Noircissez sur la feuille-réponse l'unique meilleure réponse à chacune des questions.

Coniques

61. Quels sont les rayons de l'ellipse d'équation cartésienne $x^2 + 2y^2 = 4$?

 $(1)\square$ $\frac{1}{2}$ et 1 $(2)\square$ 1 et $\sqrt{2}$ $(3)\square$ 1 et 2 $(4)\square$ 2 et 4 $(5)\blacksquare$ $\sqrt{2}$ et 2

62. Quel est le centre de l'ellipse d'équation cartésienne $x^2 - 2x + 2y^2 + 2y = 0$?

 $(1) \blacksquare \quad (1,-\frac{1}{2}) \qquad (2) \square \quad (-1,2) \qquad (3) \square \quad (1,-1) \qquad (4) \square \quad (\frac{1}{2},\frac{1}{4}) \qquad (5) \square \quad \text{ce n'est pas une ellipse}$

63. La conique d'équation cartésienne $x^2 + 4xy + 3y^2 = 1$ est

64. La conique d'équation cartésienne $x^2 - 4xy + y^2 = 1$ est

65. La conique d'équation cartésienne $y^2 + 2x = x^2 + 1$ est

(1) □ une hyperbole (2) □ une parabole (3) ■ une ou plusieurs droites $(4) □ \quad \text{r\'eduite \`a un point} \qquad (5) □ \quad \text{vide}$

Quadriques

Donner la meilleure description géométrique de chacune des 5 quadriques suivantes dans \mathbb{R}^3 .

 $66. \quad x^2 + y^2 = 4$

(1)□ cercle (2)□ sphère (3)■ cylindre (4)□ ellipsoïde (5)□ vide

 $67. \quad x^2 + 4y^2 - 9z^2 = 1$

(1) □ ellipsoïde (2) ■ hyperboloïde à une nappe (3) □ hyperboloïde à deux nappes (4) □ cône (5) □ vide

 $68. \quad x^2 + 2x + y^2 + y + z = 0$

(1) □ ellipsoïde (2) □ cône (3) ■ paraboloïde (4) □ hyperboloïde (5) □ vide

69. $x^2 + y^2 + z^2 + 2x + 4y + 6z + 20 = 0$

(1)□ ellipsoïde (2)□ cône (3)□ paraboloïde (4)□ hyperboloïde (5)■ vide

 $70. \ x^2 + 2xy + y^2 - 4z^2 = 0$

(1)□ ellipsoïde (2)□ paraboloïde (3)□ hyperboloïde (4)■ deux plans (5)□ vide

Algorithme de Gauss-Lagrange

Pour chacune des matrices suivantes, donner la forme normale correspondante.

71.
$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

$$(1)\square \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad (2) \blacksquare \quad \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad (3)\square \quad \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \qquad (4)\square \quad \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad (5)\square \quad \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$72. \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$(1)\square \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad (2)\square \quad \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad (3)\square \quad \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \qquad (4)\blacksquare \quad \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad (5)\square \quad \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$73. \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

$$(1) \blacksquare \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad (2) \square \quad \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad (3) \square \quad \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \qquad (4) \square \quad \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad (5) \square \quad \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$74. \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$$

$$(1) \blacksquare \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad (2) \square \quad \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad (3) \square \quad \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \qquad (4) \square \quad \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad (5) \square \quad \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

75.
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$(1)\square \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad (2)\blacksquare \quad \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad (3)\square \quad \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \qquad (4)\square \quad \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad (5)\square \quad \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Croustille réglée

Les 5 questions suivantes portent sur l'éventuelle présence de droites incluses dans la surface

$$\mathcal{S}: \ z = x^2 - y^2.$$

Vous pouvez sans doute gagner du temps en résolvant une fois pour toutes la question générale : étant donné un point $(x_0, y_0, z_0) \in \mathcal{S}$, quelles sont les droites passant par celui-ci incluses dans \mathcal{S} ?

76. L'intersection de S avec le plan d'équation z=0 consiste en

77. Combien y a-t-il de droites incluses dans S passant par le point (0,0,0)?

$$(1)\square \quad 1 \qquad (2)\blacksquare \quad 2 \qquad (3)\square \quad 3 \qquad (4)\square \quad 4 \qquad (5)\square \quad 0$$

78. Parmi les vecteurs suivants, lequel est un vecteur directeur pour une droite passant par (0,0,0) incluse dans S?

$$(1) \square \quad (1,1,1) \qquad (2) \blacksquare \quad (1,-1,0) \qquad (3) \square \quad (0,1,1) \qquad (4) \square \quad (1,0,1) \qquad (5) \square \quad (0,1,-1)$$

79. Même question avec le point (1, 1, 0).

$$(1)\square \quad (1,-1,1) \qquad (2)\square \quad (1,-2,0) \qquad (3)\square \quad (2,1,0) \qquad (4)\square \quad (1,1,1) \qquad (5)\blacksquare \quad (1,-1,4)$$

80. Même question avec le point (5, 4, 9).

$$(1)\square \quad (2,-1,1) \qquad (2)\square \quad (0,1,0) \qquad (3)\blacksquare \quad (1,1,2) \qquad (4)\square \quad (1,1,-1) \qquad (5)\square \quad (1,-1,9)$$