

|             | 리 DATE:_/_/_<br>의 PAGE                                                                                                                                                                                                                                                                                                                                                    |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Note that the outcomes E, E2 E3 & E4 are equally likely & they are mutually exclusive & exhaustive too.                                                                                                                                                                                                                                                                   |
|             | We can use Bay's theorem:                                                                                                                                                                                                                                                                                                                                                 |
|             | $ \frac{P\left(\mathcal{E}_{4}\right)}{A} = \frac{P\left(\mathcal{E}_{4}\right) \cdot P\left(\frac{A}{\mathcal{E}_{4}}\right)}{P\left(\mathcal{E}_{1}\right) \cdot P\left(\frac{A}{\mathcal{E}_{1}}\right) + P\left(\mathcal{E}_{2}\right) \cdot P\left(\frac{A}{\mathcal{E}_{2}}\right) + P\left(\mathcal{E}_{3}\right) \cdot P\left(\frac{A}{\mathcal{E}_{3}}\right)} $ |
| (ann)       | $+ P(\mathcal{E}_4) - P(A/\mathcal{E}_4)$                                                                                                                                                                                                                                                                                                                                 |
|             | (00A)a - (a)a + (A)a - (A)A)a - (a)A)a - (a)A                                                                                                                                                                                                                                                                                                                             |
|             | $P(E_1) = P(E_2) = P(E_3) = P(E_4) = \frac{1}{4}$ [Equally likely event]                                                                                                                                                                                                                                                                                                  |
| (8          | $P\left(\frac{A/\epsilon_{1}}{\epsilon_{2}}\right) = \frac{3c_{3}}{6c_{3}} = \frac{1}{20} \qquad P\left(\frac{A/\epsilon_{2}}{\epsilon_{2}}\right) = \frac{4c_{3}}{6c_{3}} = \frac{4}{20}$                                                                                                                                                                                |
|             | $\frac{P(A/\epsilon_3) = \frac{5\zeta_3}{6\zeta_3} = \frac{10}{20} \qquad P(A/\epsilon_4) = \frac{6\zeta_3}{6\zeta_3} = \frac{20}{20}$                                                                                                                                                                                                                                    |
|             | Substituting the values                                                                                                                                                                                                                                                                                                                                                   |
|             | $P\left(\frac{E_4}{A}\right) = \frac{1}{A} \cdot 1$                                                                                                                                                                                                                                                                                                                       |
|             | H-20 A-20 A-20 A-20                                                                                                                                                                                                                                                                                                                                                       |
| Light mills | = 20 = 4                                                                                                                                                                                                                                                                                                                                                                  |
|             | Ans                                                                                                                                                                                                                                                                                                                                   |
|             | GOOD WRITE                                                                                                                                                                                                                                                                                                                                                                |







