al. Expand ex. 10sy about (0,0) upto 3rd term using taylor series.

soln:

$$a = 0$$
 $b = 0$ $h = x - 0$
 $h = x$ $K = y - 0$

$$f(x,y) = f(a,b) + \frac{1}{1!} [hfx + kfy] + \frac{1}{2!} [h^2 fxx + \frac{1}{2!}]$$

function	(010)
f(xy)=e*cosy	$f(0,0) = e^{\circ}\cos 0 = 1 \times 1 = 1$
$f(x) = e^x \cos y$	e°c000 =1
fy = exc(-siny)	$e^{\circ}(-\sin o) = o$
$f_{xx} = e^{x} cosy$	e°coso = 1
$f_{xy} = e^{x}(-sihy)$	$e^{\circ}(-\sin \theta) = 0$
$f_{yy} = -e^{x}\cos y$	-e°(coso) = -1
$f_{xxxx} = e^{x} \cos y$	$e^{\circ}\cos 0 = 1$
$f_{xxy} = e^{x}(-siny)$	e'(-sino) = 0
fry = ex(-cosy)	e°C-coso) = -1
fygg = - e rc(-siny)	-e°Esino) = 0

$$f(x^{2}(y)) = 1 + \frac{1}{1!} \left(x^{2}(1) + y \times 0 \right) + \frac{1}{2!} \left(x^{2}(1) + 2xy(0) + y^{2}(0) \right) + \frac{1}{3!} \left(x^{2}(1) + 3x^{2}y(0) + 3xy^{2}(-1) + y^{3}(0) \right) + \cdots$$

$$f(x_{1}y) = 1 + x + \frac{1}{2} \left(x^{2} - y^{2} \right) + \frac{1}{6} \left(x^{3} - 3xy^{2} \right) + \cdots$$

83. Expand TS ex log (1+4) upto third term (0,0) in power of 3c & y-

soln: Given,

$$f(x_iy) = e^{x} \log(1+y)$$

$$a = 0; b = 0$$

	function	at (0,0)
	$f(x,y) = e^{x} \log(1+y)$	f(0,0) = e°(09(1+0)=0
	$f(x) = e^{x(109(1+9))}$	e° (09 (1+0) = 0
	$f(y) = e^{x} \frac{1}{1+y} (y)$	e° 1/10 = 1
	fsci) = ex log (1+4)	e° (09(1+0)=0
	$f_{xy} = e^{x} \frac{1}{1+9}$	e° 1/10 = 1
	$fyy = e^{2C} \left(\frac{-1}{(1+9)^2} \right)$	$e^{\circ}\left(\frac{-1}{(1+0)^2}\right)=-1$
	fxxx = e2c (09 (1+9)	0
And the same of th	$f_{xxy} = e^{x} \left(\frac{1}{1+9} \right)$	e° 1/10 =1
	$f_{xyy} = e^{x} \left(\frac{-1}{(1+9)^{2}} \right)$	e° (-1 (1+0)2) = -1
	$f_{yy} = -e^{x} \left(\frac{-2}{(1+9)^3} \right)$	$-e^{\circ}\left(\frac{-2}{(1+0)^{3}}\right)=+2$

$$f(x_1y) = f(x_1y) = \frac{1}{1!} \left[hf_{xx} + kfy \right] + \frac{1}{2!}$$

 $\left[hf_{xx} + 2hKf_{xy} + K^2f_{yy} \right] + \frac{1}{3!} \left[h^3_{xxx} + 3h^2Kf_{xxy} + 3h^2Kf_{xxy} \right]$
 $+3h^2Kf_{xyy} + K^3_{yyy}$

 $f(x_1 y) = 0 + \frac{1}{1!} \left[x \times 0 + y \times (1) \right] + \frac{1}{2!}$ $\left[x^2(0) + 2xy(1) + y^2(-1) \right] + \frac{1}{3!} \left[x^3(8) + 3x^2y(1) + 3xy^2(-1) + y^3(2) + \dots \right]$ $f(x_1 y) = \frac{1}{1!} y + \frac{1}{2!} \left[2xy - y^2 \right] + \frac{1}{3!} \left[3x^2y - 3y^2 + 2y^3 \right] + \dots$

value xation = xxx +.

ASSOCIATE - STANT

TO WE ARE THE TOTAL OF THE PARTY OF THE PART

Apply - aparely

A told do not on a york with

+ (4+0+0+0)

Find the Taylor series expansion of the function
$$f(x,y) = \sin x \sin y$$
 near the origin. (0,0)

Soh: Given: $f(x_1y) = sinx siny$ Function

(0,0)
6
0
0
Ó
1
0
6
0
D
6

 $f(x_1y) = f(a_1b) + [h t_x (a_1b) + k f_y (a_1b)] + \frac{1}{2!}$ $[h^2 t_{xx} (a_1b) + 2h k f_{xy} (a_1b) + k^2 f_{yy} (a_1b)] + \frac{1}{3!} [h^3 f_{xxx} (a_1b) + 3h^2 k f_{xxy} (a_1b) + 3hk^2 f_{xxy} (a_1b) + k^3 f_{yy} (a_1b)] + ...$ $(a_1b) + k^3 f_{yy} (a_1b)] + ...$ h = x - a k = y - b= x - 0 - y - 0

Sinx siny = 0 + 0 + 0 $\frac{1}{2}$: $[0 + 2xy + 0] + \frac{1}{3}$. $(0 + 0 + 0 + 0) + \cdots = xy$