

CZ3005 Artificial Intelligence

Constraint satisfaction and adversarial search

Asst/P Hanwang Zhang

https://personal.ntu.edu.sg/hanwangzhang/

Email: hanwangzhang@ntu.edu.sg

Office: N4-02c-87

Lesson Outline

- Constraint Satisfaction
- Adversarial search (Game Playing)

Goal: discover some state that satisfies a given set of constraints

Example: Sudoku

Example: Minesweeper

Examples: Real-world CSPs

- Assignment problems
 - e.g. who teaches what class
- Timetabling problems
 - e.g. which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Floor-planning

CSP

State

defined by variables V_i with values from domain D_i

Example: 8-queens

- Variables: locations of each of the eight queens
- Values: squares on the board

Goal test

a set of constraints specifying allowable combinations of values for subsets of variables

Example: 8-queens

Goal test: No two queens in the same row, column or diagonal

Example: Cryptarithmetic Puzzle

- Variables: D, E, M, N, O, R, S, Y
- □ Value ∈ Domain: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
- Constraints
 - Y = D + E or Y = D + E 10, etc
 - \Box D \neq E, D \neq M, D \neq N, etc.
 - \square M \neq 0, S \neq 0 (unary constraints: concern the value of a single variable)

Example: Map Colouring

Colour a map so that no adjacent parts have the same colour

- Variables: Countries Ci
- Domains: {Red, Blue, Green}
- Contraints: C1 ≠ C2, C1 ≠ C5, etc.
 - binary constraints

Some Definitions

- A state of the problem is defined by an assignment of values to some or all of the variables.
- An assignment that does not violate any constraints is called a consistent or legal assignment.
- A solution to a CSP is an assignment with every variable given a value (complete) and the assignment satisfies all the constraints.

Applying Standard Search

- States: defined by the values assigned so far
- Initial state: all variables unassigned
- Actions: assign a value to an unassigned variable
- Goal test: all variables assigned, no constraints violated

Applying Standard Search

Question: How to represent constraints?

Answer: Explicitly (e.g., $D \neq E$)

Example

- Row the 1st queen occupies: $V_1 \in \{1, 2, 3, 4, 5, 6, 7, 8\}$ (similarly, for V_2)
- No-attack constraint for V_1 and V_2 :

Implicitly: use a function to test for constraint satisfaction

Explicit or Implicit?

Backtracking Search

Backtracking search: Do not waste time searching when constraints have already been violated

- Before generating successors, check for constraint violations
- If yes, backtrack to try something else

Example (4-Queens)

Heuristics for CSPs

Plain backtracking is an uninformed algorithm!!

More intelligent search that takes into consideration

- Which variable to assign next
- What order of the values to try for each variable
- Implications of current variable assignments for the other unassigned variables
 - forward checking and constraint propagation

Constraint propagation: propagating the implications of a constraint on one variable onto other variables

Example (4-Queens) without Constraint Propagation

Search Tree of 4-Queens with Constraint Propagation

Search Tree of 4-Queens with Constraint Propagation

Most Constraining Variable

Example: map colouring

To reduce the branching factor on future choices by selecting the variable that is involved in the **largest number of constraints** on unassigned variables.

Least Constraining Value

Choose the value that leaves maximum flexibility for subsequent variable assignments

Min-Conflicts Heuristic (8-queens)

- A local heuristic search method for solving CSPs
- Given an initial assignment, selects a variable in the scope of a violated constraint and assigns it to the value that minimises the number of violated constraints

CZ3005 Artificial Intelligence

Adversarial search

Asst/P Hanwang Zhang

https://personal.ntu.edu.sg/hanwangzhang/

Email: hanwangzhang@ntu.edu.sg

Office: N4-02c-87

Games as Search Problems

Abstraction

- Ideal representation of real world problems
 - e.g. board games, chess, go, etc. as an abstraction of war games
 - Perfect information, i.e. fully observable
- Accurate formulation: state space representation

Uncertainty

- Account for the existence of hostile agents (players)
 - Other agents acting so as to diminish the agent's well-being
 - Uncertainty (about other agents' actions):
 - not due to the effect of non-deterministic actions
 - not due to randomness
 - → Contingency problem

Games as Search Problems...

Complexity

- Games are abstract but not simple
 - e.g. chess: average branching factor = 35, game length > 50
 - \rightarrow complexity = 35^{50} (only 10^{40} for legal moves)
- Games are usually time limited
 - Complete search (for the optimal solution) not possible
 - → uncertainty on actions desirability
 - Search efficiency is crucial

Types of Games

	Deterministic	Chance
Perfect information	Chess, Checkers, Go, Othello	Backgammon, Monopoly
Imperfect information		Bridge, Poker, Scrabble, Nuclear war

In this course, we only focus on Perfect information

 each player has complete information about his opponent's position and about the choices available to him

Game as a Search Problem

- Initial state: initial board configuration and indication of who makes the first move
- Operators: legal moves
- Terminal test: determines when the game is over
 - states where the game has ended: terminal states
- Utility function (payoff function): returns a numeric score to quantify the outcome of a game

Example: Chess

Win (+1), loss(-1) or draw (0)

Game Tree for Tic-Tac-Toe

Step 1: Expand the whole game tree. Initialize each node to —Inf for max +Inf for min

Step 2:

Update the value from btm to top

e.g., for node D:

We want to win \rightarrow max the value (-1, 4)

Step 2:

Update the value from btm to top

e.g., for node D:

I want to win \rightarrow max the value (-1, 4)

e.g., for node B:

You want me to lose \rightarrow min the value (4, 6)

Minimax Search Strategy

Search strategy

Find a sequence of moves that leads to a terminal state (goal)

Minimax search strategy

- Maximise one's own utility and minimise the opponent's
 - Assumption is that the opponent does the same

Minimax Search Strategy

3-step process

- 1. Generate the entire game tree down to terminal states
- 2. Calculate utility
 - a) Assess the utility of each terminal state
 - b) Determine the best utility of the parents of the terminal state
 - c) Repeat the process for their parents until the root is reached
- 3. Select the best move (i.e. the move with the highest utility value)

Perfect Decisions by Minimax Algorithm

Perfect decisions: no time limit is imposed

 generate the complete search tree

Two players: MAX and MIN

- Choose move with best achievable payoff against best play
- MAX tries to max the utility, assuming that MIN will try to min it

Othello 4

- A player can place a new piece in a position if there exists at least one straight (horizontal, vertical, or diagonal) occupied line between the new piece and another piece of the same kind, with one or more contiguous pieces from the opponent player between them
- After placing the new piece, the pieces from the opponent player will be captured and become the pieces from the same Player
- The player with the most pieces on the board wins

'X' plays first

X considers the game now

O considers the game now

X considers the game now

0	0	0	
	Χ	Χ	
	X		

	X	0	
	0	Χ	
0	X		

Χ	0	
Χ	0	
Χ	0	

Game Tree Othello 4

Imperfect Decisions

For chess, branching factor \approx 35, each player typically makes 50 moves \rightarrow for the complete game tree, need to examine 35^{100} positions

Time/space requirements → complete game tree search is intractable → impractical to make perfect decisions

Modifications to minimax algorithm

- 1. replace utility function by an estimated desirability of the position
 - Evaluation function
- 2. partial tree search
 - E.g., depth limit
 - Replace terminal test by a cut-off test

Evaluation Functions

Returns an estimate of the expected utility of the game from a given position

Black: to move

White: slightly better

White: to move

Black: winning

Evaluation Functions...

Requirements

- Computation is efficient
- Agrees with utility function on terminal states
- Accurately reflects the chances of winning

Trade off between accuracy and efficiency

Example (Chess)

Define features

e.g., (number of white queens) – (number of black queens) Use a weighted sum of these features

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \cdots + w_n f_n(s)$$

Need to learn the weight

Evaluation Functions for Othello 4

- A corner of the board is one of the most important positions. A piece at the corner can help capture other pieces from the opponent player
- A square at the border is also more important than any position in the middle of the board

Heuristics for `X' is proposed as follows:

For any non-terminal game state, the evaluation function is computed as

$$3(X_C - O_C) + 2(X_b - O_b) + (X_m - O_m)$$

where X_C is the number of X's at corners,

 X_h is the number of X's at the border (excluding corners),

 X_m is the number of X's in the middle of the grid,

 O_C , O_b and O_m are the number of O's at the corners, the border and the middle of the board

Evaluation Functions for Othello 4...

Minimax Search for Othello 4

Quiescent Search

The evaluation function should only be applied to quiescent positions

positions that are not likely to have large variations in evaluation in the near future

Example (Chess)

Positions in which favorable captures can be made

Black: to move

White: about to lose

Expansion of non-quiescent positions until quiescent positions are reached

Revisit: Alpha Go

Another Example: Monte Carlo Search Tree (MCST)

MCST Key Steps

#Wins/#Games

MCST for Go is very expensive & slow

Why? The deeper you move, the wider you are \rightarrow

#number of simulations is exploded

Solution:

- 1. For selection/expansion, no longer stats (xx/xx) but f = g+h
- For simulation, no longer real self-play but f = g+h

MCST: Update f = g() + h()

just an estimation