5 Components of Neural Network Training

- 1. Training Loop
- 2. Forward
- 3. Cost
- 4. Backward
- 5. Adjust Weights

Just plain calculations: +, -, x, /, functions

No Algorithmic Cleverness

No smart data structures

1. Training Loop

Epochs and Batch Size

Problem 1: We are training on a dataset of 506 houses, with batch size of 10 and for 20 epochs, How many times weight update will happen?

2. Forward

Data

x2		у
2		0
3		0
1		0
3		0
1		0
4		1
2		1
	2 3 1 3 1 4	2 3 1 3 1 4

Problem 1: For the given single neuron setup in fig 2a, predict the output for the first input batch of size 4.

Problem 2: For the given 2 matrices A and B,

Α

$$\begin{bmatrix} 1 & -2 \\ 2 & -1 \\ 3 & -3 \end{bmatrix}$$

В

$$\begin{bmatrix} 1 & 1 & 2 & 2 \\ 2 & 3 & 1 & 3 \end{bmatrix}$$

- Compute A X B (Matrix multiplication)
- Compute elementwise Sigmoid on the output of above multiplication

Problem 3: For the given neural network in fig 2b,

- How many weights are there in first hidden layer?
- How many weights are there in total?
- Compute the activation from the first hidden layer of the network for the first input batch of size 4?
- How many activations are produced from first hidden layer for single input sample?

3. Cost

• Mean Squared Error for regression problems

$$J = \frac{1}{2N} \sum_{i=0}^{N} (y - \hat{y})^2$$

Categorical Cross Entropy Error for classification problems

$$J = -\frac{1}{N} \sum_{i=0}^{N} \left(y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right)$$
 (13)

Problem 1: For the single neuron setup like above compute the Mean Squared Error (MSE) cost for the first batch of size 3 given the following training data. And Weights as w1 = -0.2, w2 = 0.5

x1	x2	у
20	16	5
40	20	3
10	6	4
20	12	4

Problem 2: For the following values of Y and Y_hat for a classification problem, Compute Categorical Cross entropy error

у	y_hat
1	0.96
0	0.003
0	0.8
1	0.88

4. Backward

Derivative from first principles

Problem 1: Compute derivative of following functions from first principles

$$y = 5x$$

$$y = x^2$$

Simple Derivative Problems

Problem 1: Find derivatives for following functions

$$y = \sin(x)$$

$$y = x + 2$$

$$y = 5\sin(x)$$

$$y = 3x$$

$$y = 5\sin(x) + x^4$$

$$y = 5x^4 \sin(x)$$

$$y = 2e^x \log(x)$$

Derivatives Chain Rule

Problem 1: Find derivatives for following functions using chain rule

$$y = \log(x^2)$$

$$y = \sin^2(x)$$

$$y = \sin(x^2)$$

$$y = e^{5x^2}$$

$$y = \frac{1}{1 + e^{-10x + 3}}$$

Gradient Descent

Problem 1: Tale of 2 functions: First is f, the function we are trying to predict. second is J, the cost function. Whats your general observation about f and J?

Problem 2: Simply stated gradient descent means that move in the direction of negative slope in some proportion to the incline of the slope.

- Which of above 2 functions we would do gradient descent?
- What is a learning rate?

Problem 3: Given the following cost function J

$$J(x) = (x - 3)^2$$

and our current weight is 7, given the learning rate of 0.1

- · What will be the length of our next stride?
- What will be the new weight?

Backpropagation

Problem 1: What is being back propagated?

Problem 2: In the following setup

- How many functions are involved?
- How many weights are involved?
- With only one training sample x=3, y=2 and weights w1=0.5, w2=0.8 Whats y hat?
- Whats the MSE Cost?

Problem 3:

Just expanded the above neural network to show weighted sum and activation components

To go backward, compute the following for previously given weights and training sample

$$\frac{dJ}{d\hat{y}}$$
 $\frac{d\hat{y}}{dz^2}$ $\frac{dz^2}{dw^2}$ $\frac{dz^2}{da^2}$ $\frac{da^2}{dz^2}$ $\frac{dz^2}{dw^2}$

Problem 4:

Whole purpose of back propagation or this notebook is to compute how cost changes with weights i.e

$$\frac{dJ}{dweights}$$

What are the values of:

a)
$$\frac{dJ}{dw1}$$

b)
$$\frac{dJ}{dw2}$$

(Hint: Use Chain Rule & Problem 3 results)

5. Update Weights

Problem 1: In the above problem after you have computed $\frac{dJ}{dw1}$ and $\frac{dJ}{dw2}$

what are new weights if the learning rate is 0.1

Forward Again

Problem 1: Plug in those new weights and check if the cost is reduced.