Fouille de Données

Data Mining

Recherche des Motifs Fréquents

et Extraction des Règles d'Association

Plan du cours

- 1. Contexte et objectifs
- 2. Concepts de base
- 3. Méthodes pour la recherche des modèles fréquents
- 4. Types des motifs fréquents
- 5. Passage aux règles d'association
- 6. Motifs rares
- 7. Motifs fréquents séquentiels

Fouille de Données - Data Mining

SAVOIR – PREDIRE/DECRIRE - DECIDER

Traitement

SAVOIR – DECRIRE - DECIDER

Algorithme: **Apriori**

Analyse du panier de marché

Quels sont les produits qui apparaissent fréquemment et/ou ensemble dans un ensemble de données ?

- Analyse des données médicales : Quelles sont les maladies qui apparaissent fréquemment (ensemble) ?
- Analyse d'ADN en biologie afin de comprendre les propriétés génétiques des espèces.
- L'analyse du climat en météorologie afin de mieux orienter l'agriculture ?

1 -Base de données formelle

1 -Base de données formelle

Définie par le triplet : (T, I, R)

- ✓ T: ensemble fini d'instances
- ✓ I: ensemble fini d'items
- ✓ R: relation sur T * I, qui permet d'indiquer si une instance x a un item i (noté xRi) ou non (1 ou 0).

> Ne tenir compte que de la **présence** des items pas de leur quantité.

Exemple:

- Base de transactions

TID	Items
1	Pain, Cacahuètes, Lait, Fruits, Confiture
2	Pain, Confiture, Soda, Chips, Lait, Fruit
3	Biscuits, Confiture, Soda, Chips, Pain
4	Confiture, Soda, Cacahuètes, Lait, Fruits
5	Confiture, Soda, Chips, Lait, Pain
6	Fruits, Soda, Chips, Lait
7	Fruits, Soda, Cacahuètes, Lait
8	Fruits, Cacahuètes, Fromage, Yaourt

Exemple:

- Convertir la base de transactions en une base formelle :

R

• **T**: toutes les transactions d'achat

• **I**: tous les produits/articles/items

• **R** : produit acheté (1) ou non (0) dans la transaction

Exemple:

- Convertir la base de transaction en une base formelle :

R	Pain	Lait	Fruits	Chips	Biscuits	•••
T1	1	1	1	О	O	
T2	1	1	1	1	O	
Т3	1	О	О	1	1	
T4	O	1	1	O	O	
T 5	1	1	O	1	O	
•••						

2 - Motif

- ✓ = Itemset
- \checkmark Un sous ensemble de I.
- ✓ Une collection d'un ou de plusieurs items.
- ✓ Ex: {Pain}, {Pain, Lait}, {Confiture, Soda, Chips}
- ✓ **k**-motif / **k**-itemset : un motif qui contient k items.
- \checkmark Ex: k=3, Motifs de taille **3**: {Pain, Lait, Confiture}, {Lait, Fruits, Soda}.

3 - Support d'un motif

- Mesure la **fréquence** d'un motif dans une base.
- > **Support Count** (σ):
 - Fréquence d'apparition d'un motif.
 - Ex: $\sigma(\{\text{Lait}, \text{Pain}\}) = 3$ $\sigma(\{\text{Soda}, \text{Chips}\}) = 4$
- > Support:
 - Fraction des transactions contenant un motif.
 - Ex: $s(\{Lait, Pain\}) = 3/8$ $s(\{Soda, Chips\}) = 4/8$

TID	Items
1	Pain, Cacahuètes, Lait, Fruits, Confiture
2	Pain, Confiture, Soda, Chips, Lait, Fruit
3	Biscuits, Confiture, Soda, Chips, Pain
4	Confiture, Soda, Cacahuètes, Lait, Fruits
5	Confiture, Soda, Chips, Lait , Pain
6	Fruits, Soda, Chips, Lait
7	Fruits, Soda, Cacahuètes, Lait
8	Fruits, Cacahuètes, Fromage, Yaourt

4 – Motif fréquent

- Un motif fréquent est un motif dont le support est >= à un seuil minsup.
- Sinon, il est dit non fréquent.
- Le seuil **minsup** est fixé par l'analyste. Celui-ci peut suivre une approche itérative en fixant un seuil au départ, et en fonction du résultat (nombre de motifs fréquents trouvés), changera la valeur du seuil.
- **Propriété** : Si *m* est un motif fréquent, alors tout sous-ensemble (sousmotif) de m est également un motif fréquent.
- Ex : {Pain, Lait } est un motif fréquent => {Pain} et {Lait} sont fréquents.

Exemple:

On pose minsup = 3

Motif	Supp	
{Cacahuètes, Lait, Confiture}	2	Non Fréquent
{Soda, Chips}	4	Fréquent
{Pain}	4	Fréquent
{Fromage, Yaourt, Fruits}	1	Non Fréquent

TID	Items
1	Pain, Cacahuètes, Lait, Fruits, Confiture
2	Pain, Confiture, Soda, Chips, Lait, Fruit
3	Biscuits, Confiture, Soda, Chips, Pain
4	Confiture, Soda, Cacahuètes, Lait, Fruits
5	Confiture, Soda, Chips, Lait, Pain
6	Fruits, Soda, Chips, Lait
7	Fruits, Soda, Cacahuètes, Lait
8	Fruits, Cacahuètes, Fromage, Yaourt

> Approche naïve

- Parcourir l'ensemble de tous les motifs possibles ;
- Calculer le support de chaque motif;
- Comparer le support au minsup ;
- Ne garder que les motifs fréquents parmi cet ensemble.

Problèmes

- Pour n items dans une base formelle => 2^n motifs candidats possibles.
- En pratique : Base peut avoir plusieurs milliers d'items et plusieurs millions d'instances => Nombre de motifs trop grand.
- Consommatrice en temps et en ressource. Mauvaise complexité temporelle.

> Algorithme Apriori

- Proposé par Agrawal et ses co-auteurs, 1994.
- S'appuie sur les deux principes suivants :
 - 1. Tout sous-motif d'un motif fréquent est fréquent.
 - 2. Tout sur-motif d'un motif non fréquent est non fréquent.

> Algorithme Apriori

> Algorithme Apriori

- Effectue l'extraction par niveaux :
 - Chercher les motifs fréquents de longueur 1;
 - Combiner ces motifs pour obtenir des motifs de **longueur 2** et <u>ne</u> garder que les **fréquents** parmi eux;
 - Combiner ces motifs pour obtenir des motifs de **longueur 3** et <u>ne garder que les **fréquents** parmi eux;</u>
 - Continuer jusqu'à la longueur maximale...

> Algorithme Apriori

Déroulement sur un exemple :

TID	Items
T1	a, c, d
T2	b, c, e
T3	a, b, c, e
T4	b, e
T 5	a, b, c, e
T6	b, c, e

> Algorithme Apriori

Déroulement sur un exemple :

1- Base Formelle

TID	Items
T1	a, c, d
T2	b, c, e
T3	a, b, c, e
T4	b, e
T5	a, b, c, e
T6	b, c, e

R	a	b	c	d	e
T1	1	O	1	1	О
T2	0	1	1	О	1
Т3	1	1	1	O	1
T4	0	1	O	О	1
Т5	1	1	1	O	1
Т6	О	1	1	О	1

- > Algorithme Apriori
- Déroulement sur un exemple :

2- L'ensemble des motifs fréquents :

On pose: minsup = 2

TID	Items
T1	a, c, d
T2	b, c, e
T3	a, b, c, e
T4	b , e
T 5	a, b, c, e
T6	b, c, e

> **Algorithme Apriori** – Exemple

2- L'ensemble des motifs fréquents : minsup = 2

C1:	1-Itemset	Supp Count
	{a}{b}{c}{d}{e}	3 5 5 1 5

TID	Ite	ms		
T1	a,	c,	d	
T2	b,	c,	e	
T3	a,	b,	c,	e
T4	b,	e		
T 5	a,	b,	c,	e
T6	b,	c,	e	

Algorithme Apriori – Exemple

2- L'ensemble des motifs fréquents : minsup = 2

	\frown	
1		•

1-Itemset	Supp Count
{a}	3
{b} {c}	5 5
{d}	1
{e}	5

$$L_1 = \{\{a\}, \{b\}, \{c\}, \{e\}\}\}$$

Algorithme Apriori – Exemple

2- L'ensemble des motifs fréquents : minsup = 2

$$L_1 = \{\{a\}, \{b\}, \{c\}, \{e\}\}\}$$

C2:

2-Itemset	Supp Count
{a, b}	2
{a, c}	3
{a, e}	2
{b, c}	4
{b, e}	5
{c, e}	4

TID	Items
T1	a, c, d
T2	b, c, e
T3	a, b, c, e
T4	b, e
T5	a, b, c, e
T6	b, c, e

Algorithme Apriori – Exemple

2- L'ensemble des motifs fréquents : minsup = 2

_	\sim	
	່ ' ົ	•
•		ď

TID	Items
T1	a, c, d
T2	b, c, e
T3	a, b, c, e
T4	b, e
T5	a, b, c, e
T6	b, c, e

2-Itemset	Supp Count
{a, b}	2
{a, c}	3
{a, e}	2
{b, c}	4
{b, e}	5
{c, e}	4

Algorithme Apriori – Exemple

2- L'ensemble des motifs fréquents : minsup = 2

L2 =
$$\{ \{a, b\}, \{a, c\}, \{a, e\}, \{b, c\}, \{b, e\}, \{c, e\} \}$$

TID	Items
T1	a, c, d
T2	b, c, e
T3	a, b, c, e
T4	b, e
T5	a, b, c, e
T6	b, c, e

C3:

3-Itemset	Supp Count
{a, b, c}	2
{a, b, e}	2
{a, c, e}	2
{b, c, e}	4

Algorithme Apriori – Exemple

2- L'ensemble des motifs fréquents : minsup = 2

TID	Items
T1	a, c, d
T2	b, c, e
T3	a, b, c, e
T4	b, e
T5	a, b, c, e
T6	b, c, e

C3

3-Itemset	Supp Count
{a, b, c}	2
{a, b, e}	2
{a, c, e}	2
{b, c, e}	4

$$L_3 = \{\{a, b, c\}, \{a, b, e\}, \{a, c, e\}\}$$

Algorithme Apriori – Exemple

2- L'ensemble des motifs fréquents : minsup = 2

L3 =
$$\{\{a, b, c\}, \{a, b, e\}, \{a, c, e\}, \{b, c, e\}\}$$

TID	Items
T1	a, c, d
T2	b, c, e
T3	a, b, c, e
T4	b, e
T5	a, b, c, e
T6	b, c, e

C4:

4-Itemset	Supp Count
{a, b, c, e}	2

$$L_4 = \{\{a, b, c, e\}\}$$

Algorithme Apriori – Exemple

2- L'ensemble des motifs fréquents : minsup = 2

$$L_4 = \{\{a, b, c, e\}\}$$

TID	Items
T1	a, c, d
T 2	b, c, e
T3	a, b, c, e
T4	b, e
T5	a, b, c, e
T6	b, c, e

C5:

5-Itemset	Supp Count
ф	

=> Arrêt de l'algorithme

Algorithme Apriori – Exemple

2- L'ensemble des motifs fréquents : **minsup = 2**

MF = L1 U L2 U L3 U L4

TID	Items
T1	a, c, d
T 2	b, c, e
T3	a, b, c, e
T4	b, e
T5	a, b, c, e
T6	b, c, e

$$L_1 = \{\{a\}, \{b\}, \{c\}, \{e\}\}\}$$

L2 = {
$$\{a, b\}, \{a, c\}, \{a, e\}, \{b, c\}, \{b, e\}, \{c, e\} \}$$

L3 =
$$\{\{a, b, c\}, \{a, b, e\}, \{a, c, e\}\{b, c, e\}\}$$

$$L_4 = \{\{a, b, c, e\}\}$$

- ➤ Motif Fréquent **Fermé** :
- Motif fréquent dont aucun de ses sur-motifs immédiats n'a un support identique.

- ➤ Motif Fréquent **Maximal** :
- Motif fréquent dont aucun de ses sur-motifs immédiats n'est fréquent.

- ➤ Motif Fréquent Fermé (closed) : Motif fréquent dont aucun de ses surmotifs immédiats n'a un support identique.
- ➤ Motif Fréquent Maximal : Motif fréquent dont aucun de ses sur-motifs immédiats n'est fréquent.

motifs F. maximaux ⊂ motifs F. fermés ⊂ Les motifs fréquents

Exemple :

minsup = 2

Fréquent

Fermé

Maximal

SAVOIR – DECRIRE - DECIDER

Algorithme: **Apriori**

Analyse du panier de marché

Quels sont les produits qui sont achetés fréquemment et **simultanément** ?

Transcrire la
connaissance
sous forme de
Règle
d'association.

- La découverte des règles d'association : Phase qui suit la phase de recherche des motifs fréquents.
- Trouver toutes les règles qui existent entre les motifs fréquents.
- Les règles ont la forme suivante :

Ex: - Si Lait et Beurre alors Pain /

- {Lait, Beurre} => {Pain}

- Soit la règle d'association suivante :
- Si X alors Y / $\mathbf{X} = \mathbf{Y}$ (ou X et Y des motifs fréquents)
- Mesures d'évaluation d'une règle :
 - Support
 - Confiance (Confidence)
- Support : un indicateur de fiabilité de la règle.
- Confiance : un indicateur de précision de la règle.
- Mais aussi : Lift, Leverage, Conviction, etc.

> Soit la règle d'association suivante :

$$Si X alors Y / X => Y$$
 (ou X et Y des motifs fréquents)

Confidence: Mesure à quelle fréquence les items de Y apparaissent dans les transactions qui contiennent X.

$$ightharpoonup$$
 Confiance $(X => Y) = \frac{Nombre\ de\ transactions\ contenant\ (X\ U\ Y)}{Nombre\ de\ transactions\ contenant\ X}$

> Algorithme Apriori

- L'ensemble des règles d'association peut être trouvé en calculant le support et la **confiance** de toutes les combinaisons possibles des motifs fréquents; Puis, prendre celle dont la confiance est importante.
- Des seuils peuvent être fixés : minsup et minconf.
- Les règles d'association qui dépassent un minimum de support **et** minimum de confiance sont appelées règles **solides/fortes**.

> Algorithme Apriori

- Génération des règles d'association
- Démarche en deux étapes:
- Recherche des motifs fréquents (support >= minsup)
- 2. A partir des motifs fréquents, extraire les règles (conf >= minconf)

- Base de transactions
- On pose minsup = 33,34% (33,34*6)/100 = 2, minconf = 60%

TID	Items
T1	Xbox, Casque, Smartwatch
T2	Xbox, Casque
Т3	Xbox, Tablette, SDCard
T4	SDCard, Tablette
Т5	SDCard, Smartwatch
T6	Xbox, Tablette, SDCard

On pose minsup = 2, minconf = 60%

1 – Extraire les motifs fréquents :

L1 U L2 U L3

L1 = {{Xbox},{Casque}, {Smartwatch}, {Tablette}}

```
L2 = {{Xbox, Casque},
{Xbox, Tablette},
{Xbox, SDCard},
{Tablette, SDCard}}
```

L3 = {{Xbox, Tablette, SDCard}}

On pose **minsup** = **33.34%**, **minconf** = **60%**

2 – Générer les règles d'association

```
{Xbox, Casque}

{Xbox} => {Casque} - conf = 2/4 = 0.5

{Casque} => {Xbox} - conf = 2/2 = 1

{Xbox, Tablette}

{Xbox} => {Tablette} - conf = 2/4 = 0.5

{Tablette} => {Xbox} - conf = 2/3 = 0.66
```

On pose **minsup** = **33.34%**, **minconf** = **60%**

2 – Générer les règles d'association

```
{Xbox, SDCard}

{Xbox} => {SDCard} - conf = 0.5
{SDCard} => {Xbox} - conf = 2/4=0.5
```

{Tablette, SDCard}

```
{Tablette} => {SDCard} - conf = 3/3=1
{SDCard} => {Tablette} - conf = 3/4=0.75
```

```
On pose minsup = 33.34%, minconf = 60%
```

2 – Générer les règles d'association

```
{Xbox, Tablette, SDCard}
```

```
 \{Xbox\} => \{Tablette, SDCard\} - conf = 2/4 = 0.5   \{Tablette\} => \{SDCard, Xbox\} - conf = 2/3 = 0.66   \{SDCard\} => \{Tablette, Xbox\} - conf = 2/4 = 0.5   \{Xbox, Tablette\} => \{SDCard\} - conf = 2/2 = 1   \{Xbox, SDCard\} => \{Tablette\} - conf = 2/2 = 1   \{Tablette, SDCard\} => \{Xbox\} - conf = 2/3 = 0.66
```

On pose **minsup** = **33.34%**, **minconf** = **60%**

2 – Générer les règles d'association

Règles solides: conf >= minconf

```
{Casque} => {Xbox} - conf = 2/2 = 1

{Tablette} => {Xbox} - conf = 2/3=0.66

{Tablette} => {SDCard} - conf = 3/3=1

{SDCard} => {Tablette} - conf = 3/4=0.75

{Tablette} => {SDCard, Xbox} - conf = 2/3=0.66

{Xbox, Tablette} => {SDCard} - conf = 2/2=1

{Xbox, SDCard} => {Tablette} - conf = 2/2=1

{Tablette, SDCard} => {Xbox} - conf = 2/3=0.66
```

Motifs non Fréquents - Motifs Rares

- Les **motifs rares** représentent les motifs qui apparaissent rarement dans un ensemble de données. Non fréquents.
- Rareté ~ exceptions
- Découverte intéressante pour certains domaines : médecine, biologie.
- Découverte de symptômes non usuels ou effets indésirables exceptionnels.
- Ex : En pharmacovigilance (i.e. Partie de la pharmacologie dédiée à la détection et l'étude des effets indésirables des médicaments.)
- L'extraction des motifs rare ~ Associer des médicaments avec des effets indésirables ~ trouver des cas où un médicament avait des effets mortels ou indésirables sur les patients.

Motifs Rares

<u>Concepts</u>:

Un motif est dit rare s'il n'est pas fréquent.

Son support est inférieur strictement à minsup.

Motif Rare Minimal (MRM): un motif rare dont tous ses sous-motifs sont

fréquents.

Motifs Rares

- Motifs fréquents séquentiels. Sequential Pattern Mining.
- Prise en compte de la dimension temporelle.
- Intégrer les contraintes temporelles (succession) dans la recherche des motifs.
- Extraire des enchainements d'ensembles d'items, couramment associés sur une période de temps bien spécifiée.
- Exemple : Un <u>même client</u> achète un laptop, puis une souris, puis casque audio dans les jours qui suivent.
- Marketing, finance, détection des symptômes précédent une maladie, etc.

- Séquence : une liste ordonnée par dates croissantes, non vide, d'items, notée :
- $\mathbf{s} = \langle \mathbf{m1} \ \mathbf{m2} \ \dots \ \mathbf{mn} \rangle$, où m est un motif.
- Ex: $\langle a(ab)(ac)d(cf) \rangle$ $\langle \{a\}\{a,b\}\{a,c\}\{d\}\{c,f\} \rangle$
- Une séquence : une suite de transactions qui apporte une relation d'ordre entre les achats d'un client.
- Un item peut apparaitre au plus une fois dans un motif, mais plusieurs fois dans une séquence.
- Un séquence de taille l : l-séquence.
- Base de données séquentielle est composée d'éléments ordonnés, des tuples <SID, s>, où SID : ID séquence, et s : séquence.

> Sous-séquence :

Soit $s_1 = \langle a_1 a_2 ... a_n \rangle$ et $s_2 = \langle b_1 b_2 ... b_m \rangle$ deux séquences de données. s_1 est une sous séquence de s_2 si et seulement si il existe $i_1 < i_2 < ... < i_n$ des entiers tels que $a_1 \subset b_{i1}, a_2 \subset b_{i2}, ... a_n \subset bi_n$.

Exemples:

- -s1 = <(C)(DE)(H) > sous-séquence de s2 = <(G)(CH)(I)(DEF)(H) > car :
 - ➤ (C) (CH);
 - ➤ (DE) (DEF);
- $-s1 = \langle (C)(E) \rangle$ n'est pas une sous-séquence de $s2 = \langle (CE) \rangle$

Exemple: Base de données séquentielle

SID	Sequence
1	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
2	<(ad)c(bc)(ae)>
3	<(ef)(<u>ab</u>)(df) <u>c</u> b>
4	<eg(af)cbc></eg(af)cbc>

- Longueur de la séquence 1 : 9
- La séquence 1 contient plusieurs fois 'a', elle ne contribuera qu'une seule fois au support de <a>.
- La séquence <a(bc)df> est une sous-séquence de la séquence 1.
- Support (<(ab)c>) est égal à 2 (Présent dans 1 et 3). Avec minsup=2, la séquence <(ab)c> est fréquente.

- Un client supporte une séquence **s** (fait partie du support pour s) si **s** est une sous séquence de la séquence de données de ce client.
- Le support d'une séquence **s** est calculé comme étant le pourcentage des clients qui supportent **s**.
- Une séquence dont le support est >= à minsup est une séquence fréquente, appelée Sequential Pattern.
- Si une séquence **s** n'est pas fréquente, aucune de ses sur-séquences n'est fréquente.
- Si une séquence **s** est fréquente, alors toutes ses sous-séquences le sont aussi.
- Algorithme **GSP**, Generalized Sequential Patterns. Proposition pour la recherche des motifs séquentiels fréquents. Basé sur l'algorithme Apriori.

Ressources

Data Mining: concepts and techniques, 3rd Edition

- ✓ Auteur : Jiawei Han, Micheline Kamber, Jian Pei
- ✓ Éditeur : Morgan Kaufmann Publishers
- ✓ Edition: Juin 2011 744 pages ISBN 9780123814807

Data Mining: concepts, models, methods, and algorithms

- ✓ Auteur : Mehmed Kantardzi
- ✓ Éditeur : John Wiley & Sons
- ✓ Edition : Aout 2011 552 pages ISBN : 9781118029121

Data Mining: Practical Machine Learning Tools and Techniques

- ✓ Auteur : Ian H. Witten & Eibe Frank
- ✓ Éditeur : Morgan Kaufmann Publishers
- ✓ Edition : Juin 2005 664 pages ISBN : 0-12-088407-0

Références

Cours – Abdelhamid DJEFFAL – Fouille de données avancée

✓ www.abdelhamid-djeffal.net

WekaMOOC – Ian Witten – Data Mining with Weka

✓ https://www.youtube.com/user/WekaMOOC/featured

Cours - Laboratoire ERIC Lyon - DATA MINING et DATA SCIENCE

✓ https://eric.univ-lyon2.fr/~ricco/cours/supports_data_mining.html

Gregory Piatetsky-Shapiro - KDNuggets

✓ http://www.kdnuggets.com/