

Chapter 5, Part 1: The Bayesian Paradigm

Advanced Topics in Statistical Machine Learning

Tom Rainforth Hilary 2024

rainforth@stats ox ac uk

Bayesian Probability is All About Belief

Frequentist Probability

The frequentist interpretation of probability is that it is the average proportion of the time an event will occur if a trial is repeated infinitely many times.

Bayesian Probability

The Bayesian interpretation of probability is that it is the subjective belief that an event will occur in the presence of incomplete information

Bayesianism vs Frequentism

https://xkcd.com/1132/

Bayesianism vs Frequentism

Bayesianism vs Frequentism

$$p(B|A) = \frac{p(A|B)p(B)}{p(A)}$$

Using Bayes' Rule

- Encode initial belief about parameters θ using a **prior** $p(\theta)$
- Characterize how likely different values of θ are to have given rise to observed data $\mathcal D$ using a **likelihood function** $p(\mathcal D|\theta)$
- Combine these to give **posterior**, $p(\theta|\mathcal{D})$, using **Bayes' rule**:

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})} \tag{1}$$

- ullet This represents our **updated belief** about heta once the information from the data has been incorporated
- Finding the posterior is known as Bayesian inference
- $p(\mathcal{D}) = \int p(\mathcal{D}|\theta)p(\theta)d\theta$ is a normalization constant known as the **marginal likelihood** or **model evidence**
- ullet This does not depend on heta so we have

$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$$
 (2)

Example: Positive COVID Test

We just got a positive COVID test, what is the probability we actually have COVID?

Short answer: it rather depends on why we got tested and the current prevalence of COVID

Note the numbers in this example are not remotely accurate and only used for demonstration

Example: Positive COVID Test from Randomized Testing

- Let $\theta=1$ denote the scenario where we have COVID and say 1/100 people in our area currently have COVID
- If we got tested at random we might thus choose to use the prior of $p(\theta=1)=1/100$
- Let's assume the test is 95% accurate regardless of whether we have COVID, so $p(\mathcal{D}|\theta=1)=0.95, p(\mathcal{D}|\theta=0)=0.05.$

Applying Bayes rule:

$$p(\theta = 1|\mathcal{D}) = \frac{p(\mathcal{D}|\theta = 1)p(\theta = 1)}{p(\mathcal{D}|\theta = 1)p(\theta = 1) + p(\mathcal{D}|\theta = 0)p(\theta = 0)}$$
$$= \frac{0.95 \times 0.01}{0.95 \times 0.01 + 0.05 \times 0.99}$$
$$\approx 0.16$$

So it seems our chances of having COVID are actually quite low!

Example: Positive COVID Test with Symptoms

- Imagine we now instead go a test specifically because we were showing symptoms
- Let the proportion of such tests being positive be 0.3, so we choose the prior of $p(\theta=1)=0.3$

Bayes rule now yields

$$p(\theta = 1|\mathcal{D}) = \frac{p(\mathcal{D}|\theta = 1)p(\theta = 1)}{p(\mathcal{D}|\theta = 1)p(\theta = 1) + p(\mathcal{D}|\theta = 0)p(\theta = 0)}$$
$$= \frac{0.95 \times 0.3}{0.95 \times 0.3 + 0.05 \times 0.7}$$
$$\approx 0.89$$

So now it is extremely likely we have COVID!

Take home: the prior matters

Multiple Observations: Using the Posterior as the Prior

- One of the key characteristics of Bayes' rule is that it is self-similar under multiple observations
- We can use the posterior after our first observation as the prior when considering the next:

$$p(\theta|\mathcal{D}_1, \mathcal{D}_2) = \frac{p(\mathcal{D}_2|\theta, \mathcal{D}_1)p(\theta|\mathcal{D}_1)}{p(\mathcal{D}_2|\mathcal{D}_1)}$$
$$= \frac{p(\mathcal{D}_1, \mathcal{D}_2|\theta)p(\theta)}{p(\mathcal{D}_1, \mathcal{D}_2)}$$

 We can thinking of this as continuous updating of beliefs as we receive more information

Making Predictions

- Prediction in Bayesian models is done using the posterior predictive distribution
- This is defined by taking the expectation of a predictive model for new data, $p(\mathcal{D}^*|\theta)$, with respect to the posterior:

$$p(\mathcal{D}^*|\mathcal{D}) = \mathbb{E}_{p(\theta|\mathcal{D})}[p(\mathcal{D}^*|\theta)]. \tag{3}$$

- Note here that we are making the standard assumption that the data is conditionally independent given θ (can in theory use $p(\mathcal{D}^*|\theta,\mathcal{D})$ instead)
- Prediction is often done dependent on an input point such that we actually calculate $p(y|x,\mathcal{D}) = \mathbb{E}_{p(\theta|\mathcal{D})}[p(y|x,\theta)]$
- Note that this can be very expensive: typically requires approximations

Why Should we Take a Bayesian Approach?

Bayesian Reasoning is the Language of Epistemic Uncertainty

Bayesian reasoning is the basis for how to make decisions with **incomplete information**

Bayesian methods allow us to construct models that return principled uncertainty estimates

[Source: https://localcovid.info/]

Why Should we Take a Bayesian Approach?

Bayesian Modeling Lets us Utilize Domain Expertise

Bayesian modeling allows us to combine information from data with that from **prior expertise**

Models make clear assumptions and are **explainable**

Bayesian models are often **interpretable**; they can be easily queried, criticized, and built on by humans

Shortfalls [Non Exhaustive]

- Bayesian inference is typically very difficult and expensive: getting around the proportionality constant in Bayes rule is surprisingly challenging
- All models are approximations of the world
 - Constructing accurate models can be very difficult
 - We will always impart incorrect assumptions on our model, particular in our likelihood function
 - For large datasets, the bias from these can usually be avoided by using a powerful discriminative method
- Bayesian reasoning only incorporates uncertainty that is within our model: it does not account for unknown unknowns
 - This can lead to overconfidence
 - Our probabilities/uncertainties are always inherently subjective
- Can struggle to deal with outliers in the data because likelihood terms are multiplicative

Recap

- Bayesian machine learning is a generative approach that allows us to incorporate uncertainty and information from prior expertise
- Bayes' rule: $p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$
- Posterior predictive: $p(\mathcal{D}^*|\mathcal{D}) = \mathbb{E}_{p(\theta|\mathcal{D})} \left[p(\mathcal{D}^*|\theta) \right]$

Further Reading

- Additional examples in the notes
- Chapter 1 of C Robert. The Bayesian choice: from decision-theoretic foundations to computational implementation. 2007. https://www.researchgate.net/publication/ 41222434_The_Bayesian_Choice_From_Decision_Theoretic_Foundations_ to_Computational_Implementation.
- Michael I Jordan. Are you a Bayesian or a frequentist? Video lecture, 2009. http://videolectures.net/mlss09uk_jordan_bfway/