Cluster Analysis: Metodi gerarchici Analisi Esplorativa

Aldo Solari

1 Metodi gerarchici

Outline

1 Metodi gerarchici

Metodi (algoritmi) gerarchici

Nei $metodi\ gerarchici\ si\ individua\ una\ sequenza\ di\ partizioni\ nidificate:$ la partizione in K+1 gruppi si ottiene dalla partizione in K gruppi facendo di due degli elementi di questa un elemento di quella (AGNES), o viceversa (DIANA)

- Algoritmo Agglomerativo (AGNES, AGGlomerative NESting)
- Algoritmo Scissorio (DIANA, DIvisive ANAlysis)

AGNES

Algoritmo agglomerativo

- $\textbf{ Si parte dalla partizione in } n \text{ gruppi, ciascuno singoletto; } \\ \text{Inizializzare } k = n \\$
- $\textbf{②} \ \ \text{Determinare quale coppia di gruppi sia quella 'migliore' da unire,} \\ \text{tra le} \ \binom{k}{2} = \frac{k(k-1)}{2} \ \text{coppie di gruppi possibili;}$
- $\textbf{§ Fondere la 'migliore' coppia di gruppi in un unico gruppo; impostare <math>k=k-1$ e andare al passo ② se k>1, altrimenti STOP

Per questo algoritmo sono previste n-1 iterazioni di 2 e 3 prima dell'arresto

Esempio

Partizione

1, 2, 3, 4, 5, 6, 7, 8, 9 (5,7), 1, 2, 3, 4, 6, 8, 9 (5,7), (1,6), 2, 3, 4, 8, 9 (5,7,8), (1,6), 2, 3, 4, 9 : (1,2,3,4,5,6,7,8,9)

Distanza/dissimilarità tra gruppi

- Dobbiamo precisare come si determina al passo ② la 'migliore' coppia di gruppi da fondere in un unico gruppo
- Se abbiamo k gruppi con matrice delle distanze/dissimilarità $D_{k \times k}$, basta determinare quale sia la coppia di gruppi con minore distanza/dissimilarità (se più di una coppia, si sceglie una)
- 2 Determinare in $\underset{k \times k}{D}$ quale coppia di gruppi ha distanza minima
- § Fondere la coppia di gruppi con distanza minima in un unico gruppo; impostare k=k-1 e aggiornare $D \atop k\times k$ calcolando la distanza del nuovo gruppo con i rimanenti; andare al passo ② se k>1, altrimenti STOP

Distanza tra due gruppi G_I e G_L

Legame singolo (single linkage)

$$d(G_I, G_L) = \min\{d(u_i, u_l), u_i \in G_I, u_l \in G_L\}$$

Legame completo (complete linkage)

$$d(G_I, G_L) = \max\{d(u_i, u_l), u_i \in G_I, u_l \in G_L\}$$

Legame medio (average linkage)

$$d(G_I, G_L) = \frac{1}{n_{G_I} n_{G_L}} \sum_{u_i \in G_I} \sum_{u_l \in G_I} d(u_i, u_l)$$

dove n_{G_I} e n_{G_L} sono le numerosità dei gruppi G_I e G_L

Esempio con il legame singolo

$$D_{5\times5} = \{d_{IL}\} = \begin{bmatrix} I \backslash L & 1 & 2 & 3 & 4 & 5 \\ \hline 1 & 0 & & & & \\ 2 & 9 & 0 & & & \\ 3 & 3 & 7 & 0 & & \\ 4 & 6 & 5 & 9 & 0 & \\ 5 & 11 & 10 & 2 & 8 & 0 \end{bmatrix}$$

- (2) $\min_{I \neq L} (d_{IL}) = d_{53} = 2$
 - Le due unità (cluster) 3 e 5 vengono fuse nel cluster (35)
- 3 Aggiorno le distanze tra il nuovo cluster (35) e i rimanenti
 - $d_{(35)1} = \min\{d_{31}, d_{51}\} = \min\{3, 11\} = 3$
 - $d_{(35)2} = \min\{d_{32}, d_{52}\} = \min\{7, 10\} = 7$
 - $d_{(35)4} = \min\{d_{34}, d_{54}\} = \min\{9, 8\} = 8$

dove con il legame singolo $d_{(IL)J} = \min\{d_{IJ}, d_{LJ}\}$

$$D_{4\times4} = \{d_{IL}\} = \begin{bmatrix} I \setminus L & (35) & 1 & 2 & 4 \\ \hline (35) & 0 & & & \\ 1 & 3 & 0 & & \\ 2 & 7 & 9 & 0 & \\ 4 & 8 & 6 & 5 & 0 \end{bmatrix}$$

- ② $\min_{I\neq L}(d_{IL}) = d_{1(35)} = 3$
 - I due cluster 1 e (35) vengono fusi nel cluster (135)
- ③ Aggiorno le distanze tra il nuovo cluster (135) e i rimanenti
 - $d_{(135)2} = \min\{d_{(35)2}, d_{12}\} = \min\{7, 9\} = 7$
 - $d_{(135)4} = \min\{d_{(35)2}, d_{14}\} = \min\{8, 6\} = 6$

$$D_{3\times3} = \{d_{IL}\} = \begin{array}{c|ccc} I \backslash L & (135) & 2 & 4 \\ \hline (135) & 0 & & \\ 2 & 7 & 0 \\ 4 & 6 & 5 & 0 \\ \end{array}$$

- \bigcirc min_{$I\neq L$} $(d_{IL}) = d_{42} = 5$
 - I due cluster 2 e 4 vengono fusi nel cluster (24)
- 3 Aggiorno le distanze tra il nuovo cluster (24) e il rimanente
- $d_{(135)(24)} = \min\{d_{(135)2}, d_{(135)4}\} = \min\{7, 6\} = 6$

$$D_{2\times 2} = \{d_{IL}\} = egin{array}{c|c} I \setminus L & (135) & (24) \\ \hline (135) & 0 & \\ (24) & 6 & 0 \\ \hline \end{array}$$

- ② $\min_{I\neq L}(d_{IL}) = d_{(135)(24)} = 6$
 - I due cluster (135) e (24) vengono fusi nel cluster (12345)
- ③ STOP

II dendogramma

II dendogramma

- La successione di partizioni individuate può essere rappresentata con il dendogramma
- Le unità 3 e 5 sono unite tra di loro da una linea spezzata a forma di U rovesciata, che indica che vengono messe nello stesso gruppo, e si ottiene la partizione $\{(3,5),1,2,4\}$
- Procedendo verso l'alto, la successiva unione tra gruppi è tra 1 e (3,5), quindi al livello successivo si ottiene la partizione $\{(1,3,5),2,4\}$.
- Andando su ancora di un livello, vengono uniti i gruppi 2 e 4, formando la partizione $\{(1,3,5),(2,4)\}$.
- Procedendo ulteriormente si arriva alla partizione formata da un unico elemento $\{(1,2,3,4,5)\}$.

II dendogramma

- Si noti che le unità sono rappresentate in un ordine scelto in modo che i rami dell'albero non si incrocino nel disegno (ovviamente non c'è un unico ordine siffatto)
- Le altezze a cui sono disegnati i segmenti che uniscono le unità viene disegnato all'altezza corrispondente alla distanza tra essi
 - 3 e 5 hanno distanza 2
 - (3,5) e 1 hanno distanza 3
 - 2 e 4 hanno distanza 5
 - (1,3,5) e (2,4) hanno distanza 6

Tagliare il dendogramma

Tagliare il dendogramma

- Fissata una distanza c>0, disegnando una linea orizzontale ad altezza c si taglia il dendogramma e si ottiene il numero di gruppi, corrispondente al numero di aste intersecate dalla linea orizzontale
- Nell'esempio, per c=4 (linea tratteggiata), risultano formati i tre gruppi $(1,3,5),\ 2$ e 4.

Legame singolo: interpretazione del taglio

per ogni u_i in un cluster (non singoletto), c'è almeno un'altra unità u_l tale per cui $d(u_i,u_l) < c$

Esempio con il legame completo

$$D_{5 imes 5} = \{d_{IL}\} = egin{array}{c|ccccc} I & 1 & 2 & 3 & 4 & 5 \ \hline 1 & 0 & & & & \ 2 & 9 & 0 & & \ 3 & 3 & 7 & 0 & \ 4 & 6 & 5 & 9 & 0 \ 5 & 11 & 10 & 2 & 8 & 0 \ \hline \end{array}$$

- $2 \min_{I \neq L} (d_{IL}) = d_{53} = 2$
 - Le due unità (cluster) 3 e 5 vengono fuse nel cluster (35)
- 3 Aggiorno le distanze tra il nuovo cluster (35) e i rimanenti
 - $d_{(35)1} = \max\{d_{31}, d_{51}\} = \max\{3, 11\} = 11$
 - $d_{(35)2} = \max\{d_{32}, d_{52}\} = \max\{7, 10\} = 10$
 - $d_{(35)4} = \max\{d_{34}, d_{54}\} = \max\{9, 8\} = 9$

dove il legame completo $d_{(IL)J} = \max\{d_{IJ}, d_{LJ}\}$

$$D_{4 \times 4} = \{d_{IL}\} = egin{array}{c|cccc} I \setminus L & (35) & 1 & 2 & 4 \\ \hline (35) & 0 & & & \\ 1 & 11 & 0 & & \\ 2 & 10 & 9 & 0 & \\ 4 & 9 & 6 & 5 & 0 & \\ \end{array}$$

- ② $\min_{I \neq L} (d_{IL}) = d_{42} = 5$
 - I due cluster 2 e 4 vengono fusi nel cluster (24)
- 3 Aggiorno le distanze tra il nuovo cluster (24) e i rimanenti
 - $d_{(24)(35)} = \max\{d_{2(35)}, d_{4(35)}\} = \max\{10, 9\} = 10$
 - $d_{(24)1} = \max\{d_{21}, d_{41}\} = \max\{9, 6\} = 9$

$$D_{3\times3} = \{d_{IL}\} = \begin{array}{c|ccc} I \setminus L & (35) & (24) & 1 \\ \hline (35) & 0 & & \\ (24) & 10 & 0 \\ & 1 & 11 & 9 & 0 \\ \end{array}$$

- $2 \min_{I \neq L} (d_{IL}) = d_{1(24)} = 9$
 - I due cluster 1 e (24) vengono fusi nel cluster (124)
- 3 Aggiorno le distanze tra il nuovo cluster (124) e il rimanente
 - $d_{(124)(35)} = \max\{d_{1(35)}, d_{(24)(35)}\} = \max\{11, 10\} = 11$

$$D_{2\times 2} = \{d_{IL}\} = \begin{array}{c|c} I \setminus L & (35) & (124) \\ \hline (35) & 0 \\ (124) & 11 & 0 \end{array}$$

- ② $\min_{I\neq L}(d_{IL}) = d_{(35)(124)} = 11$
 - I due cluster (35) e (124) vengono fusi nel cluster (12345)
- 3 STOP

Legame completo

Legame medio

hclust (*, "average")

Interpretazione del taglio

In termini di distanza/dissimilarità tra unità statistiche, tagliare il dendogramma ad altezza $c>0\,$

Legame singolo

per ogni u_i in un cluster (non singoletto), c'è almeno un'altra unità u_l tale per cui $d(u_i,u_l) < c$

Legame completo

per ogni u_i in un cluster (non singoletto), tutte le altre altra unità u_l sono tali per cui $d(u_i,u_l) < c$

Legame medio

_

Inversione

Il metodo del legame singolo, completo, medio non producono un dendogramma con inversioni, ovvero la distanza/dissimilarità tra cluster non decresce mai nell'iterazione successiva dell'algoritmo

Legame singolo: chaining

(a) Single linkage confused by near overlap

Una peculiarità del legame singolo è l'effetto catena (chaining)

- da un lato consente di cogliere gruppi di forma particolare, come in Figura (b)
- dall'altro rischia di legare osservazioni che non appartengono a uno stesso gruppo, come in Figura (a)

(b) Chaining effect

Legame completo: forme (iper)sferiche

 Il metodo del legame completo, d'altra parte, tende a individuare gruppi molto compatti al loro interno ma di forma circolare (ipersferica, in generale) quindi si rischia di perdere gruppi di forma irregolare.

Esempi

Esempi

Legame medio: non invariate rispetto a trasformazioni monotone

ullet Si consideri una trasformazione monotona crescente f

$$f(x) \le f(y)$$
 se $x \le y$

- Cosa succede se consideriamo $f(d_{ij})$ invece di d_{ij} come elementi della matrice di distanze/dissimilarità? Ad esempio se considero $f(d_{ij}) = d_{ij}^2$?
- I risultati con il legame medio cambiano, mentre con il legame singolo o completo non cambiano

Metodo del legame del centroide

Distanza/dissimilarità tra due gruppi G_I e G_L

$$d(G_I, G_L) = d_2(\bar{x}_I, \bar{x}_L)$$

dove

$$\bar{x}_{I} = \begin{bmatrix} \frac{1}{n_{I}} \sum_{i:u_{i} \in G_{I}} x_{i1} \\ \cdots \\ \frac{1}{n_{I}} \sum_{i:u_{i} \in G_{I}} x_{ip} \end{bmatrix}$$

è il vettore delle medie del gruppo G_I e n_I è la numerosità del gruppo G_I

- Input: la matrice di dati $\underset{n \times p}{X}$ (utilizzabile solo se tutte le variabili sono quantitative)
- Può produrre inversioni
- Non invariate rispetto a trasformazioni monotone

Legami: confronto

		Trasformazioni	Interpr.	
Legame	Inversione	monotone	taglio	Peculiarità
Singolo	No	Invariante	Si	chaining
Completo	No	Invariante	Si	forme sferiche
Medio	No	Non invariante	No	
Centroide	Si	Non invariante	No	solo quantitative