9 Recommender System

This assignment is dedicated to helping you understand SGD and recommender systems. You need to download the ml-latest-small.zip at https://grouplens.org/datasets/movielens/

9.1 Data Set

Note that the zip file contains side information (e.g. tag applications) that will not be used in the project: we consider only the ratings from the users. Therefore, the first step is to pre-process the data, and organize all the users' ratings as a matrix. Suppose there are n users and p movies. Then the size of the rating matrix M is $n \times p$. Let us denote the index set of observed entries by Ω .

The second step is to divide Ω into two sets Ω_1 and Ω_2 : Ω_1 for training and Ω_2 for testing. To this end, we randomly 90 percent of entries in Ω to form Ω_1 , and Ω_2 consists of the remaining.

9.2 Learning

Then you will have to solve the following non-convex program to learn the prediction matrix:

$$\min_{U,V} F(U,V) := \frac{1}{2} \sum_{(i,j) \in \Omega_1} (M_{ij} - \boldsymbol{u}_i \boldsymbol{v}_j^{\top})^2 + \frac{\lambda}{2} (\|U\|_F^2 + \|V\|_F^2)$$
(9.1)

where M_{ij} is the (i,j)th entry of M, u_i and v_j are the *i*th and *j*th row of U and V respectively.

- 1. For a given index (i, j), derive the stochastic gradient $\frac{\partial F(U, V)}{\partial u_i}$ and $\frac{\partial F(U, V)}{\partial v_i}$.
- 2. Suppose $\lambda = 1$. Describe the update rule of SGD and implement it with Python. You can randomly initialize all u_i and v_j . Note that you need to carefully choose the learning rate.
- 3. Plot the objective value against the number of iterations, and summarize your findings.

9.3 Evaluation

After we terminate SGD, we will obtain the solution U, V. Our prediction matrix X is then given by $X = UV^{\top}$. We evaluate the performance of our prediction matrix X by root-mean-square error (RMSE):

RMSE :=
$$\sqrt{\frac{1}{|\Omega_2|} \sum_{(i,j) \in \Omega_2} (M_{ij} - X_{ij})^2}$$
.

- 1. Record the RMSE for the choice $\lambda = 1$.
- 2. Now pick λ from $\{10^{-6}, 10^{-3}, 0.1, 0.5, 2, 5, 10, 20, 50, 100, 500, 1000\}$. For each value, learn and evaluate the your model. Plot RMSE against λ and summarize your findings.