CIRCUITOS LOGICOS DIGITALES

Universidad Peruana de Ciencias Aplicadas

Laureate International Universities®

CICLO ACADÉMICO: 2023-II

TIPOS DE CODIFICACIÓN:

son adyacentes, es decir, aquellas que varian solo en un bit. Y es <u>cíclico</u> cuando además la última combinación es adyacente a la primera.

CÓDIGO BINARIO NATURAL:

Un código binario natural de n bits se representa mediante el sistema binario el cual también representa 2^n códigos decimales comprendidos entre 0 y $2^n - 1$.

Por ejemplo:

La tabla muestra el código binario de 3 bits que representa 8 códigos decimales los cuales están comprendidos entre $0 y 7=2^3-1$.

Código Decimal	Código Binario	
0	000	
1	001	
2	010	
3	011	
4	100	
5	101	
6	110	
7	111	

<u>CÓDIGO DECIMAL CODIFICADO EN</u> <u>BINARIO – BCD (8421)</u>

En el código decimal codificado en binario (BCD), conocido también como código 8421; cada dígito decimal se deberá representar mediante un código binario de 4 bits

Por ejemplo:

37₁₀ en código BCD es <u>0011</u> <u>0111</u>

3	7	
0011	0111	

	BCD		
Dígito	Natural		
decimal	8421		
0	0000		
1	0001		
2	0010		
3	0011		
4	0100		
5	0101		
6	0110		
7	0111		
8	1000		
9	1001		

CODIGO DECIMAL CODIFICADO A **BINARIO - BCD (8421) EJEMPLOS**

Convertir a BCD los siguientes números decimales:

a) 170

b) 98

c) 35

d) 9673

e) 2469

Convertir a decimal cada uno de los siguientes códigos BCD:

a) 1000 0110 b) 0011 0101 0001 c) 1001 0100 0111 0000

CODIGO DECIMAL CODIFICADO A BINARIO - BCD (8421)

IMPORTANTE: El Código BCD puede utilizarse para realizar operaciones aritméticas. Para ello, se deberán tener las siguientes consideraciones:

- 1.- Sumar los códigos BCD agrupados en 4 bits usando las reglas de la suma binaria.
- 2.- Si una suma de los códigos BCD agrupados en 4 bits es igual o menor a 9, el resultado es un código BCD válido.
- 3.- Si la suma de los códigos BCD agrupados en 4 bits es mayor que 9, o si genera un acarreo en el resultado, este resultado no será válido. Esta situación se resuelve sumando 6 en código BCD (0110) a los resultados BCD no validos representados por 4 bits para saltar así los 6 códigos no válidos y así obtener un código válido o dentro del rango.

<u>OPERACIONES ARITMÉTICAS ENTRE CODIGOS DECIMAL CODIFICADOS A BINARIO - BCD (8421). EJEMPLOS</u>

Sumar los siguientes códigos BCD

a) 0011 + 0100

- b) 00100011 + 00010101
- c) 10000110 + 00010011
- d) 010001010000 + 010000010111

OPERACIONES ARITMÉTICAS ENTRE CODIGOS ECIMAL CODIFICADOS A BINARIO (8421). EJEMPLOS

Sumar los siguientes números BCD

b)
$$1001 + 1001$$

c)
$$00010110 + 00010101$$

<u>CODIGO BCD PONDERADO –</u> <u>AIKEN 2421</u>

El código BCD Ponderado - Aiken es un código ponderado agrupado en 4 bits cuyos pesos son 2421. Debido a que los pesos son diferentes al de los números binarios natural es considerado como un código no binario natural.

<u>Por ejemplo:</u>

La tabla muestra el código Aiken de 4 bits equivalente para los dígitos decimales.

El código decimal 39 en código Aiken se representará del siguiente modo:

3	9	
0011	1111	

Dígito decimal	Código Aiken 2421		
0	<u>o</u> poo		
1	0001		
2	0010		
3	0011		
4	0100		
5	1011		
6	1100		
7	1101		
8	1110		
9	<u>1</u> 111		

<u>CODIGO BCD NO PONDERADO -</u> EXCESO 3

El código BCD no Ponderado – exceso 3 es un código no ponderado agrupado en 4 bits que se obtiene al sumar 3 (0011) al número BCD Ponderado - natural que se desea convertir al código BCD no Ponderado – exceso 3.

Por ejemplo:

La tabla muestra el código BCD no Ponderado - Exceso 3 agrupado en 4 bits - y sus dígitos decimales equivalentes. El código decimal 52 en código BCD no Ponderado - exceso 3 se representará del siguiente modo:

5	2
1000	0101

Dígito decimal	BCD no Ponderado Exceso 3		
0	0011		
1	0100		
2	0101		
3	0110		
4	0111		
5	1000		
6	1001		
7	1010		
8	1011		
9	1100		

CODIGO CONTINUO Y CÍCLICO O REFLEJADO - CÓDIGO GRAY

Es un código continuo y cíclico o reflejado no aritmético que no tiene asignación de pesos.

La característica principal del código Gray es la variación entre sus dígitos contiguos.

<u>CODIGO CONTINUO Y CÍCLICO O</u> <u>REFLEJADO - CÓDIGO GRAY</u>

Es útil en el desarrollo de dispositivos que integran codificadores de posición (en sistemas mecánicos y electrónicos) para el control de la posición de los ejes al recibir una secuencia de comandos en forma de bits y así evitar señales falsas o viciadas en la secuencia de comando.

REGLAS PARA CODIFICAR UN NÚMERO BINARIO A CODIGO GRAY

CONSIDERACIONES:

- 1. El bit más significativo (MSB) en el código Gray(CG) será el mismo MSB del número binario que se codificará a CG.
- 2. Partiendo desde el MSB (izquierda) hacia la derecha, sumar secuencialmente los dígitos adyacentes del número binario para obtener los dígitos en código Gray el cual estará conformado por los resultados de dichas sumas. Los acarreos no participan en ninguna asignación de digito en esta codificación, así que deberán descartarse.

REGLAS PARA CODIFICAR UN CÓDIGO GRAY A NÚMERO BINARIO

CONSIDERACIONES:

- 1. El bit más significativo (MSB) del código gray (CG) será el mismo para el numero binario (NB) que se codificará.
- 2. Partiendo desde el MSB (izquierda) hacia la derecha, sumar secuencialmente en diagonal los resultados de los dígitos del código Gray para obtener los dígitos en número binario el cual será el resultado de dichas sumas. Los acarreos no participan en ninguna asignación de digito en esta codificación, así que deberán descartarse.

Por ejemplo, convertir el código Gray 11011 a número binario:

TABLA DE CODIFICACIÓN ENTRE DIGITOS DECIMALES, NUMEROS BINARIOS Y CODIGOS GRAY

Dígito decimal	Número Binario	Código Gray	Dígito decimal	Número Binario	Código Gray
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000