This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PCT/EP 00/04269

BUNDESREPUBLIK DEUTSCHLAND

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

107030328

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

199 25 118.5

Anmeldetag:

01. Juni 1999

Anmelder/Inhaber:

Fa. Carl Wezel, Mühlacker/DE

Bezeichnung:

Verfahren und Vorrichtung zum Herstellen eines bandförmigen Vormaterials aus Metall, welches in regelmäßig wiederkehrenden Abschnitten profiliert ist, insbesondere für Schreibfedern

IPC:

B 21 H, B 21 B

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 10. Juli 2000

Deutsches Patent- und Markenamt

Der Präsident

Im/Auftrag

أكارات م

WZ02E002DEP/Be99030/TW/Be/01.06.1999 Firma Carl Wezel, Industriestraße 95, D-75417 Mühlacker

Verfahren und Vorrichtung zum Herstellen eines bandförmigen Vormaterials aus Metall, welches in regelmäßig wiederkehrenden Abschnitten profiliert ist, insbesondere für Schreibfedem

Beschreibung:

Die Erfindung geht aus von einem Verfahren mit den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen und von einer Vorrichtung mit den im Oberbegriff des Anspruchs 17 angegebenen Merkmalen.

Schreibfedern für Füllfederhalter haben über ihre Länge eine unterschiedliche Dicke. Im hinteren Bereich sind Schreibfedern typisch 0,2 mm dick. Zur Spitze hin wird die Feder dicker, um an der Schreibspitze schließlich ein Maximum von etwa 0,6 mm zu erreichen. Es ist bekannt, Schreibfedern herzustellen, indem ein Metallband durch Walzen abschnittsweise, nämlich in Schritten, deren Länge der Länge der Schreibfedern entspricht, zunächst mit einem entsprechenden Langsprofil versehen wird. Dieses profilierte Metallband ist ein Vormaterial,

Zerrennerstraße 23-25 D-75172 Pforzheim Talafon (07231) 39840 Talafox (07231) 398444 Es gellen gusschließlich unsere Allgemeinen Geschäftsbedingungen Posibonk Karlsruhe 168 52-750 (BLZ 660 10075) Sparkasse Pfarzheim 803 812 (BLZ 666 500 85) VATRegismarion No. DE 144 180 005 -2-

aus welchem später die Serreibfedern ausgestanzt und in die gewerschte gebogene Form umgeformt werden.

Um das profilierte Vormaterial herzustellen, ist es bekannt, von zwei einen Walzspalt begrenzenden Walzen, welche in einem Walzgerüst gelagert sind, die obere Walze in Umfangsrichtung mit einer empirisch ermittelten Kontur zu versehen, welche auf den vorgesehenen Verlauf der Dicke der Schreibfedem komplementär abstimmt ist. Außerhalb dieser abgestlmmten Kontur hat die Mantelfläche der oberen Walze einen so geringen Abstand von Ihrer Achse, daß es in diesem Bereich nicht zu einem Eingriff mit dem Metallband kommt. Mit dem Anfang des die abgestimmte Kontur aufweisenden Umfangsabschnittes sticht die Walze in des Metallband ein und nimmt es dann für die Dauer eines Walzschrittes, nämlich solange wie sie mit dem Band Im Eingriff ist, mit und bewirkt dadurch sowohl einen Vorschub als auch eine Profilierung des Metallbandes. Dabei wird das Metallband von einer ersten Haspel abgerollt und das aus dem Walzspalt austretende profilierte Metallband von einer zweiten Haspel aufgerollt. Da der Vorschub des Metallbandes durch die beiden Walzen bewirkt wird, ergibt sich zwischen ihnen und der zweiten, aufwickelnden Haspel zwangsläufig eine gewisse Loslänge des Metalibandes, welche es erforderlich macht, eine Bandschleife mit einer Bandspanneinrichtung vorzusehen, welche einen Ausgleich schafft zwischen dem diskontinulerlichen Bandvorschub durch die Walzen und der kontinuierlichen Aufwickelbewegung der zweiten Haspel. Das ist mit einigem apparativem Aufwand verbunden, der nachteilig ist.

Da die obere Welze etwa 3 mm vor der Ebene, welche die Längsachsen der beiden Walzen durchsetzt, in das zu walzende Metaliband einsticht, ist es ferner bekannt, das Metaliband vor dem Einstechen der oberen Walze mittels einer mit der Walzendrehung synchronisierten Zange jedesmäl vor dem Einstechen der oberen Walze um 1 bis 2 mm zurückzuziehen, um beim späteren Ausstanzen der Schreibfedern den Verschnitt möglichst klein zu halten.

10

- 3 -

Auf die bekannt ise hergestellte Schreibfedern wei . Diese rühren einerseits daher, daß b schwankungen at Sits tas Matallitand von welchem man zur Herstellung des Vormaterlals ausgeht, mit Dickenschwankungen behaftet ist, welche sich verstärkt in das durch Walzen profilierte Vormeterial fortsetzen, und zwar Insbesondere bel großen Stichabnahmen, wobel hinzukommt, daß große Stichabnahmen bei harten Metallbändem schwierig zu erreichen sind. Angesichts einer für das Herstellen von Schreibfedern erforderlichen Stichabnahme von 60 % bis 70 % steht der Fachmann hier vor einem schwerwie genden Problem. Die Dickenschwankungen, die sich bereits im Ausgangsmaterial befinden, betragen typisch ± 0,02 mm. Weitere Dickenschwankungen werden dadurch verursacht, daß bei der bekannten Art und Weise der Herstellung des Vormaterials die Walzen mit gleichbleibender Geschwindigkeit umlaufen, wodurch das Einstechen der profilierten Walze und damit der Bandvorschub schlagartig einsetzen und auch wieder beendet werden. Eine gleichmäßige Zugkraft im Metaliband während des Profilierens, welche für ein gleichmäßiges Arbeitsergebnis günstig wäre, ist bei der bekannten Arbeitsweise nicht möglich.

10

15

20

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen Weg aufzuzeigen, wie ein profiliertes bandförmiges Vormaterial für Schreibfedern mit größerer Genaulgkeit, nämlich mit weniger Abweichungen des tatsächlichen Verlaufs der Dikke vom Soll-Verlauf der Dicke hergestellt werden kann.

Diese Aufgabe wird gelöst durch ein Verfahren mit den im Anspruch 1 angegebenen Merkmalen sowie durch eine Vorrichtung mit den im Anspruch 17 angegebenen Merkmalen. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.

25 Erfindungsgemäß wird das Metallband in zwei oder mehr als zwei Walzschritten bis zum Erreichen der Tiefe des gewünschten Profils des Vormaterials gewalzt, so daß die Gesamtverformung nicht nur durch eine einzige, sondern durch zwei oder mehrere Stichabnahmen erreicht wird. Zu diesem Zweck läßt man das

Metallband aber nicht meit de hintereinander angeordnete Walze auf durchlaufen; das wäre viel zu aufwendig. Vielmehr wird das Metallband zwischeste verei aufeinanderfolgenden Walzschritten zurückgeholt und dann der zurückgeholte Abschnitt des Metallbandes zwischen denselben zwei Walzen erneut gewalzt. Erst wenn ein zu profilierender Abschnitt des Metallbandes in mehrenen.
Walzschritten mit zwischen ihnen erfolgenden Rückholschritten das gewünschte
Profil gewalzt worden ist, wird das Metallband zur Profilierung des nächsten
Bandabschnittes in den Walzspalt vorgeschoben.

Es wäre allerdings auch möglich, nach einem ersten Walzschritt in einem ersten Bandabschnitt nach Zurückdrehen der Walzen einen gleichen ersten Walzschritt Im anschließenden Bandabschnitt durchzuführen, dann das Band um zwei Schritte zurückzuholen, danach im ersten Bandabschnitt den zweiten Walzschritt und Im zweiten Bandabschnitt den zweiten Walzschritt durchzuführen.

Die Erfindung hat wesentliche Vorteile:

- Dadurch, daß das Profil des Metalibandes nicht in einem, sondern in zwei oder mehreren Walzschritten erzeugt wird, erzielt man eine größere Maßhaltigkeit als bisher, was sich bei Schreibfedern insbesondere im späteren Schaftbereich auswirkt.
 - Da das gewünschte Profil in einem Abschnitt des Metalibandes nicht durch einen einzigen, sondern durch zwei oder mehrere Walzschritte erzeugt wird, können auch härtere Metalibänder profillert werden, auch federharte Bander.
 - Das eröffnet der Erfindung Anwendungen, die über den Schreibfederbereich hinausgehen und eine Vielzahl von profilierten Teilen erfaßt, die aus einem bandförmigen Halbzeug gebildet und durch Stanzen des Bandes vereinzelt werden können. Anwendungsbeispiele sind elektrische Leiterstrukturen wie z.B. Kontaktfedern und Leadframes.
 - Durch die Möglichkeit, das Profilieren in mehreren Walzschritten vorzunehmen, lassen sich sehr vielgestaltige Profile erzeugen. Es ist soger

10

- Zur Vielseitigkeit der Erfindung trägt bei, daß das Metaliband nicht in jedem Walzschritt profiliert werden muß, sondem in einem ersten Walzschritt auch lediglich in seiner Dicke reduziert werden kann, wozu die beiden Walzen jedenfalls auch einen zylindrischen Abschnitt haben. Wird das Metaliband nur von einer Seite her profiliert, dann hat die andere Walze eine vollzylindrische Oberfläche.
- Der Fortschritt, den die Erfindung bringt, wird durch minimalen apparativen Aufwand erreicht. Ausgehend von einem an sich bekannten Walzgerüst ist in dlesem die der Profilierung dienende Arbeltsweise zu modifizieren, wenn eine beidseitige Profilierung erwünscht ist, auch die gegenüberliegende Walze, so 15 daß die Walze in Umfangsrichtung aufeinanderfolgend Abschnitte mit unterschiedlicher Kontur hat, welche insbesondere durch Freisparungen voneinander getrennt sind und in Verbindung mit dem vorgesehenen Rückholen des Metallbandes ein wiederholtes Walzen ein und desselben Abschnittes des Metallbandes erlauben. Für das Zurückholen des 20 Metallbandes kommt der ersten Haspel, von welcher das zu profilierende Metaliband abgewickelt wird, eine besondere Bedeutung zu, weil sie die Länge des Schrittes, um welchen das Metallband zurückgeholt wird, hinreichend genau reproduzieren können muß. Dazu versieht man diese Haspel vorzugsweise mit einem Servomotor, welcher einen inkrementzien Drehgeber 25 aufwelst, der eine genaue Festlegung der gewünschten Schrittlänge beim Abwickeln und auch beim Aufwickeln ermöglicht.

Eine besonders vorteilhafte Weiterbildung der Erfindung ist Gegenstand des Anspruchs 7.

Gemäß dieser Weiterbildung der Erfindung wird das Metaliband vor dem Walzen des Profils egalisiert. Unter einem Egalisieren versteht man ein Walzen des Metalibandes in einem Walzerüst mit hochkonstantem Walzepalt, wodurch die Dikkenschwankungen des Metalibandes vermindert werden. Walzerüste zum Egalisieren sind aus der DE 25 41 402 C2 bekannt, worauf wegen weiterer Einzelhelten verwiesen wird. Bei einem bekannten Egalisierwalzgerüst wird ein hochkonstanter Walzepalt dedurch erreicht, daß an den über die Walzenzapfenlager hindus nach außen verlängerten Walzenzapfen senkrecht zu den Walzenachsen vom Walzeut weg gerichtete Vorspannkräfte ausgeübt werden, welche lotrecht ausgerichtet sein können und vorzugswelse in einer um den Walzenichel von Walzenachsebene abweichenden, durch das einlaufende Metaliband gehenden Wirkungslinie wirken. Auf diese Weise wird das Arbeitsspiel der Walzen in den Walzenzapfenlagern verringert.

-6-

Erfindungsgemäß ist jedoch nicht vorgesehen, dem für das Profilieren des Metalibandes vorgesehenen Walzgerüst ein weiteres, der Egalisierung dienendes Walzgerüst voranzustellen. Vielmehr werden das Egalisieren und das Profilieren in ein und demselben Walzgerüst durchgeführt, wozu das Metaliband nicht nur in den der Profilierung dienenden Arbeitsschritten in Vorschubrichtung durch den Walzspalt bewegt wird. Vielmehr wird das Metallband zunächst in Schritten, die mindestens so lang sind wie der Schritt beim Profilleren, unter mäßiger Abnahme seiner Dicke egalisiert. Danach wird das Band um einen Schritt von mindestens der für das Profilieren benötigten Länge und höchstens der beim Egalisieren vorgeschobenen Länge zurückgeholt und danach wird in den zurückgeholten Abschnitt des Metalibandes das Profil gewalzt. Zu diesem Zweck hat die zweite Walze, welche einen Umfangsabschnitt mit der Kontur hat, welche auf den gewünschten Verlauf der Dicke der Schreibfeder abgestimmt ist, zusätzlich noch elnen zylindrischen Umfangsabschnitt, welcher von dem die Kontur aufweisenden Umfangsabschnitt getrennt lst. Mit dem zylindrischen Umfangsabschnitt wird der Egalisierschritt durchgeführt. Der zylindrische Umfangsabschnitt ist im Hinblick auf seine Bestimmung und unter Berücksichtigung der belm Walzen auftretenden

10

20

Längung des Me andes so lang gewählt, daß der egs the Abschnitt des Metallbandes mit stens die Länge der Schreibfeder hat raspsweise etwas länger ist, so daß der Anfang und oder das Ende des Profilierschrittes einen Abstand vom Anfang und vom Ende des egalisierten Abschnittes einhalten können.

Erfindungsgemäß ist das der Profilierung dienende Walzgerüst also gleichzeitig als ein Walzgerüst zum Egalisieren ausgebildet und mit einem schrittweisen vorwärts und rückwärts arbeitenden Bandvorschub ausgestattet.

Die Weiterbildung der Erfindung gemäß Anspruch 7 hat wesentliche Vortelle:

- Die Dickenschwenkungen von ± 20 µm im Vormaterial und damit auch in den späteren Schreibfedem können auf als ± 2 µm in einer einzelnen Schreibfeder verringert werden, Insbesondere im späteren Schaftbereich der Schreibfedern. Die Reproduzierbarkeit des Verlaufs der Dicke von Schreibfeder zu Schreibfeder hat ± 4 µm erreicht. Das sind Genauligkeiten, die bei der Herstellung von Schreibfedern durch Walzen bisher nicht erreicht wurden. Enteprechende Genauligkeiten sind auch bei bandförmigem Vormaterial für andere profillerte Erzeugnisse als Schreibfedem erreichbar.
- Der große Fortschritt an Genauigkeit wird durch minimalen apparativen Aufwand erreicht. Ausgehend von einem an sich bekannten Walzgerüst ist in diesem die der Profilierung dienende Arbeitswalze zu modifizieren, Indem sie mit einem geeigneten zylindrischen Abschnitt versehen wird, und es sind die Walzenzapfen der beiden Walzen zur Verringerung des Lagerspiels vorzuspannen, z.B. auf eine der in der DE-25 41 402 C2 offenbarten Weisen. Außerdem benötigt man Mittel, die nicht nur ein schrittweises Vorschieben, sondern auch ein schrittweises Zurückholen des Metallbandes in Schritten erlauben, die ungefähr so lang sind wie die Schritte beim Egallsieren. Das kann, wie schon erwähnt einfach dedurch geschehen, daß man mindestens die erste Haspel, von welcher das zu profilierende Metallband abgewickeit wird, mit einem Elektromotor versieht, welcher sich mit hinreichender

10

15

20

25

Genaulgkeit in Schritte on der gewünschten Lange steuere und der Drehrichtung umsteuem läßt. Das geschieht vorzugsweise Mit einem Servomotor, welcher einen inkrementalen Drehgeber aufweist, der eine genaue Festlegung der gewünschten Schrittlange beim Abwickeln und Aufwickeln ermöglicht.

Vorzugswelse wird auch die zweite Haspel, welche das profilierte Metallband aufwickelt, mit einem solchen Servomotor versehen.

- Das hat den weiteren Vorteil, daß durch das Zusammenspiel der Servomotoren in allen Phasen, nicht nur beim Egallsieren, sondern auch beim Profilieren und beim Rückholen des Metallbandes auf dieses ein definierter Zug ausgeübt werden kann, welcher das Erreichen eines gleichmäßigen Vormaterials mit geringen Dickenschwankungen begünstigt.
- Ein weiterer Vorteil des Antriebs der Haspeln mit Servomotoren besteht darin, daß der Bandvorschub und der Antrieb der beiden Walzen so gut aufeinander abgestimmt werden können, daß anders als beim Stand der Technik anstelle eines kontinulerlichen Antriebs der Walzen ein diskontinulerlicher Walzenantrieb erfolgen kann. Insbesondere kann die Geschwindigkeit, bei der der Einstich der profilierten Walze in das Metallband erfolgt, auf die Bandvorschubgeschwindigkeit so abgestimmt werden, daß beim Einstechen keine abrupte Beschleunigung des Metallbandes erfolgt. Insbesondere kann das Einstechen der profilierten Walze in das Metallband zunächst bei langsamem Bandvorschub und bei langsamer Walzendrehung erfolgen, gefolgt von einer beschleunigten Bandvorschubbewegung und Walzendrehung. Dies ist für das Erreichen von geringen Dickentoleranzen besonders vorteilhaft.
- Ein welterer Vorteil der Verwendung von Servomotoren zum Antrieb der Haspeln besteht darin, daß besondere Bendspanneinrichtungen, wie sie im Stand der Technik erforderlich sind, nicht benötigt werden.

Die optimale Vonnung, mit welcher das Lagerspiel. Valzen weggespannt wird, kann für de Jewelligen Anwendungsfall empirisch wittert wetten und bleibt dann für den Anwendungsfall konstant. Die Optimierung erfolgt vorzugswelse so, daß die im jeweiligen Anwendungsfall auftretende Dehnung des Welzgerüstes beim Egalisieren ermittelt und durch passende Einstellung der Vorspannung kompensiert wird.

Weitere Merkmale und Vortelle der Erfindung ergeben sich aus den beigefügten schematischen Zeichnungen, welche zwei Ausführungsbeispiele der Erfindung zeigen.

- 10 Figur 1 zeigt eine teilweise geschnittene Seltenansicht einer Maschine gemäß der Erfindung.
 - Figur 2 zeigt einen gegenüber der Figur 1 vergrößerten Ausschnitt aus der Maschine, nämlich den Haupttell des Walzgerüstes der Maschine,
 - Figur 3 zeigt eine teilweise geschnittene Vorderansicht des Walzgerüstes, die

15

- Figuren 4-9 zeigen ein Ablaufschema eines ersten mit der Maschine ausführbaren Arbeitsverfahrens, und die
- Figuren 10-15zeigen ein Ablaufschema eines zweiten mit der Maschine ausführbaren Arbeitsverfahrens
- 20 Einander entsprechende Teile sind in den beiden Beispielen mit übereinstimmenden Bezugszahlen bezeichnet.

Die In Figur 1 dargestellte Maschine hat ein Fundament 1, auf welchem in der Mitte ein Walzgerüst 2 aufgebaut ist, vor welchem und hinter welchem jeweils eine Aufnahmeeinrichtung 3 und 4 für eine Haspel 5 und 6 befestigt ist, welche "durch einen elektrischen Servomotor 7, 8 antreibbar ist.

In seitlichen Einbautellen 9 und 10 des Walzgerüsts sind zwei Afbeitswalzen 1 und 12, nachfolgend einfach als Walzen bezeichnet, gelagert, welche gemeinsam einen Walzspalt 13 begrenzen. Oberhalb der oberen Walze 12 und unterhalb der unteren Walze 11 ist jeweils eine im Durchmesser größere Stützwalze 14 bzw. 15 in die Einbauteile 9 und 10 eingebaut.

Ein zu bearbeitendes Metallband 16 läuft von der Häspel 5 über eine Überlaufrolle 17 hinweg in den Walzspalt 13 hinein, tritt durch diesen hindurch und gelangt über eine weitere Überlauffolle 18 auf die zweite Haspel 6, welche das im Walzgerüst 2 bearbeitete Metallband 16 aufwickelt. Zwischen dem Walzspalt 13 und der zweiten Überlauffolle 18 ist noch eine Einrichtung 19 zum Absaugen von Walzöl vorgesehen, in welcher das Metallband 16 von dem Walzöl gereinigt

Der Aufbau des Walzgerüstes 2 ist eingehender in den Figuren 2 und 3 dargestellt. Daraus ergibt sich, daß die beiden Walzen 11 und 12, deren Durchmesser nur ungefähr 1/3 des Durchmessers der Stützwalzen 14 und 15 beträgt, mit ihren Walzenzapfen 20 und 21 in Rollenlagem 22 gelagert sind. Ein Walzenzapfen 21 einer Jeden der beiden Walzen 11 und 12 ist über sein Rollenlager 22 hinaus verlängert und als Teil einer kardanischen Aufhängung 23 ausgebildet, welche den Antrieb der beiden Walzen 11 und 12 jewells mittels einer Kardanwelle 24 ermöglicht. Ein die beiden Walzen 11 und 12 über die Kardanwellen 24 synchron antreibender Elektromotor ist aus Gründen der Vereinfachung nicht dargestellt.

Die Stützwalzen 14 und 15 haben Walzenzapfen 25, welche in Rollenlagern 28 der seitlichen Einbauteile 9 und 10 gelagert eind. Die Walzenzapfen 25 sind über die Rollenlager 26 hinaus verlängert und stecken in Lagerschalen 27, von denen die Lagerschalen der unteren Stützwalze 14 mit dem Fundament 1 verspannt sind, während die Lagerschalen 27 der oberen Stützwalze 15 mit einer darüber angeordneten Traverse 28 verspannt sind. Das Verspannen geschieht jeweils mit

1.0

15

einer von der torschale 27 ausgehenden Gewindes 29 auf welcher ein. Satz Tellerfede 0 angeordnet ist, der durch eine Mu 31 gesparatt wirdt Das ist nur oberhalb der Traverse 28 dargestellt, am Fundament 1 aber in gleicher Weise vorgesehen. Durch diese Vorspannung wird das Lagerspiel der Stützwalzen 14 und 15 und damit dessen Einfluß auf die Abweichungen der Dicke des gewalzten Metallbendes von seiner Solldicke verkleinert. Damit erreichen die Walzen 11 und 12 ebenso wie die Stützwalzen 14 und 15 eine Rundlaufgenauigkeit von ± 1 µm.

Die erforderliche Vorspannung des Walzgerüstes 2 wird mit Hilfe von Spindeln 32 und 33 erzeugt, welche von oben her auf die Traverse 28 und auf die Lagerschalen 27 drücken und durch einen oben auf dem Walzgerüst 2 angeordneten Elektromotor 34 (siehe Figur 1) angetrieben werden. Die geeignete Vorspannung des Walzgerüstes wird empirisch aus der Dehnung des Walzgerüstes im jeweiligen Anwendungsfall ermittelt und so eingestellt, daß die Dehnung kompensiert wird. Nach dieser Voreinstellung arbeitet die erfindungsgemäße Maschine folgendermaßen:

10

15

Das zu bearbeitende Metallband 16 wird von der ersten Haspel 5 abgerollt, durch den Walzspalt 13 hindurchgeführt, bis zur zwelten Haspel 6 gezogen und auf dieser befestigt.

Die erste, untere Walze 11 hat eine zyllndrische Mantelfläche 11. Die zweite, obere Walze 12 hat eine Mantelfläche (Figur 4) mit einem profilierten Abschnitt 35, welcher in Umfangsrichtung der Walze 12 gemessen eine Länge L1 hat, und einen zylindrischen Abschnitt 36, welcher in Umfangsrichtung der Walze 12 gemessen eine Länge L2 hat, belde voneinander getrennt durch zwei Freisparungen 37 und 38. Der zylindrische Abschnitt 36 der Mantelfläche hat den größten Abstand von der Achse der zweiten Walze 12, die Freisparungen 37 und 38 ha-

01/06 '99 DI 21:15 FAX +49 7231 39344

abgestimmt ist auf den La verlauf der Dicke der Sch Metallband 16 schließlich hergestellt werden soll.

In den Figuren 4 bis 15 ist die erste, untere Walze 11, welche zylindrisch ist, nur teilweise dargestellt.

Die Bearbeitung des Metallbandes 16 beginnt damit, daß in das zwischen den beiden Haspeln 5 und 6 gespannte Metallband der zylindrische Abschnitt 36 der zweiten Walze 12 einsticht, und zwar bei langsamer, auf die Umfangsgeschwindigkeit des zylindrischen Abschnitts 36 angepaßter Vorschubgeschwindigkeit des Metalibandes 16. Diese Einstichphase lat in Figur 4 dargestellt, jedoch nicht maßstäblich, sondern mit übertrieben dick dargestelltem Metallband 16. Im weiteren Verlauf der Figuren 5 bis 15 sind auch die Stichabnahmen des Metalibandes durch den Walzvorgang übetrieben dargestellt, um den Walzvorgang deutlicher werden zu lassen. Der zylindrische Abschnitt 36 rollt auf dem Metaliband 16 ab und vermindert dessen Dicke dabei typisch von 0,66 mm auf 0,60 mm unter gleichzeitiger Egatisierung der Dicke. Das Ende des Egallsierschrittes ist in Figur 5 dargestellt. Das Metallband 36 gelangt jetzt aus dem Eingriff des zylindrischen Abschnitts 36 der zweiten Walze 12, welche sich noch ein Stückchen weiter dreht, bis die Freisparung 37 dem Metallband 16 zugewandt ist. Vorzugsweise bei stillgesetzten Walzen 11, 12 wird das Metallband 16 nun durch Umsteuem der beiden Servomotoren 7 und 8 zurückgeholt, und zwar um eine Länge, welche größer als L1, aber kleiner als L2 ist;L2 ist die Länge, auf welcher das Metaliband 16 egalisiert wurde. Die Länge, um welche das Metallband 16 zurückgeholt wird, wird so gewählt, daß im nachsten Schritt (Figur 6), wenn die Bewegung der Walzen 11 und 12 und die Vorschubbewegung des Metallbandes 16 emeut gestartet werden, der profilierte Abschnitt 35 der Walze 12, welcher die auf die Schreibfedem abgestimmte Kontur aufweist, unmittelbar nach dem Beginn des egalisierten Abschnittes des Metallbandes 16 in diesen einsticht (Figur 6) oder geringfügig. z.B. 2 mm, dahinter. Während die Freisparung 37 dem Metallband 16 zugewandt ist, wird durch Verdrehen der Spindeln 32 und 33 die obere, zweite Walze 12 um

10

15

20

25

abgestimmtem Vorschub des Metallbandes 16 mittels der zweiten Haspel 6 wird mit dem profilierten Abschnitt 35 das für die Schreibfeder vorgesehene Profil in den egalisierten Abschnitt des Metallbandes 16 gewalzt (Figuren 6 und 7). Figur 7 zeigt den Endpunkt des Profillerwalzschrittes. Er endet in geringem Abstand vor dem Ende des egalisierten Abschnittes auf dessen Niveau. Bei fortschreitender Drehung der oberen Walze 12 ist deren Freisparung 38 dem Metallband 18 zugewandt. In dieser Phase wird die obere Walze 12 durch die Spindeln 32 und 33 wieder nach oben verlagert, so daß die für den folgenden Egalisierwalzschritt erforderliche Höhe des Walzspaltes 13 eingestellt wird. Die Lage der Freisparung 38 zwischen dem profilierten Abschnitt 35 und dem zylindrischen Abschnitt 36 der zweiten Walze 12 und die Positionierung des Metallbandes 16 im Walzspalt 13 mittels der Serevomotoren 7 und 8 der Haspeln 5 und 6 wird so aufeinander abgestimmt, daß der nächste Einstlich des zylindrischen Abschnitts 36 in einem

Während des Egalisierens und Profilierens sorgt der Servomotor 8 für eine möglichst gleichmäßige Zugspannung im Metaliband 16.

schritt, wie in den Figuren 8 und 9 dargestellt, eingeleitet wird.

kleinen, etwa 2 mm betragenden Abstand hinter dem Ende des zuvor egalisierten Abschnittes des Metalibandes 16 erfolgt (Figur 8), womit ein weiterer Egalisier-

Das in den Figuren fehlende 15 dargestellte Ausführungsbeispiel unterscheidet sich von dem in den Figuren 4 bis 9 dargestellten Ausführungsbeispiel darin, daß die obere Walze 12 nicht nur mit 2 Umfangsabschnitten, sondem mit 3 Umfangsabschnitten 35, 36 und 40, welche durch Freisparungen 37, 38 und 39 voneinander getrennt sind, auf das zu bearbeitende Metallband 16 einwirkt. Das dafür vorgesehene Walzgerüst 2 hat denselben Aufbau, wie er in den Figuren 1 bis 3 dargestellt ist, mit der Maßgabe, daß als obere Walze 12 die in den Figuren 10 bis 15 dargestellte Walze 12 eingesetzt ist.

Der Abschnitt 36 ist zyllndrisch, wo hingegen die beiden Abschritte 35 und 40 ek nicht - zyllndrisches Profil haben. Wie im Beispiel der Figuren 4 bis 9 hat der zyllindrische Abschnitt 36 durchgeben den amführe Abstend von der Achse der

nicht - zylindrisches Profil haben. Wie im Beispiel der Figuren 4 bis 9 hat der zylindrische Abschnitt 36 durchgehend den größten Abstand von der Achse der Walze 12, was vorteilhaft ist, wenn es darum geht, den zylindrischen Abschnitt, welcher dem egalisieren dient, nach Bedarf nachzuschleifen.

Das in den Figuren 10 bis 15 dargestellte Arbeitsverfahren entspricht dem in den Figuren 4 bis 9 dargestellten Arbeitsverfahren mit der Besonderheit, daß nach dem Egallsieren der betreffende Abschnitt des Metallbandes 16 nicht in einem einzigen, sondern in zwei aufeinanderfolgenden Walzschritten profiliert wird, zwischen denen das Metallband 16 noch einmal zurückgeholt wird.

Figur 10 zeigt analog der Figur 4 das Einstechen des zyllndrischen Abschnittes 36 der Walze 12 in das Metallband 16. Figur 11 zeigt analog der Figur 5 das Ende des Egallslerwalzschrittes. Durch Weiterdrehen der oberen Walze 12 gelangt das Metallband 16 aus deren Eingriff und kann durch die Haspel 5 zurückgeholt werden. Während dieser Phase wird die obere Walze 12 mittels der Spindeln 32 und 33 nach unten verlagert, um die Höhe des Walzspaltes 13 für den nachfolgenden ersten Profilierwalzgang einzustellen, dessen Beginn in Figur 12 dargestellt ist. Figur 12 entspricht der Figur 6 und zeigt das Einstechen des ersten nicht zyllndrischen, profilierten Abschnittes 35 der Walze 12. Figur 13 entspricht der Figur 7 und zeigt das Einde des ersten Profilierwalzschrittes.

Beim Weiterdrehen der Walze 12 gelangt das Metallband 16 erneut aus dessen Eingriff heraus und in dieser Phase, während die Freisparung 39 dem Metallband 16 zugewandt ist, wird dieses ein weiteres Mal zurückgeholt und durch Betätigen der Spindeln 32 und 33 der Walzspalt 13 für den zweiten Profillerwalzschritt eingestellt, dessen Beginn mit dem Einstechen des profilierten Umfangsabschnittes 40 in Figur 14 dargestellt ist. Figur 15 zeigt das Ende des zweiten Profilierwalzschrittes. Durch Weiterdrehen der Walze 12 wird das Metallband 16 erneut frei

10

und kann für das malisieren im nachfolgenden Bandabs mitt positioniert werden, unter gleich ger Einstellung der für das Egalisie ongesehenen Höhe des Walzspaltes 16. Es wiederholt sich dann die in den Figuren 10 bis 15 dargestellte Schrittfolge.

- Diese Arbeitsweise eignet sich besonders für das Herstellen von profilierten Abschnitten in Bändern, bei denen die gewünschte Stichabnahme nicht oder nur schwer oder nicht mit der gewünschten Genauigkeit in einem einzigen Profilierwalzschritt erzielt werden kann.
- Die Erfindung kann auch mit mehr als zwei Profilierwalzschritten durchgeführt werden. Um die erforderliche Anzahl von Umfangsabschnitten unterbringen zu können, welche am Walzvorgang teilnehmen, kann der Durchmesser der Walze 12 nach Bedarf vergrößert werden.
- Es ist auch möglich, zusätzlich oder an Stelle eines Egalisierwalzschrittes einen Reduzierwalzschritt vorzusehen, in welchem die Dicke des Metallbandes 16 abschnittsweise zunächst gleichmäßig vermindert wird, bevor sie in einem späteren Walzschritt profillert wird.

Es ist auch möglich, das Metallband 16 nach Bedarf beidseitig zu profilieren. In diesem Fall wird als untere Walze 11 anstelle einer zylindrischen Walze eine Walze eingesetzt, welche außer einem oder mehreren zylindrischen Abschnitten in ähnlicher Weise wie die obere Walze einen oder mehrere profilierte Abschnitte hat, welche durch Freisparungen voneinander getrennt sind. Wenn, wie bevorzugt, die beiden Walzen 11 und 12 getrennt antreibbar sind, können sie für vielfältige Profilieraufgaben eingesetzt werden. So kann bei getrenntem Antrieb der Walzen 11 und 12 immer dafür gesorgt werden, das ein zylindrischer Abschnitt der einen Walze beim Walzvorgang mit einem beliebigen anderen Abschnitt der gegenüberliegenden Walze zusammenarbeitet, unabhängig davon, wie die Abfolge der Abschnitte auf der jeweiligen Walze gewählt ist.

/06 '99 DI 21:17 FAX +49 7231 389444 | POCCA PACHICANMATCA ---

Die Erfindung ist nicht nur anwendbar auf Herstellen von Vormaterialen in federn, sondern auch für das Herstellen anderer bandformiger Vormaterialien, welche in regelmäßig wiederkehrenden Abschnitten profiliert sind, z.B. zur Herstellung eines bandförmigen Vormaterials für die Herstellung von elektrischen Leiterstrukturen wie z.B. Kontaktfedern oder Leadframes.

I. Fundament 2. Walzgerüst 3. Aufnahmeeinrichtung 4. Aufnahmeeinrichtung 5. Haspel 6. Haspel 7. Servomotor 8. Servomotor 10. Einbauteil 10. Einbauteil 11. 1. Walze 12. 2. Walze 13. Walzspalt 15. Stützwalze 16. Metailband 17. Überlaufrolle 18, Überlaufrolle 18, Überlaufrolle 18, Überlaufrolle 20. Walzenzapfen 21. Walzenzapfen 22. Rollenlager 23. kardanlsche Aufhängung 25. 24. Kardanwelle 26. Rollenlager 27. Lagerschale 28. Traverse 30. 29. Gewindestange 30. Tellerfedern 31. Mutter 32. Spindel 33. Spindel 33. Spindel 34. Motor 35. profilierter Abschnitt 37. Freisparung 38. Freisparung 40. profilierter Abschnitt

Ansprüche:

10

15

1. Verfahren zum Herstellen eines abschnittsweise wiederkehrend profilierten bandförmigen Vormaterials aus Metall mittels Walzen (11, 12) eines Walzgerüstes (2), von denen eine Walze (12) in ihrer Mantelfläche einen profilierten Abschnitt (35, 40) mit einer Kontur hat, welche zusammen mit der Kontur der anderen Walze (11) einen Walzspalt (13) begrenzt, dessen Höhe im Verlauf einer Walzenumdrehung veränderlich ist,

durch Bewegen eines Metallbandes (16) durch den Walzspalt (13) in Schritten von vorgegebener Länge (21), welche nicht größer als der Umfang der profilierten Walze (12) ist, wodurch in diesen Schritten in das Metallband (16) abschnittsweise ein zu der Kontur der Walzen (11, 12) komplementares Profil gewalzt wird.

dadurch gekennzelchnet, daß das Metallband (16) zwischen denselben zwei Walzen (11, 12) abschnittsweise in zwei oder mehr als zwei Walzschritten bis zum Erreichen der Tiefe des gewünschten Profils des Vormaterials gewalzt wird.

wozu das Metallband (16) zwischen je zwei aufeinanderfolgenden Walzschritten zurückgeholt und dann der zurückgeholte Abschnitt des Metallbandes (16) erneut gewalzt wird.

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in zwei oder mehr als zwei Walzschritten jeweils ein Profil in den zurückgeholten Abschnitt des Metallbandes (16) gewalzt wird.
 - Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Profil von oben her in das Metallband (18) gewalzt wird.

10

15

- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß von oben her und von unten her ein Profil in das Motaliband (16) gewalzt wird.
- Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Metaliband (16) in einem ersten Walzschnritt nur in seiner Dicke reduziert, aber noch nicht profiliert wird.
 - 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß vor dem Walzen eines Profils das Metallband (16) im Walzspalt (13) zwischen denselben Walzen (11, 12) zunächst in Schritten von einer Länge (L2), welche die Länge (L1) des ersten Profilwalzschrittes nicht unterschreitet, unter mäßiger Abnahme seiner Dicke egalisiert, danach um einen Schritt von mindestens der Länge (L1) des ersten Profilwalzschrittes und höchstens der zweiten Länge (L2) zurückgeholt und danach in den zurückgeholten Abschnitt des Metallbandes (16) das Profil gewalzt wird.

und daß die Walzen (12) zum Egelisleren des Metallbandes (16) auf ihrer Manteifläche einen zylindrischen Umfangsabschnitt (36) haben, welcher ggf. von den eine nicht zylindrische Kontur aufweisenden, profilierten Umfangsabschnitten (35, 40) getrennt ist.

 Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß auf den Reduzierwalzschritt ein oder mehrere Profilierwalzschritte zwischen denselben beiden Walzen (11, 12) folgen.

- Lange (L2) des Reduzierwalzschrittes größer als die Länge (L7) des ale nach stes anschließenden Profilierwalzschrittes ist.
- 10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß das Metallband (16) nach dem Reduzierwalzschritt um eine Länge zurückgeholt wird, welche kleiner ist als die Länge (L2) des Reduzierwalzschrittes und größer ist als die Länge (L1) des als nächstes anschließenden profilierwalzschrittes.
- 11. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeich10 net, daß die beiden Walzen (11, 12) schrittweise und synchron mit dem Vorschub des Metallbandes (16) angetrieben werden.
 - 12. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die beiden Walzen (11, 12) beim Zurückholen des Metalibandes (16) unterschiedlich gedreht werden.
- 13. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß in der Mantelfläche der Walzen (11, 12) zwischen den beim Walzen wirksamen Abschnitten (35, 36, 40) eine Freisparung (37, 38, 39) vorgesehen ist, welche sich über einen solchen Umfangswinkel erstreckt, daß der jeweils folgende, beim Walzen wirksame Umfangsabschnitt (35, 36,40) erst dann in das Metallband (16) eingreift, nachdem der vorhergehende beim Walzen wirksame Umfangsabschnitt das Metallband (16) freigegeben hat.

- 14. Verfahren nær einem der vorstehenden Ansprüche Wertsindung mit Ahspruch 7, dadurch gekennzeichnet, daß die Dicke des Metallbands (16)
 beim Egalisieren größenordnungsmäßig um ein Zehntel der Dicke vermindert wird.
- 5 15. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Drehgeschwindigkeit der Walzen (11, 12) und die Umfangsgeschwindigkeit der zweiten Haspel (16) aufeinander abgestimmt werden, insbesondere in der Phase des Einstechens der Walzen (12, 13) in das Metallband (16).
- 10 16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß das Einstechen einer Walze (12) bei verminderter Drehgeschwindigkeit der Walze (12) und dementsprechend bei verminderter Umfangsgeschwindigkeit der zweiten Haspel (16) erfolgt und daß die Bewegungen darauffolgend beschleunigt werden.

17. Vorrichtung zum Herstellen eines abschnittsweise wiederkehrend profilierten

bandförmigen Vormaterials aus Metall mittels zweier Walzen (11, 12), eines Walzgerüstes (2) von denen eine Walze (12) in ihrer Mantelfläche einen profilierten Abschrift (35, 40) mit einer Kontur hat, welche zusammen mit der Kontur der enderen Walze (11) einen Walzspalt (13) begrenzt, dessen Höhe im Verlauf einer Walzenumdrehung veränderlich ist,
 mit einer auf der Einlaufseite des Walzspalts (13) angeordneten ersten Haspel (5) für das zu profilierende Metaliband (16) und mit einer auf der Auslaufseite des Walzspaltes (13) angeordneten zweiten Haspel (6) für das Aufwikkeln des bandförmigen Vormaterials, dadurch gekennzeichnet, daß die erste (11) und/oder die zweite Walze (12) auf ihrer Mantelfläche zwei oder mehr als zwei in Umfangsrichtung aufeinanderfolgende, getrennte

Umfangsabschnitte

36, 40) hat, die nicht alle

und daß für die auf der Einlaufseite des Walzspattes (13) vorgesehene Haspel (5) ein Antriebsmotor (7) vorgesehen ist, welcher ein Zurückholen des Metallbandes (16) in Schritten von vorgebbarer Länge ermöglicht.

- 18. Vorrichtdung nach Anspruch 17, dadurch gekennzelchnet, daß die beiden Walzen (11, 12) unabhängig voneinander antreibber sind.
- Vorrichtung nach Anspruch 17 oder 18, dadurch gekennzelchnet, daß wenigstens eine Walze (11, 12) einen zylindrischen Umfangsabschnitt (36) hat.
- 10 20. Vorrichtung nach Anspruch 19. dadurch gekennzeichnet, daß beide Walzen (11, 12) einen zylindrischen Umfangsabschnitt (36) haben.
 - Vorrichtung nach einem der Ansprüche 17 bis 20, dadurch gekennzeichnet, daß das Walzgerüst (2) als Egalisierwalzwerk ausgebildet ist.
- 22. Vorrichtung nach einem der Ansprüche 17 bis 21, dadurch gekennzeichnet,
 5 daß der Antriebsmotor (7) für die an der Einlaufselte des Walzspalts (13) vorgesehene Haspel (5) ein elektrischer Servomotor ist.
 - 23. Vorrichtung nach einem der Ansprüche 17 bis 22, dadurch gekennzeichnet, daß die an der Auslaufseite des Walzspalts (13) vorgesehene Haspel (6) durch einen elektrischen Servomotor (8) angetrieben ist.

- 25. Vorrichtung nach einem der Ansprüche 17 bis 23, dadurch gekennzeichnet, daß für den Fall, daß die erste Walze (11) und die zweite Walze (12) nicht von Stützwalzen beaufschlagt sind, die Walzenzapfen (21, 22) der ersten Walze (11) und der zweiten Walze (12) in Ihren Walzenzapfenlagern (22) zur Verringerung Ihres Lagerspieles vorgespannt sind.
- 26. Vorrichtung nach einem der Ansprüche 17 bis 25, dadurch gekennzeichnet, daß die erste und die zweite Walze (11, 12) diskontinuierlich angetrieben sind, derart, daß sie beim Bandvorschub synchron mit der zweiten, auf der Auslaufseite des Walzspalts (13) vorgesehenen Haspel (6) angetrieben sind, wohingegen sie zeitweise stillstehen und/oder durch Vorwärtsdrehung oder Rückwärtsdrehung einzeln oder gemeinsam positioniert werden, wenn die erste, auf der Einlaufseite des Walzspalts (13) vorgesehene Haspel (5) zum Rückholen des Metallbandes (16) umgekehrt angetrieben ist.
- 27. Verfahren nach einem der Ansprüche 17 bis 26, dadurch gekennzeichnet, daß die Umfangsgeschwindigkeit der beiden Walzen (11, 12) und der zweiten Haspel (6), vorzugsweise auch der ersten Haspel (5), willkürlich steuerbar sind

10

Beschrieben werden ein Verfahren und eine Vorrichtung zum Herstellen eines abschnittsweise wiederkehrend profilierten bandförmigen Vormaterials aus Metall mittels Walzen (11, 12) eines Walzgerüstes (2), von denen eine Walze (12) in inner Mantelfläche einen profilierten Abschnitt (35, 40) mit einer Kontur hat, welche zusammen mit der Kontur der anderen Walze (11) einen Walzspalt (13) begrenzt, dessen Höhe im Verlauf einer Walzenumdrehung veränderlich ist, durch Bewegen eines Metallbandes (16) durch den Walzspalt (13) in Schritten von vorgegebener Länge (21), welche nicht größer als der Umfang der profilierten Walze (12) ist, wodurch in diesen Schritten in das Metallband (16) abschnittsweise ein zu der Kontur der Walzen (11, 12) komplementäres Profil gewalzt wird. Das Metallband (16) wird zwischen denselben zwei Walzen (11, 12) abschnittsweise in zwei oder mehr als zwei Walzschritten bis zum Erreichen der Tiefe des gewünschten Profils des Vormaterials gewalzt,

wozu das Metallband (16) zwischen je zwei aufeinanderfolgenden Walzschritten zurückgeholt und dann der zurückgeholte Abschnitt des Metallbandes (16) erneut gewalzt wird.

(Fig. 9)

<u>Fig.1</u>

THIS PAGE BLANK (USPTO)