MTH 442: Time Series Analysis Problem Set#5

- Let $\{X_t\}$ and $\{Y_t\}$ be two covariance stationary processes. Define a bivariate process $Z_t = (X_t, Y_t)'$. Prove or give a counter example " Z_t is covariance stationary". Let $\{X_t\}$ be a covariance stationary process with mean μ and ACVF $\gamma_X(h)$. Define

 - $\{Y_t\}$ as $Y_t = (X_t, X_{\alpha+\beta t})$. Find the values of α and β for which $\{Y_t\}$ is stationary.

 13 Let $X_t = \phi X_{t-1} + \mu_t$ and $Y_t = \phi X_{t-2} + \delta_t$, where $|\phi| < 1$, $\{\mu_t\}$ and $\{\delta_t\}$ are independent $WN(0,\sigma^2)$ sequences with $Cov(\mu_t, X_{t-j}) = 0$ for all j > 0. Find the cross correlation $\rho_{vv}(k); k = 0,1,2,...$
 - Let $\{X_t\}$ be a stationary time series with mean zero and ACVF $\gamma_X(h) = \left(\frac{1}{2}\right)^{|n|}$ and $\{Y_t\}$ be a $WN(0,\sigma_Y^2)$ independent of $\{X_t\}$. Define a bivariate time series

$$Z_{t} = \begin{pmatrix} X_{t} \left(Y_{t} + Y_{t-1} \right) \\ X_{t} Y_{t-2} \end{pmatrix}$$

Show that Z_t is a covariance stationary vector process. Further, find k such that $Cov(Z_t, Z_{t+h})$ is a null matrix for all |h| > k.

- [5] A and B are constants and $\theta \sim U(0,2\pi)$, verify whether
 - $X_t = (A\cos(t+\theta), B\cos(2t+\theta))'$ is covariance stationary bivariate process.
- Let $\{X_t\}$ be a sequence of independent and identically distributed N(0,1) random

variables. Define
$$Y_t = (-1)^t + X_t + X_{t-1} + X_{t-2}$$
 and $Z_t = (-1)^t X_t$. Verify whether $\begin{pmatrix} Y_t \\ Z_t \end{pmatrix}$

is covariance stationary bivariate process.

Suppose $\{\varepsilon_{1,t}\}$ and $\{\varepsilon_{2,t}\}$ are two independent $WN\left(0,\sigma_{\varepsilon}^{2}\right)$ processes. Define

$$X_t = 0.5 X_{t-1} + \varepsilon_{1,t}$$

$$Y_t = 0.5 X_{t-2} + \varepsilon_{2,t}$$

Find the cross-covariance between X_t and Y_t at lags 2 and 3.

Let $\{X_t\}$ be zero mean stationary process with absolutely summable ACVF $\gamma_X(h)$. Define a vector process Z_t as

$$Z_{t} = \left(\sum_{h=-\infty}^{\infty} \psi_{1,h} B^{h} X_{t} \right) \\
\sum_{h=-\infty}^{\infty} \psi_{2,h} B^{h} X_{a+bt} \right)$$

where, $\sum_{i=1,2}^{\infty} |\psi_{i,h}| < \infty$; i = 1,2. Find the values of a and b such that the vector process

 Z_t is covariance stationary. Further, consider Z_t with a = 1, b = 1 and $X_t \sim WN(0, \sigma^2)$. Prove or disprove " Z_t is a vector white noise process".

Suppose $\underline{\epsilon}_t \sim VWN(0, \Sigma), \Sigma > 0$ and let $\underline{Y}_t = \begin{pmatrix} \underline{\epsilon}_t \\ 2\epsilon_{2t+3} \end{pmatrix}$. Verify whether or not $\underline{Y}_t \sim VWN$.

Suppose
$$\epsilon_t \sim WN(0,1)$$
; $X_t = 2\epsilon_t + \epsilon_{t-1} + \epsilon_{t+1}$ and $Y_t = 2 + \epsilon_t - \epsilon_{t-1}$. Define $\underline{Z}_t = \begin{pmatrix} X_t \\ Y_t \end{pmatrix}$.

- (a) Verify whether or not \underline{Z}_t is covariance stationary.
- (b) Find the smallest integer k such that $Cov(\underline{Z}_t, \underline{Z}_{t+h})$ is a null matrix for $|h| \ge k$.

Let $\{e_t\}$ be a sequence of i.i.d. N(0,1) random variables. Define

$$X_t = e_1 + e_2 \cos t + e_3 \sin t$$

$$Y_t = t + e_1 \cos t + e_2 \sin t$$

$$Z_t = (-1)^t e_4 + e_5 \cos t + e_6 \sin t$$

Verify whether the bivariate processes $P_t = \begin{pmatrix} X_t \\ Y - t \end{pmatrix}$ and $Q_t = \begin{pmatrix} X_t \\ Z_t \end{pmatrix}$ are covariance stationary.

. [12] Consider the 3-variate stationary VAR(1), $X_t = \Phi X_{t-1} + \varepsilon_t$; where, $\{\varepsilon_t\} \sim VWN(0, \Sigma)$.

Define $Y_t = \begin{pmatrix} X_t \\ \alpha X \end{pmatrix}$, $\alpha \in \Re$. Prove or disprove " Y_t is covariance stationary VAR

 $\forall \ \alpha \in \Re$ ".

• [13] Consider a *n*-dimensional stationary VAR(*p*) process

$$\mathcal{X}_{t} = \Phi_{1}\mathcal{X}_{t-1} + \Phi_{2}\mathcal{X}_{t-2} + \dots + \Phi_{p}\mathcal{X}_{t-p} + \mathcal{E}_{t}; \mathcal{E}_{t} \sim VWN(0, \Sigma).$$

Define a new *np*-dimensional vector process $\underline{Z}_{t} = (\underline{X}_{t}'\underline{X}_{t-1}'...\underline{X}_{t-p+1}')$. Let us define

$$F_{np \times np} = \begin{bmatrix} \Phi_1 & \Phi_2 & \Phi_3 & \dots & \Phi_{p-1} & \Phi_p \\ I_n & 0 & 0 & \dots & & 0 \\ 0 & I_n & 0 & \dots & & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & I_n & 0 \end{bmatrix} \text{ and } \underbrace{\eta_t}_{np \times 1} = \begin{pmatrix} \mathcal{E}_t \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Using F and $\underline{\eta}_t$, express \underline{Z}_t as a VAR process. Further, if $E(\underline{Z}_t\underline{Z}_t') = \Omega$, prove that

 $\Omega = F\Omega F' + Q$; where $E(\eta_t, \eta_t') = Q$.

. [14] Consider the following 2-variate VAR(2) process;

$$X_{t} = \mathcal{E}_{t} - X_{t-1} - \frac{1}{4}X_{t-2};$$

where, $\{\xi_t\} \sim VWN(0,\Sigma), \Sigma > 0$. Is the given VAR(2) process covariance stationary? In case the process is causal, obtain its $VMA(\infty)$ representation.

[15] Consider a k-dimensional stationary VAR(2) process

$$\underline{X}_{t} = \Phi_{1} \underline{X}_{t-1} + \Phi_{2} \underline{X}_{t-2} + \underline{\varepsilon}_{t}; \underline{\varepsilon}_{t} \sim VWN(\underline{0}, \Sigma). \text{ Prove or disprove "} \underline{Z}_{t} = \begin{pmatrix} \underline{X}_{t} \\ \underline{X}_{t-1} \end{pmatrix} \text{ is a}$$

stationary VAR(1) process".

[16] Let $\{X_t\}$ be a bivariate vector ARMA(1,1) process:

$$X_{t} = \Phi X_{t-1} + \mathcal{E}_{t} + \Theta \mathcal{E}_{t-1}; \{\mathcal{E}_{t}\} \sim VWN(0, I_{2}), \text{ where, } \Phi = \Theta = \begin{pmatrix} a & a \\ 0 & a \end{pmatrix}.$$

- (a) Find the value(s) of the constant a such that $\{X_t\}$ is causal and invertible.
- **(b)** Using an appropriate value of a (obtained in (1)), find the $VMA(\infty)$ and $VAR(\infty)$ representation of $\{X_t\}$.
- (c) Verify whether the sequence of matrices, say $\left\{\Psi_{j}\right\}_{j=0}^{\infty}$, associated with the $VMA(\infty)$ representation is absolutely summable or not.
- (d) Find the impulse response of the two component variables of $\{X_t\}$ with respect to shocks in the other variable.
- [17] Let \underline{X}_t be a 2-variate VAR(1) process $\underline{X}_t = \Phi \underline{X}_{t-1} +, \underline{\epsilon}_t \sim VWN(0, \Sigma); \Sigma > 0, \Phi =$
 - $\begin{pmatrix} 0 & b \\ 0 & a \end{pmatrix}$. Which of the following statements is (are) CORRECT?
 - (a) For a = 0.5 and b = 0.5, \underline{X}_t is covariance stationary
 - (b) For a = 0.5 and $b = 1, \underline{X}_t$ is covariance stationary
 - (c) For all $a, b \in \mathbb{R}$, X_t is covariance stationary
- [18] Suppose the $k \times 1$ random vector $\underline{\epsilon}_t \sim VWN(0, \Sigma)$; $\Sigma > 0$ and $\underline{X}_t = \underline{\epsilon}_t + \Theta\underline{\epsilon}_{t-1}$, Θ is a $k \times k$ matrix of constants. Define $\underline{Z}_t = \left(\frac{\underline{X}_t}{\epsilon_{t-1}}\right)$. Prove or disprove the following statements.
 - (a) \underline{Z}_t is covariance stationary for all Θ
 - (b) $\underline{Z}_t \sim VWN$
 - (c) $\overline{Z_t}$ has a VMA(1) representation