Is the Unit Interval "Smaller" than the Unit Square?

陳亮妍 張華炘 劉樂山 Instructor – Professor So-Chin Chen

I. Introduction

This article deals with an interesting question about cardinality: Is the unit interval [0, 1] and the unit square $[0, 1] \times [0, 1]$ of the same cardinality? That is, does there exist a bijection between [0, 1] and $[0, 1] \times [0, 1]$? Though the answer may be counterintuitive, the answer to this question is affirmative. In the following, we construct a continuous mapping called "space-filling curve," from [0, 1] onto $[0, 1] \times [0, 1]$. With space-filling curve, we can find one-to-one mappings from $[0, 1] \times [0, 1]$ to [0, 1] and from [0, 1] to $[0, 1] \times [0, 1]$ respectively. Then by applying Schroeder-Bernstein theorem, we can complete the proof.

Definition 1.1. Equivalence of Cardinality

Let A, B be two sets. If there exists a bijection between A and B, then it is said that A and B are of the same cardinality.

The next theorem provides a sufficient condition to compare the cardinality of two sets.

${\bf Theorem~1.2.~(Schroder-Bernstein)}$

Let A, B be two sets. If there is a one-to-one function $f: A \to B$ and a one-to-one function $g: B \to A$, then A and B are of the same cardinality.

Proof: We may assume A and B are disjoint. We may arrange this if necessary by replacing A by $\{(a, 0): a \in A\}$ and B by $\{(b, 1): b \in B\}$. Let D be the image of f and let C be the image of g. Define a chain to be a sequence of elements of either A or B, that is, a function $\phi: N \to (A \cup B)$ such that

- a) $\phi(1) \in B \setminus D$.
- b) If for some j we have $\phi(j) \in B$ then $\phi(j+1) = g(\phi(j))$.
- c) If for some j we have $\phi(j) \in A$ then $\phi(j+1) = f(\phi(j))$.

We see that a chain is a sequence of elements of $A \cup B$ such that the first element is in $B \setminus D$, the second in A, the third in B, and so on. Obviously each element of $B \setminus D$ occurs as the first element of at least one chain.

Define $S = \{a \in A : a \text{ is some term of some chain}\}$. It is helpful to note that

 $S = \{x \in A : x \text{ can be written in the form } x = g(f(g(\dots f(g(y))\dots))))$ some $y \in B \setminus D\}$.

We set

$$k(x) = \begin{cases} f(x) & if & x \in A \setminus S \\ g^{-1}(x) & if & x \in S \end{cases}$$

Note that the second half of this definition makes sense because $S \in C$ and because g is one-to-one. Then $k : A \to B$. We shall show that in fact k is a bijection.

First note that f and g^{-1} are one-to-one. We show that k is one-to-one as follows: If $f(x_1) = g^{-1}(x_2)$ for some $x_1 \in A \setminus S$ and some $x_2 \in S$, then $x_2 = g(f(x_1))$. But, the fact that $x_2 \in S$ now implies that $x_1 \in S$. That is a contradiction. Hence k is one-to-one. It remains to show that k is onto. Fix $k \in S$. We seek an $k \in A$ such that k(k) = k.

Case A: If $g(b) \in S$, then $k(g(b)) \equiv g^{-1}(g(b)) = b$. Hence the x that we seek is g(b).

Case B: If $g(b) \notin S$, then we claim there is an $x \in A$ such that f(x) = b. Assume this claim for the moment.

Now the x that we just found must lie in A \ S. For if not then x would be in some chain. Then f(x) and g(f(x)) = g(b) would also lie in that chain. Hence $g(b) \in S$, and that is a contradiction. But $x \in A \setminus S$ tells us that k(x) = f(x) = b. That completes the proof that k is onto.

To prove the claim we made in Case B, note that if there is no $x \in A$ with f(x) = b then $b \in B \setminus D$. Thus some chain would begin at b. So g(b) would be a term of that chain. Hence $g(b) \in S$ and that is a contradiction.

The proof of the Schroeder-Bernstein theorem is complete.

In order to prove the next theorem applied in our proof, we recall axiom of choice.

Axiom of Choice (Zermelo's Axiom)

Consider a family of arbitrary nonempty disjoint sets E_{α} indexed by a set A, $\{E_{\alpha}: \alpha \in A\}$. Then there exists a set consisting of exactly one element from each E_{α} , $\alpha \in A$.

Theorem 1.3.

Let A, B be two sets. If there exists surjective functions mapping A onto B and from B onto A respectively, then A and B are of the same cardinality.

Proof: Consider two surjective functions ψ and φ map A onto B and B onto A respectively. Let $\varphi^{-1}(a) = E_a$, $a \in A$, $E_a \subseteq B$. $\bigcup_{a \in A} E_a = B$, $E_\beta \cap E_\alpha = \phi$ if $\alpha \neq \beta$. By axiom of choice, there exists a subset S_B of B, which consists of exactly one element from each E_a . Therefore, there exists an one-to-one onto mapping $\tilde{\varphi}^{-1}: A \to S_B$. Hence, $\tilde{\varphi}^{-1}: A \to B$ is an one-to-one mapping. In a similar way, we can also construct an one-to-one mapping $\tilde{\psi}^{-1}: B \to A$. Then by Schroeder-Bernstein theorem, A and B are of the same cardinality.

II. Space – Filling Curve

The space-filling curve we are going to construct is a continuous onto mapping from [0, 1] to $[0, 1] \times [0, 1]$. We will use Weierstrass M-test to show the continuity of the space-filling function.

Definition 2.1. Uniform Convergence

A sequence of functions $\{f_n\}$ is said to converge uniformly to f on a set S if, for every $\varepsilon > 0$, there exists an N (depending only on ε) such that n > N implies

$$|f_n(x) - f(x)| < \varepsilon$$
, for every x in S.

Theorem 2.2. Weierstrass M-test

Let $\{M_n\}$ be a sequence of nonnegative numbers such that $|f_n(x)| \leq M_n$, for $n = 1, 2, \ldots$, and for every x in S. Then $\sum f_n(x)$ converges uniformly on S if $\sum M_n$ converges.

Space - filling curve

Let ϕ be defined on the interval [0, 2] by the following formulas:

$$\phi(t) = \begin{cases} 0, & if \ 0 \le t \le \frac{1}{3}, \ or \ \frac{5}{3} \le t \le 2, \\ 3t - 1, & if \ \frac{1}{3} \le t \le \frac{2}{3}, \\ 1, & if \ \frac{2}{3} \le t \le \frac{4}{3}, \\ -3t + 5, & if \ \frac{4}{3} \le t \le \frac{5}{3}, \end{cases}$$

Extend the definition of ϕ to all of R by the equation

$$\phi(t+2) = \phi(t).$$

This makes ϕ periodic with period 2.

Now define two functions f_1 and f_2 by the following equations:

$$f_1 = \sum_{n=1}^{\infty} \frac{\phi(3^{2n-2}t)}{2^n}, \quad f_2 = \sum_{n=1}^{\infty} \frac{\phi(3^{2n-1}t)}{2^n}.$$

Both series converge absolutely for each real t and they converge uniformly on R. In fact, since $|\phi(t)| \leq 1$ for all t, the Weierstrass M-test is applicable with $M_n = 2^{-n}$. Since ϕ is continuous on R, f_1 and f_2 are also continuous on R. Let $f = (f_1, f_2)$ and let Γ denote the image of the unit interval [0, 1] under f. We will show that Γ fills the unit square.

First, it is clear that $0 \le f_1(t) \le 1$ and $0 \le f_2(t) \le 1$ for each $t \in [0, 1]$, since $\sum_{n=1}^{\infty} 2^{-n} = 1$. Hence, Γ is a subset of the unit square. Next, we must show that $(a, b) \in \Gamma$ whenever $(a, b) \in [0, 1] \times [0, 1]$. For this purpose we write a and b in binary terms. That is, we write

$$a = \sum_{n=1}^{\infty} \frac{a_n}{2^n}, \quad b = \sum_{n=1}^{\infty} \frac{b_n}{2^n},$$

where each a_n and each b_n is either 0 or 1. Now let $c = 2 \sum_{n=1}^{\infty} \frac{C_n}{3^n}$ where $c_{2n-1} = a_n$ and $c_{2n} = b_n$, n = 0, 1, 2,...

Clearly, $0 \le c \le 1$ since $2 \sum_{n=1}^{\infty} 3^{-n} = 1$. We will show that $f_1(c) = a$ and that $f_2(c) = b$.

If we can prove that

$$\phi(3^k c) = c_{k+1}$$
, for each $k = 0, 1, 2, ...$,

then we will have $\phi(3^{2n-2}c) = c_{2n-1} = a_n$ and $\phi(3^{2n-1}c) = c_{2n} = b_n$, and this will give us $f_1(c) = a$ and $f_2(c) = b$. we write

$$3^k c = 2 \sum_{n=1}^k \frac{c_n}{3^{n-k}} + 2 \sum_{n=k+1}^{\infty} \frac{c_n}{3^{n-k}} = (\text{an even integer}) + d_k,$$

where $d_k = 2 \sum_{n=1}^{\infty} \frac{c_{n+k}}{3^n}$. Since ϕ has period 2, it follows that

$$\phi(3^k c) = \phi(d_k).$$

If $c_{k+1} = 0$, then we have $0 \le d_k \le 2\sum_{n=2}^{\infty} 3^{-n} = \frac{1}{3}$, and hence $\phi(d_k) = 0$. Therefore, $\phi(3^k c) = c_{k+1}$ in this case. The only other case to consider is $c_{k+1} = 1$. But then we get $\frac{2}{3} \le d_k \le 1$ and it follows that $\phi(d_k) = 1$. Therefore, $\phi(3^k c) = c_{k+1}$ in all cases and this proves that $f_1(c) = a$ and $f_2(c) = b$.

Hence, Γ fills the unit square.

It's obvious that there exists a surjective mapping from unit square to unit interval, space-filling curve itself is a surjective mapping from unit interval to unit square. Then by Theorem 1.3, the cardinality of $[0, 1] \times [0, 1]$ is equal to that of [0, 1].

NOTE. Since the unit square and the unit interval are not homeomorphic to each other, the space-filling curve can't be a bijection, i.e., it is not an one-to-one mapping.

III. Disscussion

We will disscuss some extensions in this section. First, we will show that the unit interval [0, 1] and \mathbb{R}^2 are of the same cardinality.

Theorem 3.1.

[0, 1] and \mathbb{R}^2 are of the same cardinality.

Proof: First, let $\Gamma:[0, 1] \to [0, 1] \times [0, 1]$ denote the space-filling curve, it's easy to construct a mapping φ from $[0, 1] \times [0, 1]$ onto $(-\frac{1}{2}, \frac{1}{2}) \times (-\frac{1}{2}, \frac{1}{2})$.

$$\varphi(x, y) = \begin{cases} (0, 0) & \text{if } xy = 0 \text{ or } x = 1 \text{ or } y = 1 \\ (x - \frac{1}{2}, y - \frac{1}{2}) & \text{if } x \in (0, 1) \text{ and } y \in (0, 1) \end{cases}$$

Next, we construct a continuous one-to-one mapping ψ from $\left(-\frac{1}{2}, \frac{1}{2}\right) \times \left(-\frac{1}{2}, \frac{1}{2}\right)$ onto \mathbb{R}^2 .

$$\psi(x, y) = (\tan(\pi x), \tan(\pi y)), x, y \in (-\frac{1}{2}, \frac{1}{2})$$

Therefore, $\psi \circ \varphi \circ \Gamma : [0,1] \to \mathbb{R}^2$ is an onto function.

Let $\sigma: \mathbb{R}^2 \to [0,1]$,

$$\sigma(x,y) = \begin{cases} x & if \ x \in [0, 1] \\ 0 & otherwise. \end{cases}$$

It's an onto mapping from \mathbb{R}^2 to [0,1].

Hence, by Theorem 1.3, [0,1] and \mathbb{R}^2 are of the same cardinality.

We would then provide a theorem for a more general case.

Theorem 3.2.

Let A be a subset of \mathbb{R}^2 . If there exists an one-to-one mapping σ from [0, 1] to S such that $S \subseteq A$, then [0, 1] and A are of the same cardinality.

Proof: By Theorem 3.1, there exists a mapping φ from [0, 1] onto \mathbb{R}^2 . $\therefore A \subseteq \mathbb{R}^2$, there exists a mapping φ from \mathbb{R}^2 onto A. Therefore, $\varphi \circ \varphi$ is a mapping from [0, 1] onto A.

Next, we construct a mapping from A onto [0, 1]. Consider

$$\psi(x) = \begin{cases} \sigma^{-1}(x) & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases}$$

Then by Theorem 1.3, [0, 1] and A are of the same cardinality.

IV. References

- 1. Steven G. Krantz: "Real Analysis and Foundations," 1991.
- 2. T.M. Apostol: "Mathematical Analysis 2nd E.d.," 1973.
- 3. Walter Rudin: "Real and Complex Analysis 3rd E.d.," 1966.