Composition as nonlinear combination in semantic space: Exploring the effect of compositionality on Chinese compound recognition

Tianqi Wang¹, Xu Xu²

The University of Hong Kong ² Shanghai Jiao Tong University

Introduction

- Most Chinese words are formed by the combination of characters (e.g., 冰箱 refrigerator = 冰 ice + 箱 box)
- Characters are highly salient perceptual units, making morphological segmentation executed without effort
- The role played by constituents in compound processing has been studied via semantic transparency (ST; e.g., bedroom vs. hogwash), which produced inconsistent results
- Psycholinguists started to reconceptualize ST from the compositional perspective, i.e., the predictability of the compound meaning given the combination of the constituents' meaning
- It is unclear how this combinatorial process modulates compound processing

A quick view of this work

- We built a computational model to learn the compounding rules
- Using the model, we generated the compositional meaning representation and characterized its two attributes
- We examined how these attributes affected Chinese compound processing

Method

Computational model

A transformer-based deep neural network is trained to optimally predict the actual compound embedding so as to acquire the *compounding rules*.

Why do we need such a model?

Because the relationship between Chinese constituent characters and the compound words is less than systematic.

Computed metrics

Two computed metrics are defined to characterize the end product of the combinatorial route.

- **SimCL:** the cosine between the compositional and lexicalized (actual) compound embeddings
- SimRangeTop50: the range of the cosine distances of the 50 lexicalized neighbors that are closest to the compositional embedding

CE = compositional embedding LE = lexicalized embedding LN = lexicalized neighbor

Results

Efficacy of the computed metrics

- The inclusion of the two metrics, SimCL and SimRangeTop50, significantly improved the fit of the baseline model, $\chi^2(2) = 233.59, p < 0.001$
- Both metrics showed *facilitatory effect* on lexical decision times

Interactions with other variables

How lexical decision times are influenced by the computed metrics

constituent characters

- **Dataset:** megastudy of lexical decision (Tsang et al., 2018) with 10,022 two-character compounds
- Statistical analysis: forward analysis with the computed metrics and potential interactions added to the linear mixed effects model over and above the lexical, semantic, and phonological variables (baseline)

Parameter	Estimate	SE	t	df	р	% Δ <i>R</i> ²	R^2
Intercept	-0.30	0.003	-90.82	943	< 0.001		
LogWF	-0.21	0.003	-68.17	9149	< 0.001		
Stroke	0.004	0.001	6.25	3044	< 0.001		
C1.LogCF	0.03	0.005	5.53	3028	< 0.001		
C2.LogCF	0.03	0.005	4.74	2220	< 0.001		
C1.LogFS	-0.06	0.009	-6.84	1788	< 0.001		
C2.LogFS	-0.06	0.010	-6.42	1318	< 0.001		
C2.LogNoM	0.06	0.014	4.24	1166	< 0.001		
C1.LogNoP	0.09	0.031	2.84	1323	0.005		
Baseline model							0.435
SimCL	-0.42	0.048	-8.65	9245	< 0.001	2.67	0.446
SimRangeTop50	-0.29	0.044	-6.72	8081	< 0.001	0.63	0.449
SimCL × LogWF	0.19	0.046	4.07	9111	< 0.001	0.27	0.451
SimRangeTop50 × C2.LogCF	0.19	0.043	4.45	7747	< 0.001	0.19	0.451
Computed metrics						3.80	0.451

WF = word frequency CF = character frequency FS = family size NoM = number of meanings NoP = number of pronunciations

C1 = first character C2 = second character

Take-home Message

- A combinatorial process is actively involved in Chinese compound processing, which is moderated by word frequency, i.e., an indicator on whether the *holistic route* is likely to prevail
- Two attributes associated with the end product of the combinatorial route, i.e., compositionality and accessibility of the compositional representation, can affect the efficiency of compound processing
- The computational characterization of the dual-route framework sheds light on the *universal process* of compound comprehension

Code