1

作業二

 $\mathbf{2}$

we need to proof that $d_v c \ge 4$, which means we must find a set of 4 inputs that can be shattered.

Consider 4 points are in the first quadrant in 2D space, which arranged in four corners of a rotated square.

3

Step1

First, we analyze the formula $h_{\alpha}(x) = sign(|\alpha x \mod 4 - 2| - 1)$ in the question.

For simplicity, we define sign(0) = -1. And we can get that: $h_{\alpha}(x) = \begin{cases} -1, & \text{when } 1 \leq \alpha x \mod 4 \leq 3 \\ 1, & \text{otherwise} \end{cases}$

Step2

Now we need to come up with the configurations of α and x. Suppose there are N points, $x_i = 4^i$ $(1 \le i \le N)$. So we need to construct 2^N kinds of α to satisfy all $\{+1, -1\}^N$ combinations.

We construct one of the α as follows:

$$\alpha_k$$
 is the kth alpha, $1 \leq k \leq 2^N$
$$\alpha_k = C_1 4^{-1} + C_2 4^{-2} + \cdots + C_N 4^{-N}$$

$$C_i = \{0,1\}, 1 \leq i \leq N$$

Let $T = (x_i \alpha_k) \mod 4$.

$$T = 4^{i}(C_{1}4^{-1} + C_{2}4^{-2} + \dots + C_{N}4^{-N}) \mod 4$$
$$= (C_{1}4^{i-1} + C_{2}4^{i-2} + \dots + C_{N}4^{i-N}) \mod 4$$
$$= C_{i} + C_{i+1}4^{-1} + \dots + C_{N}4^{i-N}$$

then we can reduce the formula about $h_{\alpha}(x)$ as follows,

$$h_{\alpha_k}(x_i) = sign(|\alpha_k x_i \mod 4 - 2| - 1)$$
$$= sign(|T - 2| - 1)$$

and we will get
$$h_{\alpha_k}(x_i) = \begin{cases} -1, & \text{when } 1 \leq T \leq 3 \\ 1, & \text{otherwise} \end{cases}$$

By the properties of the sum of geometric sequence, we know $\begin{cases} \text{ if } C_i = 1 \text{ then } 1 \leq T \leq \frac{4}{3} & \Rightarrow h_{\alpha_k}(x_i) = -1 \\ \text{ if } C_i = 0 \text{ then } 0 \leq T \leq \frac{1}{3} & \Rightarrow h_{\alpha_k}(x_i) = 1 \end{cases}$

Step3

For any finite N, we must find N inputs that we can shatter.

Let
$$X = \{x_i = 4^i\}$$
 and $Y \in \{0, 1\}^N$ for $1 \le i \le N$, then $\alpha = \sum_{i=1}^N C_i 4^{-i}$,
$$\begin{cases} C_i = 1, & \text{if } y_i = h_\alpha(x_i) = -1 \\ C_i = 0, & \text{if } y_i = h_\alpha(x_i) = 1 \end{cases}$$
Thus $d_{VC} = \infty$.

4

First, we assume that $d_{vc}(H_1 \cap H_2) = n$ and $d_{vc}(H_1) = m$, which means n inputs can be shattered by $H_1 \cap H_2$ and m inputs can be shattered by H_1 . Proof that $n \leq m$.

Prove by Contradiction.

Suppose that n > m.

Since n > m, by the definition of VC-Dimension, we know that n inputs can be shattered by $H_1 \cap H_2$ but cannot be shattered by H_1 .

However, $H_1 \cap H_2 \subseteq H_1$, the inputs shattered by $H_1 \cap H_2$ must also be shattered by H_1 , contradiction to the assumption. Therefore, we have proven that $n \leq m$, $d_{vc}(H_1 \cap H_2) \leq d_{vc}(H_1)$.

5

Since the intersection of H_1 and H_2 is all positive or all negetive. And we know $m_{H_1}(N) = m_{H_2}(N) = N + 1$.

$$m_{H_1 \cup H_2}(N) = m_{H_1}(N) + m_{H_2}(N) - m_{H_1 \cap H_2}(N)$$
$$= 2(N+1) - 2$$
$$= 2N.$$

when
$$N=2$$
, $m_{H_1\cup H_2}(N)=2N=4=2^2$.
when $N=3$, $m_{H_1\cup H_2}(N)=2N=6<2^3$. Thus, $d_{vc}(H_1\cup H_2)=2$

we know $h_{s,\theta}(x) = s \cdot sign(x - \theta)$ and f(x) = sign(x) + noise.

 $\mu = \text{average error rate } h(x) \neq f(x) = \text{average false accept and false reject}$.

$$\mu = \frac{\textit{green part}}{\textit{yellow part} + \textit{green part}}$$

when s=1 $h_{s,\theta}(x) = sign(x-\theta)$ f'(x) = sign(x) $h_{s,\theta}(x) = -sign(x-\theta)$ f'(x) = sign(x) $\frac{\theta}{-1}$ -1 0 1 $\mu = \frac{|\theta|}{2}$ $\mu = \frac{(2-|\theta|)}{2} = 1 - \frac{|\theta|}{2}$

we can make a small conclusion by eliminating the noise factor (20 percent flip) first.

$$\mu = \begin{cases} \frac{|\theta|}{2}, & \text{when } s = 1\\ 1 - \frac{|\theta|}{2}, & \text{when } s = -1 \end{cases}$$

Combine the two cases above, we have $\mu = \frac{s(|\theta|-1)+1}{2}$.

By Problime 1 in coursera, we know $E_{out}(h_s;\theta) = \lambda \mu + (1-\lambda)(1-\mu)$. λ is rate of case with no noise.

$$E_{out}(h_s; \theta) = P[\text{no flip}]P[h(x) \neq f(x)] + P[\text{ flip }]P[h(x) = f(x)]$$

$$= \lambda \mu + (1 - \lambda)(1 - \mu)$$

$$= 0.8\mu + 0.2(1 - \mu)$$

$$= 0.2 + 0.6\mu$$

$$= 0.2 + 0.6(\frac{s(|\theta| - 1) + 1}{2})$$

$$= 0.5 + 0.3s(|\theta| - 1)$$

The average of $E_{in}-E_{out}$ falls around -0.089, and the range of $E_{in}-E_{out}$ is actually -0.5 to 0.2.

8

The average of $E_{in}-E_{out}$ falls around -0.0008, and the range of $E_{in}-E_{out}$ is actually -0.03 to 0.03.

Compared with the previous case, $|E_{in} - E_{out}|$ becomes smaller with bigger datasize.

And the distribution of 1000 times experiment with 2000 data is more like a normal distribution whose mean is closer to 0.

Consider the "simplified decision trees" hypothesis set on \mathbb{R}^d , which is given by

$$H = \{h_{t,s} | h_{t,s}(x) = 2[[v \in S]] - 1, \text{ where } v_i = [[x_i > t_i]],$$

$$\mathbf{S} \text{ a collection of vectors in } \{0, 1\}^d, \mathbf{t} \in \mathbb{R}^d\}$$

By the definition of H, we know that $v_i = \begin{cases} 1, & \text{when } x_i > t_i \\ 0, & \text{when } x_i \le t_i \end{cases}$ Each t_i can divide the space into two part.

Therefore if there are d dimension in the space, we can divide the space into 2^d different regoins.

If there are more than 2^d points in the space, it must exist two points in the space belong to the same separated region, we can't assign these two points to different regions.

For example when d = 2. There are 5 points in the space. Always more than 1 points in one of the regions. Suppose p_4 and p_5 in the same region, then the following cases can't appear at the same time.

$$(p_1, p_2, p_3, p_4, p_5)$$

 $(+, -, -, +, +)$
 $(+, -, -, +, -)$

Thus, we can know that the VC-dimension of the "simplified decision trees" hypothesis set is 2^d .