FAX 1 619 23

MNFRAME.005A4 PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant	:	Johnson, et al.) Group Art Unit 2785
Appl. No.	:	08/942,214)
Filed	:	October 1, 1997)
For	:	METHOD FOR MAPPING ENVIRONMENTAL RESOURCES TO MEMORY)))
Examiner	:	FOR PROGRAM ACCESS Norman Wright)))

DECLARATION UNDER 37 C.F.R. § 1.131 TO OVERCOME TAVALLAEI

- This declaration is to establish the status of the invention in the above-captioned U.S. patent application in the United States on December 31, 1996, which is the effective date of U.S. Patent No. 5,864,653 entitled PCI HOT SPARE CAPABILITY FOR FAILED COMPONENTS, to Tavallaei et al., which was cited by the Examiner against the above-captioned application.
- 2. We are the named joint inventors of the described subject matter and all claims in the above-referenced regular patent application, filed October 1, 1997.
- 3. We have read the Office Actions mailed September 15, 1999, (Paper No. 13) and March 26, 2000 (Paper No. 18) regarding the patent application.
- 4. We reduced to practice the invention described and claimed in the pending application by at least December 19, 1996, as evidenced by the following events:
 - a. By at least December 19, 1996, NetFRAME (the assignee of the subject application) was manufacturing and selling a fully functional product (the NF9000 family of network servers) that reduced to practice the claimed subject matter. The

08/942,214

internal to the computer;

October 1, 1997

commercial product was described as being commercially available in a document entitled "Novell IntranetWare supports hot pluggable PCI from NetFRAME," which was published on December 19, 1996, as evidenced by the document date. A copy of page 1 is attached as Exhibit A.

b. Reduction to practice of Claim 1. A document entitled "Raptor Wire Service Architecture, Version 1.3" (hereinafter RWSA), dated October 3, 1996, and a software source code document entitled "Module CS9000WS.SDL" (hereinafter CS9000WS), bearing a revision date of October 25, 1996, together show the invention as set out in Claim 1, and as incorporated in the product sold by NetFRAME. Copies of the cover and page 1 of RWSA are attached as Exhibit B, and copies of pages 1 and 5-11 of CS900WS are attached as Exhibit C.

For reference, Claim 1 of the pending patent application recites a "method of mapping environmental resources to memory, comprising:

providing a computer, the computer comprising a processor and a memory; providing a microcontroller network, wherein the microcontrollers provide monitoring and control functions associated with the environmental conditions

storing in the memory a unique identifier for each of the functions; and executing commands on the microcontroller network by accessing any one of the unique identifiers.

Page 1 of RWSA depicts a "Wire Service Hardware Diagram" (a more readable version of the same diagram is presented as Fig. 5A and Fig. 5B of the patent application). RWSA shows a computer (e.g., the ISA Bus to communicate with the CPU, a PCI card, and dual CPUs on a Motherboard) and a microcontroller network (e.g., Canister Controller, CPU A Controller, Chassis Controller, etc.). RWSA illustrates that the microcontroller network is connected to the computer (e.g., the microcontroller network connects to the CPU through the System Interface and the ISA Bus), to several sensors (e.g., Chassis Controller is connected to Temperature Detector on Backplane and Temperature Detector on Motherboard; CPU B Controller is connected to CPU Thermal Fault Detector), and to environmental control components (e.g., CPU A Controller controls the speed of a fan). microcontroller network is capable of providing functions associated with the monitoring and controlling of the environmental conditions internal to the computer.

08/942,214

October 1, 1997

CS9000WS shows the claimed element of storing in memory a unique identifier for each of the functions. CS900WS is a header file containing data which is stored in memory at run-time, and that provides the network address, i.e., unique identifier, for each function. For example, on page 5 CS9000WS shows a section entitled "This is [sic] the Wire Service addresses for named items" where the function for the system board fan fault (WS_SB_FANFAULT) has been assigned the unique identifier 03020300h (page 9). Hence, once a unique identifier is accessed by a CPU, it causes the execution of a command, e.g., "get fan fault", on the microcontroller network. Therefore, Exhibit B and Exhibit C together depict all of the elements of Claim 1.

Furthermore, the intended purpose of one embodiment of the invention was to provide an agent external to the microcontroller network (e.g., a remote monitoring and control program) access to the functionality of the microcontroller network without the external agent having complete knowledge of the layout and functionality of each controller in the network. The claimed subject matter as depicted in RWSA and CS9000WS, and as incorporated into the commercial product sold by NetFRAME, worked for its intended purpose.

- Reduction to practice of Claim 2. As with Claim 1, RWSA and CS900WS show C. the computer, microcontroller network, and a plurality of sensors, all interconnected for the purposes of monitoring and controlling the environmental conditions internal to the computer. The claim elements of assigning a unique identifier to each sensor and of providing a model of the microcontroller network in the computer memory were reduced to practice by at least October of 1996. The subject matter of Claim 2, as reduced to practice, worked for its intended purpose.
- đ. Reduction to practice of Claim 20. For reference, Claim 20 recites a "method of monitoring environmental conditions in a computerized environment, the method comprising:

creating a request message which identifies one or more environmental conditions internal to the computerized environment;

sending the request message from a requestor to a microcontroller network which manages the environmental conditions;

08/942,214

October 1, 1997

obtaining status of the conditions identified by the request message; creating a response message which reports the status; and sending the response message from the microcontroller network to the requestor.

The microcontroller network described in reference to Claims 1 and 2, is capable of obtaining status of the environmental conditions identified by a request message, of creating a response to the request, and of sending the response to the requestor. By at least December 19, 1996, we reduced to practice the additional claimed elements of creating a request message identifying one or more environmental conditions, and of sending the request message from the requestor to the microcontroller network. The subject matter of Claim 20, as reduced to practice, worked for its intended purpose.

- 5. L, Karl S. Johnson, am listed as an inventor on a provisional Patent Application No. 60/046,397, filed May 13, 1997, which is a priority application for the subject application.
- All acts leading to the reduction of practice were performed in the United States.

We declare that all statements made herein of our own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful, false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful, false statements may jeopardize the validity of the application or any patent resulting therefrom.

Dated:	Ву:
	Karl Johnson
Dated:	By:
	Walter Wallach
6 4 4-1	
Dated: 8-11-00	Ву:
	Carlton Amdahl
Dated:	Ву:
	Ken Nguyen
S:\DOCS\JFK\JFK-1023.DOC 062800	5 ,

21

09/15/00 15:36 FAX 1 619 23

Appl. No. Filed

08/942,214 October 1, 1997

obtaining status of the conditions identified by the request message; creating a response message which reports the status; and sending the response message from the microcontroller network to the requestor.

The microcontroller network described in reference to Claims 1 and 2, is capable of obtaining status of the environmental conditions identified by a request message, of creating a response to the request, and of sending the response to the requestor. By at least December 19, 1996, we reduced to practice the additional claimed elements of creating a request message identifying one or more environmental conditions, and of sending the request message from the requestor to the microcontroller network. The subject matter of Claim 20, as reduced to practice, worked for its intended purpose.

- I, Karl S. Johnson, am listed as an inventor on a provisional Patent Application No. 60/046,397, filed May 13, 1997, which is a priority application for the subject application.
- All acts leading to the reduction of practice were performed in the United States.

We declare that all statements made herein of our own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful, false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful, false statements may jeopardize the validity of the application or any patent resulting therefrom.

10, 1010

Dated: 14, 2000	By: Marl Johnson
Dated:	By: Walter Wallach
Dated:	By:Carlton Amdahl
Dated: S:\DOCS\FK\JFK-1023.DOC	By: Ken Nguyen

22

08/942,214

October 1, 1997

obtaining status of the conditions identified by the request message; creating a response message which reports the status; and sending the response message from the microcontroller network to the requestor.

The microcontroller network described in reference to Claims 1 and 2, is capable of obtaining status of the environmental conditions identified by a request message, of creating a response to the request, and of sending the response to the requestor. By at least December 19, 1996, we reduced to practice the additional claimed elements of creating a request message identifying one or more environmental conditions, and of sending the request message from the requestor to the microcontroller network. The subject matter of Claim 20, as reduced to practice, worked for its intended purpose.

- 5. I, Karl S. Johnson, am listed as an inventor on a provisional Patent Application No. 60/046,397, filed May 13, 1997, which is a priority application for the subject application.
- 6. All acts leading to the reduction of practice were performed in the United States.

We declare that all statements made herein of our own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful, false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful, false statements may jeopardize the validity of the application or any patent resulting therefrom.

Dated:	By: Karl Johnson
Dated: <u>\$\langle 11\left(00)</u>	By: Malter Wallach
Dated:	By:Carlton Amdahl
Dated: S:\DOC\$\JFK\JFK-1023.DOC 062800	By: Ken Nguyen

09/15/00 15:36 FAX 1 619 23

EXHIBIT A

03393902/9 DIALOG(R) File 636: Gale Group Newsletter DB(TM) (c) 1999 The Gale Group. All rts. reserv.

Supplier Number: 46983928 (THIS IS THE FULLTEXT) NOVELL: Novell IntranetWare supports hot pluggable PCI from NetFRAME M2 Presswire, pN/A Dec 19, 1996

Language: English Record Type: Fulltext

Document Type: Newswire; Trade

Word Count: 495

TEXT:

M2 PRESSWIRE-19 December 1996-NOVELL: Novell IntranetWare supports hot pluggable PCI from NetFRAME (C)1994-96 M2 COMMUNICATIONS LTD RDATE:181296 * IntranetWare customers can add and swap PCI cards in on-line systems with minimal server downtime Novell, Inc. today announced that customers using IntranetWare, Novell's full-service Internet/intranet access platform, can take advantage of both Hot Add and Hot Swap PCI with today's NetFRAME enterprise-class network servers. The companies will continue to work closely in the future to ensure that the recently proposed PCI Hot Plug standard will deliver the level of functionality that IntranetWare and NetFRAME customers depend on.

"Hot Pluggable PCI is a key technology for continual Internet and intranet availability," said William Donahoo, senior director of product marketing at Novell. "With today's requirement for 24-hour information access, server downtime resulting from server component failure, system maintenance or hardware expansion is unacceptable. Supporting this new technology brings a new level of flexibility and fault tolerance that helps customers build business-critical intranets."

Hot Pluggable PCI technology from NetFRAME, introduced October, 1996, enables IntranetWare customers to add and swap industry standard PCI boards and device drivers, while users remain on-line greatly reducing server downtime and service disruption. The technology supports PCI-based SCSI, Ethernet, FDDI and Token Ring interface cards and device drivers. System administrators can use this functionality to both repair and expand server storage and network connectivity without having to bring down either IntranetWare or the server.

"Novell is a leader in the network operating system market," said Steve Huey, vice president of marketing at NetFRAME. "We believe Novell is well positioned to shape the future of continuous intranet computing as organizations evolve their LANs into intranets. By shipping Hot Pluggable PCI technology today, NetFRAME makes it possible for IntranetWare users to deploy continuously available server environments."

By combining IntranetWare's unique ability to load and unload device drivers without downing the server with NetFRAME's Hot Pluggable PCI technology, system administrators can add new PCI devices to a server with no user downtime. For example, if a server's network adapter fails, it can be replaced without requiring an administrator to take IntranetWare off-line or re-booting the server. When a component is replaced, the card and driver are automatically identified and configured, and the card is instantly made available as a system resource.

Founded in 1983, Novell (NASDAQ: NOVL) is the world's leading provider of network software. The company offers a wide range of network solutions for distributed network, Internet, intranet and small-business markets. Novell education and technical support programs are the most comprehensive in the network computing industry. Information about Novell's complete range of products and services can be accessed on the World Wide Web at http://www.novell.com.

Novell is a registered trademark and IntranetWare is a trademark of Novell, Inc. All other registered trademarks and trademarks are the

property of their respective holders.
M2 COMMUNICATIONS DISCLAIMS ALL LIABILITY FOR INFORMATION PROVIDED WITHIN M2 PRESSWIRE. DATA SUPPLIED BY NAMED PARTY/PARTIES.

COPYRIGHT 1996 M2 Communications

THIS IS THE FULL TEXT: COPYRIGHT 1996 M2 Communications Subscription: \$ unavailable. Published 260 times per year. Contact M2 Communications, PO Box 505, Coventry, England CV2 5YA. Phone 44-1203-634700. COPYRIGHT 1999 Gale Group

EXHIBIT B

Raptor Wire Service Architecture

Version 1.3

October 3, 1996

Prepared for NetFrame Raptor Implementation Group

by Karl Johnson (KJ)

.

Raptor Wire Service Architecture

Introduction

"Wire Service" is the code name for the Raptor project system control, diagnostic and maintenance bus (formerly known as the CDM bus). Raptor is a completely "fly by wire" system - no switch, indicator or other control is directly connected to the function it monitors or controls. Instead, all the control and monitoring connections are made by the network of processors that comprise the "Wire Service" for the system. The processors are Microchip PIC processors and the network is a 400 kbps I²C serial bus. A limited understanding of I²C protocol is a prerequisite for understanding Wire Service protocols (See "The I²C-bus and how to use it" - Philips Semiconductor, Jan 1992). Control on this bus is distributed, each processor can be either a master or a slave and can control resources on itself or any other processor on the bus.

NetFRAME CONFIDENTIAL DOCUMENT

Page 1

EXHIBIT C

```
; $Module C59000WS.SDL$
;Copyright 1996
By NetFRAME Systems Inc.
   Milpitas, California U.S.A.
; $Author:
          Ken Nguyen $
         25 Oct 1996 16:48:18 $
;$Date:
;$Revision
:$Description$
;This file contains the NetFRAME Wire Service message and interface def
inition.
; for the C$9000
; $EndDescription$
  Revision History
       P:/inc/cs9000ws.sdl $
;$Log:
                25 Oct 1996 16:48:18
                                        Ken Nguyen
     Rev 1.13
  Fixed a Problem of Canister Fan Fault Status.
     Rev 1.10
                 10 Oct 1996 16:33:04
                                        Ken Nguyen
  Added a command to count Log entry.
     Rev 1.9
                30 Sep 1996 18:42:50
                                       Ken Nguyen
  Added Canister Fault Commands
                30 Sep 1996 17:34:16
                                       Karl Johnson
     Rev 1.8
  Added definitions for remote interface serial protocol
  Added NVRAM error counter
     Rev 1.7
                13 Sep 1996 11:22:22
                                       Ken Nguyen
  Corrected Temperature data length
     Rev 1.6
                09 Sep 1996 17:24:48
                                       Karl Johnson
  Added WS_SYSLOG_CLOCK - the clock used by the log recorder to time s
tamp
     Rev 1.5
                20 Aug 1996 01:08:36
                                       Karl Johnson
  Added screen event and corrected BOOTDEVS name.
                01 Aug 1996 15:32:50
                                       Karl Johnson
     Rev 1.4
   Cleanup and added new status values.
      Rev 1.3
                26 Jul 1996 17:14:38
                                       Karl Johnson
   Reduced maximum number of event types.
   Added a Success Status.
                08 Jul 1996 15:57:32
      Rev 1.2
                                       Karl Johnson
```

Changed read write bit in datatype definition.

```
**********
  ; Wire Service Log Message Constants
  ; First byte of log message data: Severity Level Byte
 WSLOG LEVEL UNKNOWN
                         CONSTANT 00h
                                         ; Unknown
 WSLOG LEVEL INFO
                         CONSTANT 10h
                                       ; Informational
 WSLOG_LEVEL_WARN
                         CONSTANT 20h
                                        ; Warning
 WSLOG_LEVEL_ERROR
                         CONSTANT 30h
                                        ; Error
 WSLOG_LEVEL_FATAL
                         CONSTANT 40h
                                        ; Severe/Fatal Error
 ; Second byte of log message data: Source/Encoding Byte
 ; - which entity logged the entry in the 4 high bits
 ; - which type of encoding of the message is used in the 4 low bits of
 the byte.
 WSLOG_SRC INTERNAL
                        CONSTANT 00h
                                        ; Wire Service Internal
 WSLOG_SRC_OBDIAG
                        CONSTANT 10h
                                        ; Onboard Diagnostics
 WSLOG_SRC_EXDIAG
                        CONSTANT 20h
                                        ; External Diagnostics
 WSLOG_SRC_BIOS
                        CONSTANT 30h
                                       ; BIOS
 WSLOG_SRC_DOS
                        CONSTANT 40h
                                        ; DOS
 WSLOG SRC WIN
                        CONSTANT 50h
                                        ; Windows, Win95
 WSLOG SRC WINNT
                        CONSTANT 60h
                                       ; Windows/NT
 WSLOG_SRC_NETWARE
                        CONSTANT 70h
                                       ; NetWare
 WSLOG_TYPE_BINARY
WSLOG_TYPE_ASCII
                        CONSTANT 00h
                                        ; Message data is Binary
                        CONSTANT 01h
                                       ; Message data is ASCII
 WSLOG_TYPE_UNICODE
                        CONSTANT 02h
                                       ; Message data is Unicode
************
; This is the Wire Service addresses for named items.
; Addresses are composed of three parts: Processor ID, Data Type and Su
baddress
; In this table the address is encoded as a 4 bytes in hexadecimal nota
; PPTTAAAAh where PP is the processor ID, TT is the data type and AL AH
; 2 byte subaddress. Processor ID's 00 and 20 are special, 00 applies t
o all
; processors and 20 applies to all canister processors.
                                PPTTALAH
WS DESCRIPTION
                       CONSTANT 00030100h
                                               ;(S) Wire Service Proce
ssor Type/Description
WS_REVISION
                       CONSTANT 00030200h
                                               ;(S) Wire Service Softw
are Revision/Date Info
WS_POWERUP_HOLD
                       CONSTANT 01010100h
action of system on A/C power available
                                              ; (L) The mode controls
WS_WDOG CALLOUT
                       CONSTANT 01010200h
                                              ; (L) This is a bit cont
```

Page 5

rolling collout on a	-41:1	
rolling callout on a wa WS WDOG RESET	athodog timeout.	
WS_WUCG_RESET	CONSTANT 01010300h	;(L) This is a bit cont
rolling system on a wat	thedog timeout.	
WS_NVRAM_RESET	CONSTANT 01020100h	;(B) Trigger to reset N
VRAM Data		3301 10 10000 N
WS_SYS_BOOTFLAG1	CONSTANT 01020200h	;(B) System Boot Flag 1
WS SYS BOOTFLAG2	CONSTANT 01020300h	· (B) System Boot Flag I
WS_SYS_BOOTFLAG3	CONSTANT 01020400h	; (B) System Boot Flag 2
WS SYS BOOTFLAG4	CONSTANT 01020500h	; (B) System Boot Flag 3
WS_SYS_XDATA KBYTES	CONSTANT 010205000	; (B) System Boot Flag 4
_XDATA in kilobytes	CONSTANT 01020600h	; (B) Size of the WS_SYS
Typery In Kilopates	• • • • • • • • • • • • • • • • • • • •	_
WS_NVRAM_FAULTS	CONSTANT 01020700h	;(B) Faults detected in
NVRAM Data		
WS_SCREEN_SCROLL	CONSTANT 01020800h	;(B) Number of lines to
scroll screen		tities to a series to
WS_NVRAM RES B1	CONSTANT 01020900h	;(B) Reserved Byte (cha
nge name to use)		(a) Meserved Byte (Cha
WS_NVRAM_RES_B2	CONSTANT 01020a00h	- (B) B++
nge name to use)	00N017AN1 0102040011	;(B) Reserved Byte (cha
WS_NVRAM RES B3	CONCERNIE OLOGOWOOL	
nge name to use)	CONSTANT 01020b00h	;(B) Reserved Byte (cha
Mg Mmak pag 54		
WS_NVRAM_RES_B4	CONSTANT 01020c00h	;(B) Reserved Byte (cha
nge name to use)		
WS_NVRAM_RES_B5	CONSTANT 01020d00h	;(B) Reserved Byte (cha
nge name to use)		, i=, =iooolida byte (cha
WS_NVRAM_RES_B6	CONSTANT 01020e00h	; (B) Reserved Byte (cha
nge name to use)		/ D) Reserved Byte (Cha
WS_NVRAM RES B7	CONSTANT 01020f00h	. /B) Bassess J B
nge name to use)	COMBINAL OLOZOLOGII	;(B) Reserved Byte (cha
WS NVRAM RES B8	CONSTRUM OLOGICOOL	470.
nge name to use)	CONSTANT 01021000h	;(B) Reserved Byte (cha
He higher bee be		
WS_NVRAM_RES_B9	CONSTANT 01021100h	;(B) Reserved Byte (cha
nge name to use)		
WS_NVRAM_RES_B10	CONSTANT 01021200h	;(B) Reserved Byte (cha
nge name to use)		
WS_NVRAM RES B11	CONSTANT 01021300h	;(B) Reserved Byte (cha
nge name to use)		Y to reserved byte /cha
WS_NVRAM_RES B12	CONSTANT 01021400h	· (B) Becommed Bots (che
nge name to use)		;(B) Reserved Byte (cha
	CONSTANT 01021500h	./D\ D
nge name to use)	CONSTANT OTOZISOUM	;(B) Reserved Byte (cha
	G011G03170 04 004 644.	
WS_NVRAM_RES_B14	CONSTANT 01021600h	;(B) Reserved Byte (cha
nge name to use)		
WS_NVRAM_RES_B15	CONSTANT 01021700h	; (B) Reserved Byte (cha
nge name to use)		- ·
W5_NVRAM_RES_B16	CONSTANT 01021800h	;(B) Reserved Byte (cha
nge name to use)		=,
WS SYS XDATA	CONSTANT 01070000h	; Byte Array for storag
e of arbitrary external	data in NVRAM	, plee wrigh for storad
WS SYS LOG	CONSTANT 01040000h	. Custom Tar
WS_RI QUEUE	CONSTANT 01040000H	; System Log
g to Remote Interface	COMPINAT OTOBOTOOU	;(Q) Queue of data goin
2 -0 HOMODE INTELLACE		

Page 6

WS_SI_QUEUE g to System Interface	CONSTAN	r 01060200h	;(Q) Queue of data goin
WS_SYS_SCREEN	CONTEMANO	0100000	
WS_CALLOUT_SCRIPT	CONSTANT	01090000h	; System Screen
for temote perifferent	CONSTANT	01030300h	;(S) The callout script
for remote notification			BGILDE
WS_PASSWORD	CONSTANT	01030400h	:(S) The access
d for Wire Service			;(S) The access passwor
WS_SYS_BP_SERIAL	CONSTANT	01030500h	- 403
ane serial data		0103030011	;(S) Last known Back Pl
WS_SYS_CAN_SERIAL1	CONCERNIC	0100000	
r 1 Serial data	CONSTANT	01030600h	;(S) Last known Caniste
WS_SYS_CAN SERIAL2			
"S-919-CAM-PERTATS	CONSTANT	01030700h	;(S) Last known Caniste
r 2 Serial data			, (a) -man viloni cultace
WS_SYS_CAN_SERIAL3	CONSTANT	01030800h	. /C) Took los
r 3 Serial data			;(S) Last known Caniste
WS_SYS_CAN_SERIAL4	CONSTANT	01030900h	
r 4 Serial data	00110111111	0103030011	;(S) Last known Caniste
WS_SYS_CAN_SERIAL5	CONCURNIC	01000-001	
r 5 Serial data	CONSTANT	01030a00h	;(S) Last known Caniste
WS_SYS_CAN_SERIAL6			
r 6 Serial data	CONSTANT	01030b00h	;(S) Last known Caniste
t o serial data			
WS_SYS_CAN_SERIAL7	CONSTANT	01030c00h	;(S) Last known Caniste
r 7 Serial data			, (=) Edge Miowir Calliste
W5_SYS_CAN_SERIAL8	CONSTANT	01030d00h	•/5) Tagh lang. G
r 8 Serial data		7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	;(S) Last known Caniste
WS_SYS_IOP_SERIAL1	CONSTANT	01030e00h	. (8)
Canister 1 Serial data		0103060011	;(S) Last known IOP in
WS SYS IOP SERIAL2	<u></u>	01030f00h	4
Canister 2 Serial data	CONSTANT	01030100N	;(S) Last known IOP in
WS_SYS_IOP SERIAL3	CONTORNA	A 	
Canister 3 Serial data	CONSTANT	01031000h	;(S) Last known IOP in
contracet 2 petigi data			,
WS_SYS_IOP_SERIAL4	CONSTANT	0103 1 100h	;(S) Last known IOP in
Canister 4 Serial data			111
WS_SYS_IOP_SERIAL5	CONSTANT	01031200h	;(S) Last known IOP in
Canister 5 Serial data			/(c) Edst Knowit TOP In
WS_SYS_IOP_SERIAL6	CONSTANT	01031300h	1/S) Inst 1
Canister 6 Serial data		7203100011	;(S) Last known IOP in
WS_SYS IOP SERIAL7	CONSTANT	01031400h	. / 613 - 22 - 3 - 3
Canister 7 Serial data	00110113111	0103140011	;(S) Last known IOP in
WS_SYS_IOP SERIAL8	CONTRACTOR	01001500	
Canister 8 Serial data	CONSTANT	01031500h	;(S) Last known IOP in
WS_SYS_RI_SERIAL			
Totomin	CONSTANT	01031600h	;(S) Last known Remote
Interface serial data			
WS_SYS_SB_SERIAL	CONSTANT	01031700h	;(S) Last known System
Board serial data			, ta, and a minum of persur
WS_SYS_PS_SERIAL1	CONSTANT	01031800h	;(S) Last known Power S
upply 1 serial data			, , o, has known rower S
WS SYS PS SERIAL2	CONSTANT	01031900h	* (C) Took be
upply 2 serial data		0.40130011	;(S) Last known Power S
WS_SYS_PS_SERIAL3	CONSTANT	01031a00h	. (0)
upply 3 serial data	COMPTANT	OTOSTGOOD	;(S) Last known Power S
WS_NAME	CONCORNIC	010015-005	
	CONSTANT	01031b00h	;(S) System Identifying
			

Page 7

Name	•	
WS_BOOTDEVS	CONSTANT 01031c00h	
formation		
WS_SYS_LOG_CLOCK	CONSTANT 01031d00h	
	(seconds)	;(\$) Current time from
WS_SYS_LOG_COUNT	CONSTANT 01031e00H	
ies		;(S) Number of Log Entr
WS_SCREEN_CURSOR_TYPE	CONSTANT 01031f00h	
Dytes (2)		;(S) Screen cursor type
WS_SCREEN_CURSOR_AT	CONSTANT 01032000h	
ess bytes (%)	· · · · · · · · · · · · · · · · · · ·	' /=/ CATEEN CUTSUT BAAF
WS_SCREEN_CHANGE INFO	CONSTANT 01032100h	
, July Delto Oil	read	;(S) Screen change info
WS_MODEM INIT	CONSTANT 01032200h	
on string	-010211111 01032200N	;(S) Modem initializati
WS_NVRAM_RES_S1	CONSTANT 01032300h	
hange name to use)	0103230011	;(S) Reserved String (C
WS_NVRAM RES S2	CONSTANT 01032400h	
hange name to use)	10032400N	;(S) Reserved String (c
WS_NVRAM RES 93	CONSTANT 01032500h	
hange name to use)		;(S) Reserved String (c
WS_NVRAM RES S4	CONSTANT 01032600h	
hange name to use)		;(S) Reserved String (c
WS_NVRAM_RES_S5	CONSTANT 01032700h	
hange name to use)		;(S) Reserved String (c
WS NVRAM RES 56	CONSTANT 01032800h	
hange name to use)	01032800H	;(S) Reserved String (c
WS_NVRAM RES S7	CONSTANT 01032900h	
hange name to use)		;(S) Reserved String (c
WS_NVRAM RES S8	CONSTANT 01032a00h	
hange name to use)	0100240011	;(S) Reserved String (c
WS_NVRAM RES S9	CONSTANT 01032b00h	
hange name to use)	01032D00II	;(S) Reserved String (c
WS_NVRAM_RES_S10	CONSTANT 01032c00h	. (8) 5
hange name to use)	01002C00H	;(S) Reserved String (c
WS_NVRAM RES S11	CONSTANT 01032d00h	
hange name to use)	040320011	;(S) Reserved String (c
WS_NVRAM_RES_S12	CONSTANT 01032e00h	
hange name to use)	01032600II	;(S) Reserved String (c
WS_NVRAM_RES_S13	CONSTANT 01032f00h	- /0\ D
nange name to use)	0100210011	;(S) Reserved String (c
WS_NVRAM_RES_S14	CONSTANT 01033000h	. (0)
hange name to use)	20000011	;(S) Reserved String (c
WS_NVRAM_RES_S15	CONSTANT 01033100h	- (C) B
hange name to use)	0100011	;(S) Reserved String (\circ
WS_NVRAM_RES_S16	CONSTANT 01033200h	- (D) D
hange name to use)	= 2-000200H	;(S) Reserved String (c
WS_SYS_POWER	CONSTANT 02010100h	+/T) Gamb
ster power S4 POWER ON	. 3-41010011	;(L) Controls system ma
WS_SYS_REQ_POWER -	CONSTANT 02010200h	• (7.) 6-+ +-
n power on	22220011	;(L) Set to request mai
WS_BP_P12V	CONSTANT 02020100h	: (B) Apple :
		;(B) Analog Measure of

Page 8

+12 volt main supply	•			
WS BP P3V	СОМСТАНТ	02020200h	. (D)	71 Mar.
+3.3 volt main supply	CONDIANI	02020011	; (B)	Analog Measure of
WS_BP_N12V	CONSTANT	02020300h	- /51	Apples Manages . 5
-12 volt main supply	COMPTANT	0202030011	; (5)	Analog Measure of
WS BP P5V	CONSTANT	02020400h	. /B\	Analog Measure of
+5 volt main supply	COMBIANT	0202040011	, (5)	Analog Measure of
WS BP_VREF	CONSTANT	02020500h	. (5)	30010- 10
VREF	00110111111	0202030011	, (D)	Analog Measure of
WS_SYS_BP_TYPE	CONSTANT	02020600h	. (5)	Time of the
kplane currently only to	wo types '	Type N= 4 canie	+02 /	Type of system bac
8 canister (large)	no bypec.	The c a centra	cer (awarr, and tabe I=
WS SYS CAN PRES	CONSTANT	02020700h	· (B)	Presence bits for
canisters (LSB=1, MSB=8		02020.0011	, (=)	Heselice Dica 101
WS_SYS_PS ACOK		02020800h	: (B)	Power supply ACOK
status (LSB=1, MSB=3)		7_7_7	, , ,	rower suppry ACOR
WS SYS PS DCOK	CONSTANT	02020900h	: (B)	Power supply DCOK
status (LSB=1, MSB=3)			, (4)	Tower suppry book
WS_SYS_PS_PRES	CONSTANT	02020a00h	: (B)	Presence bits for
power supplies (LSB=1,			, (2)	reconnect Dies 101
WS SYS RSTIMER		02020b00h	: (B)	Used to delay rese
t/run until power stabi.	lized		, (2)	and to delay lest
WS SYS TEMP SHUT	CONSTANT	02020c00h	: (B)	Shutdown temperatu
re. Initialized to ???	•		, (2,	Diacoomi competited
WS_SYS_TEMP_WARN	CONSTANT	02020d00h	; (B)	Warning temperatur
e. Initialized to ???		•	, (-,	
WS_SYS WDOG	CONSTANT	02020e00h	; (B)	System watchdog ti
mer			·,	-1 Natonady 01
WS_SYS_TEMP DATA	CONSTANT	02030300h	; (S)	Temperatures of a
11 sensors on temperatu	re bus in	address order		
WS_SB_FAN_HI	CONSTANT	03010100h	;(L)	System Board Fans
HI —			. , .	· . · · · · · · · · · · · · · · · · · · ·
WS_SB_FAN_LED	CONSTANT	03010200h	; (L)	System Board Fan F
ault LED			. , .	•
WS_SYS_RUN	CONSTANT	03010300h	; (L)	Controls the syste
m halt/run line \$1_OK_To	O RUN.			
WS_SB_BUSCORE	CONSTANT	03020200h	; (B)	System Board BUS/C
ORE speed ratio to use	on reset			_
WS_SB_FANFAULT	CONSTANT	03020300h	; (B)	System Board Fan f
ault bits				•
	CONSTANT	03020400h	; (B)	Fan speed low spee
d fault limit				_
	CONSTANT	03020500h	; (B)	Low level LCD Cont
roller Command				
	CONSTANT	03020600h	; (B)	Low level LCD Cont
roller Data				
WS_SB_DIMM_TYPE	CONSTANT	03030300h	; (S)	The type of DIMM i
n each DIMM socket as a	16 byte s	string		
WS_SB_FAN_DATA	CONSTANT	03030400h	; (S)	System Board Fan s
peed data in fan number		00000000	•	
WS_SYS_LCD1	ÇÇNSTANT	03030500h	; (S)	Value to display o
n LCD Top line				

Page 9

WS_SYS_LCD2	CONSTANT	03030600h	;(S)	Value to display o
n LCD Bottom line				
WS_SB_LCD_STRING	CONSTANT	03030700h	; (S)	Low Level LCD Disp
lay string at current WS NMI REQ		. . .		-
	CONSTANT	04010100h	; (L)	NMI Request bit
WS_SB_CPU_FAULT	CONSTANT	04010200h	; (L)	CPU Fault Summary
WS_SB_FLASH_ENA W write enabled	CONSTANT	04010300h	;(L)	Indicates FLASH RO

WS_SB_FRU_FAULT status	CONSTANT	04010400h	;(L)	Indicates the FRU
WS_SB_JTAG	COMORANA	0.441.414.41		
on system board	CONSTANT	04010500h	; (L)	Enables JTAG chain
WS SYSFAULT	CONOMANA	0.4010.6001		
—	CONSTANT	04010600h	; (L)	System Fault Summa
ry WS SYS OVERTEMP	CONCERNO	040107001	•- •	
fault	CONSTANT	04010700h	; (L)	Indicates Overtemp
WS_CAN1_FAN_SYSFLT	CONTRACT NO	040100001	,	
#1 Fan System Fault	CONSTANT	04010800H	; (L)	Indicates Canister
WS_CAN2_FAN_SYSFLT	CONCERNE	04010900н	/- \	
#2 Fan System Fault	CONSTANT	04010900H	; (L)	Indicates Canister
WS CAN3 FAN SYSFLT	CONCESSE	04010A00H		- ••
#3 Fan System Fault	CONSTANT	HOUAUIH	; (L)	Indicates Canister
WS_CAN4_FAN SYSFLT	CONCURNO	04010В00Н		
#4 Fan System Fault	COMPIANT	04010800H	; (L)	Indicates Canister
WS CANS FAN SYSFLT	CONSTANT	04010C00H	. /* >	and the second second
#5 Fan System Fault	CONSTANT	OAOTOCOON	; (L)	Indicates Canister
WS CAN6 FAN SYSFLT	CONSTANT	04010D00H	- (-)	T- 34
#6 Fan System Fault	CONSTRUI	OAGIODOGN	; (L)	Indicates Canister
WS_CAN7_FAN_SYSFLT	СОМЕТАМТ	04010E00H	. (T= 46 +-+
#7 Fan System Fault	CONDIANT	04010E00H	;(L)	Indicates Canister
WS CANS FAN SYSFLT	CONSTANT	04010F00H	• (T \	Indiantas Casiala
#8 Fan System Fault	00110111111	0401010011	, (11)	Indicates Canister
WS NMI MASK	CONSTANT	04020100h	. (B)	CDU NMT
mask (LSB=CPU1)	001.0111.11	0402010011	, (5)	CPU NMI processor
WS_SB_CPU_ERR	CONSTANT	04020200h	• (B)	CPU Error bits (LS
$B = C\overline{P}U1)$	0011011111	0102020011	, (5)	CPO ELIOT DICS (LS
WS_SB_CPU_POK	CONSTANT	04020300h	- (B)	CPU Power OK (LSB
= CPU1)		7.7200011	, (D)	dell no lewel or
WS SB CPU PRES	CONSTANT	04020400h	2 (B)	CPU Presence bits
$(L\overline{SB} = CP\overline{U}1)$	_		, (2)	ord resemble pres
WS_SB_CPU_TEMP	CONSTANT	04020500h	: (B)	CPU Thermal fault
bits (LSB = CPU1)		- 172700011	, (2)	oro weimer rante
WS_SI EVENTS	CONSTANT	10050100h	;(E)	System Interface E
vent Queue			, (-,	ologer intellace P
WS_RI_CD	CONSTANT	11010100h	; (L)	Status of Remote P
ort Modem CD			, (-,	oddin or komoce r
WS_RI_CTS	CONSTANT	11010200h	; (L)	Status of Remote P
ort Modem CTS				
WS_RI_DSR	CONSTANT	11010300h	; (L)	Status of Remote P
ort Modem DSR				
WS_RI_DTR	CONSTANT	11010400h	; (L)	State of Remote Po
rt Modem DTR			• •	

Page 10

```
WS RI RTS
                        CONSTANT 11010500h
                                                 ; (L) Status of Remote P
ort Modem RTS
WS RI CALLOUT
                        CONSTANT 11020100h
                                                 ; (B) Controls Call out
Script activation
WS RI EVENTS
                        CONSTANT 11050100h
                                                 ; (E) Remote Interface E
vent Queue
WS CAN FAN HI
                        CONSTANT 20010100h
                                                 ;(L) Canister Fans HI
WS CAN FAN LED
                        CONSTANT 20010200h
                                                ;(L) Canister Fan Fault
 LED
WS CAN JTAG ENA
                        CONSTANT 20010300h
                                                ; (L) Enable JTAG TMS ch
ain for canister
WS_CAN NMI S5
                        CONSTANT 20010400h
                                                 ; (L) NMI card in slot 5
WS_CAN_POWER
                        CONSTANT 20010500h
                                                ; (L) Controls canister
PCI slot power
WS CAN S5 PRESENT
                        CONSTANT 20010600h
                                                ; (L) Indicates the pres
ence of something in slot 5
WS_CAN_S5 SMART
                        CONSTANT 20010700h
                                                ; (L) Indicates somethin
g other than a passive board in slot 5
WS_CAN_FAN LOLIM
                        CONSTANT 20020100h
                                                ; (B) Fan low speed faul
t limit
WS_CAN_PCI_PRESENT
                        CONSTANT 20020200h
                                                ; (B) Reflects PCI card
slot[1..4] presence indicator pins ( MSB to LSB) 4B,4A,3B,3A,2B,2A,1B,1
WS CAN FANFAULT
                        CONSTANT 20020300h
                                                ; (B) Canister Fan Fault
 Bits
WS_CAN FAN DATA
                        CONSTANT 20030300h
                                                ;(S) Canister Fan speed
 data
******************************
; This is the Wire Service Attributes for named items.
; The attribute information is stored in a symbolic constant named the
same
; as the named item then followed by two underscores
; Attributes consist of:
        R/W access for internal WS (I), BIOS/OS (O), administrator (A),
 and general (G)
        groups. ( 0 = NoAccess 1 = Read Only, 2 = Write Only, 3 = Read/
Write )
        maximum possible reques/response length of item in bytes (LL)
        Group Name ID (ID)
                                 IOAGLLID
WS DESCRIPTION
                        CONSTANT 11114000h
                                                ;(S) Wire Service Proce
ssor Type/Description
WS REVISION
                        CONSTANT 11112000h
                                                ;(S) Wire Service Softw
are Revision/Date Info
WS_POWERUP_HOLD
                        CONSTANT 33310100h
                                                ; (L) The mode controls
```

Page 11

action of system on A/C power available