

Universidad Nacional del Litoral

Facultad de Ingeniería y Ciencias Hídricas

Estadística

Ingeniería en Informática

Mg. Susana Vanlesberg: Profesor Titular **Analista Juan Pablo Taulamet:** Profesor Adjunto

::GUÍA 6A::					
ESTADÍSTICA INFERENCIAL DISTRIBICIÓN POR MUESTREO					
:: RESPUE	STAS ::	:: 2023 ::			

Ejercicio 1

a) Con reposición:

								M9
22	22	24	22	24	26	24	26	26
24	26	26	22	24	26	22	22	24

Sin reposición:

M1	M2	M3	M4	M5	M6
22	22	24	24	26	26
24	26	26	22	22	24

b)
$$\mu = 24$$
 $\sigma^2 = \frac{8}{3}$

Con reposición:

$$\begin{array}{l} \mu_{\bar{X}}=24\\ \sigma_{\bar{X}}^2=4/3\\ n=2 \end{array}$$

Se verifica que:

$$\begin{array}{l} \mu_{\bar{X}} = \mu \\ \sigma_{\bar{X}}^2 = \frac{\sigma^2}{n} \end{array}$$

Sin reposición:

$$\mu_{\bar{X}} = 24$$

$$\sigma_{\bar{X}}^2 = 2/3$$

$$n = 2$$

$$\frac{N-n}{N-1} = \frac{3-2}{3-1} = \frac{1}{2}$$

Se verifica que:

$$\mu_{\bar{X}} = \mu$$

$$\sigma_{\bar{X}}^2 = \frac{\sigma^2}{n} * \frac{N-n}{N-1}$$

Ejercicio 2

$$P(\bar{x} < 95) = 0,62\%$$

Ejercicio 3

$$n = 28$$

Ejercicio 4

$$P(S'^2) < 15) = 47\%$$

Ejercicio 5

$$\begin{split} P(p < 3\%) &= 34,6\% \\ P(1\% < p < 5\%) &= 53,6\% \end{split}$$

Ejercicio 6

$$P(\bar{x} - \bar{y} > 1) \approx 0$$