YILDIZ TEKNİK ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK FAKÜLTESİ / BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Öğrencinin Adı Soyadı:	Öğrenci No:		İmza:		
Dersin Adı: BLM2611 Lojik Devreler Gr1-2	Tarih/Saat: 15/01/2021 18:00			Sınav süresi: 80 dk.	
Sınav Türü: Final Sınavı	Vize 1	Vize 2	Mazeret	Final 🛛	Bütünleme
Unvan Ad-Sovad: Doc. Dr. Gökhan Bilgin & Dr. Öğr. Üv. H.Osman İlhan					

S1) Tek bir girişten devamlı olarak gelen (*stream*) bit dizisinin parity bitini bulan devreyi tasarlayınız. Girişin en düşük anlamlı bitten başlayarak seri bir şekilde geldiğini varsayınız. Devrenin anlık çıkışı (P), o ana kadar gelmiş olan sayının Parity bitine eşit olmalıdır. Tasarımınızda D flip-flop kullanınız.

(**Tanım**: Parity bit, sayının içindeki '1' lerin sayısı **çift ise 1** ve *tek ise 0*'dır.)

i) <u>Durum diyagramını</u> ve *ii*) <u>devreyi çiziniz</u>.

S2) Aşağıdaki **F** fonksiyonunu Karnaugh Haritası yöntemiyle çarpımların toplamı (sum of products) şeklinde sadeleştiriniz.

$$\mathbf{F} = \mathbf{F}_1 \mathbf{F}_2$$

$$F_1 = a'bd + b'c' + bcd'$$

$$F_2 = a'c' + bcd + abcd'$$

S3) Fark3 kod sözcüklerini BCD kod sözcüklerine çeviren üniteyi tasarlayınız. Tasarımınızda sadece tam toplayıcılar kullanınız.

Not: Fark3 kodlaması BCD değerlerin binary anlamda 3 fazlasını gösteren kodlama şeklidir.

Örneğin $(0000)_{BCD} \rightarrow (0011)_{FARK3}$

S4) Aşağıda verilen flip-flop lojik devre tasarımının durum tablosunu ve diyagramını çıkarınız.

