Homework #2 – Single Time constant circuit

- 1. The filter circuit below has a capacitance C of value $0.1\mu F$.
 - (i) Find the value of v_{OUT}/v_{IN} at

a.
$$\omega = 0$$

b.
$$\omega = \infty$$

- (ii) From your answer in (i), what type of filter is this circuit?
- (iii) Find the cutoff frequency in Hz. Clearly show how you arive at your answer.

- (iv) Draw the amplitude Bode plot of this filter clearly marking the slopes and critical points on the plot.
- (v) If an input $v_{IN}(t) = 2 + 6\sin 400\pi t + \sin(2\pi 10^{12})t$ Volts is given to this circuit, write the expression for the corresponding output voltage $v_0(t)$ as a function of time.
- 2. For the single time constant circuit in the figure below
- (a) Classify the circuit as STC high or low pass for the voltage output $v_{OUT.}$ by finding the gain v_o / v_{IN} at $\omega=0$ and at $\omega=\infty$
- (b) Find the cutoff frequency in Hz.
- (c) If an input $v_{IN} = 3 + \sin 120\pi t + 9\sin(2\pi 10^{10})t$ Volts is given to this circuit. Write the expression for the corresponding output voltage v_{OUT} as a function of time.
- (d) Draw the amplitude Bode plot of this filter clearly marking the slopes and critical points on the plot.

Elen 115 _

Homework

3.

The amplifier circuit below employs an ideal opamp

- (a) Derive the expressions for
 - (i) VOUT/VIN
 - (ii) the input resistance, R_{in} , seen by v_{IN}
- (b) Given that $R1 = 5K\Omega$ $R2 = 10K\Omega$ $R3 = 6K\Omega$ $R4 = 3K\Omega$ $R5 = 4K\Omega$ For input $v_{IN}(t) = 2sin2\pi t$, draw $v_{IN}(t)$ and the corresponding $v_{OUT}(t)$. Clearly indicate all values and label all axes and graphs

Elen 115 _____ Homework ____