САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

МОДЕЛИРОВАНИЕ ПРОВОДЯЩИХ СВОЙСТВ СИЛЬНОЛЕГИРОВАННОГО АЛМАЗА МЕТОДОМ СТАЦИОНАРНОГО ГРИНОВСКОГО ОПЕРАТОРА

Студент

Руководитель

д.ф.-м.н., профессор

Жогаль Н.Н.

Алексеев Н.И.

Санкт-Петербург 2025

Актуальность. Полупроводниковый алмаз

Параметр	Si	4H-SiC	β-Ga2O3	Алмаз
Ширина запрещённой зоны, эВ	1.12	3.5	4.9	5.5
Теплопроводность, Вт·м ⁻¹ ·К ⁻¹	150	370	11 - 27	2290 - 3450
Поле пробоя, $10^6 \cdot \text{В/см}$	0.6	3	8	10

HРНТ кристалл

Особенности алмаза:

- Выдающиеся электрофизические параметры даже среди широкозонных материалов
- Высокая химическая инертность
- Очень малая постоянная решётки р-тип проводимости только за счёт легирования бором, n-тип только за счёт легирования азотом или фосфором

PE-CVD эпитаксиальный слой 2

Актуальность. Сильнолегированный алмаз

С концентрации бора $p=10^{18}$ сm⁻³ энергия активации примеси Еа заметно падает

концентрации бора p=10¹⁹cm⁻³ наблюдается графике температурной ИЗЛОМ проводимости $lg(\sigma)(1/T)$ при температуре $T\sim 120K$

Особый возбуждённые интерес представляет состояния бора. В сильнолегированном алмазе они играют роль, близкую к компенсирующей примеси

[K. Oyama, High performance of diamond p + - i - n + junction diode. Applied Physics Letters 94, 152109, 2009]

[J.-P. Lagrange, DRM 1998] 3

Актуальность. Сильнолегированный алмаз

С концентрации бора p=10¹⁸cm⁻³ энергия активации примеси Еа заметно падает

При концентрации бора $p=10^{19} cm^{-3}$ наблюдается излом на графике температурной зависимости проводимости $lg(\sigma)(1/T)$ при температуре $T\sim 120 K$

Особый интерес представляет возбуждённые состояния бора. В сильнолегированном алмазе они играют роль, близкую к компенсирующей примеси

[J.-P. Lagrange, DRM 1998] 4

Цель работы

Проведение моделирование проводящих свойств сильнолегированного алмаза в технике стационарного гриновского оператора.

Конкретные задачи:

- Расчет зонной структуры примеси в различных вариантах сверхрешётки
- Рассмотрение и анализ зависимостей зонной структуры примеси от отдельных параметров

Техника стационарного гриновского оператора

Формула Грина: $\left\langle \mathbf{k} \middle| \hat{G} \middle| \mathbf{k} \middle| \right\rangle \sim G_{\mathbf{k}\mathbf{k}} \delta_{\mathbf{k}\mathbf{k}'}$

Узельное представление ГО

$$EG_{nn'} - \sum_{n''} \langle n | H | n'' \rangle G_{n''n'} = \delta_{nn'}$$

Уравнение Дайсона $\hat{G} = \hat{G}_0 + \hat{G}_0 \hat{V} \hat{G}$

G – функция Грина, δ – дельта функция,
H – Гамильтониан, V – интеграл
перекрытия, k – волновой вектор

Пример решения уравнения Дайсона

Система уравнений:

$$G_{00} = g_0 + g_0 V G_{10} - g_0 V G_{20} E_+$$

$$G_{10} = g_1 V G_{00} + g_1 U G_{20}$$

$$G_{20} = -g_1 V G_{00} E_+ + g_1 U G_{10}$$

Матричный вид:

$$\begin{pmatrix} 1 & -g_{0}V + g_{0}VE_{+} \\ -g_{1}V & 1 & -g_{1}U \\ +g_{1}VE_{-} - g_{1}U & 1 \end{pmatrix}$$

$$\Delta E_C = E - E_C$$

$$E_+ = \exp(3ika)$$

$$E_{-} = \exp(-3ika)$$

Расчёт зонной структуры:

$$\sin^2 \frac{3ka}{2} = \frac{\left(E - \epsilon_B\right)}{\left(E - \epsilon_C\right)^2} \frac{\left(E - \epsilon_C\right)^2 - V_{CC}^2}{4V_{CC}V_{BC}} = \frac{\left(\Delta E_C - \left(\epsilon_B - \epsilon_C\right)\right)}{\Delta E_C} \frac{\left(\Delta E_C\right)^2 - V_{CC}^2}{4V_{CC}V_{BC}}$$

Зависимость ширина зоны Δε_в от концентрации

При различных значениях:

N — период появления атома примеси в одномерной системе, $\delta\epsilon_B$ — ширина зоны примеси в системе, $\Delta\epsilon_B$ — запрещённая зона между примесными зонами, $|V_{CC}|$ и $|V_{BC}|$ - Интеграл перекрытия между основными и основным и примесным атомами соответственно

Зависимость ширина зоны δε_в от концентрации

При различных значениях:

N — период появления атома примеси в одномерной системе, $\delta\epsilon_B$ — ширина зоны примеси в системе, $\Delta\epsilon_B$ — запрещённая зона между примесными зонами, $|V_{CC}|$ и $|V_{BC}|$ - Интеграл перекрытия между основными и основным и примесным атомами соответственно

Анализ полуэмпирическими методами

Заключение

- Рост значения $|V_{CC}|$ и уменьшения $|V_{BC}|$ и ϵ_B приводит к увеличению значения $\Delta \epsilon_B$ и уменьшению $\delta \epsilon_B$ в периодической системе в технике гриновского оператора
- Следствием роста $|V_{CC}|$ и уменьшения $|V_{BC}|$ является уменьшение ε_B и рост $\delta \varepsilon_B$ с ростом концентрации примеси.
- Уменьшение расстояния $\varepsilon_{\rm B}$ происходит главным образом за счёт основного состояния

Спасибо за внимание!

Зонная структура при N=15

Особенности электрофизических измерений широкозонных полупроводников

Кремний:

- Рабочая температура ~ -50 C +150 C
- Температура наступления собственной проводимости ~500 К

Алмаз:

- Большая энергия активация бора в алмазе (370 мэВ при 10^{16} см⁻³) даёт степень ионизации примеси менее 1% при 295 К
- При концентрации бора 10¹⁷ см⁻³ концентрация ОНЗ 10¹⁴ см⁻³
- Рабочая температура до 400 С

Сравнение полученных характеристик

Энергии активации E_A имеют различия из-за разной природы измеряемых токов:

- Постоянный ток (DC) ток проводимости
- Переменный ток (АС) ток смещения

Полученные значения энергии активации глубокого центра бора имеют хорошее совпадение с теоретической зависимостью Пирсона-Бардина и результатами других работ

Образцы	IIa87	IL3	N10	
Концентрация примеси В	нелегир.	10^{18} cm^{-3}	10^{19} cm^{-3}	
p_{C-V} , cm^{-3}	$4 \cdot 10^{15}$	$1,2 \cdot 10^{18}$	8.10^{18}	
E _A (DC, примесь-зона), мэВ	370±4	320±6	298±4	Ç.
E _A (DC, прыжковая), мэВ	-	-	22	
E_A (AC), мэВ	-	312±4,2	229±9	
G/ω , Φ	-	$1,1\cdot 10^{-12}$	6,5·10-11	

Измерительный комплекс

Перед запуском криогенной установки в форвакуумная насосной станции Pfeiffer создаётся вакуум ниже 10-5 мбар

Зондовая станция JANIS CCR10

Переменный ток

LCR-Metp Agilent E4980A

Измерения проводятся в диапазоне

частот от 1кГц до 2МГц

Постоянный ток

Мультиметр Agilent 34410A

Параметрический анализатор B2901A (Keysight, США)

Температурные контроллеры:

LakeShore 331

LakeShore 336

Измерения проводятся в диапазоне температур от 24 до 475K

Позволяет регистрировать малые токи вплоть до 1 пА

Исследуемые образцы алмаза с контактами

Образцы	IIa87	IL3	N10
Метод роста	HPHT	HPHT	CVD
Концентрация примеси В	нелегированный	10^{18} cm^{-3}	10^{19} cm^{-3}
Геометрические размеры	5 на 5 мм	3,5 на 3,5 мм	3,5 на 3,5 мм
Геометрия контактов	латеральная	вертикальная	латеральная

Зонная структура в области запрещённой зоны алмаза, легированного бором

