Test Case 13

Name of the Test Case	Characterization of hydrogen storage scale for power systems support and services.
Narrative	The amount of volatile renewable energy generated to the power system is rapidly increasing emphasizing the need for proper storage solutions to harness all the produced renewable energy. Without sensible storage solutions the overproduction of renewable energy cannot be used and we need to default back to fossil fuels. While for short term storage batteries and other storage solution in the power systems are crucial, in long term the most promising storage solutions can be found via sector coupling of electrical and hydrogen grids in combination with salvaging the heat produced in the conversion processes and fed to the district heating networks. The main applications for the storages are producing hydrogen for industry with low emission affordable electricity and hydrogen storage for mobility. The harnessing potential of hydrogen storages manifests as time depended consumption impacting the loading levels. This test case focuses especially at assessing the potential of different storage solutions based on their scale and cost benefits.
Function(s) under Investigation (Ful) "the referenced specification of a function realized (operationalized) by the object under investigation"	Hydrogen storage provides a long-term solution for storing renewable energy and also potentially could participate to the reserve markets depending on the reaction time.
Object under Investigation (Oul) "the component(s) (1n) that are to be qualified by the test"	Hydrogen storages of different scales.
Domain under Investigation (<i>Dul</i>): "the relevant domains or sub-domains of test parameters and connectivity."	ElectricalHydrogenHeat
Purpose of Investigation (Pol) The test purpose in terms of Characterization, Verification, or Validation	Characterize the optimal scale and location for hydrogen storage to be integrated with power systems and also provide potentially services to the reserve markets while taking into account regulatory requirements based on the site location.
System under Test (SuT): Systems, subsystems, components included in the test case or test setup.	SuT comprises of electrical grid, hydrogen network and heat network. The electrical system includes a medium (?) voltage grid with battery storage and renewable generation with integration to reserve markets. The hydrogen network will include fuel cells, conversion gas power plants, hydrogen storages, hydrogen consumption, e.g. industry and mobility. The heat network will include components for conversion to from the other

Qualification Strategy

There are three (3) Test Specifications to assess the scale of the hydrogen storage to meet the Pol. TS13.01 considers existing empty storage suitable for hydrogen, TS13.02 considers specifically extracted hydrogen storage and TS13.03 considers separate metal containers as a storage option.

Test Specification 13.01

Reference to Test Case	TC13
Title of Test	Verification of large scale existing hydrogen storage for power
	system support
Test Rationale	The aim of the test is to verify the cost benefits and sustainability of
	large scale existing hydrogen storages for supporting and providing
	services to power systems.
Specific Test System	The system uses in particular an existing empty storage for hydro-
(graphical)	gen such as an empty natural gas storage or salt mine. For mobility
	applications the hydrogen requires new cleaning when geological
	storage is used.
	Carbon-peutral Excess Battery
	fuel storage renewable storage
	electricity
	Long-term storage of Short-term
	hydrogen made from battery storage
	the excess electricity via water electrolysis
	1014 4 4 9
	Hydrogen consumption
	by industry and mobility
	Conversion gas Conversion
	power plant inverter
	Balancing power for the grid
	Source: Wartsila
	©FT
Target measures	The test is successfully passed if the hydrogen storage can mean-
	ingfully support the power system balancing and via this remain
	profitable and sustainable.
Input and output parameters	Point of common coupling measurements
	 setpoints for control of the hydrogen storage
	Reaction time of storage
	Profit
Test Design	This test needs to run in non-real-time for several years or seasons
	depending on the reaction time.
Initial system state	Networks operating on nominal power, temperature and
	pressure
	Storages are empty
L	

Evolution of system state and test signals	 The storages are filled based on the overproduced renewable generation Based on price signals the storages react and balance the power system
Other parameters	Consumption by industry or mobility
Temporal resolution	Dynamic, variable step size
Source of uncertainty	Calculation accuracy of the life-time emissions and state of loading.
Suspension criteria / Stopping	Critical violation of network operation constraints
criteria	Networks becoming unstable

Test Specification 13.03

Reference to Test Case	TC13
Title of Test	Verification of specifically extracted storage for hydrogen for power system support
Test Rationale	The aim of the test is to verify the cost benefits and sustainability of specifically extracted hydrogen storages for supporting and providing services to power systems.
Specific Test System (graphical)	The system uses in particular a hydrogen storage specifically extracted for this purpose.
	Carbon-neutral fuel storage Long-term storage of hydrogen made from Excess renewable electricity Short-term battery storage
	Hydrogen consumption by industry and mobility Conversion gas power plant Conversion inverter
	Balancing power for the grid Source: Wartsila
	©FT
Target measures	The test is successfully passed if the hydrogen storage can meaningfully support the power system balancing and via this remain profitable and sustainable.
Input and output parameters	 Point of common coupling measurements setpoints for control of the hydrogen storage Reaction time of storage Profit
Test Design	This test needs to run in non-real-time for several years or seasons depending on the reaction time.
Initial system state	Networks operating on nominal power, temperature and pressure Storages are empty
Evolution of system state and test signals	The storages are filled based on the overproduced renew- able generation

	Based on price signals the storages react and balance the power system
Other parameters	Consumption by industry or mobility
Temporal resolution	Dynamic, variable step size
Source of uncertainty	Calculation accuracy of the life-time emissions and state of loading.
Suspension criteria / Stopping	Critical violation of network operation constraints
criteria	Networks becoming unstable

Test Specification 13.02

Reference to Test Case	TC13
Title of Test	Verification of metal containers as hydrogen storage for power system support
Test Rationale	The aim of the test is to verify the cost benefits and sustainability of metal containers as hydrogen storages for supporting and providing services to power systems.
Specific Test System (graphical)	The system uses in particular metal containers as a storage for hydrogen.
	Carbon-neutral fuel storage Long-term storage of hydrogen made from Excess renewable electricity Short-term battery storage
	the excess electricity via water electrolysis Hydrogen consumption by industry and mobility Conversion gas power plant Conversion inverter
	Balancing power for the grid Source: Wartsila © FT
Target measures	The test is successfully passed if the hydrogen storage can meaningfully support the power system balancing and via this remain profitable and sustainable.
Input and output parameters	 Point of common coupling measurements setpoints for control of the hydrogen storage Reaction time of storage Profit
Test Design	This test needs to run in non-real-time for several years or seasons depending on the reaction time.
Initial system state	Networks operating on nominal power, temperature and pressure Storages are empty
Evolution of system state and test signals	The storages are filled based on the overproduced renewable generation Based on price signals the storages react and balance the
	power system

Other parameters	 Consumption by industry or mobility
Temporal resolution	Dynamic, variable step size
Source of uncertainty	Calculation accuracy of the life-time emissions and state of loading.
Suspension criteria / Stopping	Critical violation of network operation constraints
criteria	 Networks becoming unstable