Amazon EC2

Christian Schwarz

Universität Heidelberg

Cloud-Computing Seminar (CLCP) 2009

- 1. Motivation und Grundstruktur
- 2. AMI und Rechnerarchitektur
- 3. Betriebskosten
- 4. Skalierbarkeit und Ausfallsicherheit
- 5. Sicherheit und Risiken
- 6. Integration
- 7. Performance
- 8. Elastic MapReduce
- 9. Vorteile und Erfolgsgeschichten
- 10. Zusammenfassung
- 11. Ausblick

Mögliche Definitionen einer Cloud

- Cloud Computing steht für einen Pool aus abstrahierter, hochskalierbarer und verwalteter IT-Infrastruktur, die Kundenanwendungen vorhält und nach Verbrauch abgerechnet wird.
- ► Cloud Computing umfasst *On-Demand-Infrastruktur und*Software, die jeweils dynamisch an die Erfordernisse von
 Geschäftsprozessen angepasst werden. Dazu gehört auch die
 Fähigkeit, komplette Prozesse zu betreiben und zu managen.

Mögliche Definitionen einer Cloud

- Cloud Computing steht für einen Pool aus abstrahierter, hochskalierbarer und verwalteter IT-Infrastruktur, die Kundenanwendungen vorhält und nach Verbrauch abgerechnet wird.
- Cloud Computing umfasst On-Demand-Infrastruktur und Software, die jeweils dynamisch an die Erfordernisse von Geschäftsprozessen angepasst werden. Dazu gehört auch die Fähigkeit, komplette Prozesse zu betreiben und zu managen.

EC2 im Amazon Umfeld

- Amazon Elastic Compute Cloud (Amazon EC2) ist ein Teil der Amazon Web Services (AWS).
- ▶ Mit dem Web-basierten EC2 Service, können Abonnenten Anwendungsprogramme in der Amazon.com Computing-Umgebung ausführen

Cloud hin Cloud her

- cloud computing = rießige Rechenzentren + große Hochleistungsrechner => ∞ Rechenpower
- ► In der Praxis sitzt man vor einem virtuellem Server, welcher genauso auf einem 500-Euro Notebook laufen könnte.
- Warum nun trotzdem Cloud-Ressourcen verwenden?

EC2 HowTo

- 1. Sign up (Amazon ID)
- 2. Launch Instances
- 3. Image wählen (AMI)
- 4. Quick Start, My AMIs, Community AMIs
- 5. Key pair generieren
- 6. Firewall Einstellungen (ssh freigeben)
- 7. Anzahl und Art der HW der Instanzen wählen
- 8. Starten dauert etwas (bis zu 15 min)

- 1. Motivation und Grundstruktur
- 2. AMI und Rechnerarchitektur
- 3. Betriebskosten
- 4. Skalierbarkeit und Ausfallsicherheit
- 5. Sicherheit und Risiken
- 6. Integration
- 7. Performance
- 8. Elastic MapReduce
- 9. Vorteile und Erfolgsgeschichten
- 10. Zusammenfassung
- 11. Ausblick

AMI allgemein

Amazon Machine Image (AMI) ist ein virtuelles Maschinen Abbild, welches auf einem XEN Image basiert.

Große Auswahl vorkonfigurierter Systeme.

Amazon, eigene und Community AMIs stehen zur Auswahl

Nicht offiziel unterstützt AMI to XEN

AMI Repository (Amazon)

AMI Repository (Community)

Architekturvarianten

Standard Instances

- Small Instance
 1.7 GB Hauptspeicher, 1 EC2-Compute-Unit (1 virtual CPU-core), 160 GB Hintergrundspeicher, 32-bit Plattform
- Large Instance
 7.5 GB Hauptspeicher, 4 EC2-Compute-Unit (2 virtual CPU-cores), 850 GB Hintergrundspeicher, 64-bit Plattform
- Extra Large Instance
 15 GB Hauptspeicher, 8 EC2-Compute-Unit (4 virtual CPU-cores), 1690 GB Hintergrundspeicher, 64-bit Plattform

Architekturvarianten

High-CPU Instances

- High-CPU Medium Instance
 1.7 GB Hauptspeicher, 5 EC2-Compute-Unit (2 virtual CPU-core), 350 GB Hintergrundspeicher, 32-bit Plattform
- High-CPU Extra Large Instance
 7 GB Hauptspeicher, 20 EC2-Compute-Unit (8 virtual CPU-cores), 1690 GB Hintergrundspeicher, 64-bit Plattform

- 1. Motivation und Grundstruktur
- 2. AMI und Rechnerarchitektur
- 3. Betriebskosten
- 4. Skalierbarkeit und Ausfallsicherheit
- 5. Sicherheit und Risiken
- 6. Integration
- 7. Performance
- 8. Elastic MapReduce
- 9. Vorteile und Erfolgsgeschichten
- 10. Zusammenfassung
- 11. Ausblick

Betriebskosten

United States	Europe				
Standard On-Demand Instances		Linux/UNIX Us	age	Windows Usage	
Small (Default)		\$0.11 per hour		\$0.135 per hour	
Large		\$0.44 per hour		\$0.54 per hour	
Extra Large		\$0.88 per hour	,	\$1.08 per hour	
High CPU On-Demand Inst	ances	Linux/UNIX Us	age	Windows Usage	
Medium		\$0.22 per hour		\$0.32 per hour	
Extra Large		\$0.88 per hour		\$1.28 per hour	
Linux/UNIX	Linux/UNIX One-time Fee				
Standard Reserved Instan	ces	1 yr Term	3 yr Term	Usage	
Small (Default)		\$325	\$500	\$0.04 per hour	
Large		\$1300	\$2000	\$0.16 per hour	
Extra Large		\$2600	\$4000	\$0.32 per hour	
High CPU Reserved Instan	ces	1 yr Term	3 yr Term	Usage	
Medium		\$650	\$1000	\$0.08 per hour	
Evtra Large		\$2600	\$4000	\$0.32 per hour	

Betriebskosten

	S on Demand	S reserviert	M on Demand	M reserviert	L on Demand	L reserviert	Hetzner 8000
Jahr	963,6	325	3854,4	1300	37708,8	2600	1287
Monat	80,3	27,08	321,2	108,33	642,4	216,67	99
Stunde	0,11	0,04	0,04	0,15	0,88	0,3	0,15

Small Instance 1.7 GB of memory, 1 EC2 Compute Unit, 160 GB of instance storage, 32-bit Large Instance 7.5 GB of memory, 4 EC2 Compute Units, 850 GB of instance storage, 64-bit Extra Large Instance 15 GB of memory, 8 EC2 Compute Units, 1690 GB of instance storage, 64-bit Hetzner Root Server DS 8000 AMD Athlon 64 X2 6000+ Dual Core

- Arbeitsspeicher 8 GB DDR2
- Festplatten 2 x 750 GB SATA II (Software RAID 1)
- Netzwerkkarte 1 GBit OnBoard
- ► Backup Space 50 GB

- 1. Motivation und Grundstruktur
- 2. AMI und Rechnerarchitektur
- Betriebskosten
- 4. Skalierbarkeit und Ausfallsicherheit
- 5. Sicherheit und Risiken
- 6. Integration
- 7. Performance
- 8. Elastic MapReduce
- 9. Vorteile und Erfolgsgeschichten
- 10. Zusammenfassung
- 11. Ausblick

Skalierbarkeit

Bestes Beispiel:

► Animoto : Von 40 auf 5000 Server in 3 Tagen

Allerdings gibt es Beschränkungen für neu angemeldete Benutzer. Diese dürfen zunächst nur 20 Instanzen starten.

Ausfallsicherheit

- ► Multiple Locations
 - ► Regionen
 - USA
 - ► EU
 - Verfügbarkeits Zonen
- Elastic IP Addresses

Service Level Agreement

- Service Level Agreement (SLA):
 - ► Amazon EC2 SLA commitment is 99.95% availability for each Amazon EC2 Region 23. Oktober 2008
 - S3 SLA 99.9% uptime
- S3 Objekte werden in unterschiedlichen physikalischen Plätzen gespeichert
- Hardware und Netzwerkkomponenten sind redundant designed
- Große, 24x7, dedicated operations teams

Service Level Agreement

Am99,95 % Verfügbarkeit in einer Region über eine 365 Tage Periode

- Falls dies nicht erfüllt wird, werden den Geschädigten sog.
 "Service Credits" gewährt.
 - Kunde bekommt 10% der Gebühren für die letzten 365 Tage zurückerstattet
 - Dabei wird die Zurückerstattung nur für zukünftige Gebühren gut geschrieben
 - ► Strafen/Schadensersatz werden keine zugestanden

- 1. Motivation und Grundstruktur
- 2. AMI und Rechnerarchitektur
- Betriebskosten
- 4. Skalierbarkeit und Ausfallsicherheit
- 5. Sicherheit und Risiken
- 6. Integration
- 7. Performance
- 8. Elastic MapReduce
- 9. Vorteile und Erfolgsgeschichten
- 10. Zusammenfassung
- 11. Ausblick

Sicherheit

- Host-Operating-System ist isoliert vom Guest-Operating Systems
- ▶ Die Firewall läuft in der Hypervisorschicht und unterbindet in den initialen Einstellungen jede Verbindung
- Traffic zu/von Instanzen muss explizit vom Benutzer authorisiert werden
- X.509 Certificate oder Geheime Schlüssel werden für alle APi aufrufe benötigt
- ► API Aufrufe können verschlüsselt übermittelt werden
- Inherenter Schutz gegen DDoS, MITM, IP Spoofing, port scanning, und packet sniffing
- Durch die sog. Security groups kann der Zutritt durch Port,
 Protokol oder durch die hereinkommende IP Adresse gewährt werden

Risiken

Contra

- Externe Admins
- Mehr Menschen sind beteiligt
- Sicherheitslücke Browser
- ► Informations Abhängigkeit
- Single Point of Failure

Pro

- Externe Admins
- Bessere Security-tools
- Sicherheits Experten
- Amazon verschwindet nicht
- ▶ rießige Rechenzentren

- 1. Motivation und Grundstruktur
- 2. AMI und Rechnerarchitektur
- Betriebskosten
- 4. Skalierbarkeit und Ausfallsicherheit
- 5. Sicherheit und Risiken
- 6. Integration
- 7. Performance
- 8. Elastic MapReduce
- 9. Vorteile und Erfolgsgeschichten
- 10. Zusammenfassung
- 11. Ausblick

Integration

- Amazon EC2 running IBM DB2 Express starting at \$0.38/hour
- Amazon EC2 running IBM DB2 Workgroup starting at \$1.31/hour
- Amazon EC2 running IBM Informix Dynamic Server Express starting at \$0.38/hour
- Amazon EC2 running |BM |Informix Dynamic Server Workgroup starting at \$1.31/hour
- Amazon EC2 running IBM WebSphere sMash starting at \$0.50/hour
- Amazon EC2 running IBM Lotus Web Content Management starting at \$2.48/hour
- Amazon EC2 running IBM WebSphere Portal Server and IBM Lotus Web Content Management

Server - starting at \$6.39/hour

- AWS Toolkit for Eclipse
 - Deploy The AWS Java Toolkit for Eclipse allows developers to upload their applications to clusters of Tomcat servers in Amazon EC2 with the press of a button.
 - Debug Eclipse extensions automatically configure remote debugger connections for diagnosing problems and debugging software run in the cloud.
 - Manage Simple management interfaces enable developers to perform basic EC2 management tasks without ever leaving their development environment.
 - Extend AWS Toolkit for Eclipse source code is available for download and available under the Apache 2.0 open source license. Add support for additional application servers and contribute back to the project.
- ► Microsoft Windows Server® 2003
- ► SQL Server Support

- 1. Motivation und Grundstruktur
- 2. AMI und Rechnerarchitektur
- Betriebskosten
- 4. Skalierbarkeit und Ausfallsicherheit
- 5. Sicherheit und Risiken
- 6. Integration
- 7. Performance
- 8. Elastic MapReduce
- 9. Vorteile und Erfolgsgeschichten
- 10. Zusammenfassung
- 11. Ausblick

Performance

Verfügbarkeits-Zonen:

EU (geringere Zugriffszeiten, Latenz)
USA (besser ausgebaut, kürzere Wartezeit bei Start)

Performance

Test type	Transfer MB/s	Bemerkungen
EC2 -> EC2	75.0	curl on 1-2 GB files, w.o. SSL
S3 -> EC2	49.8	8 x curl on 1 GB files, w. SSL
S3 -> EC2	51.5	8 x curl on 1 GB files, w.o. SSL
EC2 -> S3	53.8	12 x curl on 1 GB files, w. SSL

Performance-Test mit Javalution 1/3

FC2 Instance

- Primitive types formatting -
 - StringBuffer append(int): 410.9 ns
 - Text Builder append(int): 212.2 ns
 - StringBuffer.append(long): 1.628 us
 - ► Te100×t Builder append(long): 847.7 ns
 - StringBuffer.append(float): 1.668 us
 - Text Builder append(float): 1.075 us
 - StringBuffer.append(double): 7.014 us
 - StringBuffer append(double): 7.014 us
 - Text Builder append (double): 3.441 us

2.0 Ghz Dual core, Laptop

- Primitive types formatting -
 - String Buffer app end(int): 263.9 ns
 - TextBuilder.append(int): 144.2 ns
 - StringBuffer.append(long): 650.0 ns
 - Text Builder.append(long): 327.4 ns
 - StringBuffer.append(float): 808.0 ns
 - StringBuffer append(float): 808.0 ns
 - TextBuilder.append(float): 481.9 ns
 - StringBuffer append(double): 3.264 us
 - Text Builder append (double): 1.642 us

Performance-Test mit Javalution 2/3

FC2 Instance

- Concurrent Context -
 - Quick Sort 10000 elements -Concurrency disabled: 22.05 ms
 - Quick Sort 10000 elements -Concurrency (1) enabled: 22.46 ms

2.0 Ghz Dual core, Laptop

- Concurrent Context -
 - Quick Sort 10000 elements -Concurrency disabled: 12.16 ms
 - Quick Sort 10000 elements -Concurrency (1) enabled: 8.884 ms

Performance-Test mit Javalution 3/3

EC2 Instance

- Heap vs Stack Allocation (Pool-Context) -
 - Small obj heap creation: 20.00 ns
 - Small obj stack creation: 46.70 ns
 - char[256] heap creation: 952.0 ns
 - char[512] heap creation: 1.825 us
 - char[256] stack creation: 61.00 ns
 - char[512] stack creation: 62.00 ns

- 2.0 Ghz Dual core, Laptop - Heap vs Stack Allocation (Pool-Context) -
 - Small obj heap creation: 18.04 ns
 - Small obj stack creation: 38.83 ns
 - char[256] heap creation: 595 9 ns
 - char[512] heap creation: 1.059 us
 - char[256] stack creation: 55.03 ns
 - char[512] stack creation: 54.76 ns

- 1. Motivation und Grundstruktur
- 2. AMI und Rechnerarchitektur
- Betriebskosten
- 4. Skalierbarkeit und Ausfallsicherheit
- 5. Sicherheit und Risiken
- 6. Integration
- 7. Performance
- 8. Elastic MapReduce
- 9. Vorteile und Erfolgsgeschichten
- 10. Zusammenfassung
- 11. Ausblick

Elastic MapReduce

Standard Amazon EC2 Instances	Amazon EC2 Price per hour (On-Demand Instances)	Amazon Elastic MapReduce Price per hour
Small (Default)	\$0.10 per hour	\$0.015 per hour
Large	\$0.40 per hour	\$0.06 per hour
Extra Large	\$0.80 per hour	\$0.12 per hour
High CPU Instances	Amazon EC2 Price per hour (On-Demand Instances)	Amazon Elastic MapReduce Price per hour
Medium	\$0.20 per hour	\$0.03 per hour
Extra Large	\$0.80 per hour	\$0.12 per hour

- 1. Motivation und Grundstruktur
- 2. AMI und Rechnerarchitektur
- Betriebskosten
- 4. Skalierbarkeit und Ausfallsicherheit
- 5. Sicherheit und Risiken
- 6. Integration
- 7. Performance
- 8. Elastic MapReduce
- 9. Vorteile und Erfolgsgeschichten
- 10. Zusammenfassung
- 11. Ausblick

Einsatzmöglichkeiten

- Small-scale user : 1 Small instance (Website Hosting)
- Medium-scale user: 4 Small instances, 2 Large instances (Social Networking App)
- Compute intensive on-demand parallel user: 400 instances für 72 Stunden (Hadoop Cluster)
- High-perf user: 20 Extra Large instance for 14 days (Biotech Drug Synthesis or Render Farms)
- ▶ Database or file share hosting user: 8 Large instances running the entire month (Memcached-based Applications)
- ► Mixed large-scale user: 16 small instances, 4 large instances, 2 extra large instances, running entire month (Large Web-Scale Application)

Erfolgsgeschichten

- Werbewirksam auf Webseite http://aws.amazon.com/solutions/case-studies/ präsentiert!
- ► Mittlerweile 51 Erfolgsgeschichten, meisst junge Startup Unternehemen.
- Einige bekannte Größen wie Linden Lab und Firmenauskopplungen aus der Harvard und Stanford University sind auch vertreten.

Vorteile

Fixkosten können eingespart werden:

- ► Kosten für Gebäude/Räume
- Elektrizitätskosten
- Kosten für Kühlsysteme
- Kosten Spezialhardware für Hochverfügbarkeitscluster
- ▶ Betriebssysteme
- Reperaturen

- 1. Motivation und Grundstruktur
- 2. AMI und Rechnerarchitektur
- Betriebskosten
- 4. Skalierbarkeit und Ausfallsicherheit
- 5. Sicherheit und Risiken
- 6. Integration
- 7. Performance
- 8. Elastic MapReduce
- 9. Vorteile und Erfolgsgeschichten
- 10. Zusammenfassung
- 11. Ausblick

Zusammenfassung

- ► Amazon's Computing Platform EC2 zeichnet sich durch eine einfache Skalierbarkeit aus
- schnelle Bereitstellung/Verfügbarkeit
- ▶ Durch Veröffentlichung von SLA der Beta-Phase entwachsen
- ▶ eine grosse Auswahl an ready-to-use AMIs
- Duplizierung möglich
- Automatisiert steuerbar
- ► Elasticfox

- 1. Motivation und Grundstruktur
- 2. AMI und Rechnerarchitektur
- Betriebskosten
- 4. Skalierbarkeit und Ausfallsicherheit
- 5. Sicherheit und Risiken
- 6. Integration
- 7. Performance
- 8. Elastic MapReduce
- 9. Vorteile und Erfolgsgeschichten
- 10. Zusammenfassung
- 11. Ausblick

Was bringt die Zukunft?

Am 18.05.2009 um ca 10:13 Uhr hat die Zukunft begonnen :

- Lastbalancierung
- Auto-scaling
- Monitoring
- ► Management Console (seit einigen Tagen in Beta)

Quellen

- ▶ Blog Decaresystems- Amazon Web Services (EC2 & S3) The Future of Data Centre Computing?
- Amazon AWS http://aws.amazon.com/ec2/
- Video Tutorial
- Netzwerkperformance in EC2
- Exploring Amazon EC2 for Scale-out Applications
- Getting Started with CC Amazon EC2
- EGEE-Grid-Cloud