INTERNAL USE

MEDIATEK

开机电量初始化

GM3演算法 basic concept

- GM3的演算法結合了Open Circuit voltage mode及Coulomb counter mode
- GM3使用了開路電壓法來定位初始電量
 - 透過OCV查表方式可較準確定位初始電量(hw_ocv / sw_ocv/old data (NVRAM)/RTC)
- GM3使用了庫倫積分法來計算單位時間內的變化電量 (car)
 - 透過hardware量測進出電池的電流做累加(c_soc)
 - 透過software由電池壓差推出電流做累加(v_soc)

根據溫度和這四個資訊比較找出最有可能的DO

D0_init log

- [dod_init_result]HW(42296, 8780) SW(42301, 8784) OLD(42441, 8906) VBAT(42295, 8779) OldCAR(c:161 v:0) con0(8900)
- [dod_init_result]NVRAM_ready 1 Embedded 1 plug_out 1 is_hwocv_unreliable 0 rtc_invalid 1 rtc_ui_soc 0 two_sec_reboot 0 old_data.ui_soc 3705, nv_fail(0)
- [dod_init_result]T_new 28 T_old 30 T_d0 28 shutdown_time 73708 pmic_shutdown_time 1800 plugout_time 31 plugout_time_th 32 swocv_oldocv_diff_emb 1000

符号	意义	符号	意义
HW()	开机hw计算的ocv和soc	plug_out	是否有拔电池,1则是。若插着充电器开机,也会被标记为1
SW()	开机sw计算的ocv和soc	Embedded	是否是嵌入式电池
OLD()	上次关机的OCV和soc	is_hwocv_unreliable	硬件测量的电池信息是否可靠
VBAT	Lk阶段未补偿的电压值	two_sec_reboot	是否有发生短暂电池脱离后恢复
OldCAR	关机记录的car值	rtc_invalid	rtc里面数据是否可靠
nv_fail	nvram数据是否有效	T_new/T_old/T_d0	对应的是:这次开机温度/上次关机温度/d0_init时的温度。
old_data.ui_soc	关机记录的uisoc	shutdown_time	关机时间,单位s

MTK PMIC HW ZCV Function - Power On ZCV

At PMIC power on sequence state, after VA18 turn on to

Dod_init

SOCn=D0+ CAR/QMAX

- <1>有拔電池,判斷為相同電池,old_data可用
- <2>有拔電池,可能是相同電池,保持ui不跳變,soc重定位SWOCV
- <3>有拔電池,無法判斷是否相同電池,uisoc&soc 重定位HWOCV
- <4>有拔電池,無法判斷是否相同電池,uisoc&soc重定位SWOCV
- <5>有拔電池,無法判斷是否相同電池,uisoc&soc重定位HWOCV
- <6>有拔電池,無法判斷是否相同電池, uisoc&soc重定位HWOCV
- <7>有拔電池,可能是同顆電池,保持以不跳變,soc重定位HWOCV Battery plugout case
- <8>沒拔電池,但fg硬體reset過,car=0,保持關機前的值
- No battery plugout case

- <9>沒拔電池,沒有斷電過,保持關機前D0的值
- <10>沒拔電池,沒有斷電過,關機時間超過30 min: hwocv準確,可作關機校正
- <11>有開客制化d0, 會多一次<11>

Special case

- <12> old_data 突然讀取不到(NVRAM 失效),用RTC補救ui_soc, vsoc,csoc use SWOCV
- <13> Recovery mode NVRAM無法存取,ui_soc 取RTC_SOC,vsoc,csoc use final SOC
- <16> Embedded=1 但溫度gap>setting, old OCV and UI_OCV remapping SOC and UISOC

Dod_init

- 主要流程
 - 计算swocv
 - 取得hwocv
 - 参考mtk battery hal.c的read hw ocv()
 - 取得decision tree需要的状态
 - Old_data (is_nvram_ready)
 - Shutdown_time
 - Bat_plugout_time //受限RTC電容,可能de-feature
 - Is bat plugout
 - Is_charger_exist
 - Is_hwocv_unreliable,
 - Run decision tree
 - 可能12+1种结果(<11>這個case是附加判斷)
 - 主要判断有无拔電池,是否相同電池,hwocv/swocv/old_data 三者哪個較可靠
 - 设定结果 dod_init_result()
 - 通知kernel初始化结束 set_is_fg_initialized()

GM30新增HW功能

1. 從主PMIC取較準的HWOCV

2. Hw记录 Shutdown time battery plugout

SOC与电池OCV平缓区

■ mtk的gauge是根据ocv去判断跳变的,所以当一些电池跳变出现在电池平缓区域,虽然OCV只是很小差值,但是SOC会

变化较大。

