ECE 449/590 – OOP and Machine Learning Lecture 20 Regularization for Deep Learning

Professor Jia Wang
Department of Electrical and Computer Engineering
Illinois Institute of Technology

November 2, 2022

Reading Assignment

- ► This lecture: Deep Learning 7
- ▶ Next lecture: We'll move back to C++

Regularization

- Strategies to reduce the test error.
 - Possibly at the cost of increasing training error.
- Typical strategies
 - Add constraints to weights (need to solve constrained optimization problems).
 - Include additional terms in the cost function, working as "soft" constraints so that the optimization problem remains unconstrained.
 - Methods to encode specific kinds of prior knowledge.
 - Emsemble methods that combine alternative models.
- Model bias vs. variance
 - Underfitting models tend to have high bias.
 - Overfitting models tend to have high variance.
 - ► As we won't have access to the true models for complex learning problems, it is difficult to find models with right capacity to reduce overfitting.
 - ► Regularization helps to reduce variance of overfitting models so that they could be make use of.

Parameter Norm Penalties

Limiting model capacity by adding a parameter norm penalty.

$$\tilde{J}(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) = J(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) + \alpha \Omega(\boldsymbol{\theta})$$

- ▶ The hyperparameter $\alpha \in [0, \infty)$ controls the relative importance of the penalty to the loss function J.
- May cause J to increase in order to decrease Ω .
- lacktriangle Usually for parameters of linear layers, only weights w need to be regularized.
 - ▶ In comparison to biases, weigths require more data to fit from the last lecture we know that $\frac{\partial h_y}{\partial w_{i,j}} = x_i \frac{\partial f_y}{\partial v_j}$ while $\frac{\partial h_y}{\partial b_j} = \frac{\partial f_y}{\partial v_j}$.
- ightharpoonup You may choose different lpha's for norms of weights at different layers.

L^2 Parameter Regularization

- ▶ Use the L^2 norm as the penalty: $\Omega(\boldsymbol{w}) = \frac{1}{2}||\boldsymbol{w}||_2^2$.
 - Commonly known as weight decay.
- ► Let's ignore the impact of biases,

$$\tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \frac{\alpha}{2} \boldsymbol{w}^{\top} \boldsymbol{w} + J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}),
\nabla_{\boldsymbol{w}} \tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \alpha \boldsymbol{w} + \nabla_{\boldsymbol{w}} J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y})$$

For a step in gradient descent,

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \epsilon(\alpha \boldsymbol{w} + \nabla_{\boldsymbol{w}} J) = (1 - \epsilon \alpha) \boldsymbol{w} - \epsilon \nabla_{\boldsymbol{w}} J$$

- ▶ Recall when there is no weight decay: $w \leftarrow w \epsilon \nabla_w J$
- ▶ So the weight vector is shrinked for such regularization.

L^2 Parameter Regularization (Cont.)

- $\blacktriangleright \text{ Let } \boldsymbol{w}^* = \arg\min_{\boldsymbol{w}} J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y})$
 - ▶ Optimal weight vector when there is no weight decay.
- ightharpoonup Expand J at w^* to the second order:

$$J(w) \approx J(w^*) + \frac{1}{2}(w - w^*)^{\top} H_w J(w^*)(w - w^*)$$

- ▶ Let $H_{\boldsymbol{w}}J(\boldsymbol{w}^*) = \boldsymbol{Q}\Lambda \boldsymbol{Q}^{\top}$ be the eigendecomposition.
- ► (Aproximate) Gradients for weight decay:

$$\nabla_{\boldsymbol{w}} \tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \alpha \boldsymbol{w} + \boldsymbol{Q} \Lambda \boldsymbol{Q}^{\top} (\boldsymbol{w} - \boldsymbol{w}^*)$$

▶ We may compute $\tilde{w}^* = \arg\min_{w} \tilde{J}(w)$ by solving $\nabla_{w} \tilde{J} = 0$.

$$\tilde{\boldsymbol{w}}^* = (\alpha \boldsymbol{I} + \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{\top})^{-1} \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{\top} \boldsymbol{w}^* = \boldsymbol{Q} (\boldsymbol{\Lambda} + \alpha \boldsymbol{I})^{-1} \boldsymbol{\Lambda} \boldsymbol{Q}^{\top} \boldsymbol{w}^*$$

 \tilde{w}^* shrinks in the space of eigenvectors Q, especially along the directions where the eigenvalues are smaller relative to α .

Weight Decay as Constrained Optimization

Figure 7.1

(Goodfellow 2016)

▶ A simple case where Q = I and $\lambda_1 < \lambda_2$.

$$J(w_1, w_2) = J(w_1^*, w_2^*) + \frac{\lambda_1}{2}(w_1 - w_1^*)^2 + \frac{\lambda_2}{2}(w_2 - w_2^*)^2$$

Dataset Augmentation

- ▶ Train with more data with limited amount of data.
 - ▶ Need to create "fake" data for training that "like" the original training data.
 - Loss on original training data may increase.
- lacktriangle For classification, with original training example $({m x},y)$,
 - ightharpoonup Transform x into x' and use (x', y).
 - E.g. for images, moving, rotating, scaling, or even mirroring are effective.
- Indeed, prior knowledge of data is incorporated during such transformations.
 - ▶ we are aware certain transformations CANNOT be applied if there are "b" and "d", or "6" and "9", etc.

Dataset Augmentation

Multi-Task Learning

Figure 7.2

Early Stopping and Weight Decay

Figure 7.4

Bagging

Figure 7.5

Dropout

- Widely used when training neural network models.
- ▶ Inputs to nodes are set to 0 according to a predefined probability p.
 - Applied at training time, per each SGD step, for both forward and back propagation.
 - Implementations usually scale up the inputs by $\frac{1}{1-p}$ so that the network can remain the same for inference where no dropout is applied.
- ▶ Why does it work?
 - Combine many emsembles like bagging while force emsembles to share weights.
 - ▶ The whole network is trained to work with noisy nodes.

Dropout

(Goodfellow 2016)

Summary

- ► Regularization helps machine learning models to achieve better test error.
- ► Typical regularization strategies.