Machine Learning System Design

TOTAL POINTS 5

1. You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

1 point

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's F_1 score (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

.15

2. Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

1 point

Which are the two?

/

Our learning algorithm is able to

represent fairly complex functions (for example, if we

uani a neurai network or ourer moder with a large

3.

number of parameters).		
The classes are not too skewed.		
When we are willing to include high		
order polynomial features of x (such as x_1^2, x_2^2 ,		
x_1x_2 , etc.).		
A human expert on the application domain		
can confidently predict \boldsymbol{y} when given only the features \boldsymbol{x}		
(or more generally, if we have some way to be confident		
that x contains sufficient information to predict y		
accurately).		
Suppose you have trained a logistic regression classifier which is outputing $h_{ heta}(x)$.		
Suppose you have trained a logistic regression classifier which is outputing $n_{\theta}(x)$.		
Currently, you predict 1 if $h_{\theta}(x) \geq$ threshold, and predict 0 if $h_{\theta}(x) <$ threshold , where currently the threshold is set to 0.5.		
Currently, you predict 1 if $h_{\theta}(x) \geq \text{threshold}$, and predict 0 if $h_{\theta}(x) \leq \text{threshold}$, where		
Currently, you predict 1 if $h_{\theta}(x) \geq$ threshold, and predict 0 if $h_{\theta}(x) <$ threshold , where currently the threshold is set to 0.5. Suppose you decrease the threshold to 0.3. Which of the following are true? Check all that		
Currently, you predict 1 if $h_{\theta}(x) \geq$ threshold, and predict 0 if $h_{\theta}(x) <$ threshold , where currently the threshold is set to 0.5. Suppose you decrease the threshold to 0.3. Which of the following are true? Check all that apply.		
Currently, you predict 1 if $h_{\theta}(x) \geq$ threshold, and predict 0 if $h_{\theta}(x) <$ threshold , where currently the threshold is set to 0.5. Suppose you decrease the threshold to 0.3. Which of the following are true? Check all that apply. The classifier is likely to have unchanged precision and recall, and		
Currently, you predict 1 if $h_{\theta}(x) \geq$ threshold, and predict 0 if $h_{\theta}(x) <$ threshold , where currently the threshold is set to 0.5. Suppose you decrease the threshold to 0.3. Which of the following are true? Check all that apply.		
Currently, you predict 1 if $h_{\theta}(x) \geq$ threshold, and predict 0 if $h_{\theta}(x) <$ threshold , where currently the threshold is set to 0.5. Suppose you decrease the threshold to 0.3. Which of the following are true? Check all that apply. The classifier is likely to have unchanged precision and recall, and thus the same F_1 score.		

that apply.

4. Suppose you are working on a spam classifier, where spam emails are positive examples (y=1) and non-spam emails are negative examples (y=0). You have a training set of emails in which 99% of the emails are non-spam and the other 1% is spam. Which of the following statements are true? Check all

✓ If you always predict non-spam (output

y=0), your classifier will have 99% accuracy on the training set, but it will do much worse on the cross validation set because it has overfit the training data.

A good classifier should have both a

high precision and high recall on the cross validation
set.

y=0), your classifier will have 99% accuracy on the training set, and it will likely perform similarly on

If you always predict non-spam (output

If you always predict non-spam (output

the cross validation set.

y=0), your classifier will have an accuracy of 99%.

5. Which of the following statements are true? Check all that apply.

1 point

1 point

	After training a logistic regression
	classifier, you must use 0.5 as your threshold
	for predicting whether an example is positive or
	negative.
	It is a good idea to spend a lot of time
	collecting a large amount of data before building
	your first version of a learning algorithm.
	If your model is underfitting the
	training set, then obtaining more data is likely to
	help.
✓	Using a very large training set
	makes it unlikely for model to overfit the training
	data.
✓	The "error analysis" process of manually
	examining the examples which your algorithm got wrong
	can help suggest what are good steps to take (e.g.,
	developing new features) to improve your algorithm's
	performance.
I, Hassan Rasheed , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.	
Learn more about Coursera's Honor Code	