Geometría y Álgebra Lineal 2

Mauro Polenta Mora

Ejercicio 20

Consigna

Probar que la relación de matrices semejantes es una relación de equivalencia.

Recordar que una relación es una relación de equivalencia si verifica las propiedades:

- Reflexiva: Toda matriz es semejante a sí misma.
- Simétrica: Si A es semejante a B, entonces B es semejante a A.
- Transitiva: Si A es semejante a B y B es semejante a C, entonces A es semejante a C.

Resolución

Reflexividad

Sea una matriz $A \in \mathcal{M}_{n \times n}$. A es semejante a si misma, ya que podemos considerar $P = (Id)_{n \times n}$ de forma que:

$$A = P^{-1}AP$$

Esto prueba que la semejanza de matrices es reflexiva

Simetría

Sean dos matrices $A, B \in \mathcal{M}_{n \times n}$, tal que A es semejante a B. Entonces $\exists P$ tal que:

$$B = P^{-1}AP$$

Multiplico ambos lados por P a la izquierda y P^{-1} a la derecha, obtengo que:

$$PBP^{-1} = PP^{-1}APP^{-1}$$

$$PBP^{-1} = A$$

Entonces B es semejante a A

Transitivid ad

Sean $A, B, C \in \mathcal{M}_{n \times n}$, tal que:

- A es semejante a B
- B es semejante a C

Entonces:

• $\exists P$ tal que: $B = P^{-1}AP$ • $\exists T$ tal que: $C = T^{-1}BT$

Por lo tanto:

$$B = P^{-1}AP$$

$$C = T^{-1}P^{-1}APT$$

Entonces C es semejante a A, con S=PT y $S^{-1}=T^{-1}P^{-1}$