Capturing Membrane Computing by ASMs

Klaus-Dieter Schewe, Loredana Tec, Qing Wang

Linz, Austria & Canberra, Australia kdschewe@acm.org

Membrane Structures

Membrane Structure: ms = [[[[[]]]]]

Set of membranes: $M_{ms} = \{\mu_0, \mu_{00}, \mu_{01}, \mu_{010}, \mu_{011}\}$

Super Cells

Set of Objects: $\mathcal{O} = \{a, b, c, d, e\}$

Association of objects: $o: M_{ms} \to \mathcal{O}^*$

Rules / 1

 $\hat{\mathcal{O}} = \mathcal{O} \times \{\text{here, out, in}_{\mu}\}, \, \delta \notin \mathcal{O}, \, P\text{-System: } (ms, \mathcal{O}, o, \mu_0, \varrho)$

Association of rules: $\varrho: M_{ms} \to \{\ell \to r \mid \ell \in \mathcal{O}^*, r \in \hat{\mathcal{O}}^* \cup \hat{\mathcal{O}}^* \delta\}$

Rules / 2

Rules are partially ordered by preference

A glimpse of practice: $abb \to cdd$ with $a = COCl_2$ (phosgene), $b = NH_3$ (ammonia), $c = CO(NH_2)_2$ (urea), d = HCl (hydro-chloride)

Extending the Scope

- ullet We exploit unbounded parallelism and partial updates to capture P-systems by ASMs
 - However, it seems more realistic, if rules were executed in an asynchronous way (\rightarrow exploit concurrent ASMs)
- P-systems change their states, which are super cells, but rules remain fixed
 - It seems more realistic, if rules were also subject to change (\rightarrow exploit reflective ASMs)
- Objects in P-systems are elements of an alphabet \mathcal{O}
 - It seems more realistic, if objects had a deep structure (\rightarrow exploit Tarski structures underlying ASMs)
- P-systems are to mimick real biological systems
 - It seems more realistic to consider also continuous behaviour (\rightarrow exploit hybrid ASMs)