Chapter 3: Set Theory

Fundamentals

Definition 3.1.1 (Sets, "∈")

A set is any unordered collection of objects. If x is an object and A is a set, $x \in A \lor x \notin A$.

Axiom 3.1 Sets are objects

If A is a set, then A is also an object; A can belong to B, i.e. $\{3, \{3, 4\}, 4\}$

Axiom 3.2 (Equality of Sets)

 $A = B \iff \forall x \in Ax \in B \land \forall y \in By \in A$

Axiom A.7 (Substitution)

If a and b are of the same type and a = b, then f(a) = f(b) for all functions and operations f. The same applies to any property P.

It is important to note that the axiom of substitution applies to " \in ". Therefore, it also applies to all operations we define exclusively in terms of it.

Axiom 3.3 (Empty Set)

There exists a set \emptyset (or $\{\}$) $s.t. \forall x, x \notin \emptyset$.

Lemma 3.1.5 (Single Choice)

Let *A* be a non-empty set. $\Rightarrow \exists x \ s.t. \ x \in A$.

Proof: (By contradiction)

Suppose $\nexists x \in A$. $\rightarrow \forall x, x \notin A$. Also by axiom 3.3, $x \notin A$.

"Thus,
$$x \in A \iff x \in \emptyset$$
."

(Every element of A is in \emptyset and vise versa; axiom 3.2.)

Thus, $A = \emptyset$, a contradiction. \square

Axiom 3.4 (Singleton and Pair Sets)

 $\forall a \exists \{a\}; \forall y, y \in \{a\} \iff y = a$. We call $\{a\}$ the singleton set whose element is a.

$$\forall a, b \exists \{a, b\}; \forall y, y \in \{a, b\} \iff (y = a \lor y = b)$$

Because by axiom 3.2, $\{a, a\} = \{a\}$, the singleton set axiom is redundant.

Axiom 3.5 (Pairwise Union)

Let *A* and *B* be sets. $\exists A \cup B \ s.t. \ x \in A \cup B \iff (x \in A \lor x \in B)$.

Lemma 3.1.12

$$\forall a, b \{a, b\} = \{a\} \cup \{b\}.$$

$$A \cup B = B \cup A.$$

$$(A \cup B) \cup C = A \cup (B \cup B).$$

Proof: I'm not going to write the proofs here, but the main idea seems to be to split the proof into two cases: for $A \cup B$, when $x \in A$ and when $x \in B$.

Definition 3.1.14 (Subsets)

Let A. B be sets.

 $A \subseteq B \iff \forall x \in A, x \in B.$ (A is a subset of B) $A \subseteq B \iff (A \subseteq B \land A \neq B).$ (A is a proper subset of B)

Because all of the above is defined in terms of ϵ , it follows the axiom of substitution.

Proposition 3.1.17 (Sets are partially ordered by set inclusion)

- 1. $(A \subseteq B \land B \subseteq C) \Rightarrow A \subseteq C$.
- 2. $(A \subseteq B \land B \subseteq A) \Rightarrow A = B$.
- 3. $(A \subsetneq B \land B \subsetneq C) \Rightarrow A \subsetneq C$.

Proof (1): We **choose** an arbetrary element of A, x. Since $A \subseteq B$, $x \in B$, and since $B \subseteq C$, $x \in C$. Thus any element of A is an element of C. \Box

Proof (3): Since $(X \subsetneq Y) \Rightarrow (X \subseteq Y)$, $A \subseteq B \land B \subseteq C$. Therefore, by Tao's proof of **1**, $A \subseteq C$.

Thus, to show $A \subsetneq C$, we only need show $A \neq C$.

If $(X \subseteq Y \land X \neq Y) \Rightarrow$

$$\left[\begin{array}{ccc} (\forall x \in X, x \in Y) & \wedge & \sim (\forall y \in Y, y \in X) \end{array} \right]$$

If this were false, $X \nsubseteq Y$.

∴ \exists some $y \in Y$ s.t. $y \notin X$.

 $\therefore (A \subsetneq B) \Rightarrow \exists b \in B \ s.t. \ b \notin A$

 $\therefore (B \subsetneq C) \Rightarrow b \in C \land \exists c \in C \ s.t. \ (c \notin B \land c \notin A \ \text{because} \ A \subseteq B)$

 $\therefore b, c \notin A \land b, c \in C \therefore A \neq C \square$

Axiom 3.6 (Specification)

Let A be a set, and P(x) s.t. $\forall x \in A$, P(x) is true or false.

 $\exists \{x \in A : P \text{ (is true)}\} \text{ s.t.}$

$$y \in \{x \in A : P(x)\} \iff (y \in A \land P(y))$$

Definition 3.1.22 (Intersections)

$$S_1 \cap S_2 := \{ x \in S_1 : x \in S_2 \};$$

$$x \in S_1 \cap S_2 \iff x \in S_1 \land x \in S_2.$$

Definition 3.1.26 (Difference sets)

$$A - B := \{x \in A : x \notin B\}$$

Proposition 3.1.27 (Sets for a bolean algebra)

a) Minimal Element

$$A \cup \emptyset = A \text{ and } A \cap \emptyset = \emptyset$$

b) Maximal Element

$$A \cup X = X$$
 and $A \cap X = A$

c) **Identity**

$$A \cap A = A$$
 and $A \cup A = A$

d) Conmutativity

$$A \cup B = B \cup A$$
 and $A \cap B = B \cap A$

e) **Associativity**

$$(A \cup B) \cup C = A \cup (B \cup B)$$
 and $(A \cap B) \cap C = A \cap (B \cap C)$

f) Distributivity

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 and $A \cup (B \cap C) = (A \cup B) \cap (A \cup B)$

q) Partition

$$A \cup (X - A) = X$$
 and $A \cap (X - A) = \emptyset$

h) De Morgan Laws

$$X - (A \cup B) = (X - A) \cap (X - B)$$
 and $X - (A \cap B) = (X - A) \cup (X - B)$

Axiom 3.7 (Replacement)

$$z \in \{y : P(x, y) \text{ is true for some } x \in A\}$$

$$\iff P(x,z)$$
 is true for some $x \in A$.

Example:

Let
$$P(x, y)$$
 be that $y = x++$. Then, $\{y : P(x, y) \text{ for some } x \in \{1, 2, 3\}\} = \{2, 3, 4\}$.

The above could be re-written in the forms:

$$f(x) = x + +, \{y : y = f(x) \text{ for some } x \in \{1, 2, 3\}\}\$$

Axiom 3.8 (Infinity)

There exists a set \mathbb{N} , whose elements are called *natural numbers*, as well as an object 0 in \mathbb{N} , and an object n++ assigned to every natural number $n \in \mathbb{N}$, such that the *Peano axioms* hold.

Functions

Definition 3.3.1 (Functions)

Let X, Y be sets and P(x, y) be a property of an objects $x \in X, y \in Y$ s.t. $\forall x \exists ! y \ s.t.$ P(x, y). We now define the function $f : X \to Y$, defined by P on the domain X and codomain Y to be the object which for any input $x \in X$, assigns an output $f(x) \in Y$.

In short:

$$y = f(x) \iff P(x, y)$$

Examples

One can simply derive a property from a function definition f(x) = x + + as $P(x, y) \iff y = x + +$.

For $P(x, y) \iff y + + = x$, f must be defined $f : \mathbb{N} - \{0\} \to \mathbb{N}$, since $0 - 1 \notin \mathbb{N}$, leaving f(0) undefined.

Functions can be defined explicitly by defining an expression for f(x), or implicitly by only defining P(x,y).

For explicitness' sake, Tao's definition **does** imply that unequal inputs do not necesarily mean unequal outputs.

Definition 3.3.8 (Equality of Functions)

Let $f: X \to Y$ and $g: X' \to Y'$.

$$f = g \iff (X = X' \land Y = Y') \land (\forall x \in X, f(x) = g(x))$$

Definition 3.3.13 (Composition)

Let $f: W \to X$ and $g: Y \to Z$.

$$(g \circ f)(x) := g(f(x)) \iff X = Y$$

Lemma 3.3.15 (Composition is Associative)

Let f, g, h be functions such that the following composition is possible.

$$\Rightarrow f \circ (g \circ h) = (f \circ g) \circ h$$

5

Definition 3.3.17 (One-to-one Functions)

If f is one-to-one (injective),

$$f(x) = f(x') \iff x = x'$$

Definition 3.3.21 (Onto Functions)

A function is onto (surjective) if

$$\forall y \in Y, \ \exists x \in X \ s.t. \ f(x) = y$$

Definition 3.3.21 (Bijective Functions)

A function is bijective (invertible) if it is both injective and surjective.

Definition 3.3.? (Inverse Functions)

If f if bijective, $\forall y \in Y$, $\exists ! x \in X \ s.t. \ f(x) = y$. This x is given by the inverse function $f^{-1}(y)$, defined : $Y \to X$.