

Gödel's Incompleteness Theorem

Valeria Zahoransky

Index

- 1. Introduction
 - **1.1** Basic Notions
 - 1.2 Gödel numberings
 - 1.3 Diagonalisation
- 2. Gödel's Theorems
 - 2.1 Little Gödel
 - 2.2 Gödel's Incompleteness Theorem I
 - 2.3 Gödel's Incompleteness Theorem II

Valeria Zahoransky 1/19

Some basic notions

Note

For a given language/system \mathcal{L} , we mean

- \mathcal{E} to be the set of all expressions over \mathcal{L}
- $\mathcal{H} \subset \mathcal{E}$ to be the set of all predicates over \mathcal{L}
- $S \subset \mathcal{E}$ to be the set of all sentences over \mathcal{L}
- $\mathcal{P} \subset \mathcal{S}$ to be the set of all provable sentences over \mathcal{L}
- $\mathcal{R} \subset \mathcal{S}$ to be the set of all refutable sentences over \mathcal{L}
- $\mathfrak{T} \subset \mathcal{S}$ to be the set of all true sentences over \mathcal{L}

Valeria Zahoransky 2/19

Peano Arithmetic

Example

Let \mathcal{L} be the language of Peano Arithmetic over alphabet $\Sigma = \{0, S, +, \cdot, <\}$. We have

$$\exists x(2 < x), \quad 1+1, \quad (y+x) = 3, \quad 2 < x \in \mathcal{E}$$

 $2 < x \in \mathcal{H}$
 $\exists x(2 < x) \in \mathcal{T}$

Note

For predicate $H \equiv 2 < x$ we write H(x).

Valeria Zahoransky 3/19

Expressibility in $\mathcal L$

Definition

Let $n \in \mathbb{N}$, H a predicate, we say n satisfies H if H(n) is a true sentence.

Set $A \in \mathbb{N}$ is expressed by H iff

$$\forall n \in \mathbb{N} : H(n) \in \mathcal{T} \iff n \in A$$

A is expressible in \mathcal{L} if there is some predicate H_A of \mathcal{L} , s.t. A is expressed by H_A .

Example

In PA set $A = \{0, 1\}$ is expressed by $H_A \equiv x < 2$.

Valeria Zahoransky 4/19

Correctness of \mathcal{L}

Definition

 \mathcal{L} is a correct language if

- (i) $\mathcal{P} \subset \mathcal{T}$
- (ii) $\mathfrak{T} \cap \mathfrak{R} = \emptyset$

Note

Correctness is stronger than consistency:

 \mathcal{L} consistent $\iff \forall S \in \mathbb{S} : \neg (S \in \mathcal{P} \land S \in \mathcal{R})$

Valeria Zahoransky 5/19

Gödel numbering

Definition

Given an injective function $g: \mathcal{E} \to \mathbb{N}$ and expression $E \in \mathcal{E}$ we call

the Gödel number of E and g a Gödel numbering for language \mathcal{L} .

Note

We have seen Gödel numberings as encodings, e.g. of Turing Machines.

$$\langle TM \rangle = g(TM)$$

Valeria Zahoransky 6/19

Gödel numbering

Example

For Peano Arithmetic with extended alphabet

 $\Gamma = \Sigma \cup \{\neg, \land, \rightarrow, \exists, x, (,)\}$ we can define a suitable g as follows:

• Assign each $\sigma \in \Gamma$ a number:

- Create E' by substituting every symbol by its assigned number.
- the Gödel number of E is the number whose base 12 representation is E'.

Valeria Zahoransky

Gödel numbering

Example

$$g(1 < x) = g((S 0) < x)$$

$$(S 0) < x \rightarrow A10B49$$

$$g(1 < x) = 10 \cdot 12^{5} + 1 \cdot 12^{4} + 0 \cdot 12^{3} + 11 \cdot 12^{2} + 4 \cdot 12^{1} + 9 \cdot 12^{0}$$

$$= A10B49_{12} = 2510697_{10}$$

Valeria Zahoransky 8/19

Diagonalisation

Definition

Let E_n be the unique expression, s.t. $g(E_n) = n$.

We call $E_n(n)$ the diagonalisation of E_n and

$$d: \mathbb{N} \to \mathbb{N}, \quad d(n) = g(E_n(n))$$

the diagonal function.

Note

 $E_n(n)$ is true iff E_n is satisfied by its own Gödel number n.

d(n) is the Gödel number of sentence $E_n(n)$.

Valeria Zahoransky 9/19

A^* and \overline{A}

Definition

For any set $A \subset \mathbb{N}$, let A^* be the preimage of A under d:

 $n \in \mathbb{N} : n \in A^* \Leftrightarrow d(n) \in A$

For any set $A \subset \mathbb{N}$, let \overline{A} be the complement of A:

$$\overline{A} = \mathbb{N} \setminus A$$

Valeria Zahoransky 10/19

Little Gödel

Theorem

For a given language \mathcal{L} , let $P = \{n \mid \exists S \in \mathcal{P} : g(S) = n\}$ be the set of Gödel numbers of all provable sentences. If set \overline{P}^* is expressible in \mathcal{L} and \mathcal{L} is correct, then there is a true sentence of \mathcal{L} which is not provable in \mathcal{L} .

Valeria Zahoransky 11/19

Little Gödel - Proof I

Proof

Let H be the predicate that expresses \overline{P}^* . Let h be the Gödel number of H.

Since H expresses \overline{P}^* , for any $n \in \mathbb{N}$:

$$H(n)$$
 true $\Leftrightarrow n \in \overline{P}^*$

And thus:

$$H(h)$$
 true $\Leftrightarrow h \in \overline{P}^*$
 $\Leftrightarrow d(h) \in \overline{P} \Leftrightarrow d(h) \notin P$

Valeria Zahoransky 12/19

Little Gödel - Proof II

Proof

Note that d(h) = g(H(h)), so by definition of P we get

$$d(h) \in P \iff H(h)$$
 provable

and thus

$$H(h)$$
 true $\Leftrightarrow d(h) \notin P \Leftrightarrow H(h)$ not provable

Case 1 H(h) is false and provable. Contradiction by correctness of \mathcal{L} .

Case 2 H(h) is true and not provable.

Valeria Zahoransky 13/19

Gödel's Incompleteness Theorem I

Theorem

Any consistent formal system $\mathcal L$ that has a certain expressivity is incomplete.

Note

Gödel used so-called ω -consistency which is stronger than consistency.

Valeria Zahoransky 14/19

Theorem

No formal system \mathcal{L} can be consistent and prove its own consistency.

Valeria Zahoransky 15/19

Thank you for your attention!

Questions?

Gödel's Incompleteness Theorem I

Note

Statement according to Gödel:

Zu jeder ω -widerspruchsfreien rekursiven Klasse κ von Formeln gibt es rekursive Klassenzeichen r, so daß weder v Gen r noch Neg(v Gen r) zu Flg(κ) gehört (wobei v die freie Variable aus r ist).

For any ω -consistent recursive class κ of formulae, there are recursive class-signs r, s.t. neither v Gen r nor Neg(v Gen r) belong to Flg(κ) (where v is the free variable of r).

Valeria Zahoransky 17/19

Gödel's Incompleteness Theorem II

Note

Statement according to Gödel:

Sei κ eine beliebige rekursive widerspruchsfreie Klasse von Formeln, dann gilt: Die Satzformel, welche besagt, daß κ widerspruchsfrei ist, ist nicht κ -beweisbar; insbesondere ist die Widerspruchsfreiheit von P in P unbeweisbar, vorausgesetzt, daß P widerspruchsfrei ist [...].

If κ be a given recursive, consistent class of formulae, then the propositional formula which states that κ is consistent is not κ -provable; in particular, the consistency of P is unprovable in P, it being assumed that P is consistent [...].

Valeria Zahoransky 18/19

Bibliography

- [1] Raymond M. Smullyan. *Gödel's Incompleteness Theorems*. Oxford University Press, 1992.
- [2] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, Springer, 1931.
- [3] Kurt Gödel. On formally undecidable propositions of Principia Mathematica and related systems I. Dover Publications, 1992.

Valeria Zahoransky 19/19