Survey of sentiment analysis

Xiaosong Jia

12/08/2018

Classic Methods

- Word-embedding
- RNN/LSTM/CNN
- Classification (sometimes regression)
- Task: document level, sentence level, aspect level

AAAI 2018

- Targeted Aspect-Based Sentiment Analysis via Embedding Commonsense Knowledge into an Attentive LSTM
- Task: Aspect level
- Novel Point: Common Sense (SentiNet)+Dimension Reduction

SenticNet	IsA-pet	KindOf-food	Arises-joy	
dog	0.981	0	0.789	١
cupcake	0	0.922	0.910	
rotten fish	0	0.459	0	
police man	0	0	0	
win lottery	0	0	0.991	

AAAI 2018

Model:

- Sentic LSTM + Target Self-Attention + Sentence Attention
- My point: 1. New Feature 2. New LSTM

- Transformation Networks for Target-Oriented Sentiment Classification Task: Aspect Level
- Novel Point:

Use convolutional max-pooling as attention:

Get the position relevance **v** between a word and target (Others) Use v to help CNN locate the correct opinion Feed to CNN2D

Non-linear and Max-pooling

 Model: A contextpreserving mechanism enabling the learning of target-specific word representations

Figure 1: Architecture of TNet.

Figure 2: Details of a CPT module.

- Exploiting Domain Knowledge via Grouped Weight Sharing with Application to Text Categorization
- Task: Domain text categorization
- Novel Point: Add domain knowledge to help categorization
 Weight sharing to get domain knowledge
- Question: grouping? Hash?

- Refining Word Embeddings for Sentiment Analysis
- Task : adjusting the vector representations of words such that
- 1. closer to both semantically and sentimentally similar words
- 2. further away from sentimentally dissimilar words
- 3. not too far away from the original vector

$$\arg\min \Phi(V) = \\ \arg\min \sum_{i=1}^{n} \left[\alpha dist(v_i^{t+1}, v_i^t) + \beta \sum_{j=1}^{k} w_{ij} dist(v_i^{t+1}, v_j^t) \right]$$

Summary

- Three research directions:
- 1. Utilize state-of-the-art neural network structure
- 2. Utilize domain knowledge
- 3. Combine traditional methods like sentiment lexicons with modern methods