ANGEWANDTE PROGRAMMIERUNG Einführung Machine Learning

Vorlesung 06 Dennis Glüsenkamp

29. April 2022

Daten-getriebene Entscheidungsunterstützung

Arten von Machine Learning

Live-Übungen mit generierten Daten

Rückbezug: Data Analysis Lifecycle

Daten-getriebene

Entscheidungsunterstützung

Daten und Entscheidungen

- Entscheidungsprozesse können durch die Nutzung von Daten unterstützt werden
- Organisatorische Entscheidungen werden somit nicht allein aufgrund von Intuition getroffen
- Heute verfügbare Daten(mengen) und analytische Tools erweitern die traditionellen Möglichkeiten
- Data-driven decision-making (DDDM) zeichnet sich daher durch folgende Aspekte aus:
 - Validierung von Handlungen und Maßnahmen über Datenanalytik
 - Transformierung von Ergebnissen in handlungsorientierte Erkenntnisse
 - Nutzung von Daten, Statistiken und Metriken um hinsichtlich Geschäftszielen zu steuern

Wege und Ansätze zu DDDM

- Fragestellung und geschäftliche Zielsetzung bestimmen den Ansatz des Lösungswegs
- Zielsetzungen der Analyse können sein:
 - Aggregationen von Daten für Erfassung des Gesamtzusammenhangs \rightarrow *BI*
 - Ableitung von statistischen Erkenntnissen, Erkennung von Mustern und Zusammenhängen → Data Science
 - Erstellung von Algorithmen zur Klassifizierung, Verarbeitung und Prädiktion → Machine Learning
- Begrifflichkeiten können je nach Standpunkt, Schwerpunkt oder Fachrichtung auch anders definiert oder eingesetzt werden

Arten von Machine Learning

Notation und Bezeichnungen (1/2)

- Im Rahmen von Machine Learning arbeiten wir mit relationen Daten
- Verschiedene Bezeichnungen kommen dabei in der Beschreibung der Daten vor

Objekte:

- Entitäten in der beobachteten Situation
- Beispiele: Personen, Produkte, Ereignisse
- Synonyme: Beobachtungen, Zeilen

• Attribute:

- Eigenschaften eines Objekts
- Beispiele: Körpergröße, Farbe, Eintrittsdatum
- Synonyme: Features, Spalten, Datenfelder, Input

Notation und Bezeichnungen (2/2)

• Labels:

- Besondere Ausprägung eines Attributs, dass eine Zugehörigkeit oder ein Ergebnis widerspiegelt
- Beispiele: Testergebnis, Preis, Zustand
- Synonym: Target, Output
- Benennung hier mit folgender Notation
 - alle relationale Daten ohne Labels: X
 - alle Labels: y

Supervised Learning - überwachtes Lernen

- Objekte im Datensatz besitzen ein Label
- Ziel ist das Lernen einer Regel, die den Input auf den Output abbildet
- Regel sollte so gewählt sein, dass der Fehler der Abbildung minimiert ist
- Gelingt eine hinreichend gute Minimierung, dann generalisiert der Algorithmus das Problem
- Algorithmus kann nachfolgend den Output von neuen Beobachtungen (ohne Label) prognostizieren

	f_1	 y
X_1	1	 Α
X_2	2	 В
X_n	3	 C

Unsupervised Learning - unüberwachtes Lernen

- Objekte im Datensatz besitzen kein Label
- Ziel ist das Erkennen von strukturellen Zusammenhängen zwischen den Objekten
- Im Regelfall kein absolutes Ergebnis, da von Parametrisierung abhängig
- Kann auch zur Generierung von Labeln eingesetzt werden → Feature Learning

	f_1	 f_n
X_1	1	 Α
X_2	2	 В
X_n	3	 C

Weitere Kategorien

- Reinforcement Learning:
 - Eigene, bedeutende Kategorie
 - Optimierung findet in dynamischem Umfeld statt
 - Algorithmus erhält Feedback in Form von Belohnungen
 - Belohnung soll maximiert werden
- Semi-supervised Learning
- Anomaly Detection
- Association Rule Learning

Auswahl von Modellen/Algorithmen

- Regression Analysis
- Entscheidungsbaum (Decision Tree)
- Random Forest
- Support Vector Machine
- Neuronales Netz (Neural Network)
- Clustering

Live-Übungen mit generierten Daten

Confusion-Matrix

- Gütebestimmung bei Klassifikationsproblemen
- Auf beliebige Anzahl von Klassen erweiterbar
- Kennzahlen f
 ür Performance direkt ableitbar:

• Specificity
$$s = \frac{TN}{TN + FP}$$

• Precision $p = \frac{TP}{TP + FP}$

• Precision
$$p = \frac{TP}{TP + FP}$$

Figure 1: Confusion-Matrix

Rückbezug: Data Analysis Lifecycle

CRISP-DM Life Cycle

- CRoss-Industry Standard
 Process for Data Mining [1]
- 1996 im Rahmen von EU-Förderprojekt entwickelt
- Offenes, freies Prozessmodell zur Durchführung von Data Mining Vorhaben
- Prozess kann flexibel und unabhängig von Branche, Toolset und Anwendung verwendet werden

Figure 2: CRISP-DM
Prozessmodelldiagramm (Quelle: Kenneth
Jensen, CC BY-SA 3.0)

Phasen von CRISP-DM (1/6)

1. Business Understanding:

- Formulierung von konkreten Fragestellungen und Zielen
- Abgleich von Aufgaben und Erwartungen
- Vereinbarung eines Vorgehens/einer Planung
- Identifikation von wichtigen Einflussfaktoren
- Verständnis des Geschäftsmodells
- Definition von Erfolgskriterien

Phasen von CRISP-DM (2/6)

2. Data Understanding:

- Betrachtung des Datenbestands
- Auswertung der Datenverfügbarkeit, -reliabilität, -qualität
- (Statistische)
 Auffälligkeiten in den Daten
- Abstimmung zum Datenschutz

Figure 3: Anzahl von Preisanfragen für Kfz-Versicherungen über Aggregator- bzw. Vergleichswebsites bei einem deutschen Versicherer [2]

Phasen von CRISP-DM (3/6)

3. Data Preparation:

- Datenbereinigung und Transformationen
- Datenverknüpfung und -aggregation
- Feature Engineering
- Feature Selection

Figure 4: Verteilung von Verkaufsflächen von verschiedenen Märkten eines fiktiven Handelskonzerns, getrennt nach Fachabteilungen [3]

Phasen von CRISP-DM (4/6)

4. Modeling:

- Definition der Annahmen und Rahmenbedingungen der Modellierung
- Auswahl von geeigneten Algorithmen
- Test Design
- Training des Modells
- Tiefgreifende, zielgerichtete Datenexploration

Phasen von CRISP-DM (5/6)

5. Evaluation:

- Vergleich der verschiedenen Modelle anhand von Gütekriterien
- Betrachtung der Interpretierbarkeit des Modells
- Kritische Analyse des Modellierungsprozesses
- Abgleich mit (wirtschaftlichen) Erfolgskriterien
- Definition von Folgeaktivitäten

Phasen von CRISP-DM (6/6)

6. Deployment:

- Kommunikation der Ergebnisse
- Integration des Modells in die Systemlandschaft und Entscheidungsprozesse
- Wartung und Pflege des Modells
- Dokumentation der Erkenntnisse und Funktionsweise

Referenzen

- Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000).
 CRISP-DM 1.0: Step-by-step data mining guide. SPSS inc, 9, 13.
- [2] Gluesenkamp, D. (2018). Prediction of customer churn with premium online calculation data in insurance business. DeMontfort University, Leicester, United Kingdom.
- [3] Gluesenkamp, D. (2019). Wrangling and cleansing business data. Retrieved from https://dgluesen.github.io/wrangling-sales-workload/