NAME: Nicholas Jacob

EMAIL: nicholas.c.jacob-1@ou.edu STUDENT ID: # 113578513 Final Project COURSE: CS/DSA 4513 DATABASE MANAGEMENT SECTION: ONLINE

SEMESTER: FALL 2023 INSTRUCTOR: DR. LE GRUENWALD

SCORE:

Contents

1	ER Diagram	1
2	Relational Database Schema	2
3	Storage	3

1 ER Diagram

Here is my ER diagram

2 Relational Database Schema

```
Here are my schema:
   Process_id,process_data)
   Assemblies(ass_id,ass_details)
   Create(process_id, ass_id)
   Customer(name, address, category)
   Orders(name,ass_id)
   Department(dept_num,dept_data)
   Supervises(dept_num,process_id)
   Fit(process_id, fit_type)
   Paint(process_id, paint_type, painting_method)
   Cut(process_id,cutting_type, machine_type)
   Account(type, <u>acct_id</u>)
   Job(process_id, <u>ass_id</u>, job_num)
   Account(type, <u>acct_id</u>)
   Costs(job_num,type, <u>acct_id</u>,process_id, <u>ass_id</u>)
   Fit_Job(process_id, ass_id, job_num, labor)
   Paint_Job(process_id, <u>ass_id</u>, job_num,color,volume, labor)
   Cut_Job(process_id, ass_id, job_num, machine_type, time, material, la-
bor)
```

3 Storage

Table	Query	Search Key	Query	Selected	Justification
Name	Number		Fre-	File Orga-	
	and Type		quency	nization	
Customer	1 Insertion	name	30/Day	heap tree	At the moment adding lots
				on name	of data and not accessing it
					directly often
Department	2 Insertion	$dept_num$	infrequent	Sequential	Since this data is added in-
				on	frequently but referenced
				$dept_num$	by other tables often, se-
					quential insertion seems appropriate.
Process	3 Insertion	process_id,	infrequent	Sequential	Infrequent insertion but
(and sub		(sub cate-		on pro-	often called
categories)		gory info)		$\operatorname{cess_id}$	
				(and sub	
				category	
				id)	
Supervises	3 Insertion	process_id	infrequent	Sequential	Infrequent insertion but
		and		on pro-	called often on process_id
		$dept_num$		cess_id	
Orders	4 Insertion	name,			
		ass_id			
Customer	12 Range	name (in	100/Day	Multitable	Since this data is accessed
	Search	order) by		Cluster-	often this table should be
		category		ing with	pre-built. New customers
				category	are added often so B^+ tree
				and name	storage on name will be
				stored in a	most efficient within this
				B^+ tree	multitable