Exo 1

```
Quels sont les ss espaces du

R - 0 for est tits un ss espace!

- TR l'espace thentier aussi

Si Ectin est ss espace vectoriel

dim E = ??

dim E = ! > droite qui passe par 0

2 > plan

3 > hyperplan
```

```
Dans 1k³ un plan = l'ensemble de vecteurs
perpendiculaire à
un vecteur v² + 0 donnée

l'interse chon de 2 plans = droite
```

Rappels

```
Soit f \in \mathbb{R} whe application linearies alovs f'(\{0\}) = \{0\}, f(v) = 0\} est so ev Def kev f = f'(\{0\}) est le noyau de f
```

II) soient
$$x,y \in E$$
 avec $f(x) = f(y) = 0$
Alovs $f(x+y) = f(x) + f(y)$ can $f(x) = 0$
 $f(x) = 0$

III) Someth
$$\chi \in \mathbb{R}$$
 $\Rightarrow o(+y \in f^{-1}(\{0\}))$ $x \in f^{-1}(\{0\}) \Rightarrow f(x) = 0$

Alors
$$f(\lambda \circ r) = \lambda + (\alpha r)$$

= $\lambda \circ f(\alpha r)$

= 0

Soient $F_1, F_2 \subset E$ ss esp lineaire alors $F_1 \cap F_2$ est awssi

- 1) 0 € F, 0 € F2 => 0 € F, n Fz
- 11) x,y = F, nFz => 21, y = F, => 21+y = F,
 21, y = F2 21+y = F2

Exo 2

II
$$f(x,y,z) \rightarrow x+y-7z$$
 app infaire
 $E_1 = f^{-1}(3 \circ 3) \Rightarrow ss$ esp vectoriel

21
$$E_2$$
 n'est pas
 $(0,6,0) \notin E_2$ $4 \times 0 + 5m - 0 = 0 \neq 1$

4)
$$E_4 = E_1 n F$$
 $E_1 = \frac{1}{2} x + y - 7z = 0$
 $F = \frac{1}{2} x - y = 0$
 $= \frac{1}{2} x - y = 0$

est une application lin

5)
$$E_5$$
 hon
Verifier que $(1,-1,0) \in E_5$ et ??
 $(1,1,0) \in E_5$

Exo 3
$$V = \{ \}$$
 polynomes degré $\{ \} \}$
= $\{ \sum_{n=1}^{n} a_n X^n, a_n \in \mathbb{R} \}$

Ex polynômes de degrē = 1

$$P(X) = aX + b \quad Q(X) = cX + ol \quad \lambda \in \mathbb{R}$$

$$IJ \quad (P+Q)(X) = (a+b)X + (c+d) \Rightarrow deg \leq 1$$

$$= 0 \quad Si \quad Q+b=0$$

$$II/ \quad (\lambda P)(X) = (\lambda a)X + (\lambda b) \Rightarrow deg \leq 1$$

$$= 0 \quad Si \quad \lambda a = 0$$

1)
$$0_V = \sum_{s=0}^{d} X'$$

11) Soient $P(X) = \sum_{s=0}^{d} a_s X'$
 $Q(X) = \sum_{s=0}^{d} b_s X'$
 $Mq = (P+Q)(X) \text{ est de degrē} \leq d$

111 $Mq = s_s A \in \mathbb{R} \setminus P(X) \text{ est de degrē} \leq d$

```
1) Montrer que P+>P(z) est app linéalite

2) Montrer que P+>P(z) est app linéalite

3) Montrer que 26F3 et faire le produit

3(-2 eF3)

4) Montrer que si f,g E -> TR |inéalite

alors f+g est linéalite aussi

Prendre fig clams 1/,2/ ci dessus
```

5/ Fo n'est pas lineaire justifier

$$(z H_6 \rightarrow C_2 H_4 + H_2)$$

Faisons une table

	CL	b	C
	C2 H6	Cz H4	Hz
С	Z	2	0
H	C	4	2

systēme Iinēaire

$$2a = 2b$$

$$6a = 4b + 2c$$

$$6a = 4a + 2C \Rightarrow 2a = 2c \Rightarrow q = C$$
Substitution $q = b$

$$a NO_2 + b H_2O = c HNO_3 + d NO$$

_	NO_2	H20	H NO3	No	
N	1	0	1	1	
0	2	1	3	1	
H	Ď	2	1	0	

système linéaire a = c +d

$$2b = c$$

=>
$$a = 3b$$
 $d = b$
 $c = 2b$

$$3NO_2 + H_2O = 2HNO_3 + NO$$

Exo 6 cont

Fe₇ S_{δ} + O_z \rightarrow Fe₃ O_4 + S O_2 3 Fe₇ S_{δ} + 38 O_z = 7 Fe₃ O_4 + 245 O_z Trouver le système lineante et verifier