Statistics 568 Bayesian Analysis Intro to Bayesian Computation

Ruobin Gong

Department of Statistics Rutgers University

Week 6 - 02/25/21

Targets of Bayesian computation

Bayesian computation revolves around the computation of two targets:

- 1. posterior distribution $p(\theta \mid y)$, and
- 2. posterior predictive distribution $p(\tilde{y} \mid y)$.

Notation

- ▶ The **target distribution** is denoted as $p(\cdot)$
- ▶ The unnormalized target distribution is denoted by $q(\cdot)$
 - ▶ $\int q(a)da < \infty$;
 - ▶ $q(\cdot) \propto p(\cdot)$.
- ▶ The **proposal distribution** is denoted by $g(\cdot)$.

Note. When discussing computation for a single model, the posterior's dependence on y is not important, so we sometimes use the generic $p(\cdot)$ and $q(\cdot)$ instead of $p(\cdot \mid y)$ and $q(\cdot \mid y)$ whenever no confusion arises.

Approximating expectations

Let $f(\theta)$ be a quantity of interest. Its posterior expectation

$$E\left(f(\theta)\mid y
ight) = \int f(\theta)p(\theta|y)d\theta,$$
 where $p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$

We can easily evaluate $p(y|\theta)p(\theta)$ for any θ , but the integral $\int p(y|\theta)p(\theta)d\theta$ is usually difficult.

Approximating expectations

We can use the unnormalized posterior $q(\theta|y) = p(y|\theta)p(\theta)$, for example, in

Grid (equal spacing) evaluation with self-normalization

$$E(f(\theta) \mid y) \approx \frac{\sum_{s=1}^{S} \left[f(\theta^{(s)}) q(\theta^{(s)} \mid y) \right]}{\sum_{s=1}^{S} q(\theta^{(s)} \mid y)}$$

Monte Carlo methods which can sample from $p(\theta^{(s)}|y)$ using only $q(\theta^{(s)}|y)$

$$E(f(\theta) \mid y) \approx \frac{1}{S} \sum_{s=1}^{S} f(\theta^{(s)})$$

Approximating expectations

A few different approaches of computation in the Bayesian context:

- Conjugate priors and analytic solutions (Ch 1-5)
- Grid integration and other quadrature rules (Ch 3, 10)
- Independent Monte Carlo, rejection and importance sampling (Ch 10)
- Markov Chain Monte Carlo (Ch 11-12)
- Other distributional approximations (Laplace, variational Bayes, expectation propagation) (Ch 4, 13)

*Numerical accuracy

- ▶ Floating point presentation of numbers. e.g. with 64bits, the closest value to zero is $\approx 2.2 \cdot 10^{-308}$
- ▶ Joint densities with lots of product components result in underflow, e.g. prod(dnorm(rnorm(600))) → 0.
- Use log densities to avoid over- and underflows in floating point presentation, e.g. sum(dnorm(rnorm(600),log=TRUE)) → -847.3, so that you can handle a lot more observations.
- Compute exp as late as possible.

Monte Carlo methods

Monte Carlo samples can be used, e.g. to compute means, deviations, quantiles; to draw histograms; to marginalize posterior distributions, etc.

- ► The idea existed and was practiced way before computers (Buffon's Needle, 1777)
- ► The term "Monte Carlo method" was proposed by Metropolis, von Neumann and Ulam towards the end of 1940s
- ▶ 1990s: the Monte Carlo revolution in Bayesian computation
- Idea: simulate draws from the target distribution, and treat these draws as observations. A collection of draws is thus a sample.

Buffon's Needle

[Wikipedia] Suppose we have a floor made of parallel strips of wood, each the same width t. We drop a needle of length l onto the floor. What is the probability that the needle will lie across a line between two strips? – Georges-Louis Leclerc, Comte de Buffon, 1777

See https://mste.illinois.edu/activity/buffon/ for an illustration of the analysis.

If draws are **independent**, use usual methods to estimate the uncertainty due to a finite number of observations.

Posterior expectation

$$\mathbb{E}(\theta) \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$$

if S is big and $\theta^{(s)}$ are independent, way may assume that the distribution of the expectation approaches normal distribution with variance σ_{θ}^2/S (asymptotic normality).

Posterior expectation

$$\mathbb{E}(\theta) pprox rac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$$

► Total variance of the estimator is the sum of the epistemic uncertainty in the posterior, and the uncertainty due to using finite number of Monte Carlo draws

$$\sigma_{\theta}^2 + \sigma_{\theta}^2/S = \sigma_{\theta}^2(1 + 1/S)$$

- For example, if S=100, deviation increases by $\sqrt{1+1/S}=1.005$, i.e. Monte Carlo error is very small.
- *Counter examples for asymptotic normality (Chapter 4)

Posterior probability

$$p(\theta \in A) \approx \frac{1}{S} \sum_{I} I(\theta^{(s)} \in A),$$

where $I(\theta^{(s)} \in A) = 1$ if $\theta^{(s)} \in A$.

- ▶ $I(\cdot)$ is binomially distributed as $p(\theta \in A)$
 - ▶ $var(I(\cdot)) = p(1-p)$
 - standard deviation of the estimate is $\sqrt{p(1-p)/S}$
- ▶ For example, if S=100 and $p\approx 0.5$, $\sqrt{p(1-p)/S}=0.05$, i.e. accuracy is about 5% units. Thus, S=2500 draws are needed for 1% unit accuracy.

To estimate small probabilities, a large number of draws is needed

▶ To be able to estimate p, need to get draws with $\theta^{(l)} \in A$, which in expectation requires $S \gg 1/p$.

Note. The number of independent draws needed does **not** depend on the number of dimensions. However, it may be difficult to obtain independent draws in a high dimensional case.

Markov chain Monte Carlo produces dependent draws, and requires additional work to estimate the effective sample size.

Variance reduction methods

Rejection sampling

Choose a proposal distribution $g(\cdot)$ such that it can form an envelope over the (unormalized) target distribution $q(\cdot) = cp(\cdot)$, i.e. there exists a *covering constant* $M < \infty$ s.t. for all θ ,

$$Mg(\theta) \geq q(\theta)$$
.

Below, the unormalized target $q(\cdot)$ is the blue density. Scaled proposal $Mg(\cdot)$ is the dashed red density.

-- Mg(theta) -- q(thetaly)

Rejection sampling

(von Neumann, 1951). At step $s=1,\ldots,S$:

- ▶ Draw a sample $\theta^{(s)} \sim g(\cdot)$;
- Accept $\theta^{(s)}$ with probability $r = \frac{q(e^{(s)})}{Mg(\theta^{(s)})}$, otherwise go back to the previous step.

The accepted samples $\theta^{(s)}$ follow the target distribution $p(\cdot)$.

Accepted
 Rejected
 Mg(theta)
 q(thetaly)

byr = by q (0's')
- by (Mg(0's'))

Rejection sampling: proof

Let
$$I = \{1\}$$
 if $0^{(s)} \sim q$ is accepted $P_r(I = 1) = \int P_r(I = 1 \mid 0) g(0) d0 = \int \frac{CP(0)}{Mg(0)} g(0) d0$

$$= \frac{C}{M}$$
So $P_r(0 \mid I = 1) = \frac{CP(0)}{Mg(0)} g(0)$

$$= P_r(I = 1) = \frac{CP(0)}{P_r(I = 1)} = P(0)$$

Rejection sampling: Efficiency

- ► The number of accepted draws (out of *S*) is the effective sample size.
- ▶ The covering constant *M* reflects the *expected* number of operations needed to obtain one draw, so the key is to find a good proposal *g* with a small *M*.
- Selection of good proposal gets very difficult when the number of dimensions increase.

Example: Truncated Gaussian

The (unormalized) target is

$$q(\theta) = \phi(\theta) \mathbf{1} \{\theta > c\}$$

where ϕ is the standard Normal density.

▶ $c \le 0$: choose $g(\theta) = \phi(\theta)$. The covering constant M = 1. Efficiency is at least 50% (depending on c).

• c > 0, especially $c \gg 0$: this choice can be inefficient.

Example: Truncated Gaussian

Consider proposal distribution in the form of the exponential density (with parameter λ as something we can choose):

$$g(\theta) = \lambda \exp(-\lambda \theta)$$
.

Need to find smallest M such that

Example: Truncated Gaussian

$$\frac{\phi\left(\theta+c\right)}{1-\Phi\left(c\right)}\leq M\cdot\lambda\exp\left(-\lambda\theta\right),\;\forall\theta>0$$

gives the minimal
$$M^*$$
:
$$M^* = \frac{\exp\left((\chi^2 - 2\chi_C)/2\right)}{\sqrt{2\pi} \lambda \left(1 - \Phi(C)\right)}$$
The best choice λ^* that meets this minimum rejection rate:

$$\chi^* = \left(c + \sqrt{c^2 + 4} \right) / 2$$

Variance reduction methods

- Stratified sampling: break Θ into k disjoint regions such that the target integral within the subregion is relatively homogeneous;
- Control variates: use a control variate that is correlated with the sample θ , to produce a better estimate (similar to regression adjustment);
- Antithetic variates
- Rao-Blackwellization

Antithetic variates

(Hammersley and Morton, 1956) This is a method to produce negatively correlated samples. Suppose $U \sim Unif(0,1)$, and we draw $X = F^{-1}(U)$, i.e. via PIT, to obtain $X \sim F$.

Then, using the same draw of U,

$$X' = F^{-1} (1 - U)$$

also follows the same distribution $X' \sim F$.

Antithetic variates

More generally, if h is a monotone function, then

$$(h(u) - h(v))(h(1-u) - h(1-v)) \le 0$$

for every $u, v \in [0, 1]$. Thus for two i.i.d. Uniform r.v.s U and V, we have that

$$\mathbb{E}(h(U) - h(V))(h(1 - U) - h(1 - V)) = Cov(X, X') \le 0$$

where X = h(U) and X' = h(1 - U). Therefore

$$var\left(\frac{X+X'}{2}\right) \leq \frac{var(X)}{2}$$

implying that using the pair (X, X') is better than using two independent Monte Carlo draws for estimating $\mathbb{E}(X)$.

Rao-Blackwellization

In MC computation, always carry out analytical computation as much as possible.

Suppose you have S independent draws $x^{(s)} \sim p(\cdot)$, and want to estimate E(f(x)). The MC estimate is

$$\hat{f} = \frac{1}{S} \sum_{s} f\left(x^{(s)}\right).$$

Now suppose $x = (x_1, x_2)$ has two parts, and you know the conditional expectation

$$E(f(x) | x_2)$$
.

Consider the alternative MC estimator

$$\tilde{f} = \frac{1}{S} \sum_{s} E\left(f(x) \mid x_2^{(s)}\right).$$

Rao-Blackwellization

$$\hat{f} = \frac{1}{S} \sum_{s} f\left(x^{(s)}\right), \qquad \tilde{f} = \frac{1}{S} \sum_{s} E\left(f\left(x\right) \mid x_2^{(s)}\right).$$

Both \hat{f} and \tilde{f} are unbiased:

$$E_p(f(x)) = E\left(E\left(f(x)(\chi_2)\right)\right)$$

Thus, estimator
$$\tilde{f}$$
 should be preferred since $var\left(\hat{f}\right) \geq var\left(\tilde{f}\right)$:
$$Var\left(f(x)\right) = E\left(Var\left(f(x) \mid \chi_{1}\right) + Var\left(E\left(f(x) \mid \chi_{1}\right)\right)\right)$$

$$Var(\hat{f}) = \frac{Var(\hat{f}(x))}{S} > \frac{Var(E(f(x)|x_2))}{S} = Var(\hat{f})$$

Importance Sampling

(Marshall 1956) Importance Sampling focus on regions "of importance" to save computational resources. It is related to rejection sampling and a precursor to the Metropolis algorithm.

Suppose we want to estimate the posterior expectation of $f(\theta)$. The unormalized target is $q(\theta) = cp(\theta)$ for some $c < \infty$, possibly unknown.

Write

$$E(f(\theta) \mid y) = \int f(\theta)p(\theta)d\theta = \frac{\int f(\theta)q(\theta)d\theta}{\int q(\theta)d\theta} = \frac{\int f(\theta)\frac{q(\theta)}{g(\theta)}g(\theta)d\theta}{\int \frac{q(\theta)}{g(\theta)}g(\theta)d\theta}.$$

Importance Sampling

$$E(f(\theta) \mid y) = \int f(\theta)p(\theta)d\theta = \frac{\int f(\theta)q(\theta)d\theta}{\int q(\theta)d\theta} = \frac{\int f(\theta)\frac{q(\theta)}{g(\theta)}g(\theta)d\theta}{\int \frac{q(\theta)}{g(\theta)}g(\theta)d\theta}$$

can be estimated using S draws $\theta^{(1)}, \dots, \theta^{(S)}$ from $g(\cdot)$ by the expression

$$\hat{f} = \frac{\sum_{s} w^{(s)} f(\theta^{(s)})}{\sum_{s} w^{(s)}},$$

where

$$w^{(s)} = rac{q(heta^{(s)})}{g(heta^{(s)})} \propto rac{p(heta^{(s)})}{g(heta^{(s)})}$$

are the importance weights. See R for an illustration.

Importance Sampling

► In general,

$$\hat{f} = \frac{\sum_{s} w^{(s)} f(\theta^{(s)})}{\sum_{s} w^{(s)}}$$

is **biased** for $E(f(\theta) \mid y)$, due to the estimated weights in the denominator.

▶ If the ratio $p(\cdot)/g(\cdot)$ is exactly known, then we have an alternative **unbiased** estimate

$$\tilde{f} = \frac{1}{S} \sum_{s} w^{(s)} f(\theta^{(s)}).$$

However, \hat{f} often has a smaller MSE than \tilde{f} .

Choice of IS proposal

The importance weights

$$w^{(s)} = rac{q(heta^{(s)})}{g(heta^{(s)})} \propto rac{p(heta^{(s)})}{g(heta^{(s)})}$$

are used to correct for the "bias" in drawing the θ 's from the proposal $g(\cdot)$ as opposed to the target $p(\cdot)$.

- ▶ A good choice for the proposal $g(\cdot)$ is one that's close in shape to $f(\cdot)p(\cdot)$.
- ▶ Unlike rejection sampling, the proposal $g(\cdot)$ need not cover the target $p(\cdot)$. However, it is desirable that it has a longer tail than $p(\cdot)$, to avoid importance weights with large variance.

Effective sample size

Suppose we can compute the normalized target, and the naturally normalized importance weights can be obtained as

$$w_0^{(s)} = \frac{p(\theta^{(s)})}{g(\theta^{(s)})}.$$

Note that here, $E_g(w_0(\theta)) = 1$.

The **effective sample size** (ess) of S independent random θ samples generated from target g is defined as

$$ess(S) = \frac{S}{1 + var_g(w_0(\theta))}.$$

Effective sample size

If only the unormalized q is known, we cannot compute w_0 , only

$$w^{(s)} = \frac{q(\theta^{(s)})}{g(\theta^{(s)})}.$$

The variance of the normalized weights $var_g(w_0(\theta))$, if finite, needs to be estimated with the **coefficient of variation** of the unormalized weights. That is,

$$e\hat{s}s(S) = \frac{S}{1 + cv^2(w)},$$

where $\bar{w} = \frac{1}{S} \sum_{s} w^{(s)}$, and

$$cv^{2}(w) = \frac{\sum_{s} (w^{(s)} - \bar{w})^{2}}{(S-1)\bar{w}^{2}}.$$

Effective sample size

Exercise. Compare with the *ess* approximation in the textbook, (10.4) on page 266:

$$e\tilde{s}s\left(S
ight)=rac{1}{\sum_{s}\left(ilde{w}^{\left(s
ight)}
ight)^{2}},$$

where

$$\tilde{w}^{(s)} = \frac{w^{(s)}}{\sum_{s} w^{(s)}}$$

Note 1: The textbook has a typo here. There is no S multiplier in the expression of \tilde{w} .

Note 2: The approximated effective sample size is small if there are a few extremely large weights. These few but large weights make the estimate itself very noisy, so take it with a grain of salt!