EX.NO: 01	NUMPY
DATE: 16/02/2024	
AIM:	
To calculate the values for the	e mathematical formulas using NumPy library
INTEGRATED DEVELOPMENT E	NVIRONMENT (IDE) REQUIRED:
JUPYTER NOTEBOOK	
	10M
REQUIRED LIBRARIES FOR PYTI Numpy	HON:
PROCEDURE:	
1. Euclidean distance	
Tho mathematical tormuEa tor calcu:ating tha Euclid	ean distance betwaon 2 paints in 20 space:
	$(GIPI)^2 + (QaP2)^2$
PROGRAM:	

```
#CALCULATE EUCLIDEAN DISTANCE
import math

a = [9]
b = [1]
print (math.dist(a,b))

a = [3, 7]
b = [6, 12]
print (math.dist(a, b))
```

OUTPUT:

5 .8309518948453

2. Dot Product

$$u=egin{bmatrix} 5 \\ 12 \end{bmatrix}, \quad v=egin{bmatrix} 8 \\ 6 \end{bmatrix}$$
 moduit is $u\cdot v=u_1\times v_1+u_2\times v_2$ $=5\times 8+12\times 6$ Cot $=112$

PROGRAM:

```
# DOTPRODUCT OF TWO V
import numpy as np
a1 = 3
b1 = 5
A = np.dot(a1,b1)
print(A)
p = [[2, 1], [0, 3]]
q = [[1, 1], [3, 2]]
print(np.dot(p, q))
a2 = 4 + 5j
b2 = 8 + 6j
print(np.dot(a2, b2))
a3 = [[5, 3], [0, 3]]
b3 = [[1, 7], [3, 6]]
print(np.dot(b, a))
             VECTORS
```

OUTPUT:

15

102

3. Solving a System Of Linear Equations

A system of linear equations can be represented in matrix form as AX=B, whereA is the matrix of coefficients, X is the column vector of variables,

-1

and B is the column vector of solutions. To solve for X, we can use: X=A B assuming A is invertible.

PROGRAM:

220801185

```
#SOLVING LINEAR EQUATIONS
import numpy as np
a = np.array([[1,1,1],[0,2,5],[2,5,-1]])
b = np.array([[6],[-4],[27]])
x = np.dot(np.linalg.inv(a),b)
print(x)
```

OUTPUT:

[[5.] [3.]

[-2.]]