Aprendizaje Automático y Minería de Datos Redes Neuronales

Cristina Tîrnăucă

Dept. Matesco, Universidad de Cantabria

Fac. Ciencias – Grado en Ing. Informática

¿Para qué sirven?

Clasificación no lineal

¿Para qué sirven?

Clasificación no lineal

$$g(\theta_0 + \theta_1 x_1 + \theta_1 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 x_2 + \theta_5 x_1 x_2^2 + \theta_6 x_2^2 + \ldots)$$

¿Para qué sirven?

Clasificación no lineal

¿Y si tenemos 100 atributos?

$$g(\theta_0 + \theta_1 x_1 + \theta_1 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 x_2 + \theta_5 x_1 x_2^2 + \theta_6 x_2^2 + \ldots)$$

Redes neuronales

Origen: algoritmos que tratan de imitar el cerebro

- ▶ Muy populares en los años 80 y la primera parte de los 90
- Resurgimiento reciente: técnica state-of-the art para muchas aplicaciones

Redes neuronales

Origen: algoritmos que tratan de imitar el cerebro

- Muy populares en los años 80 y la primera parte de los 90
- Resurgimiento reciente: técnica state-of-the art para muchas aplicaciones

Figure: Structure of a typical neuron (Wikipedia, ©Quasar Jarosz)

El modelo neuronal: la unidad logística

El modelo neuronal: la unidad logística

Función de activación logística: $h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$.

 $a_i^{(j)} =$ la activación de la unidad i en el nivel j

 $\Theta^{(j)}=$ una matriz de pesos que controlan las transformaciones entre el nivel j y el nivel j+1

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{12}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{22}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{32}^{(1)}x_{3})$$

$$h_{\Theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)})$$

Si la red neuronal tiene s_j unidades en el nivel j, s_{j+1} unidades en el nivel j+1, la matriz $\Theta^{(j)}$ tendrá dimensión

 $a_i^{(j)} =$ la activación de la unidad i en el nivel j

 $\Theta^{(j)}=$ una matriz de pesos que controlan las transformaciones entre el nivel j y el nivel j+1

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{12}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{22}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{32}^{(1)}x_{3})$$

$$h_{\Theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)} a_0^{(2)} + \Theta_{11}^{(2)} a_1^{(2)} + \Theta_{12}^{(2)} a_2^{(2)} + \Theta_{13}^{(2)} a_3^{(2)})$$

Si la red neuronal tiene s_j unidades en el nivel j, s_{j+1} unidades en el nivel j+1, la matriz $\Theta^{(j)}$ tendrá dimensión $s_{j+1} \times (s_j+1)$.

Otras arquitecturas de redes neuronales

Una red neuronal para XNOR

Supongamos que x_1, x_2 son binarios (0 o 1).

$$y = x_1 \text{ XNOR } x_2$$

 $y = \text{NOT } (x_1 \text{ XOR } x_2)$

Puerta AND

Puerta NOT

Puerta OR

Puerta AND

Puerta NOT

Puerta OR

Puerta AND

Puerta OR

Puerta NOT

Puerta AND

Puerta OR

Puerta NOT

Puerta AND

Puerta OR

Puerta NOT

Una red neuronal para XNOR

Puerta XNOR

Redes neuronales - repaso

Clasificación no lineal

1 unidad de salida

 $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$ L = el número total de niveles en la red $s_l = \text{el número total de unidades en el nivel } l$

K unidades de salida

Función de costo

Regresión logística:

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} * \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) * \log \left(1 - h_{\theta}(x^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{p} \theta_{j}^{2}$$

Red neuronal:

$$h_{\Theta}(x) \in \mathbb{R}^K$$
 $(h_{\Theta}(x))_i = \text{la } i\text{-}\text{\'esima salida}$

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} * \log (h_{\Theta}(x^{(i)})_k) + (1 - y_k^{(i)}) * \log (1 - (h_{\Theta}(x^{(i)}))_k) \right] + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_{ji}^{(l)})^2$$

Objetivo: encontrar Θ para que $J(\Theta)$ sea mínimo

El método del gradiente descendente: hay que calcular $\frac{\partial}{\partial \Theta_{ii}^{(l)}} J(\Theta)$

Ejemplo

Como se calcula el gradiente para un ejemplo (x, y)

Propagación hacia adelante

$$\begin{array}{l} a^{(1)} = x \; (\mathsf{a\~nadir} \; x_0) \\ z^{(2)} = \Theta^{(1)} a^{(1)} \\ a^{(2)} = g(z^{(2)}) \; (\mathsf{a\~nadir} \; a_0^{(2)}) \\ z^{(3)} = \Theta^{(2)} a^{(2)} \\ a^{(3)} = g(z^{(3)}) \; (\mathsf{a\~nadir} \; a_0^{(3)}) \\ z^{(4)} = \Theta^{(3)} a^{(3)} \\ a^{(4)} = g(z^{(4)}) \\ h_{\Theta}(x) = a^{(4)} \end{array}$$

Propagación hacia atrás de los errores

$$\begin{array}{l} \delta_j^{(I)} = \text{error del nodo } j \text{ en el nivel } I \\ \delta^{(4)} = a^{(4)} - y \\ \delta^{(3)} = (\Theta^{(3)})^T \delta^{(4)}. * g'(z^{(3)}), \text{ donde } g'(z^{(3)}) = a^{(3)}. * (1 - a^{(3)}) \\ \delta^{(2)} = (\Theta^{(2)})^T \delta^{(3)}. * g'(z^{(2)}), \text{ donde } g'(z^{(2)}) = a^{(2)}. * (1 - a^{(2)}) \end{array}$$

Para
$$\lambda=0$$
, $\frac{\partial}{\partial \Theta_{ji}^{(I)}} J(\Theta)=a_i^{(I)} \delta_j^{(I+1)}$

Propagación hacia atrás

(Backpropagation algorithm)

Conjunto de entrenamiento:
$$\{(x^{(1)},y^{(1)},(x^{(2)},y^{(2)},\dots,(x^{(m)},y^{(m)})\}$$

$$\Delta_{jj}^{(I)} = 0 \text{ (para todo } I,j,i)$$
 Para k de 1 a m $a^{(1)} = x^{(k)}$ Calcula $a^{(I)}$ para $I = 2,3,\dots,L$ Calcula $\delta^{(L)} = a^{(L)} - y^{(k)}$ Calcula $\delta^{(I)}$ para $I = L - 1, L - 2,\dots,2$ $\Delta_{ji}^{(I)} = \Delta_{ji}^{(I)} + a_i^{(I)} \delta_j^{(I+1)}$ (para todo I,j,i) Para I de 1 a $L - 1$ Para j de 1 a s_{I+1} Para i de 0 a s_I
$$D_{ji}^{(I)} = \begin{cases} \frac{1}{m} \Delta_{ji}^{(I)} + \lambda \Theta_{ji}^{(I)} & \text{si } i > 0 \\ \frac{1}{m} \Delta_{ji}^{(I)} & \text{si } i = 0 \end{cases} \qquad \left(\frac{\partial}{\partial \Theta_{ji}^{(I)}} J(\Theta) = D_{ji}^{(I)} \right)$$

Aproximación numérica del gradiente

$$\frac{\partial}{\partial \Theta_{1}} J(\Theta) = \frac{J(\Theta_{1} + \varepsilon, \Theta_{2}, \dots, \Theta_{n}) - J(\Theta_{1} - \varepsilon, \Theta_{2}, \dots, \Theta_{n})}{2\varepsilon}$$

$$\dots$$

$$\frac{\partial}{\partial \Theta_{n}} J(\Theta) = \frac{J(\Theta_{1}, \Theta_{2}, \dots, \Theta_{n} + \varepsilon) - J(\Theta_{1}, \Theta_{2}, \dots, \Theta_{n} - \varepsilon)}{2\varepsilon}$$