SMART INDIA HACKATHON 2025

- Problem Statement ID SIH25022
- Problem Statement Title- Maximizing Section

Throughput Using Al-Powered Precise

Train Traffic Control

- **Theme-** Transportation & Logistics
- PS Category- Software
- Team ID-
- Team Name- KRITAGYA

00000

0000

Maximizing Section Throughput Using Al-Powered Precise

Train Traffic Control

UNIQUENESS & INNOVATION

Continuous Re-planning / Real-time Traffic Plan (STEG)

Automatic Sharing of Updated Plans with Drivers

02. Sharing

03. Advisory

Driver Advisory System (DAS)

Visualization Tools & **Decision Support for** Controllers

04. Visualization

Smarter Tracks, Smoother Trains – AI That Moves Railways Forward

PROTOTYPE LINK- https://indian-railways-inte-191

SOLUTION EXPLANATION

- Al-powered train traffic control system that uses real-time data (GPS, speed, delays, weather) to optimize scheduling and train spacing.
- Driver Advisory System (DAS) guides optimal speed and eco-driving, while controllers get visual dashboards for better decision-making.
- Using **Al-driven analytics**, optimization, and realtime updates, the system cuts delays, improves safety, and increases throughput by 30-40% without new infrastructure.

🤼 Railway Intelligence System 📖

TECHNICAL APPROACH

FEASIBILITY AND VIABILITY

Improved

delays

Punctuality

20-25% reduction in

Increased

improvement

Throughput

+30-40% capacity

FEASIBILITY

Al Improves Train Traffic Control

IMPACT AND BENEFITS

Increased Section Throughput

Al-driven rescheduling + optimal headways \rightarrow up to 30–40% more trains per section

AI-Powered Rail Network Optimization

Reduced Delays & Improved Punctuality Real-time adaptive planning cuts average

delays by 20-30%

Energy & Environmental Gains Eco-driving + DAS lowers energy

consumption by 12-18%

Operational Efficiency Controller workload reduced by 40% with visualization & decision-support tools

Scalability Uses open datasets (Indian Railways, GTFS, ONTIME) for nationwide rollout

@SIH

RESEARCH AND REFERENCES

Title: Remote Sensing and Machine Learning for Safer Railways: A Review

Authors: Helmi, W.; Bridgall, R.; Askarzadeh, T.

Published in: Applied Sciences, 2024, 14(9):3573

DOI: 10.3390/app14093573

Title: Towards a Safe MLOps Process for the Continuous Development and Safety Assurance of ML-based Systems in the Railway Domain

Authors: Marc Zeller, Thomas Waschulzik, Reiner Schmid, Claus Bahlmann

Published: arXiv preprint, 2023

Title: Improving Theoretic Train Driving Time with AI and TensorFlow

Authors: Emil Krsak, Tomas Kello

Conference: 2020 4th International Symposium on Informatics and its Applications (ISIA), IEEE **Title:** Artificial Intelligence in Railway Transport: Taxonomy, Regulations, and Applications

Authors: Nikola Bešinović, Lorenzo De Donato, Francesco Flammini, Rob M. P. Goverde, Zhiyuan Lin, Ronghui Liu

Published in: *IEEE Transactions on Intelligent Transportation Systems.*

@SIH