8- Hypothesis testing with qualitative variables

Alex Sanchez, Miriam Mota, Ricardo Gonzalo and Santiago Perez-Hoyos

Statistics and Bioinformatics Unit. Vall d'Hebron Institut de Recerca

Readme

- License: Creative Commons
 Attribution-NonCommercial-ShareAlike 4.0 International
 License http://creativecommons.org/licenses/by-nc-sa/4.0/
- You are free to:
 - Share : copy and redistribute the material
 - Adapt : rebuild and transform the material
- Under the following conditions:
 - Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made.
 - NonCommercial: You may not use this work for commercial purposes.
 - Share Alike: If you remix, transform, or build upon this work, you must distribute your contributions under the same license to this one

Introduction

- Categorical variables represent facts that can be better described with labels than with numbers.
 - Example: Sex, better choose from {Male , Female} than from: $\{1,2\}.$
- Sometimes ordering of labels makes sense, although it is not reasonable to assign numbers to categories:
 - Example: Tumor stage: $\{1,2,3,4\}$, but $1+2 \neq 3!!!$
 - Sex is an example of a categorical variable in nominal scale
 - Stage is an example of a categorical variable in ordinal scale

Representing categorical variables in R

• Categorical variables are well represented with factors

```
sex <- factor(c("Female", "Male"))
blood_group <- factor(c("A", "B", "AB", "O"))</pre>
```

Besides, factors can be forced to be "ordereded"

```
tumorstage <- factor(1:4, ordered=TRUE)</pre>
```

 Be careful with the names of factors, by default, levels assigned in alphabetical order.

```
levels(blood_group)
## [1] "A" "AB" "B" "O"
```

Creating factors

- Factors can be created . . .
 - automatically, when reading a file or
 - Not all functions for reading data from file will create a factor!!!
 - Usually levels will be defined from alphabetic order
 - using the factor or the as.factor commands.
 - more flexible

Create factors automatically

- This is achieved by
 - Using the read.table or read.delim functions for reading
 - Setting the "character variables as.factors" to TRUE
- Example
 - Load the diabetes dataset using the Import Dataset feature of Rstudio
 - From text (base) (use the file diabetes.csv)
 - From text (readr) (use the file diabetes.csv)
 - From Excel (use the file diabetes.xls)
 - What is the class of the variable mort

Exercise 1

- Select one of the datasets that you have worked with during the course
 - diabetes.xls
 - osteoporosis.csv
 - demora.xls
- Read the dataset into R and check that the categorical variables you are interested in are converted into factors.
- Confirm the conversion by summarizing the variables

Exercise 2

- Use the diabetes.sav file and import it into R with the "Import from SPSS" feature.
 - What is the class of the "MORT" variable.
 - Turn it into one factor so that it has the same levels as when you read it using read.csv

The analysis of categorical variables

- The analysis of categorical data proceeds as usual:
- Start exploring the data with the tables and graphics
- Proceed to estimation and/or testing if appropriate
- Estimation
 - Proportions: Point estimates, confidence intervals, Sample Size
- Testing
 - One variable (tests with proportions)
 - With two variables (chi-square and related)

Types of test with categorical variables

- One variable (tests with proportions)
 - Does the proportion (% affected) match a given value?
 - Is the proportion (% affected) the same in two populations?
- With two variables (chi-square and related)
 - Is there an association between two categorical variables?
 - Is there a relationship between the values of a categorical variable before and after treatment?

Example

Consider the following study relating smoking and cancer.

Load data	a: "ç	ladesca	ncer.	csv"					
		Smoking X=1		1 Non	Non smoking X=0		т	TOTAL	
CANCER Y=1		190			87			277	
NO CANCER Y=0				60	163			223	
TOTAL		250			250			500	
0000 0000 0000 0000	0	00000000 0000000 0000000 0000000 000000		00000000 0000000 0000000 0000000 000000	00000000		00000000 00000000 00000000 00000000 0000	000000 000000 000000 000000 000000 00000	00 00 00 00 00 00 00 00 00 00 00 00 00

Our goal here would be to determine if there is an association between smoking and cancer.

Crosstabulating a dataset

- Data may come from a table (aggregated) or disagregated in a data file.
- In this case we need to build the table applying "cross-tabulation"

#attach(dadescancer)

mytable <-table(dadescancer\$cancer, dadescancer\$fumar)
mytable</pre>

```
## Fuma No fuma
## Cancer 190 87
## No cancer 60 163
```

There are many ways to do crosstabulation

```
with(dadescancer, table(cancer, fumar) )
##
            fumar
## cancer Fuma No fuma
  Cancer 190
##
                      87
## No cancer 60
                     163
myXtable <- xtabs (~ cancer + fumar, data = dadescancer)
myXtable
##
            fumar
## cancer Fuma No fuma
## Cancer 190
                     87
## No cancer 60
                     163
```

Crosstabulation (2): Marginal tables

Marginal values are important to understand the structure of the data:

```
margin.table(mytable, 1) # A frequencies (summed over B)
##
## Cancer No cancer
## 277 223
margin.table(mytable, 2) # B frequencies (summed over A)
##
## Fuma No fuma
## 250 250
```

addmargins(mytable)

##

##		Fuma	No	fuma	Sum
##	Cancer	190		87	277
##	No cancer	60		163	223
##	Sum	250		250	500

Crosstabulation (3): In percentages

Showing tables as percentages is useful for comparisons

```
prop.table(mytable) # cell percentages
##
##
               Fuma No fuma
##
    Cancer 0.380 0.174
    No cancer 0.120 0.326
##
prop.table(mytable, 1) # row percentages
##
##
                    Filma No filma
##
    Cancer 0.6859206 0.3140794
##
    No cancer 0.2690583 0.7309417
# prop.table(mytable, 2) # column percentages
```

Exercise 3

- With the osteoporosis dataset repeat the crosstabulation done above using
 - Two categorical variables
 - Variable "MENOP" and a newly created variable "catBUA" created by properly categorizing variable BUA.

One variable: Proportion tests

- According to medical literature, in the period 1950-1980, the proportion of obese individuals (defined by medical criteria: BMI \geq 30) was 15% in the population of men over 55 years old.
- A random sample obtained from the same population between 2000 and 2003 showed that, over a total of 723 men older than 55, 142 were obese.
- Considering that the significance level that we use is 5%, can we say that the population of men older than 55 in 2000-2003 had the same proportion of obese cases than that population had in 50'-80'?

Proportion tests with R

```
prop.test(x=142, n=723, p=0.15)
##
##
    1-sample proportions test with continuity correction
##
## data: 142 out of 723, null probability 0.15
## X-squared = 11.849, df = 1, p-value = 0.0005768
## alternative hypothesis: true p is not equal to 0.15
## 95 percent confidence interval:
## 0.1684325 0.2276606
## sample estimates:
##
           р
## 0.1964039
```

Estimation comes with proportion test

- prop.test does three distinct calculations
 - A test for the hypothesis $H_0: p = p_0$ is performed
 - A confidence interval for p is built based on the sample
 - A point estimate for *p* is also provided.

```
> prop.test(x=142, n=723, p=0.15)

1-sample proportions test with continuity correction

data: 142 out of 723, null probability 0.15
X-squared = 11.849, df = 1, p-value = 0.0005768

alternative hypothesis: true p is not equal to 0.15
95 percent confidence interval:
0.1684325 0.2276606

confidence interval
sample estimates:
p
0-1964039

Point estimate
```

Exercise

- In the osteoporosis dataset
 - Test the hypothesis that the proportion of women with osteoporosis is higher than 7%
 - In the global population of the study
 - Only in women with osteoporosis
 - Select a sample of size 100 and repeat the test. How do the results change?
 - What sample size should we have taken so that th precision of the confidence intervals would have been at most 3% with a probability of 95%?

Contingency tables

- A contingency table (a.k.a cross tabulation or cross tab) is a matrix-like table that displays the (multivariate) frequency distribution of the variables.
- It is bidimensional, and classifies all observations according with two qualitative variables (A and B, rows and columns).

Clasif	\mathbf{B}_{I}	B_2	 \mathbf{B}_{s}	Total
A_I	n_{II}	n_{12}	 n_{Is}	$n_{I\bullet}$
A_2	n_{21}	n ₂₂	 n_{2s}	$n_{2\bullet}$
A_r	n_{rl}	n_{r2}	 n_{rs}	$n_{r\bullet}$
Total	$n_{\bullet I}$	n _{•2}	$n_{\bullet s}$	N

Chi-squared test

Chi squared independence test

 When the sample comes from a single population with 2 qualitative variables, the aim is to determine if there is relationship between vars:

Chi squared homogeneity test

 When each row is a sample from distinct populations (groups, subgroups...), the aim is to determine if both groups have significative differences in that variable

Chi-squared tests

- When we have:
 - quantitative data,
 - one or more categories,
 - independent observations,
 - adequate sample size (>10)
- and our questions are like. . .
 - Do the number of individuals or objects that fall in each category differ significantly from the number you would expect?
 - Is this difference between the expected and observed due to sampling variation, or is it a real difference?

Chi squared.test: Observed vs expected

Observades	Braf -	Braf+
Grau 1	97	5
Grau 2	81	7
Grau 3	32	18

Esperades	Braf -	Braf+
Grau 1	89.25	12.75
Grau 2	77.00	11.00
Grau 3	43.75	6.25

Chi squared tests with R

```
mytable<- with(dadescancer, table(cancer, fumar) )</pre>
chisq.test (mytable)
##
    Pearson's Chi-squared test with Yates' continuity corre
##
##
## data: mytable
## X-squared = 84.214, df = 1, p-value < 2.2e-16
Alternatively use Fisher test
fisher.test(mytable)
##
##
    Fisher's Exact Test for Count Data
##
## data: mytable
## p-value < 2.2e-16
## alternative hypothesis: true odds ratio is not equal to
```

Alex Sanchez, Miriam Mota, Ricardo Gonzalo and Santiago Pe 8- Hypothesis testing with qualitative variables

Exercise

- Use the osteoporosis dataset to study if it can be detected an association between the variables menop and classific in the osteoporosis dataset.
- Do not start with a test but with an appropriate summarization and visualization!