MECCANICA

Federico Mainetti Gambera

20 marzo 2020

0.1 LEZIONE 1 10/03/2020

link https://web.microsoftstream.com/video/58e86b29-c2c0-47d6-bbb4-f54861155460

0.1.1 Informazioni sul corso

Modalità d'esame

C'è uno scritto il cui massimo voto è 27, se si vuole alzare il voto si può fare un orale. Se si prende meno di 21 si deve obbligatoriamente fare un orale, se la votazione dello scritto l'orale è facoltativo, per prendere più di 27 bisogna fare l'orale. L'esame va sostenuto all'interno della sessione in cui è stato svolto lo scritto.

Libro di testo

L'acquisto del libro è fortemente consigliato, gli appunti di queste lezioni sono molto scarni. Il libro è "Fondamenti di meccanica teorica e applicata - McGraw-Hill, N. Bachsmid et al".

Argomenti del corso

La meccanica si occupa di studiare il movimento di un sistema meccanico. Durante il corso ci occuperemo di Cinematica, Statica e Dinamica.

Per cinematica si intende lo studio del movimento di un sistema meccanico indipendentemente dalle forze che agiscono su di esso. Il moto del sistema è quindi unicamente dettato dai vincoli del sistema stesso.

Viceversa lo studio del moto di un sistema in relazione alle forze che agiscono su di esso è la dinamica. La statica è un caso particolare della dinamica, ovvero quando le forze di un sistema si equilibriano in modo da creare un'assenza di moto.

Infine andremo ad applicare queste tre materie allo studio di una macchina a un grado di libertà.

0.1.2 Cinematica di un punto

Studieremo la cinematica applicata a un punto e riducendoci al caso bidimensionale.

Per moto di un punto intendiamo l'evoluzione temporale della sua posizione, inoltre cercheremo di darne una descrizione matematica.

Per prima cosa c'è bisogno di un sistema di riferimento o osservatore, in modo da poter definire una posizione di un punto. Sistemi di riferimento diversi possono dare posizioni diverse per uno stesso punto.

Gradi di libertà

Le coordinate indipedenti, o gradi di libertà, che caraterrizzano un piano e che definiscono una posizione di un punto sono due. Si dice che un punto ha due gradi di libertà nel piano.

Ci sono tre possibilità per scegliere le due coordiante indipendenti:

- Coordiante cartesiane, con un origine O, un asse delle ascisse X e uno delle ordinate Y. In questo caso la posizione di un punto P sarà descritta da un vettore $\vec{P}=(P-O)$, e, se chiamo \vec{j} e \vec{i} i vettori delle proiezioni del punto sull'asse delle odrinate e delle ascisse, posso dire che $\vec{P}=x\vec{i}+y\vec{j}$
- Il piano di Gauss, che è il piano immaginario, dove i due assi principali sono l'asse reale e l'asse immaginario. Anche in questo caso un punto P sarà descritto da un vettore $\vec{P}=(P-O)=x+iy$. Notiamo che $i=\sqrt{-1}$
- Coordinate polari, si usa ancora il piano di Gauss (immaginario), ma per definire il vettore posizione $\vec{P}=P-O$ userò due grandezze chiamate modulo e anomalia, dove il modulo r rappresenta la distanza del punto P dall'origine O e l'anomalia θ è l'angola che il vettore forma con l'asse reale in direzione antioraria. Dunque possiamo scrivere $\vec{P}=re^{i\theta}$ grazie alla formula di Eulero $(e^{i\theta}=cos(\theta)+isin(\theta))$. Notiamo che $x=rcos(\theta)$ e $y=rsin(\theta)$, $r=\sqrt{x^2+y^2}$ e $\theta=atan\left(\frac{y}{x}\right)$

Moto

Il moto del punto rappresenta l'evoluzione delle coordinate che rappresentano la posizione del punto nel tempo. Se il punto P si sta muovendo nel tempo, traccia una traiettoria nel piano. Per sua natura la traiettoria è una linea continua.

Una volta stabilita un'origine per la traiettoria, ovvero la posizione P_0 assunta dal punto nel tempo iniziale t_0 , posso definire una quantità scalare s detta ascissa curvilinea. L'ascissa curvilinea indica la posizione occupata dal punto P lungo la traiettoria ad un dato istante di tempo. Il vettore posizione $\vec{P} = \vec{P}(s(t))$ è funzione dell'ascissa curvilinea, che a sua volta è funzione del tempo. Come studiare il moto del punto?

$$\bullet \ \begin{cases} x = x(t) \\ y = y(t) \end{cases} \quad \text{oppure} \ \begin{cases} r = r(t) \\ \theta = \theta(t) \end{cases}$$

$$\bullet \ \begin{cases} y = f(x) \ \text{traiettoria} \\ s = s(t) \ \text{legge oraria} \end{cases}$$

es. Moto circolare

[immagine dagli appunti del prof]

Per studiare il moto di questo punto P posso usare uno dei due metodi appena descritti.

Primo metodo:

 $\theta=\omega t$, dove ω rappresenta la velocità angolare.

$$\begin{cases} x = rcos(\theta) \\ y = rsin(\theta) \end{cases}$$
 Da cui otteniamo che

$$\begin{cases} x = rcos(\omega t) \\ y = rsin(\omega t) \end{cases}$$

Secondo metodo:

la traiettoria sarà definita da $r^2=x^2+y^2$, mentre la legge oraria $s=\theta r=[\theta=\omega t]=\omega tr$.

Velocità

La velocità \vec{v} è definita come $\vec{v}=\frac{d\vec{P}}{dt}=\lim_{\Delta t\to 0}\frac{\Delta\vec{P}}{\Delta t}$, ricordando che $\vec{P}=\vec{P}(s(t))$ il vettore posizione è una funzione dell'ascissa curvilinea che è funzione del tempo. Quindi nel calcolare la velocità si sta eseguendo la derivata di una funzione di una funzione: $\vec{v}=\frac{d\vec{P}}{dt}=\frac{d\vec{P}}{ds}\cdot\frac{ds}{dt}=\dot{s}\cdot\frac{d\vec{P}}{ds}$. Per comprendere il significato del secondo termine di questa equazione $\left(\frac{d\vec{P}}{ds}\right)$ facciamo un analisi grafica:

$$\frac{d\vec{P}}{ds} = \lim_{\Delta t \to 0 \text{ oppure } \Delta s \to 0} \frac{\vec{P}(t + \Delta t) - \vec{P}(t)}{ds}$$
 [immagine dagli appunti del prof]

Un punto P si muove dal punto $\vec{P} = \vec{P}(t)$ al punto $\vec{P}' = \vec{P}(t+\Delta t)$ lungo una traiettoria, percorrendo una quantià pari a Δs . A questo punto possiamo dire che $\frac{d\vec{P}}{ds} = \lim_{\Delta t \to 0} \frac{\Delta \vec{P}}{\Delta s}$. Cosa è $\Delta \vec{P}$? è il vettore che unisce il punto P dalla posizione al tempo t alla posizione $t + \Delta t$, questa quantità al variare di Δt a 0 tenderà anch'essa a 0. Quindi il vettore $\Delta \vec{P}$ per $\Delta t \to 0$ tenderà a coincidere con l'arco Δs della traiettoria stessa. Dunque $\lim_{\Delta t \to 0} \left| \frac{\Delta \vec{P}}{\Delta s} \right| = 1$. Oltre ad avere quindi modulo pari a 1, tenderà ad essere tangente alla traiettoria.

La velocità è quindi definita come $\vec{v} = \dot{s} \cdot \vec{t}$ (dove per \vec{t} si intende il versore tangente alla traiettoria). C'è più di un modo per definire la velocità:

- Il primo lo abbiamo appena visto: $\vec{v} = \dot{s} \cdot \vec{t} = v \cdot \vec{t}$.
- Il secondo metodo sfrutta le coordinate cartesiane $\vec{P}=x\vec{i}+y\vec{j}$: $\vec{v}=\dot{x}\vec{i}+\dot{y}\vec{j}=v_x\vec{i}+v_y\vec{j}$.

Sfruttando la seconda definizione, possiamo anche scrivere il vettore velocità come $\vec{v}=ve^{i\alpha}$, dove l'angolo α rappresenta l'angolo formato fra il vettore tangente e l'asse delle ascisse traslato fino al punto considerato. Dunque il modulo $v=|\vec{v}|=\sqrt{v_x^2+v_y^2}$ e l'angolo $\alpha=atan\left(\frac{v_y}{v_x}\right)$, e quindi $tan(\alpha)=\frac{v_y}{v_x}=\frac{\dot{y}}{\dot{x}}=\frac{dy}{dt}\cdot\frac{dt}{dx}=\frac{dy}{dx}=f'(x)$.

2

Accellerazione

L'accellerazione \vec{a} per definizione è $\vec{a}=\frac{d\vec{v}}{dt}=\frac{d}{dt}(\dot{s}\frac{d\vec{P}}{ds}).$

Dunque $\vec{a} = \ddot{s} \frac{d\vec{P}}{ds} + \dot{s} \frac{d}{dt} \left(\frac{d\vec{P}}{ds} \right)$, posso ora studiare il termine $\frac{d}{dt} \left(\frac{d\vec{P}}{ds} \right)$, sfruttando le proprietà della derivata di una funzione di funzione, $\dot{s} \frac{d^2 P}{ds^2}$.

Ricaviamo quindi l'accellerazione come $\vec{a}=\ddot{s}\frac{d\vec{P}}{ds}+\dot{s}^2\frac{d^2\vec{P}}{ds^2}$, dove il termine $\frac{d\vec{P}}{ds}$ rappresenta il versore tangente alla traiettoria \vec{t} e $\frac{d^2\vec{P}}{ds^2}$ rappresenta il rapporto tra il versore normale alla traiettoria \vec{n} diviso il raggio di curvatura ρ . Ricaviamo quindi che

$$\vec{a} = \ddot{s} \frac{d\vec{P}}{ds} + \dot{s}^2 \frac{d^2 \vec{P}}{ds^2} = \ddot{s}\vec{t} + \frac{\dot{s}^2}{\rho} \vec{n} = \dot{v}\vec{t} + \frac{v^2}{\rho} \vec{n}$$

Verifichiamo ora come $\frac{d^2\vec{P}}{ds^2}=\frac{\vec{n}}{\rho}$: Qualsiasi sia la traiettoria descritta nel piano, se noi consideriamo una qualsiasi istante di tempo, notiamo che la traiettoria può essere approssimata con un cerchio, che prende il nome di cerchio osculatore, il cui raggio è detto raggio osculatore.

[immagine dagli appunti del prof]

Questo cerchio condivide con la traiettoria il punto stesso, la derivata prima (tangente) e la derivata seconda (curvatura). La curvatura c è l'inverso del raggio osculatore, $c=\frac{1}{\rho}$. Se definiamo la terna destrorsa (con asse z uscente dal piano verso di noi e asce x parallelo alla tangente) avremo che il

versore \vec{n} è diretto verso il centro del cerchio osculatore. Per dimostrare $\frac{d^2\vec{P}}{ds^2} = \frac{\vec{n}}{\rho}$, usiamo $\frac{d}{ds}\left(\frac{d\vec{P}}{ds}\right) = \frac{d\vec{t}}{ds} = \lim_{\Delta t \to 0 \text{ oppure } \Delta s \to 0} \frac{\Delta \vec{t}}{\Delta s} = \lim_{\Delta t \to 0} \frac{\vec{t'} - \vec{t}}{\Delta s}$.

[immagine dagli appunti del prof]

Se consideriamo un generico piccolo spostamento lungo la traiettoria ds, questo tratto di traiettoria coinciderà con una sezione del cerchio osculatorio, di cui possiamo calcolare l'angolo $d\alpha$ (rosso nell'immagine). Consideriamo anche i punti estremi (di partenza e di fine) dello spostamento ds che sono $P \in P'$. Per $P \in P'$ consideriamo le tangenti e gli angoli α (giallo e azzurrino) che formano con l'asse delle ascisse. La variazione angolare fra queste due lpha sarà pari all'angolo dlpha del cerchio osculatorio. Quindi fra \vec{t} e $\vec{t'}$ ci sarà un angolo pari a $d\alpha$, ed inoltre il vettore differenza $d\vec{t}=\vec{t}-\vec{t'}$ (in azzurro-blu) tenderà a 0 all'accorciarsi della tratto di traiettoria considerata. Coi calcoli esprimiamo questo concetto dicendo che $d\vec{t}=\vec{t}d\alpha=\vec{t'}d\alpha$ e quindi $|d\vec{t}|=1d\alpha$, e considerando che $ds=\rho d\alpha$ otteniamo che $\left|\frac{d^2\vec{P}}{ds^2}\right| = \left|\frac{d\vec{t}}{ds}\right| = \left|\frac{1d\alpha}{\rho d\alpha}\right| = \frac{1}{\rho}$. Ma essendo $d\vec{t}\perp\vec{t}$, questo andrà a coincidere col versore

Abbiamo quindi dimostrato che $\vec{a}=\ddot{s}\frac{d\vec{P}}{ds}+\dot{s}^2\frac{d^2\vec{P}}{ds^2}=\ddot{s}\vec{t}+\frac{\dot{s}^2}{\rho}\vec{n}=\dot{v}\vec{t}+\frac{v^2}{\rho}\vec{n}$. La prima componente $\vec{a_t}=\vec{v}\vec{t}$ prende il nome di accellerazione tangenziale, la seconda componente $\vec{a_n}=\frac{v^2}{\rho}\vec{n}$ si chiama invece accellerazione normale. L'accellerazione tangenziale può annullarsi se per esempio siamo in presenza di un moto uniforma, in cui la velocità è costante, al contrario se siamo in presenza di un moto rettilineo, è la velocità normale ad essere nulla.

Come per la velocità, anche per l'accellerazione ci sono modi differenti per definirla:

- Il primo metodo è quello appena visto: $\vec{a} = \vec{s}\vec{t} + \frac{\vec{s}^2}{a}\vec{n}$.
- ullet II secondo metodo sfrutta il concetto di ascissa curvilinea e le coordinate cartesiane in cui $ec{v}=$ $\dot{x}\vec{i} + \dot{y}\vec{j} : \vec{a} = \ddot{c}\vec{i} + \ddot{y}\vec{j}.$
- Il terzo metodo usa i numeri complessi in cui $\vec{v}=ve^{i\alpha}$: $\vec{a}=\dot{v}e^{i\alpha}+vi\dot{\alpha}e^{i\alpha}$, dove $i=e^{i\pi/2}$ e quindi $\vec{a}=\dot{v}e^{i\alpha}+v\dot{\alpha}e^{i(\alpha+\pi/2)}$. In questo caso $\vec{a_t}=\dot{v}e^{i\alpha}$ e $\vec{a_n}=v\dot{\alpha}e^{i(\alpha+\pi/2)}$. Notando che $ds=\rho d\alpha$, otteniamo $v=\frac{ds}{dt}=\rho\frac{d\alpha}{dt}=\rho\dot{\alpha}$ e se andiamo a sostituire otteniamo $\vec{a}=\dot{v}e^{i\alpha}+\frac{v^2}{\rho}e^{i(\alpha+\pi/2)}$. [immagine dagli appunti del prof]

3

0.2 LEZIONE 2 12/03/2020

link https://web.microsoftstream.com/video/7f38ca42-5bcf-4a08-b9cf-d42ca1289062

0.2.1 Cinematica di un corpo

Definizioni

- Corpo: Un corpo è un insieme continuo di infiniti punti che assume dimensioni finite.
- Posizione del corpo: è l'insieme di tutti i vettori posizione relativi a ciascun punto appartenente al corpo.
- Spostamento, velocità, accellerazione: definiziamo spostamento, velocità, accellerazione, l'insieme di tutti i vettori spostamento, velocità, accellerazione relativi a ciascun punto appartenente al corpo.
- Moto piano: in questo corso faremo sempre riferimento a un moto piano, che rappresenta il caso in cui tutti i vettori posizione, velocità e accellerazione di tutti i punti appartenenti al corpo sono paralleli a un piano, detto piano direttore.
- Spostamento infinitesimo: lo spostamento infinitesimo è una condizione di moto per cui ogni punto che appartiene al corpo subirà uno spostamento di dimensione infinitesima.
- Atto di moto: l'atto di moto è l'insieme delle velocità di tutti i punti che appartengono al corpo nell'istante di tempo geneico considerato. L'atto di moto rappresenta una "fotografia istantanea" del suo campo di velocità. Possiamo definire un'analogia fra lo spostamento infinitesimo e l'atto di moto: siccome la velocità di un generico punto P è $\vec{v_P} = \frac{d\vec{P}}{dt}$, l'atto di moto può essere visto come lo spostamento infinitesimo di P fratto l'intervallo di tempo infinitesimo dt in cui esso avviene. Perciò tutte le regole cinematiche che definiremo per l'atto di moto varranno anche per lo spostamento infinitesimo.

Tutte le definizione appena viste valgono per un qualsiasi corpo, ma noi nel corso vedremo solo corpi rigidi.

Per un corpo deformabile ci servono ∞^2 gradi di libertà (caso piano) per descrivere ciascuno degli infiniti punti che lo rappresentano.

Nel caso di un corpo rigido saranno sufficienti 3 gradi di libertà per definire la posizione del corpo nel piano.

Corpo rigido

Un corpo si definisce rigido se esso può definire solamente spostamenti rigidi. Uno spostamento si può definire rigido se a fronte di esso il corpo non subisce alcuna variazione nè di forma nè di dimensioni. [immagine dagli appunti del prof]

Più analiticamente diciamo che uno spostamento è rigido se a seguito dello spostamento esiste un nuovo sistema di riferimento per cui la posizione del corpo rigido risulta la stessa di partenza.

Se per esempio il corpo subisce un rimpicciolimento o una deformazione a seguito dello spostamento, non siamo in presenza di uno spostamento rigido.

Ne conseguono due proprietà:

- La distanza fra due punti qualsiasi di un corpo rigido si mantiene immutata.
- L'angolo formato dalle rette passanti fra due coppie di punti appartenenti al corpo rimane immutato.

Il principale vantaggio di studiare corpi rigidi è che dobbiamo usare solo 3 coordinate (3 gradi di libertà) per descrivere pienamente degli spostamenti.

[immagine del professore]

Per capire quali tre coordinate scegliere si seleziona un punto qualsiasi A all'interno del corpo:

- la prima è l'ascissa del punto A (come per il punto), $x_A(t)$;
- la seconda è l'ordinata del punto A (come per il punto), $y_A(t)$.

• La terza è la coordinata angolare ϕ di un segmento qualsiasi che collega il punto A con un altro generico punto B interno al corpo. Ogni punto B mantiene invariata la sua distanza dal punto A a seguito di un qualsiasi spostamento e, studiando come varia l'orientamento di questo segmento AB, sono in grado di ricostruire la posizione di ciascuno dei punti all'interno del corpo rigido. La rotazione ϕ avviene attorno ad un asse z che esce dal piano del corpo rigido. Qualsiasi segmeno all'interno del corpo subirà la stessa variazione angolare (stessa rotazione): la rotazione ϕ è una proprietà dell'intero corpo rigido.

Moto in grande

• Traslazione: é un moto nel quale un corpo non varia il proprio orientamento, ovvero in cui la coordinata angolare rimane costante. Tutti i punti del corpo subiranno lo stesso esatto spostamento, dunque $\vec{v_A} = \vec{v_B} = \dots$, $\vec{a_A} = \vec{a_B} = \dots$ e le traiettorie di ciascun punto saranno le stesse.

[immagine dagli appunti del prof]

- **Rotazione**: è un moto nel quale un punto (anche esterno al corpo), detto centro di rotazione, che mantiene la sua posizione fissa durante lo spostamento. Tutti gli altri punti invece subiranno una rotazione ϕ . La traiettoria di ogni punto seguirà un moto circolare. Possiamo definire un vettore detto $\vec{\phi} = \phi \vec{k}$ ovvero con direzione uscente dal piano. [immagine dagli appunti del prof]
- Rototraslazione: il corpo rigido andrà a modificare la propria posizione senza però che sia possibile individuare un punto che rimane fermo. Per studiare il moto rototraslatorio si può lavorare considerando due spostamenti successivi, prima una traslazione e poi una rotazione. [immagine dagli appunti del prof]

Atto di moto (moto in piccolo)

Per atto di moto si intende un moto in cui gl ispostamenti e le rotazioni sono di dimensione infinitesima. L'atto di moto rappresenta una "fotografia istantanea" del campo di velocità del corpo.

Andando ad osservare movimenti in piccolo quindi ci ritroviamo difronte a moti o rotatori o traslatori, non rototraslatori. Se la velocità di tutti i punti è uguale in modulo direzione e verso, l'atto di moto è di tipo traslatorio. Viceversa, se esiste un punto, detto centro di istantanea rotazione, in cui la velocità è nulla, siamo in presenza di un moto di tipo rotatorio.

es. Esempio di rotazione:

[immagine dagli appunti del prof]

Presi i punti A e B interni al corpo e le rispettive velocità $\vec{v_A}$ e $\vec{v_B}$, essendo il corpo rigido, le proiezioni delle velocità sulla retta r_{AB} devono essere di medesima lunghezza (nell'immagine evidenziate in giallo). Consideriamo ora le rette r_A passante per A e perpendicolare a $\vec{v_A}$ e la retta r_B passante per B e perpendicolare a $\vec{v_B}$; tutti i punti che si trovano sulla retta r_A devono avere velocità perpendicolare alla retta stessa (analogo per la retta r_B), perchè altrimenti il corpo subirebbe una deformazione, quindi tutti i punti su r_A (o r_B) devono avere velocità perpendicolare a $\vec{v_A}$ (o $\vec{v_B}$). Il punto C di intersezione di queste due rette dovrebbe avere velocità perpendicolare sia a $\vec{v_A}$ sia a $\vec{v_B}$, ma questo è possibile solo se $\vec{v_C}=0$, dunque il punto C è il centro di istantanea rotazione del corpo rigido e siamo dunque in presenza di una rotazione.

Il centro di istantanea rotazione differisce dal centro di rotazione (dei moti in grande), il primo ha velocità nulla solo nell'istante che stiamo considerando, mentre il secondo è fermo per tutto l'arco della rotazione. In poche parole il centro di istantanea rotazione ha velocità nulla, ma la sua accellarazione può non esserlo.

es. Esempio di traslazione:

[immagine dagli appunti del prof]

In questo caso le rette r_A e r_B sono parallele e non si incontrano mai, il centro di istantanea rotazione non è definibile e dunque il moto e traslatorio.

es. Esempio di moto di un corpo non rigido:

[immagine dagli appunti del prof]

Se i due punti A e B hanno $\vec{v_A}$ e $\vec{v_B}$ di modulo diverso, le proiezioni di queste due velocità sulla retta r_{AB} non sono identiche e dunque il corpo si sta deformando.

es. Un altro esempio di rotazione:

[immagine dagli appunti del prof]

Se i due punti A e B hanno $\vec{v_A}$ e $\vec{v_B}$ di direzione opposta, la congiungete fra le due velocità (disegnata

in rosso) ci mostra che la velocità di tutti i punti lungo il segmeno AB deve diminuire man mano che ci avviciniamo al punto C, che quindi ha velocità nulla e rappresenta il centro di istantanea rotazione.