Name Vorname		Note		
Studiengang (Hauptfach) Fachrichtung (Nebenfach)				_
Matrikelnummer Unterschrift der Kandidatin/des Kandidaten	1	I	II]
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Informatik	3			_
☐ Midterm-Klausur ☑ Final-Klausur	5			
☐ Semestralklausur ☐ Diplom-Vorprüfung ☐ Bachelor-Prüfung ☐	6 7			
☐ Einwilligung zur Notenbekanntgabe per E-Mail / Internet	8			
Prüfungsfach: Grundlagen Rechnernetze und Verteilte Systeme	10			
Prüfer: Prof. DrIng. Georg Carle Datum: 10.08.2012				7
Hörsaal: Platz:				
Nur von der Aufsicht auszufüllen:	=			
Hörsaal verlassen von: bis:				
Vorzeitig abgegeben um: :				
Besondere Bemerkungen:				

Endterm-Klausur

Grundlagen Rechnernetze und Verteilte Systeme

Prof. Dr.-Ing. Georg Carle
Lehrstuhl für Netzarchitekturen und Netzdienste
Fakultät für Informatik
Technische Universität München

Freitag, 10.08.2012 11:00 – 12:30 Uhr

- Diese Klausur umfasst **23 Seiten** und insgesamt **6 Aufgaben**. Bitte kontrollieren Sie jetzt, dass Sie eine vollständige Angabe erhalten haben.
- Schreiben Sie bitte in die Kopfzeile jeder Seite Namen und Matrikelnummer.
- Die Gesamtzahl der Punkte beträgt 85.
- Als Hilfsmittel sind ein beidseitig handschriftlich beschriebenes DIN A4 Blatt sowie ein nicht programmierbarer Taschenrechner zugelassen. Bitte entfernen Sie alle anderen Unterlagen von Ihrem Tisch und schalten Sie Ihre Mobiltelefone aus.
- Mit * gekennzeichnete Aufgaben sind ohne Kenntnis der Ergebnisse vorhergehender Teilaufgaben lösbar.
- Es werden nur solche Ergebnisse gewertet, bei denen ein Lösungsweg erkennbar ist. Textaufgaben sind grundsätzlich zu begründen, falls es in der jeweiligen Teilaufgabe nicht ausdrücklich anders vermerkt ist.

Aufgabe 1 Rahmenfehlerwahrscheinlichkeit (9 Punkte)

Wir betrachten eine kabellose Verbindung zwischen zwei Computern A und B (s. Abbildung 1.1). Wir nehmen vereinfachend an, dass Bitfehler unabhängig voneinander mit Wahrscheinlichkeit 0auftreten. Ein Rahmen der Länge x bit ist genau dann korrekt übertragen, wenn er keinen Bitfehler aufweist. Die Wahrscheinlichkeit f(x, p) für einen **erfolgreich** übertragenen Rahmen hängt daher von der Rahmenlänge x und der Bitfehlerwahrscheinlichkeit p ab.

Abbildung 1.1: Netztopologie	
a)* Bestimmen Sie die Wahrscheinlichkeit $f(x,p)$, dass ein Rahmen erfolgreich übertragen wird.	1
Wird ein Rahmen korrekt übertragen, so entspricht dies x erfolgreich übertragenen Bits. Ist hingegen mind. ein Bitfehler aufgetreten, so muss der gesamte Rahmen wiederholt werden, was dementsprechend 0 erfolgreich übertragenen Bits entspricht.	
b) Bestimmen Sie die durchschnittliche Anzahl $g(x,p)$ erfolgreich übertragener Bits pro Rahmen.	1
c) Bestimmen Sie die optimale Rahmenlänge x^* , so dass $g(x,p)$ maximiert wird. Hinweis: $\frac{d}{dx}(c^x) = \ln(c)c^x$, $\forall c > 0$.	2

	Die Bitfehlerwahrscheinlichkeit sei nun mit $p=10^{-4}$ gegeben.
1	d) Bestimmen Sie x^* explizit für die gegebene Bitfehlerrate.
1	e) Wie hoch ist die Wahrscheinlichkeit p_R unter diesen Umständen, dass ein Rahmen optimaler Länge falsch übertragen wird?
	Im Folgenden nehmen wir eine Rahmenfehlerwahrscheinlichkeit von $p_R=60\%$ an. Diese ist zu hoch, als dass Protokolle höherer Schichten korrekt funktionieren könnten. Aus diesem Grund soll die Rahmenfehlerwahrscheinlichkeit mittels Link-Layer-Bestätigungen reduziert werden. Wir nehmen das sog. "Stop and Wait" Prinzip an, d. h. Computer A sendet genau einen Rahmen an B und erwartet eine Bestätigung, falls B den Rahmen korrekt empfangen hat. Bleibt die Bestätigung aus, so wiederholt A den Rahmen. Das Verfahren bricht nach einer Gesamtanzahl von N Wiederholungsversuchen ab Vereinfachend gehen wir davon aus, dass Bestätigungen nicht verloren gehen können.
1	f)* Bestimmen Sie die Wahrscheinlichkeit dafür, dass das Verfahren erfolglos abbricht.
2	g) Besimmen Sie die minimale Anzahl $N_{\rm min}$ an Wiederholungen pro Rahmen, so dass die Wahrscheinlichkeit für einen Abbruch unter 0.1 % fällt.

2

Matrike lnummer:

Aufgabe 2 NAT und statisches Routing (17 Punkte)

Gegeben sei die Netztopologie aus Abbildung 2.1. PC1 und PC2 sind über ein gewöhnliches Ethernet-Switch mit Router R1 verbunden, welcher Zugang zum Internet ermöglicht.

Abbildung 2.1: Netztopologie	
a)* Bestimmen Sie die Netzadresse und Broadcastadresse des Netzwerks, in dem sich PC1, PC2 und R1 befinden.	1
b)* Wieviele IP-Adressen stehen in diesem Netzwerk zur Adressierung von Geräten zur Verfügung?	1
c) Weisen Sie PC1 und PC2 jeweils eine sinnvolle IP-Adresse, Subnetzmaske und Gateway-Adresse	1

zu, so dass diese eine Verbindung zum Internet herstellen können. Tragen Sie die Werte direkt in Abbildung 2.1 ein.

	Matrikelnummer: 4
	d)* Wie viele /23 Subnetze gibt es im Netz $10.0.0.0/8$?
1	e)* Welche Headerfelder verändert das Switch SW1, welches PC1 und PC2 mit R1 verbindet?
1	f)* Begründen Sie, weswegen R1 NAT unterstützen muss, damit PC1 und PC2 mit Hosts im Internet kommunizieren können.
1	g)* Welches Transportprotokoll und welche Zielportnummer kommen bei (unverschlüsselten) HTTP-Verbindungen üblicherweise zum Einsatz?
	Im Folgenden kürzen wir IP- und MAC-Adressen nach dem Schema <gerätename>.<interface> ab, z.B. R1.wan0. Beachten Sie zur Bearbeitung der beiden folgenden Teilaufgaben außerdem, dass sich zwischen R2 und R3 insgesamt drei weitere Router befinden. PC1 greift nun auf die Webseite http://www.google.de zu.</interface></gerätename>
	h) Ergänzen Sie für die Anfrage von PC1 an www.google.de die Headerfelder in den drei leeren Kästen in Abbildung 2.2. Sofern ein Feld nicht eindeutig bestimmt ist, treffen Sie eine sinnvolle Wahl. Hinweis: Falls Sie Teilaufgabe g) nicht lösen konnten, nehmen Sie Zielport 80 an.
	i) Ergänzen Sie für die Antwort von www.google.de an PC1 die Headerfelder in den drei leeren Kästen in Abbildung 2.3. Sofern ein Feld nicht eindeutig bestimmt ist, treffen Sie eine sinnvolle Wahl.

Abweichend zur Vorlesung speichert R1 nicht nur das Tripel bestehend aus lokaler IP sowie lokalem und globalem Quellport, sondern zusätzlich das verwendete Protokoll sowie Zielport und Ziel-IP. Tabelle 1 zeigt exemplarisch, wie eine solche NAT-Tabelle vor den beiden Teilaufgaben h) und i) ausgesehen haben könnte.

Protokoll	Lokale IP	Lokaler Port	Globale IP	Globaler Port	Ziel-IP	Ziel-Port
TCP	PC1.eth0	50034	R1.wan0	50034	83.133.105.60	22
TCP	PC1.eth0	49985	R1.wan0	49985	213.165.65.50	443

Tabelle 1: NAT-Tabelle von R1 ${\bf vor}$ Teilaufgabe h)

j) Geben Sie gemäß Tabelle 1 die Einträge an, welche durch den Verbindungsaufbau von PC1 zum									
Webserver in den Teilaufgaben h) und i) entstanden sind.									
_	Protokoll	Lokale IP	Lokaler Port	Globale IP	Globaler Port	Ziel-IP	Ziel-Port		

k) Nehmen Sie nun an, dass auch PC2 eine Verbindung zu www.google.de aufbauen will. Zufällig wählt
PC2 denselben Quell-Port wie der PC1. Geben Sie für diesen Fall einen gültigen Eintrag in der
NAT-Tabelle an der durch den Verbindungsaufbau von PC2 zum Webserver neu entstehen könnte

Protokoll	Lokale IP	Lokaler Port	Globale IP	Globaler Port	Ziel-IP	Ziel-Port

Aufgabe 3 Packet Pair Probing (15 Punkte)

Gegeben sei die vereinfachte Netztopologie aus Abbildung 3.1. A und D sind mit ihren Routern jeweils über ein Gigabit-Ethernet verbunden. Die Verbindung zwischen den Routern B und C ist jedoch deutlich langsamer. Diese Übertragungsrate r_{BC} sollen von A und D bestimmt werden, indem möglichst wenig Last auf der ohnehin langsamen Verbindung erzeugt wird.

Abbildung 3.1: Vereinfachte Netztopologie

Wir leiten in dieser Aufgabe zunächst allgemein ein Verfahren her, mittels dem A und D die fragliche Übertragungsrate bestimmen können. Im Anschluss werten wir das Verfahren für konkrete Zahlenwerte aus und diskutieren mögliche Probleme, die in der Praxis auftreten werden.

1	a)* Geben Sie die Serialisierungszeit $t_s(i,j)$ zwischen zwei Knoten i und j in Abhängigkeit der Paketgröße p und der Übertragungsrate r_{ij} an.
1	b)* Geben Sie die Ausbreitungsverzögerung $t_p(i,j)$ zwischen zwei Knoten i und j in Abhängigkeit der Distanz d_{ij} an.
	Für eine erfolgreiche und möglichst genaue Bestimmung der Rate r_{BC} ist es wichtig, dass von A an D gesendete Pakete so groß wie möglich sind, aber nicht fragmentiert werden.
2	c)* Erläutern Sie kurz, wie A die maximale MTU auf dem Pfad nach D bestimmen kann.

A sende nun unmittelbar nacheinander zwei Pakete der Länge p an D. Sie können davon ausgehen, dass sonst kein weiterer Verkehr die Übertragung beeinflusst. Die Länge p sei so gewählt, dass keine Fragmentierung notwendig ist. Eventuelle Verarbeitungszeiten an den Knoten können Sie vernachlässigen.

d)* Zeichnen Sie ein Weg-Zeit-Diagramm, welches die Übertragung der beiden Pakete qualitativ richtig darstellt. Berücksichtigen Sie dabei insbesondere $r_{BC} < r_{AB} = r_{CD}$ wie eingangs erwähnt.

Durch die geringe Übertragungsrate zwischen B und C entsteht an Knoten C eine Sendepause Δt zwischen den beiden weitergeleiteten Paketen. Diese kann von D gemessen und zur Bestimmung der Übertragungsrate zwischen B und C verwendet werden.

e)	Markieren	Sie	Δt in	${\rm Ihrer}$	Lösung	von	Teilaufgabe o	(b	١.
----	-----------	-----	---------------	---------------	--------	-----	---------------	----	----

f)	Von	welchen	Größen	hängt	Δt	ab?
----	-----	---------	--------	-------	------------	-----

	Matrikelnummer: 10
	g) Geben Sie einen Ausdruck für Δt an.
2	
1	h) Geben Sie einen Ausdruck für die gesuchte Datenrate r_{BC} an.
	Wiederholte Messungen an D ergeben einen Durchschnittswert $\overline{\Delta t}=1.20\mathrm{ms}$ bei einer Paketgröße von $p=1500\mathrm{Byte}.$
1	i) Bestimmen Sie r_{BC} als Zahlenwert in Mbit/s.
2	j) Geben Sie zwei Gründe an, weswegen das Verfahren in der Praxis ungenau sein kann.

Grundlagen Rechnernetze und Verteilte Systeme – SoSe 2012

Aufgabe 4 Dynamisches Routing (15 Punkte)

Gegeben sei das in Abbildung 4.1 vereinfacht dargestellte Netzwerk. Alle Router verwenden RIP als Routingprotokoll. Die Tabellen unterhalb der Router A – E in Abbildung 4.1 stellen die Routingtabelle des jeweiligen Routers dar, bevor RIP gestartet wird.

Abbildung 4.1: Netztopologie

a)* Welche Metrik verwendet RIP?	1
b)* Zu welcher Klasse von Routingprotokollen gehört RIP?	1
c) Inwiefern sind Netzwerke, deren Router ausschließlich RIP als Routingprotokoll verwenden, in der Größe beschränkt?	1

	d) Erläutern Sie kurz die Funktionsweise von RIP. (2 – 3 Stichpunkte genügen!)
3	
2	e) Begründen Sie, ob RIP stets die schnellste (im Sinn von Übertragungsrate) Route zu einem Ziel wählt.
	Die Router starten nun RIP. Mit etwas Zeitversatz senden sich die Router gegenseitig Updates zu. Die chronologische Reihenfolge der Updates ist dabei durch die nachfolgenden drei Teilaufgaben gegeben Die Spalte "TA" (TeilAufgabe) in den Routingtabellen in Abbildung 4.1 gibt die Teilaufgabe (also den Zeitschritt) an, in dem der jeweilige Eintrag hinzukommt.
	Tragen Sie alle Änderungen in den Routingtabellen in Abbildung 4.1 ein (inkl. der Spalte "TA" wie oben beschrieben),
1	f)nachdem B sein erstes Update geschickt hat.
2	g)nachdem C sein erstes Update geschickt hat.
1	h)nachdem D sein erstes Update geschickt hat.
3	i)* Beschreiben Sie kurz das Problem, welches bei RIP auftreten kann, wenn der Link zwischen C und E ausfällt. $(2-3$ Stichpunkte genügen!)

12

Matrike lnummer:

Das im Internet am weitesten verbreitete Transportprotokoll ist TCP. Dieses implementiert Mechanismen zur Fluss- und Staukontrolle. Konkret nehmen wir in dieser Aufgabe TCP "Reno" an.

a)* Wozu dient Flusskontrolle?

b)* Wozu dient Staukontrolle?

c) Welche Rolle spielt das Empfangsfenster bei der Flusskontrolle?

Wir gehen davon aus, dass die Empfangsfenster stets größer sind als die Sendefenster.

d)* Skizzieren Sie frei Hand im Lösungsfeld einen für TCP typischen Verlauf der Sendefenstergröße. Gehen Sie davon aus, dass die TCP-Verbindung zum Zeitpunkt t=0 gerade aufgebaut wurde.

1	e) Markieren und benennen Sie in der Lösung von Teilaufgabe d) die beiden Phasen der Staukontrolle.
1	f) Was löst den Übergang zwischen den beiden Staukontrollphasen aus?
1	g)* Unter welchen Umständen beginnt der Staukontrollmechanismus von vorne?
	Zur Analyse der TCP-Datenrate betrachten wir den Verlauf einer zusammenhängenden Datenübertragung, bei der die erste Phase der Staukontrolle bereits abgeschlossen ist. Da das Empfangsfenster als stets ausreichend groß angenommen wird, entspricht die Größe w_s des Sendefensters stets der des Staukontrollfensters. Es treten keinerlei Verluste auf, solange das Sendefenster kleiner als ein Maximalwert x ist, also $w_s < x$. Hat das Sendefenster den Wert x erreicht, so geht genau eines der versendeten TCP-Segmente verloren.
1	h)* Wie erkennt der Empfänger den Verlust eines Segments?
1	i)* Wie beeinflusst ein einzelnes verlorengegangenes Segment das Sende- bzw. Staukontrollfenster?

14

Matrike lnummer:

Als konkrete Zahlenwerte nehmen wir an, dass die maximale TCP-Segmentgröße (MSS) 1460 Byte und die RTT 200 ms beträgt. Die Serialisierungszeit von Segmenten sei gegenüber der Ausbreitungsverzögerung vernachlässigbar klein. Segmentverlust trete ab einer Sendefenstergröße von $w_s \geq x = 16\,MSS$ auf.

j)* Erstellen Sie ein Schaubild, in dem die aktuelle Größe des Sendefensters w_s gemessen in Vielfachen der MSS über der Zeitachse t gemessen in Vielfachen der RTT aufgetragen ist. In Ihrem Diagramm soll zum Zeitpunkt $t_0 = 0$ s gerade $w_s = x/2$ gelten. Zeichnen Sie das Diagramm im Zeitintervall $t = \{0, \dots, 14\}.$

k) Bestimmen Sie die Periodendauer T zwischen der Reduktion des Sendefensters und dem nächster				
Segmentverlust allgemein in Abhängigkeit von x .				

		n in Abhängigk			
m) Besti	nmen Sie die Verlus	strate θ allgeme	ein und als Zahle	enwert.	
m) Besti	nmen Sie die Verlus	strate θ allgeme	ein und als Zahle	enwert.	
m) Besti:	nmen Sie die Verlus	strate $ heta$ allgeme	ein und als Zahle	enwert.	
m) Besti:	nmen Sie die Verlus	strate $ heta$ allgeme	ein und als Zahle	enwert.	
m) Besti:	nmen Sie die Verlus	strate $ heta$ allgeme	ein und als Zahle	enwert.	
m) Besti:	nmen Sie die Verlus	strate $ heta$ allgeme	ein und als Zahl	enwert.	
m) Besti:	nmen Sie die Verlus	strate θ allgeme	ein und als Zahle	enwert.	
					.) die in der bet
n) Bestim	men Sie die Verlus men Sie mit Hilfe tragungsphase durc	des Ergebnisse	s aus den Teila	ıfgaben k) – m) die in der bet it/s.
n) Bestin	men Sie mit Hilfe	des Ergebnisse	s aus den Teila	ıfgaben k) – m) die i
) Bestim	men Sie mit Hilfe	des Ergebnisse	s aus den Teila	ıfgaben k) – m) die in der b it/s.
n) Bestim	men Sie mit Hilfe	des Ergebnisse	s aus den Teila	ıfgaben k) – m) die in der be it/s.
n) Bestin	men Sie mit Hilfe	des Ergebnisse	s aus den Teila	ıfgaben k) – m) die in der bet it/s.
n) Bestin	men Sie mit Hilfe	des Ergebnisse	s aus den Teila	ıfgaben k) – m) die in der bet it/s.

16

Aufgabe 6 Kurzaufgaben (10 Punkte)

Die folgenden Kurzaufgaben sind **jeweils unabhängig voneinander**. Stichpunktartige Antworten sind ausreichend!

a)* Die untenstehende Grafik zeigt das Sendesignal y(t) sowie das Empfangssignal x(t) nach der Übertragung über einen nicht-idealen Kanal. Welche beiden Kanaleinflüsse sind sichtbar?

b)* In der Vorlesung wurde ein einfacher Blockcode vorgestellt, welcher k=1 bit auf n=3 bit abbildet:

$$0 \mapsto 000, 1 \mapsto 111.$$

Um die Fehlerkorrektur weiter zu verbessern wird folgende Modifikation vorgeschlagen:

$$0 \mapsto 0000, 1 \mapsto 1111.$$

Wie bewerten Sie diese Veränderung hinsichtlich Fehlerkorrektur und Effizienz?

c)* Welche Metrik wird optimiert, um einen Shortest Path Tree zu erzeugen?

1	Matrikelnummer: 18
_	l)* Welche Metrik wird optimiert, um einen Minimum Spanning Tree zu erzeugen?
€	e)* Gegeben sei fe80::222:b0ff:febc:1fe2/64. Zu welchem Protokoll gehört diese Adresse?
1	T)* Gegeben sei ein Alphabet mit insgesamt 32 unterschiedlichen Zeichen, deren Auftrittswahrscheinichkeit gleichverteilt ist. Begründen Sie, ob die durchschnnittliche Codewortlänge bei Nutzung des Huffman-Codes größer, gleich oder kleiner als 5 bit ist.
	$(g)^*$ Weswegen kann das Original eines JPEG-komprimierten Bildes nicht wieder exakt rekonstruiert werden?

To Traine.

h)* Begründen Sie (argumentativ oder durch Rechnung), ob das nachfolgend dargestellte Zeitsignal s(t) einen Gleichanteil besitzt.

Hinweis: Das Signal lässt sich als Fourierreihe darstellen, d. h. es gilt

$$s(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(k\omega t) + b_k \sin(k\omega t))$$

mit den Koeffizienten

$$a_k = \frac{2}{T} \int_0^T s(t) \cdot \cos(k\omega t) dt$$
 und $b_k = \frac{2}{T} \int_0^T s(t) \cdot \sin(k\omega t) dt$.

Zusätzlicher Platz für Lösungen – bitte markieren Sie deutlich die Zugehörigkeit zur jeweiligen Aufgabe und streichen Sie ungültige Lösungen!

