=
$$\frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} \left[\omega_{0} + \omega_{1} \chi^{(\lambda)} - \chi^{(\lambda)} \right]^{2}$$

$$\frac{\partial J(\omega)}{\partial \omega_{0}} = \frac{\partial}{\partial \omega_{0}} \frac{1}{m} \left[\omega_{0} + \omega_{1} x^{(i)} - y^{(i)} \right]^{2}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{0}} \left[\omega_{0} + \omega_{1} x^{(i)} - y^{(i)} \right]^{2}$$

$$= \frac{1}{m} \sum_{i=1}^{m} 2 \left[\omega_{0} + \omega_{1} x^{(i)} - y^{(i)} \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} 2 \left[y^{(i)} - y^{(i)} \right]$$

$$\omega_1 = \omega_1 - \eta$$

$$\frac{\partial J(\omega)}{\partial \omega_1}$$

Algo: Ws, wo random velue -> how good wo, ws is ? - I & (wo to, oxli) do 5 loss/error fox update wo, w, } while (convergence) 1 iterations of 2 euror/loss fan blat 10000 Hours: 8 hrs? Harks? Test: いのいいり > marts -Wo + WIX8 Metric R2 Score (R Squared or coefficient of Determination) R2500ne= $1 - \sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^2$ (y" - y ang)

A travel agency wants an automated system to predict travel costs. The agency has the following data available with it.

		(2) Table I	I (*)
	S. No.	Distance	Travelling Cost
4		(in Km)	(in Rupees)
al	1	1	2.75
m^2	2	2	3.5
763	3	3	4.25
24	4	4	5
25	5	5	5.75

Page 1 of 3

Formulate the above problem as a linear model $h(x) = w_0 + w_1 x$ to predict the travelling cost for a given distance. The parameter w_0 is 2 (optimal). Apply gradient descent algorithm to find optimal parameter w_1 . The learning rate for the first epoch is 0.073, and for the second epoch and later, the learning rate is 0.091. Let the initial value of w_1 is 0.5.

$$\omega_{1} = \omega_{1} - \eta \frac{\partial J(\omega)}{\partial \omega_{1}}$$

$$= \omega_{1} - \eta \cdot 2 \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)}) \tau^{(i)}$$

inticlize w_1-10.5

da E

3 White (enligner)

$\alpha^{(i)}$ hw $(\alpha^{(i)})$) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	څښځ لارې	(3"5-y") «")
1 0.5 * 1 + 2 2 0.5 * 2 + 2 3 0.5 * 3 + 2 4 0.5 * 4 + 2 5 0.5 * 5 + 2 =	= 2	-0-25	-0.25
	-= 3.5	-0.5	-1
	+ 4.25	-0.75	-2.25
	= 4	-1	-4

$$\hat{y}^{(i)} = \omega_1 x^{(i)} + \omega_0$$
 $\hat{y}^{(i)} = 0.5 \times^{(i)} + 2$

$$\Sigma : -13.75$$

$$\sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^{n} (i)$$

$$w_1 = w_1 - \frac{\eta *_2}{m} = \frac{\pi}{2} (\hat{y}^{(i)} - y^{(i)})^{2}$$

$$\omega_1 = 0.5 - 0.073*2 (-13.75)$$

2nd 1, ch mons cos = 0.9 instead of 0.5 and mos cos = 0.073

final WI.

Liver Regression with multiple features:

Eg: House Price Predicern

testuro (2)

Proviction

The Area III floors III Bedrooms III age Price (y)

1
$$\chi^2$$
 200 χ^2 2 χ^2 3 χ^2 10 χ^2 100 χ^2 3 χ^2 2 χ^2 2 χ^2 2 χ^2 3 χ^2 3 χ^2 2 χ^2 3 χ^2 4 χ^2 5 χ^2 5 χ^2 5 χ^2 5 χ^2 5 χ^2 5 χ^2 6 χ^2 6 χ^2 6 χ^2 7 χ^2 9 χ

$$\frac{g^{(i)} = \omega_0 x_0^{(i)} + \omega_1 x_1^{(i)} + \omega_2 x_2^{(i)} + \omega_3 x_3^{(i)} + \omega_4 x_4^{(i)} \dots \omega_n x_n^{(i)}}{g^{(i)} = \sum_{j=0}^{\infty} \omega_j x_j^{(i)}}$$

$$\frac{\partial J(\omega)}{\partial \omega}$$
, $\frac{\partial J(\omega)}{\partial \omega_1}$?

$$\frac{\partial J(\omega)}{\partial \omega_{i}} = \frac{\partial}{\partial \omega_{i}} \left(\frac{1}{2} \sum_{i=1}^{m} \frac{1}{2} \sum_{i=1}^{m} \left(\frac{1}{2} \sum_{i=1}^{m} \frac{1}{2} \sum_{i=1}^{m} \left(\frac{1}{2} \sum_{i=1}^{m} \left(\frac{1}{2} \sum_{i=1}^{m} \left(\frac{1}{2} \sum_{i=1}^{m} \frac{1}{2} \sum_{i=1}^{m} \left(\frac{1}{2} \sum_{i=1}^{m} \frac{1}{2} \sum_{i=1}^{m} \left(\frac{1}{2} \sum_{i=1}^{m} \left(\frac{1}{2} \sum_{i=1}^{m} \frac{1}{2} \sum_{i=1}^{m} \left(\frac{1}{2} \sum_{i=1}^{m} \left(\frac{1}{2} \sum_{i=1}^{m} \frac{1}{2} \sum_{i=1}^{m} \left(\frac{1}{2} \sum_{i=1}^{m} \frac{1}{2} \sum_{i=1}^{m} \frac{1}{2} \sum_{i=1}^{m} \left(\frac{1}{2} \sum_{i=1}^{m} \frac$$

$$\frac{\partial J(\omega)}{\partial \omega_{j}} = \frac{1}{m} \sum_{i=1}^{m} 2\left(\hat{g}^{(i)} - y^{(i)}\right) \alpha_{j}^{(i)}$$