Question	1 (20 points):	Consider a	processor	with a 2	GHz clo	ck freque	ncy, and	separate
instruction	and data L1 caches	s. The base	CPI with	no memor	ry stalls	is 1. The	instructi	on cache
has a miss i	rate of 1% and the	data cache	has a miss	s rate of 4°	%. In th	ne progran	n running	g on this
machine, ap	oproximately 25% of	of the instru	ctions are	loads and	15% ar	e stores.	On a cac	che miss,
the processo	or must stall for 10	ns to comp	plete a me	mory acces	ss.			

1. (6 marks) What percentage of the total time spent by the program is memory stalls?

2. (6 marks) What is the average memory access time (in nanoseconds) for this machine?

3. (8 marks) To improve performance, your machine is being redesigned to include an L2 unified cache. The L2 cache has an access time of 10 ns, but will reduce the number of accesses to memory to 1% of all L1 accesses. How many times faster is this machine than the one in Part (b)?