

5. Let $F(\cdot)$ and $G(\cdot)$ be two distribution functions. Find vecessery and sufficient conditions that H(x) = F(G(x)) is a distribution function. 1) If $x_1 \leq x_2$, then $F_{\chi}(x_1) \leq F_{\chi}(x_2)$ 2) (cadlag): $\lim_{x \to \infty} F(x) = F(x_0)$ (Approaching to form right) lin F(x) exist (Approhing to the function can exhibit weird jumps.

jumps are only = post Sourp, he function has
one way behave properly. $\lim_{x \to -\infty} f_{x}(x) = 0 \quad \lim_{x \to -\infty} f_{x}(x) = 1.$ • Distribution function F(x) of r.v. X has the following properties 1. Monotonicity: If $x_1 \leq x_2$ then $F(x_1) \leq F(x_2)$ 2. $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to +\infty} F(x) = 1$ 3. Left-continuity: $\lim_{x \uparrow x_0} F(x) = F(x_0)$

H(x) to be a distribution function, has to fulfill the following properties Monotoncetty $2P \times_1 \leq \times_2 \Rightarrow H(x_1) \leq H(x_2)$ Assume $x, \leq x_2$ = G(x) G(x) G(x) G(x) G(x)Let $y_1 = G(x_1)$ by $y_2 = G_1(x_2)$ y Syl f(y) < f(yz) (a distr function $(G(x,)) \leq F(G(x_2))$ H(x,) < H(xz)
conditions required.

2)
$$\lim_{x\to -\infty} H(x) = 0$$
 and $\lim_{x\to +\infty} H(x) = 1$
 $\lim_{x\to -\infty} H(x) = \lim_{x\to -\infty} F(G(x))$
 $\lim_{x\to -\infty} H(x) = \lim_{x\to -\infty} F(G(x))$.
 $\lim_{x\to -\infty} F(G(x)) = \lim_{x\to -\infty} F(G(x))$.
For $\lim_{x\to -\infty} H(x) = 0$;
 $\lim_{x\to -\infty} F(G(x)) = 0$
 $\lim_{x\to +\infty} F(G(x)) = 0$

lim + (x) = 1 F(1) should be continues b F(1) = 1 Left Continuity? lim H (x) = H (xo) $\lim_{x \to \infty} F(G(x))$ $\Rightarrow F(\lim_{x \to \infty} (G(x))$ $= F(G(x_0))$ F should be continous at

