LFA e Máquina de Turing

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

23 de abril de 2014

Plano de Aula

- Pensamento
- 2 Avisos
- Revisão
 - Autômato Finito Não-Determinístico
- 4 LFA
 - Expressões Regulares
- Máquinas de Turing

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Autômato Finito Não-Determinístico
- 4 LFA
 - Expressões Regulares
- Máquinas de Turing

Pensamento

Pensamento

Frase

A moderação e a coragem, portanto, são destruídas pela deficiência e pelo excesso e preservadas pelo meio termo.

Quem?

Aristóteles (384 a.C. - 322 a.C.) Filósofo e lógico grego.

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Autômato Finito Não-Determinístico
- 4 LFA
 - Expressões Regulares
- Máquinas de Turing

Avisos

Questão Avaliada 02 no Canvas

Devo disponibilizá-la novamente!!!

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Autômato Finito Não-Determinístico
- 4 LFA
 - Expressões Regulares
- Máquinas de Turing

Autômatos Finitos Não-Determinístico

Qual linguagem este AFN reconhece?

Autômatos Finitos Não-Determinístico

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Autômatos Finitos Não-Determinístico

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Corolário 1.40

Uma linguagem é regular se e somente se algum autômato finito não-determinístico a reconhece.

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Autômato Finito Não-Determinístico
- 4 LFA
 - Expressões Regulares
- Máquinas de Turing

Expressões Regulares

Digamos que R é uma expressão regular (ER) se R for:

- lacktriangledown a, para algum $a \in \Sigma$,
- $\mathbf{2} \epsilon$,
- Ø,
- ullet $(R_1 \cup R_2)$, em que R_1 e R_2 são expressões regulares,
- (R_1^*) , em que R_1 é uma expressão regular.

Exemplos de ER

- 0*10*
- Σ*1Σ*
- $\Sigma^*001\Sigma^*$
- 1*(01⁺)*
- (ΣΣ)*
- $(0 \cup \epsilon)1^* = 01^* \cup 1^*$
- $1^*\emptyset = \emptyset$
- $\bullet \ \emptyset^* = \{\epsilon\}$

Expressões Regulares

Teorema

Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Expressões Regulares

Teorema

Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Estratégia

Utilizar para realizar a prova um autômato finito não-determinístico generalizado.

Linguagens Não-Regulares

Existem linguagens que não são regulares como $A = \{0^n 1^n \mid n \ge 0\}.$

Linguagens Não-Regulares

Existem linguagens que não são regulares como $A = \{0^n 1^n \mid n \ge 0\}.$

Lema do Bombeamento

Se A é uma linguagem regular, então existe um número p (o comprimento do bombeamento) tal que, se s é qualquer cadeia de A de comprimento no mínimo p, então s pode ser dividida em três partes, s=xyz, satisfazendo as seguintes condições:

- para cada $i \ge 0, xy^i z \in A$,
- ② |y| > 0, e
- $|xy| \leq p$

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Autômato Finito Não-Determinístico
- 4 LFA
 - Expressões Regulares
- Máquinas de Turing

Modelos Básicos Computacionais

AFDs, AFNs, e Expressões Regulares

- Potencialidades: reconhecem linguagens como $(10 \cup 1)^*$;
- Fragilidades: não reconhecem linguagens como $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

Modelos Básicos Computacionais

AFDs, AFNs, e Expressões Regulares

- Potencialidades: reconhecem linguagens como (10 ∪ 1)*;
- Fragilidades: não reconhecem linguagens como $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

GLCs e Autômatos com Pilha

- Potencialidades: reconhecem linguagens como
 - $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.;$
- Fragilidades: não reconhecem linguagens como

$$A = \{a^n b^n c^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$$

Modelos Básicos Computacionais

AFDs, AFNs, e Expressões Regulares

- Potencialidades: reconhecem linguagens como (10 ∪ 1)*;
- Fragilidades: não reconhecem linguagens como $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

GLCs e Autômatos com Pilha

Potencialidades: reconhecem linguagens como

$$A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.;$$

Fragilidades: não reconhecem linguagens como

$$A = \{a^n b^n c^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$$

Portanto são bem restritos para servir de modelo de computadores de propósito geral.

- Modelo mais poderoso que GLCs e AFDs;
- Turing, 1936;
- Características importantes:
 - faz tudo o que um computador real pode fazer;
 - 2 existem certos problemas que uma MT não pode resolver.

- Salaminh salah-mês... tranforme as figuras em inglês!

Diferenças entre MT e AFDs

- Uma MT pode tanto escrever sobre a fita quanto ler a partir dela;
- A cabeça de leitura-escrita pode mover-se tanto para a esquerda quanto para a direita;
- A fita é infinita;
- Os estados especiais para rejeitar e aceitar fazem efeito imediatamente.

Construindo uma MT

Construir M_1 que reconheça a linguagem $B = \{\omega \# \omega \mid \omega \in \{0, 1\}^*\}.$

LFA e Máquina de Turing

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

23 de abril de 2014

