The Perceptron

YuHua Li(李玉华)

Intelligent and Distributed Computing Lab, Huazhong University of Science & Technology

idcliyuhua@hust.edu.cn

2019.05

- Concept
 - Assumptions
 - Example
- Classifier
 - Parameter selection
 - Hyperplane
- Perceptron Algorithm
 - Algorithm
 - Geometric Intuition
- Perceptron Convergence
 - Perceptron Convergence
 - Theorem and Proof
- Perceptron example

- Concept
 - Assumptions
 - Example
- Classifier
 - Parameter selection
 - Hyperplane
- Perceptron Algorithm
 - Algorithm
 - Geometric Intuition
- 4 Perceptron Convergence
 - Perceptron Convergence
 - Theorem and Proof
- Perceptron example

3 / 27

Assumptions

Basic idea:

In machine learning, the perceptron is an algorithm for supervised learning of binary classifiers. A binary classifier is a function which can decide whether or not an input, represented by a vector of numbers, belongs to some specific class. It is a type of linear classifier, i.e. a classification algorithm that makes its predictions based on a linear predictor function combining a set of weights with the feature vector.

- Binary classification (i.e. $y_i \in \{-1, +1\}$)
- Data is linearly separable

A binary classification example

- Concept
 - Assumptions
 - Example
- Classifier
 - Parameter selection
 - Hyperplane
- Perceptron Algorithm
 - Algorithm
 - Geometric Intuition
- 4 Perceptron Convergence
 - Perceptron Convergence
 - Theorem and Proof
- Perceptron example

6 / 27

Parameter selection

$$h(x_i) = \operatorname{sign}(\mathbf{w}^{\top} \mathbf{x}_i + b)$$

Parameter selection

b is the bias term (without the bias term, the hyperplane that \mathbf{w} defines would always have to go through the origin). Dealing with b can be a pain, so we 'absorb' it into the feature vector \mathbf{w} by adding one additional constant dimension. Under this convention,

$$\mathbf{x}_i$$
 becomes $\begin{bmatrix} \mathbf{x}_i \\ 1 \end{bmatrix}$ \mathbf{w} becomes $\begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}$

We can verify that

$$\begin{bmatrix} \mathbf{x}_i \\ 1 \end{bmatrix}^\top \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix} = \mathbf{w}^\top \mathbf{x}_i + b$$

Hyperplane

Using this, we can simplify the above formulation of $h(x_i)$ to

$$h(\mathbf{x}_i) = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x})$$

(Left:) The original data is 1-dimensional (top row) or 2-dimensional (bottom row). There is no hyper-plane that passes through the origin and separates the red and blue points.

(Right:) After a constant dimension was added to all data points such a hyperplane exists 4 D > 4 A > 4 B > 4 B >

Hyperplane

Observation

Note that

$$y_i(\mathbf{w}^{\top}\mathbf{x}_i) > 0 \Longleftrightarrow \mathbf{x}_i$$
 is classified correctly

where 'classified correctly' means that x_i is on the correct side of the hyperplane defined by **w**. Also, note that the left side depends on $y_i \in \{-1, +1\}$ (it wouldn't work if, for example $y_i \in \{0, +1\}$).

KNN vs. Perceptron

KNN	Perceptron
non-linear	linear
${\sf Binary/Multi-class/Regression}$	Binary Class
$n o\infty$, accurate \uparrow	no performance guarantees as data increase
O(nd)	not rely on <i>n</i> or <i>d</i>

Table: Difference between KNN and Perceptron

11 / 27

- Concept
 - Assumptions
 - Example
- Classifier
 - Parameter selection
 - Hyperplane
- Perceptron Algorithm
 - Algorithm
 - Geometric Intuition
- 4 Perceptron Convergence
 - Perceptron Convergence
 - Theorem and Proof
- Perceptron example

12 / 27

Algorithm

Now that we know what the \mathbf{w} is supposed to do (defining a hyperplane the separates the data), let's look at how we can get such \mathbf{w} .

```
Initialize \vec{w} = \vec{0}
                                                              // Initialize \vec{w}. \vec{w} = \vec{0} misclassifies everything.
while TRUE do
                                                              // Keep looping
    m = 0
                                                              // Count the number of misclassifications, m
    for (x_i, y_i) \in D do
                                                              // Loop over each (data, label) pair in the dataset, D
       if y_i(\vec{w}^T \cdot \vec{x_i}) \leq 0 then
                                                              // If the pair (\vec{x_i}, y_i) is misclassified
            \vec{w} \leftarrow \vec{w} + u\vec{x}
                                                              // Update the weight vector \vec{w}
            m \leftarrow m + 1
                                                              // Counter the number of misclassification
       end if
    end for
    if m = 0 then
                                                              // If the most recent \vec{w} gave 0 misclassifications
                                                              // Break out of the while-loop
        break
    end if
end while
                                                              // Otherwise, keep looping!
```

Geometric Intuition

Illustration of a Perceptron update.(Left:) The hyperplane defined by \mathbf{w}_t misclassifies one red (-1) and one blue (+1) point. (Middle:) The red point \mathbf{x} is chosen and used for an update. Because its label is -1 we need to **subtractx** from \mathbf{w}_t . (Right:) The udpated hyperplane $\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{x}$ separates the two classes and the Perceptron algorithm has converged.

Geometric Intuition

Quiz

Assume a data set consists only of a single data point $\{(x,+1)\}$. How often can a Perceptron misclassify this point x repeatedly? What if the initial weight vector \mathbf{w} was initialized randomly and not as the all-zero vector?

- Concept
 - Assumptions
 - Example
- Classifier
 - Parameter selection
 - Hyperplane
- Perceptron Algorithm
 - Algorithm
 - Geometric Intuition
- Perceptron Convergence
 - Perceptron Convergence
 - Theorem and Proof
- Perceptron example

Perceptron Convergence

The Perceptron was arguably the first algorithm with a strong formal guarantee. If a data set is linearly separable, the Perceptron will find a separating hyperplane in a finite number of updates. (If the data is not linearly separable, it will loop forever.)

The argument goes as follows: Suppose $\exists \mathbf{w}^*$ such that $y_i(\mathbf{x}^\top \mathbf{w}^*) > 0 \ \forall (\mathbf{x}_i, y_i) \in D$

Now, suppose that we rescale each data point and the \boldsymbol{w}^{\ast} such that

$$||\mathbf{w}^*|| = 1$$
 and $||\mathbf{x}_i|| \le 1 \quad \forall \mathbf{x}_i \in D$

Perceptron Convergence

Let us define the Margin γ of the hyperplane \mathbf{w}^* as $\gamma = \min_{(\mathbf{x}_i, y_i) \in D} |\mathbf{x}_i^\top \mathbf{w}^*|$.

To summarize our setup:

- All inputs **x**_i live within the unit sphere
- There exists a separating hyperplane defined by \mathbf{w}^* , with $\|\mathbf{w}\|^* = 1$ (i.e. \mathbf{w}^* lies exactly on the unit sphere).
- ullet γ is the distance from this hyperplane (blue) to the closest data point.

Theorem: If all of the above holds, then the perceptron algorithm makes at most $1/\gamma^2$ mistakes.

Proof: Keeping what we defined above, consider the effect of an update (\mathbf{w} becomes $\mathbf{w} + y\mathbf{x}$) on the two terms $\mathbf{w}^{\top}\mathbf{w}^{*}$ and $\mathbf{w}^{\top}\mathbf{w}$. We will use two facts:

- $y(\mathbf{x}^{\top}\mathbf{w}) \leq 0$: This holds because \mathbf{x} is misclassified by \mathbf{w} otherwise we wouldn't make the update.
- $y(\mathbf{x}^{\top}\mathbf{w}^*) > 0$: This holds because \mathbf{w}^* is a separating hyper-plane and classifies all points correctly.

1. Consider the effect of an update on $\mathbf{w}^{\top}\mathbf{w}^{*}$:

$$(\mathbf{w} + y\mathbf{x})^{\top}\mathbf{w}^* = \mathbf{w}^{\top}\mathbf{w}^* + y(\mathbf{x}^{\top}\mathbf{w}^*) \geq \mathbf{w}^{\top}\mathbf{w}^* + \gamma$$

The inequality follows from the fact that, for \mathbf{w}^* , the distance from the hyperplane defined by \mathbf{w}^* to \mathbf{x} must be at least γ (i.e. $y(\mathbf{x}^\top \mathbf{w}^*) = |\mathbf{x}^\top \mathbf{w}^*| \ge \gamma$).

This means that for each update, $\mathbf{w}^{\top}\mathbf{w}^{*}$ grows by at least γ .

2.Consider the effect of an update on $\mathbf{w}^{\top}\mathbf{w}$:

$$(\mathbf{w} + y\mathbf{x})^{\top}(\mathbf{w} + y\mathbf{x}) = \mathbf{w}^{\top}\mathbf{w} + \underbrace{2y(\mathbf{w}^{\top}\mathbf{x})}_{<0} + \underbrace{y^{2}(\mathbf{x}^{\top}\mathbf{x})}_{0 \leq \le 1} \leq \mathbf{w}^{\top}\mathbf{w} + 1$$

The inequality follows from the fact that

- $2y(\mathbf{w}^{\top}\mathbf{x}) < 0$ as we had to make an update, meaning \mathbf{x} was misclassified
- $0 \le y^2(\mathbf{x}^{\top}\mathbf{x}) \le 1$ as $y^2 = 1$ and all $\mathbf{x}^{\top}\mathbf{x} \le 1$ (because $\|\mathbf{x}\| \le 1$).

This means that for each update, $\mathbf{w}^{\top}\mathbf{w}$ grows by at most 1.

3. Now we can put together the above findings. Suppose we had M updates.

$$M\gamma \le \mathbf{w}^{\top} \mathbf{w}^{*}$$
 By first point (1)
= $|\mathbf{w}^{\top} \mathbf{w}^{*}|$ Simply because $M\gamma > 0$ (2)

$$= |\mathbf{w}^{\top} \mathbf{w}^{*}|$$
 Simply because $M\gamma \ge 0$ (2)

$$\le ||\mathbf{w}|| ||\mathbf{w}^{*}||$$
 By Cauchy-Schwartz inequality* (3)

$$= ||\mathbf{w}||$$
 As $||\mathbf{w}^*|| = 1$ (4)

$$= ||\mathbf{w}|| \qquad \qquad \text{As } ||\mathbf{w}|| = 1 \tag{4}$$

$$= \sqrt{\mathbf{w}^{\top}\mathbf{w}} \qquad \qquad \text{by definition of } \|\mathbf{w}\| \tag{5}$$

$$\leq \sqrt{M}$$
 By second point (6)

$$\Rightarrow M\gamma \le \sqrt{M} \tag{8}$$

$$\Rightarrow M^2 \gamma^2 \le M \tag{9}$$

$$\Rightarrow M \le \frac{1}{\gamma^2} \tag{10}$$

And hence, the number of updates M is bounded from above by a constant.

Alternative explanation: $|\mathbf{w}^{\top}\mathbf{w}^{}| = ||\mathbf{w}|| ||\mathbf{w}^{*}|| \cos(\alpha)|$, but $|\cos(\alpha)| \le 1$

(7)

Quiz

Given the theorem above, what can you say about the margin of a classifier (what is more desirable, a large margin or a small margin?) Can you characterize data sets for which the perceptron algorithm will converge quickly? Draw an example.

- Concept
 - Assumptions
 - Example
- Classifier
 - Parameter selection
 - Hyperplane
- Perceptron Algorithm
 - Algorithm
 - Geometric Intuition
- Perceptron Convergence
 - Perceptron Convergence
 - Theorem and Proof
- Perceptron example

23 / 27

Perceptron example

Click here: Perceptron example python code

Sample Animation

References:

- 1) CS4780 course of Cornell University, taught by Prof. Kilian Weinberger.
- 2) Prof. Kun He's teaching of machine learning at HUST basing on CS4780 of Cornell.

The End