Question 1

Find the graph about the mass fractions of isotopes in the Big Bang Nucoeosynthesis(BBN). Try to explain what you found.

source: https://www.annualreviews.org/doi/pdf/10.1146/annurev.nucl.012809.104521

在宇宙形成初期,隨著溫度下降,氫逐漸合成其他元素如 2 H、 3 H。等等輕元素,在並在後續的反應中形成 7 Li、 7 Be、 8 Be 等等較重的元素,並且因為並且中子(N)迅速的被消耗

source: https://cococubed.com/code_pages/net_bigbang.shtml

Question 2.

Find the rest mass of protons, electrons and hydrogens. Use what you found to calcute the binding energy of a hydrogen(13.6eV).

$$egin{aligned} & ^1_1 ext{p}^+ + ext{e}^- &
ightarrow ^1_1 ext{H} \ & \Delta m = m_H - (m_p + m_e) \ & E = \Delta m c^2 \end{aligned}$$

element	mass(kg)	source
m_H	$1.67353283776 \cdot 10^{-27}$	https://en.wikipedia.org /wiki/Isotopes_of_hydrogen

element	mass(kg)	source
m_p	$1.67262192369 \cdot 10^{-27}$	https://en.wikipedia.org/wiki/Proton
m_e	$9.1093837015 \cdot 10^{-31}$	https://en.wikipedia.org/wiki/Electron_mass

$$egin{aligned} \Delta m &= 1.67353283776 \cdot 10^{-27} - (1.67262192369 \cdot 10^{-27} + 9.1093837015 \cdot 10^{-31})(kg) \ &= -2.43001499738 \cdot 10^{-35}(kg) \ E &= \Delta mc^2 = -2.18701349764 \cdot 10^{-18}(J) \ &= -13.65026459148(eV) \end{aligned}$$

Da to Kg: https://www.unitconverters.net/weight-and-mass/dalton-to-kilogram.htm