RKDG Primer

张阳

2023年7月4日

目录

第一章	快速实现	5
1.1	引言	5
1.2	符号说明	6
1.3	一维标量	6
	1.3.1 控制方程	6
	1.3.2 空间离散格式	6
1.4	一维向量	8
1.5	二维向量	8
	1.5.1 控制方程	8
	1.5.2 空间离散格式	8
1.6	时间离散格式	8
	1.6.1 ssp 二阶龙格库塔法	9
	1.6.2 ssp 三阶龙格库塔法	9
1.7	方程解耦	9
1.8	指示子	9
	1.8.1 TVB 指示子	9
	1.8.2 KXRCF 指示子	10
1.9	限制器	10
	1.9.1 非 WENO 类限制器	10
	1.9.2 WENO 类限制器	10
	1.9.3 MR-WENO 限制器	12
第二章	更多知识	15
2.1	双曲型方程 (hyperbolic equation)	15
2.2	指示子	15
2.3	WENO 限制器	15
	2.3.1 再看 WENOJS 限制器	15
	2.3.2 修改光滑指示器	17
	2.3.3 自由设置线性权	18
	2.3.4 HWENO	18
2.4	保极值限制器	18

2.5	数值通量	
	2.5.1 激波	22
	2.5.2 稀疏波	22
	2.5.3 接触间断	22
第三章	附录	23
3.1	边界条件	23
0.1	3.1.1 周期性边界条件	
	· · · · · · · - · · · · · · · · · · · ·	
	3.1.2 常数边界条件	
	3.1.3 反射边界条件	
	3.1.4 滑移边界条件	23
3.2	数学符号	23
	3.2.1 散度	23
	3.2.2 梯度	23
	3.2.3 范数	23
	3.2.4 张量积	24
3.3	定义	24
3.4	控制方程	25
	3.4.1 一维方程	
	3.4.2 二维方程	26
3.5	基函数函数	29
	3.5.1 一维	29
	3.5.2 二维	30
3.6	数值积分	30
3 7	计質結底	21

第一章 快速实现

1.1 引言

图 1.1: 上图为 burgers 方程在初值条件为 $u = \sin(x)$ 时的演变

本文使用的数值方法为间断有限元 discontinuous Galerkin (DG) 法。让我们先简要回顾一下 DG 方法的历史。1973年,Reed 和 Hill[24] 在中子传输框架下提出了第一个不连续 Galerkin (DG) 方法。然后,Cockburn等人在一系列论文中 [9, 8, 6, 11] 对 DG 方法进行了重大发展,其中他们建立了一个框架,使用显式、非线性稳定的高阶 Runge-Kutta 时间离散化和 DG 空间离散化,使用精确或近似的 Riemann 解算器作为界面通量和总变差有界(TVB)限制器 [25],以实现对强不连续性的本质非振荡性。从那时起,这些方案被称为 RKDG 方法。但是,即使初始条件足够平滑,解决(??)也不容易,因为解可能包含强不连续性。不连续 Galerkin (DG)方法可以捕捉弱不连续性而无需进一步修改。然而,对于存在强不连续性的问题,数值解可能在强震荡或接触不连续性附近具有显著的虚假震荡,特别是对于高阶数值方法而言。控制这些虚假震荡的常见策略是应用非线性限制器。

第一章 快速实现

通常,使用限制器的过程可以分为两个步骤。首先,需要确定"坏单元"(也称为"有问题的单元"),即包含间断的单元,这些单元需要进行限制。其次,需要在这些"坏单元"中修正 DG 多项式解。由于守恒的要求,需要保证单元平均值不变,并且减小振荡。

在第一部分中,我们通常使用"坏单元"或称为间断指示器,这些指示器包括基于最小模型的指示器 [9]、基于力矩的指示器 [2]、改进的力矩指示器 [5]、以及基于 DG 超收敛性质的 KXRCF 指示器 [17].

在第二部分中,一种限制器属于斜率型限制器,例如 minmod 类型限制器 [9, 8, 6, 11],基于矩的限制器 [3] 和改进的基于矩的限制器 [5] 等。它们的优点是可以在强间断附近有效抑制伪振荡的出现,但付出的代价是在解的光滑极值点处有可能降低格式的数值精度。另一种限制器基于加权本质非振荡(WENO)方法 [12, 15, 16, 20, 7],它可以在平滑区域中实现高阶精度,并在强不连续性附近保持本质非振荡性质。WENO 格式一经提出,便引起人们的广泛关注,近二十年来,WENO 的各种变形格式层出不穷。例如: 经典的 WENO 限制器 (WENO-js)[23, 28],Hermite WENO 限制器 (HWENO)[21, 22],中心型 WENO 限制器 (CWENO)[19],WENO-M 限制器 [14],WENO-Z 限制器 [4]。但另一方面,基于 WENO 的限制器需要更广泛的空间模板来获得高阶方案。因此,在多维问题中,特别是在非结构化网格上,如三角形网格或四面体网格中实现它们是困难的。

1.2 符号说明

 \hat{h} 数值通量

$$\Delta_+ w_j = w_{j+1} - w_j, \quad \Delta_- w_j = w_j - w_{j-1}$$
 (1.2.1)

1.3 一维标量

离散格式推导与稳定性证明见[10]

1.3.1 控制方程

$$u_t + f(u)_x = 0 (1.3.1)$$

1.3.2 空间离散格式

$$\begin{split} x_l &= x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots < x_{N-\frac{1}{2}} < x_{N+\frac{1}{2}} = x_r. \\ \text{We define cells, cell centers, and cell sizes by} \\ I_i &\equiv \left[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}} \right], \quad x_i \equiv \frac{1}{2} \left(x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}} \right) \\ \Delta x_i &= x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}, \quad i = 1, 2, \dots, N. \end{split}$$

$$u_h(x,t) = \sum_{l=0}^{k} u_i^{(l)}(t) v_l^{(i)}(x), \quad x \in I_i$$
(1.3.2)

1.3 一维标量 7

其中 $u_i^{(l)}(t)$ 为自由度 (degrees of freedom:dof) 或矩, $v_l^{(i)}(x)$ 为基函数。当基函数为正交函数时, $u_i(l)(t)$ 的定义为:

$$u_i^{(l)}(t) = \frac{1}{a_l} \int_{I_i} u_h(x, t) v_l^{(i)}(x) dx \quad l = 0, 1, \dots, k$$
(1.3.3)

其中 $a_l = \int_{I_i} \left(v_l^{(i)}(x) \right)^2 dx$

Remark 1. 如果基函数不是正交函数,需要先求出质量矩阵的值,再求其逆矩阵。

$$\left\| v_l^{(j)}(x) \right\|^2 \frac{\mathrm{d}}{\mathrm{d}t} u(t) + \left[\Delta_- \left(v_l^{(j)} \left(x_{j+1/2} \right) f_{j+1/2} \right) \right] - \int_{I_i} f\left(u^h(x,t) \right) \frac{\mathrm{d}}{\mathrm{d}x} v(x) \mathrm{d}x = 0$$
 (1.3.4)

数值通量:

满足三原则:

- 一致性: $\widehat{f}(u,u) = f(u)$ 。
- 连续性: $\hat{f}(u^-, u^+)$ 至少关于两个参数 u^- 和 u^+ 是 Lipschitz 连续的。
- 单调性: $\hat{f}(u^-, u^+)$ 是第一个参数 u^- 的非降函数和第二个参数 u^+ 的非增函数。符号上, $\hat{f}(\uparrow, \downarrow)$.

以下是几个常见的数值通量 [10]

• Lax-Friedrichs flux

$$\hat{f}^{LF}(u^{-}, u^{+}) = \frac{1}{2} \left(f(u^{-}) + f(u^{+}) - \alpha (u^{+} - u^{-}) \right), \quad \alpha = \max_{u} |f'(u)|$$
 (1.3.5)

• Local Lax-Friedrichs:

$$h^{\text{LLF}}(a,b) = \frac{1}{2} [f(a) + f(b) - \beta(b-a)], \quad \beta = \max_{\min(a,b) \le u \le \max(a,b)} |f'(u)|$$
 (1.3.6)

For convex $f, f'' \ge 0$, one has $\beta = \max(|f'(a)|, |f'(b)|)$

• Godunov flux

$$\hat{f}^{God}\left(u^{-}, u^{+}\right) = \begin{cases} \min_{u^{-} \le u \le u^{+}} f(u), & \text{if } u^{-} < u^{+}, \\ \max_{u^{+} < u < u^{-}} f(u), & \text{if } u^{-} \ge u^{+} \end{cases}$$

$$(1.3.7)$$

• Engquist-Osher flux

$$\hat{f}^{EO} = \int_0^{u^-} \max(f'(u), 0) \, du + \int_0^{u^+} \min(f'(u), 0) \, du + f(0) \tag{1.3.8}$$

• HLL Flux

$$\mathbf{F}_{i+1/2}^{Hll} = \begin{cases} \mathbf{F}_{L}, S_{L} \ge 0 \\ \mathbf{F}^{Hll}, S_{L} < 0 < S_{R} \\ \mathbf{F}_{R}, S_{R} \le 0 \end{cases}$$
 (1.3.9)

其中 S_L, S_R 是间断附近的最小、最大波速,

$$\mathbf{F}^{Hll} = \frac{S_R \mathbf{F}_L - S_L \mathbf{F}_R + S_L S_R \left(\mathbf{U}_R - \mathbf{U}_L \right)}{S_R - S_L}$$
(1.3.10)

HLLC Flux

8 第一章 快速实现

1.4 一维向量

$$\mathbf{U}_t + \mathbf{F}(\mathbf{U})_x = \mathbf{0} \tag{1.4.1}$$

数值通量为:

1.5 二维向量

1.5.1 控制方程

$$\partial_t \mathbf{u} + \operatorname{div} \mathbf{f}(\mathbf{u}) = 0 \tag{1.5.1}$$

1.5.2 空间离散格式

在每个小区间上做二维积分:

$$\frac{d}{dt} \int_{K} u_h(t, x) v_h(x) dx + \int_{K} \operatorname{div} \mathbf{f}(u_h(t, x)) v_h(x) dx = 0, \forall v_h \in V_h$$
(1.5.2)

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{K} u(x,t)v(x)\mathrm{d}x + \sum_{e \in \partial K} \int_{e} \mathbf{f}(u(x,t)) \cdot n_{e,K}v(x)\mathrm{d}\Gamma - \int_{K} \mathbf{f}(u(x,t)) \cdot \operatorname{grad} v(x)\mathrm{d}x = 0$$
(1.5.3)

Remark 2. 特别的,对于矩形网格,有:

其中 $n_{e,K}$ 是边界 e 的标准外法向量。由于函数在小区间边界上间断 f(u) 在 e 上没有定义,和一维的情况类似,需要使用数值通量 $h_{e,K}\left(u_h\left(t,x^{\mathrm{int}(K)}\right),u_h\left(t,x^{\mathrm{ext}(K)}\right)\right)$ 代替 $\mathbf{f}(u_h(t,x))\cdot\mathbf{n}_{e,K}$, 其中:

$$u_{h}(t, x^{int(K)}) = \lim_{\substack{y \to x \\ y \in K}} u_{h}(t, y),$$

$$u_{h}(t, x^{ext(K)}) = \begin{cases} \gamma_{h}(x, t), & \text{if } x \in \partial\Omega, \\ \lim_{\substack{y \to x \\ y \in (K)^{c}}} u_{h}(t, y), & \text{otherwise.} \end{cases}$$

$$(1.5.4)$$

$$h_{e,K}(a,b) = \frac{1}{2} \left[\mathbf{f}(a) \cdot n_{e,K} + \mathbf{f}(b) \cdot n_{e,K} - \alpha_{e,K}(b-a) \right].$$
 (1.5.5)

1.6 时间离散格式

 Δt 的取值大小要求为: [31]

$$\alpha \frac{\Delta t}{\Delta x} \le \text{CFL}$$
 (1.6.1)

即:

$$\Delta t \leqslant \frac{\Delta x}{\alpha} \text{CFL}$$
 (1.6.2)

对于二维情况,

$$\Delta t \leqslant \frac{\Delta x}{\alpha} \text{CFL}$$
 (1.6.3)

1.7 方程解耦 9

1.6.1 ssp 二阶龙格库塔法

ssp(strong stability-preserving) 方法见: [13]

$$u^{(1)} = u^{n} + \Delta t L (u^{n})$$

$$u^{n+1} = \frac{1}{2} u^{n} + \frac{1}{2} u^{(1)} + \frac{1}{2} \Delta t L (u^{(1)})$$
(1.6.4)

1.6.2 ssp 三阶龙格库塔法

$$u^{(1)} = u^{n} + \Delta t L (u^{n})$$

$$u^{(2)} = \frac{3}{4} u^{n} + \frac{1}{4} u^{(1)} + \frac{1}{4} \Delta t L (u^{(1)}),$$

$$u^{n+1} = \frac{1}{3} u^{n} + \frac{2}{3} u^{(2)} + \frac{2}{3} \Delta t L (u^{(2)}),$$

$$(1.6.5)$$

1.7 方程解耦

对于双曲型方程

$$\mathbf{U}_t + \mathbf{F}(\mathbf{U})_x = \mathbf{0} \tag{1.7.1}$$

由链式法则可以得到:

$$\mathbf{U}_t + \mathbf{F}_u \mathbf{U}_x = \mathbf{0} \tag{1.7.2}$$

记 $A = F_u$,因为方程为双曲型方程,所以 A 可对角化,即存在可逆矩阵 P 使得

$$\Lambda = P^{-1}AP \tag{1.7.3}$$

1.8 指示子

指示子英文为 indicator。限制器的一个重要组成部分是指示子,指示子可以找出存在强间断的小区间。

1.8.1 TVB 指示子

1、基于 minmod 函数的 TVB 限制器 [6] (简称 TVB)

$$u_{i+\frac{1}{2}}^{-} = u_i^{(0)} + \tilde{u}_i, \quad u_{i-\frac{1}{2}}^{+} = u_i^{(0)} - \tilde{u}_i$$
(1.8.1)

我们可以看到

$$\tilde{u}_i = \sum_{l=1}^k u_i^{(l)} v_l^{(i)} \left(x_{i+\frac{1}{2}} \right), \quad \tilde{\tilde{u}}_i = -\sum_{l=1}^k u_i^{(l)} v_l^{(i)} \left(x_{i-\frac{1}{2}} \right)$$
(1.8.2)

$$\tilde{u}_{j}^{(\text{mod})} = m\left(\tilde{u}_{j}, \Delta_{+}u_{j}^{(0)}, \Delta_{-}u_{j}^{(0)}\right), \quad \tilde{\tilde{u}}^{(\text{mod})} = m\left(\tilde{\tilde{u}}_{j}, \Delta_{+}u_{j}^{(0)}, \Delta_{-}u_{j}^{(0)}\right), \tag{1.8.3}$$

其中

$$m(a_1, a_2, \dots, a_n) = \begin{cases} a_1 & \text{if } |a_1| \le Mh^2 \\ s \cdot \min_{1 \le j \le n} |a_j| & \text{if } \operatorname{sign}(a_1) = \operatorname{sign}(a_2) = \dots = \operatorname{sign}(a_n) = s, \\ 0 & \text{otherwise} \end{cases}$$
(1.8.4)

1.8.2 KXRCF 指示子

KXRCF 指示子利用了 DG 方法的超收敛性 [18],把小单元 $I_{i,j}$ 的边界 $\partial I_{i,j}$ 分成 $\partial I_{i,j}^+$ 两部分,分别对应流体流入和流出 $I_{i,j}$ 的边界。

$$\frac{\left| \int_{\partial I_{i,j}^{-}} \left(u_h(x,y,t) |_{I_{i,j}} - u_h(x,y,t) |_{I_l} \right) ds \right|}{h_{i,j}^{R} \left| \partial I_{i,j}^{-} \right| \cdot || |\widehat{u_h}(x,y,t) |_{\partial I_{i,j}} ||} \ge C_k, \tag{1.8.5}$$

其中,R=1 当 k=1, R=1.5 当 k>1. $h_{i,j}$ 为 $I_{i,j}$ 外接圆的半径。 C_k 为常数,一般可取 $C_k=1$. I_l 为 $I_{i,j}$ 在 $\partial I_{i,j}^-$ 一侧的相邻单元。 u_h 可取守恒量,或者由守恒量引申出的物理量, $||||\widehat{u_h}(x,y,t)|_{\partial I_{i,j}}|||||$ 为 $||\widehat{u_h}(x,y,t)|_{\partial I_{i,j}}|$ 在 $\partial I_{i,j}$ 上的最大值。 $|\partial I_{i,j}^-|$ 的长度。

1.9 限制器

1.9.1 非 WENO 类限制器

1.9.2 WENO 类限制器

WENO-JS 限制器

WENO 全称为 Weighted Essentially Non-Oscillatory。WENO 限制器的思想是:使用周围的小区间上守恒量的平均值来重构当前小区间的函数,再使用得到的新函数来修正原高阶自由度,从而达到修正限制的目的。下面我们简单介绍 WENO 限制器在一维标量方程上的使用方法,一维系统的情况请参阅 [23].

- Step 1: 首先我们在 Gauss 或 Gauss-Lobatto 积分点处重构 u 的点值。对于基于 \mathbb{P}^k 的 DG(精度为 (k+1) 阶),我们需要一个至少精确到 O (h^{2k+2}) 的 Gauss 或 Gauss-Lobatto 积分规则,而 WENO 重构的精度必须 至少为 2k+1。为此,我们需要使用相邻的 2k+1 个单元 $I_{i-k}\cdots I_{i+k}$ 的单元平均值来重构 u 的点值。
 - **Step 1.1.** 我们确定 k+1 个小的模板 S_j ,其中 $j=0,1,\cdots,k$,使得 I_i 属于每个模板。记 $S_j=\cup_{l=0}^k I_{i+j-l}$ 。 我们用 $\mathcal{T}=\cup_{j=0}^k S_j$ 表示包含所有 k+1 个小模板的大模板. 在每个模板 S_j , $j=0,\ldots,k$ 构造一个 k 次多项式重构 $p_j(x)$,使得每个模板 S_j 中每个单元格中 $p_j(x)$ 的平均值与给定的 u 的单元格平均值相符,即

$$\frac{1}{\Delta x_{i+j-l}} \int_{I_{i+j-l}} p_j(x) dx = u_{i+j-l}^{(0)}, \quad l = 0, \dots, k.$$
(1.9.1)

在更大的模板 \mathcal{T} 上,我们再重构一个 2k 次多项式 Q(x),使得

$$\frac{1}{\Delta x_{i+l}} \int_{I_{i+l}} Q(x) dx = u_{i+l}^{(0)}, \quad l = -k, \dots, k.$$
(1.9.2)

关于 $p_j(x)$ 和 Q(x) 的构造细节可以在文献 [7] 中找到。

1.9 限制器 11

Step 1.2. 我们找到组合系数,也称为线性权重,记为 $\gamma_0, \ldots, \gamma_k$,满足

$$Q(x_G) = \sum_{j=0}^{k} \gamma_j p_j(x_G)$$
 (1.9.3)

其中 x_G 是 Gauss 积分点。不同的积分点对应不同的线性权重。

Step 1.3. 我们计算每个权重组 S_j 的平滑度指示器,表示 $p_j(x)$ 在目标单元 I_i 中的平滑程度。平滑度指示器 β_j 越小,函数 $p_j(x)$ 在目标单元中的平滑度就越高,我们使用以下平滑度指示器:

$$\beta_j = \sum_{l=1}^k \int_{I_i} \Delta x_i^{2l-1} \left(\frac{\partial^l}{\partial x^l} p_j(x) \right)^2 dx \tag{1.9.4}$$

Step 1.4. 我们基于平滑度指示器计算非线性权重,

$$\omega_j = \frac{\bar{\omega}_j}{\sum_l \bar{\omega}_l}, \quad \bar{\omega}_j = \frac{\gamma_j}{(\varepsilon + \beta_j)^2},$$
(1.9.5)

其中, γ_j 是在 **Step 1.2.** 中确定的线性权重, ε 是一个很小的数,用于避免分母为零。在本文中,我们在所有计算中使用 $\varepsilon=10^{-6}$ 。最终的 WENO 近似为:

$$u_{(x_G)} \approx \sum_{j=0}^{k} \omega_j p_j(x_G) \tag{1.9.6}$$

Step 2: 基于在 Gauss 积分点 x_G 上重构的点值 $u(x_G)$ 和数值积分,我们得到重构函数的高阶自由度:

$$u_i^{(l)} = \frac{1}{||v_l^{(j)}||^2} \sum_G w_G u(x_G) v_l^{(i)}(x_G), \quad l = 1, \dots, k$$
(1.9.7)

其中, w_G 是 Gauss 积分点 x_G 对应的高斯积分权重。

表 1.1

$x_G = x_{i+1/2}$	$u_{i-2}^{(0)}$	$u_{i-1}^{(0)}$	$u_i^{(0)}$	$u_{i+1}^{(0)}$	$u_{i+2}^{(0)}$
$P_0(x)$	$\frac{1}{3}$	$-\frac{7}{6}$	$\frac{11}{6}$		
$P_1(x)$		$-\frac{1}{6}$	$\frac{5}{6}$	$\frac{1}{3}$	
$P_2(x)$			$\frac{1}{3}$	$\frac{5}{6}$	$-\frac{1}{6}$
$Q = \frac{1}{10}p_0 + \frac{6}{10}p_1 + \frac{3}{10}p_2$	$\frac{1}{30}$	$-\frac{13}{60}$	$\frac{47}{60}$	$\frac{9}{20}$	$-\frac{1}{20}$
$x_G = x_{i + \sqrt{5}/10}$	$u_{i-2}^{(0)}$	$u_{i-1}^{(0)}$	$u_i^{(0)}$	$u_{i+1}^{(0)}$	$u_{i+2}^{(0)}$
$P_0(x)$	$-\frac{1}{60} + \frac{\sqrt{5}}{20}$	$\frac{1}{30} - \frac{\sqrt{5}}{5}$	$\frac{59}{60} + \frac{3\sqrt{5}}{20}$		
$P_1(x)$		$-\frac{1}{60} - \frac{\sqrt{5}}{20}$	$\frac{31}{30}$	$-\frac{1}{60} + \frac{\sqrt{5}}{20}$	
$P_2(x)$			$\frac{59}{60} - \frac{3\sqrt{5}}{20}$	$\frac{1}{30} + \frac{\sqrt{5}}{5}$	$-\frac{1}{60} - \frac{\sqrt{5}}{20}$
$Q = \frac{91 + 9\sqrt{5}}{440}p_0 + \frac{129}{220}p_1 + \frac{91 - 9\sqrt{5}}{440}P_2$	$\frac{1+6\sqrt{5}}{600}$	$-\frac{7+21\sqrt{5}}{300}$	$\frac{313}{300}$	$\frac{-7+21\sqrt{5}}{300}$	$\frac{1-6\sqrt{5}}{600}$

For $x_G = x_{i+1/2}$, we have

$$p_{0}(x_{G}) = \frac{1}{3}u_{i-2}^{(0)} - \frac{7}{6}u_{i-1}^{(0)} + \frac{11}{6}u_{i}^{(0)}$$

$$p_{1}(x_{G}) = -\frac{1}{6}u_{i-1}^{(0)} + \frac{5}{6}u_{i}^{(0)} + \frac{1}{3}u_{i+1}^{(0)},$$

$$p_{2}(x_{G}) = \frac{1}{3}u_{i}^{(0)} + \frac{5}{6}u_{i+1}^{(0)} - \frac{1}{6}u_{i+2}^{(0)},$$

$$Q(x_{G}) = \frac{1}{30}u_{i-2}^{(0)} - \frac{13}{60}u_{i-1}^{(0)} + \frac{47}{60}u_{i}^{(0)} + \frac{9}{20}u_{i+1}^{(0)} - \frac{1}{20}u_{i+2}^{(0)},$$

$$(1.9.8)$$

and

$$\gamma_0 = \frac{1}{10}, \quad \gamma_1 = \frac{6}{10}, \quad \gamma_2 = \frac{3}{10}$$
(1.9.9)

For $x_G = x_{i+\sqrt{5}/10}$ we have

$$p_{0}(x_{G}) = \left(-\frac{1}{60} + \frac{\sqrt{5}}{20}\right) u_{i-2}^{(0)} + \left(\frac{1}{30} - \frac{\sqrt{5}}{5}\right) u_{i-1}^{(0)} + \left(\frac{59}{60} + \frac{3\sqrt{5}}{20}\right) u_{i}^{(0)},$$

$$p_{1}(x_{G}) = \left(-\frac{1}{60} - \frac{\sqrt{5}}{20}\right) u_{i-1}^{(0)} + \frac{31}{30} u_{i}^{(0)} + \left(-\frac{1}{60} + \frac{\sqrt{5}}{20}\right) u_{i+1}^{(0)},$$

$$p_{2}(x_{G}) = \left(\frac{59}{60} - \frac{3\sqrt{5}}{20}\right) u_{i}^{(0)} + \left(\frac{1}{30} + \frac{\sqrt{5}}{5}\right) u_{i+1}^{(0)} + \left(-\frac{1}{60} - \frac{\sqrt{5}}{20}\right) u_{i+2}^{(0)},$$

$$Q(x_{G}) = \frac{1 + 6\sqrt{5}}{600} u_{i-2}^{(0)} - \frac{7 + 21\sqrt{5}}{300} u_{i-1}^{(0)} + \frac{313}{300} u_{i}^{(0)} + \frac{-7 + 21\sqrt{5}}{300} u_{i+1}^{(0)} + \frac{1 - 6\sqrt{5}}{600} u_{i+2}^{(0)},$$

$$(1.9.10)$$

and

$$\gamma_0 = \frac{91 + 9\sqrt{5}}{440}, \quad \gamma_1 = \frac{129}{220}, \quad \gamma_2 = \frac{91 - 9\sqrt{5}}{440}$$
(1.9.11)

1.9.3 MR-WENO 限制器

Step 1: 1

Step 1.1. 在有问题的单元 I_j 上定义一系列不同次数的多项式。我们构造多项式 $q_\ell(x)$, $\ell=0,\ldots,k$,满足以下条件:

$$\int_{I_j} q_{\ell}(x) v_l^j(x) dx = \int_{I_j} u_h(x) v_l^j(x, y) dx, \ l = 0, 1, \dots, \ell.$$
(1.9.12)

Remark 3. 如果我们采用规范正交基 $v_l^{(0)}(x)$, 那么不同的多项式 $q_\ell(x)$, $\ell=0,1,\ldots,k$ 的构造非常简单。在这种情况下,我们可以直接得到多项式

$$q_{\ell}(x) = \sum_{l=0}^{\ell} u_j^{(l)}(t) v_l^{(j)}(x), \ \ell = 0, 1, \dots, k.$$
(1.9.13)

Step 1.2. 我们通过以下方式构造多项式 $p_{\ell,\ell}(x), p_{\ell,\ell+1}\ell(x) = 1, ..., k$

$$p_{\ell,\ell}(x) = \frac{1}{\gamma_{\ell,\ell}} q_{\ell}(x) - \frac{\gamma_{\ell-1,\ell}}{\gamma_{\ell,\ell}} p_{\ell-1,\ell}(x), \ell = 1, \dots, k,$$
(1.9.14)

$$p_{\ell,\ell+1}(x) = \omega_{\ell,\ell} p_{\ell,\ell}(x) + \omega_{\ell-1,\ell} p_{\ell-1,\ell}(x), \ell = 1, \dots, k-1$$
(1.9.15)

1.9 限制器 13

这些表达式中, $\gamma_{\ell-1,\ell}$ 和 $\gamma_{\ell,\ell}$ 是线性权重,要求 $\gamma_{\ell-1,\ell}+\gamma_{\ell,\ell}=1$,且 $\gamma_{\ell-1,\ell},\gamma_{\ell,\ell}>0$.由于对于平滑解来说,高阶解通常是最好的,因此我们给予高阶多项式更高的线性权重,基于低阶多项式更小的线性权重。即:

$$\gamma_{\ell,\ell} \gg \gamma_{\ell-1,\ell} \tag{1.9.16}$$

当比值 $\frac{\gamma_{\ell,\ell}}{\gamma_{\ell-1,\ell}}$ 的值较小时,可以在不连续性上获得更好的结果,而当值较大时,通常对于平滑解更好。在我们的数值测试中,我们取

$$\gamma_{\ell-1,\ell} = 0.01, \quad \gamma_{\ell,\ell} = 0.99, \quad \ell = 1, \dots, k$$
 (1.9.17)

这可以在平滑区域中保持原始的高阶,在所有数值例子中都可以保持基本上非振荡的冲击过渡。 $\omega_{\ell-1,\ell}$ 和 $\omega_{\ell,\ell}$ 是非线性权重(稍后将准确地介绍)。

Step 1.3. 计算光滑指示器 β_{ℓ,ℓ_2} , 其衡量了 $p_{\ell,\ell_2}(x,y)$ for $\ell = \ell_2 - 1, \ell_2; \ell_2 = 1, 2, 3, 4$ 在小区间 I_j 上的光滑程度. 具体来说: β_{ℓ,ℓ_2} 越小,说明 $p_{\ell,\ell_2}(x,y)$ 在 I_j 上越光滑。

$$\beta_{l_1, l_2} = \sum_{l=1}^{k} \int_{I_i} \Delta x_i^{2l-1} \left(\frac{\partial^l}{\partial x^l} p_{l_1, l_2}(x) \right)^2 dx \tag{1.9.18}$$

由于 $p_{0,1}(x)$ 是一个常值函数, $p'_{0,1}(x) = 0$,因此无法使用统一的(1.9.18)式来衡量其光滑程度,因此 我们为 $p_{0,1}(x)$ 设计了其独有的限制器:

定义线性函数 $q_{0,1}(x), q_{0,2}(x)$ 满足:

$$\int_{I_{j-1}} q_{0,1}(x) v_l^{(j-1)}(x) dx = \int_{I_{j-1}} u_h(x) v_l^{(j-1)} dx, \quad l = 0, 1, \dots, k$$

$$\int_{I_{j+1}} q_{0,1}(x) v_l^{(j+1)}(x) dx = \int_{I_{j+1}} u_h(x) v_l^{(j+1)} dx, \quad l = 0, 1, \dots, k$$
(1.9.19)

再构造 ς_1, ς_2 , 其定义如下:

$$\varsigma_1 = \int_{I_j} \left(\frac{\mathrm{d}}{\mathrm{d}x} q_{0,1} \right)^2 \mathrm{d}x, \quad \varsigma_2 = \int_{I_j} \left(\frac{\mathrm{d}}{\mathrm{d}x} q_{0,1} \right)^2 \mathrm{d}x$$
(1.9.20)

 $\beta_{0.1}$ 定义取 ς_1, ς_2 的最小值:

$$\beta_{0,1} = \min\{\varsigma_1, \varsigma_2\}. \tag{1.9.21}$$

Step 1.4. 基于线性权重和光滑性指标计算非线性权重。我们采用文献 [4] 中所示的 WENO-Z 的做法, τ_{ℓ_2} 定义如下:

$$\tau_{\ell_2} = (\beta_{\ell_2,\ell_2} - \beta_{\ell_2-1,\ell_2})^2 \tag{1.9.22}$$

$$\omega_{\ell_1,\ell_2} = \frac{\bar{\omega}_{\ell_1,\ell_2}}{\sum_{\ell=\ell_1-1}^{\ell_2} \bar{\omega}_{\ell,\ell_2}}, \quad \bar{\omega}_{\ell_1,\ell_2} = \gamma_{\ell_1,\ell_2} \left(1 + \frac{\tau_{\ell_2}}{\epsilon + \beta_{\ell_1,\ell_2}} \right)$$
(1.9.23)

得到最终的拟合函数:

$$p^{\text{new}}(x) = \sum_{\ell=\ell_2-1}^{\ell_2} \omega_{\ell,\ell_2} p_{\ell,\ell_2}(x), \quad \ell_2 = 1, 2, 3, 4,$$
(1.9.24)

$$u_j^{(l)}(t) = \frac{1}{\|v_l^{(j)}\|^2} \int_{I_j} u(x,t) v_l^{(j)}(x) dx, \quad l = 0, 1, \dots, k.$$
 (1.9.25)

14 第一章 快速实现

Step 2: 修正高阶矩

Remark 4. 如果不修正线性权重,那么最终会得到 $p^{new}(x) = p^{old}(x)$.

$$p^{new}(x) = \gamma_{l_1, l_2} p_{l_1, l_2}(x) + \gamma_{l_2, l_2} p_{l_2, l_2}(x)$$

$$= \gamma_{l_1, l_2} p_{l_1, l_2}(x) + \gamma_{l_2, l_2} \left(\frac{1}{\gamma_{l_2, l_2}} q_{l_2}(x) - \frac{\gamma_{l_1, l_2}}{\gamma_{l_2, l_2}} p_{l_1, l_2}(x) \right)$$

$$= q_{l_2}(x) = p^{old}(x)$$

$$(1.9.26)$$

$$\beta_{\ell,\ell_2} = \sum_{|\alpha|=1}^{\kappa} \int \left(\Delta x_i \Delta y_j\right)^{|\alpha|-1} \left(\frac{\partial^{|\alpha|}}{\partial x^{\alpha_1} \partial y^{\alpha_2}} p_{\ell,\ell_2}(x,y)\right)^2 dx dy \tag{1.9.27}$$

特别的:

$$p_{01} = q_{0}$$

$$p_{11} = \frac{1}{\gamma_{11}} q_{1} - \frac{\gamma_{01}}{\gamma_{11}} p_{01}$$

$$p_{12} = \omega_{11} p_{11} + \omega_{01} p_{0,1}$$

$$p_{22} = \frac{1}{\gamma_{22}} q_{2} - \frac{\gamma_{12}}{\gamma_{22}} p_{12}$$

$$(1.9.28)$$

$$p^{\text{MR-WENO2}}(x, y, z) = \omega_{0,1} p_{0,1}(x, y, z) + \omega_{1,1} p_{1,1}(x, y, z),$$

$$p^{\text{MR-WENO3}}(x, y, z) = \omega_{1,2} p^{MR-WENO2}(x, y, z) + \omega_{2,2} p_{2,2}(x, y, z)$$
(1.9.29)

第二章 更多知识

2.1 双曲型方程 (hyperbolic equation)

2.2 指示子

2.3 WENO 限制器

2.3.1 再看 WENOJS 限制器

WENOJS 限制器的构造

WENO 最早被设计出来是作为有限差分法,有限体积法的格式用的。WENO 对计算流体力学领域产生了深远的影响,在过去的几十年中,各种 WENO 格式的变形层出不穷,直到今天仍然有很多人在做这方面的研究。

目标是找到 k-1 次多项式 p,满足:

$$p_i(x) = v(x) + O(\Delta x^k), \quad x \in I_i, \quad i = 1, ..., N$$
 (2.3.1)

考虑函数

$$V(x) \equiv \int_{-\infty}^{x} v(\xi)d\xi \tag{2.3.2}$$

从而

$$V\left(x_{i+\frac{1}{2}}\right) = \sum_{j=-\infty}^{i} \int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} v(\xi) d\xi = \sum_{j=-\infty}^{i} \bar{v}_{j} \Delta x_{j}$$
(2.3.3)

 $r,s\geq 0$, with r+s+1=k 使用 k+1 个点 $x_{i-r-\frac{1}{2}},\ldots,x_{i+s+\frac{1}{2}}$, 上的 V(x) 的值插值得到函数 P(x), 记 p(x)=P'(x), 则:

$$\frac{1}{\Delta x_{j}} \int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} p(\xi) d\xi = \frac{1}{\Delta x_{j}} \int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} P'(\xi) d\xi = \frac{1}{\Delta x_{j}} \left(P\left(x_{j+\frac{1}{2}}\right) - P\left(x_{j-\frac{1}{2}}\right) \right)$$

$$= \frac{1}{\Delta x_{j}} \left(V\left(x_{j+\frac{1}{2}}\right) - V\left(x_{j-\frac{1}{2}}\right) \right)$$

$$= \frac{1}{\Delta x_{j}} \left(\int_{-\infty}^{x_{j+\frac{1}{2}}} v(\xi) d\xi - \int_{-\infty}^{x_{j-\frac{1}{2}}} v(\xi) d\xi \right)$$

$$= \frac{1}{\Delta x_{j}} \int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} v(\xi) d\xi = \bar{v}_{j}, \quad j = i - r, \dots, i + s, \tag{2.3.4}$$

16 第二章 更多知识

由数值分析可以得到:

$$P'(x) = V'(x) + O\left(\Delta x^{k}\right), \quad x \in I_{i}$$
(2.3.5)

在光滑的情况下,如果有:

$$\omega_r = d_r + O\left(\Delta x^{k-1}\right), \quad r = 0, \dots, k-1$$
 (2.3.6)

那么:

$$v_{i+\frac{1}{2}} = \sum_{r=0}^{k-1} \omega_r v_{i+\frac{1}{2}}^{(r)} = v\left(x_{i+\frac{1}{2}}\right) + O\left(\Delta x^{2k-1}\right)$$
(2.3.7)

这是因为:

$$\sum_{r=0}^{k-1} \omega_r v_{i+\frac{1}{2}}^{(r)} - \sum_{r=0}^{k-1} d_r v_{i+\frac{1}{2}}^{(r)} = \sum_{r=0}^{k-1} (\omega_r - d_r) \left(v_{i+\frac{1}{2}}^{(r)} - v \left(x_{i+\frac{1}{2}} \right) \right)$$

$$= \sum_{r=0}^{k-1} O\left(\Delta x^{k-1} \right) O\left(\Delta x^k \right) = O\left(\Delta x^{2k-1} \right)$$
(2.3.8)

 β_r 被称为模板 $S_r(i)$ 的光滑指示器"smooth indicators"。如果 v(x) 在模板 $S_r(i)$ 是光滑的,那么:

$$\beta_r = O\left(\Delta x^2\right) \tag{2.3.9}$$

但是如果 v(x) 在模板 $S_r(i)$ 有间断,那么:

$$\beta_r = O(1) \tag{2.3.10}$$

对应到非线性权, 当 v(x) 在模板 $S_r(i)$ 是光滑的, 那么:

$$\omega_r = O\left(\Delta x^4\right) \tag{2.3.11}$$

但是如果 v(x) 在模板 $S_r(i)$ 有间断,那么:

$$\omega_r = O(1) \tag{2.3.12}$$

One also has to worry about the accuracy requirement (2.56), which must be checked when the specific form of the smooth indicator β_r is given. For any smooth indicator β_r , it is easy to see that the weights defined by (2.58) satisfies (2.53). To satisfy (2.56), it suffices to have, through a Taylor expansion analysis:

$$\beta_r = D\left(1 + O\left(\Delta x^{k-1}\right)\right), \quad r = 0, \dots, k-1$$
 (2.3.13)

where D is a nonzero quantity independent of r (but may depend on Δx).

WENO-JS 的局限性

- 对于非结构化网络,需要计算线性权重,计算较为繁琐
- 耗散较大,捕捉细小尺度的流动结构不够精确
- 需要用到的模板较大,紧致性差(破坏了 DG 方法的紧致性)。
- 在部分光滑情况下存在丢精度的可能。

2.3 WENO 限制器 17

2.3.2 修改光滑指示器

WENO-M

WENO-M 限制器在文章 [14] 中被提出,在该文章中。作者详细分析了 WENO 实现预期精度的的充要条件,并且指出 WENO-JS 格式会在 critical points 附近会损失精度,但是由于 ϵ ,这一特点没有在 WENO-JS 中被发现,并且给出了一个新的格式 MWENO 克服了这一问题。

$$\omega_k^{(JS)} = \frac{\alpha_k}{\sum_{i=0}^2 \alpha_i}, \quad \text{where } \alpha_k = \frac{\bar{\omega}_k}{(\epsilon + \beta_k)^p},$$
(2.3.14)

为了满足五阶格式的要求,需要满足以下充要条件:

$$\sum_{k=0}^{2} (\omega_k - \bar{\omega}_k) = \mathcal{O}\left(\Delta x^6\right), \qquad (2.3.15a)$$

$$\left(3\omega_1^{(+)} - 3\omega_1^{(-)} - \omega_2^{(+)} + \omega_2^{(-)} + \omega_3^{(+)} - \omega_3^{(-)}\right) = O\left(\Delta x^3\right)$$
(2.3.15b)

$$(\omega_k - \bar{\omega}_k) = \mathcal{O}\left(\Delta x^2\right) \tag{2.3.15c}$$

假如光滑指示器可以写成下面的形式:

$$\beta_k = D\left(1 + \mathcal{O}(\Delta x)^2\right) \tag{2.3.16}$$

其中 D 是一些与 k 无关的非零常数

$$\bar{\omega}_k = \frac{\gamma_k}{\left(D\left(1 + \mathcal{O}(\Delta x)^2\right)\right)^p} = \frac{\gamma_k}{D^p} \left(1 + \mathcal{O}\left(\Delta x^2\right)\right) \tag{2.3.17}$$

$$\sum_{k=0}^{2} \alpha_k = \frac{1}{D^p} \left(1 + \mathcal{O} \left(\Delta x^2 \right) \right)$$
 (2.3.18)

taking into account that $\sum_{k=0}^{2} \bar{\omega}_k = 1$. Thus $\omega_k^{(JS)}$, as defined in Eq. (30), is given by

$$\omega_k^{(JS)} = \bar{\omega}_k + \mathcal{O}\left(\Delta x^2\right) \tag{2.3.19}$$

which agrees with Eq. (29c). Note that Eq. (29b) is still not satisfied by enforcing Eq. (31).

$$g_k(\omega) = \frac{\omega \left(\bar{\omega}_k + \bar{\omega}_k^2 - 3\bar{\omega}_k\omega + \omega^2\right)}{\bar{\omega}_k^2 + \omega \left(1 - 2\bar{\omega}_k\right)}$$
(2.3.20)

$$\alpha_k^* = g_k \left(\omega_k^{(JS)} \right) \tag{2.3.21}$$

$$\omega_k^{(M)} = \frac{\alpha_k^*}{\sum_{i=0}^2 \alpha_i^*} \tag{2.3.22}$$

WENO-Z

$$\beta_0 = \frac{13}{12} \left(f_{i-2} - 2f_{i-1} + f_i \right)^2 + \frac{1}{4} \left(f_{i-2} - 4f_{i-1} + 3f_i \right)^2, \tag{2.3.23a}$$

$$\beta_1 = \frac{13}{12} \left(f_{i-1} - 2f_i + f_{i+1} \right)^2 + \frac{1}{4} \left(f_{i-1} - f_{i+1} \right)^2, \tag{2.3.23b}$$

$$\beta_2 = \frac{13}{12} \left(f_i - 2f_{i+1} + f_{i+2} \right)^2 + \frac{1}{4} \left(3f_i - 4f_{i+1} + f_{i+2} \right)^2. \tag{2.3.23c}$$

18 第二章 更多知识

$$\beta_0 = f_i'^2 \Delta x^2 + \left(\frac{13}{12} f_i''^2 - \frac{2}{3} f_i' f_i'''\right) \Delta x^4 - \left(\frac{13}{6} f_i'' f_i''' - \frac{1}{2} f_i' f_i''''\right) \Delta x^5 + \mathcal{O}\left(\Delta x^6\right), \tag{2.3.24a}$$

$$\beta_1 = f_i^{\prime 2} \Delta x^2 + \left(\frac{13}{12} f_i^{\prime \prime 2} + \frac{1}{3} f_i^{\prime} f_i^{\prime \prime \prime}\right) \Delta x^4 + \mathcal{O}\left(\Delta x^6\right), \tag{2.3.24b}$$

$$\beta_2 = f_i^{\prime 2} \Delta x^2 + \left(\frac{13}{12} f_i^{\prime \prime 2} - \frac{2}{3} f_i^{\prime} f_i^{\prime \prime \prime}\right) \Delta x^4 + \left(\frac{13}{6} f_i^{\prime \prime} f_i^{\prime \prime \prime} - \frac{1}{2} f_i^{\prime} f_i^{\prime \prime \prime}\right) \Delta x^5 + \mathcal{O}\left(\Delta x^6\right). \tag{2.3.24c}$$

$$\tau_5 = |\beta_0 - \beta_2| = \frac{13}{3} |f_i'' f_i'''| \Delta x^5 + O(\Delta x^6)$$
(2.3.25)

$$\beta_k^z = \left(\frac{\beta_k + \epsilon}{\beta_k + \tau_5 + \epsilon}\right), \quad k = 0, 1, 2 \tag{2.3.26}$$

$$\omega_k^z = \frac{\alpha_k^z}{\sum_{l=0}^2 \alpha_l^z}, \quad \alpha_k^z = \frac{d_k}{\beta_k^z} = d_k \left(1 + \frac{\tau_5}{\beta_k + \epsilon} \right), \quad k = 0, 1, 2$$
 (2.3.27)

假设在模板 2 中存在间断,那么 $\beta_2 > \beta_k$,从而:

$$\frac{\beta_k^z}{\beta_2^z} = \frac{\beta_k}{\beta_2} \frac{\beta_2 + \tau_5}{\beta_k + \tau_5} \geqslant \frac{\beta_k}{\beta_2}, \quad k = 0, 1, \tag{2.3.28}$$

所以,相比于 WENO-JS, WENO-Z 会增加间断模板的权重。

WENO-Z+

2.3.3 自由设置线性权

2.3.4 HWENO

2.4 保极值限制器

[26] 标量守恒性方程

$$u_t + \nabla \cdot \mathbf{F}(u) = 0$$
 and $u(\mathbf{x}, 0) = u_0(\mathbf{x})$ (2.4.1)

一个很重要的性质就是它满足最大值原则。具体来说,如果 $M = \max_x u_0(x), m = \min_x u_0(x)$,那么 $u(x,t) \in [m,M]$. 对任意的 x,t 都满足。所以,我们也希望数值解也满足这个性质。因为在一些情况下,超出了这个范围,就会得到无物理意义的解。比如负密度,或者负百分比,或者某个多组分混合物中某个组分的百分比大于

这样的限制器在多项流问题中尤为重要。

对于 DG 中的数值解 u_h , 它可以写成

$$u_h = \overline{u_h} + (u_h - \overline{u_h}) \tag{2.4.2}$$

首先,可以证明, 当 Δt 充分小时, $\overline{u_h} \in [m, M]$,

2.4 保极值限制器 19

Theorem 1. 对于格式

$$u_j^{n+1} = u_j^n - \lambda \left[\hat{f}(u_j^n, u_{j+1}^n) - \hat{f}(u_{j-1}^n, u_j^n) \right]$$
(2.4.3)

其中 $\lambda = \frac{\Delta t}{\Delta x}$, h 是全局 L-F 通量 (Lax-Friedrichs, Godunov 好像也可以):

$$h(u,v) = \frac{1}{2}[f(u) + f(v) - a(u-v)], \quad a = \max_{u} |f'(u)|$$
 (2.4.4)

如果满足 CFL 条件 $\lambda a \leq 1$, 且 $u_i^n \in [m, M], \forall j$, 则 $u_{i+1}^n \in [m, M], \forall j$ 。

证明. 记 $H\left(u_{j-1}^n,u_{j}^n,u_{j+1}^n\right)=u_{j}^n-\lambda\left[h\left(u_{j}^n,u_{j+1}^n\right)-h\left(u_{j-1}^n,u_{j}^n\right)\right]$,则 H(u,u,u)=u。把 H 完全展开得:

$$\begin{split} H\left(u_{j-1}^{n},u_{j}^{n},u_{j+1}^{n}\right) &= u_{J}^{n} - \lambda \left[h\left(u_{j}^{n},u_{j+1}^{n}\right) - h\left(u_{j-1}^{n},u_{j}^{n}\right)\right] \\ &= u_{j}^{n} - \frac{\lambda}{2}\left[f\left(u_{j}^{n}\right) + f\left(u_{j+1}^{n}\right) - a\left(u_{j+1}^{n} - u_{j}^{n}\right) - f\left(u_{j-1}\right) - f\left(u_{j}\right) + a\left(u_{j} - u_{j-1}\right)\right] \\ &= (1 - \lambda a)u_{j}^{n} + \frac{\lambda}{2}\left[au_{j+1}^{n} - f\left(u_{j+1}^{n}\right)\right] + \frac{\lambda}{2}\left[au_{j-1}^{n} - f\left(u_{j-1}^{n}\right)\right] \end{split} \tag{2.4.5}$$

注意到

$$\begin{cases}
H_b(b, c, d) = \frac{\lambda}{2} (a - f'(b)) \geqslant 0 \\
H_d(b, c, d) = \frac{\lambda}{2} (a - f'(d)) \geqslant 0 \\
H_c(b, c, d) = 1 - \lambda a \geqslant 0
\end{cases}$$
(2.4.6)

因此 H 对三个变量都是单调增加的,即 $H(\uparrow,\uparrow,\uparrow)$,从而

$$m = H(m, m, m) \le H\left(u_{j-1}^n, u_{j}^n, u_{j+1}^n\right) \le H(M, M, M) = M \tag{2.4.7}$$

Theorem 2. 设 $x_{j-1/2} = \hat{x}_{j}^{1} < \hat{x}_{j}^{2} < \dots < \hat{x}_{j}^{N} = x_{j+1/2}$, 其中 \hat{x}_{j} 是 Gauss-Lobatto 积分点,满足 $2N-3 \geq k$, k 是近似多项式的次数。记 $\hat{v}_{\alpha} := p_{j}\left(\hat{x}_{j}^{\alpha}\right)$,特别的,记 $\hat{v}_{0} = u_{j-1/2}^{-}, \hat{v}_{N+1} = u_{j+1/2}^{+} \hat{\omega}_{\alpha}$ 是对应的权重,满足 $\hat{\omega}_{1} + \dots + \hat{\omega}_{N} = 1$ 。如果格式满足 CFL 条件

$$\lambda a \le \min_{\alpha} \hat{\omega}_{\alpha} \tag{2.4.8}$$

那么,只要所有的 $\hat{v}_{\alpha}\in[m,M]$ 且 $\bar{u}_{j}^{n}\in[m,M]$,就有 $\bar{u}_{j+1}^{n}\in[m,M]$ 。

证明.

$$\bar{u}_{j}^{\text{new}} = \bar{u}_{j} - \lambda \left[h \left(u_{j+1/2}^{-}, u_{j+1/2}^{+} \right) - h \left(u_{j-1/2}^{-}, u_{j-1/2}^{+} \right) \right]$$
(2.4.9)

我们有

$$h\left(u_{j+1/2}^{-}, u_{j+1/2}^{+}\right) - h\left(u_{j-1/2}^{-}, u_{j-1/2}^{+}\right) = h\left(\hat{v}_{N}, \hat{v}_{N+1}\right) - h\left(\hat{v}_{0}, \hat{v}_{1}\right)$$

$$= \sum_{\alpha=1}^{N} h\left(\hat{v}_{\alpha}, \hat{v}_{\alpha+1}\right) - h\left(\hat{v}_{\alpha-1}, \hat{v}_{\alpha}\right)$$
(2.4.10)

而单元平均值满足 $\bar{u}_j^n=\frac{1}{\Delta x}\int_{I_j}p_j(x)\mathrm{d}x=\sum_{\alpha=1}^N\hat{\omega}_\alpha\hat{v}_\alpha$,于是

20 第二章 更多知识

$$\begin{split} \bar{u}_{j+1}^{n} &= \bar{u}_{j}^{n} - \lambda \left[h \left(u_{j+1/2}^{-}, u_{j+1/2}^{+} \right) - h \left(u_{j-1/2}^{-}, u_{j-1/2}^{+} \right) \right] \\ &= \sum_{\alpha=1}^{N} \hat{\omega}_{\alpha} \hat{v}_{\alpha} - \lambda \sum_{\alpha=1}^{N} \left[h \left(\hat{v}_{\alpha}, \hat{v}_{\alpha+1} \right) - h \left(\hat{v}_{\alpha-1}, \hat{v}_{\alpha} \right) \right] \\ &= \sum_{\alpha=1}^{N} \left\{ \hat{\omega}_{\alpha} \hat{v}_{\alpha} - \lambda \left[h \left(\hat{v}_{\alpha}, \hat{v}_{\alpha+1} \right) - h \left(\hat{v}_{\alpha-1}, \hat{v}_{\alpha} \right) \right] \right\} \\ &= \sum_{\alpha=1}^{N} \hat{\omega}_{\alpha} \left\{ \hat{v}_{\alpha} - \frac{\lambda}{\hat{\omega}_{\alpha}} \left[h \left(\hat{v}_{\alpha}, \hat{v}_{\alpha+1} \right) - h \left(\hat{v}_{\alpha-1}, \hat{v}_{\alpha} \right) \right] \right\} \\ &= \sum_{\alpha=1}^{N} \hat{\omega}_{\alpha} H_{j}^{\alpha} \end{split}$$

$$(2.4.11)$$

其中 $H_j^\alpha = \hat{v}_\alpha - \frac{\lambda}{\hat{\omega}_\alpha} \left[h\left(\hat{v}_\alpha, \hat{v}_{\alpha+1}\right) - h\left(\hat{v}_{\alpha-1}, \hat{v}_\alpha\right) \right]$ 。则根据已知条件,所有的 $\hat{v}_\alpha \in [m, M]$ $\lambda a \leq \hat{\omega}_\alpha$,即 $\frac{\lambda}{\hat{\omega}_\alpha} a \leq 1$,因此根据 Lemma 1 有 $H_j^\alpha \in [m, M]$,从而可得 $\bar{u}_j^{n+1} \in [m, M]$,因为 \bar{u}_j^{n+1} 就是这些 H_j^α 的一个凸组合。 \square

此外,对于 $(u_h - \overline{u_h})$,可以乘一个权重 θ ,使得最终得到的数值解 u_h^{new} 也满足极值原则。

$$u_h^{\text{new}} = \overline{u_h} + \theta(u_h - \overline{u_h}) \tag{2.4.12}$$

$$\theta = \min \left\{ \left| \frac{M - \bar{u}_j^n}{M_j - \bar{u}_j^n} \right|, \left| \frac{m - \bar{u}_j^n}{m_j - \bar{u}_j^n} \right|, 1 \right\}$$

$$(2.4.13)$$

$$M_j = \max_{x \in I_i} p_j(x)$$
 and $m_j = \min_{x \in I_i} p_j(x)$ (2.4.14)

并且这种方法得到的 u_h^{new} 是保精度的。

对于二维的情况:

$$\bar{u}_{ij}^{n+1} = \bar{u}_{ij}^{n} - \frac{\Delta t}{\Delta x \Delta y} \int_{y_{j-1/2}}^{y_{j+1/2}} \hat{f} \left[u_{i+1/2,j}^{-}(y), u_{i+1/2,j}^{+}(y) \right] - \hat{f} \left[u_{i-1/2,j}^{-}(y), u_{i-1/2,j}^{+}(y) \right] dy - \frac{\Delta t}{\Delta x \Delta y} \int_{x_{i-1/2}}^{x_{i+1/2}} \hat{g} \left[u_{i,j+1/2}^{-}(x), u_{i,j+1/2}^{+}(x) \right] - \hat{g} \left[u_{i,j-1/2}^{-}(x), u_{i,j-1/2}^{+}(x) \right] dx$$

$$(2.4.15)$$

$$\bar{u}_{ij}^{n+1} = \bar{u}_{ij}^{n} - \lambda_{1} \sum_{\beta=1}^{L} w_{\beta} \left[\hat{f} \left(u_{i+1/2,\beta}^{-}, u_{i+1/2,\beta}^{+} \right) - \hat{f} \left(u_{i-1/2,\beta}^{-}, u_{i-1/2,\beta}^{+} \right) \right]$$

$$- \lambda_{2} \sum_{\beta=1}^{L} w_{\beta} \left[\hat{g} \left(u_{\beta,j+1/2}^{-}, u_{\beta,j+1/2}^{+} \right) - \hat{g} \left(u_{\beta,j-1/2}^{-}, u_{\beta,j-1/2}^{+} \right) \right].$$

$$(2.4.16)$$

See figure 1 a for an illustration for k=2 . For simplicity, let $\mu_1=\lambda_1a_1/(\lambda_1a_1+\lambda_2a_2)$ and $\mu_2=\lambda_2a_2/(\lambda_1a_1+\lambda_2a_2)$ where $a_1=\max|f'(u)|$ and $a_2=\max|g'(u)|$. Notice that $\hat{w}_1=\hat{w}_N$, we have

2.4 保极值限制器 21

$$\begin{split} & \bar{u}_{ij}^{n} = \frac{1}{\Delta x \Delta y} \int_{x_{i-1/2}}^{x_{i+1/2}} \int_{y_{j-1/2}}^{y_{j+1/2}} p_{ij}(x,y) \, dxdy \\ & = (\mu_{1} + \mu_{2}) \frac{1}{\Delta x \Delta y} \int_{x_{i-1/2}}^{x_{i+1/2}} \int_{y_{j-1/2}}^{y_{j+1/2}} p_{ij}(x,y) \, dxdy \\ & = \frac{\mu_{1}}{\Delta x \Delta y} \int_{x_{i-1/2}}^{x_{i+1/2}} \int_{y_{j-1/2}}^{y_{j+1/2}} p_{ij}(x,y) dy \, dx + \frac{\mu_{2}}{\Delta x \Delta y} \int_{y_{j-1/2}}^{y_{j+1/2}} \int_{x_{i-1/2}}^{x_{i+1/2}} p_{ij}(x,y) dx \, dy \\ & = \mu_{1} \sum_{\beta=1}^{L} \sum_{\alpha=1}^{N} w_{\beta} \hat{w}_{\alpha} p_{ij} \left(\hat{x}_{i}^{\alpha}, y_{j}^{\beta} \right) + \mu_{2} \sum_{\beta=1}^{L} \sum_{\alpha=1}^{N} w_{\beta} \hat{w}_{\alpha} p_{ij} \left(x_{i}^{\beta}, \hat{y}_{j}^{\alpha} \right) \\ & = \sum_{\beta=1}^{L} \sum_{\alpha=2}^{N-1} w_{\beta} \hat{w}_{\alpha} \left[\mu_{1} p_{ij} \left(\hat{x}_{i}^{\alpha}, y_{j}^{\beta} \right) + \mu_{2} p_{ij} \left(x_{i}^{\beta}, \hat{y}_{j}^{\alpha} \right) \right] \\ & + \sum_{\beta=1}^{L} w_{\beta} \hat{w}_{1} \left[\mu_{1} u_{i+1/2,\beta}^{-} + \mu_{1} u_{i-1/2,\beta}^{+} + \mu_{2} u_{\beta,j+1/2}^{-} + \mu_{2} u_{\beta,j-1/2}^{+} \right] \end{split}$$

Theorem 2.6. Consider a two-dimensional finite volume scheme or the scheme satisfied by the cell averages of the D G method on rectangular meshes (2.13), associated with the approximation polynomials $p_{ij}(x,y)$ of degree k (either reconstruction or D G polynomials) . If $u^{\pm}_{\beta,j\pm 1/2}, u^{\pm}_{i\pm 1/2,\beta} \in [m,M]$ and $p_{ij}(x,y) \in [m,M]$ (for any $(x,y) \in S_{ij}$), then $\bar{u}^{n+1}_j \in [m,M]$ under the CFL condition

$$\lambda_1 a_1 + \lambda_2 a_2 \le \hat{w}_1. \tag{2.4.18}$$

证明.

$$\bar{u}_{ij}^{n+1} = \sum_{\beta=1}^{L} \sum_{\alpha=2}^{N-1} w_{\beta} \hat{w}_{\alpha} \left[\mu_{1} p_{ij} \left(\hat{x}_{i}^{\alpha}, y_{j}^{\beta} \right) + \mu_{2} p_{ij} \left(x_{i}^{\beta}, \hat{y}_{j}^{\alpha} \right) \right]
+ \mu_{1} \sum_{\beta=1}^{L} w_{\beta} \hat{w}_{1} \left[u_{i+1/2,\beta}^{-} - \frac{\lambda_{1}}{\mu_{1} \hat{w}_{1}} \left(\hat{f} \left(u_{i+1/2,\beta}^{-}, u_{i+1/2,\beta}^{+} \right) - \hat{f} \left(u_{i-1/2,\beta}^{+}, u_{i+1/2,\beta}^{-} \right) \right) \right]
+ u_{i-1/2,\beta}^{+} - \frac{\lambda_{1}}{\mu_{1} \hat{w}_{1}} \left(\hat{f} \left(u_{i-1/2,\beta}^{+}, u_{i+1/2,\beta}^{-} \right) - \hat{f} \left(u_{i-1/2,\beta}^{-}, u_{i-1/2,\beta}^{+} \right) \right) \right]
+ \mu_{2} \sum_{\beta=1}^{L} w_{\beta} \hat{w}_{2} \left[u_{\beta,j+1/2}^{-} - \frac{\lambda_{2}}{\mu_{2} \hat{w}_{1}} \left(\hat{g} \left(u_{\beta,j+1/2}^{-}, u_{\beta,j+1/2}^{+} \right) - \hat{g} \left(u_{\beta,j-1/2}^{-}, u_{\beta,j+1/2}^{-} \right) \right) \right]
+ u_{\beta,j-1/2}^{+} - \frac{\lambda_{2}}{\mu_{2} \hat{w}_{1}} \left(\hat{g} \left(u_{\beta,j-1/2}^{+}, u_{\beta,j+1/2}^{-} \right) - \hat{g} \left(u_{\beta,j-1/2}^{-}, u_{\beta,j-1/2}^{+} \right) \right) \right]$$

22 第二章 更多知识

2.5 数值通量

- 2.5.1 激波
- 2.5.2 稀疏波
- 2.5.3 接触间断

总而言之:接触波是一种不连续的波,在其上压力和粒子速度都是恒定的,但密度不连续地跳跃,依赖于密度的变量,如比内能、温度、声速、熵等,也是不连续的。

第三章 附录

3.1 边界条件

- 3.1.1 周期性边界条件
- 3.1.2 常数边界条件
- 3.1.3 反射边界条件
- 3.1.4 滑移边界条件

3.2 数学符号

3.2.1 散度

在三维直角坐标系 xyz 中,设向量场 \boldsymbol{A} 的表示为 $\boldsymbol{A}(x,y,z) = A_x(x,y,z)\boldsymbol{i} + A_y(x,y,z)\boldsymbol{j} + A_z(x,y,z)\boldsymbol{k}$ 其中的 $\boldsymbol{i},\boldsymbol{j},\boldsymbol{k}$ 分别是 x 轴、y 轴、z 轴方向上的单位向量,场的分量 A_x,A_y,A_z 具有一阶连续偏导数,那么向量场 \boldsymbol{A} 的散度就是:

$$\operatorname{div} \mathbf{A} = \nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$
(3.2.1)

3.2.2 梯度

 ∇f 在三维直角坐标系中表示为

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$$
(3.2.2)

i,j,k 为标准的单位向量,分别指向 x,y 跟 z 坐标的方向。

3.2.3 范数

范数(norm)是一个函数,它将一个向量映射到非负实数。在机器学习和优化中,范数是一种衡量向量 大小或长度的方式。

L1, L2 和 L 无穷范数是线性代数中的三种不同的向量范数(或向量长度度量),它们在数学和数据科学领域中经常使用。

24 第三章 附录

L1 范数: L1 范数也称为曼哈顿距离,它是一个向量中每个元素的绝对值之和。对于一个 n 维向量 x = (x1, x2, ..., xn),其 L1 范数定义如下:

$$||x||_1 = |x_1| + |x_2| + \dots + |x_n| \tag{3.2.3}$$

L2 范数: L2 范数也称为欧几里得距离,它是向量中每个元素平方和的平方根。对于一个 n 维向量 $x = (x_1, x_2, \dots, x_n)$,其 L2 范数定义如下:

$$||x||_2 = \sqrt{(x_1^2 + x_2^2 + \dots + x_n^2)}$$
 (3.2.4)

 L_{∞} 范数: L_{∞} 范数也称为最大值范数,它是向量中所有元素的绝对值中最大的值。对于一个 n 维向量 $x=(x_1,x_2,\cdots,x_n)$,其 L_{∞} 定义如下:

$$||x||_{\infty} = \max(|x_1|, |x_2|, \cdots, |x_n|)$$
 (3.2.5)

这些向量范数在机器学习和优化算法中经常使用,例如 L1 和 L2 正则化(用于缩小模型参数),L1 和 L2 距离度量(用于计算相似性或距离),以及 L1 和 L2 约束(用于限制变量的取值范围)。

3.2.4 张量积

3.3 定义

Definition 1. Through the text, we will use the standard Bachmann-Landau notation, where

- $g(\Delta x) = O(\Delta x^n)$ denotes an upper bound to $g(\Delta x)$, that is, $|g(\Delta x)| \leq C\Delta x^n$ for some C > 0 as $\Delta x \to 0$.
- $g(\Delta x) = \Omega(\Delta x^n)$ denotes a lower bound to $g(\Delta x)$, that is, $|g(\Delta x)| \ge C\Delta x^n$ for some C > 0 as $\Delta x \to 0$.
- $g(\Delta x) = \Theta(\Delta x^n)$ denotes the exact order of $g(\Delta x)$, that is, $g(\Delta x) = O(\Delta x^n)$ and $g(\Delta x) = \Omega(\Delta x^n)$ as $\Delta x \to 0$.

Notice that, by this definition, g = O(1) does not mean that g is a constant; instead, it means that a constant is an upper bound to g as $\Delta x \to 0$ or, in other words, that g does not asymptotically grow with Δx . For example, $\Delta x^{2/3} = O(1)$ in this notation.

Definition 2. If $f(x_c) = f'(x_c) = \dots = f^{(n_{cp})}(x_c) = 0$ but $f^{(n_{cp}+1)}(x_c) \neq 0, x_c$ is said to be a critical point of order n_{cp} of f(x). If $f'(x_c) \neq 0, x_c$ is defined as a critical point of order 0 of f(x).

Definition 3. $\theta(\psi(\Delta x))$ will denote the order of ψ (as a function of Δx), that is, the power of Δx in the leading term of the asymptotic expansion of $\psi(\Delta x)$,

$$\theta(\psi) = n \Longleftrightarrow \psi(\Delta x) = \Theta(\Delta x^n) \tag{3.3.1}$$

 $\theta_0(\psi(\Delta x))$ will denote the order of ψ in the special case where the stencil is free of critical points.

3.4 控制方程

3.4.1 一维方程

欧拉方程

方程形式

$$\mathbf{U} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \equiv \begin{bmatrix} \rho \\ \rho u \\ E \end{bmatrix}, \quad \mathbf{F} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix} \equiv \begin{bmatrix} \rho u \\ \rho u^2 + p \\ u(E+p) \end{bmatrix}$$
(3.4.1)

或

$$\mathbf{F}(\mathbf{U}) = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix} \equiv \begin{bmatrix} u_2 \\ \frac{1}{2}(3-\gamma)\frac{u_2^2}{u_1} + (\gamma-1)u_3 \\ \gamma \frac{u_2}{u_1}u_3 - \frac{1}{2}(\gamma-1)\frac{u_2^3}{u_1^2} \end{bmatrix}$$
(3.4.2)

这里 ρ 为密度, p 为压力, u 为粒子速度, E 为每单位体积的总能量。

$$E = \frac{1}{2}\rho u^2 + \frac{p}{\gamma - 1} \tag{3.4.3}$$

对于空气,一般可取 $\gamma = 1.4$. 声速 a 的表达式为:

$$a = \sqrt{\left(p/\rho^2 - e_\rho\right)/e_p} = \sqrt{\frac{\gamma p}{\rho}} \tag{3.4.4}$$

特征分析 Jacobian 矩阵为:

$$\mathbf{A}(\mathbf{U}) = \frac{\partial \mathbf{F}}{\partial \mathbf{U}} = \begin{bmatrix} \partial f_1 / \partial u_1 \partial f_1 / \partial u_2 \partial f_1 / \partial u_3 \\ \partial f_2 / \partial u_1 \partial f_2 / \partial u_2 \partial f_2 / \partial u_3 \\ \partial f_3 / \partial u_1 \partial f_3 / \partial u_2 \partial f_3 / \partial u_3 \end{bmatrix}$$
(3.4.5)

$$\mathbf{A}(\mathbf{U}) = \begin{bmatrix} 0 & 1 & 0 \\ -\frac{1}{2}(\gamma - 3) \left(\frac{u_2}{u_1}\right)^2 & (3 - \gamma) \left(\frac{u_2}{u_1}\right) & \gamma - 1 \\ -\frac{\gamma u_2 u_3}{u_1^2} + (\gamma - 1) \left(\frac{u_2}{u_1}\right)^3 & \frac{\gamma u_3}{u_1} - \frac{3}{2}(\gamma - 1) \left(\frac{u_2}{u_1}\right)^2 & \gamma \left(\frac{u_2}{u_1}\right) \end{bmatrix}$$
(3.4.6)

$$\begin{bmatrix} 0 & 1 & 0 \\ -\frac{1}{2}(3-\gamma)u^2 & (3-\gamma)u & (\gamma-1) \\ -\gamma\frac{Eu}{\rho} + (\gamma-1)u^3 & \gamma\frac{E}{\rho} - \frac{3}{2}(\gamma-1)u^2 & \gamma u \end{bmatrix}$$
(3.4.7)

A(U) 的特征值为:

$$\lambda_1 = u - a, \lambda_2 = u, \lambda_3 = u + a \tag{3.4.8}$$

左右特征向量为 [29]:

$$L_{j}(u) = \begin{pmatrix} \frac{B_{2} + \mu/c}{2} & -\frac{B_{1}\mu + 1/c}{2} & \frac{B_{1}}{2} \\ 1 - B_{2} & B_{1}\mu & -B_{1} \\ \frac{B_{2} - \mu/c}{2} & -\frac{B_{1}\mu - 1/c}{2} & \frac{B_{1}}{2} \end{pmatrix}$$
(3.4.9)

26 第三章 附录

$$R_{j}(u) = \begin{pmatrix} 1 & 1 & 1 \\ \mu - c & \mu & \mu + c \\ H - c\mu & \mu^{2}/2 & H + c\mu \end{pmatrix}$$
(3.4.10)

where $c=\sqrt{\gamma p/\rho}, B_1=(\gamma-1)/c^2, B_2=B_1\mu^2/2$ and $H=(E+p)/\rho$. 对应的右特征向量为:

$$\mathbf{K}^{(1)} = \begin{bmatrix} 1 \\ u - a \\ H - ua \end{bmatrix}, \mathbf{K}^{(2)} = \begin{bmatrix} 1 \\ u \\ \frac{1}{2}u^2 \end{bmatrix}, \mathbf{K}^{(3)} = \begin{bmatrix} 1 \\ u + a \\ H + ua \end{bmatrix}$$
(3.4.11)

其中 H 为总比焓 (total specific enthalpy), h 为比焓 (specific enthalpy).

$$H = (E+p)/\rho \equiv \frac{1}{2}u^2 + h, \quad h = e + p/\rho$$
 (3.4.12)

算例

Example 1.

$$\rho(x,0) = 1 + 0.2 \sin \pi x$$

$$u(x,0) = 0.7$$

$$p(x,0) = 1$$
(3.4.13)

计算区域为 [0,2], 周期边界条件, 解析解为:

$$\rho(x,t) = 1 + 0.2 \sin \pi (x - 0.7t)$$

$$u(x,t) = 0.7$$

$$p(x,t) = 1$$
(3.4.14)

Example 2. *Lax* 激波管问题 [31]:

$$\begin{array}{ll} (\rho,v,p) = (0.445,0.698,3.528) & \exists \, x \leqslant 0, \\ (\rho,v,p) = (0.5,0,0.571) & \exists \quad x > 0. \end{array} \eqno(3.4.15)$$

计算区域为 [-5,5] 两瑞均是常数边界条件, 我们求解该问题至 T=1.3.

Example 3. Shu Osher 问题 [31],

$$(\rho, v, p) = (3.857143, 2.629369, 10.333333) \quad \exists x \le -4,$$

$$(\rho, v, p) = (1 + \varepsilon \sin(5x), 0, 1) \qquad \exists x > -4.$$
(3.4.16)

选取 $\epsilon = 0.2$, 计算区域为 [-5,5], 两端边界条件按初值条件给定后保持不变, 求解至时间 T = 1.8

3.4.2 二维方程

欧拉方程

方程形式

$$\mathbf{U}_t + \mathbf{F}(\mathbf{U})_x + \mathbf{G}(\mathbf{U})_y = \mathbf{0} \tag{3.4.17}$$

3.4 控制方程

其中

$$\mathbf{U} = \begin{bmatrix} \rho \\ \rho u \\ \rho v \\ E \end{bmatrix}, \quad \mathbf{F} = \begin{bmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ u(E+p) \end{bmatrix}, \quad \mathbf{G} = \begin{bmatrix} \rho v \\ \rho u v \\ \rho v^2 + p \\ v(E+p) \end{bmatrix}$$
(3.4.18)

其中

$$E = \frac{p}{\gamma - 1} + \frac{1}{2}\rho \left(u^2 + v^2\right) \tag{3.4.19}$$

27

同时

$$F = \begin{bmatrix} u_{2} \\ \frac{u_{2}^{2}}{u_{1}} + (\gamma - 1)u_{4} + \frac{1 - \gamma}{2} \frac{u_{2}^{2} + u_{3}^{2}}{u_{1}} \\ \frac{u_{2}u_{3}}{u_{1}} \\ \frac{u_{2}}{u_{1}} \left(\gamma u_{4} + \frac{1 - \gamma}{2} \frac{u_{2}^{2} + u_{3}^{2}}{u_{1}} \right) \end{bmatrix}, \quad G = \begin{bmatrix} u_{3} \\ \frac{u_{2}u_{3}}{u_{1}} \\ \frac{u_{3}^{2}}{u_{1}} + (\gamma - 1)u_{4} + \frac{1 - \gamma}{2} \frac{u_{2}^{2} + u_{3}^{2}}{u_{1}} \\ \frac{u_{3}}{u_{1}} \left(\gamma u_{4} + \frac{1 - \gamma}{2} \frac{u_{2}^{2} + u_{3}^{2}}{u_{1}} \right) \end{bmatrix}$$
(3.4.20)

特征分析 特征值为

$$\lambda_1 = u - a, \quad \lambda_2 = \lambda_3 = u, \quad \lambda_4 = u + a \tag{3.4.21}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ \frac{\gamma(u_2 - 3)^2 + (\gamma - 1)u_3^2}{2u_1^2} & -(\gamma - 3)\frac{u_2}{u_1} & -(\gamma - 1)\frac{u_3}{u_1} & \gamma - 1 \\ -\frac{u_2u_3}{u_1^2} & \frac{u_3}{u_1} & \frac{u_3}{u_1} & \frac{u_2}{u_1} & 0 \\ \frac{u_2}{u_1}\frac{((\gamma - 1)(u_2^2 + u_3^2) - \gamma u_1 u_4)}{u_1^2} & \frac{3u_2^2 - \gamma u_3^2 - 3\gamma u_2^2 + u_3^2 + 2\gamma u_1 u_4}{2u_1^2} & -\frac{u_2u_3(\gamma - 1)}{u_1^2} & \frac{\gamma u_2}{u_1} \end{bmatrix}$$

$$(3.4.22)$$

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ -\frac{u_2 u_3}{u_1^2} & \frac{u_3}{u_1} & \frac{u_2}{u_1} & 0 \\ \frac{\gamma u_2^2 + \gamma u_3^2 - u_2^2 - 3 u_3^2}{2 u_1^2} & -\frac{u_2 (\gamma - 1)}{u_1} & -\frac{u_3 (\gamma - 3)}{u_1} & \gamma - 1 \\ \frac{u_3}{u_1} \frac{((\gamma - 1)(u_2^2 + u_3^2) - \gamma u_1 u_4)}{u_1^2} & -(\gamma - 1) \frac{u_2 u_3}{u_1^2} & \frac{(1 - \gamma)u_2^2 + 3(1 - \gamma)u_3^2 + 2\gamma u_1 u_4}{2 u_1^2} & \frac{\gamma u_3}{u_1} \end{bmatrix}$$
(3.4.23)

$$F_{U} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -u^{2} + \frac{1}{2}(\gamma - 1)\mathbf{V}^{2} & (3 - \gamma)u & -(\gamma - 1)v & \gamma - 1 \\ -uv & v & u & 0 \\ u \left[\frac{1}{2}(\gamma - 1)\mathbf{V}^{2} - H \right] & H - (\gamma - 1)u^{2} & -(\gamma - 1)uv & \gamma u \end{bmatrix}.$$
 (3.4.24)

其中 $\mathbf{V}^2 = v^2 + u^2$,

左右特征向量为 [29]:

$$L_{ij}^{x}(u) = \begin{bmatrix} \frac{B_{2} + \mu/c}{2} & -\frac{B_{1}\mu + 1/c}{2} & -\frac{B_{1}v}{2} & \frac{B_{1}}{2} \\ v & 0 & -1 & 0 \\ 1 - B_{2} & B_{1}\mu & B_{1}v & -B_{1} \\ \frac{B_{2} - \mu/c}{2} & -\frac{B_{1}\mu - 1/c}{2} & -\frac{B_{1}v}{2} & \frac{B_{1}}{2} \end{bmatrix}, \quad R_{ij}^{x}(u) = \begin{bmatrix} 1 & 0 & 1 & 1 \\ \mu - c & 0 & \mu & \mu + c \\ v & -1 & v & v \\ H - c\mu & -v & \frac{\mu^{2} + v^{2}}{2} & H + c\mu \end{bmatrix}$$

$$(3.4.25)$$

$$L_{ij}^{y}(u) = \begin{bmatrix} \frac{B_{2} + v/c}{2} & -\frac{B_{1}\mu}{2} & -\frac{B_{1}v + 1/c}{2} & \frac{B_{1}}{2} \\ -\mu & 1 & 0 & 0 \\ 1 - B_{2} & B_{1}\mu & B_{1}v & -B_{1} \\ \frac{B_{2} - v/c}{2} & -\frac{B_{1}\mu}{2} & -\frac{B_{1}v - 1/c}{2} & \frac{B_{1}}{2} \end{bmatrix}, \quad R_{ij}^{y}(u) = \begin{bmatrix} 1 & 0 & 1 & 1 \\ \mu & 1 & \mu & \mu \\ v - c & 0 & v & v + c \\ H - cv & \mu & \frac{\mu^{2} + v^{2}}{2} & H + cv \end{bmatrix}$$
(3.4.26)

where $c = \sqrt{\gamma p/\rho}$, $B_1 = (\gamma - 1)/c^2$, $B_2 = B_1 (\mu^2 + v^2)/2$ and $H = (E + p)/\rho$

算例

Example 4. 光滑问题: 初值为:

$$\rho(x, y, 0) = 1 + 0.2 \sin(\pi(x + y))$$

$$u(x, y, 0) = 0.7$$

$$v(x, y, 0) = 0.3$$

$$p(x, y, 0) = 1$$

$$(3.4.27)$$

周期边界条件

准确解为:

$$\rho(x, y, t) = 1 + 0.2\sin(\pi(x + y - (u + v)t)), u = 0.7, v = 0.3, p = 1$$
(3.4.28)

Example 5. 二维黎曼问题 [27], 初值为

$$\begin{cases}
(\rho_1, p_1, \mu_1, v_1)^T = (0.5313, 0.4, 0, 0)^T, & x > 1, y > 1, \\
(\rho_2, p_2, \mu_2, v_2)^T = (1, 1, 0, 0.7276)^T, & x > 1, y < 1, \\
(\rho_3, p_3, \mu_3, v_3)^T = (1, 1, 0.7276, 0)^T, & x < 1, y > 1, \\
(\rho_4, p_4, \mu_4, v_4)^T = (0.8, 1, 0, 0)^T, & x < 1, y < 1
\end{cases}$$
(3.4.29)

 $p_1 < p_2 = p_3 = p_4$ 。 滑移边界条件。 建议计算至 t = 0.52,网格为 260*260.

Example 6.

$$(\rho, u, v, p) = \begin{cases} (0.138, 1.206, 1.206, 0.029), & (x, y) \in [0, 0.8) \times [0, 0.8) \\ (0.5323, 1.206, 0, 0.3), & (x, y) \in [0, 0.8) \times [0.8, 1] \\ (0.5323, 0, 1.206, 0.3), & (x, y) \in [0.8, 1] \times [0, 0.8) \\ (1.5, 0, 0, 1.5), & (x, y) \in [0.8, 1] \times [0.8, 1] \end{cases}$$
(3.4.30)

 $t_{end} = 0.8$, 网格为 800×800 。

3.5 基函数函数 29

图 3.1: 网格密度 260x260, 间断有限元方法, TVB 指示子, M=50, WENO-M

3.5 基函数函数

对于基函数, [30]

3.5.1 一维

在 [-1,1] 上的勒让德函数为:

$$\varphi_0(\xi) = 1
\varphi_1(\xi) = \xi
\varphi_2(\xi) = (3\xi^2 - 1)/2
\varphi_3(\xi) = (5\xi^3 - 3\xi)/2
\varphi_4(\xi) = (35\xi^4 - 30\xi^2 + 3)/8$$
(3.5.1)

积分值为:

$$\int_{-1}^{-1} \varphi_i^2 dx = \frac{2}{2n+1}, n = 0, 1, 2, \dots$$
 (3.5.2)

第三章 附录

3.5.2 二维

 $[-1,1] \times [-1,1]$ 上的勒让德函数为:

$$\varphi_1(x,y) = 1$$

$$\varphi_2(x,y) = x$$

$$\varphi_3(x,y) = y$$

$$\varphi_4(x,y) = x^2 - 1/3$$

$$\varphi_5(x,y) = xy$$

$$\varphi_6(x,y) = y^2 - 1/3$$
(3.5.3)

对于 $[x_a, x_b] \times [y_a, y_b]$ 上的勒让德函数,只需令 $\xi = \frac{x - \frac{x_a + x_b}{2}}{\frac{x_b - x_a}{2}}, \eta = \frac{y - \frac{y_a + y_b}{2}}{\frac{y_b - y_a}{2}}$

3.6 数值积分

- 一般采用的求积公式是机械求解求积公式中的高斯积分。高斯积分是一种非常常用的数值积分方法,具有如下优点:
 - 高斯积分的精度随着积分点的增加而增加, 当积分点的数量足够大时, 可以达到非常高的精度。
 - 当使用的点数固定为 n+1 个时,高斯积分具有 2n+1 阶的精度,是所有机械求积公式中最高的。因此在计算复杂函数积分时,高斯积分可以显著减少计算时间和计算成本。
 - 高斯积分公式可以非常方便地使用代码实现。

具体而言,该公式可写成:

$$\int_{-1}^{1} f(x) dx = \sum_{i=1}^{n+1} \omega_i f(x_i)$$
(3.6.1)

其中, ω_i 和 x_i 分别表示高斯积分公式中第 i 个点的权重和位置。对于积分区间非 [-1,1] 的积分,可以使用下面的公式:

$$\int_{a}^{b} f(x) dx = \int_{-1}^{1} f\left(\frac{(b-a)t+b+a}{2}\right) \frac{b-a}{2} dt = \sum_{i} f\left(\frac{(b-a)x_{i}+b+a}{2}\right) \frac{b-a}{2} \omega_{i}$$
(3.6.2)

表 3.1 给出 n = 2, 3, 4, 5 时,高斯积分的取值点和权重大小.

表 3.1: Gauss-Legendre 的取值点和权重大小

\overline{n}	取值点 x_i	权重 w_i
2	± 0.57735027	1.00000000
3	$0.000000000, \pm 0.77459667$	$0.88888889,\ 0.55555556$
4	$\pm 0.86113631, \pm 0.33998104$	$0.34785485,\ 0.65214515$
5	$0.000000000, \pm 0.53846931, \pm 0.90617985$	0.56888889, 0.23692689, 0.23692689

对于 n 不同的情况,可以从这个 [1] 查到更多 x_i,ω_i 的值。特别的,对于 $P^1,n\geqslant 2,P^2,n\geqslant 4$.

3.7 计算精度 31

\overline{n}	取值点 x_i	权重 w_i
2	± 1.00000000	1.00000000
3	$\pm 1.000000000, 0.000000000$	0.333333333, 1.333333333
4	$\pm 1.000000000, \pm 0.44721360$	$0.16666667,\ 0.833333333$
5	± 1.00000000 , ± 0.65465367 , 0.000000000	0.10000000, 0.54444444, 0.71111111

表 3.2: Gauss-Lobatto 的取值点和权重大小

3.7 计算精度

假设我们得到的近似解为 u_h , 准确解为 u.

$$||u_h - u|| = Ch^p + O(h^{p+1})$$
(3.7.1)

下面介绍如何通过数值实验求出 p.

在两次实验中,我们使用了不同的 $h = h_1, h_2$,得到的近似解为 u_{h_1}, u_{h_2} . 则:

$$||u_{h_1} - u|| = Ch_1^p + O(h^{p_1+1})$$

$$||u_{h_2} - u|| = Ch_2^p + O(h^{p_2+1})$$
(3.7.2)

做比得到:

$$\frac{||u_{h_1} - u||}{||u_{h_2} - u||} = \left(\frac{h_1}{h_2}\right)^p \tag{3.7.3}$$

于是

$$p = \frac{\ln||u_{h_1} - u|| - \ln||u_{h_2} - u||}{\ln(h_1) - \ln(h_2)}$$
(3.7.4)

下面给出一种使用函数积分值来计算范数的方法:假设小区间的数量为 n,数值解为 u_h ,准确解为 u。

• 对于 L_1 范数, 我们有:

$$||u_h - u|| = \frac{\sum_{i=1}^n \int_{I_i} |u_h - u| dx}{\sum_{i=1}^n \int_{I_i} dx}$$
(3.7.5)

• 对于 L₂ 范数, 我们有:

$$||u_h - u|| = \sqrt{\sum_{i=1}^n \int_{I_i} (u_h - u)^2 dx}$$
 (3.7.6)

• 对于 L_{∞} 范数, 我们有:

$$||u_h - u|| = \max_{i} \left\{ \frac{\int_{I_i} (u_h - u)^2 dx}{} \right\}$$
 (3.7.7)

$$L_{1} - \text{norm} = \sum_{i=1}^{n} |u(x_{i}) - uh(x_{i})|$$

$$L_{2} - \text{norm} = \sqrt{\sum_{i=1}^{n} (u(x_{i}) - uh(x_{i}))^{2}}$$

$$L_{\infty} - \text{norm} = \max x_{i}, i = 1, 2, \dots, n$$
(3.7.8)

32 第三章 附录

参考文献

- [1] 高斯积分的节点值.
- [2] Rupak Biswas, Karen D. Devine, and Joseph E. Flaherty. Parallel, adaptive finite element methods for conservation laws. *Applied Numerical Mathematics*, 14(1-3):255–283, 1994.
- [3] Rupak Biswas, Karen D. Devine, and Joseph E. Flaherty. Parallel, adaptive finite element methods for conservation laws. *Applied Numerical Mathematics*, 14(1-3):255–283, 1994.
- [4] Rafael Borges, Monique Carmona, Bruno Costa, and Wai Sun Don. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. *Journal of Computational Physics*, 227(6):3191– 3211, 2008.
- [5] A. Burbeau, P. Sagaut, and Ch H. Bruneau. A problem-independent limiter for high-order runge-kutta discontinuous galerkin methods. *Journal of Computational Physics*, 169(1):111–150, 2001.
- [6] Bernardo Cockburn, Suchung Hou, and Chi-Wang Shu. The runge-kutta local projection discontinuous galerkin finite element method for conservation laws. iv: The multidimensional case. *Mathematics of Computation*, 54(190), 1990.
- [7] Bernardo Cockburn, Claes Johnson, C-W Shu, and Eitan Tadmor. Advanced numerical approximation of nonlinear hyperbolic equations: lectures given at the 2nd session of the Centro Internazionale Matematico Estivo (CIME) held in Cetraro, Italy, June 23-28, 1997. Springer, 2006.
- [8] Bernardo Cockburn, San-Yih Lin, and Chi-Wang Shu. Tvb runge-kutta local projection discontinuous galerkin finite element method for conservation laws iii: One-dimensional systems. *Journal of Computational Physics*, 84(1):90–113, 1989.
- [9] Bernardo Cockburn and Chi-Wang Shu. Tvb runge-kutta local projection discontinuous galerkin finite element method for conservation laws ii: General framework. *Mathematics of Computation*, 52(186), 1989.
- [10] Bernardo Cockburn and Chi-Wang Shu. Tvb runge-kutta local projection discontinuous galerkin finite element method for conservation laws ii: General framework. *Mathematics of Computation*, 52(186), 1989. RKDG 系列论文 2.
- [11] Bernardo Cockburn and Chi-Wang Shu. The runge-kutta discontinuous galerkin method for conservation laws v. Journal of Computational Physics, 141(2):199–224, 1998.

34 参考文献

[12] Oliver Friedrich. Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. *Journal of Computational Physics*, 144(1):194–212, 1998.

- [13] Sigal Gottlieb, Chi-Wang Shu, and Eitan Tadmor. Strong stability-preserving high-order time discretization methods. SIAM Review, 43(1):89–112, 2001. ssp 龙格库塔法.
- [14] Andrew K. Henrick, Tariq D. Aslam, and Joseph M. Powers. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. *Journal of Computational Physics*, 207(2):542–567, 2005.
- [15] Changqing Hu and Chi-Wang Shu. Weighted essentially non-oscillatory schemes on triangular meshes. Journal of Computational Physics, 150(1):97–127, 1999.
- [16] Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of weighted eno schemes. *Journal of Computational Physics*, 126(1):202–228, 1996.
- [17] L. Krivodonova, J. Xin, J. F. Remacle, N. Chevaugeon, and J. E. Flaherty. Shock detection and limiting with discontinuous galerkin methods for hyperbolic conservation laws. *Applied Numerical Mathematics*, 48(3-4):323–338, 2004.
- [18] L. Krivodonova, J. Xin, J. F. Remacle, N. Chevaugeon, and J. E. Flaherty. Shock detection and limiting with discontinuous galerkin methods for hyperbolic conservation laws. *Applied Numerical Mathematics*, 48(3-4):323–338, 2004. 基于 DG 超收敛性质的 KXRCF 指示器.
- [19] Doron Levy, Gabriella Puppo, and Giovanni Russo. Central weno schemes for hyperbolic systems of conservation laws. *ESAIM: Mathematical Modelling and Numerical Analysis*, 33(3):547–571, 1999.
- [20] Xu-Dong Liu, Stanley Osher, and Tony Chan. Weighted essentially non-oscillatory schemes. *Journal of Computational Physics*, 115(1):200–212, 1994.
- [21] Jianxian Qiu and Chi-Wang Shu. Hermite weno schemes and their application as limiters for runge-kutta discontinuous galerkin method: one-dimensional case. *Journal of Computational Physics*, 193(1):115–135, 2004.
- [22] Jianxian Qiu and Chi-Wang Shu. Hermite weno schemes and their application as limiters for runge-kutta discontinuous galerkin method ii: Two dimensional case. Computers & Fluids, 34(6):642–663, 2005.
- [23] Jianxian Qiu and Chi-Wang Shu. Runge–kutta discontinuous galerkin method using weno limiters. SIAM Journal on Scientific Computing, 26(3):907–929, 2005.
- [24] William H Reed and Thomas R Hill. Triangular mesh methods for the neutron transport equation. Report, Los Alamos Scientific Lab., N. Mex.(USA), 1973.
- [25] Chi-Wang Shu. Tvb uniformly high-order schemes for conservation laws. *Mathematics of Computation*, 49(179), 1987.

参考文献 35

[26] Xiangxiong Zhang and Chi-Wang Shu. Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 467(2134):2752–2776, 2011. 一篇比较重要的保极值review.

- [27] Jun Zhu and Jianxian Qiu. A new type of finite volume weno schemes for hyperbolic conservation laws. Journal of Scientific Computing, 73(2-3):1338–1359, 2017. 黎曼问题算例.
- [28] Jun Zhu, Jianxian Qiu, Chi-Wang Shu, and Michael Dumbser. Runge kutta discontinuous galerkin method using weno limiters ii: Unstructured meshes. *Journal of Computational Physics*, 227(9):4330– 4353, 2008.
- [29] Jun Zhu, Xinghui Zhong, Chi-Wang Shu, and Jianxian Qiu. Runge-kutta discontinuous galerkin method with a simple and compact hermite weno limiter. *Communications in Computational Physics*, 19(4):944—969, 2016. 欧拉方程的左右特征向量.
- [30] 梁俊凯. 欧拉方程间断伽辽金有限元解法的研究. 2018.
- [31] 程悦. Runge-Kutta 间断 Galerkin 有限元方法的多种限制器比较. Thesis, 2011.