Deep Gaussian Mixture Models (DGMMs)

Ciobanu Sebastian

Coordonator: Conf. dr. Liviu Ciortuz

Cercetare – semestrul 3

Documentare:

- Reducerea dimensionalității datelor (nesupervizat, clasic): PCA, FA, ICA etc.
- AdaBoost (supervizat, clasic): clase de concepte învățabile în sens empiric gamma-slab
- Mixturi profunde de distribuţii normale (nesupervizat, recent)

Scopul

- Semestrul trecut: procese gaussiene (model pentru serii de timp)
- Există varianta Procese gaussiene profunde: Deep Gaussian Processes, Andreas C. Damianou and Neil D. Lawrence, 2013
- Mi-am propus ca mai întâi să abordez un model de tip profund de dificultate medie
- Semestrul acesta: am început cu PCA, FA...

DGMMs

Intro

DGMMs – Distribuția normală multivariată

$$X = [X_1, \cdots, X_D]$$
 $\mu \in \mathbb{R}^D$
 $X \sim \mathcal{N}(\mu, \Sigma)$ $\Sigma \in \mathbb{R}^{D \times D}$ - simetrică, pozitiv definită

$$\mathcal{N}(x; \mu, \Sigma) = \frac{1}{(2\pi)^{D/2} \det(\Sigma)^{1/2}} \exp(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu))$$

Având datele observabile, vrem să estimăm parametrii.

n

Există formule analitice.

X1	X2	Х3
1.1	2.33	3.43
1	2	3
•••		

 Idee: datele observabile sunt generate de (au în spate) niște cauze latente

X1	X2	X3=X1+X2	generează	Z1	Z2
1.1	2.33	3.43		1.1	2.33

- Exemple practice:
 - O întrebare la un examen de matematică poate testa dacă studentul are noțiuni din sfera algebrei, geometriei, probabilităților.
 - Un document poate fi despre economie, politică, educație, sport
 - O poză poate conține obiecte cunoscute: apus, copac, pisică.

 Având datele observabile, vrem să aflăm datele latente [de o dimensiune mai mică, de obicei] sau o relație observabil-latent

Probabilist. Presupuneri:

$$z \sim \mathcal{N}(0, I)$$

$$x|z \sim \mathcal{N}(\mu + \Lambda z, \Psi)$$

$$z \in \mathbb{R}^{d}$$

$$\mu \in \mathbb{R}^{D}$$

$$\epsilon \in \mathbb{R}^{D}$$

$$\Lambda \in \mathbb{R}^{D \times D} - \text{diagonală}$$

$$d < D$$

$$z \sim \mathcal{N}(0, I)$$

$$\epsilon \sim \mathcal{N}(0, \Psi)$$

$$x = \mu + \Lambda z + \epsilon$$

$$\epsilon, z - \text{independente}$$

$$z \sim \mathcal{N}(0, I)$$
 $\epsilon \sim \mathcal{N}(0, \Psi)$
 $x = \mu + \Lambda z + \epsilon$

 ϵ , z - independente

• Rezultat (din propr. distr. normale):

$$x \sim \mathcal{N}(\mu, \Lambda \Lambda^T + \Psi)$$

Efect (secundar):

$$x \sim \mathcal{N}(\mu, \Sigma) \xrightarrow{\Sigma \approx \Lambda \Lambda^T + \Psi} x \sim \mathcal{N}(\mu, \Lambda \Lambda^T + \Psi)$$
 (mai puţini parametri de estimat:

D=6, d=1: 21 vs 12

D=7, d=1: 28 vs 14 etc.)

- Cum estimăm parametrii? Nu există formule analitice
- Cu algoritmul EM (Expectation Maximization)
 - Pentru că lucrăm cu variabile latente...

$$\mu^* = \frac{1}{n} \sum_{i=1}^n x_i$$

Pasul E
$$eta = \Lambda^T (\Psi + \Lambda \Lambda^T)^{-1}$$

$$E[z_i|x_i] = \beta(x_i - \mu^*), \forall i \in \{1, \dots, n\}$$

$$E[z_i z_i^T | x_i] = I - \beta \Lambda + E[z_i | x_i] E[z_i^T | x_i], \forall i \in \{1, \dots, n\}$$

Sursă: după *The EM*Algorithm for Mixtures
of Factor Analyzers,
Zoubin Ghahramani,
Geoffrey E. Hinton, 1997

Unicitate? Nu.

Fie μ^*, Λ^*, Ψ^* parametrii (furnizați de un algoritm de învățare).

Atunci, dacă pe Λ^* îl înlocuim cu Λ^*R , unde $R \in \mathbb{R}^{d \times d}$ - matrice ortogonală $(RR^T = R^TR = I)$, vom avea același efect (secundar):

- Soluție: impunem constrângeri asupra parametrilor
 - De exemplu: impunem ca $\Lambda^T \Psi^{-1} \Lambda$ să fie diagonală

$$z \sim \mathcal{N}(\underline{A}, \underline{B})$$

$$x|z \sim \mathcal{N}(\mu + \Lambda z, \Psi)$$

$$\Rightarrow c \sim \mathcal{N}(\underline{A}, \underline{B})$$

$$\epsilon \sim \mathcal{N}(0, \Psi)$$

$$x = \mu + \Lambda z + \epsilon$$

$$z \sim \mathcal{N}(\underline{A}, \underline{B})$$

$$\epsilon \sim \mathcal{N}(0, \Psi)$$

$$x = \mu + \Lambda z + \epsilon$$

$$x \sim \mathcal{N}(\mu + \Lambda \underline{A}, \Lambda \underline{B} \Lambda^T + \Psi)$$

$$\begin{array}{c|c} \textbf{Adâncime = 2} & x = z^{(0)} & z^{(2)} \sim \mathcal{N}(0,I) \\ \hline z^{(2)} \sim \mathcal{N}(0,I) & \Leftrightarrow & \epsilon^{(2)} \sim \mathcal{N}(0,\psi^{(2)}) \\ z^{(1)}|z^{(2)} \sim \mathcal{N}(\mu^{(2)} + \Lambda^{(2)}z^{(2)}, \Psi^{(2)}) & z^{(1)} = \mu^{(2)} + \Lambda^{(2)}z^{(2)} + \epsilon^{(2)} \\ z^{(0)}|[z^{(2)},]z^{(1)} \sim \mathcal{N}(\mu^{(1)} + \Lambda^{(1)}z^{(1)}, \Psi^{(1)}) & \epsilon^{(1)} \sim \mathcal{N}(0,\psi^{(1)}) \\ \hline \end{array}$$

$$z^{(2)} \sim \mathcal{N}(0, I)$$

$$\Rightarrow \epsilon^{(2)} \sim \mathcal{N}(0, \psi^{(2)})$$

$$z^{(1)} = \mu^{(2)} + \Lambda^{(2)}z^{(2)} + \epsilon^{(2)}$$

$$\epsilon^{(1)} \sim \mathcal{N}(0, \psi^{(1)})$$

$$z^{(0)} = \mu^{(1)} + \Lambda^{(1)}z^{(1)} + \epsilon^{(1)}$$

$$z^{(1)} \sim \mathcal{N}(\mu^{(2)}, \Lambda^{(2)}(\Lambda^{(2)})^T + \Psi^{(2)})$$

$$z^{(0)} \sim \mathcal{N}(\mu^{(1)} + \Lambda^{(1)}(\mu^{(2)}), \Lambda^{(1)}(\Lambda^{(2)}(\Lambda^{(2)})^T + \Psi^{(2)})(\Lambda^{(1)})^T + \Psi^{(1)})$$

Adâncime = h
$$x=z^{(0)}$$

$$z^{(0)}|z^{(1)} \sim \mathcal{N}(\mu^{(1)} + \Lambda^{(1)}z^{(1)}, \Psi^{(1)})$$

$$z^{(0)} \sim \mathcal{N}\left(\tilde{\mu}^{(1)}, \tilde{\Sigma}^{(1)}\right)$$

$$\tilde{\mu}^{(t+1)} = \mu^{(t+1)} + \sum_{l=2}^{h} \left(\prod_{m=1}^{l-1} \Lambda^{(m)} \right) \mu^{(l)}$$

$$\tilde{\Sigma}^{(1)} = \Psi^{(1)} + \sum_{l=2}^{h} \left(\left(\prod_{m=1}^{l-1} \Lambda^{(m)} \right) \Psi^{(l)} \left(\prod_{m=1}^{l-1} \Lambda^{(m)} \right)^{T} \right) + \left(\prod_{m=1}^{h} \Lambda^{(m)} \right) \left(\prod_{m=1}^{h} \Lambda^{(m)} \right)^{T}$$

l=t+2 m=t+1 m=t+1

m=t+1

m=t+1

Adâncime = h

$$x = z^{(0)}$$

Adâncime = h

$$x = z^{(0)}$$

La fiecare nivel: a b c

Adâncime = h

$$x = z^{(0)}$$

Cum generăm o instanță?

- Idee de antrenare
 - Antrenare pe niveluri
 - Aplicăm algoritmul EM/FA (modificat)
 - De la nivelul 1 la nivelul h. De ce nu invers?

Definiție

– Combinație convexă de mase/densități de pb.:

$$p(x; \pi, \theta_1, \dots, \theta_k) = \pi_1 p_1(x; \theta_1) + \dots + \pi_k p_k(x; \theta_k)$$
$$\pi_1 + \dots + \pi_k = 1$$

– Exemplu cu parametrii daţi:

$$p(x) = 0.2\mathcal{N}(x; 0, 1) + 0.8\mathcal{N}(x; 2, 2^2)$$

– Exemplu fără parametrii daţi:

$$p(x; \pi_1, \mu_1, \mu_2, \sigma_1, \sigma_2) = \pi_1 \mathcal{N}(x; \mu_1, \sigma_1^2) + (1 - \pi_1) \mathcal{N}(x; \mu_2, \sigma_2^2)$$

• În acest ultim caz, parametrii ar trebui estimați

Vizualizare

Vizualizare

Cazul clasic: Mixturi de distribuţii normale,

• Cazul alternativ: Mixturi de FA (1)

Cazul alternativ: Mixturi de FA (2)

- Cum estimăm parametrii? Nu există formule analitice
- Cu algoritmul EM (Expectation Maximization)
 - Pentru că lucrăm cu variabile latente...

EM/MFA

 $\omega_{ij} = 1 \Leftrightarrow x_i$ - generat de componenta j Pasul E:

$$h_{ij} = E[\omega_{ij}|x_i] = \frac{\pi_j \mathcal{N}(x_i; \mu_j, \Lambda_j \Lambda_j^T + \Psi_j)}{\pi_1 \mathcal{N}(x_i; \mu_1, \Lambda_1 \Lambda_1^T + \Psi_1) + \dots + \pi_k \mathcal{N}(x_i; \mu_k, \Lambda_k \Lambda_k^T + \Psi_k)}$$

$$\beta_j = \Lambda_j^T (\Psi_j + \Lambda_j \Lambda_j^T)^{-1}$$

$$E[z_i|x_i,\omega_{ij}=1] = \beta_j(x_i-\mu_j), \forall i \in \{1,\ldots,n\}, \forall j \in \{1,\ldots,k\}$$

Sursă: după *The EM*Algorithm for Mixtures
of Factor Analyzers,
Zoubin Ghahramani,
Geoffrey E. Hinton, 1997

$$E[z_i z_i^T | x_i, \omega_{ij} = 1] = I - \beta_j \Lambda_j + E[z_i | x_i, \omega_{ij} = 1] E[z_i^T | x_i, \omega_{ij} = 1], \forall i \in \{1, \dots, n\}, \forall j \in \{1, \dots, k\}$$

Pasul M:

$$\begin{split} \tilde{z}_i &= \begin{bmatrix} z_i \\ 1 \end{bmatrix} \\ E[\tilde{z}_i|x_i, \omega_{ij} = 1] = \begin{bmatrix} E[z_i|x_i, \omega_{ij} = 1] \\ 1 \end{bmatrix} \\ E[\tilde{z}_i\tilde{z}_i^T|x_i, \omega_{ij} = 1] &= \begin{bmatrix} E[z_iz_i^T|x_i, \omega_{ij} = 1] & E[z_i|x_i, \omega_{ij} = 1] \\ E[z_i^T|x_i, \omega_{ij} = 1] & 1 \end{bmatrix} \\ [\Lambda_j, \mu_j] &= \tilde{\Lambda}_j = \left(\sum_{i=1}^n h_{ij}x_iE[z_i^T|x_i, \omega_{ij} = 1] \right) \left(\sum_{i=1}^n h_{ij}E[z_iz_i^T|x_i, \omega_{ij} = 1] \right)^{-1} \quad \forall j \in \{1, \dots, k\} \\ \Psi_j &= \frac{1}{n} \operatorname{diag} \left(\sum_{i=1}^n h_{ij}(x_ix_i^T - \tilde{\Lambda}_jE[z_i|x_i, \omega_{ij} = 1]x_i^T) \right) \quad \forall j \in \{1, \dots, k\} \\ \pi_j &= \frac{1}{n} \sum_{i=1}^n h_{ij} \quad \forall j \in \{1, \dots, k\} \end{split}$$

Seamănă foarte mult cu EM/FA

DGMMs

Deep Gaussian Mixture Models, Cinzia Viroli, Geoffrey J. McLachlan, 2017

Deep FA + MFA = ...

Idee cheie 1: De ce nu mixturi de distr. normale? Pierdem proprietatea de adâncime...

Dar astfel vom avea foarte mulţi parametri... O alternativă?

$$... = DGMM$$

Idee cheie 2: parametri comuni

h+1

Exemplu DGMM

Exemplu DGMM

DGMMs

Definiție

(1)
$$\mathbf{y}_{i} = \eta_{s_{1}}^{(1)} + \Lambda_{s_{1}}^{(1)} \mathbf{z}_{i}^{(1)} + \mathbf{u}_{i}^{(1)} \text{ with prob. } \pi_{s_{1}}^{(1)}, \ s_{1} = 1, \dots, k_{1},$$
(2) $\mathbf{z}_{i}^{(1)} = \eta_{s_{2}}^{(2)} + \Lambda_{s_{2}}^{(2)} \mathbf{z}_{i}^{(2)} + \mathbf{u}_{i}^{(2)} \text{ with prob. } \pi_{s_{2}}^{(2)}, \ s_{2} = 1, \dots, k_{2},$
...
(b) $\mathbf{z}_{i}^{(h-1)} = \eta_{s_{h}}^{(h)} + \Lambda_{s_{h}}^{(h)} \mathbf{z}_{i}^{(h)} + \mathbf{u}_{i}^{(h)} \text{ with prob. } \pi_{s_{h}}^{(h)}, s_{h} = 1, \dots, k_{h},$

Dimensiunea de la fiecare nivel este aceeași!
 (dimensiunea datelor observabile)

DGMMs - probleme

- Există soluții simetrice:
 - Din cauza aceleiași dimensiuni de la fiecare nivel
 - Soluție: impunem ca dimensiunile să descrească strict pe măsură ce crește indexul nivelului
 - Din cauza non-unicității FA
 - Soluție: menționată la FA

DGMMs – învățare

- Cum estimăm parametrii? Nu există formule analitice
- Cu algoritmul EM (Expectation Maximization)
 - Pentru că lucrăm cu variabile latente...
- Folosesc algoritmul Stochastic EM
 - Pasul S: generăm date
 - Pasul E: calculăm E-urile din datele generate
 - Pasul M

DGMMs – învățare

- Idee de antrenare
 - Antrenare pe niveluri
 - Aplicăm algoritmul EM/MFA (modificat)
 - De la nivelul 1 la nivelul h.

DGMMs – învățare

For $l = 1, \ldots, h$

- S-STEP $(\mathbf{z}_i^{(l-1)} \text{ is known})$ Generate M replicates $\mathbf{z}_{i,m}^{(l)}$ from $f(\mathbf{z}_i^{(l)}|\mathbf{z}_i^{(l-1)}, s; \boldsymbol{\Theta}')$.
- E-STEP Approximate:

$$E[\mathbf{z}_i^{(l)}|\mathbf{z}_i^{(l-1)}, s; \mathbf{\Theta}'] \cong \frac{\sum_{m=1}^M \mathbf{z}_{i,m}^{(l)}}{M}$$

and

$$E[\mathbf{z}_i^{(l)}\mathbf{z}_i^{(l)\top}|\mathbf{z}_i^{(l-1)}, s; \mathbf{\Theta}'] \cong \frac{\sum_{m=1}^M \mathbf{z}_{i,m}^{(l)}\mathbf{z}_{i,m}^{(l)\top}}{M}.$$

DGMMs – învățare

- M-STEP - Compute:

$$\hat{\Lambda}_{s_{l}}^{(l)} = \frac{\sum_{i=1}^{n} p(s|\mathbf{z}_{i}^{(l-1)})(\mathbf{z}_{i}^{(l-1)} - \eta_{s_{l}}^{(l)}) E[\mathbf{z}_{i}^{(l)\top}|\mathbf{z}_{i}^{(l-1)}, s] E[\mathbf{z}_{i}^{(l)\top}|\mathbf{z}_{i}^{(l-1)}, s]^{-1}}{\sum_{i=1}^{n} p(s|\mathbf{z}_{i}^{(l-1)})},$$

$$\hat{\Psi}_{s_{l}}^{(l)} = \frac{\sum_{i=1}^{n} p(s|\mathbf{z}_{i}^{(l-1)}) \left[(\mathbf{z}_{i}^{(l-1)} - \eta_{s_{l}})(\mathbf{z}_{i}^{(l-1)} - \eta_{s_{l}})^{\top} - (\mathbf{z}_{i}^{(l-1)} - \eta_{s_{l}}) E[\mathbf{z}_{i}^{(l)\top}|\mathbf{z}_{i}^{(l-1)}, s] \hat{\Lambda}_{s_{l}}^{\top} \right]}{\sum_{i=1}^{n} p(s|\mathbf{z}_{i}^{(l-1)})},$$

$$\hat{\eta}_{s_{l}}^{(l)} = \frac{\sum_{i=1}^{n} p(s|\mathbf{z}_{i}^{(l-1)}) \left[\mathbf{z}_{i}^{(l-1)} - \Lambda_{s_{l}} E[\mathbf{z}_{i}^{(l)\top}|\mathbf{z}_{i}^{(l-1)}, s] \right]}{\sum_{i=1}^{n} p(s|\mathbf{z}_{i}^{(l-1)})},$$

$$\hat{\pi}_{s}^{(l)} = \sum_{i=1}^{n} f(s_{l}|\mathbf{y}_{i}),$$

DGMMs – aplicaţii

- Clusterizare
 - $-p(z^{(0)}|z^{(1)})$ este o mixtură
 - $-p(z^{(0)})$ este o mixtură
- Acest model înglobează mai multe modele
 - -FA
 - MFA
 - GMM...
 - Deep MFA
 - **–** ...

Modelling high-dimensional data by mixtures of factor analyzers, McLachlan, G., D. Peel, and R. Bean, 2003

Deep Mixtures of Factor Analysers, Yichuan Tang, Ruslan Salakhutdinov, Georey Hinton, 2012

- => poate fi folosit și în alte contexte:
 - de ex. Estimarea densității (density estimation)

Probleme

- În articol:
 - $\begin{array}{l} \bullet \;\; \text{Clusterizare după} \;\; p(z^{(0)}|z^{(1)}) \;\; \text{, dar nu știm} \; z^{(1)} \\ \;\; \text{Soluția 1:} \; & \\ \hline \end{array}$

- Soluția 1:
$$z^{(0)} \sim \pi_1^{(1)} \mathcal{N}(\mu_1^{(1)}, \Lambda_1^{(1)}(\Lambda_1^{(1)})^T + \Psi_1^{(1)}) + \dots + \pi_k^{(1)} \mathcal{N}(\mu_k^{(1)}, \Lambda_k^{(1)}(\Lambda_k^{(1)})^T + \Psi_k^{(1)})$$

- Soluția 2:
$$z^{(0)} = \sum_{\text{path} \in \text{paths}} \pi_{\text{path}}^{(1,\dots,h)} \mathcal{N}(\tilde{\mu}_{\text{path}}^{(1)}, \tilde{\Sigma}_{\text{path}}^{(1)})$$

- $\pi_{\mathrm{path}}^{(1,\ldots,h)}$ nu este cunoscut
 - Soluție: presupunem independența

$$\pi_{\text{path}}^{(1,\dots,h)} = \prod_{l=1}^{h} \pi_{\text{path}_{l}}^{(l)}$$

Probleme

- În articol:
 - Nu se specifică explicit cum se calculează $f\left(s_{l}|\mathbf{y}_{i}\right)$
 - Nu se specifică explicit cum se calculează $p(s|\mathbf{z}_i^{(l-1)})$
 - Soluție: le-am calculat clasic
 - Problemă: probabilitațile $\pi >> 1$
 - » Soluție: un fel de normalizare
 - » Problemă: la un nivel suma π -urilor \neq 1
 - Soluție: nu mai actualizăm π -urile

Probleme

- În articol:
 - La MFA nu folosim SEM, dar în articol da
 - Formulele din algoritm nu sunt exact cele de la MFA
 - Soluție: am implementat modele mai mici înglobate în DGMM după formulele clasice și după formulele din articol
 - Rezultat: cam același comportament la funcția de optimizat
 - Problemă: funcția de optimizat mai și descrește

Probleme

- Formulele de actualizare: inversa unei matrici
 - Problemă: matricea nu are inversă
 - Soluție: folosim pseudoinversa
- Timpul de rulare (pentru imagini):
 - **FA**
 - 8 iterații
 - setul de date MNIST cifra 8: 5851 poze de 28x28 (19 MB)
 - Timp: 2 zile

— ...

- Seturi de date clasice 2D
- Comparație vizuală cu metode clasice de clusterizare
- Mai multe rulări (numere aleatorii)
- Nu doar o singură arhitectură
- Clusterizare prin $p(z^{(0)}|z^{(1)})$ sau $p(z^{(0)})$

Alte metode

DGMM

Deep Gaussian Mixture Models, Cinzia Viroli, Geoffrey J. McLachlan, 2017

Clusterizare

- Date simulate
 - Generate de 100 de ori: media (er. std.)
 - Arhitecturi: $h = 2, d_1 = 2, d_2 = 1, k_1 = 4, k_2 = 1 5$
 - Alegerea modelului:
 - BIC (Bayesian Information Criteria) = f(#params, logLikelihood)

	Method	ARI		m.r.		ARI = Adjusted Rand Index
	k-means	0.661	(0.003)	0.134	(0.001)	= sim(real_part,
Partition Around Medoids	PAM	0.667	(0.004)	0.132	(0.001)	clust part)
Ward	Hclust	0.672	(0.013)	0.141	(0.006)	<u> </u>
	GMM	0.653	(0.008)	0.178	(0.006)	
Skew-normal mixture model	SNmm	0.535	(0.006)	0.251	(0.006)	m.r. = misclassification rate
Skew-t mixture model	STmm	0.566	(0.006)	0.236	(0.004)	=! acuratețe
	DGMM	0.788	(0.005)	0.087	(0.002)	

Deep Gaussian Mixture Models, Cinzia Viroli, Geoffrey J. McLachlan, 2017

Clusterizare

- Date reale
 - $egin{aligned} \bullet & {\sf Arhitecturi:} & h=2-3 \ D>d_1>d_2>d_3\geq 1 \ & k_1=k^* \ & k_2=1-5 \ & k_3=1-5 \end{aligned}$
 - Alegerea modelului: BIC
 - 10 rulări: inițializări diferite

Deep Gaussian Mixture Models, Cinzia Viroli, Geoffrey J. McLachlan, 2017

Clusterizare

Date reale

Dataset	Wine		Olive		Ecoli		Vehicle		Satellite	
	ARI	m.r.	ARI	m.r.	ARI	m.r.	ARI	m.r.	ARI	m.r.
k-means	0.930	0.022	0.448	0.234	0.548	0.298	0.071	0.629	0.529	0.277
PAM	0.863	0.045	0.725	0.107	0.507	0.330	0.073	0.619	0.531	0.292
Hclust	0.865	0.045	0.493	0.215	0.518	0.330	0.092	0.623	0.446	0.337
GMM	0.917	0.028	0.535	0.195	0.395	0.414	0.089	0.621	0.461	0.374
SNmm	0.964	0.011	0.816	0.168	_	-	0.125	0.566	0.440	0.390
STmm	0.085	0.511	0.811	0.171	_	-	0.171	0.587	0.463	0.390
FMA	0.361	0.303	0.706	0.213	0.222	0.586	0.093	0.595	0.367	0.426
MFA	0.983	0.006	0.914	0.052	0.525	0.330	0.090	0.626	0.589	0.243
DGMM	0.983	0.006	0.997	0.002	0.749	0.187	0.191	0.481	0.604	0.249

FMA – Factor Mixture Analysis

MFA – Mixture of Factor Analyzers

Deep Mixtures of Factor Analysers, Yichuan Tang, Ruslan Salakhutdinov, Georey Hinton, 2012

• Estimarea densității

- Setul de date: Toronto Faces Dataset
- Din setul de date:

Deep Mixtures of Factor Analysers, Yichuan Tang, Ruslan Salakhutdinov, Georey Hinton, 2012

- Estimarea densității (Distribuția învățată chiar generează fețe?)
 - Fețe generate după estimarea densității conform:

MLE distribuția normală

Deep MFA (înglobat de DGMM)

MFA

Concluzii

- Deep (next: Deep Gaussian Processes)
- Nou (pe lângă DGMM):
 - Stochastic EM
 - BIC
 - ARI
 - Estimarea densității prin distribuții normale: aplicare pe fețe
 - Ideea articolului:
 - clasic (FA, mixturi) -> modern (DGMM)