Optimum Array Processing

Optimum Array Processing

Part IV of Detection, Estimation, and Modulation Theory

Harry L. Van Trees

A JOHN WILEY & SONS, INC., PUBLICATION

Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration.

Copyright © 2002 by John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ@WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought.

ISBN 0-471-22110-4

This title is also available in print as ISBN 0-471-09390-4.

For more information about Wiley products, visit our web site at www.Wiley.com.

To Diane

For her continuing support and encouragement during the many years that this book was discussed, researched, and finally written. More importantly, for her loyalty, love, and understanding during a sequence of challenging periods,

and to

Professor Wilbur Davenport, whose book introduced me to random processes and who was a mentor, friend, and supporter during my career at Massachusetts Institute of Technology.

Contents

Pr	Preface						
1	Intr	Introduction					
	1.1	Array Processing					
	1.2	Applications					
		1.2.1 Radar					
		1.2.2 Radio Astronomy					
		1.2.3 Sonar					
		1.2.4 Communications					
		1.2.5 Direction Finding					
		1.2.6 Seismology					
		1.2.7 Tomography					
		1.2.8 Array Processing Literature					
	1.3	Organization of the Book					
	1.4	Interactive Study					
2	Arr	ays and Spatial Filters 17					
	2.1	Introduction					
	2.2	Frequency-wavenumber Response and Beam Patterns 23					
	2.3	Uniform Linear Arrays					
	2.4	Uniformly Weighted Linear Arrays					
		2.4.1 Beam Pattern Parameters					
	2.5	Array Steering					
	2.6	Array Performance Measures					
	2.0	2.6.1 Directivity					
		2.6.2 Array Gain vs. Spatially White Noise (A_w) 65					
		2.6.3 Sensitivity and the Tolerance Factor					
		2.6.4 Summary					
	2.7	Linear Apertures					

viii Contents

		2.7.1	Frequency-wavenumber Response 71	
		2.7.2	Aperture Sampling	Ł
	2.8	Non-iso	otropic Element Patterns)
	2.9	Summa	ry	3
•	2.10	Proble	ms)
3	Syn	thesis	of Linear Arrays and Apertures 90)
	3.1	Spectra	al Weighting	j
	3.2	Array 1	Polynomials and the $m{z}$ -Transform 109)
		3.2.1	<i>z</i> -Transform)
		3.2.2	Real Array Weights)
		3.2.3	Properties of the Beam Pattern Near a Zero 114	l
	3.3	Pattern	Sampling in Wavenumber Space	3
		3.3.1	Continuous Aperture	3
		3.3.2	Linear Arrays)
		3.3.3	Discrete Fourier Transform	2
		3.3.4	Norms	3
		3.3.5	Summary	3
	3.4	Minim	um Beamwidth for Specified Sidelobe Level 128	3
		3.4.1	Introduction	3
		3.4.2	Dolph-Chebychev Arrays)
		3.4.3	Taylor Distribution	3
		3.4.4	Villeneuve \bar{n} Distribution	7
	3.5	Least S	Squares Error Pattern Synthesis 149)
	3.6	Minim	ax Design	3
		3.6.1	Alternation Theorem)
		3.6.2	Parks-McClellan-Rabiner Algorithm 160)
		3.6.3	Summary	3
	3.7	Null St	teering	5
		3.7.1	Null Constraints	5
		3.7.2	Least Squares Error Pattern Synthesis with Nulls 16	6
	3.8	Asymn	netric Beams	3
	3.9	Spatia	lly Non-uniform Linear Arrays	3
		3.9.1	Introduction	8
		3.9.2	Minimum Redundancy Arrays 179	9
		3.9.3	Beam Pattern Design Algorithm	3
	3.10	Beams	pace Processing	2
		3.10.1	Full-dimension Beamspace	2
		3.10.2	Reduced-dimension Beamspace 19	3
		3.10.3	Multiple Beam Antennas	0

Contents ix

		3.10.4	Summary
	3.11		pand Arrays
	3.12	Summa	ary
			ms
4	Pla	nar Ar	rays and Apertures 231
	4.1	Rectan	gular Arrays
		4.1.1	Uniform Rectangular Arrays 233
		4.1.2	Array Manifold Vector
		4.1.3	Separable Spectral Weightings
		4.1.4	2-D z-Transforms
		4.1.5	Least Squares Synthesis
		4.1.6	Circularly Symmetric Weighting and Windows 259
		4.1.7	Wavenumber Sampling and 2-D DFT 260
		4.1.8	Transformations from One Dimension to Two Dimen-
			sions
		4.1.9	Null Steering
		4.1.10	Related Topics
	4.2		ar Arrays
		4.2.1	Continuous Circular Arrays (Ring Apertures) 275
		4.2.2	Circular Arrays
		4.2.3	Phase Mode Excitation Beamformers 284
	4.3	Circul	ar Apertures
		4.3.1	Separable Weightings
		4.3.2	Taylor Synthesis for Circular Apertures 294
		4.3.3	Sampling the Continuous Distribution 298
		4.3.4	Difference Beams
		4.3.5	Summary
	4.4		onal Arrays
		4.4.1	Introduction
		4.4.2	Beam Pattern Design
		4.4.3	Hexagonal Grid to Rectangular Grid Transformation . 314
		4.4.4	Summary
	4.5		anar Arrays
	2.0	4.5.1	Cylindrical Arrays
		4.5.2	Spherical Arrays
	4.6		nary
			ems

x Contents

5	Cha	racteri	ization of Space-time Processes	332
	5.1	Introd	uction	332
	5.2	Snapsh	not Models	333
		5.2.1	Frequency-domain Snapshot Models	334
		5.2.2	Narrowband Time-domain Snapshot Models	349
		5.2.3	Summary	. 352
	5.3	Space-	time Random Processes	. 353
		5.3.1	Second-moment Characterization	. 353
		5.3.2	Gaussian Space-time Processes	. 359
		5.3.3	Plane Waves Propagating in Three Dimensions	. 361
		5.3.4	1-D and 2-D Projections	. 365
	5.4	Arrays	s and Apertures	. 369
		5.4.1	Arrays	. 369
		5.4.2	Apertures	. 374
	5.5	Orthog	gonal Expansions	. 375
		5.5.1	Plane-wave Signals	
		5.5.2	Spatially Spread Signals	. 385
		5.5.3	Frequency-spread Signals	
		5.5.4	Closely Spaced Signals	. 393
		5.5.5	Beamspace Processors	
		5.5.6	Subspaces for Spatially Spread Signals	. 394
	5.6	Param	netric Wavenumber Models	. 394
		5.6.1	Rational Transfer Function Models	
		5.6.2	Model Relationships	. 407
		5.6.3	Observation Noise	. 408
		5.6.4	Summary	. 414
	5.7	Summ	iary	
	5.8	Proble	ems	. 415
6	Opt	timum	Waveform Estimation	428
	6.1		luction	. 428
	6.2		num Beamformers	
	,	6.2.1		
			Beamformers	
		6.2.2	Minimum Mean-Square Error (MMSE) Estimators .	
		6.2.3	Maximum Signal-to-Noise Ratio (SNR)	
		6.2.4	Minimum Power Distortionless Response (MPDR) Bea	
		J 1	formers	
		6.2.5	Summary	
	6.3		ete Interference	

Contents xi

	6.3.1	Single Plane-wave Interfering Signal	453
	6.3.2	eq:Multiple Plane-wave Interferers	465
	6.3.3	Summary: Discrete Interference	471
6.4	Spatial	lly Spread Interference	473
	6.4.1	Physical Noise Models	
	6.4.2	ARMA Models	474
6.5	Multip	le Plane-wave Signals	477
	6.5.1	MVDR Beamformer	477
	6.5.2	MMSE Processors	485
6.6	Misma	tched MVDR and MPDR Beamformers	488
	6.6.1	$Introduction \dots $	488
	6.6.2	DOA Mismatch	490
	6.6.3	Array Perturbations	501
	6.6.4	Diagonal Loading	505
	6.6.5	Summary	510
6.7	LCMV	and LCMP Beamformers	513
	6.7.1	Typical Constraints	514
	6.7.2	Optimum LCMV and LCMP Beamformers	526
	6.7.3	Generalized Sidelobe Cancellers	528
	6.7.4	Performance of LCMV and LCMP Beamformers $\ .$	532
	6.7.5	Quiescent Pattern (QP) Constraints	547
	6.7.6	Covariance Augmentation	554
	6.7.7	Summary	555
6.8	Eigenv	ector Beamformers	556
	6.8.1	Principal-component (PC) Beamformers	560
	6.8.2	Cross-spectral Eigenspace Beamformers	567
	6.8.3	Dominant-mode Rejection Beamformers	569
	6.8.4	Summary	573
6.9	Beams	pace Beamformers	575
	6.9.1	Beamspace MPDR	576
	6.9.2	Beamspace LCMP	583
	6.9.3	Summary: Beamspace Optimum Processors	585
6.10	Quadra	atically Constrained Beamformers	585
6.11	Soft-co	onstraint Beamformers	593
6.12	Beamfe	orming for Correlated Signal and Interferences	599
		Introduction	
	6.12.2	MPDR Beamformer: Correlated Signals and Interference	e600
		MMSE Beamformer: Correlated Signals and Interference	
	6.12.4	Spatial Smoothing and Forward–Backward Averaging	605
	6.12.5	Summary	620

xii Contents

	6.13	Broadl	band Beamformers
		6.13.1	Introduction
		6.13.2	DFT Beamformers
		6.13.3	Finite impulse response (FIR) Beamformers 647
		6.13.4	Summary: Broadband Processing 664
	6.14	Summ	ary
	6.15	Proble	ms
7	Ada	ptive 1	Beamformers 710
	7.1		uction
	7.2	Estima	ation of Spatial Spectral Matrices 712
		7.2.1	Sample Spectral Matrices
		7.2.2	Asymptotic Behavior
		7.2.3	Forward-Backward Averaging 718
		7.2.4	Structured Spectral Matrix Estimation 726
		7.2.5	Parametric Spatial Spectral Matrix Estimation 726
		7.2.6	Singular Value Decomposition
		7.2.7	Summary
	7.3	Sampl	e Matrix Inversion (SMI)
		7.3.1	$SINR_{smi}$ Behavior: MVDR and MPDR 731
		7.3.2	LCMV and LCMP Beamformers 739
		7.3.3	Fixed Diagonal Loading
		7.3.4	Toeplitz Estimators
		7.3.5	Summary
	7.4	Recurs	sive Least Squares (RLS)
		7.4.1	Least Squares Formulation
		7.4.2	Recursive Implementation
		7.4.3	Recursive Implementation of LSE Beamformer 763
		7.4.4	Generalized Sidelobe Canceller 766
		7.4.5	Quadratically Constrained RLS 768
		7.4.6	Conjugate Symmetric Beamformers
		7.4.7	Summary
	7.5	Efficie	nt Recursive Implementation Algorithms 778
		7.5.1	Introduction
		7.5.2	QR Decomposition (QRD) 779
	7.6	Gradie	ent Algorithms
		7.6.1	Introduction
		7.6.2	Steepest Descent: MMSE Beamformers 791
		7.6.3	Steepest Decent: LCMP Beamformer 799
		7.6.4	Summary

Contents xiii

	7.7	LMS A	Algorithms	į
		7.7.1	Derivation of the LMS Algorithms 806	;
		7.7.2	Performance of the LMS Algorithms 813	}
		7.7.3	LMS Algorithm Behavior 817	
		7.7.4	Quadratic Constraints)
		7.7.5	Summary: LMS algorithms 826	
	7.8	Detect	ion of Signal Subspace Dimension 827	7
		7.8.1	Detection Algorithms 828	3
		7.8.2	Eigenvector Detection Tests 841	
	7.9	Eigens	pace and DMR Beamformers 845	ó
		7.9.1	Performance of SMI Eigenspace Beamformers 846	
		7.9.2	Eigenspace and DMR Beamformers: Detection of Sub-	
			space Dimension)
		7.9.3	Subspace tracking)
		7.9.4	Summary	3
	7.10	Beams	pace Beamformers	1
		7.10.1	Beamspace SMI 865	ó
		7.10.2	Beamspace RLS)
			Beamspace LMS	
		7.10.4	Summary: Adaptive Beamspace Processing 873	3
	7.11		band Beamformers	
			SMI Implementation	
			LMS Implementation	
			GSC: Multichannel Lattice Filters 884	
			Summary	
			ary	
	7.13	Proble	ems	7
0	D	. .	Estimation I: Maximum Likelihood 917	7
8				
	8.1 8.2		uction	
	0.4	8.2.1	Maximum Likelihood (ML) Estimator	
		•	Maximum a posteriori (MAP) Estimator 924	
		8.2.2	Cramér-Rao Bounds	
	0.0	8.2.3	eter Estimation Model	
	8.3			
		8.3.1	Multiple Plane Waves	
		8.3.2		
		8.3.3	J I G	
	0.4	8.3.4	Summary	
	8.4	Cramé	ér-Rao Bounds	Ó

xiv Contents

	8.4.1	Gaussian Model: Unknown Signal Spectrum	939
	8.4.2	Gaussian Model: Uncorrelated Signals with Unknown	
		Power	958
	8.4.3	Gaussian Model: Known Signal Spectrum	967
	8.4.4	Nonrandom (Conditional) Signal Model	971
	8.4.5	Known Signal Waveforms	978
	8.4.6	Summary	980
8.5	Maxim	num Likelihood Estimation	
	8.5.1	Maximum Likelihood Estimation	
	8.5.2	Conditional Maximum Likelihood Estimators	
	8.5.3	Weighted Subspace Fitting	
	8.5.4	Asymptotic Performance	
	8.5.5	Wideband Signals	
	8.5.6	Summary	
8.6		atational Algorithms	
0.0	8.6.1	Optimization Techniques	
	8.6.2	Alternating Maximization Algorithms	
	8.6.3	Expectation Maximization Algorithm	1031
	8.6.4	Summary	
8.7	-	omial Parameterization	
0.1	8.7.1	Polynomial Parameterization	1038
	8.7.2	Iterative Quadratic Maximum Likelihood (IQML)	
	8.7.3	Polynomial WSF (MODE)	
	8.7.4	Summary	
8.8		ion of Number of Signals	
8.9		lly Spread Signals	
0.9	8.9.1	Parameterized $S(\theta,\phi)$	
	8.9.2	Spatial ARMA Process	
	8.9.3	Summary	
0.10		space algorithms	
8.10		Introduction	
		Beamspace Matrices	
		Beamspace Cramér-Rao Bound	
		Beamspace Maximum Likelihood	1081
		Summary	1088
8.11		ivity, Robustness, and Calibration	1088
	8.11.1		1089
	8.11.2	Cramér-Rao Bounds	
		Sensitivity of ML Estimators	
	8 11.4	MAP Joint Estimation	-1099

Contents

		8.11.5	Self-Calibration Algorithms
			Summary
	8.12		ary
			Major Results
			Related Topics
		8.12.3	Algorithm complexity
	8.13	Proble	ems
9	Para	ameter	Estimation II 1139
	9.1		uction
	9.2	Quadr	atic Algorithms
		9.2.1	Introduction
		9.2.2	Beamscan Algorithms
		9.2.3	MVDR (Capon) Algorithm
		9.2.4	Root Versions of Quadratic Algorithms
		9.2.5	Performance of MVDR Algorithms
		9.2.6	Summary
	9.3	Subsp	ace Algorithms
		9.3.1	Introduction
		9.3.2	MUSIC
		9.3.3	Minimum-Norm Algorithm
		9.3.4	ESPRIT
		9.3.5	Algorithm Comparison
		9.3.6	Summary
	9.4	Linear	Prediction
	9.5	Asym	ptotic Performance
		9.5.1	
		9.5.2	Resolution of MUSIC and Min-Norm
		9.5.3	Small Error Behavior of Algorithms 1211
		9.5.4	Summary
	9.6	Correl	lated and Coherent Signals
		9.6.1	Introduction
		9.6.2	Forward-Backward Spatial Smoothing 1235
		9.6.3	Summary
	9.7	Beam	space Algorithms
		9.7.1	Beamspace MUSIC
		9.7.2	Beamspace Unitary ESPRIT
		9.7.3	Beamspace Summary
	9.8	Sensit	nivity and Robustness
	9.9	Plana	r Arrays

xvi Contents

		9.9.1	Standard Rectangular Arrays	55
		9.9.2	Hexagonal Arrays	72
		9.9.3	Summary: Planar Arrays	79
	9.10	Summa	ry	79
			Major Results	
		9.10.2	Related Topics	82
			Discussion	85
	9.11	Problem		
10	Dot	action of	and Other Topics 131	8
10			im Detection	
	10.1		Classic Binary Detection	
			Matched Subspace Detector	
			Spatially Spread Gaussian Signal Processes	
			Space.	
	100		Adaptive Detection	
	10.2	Related	d Topics	20
			ıe	
	10.4	Problei	ms	29
A	Mat		erations 134	
	A.1		action	
	A.2		Definitions and Properties	
		A.2.1	Basic Definitions	
		A.2.2	Matrix Inverses	
		A.2.3	Quadratic Forms	
		A.2.4	Partitioned Matrices	
		A.2.5	Matrix products	
		A.2.6	Matrix Inequalities	
	A.3	Special	t vocation wild interest to the terms of the	356
		A.3.1	Elementary Vectors and Matrices	
		A.3.2	The $vec(\mathbf{A})$ matrix	358
		A.3.3	Diagonal Matrices	
		A.3.4	Exchange Matrix and Conjugate Symmetric Vectors . 13	361
		A.3.5	Persymmetric and Centrohermitian Matrices 13	362
		A.3.6	100pinz dia 12dino 13dino	364
		A.3.7		365
		A.3.8	11141164141 11141111111	366
		A.3.9	Cintary and Control	367
		A.3.10	Validor Información de la constante de la cons	368
		A 3 11	Projection Matrices	369

xvii

	A.3.12 Generalized Inverse	. 1370
A.4	Eigensystems	. 1372
	A.4.1 Eigendecomposition	. 1372
	A.4.2 Special Matrices	
A.5	Singular Value Decomposition	. 1381
A.6	QR Decomposition	
	A.6.1 Introduction	
	A.6.2 QR Decomposition	. 1388
	A.6.3 Givens Rotation	
	A.6.4 Householder Transformation	. 1394
A.7	Derivative Operations	. 1397
	A.7.1 Derivative of Scalar with Respect to Vector	
	A.7.2 Derivative of Scalar with Respect to Matrix	. 1399
	A.7.3 Derivatives with Respect to Parameter	. 1401
	A.7.4 Complex Gradients	. 1402
B Arr	ay Processing Literature	1407
B.1	Journals	. 1407
B.2	Books	
B.3	Duality	
C Not	cation	1414
C.1	Conventions	. 1414
C.2	Acronyms	
C.3	Mathematical Symbols	. 1418
C.4		
0.4	Symbols	
Index		1434

Preface

Array processing has played an important role in many diverse application areas. Most modern radar and sonar systems rely on antenna arrays or hydrophone arrays as an essential component of the system. Many communication systems utilize phased arrays or multiple beam antennas to achieve their performance objectives. Seismic arrays are widely used for oil exploration and detection of underground nuclear tests. Various medical diagnosis and treatment techniques exploit arrays. Radio astronomy utilizes very large antenna arrays to achieve resolution goals. It appears that the third generation of wireless systems will utilize adaptive array processing to achieve the desired system capacity. We discuss various applications in Chapter 1.

My interest in optimum array processing started in 1963 when I was an Assistant Professor at M.I.T. and consulting with Arthur D. Little on a sonar project for the U.S. Navy. I derived the optimum processor for detecting Gaussian plane-wave signals in Gaussian noise [VT66a], [VT66b]. It turned out that Bryn [Bry62] had published this result previously (see also Vanderkulk [Van63]). My work in array processing decreased as I spent more time in the general area of detection, estimation, and modulation theory.

In 1968, Part I of Detection, Estimation, and Modulation Theory [VT68] was published. It turned out to be a reasonably successful book that has been widely used by several generations of engineers. Parts II and III ([VT71a], [VT71b]) were published in 1971 and focused on specific application areas such as analog modulation, Gaussian signals and noise, and the radar-sonar problem. Part II had a short life span due to the shift from analog modulation to digital modulation. Part III is still widely used as a reference and as a supplementary text. In a moment of youthful optimism, I indicated in the Preface to Part III and in Chapter III-14 that a short monograph on optimum array processing would be published in 1971. The bibliography lists it as a reference, (Optimum Array Processing, Wiley, 1971), which has been subsequently cited by several authors. Unpublished class notes [VT69] contained much of the planned material. In a very loose sense, this text is

the extrapolation of that monograph.

Throughout the text, there are references to Parts I and III of *Detection*, *Estimation*, and *Modulation Theory*. The referenced material is available in several other books, but I am most familiar with my own work. Wiley has republished Parts I and III [VT01a], [VT01b] in paperback in conjunction with the publication of this book so the material will be readily available.

A few comments on my career may help explain the thirty-year delay. In 1972, M.I.T. loaned me to the Defense Communications Agency in Washington, D.C., where I spent three years as the Chief Scientist and the Associate Director for Technology. At the end of this tour, I decided for personal reasons to stay in the Washington, D.C., area. I spent three years as an Assistant Vice-President at COMSAT where my group did the advanced planning for the INTELSAT satellites. In 1978, I became the Chief Scientist of the United States Air Force. In 1979, Dr.Gerald Dinneen, the former director of Lincoln Laboratories, was serving as Assistant Secretary of Defense for C³I. He asked me to become his Principal Deputy and I spent two years in that position. In 1981, I joined M/A-COM Linkabit. Linkabit is the company that Irwin Jacobs and Andrew Viterbi started in 1969 and sold to M/A-COM in 1979. I started an Eastern operations, which grew to about 200 people in three years. After Irwin and Andy left M/A-COM and started Qualcomm, I was responsible for the government operations in San Diego as well as Washington, D.C. In 1988, M/A-COM sold the division. At that point I decided to return to the academic world.

I joined George Mason University in September of 1988. One of my priorities was to finish the book on optimum array processing. However, I found that I needed to build up a research center in order to attract young research-oriented faculty and doctoral students. This process took about six years. The C³I Center of Excellence in Command, Control, Communications, and Intelligence has been very successful and has generated over \$30 million in research funding during its existence. During this growth period, I spent some time on array processing, but a concentrated effort was not possible.

The basic problem in writing a text on optimum array processing is that, in the past three decades, enormous progress had been made in the array processing area by a number of outstanding researchers. In addition, increased computational power had resulted in many practical applications of optimum algorithms. Professor Arthur Baggeroer of M.I.T. is one of the leading contributors to array processing in the sonar area. I convinced Arthur, who had done his doctoral thesis with me in 1969, to co-author the optimum array processing book with me. We jointly developed a comprehensive out-

Preface xxi

line. After several years it became apparent that the geographical distance and Arthur's significant other commitments would make a joint authorship difficult and we agreed that I would proceed by myself. Although the final outline has about a 0.25 correlation with the original outline, Arthur's collaboration in structuring the original outline and commenting on the results have played an important role in the process.

In 1995, I took a sabbatical leave and spent the year writing the first draft. I taught a one-year graduate course using the first draft in the 1996–1997 academic year. A second draft was used in the 1997–1998 academic year. A third draft was used by Professor Kristine Bell in the 1998–1999 academic year. Unlike the M.I.T. environment where I typically had 40–50 graduate students in my detection and estimation classes, our typical enrollment has been 8–10 students per class. However, many of these students were actively working in the array processing area and have offered constructive suggestions.

The book is designed to provide a comprehensive introduction to optimum array processing for students and practicing engineers. It will prepare the students to do research in the array processing area or to implement actual array processing systems. The book should also be useful to people doing current research in the field. We assume a background in probability theory and random processes. We assume that the reader is familiar with Part I of Detection, Estimation, and Modulation Theory [VT68], [VT01a] and parts of Part III [VT71b], [VT01b]. The first use of [VT68], [VT01a] is in Chapter 5, so that a detection theory course could be taken at the same time. We also assume some background in matrix theory and linear algebra. The book emphasizes the ability to work problems, and competency in MATLAB® is essential.

The final product has grown from a short monograph to a lengthy text. Our experience is that, if the students have the correct background and motivation, we can cover the book in two fifteen-week semesters.

In order to make the book more useful, Professor Kristine Bell has developed a Web site:

http://ite.gmu.edu/DetectionandEstimationTheory/
that contains material related to all four parts of the *Detection*, *Estimation*,
and *Modulation Theory* series.

The Optimum Array Processing portion of the site contains:

(i) MATLAB® scripts for most of the figures in the book. These scripts enable the reader to explore different signal and interference environments and are helpful in solving the problems. The disadvantage is

xxii Preface

that a student can use them without trying to solve the problem independently. We hope that serious students will resist this temptation.

- (ii) Several demos that allow the reader to see the effect of parameter changes on beam patterns and other algorithm outputs. Some of the demos for later chapters allow the reader to view the adaptive behavior of the system dynamically. The development of demos is an ongoing process.
- (iii) An erratum and supplementary comments regarding the text will be updated periodically on the Web site. Errors and comments can be sent to either hlv@gmu.edu or kbell@gmu.edu.
- (iv) Solutions, including MATLAB® scripts where appropriate, to many of the problems and some of the exams we have used. This part is password protected and is only available to instructors. To obtain a password, send an e-mail request to either hlv@gmu.edu or kbell@gmu.edu.

In order to teach the course, we created a separate LATEX file containing only the equations. By using Ghostview, viewgraphs containing the equations can be generated. A CD-rom with the file is available to instructors who have adopted the text for a course by sending me an e-mail at hlv@gmu.edu.

The book has relied heavily on the results of a number of researchers. We have tried to acknowledge their contributions. The end-of-chapter bibliographies contain over 2,000 references. Certainly the book would not have been possible without this sequence of excellent research results.

A number of people have contributed in many ways and it is a pleasure to acknowledge them. Andrew Sage, founding dean of the School of Information Technology and Engineering at George Mason University, provided continual encouragement in my writing efforts and extensive support in developing the C³I Center. The current dean, Lloyd Griffiths, has also been supportive of my work.

A number of the students taking my course have offered constructive criticism and corrected errors in the various drafts. The following deserve explicit recognition: Amin Jazaeri, Hung Lai, Brian Flanagan, Joseph Herman, John Uber, Richard Bliss, Mike Butler, Nirmal Warke, Robert Zarnich, Xiaolan Xu, and Zhi Tian suffered through the first draft that contained what were euphemistically referred to as typos. Geoff Street, Stan Pawlukiewicz, Newell Stacey, Norman Evans, Terry Antler, and Xiaomin Lu encountered the second draft, which was significantly expanded. Roy Bethel, Paul Techau, Jamie Bergin, Hao Cheng, and Xin Zhang critiqued

Preface xxiii

the third draft. The final draft was used in my Optimum Array Processing course during the 2000–2001 academic year. John Hiemstra, Russ Jeffers, Simon Wood, Daniel Bray, Ben Shapo, and Michael Hunter offered useful comments and corrections. In spite of this evolution and revision, there are probably still errors. Please send corrections to me at hlv@gmu.edu and they will be posted on the Web site.

Two Visiting Research Professors, Shulin Yang and Chen-yang Yang also listened to the course and offered comments. Drs. Shulin Yang, Chen-yang Yang, and Ms. Xin Zhang composed the book in LATEX and provided important editorial advice. Aynur Abdurazik and Muhammad Abdulla did the final LATEX version. Their competence and patience have been extraordinary. Joshua Kennedy and Xiaomin Lu drew many of the figures. Four of my graduate research assistants, Miss Zhi Tian, Miss Xiaolan Xu, Mr. Xiaomin Lu, and Miss Xin Zhang worked most of the examples in various chapters. Their help has been invaluable in improving the book.

A separate acknowledgment is needed for Professor Kristine Bell. She did her doctoral dissertation in the array processing area for Professor Yariv Ephraim and me, and she has continued to work with me on the text for several years. She has offered numerous insights into the material and into new developments in many areas. She also taught the two-semester course in 1998–1999 and developed many aspects of the material. Her development of the Web site adds to the pedagogical value of the book.

Several colleagues agreed to review the manuscript and offer criticisms. The group included many of the outstanding researchers in the array processing area. Dan Fuhrmann, Norman Owsley, Mats Viberg, and Mos Kaveh reviewed the entire book and offered numerous corrections and suggestions. In addition, they pointed out a number of useful references that I had missed. Petre Stoica provided excellent comments on Chapters 7–10, and two of his students, Erik Larsson and Richard Abrhamsson, provided additional comments. Louis Scharf, Ben Friedlander, Mati Wax, and John Buck provided constructive comments on various sections of the book. Don Tufts provided a large amount of historical material that was very useful. I appreciate the time that all of these colleagues took from their busy schedules. Their comments have improved the book.

xxiv Bibliography

Bibliography

[Bry62] F. Bryn. Optimum signal processing of three-dimensional array operating on Gaussian signals and noise. J. Acoust. Soc. Amer., 34(3):289–297, March 1962.

- [Van63] V. Vanderkulk. Optimum processing for acoustic arrays. J. Brit. IRE, 26(4):286–292, October 1963.
- [VT66a] H. L Van Trees. Optimum processing for passive sonar arrays. *Proc. IEEE Ocean Electronics Symp.*, pages 41–65, Honolulu, Hawaii, 1966.
- [VT66b] H. L. Van Trees. A unified theory for optimum array processing. Technical Report 4160866, Dept. of the Navy Naval Ship Systems Command, Arthur D. Little, Inc., Cambridge, MA, Aug. 1966.
- [VT68] H. L. Van Trees. Detection, Estimation, and Modulation Theory, Part I. Wiley, New York, 1968.
- [VT01a] H. L. Van Trees. Detection, Estimation, and Modulation Theory, Part I. Wiley Interscience, New York, 2001.
- [VT69] H. L. Van Trees. Multi-Dimensional and Multi-Variable Processes. unpublished class notes, M.I.T, 1969.
- [VT71a] H. L. Van Trees. Detection, Estimation, and Modulation Theory, Part II. Wiley, New York, 1971.
- [VT71b] H. L. Van Trees. Detection, Estimation, and Modulation Theory, Part III. Wiley, New York, 1971.
- [VT01b] H. L. Van Trees. Detection, Estimation, and Modulation Theory, Part III. Wiley Interscience, New York, 2001.

Optimum Array Processing

active sonar, 8	planar, 3
Akaike Information Criterion (AIC),	volumetric (3-D), 3
830	linear, 3
algorithm complexity, 1108	non-uniform spacing, 3
algorithms	random spacing, 3
2-D spectral, 1257	spatially non-uniform, 178
alternating maximization, 1025,	uniform spacing, 3
1030	minimal redundancy, 179
alternating projection, 1025	planar, 231
beamscan, 1142	random, 178
MVDR, 1148	separable rectangular, 233
MVDR (Capon), 1144	sparse, 178
Parks-McClellan-Rabiner, 160	array factor, 45, 75
quadratic, 1140	array gain, 18, 63, 444, 533
Remez Multiple Exchange, 161	array location perturbations, 67
root versions of quadratic, 1147	array manifold, 33
subspace, 1155	array manifold function, 71
weighted eigenspace, 1223	array manifold vector, 37, 249, 634
AML estimator, 985, 1001	array perturbations, 501, 887
aperture, 2, 374	array polynomial, 92, 109
aperture sampling, 74	array steering, 51
AR (1) process, 400	array weightings, 113
AR (2) process, 401	Blackman-Harris, 113
AR (3) process, 402	cosine, 113
AR(p), 398, 406	cosine squared, 113
ARMA (p,p) , 408	DPSS, 113
ARMA models, 474	Hamming, 113
ARMA(p,q) process, 397, 408	asymmetric beams, 93, 173
array, 2	asymptotic behavior, 717
broadband, 200	asymptotic performance, 1014, 1195,
geometries, 3	1295
linear, 3	autoregressive process, 398

$BW_{NN}, 46$	generalized sidelobe canceller,
banded Hermitian Toeplitz matrix,	584
405	LCMP, 583
Bayesian, 920	LMS, 872
Bayesian predictive densities, 1054	MPDR, 576, 865
Bayliss pattern, 303	MVDR, 865
beam fan, 576	optimum processors, 585
beam pattern, 23, 33, 39, 45	processing, 93, 192, 393
frequency-wavenumber space,	reduced-dimension, 193
371	RLS, 869
beamformer, 513	sector, 576
adaptive, 710	SMI, 865
beamspace, 575, 864, 901	beamspace algorithm, 1121, 1296
broadband, 621	beamspace matrix
Capon, 443	clairvoyant, 1075
cross-spectral eigenspace, 567	conditions, 1074
DFT, 627	conjugate symmetric, 1072
eigenspace, 559	DFT, 1066
eigenvector, 556	discrete prolate spheroidal se-
finite impulse response (FIR),	quences (DPSS), 1069
647	Taylor series, 1068
LCMP, 513, 657	Bessel function, 276, 278
LCMV, 513, 657	beta probability density, 732
minimum power distortionless	binomial, 212
response, 451	Blackman-Harris, 102, 103, 197
mismatched, 488	block processing, 631
MPDR, 494, 655	blocking matrix, 530
MPSC, 595	broadband arrays, 93, 200
MVDR, 441, 477, 492, 655	broadband beamformer, 874, 902
optimum LCMP, 526	LMS, 878
optimum LCMV, 526	SMI, 875
principal component, 560	broadband direction finding, 1283
projection, 562	Butler beamformer, 196
quadratically constrained, 585	Butler beamforming matrix, 284
robust, 500	
soft constraint, 593	calibration, 1088, 1089
beamspace, 575	Cambridge telescope, 7
eigenvector, 393	center frequency, 621
estimation algorithm, 1062	Chebychev polynomials, 130, 132
full-dimension, 192	chi-square density, 716

chi-squared, 829	classic, 925
Cholesky decomposition, 780, 1367	conditional signal model, 971
circular apertures, 231, 289	cyclostationary signals, 984
circular arrays, 231, 274, 280	Gaussian model: known signal
circular Taylor patterns, 297	spectrum, 967
classic binary detection, 1319	Gaussian model: uncorrelated
closely spaced signals, 393	signals with unknown power,
co-array, 180, 372	958
coherent signals, 599, 1233, 1295	Gaussian model: unknown sig-
coherent signals and interferences,	nal spectrum, 939
887	hybrid, 931
communications, 9	known signal waveforms, 978
complex gradients, 1402	minimally redundant arrays, 983
complex Wishart density, 716, 732	multiple parameter, 925
computational algorithms, 1018, 1116	multiple snapshots, 932
conditional mean estimators, 448	partitioned, 929
conjugate symmetric beamformer,	planar arrays, 981
773	range and bearing, 983
conjugate symmetry, 40	spatially spread signals, 1057
constant modulus (CM) signal, 935	stochastic, 1011
constraint subspace, 528	unknown spectral matrix, 1091
constraints, 505, 513	cyclostationary signal, 935
derivative, 517, 543	cylindrical arrays, 317
directional, 515, 535	
distortionless, 515	delay-and-sum beamformer, 31
eigenvector, 522, 544	derivative
linear, 513	scalar with respect to matrix,
null, 517	1399
quadratic, 505	scalar with respect to vector,
quiescent pattern, 525, 547	1397
conventional beam pattern, 53, 379	with respect to parameter, 1401
conventional beamformer, 31	derivative constraints, 657
correlated signals, 600, 1233, 1295	derivative operations, 1397
$cosine^m$ weighting, 100	derivatives
covariance augmentation, 554, 887	beam pattern, 518
covariance matrix tapers, 554	frequency, 518
Cramér-Rao bound, 920, 938, 1112,	power pattern, 518
1212	design wavelength, 625
Bayesian, 930	detection
beamspace, 983, 1073	adaptive, 1323

detection algorithm, 828 eigenvector, 841	eigenvalue, 377, 383, 385, 386, 723, 1372
detection of number of signals, 1054,	finite bandwidth, 390
1120	eigenvalue spread, 797
detection theory, 1	eigenvalues, 104
diagonal loading, 500, 505, 537, 554,	eigenvector, 104, 377, 381, 393, 723,
595, 757	1372
exponentially decaying, 757	element frequency-wavenumber func-
fixed, 739	tion, 75
generalized, 595	endfire array, 57
difference pattern	ESPRIT, 1170
generic, 303	2-D beamspace, 1265
difference patterns, 299	2-D unitary, 1260
direct matrix inversion (DMI), 710	asymptotic behavior, 1229
direction cosines, 29, 235	beamspace unitary, 1247
direction finding, 10	hexagonal, 1274
directional noise receiver, 467	LS, 1171
directivity, 18, 60, 247	TLS, 1171
directivity index, 63	unitary, 1180, 1274
discrete Fourier transform, 92, 122,	estimation of spatial spectral ma-
123	trices, 712, 887
discrete prolate spheroidal functions,	estimation theory, 1
105, 545	exchange matrix, 40
discrete prolate spheroidal sequences,	expectation maximization algorithm,
103, 105, 387	1031
Dolph-Chebychev, 92, 128, 269, 464,	
615	FFT beamformer, 627
	filter perturbations, 67
dominant-mode rejection (DMR) beam-	finite impulse response (FIR), 647
former, 569	FIR filter
duality, 392	two-dimensional, 231
	FIR model, 649
effective array length, 58	first sidelobe, 46
efficient recursive algorithm, 778	Fisher information matrix, 925, 929,
eigenbeams, 384	939
eigendecomposition, 378, 385, 1372	fixed diagonal loading, 767
eigenspace beamformer, 845, 899	forward-backward averaging, 603,
detection of subspace dimen-	718, 833
sion, 850	Fourier uncertainty principle, 95
SMI, 846	frequency bin, 338

frequency-domain beamforming, 334 interference frequency-domain snapshots, 335 discrete, 452 frequency-domain vectors, 629 spatially spread, 473 frequency-spread signals, 390 interferers frequency-wavenumber function, 39 multiple plane wave, 465 frequency-wavenumber response, 23, single plane wave, 453 32, 43 interpolated arrays, 1243 inverse discrete Fourier transform, frequency-wavenumber spectrum, 354 124 Frost LMS algorithm, 810 invisible region (IR), 116 Gauss-Newton algorithm, 1024 isotropic noise, 387 Gaussian signal processes iterative MODE (IMODE), 1038 spatially spread, 1321 iterative quadratic maximum like-Gaussian weightings, 211 lihood (IQML) algorithm, generalized sidelobe canceller, 528, 1038, 1039 531, 658, 766, 802 joint detection-estimation algorithm, LMS algorithm, 811 1054 Givens rotation, 781, 1390 gradient algorithm, 789, 896 Kaiser weightings, 107 grating lobe, 46, 50, 237, 369 Kalman filter, 753 Griffiths LMS algorithm, 809 Karhunén-Loève expansion, 336, 375 Kullback-Liebler distance, 830 half-power beamwidth or HPBW, LDL^{H} factorization, 1366 Hamming weighting, 101, 197, 615 least squares formulation, 752 separable, 252 least-mean-square (LMS) algorithm, Hann weighting, 100, 102, 197 711, 790, 805, 897 Hessian matrix, 1020 behavior, 817 hexagonal array, 231, 305, 370, 1272, comparison with RLS, 812 1277 fixed loading, 822 hexagonal DFT, 314 Frost, 810 hexagonal sampling, 305 generalized sidelobe canceller, hexagonal signal processing, 314 811 hexagonal-rectangular transforma-Griffiths, 809 tion, 1274 linear constrained, 817 homogeneous wave equation, 355 Newton, 812 Householder transformation, 781, normalized, 817 1394 performance, 813 Howells-Applebaum algorithm, 826 quadratic constraints, 822 HPBW, 46, 55, 458 scaled projection, 823

remiable leading 823	skew Hermitian, 1344
variable loading, 823	skew symmetric, 1344
Widrow, 806	square, 1342
least-squares synthesis, 253	symmetric, 1342
linear apertures, 71	Toeplitz, 1364, 1380
linear array, 19	trace, 1345
equally spaced elements, 19	transpose, 1342
linear prediction, 1194, 1294	unitary, 1367
MA(1) process, 405	upper triangular, 1366
• / -	Vandermonde, 1368
MA(2) process, 405	,
main response axis (MRA), 52	maximum entropy algorithm, 1195
MAP joint estimation, 1099	maximum likelihood (ML) estima-
matched field processing, 1328	tor, 443, 917, 920, 922, 984,
matched subspace detector, 1320	1109, 1115
matrix	beamspace, 1081
vec-function, 1358	conditional, 1004, 1033
block diagonal, 1360	deterministic, 1004
centrohermitian, 1363, 1379	sensitivity, 1098
circulant, 1365	maximum a posteriori (MAP) es-
cofactor, 1345	timator, $920, 924, 1109$
determinant, 1344	Min-Norm, 1208
diagonal, 1359	root, 1167, 1209, 1227
exchange, 1361	spectral, 1167
Hankel, 1364	minimal redundancy arrays, 179
Hermitian, 1342	minimax, 156
Hermitian transpose, 1342	minimax designs, 92
identity, 1347	$ minimum \ description \ length \ (MDL),$
inverse, 1347	830
inversion lemma, 1348	minimum mean-square error esti-
lower triangular, 1366	mators, 446
orthogonal, 1368	minimum mean-square error pat-
partitioned, 1349	tern synthesis, 92, 149
persymmetric, 1362	minimum norm algorithm, 1163
positive definite, 1348	minimum redundancy arrays, 372
positive semidefinite, 1349	minimum redundancy linear arrays,
products, 1351	179
projection, 1369	minimum variance distortionless re-
reflection, 1361	sponse (MVDR) beamformer,
separable kernels, 1377	10
singular, 1347	mismatch
30	

DOA, 490	null, 165
MMSE, 485	constraints, 165
model	pattern synthesis, 166
ARMA, 396	steering, 93, 165, 269
parametric wavenumber, 394	null-to-null beamwidth, 48
rational transfer function, 395 relationships, 407	observation noise, 408 optimization techniques, 1018
model perturbations, 936, 1089	optimum array gain, 455
modulation theory, 1	optimum detection, 1318
Moore-Penrose pseudo-inverse, 1009	orthogonal expansions, 375
moving average (MA) process, 402	outer main lobe, 458
MRLA, 179	outer main lobe, 450
multichannel lattice, 884	parameter estimation
QRD, 885	maximum likelihood, 917
multiple access techniques, 10	parameter estimation model, 933,
TDMA, CDMA, and GSM, 10	1109
multiple beam antennas, 200	parameterized $S(\theta, \phi)$, 1055
multiple plane-wave signals, 477	parametric spatial spectral matrix
MUSIC, 1158, 1205	estimation, 726
beamspace, 1243	parametric wavenumber model, 727
bias analysis, 1221	Parseval's theorem, 96
root, 1159 , 1160 , 1209 , 1227	passive sonar, 8
variance of spectral, 1212	pattern multiplication, 18, 75
1 1 04 000	pattern sampling, 118
narrowband, 34, 392	penalty function, 832
National Radio Astronomy Obser-	perturbation vector, 937
vatory, 7	phase mode excitation, 276, 279,
near-field sources, 1284	280,284,287
Newton algorithm, 789	phased array, 6, 34
Newton method, 1020	physical noise models, 473
noise subspace, 379	planar aperture, 20
non-Gaussian noise, 1284	planar array, 20, 231, 1255, 1279,
nonlinear behavior, 1106	1300
nonplanar arrays, 316	Chebychev patterns, 264
non-redundant arrays, 181	plane waves, 30
non-uniform arrays, 93	propagating in three dimensions
normalized directivity, 98	361
norms	plane-wave signals, 377
2-norm of a vector, 1346	polynomial parameterization, 1037,
Frobenius, 1346	1117

polynomial WSF (MODE) algorithm,	MUSIC, 1203
1045	Riblet-Chebychev, 140, 269
power pattern, 60	ring apertures, 231, 275
products	robustness, 1088, 1251, 1298
Hadamard, 1351	root-matching, 143
inner, 1343	(22.22)
Khatri-Rao, 1355	sample matrix inversion (SMI), 710,
Kronecker, 1352, 1380	711, 728, 890
matrix, 1341	sample spectral matrix, 714
outer, 1343	exponential weighted, 754
projections	sampling, 369
1-D, 365	continuous distribution, 298
2-D, 365	sampling grid, 263
prolate spheroidal functions, 103	scoring method, 1021
	second-moment characterization, 353
QR decomposition (QRD), 779, 895,	second-moment representations, 356
1388	seismology, 10
quadratic algorithm, 1140, 1285	exploration, 10
quadratic forms	underground nuclear explosions,
Hermitian, 1348	10
quadrature demodulator, 621	self-calibration algorithm, 1101
quasi-Newton algorithm, 789, 1022	sensitivity, 66, 1088, 1123, 1251,
quiescent weight vector, 757	1298
	sensitivity function, 461
radar, 6	sensor noise, 373
monopulse, 177	separable weightings, 290
phased array, 177	sequential hypothesis (SH) test, 828
radial weighting, 293	sidelobe region, 458
radio astronomy, 7	signal subspace, 379
raised cosine, 99	detection dimension, 827, 898
raised cosine-squared weighting, 100	signal-to-noise ratio, 63
random processes	maximum, 449
space-time, 332, 353	singular value decomposition, 727,
Rayleigh resolution limit, 48	1381
rectangular array, 1270	sliding window technique, 633
recursive implementation, 756, 763	small error behavior, 1211
recursive least squares (RLS), 710,	smart antennas, 10
711, 752, 768, 893	SMI beamformer
resolution	LCMP, 739
min-norm, 1203	LCMV, 739

SMI GSC beamformer, 729	standard rectangular array, 1255
SMI MPDR beamformer, 729	steepest descent
SMI MVDR beamformer, 729	algorithm, 710, 789
snapshot model, 333	LCMP beamformer, 799
frequency-domain, 333, 933	MMSE beamformer, 791
time-domain, 349	stochastic ML estimator, 1000
sonar, 8	structured adaptive beamforming,
space-alternating generalized EM	1105
algorithm, 1037	structured spatial spectral matrix
space-time processes	estimation, 726
Gaussian, 353, 359	subspace algorithm, 1288
space-time processing	subspace tracking, 860
radar, 1327	subspaces
wireless communications, 1327	spatially spread signals, 394
space-time random processes, 353	sufficient statistic, 829
sparse linear arrays, 1284	summary, 903
spatial ARMA process, 1062	
spatial correlation coefficient, 453	tap-stacked vector, 650
spatial sampling, 369	tapped delay line, 647
spatial smoothing, 603, 605	target tracking, 1327
2-D, 1243	Taylor, 92
forward-backward, 1235	synthesis for circular apertures,
weighted, 1241	294
spatial spectral estimation, 1328	Villenueve, 550
spatial spectral matrix, 636	Taylor distribution, 143
spatially spread interference, 473	temporal correlation-spatial wavenum
spatially spread signal, 385, 1055,	ber spectrum, 354
1121	temporal frequency spectrum-spatial
parametric, 938	correlation function, 354
spatially spread sources, 1283	time-domain beamforming, 664
spectral matrices, 370	Toeplitz, 617
spectral MUSIC, 1158	Toeplitz estimator, 751
spectral weighting, 95	tolerance factor, 66
spectral weightings, 92	tolerance function, 18
separable, 251	tomography, 11
spherical arrays, 320	${ m transformation}$
spherical coordinate system, 21	hexagonal grid to rectangular
sphericity test, 828	$\mathrm{grid},316$
standard hexagonal array, 308, 309	travel time, 34
standard linear array, 51	triangular processor array, 787

two-dimentional DFT, 260

uniform linear arrays, 37 uniform weighting, 42 uniformly weighted linear array, 33, 42 unitary matrix, 723, 780

unknown correlated noise, 1108

unwanted parameters, 928

Vandermonde structure, 41 variable loading algorithm, 772 variable projection algorithm, 1024 vector

conjugate symmetric, 1361 Villeneuve \bar{n} distribution, 147 Villeneuve pattern, 287 virtual arrays, 1284 visible region, 38, 45, 116, 236 volume arrays, 23

wave equation, 30 wavenumber sampling, 92 weighted subspace fitting, 1009 weighting

circular symmetric, 259 white noise array gain, 69 whitening filter, 578 wideband signals, 1015 Widrow LMS algorithm, 806 Wiener-Hopf beamformer, 791 windows, 154

Hamming, 154 Hann, 154 Kaiser, 154

Woodberrys' identity, 1348 Woodward sampling technique, 128 Woodward synthesis, 121

Yule-Walker equations, 399

z-transform, 92, 109, 251

Copyright of Optimum Array Processing is the property of John Wiley & Sons, Inc. 2002 and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.