Week 3

Assignment Project Exam Help Properties of Numbers III

https://eduassistpro.github.

Add WeChat edu_assist_pr

Lect https://eduassistpro.github.

Add WeChat edu_assist_pr

Quizz 3

- 2 1
- 2.2 https://eduassistpro.github.l
 - Add WeChat edu_assist_pr

• Numbers, Divisibility, Mod Operation, GCD, Extended GCD

Assignment Project Exam Help

- https://eduassistpro.github.
- In fact, $\phi(mn) = \phi(m)\phi(n)$, for any t relatively prime

let z bed number Chat edu_assist_pr

Theorem

If $a \in \mathbf{Z}_n^{\star}$, then $a^{\phi(n)} = 1 \pmod{n}$.

Using Extended GCD Algorithm

Assignment, Project Exam Help

If g eq 1 then Return(x)

https://eduassistpro.github.

Using Eulers Phi Function Result

Function(a-n)
Return(inva);

Function(a-n)
Return(a-n)
Return(inva);

end function:

The later function works only if a is relatively prime to n.

^{2.1} https://eduassistpro.github.

Add WeChat edu_assist_pr

Euler's Theorem

Definition

Remainders mod n: For $n \ge 1$, the set of remainders obtained by dividing integers by n, precisely these are elements of SS19nment Project Exam Help

How the se

Defi https://eduassistpro.github.

Reduced set of residues mod n: For n 1, the reduced set of residues, R(n) is defined as set of residues mod relatives form town echat edu assist

Sometimes, R(n) is also represented as $\mathbf{Z}^*(n)$. In fact $\phi(n) = \#R(n)$, the cardinality(size) of the set R(n). Example: $\phi(15) = 8$, because $\phi(15) = \phi(5 \times 3) = (4 \times 2) = 8$.

 $\phi(37) = 36$, as 37 is a prime number. Next we consider Fuler's theorem.

4 D > 4 B > 4 E > 4 E > 9 Q G

Euler's Theorem

Theorem

modulo n. Now consider the set $\stackrel{\frown}{a}R(n) \Rightarrow r_1, a r_2, \ldots, a r_{\phi(n)}$.

Sinc

^{R(n)}https://eduassistpro.github. and equate with the multiplication of all the elements of a R(n).

Hence we can write: Add, We Chat edu_assist_pr

Note that r_i s are relatively prime to n and hence we can cancel r_i in the above equation by multiplying r_i^{-1} , $i = 1 \cdots \phi(n)$, to both the side of the equation. Then the above equation simplifies to

 $1 = a^{\phi(n)}$. Hence the result.

```
The https://eduassistpro.github.
```

```
Example: n = 35, \phi(35) = 24, because
```

 $2^{24} \mod 35 = 1$

Fermat's Theorem

$\mathsf{Theorem}$

Assignmenter Project Extan Help $a^{p-1} = 1 \pmod{p}$.

Fer https://eduassistpro.github.

Theorem

Let p A a drifte We Chat edu_assist_property and p = a (mod p), for an

When a is relatively prime, the theorem follows from the Fermatss theorem. When a is multiple of p, the result is trivially true.

Fermat's Theorem and Implications

Assignment number of the Expanse of the less than p are relatively prime and hence they are closed

- https://eduassistpro.github.
- Hence \mathbf{Z}_p is closed under addition and

- Intact a is White field nature out _assist_pr

^{2.2} https://eduassistpro.github.

Add WeChat edu_assist_pr

Recap of Group, Ring, and Field

Let us visit a few concepts that we have learnt already. A Group is a set G together with a binary operation \cdot on G such that the

Assignment of the properties Project Exam Help

- https://eduassistpro.github.
- For each $a \in G$, there exists an *inverse* element $a \in G$ such that
- Add Wechat edu_assist_pre
 If the group also satisfies
- If the group also satisfies
 For all a, b ∈ G,

$$a \cdot b = b \cdot a$$

then the group is called abelian (or commutative).

Assignment Project Exam Help denoted by + and, such that:

- https://eduassistpro.github.
- The distributive laws hold; that is, for al

 a (b+c) we Chat edu_assist_pr

Assibution Project Exam Help The set is closed under addition.

https://eduassistpro.github.

distributive.

In \mathbf{Z}_p in the field. This leads to a concept called character assist property of the field. This leads to a concept called character assist.

We also denote \mathbf{Z}_p^{\star} as a set of non-zero elements of \mathbf{Z}_p .

Characteristic of F

Definition

Let F be a field with the multiplicative identity 1 and the additive identity n. The character theory is the smallest integer $n \ge 0$ such that addition of the 1 with itself n times results in 0. i.e n(1) = 0.

Note https://eduassistpro.github.

real and complex fields is 0.

In contrast for residue class rings \mathbf{Z}_n , the When Air ring e, which the class rings \mathbf{Z}_n the When Air ring e, which the class rings \mathbf{Z}_n the When Air ring e, which residue class rings \mathbf{Z}_n the When Air ring e, which residue class rings \mathbf{Z}_n the When Air ring e, which residue class rings \mathbf{Z}_n the When Air ring e, which residue class rings \mathbf{Z}_n the When Air ring e, which residue class rings \mathbf{Z}_n the When Air ring e, which residue class rings \mathbf{Z}_n the When Air ring e, which residue class rings \mathbf{Z}_n the When Air ring e, which residue class rings \mathbf{Z}_n the When Air ring e, which residue class rings \mathbf{Z}_n the When Air ring e, which residue class rings \mathbf{Z}_n the When Air ring e, which residue class rings \mathbf{Z}_n the When Air ring e, which residue class rings \mathbf{Z}_n the When Air ring e, which residue class rings \mathbf{Z}_n the When Air ring e, which residue class rings \mathbf{Z}_n the When Air rings \mathbf{Z}_n and \mathbf{Z}_n residue class rings \mathbf{Z}_n residue class rings \mathbf{Z}_n rings \mathbf{Z}_n residue class rings \mathbf{Z}_n residue \mathbf{Z}_n residue class rings \mathbf{Z}_n residue \mathbf{Z}_n resid

 \mathbf{Z}_p is p. One of the consequences of the above pro

p=0 in the field for any α in the field.

 \mathbf{Z}_p is the main source of prime fields. Another class of finite fields are those whose size is a power of prime, we will consider this class later.

^{2.3} https://eduassistpro.github.

Add WeChat edu_assist_pr

```
Assignment Project Exam Help

X: a set c
f: a rule

Method by a triplet < X, Y, t >, where ment
```

in Yhttps://eduassistpro.github.

```
Example: Let X = Y = \mathbf{Z}_5, Then f:
```

^{f(x)} Aัช่d WeChat edu_assist_pr

Assistentin Projecta Exemplified p Pre ent ** | Ima https://eduassistpro.github.

Add We'Chatfedu_assist_pr

One-to-one (injective) Function

A function is one-to-one (injective) if each element in the Supplied in the Indeed of the element in the In other words, each element in X in X is related to different y in X, ne Y.

r:xhttps://eduassistpro.github.l

$$f(x_1) = f(x_2)$$
 implies

Exampled xWeChat edu_assist_pr

f(x) = 3 * x is a one-to-one function. Howev a one-to-one function.

Onto (surjective) Function

A function is Onto (surjective) if each element in the codomain Y is the image of at least the element in the formian X.

We can say that, if f is onto then Y X.

Exa f(x) https://eduassistpro.github.In this case, we have $|X| \leq |Y|$ and |Y|

|X| = |Y|.

If $f: X \rightarrow Y$ is onto and X and Y are finit

in a historian

is a bijection.

Let m and n are relatively prime number, $X = \mathbf{Z}_{mn}$, $Y = \mathbf{Z}_m \times \mathbf{Z}_n$. The

https://eduassistpro.github.

is a bijection.

Add WeChat edu_assist_pr

Example: $X := \mathbf{Z}_6$, $Y = \mathbf{Z}_2 \times \mathbf{Z}_3$. The function f given below is a bijection:

Assignment Project Exam Help

https://eduassistpro.github.

Add Wechatedu_assist_pro

Chinese Remainder Theorem (CRT)

Assignment Project Exam Help

https://eduassistpro.github.

 $x \equiv a_2 \pmod{n}$

has a Aigula di Weichatt edu_assist_pr

Note that the mapping $f: \mathbf{Z}_{n_1 \ n_2} \to \mathbf{Z}_{n_1} \times \mathbf{Z}_{n_2}$ given by $f(x) \to x \mod n_1, \ x \mod n_2$ is a bijection. The proof has two points. First show that the function is

Assignment Project Lysuch that Help

and https://eduassistpro.github.

then x-y is divisible by both n_1 and relatively prime, x-y is divisible by n divisible by n one-to-one. In the next slide, we give an explicit cons the inverse function which proves that the map is onto. Hence the f is bijection.

In fact, Chinese Remainder theorem gives a construction method to obtain the inverse function. Let

Assignment Project Exam Help

and https://eduassistpro.github.

Then the solution to the simultaneous congluen $X = a_1 (N_1 M_1) + a_2 (N_2)$

You can immediately verify that x determined as above satisfies the congruences (This is because $N_1 \mod n_2 = 0$ and $N_2 \mod n_1 = 0$)

Chinese Remainder Theorem (CRT)

Assignment that the first energy of the state of the sta

https://eduassistpro.github.

Add WeChatedu_assist_pr

has a unique solution modulo $n = n_1 n_2 \dots n_k$.

Let

Assignment Project Exam Help

for i https://eduassistpro.github.

Add We Chat edu_assist_pr

Lect https://eduassistpro.github.

Add WeChat edu_assist_pr

Quizz 3

