Minerando dados de um juiz on-line para prever a evasão de estudantes em disciplinas introdutórias de programação

Dayvson Silva¹ Sergio Cleger^{1,3} Marcela Pessoa^{1,2} Fernanda Pires^{1,2} David B. F. Oliveira² Elaine H. T. Oliveira² Leandro S. G. Carvalho²

¹Escola Superior de Tecnologia – Universidade do Estado do Amazonas Manaus – AM – Brasil

²Programa de Pós-graduação em Informática Instituto de Computação – Universidade Federal do Amazonas Manaus – AM – Brasil

> ³Sidia - Instituto de Ciência e Tecnologia Manaus – AM – Brasil

Contexto

- Evasão: alunos que não completam cursos ou programas de estudo (se matriculam e desistem até antes iniciar).¹
- As Instituições de Ensino Superior há anos enfrentam o problema de evasão escolar
 - Especialmente nas áreas de Ciência Exatas
 - Disciplinas Introdutórias de Programação

Pergunta Norteadora

É possível predizer **prematuramente** se estudantes de introdução à programação vão **desistir**, utilizando agoritmos de **Aprendizagem de Máquina**, sobre dados de *logs* de um juiz on-line?

<ロ > → □

Objetivos

- Geral: Aplicar técnicas de mineração de dados nos arquivos de *logs* do juiz on-line
- Específicos:
 - Explorar os logs do juiz on-line CodeBench
 - Criar bases dados com os dados minerados
 - Treinar e testar diferentes modelos de Aprendizagem de Máquina

SBIE/CBIE 4 / I

Metodologia aplicada

Descrição dos dados

- Base de Dados:
 - 2010 estudantes
 - 37 turmas com aproximadamente 40 alunos cada
 - Período: de 2016 a 2019
- Tipos de dados (38 atributos):
 - Logs de avaliações:
 - homework
 - exam
 - Logs de utilização do sistema:
 - número de logins
 - tempo médio

<ロ > → □ > → □ > → □ > → □ ● → へへ ○

Metodologia aplicada

Descrição dos dados

Algoritmos de Aprendizagem de Máquina

Algoritmos de Aprendizagem de Máquina utilizados:

- Gaussian naive bayes (GNB)
- Random Forest (ARF)
- Extra tree classifier (ETC)
- Xgboost (XGB)
- Xgboost with early stopping (XES)

7 / 15

Experimentos

- Duas análises:
 - Avaliação da performance por turma
 - Avaliação do desempenho geral (com as 37 turmas)
- Métrica para avaliação dos resultados
 - Acurácia
- Os cinco algoritmos de Aprendizagem de Máquina foram utilizados em todos os experimentos
- Os resultados foram validados com o teste estatístico de Friedman

Descrição dos experimentos

SBIE/CBIE 9/15

Resultados

- Análise 1: performance por turma.
 - ullet Teste de Friedman: (ho < 0.05) nos resultados de 1AP e 3AP

Tabela: Médias do desempenho de todos os experimentos

	ARF	ETC	XGB	XES	GNB
1AP	0,8136	0,8561	0,8035	0,8035	0,7691
2AP	0,8698	0,8959	0,8627	0,8627	0,8351
3AP	0,9187	0,9194	0,9057	0,9057	0,9022

Resultados

- Análise 2: generalizando os modelos.
 - Teste de Friedman:
 - \bullet $\rho < 0.01$ nos resultados de 1AP e 2AP
 - ullet ho < 0.05 para 1AP e 3AP

Tabela: Desempenho médio com os melhores e os piores resultados.

	ARF	ETC	XGB	XES	GNB	Melhor	Pior
1AP	0,8136	0,8543	0,7845	0,8035	0,7691	0,8871	0,4565
2AP	0,8678	0,8913	0,8360	0,8627	0,8351	0,9166	0,4770
3AP	0,9147	0,9196	0,9016	0,9057	0,9022	0,9473	0,4876

Resultados

Tabela: Acurácias médias das melhores e piores turmas como generalizadoras.

	1AP	2AP	3AP
1 º Melhor	0,8742	0,9034	0,9351
2 º Melhor	0,8666	0,8998	0,9339
3 º Melhor	0,8637	0,8985	0,9334
4 º Melhor	0,8617	0,8977	0,9329
5 º Melhor	0,8597	0,8960	0,9323
5 º Pior	0,7451	0,8223	0,8913
4 º Pior	0,7392	0,8164	0,8902
3 º Pior	0,6722	0,7715	0,8563
2 º Pior	0,6112	0,6738	0,8003
1 º Pior	0,5787	0,6591	0,7431

SBIE/CBIE 12/15

Considerações finais

- Dos cinco algoritmos utilizados em cada experimento, destaque para o ETC
 - Análise 1: Acurácia média de 88,6% e 91,6%
 - Análise 2: Acurácia média 85,6% e 91,9%
 - Precisão em classificar desistentes: 69,7%, 80,1%
- Adição de dados para realização de experimentos adicionais

SBIE/CBIE 13/15

Agradecimentos

- Projeto Samsung-UFAM de Ensino e Pesquisa (SUPER)
- Coordenação de Aperfeiçoa-mento de Pessoal de Nível Superior -Brasil (CAPES)
- Programa de Bolsas de Iniciação Científica e Tecnológica da UEA (PBICT/UEA).

14 / 15

Minerando dados de um juiz on-line para prever a evasão de estudantes em disciplinas introdutórias de programação

Dayvson Silva¹ Sergio Cleger^{1,3} Marcela Pessoa^{1,2} Fernanda Pires^{1,2} David B. F. Oliveira² Elaine H. T. Oliveira² Leandro S. G. Carvalho²

¹Escola Superior de Tecnologia – Universidade do Estado do Amazonas Manaus – AM – Brasil

²Programa de Pós-graduação em Informática Instituto de Computação – Universidade Federal do Amazonas Manaus – AM – Brasil

> ³Sidia - Instituto de Ciência e Tecnologia Manaus – AM – Brasil