Actividad 2: A2-Matrices y vectores aleatorios

Code ▼

Yolanda Elizondo Chapa A01137848: 04 de octubre del 20222

```
Hide
X = matrix(c(1,6,8,4,2,3,3,6,3), ncol = 3)
b = matrix(c(8,14,14), ncol=1)
c = matrix(c(8,28,-42))
                                                                                             Hide
cat("Media b'X =",mean(b[,1]),"\n")
Media b'X = 12
                                                                                             Hide
cat("Media c'X = ",mean(c[,1]),"\n\n")
Media c'X = -2
                                                                                             Hide
cat("Varianza b'X =",var(b[,1]),"\n")
Varianza b'X = 12
                                                                                             Hide
cat("Varianza c'X =",var(c[,1]),"\n\n")
Varianza c'X = 1300
                                                                                             Hide
cat("Vector de medias de X =", colMeans(X),"\n\n")
Vector de medias de X = 5 3 4
                                                                                             Hide
cat("Matriz de covarianza de X \n")
Matriz de covarianza de X
```

Hide

```
print(cov(X))
     [,1] [,2] [,3]
[1,] 13.0 -2.5 1.5
[2,] -2.5 1.0 -1.5
[3,] 1.5 -1.5 3.0
                                                                                           Hide
cat("\n Matriz de correlaciones de X \n")
Matriz de correlaciones de X
                                                                                           Hide
print(cor(X))
           [,1]
                      [,2]
                                 [,3]
[1,] 1.0000000 -0.6933752 0.2401922
[2,] -0.6933752 1.0000000 -0.8660254
[3,] 0.2401922 -0.8660254 1.0000000
                                                                                           Hide
cat("\n Determinante =", det(X))
Determinante = 114
                                                                                           Hide
library(MVN)
x = rnorm(100, 10, 2)
y = rnorm(100, 10, 2)
datos = data.frame(x,y)
mvn(datos, mvnTest = "hz", multivariatePlot = "persp")
$multivariateNormality
Test
                                                         ΗZ
                                                                              p value MVN
<chr>
                                                       <dbl>
                                                                                <dbl> <chr>
Henze-Zirkler
                                                  0.6092451
                                                                            0.3738117 YES
1 row
$univariateNormality
```

	Test <s3: asls=""></s3:>	Variable <s3: asis=""></s3:>	Statistic <s3: asis=""></s3:>	p value <s3: asis=""></s3:>	Normality <s3: asis=""></s3:>
1	Anderson-Darling	Х	0.4132	0.3319	YES
2	Anderson-Darling	у	0.4127	0.3327	YES
2 rows					

\$Descriptives

n <int></int>	Mean <dbl></dbl>	Std.Dev <dbl></dbl>	Median <dbl></dbl>	Min <dbl></dbl>	Max <dbl></dbl>	25th <dbl></dbl>	75th <dbl></dbl>	Skew <dbl></dbl>
x 100	10.005470	2.042630	10.283532	4.758353	14.41744	8.710884	11.41252	-0.33777298
y 100	9.997813	1.971105	9.953299	5.969003	13.64155	8.687783	11.62495	-0.04731483
2 rows 1-10 of 10 columns								

 $\mathsf{N}\mathsf{A}$

Hide

mvn(datos, mvnTest = "hz", multivariatePlot = "contour")

\$multivariateNormality

Test	HZ	p value MVN
<chr></chr>	<dbl></dbl>	<dbl> <chr></chr></dbl>

Test <chr></chr>	HZ <dbl></dbl>	p value <dbl></dbl>	MVN <chr></chr>
Henze-Zirkler	0.6092451	0.3738117	YES
1 row			

\$univariateNormality

	Test <s3: asls=""></s3:>	Variable <s3: asls=""></s3:>	Statistic <s3: asls=""></s3:>	p value <s3: asls=""></s3:>	Normality <s3: asls=""></s3:>
1	Anderson-Darling	Х	0.4132	0.3319	YES
2	Anderson-Darling	У	0.4127	0.3327	YES
2 rows					

\$Descriptives

n <int></int>	Mean <dbl></dbl>	Std.Dev <dbl></dbl>	Median <dbl></dbl>	Min <dbl></dbl>	Max <dbl></dbl>	25th <dbl></dbl>	75th <dbl></dbl>	Skew <dbl></dbl>
x 100	10.005470	2.042630	10.283532	4.758353	14.41744	8.710884	11.41252	-0.33777298
y 100	9.997813	1.971105	9.953299	5.969003	13.64155	8.687783	11.62495	-0.04731483
2 rows 1-10 of 10 columns								

NA

En este caso al aplicar la prueba de normalidad multivariada de Henze-Zirkler a X y Y se observa un p-value mayor a .05 por lo que se puede decir que tienen una normalidad multivariada en el nivel de significancia de .05

```
Hide
x1=c(1,2,3,3,4,5,6,8,9,11)
x2=c(18.95, 19.00, 17.95, 15.54, 14.00, 12.95, 8.94, 7.49, 6.00, 3.99)
plot(x1, x2)
```


La covarianza es negativa

```
Hide
A = matrix(c(x1,x2), ncol = 2)
distancias = mahalanobis(A,mean(A),cov(A))
distancias
 [1] 12.405051 5.574686 3.508886
 [4] 10.170426 8.594036 5.354751
[7] 16.965340 5.775439 4.999457
[10] 1.616989
                                                                                          Hide
distanciasOrdenadas = order(distancias)
barplot(qchisq(.75, df=distanciasOrdenadas))
```

