Git-Dat-Money

Capstone Breakdown Group 1A

Team Members

- Jahnavi Brahmbhatt
- Paniz Herrera
- · Ignacio Ferrera
- · Brandon Cancino
- Aidan Surowiec

Business Problem

Computing Vision (a made-up company for the purposes of this project) sees all the big companies creating original video content and they want to get in on the fun. They have decided to create a new movie studio, but they don't have much background in creating movies. You are charged with exploring what types of films are currently doing the best at the box office using different samples of available data. You then will translate those findings into actionable insights that the head of Computing Vision's new movie studio can use to help decide what type of films to create.

Business Understanding

Our key business variable for this study is *profit*; we want to help Computing Vision in making the correct decision when looking to produce, and launch a successful film that will make its budget back, and earn them revenue. The main questions we will be answering will be:

- Does a big budget influence revenue?
 - This is to know the funds they should allocate to the project
- · Do good, average, or bad reviews affect the earnings?
 - This is to determine if a bad or average rated film can make a profit.
- Will hiring experienced writers/directors for the project influence box office results?
 - This is to find out whether the company should invest in hiring talent to make their investment back.

Analysis Investigation

The primary variables that measure the success of a movie are broken into two main buckets: 1) Profit, 2) Popularity

PROFIT ANALYSIS TOPICS:

- Budget vs. Revenue
- · Genre vs. Revenue
- · Popularity vs. Revenue
- · Foreign/Domestic Results vs. Revenue

POPULARITY ANALYSIS TOPICS:

- · Director vs. Popularity/Voter Avg.
- · Genre vs. Popularity/Voter Avg.
- Domestic/International vs. Popularity/Voter Avg.

Structure of Notebook

Provided below is an outline of the sections within this jupyter notebook.

- 1) Import Packages
- 2) Read in Data
- 3) Preview Data
- 4) Clean Data
 - a) Rotten Tomatoes DF Cleaning
 - i) Creating Subset Box Office DF
 - ii) Returning to Main Rotten Tomatoes DF
 - b) Rotten Tomatoes Reviews DF Cleaning
 - c) Box Office Mojo DF Cleaning
 - d) The MovieDB DF Cleaning
 - e) <u>The Numbers DF Cleaning</u>
- 5) Joining Tables
 - a) Joining Rotten Tomatoes DF with Rotten Tomatoes Reviews DF
 - b) Joining The Numbers DF with The MovieDB DF
 - c) Joining Box Office DF (Rotten Tomatoes DF slice) with Rotten Tomatoes Reviews
 - d) Joining Box Office Mojo DF with The MovieDB DF
- 6) Exploratory Data Analysis
 - a) Rotten Tomatoes Full DF Analysis
 - b) <u>Performance DF Analysis</u>
 - c) Box Rotten Tomatoes Analysis
 - d) Studio DF Analysis
- 7) Visualizations
 - a) Rotten Tomatoes Full Visualizations
 - i) Plot Number of Movies Directed vs. Movie Average Fresh Percentage
 - ii) Plot Number of Movies with Writing Credit vs. Movie Average Fresh Percentage
 - iii) Plot Genre vs. Movie Average Fresh Percentage
 - iv) Plot Movie Rating vs. Movie Average Fresh Percentage (rating_fresh)
 - b) Performance DF Visualizations
 - i) Plot Production Budget vs. Domestic Gross
 - ii) Plot Production Budget vs. Foreign Gross
 - iii) Plot Profit vs. Production Budget
 - iv) Plot Vote Average vs. Production Budget
 - v) Plot Domestic Gross Revenue vs. Vote Average
 - vi) <u>Plot Worldwide Revenue vs. Vote Average</u>
 - vii) <u>Plot Original Language vs. Average World Gross</u>
 - viii) <u>Plot Voter Average vs. Original Language</u>
 - ix) Plot Production Budget vs. Original Language c) Studio DF Visualizations
 - i) Plot Genre vs. Foreign Revenue
 - ii) Plot Genre vs. Domestic Revenue
 - iii) Plot Vote Average vs. Genre
 - iv) Plot Number of Movie Releases by Genre
- 8) Statistical Inference
 - a) Shapiro Test for Normality in Samples

- b) Mann-Whitney U Test
- c) Linear Models
- 9) Conclusion
 - Recommendations

Import Packages

Back to Index

In [1]:

```
import packages

import numpy as np
import pandas as pd
import sqlite3
import seaborn as sns
import matplotlib.pyplot as plt
import itertools
from scipy import stats
import statsmodels.api as sm
from sklearn.linear_model import LinearRegression
%matplotlib inline
```

Read In Data

Read in all available datasets, want to thoroughly examine the options for analysis.

Back to Index

In [2]:

```
# Read data sets

rtDF = pd.read_csv("Data/rt.movie_info.tsv", sep="\t") #Rotten Tomatoes Movies

rtDF_reviews = pd.read_csv("Data/rt.reviews.tsv", sep="\t", encoding = "latin_1") #Rotte

bomDF = pd.read_csv("Data/bom.movie_gross.csv") #Box Office Mojo Database

tmdbDF = pd.read_csv("Data/tmdb.movies.csv",index_col=0) #The MovieDB

tnmDF = pd.read_csv("Data/tn.movie_budgets.csv") #The Numbers

conn = sqlite3.connect('Data/im.db')
```

Preview Data

Look at the info for each dataframe, evaluate if data was read in correctly. Also used to understand what kind of data we are dealing with, and what columns we can use that would lead to recommendations for Company Vision.

In [3]:

```
#Visualize rotten tomatoes
print(rtDF.info())
# rtDF.head()

#Visualize rotten tomatoes reviews
print(rtDF_reviews.info())
# rtDF_reviews.head()

#Visualize Box office mojo
print(bomDF.info())
# bomDF.head()

#Visualize the movieDB
print(tmdbDF.info())
# tmdbDF.head()

#Visualize the numbers
print(tnmDF.info())
# tnmDF.head()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1560 entries, 0 to 1559
Data columns (total 12 columns):
                 Non-Null Count Dtype
    Column
                 -----
---
    ----
0
    id
                 1560 non-null
                                 int64
1
    synopsis
                1498 non-null
                                 object
2
    rating
                 1557 non-null
                                 object
3
                 1552 non-null
                                 object
    genre
4
    director
                1361 non-null
                                 object
5
    writer
                 1111 non-null
                                 object
6
    theater date 1201 non-null
                                 object
7
    dvd date
                1201 non-null
                                 object
8
                 340 non-null
                                 object
    currency
9
    box office
                 340 non-null
                                 object
              1530 non-null
10
   runtime
                                 object
11 studio
                494 non-null
                                 object
dtypes: int64(1), object(11)
memory usage: 146.4+ KB
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 54432 entries, 0 to 54431
Data columns (total 8 columns):
    Column
              Non-Null Count Dtype
    ----
               -----
---
0
    id
               54432 non-null int64
1
              48869 non-null object
    review
2
    rating
              40915 non-null object
              54432 non-null object
3
    fresh
            51710 non-null object
4
    critic
5
    top critic 54432 non-null int64
    publisher 54123 non-null object
6
7
    date
               54432 non-null object
dtypes: int64(2), object(6)
memory usage: 3.3+ MB
None
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3387 entries, 0 to 3386
Data columns (total 5 columns):
#
    Column
                   Non-Null Count Dtype
---
    ----
                   -----
0
    title
                   3387 non-null
                                   object
1
    studio
                   3382 non-null
                                  object
2
    domestic_gross 3359 non-null
                                   float64
 3
    foreign_gross
                   2037 non-null
                                   object
4
                    3387 non-null
                                   int64
dtypes: float64(1), int64(1), object(3)
memory usage: 132.4+ KB
None
<class 'pandas.core.frame.DataFrame'>
Int64Index: 26517 entries, 0 to 26516
Data columns (total 9 columns):
#
    Column
                      Non-Null Count Dtype
    ----
---
                      -----
0
    genre ids
                      26517 non-null object
1
                      26517 non-null int64
 2
    original_language 26517 non-null object
 3
    original_title
                      26517 non-null object
4
    popularity
                      26517 non-null float64
 5
    release date
                      26517 non-null
                                     object
```

26517 non-null

object

6

title

```
vote_average
                                       float64
                       26517 non-null
    vote_count
                        26517 non-null
                                       int64
dtypes: float64(2), int64(2), object(5)
memory usage: 2.0+ MB
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5782 entries, 0 to 5781
Data columns (total 6 columns):
    Column
                       Non-Null Count Dtype
---
    -----
 0
    id
                       5782 non-null
                                       int64
 1
    release_date
                       5782 non-null
                                       object
                       5782 non-null
    movie
 2
                                       object
 3
    production_budget 5782 non-null
                                       object
    domestic_gross
                       5782 non-null
                                       object
    worldwide gross
                                       object
                       5782 non-null
```

dtypes: int64(1), object(5)
memory usage: 271.2+ KB

None

Cleaning Up Data

Need to examine these dataframes more closely, we must clean up and fix the flaws in the data in order to gain any type of useful analysis.

Back to Index

Rotten Tomatoes DF Cleaning

In [4]:

```
#Visualize the data info
print(rtDF.info())
#Check columns to see which ones we want to keep
rtDF.head()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1560 entries, 0 to 1559
Data columns (total 12 columns):
 #
     Column
                   Non-Null Count Dtype
 0
     id
                   1560 non-null
                                    int64
 1
     synopsis
                   1498 non-null
                                   object
 2
     rating
                   1557 non-null
                                    object
 3
     genre
                   1552 non-null
                                    object
 4
     director
                   1361 non-null
                                    object
 5
                   1111 non-null
                                   object
     writer
 6
     theater_date 1201 non-null
                                   object
 7
     dvd_date
                   1201 non-null
                                   object
 8
     currency
                   340 non-null
                                   object
 9
     box_office
                   340 non-null
                                    object
 10
     runtime
                   1530 non-null
                                    object
 11 studio
                   494 non-null
                                    object
dtypes: int64(1), object(11)
```

Based on this info output it is clear that there are missing pieces of data in various columns.

Want to quickly check to see if all of the 340 observations with box office data are in USD, need to ensure that any numerical comparisons are on the same scale.

In [5]:

```
#Chceking to see if all box office numbers were in USD
rtDF['currency'].unique()

Out[5]:
array([nan, '$'], dtype=object)
```

Creating a subset DF that only has observations with box office data

Such a small portion of the dataset had box office data, in order to perform analysis using these numbers we must subset into a dataframe that won't have any null values.

In [6]:

```
#Create subset data frame with rows that have box_office numbers - only 340 non-null value
box_officeDF = rtDF[rtDF['box_office'].notna()]

#Check info to see results
box_officeDF.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 340 entries, 1 to 1555 Data columns (total 12 columns): Non-Null Count Dtype # Column 0 id 340 non-null int64 1 synopsis 340 non-null object 2 rating 340 non-null object 3 genre 340 non-null object 4 director 299 non-null object 5 273 non-null object writer 6 theater_date 334 non-null object 7 dvd_date 334 non-null object 8 currency 340 non-null object 340 non-null 9 box_office object 10 runtime 338 non-null object 11 studio 305 non-null object dtypes: int64(1), object(11) memory usage: 34.5+ KB

Dropping the unnecessary columns is the next step, we don't want to spend time cleaning variables that we will not be focusing on.

In [7]:

```
#Drop unnecessary columns from box_office data frame
box_officeDF.drop(columns=['studio','synopsis','dvd_date'],inplace=True)

C:\Users\asurowies\Anaconda3\envs\learn_env\lib\site_nackages\nandas\core
```

C:\Users\asurowiec\Anaconda3\envs\learn-env\lib\site-packages\pandas\core
\frame.py:4163: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)
return super().drop(

The **warning displayed above is not a concern**, this is just an indication that we are working with a *slice* of a larger dataframe.

Now we want to change the **box_office** variable, we saw above that **box_office** was an *object* datatype. We want to use this variable to understand numerical relationships, so we must clean the column and change the datatype to numeric.

In [8]:

```
#Replace the ',' with nothing for each observation in production budget
box_officeDF['box_office'] = box_officeDF['box_office'].replace([','],'', regex=True)
#Change series to be numeric instead of strings
box_officeDF['box_office'] = pd.to_numeric(box_officeDF['box_office'])
#Check to see results
box_officeDF['box_office'].describe()
<ipython-input-8-4a8c6dfd7508>:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-doc
s/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://
pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-
view-versus-a-copy)
  box officeDF['box office'] = box officeDF['box office'].replace
([','],'', regex=True)
<ipython-input-8-4a8c6dfd7508>:5: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-doc
s/stable/user guide/indexing.html#returning-a-view-versus-a-copy (https://
pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-
view-versus-a-copy)
  box_officeDF['box_office'] = pd.to_numeric(box_officeDF['box_office'])
Out[8]:
count
         3.400000e+02
         3.790601e+07
mean
         5.749159e+07
std
min
         3.630000e+02
25%
         1.905152e+06
         1.414105e+07
50%
75%
         4.482524e+07
         3.680000e+08
max
Name: box office, dtype: float64
```

The **warning displayed above is not a concern**, this is just an indication that we are working with a *slice* of a larger dataframe.

Back to Normal Rotten Tomatoes DF

Back to the main dataframe, we now drop the columns not needed here. Dropping the same as above, but also dropping the **currency** and **box_office** variables.

In [9]:

```
#Drop unnecessary columns from original data frame
rtDF.drop(columns=['currency','box_office','studio','synopsis','dvd_date'],inplace=True)
#Check resulting data frame
rtDF.head()
```

Out[9]:

	id	rating	genre	director	writer	theater_date	runtime
0	1	R	Action and Adventure Classics Drama	William Friedkin	Ernest Tidyman	Oct 9, 1971	104 minutes
1	3	R	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	Aug 17, 2012	108 minutes
2	5	R	Drama Musical and Performing Arts	Allison Anders	Allison Anders	Sep 13, 1996	116 minutes
3	6	R	Drama Mystery and Suspense	Barry Levinson	Paul Attanasio Michael Crichton	Dec 9, 1994	128 minutes
4	7	NR	Drama Romance	Rodney Bennett	Giles Cooper	NaN	200 minutes

Analysis by movie **genre**, **director**, and **writer** could be interesting. Each of these must be cleaned from the format they are currently in - we want these variables to have each value turned into a *list* datatype.

In [10]:

```
#Create function that splits a string whenever the character '|' is present
def splits(string):
    string = str(string)
    return string.split("|")

#Apply function to the genre column
rtDF["genre"] = rtDF["genre"].apply(splits)
rtDF["writer"] = rtDF["writer"].apply(splits)
rtDF["director"] = rtDF["director"].apply(splits)

#Cast genre items as type object
rtDF['genre'] = rtDF['genre'].astype('object')

#View resulting data frame
rtDF.head()
```

Out[10]:

	id	rating	genre	director	writer	theater_date	runtime
0	1	R	[Action and Adventure, Classics, Drama]	[William Friedkin]	[Ernest Tidyman]	Oct 9, 1971	104 minutes
1	3	R	[Drama, Science Fiction and Fantasy]	[David Cronenberg]	[David Cronenberg, Don DeLillo]	Aug 17, 2012	108 minutes
2	5	R	[Drama, Musical and Performing Arts]	[Allison Anders]	[Allison Anders]	Sep 13, 1996	116 minutes
3	6	R	[Drama, Mystery and Suspense]	[Barry Levinson]	[Paul Attanasio, Michael Crichton]	Dec 9, 1994	128 minutes
4	7	NR	[Drama, Romance]	[Rodney Bennett]	[Giles Cooper]	NaN	200 minutes
			•••				
1555	1996	R	[Action and Adventure, Horror, Mystery and Sus	[nan]	[nan]	Aug 18, 2006	106 minutes
1556	1997	PG	[Comedy, Science Fiction and Fantasy]	[Steve Barron]	[Terry Turner, Tom Davis, Dan Aykroyd, Bonnie 	Jul 23, 1993	88 minutes
1557	1998	G	[Classics, Comedy, Drama, Musical and Performi	[Gordon Douglas]	[nan]	Jan 1, 1962	111 minutes
1558	1999	PG	[Comedy, Drama, Kids and Family, Sports and Fi	[David Mickey Evans]	[David Mickey Evans, Robert Gunter]	Apr 1, 1993	101 minutes
1559	2000	R	[Action and Adventure, Art House and Internati	[nan]	[Luc Besson]	Sep 27, 2001	94 minutes

1560 rows × 7 columns

Each of the columns that now have lists as values will be difficult to analyze in that format. Using the explode function, a row will be repeated for each value within the list. This makes it possible to then groupby that column and gain meaningful insights about categorical variables. The explode function works on list types, that is why we needed to clean the values above.

In [11]:

```
#create new df with row repeated for each individual genre within the list
rotten_tomatoes_genre = rtDF.explode('genre').reset_index(drop=True)
#group by genre and return count of each
rotten_tomatoes_genre.groupby('genre')['id'].count()
```

Out[11]:

ganra

genre	
Action and Adventure	366
Animation	47
Anime and Manga	2
Art House and International	265
Classics	193
Comedy	550
Cult Movies	4
Documentary	69
Drama	912
Faith and Spirituality	11
Gay and Lesbian	2
Horror	134
Kids and Family	99
Musical and Performing Arts	98
Mystery and Suspense	309
Romance	198
Science Fiction and Fantasy	172
Special Interest	61
Sports and Fitness	10
Television	23
Western	48
nan	8
Name: id, dtype: int64	

Rotten Tomatoes Review DF Cleaning

Our second Rotten Tomatoes dataframe focuses on movie reviews rather than movie characteristics. We can later combine this dataframe with the first one, giving us a method to evaluate movie characteristics against movie review information.

In [12]:

```
#Investigate data info
rtDF_reviews.info()

#Visualize DF
rtDF_reviews.head(10)
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 54432 entries, 0 to 54431 Data columns (total 8 columns): # Column Non-Null Count Dtype -----54432 non-null int64 0 id review 48869 non-null object rating 40915 non-null object 1 2 3 fresh 54432 non-null object critic 4 51710 non-null object 5 top_critic 54432 non-null int64 publisher 54123 non-null object 6 54432 non-null object 7 date dtypes: int64(2), object(6) memory usage: 3.3+ MB

Out[12]:

	id	review	rating	fresh	critic	top_critic	publisher	date
0	3	A distinctly gallows take on contemporary fina	3/5	fresh	PJ Nabarro	0	Patrick Nabarro	November 10, 2018
1	3	It's an allegory in search of a meaning that n	NaN	rotten	Annalee Newitz	0	io9.com	May 23, 2018
2	3	life lived in a bubble in financial dealin	NaN	fresh	Sean Axmaker	0	Stream on Demand	January 4, 2018
3	3	Continuing along a line introduced in last yea	NaN	fresh	Daniel Kasman	0	MUBI	November 16, 2017
4	3	a perverse twist on neorealism	NaN	fresh	NaN	0	Cinema Scope	October 12, 2017
5	3	Cronenberg's Cosmopolis expresses somethin	NaN	fresh	Michelle Orange	0	Capital New York	September 11, 2017
6	3	Quickly grows repetitive and tiresome, meander	С	rotten	Eric D. Snider	0	EricDSnider.com	July 17, 2013
7	3	Cronenberg is not a director to be daunted by	2/5	rotten	Matt Kelemen	0	Las Vegas CityLife	April 21, 2013
8	3	Cronenberg's cold, exacting precision and emot	NaN	fresh	Sean Axmaker	0	Parallax View	March 24, 2013
9	3	Over and above its topical urgency or the bit	NaN	fresh	Kong Rithdee	0	Bangkok Post	March 4, 2013

Do not need **top_critic**, **publisher**, or **date**. Repeat the process above to consolidate the Rotten Tomatoes Review dataframe.

In [13]:

```
#Print the total number of nulls in rating column
print(sum(rtDF_reviews['rating'].isna()))

# Dropping top_critic, publisher, and date columns - the information provided is not rel
rtDF_reviews.drop(columns=["top_critic","publisher","date"],inplace=True)
```

13517

Explore the dataframe, **rating** would be a great variable - determine if that is the primary variable to focus analysis on.

In [14]:

```
#Check to see if rating is a variable that can be cleaned in a timely manner
# rtDF_reviews['rating'].unique()
#The answer is a resounding no
```

We cannot effectively clean the data, the inputs change scale - we cannot confidently decode those to be accurate comparisons to each other. The variable **fresh** looks like a stable substitute, on Rotten Tomatoes *fresh* means that critics liked it, *rotten* means they didn't. We can create a binary variable with fresh substituted as 1, and rotten substituted as 0. From there we can take a sum of all the reviews that earned a *fresh* score, then divide the sum by the total number of views. This can give us an idea of how well received a movie was on average.

In [17]:

```
#replace with binary value, 1 is fresh, 0 is rotten
rtDF_reviews['fresh'].replace(['fresh', 'rotten'], [1,0], inplace=True)
```

There are multiple reviews for each movie - the corresponding movie is described by the **id** column. To achieve the average mentioned above, we must group the data together based on the **id** column.

In [18]:

```
#Create df grouped by id
rtDF_grouped = rtDF_reviews.groupby(['id'])

#add column in main df that adds sum of fresh column by grouped id
rtDF_reviews['sum_fresh'] = rtDF_grouped['fresh'].transform(sum)

#add column in main df that counts the total observations in column grouped by id
rtDF_reviews['count_fresh'] = rtDF_grouped['fresh'].transform('count')
```

In [19]:

#add column in main df that divides the sum of fresh reviews by the total number of revi
rtDF_reviews['percentage'] = rtDF_reviews['sum_fresh'] / rtDF_reviews['count_fresh']
rtDF_reviews

Out[19]:

	id	review	rating	fresh	critic	sum_fresh	count_fresh	percentage
0	3	A distinctly gallows take on contemporary fina	3/5	1	PJ Nabarro	103	163	0.631902
1	3	It's an allegory in search of a meaning that n	NaN	0	Annalee Newitz	103	163	0.631902
2	3	life lived in a bubble in financial dealin	NaN	1	Sean Axmaker	103	163	0.631902
3	3	Continuing along a line introduced in last yea	NaN	1	Daniel Kasman	103	163	0.631902
4	3	a perverse twist on neorealism	NaN	1	NaN	103	163	0.631902
54427	2000	The real charm of this trifle is the deadpan c	NaN	1	Laura Sinagra	18	38	0.473684
54428	2000	NaN	1/5	0	Michael Szymanski	18	38	0.473684
54429	2000	NaN	2/5	0	Emanuel Levy	18	38	0.473684
54430	2000	NaN	2.5/5	0	Christopher Null	18	38	0.473684
54431	2000	NaN	3/5	1	Nicolas Lacroix	18	38	0.473684

54432 rows × 8 columns

Box Office Mojo DF Cleaning

In [20]:

```
#Investigate data frame info
print(bomDF.info())

#Visualize first portion of DF
bomDF.head(10)
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3387 entries, 0 to 3386
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	title	3387 non-null	object
1	studio	3382 non-null	object
2	domestic_gross	3359 non-null	float64
3	foreign_gross	2037 non-null	object
4	year	3387 non-null	int64
1.0	(7) (4/4)		(2)

dtypes: float64(1), int64(1), object(3)

memory usage: 132.4+ KB

None

Out[20]:

	title	studio	domestic_gross	foreign_gross	year
0	Toy Story 3	BV	415000000.0	652000000	2010
1	Alice in Wonderland (2010)	BV	334200000.0	691300000	2010
2	Harry Potter and the Deathly Hallows Part 1	WB	296000000.0	664300000	2010
3	Inception	WB	292600000.0	535700000	2010
4	Shrek Forever After	P/DW	238700000.0	513900000	2010
5	The Twilight Saga: Eclipse	Sum.	300500000.0	398000000	2010
6	Iron Man 2	Par.	312400000.0	311500000	2010
7	Tangled	BV	200800000.0	391000000	2010
8	Despicable Me	Uni.	251500000.0	291600000	2010
9	How to Train Your Dragon	P/DW	217600000.0	277300000	2010

This dataset will be used for financial analysis. There are some nulls in **foreign_gross**, we interpret that as having no foreign release - so we can fill those values with 0. However, the datatype for **foreign_gross** is an object - this needs to be converted to numeric in order to analyze.

In [21]:

```
# Dropped rows where domestic gross was NaN
bomDF = bomDF[bomDF['domestic_gross'].notna()]

#Replace the comma in foreign_gross with nothing
bomDF['foreign_gross'] = bomDF['foreign_gross'].replace(',','', regex=True)

#Cast column foreign_gross to be type number
bomDF["foreign_gross"] = pd.to_numeric(bomDF["foreign_gross"])

#Drop unnecessary columns
# bomDF.drop(columns=['studio'],inplace=True) - [MAY WANT TO USE IN LATER ANALYSIS]

#Fill foreign_gross null values with zero
bomDF["foreign_gross"] = bomDF["foreign_gross"].fillna(0)

#Check to see that foreign_gross and domestic_gross are both numeric
bomDF.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 3359 entries, 0 to 3386
Data columns (total 5 columns):
```

```
Data columns (total 5 columns):
    Column
                   Non-Null Count Dtype
_ _ _
    -----
                  -----
0
    title
                  3359 non-null object
1
    studio
                   3356 non-null
                                  object
2
    domestic_gross 3359 non-null float64
    foreign_gross 3359 non-null float64
                   3359 non-null
4
    year
                                  int64
dtypes: float64(2), int64(1), object(2)
memory usage: 157.5+ KB
```

The MovieDB DF Cleaning

In [22]:

```
#Look at information displayed on table
print(tmdbDF.info())

#View sample of data
tmdbDF.head(5)
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 26517 entries, 0 to 26516
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	genre_ids	26517 non-null	object
1	id	26517 non-null	int64
2	original_language	26517 non-null	object
3	original_title	26517 non-null	object
4	popularity	26517 non-null	float64
5	release_date	26517 non-null	object
6	title	26517 non-null	object
7	vote_average	26517 non-null	float64
8	vote_count	26517 non-null	int64

dtypes: float64(2), int64(2), object(5)

memory usage: 2.0+ MB

None

Out[22]:

	genre_ids	id	original_language	original_title	popularity	release_date	title	vote
0	[12, 14, 10751]	12444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19	Harry Potter and the Deathly Hallows: Part 1	
1	[14, 12, 16, 10751]	10191	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	
2	[12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	
3	[16, 35, 10751]	862	en	Toy Story	28.005	1995-11-22	Toy Story	
4	[28, 878, 12]	27205	en	Inception	27.920	2010-07-16	Inception	
4								•

This is a dataframe with many movie characteristics and also has numeric scoring variables. The primary purpose of this data will be for movie attribute and review analysis.

The **genre_ids** are encoded, in order to fully understand any insights derived from this variable we must know what each genre id means. After cross-referencing documentation online (development team) we found a cohesive breakdown of what each id stands for, need to store those inside a dictionary to be used as a lookup table.

In [23]:

The value type in **genre_ids** must be turned into a list, after that we can use a lambda function to search for the key that matches a value inside of the list, the function would then replace the genre id the value within the item of that key.

In [24]:

```
#Make each item in genre id an iterable list
tmdbDF['genre_ids'] = tmdbDF['genre_ids'].apply(eval)

#Replace each list item with the corresponding dictionary value
tmdbDF['genre_ids'] = tmdbDF['genre_ids'].apply(lambda x: [GenreDict[i] for i in x])
```

Now double check the dataframe to determine if the function properly transformed those items.

In [25]:

```
#Check for correct output
# for i in tmdbDF['genre_ids']:
# for j in i:
# print(j)
```

In [26]:

```
#Quick count of each value
# tmdbDF['genre_ids'].value_counts()
```

Now we would like to see the frequency of each genre, one way to do so is to create a function that turns a list into a series. We can use a *value_counts()* function from there to complete this exploration.

In [27]:

```
#Create function that reads in a series of lists and returns a series of each individual
def to_1D(series):
    return pd.Series([x for _list in series for x in _list])

#Apply function to genre_ids in order to count how often a genre is present in a movie (
to_1D(tmdbDF["genre_ids"]).value_counts()
```

Out[27]:

Drama	8303
Comedy	5652
Documentary	4965
Thriller	4207
Horror	3683
Action	2612
Romance	2321
Science Fiction	1762
Family	1565
Crime	1515
Animation	1486
Adventure	1400
Music	1267
Mystery	1237
Fantasy	1139
TV Movie	1084
History	622
War	330
Western	205
dtype, intel	

dtype: int64

To continue along this path of genre insights, we must use the *explode()* function introduced above.

In [28]:

```
#create new df with row repeated for each individual genre within the list
new_df = tmdbDF.explode('genre_ids').reset_index(drop=True)
#group by genre and return the mean vote average
new_df.groupby('genre_ids')['vote_average'].mean()
```

Out[28]:

genre_ids	
Action	5.578560
Adventure	5.930071
Animation	6.464805
Comedy	5.942074
Crime	5.852475
Documentary	6.817946
Drama	6.112200
Family	5.990479
Fantasy	5.952327
History	6.661415
Horror	4.847624
Music	6.952407
Mystery	5.730315
Romance	5.981603
Science Fiction	5.442736
TV Movie	5.806827
Thriller	5.354433
War	6.229394
Western	5.955610
Name: vote_average	, dtype: float64

Based on the grouped results, we can see that the average fresh rating per movie does differ by genre.

The Numbers DF Cleaning

In [29]:

```
#Understanding what data we are working with
print(tnmDF.info())

#Visualize the first few rows of data
tnmDF.head()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5782 entries, 0 to 5781
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	id	5782 non-null	int64
1	release_date	5782 non-null	object
2	movie	5782 non-null	object
3	production_budget	5782 non-null	object
4	domestic_gross	5782 non-null	object
5	worldwide_gross	5782 non-null	object

dtypes: int64(1), object(5)
memory usage: 271.2+ KB

None

Out[29]:

	id	release_date	movie	production_budget	domestic_gross	worldwide_gross
0	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875
2	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350
3	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963
4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747

This is another dataframe that will be used for financial analysis. This dataset has more information, the variable, **production_budget** is what is missing from the Box Office Mojo dataset - we now have the ability to evaluate profit. We are operating under the assumption that **worldwide_gross** is the total revenue, and **production_budget** is the total expenditure.

All 3 of the financial columns are in *object* format, to continue analysis these must be cleaned of special characters and converted into *numeric* format.

In [30]:

```
#Cleaning up the production budget
#Replace the '$' with nothing for each observation in production_budget
tnmDF['production_budget']= tnmDF['production_budget'].apply(lambda x: x.replace('$', ''
#Replace the ',' with nothing for each observation in production budget
tnmDF['production_budget'] = tnmDF['production_budget'].replace([','],'', regex=True)
#Change series to be numeric instead of strings
tnmDF['production_budget'] = pd.to_numeric(tnmDF['production_budget'])
#Cleaning up the domestic_gross
#Replace the '$' with nothing for each observation
tnmDF['domestic_gross']= tnmDF['domestic_gross'].apply(lambda x: x.replace('$', ''))
#Replace the ',' with nothing for each observation
tnmDF['domestic_gross'] = tnmDF['domestic_gross'].replace([','],'', regex=True)
#Change series to be numeric instead of strings
tnmDF['domestic_gross'] = pd.to_numeric(tnmDF['domestic_gross'])
#Cleaning up the worldwide_gross
#Replace the '$' with nothing for each observation
tnmDF['worldwide_gross']= tnmDF['worldwide_gross'].apply(lambda x: x.replace('$', ''))
#Replace the ',' with nothing for each observation
tnmDF['worldwide_gross'] = tnmDF['worldwide_gross'].replace([','],'', regex=True)
#Change series to be numeric instead of strings
tnmDF['worldwide gross'] = pd.to numeric(tnmDF['worldwide gross'])
#Check for correct changes
tnmDF.describe()
```

Out[30]:

	id	production_budget	domestic_gross	worldwide_gross
count	5782.000000	5.782000e+03	5.782000e+03	5.782000e+03
mean	50.372363	3.158776e+07	4.187333e+07	9.148746e+07
std	28.821076	4.181208e+07	6.824060e+07	1.747200e+08
min	1.000000	1.100000e+03	0.000000e+00	0.000000e+00
25%	25.000000	5.000000e+06	1.429534e+06	4.125415e+06
50%	50.000000	1.700000e+07	1.722594e+07	2.798445e+07
75%	75.000000	4.000000e+07	5.234866e+07	9.764584e+07
max	100.000000	4.250000e+08	9.366622e+08	2.776345e+09

Create a variable in *The Numbers DF* that calculates profit by subtracting **production_budget** from **worldwide_gross** .

In [31]:

```
#Create Profit column in DF but subtracting production budget from worldwide gross for e
tnmDF['Profit'] = tnmDF['worldwide_gross'] - tnmDF['production_budget']
#Check results
tnmDF['Profit'].describe()
```

Out[31]:

```
count
         5.782000e+03
         5.989970e+07
mean
         1.460889e+08
std
        -2.002376e+08
min
        -2.189071e+06
25%
         8.550286e+06
50%
75%
         6.096850e+07
         2.351345e+09
max
```

Name: Profit, dtype: float64

Joining Tables

Back to Index

Joining Rotten Tomatoes with Rotten Tomatoes Reviews

Aim with this data frame is to look at relationships between genre, director, rating, writer or runtime with the percentage of fresh ratings on movies.

In [32]:

```
#Perform inner join on id
rotten_tomatoes_full = pd.merge(rtDF, rtDF_reviews, on='id', how='inner')

#View results
# rotten_tomatoes_full.head()

#Drop unnecessary columns
rotten_tomatoes_full.drop(columns=['rating_y','critic','review'],inplace=True)

#View results
rotten_tomatoes_full.head()
```

Out[32]:

	id	rating_x	genre	director	writer	theater_date	runtime	fresh	sum_fresh (
0	3	R	[Drama, Science Fiction and Fantasy]	[David Cronenberg]	[David Cronenberg, Don DeLillo]	Aug 17, 2012	108 minutes	1	103
1	3	R	[Drama, Science Fiction and Fantasy]	[David Cronenberg]	[David Cronenberg, Don DeLillo]	Aug 17, 2012	108 minutes	0	103
2	3	R	[Drama, Science Fiction and Fantasy]	[David Cronenberg]	[David Cronenberg, Don DeLillo]	Aug 17, 2012	108 minutes	1	103
3	3	R	[Drama, Science Fiction and Fantasy]	[David Cronenberg]	[David Cronenberg, Don DeLillo]	Aug 17, 2012	108 minutes	1	103
4	3	R	[Drama, Science Fiction and Fantasy]	[David Cronenberg]	[David Cronenberg, Don DeLillo]	Aug 17, 2012	108 minutes	1	103
4									•

Joining The Numbers DF and The MovieDB

Aim with this data frame is to be able to see if there are relationships between vote_average, popularity, or genre with financial outcomes such as domestic gross or worldwide gross.

In [33]:

```
#Change column name in the movieDB df - need this to be able to join tables on movie tit
mdbDF=tmdbDF.rename(columns={'original_title': 'movie'})

#Inner join tables on movie title
performanceDF = pd.merge(mdbDF, tnmDF, on='movie', how='inner')

#View results
# performanceDF.head()

#Drop unnecessary columns
performanceDF.drop(columns=['id_x','id_y','title','release_date_y'],inplace=True)

#View results
performanceDF.head()
```

Out[33]:

	genre_ids	original_language	movie	popularity	release_date_x	vote_average	vote_co
0	[Fantasy, Adventure, Animation, Family]	en	How to Train Your Dragon	28.734	2010-03-26	7.7	7(
1	[Adventure, Action, Science Fiction]	en	Iron Man 2	28.515	2010-05-07	6.8	12(
2	[Animation, Comedy, Family]	en	Toy Story	28.005	1995-11-22	7.9	10 ⁻
3	[Animation, Comedy, Family]	en	Toy Story	28.005	1995-11-22	7.9	10 ⁻
4	[Action, Science Fiction, Adventure]	en	Inception	27.920	2010-07-16	8.3	22 [,]
4							•

Joining Box Office DF (Rotten Tomatoes DF slice) with Rotten Tomatoes Reviews

Aim with this data frame would be to see if rating has a relationship with box office earnings.

In [34]:

```
#Perform inner join on id
box_rotten_tomatoes = pd.merge(box_officeDF, rtDF_reviews, on='id', how='inner')

#View results
# rotten_tomatoes_full.head()

#Drop unnecessary columns
box_rotten_tomatoes.drop(columns=['rating_y','critic','review'],inplace=True)

#View results
box_rotten_tomatoes.head()
```

Out[34]:

	id rating_x		genre	director	writer	theater_date	currency	box_offic
0	3	R	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	Aug 17, 2012	\$	60000
1	3	R	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	Aug 17, 2012	\$	600001
2	3	R	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	Aug 17, 2012	\$	600001
3	3	R	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	Aug 17, 2012	\$	600001
4	3	R	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	Aug 17, 2012	\$	600001
4								•

Joining Box Office Mojo DF with The MovieDB DF

Aim with this data frame is to look at relationship between studio and rating.

In [35]:

```
#Change column name in the movieDB df - need this to be able to join tables on movie tit
bomDF=bomDF.rename(columns={'title': 'movie'})

#Inner join tables on movie title
studioDF = pd.merge(mdbDF, bomDF, on='movie', how='inner')

#View results
# performanceDF.head()

#Drop unnecessary columns
# studioDF.drop(columns=['id_x','id_y','title','release_date_y'],inplace=True)

#View results
studioDF.head()
```

Out[35]:

	genre_ids	id	original_language	movie	popularity	release_date	title	vote
0	[Fantasy, Adventure, Animation, Family]	10191	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	
1	[Adventure, Action, Science Fiction]	10138	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	
2	[Action, Science Fiction, Adventure]	27205	en	Inception	27.920	2010-07-16	Inception	
3	[Animation, Family, Comedy]	10193	en	Toy Story 3	24.445	2010-06-17	Toy Story 3	
4	[Animation, Family, Comedy]	20352	en	Despicable Me	23.673	2010-07-09	Despicable Me	
4								•

Exploratory Data Analysis

Begin looking into relationships between variables, uncover information that will form our recommendations to Computing Vision (client)

Back to Index

Rotten Tomatoes Analysis

Look at relationships between genre, director, rating, writer or runtime with the percentage of fresh ratings on movies

In [36]:

```
#Use rotten_tomatoes_full
rotten_tomatoes_full.head()
```

Out[36]:

	id	rating_x	genre	director	writer	theater_date	runtime	fresh	sum_fresh (
0	3	R	[Drama, Science Fiction and Fantasy]	[David Cronenberg]	[David Cronenberg, Don DeLillo]	Aug 17, 2012	108 minutes	1	103
1	3	R	[Drama, Science Fiction and Fantasy]	[David Cronenberg]	[David Cronenberg, Don DeLillo]	Aug 17, 2012	108 minutes	0	103
2	3	R	[Drama, Science Fiction and Fantasy]	[David Cronenberg]	[David Cronenberg, Don DeLillo]	Aug 17, 2012	108 minutes	1	103
3	3	R	[Drama, Science Fiction and Fantasy]	[David Cronenberg]	[David Cronenberg, Don DeLillo]	Aug 17, 2012	108 minutes	1	103
4	3	R	[Drama, Science Fiction and Fantasy]	[David Cronenberg]	[David Cronenberg, Don DeLillo]	Aug 17, 2012	108 minutes	1	103
4									•

Create a new dataframe that focuses on the **director**, explode the dataframe so that each row is repeated for every value in the list of directors. This way we can aggregate percentage by director and analyze if there is a relationship between director and fresh ratings.

In [37]:

```
#create new df with row repeated for each individual writer within the list
director_df = rotten_tomatoes_full.explode('director').reset_index(drop=True)
#group by genre and return the mean vote average
director_df = director_df.dropna(subset=['director'])
```

Drop any rows with the value string 'nan' in the **director** column, not stored as a null so this was not dropped from the dataframe earlier.

In [38]:

```
#Remove instances of 'nan' string - was not stored as null value so was not removed yet
director_df.drop(director_df.loc[director_df['director'] == 'nan'].index, inplace=True)
```

Group by **director**, return the number of unique ids (number of movies), sort values descending. This returns a dataframe containing the director's name, and the number of movies they have worked on according to the data set. The reset index function allows the *groupby object* to be stored as a dataframe,

check the type to make sure.

In [39]:

```
dir_numDF = director_df.groupby(['director'])['id'].nunique().sort_values(ascending=Fals
print(type(dir_numDF))
dir_numDF.head()
```

<class 'pandas.core.frame.DataFrame'>

Out[39]:

	director	num_movies
0	Steven Spielberg	10
1	Clint Eastwood	8
2	Bruce Beresford	4
3	Jim Jarmusch	4
4	Barry Levinson	4

Group by **director** again, this time instead of counting the unique id values, aggregate the mean fresh percentage. This will act as a 0-100% average movie rating system.

Each movie calculates a percentage using the number of fresh scores divided by the number of total scores - effectively a movie rating. If a director has directed more than 1 movie, this fuction will take the average rating per movie by adding all percentages together and dividing by the number of unique movies. This standardizes the data scores so that we gain insight into how directing experience translates to movie rating.

In [40]:

```
dir_freshDF = director_df.groupby(['director'])['percentage'].mean().reset_index(name='a
dir_freshDF.head()
```

Out[40]:

	director	avg_fresh_pct
0	Aaron Seltzer	0.028571
1	Abel Ferrara	0.238095
2	Adam Ravetch	0.612903
3	Adam Shankman	0.044118
4	Adrian Lyne	0.530612

Merge the two dataframes on the director name, the new dataframe will allow us to compare number of movies directed to the average fresh percentage per movie.

In [41]:

```
#Combine the dataframes with number of unique ids (movies) per director, and the dataframedir_eval = pd.merge(dir_numDF, dir_freshDF, on='director', how='inner')
dir_eval.head()
```

Out[41]:

	director	num_movies	avg_fresh_pct
0	Steven Spielberg	10	0.789474
1	Clint Eastwood	8	0.658416
2	Bruce Beresford	4	0.630435
3	Jim Jarmusch	4	0.689781
4	Barry Levinson	4	0.292035

Check to see how average fresh percentage per movie is different depending on the number of movies the director has directed.

In [42]:

```
dir_num_movies_compare = dir_eval.groupby('num_movies')['avg_fresh_pct'].mean().reset_in
dir_num_movies_compare
```

Out[42]:

	num_movies	avg_fresh_rtgs
0	1	0.548406
1	2	0.627354
2	3	0.703012
3	4	0.719101
4	8	0.658416
5	10	0.789474

We can see that in general average fresh percentage per movie increases as the number of movies the director has has made increases. The **average fresh percentage for directors who made their first movie was 54.84%**, this is the lowest of the group.

Now repeat the process above, but explode for **writer** this time to uncover insights about writers and fresh ratings.

In [43]:

```
#create new df with row repeated for each individual writer within the list
wrt_df = rotten_tomatoes_full.explode('writer').reset_index(drop=True)
#group by genre and return the mean vote average
wrt_df = wrt_df.dropna(subset=['writer'])

#Remove instances of 'nan' string - was not stored as null value so was not removed yet
wrt_df.drop(wrt_df.loc[wrt_df['writer'] == 'nan'].index, inplace=True)

wrt_numDF = wrt_df.groupby(['writer'])['id'].nunique().sort_values(ascending=False).rese
wrt_freshDF = wrt_df.groupby(['writer'])['percentage'].mean().reset_index(name='avg_fres
wrt_eval = pd.merge(wrt_numDF, wrt_freshDF, on='writer', how='inner')
wrt_num_movies_compare = wrt_eval.groupby('num_movies')['avg_fresh_pct'].mean().reset_in
```

Check out if there is a relationship between movie rating and the average fresh percentage.

Performance Analysis

See if there are relationships between **vote_average**, **popularity**, or **genre** with financial outcomes such as domestic gross or worldwide gross.

Back to Index

In [45]:

```
performanceDF["Profit"].describe()
```

Out[45]:

```
count
         2.316000e+03
         8.226558e+07
mean
         1.834322e+08
std
        -1.104502e+08
min
25%
        -1.743919e+06
50%
         1.366848e+07
         7.816406e+07
75%
         2.351345e+09
max
Name: Profit, dtype: float64
```

In [46]:

```
performanceDF["production_budget"].describe()
```

Out[46]:

2.316000e+03 count mean 3.790108e+07 std 5.150964e+07 min 9.000000e+03 25% 5.000000e+06 50% 1.900000e+07 75% 4.650000e+07 4.250000e+08 max

Name: production_budget, dtype: float64

Visualize the average financial outcomes for each specified genre.

In [47]:

```
#genre and financial outcomes comparison
ndf6 = performanceDF.explode('genre_ids').reset_index(drop=True)
ndf6 = ndf6.groupby(["genre_ids"]).mean()
ndf6 = ndf6.sort_values(["Profit"],ascending=False)
ndf6.drop(columns=["vote_average","vote_count"],inplace=True)
ndf6
```

Out[47]:

	popularity	production_budget	domestic_gross	worldwide_gross	Profit
genre_ids					
Animation	13.902172	8.401310e+07	1.292310e+08	3.398913e+08	2.558782e+08
Adventure	17.717583	1.020237e+08	1.208922e+08	3.413045e+08	2.392808e+08
Fantasy	17.272790	8.928333e+07	1.112565e+08	3.049671e+08	2.156837e+08
Family	13.942896	7.710383e+07	1.111312e+08	2.865821e+08	2.094783e+08
Science Fiction	16.134104	7.543509e+07	9.245424e+07	2.486116e+08	1.731765e+08
Action	15.906704	7.639070e+07	8.846694e+07	2.378166e+08	1.614259e+08
Comedy	10.991910	3.598386e+07	5.511465e+07	1.239022e+08	8.791834e+07
War	12.511893	4.104107e+07	5.340136e+07	1.103774e+08	6.933630e+07
Romance	10.182675	2.527989e+07	4.057061e+07	8.830017e+07	6.302028e+07
Crime	12.140174	3.425484e+07	4.012092e+07	9.470974e+07	6.045490e+07
Thriller	11.564319	3.156349e+07	3.699230e+07	9.086811e+07	5.930463e+07
Western	11.555815	5.158519e+07	4.546212e+07	1.094540e+08	5.786881e+07
Music	8.906855	2.456613e+07	4.128657e+07	7.855618e+07	5.399005e+07
Mystery	11.577570	2.568749e+07	3.344472e+07	7.845497e+07	5.276749e+07
Drama	9.940092	2.565501e+07	3.270897e+07	7.250913e+07	4.685411e+07
Horror	9.104249	1.807368e+07	2.828748e+07	6.283838e+07	4.476471e+07
History	12.037798	3.002584e+07	3.153652e+07	6.409540e+07	3.406956e+07
Documentary	2.445816	1.963052e+07	2.219984e+07	5.010878e+07	3.047826e+07
TV Movie	2.448300	2.759500e+07	3.099333e+07	5.678212e+07	2.918712e+07
4					•

Animation and Adventure lead all genres in terms of average profit per movie. The average profit differences do appear pretty significant between categories. The highest average profit per movie is \$255.8M, earned by the Animation genre. The opposite end of the spectrum stits the genre, TV Movie, earning the lowest average profit per movie - \$29.2M. The 10x difference between the average profit numbers means that genre should definitely be taken into consideration if aiming for a high profit movie.

In [48]:

```
print("Production Budget & Profit Correlation:", performanceDF['production_budget'].corr
print("Production Budget & Worldwide Gross Correlation:", performanceDF['production_budget'].corr
print("Production Budget & Domestic Gross Correlation:", performanceDF['production_budget'].corr
```

Production Budget & Profit Correlation: 0.6835267414179772 Production Budget & Worldwide Gross Correlation: 0.7973439533486292

Production Budget & Domestic Gross Correlation: 0.7208697711690233

worldwide_gross has the highest correlation to production_budget , overall there is a positive correlation between production_budget and Profit . Correlation does not equal causation, but we can conclude that there is a relationship present with produciton budget and other financial outcomes.

In [49]:

```
jdf1 = performanceDF.explode('genre_ids').reset_index(drop=True)
jdf1.groupby('genre_ids')['vote_average'].mean()
```

Out[49]:

genre ids

geili e_tus	
Action	6.090075
Adventure	6.360773
Animation	6.448276
Comedy	6.226220
Crime	6.288850
Documentary	6.605747
Drama	6.499905
Family	6.395495
Fantasy	6.289498
History	6.926966
Horror	5.556869
Music	6.529032
Mystery	6.047093
Romance	6.447925
Science Fiction	6.153160
TV Movie	4.880000
Thriller	5.967453
War	6.633929
Western	5.896296
Name: vote average.	dtvpe: fl

Name: vote_average, dtype: float64

The means do look different between genres, *history* movies appear to have the highest mean **vote average**.

Rotten Tomato Review & Box Office Analysis

See if rating has a relationship with box office earnings

In [50]:

```
box_rotten_tomatoes.head()
```

Out[50]:

	id	rating_x	genre	director	writer	theater_date	currency	box_offic
0	3	R	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	Aug 17, 2012	\$	60000
1	3	R	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	Aug 17, 2012	\$	60000
2	3	R	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	Aug 17, 2012	\$	600001
3	3	R	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	Aug 17, 2012	\$	60000
4	3	R	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	Aug 17, 2012	\$	600001
4								>

In [85]:

```
#Use box_rotten_tomatoes

#box office and rating comparison

ndf7 = box_rotten_tomatoes.groupby(["rating_x"]).mean()

ndf7 = ndf7.sort_values(["box_office"],ascending=False)

ndf7.drop(columns=["fresh","id"],inplace=True)

ndf7
```

Out[85]:

	box_office	sum_fresh	count_fresh	percentage
rating_x				
PG-13	7.234792e+07	81.543842	149.017356	0.497434
PG	6.720447e+07	73.221075	116.358617	0.577772
G	3.665854e+07	71.760668	93.920223	0.671614
R	3.423424e+07	103.013846	146.962408	0.653110
NR	6.985061e+05	60.692308	68.593052	0.833747

The movie rating (rating_x) has different box office numbers and percentages. Movies rated *NR* have the highest average fresh percentage per movie, but the lowest box office earnings per movie. The inverse is true for *PG-13* movies.

Studio Analysis

Look at relationship between studio and rating, popularity etc.

In [52]:

```
#Use studioDF
ndf8 = studioDF.groupby(["studio", "id"]).size().reset_index(name="Movies")
ndf8 = ndf8.groupby(["studio"]).size().reset_index(name="number_of_movies")
ndf8 = ndf8.merge(studioDF.groupby(["studio"]).mean(),on="studio")
ndf8 = ndf8.sort_values(["popularity","number_of_movies"],ascending=False)
ndf8.drop(columns=["id","year"],inplace=True)
ndf8
```

Out[52]:

	studio	number_of_movies	popularity	vote_average	vote_count	domestic_gross	fore
25	BV	90	20.035160	6.857000	5016.740000	2.062700e+08	2.75
143	Studio 8	2	19.165000	6.100000	722.000000	2.995000e+07	3.2
93	MGM	2	18.528500	6.350000	1809.500000	8.300000e+07	5.63
141	Sony	72	15.610025	6.072152	2825.025316	9.948987e+07	1.50
162	WB	112	15.446492	6.486667	3155.125000	9.112167e+07	1.28
153	UTMW	1	0.704000	6.000000	2.000000	6.250000e+04	0.00
53	FEF	1	0.699000	4.800000	3.000000	6.130000e+05	0.00
16	Argo.	1	0.692000	7.000000	2.000000	2.930000e+04	1.80
39	DR	1	0.600000	6.000000	1.000000	8.000000e+02	1.10
168	Yash	1	0.600000	7.800000	3.000000	5.260000e+04	0.00
170 rows × 7 columns							

Financial outcomes of movies appear to differ based on the **studio** . *BV* leads **studio** on **domestic_gross** and **foreign_gross** - partnering with a studio may signficantly impact the financial success of a movie.

Look at how vote_average changes based on genre in this data set.

In [86]:

```
jdf2 = studioDF.explode('genre_ids').reset_index(drop=True)
jdf3 = jdf2.groupby('genre_ids')['vote_average'].mean().sort_values(ascending=False)
jdf3
```

Out[86]:

genre_ids					
Documentary	6.983333				
History	6.886364				
War	6.822222				
Music	6.703750				
Western	6.531034				
Drama	6.523706				
Animation	6.521951				
Adventure	6.451768				
Romance	6.422590				
Family	6.395676				
Crime	6.349603				
Science Fiction	6.343689				
Fantasy	6.334463				
Action	6.256909				
Mystery	6.255294				
Comedy	6.247234				
Thriller	6.161351				
Horror	5.752381				
TV Movie	4.900000				
Name: vote_average,	, dtype: float64				

Documentary and History movies seem to be the genres that score the highest vote average per movie. TV Movie and Horror genres do not seem to be as well received by the voting audience.

Check the relationship between **foreign_gross** and **genre** by using the *explode()* function. This is verifying the insights gained above.

```
In [54]:
```

```
jdf4 = jdf2.groupby(['genre_ids'])['foreign_gross'].mean().reset_index(name='Foreign_Rev
jdf4 = jdf4.sort_values(['Foreign_Revenue'], ascending=False)
jdf4
```

Out[54]:

	genre_ids	Foreign_Revenue
1	Adventure	2.252045e+08
2	Animation	2.217912e+08
8	Fantasy	1.816037e+08
7	Family	1.691809e+08
14	Science Fiction	1.658203e+08
0	Action	1.558736e+08
15	TV Movie	7.195000e+07
3	Comedy	6.232058e+07
18	Western	6.034876e+07
17	War	4.982552e+07
16	Thriller	4.888917e+07
4	Crime	4.661568e+07
12	Mystery	4.006583e+07
10	Horror	3.827622e+07
11	Music	2.889316e+07
6	Drama	2.849604e+07
13	Romance	2.817540e+07
9	History	2.614369e+07
5	Documentary	7.131747e+06

The *TV Movie* genre seems to do much better on average in foreign markets relative to the domestic markets. *History* and *Documentary* remain towards the bottom of the genre by average financial success per movie.

Visualizations

Area to create seaborn & matplotlib graphs.

Back to Index

Rotten Tomatoes Full Visualizations

Plot Number of Movies Directed vs. Movie Average Fresh Percentage

Back to Index

In [55]:

```
#Increase / customize figure size
plt.figure(figsize=(12,8))
#Change theme color and increase font size
sns.set_theme(style='darkgrid', font_scale=2)
#Create a barplot
ax = sns.barplot(data=dir_eval,
                x='num movies',
                y='avg_fresh_pct',
                ci='sd',
                linewidth=2,
                palette="Greens_d")
#Set the labels and title for graph
ax.set(xlabel='Number of Movies Directed',
       ylabel='Movie Average Fresh Percentage',
       title='Movie Average Fresh Percentage vs. Number of Movies Directed')
#Format y-axis ticks to be in percentage format instead of decimal
yvalues = ['\{:,.0f\}'.format(x) + '%' for x in ax.get_yticks() * 100]
ax.set_yticklabels(yvalues)
#Only return plot to console
plt.show()
```

<ipython-input-55-39c7cd3a6ad5>:22: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
ax.set_yticklabels(yvalues)

Movie Average Fresh Percentage vs. Number of Movies Directed

In general we can see a trend of the **average movie fresh percentage** increasing as the **number of movies** directed increases. If a director has only directed 1 movie, there is a large standard deviation for what the fresh percentage may be.

Plot Number of Movies with Writing Credit vs. Movie Average Fresh Percentage

In [56]:

```
#Increase / customize figure size
plt.figure(figsize=(12,8))
#Change theme color and increase font size
sns.set_theme(style='darkgrid', font_scale=2)
#Create a barplot
ax = sns.barplot(data=wrt_eval,
                x='num_movies',
                y='avg fresh pct',
                ci='sd',
                linewidth=2,
                palette="Greens_d")
#Set the labels and title for graph
ax.set(xlabel='Number of Movies with Writing Credit',
       ylabel='Movie Average Fresh Percentage',
       title='Movie Average Fresh Percentage vs. Number of Movies with Writing Credit')
#Format y-axis ticks to be in percentage format instead of decimal
yvalues = ['\{:,.0f\}'.format(x) + '%' for x in ax.get_yticks() * 100]
ax.set_yticklabels(yvalues)
#Only return plot to console
plt.show()
```

<ipython-input-56-c9488dd1144a>:22: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
ax.set_yticklabels(yvalues)

There does not appear to be a clear relationship between the **number of movies with writing credit** and the **average movie fresh percentage**. There appears to be large standard deviations for almost all categories, this makes us think that **number of movies with writing credit** may not be a great

indicator of movie ratings.

Plot Genre vs. Movie Average Fresh Percentage

In [57]:

<ipython-input-57-a74f86e1fd14>:17: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
ax.set_yticklabels(yvalues)

The highest rated genres in this dataset are *Gay and Lesbian*, *Cult Movies* and *Classics*, which can lead us to believe that targeting an specific demographic audience can result on the reviews being more positive.

Plot Movie Rating vs. Movie Average Fresh Percentage

Back to Index

In [58]:

<ipython-input-58-5f5bb526f832>:16: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
ax.set_yticklabels(yvalues)

Having a broader audience might positively influence the reviews, which explains **G** being one of the best rated in average. **PG-13** might be a more restricted group due to the PG rating being ment for both children and their parents, which supports our inference.

Performance DF Visualizations

In [59]:

```
performanceDF["production_budget"].describe()
```

Out[59]:

2.316000e+03 count mean 3.790108e+07 std 5.150964e+07 min 9.000000e+03 25% 5.000000e+06 50% 1.900000e+07 75% 4.650000e+07 4.250000e+08 max

Name: production_budget, dtype: float64

Plot Production Budget vs. Domestic Gross

In [60]:

```
#sets background color and increase in font size
sns.set_theme(style="darkgrid", font_scale=2)
#increase figure size
plt.figure(figsize=(20,11))
#regression line plot
sns.regplot(x="production_budget", y="domestic_gross", ci=None, data=performanceDF)
#data frame with adjust x/y with aesthetics
gfg=sns.scatterplot(data=performanceDF, x="production_budget", y="domestic_gross",
                size="domestic_gross", sizes=(20, 400), hue="Profit", palette="ch:r=-.5,
#expanding x-axis
plt.xlim([0,420000000])
#extending y-axis for outlier
plt.ylim(([0,500000000]))
#supressing scientific notation
plt.ticklabel_format(style='plain')
# add label to the axis and label to the plot
gfg.set(xlabel ="Production Budget", ylabel = "Domestic Gross",
        title = 'Comparison of Production Budget vs. Domestic Gross')
#creating list of formated x-ticks
xlabels = ['$\{:,.0f\}'.format(x) + 'M' for x in gfg.get_xticks()/1000000]
#replacing x-ticks
gfg.set_xticklabels(xlabels)
#creating list of formated y-ticks
ylabels = ['$\{:,.0f\}'].format(x) + 'M' for x in gfg.get_yticks()/1000000]
#replacing y-ticks
gfg.set_yticklabels(ylabels)
#Only return plot
plt.show()
```

<ipython-input-60-39b39bc15f08>:22: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
 gfg.set_xticklabels(xlabels)
<ipython-input-60-39b39bc15f08>:26: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
 gfg.set_yticklabels(ylabels)

Production Budget vs. **Domestic Gross** shows a positive correlation and has a .69 correlation rate (the closer to 1 the better the results)

Plot Production Budget vs. Worldwide Gross

In [61]:

```
#sets background color and increase in font size
sns.set_theme(style="darkgrid", font_scale=2)
#increase figure size
plt.figure(figsize=(20,11))
#regression line plot
sns.regplot(x="production_budget", y="domestic_gross", ci=None, data=performanceDF)
#data frame with adjust x/y with aesthetics
gfg=sns.scatterplot(data=performanceDF, x="production_budget", y="worldwide_gross",
                size="worldwide_gross", sizes=(20, 400), hue="production_budget", palett
#expanding x-axis
plt.xlim([0,420000000])
#extending y-axis for outlier
plt.ylim(([0,1750000000]))
#supressing scientific notation
plt.ticklabel_format(style='plain')
# add label to the axis and label to the plot
gfg.set(xlabel ="Production Budget", ylabel = "Worldwide Gross",
        title = 'Comparison of Production Budget vs. Worldwide Gross')
#creating list of formated x-ticks
xlabels = ['$\{:,.0f\}'.format(x) + 'M' for x in gfg.get_xticks()/1000000]
#replacing x-ticks
gfg.set_xticklabels(xlabels)
#creating list of formated y-ticks
ylabels = ['$\{:,.1f}\'.format(x) + 'B' for x in gfg.get_yticks()/1000000000]
#replacing y-ticks
gfg.set_yticklabels(ylabels)
#Only show plot
plt.show()
```

<ipython-input-61-bbc3ed8548f3>:22: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
 gfg.set_xticklabels(xlabels)
<ipython-input-61-bbc3ed8548f3>:26: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
 gfg.set_yticklabels(ylabels)

Production Budget vs. **Worldwide Gross** shows a positive correlation and has a .75 correlation rate (the closer to 1 the better the results).

Plot Profit vs. Product Budget

In [62]:

```
#sets background color and increase in font size
sns.set_theme(style="darkgrid", font_scale=2)
#increase figure size
plt.figure(figsize=(20,11))
#regression line plot
sns.regplot(x="production_budget", y="Profit", ci=None, data=performanceDF)
#data frame with adjust x/y with aesthetics
gfg=sns.scatterplot(data=performanceDF, x="production_budget", y="Profit",
                size="Profit", sizes=(20, 400), hue="Profit", palette="ch:r=-.5,l=.75",
#expanding x-axis
plt.xlim([0,420000000])
#extending y-axis for outlier
plt.ylim(([0,2000000000]))
#supressing scientific notation
plt.ticklabel_format(style='plain')
# add label to the axis and label to the plot
gfg.set(xlabel ="Production Budget", ylabel = "Profit",
        title = 'Comparison of Profit vs. Production Budget')
#creating list of formated x-ticks
xlabels = ['${:,.0f}'.format(x) + 'M' for x in gfg.get_xticks()/1000000]
#replacing x-ticks
gfg.set_xticklabels(xlabels)
#creating list of formated y-ticks
ylabels = ['$\{:,.1f}\'.format(x) + 'B' for x in gfg.get_yticks()/1000000000]
#replacing y-ticks
gfg.set_yticklabels(ylabels)
#Only return graph
plt.show()
```

<ipython-input-62-5f6fb3cf68c4>:22: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
 gfg.set_xticklabels(xlabels)
<ipython-input-62-5f6fb3cf68c4>:26: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
 gfg.set_yticklabels(ylabels)

Production Budget vs. **Profit** shows a positive correlation and has a .62 correlation rate (the closer to 1 the better the results). With more time we would like to analyze this further and see what exactly this is an indication of & how we can better the how significant production budget is for determining the profit of a movie.

Plot Vote Average vs. Production Budget

In [63]:

```
#sets background color and increase in font size
sns.set_theme(style="darkgrid", font_scale=2)
#increase figure size
plt.figure(figsize=(20,11))
#regression line plot
pbva=sns.regplot(x="production_budget", y="vote_average", ci=None, data=performanceDF)
#data frame with adjust x/y with aesthetics
pbva=sns.scatterplot(data=performanceDF, x="production_budget", y="vote_average",
                size="vote_average", hue="vote_average", palette="viridis_r", legend=Fal
#expanding x-axis
plt.xlim([0, 420000000])
#extending y-axis for outlier
plt.ylim(0)
#supressing scientific notation
plt.ticklabel_format(style='plain')
# add label to the axis and label to the plot
pbva.set(xlabel ="Production Budget", ylabel = "Vote Average",
        title = 'Comparison of Vote Average vs. Production Budget')
#creating list of formated x-ticks
xlabels = ['$\{:,.0f\}'.format(x) + 'M' for x in pbva.get_xticks()/1000000]
#replacing x-ticks
pbva.set_xticklabels(xlabels)
#creating list of formated y-ticks
ylabels = ['{:,.0f}'.format(x) for x in pbva.get_yticks()]
#replacing y-ticks
pbva.set_yticklabels(ylabels)
#Show graph only
plt.show()
```

<ipython-input-63-f2146c2b2e59>:22: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
 pbva.set_xticklabels(xlabels)
<ipython-input-63-f2146c2b2e59>:26: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
 pbva.set_yticklabels(ylabels)

There is a slight positive correlation between **vote_average** and **production budget**. For further analysis a greater sample size for movies with a higher production budget is recommended (more data points required).

Plot Domestic Gross Revenue vs. Vote Average

In [64]:

```
#Domestic gross revenue vs. Vote Average
#sets background color and increase in font size
sns.set_theme(style="darkgrid", font_scale=2)
#increase figure size
plt.figure(figsize=(20,11))
#regression line plot
sns.regplot(x="domestic_gross", y="vote_average", ci=None, data=performanceDF)
#data frame with adjust x/y with aesthetics
dgva=sns.scatterplot(data=performanceDF, x="domestic gross", y="vote average",
                size="vote_average", hue="vote_average", palette="viridis_r", legend=Fal
#expanding x-axis
plt.xlim(0)
#extending y-axis for outlier
plt.ylim(0)
#supressing scientific notation
plt.ticklabel_format(style='plain')
# add label to the axis and label to the plot
dgva.set(xlabel ="Domestic Gross", ylabel = "Vote Average",
        title = 'Comparison of Domestic Gross vs. Vote Average')
#creating list of formated x-ticks
xlabels = ['${:,.0f}'.format(x) + 'M' for x in dgva.get_xticks()/1000000]
#replacing x-ticks
dgva.set_xticklabels(xlabels)
#creating list of formated y-ticks
ylabels = ['{:,.0f}'.format(x) for x in dgva.get_yticks()]
#replacing y-ticks
dgva.set_yticklabels(ylabels)
#Only return plot
plt.show()
```

<ipython-input-64-17492183cf64>:24: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
 dgva.set_xticklabels(xlabels)
<ipython-input-64-17492183cf64>:28: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
 dgva.set_yticklabels(ylabels)

Plot Worldwide Revenue vs. Vote Average

In [65]:

```
#sets background color and increase in font size
sns.set_theme(style="darkgrid", font_scale=2)
#increase figure size
plt.figure(figsize=(20,11))
#regression line plot
vawwg=sns.regplot(x="vote_average", y="worldwide_gross", ci=None, data=performanceDF)
#data frame with adjust x/y with aesthetics
vawwg=sns.scatterplot(data=performanceDF, x="vote_average", y="worldwide_gross",
                size="vote_average", hue="vote_average", palette="viridis_r", legend=Fal
#expanding x-axis
plt.xlim(0)
#extending y-axis for outlier
plt.ylim([0,2100000000])
#supressing scientific notation
plt.ticklabel_format(style='plain')
# add label to the axis and label to the plot
vawwg.set(xlabel ="Vote Average", ylabel = "Worldwide Gross",
        title = 'Comparison of Worldwide Gross vs. Vote Average')
#creating list of formated x-ticks
\# xlabels = ['{:,.0f}'.format(x) + 'M' for x in vapb.get_xticks()/1000000]
xlabels = ['{:,.0f}'.format(x) for x in vawwg.get_xticks()]
#replacing x-ticks
vawwg.set xticklabels(xlabels)
#creating list of formated y-ticks
# ylabels = ['{:,.0f}'.format(x) for x in vapb.get_yticks()]
ylabels = ['$\{:,.1f}\'.format(x) + 'B' for x in vawwg.get_yticks()/1000000000]
#replacing y-ticks
vawwg.set_yticklabels(ylabels)
#Only show plot
plt.show()
```

<ipython-input-65-931357618282>:23: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
 vawwg.set_xticklabels(xlabels)
<ipython-input-65-931357618282>:28: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
 vawwg.set_yticklabels(ylabels)

The movies with an vote average of approximately around 7-8 had the highest worldwide revenue.

Plot Original Language vs. Average World Gross

Need to manipulate new data frame that drops the <code>original_title</code> column from the <code>MoviesDB</code> dataframe. Must then change the variable name from <code>title</code> to <code>movie</code> - this makes the merge code work. More observations are present in the <code>title</code> column than in the <code>original_title</code> column, so we want to use this as the foundation of analysis.

Back to Index

In [67]:

```
df1 = tmdbDF.drop(columns=(['original_title']))
df1 = df1.rename(columns={'title': 'movie'})
df2 = pd.merge(df1, tnmDF, on='movie', how='inner')
```

In [69]:

```
total=df2.groupby(['original_language'])['worldwide_gross'].mean().reset_index(name='Ave
plt.figure(figsize=(15,10))
jdf6 = total.sort_values(['Average_world_gross'], ascending=False)
wgl=sns.barplot(x = "original_language", y = "Average_world_gross", data = jdf6,
plt.xticks(rotation=70)
wgl.set(xlabel ="Original Language", ylabel = "Average World Gross",
        title ='Comparison of Average Worldwide Gross vs. Original Language')
#creating list of formated x-ticks
# xlabels = ['{:,.0f}']
# #replacing x-ticks
# gifr.set_xticklabels(xlabels)
#creating list of formated y-ticks
ylabels = ['\{:,.0f\}'.format(x) + 'M' for x in wgl.get_yticks()/1000000]
#replacing y-ticks
wgl.set_yticklabels(ylabels)
#Only show graph
plt.show()
```

<ipython-input-69-5c6f7be0b8f3>:17: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
 wgl.set_yticklabels(ylabels)

Our Analysis found that the Thai had the highest Worldwide gross while English had the 5th highest.

The Second highest language was Japanese. The top 3 highest average worldwide grossing movies are in the Asian languages so the business recommendation is to expand to these areas.

The **Top 5 languages** are:

Thai

Japanese

Telugu

Georgian

English

Plot Voter Average vs. Original Language

Back to Index

In [70]:

The plot shows **Georgian** language being the *highest rated* according to the list of ISO 639-1 codes. Combined with the 4th highest worldwide gross in average a good business recommendation is to produce movies in the Georgian Language. A higher rated movie will receive more press/ media coverage and is likely to be submitted for awards. Other highly rated movies include **Turkish** and **Indonesian**.

Plot Production Budget vs. Original Language

Back to Index

In [71]:

<ipython-input-71-4a451cf41e2f>:12: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
pdol.set_yticklabels(ylabels)

The **Thai** Language movies have the *greatest production budget*, these movies also have the *highest gross* hence we recomend having a high production budget for the top 5 grossing movies on avaerage. **For the top 3 highest grossing language movies, we recommend a generous production budget**. With the worldwide markets the business recommendation is to leverage streaming services to reach a wide international audience, increasing worldwide revenue and brand recognition.

Studio DF Visualizations

Back to Index

Plot Genre vs. Foreign Revenue

Back to Index

In [72]:

<ipython-input-72-ce7fa81fd143>:11: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
gifr.set_yticklabels(ylabels)

Worldwide the highest grossing genres are *Adventure*, *Science Fiction* and *Animation*. The business recommendation is to invest in these genres. The least profitable genre is documentry.

Plot Genre vs. Domestic Revenue

Back to Index

In [73]:

<ipython-input-73-9204151521f7>:14: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
 drg.set_yticklabels(ylabels)

Domestically the highest grossing genres are *Adventure*, *Science Fiction* and *Animation*. The business recommendation is to invest in these areas. The least profitable genre is *Documentry*.

Plot Vote Average vs. Genre

Back to Index

In [74]:

```
genre_average_rt = new_df.groupby('genre_ids')['vote_average'].mean().sort_values()
genre_count_rt = to_1D(tmdbDF["genre_ids"]).value_counts()
```

Out[74]:

genre_ids Horror 4.847624 Thriller 5.354433 Science Fiction 5.442736 Action 5.578560 Mystery 5.730315 TV Movie 5.806827 Crime 5.852475 Adventure 5.930071 Comedy 5.942074 5.952327 Fantasy Western 5.955610 Romance 5.981603 5.990479 Family Drama 6.112200 War 6.229394 Animation 6.464805 6.661415 History Documentary 6.817946 Music 6.952407

Name: vote_average, dtype: float64

In [76]:

```
# Graphing average rating by movie genre, highlighted most popular
plt.rcParams["figure.figsize"] = (13,9)
fig, ax = plt.subplots()
my_cmap = plt.get_cmap('viridis')
rescale = lambda y: (y - np.min(y)) / (np.max(y) - np.min(y))
ax.bar(genre_average_rt.index,genre_average_rt, color='dimgray') # 'silver' my_cmap(resc
ax.set_title('Average Rating by Genre')
ax.set_xlabel('Genre')
ax.set ylabel('Average Rating')
ax.tick_params(axis='x', labelrotation=90.0)
plt.xticks(fontsize=18)
for genre in genre_count_rt.sort_values(ascending=False).index:
    highlight = genre
    pos = genre_average_rt.index.get_loc(highlight)
    ax.patches[pos].set_facecolor('yellowgreen') # '#aa3333'
    if genre == 'Horror':
        break
plt.savefig('rating_genre.jpg')
```


Popularity Analysis We can observe from the data above that out of the most produced genres, the highest rated ones are:

- Documentary
- Drama
- Comedy
- Thriller

Horror

With both Thriller and Horror movies being the lowest rated on average amongst the most popular genres

Plot Number of Movie Releases by Genre

Back to Index

In [77]:

```
fig, ax = plt.subplots()
my_cmap = plt.get_cmap('viridis')
rescale = lambda y: (y - np.min(y)) / (np.max(y) - np.min(y))
ax.bar(genre_count_rt.index, genre_count_rt, color='dimgray') # 'silver' #color=my_cmap(
ax.set_title('Movie Releases by Genre')
ax.set_xlabel('Genre')
ax.set_ylabel('Released Titles')
ax.tick_params(axis='x', labelrotation=90.0)
plt.xticks(fontsize=18)
for genre in genre_count_rt.index:
    highlight = genre
    pos = genre_count_rt.index.get_loc(highlight)
    ax.patches[pos].set_facecolor('yellowgreen') # '#aa3333'
    if genre == 'Horror':
        break
plt.savefig('release_genre.jpg')
```


Highlighted we can see the top 5 genres with the most titles, these being **Drama**, **Comedy**, **Documentary**, **Horror** and **Thriller**. We can get an idea of market saturation based on this graph.

Statistical Inference

Back to Index

Hypothesis testing, confidence intervals, etc. used to provide inferences about the larger population of movie successes

Null Hypothesis: Distributions of movie Fresh percentage for first time directors are statistically similar to experienced directors.

Alternative Hypothesis: Distributions of movie average Fresh percentage for experienced directors are higher than for first time directors.

We first want to divided our sample into two independent groups:

- Control: This only includes data from directors who have directed less than 2 movies
- Experimental: This only includes data from directors who have directed 2 or more movies

In [78]:

```
control = dir_eval.loc[dir_eval['num_movies'] < 2]['avg_fresh_pct']
experimental = dir_eval.loc[dir_eval['num_movies'] >= 2]['avg_fresh_pct']
```

Now inspect the distribution plots of the average movie fresh percentage. The peak for the experimental group appears to be higher than that of the control group.

In [79]:

C:\Users\asurowiec\Anaconda3\envs\learn-env\lib\site-packages\seaborn\dist
ributions.py:2551: FutureWarning: `distplot` is a deprecated function and
will be removed in a future version. Please adapt your code to use either
`displot` (a figure-level function with similar flexibility) or `histplot`
(an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)
C:\Users\asurowiec\Anaconda3\envs\learn-env\lib\site-packages\seaborn\dist
ributions.py:2551: FutureWarning: `distplot` is a deprecated function and
will be removed in a future version. Please adapt your code to use either
`displot` (a figure-level function with similar flexibility) or `histplot`
(an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)
<ipython-input-79-4317e2fb1553>:14: UserWarning: FixedFormatter should onl
y be used together with FixedLocator
 ax.set_xticklabels(xvalues)

In [81]:

```
#Determine if data is normally distributed

ew, epvalue = stats.shapiro(experimental)
print("Experimental", ew, epvalue)

w, pvalue = stats.shapiro(control)
print("Control", w, pvalue)

# plot histogram
import matplotlib.pyplot as plt
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.suptitle('Frequency histogram of fresh percentage')
ax1.hist(experimental, bins=10, histtype='bar', ec='k')
ax2.hist(control, bins=10, histtype='bar', ec='k')
ax1.set_xlabel("Avg Fresh Rating")
ax2.set_xlabel("Avg Fresh Rating")
plt.show()
```

Experimental 0.9452062845230103 1.9644268832053058e-05 Control 0.9388511776924133 4.014504050833386e-17

Frequency histogram of fresh percentage

The p-value of the shapiro test is less than 0.05 on both samples, this rejects the hypothesis that the each sample is normally distributed. Due to the non normal data we decide to run a Mann-Whitney U Test that will test whether the samples have similar distributions. We can run a one tail version of this test to

determine which sample set has the higher median.

In [82]:

```
#Mann-Whitney U test
stats.mannwhitneyu(x=experimental, y=control, alternative = 'greater')
```

Out[82]:

MannwhitneyuResult(statistic=63192.0, pvalue=0.001584754257076086)

The p-value of the Mann-Whitney U Test is less than 0.05, so we can conclude at 95% confidence that the average movie fresh percentage is significantly greater for movies directed by a director who has worked on more than 1 movie.

This leads us to believe that if you hire an experienced director, then you can expect the percentage of fresh scores for your movie to be higher than if you had hired a director filming their first movie.

Back to Index

Linear Models

Here we can get equations that we can use to interpret relationships between variables.

In [83]:

```
#Linear Model 1
#Determine if there is a relationship between number of movies directed and average fres

x_lin1 = np.array(dir_eval[['num_movies']].to_numpy())
y_lin1 = np.array(dir_eval[['avg_fresh_pct']].to_numpy())

# import statsmodels.api as sm
X1 = sm.add_constant(x_lin1)
model1 = sm.OLS(y_lin1,X1)
model1 = model1.fit()
model1.tvalues

model1.summary()
```

Out[83]:

OLS Regression Results

De	p. Variab	le:		у	R-s	0.012	
Model:			C	DLS .	Adj. R-s	0.010	
	Metho	od: Le	east Squa	ares	F-9	10.50	
	Da	te: Fri,	Fri, 03 Mar 2023		rob (F-s	0.00124	
	Tin	ne:	08:38	3:57	Log-Lik	elihood:	-211.74
No. Ob	servation	ıs:	!	904		AIC:	427.5
Di	f Residua	ls:	902 BIC :			437.1	
	Df Mod	el:		1			
Covar	iance Typ	oe:	nonrok	oust			
	coef	std err	t	P> t	[0.025	0.975]	
const	0.4982	0.023	22.120	0.000	0.454	0.542	
x1	0.0538	0.017	3.240	0.001	0.021	0.086	
(Omnibus	: 271.69	98 D u	ırbin-Wa	atson:	1.948	
Prob(C	Omnibus)	: 0.00	00 Jarq	ue-Bera	a (JB):	52.033	
	Skew	: -0.2	55	Pro	b(JB):	5.02e-12	
				_			

Notes:

Kurtosis:

1.941

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.40

Cond. No.

The variables **num_movies** and **avg_fresh_percentage** are not highly correlated. The model tells us that at 0 movies directed, one would expect a fresh percentage to be around 50%, as a director gains one movie in experience the fresh percentage is expected to increase by 5%.

Both variables are statistically significant with a low p-value. Changes in percentage are associated with changes in the dependent variable at the population level - the low R-squared value indicates that there are others factors that influence the change in percentage of ratings being fresh.

In [84]:

```
#Linear Model 2
#Determine if there is a relationship between box office earnings and average fresh perc

x_lin2 = np.array(box_rotten_tomatoes[['percentage']].apply(lambda x: x*100).to_numpy())
y_lin2 = np.array(box_rotten_tomatoes[['box_office']].to_numpy())

# import statsmodels.api as sm
X2 = sm.add_constant(x_lin2)
model2 = sm.OLS(y_lin2,X2)
model2 = model2.fit()
model2.tvalues

model2.summary()
```

Out[84]:

OLS Regression Results

De	p. Variable:		у	R	-squared:	0.004	
Model:		OLS		Adj. R-squared:		0.004	
Method:		Least S	quares	F-statistic:		135.1	
	Date:	Fri, 03 Ma	ır 2023	Prob (F-statistic):		3.56e-31	
	Time:	08:38:57		Log-Likelihood:		-6.4846e+05	
No. Ob	servations:		33310		AIC:	1.297e+06	
D	f Residuals:	33308			BIC:	1.297e+06	
	Df Model:		1				
Covariance Type:		nor	robust				
	coef	std err	t	P> t	[0.025	0.975]	
const	4.342e+07	9.19e+05	47.252	0.000	4.16e+07	4.52e+07	
x1	1.667e+05	1.43e+04	11.624	0.000	1.39e+05	1.95e+05	
(Omnibus:	14162.587	Durb	in-Watso	on: 0.	012	
Prob(Omnibus):		0.000	Jarque	-Bera (JE	3): 59789.	084	
	Skew:	2.124		Prob(JE	3):	0.00	
	Kurtosis:	8.003		Cond. N	lo.	156.	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The variables **box_office** and **percentage** are not highly correlated - this could be due to the small number of box office earnings observations in our data. The model is telling us that if a movie had a rating of zero, we can expect a \$43M dollars. For every fresh percentage increase (+1%), we can expect to see box office revenue to increase by \$16.7K.

Both variables are statistically significant with a low p-value. Changes in percentage are associated with changes in the dependent variable at the population level - the low R-squared value indicates that there are others factors that influence the change in box office revenue.

Limitation in the models are a lack of data. There were only box office numbers for 340 movies, in order to generate a more accurate and confident model we would need to train on more data. The same goes for our first model, there were <1000 observations between the two samples. Increasing the amount of data fed into each of these models could give a better picture towards the population relationship between these key variables.

Conclusion

The primary recommendations based on our findings.

Back to Index

Recommendations:

- · Hire experienced directors for the company original content creation
- · Focus on Thai and Japanese localizations
- · Produce an adventure movie

Next Steps: If analysis were to continue, there are multiple avenues to investigate in regards to success factors of a movie.

- Obtain more data to work with, will allow for more confident modeling, as well as new variable relationships
- Develop a method of demographic analysis of reviewers, determine relationship between demographics and movie characteristics
- · Create prediction models for movie ratings, and financial outcomes of a movie
- Investigate association between variables using apriori, may uncover combinations of writers, directors, genres that typically lead to successful movies

In []:			