1. (Contoh Metrik) Diberikan $X=\{z\in\mathbb{C}:|z|=1\}$, yaitu lingkaran dengan pusat titik 0 dan berjari-jari 1 pada bidang kompleks. Untuk sebarang $z,w\in X$ didefinisikan $\rho(z,w)=0$ jika $z=w,\ \rho(z,w)=\pi$ jika z=-w, dan $\rho(z,w)$ menyatakan panjang busur terpendek yang menghubungkan z dan w jika $z\neq \pm w$. Buktikan bahwa ρ merupakan metrik pada X.

Bukti. Dari informasi pada soal, didapatkan ilustrasi sebagai berikut

Sehingga untuk $z,w\in X$ panjang busur terpendek dapat dirumuskan sebagai

$$\rho(z, w) = \min\left\{\left|\operatorname{Arg}(z) - \operatorname{Arg}(w)\right|, 2\pi - \left|\operatorname{Arg}(z) - \operatorname{Arg}(w)\right|\right\}, \quad z, w \in X$$

yang dimana telah memenuhi ketentuan fungsi ρ yang diberikan pada soal. Selanjutnya akan dibuktikan bahwa ρ memenuhi sifat-sifat metrik.

(a) (Positifitas) Ambil sebarang $z, w \in X$ maka jelas berlaku

$$|\operatorname{Arg}(z) - \operatorname{Arg}(w)| \ge 0$$

dan karena $\operatorname{Arg}(z), \operatorname{Arg}(w) \in [-\pi, \pi],$ akibatnya

$$|\operatorname{Arg}(z) - \operatorname{Arg}(w)| \le 2\pi$$
$$2\pi - |\operatorname{Arg}(z) + \operatorname{Arg}(w)| \ge 0.$$

Jadi $\rho(z, w) \geq 0$.

- (b) Akan dibuktikan bahwa $\rho(z, w) = 0 \iff z = w$.
 - (\Leftarrow) Terbukti dari definisi $\rho(z, w)$.
 - (\Rightarrow) Ambil $z, w \in X$ dan misalkan $\rho(z, w) = 0$, maka berlaku

$$\min\left\{\left|\operatorname{Arg}(z) - \operatorname{Arg}(w)\right|, 2\pi - \left|\operatorname{Arg}(z) - \operatorname{Arg}(w)\right|\right\} = 0$$

Berarti
$$|\operatorname{Arg}(z) - \operatorname{Arg}(w)| = 0$$
 atau $2\pi - |\operatorname{Arg}(z) - \operatorname{Arg}(w)| = 0$.

- Jelas untuk |Arg(z) Arg(w)| = 0 berakibat Arg(z) = Arg(w) dan z = w.
- Untuk $2\pi-|{\rm Arg}(z)-{\rm Arg}(w)|=0$ berlaku ${\rm Arg}(z)-{\rm Arg}(w)=2\pi$ (2π atau -2π sama saja untuk bilangan kompleks). Selanjutnya perhatikan bahwa

$$\begin{split} \exp\left[i(\mathrm{Arg}(z)-\mathrm{Arg}(w))\right] &= \exp(2\pi i) \\ \exp(i\mathrm{Arg}(z)) \exp(-i\mathrm{Arg}(w)) &= 1 \\ |z|e^{i\mathrm{Arg}(z)}|w|e^{-i\mathrm{Arg}(w)} &= 1 \\ z\overline{w} &= 1 \\ z &= \frac{1}{\overline{w}} \end{split}$$

Karena |w| = 1 berakibat $w = \frac{1}{\overline{w}}$ sehingga z = w.

Jadi $\rho(z, w) = 0 \iff z = w$.

(c) (Simetri) Untuk setiap $z, w \in X$ berlaku bahwa

$$\begin{split} \rho(z,w) &= \min \left\{ \left| \operatorname{Arg}(z) - \operatorname{Arg}(w) \right|, 2\pi - \left| \operatorname{Arg}(z) - \operatorname{Arg}(w) \right| \right\} \\ &= \min \left\{ \left| \operatorname{Arg}(w) - \operatorname{Arg}(z) \right|, 2\pi - \left| \operatorname{Arg}(w) - \operatorname{Arg}(z) \right| \right\} \\ &= \rho(w,z) \end{split}$$

Jadi $\rho(z, w) = \rho(w, z)$.

- (d) (Ketaksamaan Segitiga) Misalkan $z, w, v \in X$ dan akan dibuat menjadi dua kasus.
 - Untuk $\operatorname{Arg}(z) \leq \operatorname{Arg}(v) \leq \operatorname{Arg}(w),$ dapat diilustrasikan sebagai berikut

Dari ilustrasi diatas berlaku

$$\rho(z, w) = \rho(z, v) + \rho(v, w)$$

• Tanpa mengurangi keumuman, misalkan $\operatorname{Arg}(z) \leq \operatorname{Arg}(w) \leq \operatorname{Arg}(v)$ diilustrasikan sebagai berikut

Dari ilustrasi diatas berlaku

$$\rho(z, w) \le \rho(z, v) + \rho(v, w)$$

Jadi $\rho(z, w) \leq \rho(z, v) + \rho(v, w)$ dengan kesamaan terjadi ketika titik v berada diantara busur terpendek z dan w.

- $\therefore \rho$ merupakan metrik pada X. \square
- 2. Tunjukan bahwa bola buka $B_r(x)$ adalah himpunan terbuka

Bukti.

Definisi. Bola buka dalam ruang metrik (X,d) dengan pusat $x \in X$ dan jari-jari r > 0 didefinisikan sebagai himpunan semua titik yang jaraknya dari x kurang dari r.

$$B_r(x) = \{ y \in X \mid d(x, y) < r \}$$

Teorema. Himpunan Terbuka dalam ruang metrik (X, d) adalah himpunan $U \subseteq X$ yang memenuhi syarat:

$$\forall x \in X, \exists \epsilon > 0 \text{ sedemikian sehingga } B_{\epsilon}(x) \subseteq U$$

Akan dibuktikan bahwa bola buka $B_r(x)$ adalah himpunan terbuka. Ambil sebarang titik $y \in B_r(x)$. Berdasarkan definisi bola buka, ini berarti d(x,y) < r. Pilih jari-jari untuk bola buka $B_{\epsilon}(y)$ yaitu $\epsilon = r - d(x,y)$ dan karena d(x,y) < r untuk setiap $y \in X$, maka jelas bahwa $\epsilon > 0$.

Selanjutnya akan dibuktikan bahwa $B_{\epsilon}(y) \subseteq B_r(x)$. Ambil sebarang titik $z \in B_{\epsilon}(y)$, maka berdasarkan definisi bola buka berlaku $d(y,z) < \epsilon$. Dengan menggunakan ketaksamaan segitiga pada ruang metrik, diperoleh

$$d(x,z) \leq d(x,y) + d(y,z) < d(x,y) + \epsilon = d(x,y) + (r-d(x,y)) = r$$

sehingga $z \in B_r(x)$. Dengan demikian, $B_{\epsilon}(y) \subseteq B_r(x)$.

\therefore Karena untuk setiap titik $y \in B_r(x)$ terdapat bola buka $B_\epsilon(y)$ yang
seluruhnya terletak dalam $B_r(x)$, maka bola buka $B_r(x)$ adalah himpunan
terbuka. 🗆

3. Bola-bola terbuka $B_{1/n}(x)$ merupakan basis untuk topologi di suatu ruang metrik. Untuk kasus \mathbb{R}^n (atau \mathbb{C}^n) bahkan cukup dengan mengambil bolabola dengan pusat rasional dan dengan demikian \mathbb{R}^n (dan \mathbb{C}^n) adalah terhitung ke-dua.

Bukti. Misalkan $\mathcal{B} = \{B_{1/n}(x) \mid x \in X, n \in \mathbb{N}\}$. Akan dibuktikan bahwa \mathcal{B} adalah basis untuk topologi pada ruang metrik (X, d).

Berdasarkan definisi basis, untuk setiap $x \in X$ dan setiap himpunan terbuka U(x) yang memuat x, harus terdapat $O \in \mathcal{B}$ sehingga $x \in O \subseteq U(x)$.

Karena U(x) terbuka, terdapat $\epsilon > 0$ sehingga $B_{\epsilon}(x) \subseteq U(x)$. Dengan Sifat Archimedes, ada $n \in \mathbb{N}$ sehingga $1/n < \epsilon$. Maka $B_{1/n}(x) \subseteq B_{\epsilon}(x) \subseteq U(x)$ dan $x \in B_{1/n}(x)$.

Jadi, \mathcal{B} memenuhi definisi basis topologi.

 \therefore Bola-bola terbuka $B_{1/n}(x)$ merupakan basis untuk topologi di ruang metrik. \Box