Méthodes d'Estimation

Série n°2 : Identifiabilité, Exhaustivité

Exercice 1 Parmi les paramétrisations suivantes, lesquelles sont identifiables ?

- 1. $X_1, X_2, ..., X_n$ sont supposées indépendantes, $X_i \rightsquigarrow \mathcal{N}(\alpha_i + \nu, \sigma^2)$. Le paramètre considéré est $\theta = (\alpha_1, \alpha_2, ..., \alpha_n, \nu, \sigma^2)$ avec $\alpha = (\alpha_1, ..., \alpha_n)$ appartenant à l'ensemble $\{(a_1, ..., a_n) / \sum_{i=1}^n a_i = 0\}$ et P_{θ} est la distribution de $\underline{X} = (X_1, X_2, ..., X_n)$.
- 2. X et Y indépendantes de lois $\mathcal{N}(\mu_1, \sigma^2)$ et $\mathcal{N}(\mu_2, \sigma^2)$, avec $\theta = (\mu_1, \mu_2)$ et en observant Y X.
- 3. $X = (X_{i,j}), i = 1, \ldots, n \text{ et } j = 1, \ldots, p \text{ indépendantes, de loi } \mathcal{N}(\mu_{i,j}, \sigma^2)$ où $\mu_{i,j} = \nu + \alpha_i + \lambda_j, \ \theta = (\alpha_1, \ldots, \alpha_n, \lambda_1, \ldots, \lambda_p, \nu, \sigma^2).$

Exercice 2 Par définition, on dit que deux statistiques T_1 et T_2 sont équivalentes si $T_1(\underline{x}) = T_1(y) \iff T_2(\underline{x}) = T_2(y)$.

Les statistiques suivantes sont-elles équivalentes ?

1.
$$\prod_{i=1}^{n} x_i$$
 et $\sum_{i=1}^{n} \ln x_i, x_i > 0$.

2.
$$\sum_{i=1}^{n} x_i$$
 et $\sum_{i=1}^{n} \ln x_i, x_i > 0$.

3.
$$\left(\sum_{i=1}^{n} x_i, \sum_{i=1}^{n} x_i^2\right)$$
 et $\left(\sum_{i=1}^{n} x_i, \sum_{i=1}^{n} (x_i - \bar{x})^2\right)$.

Exercice 3 Soit X_1, \ldots, X_n un n-échantillon de loi de Poisson $\mathcal{P}(\theta)$, $\theta > 0$.

- 1. Montrer que $T(\underline{X}) = \sum_{i=1}^{n} X_i$ est exhaustive directement puis à l'aide du théorème de factorisation.
- 2. Montrer que cette statistique est complète.

Exercice 4 Soit X_1, \ldots, X_n un n-échantillon de loi P_{θ} , de densité f_{θ} , trouver une statistique exhaustive pour θ , a étant fixé, si :

1.
$$f(x,\theta) = \theta x^{\theta-1}, \ 0 < x < 1 \ et \ \theta > 0$$

2.
$$f(x,\theta) = \theta a x^{a-1} \exp(-\theta x^a), \ 0 < x, \ \theta > 0 \ et \ a > 0$$

3.
$$f(x,\theta) = \theta a^{\theta}/x^{\theta+1}$$
, $a < x$, $\theta > 0$ et $a > 0$.

Exercice 5 Soit X une variable aléatoire prenant les valeurs $v_1, ..., v_{k+1}$ avec les probabilités $\theta_1, ..., \theta_{k+1}$.

Soit $(X_1,...,X_n)$ un n-échantillon de même loi que X.

On suppose que $\theta = (\theta_1, ..., \theta_{k+1}) \in \Theta$

avec
$$\Theta = \{(\theta_1, ..., \theta_{k+1}) / \theta_i \ge 0, 1 \le i \le k+1 \text{ et } \sum_{i=1}^{k+1} \theta_i = 1\}.$$

Soit N_j le nombre de X_i qui prennent la valeur v_j .

- 1. Montrer par l'intermédiaire du théorème de factorisation, que $N=(N_1,...,N_{k+1})$ est exhaustive pour $\theta \in \Theta$.
- 2. Déterminer la loi de $N=(N_1,...,N_{k+1})$ et redémontrer directement l'exhaustivité de la statistique N.

Exercice 6 Soit $(X_1,...,X_n)$ un n-échantillon de loi

$$f(x,\theta) = \frac{1}{\sigma} \exp(-\frac{x-\mu}{\sigma}), \ si \ x \ge \mu$$
$$= 0 \quad sinon$$

et on pose $\Theta = \{(\mu, \sigma) / \mu \in \mathbb{R}, \sigma > 0\}$.

- 1. Montrer que $\min(X_1,...,X_n)$ est exhaustive pour μ quand σ est fixé.
- 2. Trouver une statistique exhaustive pour σ quand μ est fixé.
- 3. Trouver une statistique exhaustive pour θ .

Exercice 7 Les familles de lois suivantes sont-elles des familles exponentielles à un paramètre? On proposera chaque fois que cela est possible, une statistique exhaustive.

- 1. La famille $\mathcal{U}_{[0,\theta]}$, θ réel positif non nul.
- 2. La famille de densités $f(x,\theta) = \exp[-2\ln\theta + \ln(2x)] \mathbb{1}_{[0,\theta]}(x), \theta > 0$.
- 3. $P_{\theta}(x) = 1/9, x \in \{0.1 + \theta, 0.2 + \theta, \dots, 0.9 + \theta\}, \theta > 0.$
- 4. $\mathcal{N}(\theta, \theta^2)$, pour $\theta > 0$.
- 5. $P_{\theta}(x) = 2(x+\theta)/(1+2\theta), \ 0 < x < 1 \ et \ \theta > 0.$

Exercice 8:

- 1. Pour les lois usuelles qui suivent, déterminer celles qui appartiennent à la famille exponentielle à un paramètre et donner, chaque fois que cela est possible, une statistique exhaustive associée au modèle :
 - (a) Binomiale $\mathcal{B}(n,\theta), \theta \in]0; 1[$.
 - (b) Poisson $\mathcal{P}(\theta)$, $\theta > 0$.
 - (c) Cauchy $C(\theta)$, $\theta > 0$.
 - (d) Student $\mathcal{T}(\theta), \theta \in \mathbb{N}^*$.
- 2. Déterminer celles qui appartiennent à la famille exponentielle à 2 paramètres et donner, chaque fois que cela est possible, une statistique exhaustive associée au modèle.
 - (a) Gamma $\gamma(a, \lambda), a > 0, \lambda > 0$.
 - (b) Lognormale $\mathcal{LN}(\mu, \sigma^2), \mu \in \mathbb{R} \ et \ \sigma > 0.$