4.6 白噪声序列和平稳随机序列的参数模型 *

与连续的白噪声相对应,白噪声序列 $\{W(n)\}$ 是具有如下统计特性的零均值广义平稳随机序列:

$$R_W(m) = \sigma_W^2 \delta(m).$$

$$S_W(\Omega) = \sigma_W^2, \quad -\pi \le \Omega \le \pi.$$
(4.134)

当白噪声序列通过离散线性时不变系统时,根据前面章节中的结论,输出噪声序列是广义平稳的,且与输入序列联合平稳,其具体统计特性可参照式 (4.116)。与连续的白噪声相类似,我们也可以用白噪声序列激励一个离散的最小相位系统进行信号建模,产生具有特定二阶统计特性的平稳随机序列。

在实际应用中,为了便于对问题的分析和处理,线性时不变系统的传递函数通常用一个有限阶数的有理函数来近似表示。相应地,系统的输出序列也就可以用有限个参数来描述,该有理函数称为平稳随机序列的参数模型。这种通过建立合适的参数模型来分析平稳随机序列的方法,因其频谱分辨率高,已成为现代谱分析中的一种重要方法。这里只介绍三种最常用的参数模型。

考虑具有如下有限阶数的离散线性时不变系统

$$H(\Omega) = \frac{1 + \sum_{k=1}^{q} b_k e^{-j\Omega k}}{1 + \sum_{k=1}^{p} a_k e^{-j\Omega k}} = \frac{\sum_{k=0}^{q} b_k e^{-j\Omega k}}{\sum_{k=0}^{p} a_k e^{j\Omega k}}.$$
 (4.135)

其中 $a_0 = b_0 = 1$, 其他参数由输出序列 $\{Y(n)\}$ 的二阶统计特性 (自相关函数或者功率谱函数) 决定. 写成 Z 变换的形式

$$H(z) = \frac{1 + \sum_{k=1}^{q} b_k z^{-k}}{1 + \sum_{k=1}^{p} a_k z^{-k}} = \frac{\prod_{k=1}^{q} (1 - \beta_k z^{-1})}{\prod_{k=1}^{p} (1 - \alpha_k z^{-1})},$$
(4.136)

其中 α_k , β_k 分别为系统的极点和零点, 为保证系统的因果稳定性, 这里要求 $|\alpha_k| < 1$.

4.6.1 自回归滑动平均模型

如果系数 a_1, \dots, a_p 和 b_1, \dots, b_q 不全为零,且 $a_p \neq 0, b_q \neq 0$ 时,此时系统存在零点也存在极点。当白噪声序列 $\{w(n)\}$ 激励上述系统后,系统输出序列 $\{Y(n)\}$ 与输入 $\{w(n)\}$ 之间的关系可由如下差分方程表示

$$y(n) = -a_1 y(n-1) - a_2 y(n-2) - \dots - a_p y(n-p)$$

$$+ w(n) + b_1 w(n-1) + b_2 w(n-2) + \dots + b_q w(n-q)$$

$$= \sum_{k=0}^{q} b_k w(n-k) - \sum_{k=1}^{p} a_k y(n-k).$$
(4.137)

称为平稳随机序列 $\{Y(n)\}$ 的 p 阶自回归 q 阶滑动平均模型 (ARMA). 由该模型表征的平稳随机序列 $\{Y(n)\}$, 也即系统输出的功率谱密度函数和自相关函数分别为

$$G_{Y}(\Omega) = \sigma_{w}^{2} \frac{\left|\sum_{k=0}^{q} b_{k} e^{-j\Omega k}\right|^{2}}{\left|\sum_{k=0}^{p} a_{k} e^{-j\Omega k}\right|^{2}}.$$

$$R_{Y}(m) = R_{Y}(n_{1} - n_{2}) = E\left\{y(n_{2})\left[\sum_{k=0}^{q} b_{k} w(n_{1} - k) - \sum_{k=1}^{p} a_{k} y(n_{1} - k)\right]\right\}$$

$$= \sum_{k=0}^{q} b_{k} R_{wy}(m - k) - \sum_{k=1}^{p} a_{k} R_{Y}(m - k)$$

$$= \sum_{k=0}^{q} b_{k} \sigma_{w}^{2} h(k - m) - \sum_{k=1}^{p} a_{k} R_{Y}(m - k).$$

$$(4.138)$$

上式利用了 4.3 节中的结论

$$R_{wy}(m) = \sum_{k=-\infty}^{+\infty} h(k)R_w(m+k) = \sigma_w^2 h(-m), \tag{4.140}$$

其中,系统的冲激响应 h(n) 可根据 (4.135) 式表示成下式

$$h(n) = \begin{cases} -\sum_{k=1}^{p} a_k h(n-k) + b_n, & 0 \le n \le q \\ -\sum_{k=1}^{p} a_k h(n-k), & n > q \\ 0, & n < 0 \end{cases}$$
 (4.141)

4.6.2 自回归模型

当系数 b_1, \cdots, b_q 均为零且 $a_p \neq 0$ 时,系统为全极点系统,其传输函数和冲激响应分别为

$$H(\Omega) = \frac{1}{1 + \sum_{k=1}^{p} \Omega_k e^{-jak}} = \frac{1}{\sum_{k=0}^{p} \Omega_k e^{-j\Omega k}}.$$
 (4.142)

$$h(n) = \begin{cases} -\sum_{k=1}^{p} a_k h(n-k) + \delta(n), & n \ge 0\\ 0, & n < 0 \end{cases}$$
 (4.143)

系统输出序列 $\{Y(n)\}$ 与白噪声序列 $\{W(n)\}$ 的当前值和 $\{Y(n)\}$ 的 p 个过去值有关,即

$$y(n) = w(n) - \sum_{k=1}^{p} a_k y(n-k),$$
(4.144)

称为平稳随机序列 $\{Y(n)\}$ 的 p 阶自回归模型 (Auto Regressive model, AR), 记为 AR(p). 可见 AR(p) 模型是由 ARMA(p,q) 模型经过 q=0 退化而来。相应地,由该模型表征的平稳随机序列 $\{Y(n)\}$, 即系统输出的功率谱密度函数和自相关函数可表示为

$$G_Y(\Omega) = \frac{\sigma_w^2}{\left|\sum_{k=0}^p a_k e^{-j\Omega k}\right|^2}.$$
(4.145)

$$R_{Y}(m) = R_{Y}(n_{1} - n_{2}) = E\left\{y(n_{2})\left[w(n_{1}) - \sum_{k=1}^{p} a_{k}y(n_{1} - k)\right]\right\}$$

$$= R_{my}(m) - \sum_{k=1}^{p} a_{k}R_{Y}(m - k)$$

$$= \sigma_{m}^{2}h(-m) - \sum_{k=1}^{p} a_{k}R_{Y}(m - k). \tag{4.146}$$

4.6.3 滑动平均模型

当系数 a_1, \cdots, a_p 均为零,且 $b_q \neq 0$ 时,系统为全零点系统,其传输函数和冲激响应分别为

$$H(\Omega) = 1 + \sum_{k=1}^{q} b_k e^{-j\Omega k} = \sum_{k=0}^{q} b_k e^{j\Omega k}.$$

$$h(n) = \begin{cases} b_n, & 0 \le n \le q \\ 0, & n < 0, n > q \end{cases}.$$
(4.147)

此时, $\{Y(n)\}$ 仅与白噪声序列 $\{W(n)\}$ 的当前值和 q 个过去值有关,即

$$y(n) = w(n) + \sum_{k=1}^{q} b_k w(n-k) = \sum_{k=0}^{q} b_k w(n-k),$$
 (4.148)

称为平稳随机序列 $\{Y(n)\}$ 的 q 阶滑动平均模型 (Moving Average model, MA), 记为 MA(q). 同样,MA(q) 模型可以看作是由 ARMA(p,q) 模型经过 p=0 退化而来,相应 地,由该模型表征的平稳随机序列 $\{Y(n)\}$,即系统输出的功率谱密度函数和自相关函数 可分别表示为

$$G_Y(\Omega) = \sigma_W^2 \left| \sum_{k=0}^q b_k e^{-j\Omega k} \right|^2. \tag{4.149}$$

$$R_{Y}(m) = R_{Y}(n_{1} - n_{2}) = E\left\{Y(n_{2}) \sum_{k=0}^{q} b_{k} W(n_{1} - k)\right\}$$

$$= \sum_{k=0}^{q} b_{k} R_{wy}(m - k) = \sum_{k=0}^{q} b_{k} \sigma_{W}^{2} h(k - m). \tag{4.150}$$

4.6.4 三种模型间的联系

在上节,我们提到 AR 模型和 MA 模型是 ARMA 模型分别在不同条件下的特例,除此之外,这三种模型之间还可以相互等价。下面我们就以 MA 模型为例,证明一个有限阶的 MA(q) 模型可以等价于一个无穷阶的 AR 模型。

对 (4.148) 式两边取 Z 变换

$$Y(z) = H(z)W(z) = \prod_{k=1}^{q} (1 - \beta_k z^{-1}) W(z), \tag{4.151}$$

其中 Y(z) 和 W(z) 分别为 y(n) 和 W(n) 的 Z 变换. 若系统 H(z) 具有可逆性,即其零点 $|\beta_k| < 1$, 序列 $\{W(n)\}$ 可以看成是序列 $\{Y(n)\}$ 激励其逆系统 H_{inv} 的输出,即

$$W(z) = H_{\text{inv}}Y(z) = \frac{Y(z)}{\prod_{k=1}^{q} (1 - \beta_k z^{-1})},$$
(4.152)

利用系统的稳定性条件和下面的公式

$$\frac{1}{1 - \beta_k z^{-1}} = \sum_{i=0}^{+\infty} \beta_k^i z^{-i} = 1 + \sum_{i=1}^{+\infty} \beta_k^i z^{-i}, \tag{4.153}$$

将其代入 (4.152) 式得

$$W(z) = \prod_{k=1}^{q} \left(1 + \sum_{i=1}^{+\infty} \beta_k^i z^{-i} \right) Y(z) = \left(1 + \sum_{i=1}^{+\infty} \varepsilon_i z^{-i} \right) Y(z). \tag{4.154}$$

比较上式与 (4.144) 式,两者在形式上完全一致,这就证明,一个可逆的有限阶 MA 模型可以等价于一个无穷阶的 AR 模型。同样,可以用类似的分析方法得到如下结论:一个可逆的有限阶 MA 模型或 ARMA 模型可以等价于一个无穷阶的 AR 模型,一个稳定的有限阶 AR 模型或 ARMA 模型也可以等价于一个无穷阶的 MA 模型.

4.7 习题 231

小结

本章首先介绍了信号与系统的基本概念、分类和特点;其次分别从时域和频域两方面分析了平稳随机信号通过线性时不变系统后,系统输出与输入的一阶、二阶统计量之间的关系,得到了一系列的结论;然后将其应用到对白噪声这种特殊的随机过程通过线性系统后的分析,给出了等效噪声带宽的概念;紧接着利用相同的方法,分析了随机序列通过线性时不变系统后的特性分析,得到了类似的一些结论;并在其基础上,引入了通过建立随机序列参数模型来分析平稳随机序列统计特性的方法,介绍了ARMA、AR、MA三种模型的概念及其之间的联系;然而,针对非平稳随机信号以及有记忆的非线性等更复杂的系统的处理,限于篇幅没有涉及,感兴趣的读者可查阅相关的文献和书籍。

4.7 习题

- **练习4.1** 已知系统的单位冲激响应 $h(t) = 5e^{-3t}U(t)$, 输入信号为 $X(t) = M+4\cos(2t+\Phi)$, 其中 M 是随机变量, Φ 是 $(0, 2\pi)$ 上均匀分布的随机变量, 且 M 和 Φ 独立。求输出信号的表达式。
- ▲ 练习 4.2 已知线性系统的单位冲激响应

$$h(t) = [5\delta(t) + 3][U(t) - U(t - 1)]. \tag{4.155}$$

输入信号为 $X(t) = 4\sin(2\pi t + \Phi)$, 其中 Φ 是 $(0,2\pi)$ 上均匀分布的随机变量。求输出信号的表达式均值和方差。

- ▲ 练习 4.3 已知系统的单位冲激响应为
 - (1) $h(t) = e^{-2t}U(t)$;
 - (2) $h(t) = e^{-2t} \sin t U(t)$;
 - (3) $h(t) = te^{-2t}U(t)$;
 - (4) $h(t) = \delta(t) + e^{-3t}U(t)$.

当输入平稳信号 X(t) 的自相关函数为 $R_X(\tau) = 4 + e^{-|\tau|}$ 时, 求系统输出的均值和方差。

- △ 练习 **4.4** 已知有限时间积分系统的单位冲激响应为 h(t) = (1-t)[U(t) U(t-0.5)], 系统输入功率谱密度为 $10V^2/Hz$ 的高斯白噪声, 求系统输出的 (总) 平均功率, 交流功率和输入输出互相关函数。