## A Modified Version of The IEEE 24-bus Reliability Test System

Adriano Arrigo<sup>1</sup>, Christos Ordoudis<sup>2</sup>, Jalal Kazempour<sup>2</sup>, Zacharie De Grève<sup>1</sup>,

Jean-François Toubeau<sup>1</sup> and François Vallée<sup>1</sup>

<sup>1</sup> Electrical Power Engineering Unit, University of Mons, Mons, Belgium
{adriano.arrigo, zacharie.degreve, jean-francois.toubeau, francois.vallee}@umons.ac.be

<sup>2</sup> Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
{chror, seykaz}@dtu.dk

October 30, 2018

This document provides the network model used in the out-of-sample analysis of [1]. We build our model upon the IEEE 24-bus Reliability Test System [2] and the economic data available in [3]. The system is represented in Fig. 1.



Fig. 1: IEEE RTS 24-bus network case study

The network data given by Table 1 has been updated. It includes generator parameters such as location bus, production cost  $C_g$  in  $\in$ /MWh, upward regulation power cost  $C_g^{\rm U}$  in  $\in$ /MWh, downward regulation power cost  $C_g^{\rm D}$  in  $\in$ /MWh, maximum capacity  $P_g^{\rm max}$  in MW, maximum upward regulation capability  $R_g^{\rm U,max}$  in MW and maximum downward regulation capability  $R_g^{\rm D,max}$  in MW. The 12 generators total capacity is 2,362 MW, including 672 MW of upward

or downward total flexibility.

Wind farms are also connected to network on buses 3, 5, 16 and 21 enabling power system studies with high share of renewable generation. The corresponding day-ahead wind forecast  $P_q$  in MW, maximum wind farm capacity  $P_q^{\rm max}$  in MW, expected value in MW and uncertainty level are also given in Table 1. For a total capacity of 3,200 MW, the wind penetration level is equal to 29.6 %.

The 17 loads gather 2,207 MW of power demand. Their respective location node, consumption  $P_l$  in MW and value of curtailed load  $V_l^{\text{curt}}$  in  $\in$ /MWh are referred in Table 1. The lines are characterized by the buses they connect, their per-unit reactance  $X_{mn}$  as well as their maximum line capacity  $F_{mn}^{\text{max}}$  in MW.

Table 1: Network parameters

| Generators                                       |        |        |        |        |        | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     |
|--------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Bus                                              |        |        |        |        |        | 1      | 2      | 7      | 13     | 15     | 15     | 16     | 18     | 21     | 22     | 23     | 23     |
| $C_g \in [MWh]$                                  |        |        |        |        |        | 13.32  | 13.32  | 20.7   | 20.93  | 26.11  | 10.52  | 10.52  | 6.02   | 5.47   | 7      | 10.52  | 10.89  |
| $C_q^{\mathrm{U}} [\in /\mathrm{MWh}]$           |        |        |        |        |        | 15     | 15     | 24     | 25     | 28     | 16     | 16     | 11     | 11     | 15     | 14     | 16     |
| $C_g^{\hat{\mathbf{D}}} [\in /\mathrm{MWh}]$     |        |        |        |        |        | 11     | 11     | 16     | 17     | 23     | 7      | 7      | 1      | 0.5    | 1      | 8      | 8      |
| $P_a^{\text{max}}$ [MW]                          |        |        |        |        |        | 106.4  | 106.4  | 245    | 413.7  | 42     | 108.5  | 108.5  | 280    | 280    | 210    | 217    | 245    |
| $P_g^{\text{max}}$ [MW]<br>$R_g^{\text{U}}$ [MW] |        |        |        |        |        | 40     | 40     | 70     | 180    | 42     | 30     | 30     | 50     | 50     | 40     | 60     | 40     |
| $R_q^{\hat{D}}$ [MW]                             |        |        |        |        |        | 40     | 40     | 70     | 180    | 42     | 30     | 30     | 50     | 50     | 40     | 60     | 40     |
| Wind farms                                       |        |        |        |        |        |        |        |        |        |        |        |        |        | 1      | 2      | 3      | 4      |
| Bus                                              |        |        |        |        |        |        |        |        |        |        |        |        |        | 3      | 5      | 16     | 21     |
| $P_q$ [MW]                                       |        |        |        |        |        |        |        |        |        |        |        |        |        | 245    | 240    | 115    | 85     |
| $P_q^{\text{max}}$ [MW]                          |        |        |        |        |        |        |        |        |        |        |        |        |        | 1000   | 1000   | 600    | 600    |
| Expected value [MW]                              |        |        |        |        |        |        |        |        |        |        |        |        |        | 239.5  | 231.0  | 106.9  | 76.9   |
| Uncertainty level [%] <sup>a</sup>               |        |        |        |        |        |        |        |        |        |        |        |        |        | 63.0   | 60.1   | 59.2   | 78.5   |
| Loads                                            | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     | 13     | 14     | 15     | 16     | 17     |
| Bus                                              | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 13     | 14     | 15     | 16     | 18     | 19     | 20     |
| $P_l$ [MW]                                       | 84     | 75     | 139    | 58     | 55     | 106    | 97     | 132    | 135    | 150    | 205    | 150    | 245    | 77     | 258    | 141    | 100    |
| $V_l^{\text{curt}} \in /MWh$                     | 200    | 200    | 200    | 200    | 200    | 200    | 200    | 200    | 200    | 200    | 200    | 200    | 200    | 200    | 200    | 200    | 200    |
| Lines: From bus                                  | 1      | 1      | 1      | 2      | 2      | 3      | 3      | 4      | 5      | 6      | 7      | 8      | 8      | 9      | 9      | 10     | 10     |
| To bus                                           | 2      | 3      | 5      | 4      | 6      | 9      | 24     | 9      | 10     | 10     | 8      | 9      | 10     | 11     | 12     | 11     | 12     |
| $X_{mn}$ [pu] <sup>b</sup>                       | 0.0146 | 0.2253 | 0.0907 | 0.1356 | 0.205  | 0.1271 | 0.084  | 0.111  | 0.094  | 0.0642 | 0.0652 | 0.1762 | 0.1762 | 0.084  | 0.084  | 0.084  | 0.084  |
| $F_{max}$ [MW]                                   | 175    | 175    | 350    | 175    | 175    | 175    | 400    | 175    | 350    | 175    | 350    | 175    | 175    | 400    | 400    | 400    | 400    |
| Lines: From bus                                  | 11     | 11     | 12     | 12     | 13     | 14     | 15     | 15     | 15     | 16     | 16     | 17     | 17     | 18     | 19     | 20     | 21     |
| To bus                                           | 13     | 14     | 13     | 23     | 23     | 16     | 16     | 21     | 24     | 17     | 19     | 18     | 22     | 21     | 20     | 23     | 22     |
| $X_{mn}$ [pu]                                    | 0.0488 | 0.0426 | 0.0488 | 0.0985 | 0.0884 | 0.0594 | 0.0172 | 0.0249 | 0.0529 | 0.0263 | 0.0234 | 0.0143 | 0.1069 | 0.0132 | 0.0203 | 0.0112 | 0.0692 |
| $F_{max}$ [MW]                                   | 500    | 500    | 500    | 500    | 250    | 250    | 500    | 400    | 500    | 500    | 500    | 500    | 500    | 1000   | 1000   | 1000   | 500    |

<sup>&</sup>lt;sup>a</sup>Uncertainty level is computed as the ratio between standard deviation and expected value.

## References

- [1] A. Arrigo, C. Ordoudis, J. Kazempour, Z. De Grève, J.-F. Toubeau and F. Vallée, "A Technical Survey on Optimal Power Flow under Uncertainty: An Extensive Out-of-Sample Analysis", unpublished.
- [2] C. Grigg et al., "The IEEE Reliability Test System 1996. A report prepared by the reliability test system task force of the application of probability methods subcommittee", IEEE Trans. Power Syst., vol. 14, no. 3, pp. 1010-1020, 1999.
- [3] C. Ordoudis, P. Pinson, J. M. Morales and M. Zugno, "An Updated Version of the IEEE RTS 24-Bus System for Electricity Market and Power System Operation Studies", Technical University of Denmark (DTU), 2016.

 $<sup>{}^{</sup>b}X_{mn} = 1/B_{mn}$