

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 87103589.5

(22) Anmeldetag: 12.03.87

(51) Int. Cl.³: C 07 D 405/14

C 07 D 409/14, C 07 D 213/0-
4

C 07 D 215/02, C 07 D 237/3-
0

C 07 D 239/00, A 61 K 31/49-
5

A 61 K 31/435

//A61K31/41, A61K31/415

(30) Priorität: 21.03.86 DE 3609596

(43) Veröffentlichungstag der Anmeldung:
23.09.87 Patentblatt 87/39

(84) Benannte Vertragsstaaten:
AT BE CH DE ES FR GB GR IT LI LU NL SE

(71) Anmelder: HOECHST AKTIENGESELLSCHAFT
Postfach 80 03 20
D-6230 Frankfurt am Main 80(DE)

(72) Erfinder: Kampe, Klaus-Dieter, Dr.
Am Rehsteig 1
D-6232 Bad Soden am Taunus(DE)

(72) Erfinder: Raether, Wolfgang, Dr.
Falkensteinstrasse 6
D-6072 Dreieich(DE)

(72) Erfinder: Dittmar, Walter, Dr.
Uhlandstrasse 10
D-6238 Hofheim am Taunus(DE)

(72) Erfinder: Hänel, Heinz, Dr.
Tannenwaldallee 80
D-6380 Bad Homburg(DE)

(84) 2-Azolylmethyl-2-aryl-1,3-dioxolane und deren Salze, Verfahren zu ihrer Herstellung, sie enthaltende Mittel und ihre Verwendung.

(57) Beschrieben werden Verbindungen I

Zwischenprodukte zu deren Herstellung. Auch für die Herstellung von IIIa sind Verfahren angegeben.
I stellen wertvolle Antimykotika dar.

mit A gleich CH oder N; Ar gleich Naphtyl, Thienyl, Phenyl;
R¹ gleich Alkyl, F, Cl; g gleich null, 1, 2; Y gleich verschiedene heterocyclische Basen sowie deren Säureadditionssalze.

Beschrieben werden mehrere Herstellungsverfahren.
Verbindungen IIIa

mit R¹, g und Y wie zu Formel I angegeben dienen als

2-Azolylmethyl-2-aryl-1,3-dioxolane und deren Salze, Verfahren zu ihrer Herstellung, sie enthaltende Mittel und ihre Verwendung

5 Die Erfindung betrifft mit Heterocyclen substituierte 2-Azolylmethyl-2-aryl-4-[(4-piperazino-phenoxy)-methyl]-1,3-dioxolane einschließlich ihrer Salze, Verfahren zu ihrer Herstellung, diese Verbindungen enthaltende Arzneimittel und ihre Verwendung insbesondere als Antimykotika.

10

Antimykotisch bzw. fungizid wirksame 2-Azolylmethyl-2-aryl-4-[(4-piperazino-phenoxy)-methyl]-1,3-dioxolane sind bereits bekannt und werden u.a. in der DE-OS 2 804 096, und der EP-OS 7696 beschrieben. Die bekanntesten Vertreter 15 aus der großen Zahl der beschriebenen Verbindungen sind 2-S,(R)-(2,4-Dichlorphenyl)-2-(imidazol-1-ylmethyl)-4-R,(S)-[4-(4-acetyl-piperazin-1-yl)-phenoxy-methyl]-1,3-dioxolan (Ketoconazol) und 2-S,(R)-(2,4-Dichlorphenyl)-2-(1,2,4-triazol-1-ylmethyl)-4-R,(S)-[4-(4-isopropyl-piper-20 azin-1-yl)-phenoxy-methyl]-1,3-dioxolan (Terconazol), die als Antimykotika im Handel sind (vgl. DOS 2 804 096, Beispiel 20 und Beispiel 53), wobei Ketoconazol vorwiegend als systemisch wirksames und Terconazol als topisch wirksames Antimykotikum verwendet wird. Die antimykotische 25 Wirkung sowie insbesondere die Verträglichkeit der bekannten Verbindungen sind jedoch nicht immer ganz befriedigend.

Es wurde nun gefunden, daß 2-Azolylmethyl-2-aryl-4-[(4-piperazino-phenoxy)-methyl]-1,3-dioxolane der Formel

35

In der

A CH oder N,
Ar Naphthyl, Thienyl, Halothienyl oder eine unsubstituierte oder eine bis zu 3 Substituenten tragende Phenylgruppe bedeutet, wobei die Substituenten gleich oder verschieden sein können und Halogen, Trifluormethyl, C_1-C_2 -Alkyl, C_1-C_2 -Alkoxy oder Phenoxy bedeuten,

R¹ C_1-C_3 -Alkyl, F oder Cl,

g 0, 1 oder 2,

Y die folgenden heterocyclischen Reste

, in denen

R² C_1-C_4 -Alkyl, eine unsubstituierte oder 1 oder 2 Substituenten tragende Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können und Halogen, Trifluormethyl, Methoxy, Ethoxy, Nitro oder C_1-C_4 -Alkyl bedeuten, oder eine unsubstituierte oder eine im Phenylrest 1 oder 2 Substituenten tragende Phenyl- C_1-C_2 -alkylgruppe, wobei die Substituenten gleich oder verschieden sein können und F, Cl, Methoxy-, Ethoxy- oder C_1-C_3 -Alkyl bedeuten,

R³ H, C_1-C_8 -Alkyl, C_3-C_6 -Cycloalkyl- C_1-C_3 -alkyl, eine unsubstituierte oder 1 oder 2 Substituenten tragende Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können und Halogen, Methoxy-, Ethoxy oder C_1-C_3 -Alkyl bedeuten, eine unsubstituierte oder im Phenylrest durch Methoxy, 1,2-Methyldioxy, F, Cl oder C_1-C_3 -Alkyl substituierte Phenyl- C_1-C_2 -alkylgruppe, oder Trifluormethyl

5

R⁴ H, C_1-C_4 -Alkyl oder Benzyl,

oder R^3 und R^4 zusammen

$-(CH_2)_r-$, wobei $r=3$ oder 4 ist, oder $-CH=CH-CH=CH-$,

q 0 oder 1 bedeutet, oder

5

b) , in dem

R^5 H oder CN

10 R^6 H, C_1-C_4 -Alkyl oder eine unsubstituierte oder durch OCH_3 , F, Cl, CH_3 oder C_2H_5 substituierte Phenylgruppe

R^7 H, Benzyl, CF_3 oder CH_3 ,

15 R^8 C_5-C_6 -Cycloalkyl oder eine unsubstituierte oder durch OCH_3 , F, Cl, CH_3 oder C_2H_5 substituierte Phenylgruppe bedeutet und, falls R^5 CN und/oder R^7 CF_3 bedeutet, R^8 auch H bedeuten kann, oder und R^8 zusammen $-(CH_2)_4-$ bedeuten, oder

20

R^9 H, Methyl oder Ethyl,

25 R^{10} H, CN oder $COOR^{12}$, wobei R^{12} Methyl oder Ethyl bedeutet,

R^{11} C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, Halogen oder Trifluormethyl und

30 n 0, 1 oder 2 bedeutet, wobei, falls R^{11} CF_3 bedeutet, $n=1$ ist, und, falls $n\neq 0$, die Reste R^{11} in 5, 6, 7 oder 8-Stellung des Chinolinsystems stehen können, oder

35

R^{13} H, C_1-C_4 -Alkyl oder eine unsubstituierte oder 1 oder 2 Substituenten tragende Phenylgruppe, wobei die Substituenten gleich oder verschieden sein

können und Halogen, Methoxy, Ethoxy, Methyl oder Ethyl bedeuten, bedeutet,

sowie deren physiologisch verträgliche Säureadditionssalze

5 wertvolle antimykotische bzw. fungizide Eigenschaften besitzen. Sie sind daher zur Bekämpfung von Mykosen bei Mensch und Tier sowie zur Bekämpfung von Pilzbefall bei Pflanzen und auf Werkstoffen geeignet.

10 In diesem Zusammenhang ist unter dem Ausdruck "Halo-thienyl" ein in 2- oder 3-Stellung verknüpfter Thienylrest, der in beliebiger Position mit einem Halogenatom, vorzugsweise Brom oder Chlor, substituiert sein kann, unter den Ausdrücken " C_1-C_3 -, C_1-C_4 - und C_1-C_8 -Alkyl" ein

15 unverzweigter oder verzweigter Kohlenwasserstoffrest mit 1-3, 1-4 oder 1-8 C-Atomen, unter dem Ausdruck " C_3-C_6 - bzw. C_5-C_6 -Cycloalkyl" einen Cyclopropyl-, -butyl-, -pentyl- oder Cyclohexyl- bzw. Cyclopentyl- oder Cyclohexyl-Rest, unter dem Ausdruck

20 " C_1-C_4 -Alkoxy" eine Alkoxygruppe, deren Kohlenwasserstoffrest die unter dem Ausdruck " C_1-C_4 -Alkyl" angegebene Bedeutung hat und unter dem Ausdruck "Halogen" ein F-, Cl-, Br- oder J-Atom zu verstehen.

25 Bevorzugt sind diejenigen Verbindungen der Formel I, in denen mindestens einer der Substituenten bzw. Indices die folgende Bedeutung hat:

A CH oder N,

30 Ar eine durch 1 oder 2 F- oder Cl-Atome substituierte Phenylgruppe,

R¹ CH₃ oder C₂H₅

g 0 oder 2

Y

35 zu dem heterocyclischen Rest a)

R² C_1-C_4 -Alkyl, eine unsubstituierte oder 1 oder 2 gleiche oder verschiedene Substituenten tragende Phenyl-

gruppe, wobei die Substituenten F, Cl, OCH₃, OC₂H₅, CH₃ oder C₂H₅ bedeuten, oder eine Benzyl- oder eine durch ein F- oder Cl-Atom im Phenylrest substituierte Benzylgruppe,

5 R³ C₁-C₈-Alkyl, C₅-C₆-Cycloalkyl-C₁-C₂-alkyl, eine Phenyl- oder Phenyl-C₁-C₂-alkylgruppe, im Phenylrest jeweils unsubstituiert oder durch 1 oder 2 F, Cl, OCH₃ oder CH₃ substituiert, oder CF₃,

10 R⁴ C₁-C₄-Alkyl, Benzyl oder

10 R³ und R⁴ zusammen -(CH₂)₃-, -(CH₂)₄- oder -CH=CH-CH=CH-, q 0 oder 1

zu dem heterocyclischen Rest b)

15 R⁵ H oder CN,

15 R⁶ H, CH₃ oder Phenyl

R⁷ H oder CF₃

18 R⁸ Phenyl oder durch F, Cl, CH₃ oder OCH₃ substituiertes Phenyl oder, falls R⁵ CN und/oder R⁷ CF₃ bedeutet, zusätzlich H und

20 R⁷ und R⁸ zusammen -(CH₂)₄-

zu dem heterocyclischen Rest c)

19 R⁹ H

10 R¹⁰ CN, COOCH₃ oder COOC₂H₅,

25 R¹¹ C₁-C₄-Alkyl, C₁-C₄-Alkoxy, F, Cl, Br oder CF₃

n 0, 1 oder 2, wobei falls R¹¹ CF₃ bedeutet n=1 ist und, falls n ungleich 0 ist, R¹¹ in 5, 6, 7 oder 8-Stellung stehen kann,

30 zu dem heterocyclischen Rest d)

13 R¹³ H, C₁-C₄-Alkyl oder eine unsubstituierte oder durch 1 oder 2 F, Cl, OCH₃ oder CH₃ substituierte Phenylgruppe.

35 Besonders bevorzugt sind Verbindungen der Formel I, in denen mindestens einer der Substituenten bzw. Indizes die folgende Bedeutung hat:

A CH oder N

Ar 2,4-Dichlorphenyl

R¹ CH₃

g 0 oder 2

Y

zu den heterocyclischen Resten a)

R² eine unsubstituierte oder 1 oder 2 gleiche oder verschiedene Substituenten tragende Phenylgruppe, wobei die Substituenten Cl, OCH₃, OC₂H₅ oder CH₃ bedeuten, eine Benzyl- oder eine Chlorbenzylgruppe,

R³ C₁-C₈-Alkyl, C₅-C₆-Cycloalkyl-C₁-C₂-alkyl, eine Phenyl- oder Phenyl-C₁-C₂-alkylgruppe, im Phenylrest jeweils unsubstituiert oder durch 1 oder 2 F, Cl, OCH₃ oder CH₃ substituiert,

R⁴ C₁-C₄-Alkyl, Benzyl oder

R³ und R⁴ zusammen -(CH₂)₃- , -(CH₂)₄- oder -CH=CH-CH=CH-,

q 0 oder 1,

zu dem heterocyclischen Rest b)

) R⁵ H oder CN,

R⁶ H oder CH₃,

R⁷ H oder CF₃,

R⁸ Phenyl oder durch Cl oder OCH₃ substituiertes Phenyl oder, falls R⁵ CN und/oder R⁷ CF₃ bedeutet,

5 zusätzlich H,

zu dem heterocyclischen Rest c)

R⁹ H,

R¹⁰ CN, COOCH₃ oder COOC₂H₅,

0 R¹¹ CH₃, C₂H₅, OCH₃, OC₂H₅, F, Cl, Br oder CF₃,

n 0, 1 oder 2, wobei, falls R¹¹ CF₃ bedeutet, n=1 ist und, falls n ungleich 0 ist, R¹¹ in 5-, 6-, 7- oder 8-Stellung stehen kann,

5 zu dem heterocyclischen Rest d)

R¹³ eine unsubstituierte oder durch 1 oder 2 F, Cl, OCH₃ oder CH₃ substituierte Phenylgruppe.

Die Erfindung betrifft weiterhin die möglichen Stereoisomeren der Formel I, sowohl als Diastereomeren-Racemate wie auch als reine Enantiomere, sowie ihre pharmazeutisch akzeptablen Salze. Insbesondere betrifft das

5 die wegen der 2,4-Disubstitution des 1,3-Dioxolan-Rings möglichen Stereoisomeren; die 2-Azolylmethyl-Gruppe kann zum 4-ständigen Substituenten, der substituierten Phenoxy-methyl-Gruppe, cis- oder trans-ständig angeordnet sein.

Die cis-Isomeren zählen zu den bevorzugten erfindungsgemäßen Verbindungen.

10

Als Salze der erfindungsgemäßen Verbindungen der Formel I kommen solche mit physiologisch unbedenklichen anorganischen und organischen Säuren, wie beispielsweise

15 Chlor-, Brom- oder Jodwasserstoff-, Schwefel-, Phosphor-, Salpeter-, Benzolsulfon-, Toluolsulfon-, Sulfamin-, Methyldschwefel-, Essig-, Propion-, Oel-, Palmitin-, Stearin, Malon-, Malein-, Bernstein-, Glutar-, Aepfel-, Wein-, Zitronen-, Fumar-, Milch-, Glykol-, Brenztrauben-, Benzoe-,

20 Toluyl-, Glutamin-, Furancarbon-, Salicyl- oder Mandelsäure in Betracht. Bevorzugt werden Salze mit physiologisch verträglichen anorganischen Säuren, stark bis mittelstark sauren Derivaten solcher Säuren oder mit Fumarsäure.

25 Von den bekannten, gegen Pilze und Bakterien wirksamen, oben erwähnten Azolylmethyl-2-aryl-4-[(4-piperazino-phenoxy)-methyl]-1,3-dioxolanen unterscheiden sich die erfindungsgemäßen Verbindungen wesentlich durch die Art der

30 Substituenten an der Piperazinophenoxy-methyl-Einheit in der 4-Stellung des Dioxolanrings sowie durch die wahlweise vorhandene zusätzliche Substitution des Phenylrings der 4-ständigen Phenoxygruppe. Von den teilweise ähnlichen, in der EP-A 7 696 erwähnten Verbindungen unterscheiden

35 sich die erfindungsgemäßen Verbindungen entweder durch die Art und Stellung der Substituenten an den Heterocyclen

oder durch die andersartige Struktur der an dem Piperazinring gebundenen heterocyclischen Reste.

Überraschenderweise zeigen die erfindungsgemäßen 2-Azolyl-2-aryl-4-[(4-piperazino-phenoxy)-methyl]-1,3-dioxolane eine breitere und bessere antimykotische Wirkung als die bekannten 2-Azolylmethyl-2-aryl-1,3-dioxolan-Derivate und als das bekannte 2-S,(R)-(2,4-Dichlorphenyl)-2-(imidazol-1-ylmethyl)-4-R,(S)-[4-(4-acetylpirazin-1-yl)-phenoxy-methyl]-1,3-dioxolan (Ketoconazol).

Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung der Verbindungen der Formel I und ihrer Salze, das dadurch gekennzeichnet ist, daß man

A) eine Verbindung der Formel II,

in der

A und Ar die zu Formel I angegebenen Bedeutungen haben

und

E Halogen wie F, Cl, Br, J oder Acyloxy, wie Acetoxy, Trifluoracetyloxy, Benzyloxy, Nitrobenzyloxy, Alkylsulfonyloxy, wie Methansulfonyloxy, oder Arylsulfonyloxy, wie Benzol-, Nitrobenzol-, Brombenzol- oder Toluolsulfonyloxy, bedeutet,

mit einer Verbindung der Formel III

in der

M H, ein Alkali- oder Erdalkalimetall, insbesondere Li,
Na oder K, oder NH_4 bedeutet und

R^1 , g und Y die zu Formel I angegebenen Bedeutungen haben,

umsetzt, oder daß man

B) eine Verbindung der Formel IV,

10

IV

in der

15 Ar die zu Formel I und E und E' die zu Formel II für E angegebenen Bedeutungen haben,

zunächst mit einer Verbindung der Formel III

umsetzt und hierbei eine Verbindung der Formel V herstellt,

20

V

in der

Ar, R^1 , g und Y die zu Formel I und E' die zu Formel II

25 für E angegebenen Bedeutungen haben,

und anschließend eine Verbindung der Formel V mit einer Verbindung der Formel VI umsetzt,

30

VI

in der A, CH oder N und

M' H, ein Alkali- oder Erdalkalimetall oder $\text{Si}(\text{CH}_3)_3$

35 bedeutet,

oder daß man

C) eine Verbindung der Formel VII,

VII

in der A und Ar die zu Formel I angegebenen Bedeutungen
haben, mit einem 1,2-Diol der Formel VIII

VIII

in der R¹, g und Y die zu Formel I angegebenen Bedeutungen
haben, umsetzt,

oder daß man

D) eine Verbindung der Formel IX,

IX

in der A, Ar, R¹ und g die zu Formel I angegebenen Bedeu-
tungen haben, mit einer Verbindung der Formel X,
25

X

in der E" C₁-C₄-Alkoxy, Cl, Br, J, Acyloxy, wie Acetyloxy
oder Benzyloxy, Alkylsulfonyloxy, wie Methansulfonyloxy,
30 oder Arylsulfonyloxy, wie Benzol-, Nitrobenzol- oder To-
luolsulfonyloxy, bedeutet und Y die zu Formel I unter a,
b, c und d angegebenen Bedeutungen hat, umsetzt,
und gegebenenfalls die nach Weg A)-D) erhaltenen Verbin-
dungen der Formel I mit anorganischen oder organischen
35 Säuren in ihre physiologisch verträglichen Säureadditions-
salze überführt.

In diesem Zusammenhang ist unter dem Ausdruck "Acyloxy" ein geradkettiger oder verzweigter C₁-C₄-Alkanoyloxy-Rest oder ein im Phenylkern unsubstituierter oder mit bis zu 2 gleichen oder verschiedenen Substituenten substituierter Benzoyloxy-Rest zu verstehen, wobei die Substituenten CH₃, OCH₃, F, Cl, oder Br bedeuten können, und unter dem Ausdruck "Arylsulfonyloxy" ein unsubstituierter oder ein mit einem Cl, Br, CH₃, C₂H₅, OCH₃, OC₂H₅ oder NO₂ substituierter 10 Phenylsulfonyloxy- oder ein Naphthylsulfonyloxy-Rest zu verstehen.

Zur Umsetzung mit einer Verbindung der Formel IX werden bevorzugt verwendet entweder

15 a) eine Verbindung der Formel Xa₁ oder der Formel Xa₂

20 in denen R²-R⁴ und q die zu Formel I angegebenen Bedeutungen haben und E'', Cl, Br oder OCH₃ bedeutet, oder

b) eine Verbindung der Formel Xb,

30 in der R⁵-R⁸ die zu Formel I angegebenen Bedeutungen haben und E'' Cl, CH₃C(=O)-O-, C₆H₅C(=O)-O-, CH₃SO₂-O-, 4-CH₃-C₆H₄-SO₂-O- oder C₆H₅-SO₂O- bedeutet, oder

c) eine Verbindung der Formel Xc ,

Xc,

5 in der R⁹-R¹¹ und n die zu Formel I angegebenen Bedeutungen haben und

E'' Cl oder Br bedeutet oder

d) eine Verbindung der Formel Xd,

10

Xd,

in der R¹³ die zu Formel I angegebenen Bedeutungen hat und

15 E'' Cl oder OCH₃ bedeutet.

Besonders bevorzugt für die Umsetzung mit einer Verbindung der Formel IX sind diejenigen Verbindungen der Formeln Xa₁, Xb, Xc, und Xd, bei denen E'' Cl bedeutet.

20

Die Verfahrens-Variante A), wobei bei den Verbindungen der Formel II E bevorzugt Cl, Br, Acetoxy, Trifluoracetoxy, Methansulfonyloxy oder (subst.) Phenylsulfonyloxy bedeutet, wird bei einer Temperatur zwischen 20°C und 180°C,

25 vorteilhaft zwischen 40°C und 120°C, in Anwesenheit einer Base und zweckmäßig in einem inerten organischen Lösungsmittel, wie beispielsweise N,N-Dimethylformamid, N,N-Dimethylacetamid, Dimethylsulfoxid, N-Methylpyrrolidon-2,

30 1,2-Dimethoxyethan, Dioxan, Tetrahydrofuran, 4-Methyl-2-pentanon, Methanol, Ethanol, Isopropylalkohol, Propanol, Butanol, Pentanol, Tert.-Butylalkohol, Methylglykol, Methylenchlorid, Acetonitril oder einem aromatischen Kohlenwasserstoff wie Benzol, Chlorbenzol, Toluol oder Xylol durchgeführt. Es können auch Gemische der beispielhaft genannten Lösungsmittel verwendet werden.

Geeignete Basen sind beispielsweise Alkalimetall- oder Erdalkalimetall-carbonate, -hydrogencarbonate, -hydroxide, -amide, -alkoholate oder -hydride wie z.B. Natriumcarbonat, Natriumhydrogencarbonat, Kaliumcarbonat, Natriumhydroxid, -amid oder -methylat, Kalium-t-butylat oder Natriumhydrid, oder organische Basen, z.B. tertiäre Amine wie Triethylamin, Tributylamin, Ethylmorpholin oder Pyridin, Dimethylaminopyridin, Chinolin oder 1,5-Diazabicyclo-[5,4,0]undec-5-en (DBU).

5 10
Die Umsetzung kann ebenso unter den Bedingungen einer Phasentransferreaktion ausgeführt werden, indem man die Reaktionspartner in einem geeigneten Lösungsmittel, wie z.B. Ether, Dioxan, Tetrahydrofuran, Methylenchlorid, N,N-Dimethylform- oder -acetamid, N-Methylpyrrolidon-(2), Butanol, tert.-Butanol, einem aliphatischen, cycloaliphatischen oder aromatischen Kohlenwasserstoff wie Hexan, Cyclohexan, Benzol, Toluol oder Xylol, Methylglykol, Anisol oder Chlorbenzol unter kräftigem Rühren in Gegenwart eines

15 20 25
Phasentransferkatalysators und entweder einem gepulverten Alkalihydroxid, wie z. B. Natrium- oder Kaliumhydroxid oder einer konzentrierten wäßrigen Lösung derselben, vorzugsweise in einem Temperaturbereich von 20°C bis 120°C aufeinander einwirken lässt.

30 25
Geeignete Phasentransferkatalysatoren sind z.B. Trialkylbenzylammonium- oder Tetraalkylammonium-halogenide, -hydroxide, -hydrogensulfate mit vorzugsweise 1 bis 12 C-Atomen im Alkylrest oder Kronenether, wie z.B. 12-Crown-4, 15-Crown-5, 18-Crown-6 oder Dibenzo-18-crown-6.

Herstellung der Ausgangsstoffe:

35 Die Ausgangsverbindungen der Formel II, in der Ar und A die zu Formel I angegebenen Bedeutungen haben, sind teilweise bekannt; die nicht bekannten können in Analogie zu den bekannten hergestellt werden.

Die Verfahrens-Variante B), wobei eine Verbindung der Formel IV, in der E bevorzugt Br, J oder Trifluoracetyloxy, Methansulfonyloxy, Benzol-, Nitrobenzol-, Brombenzol- oder Toluolsulfonyloxy und E' bevorzugt Cl oder Br bedeuten, mit einer Verbindung der Formel III, in der M, R¹, g und Y die angegebenen Bedeutungen haben, unter Bildung einer Verbindung der Formel V umgesetzt wird, wird unter den gleichen Reaktionsbedingungen wie bei Variante A zur Herstellung von Verbindungen der Formel I angegeben durchgeführt.

Die Herstellung von Verbindungen der Formel I durch Umsetzung von Verbindungen der Formel V mit Verbindungen der Formel VI erfolgt zweckmäßig in einem inerten Lösungsmittel in Gegenwart einer Base, wie zum ersten Herstellverfahren vorstehend angegeben, vorzugsweise in einem Temperaturbereich von 100 bis 190°C. Die Umsetzung erfolgt zweckmäßigerweise in Anwesenheit eines Alkalijodides wie z.B. Natrium- oder Kaliumjodid, gegebenenfalls in einem Autoklaven unter Druck.

Die vorstehend beschriebenen Umsetzungen können zweckmäßig als Eintopfreaktion durchgeführt werden, indem man zunächst bei 40 bis 100°C eine Verbindung der Formel VI mit einer Verbindung der Formel III in Gegenwart einer Base in einem inerten Lösungsmittel umsetzt. Anschließend wird ohne Isolierung der Verbindung der Formel V eine Verbindung der Formel VI und gegebenenfalls ein weiteres Moläquivalent einer Base und ein Alkalijodid (z.B. Kaliumjodid) zugegeben und auf 100 bis 190°C erhitzt.

Herstellung der Ausgangsstoffe:

Verbindungen der Formel IV, in der E und E' die zur Formel II für E angegebenen Bedeutungen haben, sind bekannt. Sie werden hergestellt, indem man die Hydroxymethylgruppe in einer Verbindung der Formel

5

XI in üblicher Weise in eine reaktionsfähige Estergruppe überführt. So werden z.B. die Verbindungen der Formel IV, in der E' bevorzugt Cl oder Br und E Methansulfonyloxy bedeuten, hergestellt, indem man eine Verbindung der Formel
 10 XI, in der Ar die zu Formel I angegebenen Bedeutungen hat und E' Cl oder Br bedeuten, mit Methansulfochlorid bei -10°C bis +50°C zweckmäßig in einem inerten Lösungsmittel, in Gegenwart einer Base umsetzt. Verbindungen der Formel IV, in der E beispielsweise Brom bedeutet, werden durch
 15 Umsetzung von Verbindungen der Formel XI (E' = Cl oder Br) mit Bromierungsmitteln, wie z.B. PBr₃ oder POBr₃ in einem inerten Lösungsmittel bei 0°C bis 100°C hergestellt.
 Derartige Verbindungen können auch hergestellt werden, indem man eine Verbindung der Formel XII,

20

25

in der E' Cl oder Br bedeutet und Ar die angegebenen Bedeutungen hat, mit 1-Brom-2,3-propandiol in einem inerten Lösungsmittel in Gegenwart einer starken Säure unter Bildung eines 1,3-Dioxolans nach für derartige Katalisierungen bekannten Methoden umgesetzt.

Die Verbindungen der Formel XI sind bekannt.

Die Verfahrens-Variante C), wobei man eine Verbindung der
 35 Formel VII mit einer Verbindung der Formel VIII unter Bildung einer Verbindung der Formel I umsetzt, wird im allgemeinen unter den gleichen Bedingungen durchgeführt, wie

die Herstellung von Verbindungen der Formel IV (Variante B). Die Katalisierung von Ketonen der Formel VII mit Glycerin-Derivaten der Formel VIII erfolgt vorteilhaft in einem Lösungsmittelgemisch, bestehend aus einem inerten Lösungsmittel, das mit Wasser ein azeotropes Gemisch bildet, wie z.B. Benzol, Toluol, Xylol, Chlorbenzol oder Cyclohexan, und einem Alkohol, in Anwesenheit einer starken Säure in einem Temperaturbereich von 75 bis 180°C. Vorteilhaft werden bei dieser Katalisierung mindestens 2,5 Äquivalente einer starken Säure (bez. auf die Azolverbindung der Formel VII) und als Alkohole aliphatische Alkohole mit einem K_p zwischen 75° und 150°C und/oder Monoether von niederen Diolen, die zwischen 100° und 150°C sieden, verwendet.

Herstellung der Ausgangsstoffe:

Die Verbindungen der Formel VII sind bekannt und können nach bekannten Methoden hergestellt werden.

Verbindungen der Formel VIII, in der R¹, g und Y die zu Formel I angegebenen Bedeutungen haben, werden durch Umsetzung von Verbindungen der Formel III mit 1-Halogen-2,3-propandiol hergestellt, in analoger Weise wie in Org. Synth. Collect. Vol. I, S. 296 beschrieben.

Bei der Verfahrens-Variante D) wird eine Verbindung der Formel IX mit einer heterocyclischen Verbindung der Formel X, bevorzugt mit einer heterocyclischen Verbindung entweder der Formel Xa₁ oder Xa₂ oder der Formel Xb, Xc oder Xd, in denen E" jeweils die angegebenen Bedeutungen hat, zweckmäßig in einem inerten organischen Lösungsmittel in einem Temperaturbereich von 20° bis 180°C, vorzugsweise von 50° bis 120°C, umgesetzt. Diese Umsetzung wird vor 5 teilhaft in Gegenwart einer Base, die vorzugsweise in äquimolarer Menge angewandt wird, durchgeführt.

Die Synthese von Verbindungen der Formel I aus den Verbindungen der Formeln IX und X kann auch ohne Basenzusatz ausgeführt werden. Die Reaktanten der Formeln IX und X können in unterschiedlichen Molverhältnissen angewendet

5 werden, d.h. es können entweder jeweils die Verbindungen der Formel IX oder diejenigen der Formel X im Überschuß angewandt werden, vorteilhaft werden äquimolare Mengen angewendet.

10 Als Lösungsmittel kommen beispielsweise Kohlenwasserstoffe, allgemein Ether wie Diethylether, 1,2-Dimethoxyethan, Tetrahydrofuran oder Dioxan, oder Acetonitril, Butyronitril, Dimethylform- oder -acetamid, Aceton, 4-Methyl-2-pentanon, Methylenchlorid, Chloroform, Dimethylsulfoxid,

15 Anisol, Chlorbenzol, Tetrachlorethen oder Gemische dieser Lösungsmittel in Frage.

Geeignete Basen sind die beispielhaft bei der Verfahrens-Variante A) erläuterten.

20 Die Umsetzung kann ebenso unter den Bedingungen einer Phasentransferreaktion, wie sie bei der Beschreibung der Verfahrens-Variante A) erläutert sind, ausgeführt werden.

25 Herstellung der Ausgangsstoffe:

Die Verbindungen der Formel IX sind z.T. bekannt (vgl. DOS 2 804 096, z.B. Beispiel 21); solche, die von den bekannten abweichende Bedeutungen für Ar haben und/oder bei denen g

30 1 oder 2 bedeutet, können in Analogie zu den bekannten (vgl. DOS 2 804 096) hergestellt werden.

Die Verbindungen der Formel X, in der E" und Y die angegebenen Bedeutungen haben, sind teilweise bekannt. Das

35 trifft vor allem für Verbindungen der Formel X mit E" = Cl zu.

Sofern die Substituenten an den heterocyclischen Verbindungen X_{a_1} , X_b , X_c und X_d von bekannten Verbindungen abweichen und es sich bei den Substituenten um weitgehend inerte, also unempfindliche handelt, können diese Verbindungen der Formeln X_{a_1} - X_d , in denen die Substituenten R^2 - R^{13} und n die angegebenen Bedeutungen haben, in Analogie zu den bekannten Verbindungen dieser Strukturen hergestellt werden.

Die Verbindungen X_{a_2} mit $q=0$ oder 1 und R^2 wie zu Formel I angegeben, werden aus Verbindungen der Formel XI,

in der q und R^2 die angegebenen Bedeutungen haben, durch Bromierung mit N-Brom-succinimid hergestellt.

Verbindungen der Formel X_c , in der R^{10} COOR^{12} und E'' z.B. Cl bedeuten, werden ebenfalls gemäß den zur Herstellung von Verbindungen der Formel X_c üblichen Methoden, nämlich durch Umsetzung von Verbindungen der Formel XIII,

in der R^9 , R^{11} , R^{12} und n die angegebenen Bedeutungen haben, mit POCl_3 oder SOCl_2 hergestellt.

Verbindungen der Formeln X_{a_1} und X_d , in denen E'' OCH_3 bedeutet, werden aus entsprechenden Verbindungen der Formeln X_{a_1} und X_d , in denen E'' z. B. Cl bedeutet, durch 5 Umsetzung mit Methanol oder mit Methanol plus bis zu einem Äquivalent Alkalimetathanolat hergestellt. Als Alkalimetalle werden Li, Na oder K verwendet.

Die Reaktionszeiten betragen je nach Verfahrensvariante und je nach Temperaturbereich wenige Minuten bis einige Stunden.

- 5 Falls erforderlich, kann eine Reinigung der Verfahrenserzeugnisse durch Umkristallisation aus einem geeigneten Lösungsmittel oder Lösungsmittelgemisch oder durch Säulenchromatographie an Kieselgel erfolgen.
- 10 Die diastereomeren Racemate (cis- oder trans-Form) der Verbindungen der Formel I können in üblicher Weise, z.B. durch selektive, fraktionierte Kristallisation oder Säulenchromatographie getrennt werden.
- 15 Da die stereochemische Konfiguration bereits in den Zwischenprodukten der Formel II vorgegeben ist, kann die Trennung in die cis- und trans-Form bereits auf dieser Stufe oder noch früher, beispielsweise auf der Stufe der Zwischenprodukte der allgemeinen Formel IV, oder bei den 20 Zwischenprodukten der Formel IX erfolgen.

Die cis- und trans-diastereomeren Racemate können ihrerseits in üblicher Weise in ihre optischen Antipoden cis(+), cis(-) bzw. trans(+) und trans(-) getrennt werden.

- 25 Bevorzugt werden zur Herstellung von Verbindungen I die Verfahrens-Varianten A, B und D angewendet.

Die Erfindung betrifft weiterhin Verbindungen der Formel IIIa,

30

- 35 in der bedeuten:
R¹ C₁-C₃-Alkyl, F oder Cl,
g 0, 1 oder 2 und
Y die folgenden heterocyclischen Reste

R² C₁-C₄-Alkyl, eine unsubstituierte oder 1 oder 2 Substituenten tragende Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können und Halogen, Trifluormethyl, Methoxy, Ethoxy, Nitro oder C₁-C₄-Alkyl bedeuten,
oder eine unsubstituierte oder eine im Phenylrest 1 oder 2 Substituenten tragende Phenyl-C₁-C₂-alkylgruppe, wobei die Substituenten gleich oder verschieden sein können und F, Cl, Methoxy-, Ethoxy- oder C₁-C₃-Alkyl bedeuten,

R³ H, C₁-C₈-Alkyl, C₃-C₆-Cycloalkyl-C₁-C₃-alkyl, eine unsubstituierte oder 1 oder 2 Substituenten tragende Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können und Halogen, Methoxy-, Ethoxy oder C₁-C₃-Alkyl bedeuten, eine unsubstituierte oder im Phenylrest durch Methoxy, 1,2-Methyldioxy, F, Cl oder C₁-C₃-Alkyl substituierte Phenyl-C₁-C₂-alkylgruppe, oder Trifluormethyl,

R⁴ H, C₁-C₄-Alkyl oder Benzyl,
oder R³ und R⁴ zusammen
-(CH₂)_r- , wobei r=3 oder 4 ist, oder -CH=CH-CH=CH-,
q 0 oder 1 bedeutet, oder

R⁵ H oder CN
R⁶ H, C₁-C₄-Alkyl oder eine unsubstituierte oder durch OCH₃, F, Cl, CH₃ oder C₂H₅ substituierte Phenylgruppe,

R⁷ H, Benzyl oder CF₃,
R⁸ C₅-C₆-Cycloalkyl oder eine unsubstituierte oder

durch OCH_3 , F, Cl, CH_3 oder C_2H_5 substituierte Phenylgruppe bedeuten und, falls R^5 CN und/oder $\text{R}^7 \text{CF}_3$ bedeutet, R^8 auch H bedeuten kann, oder R^7 und R^8 zusammen $-(\text{CH}_2)_4-$ bedeuten, oder

5

10 R^9 H, Methyl oder Ethyl,
 R^{10} H, CN oder COOR^{12} , wobei R^{12} Methyl oder Ethyl bedeutet,
 R^{11} $\text{C}_1\text{-C}_4$ -Alkyl, $\text{C}_1\text{-C}_4$ -Alkoxy, Halogen oder Trifluormethyl und
15 n 0, 1 oder 2 bedeuten, wobei, falls R^{11} CF_3 bedeutet, n=1 ist, und, falls n ungleich 0, die Reste R^{11} in 5-, 6-, 7- oder 8-Stellung des Chinolinsystems stehen können, oder

20

25

R^{13} H, $\text{C}_1\text{-C}_4$ -Alkyl oder eine unsubstituierte oder 1 oder 2 Substituenten tragende Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können und Halogen, Methoxy, Ethoxy, Methyl oder Ethyl bedeuten,

sowie deren Säureadditionssalze.

30 Bevorzugt werden Verbindungen der Formel IIIa, bei denen mindestens einer der Substituenten oder Indices R^1 , g, Y, $\text{R}^2\text{-R}^{13}$, q und n die folgenden Bedeutungen hat:

35 R^1 CH_3 oder C_2H_5
g 0 oder 2

Y

zu dem heterocyclischen Rest a)

R^2 . C_1-C_4 -Alkyl, eine unsubstituierte oder 1 oder 2 gleiche oder verschiedene Substituenten tragende Phenylgruppe, wobei die Substituenten F, Cl, OCH_3 , OC_2H_5 , CH_3 oder C_2H_5 bedeuten, oder eine Benzyl- oder eine durch ein F- oder Cl-Atom im Phenylrest substituierte Benzylgruppe,

R^3 C_1-C_8 -Alkyl, C_5-C_6 -Cycloalkyl- C_1-C_2 -alkyl, eine Phenyl- oder Phenyl- C_1-C_2 -alkylgruppe, im Phenylrest jeweils unsubstituiert oder durch 1 oder 2 F, Cl, OCH_3 oder CH_3 substituiert, oder CF_3 ,

R^4 C_1-C_4 -Alkyl, Benzyl oder

R^3 und R^4 zusammen $-(CH_2)_3-$, $-(CH_2)_4-$ oder $-CH=CH-CH=CH-$,
q 0 oder 1

zu dem heterocyclischen Rest b)

R^5 H oder CN,

R^6 H, CH_3 oder Phenyl

R^7 H, CH_3 oder CF_3

R^8 H, CH_3 , C_5-C_6 -Cycloalkyl, Phenyl oder durch F, Cl oder OCH_3 substituiertes Phenyl und/oder falls R^5 CN und/oder R^7 CF_3 bedeutet, R^8 auch H oder

R^7 und R^8 zusammen $-(CH_2)_4-$

zu dem heterocyclischen Rest c)

R^9 H

R^{10} CN, $COOCH_3$ oder $COOC_2H_5$,

R^{11} C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, F, Cl, Br oder CF_3

n 0, 1 oder 2, wobei falls R^{11} CF_3 bedeutet, n=1 ist und, falls n ungleich 0 ist, R^{11} in 5-, 6-, 7- oder 8-Stellung stehen kann,

zu dem heterocyclischen Rest d)

R^{13} H, C_1-C_4 -Alkyl oder eine unsubstituierte oder durch 1 oder 2 F, Cl, OCH_3 oder CH_3 substituierte Phenylgruppe

Besonders bevorzugte Verbindungen der Formel IIIa sind solche, bei denen mindestens einer der Substituenten oder Indices bedeutet:

R¹ CH₃

g 0 oder 2

Y

zu den heterocyclischen Resten a)

5 R² eine unsubstituierte oder 1 oder 2 gleiche oder verschiedene Substituenten tragende Phenylgruppe, wobei die Substituenten Cl, OCH₃, OC₂H₅ oder CH₃ bedeuten, eine Benzyl- oder eine Chlorbenzylgruppe,

10 R³ C₁-C₈-Alkyl, C₅-C₆-Cycloalkyl-C₁-C₂-alkyl, eine Phenyl- oder Phenyl-C₁-C₂-alkylgruppe, im Phenylrest jeweils unsubstituiert oder durch 1 oder 2 F, Cl, OCH₃ oder CH₃ substituiert,

15 R⁴ C₁-C₄-Alkyl, Benzyl oder R³ und R⁴ zusammen -(CH₂)₃-, -(CH₂)₄- oder -CH=CH-CH=CH-, q 0 oder 1,

zu dem heterocyclischen Rest b)

20 R⁵ H oder CN,
R⁶ H, CH₃ oder C₂H₅,
R⁷ H oder CF₃,
R⁸ C₅-C₆-Cycloalkyl, Phenyl oder durch Cl oder OCH₃ substituiertes Phenyl oder, falls R⁵ CN und/oder R⁷ CF₃ bedeutet, zusätzlich H,

25 zu dem heterocyclischen Rest c)

R⁹ H,
R¹⁰ CN, COOCH₃ oder COOC₂H₅,
R¹¹ CH₃, C₂H₅, OCH₃, OC₂H₅, F, Cl, Br oder CF₃,
n 0, 1 oder 2, wobei, falls R¹¹ CF₃ bedeutet, n=1 ist und, falls n ungleich 0 ist, R¹¹ in 5-, 6-, 7- oder 8-Stellung stehen kann,

zu dem heterocyclischen Rest d)

35 R¹³ eine unsubstituierte oder durch 1 oder 2 F, Cl, OCH₃ oder CH₃ substituierte Phenylgruppe.

Die Verbindungen der Formel IIIa, in denen R¹, g und Y die angegebenen Bedeutungen haben, sind neu und stellen

wertvolle Zwischenprodukte zur Herstellung der stark antimykotisch sowie fungizid wirkenden Verbindungen der Formel I dar. Ein Teil der Verbindungen der Formel IIIa wirkt ebenfalls antimykotisch sowie fungizid. Ein Teil der Verbindungen der Formel IIIa zeigt darüberhinaus pharmakologische Wirkungen, so z.B. Wirkungen auf das Herz-Kreislaufsystem u.a. durch günstige Beeinflussung des Blutdrucks.

) Die Erfindung betrifft außerdem ein Verfahren zur Herstellung von Verbindungen der Formel IIIa, das dadurch gekennzeichnet ist, daß man eine Verbindung der Formel XIII,

5

0 in der R¹ und g die zu Formel I angegebenen Bedeutungen haben, oder ein Salz dieser Verbindung, mit einer Verbindung der Formel X,

E"-Y

X,

15 in der E" C₁-C₄-Alkoxy, Cl, Br, J, Acyloxy, wie Acetoxy oder Benzoxyloxy, oder Alkylsulfonyloxy, wie Methylsulfonyloxy, oder Arylsulfonyloxy, wie Benzol-, Nitrobenzol- oder Toluolsulfonyloxy bedeutet, und

30 Y die zur Formel I angegebenen Bedeutungen hat,

umsetzt und gegebenenfalls die erhaltenen Verbindungen der Formel IIIa mit anorganischen oder organischen Säuren in ihre Säureadditionssalze überführt.

35

Bevorzugt verwendet werden für die erfindungsgemäße Umsetzung mit Verbindungen der Formel XIII entweder

a) eine Verbindung der Formel Xa₁ oder der Formel Xa₂,

Xa₁,

5

in denen R²-R⁴ und q die zu Formel I angegebenen Bedeutungen haben, und

E'' Cl, Br oder OCH₃ bedeutet, oder

b) eine Verbindung der Formel Xb,

10

Xb,

15

in der R⁵-R⁸ die zu Formel I angegebenen Bedeutungen haben und E'' Cl, CH₃C(=O)-O-, C₆H₅C(=O)-O-, CH₃-SO₂-O-,

4-CH₃-C₆H₄-SO₂-O- oder C₆H₅-SO₂-O- bedeutet, oder

c) eine Verbindung der Formel Xc,

20

Xc,

in der R⁹-R¹¹ und n die zu Formel I angegebenen Bedeutungen haben und

25

E'' Cl oder Br bedeutet oder

d) eine Verbindung der Formel Xd,

30

Xd,

35

in der R¹³ die zu Formel I angegebenen Bedeutungen hat und E'' Cl bedeutet.

Besonders bevorzugt für die Umsetzung mit einer Verbindung der Formel XIII sind diejenigen Verbindungen der Formeln Xa₁, Xb, Xc und Xd, bei denen E" Cl bedeutet.

- ;) Das erfindungsgemäße Verfahren zur Herstellung von Verbindungen der Formel IIIa wird zweckmäßig in einem inerten organischen Lösungsmittel in einem Temperaturbereich von 20° bis 180°C, vorzugsweise von 50° bis 120°C, vorteilhaft in Gegenwart einer Base, die vorzugsweise in äquivalenter Menge angewandt wird, durchgeführt. Werden für das Verfahren Salze der Verbindungen der Formel XIII verwandt, dann wird die dem Salzanteil entsprechende stöchiometrische Menge an Base zugesetzt. Wahlweise kann darüber hinaus dann ein weiterer Anteil an Base angewandt werden.
- 5 Die Synthese von Verbindungen der Formel IIIa aus den Verbindungen der Formeln XIII und X kann, sofern die Verbindungen XIII nicht als Salz angewandt werden, auch ohne Basenzusatz ausgeführt werden. Die Reaktanten der Formeln XIII und X können in unterschiedlichen Molverhältnissen 0 angewandt werden, d.h. es können entweder jeweils die Verbindungen der Formel XIII oder diejenigen der Formel X im Überschuß angewandt werden, vorteilhaft werden äquimolare Mengen angewandt.
- 5 Als Lösungsmittel kommen beispielsweise Kohlenwasserstoffe, allgemein Ether, wie Diethylether, 1,2-Dimethoxyethan, Tetrahydrofuran oder Dioxan, oder Acetonitril, Butyronitril, Dimethylform- oder -acetamid, Aceton, 4-Methyl-2-pentanon, Methylenchlorid, Chloroform, Dimethylsulfoxid, ;0 Anisol, Chlorbenzol, Tetrachlorethen oder Gemische dieser Lösungsmittel in Frage.

Geeignete Basen sind die beispielhaft bei der Verfahrens-Variante A) erläuterten.

35

Die Reaktionszeiten betragen je nach Temperaturbereich wenige Minuten bis einige Stunden.

Falls erforderlich, kann eine Reinigung der Verfahrenserzeugnisse durch Umkristallisation aus einem geeigneten Lösungsmittel oder Lösungsmittelgemisch oder durch Säulen-chromatographie an Kieselgel erfolgen.

5

Herstellung der Ausgangsstoffe:

Die Verbindung der Formel XIII mit g=0 ist bekannt. Verbindungen der Formel XIII, bei denen g 1 oder 2 bedeutet und R¹ die zu Formel I angegebenen Bedeutungen hat, werden in Analogie zu den bekannten Verbindungen durch Umsetzung von entsprechenden 4-Methoxy-Anilinen mit Bis-(2-Chlorethyl)-amin und anschließender Phenolether-Spaltung mit konz. wäßriger Bromwasserstoffsäure hergestellt.

10 Die Herstellung der Verbindungen der Formel X, in der E" und Y die angegebenen Bedeutungen haben, sofern sie nicht bekannt sind, ist bereits bei Verfahrensvariante D) beschrieben.

15 Die Verbindungen der Formel I und ihre Säureadditionssalze sind wertvolle Arzneimittel. Sie wirken antimikrobiell und eignen sich insbesondere zur Vorbeugung und Behandlung von Pilzinfektionen beim Menschen und bei verschiedenen Säugertierarten.

20 Die neuen Verbindungen sind in vitro sehr gut wirksam gegen Hautpilze, wie z.B. Trichophyton mentagrophytes, Microsporum canis, Epidermophyton floccosum; gegen Schimmelpilze, wie z.B. Aspergillus niger oder gegen Hefen, wie z.B.

25 Die neuen Verbindungen sind in vitro sehr gut wirksam gegen Candida albicans, C. tropicalis, Torulopsis glabrata und Trichosporon cutaneum oder gegen Protozoen wie Trichomonas vaginalis oder T. fetus, oder auch gegen grampositive und gramnegative Bakterien.

30 Auch in vivo, z.B. bei der experimentellen Nierencandidose der Maus, besitzen die Verbindungen nach oraler oder parenteraler Anwendung einen sehr guten systemischen Effekt,

z.B. gegen *Candida albicans*. Ebenso besteht ein sehr guter Effekt gegen verschiedene Erreger der Hautmykosen (z.B. *Trichophyton mentagrophytes*) am Meerschweinchen nach oraler, parenteraler oder lokaler Anwendung.

Als Indikationsgebiete in der Humanmedizin können beispielsweise genannt werden:

Dermatomykosen und Systemmykosen durch *Trichophyton mentagrophytes* und andere *Trichophyton*-arten, *Mikrosporon*-arten, *Epidemophyton floccosum*, Sproßpilze und biphasische Pilze sowie Schimmelpilze hervorgerufen.

Als Indikationsgebiete in der Tiermedizin können beispielsweise aufgeführt werden:

Alle Dermatomykosen und Systemmykosen, insbesondere solche, die durch die oben genannten Erreger hervorgerufen werden.

- ;) Zur vorliegenden Erfindung gehören pharmazeutische Zubereitungen, die neben nicht toxischen, inerten pharmazeutisch geeigneten Trägerstoffen einen oder mehrere erfindungsgemäße Wirkstoffe enthalten oder die aus einem oder mehreren erfindungsgemäßen Wirkstoffen bestehen sowie Verfahren zur Herstellung dieser Zubereitungen.
- 5) 5) fahren zur Herstellung dieser Zubereitungen.

Unter nicht toxischen, inerten pharmazeutisch geeigneten Trägerstoffen sind feste, halbfeste oder flüssige Verdünnungsmittel, Füllstoffe und Formulierungshilfsmittel jeder Art zu verstehen.

Als Darreichungsformen kommen beispielsweise Tabletten, Dragees, Kapseln, Pillen, wässrige Lösungen, Suspensionen und Emulsionen, gegebenenfalls sterile injizierbare Lösungen, nichtwässrige Emulsionen, Suspensionen und Lösungen, Salben, Cremes, Pasten, Lotions, Sprays etc. in Betracht.

Die therapeutisch wirksamen Verbindungen sollen in den oben aufgeführten pharmazeutischen Zubereitungen zweckmäßig in einer Konzentration von etwa 0,01 bis 99,0, vorzugsweise von etwa 0,05 bis 50 Gew.-% der Gesamtmasse

5 vorhanden sein.

Die oben aufgeführten pharmazeutischen Zubereitungen können außer den erfindungsgemäßen Wirkstoffen auch weitere pharmazeutische Wirkstoffe enthalten.

10

Die Herstellung der oben aufgeführten pharmazeutischen Zubereitungen erfolgt in üblicher Weise nach bekannten Methoden, z.B. durch Mischen des oder der Wirkstoffe mit dem oder den Trägerstoffen.

15

Zur vorliegenden Erfindung gehört auch die Verwendung der erfindungsgemäßen Wirkstoffe sowie von pharmazeutischen Zubereitungen, die einen oder mehrere erfindungsgemäße Wirkstoffe enthalten, in der Human- und Veterinärmedizin
20 zur Verhütung, Besserung und/oder Heilung der oben angeführten Erkrankungen.

Die Wirkstoffe oder die pharmazeutischen Zubereitungen können lokal, oral, parenteral, intraperitoneal und/oder
25 rectal appliziert werden.

Im allgemeinen hat es sich sowohl in der Human- als auch in der Veterinärmedizin als vorteilhaft erwiesen, den oder die erfindungsgemäßen Wirkstoffe in Gesamtmengen von etwa
30 0,05 bis etwa 200, vorzugsweise 0,1 bis 100, insbesondere 0,5 bis 30 mg/kg Körpergewicht je 24 Stunden, gegebenenfalls in Form mehrerer Einzelgaben zur Erzielung der gewünschten Ergebnisse zu verabreichen. Die Gesamtmenge wird in 1 bis 8, vorzugsweise in 1 bis 3 Einzeldosen verabreicht.
35

- 30 -

Es kann jedoch erforderlich sein, von den genannten Dosierungen abzuweichen und zwar in Abhängigkeit von der Art und dem Körpergewicht des zu behandelnden Objekts, der Art und der Schwere der Erkrankung, der Art der Zubereitung und der Applikation des Arzneimittels sowie dem Zeitraum bzw. Intervall, innerhalb welchem die Verabreichung erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der oben genannten Menge Wirkstoff auszukommen, während in anderen Fällen die oben angeführte Wirkstoffmenge überschritten werden muß. Die Festlegung der jeweils erforderlichen optimalen Dosierung und Applikationsart der Wirkstoffe kann durch jeden Fachmann aufgrund seines Fachwissens leicht erfolgen.

Die neuen Verbindungen der Formel I eignen sich auch zur Behandlung von Protozoenerkrankungen beim Menschen und Tier wie sie z. B. durch Infektion mit *Trichomonas vaginalis* und *Entamoeba histolytica* sowie durch *Trypanosoma cruzi* und *leishmania donovani* hervorgerufen werden.

Die neuen Verbindungen können oral oder lokal angewendet werden. Die orale Anwendung erfolgt in pharmazeutisch üblichen Zubereitungen, z. B. in Form von Tabletten oder Kapseln.

Die Verbindungen der Formel I sind auch als Biozide wirksam. Sie zeichnen sich insbesondere durch ihre fungizide Wirksamkeit bei phytopathogenen Pilzen aus. Selbst bereits in das pflanzliche Gewebe eingedrungene pilzliche Krankheitserreger lassen sich erfolgreich bekämpfen. Dies ist besonders wichtig und vorteilhaft bei solchen Pilzkrankheiten, die nach eingetretener Infektion mit den sonst üblichen Fungiziden nicht mehr wirksam bekämpft werden können. Das Wirkungsspektrum der neuen Verbindungen erfaßt eine Vielzahl verschiedener phytopathogener Pilze, wie z.B. *Piricularia oryzae*, *Plasmopara viticola*, verschiedene Rostarten, vor allem aber *Venturia inaequalis*, *Cercospora beticola* und echte Mehltaupilze im Obst-, Gemüse-, Getreide- und Zierpflanzenbau.

Die neuen Verbindungen der Formel I eignen sich ferner
für den Einsatz in technischen Bereichen, beispielsweise
als Holzschutzmittel, als Konservierungsmittel in An-
strichfarben, in Kühlshmiermitteln für die Metallbe-
arbeitung oder als Konservierungsmittel in Bohr- und
Schneidölen.

Die neuen Verbindungen können als Spritzpulver, emulgierbare Konzentrate, versprühbare Lösungen, Stäubemittel, Beizmittel, Dispersionen, Granulate oder Mikrogranulate in den üblichen Zubereitungen angewendet werden.

Die nachfolgenden Beispiele dienen zur näheren Erläuterung der Erfindung, ohne dieselbe einzuschränken.

Beispiele für das Herstellungsverfahren Variante A):

Beispiel 1

Eine Mischung aus 1,51 g (3,7 mMol) 1-(4-Hydroxy-3,5-dimethylphenyl)-4-(6-(2-cyclopentyl-ethyl)-2-ethyl-pyrimidin-4-yl)-piperazin, 1,51 g (3,7 mMol) 2-S,(R)-(2,4-Dichlorphenyl)-2-(imidazol-1-ylmethyl)-4-R,(S)-methansulfonyloxymethyl-1,3-dioxolan (cis-Form), 0,28 g Tetrabutylammoniumbromid, 33 ml Toluol und 5,5 ml 50 %ige Natronlauge wurde 3,5 Stunden bei 100°C intensiv gerührt. Danach trennte man bei Raumtemperatur die Phasen, schüttelte die konzentrierte NaOH zweimal mit Ether aus, vereinigte Toluol- und Etherphasen und schüttelte diese dreimal mit Wasser aus. Die Toluol-Ether-Lösung wurde getrocknet, filtriert und im Vakuum am Rotationsverdampfer eingedampft. Der Rückstand (3,20 g) wurde an einer Kieselgels/CH₂Cl₂-Säule (ϕ = 2,0 cm, Höhe 33 cm) unter Elution mit CH₂Cl₂ und CH₂Cl₂/C₂H₅OH-Mischungen mit steigendem C₂H₅OH-Gehalt (bis max. 4 Vol.-%) chromatographiert. Nach Elution von Vorzonen (Gehalt 0,25 g) wurden DC-einheitliche Fraktionen vereinigt und im Vakuum eingedampft. Man erhielt 2,15 g DC-reines (= 81 % Ausbeute) 2-S,(R)-(2,4-Dichlorphenyl)-2-(imidazol-1-ylmethyl)-4-R,(S)-[4-(4-(6-(2-cyclopentyl-ethyl)-2-ethyl-pyrimidin-4-yl)-piperazin-1-yl)-2,6-dimethylphenoxy]-methyl]-1,3-dioxolan (cis-Form) als hochviskoses Öl; Analyse: C₃₉H₄₈Cl₂N₆O₃ (MG 719,78) Ber. C 65,08, H 6,72, N 11,68; Gef. C 65,0; H 7,1, N 11,5 %.

Beispiel 2

Zu einer Lösung von 1,803 g (5 mMol) 1-(4-Hydroxyphenyl)-4-(5,6-dimethyl-2-phenyl-pyrimidin-4-yl)-piperazin in 20 ml abs. N,N-Dimethylformamid (DMF) wurden bei Raumtemperatur
5 154 mg (5.13 mMol) 80 %ige Natriumhydrid-Öl-Dispersion zugesetzt. Nach Abklingen der Wasserstoffentwicklung wurde eine Lösung von 2.10 g (5.14 mMol) 2-S,(R)-(2,4-Dichlorphenyl)-2-(1,2,4-triazol-1-ylmethyl)-4-R,(S)-methansulfonyloxymethyl-1,3-dioxolan (cis-Form) in 15 ml abs. DMF
10 zugegeben und die Mischung 3 Stunden bei 95 - 97°C gerührt. Anschließend destillierte man das DMF unter Vakuum (3-10 mbar) an einem Rotationsverdampfer ab, versetzte den Rückstand mit 50 ml Wasser und 50 ml CH_2Cl_2 , schüttelte durch, trennte die Phasen und extrahierte die wässrige Phase dreimal mit CH_2Cl_2 . Die vereinigten CH_2Cl_2 -Extrakte wurden mit MgSO_4 getrocknet, filtriert und im Vakuum eingedampft.
15 Der verbliebene Rückstand (3,9 g) wurde an einer Kieselgel S/ CH_2Cl_2 -Säule (ϕ 2,0, Höhe 30 cm) unter Elution mit CH_2Cl_2 und $\text{CH}_2\text{Cl}_2/\text{C}_2\text{H}_5\text{OH}$ -Mischungen, mit steigendem
20 $\text{C}_2\text{H}_5\text{OH}$ -Gehalt (bis max. 2 Vol.-%) chromatographiert. Nach Elution von Vorzonen (Gehalt 0,95 g) wurden DC-einheitliche Fraktionen vereinigt und im Vakuum eingedampft. Man erhielt 2,31 g (= 69 % Ausbeute) 2-S,(R)-(2,4-Dichlorphenyl)-2-(1,2,4-triazol-1-ylmethyl)-4-R,(S)-[4-(4-(5,6-
25 dimethyl-2-phenyl-pyrimidin-4-yl)-piperazin-1-yl)-phenoxy-methyl]-1,3-dioxolan (cis-Form) als hochviskoses Öl;
Analyse: $\text{C}_{35}\text{H}_{35}\text{Cl}_2\text{N}_7\text{O}_3$ (MG 672.64)
Ber. C 62.50, H 5.25, Cl 10.54, N 14.58;
Gef. C 61.8 , H 5.3 , Cl 11.0 , N 14.3 %.

30

Beispiel 3

Nach der gleichen Arbeitsweise wie im Beispiel 1 beschrieben wurden ausgehend von IIb bzw. IIc (vgl. Tabelle 1) und jeweils der entsprechenden Verbindung IIIa (vgl. Tabelle 1) die in der Tabelle 1 aufgeführten Verbindungen der Formel I ($g=0$ oder 2, R^1 H oder CH_3 in 2,6-Stellung) hergestellt.

Tabelle 1

Verb. Nr.	A	R ¹	Y	Analyse %		Fp. [°C]	2,4-Isomere *)
				Ber.	Gef.		
1.1	CH	H		C 64.25 H 6.41 N 12.15	64.7 6.6 12.0	-	cis
1.2	N	CH ₃		C 63.42 H 5.61 Cl 10.12 N 13.99	62.8 5.6 10.8 13.8	-	cis
1.3	N	H		C 62.88 H 4.89 N 12.52	62.9 4.8 12.6	167-68	cis
1.4	CH	H		C 66.74 H 6.40 N 11.12	65.7 6.3 10.7	-	cis

Tabelle 1 (Fortsetzung)

Verb. Nr.	A	R ¹	Y	Analyse %		Fp. [°C]	2,4-Isomere *)
				Ber.	Gef.		
1.5	CH	H		C 65.42 H 5.49 N 12.05	64.9 5.4 11.8	119-20	cis
1.6	CH	H		C 65.42 H 5.49 N 12.05	65.8 5.7 12.1	96-97	cis
1.7	CH	H		C 65.20 H 5.03 N 12.22	65.4 5.2 12.0	127-28	cis
1.8	CH	H		C 60.92 H 4.53 N 12.18	60.4 4.7 11.6	208-09	cis

*) Cis- und Trans- bezieht sich auf den Azolylmethyl-Rest und den (subst.)-Oxymethyl-Rest in der 2- bzw. der 4-Stellung des Dioxolanringes

Beispiel 4

Nach der gleichen Arbeitsweise wie im Beispiel 2 beschrieben wurden ausgehend von IIb bzw. IIc (vgl. Tabelle 1) und jeweils der entsprechenden Verbindung IIIa (Y vgl. Tab. 2) die in der Tabelle 2 aufgeführten Verbindungen der Formel I ($g=0$ oder 2 , $R^1 = H$ oder CH_3 in 2,6-Stellung; cis-Form) hergestellt.

Sofern nach dem Abdestillieren des DMF und Aufnehmen des Rückstands in Wasser ein kristallines Produkt anfiel oder

der CH_2Cl_2 -Extraktrückstand kristallisierte, wurden diese Verbindungen durch Umkristallisation aus Methanol oder Acetonitril gereinigt. In dieser Weise isolierte Verbindungen sind mit (*) gekennzeichnet. In allen anderen Fällen wurden die in der Tabelle 2 aufgeführten Verbindungen durch Säulenchromatographie wie im Beispiel 2 beschrieben gewonnen.

Tabelle 2

Verb. Nr.	A	R^1	Y	Analyse %		Fp. [°C]
				Ber.	Gef.	
2.1	CH	H		C 63.93 H 5.21 N 12.76	63.8 5.3 12.7	-
2.2	CH	H		C 65.23 H 5.76 N 12.01	65.0 5.8 11.8	-
2.3	CH	H		C 61.24 H 5.00 N 11.90	60.1 5.4 11.3	150-51
2.4	CH	H		C 64.38 H 5.40 Cl 10.56 N 12.51	64.2 5.6 11.1 12.3	76-77

Tabelle 2 (Fortsetzung)

Verb. Nr.	A	R ¹	Y	Analyse %		Fp. [°C]
				Ber.	Gef.	
2.5	CH	CH ₃		C 65.23 H 5.76 Cl 10.13 N 12.01	65.1 5.7 10.5 11.7	-
2.6	CH	H		C 61.24 H 5.00 N 11.90	61.5 5.1 11.7	158-59
2.7	CH	H		C 66.57 H 6.00 N 11.36	66.3 6.0 11.3	-
2.8	N	CH ₃		C 63.42 H 5.61 N 13.99	63.1 5.7 13.6	-
2.9	N	H		C 63.61 H 5.34 N 14.03	63.6 5.3 13.9	-
2.10	CH	H	"	C 65.42 H 5.49 Cl 10.16 N 12.05	65.1 5.3 10.6 11.7	119-20
2.11*	CH	H		C 62.87 H 5.89 N 12.94	62.0 5.9 13.5	142-43

Tabelle 2 (Fortsetzung)

Verb. Nr.	A	R ¹	Y	Analyse %		Fp. [°C]
				Ber.	Gef.	
2.12	CH	H		C 65.42 H 5.49 Cl 10.16 N 12.05	65.4 5.3 10.3 11.9	96-97
2.13	N	CH ₃		C 64.82 H 5.16 N 13.57	64.4 5.0 13.2	-
2.14	CH	H		C 56.79 H 4.45 N 11.04	56.3 4.5 11.3	-
2.15	N	H	"	C 54.81 H 4.28 N 13.23	54.7 4.4 13.1	99-100
2.16	CH	CH ₃	"	C 58.01 H 4.87 N 10.57	57.5 4.9 10.4	-
2.17	CH	H		C 65.42 H 5.18 N 10.90	66.2 5.1 10.9	-
2.18*	CH	H		C 65.20 H 5.03 N 12.33	65.1 5.0 12.0	127-28
2.19*	N	H	"	C 63.34 H 4.87 N 14.36	63.5 4.8 14.6	117-18

Tabelle 2 (Fortsetzung)

Verb. Nr.	A	R ¹	Y	Analyse %		Fp. °C
				Ber.	Gef.	
2.20	N	H		C 63.44 H 5.93 N 12.68	63.0 5.7 12.7	-
2.21	CH	H		C 58.73 H 4.53 N 9.26	58.5 4.6 9.0	-
2.22	N	H	"	C 57.07 H 4.39 N 11.09	56.1 4.3 10.9	-
2.23	CH	H		C 62.29 H 5.37 N 9.56	62.0 5.2 9.2	118-19
2.24*	CH	H		C 66.19 H 5.13 N 11.88	65.0 5.0 10.9	254-55
2.25*	N	H	"	C 64.40 H 4.98 N 13.84	63.7 5.0 13.7	246-47

Beispiel 5

Zu einer Lösung von 1.62 g (5 mMol) 1-(4-Hydroxyphenyl)-4-(5-trifluormethyl-pyrid-2-yl)-piperazin in 20 ml abs. DMF gab man bei Raumtemperatur 0.58 g (5.15 mMol) Kalium-tert.-butylat, rührte 10 Min., gab dann eine Lösung von 2,04 g (5 mMol) IIb (vgl. Beispiel 3, Tab. 1) in 15 ml

abs. 1,2-Dimethoxyethan (DME) zu und rührte die Mischung 5,5 Stunden bei 92-93°C. Anschließend wurden die Lösungsmittel im Vakuum abgezogen, der Rückstand in Wasser/CH₂Cl₂ aufgenommen und nach Durchschütteln die Phasen getrennt. Die wässrige Phase wurde noch zweimal mit CH₂Cl₂ extrahiert. Die vereinigten CH₂Cl₂-Auszüge wurden getrocknet, filtriert und im Vakuum eingedampft. Der verbleibende Rückstand (3,4 g) wurde an einer Kieselgel/CH₂Cl₂-Säule (ϕ 2,1 cm, H 30 cm) durch Elution mit CH₂Cl₂ und CH₂Cl₂/C₂H₅OH-Mischungen (C₂H₅OH-Gehalt: 0,1-2,0 Vol%) chromatographiert. Nach Vereinigung und Eindampfen DC-einheitlicher Fraktionen wurden 2,0 g (= 63 % Ausbeute) Cis-2-(2,4-Dichlorphenyl)-2-(imidazol-1-ylmethyl)-4-[4-(4-(5-trifluormethyl-pyrid-2-yl)-piperazin-1-yl)-phenoxyethyl]-1,3-dioxolan als hochviskoses Öl erhalten.

Beispiel 6

Nach der gleichen Arbeitsweise wie im Beispiel 5 beschrieben, gleichfalls im 5 mMol-Maßstab, wurde bei Verwendung des gleichen Piperazin-Derivats als Zwischenprodukt und bei Anwendung von IIb (vgl. Beispiel 3, Tab. 1) und bei Anwendung von 0,207 g (5.3 mMol) Natriumamid, anstelle von Kalium-tert.-butylat als Base, unter sonst gleichen Reaktionsbedingungen und bei gleicher Aufarbeitung wie im Beispiel 5 beschrieben, Cis-2-(2,4-Dichlorphenyl)-2-(imidazol-1-ylmethyl)-4-[4-(4-(5-trifluormethyl-pyrid-2-yl)-piperazin-1-yl)-phenoxyethyl]-1,3-dioxolan, 2.11 g (= 66.6 % Ausbeute), erhalten.

Beispiel 7 (Salzbildung)

Eine Lösung von 1.11 g (1,75 mMol) 2-S,(R)-(2,4-Dichlorphenyl)-2-(imidazol-1-ylmethyl)-4-R,(S)-[4-(4-(5-trifluormethyl-pyrid-2-yl)-piperazin-1-yl)-phenoxyethyl]-1,3-dioxolan (cis-Form) (vgl. Beispiel 5 und 6) in 15 ml Ethylacetat wurde mit 0,585 ml einer 6m Lösung von HCl in Ether versetzt, woraufhin kristalliner Niederschlag ausfiel.

Die Mischung wurde im Vakuum eingedampft, der verbleibende kristalline Rückstand mit 25 ml Aceton 8 Minuten aufgekocht und nach Abkühlung auf <9°C abgesaugt und getrocknet. Man erhielt 1,22 g (= 98,5 % Ausbeute an Dihydrochlorid) Cis-2-(2,4-Dichlorphenyl)-2-(imidazol-1-ylmethyl)-4-[4-(4-(5-trifluormethyl-pyrid-2-yl)-piperazin-1-yl)-phenoxy-methyl]-1,3-dioxolan-dihydrochlorid; Fp. 205-06°C; Analyse: $C_{30}H_{30}Cl_4F_3N_5O_3$ (MG 707,44), Ber. C 50.93, H 4.27, Cl[⊖] 10.02, N 9.90; Gef. C 51.7 H 4.3 Cl[⊖] 7.9 N 9.9 %.

Beispiele für das Herstellungsverfahren Variante B):

Beispiel 8

a) Zu einer Lösung von 4,64 g (12 mMol) 1-(4-Hydroxy-phenyl)-4-(5,6,7,8-tetrahydro-2-phenyl-chinazolin-4-yl)-piperazin in 48 ml abs. DMF gab man bei Raumtemperatur (unter Kühlung) 0,367 g (12,24 mMol) 80 %ige Natriumhydrid-Öl-Dispersion. Nach Ende der Wasserstoffentwicklung wurde bei Raumtemperatur eine Lösung von 4,43 g (12 mMol) Cis-2-Brommethyl-2-(4-fluorphenyl)-4-methansulfonyloxy-methyl-1,3-dioxolan (cis und trans bezieht sich auf die Brommethyl- und die Methansulfonyloxymethyl-Gruppe in der 2- bzw. der 4-Stellung des Dioxolanringes) in 35 ml abs. DMF zugetropft und die Mischung 4 Stunden bei 100°C geführt. Anschließend verdampfte man das DMF im Vakuum, nahm den Rückstand in Ether/Wasser auf, trennte nach intensiver Durchmischung die Phasen und schüttelte die wässrige Phase noch dreimal mit Ether aus. Die Etherextrakte wurden vereinigt, getrocknet und im Vakuum eingedampft. Der verbleibende Rückstand (8,0 g) wurde an einer Kieselgel S- CH_2Cl_2 /Petrolether 1:1-Säule ($∅$ 3,0 cm, H 41 cm) unter Elution mit CH_2Cl_2 /Petrolether-Mischungen mit steigendem CH_2Cl_2 -Gehalt (bis max. 75 Vol.% CH_2Cl_2) chromatographiert. Nach Elution von Vorzonen (Gehalt ca. 1 g) wurden DC-nahezu einheitliche Fraktionen vereinigt, eingedampft und

aus Ether kristallisiert. Man erhielt auf diese Weise 6,0 g (= 76 % Ausbeute) reines Cis-2-Brommethyl-2-(4-fluorphenyl)-4-[4-(4-(5,6,7,8-tetrahydro-2-phenyl-chinazolin-4-yl)-piperazin-1-yl)-phenoxyethyl]-1,3-dioxolan, Fp. 170-71°; Analyse: $C_{35}H_{36}BrFN_4O_3$ (MG 659,62) Ber. C 63.73, H 5.50, Br 12.12, N 8.49; Gef. C 63,4 , H 5.5 , Br 12.6 , N 8.4 %.

b) Zu einer Lösung von 1.23 g (18.1 mMol) Imidazol in 25 ml abs. Dimethylsulfoxid gab man bei Raumtemperatur 0.54 g (18 mMol) 80 %ige Natriumhydrid -Öl-Dispersion und rührte 30 Min. bei Raumtemperatur. Anschließend setzte man 5.94 g (9.2 mMol) Cis-2-Brommethyl-2-(4-fluorphenyl)-4-[4-(4-(5,6,7,8-tetrahydro-2-phenyl-chinazolin-4-yl)-piperazin-1-yl)-phenoxyethyl]-1,3-dioxolan (unter a) hergestellt zu und rührte 30 Stunden unter Stickstoffatmosphäre bei 130°C. Das Dimethylsulfoxid (DMSO) wurde im Ölpumpenvakuum am Rotationsverdampfer abdestilliert. Der verbleibende Rückstand wurde in CH_2Cl_2 /Wasser aufgenommen. Nach Durchmischung und Trennung der Phasen wurde die wässrige Lösung dreimal mit CH_2Cl_2 extrahiert. Die vereinigten CH_2Cl_2 -Extrakte wurden im Vakuum eingedampft. Der verbleibende Rückstand (6,5 g) wurde an einer Kieselgel S- CH_2Cl_2 /Petrolether 1:1-Säule (ϕ 2,6 cm, Höhe 40 cm) unter Elution mit CH_2Cl_2 /Petrolether 1:1; 2:1-4:1; CH_2Cl_2 und CH_2Cl_2/C_2H_5OH -Mischungen mit steigendem C_2H_5OH -Gehalt (bis max. 1.6 Vol.% C_2H_5OH) chromatographiert. Nach Vereinigen und Eindampfen der DC-einheitlichen Fraktionen wurden 1.67 g (= 28.7 % Ausbeute) reines Cis-2-(4-Fluorphenyl)-2-(imidazol-1-ylmethyl)-4-[4-(4-(5,6,7,8-tetrahydro-2-phenyl-chinazolin-4-yl)-piperazin-1-yl)phenoxyethyl]-1,3-dioxolan, Fp. 161-62°C, erhalten; Analyse: $C_{38}H_{39}FN_6O_3$ (MG 646.78) Ber. C 70.57, H 6.08, F 2.94, N 12.99; Gef. C 69.9 , H 6.0 , F 2.7 , N 12.8 %.

Beispiel 9

a) Eine Mischung von 3,605 g (10 mMol) 1-(4-Hydroxyphenyl)-4-(2-methyl-4-(4-tolyl)-pyrimidin-6-yl)-piperazin, 80 ml Toluol, 4.20 g (10 mMol) 2-Brommethyl-2-(2,4-dichlorphenyl)-4-methansulfonyloxymethyl-1,3-dioxolan (cis/trans-Mischung), 0.65 g Tetrabutylammoniumbromid und 13,5 ml 50 %ige Natronlauge wurde 4 Stunden bei 55°C intensiv gerührt. Anschließend trennte man bei Raumtemperatur die Phasen, schüttelte die Natronlauge dreimal mit Ether aus und vereinigte Toluol- und Etherphasen. Diese wurden dreimal mit Wasser ausgewaschen, getrocknet, filtriert und im Vakuum eingedampft. Der verbleibende Rückstand (7,4 g) wurde an einer Kieselgel S/CH₂Cl₂-Säule (φ 2,6 cm, H 11 cm) unter Elution mit CH₂Cl₂ chromatographiert.

Nach Elution wurden die DC-einheitlichen Fraktionen vereinigt und im Vakuum eingedampft. Man erhielt 6,27 g (= 91,6 % Ausbeute) 2-Brommethyl-2-(2,4-dichlorphenyl)-4-[4-(4-(2-methyl-4-(4-tolyl)-pyrimidin-6-yl)-piperazin-1-yl)-phenoxyethyl]-1,3-dioxolan (Cis/trans-Mischung) als hochviskoses Öl; Analyse: C₃₃H₃₃BrCl₂N₄O₃ (MG 684.49)
Ber. C 57.91, H 4.86, Br 11.68, Cl 10.36, N 8.19;
Gef. C 57.8 H 4.8 Br 11.8 Cl 10.5 N 8.0 %

b) Wie im Beispiel 8b beschrieben wurden 6,21 g (9.1 mMol) 2-Brommethyl-2-(2,4-dichlorphenyl)-4-[4-(4-(2-methyl-4-(4-tolyl)-pyrimidin-6-yl)-piperazin-1-yl)-phenoxyethyl]-1,3-dioxolan (cis/trans-Diastereomerenmischung) mit 1,244g (18.3 mMol) Imidazol und 0,55 g (18,2 mMol) 80 %iger Natriumhydrid-Öl-Dispersion in 26 ml abs. Dimethylsulfoxid umgesetzt. Nach 26 Stunden Rühren bei 130°C wurde das Dimethylsulfoxid (DMSO) im Ölpumpenvakuum abdestilliert. Der verbleibende Rückstand wurde in CH₂Cl₂/Wasser aufgenommen. Nach Durchmischung und anschließender Trennung der Phasen wurde die wässrige Lösung dreimal mit CH₂Cl₂ extrahiert. Die vereinigten CH₂Cl₂-Extrakte wurden im Vakuum eingedampft. Der verbleibende Rückstand (4.30 g

wurde an einer Kieselgel S/CH₂Cl₂-Säule (ϕ 2,0 cm, H 20cm) unter Elution mit CH₂Cl₂ und CH₂Cl₂/C₂H₅OH-Mischungen (0,5-3,0 Vol% C₂H₅OH) chromatographiert. Die die Diastereomeren-Racemate enthaltenden Fraktionen (Überprüfung mittels DC) wurden vereinigt und im Vakuum eingedampft. Auf diese Weise erhielt man 3.12 g (= 51 % Ausbeute) 2-(2,4-Dichlorphenyl)-2-(imidazol-1-ylmethyl)-4-[4-(4-(2-methyl-4-(4-tolyl)-pyrimidin-6-yl)-piperazin-1-yl)-phenoxyethyl]-1,3-dioxolan (cis/trans-Diastereomeren-Mischung) als zähflüssiges Öl; Analyse: C₃₆H₃₆Cl₂N₆O₃ (MG 671.65)
Ber. C 64.38, H 5.40, N 12.51;
Gef. C 62.8 , H 5.6 , N 11.8 %.

Beispiel 10

Nach der gleichen Arbeitsweise wie im Beispiel 8a beschrieben wurden, ausgehend von 20 mMol 1-(4-Hydroxyphenyl)-4-(5-trifluormethyl-pyrid-2-yl)-piperazin, der entsprechenden Menge NaH und 20 mMol 2-Brommethyl-2-(2,4-dichlorphenyl)-4-methansulfonyloxyethyl-1,3-dioxolan (cis/trans-Mischung), 8.92 g (= 69 % d.Th.) 2-Brommethyl-2-(2,4-dichlorphenyl)-4-[4-(4-(5-trifluormethyl-pyrid-2-yl)-piperazin-1-yl)phenoxy-methyl]-1,3-dioxolan (cis/trans-Mischung) als hochviskoses Öl erhalten; Analyse: C₂₇H₂₅BrCl₂F₃O₃ (MG 647.35)
Ber. C 50.10, H 3.89, F 8.81, N 6.49 ;
Gef. C 49.2 , H 3.7 , F 8.2 , N 6.6 %.

Beispiel 11

Zu einer Suspension von 0.49 g (16,3 mMol) 80 %iger NaH Öl-Dispersion in 15 ml abs. Dimethylsulfoxid (DMSO) tropfte man bei Raumtemperatur eine Lösung von 1.03 g (14,9 mMol) 1,2,4-Triazol in 7 ml abs. DMSO, rührte 30 Minuten bei Raumtemperatur nach und gab anschließend eine Lösung von 6.475 g (10 mMol) gemäß Beispiel 10 hergestelltes 2-Brommethyl-2-(2,4-dichlorphenyl)-4-[4-(4-(5-trifluormethyl-pyrid-2-yl)-piperazin-1-yl)-phenoxyethyl]-1,3-dioxolan (cis/trans-Mischung) in 7 ml abs. DMSO zu und rührte 28

Stunden bei 130°C unter Stickstoffatmosphäre. Nach Abkühlung wurde die Reaktionsmischung in 140 ml Wasser eingerührt und die entstandene Mischung mehrmals mit CH₂Cl₂ extrahiert. Die vereinigten CH₂Cl₂-Extrakte wurden getrocknet, filtriert und im Vakuum eingedampft. Der Rückstand (7.0 g) wurde wie im Beispiel 9b beschrieben an einer Kieselgel S-CH₂Cl₂-Säule (ϕ 2,6 cm, H 40.0 cm) durch Chromatographie gereinigt. Aus den laut DC gleichen Fraktionen wurden 1,72g (= 27,0 % Ausbeute) nahezu reines 2-(2,4-Dichlorphenyl)-2-(1,2,4-triazol-1-ylmethyl)-4-[4-(4-(5-trifluormethyl-pyrid-2-yl)-piperazin-1-yl)-phenoxyxymethyl]-1,3-dioxolan (cis/trans-Diastereomeren-Mischung) als hochviskoses Öl erhalten; Analyse: C₂₉H₂₇Cl₂F₃N₆O₃ (MG 635,50)
Ber. C 54.81, H 4.28, F 8.97, N 13.23;
Gef. C 54.1 , H 4.4 , F 8.2 , N 12.8 %.

Beispiele für das Herstellungsverfahren Variante D)

Beispiel 12

Eine Lösung von 3,67 g (7,5 mMol) 2-S,(R)-(2,4-Dichlorphenyl)-2-(imidazol-1-ylmethyl)-4-R,(S)-(4-piperazino-phenoxyxymethyl)-1,3-dioxolan(cis-Form) und 1,40 g (7,7 mMol) 2-Chlor-5-trifluormethyl-pyridin in 30 ml abs. DMF wurde auf 80°C unter Stickstoffatmosphäre erwärmt und unter Rühren nach 10 Minuten mit 173 mg pulverisiertem Kaliumkarbonat versetzt. Nach weiteren 25 Minuten gab man weitere 173 mg pulverisiertes K₂CO₃ und nach weiteren 60 Minuten eine 3. Portion von 173 mg pulverisiertem K₂CO₃ zu (insgesamt 519 mg (3,75 mMol) K₂CO₃). Anschließend rührte man 9 Stunden bei 80°C nach, destillierte das DMF im Ölpumpenvakuum am Rotationsverdampfer ab und nahm den Rückstand in Wasser/CH₂Cl₂ auf. Nach Durchmischung und Trennung der Phasen wurde die wäßrige Lösung dreimal mit CH₂Cl₂ extrahiert. Die vereinigten CH₂Cl₂-Extrakte wurden getrocknet,

filtriert und im Vakuum eingedampft. Der Rückstand wurde durch Säulenchromatographie an Kieselgel S/CH₂Cl₂ (φ 2,6 cm, H 29 cm) unter Elution mit CH₂Cl₂ und CH₂Cl₂/C₂H₅OH-Mischungen mit steigendem C₂H₅OH-Gehalt (bis max. 4 Vol.% C₂H₅OH) gereinigt. Man erhielt 2,47 g (= 52 % Ausbeute) reines Cis-2-(2,4-Dichlorphenyl)-2-(imidazol-1-ylmethyl)-4-[4-(4-(5-trifluormethyl-pyrid-2-yl)-piperazin-1-yl)-phenoxyethyl]-1,3-dioxolan als zähes Öl;
 Analyse: C₃₀H₂₈Cl₂F₃N₅O₃
 Ber. C 56.79, H 4.45, N 11.04;
 Gef. C 56.4, H 4.3, N 11.0 %.

Beispiel 13

Nach der gleichen Arbeitsweise wie im Beispiel 12 beschrieben, ausgehend von IXa oder IXb (vgl. Tabelle 3) und jeweils der entsprechenden Verbindung der Formel Xa, wurden die in der Tabelle 3 aufgeführten Verbindungen der Formel I nach Verfahrensvariante D) hergestellt. Bei Verwendung von 4-Chlorpyrimidinen erfolgte die Zugabe von K₂CO₃ und das Nachröhren (5-7 Stunden) bei 90°C und bei Verwendung von 4-Chlor-chinolinen erfolgten diese Maßnahmen bei 80°C (Nachrührzeit 4-5 Stunden).

Tabelle 3

IX a (A = CH)

cis I (Ar= 2,4-Cl₂-C₆H₃-, g=O)

IX b (A = N)
cis

Verb.	A	Y	Analyse		Fp. [°C]
			Ber.	Gef.	
					-
3.1	CH		C 66.74 H 6.40 N 11.12	66.2 6.1 10.4	
3.2	N		C 62.50 H 5.25 N 14.58	62.1 5.2 14.3	122-23
3.3	N		C 62.50 H 5.25 N 14.58	62.0 5.1 14.2	-
3.4	CH		C 65.42 H 5.49 N 12.05	65.0 5.2 12.2	119-20
3.5	CH		C 65.42 H 5.49 N 12.05	- - -	96-97
3.6	CH		C 61.24 H 5.00 N 11.90	60.9 4.9 11.6	151-52
3.7	N		C 63.34 H 4.87 N 14.36	63.2 4.8 14.2	117-18
3.8	CH		C 60.92 H 4.53 N 12.18	60.1 4.2 11.8	207-09

Beispiel 14

Eine Mischung von 3,42 g (7 mMol) Cis-2-(2,4-Dichlorphenyl)-2-(imidazol-1-ylmethyl)-4-(4-piperazino-phenoxy-methyl)-1,3-dioxolan, 1,69 g (7 mMol) 4-Chlor-2-phenyl-chinazolin, 0,45 g Tetrabutylammoniumbromid, 55 ml Toluol und 9 ml 50 %ige Natronlauge wurde 5 Stunden bei 70°C intensiv gerührt. Danach trennte man bei Raumtemperatur die Phasen, schüttelte die konzentrierte NaOH zweimal mit Ether aus, vereinigte Toluol- und Etherphasen und schüttelte diese dreimal mit Wasser aus. Die Toluol-Ether-Lösung wurde getrocknet, filtriert und im Vakuum eingedampft. Der verbleibende Rückstand (4,95 g) wurde an einer Kieselgel S/ CH_2Cl_2 -Säule (\varnothing 2,6 cm, H 30 cm) wie im Beispiel 1 beschrieben chromatographiert. Man erhielt nach Vereinigen und Eindampfen DC-einheitlicher Fraktionen 2,49 g (= 52 % Ausbeute) Cis-2-(2,4-Dichlorphenyl)-2-(imidazol-1-ylmethyl)-4-[4-(4-(2-phenyl-chinazolin-4-yl)-piperazin-1-yl)-phenoxy-methyl]-1,3-dioxolan als hochviskoses Öl;

Analyse: $\text{C}_{38}\text{H}_{34}\text{Cl}_2\text{N}_6\text{O}_3$ (MG 693.65)

Ber. C 65.80, H 4.94, Cl 10.22, N 12.12;

Gef. C 64.8 H 4.8 Cl 10.6 N 11.8 %.

Beispiele für die Herstellung von Verbindungen der Formel IIIa

Beispiel 15

Eine Lösung von 1.89 g (10.6 mMol) 1-(4-Hydroxyphenyl)-piperazin und 2.19 g (10 mMol) 4-Chlor-5,6-dimethyl-2-phenyl-pyrimidin in 30 ml abs. N,N-Dimethylformamid (DMF) wurde auf 80°C erwärmt und unter Rühren bei 80°C nach 10 Minuten, nach weiteren 25 Minuten und nach weiteren 60 Minuten mit jeweils 234 mg pulverisiertem K_2CO_3 unter Stickstoffatmosphäre versetzt (insgesamt Zusatz von 702 mg (5.08 mMol) K_2CO_3). Man rührte 6 Stunden bei 90°C nach,

destillierte im Ölpumpenvakuum am Rotationsverdampfer das DMF weitgehend ab und nahm den verbleibenden Rückstand in CH_2Cl_2 /Wasser auf und stellte mit verdünnter Salzsäure den pH auf 7-8. Nach Durchmischung und Trennung der Phasen wurde die wäßrige noch zweimal mit CH_2Cl_2 extrahiert. Die vereinigten CH_2Cl_2 -Extrakte wurden getrocknet, filtriert und im Vakuum eingedampft. Der kristalline Rückstand (3,6g) wurde an einer Kieselgel S/ CH_2Cl_2 -Säule (ϕ 2,0 cm, H 38 cm) durch Elution mit CH_2Cl_2 und $\text{CH}_2\text{Cl}_2/\text{C}_2\text{H}_5\text{OH}$ -Mischungen mit steigendem $\text{C}_2\text{H}_5\text{OH}$ -Gehalt (bis max. 10 Vol.% $\text{C}_2\text{H}_5\text{OH}$) chromatographiert. Aufgezogen wurde die Substanz auf die Säule mit 60 ml einer CH_2Cl_2 /Tetrahydrofuran 2:1-Mischung. Die eluierte, nicht ganz reine, kristalline Substanz wurde durch Auskochen mit wenig CH_2Cl_2 und Absaugen gereinigt. Man erhielt so 2,22 g reines 1-(4-Hydroxyphenyl)-4-(5,6-dimethyl-2-phenyl-pyrimidin-4-yl)-piperazin, Fp. 202-03°C, (= 61,5 % Ausbeute) Analyse: $\text{C}_{22}\text{H}_{24}\text{N}_4\text{O}$ (MG 360.47), Ber. C 73.31, H 6.71, N 15.54, Gef. C 73.2 , H 6.6 , N 15.6 %.

Beispiel 16

Eine Mischung von 4,42 g (12 mMol) 1-(4-Hydroxy-3,5-dimethylphenyl)-piperazin-dihydrobromid, 2.84 g (13 mMol) 4-Chlor-5,6-dimethyl-2-phenyl-pyrimidin, 1,66 g (12 mMol) pulverisiertem K_2CO_3 und 38 ml abs. DMF wurde auf 90°C erwärmt und unter Rühren bei 90°C nach 10 Minuten, nach weiteren 25 Minuten und nach weiteren 60 Minuten mit jeweils 277 mg pulverisiertem K_2CO_3 (insgesamt 6 mMol K_2CO_3) versetzt und 6 Stunden bei 95°C nachgerührt. Anschließend destillierte man das DMF im Vakuum ab, nahm den Rückstand in CH_2Cl_2 /Wasser auf, trennte nach Durchmischung die Phasen und extrahierte die wäßrige noch dreimal mit CH_2Cl_2 . Die vereinigten CH_2Cl_2 -Extrakte wurden getrocknet, filtriert und im Vakuum eingedampft. Den kristallinen Rückstand (5,2 g) kochte man mit 15 ml Methanol auf und saugte nach Abkühlung im Eisbad das Kristallisat ab. Man erhielt auf

diese Weise 3,54 g (= 76 % Ausbeute) reines 1-(4-Hydroxy-3,5-dimethyl-phenyl)-4-(5,6-dimethyl-2-phenylpyrimidin-4-yl)-piperazin, Fp. 188-89°C, Analyse C₂₄H₂₈N₄O (MG 388.52)
 Ber. C 74.20, H 7.26, N 14.4;
 Gef. C 74.0, H 7.3, N 14.3 %.

Beispiel 17

Gemäß der in den Beispielen 15 und 16 beschriebenen Arbeitsmethode wurden ausgehend von einer Verbindung der Formel XIIIa und jeweils des entsprechenden 4-Chlorpyrimidins der Formel Xa (vgl. Tab. 4) die in der Tabelle 4 aufgeführten Verbindungen der Formel IIIa hergestellt. Sofern der nach Abdestillieren des DMF verbliebene Rückstand kristallin war bzw. beim Aufnehmen in Wasser kristallisierte und durch Umkristallisieren (bevorzugt aus Methanol oder Acetonitril) zu reinigen war, wurde die betreffende Verbindung der Formel IIIa auf diese Weise rein hergestellt. Andernfalls wurden die Verbindungen IIIa durch Säulenchromatographie gemäß der im Beispiel 15 beschriebenen Arbeitsweise in reiner Form gewonnen. Diese Fälle sind in der Tabelle 4 mit (*) gekennzeichnet.

Tabelle 4

Verb. R ¹ Nr.	Y	Ausbeute [%]	Fp [°C]	Summen- formel	Analyse % Ber. Gef.
4.1	H	67	187-88	C ₂₃ H ₃₂ N ₄ O	C 72.60 72.5 H 8.47 8.4 N 14.72 14.5
4.2*)	CH ₃	85	134-35	C ₂₅ H ₃₆ N ₄ O	C 73.49 73.2 H 8.88 9.2 N 13.71 13.5

Tabelle 4 (Fortsetzung)

Verb. R ¹ Nr.	Y	Ausbeute [%]	Fp [°C]	Summen- formel	Analyse % Ber.	Analyse % Gef.
4.3 H		58	121-22	C ₂₈ H ₃₆ N ₄ O	C 75.64 H 8.16 N 12.60	75.3 8.0 12.7
4.4 H		61	147-48	C ₂₇ H ₃₂ N ₄ O	C 75.67 H 7.53 N 13.07	75.6 7.6 12.9
4.5 H		50	205-06	C ₂₂ H ₂₃ ClN ₄ O	C 66.91 H 5.87 N 14.19	66.8 5.8 14.0
4.6 H		82	227-28	C ₂₄ H ₂₆ N ₄ O	C 74.58 H 6.78 N 14.50	74.3 6.8 14.4
4.7		82	187-88	C ₂₀ H ₂₆ N ₄ O	C 70.97 H 7.74 N 16.55	70.7 7.8 16.4
4.8 H		89	232-33	C ₂₂ H ₂₄ N ₄ O	C 73.31 H 6.71 N 15.54	73.2 6.7 15.4
4.9 H		87	252-53	C ₂₂ H ₂₃ ClN ₄ O	C 66.91 H 5.87 N 14.19	66.7 5.8 14.1
4.10*) H		38	148-49	C ₂₄ H ₂₈ N ₄ O	C 74.20 H 7.26 N 14.42	73.2 7.0 14.0

Tabelle 4 (Fortsetzung)

Verb.	R ¹	Y	Ausbeute [%]	Fp [°C]	Summen- formel	Analyse % Ber. Gef.
4.11*)	CH ₃		42	-	C ₂₆ H ₃₂ N ₄ O	C 74.96 74.6 H 7.74 7.6 N 13.45 13.4
4.12*)	H		64	171-72	C ₂₈ H ₂₇ ClN ₄ O	C 71.40 71.1 H 5.78 5.7 N 11.90 11.6
4.13	H		53	240-42	C ₂₄ H ₂₆ N ₄ O	C 74.58 74.4 H 6.78 6.7 N 14.50 14.3
4.14	H		86	191-92	C ₂₄ H ₂₂ N ₄ O	C 75.37 75.4 H 5.80 5.6 N 14.65 14.6
4.15*)	H		72	168-69	C ₂₅ H ₂₂ F ₃ N ₃ O ₃	C 61.99 61.5 H 4.99 4.7 N 9.44 9.2
4.16#)	H		22	196-97	C ₂₄ H ₂₇ N ₃ O ₄	C 68.39 67.0 H 6.46 6.4 N 9.97 10.2
4.17	H		89	226-27	C ₂₁ H ₁₉ CIN ₄ O	C 66.57 66.5 H 5.06 5.1 N 14.79 14.5

#) 2,5 Stunden 80°C Nachrührzeit

Beispiel 18

Eine Mischung von 5.11 g (15 mMol) 1-(4-Hydroxyphenyl)-piperazin-dihydrobromid, 2,48 g (15 mMol) 1-Chlorphthalazin, 2,08 g (15 mMol) pulverisiertem K_2CO_3 und 55 ml abs. DMF wurde auf 85°C erwärmt und unter Rühren bei 85°C nach 10 Minuten, nach weiteren 25 Minuten und nach weiteren 60 Minuten mit jeweils 346 mg pulverisiertem K_2CO_3 (insgesamt 1,038 g, 7,51 mMol K_2CO_3) versetzt und 2 Stunden bei 90°C und 3 Stunden bei 105°C nachgerührt. Danach destillierte man das DMF im Vakuum ab, nahm den Rückstand in CH_2Cl_2 /Wasser auf, trennte nach Durchmischung die Phasen und extrahierte die wässrige Lösung dreimal mit CH_2Cl_2 . Die vereinigten CH_2Cl_2 -Extrakte wurden getrocknet, filtriert und im Vakuum eingedampft. Der verbleibende Rückstand (4,75 g) wurde an einer Kieselgel S/ CH_2Cl_2 -Säule (ϕ 2,6 cm, H 43 cm) durch Elution mit $CH_2Cl_2-C_2H_5OH$ -Mischungen mit steigendem C_2H_5OH -Gehalt (1-10 Vol.-%) chromatographiert. Die Fraktionen, in denen laut DC die gesuchte Verbindung angereichert war, wurden zusammengenepfaßt und eingedampft. Der anfallende kristalline Rückstand (2.04 g) wurde mit 15 ml CH_2Cl_2 kurz aufgekocht, im Eisbad abgekühlt und abgesaugt. Man erhielt so 0,73 g reines 1-(4-Hydroxyphenyl)-4-(1-phthalazinyl)-piperazin, Fp. 244-45°C. Die Mutterlauge wurde nochmals an einer Kieselgel/ CH_2Cl_2 -Säule (ϕ 2,0 cm, H 22 cm) analog der ersten Säulenchromatographie chromatographisch gereinigt. Das dabei anfallende angereicherte Produkt wurde ebenso wie der erste Teil mit 7 ml CH_2Cl_2 kurz aufgekocht und im gekühlten Zustand abgesaugt. Hierbei erhält man weitere 0,28 g reine Verbindung, Fp. 244-45°C. Die Ausbeute betrug insgesamt 1.01 g = 22 % d.Th.;
Analyse: $C_{18}H_{18}N_4O$ (MG 306.37)
Ber. C 70.57, H 5.92, N 18.29;
Gef. C 69.8 , H 5.9 , N 18.2 %.

Beispiel 19

Nach der gleichen Arbeitsweise wie im Beispiel 18 beschrieben wurden 35 mMol 1-(4-Hydroxyphenyl)-piperazin-dihydro-

bromid, 35 mMol 1-Chlor-4-(4-tolyl)-phthalazin und 52,5 mMol K_2CO_3 in 110 ml abs. N,N-Dimethylformamid (DMF) umgesetzt. Die Nachrührzeit betrug 2 Stunden bei 90°C und 7 Stunden bei 105°C. Danach wurde das DMF im Vakuum abdestilliert. Der verbleibende Rückstand wurde in CH_2Cl_2 /Wasser aufgenommen. Nach Durchmischung trennte man die Phasen, extrahierte die wässrige Lösung noch dreimal mit CH_2Cl_2 , vereinigte die CH_2Cl_2 -Extrakte und dampfte diese nach dem Trocknen mit $MgSO_4$ im Vakuum ein. Den Rückstand vermischte man mit 70 ml CH_2Cl_2 und saugte die dabei kristallin anfallende Substanz ab. Bei diesem Feststoff (1,7 g) handelt es sich um 1,2-Dihydro-4-(4-tolyl)-phthalazin-1-on, ein Nebenprodukt. Das Filtrat wurde auf 40-50 ml Volumen eingengt, woraufhin weitere Substanz auskristallisierte, die abgesaugt wurde. Dieser Anteil (4,65 g) wurde mit 15 ml Methanol kurz aufgekocht und nach Abkühlung ($<10^\circ C$) abgesaugt und getrocknet. Man erhielt an dieser Stelle 2,72 g reines 1-(4-Hydroxyphenyl)-4-[4-(4-tolyl)-phthalazin-1-yl]-piperazin, Fp. 265-66°C, Analyse: $C_{25}H_{24}N_4O$ (MG 396,50)

Ber. C 75.73, H 6.10, N 14.13;

Gef. C 76.0, H 6.2, N 14.2 %.

Die Mutterlaugen (Filtrate) wurden zusammengefaßt, im Vakuum eingedampft und an einer Kieselgel/ CH_2Cl_2 -Säule (ϕ 4,2 cm, H 38 cm) unter Elution mit CH_2Cl_2 und CH_2Cl_2/C_2H_5OH -Mischungen (0,5-10,0 Vol.% C_2H_5OH) chromatographiert. Man erhielt hierbei weitere 2,9 g angereicherte Substanz, die nach Aufkochen mit 8 ml Methanol, Absaugen im gekühlten Zustand und Trocknen 2,0 g weitere reine Substanz ergaben. Die Ausbeute betrug 4,72 g (= 34 % d.Th.) 1-(4-Hydroxyphenyl)-4-[4-(4-tolyl)-phthalazin-1-yl]-piperazin.

Beispiel 20

Eine Mischung von 6,82 g (20 mMol) 1-(4-Hydroxyphenyl)-piperazindihydrbromid, 3,36 g (18,5 mMol) 2-Chlor-5-trifluormethyl-pyridin, 2,91 g (21 mMol) pulverisiertem K_2CO_3

und 76 ml abs. DMF wurde auf 80°C erwärmt und unter Röhren bei 80°C nach 10 Minuten, nach weiteren 25 Minuten und nach weiteren 60 Minuten mit jeweils 460 mg pulverisiertem K_2CO_3 (insgesamt 1,38 g) 10 mMol) K_2CO_3) versetzt und 9 Stunden bei 80°C nachgerührt. Nach Abdestillieren des DMF im Vakuum wurde der Rückstand in CH_2Cl_2 /Wasser aufgenommen, nach Durchmischung die Phasen getrennt und die wäßrige Lösung dreimal mit CH_2Cl_2 extrahiert. Die vereinigten CH_2Cl_2 -Extrakte wurden getrocknet, filtriert und im Vakuum eingedampft. Der Rückstand (6 g) löste man kochend in Methanol. Die gebildete trübe Lösung wurde über Kieselgur abgesaugt, auf die Hälfte eingeengt und im Eisbad gekühlt. Das ausfallende Kristallisat wurde abgesaugt und getrocknet. Das Filtrat schied nach weiterem Einengen und Kühlen weitere kristalline Substanz ab, die abgesaugt und aus wenig Methanol umkristallisiert wurde. Man erhielt auf diese Weise 3,43 g (= 57,4 % Ausbeute) 1-(4-Hydroxyphenyl)-4-(5-trifluormethyl-pyrid-2-yl)-piperazin, Fp. 178-79°C,
Analyse: $C_{16}H_{16}F_3N_3O$ (MG 323,33)
Ber. C 59.44, H 4.99, N 13.0;
Gef. C 59.0 , H 5.2 , N 13.1 %.

Beispiel 21

Nach der gleichen Arbeitsweise wie im Beispiel 20 beschrieben, wurden 2,21 g (6 mMol) 1-(4-Hydroxy-3,5-dimethyl-phenyl)-piperazin-dihydrobromid, 1,14 g (6.25 mMol) 2-Chlor-5-trifluormethyl-pyridin und 1,245 g (9 mMol) K_2CO_3 in 27 ml abs. DMF umgesetzt, Die Nachrührzeit betrug 3,5 Stunden bei 90°C. Nach Verdampfen des DMF wurde der Rückstand mit Wasser vermischt und die dabei entstandene verölte kristalline Masse abgesaugt, in Methanol gelöst und mit Aktivkohle geklärt. Nach der Filtration wurde zum Filtrat etwas Wasser zugesetzt, wobei kristalliner Niederschlag ausfiel. Dieser wurde abgesaugt (Anfall 1,63 g) und an einer Kieselgel/ CH_2Cl_2 -Säule (ϕ 2,0 cm, H 22 cm) wie im Beispiel 15 beschrieben chromatographiert. Man erhielt

auf diese Weise 1,24 g (= 59 % Ausbeute) 1-(4-Hydroxy-3,5-dimethyl-phenyl)-4-(5-trifluormethyl-pyrid-2-yl)-piperazin,
 Fp. 143-44°C, Analyse: $C_{18}H_{20}F_3N_3O$ (MG 351.38)
 Ber. C 61.53, H 5.74, N 11.96;
 Gef. C 61.3, H 5.6, N 12.1 %.

Beispiel 22

Gemäß der im Beispiel 20 beschriebenen Arbeitsweise wurden 12,26 g (36 mMol) 1-(4-Hydroxyphenyl)-piperazin-dihydrobromid, 8,24 g (36,1 mMol) 2-Chlor-3-cyano-4-methyl-6-phenyl-pyridin und 7,46 g (54 mMol) pulverisiertes K_2CO_3 in 135 ml abs. DMF bei 90°C umgesetzt. Die Nachrührzeit betrug 10 Stunden bei 110°C. Nach Abdestillieren des DMF wurde der Rückstand in CH_2Cl_2 /Wasser aufgenommen. Nach Durchmischung, Trennung der Phasen und Extraktion der wässrigen Lösung wurden die CH_2Cl_2 -Extrakte vereinigt, getrocknet und eingedampft. Der kristalline Rückstand (14,6 g) wurde dreimal wie folgt umkristallisiert. Man löste die Substanz siedend in einer CH_2Cl_2/CH_3OH -1:1-Mischung und destillierte dann das CH_2Cl_2 großteils ab. Aus der erhaltenen CH_3OH -Lösung kristallisierte Produkt aus, das abgesaugt und erneut auf diese Weise umkristallisiert wurde. Aus den Mutterlaugen wurde weitere nicht reine Substanz durch Einengen etc. isoliert, die abschließend, ebenso wie vorstehend beschrieben, nochmals umkristallisiert wurde. Auf diese Weise wurden 6,82 g (= 51 % Ausbeute) 1-(4-Hydroxyphenyl)-4-(3-cyano-4-methyl-6-phenyl-pyrid-2-yl)-piperazin, Fp. 207-08°C, erhalten; Analyse: $C_{23}H_{22}N_4O$ (MG 370,46)
 Ber. C 74.57, H 5.99, N 15.12;
 Gef. C 73.7, H 5.9, N 14.9 %.

Beispiel 23

Eine Mischung aus 12.77 g (37,5 mMol) 1-(4-Hydroxyphenyl)-piperazin-dihydrobromid, 7,13 g (37,6 mMol) 2-Chlor-6-phenyl-pyridin, 8 g (58 mMol) K_2CO_3 und 145 ml abs. DMF

wurde unter Röhren 24 Stunden am Rückfluß gekocht. Danach wurde das DMF im Vakuum abdestilliert. Den Rückstand verarbeitete man mit CH_2Cl_2 /Wasser, schüttelte durch, trennte die Phasen und extrahierte die wäßrige Lösung mehrmals mit CH_2Cl_2 . Die vereinigten CH_2Cl_2 -Extrakte dampfte man nach dem Trocknen und Filtrieren ein. Den Rückstand nahm man in Ethylacetat auf, woraufhin kristalliner Niederschlag ausfiel, der abgesaugt wurde. Bei diesem Feststoff (4,89 g) handelt es sich um ein Nebenprodukt, und zwar 1-(4-Hydroxyphenyl)-4-formyl-piperazin. Die Ethylacetat-Lösung (Filtrat) wurde eingedampft und der verbleibende Rückstand (12 g) an einer Kieselgel- CH_2Cl_2 /Petrolether 1:2 Säule (ϕ 2,2 cm, H 44 cm) chromatographiert. Man eluierte mit CH_2Cl_2 /Petrolether 1:2; 1:1 und 2:1 Mischungen, mit CH_2Cl_2 und mit $\text{CH}_2\text{Cl}_2/\text{C}_2\text{H}_5\text{OH}$ -Mischungen (0,5-2,0 Vol.% $\text{C}_2\text{H}_5\text{OH}$). Nach Vorzonen wurden 2,82 g (= 22,7 % Ausbeute) 1-(4-Hydroxyphenyl)-4-(6-phenyl-pyrid-2-yl)-piperazin als hochviskoses Öl erhalten; Analyse: $\text{C}_{21}\text{H}_{21}\text{N}_3\text{O}$ (MG 331.42)
Ber. C 76.11, H 6.39, N 12.68;
Gef. C 75.7 , H 6.2 , N 12.3 %.

Beispiel 24

Nach der gleichen Arbeitsweise wie im Beispiel 23 beschrieben wurde im 25 mMol Maßstab ausgehend von 1-(4-Hydroxyphenyl)-piperazin-dihydrobromid, K_2CO_3 und 2-Chlor-6-cyclohexyl-4-methyl-pyridin (34 Stunden Rückflußkochen unter Röhren) in abs. DMF unter Zusatz von 5 mMol Natriumjodid 1-(4-Hydroxyphenyl)-4-(6-cyclohexyl-4-methyl-pyrid-2-yl)-piperazin, Fp. 82-83°C, in 15 %iger Ausbeute hergestellt; Analyse: $\text{C}_{22}\text{H}_{29}\text{N}_3\text{O}$ (MG 351.50)
Ber. C 75.18, H 8.32, N 11.96;
Gef. C 73.5 , H 8.5 , N 11.6 %.
Hauptprodukt ist unter diesen Reaktionsbedingungen 1-(4-Hydroxyphenyl)-4-formyl-piperazin, das in 74 %iger Ausbeute als unerwünschtes Produkt anfällt.

PATENTANSPRÜCHE:

1. Verbindung der Formel I

in der bedeuten:

A CH oder N,

Ar Naphthyl, Thienyl, Halothienyl oder eine unsubstituierte oder eine bis zu 3 Substituenten tragende Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können und Halogen, Trifluormethyl, C₁-C₂-Alkyl, C₁-C₂-Alkoxy oder Phenoxy bedeuten,

R¹ C₁-C₃-Alkyl, F oder Cl,

g 0, 1 oder 2,

Y die folgenden heterocyclischen Reste

R² C₁-C₄-Alkyl, eine unsubstituierte oder 1 oder 2 Substituenten tragende Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können und Halogen, Trifluormethyl, Methoxy, Ethoxy, Nitro oder C₁-C₄-Alkyl bedeuten,
 oder eine unsubstituierte oder eine im Phenylrest 1 oder 2 Substituenten tragende Phenyl-C₁-C₂-alkylgruppe, wobei die Substituenten gleich oder verschieden sein können und F, Cl, Methoxy-, Ethoxy- oder C₁-C₃-Alkyl bedeuten,

R³ H, C₁-C₈-Alkyl, C₃-C₆-Cycloalkyl-C₁-C₃-alkyl, eine unsubstituierte oder 1 oder 2 Substituenten tragende Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können und Halogen, Methoxy-, Ethoxy oder C₁-C₃-Alkyl, eine unsubstituierte oder im Phenylrest durch Methoxy, 1,2-Methylenedioxy, F, Cl oder C₁-C₃-Alkyl substituierte Phenyl-C₁-C₂-alkylgruppe, oder Trifluormethyl bedeuten,

R⁴ H, C₁-C₄-Alkyl oder Benzyl,
oder R³ und R⁴ zusammen
-(CH₂)_r-, wobei r=3 oder 4 ist, oder -CH=CH-CH=CH-,
q 0 oder 1 bedeutet, oder

R⁵ H oder CN,
R⁶ H, C₁-C₄-Alkyl oder eine unsubstituierte oder durch OCH₃, F, Cl, CH₃ oder C₂H₅ substituierte Phenylgruppe,
R⁷ H, Benzyl, CF₃ oder CH₃,
R⁸ C₅-C₆-Cycloalkyl oder eine unsubstituierte oder durch OCH₃, F, Cl, CH₃ oder C₂H₅ substituierte Phenylgruppe bedeutet und, falls R⁵ CN und/oder R⁷ CF₃ bedeutet, R⁸ auch H bedeuten kann, oder R⁷ und R⁸ zusammen -(CH₂)₄- bedeuten, oder

R⁹ H, Methyl oder Ethyl,
R¹⁰ H, CN oder COOR¹², wobei R¹² Methyl oder Ethyl bedeutet,

R¹¹ C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Halogen oder Trifluor-methyl und

n 0, 1 oder 2 bedeute , wobei, falls R¹¹ CF₃ bedeu-tet, n=1 ist, und, falls n≠0, die Reste R¹¹ in 5-, 6-, 7-oder 8-Stellung des Chinolinsystems stehen können, oder

d) , in dem

R¹³ H, C₁-C₄-Alkyl oder eine unsubstituierte oder 1 oder 2 Substituenten tragende Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können und Halogen, Methoxy, Ethoxy, Methyl oder Ethyl bedeuten, bedeutet,

sowie deren physiologisch verträgliche Säureadditionssalze.

2. Verbindung I nach Anspruch 1, dadurch gekennzeichnet, daß mindestens einer der Substituenten die folgende Bedeu-tung hat:

A CH oder N,

Ar eine durch 1 oder 2 F- oder Cl-Atome substituierte Phenylgruppe,

R¹ CH₃ oder C₂H₅,

g 0 oder 2,

Y

zu dem heterocyclischen Rest a)

R² C₁-C₄-Alkyl, eine unsubstituierte oder 1 oder 2 glei-che oder verschiedene Substituenten tragende Phenylgruppe, wobei die Substituenten F, Cl, OCH₃, OC₂H₅, CH₃ oder C₂H₅ bedeuten, oder eine Benzyl- oder eine durch ein F- oder Cl-Atom im Phenylrest substituierte Benzylgruppe,

R³ C₁-C₈-Alkyl, C₅-C₆-Cycloalkyl-C₁-C₂-alkyl, eine Phenyl- oder Phenyl-C₁-C₂-alkylgruppe, im Phenylrest jeweils unsubstituiert oder durch 1 oder 2 F, Cl, OCH₃ oder CH₃ substituiert, oder CF₃,
R⁴ C₁-C₄-Alkyl, Benzyl oder
R³ und R⁴ zusammen -(CH₂)₃- , -(CH₂)₄- oder -CH=CH-CH=CH-,
q 0 oder 1,

zu dem heterocyclischen Rest b)

R⁵ H oder CN,
R⁶ H, CH₃ oder Phenyl,
R⁷ H oder CF₃,
R⁸ Phenyl oder durch F, Cl, CH₃ oder OCH₃ substituiertes Phenyl oder, falls R⁵ CN und/oder R⁷ CF₃ bedeutet, zusätzlich H und
R⁷ und R⁸ zusammen -(CH₂)₄-,

zu dem heterocyclischen Rest c)

R⁹ H
R¹⁰ CN, COOCH₃ oder COOC₂H₅,
R¹¹ C₁-C₄-Alkyl, C₁-C₄-Alkoxy, F, Cl, Br oder CF₃,
n 0, 1 oder 2, wobei falls R¹¹ CF₃ bedeutet, n=1 ist und, falls n ungleich 0 ist, R¹¹ in 5, 6, 7 oder 8-Stellung stehen kann,

zu dem heterocyclischen Rest d)

R¹³ H, C₁-C₄-Alkyl oder eine unsubstituierte oder durch 1 oder 2 F, Cl, OCH₃ oder CH₃ substituierte Phenylgruppe.

3. Verbindung I nach Anspruch 1, dadurch gekennzeichnet, daß mindestens einer der Substituenten bzw. Indizes die folgende Bedeutung hat:

A CH oder N,

Ar 2,4-Dichlorphenyl,

R¹ CH₃,

g 0 oder 2,

Y

zu den heterocyclischen Resten a)

R² eine unsubstituierte oder 1 oder 2 gleiche oder verschiedene Substituenten tragende Phenylgruppe, wobei die Substituenten Cl, OCH₃, OC₂H₅ oder CH₃ bedeuten, eine Benzyl- oder eine Chlorbenzylgruppe,

R³ C₁-C₈-Alkyl, C₅-C₆-Cycloalkyl-C₁-C₂-alkyl, eine Phenyl- oder Phenyl-C₁-C₂-alkylgruppe, im Phenylrest jeweils unsubstituiert oder durch 1 oder 2 F, Cl, OCH₃ oder CH₃ substituiert,

R⁴ C₁-C₄-Alkyl, Benzyl oder

R³ und R⁴ zusammen -(CH₂)₃-, -(CH₂)₄- oder -CH=CH-CH=CH-,

q 0 oder 1,

zu dem heterocyclischen Rest b)

R⁵ H oder CN,

R⁶ H oder CH₃,

R⁷ H oder CF₃,

R⁸ Phenyl oder durch Cl oder OCH₃ substituiertes Phenyl oder, falls R⁵ CN und/oder R⁷ CF₃ bedeutet, zusätzlich H,

zu dem heterocyclischen Rest c)

R⁹ H,

R¹⁰ CN, COOCH₃ oder COOC₂H₅,

R¹¹ CH₃, C₂H₅, OCH₃, OC₂H₅, F, Cl, Br oder CF₃,

n 0, 1 oder 2, wobei, falls R¹¹ CF₃ bedeutet, n=1 ist und, falls n ungleich 0 ist, R¹¹ in 5-, 6-, 7- oder 8-Stellung stehen kann,

zu dem heterocyclischen Rest d)

R¹³ eine unsubstituierte oder durch 1 oder 2 F, Cl, OCH₃ oder CH₃ substituierte Phenylgruppe.

4. Verfahren zum Herstellen einer Verbindung I nach Anspruch 1, dadurch gekennzeichnet, daß man

A) eine Verbindung der Formel II,

in der

A und Ar die zu Formel I angegebenen Bedeutungen haben und

E Halogen oder Acyloxy, Alkyl-sulfonyloxy oder Aryl-sulfonyloxy bedeutet,

mit einer Verbindung der Formel III

in der

M H, ein Alkali- oder Erdalkalimetall bedeutet und

R¹, g und Y die zu Formel I angegebenen Bedeutungen haben, umgesetzt, oder daß man

B) eine Verbindung der Formel IV,

in der

Ar die zu Formel I und E und E' die zu Formel II für E angegebenen Bedeutungen haben, zunächst mit einer Verbindung der Formel III umgesetzt und hierbei eine Verbindung der Formel V herstellt,

in der

Ar, R¹, g und Y die zu Formel I und E' die zu Formel II für E angegebenen Bedeutungen haben, und anschließend eine Verbindung der Formel V mit einer Verbindung der Formel VI umgesetzt,

in der A CH oder N und

M' H, ein Alkali- oder Erdalkalimetall oder Si(CH₃)₃ bedeutet,

oder daß man

C) eine Verbindung der Formel VII,

in der A und Ar die zu Formel I angegebenen Bedeutungen haben, mit einem 1,2-Diol der Formel VIII,

in der R¹, g und Y die zu Formel I angegebenen Bedeutungen haben, umsetzt,

oder daß man

D) eine Verbindung der Formel IX,

IX

in der A, Ar, R¹ und g die zu Formel I angegebenen Bedeutungen haben, mit einer Verbindung der Formel X,

E"-Y

X

in der E" C₁-C₄-Alkoxy, Cl, Br, J, Acyloxy, Alkylsulfonyloxy oder Arylsulfonyloxy bedeutet und Y die zu Formel I unter a, b, c und d angegebenen Bedeutungen hat, umsetzt, und gegebenenfalls die nach Weg A)-D) erhaltenen Verbindungen der Formel I mit anorganischen oder organischen Säuren in ihre physiologisch verträglichen Säureadditionsalze überführt.

5. Verbindung der Formel IIIa,

IIIa

in der bedeuten:

R¹ C₁-C₃-Alkyl, F oder Cl,

g 0, 1 oder 2 und

Y die folgenden heterocyclischen Reste

R² C₁-C₄-Alkyl, eine unsubstituierte oder 1 oder 2 Substituenten tragende Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können und Halogen, Trifluormethyl, Methoxy, Ethoxy, Nitro oder C₁-C₄-Alkyl bedeuten,
oder eine unsubstituierte oder eine im Phenylrest 1 oder 2 Substituenten tragende Phenyl-C₁-C₂-alkylgruppe, wobei die Substituenten gleich oder verschieden sein können und F, Cl, Methoxy-, Ethoxy- oder C₁-C₃-Alkyl bedeuten,

R³ H, C₁-C₈-Alkyl, C₃-C₆-Cycloalkyl-C₁-C₃-alkyl, eine unsubstituierte oder 1 oder 2 Substituenten tragende Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können und Halogen, Methoxy-, Ethoxy oder C₁-C₃-Alkyl, eine unsubstituierte oder im Phenylrest durch Methoxy, 1,2-Methyldioxy, F, Cl oder C₁-C₃-Alkyl substituierte Phenyl-C₁-C₂-alkylgruppe, oder Trifluormethyl bedeuten,

R⁴ H, C₁-C₄-Alkyl oder Benzyl,
oder R³ und R⁴ zusammen
-(CH₂)_r-, wobei r=3 oder 4 ist, oder -CH=CH-CH=CH-,
q 0 oder 1 bedeutet, oder

R⁵ H oder CN,

R⁶ H, C₁-C₄-Alkyl oder eine unsubstituierte oder durch OCH₃, F, Cl, CH₃ oder C₂H₅ substituierte Phenylgruppe,

R⁷ H, Benzyl oder CF₃,

R⁸ C₅-C₆-Cycloalkyl oder eine unsubstituierte oder durch OCH₃, F, Cl, CH₃ oder C₂H₅ substituierte Phenylgruppe bedeuten und, falls R⁵CN und/oder R⁷CF₃ bedeutet,

R^8 auch H bedeuten kann, oder
 R^7 und R^8 zusammen $-(CH_2)_4-$ bedeuten, oder

R^9 H, Methyl oder Ethyl,
 R^{10} H, CN oder $COOR^{12}$, wobei R^{12} Methyl oder Ethyl bedeutet,
 R^{11} C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, Halogen oder Trifluormethyl und
n 0, 1 oder 2 bedeuten, wobei, falls R^{11} CF_3 bedeutet, n=1 ist, und, falls n ungleich 0, die Reste R^{11} in 5-, 6-, 7- oder 8-Stellung des Chinolinsystems stehen können, oder

R^{13} H, C_1-C_4 -Alkyl oder eine unsubstituierte oder 1 oder 2 Substituenten tragende Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können und Halogen, Methoxy, Ethoxy, Methyl oder Ethyl bedeuten,

sowie deren Säureadditionssalze.

6. Verfahren zum Herstellen einer Verbindung IIIa nach Anspruch 5, dadurch gekennzeichnet, daß man eine Verbindung der Formel XIII,

XIII,

in der R¹ und g die zu Formel I angegebenen Bedeutungen haben, oder ein Salz dieser Verbindung, mit einer Verbindung der Formel X,

E"-Y

X,

in der E" C₁-C₄-Alkoxy, Cl, Br, J, Acyloxy, Alkylsulfonyloxy oder Arylsulfonyloxy bedeutet, und

Y die zur Formel I angegebenen Bedeutungen hat,

umsetzt und gegebenenfalls die erhaltenen Verbindungen der Formel IIIa mit anorganischen oder organischen Säuren in ihre Säureadditionssalze überführt.

7. Verwendung einer Verbindung der Formel I nach Anspruch 1 als Antimykotikum.

8. Verwendung einer Verbindung der Formel I nach Anspruch 1 zur Herstellung eines antimykotisch wirkenden Arzneimittels.

9. Arzneimittel mit antimykotischer Wirkung, gekennzeichnet durch einen wirksamen Gehalt einer Verbindung I nach Anspruch 1.

10. Verfahren zum Behandeln von Mykosen, dadurch gekennzeichnet, daß man eine wirksame Menge einer Verbindung I nach Anspruch 1 zusammen mit pharmazeutisch geeigneten Trägerstoffen appliziert.

11. Verbindung I nach Anspruch 1, dadurch gekennzeichnet, daß der Azolylmethylrest und die 4-ständige Piperazino-phenoxyethylgruppe am Dioxolanring in cis-Stellung stehen.

Patentansprüche Griechenland, Spanien und Österreich:

1. Verfahren zum Herstellen einer Verbindung I

in der bedeuten:

A CH oder N,

Ar Naphthyl, Thienyl, Halothienyl oder eine unsubstituierte oder eine bis zu 3 Substituenten tragende Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können und Halogen, Trifluormethyl, C₁-C₂-Alkyl, C₁-C₂-Alkoxy oder Phenoxy bedeuten,

R¹ C₁-C₃-Alkyl, F oder Cl,

g 0, 1 oder 2,

Y die folgenden heterocyclischen Reste

, in denen

R² C₁-C₄-Alkyl, eine unsubstituierte oder 1 oder 2 Substituenten tragende Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können und Halogen, Trifluormethyl, Methoxy, Ethoxy, Nitro oder C₁-C₄-Alkyl bedeuten,
oder eine unsubstituierte oder eine im Phenylrest 1 oder 2 Substituenten tragende Phenyl-C₁-C₂-alkylgruppe, wobei die Substituenten gleich oder verschieden sein können und F, Cl, Methoxy-, Ethoxy- oder C₁-C₃-Alkyl bedeuten,

R^3 H, C_1 - C_8 -Alkyl, C_3 - C_6 -Cycloalkyl- C_1 - C_3 -alkyl, eine unsubstituierte oder 1 oder 2 Substituenten tragende Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können und Halogen, Methoxy-, Ethoxy oder C_1 - C_3 -Alkyl, eine unsubstituierte oder im Phenylrest durch Methoxy, 1,2-Methyldioxy, F, Cl oder C_1 - C_3 -Alkyl substituierte Phenyl- C_1 - C_2 -alkylgruppe, oder Trifluormethyl bedeuten,

R^4 H, C_1 - C_4 -Alkyl oder Benzyl,
oder R^3 und R^4 zusammen
 $-(CH_2)_r-$, wobei $r=3$ oder 4 ist, oder $-CH=CH-CH=CH-$,
q 0 oder 1 bedeutet, oder

R^5 H oder CN,
 R^6 H, C_1 - C_4 -Alkyl oder eine unsubstituierte oder durch OCH_3 , F, Cl, CH_3 oder C_2H_5 substituierte Phenylgruppe,
 R^7 H, Benzyl, CF_3 oder CH_3 ,
 R^8 C_5 - C_6 -Cycloalkyl oder eine unsubstituierte oder durch OCH_3 , F, Cl, CH_3 oder C_2H_5 substituierte Phenylgruppe bedeutet und, falls R^5 CN und/oder R^7 CF_3 bedeutet, R^8 auch H bedeuten kann, oder
 R^7 und R^8 zusammen $-(CH_2)_4-$ bedeuten, oder

R^9 H, Methyl oder Ethyl,
 R^{10} H, CN oder $COOR^{12}$, wobei R^{12} Methyl oder Ethyl bedeutet,

R¹¹ C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Halogen oder Trifluor-methyl und

n 0, 1 oder 2 bedeute, wobei, falls R¹¹ CF₃ bedeutet, n=1 ist, und, falls n>0, die Reste R¹¹ in 5-, 6-, 7-oder 8-Stellung des Chinolinsystems stehen können, oder

R¹³ H, C₁-C₄-Alkyl oder eine unsubstituierte oder 1 oder 2 Substituenten tragende Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können und Halogen, Methoxy, Ethoxy, Methyl oder Ethyl bedeuten, bedeutet,

sowie von deren physiologisch verträglichen Säureadditions-salzen, dadurch gekennzeichnet, daß man

A) eine Verbindung der Formel II,

in der

A und Ar die zu Formel I angegebenen Bedeutungen haben und

E Halogen oder Acyloxy, Alkyl-sulfonyloxy oder Aryl-sulfonyloxy bedeutet,

mit einer Verbindung der Formel III

in der

M H, ein Alkali- oder Erdalkalimetall bedeutet und R¹, g und Y die zu Formel I angegebenen Bedeutungen haben, umgesetzt, oder daß man

B) eine Verbindung der Formel IV,

in der

Ar die zu Formel I und E und E' die zu Formel II für E angegebenen Bedeutungen haben,
zunächst mit einer Verbindung der Formel III umgesetzt und hierbei eine Verbindung der Formel V herstellt,

in der

Ar, R¹, g und Y die zu Formel I und E' die zu Formel II für E angegebenen Bedeutungen haben,
und anschließend eine Verbindung der Formel V mit einer Verbindung der Formel VI umgesetzt,

in der A CH oder N und

M' H, ein Alkali- oder Erdalkalimetall oder Si(CH₃)₃
bedeutet,

oder daß man

C) eine Verbindung der Formel VII,

in der A und Ar die zu Formel I angegebenen Bedeutungen haben, mit einem 1,2-Diol der Formel VIII,

in der R¹, g und Y die zu Formel I angegebenen Bedeutungen haben, umsetzt,

oder daß man

D) eine Verbindung der Formel IX,

in der A, Ar, R¹ und g die zu Formel I angegebenen Bedeutungen haben, mit einer Verbindung der Formel X,

E"-Y

X

in der E" C₁-C₄-Alkoxy, Cl, Br, J, Acyloxy, Alkylsulfonyloxy oder Arylsulfonyloxy bedeutet und Y die zu Formel I unter a, b, c und d angegebenen Bedeutungen hat, umsetzt, und gegebenenfalls die nach Weg A)-D) erhaltenen Verbindungen der Formel I mit anorganischen oder organischen Säuren in ihre physiologisch verträglichen Säureadditions-salze überführt.

2. Verfahren zum Herstellen einer Verbindung I nach Anspruch 1, dadurch gekennzeichnet, daß mindestens einer der Substituenten die folgende Bedeutung hat:

A CH oder N,

Ar eine durch 1 oder 2 F- oder Cl-Atome substituierte Phenylgruppe,

R¹ CH₃ oder C₂H₅,

g 0 oder 2,

Y

zu dem heterocyclischen Rest a)

R² C₁-C₄-Alkyl, eine unsubstituierte oder 1 oder 2 gleiche oder verschiedene Substituenten tragende Phenylgruppe, wobei die Substituenten F, Cl, OCH₃, OC₂H₅,

CH_3 oder C_2H_5 bedeuten, oder eine Benzyl- oder eine durch ein F- oder Cl-Atom im Phenylrest substituierte Benzylgruppe,

R^3 $\text{C}_1\text{-C}_8\text{-Alkyl}$, $\text{C}_5\text{-C}_6\text{-Cycloalkyl-C}_1\text{-C}_2\text{-alkyl}$, eine Phenyl- oder Phenyl- $\text{C}_1\text{-C}_2\text{-alkylgruppe}$, im Phenylrest jeweils unsubstituiert oder durch 1 oder 2 F, Cl, OCH_3 oder CH_3 substituiert, oder CF_3 ,

R^4 $\text{C}_1\text{-C}_4\text{-Alkyl}$, Benzyl oder

R^3 und R^4 zusammen $-(\text{CH}_2)_3-$, $-(\text{CH}_2)_4-$ oder $-\text{CH}=\text{CH}-\text{CH}=\text{CH}-$,

q 0 oder 1,

zu dem heterocyclischen Rest b)

R^5 H oder CN,

R^6 H, CH_3 oder Phenyl,

R^7 H oder CF_3 ,

R^8 Phenyl oder durch F, Cl, CH_3 oder OCH_3 substituiertes Phenyl oder, falls R^5 CN und/oder

R^7 CF_3 bedeutet, zusätzlich H und

R^7 und R^8 zusammen $-(\text{CH}_2)_4-$,

zu dem heterocyclischen Rest c)

R^9 H

R^{10} CN, COOCH_3 oder COOC_2H_5 ,

R^{11} $\text{C}_1\text{-C}_4\text{-Alkyl}$, $\text{C}_1\text{-C}_4\text{-Alkoxy}$, F, Cl, Br oder CF_3 ,

n 0, 1 oder 2, wobei falls R^{11} CF_3 bedeutet, n=1 ist und, falls n ungleich 0 ist, R^{11} in 5, 6, 7 oder 8-Stellung stehen kann,

zu dem heterocyclischen Rest d)

R^{13} H, $\text{C}_1\text{-C}_4\text{-Alkyl}$ oder eine unsubstituierte oder durch 1 oder 2 F, Cl, OCH_3 oder CH_3 substituierte Phenylgruppe.

3. Verfahren zum Herstellen einer Verbindung I nach Anspruch 1, dadurch gekennzeichnet, daß mindestens einer der Substituenten bzw. Indizes die folgende Bedeutung hat:

A CH oder N,

Ar 2,4-Dichlorphenyl,

R¹ CH₃,

g 0 oder 2,

Y

zu den heterocyclischen Resten a)

R² eine unsubstituierte oder 1 oder 2 gleiche oder verschiedene Substituenten tragende Phenylgruppe, wobei die Substituenten Cl, OCH₃, OC₂H₅ oder CH₃ bedeuten, eine Benzyl- oder eine Chlorbenzylgruppe,

R³ C₁-C₈-Alkyl, C₅-C₆-Cycloalkyl-C₁-C₂-alkyl, eine Phenyl- oder Phenyl-C₁-C₂-alkylgruppe, im Phenylrest jeweils unsubstituiert oder durch 1 oder 2 F, Cl, OCH₃ oder CH₃ substituiert,

R⁴ C₁-C₄-Alkyl, Benzyl oder

R³ und R⁴ zusammen -(CH₂)₃- , -(CH₂)₄- oder -CH=CH-CH=CH-,

q 0 oder 1,

zu dem heterocyclischen Rest b)

R⁵ H oder CN,

R⁶ H oder CH₃,

R⁷ H oder CF₃,

R⁸ Phenyl oder durch Cl oder OCH₃ substituiertes Phenyl oder, falls R⁵ CN und/oder R⁷ CF₃ bedeutet, zusätzlich H,

zu dem heterocyclischen Rest c)

R⁹ H,

R¹⁰ CN, COOCH₃ oder COOC₂H₅,

R¹¹ CH₃, C₂H₅, OCH₃, OC₂H₅, F, Cl, Br oder CF₃,

n 0, 1 oder 2, wobei, falls R¹¹ CF₃ bedeutet, n=1 ist und, falls n ungleich 0 ist, R¹¹ in 5-, 6-, 7- oder 8-Stellung stehen kann,

zu dem heterocyclischen Rest d)

R¹³ eine unsubstituierte oder durch 1 oder 2 F, Cl, OCH₃ oder CH₃ substituierte Phenylgruppe.

4. Verfahren zum Herstellen einer Verbindung IIIa

in der bedeuten:

R^1 $C_1\text{-}C_3$ -Alkyl, F oder Cl,

g 0, 1 oder 2 und

Y die folgenden heterocyclischen Reste

R^2 $C_1\text{-}C_4$ -Alkyl, eine unsubstituierte oder 1 oder 2 Substituenten tragende Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können und Halogen, Trifluormethyl, Methoxy, Ethoxy, Nitro oder $C_1\text{-}C_4$ -Alkyl bedeuten,
oder eine unsubstituierte oder eine im Phenylrest 1 oder 2 Substituenten tragende Phenyl- $C_1\text{-}C_2$ -alkylgruppe, wobei die Substituenten gleich oder verschieden sein können und F, Cl, Methoxy-, Ethoxy- oder $C_1\text{-}C_3$ -Alkyl bedeuten,

R^3 H, $C_1\text{-}C_8$ -Alkyl, $C_3\text{-}C_6$ -Cycloalkyl- $C_1\text{-}C_3$ -alkyl, eine unsubstituierte oder 1 oder 2 Substituenten tragende Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können und Halogen, Methoxy-, Ethoxy oder $C_1\text{-}C_3$ -Alkyl, eine unsubstituierte oder im Phenylrest durch Methoxy, 1,2-Methyldioxy, F, Cl oder $C_1\text{-}C_3$ -Alkyl substituierte Phenyl- $C_1\text{-}C_2$ -alkylgruppe, oder Trifluormethyl bedeuten,

R^4 H, $C_1\text{-}C_4$ -Alkyl oder Benzyl,
oder R^3 und R^4 zusammen

$-(CH_2)_r-$, wobei $r=3$ oder 4 ist, oder $-CH=CH-CH=CH-$,

q 0 oder 1 bedeutet, oder

R⁵ H oder CN,

R⁶ H, C₁-C₄-Alkyl oder eine unsubstituierte oder durch OCH₃, F, Cl, CH₃ oder C₂H₅ substituierte Phenylgruppe,

R⁷ H, Benzyl oder CF₃,

R⁸ C₅-C₆-Cycloalkyl oder eine unsubstituierte oder durch OCH₃, F, Cl, CH₃ oder C₂H₅ substituierte Phenylgruppe bedeuten und, falls R⁵CN und/oder R⁷CF₃ bedeutet,

R⁸ auch H bedeuten kann, oder

R⁷ und R⁸ zusammen -(CH₂)₄- bedeuten, oder

R⁹ H, Methyl oder Ethyl,

R¹⁰ H, CN oder COOR¹², wobei R¹² Methyl oder Ethyl bedeutet,

R¹¹ C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Halogen oder Trifluormethyl und

n 0, 1 oder 2 bedeuten, wobei, falls R¹¹CF₃ bedeutet, n=1 ist, und, falls n ungleich 0, die Reste R¹¹ in 5-, 6-, 7- oder 8-Stellung des Chinolinsystems stehen können, oder

R¹³ H, C₁-C₄-Alkyl oder eine unsubstituierte oder 1 oder 2 Substituenten tragende Phenylgruppe, wobei die Substituenten gleich oder verschieden sein

können und Halogen, Methoxy, Ethoxy, Methyl oder Ethyl bedeuten,
sowie von deren Säureadditionssalzen,
dadurch gekennzeichnet, daß man eine Verbindung der
Formel XIII,

XIII,

in der R¹ und g die zu Formel I angegebenen Bedeutungen haben, oder ein Salz dieser Verbindung, mit einer Verbindung der Formel X,

E"-Y

X,

in der E" C₁-C₄-Alkoxy, Cl, Br, J, Acyloxy, Alkylsulfonyloxy oder Arylsulfonyloxy bedeutet,
und

Y die zur Formel I angegebenen Bedeutungen hat,

umsetzt und gegebenenfalls die erhaltenen Verbindungen der Formel IIIa mit anorganischen oder organischen Säuren in ihre Säureadditionssalze überführt.

5. Verwendung einer Verbindung der Formel I nach Anspruch 1 als Antimykotikum.

6. Verwendung einer Verbindung der Formel I nach Anspruch 1 zur Herstellung eines antimykotisch wirkenden Arzneimittels.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.