Deep Learning

Last update: 28 March 2024

Contents

1		al networks expressivity	1
	1.1	Perceptron	1
	1.2 I	Multi-layer perceptron	1
		1.2.1 Parameters	
2	Training		
	2.1	Gradient descent	2
	2.2	Backpropagation	3
3	Conv	olutional neural networks	5
	3.1	Parameters	6

1 Neural networks expressivity

1.1 Perceptron

Single neuron that defines a binary threshold through a hyperplane:

$$\begin{cases} 1 & \sum_{i} w_i x_i + b \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Expressivity A perceptron can represent a NAND gate but not a XOR gate.

Perceptron expressivity

Remark. Even if NAND is logically complete, the strict definition of a perceptron is not a composition of them.

1.2 Multi-layer perceptron

Composition of perceptrons.

Shallow neural network Neural network with one hidden layer.

D 373

Deep neural network Neural network with more than one hidden layer.

Deep NN

Shallow NN

Expressivity Shallow neural networks allow to approximate any continuous function

Multi-layer perceptron expressivity

$$f: \mathbb{R} \to [0,1]$$

Remark. Still, deep neural networks allow to use less neural units.

1.2.1 Parameters

The number of parameters of a layer is given by:

$$S_{\rm in} \cdot S_{\rm out} + S_{\rm out}$$

where:

- S_{in} is the dimension of the input of the layer.
- S_{out} is the dimension of the output of the layer.

Therefore, the number of FLOPS is of order:

$$S_{\text{in}} \cdot S_{\text{out}}$$

2 Training

2.1 Gradient descent

1. Start from a random set of weights w.

Gradient descent

- 2. Compute the gradient $\nabla \mathcal{L}$ of the loss function.
- 3. Make a small step of size $-\nabla \mathcal{L}(w)$.
- 4. Go to 2., until convergence.

Learning rate Size of the step. Usually denoted with μ .

Learning rate

$$w = w + \mu \nabla \mathcal{L}(w)$$

Optimizer Algorithm that tunes the learning rate during training.

Optimizer

Stochastic gradient descent Use a subset of the training data to compute the gradient.

Stochastic gradient

Full-batch Use the entire dataset.

Mini-batch Use a subset of the training data.

Online Use a single sample.

Remark. SGD with mini-batch converges to the same result obtained using a full-batch approach.

Momentum Correct the update v_t at time t considering the update v_{t-1} of time t-1.

Momentum

$$w_{t+1} = w_t + v_t$$
$$v_t = \mu \nabla \mathcal{L}(w_t) + \alpha v_{t-1}$$

Nesterov momentum Apply the momentum before computing the gradient.

Nesterov momentum

Overfitting Model too specialized on the training data.

Overfitting

Methods to reduce overfitting are:

- Increasing the dataset size.
- Simplifying the model.
- Early stopping.
- Regularization.
- Model averaging.
- Neurons dropout.

Underfitting Model too simple and unable to capture features of the training data.

Underfitting

2.2 Backpropagation

Chain rule Refer to SMM for AI (Section 5.1.1).

Chain rule

Backpropagation Algorithm to compute the gradient at each layer of a neural network.

Backpropagation

The output of the i-th neuron in the layer l of a neural network can be defined as:

$$a_{l,i} = \sigma_{l,i}(\mathbf{w}_{l,i}^T \mathbf{a}_{l-1} + b_{l,i}) = \sigma_{l,i}(z_{l,i})$$

where:

- $a_{l,i} \in \mathbb{R}$ is the output of the neuron.
- $\mathbf{w}_{l,i} \in \mathbb{R}^{n_{l-1}}$ is the vector of weights.
- $\mathbf{a}_{l-1} \in \mathbb{R}^{n_{l-1}}$ is the vector of the outputs of the previous layer.
- $b_{l,i} \in \mathbb{R}$ is the bias.
- $\sigma_{l,i}: \mathbb{R} \to \mathbb{R}$ is the activation function¹.
- $z_{l,i}(\mathbf{w}_{l,i}, b_{l,i}|\mathbf{a}_{l-1}) = \mathbf{w}_{l,i}^T \mathbf{a}_{l-1} + b_{l,i}$ is the argument of the activation function and is parametrized on $\mathbf{w}_{l,i}$ and $b_{l,i}$.

Hence, the outputs of the l-th layer can be defined as:

$$\mathbf{a}_l = \sigma_l(\mathbf{W}_l^T \mathbf{a}_{l-1} + \mathbf{b}_l) = \sigma_l(\mathbf{z}_l(\mathbf{W}_l, \mathbf{b}_l | \mathbf{a}_{l-1}))$$

where:

- $\sigma_l : \mathbb{R}^{n_l} \to \mathbb{R}^{n_l}$ is the element-wise activation function.
- $W_l \in \mathbb{R}^{n_l \times n_{l-1}}$, $\mathbf{a}_{l-1} \in \mathbb{R}^{n_{l-1}}$, $\mathbf{b}_l \in \mathbb{R}^{n_l}$, $\mathbf{a}_l \in \mathbb{R}^{n_l}$.

Finally, a neural network with input x can be expressed as:

$$\mathbf{a}_0 = \mathbf{x}$$

 $\mathbf{a}_i = \sigma_i(\mathbf{z}_i(\mathbf{W}_i, \mathbf{b}_i | \mathbf{a}_{i-1}))$

Given a neural network with K layers and a loss function \mathcal{L} , we want to compute the derivative of \mathcal{L} w.r.t. the weights of each layer to tune the parameters.

First, we highlight the parameters of each of the functions involved:

Loss $\mathcal{L}(a_K) = \mathcal{L}(\sigma_K)$ takes as input the output of the network (i.e. the output of the last activation function).

Activation function $\sigma_i(\mathbf{z}_i)$ takes as input the value of the neurons at the *i*-th layer.

Neurons $\mathbf{z}_i(\mathbf{W}_i, \mathbf{b}_i)$ takes as input the weights and biases at the *i*-th layer.

Let \odot be the Hadamard product. By exploiting the chain rule, we can compute the derivatives w.r.t. the weights going backward:

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{W}_{K}} = \frac{\partial \mathcal{L}}{\partial \sigma_{K}} \frac{\partial \sigma_{K}}{\partial \boldsymbol{z}_{K}} \frac{\partial \boldsymbol{z}_{K}}{\partial \boldsymbol{W}_{K}} = \nabla \mathcal{L}(\boldsymbol{a}_{K}) \odot \nabla \sigma_{K}(\boldsymbol{z}_{K}) \cdot \boldsymbol{a}_{K-1}^{T} \in \mathbb{R}^{n_{K} \times n_{K-1}}$$

¹Even if it is possible to have a different activation function in each neuron, in practice, each layer has the same activation function.

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \boldsymbol{W}_{K-1}} &= \frac{\partial \mathcal{L}}{\partial \sigma_{K}} \frac{\partial \boldsymbol{\sigma}_{K}}{\partial \boldsymbol{z}_{K}} \frac{\partial \boldsymbol{z}_{K}}{\partial \boldsymbol{\sigma}_{K-1}} \frac{\partial \boldsymbol{\sigma}_{K-1}}{\partial \boldsymbol{z}_{K-1}} \frac{\partial \boldsymbol{z}_{K-1}}{\partial \boldsymbol{W}_{K-1}} \\ &= (\nabla \mathcal{L}(\boldsymbol{a}_{K}) \odot \nabla \sigma_{K}(\boldsymbol{z}_{K}))^{T} \cdot \underset{\mathbb{R}^{n_{K}} \times 1}{\boldsymbol{W}_{K}} \odot \nabla \sigma_{K-1}(\boldsymbol{z}_{K-1}) \cdot \boldsymbol{a}_{K-2}^{T} \in \mathbb{R}^{n_{K-1} \times n_{K-2}} \\ &\vdots \end{split}$$

In the same way, we can compute the derivatives w.r.t. the biases:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{b}_{K}} = \frac{\partial \mathcal{L}}{\partial \sigma_{K}} \frac{\partial \sigma_{K}}{\partial \mathbf{z}_{K}} \frac{\partial \mathbf{z}_{K}}{\partial \mathbf{b}_{K}} = \nabla \mathcal{L}(\mathbf{a}_{K}) \odot \nabla \sigma_{K}(\mathbf{z}_{K}) \cdot 1 \in \mathbb{R}^{n_{K}}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{b}_{K-1}} = \frac{\partial \mathcal{L}}{\partial \sigma_{K}} \frac{\partial \sigma_{K}}{\partial \mathbf{z}_{K}} \frac{\partial \mathbf{z}_{K}}{\partial \sigma_{K-1}} \frac{\partial \sigma_{K-1}}{\partial \mathbf{z}_{K-1}} \frac{\partial \mathbf{z}_{K-1}}{\partial \mathbf{b}_{K-1}}$$

$$= (\nabla \mathcal{L}(\mathbf{a}_{K}) \odot \nabla \sigma_{K}(\mathbf{z}_{K}))^{T} \cdot \mathbf{W}_{K} \odot \nabla \sigma_{K-1}(\mathbf{z}_{K-1}) \cdot 1 \in \mathbb{R}^{n_{K-1}}$$

$$\vdots$$

It can be noticed that many terms are repeated from one layer to another. By exploiting this, we can store the following intermediate values:

$$\delta_K = \frac{\partial \mathcal{L}}{\partial \mathbf{z}_K} = \frac{\partial \mathcal{L}}{\partial \sigma_K} \frac{\partial \sigma_K}{\partial \mathbf{z}_K} = \nabla \mathcal{L}(\mathbf{a}_K) \odot \nabla \sigma_K(\mathbf{z}_K)$$
$$\delta_l = \frac{\partial \mathcal{L}}{\partial \mathbf{z}_l} = \delta_{l+1}^T \cdot \mathbf{W}_{l+1} \odot \nabla \sigma_l(\mathbf{z}_l)$$

and reused them to compute the derivatives as follows:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{l}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}_{l}} \frac{\partial \mathbf{z}_{l}}{\partial \mathbf{W}_{l}} = \delta_{l} \cdot \mathbf{a}_{l-1}^{T}$$
$$\frac{\partial \mathcal{L}}{\partial \mathbf{b}_{l}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}_{l}} \frac{\partial \mathbf{z}_{l}}{\partial \mathbf{b}_{l}} = \delta_{l} \cdot 1$$

Vanishing gradient As backpropagation consists of a chain of products, when a component is small (i.e. < 1), it will gradually cancel out the gradient when backtracking, causing the first layers to learn much slower than the last layers.

Vanishing gradient

Remark. This is an issue of the sigmoid function. ReLU was designed to solve this problem.

3 Convolutional neural networks

Convolution neuron Neuron influenced by only a subset of neurons in the previous layer.

Convolution neuron

Receptive field Dimension of the input image influencing a neuron.

Receptive field

Convolutional layer Layer composed of convolutional neurons. Neurons in the same convolutional layer share the same weights and work as a convolutional filter.

Convolutional layer

Remark. The weights of the filters are learned.

A convolutional layer has the following parameters:

Kernel size Dimension (i.e. width and height) of the filter.

Kernel size

Stride Offset between each filter application (i.e. stride > 1 reduces the size of the output image).

Stride

Padding Artificial enlargement of the image.

Padding

In practice, there are two modes of padding:

Valid No padding applied.

Same Apply the minimum padding needed.

Depth Number of different kernels to apply (i.e. augment the number of channels in the output image).

The dimension along each axis of the output image is given by:

$$\frac{W+P-K}{S}+1$$

where:

- W is the size of the image (width or height).
- P is the padding.
- K is the kernel size.
- S is the stride.

Remark. If not specified, a kernel is applied to all the channels of the input image in parallel (but the weights of the kernel change at each channel).

Pooling Layer that applies a function as a filter.

Max-pooling Filter that computes the maximum of the pixels within the kernel.

Max-pooling

Mean-pooling Filter that computes the average of the pixels within the kernel.

Mean-pooling

3.1 Parameters

The number of parameters of a layer is given by:

$$(K_{\rm w} \cdot K_{\rm h}) \cdot D_{\rm in} \cdot D_{\rm out} + D_{\rm out}$$

where:

- $K_{\rm w}$ is the width of the kernel.
- $K_{\rm h}$ is the height of the kernel.
- $D_{\rm in}$ is the input depth.
- D_{out} is the output depth.

Therefore, the number of FLOPS is of order:

$$(K_{\mathrm{w}} \cdot K_{\mathrm{h}}) \cdot D_{\mathrm{in}} \cdot D_{\mathrm{out}} \cdot (O_{\mathrm{w}} \cdot O_{\mathrm{h}})$$

where:

- $\bullet \ O_{\rm w}$ is the width of the output image.
- $\bullet \ O_{\rm h}$ is the height of the output image.