Income Level Prediction: A Comparative Analysis of Artificial Neural Network, Decision Trees and Random Forests Models

<u>BY</u> SEYI FALOPE

Introduction:

The aim of this report project is to have an in-depth understanding of Artificial Neural Network (ANN) models, along with Decision Trees and Random Forests. The main objective is to apply these models in predicting income levels and subsequently carry out a comparative analysis. This analysis will be rooted in the performance metrics of each model concerning the prediction of whether income surpasses \$50K/yr based on census data.

Brief Summary of Each Model:			
Artificial Neural Network	Decision Tree	Random Forest	
An Artificial Neural Network	The Decision Tree is a versatile	This model assembles multiple	
(ANN) is a machine learning	machine learning model	decision trees to form a resilient	
model inspired by the human	employed for classification and	ensemble model. Employing the	
brain, featuring interconnected	regression tasks, arriving at	bootstrap method, it generates	
nodes that facilitate learning	decisions via a series of if-else	subsets of features for individual	
from data patterns. Renowned	conditions rooted in input	trees, and the results are	
for its proficiency in tasks like	values. Acknowledged for its	aggregated through averaging	
categorization and prediction,	interpretability, Decision Trees	(for regression tasks) or majority	
ANN proves invaluable in	adeptly manage non-linear tasks,	voting (for classification tasks).	
applications such as image	although their vulnerability to	This methodology proficiently	
recognition and natural language	overfitting stems from their	tackles overfitting concerns	
processing. The strength of ANN	deterministic approach. By	while providing valuable	
lies in its adaptability and ability	tactically partitioning data to	insights into estimating crucial	
to autonomously discern	maximize information gain,	features in the data for	
intricate relationships within		prediction.	
data.			

Data Preprocessing:

Aligned with insights from the Exploratory Data Analysis, the investigation integrated the subsequent preprocessing measures to guarantee the data is primed for optimal model performance.

Encoding the Target Class and Categorical Columns: Initially represented as '> 50' and '< 50', the target class features were transformed into 1 and 0. This encoding adjustment was similarly applied to categorical features to ensure consistency with model requirements and evaluation metrics.

<u>Outlier Removal Using Z-score:</u> To enhance the predictive power of the models, outliers in the variables age, hours per week, and fnlwgt were systematically eliminated using the Z-score method. This procedure safeguards our model against the undue influence of extreme values.

Normalization with Standard Scaler: In this project, the data were scaled through the use of the Standard Scaler. This process ensured that the data values are in a consistent scale with a mean of 0 and a standard deviation of 1 before being fitted to the model.

Addressing Imbalanced Data through Sampling: The income classes of <50 and >50 constituted around 76% and 24% of the data, respectively, posing a potential bias in the model's outcomes. The Synthetic Minority Over-Sampling Technique (SMOTE) sampling technique was applied to mitigate this, and the outcome is depicted in the image below.

Model Performance Assessment with Cross-Validation and F1 Score:

Cross-validation techniques were implemented to get a robust evaluation of model performance in predicting income levels. The F1 score metric was employed to assess the models' effectiveness in differentiating between income levels above and below 50k. This metric accounts for the equilibrium between precision and recall, providing insights into the model's capability to make accurate positive predictions while capturing all positive instances. The table and graph below illustrates how the models stack up in terms of their F1 score performance relative to each other.

Table 1.

Mean F1 Cross Va	lidation Score	Standard Deviation	Performance on Test Data
ANN:	0.860	0.01	0.868
Decision Tree	0.830	0.01	0.836
Random Forest	0.871	0.01	0.876

Fig 2 Fig 3

Conclusion:

In conclusion, the analysis distinctly demonstrates the superiority of the Random Forest model in predicting income levels, evidenced by its top-ranking F1 scores in both cross-validation and test data. This model effectively balances bias and variance, outperforming the Artificial Neural Network and Decision Tree models, which also show commendable but slightly lesser capabilities. Hence, In predicting income level, Random Forest Model emerges as the most reliable and effective choice

Refrences

- 1. Evans, J.D.P. (2023). Data Mining and Discovery Lecture Notes, University of Herfordshire, Uk,
- 2. 1. Al Mamun, M., Farjana, A., & Mamun, M. (2022). Predicting bank loan eligibility using machine learning models and comparison analysis. *In Proceedings of the 7th North American International Conference on Industrial Engineering and Operations Management (pp. 1-6).*Orlando, Florida, USA, June 12-14.
- 3. 2. Awodele, O., Alimi, S., Ogunyolu, O., Solanke, O., Iyawe, S., & Adegbie, F. (2022, November). Cascade of deep neural network and support vector machine for credit risk prediction. *In Proceedings of the 2022 5th Information Technology for Education and Development (ITED) (pp. 1-8). IEEE.*
- 4. 3. Bansal, M., Goyal, A., & Choudhary, A. (2022). A comparative analysis of K-nearest neighbor, genetic, support vector machine, decision tree, and long short term memory algorithms in machine learning. *Decision Analytics Journal*, *3, Article 100071*.
- 5. 4. Gupta, A., Pant, V., Kumar, S., & Bansal, P. K. (2020, December). Bank loan prediction system using machine learning. In *Proceedings of the 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART) (pp. 423-426). IEEE.*
- 6. 5. Kadam, A. S., Nikam, S. R., Aher, A. A., Shelke, G. V., & Chandgude, A. S. (2021). Prediction for loan approval using machine learning algorithm. *International Research Journal of Engineering and Technology (IRJET)*, 8(4).