```
bufif0 ar3 (out[3], in[3], en); // each buffer declared separately bufif0 ar2 (out[2], in[2], en); bufif0 ar1 (out[1], in[1], en); bufif0 ar0 (out[0], in[0], en);
                                                                                                                  bufif0 ar[3:0] (out, in, en); // array of three-state buffers
                                                                                                                                                                                                                                          module driver_equiv (in, out, en);
module driver (in, out, en);
                                                         output [3:0] out;
                                                                                                                                                                                                                                                                                                        output [3:0] out;
                         input [3:0] in;
                                                                                                                                                                                                                                                                        input [3:0] in;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       endmodule
                                                                                                                                                    endmodule
                                                                                        input en;
                                                                                                                                                                                                                                                                                                                                   input en;
                                                                                                                                                                                                                                                                                                                                                                                                                    driver busar[3:0] (.out({bushigh, buslow}), .in(busin),.en{{enh,enl,en}});
endmodule
                                                                                                                                                                                                                                                                                                        module busdriver_equiv (busin, bushigh, buslow, enh, enl);
                                                                                                                  driver busar3(busin[15:12], bushigh[7:4], enh); driver busar2 (busin[11:8], bushigh[3:0], enh); driver busar1(busin[7:4], buslow[7:4], enl); driver busar0(busin[3:0], buslow[3:0], enl);
module busdriver (busin, bushigh, buslow, enh, enl);
                                                    output [7:0] bushigh, buslow;
                                                                                                                                                                                                                                                                                                                                                                 output [7:0] bushigh, buslow;
                       input [15:0] busin;
                                                                                                                                                                                                                                                                                                                                   input [15:0] busin;
                                                                                        input enh, enl;
                                                                                                                                                                                                                                                                                                                                                                                              input enh, enl;
```

endmodule

z	×	x	x	х	z	×	×	×	×
х	×	х	х	х	x	×	х	х	x
1	1	0	х	х	1	0	1	х	x
0	0	1	х	х	0		0	х	x
XOL	0	1	х	z	xnor	0	1	x	Z
z	х	1	х	х	z	×	0	х	×
X	×	1	х	х	х	×	0	х	х
1	1	1	1	1	1	0	0	0	0
0	0	1	х	х	0	1	0	х	x
OI.	0	1	x	z	nor	0	1	X	z
Z	0	x	х	x	z		х	х	×
и	0	х	х	х	и	1	×	×	×
1	0	1	x	x	1	1	0	х	x
0	0	0	0	0	0	1	1	1	1
and	0	1	x	z	pueu	0	1	x	z

and X1 (out, a,b);

not	ındıno	Ι	0	x	x
ı	input	0	1	x	z
pnt	output	0	1	х	х
q	input	0	1	x	Z

buf b1 X1(z,i);

module dffn (q, d, clk);
parameter bits = 1;
input [bits-1:0] d;
output [bits-1:0] q;
input clk;

DFF dff[bits-1:0] (q, d, clk); // create a row of D flip-flops
endmodule
module MxN_pipeline (in, out, clk);
parameter M = 3, N = 4;
input [M-1:0] in;
output [M-1:0] out;
input clk;
wire [M*(N-1):1] t;
// #(M) redefines the bits parameter for dffn
// create p[1:N] columns of dffn rows (pipeline)
dffn #(M) p[1:N] ({out, t}, {t, in}, clk);
endmodule

Bidirectional pass switches: tran, tranif0, tranif1, rtran, rtranif0, rtranif1;

tranif1 t1 (inout1,inout2,control);

cmos and rcmos

cmos (w, datain, ncontrol, pcontrol);

nmos (w, datain, ncontrol); pmos (w, datain, pcontrol);

pullup, pulldown;

pullup (strong1) p1 (neta), p2 (netb);

Z	Т	H	×	Х
х	Т	Н	х	х
Ι	0	1	Х	Х
0	Z	z	Z	Z
	0	1	х	Z
DUILL	D	Α	Т	A
z	Т	Н	х	Х
x	Т	Н	х	х
Ι	Z	z	Z	z
0	0	1	Х	Х
	0	1	х	Z
ounto	D	A	Т	A
		0 1 x z 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 z L L D 0 z 0 z 0 1 z 1 z 1 z 1 z 1 z 1 z 1 z 1	1

	z	F	Ι	X	Х
ТО	x	Н	Т	х	х
CONTROL	1	1	0	х	х
00	0	Z	z	Z	z
		0	1	х	Z
Pipon	почит	D	А	Т	А
	z	Н	Т	Х	Х
To	x	Н	Т	Х	х
CONTROL	1	Z	Z	Z	z
00	0	1	0	Х	Х
		0	1	Х	z
eif0	,				

bufif1 X1 (outw, inw, control);

Z	L	Н	х	z
х	Г	Н	Х	Z
1	Z	z	Z	Z
0	0	1	Х	Z
	0	1	х	Z
rpmos	D	А	T	А
	0 1 x	0 1 x 0 0 0 0 T	0 1 x 0 0 z L 1 1 z H	0 1 x 0 0 z L 1 1 z H x x z x

nmos		00	CONTROL	OL	
rnmos		0	1	x	Z
Д	0	z	0	Τ	Г
А	1	z	1	Н	H
T	х	z	Х	х	Х
A	z	z	z	Z	Z

pmos p1 (out, data, control);

unidirectional: cmos, nmos, pmos, rcmos, rpmos

-Strength levels for scalar net signal values

evel																
Strength level	7	9	5	4	3	2	1	0	0	1	2	3	4	5	9	7
Strength name	0Ålddns	strong0	0[[nd	large0	weak0	medium0	small0	highz0	highzl	small1	mediuml	weakl	largel	pull1	strongl	supply1

	7	Sul
	9	
	2	Pul
gth1	4	Lal
strength1	က	Wel
S	7	Me1
	_	Sm1
	0	HiZl
	0	HiZ0
	_	Sm0
_	7	Me 0
strength0	က	WeO
tren	4	La0
v	2	Suo Sto Puo Lao Weo Meo Smo HiZO HiZ1 Sml Mel Wel Lal Pul Stl
	9	St0
	7	Su0

Scale Strength

Wired logic: trand, wand, trior, wor

		0,	strength0	gth(S	tren	strength1			
7	9	2	4	က	2	_	0	0	_	2	က	4	2	9	7
Su0	Sto	Pu0	Puo Lao Weo Meo	We0	Me0	Sm0	Hi20	Sm0 HiZ0 HiZ1 Sm1 Me1	Sm1	Mel	Wel	Lal Pul Stl	Pul	Stl	Sul
	‡														

	_	u1	
	9	Su0 St0 Pu0 La0 We0 Me0 Sm0 HiZ0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1	
	2	Pul S	
gth1	4	La1	
strength1	က	Wel	
S	2	Mel	
	_	Sml	
	0	HiZl	
	0	Hi20	
	_	Sm0	
0	2	Me0	
strength0	က	We0	
strer	4	La0	
0)	5	Pu0	
	9	Sto	
	7	Su0	

wired AND logic value result: 0 wired OR logic value result: 1

Input strength	Reduced strength
Supply drive	Pull drive
Strong drive	Pull drive
Pull drive	Weak drive
Large capacitor	Medium capacitor
Weak drive	Medium capacitor
Medium capacitor	Small capacitor
Small capacitor	Small capacitor
High impedance	High impedance

Strength redunction rules