Élio Tiago Sousa Coelho Desenvolvimento de Heurísticas para o Dimensionamento de Redes Óticas Opacas e Transparentes

Development of Heuristics for Opaque and Transparent Optical Networks Dimensioning

Desenvolvimento de Heurísticas para o Dimensionamento de Redes Óticas Opacas e Transparentes

Development of Heuristics for Opaque and Transparent Optical Networks Dimensioning

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Engenharia Electrónica e Telecomunicações, realizada sob a orientação científica do Doutor Armando Humberto Moreira Nolasco Pinto, Professor Associado do Departamento de Eletrónica, Telecomunicações e Informática da Universidade de Aveiro e coorientação empresarial do Doutor Rui Manuel Dias Morais, Doutor em Engenharia Eletrotécnica pela Universidade de Aveiro, coordenador de atividades de investigação em optimização de redes na Infinera Portugal. Tendo como instituição de acolhimento o Instituto de Telecomunicações - Pólo de Aveiro.

o júri / the jury

presidente / president ????? ????? ?????

???? ???? ???? ????

vogais / examiners committee ????? ?????

???? ???? ????

Armando Humberto Moreira Nolasco Pinto

Professor Associado da Universidade de Aveiro

agradecimentos / acknowledgements

Palavras-chave

Resumo

Keywords

Abstract

Índice

Ín	dice		:
Li	sta d	le figuras	ii
Li	sta d	le tabelas	v
1	Intr	rodução	2
	1.1	Motivação	3
	1.2	Objetivos	3
	1.3	Estrutura da dissertação	3
2	Din	nensionamento de Redes Óticas Opacas e Transparentes	4
	2.1	Arquitetura da Rede	4
		2.1.1 Nós	4
		2.1.2 Ligações	5
	2.2	Topologias da Rede	6
		2.2.1 Topologia Física	6
		2.2.2 Topologia Lógica	6
	2.3	Modos de Transporte	6
		2.3.1 Modo de Transporte Opaco	6
		2.3.2 Modo de Transparente	6
	2.4	Rede Referência	6
		2.4.1 Topologia Física	6
		2.4.2 Topologia Lógica	7
		2.4.3 Matrizes de Tráfego	7
	2.5	Rede Real	10
		2.5.1 Topologia Física	11
		2.5.2 Matrizes de Tráfego	13
3	Het	ırísticas	17
	3.1	Algoritmos das Heurísticas	17

		3.1.1	Escalonamento (Scheduling)	17
		3.1.2	Topologia Lógica	17
		3.1.3	Roteamento (Routing)	17
		3.1.4	Atribuição de Comprimento de Onda (Wavelength Assignement)	17
		3.1.5	Encaminhamento (<i>Grooming</i>)	17
4	Imp	olemen	tação NetXPTO	L 9
	4.1	Diagra	ama do Sistema	20
	4.2	Parân	netros de Entrada do Sistema	20
		4.2.1	Formato do Ficheiro de Entrada	20
	4.3	Estrut	tura dos Sinais do Sistema	20
		4.3.1	Logical Topology	20
		4.3.2	PhysicalTopology	20
		4.3.3	DemandRequest	20
		4.3.4	PathRequest	20
		4.3.5	PathRequestRouted	20
		4.3.6	DemandRequestRouted	20
	4.4	Blocos	s do Sistema	20
		4.4.1	Scheduler	20
		4.4.2	LogicalTopologyGenerator	20
		4.4.3	$Physical Topology Generator \dots \dots$	20
		4.4.4	LogicalTopologyManager	20
		4.4.5	PhysicalTopologyManager	20
	4.5	Relató	ório Final	20
5	Res	ultado	os 2	21
•	5.1			21
	-	5.1.1		21
		5.1.2		23
		5.1.3		25
		5.1.4	Análise Comparativa	29
	5.2	Rede	-	30
		5.2.1		30
		5.2.2	Heurísticas	31
		5.2.3	Análise Comparativa	31
6	Con	ıclusõe	es e trabalho futuro	33
	6.1	Concl	usões	33
	6.2	Traba	lho futuro	33

Lista de figuras

2.1	Arquitetura do nó. []	4
2.2	Topologia física da rede referência	6
2.3	National Science Foundation Network (NSFNET) []	10
2.4	Topologia Física.	11

Lista de tabelas

2.1	Matriz adjacência da topologia física da rede referência	6
2.2	Matriz adjacência da topologia física	12
2.3	Parâmetros da rede real MSFNET	12
2.4	Matriz de tráfego ODU0 para a rede real MSFNET	13
2.5	Matriz de tráfego ODU2 para a rede real MSFNET	14
2.6	Matriz de tráfego ODU3 para a rede real MSFNET	14
5.1	CAPEX para o cenário de tráfego baixo usando ILPs	23
5.2	CAPEX para o cenário de tráfego médio usando ILPs	24
5.3	CAPEX para o cenário de tráfego elevado usando ILPs	24
5.4	Informação sobre as ligações para o cenário de baixo tráfego	25
5.5	Informação sobre os nós para o cenário de baixo tráfego	25
5.6	CAPEX para o cenário de baixo tráfego	26
5.7	Informação sobre as ligações para o cenário de médio tráfego	26
5.8	Informação sobre os nós para o cenário de médio tráfego	27
5.9	CAPEX para o cenário de médio tráfego	27
5.10	Informação sobre as ligações para o cenário de elevado tráfego	28
5.11	Informação sobre os nós para o cenário de elevado tráfego	28
5.12	CAPEX para o cenário de elevado tráfego	29
5.13	Comparação dos valores do CAPEX entre os diferentes modelos para os	
	diferentes cenários de tráfego	29
5 1/	CAPEX para o rede real no modo de transporte opaço	31

Chapter 1

Introdução

- 1.1 Motivação
- 1.2 Objetivos
- 1.3 Estrutura da dissertação

Chapter 2

Dimensionamento de Redes Óticas Opacas e Transparentes

2.1 Arquitetura da Rede

2.1.1 Nós

Figure 2.1: Arquitetura do nó. [].

2.1.2 Ligações

2.2 Topologias da Rede

- 2.2.1 Topologia Física
- 2.2.2 Topologia Lógica
- 2.3 Modos de Transporte
- 2.3.1 Modo de Transporte Opaco
- 2.3.2 Modo de Transporte Transparente
- 2.4 Rede Referência
- 2.4.1 Topologia Física

Figure 2.2: Topologia física da rede referência.

Nó	1	2	3	4	5	6
1	0	1	0	0	0	1
2	1	0	1	0	0	1
3	0	1	0	1	1	0
4	0	0	1	0	1	0
5	0	0	1	1	0	1
6	1	1	0	0	1	0

Table 2.1: Matriz adjacência da topologia física da rede referência.

.

$$Dist = \begin{bmatrix} 0 & 350 & 0 & 0 & 0 & 150 \\ 350 & 0 & 400 & 0 & 0 & 120 \\ 0 & 400 & 0 & 250 & 100 & 0 \\ 0 & 0 & 250 & 0 & 200 & 0 \\ 0 & 0 & 100 & 200 & 0 & 600 \\ 150 & 120 & 0 & 0 & 600 & 0 \end{bmatrix}$$

2.4.2 Topologia Lógica

2.4.3 Matrizes de Tráfego

Tráfego Baixo

$$T_1^0 = 120 \mathrm{x} 1.25 = 150 \; \mathrm{Gbits/s} \; \; T_1^1 = 100 \mathrm{x} 2.5 = 250 \; \mathrm{Gbits/s} \; \; T_1^2 = 32 \mathrm{x} 10 = 320 \; \mathrm{Gbits/s} \; \;$$

$$T_1^3 = 12 \mathrm{x} 40 = 480 \; \mathrm{Gbits/s} \quad \ T_1^4 = 8 \mathrm{x} 100 = 800 \; \mathrm{Gbits/s}$$

$$T_1 = 150 + 250 + 320 + 480 + 800 = 2000 \text{ Gbits/s}$$
 $T = 1000/2 = 1 \text{ Tbits/s}$

Tráfego Médio

$$T_1^0 = 600 \mathrm{x} 1.25 = 750 \; \mathrm{Gbits/s} \; \; T_1^1 = 500 \mathrm{x} 2.5 = 1205 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 =$$

$$T_1^3 = 60 \mathrm{x} 40 = 2400 \; \mathrm{Gbits/s} \quad T_1^4 = 40 \mathrm{x} 100 = 4000 \; \mathrm{Gbits/s}$$

$$T_1 = 750 + 1250 + 1600 + 2400 + 4000 = 10000 \text{ Gbits/s}$$
 $T = 10000/2 = 5 \text{ Tbits/s}$

Tráfego Elevado

$$ODU0 = \begin{bmatrix} 0 & 100 & 20 & 60 & 20 & 60 \\ 100 & 0 & 0 & 20 & 100 & 0 \\ 20 & 0 & 0 & 20 & 80 & 20 \\ 60 & 20 & 20 & 0 & 20 & 20 \\ 20 & 100 & 80 & 20 & 0 & 60 \\ 60 & 0 & 20 & 20 & 60 & 0 \end{bmatrix} \quad ODU1 = \begin{bmatrix} 0 & 40 & 80 & 40 & 0 & 100 \\ 40 & 0 & 0 & 60 & 20 & 20 \\ 80 & 0 & 0 & 20 & 20 & 0 \\ 40 & 60 & 20 & 0 & 20 & 20 & 60 \\ 0 & 20 & 20 & 20 & 0 & 20 \\ 100 & 20 & 0 & 60 & 20 & 0 \end{bmatrix}$$

$$T_1^0 = 1200 \mathrm{x} 1.25 = 1500 \; \mathrm{Gbits/s}$$
 $T_1^1 = 1000 \mathrm{x} 2.5 = 2500 \; \mathrm{Gbits/s}$

$$T_1^2 = 320 \mathrm{x} 10 = 3200 \; \mathrm{Gbits/s}$$
 $T_1^3 = 120 \mathrm{x} 40 = 4800 \; \mathrm{Gbits/s}$

$$T_1^4 = 80 \mathrm{x} 100 = 8000 \; \mathrm{Gbits/s} \qquad T_1 = 20000 \; \mathrm{Gbits/s}$$

$$T = 20000/2 = 10 \text{ Tbits/s}$$

2.5 Rede Real

Figure 2.3: National Science Foundation Network (NSFNET) [].

2.5.1 Topologia Física

Figure 2.4: Topologia Física.

Nó	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	0	1	1	0	0	0	0	1	0	0	0	0	0	0
2	1	0	1	1	0	0	0	0	0	0	0	0	0	0
3	1	1	0	0	0	1	0	0	0	0	0	0	0	0
4	0	1	0	0	1	0	0	0	0	0	1	0	0	0
5	0	0	0	1	0	1	1	0	0	0	0	0	0	0
6	0	0	1	0	1	0	0	0	0	1	0	0	0	1
7	0	0	0	0	1	0	0	1	0	0	0	0	0	0
8	1	0	0	0	0	0	1	0	1	0	0	0	0	0
9	0	0	0	0	0	0	0	1	0	1	0	1	1	0
10	0	0	0	0	0	1	0	0	1	0	0	0	0	0
11	0	0	0	1	0	0	0	0	0	0	0	1	1	0
12	0	0	0	0	0	0	0	0	1	0	1	0	0	1
13	0	0	0	0	0	0	0	0	1	0	1	0	0	1
14	0	0	0	0	0	1	0	0	0	0	0	1	1	0

Table 2.2: Matriz adjacência da topologia física.

Variável	Descrição	Valor
N	Número de Nós	14
L	Número de Ligações Bidireccionais	21
$<\!\!\delta\!\!>$	Grau do Nó	3.00
<h></h>	Número Médio de Saltos por Caminhos de Trabalho	2.14
<h'></h'>	Número Médio de Saltos por Caminhos de Backup	3.60
<len></len>	Comprimento médio da ligação (km)	1086

Table 2.3: Parâmetros da rede real MSFNET.

2.5.2 Matrizes de Tráfego

ODU0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1														
2														
3														
4														
5														
6														
7														
8														
9														
10														
11														
12														
13														
14														

Table 2.4: Matriz de tráfego ODU0 para a rede real MSFNET.

$$T_1^1 = 1536 \mathrm{x} 1.25 = 1920 \; \mathrm{Gbits/s}$$

vspace11pt

ODU2	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1														
2														
3														
4														
5														
6														
7														
8														
9														
10														
11														
12														
13														
14														

Table 2.5: Matriz de tráfego ODU2 para a rede real MSFNET.

$$T_1^2 = 440 \mathrm{x} 10 = 4~400~\mathrm{Gbits/s}$$

ODU3	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1														
2														
3														
4														
5														
6														
7														
8														
9														
10														
11														
12														
13														
14														

Table 2.6: Matriz de tráfego ODU3 para a rede real MSFNET.

$$T_1^3 = 92 \mathrm{x} 40 = 3~680~\mathrm{Gbits/s}$$

$$T_1 = 1920 + 0 + 4 \ 400 + 3 \ 680 + 0 \sim 10 \ \mathrm{Tbits/s}$$

 $T = 10000/2 = \mathbf{5} \ \mathbf{Tbits/s}$

Heurísticas

- 3.1 Algoritmos das Heurísticas
- 3.1.1 Escalonamento (Scheduling)
- 3.1.2 Topologia Lógica
- 3.1.3 Roteamento (Routing)
- 3.1.4 Atribuição de Comprimento de Onda (Wavelength Assignement)
- 3.1.5 Encaminhamento (Grooming)

Implementação NetXPTO

4.1	Diagrama	do	Sistema

- 4.2 Parâmetros de Entrada do Sistema
- 4.2.1 Formato do Ficheiro de Entrada
- 4.3 Estrutura dos Sinais do Sistema
- 4.3.1 Logical Topology
- 4.3.2 Physical Topology
- 4.3.3 DemandRequest
- 4.3.4 PathRequest
- $4.3.5 \quad Path Request Routed$
- $4.3.6 \quad Demand Request Routed$
- 4.4 Blocos do Sistema
- 4.4.1 Scheduler
- ${\bf 4.4.2} \quad Logical Topology Generator$
- $4.4.3 \quad Physical Topology Generator$
- ${\bf 4.4.4} \quad Logical Topology Manager$
- 4.4.5 Physical Topology Manager
- 4.5 Relatório Final

Resultados

5.1 Rede Referência

5.1.1 Modelo Analítico

Tráfego Baixo

$$D = \frac{1}{2} \times (1+1) \times (\frac{2000}{100}) \qquad D = 20$$

$$< w > = (\frac{20 \times 1.533}{16}) \times (1+0) \qquad < w > = 1.916$$

$$N^R = 16$$

$$C_L = (2 \times 8 \times 15000) + (2 \times 8 \times 5000 \times 1.916) + (2 \times 16 \times 2000) = \textbf{457 280} \in$$

$$< d > = \frac{20}{6} \qquad < d > = 3.333$$

$$< P_{exc} > = 3.333 \times 1.533 \qquad < P_{exc} > = 5.1095$$

$$C_N = (6 \times (10000 + (100 \times 100 \times 5.1095)) + (100 \times 1.25 \times 120) + (100 \times 2.5 \times 100) + (100 \times 10 \times 32) + (100 \times 40 \times 12) + (100 \times 100 \times 8)))$$

$$C_N = 366 570 + 200 000 = \textbf{566 570} \in$$

$$CAPEX = 457 280 + 566 570 \qquad CAPEX = \textbf{1 023 850} \in$$

Tráfego Médio

$$D = \frac{1}{2} \times (1+1) \times (\frac{10000}{100}) \qquad D = 100$$

$$< w > = (\frac{100 \times 1.533}{16}) \times (1+0) \qquad < w > = 9.581$$

$$N^{R} = 16$$

$$C_{L} = (2 \times 8 \times 15000) + (2 \times 8 \times 5000 \times 9.581) + (2 \times 16 \times 2000) = \mathbf{1} \ \mathbf{070} \ \mathbf{480} \in$$

$$< d > = \frac{100}{6} \qquad < d > = 16.6667$$

$$< P_{exc} > = 16.6667 \times 1.533 \qquad < P_{exc} > = 25.5501$$

$$C_{N} = (6 \times (10000 + (100 \times 100 \times 22.5501)) + (100 \times 1.25 \times 600) + (100 \times 2.5 \times 500) + (100 \times 10 \times 160) + (100 \times 40 \times 60) + (100 \times 100 \times 40)))$$

$$C_{N} = 1539\ 006 + 1\ 000\ 000 = \mathbf{2}\ 539\ 006 \in$$

$$CAPEX = 1\ 070\ 480 + 2\ 539\ 006 \qquad CAPEX = \mathbf{3}\ 609\ 486 \in$$

Tráfego Elevado

$$D = \frac{1}{2} \times (1+1) \times (\frac{20000}{100}) \qquad D = 200$$

$$< w > = (\frac{200 \times 1.533}{16}) \times (1+0) \qquad < w > = 19.1625$$

$$N^R = 16$$

$$C_L = (2 \times 8 \times 15000) + (2 \times 8 \times 5000 \times 19.1625) + (2 \times 16 \times 2000) = \mathbf{1 837 000} \in$$

$$< d > = \frac{200}{6} \qquad < d > = 33.3333$$

$$< P_{exc} > = 33.3333 \times 1.533 \qquad < P_{exc} > = 51.0999$$

$$C_N = (6 \times (10000 + (100 \times 100 \times 51.0999)) + (100 \times 1.25 \times 1200) + (100 \times 2.5 \times 1000) + (100 \times 10 \times 320) + (100 \times 40 \times 120) + (100 \times 100 \times 80))$$

 $C_N = 3\ 125\ 994 + 2\ 000\ 000 = {f 5}\ {f 125}\ {f 994}$ €

CAPEX = 1 837 000 + 5 125 994 $CAPEX = 6 962 994 \in$

5.1.2 ILP

Tráfego Baixo

	CAPEX							
			Quantidade	Preço Unitário	Custo	Total		
Custo		OLTs	16	15 000 €	240 000 €			
	Ca	nais Óticos	28	5000 €	140 000 €	444 000 €		
Ligação	Am	plificadores	32	2000 €	64 000 €			
		EXCs	6	10 000 €	60 000 €			
	Elétrico	Portas ODU0	120	100 €/Gbit/s	15 000 €			
		Portas ODU1	100	100 €/Gbit/s	25 000 €			
		Portas ODU2	32	100 €/Gbit/s	32 000 €			
Custo		Portas ODU3	12	100 €/Gbit/s	48 000 €	540 000 €		
Nó		Portas ODU4	8	100 €/Gbit/s	80 000 €	340 000 €		
		Portas de Linha	28	100 €/Gbit/s	280 000 €			
		OXCs	0	20 000 €	0 €			
	Ótico	Portas OXC	0	2 500 €	0 €			
		Custo T	otal da Rede			984 000 €		

Table 5.1: CAPEX para o cenário de tráfego baixo usando ILPs.

Tráfego Médio

	CAPEX									
			Quantidade	Preço Unitário	Custo	Total				
Custo		OLTs	16	15 000 €	240 000 €					
Ligação	Ca	nais Óticos	126	5000 €	630 000 €	934 000 €				
Ligação	Am	plificadores	32	2000 €	64 000 €					
		EXCs	6	10 000 €	60 000 €					
	Elétrico	Portas ODU0	600	100 €/Gbit/s	75 000 €					
		Portas ODU1	500	100 €/Gbit/s	125 000 €					
		Portas ODU2	160	100 €/Gbit/s	160 000 €					
Custo		Portas ODU3	60	100 €/Gbit/s	240 000 €	2 320 000 €				
Nó		Portas ODU4	40	100 €/Gbit/s	400 000 €	2 320 000 €				
		Portas de Linha	126	100 €/Gbit/s	1 260 000 €					
	Ótico	OXCs	0	20 000 €	0 €					
		Portas OXC	0	2 500 €	0 €					
		Custo '	Total da Rede		Custo Total da Rede					

Table 5.2: CAPEX para o cenário de tráfego médio usando ILPs.

Tráfego Elevado

	CAPEX							
			Quantidade	Preço Unitário	Custo	Total		
Custo		OLTs	16	15 000 €	240 000 €			
Ligação	Cai	nais Óticos	244	5000 €	1 220 000 €	1 524 000 €		
Ligação	Am	plificadores	32	2000 €	64 000 €			
		EXCs	6	10 000 €	60 000 €			
	Elétrico	Portas ODU0	1200	100 €/Gbit/s	150 000 €			
		Portas ODU1	1000	100 €/Gbit/s	250 000 €			
		Portas ODU2	320	100 €/Gbit/s	320 000 €			
Custo		Portas ODU3	120	100 €/Gbit/s	480 000 €	4 500 000 €		
Nó		Portas ODU4	80	100 €/Gbit/s	800 000 €	4 500 000 €		
		Portas de linha	244	100 €/Gbit/s	2 440 000 €			
		OXCs	0	20 000 €	0 €			
	Ótco	Portas OXC	0	2 500 €	0 €			
		Custo	Total da Rede			6 024 000 €		

Table 5.3: CAPEX para o cenário de tráfego elevado usando ILPs.

5.1.3 Heurísticas

Tráfego Baixo

Informação sobre as ligações					
Ligação Bidireccional	Canais Óticos	Amplificadores			
Node 1 <->Node 2	2	3			
Node 1 <->Node 6	1	1			
Node 2 <->Node 3	3	3			
Node 2 <->Node 6	3	1			
Node 3 <->Node 4	1	2			
Node 3 <->Node 5	2	0			
Node 4 <->Node 5	1	1			
Node 5 <->Node 6	3	5			

Table 5.4: Informação sobre as ligações para o cenário de baixo tráfego.

	Informação sobre os nós							
		Parte Elétrica		Parte Ótica				
Nó	Grau do Nó	Portas Tributárias	Transponders	Portas Add	Portas de Linha			
1	2	58	3	0	0			
2	3	46	8	0	0			
3	3	36	6	0	0			
4	2	40	2	0	0			
5	3	48	6	0	0			
6	3	44	7	0	0			

Table 5.5: Informação sobre os nós para o cenário de baixo tráfego.

	CAPEX						
			Quantidade	Preço Unitário	Custo	Total	
Custo da		OLTs	16	15 000 €	240 000 €		
Ligação	Can	ais Óticos	32	5000 €	160 000 €	464 000 €	
Ligação	Amp	olificadores	32	2000 €	64 000 €		
		EXCs	6	10 000 €	60 000 €		
	Élétrica	Portas ODU0	120	100 €/Gbit/s	15 000 €		
		Portas ODU1	100	100 €/Gbit/s	25 000 €	580 000 €	
		Portas ODU2	32	100 €/Gbit/s	32 000 €		
Custo do		Portas ODU3	12	100 €/Gbit/s	48 000 €		
Nó		Portas ODU4	8	100 €/Gbit/s	80 000 €	380 000 €	
		Transponders	40	100 €/Gbit/s	400 000 €		
		OXCs	0	20 000 €	0 €		
	Ótcia	Portas OXC	0	2 500 €	0 €		
		Custo	Total da Rede			1 044 000 €	

Table 5.6: CAPEX para o cenário de baixo tráfego.

Tráfego Médio

Informação sobre as ligações					
Ligação Bidireccional	Canais Óticos	Amplificadores			
Node 1 <->Node 2	7	3			
Node 1 <->Node 6	2	1			
Node 2 <->Node 3	11	3			
Node 2 <->Node 6	15	1			
Node 3 <->Node 4	5	2			
Node 3 <->Node 5	8	0			
Node 4 <->Node 5	3	1			
Node 5 <->Node 6	13	5			

Table 5.7: Informação sobre as ligações para o cenário de médio tráfego.

	Informação sobre os nós							
		Parte Elétrica		Parte Ótica				
Nó	Grau do Nó	Portas Tributárias	Transponders	Portas Add	Portas de Linha			
1	2	290	9	0	0			
2	3	230	33	0	0			
3	3	180	24	0	0			
4	2	200	8	0	0			
5	3	240	24	0	0			
6	3	220	30	0	0			

Table 5.8: Informação sobre os nós para o cenário de médio tráfego.

	CAPEX						
Quantidade Preço Unitário Custo						Total	
Custo da		OLTs	16	15 000 €	240 000 €		
Ligação	Can	ais Óticos	128	5000 €	640 000 €	944 000 €	
Ligação	Amp	olificadores	32	2000 €	64 000 €		
		EXCs	6	10 000 €	60 000 €		
		Portas ODU0	600	100 €/Gbit/s	15 000 €		
		Portas ODU1	500	100 €/Gbit/s	25 000 €		
	Élétrica	Portas ODU2	160	100 €/Gbit/s	32 000 €		
Custo do		Portas ODU3	60	100 €/Gbit/s	48 000 €	2 340 000 €	
Nó		Portas ODU4	40	100 €/Gbit/s	80 000 €	2 340 000 €	
		Transponders	128	100 €/Gbit/s	1 280 000 €		
		OXCs	0	20 000 €	0 €		
	Ótcia	Portas OXC	0	2 500 €	0 €		
		Custo	Total da Rede	,		3 284 000 €	

Table 5.9: CAPEX para o cenário de médio tráfego.

Tráfego Elevado

Informação sobre as ligações					
Ligação Bidireccional	Canais Óticos	Amplificadores			
Node 1 <->Node 2	13	3			
Node 1 <->Node 6	4	1			
Node 2 <->Node 3	22	3			
Node 2 <->Node 6	30	1			
Node 3 <->Node 4	9	2			
Node 3 <->Node 5	16	0			
Node 4 <->Node 5	5	1			
Node 5 <->Node 6	26	5			

Table 5.10: Informação sobre as ligações para o cenário de elevado tráfego.

	Informação sobre os nós							
		Parte Elétrica		Parte Ótica				
Nó	Grau do Nó	Portas Tributárias	Transponders	Portas Add	Portas de Linha			
1	2	580	17	0	0			
2	3	460	65	0	0			
3	3	360	47	0	0			
4	2	400	14	0	0			
5	3	480	47	0	0			
6	3	440	60	0	0			

Table 5.11: Informação sobre os nós para o cenário de elevado tráfego.

			CAPE	X		
			Quantidade	Preço Unitário	Custo	Total
Custo da Ligação	OLTs		16	15 000 €	240 000 €	1 554 000 €
	Canais Óticos		250	5000 €	1 250 000 €	
	Amplificadores		32	2000 €	64 000 €	
Custo do Nó	Élétrica	EXCs	6	10 000 €	60 000 €	4 560 000 €
		Portas ODU0	1200	100 €/Gbit/s	15 000 €	
		Portas ODU1	1000	100 €/Gbit/s	25 000 €	
		Portas ODU2	320	100 €/Gbit/s	32 000 €	
		Portas ODU3	120	100 €/Gbit/s	48 000 €	
		Portas ODU4	80	100 €/Gbit/s	80 000 €	
		Transponders	250	100 €/Gbit/s	2 500 000 €	
	Ótcia	OXCs	0	20 000 €	0 €	
		Portas OXC	0	2 500 €	0 €	
	6 114 000 €					

Table 5.12: CAPEX para o cenário de elevado tráfego.

5.1.4 Análise Comparativa

		Heurísticas	Analítico	ILP	
	Custo da Ligação	464 000 €	$457\ 280 \in (-1,4\%)$	444 000 € (-4,3%)	
Tráfego Baixo	Custo do Nó	580 000 €	$566\ 570 \in (-2,3\%)$	540 000 € (-6,7%)	
	CAPEX	1 044 000 €	$1\ 023\ 850 \in (\text{-}1,9\%)$	984 000 € (-5,7%)	
	Custo da Ligação	944 000 €	1 070 480 € (+13,4%)	934 000 € (-1,1%)	
Tráfego Médio	Custo do Nó	2 340 000 €	$2\ 539\ 006 \in (+8{,}5\%)$	$2\ 320\ 000 \in (-0.9\%)$	
	CAPEX	3 284 000 €	$3\ 609\ 486 \in (+9.9\%)$	$3\ 254\ 000 \in (-0.9\%)$	
	Custo da Ligação	1 554 000 €	1 837 000 € (+18,2%)	1 524 000 € (-1,9%)	
Tráfego Elevado	Custo do Nó	4 560 000 €	$5\ 125\ 994 \in (+12,4\%)$	4 500 000 € (-1.3%)	
	CAPEX	6 114 000 €	$6\ 962\ 994 \in (+13.9\%)$	6 024 000 € (-1,5%)	

Table 5.13: Comparação dos valores do CAPEX entre os diferentes modelos para os diferentes cenários de tráfego.

5.2 Rede Real

5.2.1 Modelo Analítico

$$D = \frac{1}{2} \times (1+1) \times (\frac{10000}{100}) \qquad \qquad D = 100$$

$$< w > = (\frac{100 \times 2.14}{42}) \times (1+0)$$
 $< w > = 5.0952$

$$N^R = 206$$

$$C_L = (2 \times 21 \times 15000) + (2 \times 21 \times 5000 \times 5.0952) + (2 \times 206 \times 2000) = 2$$
 523 992 \in

$$< d > = \frac{100}{14}$$
 $< d > = 7.1429$

$$\langle P_{exc} \rangle = 7.1429 \times 2.14$$
 $\langle P_{exc} \rangle = 15.2858$

$$C_N = (14 \times (10000 + (100 \times 100 \times 15.2858)) + (100 \times 1.25 \times 1536) + (100 \times 2.5 \times 0) + (100 \times 10 \times 440) + (100 \times 40 \times 92) + (100 \times 100 \times 00)))$$

$$C_N = 2\ 280\ 012 + 1\ 000\ 000 = \mathbf{3}\ \mathbf{280}\ \mathbf{012} \ \mathbf{\in}$$

$$CAPEX = 2\ 523\ 992 + 3\ 280\ 012$$
 $CAPEX = 5\ 804\ 004\$ €

5.2.2 Heurísticas

CAPEX							
			Quantidade	Preço Unitário	Custo	Total	
Custo da Ligação	OLTs		42	15 000 €	630 000 €		
	Canais Óticos		234	5000 €	1 170 000 €	2 624 000 €	
	Amplificadores		412	2000 €	824 000 €		
Custo do Nó	Élétrica	EXCs	14	10 000 €	140 000 €	3 480 000 €	
		Portas ODU0	1536	100 €/Gbit/s	192 000 €		
		Portas ODU1	0	100 €/Gbit/s	0 €		
		Portas ODU2	440	100 €/Gbit/s	440 000 €		
		Portas ODU3	92	100 €/Gbit/s	368 000 €		
		Portas ODU4	0	100 €/Gbit/s	0 €		
		Transponders	234	100 €/Gbit/s	2 340 000 €		
	Ótcia	OXCs	0	20 000 €	0 €		
		Portas OXC	0	2 500 €	0 €		
	6 104 000 €						

Table 5.14: CAPEX para o rede real no modo de transporte opaco.

5.2.3 Análise Comparativa

Conclusões e trabalho futuro

- 6.1 Conclusões
- 6.2 Trabalho futuro