Model fitting

By Jan Drugowitsch

About myself

Assistant Professor of Neurobiology Harvard Medical School

Computational Neuroscience lab

- Bayesian computations in the brain
- Decision-making

Jan Drugowitsch • Model fitting

Week 1 • Day 3 • Intro

Overview

Day 1 There are different kinds of useful models, and they all have parameters

Day 2 How to come up with models

- We have manually selected parameters that seemed to work
- We have compared the R^2 of 2 alternative models to see which one is better

Day 3 How to fit these models and evaluate them

- How to correctly choose the best parameters → model fitting
- How to property evaluate how good a model is wrt. data and/or other models

Jan Drugowitsch • Model fitting

(today)

Two central questions in science

1) Models have parameters

How should we set those? How can we understand our uncertainty about them?

2) We have multiple models

Which models explain reality better?

Arguably almost all of neuroscience is about finding good models (see Day 1)

Jan Drugowitsch • Model fitting

Week 1 • Day 3 • Intro

Δ

Fitting (linear) models

Fitting models

- Purpose
- Linear models

How to fit models

- Fitting models by minimizing errors, or by maximizing likelihood
- Duality between minimizing squared error and maximizing Gaussian likelihood

Assessing model fits

- Bootstrapping to assess parameter uncertainty
- Comparing models

Why we fit models & linear model

Jan Drugowitsch • Model fitting

A simple linear model

Simple model

spike count ~ increases linearly with contrast

$$ypprox heta_0 + heta_1 x$$
 intercept slope

What is the best set of parameters?

How do we measure goodness-of-fit?

How do we find the best-fitting parameters?

Jan Drugowitsch • Model fitting

Week 1 • Day 3 • Intro

Purpose of model fitting

Validation: generate new data check on held-out data

Prediction: behavior outside of data

Interpret: e.g., spike count \sim contrast? ($\theta_0 \neq 0$?) (simple models only)

Compare: fits across different models

Jan Drugowitsch • Model fitting

Linear model can be more complex

spike count ~ increases linearly with contrast

$$ypprox heta_0+ heta_1 x$$
 intercept slope

Jan Drugowitsch • Model fitting

Week 1 • Day 3 • Intro

C

Linear models in general

Assume multiple inputs, one for each stimulus feature (e.g., orientation, contrast, etc.)

$$\boldsymbol{x} = (x_1, x_2, \dots)^T$$

(Simple) linear model

defines (hyper)plane in \boldsymbol{x}

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots$$

Can be non-linear in inputs

e.g.,
$$y = \theta_0 + \theta_1 x_1^2 + \theta_2 x_2^4 + \dots$$

More generally,

$$y = \sum_{i} \theta_{i} \phi_{i} \left(\boldsymbol{x} \right) = \boldsymbol{\theta}^{T} \boldsymbol{\phi} \left(\boldsymbol{x} \right)$$
 linear in parameters $\boldsymbol{\theta}$, $\boldsymbol{\phi}(\boldsymbol{x}) = \begin{pmatrix} 1 \\ \phi_{1}(\boldsymbol{x}) \\ \phi_{2}(\boldsymbol{x}) \\ \vdots \end{pmatrix}$ not (necessarily) inputs \boldsymbol{x}

Jan Drugowitsch • Model fitting

How to fit models

Jan Drugowitsch • Model fitting

Week 1 • Day 3 • Intro

Two philosophies for fitting models

Models as functions (e.g., Day 2)

 $y = f(x; \theta)$

Aim: find model with small errors

noise from some distribution

Models as generators

$$y_{\text{measured}} = f(x; \theta) + \mathring{\eta}$$

Aim: find model that assigns high probability to the data

Supports richer set of statements about models!

Jan Drugowitsch • Model fitting

Week 1 • Day 3 • Intro

Fitting models by minimizing squared errors

Mean squared error (MSE)

Average squared difference between data and model prediction

$$\mathrm{MSE}\left(\theta\right) = \frac{1}{N} \sum_{n=1}^{N} \left(y_{n} - f\left(x_{n}; \theta\right)\right)^{2}$$
 measured model prediction

Best-fitting parameters

$$\hat{\theta}_{\text{MSE}} = \operatorname*{argmin}_{\theta} \operatorname{MSE} \left(\theta \right)$$

Jan Drugowitsch • Model fitting

Week 1 • Day 3 • Intro

Generative perspective on model fitting

Generative perspective

Model assumed to "generate" observed data

data ~ model prediction + noise

what we can't control (e.g., measurement noise)

what we don't care about (e.g., deviation from mean firing rate)

Likelihood function

 $p(\text{data}|\text{parameters }\theta) = \mathcal{L}(\theta|\text{data})$

"How likely is data for given parameters?"

Jan Drugowitsch • Model fitting

Week 1 • Day 3 • Intro

Fitting models by maximum likelihood

Aim of maximum likelihood (ML) fits

Find parameters that make data most likely

$$\hat{\theta}_{\mathrm{ML}} = \operatorname*{argmax}_{\theta} \mathcal{L} \left(\theta | \mathrm{data} \right) = \operatorname*{argmax}_{\theta} \log \mathcal{L} \left(\theta | \mathrm{data} \right)$$

ML for independent trials

If trials are independent, then $\mathcal{L}\left(\theta|\mathrm{data}\right) = \prod_{n} \mathcal{L}\left(\theta|\mathrm{data}_{n}\right)$ As a result,

$$\hat{\theta}_{\mathrm{ML}} = \operatorname*{argmax}_{\theta} \prod_{n} \mathcal{L}\left(\theta | \mathrm{data}_{n}\right) = \operatorname*{argmax}_{\theta} \sum_{n} \log \mathcal{L}\left(\theta | \mathrm{data}_{n}\right)$$

Jan Drugowitsch • Model fitting

Week 1 • Day 3 • Intro

Maximum likelihood with Gaussian noise

Gaussian noise with variance σ^2

$$y = f(x; \theta) + \eta'$$

Gaussian noise with variance
$$\sigma^2$$

$$y = f\left(x;\theta\right) + \eta^{\prime} \qquad \Leftrightarrow \qquad p\left(y|x,\theta\right) = \mathcal{L}\left(\theta|x,y\right) = \mathcal{N}\left(y|f\left(x;\theta\right),\sigma^2\right)$$
 rials are independent

trials are independent

$$\log \mathcal{L}(\theta|X,Y) = \sum_{n} \log \mathcal{L}(\theta|x_{n}, y_{n})$$

$$= -\frac{N}{2\sigma^{2}} \frac{1}{N} \sum_{n} (y_{n} - f(x_{n}; \theta))^{2} + \text{const.} = -\frac{N}{2\sigma^{2}} \frac{\text{MSE}(\theta)}{\text{MSE}(\theta)} + \text{const.}$$

linear model with Gaussian noise

independent of $\boldsymbol{\theta}$

maximizing likelihood with Gaussian noise = minimizing mean squared error

Jan Drugowitsch • Model fitting

Gaussian noise: sensitivity to outliers

Gaussian noise: quadratic error function

- Larger errors weigh more strongly
- Fits sensitive to outliers

Jan Drugowitsch • Model fitting

Week 1 • Day 3 • Intro

Fitting linear models

Linear model

$$y = f(x; \boldsymbol{\theta}) + \eta = \boldsymbol{\theta}^T \boldsymbol{\phi}(x) + \eta$$

Log-likelihood with Gaussian noise

$$\log \mathcal{L}\left(\boldsymbol{\theta}|\boldsymbol{X},\boldsymbol{y}\right) = -\frac{N}{2\sigma^{2}}\frac{1}{N}\sum_{n}\left(y_{n} - \boldsymbol{\theta}^{T}\boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)\right)^{2} + \text{const.}$$

Properties

- Single most important statistical model
- Likelihood quadratic in θ (concave function) \rightarrow easy to find best-fitting parameters
- Analytic expression for ML estimate (see tutorial)

What we have learned

Two philosophies for fitting models

Minimizing error Maximizing likelihood

Minimizing mean squared error = maximizing likelihood with Gaussian noise

Squared error makes fit sensitive to outliers

Applied to linear model

Easy to find best-fitting parameters, computable by analytical expression

Jan Drugowitsch • Model fitting

Week 1 • Day 3 • Intro

Assessing model fits

Jan Drugowitsch • Model fitting

Week 1 • Day 3 • Intro

Parameter uncertainty

Limited data → multiple parameter values **θ** might explain the data about equally well. Reflects *inherent uncertainty* about best-fitting parameters.

Example uses

- How well does data constrain parameters?
- Are parameters significantly non-zero (i.e., relevant)?

Linear models can assess uncertainty through standard statistics (not discussed further).

Generally assess parameter uncertainty through bootstrapping.

Jan Drugowitsch • Model fitting

Assessing uncertainty by bootstrap

Jan Drugowitsch • Model fitting

Week 1 • Day 3 • Intro

Fitting & comparing multiple models

Jan Drugowitsch • Model fitting

Week 1 • Day 3 • Intro

Bias-variance trade-off

Bias

Low model complexity: systematic deviation from structure underlying data (underfitting)

Variance

High model complexity: capturing variability beyond the structure underlying data (i.e., noise; overfitting)

Total error = bias + variance

Best model: balances bias / variance

Jan Drugowitsch • Model fitting

Week 1 • Day 3 • Intro

Two philosophies for comparing models

Goodness of fit

(popular in statistics)

Compute likelihood of fitted model, and correct for number of parameters, compare goodness of fits.

Good models use few parameters to produce good fits (e.g, Day 2)

Cross validation

(popular in machine learning)

Fit model to some data (training set), then check how well it

predicts new data (test set).

Jan Drugowitsch • Model fitting

Week 1 • Day 3 • Intro

Model comparison by goodness-of-fit

Example: Akaike Information Criterion (AIC)

(lower is better)

 $ext{AIC} = 2k - 2\log\mathcal{L}\left(\hat{ heta}_{ ext{ML}}|X,Y
ight)$ number of parameters

Cons Strong assumptions about the model's structure

best model

Alternatives

Other information criteria: BIC / DIC / ..., differ in how they measure model complexity Bayesian model comparison: implicit complexity penalty by averaging over model parameters

Jan Drugowitsch • Model fitting

Pros Easy to compute

Week 1 • Day 3 • Intro

Model comparison by cross-validation

Compare models by prediction error on held-out data

Pros Minimal assumptions about data

Widely applicable

Cons Requires lots of data

Computationally expensive

Little sensitivity to small model differences

More details: today's tutorial

(

Jan Drugowitsch • Model fitting

What we have learned

Limited data makes model parameters uncertain

Assessing uncertainty by bootstrapping

Provides measure of uncertainty Allows computing confidence intervals

Two philosophies for model comparison

Goodness-of-fit Cross-validation

Jan Drugowitsch • Model fitting

Week 1 • Day 3 • Intro

Enjoy!

