

A VALUATION CRITERION FOR NORMAL BASES IN ELEMENTARY ABELIAN EXTENSIONS

NIGEL P. BYOTT AND G. GRIFFITH ELDER

ABSTRACT. Let p be a prime number and let K be a finite extension of the field \mathbb{Q}_p of p -adic numbers. Let N be a fully ramified, elementary abelian extension of K . Under a mild hypothesis on the extension N/K , we show that every element of N with valuation congruent mod $[N : K]$ to the largest lower ramification number of N/K generates a normal basis for N over K .

1. INTRODUCTION

The Normal Basis Theorem states that in a finite Galois extension N/K there are elements $\alpha \in N$ whose conjugates $\{\sigma\alpha : \sigma \in \text{Gal}(N/K)\}$ provide a vector space basis for N over K . If K is a finite extension of the field \mathbb{Q}_p of p -adic numbers, the valuation $v_N(\alpha)$ of an element α of N is an important property. We therefore ask whether anything can be said about the valuation of normal basis generators in this case. We will prove

Theorem 1. *Let K be a finite extension of the p -adic numbers, let N/K be a fully ramified, elementary abelian p -extension, and let b_{\max} denote the largest lower ramification number. If the upper ramification numbers of N/K are relatively prime to p , then every element $\alpha \in N$ with valuation $v_N(\alpha) \equiv b_{\max} \pmod{[N : K]}$ generates a normal field basis. Moreover, no other equivalence class has this property: given any integer v with $v \not\equiv b_m \pmod{[N : K]}$, there is an element $\rho_v \in N$ with $v_N(\rho_v) = v$ which does not generate a normal basis.*

This result arose out of work on the Galois module structure of ideals in extensions of p -adic fields. For such extensions, it has been found that the usual ramification invariants are, in general, insufficient to determine Galois module structure, and thus that there is a need for a *refined ramification filtration* [BE02, BE05, BE]. This refined filtration is defined for elementary abelian p -extensions and requires elements that generate normal field bases. Such elements are provided by Theorem 1. Recent work [Eld] suggests that what is known for p -adic fields should also hold in the analogous situation in characteristic p , where K is a finite extension of $\mathbb{F}_p(X)$. Here \mathbb{F}_p denotes the finite field with p elements, and X is an indeterminate. We therefore make the

Conjecture. Theorem 1 holds when K is a finite extension of $\mathbb{F}_p(X)$ as well.

Date: September 26, 2006.

1991 *Mathematics Subject Classification.* 11S15, 13B05.

Key words and phrases. Normal Basis Theorem, Ramification Theory.

Elder was partially supported by NSF grant DMS-0201080.

2. PRELIMINARY RESULTS

Let K be a finite extension of the field \mathbb{Q}_p of p -adic numbers, and let N/K be a fully ramified, elementary abelian p -extension with $G = \text{Gal}(N/K) \cong C_p^n$. Use subscripts to denote field of reference. So π_N denotes a prime element in N , v_N denotes the valuation normalized so that $v_N(\pi_N) = 1$, and e_K denotes the absolute ramification index. Let $\text{Tr}_{N/K}$ denote the trace from N down to K . For each integer $i \geq -1$, let $G_i = \{\sigma \in G : v_N((\sigma - 1)\pi_N) \geq i + 1\}$ be the i th ramification group [Ser79, IV, §1]. Then $G_{-1} = G_0 = G_1 = G$, and the integers b such that $G_b \supsetneq G_{b+1}$ are the lower ramification break (or jump) numbers. The collection of such numbers, $b_1 < \dots < b_m$, is the set of lower breaks. They satisfy $b_1 \equiv \dots \equiv b_m \pmod{p}$ [Ser79, IV, §2, Prop. 11], where if $b_m \equiv 0 \pmod{p}$ then the extension N/K is cyclic [Ser79, IV, §2, Ex. 3]. Let $g_i = |G_i|$. Then the upper ramification break numbers $u_1 < \dots < u_m$ are given by $u_1 = b_1 g_{b_1}/p^n = b_1$ and $u_i = (b_1 g_{b_1} + (b_2 - b_1)g_{b_2} + \dots + (b_i - b_{i-1})g_{b_i})/p^n$ for $i \geq 2$ [Ser79, IV, §3].

Now by the Normal Basis Theorem, the set

$$\mathcal{NB} = \left\{ \rho \in N : \sum_{\sigma \in G} K \cdot \sigma \rho = N \right\}$$

of normal basis generators is nonempty. We desire integers $v \in \mathbb{Z}$ such that $\{\rho \in N : v_N(\rho) = v\} \subset \mathcal{NB}$. And so we are concerned by the following

Example 1. Suppose K contains a p th root of unity ζ , and let $N = K(x)$ with $x^p - \pi_K = 0$. Let σ generate $\text{Gal}(N/K)$. Observe that $(\sigma - 1)x^{pi} = 0$ and $\text{Tr}_{N/K}x^i = 0$ for $p \nmid i$. So for each $i \in \mathbb{Z}$, we have $v_N(x^i) = i$ and $x^i \notin \mathcal{NB}$. Here N/K has one ramification break $b = pe_K/(p-1)$, which is divisible by p . [Ser79, IV, §2, Ex. 4].

Remark. Fortunately, these extensions provide the only obstacle. The restriction in Theorem 1 to elementary abelian extensions with upper ramification numbers relatively prime to p is a restriction to those extensions that do not contain a cyclic subfield such as in Example 1 [Ser79, IV, §3 Prop. 14].

To prove Theorem 1 we need two results.

Lemma 2. *Let N/K be as above with $b_m \not\equiv 0 \pmod{p}$, and let $t_G = \sum_{i=1}^m b_i \cdot |G_{b_i} \setminus G_{b_i+1}|$. If $\rho \in N$ with $v_N(\rho) \equiv b_m \pmod{p^n}$, then $v_N(\text{Tr}_{N/K}\rho) = v_N(\rho) + t_G$. Conversely, given $\alpha \in K$ there is a $\rho \in N$ with $v_N(\rho) = v_N(\alpha) - t_G \equiv b_m \pmod{p^n}$ such that $\text{Tr}_{N/K}(\rho) = \alpha$.*

Proof. Use induction. Consider $n = 1$ when $\text{Gal}(N/K) = \langle \sigma \rangle$ is cyclic of degree p . There is only one break b , which satisfies $b < pe_K/(p-1)$. Given $\rho \in N$ with $v_N(\rho) \equiv b \pmod{p}$, we have $\text{Tr}_{N/K}\rho \equiv (\sigma - 1)^{p-1}\rho \pmod{p\rho}$. Since $(p-1)b < pe_K$, $v_N(\text{Tr}_{N/K}\rho) = v_N(\rho) + (p-1)b$. And given $\alpha \in K$, use [Ser79, V, §3, Lem. 4] to find $\rho \in N$ with $v_N(\rho) = v_N(\alpha) - (p-1)b$ and $\text{Tr}_{N/K}\rho = \alpha$.

Assume now that the result is true for n , and consider N/K to be a fully ramified abelian extension of degree p^{n+1} . Recall $g_i = |G_i|$. Let H be a subgroup of G of index p with $G_{b_2} \subseteq H$. Let $L = N^H$ and note that N/L satisfies our induction hypothesis. Moreover the ramification filtration of H is given by $H_i = G_i \cap H$ [Ser79, IV, §1]. So $|H_i| = g_i$ for $i > b_1$. Therefore $t_H = b_m(g_{b_m} - 1) + b_{m-1}(g_{b_{m-1}} - g_{b_m}) + \dots + b_1(p^n - g_{b_2})$. Given $\rho \in N$ with $v_N(\rho) \equiv b_m \pmod{p^{n+1}}$, by induction $v_N(\text{Tr}_{N/L}\rho) = v_N(\rho) + t_H$. By the Hasse-Arf Theorem, $p^{n+1} \mid g_{b_i}(b_i - b_{i-1})$ for $1 \leq$

$i \leq m$. Thus $t_H \equiv -b_m + p^n b_1 \pmod{p^{n+1}}$ and $v_L(\text{Tr}_{N/L}\rho) \equiv b_1 \pmod{p}$. Using [Ser79, IV, §1, Prop. 3 Cor.], b_1 is the Hilbert break for the C_p -extension L/K . Applying the case $n = 1$, we find $v_N(\text{Tr}_{N/K}\rho) = v_N(\rho) + t_H + p^n(p-1)b_1 = v_N(\rho) + t_G$. The converse statement follows similarly, using $t_H + p^n(p-1)b_1 = t_G$. \square

The following generalizes a technical relationship used in the proof of Lemma 2.

Lemma 3. *Let N/K be a fully ramified, noncyclic, elementary abelian extension with group $G \cong C_p^n$. Let H be a subgroup of G of index p , and let $L = N^H$. If b_m is the largest lower break of N/K , b the only break of N/L , and ρ any element of N with $v_N(\rho) \equiv b_m \pmod{p^n}$, then $v_L(\text{Tr}_{N/L}\rho) \equiv b \pmod{p}$.*

Proof. In the proof of Lemma 2, $H \supseteq G_{b_2}$ so that $G_{b_1}H/H \subsetneq G_{b_1+1}H/H$ following [Ser79, IV, §1, Prop. 3, Cor.], and the break for G/H was b_1 . Here we have no such luxury and we have to involve the upper numbers in our considerations, although the argument is really no different. Note that there is a k such that $G^{u_k+1}H/H \subsetneq G^{u_k}H/H$. Thus u_k is the upper ramification number of G/H . Since there is only one break in the filtration of G/H , the lower and upper numbers for G/H are the same, $b = u_k$.

The ramification filtration for H is given by taking intersections: $H_j = G_j \cap H$. Note that $[G_{b_i} : G_{b_i} \cap H] = p$ for $i \leq k$ and $G_{b_i} \subseteq H$ for $i > k$. Let $h_j = |H_j|$. Then $h_j = g_j/p$ for $j \leq b_k$, and $h_j = g_j$ for $j > b_k$. Now let $v_N(\rho) = b_m + p^n t$. Following the proof of Lemma 2 and using the Hasse-Arf Theorem,

$$\begin{aligned} v_N(\text{Tr}_{N/L}\rho) &= b_m + p^n t + b_m(h_{b_m} - 1) + b_{m-1}(h_{b_{m-1}} - h_{b_m}) + \cdots + b_1(h_{b_1} - h_{b_2}) \\ &= p^n t + (b_m - b_{m-1})h_{b_m} + (b_{m-1} - b_{m-2})h_{b_{m-1}} + \cdots + (b_2 - b_1)h_{b_2} + b_1 h_{b_1} \\ &\equiv (b_k - b_{k-1})h_{b_k} + \cdots + (b_2 - b_1)h_{b_2} + b_1 h_{b_1} \equiv p^n u_k / p \equiv p^{n-1} b \pmod{p^n} \end{aligned}$$

Therefore $v_L(\text{Tr}_{N/L}\rho) \equiv b \pmod{p}$. \square

3. MAIN RESULT

Proof of Theorem 1. There are two statements to prove. We begin with the first: We assume the upper breaks satisfy $p \nmid u_i$, and prove that for $\rho \in N$

$$v_N(\rho) \equiv b_m \pmod{p^n} \implies \rho \in \mathcal{NB}.$$

The argument breaks up into two cases: the Kummer case where $\zeta \in K$ and the non-Kummer case where $\zeta \notin K$. Here ζ is a nontrivial p th root of unity.

We begin with the Kummer case, and start with $n = 1$. Let σ generate the Galois group, and denote the one ramification number by b . Since in this case b is also the upper number, $p \nmid b$. Therefore $\{v_N((\sigma - 1)^i \rho) : 0 \leq i < p\}$ is a complete set of residues modulo p . And since N/K is fully ramified, ρ generates a normal basis. Now let $n \geq 2$ and note that $N = K(x_1, x_2, \dots, x_n)$ with each $x_i^p \in K$. It suffices to show that $K[G]\rho$ contains each element $y = x_1^{j_1} x_2^{j_2} \cdots x_n^{j_n}$ with $0 \leq j_i \leq p-1$. For $y = 1$ this is clear, since $\text{Tr}_{N/K}(\rho) \in K$. For any other y , let $L = K(y)$ and let b denote the ramification number of L/K . By Lemma 3, $v_L(\text{Tr}_{N/L}(\rho)) \equiv b \pmod{p}$. Since b is an upper number of the ramification filtration of G , $p \nmid b$. Now apply the $n = 1$ argument, using $\text{Tr}_{N/L}(\rho)$ in L/K . Thus $y \in K[G]\rho$.

We now turn to the non-Kummer case with $\zeta \notin K$. Let $E = K(\zeta)$, let E/K have ramification index $e_{E/K}$, and let $F = N(\zeta)$. Then F/E is a fully ramified Kummer extension of degree p^n . Applying Herbrand's Theorem [Ser79, IV, §3, Lem. 5] to

the quotient $G = \text{Gal}(N/K)$ of $\text{Gal}(F/K)$, we find that the maximal ramification break of F/E is $e_{E/K}b_m \not\equiv 0 \pmod{p}$. The above discussion for the Kummer case therefore applies to F/E . Suppose now for a contradiction that $\rho \in N$ with $v_N(\rho) \equiv b_m \pmod{p^n}$, and that $K[G]\rho$ is a proper subspace of N . Then by extending scalars (noticing that E and N are linearly disjoint as their degrees are coprime) we have that $E[G]\rho$ is a proper subspace of F . Moreover $v_F(\rho) \equiv e_{E/K}b_m \pmod{p^n}$. This contradicts the result already shown for the Kummer extension F/K , completing the proof of the first statement of the theorem.

Consider the second statement: Given any integer v with $v \not\equiv b_m \pmod{p^n}$ there is a $\rho_v \in N$ with $v_N(\rho_v) = v$ such that $\text{Tr}_{N/K}\rho_v = 0$ and thus $\rho_v \notin \mathcal{NB}$.

To prove this statement note that given $v \in \mathbb{Z}$, there is an $0 \leq a_v < p^n$ such that $v \equiv a_v b_m \pmod{p^n}$, since $p \nmid b_m$. If $a_v \neq 1$ we will construct an element $\rho_v \in N$ with $v_N(\rho_v) = v$ and $\text{Tr}_{N/K}\rho_v = 0$. To begin, observe that there is a integer k such that $0 \leq k \leq n-1$, $a_v \equiv 1 \pmod{p^k}$ and $a_v \not\equiv 1 \pmod{p^{k+1}}$. Recall $g_i = |G_i|$. Since the ramification groups are p -groups with $g_{i+1} \leq g_i$, there is a Hilbert break b_s such that $g_{b_s+1} < p^{k+1} \leq g_{b_s}$. For $i = k, k+1$ choose H_i with $|H_i| = p^i$ and $G_{b_s+1} \subset H_k \subset H_{k+1} \subseteq G_{b_s}$. Recall from Lemma 2 the expression for t_G , and note that $t_{H_k} = b_m(g_{b_m}-1) + b_{m-1}(g_{b_{m-1}}-g_{b_m}) + \dots + b_s(p^k-g_{b_s+1}) \equiv -b_m + b_s p^k \pmod{p^n}$. Let $L = N^{H_k}$. Since $a_v \not\equiv 1 \pmod{p^{k+1}}$, $a_v \equiv 1 + rp^k \pmod{p^{k+1}}$ for some $1 \leq r \leq p-1$. Using the fact that $b_s \equiv b_m \pmod{p}$, $a_v b_m + t_{H_k} \equiv (r+1)b_m p^k \pmod{p^{k+1}}$. Since $p^k \mid v_N(\alpha)$ for $\alpha \in L$, we can choose $\alpha \in L$ with $v_N(\alpha) = v + t_{H_k} - rp^k b_s$. So $v_L(\alpha) \equiv b_s \pmod{p}$. Let $\sigma \in G$ so that σH_k generates H_{k+1}/H_k . Therefore $v_N((\sigma-1)^r \alpha) = v + t_{H_k}$. Now using Lemma 2, we choose $\rho_v \in N$ such that $v_N(\rho_v) = v$ and $\text{Tr}_{N/L}\rho_v = (\sigma-1)^r \alpha$. Since $(1 + \sigma + \dots + \sigma^{p-1})\text{Tr}_{N/L}\rho_v = 0$, we have $\text{Tr}_{N/K}\rho_v = 0$. \square

Corollary 4. *Let N/K be a fully ramified, elementary abelian extension of degree p^n with $n > 1$ and one ramification break, at b . If $\rho \in N$ with $v_N(\rho) \equiv b \pmod{p^n}$, then $\rho \in \mathcal{NB}$.*

REFERENCES

- [BE] N. P. Byott and G. G. Elder, *On the necessity of new ramification breaks*, In preparation.
- [BE02] N. P. Byott and G. G. Elder, *Biquadratic extensions with one break*, Can. Math. Bull. **45** (2002), no. 2, 168–179.
- [BE05] N. P. Byott and G. G. Elder, *New ramification breaks and additive Galois structure*, J. Théor. Nombres Bordeaux **17** (2005), no. 1, 87–107.
- [Eld] G. G. Elder, *One-dimensional elementary-abelian extensions of local fields*, arXiv.org:math/0511174 (2005-11-15).
- [Ser79] J.-P. Serre, *Local fields*, Springer-Verlag, New York, 1979.

NIGEL P. BYOTT, SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS, UNIVERSITY OF EXETER, EXETER EX4 4QE, UNITED KINGDOM

E-mail address: N.P.Byott@ex.ac.uk

G. GRIFFITH ELDER, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NEBRASKA AT OMAHA, OMAHA, NE 68182-0243 U.S.A.

E-mail address: elder@vt.edu

Current address: Department of Mathematics, Virginia Tech, Blacksburg VA 24061-0123