Análise

2017/2018 folha de exercícios 2 -

Derivadas parciais

1. Sejam $g(t) = \frac{f(x+t,y) - f(x,y)}{t}$ e $h(t) = \frac{f(x,y+t) - f(x,y)}{t}$, com $t \neq 0$.

Determine g e h para f definida por

(a)
$$f(x,y) = xy^2 + 3x$$

(b)
$$f(x,y) = xy^3 + 4x^2 - 2$$

e calcule $\lim_{t\to 0} g(t)$ e $\lim_{t\to 0} h(t)$.

2. Determine as derivadas parciais de primeira ordem de $f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ dadas por:

(a)
$$f(x,y) = x^3y + 7x^2 - 2y^3 - 1$$
;

a)
$$f(x,y) = x \ y + ix - 2y - 1$$

(m)
$$f(r,T) = \frac{2\pi r}{T}$$

(I) $f(x,y) = x^y$;

(b)
$$f(x,y) = \frac{3x + y^2}{7x + y}$$
;
(c) $f(x,y) = \sin(1 + e^{xy})$;

(n)
$$f(x,y,z) = xe^{xy} \operatorname{sen}(yz);$$

(d)
$$f(x,y) = \sin(1+e^{-x})$$

(o)
$$f(s,t,u) = s^2 \cos(2tu)$$
;

(e)
$$f(x, y) = xe^y + y \sin x$$
;

(p)
$$f(x, y, z) = 2xz + z^2$$
;

(f)
$$f(s,t) = e^{s} \ln(st)$$
;

(a)
$$f(x, y, z) = xyze^{xyz}$$
.

$$(1) f(1) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)$$

(q)
$$f(x, y, z) = xyze^{xyz}$$
;

(g)
$$f(x,y) = e^x \ln(y^2 + 3x)$$
;

(r)
$$f(x, y, z) = \ln(1 + x + y^2 + z^3)$$
;

(h)
$$f(x,y) = x \cos \frac{x}{y}$$
;

(s)
$$f(r, u, v) = 1 + u + v - sen(r^2)$$
;

(i)
$$f(x,y) = x^4 + y^3 + 6xy$$
;

(t)
$$f(x, y, z) = e^x \operatorname{sen}(x + y) + \cos(z - 3y);$$

(j)
$$f(x,y) = e^{2xy^3}$$
;

(u)
$$f(m, v, r) = \frac{mv^2}{r}$$
;

(k)
$$f(x,y) = xe^{\sqrt{xy}}$$
;

(v)
$$f(x, y, z) = \ln(e^z + x^y)$$

3. Verifique que $w_{xy} = w_{yx}$ para:

(a)
$$w = xy^4 - 2x^2y^3 + 4x^2 - 3y$$
; (b) $w = x^3e^{-2y} + y^{-2}\cos x$; (c) $w = x^2\cos\frac{z}{y}$

(b)
$$w = x^3 e^{-2y} + y^{-2} \cos x$$

(c)
$$w = x^2 \cos \frac{z}{y}$$
.

- **4.** Calcule w_{xyz} quando $w = 3x^2y^3z + 2xy^4z^2 yz$.
- 5. Calcule $\frac{\partial^3 w}{\partial x \partial u \partial z}$ quando w=xyz.
- **6.** Se $w=r^4s^3t-3s^2e^{rt}$, verifique que $w_{rrs}=w_{rsr}=w_{srr}$.
- 7. Mostre que a função $v\left(x,t\right)=t^{-\frac{1}{2}}e^{-\frac{x^2}{4t}}$ satisfaz a equação $\frac{\partial v}{\partial t}=\frac{\partial^2 v}{\partial x^2}$.
- **8.** Uma função f de x e y diz-se harmónica se $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$. Prove que as funções seguintes são harmónicas.

(a)
$$f(x,y) = e^{kx} \cos(ky), k \in \mathbb{R}$$

(c)
$$f(x,y) = \frac{e^y - e^{-y}}{2} \cos x + \frac{e^y + e^{-y}}{2} \sin x$$

(b)
$$f(x,y) = 3x^2y - y^3$$

- **9.** Determine para que valores da constante real λ a função $f(x,y)=x^2+\lambda y^2$, definida em \mathbb{R}^2 , é harmónica.
- **10.** Considere $w = \cos(x y) + \ln(x + y)$. Mostre que $\frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial u^2} = 0$.

11. Uma placa de metal aquecida está situada num plano xyde modo aue temperatura no ponto (x, y) é dada por

$$T = 10(x^2 + y^2)^2.$$

Determine a taxa de variação de T no ponto P=(1,2) na direção

(a) do eixo dos xx:

- (b) do eixo dos yy.
- 12. Seja $V=\frac{100}{x^2+y^2+z^2}$ o potencial elétrico no ponto (x,y,z). Determine a taxa de variação de V no ponto
 - (a) do eixo dos xx;
- (b) do eixo dos yy;
- (c) do eixo dos zz.

Planos tangentes e diferenciais

- 13. Para cada uma das funções $f:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ apresentadas, determine uma equação do plano tangente ao gráfico de f, no ponto indicado.
 - (a) $f(x,y) = x^2 + 4y^2$, (2,1,8).
- (d) f(x,y) = sen(x+y) (1, -1, 0).
- (b) $f(x,y) = x^2 y^2$, (3,-2,5).
- (e) $f(x,y) = \frac{x^2 + y^2}{xy}$, $(1,2,\frac{5}{2})$.

(c) $f(x, y) = e^x \ln y$, (3, 1, 0).

- (f) $f(x,y) = e^x y$, (0,1,1).
- **14.** Sendo $z = f(x, y) = x^2 + 3xy y^2$,
 - (a) determine o diferencial dz;
 - (b) compare os valores de Δz e dz se x varia de 2 para 2.05 e y de 3 para 2.96.
- **15.** Se $z = 5x^2 + y^2$ e (x, y) varia de (1, 2) para (1.05, 2.1), compare os valores de Δz e dz.
- 16. Utilize diferenciais para calcular um valor aproximado de
 - (a) $\sqrt{9(1.95)^2 + (8.1)^2}$.

(c) $(0.98)^2 - 1.01 \ln \frac{1.01}{0.98}$

(b) $\sqrt{99} e^{0.02}$

(d) $26.98^{1/3} \times 36.04^{1/2}$

- **17.** Determine dw para

- (a) $w = x^3 x^2y + 3y^2$; (b) $w = x^2e^{xy} + \frac{1}{y^2}$; (c) $z = e^x \cos(xy)$. (e) $w = \frac{xyz}{x+y+z}$; (f) $w = x^2z + 4yt^3 xz^2t$.
- 18. Use diferenciais para obter uma aproximação para a variação de
 - (a) $z = \ln(x 3y)$ quando (x, y) varia de (7, 2) para (6.9, 2.06).
 - (b) $w = xy^2 \operatorname{sen} \pi z$ quando (x, y, z) varia de (4, 5, 4) para (3.99, 4.98, 4.03)
 - (c) $w = \sqrt{20 x^2 7y^2}$ quando (x, y) varia de (2, 1) para (1.95, 1.08).
- 19. Use diferenciais para determinar o erro máximo cometido no cálculo da área de um retângulo de 10cm de comprimento e 5cm de largura, sabendo que o erro cometido em cada uma das medições não ultrapassa 0.1cm.
- **20.** Se as dimensões de uma caixa retangular são x, y e z, então o seu volume V é dado por V=xyz. Use diferenciais para estimar o erro máximo cometido no cálculo do volume de uma caixa com dimensões 75cm, 60cm e 40cm, quando cada uma destas medidas foi obtida com um erro não superior a 0.2cm.

• Derivadas de funções compostas

21. Determine
$$\frac{\partial z}{\partial s}$$
 e $\frac{\partial z}{\partial t}$ sabendo que $z=\cos\left(x^2y\right)$, onde $x=s^3t^2$ e $y=s^2+\frac{1}{t}$.

22. Determine
$$\frac{\partial w}{\partial x}$$
 e $\frac{\partial w}{\partial y}$ para $w=u^2 \sec v$, onde $u=x^3-2y^3$ e $v=xy^2$.

23. Determine
$$\frac{\partial w}{\partial r}$$
 e $\frac{\partial w}{\partial s}$ sabendo que $w=\sqrt{u^2+v^2}$, onde $u=re^{-s}$ e $v=s^2e^{-r}$.

24. Determine
$$\frac{\partial z}{\partial x}$$
 e $\frac{\partial z}{\partial y}$ sabendo que $z=\frac{r+s}{v}$ onde $r=x\cos y$, $s=y\sin x$ e $v=x^2e^{-y}$.

25. Determine
$$\frac{dw}{dt}$$
 para

(a)
$$w = x^3 - y^3$$
, $x = \frac{1}{1+t}$ e $y = \frac{t}{t+1}$; (c) $w = r^2 - sv$, $r = \sin t$, $s = \cos t$ e $v = 4t$;

(b)
$$w = \ln(u+v)$$
, $u = e^{2t}$ e $v = t^3 - t^2$; (d) $w = x^2y^3z^4$, $x = 2t+1$, $y = 3t-2$ e $z = 5t+4$.

26. Sendo
$$z = txy^2$$
 em que $x = t + \ln(y + t^2)$ e $y = e^t$, determine $\frac{\partial z}{\partial t}$ e $\frac{dz}{dt}$.

27. Determine
$$\frac{d^2u}{dt^2}$$
 para $u=e^{x-2y}$ onde $x=\sin t$ e $y=t^3$.

28. Se
$$u=x^4y+y^2z^3$$
, com $x=rs\,\mathrm{e}^t$, $y=rs^2\,\mathrm{e}^{-t}$ e $z=s\,r^2\,\mathrm{sen}\,t$, determine o valor de $\frac{\partial u}{\partial s}$ quando $r=2$, $s=1$ e $t=0$.

29. A pressão p, o volume V e a temperatura T de um gás confinado relacionam-se pela equação pV=cT, onde c é uma constante. Se as taxas de variação de p e V são $\frac{dp}{dt}$ e $\frac{dV}{dt}$, respectivamente, utilize a regra de derivação em cadeia para estabelecer uma fórmula para $\frac{dT}{dt}$. Verifique o resultado aplicando a regra de derivação do produto para funções de uma variável.

30. Se
$$w=f(x^2+y^2)$$
 e f é uma função diferenciável, mostre que $y\frac{\partial w}{\partial x}-x\frac{\partial w}{\partial y}=0$. (sugestão: faça $u=x^2+y^2$).

31. Se
$$w = f(s^2 - t^2, t^2 - s^2)$$
 e f é diferenciável, mostre que w satisfaz a equação $t\frac{\partial w}{\partial s} + s\frac{\partial w}{\partial t} = 0$. (sugestão: faça $u = s^2 - t^2$ e $v = t^2 - s^2$).

32. Se
$$z = f(x - y)$$
 e f é diferenciável, mostre que $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$.

• Derivada da função implícita

33. Determine $\frac{dy}{dx}$ admitindo que y = f(x) verifica

(a)
$$2x^3 + x^2y + y^3 = 1$$
; (b) $6x + \sqrt{xy} = 3y - 4$; (c) $x^3 + y^3 = 6xy$; (d) $x^2y^2 + x - 2y^3 = 0$.

34. Sabendo que a equação

$$1 + y = x^2 - \ln y$$

define implicitamente y como função de x no ponto $(\sqrt{2},1)$, determine $\frac{dy}{dx}(\sqrt{2})$.

35. Calcule $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$ admitindo que z=f(x,y) verifica

(a)
$$2xz^3 - 3yz^2 + x^2y^2 + 4z = 0$$
; (c) $yx^2 + z^2 + \cos(xyz) = 4$;

(b)
$$xe^{yz} - 2ye^{xz} + 3ze^{xy} = 1;$$
 (d) $xz^2 + 2x^2y - 4y^2z + 3y - 2 = 0.$