Robust Notions of Contextual Fibrancy

Andreas Nuyts

KU Leuven, Belgium

Workshop on HoTT/UF '18 Oxford, UK July 8, 2018

Cat. of contexts	Cubical sets	Simplicial sets	Cubical sets
Notion of fibrancy	Kan	Segal	Discreteness
Gen. left maps		spine ⊆ simplex (∃!)	$\Phi \times \mathbb{I} \to \Phi$
Closed fibrant types?	∞-Groupoids	Categories	Sets
Π_A preserves	if A fibrant	if A Conduché	YES
fibrancy?		"composite ⊆ simplex"	
Fib. repl. commutes with substitution?	NO	NO	YES

Cat. of contexts	Cubical sets	Simplicial sets	Cubical sets
Notion of fibrancy	Kan	Segal	Discreteness
Gen. left maps		spine ⊆ simplex (∃!)	$\Phi \times \mathbb{I} \to \Phi$
Closed fibrant types?	∞-Groupoids	Categories	Sets
Π_A preserves	if A fibrant	if A Conduché	YES
fibrancy?		"composite \subseteq simplex"	

Cat. of contexts	Cubical sets	Simplicial sets	Cubical sets
Notion of fibrancy	Kan	Segal	Discreteness
Gen. left maps	⊔⊆□	spine ⊆ simplex (∃!)	$\Phi \times \mathbb{I} \to \Phi$
Closed fibrant types?	∞-Groupoids	Categories	Sets
Π_A preserves	if A fibrant	if A Conduché	YES
//			
fibrancy?		"composite \subseteq simplex"	

Cat. of contexts	Cubical sets	Simplicial sets	Cubical sets
Notion of fibrancy	Kan	Segal	Discreteness
Gen. left maps	⊔⊆□	spine ⊆ simplex (∃!)	$\Phi \times \mathbb{I} \to \Phi$
Closed fibrant types?	∞-Groupoids	Categories	Sets
Π_A preserves	if A fibrant	if A Conduché	YES
fibrancy?		"composite \subseteq simplex"	

Cat. of contexts	Cubical sets	Simplicial sets	Cubical sets
Notion of fibrancy	Kan	Segal	Discreteness
Gen. left maps	⊔⊆□	spine ⊆ simplex (∃!)	$\Phi \times \mathbb{I} \to \Phi$
Closed fibrant types?	∞-Groupoids	Categories	Sets
Π_A preserves	if A fibrant	if A Conduché	YES
fibrancy?		"composite ⊂ simplex"	
libraticy:		oompoonto = ompiox	

Cat. of contexts	Cubical sets	Simplicial sets	Cubical sets
Notion of fibrancy	Kan	Segal	Discreteness
Gen. left maps	⊔⊆□	spine ⊆ simplex (∃!)	$\Phi \times \mathbb{I} \to \Phi$
Closed fibrant types?	∞-Groupoids	Categories	Sets
Π_A preserves	if A fibrant	if A Conduché	YES
fibrancy?		"composite \subseteq simplex"	
Fib. repl. commutes	NO	NO	YES
with substitution?			

Cat. of contexts	Cubical sets	Simplicial sets	Cubical sets
Notion of fibrancy	Kan	Segal	Discreteness
Gen. left maps	⊔⊆□	$spine \subseteq simplex (\exists !)$	$\Phi \times \mathbb{I} \to \Phi$
Closed fibrant types?	∞-Groupoids	Categories	Sets
Π_A preserves	if A fibrant	if A Conduché	YES
fibrancy?		"composite \subseteq simplex"	
Fib. repl. commutes	NO	NO	YES
with substitution?			

Cat. of contexts	Cubical sets	Simplicial sets	Cubical sets
Notion of fibrancy	Kan	Segal	Discreteness
Gen. left maps	⊔⊆□	spine ⊆ simplex (∃!)	$\Phi \times \mathbb{I} \to \Phi$
Closed fibrant types?	∞-Groupoids	Categories	Sets
Π_A preserves	if A fibrant	if A Conduché	YES
fibrancy?		"composite \subseteq simplex"	
Fib. repl. commutes with substitution?	NO	NO	YES

Cat. of contexts	Cubical sets	Simplicial sets	Cubical sets
Notion of fibrancy	Kan	Segal	Discreteness
Gen. left maps	⊔⊆□	$spine \subseteq simplex (\exists !)$	$\Phi \times \mathbb{I} \to \Phi$
Closed fibrant types?	∞-Groupoids	Categories	Sets
Π_A preserves	if A fibrant	if A Conduché	YES
fibrancy?		"composite \subseteq simplex"	
Fib. repl. commutes	NO	NO	YES
with substitution?			

Cat. of contexts	Cubical sets	Simplicial sets	Cubical sets
Notion of fibrancy	Kan	Segal	Discreteness
Gen. left maps	⊔⊆□	spine ⊆ simplex (∃!)	$\Phi \times \mathbb{I} \to \Phi$
Closed fibrant types?	∞-Groupoids	Categories	Sets
Π_A preserves	if A fibrant	if A Conduché	YES
fibrancy?		"composite \subseteq simplex"	
Fib. repl. commutes	NO	NO	YES
with substitution?			

Cat. of contexts	Cubical sets	Simplicial sets	Cubical sets
Notion of fibrancy	Kan	Segal	Discreteness
Gen. left maps	⊔⊆□	spine ⊆ simplex (∃!)	$\Phi \times \mathbb{I} \to \Phi$
Closed fibrant types?	∞-Groupoids	Categories	Sets
Π_A preserves	if A fibrant	if A Conduché	YES
fibrancy?		"composite \subseteq simplex"	
Fib. repl. commutes	NO	NO	YES
with substitution?			

Cat. of contexts	Cubical sets	Simplicial sets	Cubical sets
Notion of fibrancy	Kan	Segal	Discreteness
Gen. left maps	⊔⊆□	$spine \subseteq simplex (\exists !)$	$\Phi \times \mathbb{I} \to \Phi$
Closed fibrant types?	∞-Groupoids	Categories	Sets
П птосотиос	16 A 611	14.4.0 1.1.7	
Π_A preserves	if A fibrant	if A Conduché	YES
fibrancy?	if A fibrant	"composite ⊆ simplex"	YES

Bezem, Coquand & Huber (2014), Huber's Lic/PhD (2015/2016)

Abbreviate

- bij:=fij(aij)
- $Fij := (x : Aij) \rightarrow Bijx$
- B'ij := Bij(aij)

f type

of type

 $F10 \xrightarrow{F1j} F11$ A10 A11 B'10 B'11

Bezem, Coquand & Huber (2014), Huber's Lic/PhD (2015/2016)

Abbreviate

- bij:=fij(aij)
- $Fij := (x : Aij) \rightarrow Bijx$
- B'ij := Bij(aij)

$$\begin{array}{c|cccc}
f 1 0 & f 1 1 \\
f i 0 & | & | f i 1 & maps \\
f 0 0 & \hline
f 0 j & f 0 1
\end{array}$$

a 1 0

to

. .

b 0

. .

of type

of typ

of type

$$\begin{array}{c|c}
F & 1 & 0 & \hline
F & 1 & j \\
F & i & 0 & \\
\hline
F & 0 & 0 & \hline
F & 0 & j
\end{array}$$

$$\begin{array}{c|c}
F & 1 & 1 \\
F & i & 1 \\
\hline
F & 0 & 1
\end{array}$$

A 1 0

A 1 1

0 10

Bezem, Coguand & Huber (2014), Huber's Lic/PhD (2015/2016)

Abbreviate

•
$$Fij := (x : Aij) \rightarrow Bijx$$

•
$$B'ij := Bij(aij)$$

$$\begin{array}{c|c}
f 1 0 - \stackrel{f 1 j}{-} - f 1 1 \\
f i 0 & | f i 1 & \text{maps} \\
f 0 0 - \stackrel{f 0 j}{-} f 0 1
\end{array}$$

$$\begin{array}{c|c}
F & 1 & 0 & \hline
F & 1 & j \\
F & i & 0 & \\
F & 0 & 0 & \hline
F & 0 & j
\end{array}$$

$$\begin{array}{c|c}
F & 1 & 1 \\
F & i & 1 \\
F & 0 & 1
\end{array}$$

Bezem, Coguand & Huber (2014), Huber's Lic/PhD (2015/2016)

Abbreviate

•
$$Fij := (x : Aij) \rightarrow Bijx$$

•
$$B'ij := Bij(aij)$$

$$a 1 0 \frac{a 1 j}{a} a 1 1$$

$$\begin{array}{c|c}
A 1 0 & \xrightarrow{A 1 j} A 1 1 \\
A i 0 & & & \\
A 0 0 & \xrightarrow{A 0 j} A 0 1
\end{array}$$

Bezem, Coquand & Huber (2014), Huber's Lic/PhD (2015/2016)

Abbreviate

•
$$Fij := (x : Aij) \rightarrow Bijx$$

•
$$B'ij := Bij(aij)$$

$$a 1 0 \frac{a 1 j}{a} a 1 1$$

$$\begin{array}{c|c}
F 10 & \xrightarrow{F1j} F 11 \\
F i0 & & & Fi1 \\
F 00 & \xrightarrow{F0j} F 01
\end{array}$$

$$\begin{array}{c|c}
A 1 0 & \xrightarrow{A 1 j} & A 1 1 \\
A i 0 & & & \\
A 0 0 & \xrightarrow{A 0 j} & A 0 1
\end{array}$$

to

Bezem, Coquand & Huber (2014), Huber's Lic/PhD (2015/2016)

Abbreviate

•
$$Fij := (x : Aij) \rightarrow Bijx$$

•
$$B'ij := Bij(aij)$$

$$f = 10 - \frac{f + 1j}{f + 1} - f = 11$$
 $f = 10 - \frac{a + 1j}{f + 1} = a + 10 - \frac{a + 1j}{a + 1} = a + 11$
 $f = 10 - \frac{a + 1j}{f + 1} = a + 11$
 $f = 10 - \frac{a + 1j}{f + 1} = a + 11$
 $f = 10 - \frac{a + 1j}{f + 1} = a + 11$
 $f = 10 - \frac{a + 1j}{f + 1} = a + 11$
 $f = 10 - \frac{a + 1j}{f + 1} = a + 11$
 $f = 10 - \frac{a + 1j}{f + 1} = a + 11$
 $f = 10 - \frac{a + 1j}{f + 1} = a + 11$
 $f = 10 - \frac{a + 1j}{f + 1} = a + 11$
 $f = 10 - \frac{a + 1j}{f + 1} = a + 11$
 $f = 10 - \frac{a + 1j}{f + 1} = a + 11$
 $f = 10 - \frac{a + 1j}{f + 1} = a + 11$
 $f = 10 - \frac{a + 1j}{f + 1} = a + 11$
 $f = 10 - \frac{a + 1j}{f + 1} = a + 11$
 $f = 10 - \frac{a + 1j}{f + 1} = a + 11$
 $f = 10 - \frac{a + 1j}{f + 1} = a + 11$
 $f = 10 - \frac{a + 1j}{f + 1} = a + 11$
 $f = 10 - \frac{a + 1j}{f + 1} = a + 11$
 $f = 10 - \frac{a + 1j}{f + 1} = a + 11$

$$a 1 0 \frac{a 1 j}{a} a 1 1$$

$$\begin{array}{c|c}
F 10 & \xrightarrow{F1j} F 11 \\
F i0 & & & Fi1 \\
F 00 & \xrightarrow{F0j} F 01
\end{array}$$

$$\begin{array}{c|c}
A 1 0 & \xrightarrow{A 1 j} & A 1 1 \\
A i 0 & & & \\
A 0 0 & \xrightarrow{A 0 j} & A 0 1
\end{array}$$

$$a' 10 \frac{B' 1j}{B' 11} B' 11$$

to

Bezem, Coquand & Huber (2014), Huber's Lic/PhD (2015/2016)

Abbreviate

•
$$Fij := (x : Aij) \rightarrow Bijx$$

•
$$B'ij := Bij(aij)$$

$$a10 \frac{a1j}{a11}$$
 $a11$
 $ai0 \frac{ai1}{a01}$ $a01$

of type

$$\begin{array}{c|c}
F 10 & \xrightarrow{F1j} F 11 \\
F i0 & & & Fi1 \\
F 00 & \xrightarrow{F0j} F 01
\end{array}$$

$$\begin{array}{c|c}
A 1 0 & \xrightarrow{A 1 j} & A 1 1 \\
A i 0 & & & \\
A 0 0 & \xrightarrow{A 0 j} & A 0 1
\end{array}$$

$$B' 1 0 \xrightarrow{B' 1 j} B' 1 1$$

Bezem, Coquand & Huber (2014), Huber's Lic/PhD (2015/2016)

Abbreviate

•
$$Fij := (x : Aij) \rightarrow Bijx$$

•
$$B'ij := Bij(aij)$$

$$f 1 0 - \frac{f 1 j}{f - f} - f 1 1$$
 $a 1 0 - \frac{a 1 j}{a 1 1}$ $a 1 1$ $a 1 0 - \frac{a 1 j}{a 1 1}$ $a 1 1$ $a 1 0 - \frac{a 1 j}{a 1 1}$ $a 1 1$ $a 1 0 - \frac{a 1 j}{a 1 1}$ $a 1 1$ $a 1 1 0$ $a 1$

of type of type

$$\begin{array}{c|c}
F & 1 & 0 & \hline
F & 1 & j \\
F & i & 0 & \\
\hline
F & 0 & 0 & \hline
F & 0 & j
\end{array}$$

$$\begin{array}{c|c}
F & 1 & 1 & \\
F & i & 1 & \\
\hline
F & 0 & 0 & \\
\hline
F & 0 & 1 & \\
\end{array}$$

$$\begin{array}{c|c}
A 1 0 & \xrightarrow{A 1 j} A 1 1 \\
A i 0 & & & \\
A 0 0 & \xrightarrow{A 0 j} A 0 1
\end{array}$$

b 1 0

b 1 1

Bezem, Coguand & Huber (2014), Huber's Lic/PhD (2015/2016)

Abbreviate

•
$$Fij := (x : Aij) \rightarrow Bijx$$

•
$$B'ij := Bij(aij)$$

of type

$$\begin{array}{c|c}
F & 1 & 0 & \hline
F & 1 & j \\
F & 1 & 0 & \\
F & 0 & 0 & \hline
F & 0 & j
\end{array}$$

$$\begin{array}{c|c}
F & 1 & 1 \\
F & 1 & 1 \\
F & 0 & 1 & \\
\hline
F & 0 & 1 & \\
\hline$$

$$B' \ 1 \ 0 \xrightarrow{B' \ 1 \ J} B' \ 1 \ 1$$
 $B' \ 0 \ 0 \xrightarrow{B' \ 0 \ J} B' \ 0 \ 1$

Bezem, Coguand & Huber (2014), Huber's Lic/PhD (2015/2016)

Abbreviate

•
$$Fij := (x : Aij) \rightarrow Bijx$$

•
$$B'ij := Bij(aij)$$

$$f = 10 - \frac{f = j}{f} - f = 11$$

 $f = 10 - \frac{f = 1}{f} - f = 11$
 $f = 10 - \frac{f = 1}{f} - f = 11$

$$\begin{array}{c|c}
F & 1 & 0 & \stackrel{F & 1 & j}{\longrightarrow} & F & 1 & 1 \\
F & i & 0 & & & & & & & & & \\
F & 0 & 0 & & & & & & & & & \\
\hline
F & 0 & 0 & & & & & & & & & \\
\hline
F & 0 & 0 & & & & & & & & & \\
\hline
F & 0 & 0 & & & & & & & & \\
\hline
F & 0 & 0 & & & & & & & & \\
\hline
F & 0 & 0 & & & & & & & \\
\hline
F & 0 & 0 & & & & & & & \\
\hline
F & 0 & 0 & & & & & & \\
\hline
F & 0 & 0 & & & & & & \\
\hline
F & 0 & 0 & & & & & & \\
\hline
F & 0 & 0 & & & & & & \\
\hline
F & 0 & 0 & & & & & \\
\hline
F & 0 & 0 & & & & & \\
\hline
F & 0 & 0 & & & & & \\
\hline
F & 0 & 0 & & & & & \\
\hline
F & 0 & 0 & & & & & \\
\hline
F & 0 & 0 & & & & & \\
\hline
F & 0 & 0 & & & & & \\
\hline
F & 0 & 0 & & & & & \\
\hline
F & 0 & 0 & & & & & \\
\hline
F & 0 & 0 & & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & & \\
\hline
F & 0 & 0 & & & \\
\hline
F & 0 & 0 & & & \\
\hline
F & 0 & 0 & & & \\
\hline
F & 0 & 0 & & & \\
\hline
F & 0 & 0$$

$$\begin{array}{c|c}
A 1 0 & \xrightarrow{A 1 j} & A 1 1 \\
A i 0 & & & & \\
A 0 0 & \xrightarrow{A 0 j} & A 0 1
\end{array}$$

Definition

 $T \in$ **sSet** satisfies **Segal** condition if $\forall n, \tau. \exists! \tau'$:

Then T is essentially a category.

Definition

Definition

 $T \in$ **sSet** satisfies **Segal** condition if $\forall n, \tau. \exists! \tau'$:

Then T is essentially a category.

Definition

Definition

 $T \in$ **sSet** satisfies **Segal** condition if $\forall n, \tau. \exists ! \tau'$:

Then T is essentially a category.

Definition

Definition

 $T \in$ **sSet** satisfies **Segal** condition if $\forall n, \tau. \exists! \tau'$:

Then T is essentially a category.

Definition

Definition

 $T \in$ **sSet** satisfies **Segal** condition if $\forall n, \tau. \exists ! \tau'$:

Then T is essentially a category.

Definition

Definition

 $T \in$ **sSet** satisfies **Segal** condition if $\forall n, \tau. \exists ! \tau'$:

Then T is essentially a category.

gof

Definition

If $\Gamma \vdash T$ type is Segal fibrant then:

- Points $x: \Delta^0 \to \Gamma$ map to categories T[x],
- Arrows $\varphi: \Delta^1 \to \Gamma$ map to pro-functors $T[\varphi]: T[x] \to T[y]$,
- Triangles $\Delta^2 \to \Gamma$ map to pro-functor morphisms

If $\Gamma \vdash T$ type is Segal fibrant then:

- Points $x: \Delta^0 \to \Gamma$ map to categories T[x],
- Arrows $\varphi: \Delta^1 \to \Gamma$ map to pro-functors $T[\varphi]: T[x] \to T[y]$,
- Triangles $\Delta^2 \to \Gamma$ map to pro-functor morphisms

$$T[y] \xrightarrow{T[\varphi]} T[x]$$

$$T[x] \xrightarrow{T[\psi]} T[z]$$

If $\Gamma \vdash T$ type is Segal fibrant then:

- Points $x : \Delta^0 \to \Gamma$ map to categories T[x],
- Arrows $\varphi : \Delta^1 \to \Gamma$ map to pro-functors $T[\varphi] : T[x] \to T[y]$,
- Triangles $\Delta^2 \to \Gamma$ map to pro-functor morphisms

$$T[y] \xrightarrow{T[\varphi]} T[x]$$

$$T[x] \xrightarrow{T[\psi]} T[z]$$

¹i.e. functors $T[x]^{op} \times T[y] \rightarrow Set$

If $\Gamma \vdash T$ type is Segal fibrant then:

- Points $x : \Delta^0 \to \Gamma$ map to categories T[x],
- Arrows $\varphi : \Delta^1 \to \Gamma$ map to pro-functors $T[\varphi] : T[x] \to T[y]$,
- Triangles $\Delta^2 \to \Gamma$ map to pro-functor morphisms $T[\chi] \circ T[\varphi] \Rightarrow T[\psi]$

¹i.e. functors $T[x]^{op} \times T[y] \rightarrow Set$

If $\Gamma \vdash T$ type is Segal fibrant then:

- Points $x : \Delta^0 \to \Gamma$ map to categories T[x],
- Arrows $\varphi : \Delta^1 \to \Gamma$ map to pro-functors $T[\varphi] : T[x] \nrightarrow T[y]$,
- Triangles $\Delta^2 \to \Gamma$ map to pro-functor morphisms $T[\chi] \circ T[\varphi] \Rightarrow T[\psi]$

¹i.e. functors $T[x]^{op} \times T[y] \rightarrow \mathbf{Set}$

Segal fibrancy of Π

Giraud (1964)

Abbreviate

- b:=fa
 - $F := (x : A) \rightarrow B x$
 - B' := B a

of type

a[y]

a[z

h

b[x]

A[y]

[y]

-15

'[v]

B'[z]

In non-dep. cat. theory: $a[y] := a[x], a[\varphi] = id$

Segal fibrancy of Π

Giraud (1964)

Abbreviate

- b:=fa
 - $F := (x : A) \rightarrow B x$
 - \bullet B' := B a

of type

a[y

t

b[x]

of two

A[y]

В

A[z] B'

In non-dep. cat. theory: $a[y] := a[x], a[\varphi] = id$

Giraud (1964)

Abbreviate

- b:=fa
 - $F := (x : A) \rightarrow B x$
 - B' := B a

a[y] b[

[y] B'[y]

A[z] B'[x]

Giraud (1964)

Abbreviate

- b:=fa
 - $F := (x : A) \rightarrow B x$
 - \bullet B' := B a

Giraud (1964)

Abbreviate

- b := f a
 - $F := (x : A) \rightarrow B x$
 - \bullet B' := B a

Giraud (1964)

Abbreviate

- b := f a
 - $F := (x : A) \rightarrow B x$
 - \bullet B' := B a

Giraud (1964)

Abbreviate

- b:=fa
 - $F := (x : A) \rightarrow B x$
 - \bullet B' := B a

Giraud (1964)

Abbreviate

- **○** b:= f a
 - $F := (x : A) \rightarrow B x$
 - \bullet B' := B a

Giraud (1964)

Abbreviate

- b:=fa
 - $F := (x : A) \rightarrow B x$
 - \bullet B' := B a

Giraud (1964)

Abbreviate

- **b** := f a
 - $F := (x : A) \rightarrow B x$
 - \bullet B' := B a

Discreteness

Definition

 $T \in \mathbf{cSet}$ is discrete if $\forall \Phi, \tau. \exists ! \tau'$:

Then T is essentially a set.

Definition

 $\Gamma \vdash T$ type is discrete if $\forall \Phi, \gamma, \tau. \exists ! \tau'$:

(Identity extension lemma)

Discreteness

Definition

 $T \in \mathbf{cSet}$ is discrete if $\forall \Phi, \tau. \exists ! \tau'$:

Then T is essentially a set.

Definition

 $\Gamma \vdash T$ type is discrete if $\forall \Phi, \gamma, \tau. \exists ! \tau'$:

(Identity extension lemma)

Reynolds (1983), Atkey, Ghani & Johann (2014)

Abbreviate

•
$$F := (x : A) \rightarrow B x$$

Reynolds (1983), Atkey, Ghani & Johann (2014)

Abbreviate

•
$$F := (x : A) \rightarrow B x$$

$$f \circ \frac{1}{f \circ f} \circ f \circ 1$$
 maps $f \circ f \circ 1$ a $f \circ 1 \circ 2$ of type of type of type $f \circ f \circ 1$ $f \circ 1$ $f \circ 2$ $f \circ 3$ $f \circ 4$ $f \circ 4$

Reynolds (1983), Atkey, Ghani & Johann (2014)

Abbreviate

•
$$F := (x : A) \rightarrow B x$$

Reynolds (1983), Atkey, Ghani & Johann (2014)

Abbreviate

•
$$F := (x : A) \rightarrow B x$$

Reynolds (1983), Atkey, Ghani & Johann (2014)

Abbreviate

•
$$F := (x : A) \rightarrow B x$$

Reynolds (1983), Atkey, Ghani & Johann (2014)

Abbreviate

•
$$F := (x : A) \rightarrow B x$$

Reynolds (1983), Atkey, Ghani & Johann (2014)

Abbreviate

•
$$F := (x : A) \rightarrow B x$$

Reynolds (1983), Atkey, Ghani & Johann (2014)

Abbreviate

•
$$F := (x : A) \rightarrow Bx$$

Reynolds (1983), Atkey, Ghani & Johann (2014)

Abbreviate

•
$$F := (x : A) \rightarrow Bx$$

Reynolds (1983), Atkey, Ghani & Johann (2014)

Abbreviate

•
$$F := (x : A) \rightarrow Bx$$

Fibrancy of Π in general

Let $\eta: \Lambda \to \Delta$ be a generating left map.

So if the **pullback** η .id_A of η is a **left map**, we're good!

Definition

Class of right maps is **robust** if generated by some left maps whose pullbacks are also left maps.

Fibrancy of Π in general

Let $\eta: \Lambda \to \Delta$ be a generating left map.

So if the **pullback** η .id_A of η is a **left map**, we're good!

Definition

Class of right maps is **robust** if generated by some left maps whose pullbacks are also left maps.

Theorem

Discreteness is robust.

Proof:

Force Kan fibrancy to be robust?

Then everything is equal!

(That's bad.)

Contextual fibrancy

Definition

 $\Gamma | \Theta \vdash A$ fib if:

for all gen. "damped" left maps.

Theorem

 $\Gamma \vdash A$ type $\Gamma . A | \Theta \vdash B$ fib $\Gamma | \Theta \vdash \Pi AB$ fib

Definition

Contextual fibrancy is **robust** if generated by some 'damped left maps' whose pullbacks

are also damped left maps.

Contextual fibrancy

Definition

 $\Gamma | \Theta \vdash A$ fib if:

for all gen. "damped" left maps.

Theorem

 $\Gamma \vdash A$ type $\Gamma . A \mid \Theta \vdash B$ fib $\Gamma \mid \Theta \vdash \Pi AB$ fib

Definition

Contextual fibrancy is **robust** if generated by some 'damped left maps' whose pullbacks

are also damped left maps.

Contextual fibrancy

Definition

 $\Gamma | \Theta \vdash A$ fib if:

for all gen. "damped" left maps.

Theorem

$$\frac{\Gamma \vdash A \text{type}}{\Gamma . A | \Theta \vdash B \text{fib}} robust$$
$$\frac{\Gamma | \Theta \vdash \Pi A B \text{fib}}{\Gamma | \Theta \vdash \Pi A B \text{fib}}$$

Definition

Contextual fibrancy is **robust** if generated by some 'damped left maps' whose pullbacks

are also damped left maps.

$$\sqcup \to \Box \to -$$

Contextual Segal fibrancy

$$\Lambda^n \to \Delta^n \to \Delta^1$$

of type

$$\sqcup \to \Box \to -$$

Contextual Segal fibrancy

$$\Lambda^n \to \Delta^n \to \Delta^1$$

of type

$$a[x] \xrightarrow{a[\psi]} a[z]$$
of type

$$\sqcup \to \Box \to -$$

Contextual Segal fibrancy

$$\Lambda^n \to \Delta^n \to \Delta^1$$

$$a \ 0 \stackrel{a \ j}{\longrightarrow} a \ 1$$

of type

$$\sqcup \to \Box \to -$$

Contextual Segal fibrancy

$$\Lambda^n \to \Delta^n \to \Delta^1$$

$$\begin{array}{ccc}
a & 0 & \stackrel{aj}{\longrightarrow} & a & 1 \\
a & 0 & & & & a & 1 \\
a & 0 & & & & & a & 1
\end{array}$$

of type

$$a[x] \xrightarrow{a[\psi]}$$
 of type

$$\sqcup \to \Box \to -$$

Contextual Segal fibrancy

$$\Lambda^n \to \Delta^n \to \Delta^1$$

$$\begin{array}{c|c}
a0 & \xrightarrow{aj} a1 \\
a0 & & \\
a1 & \\
a1 & \\
aj & \\
a1
\end{array}$$

of type

$$\sqcup \to \Box \to -$$

Contextual Segal fibrancy

$$\Lambda^n \to \Delta^n \to \Delta^1$$

$$\begin{array}{c|c}
a & 0 & \stackrel{aj}{\longrightarrow} a & 1 \\
a & 0 & & & a & 1 \\
a & 0 & & & & a & 1
\end{array}$$

of type

$$\sqcup \to \Box \to -$$

Contextual Segal fibrancy

$$\Lambda^n \to \Delta^n \to \Delta^1$$

$$\begin{array}{cccc}
 & a & 0 & \stackrel{aj}{-} & a & 1 \\
 & a & 0 & & & & a & 1 \\
 & & a & 0 & & & & & a & 1
\end{array}$$

of type

$$a[x] \xrightarrow{a[\psi]} a[z]$$
of type

$$\sqcup \to \Box \to -$$

Contextual Segal fibrancy

$$\Lambda^n \to \Delta^n \to \Delta^1$$

$$\begin{array}{c|c}
a & 0 & \stackrel{aj}{-} & a & 1 \\
a & 0 & & & a \\
a & 0 & & & & a & 1
\end{array}$$

of type

Definition (Contextual fibrant replacement)

(Defined up to isomorphism.)

Definition (Contextual fibrant replacement)

(Defined up to isomorphism.)

Theorem

Natural in Γ : $(\mathcal{R}_{\Theta}T)[\sigma] \cong \mathcal{R}_{\Theta}(T[\sigma])$.

Proof ($\sigma = \pi : \Gamma.A \rightarrow \Gamma$).

Robustness:

- Makes ΠABfib if Bfib,
- Makes R natural,
- Is more achievable with contextual fibrancy.

Question

Is robustness "exactly" what can be internalized?

Thanks!

Related talk: On HITs in Cubical TT Coquand, Huber & Mörtberg (Wednesday @ LICS)

Robustness:

- Makes ΠABfib if Bfib,
- Makes R natural,
- Is more achievable with contextual fibrancy.

Question

Is robustness "exactly" what can be internalized?

Thanks!

Related talk: On HITs in Cubical TT Coquand, Huber & Mörtberg (Wednesday @ LICS)

Robustness:

- Makes ΠABfib if Bfib,
- Makes R natural,
- Is more achievable with contextual fibrancy.

Question

Is robustness "exactly" what can be internalized?

Thanks!

Related talk: On HITs in Cubical TT Coquand, Huber & Mörtberg (Wednesday @ LICS)

Robustness:

- Makes ΠABfib if Bfib,
- Makes R natural,
- Is more achievable with contextual fibrancy.

Question

Is robustness "exactly" what can be internalized?

Thanks!

Related talk: On HITs in Cubical TT Coquand, Huber & Mörtberg (Wednesday @ LICS)

Robustness:

- Makes ΠABfib if Bfib,
- Makes R natural,
- Is more achievable with contextual fibrancy.

Question

Is robustness "exactly" what can be internalized?

Thanks!

Related talk: On HITs in Cubical TT Coquand, Huber & Mörtberg (Wednesday @ LICS)