1 WE CLAIM:

1	1.	A method of writing product servo sectors to a disk of a disk drive, the disk drive
2		comprising control circuitry and a head disk assembly (HDA) comprising the disk, an
3		actuator arm, a head connected to a distal end of the actuator arm, and a voice coil motor
4		for rotating the actuator arm about a pivot to position the head radially over the disk, the
5		method comprising the steps of:
6		(a) inserting a head positioning pin of an external spiral servo writer into the HDA, the
7		head positioning pin for engaging the actuator arm;
8		(b) using the external spiral servo writer to derive a radial location of the head;
9		(c) actuating the head positioning pin in response to the radial location of the head in a
10		closed loop system to rotate the actuator arm about the pivot in order to position the
11		head radially over the disk while:
12		writing a plurality of reference servo sectors in a substantially circular reference
13		path, each reference servo sector comprising a sync mark and a plurality of
14		servo bursts; and
15		writing a plurality of spiral tracks, each spiral track comprising a high frequency
16		signal interrupted at a predetermined interval by a sync mark;
17		(d) removing the head positioning pin from the HDA;
18		(e) synchronizing a servo write clock by:
19		using the head internal to the disk drive to read the servo bursts in the reference
20		servo sectors to generate a position error signal used to maintain the head
21		along the circular reference path;
22		using the head internal to the disk drive to read the sync marks in the reference
23		servo sectors to generate a reference sync mark detect signal; and
24		synchronizing the servo write clock in response to the reference sync mark detect
25		signal; and

26		(f) writing the product servo sectors to the disk to define a plurality of radially spaced,
27		concentric data tracks by:
28		using the head internal to the disk drive to read the high frequency signal in the
29		spiral tracks to generate a position error signal used to maintain the head along
30		a substantially circular target path;
31		using the head internal to the disk drive to read the sync marks in the spiral tracks
32		to generate a spiral sync mark detect signal;
33		maintaining synchronization of the servo write clock in response to the spiral sync
34		mark detect signal; and
35		using the servo write clock and the head internal to the disk drive to write the
36		product servo sectors along the circular target path.
1	2.	The method as recited in claim 1, wherein each reference servo sector comprises a
2		preamble, further comprising the steps of:
3		(a) synchronizing a read clock in response to the preamble; and
4		(b) using the read clock to read the sync marks in the reference servo sectors.
1	3.	The method as recited in claim 1, further comprising the step of maintaining
2		synchronization of the servo write clock in response to the high frequency signal in the
3		spiral tracks.
1	4.	The method as recited in claim 3, further comprising the steps of:
2		(a) using the head internal to the disk drive to read the high frequency signal in the spiral
3		tracks to generate a read signal;
4		(b) sampling the read signal using the servo write clock to generate a sequence of sample
5		values;
6		(c) generating a timing recovery measurement in response to the sample values: and

7 (d) maintaining synchronization of the servo write clock in response to the timing recovery measurement. 8 5. The method as recited in claim 3, further comprising the steps of: 2 (a) generating a coarse timing recovery measurement in response to the spiral sync mark detect signal; 3 (b) generating a fine timing recovery measurement in response to the high frequency 4 5 signal in the spiral tracks; and 6 (c) maintaining synchronization of the servo write clock in response to the coarse timing 7 recovery measurement and the fine timing recovery measurement. 6. The method as recited in claim 5, further comprising the steps of: 1 (a) clocking a modulo-N counter using the servo write clock; and 2 (b) generating the coarse timing recovery measurement in response to the modulo-N 3 4 counter. 1 7. The method as recited in claim 5, further comprising the step of initializing the modulo-N 2 counter in response to the reference sync mark detect signal. 8. The method as recited in claim 1, wherein each reference servo sector comprises a 1 2 preamble, further comprising the steps of: 3 (a) synchronizing a read clock in response to the preamble of a reference servo sector; 4 (b) using the read clock to synchronously demodulate the sync mark and servo bursts in 5 the reference servo sector; and (c) using the servo write clock to synchronously demodulate the sync mark and the high 6 7 frequency signal between the sync marks in the spiral tracks without synchronizing 8 the servo write clock to a preamble.

- 1 9. The method as recited in claim 1, wherein the control circuitry within the disk drive is
- 2 used to read the sync marks in the reference servo sectors and the spiral tracks in order to
- 3 synchronize the servo write clock.
- 1 10. The method as recited in claim 1, wherein an external product servo writer is used to read
- the sync marks in the reference servo sectors and the spiral tracks in order to synchronize
- 3 the servo write clock.

- 1 11. A disk drive comprising control circuitry and a head disk assembly (HDA) comprising a
 2 disk, an actuator arm, a head connected to a distal end of the actuator arm, and a voice
 3 coil motor for rotating the actuator arm about a pivot to position the head radially over the
 4 disk, wherein the disk comprises:
 - (a) a plurality of reference servo sectors in a substantially circular reference path, each reference servo sector comprising a sync mark and a plurality of servo bursts, the servo bursts for maintaining the head along the circular reference path while reading the sync marks in the reference servo sectors to generate a reference sync mark detect signal for use in synchronizing a servo write clock;
 - (b) a plurality of spiral tracks, each spiral track comprising a high frequency signal interrupted at a predetermined interval by a sync mark, the high frequency signal for maintaining the head along a circular target path while reading the sync marks in the spiral tracks to generate a spiral sync mark detect signal for use in maintaining synchronization of the servo write clock; and
 - (c) a plurality of product servo sectors written using the servo write clock, the product servo sectors defining a plurality of radially spaced, concentric data tracks.