36-401 Modern Regression HW #7 Solutions

DUE: 11/3/2017 at 3PM

Problem 1 [40 points]

(a) (5 pts.)

Figure 1: Data on 102 male and 100 female athletes collected at the Australian Institute of Sport

(b) (5 pts.)

I have provided quite a few sample (pre-outlier) residual diagnostic summaries to this point, so I am omitting a discussion here.

Figure 2: Linear Regression Residual Plots

(c) (5 pts.)

Again, omitting the discussion. See past HW solutions.

Table 1: Summary of LBM Regression on Australian Institute of Sport Data $\,$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.9980681	5.8990540	0.5082286	0.6118795
Sex	0.2974007	0.2264383	1.3133848	0.1906289
Ht	0.0424954	0.0329911	1.2880873	0.1992739
Wt	0.8456297	0.0407385	20.7575246	0.0000000
RCC	0.0351007	0.2690925	0.1304411	0.8963547
WCC	-0.0158286	0.0269263	-0.5878501	0.5573273
Hc	0.0138507	0.0505976	0.2737415	0.7845791
Hg	-0.0788514	0.1206357	-0.6536325	0.5141347
Ferr	0.0003470	0.0011303	0.3070358	0.7591506
BMI	0.0700461	0.1341848	0.5220119	0.6022669
Bfat	-0.7766341	0.0147278	-52.7325075	0.0000000

(d) (5 pts.)

Eigenvalues

9568797.81

382253.71

20508.53

8523.50

2367.41

585.92

319.61

27.73

8.83

5.77

(e)

We construct a 90% confidence rectangle for the regression parameters by using a Bonferroni correction. Thus, the endpoints for each parameter correspond to a 99% marginal confidence interval. The vertices of the hyper-rectangle are shown in Table 3.

Table 3: 90% Confidence Rectangle for Regression Coefficients

	0.5~%	99.5 %
Sex	-0.29	0.89
Ht	-0.04	0.13
Wt	0.74	0.95
RCC	-0.67	0.74
WCC	-0.09	0.05
Hc	-0.12	0.15
Hg	-0.39	0.24
Ferr	0.00	0.00
BMI	-0.28	0.42
Bfat	-0.81	-0.74

(f) (5 pts.)

Table 4: Summary of LBM Regression on Australian Institute of Sport Data

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-1.7432696	5.9836490	-0.2913389	0.7710987
Sex	-8.3863142	0.5930703	-14.1405054	0.0000000
Ht	0.1048551	0.0328314	3.1937406	0.0016353
Wt	0.6408123	0.0226820	28.2520776	0.0000000
RCC	0.8090598	0.5756953	1.4053612	0.1614890

Again, omitting a discussion here.

(g) (5 pts.)

Figure 3: 95% Confidence Ellipsoid for Height and Weight

(h) (5 pts.)

Table 5: Analysis of Variance Table

Res.Df	RSS	Df	Sum of Sq	\mathbf{F}	$\Pr(>F)$
197	1457.42797	NA	NA	NA	NA
191	82.25216	6	1375.176	532.2222	0

The F-test yields a p-value of $2.492207 \times 10^{-116}$, signifying that the larger model very likely includes additional valuable information for predicting lean body mass.

Problem 2 [30 points]

(a) (10 pts.)

$$X^{T}X = \begin{pmatrix} \|v_{1}\|^{2} & v_{1}^{T}v_{2} & \cdots & v_{1}^{T}v_{q} \\ v_{2}^{T}v_{1} & \|v_{2}\|^{2} & \cdots & v_{2}^{T}v_{q} \\ \vdots & \vdots & \ddots & \vdots \\ v_{q}^{T}v_{1} & v_{q}^{T}v_{2} & \cdots & \|v_{q}\|^{2} \end{pmatrix}$$

$$= \begin{pmatrix} \|v_{1}\|^{2} & 0 & \cdots & 0 \\ 0 & \|v_{2}\|^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \|v_{q}\|^{2} \end{pmatrix}.$$

If $||v_j|| > 0$ for all j, then $\det(X^T X) > 0$. Therefore, $X^T X$ is non-singular.

(b) (10 pts.)

$$(X^T X)^{-1} = \begin{pmatrix} \frac{1}{\|v_1\|^2} & 0 & \cdots & 0\\ 0 & \frac{1}{\|v_2\|^2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \frac{1}{\|v_q\|^2} \end{pmatrix}.$$

(c) (10 pts.)

There are a lot of ways to do this.

Let

$$\widehat{\beta} = \begin{pmatrix} \widehat{\beta}_1 \\ \vdots \\ \widehat{\beta}_q \end{pmatrix}$$

be some parameter vector estimator, yielding predictions

$$\widehat{Y} = X^T \widehat{\beta}$$
.

Now define

$$\widetilde{\beta} = \begin{pmatrix} \widehat{\beta}_1 + t \\ \vdots \\ \widehat{\beta}_q \end{pmatrix}$$

for $t \neq 0$.

Since $v_1 = (0, 0, \dots, 0),$

$$\widehat{Y} = X^T \widetilde{\beta},$$

so the estimators yield equal residuals and thus equal squared-errors.

We have shown that, given any estimator, there are an infinite number of distinct estimators yielding the same MSE. Therefore, there cannot be a unique minimizer of squared error.

Problem 3 [30 points]

(a) (15 pts.)

$$\widehat{\beta}_{\lambda} = (X^T X + \lambda I)^{-1} X^T Y$$

$$= \left[\lambda (\lambda^{-1} X^T X + I) \right]^{-1} X^T Y$$

$$= \lambda^{-1} (\lambda^{-1} X^T X + I)^{-1} X^T Y$$

$$= \underbrace{(\lambda^{-1} X^T X + I)^{-1}}_{\rightarrow I} \underbrace{\begin{pmatrix} v_1^T Y \\ \overline{\lambda} \\ \vdots \\ v_q^T Y \\ \overline{\lambda} \end{pmatrix}}_{\rightarrow 0}$$

$$\rightarrow \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \text{as } \lambda \rightarrow \infty$$

Here we used the continuity of the matrix inverse operator.

(b) (15 pts.)

$$\begin{split} \widehat{\beta}_{\lambda} &= \lambda (X^T X + \lambda I)^{-1} X^T Y \\ &= \lambda \big[\lambda (\lambda^{-1} X^T X + I) \big]^{-1} X^T Y \\ &= (\lambda^{-1} X^T X + I)^{-1} X^T Y \\ &= \underbrace{(\lambda^{-1} X^T X + I)^{-1}}_{\rightarrow I} X^T Y \\ &\to X^T Y, \end{split} \quad \text{as } \lambda \to \infty$$

Appendix

```
addTrans <- function(color,trans)</pre>
  # This function adds transparancy to a color.
  # Define transparancy with an integer between 0 and 255
  # 0 being fully transparant and 255 being fully visable
  # Works with either color and trans a vector of equal length,
  # or one of the two of length 1.
  if (length(color)!=length(trans)&!any(c(length(color),length(trans))==1)){
    stop("Vector lengths not correct")
  if (length(color)==1 & length(trans)>1) color <- rep(color,length(trans))
  if (length(trans)==1 & length(color)>1) trans <- rep(trans,length(color))</pre>
 num2hex <- function(x)</pre>
    hex <- unlist(strsplit("0123456789ABCDEF",split=""))</pre>
    return(paste(hex[(x-x\%16)/16+1],hex[x\%16+1],sep=""))
  rgb <- rbind(col2rgb(color),trans)</pre>
  res <- paste("#",apply(apply(rgb,2,num2hex),2,paste,collapse=""),sep="")
  return(res)
```

Problem 1 [40 points]

```
sports <- read.table("http://stat.cmu.edu/~larry/=stat401/sports.txt", header = TRUE)
sports$Sport <- sports$Label <- sports$SSF <- NULL

(a) (5 pts.)

pairs(sports, pch = 19, cex = 0.4, cex.axis = 1.4)

(b) (5 pts.)

model1 <- lm(LBM ~ ., data = sports)

nearest5 <- function(x, floor = TRUE){
   if ( x\n'',5 == 0 ) {
      return(x)
   } else {
      if ( floor ) {
      tmp <- x - x\n'',5
   } else {
      tmp <- x - x\n'',5 + 5
   }
}</pre>
```

```
return(tmp)
  }
}
resid_plot <- function(model, index){</pre>
  plot(sports[[index]], residuals(model), col = NA, axes = FALSE,
       xlab= names(sports)[index], ylab = "Residuals", font.lab = 3)
  xax <- seq(nearest5(min(sports[[index]])), nearest5(max(sports[[index]]),</pre>
                                                        FALSE), by = 5)
  cand_increm <- c(0.5,1,2.5,5,10,15,20)
  lens <- rep(NA,length(cand_increm))</pre>
  for (itr in 1:length(cand_increm)){
    lens[itr] <- length(seq(min(xax), max(xax), by = cand_increm[itr]))</pre>
  xax <- seq(min(xax),max(xax), by = cand_increm[which.min(abs(lens - 10))])</pre>
  yax < - seq(-4,2,1)
  axis(side = 1, at = xax, as.character(xax), font = 5)
  axis(side = 2, at = yax, labels = as.character(yax), font = 5)
  abline(h = yax, v = xax, col = "gray70", lty = 2)
  abline(0,0, lty = 2, col = "gray45")
  points(sports[[index]], residuals(model1), col = addTrans("orange",120),
         pch = 19, cex = 1.25)
  points(sports[[index]], residuals(model1), col = "orange", cex = 1.25)
  panel.smooth(sports[[index]], residuals(model1), col = NA, cex = 0.5,
               col.smooth = "seagreen", span = 0.5, iter = 3)
}
par(mfrow=c(4,2))
par(oma=c(0,0,0,0))
par(mar = c(4,4,2,1)+0.1)
boxplot(residuals(model1) ~ sports[[1]],
        col = addTrans(c("seagreen","orange"),120),
        border = c("seagreen", "orange"), xlab = "Sex", font.lab = 5,
        ylab = "Residuals", pch = 19, boxwex = 0.5)
abline(0,0, lty = 2, col = "gray45")
for (itr in c(2:3,5:9)){
  resid_plot(model1, itr)
par(mfrow=c(4,2))
par(oma=c(0,0,0,0))
par(mar = c(4,4,2,1)+0.1)
for (itr in 10:11){
  resid_plot(model1, itr)
plot(model1, which = 1, col = NA, pch = 19, axes = FALSE,
     add.smooth = FALSE, caption = "", sub.caption = "",
     font.lab = 3)
xax <- seq(nearest5(min(fitted(model1))),</pre>
           nearest5(max(fitted(model1)),FALSE), by = 10)
yax < - seq(-4,2,1)
```

(c) (5 pts.)

(d) (5 pts.)

axis(side = 2, at = seq(0,10000000,1000000), labels = FALSE, font = 5)

labels = as.character(seq(0,10,1)), srt = 0, pos = 1, xpd = TRUE)
mtext(side = 1, text = "Sorted Eigenvalue Indices", font = 3, line = 1.5)
mtext(side = 2, text = "Eigenvalue (times 10e6)", font = 3, line = 3)

text(par("usr")[1] - 0.65, seq(0,10000000,1000000) + 500000,

(e)

(f) (5 pts.)

(g) (5 pts.)

(h) (5 pts.)

```
kable(anova(model2,model1), caption = "Analysis of Variance Table")
```