人脸抓拍智能相机 HTTP 协议

v-1.2

此协议为人脸抓拍机目前对客户提供的统一使用的 http 协议,主要用于推送人脸识别相机识别输出的相关人脸数据信息,同时协议可使用 http 的 comet 轮询方式响应 http 服务端的部分请求来操作人脸相机,具体使用及操作方式参加以下内容。 协议规定: 所有涉及中文字符串的字段值都必须采用 UTF8 编码后再 Base64 编码。

1. HTTP 数据推送设置

• 这种方式需要用户建立一个 HTTP 服务器,同时将这台 HTTP 服务器的地址配置给人脸相机。当人脸相机有识别结果后(或者其他需要推送的内容时),就会往指定的地址发送 HTTP 命令。在一体机网页,登录后,点击高级设置->基本设置->中心服务器,是推送的设置界面(可能不同版本稍有区别)

1.1 http 服务器设置

• 接收 http 推送的服务器,配置包括地址(可以填 ip 地址或者域名),端口号,是 否开启 ssl 连接, ssl 端口号,和超时时间设置。请根据架设的服务器的情况进行 配置。

1.2 人脸识别结果推送

 开启推送人脸识别结果后,有识别结果时,按图中的配置会发送消息到 http://ip:port/ recognition/snapshot.php 这个地址。

注: 抓拍机为了方便第三方实时获取抓拍记过,故提供了对外的 HTTP 实时信息抓拍推送协议,协议中相机为对应的客户端,需要配置相应的 HTTP 服务端信息才能完成对应的实时消息推送。

- 推送人脸快照(自动抓拍一对一,手动抓拍一对多协议修正)
- HTTP 的请求地址, POST 请求

http://www.domain.com/recognition/snapshot.php

Content-Type: application/json

描述

推送抓拍机抓拍的人脸图及背景快照。

消息

```
"cmd": "face_snapshot",
"id": 0,
"body": {
   "event_type": 0,
   "trigger": 2,
   "time_str":"2018-08-28 10:00:00",
   "num":2,
   "timestamp": {
      "sec": 1521509295,
      "msec": 150
   // 手动抓拍人脸不包括以下字段
   "sex": 0,
   "age":1,
   "have_hat": 0,
   "have_glasses":0,
   "have_mask":0,
   //
   "face":
   [
       {
          "face_id": 1,
          "confidence": 95,
          "eye_dist": 42,
          "yaw": 45,
          "pitch": 0,
          "roll": 0,
          "rect": {
              "left": 0,
              "top": 0,
              "right": 96,
              "bottom": 96
          }
       },
          "face_id": 1,
          "confidence": 95,
           "eye_dist": 42,
          "yaw": 45,
          "pitch": 0,
```

```
"roll": 0,
              "rect": {
                "left": 0,
                "top": 0,
                 "right": 96,
                 "bottom": 96
             },
             "rel_rect": {
                 "left": 0,
                 "top": 0,
                 "right": 96,
                 "bottom": 96
             }
          }
      ],
      "snapshot": {
          "type": 0,
          "length": 200000,
         "data": "..."
      },
       "picture":
      [
        {
             "type":1,
             "length": 145000,
             "data": "..."
          },
          {
             "type":1,
             "length": 145000,
             "data": "..."
          }
      ],
      "serialno": ""
  }
}
```

消息体定义

字段名称	类型	取值范围	是否必须	描述
body.event_ty	uint 32	uint32[0, 1]	是	事件类型, 1 :人脸抓 拍

字段名称	类型	取值范围	是否必须	描述
body.trigger	uint 32	uint32[0, 2]	是	触发类型, 1: 自动抓拍, 2: 手动抓拍
body.num	uint 32	uint32	是	抓拍的人脸小图数量 (自动抓拍时始终为 1)
body.sex	uint 32	uint32[0, 1]	不是(手动 抓拍时无)	0:男, 1: 女, 2: 未知
body.age	uint 32	uint32[1, 4]	不是(手动 抓拍时无)	1:少年 2: 青年 3: 中 年 4: 老年 5: 未知
body.have_hat	uint 32	uint32[0, 1]	不是(手动 抓拍时无)	0: 无, 1: 有, 2: 未
body.have_gla	uint 32	uint32[0, 1]	不是(手动 抓拍时无)	0: 无, 1: 有, 2: 未
body.have_mas	uint 32	uint32[0, 1]	不是(手动 抓拍时无)	0: 无, 1: 有, 2: 未
body.time_str	stri ng	string[0, MA X]	是	抓拍时间(字符串)
body.timestam	uint 32	uint32[0, M AX]	是	time_t 时间戳
body.timestam	uint 32	uint32[0, 99 9]	是	毫秒
body.face.fac	uint 32	uint32[0, 0X FFFFFFF]	是	人脸 ID
body.face.con	int3	int32[0,100]	是	置信度
body.face.eye _dist	int3	int32[0, MA X]	否	瞳距
body.face.yaw	int3 2	int32[-180, 180]	是	水平转角,真实度量的 左负右正

字段名称	类型	取值范围	是否必须	描述
body.face.pit	int3	int32[-180, 180]	否	俯仰角,真实度量的上 负下正
body.face.rol	int3	int32[-180, 180]	否	旋转角,真实度量的左 负右正
body.face.rec	int3 2	int32[0, MA X]	是	人脸大图中 人脸区域- 左边
body.face.rec	int3 2	int32[0, MA X]	是	人脸大图中 人脸区域- 顶部
body.face.rec	int3 2	int32[0, MA X]	是	人脸大图中 人脸区域- 右边
body.face.rec	int3 2	int32[0, MA X]	是	人脸大图中 人脸区域- 底部
body.face.rel _rect.left	int3 2	int32[0, MA X]	是	人脸小图中 人脸区域- 左边
body.face.rel _rect.top	int3 2	int32[0, MA X]	是	人脸小图中 人脸区域- 顶部
body.face.rel _rect.right	int3 2	int32[0, MA X]	是	人脸小图中 人脸区域- 右边
body.face.rel _rect.bottom	int3 2	int32[0, MA X]	是	人脸小图中 人脸区域- 底部
body.snapsho t.type	uint 32	uint32[0,1,3]	是	背景图像类型,1: BM P,2: JPEG
body.snapsho t.data	stri ng	string[0, MA X]	是	背景图像的 base64 编 码
body.snapsho t.length	uint 32	uint32[0, 0X FFFFFFF]	是	背景图像实际长度
body.picture.	uint 32	uint32[0,1,2]	是	抓拍小图类型,1: BM P,2: JPEG

字段名称	类型	取值范围	是否必须	描述
body.picture.	stri ng	string[0, MA X]	是	抓拍小图图像的 base64 编码
body.pictur	uint 32	uint32[0, 0X FFFFFFF]	是	抓拍小图图像实际长度
body.serialno	stri ng	string[1, 32]	是	设备序列号

1.3 人员绊线统计结果推送

开启人员绊线统计数据推送功能。并配置推送地址:http://ip:port///face_area/trip_wire.php 这个地址。

```
http://www.domain.com/face_area/trip_wire.php
Content-Type: application/json
```

描述

• 协议推送

```
{
    "cmd": "area_flow_statistic_push",
    "body": {
        "area1_num": 20,
        "area2_num": 10,
    }
}
```

字段名称	类型	取值范围	是否必须	描述
body.area1_num	int	无限制	是	向区域 A 流动人员数量
body.area2_num	int	无限制	是	向区域 B 流动人员数量

1.4 端口触发信息推送

此功能目前暂不可用

1.5 串口数据推送

• 推送串口接收到的数据

```
"SerialData":{
        "channel":0, //通道号, 当前为 0
        "serialno": "cead13eb-1a198cd7", //设备序列号
        "ipaddr": "192.168.1.100" //设备 ip
        "serialChannel":0, //串口的通道号, 通道 0 为 485 口 1, 通道 1 根据跳线方式为 485 口 2 或者 232
        "data": "Y2guY29tFw==",//串口数据, 采用 base64 编码
        "dataLen": 7//串口数据实际长度
    }
}
```

2.HTTP 心跳协议

• http 推送服务的心跳包,客户端每 35S 向 http 的服务端发送一次,发送数据格式为 multipart/form-data,表单对应数据示例如下:

```
// 设备名称
-----cb590e63abc8
Content-Disposition: form-data; name="device_name"
IPC
// 设备 IP
-----cb590e63abc8
Content-Disposition: form-data; name="ipaddr"
192.168.20.196
// 设备端口
-----cb590e63abc8
Content-Disposition: form-data; name="port"
80
// 用户
-----cb590e63abc8
Content-Disposition: form-data; name="user_name"
admin
// 密码
```

```
Content-Disposition: form-data; name="pass_wd"

123456

// 序列号
------cb590e63abc8

Content-Disposition: form-data; name="serialno"

ea860697-a114503d

// 设备通道数量
------cb590e63abc8

Content-Disposition: form-data; name="channel_num"
```

3.HTTP comet 轮询

comet 轮询由客户端主动推送心跳包数据至服务端,服务端给出需要的请求应答,如果服务端无请求可以不响应客户端数据。

• 注:使用时候需要选网页中推送配置项中 http 协议配置模块设备注册中的 comet 轮询

3.1 设备 IO OUT 控制

• (用于控制设备的对应输出 OUT 口进行高低电平的输出, 无应答)

请求

```
{
    "type": "IO_OUT_CTRL",
    "out_channel": 0,
    "out_status": 2,
    "delay_time": 500
}
```

消息体定义

字段名称	类型	取值范围	是否必须	描述
out_chann	uint3	uint32	是	设备的 IOOUT 编号(0 开始至最大out 编号)
out_statu s	uint3	uint32[0, 2]	是	输出状态 0: 低电平 1: 高电平 2: 高低电平
delay_tim	uint3	uint32	不是	只有输出状态为高低电平时才生效(ms)

3.2 设备手动触发识别结果

• (用于控制设备的手动输出识别结果)

•

请求

```
{
    "type": "AVS_TRIGGER",
}
```

4.常见问题

- 协议使用过程中我们总结了一些简答的问题方便客户使用时参考,如果以下还不能解决您的问题,可以直接通过支持人员联系我们的技术人员咨询。
 - 。 Q: 设备注册是什么?
 - 。 A: 当开启时,每隔一段时间,人脸一体机会自动发送设备信息到中心服务器,包括设备 ip,端口,序列号等信息。
 - 。 Q: 设置好了,请求收不到,什么问题?
 - A:请确保一体机可以访问中心服务器的相应地址。常见的问题如,局域网内,网线是否接好,ip地址是否冲突,是否在可以访问的网段;中心服务器如果在公网,请确保一体机可以访问公网,需要设置好一体机的网关和dns地址。检查中心服务器是否运

- 。 Q: 设备注册又是什么格式?
- o A: 设备注册请求发送的数据内容如下:

如所见是 formpost 的格式,接收方法例如: java 使用 request.getQueryString 接收, php 使用\$_POST 变量接收

- o Q: 回复中 content 能不能是中文?
- o A: 所有请求都用 utf8 进行编码,回复也用 utf8 即可。
- 。 Q: 能否使用 ssl 连接发送,我们的中心服务器是 ssl 的?
- A: 在设置中设置 ssl 端口(一般是 443), 然后选上开启,设置就可以了,注意如果中心服务器不支持 ssl 连接,请不要选择开启该项。
- 。 Q: 为什么相同结果返回了两次?
- o A:请确认备选服务器地址是否填写了同样的 IP 地址。
- 。 Q: 中心服务器,收到推送结果,回复给一体机,但看不到返回的具体内容,如何调试中心服务器?
- A: 在网页上可以查看访问中心服务器的日志,可以看到中心服务器回复给一体机的内容。