ENSAE - Computational Statistics

Professor Christian P. Robert

Zakarya Ali

December 15, 2017

Problem 8.6. Reproduce the comparison of Problem 8.5 in the case of (a) the gamma distribution and (b) the Poisson distribution.

(a) Gamma distribution

For any $Gamma(\alpha, \beta)$, the density is proportional to :

$$f(x; \alpha, \beta) = x^{\alpha - 1} e^{-\frac{x}{\beta}}$$

f can be decomposed into two terms : $f_1(x) = x^{\alpha-1}$ and $f_2(x) = e^{-\frac{x}{\beta}}$ $(f(x; \alpha, \beta) = f_1(x; \alpha, \beta)f_2(x; \alpha, \beta))$

We can then suggest the following Slice Sampler:

Algorithm 1 Slice Sampler for the Gamma Distribution

 $\forall t.$

- Draw $U_1^{(t+1)}|x^{(t)} \sim U_{[0,(x^t)^{\alpha-1}]}$
- Draw $U_2^{(t+1)}|x^{(t)} \sim U_{[0,e^{-\frac{x^t}{\beta}}]}$
- Draw $X^{(t+1)}|\omega_1^{(t+1)}, \omega_1^{(t+1)} \sim U_{[\omega_1^{\frac{1}{\alpha-1}}, -\beta log(\omega_2)]}$

Figure 1 show the Gamma distribution cdf for 10^4 iterations from the Slice Sampler and R function rgamma for $\alpha = 2$ and $\beta = 2$. They are very close.

Figure 1: Slice sampler and R Gamma cdf for Gamma(2,2)

```
1 # Initialization
2 #set.seed(1)
3 iterations = 10**4
4 #Gamma(shape=alpha, scale=beta)
 alpha=2
5
  beta=2
6
7
8 #gamma function
  slice_sampler_gamma \leftarrow function(n, x0, alpha, beta){
     X = NULL
10
     Xi = x0
11
     for(i in seq(n)){
12
       U1 = runif(1,0,(Xi**(alpha-1)))
13
       U2 = runif(1,0,exp((-Xi)/beta))
14
       lim_U1=U1**(1/(alpha-1))
15
       lim_U2 = -log(U2)*beta
16
       if(lim_U2>lim_U1){
17
         Xi = runif(1,lim_U1,lim_U2)
18
         X = c(X,Xi)
19
20
       }
21
     return (X)
22
  }
23
24
  #generate slice sampler and gamma distribution
25
  sample\_gamma \leftarrow slice\_sampler\_gamma(iterations, 0.033, alpha, beta)
26
  gamma_distribution \leftarrow dgamma(seq(0, 3.5, length=100), shape=alpha,
27
      scale=beta)
28
  head(sample_gamma)
29
  length(sample_gamma)
31
32 #plot
  plot(ecdf(sample_gamma), xlim=c(0,20), col="green", ylim=c(0,1), main
      ="", ylab="cdf")
  par (new=TRUE)
34
  plot(ecdf(rgamma(iterations, shape=alpha, scale=beta)), xlim=c(0,20),
      col="purple", ylim=c(0,1), main="", ylab="")
  legend("bottomright", col=c("green", "purple"), legend=c("Slice
      Sample Gamma", "R Gamma"))
```

Listing 1: Code for Gamma Slice sampler generation, histogram and cdf

(b) the Poisson distribution

We use a similar strategy for the Poisson distribution and we take into account the fact that it's a discrete distribution.

The $Poisson(\lambda)$ density is proportional to : $f_1(x)f_2(x)$, with $f_1(x) = \lambda^x$ and $f_2(x) = \frac{1}{x!}$

Algorithm 2 Slice Sampler for the Poisson Distribution

 $\forall t,$

- Draw $U_1^{(t+1)}|x^{(t)} \sim U_{[0,f_1(x)]}$
- Draw $U_2^{(t+1)}|x^{(t)} \sim U_{[0,f_2(x)]}$
- Draw $X^{(t+1)}|\omega_1^{(t+1)}, \omega_1^{(t+1)} \sim U_{\{y,y \geq \frac{\log(\omega_1)}{\log(\lambda)}, \frac{1}{\omega_2} \geq y!\}}$

We get Figure 2 comparison. The cdfs obtained are less conclusive. This may be due to the bounds I had to impose on my computer regarding the upper and lower bounds (see R code in appendix).

Figure 2: Slice sampler and R Poisson cdf for Poisson(2)

```
#Poisson
   lambda=2
4
  max_factorial = function(max){
5
     x = 1
6
7
     factorial_x = x
     while(factorial_x < max){</pre>
8
       x = x + 1
9
10
       factorial_x = factorial_x * x
     }
11
     return(x-1)
12
13 }
14
  #Poisson function
15
   slice\_sampler\_poisson \leftarrow function(n, x0, lambda){
16
     X = NULL
17
     Xi = x0
18
     for(i in seq(n)){
19
       U1 = runif(1,0,min(10**12,lambda**(Xi)))
20
       U2 = runif(1,0,max(1/factorial(Xi),10**(-9)))
21
       lim_U1=ceiling(log(U1)/log(lambda))
22
       lim_U2=max_factorial(1/U2)
23
       if(lim_U2>lim_U1){
24
         Xi = runif(1,lim_U1,lim_U2)
25
         X = c(X, ceiling(Xi))
26
       }
27
28
     return (X)
29
  }
30
31
  #generate slice sampler and Poisson distribution
   sample_poisson \leftarrow slice_sampler_poisson(iterations, 1, lambda)
33
34
   head(sample_poisson)
35
  length(sample_poisson)
36
37
  #plot
38
  plot(ecdf(sample_poisson), xlim=c(0,20), col="blue", ylim=c(0,1),
      main="", ylab="cdf")
  par (new=TRUE)
  plot(ecdf(rpois(iterations,lambda)), xlim=c(0,20), col="gold", ylim=c
      (0,1), main="", ylab="")
42 legend("bottomright", col=c("blue", "gold"), legend=c("Slice Sample
      Poisson","R Poisson"))
```

Listing 2: Code for Poisson Slice sampler generation, histogram and cdf