Домашняя работа 3

Основы матричных вычислений Весенний семестр 2025

Версия от: 24.03.24 Дедлайн: 07.04.24 в 23:59

- 1. **(15 баллов).** Покажите, что $F_n^4 = n^2 I$, где F_n матрица Фурье.
- 2. **(20 баллов: 10 + 10).** Пусть задана матрица $A \in \mathbb{R}^{m \times n}, m \ge n$.
 - (a) Покажите, что A можно привести к верхнетреугольной матрице R с помощью преобразований Хаусхолдера, используя

$$2mn^2 - \frac{2}{3}n^3 + \mathcal{O}(mn),$$

арифметических операций.

(b) Если сначала перемножить матрицы Хаусхолдера, а затем взять нужную подматрицу, то сложность получения матрицы $Q \in \mathbb{R}^{m \times n}$ из thin QR будет $\mathcal{O}(m^3)$. Как можно получить меньшую сложность:

$$2mn^2 - \frac{2}{3}n^3 + \mathcal{O}(mn),$$

арифметических операций? Ответ обоснуйте.

3. **(25 баллов: 12 + 10 + 3).** Запишем решение x_{μ} задачи наименьших квадратов с ℓ_2 -регуляризацией:

$$||Ax - b||_2^2 + \mu ||x||_2^2 \to \min_x$$

для заданной матрицы $A \in \mathbb{C}^{m \times n}$ ранга r, вектора правой части $b \in \mathbb{C}^{m \times n}$ и константы $\mu \in \mathbb{R}_+$ в виде $x_\mu = B(\mu)b$ с матрицей $B(\mu) \in \mathbb{C}^{n \times m}$, которая выражается через A и μ .

- (a) Найдите $B(\mu)$.
- (b) Покажите, что для $\mu > 0$ справедливо:

$$||B(\mu) - A^+||_2 = \frac{\mu}{(\mu + \sigma_r(A)^2) \, \sigma_r(A)}.$$

- (c) Покажите, что $B(\mu) \to A^+$ и что $x_\mu \to A^+ b$ при $\mu \to +0$.
- 4. **(20 баллов:** $\mathbf{5} + \mathbf{5} + \mathbf{10}$ **).** Пусть ненулевые $a, b \in \mathbb{R}^n, n \geq 2$ ортогональны друг другу и

$$A = a \circ a \circ a + 2(a \circ b \circ a) - (a \circ b \circ b).$$

- (a) Запишите матрицы $U, V, W \in \mathbb{R}^{n \times 2}$ из канонического разложения A.
- (b) Запишите ядро $G \in \mathbb{R}^{1 \times 2 \times 2}$ и факторы U, V, W из разложения Таккера A.
- (c) Докажите, что мультилинейный ранг тензора A равен (1, 2, 2).
- 5. (20 баллов). Предложите алгоритм вычисления скелетного разложения следующей матрицы:

$$A = C^{-1} \left(a a^{\top} + T^2 \operatorname{DFT2} \left(U V^{\top} \right) \right)^+,$$

с числом арифметических операций $\mathcal{O}(nr\log n + nr^2)$. Считайте, что $a \in \mathbb{R}^n$, $T \in \mathbb{R}^{n \times n}$ – теплицева матрица, $C \in \mathbb{R}^{n \times n}$ – невырожденный циркулянт, $U, V \in \mathbb{R}^{n \times r}$, $r \ll n$, DFT2: $\mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}$ – двумерное дискретное преобразование Фурье.

Домашняя работа 3

Основы матричных вычислений Весенний семестр 2025

Версия от: 24.03.24 Дедлайн: 07.04.24 в 23:59

Бонусные задачи

1. **(20 б. балла)**. Для заданных матриц $A, B, F \in \mathbb{C}^{n \times n}$ предложите алгоритм решения матричного уравнения:

$$AX + XB = F$$
,

- с числом арифметических операций $\mathcal{O}(n^3)$. Считайте, что A и B подобраны так, что уравнение имеет единственное решение для любого F. Также считайте известной асимптотическую сложность $\mathcal{O}(n^3)$ вычисления разложений Шура от $n \times n$ матрицы.
- 2. (40 б. балла). Рассмотрим матрицы, полученные из циркулянтов путем умножения элементов ниже главной диагонали на -1. Найдите собственные значения и собственные векторы таких матриц.
- 3. (40 б. балла). Предложите алгоритм с асимптотической сложностью $\mathcal{O}(n\log n)$ для умножения $n\times n$ матрицы с элементами $a_{ij}=\cos(ij)$ (нумерация начинается с 1) на произвольный вектор.