

낙상, 그 순간이 인생을 바꾼다

"3개월 전, 아버지는 새벽 화장실에서 넘어지셨습니다. 집 안에서 발생한 작은 사고였지만, 그 이후로 외출을 두려워하시고, 하루 대부분을 침대에 누워 보내십니다.

그 모습을 보며 '우리는 무엇을 할 수 있을까?' 고민했습니다."

"우리가 가진 기술은 크지 않을지 몰라도, 누군가의 삶을 지켜줄 수 있다면, 그건 충분히 의미 있는 시작이라 생각했습니다. 그래서, 낙상을 감지하고 알림을 줄 수 있는 시스템을 만들기로 했습니다."

■ 목표

본 시스템은 카메라 기반 낙상 감지 기능에 더해, ChatGPT API를 활용한 자연어 설명, 보호자와의 대화형 알림,

보다 인간 중심적이고 스마트한 돌봄 시스템을 구현하는 것

■ 목적

대응 가이드 제공 등을 통해

실시간 영상 분석, 딥러닝 기반 낙상 상황 인식, 다양한 알림 시스템, 그리고 수집된 데이터를 통한 낙상 예상시간 및 위험 코어타임 사전 알림 기능을 제공하여 <u>배려대상자의 안전한 생활을 지원함</u>

하드웨어

일반 웹캠,

라즈베리파이 카메라,

여분의 휴대폰,

기타 영상 수집 기기

를 활용하여 실시간 영상 수집이

가능한 시스템을 구축합니다.

소프트웨어

Python, OpenCV(영상 처리), MediaPipe(사람 자세 추정), TensorFlow/Keras(딥러닝), Telegram API(알림 전송), Streamlit(웹 대시보드)

등을 활용합니다.

알림시스템

낙상 감지 시 보호자에게

SMS, 앱 알림, 웹 대시보드, 이메일

등 다양한 채널을 통해 즉각적인 알림을 전송합니다.

Analyse fead vide or

in processers

낙상 모델링 & 사용자 알림시스템

[딥러닝 모델링 파트]

낙상여부를 판단할 딥러닝 모델 생성 및 테스트 플랫폼

[사용자 모니터링 파트]

낙상여부를 판단하고 이를 보호자 에게 실시간으로 알림을 전송

시스템 개발방향

모델 학습

기존 낙상 동영상 및 사용자 데이터를 훈련 데이터로 활용

Dense,Ensemble, LSTM 등 낙상여부를 판별할 모델생성

◀ 딥러닝 모델 파트

낙상 알림

사용자 모니터링파트 ▶

실시간 감시

Medipipe를 이용한 주요 관절(어깨, 무릎)좌표 정보 취득

데이터 분석

피사체의 낙상 징후 및 낙상 여부 데이터로 맞춤형 정보 제공

실시간 알림

텔레그램(현재) 알림 전송 기타 알림 시스템 개발중

추천 모델 선정

각 모델별 정확도 및 표준편차 값을 분석하여 최적의 모델 선정

Part1. 모델학습 플랫폼

Dense

단순 정확도 수치보다 검증 성능과 학습 성능간 간극을 통해 모델의 일반화 성능을 평가 신뢰도 높은 모델 판단 기준 (QB)

더 많은 데이터를 확보하고

더 좋은 알고리즘으로

더 좋은 모델을 만들어는 내는 것

LSTM

낙상 감지 문제는 단일 스냅샷보다는 시간 축상에서의 자세 변화 패턴이 핵심이므로, 시퀀스 데이터를 처리할 수 있음

Ensemble

MLP와 LSTM을 각각 독립적으로 학습한 후 병합하는 방식으로, 다양한 특성 공간(feature space)을 포괄

Part1. 모델학습 플랫폼

	구분	Dense 모델	LSTM 모델	Ensemble 모델
	신경망 유형	MLP기반의 DNN (이진 분류 모델)	LSTM (Sequential)	Hybrid (Functional API)
	입력 형태	2D 벡터 (정적 특징)	3D 시퀀스 입력 (1 타임스텝)	2D + 3D 멀티 입력
	레이어 구조	Dense(64) → Dropout → Dense(32) → Dropout → Dense(1)	LSTM(64) → Dropout → Dense(32) → Dropout → Dense(1)	Dense(64→32) + LSTM(64) → Concatenate → Dense(32) → Dropout → Dense(1)

- (공통 전처리) StandardScaler로 피처 정규화, timestamp와 checkFall 제외 후 특징 벡터 구성
- (출력층) 이진 분류: checkFall ∈ {0, 1}, 출력층: Dense(1, activation='sigmoid')
- 세 모델 모두 과적합 방지를 위해 Dropout과 EarlyStopping을 적용하였으며, .keras 형식과 .pkl 형식으로 저장하여 재사용성을 확보

Part1. 모델학습 플랫폼

더 많은 데이터 수집, 하이퍼파라미터 최적화, 실시간 처리 시스템 구축 등을 통해 모델의 성능과 실용성을 더욱 향상시킬 수 있을 것으로 기대함.

학습구성

- 최대 100 Epochs (EarlyStopping 적용)
- Batch Size: 32
- Validation Split: train/test = 8:2

평가지표

- 정확도(Accuracy)
- 손실(Loss)
- 학습/검증 정확도 차이(acc_gap)

평가지표

- 모델 학습 시 EarlyStopping을 적용하여 과적합을 방지하고,
- 학습 및 검증 정확도의 차이를 통해 일반화 성능을 판단합니다.
- 시각화된 Accuracy/Loss 그래프를 통해 모델의 학습 과정과 과적합 여부를 직관적으로 확인할 수 있습니다.

Part2. 사용자 모니터링 및 알림

- 나상알림봇

2025-05-02 16:22:31.024 낙상 발생! 빠른 시간안에 확인 바랍니다.

모니터링

피사체 실시간 감시

관절 좌표 변화 축적

딥러닝모델 낙상판단

보호자 알림

데이터분석

활동 축적 데이터 확인

데이터 분석

(S)

낙상 징후/발생 분석

보호자 안내사항 알림

🧠 낙상 징후 분석 결과

☑ 1. 어깨 대비 무릎의 비정상적인 높이 차이

- 일반적으로 서 있는 상태에서는 어깨의 Y좌표가 무릎보다 크게 작아야 합니다 (즉, 더 위에 위치).
- 그러나 낙상이 감지된 시점에서는 무릎의 Y좌표가 2.7에 가까운 높은 값으로 측정되었고, 어깨는 1.0 이하의 값이었습니다.
- 이는 몸이 바닥에 거의 수평으로 누운 상태임을 시사합니다.

☑ 2. 낙상 시기의 관절 인식률

- 낙상 구간에서 무릎 관절(left_knee_vr, right_knee_vr)의 신뢰도가 모두 0으로 나타났습니다.
- 이는 낙상 시 무릎 부위가 카메라 시야에서 벗어나거나 인식이 어려운 자세로 전환되었음을 의미합니다.

🔽 3. 시간에 따른 변화 흐름

- 낙상이 발생하기 전 구간에서는 어깨와 무릎의 Y값이 **천천히 증가**하다가, 낙상 직전 프레임(10:42:58.886 → 10:42:58.999)에서 **갑자기 무릎 높이가 급격히 증가**합니다.
- 이는 단순히 앉거나 숙인 동작이 아닌, 예상치 못한 자세 변화를 반영합니다.

📢 보호자 안내 내용

낙상 징후가 감지되었습니다.

2025년 5월 2일 오전 10시 42분경, 어르신의 자세 변화에서 낙상으로 의심되는 행동이 관측되었습니다. 감지된 시간 동안, 무릎 위치가 어깨보다 비정상적으로 높게 측정되었고, 무릎 관절이 카메라에서 사라진 것으로 보아 **갑작스러운 자세 붕괴 또는 바닥으로의 낙하** 가능성이 있습니다. 이는 일상적인 움직임과는 다른, **위험한 자세 변화 패턴**으로, 즉각적인 확인이 필요합니다.

Part2. 사용자 모니터링 및 알림

비용 효율성

여분의 휴대폰 카메라나 웹캠 설치 가능 추가 장비 구매 부담이 최소화됩니다.

Al 기반 정확도

딥러닝 기술로 정밀한 낙상 탐지 가능 MediaPipe 기반 자세 인식 기술 적용

데이터 누적 학습모델 향상

누적된 데이터로 모델 정확도 향상 객관적 성능 지표로 정기적인 개선 사이클을 통해 고도화 가능

카메라 의존성

- 조명, 각도, 위치에 따라 정확도가 저하됩니다.

실시간 처리 속도

- Edge 기기에서 처리 시 성능 한계가 있습니다.

낙상 데이터 수집의 어려움

- 실제 낙상 데이터 확보가 제한적입니다.

개발 환경 한계

- 테스트 커버리지와 시스템 안정성이 부족합니다.

엣지 컴퓨팅 발전

소형 기기의 처리 성능이 지속적으로 향상 낮은 지연시간으로 실시간 탐지 정확도가 높아짐

AI 알고리즘 고도화

소형 기기의 처리 성능이 지속적으로 향상 낮은 지연시간으로 실시간 탐지 정확도가 높아짐

IoT 생태계 확장

다양한 센서와의 통합이 용이 종합적인 모니터링 시스템 구축이 가능

클라우드 연동 강화

원격 모니터링 및 알림 시스템이 개선되어 안정성 높음 대규모 데이터 분석으로 예측 정확도가 높아짐

SWOT

개인정보 보호 규제

영상 기반 시스템은 민감 정보를 처리 강화되는 개인정보 규제 준수

경쟁 기술의 상용화

인체 착용형 센서 기반 제품이 이미 시장 시판 다양한 형태의 경쟁 기술이 등장

낙상 상황의 다양성

낙상 형태가 매우 다양하므로 여러 각도의 데이터 필요 오탐지와 미탐지의 위험이 항상 존재

법적 책임 소재

탐지 실패 시 사용자 피해 발생 소지 법적 책임 소재에 대한 명확한 기준 필요

약점 극복 전략

카메라 의존성 문제를 다중 센서 통합으로 해결 엣지 컴퓨팅 최적화로 처리 속도를 개선

시장 진입 전략

고령화 시장과 공공기관 연계를 우선 추진 개인정보 보호 및 법적 책임 문제 선제적 대응

기술적 강점 강화

모듈화된 구조와 AI 기반 정확도를 더욱 발전 지속적인 데이터 수집으로 모델 성능을 향상

삶의 변화

낙상 사고는 한 사람의 인생을 완전히 바꿀 수 있습니다

존엄성 보호

우리 기술은 사람들이 독립적이고 품위 있는 삶을 유지하도록 돕습니다

조용한 보호자

눈에 띄지 않게 작동하면서도 위험한 순간에 즉각 대응합니다

가치있는 시간

같이있는 시간

모든 순간을 같이가며, 가치있는 시간이 되었기에 우리 팀은 꽤 괜찮은 한팀이 되었습니다.

감사합니다.

