ESPACE: DROITES, PLANS ET VECTEURS

1 Positions relatives de droites et plans

Rappel:

- 1. Un plan est défini par :
 - trois points non alignés ou
 - deux droites sécantes ou
 - deux droites strictement parallèles.
- **2.** Si un plan \mathcal{P} contient deux points distincts A et B de l'espace, alors il contient la droite (AB). On note $(AB) \subset \mathcal{P}$.
- **3.** Tous les résultats de géométrie plane (théorèmes de Thalès, de Pythagore...) s'appliquent dans chaque plan de l'espace.

Dans la suite du paragraphe, ABCDEFGH est un cube.

Propriétés: Positions relatives de deux droites

Deux droites de l'espace sont soit coplanaires (c'est-à-dire qu'il existe un plan les contenant toutes les deux), soit non coplanaires (c'est-à-dire qu'il n'existe aucun plan les contenant toutes les deux).

Si elles sont coplanaires, alors elles sont soit sécantes, soit parallèles (strictement parallèles ou confondues).

Propriétés: Positions relatives de deux plans

Deux plans de l'espace sont soit sécants (leur intersection est une droite), soit parallèles.

Propriétés: Positions relatives d'une droite et d'un plan

Une droite et un plan de l'espace sont soit sécants, soit parallèles.

2 Parallélisme dans l'espace

Propriété : '

- Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles.
- Si deux plans sont parallèles à un même plan alors ils sont parallèles entre eux.

Propriété:

Une droite est parallèle à un plan si et seulement si elle est parallèle à une droite de ce plan.

Exemple:

d est parallèle à d_1 et d_1 est contenue dans le plan \wp donc d est parallèle à \wp .

Propriété:

Si un plan \wp contient deux droites sécantes respectivement parallèles à deux droites sécantes d' un plan \wp' alors les plans \wp et \wp' sont parallèles.

Exemple:

 d_1 et d_2 sont deux droites du plan \wp ; d_1 et d_2 sont sécantes et respectivement parallèles à deux droites du plan \wp' donc les plans \wp et \wp' sont parallèles.

Propriété :

Si deux plans sont parallèles, alors tout plan qui coupe l'un coupe l'autre et les droites d'intersection sont parallèles entre elles.

Exemple:

Les plans \wp et \wp' sont parallèles et \wp et \wp'' sont sécants avec $\wp \cap \wp'' = d$, donc \wp' et \wp'' sont sécants et $\wp' \cap \wp'' = d'$ où d' est une droite parallèle à d.

Propriété : Théorème du toit

Soit φ et φ' deux plans distincts, sécants selon une droite Δ .

Si une droite d de φ est strictement parallèle à une droite d' de φ' alors la droite Δ intersection de φ et φ' est parallèle à d et à d'.

Preuve:

Par hypothèse, $\wp \cap \wp' = \Delta$ et d//d'. Les droites d et d' sont parallèles donc elles sont coplanaires. Donc, il existe un plan Q qui contient à la fois d et d'. Mais alors d et Δ sont contenues dans \wp et d' et Δ sont contenues dans \wp' . Donc : $\wp \cap Q = d$ et $\wp' \cap Q = d'$.

Montrons que $d//\Delta$. Supposons que d et Δ ne soient pas parallèles. Donc elles sont sécantes en un point A. $A \in d$ et $A \in \Delta$.

- $A \in d$ et $d = \wp \cap Q$ donc $A \in Q$.
- $A \in \Delta$ et $\Delta = \wp \cap \wp'$ donc $A \in \wp'$. D'où $A \in Q \cap \wp' = d'$.

Par conséquent, $A \in d'$ et $A \in d$ et par conséquent, d et d' sont sécantes en A. Ce qui est absurde, contraire à notre hypothèse.

Les droites d et Δ sont donc parallèles. De plus, comme d et d' sont parallèles, on en déduit que les droites d' et Δ sont aussi parallèles.

Conclusion : L'intersection de \wp et \wp' est une droite Δ parallèle à la fois à d et à d'.

Méthode 1 : Construire la section d'un solide par un plan

Il s'agit de construire l'intersection de ce plan avec chacune des faces du solide.

Exercice:

On considère le cube ABCDEFGH ci-contre. On note M le milieu du segment [EH] et N celui de [FC].

Tracer la section de ce cube par le plan (MNG).

Correction

L'intersection du plan (MNG) avec la face HEFG est le segment [MG]. Il est visible, on le trace donc en trait plein. G, N et B sont alignés, donc l'intersection du plan (MNG) avec la face FGCB est le segment [GB]. Il est visible, on le trace donc

en trait plein.

Les faces EHDA et FGCB étant parallèles, l'intersection du plan (MNG) avec la face EHDA est le segment passant par M et parallèle à (GN). Il n'est pas visible, on le trace donc en pointillés.

Notons P le point d'intersection de (MNG) et (EA). L'intersection du plan (MNG) avec la face ABFE est le segment [PB]. Il est visible, on le trace donc en trait plein.

La section du cube par le plan (MNG) est le polygone MGBP colorié en rouge. Comme (MP)//(GB), il s'agit d'un trapèze.

3 Orthogonalité dans l'espace

Droites orthogonales

Définition: Orthogonalité de deux droites

Deux droites sont orthogonales si leurs parallèles passant par un même point sont perpendiculaires dans le plan qu'elles définissent.

Remarque:

Deux droites perpendiculaires sont orthogonales mais la réciproque est fausse.

Exemple:

Dans le cube ABCDEFGH ci-contre, (EF)//(HG) et $(HG) \perp (GC)$ donc (EF) et (GC) sont orthogonales. On note $(EF) \perp (GC)$.

Définition: Orthogonalité dune droite et dun plan

Une droite est orthogonale à un plan lorsqu'elle est orthogonale à toutes les droites de ce plan.

Théorème:

Si une droite est orthogonale à deux droites sécantes d'un plan alors elle est orthogonale à ce plan.

Méthode 2 : Démontrer l'orthogonalité de deux droites

Exercice:

Dans le cube ABCDEFGH représenté dans l'exemple précédent, démontrer que $(GC) \perp (BD)$.

Correction

La droite (GC) est perpendiculaire à (BC) et à (CD) qui sont deux droites sécantes du plan (ABC) donc (GC) est orthogonale au plan (ABC) donc à toutes les droites de ce plan. En particulier, on en déduit que (GC) \bot (BD).

4 Vecteurs de l'espace

Remarque:

On étend à l'espace la définition et les propriétés des vecteurs étudiées dans le plan.

Propriétés: Vecteurs colinéaires

Deux vecteurs non nuls \vec{u} et \vec{v} sont colinéaires si et seulement si il existe un réel k tel que $\vec{v} = k\vec{u}$. Par convention, le vecteur nul est colinéaire à tout vecteur de l'espace.

Propriété: Caractéristique

 \overrightarrow{A} et \overrightarrow{B} étant deux points distincts de l'espace, la droite (AB) est l'ensemble des points M de l'espace tels que \overrightarrow{AB} et \overrightarrow{AM} soient colinéaires.

On dit que \overrightarrow{AB} est un vecteur directeur de la droite (AB).

Définition: Vecteurs coplanaires

Trois vecteurs non nuls \vec{u} , \vec{v} et \vec{w} sont coplanaires si et seulement leurs représentants de même origine A ont des extrémités B, C et D telles que A, B, C et D appartiennent à un même plan.

Propriété : Caractéristique

A, B et C étant trois points non alignés de l'espace, le plan (ABC) est l'ensemble des points M de l'espace tels que :

 $\overrightarrow{AM} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$, avec α et β deux nombres réels. On dit que \overrightarrow{AB} et \overrightarrow{AC} dirigent le plan (ABC).

Preuve:

A, B et C ne sont pas alignés. Les vecteurs \overrightarrow{AB} et \overrightarrow{AC} n'étant pas colinéaires, $(A; \overrightarrow{AB}, \overrightarrow{AC})$ est donc un repère du plan (ABC).

- Si M appartient à (ABC), alors M, A, B et C étant coplanaires, il existe α et β deux nombres réels tels que $\overrightarrow{AM} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$.
- Réciproquement, si M est un point de l'espace tel que $\overrightarrow{AM} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$, avec α et β deux nombres réels, alors il existe un point N de la droite (AB) tel que $\overrightarrow{AN} = \alpha \overrightarrow{AB}$. $\overrightarrow{AM} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC} \Leftrightarrow \overrightarrow{NM} = \beta \overrightarrow{AC}$. M est donc un point de la droite parallèle à (AC) passant par N. Donc, comme $N \in (ABC)$, $M \in (ABC)$.

Propriété:

Soit trois vecteurs non nuls \vec{u} , \vec{v} et \vec{w} tels que \vec{u} et \vec{v} ne sont pas colinéaires.

 \vec{u} , \vec{v} et \vec{w} sont coplanaires si et seulement si il existe deux réels α et β tels que

 $\vec{w} = \alpha \vec{u} + \beta \vec{v}.$

Preuve:

Soit A, B, C et M les points de l'espace tels que $\vec{w} = \overrightarrow{AM}$, $\vec{u} = \overrightarrow{AB}$ et $\vec{w} = \overrightarrow{AC}$.

 \vec{u} , \vec{v} et \vec{w} sont coplanaires si et seulement si A, B, C et M sont coplanaires, c'est-à-dire si et seulement si il existe deux réels α et β tels que $\vec{AM} = \alpha \vec{AB} + \beta \vec{AC} \Leftrightarrow \vec{w} = \alpha \vec{u} + \beta \vec{v}$.

Méthode 3 : Démontrer que quatre points sont coplanaires

Il s'agit de démontrer que trois vecteurs sont coplanaires en écrivant l'un en fonction des deux autres.

Exercice:

Soit ABCD un tétraèdre, I le milieu de [AB]; E et F les points définis par $\overrightarrow{AE} = \frac{2}{3}\overrightarrow{AC}$ et $\overrightarrow{AF} = \frac{2}{3}\overrightarrow{AD}$ et G le point tel que BCGD soit un parallélogramme.

- 1. Exprimer les vecteurs \overrightarrow{IE} , \overrightarrow{IF} et \overrightarrow{IG} en fonction de \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} .
- **2.** En déduire qu'il existe deux réels α et β tels que $\overrightarrow{IG} = \alpha \overrightarrow{IE} + \beta \overrightarrow{IF}$.
- **3.** En déduire que les points I, E, G et F sont coplanaires.

Correction

1.
$$\overrightarrow{IE} = \overrightarrow{IA} + \overrightarrow{AE} = -\frac{1}{2}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$$
.
 $\overrightarrow{IF} = \overrightarrow{IA} + \overrightarrow{AF} = -\frac{1}{2}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AD}$.
 $\overrightarrow{IG} = \overrightarrow{IA} + \overrightarrow{AD} + \overrightarrow{DG}$
 $= -\frac{1}{2}\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{BC}$
 $= -\frac{1}{2}\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{BA} + \overrightarrow{AC}$
 $= -\frac{3}{2}\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AC}$.

2. Il existe deux réels α et β tels que $\overrightarrow{IG} = \alpha \overrightarrow{IE} + \beta \overrightarrow{IF}$

$$\operatorname{soit} - \frac{3}{2}\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AC} = -\frac{\alpha}{2}\overrightarrow{AB} + \frac{2\alpha}{3}\overrightarrow{AC} - \frac{\beta}{2}\overrightarrow{AB} + \frac{2\beta}{3}\overrightarrow{AD}$$

Pour obtenir cette égalité, il suffit de prendre α et β tels que :

$$-\frac{3}{2} = -\frac{\alpha}{2} - \frac{\beta}{2} \text{ et } \frac{2}{3}\alpha = 1 \text{ et } \frac{2}{3}\beta = 1 \text{ , soit, } \alpha = \frac{3}{2} \text{ et } \beta = \frac{3}{2}.$$

D'où $\overrightarrow{IG} = \frac{3}{2}\overrightarrow{IE} + \frac{3}{2}\overrightarrow{IF}$

3. On en déduit que les vecteurs \overrightarrow{IE} , \overrightarrow{IF} et \overrightarrow{IG} sont coplanaires, donc les points I, E, G et F sont coplanaires.

5 Repérage dans l'espace

Théorème:

Si O est un point de l'espace et \vec{i} , \vec{j} et \vec{k} trois vecteurs non coplanaires, alors pour tout point M de l'espace, il existe un unique triplet de réels (x; y; z) tels que :

$$\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}.$$

Preuve:

Existence

Soit \wp le plan passant par O et dirigé par les vecteurs \overrightarrow{i} et \overrightarrow{j} (qui ne sont pas colinéaires car \vec{i} , \vec{j} et \vec{k} sont non coplanaires).

Soit M' le point d'intersection de \wp et de la droite parallèle à (O k) passant par M, \vec{i} , \vec{j} et OM' sont coplanaires avec \vec{i} et \vec{j} non colinéaires, donc il existe deux réels x et y tels que $\overrightarrow{OM'} = x \overrightarrow{i} + y \overrightarrow{j}$. D'autre part, MM' et \vec{k} sont colinéaires, donc il existe un réel z tel que $MM' = z\vec{k}$. D'où $\overrightarrow{OM} = \overrightarrow{OM} + \overrightarrow{MM'} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$

• Unicité

Supposons qu'il existe deux triplets de réels (x; y; z) et (x'; y'; z') tels que $\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k} = x'\overrightarrow{i} + y'\overrightarrow{j} + z'\overrightarrow{k}$.

On a alors $(z'-z)\vec{k} = (x-x')\vec{i} + (y-y')\vec{j}$.

Comme \vec{i} , \vec{j} et \vec{k} ne sont pas coplanaires, il n'existe pas de couple de réels $(\alpha; \beta)$ tels que $\vec{k} = \alpha \vec{i} + \beta \vec{j}$, on en déduit que z - z' = 0, et par suite, que x = x', y = y' et z = z'.

Définition:

(x; y; z) est le triplet de coordonnées du point M dans le repère $(O; \vec{i}, \vec{j}, \vec{k})$.

x est l'abscisse de M, y est l'ordonnée de M et z est la cote de M.

(x; y; z) sont aussi les coordonnées du vecteur \overrightarrow{OM} dans le repère $(O; \vec{i}, \vec{j}, \vec{k})$.

Propriétés :

Dans un repère $(O; \vec{i}, \vec{j}, \vec{k})$ de l'espace, soit $A(x_A; y_A; z_A)$ et $B(x_B; y_B; z_B)$. Alors :

$$\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}$$

et le milieu K de [AB] a pour coordonnées : $K(\frac{x_A+x_B}{2}; \frac{y_A+y_B}{2}; \frac{z_A+z_B}{2})$. Si de plus $(O; \vec{i}, \vec{j}, \vec{k})$ est orthonormé, $AB = \sqrt{(x_B-x_A)^2 + (y_B-y_A)^2 + (z_B-z_A)^2}$.

Propriétés :

Dans un repère $(O; \vec{i}, \vec{j}, \vec{k})$ de l'espace, soit $\vec{u} \begin{bmatrix} \vec{v} \\ \vec{y} \end{bmatrix}, \vec{v} \begin{bmatrix} \vec{v} \\ \vec{y} \end{bmatrix}$ deux vecteurs et k un nombre réel. Alors :

$$\vec{u} + \vec{v} \begin{pmatrix} x + x' \\ y + y' \\ z + z' \end{pmatrix}$$
 et $k \vec{u} \begin{pmatrix} kx \\ ky \\ kz \end{pmatrix}$.

Si de plus $(O; \vec{i}, \vec{j}, \vec{k})$ est orthonormé, $||\vec{u}|| = \sqrt{x^2 + y^2 + z^2}$.

Méthode 4 : La coplanarité de points en utilisant leurs coordonnées

Il s'agit de démontrer que trois vecteurs sont coplanaires en écrivant l'un des vecteurs en fonction des deux autres.

Exercice:

Dans un repère $(O; \vec{i}, \vec{j}, \vec{k})$ de l'espace, Démontrer que les points A(1;2;0), B(-1;1;1), C(1;4;1) et D(3;-1;-3) sont coplanaires.

Correction

$$\overrightarrow{AB} \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix}; \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \text{ et } \overrightarrow{AD} \begin{pmatrix} 2 \\ -3 \\ -3 \end{pmatrix}.$$

 \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires, car leurs coordonnées ne sont pas proportionnelles.

$$\overrightarrow{AD} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC} \Leftrightarrow \begin{cases} 2 = -2\alpha \\ -3 = -\alpha + 2\beta \\ -3 = \alpha + \beta \end{cases} \Leftrightarrow \begin{cases} \alpha = -1 \\ \beta = -2 \end{cases}.$$

Le système ayant un unique couple solution, les vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} sont coplanaires, donc les points A, B, C et D sont coplanaires.

6 Représentation paramétrique de droites et de plans

Propriété:

Dans un repère $(O; \vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère la droite \mathscr{D} passant par $A(x_A; y_A; z_A)$ et de vecteur directeur $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$

$$\vec{u} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$
.

 $M(x; y; z) \in \mathcal{D}$ si et seulement si il existe un réel t tel que :

$$\begin{cases} x = x_A + t\alpha \\ y = y_A + t\beta \\ z = z_A + t\gamma \end{cases}$$

Preuve:

 $M(x;y;z) \in \mathcal{D}$ si et seulement si \overrightarrow{AM} et \overrightarrow{u} sont colinéaires, c'est-à-dire qu'il existe un réel t tel que $\overrightarrow{AM} = t \overrightarrow{u}$. Cela se traduit en terme de coordonnées par :

$$\begin{cases} x - x_A = t\alpha \\ y - y_A = t\beta \\ z - z_A = t\gamma \end{cases} \Leftrightarrow \begin{cases} x = x_A + t\alpha \\ y = y_A + t\beta \\ z = z_A + t\gamma \end{cases}$$

Définition:

On dit que le système d'équations :

$$\begin{cases} x = x_A + t\alpha \\ y = y_A + t\beta \\ z = z_A + t\gamma \end{cases}$$
 où $t \in \mathbb{R}$ est une représentation paramétrique de la droite \mathcal{D} passant par $A(x_A; y_A; z_A)$ et de vecteur

directeur
$$\vec{u} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$

Propriété : 🗖

Dans un repère $(O; \vec{i}, \vec{j}, \vec{k})$ de l'espace, le plan \mathcal{P} passant par $A(x_A; y_A; z_A)$ et de vecteurs

directeurs
$$\vec{u} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} \alpha' \\ \beta' \\ \gamma' \end{pmatrix}$.

 $M(x; y; z) \in \mathcal{P}$ si et seulement si il existe deux réels t et t' tels que :

$$\begin{cases} x = x_A + t\alpha + t'\alpha' \\ y = y_A + t\beta + t'\beta' \\ z = z_A + t\gamma + t'\gamma' \end{cases}$$

Preuve:

 $\underline{M}(x; y; z) \in \mathcal{P}$ si et seulement si \overline{AM} , \vec{u} et \vec{v} sont coplanaires, c'est-à-dire qu'il existe deux réels t et t' tels que $\overline{AM} = t \, \overrightarrow{u} + t' \, \overrightarrow{v}$. Cela se traduit en terme de coordonnées par :

$$\begin{cases} x - x_A = t\alpha + t'\alpha' \\ y - y_A = t\beta + t'\beta' \\ z - z_A = t\gamma + t'\gamma' \end{cases} \Leftrightarrow \begin{cases} x = x_A + t\alpha + t'\alpha' \\ y = y_A + t\beta + t'\beta' \\ z = z_A + t\gamma + t'\gamma' \end{cases}.$$

Définition:

On dit que le système d'équations :

$$\begin{cases} x = x_A + t\alpha + t'\alpha' \\ y = y_A + t\beta + t'\beta' & \text{où } t \in \mathbb{R} \text{ est une représentation paramétrique du plan } \mathscr{P} \text{ passant par } A(x_A; y_A; z_A) \text{ et de } z = z_A + t\gamma + t'\gamma' \end{cases}$$

vecteurs directeurs
$$\vec{u} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} \alpha' \\ \beta' \\ \gamma' \end{pmatrix}$

Remarque:

Il existe une infinité de représentations paramétriques, que ce soit pour une droite ou pour un plan.

Méthode 5 : Étudier des positions relatives

Exercice:

Étudier les positions relatives des droites d et d' puis du | Les droites d et d' ont pour représentation paramétrique : plan \wp et de la droite d'. On donnera leur intersection éventuelle.

Le plan \wp a pour représentation paramétrique :

$$\begin{cases} x = 1 - 2t + 3t' \\ y = -2 + t - t' & \text{avec } t \in \mathbb{R} \text{ et } t' \in \mathbb{R} \\ z = 3 - t \end{cases}$$

$$d: \begin{cases} x = 2 + 4t \\ y = 5 - 2t \\ z = 1 + 2t \end{cases} \text{ avec } t \in \mathbb{R} \text{ et}$$
$$d': \begin{cases} x = 4 - t \\ y = -2 + t \text{ avec } t \in \mathbb{R} \end{cases}$$

Correction

Attention : la même lettre t désigne deux paramètres différents. Il faut donc changer de lettre dans les résolutions de système pour les différencier.

 φ est dirigé par les vecteurs $\vec{u} \begin{pmatrix} -2 \\ 1 \\ -1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix}$.

d et d' ont pour vecteur directeur respectif $\vec{w} \begin{pmatrix} 4 \\ -2 \\ 2 \end{pmatrix}$ et $\vec{w'} \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$.

On remarque que $\vec{w} = -2\vec{u}$ donc d est parallèle à \wp . Le point A(2;5;1) appartient à d. S'il appartient à \wp alors $d \subset \wp$, sinon d est strictement parallèle à \wp .

Or,
$$\begin{cases} 2 = 1 - 2t + 3t' \\ 5 = -2 + t - t' \\ 1 = 3 - t \end{cases} \Leftrightarrow \begin{cases} -2t + 3t' = 1 \\ t - t' = 7 \\ t = 2 \end{cases} \Leftrightarrow \begin{cases} t' = \frac{5}{3} \\ t' = -5 \\ t = 2 \end{cases}$$

Le système n'ayant pas de solution, $A \notin \wp$ donc d est strictement parallèle à \wp .

Déterminons maintenant $\wp \cap d' : M \in \wp \cap d' \Leftrightarrow \text{il existe trois réels } t, t' \text{ et } k \text{ tels que :}$

$$\begin{cases} x = 1 - 2t + 3t' \\ y = -2 + t - t' \\ z = 3 - t \\ x = 4 - k \\ y = -2 + k \\ z = 1 + 3k \end{cases} \Leftrightarrow \begin{cases} 4 - k = 1 - 2t + 3t' \\ -2 + k = -2 + t - t' \\ 1 + 3k = 3 - t \\ x = 4 - k \\ y = -2 + k \\ z = 1 + 3k \end{cases} \Leftrightarrow \begin{cases} -k + 2t - 3t' = -3 \\ k - t + t' = 0 \\ 3k + t = 2 \\ x = 4 - k \\ y = -2 + k \\ z = 1 + 3k \end{cases}$$

En finissant la résolution du système, on obtient $t' = \frac{14}{5}$; $t = \frac{52}{20}$ et $k = \frac{-1}{5} = -0,2$, ce qui nous donne x = 4,2; y = -2,2

Ainsi, \wp et d' sont sécantes au point K(4,2;-2,2;0,4)