BIOSTAT 602 Biostatistical Inference Homework 07

Ashton Baker

Tuesday March 13, 2017

1. Let $X_1, ... X_n$ be i.i.d. observations from a gamma distribution with pdf

$$f_X(x|\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}, \quad x > 0, \quad \alpha,\beta > 0$$

(a) Show that the sample arithmetic mean $T(\mathbf{X}) = \frac{1}{n} \sum_{i=1}^{n} X_i$ and sample geometric mean $S(\mathbf{X}) = (\prod_{i=1}^{n} X_i)^{1/n}$ are jointly sufficient and complete for α , β .

Solution. To prove sufficiency, consider the sample likelihood

$$\begin{split} \mathcal{L}(\alpha,\beta|\mathbf{x}) &= \prod_{i=1}^{n} \left(\frac{1}{\Gamma(\alpha)\beta^{\alpha}} x_{i}^{\alpha-1} e^{-x_{i}/\beta} \right) \\ &= \frac{1}{\Gamma(\alpha)^{n}\beta^{n\alpha}} \left(\prod_{i=1}^{n} x_{i} \right)^{\alpha-1} e^{-\frac{1}{\beta}\sum_{i=1}^{n} x_{i}} \end{split}$$

This leaves a function which only depends on $\theta = \{\alpha, \beta\}$ via the statistics T(X) and S(X). So T and S are jointly sufficient for α , β .

Since the pdf of the gamma distribution can be written

$$f_X(x|\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{-1} \exp\left[-\frac{1}{\beta}x + \alpha \log x\right],$$

the gamma distribution belongs to the exponential family of distributions with $t_1(x) = x$, $t_2(x) = \log x$, and therefore by Theorem 6.2.25,

$$U(\boldsymbol{X}) = \left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} \log(X_i)\right) = \left(\sum_{i=1}^{n} X_i, \log \prod_{i=1}^{n} X_i\right)$$

is sufficient for α , β . And since $(S(\boldsymbol{X}),T(\boldsymbol{X}))=\left(\frac{1}{n}\sum_{i=1}^{n}X_{i},(\prod_{i=1}^{n}X_{i})^{1/n}\right)$ is itself a function of \boldsymbol{X} only in terms of $U(\boldsymbol{X})$, S and T are also jointly complete for α , β .

- (b) find the UMVUE for $(\alpha\beta)^n$.
- (c) Show that T and S/T are independent random variables.
- 2. Let X_1, \ldots, X_n be i.i.d. observations from an Inverse Gaussian distribution $IG(\mu, \lambda)$ with pdf

$$f_x(x|\mu,\lambda) = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left[-\lambda(x-\mu)^2/(2\mu^2 x)\right] \qquad x > 0, \quad \mu,\lambda > 0$$

- (a) Show that the sample arithmetic mean $T(X) = \frac{1}{n} \sum_{i=1}^{n} X_i$ and sample harmonic mean $S(X) = \frac{n}{\sum_{i=1}^{n} (1/X_i)}$ are jointly sufficient and complete for μ , λ .
- (b) Show that the MLEs for μ , λ are

$$\hat{\mu} = \overline{X}, \quad \hat{\lambda} = \frac{n}{\sum_{i=1}^{n} \left(\frac{1}{X_i} - \frac{1}{\overline{X}}\right)}.$$

You need not check for global optimality, but must verify that the MLEs are local maximizers and fall inside the parameter space.

Solution. First, we calculate $\ell(\mu, \lambda | \mathbf{x})$:

$$\begin{split} \mathcal{L}(\mu,\lambda|\mathbf{x}) &= \prod_{i=1}^n \left(\frac{\lambda}{2\pi x_i^3}\right)^{1/2} \exp\left[-\lambda(x_i - \mu)^2/(2\mu^2 x_i)\right] \\ \ell(\mu,\lambda|\mathbf{x}) &= \sum_{i=1}^n \log\left[\left(\frac{\lambda}{2\pi x_i^3}\right)^{1/2} \exp\left[-\lambda(x_i - \mu)^2/(2\mu^2 x_i)\right]\right] \\ &= \sum_{i=1}^n \left[\frac{1}{2}\log\left(\frac{\lambda}{2\pi}\right) - \frac{3}{2}\log x_i - \lambda(x_i - \mu)^2/(2\mu^2 x_i)\right] \end{split}$$

Then $\hat{\mu}_{MLE}$ is a value of μ such that $\partial \ell(\mu, \lambda | \mathbf{x}) / \partial \mu = 0$. So we can determine this by solving:

$$\begin{split} 0 &= \frac{\partial}{\partial \mu} \sum_{i=1}^n \left[\frac{1}{2} \log \left(\frac{\lambda}{2\pi} \right) - \frac{3}{2} \log x_i - \lambda (x_i - \mu)^2 / (2\mu^2 x_i) \right] \\ 0 &= \sum_{i=1}^n \left[0 - 0 + \frac{\lambda (x_i - \mu)}{\mu^3} \right] \\ 0 &= \frac{\lambda}{\mu^3} \left(-n\mu + \sum_{i=1}^n x_i \right) \\ \mu &= \frac{1}{n} \sum_{i=1}^n x_i = \overline{X} \end{split}$$

- (c) Using the fact that $n\lambda/\hat{\lambda}$ has a χ^2_{n-1} distribution, find the bias and MSE of $1/\hat{\lambda}$ as an estimator of $1/\lambda$.
- (d) Find the bias and MSE of $\hat{\lambda}$ and MSE of $\hat{\lambda}$ as an estimator of λ for n > 5. You can use the fact that if $Y \sim \chi_k^2$, then

$$\mathbb{E}[1/Y] = \frac{1}{k-2}, \quad k > 2$$

$$\text{Var}(1/Y) = \frac{2}{(k-2)^2(k-4)}, \quad k > 4$$

- 3. The following are related to Poisson distribution.
 - (a) Let X be a single observation from a $Poisson(\lambda)$ distribution. Show that the only unbiased estimator (and hence UMVUE) of $exp(-2\lambda)$ is $T(X) = (-1)^X$. Is this a reasonable estimator? **Solution.** Let T(X) be an unbiased estimator of $exp(-2\lambda)$. Then $\mathbb{E}\left[T(X)\right] = e^{-2\lambda}$, so

$$\sum_{x=0}^{\infty} T(x)e^{-\lambda} \frac{\lambda^{x}}{x!} = e^{-2\lambda}$$

$$e^{-\lambda} \sum_{x=0}^{\infty} T(x) \frac{\lambda^{x}}{x!} = e^{-2\lambda}$$

$$\sum_{x=0}^{\infty} T(x) \frac{\lambda^{x}}{x!} = e^{-\lambda}$$

Then, we can represent $e^{-\lambda}$ as a Taylor series to obtain

$$\sum_{x=0}^{\infty} T(x) \frac{\lambda^x}{x!} = \sum_{x=0}^{\infty} (-1)^x \frac{\lambda^x}{x!}.$$

The uniqueness of the Taylor series requires that $T(X) = (-1)^X$, so this is the only estimator which is unbiased for $\exp(-2\lambda)$.

I would say this is *not* a reasonable estimator because the quantity $\exp(-2\lambda)$ is always positive, and yet $(-1)^X$ can easily be negative. It's not reasonable for an estimator to fall outside the parameter space.

(b) Let X_1, X_2, \ldots, X_n be an i.i.d. random sample from a $Poisson(\lambda)$ distribution, where $n \geq 3$. Show that the only unbiased estimator (and hence UMVUE) of $exp(-2\lambda)$ is

$$T(\mathbf{X}) = \left(1 - \frac{2}{n}\right)^{\sum X_i}$$

4. Let $X_1, ..., X_n$ be an i.i.d. random sample from a Bernoulli(p) distribution, where $n \ge 3$. find the UMVUE for p^3 .

2

Solution. Given that the pmf of a Bernoulli distribution can be written $f_X(x|p) = p^x(1-p)^{1-x}$, the sample pmf is

$$\mathcal{L}(p|\mathbf{x}) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i}$$

$$= p^{\sum x_i} (1-p)^{\sum (1-x_i)}$$

$$= p^{\sum x_i} (1-p)^{n-\sum x_i}$$

which depends on x only in terms of $\sum_{i=1}^n x_i$. So $T(X) = \sum_{i=1}^n X_i$ is sufficient for p. We can also represent the pmf of a Bernoulli distribution as

$$f_{x}(x|p) = p^{x}(1-p)^{1-x}$$

$$= p^{x}(1-p)^{-x}(1-p)^{1}$$

$$= \left(\frac{p}{1-p}\right)^{p}(1-p)$$

$$= \exp\left(\log\left(\frac{p}{1-p}\right)x + \log(1-p)\right)$$

so the Bernoulli distribution is a member of the exponential family, and

$$T(X) = \left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} 1\right) = \left(\sum_{i=1}^{n} X_i, n\right)$$

is a complete statistic for p by Theorem 6.2.25.