Assignment 1,2

Problem 53, 58 of UGC Math 2019

Vishnu G

Indian Institute of Technology Hyderabad

Table of contents

1. Assignment 1

2. Assignment 2

Assignment 1

Question

Suppose (X,Y) follows bivariate normal distribution with means $\mu 1\mu 2$, standard deviations $\sigma 1,\sigma 2$ and correlation coefficient ρ , where all parameters are un-known. Then, testing Ho: $\sigma 1=\sigma 2$ is equivalent to testing the independence of

- 1.) X and Y
- 2.) X and X-Y
- 3.) X+Y and Y
- 4.) X+Y and X-Y

Answer: 4

Definition

Bivariate Normal Distribution:

Random normal vector $\mathbf{Z} = \begin{bmatrix} X \\ Y \end{bmatrix}$ is Bi-variate when it is jointly normal. $\mathbf{Z} = \mathbf{aX} + \mathbf{bY}$ Joint PDF of Z is given as

$$f_{z}(Z) = \frac{1}{2\pi\sqrt{detC}} \quad \exp\left\{\frac{-1}{2}(z-m)^{T}C^{-1}(z-m)\right\}$$
Where,
$$m = \begin{bmatrix} \mu_{x} \\ \mu_{y} \end{bmatrix}, C = \begin{bmatrix} \sigma_{X}^{2} & \rho\sigma_{XY} \\ \rho\sigma_{YX} & \sigma_{Y}^{2} \end{bmatrix}$$

3

Definition of Independence

If X, Y, which are independent, then they are un-corelated or their co-variances are $\sigma_{XY}=\sigma_{YX}=0$ then covariance matrix becomes a diagonal matrix

$$C = \begin{bmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_Y \sigma_X & \sigma_Y^2 \end{bmatrix} = \begin{bmatrix} \sigma_X^2 & 0 \\ 0 & \sigma_Y^2 \end{bmatrix}$$

4

Co-variance Matrix

$$\Sigma = [[\mathbf{Z} - E(\mathbf{Z})][\mathbf{Z} - E(\mathbf{Z})]^T]$$

When, $\mathbf{Z}' = \mathbf{TZ}$, Where T is a transformation

$$\Sigma_{TZ} = [[\mathbf{TZ} - E(\mathbf{TZ})][\mathbf{TZ} - E(\mathbf{TZ})]^T]$$

$$= [[T\mathbf{Z} - TE(\mathbf{Z})][T\mathbf{Z} - TE(\mathbf{Z})]^T]$$

$$= [T[\mathbf{Z} - E(\mathbf{Z})][\mathbf{Z} - E(\mathbf{Z})]^TT^T]$$

$$= [T[\mathbf{Z} - E(\mathbf{Z})][\mathbf{Z} - E(\mathbf{Z})]^TT^T]$$

$$= [T\Sigma T^T]$$

$$Where[[\mathbf{Z} - E(\mathbf{Z})][\mathbf{Z} - E(\mathbf{Z})]^T] = \Sigma$$

$$\Sigma_{TZ} = [T\Sigma T^T]$$
(1)

Given $\sigma_x = \sigma_y$

$$\Sigma = \begin{bmatrix} \sigma_X^2 & \rho \sigma_X \sigma_X \\ \rho \sigma_X \sigma_X & \sigma_Y^2 \end{bmatrix} = \begin{bmatrix} \sigma_X^2 & \rho \sigma_X^2 \\ \rho \sigma_X^2 & \sigma_X^2 \end{bmatrix} = \sigma_X^2 \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$$

 $\boldsymbol{\Sigma}$ is not a diagonal matrix so components of \boldsymbol{Z} in option 1 are not independent

X, X-Y can be written as
$$\begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$$
 Where T = $\begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}$, Z = $\begin{bmatrix} X \\ Y \end{bmatrix}$ Co-variance matrix Σ for X, X-Y From Eq. 1 $\Sigma_{TZ} = [T\Sigma T^T]$

$$\Sigma_{TZ} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} \sigma_X^2 \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} = \sigma_X^2 \begin{bmatrix} 1 & \rho \\ 1 - \rho & \rho - 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$
$$= \sigma_X^2 \begin{bmatrix} 1 & 1 - \rho \\ 1 - \rho & 2 - \rho \end{bmatrix}$$

 $\Sigma_{\textit{TZ}}$ is not a diagonal matrix, so components of TZ are not independent

X+Y and Y can be written as
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$$

Where T = $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, Z = $\begin{bmatrix} X \\ Y \end{bmatrix}$

Co-variance matrix Σ for X+Y, Y From Eq. 1 $\Sigma_{TZ} = [T\Sigma T^T]$

$$\Sigma_{TZ} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \sigma_X^2 \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
$$= \sigma_X^2 \begin{bmatrix} 2 + 2\rho & \rho + 1 \\ \rho + 1 & 1 \end{bmatrix}$$

 Σ_{TZ} is not a diagonal matrix, so components of TZ are not independent

X+Y and X-Y can be written as
$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$$
 From Eq. 1 $\Sigma_{TZ} = [T\Sigma T^T]$

$$\Sigma_{TZ} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \sigma_X^2 \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$= \sigma_X^2 \begin{bmatrix} 1 + \rho & \rho + 1 \\ 1 - \rho & \rho - 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 + 2\rho & 0 \\ 0 & 2 - 2\rho \end{bmatrix}$$

Hence option 4 is correct

Assignment 2

Question

A sample of size n=2 is drawn from a population of size N=4 using probability proportional to size without replacement sampling scheme, where the probabilities proportional to size are

The probability of inclusion of unit ${\bf 1}$ in the sample is

- 1. 0.4
- 2. 0.6
- 3. 0.7
- 4. 0.75

Answer: Option - 3 - (0.7)

Definition of PPS without replacement

- 1. Sampling: Selecting smaller units from a large population
- 2. **Simple Sampling scheme**: Probability of selecting every unit is uniformly distributed $P(U_1) = P(U_2)... = P(U_n)$
- 3. **PPS WOR**: When P selection of every unit is not same, repetition is not allowed

Solution

For finding the inclusion probability of unit 1 in a sample of 2, we need find in how many ways unit 1 can be included in a sample of 2.

- 1. $P_1(1) = P_1$
- 2. $P_1(2)$

$$P = P_1(1) + P_1(2)$$

contd ..

 $P_{i(2)}$ can occur in following possible ways:

- U_2 is selected in 1^{st} draw and U_1 is selected at 2 draw
- U_3 is selected in 1^{st} draw and U_1 is selected at 2 draw
- U_4 is selected in 1^{st} draw and U_1 is selected at 2 draw

$$P_{1(2)} = \sum_{i=1}^{4} P_{i}(1) \times P_{1}(2)$$

contd ..)

$$P_i(1) \times P_1(2) = P_i(1) \times P_1(U_1/U_i)$$

 $P_1(U_1/U_i) = \frac{P_1}{(1-P_i)}$

 P_1 over $1 - P_i$, because U_i can not be selected again

contd ..

$$P_{i(2)} = \sum_{i=2}^{4} P_i \times \frac{P_1}{1 - P_i(1)}$$

$$= 0.4 \times \left(\frac{0.2}{1 - 0.2} + \frac{0.2}{1 - 0.2} + \frac{0.2}{1 - 0.2}\right)$$

$$= 0.4 \times \left(\frac{0.6}{0.8}\right)$$

$$= 0.3$$

contd ..

- The probability of inclusion of unit 1 in the sample is $P_{i(1)} + P_{i(2)}$
- 0.3+0.4=0.7