

Mathematics and Statistics

$$\int_{M}d\omega=\int_{\partial M}\omega$$

Mathematics 3F03 Advanced Differential Equations

Instructor: David Earn

Lecture 26
Equilibria, Nullclines and Linearization Theorem
Friday 8 November 2013

Announcements

- Assignment 4 delayed:
 - Will be posted before midnight tonight.
 - Due Friday 15 Nov 2013.
- Midterm Test #1:
 - Marking still in progress.
- Infectious disease slides and animations from last class:
 - See my TEDx talk posted at http://www.math.mcmaster.ca/

Equilibria

Consider a general autonomous ODE,

$$X' = F(X), \qquad X \in \mathbb{R}^n.$$
 (\heartsuit)

Write out component-wise:

$$x'_1 = f_1(x_1, ..., x_n)$$

 $x'_2 = f_2(x_1, ..., x_n)$
 \vdots
 $x'_n = f_n(x_1, ..., x_n)$

Definition (Equilibrium)

An **equilibrium** of (\heartsuit) is a point $X^* \in \mathbb{R}^n$ where $F(X^*) = 0$, *i.e.*, $x_1' = x_2' = \cdots = x_n' = 0$.

Nullclines

Definition (Nullcline)

A **nullcline** of (\heartsuit) is a curve (or more generally a hypersurface) where ONE component of the vector field vanishes, *i.e.*, $\exists j \in \{1, \ldots, n\}$ such that $x_i' = 0$, *i.e.*, $f_j(x_1, \ldots, x_n) = 0$.

- In simple cases, we can solve for x_j in terms of the other x_k s to get an explicit formula for the nullcline. (In general, we just get an implicit algebraic relationship that may not be possible to solve for x_i .)
- Points where nullclines $\forall j$ intersect are equilibria.
- The vector field is $\bot x_i$ -axis along an x_i nullcline.
- Nullclines are very helpful for constructing phase portraits of nonlinear systems.

Nullclines of planar systems

In the plane, X' = F(X) can be written

$$x' = f(x, y)$$
$$y' = g(x, y)$$

- \blacksquare x nullcines: f(x, y) = 0
 - $x' = 0 \implies$ vector field is strictly \uparrow or \downarrow .
 - Vector field is strictly \uparrow or \downarrow ONLY on x nullclines.
 - x nullclines divide the plane into regions where the vector field points left or right.
- \mathbf{y} nullcines: g(x,y) = 0
 - $y' = 0 \implies$ vector field is strictly \leftarrow or \rightarrow .
 - Vector field is strictly \leftarrow or \rightarrow ONLY on y nullclines.
 - y nullclines divide the plane into regions where the vector field points up or down.

Nullclines of planar systems

 \therefore If we draw all nullclines of a planar system (*i.e.*, all x nullclines and all y nullclines) ten we divide the plan into **basic regions** in which:

- The vector field is never vertical or horizontal.
- The vector field points into ONE quadrant throughout the region (i.e., NE, NW, SE or SW).

Example (1)

$$x' = y - x^3$$

$$y' = x - 2$$

$$x' = y - x^2$$
$$y' = x - 2$$

x nullcline

$$x' = y - x^3$$
$$y' = x - 2$$

y nullcline

$$x' = y - x$$
$$y' = x - 2$$

all nullclines

Example (1) $x' = y - x^3 \\ y' = x - 2$

Flow in basic regions

- The vector field points into ONE quadrant throughout a basic region (*i.e.*, NE, NW, SE or SW).
- Pick at least one point in each region (say X_i in region i).
- At each X_i , plot direction of $F(X_i)$, *i.e.*, $\frac{F(X_i)}{\|F(X_i)\|}$.
- Plotting many such arrows gives the direction field.

$$x' = y - x^3$$
$$y' = x - 2$$

nullclines & direction field

$$x' = y - x$$
$$y' = x - 2$$

zoom region

$$x' = y - x$$
$$y' = x - 2$$

zoomed in

Example (1) $x' = y - x^3$ y' = x - 2

equilibrium analysis

Linearization about X_* : $(X - X_*)' = X' = DF_{X_*}(X - X_*)$.

$$X_* = \begin{pmatrix} 2 \\ 8 \end{pmatrix}, \qquad DF_{(x,y)} = \begin{pmatrix} -3x^2 & 1 \\ 1 & 0 \end{pmatrix}, \qquad DF_{(2,8)} = \begin{pmatrix} -12 & 1 \\ 1 & 0 \end{pmatrix}$$

- $det(DF_{(2,8)}) = -1 < 0$ ⇒ eigenvalues have opposite signs ⇒ saddle.
- Eigenvalues: $\lambda_{\pm} = -6 \pm \sqrt{37} \simeq \{-12.083, 0.083\}$ **N.B.** $|\lambda_{-}| > 100 \times |\lambda_{+}|$.
- Eigenvectors:

$$V_{\pm} = \begin{pmatrix} -6 \pm \sqrt{37} \\ 1 \end{pmatrix} \simeq \left\{ \begin{pmatrix} 0.083 \\ 1 \end{pmatrix}, \begin{pmatrix} -12.083 \\ 1 \end{pmatrix} \right\}$$

■ Eigendirections are orthogonal: $V_+ \cdot V_- = 0$

$$x' = y - x$$
$$y' = x - 2$$

"eigenzoom"

Example (1)
$$x' = y - y' = x - y' = x$$

nullclines & phase portrait

Example (1)

$$x' = y - x$$
$$y' = x - 2$$

phase portrait only

$$x' = y - x^3$$
$$y' = x - 2$$

zoomed back out

Example
$$(1)$$

$$x' = y - x^3$$
$$y' = x - 2$$

nullclines & phase portrait

Example (1)

$$x' = y - x^3$$
$$y' = x - 2$$

phase portrait only

Nullclines of planar systems

■ Is there always one x nullcline and one y nullcline?

Example (2)

$$x' = (y - x^3)(y - \sin x)$$

$$y' = (x - 2)(x + 2)$$

$$x' = (y - x^3)(y - \sin x)$$

y' = (x - 2)(x + 2) nullclines

$$x' = (y - x^3)(y - \sin x)$$

 $y' = (x - 2)(x + 2)$

& phase portrait

$$x' = (y - x^3)(y - \sin x)$$

 $y' = (x - 2)(x + 2)$

phase portrait

Linearization Theorem

Under what circumstances is linearization about an equilibrium enough to characterize the phase portrait near the equilibrium?

Definition (Hyperbolic equilibrium of a nonlinear ODE)

An equilibrium X_* of X' = F(X) is **hyperbolic** if all the eigenvalues of DF_{X_*} have non-zero real parts.

Theorem (Hartman-Grobman)

If $F \in C^{\infty}(\mathbb{R}^n)$ and X' = F(X) has a hyperbolic equilibrium at X_* then the nonlinear flow is topologically conjugate to the flow of the linearized system in a sufficiently small open ball about X_* .

Linearization Theorem

Proof of Hartman-Grobman (linearization) theorem.

Requires analysis... beyond the scope of this course... but see textbook §8.2 for discussion of cases of hyperbolic sinks and sources with distinct eigenvalues. Note that *similar ideas*:

- work for nonlinear sinks and sources with repeated eigenvalues;
- work for nonlinear spiral sinks and spiral sources;
- do NOT work for nonlinear saddles.

Nonlinear saddles in the plane

Imagine a linear saddle drawn on pizza dough, and manipulate the dough however you like *without* cutting or puncturing.

For a generic nonlinear saddle in the plane:

- ∄ stable invariant line
- ∄ unstable invariant line

However:

- \exists stable invariant *curve*: $W^s(X_*) = \{X : \phi_t(X) \to X_* \text{ as } t \to \infty\}$
- \exists unstable invariant *curve* $W^{\mathsf{u}}(X_*) = \{X : \phi_t(X) \to X_* \text{ as } t \to -\infty\}$
- The stable and unstable invariant curves meet at the equilibrium point X_* .
- As $t \to \infty$, all points NOT on the stable invariant curve $\to \infty$.

Nonlinear saddles in higher dimensions

Near hyperbolic equilibria:

- ∃ stable and unstable manifolds.
- For example:
 - Start with 3D linear system in canonical coordinates with $\lambda_1 < \lambda_2 < 0 < \lambda_3$:
 - Bend xy-plane down to some nonlinear surface: this will be the stable manifold.
 - Bend z-axis in some way: this will be the unstable manifold (a curve in this example).