ASSIGNMENT 5 - EMR

NA	ME: _		_	MARK:	/50_		
1.	An industrial process uses a large commercial CO_2 laser for cutting steel plate. The laser has a power of 6.0×10^2 W and produces infra-red radiation of wavelength 10.6 μ m.						
	a)	What is the photon energy at	that wavelength?		[3 marks]		
	b)	How many photons are release	sed each second?		[1 mark]		
2.	Nickel sulfate-6-water (NiSO ₄ ·6H ₂ O) is soluble in water and forms a green solution. Cobalt sulphate-7-water (CoSO ₄ ·7H ₂ O) is also water soluble forming a red solution.						
	a) Explain the physics behind how the green colour is produced from the nickel s						
		water.			[2 marks]		
	b) If a solution of nickel sulfate and cobalt sulphate is prepared, what colour work have? Explain. (No chemical reaction takes place)						
3.	met	Ceara and Tito repeated the photoelectric effect experiment, by shining a light on a clean metal surface, and measuring the maximum kinetic energy of the photoelectrons. They obtained the following results:					
		Frequency (10 ¹⁴ Hz)	Max Kinetic Energy (eV)				
		8.24	1.90				
		7.81	1.61				
		7.16	1.17				
		6.45	0.69				
	a)	5.96 Plot an appropriate graph of	this data on graph paper.	_	[6 marks]		
	b)	What is the threshold frequen	ncy of the metal?		[1 mark]		
	c)	What is the work function of	Sthis metal?		[2 marks]		

4. The diagram below shows the energy levels for a hydrogen atom.

- a) The Balmer series of emission lines occurs mainly in the visible spectrum. Would the Lyman series be found in the infra-red or ultra-violet region of the spectrum? Explain your answer. [2 marks]
- b) The longest wavelength in the Paschen series would be produced by hydrogen atoms changing from the n=a level to the n=b level.

 What are the values for a and b? [2 marks]
- c) What is the energy of the photons giving rise to the second longest wavelength of the Balmer series? [3 marks]
- d) A line in the spectrum of hydrogen has a wavelength of 1.88 μm. Is it a member of the Lyman, Balmer or Paschen series? Explain your answer. [4 marks]
- 5. Electrons fired at the screen of a colour television cause it to emit light of different colours.
 - a) Explain how the electrons can cause light to be emitted.

[3 marks]

b) What determines the different colours of the light?

[2 marks]

	6.	Expl them	ain the phenomena called fluorescence and phosphorescence and the difference.	es between [3 marks]
	7	Ī., .	antain V nov concretor a valtage of 52000 V is used	
	7.	a)	certain X-ray generator, a voltage of 52000 V is used. Explain how a simplified X-ray generator works (a diagram will be necessary	v). [6 marks]
		b)	What is the highest energy that the X-rays have in this situation?	[1 mark]
		c)	Sketch a graph showing the intensity of X-rays versus wavelength and label a relevant features.	all the [4 marks]
		d)	Determine the minimum wavelength of X-rays that will be observed.	[3 marks]
•				
•				

```
ASSIGNMENT 5 - EMR - SOLUTIONS.
         (a) \lambda = 10.6 \mu m = 1.06 \cdot 10^{-5} m (1)
                 c = f \lambda
f = \frac{c}{\lambda} = 2.83 \times 10^{13} \text{ Hz}
                E=hf = 1.88x10-20 J.
                                                       (I)
     (b) P = 600 W = 600 Js-1
              N = \frac{E_{TOTAL}}{E_{*}} = \frac{600 \text{ J}}{1.81 \times 10^{20} \text{ J}} = 3.2 \times 10^{22} \text{ PHOTON S}^{-1}. \quad (1)
2.) (a)
               - ABSORFTION SPECTRA
               - ALL COLOURS (RED, ORANGE, YELLOW, BLUE, VIOLET)
                 EXCEPT GREEN ABSORBED - SO MAINLY GREEN TRANSMITTED
      (b)
              DARK - BLACK/BROWN
              - COSO, ABSORBS ALL BUT RED, NISO, ALL BUT GREEN,
               HENCE ALL COLOURS ARE ABSORBED
   (a) PLOT - AXES LAGELLED - LINE OF BEST FIT
                      - APPROPRIATE SCALES - X - INTERCEPT
        (1 MARK EACH) - POINTS PLOTTED - Y-INTERCEPT SHOWN
        (b) FROM GRAPH ~ 5.5 x 10 HZ
       (C) FROM GRAPH - Y-INTERCEPT IS ~ -3.65 eV (1)
                         HENCE W = +3.65eV.
```

4.) (a) <u>(ı)</u> - UV - PHOTONS HAVE MORE ENERGY, HENCE HIGHER J. (OR CALCULATIONS OK) (G) 2 MARKS (1 MARK IF REVERSED) a = 41 = 3 (c) 2 ND LONGEST & 15 2 ND SMALLEST DE HENCE n=4 TO n=2 $\Delta E = -0.85 - (-3.4)$ = +2.55 eV. (\prime) (d) λ = 1.88×10 m <u>/I)</u> $f = \frac{c}{\lambda} = 1.60 \times 10^{14} Hz$ E=hf = 1.06x10-17 OR 0.66 eV (i)HENCE PASCHEN (FROM GIAGRAM) (i)(a)- ELECTRONS COLLIDE WITH PHOSPHOR MATERIALS ON SCREEN - PHOSPHOR ELECTRONS GAIN ENERGY (EXCITED) - THESE ELECTRONS EMIT PHOTONS (LIGHT) WHEN RETURNING TO GROUND STATE, (e) - THE AE OF ELECTRON ENERGY LEVELS THESE DEPEND ON THE TYPE OF MATERIALS (PHOSPHORS) - FLUORESCENCE & P ARISE FROM EXCITATION OF ELECTRONS TO VARIOUS UPPER ENERGY LEVELS, WHICH QUICKLY LECAY TO A PARTICULAR UPPER ENERGY LEVEL THEN A PHOTON IS EMITTED WHEN RETURNING TO GROWN STATE (WHICH IS LESS ENERGY THAN INITIAL EXCITATION ENERGY) - DIFFERENCE IS THAT F IS ALMOST IMMEDIATE (MCROSECONDS) WHILE P OCCURS OVER A LONGER TIME PERIOD

(a) - STAGRAM SHOWING (UP TO 3 MARKS - LOW VOLTAGE FILAMENT CATHOLE FOR SIAGRAM) - HIGH VOLTAGE BTWN ELECTROSES - METAL ANOLE (UP TO 3 MARKS) OPERATION - HOT' ELECTRONS ACCELERATED FROM FIXAMENT TO ANOLE BY HIGH V. - ELECTROINS SLOW DOWN WHEN REFELLED BY ELECTRONS IN METAL ANOLE - KNERGY LOSS IS BY EMISSION OF A PHOTON (X-RAY) (b) $E = 52000 \times 1.6 \times 10^{-19}$ $= 8.3 \times 10^{-15} \text{ T}$ (1) OR E = 52000 eV. (c) 1 - FOR GRAPH 1 - FOR LASELLES AXES INTENSITY 1 - 2 mm 1 - SPIKES AMIN CORRESPONDS TO EMAN E = 52000 eV = 8.3×10-15 J $\lambda_{\text{min}} = \frac{hc}{E_{\text{min}}} = 2.4 \times 10^{-11} \text{m}.$