EECS 376: Foundations of Computer Science

Chris Peikert 6 March 2023

Complexity: Agenda

- 1) What "resources" (time, memory, randomness, ...) are needed to solve a problem on a computer?
- Which problems can be solved efficiently on a computer?
- 3) What does "efficient" even mean?
- 4) The hardest way to make \$1 Million: P vs. NP.

Why Polynomial?

- * "For practical purposes the difference between algebraic [polynomial] and exponential order is often more crucial than the difference between finite and non-finite."
 - Jack Edmonds (defined complexity class P, 1965)

Review: Running Time

- * We measure "efficiency" of an algorithm by how its (worst-case) runtime scales with the input "size"
- * We express this growth asymptotically: e.g., $O(\log n)$, O(n), $O(2^n)$, ... where n denotes the input size.
- * Size = # bits to write/represent the input on a computer.

Efficient ≡ "polynomial runtime in input size";
Very robust definition (as we'll see)

Polynomial-Time Algorithms

We have seen polynomial-time algorithms for various problems:

GCD(x,y) Euclid's algorithm ($O(\log(x + y))$) divisions)

Longest Increasing Subseq. Dynamic Prog. (time $O(n^2)$)

Longest Common Subseq. Dynamic Prog. (time $O(n^2)$)

All-Pairs Shortest Paths Dynamic Prog. (time $O(n^3)$)

Minimum Spanning Tree Greedy (time $O(n \log n)$)

There are several others: Matching, Max-flow/min-cut,

Primality testing [Agarwal, Kayal, Saxena 2002]: Time $O(\log^6 N)$

Based on many clever and ingenious ideas. Several algorithms still to be discovered!

A Poly-Time Algorithm for Every (Solvable) Problem?

- Longest Path: Given G and vertices (s,t), find a longest s->t path (w/o cycle).
- Hamiltonian Cycle: Given G, find a cycle that visits each vertex exactly once.
- Independent Set: Given G, find a largest subset of vertices that have no edges among them.
- Subset Sum: Given $a_1, a_2, ..., a_n \in \mathbb{Z}$ and target t, find a subset that sums to t
 - (what about the DP solution we saw in the class?)

• ...

Most <u>believe</u> that <u>none</u> of these problems has a poly-time algorithm. We <u>know</u> that if any <u>one</u> of them does, then <u>all</u> of them do!

Theory of "P vs. NP": a crown jewel of Computer Science—with a million dollar reward!

The Class P

- * **Definition:** P = the set of all languages that can be decided by a TM in (some) polynomial time in the input size.
- * In other words: $L \in \mathbf{P}$ if L is *efficiently decidable*, i.e., it has a polynomial-time decision algorithm.

Formally:
$$\mathbf{P} = \bigcup_{k \ge 1} DTIME(n^k)$$

- * Properties:
 - * Model agnostic: can replace TM with any "realistic" (deterministic) model.
 - * Composition: if an efficient M has an oracle, which is instantiated by an efficient M', then the resulting program is also efficient.
 - * Proof idea: $(n^k)^{k'} = n^{k \cdot k'}$ is also polynomial (for constants k, k').

Search vs. Decision Problems

Definition: P = the set of all languages that can be decided by a TM in (some) polynomial time in the input size.

We are (still) talking about decision problems, with "yes/no" answers.

What about gcd(x,y)? Shortest path s->t? LIS(x)? Etc... These don't have yes/no answers...

Not a problem! Can recast them as decision problems, and solve the original search problems with only polynomial "slowdown."

Recasting Search as Decision: GCD

- * Problem: Given integers x, y, z, is $gcd(x, y) \ge z$?
 - * $L_{GCD} = \left\{ (x, y, z) : x, y, z \in \mathbb{N} \text{ and } z \ge \gcd(x, y) \right\}$
- * Claim: L_{GCD} is efficiently decidable, i.e., $L_{GCD} \in \mathbf{P}$.
- * Proof: Run Euclid's algorithm and answer accordingly.
- * Claim: Using any L_{GCD} -decider, we can efficiently compute $\gcd(x,y)$ itself.
- * Proof: binary search on $z \in \{1... \min(x, y)\}$, asking decider if $\gcd(x, y) \ge z$.

Runtime: $\log \min(x, y) = O(\text{input size})$ calls to decider.

Recasting: Shortest Paths

- * Problem: Given an (integer-)weighted graph G, vertices s and t, and $z \in \mathbb{Z}$, is there an $s \to t$ path of length at most z?
 - * $L_{path} = \{\langle G, s, t, z \rangle : G \text{ has an } s \to t \text{ path of length } \leq z\}$
- * Claim: L_{path} is efficiently decidable, i.e., $L_{path} \in \mathbf{P}$.
- * Proof: run Floyd-Warshall APSP and answer accordingly.
- * Claim: using any L_{path} -decider, we can compute the length of a shortest $s \to t$ path (with no negative-weight cycles).
- Proof: binary search on $z \in \{-Z, ..., Z\}$ where $Z = \sum_{(u,v) \in E} |w(u,v)|$

Recasting Search to Decision In General

For a <u>search problem</u> with a <u>numerical output</u> A, recast it as a <u>language</u> with an <u>extra numerical input</u> z that asks: is $z \ge A$?

Using any decider, can solve the search problem via binary search. Only O(log(RANGE)) calls to the decider.

For a search problem with an array output A, recast it as a language with extra inputs z, i that asks: is $z \ge A[i]$?

Using any decider, can solve the search problem via binary search for each index i.

Similarly for string outputs, set outputs, ...

Introducing: The Class NP

Common misconception: NP does **not** stand for "Non/Not Polynomial"!

NP means "Nondeterministic Polynomial time."

We won't cover nondeterminism in this course. Instead, we'll use a conceptually simpler definition of NP.

"A better name would have been **VP**: **verifiable** in polynomial time." -Clyde Kruskal

Quote of The Day

"Doveryai, no proveryai"
(Trust, but verify)

Old Russian Proverb, Used by Ronald Reagan

- * Example 1: Given a maze, is there a route through the maze from the start to finish?
- * Answer: Yes.
- * Response: We're not convinced—you could be lying!

- * Example 1: Given a maze, is there a route through the maze from the start to finish?
- * Answer: Yes; see the route below.
- * Response: We follow the route and are convinced.

- * Example 2: TSP (decision version):
 Given 4 cities and pair-wise distances between them, is there a cycle of length at most 100 through all the cities?
- * Answer: Yes; $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$.
- * Response: We check that this visits all the cities in a cycle, compute the cost 20+30+12+35 = 97 < 100, and are convinced.

- * Example 3: Subset Sum
- * Given integers $a_1, a_2, ..., a_n$ and target t, is there a subset of the a_i that sums to t?
- * Answer: Yes; here are indices i of some a_i that do.
- * Response: We check that all given i are distinct, that the specified a_i sum to t, and are convinced.

Efficiently Verifiable Problems

- * Intuition (informal): A decision problem is efficiently verifiable if:
- 1. When the answer is "yes": we can be efficiently <u>convinced</u> given some <u>additional information</u>: "certificate", "proof", "witness".
- 2. When the answer is "no": <u>no</u> additional information—even maliciously generated—could fool us into thinking that the answer is yes.
- * Asymmetric: we never wish to be convinced that the answer is "no".
- * TSP: If there is a cheap enough tour, we can be convinced (give one). If not, even a "malicious adversary" cannot fool us.
- * Subset Sum: if some subset sums to t, we can be convinced (give If not, even a "malicious adversary" cannot fool us.

The Class NP

- * Definition: A decision problem L is *efficiently verifiable* if there exists an algorithm V(x,c), called a *verifier*, satisfying:
- 1. V(x,c) is efficient with respect to x, i.e., polynomial time in |x|.
- 2. For every $x \in L$, there exists some c such that V(x, c) accepts.
 - (When the answer is "yes", we can be efficiently convinced given some certificate/witness/proof.)
- 3. For every $x \notin L$, V(x, c) rejects for <u>all</u> c.
 - (When the answer is "no", we won't be fooled by any [bogus] proof.)

Definition: the class **NP** = set of all efficiently verifiable languages.

I.e., $L \in \mathbf{NP}$ if L is efficiently verifiable.

Example: TSP

- * TSP: Given n cities and pair-wise distances, is there a cycle that visits every city <u>exactly once</u>, and has length at most k?
 - * $TSP = \{(G, k) : G \text{ is a weighted graph w/ a } tour \text{ of length } \leq k\}$
- * Claim: TSP is efficiently verifiable, i.e., $TSP \in NP$.

Consider certificate c in the form of a sequence of vertices (which is supposed to be a tour of length $\leq k$, if one exists)

bool **verifyTSP**(graph G = (V, E), int k, certificate $c = (v_1, ..., v_m)$):

- 1. if c is not a permutation of V: reject
- 2. return length $(v_1, ..., v_m, v_1) \le k$

Correctness Analysis of verifyTSP

```
bool verifyTSP(graph G=(V,E), int k, certificate c=(v_1,...,v_m)):
```

- 1. if c is not a permutation of V: reject
- 2. return length $(v_1, ..., v_m, v_1) \leq k$
- * Case 1: If $(G, k) \in TSP$, then <u>some</u> certificate c makes verifyTSP((G, k), c) return true.
 - * Let $c = (v_1, ..., v_m)$ be the vertices of G, ordered according to some tour of length $\leq k$ (which exists by hypothesis).
 - * Since c is a permutation of V, line 1 does not reject.
 - * Then, length $(v_1, ..., v_m, v_1) \le k$ by assumption and verifyTSP(x, c) returns true on line 2, as desired.

Correctness Analysis of verifyTSP

```
bool verifyTSP(graph G=(V,E), int k, certificate c=(v_1,...,v_m)):
```

- 1. if c is not a permutation of V: reject
- 2. return length $(v_1, ..., v_m, v_1) \leq k$
- * Case 2: If $(G, k) \notin TSP$, then verifyTSP(x, c) rejects for <u>any</u> certificate c.
 - * If c is not a permutation of V, then line 1 rejects, as desired.
 - * Now suppose $c = (v_1, v_2, ..., v_m)$ is a permutation of V.
 - * By assumption, G has no tour of length $\leq k$.
 - * Therefore, length $(v_1, ..., v_m, v_1) > k$.
 - * Thus, line 2 rejects, as desired.

Runtime Analysis of verifyTSP

```
bool verifyTSP(graph G=(V,E), int k, certificate c=(v_1,...,v_m)):
```

- 1. if c is not a permutation of V: reject
- 2. return length $(v_1, ..., v_m, v_1) \leq k$

- * Suppose the input (G, k) has (bit) length n.
- * There are at most *n* vertices in *G*.
- * Line 1 takes O(n) time: use a boolean array to check if each vertex appears exactly once in c.
- * Line 2 takes O(n) time: sum the weights of the edges on the tour.
- * Therefore, the runtime is polynomial in n, as desired.

Practice with Verifiers

```
L_{Comp}= {n : n is composite (not prime)}
```

 L_{HAM} = {G : G has a Hamiltonian cycle}

 L_{Primes} = {n : n is prime } (complement of L_{Comp})

Not obvious. But there is a clever verifier! (next slide)

 $L_{non-HAM}$ = {G : G has <u>no</u> Hamiltonian cycle} We **do not expect** the problem to have an efficient verifier! (Would have very surprising consequences.)

Aside: Certificate for Primes

```
L_{Primes} = \{n : n \text{ is prime}\}
```

Theorem (Pratt 75): L_{Primes} is efficiently verifiable.

Proof: Key property of primes: n is prime \underline{i} there is an x such that $x^{n-1} = 1 \pmod{n}$ but $x^e \neq 1 \pmod{n}$ for all $e = (n-1)/p_i$,

where p_i are the prime divisors of n-1.

Certificate: $(x, p_1, ..., p_k, \text{ certificate that each } p_i \text{ is prime})$

By induction: Certificate has size $O(\log n)$.

P vs NP

- * $L \in \mathbf{P}$ if there is a polynomial-time (in |x|) algorithm M where:
 - * $x \in L \Longrightarrow M(x)$ accepts
 - * $x \notin L \Longrightarrow M(x)$ rejects
- * $L \in \mathbb{NP}$ if there is a polynomial-time (in |x|) algorithm V where:
 - * $x \in L \Longrightarrow V(x,c)$ accepts for some c
 - * $x \notin L \Longrightarrow V(x,c)$ rejects for every c
- * Observe: $P \subseteq NP$ (V(x, c) can ignore c and just run M(x).)
- * \$1,000,000 question: Is P = NP? Is every efficiently <u>verifiable</u> problem also efficiently <u>solvable</u>? Seems not... but we don't know for sure!

P vs NP

- * ... Let p(n) be the number of steps to find a proof of length n. The question is, how rapidly does p(n) grow for an optimal machine? It is possible to show that p(n) > Kn. If there really were a machine with $p(n) \sim Kn$ (or even just $\sim Kn^2$) then that would have consequences of the greatest significance. Namely, this would clearly mean that the thinking of a mathematician in the case of yes-or-no questions could be completely replaced by machine ...
 - Kurt Godel's letter to von Neumann in 1956 (15 years before P vs NP was formalized!)

- * "If P = NP, then the world would be a profoundly different place than we usually assume it to be. There would be no special value in 'creative leaps', no fundamental gap between solving a problem and recognizing the solution once it's found."
 - Scott Aaronson

The Major Open Problem of Computer Science

