Name: Aytaç SEKMEN

Student ID: 2575983

QUESTION 1:

1) At first I think that would be good to write the transitions:

 $\delta(q0,a)=q1, \delta(q0,b)=q2$

 $\delta(q_{1,a})=q_{1,\delta}(q_{1,b})=q_{2,\delta}$

 $\delta(q_{2,a})=q_{2,\delta}(q_{2,b})=q_{3,\delta}$

 $\delta(q_{3,a})=q_{4,\delta}(q_{3,b})=q_{5,\delta}$

 $\delta(q4,a)=q0, \delta(q4,b)=q2$

 $\delta(q5,a)=q2, \delta(q5,b)=q3$

Step-1:

And now I can separate the states to 2 equivalence class: the accepting and non accepting ones: (\equiv_0)

{q0,q1,q4,q3} and {q2,q5}.

Step-2:

Now I can look for whether the states in same classes for \equiv_0 are in same equivalence class for \equiv_1 . To do it I should look at whether the ending of states in same classes are same when they get same input word.

Check for q0 and q1:

Since $\delta(q0,a)=\delta(q1,a)=q1$ and $\delta(q0,b)=\delta(q1,b)=q2$, So q0 and q1 must be in the same set for the equivalence class of \equiv_1 .

Check for q3 and q4:

 $\delta(q3,a)=q4$, $\delta(q4,a)=q0$ and $q0 \equiv_0 q4$. $\delta(q3,b)=q5$ $\delta(q4,b)=q2$ $q5 \equiv_0 q2$. So nothing changes q3 and q4 must be in the same equivalence class for \equiv_1 .

Check for q1 and q3:

 $\delta(q1,a)=q1$, $\delta(q3,a)=q4$ and $q1\equiv_0 q4$. $\delta(q1,b)=q2$ $\delta(q3,b)=q5$ and $q0\equiv_0 q4$. So nothing changes q1 and q3 must be in the same equivalence class for \equiv_1 .

Check for q2 and q5:

 $\delta(q2,a)=\delta(q5,a)=q2$ $\delta(q2,b)=\delta(q5,b)=q3$ So nothing changes q2 and q5 must be in the same equivalence class for \equiv_1 .

Conclusion:

So actually nothing changes between \equiv_1 and \equiv_0 . So my final equivalence classes become $\{q0,q1,q4,q3\}$ and $\{q2,q5\}$. And my transition function change like this:

 $\delta (\{q0,q1,q4,q3\},a) = \{q0,q1,q4,q3\}$

 $\delta (\{q0,q1,q4,q3\},b) = \{q2,q5\}$

 $\delta (\{q2,q5\},a) = \{q2,q5\}$

 $\delta (\{q2,q5\},b) = \{q0,q1,q4,q3\}$

My final state is: {q2,q5}

My initial state is: {q0,q1,q4,q3}

Acceptance state: {q2,q5}

So lets draw the DFA:

2)

[e]=Lba* U {}*

[b]=L

3)Let's say that n=m=k=4x and u=x for a certain string

1) $w=a^{4x}b^{4x}c^{4x}d^{x}$

Let's say that n=m=k=4x and u=y and x≠y for another string

2)
$$q=a^{4x}b^{4x}c^{4x}d^{y}$$

Then if I concatenate these two strings with the string z=d^x

We will see that wz(Because 8x=4x+2(x+x)) in the language L' but qz is not (Because 4x+2(x+y) = 6x+2y which is not equal to 8x since $x\neq y$)

So I concluded that these two strings are at different equivalence classes.

And I actually proved that the language L' is not a regular language by using Myhill Nerode Theorem since I can produce infinitely many equivalence classes for infinite pair of (x,y) such that $x\neq y$

QUESTION 2:

1) G = (V,
$$\Sigma$$
, R, S) where V = {S,B,R} $\cup \Sigma$, Σ = {a,b} and R = {S \rightarrow Bb | RS | SRB, B \rightarrow Bb, B \rightarrow e, R \rightarrow RR | aRb | bRa | e}

- The rule R actually represents the conditions for equal amount of a and b.
- The rule B actually represents the condition for b*
- The S represents the conditions that can we can obtain.

2) G = (V,
$$\Sigma$$
, R, S) where V = {S,X,Y} $\cup \Sigma$, Σ = {0, 1,2} and R = {S \rightarrow XY, X \rightarrow 0X1 | e, Y \rightarrow 1Y2 | e}

- X actually creates equal amount of 0 and 1.
- Y actually creates equal amount of 1 and 2.

3) G = (V,
$$\Sigma$$
, R, S) where V = {S,A} $\cup \Sigma$, Σ = {0, 1} and R = { S \rightarrow 0A | 1A, A \rightarrow e | 00A | 10A | 11A | 01A}

- Rule from A actually show the all posibilites after we get the first digit of the strings.
- And the rules from A actually guarentees at least 1 digit.

Derivation:

S=>0A=>001A=>00111A=>0011100A=>0011100

Corresponding Parse Tree

QUESTION 3:

- 1) L = $\{w \mid w = xzx, |x| = 1 \text{ and } z,x \in \{0, 1\}^* \} \cup \{e\}$
 - This x actually represents the same string with length 1 both at the beginning and end.
- 2) L = $\{w \mid w \text{ includes at least two 1s and } w \in \{0, 1\}^* \}$
 - I'm not sure this verbal statement is a correct way of stating the language but I could also state it like this (I mean I am not sure, whether stating languages by using this kind of verbal statement is true or not):

L = $\{w \mid w=x1y1z \text{ and } x,y,z \in \{0, 1\}^* \}$