Eliminación de la recursión y transformación de programas

Fernando Schapachnik¹

¹Departamento de Computación, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina

Algoritmos y Estructuras de Datos II, primer cuatrimestre de 2011

(2) Revisemos la recursión

- Empecemos por un clásico de la Alta Edad Media: la sucesión de Fibonacci.
- Fib(0) = 0
- Fib(1) = 1
- Fib(n + 2) = Fib(n + 1) + Fib(n)
- Miremos Fib(5) = Fib(4) + Fib(3).
- Pero más en detalle: expandamos Fib(4).
- Fib(5) = (Fib(3) + Fib(2)) + Fib(3)
- ¡Ajá! Estamos calculando Fib(3) dos veces.
- (En realidad, ya vemos en la definición que calculamos Fib(n) dos veces.)
- ¿No podemos hacer algo más piola?

(3) Arreglando Fibonacci

- Idea:
 - Cada vez que calculo Fib(m) tengo que calcular Fib(m-1) y Fib(m-2).
 - Además, Fib(m+1) va a necesitar a Fib((m+1)-1) y a Fib((m+1)-2), es decir, Fib(m-1), que ya lo calculé recién.
 - ¿Y si hago que Fib(m) me devuelva también el Fib(m-1) que utilizó?
- La Fibonacci arreglada sería así:
- $Fib'(0) = \langle 0, 0 \rangle$
- $Fib'(1) = \langle 1, 0 \rangle$
- $Fib'(n+1) = \langle \Pi_1(Fib'(n)) + \Pi_2(Fib'(n)), \Pi_1(Fib'(n)) \rangle$
- $Fib(n) = \Pi_1(Fib'(n))$
- La versión original toma $O(2^n)$ mientras que la nueva es O(n).

(4) Inmersión de rango

- ⚠ Eso que hicimos se llama inmersión de rango, y consiste en agregar un nuevo parámetro de salida a la función.
- La idea de este nuevo parámetro es darnos "algo más" que lo estrictamente necesario. Ese "algo más" nos sirve para calcular más eficientemente otro resultado.
- A esta técnica también se la conoce como generalización de funciones. En el ejemplo, Fib'() es más general que Fib().
- △ La *idea* de la inmersión de rango puede servir también para hacer varias cosas "a la vez".
 - Ejercicio: escribir una función que compute la cantidad de nodos y la altura máxima de un árbol binario de naturales.
- No es la única inmersión...

(5) Inmersión de dominio

- La idea de la inmersión de dominio es similar.
- Se agrega un parámetro de entrada, que va conteniendo resultados intermedios.
- Pensemos en Promedio() de una secuencia, que requeriría la suma y la cantidad.
- Podemos hacerlo mejor:
 - Promedio(<>, suma, cantidad) \equiv suma/cantidad
 - Promedio(a S, suma, cantidad) \equiv Promedio(S, suma+a, cantidad+1)

(6) Otro clásico

- Veamos otro clásico: $x^0 = 1$, $x^{n+1} = x^n.x$
- ¿Complejidad? n multiplicaciones y llamadas recursivas.
- ¿Podemos mejorarlo?
 - 1 Idea: expandamos x^n
 - 2 $x^{n+1} = (x^{n-1}.x).x$, pero como la multiplicación asocia:
 - $x^{n+1} = x^{n-1}.x.x$
 - Pero x.x es la definición de x^2 .
 - $x^{n+1} = x^{n-1}.x^2$
 - **1** Y repitiendo esta idea (en el caso n + 1 par):
 - $x^{n+1} = (x^2)^{(n+1)/2}$
- Esta función hace aprox. la mitad de multiplicaciones.
- En el paso (2) lo que hicimos fue desplegar la definición de x^n .
- En el (5) hicimos un plegado.

(7) Folding/unfolding

- ⚠ A esta técnica se la conoce como folding/unfolding o plegado/desplegado.
- El desplegado consiste en reemplazar la definición de la función por su expresión.
- El plegado puede pensarse como la inversa de la anterior. Se trata de reemplazar la definición de una expresión por una llamada a la función.

(8) Folding/unfolding (cont.)

- ▲ La estrategia más común consiste en desplegado, rearreglo, plegado.
- Ejemplo:
 - $F(x, y) = if predicado_caro(x) then A(y) else B(y)$
 - En lugar de evaluar F(x, y)+F(x, z), despliego:
 - if predicado_caro(x) then A(y) else B(y) + if predicado_caro(x) then A(z) else B(z)
 - Luego reacomodo: if predicado_caro(x) then A(y)+A(z) else B(y)+B(z)
 - Supongamos que A() y B() distribuyen con la suma: if predicado_caro(x) then A(y+z) else B(y+z)
 - Por último, vuelvo a plegar: F(x, y+z)
- De alguna manera, el refactoring es una forma de plegado.

(9) Folding/unfolding en bases de datos

- Imaginemos una empresa multinacional. Queremos obtener la dirección de un cliente en particular. Supongamos 10 millones de registros de los cuales 8 millones son argentinos.
- En el lenguaje más común para consultas de bases de datos, SQL, eso se haría con SELECT direccion FROM clientes_argentinos WHERE nombre='Pablo Factorovich'
- Además, clientes_argentinos estaría tradicionalmente definido como
 SELECT * FROM clientes WHERE pais='Argentina'
- Hacer las consultas en el orden propuesto implica recorrer 10 millones de registros, seleccionar de alguna manera a los 8 millones argentinos, y luego volverlos a recorrer para quedarme con 1.
- Usemos plegado y desplegado.

(10) Folding/unfolding en bases de datos (cont.)

- Desplegamos clientes_argentinos: SELECT direccion FROM (SELECT * FROM clientes WHERE pais='Argentina') WHERE nombre='Pablo Factorovich'
- Reacomodamos (usando reglas propias de este lenguaje, que en Algoll no nos importan):
 SELECT direccion FROM (SELECT * FROM clientes WHERE pais='Argentina' AND nombre='Pablo Factorovich')
- Seguimos reacomodando: SELECT direccion FROM clientes WHERE pais='Argentina' AND nombre='Pablo Factorovich'
- De esta manera resolvemos el problema en una sola pasada.
- Los motores de bases de datos hacen estas cosas de manera automática.

(11) El problema de la recursión

- Las computadoras reales son un problema.
- En las ficticias, los algoritmos recursivos son geniales.
- En las reales,
 - cada llamada a función requiere pasar los parámetros a la pila, que es costoso, y
 - consumen espacio de pila, que es acotado.
- En cambio, los compiladores suelen estar buenos.
- O mejor dicho, hubo gente que se dio cuenta de que algunos de estos problemas se podían solucionar automáticamente.

(12) Eliminación de recursión

- Algunos tipos de funciones recursivas se pueden hacer iterativas mecánicamente.
- Ejemplo:

```
// Precondición: x está en S.
función BuscarPosición(int x, secu S, int pos)
if (x==prim(S))
  return pos
else
  return BuscarPosición(x, fin(S), pos+1)
```

• ¿Cuál es la última operación que se hace?

(13) Eliminación de recursión (cont.)

El esqueleto sería así:

```
función F(parámetros, algún valor)
if (caso base(parámetros))
  return algún valor
else
  return F(achicar(parámetros), f(algún valor))
```

• La podemos transformar en

```
función F(parámetros)
while !(caso base(parámetros))
  algún valor = f(algún valor)
  parámetros= achicar(parámetros)
return algún valor
```

¿Cómo sería con BuscarPosición()?

(14) Recursión a la cola

- ⚠ Estas funciones se llaman recursivas a la cola.
- (Con más precisión, se llaman recursivas lineales a la cola o recursivas lineales finales.)
- Su característica es que su último paso es la llamada recursiva y que ésta es la única llamada recursiva.
- Pueden transformarse automáticamente a iterativas.
- Los compiladores suelen hacerlo.
- Veamos otro caso:

```
función Sumatoria(secu S)
if (vacía?(S))
  return 0
else
  return prim(S)+Sumatoria(fin(s))
```

- ¿Es recursiva a la cola? No.
- ¿Está todo perdido? Tampoco.

(15) Funciones recursivas lineales no a la cola

- También están las recursivas lineales no a la cola.
- Son aquéllas que también tienen una única llamada recusiva (por eso lineales), pero donde ésta no es la última operación.
- Veamos de nuevo la Sumatoria:

```
función Sumatoria(secu S)
if (vacía?(S))
  return 0
else
  return prim(S)+Sumatoria(fin(s))
:Sa savandan de la immersión?
```

• ¿Se acuerdan de la inmersión?

```
función SumatoriaGeneralizada(int acumulador, secu S)
if (vacía?(S))
  return acumulador
else
  return SumatoriaGeneralizada(prim(S)+acumulador, fin(s))
```

También pueden transformarse automáticamente.

(16) Funciones recursivas no lineales

- ▲ También hay funciones recursivas no lineales.
- Son aquellas que tienen más de una llamada recursiva.
 - Múltiple: Funciones como Fib(), que tienen más de una llamada recursiva, pero no es la última operación.
 - Anidada: Tienen más de una llamada recursiva, anidada.
 Además, la llamada recursiva es la última operación.
- Anticipo: Tenemos una forma de eliminar la recursión de las funciones anidadas, y también sabemos llevar las múltiples a anidadas.
- ¿Siempre? No, pero en muchos casos.

(17) Recursiones múltiples

- Veamos otro ejemplo:
 - Pre(nil) ≡ <>
 - $Pre(bin(i, x, d)) \equiv x \bullet (Pre(i) \& Pre(d))$
- ¿Cómo la podemos llevar a anidada? Agregando un parámetro de acumulación (en particular, una secuencia, que representa el resultado parcial).
- Buscamos que Pre(ab) = PreA(<>, ab) (es decir, que al comenzar el acumulador esté vacío), y
- PreA(<>, ab)

 = PreA(S, nil) (para alguna secuencia S, es decir, que tenga el resultado en el acumulador al terminar de recorrer el árbol).

(18) Recursiones múltiples (cont.)

- Veamos cómo quedaría:

 - ② PreA(acum, nil) ≡ acum
 - 3 PreA(acum, bin(i, x, d)) \equiv PreA(acum & (x PreA(<>, i)), d)
- ¿Está bien? Pongamos un árbol en (1) y apliquemos plegado y desplegado.
 - $Pre(bin(i, x, d)) \equiv PreA(<>, bin(i, x, d))$
 - (desplegando por (3)) $\equiv PreA(x \bullet PreA(<>, i), d)$
 - (plegando por (1)) $\equiv PreA(x \bullet Pre(i), d)$
 - (usando (4)) x Pre(i) & Pre(d)

(19) Recursiones múltiples (cont.)

- PreA(acum, bin(i, x, d)) \equiv PreA(acum & (x PreA(<>, i)), d)
- Lo que nos quedó es una recusión anidada, que parece más complicada. Por suerte, tenemos herramientas para eliminarla a partir de ahí.
- ⚠ Notemos que lo que hicimos fue proponer la transformación y luego demostrar que es correcta.
- Vamos a ver ahora cómo eliminar la recursión de las funciones recursivas anidadas.

(20) Funciones recursivas anidadas

- En estos casos la mejor estrategia suele ser el uso de una pila.
- Vamos a querer que $PreG(p, acum) \equiv PreA(<>, ab)$ (para alguna pila p)
- ¿Para qué serviría la pila?
- Propongo:
- $PreG(apilar(ab, p), acum) \equiv PreG(p, PreA(acum, ab))$
- Tiene sentido, porque si p es la pila vacía y acum la secuencia vacía, nos queda: PreG(apilar(ab, Vacía), <>) = PreG(Vacía, PreA(<>, ab)), que ya sabemos que es igual a Pre(ab).
- ⚠ Ahora, en lugar de inventar una transformación y luego probar que es correcta, vamos a deducirla.

(21) Funciones recursivas anidadas (cont.)

- Al igual que antes, pongamos un árbol en la pila y veamos qué sucede.
 - $PreG(apilar(bin(i, x, d), p), acum) \equiv PreG(p, PreA(acum, bin(i, x, d)))$
 - (despliego PreA())
 ≡ PreG(p, PreA(acum & (x PreA(<>, i)), d))
 - (pliego por (1))
 ≡ PreG(apilar(d, p), acum & (x PreA(<>, i)))
 - (reacomodo) $\equiv PreG(apilar(d, p), (acum • x) \& PreA(<>, i)))$
 - (uso el lema) $\equiv PreG(apilar(d, p), PreA((acum • x), i)))$
 - (pliego por (1))
 ≡ PreG(apilar(i, apilar(d, p)), acum x)

(22) Funciones recursivas anidadas (cont.)

- Nos queda:
 - PreG(Vacía, acum) ≡ acum
 - 2 $PreG(apilar(nil, p), acum) \equiv PreG(p, acum)$
 - $PreG(apilar(bin(i, x, d), p), acum) \equiv PreG(apilar(i, apilar(d, p)), acum \bullet x)$
- ¿Qué tipo de función es? Recursiva a la cola. Entonces podemos aplicar lo que ya sabemos.

(23) Otras técnicas de transformación de programas

- Generalización de género. Ejemplo: tal vez me conviene trabajar con enteros en lugar de naturales, si tengo que restar.
- Si voy a usar el resultado de una función más de una vez, probablemente convenga tenerlo en una variable.
- De manera más general, si ya computé resultados caros, puede tener sentido almacenarlos (en memoria o en disco) en lugar de recomputarlos.
- Precomputar valores. Por ejemplo, si mi programa va a intentar factorizar, tal vez me convenga tener almacenados los n primeros números primos.

(24) Otras técnicas de transformación (cont.)

- Inversión del orden de cómputo.
- Evaluación parcial. Especializar en valores particulares.
 Ejemplo:

```
función potencia(nat a, nat b)
  if b<=4 then potencia'(a, b)
  else a.potencia(a, b-1)

función potencia'(nat a, nat b<=4)
  if b==0 then 1
  elsif b==1 then a
  else
  c= a.a
  if b==2 then c elsif b==3 then c.a else c.c</pre>
```

• Conceptos relacionados: curryficación, especialización.

(25) Tarea

- Hacer un programa que genere árboles binarios al azar.
- Programar Pre(), PreA(), PreG() y una versión iterativa.
- ¡Tomar tiempos! (comando time en Unix)

(26) Repaso

Vimos:

- Inmersiones de rango y de dominio, que eran tipos específicos de generalización de funciones, y que permitían obtener versiones más eficientes.
 - A veces reduciendo la complejidad,
 - a veces, sólo las constantes,
 - pero siempre preservando la corrección.
- Una técnica de transformación muy útil: plegado y desplegado.
- Los problemas de la recursión.
- Cómo eliminarla
 - de las funciones recursivas a la cola y
 - de las funciones recursivas lineales no a la cola.
- Y para las funciones recursivas no lineales,
 - cómo transformar algunas recursiones múltiples en anidadas, y
 - cómo eliminar la recursión de algunas recursiones anidadas.
- Cuando había que obtener una generalización, a veces la deducimos, otras la proponemos y luego demostramos.
- Y de yapa, técnicas varias de transformación.

(27) Bibliografía

- "Specification and Transformation of Programs", Helmut A. Partsch, Springer-Verlag, 1990.
- "Programación Metódica", José Luis Balcázar, Mc Graw Hill, 1993.