Mathematics Talent Reward Programme

Model Solutions for Class IX

Multiple Choice Questions

[Each question has only one correct option. You will be awarded 4 marks for the correct answer, 1 mark if the question is not attempted and 0 marks for wrong answer.]

1. (C)	2. (B)	3. (A)	4. (D)	5. (A)
6. (C)	7. (D)	8. (B)	9. (D)	10. (B)
11. (C)	12. (A)	13. (A)	14. (D)	15. (B)

Short Answer Type Questions

[Each question carries a total of 15 marks. Credit will be given to partially correct answers]

1. Let D be a point on BC such that CM = CD. Then we have

$$AM + MC = BC = BD + CD = BD + CM \implies AM = BD$$

Now consider the triangles $\triangle BMD$ and $\triangle ABC$. We have $\angle MBD = \angle ACB$ and since CM is a bisector of $\angle ACB$, we have

$$\frac{AC}{BC} = \frac{AM}{BM} = \frac{BD}{BM}$$

Thus $\triangle BMD \sim \triangle ABC$. Let $\angle ABC = \angle ACB = x$ Then $\angle BMD = x$. Thus $\angle MDC = \angle BMD + \angle MBD = 2x$. Note that $CM = CD \implies \angle DMC = 2x$. Hence if we consider the angles of triangle $\triangle CMD$ we have

$$2x + 2x + \frac{x}{2} = 180^{\circ} \implies x = 40^{\circ}$$

This implies $\angle BAC = 180^{\circ} - 2 \times 40^{\circ} = 100^{\circ}$.

- 2. Consider the parity on the sum of the co-ordinates of postions of A and B separately and note that for each step (4 for A, 6 for B), the parity of the sum of the co-ordinates does not change. Hence A having sum of the co-ordinates 0 (even) initially and B having sum of the co-ordinates 19 (odd) initially can never meet.
- 3. Let x_i be the number of coins of *i*-th type used for paying A paise. Then we have

$$x_1 + x_2 + \dots + x_7 = B$$
, $x_1 + 2x_2 + 5x_3 + \dots + 100x_7 = A$

Observe that

$$100B = 100x_1 + 100x_2 + \dots + 100x_7$$

= $100 \times x_1 + 50 \times 2x_2 + 20 \times 5x_3 + \dots \times 1 \times 100x_7$

Now if we define $y_1 = x_1, y_2 = 2x_2, y_3 = 5x_3, \dots y_7 = 100x_7$ we have

$$y_1 + y_2 + \dots + y_7 = A$$
, $100y_1 + 50y_2 + 20y_3 + \dots + y_7 = 100B$

Thus if we use y_7 1 paisa coins, y_6 2 paise coins, y_5 5 paise coins, ..., y_1 1 rupee coins, we can pay B rupees using A coins.

4. Suppose there is a square x^2 in that list. Observe that

$$(x+d)^2 = x^2 + 2xd + d^2 = x^2 + (2x+d)d$$

is of the form $x^2 + kd$ which must be in that list. Thus considering $x^2, (x+d)^2, (x+2d)^2 \dots$ we get a list of infinite perfect squares which is a sublist of the original list.

- 5. Take any 50 coins from 2016 coins to form heap A. The remaining 1966 coins form heap B say. Suppose there are x coins in heap A with heads facing up and hence there are 50 x coins in heap A with tails facing up. If we flip all the coins of heap A, then we will get 50 x coins of A with heads facing up. Note that there are 50 x coins in heap B with heads facing up. This completes the proof.
- 6. Since x-y is a prime, $x-y>0 \implies x>y$. Suppose both $x,y\geq 3$, then x+y becomes even and hence not a prime. So one of them must be 2. Hence y=2 and $x\geq 3$. So we have x-2,x,x+2 as primes. Consider three cases:

Case 1: x = 3k + 1 where $k \ge 1$, then x + 2 = 3k + 3 = 3(k + 1) which is certainly not a prime. Case 2: x = 3k + 2 where $k \ge 1$, then x - 2 = 3k which is prime only if k = 1. This forces x = 5. A simple checking shows that this is indeed a solution.

Case 3: x = 3k where $k \ge 1$, then k = 1, which forces x - y = 1, not a prime.

Thus x = 5, y = 2 is the only solution.