Systems Thinking to Improve the Public's Health

Scott J. Leischow, Allan Best, William Trochim, Pamela Clark, Richard Gallagher & Stephen Marcus

Challenges of Biomedical and Public Health

- Why Team Science? Complexity
- What characterizes complexity?
 - Single variable cannot explain an outcome
 - Variables are inter-related and may be non-linear
 - Variables interact with time
 - Factors may be cumulative in some cases
 - Causal factors can contribute to 'vicious' or 'virtuous' cycles (positive and negative reinforcers)
 - Tipping points are often unknown

Case in point: Illinois and PM

What is "Systems Thinking"

"Systems thinking is a discipline for seeing wholes, recognizing patterns and interrelationships, and learning how to structure those interrelationships in more effective, efficient ways."

Senge, P. & Lannon-Kim, C., 1991

Systems Thinking – A Cacaphony

set, graph, and network theory

system dynamics small world phenomena

evolution, biology, and ecology

control theory

silo effects

computational simulation cybernetics

general systems theory

decision and game theory

information theory

emergence

boundary conditions, scaling, power laws, phase transitions, universality, and renormalization

fractal self-similarity

causal feedback

centralized, decentralized, heterarchical, hierarchical, and self-organizing systems

complex adaptive systems

stock-flow structures

autopoiesis

nonlinear systems and chaos

cellular automata

open and closed systems

"...the architectural features of molecular interaction networks within a cell are shared to a large degree by other complex systems, such as the Internet, computer chips or society. This unexpected universality suggests that similar laws govern the development and function of most complex networks in nature."

Systems Thinking — Applied

- Business (e.g. creation and maintenance of feedback-based supply chain infrastructures
- Military (e.g. rapid flow of information to/from front-line soldiers)
- Physics (e.g. analysis of complex networks such as the internet or biological systems)
- Agriculture (e.g. cooperative extension system)
- Natural Sciences (e.g. weather forecasting)
- Public Health (e.g. analysis and development of communicable disease surveillance and intervention systems)

What If?

- We could model which interventions will work, and which will succumb to countervailing forces?
- Our research agenda was informed by best practices in the field?
- We had global visibility and collaboration among stakeholders?
- We could build a consistent, evolving evidence base?

Creation of ISIS

- The Initiative on the Study and Implementation of Systems
- An NCI-funded, transdisciplinary initiative to study and implement systems approaches in tobacco control
- A proof of concept for applying systems thinking methods to public health

The First Two Years of ISIS

- Implement 'Innovation Team' to identify essential approaches to explore
- Experts in multiple fields to develop case examples, and to work to bridge disciplines
- Identify critical components of a 'systems thinking' approach to tobacco control

Common Features of Complex Systems

- Systems methods: Modeling the behavior of complex adaptive systems (understanding how each component links to the next) for strategic decision-making
- Network methods: Development and analysis of linked/collaborative relationships, and harnessing a transorganizational and transdisciplinary environment to improve outcomes
- Knowledge management: Creating an informatics and knowledge infrastructure for storing, sharing and interpreting knowledge and evidence-based practices in the context of networks

...and their integration

 Systems Organizing: Implementing public health programs in the context of a systems approach that optimizes networks and knowledge flow to improve the programs

Systems Analytic Methods

- Soft Systems Methods
- Agent-based Modeling
- Econometric Modeling (eg simultaneous equations modeling)
- Mathematical Modeling and Analysis (eg differential equations)
- System Dynamics

Social Network Analysis and Network Development

- The shift in focus from the platform to the network
- Focus on relationships between actors rather than just the attributes of actors
- The shift from viewing actors as independent to viewing them as part of a continuously adapting ecosystem
- Increased emphasis on multi-, trans-, and interdisciplinary science and practice

ISIS Network Efforts

- Development
 - Global Tobacco Research Network
 - Harm Reduction Network
- Analysis
 - Tobacco Harm Reduction Network
 - DHHS Tobacco Network
 - Tobacco Informatics Grid (TOBIG)

1b. Awareness of individual's work in tobacco control (collapsed to agency level) AHRQ ØGC. • An arrow between two nodes or individuals (A → B) indicates that Individual A was aware ACF ● FDA ● NIH of Individual B's work in tobacco control. AHRQ HRSA OGC OS O IHS CDC • The size of a node indicates prestige (e.g., a larger node size indicates a higher level of awareness SAMHSA CMS NCI for that individual by others)

Knowledge Management and Translation (KMT) Framework for Tobacco Control and Public Health

Exemplar ISIS Spin-Off: Tobacco Informatics Grid (TOBIG)

- 1. A <u>network</u> among public health researchers, practitioners, and social scientists, educators, policy makers, industry, NGOs, the public, and other stakeholders.
- 2. A cyberinfrastructure consisting of (1) a virtual repository to archive existing and new data and (2) information technology to enable collaboration and data modeling, analysis, and visualization of tobacco related behaviors.
- 3. The <u>multidisciplinary integration</u> of research, education, analysis, decision-making and management in the area of tobacco control.

Overall CI-KNOW Logical Architecture

The Goal: An Integrated Systems Thinking Environment

ISIS Recommendations

- Create networks of excellence for systems thinking in public health
- Develop a Web presence for systems methods in tobacco control
- Foster development of systems organizing
- Link with systems knowledge in other fields
- Develop a systems curriculum in academia
- Create a leadership program
- Organize a national association and a regular national conference on systems thinking in public health
- Link with local efforts

Tobacco Use as a Complex Dynamic 'System'

Source: George Richardson for ISIS

Source: George Richardson for ISIS

Source: George Richardson for ISIS

Source: George Richardson for ISIS