Машинное обучение Лекция 6. Линейные алгоритмы классификации

https://yandexdataschool.ru/edu-process/courses/machine-learning

Содержание лекции

- Общая формула линейного классификатора
- Метод стохастического градиента
- Частные случаи
- Обоснование метода СГ
- Выступ объекта для лин. классификатора
- ROC и AUC

Классификация линейной функцией

- Обучающая выборка: $X^\ell = (x_i, y_i)_{i=1}^\ell$, $x_i \in \mathbb{R}^n$, $y_i \in \{-1, +1\}$
 - Модель классификации линейная:

$$a(x, w) = \operatorname{sign}\langle x, w \rangle$$

Функция потерь — бинарная или её аппроксимация:

$$\mathscr{L}(a,y) = [\langle x_i, w \rangle y_i < 0] \leqslant \mathscr{L}(\langle x_i, w \rangle y_i)$$

Метод обучения — минимизация эмпирического риска:

$$Q(w) = \sum_{i=1}^{\ell} \left[a(x_i, w) y_i < 0 \right] \leqslant \sum_{i=1}^{\ell} \mathscr{L}\left(\langle x_i, w \rangle y_i\right) \to \min_{w}$$

Линейный классификатор – математическая модель нейрона

Линейная модель нейрона МакКаллока-Питтса (1943)

$$a(x, w) = \sigma(\langle w, x \rangle) = \sigma\left(\sum_{j=1}^{n} w_j f_j(x) - w_0\right)$$

Градиентный метод численной минимизации

Минимизация эмпирического риска:

$$Q(w) = \sum_{i=1}^{\ell} \mathscr{L}(g(w, x_i), y_i) = \sum_{i=1}^{\ell} \mathscr{L}_i(w) \to \min_{w}.$$

Численная минимизация методом градиентного спуска:

 $w^{(0)} :=$ начальное приближение;

$$w^{(t+1)} := w^{(t)} - h \cdot \nabla Q(w^{(t)}), \qquad \nabla Q(w) = \left(\frac{\partial Q(w)}{\partial w_j}\right)_{j=0}^n,$$

где *h* — *градиентный шаг*, называемый также *темпом обучения*.

$$w^{(t+1)} := w^{(t)} - h \sum_{i=1}^{\ell} \nabla \mathscr{L}_i(w^{(t)}).$$

Идея ускорения сходимости:

брать (x_i, y_i) по одному и сразу обновлять вектор весов.

Метод стохастического градиента

Вход: выборка X^{ℓ} , темп обучения h, темп забывания λ

 \mathbf{B} ыход: вектор весов w

- 1: инициализировать веса w_{j} , j = 0, ..., n;
- 2: инициализировать оценку функционала: $ar{Q} := rac{1}{\ell} \sum_{i=1}^{\ell} \mathscr{L}_i(w)$;
- 3: повторять
- 4: выбрать объект x_i из X^ℓ случайным образом;
- 5: вычислить потерю: $\varepsilon_i := \mathscr{L}_i(w)$;
- 6: сделать градиентный шаг: $w := w h \nabla \mathcal{L}_i(w)$;
- 7: оценить функционал: $\bar{Q}:=(1-\lambda)\bar{Q}+\lambda\varepsilon_i$;
- 8: пока значение \bar{Q} и/или веса w не сойдутся;

Пересчет функционала

Проблема: после каждого шаг w по одному объекту x_i , не хотелось бы оценивать Q по всей выборке x_1, \ldots, x_ℓ .

Решение: использовать рекуррентную формулу.

Среднее арифметическое $\bar{Q}_m = \frac{1}{m} \sum_{i=1}^m \varepsilon_i$:

$$\bar{Q}_m = (1 - \frac{1}{m})\bar{Q}_{m-1} + \frac{1}{m}\varepsilon_m.$$

Экспоненциальное скользящее среднее

$$\bar{Q}_m = \lambda \varepsilon_m + \lambda (1 - \lambda) \varepsilon_{m-1} + \lambda (1 - \lambda)^2 \varepsilon_{m-2} + \lambda (1 - \lambda)^3 \varepsilon_{m-3} + \dots$$

$$\bar{Q}_m := (1 - \lambda)\bar{Q}_{m-1} + \lambda \varepsilon_m.$$

Чем больше λ , тем быстрее забывается предыстория ряда.

Параметр λ называется $\mathit{темпом}$ забывания.

Персептрон Розенблатта (1957)

- При синхронном возбуждении двух связанных нервных клеток синаптическая связь между ними усиливается.
- Математически (все х_j бинарные):
 - \bullet $a(x_i, w) = y_i \implies w$ менять не нужно;
 - $\bullet \ a(x_i,w)=0, \ y_i=1 \implies w_j:=w_j+h\cdot x_j$
 - $\bullet \ a(x_i,w)=1,\ y_i=0 \implies w_j:=w_j-h\cdot x_j$
- Объединяем:

$$w := w - h(a(x_i, w) - y_i)x_i$$

Дельта-правило ADALINE

Задача регрессии: $x_i \in \mathbb{R}^{n+1}$, $y_i \in \mathbb{R}$

Адаптивный линейный элемент ADALINE [Видроу, Хофф 1960]:

$$a(x, w) = \langle w, x \rangle, \qquad \mathscr{L}_i(w) = (\langle w, x_i \rangle - y_i)^2.$$

Градиентный шаг SG — дельта-правило (delta-rule):

$$w := w - h(\underbrace{\langle w, x_i \rangle - y_i}_{\Delta_i})x_i,$$

 Δ_i — ошибка алгоритма a(x,w) на объекте x_i .

Формально совпадает с правилом персептрона Розенблатта!

Правило Хэбба

Задача классификации: $x_i \in \mathbb{R}^{n+1}$, $y_i \in \{-1, +1\}$,

$$a(x, w) = \operatorname{sign}\langle w, x \rangle, \qquad \mathscr{L}_i(w) = (-\langle w, x_i \rangle y_i)_+.$$

Градиентный шаг SG — правило Хэбба [1949]:

если
$$\langle w, x_i \rangle y_i < 0$$
 то $w := w + h x_i y_i$,

То же самое для случая $y_i \in \{0,1\}$,

$$a(x, w) = [\langle w, x \rangle > 0], \qquad \mathscr{L}_i(w) = (a(x_i, w) - y_i) \langle w, x_i \rangle,$$

Градиентный шаг SG — персептрон Розенблатта [1957]:

$$w:=w-h(a(x_i,w)-y_i)x_i.$$

Правило Хэбба

Теорема (Новиков, 1962)

Пусть выборка X^ℓ линейно разделима:

$$\exists \tilde{w}, \exists \delta > 0: \langle \tilde{w}, x_i \rangle y_i > \delta$$
 для всех $i = 1, \ldots, \ell$.

Тогда Алгоритм SG с правилом Хэбба находит вектор весов w,

- разделяющий обучающую выборку без ошибок;
- при любом начальном положении $w^{(0)}$;
- ullet при любом темпе обучения h > 0;
- независимо от порядка предъявления объектов x_i;
- за конечное число исправлений вектора w;
- ullet если $w^{(0)}=0$, то число исправлений $t_{\mathsf{max}}\leqslant rac{1}{\delta^2}\max \|x_i\|^2$.

Доказательство

Рассмотрим $\cos(\widehat{\widetilde{w},w^t}) = \frac{\langle \widetilde{w},w^t \rangle}{\|w^t\|}$ после t-го исправления w^t , при $\|\widetilde{w}\| = 1$.

При t-м исправлении $\langle x_i, w^{t-1} \rangle y_i < 0$. В силу линейной разделимости

$$\langle \tilde{w}, w^t \rangle = \langle \tilde{w}, w^{t-1} \rangle + h \langle \tilde{w}, x_i \rangle y_i > \langle \tilde{w}, w^{t-1} \rangle + h \delta > \langle \tilde{w}, w^0 \rangle + th \delta.$$

В силу ограниченности выборки, $||x_i|| < D$:

$$\|w^{t}\|^{2} = \|w^{t-1}\|^{2} + h^{2}\|x_{i}\|^{2} + 2h\langle w^{t-1}, x_{i}\rangle y_{i} < \|w^{t-1}\|^{2} + h^{2}D^{2} < \|w^{0}\|^{2} + th^{2}D^{2}.$$

Подставим эти соотношения в выражение для косинуса:

$$\cos(\widehat{ ilde{w}}, \widehat{w^t}) > rac{\langle ilde{w}, w^0
angle + th\delta}{\sqrt{\|w^0\|^2 + th^2D^2}} o \infty$$
 при $t o \infty$.

 $\cos \leq 1$, значит при некотором t не найдётся ни одного $x_i \in X^\ell$ такого, что $\langle w^t, x_i \rangle y_i < 0$, то есть выборка окажется поделенной безошибочно.

Если
$$w^0=0$$
, то из условия $\cos=rac{\sqrt{t}\delta}{D}\leqslant 1$ находим $t_{\sf max}=\left(rac{D}{\delta}
ight)^2$.

Понятие выступа для линейного классификатора

- Линейный классификатор:
 a(x, w) = sign (x, w)
- (x, w) = 0 разделяющая гиперплоскость,
- M_i(w) = (w, x_i) y_i отступ объекта х_i

Часто используемые непрерывные функции потерь

$$V(M) = (1 - M)_{+}$$
 $H(M) = (-M)_{+}$
 $L(M) = \log_{2}(1 + e^{-M})$
 $Q(M) = (1 - M)^{2}$
 $S(M) = 2(1 + e^{M})^{-1}$
 $E(M) = e^{-M}$
 $[M < 0]$

- кусочно-линейная (SVM);
- кусочно-линейная (Hebb's rule);
- логарифмическая (LR);
- квадратичная (FLD);
- сигмоидная (ANN);
- экспоненциальная (AdaBoost);
- пороговая функция потерь.

Начальное значение w

- $\mathbf{0} \ \, w_j := 0$ для всех $j = 0, \ldots, n$;
- небольшие случайные значения:
 1 1).

$$w_j := \operatorname{random}\left(-\frac{1}{2n}, \frac{1}{2n}\right);$$

 $w_j := rac{\langle y, f_j
angle}{\langle f_i, f_i
angle}$, $f_j = \left(f_j(x_i)\right)_{i=1}^\ell$ — вектор значений признака.

Упражнение: доказать, что оценка w оптимальна, если

- 1) функция потерь квадратична и
- 2) признаки некоррелированы, $\langle f_j, f_k \rangle = 0$, $j \neq k$.
- $w_j := \ln rac{\sum_i [y_i = +1] f_j(x_i)}{\sum_i [y_i = -1] f_j(x_i)} -$ для классификации, $Y = \{-1, +1\}$
- обучение по небольшой случайной подвыборке объектов;
- мультистарт: многократные запуски из разных случайных начальных приближений и выбор лучшего решения.

Порядок предъявления х

Возможны варианты:

- перетасовка объектов (shuffling): попеременно брать объекты из разных классов;
- \odot вообще не брать «хорошие» объекты, у которых $M_i > \mu_+$ (при этом немного ускоряется сходимость);
- вообще не брать объекты-«выбросы», у которых $M_i < \mu_-$ (при этом может улучшиться качество классификации);

Параметры μ_+ , μ_- придётся подбирать.

Выбор шага h

💵 сходимость гарантируется (для выпуклых функций) при

$$h_t \to 0, \quad \sum_{t=1}^{\infty} h_t = \infty, \quad \sum_{t=1}^{\infty} h_t^2 < \infty,$$

в частности можно положить $h_t=1/t$;

метод скорейшего градиентного спуска:

$$\mathscr{L}_i(w-h\nabla\mathscr{L}_i(w))\to \min_h$$

позволяет найти *адаптивный шаг* h^* ;

Упражнение: доказать, что при квадратичной функции потерь $h^* = ||x_i||^{-2}$.

- пробные случайные шаги
 - для «выбивания» из локальных минимумов;

Достоинства и недостатки

Достоинства:

- легко реализуется;
- \bigcirc легко обобщается на любые g(x,w), $\mathscr{L}(a,y)$;
- возможно динамическое (потоковое) обучение;
- ullet на сверхбольших выборках можно получить неплохое решение, даже не обработав все (x_i, y_i) ;
- 💿 всё чаще применяется для Big Data

Недостатки:

- возможна расходимость или медленная сходимость;
- застревание в локальных минимумах;
- подбор комплекса эвристик является искусством;
- проблема переобучения;

Проблема переобучения

Возможные причины переобучения:

- слишком мало объектов; слишком много признаков;
- ② линейная зависимость (мультиколлинеарность) признаков: пусть построен классификатор: $a(x,w) = \text{sign}\langle w,x \rangle$; мультиколлинеарность: $\exists u \in \mathbb{R}^{n+1}$: $\forall x \ \langle u,x \rangle \equiv 0$; тогда $\forall \gamma \in \mathbb{R}$ $a(x,w) = \text{sign}\langle w + \gamma u,x \rangle$

Симптоматика:

- **1** слишком большие веса $|w_j|$ разных знаков;
- \bigcirc неустойчивость a(x, w);
- $Q(X^{\ell}) \ll Q(X^{k});$

Терапия:

- регуляризация (сокращение весов, weight decay);
- ранний останов (early stopping);

Регуляризация

Штраф за увеличение нормы вектора весов:

$$\widetilde{\mathscr{L}_i}(w) = \mathscr{L}_i(w) + \frac{\tau}{2} \|w\|^2 = \mathscr{L}_i(w) + \frac{\tau}{2} \sum_{j=1}^n w_j^2 \to \min_w.$$

Градиент:

$$\nabla \widetilde{\mathscr{L}}_i(w) = \nabla \mathscr{L}_i(w) + \tau w.$$

Модификация градиентного шага:

$$w := w(1 - h\tau) - h\nabla \mathcal{L}_i(w).$$

Разные штрафы за ошибки

Задача классификации на два класса, $y_i \in \{-1, +1\}$. Модель классификации: $a(x; w, w_0) = \text{sign}(g(x, w) - w_0)$. Чем меньше w_0 , тем больше x_i : $a(x_i) = +1$.

Пусть λ_y — штраф за ошибку на объекте класса y. Функция потерь теперь зависит от штрафов:

$$\mathscr{L}(a,y) = \frac{\lambda_{y_i}}{a(x_i; w, w_0)} \neq y_i = \frac{\lambda_{y_i}}{a(x_i; w, w_0)} = \frac{\lambda_{y_i}}{a(x_i; w, w_0)$$

Проблема

На практике штрафы $\{\lambda_y\}$ могут пересматриваться

- Нужен удобный способ выбора w_0 в зависимости от $\{\lambda_y\}$, не требующий построения w заново.
- Нужна характеристика качества модели g(x, w), не зависящая от штрафов $\{\lambda_y\}$ и численности классов.

ROC-кривая

- ROC «receiver operating characteristic».
 - Каждая точка кривой соответствует некоторому $a(x; w, w_0)$.
 - по оси X: доля *ошибочных положительных классификаций* (FPR false positive rate):

$$\mathsf{FPR}(a, X^{\ell}) = \frac{\sum_{i=1}^{\ell} [y_i = -1][a(x_i; w, w_0) = +1]}{\sum_{i=1}^{\ell} [y_i = -1]};$$

- 1 FPR(a) называется специфичностью алгоритма a.
- по оси Y: доля правильных положительных классификаций (TPR true positive rate):

$$\mathsf{TPR}(a, X^{\ell}) = \frac{\sum_{i=1}^{\ell} [y_i = +1][a(x_i; w, w_0) = +1]}{\sum_{i=1}^{\ell} [y_i = +1]};$$

 $\mathsf{TPR}(a)$ называется также *чувствительностью* алгоритма a.

Пример

Алгоритм построения ROCкривой

Вход: выборка X^{ℓ} ; дискриминантная функция g(x, w); Выход: $\{(\mathsf{FPR}_i, \mathsf{TPR}_i)\}_{i=0}^{\ell}$, AUC — площадь под ROC-кривой.

```
1: \ell_y := \sum_{i=1}^{\ell} [y_i = y], для всех y \in Y;
```

- 2: упорядочить выборку X^ℓ по убыванию значений $g(x_i, w)$;
- 3: поставить первую точку в начало координат: $(\mathsf{FPR}_0, \mathsf{TPR}_0) := (0,0); \; \mathsf{AUC} := 0;$
- 4: для $i := 1, \ldots, \ell$
- 5: если $y_i = -1$ то сместиться на один шаг вправо:
- 6: $FPR_i := FPR_{i-1} + \frac{1}{\ell_-}; TPR_i := TPR_{i-1};$
 - $AUC := AUC + \frac{1}{\ell} TPR_i;$
- 7: иначе сместиться на один шаг вверх:
- 8: $FPR_i := FPR_{i-1}; TPR_i := TPR_{i-1} + \frac{1}{\ell_+};$

Пример

TPR

#	C	Score
1	Р	0,9
2	Р	0,8
3	N	0,7
4	Р	0,6
5	Р	0,55
6	Р	0,54
7	N	0,53
8	N	0,52
9	Р	0,51
10	N	0,505
11	Р	0,4
12	N	0,39
13	Р	0,38
14	N	0,37
15	N	0,36
16	N	0,35
17	Р	0,34
18	N	0,33
19	Р	0,3
20	N	0,1

Пример

TPR

#	C	Score
1	Р	0,9
2	Р	0,8
3	N	0,7
4	Р	0,6
5	P	0,55
6	Р	0,54
7	N	0,53
8	N	0,52
9	Р	0,51
10	N	0,505
11	Р	0,4
12	N	0,39
13	P	0,38
14	N	0,37
15	N	0,36
16	N	0,35
17	Р	0,34
18	N	0,33
19	Р	0,3
20	N	0,1

Еще примеры

28

Градиентная максимизация AUC

Модель: $a(x_i, w, w_0) = \text{sign}(g(x_i, w) - w_0).$

AUC — это доля правильно упорядоченных пар (x_i, x_j) :

$$AUC(w) = \frac{1}{\ell_{-}} \sum_{i=1}^{\ell} [y_{i} = -1] TPR_{i} =$$

$$= \frac{1}{\ell_{-}\ell_{+}} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} [y_{i} < y_{j}] [g(x_{i}, w) < g(x_{j}, w)] \rightarrow \max_{w}$$

Явная максимизация аппроксимированного AUC:

$$\mathsf{AUC}(w) \leqslant Q(w) = \sum_{i,j \colon y_i < y_j} \mathscr{L}(\underbrace{g(x_j, w) - g(x_i, w)}_{M_{ij}(w)}) \to \min_{w},$$

где $\mathcal{L}(M)$ — гладкая убывающая функция отступа, $M_{ij}(w)$ — новое понятие отступа для пар объектов.

Алгоритм стохастического градиента для AUC

Возьмём для простоты линейный классификатор:

$$g(x, w) = \langle x, w \rangle, \qquad M_{ij}(w) = \langle x_j - x_i, w \rangle.$$

Вход: выборка X^{ℓ} , темп обучения h, темп забывания λ

 \mathbf{B} ыход: вектор весов w

- 1: инициализировать веса w_j , j = 0, ..., n;
- 2: инициализировать оценку: $\bar{Q} := \frac{1}{\ell_+\ell_-} \sum_{i,j: \ y_i < y_i} \mathscr{L}(M_{ij}(w));$
- 3: повторять
- 4: выбрать пару объектов (i,j): $y_i < y_j$, случайным образом;
- 5: вычислить потерю: $\varepsilon_{ij} := \mathscr{L}(M_{ij}(w));$
- 6: сделать градиентный шаг: $w := w h \mathcal{L}'(M_{ij}(w))(x_j x_i);$
- 7: оценить функционал: $\bar{Q}:=(1-\lambda)\bar{Q}+\lambda \varepsilon_{ij}$;
- 8: пока значение \bar{Q} и/или веса w не сойдутся;