Amos Azaria, Netanel Chkroun

Designing a Database

- Database normalization is the process of structuring a database, usually a relational database, in accordance with a series of socalled normal forms in order to reduce data redundancy and improve data integrity.
- It was first proposed by *Edgar F. Codd* as part of his relational model.

https://en.wikipedia.org/wiki/Database normalization

Dependencies

- An attribute (or set of attributes), B, is said to be dependent of another attribute (or set of attributes), A, if there exists a relation (function) such that A → B.
- In other words, if given A, it is not possible for an entry to have two different values for B, we say that A→B.
- For example, A = student ID, B=student first name.
 student ID -> student first name
- This dependency is also called functional dependency (B is functionally dependent of A).

Dependencies

- Obviously, for every B such that B⊆A, we have that A → B.
 - E.g.: A = stFirstName, stLastName. B = stFirstName
 - F(stFirstName, stLastName) = stFirstName

Α	В	Dependency?
{Street, HouseNum, City, State}	Zip code	A→B
Day of week	Date = {Day, Month, Year}	B→A
First Name	Last Name	None
{University, Department}	DepartmentHeadId	$A \rightarrow B$ and $B \rightarrow A$

Keys

- Candidate key: A minimal set of attributes that determines an entry. That is, all other attributes are dependent on the key.
- E.g.:
 - Student id in student table.
 - Course table: {id} or {name, year, semester}.

<u>courses</u>									
id	name	lecturer	year	semster					
10	Introduction to intro.	Knows Nothing	2020	1					
20	Calculus	Tamar Ezra	2021	1					
30	Algebra	Shay Mann	2022	1					
35	Calculus	Adel Smith	2022	1					
40	Advanced Program	David Gol	2022	2					

Students									
id	age	gender	degree	firstName	lastName				
111	21	1	1	Chaya	Glass				
444	23	0	1	Moti	Cohen				
222	28	1	3	Tal	Negev				
333	24	0	1	Gadi	Golan				

attribute from the set, will no

longer determine the entry.

Keys (cont.)

- Is studentName a key?
 - No (there may be multiple students with the same name)
- What would be a key for the grades table?
 - StudentId + courseId

Students										
id	age	gender		firstName	lastName					
111	21	1	1	Chaya	Glass					
444	23	0	1	Moti	Cohen					
222	28	1	3	Tal	Negev					
333	24	0	1	Gadi	Golan					

Grades								
courseId	studentId	grade	passed					
20	111	43	0					
20	222	85	1					
30	111	90	1					
30	444	95	1					
40	222	67	1					
40	333	40	0					

Keys (cont.)

- A single table can have more than one set of keys (both being minimal), e.g.:
 - R(university, department, depHeadId)
 - {depHeadId}
 - {university, department}

Assuming every department has a single head, and a person can be a department head of a single department in a single university.

Prime / Non-Prime

- Prime attributes are attributes that are part of some candidate-key.
- Similarly, non-prime attributes are attributes that are not part of any candidate-key.

Prine / Non Prime (cont.)

• E.g.:

R(university, department, depHeadId)

- Candidate keys are:
 - {depHeadId}
 - {university, department}
- Prime ? Non prime?

Course table:

- Candidate keys are:
 - {id}
 - {name, year, semester}
- Prime? Non prime?

Courses

id	name	lecturer	year	semster					
10	Introduction to intro.	Knows Nothing	2020	1					
20	Calculus	Tamar Ezra	2021	1					
30	Algebra	Shay Mann	2022	1					
35	Calculus	Adel Smith	2022	1					
40	Advanced Program	David Gol	2022	2					

Super-Key

- Any set of attributes that determines an entry.
 - E.g. the whole set of attributes.
- Same as candidate key, just without the minimal requirement.

Candidate kay is called also-'Minimal super key'

What is the problem with the following relation?

StudentId	StudentFirst	StudentLast	Courses
542	Yossi	Agasi	4244, 3423, 6734
956	Tamar	Atiya	4244, 5437
754	Gabbi	Matar	4325, 6543, 564
327	Shay	Shalom	5324

Multiple values for a single attribute. How can we get all students in 3423?

Heavy redundancy.
What happens when we update student's address? And what if we delete all grades of a student?

• And with this one?

StudentId	StudentFirst	StudentLast	Address	Courseld	Grade
542	Yossi	Agasi	Harambam 45, Ariel	4244	87
542	Yossi	Agasi	Harambam 45, Ariel	3423	65
956	Tamar	Atiya	Hadekel 12, Herzeliya	4244	86
542	Yossi	Agasi	Harambam 45, Ariel	6734	80

- Database normalization is the process of structuring a database, usually a relational database, in accordance with a series of socalled normal forms in order to reduce data redundancy and improve data integrity.
- It was first proposed by *Edgar F. Codd* as part of his relational model.

https://en.wikipedia.org/wiki/Database normalization

1NF (=Normalized Form)

 Every attribute must hold a single atomic value (searchability)

StudentI d	StudentFir st	StudentLast	Courses
542	Yossi	Agasi	4244, 3423, 6734
956	Tamar	Atiya	4244, 5437
754	Gabbi	Matar	4325, 6543, 564
327	Shay	Shalom	5324

Stud entId	Stude ntFirst	Studen tLast	Courses
542	Yossi	Agasi	4244
956	Tamar	Atiya	4244
754	Gabbi	Matar	4325
327	Shay	Shalom	5324
542	Yossi	Agasi	3423
542	Yossi	Agasi	6734
956	Tamar	Atiya	5437
754	Gabbi	Matar	6543
754	Gabbi	Matar	564

2NF

- Table must be in 1NF
- Non-prime attributes do not depend on a strict(proper) subset of a candidate key.

But StudentFirst, StudentLast and Address depend only on StudentId

What is the key?

StudentId+CourseId

StudentId	StudentFirst	StudentLast	Address	Courseld	Grade
542	Yossi	Agasi	Harambam 45, Ariel	4244	87
542	Yossi	Agasi	Harambam 45, Ariel	3423	65
956	Tamar	Atiya	Hadekel 12, Herzeliya	4244	86
542	Yossi	Agasi	Harambam 45, Ariel	6734	80

Fixing Table to Become 2NF

 In order to correct a relation that is not in 2NF, we split the information into 2 tables:

		Stud	dentId	Stud rst	entFi	StudentL	.ast	Address	Co	ourseld	Gr	ade			
		542		Yossi		Agasi		Harambam 45, Ariel	42	244	87	•			
Į.	James No Pari	542		Yossi		Agasi		Harambam 45, Ariel	34	123	65	,)	ŗ.	Appetition study story	
		956		Tama	ır	Atiya		Hadekel 12, Herzeliya	42	244	86				
5		542		Yossi		Agasi		Harambam 45, Ariel	67	734	80)			
StudentI d	Studen st	tFir	Stude: st	dentLa Addr		ess				Student	Id	Cour	seld	Grade	
542	Yossi		Agasi Harambam					2 42			87				
					45, A	Ariel				542		3423		65	
956	Tamar	mar Atiya				kel 12,				956		4244		86	
					Herzeliya					542		6734		80	

Note that the new tables have 20 cells in total, while the original table had 24 cells. The new tables have 105 characters (combined) while the old table had 143.

2NF (cont.)

- Given: R(author, bookId, #pages)
- Each book can have one or more authors
- What is the candidate key?
 - {author, bookId}
- Is it in 2NF?
 - No:
 - bookId → #pages
 - {bookId} isn't a key
- How to fix?
 - Split to R1(author, bookId) and R2(bookId, #pages)

Authors Relation

3NF

Table must be in 2NF

 Non-prime attributes cannot depend on any set that isn't a super-key (transitive dependency).

Fixing Table to Become 3NF

studentI	d ag	e	ger	nder (degree	firstName	lastNam	e city	departmentID	departmentName
111	21		1	1		Chaya	Glass	tel aviv	10	CS
222	28		1	3	1	Tal	Negev	holon	10	CS
333	24		0	1		Gadi	Golan	ariel	9	BIOLOGY
444	23		0	1		Moti	Cohen	holon	1	Math
555	24		0	N	ULL	tamar	NULL	NULL	1	Math
666	27		1	М	ULL	NULL	NULL	NULL	8	Physics
studentId	age	gen	der	degree	firstNar	me lastNan	ne city	departmenti	ÍD \	
111	21	1		1	Chaya	Glass	tel aviv	10		
222	28	1		3	Tal	Negev	holon	10		
333	24	0		1	Gadi	Golan	ariel	9		
444	23	0		1	Moti	Cohen	holon	1		A
555	24	0		NULL	tamar	NULL	NULL	1		
666	27	1		MULL	NULL	NULL	NULL	8		
								departmentI	d departmentNa	ame DepartmentPhone

departmentId	departmentName	DepartmentPhone
1	Math	036190554
8	Physics	NULL
9	Biology	NULL 21
10	CS	NULL

Boyce and Codd Normal Form (BCNF)

- BCNF is sometimes referred to as 3.5NF.
- Table must be in 3NF.
- For any two sets, X, Y, $(Y \subseteq X)$ such that $X \rightarrow Y$, X is a super-key.
- Note: If Y is prime, and X→Y, and X is not a super-key, while the table might be in 3NF, it is not in BCNF.

BCNF (3.5NF) example

CK?

{courseId, studentId} {courseName, studentId}

Dependencies?

courseld -> courseName courseName -> courseld studentId -> studentName courseId, studentId -> grade courseName, studentId -> grade

Grades

courseId	studentId	grade	courseName
20	111	43	Calculus
20	222	85	Calculus
30	111	90	Algebra
30	444	95	Algebra
40	222	67	Advanced Programming
40	333	40	Advanced Programming

2NF?

yes, "grade" is the only non-prime attribute and it does not depend on a (strict/proper) subset of a candidate key

3NF?

– yes, "grade" is the only non-prime attribute and it depends only on one of the super key

BCNF?

– no ,courseName -> courseId , and courseId is not a super key

Fixing Table to Become 3.5NF

Boyce and Codd Normal Form (BCNF)

- True or false?
 - Any 3NF relation with a single candidate key is also in BCNF.

True:

Let a relation with two sets of attributes: X,Y so that X->Y.

If Y is non-prime then from 3NF we get that X is a super-key. If Y is prime, assume by contradiction that X is not a super-k ey, if we replace Y with X in Y's candidate key (and minimize) we get a second candidate key (since $Y \subseteq X$)

1-3.5NF

 The data depends on the key (2NF), the whole key (3NF) and nothing but the key (3.5NF)

"No, I do not think 'The truth, the whole truth, and nothing but the truth' is overkill."

BCNF (cont.)

- Look at the following table used in a mobile company:
- R(mobilePhoneNum, simSerialNumber, callDateTime)
- Assumptions:
 - Once a phone number is burnt into a SIM card it can't be changed
 - mobilePhoneNum can be burnt on more than one sim card
- Dependencies:
 - simSerialNumber → mobilePhoneNum
 - {callDateTime, mobilePhoneNum} → simSerialNumber
- Candidate-keys:
 - {callDateTime, simSerialNumber }
 - {callDateTime, mobilePhoneNum}
- 2NF? 3NF?
- Is it BCNF?
- simSerialNumber → mobilePhoneNum, but {simSerialNumber} is not a super-key.

4NF

Look at the following table:
 Each team player represents
 his department/s.

StudentId	Department	SportTeam
111	CS	Soccer
111	Biology	Soccer
222	Biology	Basketball
222	Biology	Soccer
333	CS	Basketball

StudentId	Department	SportTeam
111	CS	Soccer
111	Biology	Soccer
111	CS	Baseball
111	Biology	Baseball
222	Biology	Basketball
222	Biology	Soccer
333	CS	Basketball

- The key is:
 - {studentId, department, sportTeam}
- It doesn't violate NF 1-3.5
- But still it seems wrong:
 - What happens if 111 joins another sportTeam?
 - What happens if 222 joins another department?

4NF (cont.)

- 4NF requires BCNF + no multivalued dependencies.
- A multivalued dependency occurs when the presence of one or more rows in a table implies the presence of one or more other rows in that same table.
- That is, from observing some rows, one can deduce the presence of other rows.

StudentId	Department	SportTeam
111	CS	Soccer
111	Biology	Soccer
111	CS	Baseball

StudentId	Department	SportTeam
111	CS	Soccer
111	Biology	Soccer
111	CS	Baseball
111	Biology	Baseball 30

4NF (cont.)

- In our example, both the sportTeam and the department are independent of each-other, but both are multivalued dependent on studentId.
- We write this as:
 - studentId -->> department
 - studentId -->> sportTeam
- Every table should hold a single "idea" or "theme"!

Multivalued Dependency (Formal Definition)

- Multi dependency is a condition on the existence of rows (entries / tuples / entities) in the relation.
- Given two sets of attributes, A, and B, we say that A multidetermines B (A -->> B) if:
 - Let C = R \ (A U B) (that is, all the rest of the attributes)
 - Given rows x and y, such that:
 - -x[A] = y[A] and
 - $-x[B] \neq y[B]$ and
 - $-x[C] \neq y[C]$
 - Entails that, there exists a row z, such that:
 - z[A] = x[A] (= y[A]) and
 - -z[B] = x[B] and
 - -z[C] = y[C]

	Α	В	С
X	a1	b1	c1
У	a1	b2	c2
Z	a1	b1	c2
w			

5NF

- 5NF is related to situations in which some rules are applied on the rows of the table.
- In such situations, if the table can be decomposed into smaller tables by removing redundant data, the table is not in 5NF.
- "Only in rare situations does a 4NF table not conform to the higher normal form 5NF. These are situations in which a complex real-world constraint governing the valid combinations of attribute values in the 4NF table is not implicit in the structure of that table." (Wikipedia)
- Therefore, we won't be dealing with 5NF.

Question

- Let us look on the following relation:
 - R(A,B,C,D)
 - $-\{A,B\}\rightarrow D$
 - $-\{A,D\}\rightarrow C$

If we have an attribute that appears <u>only on the right</u> of the dependency list, what may we conclude?

- What are the candidate key(s)?
 - $C.k: \{A,B\}$

Is it in 2NF?

If we have an attribute that does not appear on the right of the dependency list, what may we conclude?

- yes. Non prime attributes don't depend on subset of the candidate key.
- Is it in 3NF?
 - No. C is non prime and depents on {A,D} which is not super key.

