תרגיל מס׳ 6 בניתוח אלג׳ – מושגים בסיסיים ב- NP

 $L1 \cup L2 \in P$ אזי $L2 \in P$ ווער אם רכיחו כי אם $L1 \in P$

ב) מהו סדר גודל זמן הריצה הנחוץ לאלגי A3 שפותר בעיה זו אם ידוע כי זמן (ב) מהו סדר גודל זמן הריצה של $O(n^{k1})$ הינו $O(n^{k1})$ הינו $O(n^{k2})$ הסבירו!

 L_1 א. נתון לנו כי A_1 , כלומר על פי ההגדרה, קיים אלגוריתם פולינומי בלומר על פי ההגדרה, קיים אלגוריתם פולינומי $X \in L_1$ יבול להגיד האם $X \in L_1$ יבול להגיד האם A_1 , $X \in \{0, 1\}^*$

 L_2 המבריע את השפה A_2 ואותו בנ"ל – $L_2 \in P$ בלומר על פי ההגדרה, קיים אלגוריתם פולינומי $X \in L_2$ המבריע את השפה בלומר לכל מילה $X \in L_2$ יבול להגיד האם $X \in L_2$ יבול להגיד האם בלומר לכל מילה יבול פולינומיאלי.

 $\underline{L}_3 = L_1 \cup L_2$ בעת נגדיר שפה חדשה.

בעבור השפה החדשה, נגדיר אלגוריתם חדש A_3 , שעובד באופן הבא:

 $X ∈ {0,1}]*$ בהינתן מילה

.x על A_1 מריץ את אלגוריתם A_3 .1

 A_2 - אם A_1 מחזיר 1, נמשיך ל

- 2. אחרת, נחזיר 0 ונסיים.
 - x על A₂ על 2. נריץ את

אם A₂ מחזיר 1, נחזיר 1 ונסיים.

- .3 אחרת נחזיר 0 ונסיים.
- $x \in L_2$ גווגם $x \in L_1 \cap X \in L_1$ גוומר, $x \in L_1 \cap X \in L_2$ וגם $x \in L_2$ וגם.

אנחנו נחזיר 1 (אמת) ונמשיך $X \in L_1$ אם כך, יוצא לנו שאם אזי בשורה הראשונה באלגוריתם, אנחנו נחזיר 1 (אמת) ונמשיך גלאה. ורק אם $X \in L_2$ אז בשורה השניה באלגוריתם, אנחנו נחזיר 1 ונסיים.

עכשיו נראה מה קורה אם $x \notin L_3$. במקרה כזה, מובן לנו שהוא גם לא משתייך לחיתוך השפות, או אפילו לא לשתיהן. במקרה זה כבר בשורה הראשונה נקבל ערך 0 ונצא.

- הם פולינומיאליות ושייבות למחלקה L₁, L₂ מתי השפות של שתי הריצה של שזמני הריצה של שתי השפות 3.
 - P. כך שגם אם נצטרך להריץ את שני האלגוריתמים אחד אחרי השני, זה יצא לנו זמן פולינומי כפול 2. מה עדיין מגדיר לנו את זה כזמן פולינומיאלי, מש"ל.
 - ב. במקרה הגרוע/ הטוב (תלוי בנקודת המבט), נצטרך להריץ את שני האלגוריתמים אחד אחרי במקרה הגרוע/ הטוב (תלוי בנקודת המבט (מאיצור לנו בעצם חיבור של שני זמני הריצה $O(n^{k_1}+n^{k_2})$ כאשר מדובר בחיבור ולא בגדול מביניהם.
 - . עבור K שלם אי-שלילי כלשהו Le P או הוכיחו לי גו אם $L \in P$

בי זמן אם ידוע כי זמן A2 שפותר מהו (ב) מהו סדר גודל אמן הריצה הנחוץ לאלגי (מחים לא זמן הריצה על הפותר את A הינו ($O(n^c)$ יהסבירו!

וחשבו את אמן הריצה L^* וחשבו את פולינומי פולינומי אלגוריתם הציעו אלגוריתם . $L\in P$ שלו אם אם אם האלגוריתם שפותר את L

א. עלינו בעצם להוכיח סגירות לשרשור עבור השפה L

עבור כל מילה *X∈{0,1}*, נתון לנו שהשפה L מכריעה אותה בזמן-פולינומי ביחס לאורך הקלט. מאחר ש |x| הוא מספר סופי, כל הכפלה/שרשור k פעמים עדיין משאיר את זמן הריצה ביחס פולינומיאלי מאחר, האלגוריתם פשוט יצטרך לעשות את הפעולה שוב ושוב, כל שהזמן יהיה הכפלה של k ביחס לביצוע המקורי.

ב. $O(kn^c)$ – מאחר שנשארנו תחת זמן–פולינומיאלי, אז יש לנו את זמן הפתרון המקורי שעובד פעם אחר פעם, אפעמים ולכן מכפיל את זמן הריצה.

 $x\in L$ הפותר את $M=\{x_1...x_k\}$, השייכת ל- L^* ובמו כן נתון לנו אלגוריתם $M=\{x_1...x_k\}$ בזמן פולינומיאלי.

עבור כל xi∈w, נעבוד בצורה הבאה:

 null אם $\mathsf{x}_i = \mathsf{e}$, אזי נחזיר

.i=i+1 ונפתור אותו, ונקדם את $A(x_i)$ אחרת – נריץ את

 $O(n^c)$ אנחנו רצים X_i אנחנו על איטרציה על – עבור על הוכחת זמן

נכפיל כל אחד כזה באורך המילה (כמות השרשורים) שהיא k, ונקבל (O(kn^c).

. (א) הוכיחו כי שיחס הרדוקצי-ה הפולינומיאלית הינו יחס טרנזטיבי על שפות. $LI \leq_p L3$ אזי מתקיים $LI \leq_p L3$ אזי מתקיים

רצה L3 ל- L2 הרדוקציה מ- L1 ל- L1 ל- L2 רצה בזמן (כ) והרדוקציה מ- L3 ל- L3 רצה בזמן (ב) אם הרדוקציה מ- L3 ל- L3 ל- C(n^{k2}) מהו זמן הריצה של הרדוקציה מ- L3 ל- C(n^{k2})

א. נתונה לנו שפה אוין (על סמך אוי על סמך $L_{\scriptscriptstyle 1} \in \mathsf{NPH}$ א. נתונה לנו שפה

 $L_z \in \mathsf{NPH}$ במו כן, נתון לנו כי $L_z \in \mathsf{NPH}$ – כלומר $\mathsf{x} \in \mathsf{L}_1 \leftrightarrow \mathsf{f}'(\mathsf{x}) \in \mathsf{L}_2$ כלומר

 $L_3 \in \mathsf{NPH}$ במו כן, נתון לנו כי $\mathsf{L}_2 \leftarrow \mathsf{L}_3 \leftarrow \mathsf{L}_3 \leftarrow \mathsf{L}_3$ בלומר $\mathsf{L}_3 \leftarrow \mathsf{L}_3 \leftarrow \mathsf{L}_3$

טענה: ג∟נה: ג∟. L₁≤

הוכחה:

נגדיר _{2−}L₃ בעזרת פונקציית הרדוקציה r בעזרת פונקציית

.x על f' על 1.

f"(f'(x)) ב. הפעל את.2

 $x \in L_1 \leftrightarrow f'(x) \in L_2 \leftrightarrow f''(f'(x)) \in L_3$ מהנתונים ניתן לראות כי

בלומר השורה הראשונה מוכרחת לקיים את הרדוקציה אמ"ם השורה השניה תשרה את בלומר הדוקציה של התוצאה, ואם בן $x \in L_1 \leftrightarrow r(x) \in L_3$

הוכחת זמן ריצה פולינומי:

שורה 1 – רצה תחת זמן פולינומיאלי.

שורה 2 – רצה תחת זמן פולינומיאלי.

מאחר ו-P סגורה לאיחוד ולשרשור, כל האלגוריתם רץ בזמן פולינומיאלי.

ב. $O(n^{k_1}+n^{k_2})$ באשר מדובר על חיבור מלא (לא הגבוה מביניהם).

על מנת לבצע את הרדוקציה, על הפונקציה לעשות את כל חלקי הרדוקציה בכל שלב, ולכן יהיה מדובר בחיבור הזמנים.

- 4) הוכיחו או הביאו דוגמה נגדית (או לחילופין הסבירו למה זה לא חייב להתקיים):
 - $L2 \leq_p L1$ ר- $L1 \leq_p L2$ אזי $L2 \in NPC$ ווווווון אם אם אם
 - - $L2 \leq_n L1$ אזי NP -קשה ב L $1 \in \mathrm{NP}$ אזי L $1 \in \mathrm{NP}$ (ג)
- (ד) אם CO-L1 אזי אוי CO-L1 להזכירכם להזכירכם אזי אוי אוי L1 \in NP להזכירכם להזכירכם להזכירכם לב(L1-1)
 - $L1 \cap L2 \in NP$ אזי NP ב- L2 וי NP ה) אם L1 קשה ב- NP ה) אם
- א. נכון. כל שפה LENPC צריכה לקיים שני תנאים 1. LENP ו (כלומר ניתן לעשות LENPC א. נכון. כל שפה דו רדוקציה מכל שפה ב-NP). ומאחר ששתי השפות הן שייכות לNPC, ניתן לעשות אליה רדוקציה מכל שפה ב-NP, ומאחר ששתי השפות נמצאות גם ב-NP, זה אומר שניתן לעשות מכל אחת לשניה רדוקציה.
- ב. נכון. מאחר ואנחנו יכולים **לפתור** כל אחת מהשפות תחת זמן אלגוריתמי, אלגוריתם הרדוקציה מאחד לשני יהיה פשוט 1. פתור את הפונקציה (תחת זמן פוליינומיאלי) 2. העבר את התשובה לשפה השניה.
 - ג. לא מחויב. אם L₁∈NPC אזי היא גם קשה וגם ב-NP, ואז זה יכול להתקיים.
 - תהיה L_1 אחרת, לא נכון. כי אם ניתן יהיה לעשות רדוקציה כמו המתואר השפה L_1 חייבת להיות NPC, ויצאנו מנקודת הנחה שהיא אינה כזו.
- ד. לא נכון. הגדרנו את coNP להיות המחלקה שניתן לאמת את אי הנכונות תחת זמן פולינומיאלי, וכשם שבדיקת הנכונות היא לא טאוטולוגיה, גם בדיקת אי הנכונות המשלימה אינה טאוטולוגיה. ה. לא נכון. השפות ב-NP סגורות תחת חיתוך.
 - אך או לא מוגדר לנו. אך אם L_1 קשה ב NP

בהצלחה!