Errors and Power

Type I and type II errors

	Fail to reject H_0	Reject H_0
H_0 true	Correct conclusion	Type I error
H_0 false	Type II error	Correct conclusion

Remarks:

- 1. We want both type I and type II error probabilities to be small. But they are in conflict with each other: reducing type I error probability will causes type II error to increases, and vice versa.
- 2. The usual approach to resolve this conflict is to hold type I error fixed at a small value, then choose a test with type II error probability as small as possible.

Type I and type II errors

	Retain H_0	Reject H_0
H_0 true	Correct conclusion	Type I error
H_0 false	Type II error	Correct conclusion

Significance level:

$$\alpha = P(\text{reject } H_0 | H_0 \text{ true})$$

level a test $\alpha = P(\text{reject } H_0 | H_0 \text{ true}).$ (a test with significance)

Power:

$$1 - \beta = P(\text{reject } H_0 | H_0 \text{false}) = 1 - P(\text{Type II error})$$

Example 1.11

A toy store chain claims that at least 80% boys under 8 years old prefer Lego over other types of toys. After observing the buying patterns of many boys under 8 years old, we feel that this claim is inflated. In an attempt to disprove this claim, we observed the buying pattern of 20 randomly selected boys under 8 years old. Let x be the number of boys who brought Lego, We wish to test the hypothesis $H_0: p = 0.8$ against $H_a: p < 0.8$. Suppose we decide to reject H_0 if $\{X \le 12\}$.

- (a) Find α .
- (b) Find β for p = 0.6.
- (c) Find β for p = 0.4.
- (d) Find the critical region of the form $\{X \le c\}$ such that (i) $\alpha = 0.01$ and (ii) $\alpha = 0.05$.
- (e) For the alternative hypothesis H_a : p = 0.6, find β for the values of α in part (d).

Example 1.11 Solution

Let
$$X = number of boys who prefer Lego than other toys $X \sim Bin(n=20, p)$$$

(a)
$$d = P(Type I eiror)$$

$$= P(reject HolHo true)$$

$$= P(X \le 12 | p = 0.8)$$

$$= \sum_{x=0}^{12} {20 \choose x} 0.8^{x} 0.2^{20-x}$$

$$\approx 0.0321$$
phinom (12, 20, 0.8)

(b)
$$\beta = P(\text{Type II error})$$

= $P(\text{fail to reject Ho} \mid \text{Ho falce})$
= $P(X > 12 \mid p = 0.6)$
= $1 - P(X \le 12 \mid p = 0.6)$
= $1 - \sum_{x=0}^{12} {20 \choose x} 0.6^{x} 0.4^{20-x}$
 ≈ 0.416
1 - phinom(12, 20, 0.6)

Example 1.11 Solution

(c)
$$\beta = P(\text{Type II error})$$

= $P(\text{failing to reject (Hol Ho false}))$
= $P(X > 12 \mid p = 0.4)$
= $1 - P(X \le 12 \mid p = 0.4)$
 ≈ 0.021

$$\frac{P}{B} = 0.021$$
 0.6 $P_0 = 0.8$

As p moves further away from P. = 0.8, B decreases, and power (1-B) increases

(i)
$$d = 0.01 = P(X \le c \mid P = 0.8)$$

qbinom (0.01, 20, 0.8) = 12

$$P(X \le 12 | p = 0.8) = 0.0321$$

 $P(X \le 11 | p = 0.8) = 0.00998$

Choose C=11.

- Critical region is {X \in 11}

(ii)
$$d = 0.05 = P(x \le c \mid p = 0.8)$$

 $P(x \le 13 \mid p = 0.8) = 0.0867$
(hoose C=12 exceeds d=0.05

.: critical region is {X < 12}.

Example 1.11 Solution

(e) Given $\rho = 0.6$. Find β for $\alpha = 0.01$ and $\alpha = 0.05$. (i) d = 0.01, critical region $\{X \le 11\}$ $\beta = P(fail \text{ to reject Ho} | \text{ Ho false})$ = P(X > 11 | P = 0.6) $= 1 - P(X \le 11 | P = 0.6)$ ≈ 0.596

(ii)
$$d = 0.05$$
, critical region $\{x \le 12\}$
 $\beta \approx 0.416$

As & increases, B decreases, power increases

Example 1.12

Show that in Example 1.9, where we have normal observations with σ^2 known, the test has significance level α .

Test statistic is
$$Z = \frac{\bar{Y} - \mu_0}{\bar{\eta}_n}$$

By Lemma, if
$$\mu = \mu_0$$
, then $Z \sim \mathcal{N}(0, 1)$.

Therefore, under Ho: $\mu = \mu_0$, we know that $Z \sim \mathcal{N}(0,1)$.

$$P(|z| \ge z \le | \mu = \mu)$$

= $P(|z| \ge z \le)$ where $z \sim N(0,1)$
= $P(z \le -z \le) + P(z \ge z \le)$
= $\Xi + \Xi$
= α

