Project Proposal:

Simulating Buffer Manager Strategies for Join / Selection Queries

Group: disks_overloaded

Members:

- Utsav Basu (20CS30057)
- Anamitra Mukhopadhyay (20CS30064)
- Rounak Saha (20CS30043)
- Swarup Padhi (20CS30062)
- Spandan Halder (20CS10063)

Introduction:

This project aims to simulate a small buffer pool for simple join/selection queries on a few small tables. Popular buffer manager strategies such as LRU/MRU/CLOCK/Pinned blocks will be simulated, and these strategies will be compared in terms of the number of disk I/O required. For a more realistic simulation, we will use the SQLite C Library.

Objective:

The main objective of this project is to compare and analyse the performance of different buffer manager strategies for Join/Selection queries in terms of the number of disk I/O required.

Methodology:

The simulation will be implemented in the C/C++ language, and the SQLite C library will be used for more realistic simulation. We will create a small database with a few small tables that will be used for

join/selection queries. We will implement the following buffer manager strategies:

Least Recently Used (LRU): In this strategy, the block that has not been accessed for the longest time will be replaced.

Most Recently Used (MRU): In this strategy, the block that has been accessed most recently will be replaced.

CLOCK: In this strategy, the buffer manager maintains a circular list of blocks. The blocks are marked with a bit indicating whether they have been accessed since the last time they were considered. When a block is to be replaced, the buffer manager scans the list of blocks in a circular fashion, and the first block with the access bit set to 0 is replaced. If all the blocks have their access bit set to 1, the buffer manager starts again from the beginning of the list.

Pinned Blocks: In this strategy, some blocks are marked as pinned, which means they cannot be replaced.

We will simulate join/selection queries using each of these strategies and record the number of disk I/O operations required for each strategy.

Flowchart:

Create a small database with a few small tables Initialize buffer pool

Implement LRU strategy

- a. Access the buffer pool
- b. Replace the least recently used block
- c. Record the number of disk I/O operations required

Implement MRU strategy

- a. Access the buffer pool
- b. Replace the most recently used block
- c. Record the number of disk I/O operations required

Implement CLOCK strategy

- a. Access the buffer pool
- b. Scan the list of blocks in a circular fashion
- c. Replace the first block with the access bit set to 0
- d. Record the number of disk I/O operations required

Implement Pinned Blocks strategy

- a. Pin some blocks in the buffer pool
- b. Access the buffer pool
- c. Replace unpinned blocks
- d. Record the number of disk I/O operations required

Analyse and compare the performance of each strategy in terms of the number of disk I/O operations required.

Conclude and suggest the best strategy for join/selection queries.

Conclusion:

In conclusion, this project aims to simulate a small buffer pool for simple join/selection queries on a few small tables. The popular buffer manager strategies such as LRU/MRU/CLOCK/Pinned blocks will be simulated, and their performance will be compared in terms of the number of disk I/O required. This project will provide insights into the best buffer manager strategy for join/selection queries.

C:	reate database
	 V
Initialize buffer pool	
	LRU Strategy
Access buffer pool Record disk I/O ops	Replace least recently used block
	MRU Strategy
Record disk I/O ops	Replace most recently used block
	LOCK Strategy
Access buffer pool Record disk I/O ops	Scan blocks in circular list Replace first block with access bit set to 0

	 V	
+- 	Pinned Blocks Strategy	
+- 	Pin blocks Access buffer pool Access buffer pool Replace unpinned blocks Record disk I/O ops	-+
.	V	_ 1
т- 	Analyze and compare performance	- , -
+-	 V	-+
+- +-	Draw conclusions and suggest best strategy for queries	-+ -+