Chromium and iron based zeta phases - lattice dynamics from first-principles

Petr Dvoracek and Dominik Legut

IT4Innovations national01\$#&0 supercomputing center@#01%101

The Z-phase

Precipitates in Cr rich steel (9-12%)

Dissolving beneficial MX particles (V,Nb)(N,C)

Decreasing the creep strength

 Responsible for the failure of Cr rich steels in long time test

Abe F 2016 J. Pressure Vessel Technol. 138(4)

L. Cipolla. H. K. Danilesen. D. Venditti, P. E. Di Nunzio, J. Hald, M. A. J. Somers,(2010) 669-679.

Calculation

- VASP, PHONOPY^[6], PHONOPY-QHA
- K-mesh 28 28 12 unitcell
 14 14 6 supercell 2x2x2

- POTCAR PAW_PBE
- ENCUT = 600 eV
- EDIFF = 1E-08
- SIGMA = 0.2

Structure specification

С	CrNbN	Cr-NbV-N	CrVN	CrMoN	FeNbN	Fe-NbV-N	FeVN	FeMoN
Magnetism	NO	NO	NO	NO	YES	YES	YES	YES
Volume (ų)	68	64	58	64	68	64	58	63
a (Å)	3.037	2.963	2.855	2.975	3.053	2.982	2.858	2.98
c (Å)	7.383	7.239	7.126	7.271	7.297	7.162	7.121	7.101
c/a (-)	2.431	2.443	2.496	2.444	2.39	2.402	2.492	2.38
a (Å) – calc	3.021 [1]	2.956 [1]	2.860 [1]	-	3.054 [4]	-	2.858[4]	-
c (Å) – calc	7.367 [1]	7.235 [1]	7.134 [1]	-	7.290 [4]	-	7.105 [4]	-
a (Å) – exp	3.037 [5]	2.860 [2]	2.860 [3]	-	-	-	-	-
c (Å) – exp	7.391 [5]	7.391 [2]	7.390 [3]	-	-	-	-	-
Magnetism (μ _B /Å)	NO	NO	NO	NO	YES	YES	YES	YES
Fe	-	-	-	-	2.275	2.340; 2.149	2.123	2.143

Model of the Z-phase, black=Nb/V/Mo, white=Cr/Fe, grey = N Spacegroup P4mm/99 or P4nmm/129

- [1] Legut D and Pavlu J 2012 J. Phys.: Condens. Matter 24 195502
- [2] Danielsen H K and Hald J 2006 Energy Mater. 1 49
- [3] Strang A and Vodarek V 1996 Mater. Sci. Technol. 12 552
- [4] Kocer C and Taichi A 2009 Mater. Sci. Engin. 505 (CALPHAD method)
- [5] Jack D H and Jack K H 1972 J. Iron Steel Inst. 209 790

Elastic properties

	CrNbN	Cr-NbV-N	CrVN	CrMoN	FeNbN	Fe-NbV-N	FeVN	FeMoN
C ₁₁	539 (537)	529 (532)	552 (543)	510	457	366	438	420
C ₁₂	244 (243)	210 (212)	204 (190)	308	230	271	184	283
C ₁₃	140 (145)	141 (139)	164 (149)	161	142	171	146	195
C ₃₃	485 (528)	509(497)	524 (528)	518	404	346	388	358
C ₄₄	112 (120)	132 (124)	131 (136)	71	115	88	118	90
C ₆₆	261 (268)	245 (250)	237 (237)	238	247	194	225	238
B – ela.	290	283	300	310	260	256	246	283
B - ev.	287	284	302	309	262	254	247	281
C1	278	394	315	439	210	172	213	182
C2	28	107	33	-77	27	83	28	105
I	744	756	748	706	577	370	534	388
II	2611	2551	2692	2798	2346	2304	2216	2544
III	230	238	243	201	178	103	175	116

$$B = 2/9(C_{11} + C_{12} + 2C_{13} + C_{33}/2)$$

$$C_{11} + C_{33} - 2C_{13} > 0, (I)$$

$$2C_{11} + C_{33} + 2C_{12} + 4C_{13} > 0, (II)$$

$$C1 = C_{12} - C_{66}$$

$$C2 = C_{13} - C_{44}$$

$$1/3(2C_{11} + C_{33}) - B > 0, (III)$$

[1] Legut D and Pavlu J 2012 J. Phys.: Condens. Matter 24 195502

The lattice dynamics

--- FeVN

CrMoN imaginary frequencies

Thermal expansion of tetragonal structure

Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 338

Electronic Structure and Lattice Dynamics of Elements and Compounds

PETROS SOUVATZIS

$$U(\epsilon_1, \epsilon_3) = \frac{V}{2} [2(C_{11} + C_{12})\epsilon_1^2 + 4C_{13}\epsilon_1\epsilon_3 + C_{33}\epsilon_3^2]$$

$$\epsilon_1 = \frac{1}{3}(\epsilon_v - \epsilon_c)$$
 $\epsilon_3 = \frac{1}{3}(\epsilon_v + 2\epsilon_c)$

$$\epsilon_v = \frac{1}{V}$$
 $\epsilon_c = \frac{a}{c}$

$$F(\epsilon_v, \epsilon_c, T) = U(\epsilon_v, \epsilon_c) + F_{phon}(\epsilon_v, \epsilon_c, T)$$

[7] P. Souvatzis, 'Electronic Structure and Lattice Dynamics of Elements and Compounds', PhD dissertation, Acta Universitatis Upsaliensis, Uppsala, 2007.

$$B_{11} = \frac{2}{9}(C_{11} + C_{12} + \frac{1}{2}C_{33} + 2C_{13})$$

$$B_{22} = \frac{2}{9}(C_{11} + C_{12} + 2C_{33} - 4C_{13})$$

$$B_{12} = \frac{1}{9}(C_{33} + C_{13} - C_{11} - C_{12})$$

$$U(\epsilon_v, \epsilon_c) = V\left[\frac{1}{2}B_{11}\epsilon_v^2 + 2B_{12}\epsilon_v\epsilon_c + \frac{1}{2}B_{22}\epsilon_c^2\right]$$

$$\alpha_{\perp} = \frac{1}{3V(B_{11}B_{22} - B_{12}^2)} \left[-(B_{22} + B_{12}) \frac{\partial^2 F}{\partial T \partial \epsilon_v} + (B_{12} + B_{11}) \frac{\partial^2 F}{\partial T \partial \epsilon_c} \right]$$

$$\alpha_{\parallel} = \frac{1}{3V(B_{11}B_{22} - B_{12}^2)} \left[-(B_{22} - 2B_{12}) \frac{\partial^2 F}{\partial T \partial \epsilon_v} + (B_{12} - 2B_{11}) \frac{\partial^2 F}{\partial T \partial \epsilon_c} \right]$$

$$\beta = \frac{1}{V(B_{11}B_{22} - B_{12}^2)} \left[-B_{22} \frac{\partial^2 F}{\partial T \partial \epsilon_v} + B_{11} \frac{\partial^2 F}{\partial T \partial \epsilon_c} \right]$$

Thanks for attention