Amendments to the Specification

IN THE ABSTRACT OF THE DISCLOSURE

Attached hereto is a replacement Abstract with markings to show amendments.

IN THE WRITTEN DESCRIPTION

Please replace the paragraph beginning at page 3, line 9, with the following rewritten paragraph:

In the above aluminum alloy extruded product, the microstructure other than the recrystallization layer in the surface layer is made fibrous by adding Mn. Although the strength of this aluminum alloy extruded product is improved by this measure, a problem relating to extrudability, such as extrusion cracks, occurs depending on the conditions. Therefore, one of the inventors of the present invention, together with another inventor, proposed a method of improving extrudability by, when extruding a solid product by using a solid die, extruding a solid product under conditions where the bearing length of the solid die and the relationship between the bearing length and the thickness of the extruded product are specified, and, when extruding a hollow product by using a porthole die or a bridge die, extruding a hollow product under conditions where the ratio of the flow speed of the aluminum alloy in a joining non-joining section to the flow speed of the aluminum alloy in a non-joining joining section, in which the billet rejoins after entering a port section of the die in divided flows and subsequently encircling a mandrel, is controlled (JP-A-2002-319453).

Please replace the paragraph beginning at page 5, line 27, with the following rewritten paragraph:

A fifth aspect of the present invention provides a method of manufacturing a high-strength aluminum alloy extruded

product exhibiting excellent corrosion resistance, the method comprising: extruding a billet of the aluminum alloy according to claim 1 or 2 into a hollow product by using a porthole die or a bridge die while setting a ratio of a flow speed of the aluminum alloy in a joiningnon-joining section to a flow speed of the aluminum alloy in a non-joining section in a weld chamber, where the billet reunites after entering a port section of the die in divided flows and subsequently encircling a mandrel, at 1.5 or less, to obtain a hollow extruded product of which a cross-sectional structure has a recrystallized structure with a grain size of 500 µm or less.

Please replace the paragraph beginning at page 14, line 17, with the following rewritten paragraph:

In order to perform extrusion while limiting the ratio of the metal flow speed in the joiningnon-joining section to the metal flow speed in the non-joiningjoining section of the chamber 17 to 1.5 or less, a porthole die designed in such a way that the ratio of the chamber depth D (FIGS. 5 and 6) to the bridge width W (FIG. 3) is appropriately adjusted is used, for example. FIG. 7 shows an example of the relationship between the D/W ratio and the ratio of the flow speed in the joiningnon-joining section to the flow speed in the non-joiningjoining section.

Please replace Table 4 beginning at page 19, line 1, with the following rewritten Table 4:

			TABLE	4		
Specimen	Alloy	Grain size (μm)	Tensile strengtḥ (MPa)	Yield strength (MPa)	Elongation (%)	Corrosion weight loss (%)
15	6	250	425	388	13.0	1.1
16	P	300	430	388	11.0	<u>1.1</u>
17	Q	350	433	390	11.0	<u>1.2</u>
18	R	350	<u>385</u>	345	16.5	0.4
19	S	300	385	340	16.5	0.3
20	T	250	388	<u>338</u>	16.0	0.4
21	U	250	417	388	12.0	<u>1.2</u>
22	v	450	395	3.73	11.0	<u>1.5</u>
23	w	500	405	370	12.0	0.7
24	х	250	418	380	11.5	<u>1.1</u>
25	Y	350	<u>380</u>	<u>335</u>	16.0	0.3
26	z	300	418	388	14.0	1.1
27	AA	350	426	390	11.0	13
28	ВВ	400	430	386	10.0	1.1

			TABLE	4	
Specimen	Alloy	Grain size (µm)	Tensile strength (MPa)	Yield strength (MPa)	Elongation (%)
15	0	.250	425	388	13.0

Specimen	Alloy	Grain size (μm)	strength (MPa)	Yield strength (MPa)	Elongation (%)	weight loss (%)
15	0	.250	425	388	13.0	<u>1.1</u>
16	P	300	430	388	11.0	<u>1.1</u>
17	Q	350	433	390	11.0	<u>1.2</u>
18	R	350	385	345	16.5	0.4
19	S	300	385	340	16.5	0.3
20	Т	250	383	338	16.0	0.4
21	υ	250	417	388	12.0	<u>1.2</u>
22	V	450	395	373	11.0	1.5
23	w	500	405	370	12.0	0.7
24	x	250	418	380	11.5	1.1
25	Y	350	380	335	16.0	0.3
26	Z	300	418	388	14.0	<u>1.1</u>
27	AA	350	426	390	11.0	1.3
28	BB	400	430	386	10.0	1.1

Corrosion

Please replace Table 6 beginning at page 22, line 6, with the following rewritten Table 6:

TABLE 6							
Specimen	Grain size (μm)	Tensile strength (MPa)	Yield strength (MPa)	Elongation (%)	Corrosion weight loss (%)	Surface properties after bending	
29	200	415	380	13.0	0.3	Good	
30	210	411	374	13.5	0.4	Good	
31	220	464	373	14.0	0.5	Good	
32	220	376	<u>334</u>	15.5	0.6	-	
33	200	418	382	13.0	0.4	Good	
34	400	<u>370</u>	320	14.5	0.9	-	
35	<u>510</u>	393	320 360	8.0	0.9	Bad	
36	350	405	374	11.0	0.7	Good	
37	220	370	<u>339</u>	13.5	0.6	-	
38	480	398	365	10.0	0.2	Good	
39		-	-	-	· \	-	
40	<u>700</u>	390	359	<u>6.0</u>	<u>1.5</u>	Bad	
41		392	360	10.0	0.9	Bad	
42	<u>520</u> 400	402	. 370	10.5	0.8	Good	

	Grain size	Tensile	Yield	Elongation	Corrosion	Surface	l
Specimen	(μm)	strength	strength	(%)	weight loss	properties after	
	(μ)	(MPa)	(MPa)	(%)	(%)	bending	
29	200	415	380	13.0	0.3	Good	
30	210	411	374	13.5	0.4	Good	l
31	220	404	373	14.0	0.5	Good	
32	220	376	334	15.5	0.6	-	l
33	200	418	382	13.0	0.4	Good	l
34	400	370	320	14.5	0.9	-	l
35	<u>510</u>	393	360	8.0	0.9	Bad	l
36	350	405	374	11.0	0.7	Good	l
37	220	370	339	13.5	0.6	-	l
38	480	398	365	10.0	0.9	Good	l

359

360

370

6.0

10.0

10.5

<u>1.5</u>

0.9

0.8

Bad

Bad

Good

TABLE 6

39 40

41

42

700

<u>520</u>

400

390

392

402

Please replace the paragraph beginning at page 23, line 25, with the following rewritten paragraph:

An aluminum alloy having a composition shown in Table 1 was cast by semicontinuous casting to prepare a billet with a diameter of 200 mm. The billet was homogenized at 525°C for eight hours to prepare an extrusion billet. The extrusion billet was extruded (extrusion ratio: 20) into a tubular product having an outer diameter of 30 mm and an inner diameter of 20 mm at an extrusion temperature of 480°C and an extrusion rate of 3 m/min by using a porthole die in which the ratio of the chamber depth D to the bridge width W was 0.5 to 0.6. The ratio of the flow speed of the aluminum alloy in the joiningnon-joining section of the die to the flow speed of the aluminum alloy in the non-joining section was 1.3 to 1.4.

Please replace Table 8 beginning at page 26, line 1, with the following rewritten Table 8:

	TABLE 8								
	Specimen	Alloy	Grain size (μm)	Tensile strength (MPa)	Yield strength (MPa)	Elongation (%)	Corrosion weight loss (%)		
	57	9	250	420	385	13.5	<u>1.1</u>		
	58	P	330	425	385	11.0	<u>1.2</u>		
	59	Q	340	430	385	10.0	<u>1.3</u>		
	60	R	310	<u>385</u>	340	17.0	0.3		
	61	S	300	385	340	17.0	0.3		
-	62	T	260	385	340	17.0	0.3		
	63	U	210	420	388	11.5	<u>1.1</u>		
1	64	V	440	395	370	10.0	<u>1.5</u>		
ľ	65	w	460	400	375	11.0	0.8		
	66	x	190	420	380	13.5	1.1		
-	67	Y	320	<u>385</u>	340	17.0	0.3		
	68	\overline{z}	250	420	385	13.5	1.2		
1	69	AA	340	430	385	10.0	13		
	70	BB	350	430	385	10.0	1.2		

IABLE	<u>C</u>
Tensile	Τ

Specimen	Alloy	Grain size (μm)	Tensile strength (MPa)	Yield strength (MPa)	Elongation (%)	Corrosion weight loss (%)
57	0	250	420	385	13.5	1.1
58	P	330	425	385	11.0	1.2
59	Q	340	430	385	10.0	1.3
60	R	310	385	340	17.0	0.3
61	S	300	385	340	17.0	0.3
62	Т	260	385	340	17.0	0.3
63	υ	210	420	388	11.5	<u>1.1</u>
64	V	440	395	370	10.0	<u>1.5</u>
65	w	460	400	375	11.0	0.8
66	X	190	420	380	13.5	1.1
67	Y	320	385	340	17.0	0.3
68	Z	250	420	385	13.5	1.2
69	AA	340	430	385	10.0	<u>1.3</u>
70	BB	350	430	385	10.0	1.2

Please replace Table 10 beginning at page 29, line 1, with the following rewritten Table 10:

TABLE 10 Tensile Corrosion Surface Grain size. Yield strength **Elongation** Specimen strength weight loss properties (µm) (MPa) (%) (MPa) after bending (%)_ 200 13.0 0.3 71 415 380 Good 409 72 250 372 12.0 0.4 Good 406 200 375 14.0 0.5 73 Good 220 337 15.0 74 <u>374</u> 0.6 385 75 13.0 200 420 0.4 Good 14.5 76 390 372 <u> 321</u> 0.9 77 395 362 <u>510</u> <u>8.5</u> 0.9 Bad 408 78 340 376 11.5 0.7

<u>339</u>

360

TABLE 10

13.0

10.0

Good

Bad

0.6

0.9

Specimen	Grain size (µm)	Tensile strength (MPa)	Yield strength (MPa)	Elongation (%)	Corrosion weight loss (%)	Surface properties after bending
71	200	415	380	13.0	0.3	Good
72	250	409	372	.12.0	0.4	Good
73	200	406	375	14.0	0.5	Good
74	220	374	337	15.0	0.6	-
75	200	420	385	13.0	0.4	Good
76	390	372	321	14.5	0.9	-
77	<u>510</u>	395	362	8.5	0.9	Bad
78	340	408	376	11.5	0.7	Good
79	200	380	339	13.0	0.6	-
80	<u>520</u>	390	360	10.0	0.9	Bad

79

200

<u>520</u>

<u>380</u>

390