ABY³: A Mixed Protocol Framework for Machine Learning

本次介绍的论文是Mohassel, Payman 和 Rindal, Peter发表在CCS'18上的ABY3。

ABY3

ABSTRACT

本文主要包括以下几个方面:

- 设计实现了一个通用的基于三方服务器的隐私保护机器学习框架,基于此,设计实现了新的线性 回归、逻辑回归、神经网络模型
- 提出了新的完整的算术电路、布尔电路和Yao电路之间的转化协议
- 提出了新的三方秘密分享下的定点十进制小数乘法、并设计了计算分断线性多项式函数的协议
- 本文考虑了semi-honest和malicious两种情况

INTRODUCTION

本文探索基于三方服务器的隐私保护机器学习框架,改进前人的工作所遇到的挑战有以下几个方面

- 1. 现有的3PC技术只能适应 \mathbb{Z}_{2^k} 环上的运算,而ML中的计算或者中间参数都是以小数的形式存在,它不能直接应用模运算的代数系统上,现有的解决方案有:
 - 。 将小数乘上一个大因子使其成为整数,同时使用一个大的模数来避免wrap around,这样的弊端就是当计算大量浮点乘法的时候将不满足结果的正确性,同时采用了更大的模数增加了计算和能信的复杂度
 - 。 使用基于布尔电路和混乱电路的定点小数乘法方法, 但是其效率将又大大增加
- 2. ML中的涉及到大量的算术计算与布尔运算,往往使用混合协议的方式比使用单一协议的方法要更高效,但是现有的转换协议已成为主要的性能瓶颈

Contributions

- 1. 设计实现了一种新的秘密分享下的定点数乘法协议,其吞吐量和延迟比优化的布尔电路上的实现方法分别提升了 $50 \times 124 \times 100$ 。此外该协议不仅在malicious下安全而且能扩展到任意多方计算。
- 2. 提出新的基于三方的算术、布尔与Yao之间的转化协议,该协议能够抵抗malicious with abort的情况。
- 3. 提出了delayed re-share技术优化技术,在很大程度上减少向量操作中的通信复杂度,并且提出基于三方的通用扩展OT协议来计算分断多项式函数的方法。
- 4. 构建了semi-honest和malicious两种设定下的协议模块。
- 5. 实验表明比对于神经网络任务比secureML快 $55000 \times$, 预测任务比Chameleon快270倍。

OUR FRAMEWORK

Secret Sharing

Arithmetic sharing

- 2-out-of-3 秘密分享
 - 1. $P_1:(x_1,x_2),(y_1,y_2)$
 - 2. $P_2:(x_2,x_3),(y_2,y_3)$
 - 3. $P_3:(x_3,x_1),(y_3,y_1)$

常见类型的计算

- $\circ \langle x+y \rangle := (x_1+y_1, x_2+y_2, x_3+y_3)$
- $\circ \langle x \rangle \pm c := (x_1 \pm c, x_2, x_3)$
- $\circ \langle cx \rangle := (cx_1, cx_2, cx_3)$
- 。 处理三方分享下的乘法先本地计算交叉项后,为保持形式的统一需要进行re-sharing的过程 (将 z_i 发送给 P_{i+1})

$$egin{aligned} \langle xy
angle &= (x_1+x_2+x_3)(y_1+y_2+y_3) \ &= (x_1y_1+x_1y_2+x_1y_3): P_1
ightarrow z_1 \ &+ (x_2y_2+x_2y_3+x_3y_2): P_2
ightarrow z_2 \ &+ (x_3y_3+x_3y_1+x_1y_3): P_3
ightarrow z_3 \end{aligned}$$

- 如何生成 $0 = a_1 + a_2 + a_3$
 - 。 P_1,P_2 共有一个随机数种子 k_1 , P_2,P_3 共有一个随机数种子 k_2 , P_3,P_1 共有一个随机数种子 k_3
 - \circ 给定一个nonce和伪随机函数 PRG
 - $P_1: a_1 = PRG_{k_1}(nonce) PRG_{k_2}(nonce);$
 - $P_2: a_2 = PRG_{k_2}(nonce) PRG_{k_3}(nonce);$
 - $P_3: a_3 = PRG_{k_3}(nonce) PRG_{k_1}(nonce)$
 - 。 k_i 可以在初始化阶段生成, $k_{i+1} = PRG(k_i)$,所以不需要通信

Binary sharing

和 Arithmetic sharing 语义类似,但是计算在模2($\mod 2$)上。加法和乘法对应为抑或(\oplus)和与(\wedge)。

Yao's sharing

三方的Yao's sharing, 其中 P_0 作为Evaluator, P_1 和 P_2 做Garbler。

Fixed-point Arithmetic

假设 $\langle x^{'} \rangle = \langle y \rangle \langle z \rangle \in \mathbb{Z}_{2^k}$ 表示是y,z在秘文下的乘法,最后将结果以秘密分享的形式表示为 $\langle x^{'} \rangle = (x^{'} + r^{'}, -r^{'})$,都是定点数表示,其正确结果需要除以 2^d (小数部分用d-bit表示),即是说正确的结果应是 $\langle x \rangle = \langle x^{'}/2^d \rangle$ 。现有的定点截断方法采用的是将 $\langle \tilde{x} \rangle := (\frac{x^{'}+r^{'}}{2^d}, -\frac{r^{'}}{2^d})$,也就是说直接在秘文下进行截断,可以证明还原后其值以可忽略的概率使得误差只有最后1-bit。

这种方式存在两个问题

- 1. 精确性问题: 1) 截断直接抹掉了第d位处的进位; 2) 如果 $\langle \tilde{x} \rangle$ 的分享值最高符号位与原数的最高符号位不一致(比如一个负数其秘密分享后最高符号位可能都是0,那么截断后前面d+1位均是0) 那么会导致还原错误;
- 2. 针对上述问题,可以限制 $|x^{'}| < 2^{l} \ll 2^{k}$,但是不能扩展到3-PC的情况。

基于三方的截断方法一 Π_{trunc1}

令每方有 $\langle x^{'} \rangle = \langle y \rangle \langle z \rangle$ 的2-out-of-3分享份额,现在的目标是计算截断 $\langle x \rangle = \langle x^{'}/2^d \rangle$ (转为两方的设置下来做)。

• 定义在 P_1,P_2 、之间的2-out-of-2秘密分享 $(x_1^{'},x_2^{'}+x_3^{'})$,然后本地截断 $(x_1^{'}/2^d,(x_2^{'}+x_3^{'})/2^d)$,最后的结果表示为 $\langle x \rangle := (x_1^{'}/2^d,(x_2^{'}+x_3^{'})/2^d-r,r)$,然后做一次re-sharing的步骤。

基于三方的截断方法二 Π_{trunc2}

回顾一下三方秘密分享的步骤为:1)计算 $\langle x^{'} \rangle$ 的3-out-of-3秘密分享;然后,2)进行2-out-of-3秘密分享。 Π_{trunc2} 合并计算过程,从而只需要一轮通信,首先三方使用bool 电路上的减法生成 $\langle r \rangle = \langle r^{'}/2^{d} \rangle$

- Step1秘密分享 $\langle x^{'}-r^{'}
 angle$
- Step2定义 $\langle x
 angle := (x^{'} r^{'})/2^d + \langle r
 angle$,因为这里 $\langle r
 angle = \langle r^{'}/2^d
 angle$

Parameters: A single 2-out-of-3 (or 3-out-of-3) share $[x']^A = (x'_1, x'_2, x'_3)$ over the ring \mathbb{Z}_{2^k} and a integer d < k.

Preprocess:

- 1. All parties locally compute $[r']^B \leftarrow \text{Rand}((\mathbb{Z}_2)^k)$.
- 2. Define the sharing $[r]^{\bar{B}}$ to be the k-d most significant shares of $[r']^{B}$, i.e. $r = r'/2^{d}$.
- 3. The parties compute $[\![r'_2]\!]^B$, $[\![r'_3]\!]^B \leftarrow \mathsf{Rand}((\mathbb{Z}_2)^k)$ and $[\![r_2]\!]^B$, $[\![r_3]\!]^B \leftarrow \mathsf{Rand}((\mathbb{Z}_2)^{k-d})$. r'_2 , r_2 is revealed to party 1,2 and r'_3 , r_3 to parties 2,3 using the RevealOne routine.
- 4. Using a ripple carry subtraction circuit, the parties jointly compute $[\![r_1']\!]^B := [\![r']\!]^B [\![r_2']\!]^B [\![r_3']\!]^B$, $[\![r_1]\!]^B := [\![r]\!]^B [\![r_2]\!]^B [\![r_3]\!]^B$ and reveal r_1' , r_1 to parties 1,3.
- 5. Define the preprocessed shares as $[\![r']\!]^A := (r'_1, r'_2, r'_3), [\![r]\!]^A := (r_1, r_2, r_3).$

Online:

- 1. The parties jointly compute $[x'-r']^A$ and then compute $(x'-r') := \text{RevealAll}([x-r']^A)$.
- 2. Output $[x]^A := [r]^A + (x' r')/2^d$.

Vectorized Multiplication

对于内积计算 $\overrightarrow{x}\cdot\overrightarrow{y}:=\sum_{i=1}^nx_iy_i$,按照原始的做法将需要调用n次安全乘法协议,需要O(n)次通信。本文做了优化,只需要O(1)次通信和一次trunctation-pair $(\langle r^{'}\rangle,\langle r\rangle)$ 。

$$\langle \overrightarrow{x}
angle \cdot \langle \overrightarrow{y}
angle := ext{reveal}((\sum_{i=1}^n \langle x_i
angle \langle y_i
angle) + \langle r^{'}
angle)/2^d - \langle r
angle$$

也就是,首先每方本地计算3-out-of-3的 $\langle x_i \rangle \langle y_i \rangle$,然后求和,求掩码,截断,最后2-out-of-3做resharing。

Malicious Multiplication

Semi-honest 模型下的截断乘法如前所述。但是在malicious 模型下,需要验证正确性。本文采用了 Triple Verif. Using Another Without Opening 技术。简单来说,为了在线验证z=xy,预计算阶段生成三元组c=ab,方案如下图。关于如何保证c=ab,则需要使用cut-and-choose技术。

Parameters: The parties hold a triple $(\llbracket x \rrbracket^A, \llbracket y \rrbracket^A, \llbracket z \rrbracket^A)$ to verify that $z = xy \pmod{2^k}$ and an addition uniformly distributed triple $(\llbracket a \rrbracket^A, \llbracket b \rrbracket^A, \llbracket c \rrbracket^A)$ such that $c = ab \pmod{2^k}$.

- 1. Each party locally compute $\llbracket \rho \rrbracket^A := \llbracket x \rrbracket^A \llbracket a \rrbracket^A$ and $\llbracket \sigma \rrbracket^A := \llbracket y \rrbracket^A \llbracket b \rrbracket^A$.
- The parties run the malicious secure open([[ρ]]^A) and open([[σ]]^A) protocols and output ⊥ if either open protocol fails.
- 3. The parties run the malicious secure $\delta = \text{open}(\llbracket z \rrbracket^A \llbracket c \rrbracket^A \sigma \llbracket a \rrbracket^A \rho \llbracket b \rrbracket^A \sigma \rho)$ protocol and output \bot if $\delta! = 0$ or if the open protocol fails. Otherwise the parties output accept.

Figure 5: Malicious secure arithmetic multiplication protocol $\Pi_{mal-arith-mult}.$

而结合本文的截断技术2,可以给出面向定点数的malicious安全模型下的乘法如下:

Parameters: A single 2-out-of-3 (or 3-out-of-3) share $[x']^A = (x'_1, x'_2, x'_3)$ over the ring \mathbb{Z}_{2^k} and a integer d < k. Preprocess:

- 1. All parties locally compute $[r']^B \leftarrow \text{Rand}((\mathbb{Z}_2)^k)$.
- 2. Define the sharing $[r]^B$ to be the k-d most significant shares of $[r']^B$, i.e. $r = r'/2^d$.
- 3. The parties compute $[r'_2]^B$, $[r'_3]^B \leftarrow \text{Rand}((\mathbb{Z}_2)^k)$ and $[r_2]^B$, $[r_3]^B \leftarrow \text{Rand}((\mathbb{Z}_2)^{k-d})$. r'_2 , r_2 is revealed to party 1,2 and r'_3 , r_3 to parties 2,3 using the RevealOne routine.
- 4. Using a ripple carry subtraction circuit, the parties jointly compute $[\![r'_1]\!]^B := [\![r']\!]^B [\![r'_2]\!]^B [\![r'_3]\!]^B, [\![r_1]\!]^B := [\![r]\!]^B [\![r_2]\!]^B [\![r_3]\!]^B$ and reveal r'_1 , r_1 to parties 1,3.
- 5. Define the preprocessed shares as $[\![r']\!]^A := (r_1', r_2', r_3'), [\![r]\!]^A := (r_1, r_2, r_3).$

Online: On input $[x]^A$, $[y]^A$,

- 1. The parties run the malicious secure multiplication protocol of [28, Protocol 4.2] where operations are performed over \mathbb{Z}_{2^k} . This includes:
 - 1. Run the semi-honest multiplication protocol [28, Section 2.2] on $[\![x]\!]^A$, $[\![y]\!]^A$ to obtain a sharing of $[\![z']\!]^A := [\![x]\!]^A [\![y]\!]^A$. \oplus and \wedge operations are replaced with +, * respectively.
 - Before any shares are revealed, run the triple verification protocol of [28, Protocol 2.24] using ([x]A, [y]A, [z']A).
- 2. In the same round that party i sends z'_i to party i+1 (performed in step 1a), party i sends $(z'_i-r'_i)$ to party i+2.
- Before any shares are revealed, party i+1 locally computes (z'_i-r'_i) and runs compareview(z'_i-r'_i) with party i+2. If they saw different values both parties send ⊥ to all other parties and abort.
- 4. All parties compute $(z'-r')=\sum_{i=1}^{3}(z_i-r'_i)$.
- 5. Output $[\![z]\!]^A := [\![r]\!]^A + (z'-r')/2^d$.

Figure 6: Single round share malicious secure fixed-point multiplication protocol $\Pi_{mal-mult}$.

需要注意的是,在malicious 模型下的Vectorized Multiplication 需要对每一次乘法做证明。如此,则通信开销为 O(n)。但是,对于Matrix Multiplication,则可以在预计算生成用于验证的矩阵三元组(scalar-mult 变为matrix-mult)。那么恶意模型下在线阶段矩阵计算的开销则和半诚实模型开销一致。

Share Conversions

Bit Decomposition $\langle x
angle^A
ightarrow \langle \overrightarrow{x}
angle^B$

• 基本思路是将 $\langle x \rangle^A = (x_1, x_2, x_3)$ 作为3PC boolean circuit的输入,进行布尔加法运算,最后的结果就是 $\langle x \rangle^A$ 的布尔分享即 $\langle \overrightarrow{x} \rangle^B$ 。本文进一步基于FA和PPA做了一些电路的优化,仅需要 $1+\log k$ 轮通信。

Bit Extraction $\langle x angle^A ightarrow \langle \overrightarrow{x}[i] angle^B$

- 该协议计算的是 $\langle x \rangle^A$ 将算术分享中的第i个位置的值转化为boolean 分享 $\langle \overrightarrow{x}[i] \rangle^B$;
- 基本思路同上(相当于只需要剩下的i-bit的分享值就可以计算出来),不过只需要O(i)个AND门电路和 $O(\log i)$ 通信轮数。

Bit Composition

• 使用Bit Decomposition同样的布尔电路, P_2 和 P_3 生成 x_2 和 x_3 ,并生成其Binary sharing: $\langle -x_2 \rangle^B, \langle -x_3 \rangle^B$ 。将二者输入Boolean Circuit计算 $\langle x_1 \rangle^B = \langle x \rangle^B + \langle -x_2 - x_3 \rangle^B$,再把 $\langle x_1 \rangle^B$ 公开给 P_1 和 P_3 ,因此 $\langle x \rangle^A = (x_1, x_2, x_3)$ 。

Joint Yao Input

 P_1 是 Evaluator,拥有 k_X^x ,而 P_2 , P_3 作为Garbler拥有 $k_X^0 \in \{0,1\}^\kappa$,全局随机偏移 $\Delta \in \{0,1\}^\kappa$ 满足 $k_X^1 = k_X^0 \oplus \Delta$ 。基于本文的秘密分享方案,本文构造了原语面向将两方共有的输入转化为Yao's sharing。

- 对于 P_1, P_2 共有的输入x,在半诚实模型下 P_2 可以直接生成 $\langle x \rangle^Y$ 并将对用sharing发送给 P_1 。
- 但是在恶意模型下,则需要验证 $\langle x \rangle^Y$ 确实是关于x的Yao's sharing。在恶意模型下则需要利用 P_3 和承诺技术验证 1) P_2 和 P_3 发送了相同的承诺; 2) $Comm(k_X^x)$ 确实是关于 k_X^x 的承诺。为了优化通信,可以让 P_2 发送关于承诺的哈希值;而对于 P_1 , P_3 共有的输入,只需要调换 P_2 , P_3 的角色即可; 3) 对于 P_2 , P_3 共有的输入,所有参与方可以利用公共随机数种子生成 $k_X^x \in \{0,1\}^\kappa$,而 P_2 , P_3 在本地计算 $k_X^0 = k_X^x \oplus (x\Delta)$ 。

Yao to Binary

- 半诚实下使用Yao's share中key的 $p_x=k_X^0[0]$ (permutation bit) ,符合Binary share的定义,因此取 $\langle x \rangle^B=(x\oplus p_x\oplus r,r,p_x)$;
- 在恶意模型下,则需要验证 $x\oplus p_x\oplus r$ 中的 $p_x=k_X^0[0]$ 。这个过程需要使用承诺技术。具体来说, P_1 和 P_2 选择 k_r^r ,其中 P_2 将 $k_r^0=k_r^r\oplus (r\Delta)$ 发送给 P_3 。而 P_2 和 P_3 则分别将 $C_0=Comm(k_y^{p_x})$ 和 $C_1=Comm(k_y^{p_x})$ 发送给 P_1 ,其中 $k_y^0=k_x^0\oplus k_r^0$ 。 P_1 发送 $k_y^{x\oplus r}=k_X^x\oplus k_r^r$ 给 P_3 , P_3 验证 $k_y^{x\oplus r}\in\{k_y^0,k_y^1\}$ 。 并且 P_1 验证 $C_{p_x\oplus x\oplus r}$ 是 $k_y^{x\oplus r}$ 的承诺,而且 $C_0=C_1$ 。最终, $\langle x\rangle^B=(x\oplus p_x\oplus r,r,p_x)$,且 P_3 可以在本地计算 $x\oplus p_x\oplus r=k_y^{x\oplus r}[0]\oplus p_r$ 。

Binary to Yao

• 使用Joint Yao Input直接对 $\langle x
angle^B$ 进行Yao's 秘密分享,并对分享在Yao sharing下做加法。

Yao to Arithmetic

• 通过Yao's circuit 3PC来计算一个加法计算出 $\langle x \rangle^Y$,首先Parties 1,2采样 $x_2 \leftarrow \mathbb{Z}_{2^k}$,Parties 2,3 采样 $x_3 \leftarrow \mathbb{Z}_{2^k}$,然后使用Yao's circuit来计算 $\langle x_1 \rangle^Y = \langle x \rangle^Y - \langle x_2 \rangle^Y - \langle x_3 \rangle^Y$ 。最后就得到了 $\langle x \rangle^A = (x_1, x_2, x_3)$

Arithmetic to Yao

• 直接将 $\langle x_i \rangle^Y$ 使用joint input 转化为 $\langle x_i \rangle^Y$,然后在Yao's Circuit下做加法 $\langle x \rangle^Y = \langle x_1 \rangle^Y + \langle x_2 \rangle^Y + \langle x_3 \rangle^Y$ 。

Computing $\langle a angle^A \langle b angle^B = \langle ab angle^A$

现在已经可以在任意的share上进行转化了,不过对于特定的计算任务仍然可以继续优化,本文提出了一种 $\langle a \rangle^A \langle b \rangle^B = \langle ab \rangle^A$ 混合计算协议,被应用在分断线性或者多项式函数来近似非线性激活函数的计算中。在半诚实模型下,构造如下:

- 首先提出了Three-Party OT,被形式化定义为 $((m_0,m_1),c,c) o (\bot,m_c,\bot)$,分三个角色:Sender、Receiver、Helper。
 - Sender和Helper随机生成 $w_0, w_1 \leftarrow \{0, 1\}^k$;
 - 。 Sender发送 $m_0 \oplus w_0, m_1 \oplus w_1$ 给Receiver;
 - 。 Helper发送 w_c 给Receiver,那么Receiver就可以得到 $m_c=m_c\oplus w_c\oplus w_c$.
- 基于此,首先来计算 $a\langle b \rangle^B = \langle ab \rangle^A$,其中 $a \in \mathbb{Z}_{2^k}$ 被公开, $b \in 0,1$ 被Boolean分享
 - 。 P_3 (Sender) 采样 $r \leftarrow \mathbb{Z}_{2^k}$,定义 $m_i = (i \oplus b_1 \oplus b_3)a r, i \in 0, 1$
 - 。 P_2 (Receiver) 取到 $m_{b2}=(b_2\oplus b_1\oplus b_3)a-r=ba-r$
 - 。 P_1 (Helper) 已知 b_2 按照3PC-OT的流程将掩码发给 P_2

此时,使用zero sharing 得到 (s_1,s_2,s_3) ,一次resharing 后得到 $\langle c \rangle^A = \langle ab \rangle^A = (s_1+r,ab-r+s_3,s_3)$ 。为了减少通信轮数,可以并行进行 P_3 (Sender)和 P_1 (Receiver)之间以 P_2 为了Helper的3-OT。

- 发现上述a也可以是算术分享的形式,因此可以计算 $\langle a \rangle^A \langle b \rangle^B = \langle ab \rangle^A$
 - $\circ \langle a
 angle^A \langle b
 angle^B = a_1 \langle b
 angle^B + (a_2 + a_3) \langle b
 angle^B$
 - 。 P_1 扮演Sender计算第1项, P_3 扮演Sender计算第2项即可
- 总的每方需要1轮共计4k-bit的通信。

但是上述方案并不是推广到恶意模型下。针对恶意模型的方案构造如下:

- $a\langle b\rangle^B=\langle ab\rangle^A$: 首先各方本地将 $\langle b\rangle^B=(b_1,b_2,b_3)$ 转化为 $(\langle b_1\rangle^A,\langle b_2\rangle^A,\langle b_3\rangle^A)$, 然后在算术电路上计算XOR。具体来说先计算 $\langle d\rangle^A=\langle b_1\oplus b_2\rangle=\langle b_1\rangle^A+\langle b_2\rangle^A-2\langle b_1\rangle^A\langle b_2\rangle^A$,类似的进一步计算 $\langle d\oplus b_3\rangle^A$;最终,计算 $\langle ab\rangle^A=a\langle b\rangle^A$ 。
- $\langle a \rangle^A \langle b \rangle^B = \langle ab \rangle^A$: 首先将 $\langle b \rangle^B$ 转化为 $\langle b \rangle^A$, 然后使用面向恶意模型的乘法协议计算 $\langle ab \rangle^A$ 。

Polynomial Piecewise Functions

令 f_1,\ldots,f_m 表示f(x)的分段函数, $f(x)=f_i(x)$ 当 $c_{i-1}< x \leq c_i$ 时成立。因此首先判定x落在什么区间(即计算 $\langle x \rangle < c$),得到 $b_1,\ldots,b_m \in \{0,1\}$ 满足 $b_i=1 \leftrightarrow c_{i-1} < x \leq c_i$,那么 $f(x)=\sum_i b_i f_i(x)$ 。

Evaluation

本文对各种转化协议的开销做了理论分析,并在面向机器学习下的线性回归(训练和预测)、Logistic 回归(训练和预测)和神经网络(仅预测)做了相关实验。

转化协议理论开销分析

Conversion	Semi-ho	onest	Malicious		
Conversion	Comm.	Rounds	Comm.	Rounds	
$[x]^{A} \rightarrow [x]^{B}$	$k + k \log k$	$1 + \log k$	$k + k \log k$	$1 + \log k$	
$(\llbracket x \rrbracket^{A}, i) \to \llbracket x[i] \rrbracket^{B}$	k	$1 + \log k$	2k	$1 + \log k$	
$[\![x]\!]^{\mathrm{B}} \to [\![x]\!]^{\mathrm{A}}$	$k + k \log k$	$1 + \log k$	$k + \log k$	$1 + \log k$	
$\llbracket b \rrbracket^{B} \to \llbracket b \rrbracket^{A}$	2k	1	2k	2	
$\llbracket b \rrbracket^{Y} \to \llbracket b \rrbracket^{B}$	1/3	1	2κ/3	1	
$\llbracket b \rrbracket^{\mathrm{B}} \to \llbracket b \rrbracket^{\mathrm{Y}}$	$2\kappa/3$	1	$4\kappa/3$	1	
$[\![x]\!]^{Y} \to [\![x]\!]^{A}$	$4k\kappa/3$	1	5 <i>k</i> κ/3	1	
$[\![x]\!]^{A} \to [\![x]\!]^{Y}$	$4k\kappa/3$	1	8 <i>k</i> κ/3	1	

Table 1: Conversion costs between arithmetic, binary and Yao representations. Communication (Comm.) is measured in average bits per party. $x \in \mathbb{Z}_{2^k}$ is an arithmetic value, $b \in \{0,1\}$ is a binary value, κ is the computational security parameter.

机器学习实验开销

	Dimension	Protocol	Batch Size B								
Setting			Online Throughput				Online + Offline Throughput				
			128	256	512	1024	128	256	512	1024	
	10	This	11764	10060	7153	5042	11574	9803	6896	4125	
	10	[43]	7889	7206	4350	4263	47	25	11	5.4	
LAN	100	This	5171	2738	993	447	5089	2744	1091	470	
LAN		[43]	2612	755	325	281	3.7	2.0	1.1	0.6	
	1000	This	406	208	104	46	377	200	100	46	
		[43]	131	96	45	27	0.44	0.24	0.12	0.06	
10		This	24.6	24.5	24.3	23.9	20.8	20.7	20.6	20.3	
WAN	10	[43]	12.4	12.4	12.4	12.4	2.4	1.6	0.88	0.50	
	100	This	24.5	24.1	23.7	23.3	20.7	20.4	20.1	19.4	
		[43]	12.3	12.2	11.8	11.8	0.63*	0.37*	0.19*	0.11*	
	1000	This	22.2	20.2	17.5	12.6	19.3	17.9	16.5	11.6	
		[43]	11.0	9.8	9.2	7.3	0.06*	0.03*	0.02*	0.01*	

Figure 2: Linear Regression performance measured in iterations per second (larger = better). Dimension denotes the number of features while batch size denotes number of samples used in each iteration. WAN setting has 40ms RTT latency and 40 Mbps throughput. The preprocessing for [43] was performed either using OT or the DGK cryptosystem with the faster protocol being reported above. The * symbol denotes that the DGK protocol was performed.

	Dimension	Protocol	Batch Size B								
Setting			Online				Online + Offline				
			128	256	512	1024	128	256	512	1024	
LAN	10	This	2251	2053	1666	1245	2116	1892	1441	1031	
		[43]	188	101	41	25	37	20	8.6	4.4	
	100	This	1867	1375	798	375	1744	1276	727	345	
		[43]	183	93	46	24	3.6	1.9	1.1	0.6	
	1000	This	349	184	95	42	328	177	93	41	
		[43]	105	51	24	13.5	0.43	0.24	0.12	0.06	
WAN 100 1000	10	This	4.12	4.10	4.06	3.99	3.91	3.90	3.86	3.79	
	10	[43]	3.10	2.28	1.58	0.99	1.4	0.94	0.56	0.33	
	100	This	4.11	4.09	4.03	3.94	3.91	3.89	3.84	3.74	
		[43]	3.08	2.25	1.57	0.99	0.52*	0.32*	0.17 *	0.01*	
	1000	This	4.04	3.95	3.78	3.47	3.84	3.75	3.59	3.32	
		[43]	3.01	2.15	1.47	0.93	0.06*	0.03*	0.02*	0.01*	

Figure 4: Logistic Regression performance measured in iterations per second (larger = better). See caption of Figure 2.

Model	Protocol	Batch Size	Running Online	Time (ms) Total	Comm. (MB)
	This	1	0.1	3.8	0.002
Linear	1 mis	100	0.3	4.1	0.008
Linear	SecureML [43]	1	0.2	2.6	1.6
	SecureML [45]	100	0.3	54.2	160
	This	1	0.2	4.0	0.005
Logistic	1 nis	100	6.0	9.1	0.26
	SecureML [43]	1	0.7	3.8	1.6
	SecureML [45]	100	4.0	56.2	161
NN	This	1	3	8	0.5
	SecureML [43]	1	193	4823	120.5
CNN	This*	1	6	10	5.2
	Chameleon [46]	1	1360	2700	12.9
	MiniONN [40]	1	3580	9329	657.5

Figure 3: Running time and communication of privacy preserving inference (model evaluation) for linear, logistic and neural network models in the LAN setting (smaller = better). [43] was evaluated on our benchmark machine and [40, 46] are cited from [46] using a similar machine. The models are for the MNIST dataset with D=784 features. NN denotes neural net with 2 fully connected hidden layers each with 128 nodes along with a 10 node output layer. CNN denotes a convolutional neural net with 2 hidden layers, see [46] details. * This work (over) approximates the cost of the convolution layers with an additional fully connected layer with 980 nodes.

总结

ABY3在三方下实现了Arithmetic, Binary, 和Yao分享之间的转化,并实现了相关的机器学习计算算子。更重要的,这是比较早的几篇面向恶意敌手的隐私保护机器学习高效方案。

本篇工作由酸菜鱼和李开运合作完成。