Tablas de resolución de trabajos prácticos CIRSOC 201-05 Hormigón I

Ing. Hugo J. Donini

Tabla Comparativa de Nomenclaturas del Reglamento CIRSOC 201/82 y del CIRSOC 201/05

Norma/Código base	Reglamento CIRSOC 201-82 Materiales y procesos const. s/ACI Diseño estructural s/DIN 1045 y DIN 4224 ('70)	CIRSOC 201-05 Código ACI 318-05		
Resistencia característica a compresión / Resistencia especificada	σ΄ _{bk} (cuantil del 5%)	f´c (cuantil del 10%)		
Resistencia de diseño	$\beta_{ m R}$	f*c		
Tensión de fluencia del acero	$eta_{ m s}$	f_y		
Altura total	d	h		
Altura útil	h	d		
Ancho	b	$b_{\rm w}$		
Estado de carga por peso propio	g	D		
Estado de carga por sobrecarga	p	L		
Combinación de estados de carga	q = g + p	$U_1 = 1.2 D + 1.6 L \text{ (últimas)}$ $U_2 = 1.4 D \text{ (últimas)}$		
Solicitaciones	M_s , N_s , Q_s , M_{ts}	M_u , N_u , V_u , T_u		
Flexión simple	$\begin{aligned} M_s &= fc \; (q_s) \\ \text{Tablas } k_h \text{, tablas } m_s \text{, ecuaciones a los} \\ \text{que se le aplica un único coeficiente} \\ \text{de seguridad } (\gamma = 1,75 \text{ 6 } 2,10) \end{aligned}$	$M_u \leq \varphi \; M_n$ Tablas k_d , ecuaciones		
Corte	$\tau = Q_s/(b \cdot z) \text{ (Zonas 1, 2 \lefto 3)}$	$V_u \le \phi . V_n = \phi . (V_c + V_s)$		
Flexión compuesta	Diagramas de interacción (cargas de servicio)	Diagramas de interacción (cargas últimas o nominales)		
Flexión compuesta oblicua	Diagramas de "roseta"	Método de Bresler o Método de las cargas recíprocas		
Torsión	$ au = extbf{M}_{ ext{ts}} \! / extbf{W}_{ ext{t}}$	$T_u \le \varphi$. $T_n = \varphi$. T_s		

Clase de hormigón	Resistencia especificada a compresión f′ _c (MPa)	A utilizar en hormigones	
H – 15	15	simple	
H – 20	20	simple y armados	
H – 25	25		
H – 30	30		
H – 35	35	Simple,	
H – 40	40	armados y	
H – 45	45	pretensados	
H – 50	50		
H – 60	60		

Resistencias de hormigones y sus usos

Universidad Nacional de la Palagonia San Juan Bosco Facultad de Ingeniería - Cátedra de Hormigón I – Ing. Hugo Donini

ÁREA DE LAS BARRAS [cm²]

					Nú	imero de	barras					
d_b	Peso	1	2	3	4	5	6	7	8	9	10	d_b
4,2	0,11	0,14	0,28	0,42	0,55	0,69	0,83	0,97	1,11	1,25	1,39	4,2
6	0,22	0,28	0,57	0,85	1,13	1,41	1,70	1,98	2,26	2,54	2,83	6,8
8	0,39	0,50	1,01	1,51	2,01	2,51	3,02	3,52	4,02	4,52	5,03	10
10	0,62	0,79	1,57	2,36	3,14	3,93	4,71	5,50	6,28	7,07	7,85	12
12	0,89	1,13	2,26	3,39	4,52	5,65	6,79	7,92	9,05	10,18	11,31	14
16	1,58	2,01	4,02	6,03	8,04	10,05	12,06	14,07	16,08	18,10	20,11	16
20	2,47	3,14	6,28	9,42	12,57	15,71	18,85	21,99	25,13	28,27	31,42	20
25	3,85	4,91	9,82	14,73	19,63	24,54	29,45	34,36	39,27	44,18	49,09	25
32	6,31	8,04	16,08	24,13	32,17	40,21	48,25	56,30	64,34	72,38	80,42	32
40	9,86	12,57	25,13	37,70	50,27	62,83	75,40	87,96	100,53	113,10	125,66	40

		*************************************		ÁR	EAS PO	R METE	O (cm²/	m)			
Sep				Di	ametro de	las barra	s (mm)				Sep
(cm)	4,2	6	8	10	12	16	20	25	32	40	(cm)
5	2,77	5,65	10,05	15,71	22,62	40,21	62,83	98,17	160,85	251,33	5
6	2,31	4,71	8,38	13,09	18,85	33,51	52,36	81,81	134,04	209,44	6
7	1,98	4,04	7,18	11,22	16,16	28,72	44,88	70,12	114,89	179,52	7
8	1,73	3,53	6,28	9,82	14,14	25,13	39,27	61,36	100,53	157,08	8
9	1,54	3,14	5,59	8,73	12,57	22,34	34,91	54,54	89,36	139,63	9
10	1,39	2,83	5,03	7,85	11,31	20,11	31,42	49,09	80,42	125,66	10
11	1,26	2,57	4,57	7,14	10,28	18,28	28,56	44,62	73,11	114,24	11
12	1,15	2,36	4,19	6,54	9,42	16,76	26,18	40,91	67,02	104,72	12
13	1,07	2,17	3,87	6,04	8,70	15,47	24,17	37,76	61,87	96,66	13
14	0,99	2,02	3,59	5,61	8,08	14,36	22,44	35,06	57,45	89,76	14
15	0,92	1,88	3,35	5,24	7,54	13,40	20,94	32,72	53,62	83,78	15
16	0,87	1,77	3,14	4,91	7,07	12,57	19,63	30,68	50,27	78,54	16
17	0,81	1,66	2,96	4,62	6,65	11,83	18,48	28,87	47,31	73,92	17
18	0,77	1,57	2,79	4,36	6,28	11,17	17,45	27,27	44,68	69,81	18
19	0,73	1,49	2,65	4,13	5,95	10,58	16,53	25,84	42,33	66,14	19
20	0,69	1,41	2,51	3,93	5,65	10,05	15,71	24,54	40,21	62,83	20
21	0,66	1,35	2,39	3,74	5,39	9,57	14,96	23,37	38,30	59,84	21
22	0,63	1,29	2,28	3,57	5,14	9,14	14,28	22,31	36,56	57,12	22
23	0,60	1,23	2,19	3,41	4,92	8,74	13,66	21,34	34,97	54,64	23
24	0,58	1,18	2,09	3,27	4,71	8,38	13,09	20,45	33,51	52,36	24
25	0,55	1,13	2,01	3,14	4,52	8,04	12,57	19,63	32,17	50,27	25
26	0,53	1,09	1,93	3,02	4,35	7,73	12,08	18,88	30,93	48,33	26
27	0,51	1,05	1,86	2,91	4,19	7,45	11,64	18,18	29,79	46,54	27
28	0,49	1,01	1,80	2,80	4,04	7,18	11,22	17,53	28,72	44,88	28
29	0,48	0,97	1,73	2,71	3,90	6,93	10,83	16,93	27,73	43,33	29
30	0,46	0,94	1,68	2,62	3,77	6,70	10,47	16,36	26,81	41,89	30

Área de barras nervuradas y sección de barras por metro

Barras de Acero para hormigón armado **DN A-420**

Características

DN 4-420

Las barras de acero Dureza Natural obtienen sus propiedades mecánicas a partir de su composicón química. En la producción de aceros A-420 se emplea el moderno proceso de metalurgia en cuchara, el cual permite dividir la elaboración del acero en dos etapas: fusión en el horno y afino en la cuchara. En esta última etapa se ajusta la composición química, se efectúa un barrido con gas inerte para incrementar la limpieza inclusionaria y se realiza un tratamiento para mejorar el colado. Con ello, se obtiene una calidad superior en toda la producción, siendo un proceso moderno y único en el país superando las exigencias impuestas por las normas y satisfaciendo los requerimientos de la industria de la construcción.

Acindar es el único productor de acero con certificación ISO 9001 en la producción de acero e ISO 9002 en sus trenes de laminación.

nominal			Peso nominal		Peso por barra					ciones						ø mandril de doblado
			12m	1	2	3	4	5	6	7	8	9	10	mínimo (1)		
mm	cm	kg/m	kg		cm ²									cm		
6	1.89	0.22	2.6	0.28	0.56	0.85	1.13	1.41	1.70	1.98	2.26	2.54	2.83	2.40 (4ø)		
8	2.51	0.40	4.8	0.50	1.00	1.51	2.01	2.51	3.01	3.52	4.02	4.52	5.03	3.20 (4ø)		
10	3.14	0.62	7.4	0.79	1.57	2.36	3.14	3.93	4.71	5.50	6.28	7.07	7.85	4.00 (4ø)		
12	3.77	0.89	10.7	1.13	2.26	3.39	4.52	5.65	6.79	7.92	9.05	10.18	11.31	4.80 (4ø)		
16	5.03	1.58	18.9	2.01	4.02	6.03	8.04	10.05	12.06	14.07	16.08	18.10	20.11	6.40 (4ø)		
20	6.28	2.47	29.6	3.14	6.28	9.42	12.57	15.71	18.84	21.99	25.14	28.27	31.42	14.00 (7ø)		
25	7.85	3.85	46.2	4.91	9.82	14.73	19.64	24.55	29.46	34.37	39.28	44.19	49.10	17.50 (7ø)		
32	10.05	6.31	75.7	8.04	16.08	24.13	32.17	40.21	48.26	56.30	64.34	72.38	80.42	22.40 (7ø)		
40	12.57	9.86	118.0	12.57	25.13	37.70	50.26	62.83	75.40		100.53			28.00 (7ø)		

CIRSOC 201-Capítulo 18-Tomo II

FORMAS DE SUMINISTRO E IDENTIFICACIÓN

Presentación	Diámetros	
Barras de 12 m ⁽¹⁾	a granel	ø 6 al 40
	paquetes de 100 barras	ø6y8
	paquetes de 50 barras	ø 10 y 12
Cortado y Doblado	según planilla	ø 6 al 40

⁽¹⁾ Para largos especiales consultar con el asesoramiento técnico y comercial.

Identificación de las barras

Tabla 1: Paneles de 2.15 x 6m de alambre T-500 conformado

Modelo	Forma de la	Cuantía	Separación	entre alambres	Diámetro d	e alambres	Salie	entes	Pes	0
	cuadrícula	longitudinal	longitudinal	transversal	longitudinal	transversal	A1=A2	A3=A4	por panel	por m2
		cm²/m	cm	cm	mm	mm	cm	cm	kg	kg/m2
Q50	cuadrada	0.5	25	25	4.0	4.0	12.5	7.5	10.40	0.81
Q84	cuadrada	0.84	15	15	4.0	4.0	7.5	2.5	17.30	1.35
Q92	cuadrada	0.92	15	15	4.2	4.2	7.5	2.5	19.10	1.49
Q126	cuadrada	1.26	10	10	4.0	4.0	5	2.5	25.73	1.99
Q188	cuadrada	1.88	15	15	6.0	6.0	7.5	2.5	39.10	3.03
Q335	cuadrada	3.35	15	15	8.0	8.0	7.5	2.5	69.60	5.39
Q524	cuadrada	5.24	15	15	10.0	10.0	7.5	2.5	108.00	8.42
R84	rectangular	0.84	15	25	4.0	4.0	12.5	2.5	14.00	1.08
R92	rectangular	0.92	15	25	4.2	4.2	12.5	2.5	15.40	1.20
R188	rectangular	1.88	15	25	6.0	4.2	12.5	2.5	25.60	1.98

Tabla 2: Paneles de 2 x 3 m de alambre T-500 conformado

Modelo	Forma de la	Cuantía	Separación entre alambres		Diámetro d	e alambres	Salientes		Peso	
l .	cuadrícula	Iongitudinal	Iongitudinal	transversal	longitudinal	transversal	A1=A2	A3=A4	por panel	por m2
		cm²/m	cm	cm	mm	mm	cm	cm	kg	kg/m2
Q84	cuadrada	0.84	15	15	4.0	4.0	7.5	2.5	8.09	1.35
Q188	cuadrada	1.88	15	15	6.0	6.0	7.5	2.5	18.20	3.03
R84	rectangular	0.84	15	25	4.0	4.0	12.5	2.5	6.51	1.09
R188	rectangular	1.88	15	25	6.0	4.2	12.5	2.5	11.94	1.99

Humedad relativa ambiente media %	k_{li}
40	1,43
50	1,29
60	1,14
70	1,00
80	0,86
90	0,43
100	0,00

Nomogramas cálculos reología según AASHTO LRFD-04

Tabla 9.5. (c). Espesores mínimos de losas sin vigas interiores

Tensión de	S	in ábacos (**	9	Con ábacos (**)			
fluencia especificada del acero	Losas e	exteriores	Losas interiores	Losas e	Losas Interiores		
f _y (MPa) (*)	Sin vigas de borde	Con vigas de borde (***)		Sin vigas de borde	Con vigas de borde(***)		
220	<u>ℓ n</u> 33	<u>ℓ n</u> 36	<u>ℓ n</u> 36	<u>ℓ n</u> 36	<u>ℓ n</u> 40	40	
420	<u>ℓ n</u> 30	133 33	<u>ℓ n</u> 33	33	<u>ℓ</u> _n 36	<u>ℓ n</u> 36	
520	<u>ℓ n</u> 28	<u>ℓ_n</u> 31	10 10 10 10 10 10 10 10 10 10 10 10 10 1	<u>ℓ,</u> 31	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>ℓ n</u> 34	

^(*) Para valores de la tensión de fluencia de la armadura, comprendidos entre los indicados en la 1° columna, el espesor mínimo se obtendrá por interpolación lineal. A los fines de este Reglamento el valor de f_v ≤ 500 MPa.

^(***) Se refiere a losas con vigas entre las columnas a lo largo de los bordes exteriores. El valor de α para la viga de borde debe ser : $\alpha \geq 0.8$.

	ALTURA O ESPESOR MÍNIMO, h								
ELEMENTOS	Simplemente apoyados	Con un extremo continuo	Ambos extremos continuos	En voladizo					
	Elementos que no soporten o estén vinculados a otro tipo de elementos susceptibles de sufrir daño								
Losas macizas armadas en una dirección	ℓ/20	ℓ/ 24	ℓ/ 28	ℓ/ 10					
Vigas o losas nervuradas en una dirección	€/16	£/18,5	l/21	£/8					

[☐] La luz ℓ se expresa en mm.

Para otras condiciones, los valores se deben modificar como se indica a continuación:

- a) Para hormigón liviano estructural de peso unitario comprendido entre 1500 y 2000 kg/m³, los valores de la Tabla 9.5.a) se deben multiplicar por (1,65 – 0,0003 w_c), valor que debe ser mayor o igual que 1,09.
- b) Para $f_y \neq 420$ MPa, los valores de esta Tabla se deben multiplicar por la expresión (0,4 + f_y /700).

^(**) El ábaco se define en los artículos 13.3.7.1 y 13.3.7.2. y en el Anexo al Capítulo 1.

Los valores dados en esta tabla son para elementos de hormigón de peso normal ($w_c = 2300 \text{ kg/m}^3$) y armadura con $f_y = 420 \text{ MPa}$.

Tabla 9.5.3.4. Espesor mínimo para sistema de losas en dos direcciones (armadura $f_y = 420 \text{ MPa}$)

Sistema de losas en dos direcciones	α_{m}	β	Mínimo h
Placa Plana	-	≤ 2	ℓ _n / 30
Placa Plana con vigas de borde (1) (mín h = 120 mm)	-	≤ 2	ℓ _n / 33
Losa Plana ⁽²⁾ Losa Plana con vigas de borde ⁽¹⁾ (mín h = 100 mm)	-	≤ 2 ≤ 2	ℓ _n / 33 ℓ _n / 36
Losa en dos direcciones, apoyada en vigas (3)	≤ 0,2 1 ≥ 2	≤ 2 1 2 1 2	$\ell_{\rm n}$ / 30 $\ell_{\rm n}$ / 33 $\ell_{\rm n}$ / 36 $\ell_{\rm n}$ / 37 $\ell_{\rm n}$ / 44
Losa en dos direcciones, apoyada en vigas (1,3)	≤ 0,2 1 ≥ 2	≤ 2 1 2 1 2	$\ell_{\rm n}$ / 33 $\ell_{\rm n}$ / 36 $\ell_{\rm n}$ / 40 $\ell_{\rm n}$ / 41 $\ell_{\rm n}$ / 49

Relación de rigidez losa-viga de borde $\alpha \geq 0.8$ (9.5.3.3).

Condiciones de rigidez para losas cruzadas

$$\alpha_{\text{fi}} = \frac{\text{relación rigidez a flexión viga}}{\text{rigidez a flexión franja de losa comprendida}}$$

$$\alpha_{\text{fi}} = \frac{\mathsf{E}_{\text{cb}}.\mathsf{I}_{\text{b}}}{\mathsf{E}_{\text{cs}}.\mathsf{I}_{\text{s}}}$$

donde:

 $E_{cb} \ y \ E_{cs} = \text{m\'odulos}$ de elasticidad del hormig\'on de viga y losa respectivamente.

Debe cumplirse:

a) Para $\alpha_{fm} \le 0.20$ (vigas muy flexibles)

Se exigirán los espesores mínimos requeridos para entrepisos sin vigas.

b) Para $0.20 < \alpha_{fm} \le 2.0$ (vigas de mediana rigidez)

$$h \ge \frac{I_n \cdot \left(0.80 + \frac{f_y}{1400}\right)}{36 + 5\beta \cdot \left(\alpha_{fm} - 0.20\right)}$$

Donde (l_n) se debe adoptar como la longitud de la luz libre en el sentido del lado mayor medida entre las caras de las vigas y (β) resulta ser la relación entre las luces libres mayor y menor. Como mínimo $h \ge 120$ mm.

c) Para $\alpha_{fm} > 2.0$ (vigas de considerable rigidez)

$$h \ge \frac{I_n \cdot \left(0.80 + \frac{f_y}{1400}\right)}{36 + 96}$$

Como mínimo h ≥ 90 mm.

⁽²⁾ Longitud del ábaco ≥ 1/3 altura ≥ 1,25 h (13.3.7.1.)

⁽³⁾ Mínimo h = 120 mm para $\alpha_{\rm m} \le 2$; mínimo h = 90 mm para $\alpha_{\rm m} > 2$ (9.5.3.3.)

Universidad Nacional de la Patagonia San Juan Bosco Facultad de Ingeniería - Cátedra de Hormigón I – Ing. Hugo Donini

f′ _c	20 MPa	25 MPa	30 MPa	a E _s = 200000 MPa					
β1	0.85	0.85	0.85			f _v = 420 Mpa			
\dashv		k _d		k _e	εc	ες	k _c	k _z	
ŀ	1.218	1.089	0.994	24.301	0.25	5.00	0.048	0.980	
ŀ	1.119	1.001	0.914	24.396	0.30	5.00	0.057	0.976	
ŀ	1.043	0.933	0.852	24.490	0.35	5.00	0.065	0.972	
l	0.982	0.878	0.802	24.583	0.40	5.00	0.074	0.969	
l	0.932	0.834	0.761	24.675	0.45	5.00	0.083	0.965	
ľ	0.890	0.796	0.727	24.766	0.50	5.00	0.091	0.961	
l	0.854	0.764	0.697	24.856	0.55	5.00	0.099	0.958	
l	0.823	0.736	0.672	24.945	0.60	5.00	0.107	0.954	
	0.795	0.711	0.649	25.034	0.65	5.00	0.115	0.951	
	0.771	0.690	0.630	25.121	0.70	5.00	0.123	0.948	
	0.749	0.670	0.612	25.207	0.75	5.00	0.130	0.945	
	0.730	0.653	0.596	25.292	0.80	5.00	0.138	0.941	
ı,	0.712	0.637	0.582	25.377	0.85	5.00	0.145	0.938	
l	0.697	0.623	0.569	25.460	0.90	5.00	0.153	0.935	
ļ	0.682	0.610	0.557	25.543	0.95	5.00	0.160	0.932	
ļ	0.668	0.598	0.546	25.625	1.00	5.00	0.167	0.929	
ļ	0.656	0.587	0.536	25.706	1.05	5.00	0.174	0.926	
ļ	0.645	0.577	0.526	25.786	1.10	5.00	0.180	0.923	
ļ	0.634	0.567	0.518	25.865	1.15	5.00	0.187	0.921	
ļ	0.624	0.558	0.510	25.944	1.20	5.00	0.194	0.918	
ŀ	0.615	0.550	0.502	26.021	1.25	5.00	0.200	0.915	
ŀ	0.606	0.542	0.495	26.098 26.175	1.30	5.00	0.206	0.912	
ŀ	0.598 0.591	0.535	0.488		1.35	5.00	0.213	0.910	
ŀ		0.528 0.522	0.482	26.250	1.40	5.00	0.219	0.907	
ŀ	0.583 0.577	0.522	0.476 0.471	26.325 26.399	1.45 1.50	5.00 5.00	0.225 0.231	0.904 0.902	
ŀ	0.577	0.516	0.471	26.399	1.50	5.00	0.231	0.902	
ŀ	0.564	0.510	0.466	26.544	1.60	5.00	0.237	0.899	
ŀ	0.558	0.303	0.456	26.616	1.65	5.00	0.242	0.895	
ŀ	0.553	0.495	0.450	26.687	1.70	5.00	0.240	0.892	
ŀ	0.548	0.490	0.447	26.758	1.75	5.00	0.259	0.890	
ŀ	0.543	0.485	0.443	26.828	1.80	5.00	0.265	0.888	
ŀ	0.538	0.481	0.439	26.897	1.85	5.00	0.270	0.885	
ŀ	0.534	0.477	0.436	26.965	1.90	5.00	0.275	0.883	
ľ	0.529	0.473	0.432	27.033	1.95	5.00	0.281	0.881	
ľ	0.525	0.470	0.429	27.100	2.00	5.00	0.286	0.879	
Ì	0.521	0.466	0.425	27.167	2.05	5.00	0.291	0.876	
ľ	0.517	0.463	0.422	27.233	2.10	5.00	0.296	0.874	
İ	0.514	0.459	0.419	27.298	2.15	5.00	0.301	0.872	
Ì	0.510	0.456	0.417	27.363	2.20	5.00	0.306	0.870	
	0.507	0.453	0.414	27.427	2.25	5.00	0.310	0.868	
ľ	0.504	0.450	0.411	27.491	2.30	5.00	0.315	0.866	
Ī	0.500	0.448	0.409	27.554	2.35	5.00	0.320	0.864	
Ī	0.497	0.445	0.406	27.616	2.40	5.00	0.324	0.862	
	0.495	0.442	0.404	27.678	2.45	5.00	0.329	0.860	
	0.492	0.440	0.402	27.739	2.50	5.00	0.333	0.858	
Į	0.489	0.437	0.399	27.800	2.55	5.00	0.338	0.856	
ļ	0.487	0.435	0.397	27.860	2.60	5.00	0.342	0.855	
ļ	0.484	0.433	0.395	27.920	2.65	5.00	0.346	0.853	
ļ	0.482	0.431	0.393	27.979	2.70	5.00	0.351	0.851	
ļ	0.479	0.429	0.391	28.038	2.75	5.00	0.355	0.849	
ļ	0.477	0.427	0.389	28.096	2.80	5.00	0.359	0.847	
ļ	0.475	0.425	0.388	28.154	2.85	5.00	0.363	0.846	
ļ	0.473	0.423	0.386	28.211	2.90	5.00	0.367	0.844	
	0.471	0.421	0.384	28.267	2.95	5.00	0.371	0.842	
$k_d^{}$	0.469	0.419	0.383	28.324	3.00	5.00	0.375	0.841	

Universidad Nacional de la Palagonia San Juan Bosco Facultad de Ingeniería - Cátedra de Hormigón I – Ing. Hugo Donini

f′ _c	35 MPa	40 MPa	45 MPa	E _s = 200000 MPa								
β1	0.814 MPa	0.779 MPa	0.743 MPa	35 MPa	35 MPa 40 MPa 45 MPa f _y = 420 Mpa			35 MPa	40 MPa	45 MPa		
		k _d		k _e	k _e	k _e	εc	εs	k _c	k _z	k _z	k _z
	0.940	0.899	0.868	24.280	24.259	24.238	0.25	5.00	0.048	0.981	0.981	0.982
	0.864	0.827	0.798	24.371	24.346	24.321	0.30	5.00	0.057	0.977	0.978	0.979
	0.805	0.770	0.743	24.461	24.432	24.402	0.35	5.00	0.065	0.973	0.975	0.976
	0.758 0.719	0.725 0.688	0.700 0.664	24.550	24.516	24.483	0.40	5.00 5.00	0.074	0.970 0.966	0.971 0.968	0.972
	0.719	0.6657	0.634	24.725	24.683	24.563 24.642	0.45	5.00	0.063	0.963	0.965	0.969
	0.659	0.630	0.608	24.811	24.765	24.719	0.55	5.00	0.099	0.960	0.961	0.963
	0.635	0.607	0.586	24.896	24.846	24.796	0.60	5.00	0.107	0.956	0.958	0.960
	0.614	0.587	0.567	24.980	24.926	24.872	0.65	5.00	0.115	0.953	0.955	0.957
	0.595	0.569	0.549	25.063	25.005	24.947	0.70	5.00	0.123	0.950	0.952	0.954
	0.578	0.553	0.534	25.145	25.083	25.022	0.75	5.00	0.130	0.947	0.949	0.952
	0.563	0.539	0.520	25.226	25.161	25.095	0.80	5.00	0.138	0.944	0.946	0.949
	0.550	0.526	0.507	25.307	25.237	25.168	0.85	5.00	0.145	0.941	0.943	0.946
	0.537 0.526	0.514 0.503	0.496 0.486	25.386 25.465	25.313 25.387	25.240 25.311	0.90	5.00	0.153	0.938	0.941	0.943
	0.526	0.303	0.476	25.543	25.461	25.381	1.00	5.00	0.167	0.933	0.935	0.938
	0.506	0.484	0.467	25.620	25.535	25.450	1.05	5.00	0.174	0.929	0.932	0.936
	0.497	0.475	0.459	25.696	25.607	25.519	1.10	5.00	0.180	0.927	0.930	0.933
	0.489	0.468	0.451	25.772	25.679	25.587	1.15	5.00	0.187	0.924	0.927	0.931
	0.481	0.460	0.444	25.846	25.750	25.654	1.20	5.00	0.194	0.921	0.925	0.928
	0.474	0.453	0.438	25.920	25.820	25.720	1.25	5.00	0.200	0.919	0.922	0.926
	0.467	0.447	0.432	25.993	25.889	25.786	1.30	5.00	0.206	0.916	0.920	0.923
	0.461	0.441	0.426	26.066	25.958	25.851	1.35	5.00	0.213	0.913	0.917	0.921
	0.455 0.450	0.435 0.430	0.420 0.415	26.137	26.026 26.093	25.915 25.979	1.40	5.00	0.219	0.911	0.915 0.912	0.919
	0.444	0.430	0.410	26.208 26.279	26.160	26.042	1.50	5.00	0.225	0.906	0.912	0.917
	0.439	0.420	0.406	26.348	26.225	26.104	1.55	5.00	0.237	0.904	0.908	0.912
	0.435	0.416	0.401	26.417	26.291	26.166	1.60	5.00	0.242	0.901	0.906	0.910
	0.430	0.412	0.397	26.485	26.355	26.227	1.65	5.00	0.248	0.899	0.903	0.908
	0.426	0.407	0.393	26.553	26.419	26.287	1.70	5.00	0.254	0.897	0.901	0.906
	0.422	0.404	0.390	26.619	26.482	26.347	1.75	5.00	0.259	0.894	0.899	0.904
	0.418	0.400	0.386	26.686	26.545	26.406	1.80	5.00	0.265	0.892	0.897	0.902
	0.414	0.396	0.383	26.751	26.607	26.464	1.85	5.00	0.270	0.890	0.895	0.900
	0.411 0.408	0.393 0.390	0.379 0.376	26.816 26.880	26.668	26.522 26.579	1.90	5.00	0.275	0.888	0.893	0.898
	0.404	0.387	0.373	26.944	26.789	26.636	2.00	5.00	0.286	0.884	0.889	0.894
	0.401	0.384	0.371	27.007	26.849	26.692	2.05	5.00	0.291	0.882	0.887	0.892
	0.398	0.381	0.368	27.069	26.908	26.748	2.10	5.00	0.296	0.880	0.885	0.890
	0.396	0.378	0.365	27.131	26.966	26.803	2.15	5.00	0.301	0.878	0.883	0.888
	0.393	0.376	0.363	27.192	27.024	26.858	2.20	5.00	0.306	0.876	0.881	0.887
	0.390	0.373	0.360	27.253	27.081	26.912		5.00	0.310	0.874	0.879	0.885
	0.388	0.371	0.358	27.313	27.138	26.965	2.30	5.00	0.315	0.872	0.877	0.883
	0.385 0.383	0.369	0.356 0.354	27.373 27.432	27.194 27.250	27.018 27.071	2.35	5.00	0.320	0.870	0.876 0.874	0.881
	0.381	0.366 0.364	0.354	27.490	27.305	27.122	2.45	5.00	0.324	0.868	0.872	0.878
	0.379	0.362	0.352	27.548	27.360	27.174	2.50	5.00	0.333	0.864	0.870	0.876
	0.376	0.360	0.348	27.606	27.414	27.225	2.55	5.00	0.338	0.862	0.869	0.875
	0.374	0.358	0.346	27.663	27.468	27.275	2.60	5.00	0.342	0.861	0.867	0.873
	0.372	0.356	0.344	27.719	27.521	27.325	2.65	5.00	0.346	0.859	0.865	0.871
	0.371	0.355	0.342	27.775	27.573	27.375	2.70	5.00	0.351	0.857	0.863	0.870
	0.369	0.353	0.340	27.830	27.626	27.424	2.75	5.00	0.355	0.856	0.862	0.868
	0.367	0.351	0.339	27.885	27.677	27.473	2.80	5.00	0.359	0.854	0.860	0.867
	0.365 0.364	0.349 0.348	0.337 0.336	27.939 27.993	27.728 27.779	27.521 27.568	2.85	5.00	0.363	0.852 0.851	0.859 0.857	0.865 0.864
	0.362	0.348	0.336	28.047	27.779	27.616	2.90	5.00	0.367	0.849	0.857	0.862
*	0.360	0.345	0.334	28.100	27.879	27.663	3.00	5.00	0.371	0.847	0.854	0.861
				20.100	21.019	21.003						
, /	\sqrt{MN}]_	d[m]						4 [2]_ 1	$\left[cm^{2}\right] /$	MN] $\frac{N}{2}$	$I_n[M\Lambda]$
ι/	$\sqrt{IVIIV} = -$	M MN	\overline{m}					A_s [CM]	$j = \kappa_e$	\mathbb{C}^{m} /	1 V1 1V }	d[m
		$\int_{1/2}^{1/2} \frac{n}{n} \left[\int_{1/2}^{1/2} \frac{1}{n} \left[\int_{1/2}^{1/2} \frac{1}{$	<u>''</u>									α [// <i>t</i>]
	•	$\frac{d[m]}{\sqrt{\frac{M_n[MNn]}{b_w[m]}}}$										

Tabla 1: Coeficientes dimensionales para el cálculo de armaduras de secciones rectangulares sometidas a flexión simple sin armadura de compresión según CIRSOC 201-05

 k_d

Figura 1

Figura 2

Figura 3

Figura 4

Figura 5

Figura 6

Figura 7

Figura 8

Figura 9

Figura 10

Figura 11

Figura 12

Figura 13

Figura 14

Figura 15
FLEXION 3.

0,469

$k_d = \frac{d}{\sqrt{M_n}}$	$[k_d] = \frac{m}{\sqrt{MNm}}$
$A_s = k_e \cdot \frac{M_{n_w}}{d} + \frac{1}{2}$	$\frac{M_{n_f}}{f_y \cdot \left(d - \frac{h_f}{2}\right)} \cdot 10000$
$cm^2 = \frac{cm^2}{MN} \cdot \frac{MNm}{m}$	+ MNm MPa.m

(En viga rectangular Mnf es igual a cero)

 $\mathsf{M}_n = \mathsf{M}_{n_w} + \mathsf{M}_{n_f}$

	H20	H25	H30	ı						
	1	MPa = MN/m	12							
	20	25	30		f _y (MPa=MN/m²)					
β_1	0,85	0,85	0,85		E _s (MPa	=MN/m ²)		200000		
		k _d		k _e	k_e ϵ_c ϵ_t k_c					
		m / √MN		cm ² /MN	‰	‰	adimens.	adimens.		
	1,218	1,089	0,994	24,301	3,00	60,00	0,048	0,980		
	0,890	0,796	0,727	24,766	3,00	30,00	0,091	0,961		
	0,749	0,670	0,612	25,207	3,00	20,00	0,130	0,945		
	0,668	0,598	0,546	25,625	3,00	15,00	0,167	0,929		
	0,615	0,550	0,502	26,021	3,00	12,00	0,200	0,915		
	0,577	0,516	0,471	26,399	3,00	10,00	0,231	0,902		
	0,548	0,490	0,447	26,758	3,00	8,57	0,259	0,890		
	0,525	0,470	0,429	27,100	3,00	7,50	0,286	0,879		
	0,507	0,453	0,414	27,427	3,00	6,67	0,310	0,868		
	0,492	0,440	0,402	27,739	3,00	6,00	0,333	0,858		
	0.470	0.420	0.201	20 020	2.00	E 4E	0.255	0.040		

d eje neutro

Ver **Nota**

Nota: En el caso que sea Viga Placa, si la altura $\,a\,$ supera la altura del ala $\,h_f\,$ de dicha Viga, se determinará un nuevo $\,k_d\,$ pero utilizando el momento nominal $\,M_{N_w}\,$ y el ancho $\,b_w\,$, ambos correspondientes al alma de la Viga.

$$\begin{split} &M_{n} = M_{n_{W}} + M_{n_{f}} \\ &M_{n_{f}} = 0.85 \text{ . } f'_{c} \text{ . } h_{f} \text{ . } \left(b - b_{w}\right) \text{ . } \left(d - \frac{h_{f}}{2}\right) \\ &M_{n_{W}} = M_{n} - M_{n_{f}} \end{split}$$

5,00

0,375

0,841

3,00

Continuación de Tabla FLEXION 3.

Tablas de cálculo para secciones con zona comprimida rectangular con armadura comprimida.

Hormigón:	f' _c = 20 MPa
	f′ _c = 25 MPa
	f' _c = 30 MPa
Acero:	f _v = 420 MPa

$$\begin{split} &M_n = M_{n_W} + M_{n_f} \quad \text{(En viga rectangular } M_{n_f} \text{ es igual a cero)} \\ &k_d = \frac{d}{\sqrt{\frac{M_n}{b}}} \qquad \begin{bmatrix} k_d \end{bmatrix} = \frac{m}{\sqrt{\frac{MNm}{m}}} \\ &A_s = k_e \cdot \frac{M_{n_W}}{d} + \frac{M_{n_f}}{f_y \cdot \left(d - \frac{h_f}{2}\right)} \cdot 10\,000 \\ &cm^2 = \frac{cm^2}{MN} \cdot \frac{MNm}{m} + \frac{MNm}{MPa \cdot m} \cdot 10\,000 \\ &cm^2 = \frac{cm^2}{MN} \cdot \frac{MNm}{m} \end{split}$$

	Н	20 - H	25 - H3	30		f _y =	420 N	/IPa										
		$\xi = d'/d$																
	0,	07	0,	08	0,	10	0,	12	0,	14	0,	16	0,	18	0,	20	0,	.22
k _d /k _d	k′e	k _e																
	cm ² /MN																	
1,00	0,000	28,324	0,000	28,324	0,000	28,324	0,000	28,324	0,000	28,324	0,000	28,324	0,000	28,324	0,000	28,324	0,000	28,324
0,95	2,496	28,058	2,523	28,085	2,579	28,141	2,716	28,200	3,015	28,261	3,374	28,326	3,811	28,393	4,353	28,464	5,040	28,538
0,90	4,864	27,806	4,917	27,859	5,026	27,969	5,292	28,083	5,876	28,202	6,575	28,328	7,427	28,459	8,482	28,597	9,822	28,742
0,85	7,104	27,568	7,182	27,645	7,341	27,805	7,729	27,972	8,582	28,147	9,603	28,329	10,847	28,521	12,388	28,723	14,346	28,934
0,80	9,217	27,344	9,317	27,444	9,524	27,651	10,027	27,867	11,133	28,094	12,458	28,331	14,071	28,580	16,071	28,841	18,610	29,116
0,75	11,201	27,133	11,322	27,254	11,574	27,506	12,185	27,769	13,530	28,044	15,141	28,333	17,101	28,635	19,531	28,953	22,617	29,287
0,70	13,057	26,935	13,199	27,077	13,492	27,371	14,205	27,677	15,772	27,998	17,650	28,334	19,934	28,687	22,768	29,057	26,365	29,446
f's [MPa]	420	0,00	420	0,00	420	0,00	408	8,00	376	3,00	344	4,00	312	2,00	280	0,00	248	8,00

Tablas para cálculo de armadura a flexión simple según CIRSOC 201-05

		mínimo en mm
(a)	□ Hormigón colocado en la base de las fundaciones, en contacto con la capa de hormigón de limpieza (El recubrimiento indicado NO incluye el espesor de la capa de limpieza, indicado en el artículo 5.6.2.1.)	50
(b)	Hormigón en contacto vertical con el suelo o expuesto al aire libre	
	 □ para barras con d_b > 16 mm □ para barras y alambres con d_b ≤ 16 mm 	35 30
(c)	Hormigón no expuesto al aire libre ni en contacto con el suelo: Losas, tabiques, nervaduras:	
	□ para barras con $d_b > 32 mm$ □ para barras y alambres con $d_b \le 32 mm$	30 20 pero ≥ d _b
	Vigas, columnas:	
	□ para armadura principal □ para estribos abiertos y estribos cerrados	$\begin{array}{c} d_b \\ pero \geq 20 \ y \leq 40 \\ 20 \end{array}$
l	para zunchos en espiral	40
	Cáscaras y placas plegadas:	
	\Box para barras con $d_b > 16 mm$	20
	□ para barras y alambres con d _b ≤ 16 mm	15
(*)	 Para las clases de exposición A3, Q1 y C1 (ver Tabla 2.1.), los valores deben incrementar un 30 % Para las clases de exposición CL, M1, M2, M3, C2, Q2 y Q3 (ver Tabla 2. esta Tabla se deben incrementar un 50 %. 	

Recubrimientos mínimos condición de exposición A1 – A2

Barras longitudinales	Diámetros mínimos de los estribos (mm)
d _b ≤ 16 mm	6
16 mm < d _b ≤ 25 mm	8
25 mm < d _b ≤ 32 mm	10
d _b > 32 mm paquetes de barras	12
Se podrá utilizar alambre conformado o malla soldada	a de alambre con un área equivalente.

Estribos mínimos para columnas

Separaciones mínimas de estribos para columnas rectangulares

Tabla 7.12.2.1. Cuantías mínimas totales para la armadura de contracción y temperatura

Acero utilizado	Cuantías Mínimas
(a) En losas donde se utilicen barras conformadas con ADN 420 ó ADN 420S ó malla soldada de alambre liso	0,0018
(b) En losas donde se utilice armadura con una tensión de fluencia mayor que 420 MPa	0,0018 420 f _y

 $s \begin{cases} \le 3 \text{ veces el espesor de la losa} \\ \le 300 \text{ mm} \end{cases}$

Armadura por contracción y temperatura

Universidad Nacional de la Palagonia San Juan Bosco Facultad de Ingeniería - Cátedra de Hormigón I – Ing. Hugo Donini

Condición de exposición	Ancho tolerable de
	la grieta (mm)
Aire seco o membrana protectora	0,41
Humedad, aire húmedo, suelo	0,30
Químicos para deshielo	0,18
Agua de mar y rocío de agua de mar: humedecimiento y secado	0,15
Estructuras de contención de agua, se excluyen ductos sin presión	0,10

Valores admisibles de ancho de fisura según ACI 224

Figura 11-10 – Factores de longitud efectiva para elementos comprimidos en pórticos indesplazables

Figura 11-11 – Factores de longitud efectiva para elementos comprimidos en pórticos desplazables

Para
$$\psi_{m} < 2$$
, $k = \frac{20 - \psi_{m}}{20} \sqrt{1 + \psi_{m}}$

Para
$$\psi_m \ge 2$$
, $k = 0, 9\sqrt{1 + \psi_m}$

Con $\psi_m = (\psi_A + \psi_B)/2$.