Constraint Satisfaction Problems Probability

Russell and Norvig: Chapter 6

CSE 240: Winter 2023

Lecture 11

Announcements

- Quiz 2 opens on Thursday after class
 - No time limit (should take ~30 minutes)
 - Deadline: 5pm on Friday.
 - Mixed multiple choice + open ended answers.
 - Open book open note
- Assignment 3 is out.

Agenda and Topics

- CSP Structure
 - Ordering
 - Structure
- Probability
- Assignment 3 QA

Ordering

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV)
 - Choose the variable with the fewest legal left values in its domain
- Why min rather than max?
- Also called "most constrained variable"
 - "Fail-fast" ordering

Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
 - Given a choice of variable, choose the least constraining value
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)
- Why least rather than most?
- Combining these ordering ideas makes 1000 queens feasible

Iterative Improvement

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Take an assignment with unsatisfied constraints

- Operators reassign variable values
- Algorithm: While not solved,
 - Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - I.e., hill climb with h(x) = total number of violated constraints

Summary: CSPs

- • CSPs are a special kind of search problem:
 - States are partial assignments
 - Goal test defined by constraints
- Basic solution: backtracking search
- Speed-ups:
 - Ordering
 - Filtering
 - Structure turns out trees are easy!
- Iterative min-conflicts is often effective in practice

Structure

Problem structure

- How can the problem structure help to find a solution quickly?
- Subproblem identification is important:
 - Coloring Tasmania and mainland are independent subproblems
 - Identifiable as connected components of constrained graph.
- Improves performance

Problem structure

- Suppose each problem has c variables out of a total of n.
- Worst case solution cost is O(n/c dc), i.e. linear in n
 - Instead of O(d n), exponential in n
- E.g. n=80, c=20, d=2
 - $2^{80} = 4$ billion years at 1 million nodes/sec.
 - 4 * 2²⁰= 4 seconds at 1 million nodes/sec

Tree-structured CSPs

- Theorem: if the constraint graph has no loops then CSP can be solved in O(nd ²) time
- Compare difference with general CSP, where worst case is O(d n)

Tree-structured CSPs

- Any tree-structured CSP can be solved in time linear in the number of variables.
 - Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering. (label var from X₁ to X_n)
 - For j from n down to 2, apply REMOVE-INCONSISTENT-VALUES(Parent(X_j), X_j)
 - For j from 1 to n assign X_i consistently with Parent(X_i)

Runtime: $O(nd^2)$ (why?)

Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each $X \to Y$ was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)
- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position

Improving Structure

Nearly tree-structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O(d^c(n-c)d^2)$ very fast for small c

Cutest Conditioning

Choose a cutset

Instantiate the cutset (all possible ways)

Compute residual CSP for each assignment

Solve the residual CSPs (tree structured)

Tree Decomposition

- Idea: create a tree-structured graph of mega-variables
- Each mega-variable encodes part of the original CSP
- Sub-problems overlap to ensure consistent solutions

WA

SA

NSW)

CE 11: Tree CSPs

Why do we prefer to change nearly tree-structured CSPs to tree-structured CSPs?

CSE 240 Status

- We're done with Part I Search and Planning!
- Part II: Probabilistic Reasoning
 - Diagnosis
 - Speech recognition
 - Tracking objects
 - Robot mapping
 - Genetics
 - Error correcting codes
 - lots more!

Uncertainty

General situation:

- Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
- Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
- Model: Agent knows something about how the known variables relate to the unknown variables
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - D = How long will it take to drive to work?
 - L = Where am I?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
 - R in {true, false} (sometimes write as {+r, ¬r})
 - D in [0, ∞)
 - L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

Unobserved random variables have distributions

\boldsymbol{P}	T	٦)
1	1	J

Т	Р
warm	0.5
cold	0.5

W	Р
sun	0.6
rain	0.1
fog	0.3

- A distribution is a TABLE of probability values
- A probability (lower case value) is a single number

$$P(W = rain) = 0.1$$

$$P(rain) = 0.1$$

Must have:

$$\forall x P(x) \geq 0$$

$$\sum P(x) = 1$$

Joint Distributions

• A joint distribution over a set of random variables: X_1, X_2, \ldots, X_n specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

$$P(x_1, x_2, \dots x_n)$$

- Size of distribution if n variables with domain sizes d?
- Must obey:

$$P(x_1, x_2, \dots x_n) \ge 0$$

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$

• For all but the smallest distributions, impractical to write out

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
 - (Random) variables with domains Assignments are called outcomes
 - Joint distributions: say whether assignments (outcomes) are likely
 - Normalized: sum to 1.0
 - Ideally: only certain variables directly interact
- Constraint satisfaction probs:
 - Variables with domains
 - Constraints: state whether assignments are possible
 - Ideally: only certain variables directly interact

Distribution over T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Constraint over T,W

Т	W	Р
hot	sun	Т
hot	rain	F
cold	sun	F
cold	rain	Т

Events

An event is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n) \in E} P(x_1...x_n)$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny? 0.4
 - Probability that it's hot? 0.5
 - Probability that it's hot OR sunny? 0.7
- Typically, the events we care about are partial assignments, like P(T=hot)

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

\boldsymbol{I}	P(T, W)	7)		Т	Р
	, ,		1	hot	0.5
	W	P		cold	0.5
hot	sun	0.4	$P(t) = \sum P(t, w)$		
hot	rain	0.1	W	P(W)
cold	sun	0.2		W	Р
cold	rain	0.3	$D(yy) = \sum D(t,yy)$		0.6
			$P(w) = \sum_{t} P(t, w)$	sun	0.0
			t	rain	0.4

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the definition of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = r | T = c) = ???$$

$$0.3/(0.2 + 0.3) = 0.6$$

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

P(W|T = hot)

W	Р
sun	0.8
rain	0.2

P(W|T = cold)

W	Р
sun	0.4
rain	0.6

Joint Distribution

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Question: Conditional Probabilities

- P(hot | sun)?
- P(cold | sun)?
- P(rain | hot) ?

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Summary and Next Time

- Constraint Satisfaction Problems
 - Ordering
 - Structure
- Probability Review

- This week
 - Naives Bayes