Homework 6 for GPI

5. Some practice on partial derivatives:

(a) A function called Lagrange is given by:
$$L = \frac{1}{2}(v_x^2 + v_y^2) - 3\cos t$$
, it is a function

explicitly depend on v_x, v_y and t.

Find the following derivatives: 1) The partial derivative of L vs. t; vs. v_x.

2) Suppose we know that the velocities are related to time:

$$v_x = a\cos t, v_y = a\sin t$$
 . The total derivative (i.e. as t changes by small amount,

how much L will change): dL/dt. Understand the difference between this vs.

$$(\frac{\partial L}{\partial t})_{\nu_x,\nu_y}$$
 in 1).

(b)
$$G(x,y) = \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, an equation represents a ellipse, use the partial derivative

method to find dy/dx (the tangent line on the ellipse)

(c) For a function of
$$f(x, y) = xy^2 + y \cos x$$

1) Find
$$(\frac{\partial f}{\partial x})_y, (\frac{\partial f}{\partial y})_x$$

2) Now I make a transformation, using s,t as variable instead of x,y and they are related

by: s=x, t=x+y, now find
$$(\frac{\partial f}{\partial s})_t$$
, is it same as $(\frac{\partial f}{\partial x})_y$?

Following are the problems on gradient, line integral and Green (Stokes) Theorem:

6. KK 5.1

5.1 Find the forces for the following potential energies.

a.
$$U = Ax^2 + By^2 + Cz^2$$

b.
$$U = A \ln(x^2 + y^2 + z^2)$$
 (In = log_e)

c.
$$U = A \cos \theta / r^2$$
 (plane polar coordinates)

7. KK 5.4

5.4 Determine whether each of the following forces is conservative. Find the potential energy function if it exists. A, α , β are constants.

a.
$$\mathbf{F} = A(3\hat{\mathbf{i}} + z\hat{\mathbf{j}} + y\hat{\mathbf{k}})$$

b.
$$\mathbf{F} = Axyz(\mathbf{\hat{i}} + \mathbf{\hat{j}} + \mathbf{\hat{k}})$$

c.
$$F_x = 3Ax^2y^5e^{\alpha z}$$
, $F_y = 5Ax^3y^4e^{\alpha z}$, $F_z = \alpha Ax^3y^5e^{\alpha z}$

d.
$$F_x=A\sin{(\alpha y)}\cos{(\beta z)}$$
, $F_y=-Ax\alpha\cos{(\alpha y)}\cos{(\beta z)}$, and $F_z=Ax\sin{(\alpha y)}\sin{(\beta z)}$

- 8. KK 5.5 (Try U=C, U=2C and you will see what the contours(equal potential lines) look alike)
 - 5.5 The potential energy function for a particular two dimensional force field is given by $U=Cxe^{-\nu}$, where C is a constant.
 - a. Sketch the constant energy lines.
 - b. Show that if a point is displaced by a short distance dx along a constant energy line, then its total displacement must be $d\mathbf{r} = dx(\mathbf{\hat{i}} + \mathbf{\hat{j}}/x)$.
 - c. Using the result of b, show explicitly that ${\bf \nabla} U$ is perpendicular to the constant energy line.
- 9. KK 5.7
 - 5.7 When the flattening of the earth at the poles is taken into account, it is found that the gravitational potential energy of a mass m a distance r from the center of the earth is approximately

$$U = -\frac{GM_e m}{r} \left[1 - 5.4 \times 10^{-4} \left(\frac{R_e}{r} \right)^2 (3 \cos^2 \theta - 1) \right],$$

where θ is measured from the pole.

Show that there is a small tangential gravitational force on m except above the poles or the equator. Find the ratio of this force to GM_em/r^2 for $\theta=45^\circ$ and $r=R_e$.

10. KK 5.8

5.8 How much work is done around the path that is shown by the force $\mathbf{F} = A(y^2\mathbf{i} + 2x^2\mathbf{j})$, where A is a constant and x and y are in meters? Find the answer by evaluating the line integral, and also by using Stokes' theorem.

Ans. $W = Ad^3$

If you have spare time, try to derive the gradient formula in spherical coordinate system.