Departamento de Ciência de Computadores Modelos de Computação (CC218)

FCUP 2013/14

duração: 3h

2º Teste (04.06.2014)

Cotação: 2, 2, 2, 3+1, 1+2+1.5, 1.5+2+2

- **1.** Justifique a veracidade ou falsidade da afirmação: "Quaisquer que sejam as linguagens L_1 e L_2 de alfabeto $\{0,1\}$, se L_1 é regular e L_2 é independente de contexto então $(L_1 \cup L_2)^*$ pode ser reconhecida por um autómato de pilha.
- **2.** Apresente o diagrama de transição do AFND- ε que resulta da aplicação do método de McNaughton-Yamada-Thompson a $((((10^*)1)+0)^*)$
- **3.** O diagrama seguinte foi obtido de um autómato finito após algumas iterações do método de eliminação de estados. Represente o diagrama que se obtém *na iteração seguinte* se se eliminar q_1 . Explique.

- **4.** Seja $L = \{x \mid x \in \{0, 1\}^* \text{ e } x \text{ tem número ímpar de 1's e não termina em 100}\}.$
- a) Determine o autómato finito determinístico mínimo que reconhece L. Justifique a correção.
- **b**) Usando as relações de equivalência R_L e R_A definidas na prova do teorema de Myhill-Nerode, justifique que se A é um autómato finito determinístico que reconhece L então A tem pelo menos três estados finais.
- **5.** Seja L a linguagem descrita pela expressão regular $(00)^*(10^*1)(10^*1+0)^*$.
- a) Defina informalmente L.
- b) Apresente uma gramática independente de contexto G que gere L e não seja ambígua, nem linear à direita nem linear à esquerda. Justifique sucintamente a resposta.
- c) Usando a noção de linguagem gerada por uma gramática e as relações \Rightarrow_G , \Rightarrow_G^k , $e \Rightarrow_G^*$, prove, por indução matemática, que $0^{2n}10010 \in \mathcal{L}(G)$, para todo $n \in \mathbb{N}$.
- **6.** Sejam L_1 e L_2 linguagens de alfabeto $\Sigma = \{a, b\}$, sendo L_1 formada pelas palavras que começam por b e têm um número de b's que é o dobro do número de a's, e $L_2 = \{b^n a^m \mid n, m \in \mathbb{N}\}$.
- a) Por aplicação do lema da repetição, prove que L_1 não é regular.
- b) Apresente um autómato de pilha que reconheça $L_1 \cap L_2$, por pilha vazia. Represente a análise da palavra bbbbaaabb por tal autómato, usando a relação \vdash .

Resolva apenas uma das duas alíneas seguintes:

- c) Defina um autómato de pilha que reconheça L_1 . Explique.
- d) Defina uma gramática G que gere $(L_1 \cap L_2)^* \setminus \{\varepsilon\}$, esteja na forma normal de Chomsky e não seja ambígua. Justifique sucintamente. Aplique o algoritmo CYK para mostrar que bbabba $\in \mathcal{L}(G)$ e construir a sua árvore de derivação.