Circuits and Transforms

EE3900: Linear Systems and Signal Processing Indian Institute of Technology Hyderabad

J Sai Sri Hari Vamshi AI21BTECH11014

31 Oct 2022

CONTENTS

- 1 Definitions
- 2 Laplace Transform
- 3 Initial Conditions
- 4 Bilinear Transform

1. Definitions

1.1 The unit step function is defined as

$$u(t) = \begin{cases} 1 & t > 0 \\ \frac{1}{2} & t = 0 \\ 0 & t < 0 \end{cases}$$
 (1.1)

1.2 The Laplace transform of g(t) is defined as

$$G(s) = \int_{-\infty}^{\infty} g(t)e^{-st} dt$$
 (1.2)

2. Laplace Transform

- 2.1 In the circuit, the switch S is connected to position P for a long time so that the charge on the capacitor becomes q_1 μ C. Then S is switched to position Q. After a long time, the charge on the capacitor is q_2 μ C
- 2.2 Draw the circuit using latex-tikz **Solution:**
- 2.3 Find q_1 .

Solution:

After a long time when a steady state is achieved, a capacitor behaves like an open circuit, that is, current passing through it is zero.

1

Fig. 2.2. Circuit diagram of the circuit in question

Fig. 2.3. Circuit diagram at steady state before flipping the switch

By Kirchoff's Law we can get,

$$\frac{V-1}{1} - \frac{V-2}{2} = 0 \tag{2.1}$$

$$\implies V = \frac{4}{3} V \tag{2.2}$$

$$\Longrightarrow q_1 = CV = \frac{4}{3} \,\mu\text{C} \tag{2.3}$$

2.4 Show that the Laplace Transform of u(t) is $\frac{1}{s}$ and find the ROC.

Solution:

The Laplace Transform of u(t) is given by,

$$\mathcal{L}\{u(t)\} = \int_{-\infty}^{\infty} u(t)e^{-st}dt \qquad (2.4)$$
$$= \int_{0}^{\infty} e^{-st}dt \qquad (2.5)$$

$$=\lim_{R\to\infty}\frac{1-e^{-sR}}{s}\tag{2.6}$$

This limit is finite only if $\Re(s) > 0$, which is going to be its ROC.

Therefore,

$$u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s} \qquad \Re(s) > 0 \qquad (2.7)$$

2.5 Show that,

$$e^{-at}u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+a} \qquad a > 0$$
 (2.8)

and find ROC.

Solution:

The Laplace Transform of $e^{-at}u(t)$ for a > 0 is given by,

$$\mathcal{L}\{u(t)\} = \int_{-\infty}^{\infty} e^{-at} u(t) e^{-st} dt \qquad (2.9)$$
$$= \int_{0}^{\infty} e^{-(s+a)t} dt \qquad (2.10)$$

$$= \lim_{R \to \infty} \frac{1 - e^{-(s+a)R}}{s+a}$$
 (2.11)

This limit is finite only if $\Re(s+a) > 0$, which is going to be its ROC

Therefore

$$e^{-at}u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+a} \qquad \Re(s) > -a \qquad (2.12)$$

since a is real.

2.6 Now consider the following resistive circuit transformed from Fig. 2.2 where

$$u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} V_1(s)$$
 (2.13)

$$2u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} V_2(s)$$
 (2.14)

Find the voltage across the capacitor $V_c(s)$

Fig. 2.6. Circuit diagram in s-domain before flipping the switch

Solution:

$$V_1(s) = \frac{1}{s}$$
 $\Re(s) > 0$ (2.15)
 $V_2(s) = \frac{2}{s}$ $\Re(s) > 0$ (2.16)

$$V_2(s) = \frac{2}{s}$$
 $\Re(s) > 0$ (2.16)

By Kirchoff's Junction Law, we get,

$$\frac{V_c - V_1}{R_1} + \frac{V_c - V_2}{R_2} + \frac{V_c - 0}{\frac{1}{sC_0}} = 0$$
 (2.18)

$$V_c \left(\frac{1}{R_1} + \frac{1}{R_2} + sC_0 \right) = \frac{V_1}{R_1} + \frac{V_2}{R_2}$$
 (2.19)

$$V_c(s) = \frac{\frac{1}{sR_1} + \frac{2}{sR_2}}{\frac{1}{R_1} + \frac{1}{R_2} + sC_0}$$
 (2.20)

$$V_c(s) = \frac{\frac{1}{R_1 C_0} + \frac{2}{R_2 C_0}}{s \left(s + \frac{1}{R_1 C_0} + \frac{1}{R_2 C_0}\right)}$$
(2.21)

2.7 Find $v_c(t)$. Plot the graph using Python.

Solution:

Upon performing the partial fraction decomposition upon the above obtained result, we get,

$$V_c(s) = \frac{\frac{1}{R_1 C_0} + \frac{2}{R_2 C_0}}{\frac{1}{R_1 C_0} + \frac{1}{R_2 C_0}} \left(\frac{1}{s} - \frac{1}{s} + \frac{1}{R_1 C_0} + \frac{1}{R_2 C_0} \right), \quad \Re(s) > 0$$
(2.22)

On taking the inverse Laplace Transform we get,

$$v_c(t) = \frac{2R_1 + R_2}{R_1 + R_2} \left(u(t) - e^{-\left(\frac{1}{R_1} + \frac{1}{R_2}\right)\frac{1}{C_0}} u(t) \right)$$

$$= \frac{2R_1 + R_2}{R_1 + R_2} \left(1 - e^{-\left(\frac{1}{R_1} + \frac{1}{R_2}\right)\frac{1}{C_0}} \right) u(t) \quad (2.24)$$

Substitute the values $R_1 = 1 \Omega$, $R_2 = 2 \Omega$ and $C_0 = 1 \mu F$

$$v_c(t) = \frac{4}{3} \left(1 - e^{-\frac{3}{2} \times 10^6 t} \right)$$
 (2.25)

The code for plotting the graph can be obtained by using the following commands

\$ wget https://raw.githubusercontent.com/ HARI-donk-EY/sig_pros/main/circuit/ codes/2_7.py

Run the code using.

We get the Fig. 2.7.

Fig. 2.7. Plot of $v_c(t)$ before flipping the switch

2.8 Verify the results using ngspice.

Solution:

The code for plotting the graph can be obtained by using the following commands

- \$ wget https://raw.githubusercontent.com/ HARI-donk-EY/sig_pros/main/circuit/ codes/2_8.py
- \$ wget https://raw.githubusercontent.com/ HARI-donk-EY/sig_pros/main/circuit/ codes/2_8.cir

Run the code using.

We get the Fig. 2.8.

Fig. 2.8. Plot of $v_c(t)$ before flipping the switch, comparing it along side data obtained from ngspice

2.9 Obtain Fig. 2.6 using equivalent differential equation.

Solution:

Using Kirchoff's Junction Law,

$$\frac{v_c(t) - v_1(t)}{R_1} + \frac{v_c(t) - v_2(t)}{R_2} + \frac{\mathrm{d}q}{\mathrm{d}t} = 0 \quad (2.26)$$

where q(t) is the charge on the capacitor On taking the Laplace transform on both sides of this equation

$$\frac{V_c(s) - V_1(s)}{R_1} + \frac{V_c(s) - V_2(s)}{R_2} + (sQ(s) - q(0^-)) = 0$$
(2.27)

But $q(0^{-}) = 0$ and

$$q(t) = C_0 v_c(t) (2.28)$$

$$\implies Q(s) = C_0 V_c(s)$$
 (2.29)

Thus

$$\frac{V_c(s) - V_1(s)}{R_1} + \frac{V_c(s) - V_2(s)}{R_2} + sC_0V_c(s) = 0$$

 $\implies \frac{V_c(s) - V_1(s)}{R_1} + \frac{V_c(s) - V_2(s)}{R_2} + \frac{V_c(s) - 0}{\frac{1}{sC_0}} = 0$

which is the same equation as the one we obtained from Fig. 2.6

3. Initial Conditions

3.1 Find q_2 in Fig. 2.2

Solution:

After a long time, when steady state is achieved, a capacitor behaves like an open circuit, i.e., current passing through it is zero

Fig. 3.1. Circuit diagram at steady state after flipping the switch

By Kirchoff's junction law, we get

$$\frac{V-0}{1} + \frac{V-2}{2} = 0 \tag{3.1}$$

$$\implies V = \frac{2}{3} V \tag{3.2}$$

$$\implies q_2 = CV = \frac{2}{3} \,\mu\text{C} \tag{3.3}$$

3.2 Draw the equivalent *s*-domain resistive circuit when S is switched to position Q. Use variables R_1, R_2, C_0 for the passive elements. Use latex-tikz

Solution:

Fig. 3.2. Circuit diagram in s-domain after flipping the switch

The battery $\frac{4}{3s}$ corresponds to the intial potential difference of $\frac{4}{3}$ V across the capacitor

just before switching it to Q

3.3 Find $V_c(s)$

Solution:

By Kirchoff's junction law, we get

$$\frac{V_c - 0}{R_1} + \frac{V_c - V_2}{R_2} + \frac{V_c - \frac{4}{3s}}{\frac{1}{sC_0}} = 0$$
 (3.4)

$$\Longrightarrow V_c \left(\frac{1}{R_1} + \frac{1}{R_2} + sC_0 \right) = \frac{V_2}{R_2} + \frac{4}{3}C_0 \quad (3.5)$$

$$\implies V_c(s) = \frac{\frac{2}{sR_2} + \frac{4}{3}C_0}{\frac{1}{R_1} + \frac{1}{R_2} + sC_0}$$
 (3.6)

$$=\frac{\frac{2}{R_2C_0} + \frac{4}{3}s}{s\left(s + \frac{1}{R_1C_0} + \frac{1}{R_2C_0}\right)}$$
(3.7)

3.4 Find $v_c(t)$. Plot using Python

Solution: On performing partial fraction decomposition

$$V_c(s) = \frac{4}{3} \left(\frac{1}{s + \frac{1}{R_1 C_0} + \frac{1}{R_2 C_0}} \right) + \frac{\frac{2}{R_2 C_0}}{\frac{1}{R_1 C_0} + \frac{1}{R_2 C_0}} \left(\frac{1}{s} - \frac{1}{s + \frac{1}{R_1 C_0} + \frac{1}{R_2 C_0}} \right)$$
(3.8)

for $\Re(s) > 0$

On taking the inverse Laplace transform, we get

$$v_c(t) = \frac{4}{3}e^{-\left(\frac{1}{R_1} + \frac{1}{R_2}\right)\frac{t}{C_0}}u(t) + \frac{2R_1}{R_1 + R_2}\left(u(t) - e^{-\left(\frac{1}{R_1} + \frac{1}{R_2}\right)\frac{t}{C_0}}u(t)\right)$$
(3.9)

Substitute the values $R_1 = 1 \Omega$, $R_2 = 2 \Omega$, $C_0 = 1 \mu F$

$$v_c(t) = \frac{4}{3}e^{-\frac{3}{2}\times10^6t}u(t) + \frac{2}{3}\left(1 - e^{-\frac{3}{2}\times10^6t}\right)u(t)$$
(3.10)

$$= \frac{2}{3} \left(1 + e^{-\frac{3}{2} \times 10^6 t} \right) u(t) V$$
 (3.11)

The code for plotting the graph can be obtained by using the following commands

\$ wget https://raw.githubusercontent.com/ HARI-donk-EY/sig_pros/main/circuit/ codes/3 4.py Run the code using.

\$ python3 3_4.py

We get the Fig. 3.4.

Fig. 3.4. Plot of $v_c(t)$ after flipping the switch

3.5 Verify the results using ngspice.

Solution:

The code for plotting the graph can be obtained by using the following commands

- \$ wget https://raw.githubusercontent.com/ HARI-donk-EY/sig_pros/main/circuit/ codes/3_5.py
- \$ wget https://raw.githubusercontent.com/ HARI-donk-EY/sig_pros/main/circuit/ codes/3_5.cir

Run the code using.

We get the Fig. 3.5.

Fig. 3.5. Plot of $v_c(t)$ after flipping the switch, comparing it along side data obtained from ngspice

3.6 Find $v_c(0^-)$, $v_c(0^+)$ and $v_c(\infty)$

Solution:

At $t = 0^-$, the switch still hasn't been switched to Q and the circuit is in steady state

$$v_c(0^-) = \frac{4}{3} V$$
 (3.12)

For $t \ge 0$, we can use the above formula

$$v_c(0^+) = \lim_{t \to 0^+} v_c(t) = \frac{4}{3} V$$
 (3.13)

$$v_c(\infty) = \lim_{t \to \infty} v_c(t) = \frac{2}{3} V$$
 (3.14)

3.7 Obtain Fig. 3.2 using the equivalent differential equation

Solution:

Using Kirchoff's junction law

$$\frac{v_c(t) - 0}{R_1} + \frac{v_c(t) - v_2(t)}{R_2} + \frac{\mathrm{d}q}{\mathrm{d}t} = 0$$
 (3.15)

where q(t) is the charge on the capacitor On taking the Laplace transform on both sides of this equation

$$\frac{V_c(s) - 0}{R_1} + \frac{V_c(s) - V_2(s)}{R_2} + (sQ(s) - q(0^-)) = 0$$
(3.16)

But $q(0^-) = \frac{4}{3}C_0$ and

$$q(t) = C_0 v_c(t) (3.17)$$

$$\implies Q(s) = C_0 V_c(s)$$
 (3.18)

Thus

$$\frac{V_c(s) - 0}{R_1} + \frac{V_c(s) - V_2(s)}{R_2} + \left(sC_0V_c(s) - \frac{4}{3}C_0\right) = 0$$
(3.19)

$$\implies \frac{V_c(s) - 0}{R_1} + \frac{V_c(s) - V_2(s)}{R_2} + \frac{V_c(s) - \frac{4}{3s}}{\frac{1}{sC_0}} = 0$$
(3.20)

which is the same equation as the one we obtained from Fig. 3.2

4. BILINEAR TRANSFORM

4.1 In Fig. 2.2, consider the case when S is switched to Q right in the beginning. Formulate the differential equation

Solution:

The differential equation is the same as before

$$\frac{v_c(t) - 0}{R_1} + \frac{v_c(t) - v_2(t)}{R_2} + \frac{\mathrm{d}q}{\mathrm{d}t} = 0 \quad (4.1)$$

i.e.,
$$\frac{v_c(t)}{R_1} + \frac{v_c(t) - v_2(t)}{R_2} + C_0 \frac{dv_c}{dt} = 0$$
 (4.2)

but with a different initial condition

$$q(0^{-}) = q(0) = 0 (4.3)$$

4.2 Find H(s) considering the outure voltage at the capacitor

Solution:

On taking the Laplace transform on both sides of this equation

$$\frac{V_c(s)}{R_1} + \frac{V_c(s) - V_2(s)}{R_2} + sQ(s) - 0 = 0$$

(4.4

$$\Longrightarrow V_c(s)\left(\frac{1}{R_1} + \frac{1}{R_2}\right) + sC_0V_c(s) = \frac{V_2(s)}{R_2}$$
(4.5)

$$\Longrightarrow \frac{V_c(s)}{V_2(s)} = \frac{\frac{1}{R_2}}{\frac{1}{R_1} + \frac{1}{R_2} + sC_0}$$
 (4.6)

The transfer function is thus

$$H(s) = \frac{\frac{1}{R_2 C_0}}{s + \frac{1}{R_1 C_0} + \frac{1}{R_2 C_0}}$$
(4.7)

On substituting the values, we get

$$H(s) = \frac{5 \times 10^5}{s + 1.5 \times 10^6} \tag{4.8}$$

4.3 Plot H(s). What kind of filter is it? **Solution:**

Download the following Python code that plots Fig. 4.3

\$ wget https://raw.githubusercontent.com/ HARI-donk-EY/sig_pros/main/circuit/ codes/4 3.py Run the codes by executing

Fig. 4.3. Plot of H(s)

Consider the frequency-domain transfer function by putting $s = j\omega$

$$H(j\omega) = \frac{5 \times 10^5}{j\omega + 1.5 \times 10^6}$$
 (4.9)

$$\implies |H(j\omega)| = \frac{5 \times 10^5}{\sqrt{\omega^2 + 2.25 \times 10^{12}}}$$
 (4.10)

As ω increases, $|H(j\omega)|$ decreases.

In other words, the amplitude of highfrequency signals gets diminished and they get filtered out.

Therefore, this is a low-pass filter.

4.4 Using trapezoidal rule for integration, formulate the difference equation by considering

$$y(n) = y(t)|_{t=n}$$
 (4.11)

Solution:

$$\frac{v_c(t)}{R_1} + \frac{v_c(t) - v_2(t)}{R_2} + C_0 \frac{dv_c}{dt} = 0 \quad (4.12)$$

$$\implies C_0 \frac{dv_c}{dt} = \frac{2u(t) - v_c(t)}{R_2} - \frac{v_c(t)}{R_1} \qquad (4.13)$$

$$\implies v_c(t)|_{t=n}^{n+1} = \int_n^{n+1} \left(\frac{2u(t) - v_c(t)}{R_2 C_0} - \frac{v_c(t)}{R_1 C_0}\right) dt$$

$$(4.14)$$

By the trapezoidal rule of integration

$$\int_{a}^{b} f(t)dt \approx \frac{b-a}{2}(f(a) + f(b))$$
 (4.15)

Consider $y(t) = v_c(t)$

$$y(n+1) - y(n) = \frac{1}{R_2 C_0} (u(n) + u(n+1))$$
$$-\frac{1}{2} (y(n+1) + y(n)) \left(\frac{1}{R_1 C_0} + \frac{1}{R_2 C_0} \right)$$
(4.16)

Thus, the difference equation is

$$y(n+1)\left(1 + \frac{1}{2R_1C_0} + \frac{1}{2R_2C_0}\right)$$

$$= y(n)\left(1 - \frac{1}{2R_1C_0} - \frac{1}{2R_2C_0}\right)$$

$$+ \frac{1}{R_2C_0}\left(u(n) + u(n+1)\right) \quad (4.17)$$

4.5 Find H(z)

Solution:

Let
$$\mathcal{Z}\{y(n)\} = Y(z)$$

On taking the Z-transform on both sides of the difference equation

$$zY(z)\left(1 + \frac{1}{2R_1C_0} + \frac{1}{2R_2C_0}\right)$$

$$= Y(z)\left(1 - \frac{1}{2R_1C_0} - \frac{1}{2R_2C_0}\right)$$

$$+ \frac{1}{R_2C_0}\left(\frac{1}{1 - z^{-1}} + \frac{z}{1 - z^{-1}}\right) \quad (4.18)$$

$$Y(z)\left(z + \frac{z}{2R_1C_0} + \frac{z}{2R_2C_0} - 1 + \frac{1}{2R_1C_0} + \frac{1}{2R_2C_0}\right)$$
$$= \frac{1}{R_2C_0} \frac{1+z}{1-z^{-1}} \quad (4.19)$$

Also

$$v_2(t) = 2 \qquad \forall t \ge 0 \qquad (4.20)$$

$$\implies x(n) = 2u(n) \tag{4.21}$$

$$\implies X(z) = \frac{2}{1 - z^{-1}} \qquad |z| > 1 \qquad (4.22)$$

Thus, the transfer function in z-domain is

$$H(z) = \frac{Y(z)}{X(z)}$$

$$= \frac{\frac{1+z}{2R_2C_0}}{z + \frac{z}{2R_1C_0} + \frac{z}{2R_2C_0} - 1 + \frac{1}{2R_1C_0} + \frac{1}{2R_2C_0}}{(4.24)}$$

$$= \frac{\frac{1+z^{-1}}{2R_2C_0}}{1 + \frac{1}{2R_1C_0} + \frac{1}{2R_2C_0} - z^{-1} + \frac{z^{-1}}{2R_1C_0} + \frac{z^{-1}}{2R_2C_0}}$$

$$(4.25)$$

On substituting the values

$$H(z) = \frac{2.5 \times 10^5 (1 + z^{-1})}{7.5 \times 10^5 + 1 + (7.5 \times 10^5 - 1)z^{-1}}$$
(4.26)

with the ROC being

$$|z| > \max\left(1, \left| \frac{7.5 \times 10^5 - 1}{7.5 \times 10^5 + 1} \right| \right)$$
 (4.27)

$$\implies |z| > 1 \tag{4.28}$$

4.6 How can you obtain H(z) from H(s)?

Solution:

The Z-transform can be obtained from the Laplace transform by the substitution

$$s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} \tag{4.29}$$

where T is the step size of the trapezoidal rule (1 in our case)

This is known as the bilinear transform Thus

$$H(z) = \frac{\frac{1}{R_2C_0}}{2\frac{1-z^{-1}}{1+z^{-1}} + \frac{1}{R_1C_0} + \frac{1}{R_2C_0}}$$

$$= \frac{\frac{\frac{1+z^{-1}}{2R_2C_0}}{1-z^{-1} + \left(\frac{1}{2R_1C_0} + \frac{1}{2R_2C_0}\right)(1+z^{-1})}$$

$$= \frac{\frac{\frac{1+z^{-1}}{2R_2C_0}}{1+\frac{1}{2R_1C_0} + \frac{1}{2R_2C_0} - z^{-1} + \frac{z^{-1}}{2R_1C_0} + \frac{z^{-1}}{2R_2C_0}}$$

$$= \frac{2.5 \times 10^5(1+z^{-1})}{7.5 \times 10^5 + 1 + (7.5 \times 10^5 - 1)z^{-1}}$$

$$(4.33)$$

which is the same as what we obtained earlier In order to find h(n) we represent H(z) as

$$H(z) = \frac{c(1+z^{-1})}{a+bz^{-1}}$$
 (4.34)

$$= \frac{c}{b} + \frac{c(1 - \frac{a}{b})}{a + bz^{-1}} \tag{4.35}$$

Taking the the inverse z transform

$$h(n) = \frac{c}{b}\delta(n) + \frac{c}{a}\left(1 - \frac{a}{b}\right)\left(\frac{a}{b}\right)^n u(n)$$
 (4.36)