ETE-205: Digital Logic Design

Turja Roy Roll: 2108052

Contents

1	Dig	gital Systems						
2	Nur	Number Systems						
		Number Base Conversions						
	2.2	Complements of Numbers						
		2.2.1 Diminished Radix Complement						
		2.2.2 Radix Complement						
		2.2.3 Subtraction with Complements						
	2.3	Binary Coded Decimal Codes (BCD)						
		2.3.1 BCD Addition						
		Gray Code						
	2.5	Error-Detecting Code						

1 Digital Systems

Definition 1.0.1: Digital Systems

A digital system is a system that processes digital signals. A digital signal is a signal that can take on only a discrete set of values.

2 Number Systems

Definition 2.0.1: Binary Numbers

A binary number is a number expressed in the binary numeral system, which uses only two symbols: typically 0 (zero) and 1 (one).

2.1 Number Base Conversions

Example 2.1: Convert $(7956.6875)_{10}$ to binary

Integer Part:

		Integer Quotient		Remainder	Coefficient
7	7956/2 =	3978	+	0	$a_0 = 0$
3	8978/2 =	1989	+	0	$a_1 = 0$
1	1989/2 =	994	+	1	$a_2 = 1$
	994/2 =	497	+	0	$a_3 = 0$
	497/2 =	248	+	1	$a_4 = 1$
	248/2 =	124	+	0	$a_5 = 0$
	124/2 =	62	+	0	$a_6 = 0$
	62/2 =	31	+	0	$a_7 = 0$
	31/2 =	15	+	1	$a_8 = 1$
	15/2 =	7	+	1	$a_9 = 1$
	7/2 =	3	+	1	$a_{10} = 1$
	3/2 =	1	+	1	$a_{11} = 1$
	1/2 =	0	+	1	$a_{12} = 1$

$$\therefore (7956)_{10} = (a_{12}a_{11} \dots a_1 a_0)_2 = (1111100010100)_2$$

Fractional Part:

Fractional Quotient Product Coefficient

$$0.6875 \times 2 = 1.375 = 1 \quad b_0 = 1$$
 $0.375 \times 2 = 0.75 = 0 \quad b_1 = 0$
 $0.75 \times 2 = 1.5 = 1 \quad b_2 = 1$
 $0.5 \times 2 = 1.0 = 1 \quad b_3 = 1$

$$\therefore (0.6875)_{10} = (b_0b_1b_2b_3)_2 = (1011)_2$$

$$\therefore (7956.6875)_{10} = (1111100010100.1011)_2$$

Example 2.2: Convert $(AF66.9BC)_16$ to binary

$$(A)_{16} = (1010)_2$$

$$(F)_{16} = (1111)_2$$

$$(6)_{16} = (0110)_2$$

$$(9)_{16} = (1001)_2$$

$$(B)_{16} = (1011)_2$$

$$(C)_{16} = (1100)_2$$

 $\therefore (AF66.9BC)_{16} = (1010111101100110.1001101111100)_2$

Example 2.3: Convert (10101101.101011) to decimal

$$(10101101)_2 = 1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

$$= 128 + 0 + 32 + 0 + 8 + 4 + 0 + 1$$

$$= 173$$

$$(0.101011)_2 = 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 0 \times 2^{-4} + 1 \times 2^{-5} + 1 \times 2^{-6}$$

$$= 0.5 + 0 + 0.125 + 0 + 0.03125 + 0.015625$$

$$= 0.671875$$

 $\therefore (10101101.101011)_2 = (173.671875)_{10}$

Example 2.4: Convert $(0.513)_{10}$ to octal

Example 2.4. Convert (0.515)10 to octain							
	Fractional Quotient		Product	Coefficient			
$0.513 \times 8 =$	4.104	=	4	$b_0 = 4$			
$0.104 \times 8 =$	0.832	=	0	$b_1 = 0$			
$0.832 \times 8 =$	6.656	=	6	$b_2 = 6$			
$0.656 \times 8 =$	5.248	=	5	$b_3 = 5$			
$0.248 \times 8 =$	1.984	=	1	$b_4 = 1$			
$0.984 \times 8 =$	7.872	=	7	$b_5 = 7$			
$(0.513)_{10} = (0.406517)_8$							

2.2 Complements of Numbers

2.2.1 Diminished Radix Complement

Definition 2.2.1: Diminished Radix Complement

Given a number N in base r having n digits, the (r-1)'s complement of N, i.e., its diminished radix complement, is defined as $(r^n-1)-N$.

Example 2.5: 9's complement

The 9's complement of 546700 is

$$10^6 - 1 - 546700 = 999999 - 546700 = 453299$$

The 9's complement of 012398 is

$$999999 - 012398 = 987601$$

Example 2.6: 1's complement

The 1's complement of 1011000 is

$$(2^7 - 1)_2 - 1011000 = 11111111 - 1011000 = 0100111$$

The 1's complement of 0101101 is

$$11111111 - 0101101 = 1010010$$

2.2.2 Radix Complement

Definition 2.2.2: Radix Complement

The r's complement of an n-digit number N in base r is defined as $r^n - N$ for $N \neq 0$ and as 0 for N = 0. Comparing with the (r - 1)'s complement, we note that the r's complement is obtained by adding 1 to the (r - 1)'s complement, since $r^n - N = [(r^n - 1) - N] + 1$.

Example 2.7: 10's complement

The 10's complement of 012398 is

$$10^6 - 012398 = 1000000 - 012398 = 987602$$

The 10's complement of 246700 is

$$1000000 - 246700 = 753300$$

Example 2.8: 2's complement

The 2's complement of 1101100 is

$$(2^7)_2 - 1101100 = 10000000 - 1101100 = 0010100$$

The 2's complement of 0110111 is

$$10000000 - 0110111 = 1001001$$

2.2.3 Subtraction with Complements

Example 2.9: Using 10's complement, subtract 72532 - 3250

Let M = 72532, and N = 3250

10's complement of N:

$$100000 - 3250 = 96750$$

Now,

$$M = 72532$$

10's complement of N = +96750

Sum = 169282

Discard end carry $10^5 = -100000$

Answer = 69282

Example 2.10: Subtract 1010100 - 1000011 and 1000011 - 1010100 using 2's complement

Let X = 1010100, and Y = 1000011

2's complement of Y:

$$10000000 - 1000011 = 0111101$$

Now, X - Y

$$X = 1010100$$

2's complement of Y = +0111101

Sum = 10010001

Discard end carry $2^7 = -10000000$

Answer = 0010001

$$X - Y = 0010001$$

Again, 2's complement of X:

$$10000000 - 1010100 = 0101100$$

Now, Y - X

$$Y = 1000011$$

2's complement of X = +0101100

Sum = 11011111

There is no end carry. So, 2's complement of the sum:

$$10000000 - 1101111 = 0010001$$

$$\therefore Y - X = -(2$$
's complement of Sum) = -0010001

2.3 Binary Coded Decimal Codes (BCD)

Decimal Symbol	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Example 2.11

$$(185)_{10} = (0001\ 1000\ 0101)_{BCD} = (10111001)_2$$

2.3.1 BCD Addition

Example 2.12

Add $6 = (0110)_2$ to the binary sum when it's greater than or equal to $10 = (1010)_2$

Example 2.13:
$$184 + 576 = 760$$
 in BCD

2.4 Gray Code

Definition 2.4.1: Gray Code

Gray code is a binary numeral system where two successive values differ in only one bit. It is commonly used in Analog-to-Digital converters.

Gray Code	Decimal Equivalent
0000	0
0001	1
0011	2
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15

2.5 Error-Detecting Code

Definition 2.5.1: Parity bit

A parity bit is an extra bit included with a message to make the total number of 1's either even or odd.

ASCII Code	With even parity	With odd parity
A = 1000001	01000001	11000001
T = 1010100	11010100	01010100