Background on TSOP12xx Modulation

Base band Signal

Carrier signal 's Frequency

Part	Carrier Frequency
TSOP1230	30 KHZ
TSOP1233	33 kHz
TSOP1236	36 kHz
TSOP1237	36.7 kHz
TSOP1238	38 kHz
TSOP1240	40 kHz
TSOP1256	56 kHz

g(t) =
$$\begin{cases} 1 & \text{for } -T/2 <= t <= T/2 \\ 0 & \text{otherwise} \end{cases}$$
 ... (1)

FT [g(t)] =
$$\frac{T \sin (pi^* f_c^* T)}{pi^* f_c^* T} \dots (2)$$

Harry Li, Ph.D. SJSU, CMPE 127

Frequency Characteristics

Fourier Transform of the Base band Signal

$$FT [g(t)] = \frac{T Sin (pi* f * T)}{pi* f * T}$$

Fourier Transform of the carrier

$$FT [Acos(2*pi*f_c*t)] = A/2 [delta(f-f_c) + delta(f+f_c)] \qquad ... (3)$$

Frequency Characteristics of the Output

$$FT [g(t)] = \frac{T Sin (pi* f * T)}{pi* f * T}$$

$$FT [Acos(2*pi*f_c*t)] = A/2 [delta(f-f_c) + delta(f+f_c)]$$

A/2 * delta(f-f_c)

A/2 * delta(f-f_c)

-f_c

f_c

FT [A g(t)
$$cos(2*pi*f_c*t + phi)$$
] = FT(g(t) * FT [Acos(2*pi*f_c*t)] ... (4)

A/2
$$\frac{\text{T Sin (pi*(f-f_c) * T)}}{\text{pi* (f-f_c) * T}} + \frac{\text{T Sin (pi*(f+f_c) * T)}}{\text{pi* (f+f_c) * T}}$$

Convolution

