20th June 2022-shift 2-16-30

ai24btech11028 - Ronit Ranjan

Section A

1) The mean and variance	of the data $4, 5, 6, 6, 7, 8, x, y$ where $x < y$	y are 6 and $\frac{9}{4}$ respectively. Then
$x^4 + y^2$ is equal to		[20th June 2020]

a) 162

c) 674

b) 320

d) 420

2) If a point A(x, y) lies in the region bounded by the y-axis, straight lines 2y + x = 6 and 5x - 6y = 30, then the probablity that y < 1 is: [20th Jun 2020]

c) $\frac{2}{3}$ d) $\frac{6}{7}$

3) The value of $\cot\left(\sum_{n=1}^{50} \tan^{-1}\left(\frac{1}{1+n+n^2}\right)\right)$ is

[20th June 2020]

4) $\alpha = \sin 36^{\circ}$ is a root of which of the following equation

[20th June 2020]

a) $10x^4 - 10x^2 - 5 = 0$

c) $16x^4 - 20x^2 + 5 = 0$ d) $16x^4 - 10x^2 + 5 = 0$

b) $16x^4 + 20x^2 - 5 = 0$

5) Which of the following statement is a tautology?

[20th June 2020]

a) $((\sim q \cap p) \cap q)$

b) $((\sim q) \cap p) \cap (p \cap (\sim p))$

c) $((\sim q) \cap p) \cup (\cup (\sim p))$) d) $((p \cap \hat{q}) \cup (\sim (p \cap q))$

6) Let $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Define the function $f : S \to S$ as follows:

[20th June 2020]

$$f(n) = \begin{cases} 2n, & \text{if } n = 1, 2, 3, 4, 5, \\ 2(11 - n), & \text{if } n = 6, 7, 8, 9, 10. \end{cases}$$

Let $g: S \to S$ be a function such that:

$$g(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd,} \\ 11 - \frac{n}{2}, & \text{if } n \text{ is even.} \end{cases}$$

Find the value of g(10)(g(1) + g(2) + g(3) + g(4) + g(5)).

[20th June 2020]

7) Let α, β be the roots of the equation:

$$x^2 - 4x + 5 = 0,$$

and let $\alpha \gamma, \beta \gamma$ be the roots of the equation:

$$x^2 - \left(3\sqrt{2} + 7\sqrt{3}\right)x + \left(7 + 3\sqrt{5}\right) = 0.$$

If $\beta + \gamma = 3\sqrt{2}$, then find $(\alpha + 2\beta + \gamma)^2$.

[20th June 2020]

- 8) Let A be a matrix of order 2×2 , whose entries are from the set $\{0, 1, 2, 3, 4, 5\}$. If the sum of all the entries of A is a prime number $p, 2 \le p < 8$, find the number of such matrices A. [20th June 2020]
- 9) If the sum of the coefficients of all the positive powers of x in the binomial expansion of

$$\left(x+\frac{2}{x}\right)^n$$

is 939, find the sum of all the possible integral values of n.

[20th June 2020]

10) Let $\lfloor t \rfloor$ denote the greatest integer $\leq t$ and $\{t\}$ denote the fractional part of t. Then the integral value of α for which the left-hand limit of the function:

$$f(x) = \lfloor 1 + x \rfloor + \frac{\alpha x^{3/2} \{x\} - 1}{2\lfloor x \rfloor + \{x\}}$$

at x = 0 is equal to $\alpha - \frac{4}{3}$.

[20th June 2020]

11) If $y(x) = x^x$, x > 0, then find the value of:

[20th June 2020]

$$\frac{d^2x}{dy^2} \text{ at } x = 1.$$

- 12) If the area of the region $\{(x, y) : x^3 + y^3 \le 1, x + y \ge 0, y \ge 0\}$ is A, find the value of $\frac{256A}{\pi}$. [20th June 2020]
- 13) Let v be the solution of the differential equation:

$$(1 - x^2)\frac{dy}{dx} = (xy + (x^3 + 2)\sqrt{1 - x^2}), -1 < x < 1,$$

and y(0) = 0. If:

$$\int_{-1/2}^{1/2} \sqrt{1 - x^2} y(0) \, dx = k,$$

then k^{-1} is equal to:

[20th June 2020]

- 14) Let a circle C of radius 5 lie below the x-axis. The line $L_1: 4x + 3y 2 = 0$ passes through the center P of the circle C and intersects the line $L_2: 3x 4y 11 = 0$ at Q. The line L_1 touches C at the point Q. Then the distance of P from the line 5x 12y + 51 = 0 is: [20th June 2020]
- 15) Let $S = \{E_1, E_2, \dots, E_8\}$ be a sample space of random experiments such that $P(E_n) = \frac{n}{36}$ for every $n = 1, 2, \dots, 8$. Then the number of elements in the set

$$\{A \subset S : P(A) \ge \frac{4}{5}\}$$

is:

[20th June 2020]