CAP 5

ANÁLISE DA RESPOSTA TRANSITÓRIA E DE REGIME ESTACIONÁRIO (DISCRETO)

SUM	ÁRIO	
5.1.	INTRODUÇÃO	1
5.2.	SINAIS DE TESTE	1
5.2.1.	FUNÇÃO IMPULSO UNITÁRIO, $\delta[nTs]$	1
5.2.2.	FUNÇÃO DEGRAU UNITÁRIO, u[nTs]	2
5.2.3.	FUNÇÃO RAMPA, r[nTs]	2
5.2.4.	FUNÇÃO POLINOMIAL, $p[nTs]$	2
5.2.5.	FUNÇÃO SENO	3
	RESPOSTA DE SISTEMAS DE 1ª ORDEM	
	RESPOSTA À EXCITAÇÃO PELA FUNÇÃO IMPULSO	
	RESPOSTA À EXCITAÇÃO PELA FUNÇÃO DEGRAU	
	RESPOSTA À EXCITAÇÃO PELA FUNÇÃO RAMPA	
	RESPOSTA DE SISTEMAS DE 2ª ORDEM	
	RESPOSTA À EXCITAÇÃO PELA FUNÇÃO IMPULSO	
	RESPOSTA À EXCITAÇÃO PELA FUNÇÃO DEGRAU	
	RESPOSTA À EXCITAÇÃO PELA FUNÇÃO RAMPA	
5.4.4.	ANÁLISE DA RESPOSTA À EXCITAÇÃO EM DEGRAU	4
	RESPOSTA DE SISTEMAS DE ORDEM SUPERIOR	
5.6.	ANÁLISE DE ESTABILIDADE	5
5.6.1.	CRITÉRIO DE ESTABILIDADE DE JURY	6
5.7.	MATLAB	8
ΓO	LICTA DE EVEDCÍCIOS	0

5.1. INTRODUÇÃO

Na análise e no projeto de sistemas de controle o uso de sinais de teste na entrada permite efetuar a comparação de desempenho entre diferentes sistemas. Os critérios de projeto têm como base a resposta a esses sinais ou a resposta dos sistemas às mudanças das condições iniciais (sem qualquer sinal de teste).

A resposta temporal, $c[nT_s]$, de um sistema de controle é dada pela equação:

A resposta transitória permite analisar o comportamento dinâmico do sistema às variações do sinal de entrada, enquanto a resposta estacionária permite verificar a precisão através do valor do erro estacionário.

Os principais sinais de teste normalmente empregados são as funções: impulso, degrau, rampa, senoidais e parábola de aceleração.

A escolha do sinal de teste depende do comportamento da entrada, a que o sistema será submetido com maior frequência, sob condições normais de operação.

5.2. SINAIS DE TESTE

São utilizados com objetivo de testar os sistemas de controle quanto à sua natureza de resposta a determinados estímulos.

5.2.1. FUNÇÃO IMPULSO UNITÁRIO, $\delta[nT_s]$

Permite avaliar o sistema quando submetido a entradas abruptas instantâneas. A função impulso também é utilizada quando se quer determinar a função de transferência de um sistema de controle LIT.

$$\delta[nT_s] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases} \qquad \text{e} \qquad \mathcal{Z}\{\delta[nT_s]\} = 1$$

5.2.2. FUNÇÃO DEGRAU UNITÁRIO, $u[nT_s]$

Permite avaliar o sistema quando submetido a variações abruptas e sustentadas da entrada.

$$u[nT_s] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases} \qquad \text{e} \qquad \mathcal{Z}\{u[nT_s]\} = \frac{z}{z-1}$$

$$\mathcal{Z}\{u[nT_S]\} = \frac{z}{z-1}$$

5.2.3. FUNÇÃO RAMPA, $r[nT_s]$

Permite avaliar o sistema quando submetido a variações graduais da entrada.

$$r[nT_s] = \begin{cases} n & n \ge 0 \\ 0 & n < 0 \end{cases}$$
 e

$$\mathcal{Z}\{r[nT_S]\} = T_S \frac{z}{(z-1)^2}$$

5.2.4. FUNÇÃO POLINOMIAL, $p[nT_s]$

Permite avaliar o sistema quando submetido à aceleração da entrada.

$$p[nT_s] = \begin{cases} n^2 & n \ge 0 \\ 0 & n < 0 \end{cases} \qquad \text{e} \qquad \qquad \mathcal{Z}\{p[nT_s]\} = \lim_{a \to 0} \left\{ \frac{d^2}{da^2} \left(\frac{z}{z - e^{-aT_s}} \right) \right\}$$

$$\mathcal{Z}{p[nT_S]} = \lim_{a \to 0} \left\{ \frac{d^2}{da^2} \left(\frac{z}{z - e^{-aT_S}} \right) \right\}$$

5.2.5. FUNÇÃO SENO

Permite avaliar o sistema quando submetido a diferentes frequências do sinal de entrada. Será estudada no capítulo de resposta em frequência de sistemas de controle – Sistemas Realimentados.

OBS: Existe uma relação entre os sinais de teste dado por suas derivadas.

$$\nabla_r[n] = u[n]$$
 e $\nabla_r^2[n] = \nabla_u[n] = \delta[n]$

5.3. RESPOSTA DE SISTEMAS DE 1^a ORDEM

Um sistema de 1^a ordem possui a seguinte FTMA

$$\frac{C(z)}{R(z)} = \mathcal{Z}\left\{\frac{1}{\tau s}\right\} = \frac{1}{\tau} \mathcal{Z}\left\{\frac{1}{s}\right\} = \frac{1}{\tau} \left(\frac{z}{z-1}\right)$$

Um sistema de 1ª ordem com realimentação unitária possui a FTMF dada por:

$$\frac{C(z)}{R(z)} = Z\left\{\frac{1}{\tau s + 1}\right\} = Z\left\{\frac{1/\tau}{s + 1/\tau}\right\} = \frac{1}{\tau}\left(\frac{z}{z - e^{-T_s/\tau}}\right)$$

A resposta de sistemas de 1^a ordem de malha fechada é obtida substituindo R(z) pelos sinais de controle apresentados acima. Observe que a análise é impraticável analiticamente.

5.3.1. RESPOSTA À EXCITAÇÃO PELA FUNÇÃO IMPULSO

Essa análise é computacional em sistemas discretos.

5.3.2. RESPOSTA À EXCITAÇÃO PELA FUNÇÃO DEGRAU

Essa análise é computacional em sistemas discretos.

5.3.3. RESPOSTA À EXCITAÇÃO PELA FUNÇÃO RAMPA

Essa análise é computacional em sistemas discretos.

OBS: A resposta à diferença de um sinal de entrada é igual à diferença da resposta do sistema ao sinal original (sem diferenciar). Isso é válido para qualquer sistema LIT.

$$\nabla_{c_r}[n] = c_u[n]$$
$$\nabla_{c_u}[n] = c_{\delta}[n]$$

5.4. RESPOSTA DE SISTEMAS DE 2ª ORDEM

Um sistema de 2ª ordem possui a seguinte FTMA

$$\frac{C(z)}{R(z)} = Z\left\{\frac{\omega_n^2}{s(s + 2\zeta\omega_n)}\right\} = \left(\frac{\omega_n}{2\zeta}\right) \frac{\left(1 - e^{-2\zeta\omega_n T_s}\right)z^{-1}}{(1 - z^{-1})(1 - e^{-2\zeta\omega_n T_s})}$$

onde, ζ é a constante de amortecimento e ω_n é a frequência natural não amortecida do sistema analógico. Um sistema de 2^a ordem com realimentação unitária possui a FTMF cuja análise é impraticável analiticamente.

5.4.1. RESPOSTA À EXCITAÇÃO PELA FUNÇÃO IMPULSO

Essa análise é computacional em sistemas discretos.

5.4.2. RESPOSTA À EXCITAÇÃO PELA FUNÇÃO DEGRAU

Essa análise é computacional em sistemas discretos.

5.4.3. RESPOSTA À EXCITAÇÃO PELA FUNÇÃO RAMPA

Essa análise é computacional em sistemas discretos.

5.4.4. ANÁLISE DA RESPOSTA À EXCITAÇÃO EM DEGRAU

 t_d - Tempo de Atraso.

 t_r - Tempo de Subida.

 t_n - Tempo de Pico.

t_s - Tempo de Acomodação (ou Tempo de Assentamento ou Regime)

M_p - Máximo Sobressinal (ou Máxima Ultrapassagem ou *Overshoot*)

Essa análise é computacional em sistemas discretos.

5.5. RESPOSTA DE SISTEMAS DE ORDEM SUPERIOR

O domínio relativo dos polos de malha fechada é determinado pela posição dos polos de malha fechada.

Se todos os polos de malha fechada se situarem dentro do círculo de raio unitário do plano \mathcal{Z} , os valores dos resíduos da expansão em frações parciais determinarão a importância relativa dos componentes da função de transferência.

Assim, se existir um zero de malha fechada próximo a um polo de malha fechada então o resíduo desse polo será pequeno. Isso porque um par de polos e zeros próximos vão se cancelar mutuamente.

A dominância está relacionada a aproximação dos polos na coordenada 1 do eixo real do plano complexo e na proximidade com o círculo de raio unitário.

5.6. ANÁLISE DE ESTABILIDADE

A característica mais importante do comportamento dinâmico de um sistema de controle é a **estabilidade absoluta**, isto é, se um sistema é ESTÁVEL ou INSTÁVEL.

Do conceito de estabilidade, precede o conceito de equilíbrio:

"Um sistema de controle está em equilíbrio se, na ausência de qualquer distúrbio, ou sinal de entrada, a saída permanece no mesmo estado."

Assim, podemos definir a estabilidade absoluta:

"Um sistema de controle LTI (Linear Time Invariant) é ESTÁVEL se a saída sempre retorna ao estado de equilíbrio quando o sistema é submetido a uma condição inicial."

Por outro lado, pode-se definir a estabilidade crítica:

"Um sistema de controle LTI (Linear Time Invariant) é CRITICAMENTE ESTÁVEL se as oscilações do sinal de saída se repetirem de maneira contínua."

Por fim a instabilidade:

"Um sistema de controle LTI (Linear Time Invariant) é INSTÁVEL se a saída divergir sem limites a partir do estado de equilíbrio quando o sistema for sujeito a uma condição inicial."

Estável

Marginalmente Estável

Instável

5.6.1. CRITÉRIO DE ESTABILIDADE DE JURY

Nem sempre é possível obter as raízes da equação característica para determinar sua localização no plano \mathcal{Z} complexo. Neste caso utiliza-se o critério de Jury para a determinação da estabilidade absoluta.

Dada a equação característica de um sistema em Z

$$Q(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

O teste de Jury para estabilidade absoluta consiste em verificar se as seguintes condições são verdadeiras:

- 1. $|a_0| < a_n$
- 2. Q(1) > 0
- 3. Q(-1) $\begin{cases} > 0 \text{ para n par} \\ < 0 \text{ para n impar} \end{cases}$

Se alguma não for verdadeira, então o sistema é NÃO ESTÁVEL. Sendo todas verdadeiras é necessário montar a tabela de Jury e verificar se

4.
$$|b_0| > |b_{n-1}|$$
, $|c_0| > |c_{n-2}|$, ...

onde,

$$b_0 = a_0^2 - a_n^2$$

$$b_1 = a_0 a_1 - a_n a_{n-1}$$

e assim sucessivamente, conforme a tabela de Jury.

A Tabela de Jury

Linha	z^0	z^1	z^2	z^3		z^{n-2}	z^{n-1}	z^n	
	a_0				•••			a_n	h
	a_n				•••			a_0	b_0
	a_0				•••		a_{n-1}		b_1
	a_n						a_1		ν_1
1	a_0				•••	a_{n-2}			b_2
2	a_n				•••	a_2			
	:	:	:	:	÷	÷	:	÷	:
	a_0		a_2		•••				b_{n-2}
	a_n		a_{n-2}		•••				<i>Dn-2</i>
	a_0	a_1			•••				b_{n-1}
	a_n	a_{n-1}			•••				<i>5n</i> −1
	b_0				•••		b_{n-1}		c_0
	b_{n-1}				•••		b_0		· 0
	b_0				•••	b_{n-2}			c_1
3	b_{n-1}				•••	b_1			
4	:	:	:	:	÷	÷	:	÷	i
	b_0		b_2		•••				c_{n-3}
	b_{n-1}		b_{n-3}		•••				∘n-3
	b_0	b_1			•••				c_{n-2}
	b_{n-1}	b_{n-2}			•••				
:	÷	:	:	:	:	:	:	:	÷
2n - 3	q_2	q_1	q_0						

Exemplo 1 – Examine a estabilidade para a seguinte equação característica

$$Q(z) = z^4 - 1.2z^3 + 0.07z^2 + 0.3z - 0.08 = 0$$

SOLUÇÃO

Aplicando o critério de Jury

- 1. $|a_0| < a_4 \Rightarrow 0.08 < 1$, Ok!
- 2. $Q(1) = 1^4 1.2(1)^3 + 0.07(1)^2 + 0.3(1) 0.08 = 0.09 > 0$, Ok!
- 3. $Q(-1) = (-1)^4 1.2(-1)^3 + 0.07(-1)^2 + 0.3(-1) 0.08 = 1.89 > 0$, (n par) Ok!

Montando a tabela de Jury

Linha	z^0	z^1	z^2	z^3	Z^4	
	a_0				a_4	b_0
	a_4				a_0	<i>D</i> ₀
	a_0			a_3		b_1
1	a_4			a_1		ν_1
2	a_0		a_2			b_2
	a_4		a_2			ν_2
	a_0 a_1	a_1				b_3
	a_4	a_3				ν_3
	b_0			b_3		
	b_3			b_0		c_0
3	b_0		b_2			0
4	b_3		b_1			c_1
	$\begin{array}{c cc} b_0 & b_1 \\ \hline b_3 & b_2 \end{array}$					
		\overline{b}_2				c_2
5	c_2	c_1	c_0			

Assim:

Linha	z^0	z^1	z^2	z^3	Z^4		
	-0,08				1	$b_0 = -0.994$	
	1				-0,08	$D_0 = -0.994$	
	-0,08			-1,2		$b_1 = 1,176$	
1	1			0,3		$b_1 - 1,170$	
2	-0,08		0,07			$b_2 = -0.0756$	
	1		0,07			b ₂ = 0,0730	
	-0,08	0,3				$b_3 = -0.204$	
	1	-1,2				23 0)=01	
	-0,994			-0,204		$c_0 = 0,946$	
	-0,204			-0,994		0,710	
3	-0,994				$c_1 = -1,184$		
4	-0,204		1,176			c ₁ = 1,101	
	-0,994 1,176				$c_2 = 0.315$		
	-0,204	-0,0756				02 - 0,010	
5	0,946	-1,184	0,315				

Verificações

4.
$$|b_0| > |b_3| \Rightarrow 0.994 > 0.204$$
, Ok! $|c_0| > |c_2| \Rightarrow 0.946 > 0.315$, Ok!

Assim, como todas as quatro condições foram satisfeitas, o sistema em questão é ESTÁVEL, ou seja, todas as raízes de Q(z) estão dentro do círculo unitário. Como pode ser verificado:

$$Q(z) = (z - 0.8)(z + 0.5)(z - 0.5)(z - 0.4)$$

5.7. MATLAB

- a) Características dos Sistemas de Controle
 - i. $[\omega_n, \zeta] = damp(sys);$
 - *ii.* Outras funções: *pzmap, pole, zero, lsim, step, stepinfo, impulse, lsiminfo, residue, roots, ord2, rmodel, zpk, poly e printsys.*

5.8. LISTA DE EXERCÍCIOS

Livro Kuo 10 Ed: