Data structures refresher

CS 2860: Algorithms and Complexity

Magnus Wahlström and Gregory Gutin

January 24, 2023

Today's topics

- ► Algorithms using data structures
- ► Basics array structures
- Linked list refresher

Simple data structures

```
How long time does this procedure take?
List<Integer> fn(int n) {
   List<Integer> array = new ArrayList<Integer>(n);
   for (int i=0; i<n; i++) {
      array.add(0,i); // Insert i at position 0
   }
   return array;
}</pre>
```

```
How long time does this procedure take?
List<Integer> fn(int n) {
   List<Integer> array = new ArrayList<Integer>(n);
   for (int i=0; i<n; i++) {
      array.add(0,i); // Insert i at position 0
   }
   return array;
Answer: \Theta(n^2) time!
```

```
What about this one?
List<Integer> fn(int n) {
   List<Integer> array = new ArrayList<Integer>();
   for (int i=0; i<n; i++) {
      array.add(i); // Insert i at the end
   }
   return array;
}</pre>
```

```
What about this one?
List<Integer> fn(int n) {
   List<Integer> array = new ArrayList<Integer>();
   for (int i=0; i<n; i++) {
      array.add(i); // Insert i at the end
   }
   return array;
Answer: \Theta(n) time. (This one is harder than it looks!)
```

The point

- Like function calls, method calls can take some time to finish
- ► For non-trivial data structures/objects (e.g., ArrayList<Integer> array rather than int[] array), this can hide a lot of computation
- ► The details depend on:
 - ► The method's implementation
 - ► The data structure's current size
- ▶ Different data types, different profiles (trade-offs) − later

The point

- Like function calls, method calls can take some time to finish
- For non-trivial data structures/objects (e.g., ArrayList<Integer> array rather than int[] array), this can hide a lot of computation
- ► The details depend on:
 - ► The method's implementation
 - ► The data structure's current size
- ▶ Different data types, different profiles (trade-offs) later

The point

- Like function calls, method calls can take some time to finish
- For non-trivial data structures/objects (e.g., ArrayList<Integer> array rather than int[] array), this can hide a lot of computation
- ► The details depend on:
 - ► The method's implementation
 - The data structure's current size
- Different data types, different profiles (trade-offs) later

- Reserved space contiguous memory block
- Currently used light gray part
- ► Add/delete at end easy (while there's space
- ► Add/delete at beginning must relocate items

- ► Reserved space contiguous memory block
- Currently used light gray part
- ► Add/delete at end easy (while there's space)
- ► Add/delete at beginning must relocate items

- ► Reserved space contiguous memory block
- ► Currently used light gray part
- ► Add/delete at end easy (while there's space)
- ► Add/delete at beginning must relocate items

- ► Reserved space contiguous memory block
- ► Currently used light gray part
- Add/delete at end easy (while there's space)
 - $ightharpoonup \mathcal{O}(1)$ time to move "top" pointer
- Add/delete at beginning must relocate items

- ► Reserved space contiguous memory block
- ► Currently used light gray part
- ► Add/delete at end easy (while there's space)
 - \triangleright $\mathcal{O}(1)$ time to move "top" pointer
- Add/delete at beginning must relocate items
 - \triangleright $\mathcal{O}(s)$ if array contains s elements

Example 1, revisited

Main loop only:

```
for (int i=0; i<n; i++) {
   array.add(0,i);
}</pre>
```

- First loop: array empty; single step
- Second loop: one item moved; two steps
- **.** . . .
- ▶ Loop *i*: *i* items moved; *i* + 1 steps
- **.** . . .
- ▶ Loop n 1: n 1 items moved; n steps

Steps performed: $1 + 2 + \ldots + n = \Theta(n^2)$

Example 1, revisited

Main loop only:

```
for (int i=0; i<n; i++) {
   array.add(0,i);
}</pre>
```

- First loop: array empty; single step
- Second loop: one item moved; two steps
 - **.** . . .
- ▶ Loop *i*: *i* items moved; *i* + 1 steps
- **.** . . .
- ▶ Loop n 1: n 1 items moved; n steps

Steps performed: $1 + 2 + \ldots + n = \Theta(n^2)$

Contrasting examples

```
Example 3a:
// array is ArrayList
// starts out empty
for (i=0: i<n: i++) {
  array.add(0,i);
for (i=0; i<n; i++) {
  array.remove(0);
```

Example 3b:

```
// array is ArrayList
// starts out empty

for (i=0; i<n; i++) {
   array.add(0,i);
   array.remove(0);
}</pre>
```

Contrasting examples

Example 3a:

```
// array is ArrayList
// starts out empty

for (i=0; i<n; i++) {
   array.add(0,i);
}
for (i=0; i<n; i++) {
   array.remove(0);
}</pre>
```

Array grows to size n; operations take $\Theta(n)$ time each; total time $\Theta(n^2)$.

Example 3b:

```
// array is ArrayList
// starts out empty

for (i=0; i<n; i++) {
   array.add(0,i);
   array.remove(0);
}
```

Contrasting examples

Example 3a:

```
// array is ArrayList
// starts out empty

for (i=0; i<n; i++) {
   array.add(0,i);
}
for (i=0; i<n; i++) {
   array.remove(0);
}</pre>
```

Array grows to size n; operations take $\Theta(n)$ time each; total time $\Theta(n^2)$.

Example 3b:

```
// array is ArrayList
// starts out empty

for (i=0; i<n; i++) {
   array.add(0,i);
   array.remove(0);
}</pre>
```

Array stays at constant size; operations take constant time each; total time $\Theta(n)$.

- ▶ Add new item at start: $\Theta(n)$ time
- ▶ Delete item at start: $\Theta(n)$ time
- Add new item at end: $\Theta(1)$ time (unless list is "full")
- ▶ Delete item at end: $\Theta(1)$ time
- Add/delete at position $i: \Theta(n-i)$ time
- ▶ Get/set at position i: $\Theta(1)$ time

- ▶ Add new item at start: $\Theta(n)$ time
- ▶ Delete item at start: $\Theta(n)$ time
- Add new item at end: $\Theta(1)$ time (unless list is "full")
- ▶ Delete item at end: $\Theta(1)$ time
- ▶ Add/delete at position $i: \Theta(n-i)$ time
- ▶ Get/set at position i: $\Theta(1)$ time

- ▶ Add new item at start: $\Theta(n)$ time
- ▶ Delete item at start: $\Theta(n)$ time
- Add new item at end: $\Theta(1)$ time (unless list is "full")
- ▶ Delete item at end: $\Theta(1)$ time
- ▶ Add/delete at position $i: \Theta(n-i)$ time
- ▶ Get/set at position i: $\Theta(1)$ time

- ▶ Add new item at start: $\Theta(n)$ time
- ▶ Delete item at start: $\Theta(n)$ time
- ▶ Add new item at end: $\Theta(1)$ time (unless list is "full")
- ▶ Delete item at end: $\Theta(1)$ time
- ▶ Add/delete at position $i: \Theta(n-i)$ time
- ▶ Get/set at position i: $\Theta(1)$ time

- ▶ Add new item at start: $\Theta(n)$ time
- ▶ Delete item at start: $\Theta(n)$ time
- Add new item at end: $\Theta(1)$ time (unless list is "full")
- ▶ Delete item at end: $\Theta(1)$ time
- ▶ Add/delete at position $i: \Theta(n-i)$ time
- ▶ Get/set at position i: $\Theta(1)$ time

- ▶ Add new item at start: $\Theta(n)$ time
- ▶ Delete item at start: $\Theta(n)$ time
- Add new item at end: $\Theta(1)$ time (unless list is "full")
- ▶ Delete item at end: $\Theta(1)$ time
- ▶ Add/delete at position $i: \Theta(n-i)$ time
- ▶ Get/set at position i: $\Theta(1)$ time

- ▶ Add new item at start: $\Theta(n)$ time
- ▶ Delete item at start: $\Theta(n)$ time
- ▶ Add new item at end: $\Theta(1)$ time (unless list is "full")
- ▶ Delete item at end: $\Theta(1)$ time
- ▶ Add/delete at position $i: \Theta(n-i)$ time
- ▶ Get/set at position i: $\Theta(1)$ time

- ▶ Add new item at start: $\Theta(n)$ time
- ▶ Delete item at start: $\Theta(n)$ time
- Add new item at end: $\Theta(1)$ time (unless list is "full")
- ▶ Delete item at end: $\Theta(1)$ time
- ▶ Add/delete at position i: $\Theta(n-i)$ time
- ▶ Get/set at position i: $\Theta(1)$ time

- ▶ Add new item at start: $\Theta(n)$ time
- ▶ Delete item at start: $\Theta(n)$ time
- Add new item at end: $\Theta(1)$ time (unless list is "full")
- ▶ Delete item at end: $\Theta(1)$ time
- ▶ Add/delete at position i: $\Theta(n-i)$ time
- ▶ Get/set at position $i: \Theta(1)$ time

- ▶ Add new item at start: $\Theta(n)$ time
- ▶ Delete item at start: $\Theta(n)$ time
- Add new item at end: $\Theta(1)$ time (unless list is "full")
- ▶ Delete item at end: $\Theta(1)$ time
- ▶ Add/delete at position i: $\Theta(n-i)$ time
- ▶ Get/set at position i: $\Theta(1)$ time

Linked Lists

Linked structures

- Structures using nodes and pointers
- ► Recall linked lists (CS 1801)
- Instead of elements being "lined up" next to each other as in an array, every "location" is a node, containing information (pointer) on how to find the next part.

Linked lists

Advantages and disadvantages

- Disadvantage: Harder to navigate
 - No random access: To find item number 5, first find item 1, then 2, then 3...
 - Not local in memory: Probably slower code
- Advantage: Easier to modify and extend
 - ► Insert/delete in constant time
 - Can even delete items "from the middle" (with a node pointer)

Linked lists: Structure

```
Central class: ListNode.
class ListNode {
  int data; // The node contents (String, Object, ...)
 ListNode previous; // Pointers backwards,
 ListNode next; // forwards.
Wrapper class:
class LinkedList {
 ListNode firstNode;
 ListNode lastNode; // lastNode optional
```

Linked list: Drawings

Example linked list (three ListNodes, no LinkedList wrapper):

With ListNode variables a, b, c:

```
a.data=1 b.data=2 c.data=3
a.prev=null b.prev=a c.prev=b
a.next=b b.next=c c.next=null
```

This is the list [1, 2, 3] as (double) linked list.

List iteration

```
Typical code for iterating through a list:
ListNode node = list.firstNode;
while (node != null) {
    // operate on node
    // then finish with:
    node = node.next;
}
```

List iteration

```
Example: searching through a list.
boolean listSearch(LinkedList list, int query)
{
   ListNode node = list.firstNode;
   while (node != null) {
      if (node.data == query)
         return true;
      node = node.next;
   }
   // Exit loop: reached pointer "null", so key not found.
   return false;
```

Deleting a node

Assume we want to delete the node '2' from this list:

Then we want the result to look like this:

Delete: Bypassing a node

We can "bypass" (delete) a node by making only four changes:

- node.prev.next = node.next;
- node.next.prev = node.prev;
- node.prev = null;
- node.next = null;

(Slightly different if removing first/last item.)

Compare to array data types: To delete in the middle, must copy every single item afterwards to a new place (O(n) work)

Insert new node

A slight problem

Where did you find this node pointer?

- ▶ Claim: The following operations can be performed in O(1) (i.e., constant) time:
 - ▶ insertFirst.insertLast
 - deleteFirst, deleteLast
 - deleteNode, if you already have the node pointer
- ▶ But the following take O(n) (linear) time:
 - Locate an item by value (e.g., query)
 - Access the *i*:th item in the lists
 - Delete an item by value

A slight problem

Where did you find this node pointer?

- ▶ Claim: The following operations can be performed in O(1) (i.e., constant) time:
 - ▶ insertFirst, insertLast
 - deleteFirst, deleteLast
 - deleteNode, if you already have the node pointer
- ▶ But the following take O(n) (linear) time:
 - Locate an item by value (e.g., query)
 - Access the *i*:th item in the lists
 - Delete an item by value

A slight problem

Where did you find this *node* pointer?

- ▶ Claim: The following operations can be performed in O(1) (i.e., constant) time:
 - ▶ insertFirst, insertLast
 - deleteFirst, deleteLast
 - deleteNode, if you already have the node pointer
- ▶ But the following take O(n) (linear) time:
 - Locate an item by value (e.g., query)
 - Access the *i*:th item in the lists
 - Delete an item by value

Summary

- ► Linked lists allow constant time insert/delete first/last operations, some list modifications
- ► However, have drawbacks:
 - ▶ No random access
 - ► Not local in memory slow traversal
 - Uses more memory
- ► Remark: Can get on average constant time insert/delete first/last operations on arrays using two tricks:
 - 1. Circular buffers
 - 2. The "doubling allocation" trick

Summary

- ► Linked lists allow constant time insert/delete first/last operations, some list modifications
- However, have drawbacks:
 - No random access
 - ▶ Not local in memory slow traversal
 - Uses more memory
- ► Remark: Can get on average constant time insert/delete first/last operations on arrays using two tricks:
 - 1. Circular buffers
 - 2. The "doubling allocation" trick

Summary

- ► Linked lists allow constant time insert/delete first/last operations, some list modifications
- However, have drawbacks:
 - No random access
 - ▶ Not local in memory slow traversal
 - Uses more memory
- ► Remark: Can get on average constant time insert/delete first/last operations on arrays using two tricks:
 - 1. Circular buffers
 - 2. The "doubling allocation" trick

Array-based variant - Circular buffer

Add/delete at start/end in constant time (while there's space)
Warning – implementation is messy

Array-based variant - Circular buffer

Add/delete at start/end in constant time (while there's space) Warning – implementation is messy

- ► Recall array has fixed size in memory (say *n*)
- Adding item n + 1 involves:
 - 1. Allocate new memory for array of size n' > n
 - 2. Copy old n items to new array $(\Theta(n) \text{ work})$
 - 3. Finally add item n+1
- ► How much work in total for adding *n* items to an empty array?
 - ▶ If n' = n + 1:
 - If n' = n + 1000
 - If n' = 2n

- ► Recall array has fixed size in memory (say *n*)
- ▶ Adding item n+1 involves:
 - 1. Allocate new memory for array of size n' > n
 - 2. Copy old n items to new array $(\Theta(n) \text{ work})$
 - 3. Finally add item n+1
- ► How much work in total for adding *n* items to an empty array?
 - ▶ If n' = n + 1:
 - If n' = n + 1000

- \triangleright Recall array has fixed size in memory (say n)
- ▶ Adding item n+1 involves:
 - 1. Allocate new memory for array of size n' > n
 - 2. Copy old n items to new array $(\Theta(n) \text{ work})$
 - 3. Finally add item n+1
- ► How much work in total for adding *n* items to an empty array?
 - ▶ If n' = n + 1:
 - ▶ If n' = n + 1000
 - If n' = 2n

- \triangleright Recall array has fixed size in memory (say n)
- ▶ Adding item n+1 involves:
 - 1. Allocate new memory for array of size n' > n
 - 2. Copy old n items to new array $(\Theta(n) \text{ work})$
 - 3. Finally add item n+1
- ► How much work in total for adding *n* items to an empty array?
 - ▶ If n' = n + 1:
 - ▶ If n' = n + 1000
 - If n' = 2n

- ▶ Idea: Double the size of the array each time it gets full.
- Suppose you start with an empty array and add $N = 2^{n-1}$ items. Then the total amount of work spent reallocating memory is

$$1+2+4+8+\cdots+2^{n-1}=2^n-1=\mathcal{O}(N)$$

▶ So the average amount of work per item added is $\mathcal{O}(1)$.

- ▶ Idea: Double the size of the array each time it gets full.
- Suppose you start with an empty array and add $N = 2^{n-1}$ items. Then the total amount of work spent reallocating memory is

$$1+2+4+8+\cdots+2^{n-1}=2^n-1=\mathcal{O}(N)$$

▶ So the average amount of work per item added is $\mathcal{O}(1)$.

- ▶ Idea: Double the size of the array each time it gets full.
- Suppose you start with an empty array and add $N = 2^{n-1}$ items. Then the total amount of work spent reallocating memory is

$$1+2+4+8+\cdots+2^{n-1}=2^n-1=\mathcal{O}(N)$$

▶ So the average amount of work per item added is $\mathcal{O}(1)$.

Operation	Time (array)	Time (linked list)
Add at 0		
Delete 0		
Add at end		
Delete from end		
Random access		
Delete in middle		

Assume the array/lists already contain n items:

Operation	Time (array)	Time (linked list)
Add at 0	$\Theta(n)$	Θ(1)
Delete 0		
Add at end		

Delete from end Random access Delete in middle

Assume the array/lists already contain n items:

Operation	Time (array)	Time (linked list)
Add at 0	$\Theta(n)$	$\Theta(1)$
Delete 0	$\Theta(n)$	$\Theta(1)$
Add at end		

Delete from end Random access Delete in middle

Operation	Time (array)	Time (linked list)
Add at 0	$\Theta(n)$	$\Theta(1)$
Delete 0	$\Theta(n)$	$\Theta(1)$
Add at end	$\Theta(1)$ unless full	$\Theta(1)$
	$\Theta(n)$ if full (rarely)	
Delete from end		
Random access		
Delete in middle		

Operation	Time (array)	Time (linked list)
Add at 0	$\Theta(n)$	$\Theta(1)$
Delete 0	$\Theta(n)$	$\Theta(1)$
Add at end	$\Theta(1)$ unless full	$\Theta(1)$
	$\Theta(n)$ if full (rarely)	
Delete from end	$\Theta(1)$	$\Theta(1)$
Random access		
Delete in middle		

Operation	Time (array)	Time (linked list)
Add at 0	$\Theta(n)$	$\Theta(1)$
Delete 0	$\Theta(n)$	$\Theta(1)$
Add at end	$\Theta(1)$ unless full	$\Theta(1)$
	$\Theta(n)$ if full (rarely)	
Delete from end	$\Theta(1)$	$\Theta(1)$
Random access	$\Theta(1)$	$\mathcal{O}(n)$
Delete in middle		

Operation	Time (array)	Time (linked list)
Add at 0	$\Theta(n)$	$\Theta(1)$
Delete 0	$\Theta(n)$	$\Theta(1)$
Add at end	$\Theta(1)$ unless full	$\Theta(1)$
	$\Theta(n)$ if full (rarely)	
Delete from end	$\Theta(1)$	$\Theta(1)$
Random access	$\Theta(1)$	$\mathcal{O}(n)$
Delete in middle	$\Theta(n)$	$\Theta(1)$ with pointer
		$\Theta(n)$ without pointer