6. Exercise sheet

Due by: Friday, 31 May 2024, 11:59 pm (CEST) Please refer to **Assignment Submission Guideline** on Moodle You are expected to solve tasks 1–2 and part (a) of task 3 by hand

Problem 1. A very precise model of the weather models it as either sunny or rainy, i.e., $S = \{\text{sunny}, \text{rainy}\}$. The probability of having a sunny day after another sunny day is $\frac{2}{3}$. With a probability of $\frac{1}{3}$ it will rain on the next day. The probability that a rainy day is followed by another rainy day is $\frac{4}{5}$. We can express this with the following matrix

$$P = \begin{pmatrix} \frac{2}{3} & \frac{1}{5} \\ \frac{1}{3} & \frac{4}{5} \end{pmatrix}.$$

- (a) Assume the weather today is sunny. What is the probability that it will be rainy on the day after tomorrow?
- (b) Assume the weather today is sunny. Like a true meteorologist you wait for an infinitely long time and write down the weather every day. What is the relative frequency of sunny days?
- (c) What is the invariant measure for the given Markov chain? Does the chain converge to its invariant measure?

Problem 2. Consider the Markov chain that takes values on $S = \{1, 2, 3, 4\}$. The transition probabilities p_{ij} from state j to state i are given as a matrix $P = [p_{ij}]_{i,j=1}^4$ such that

$$P = \begin{pmatrix} 0 & 1/3 & 0 & 2/3 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 2/3 & 0 & 1/3 \\ 1/2 & 0 & 1/2 & 0 \end{pmatrix}.$$

- (a) Let $X_0 = 1$. Compute the probability mass function of X_2 .
- (b) Does the probability distribution of X_n converge as n goes to infinity? If so, find the limit. If not, explain why.

Problem 3. In this exercise, your task is to implement the Euler-Maruyama method. It is very similar to the Euler scheme from the first exercise sheet, but this time we are interested in stochastic differential equations (SDEs) instead of ODEs.

Consider a continuous time process $\{X_t \in \mathbb{R} : t \geq 0\}$ governed by the SDE:

$$dX_t = -X_t dt + \sqrt{2} dB_t, \quad X_0 = x_0,$$

or, in its integral form,

$$X_t = x_0 - \int_0^t X_s \, \mathrm{d}s + \sqrt{2} \, B_t,$$

where $\{B_t : t \geq 0\}$ is a standard Brownian motion. In order to apply the Euler scheme, consider a time-discretization Δt and approximate

$$X_{t+\Delta t} - X_t \approx -X_t \Delta t + \sqrt{2} (B_{t+\Delta t} - B_t).$$

The idea is to exploit the fact that the distribution of $B_{t+\Delta t} - B_t$ is Gaussian with mean 0 and variance Δt . Hence we discretize the SDE by

$$x_{n+1} = x_n - x_n \Delta t + \sqrt{2\Delta t} \, \xi_n,$$

where $\xi_n \sim N(0,1)$ for $n = 0, 1, \dots$

- (a) What are the distributions of x_1 and x_2 ?
- (b) Set $\Delta t = 0.01$ and $x_0 = 2$. Run 10 000 Monte Carlo simulations of the above. Save and plot histogram of the empirical distributions at times t = 0, t = 0.5, t = 1 and t = 10.
- (c) How do the distributions look at the different times? Can you tell if it converges to something? You may run the simulation further in time if necessary.