Optimization in Machine Learning

Evolutionary Algorithms GA / Bit Strings

Learning goals

- Recombination
- Mutation
- Simple examples

BINARY ENCODING

- In theory: Each problem can be encoded binary
- In practice: Binary not always best representation (e.g., if values are numeric, trees or programs)

We typically encode problems with **binary decision variables** in binary representation.

Examples:

- Scheduling problems
- Integer / binary linear programming
- Feature selection
- ...

RECOMBINATION FOR BIT STRINGS

Two individuals $\mathbf{x}, \tilde{\mathbf{x}} \in \{0, 1\}^d$ encoded as bit strings can be recombined as follows:

• 1-point crossover: Select crossover $k \in \{1, ..., d-1\}$ randomly. Take first k bits from parent 1 and last d-k bits from parent 2.

1	1		1
0	0		0
0	1	\Rightarrow	1
1	1		1
1	0		0

• **Uniform crossover:** Select bit j with probability p from parent 1 and 1 - p from parent 2.

1	0		1
0	0		0
0	1	\Rightarrow	1
0	1		1
1	0		1

MUTATION FOR BIT STRINGS

Offspring $\mathbf{x} \in \{0,1\}^d$ encoded as a bit string can be mutated as follows:

• **Bitflip:** Each bit *j* is flipped with probability $p \in (0, 1)$.

EXAMPLE 1: ONE-MAX EXAMPLE

 $\mathbf{x} \in \{0,1\}^d, d = 15$ bit vector representation.

Goal: Find the vector with the maximum number of 1's.

- Fitness: $f(\mathbf{x}) = \sum_{i=1}^{d} x_i$
- ullet $\mu=$ 15, $\lambda=$ 5, $(\mu+\lambda)$ -strategy, bitflip mutation, no recombination

Green: Representation of best individual per iteration. Right scale shows fitness.

EXAMPLE 2: FEATURE SELECTION

We consider the following toy setting:

- Generate design matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$ by drawing n = 1000 samples of p = 50 independent normally distributed features with $\mu_j = 0$ and $\sigma_j^2 > 0$ varying between 1 and 5 for $j = 1, \dots, p$.
- Linear regression problem with dependent variable y:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \epsilon$$

with $\epsilon \sim \mathcal{N}(0, 1)$.

Parameter θ :

$$heta_0 = -1.2$$
 $heta_j = egin{cases} 1 & ext{for } j \in 1,7,13,19,25,31,37,43 \ 0 & ext{otherwise} \end{cases}$

⇒ Only 8 out of 50 equally influential features

EXAMPLE 2: FEATURE SELECTION / 2

Aim: Find influential features

• **Encoding:** $\mathbf{z} \in \{0,1\}^p$, $z_j = 1$ means θ_j included in model

Fitness function f(z): BIC of the model belonging to z

• Mutation: Bit flip with p = 0.3

• **Recombination:** Uniform crossover with p = 0.5

• Survival selection: $(\mu + \lambda)$ strategy with $\mu = 100$ and $\lambda = 50$

```
## [1] "After 10 iterations:"
## [1] 1 7 11 13 14 15 19 20 22 25 30 31 36 37 40 43 44 48
## [19] 49 50
## [1] "After 20 iterations:"
## [1] 1 7 8 13 15 19 20 25 31 37 43
## [1] "Included variables after 24 iterations:"
## [1] 1 7 13 19 25 31 37 43
```


EXAMPLE 2: FEATURE SELECTION / 3

EXAMPLE 2: FEATURE SELECTION / 4

