Your grade: 100%

Your latest: 100% • Your highest: 100% • To pass you need at least 80%. We keep your highest score.

Next item \Rightarrow

1/1 point

- 1. Which of the following can address overfitting?
 - Apply regularization
 - ✓ Correct

Regularization is used to reduce overfitting.

- Remove a random set of training examples
- Collect more training data
- √ Correct

If the model trains on more data, it may generalize better to new examples.

- Select a subset of the more relevant features.
- (Corre

If the model trains on the more relevant features, and not on the less useful features, it may generalize better to new examples.

 $\textbf{2.} \quad \text{You fit logistic regression with polynomial features to a dataset, and your model looks like this.} \\$

1/1 point

What would you conclude? (Pick one)

- O The model has high variance (overfit). Thus, adding data is, by itself, unlikely to help much.
- The model has high variance (overfit). Thus, adding data is likely to help
- O The model has high bias (underfit). Thus, adding data is, by itself, unlikely to help much.
- O The model has high bias (underfit). Thus, adding data is likely to help

The model has high variance (it overfits the training data). Adding data (more training examples) can help.

Regularization

1/1 point

- 3. Suppose you have a regularized linear regression model. If you increase the regularization parameter λ , what do you expect to happen to the parameters $w_1, w_2, ..., w_n$?
 - \bigcirc This will increase the size of the parameters $w_1, w_2, ..., w_n$
 - lacksquare This will reduce the size of the parameters $w_1, w_2, ..., w_n$

✓ Corre

Regularization reduces overfitting by reducing the size of the parameters $w_1, w_2, ... w_n$.