Assignment Project Exam Help

https://eduassistpro.github.

Add WeChatedu_assist_pr

Formal Languages – A Reminder of Terminology

- The alphabet or vocabulary of a formal language is a set of tokens S of the string over Σ is a sequence of tokens, or the null-string ϵ .
 - https://eduassistpro.github.
 - ▶ For example, the set of all strings Σ^*
 - or the set of all strings of even length,

Notation Add We Chat edu_assist_pr

- Σ^* is the set of all strings over Σ .
- Therefore, every language with alphabet Σ is some *subset* of Σ^* .

Specifying Languages

Languages can be given ...

- as a finite enumeration, e.g. $L = \{\epsilon, a, ab, abb\}$ Assignment reduces the enumeration of the enumeration
 - alge
 - by anttps://eduassistpro.github.i
 - a concepted have chat lied uto assist pr
 - languages
 describes how strings are *constructed* rather than how membership can be *checked* (e.g. by an automaton)
 - the main tool to describe syntax.

Grammars in general

Formal Definition. A grammar is a quadruple $\langle V_t, V_n, S, P \rangle$ where Assignine number of the above Help

- V_n is a finite set of **non-terminal symbols** disjoint from V_t (No
- S is https://eduassistpro.gith/ub.

Add WeChat edu_assist_pr where

- $\sim \alpha \in V^* V_n V^*$ (i.e. at least one non-terminal in α)
- $\beta \in V^*$ (i.e. β is any list of symbols)

Example

The grammar

$$G = \langle \{a,b\}, \{S,A\}, S, \{S \rightarrow aAb, aA \rightarrow aaAb, A \rightarrow \epsilon\} \rangle$$
Assignment Project Exam Help

• Terminals: a.b.
• Productions:

- Terminals: a, b

*https://eduassistpro.github.

- Often Add list the erchat, edu_assist_pr inferred (S is the standard notation for the sta
 - The notation $\alpha \to \beta_1 \mid \cdots \mid \beta_n$ abbreviates the *set* of productions

$$\alpha \to \beta_1, \quad \alpha \to \beta_2, \quad \dots, \quad \alpha \to \beta_n$$

(like for inductive data types)

Derivations

Intuition.

 \bullet A production $\alpha \to \beta$ tells you what you can "make" if you have α :

Assignment Porojectite Exama Help

Notation: $\gamma \alpha \rho = \gamma \beta \rho$

Derivati

- $^{\circ}_{\circ}$ https://eduassistpro.github.
- Language of a grammar.
 - informally all strings of terminal symbols that ca assist_properties the state of t
 - formally: $L(G) = \{ w \in V_t^* \mid S \Rightarrow^* w \}$
- Sentential Forms of a grammar.
 - ullet informally: all strings (may contain non-terminals) that can be generated from S
 - formally: $S(G) = \{w \in V^* \mid S \Rightarrow^* w\}$.

Example

Productions of the grammar *G*.

Assignment Project Exam Help

• last shttps://eduassistpro.github.

Add We Chate edu_assist_pr

Alternative Grammar for the same language

$$S o aSb$$
, $S o ab$.

(Grammars and languages are not in 1-1 correspondence)

The Chomsky Hierarchy

By Noam Chomsky (a linguist!), according to the form of productions:

ASSIGNMENT Project Exam Help
Unrestricted: (type 0) no constraints.

Context

https://eduassistpro.github.

Context-free: (type 2) the left of each production must be a *single* non-terminal.

Regular (1/613) Wf Cpe part tempf eassist_praise constrained (details to come).

(There are lots of intermediate types, too.)

Classification of Languages

Definition. A language is type n if it can be generated by a type n

Arssignment Project Exam Help

Eve

Establis https://eduassistpro.github.

- ullet give a grammar of type n that generates the language
- usually the easier task eChat edu_assist_pr

Disproving that a language is of type n

- must show that no type n-grammar generates the language
- usually a difficult problem

Example — language $\{a^nb^n\mid n\in\mathbb{N},\ n\geq 1\}$

Different grammars for this language

• Unrestricted (type 0):

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Recall. We know from last week that there is no DFA accepting L

- We will see that this means that there's no regular grammar
- so the language is context-free, but not regular.

Regular (Type 3) Grammars

or left-li

Definition. A grammar is *regular* if all its productions are either *right-linear*, i.e. of the form

Assignment Project Exam Help

https://eduassistpro.github.

- right and left linear grammars are equivalent: the languaged discontinuous week and left linear grammars are equivalent: the languaged discontinuous languaged discontinuous
- we focus on right linear (for no deep reaso
- i.e. one symbol is generated at a time (cf. DFA/NFA!)
- ullet termination with terminal symbols or ϵ

Next Goal. Regular Grammars generate precisely all regular languages.

Regular Languages - Many Views

Theorem. Let *L* be a language. Then the following are equivalent:

- L is the language generated by a right-linear grammar,
- Assi gentene prera en pojecte en Faxoam Help

 L is the language accepted by some DFA;
 - L is t
 - Lishttps://eduassistpro.github.

So far.

- have seen that NFAs and DFAs generate the sam construction WeChat edu_assist_pr
- have hinted at regular expressions and NFAs generate the same languages

Goal. Show that NFAs and right-linear grammars generate the same languages.

From NFAs to Right-linear Grammars

Given. Take an NFA $A = (\Sigma, S, s_0, F, R)$.

alphabet, state set, initial state, final states, transition relation

Assignment Project Exam Help

- terminal symbols are elements of the alphabet Σ ;
- starhttps://eduassistpro.github.
- productions are constructed as follows:

non

Add WeChat edu_assist_pr

Each final state

gives production

$$T \in F$$
 $T \to T$ (Formally, a transition $T \xrightarrow{a} U$ means $(T, a, U) \in R$.)

Observation. The grammar so generated is right-linear, and hence regular,

NFAs to Right-linear Grammars - Example

Given. A non-deterministic automaton

Assignment Project Exam Help

Equival

https://eduassistpro.github.

 $S o aS_1$

Add Chat edu_assist_pr

Exercise. Convince yourself that the NFA accepts precisely the words that the grammar generates.

From Right-linear Grammars to NFAs

Given. Right-linear grammar (V_t, V_n, S, P)

terminals, non-terminals, start symbol, productions

Assignment Project Exam Help

- alphabet is the terminal symbols V_t ;
- stat (for https://eduassistpro.github.)
- final states are S_f and all non-termin production of the production is constructed as follow du_assist_production relation is constructed as follows.

Each production gives transition

$$T \rightarrow aU$$
 $T \stackrel{a}{\longrightarrow} U$

Each transition

gives transition

Right-linear Grammars to NFAs - Example

Given. Grammar *G* with the productions

https://eduassistpro.github.

Add WeChat edu_assist_pr

Exercise. Convince yourself that the NFA accepts precisely the words that the grammar generates.

Context-Free (Type 2) Grammars (CFGs)

Recall. A grammar is type-2 or *context free* if all productions have the Assignment Project Exam Help where $A = V_n$ is a non-terminal, and $\omega = V^*$ is an (arbitrary) string.

- left si
- righhttps://eduassistpro.github.

In Contract. Condex Wellsitive glammars @du_assist_pr $\alpha A\beta \rightarrow \alpha \omega$

• may only replace A by ω if A appears in context $\alpha_{-}\beta$

Example

Goal. Design a CFG for the language

$$\underbrace{ \text{Assignment}_{\text{Every word } \omega \in L} \text{Project Exam Help} }_{\text{Can be split}}$$

and henchttps://eduassistpro.github.

- generate $a^k \dots c^k$, i.e. same number of leadin
- fill . Ain the middle by a bit is same out assist place of the phases of the assist place of the assist

Resulting Grammar. (productions only)

$$S \rightarrow aSc \mid T$$

 $T \rightarrow aTb \mid \epsilon$

Example ctd.

Grammar

Assignment Project Exam Help

Exampl https://eduassistpro.github.

Add WeChat edu_assist_pr

```
\Rightarrow aaTbc
```

- \Rightarrow aaa $\mathsf{T}\mathsf{b}\mathsf{b}\mathsf{c}$
- \Rightarrow aaabbc

Parse Trees

Idea. Represent derivation as *tree* rather than as list of rule applications

- describes where and how productions have been applied
- seperated word can be effected at the leaves xam Help

https://eduassistpro.github. Add WeChat edu_assist_pr The Power of Context-Free Grammars

Assignment Project Exam Help

A fun exam http://https://eduassistpro.github.

Add WeChat edu_assist_pr

Parse Trees Carry Semantics

Take the code

Assignment Project Exam Help where e1, e2 are boolean expressions and s1, s2 are subprograms.

Two Rethttps://eduassistpro.github.

and Add WeChat edu_assist_pr

if e1 then (if e2 then s1) else s2

Goal. unambiguous interpretation of the code leading to determined and clear program execution.

Ambiguity

Assignment Project Exam Help Recall that we can present CFG derivations as parse trees.

Until now t

A contexhttps://eduassistpro.github. derived by one parse tree.

G is ambiguous iff there exists any word

than one Arctels. We Chat edu_assist_pr

Example: If-Then and If-Then-Else

Consider the CFG

Assignment Project Examplelp

where **bexp** and **prog** stand for boolean expressions and (if-statement free) prog

The string the string

Example: If-Then and If-Then-Else

Assignment Project Exam Help That grammar was ambiguous. But here's a grammar accepting the exact sam

https://eduassistpro.github.

There is now only one parse for if e1 then if e2 then s1. This is given on the next side that edu_assist_property is given on the next side that edu_assist_property.

Assignment Project Exam Help https://eduassistpro.github. if e2 then Add WeChat edu_assist_pr

You cannot parse this string as if e1 then (if e2 then s1) else s2.

Reflecting on This Example

Observation.

• more than one grammar for a language

Assignation to Project Exam Help

Gramm

- am https://eduassistpro.github.
- replace ambiguous grammar with unambiguous one

Choices fActive tin Where Character edu_assist_pr

- decide on just one parse tree
- e.g. if e1 then (if e2 then s1) else s2 vs if e1 then (if e2 then s1 else s2)
- in example: we have *chosen* if e1 then (if e2 then s1 else s2)

What Ambiguity Isn't

Question. Is the grammar with the following production ambiguous?

Assignment Project Exam Help Reasoning.

- Sup
- we https://eduassistpro.github.

A. This is *not* ambiguity.

- both Ations live was to the hame to edu_assist_ion or indeed, for context-free languages it
 - indeed, for context-free languages it is applied first.
- thinking about parse trees, both expansions happen in parallel.

Inherently Ambiguous Languages

Q. Can we always remove ambiguity?

Assignment Project Exam Help

- Q. Why is t
- A. Note t
 - idea https://eduassistpro.github.
 S → T | W where T is "left" and W is "right"

Complete Grandar We Chat edu_assist_pr

```
W \rightarrow XY
T \rightarrow UV
U \rightarrow aUb \mid \epsilon
                                                                      X \rightarrow aX \mid \epsilon
V \rightarrow cV \mid \epsilon
                                                                       Y \rightarrow bYc \mid \epsilon
```

Inherently Ambiguous Languages

Problem. Both left part $a^ib^ic^k$ and right part $a^ib^jc^j$ has non-empty intersection: $a^ib^ic^i$

Assignment Project Exam Help

https://eduassistpro.github.

Fact. There is *no* unambiguous grammar for this language (we don't prove this)

The Bad News

Assignment Project Fexame Help

Q. Can we even *determine* whether an unambiguous grammar exists?

A. If we interprogram https://eduassistpro.github.

- There is no program that solves this proble
- input: CFG G, output: apringuous or not. Thi under a Ged We Chat edu_assist_pr

(More undecidable problems next week!)

Example: Subtraction

Example.

$$S \rightarrow S - S \mid \text{int}$$

Assignment of Project Exam Help

Ambigu

https://eduassistpro.github.

Evaluation.

- left parse tree evaluates to 1
- right parse tree evaluates to 3
- so ambiguity matters!

Technique 1: Associativity

Idea for ambiguity induced by binary operator (think: -)

ullet prescribe "implicit parentheses", e.g. $a-b-c \equiv (a-b)-c$

Assignment Project Exam Help

Left Associativity.

Result. https://eduassistpro.github.

• this is *left associativity*

Right Association. We Chat edu_assist_property $S \rightarrow \text{int} - S \mid \text{int}$

·

- **Idea.** Break the symmetry
 - one side of operator forced to lower level
 - here: force right hand side of *i* to lower level

Example: Multiplication and Addition

Example. Grammar for addition and multiplication

Assignment, Project Exam Help

Ambigu

- 1+https://eduassistpro.github.

Take 1. The trick we have just seen at edu_assist_property evaluate from left to right

- but this gives $1 + 2 * 3 \equiv (1 + 2) * 3$, not intended!

Goal. Want * to have *higher precedence* than +

Technique 2: Precedence

Example Grammar giving * higher precedence:

Assignment Project Exam Help

Given e.

• forchttps://eduassistpro.github.

• suppose Westert Whee hat edu_assist_pr

ullet stuck, as cannot generate 1+2 from

Idea. Forcing operation with *higher* priority to *lower* level

- three levels: S, (highest), T (middle) and integers
- lowest-priority operation generated by highest-level nonterminal

Example: Basic Arithmetic

Assignment, Project Exam Help

https://eduassistpro.github.

Main Differences.

- have parentheses to break operator priorit operator priorit priorit parentheses at lowest ever, so highest edu_assist_priorit priorit priori
- lower-priority operator can be inside parentheses
- expressions of arbitrary complexity (no nesting in previous examples)

Example: Balanced Brackets

Assignment Project Exam Help

- ass https://eduassistpro.github.

Technique 3: Controlling ϵ

Assignment $\Pr_{S \to e}^{\text{Oleventive Grammar with only one way to derive } \epsilon$:

https://eduassistpro.github.

- ε can only be derived from S
 all or all
- here: combined with multiple level technique
- ambiguity with ϵ can be easy to miss!

From Grammars to Automata

Assignment Project Exam Help So Far.

* https://eduassistpro.github.

Q. What automata correspond to context fr Add WeChat edu_assist_pr

General Structure of Automata

- finite state control is just like for DFAs / NFA
- symbols are processed and head advances du_assist_processed and head
- Auxiliary Memory classifies languages and grammars
 - no auxiliary memory: NFAs / DFAs: regular languages
 - stack: push-down automata: context free languages
 - unbounded tape: Turing machines: all languages

Push-down Automata — PDAs

Assignment Project Exam Help input tape https://eduassistpro.github. Add WeChat edu_assist_pr z1

PDAs ctd.

Actions of a push-down automaton

- change of internal state
- Assimple or popping the tack oject Exam Help

Action de

sym

- https://eduassistpro.github.
- input strong full wear Chat edu_assist_pr machine is in accepting state
 - stack is empty

Variations.

- acceptance with empty stack: input fully read, stack empty

 - acceptance with final state: input fully read, machine in final state

Example

Language (that cannot be recognised by a DFA)

Assignment Project Exam Help

- can https://eduassistpro.github.

PDA design. (lack how by the power sees the idea) u_assist_property phase 1: (state S₁) push a s from the inpu

- phase 2: (state S_2) pop a's from the stack, if there is a b on input
- finalise: if the stack is empty and the input is exhausted in the final state (S_3) , accept the string.

Deterministic PDA - Definition

Definition. A deterministic PDA has the form $(S, s_0, F, \Sigma, \Gamma, Z, \delta)$, where Assignments Project steams Figure 1.

- Σ is th
- ្ is https://eduassistpro.githាយb.
 - δ: Addut Wee Chart edu_assist_strong

Additional Requirement to ensure determinism:

- if $\delta(s, \epsilon, \gamma)$ is defined, then $\delta(s, a, \gamma)$ is undefined for all $a \in \Sigma$
- ensures that automaton has at most one execution

Notation

Given. Deterministic PDA with transition function

Assignment Project Exam Help

Notatio https://eduassistpro.github.

- \bullet $\,\sigma$ is a $\it string$ that replaces top stack symbol
- * Add WeChat edu_assist_practionals

Rationale.

- replacing top stack symbol gives just one operation for push and pop
- pop: $\delta(s, a, \gamma) = s'/\epsilon$
- push: $\delta(s, a, \gamma) = s'/w\gamma$

Two types of PDA transition

Assignment Project Exam Help δ contains $(s_1, x, \gamma) \mapsto s_2/\sigma$

- aut
- symhttps://eduassistpro.github.

Non-consuming transitions

- δ contains (st. ε. γ) s2/c hat edu_assist_pr
 independent in the second in
- can happen any time and does not consume input symbol

Example ctd.

```
Language L = \{a^n b^n \mid n \ge 1\}
```

Assignment Project Exam Help

- ullet starts with Z (initial stack symbol) on stack
- fina
- tranhttps://eduassistpro.github.

$$\delta(S_0,a,Z)\mapsto S_1/aZ$$
 push first a
 $\delta(S_1,a,a)\mapsto S_1/aa$ push f
 $\delta(S_2,b,a)\mapsto S_2/\epsilon$ push f
 $\delta(S_2,b,a)\mapsto S_2/\epsilon$ pop fu
 $\delta(S_2,\epsilon,Z)\mapsto \underline{S_3}/\epsilon$ accept

(δ is partial, i.e. undefined for many arguments)

Example ctd. - Diagrammatically

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pro

Example ctd. — PDA Trace

PDA configurations

• triples: (state, remaining input, stack)

Assignment Project Exam Help Example Execution.

```
https://eduassistpro.github.

\Rightarrow (S_1, bbb, a) \qquad (push f a's)
Add We (Strate edu_assist)

Add We (Strate edu_assist)
```

Accepting execution. Ends in final state, input exhausted, empty stack, 48/59

 $\Rightarrow (S_2, \epsilon, Z)$

 $\Rightarrow (S_3, \epsilon, \epsilon)$

(pop further a's)

(accept)

Example ctd. — Rejection

Assignment Project Exam Help $(S_0, aaba, Z) \rightarrow (S_1, aba, aZ)$

https://eduassistpro.github.

- Non-accepting execution.

 No transfer possible, etc. http://doi.org/10.1001/10
 - rejection happens when transition function is undefined for current configuration (state, input, top of stack)

Example: Palindromes with 'Centre Mark'

Example Language.

Assignment Project Exam Help

Determ

- Pus https://eduassistpro.github.
- Now try to match the tokens we are reading with the stack political we go hat edu assist process.
 If the top of the stack is the empty stack symbol.
- If the top of the stack is the empty stack symbol—the final state via an ϵ -transition. Hopefully our input has been used up too!

Exercise. Define this formally!

Non-Deterministic PDAs

Deterministic PDAs

• transitions are a partial function

Assignment Project Exam Help δ : (state, input token or ϵ , top-of-stack) \rightarrow (new state, stack string)

• side c

Non-De https://eduassistpro.github.

• transitions given by *relation*

Add We@hat edu_assist_pr

• no side condition (at all).

Main differences

- for deterministic PDA: at most one transition possible
- for non-deterministic PDA: zero or more transitions possible

Non-Deterministic PDAs ctd.

Finite Automata

non-determinism is convenient

As by destrictive every NFA to an equivalent DFA Help

Push-do

- nonhttps://eduassistpro.github.
- can
- there are context free languages that can non-deed in tic VV e Chat edu_assist_pr
- intuition: non-determinism allows "guessin

Grammar / Automata correspondence

- non-deterministic PDAs are more important
- they correspond to context-free languages

Example: Even-Length Palindromes

Palindromes of even length, without centre-marks

$$L = \{ww^R \mid w \in \{a, b\}^* \land w^R \text{ is } w \text{ reversed}\}$$

- - intu

Non-de https://eduassistpro.github.

• $x \in A^{t}dd^{s}W^{t}e^{sh}$ hat $edu_assist_predictions$

Intuition

- "guess" (non-deterministically) whether we need to enter "match-and-pop"-state
- automaton gets stuck if guess is not correct (no harm done)

Grammars and PDAs

Assignment, Project Exams Help equivalent

- for e
- if Lhttps://eduassistpro.github.

Proof. We only do one direction: construct PDA fro

- this is the finter sting direction for parsed gene assist_protection quite complex.

From CFG to PDA

Given. Context-Free Grammar $G = (V_t, V_n, S, P)$

States. Construct non-deterministic PDA
$$A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F, \Sigma, \Gamma, Z, \delta)$

States. Construct non-deterministic PDA $A = (Q, Q_0, F,$

Alphabe

Stack Ahttps://eduassistpro.github.

Initialisation.

- push tart symbol into stark, enter word u_assist_pr

Termination.

- \bullet if the stack is empty (i.e. just contains Z), terminate
- $\delta(Q_1, \epsilon, Z) \mapsto Q_2/\epsilon$

From CFGs to PDAs: working state

Idea.

• build the derivation on the stack by expanding non-terminals

Assigning to productions productions the Exam Help terminate, if the entire input has been consumed

• non https://eduassistpro.github. productions

• $\delta(Q_1,\epsilon,A)\mapsto Q_1/\alpha$ for all productions on Terminals. We Chat edu_assist_productions

- terminals on the stack are popped if they match the input
- $\delta(Q_1, t, t) \mapsto Q_1/\epsilon$ for all terminals t

Result of Construction. Non-deterministic PDA

may have more than one production for a non-terminal.

Example — Derive a PDA for a CFG

Arithmetic Expressions as a grammar:

 $\delta(Q_1, \epsilon, T) \mapsto Q_1/T * U$

Assignment Project Exam Help

1. Initial https://eduassistpro.github. $\delta(Q_0, \epsilon, Z) \mapsto$

$$\delta(Q_1,\epsilon,S) \mapsto Q_1/S + T \qquad \delta(Q_1,\epsilon,T) \mapsto Q_1/U \ \delta(Q_1,\epsilon,S) \mapsto Q_1/T \qquad \delta(Q_1,\epsilon,U) \mapsto Q_1/(S)$$

 $\delta(Q_1, \epsilon, U) \mapsto Q_1/\text{int}$

CFG to PDA ctd.

$\overset{3.\ \textit{Match and pop terminals:}}{Assignment} \overset{Project}{\underset{\delta(Q_1,+,+)}{\text{Project}}} \overset{E}{\underset{Project}{\text{Exam Help}}}$

https://eduassistpro.github.

$$\delta(\mathit{Q}_1,),))$$

4. Terminadd WeChat edu_assist_pr

$$\delta(Q_1, \epsilon, Z) \mapsto Q_2/\epsilon$$

Example Trace

Assignment Project i Exam Help

```
https://eduassistpro.github.lQ_1, int, UZ)

Add WeChat edu_assist_properties accept
```