Homework0 - Kuijlaars

Boren(Wells) Guan

Date: June 29, 2024

Exercise 0.1

Prove that

$$|x - y| \le \sqrt{|x|^2 + 1} \sqrt{|y|^2 + 1}$$

holds for every $x, y \in \mathbb{C}$.

Proof. Consider $x = x_1 + ix_2$, $y = y_1 + iy_2$ and we will have

$$|x - y|^2 = |x|^2 + |y|^2 - 2(x_1y_1 + x_2y_2) \le |x|^2 + |y|^2 + 2|x||y| \le (|x|^2 + 1)(|y|^2 + 1)$$

by Cauchy's inequality.

Exercise 0.2

Let $\Sigma \subset \mathbb{R}$ be a closed interval and V an admissible external field on Σ with equilibrium measure μ_V .

- a. Suppose V is convex on Σ . Then prove that the support of μ_V is an interval.
- b. Suppose $\Sigma = [0, \infty)$, V is differentiable on $(0, \infty)$ and $x \mapsto xV'(x)$ is increasing on $(0, \infty)$. Prove that the support of μ_V is an interval containing 0.

Proof. a. If not, there will be $c \in [a, b]$ not in the support of μ_V with x_1, x_2 in the support of μ_V , $c = \lambda x_1 + (1 - \lambda)x_2$ and we will have

$$\begin{split} 2U^{\mu}(c) + V(c) &\geq l \\ &\geq \lambda (2U^{\mu}(x_1) + V(x_1)) + (1 - \lambda)(2U^{\mu}(x_2) + V(x_2)) \\ &\geq \lambda 2U^{\mu}(x_1) + (1 - \lambda)2U^{\mu}(x_2) + V(c) \end{split}$$

and hence

$$\int \log \frac{1}{|c-s|} d\mu_V(s) \geq \int [\lambda \log \frac{1}{|x_1-s|} + (1-\lambda) \log \frac{1}{|x_2-s|}] d\mu_V(s)$$

which is a contradiction since $\log \frac{1}{|x-s|}$ is strictly convex.

b. Consider $G(x) = V(x^2)$ which is also admissible, which correspond with a measure μ_G and we know $G: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ is convex and then we obtain the support of μ_G is interval containing 0, and then we may obtain $supp(\mu_V) = f(supp(\mu_G))$ where $f(x) = x^2$.

Exercise 0.3

Exercise 0.4

Let $V: \mathbb{R} \to \mathbb{R} \cup \{\infty\}$ to be an admissible external field on \mathbb{R} that is even, i.e. V(-x) = V(x).

- a. Show that the equilibrium measure μ_V .
- b. Let μ_V^* be the pushforward of μ_V under the

Proof. If $x \notin \text{supp}(\mu)$, we know there exists $\epsilon > 0$ such that $\mu((x_0 - \epsilon, x_0 + \epsilon)) = 0$ and we will know

$$2U^{\mu}(x_0) + V(x_0)$$

Let $\Sigma \subset \mathbb{C}$ be closed and let $V: \Sigma \to \mathbb{R} \cup \{+\infty\}$ be admissible. Let σ be a measure with $d\sigma > 1$ (it could be ∞) and $supp(\sigma) = \Sigma$, with the additional property that that there exist $\mu \in P_{\sigma}(\Sigma)$ for which $I(\mu)$ and $I_{V}(\mu)$ are finite.

Proof. We recall the conclusion

a. If $E_V := \inf_{\mu \in P(\Sigma)} I_V(\mu)$, then $\infty < E_V < +\infty$.

b. Any sequence (μ_n) in $P(\Sigma)$ for which $\sup_n I_V(\mu_n) < +\infty$ is tight.

c. If $\mu \in P(\Sigma)$ satisfies $I_V(\mu) = E_V$, then μ has compact support.

d. If $\mu_n \to \mu$ weakly in $P(\Sigma)$, then $I_V(\mu) \le \liminf_{n \to \infty} I_V(\mu_n)$.

e. If μ and ν have compact support then

$$I_V(\frac{\mu+\nu}{2}) \leq \frac{1}{2}(I_V(\mu) + I_V(\nu))$$

with strictly inequality if $\mu \neq \nu$ and both $I_V(\mu)$ and $I_V(\nu)$ are finite. Then similarly we can choose a sequence in $P^{\sigma}(\Sigma)$ and pick a limit from a convergence subsequence, then it suffices to show that $P^{\sigma}(\Sigma)$ is closed under the weak topology.

b. \Box