CSCI 462–INTRODUCTION TO CRYPTOGRAPHY PROGRAMMING PROJECT

M. POLAK

Implement a cipher based on family of graphs D(n,q) to learn about cipher encryption and decryption.

1. Overview

- (1) Implement a symmetric-key algorithm based on special class of graphs
- (2) The program shall encrypt/decrypt .txt files
- (3) Up to 3 extra points can be earned if the program will work with other type of files (pdf, jpg ...)
- (4) The program shall have user friendly interface

- (5) Perform an attack against the cipher based on a letter frequency count. Encrypt long enough massage. Check if there is any relation between frequency of letters in plaintext and ciphertext.
- (6) Check how many percentage of ciphertext will change if you change 5%, 10% of plaintext. Check it for passwords of different length (3,6,9,12,15 characters). Make plots of your results.
- (7) Check how many percentage of ciphertext will change if you change 1,2,3 characters of password. Check it for passwords of different length (3,6,9,12,15 characters). Make a plot of your results.

2. Description

Family of graphs D(n,q)

- Introduced in 1994 by Ustimenko, Lazebnik and Woldar
- Family of expander graphs of large girth
- n is a integer ≥ 2
- q is prime power ($q = p^k$, k- positive integer)
- Set of vertices $V = P \cup L$ is a set of n-dimensional vectors over \mathbb{F}_q

$$(\bar{p}) = (p_1, p_2, p_3, p_4, ..., p_n) \in P,$$

$$[\bar{l}] = [l_1, l_2, l_3, l_4, ..., l_n] \in L.$$

 $\bullet |V| = 2q^n$

2

• $[\bar{l}]I(\bar{p})$ if and only if

$$\begin{cases} l_2 - p_2 = l_1 p_1 \\ l_3 - p_3 = l_2 p_1 \\ l_4 - p_4 = l_1 p_2 \\ l_i - p_i = l_1 p_{i-2} \\ l_{i+1} - p_{i+1} = l_{i-1} p_1 \\ l_{i+2} - p_{i+2} = l_i p_1 \\ l_{i+3} - p_{i+3} = l_1 p_{i+1} \end{cases}$$

- $E = \{ \text{all pairs } ((\bar{p}), [\bar{l}]) \text{ for which } (\bar{p})I[\bar{l}] \}$
- $|E| = q^{n+1}$

3. Encryption/Decryption

(1) **Central map.** Let $(v_1, v_2, v_3, \ldots, v_n) \in D(n, q)$ (or $[v_1, v_2, v_3, \ldots, v_n] \in D(n, q)$) and $N_t(v)$ be the operator of taking neighbor of vertex v, where the first coordinate is $f(v_1, t)$:

$$N_t(v_1, v_2, v_3, \dots, v_n) \to [f(v_1, t), *, *, \dots, *],$$

 $N_t[v_1, v_2, v_3, \dots, v_n] \to (f(v_1, t), *, *, \dots, *).$

All asts can be determined uniquely using relations between coordinates of vertices in graph D(n,q).

Multivariate map $F = N_{t_1,t_2,\ldots,t_k} = N_{t_1} \circ N_{t_2} \circ N_{t_3} \cdots \circ N_{t_k}$

- \bullet F is invertible
- $F: \mathbb{F}_q^n \to \mathbb{F}_q^n$

$$x_1 \to f_1(x_1, x_2, \dots, x_n),$$

$$x_2 \to f_2(x_1, x_2, \dots, x_n),$$

$$\vdots$$

$$x_n \to f_n(x_1, x_2, \dots, x_n).$$

- $\deg f_i \in \{2, 3\}$
- (2) Extension of the algorithm. Let L_1 and L_2 be a sparse, affine transformation of the vector space \mathbb{F}_q^n

$$L_1 = \bar{x} \longrightarrow \bar{x}A + b,$$

$$L_2 = \bar{x} \longrightarrow \bar{x}C + d,$$

where $A = \begin{bmatrix} a_{i,j} \end{bmatrix}$ and $C = \begin{bmatrix} c_{i,j} \end{bmatrix}$ are $n \times n$ matrix with $a_{i,j}, c_{i,j} \in \mathbb{F}_q$, $|A| \neq 0$ and $|C| \neq 0$. L_1 and L_2 are invertible.

- (3) Plaintext and ciphertext are n dimensional vectors over \mathbb{F}_q
- (4) Secret Key K

$$K = (L_1, L_2, t = (t_1, t_2, \dots, t_k))$$

(5) Encryption/Decryption

 $L_1 \circ N_{t_1,t_2,...,t_k} \circ L_2$

Encryption

- (a) $L_1(plaintext) = x$
- (b) F(x) = y
- (c) $L_2(y) = ciphertext$

Decryption

- (a) $L_2^{-1}(ciphertext) = y$ (b) $F^{-1}(y) = x$
- (c) $L_1^{-1}(x) = plaintext$
- (6) More details can be find here

4. Some implementation aspects

- (1) Use modular arithmetic instead of polynomial arithmetic $(q = p^1)$; for example q=127 for ASCII/(DEL))
- (2) $L_2 = L_1^{-1}$
- (3) Let $L_1(x)$ be given by matrix A of the form

$$\begin{bmatrix} \mathbf{1} & 0 & 0 & \dots & 0 & 0 \\ 0/1 & \mathbf{1} & 0 & \dots & 0 & 0 \\ zeros & 0/1 & \mathbf{1} & \dots & 0 & 0 \\ and & \vdots & \vdots & \ddots & \vdots & 0 \\ ones & 0/1 & 0/1 & \dots & \mathbf{1} & 0 \\ 0/1 & 0/1 & 0/1 & \dots & 0/1 & \mathbf{1} \end{bmatrix}$$

- (4) $f(v_1,t) = v_1 + t$
- (5) Encryption

CENTRAL MAP F

prime=127

n =length of the plaintext

p = plaintext

t = password

r = 0

for i = 1 to i = (password length)

if r = 0

 $l(1) = (p(1) + t(i)) \mod \text{ prime}$

 $l(2) = (p(2) + p(1) * l(1)) \mod \text{ prime}$

4 M. POLAK

```
l(3) = (p(3) + p(1) * l(2)) \mod \text{ prime}
  for j = 4 to n
     if (j \mod 4) = 3 or (j \mod 4) = 2
       l(j) = (p(j) + p(1) * l(j-2)) \mod \text{prime}
       l(j) = (p(j) + p(j-2) * l(1)) mod prime
     \quad \text{end} \quad
  \quad \text{end} \quad
  r = 1
else
  p(1) = (l(1) + t(i)) \mod \text{ prime}
  p(2) = (l(2) - p(1) * l(1)) \mod \text{ prime}
  p(3) = (l(3) - p(1) * l(2)) \mod \text{ prime}
  for j = 4 to n
     if (j \mod 4) = 3 or (j \mod 4) = 2
       p(j) = (l(j) - p(1) * l(j-2)) \mod \text{prime}
       p(j) = (l(j) - p(j-2) * l(1)) \mod \text{prime}
     end
  end
  r = 0
  end
end
```

(6) Decryption

```
CENTRAL MAP F^{-1}
prime=127
n = length of the ciphertext
c = ciphertext
t = password
if (password length) is even
   r = 0
   p = c
else
   r = 1
   l = c
end
   for i = (password length) to i = 1
   if r = 0
     l(1) = (p(1) - t(i)) \mod \text{prime}
     l(2) = (p(2) + p(1) * l(1)) \mod \text{ prime}
     l(3) = (p(3) + p(1) * l(2)) \mod \text{ prime}
     for j = 4 to n
        if (j \mod 4) = 3 \text{ or } (j \mod 4) = 2
          l(j) = (p(j) + p(1) * l(j-2)) \mod \text{prime}
        else
```

```
l(j) = (p(j) + p(j-2) * l(1)) \mod \text{prime}
  end
  r = 1
else
  p(1) = (l(1) - t(i)) \mod \text{ prime}
  p(2) = (l(2) - p(1) * l(1)) \mod \text{ prime}
  p(3) = (l(3) - p(1) * l(2)) \mod \text{ prime}
  for j = 4 to n
     if (j \mod 4) = 3 or (j \mod 4) = 2
       p(j) = (l(j) - p(1) * l(j-2)) \mod \text{ prime}
       p(j) = (l(j) - p(j-2) * l(1)) \mod \text{ prime}
     end
  end
  r = 0
  end
end
```

5. Multivariate Cryptography

The basic objects of multivariate cryptography are systems of multivariate, non-linear (usually quadratic) polynomials.

MQ-Problem

Given m multivariate quadratic polynomials $p_i(x)$ in n variables find a vector x that is a solution of the system of equations $p_i(x) = 0$.

MQ-problem is NP-hard when coefficients are random.

MQ-problem is efficiently solved only under special conditions

- Underdefined MQ-problem (n>>m) polynomial time algorithms by Kipnis et al. (if $\operatorname{char}\mathbb{F}_q$ even) and Hiroyuki Miura & Yasufumi Hashimoto & Tsuyoshi Takagi
- Overdefined MQ-problem (m >> n) Gröbner basis algorithms are efficient

System of equations related to D(n,q) graphs is cubic and n=m.

MC-Problem

Given m multivariate cubic polynomials $p_i(x)$ in n variables find a vector x that is a solution of the system of equations $p_i(x) = 0$.

DEPARTMENT OF COMPUTER SCIENCE, ROCHESTER INSTITUTE OF TECHNOLOGY E-mail address: mkp@cs.rit.edu