Topología

Semanas 6 y 7: Productos cartesianos arbitrarios

10 - 24 de abril de 2020

Definición 1. Sea J un conjunto de índices. Una J-tupla de elementos de un conjunto X es una función

$$\mathbf{x}: J \to X$$
.

Si α es un elemento de X, a menudo denotamos el valor de \mathbf{x} en α como x_{α} en lugar de $\mathbf{x}(\alpha)$ y lo denominamos la α -ésima coordenada de \mathbf{x} . A menudo denotamos \mathbf{x} como

$$(x_{\alpha})_{\alpha \in J}$$
.

Además, denotamos el conjunto de todas las J-tuplas de elementos de X como X^J . De manera más formal,

$$X^J = \{ \mathbf{x} \subseteq J \times X \mid \mathbf{x} : J \to X \}.$$

- •**Ejemplo 1.** Si $X = \mathbb{R}$ y J = 3, \mathbb{R}^3 es el conjunto de todas las 3-tuplas de números reales.
- ulletEjemplo 2. Si $X=\mathbb{C}$ y $J=\mathbb{Z}$. Un elemento de $\mathbb{C}^{\mathbb{Z}}$ podría ser, por ejemplo, la función \mathbf{x} dada por

$$x_k = e^{-ik}$$

para cualquier $k \in \mathbb{Z}$, que también podemos denotar como

$$(\ldots, e^{2i}, e^i, 1, e^{-i}, e^{-2i}, \ldots)$$

o como $(e^{-ik})_{k\in\mathbb{Z}}$. En general, los elementos de $\mathbb{C}^{\mathbb{Z}}$ son las \mathbb{Z} -tuplas de números complejos.

•**Ejemplo 3.** Si $X = J = \mathbb{R}$, obtenemos

$$\mathbb{R}^{\mathbb{R}} = \{ f \subset \mathbb{R} \times \mathbb{R} \mid f : \mathbb{R} \to \mathbb{R} \}.$$

Definición 2. Sea $\{A_i\}_{i\in J}$ una famila indexada de conjuntos. Definimos el producto cartesiano $\prod_{i\in J}A_i$ como

$$\prod_{i \in J} A_j := \{ \mathbf{x} : J \to \bigcup_{i \in J} A_i \mid \forall i \in I \ (\mathbf{x}(i) \in A_i) \}.$$

Notamos que si $X = A_i$ para toda $i \in J$, el producto cartesiano coincide con el conjunto X^J de todas las J-tuplas de elementos de X.

Definición 3.