計量経済 II: 宿題 14

村澤 康友

提出期限: 2023年1月24日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例を正確に再現すること(乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない。すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上になる場合は必ず左上隅をホッチキスで留めること。

- 1. gretl のサンプル・データ gdp_midas は,1947 年第 1 四半期 ~ 2011 年第 2 四半期のアメリカのマクロ 経済の混合頻度時系列データであり,以下の変数を含む.
 - (a) 実質 GDP (四半期)
 - (b) 非農業雇用者数(月次)
 - (c) 鉱工業生産指数(月次)

鉱工業生産指数の対数階差系列の時系列グラフを以下の2つの手順で描きなさい.

- (a) 変数を選んで右クリックし、「時系列グラフを描く」を選択(1系列になる).
- (b) メニューから「表示」→「変数のグラフ」→「時系列プロット」として変数を選択(3系列になる).
- 2. gretlで MIDAS 回帰モデルを推定する手順は以下の通り.
 - (a) メニューから「モデル」 \rightarrow 「一変量時系列」 \rightarrow 「MIDAS」を選択.
 - (b)「従属変数」を1つ選択.
 - (c) AR 次数を選択 (コイック・ラグなしなら 0).
 - (d)「説明変数(回帰変数)」を選択(低頻度変数).
 - (e)「高頻度説明変数」選択し、分布ラグの定式化を設定.
 - (f) その他は必要に応じて設定(基本的にデフォルト値のままでよい).
 - (g) $\lceil OK \rfloor$ $\delta D \cup D \cup D$.

また推定結果の画面のメニューから「グラフ」 \rightarrow 「MIDAS 係数」で分布ラグの推定結果を図示できる. 前間のサンプル・データの実質 GDP と鉱工業生産指数の対数階差系列を用いて MIDAS 回帰モデルを 以下の 2 つの定式化で推定し、分布ラグの形状をグラフで比較しなさい.

- (a) U-MIDAS (-2 から +3 次の分布ラグ,コイック・ラグなし)*1
- (b) 2次の正規化指数アーモン・ラグ(同上)

 $^{^{*1}}$ gretl は期首に低頻度系列を観測すると想定している。例えば第 1 四半期は 1 月に (x_1,y_1) , 2 月に $x_{1+1/3}$, 3 月に $x_{1+2/3}$ を観測する。そのため期末に低頻度系列を観測する場合(例えばフロー変数),分析の際に時点をずらす必要がある。

解答例

1. (a) 右クリック

(b) メニュー

2. (a) U-MIDAS

モデル 1: MIDAS (OLS), 観測: 1947:3–2011:2 (T=256) 従属変数: ld_qgdp

	Estimate	標準誤差	t-ratio	p 値
const	1.32718	0.0556330	23.86	0.0000
$ld_indpro_m3_0$	0.180955	0.0628032	2.881	0.0043
$ld_indpro_m2_0$	0.144163	0.0609751	2.364	0.0188
$ld_indpro_m1_0$	0.390132	0.0620210	6.290	0.0000
$ld_indpro_m3_1$	0.351218	0.0668641	5.253	0.0000
$ld_indpro_m2_1$	0.112033	0.0599286	1.869	0.0627
$ld_indpro_m1_1$	0.00930043	0.0566786	0.1641	0.8698
Mean dependent var	1.614566	S.D. depe	ndent var	1.142532
Sum squared resid	166.4931	S.E. of reg	gression	0.817708
R^2	0.499828	Adjusted	R^2	0.487776
F(6, 249)	41.47146	P-value(F	')	6.99e-35
Log-likelihood	-308.1796	Akaike cri	terion	630.3593
Schwarz criterion	655.1755	Hannan-C	Quinn	640.3403
$\hat{ ho}$	0.458329	Durbin-W	Vatson (1.082486

MIDAS coefficients

(b) 2次の正規化指数アーモン・ラグ

モデル 2: MIDAS (NLS), 観測: 1947:3–2011:2 (T=256) Using L-BFGS-B with conditional OLS

従属変数: ld_qgdp

	Estimate	標準誤差	t-ratio	p 値
const	1.32071	0.0556325	23.74	0.0000

MIDAS list ld_indpro, high-frequency lags -2 to 3

HF_slope	1.18549	0.0820243	14.45	0.0000
Almon1	2.00000	0.596568	3.353	0.0009
Almon2	_0.312483	0.0043067	_3 310	0.0011

Mean dependent var	1.614566	S.D. dependent var	1.142532
Sum squared resid	169.4660	S.E. of regression	0.820051
R^2	0.490897	Adjusted \mathbb{R}^2	0.484836
Log-likelihood	-310.4450	Akaike criterion	628.8901
Schwarz criterion	643.0708	Hannan-Quinn	634.5935
$\hat{ ho}$	0.467937	Durbin-Watson	1.063220

GNR: $R^2 = 0.00030858$, max |t| = 0.278902 警告: 収束は疑わしいです

MIDAS coefficients

