Veterinary Bioscience: Metabolism

DVM Year 1

VETS30017 / VETS90116

Structure and function of the Liver (part 1)

Prof. Simon Bailey bais@unimelb.edu.au

Liver - function

Largest gland in the body

 Detoxification, biotransformation, synthesis, storage, phagocytosis

Capable of considerable regeneration

- LIVER:
- Large input via many sources
- Breaks up flow into small channels past hepatocytes
 - Modifies contents of flow
 - Single outputvia the hepaticvein

- SEWAGE TREATMENT PLANT:
- Large input via storm drains and sewer lines
 - -Breaks up flow into small channels over pebbles
 - Modifies contents of flow
 - Single large output via the outflow pipe

Liver

- Uniform histology across species
- Outer connective tissue capsule
- Little connective tissue for an organ this size
- Framework of connective tissue around lobules
 - to support the liver parenchyma

Cells of the liver

h – hepatocyte

e – endothelial cell

k – Kupffer cell

s – sinusoids

b – bile canuliculi

p – perisinusoidal space

Hepatocytes

h – hepatocytes:

- large round nucleus with prominent nucleolus
- s sinusoids
- b binucleate hepatocyte (dividing)

Plate of hepatocytes interposed between hepatic sinusoids

LUMEN OF HEPATIC SINUSOID

*Stellate (Ito) cells:

Pericytes found in the perisinusoidal space; produce collagen fibres

Slide 41 Liver - rat (H&E)

detail of rat liver - phagocytic cells of sinusoids containing ink (arrows)

Kupffer cells

- Macrophages
- Lining sinusoids
- Phagocytosis of debris, old RBCs
 (not a function of the hepatocyte)

Parenchyma units described in 3 ways:

- Classical lobule
- Portal lobule
- Liver acinus

 Based on structural or functional concepts

Hepatic or Classical Lobule

- Basic structural unit of the liver
- Hexagonal in shape
- Central vein at centre of hexagon
- Portal triads at periphery of hexagon
 - Portal vein
 - Hepatic artery
 - Bile duct

Portal v.

Hepatic or classical liver lobules

Classical lobule

- Cords of hepatocytes radiate from the central vein
- Sinusoids* extend between the cords of hepatocytes
 - Lined by endothelial cells
 - Kupffer cells phagocytic cells
 - Blood flows in a centripetal direction to central vein

^{*}Sinusoids: tiny endothelium-lined passages for blood flow through tissues

Hepatic or classical liver lobules

Blood supply to the liver lobule

Slide 40 Liver - pig (Van Gieson)

section of porcine liver - low magnification

Liver

s – sinusoids

p – portal canal

c – central vein

Slide 39 Liver - sheep (H&E)

section of ovine liver - low magnification central lobular vein (c) portal canal (p)

detail of portal canal
with portal triad:
bile ductule (b)
branch of portal vein (v)
branch of hepatic artery (arrow)

Hepatic triad

- a hepatic artery
- v portal vein
- b bile duct
- s sinusoid
- h hepatocytes

Liver – central vein

v – central vein

s – sinusoid

e – fenestrated endothelium

h - hepatocyte

Portal lobule

- Functional secretory unit
 - Drains bile
- Triangular in shape
 - Boundary defined by lines between the central veins of 3 adjacent classical lobules
 - Bile ductule is its central axis

Portal lobule

liver acinus

Liver acinus

- Functional unit
 - The blood supply to the hepatocytes
- Diamond shaped
- Boundary defined by drawing lines between 2 adjacent central veins via the portal triads

Liver acinus

Liver - pig

h – hepatic lobule

a – liver acinus

p – portal lubule

v – central vein

pc – portal canal

Slide 39 Liver - sheep (H&E)

section of ovine liver - medium magnification: classic lobule (red), portal lobule (green), liver acinus (yellow)

Bile ducts

- Convey bile to the common bile duct and gall bladder
- Add bicarbonate to bile
- Interlobular –
 Part of portal triad
 Join to form hepatic ducts
- Epithelial lining:
 Cuboidal → columnar
- Larger ducts: outer connective tissue with elastic fibres

Gall bladder

- Stores and concentrates bile
- Active resorption of Na across GB epithelium
- (draws water with it)
- Sphincter of Oddi regulates duodenal bile duct opening
- Emptying of GB in response to food
- Horse, rat, elephant and some deer lack a gall bladder
- These species are able to upregulate bile production when required

Gall bladder

- Simple columnar epithelium
- Mucosal crypts
 - small epithelial diverticulae
- No muscularis mucosa
- Loose connective tissue lamina propria / submucosa
- Muscularis externa –
- bundles of muscle fibres,
 random orientation
- Tunica serosa

Constituents and functions of bile

- From hepatocytes:
 - Bile salts
 - Cholesterol
 - Lecithin
 - Bile pigments (bilirubin)
- (from duct cells: bicarbonate)

Functions:

- Aids absorption and digestion of fat
- Excretion from the liver

Extravascular Pathway for RBC Destruction

Bilirubin production

(Unconjugated bilirubin)

Bilirubin processing

Bilirubin Excretion

Summary

