A System of Linear Equations:

$$\begin{cases}
 a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\
 \vdots &\vdots &\vdots &\vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= b_m
\end{cases}, B = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\
 a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\
 \vdots &\vdots &\vdots &\vdots &\vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn} & b_m
\end{cases}$$

where x_1, x_2, \ldots, x_n are the unknowns.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & \cdots & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \ \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \ \boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}, \ B = [A, \boldsymbol{b}].$$

Then the equation can be written as Ax = b. When b = 0, the equation is called homogeneous. If the equation is homogeneous, x = 0 is always a solution and is called the *trivial* solution; if there are other solutions, they are called *nontrivial* solutions.

Theorem 10.2 Every matrix can be transformed to a reduced echelon form by performing a series of elementary row operations, and the reduced row echelon form of a matrix is unique.

We obtained the reduced echelon form C of B by performing a sequence of elementary row operations. Let P_1, P_2, \ldots, P_ℓ be the corresponding elementary matrices, and $P = P_\ell P_{\ell-1} \cdots P_1$. Then

$$PB = C$$
, $P[A, \mathbf{b}] = [PA, P\mathbf{b}]$ and $PA\mathbf{x} = P\mathbf{b}$.

 \boldsymbol{x} is a solution to $PA\boldsymbol{x} = P\boldsymbol{b} \Leftrightarrow \boldsymbol{x}$ is a solution to $A\boldsymbol{x} = \boldsymbol{b}$.

We call the number of leading 1's in the reduced echelon form of a matrix the *rank* of the matrix.

Theorem 10.3 Let A be an $m \times n$ matrix and $A\mathbf{x} = \mathbf{b}$ is a system of linear equation expressed as a matrix equation. Let $B = [A, \mathbf{b}]$ be the augmented matrix and $C = [A_1, \mathbf{b}_1]$ is the reduced echelon form of B. Then

 \boldsymbol{x} is a solution to $A\boldsymbol{x} = \boldsymbol{b} \Leftrightarrow \boldsymbol{x}$ is a solution to $A_1\boldsymbol{x} = \boldsymbol{b}_1$.

Moreover,

- (i) If $\operatorname{rank}(A) \neq \operatorname{rank}(B)$, the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent.
- (ii) If rank(A) = rank(B) = n, the equation $A\mathbf{x} = \mathbf{b}$ has the only one solution.
- (iii) If $\operatorname{rank}(A) = \operatorname{rank}(B) < n$, the equation $A\mathbf{x} = \mathbf{b}$ has solutions with $n \operatorname{rank}(A)$ parameters.

Theorem 10.4 Let A be the augmented matrix of a system of linear equations in n unknowns x_1, x_2, \ldots, x_n and B the reduced echelon form of A. Suppose the leading 1's of B are at columns i_1, i_2, \ldots, i_r and rows $j_1, j_2, \ldots, j_{n-r}$ are those columns without leading 1's. Then the following hold.

- (i) The system of linear equations is inconsistent if and only if $i_r = n + 1$, i.e., a leading 1 is in the last column.
- (ii) The system of linear equation has a unique solution if and only if it is consistent and r = n, i.e., $i_1 = 1, i_2 = 2, ..., i_r = i_n = n$.
- (iii) If the system is consistent, the solutions are expressed with n-r parameters $t_1 = x_{j_1}, t_2 = x_{j_2}, \ldots, t_{n-r} = x_{j_{n-r}}$.

Theorem 10.5 (1.2.1) A homogeneous system of linear equations with more unknowns than equations has infinitely many solutions. In particular, if A is an $m \times n$ matrix, then a system of linear equation $A\mathbf{x} = \mathbf{0}$ has a nonzero solution.

Example 10.1 The right hand side matrix is the reduced row echelon form of the left hand side matrix.

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 3 & -1 \\ -1 & 0 & -1 & 0 & 0 & -4 & -1 \\ 0 & 1 & -2 & 3 & 0 & -1 & 3 \\ -2 & -2 & 2 & -6 & -2 & -4 & -4 \end{bmatrix} \rightarrow \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 4 & 1 \\ 0 & 1 & -2 & 3 & 0 & -1 & 3 \\ 0 & 0 & 0 & 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{cases} x_1 &=& 1-s-4u, \\ x_2 &=& 3+2s-3t+u, \\ x_3 &=& s, \\ x_4 &=& t, \\ x_5 &=& -2+u, \\ x_6 &=& u. \end{cases} \text{ or } \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 0 \\ 0 \\ -2 \\ 0 \end{bmatrix} + s \cdot \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + t \cdot \begin{bmatrix} 0 \\ -3 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + u \cdot \begin{bmatrix} -4 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

s, t and u are parameters.

Theorem 10.6 Let Ax = b be an equation. Suppose $Ax_0 = b$. Then

 $m{x}$ is a solution to $Am{x} = m{b} \Leftrightarrow m{x} = m{x}_0 + m{y}$ where $m{y}$ is a solution to $Am{x} = m{0}$. $m{x}_0$ is called a particular solution.

Proof. $A(\mathbf{x} - \mathbf{x}_0) = \mathbf{b} - \mathbf{b} = \mathbf{0}$. Hence $\mathbf{x} - \mathbf{x}_0$ is a solution \mathbf{y} to $A\mathbf{x} = \mathbf{0}$. Hence $\mathbf{x} = \mathbf{x}_0 + \mathbf{y}$.

Exercise 10.1 1. If m, the number of equations, is less than or equal to n, the number of unknowns, the system of linear equations always has a solution.

- 2. Suppose m, the number of equations, is strictly less than n, the number of unknowns. Such a system of linear equations cannot have a unique solution.
- 3. Suppose m < n and $b_i = a_{i1}$ for i = 1, 2, ..., m. Then there are infinitely many solutions.