How do socio-economic indicators relate to state-level test scores?

US Department of Education

30 May 2022

Problem Statement

How do socio-economic indicators relate to state-level test scores?

Context:

- Recent concerns that the SAT and ACT are biased towards various socio-economic factors.
- The US Department of Education will conduct a preliminary analysis of how Human Development Index (HDI), Racial Diversity and Population Density affect state-level test scores.
- This preliminary analysis would inform further studies at an individual student-level.

Overview of both tests: As test participation increases, test score decreases

- Scores are inversely related to participation rates, and this holds true for both ACT and SAT groups.
- In states with optional testing, we surmise that strong students would be more inclined to pay and participate in the tests, leading to higher average scores within the state.
- In states with compulsory testing, or close to 100% participation, the entire eligible population is tested, leading to lower average scores.

Feature Engineering - Racial Concentration

Concentration =
$$P_1^2 + P_2^2 + ... + P_n^2$$

Concentration = $0.4^2 + 0.35^2 + 0.25^2$

The Average Racial Diversity metric across the 50 states is 0.633. The range of the HDI index is from 0.278 to 0.890.

The 3 most racially diverse States are Hawaii, Maryland and California

The 3 least racially diverse States are West Virginia, Vermont and Maine

Racial concentration - No significant correlation with scores

- For the ACT group, racial concentration doesn't seem to correlate with scores.
- For the SAT group, racial concentration is weakly positively correlated (Pearson's r = 0.22) with scores. However, the p-value of the correlation is 0.13 and not statistically significant at a 5% alpha.

Human Development Index (HDI)

- Average HDI: 0.92
- Range of the HDI: 0.87 to 0.95
- Most states have a HDI of higher than 0.9

- The top 3 states are Minnesota, Connecticut and Massachusetts with a HDI of above 0.95.
- The bottom 3 states are Mississippi, West Virginia and Alabama with a HDI of around 0.87 to 0.88.

HDI: Positive Correlation with ACT but no relation with SAT

- For the ACT group, there is a strong positive correlation between HDI and the ACT scores (Pearson's r = 0.61).
 It is statistically significant at 5% level
- For the SAT group, there does not seem to be any relation between HDI and SAT scores (Pearson's r = 0.03)

Population Density

- For the ACT group, an increase in population density does indicate a positive correlation in ACT scores. This corresponds with a moderate value (0.55) on the heatmap.
- For the SAT group, population density is weakly negatively correlated (Pearson's r = -0.33) with scores.
- Both correlation coefficients are statistically significant at a 5% alpha.

Feature	Effect on ACT Scores	Effect on SAT Scores	
Participation Rate	Strong negative correlation	Strong negative correlation	
Racial Concentration	No correlation	No correlation	
Population Density	Moderate positive correlation	Weak negative correlation	
HDI	Moderate positive correlation	No correlation	

Conclusion

- States test scores are correlated with select socio-economic indicators
- Of note is that some of correlations are in "opposite" directions (e.g. Population Density)
- Strong evidence that features are not independent and are affecting each other

Recommendation

This line of inquiry is deserving of a more in-depth study by the Department with:

- Increased no. of feature
- More careful feature selection
- Longitudinal studies
- Individual student-level analysis

Annex

Annex

Pearson's r p-values	for the	ACT cor	rrelation m	atrix		
partio	ipation	score	race_conc	gini	hdi	pop_density
participation	0.0	0.0	0.8871	0.5039	0.001	0.0006
score	0.0	0.0	0.2477	0.5915	0.0	0.0
race_conc	0.8871	0.2477	0.0	0.0009	0.6693	0.0273
gini	0.5039	0.5915	0.0009	0.0	0.0246	0.0052
hdi	0.001	0.0	0.6693	0.0246	0.0	0.0135
pop_density	0.0006	0.0	0.0273	0.0052	0.0135	0.0
Pearson's r p-values	for the	SAT cor	rrelation m	atrix		
partio	ipation	score	race_conc	gini	hdi	pop_density
participation	0.0	0 0				
Programme Programme	0.0	0.0	0.4615	0.1456	0.0449	0.0002
score	0.0	0.0			0.0449 0.8042	
· ·			0.1309			0.0179
score	0.0	0.0	0.1309 0.0	0.0466	0.8042	0.0179 0.0273
score race_conc	0.0 0.4615	0.0 0.1309	0.1309 0.0 0.0009	0.0466 0.0009 0.0	0.8042 0.6693	0.0179 0.0273

2019 ACT Group Regress score on select features

OLS Regression Results Dep. Variable: 0.874 R-squared: score Model: Adj. R-squared: OLS 0.863 Method: Least Squares F-statistic: 78.13 Mon, 30 May 2022 Prob (F-statistic): 1.16e-19 Time: 10:49:10 Log-Likelihood: -57.989 No. Observations: 50 AIC: 126.0 Df Residuals: 45 BIC: 135.5 Df Model: Covariance Type: nonrobust coef std err P>|t| [0.025 0.975] -27.3232 -45.143 8.848 -3.088 0.003 -9.503 -4.3350 participation 0.394 -11.002 0.000 -5.129 -3.541 4.2094 0.926 6.074 4.546 0.000 2.344 race conc 37.7045 6.878 5.482 0.000 23.852 51.557 14.003 45.495 29.7492 7.818 3.805 0.000 Omnibus: 4.134 Durbin-Watson: 2.274 Prob(Omnibus): 0.127 Jarque-Bera (JB): 3.796 -0.672Prob(JB): 0.150 Skew: Cond. No. Kurtosis: 2.865 181.

2019 SAT Group Regress score on select features

OLS Regression Results							
Dep. Variable	; <u>;</u>	score		R-square	ed: 0.83	35	
Mode	l:	OLS	Adj	i. R-square	ed: 0.82	20	
Method	l: Le	east Squares		F-statist	tic: 56.7	78	
Date	e: Mon, 3	30 May 2022	Prob	(F-statisti	ic): 5.15e-1	17	
Time): :	10:49:10	Log	j-Likelihoo	od: -253.7	75	
No. Observations	5.	50		А	IC: 517	.5	
Df Residuals	5:	45		В	IC: 527	.1	
Df Mode	l:	4					
Covariance Type);	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const -	392.7149	410.479	-0.957	0.344	-1219.462	434.032	
participation -2	237.2499	16.688	-14.217	0.000	-270.862	-203.638	
race_conc	88.5446	46.268	1.914	0.062	-4.644	181.733	
gini 4	410.8474	393.832	1.043	0.302	-382.372	1204.066	
hdi 1	489.4546	318.903	4.671	0.000	847.151	2131.758	
Omnibus:	37.351	Durbin-Wa	itson:	1.325			
Prob(Omnibus):	0.000	Jarque-Bera	a (JB):	144.046			
Skew:	-1.856	Pro	b(JB):	5.26e-32			
Kurtosis:	10.441	Conc	l. No.	168.			