Title

Static large displacement analysis of a curved cantilever beam under free end load

Description

A curved cantilever beam spanning a 45° arc is bent by a shear load applied at the free end. Determine the large displacement response of the free end.

Structural geometry and analysis model

MODEL

Analysis Type

3-D static large displacement analysis

Unit System

m, kgf

Dimension

Radius 100 m

Element

Beam element

Material

```
Modulus of elasticity E = 1.0 \times 10^7 \text{ kgf/m}^2
Poisson's ratio v = 0.0
```

Sectional Property

Rectangular cross section: b = 1 m, h = 1 m

Boundary Condition

Node 1: Constrain all DOFs

Load Case

A concentrated load, P = 3000 kgf is applied to the node 46 in Z direction.

Results

	Node	Load	Step	DX (m)	DY (m)	DZ (m)	RX ([rad])	RY ([rad])	RZ ([rad])
	46	Top Loa	nl_001	-0,415	-0,559	9,404	0,154	-0,098	0,001
	46	Top Loa	nl_002	-1,539	-2,087	18,026	0,298	-0,189	0,005
	46	Top Loa	nl_003	-3,097	-4,247	25,424	0,425	-0,269	0,011
	46	Top Loa	nl_004	-4,829	-6,706	31,530	0,535	-0,337	0,017
	46	Top Loa	nl_005	-6,560	-9,226	36,491	0,628	-0,393	0,025
\perp	46	Top Loa	nl_006	-8,200	-11,671	40,513	0,707	-0,440	0,032
	46	Top Loa	nl_007	-9,713	-13,975	43,795	0,774	-0,480	0,040
	46	Top Loa	nl_008	-11,091	-16,112	46,498	0,832	-0,514	0,047
	46	Top Loa	nl_009	-12,340	-18,078	48,750	0,881	-0,543	0,054
	46	Top Loa	nl_010	-13,473	-19,880	50,646	0,923	-0,568	0,061
	46	Top Loa	nl_011	-14,500	-21,530	52,261	0,960	-0,590	0,068
	46	Top Loa	nl_012	-15,436	-23,043	53,650	0,992	-0,610	0,074
					,	•			

.

46	Top Loa	nI_057	-30,922	-44,007	68,346	1,246	-0,938	0,226
46	Top Loa	nI_058	-31,093	-44,148	68,445	1,246	-0,942	0,228
46	Top Loa	nl_059	-31,261	-44,284	68,541	1,245	-0,946	0,230
46	Top Loa	nl_060	-31,427	-44,417	68,634	1,244	-0,950	0,232

Large displacement response

Comparison of Results

Unit: m

		Static I	Large Displ	acement Re	sponse		
Applied load P		ABAQUS		MIDAS/Civil			
	X	Y	Z	X	Y	Z	
300 kgf	-7.097	-12.130	40.430	-8.200	-11.671	40.513	
450 kgf	-10.820	-18.700	48.670	-12.340	-18.078	48.750	
600 kgf	-13.620	-23.780	53.580	-15.436	-23.043	53.650	
3000 kgf	-24.990	-47.700	68.550	-31.427	-44.417	68.634	

References

[&]quot;ABAQUS/Standard Example Problems, Verification", Theory. (1996). Habbit, Karlsson & Sorensen, Inc., Pawtucket, RI.

NAFEMS. (1995). "A Review of Benchmark Problems for Geometric Non-linear Behavior of 3-D Beams and Shells (SUMMARY)", Publication R0024, National Engineering Laboratory, E. Kilbride, Glasgow, UK.