1 Linear Programming

1.1 Standard Form of LP

Decision variables $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\top}$ Objective coefficients $\mathbf{c} = (c_1, c_2, \dots, c_n)^{\top}$ Right-hand-side constraints $\mathbf{b} = (b_1, b_2, \dots, b_m)^{\top}$ Structural coefficients $A \in \mathbb{R}^{m \times n}$ Maximize $z = \sum_{j=1}^{n} c_j x_j$ subject to $\sum_{j=1}^{n} a_{ij} x_j = b_i, i = 1, ..., m$ $x_j \ge 0, j = 1, ..., n$ where $b_i \geq 0, n > m$

Transforming an LP to Standard Form

- Nonzero lower bound
- suppose $x_i \geq l_i, l_i \neq 0$, replace $x_i = x_i' + l_i, x_i' \geq 0$
- Non-positive upper bound
- suppose $x_j \ge u_j, u_i \le 0$, replace $x_i = u_i x_i'$
- Unrestricted (or Free) Variables
- $-x_1 + x_2 = 8$, replace $x_2 = 8 x_1$ if x_2 is free
- define $x_i^+, x_i^- \geq 0$, use $x_i^+ x_i^-$ substitute x_i
- Inequality Constraints define slack variable $s_1 \ge 0$, $ax \ge b \leftrightarrow ax - s_1 = b$

1.2 Solving LP

Basic Feasible Solution

- basic solution is called a BFS if it satisfies the non- \max or \max not be 0negativity constraints.
- Theorem
- $-\exists$ a feasible solution $\leftrightarrow \exists$ a BFS.
- $-\exists$ an optimal FS $\leftrightarrow \exists$ an optimal BFS.
- Additional remark. Each BFS corresponds to a corner point in the graphic representation of LP.

Given $\mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N)$ with $\mathbf{x}_N = 0$. Write $\mathbf{A} = (\mathbf{B}, \mathbf{N})$ (columns of A corresponding to variables in x_B, x_N) $Ax = Bx_B + Nx_N = Bx_B = b, x_B = B^{-1}b$ **Proof.** Assume **x** is a feasible solution, but not BFS. Can find a \mathbf{y} ($\mathbf{A}\mathbf{y} = 0$) making $\mathbf{x} + k\mathbf{y}$ to be BFS.

Simplex method A simplex form \leftrightarrow a BFS:

- Each basic variable corresponds to a row, and **Primal**: max $z = \sum_{i=1}^{n} c_i x_i$ value of basic variable is right-hand side of row
- The value of the objective function is equal to the $x_i > 0, i = 1, ..., n$ right-hand side of row 0
- Every basic variable appears in one and only one s.t. $\sum_{i=1}^{m} a_{ji}y_{j} \geq c_{i}, i=1,...,n$ equation, but not row 0

- Each basic variable has the coefficient 1 in the equation it appears
- Each equation has only one basic variable
- Variable z only appears in row 0 with coefficient 1

The BFS is optimal iff row 0 has no negative numbers

Optimality Test Suppose
$$\mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N)$$
 is a BFS $\mathbf{x}_B = \mathbf{B}^{-1}(\mathbf{b} - \mathbf{N}\mathbf{x}_N) = \mathbf{B}^{-1}\mathbf{b}$ $\mathbf{z} = \mathbf{c}_B\mathbf{x}_B + \mathbf{c}_N\mathbf{x}_N = \mathbf{c}_B\mathbf{B}^{-1}\mathbf{b}$ if non-basic variable becomes non-zero: $\mathbf{z} = \mathbf{c}_B\mathbf{x}_B + \mathbf{c}_N\mathbf{x}_N = \mathbf{c}_B\mathbf{B}^{-1}(\mathbf{b} - \mathbf{N}\mathbf{x}_N) + \mathbf{c}_N\mathbf{x}_N$ $= \mathbf{c}_B\mathbf{B}^{-1}\mathbf{b} - (\mathbf{c}_B\mathbf{B}^{-1}\mathbf{N} - \mathbf{c}_N)\mathbf{x}_N$ consider a non-basic variable x_k increased $\mathbf{z} = \mathbf{c}_B\mathbf{B}^{-1}\mathbf{b} - (\mathbf{c}_B\mathbf{B}^{-1}\mathbf{A}_k - \mathbf{c}_k)\mathbf{x}_k$ $\bar{c}_k = \mathbf{c}_B\mathbf{B}^{-1}\mathbf{A}_k - c_k$ referred as reduced cost The current basic solution is optimal if and only if the reduced cost is nonnegative for all non-basic variables.

Ratio Test non-basic variable x_k increased
${f x}_{B} = {f B}^{-1}({f b} - {f N}{f x}_{N}) = {f B}^{-1}{f b} - {f B}^{-1}{f A}_{k}{f x}_{k}$
To keep non-negativity, $(\mathbf{x}_B)_i \geq 0$
$\mathrm{ratio}\ \mathrm{test}\ \mathrm{argmin}(\mathbf{B}^{-1}\mathbf{b})_i/(\mathbf{B}^{-1}\mathbf{A}_k)_i$
i

1.3 Sensitivity Analysis

Shadow Price Optimal of dual variable: $\lambda = c_B B^{-1}$ In the optimal solution, if a constraint is not tight (< • Definition. For an LP in the standard form, a or >), then its shadow price must be 0, if tight (=),

Constraint Analysis

- Non-basic variable $\mathbf{c}_i + \Delta c_i$ $\mathbf{c}_{\mathbf{B}}\mathbf{B}^{-1}\mathbf{A}_{\mathbf{i}} - (c_i + \Delta c_i) \geq 0$
- Basic variable $\mathbf{c}_i + \Delta c_i$

$$(\mathbf{c_B} + \Delta c_j)\mathbf{B^{-1}}(\mathbf{A_N}, \mathbf{I}) - (\mathbf{c_N}, \mathbf{0}, ..) \ge 0$$

optimal solution unchange within range, vice versa

• \mathbf{b}_r : $\mathbf{x}'_{\mathbf{B}} = \mathbf{B}^{-1}\mathbf{b}' \geq 0$, $\Delta S = \Delta \mathbf{b}_r \cdot \lambda_r$ optimal solution always change. Basic variable change beyond range, vice versa.

1.4 Duality

Primal: max
$$z = \sum_{i=1}^{n} c_i x_i$$

s.t. $\sum_{i=1}^{n} a_{ji} x_i \leq b_j, j = 1, ..., m$
 $x_i \geq 0, i = 1, ..., n$
Dual: min $w = \sum_{j=1}^{m} b_j y_j$
s.t. $\sum_{j=1}^{m} a_{ji} y_j \geq c_i, i = 1, ..., n$
 $y_i \geq 0, j = 1, ..., m$

Primal model (MAX)	Dual model (MIN)
Constraint j is \leq	Variable $y_j \geq 0$
Constraint j is =	Variable y_j is free
Constraint j is \geq	Variable $y_j \leq 0$
Variable $x_i \geq 0$	Constraint i is \geq
Variable x_i is free	Constraint i is =
Variable $x_i \leq 0$	Constraint i is \leq

Weak Duality Z(x) < W(y)proof: $cx \le yAx \le yb$

Strong Duality If either of Primal or Dual has an optimal feasible bounded solution, then 1. the other problem also has ofbs. 2. z = w

proof: suppose $\mathbf{x}^* = (\mathbf{x}_B, \mathbf{x}_N)$ is optimal solution, Reduced cost for non-basic variables $c_B B^{-1} N - c_N \ge 0$, Let $\mathbf{y} = \mathbf{c}_{\mathbf{B}} \mathbf{B}^{-1}$, we have:

- $yA = y(B N) = (c_B, c_B B^{-1} N) \ge (c_B, c_B) = c$
- y is feasible to the dual
- $vb = c_B B^{-1}b = c_B x_B = cx^*$
- y is optimal to the dual

Complementary Slackness Any feasible solution \mathbf{x}, \mathbf{y} , they both are optimal iff for any i:

(1)
$$\mathbf{x_i} > 0 \rightarrow (\pi \mathbf{A})_i = \mathbf{c_i}$$
, (2) $\mathbf{x_i} = 0 \leftarrow (\pi \mathbf{A})_i > \mathbf{c_i}$ **proof:** If 1,2 true, $(\mathbf{yA} - \mathbf{c})\mathbf{x} = \mathbf{0} \rightarrow \mathbf{yA}\mathbf{x} = \mathbf{c}\mathbf{x}$ or $\mathbf{yb} = \mathbf{c}\mathbf{x}$, from strong duality, \mathbf{x} , \mathbf{y} optimal. If \mathbf{x} , \mathbf{y} optimal, $\mathbf{yb} = \mathbf{c}\mathbf{x}$ and $(\mathbf{yA} - \mathbf{c})\mathbf{x} = \mathbf{0}$, implies 1,2.

1.5 Transportation Problem

source with supplying capacity s_i , destination with demand d_i , cost c_{ii} , transportation plan x_{ii} $\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$

$$\sum_{j=1}^{n} x_{ij} = s_i, i = 1, ..., m$$

$$\sum_{i=1}^{m} x_{ij} = d_i, i = 1, ..., n$$

 $x_{ij} \ge 0, i = 1, ..., m, j = 1, ..., n.$

If total supply = demand, coefficience matrix contains $k \leq m+n-1$ linearly independent row vectors, k basic variables, k non-zero elements in optimal solution. $\mathbf{p} = \mathbf{c}_{\mathrm{B}} \mathbf{B}^{-1}$ is basic variables for dual problem, contains k elements. Thus always a shadow price = 0.

1.6 Cooperative Game

N: set of players

V(S): function gives cost of a coalition S(subset of N) $A_{ij} \in \{-1,0,1\}$, each column has exactly one 1 & -1 An allocation is a distribution of Ground Coalition LP with Consecutive 1's in Columns (Each row k is V(N), s.t. $\sum_{i \in N} x_i = V(N)$

develop core allocation rules $\sum_{i \in S} x_i \leq V(S), \forall S$

1.7 Max Flow Problem

G = (N, A), flow on arc x_{ii} , capacity of flow in arc U_{ii} , source node s, destination node t, Max flow value v(x). Original network G, feasible flow x, residual network G(x), residual capacity r_{ij} , argumenting path P.

Min cut The capacity of a cut (S,T) is sum of capacities of all forward arcs, $CAP(S,T) = \sum_{i \in S} \sum_{j \in T} u_{ij}$. Dual LP (min cut): $\pi_i \in \{0,1\}$ two sets, w_{ij} cut edge $\min \sum u_{ij} w_{ij} \ s.t. \ \pi_1 - \pi_i + w_{1i} \ge 0, \pi_i - \pi_n + w_{in} \ge 0$ $0, -\pi_1 + \pi_n \ge 1, w_{ij} \ge 0, \pi$ free

Weak Duality Theorem for Max Flow Problem define flow across the cut: flow on forward arcs backward $F_x(S,T)=\sum_{i\in S}\sum_{j\in T}x_{ij}-\sum_{i\in S}\sum_{j\in T}x_{ji}$ Claim: 1. $F_x(S,T)=v$ =flow into t. 2. $F_x(S,T)\leq$ capacity of a cut. Weak: $v(x) \leq CAP(S,T)$

Strong Duality: Max Flow Min Cut Theorem

The following are equivalent. $1 \Rightarrow 2, 3 \Rightarrow 1, 2 \Rightarrow 3$

- 1 A flow x is maximum
- 2 There is no augmenting path in G(x).
- 3 There is an s-t cut (S, T) whose capacity is the flow value of x.
- * Corollary. The maximum flow value is the minimum value of a cut

1.8 Min Cost Network Flow

- · Problem input
- Network G=(N,A)
- Flow cost c_{ij} for each arc (i, j) in A
- Lower and upper bounds l_{ij} , u_{ij} for each arc
- Supply or demand b(i) for each node i
- **Decisions** Flow x_{ij} for each arc
- Objective min total flow cost $\sum_{(i,j)} x_{ij} c_{ij}$
- Constraints
- Lower and upper bounds
- Flow conservation
- A necessary condition for the problem to be feasible is that total supply is equal to total demand

LP Formulation min cx s.t. Ax = b, x > 0multiplied by -1 and added to row k+1) \rightarrow IP

1.9 IP

LP with $x_i \in \{0,1\}$, LP is relaxation of IP.

Constraints

- $y_{A1} + y_{A2} + y_{A3} \leq 3y_{A4}$ Design A can be used at sites 1.2.3 only if it is also selected for site 4
- $\sum y_i \leq nw$ Decision w is implied if any one of the other n decisions is chosen
- $\sum y_i \le n-1+w$ Decision w is implied if all the other n decisions are chosen
- $\sum y_i \leq k-1+(n-(k-1))w$ Decision w is implied if at least k of the other n decisions are chosen

B&B Tree

1.10 Dynamic Program

dp recursion, initial condition, optimal solution

1.11 Complexity Analysis

O(f(n)) if at most cf(n) for all $n \geq n_0$

Recognition Version of Optimization

optimization problem P1: minimizing f(x)recognition problem P2: $\exists x_0 \text{ s.t. } f(x_0) < k$ $P1 \rightarrow P2, P2 \rightarrow P1$

Problem Reduction P1 polynomially reduces to P2: exists a polynomial-time algorithm that solves P1 by using the algorithm for solving P2 at unit cost

Problem Transformation If for every instance A1 of problem A, we can construct in polynomial-time an instance B1 of B, such that A1 has a Yes answer if and only if B1 has a Yes answer, then we say A polynomially transforms to B

Problem Classification

 $P \in NP$, $NPC = NP \cap NP$ -hard

- P polynomial
- NP verify in polynomial
- NP-complete (1) P1 \in NP (2) all other problems in class NP polynomially transform to P1
- NP-hard all other problems in class NP polynomially reduce to P1

NPC: Hamiltonian Cycle, Partition, Traveling Sales- LP and Lagrangian Relaxation man, Longest Path

Proving a problem is NPC (1) $P2 \in NP$ (2) find $P1 \in NPC$, polynomially transform P1 to P2

- TSP Given an instance of HCP with G=(N,A). we construct an instance of TSP with G=(N,A)and $c_i j = 1$ for all arc (i,j) in A, and the integer k=n. A Hamiltonian cycle in HCP is equivalent to a tour in TSP with total cost being n(=k).
- LPP $s \rightarrow t \cos t > L$? network G' inheriting G except that G' has on more node n+1 and all arcs (j,1) in G are replaced by arcs (j,n+1), each arc in G' having a cost being 1, and node s being node 1, node t being node n+1, and L=n
- Dynamic Lot Sizing with Production Capacity(DLSC) production capacity u_t , demand d_t , inventory holding cost $h_t(y_t) = h_t y_t$, production cost $f_t(x_t) = K_t + c_t x_t$ Partition, construct DLSC of T=n periods. Each period t, t= 1,...,n, the production capacity $u_t =$ a_t , holding cost $h_t(y_t) = 0$, and production cost $f_t(x_t) = a_t$, if $x_t > 0$, ie., $c_t = 0$. The demand
- Constrained Shortest Path (CSP) Partition csp: u to v, $\sum c_{ik} \leq C$, $\sum t_{ik} \leq T$

 $d_t = 0, t = 1, ..., n - 1 \text{ and } d_T = B.$

Weakly & Strongly NPC strongly: NPC even under the similarity assumption weakly: has pseudo-polynomial time algorithm

1.12 Handling NP-hard

Bounding by Relaxation $Pi : \min\{F_i(x)|x \in X_i\}$ P_i is called a relaxation of P_i if (1) $X_i \subseteq X_i$, (2) $F_i(x) \geq F_i(x)$. Then $F_i(x_{fi}^*) \geq F_i(x_{fi}^*)$

Lagrangian Relaxation max problem:

 $z_{IP} = \max cx \text{ s.t. } A_1 x \leq b_1, A_2 x \leq b_2, x \in \mathbb{Z}_+^n$ $z_{LR}(\lambda) = \max cx + \lambda(b_1 - A_1x) \text{ s.t. } A_2x \leq b_2, x \in \mathbb{Z}_+^n$ $\forall \lambda \geq 0, z_{LR}(\lambda) \geq z_{IP}$ Lagrangian Dual $Z_{LD} = \min\{z_{LR}(\lambda) | \lambda \geq 0\}$

LP: $Z^* = \min\{cx | Ax = b, Dx = e, x > 0\}$

Dual: $Z^* = \max\{ub + ve|uA + vD < c\}$ optimal solution satisfy: $(u^*A + v^*D - e)x^* = 0$ LR: $L(\lambda) = \min\{cx + \lambda(b - Ax)|Dx = e, x \ge 0\}$ $L(u^*) = \max\{L(\lambda)\} = Z^*$

Dual .

LP: $\min\{cx|Ax = b, x > 0\}$ LPD: $\max\{ub|uA < c\}$ $y^*A - c = 0$ by Complementary Slackness $L(u) = \min\{cx + u(b - Ax) | x \ge 0\}, L(u^*) = \max L(u)$ let $u = y^*, L(y^*) = \min\{(c - y^*A)x + y^*b | x \ge 0\} = LPD$

2 Non-linear Programming

min $f(\mathbf{x})$ s.t. $g_i(\mathbf{x}) \leq b_i, i = 1, ..., m$

Convex Function - Concave Function $f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2)$ 1-D: $f(\cdot)$ is convex if $f''(\cdot) \geq 0$ Multiple-Dimension: Hessian matrix \mathbf{H}_{ii} $\partial^2 f/\partial x_i \partial x_i$ is positive semi-definite $\mathbf{x}^T H \mathbf{x} > 0, \forall \mathbf{x}$

Convex Set $\forall \mathbf{x}_1, \mathbf{x}_2 \in S, \alpha \mathbf{x}_1 + (1 - \alpha) \mathbf{x}_2 \in S$ if $q_i(\cdot)$ is convex function, the feasible region is convex

Convex Programming NLP, convex set, convex function, then local minimum is global minimum

Operations that preserve convexity .

Suppose $f_i(\mathbf{x})$ are convex functions

- $\sum w_i f_i(\mathbf{x})$ is convex if $w_i \geq 0$
- $\max\{f_i(\mathbf{x})\}\$ is convex, proof: definition inequality

Consider f(x) = h(g(x)), then f is convex(concave) if h is convex(concave) and non-decreasing(increasing), and q is convex or concave.

2.1 Find the Minimum

Newton's Method $\forall x_k, q(x) := f(x_k) + f'(x_k)(x - x_k)$ $(x_k) + 0.5f''(x_k)(x - x_k)^2$ find $q'(x_{k+1}) = f'(x_k) + f''(x_k)(x_{k+1} - x_k) = 0$ i.e., $x_{k+1} = x_k - f'(x_k)/f''(x_k)$

NLP with Equality Constraints

 $\min f(\mathbf{x}) \text{ s.t. } g_i(\mathbf{x}) = 0, i = 1, ..., m$ $L(x,\lambda) = f(x) + \sum \lambda_i g_i(x)$ stationary point: $\partial L/\partial x_i = \partial L/\partial \lambda_i = 0$

NLP with Inequality Constraints $\min f(\mathbf{x})$ s.t.

$$h_i(\mathbf{x}) = 0, i = 1, ..., p.g_i(\mathbf{x}) \le 0, i = 1, ..., m$$

 $L(x, \lambda, \mu) = f(x) + \sum \lambda_i h_i(x) + \sum \mu_i g_i(x), \mu_i \ge 0$

$\partial L/\partial \lambda_i = 0, \partial L/\partial \mu_i \leq 0, \mu_i q_i(x) = 0, \mu_i \geq 0$

2.2 Selected OR Models and Methods

Kuhn-Tucker necessary conditions: $\partial L/\partial x_i =$

Minimum spanning tree

- Kruskal' s Algorithm O(nm)Cut Optimality Condition, min-max route
- **Prim**'s Algorithm $O(m + n \log n)$
- Sollin's Algorithm $O(m \log n)$ each step find min arc for each sub-tree

Bin packing

- Next Fit F(NF)<=2OPT-1
- First Fit F(FF)<=1.70PT
- · Best Fit

Shortest path Floyd-Warshall $O(n^3)$