

COT 3100

APPLICATIONS OF DISCRETE STRUCTURES

Dr. Alper Ungor • Spring 2016 • University of Florida

Last Revision: January 4, 2016

Table of Contents

1	Fou	ndations of Logic: Overview
	1.1	Propositional Logic
		Basic Definitions
		Equivalence Rules & Derivations
	1.2	Predicate Logic
		Predicates
		Quantified Predicate Expressions
		Equivalences & Derivations

Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone interested in the material. The goal is to provide an end-to-end resource that covers all material discussed in the course displayed in an organized manner. If you spot any errors or would like to contribute, please contact me directly.

1 Foundations of Logic: Overview

- Propositional Logic
 - Basic Definitions
 - Equivalence Rules & Derivations
- Predicate Logic
 - Predicates
 - Quantified Predicate Expressions
 - Equivalences & Derivations

1.1 Propositional Logic

Definition 1.1 (Propositional Logic). The logic of compound statements built from simpler statements using *Boolean Connectives*

Basic Definitions

Definition 1.2 (Propositional Logic). A *proposition* (p, q, r, ...) is simply a *statement i.e.* a declarative sentence) with a definite meaning, having a truth value that's either true or false (never both, neither, or somewhere in between)

Equivalence Rules & Derivations

1.2 Predicate Logic

Predicates

Quantified Predicate Expressions

Equivalences & Derivations