Krylov subspace methods (Continued)

- Practical variants: restarting and truncating
- Symmetric case: The link with the Lanczos algorithm
- The Conjugate Gradient algorithm
- See Chapter 6 of text for details.

Restarting and Truncating

Difficulty: As m increases, storage and work per step increase fast.

First remedy: Restart. Fix m (dim. of subspace)

ALGORITHM: 1. Restarted GMRES (resp. Arnoldi)

- 1. (Re)-Start: Compute $r_0 = b Ax_0$, $v_1 = r_0/(\beta := \|r_0\|_2)$.
- 2. Arnoldi Process: generate \bar{H}_m and V_m .
- 3. Compute $y_m=H_m^{-1}eta e_1$ (FOM), or $y_m=argmin\|eta e_1-ar{H}_my\|_2$ (GMRES)
- 4. $x_m = x_0 + V_m y_m$
- 5. If $||r_m||_2 \le \epsilon ||r_0||_2$ stop else set $x_0 := x_m$ and go to 1.

-2 _____ Csci 8314 – April 5, 2014

Second remedy: Truncate the orthogonalization

The formula for v_{i+1} is replaced by

$$h_{j+1,j}v_{j+1}=Av_j-\sum_{i=j-k+1}^j h_{ij}v_i$$

- \blacktriangleright Each v_j is made orthogonal to the previous k v_i 's.
- $ightharpoonup x_m$ still computed as $x_m = x_0 + V_m H_m^{-1} eta e_1$.
- lt can be shown that this is an oblique projection process.
- ► IOM (Incomplete Orthogonalization Method) = replace orthogonalization in FOM, by the above truncated (or 'incomplete') orthogonalization.

Csci 8314 – April 5, 2014

The direct version of IOM [DIOM]:

ightharpoonup Write the LU decomposition of H_m as $H_m=L_m U_m$

$$egin{aligned} x_m = x_0 + ig V_m U_m^{-1} & ig L_m^{-1} eta e_1 \ ig \equiv x_0 + P_m z_m \end{aligned}$$

$$ightharpoonup p_m = u_{mm}^{-1}[v_m - \sum_{i=m-k+1}^{m-1} u_{im}p_i] \qquad z_m = \left[egin{array}{c} z_{m-1} \ \zeta_m \end{array}
ight]$$

15-4 ______ Csci 8314 – April 5, 2014

 \triangleright Can update x_m at each step:

$$x_m = x_{m-1} + \zeta_m p_m$$

Note: Several existing pairs of methods have a similar link: they are based on the LU, or other, factorizations of the $m{H}_m$ matrix

- ➤ CG-like formulation of IOM called DIOM [YS, 1982]
- ORTHORES(k) [Young & Jea '82] equivalent to DIOM(k)
- SYMMLQ [Paige and Saunders, '77] uses LQ factorization of H_m .
- \triangleright Can incorporate partial pivoting in LU factorization of H_m

Csci 8314 - April 5, 2014

We can write

ran write
$$\boldsymbol{H}_{m} = \begin{bmatrix} \alpha_{1} & \beta_{2} & & & \\ \beta_{2} & \alpha_{2} & \beta_{3} & & \\ & \beta_{3} & \alpha_{3} & \beta_{4} & & \\ & & \ddots & \ddots & \\ & & & \beta_{m} & \alpha_{m} \end{bmatrix}$$
 satisfy a 3-term recurrence [Lanczos Algorithm]:

The v_i 's satisfy a 3-term recurrence [Lanczos Algorithm]:

$$eta_{j+1}v_{j+1} = Av_j - lpha_jv_j - eta_jv_{j-1}$$

Simplified version of Arnoldi's algorithm for sym. systems.

Symmetric matrix + Arnoldi \rightarrow Symmetric Lanczos

The symmetric case: Observation

Observe: When *A* is real symmetric then in Arnoldi's method:

$$H_m = V_m^T A V_m$$

must be symmetric. Therefore

Theorem. When Arnoldi's algorithm is applied to a (real) symmetric matrix then the matrix H_m is symmetric tridiagonal:

$$h_{ij} = 0 \quad 1 \leq i < j-1;$$
 and $h_{j,j+1} = h_{j+1,j}, \ j=1,\ldots,m$

Csci 8314 – April 5, 2014

The Lanczos algorithm

ALGORITHM: 2. Lanczos

- 1. Choose an initial vector v_1 , s.t. $||v_1||_2 = 1$ Set $\beta_1 \equiv 0, v_0 \equiv 0$
- 2. For j = 1, 2, ..., m Do:
- $3. w_j := Av_j \beta_j v_{j-1}$
- 4. $\alpha_i := (w_i, v_i)$
- 5. $w_i := w_i \alpha_i v_i$
- 6. $\beta_{i+1} := \|w_i\|_2$. If $\beta_{i+1} = 0$ then Stop
- 7. $v_{i+1} := w_i/\beta_{i+1}$
- 8. EndDo

Lanczos algorithm for linear systems

- Usual orthogonal projection method setting:
- $\bullet \ L_m = K_m = span\{r_0, Ar_0, \ldots, A^{m-1}r_0\}$
- ullet Basis $V_m = [v_1, \dots, v_m]$ of K_m generated by the Lanczos algorithm
- ➤ Three different possible implementations.
- (1) Arnoldi-like;
- (2) Exploit tridiagonal nature of H_m (DIOM);
- (3) Conjugate gradient derived from (2)

-9 _____ Csci 8314 – April 5, 2014

ALGORITHM: 3. Lanczos Method for Linear Systems

- 1. Compute $r_0=b-Ax_0$, $eta:=\|r_0\|_2$, and $v_1:=r_0/eta$
- 2. For j = 1, 2, ..., m Do:
- 3. $w_j = Av_j \beta_j v_{j-1}$ (If j=1 set $\beta_1 v_0 \equiv 0$)
- 4. $\alpha_j = (w_j, v_j)$
- $5. w_j := w_j \alpha_j v_j$
- 6. $eta_{j+1} = \|w_j\|_2$. If $eta_{j+1} = 0$ set m := j and go to 9
- 7. $v_{j+1} = w_j/\beta_{j+1}$
- 8. EndDo
- 9. Set $T_m = tridiag(\beta_i, \alpha_i, \beta_{i+1})$, and $V_m = [v_1, \dots, v_m]$.
- 10. Compute $y_m = T_m^{-1}(eta e_1)$ and $x_m = x_0 + V_m y_m$

10 _____ Csci 8314 – April 5, 2014

ALGORITHM: 4. D-Lanczos

- 1. Compute $r_0=b-Ax_0$, $\zeta_1:=eta:=\|r_0\|_2$, and $v_1:=rac{r_0}{eta}$
- 2. Set $\lambda_1 = \beta_1 = 0$, $p_0 = 0$
- 3. For $m=1,2,\ldots$, until convergence Do:
- 4. Compute $w:=Av_m-eta_mv_{m-1}$ and $lpha_m=(w,v_m)$
- 5. If m>1 compute $\lambda_m=rac{eta_m}{\eta_{m-1}}$ and $\zeta_m=-\lambda_m\zeta_{m-1}$
- $\theta_{m} = \alpha_{m} \lambda_{m} \beta_{m}$
- 7. $p_m = \eta_m^{-1} (v_m \beta_m p_{m-1})$
- 8. $x_m = x_{m-1} + \zeta_m p_m$
- 9. If x_m has converged then Stop
- 10. $w := w \alpha_m v_m$
- 11. $\beta_{m+1} = ||w||_2$, $v_{m+1} = w/\beta_{m+1}$
- 12. EndDo

The Conjugate Gradient Algorithm (A S.P.D.)

- lacksquare In D-Lanczos, $r_m = scalar imes v_{m-1}$ and $p_m = scalar imes [v_m eta_m p_{m-1}]$
- ightharpoonup And we have $x_m = x_{m-1} + \xi_m p_m$
- ➤ So there must exist an update of the form:
- 1. $p_m = r_{m-1} + \beta_m p_{m-1}$
- 2. $x_m = x_{m-1} + \xi_m p_m$
- 3. $r_m = r_{m-1} \xi_m A p_m$
- ightharpoonup Note: p_m is scaled differently and eta_m is not the same
- \blacktriangleright Note: the p_i 's are A-orthogonal
- \triangleright The r_i' 's are orthogonal.

The Conjugate Gradient Algorithm (A S.P.D.)

1. Start: $r_0 := b - Ax_0, p_0 := r_0$.

2. Iterate: Until convergence do,

(a)
$$lpha_j := (r_j, r_j)/(Ap_j, p_j)$$

$$(b) x_{i+1} := x_i + \alpha_i p_i$$

(c)
$$r_{j+1} := r_j - lpha_j A p_j$$

$$(\mathsf{d})\,\beta_j := (r_{j+1}, r_{j+1})/(r_j, r_j)$$

(e)
$$p_{j+1}:=r_{j+1}+eta_j p_j$$

- $ullet r_j = scaling imes v_{j+1}$. The r_j 's are orthogonal.
- ullet The p_j 's are A-conjugate, i.e., $(Ap_i,p_j)=0$ for i
 eq j.
- ➤ Question: How to apply preconditioning?

-13 Csci 8314 – April 5, 2014

Recall: Left, Right, and Split preconditioning

Left preconditioning

$$M^{-1}Ax = M^{-1}b$$

Right preconditioning

$$AM^{-1}u=b$$
, with $x=M^{-1}u$

Split preconditioning: M is factored as $M=M_LM_R$.

$$M_L^{-1}AM_R^{-1}u=M_L^{-1}b$$
, with $x=M_R^{-1}u$

Sci 8314 – April 5, 2014

Preconditioned CG (PCG)

- \triangleright Assume: A and M are both SPD.
- ➤ Can apply CG directly to systems

$$M^{-1}Ax = M^{-1}b$$
 or $AM^{-1}u = b$

- ➤ Problem: loss of symmetry
- ightharpoonup Alternative: when $M=LL^T$ use split preconditioner option
- Second alternative: Observe that $M^{-1}A$ is self-adjoint with respect to M inner product:

$$(M^{-1}Ax, y)_M = (Ax, y) = (x, Ay) = (x, M^{-1}Ay)_M$$

Preconditioned CG (PCG)

ALGORITHM: 5. Preconditioned CG

- 1. Compute $r_0 := b Ax_0$, $z_0 = M^{-1}r_0$, and $p_0 := z_0$
- 2. For j = 0, 1, ..., until convergence Do:
- 3. $\alpha_i := (r_i, z_i)/(Ap_i, p_i)$
- $4. x_{j+1} := x_j + \alpha_j p_j$
- $5. r_{j+1} := r_j \alpha_j A p_j$
- 6. $z_{i+1} := M^{-1}r_{i+1}$
- 7. $\beta_i := (r_{i+1}, z_{i+1})/(r_i, z_i)$
- 8. $p_{j+1} := z_{j+1} + \beta_j p_j$
- 9. EndDo

Note $M^{-1}A$ is also self-adjoint with respect to $(.,.)_A$:

$$(M^{-1}Ax,y)_A = (AM^{-1}Ax,y) \ = (x,AM^{-1}Ay) \ = (x,M^{-1}Ay)_A$$

- > Can obtain an algorithm similar to PCG
- \blacktriangleright Assume that M= Cholesky product $M=LL^T$.

Then, another possibility: Split preconditioning option, which applies CG to the system

$$L^{-1}AL^{-T}u=L^{-1}b$$
, with $x=L^Tu$

Notation: $\hat{A} = L^{-1}AL^{-T}$. All quantities related to the preconditioned system are indicated by ^.

_____ Csci 8314 – April 5, 2014

ALGORITHM: 6. CG with Split Preconditioner

- 1. Compute $r_0 := b Ax_0$; $\hat{r}_0 = L^{-1}r_0$; $p_0 := L^{-T}\hat{r}_0$.
- 2. For $j = 0, 1, \ldots$, until convergence Do:
- 3. $\alpha_i := (\hat{r}_i, \hat{r}_i)/(Ap_i, p_i)$
- 4. $x_{j+1} := x_j + \alpha_j p_j$ 5. $\hat{r}_{j+1} := \hat{r}_j \alpha_j L^{-1} A p_j$
- 6. $\hat{eta_j} := (\hat{r}_{j+1}, \hat{r}_{j+1})/(\hat{r}_j, \hat{r}_j)$
- 7. $p_{i+1} := L^{-T} \hat{r}_{i+1} + \beta_i p_i$
- 8. EndDo
- \triangleright The x_i 's produced by the above algorithm and PCG are identical (if same initial guess is used).
- Prove it

Csci 8314 - April 5, 2014