NUMBERS

DRILL - 1 - TO FIND THE NUMBER OF FACTORS

Steps: Express the number as $N = a^p x b^q x c^r$

No. of factors =
$$(p+1)(q+1)(r+1)$$

Sum of the factors =
$$[a^{p+1}-1/a-1][b^{q+1}-1/b-1][c^{r+1}-1/c-1]$$

Product of the factors = $N^{(p+1)(q+1)(r+1)/2}$ (Including 1 & itself)

Cross check for the number 15.

Now complete the following table:

Number	No. Of Factors	Sum of divisors	Product of divisors
60			
36 x 36			
126 x 440			
52900			

DRILL 2 – TO FIND THE NUMBER OF ENDING ZEROES

The number of zeroes at the end of any product is the number of actual 2's or 5's whichever is less. In the case of n!, the number of ending zeroes is $n/5 + n/5^2 + n/5^3 + n/5^n$ where $n \ge 5^n$

Numbers	Zeroes	Numbers	Zeroes
25!		100!	
50!		200!	
25! + 50!		100! + 200!	
25! x 50!		100! x 200!	
136!		252!	
140!		244!	
136! + 140!		252! + 244!	
136! x 140!		252! x 244!	

4 67

DRILL 3 – TO FIND THE LAST DIGIT

Let the number be (xyz)ⁿ

Divide n by 4 and check the table to find the last digit. Also complete the next table based on the same strategy.

Remainder	Last digit	Expression	Last Digit	Expression	Last Digit
0, z is even	6	2 ⁹		15743 ⁵⁷⁷	
0, z is odd except 5	1	124		6525 ⁸⁹⁹	
1	Z	336 ²¹		(ab2) ⁴ⁿ⁺¹	
2	Z ²	(ab3) ⁴ⁿ⁺³		45 ²⁵ x 36 ⁴⁵	
3	Z ³	99 ¹¹ x 11 ⁹⁹ x 34 ⁴³		100 ²¹ x 21 ¹⁰³	

DRILL 4 - TO FIND THE REMAINDER

- $X^n + 1$ will always be divisible by X + 1 only when n is odd.
- $X^n 1$ will always be divisible by X + 1 only when n is even.

 \triangleright What will be the remainder when (67⁶⁷ + 67) is divided by 68?

- $x^n a^n$ is always divisible by x a for all values of n.
- $x^n a^n$ is always divisible by x + a for even values of n.
- $x^n + a^n$ is always divisible by x + a for odd values of n.
- $x^n + a^n$ is not divisible by x a for any value of n.
- For any value of n, if any number $(kx + 1)^n$ divided by x will leave a remainder 1^n
- When p is a prime number and N is any natural number not divisible by p, then N^{p-1} if divided by p will leave a remainder 1.

	a. 1	0.03	c. 00	u. 07
>	Which of the following	numbers will completely	divide (49 ¹⁵ - 1)?	
	a. 8	b. 14	c. 46	d. 50
	What will be remainder	when 17 ²⁰⁰ is divided by	, 100	
	What will be remainder	when 17 is divided by	10:	
	a. 17	b. 16	c. 1	d. 2

DRILL 5 - TO FIND THE REMAINDER

 $X \div D = R1$ (Remainder)

 $X \div d = ?$ (Remainder – R2), where d is a factor of D.

Then the required remainder R2 is the remainder when the larger remainder R1 is divided by smaller divisor'd'.

\triangleright	On dividing a number by 56, we get 29 as remainder. On dividing the same number by 8,
	what will be the remainder?

a. 4

b. 5

c. 6

d. 7

> On dividing a number by 357, we get 39 as remainder. On dividing the same number by 17, what will be the remainder?

a. 0

b. 3

c. 5

d. 11

> On dividing a number by 527, we get 42 as remainder. On dividing the same number by 17, what will be the remainder?

a. 4

b. 6

c. 8

d. 14

DRILL 6 – ALGEBRAIC FORMULAE

•
$$(a + b)^2 = a^2 + b^2 + 2ab$$

•
$$(a-b)^2 = a^2 + b^2 - 2ab$$

•
$$(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

•
$$(a + b)^3 = a^3 + b^3 + 3a^2b + 3ab^2 = a^3 + b^3 + 3ab(a+b)$$

•
$$(a - b)^3 = a^3 - b^3 - 3a^2b + 3ab^2 = a^3 - b^3 - 3ab(a-b)$$

•
$$(a^2 - b^2) = (a + b)(a - b)$$

•
$$(a^3 - b^3) = (a - b)(a^2 + b^2 + ab)$$

•
$$(a^3 + b^3) = (a + b)(a^2 + b^2 - ab)$$

•
$$(a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) = a^3 + b^3 + c^3 - 3abc$$

[(753 x 753) + (247 x 247) – (753 x 2	47)] / [(753 x 75]	3 x 753) + (247 x 247 x 24	7)1

- a. 1 / 1000
- b. 1/506
- c. 253 / 500
- d. NOTA

$$(963 + 476)^2 + (963 - 476)^2 / 963 \times 963 + 476 \times 476$$

- a. 1449
- b. 497
- c. 2

d. 4

$$(489 + 375)^2 - (489 - 375)^2 / 489 \times 375$$

- a. 144
- b. 864
- c. 2

d. 4

$$\rightarrow$$
 (397 x 397) + (104 x 104) + 2 x 397 x 104

- a. 250001
- b. 251001
- c. 260101
- d. 261001

- a. 1000
- b. 536
- c. 500
- d. 268

- a. 1130
- b. 578
- c. 565
- d. 1156

DRILL 7 – DIVISIBILITY TEST

- > If the number 517a324 is divisible by 3, then the smallest whole number to replace 'a' is
 - a. 0

b. 1

c. 2

d. NOTA

- ➤ Which of the following number is divisible by 24?
 - a. 35718
- b. 63810
- c. 537804
- d. 3125736
- ➤ If the product 4862 x 9P2 is divisible by 12, then the value of P is
 - a. 1

b. 5

c. 6

- d. 8
- ➤ 476ab0 is divisible by both 3 and 11. The non zero values of a & b are
 - a. 7 & 4
- b. 7 & 5
- c. 8 & 5
- d. NOTA
- ➤ If the number 42573x is divisible by 72, then the least value of x is
 - a. 4

b. 5

c. 6

d. 7

DRILL 8 - PROGRESSIONS

Arithmetic Progression

$$t_n = a + (n - 1)d$$

 $S_n = n[2a + (n-1)d] / 2$

where 'a' is the first term, 'd' is the common difference, t_n is the nth term and S_n is the sum of n terms.

Geometric Progression

$$t_n = a r^{(n-1)}$$

$$S_n = a(r^n - 1) / r - 1$$

where 'a' is the first term, 'd' is the common ratio, t_n is the nth term and S_n is the sum of n terms.

Also

Sum of first n natural numbers = n(n+1)/2

Sum of the squares of first n natural numbers = n(n+1)(2n+1)/6

Sum of the cubes of first n natural numbers = $[n^2(n + 1)^2]/4$

Sum of first n natural odd numbers = n^2

- > Find the 10th term of the A. P.: 2, 4, 6, ...
 - (a) 16

- (b) 18
- (c) 20

- (d) 24
- ➤ The 10th term of an A. P. is 15 and 31st term is –57, find the 15th term.
 - (a) -25
- (b) -30
- (c) -34
- (d) -38

- ➤ Is 600 a term of the A. P.: 2, 9, 16, ...?
 - (a) Yes
- (b) No
- (c) Data Insufficient
- (d) CBD
- Which term of the A. P. 2 ½, 4, 5 ½, , , , is 31? Find also the 10th term?
 - (a) 10th term & 31
- (b) 20th term & 16
- (c) 15th term & 12
- (d) NOTA

- > The 35th term of an A. P. is 69. Find the sum of its 69 terms.
 - (a) 4204
- (b) 4486
- (c) 4761
- (d) CBD

- Find the 6th term of the G. P.: 4, 8, 16, ...
 - (a) 48

- (b) 64
- (c) 80

- (d) 128
- ➤ The 1st and the 9th term of a G. P. are 1 and 256 respectively. Find the G. P.
 - (a) 1, 2, 4, 8, 16
- (b) 1, 4, 16, 32, 64
- (c) 1, 2, 4, 16, 32
- (d) 2, 4, 8, 16, 32

➤ Which term of the G. P.: 5, -10, 20, -40, is 320?

(a) 6th term

(b) 7th term

(c) 8th term

(d) 9th term

DRILL 9 - HCF & LCM

Important formulae:

For any 2 numbers A and B, $(HCF)_{A,B} \times (LCM)_{A,B} = A \times B$

LCM of fractions = LCM of numerators / HCF of Denominators HCF of fractions = HCF of numerators / LCM of Denominators

Complete the table:

Α	В	HCF (A,B)	LCM (A,B)
12	9		
34	50		
25		5	200
	60	6	1260
7		1	35
3/4	1/2		
4/7	5/7		
1/3	1/6		
5/7	7/5		

DRILL 10 - HCF & LCM - RAPID INFORMATION LIST

S.No	Type of Problem	Approach to Problem
1	Find the greatest number that will exactly divide x, y and z.	Required number = HCF of x, y and z

2	Find the greatest number that will divide x, y and z leaving remainders a, b and c respectively	Required number = HCF of $(x - a)$, $(y - b)$ and $(z - c)$
3	Find the least number that is exactly divisible by x, y and z.	Required number = LCM of x, y and z
4	Find the least number which when divided by x, y and z leaves remainder a, b and c respectively.	Then it is observed that x - a = y - b = z - c = k Required number = (LCM of x, y, z) - k
5	Find the least number which when divided by x, y and z leaves the same remainder 'r'	Required number = (LCM of x, y, z) + r
6	Find the greatest number that will divide x, y and z leaving same remainder in each case	Required number = HCF of $(x - y)$, $(y - z)$ and $(z - x)$

Find the following:

A A A A	The greatest number the respectively The least number which	nat will exactly divide 200 nat will divide 148, 246 a h when divided by 27, 35 d by 11, 13 and 17 leaves nmber.	nd 623 leaving remainde	inder 6 in each case
>	(a) 2427 Find the smallest numb greater than the remain (a) 543	(b) 2856 er which when divided k nder? (b) 573	(c) 2586 by 4, 11 or 13 leaves a re (c) 512	(d) None of these mainder of 1 and is (d) 532
>	Find the smallest numb respectively? (a)88	er which when divided be	by 9 and 11 leaves remai (c) 94	nders of 7 and 9 (d) 95

Drill – 11 – BASE OF A NUMBER

BASE SYSTEM	BASE	NUMERS USED	NO.OF DIGITS USED
DECIMAL SYSTEM	10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9	10
OCTAL SYSTEM	8	0, 1, 2, 3, 4, 5, 6, 7	8
BINARY SYSTEM	2	0, 1	2
IN GENERAL, A NUMBE	R SYSTEM WITH	0 TO B-1	В
BASE, B			

Convert the given numbers to their equivalents in other bases across the rows:

Base 2	Base 5	Base 8	Base 10
			39
110101			
		74	

GOOGLY QUESTIONS

1. How many positive integers less than 300 are divisible by both 9 and 4? Solution:

Numbers less than 300 divisible by 9 = 33

Numbers less than 300 divisible by 4 = 75

Numbers less than 300 divisible by both 9 and 4 = 75 + 33 = 108

2. Find the number of zeroes at the end of 250! + 300! Solution:

Number of zeroes at the end of 250! = 62

Number of zeroes at the end of 300! = 74

Number of zeroes at the end of 250! + 300! = 62 + 74 = 136

