Прикладная статистика в машинном обучении

Домашнее задание #1 Часть 1

Дедлайн: 19 ноября, 23:59 МСК

Правила игры

- 1. Домашнее задание состоит из двух частей. Часть 1 содержит 13 обязательных и две бонусных задачи и предполагает решение «от руки». Часть 2 содержит 3 обязательных задачи и предполагает программное решение.
- 2. Домашнее задание оценивается в 80 баллов. При этом часть 1 оценивается в 65 баллов, а часть 2 в 15 баллов. По умолчанию за каждый пункт каждой задачи можно получить 1 балл. Однако за некоторые пункты некоторых задач можно получить другое количество баллов, которое явно указано в скобках рядом с меткой пункта.
- 3. Каждый пункт оценивается с промежутком 0.5. Например, если за пункт можно получить максимум 1 балл, то за полностью корректное решение ставится 1 балл, за решение с небольшими ошибками ставится 0.5 балла, за решение с серьёзными ошибками или неправильное решение ставится 0 баллов. Для пунктов, за которые можно получить максимум 2 балла, в зависимости от решения можно получить 2, 1.5, 1 и т.д. баллов. При этом пункты проверяются независимо друг от друга: если пункт t+1 зависит от численных результатов пункта t, и в пункте t допускается ошибка, из-за которой в пункт t+1 приходят неверные входные данные, то при корректном решении пункт t+1 оценивается в максимальное количество баллов, которое можно за него получить.
- 4. Бонусные задачи X и Y приведены в конце части 1 и обозначены значком \dagger . Эти задачи необязательны к решению и учитываются сверх установленных 80 баллов. Баллы за корректно решённые бонусные задачи прибавляются к набранным баллам, даже если в сумме получается больше 80 баллов (оценка за домашнюю работу в этом случае будет больше 10, и так и будет внесена в таблицу с оценками).
- 5. Весь код должен быть написан на Python, R, C или C++.
- 6. Решения принимаются до **19 ноября 2021 года, 23:59 МСК** включительно. Работы, отправленные после дедлайна, проверяются, но **не оцениваются**.
- 7. Все решения нужно загрузить в личный репозиторий на GitHub Classroom.
- 8. Репозиторий должен содержать: PDF-файл с решениями задач части 1 и файл с кодом с решениями задач части 2. Решение задач части 1 можно набрать в любом электронном редакторе или написать от руки, а затем сделать качественный скан. Все решения должны быть расположены в правильном порядке в одном файле. Файлы должны быть названы по типу «name_surname_group_hw1_part1.pdf» и «name_surname_group_hw1_part2.ext», где вместо ext может быть .py, .ipynb, .R, .c, .cpp. Если решение части 2 разбивается на несколько файлов кода, то в репозиторий нужно загрузить все файлы, а в README.md подробно указать, что содержит каждый файл.
- 9. Разрешается использовать без доказательства любые результаты, встречавшиеся на лекциях или семинарах по курсу, если получение этих результатов не является вопросом задания. Разрешается использовать любые свободные источники с указанием ссылки на них.
- 10. Плагиат не допускается. При обнаружении случаев списывания, 0 за работу выставляется всем участникам нарушения, даже если можно установить, кто у кого списал.

Задача 1. Просто компания

Компания «Напиши-ка» производит три вида ручек: синие, красные и зелёные. Глава аналитического отдела компании Данил хочет понять, какая из ручек скорее всего «выстрелит», а какая не будет пользоваться успехом у покупателей. Для этого он анализирует выборку в 300 проданных ручек. Оказалось, что из них 150 синих, 100 красных и 50 зелёных ручек. Данил уверен, что ручки продаются независимо друг от друга, и вероятность того, что будет продана синяя ручка, равна p_1 , а что красная p_2 .

- [a] Обозначим $p = \binom{p_1}{p_2}$. Найдите \hat{p}_{ML} интуитивно, не выписывая правдоподобие, и поясните, как вы это сделали.
- [6] Выпишите функцию правдоподобия и найдите \hat{p}_{ML} как точку её глобального максимума.
- [в] Проверьте гипотезу

$$\begin{cases} H_0: p_1 = 0.2, \\ H_A: p_1 \neq 0.2 \end{cases}$$

на уровне значимости 5% при помощи тестов LR и LM.

[г] Проверьте гипотезу

$$\begin{cases} H_0: \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} = \begin{pmatrix} 0.3 \\ 0.2 \end{pmatrix}, \\ H_A: \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} \neq \begin{pmatrix} 0.3 \\ 0.2 \end{pmatrix} \end{cases}$$

на уровне значимости 5% при помощи тестов LR и W.

- [д] Постройте график логарифма правдоподобия в трёхмерной плоскости. Покажите на графике \hat{p}_{ML} визуальную интерпретацию тестов LR и W для гипотезы из предыдущего пункта.
- [e] Постройте 95%-ый доверительный интервал для p_3 .
- [ж] Постройте 99%-ый доверительный интервал для $p_1 + p_2$.
- [3] Постройте 90%-ый доверительный интервал для \hat{p}_1 . Подсказка: помните, что мы работаем в рамках частотного подхода.
- [и] Приведите разумное интерпретируемое определение того, что ручка «выстрелила».
- [к] Пользуясь определением из предыдущего пункта, сформулируйте гипотезу о том, что «выстрелит» ручка синего цвета и проверьте её при помощи любого из тестов LR, LM или W на уровне значимости 5%.

Задача 2. Анекдоточная

Станислав знает, что хороший анекдот должен быть не очень коротким, но и не слишком длинным. Время, за которое Станислав произносит один анекдот, – это непрерывная случайная величина с плотностью

$$f(x|b) = \begin{cases} \frac{2x}{b}e^{-\frac{x^2}{b}}, & \text{если } x > 0, \\ 0, & \text{иначе,} \end{cases}$$

где b – некоторый параметр. Станислав собрал случайную выборку по продолжительности рассказанных им анекдотов: $X_1, X_2, ..., X_n$, где $n = 10^6$. Оказалось, что $\sum X_i^2/n = 20$, $\sum X_i/n = 2$.

[a] Найдите \hat{b}_{ML} .

[6] Проверьте гипотезу

$$\begin{cases} H_0: b = 3, \\ H_A: b \neq 3 \end{cases}$$

на уровне значимости 5% при помощи теста LR

 $[\mathbf{B}]$ Рассчитайте LM-статистику для проверки гипотезы

$$\begin{cases} H_0: b = 1, \\ H_A: b \neq 1 \end{cases}$$

Чему приблизительно равно соответствующее p-value?

[г] Проверьте гипотезу из предыдущего пункта, построив соответствующий доверительный интервал для h

Задача 3. «Я не дерево. Я энт».

Исследователь Матвей подбрасывает монетку с вероятностью орла p до тех пор, пока не выпадет два орла (всего, не обязательно подряд). Он сыграл четыре игры, и оказалось, что первая завершилась за 3 хода, вторая – за 3 хода, третья – за 2 хода, четвёртая – за 4 хода. Будем считать, что подбрасывания в течение одной игры независимы. Также предположим, что игры происходили независимо друг от друга.

- [a] (2 балла) Найдите \hat{p}_{ML} .
- [6] Найдите \hat{a}_{ML} для нового параметра $a = (p^2 + 3p^3 1)$.
- [в] (2 балла) Покажите, что \hat{p} является состоятельной оценкой p. $\mathit{Подсказка}$: для решения **Задачи X** потребуется доказать, что если M – число ходов, за которое завершится игра, то $\mathbb{E}(M)=\frac{2}{p}$. В этой задаче можно пользоваться этим утверждением без доказательства.

Задача 4. Полезное утверждение

Гарри никак не может понять, почему при большой информации Фишера оценки максимального правдоподобия лежат к истинному параметру ближе, чем при малой информации Фишера. Гермиона решает продемонстрировать аналитическую интуицию, стоящую за этим утверждением:

«Если взять выборку независимых одинаково распределённых случайных величин Y_1, \ldots, Y_N , каждая из которых имеет функцию плотности или функцию вероятности $f(y|\theta)$, и предположить, что выполнены все необходимые условия регулярности, то при $\phi \to \theta$:

$$D_{KL}[f(y|\theta)||f(y|\phi)] = \frac{1}{2}I_f(\theta)(\phi - \theta)^2 + O((\phi - \theta)^3)$$
».

- [а] (2 балла) Докажите утверждение Гермионы либо для случая функций плотности, либо для случая функций вероятности.
- [6] (2 балла) Поясните Гарри, почему при большей информации Фишера МL-оценки лежат ближе к истинному параметру.

Подсказка: $H(f) = -\mathbb{E}(\ln f)$, аналогично для кросс-энтропии.

(По мотивам: Williams, Weighing the Odds)

Задача 5. Модель для зелий

Полумна хочет построить предсказательную модель, которая бы описывала зависимость популярности зелья y_i от силы его положительного влияния x_i . Обе величины являются количественными непрерывными переменными на \mathbb{R} . Предположим, что Полумна знает, как измерить популярность и силу влияния и верит, что искомая зависимость имеет следующий вид:

$$y_i = (\beta_1)^2 e^{-\beta_2 x_i} u_i$$

где β_1 и β_2 – неизвестные положительные коэффициенты, u_i – случайная ошибка, причём $\ln u_i \sim \mathcal{N}(0,2)$.

- [а] (2 балла) Введите любые разумные ограничения на переменные. Найдите $\hat{\beta}_1$ и $\hat{\beta}_2$ методом максимального правдоподобия.
- [6] (2 балла) Полумна собрала выборку, для которой оказалось, что

$$\sum_{i=1}^{n} \ln y_i = 100, \ \sum_{i=1}^{n} x_i = 50, \ \sum_{i=1}^{n} x_i \ln y_i = 200,$$

$$\sum_{i=1}^{n} x_i^2 = 2500, \ \sum_{i=1}^{n} (\ln y_i)^2 = 10000, \ \sum_{i=1}^{n} e^{-\hat{\beta}_2 x_i} = 1,$$

$$n = 500.$$

Проверьте гипотезу

$$\begin{cases} H_0: \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \\ H_A: \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} \neq \begin{pmatrix} 1 \\ 2 \end{pmatrix}. \end{cases}$$

на уровне значимости 5% при помощи теста W

Подсказка: $\ln Y \sim N(\mu, \sigma^2) \Rightarrow \mathbb{E}(Y) = e^{\mu + \frac{\sigma^2}{2}}$.

Задача 6. Функции правдоподобия

Пусть X_1, \ldots, X_n – выборка независимых одинаково распределённых величин из распределения с параметром $p \in [0,1]$. Известно, что $n=100, \, \bar{X}=20, \, \sum X_i^2/n=400$. Найдите \hat{p}_{ML} для следующих функций логарифмических функций правдоподобия (можно либо вывести в явном виде, либо использовать математический анализ):

[a]
$$\ell(p) = \frac{\sqrt{X_1 + \ldots + X_n}}{50 - p} + \frac{\ln p}{X_1^2 + \ldots + X_n^2} + const.$$
 [6]
$$\ell(p) = \frac{(p^2 - \ln p) \sum X_i^2/n}{\bar{X}} + const.$$

Задача 7. Дивергент

Рассмотрим распределения $p = \mathcal{N}(1,2)$, $q = \mathrm{Exp}(1)$, $r = \mathrm{Bin}(3,0.5)$. Для каждого пункта приведите математическое обоснование ответа.

- [а] Найдите $D_{KL}(p||q)$.
- [6] Найдите $D_{KL}(q||p)$.
- [в] Найдите $D_{KL}(p||r)$.
- [**г**] Найдите $D_{KL}(q||r)$.
- [д] Возможно ли применить линейное преобразование к p, q или r так, чтобы ответ на хотя бы один из пунктов выше изменился?

Задача 8. Между молотом и наковальней

Одной из симметричных альтернатив KL-дивергенции является взаимная информация: для случайных величин X и Y она определяется как

$$I(X,Y) = H(X) - H(X|Y),$$

где
$$H(X|Y) = -\int p(x,y) \ln \frac{p(x,y)}{p(y)}$$
.

- [a] Покажите, что I(X, Y) = I(Y, X).
- [6] (2 балла) Покажите, что $I(X,Y) = D_{KL}(p(x,y)||p(x) \times p(y)).$
- [в] Поясните интуитивную интерпретацию I(X,Y).

Задача 9. Хорошая задача на экзамен

Случайная величина X принимает значение 0 с вероятностью p, значение 1 с вероятностью 1/3 и значение 2 с вероятностью 2/3-p.

- [a] Постройте график зависимости H(X) как функцию от p.
- [6] При каком p энтропия будет максимальна? Поясните полученный результат.

Задача 10. Порисуем!

Рассмотрим модель множественной регрессии $y=X\beta+u$, которая оценивается при помощи МНК. Число наблюдений равно n=400, число регрессоров равно k=10, включая константный. Все регрессоры ортогональны друг другу.

- [a] Долорес Амбридж строит регрессию по константному и следующим за ним четырём регрессорам. Корнелиус Φ адж строит регрессию по константному и оставшимся пяти регрессорам. Покажите на единой картинке MHK \hat{y} , TSS, ESS, RSS и R^2 в их регрессиях.
- [6] Альбус Дамблдор строит регрессию по всем 10 регрессорам. Покажите на той же картинке МНК \hat{y} , TSS, ESS, RSS и R^2 в его регрессии.
- [в] (2 балла) Гарри Поттер хочет сравнить регрессии Амбридж и Дамблдора при помощи F-теста. Напомним, что

$$F = \frac{(RSS_R - RSS_{UR})/(k_{UR} - k_R)}{RSS_{UR}/(n - k_{UR})}.$$

Покажите на картинке МНК RSS_R , RSS_{UR} и угол, квадрату тангенса которого пропорциональна F-статистика.

[r] Приведите геометрическую интерпретацию F-теста.

Задача 11. Подпространства

Рассмотрим пространство \mathbb{R}^3 и два подпространства в нём

$$W = \{(x_1, x_2, x_3) | 3x_1 + 2x_2 - x_3 = 0\}$$

и

$$V = \text{Lin}[(1, 1, 1)^T].$$

- [а] Найдите $\dim V$, $\dim W$, $\dim(V \cap W)$, $\dim V^{\perp}$, $\dim W^{\perp}$.
- [6] Найдите проекцию произвольного вектора u на $V, W, V \cap W, V^{\perp}, W^{\perp}$. Найдите квадрат длины каждой проекции.
- [в] Как распределён квадрат длины проекции в каждом случае, если дополнительно известно, что вектор u имеет многомерное стандартное нормальное распределение?

Задача 12. Парная регрессия

Исследователь Борис работает с обычной парной регрессией

$$y_i = \beta_0 + \beta_1 X_i + u_i,$$

которую он оценивает при помощи МНК:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i.$$

[a] Просто для удобства выпишите RSS в этой регрессии и условия первого порядка в задаче минимизации.

[6] Докажите, что
$$\sum_{i=1}^{n} (y_i - \hat{y}_i) = 0$$
.

- [в] Докажите, что $\bar{y} = \hat{\hat{y}}$.
- $[{f r}]$ Докажите, что точка $(\bar x, \bar y)$ лежит на линии оценённой регрессии.
- [д] Докажите, что $\sum_{i=1}^{n} x_i (y_i \hat{y}_i) = 0$.

Задача 13. Гипотезы в линейной регрессии

Линейная регрессионная модель задаётся в следующем виде:

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + u_i.$$

Предположим, что $u \sim \mathcal{N}(0, \sigma^2 I)$. Известно, что

$$X = \begin{pmatrix} 1 & 1 & 3.1 \\ 1 & 12 & 2.2 \\ 1 & -3 & 0.1 \\ 1 & 2 & 0.5 \\ 1 & 0 & 11.3 \end{pmatrix}, y = \begin{pmatrix} 1.1 \\ 2.5 \\ 2.2 \\ 4 \\ 1 \end{pmatrix}$$

В процессе решения используйте калькулятор, все числа округляйте до сотых.

- [**a**] Найдите $\hat{\beta_0}$, $\hat{\beta_1}$, $\hat{\beta_2}$.
- [б] Найдите \hat{y} .
- [в] Найдите TSS, ESS, RSS и \mathbb{R}^2 .
- [г] Найдите $\hat{\sigma}$.
- [д] Найдите $\widehat{\operatorname{Var}}(\hat{\beta})$.
- [е] На уровне значимости 5% проверьте гипотезу

$$\begin{cases} H_0: \beta_1 = 1, \\ H_1: \beta_1 \neq 1. \end{cases}$$

[ж] На уровне значимости 10% проверьте гипотезу

$$\begin{cases} H_0: \beta_2 = 1, \\ H_1: \beta_2 < 1. \end{cases}$$

- [3] Проверьте регрессию на значимость в целом.
- [и] На уровне значимости 5% проверьте гипотезу

$$\begin{cases} H_0: \beta_1 = \beta_2, \\ H_1: \beta_1 \neq \beta_2. \end{cases}$$

- [к] Постройте 95%-ый доверительный интервал для β_1 .
- [л] Пусть $x_{1,6} = 10$, $x_{2,6} = 7$. Найдите \hat{y}_6 .
- [м] Постройте 95%-ый доверительный интервал для $\mathbb{E}(y_6|x_{1,6},x_{2,6})$.

$\mathbf{3}$ адача \mathbf{X}^{\dagger} . Методы моментов и первого шага

Альтернативой методу максимального правдоподобия является метод моментов, суть которого заключается в том, чтобы приравнять теоретические моменты как функции от оцениваемых параметров к их выборочным аналогам, и из полученной системы найти оценки.

- [а] Пункт для тренировки. Рассмотрим выборку $X_1, X_2, X_3 \sim i.i.d.$ $\mathcal{N}(\mu, 1)$. Оказалось, что $X_1 = 1, X_2 = 2,$ $X_3 = 3$. Найдите $\hat{\mathbb{E}}(X_1)_{MM}$.
- [6] (6 баллов) Исследователь Матвей подбрасывает монетку с вероятностью орла p до тех пор, пока не выпадет два орла (всего, не обязательно подряд). Оказалось, что среднее число ходов, за которое завершится игра, равно 40. Найдите \hat{p}_{MM} .

Подсказка: докажите, что если M – число ходов, за которое завершится игра, то $\mathbb{E}(M)=\frac{2}{p}.$

Задача Y^{\dagger} . Известное неравенство

(6 баллов)

Рассмотрим линейную модель

$$y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i,$$

где $u_i \sim \mathcal{N}(0,1)$, а все предпосылки ТГМ выполнены. Исследователь Вадим тестирует гипотезу вида

$$\begin{cases} H_0: \beta_1 = C \\ H_A: \beta_1 \neq C, \end{cases}$$

где C – некоторая константа, при помощи тестов LR, LM и W. Докажите, что в такой постановке всегда верно, что $LM\leqslant LR\leqslant W$.