

The Team

Lecturers

Dr. Nikita Araslanov

TAs

Regine Hartwig

Dominik Muhle

Our Research Lab

Computer Vision & Artificial Intelligence Headed by

Prof. Dr. Daniel Cremers https://cvai.in.tum.de/

Our Research Lab

Visual SLAM/3D Reconstruction

Deep Learning

Shapes

Miscellaneous

Our Research Lab

- Lectures
 - CV2 Multi-View Geometry
 - CV3 Detections Segmentation and Tracking (WS)
- Practical Courses (selection)
 - Geometric Scene Understanding
 - Hands-on Deep Learning for Computer Vision and Biomedicine
- Seminars (selection)
 - Advanced Topics in Graph Learning
 - Beyond Deep Learning: Selected Topics on Novel Challenges

Moodle

- Announcements via Moodle IMPORTANT!
 - Sign up in TUM online for access: <u>https://www.moodle.tum.de/</u>
 - We will share common information (e.g., regarding exam)
 - Ask content questions online so others benefit
 - Don't post solutions

Emails & Slides

- All material will be uploaded on Moodle and the web
- Questions regarding the syllabus, exercises or contents of the lecture, use Moodle!
- Questions regarding organization of the course:

cv3-ws23@vision.in.tum.de

• Emails to the individual addresses will not be answered.

About the Exercise Session

- Every Thursday 8-10 starting from TODAY!
- Divided into classes and office hours
- Classes:
 - Present the solutions for the previous exercises (unrecorded)
 - Present the next exercise (recorded)
- Office hours:
 - Ask questions regarding the exercises
 - Either with Regine (02.09.035) or Dominik (02.09.58)

https://cvg.cit.tum.de/teaching/ws2023/cv

About the Exercise Session

- A course on Computer Vision
 - Object detection
 - Multiple object tracking in 2D and 3D
 - Instance and semantic segmentation
- 5 corresponding exercises over the whole semester
 + 1 introductory exercise
- Wait: This is more than last year
 => each exercise is smaller
- You only need to pass 4/5 exercises for the exambonus

About the Exercise Session

 2 weeks for each exercise + Office hours (OH) for questions in between

Deadline always 23:59 CET on due date

About the exercises

- Exercises provided similar to I2DL
- Each exercise contains all the code necessary for the exercise
- A jupyter notebook acts as the guide through the exercise and interface to the code
- All task are clearly marked
- Tests are provided for each task for you to validate your solution before submitting (passing the tests does not guarantee a successful submission)

Setting up the exercises

- download the folder structure (link on the last slide)
- download the datasets (link on the last slide)
- unzip the both zip files
- copy the content of datasets into the datasets folder in the folder structure
- for each individual exercise
 - download the code base with the link provided in the exercise slides/website
 - paste it into the respective folder

- Exercise 0 (doesn't count) (today):
 - Get to know data and environment
 - Test the submission system
- Exercise 1 Object Detection (02.11):
 - History of Oriented Gradients
 - Sliding Window Matching
- Exercise 2 Hungarian Matching (16.11):
 - Data Association
 - Hard Triplet Mining

- Exercise 3 ReID with GNNs (30.11):
 - ReID
 - Message Passing Networks
- Exercise 4 Supervised Segmentation (11.01):
 - Pixel-Adaptive Convolutional Neural Networks:
 - TBD
- Exercise 5 Unsupervised Segmentation (25.01):
 - Gaussian Mixture Models
 - Spectral Clustering

- What is PyTorch
 - how does it work?
 - why is it different from numpy
- Datasets and Dataloaders
- A first machine learning project

Links

- Test server: <u>https://cv3dst.cvai.cit.tum.de/login</u>
- If you have trouble registering https://forms.gle/yZkZiDiyHxWuNqQG7
- Basic Folder Structure with Exercise 00: <u>https://vision.in.tum.de/webshare/g/cv3dst/cv3dst.zip</u>
- Datasets: https://vision.in.tum.de/webshare/g/cv3dst/datasets.zip