Let T be a linear transformation $T:V\longrightarrow V,$ that is W-invariant for some subspace W

- (1) Suppose T is invertible. Show that $(\bar{T})^{-1} = \overline{T^{-1}}$. (2) Show that T^t is W^0 -invariant (don't assume invertible anymore).

Let S be a linear transformation $S:V\longrightarrow W$

- (1) Show that if S is injective then S^t is surjective.
- (2) Show that $\ker T^t = (\operatorname{im} T)^0$.

1