Code No: **R204104K**

Set No. 1

IV B.Tech I Semester Regular Examinations, January – 2024 ELECTRONIC MEASUREMENTS AND INSTRUMENTATION

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks *****

		UNIT - I	
1	a)	Explain the following terms (i) Series type Ohmmeters (ii) Shunt type Ohmmeters	[7]
	b)	An ohmmeter is designed around a 1mA meter movement and a 3V battery. If	[7]
		the battery voltage decays to 2.8V because of adding, calculate the resulting error at the midrange on the ohmmeter scale. (OR)	[7]
2	a)	Explain the working of a basic DC voltmeter. How can its range be extended?	[7]
_	a) b)	Calculate the value of multiplier resistance on the 20V range of a dc voltmeter	[/]
	U)	that uses a $100\mu A$ meter movement with an internal resistance of 500Ω .	[7]
		UNIT - II	
3	a)	What is Heterodyning and explain the use of Heterodyning in spectrum analyzer along with its circuit diagram.	[7]
	b)	Write short notes on Function Generator in detail.	[7]
	0)	(OR)	L'J
4	a)	Draw the circuit diagram of Digital Fourier Analyzers and explain its	[7]
	b)	operation. What is AF oscillators and explain its operation along with circuit diagram.	[7]
	U)	What is the oscillators and explain its operation along with electic diagram.	[/]
		UNIT - III	
5	a)	Draw the circuit diagram of Sampling oscilloscope and explain its operation in	
		detail.	[7]
	b)	Explain various types of probes used for CRO.	[7]
		(OR)	
6	a)	Explain the operation of trigger pulse circuit along with circuit diagram.	[7]
	b)	List out specifications of CRO.	[7]

Code No: **R204104K**

Set No. 1

T	T.	N	T	Γ	_	T	7
u							

7	a)	Draw and explain the operation of Wien Bridge and derive the bridge balance	
		condition.	[7]
	b)	In the case of a Schering Bridge, arm Ac has R= $8.7k\Omega$. Arm CD has unknown	
		elements. Arm BD has C=0.01 $\mu F,$ Arm AB=5.7 $k\Omega$ is shunt with 10MF.	
		Determine Values of components is the arm CD.	[7]
		(OR)	
8	a)	Define Quality factor and give the expressions for the inductive and capacitive	
		Quality factors.	[7]
	b)	Draw the circuit diagram of Schering's Bridge and explain the operation of it.	[7]
		UNIT - V	
9	a)	Briefly explain the working principles and measurement of force by any two	
		nonelectric techniques?	[7]
	b)	Explain the different Advantages of Electrical Transducers in detail.	[7]
		(OR)	
10	a)	List out different types of Strain Gauges used Transducer and explain any one	
		in detail.	[7]
	b)	Explain the different Advantages of Electrical Transducers in detail.	[7]

Code No: **R204104K**

Set No. 2

IV B.Tech I Semester Regular Examinations, January – 2024 ELECTRONIC MEASUREMENTS AND INSTRUMENTATION

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks *****

		UNIT - I							
1	a)	What are the different types of errors in measurement? Explain briefly. [7]							
	b)	A 500Ω basic movement is to be used as an ohmmeter requiring a full scale							
		deflection of 1mA and internal battery voltage of 5V. A half-scale deflection							
		marking of 4k is desired. Calculate (i) Values of R1 and R2							
(ii) Maximum value of R2 to compensate for a 10% drop in battery voltage									
		(OR)							
2	a)	List out different AC voltmeters and explain the working of any one voltmeter							
		in detail.	[7]						
	b)	Explain the following terms in detail.							
		(i) Accuracy (ii) Resolution (iii) Precision (iv) Expected value	[7]						
		UNIT - II							
3	a)	Explain the requirements of pulse with reference to generator along with block							
		diagram.	[7]						
	b)	Distinguish between spectrum analyzer and harmonic distortion analyzer.	[7]						
		(OR)							
4	a)	Explain the working principle of a harmonic distortion analyzer along with							
		circuit diagram.	[7]						
	b)	List the applications of wave analyzers.	[7]						
_	- \	UNIT - III	[7]						
5	a)	Draw and explain the block diagram of vertical amplifier used in oscilloscopes.	[7]						
	b)	List out the differences between analog storage oscilloscope and digital storage	[7]						
		oscilloscope with specifications.	[7]						
5	۵)	(OR)	[7]						
J	a)	Describe in detail the Lissajous method of frequency measurement.	[7]						
	b)	What is the purpose of a trigger pulse in a CRO?	[7]						

Code No: **R204104K**

Set No. 2

T	T	VI	Т	٦_	. 11	J

7	a)	Explain the "parallel-connection" method of using Q-meter and obtain the	[7]
		expressions for resistance, reactance and Q factor.	[7]
	b)	What are the problems associated with shielding? And explain the remedies.	[7]
		(OR)	
8	a)	Explain the operation of Maxwell's Bridge and derive the condition for balance	
		of a Bridge.	[7]
	b)	In the case of Hay's Bridge one arm has resistance of $400k\Omega$. Another arm has	
		a resistance of $2.7k\Omega$. The third arm $10k\Omega$ in series with a capacitor of $0.5\mu F$.	
		Determine the values of the elements Rx and Lx in the fourth arm.	[7]
		UNIT - V	
9	a)	Draw the Linear variable differential Transducer and explain its operation in	
		detail.	[7]
	b)	Explain the Resistive position Transducer along with circuit diagram.	[7]
		(OR)	
10	a)	What is Thermistor and explain its importance along with advantages of it?	[7]
	b)	List out difference between active and passive transducer in detail.	[7]

Code No: **R204104K**

Set No. 3

IV B.Tech I Semester Regular Examinations, January – 2024 ELECTRONIC MEASUREMENTS AND INSTRUMENTATION

(Electronics and Communication Engineering)

Max. Marks: 70 Time: 3 hours Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks **** UNIT - I a) Draw the sketch and explain the principle and operation of Thermocouple 1 type Ammeter. [7] b) Two ammeters are joined in series in a circuit carrying 550A. One ammeter has a resistance of 20000Ω shunted by 0.10Ω while the other ammeter has a resistance of 100Ω shunted by 0.02Ω . If the shunts are interchanged what would be the readings of the instruments? [7] a) Draw the block diagram of successive approximation type Digital voltmeter 2 and explain its operation. [7] b) Differentiate between a true R.M.S meter and an average responding meter. [7] **UNIT - II** a) What are fixed and variable signal generators? Discuss briefly. 3 [7] b) Explain the working of AF Sine and square wave generator with neat block diagram. [7] (OR) What is a Spectrum Analyzer? Discuss in detail its working principle with a 4 neat block diagram. [7] b) What is the difference between a simple signal generator and a sweep generator? [7] **UNIT-III** 5 a) Explain the concept of simple compensated Attenuator. [7] b) Explain the working of a CRO in detail. [7] (OR) 6 Explain the following terms in detail. a) Active probe (i) **Passive Probe** (ii) [7] b) State the various applications of a Dual beam oscilloscope. [7]

Code No: **R204104K**

Set No. 3

UNIT	-	IV
------	---	----

7	a)	Describe the method of measuring high impedance using Q-meter.	[7]
	b)	Explain the limitations of Wheatstone bridge.	[7]
		(OR)	
8	a)	Explain the measurement of Inductance using Maxwell's bridge.	[7]
	b)	What type of errors can occur while using bridges?	[7]
		UNIT - V	
9	a)	What is Piezo-electric effect? Explain the operation of Piezo-electric transducer.	[7]
	b)	Define Gauge factor for transducer and explain its significance. (OR)	[7]
10	a)	Define and explain about Absolute humidity, Relative humidity, Specific	
		humidity. Elaborate how humidity is measured.	[7]
	b)	Explain the working of capacitive transducers.	[7]

Set No. 4

IV B.Tech I Semester Regular Examinations, January – 2024 ELECTRONIC MEASUREMENTS AND INSTRUMENTATION

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70 Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks **** **UNIT-I** a) Explain in detail about DC voltmeters with the suitable example. [7] 1 b) A Voltmeter having a sensitivity of 30k/V reads 80V on a 100V scale when connected across an unknown resistor. The current through the resistor is 2mA. Calculate the percentage of error due to loading effect. [7] (OR) a) What is dynamic error? Plot it with respect to time delay. [7] 2 b) Calculate the value of multiplier resistance on the 50V range of a dc voltmeter that uses a $400\mu A$ meter movement with an internal resistance of 100Ω . [7] UNIT - II a) Explain the operation of function generator with a neat block diagram. 3 [7] b) Draw the block diagram of Random Noise Generator and explain its operation. [7] (OR) Explain the following terms in detail: 4 (i) Marker Generator (ii) Digital Fourier Analyzer [14] **UNIT - III** a) Explain the concept of Storage oscilloscope along with circuit diagram. 5 [7] b) Draw the circuit diagram of sampling oscilloscope and explain its operation n detail. [7] (OR) a) Explain the measurement procedure of Lissajous patterns with one example. [7] 6 b) Explain the concept of delay line in CRO. [7] Code No: **R204104K**

R20

Set No. 4

_			 _		_
г	T	т		тъ	7

7	a)	Explain briefly the working of Schering bridge.	[7]
	b)	What are the various errors and precautions to be taken while using bridges?	[7]
		(OR)	
8	a)	Draw and explain the working of a Wheatstone bridge in detail.	[7]
	b)	What resistance range must resistor R3 have in order to measure unknown	
		resistor in the range $1-100k\Omega$ using a Wheatstone bridge. Given R1=1k and	
		R2=10k.	[7]
		UNIT - V	
9	a)	What is the difference between photo-emissive, photo-conductive and	
		photovoltaic transducers?	[7]
	b)	Derive the expression for Gauge factor of a strain Gauge.	[7]
		(OR)	
10	a)	Explain the working of LVDT in detail.	[7]
	b)	An AC LVDT has the following data: Input=6.3V, output=5.2V, range ±0.5in.	
		Determine	
		(i) The output voltage vs core position for a core movement going	
		from +0.45in to -0.30in	
		(ii) The output voltage when the core is -0.25in from the centre.	[7]