Exercise 8.1. Let $K \subseteq L$ be a splitting field extension for some $f \in K[t] \setminus K$. Then the following are equivalent:

- (i) f has a repeated root over L;
- (ii) $\exists \alpha \in L \text{ s.t. } 0 = f(\alpha) = (\mathcal{D}f)(\alpha);$
- (iii) $\exists g \in K[t], \deg g \geq 1 \text{ s.t. } g \text{ divides both } f \text{ and } \mathcal{D}f.$

Solution. Let $f = \prod_{i=0}^{d} (t - \alpha_i)^{r_i}$ where $\alpha_1, \ldots, \alpha_d$ are roots of f and $r_i \in \mathbb{N}$ for all i.

((i) \Longrightarrow (ii)) Suppose $f \in K[t] \setminus K$ has a repeated root in L. That is, $f = \prod_{i=0}^{d} (t - \alpha_i)^{r_i}$ where $\alpha_1, \ldots, \alpha_d \in L$ are roots of f, $r_j = n \ge 2$ for some j, and without loss of generality we can say j = 0. Then f = gh over L where $g, h \in L[t] \setminus L$ of strictly smaller degree such that $g = (t - \alpha_0)^n$ and $h = \prod_{i=1}^{d} (t - \alpha_i)^{r_i}$, whence

$$\mathcal{D}f = \mathcal{D}(g)h + g\mathcal{D}(h)$$

= $n(t - \alpha_0)^{n-1}h + (t - \alpha_0)^n h'$
= $(t - \alpha_0)[n(t - \alpha_0)^{n-2}h + (t - \alpha_0)^{n-1}h'].$

Thus $f(\alpha_0) = \mathcal{D}f(\alpha_0) = 0$.

((i) \Leftarrow (ii)) Suppose $f \in K[t] \setminus K$ does not have repeated a root in L. That is, $f = \prod_{i=0}^{d} (t - \alpha_i)$ where $\alpha_0, \ldots, \alpha_d \in L$ are distinct roots of f. Let $R_f = \{\alpha_0, \ldots, \alpha_d\}$ be the set of all roots of f. Then it is easy to see that

$$\mathcal{D}f(t) = \sum_{i=0}^{d} \left(\prod_{j \neq i} (t - \alpha_j) \right) \implies \mathcal{D}f(\alpha_k) = \prod_{j \neq k} (\alpha_k - \alpha_j) \neq 0, \quad \forall \alpha_k \in R_f$$

since $\alpha_j \neq \alpha_k$ for all $j \neq k$, so $\not\exists \alpha \in L$ such that $0 = f(\alpha) = (\mathcal{D}f)(\alpha)$.

((ii) \Longrightarrow (iii)) Suppose $\exists \alpha \in L$ such that $\mathcal{D}f(\alpha) = f(\alpha) = 0$ for some $f \in K[t] \setminus K$. By definition of formal derivative, we know $\mathcal{D}f \in K[t]$. Moreover we are given that L is a splitting field extension for f, so L : K must be finite and hence algebraic. Thus $\exists \mu_{\alpha}^K \in K[t]$, and by theorem we have that $\mu_{\alpha}^K \mid f$ and $\mu_{\alpha}^K \mid \mathcal{D}f$.

((iii) \Longrightarrow (ii)) Suppose $\exists g \in K[t]$ with $\deg g \geq 1$ such that g divides both f and $\mathcal{D}f$. We know that $f = \prod_{i=0}^{d} (t - \alpha_i)^{r_i}$ where $\alpha_1, \ldots, \alpha_d \in L$ are roots of f and $r_i \in \mathbb{N}$ for all i. Thus for g to divide f it must be divisible by some factor $(t - \alpha_j)$ of f for some f. It follows that $\mathcal{D}f$ must also be divisible by f and f.

Thus we have that (i) \iff (ii) \iff (iii).

Exercise 8.2. Let K be a field, $\operatorname{char}(K) = p > 0$ and $f \in K[t^p]$ is an irreducible polynomial over K. Prove that f is inseparable.

Solution. Suppose $f \in K[t^p]$. Then $f = \sum_{i=0}^d a_i t^{ip}$.

Solution.

Exercise 8.3. Let K be a field, $char(K) = p > 0$ and $f \in K[t^p]$ is an irreducible polynomial over K.
Prove that there is $g \in K[t]$ and a non-negative n such that $f(t) = g(t^{p^n})$ and g is an irreducible and
separable polynomial.

Solution. \square Exercise 8.4. Prove that $\prod_{\alpha \in \mathbb{F}_q^*} \alpha = -1$ Solution. \square Exercise 8.5.1. Let $\alpha \in \mathbb{F}_q$ and $\alpha = \beta - \beta^p$ for some $\beta \in \mathbb{F}_q$. Prove that $\operatorname{Tr}(\alpha) = 0$.

Solution. \square Exercise 8.5.2. Let $\alpha \in \mathbb{F}_q$ and $\alpha = \gamma^{1-p}$ for some nonzero $\gamma \in \mathbb{F}_q$. Prove that $\operatorname{Norm}(\alpha) = 1$.

Solution. \square Exercise 8.5.3. Let $\alpha \in \mathbb{F}_p \subseteq \mathbb{F}_{p^n}$. Prove that $\operatorname{Tr}(\alpha) = n\alpha$.

Solution. \square Exercise 8.5.4. Let $\alpha \in \mathbb{F}_p \subseteq \mathbb{F}_{p^n}$. Prove that $\operatorname{Norm}(\alpha) = \alpha^n$.