David M. Kroenke and David J. Auer **Database Processing:**

Fundamentals, Design, and Implementation

Chapter Six:

Transforming Data Models into Database Designs

6-1 Wireless Access Technologies & Software Engineering

Chapter Objectives

- To understand how to transform data models into database designs
- To be able to identify primary keys and understand when to use a surrogate key
- To understand the use of referential integrity constraints
- To understand the use of referential integrity actions
- To be able to represent ID-dependent, 1:1, 1:N, and N:M relationships as tables
- To be able to represent weak entities as tables

6-2

Chapter Objectives

- To be able to represent supertype/subtypes as tables
- To be able to represent recursive relationships as tables
- To be to represent ternary relationships as tables
- To be able to implement referential integrity actions required by minimum cardinalities

6-3

Wireless Aecess Technologies & Software Engineering

Steps for Transforming a Data Model into a Database Design

- 1. Create a table for each entity:

 Specify primary key (consider surrogate keys, as appropriate)

 Specify candidate keys

 Specify properties for each column:

 Null status

 Data type

 Default value (if any)

 - - Specify data constraints (if any)

- Verify normalization
 Verify normalization
 Create relationships by placing foreign keys
 Relationships between strong entities (1:1, 1:N, N:M)
 Identifying relationships with ID-dependent entities (intersection tables, association patterns, multivalued attributes, archetype/instance patterns)
 Relationships between a strong entity and a weak but non-ID-dependent entity

 - (1:1, 1:N, N:M)

 Mixed relationships
 - Relationships between supertype/subtype entities
- Recursive relationships (1:1, 1:N, N:M)
 Specify logic for enforcing minimum cardinality:
 M-O relationships

 - O-M relationships M-M relationships

Entities and Tables

- The principle difference between an entity and a table (relation) is that you can express a relationship between entities without using foreign keys.
- This makes it easier to work with entities in the early design process where the very existence of entities and the relationships between them is uncertain.

5-6

Select the Primary Key

- The ideal primary key is short, numeric, and fixed.
- Surrogate keys meet the ideal, but have no meaning to users.

EMPLOYEE EmployeeNumber EmployeeName Phone Email HireDate ReviewDate EmpCode

6-7

Fireless Access Technologies & Software Fingineering.

Specify Candidate (Alternate) Keys

- The terms candidate key and alternate key are synonymous.
- Candidate keys are alternate identifiers of unique rows in a table.
- ERwin uses AKn.m notation, where n is the number of the alternate key, and m is the column number in that alternate key.

6-8

Null status

 indicates whether or
 not the value of the
 column can be
 NULL.

Specify Column Properties: Data Type

- Generic data types:
 - -CHAR(n)
 - VARCHAR(n)
 - -DATE
 - -TIME
 - MONEY
 - INTEGER
 - DECIMAL

EMPLOYEE

S EmployeeNumber: int

EmployeeName: char(50)

Phone: char(15)

Email: char(50) (AK1.1)

HireDate: datetime

ReviewDate: datetime

EmpCode: char(18)

Wireless Access Technologies & Software Engineering

Specify Column Properties: SQL Server 2008 Data Types

Data Type	Description	
Binary	Binary, length 0 to 8,000 bytes.	
Char	Character, length 0 to 8,000 bytes.	
Datetime	8-byte datetime. Range from January 1, 1753, through December 31, 9999, with an accuracy of three-hundredths of a second.	
Image	Variable length binary data. Maximum length 2,147,483,647 bytes.	
Integer	4-byte integer. Value range from -2,147,483,648 through 2,147,483,647.	
Money	8-byte money. Range from -922,337,203,685,477.5808 through +922,337,203,685,477.5807, with accuracy to a ten-thousandth of a monetary unit.	
Numeric	Decimal - can set precision and scale. Range -10^38 +1 through 10^38 -1.	
Smalldatetime	4-byte datetime. Range from January 1, 1900, through June 6, 2079, with an accuracy of one minute.	
Smallint	2-byte integer. Range from -32,768 through 32,767.	
Smallmoney	4-byte money. Range from 214,748.3648 through +214,748.3647, with accuracy to a ten-thousandth of a monetary unit.	
Text	Variable length text, maximum length 2,147,483,647 characters.	
Tinyint	1-byte integer. Range from 0 through 255.	
Varchar	Variable-length character, length 0 to 8,000 bytes.	

3-12

Specify Column Properties: Oracle Database 11g Data Types

Data Type	Description	
BLOB	Binary large object. Up to 4 gigabytes in length.	
CHAR(n)	Fixed length character field of length n. Maximum 2,000 characters.	
DATE	7-byte field containing both date and time.	
INTEGER	Whole number of length 38.	
NUMBER(n,d)	Numeric field of length n, d places to the right of the decimal.	
VARCHAR(n)	Variable length character field up to <i>n</i> characters long. Maximum	
or	value of $n = 4,000$.	
VARCHAR2(n)		

6-13

eless Access Technologies & Software Enginee

Specify Column Properties: MySQL 5.1Data Types I

NumericData Type	Description	
BIT (M)	M = 1 to 64	
TINYINT	-128 to 127	
TINYINT UNSIGNED	0 to 255	
BOOLEAN	0 = FALSE; 1 = TRUE	
SMALLINT	-32,768 to 32,767	
SMALLINT UNSIGNED	0 to 65535	
MEDIUMINT	-8,388,608 to 8,388,607	
MEDIUMINT UNSIGNED	0 to 16,777,215	
INT or INTEGER	-2,147,483,648 to 2,147,483,647	
INT UNSIGNED or INTEGER UNSIGNED	0 to 4,294,967,295	
BIGINT	-9.223.372.036.854.775.808 to 9.223.372.036.854.775.807	
BIGINT UNSIGNED	0 to 1.844,674,073,709,551,615	
FLOAT (P)	P = Precision; 0 to 24	
FLOAT (M, D)	Small (single-precision) floating-point number:	
	M = Display width D = Number of significant digits	
DOUBLE (M, B)	Normal (double-precision) floating-point number:	
	M = Display width B = Precision; 25 to 53	
DEC (M[,D]) or	Fixed-point number:	
DECIMAL (M[,D]) or	M = Total number of digits	
FIXED (M[,D])	D = Number of decimals	
Date and Time	Description	
Data Types		
DATE	YYYY-MM-DD: 1000-01-01 to 9999-12-31	
DATETIME	YYYY-MM-DD HH:MM:SS	
	1000-01-01 00:00:00 to 9999-12-31 23:59:59	
TIMESTAMP	See documentation.	
TIME	HH:MM:SS-00:00:00 to 23:59:59	
YEAR (M)	M = 2 or 4:(dpfault)	
	IF 2 = 1970 to 2069 (70 to 60)	
	IF 4 = 1901 to 2155	

Software Engineering

Specify Column Properties: Default Value

• A **default value** is the value supplied by the DBMS when a new row is created.

Table	Column	Default Value
ITEM	ItemNumber	Surrogate key
ITEM	Category	None
ITEM	ItemPrefix	If Category = 'Perishable' then 'P' If Category = 'Imported' then 'I' If Category = 'One-off' then 'O' Otherwise = 'N'
ITEM	ApprovingDept	If ItemPrefix = 'I' then
ITEM	ShippingMethod	If ItemPrefix = 'P' then 'Next Day' Otherwise = 'Ground'

Specify Column Properties: Data Constraints

- Data constraints are limitations on data values:
 - Domain constraint—column values must be in a given set of specific values.
 - Range constraint—column values must be within a given range of values.
 - Intrarelation constraint—column values are limited by comparison to values in other columns in the *same* table.
 - Interrelation constraint—column values are limited by comparison to values in other columns in *other* tables [referential integrity constraints on foreign keys].

6-17

Create Relationships: 1:1 Strong Entity Relationships

- Place the key of one entity in the other entity as a foreign key.
 - -Either design will work—no parent, no child.
 - Minimum cardinality considerations may be important.
 - O-M will require a different design than M-O.
 - One design will be very preferable.

_

Create Relationships: 1:N Strong Entity Relationships

- Place the primary key of the table on the one side of the relationship into the table on the many side of the relationship as the foreign key.
- The *one* side is the parent table and the *many* side is the child table, so "place the key of the parent in the child."

6-23

Wireless Access Technologies & Software Engineerin

Create Relationships: N:M Strong Entity Relationships

- In an N:M strong entity relationship there is no place for the foreign key in either table.
 - A COMPANY may supply many PARTs.
 - A PART may be supplied by many COMPANYs.

Create Relationships: N:M Strong Entity Relationships

- The solution is to create an intersection table that stores data about the corresponding rows from each entity.
- The intersection table consists only of the primary keys of each table which form a composite primary key.
- Each table's primary key becomes a foreign key linking back to that table.

COMPANY_PART_INT (CompanyName, PartNumber)

6-25

Relationships Using ID-Dependent Entities: Association Relationships

- An intersection table:
 - Holds the relationships between two strong entities in an N:M relationship
 - Contains *only* the primary keys of the two entities:
 - As a composite primary key
 - As foreign keys
- An association table
 - Has all the characteristics of an intersection table
 - PLUS it has one or more columns of attributes specific to the associations of the other two entities

3-31 Wireless Access Fechnologies & Software Engineering

Relationships Using ID-Dependent Entities: Association Relationships QUOTATION (CompanyName, PartNumber, Price) Part Quotations PART COMPANY Number Name Price CompanyName PartNumber 1000 Cedar Shakes City \$12.50 Country \$15.50 ReOrderQuantity Volume 2000 Garage Heater QuantityOnHand \$950.00 \$875.00 \$1,100.00 \$915.00 3000 Utility Cabinet QUOTATION \$37.50 RartNumber (FK) \$42.50 CompanyName (FK) rs & Software Engineering

