CALCULUS AND ANALTYIC GEOMETRY 1(MTH1101)

Sarawut Suebsang

January 12, 2022

§1 Overviews

limit, continuty, derivative, chain rule, implicit differrentiation, higher-order derivative, differential, antiderivative, definite integral, area between curves, derivative and integral of transcendental function, indeterminate form, L's Hopital's rule, extreme value, concavity, curve sketching, realated rate

§2 Limit

Example 2.1

พิจารณา $f:\mathbb{R} \to \mathbb{R}$ นิยามโดย Ex1

Figure 1: Ex1

 $\textit{Proof.}\ f(2)=2^2+1=5$ จากรูปจะสังเกตที่ f ใกล้ๆ 2 ค่าของฟังก์ชันจะใกล้ๆ 5 ด้วย จะกล่าวได้ว่า $\lim_{x\to 2} f(x)=5$

พิจารณา $g(x)=rac{x^2-1}{x-1}$

Figure 2: Ex2

Proof.
$$g(x) = \frac{(x-1)(x+1)}{(x-1)} = x+1; x \neq 1$$
 จะได้กราฟเส้นตรงที่มีจุดโป๋ที่จุด $x=1$ $g(1)$ จะไม่มีค่า แต่ $\lim_{x\to 1} g(x) = 2$ □

Example 2.3

พิจารณา
$$h(x)=\begin{cases} \frac{x^2-1}{x-1}, & ;x\neq 1 \\ 1, & ;x=1 \end{cases}$$

Figure 3: Ex3

Proof. จะได้
$$h(x)=\begin{cases} x+1,&;x\neq 1\\ 1,&;x=1\end{cases}$$
 $h(1)=1$ แต่ $\lim_{x\to 1}h(x)=2$

พิจารณา
$$a(x) = \begin{cases} 0 & ; x < 0 \\ 1 & ; x \ge 0 \end{cases}$$

 $Proof. \ a(0)=1$ แต่ $\lim_{x\to 0} a(x)$ ไม่มีค่า เนื่องจากดูทางซ้ายและขวาแล้วมีค่าไม่เท่ากัน

Theorem (Limit Theorem)

ให้ k เป็นค่าคงที่, I เป็นช่วง, $f:I \to \mathbb{R}, g:I \to \mathbb{R}, c$ เป็นจุดลิมิตของ I และ

$$\lim_{x\to c} f(x) = L \ \mathrm{lim}_{x\to c} g(x) = M$$

- $\lim_{x\to c} k = k$
- $\lim_{x\to c} x = c$
- $\lim_{x \to c} [f(x) + g(x)] = L + M$
- $\lim_{x\to c}[f(x)-g(x)]=L-M$
- $\lim_{x\to c} f(x)g(x) = LM$
- $\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{L}{M}; M \neq 0$
- ullet lim $_{x o c}\,f(x)^{rac{m}{n}}=L^{rac{m}{n}};m,n\in\mathbb{N}$ และ $L^{rac{m}{n}}\in\mathbb{R}$

Example 2.5

$$\lim_{x\to 2} (5x-3)$$

Proof. =
$$(\lim_{x\to 2} 5x) - (\lim_{x\to 2} 3) = 5(\lim_{x\to 2} x) - (\lim_{x\to 2} 3) = 5(2) - 3 = 7$$

Example 2.6

$$\lim(2-3x)$$

Proof. =
$$(\lim_{x\to 1} 2) - (\lim_{x\to -1} 3x) = (\lim_{x\to -1} 2) - 3(\lim_{x\to -1} x) = 2 - 3(-1) = 5$$

 $\lim_{x\to -2} x^2$

Proof. =
$$\lim_{x \to -2} xx = (\lim_{x \to -2} x)(\lim_{x \to -2} x) = (-2)(-2) = 4$$

Example 2.8

 $\lim_{x\to 2} (x^2 + 3x + 1)$

Proof. = $\lim_{x\to 2} x^2 + \lim_{x\to 2} 3x + \lim_{x\to 2} 1 = (\lim_{x\to 2} x)^2 + 3(\lim_{x\to 2} x) + 1 = 2^2 + 3(2) + 1 = 11$

Example 2.9

 $\lim_{x \to 2} \frac{x^2+1}{2x}$

Proof.
$$=\frac{\lim_{x\to 2}(x^2+1)}{\lim_{x\to 2}2x}=\frac{\lim_{x\to 2}x^2+\lim_{x\to 2}1}{2\lim_{x\to 2}x}=\frac{2^2+1}{2(2)}=\frac{5}{4}$$

Example 2.10

 $\lim_{x\to 3} \frac{x^2-3}{x-3}$

$$\textit{Proof.}$$
 พิจารณา $\lim_{x\to 3}(x^2-3)=3^2-3=6$ และ $\lim_{x\to 3}(x-3)=3-3=0$ ดังนั้น $\lim_{x\to 3}\frac{x^3-3}{x-3}$ ไม่มีค่า

Example 2.11

 $\lim_{x \to 4} \frac{\sqrt{x^2+9}}{2x}$

Proof.
$$\frac{\lim_{x\to 4} \sqrt{x^2+9}}{\lim_{x\to 4} 2x} = \frac{\sqrt{\lim_{x\to 4} (x^2+9)}}{\lim_{x\to 4} 2x} = \frac{5}{8}$$

Example 2.12

 $\lim_{x\to 2} \frac{x^2-4}{x-2}$

Proof.
$$= \lim_{x \to 2} \frac{(x-2)(x+2)}{(x-2)} = \lim_{x \to 2} (x+2) = 4$$

Example 2.13

 $\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$

Proof. =
$$\lim_{x\to 2} \frac{(x-2)(x^2+2x+4)}{x-2} = \lim_{x\to 2} (x^2+2x+4) = 12 \ (A^3-B^3 = (A-B)(A^3+AB+B^3), A^3+B^3 = (A+B)(A^2-AB+B^2)))$$

$$\lim_{x \to 0} \frac{3x - 5x^2}{x}$$

Proof.
$$= \lim_{x \to 0} \frac{x(2-5x)}{x} = \lim_{x \to 0} (2-5x) = 2$$

Example 2.15

$$\lim_{x\to 3} \frac{x^2+x-6}{x-2}$$

Proof. =
$$\lim_{x\to 3} \frac{(x+3)(x-2)}{x-2} = \lim_{x\to 3} (x+3) = 5$$

Example 2.16

$$\lim_{x\rightarrow 1} \tfrac{3-2x-x^2}{2x^2-x-1}$$

Proof.
$$= \lim_{x \to 1} \frac{(3+x)(1-x)}{(2x+1)(x-1)} = \lim_{x \to 1} -\frac{3+x}{2x+1} = -\frac{4}{3}$$

Example 2.17

$$\lim_{x \to 0} \frac{\sqrt{x+4}-2}{x}$$

$$\textit{Proof.} = \lim_{x \to 0} \left[\frac{\sqrt{x+4}-2}{x} \times \frac{\sqrt{x+4}+2}{\sqrt{x+4}+2} \right] = \lim_{x \to 0} \frac{\sqrt{x+4}^2-2^2}{x(\sqrt{x+4}+2)} = \lim_{x \to 0} \frac{x+4-4}{x(\sqrt{x+4}+2)} = \lim_{x \to 0} \frac{x}{x(\sqrt{x+4}+2)} = \lim_{x \to 0}$$

Example 2.18

$$\lim_{x \to 2} \frac{\sqrt{2x-3}-1}{x-2}$$

$$\begin{array}{l} \textit{Proof.} \ \, \bar{\mathbb{W}} \text{จารณา} \frac{\sqrt{2x-3}-1}{x-2} = \frac{\sqrt{2x-3}-1}{x-2} \times \frac{\sqrt{2x-3}+1}{\sqrt{2x-3}+1} = \frac{(2x-3)-1}{(x-2)(\sqrt{2x-3}+1)} = \frac{2(x-2)}{(x-2)(\sqrt{2x-3}+1)} = \frac{2}{(\sqrt{2x-3}+1)} \\ ; x \neq 2 \ \, \tilde{\mathbb{M}} \text{ if } \lim_{x \to 2} \frac{\sqrt{2x-3}-1}{x-2} = \lim_{x \to 2} \frac{2}{(\sqrt{2x-3}+1)} = 1 \end{array}$$

Example 2.19

$$\lim_{x\to 4} \frac{4x-x^2}{2-\sqrt{x}}$$

Proof. พิจารณา
$$\frac{4x-x^2}{2-\sqrt{x}}=\frac{x(4-x)}{x-\sqrt{x}}=\frac{x(2^2-\sqrt{x}^2)}{2-\sqrt{x}}=\frac{x(2+\sqrt{x})(2-\sqrt{x})}{2-sqrtx}=x(2+\sqrt{x})$$
 ดังนั้น $\lim_{x\to 4}\frac{4x-x^2}{2-\sqrt{x}}=\lim_{x\to 4}x(2+\sqrt{x})=16$

§2.1 one-sided limit

$$f(x) = \begin{cases} 3 & ; x \ge 1\\ 2 & ; x < 1 \end{cases}$$

ให้
$$c \in \mathbb{R}$$

- c > 1: $\lim_{x \to c} f(x) \lim_{x \to c} 3 = 3$
- c < 1: $\lim_{x \to c} f(x) \lim_{x \to c} 2 = 2$
- $c=1: \lim_{x\to 1} f(x)$ ไม่มีค่า

Limit แบบต่างๆ

ลิมิตชวา right-handed limit : $\lim_{x\to 1^+}f(x)=\lim_{x\to 1^+}3=3$ ลิมิตซ้าย left-handed limit : $\lim_{x\to 1^-}f(x)=\lim_{x\to 1^-}2=2$

<u>ข้อสังเกต</u> : ถ้า limit ด้านเดียว มีค่าเท่ากันทั้งสองด้าน นั้นคือ lim $_{x\to c^-}f(x)=\lim_{x\to c^+}f(x)=L$ จะได้ว่า lim $_{x\to c}f(x)=L$

Example 2.20

หา $\lim_{x\to -2} f(x)$

Proof.
$$f(-2) = 4$$
, $\lim_{x \to -2^-} f(x) = 4$, $\lim_{x \to -2^+} f(x) = -3$

$$f(x) = \begin{cases} x^2 - 1 & ; x < 0 \\ 2x & ; x \ge 0 \end{cases}$$

 $Proof. \ f(0)=2(0)=0, \lim_{x\to 0^-}f(x)=\lim_{x\to 0^-}(x^2-1)=0^2-1=-1, \lim_{x\to 0^+}f(x)=\lim_{x\to 0^+}2x=2(0)=0$ ดังนั้น $\lim_{x\to 0}$ ไม่มีค่า เพราะ left กับ right-handed limit มีค่าไม่เท่ากัน

Example 2.22

$$f(x) = \frac{|x|}{x} = \begin{cases} 1 & ; x > 0 \\ -1 & ; x < 0 \end{cases}$$

 $Proof.\ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} 1 = 1, \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} -1 = -1$ ดังนั้น $\lim_{x \to 0} f(x)$ ไม่มีค่า , f(0) ไม่มีค่า (domain f คือ $\mathbb{R} - \{0\}$)

§2.2 infinite limit

Example 2.23

$$f(x) = \frac{1}{x}$$

 $Proof. \ Dom(f)=(-\infty,0)\cup(0,\infty)=\mathbb{R}\backslash\{0\}$ $\lim_{x\to 0}f(x)$ ไม่มีค่า $\lim_{x\to 0^+}f(x)=+\infty$ (ไม่มีค่า ไม่ใช่จำนวน), $\lim_{x\to 0^-}f(x)=-\infty$ (ไม่มีค่า)

$$\lim_{x \to c^+} \frac{1}{(x-c)^p}$$

Proof. ถ้าให้ t=x-c จะได้ว่า $t\to c^+$ ดังนั้น $\lim_{x\to c^+} \frac{1}{(x-c)^p} = \lim_{t\to 0^+} \frac{1}{t^p} = \infty$

Example 2.25

$$\lim_{x\to -3^+} \tfrac{1}{(x+3)^2}$$

Proof. $=\lim_{t\to 0^-} \frac{1}{t^2} = \lim_{s\to 0^+} \frac{1}{s} = \infty$

Example 2.26

$$\lim_{x \to -3^-} \frac{1}{(x+3)^5}$$

Proof. $=\lim_{t\to 0^-} \frac{1}{t^5} = \lim_{s\to 0^-} \frac{1}{s} = -\infty$

Example 2.27

$$\lim_{x\to 0^+} \frac{1}{\frac{2}{x^{\frac{2}{5}}}}$$

Proof. $=\lim_{x\to 0^+} \frac{1}{(x^2)^{\frac{1}{5}}} = \lim_{x\to 0^+} (\frac{1}{x^2})^{\frac{1}{5}} = (\lim_{x\to 0^+} \frac{1}{x^2})^{\frac{1}{5}} = \infty$

Example 2.28

$$\lim_{x \to 2^-} \frac{1}{(x-2)^3}$$

Proof. $=\lim_{t\to 0^-} \frac{1}{t^3} = -\infty$

§2.2.1 vertical asymtote

Example 2.29

$$f(x) = \frac{1}{x}; x > 0$$

 ${\it Proof.}$ เราจะได้แกน Y (เส้นตรง X=0) เป็นเส้นกำกับแนวดิ่งของ f

Definition. จะเรียกเส้นตรง x=c ว่าเส้นตรงกำกับแนวดิ่ง (vertical asymtote) ของ f ก็ต่อเมื่อข้อใดข้อหนึ่งต่อไปนี้เป็

- $\lim_{x \to c^+ f(x)} = \infty$
- $\bullet \ \lim_{x\to c^-} f(x) = \infty$
- $\lim_{x\to c^+} f(x) = -\infty$
- $\lim_{x\to c^-} f(x) = -\infty$

พิจารณา $f(x) = \frac{1}{x-1}$

Proof. ถ้า $c\neq 1$ จะได้ว่า $\lim_{x\to c} f(x)=\frac{1}{c-1}$ แต่ $\lim_{c\to 1^+} f(x)=\lim_{x\to 1^+} \frac{1}{x-1}=\infty$ จึงได้ว่า เส้นตรง x=1 เป็นเส้นกำกับแนวดิ่งของ $y=\frac{1}{x-1}$ เพียงเส้นเดียว

Example 2.31

$$f(x) = \frac{1}{x^2}$$

 $\textit{Proof.}\,$ ถ้า $c\neq 0$ แล้ว $\lim_{x\to c}\frac{1}{x^2}=\frac{1}{c^2}\in\mathbb{R}$ พิจารณา $\lim_{x\to 0^+}f(x)=\lim_{x\to 0^+}\frac{1}{x^2}=\infty$ ดังนั้น f มีเส้นกำกับแนวดิ่งเพียงเส้นเดียว คือ เส้นตรง x=0

 $\lim_{x\to 1^+} \tfrac{x+5}{x-1}$

Proof. พิจารณา $\lim_{x\to 1^+}(x+5)=6, \lim_{x\to 1^+}(x-1)=0$ จะได้ $\lim_{x\to 1^+}\frac{1}{x-1}=\infty$ ดังนั้น $\lim_{x\to 1^+}\frac{x+5}{x-1}=\infty$

Example 2.33

 $\lim_{x\to 1^-} \tfrac{x+5}{x-1}$

 $\textit{Proof.}\ \ \tilde{\mathbb{N}}$ จารณา $\lim_{x\to 1^-}(x+5)=6, \lim_{x\to 1^-}(x-1)=0$ จะได้ $\lim_{x\to 1^-}\frac{1}{x-1}=-\infty$ ดังนั้น $\lim_{x\to 1^-}\frac{x+5}{x-1}=-\infty$

Example 2.34

 $\lim_{x\to 4^+} \frac{1-x}{x-4}$

Proof. เนื่องจาก $\lim_{x\to 4^+}(1-x)=-3$ และ $\lim_{x\to 4^+}\frac{1}{x-4}=\infty$ ดังนั้น $\lim_{x\to 4^+}\frac{1-x}{x-4}=-\infty$

Example 2.35

 $\lim_{x \to 4^-} \frac{1-x}{x-4}$

Proof. เนื่องจาก $\lim_{x \to 4^-} (1-x) = -3$ และ $\lim_{x \to 4^-} \frac{1}{x-4} = -\infty$ ดังนั้น $\lim_{x \to 4^+} \frac{1-x}{x-4} = \infty$

Example 2.36

พิจารณา $\lim_{x \to 1^-} \frac{x+3}{(x-1)^2}$

Proof. ลองคำนวณ $\lim_{x\to 1^-}(x+3)=4$ และคำนวณ $\lim_{x\to 1^-}\frac{1}{(x-1)^2}=\infty$ ดังนั้น $\lim_{x\to 1^-}\frac{x+3}{(x-1)^2}=\infty$ \bigcirc

Example 2.37 คำนวน $\lim_{x o 1^+} rac{1}{x(x-1)}$

$$Proof.$$
 พิจารณา $\lim_{x \to 1^+} \frac{1}{x} = 1, \lim_{x \to 1^+} \frac{1}{x-1} = \infty$ ดังนั้น $\lim_{x \to 1^+} \frac{1}{x(x-1)} = \infty$

§2.3 Limit at infinity