Complex Characteristic Roots

Department of Mathematics

Salt Lake Community College

(Slides by Adam Wilson)

Solution for Complex Characteristic Roots

For Δ < 0, the characteristic roots of the DE

are

$$ay'' + by' + cy = 0$$

$$r_1 = \alpha + i\beta = -\frac{b}{2a} + i\frac{\sqrt{-(b^2 - 4ac)}}{2a}$$

$$r_2 = \alpha - i\beta = -\frac{b}{2a} - i\frac{\sqrt{-(b^2 - 4ac)}}{2a}$$

Solution for Complex Characteristic Roots

For $\Delta < 0$, the characteristic roots of the DE

are

$$ay'' + by' + cy = 0$$

$$r_1 = \alpha + i\beta = -\frac{b}{2a} + i\frac{\sqrt{-(b^2 - 4ac)}}{2a}$$

$$r_2 = \alpha - i\beta = -\frac{b}{2a} - i\frac{\sqrt{-(b^2 - 4ac)}}{2a}$$

The functions $e^{\alpha t} \cos(\beta t)$ and $e^{\alpha t} \sin(\beta t)$ are linearly independent solutions, and the general solution is given by

$$y(t) = e^{\alpha t} \left(c_1 \cos \left(\beta t \right) + c_2 \sin \left(\beta t \right) \right)$$

where c_1 and c_2 are arbitrary constants determined by the initial conditions.

Solution for Complex Characteristic Roots

For $\Delta < 0$, the characteristic roots of the DE

are

$$ay'' + by' + cy = 0$$

$$r_1 = \alpha + i\beta = -\frac{b}{2a} + i\frac{\sqrt{-(b^2 - 4ac)}}{2a}$$

$$r_2 = \alpha - i\beta = -\frac{b}{2a} - i\frac{\sqrt{-(b^2 - 4ac)}}{2a}$$

The functions $e^{\alpha t} \cos(\beta t)$ and $e^{\alpha t} \sin(\beta t)$ are linearly independent solutions, and the general solution is given by

$$y(t) = e^{\alpha t} \left(c_1 \cos \left(\beta t \right) + c_2 \sin \left(\beta t \right) \right)$$

where c_1 and c_2 are arbitrary constants determined by the initial conditions.

The set $\{e^{\alpha t}\cos(\beta t), e^{\alpha t}\sin(\beta t)\}$ forms a basis for the solution space \mathbb{S} .

Let us find the general solution of

$$y'' - 4y' + 13y = 0$$

Let us find the general solution of

$$y'' - 4y' + 13y = 0$$

First, let us write the characteristic equation:

$$0 = r^2 - 4r + 13$$

Let us find the general solution of

$$y'' - 4y' + 13y = 0$$

First, let us write the characteristic equation:

$$0 = r^2 - 4r + 13$$

which has solutions $r=2\pm 3i$. So $\alpha=2$ and $\beta=3$.

Let us find the general solution of

$$y'' - 4y' + 13y = 0$$

First, let us write the characteristic equation:

$$0 = r^2 - 4r + 13$$

which has solutions $r = 2 \pm 3i$. So $\alpha = 2$ and $\beta = 3$.

Thus, the general solution is

$$y(t) = e^{2t} (c_1 \cos(3t) + c_2 \sin(3t))$$

Let us find the general solution of

$$y'' - 4y' + 13y = 0$$

First, let us write the characteristic equation:

$$0 = r^2 - 4r + 13$$

which has solutions $r=2\pm 3i$. So $\alpha=2$ and $\beta=3$.

Thus, the general solution is

$$y(t) = e^{2t} (c_1 \cos(3t) + c_2 \sin(3t))$$

The set $\{e^{2t}\cos(3t), e^{\alpha t}\sin(3t)\}$ is a basis of the solution space \mathbb{S} , and $\dim \mathbb{S} = 2$.

(b) Phase Portrait

Let us find the general solution of

$$y'' + 2y' + 4y = 0$$

Let us find the general solution of

$$y'' + 2y' + 4y = 0$$

First, let us write the characteristic equation:

$$0=r^2+2r+4$$

Let us find the general solution of

$$y'' + 2y' + 4y = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 2r + 4$$

which has solutions $r = -1 \pm i\sqrt{3}$. So $\alpha = -1$ and $\beta = \sqrt{3}$.

Let us find the general solution of

$$y'' + 2y' + 4y = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 2r + 4$$

which has solutions $r = -1 \pm i\sqrt{3}$. So $\alpha = -1$ and $\beta = \sqrt{3}$.

Thus, the general solution is

$$y(t) = e^{-t} \left(c_1 \cos \left(\sqrt{3}t \right) + c_2 \sin \left(\sqrt{3}t \right) \right)$$

Let us find the general solution of

$$y'' + 2y' + 4y = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 2r + 4$$

which has solutions $r = -1 \pm i\sqrt{3}$. So $\alpha = -1$ and $\beta = \sqrt{3}$.

Thus, the general solution is

$$y(t) = e^{-t} \left(c_1 \cos \left(\sqrt{3}t \right) + c_2 \sin \left(\sqrt{3}t \right) \right)$$

The set $\left\{e^{-t}\cos\left(\sqrt{3}t\right), e^{-t}\sin\left(\sqrt{3}t\right)\right\}$ is a basis of the solution space \mathbb{S} , and $\dim\mathbb{S}=2$.

(a) Time Series

(b) Phase Portrait

Let us find the general solution of

$$y'' + y = 0$$

Let us find the general solution of

$$y'' + y = 0$$

First, let us write the characteristic equation:

$$0=r^2+1$$

Let us find the general solution of

$$y'' + y = 0$$

First, let us write the characteristic equation:

$$0=r^2+1$$

which has solutions $r = \pm i$. So $\alpha = 0$ and $\beta = 1$.

Let us find the general solution of

$$y'' + y = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 1$$

which has solutions $r = \pm i$. So $\alpha = 0$ and $\beta = 1$.

Thus, the general solution is

$$y(t) = c_1 \cos(t) + c_2 \sin(t)$$

Let us find the general solution of

$$y'' + y = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 1$$

which has solutions $r = \pm i$. So $\alpha = 0$ and $\beta = 1$.

Thus, the general solution is

$$y(t) = c_1 \cos(t) + c_2 \sin(t)$$

The set $\{\cos(t), \sin(t)\}$ is a basis of the solution space \mathbb{S} , and $\dim \mathbb{S} = 2$.

(a) Time Series

(b) Phase Portrait

Underdamped Mass-Spring System

The motion of a mass-spring system is called **underdamped** when we have $\Delta = b^2 - 4mk < 0$. Both characteristic roots are complex and the solutions are given by

$$x(t) = e^{-\frac{b}{2m}} \left(c_1 \cos \left(\omega_d t \right) + c_2 \sin \left(\omega_d t \right) \right), \quad \omega_d = \frac{\sqrt{4mk - b^2}}{2m}$$

$$x(t) = A(t) \cos(\omega_d t - \delta), \quad \omega_d = \frac{\sqrt{4mk - b^2}}{2m}$$

- Time-varying amplitude $A(t) = Ae^{-\frac{b}{2m}}$
- Phase angle &
- Phase shift $\varphi = \frac{\delta}{\omega_d}$
- Circular quasi-frequency ω_a
- Natural quasi-frequency $f_d = \frac{\omega_d}{2\pi}$
- Quasi-period $T_d = \frac{1}{f_d} = \frac{2pi}{\omega_d}$
- Time constant $\tau = \frac{2\pi}{h}$

$$x(t) = A(t)\cos(\omega_d t - \delta), \quad \omega_d = \frac{\sqrt{4mk - b^2}}{2m}$$

- Time-varying amplitude $A(t) = Ae^{-\frac{b}{2m}}$
- Phase angle δ
- Phase shift $\varphi = \frac{\delta}{\omega_d}$
- Circular quasi-frequency ω_c
- Natural quasi-frequency $f_d = \frac{\omega_d}{2\pi}$
- Quasi-period $T_d = \frac{1}{f_d} = \frac{2p_I}{\omega_d}$
- Time constant $\tau = \frac{2\pi}{b}$

$$x(t) = A(t) \cos(\omega_d t - \delta), \quad \omega_d = \frac{\sqrt{4mk - b^2}}{2m}$$

- Time-varying amplitude $A(t) = Ae^{-\frac{b}{2m}}$
- Phase angle δ
- Phase shift $\varphi = \frac{\delta}{\omega_d}$
- Circular quasi-frequency ω_a
- Natural quasi-frequency $f_d = \frac{\omega_d}{2\pi}$
- Quasi-period $T_d = \frac{1}{f_d} = \frac{2pi}{\omega_d}$
- Time constant $\tau = \frac{2\pi}{h}$

$$x(t) = A(t) \cos(\omega_d t - \delta), \quad \omega_d = \frac{\sqrt{4mk - b^2}}{2m}$$

- Time-varying amplitude $A(t) = Ae^{-\frac{b}{2m}}$
- Phase angle δ
- Phase shift $\varphi = \frac{\delta}{\omega_d}$
- Circular quasi-frequency ω_d
- Natural quasi-frequency $f_d = \frac{\omega_d}{2\pi}$
- Quasi-period $T_d = rac{1}{f_d} = rac{2pi}{\omega_d}$
- Time constant $\tau = \frac{2m}{h}$

$$x(t) = A(t)\cos(\omega_d t - \delta), \quad \omega_d = \frac{\sqrt{4mk - b^2}}{2m}$$

- Time-varying amplitude $A(t) = Ae^{-\frac{b}{2m}}$
- Phase angle δ
- Phase shift $\varphi = \frac{\delta}{\omega_d}$
- Circular quasi-frequency ω_d
- Natural quasi-frequency $f_d = \frac{\omega_d}{2\pi}$
- Quasi-period $T_d = \frac{1}{f_d} = \frac{2pi}{\omega_d}$
- Time constant $\tau = \frac{2m}{h}$

$$x(t) = A(t)\cos(\omega_d t - \delta), \quad \omega_d = \frac{\sqrt{4mk - b^2}}{2m}$$

- Time-varying amplitude $A(t) = Ae^{-\frac{b}{2m}}$
- Phase angle δ
- Phase shift $\varphi = \frac{\delta}{\omega_d}$
- Circular quasi-frequency ω_d
- Natural quasi-frequency $f_d = \frac{\omega_d}{2\pi}$
- Quasi-period $T_d = \frac{1}{f_d} = \frac{2pi}{\omega_d}$
- Time constant $\tau = \frac{2m}{b}$

$$x(t) = A(t)\cos(\omega_d t - \delta), \quad \omega_d = \frac{\sqrt{4mk - b^2}}{2m}$$

- Time-varying amplitude $A(t) = Ae^{-\frac{b}{2m}}$
- Phase angle δ
- Phase shift $\varphi = \frac{\delta}{\omega_d}$
- Circular quasi-frequency ω_d
- Natural quasi-frequency $f_d = \frac{\omega_d}{2\pi}$
- Quasi-period $T_d = \frac{1}{f_d} = \frac{2pi}{\omega_d}$
- Time constant $\tau = \frac{2m}{b}$

Consider the Mass-Spring IVP where

$$\ddot{x} + \dot{x} + x = 0$$
, $x(0) = 1$, $\dot{x}(0) = 0$

Consider the Mass-Spring IVP where

$$\ddot{x} + \dot{x} + x = 0$$
, $x(0) = 1$, $\dot{x}(0) = 0$

which has characteristic equation

$$r^2 + r + 1 = 0$$

Consider the Mass-Spring IVP where

$$\ddot{x} + \dot{x} + x = 0$$
, $x(0) = 1$, $\dot{x}(0) = 0$

which has characteristic equation

$$r^2 + r + 1 = 0$$

and characteristic solutions

$$r = -\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$$

Consider the Mass-Spring IVP where

$$\ddot{x} + \dot{x} + x = 0$$
, $x(0) = 1$, $\dot{x}(0) = 0$

which has characteristic equation

$$r^2 + r + 1 = 0$$

and characteristic solutions

$$r = -\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$$

Which means $\alpha = -\frac{1}{2}$ and $\beta = \frac{\sqrt{3}}{2}$.

The general solution is

$$x(t) = e^{-rac{t}{2}} \left(c_1 \cos \left(rac{\sqrt{3}}{2} t
ight) + c_2 \sin \left(rac{\sqrt{3}}{2} t
ight)
ight)$$

The general solution is

$$x(t) = e^{-rac{t}{2}} \left(c_1 \cos \left(rac{\sqrt{3}}{2} t
ight) + c_2 \sin \left(rac{\sqrt{3}}{2} t
ight)
ight)$$

We can then calculate

$$\dot{x}(t) = e^{-\frac{t}{2}} \left(\left(-\frac{c_1}{2} + \frac{c_2\sqrt{3}}{2} \right) \cos\left(\frac{t\sqrt{3}}{2}\right) - \left(\frac{c_2}{2} + \frac{c_2\sqrt{3}}{2}\right) \sin\left(\frac{t\sqrt{3}}{2}\right) \right)$$

The general solution is

$$x(t) = e^{-rac{t}{2}} \left(c_1 \cos \left(rac{\sqrt{3}}{2} t
ight) + c_2 \sin \left(rac{\sqrt{3}}{2} t
ight)
ight)$$

We can then calculate

$$\dot{x}(t) = e^{-\frac{t}{2}} \left(\left(-\frac{c_1}{2} + \frac{c_2\sqrt{3}}{2} \right) \cos\left(\frac{t\sqrt{3}}{2}\right) - \left(\frac{c_2}{2} + \frac{c_2\sqrt{3}}{2}\right) \sin\left(\frac{t\sqrt{3}}{2}\right) \right)$$

If we substitute in the initial conditions x(0)=1 and $\dot{x}(0)=0$, we find that $c_1=1$ and $c_2=\frac{1}{\sqrt{3}}$.

Thus, the solution to the IVP is

$$x(t) = e^{-rac{t}{2}} \left(\cos \left(rac{\sqrt{3}}{2} t
ight) + rac{1}{\sqrt{3}} \sin \left(rac{\sqrt{3}}{2} t
ight)
ight)$$

Thus, the solution to the IVP is

$$x(t) = \mathrm{e}^{-rac{t}{2}} \left(\cos \left(rac{\sqrt{3}}{2} t
ight) + rac{1}{\sqrt{3}} \sin \left(rac{\sqrt{3}}{2} t
ight)
ight)$$

In alternate polar form

$$x(t) = \frac{2}{\sqrt{3}}e^{-\frac{t}{2}}\cos\left(\frac{\sqrt{3}}{2}t - \frac{\pi}{6}\right)$$

Where

$$A = \sqrt{1^2 + \left(\frac{1}{\sqrt{3}}\right)^2} = \frac{2}{\sqrt{3}} \quad \text{and} \quad \delta = \tan^{-1}\left(\frac{\frac{1}{\sqrt{3}}}{1}\right) = \frac{\pi}{6}$$

$$x(t) = \frac{2}{\sqrt{3}}e^{-\frac{t}{2}}\cos\left(\frac{\sqrt{3}}{2}t - \frac{\pi}{6}\right)$$

- time-varying amplitude $A(t) = \frac{2}{\sqrt{3}}e^{-\frac{t}{2}}$
- circular quasi-frequency $\omega_d = \frac{\sqrt{3}}{2}$
- natural quasi-frequency $f_d = \frac{\omega_d}{2\pi} = \frac{\sqrt{3}}{4\pi}$ hertz
- quasi-period $T_d = \frac{2\pi}{\omega_d} = \frac{4\pi}{\sqrt{3}}$ seconds
- phase-shift $\varphi = \frac{\delta}{\omega_d} = \frac{\pi}{3\sqrt{3}}$ rad per second

$$x(t) = \frac{2}{\sqrt{3}}e^{-\frac{t}{2}}\cos\left(\frac{\sqrt{3}}{2}t - \frac{\pi}{6}\right)$$

- time-varying amplitude $A(t) = \frac{2}{\sqrt{3}}e^{-\frac{t}{2}}$.
- circular quasi-frequency $\omega_d = \frac{\sqrt{3}}{2}$
- natural quasi-frequency $f_d = \frac{\omega_d}{2\pi} = \frac{\sqrt{3}}{4\pi}$ hertz
- quasi-period $T_d = \frac{2\pi}{\omega_d} = \frac{4\pi}{\sqrt{3}}$ seconds
- phase-shift $\varphi = \frac{\delta}{\omega_d} = \frac{\pi}{3\sqrt{3}}$ rad per second

$$x(t) = \frac{2}{\sqrt{3}}e^{-\frac{t}{2}}\cos\left(\frac{\sqrt{3}}{2}t - \frac{\pi}{6}\right)$$

- time-varying amplitude $A(t) = \frac{2}{\sqrt{3}}e^{-\frac{t}{2}}$.
- circular quasi-frequency $\omega_d = \frac{\sqrt{3}}{2}$
- natural quasi-frequency $f_d = \frac{\omega_d}{2\pi} = \frac{\sqrt{3}}{4\pi}$ hertz
- quasi-period $T_d = \frac{2\pi}{\omega_d} = \frac{4\pi}{\sqrt{3}}$ seconds
- phase-shift $\varphi = \frac{\sigma}{\omega_d} = \frac{\pi}{3\sqrt{3}}$ rad per second

$$x(t) = \frac{2}{\sqrt{3}}e^{-\frac{t}{2}}\cos\left(\frac{\sqrt{3}}{2}t - \frac{\pi}{6}\right)$$

- time-varying amplitude $A(t) = \frac{2}{\sqrt{3}}e^{-\frac{t}{2}}$.
- circular quasi-frequency $\omega_d = \frac{\sqrt{3}}{2}$
- natural quasi-frequency $f_d = \frac{\omega_d}{2\pi} = \frac{\sqrt{3}}{4\pi}$ hertz
- quasi-period $T_d = \frac{2\pi}{\omega_d} = \frac{4\pi}{\sqrt{3}}$ seconds
- phase-shift $\varphi = \frac{\delta}{\omega_d} = \frac{\pi}{3\sqrt{3}}$ rad per second

$$x(t) = \frac{2}{\sqrt{3}}e^{-\frac{t}{2}}\cos\left(\frac{\sqrt{3}}{2}t - \frac{\pi}{6}\right)$$

- time-varying amplitude $A(t) = \frac{2}{\sqrt{3}}e^{-\frac{t}{2}}$.
- circular quasi-frequency $\omega_d = \frac{\sqrt{3}}{2}$
- natural quasi-frequency $f_d = \frac{\omega_d}{2\pi} = \frac{\sqrt{3}}{4\pi}$ hertz
- quasi-period $T_d = \frac{2\pi}{\omega_d} = \frac{4\pi}{\sqrt{3}}$ seconds
- phase-shift $\varphi = \frac{\delta}{\omega_d} = \frac{\pi}{3\sqrt{3}}$ rad per second

$$x(t) = \frac{2}{\sqrt{3}}e^{-\frac{t}{2}}\cos\left(\frac{\sqrt{3}}{2}t - \frac{\pi}{6}\right)$$

- time-varying amplitude $A(t) = \frac{2}{\sqrt{3}}e^{-\frac{t}{2}}$.
- circular quasi-frequency $\omega_d = \frac{\sqrt{3}}{2}$
- natural quasi-frequency $f_d = \frac{\omega_d}{2\pi} = \frac{\sqrt{3}}{4\pi}$ hertz
- quasi-period $T_d = \frac{2\pi}{\omega_d} = \frac{4\pi}{\sqrt{3}}$ seconds
- phase-shift $\varphi = \frac{\delta}{\omega_d} = \frac{\pi}{3\sqrt{3}}$ rad per second

The vibration of a guitar string can be described as a damped oscillator.

The vibration of a guitar string can be described as a damped oscillator.

The motion of this spring is given by

$$\ddot{x} + \omega_0^2 x = 0$$

where ω_0 is the circular frequency at which the string vibrates. (In music, the frequency $f_0=\frac{\omega_o}{2\pi}$ is often used. A middle C has 512 vibrations per second.)

The vibration of a guitar string can be described as a damped oscillator.

The motion of this spring is given by

$$\ddot{x} + \omega_0^2 x = 0$$

where ω_0 is the circular frequency at which the string vibrates. (In music, the frequency $f_0=\frac{\omega_o}{2\pi}$ is often used. A middle C has 512 vibrations per second.)

Because there is no damping in this model, the sound will last forever.

The vibration of a guitar string can be described as a damped oscillator.

The motion of this spring is given by

$$\ddot{x} + \omega_0^2 x = 0$$

where ω_0 is the circular frequency at which the string vibrates. (In music, the frequency $f_0=\frac{\omega_o}{2\pi}$ is often used. A middle C has 512 vibrations per second.)

Because there is no damping in this model, the sound will last forever.

When a guitar string is plucked, it has the $x(0) = x_0$ and $\dot{x}(0) = 0$ for initial conditions.

The vibration of a guitar string can be described as a damped oscillator.

The motion of this spring is given by

$$\ddot{x} + \omega_0^2 x = 0$$

where ω_0 is the circular frequency at which the string vibrates. (In music, the frequency $f_0=\frac{\omega_o}{2\pi}$ is often used. A middle C has 512 vibrations per second.)

Because there is no damping in this model, the sound will last forever.

When a guitar string is plucked, it has the $x(0) = x_0$ and $\dot{x}(0) = 0$ for initial conditions.

Let use next consider a guitar string with damping.

Consider the underdamped guitar string

$$\ddot{x} + 2\dot{x} + 26x = 0$$

Consider the underdamped guitar string

$$\ddot{x} + 2\dot{x} + 26x = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 2r + 26$$

Consider the underdamped guitar string

$$\ddot{x} + 2\dot{x} + 26x = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 2r + 26$$

which has solutions $r=-1\pm 5i$. So $\alpha=-1$ and $\beta=5$.

Consider the underdamped guitar string

$$\ddot{x} + 2\dot{x} + 26x = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 2r + 26$$

which has solutions $r = -1 \pm 5i$. So $\alpha = -1$ and $\beta = 5$.

Thus, the general solution is

$$x(t) = e^{-t} (c_1 \cos(5t) + c_2 \sin(5t))$$

Consider the underdamped guitar string

$$\ddot{x} + 2\dot{x} + 26x = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 2r + 26$$

which has solutions $r = -1 \pm 5i$. So $\alpha = -1$ and $\beta = 5$.

Thus, the general solution is

$$x(t) = e^{-t} (c_1 \cos(5t) + c_2 \sin(5t))$$

If we pluck the string, which means x(0) = 5 and $\dot{x}(0) = 0$, we find that $c_1 = 5$ and $c_2 = 1$.

(a) Time Series

(b) Phase Portrait

Solutions to the Second-Order Linear DE with Constant Coefficients

The differential equation

$$ay'' + by' + cy = 0$$

has the characteristic equation

$$ar^2 + br + c = 0$$

The quadratic formula gives rise to three different general solutions, depending on the discriminant $\Delta = b^2 - 4ac$.

Characteristic Roots General Solution $\Delta > 0 \qquad r_1, r_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$ $\Delta = 0 \qquad r = -\frac{b}{2a} \qquad y = c_1 e^{rt} + c_2 t e^{rt}$ $\Delta < 0 \qquad r_1, r_2 = \alpha \pm \beta \qquad y = e^{\alpha t} \left(c_1 \cos \left(\beta t \right) + c_2 \sin \left(\beta t \right) \right)$ $\alpha = -\frac{b}{2a}, \ \beta = \frac{\sqrt{4ac - b^2}}{2a}$

Consider the fourth-order DE

$$\frac{d^4y}{dy^4} - 16y = 0$$

Consider the fourth-order DE

$$\frac{d^4y}{dy^4} - 16y = 0$$

$$0 = r^4 - 16$$

Consider the fourth-order DE

$$\frac{d^4y}{dy^4} - 16y = 0$$

$$0 = r^4 - 16 = (r^2 - 4)(r^2 + 4)$$

Consider the fourth-order DE

$$\frac{d^4y}{dy^4} - 16y = 0$$

$$0 = r4 - 16 = (r2 - 4)(r2 + 4) = (r + 2)(r - 2)(r2 + 4)$$

Consider the fourth-order DE

$$\frac{d^4y}{dy^4} - 16y = 0$$

It's characteristic equation is

$$0 = r4 - 16 = (r2 - 4)(r2 + 4) = (r + 2)(r - 2)(r2 + 4)$$

Which has the characteristic solutions

$$r_1 = 2$$
, $r_2 = -2$, $r_3 = 2i$, $r_4 = -2i$

Consider the fourth-order DE

$$\frac{d^4y}{dy^4} - 16y = 0$$

It's characteristic equation is

$$0 = r4 - 16 = (r2 - 4)(r2 + 4) = (r + 2)(r - 2)(r2 + 4)$$

Which has the characteristic solutions

$$r_1 = 2$$
, $r_2 = -2$, $r_3 = 2i$, $r_4 = -2i$

Thus, $\{e^{2t}, e^{-2t}, \cos(2t), \sin(2t)\}$ form a basis of \mathbb{S} and the general solution is

$$y = c_1 e^{2t} + c_2 e^{-2t} + c_3 \cos(2t) + c_4 \sin(2t)$$

Consider the third-order DE

$$y''' + y'' - 5y' + 3y = 0$$

Consider the third-order DE

$$y''' + y'' - 5y' + 3y = 0$$

$$0 = r^3 + r^2 - 5r + 3$$

Consider the third-order DE

$$y''' + y'' - 5y' + 3y = 0$$

$$0 = r^3 + r^2 - 5r + 3 = (r - 1)(r^2 + 2r - 3)$$

Consider the third-order DE

$$y''' + y'' - 5y' + 3y = 0$$

$$0 = r^3 + r^2 - 5r + 3 = (r - 1)(r^2 + 2r - 3) = (r - 1)^2(r + 3)$$

Consider the third-order DE

$$y''' + y'' - 5y' + 3y = 0$$

It's characteristic equation is

$$0 = r^3 + r^2 - 5r + 3 = (r - 1)(r^2 + 2r - 3) = (r - 1)^2(r + 3)$$

Which has the characteristic solutions

$$r_1 = 1, \quad r_2 = 1, \quad r_3 = -3$$

Consider the third-order DE

$$y''' + y'' - 5y' + 3y = 0$$

It's characteristic equation is

$$0 = r^3 + r^2 - 5r + 3 = (r - 1)(r^2 + 2r - 3) = (r - 1)^2(r + 3)$$

Which has the characteristic solutions

$$r_1 = 1, \quad r_2 = 1, \quad r_3 = -3$$

Thus, $\{e^t, te^t, e^{-3t}\}$ form a basis of $\mathbb S$ and the general solution is

$$y = c_1 e^t + c_2 t e^t + c_3 e^{-3t}$$

Consider the fifth-order DE

$$\frac{d^5y}{dt^5} + 3\frac{d^4y}{dt^4} + 3\frac{d^3y}{dt^3} + \frac{d^2y}{dt^2} = 0$$

Consider the fifth-order DE

$$\frac{d^5y}{dt^5} + 3\frac{d^4y}{dt^4} + 3\frac{d^3y}{dt^3} + \frac{d^2y}{dt^2} = 0$$

$$0 = r^5 + 3r^4 + 3r^3 + r^2$$

Consider the fifth-order DE

$$\frac{d^5y}{dt^5} + 3\frac{d^4y}{dt^4} + 3\frac{d^3y}{dt^3} + \frac{d^2y}{dt^2} = 0$$

$$0 = r^5 + 3r^4 + 3r^3 + r^2 = (r+1)^3 r^2$$

Consider the fifth-order DE

$$\frac{d^5y}{dt^5} + 3\frac{d^4y}{dt^4} + 3\frac{d^3y}{dt^3} + \frac{d^2y}{dt^2} = 0$$

It's characteristic equation is

$$0 = r^5 + 3r^4 + 3r^3 + r^2 = (r+1)^3 r^2$$

Which has the characteristic solutions

$$r_1 = -1$$
, $r_2 = -1$, $r_3 = -1$, $r_4 = 0$, $r_5 = 0$

Consider the fifth-order DE

$$\frac{d^5y}{dt^5} + 3\frac{d^4y}{dt^4} + 3\frac{d^3y}{dt^3} + \frac{d^2y}{dt^2} = 0$$

It's characteristic equation is

$$0 = r^5 + 3r^4 + 3r^3 + r^2 = (r+1)^3 r^2$$

Which has the characteristic solutions

$$r_1 = -1$$
, $r_2 = -1$, $r_3 = -1$, $r_4 = 0$, $r_5 = 0$

Thus, $\{e^{-t}, te^{-t}, t^2e^{-t}, 1, t\}$ form a basis of $\mathbb S$ and the general solution is

$$y = (c_1 + c_2t + c_3t^2)e^{-t} + (c_4 + c_5t)$$
for triple root
for double root

Consider the fourth-order DE

$$\frac{d^4y}{dt^4} + 8\frac{d^2y}{dt^2} + 16y = 0$$

Consider the fourth-order DE

$$\frac{d^4y}{dt^4} + 8\frac{d^2y}{dt^2} + 16y = 0$$

$$0 = r^4 + 8r^2 + 16$$

Consider the fourth-order DE

$$\frac{d^4y}{dt^4} + 8\frac{d^2y}{dt^2} + 16y = 0$$

$$0 = r^4 + 8r^2 + 16 = (r^2 + 4)^2$$

Consider the fourth-order DE

$$\frac{d^4y}{dt^4} + 8\frac{d^2y}{dt^2} + 16y = 0$$

It's characteristic equation is

$$0 = r^4 + 8r^2 + 16 = (r^2 + 4)^2$$

Which has the characteristic solutions

$$r_1 = 2i$$
, $r_2 = 2i$, $r_3 = -2i$, $r_4 = -2i$

Consider the fourth-order DE

$$\frac{d^4y}{dt^4} + 8\frac{d^2y}{dt^2} + 16y = 0$$

It's characteristic equation is

$$0 = r^4 + 8r^2 + 16 = (r^2 + 4)^2$$

Which has the characteristic solutions

$$r_1 = 2i$$
, $r_2 = 2i$, $r_3 = -2i$, $r_4 = -2i$

Thus, $\{\cos(2t), t\cos(2t), \sin(2t), t\sin(2t)\}\$ form a basis of \mathbb{S} and the general solution is

$$y = (c_1 + c_2 t) \cos(2t) + (c_3 + c_4 t) \sin(2t)$$
for double root
for double root