is empty $bbdiff_{best} \leftarrow$ change of the bounding box' side length when inserting the new square at $coords_{best}$ $vdiff_{best} \leftarrow$ change in the number of vertices of the resulting bounding geometry when inserting the new square at $coords_{best}$ For all other coordinates entries (x,y) of $list$					
	$\mathit{bbdiff} \leftarrow change$ of the bounding box' side length when inserting the new square at (x,y)					
	$vdiff \leftarrow$ change in the number of vertices of the resulting bounding geometry when inserting the new square at (x,y)					
	$(bbdiff < bbdif_{best}) \lor (bbdiff = bbdif_{best} \land vdiff < vdiff_{best})$?					
	yes					
	$coords_{best} \leftarrow (x, y)$					
	$bbdiff_{best} \leftarrow bbdiff$					
	$vdiff_{best} \leftarrow vdiff$					
	return $coords_{best}$					

- Java
- Lösungen werden mittels Backtracking gesucht
- Parallelisierung mittels der von Thread abgeleiteten Klasse BacktrackingThread

- 587 Zeilen, eine Datei, C
- Lösung wird iterativ generiert (Greedy)
- Parallelisierung mit OpenMP
- Sonderbehandlung von 1x1 zum Auffüllen von Lücken
- Quadrate werden der Größe nach platziert, sodass möglichst große Teile der Kanten an anderen Quadraten anliegen

Testumgebung

Hardware

- → Fujitsu RX-200
- → Intel Xeon CPU E5450, 4 Cores, 3.00GHz
- → 16 GB RAM, L2 cache 12MB, L1 cache 32KB

Software

- → Scientific Linux release 6.4 (Carbon)
- → Java(TM) SE Runtime Environment (build 1.7.0_51-b13)
- → Nutzbare Cores bzw. OMP-Threads begrenzt auf 4

Testfälle

- Testfälle verschiedener Kategorien und verschiedener Problemgrößen
 - → Mit bekannter, optimaler Lösung
 - →z.B. 1024 Quadrate der Seitenlänge 1
 - → Mit "Muster"
 - →z.B. 1 Quadrat der Seitenlänge 1, 2 Quadrate der Seitenlänge 2, usw.
 - → Zufällig

Testfälle – Bekannte Lösung

Alle Testfälle wurden von allen Teilnehmern optimal gelöst

Testfälle – "Muster"

Nur kleine Abweichungen bei der Lösung der Testfälle

Testfälle – Zufällig

Abweichung abhängig von der Größe des Problems

→ Parallelisierte Programme besser

Preisgelder

Platzierung	1. Platz	2. Platz	3. Platz	4. Platz
Preisgeld	180,00 €	168,00€	95,00€	57,00 €

Danke!