

IN THE SPECIFICATION

Please add the following new paragraph after line 20, page 9:

An ATCC deposit has been made on April 26, 2005 pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for purposes of patent procedure. The ATCC is located at 10801 University Boulevard, Manassas, Va. 20110-2209, USA. The ATCC deposit of the hybridoma: mAC10 was given an accession number of PTA-6679. Any deposit is provided as a convenience to those of skill in the art and is not an admission that a deposit is required under 35 U.S.C. Section 112. That described herein is not to be limited in scope by the antibody deposited, since the deposited embodiment is intended as a single illustration of certain aspects of the invention and any antibody that are functionally equivalent are within the scope of this invention. The deposit of material herein does not constitute an admission that the written description herein contained is inadequate to enable the practice of any aspect of the invention, including the best mode thereof, nor is it to be construed as limiting the scope of the claims to the specific illustrations that it represents. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims.

Please replace the paragraph on page 30, line 11 to page 31, line 6 with the following amended paragraph:

The determination of percent identity between two sequences can be accomplished using a mathematical algorithm. A preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul, 1990, Proc. Natl. Acad. Sci. USA 90:5873-5877. Such an algorithm is incorporated into the NBLAST and the XBLAST programs of Altschul, *et al.*, 1990, J. Mol. Biol. 215:403-410. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to a nucleic acid encoding a SCA-1 modifier protein. BLAST protein

searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to SCA-1 modifier protein. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul *et al.*, 1997, Nucleic Acids Res. 25:3389-3402. Alternatively, PSI-Blast can be used to perform an iterated search which detects distant relationships between molecules (*Id.*). When utilizing BLAST, Gapped BLAST, and PSI-Blast programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. “See <http://www.ncbi.nlm.nih.gov>.” Another preferred, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, CABIOS (1989). Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Additional algorithms for sequence analysis are known in the art and include ADVANCE and ADAM as described in Torellis and Robotti, 1994, Comput. Appl. Biosci., 10:3-5; and FASTA described in Pearson and Lipman, 1988, Proc. Natl. Acad. Sci. 85:2444-8. Within FASTA, ktup is a control option that sets the sensitivity and speed of the search. If ktup = 2, similar regions in the two sequences being compared are found by looking at pairs of aligned residues; if ktup=1, single aligned amino acids are examined. Ktup can be set to 2 or 1 for protein sequences, or from 1 to 6 for DNA sequences. The default if ktup is not specified is 2 for proteins and 6 for DNA. ~~For a further description of FASTA parameters, see <http://bioweb.pasteur.fr/does/man/fasta.1.html#sect2>, the contents of which are incorporated herein by reference.~~