

2012—2013 学年第一学期《线性代数》答案及评分标准

专业现	妊级 _	
姓	名_	
学	号_	
开课系	系室	基础数学系
考试日	∃期	2013年1月16日

页号	_		三	四	五.	六	¥ /\
本页满分	15	21	24	16	12	12	总分
本页得分							
阅卷人							

注意事项:

- 1. 请在试卷正面答题,反面及附页可作草稿纸;
- 2. 答题时请注意书写清楚,保持卷面清洁;
- 3. 本试卷共六道大题,满分100分;试卷本请勿撕开,否则作废;
- 4. 本试卷正文共6页.

- .	选	择题	(共5/	小题,	每小题 3	分,	共计 15 %	分)			本页满分 15 分
1.	已知	五阶	行列式	第三列	り的元素を	分 别う	夕 0, 1,	2, 3,	4,第三	三列的余	本
子:	式分	别为-	-4, -3,	-2, -	-1,0,则	该行	列式的值	为(В)		页 得
	Α.	-2		В. 2		С.	10	D	10.		分
2.	已知	1方阵	· <i>A</i> 满足	$A^2 - A$	A-3E=C) ,贝	[]下列说》	去错误的	り是 (D)	
	Α.	A+3	3 <i>E</i> 可逆	Ī;							
	В.	A-A	<i>E</i> 可逆;	;							
	С.	A可	逆;								
	D.	A^2	下可逆.								
3.	含 n	个未	知量的	齐次方	程组 Ax	=0種	自非零解 的	的充分或	必要条件	‡是(A)
	Α.	R(A	(n;								
	В.	R(A)	= n;								
	С.	R(A)>n;								
		`	$) \leq n$.								
4 -		`	,	关系的:	是(B)					
1.			,,, 的初等			,					
			的可逆								
	C.	矩阵	的相似	, ;							
	D.	矩阵	的合同								
5.	设向	量组	$\alpha_1, \alpha_2,$	α_3 线性	无关,向]量 /3	3 ₁ 可以由 a	$\alpha_1, \alpha_2, \alpha_3$	。线性表	示,向量	$t\beta_2$ 不能
由。	α_1, α_2	$_{2},\alpha_{3}$	线性表示	示,则	(A)					
	A a	$\alpha_1, \alpha_2,$	α_3, β_1 +	- β ₂ 线 l	生无关;						
	Ва	$\alpha_1, \alpha_2,$	α_3, β_1 -	- β ₂ 线 l	生相关;						
	C a	$\alpha_1, \alpha_2,$	α_3, β_1	ま性无き	关;						
	D a	$\alpha_1, \alpha_2, \alpha_3$	α_3, β_2	浅性相 :	关.						

二. 填空题(共5小题,每小题3分,共计15分)

本页满分 21 分 本 页 得 分

- 2. 设四阶矩阵 A 与 B 相似, E 为四阶单位阵,矩阵 A 的特征值为
- 2, 3, 4, 5, |M|B-E|=_____.

3. 设矩阵
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$$
, $B = A^2 - 3A + 2E$, 则 $B^{-1} = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -2 & -2 \end{pmatrix}$.

4. 设三阶方阵 $A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 3 & 0 & 4 \end{pmatrix}$, 三维列向量 $\alpha = \begin{pmatrix} a & 1 & 1 \end{pmatrix}^T$,已知 $A\alpha$ 与 α 线性相

美,则*a* = <u>-1</u>.

5. 从 R^2 的 基 $\alpha_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 到 基 $\beta_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\beta_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ 的 过 渡 矩 阵 为

$$\begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix}.$$

三、论述证明题(6分)

请问等价的向量组线性相关性一定相同吗?若答案肯定,请给出证明;否则请说明理由或举出反例.

答: 不一定.(4)

例如,向量组与其最大无关组等价,但线性相关性不一定相同.(6)

四. 计算下列各题(共5小题,每小题8分,共计40分)

1. 计算行列式
$$D = \begin{vmatrix} 2+a & 2 & 2 & 2 \\ 2 & 2+a & 2 & 2 \\ 2 & 2 & 2+a & 2 \\ 2 & 2 & 2 & 2+a \end{vmatrix}$$
. (8分)

$$D = \begin{vmatrix} 2+a & 2 & 2 & 2 \\ 2 & 2+a & 2 & 2 \\ 2 & 2 & 2+a & 2 \\ 2 & 2 & 2 & 2+a \end{vmatrix} = (8+a) \begin{vmatrix} 1 & 2 & 2 & 2 \\ 1 & 2+a & 2 & 2 \\ 1 & 2 & 2+a & 2 \\ 1 & 2 & 2 & 2+a \end{vmatrix} \dots (4)$$

将第一列乘以(一2)后加到其余各列,

$$D = (8+a)\begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & a & 0 & 0 \\ 1 & 0 & a & 0 \\ 1 & 0 & 0 & a \end{vmatrix} = (8+a)a^{3}....(8)$$

2. 设矩阵
$$A = \begin{pmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 4 \end{pmatrix}$$
, 且 $AB = A + 2B$, 求矩阵 B . (8分)

解: 由
$$AB = A + 2B$$
, 得:

解: 由
$$AB = A + 2B$$
, 得: $(A-2E)B = A$(4)

验证知矩阵A-2E是可逆的,所以

$$B = (A - 2E)^{-1}A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ 2 & -2 & -1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 5 & -2 & -2 \\ 4 & -3 & -2 \\ -2 & 2 & 3 \end{pmatrix}.$$

3. 设矩阵
$$A = \begin{pmatrix} 1 & -1 & 1 \\ x & 4 & y \\ -3 & -3 & 5 \end{pmatrix}$$
有 3 个线性无关的特征向量, $\lambda = 2$ 是 A 的二重特征

值, 求x, y. (8分)

$$R(A-2E)=1$$
....(4)

又因为
$$A-2E = \begin{pmatrix} -1 & -1 & 1 \\ x & 2 & y \\ -3 & -3 & 3 \end{pmatrix}$$
,故 $x = 2, y = -2$. (8)

4. 设向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 3 \end{pmatrix}, \alpha_2 = \begin{pmatrix} -1 \\ -3 \\ 5 \\ 1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 3 \\ 2 \\ -1 \\ 4 \end{pmatrix}, \alpha_4 = \begin{pmatrix} -2 \\ -6 \\ 10 \\ 2 \end{pmatrix}$$

本页满分 16 分 本 页 得

求该向量组的秩和一个最大无关组. (8分)

解:
$$i$$
记
$$A = \begin{pmatrix} 1 & -1 & 3 & -2 \\ 1 & -3 & 2 & -6 \\ 1 & 5 & -1 & 10 \\ 3 & 1 & 4 & 2 \end{pmatrix} \xrightarrow{\text{fr}} \begin{pmatrix} 1 & -1 & 3 & -2 \\ 0 & -2 & -1 & -4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \dots (4)$$

$$\alpha_1, \alpha_2, \alpha_3$$
 是一个最大无关组.(8)

5. 设四元非齐次线性方程组的系数矩阵的秩为 3, 已知 η_1,η_2,η_3 是它的三个解向

量,且
$$\eta_1 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$
, $\eta_2 + \eta_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$, 求该方程组的通解. (8分)

解: 易知, $(\eta_2 + \eta_3 - 2\eta_1)$ 是该方程组的导出组的一个基础解系,(4)

则该方程组的通解为:

$$x = k(\eta_2 + \eta_3 - 2\eta_1) + \eta_1 = k \begin{pmatrix} -3 \\ -4 \\ -5 \\ -6 \end{pmatrix} + \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, \quad k \in \mathbb{R}.....(8)$$

五、(12分)

设有三维向量组
$$\alpha_1 = \begin{pmatrix} 1+\lambda\\1\\1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1\\1+\lambda\\1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1\\1\\1+\lambda \end{pmatrix}$, $\beta = \begin{pmatrix} 0\\\lambda\\\lambda^2 \end{pmatrix}$, 问 λ 取 有

本页满分 12 分 本 页 得 分

何值时,

- (1) β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,且表达式唯一?
- (2) β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,但表达式不唯一?
- (3) β 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示?

解:设 $\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 = \beta$,该方程组的增广矩阵为

$$\overline{A} = (A, \beta) = (\alpha_1, \alpha_2, \alpha_3, \beta) = \begin{pmatrix} 1 + \lambda & 1 & 1 & 0 \\ 1 & 1 + \lambda & 1 & \lambda \\ 1 & 1 & 1 + \lambda & \lambda^2 \end{pmatrix} \xrightarrow{\text{form}} \begin{pmatrix} 1 & 1 & 1 + \lambda & \lambda^2 \\ 0 & \lambda & -\lambda & \lambda - \lambda^2 \\ 0 & 0 & -3\lambda - \lambda^2 & -\lambda^3 - 2\lambda^2 + \lambda \end{pmatrix}$$

$$\cdots \cdots (6)$$

- (2) 当 λ =0时, $R(\overline{A})$ =R(A)=1<3,方程组有无穷多解,则 β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,但表达式不唯一:(10)

六、(12分)

设二次型 $f(x_1, x_2, x_3) = x^T A x = a x_1^2 + 2 x_2^2 - 2 x_3^2 + 2 b x_1 x_3 (b > 0)$, 其中二次 型的矩阵 A 的特征值之和为 1,特征值之积为-12.

页

- (1) 求a,b的值;
- 利用正交变换将此二次型化为标准形,并写出所用的正交变换和对应的正 交矩阵.

解: (1)
$$f$$
 的矩阵为 $A = \begin{pmatrix} a & 0 & b \\ 0 & 2 & 0 \\ b & 0 & -2 \end{pmatrix}$, 由已知

$$\begin{cases} |A| = -4a - 2b^2 = -12 \\ a + 2 - 2 = 1 \end{cases}$$
 (2)

所以 a=1,b=2.

(2)
$$f$$
 的矩阵为 $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & -2 \end{pmatrix}$,特征多项式为:
$$|A - \lambda E| = \begin{vmatrix} 1 - \lambda & 0 & 2 \\ 0 & 2 - \lambda & 0 \\ 2 & 0 & -2 - \lambda \end{vmatrix} = -(\lambda - 2)^2 (\lambda + 3)$$

$$|A - \lambda E| = \begin{vmatrix} 1 - \lambda & 0 & 2 \\ 0 & 2 - \lambda & 0 \\ 2 & 0 & -2 - \lambda \end{vmatrix} = -(\lambda - 2)^{2}(\lambda + 3)$$

特征值为: $\lambda_1 = \lambda_2 = 2, \lambda_3 = -3$ 。

对于 $\lambda_1 = \lambda_2 = 2$,解齐次线性方程组(A - 2E)x = 0,得特征向量 $\tau_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\tau_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$

对于
$$\lambda_3 = -3$$
,解齐次线性方程组 $(A+3E)x=0$,得特征向量 $\tau_3 = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$

容易验证 τ_1, τ_2, τ_3 是正交向量组,单位化得

$$p_{1} = \frac{\tau_{1}}{\|\tau_{1}\|} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad p_{2} = \frac{\tau_{2}}{\|\tau_{2}\|} = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \quad p_{3} = \frac{\tau_{3}}{\|\tau_{3}\|} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$$
....(10)

故所求正交变换为: x = Py, 其中, 正交变换矩阵为:

$$P = (p_1, p_2, p_3) = \frac{1}{\sqrt{5}} \begin{pmatrix} 0 & 2 & 1\\ \sqrt{5} & 0 & 0\\ 0 & 1 & -2 \end{pmatrix}$$

标准型为: $f = 2y_1^2 + 2y_2^2 - 3y_3^2$ (12)