

tpu.ru

Системный анализ процессов химической технологии

Расчет химико-технологической системы переменной структуры

Чузлов Вячеслав Алексеевич к.т.н., доцент ОХИ ИШПР

Задача

Рассчитать химико-технологическую систему (определить составы и свойства всех потоков):

3

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ (ООП)

ООП — парадигма программирования, основанная на представлении программы в виде совокупности **объектов**, каждый из которых является экземпляром определенного **класса**, а классы образуют иерархию наследования.

Классы и объекты - это два основных аспекта объектно-ориентированного программирования. Класс создаёт новый тип, а объекты являются экземплярами класса.

Объекты могут хранить данные в обычных переменных, которые принадлежат объекту. Переменные, принадлежащие объекту или классу, называют **полями**. Объекты могут также обладать функционалом, т.е. иметь функции, принадлежащие классу. Такие функции принято называть **методами** класса. Всё вместе (поля и методы) принято называть **атрибутами** класса.

Поля бывают двух типов: они могут принадлежать каждому отдельному экземпляру объекта класса или всему классу. Они называются переменными экземпляра и переменными класса соответственно.

КЛАССЫ

Класс – это способ описания сущности, определяющий состояние и поведение, зависящее от этого состояния, а также правила для взаимодействия с данной сущностью (контракт).

Пример простого класса. Класс будет отображать сущность — человека. Атрибутами будут являться имя и возраст человека. Методами класса будет «поздороваться».

```
type
  Person = class
   name: string;
   age: integer;
    constructor(name: string; age: integer);
   begin
     self.name := name;
     self.age := age;
    end;
   procedure say hello();
   begin
      Println($'Hello, my name is {self.name}!');
    end:
  end;
```

ОБЪЕКТЫ

Объект (экземпляр) — это отдельный представитель класса, имеющий конкретное состояние и поведение, полностью определяемое классом.

Объект имеет конкретные значения атрибутов и методы, работающие с этими значениями на основе правил, заданных в классе. В приведенном примере, если класс — это некоторый абстрактный человек из «мира идей», то объект — это конкретный человек, например, Ваш сосед.

```
begin
    var petr := new Person('Petr', 25);

    petr.age.Println;
    petr.name.Println;
    petr.say_hello
    end.

25
Petr
Hello, my name is Petr!
```

ПЕРЕМЕННЫЕ КЛАССА И ОБЪЕКТА

Поля можно воспринимать как обычные переменные, заключённые в пространствах имён классов и объектов. Их имена действительны только в контексте (пространстве имен) этих классов или объектов.

Переменные класса разделяемы — доступ к ним могут получать все экземпляры этого класса. Переменная класса существует только одна, поэтому когда любой из объектов изменяет переменную класса, это изменение отразится и во всех остальных экземплярах класса.

Переменные объекта принадлежат каждому отдельному экземпляру класса. В этом случае у каждого объекта есть своя собственная копия поля, т.е. не разделяемая с другими такими же полями в других экземплярах. Доступ к полям объекта осуществляется через переменную **self**.

ПЕРЕМЕННЫЕ КЛАССА И ОБЪЕКТА

```
type
 Robot = class
   static population := 0;
   name: string;
   constructor(name: string);
   begin
     self.name := name;
     println($'**Инициализация {self.name}**');
     population += 1
   end;
   procedure say hello();
   begin
     Println($'Приветствую! Мои хозяева
              называют меня {self.name}.');
    end:
 static procedure how many();
 begin
   println($'У нас {population} роботов!')
 end:
 end;
```



```
begin
  var droid1 := new Robot('R2-D2');
  droid1.say hello;
  Robot.how many;
  var droid2 := new Robot('C-3PO');
  droid2.say hello;
  Robot.how many
 end.
**Инициализация R2-D2**
Приветствую! Мои хозяева называют меня R2-D2.
У нас 1 роботов!
**Инициализация С-3РО**
Приветствую! Мои хозяева называют меня С-3РО.
У нас 2 роботов!
```

Описание класса Flow

Поля	Описание
mass_flow_rate: real	Массовый расход, кг / ч
mole_flow_rate: real	Мольный расход, кмоль / ч
<pre>volume_flow_rate: real</pre>	Объемный расход, м³ / ч
mass_fractions: array of real	Массовые доли
mole_fractions: array of real	Мольные доли
volume_fractions: array of real	Объемные доли
temperature: real	Температура потока, К
density: real	Плотность потока, г / см³
molar_mass: real	Средняя молекулярная масса потока, г /моль
heat_capacity: real	Массовая теплоемкость, кДж / кг

Описание класса Flow

Методы	Описание
	Создает новый экземпляр класса Flow, заполняя
mass_fractions: array of real;	все поля.
temperature: real)	

Функции для пересчета составов

Пересчет массовых долей в объемные:

$$\varphi_i = \frac{\overline{\rho_i}}{\sum_{i=1}^n \frac{\omega_i}{\rho_i}}$$

где φ_i - объемная доля i-го компонента; ω_i - массовая доля i-го компонента; ρ_i - плотность i-го компонента, n — количество компонентов.

Пересчет массовых долей в мольные:

$$x_i = \frac{\frac{\omega_i}{M_i}}{\sum_{i=1}^n \frac{\omega_i}{M_i}}$$

где x_i - мольная доля i-го компонента; ω_i - массовая доля i-го компонента; M_i - молярная масса i-го компонента, n — количество компонентов.

Функции для расчета плотности и средней молекулярной массы потока

Расчет плотности потока:

$$\rho = \frac{1}{\sum_{i=1}^{n} \frac{\omega_i}{\rho_i}}$$

где ρ — плотность потока; ω_i - массовая доля і-го компонента; ρ_i - плотность і-го компонента, n — количество компонентов.

Расчет средней молекулярной массы потока:

$$m = \frac{1}{\sum_{i=1}^{n} \frac{\omega_i}{M_i}}$$

где m — средняя молекулярная масса потока; ω_i - массовая доля і-го компонента; M_i - молярная масса і-го компонента, n — количество компонентов.

Функции для расчета теплоемкости потока

Расчет теплоемкости потока в зависимости от состава потока и температуры среды осуществляется следующим образом:

• определяется теплоемкость компонентов потока при температуре среды:

$$Cp_i = \sum_{j=1}^{5} j \cdot k[i,j] \cdot T^{j-1}$$

где Cp_i - теплоемкость i-го компонента, кДж / кг; k[i,j] - коэффициенты аппроксимации температурной зависимости энтальпии для i-го компонента; T — температура потока, K;

• определяется общая теплоемкость потока:

$$Cp_{\scriptscriptstyle \mathsf{CM}} = \sum_{i=1}^n \omega_i \cdot Cp_i$$

где ω_i – массовая доля і-го компонента в потоке, n – количество компонентов в потоке.

Описание класса Mixer

Атрибуты	Описание
<pre>function calculate(flows: array of Flow): Flow;</pre>	Функция для расчета смешения потоков принимает массив объектов класса Flow, возвращает объект класса Flow.

Материальный и тепловой балансы смешения

Состав смесевого потока (в массовых долях) можно найти следующим образом:

$$\omega_i = \frac{\sum_{j=1}^n G_j \cdot \omega_{i,j}}{\sum_{j=1}^n G_j}$$

где ω_i - массовая доля і-го компонента; G_j - массовый расход ј-го потока, кг / ч; $\omega_{i,j}$ - массовая доля і-го компонента в ј-м потоке; n — количество смешиваемых потоков.

Теплоемкость смесевого потока можно найти:

$$C_p = \frac{\sum_{i=1}^n G_i \cdot Cp_i}{\sum_{i=1}^n G_i}$$

где C_p - теплоемкость смесевого потока, кДж / кг * К; G_i - массовый расход i-го потока, кг / ч; Cp_i - теплоемкость i-го потока, кДж / кг * К; n — количество смешиваемых потоков.

Температура смесевого потока определяется следующим образом:

$$T = \frac{\sum_{i=1}^{n} G_i \cdot Cp_i \cdot T_i}{G \cdot Cp}$$

где T - температура смесевого потока, K; G_i - массовый расход i-го потока, K / ч; Cp_i - теплоемкость i-го потока, K /

Описание класса HeatExchanger

В нашем случае рассматривается теплообменник типа «труба в трубе».

Атрибуты	Описание
d_in := 0.2;	Диаметр внутренней трубы, м
d_out := 0.5;	Диаметр внешней трубы, м
length := 3.0;	Длина трубы, м
k := 4900;	Коэффициент теплопередачи
<pre>function calculate(hot, cold: Flow; h: real := 0.01): sequence of Flow;</pre>	

Описание класса HeatExchanger

В стационарном режиме теплообменного аппарата уравнения теплового баланса примут следующий вид:

$$\begin{cases} \frac{dT_h}{dl} = -\frac{k \cdot \pi \cdot d}{v_h \cdot \rho_h \cdot Cp_h} \cdot (T_h - T_c) \\ \frac{dT_c}{dl} = \frac{k \cdot \pi \cdot d}{v_c \cdot \rho_c \cdot Cp_c} \cdot (T_h - T_c) \end{cases}$$

где T_h и T_c - температуры горячего и холодного потоков, соответственно, К; k — коэффициент теплопередачи; d — диаметр трубы, м; v_h и v_c - объемные скорости горячего и холодного теплоносителей, c^{-1} ; ρ_h и ρ_c - плотности горячего и холодного потоков, кг / м³; Cp_h и Cp_c - теплоемкости горячего и холодного потоков, кДж / кг * К.

С целью упрощения выберем метод Эйлера для решения данной системы дифференциальных уравнений.

Описание класса Splitter

Атрибуты	Описание
ratio: array of real;	Соотношение, в котором нужно разделить исходный поток.
<pre>constructor(ratio: array of real);</pre>	Специальный метод для создания экземпляров класса Splitter. Принимает аргумент ratio.
<pre>function calculate(flow_: Flow): array</pre>	Метод класса Splitter для расчета разделения потока на несколько отдельных потоков. Принимает один параметр — объект класса Flow, который будет разделен на несколько потоков в соответствии со значениями поля ratio. Возвращает массив объектов класса Flow.

