Brain Tumor Classification Project Report

ARTIFICIAL INTELLIGENCE BASICS

Betül Gül-B211202053 Şüheda Almina Dadak-B211202049

Project Github Link

Introduction

In this project we focused on the classification of brain tumors using deep learning models. What we deal with are categorized into four classes: glioma, meningioma, pituitary and no tumor.

Dataset

The dataset consists of MRI brain scans collected. We used the publically avaliable <u>Kaggle Brain Tumor Classification (MRI)</u>. Dataset.

The images were preprocessed and resized to 150×150 pixels. The dataset is divided into training and testing sets with the following distribution:

Training Samples per class:

• glioma: 1321

• meningioma: 1339

• pituitary: 1595

• no-tumor: 1457

Testing Samples per class:

• glioma: 300

• meningioma: 306

• pituitary: 405

no-tumor: 300

Custom CNN Model

Training Parameters

Input Shape: 150x150x3 (RGB image)

Optimizer: Adam

 Loss Function: Categorical Crossentropy

• Batch Size: 32

 Number of Epochs: 15 (with early stopping, patience=3)

 Callbacks: EarlyStopping (Helps us prevent overfitting, particularly important in medical imaging.)

Architecture Details

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 148, 148, 32)	896
batch_normalization (BatchNormalization)	(None, 148, 148, 32)	128
max_pooling2d (MaxPooling2D)	(None, 74, 74, 32)	0
dropout (Dropout)	(None, 74, 74, 32)	0
conv2d_1 (Conv2D)	(None, 72, 72, 64)	18,496
batch_normalization_1 (BatchNormalization)	(None, 72, 72, 64)	256
max_pooling2d_1 (MaxPooling2D)	(None, 36, 36, 64)	0
dropout_1 (Dropout)	(None, 36, 36, 64)	0
conv2d_2 (Conv2D)	(None, 34, 34, 128)	73,856
batch_normalization_2 (BatchNormalization)	(None, 34, 34, 128)	512
max_pooling2d_2 (MaxPooling2D)	(None, 17, 17, 128)	0
dropout_2 (Dropout)	(None, 17, 17, 128)	0
flatten (Flatten)	(None, 36992)	0
dense (Dense)	(None, 128)	4,735,104
dropout_3 (Dropout)	(None, 128)	0
dense_1 (Dense)	(None, 4)	516

Total params: 4,829,764 (18.42 MB) Trainable params: 4,829,316 (18.42 MB) Non-trainable params: 448 (1.75 KB)

Summary:

Conv → Pool → Conv → Pool → Conv → Pool → Flatten → Dense
 → Dropout → Dense (Output).

Total Parameters:

• 4,829,764

Performance Metrics

	precision	recall	f1-score	support
glioma	0.9402	0.9129	0.9264	310
meningioma	0.8940	0.8544	0.8738	316
notumor	0.9393	0.9926	0.9652	405
pituitary	0.9867	0.9867	0.9867	300
accuracy			0.9399	1331
macro avg	0.9400	0.9366	0.9380	1331
weighted avg	0.9394	0.9399	0.9393	1331

ACCURACY vs. ITERATION / LOSS vs. ITERATION

Our customized CNN model was 93% accurate in brain tumor classification after 14 epochs. The training accuracy shows steady improvement while validation accuracy fluctuates, particularlay in epochs 2-4. Loss curves also follow this pattern, training loss declining smoothly to 0.18 while validation loss fluctuates. By the final epochs, both metrics join very closely, indicating good balance between fitting training data and generalizing to unseen examples, though occasional plateaus suggest room for optimization.

CONFUSION MATRIX

TEST IMAGE PREDICTIONS

Transfer Learning Model VGG-16

Architecture Details

Layer (type)	Output Shape	Param #
vgg16 (Functional)	(None, 4, 4, 512)	14,714,688
flatten_1 (Flatten)	(None, 8192)	0
dense_2 (Dense)	(None, 256)	2,097,408
dropout_4 (Dropout)	(None, 256)	0
dense_3 (Dense)	(None, 4)	1,028
Total params: 16 813 124 (64 14 M		1,028

Total params: 16,813,124 (64.14 MB)
Trainable params: 2,098,436 (8.00 MB)
Non-trainable params: 14,714,688 (56.13 MB)

Training Parameters

Training Parameters

Phase 1: Initial Training

• Loss Function: Categorical Crossentropy

• Optimizer: Adam

Epochs: 15Batch Size: 32

• EarlyStopping (patience=3)

Phase 2: Fine-Tuning

• Last 4 VGG16 layers unfrozen

• Learning Rate: 1e-5

• Optimizer: Adam

Epochs: 4Batch Size: 32

• During fine-tuning, the last 4 layers of the VGG16 base model were unfrozen and trained. This allowed the model to adjust high-level feature representations specifically for the brain tumor classification task.

Performance Metrics

_						
Classification Report:						
	precision	recall	f1-score	support		
glioma	0.9862	0.9226	0.9533	310		
meningioma	0.9127	0.9589	0.9352	316		
no_tumor	0.9854	1.0000	0.9926	405		
pituitary	0.9866	0.9800	0.9833	300		
accuracy			0.9677	1331		
macro avg	0.9677	0.9654	0.9661	1331		
weighted avg	0.9686	0.9677	0.9677	1331		
Macro Avg Precision: 0.9677 Macro Avg Recall: 0.9654 Macro Avg F1-score: 0.9661 Weighted Avg Precision: 0.9686 Weighted Avg Recall: 0.9677 Weighted Avg F1-score: 0.9677						

ACCURACY vs. ITERATION / LOSS vs. ITERATION

Our transfer learning model, built on the VGG16 architecture, achieved an impressive 96.7% accuracy in brain tumor classification after 19 epochs, including a fine-tuning phase. Initially, the training accuracy rose rapidly, with validation accuracy also improving but showing slight fluctuations. During fine-tuning, both metrics aligned more closely, with validation accuracy peaking around 96%. The training loss steadily declined to below 0.05, while validation loss also dropped significantly, reaching a minimum of 0.08. The close convergence of loss and accuracy curves in later epochs indicates strong generalization, and fine-tuning helped refine the model's performance without overfitting.

CONFUSION MATRIX

TEST IMAGE PREDICTIONS

