SA - DRVs

What is expected value?	The theoretical mean of a random variable.
	Hence it's not exactly based on sample data. The more tests you perform, the closer the mean of all your outcome will become to the expected value.
What is a probability mass function?	A function giving exact values for discrete random variables.
How is the expected value calculated under DRVs?	$E(X) = \sum_{\forall x} (x \cdot P(X = x))$
	 Multiply each value by its probability of occurring.
	$E[g(X)] = \sum_{\forall x} (g(x) \cdot P(X = g(x)))$
	This is why $E(X^2)$ or $E(X^{-1})$ works
What is the expectation of aX ± b?	E(aX + b) = aE(X) ± b
What is the expectation of X ± Y? When is this the case?	$E(X \pm Y) = E(X) \pm E(Y)$
	This is as long as they're independent.
What is the formula for variance (σ^2)?	$\sigma^2 = E(X^2) - (E(X))^2$
	"The mean of the squares minus the square of the means."
What is the variance of aX+b?	a²Var(X)
	Adding a constant doesn't affect the variability of X.
What is the variance of X ± Y? When is this the case?	Var(X) + Var(Y)
	This is as long as they're independent.

What is the equation for the expectation of a discrete uniform distribution?	$E(T) = \frac{n+1}{2}$
What is the equation for the variance of a discrete uniform distribution?	$Var(T) = \frac{n^2 - 1}{12}$
Prove the equation for the expectation of discrete uniform distribution	$E(T) = \left(1 \cdot \frac{1}{n}\right) + \left(2 \cdot \frac{1}{n}\right) + \dots + \left(n \cdot \frac{1}{n}\right)$ $= \frac{1}{n}(1 + 2 + \dots + n)$ $= \frac{1}{n}\sum_{k=1}^{n} k = \frac{1}{n} \cdot \frac{n(n+1)}{2}$ $= \frac{n+1}{2}$
Prove the equation for the variance of discrete uniform distribution	$Var(T) = E(T^{2}) - (E(T))^{2}$ $= \frac{1}{n} \cdot \sum_{k=1}^{n} k^{2} - (\frac{1}{n} \cdot \sum_{k=1}^{n} k)^{2}$ $= \frac{1}{n} \cdot \frac{n(n+1)(2n+1)}{6} - (\frac{1}{2} \cdot \frac{n(n+1)}{2})^{2}$ $= \frac{(n+1)(2n+1)}{6} - (\frac{n+1}{2})^{2}$ $= (n+1) \left[\frac{2n+1}{6} - \frac{n+1}{4} \right]$ $= (n+1) \left[\frac{n-1}{12} \right] = \frac{n^{2}-1}{12}$