Mobile Communications Mobile Communications Evolution

AMPS

- ❖ AMPS (Advanced Mobile Phone System)
 - 1st Generation (1G) mobile cellular phone
 - Analog standard using FDMA (Frequency Division Multiple Access)
 - Developed by Bell Labs
 - Introduced in North America in Oct. 1983

GSM

- GSM (Global System for Mobile Communications)
 - 2nd Generation (2G) mobile cellular phone: Digital system
 - Introduced in Finland in 1991
 - Dominant global standard
 - Over 90% market share
 - Operated in over
 219 countries & territories

GSM

❖ GSM

- GSM uses FDMA & TDMA combined
 - FDMA (Frequency Division Multiple Access)

Frequency Channels

 TDMA (Time Division Multiple Access)

GSM

- **❖** GSM Services
 - Voice calls
 - Data transfer speeds up to 9.6 kbps
 - SMS (Short Message Service)
 - SIM card technology

GSM

- SIM (Subscriber Identity Module)
 - SIM is a detachable smart card
 - SIM contains user subscription information and phone book

GSM

SIM Advantages

- SIM enables a user to maintain user information even after switching cellular phones
- By changing ones SIM a user can change cellular phone operators while using the same the mobile phone

IS-95: cdmaOne

❖ IS-95

- IS-95 (Interim Standard 95) is the first CDMA based 2G digital cellular standard
 - Why CDMA?
 - CDMA performs well against (narrow band) interference and (multipath) signal fading
 - cdmaOne is the brand name for IS-95 that was developed by Qualcomm

IS-95: cdmaOne

❖ IS-95

- Hutchison launched the first commercial cdmaOne network in Hong Kong in September 1995
- IS-95 traffic channels support voice or data at bit rates of up to 14.4 kbps

UMTS

- UMTS (Universal Mobile Telecommunications System)
 - 3rd Generation (3G) mobile cellular system
 - Evolution of GSM
 - UTRA (UMTS Terrestrial Radio Access) supports several different terrestrial air interfaces

UMTS

- UMTS (Universal Mobile Telecommunications System)
 - Multiuser Access in UTRA can be supported by UTRA-FDD or UTRA-TDD
 - FDD (Frequency Division Duplex)
 - TDD (Time Division Duplex)

UMTS: WCDMA

- ❖ WCDMA (Wideband Code Division Multiple Access)
 - 3rd Generation (3G) mobile cellular system that uses the UTRA-FDD mode
 - 3GPP (3rd Generation Partnership Project)
 Release 99
 - Up to 2 Mbps data rate

UMTS: WCDMA

❖ WCDMA

- First commercial network opened in Japan is 2001
- Seamless mobility for voice and packet data applications
- QoS (Quality of Service) differentiation for high efficiency of service delivery
- Simultaneous voice and data support
- Interworks with existing GSM networks

CDMA2000

❖ CDMA2000

- 3G mobile cellular system
- Standardized by 3GPP2
- Evolution of IS-95 cdmaOne standards
 - Uses CDMA & TDMA
 - CDMA (Code Division Multiple Access)
 - TDMA (Time Division Multiple Access)

CDMA2000

❖ CDMA2000

 Initially used in North America and South Korea (Republic of Korea)

CDMA2000

❖ CDMA2000 1xEV-DO

CDMA2000 1xEV-DO
 (Evolution-Data Optimized)
 enables 2.4 Mbps data rate

 CDMA2000 1xEV-DO network launched in South Korea on January 2002

CDMA2000

❖ CDMA2000 1xEV-DO

- Regarded as the first 3G system based on ITU standards
 - ITU (International Telecommunication Union) is the specialized agency for information and communication technology of the UN (United Nations)

HSDPA

- + HSDPA (High-Speed Downlink Packet Access)
- Enhanced 3G mobile communications protocol
- Evolution of UMTS for higher data speeds and capacity
- Belongs to the HSPA (High-Speed Packet Access) family of protocols

HSDPA

- HSDPA (High-Speed Downlink Packet Access)
 - HSDPA commercial networks became available in 2005
 - Peak Data Rate
 - Downlink: 14 Mbps (Release 5)

EV-DO Rev. A

- * EV-DO Rev. A (Revision A)
 - Peak Data Rate

• Downlink: 3.1 Mbps

• Uplink: 1.8 Mbps

Launched in the USA on October 2006

 VoIP support based on low latency and low bit rate communications

EV-DO Rev. A

- * EV-DO Rev. A
 - Enhanced Access Channel MAC
 - Decreased connection establishment time
 - Multi-User Packet technology enables the ability for more than one user to share the same timeslot
 - QoS (Quality of Service) flags included for QoS control

HSPA+

- HSPA+ (Evolved High-Speed Packet Access)
 - HSPA+ all IP network first launched in Hong Kong in 2009
 - WCDMA (UMTS) based3G enhancement
 - HSPA+ is a HSPA evolution

HSPA+

+ HSPA+ (Evolved High-Speed Packet Access)

Peak Data Rate

Downlink: 168 Mbps

Uplink: 22 Mbps

- MIMO (Multiple-Input & Multiple-Output)
 multiple-antenna technique applied
 - Why MIMO?
 - MIMO uses uncorrelated multiple antennas both at the transmitter and receiver to increase the data rate while using the same signal bandwidth as a single antenna system

HSPA+

- + HSPA+ (Evolved High-Speed Packet Access)
 - Higher Date Rate Accomplished by
 - MIMO multiple-antenna technique
 - Higher order modulation (64 QAM)
 - Dual-Cell HSDPA is used to combine multiple cells into one

EV-DO Rev B

- ❖ EV-DO Rev. B (Revision B)
- EV-DO Rev. B was first deployed in Indonesia on January 2010
- Multi-Carrier evolution of Rev. A
- Higher data rates per carrier
 - Downlink Peak
 - 4.9 Mbps per carrier
 - Uplink Peak
 - 1.8 Mbps per carrier

EV-DO Rev B

- ❖ EV-DO Rev. B
 - Reduced latency from statistical multiplexing across channels
 - → Reduced delay → Improved QoS
 - Longer talk-time & standby time
 - Hybrid frequency re-use & Reduced interference at Cell Edges and Adjacent Sectors → Improved QoS at the Cell Edge

EV-DO Rev B

- ❖ EV-DO Rev. B
- More Efficient Asymmetric Data Rate Support
 - Downlink ≠ Uplink Data Rates
- Asymmetric Service Examples
 - File transfer
 - Web browsing
 - Multimedia content delivery
 - etc.

LTE

❖ LTE (Long-Term Evolution)

- LTE launched in North American on September 2010 with the Samsung SCH-R900
- Deployed on both GSM and the CDMA mobile operators

LTE

❖ LTE (Long-Term Evolution)

Peak Data Rate (Release 8)

• Downlink: 300 Mbps

• Uplink: 75 Mbps

LTE-A

LTE-A (LTE-Advanced)

- Considered as a 4G technology based on the ITU-R IMT-Advanced process
- Peak Data Rate (Release 10)

Downlink: 3 Gbps

• Uplink: 1.5 Gbps

LTE-A

- LTE-A (LTE-Advanced)
 - LTE-A incorporates higher order MIMO (4×4 and beyond) and allows multiple carriers to be bonded into a single stream

Mobile Communications

References

References

- H. Holma and A. Toskala, HSDPA/HSUPA for UMTS: High Speed Radio Access for Mobile Communications. John Wiley & Sons, 2007.
- A. R. Mishra, Advanced Cellular Network Planning and Optimisation: 2G/2.5G/3G...Evolution to 4G. John Wiley & Sons, 2006.
- A. R. Mishra, Fundamentals of Cellular Network Planning and Optimisation: 2G/2.5G/3G...Evolution to 4G. John Wiley & Sons, 2004.
- R. Steele, P. Gould, and C. Lee, GSM, cdmaOne and 3G Systems. John Wiley & Sons, 2000.
- J. Korhonen, Introduction to 3G Mobile Communications. Artech House, 2003.
- H. Holma and A. Toskala, WCDMA for UMTS: Radio Access for Third Generation Mobile Communications. John Wiley & Sons, 2000.
- "HSPA Evolution brings Mobile Broadband to Consumer Mass Markets," Nokia, White Paper, 2008.