Potocolos de encaminamiento dinámico para redes de computadoras

Prof. Carlos Ernesto Carrillo Arellano¹

¹Universidad Autónoma Metropolitana - Azcapotzalco Departamento de Ingeniería Electrónica Correo electrónico:ceca@xanum.uam.mx http://ecarrillo.ddns.net

Noviembre, 2018

Contenido

Contenido

3/21

- Los protocolos de encaminamiento permiten que los ruteadores intercambien mensajes para descubrir redes remotas y construir una trayectoria de encaminamiento de manera dinamica
- Proposito: Interior Gateway Protocols (IGP) or Exterior Gateway Protocol (EGP)
- IGP: Empleados para construir trayectorias dentro de un AS, tambien referido como Intra-AS routing
- EGP: Empleados para construir trayectorias entre AS, tambien referidos como Inter-AS routing
- Algoritmo de encaminamiento: Distance vector, Link-state, path-vector protocols
- Tratamiento IP: Classful (legacy protocols) o Classless protocols (incluye informacion de la mascara de subred)

- Los protocolos de encaminamiento permiten que los ruteadores intercambien mensajes para descubrir redes remotas y construir una trayectoria de encaminamiento de manera dinamica
- Proposito: Interior Gateway Protocols (IGP) or Exterior Gateway Protocol (EGP)
- IGP: Empleados para construir trayectorias dentro de un AS, tambien referido como Intra-AS routing
- EGP: Empleados para construir trayectorias entre AS, tambien referidos como Inter-AS routing
- Algoritmo de encaminamiento: Distance vector, Link-state, path-vector protocols
- Tratamiento IP: Classful (legacy protocols) o Classless protocols (incluye informacion de la mascara de subred)

- Al emplear un protocolo de encaminamiento dinamico, los ruteadores:
- Aprenden informacion de encaminamiento de otros ruteadores
- Comparten informacion de encaminamiento con otros ruteadores
- Seleccionan la mejor trayectoria para llegar a una red destino
- Reaccionan a los cambios en la topologia y construyen nuevas rutas en caso de ser necesario
- Generalmente, todos los protocolos de encaminamiento dinamico realizan estas cuatro funciones principales, lo que los diferencia es como las realizan

Introducción

- La larga historia de IPv4 ha traido consigo diversos protocolos de encaminamiento dinamico dentro de la familia IGP
- Cada protocolo tiene caracteristicas propias que lo distinguen: la metrica de encaminamiento, el algoritmo de encaminamiento, etc.
- Historicamente, los primeros protocolos de encaminamiento empleaban algoritmos de encaminamiento DV (Distance-Vector)
- Esta nueva ola incluia protocolos con mejores metricas de encaminamiento y mejores tiempos de convergencia
- Dos protocolos de esa segunda ola son los mas fuertes competidores de hoy en dia: EIGRP y OSPF
- RIPv2 ha dejado de ser un serio competidor debido principalmente a su metrica de encaminamiento y a su lenta convergencia

Noviembre 2018

Algoritmo Vector-Distancia

- Cuando un ruteador emplea un algoritmo DV aprende tres elementos importantes que describen completamente un vector de encaminamiento
- El destino, la distancia de la ruta (magnitud), y el siguiente salto en la trayectoria (direccion)
- Cuando existen mas de una ruta para llegar a una red destino, el algoritmo DV puede seleccionar aquella ruta con la menor metrica de encaminamiento (p. ej. el número de saltos)
- Se debe resaltar que los rutedores que emplean un algoritmo DV no conocen nada acerca de la topologia de la red, solo conocen a sus nodos vecinos y como estos pueden auxiliarle a llegar a los diferentes destinos de la red

Descripcion

- RIP (v1 y v2) son protocolos de la categoria IGP
- 2 RIP utiliza el algoritmo de encaminamiento DV
- RIP envia periodicamente actualizaciones de encaminamiento determinadas por un temporizador
- Estos mensajes de actualizacion se envian aun si no hay cambios en la red (Por defecto, cada 30 segundos)
- Como aprende R1 informacion de la red 172.30.22.0/24?
 - La interfaz G0/2 de R2 enciende y se asigna una direccion IP
 - R2 agrega la ruta conectada directamente en su tabla de encaminamiento
 - R2 envia un RIP update con metrica 1 a R1
 - Al agrega la ruta a 172.30.22.0/24 con metrica 1 a su tabla de encaminamiento, la interfaz de salida es G0/2 por que por este puerto recibio el update y la direccion IP de quien envio dicho update

Casa abjerta al tiempo Azcapotzalco

Split Horizon

Descripcion

- Una caracteristica de los algoritmos DV es denominada Split Horizon
- Split Horizon limita las rutas que comparte un ruteador por una interfaz
- Que rutas se omiten en un RIP Update a causa de Split Horizon?
- Las rutas que usaran la interfaz X para llegar a su destino no son anunciadas por la interfaz X
- Split horizon ayuda a evitar el problema de conteo al infinito (Counting to infinity) (Tarea!!)

Routing Information Protocol (RIP) - Split Horizon

Routing Information Protocol (RIP) - Route Poisoning

Route Poisoning

- Los algoritmos DV ayudan a prevenir loops logicos asegurando que cuando una ruta falla, todos los ruteadores se enteren de dicho fallo
- Route Poisoning ayuda a indicar la falla de una ruta en la rede
- La idea detras de Route Poisoning consiste en notificar la falla de una ruta empleando una metrica especial con una metrica especial denominada infinito
- Las rutas notificadas con una metrica infinita son aquellas rutas que han fallado
- RIP define la metrica infinito como 16, esto limita a las rutas construidas por RIP a 16 saltos

RIPv2

- RIPv2 soporta el proceso de identificacion entre ruteadores para intercambiar mensajes solo con ruteadores autorizados
- RIPv2 soporta la creacion de rutas resumidas (sumarized routes)
- Los mensajes enviados por RIPv2 son enviados a la dirección multicast 224.0.0.9
- 4 RIPv2 soporta VLSM
- 5 RIPv2 es Classless
- Metrica: Numero de saltos, AD: 120

12 / 21

Feature	RIPv1	RIPv2
Hop-count metric	Yes	Yes
Sets 15 as the largest metric for a working route	Yes	Yes
Sends full routing updates	Yes	Yes
Uses split horizon	Yes	Yes
Uses route poisoning, with metric 16 to mean "infinite"	Yes	Yes
Sends mask in routing update, thereby supporting VLSM	No	Yes
Supports manual route summarization	No	Yes
Sends updates to 224.0.0.9 multicast address	No	Yes
Supports authentication	No	Yes

Contenido

Configuracion

- 1 router rip
- version 2
- 3 network a.b.c.d
- 4 El comando network es el unico que merece especial atencion
- El comando network identifica las interfaces en las que RIP se habilita
- El parametro del comando network es, comunmente, un numero de red IP classful
- Al habilitarse RIP en una interfaz, RIP realiza tres acciones separadas: i) Envia updates por dicha interfaz, ii) Se reciben y procesan updates por la interfaz, iii) los updates de RIP incluyen la subred de dicha interfaz

Command	Purpose
show ip route [rip]	Routes: This command lists IPv4 routes as learned by RIP. The show ip route command lists all IPv4 routes, and the show ip route rip command lists RIP-learned routes only.
show ip protocols	Configuration: This command lists information about the RIP configuration, plus the IP addresses of neighboring RIP routers from which the local router has learned routes.
show ip rip database	Best routes: This command lists the prefix/length of all best routes known to RIP on this router, including routes learned from neighbors and connected routes for interfaces on which RIP has been enabled.

Interfaces pasivas

- En muchas ocasiones, los administradores de redes no desean que las notificaciones RIP sean enviadas por una interfaz
- Por ejemplo, en la interfaz de un ruteador conectada a una LAN sin algun otro ruteador
- El comando passive-interface detiene el envio de mensajes RIP por la interfaz
- Una interfaz pasiva no envia mensajes RIP, pero si procesa los mensajes RIP recibidos y si anuncia la red en donde dicha interfaz reside
- 5 passive-interface type number
- passive-interface default + no passive-interface type number

18 / 21

Maximum Paths

- Que hace un ruteador si aprende disitintas rutas para llegar a una red destino, y todas ellas son identicas en AD v metrica?
- 2 En el caso de RIP, los empates son muy comunes
- La solucion, emplear varias rutas (load balance)
- Equal-Cost Load Balancing
- RIP puede limitar el numero de rutas para el balance de carga con el parametro: maximum-paths
- El numero por defecto de maximum-paths es cuatro, v el numero maximo dependo de la version del IOS

Autosummarization

- Un protocolo de encaminamiento que emplea Autosummarization automaticamente crea una ruta resumida baio ciertas condiciones
- El rutedor esta conectado a diferentes subredes de una misma red logica
- El rutedor tiene habilitada la opcion de Autosummarization
- 4 auto-summary
- Esta opcion puede ser muy util para reducir las tablas de encaminamiento y los mensajes RIP
- El redes discontiguas, no se debe emplear la opcion auto-summary
- Para deshabilitarlo se emplea el comando no auto-summary

Autosummarization

- Un protocolo de encaminamiento que emplea Autosummarization automaticamente crea una ruta resumida bajo ciertas condiciones
- El rutedor esta conectado a diferentes subredes de una misma red logica
- El rutedor tiene habilitada la opcion de Autosummarization
- 4 auto-summary
- Esta opcion puede ser muy util para reducir las tablas de encaminamiento y los mensajes RIP
- El redes discontiguas, no se debe emplear la opcion auto-summary
- Para deshabilitarlo se emplea el comando no auto-summary

Autosummarization

- 1 Un protocolo de encaminamiento que emplea Autosummarization automaticamente crea una ruta resumida bajo ciertas condiciones
- El rutedor esta conectado a diferentes subredes de una misma red logica
- El rutedor tiene habilitada la opcion de **Autosummarization**
- auto-summary
- Esta opcion puede ser muy util para reducir las tablas de encaminamiento y los mensajes RIP
- El redes discontiguas, no se debe emplear la opcion auto-summary
- Para deshabilitarlo se emplea el comando no auto-summary

Noviembre 2018

Default Routes

- Gateway of Last Resort
- RIP puede ayudar a configurar una ruta por defecto
- Basta con que un ruteador configure una ruta estatica por defecto
- RIPv2 notificara a los ruteadores la existencia de dicha ruta y estos ruteadores agregaran la ruta por defecto apuntando al ruteador que envio dicha notificacion
- Lo unico necesario para que esto funcione es agragar el comando de configuracion de RIPdefault-information originate en el ruteador que establecio la ruta de GoLR de manera estatica

Default Routes

- Gateway of Last Resort
- 2 RIP puede ayudar a configurar una ruta por defecto
- Basta con que un ruteador configure una ruta estatica por defecto
- RIPv2 notificara a los ruteadores la existencia de dicha ruta y estos ruteadores agregaran la ruta por defecto apuntando al ruteador que envio dicha notificacion
- Lo unico necesario para que esto funcione es agragar el comando de configuracion de RIPdefault-information originate en el ruteador que establecio la ruta de GoLR de manera estatica

Authentication

- RIPv2 ofrece un proceso de identificacion entre ruteadores para evitar intercambiar informacion con ruteadores no autorizados
- Los ruteadores intercambian una contrasena (texto plano o cifrada)
- La recomendacion mas importante es emplear siempre el intercambio cifrado (MD5)

Router1#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router1(config)#key chain ORA
Router1(config-keychain-lkey)#key 1
Router1(config-keychain-key)#key-string oreilly
Router1(config-keychain-key)#exit
Router1(config-leychain-ley)#exit
Router1(config)#interface FastEtherneto/0.1
Router1(config-subif)#ip rip authentication key-chain ORA
Router1(config-subif)#ip rip authentication mode md5
Router1(config-subif)#end
Router1#

