Practice for Separable ODEs

Why?

Exercise 1 Solve
$$y' = y^3$$
 for $y(0) = 1$.

Exercise 2 Solve
$$x' = \frac{1}{x^2}$$
, $x(1) = 1$.

Exercise 3 Solve
$$y' = (y-1)(y+1)$$
 for $y(0) = 3$. (Note: Requires partial fractions)

Exercise 4 Solve
$$x' = \frac{1}{\cos(x)}$$
, $x(0) = \frac{\pi}{2}$.

Exercise 5 Solve
$$\frac{dy}{dx} = \frac{1}{y+1}$$
 for $y(0) = 0$.

Exercise 6 Solve
$$y' = x/y$$
.

Exercise 7 Solve
$$y' = x^2y$$
.

$$\frac{dy}{dx} = \frac{2x}{y}$$

- a) Find the general solution as an implicit function.
- b) Find the solution to this differential equation as an explicit function with y(1) = 4.
- c) Find the solution to this differential equation as an explicit function with y(0) = -2.

Exercise 9 Solve
$$y' = y^n$$
, $y(0) = 1$, where n is a positive integer. Hint: You have to consider different cases.

Exercise 10 Solve
$$\frac{dx}{dt} = (x^2 - 1)t$$
, for $x(0) = 0$. (Note: Requires partial fractions)

Exercise 11 Solve
$$\frac{dx}{dt} = x \sin(t)$$
, for $x(0) = 1$.

Learning outcomes:

- **Exercise** 12 Solve y' = 2xy.
- **Exercise** 13 Solve $y' = ye^{2x}$ with y(0) = 4.
- **Exercise** 14 Solve $\frac{dy}{dx} = xy + x + y + 1$. Hint: Factor the right-hand side.
- **Exercise** 15 Solve $x' = 3xt^2 3t^2$, x(0) = 2.
- **Exercise** 16 Find the general solution of $y' = e^x$, and then $y' = e^y$.
- **Exercise 17** Solve $xy' = y + 2x^2y$, where y(1) = 1.
- **Exercise** 18 Find an implicit solution for $x' = \frac{1}{3x^2 + 1}$, x(0) = 1.
- **Exercise** 19 Solve $\frac{dy}{dx} = \frac{y^2 + 1}{x^2 + 1}$, for y(0) = 1.
- **Exercise 20** Find an implicit solution for $\frac{dy}{dx} = \frac{x^2 + 1}{y^2 + 1}$, for y(0) = 1.
- **Exercise 21** Find an implicit solution to $y' = \frac{\sin(x)}{\cos(y)}$.
- **Exercise 22** Find an implicit solution for $xy' = \frac{x^2 + 1}{y^2 1}$ with y(3) = 2.
- **Exercise** 23 Find an explicit solution for $y' = xe^{-y}$, y(0) = 1.
- **Exercise 24** Find an explicit solution to $xy' = y^2$, y(1) = 1.
- **Exercise** 25 Find an explicit solution for $xy' = e^{-y}$, for y(1) = 1.
- **Exercise 26** Find an explicit solution for $y' = y^2(x^4 + 1)$ with y(1) = 2.

Exercise 27 Find an explicit solution for $y' = \frac{\cos(x) + 1}{y}$ with y(0) = 4.

Exercise 28 Find an explicit solution for $y' = ye^{-x^2}$, y(0) = 1. It is alright to leave a definite integral in your answer.

Exercise 29 Is the equation y' = x + y + 1 separable? If so, find the general solution, if not, explain why.

Exercise 30 Is the equation $y' = ty^2 + t$ separable? If so, find the general solution, if not, explain why.

Exercise 31 Is the equation $y' = xy^2 + 3y^2 - 4x - 12$ separable? If so, find the general solution, if not, explain why. (Note: Requires partial fractions)

Exercise 32 Suppose a cup of coffee is at 100 degrees Celsius at time t = 0, it is at 70 degrees at t = 10 minutes, and it is at 50 degrees at t = 20 minutes. Compute the ambient temperature.

Exercise 33 Take Normally a reference to a previous example goes here, with the same numbers: 89 degrees at t = 0, 85 degrees at t = 1, and ambient temperature of 22 degrees. Suppose these temperatures were measured with precision of ± 0.5 degrees. Given this imprecision, the time it takes the coffee to cool to (exactly) 60 degrees is also only known in a certain range. Find this range. Hint: Think about what kind of error makes the cooling time longer and what shorter.

Exercise 34 A population x of rabbits on an island is modeled by $x' = x - (1/1000)x^2$, where the independent variable is time in months. At time t = 0, there are 40 rabbits on the island.

- a) Find the solution to the equation with the initial condition.
- b) How many rabbits are on the island in 1 month, 5 months, 10 months, 15 months (round to the nearest integer).