Modelling the impact of activity duration on utility-based scheduling decisions

Janody Pougala ¹ Tim Hillel ² Michel Bierlaire ¹

¹Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

> ²Behaviour and Infrastructure Group University College London

> > September 4, 2023

1/18

Introduction

MATSim scoring function (Nagel et al., 2016)

- Iterative process for each agent: mobsim-scoring-replanning
- Plans with a low score are removed from agent's choice set
- Econometric utility functions can be used to score plans

Schedule utility (Charypar and Nagel, 2005)

$$U_S = \sum_{a=0}^{A-1} (U_a^{\text{act}} + U_a^{\text{travel}})$$

Utility components

- Activity duration
- Start time: schedule deviations (early, late)
- Waiting time
- Travel time

Research questions

- Estimation of (agent- and activity-specific) parameters
- Specification of utility function

Research questions

- Estimation of (agent- and activity-specific) parameters
- Specification of utility function
- Focusing on activity duration

(Nagel et al., 2016)

OASIS framework

- Optimisation-based Activity Scheduling Integrating Simultaneous choice dimensions (Pougala et al., 2023)
 - Activity participation, scheduling, mode, location choice
 - Explicitly capture trade-offs between choices
 - Combine econometric and rule-based approaches: utility maximisation + constraints

Parameter estimation

- Generate a choice set of feasible schedules with MH algorithm (based on Flötteröd and Bierlaire, 2013)
- Discrete choice estimation on generated sample, with correction of likelihood function (Ben-Akiva and Lerman, 1985)

Schedule utility (Charypar and Nagel, 2005)

$$U_S = \sum_{a=0}^{A-1} \left(U_a^{\text{duration}} + U_a^{\text{start time}} + U_a^{\text{travel}} \right)$$

Duration

$$U_{a}^{\text{duration}} = \max \left[0, \beta_{\text{act}} \tau_{a}^{*} \ln \left(\frac{\tau_{a}}{\tau_{a}^{*} \exp(-A/(\rho \tau_{a}^{*}))} \right) \right] + \beta_{a}^{\text{short}} \delta_{a}^{\text{short}}$$

Assumptions

- Log of duration
- Start time: schedule deviations (early, late)
- τ_a^{*}: typical duration
- ρ : activity priority term

OASIS utility function

Schedule utility

$$U_S = U + \sum_{a=0}^{A-1} \big(U_a^{\text{participation}} + U_a^{\text{start time}} + U_a^{\text{duration}} + \sum_{b=0}^{A-1} U_{a,b}^{\text{travel}} \big)$$

Duration (resp. start time)

$$U_a^{\text{duration}} = \theta_a^{\text{short}} \max(0, \tau_a^* - \tau_a) + \theta_a^{\text{long}} \max(0, \tau_a - \tau_a^*) + \varepsilon_{\text{duration}}$$

Assumptions

- τ_a^* : desired duration (point or interval)
- Linear-in-parameters influence of duration
- Asymmetric penalty parameters

MATSim scoring - modified (PlanomatX)

Schedule utility (Feil, 2010)

$$U_{S} = \sum_{a=0}^{A-1} (U_{a}^{\text{duration}} + U^{\text{travel}})$$

Duration

$$U_a^{\rm duration} = U_a^{\rm min} + \frac{U_a^{\rm max} - U_a^{\rm min}}{(1 + \gamma_a \exp \beta_a \left[\alpha_a - \tau_a\right])^{1/\gamma_a}}$$

Assumptions

- S-shape (Joh et al., 2005)
- No start time!

Empirical investigation

- Estimate the parameters on a given sample
- 2 Compare simulation outputs for each specification

Case study

- MTMC 2015 (BFS and ARE, 2017): Swiss nationwide travel survey
- Sample of Lausanne students (236 individuals)
- 5 activities: education, work, leisure, shopping, (home)

Parameters

MATSim

Parameter	Param. estimate	Rob. std err	$\begin{array}{c} \text{Rob.} \\ t\text{-stat} \end{array}$	Rob. p -value
$\beta_{\rm act}$	0.0514	0.00974	5.27	1.34e-07
Education: early	-1.6	0.449	-3.57	0.00036
Education: late	-1.01	0.291	-3.48	0.00051
Leisure: late	-0.467	0.122	-3.84	0.00012
Shopping: early	-0.476	0.119	-4.01	6.04e-05
Shopping: late	-0.293	0.0842	-3.48	0.00049
Work: early	-2.75	0.712	-3.87	0.000111
Work: short	-1.59	0.493	-3.22	0.00126

Summary statistics L(0) = -593.8925

 $L(\hat{\beta}) = -248.568$

 $\bar{\rho}^2 = 0.56$

- Significant parameters (reference = home)
- Priority across activities (education, work > leisure, shopping)

Parameters

OASIS

Parameter	Param. estimate	Rob. std err	$\begin{array}{c} \text{Rob.} \\ \textit{t-}\text{stat} \end{array}$	Rob. p -value
Education: ASC	7.62	1.26	6.04	1.55e-09
Education: early	-1.15	0.282	-4.07	4.62e-09
Education: late	-0.89	0.214	-4.15	3.28e-05
Education: short	-0.452	0.23	-1.97	0.0493
Leisure: ASC	5.02	0.679	7.38	1.57e-13
Leisure: late	-0.747	0.135	-5.54	3.1e-08
Leisure: long	-0.137	0.0497	-2.75	0.00593
Shopping: ASC	5.04	0.807	6.25	4.07e-10
Shopping: early	-0.652	0.144	-4.53	5.88e-06
Shopping: late	-0.534	0.0944	-5.65	1.57e-08
Shopping: long	-0.17	0.06	-2.84	0.00456
Work: ASC	4.34	1.53	2.84	0.00448
Work: early	-0.71	0.223	-3.19	0.00145
Work: short	-1.37	0.481	-2.86	0.00423

Summary statistics

L(0) = -454.1869

 $L(\hat{\beta}) = -152.0466$

 $\bar{\rho}^2 = 0.621$

PlanotmatX

Parameter	Param. estimate	$\begin{array}{c} { m Rob.} \\ { m std~err} \end{array}$	$\begin{array}{c} \text{Rob.} \\ \textit{t-}\text{stat} \end{array}$	Rob. p -value
Education: U ^{max}	4.79	0.443	10.8	0.00
Education: α	1.57	0.202	7.75	9.1e-15
Education: β	7.56	4.84	1.56	0.119
Leisure: U^{max}	4.47	0.379	4.50	9.1e-15
Leisure: α	0.668	0.213	3.13	0.00172
Leisure: β	2.53	0.686	3.69	0.000225
Shopping: U^{max}	2.12	0.333	6.36	2.04e-10
Shopping: α	3.66	0.975	3.75	0.000175
Shopping: β	-4.85	2.3	-2.1	0.0353
Work: U^{max}	3.31	0.637	5.19	2.08e-07
Work: α	2.07	0.0459	45.	0.00
Work: β	11.5	0.792	14.5	0.00

Summary statistics

L(0) = -454.1869

 $L(\hat{\beta}) = -187.871$

 $\bar{\rho}^2 = 0.56$

Significant parameters

Utility of duration per activity

Schedule simulation

Algorithm

- Initialise n, β_n , A_n , M_n , L_n
- ② For r = 1, 2, ..., R
 - **1** Draw ε_{S}^{r} from distribution of error terms.
 - **2** Draw schedule S_n^r by solving $\Omega = \max U_S(X_n, \beta_n, \varepsilon_S^r)$ s.t. constraints

Simulation outputs (100 schedules / individual)

Conclusion

Summary

- Estimated parameters of activity-based utility functions
- Tested different specifications of duration component

Further work

- New case study (e-bike city project)
 - Estimating travel parameters: PostCarWorld (Schmid et al., 2019)
 - Simulations with MATSim
- Specification:
 - Including socio-demographic characteristics, latent behaviour
 - Other influences?

Thank you!

janody.pougala@epfl.ch tim.hillel@ucl.ac.uk michel.bierlaire@epfl.ch

OASIS

Code

Paper

References

- Ben-Akiva, M. E. and Lerman, S. R. (1985). Discrete choice analysis: theory and application to travel demand, volume 9. MIT press, Cambridge, MA, USA.
- BFS and ARE (2017). Comportement de la population en matière de transports. Résultats du microrecensement mobilité et transports 2015. Technical report, Neuchâtel, Berne.
- Charypar, D. and Nagel, K. (2005). Generating complete all-day activity plans with genetic algorithms. *Transportation*, 32(4):369–397.
- Feil, M. (2010). Choosing the Daily Schedule: Expanding Activity-Based Travel Demand Modeling. PhD thesis, ETH Zürich.
- Flötteröd, G. and Bierlaire, M. (2013). Metropolis-Hastings sampling of paths. *Transportation Research Part B: Methodological.*
- Joh, C. H., Arentze, T. A., and Timmermans, H. J. (2005). A utility-based analysis of activity time allocation decisions underlying segmented daily activity-travel patterns. *Environment* and Planning A.
- Nagel, K., Kickhöfer, B., Horni, A., and Charypar, D. (2016). A Closer Look at Scoring. Ubiquity Press, pages 23–34.
- Pougala, J., Hillel, T., and Bierlaire, M. (2023). OASIS: Optimisation-based Activity Scheduling with Integrated Simultaneous choice dimensions. *Transportation Research Part C: Emerging Technologies*, 155:104291.
- Schmid, B., Tilg, G., and Axhausen, K. W. (2019). Post-car world. *Travel Survey Metadata Series*, 75.