Exploiting SDP Structure Yields Tighter Approximations

Jared Miller¹, Yang Zheng², Mario Sznaier¹, Antonis Papachristodoulou³

¹Northeastern University

²Harvard University

³University of Oxford

Semidefinite Programs

Modern control problems require solutions of large scale SDPs

Runtime scales as $O(n^2m^2 + n^3m)$

SDP Approximation

Structured (simpler) subset of PSD Diagonally Dominant: $X_{ii} \geq \Sigma_{i \neq j} |X_{ij}|$

 $\mathcal{D}\mathcal{D}$: Upper and Lower bounds by LP

SDP Structure

Improve runtime by reducing n Decompose based on structure

Includes sparsity, symmetry,*-algebra

Structure Broadens Feasible Regions

Approximations destroy structure, worse runtime and bounds

$$\begin{pmatrix}
x_{11} & x_{12} & ? & ? \\
x_{12} & x_{22} & x_{23} & x_{24} \\
? & x_{23} & x_{33} & x_{34} \\
? & x_{24} & x_{34} & x_{44}
\end{pmatrix} \in \mathbb{S}_{+}^{4}$$

Cliques are $\{(1,2), (2,3,4)\}$ Matrix is $\mathcal{D}\mathcal{D}$ vs. Cliques are $\mathcal{D}\mathcal{D}$

Mixing Cones

Adds flexibility in optimization

Useful if problem has few large cliques

Example: Polynomial Optimization

Lower bounds by 2nd order Moment-SOS, decomposition by term sparsity

Sparse Quartic

 $f^* = \min_x f(x)$

Time to find SDP-matching lower bounds (seconds)

Implications

Structure improves approximations
Change of Basis: iterative refinement

Maximize cost: $p_0 \le p_1 \le p_2 \le p_3$

Future steps:

Convergence to SDP optimum

Optimal Power Flow

 H_2/H_∞ Network Control

arXiv:1911.12859

github.com/zhengy09/SDPfw