Propositional Logic

Combinatorial Problem Solving (CPS)

Albert Oliveras Enric Rodríguez-Carbonell

May 15, 2020

Overview of the session

- Definition of Propositional Logic
- General Concepts in Logic
 - Reduction to SAT
- CNFs and DNFs
 - **♦** Tseitin Transformation
- Problem Solving with SAT
- Resolution

SYNTAX (what is a formula?):

- There is a set \mathcal{P} of propositional variables, usually denoted by (subscripted) p, q, r, \ldots
- The set of propositional formulas over \mathcal{P} is defined as:
 - Every propositional variable is a formula
 - lacktriangle If F is a formula, $\neg F$ is also a formula
 - lacktriangle If F and G are formulas, $(F \wedge G)$ is also a formula
 - lacktriangle If F and G are formulas, $(F \lor G)$ is also a formula
 - Nothing else is a formula
- Formulas are usually denoted by (subscripted) F, G, H, \ldots
- Examples:

$$p \qquad \neg p \qquad (p \lor q) \quad \neg (p \land q)$$
$$(p \land (\neg p \lor q)) \quad ((p \land q) \lor (r \lor \neg q)) \quad \dots$$

SEMANTICS (what is an interpretation I, when I satisfies F?):

- An interpretation I over \mathcal{P} is a function $I: \mathcal{P} \to \{0, 1\}$.
- \blacksquare $eval_I: Formulas \rightarrow \{0,1\}$ is a function defined as follows:
 - \bullet $eval_I(p) = I(p)$
 - \bullet $eval_I(\neg F) = 1 eval_I(F)$
 - \bullet $eval_I((F \wedge G)) = \min\{eval_I(F), eval_I(G)\}$
 - \bullet $eval_I((F \vee G)) = \max\{eval_I(F), eval_I(G)\}$
- I satisfies F (written $I \models F$) if and only if $eval_I(F) = 1$.
- If $I \models F$ we say that
 - lacktriangle I is a model of F or, equivalently
 - lacktriangle F is true in I.

EXAMPLE:

- Let F be the formula $(p \land (q \lor \neg r))$.
- Let I be such that I(p) = I(r) = 1 and I(q) = 0.
- Let us compute $eval_I(F)$ (use your intuition first!)

EXAMPLE:

- Let F be the formula $(p \land (q \lor \neg r))$.
- Let I be such that I(p) = I(r) = 1 and I(q) = 0.
- Let us compute $eval_I(F)$ (use your intuition first!)

$$eval_I((p \land (q \lor \neg r))) =$$

EXAMPLE:

- Let F be the formula $(p \land (q \lor \neg r))$.
- Let I be such that I(p) = I(r) = 1 and I(q) = 0.
- Let us compute $eval_I(F)$ (use your intuition first!)

$$eval_I((p \land (q \lor \neg r))) = min\{ eval_I(p), eval_I((q \lor \neg r)) \}$$

EXAMPLE:

- Let F be the formula $(p \land (q \lor \neg r))$.
- Let I be such that I(p) = I(r) = 1 and I(q) = 0.
- Let us compute $eval_I(F)$ (use your intuition first!)

$$eval_I((p \land (q \lor \neg r))) = min\{ eval_I(p), eval_I((q \lor \neg r)) \}$$

= $min\{ eval_I(p), max\{ eval_I(q), eval_I(\neg r) \} \}$

EXAMPLE:

- Let F be the formula $(p \land (q \lor \neg r))$.
- Let I be such that I(p) = I(r) = 1 and I(q) = 0.
- Let us compute $eval_I(F)$ (use your intuition first!)

```
eval_{I}((p \land (q \lor \neg r))) = min\{ eval_{I}(p), eval_{I}((q \lor \neg r)) \}
= min\{ eval_{I}(p), max\{ eval_{I}(q), eval_{I}(\neg r) \} \}
= min\{ eval_{I}(p), max\{ eval_{I}(q), 1 - eval_{I}(r) \} \}
```

EXAMPLE:

- Let F be the formula $(p \land (q \lor \neg r))$.
- Let I be such that I(p) = I(r) = 1 and I(q) = 0.
- Let us compute $eval_I(F)$ (use your intuition first!)

```
eval_{I}((p \land (q \lor \neg r))) = min\{ eval_{I}(p), eval_{I}((q \lor \neg r)) \}
= min\{ eval_{I}(p), max\{ eval_{I}(q), eval_{I}(\neg r) \} \}
= min\{ eval_{I}(p), max\{ eval_{I}(q), 1 - eval_{I}(r) \} \}
= min\{ I(p), max\{ I(q), 1 - I(r) \} \}
```

EXAMPLE:

- Let F be the formula $(p \land (q \lor \neg r))$.
- Let I be such that I(p) = I(r) = 1 and I(q) = 0.
- Let us compute $eval_I(F)$ (use your intuition first!)

```
\begin{array}{lll} eval_{I}((p \wedge (q \vee \neg r))) & = & \min\{\ eval_{I}(p),\ eval_{I}((q \vee \neg r))\ \} \\ & = & \min\{\ eval_{I}(p),\ max\{\ eval_{I}(q),eval_{I}(\neg r)\}\ \} \\ & = & \min\{\ eval_{I}(p),\ max\{\ eval_{I}(q),1-eval_{I}(r)\}\ \} \\ & = & \min\{\ I(p),\ max\{\ I(q),1-I(r)\}\ \} \\ & = & \min\{\ 1,\ max\{\ 0,1-1\}\ \} \end{array}
```

EXAMPLE:

- Let F be the formula $(p \land (q \lor \neg r))$.
- Let I be such that I(p) = I(r) = 1 and I(q) = 0.
- Let us compute $eval_I(F)$ (use your intuition first!)

```
eval_{I}((p \land (q \lor \neg r))) = min\{ eval_{I}(p), eval_{I}((q \lor \neg r)) \}
= min\{ eval_{I}(p), max\{ eval_{I}(q), eval_{I}(\neg r) \} \}
= min\{ eval_{I}(p), max\{ eval_{I}(q), 1 - eval_{I}(r) \} \}
= min\{ I(p), max\{ I(q), 1 - I(r) \} \}
= min\{ 1, max\{ 0, 1 - 1 \} \}
= 0
```

EXAMPLE:

- Let F be the formula $(p \land (q \lor \neg r))$.
- Let I be such that I(p) = I(r) = 1 and I(q) = 0.
- Let us compute $eval_I(F)$ (use your intuition first!)

```
eval_{I}((p \land (q \lor \neg r))) = min\{ eval_{I}(p), eval_{I}((q \lor \neg r)) \}
= min\{ eval_{I}(p), max\{ eval_{I}(q), eval_{I}(\neg r) \} \}
= min\{ eval_{I}(p), max\{ eval_{I}(q), 1 - eval_{I}(r) \} \}
= min\{ I(p), max\{ I(q), 1 - I(r) \} \}
= min\{ 1, max\{ 0, 1 - 1 \} \}
= 0
```

EXAMPLE:

- Let F be the formula $(p \land (q \lor \neg r))$.
- Let I be such that I(p) = I(r) = 1 and I(q) = 0.
- Let us compute $eval_I(F)$ (use your intuition first!)

```
eval_{I}((p \land (q \lor \neg r))) = min\{ eval_{I}(p), eval_{I}((q \lor \neg r)) \}
= min\{ eval_{I}(p), max\{ eval_{I}(q), eval_{I}(\neg r) \} \}
= min\{ eval_{I}(p), max\{ eval_{I}(q), 1 - eval_{I}(r) \} \}
= min\{ I(p), max\{ I(q), 1 - I(r) \} \}
= min\{ 1, max\{ 0, 1 - 1 \} \}
= 0
```

■ Is there any I such that $I \models F$?

YES, I(p) = I(q) = I(r) = 1 is a possible model.

EXAMPLE

- We have 3 pigeons and 2 holes.

 If each hole can have at most one pigeon, is it possible to place all pigeons in the holes?
- Vocabulary: $p_{i,j}$ means i-th pigeon is in j-th hole
- Each pigeon is placed in at least one hole:

$$(p_{1,1} \vee p_{1,2}) \wedge (p_{2,1} \vee p_{2,2}) \wedge (p_{3,1} \vee p_{3,2})$$

■ Each hole can hold at most one pigeon:

$$\neg(p_{1,1} \land p_{2,1}) \land \neg(p_{1,1} \land p_{3,1}) \land \neg(p_{2,1} \land p_{3,1}) \land \neg(p_{1,2} \land p_{2,2}) \land \neg(p_{1,2} \land p_{3,2}) \land \neg(p_{2,2} \land p_{3,2})$$

Resulting formula has no model

A small syntax extension:

- We will write $(F \to G)$ as an abbreviation for $(\neg F \lor G)$
- Similarly, $(F \leftrightarrow G)$ is an abbreviation of $((F \to G) \land (G \to F))$

Overview of the session

- Definition of Propositional Logic
- General Concepts in Logic
 - ◆ Reduction to SAT
- CNFs and DNFs
 - **♦** Tseitin Transformation
- Problem Solving with SAT
- Resolution

Let F and G be arbitrary formulas. Then:

- F is satisfiable if it has at least one model
- \blacksquare F is unsatisfiable (also a contradiction) if it has no model
- lacksquare is a tautology if every interpretation is a model of F
- G is a logical consequence of F, denoted $F \models G$, if every model of F is a model of G
- F and G are logically equivalent, denoted $F \equiv G$, if F and G have the same models

Note that:

- All definitions are only based on the concept of model.
- Hence they are independent of the logic.

- Circuit corresponds to formula $(\neg p \land p)$
- Formula unsatisfiable amounts to "circuit output is always 0"

- Circuit corresponds to formula $(\neg p \lor p)$
- lacktriangle Formula is a tautology amounts to "circuit output is always 1"

- lacktriangle Circuit on the left corresponds to formula $F:=\lnot(p\land q)$
- lacktriangle Circuit on the right corresponds to formula $G:=(\neg p \lor \neg q)$
- They are functionally equivalent, i.e. same inputs produce same output
- That corresponds to saying $F \equiv G$
- Cheapest / fastest / less power-consuming circuit is then chosen

Reduction to SAT

Assume we have a black box **SAT** that given a formula F:

- SAT(F) = YES iff F is satisfiable
- SAT(F) = NO iff F is unsatisfiable

How to reuse **SAT** for detecting tautology, logical consequences, ...?

- F tautology iff $SAT(\neg F) = NO$
- $F \models G$ iff $SAT(F \land \neg G) = NO$
- $F \equiv G$ iff $SAT((F \land \neg G) \lor (\neg F \land G)) = NO$

Reduction to SAT

Assume we have a black box **SAT** that given a formula F:

- SAT(F) = YES iff F is satisfiable
- **SAT**(F) = NO iff F is unsatisfiable

How to reuse **SAT** for detecting tautology, logical consequences, ...?

- \blacksquare F not taut. iff $SAT(\neg F) = YES$
- $F \not\models G$ iff $SAT(F \land \neg G) = YES$
- $F \not\equiv G$ iff $SAT((F \land \neg G) \lor (\neg F \land G)) = YES$

Reduction to SAT

Assume we have a black box **SAT** that given a formula F:

- SAT(F) = YES iff F is satisfiable
- SAT(F) = NO iff F is unsatisfiable

How to reuse **SAT** for detecting tautology, logical consequences, ...?

- F tautology iff $SAT(\neg F) = NO$
- $F \models G$ iff $SAT(F \land \neg G) = NO$

Hence, a single tool suffices: all problems can be reduced to SAT (propositional SATisfiability)

The black box **SAT** will be called a **SAT** solver

GOAL: learn how to build a SAT solver

Overview of the session

- Definition of Propositional Logic
- General Concepts in Logic
 - ◆ Reduction to SAT
- CNFs and DNFs
 - **♦** Tseitin Transformation
- Problem Solving with SAT
- Resolution

In order to construct our SAT solver it will simplify our job to assume that the formula F has a given format.

- \blacksquare A literal is a propositional variable (p) or a negation of one $(\neg p)$
- lacktriangle A clause is a disjunction of zero or more literals $(l_1 \lor \dots l_n)$
- \blacksquare The empty clause (zero lits.) is denoted \Box and is unsatisfiable
- A formula is in Conjunctive Normal Form (CNF) if it is a conjunction of zero or more disjunctions of literals (i.e., clauses)
- A formula is in Disjunctive Normal Form (DNF) if it is a disjunction of zero or more conjunctions of literals

Examples:

$$p \wedge (q \vee \neg r) \wedge (q \vee p \vee \neg r)$$
 is in CNF $p \vee (q \wedge \neg r) \vee (q \wedge p \wedge \neg r)$ is in DNF

- \blacksquare Given a formula F there exist formulas
 - lacktriangledown G in CNF with $F \equiv G$ and

(G is said to be a CNF of F)

lacktriangledown H in DNF with $F \equiv H$

- (H is said to be a DNF of F)
- \blacksquare Which is the complexity of deciding whether F is satisfiable...
 - lacktriangle ... if F is an arbitrary formula?
 - lack ... if F is in CNF?
 - lacktriangle ... if F is in DNF?

- \blacksquare Given a formula F there exist formulas
 - lacktriangledown G in CNF with $F \equiv G$ and $\qquad \qquad (G \text{ is said to be a CNF of } F)$
 - lacktriangledown H in DNF with $F\equiv H$ (H is said to be a DNF of F)
- \blacksquare Which is the complexity of deciding whether F is satisfiable...
 - lack ... if F is an arbitrary formula? NP-complete (Cook's Theorem)
 - lacktriangle ... if F is in CNF?
 - lacktriangle ... if F is in DNF?

- lacktriangle Given a formula F there exist formulas
 - lacktriangledown G in CNF with $F \equiv G$ and $\qquad \qquad (G \text{ is said to be a CNF of } F)$
 - lacktriangledown H in DNF with $F \equiv H$ (H is said to be a DNF of F)
- \blacksquare Which is the complexity of deciding whether F is satisfiable...
 - \bullet ... if F is an arbitrary formula? NP-complete (Cook's Theorem)
 - lack ... if F is in CNF? NP-complete (even if clauses have ≤ 3 literals!)
 - lack ... if F is in DNF?

- \blacksquare Given a formula F there exist formulas
 - lacktriangledown G in CNF with $F \equiv G$ and $\qquad \qquad (G \text{ is said to be a CNF of } F)$
 - lacktriangledown H in DNF with $F \equiv H$ (H is said to be a DNF of F)
- \blacksquare Which is the complexity of deciding whether F is satisfiable...
 - lacktriangle ... if F is an arbitrary formula? NP-complete (Cook's Theorem)
 - lack ... if F is in CNF? NP-complete (even if clauses have ≤ 3 literals!)
 - lack ... if F is in DNF? linear

Procedure SAT(F)

Input: formula F in DNF

Output: **YES** if there exists I such that $I \models F$, **NO** otherwise

- 1. If the DNF is empty then return **NO**.
- Else take a conjunction of literals C of the DNF
- 2. If there is a variable p such that both p, $\neg p$ appear in C, then C cannot be made true: remove it and go to step 1. Else define I to make C true and return **YES**.

- \blacksquare Idea: given F, find a DNF of F and apply the linear-time algorithm
- Why this does not work?

- \blacksquare Idea: given F, find a DNF of F and apply the linear-time algorithm
- \blacksquare Why this does not work? Finding a DNF of F may take exponential time
- In fact there are formulas for which CNFs/DNFs have exponential size

- lacktriangle Idea: given F, find a DNF of F and apply the linear-time algorithm
- \blacksquare Why this does not work? Finding a DNF of F may take exponential time
- In fact there are formulas for which CNFs/DNFs have exponential size
- Consider xor defined as $xor(x_1) = x_1$ and if n > 1:

$$\operatorname{xor}(x_1, ..., x_n) = (\operatorname{xor}(x_1, ..., x_{\lfloor \frac{n}{2} \rfloor}) \wedge \operatorname{\neg} \operatorname{xor}(x_{\lfloor \frac{n}{2} \rfloor + 1}, ..., x_n)) \vee (\operatorname{\neg} \operatorname{xor}(x_1, ..., x_{\lfloor \frac{n}{2} \rfloor}) \wedge \operatorname{xor}(x_{\lfloor \frac{n}{2} \rfloor + 1}, ..., x_n))$$

- The size of $xor(x_1,...,x_n)$ is $\Theta(n^2)$
- lacktriangle Cubes (conjunctions of literals) of a DNF of $xor(x_1,...,x_n)$ have n literals
- Any DNF of $xor(x_1, ..., x_n)$ has at least 2^{n-1} cubes (one for each of the assignments with an odd number of 1s)
- Any CNF of $xor(x_1,...,x_n)$ also has an exponential number of cubes

- lacktriangle Idea: given F, find a DNF of F and apply the linear-time algorithm
- \blacksquare Why this does not work? Finding a DNF of F may take exponential time
- In fact there are formulas for which CNFs/DNFs have exponential size
- Consider xor defined as $xor(x_1) = x_1$ and if n > 1:

$$\operatorname{xor}(x_1, ..., x_n) = (\operatorname{xor}(x_1, ..., x_{\lfloor \frac{n}{2} \rfloor}) \wedge \operatorname{\neg} \operatorname{xor}(x_{\lfloor \frac{n}{2} \rfloor + 1}, ..., x_n)) \vee (\operatorname{\neg} \operatorname{xor}(x_1, ..., x_{\lfloor \frac{n}{2} \rfloor}) \wedge \operatorname{xor}(x_{\lfloor \frac{n}{2} \rfloor + 1}, ..., x_n))$$

- The size of $xor(x_1,...,x_n)$ is $\Theta(n^2)$
- lacktriangle Cubes (conjunctions of literals) of a DNF of $xor(x_1,...,x_n)$ have n literals
- Any DNF of $xor(x_1, ..., x_n)$ has at least 2^{n-1} cubes (one for each of the assignments with an odd number of 1s)
- Any CNF of $xor(x_1,...,x_n)$ also has an exponential number of cubes
- Next we'll see a workaround

- \blacksquare e_1
- \blacksquare $e_1 \leftrightarrow e_2 \lor e_3$
- \blacksquare $e_2 \leftrightarrow p \land q$
- \blacksquare $e_3 \leftrightarrow \neg e_4$
- $\blacksquare \quad e_4 \leftrightarrow e_5 \land e_6$
- \blacksquare $e_5 \leftrightarrow \neg p$
- $\blacksquare \quad e_6 \leftrightarrow q \lor \neg e_7$
- \blacksquare $e_7 \leftrightarrow \neg r$

- \blacksquare e_1
- \blacksquare $e_2 \leftrightarrow p \land q$
- \blacksquare $e_3 \leftrightarrow \neg e_4$
- $\blacksquare \quad e_4 \leftrightarrow e_5 \land e_6$
- \blacksquare $e_5 \leftrightarrow \neg p$
- $\blacksquare e_6 \leftrightarrow q \lor \neg e_7$
- \blacksquare $e_7 \leftrightarrow \neg r$

$$\blacksquare$$
 e_1

$$\blacksquare$$
 $e_3 \leftrightarrow \neg e_4$

$$\blacksquare$$
 $e_4 \leftrightarrow e_5 \land e_6$

$$\blacksquare \quad e_5 \leftrightarrow \neg p$$

$$\blacksquare \quad e_6 \leftrightarrow q \lor \neg e_7$$

$$\blacksquare$$
 $e_7 \leftrightarrow \neg r$

Let
$$F$$
 be $(p \wedge q) \vee \neg (\neg p \wedge (q \vee \neg r))$

$$\blacksquare$$
 e_1

$$\blacksquare$$
 $e_4 \leftrightarrow e_5 \land e_6$

$$\blacksquare \quad e_5 \leftrightarrow \neg p$$

$$\blacksquare \quad e_6 \leftrightarrow q \lor \neg e_7$$

$$\blacksquare$$
 $e_7 \leftrightarrow \neg r$

- Variations of Tseitin transformation are used in practice in SAT solvers
- Tseitin transformation does not produce an equivalent CNF: for example, the Tseitin transformation of $F = \neg p$ is $G = e \land (\neg e \lor \neg p) \land (e \lor p)$, and

e	p	F	G
0	0	1	0
0	1	0	0
1	0	1	1
1	1	0	0

- \blacksquare Still, CNF obtained from F via Tseitin transformation has nice properties:
 - lacktriangle It is equisatisfiable to F
 - lacktriangle Any model of CNF projected to the variables in F gives a model of F
 - lacktriangle Any model of F can be completed to a model of the CNF
 - lacktriangle Can be computed in linear time in the size of F
- Hence no model is lost nor added in the transformation

Overview of the session

- Definition of Propositional Logic
- General Concepts in Logic
 - ◆ Reduction to SAT
- CNFs and DNFs
 - **♦** Tseitin Transformation
- Problem Solving with SAT
- Resolution

Problem Solving with SAT

- This is the standard flow when solving problems with SAT
- Transformation from P to F is called the encoding into SAT Already seen some examples: pigeon-hole problem Other examples will be seen in the next classes
- CNF transformation already explained
- Let us see now how to design efficient SAT solvers

Overview of the session

- Definition of Propositional Logic
- General Concepts in Logic
 - ◆ Reduction to SAT
- CNFs and DNFs
 - **♦** Tseitin Transformation
- Problem Solving with SAT
- Resolution

Resolution

The resolution rule is

$$\frac{p \vee C \quad \neg p \vee D}{C \vee D}$$

- $Arr Res(S) = ext{closure}$ of set of clauses S under resolution = = clauses inferred in zero or more steps of resolution from S
- Properties:
 - lacktriangle Resolution is correct: Res(S) only contains logical consequences
 - ♦ Resolution is refutationally complete: if S is unsatisfiable, then $\Box \in Res(S)$
 - igoplus Res(S) is a finite set of clauses
- \blacksquare So, given a set of clauses S, its satisfiability can be checked by:
 - 1. Computing Res(S)
 - 2. If $\square \in Res(S)$ Then UNSAT; Else SAT