Lecture 3 Descriptive Statistics

What We Will Do Today

- Descriptive statistics (Agresti Chapter 3)
 - An abridged version; some stuff I don't get to from chapter 3, will go back to later
- Introduction to Stata
- Discuss Jez (2012)

Administrative issue

- Homework due next Wednesday
 - Will put homework (and formatting requirements)
 on D2L tomorrow morning; what I assign depends
 on how far we get today
- We will move discussion of Teranishi (2004) from 9/12 class to 9/19 class
 - Have updated syllabus on D2L to reflect this

I love descriptive statistics!

- Advanced modeling techniques are difficult to understand
 - Results are worthless if implemented incorrectly
- Descriptive statistics are simple to understand
 - Results are usually not worthless
- There are many jobs in K-12 and higher education for people who can create simple tables and graphs of descriptive statistics
 - Example: Director institutional research (typically pays in excess of \$100,000)

Descriptive Statistics

- What we will cover
 - Frequencies
 - Describing center of data (mean, median)
 - Shape of frequency distributions & skewness
 - Describing variability (standard deviation)

Frequencies

Frequency:

- Number of observations that have a particular value for a variable (e.g., number of students w/ SAT score= 1100)
- Frequency distribution:
 - Listing of possible values for a variable, with the number of observations having that value
- Relative frequency:
 - proportion or % of observations having a particular value
- Relative frequency distribution:
 - List of possible values for a variable, with proportion of observations at each value
- Show example in Stata w/ offerlev2 variable

Frequency & Relative Frequency

- Use IPEDS data
- Fore each variable,
 - What kind of variable is it (nominal, ordinal, continuous)?
 - What is the frequency (for a particular category)?;
 - What is the relative frequency (for a particular category)?
 - What is the frequency distribution?
 - What is the relative frequency distribution
- Show graphically?

Describing Center of Data: Mean and Median

First, introduce summation term $\sum_{i=1}^{i=n} y_i$

- Variable y_i has n observations:
 - i refers to each observation; $y_{i=3}$ refers to the 3^{rd} observation; n refers to the total number of observations
- List of all observations:
 - $-y_1, y_2, y_3, y_4, \dots, y_n$
 - Example: dataset with n=5 observations: $y_1 = 5, y_2 = 3, y_3 = 12, y_4 = 43, y_5 = 39$
- $\sum_{i=1}^{i=n} y_i = y_1 + y_2 + y_3 + y_4 + \cdots y_n$
- $\sum_{i=1}^{i=n} y_i = 5 + 3 + 12 + 43 + 39$
- Show on board: i denotes observations

Summation term $\sum_{i=1}^{n} y_i$

Show summation term in MS Excel

Describing Center of the Data: Mean

- Sample mean of a variable x, denoted \bar{x}
 - A measure of the average value of x

$$-\bar{x} = \frac{sum\ of\ all\ obs}{(\#\ of\ obs)} = \frac{\sum_{i}^{n} x_{i}}{n}$$

• Ex: variable, x, with 6 observations $x_1 \dots x_6$

- Obs:
$$x_1 = 6$$
, $x_2 = 12$, $x_3 = 19$, $x_4 = 17$, $x_5 = 4$, $x_6 = 10$

$$-\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{(6+12+19+17+4+10)}{6} = \frac{68}{6} = 11.3333$$

- Show in Microsoft Excel
- Population mean = μ ("mu"); sample mean = \bar{y}

Describing Canter of Data: Median

- Median
 - Order numbers from lowest to highest.
 - Median is the value of the middle observation(s)
 - Half the obs are below the median, half are above
- Example: variable with 5 observations
 - Obs= 6, 12, 19, 17, 4
 - Order from lowest to highest: 4, 6, 12, 17, 19
- Example: variable with 6 observations
 - Obs= 6, 12, 19, 17, 4, 10
 - Order from lowest to highest: 4, 6, 10, 12, 17, 19
 - Median is midpoint between two middle values=11

The Median and Percentiles

- Median is also referred to as 50th percentile
 - 50% of obs fall below this value
- Percentiles (first, order obs from low to high)
 - The X percentile is the value at which X% of observations fall below this value
 - 25th percentile: 25% of obs fall below this value
 - 10th percentile: 10% of obs fall below this value
 - 75th percentile: 75% of obs fall below this value
- Show examples in Stata

Mean vs. Median

- What is the better measure of the "average value"?
- Want to create an estimate of average income in class by taking a sample of 7 observations
- Show an example in Excel

Outlier

- Outlier
 - an observation with an extremely large or extremely small value
- Examples:
 - Income: Bill Gates
 - Endowment size: Harvard
 - Book sales: The Hunger Games
 - Others?
- Means are sensitive to outliers; Medians are not

Shape of frequency distributions

- (for now pretend we are working with continuous variables, e.g., income)
- Frequency distribution
 - For each value, the number of observations that have that value
- This can be displayed in table or graphically
 - Show in Stata (in-state tuition for 4-yr publics)

Shape of frequency distributions

- Bell shaped, symmetric "tails"
 - Show example using made-up variable
- Skew (which tail is longer)
- Right skew (right tail is longer than left)
 - Most obs have smaller values than the mean; more positive outliers than you would expect in bell shaped variable
 - Example: income; enrollment size, country population
- Left skew (left tail is longer than right tail)
 - Most obs have larger values than the mean; more negative outliers than you would expect in bell shaped variable
- Show in OneNote

Skew and Mean vs. Median

- Mean
 - Sensitive to outliers (extreme observations)
- Median
 - Insensitive to outliers
- Skew and mean vs. median
 - Symmetric (tails are symmetric)
 - Mean = median
 - Right skew (right tail longer)
 - Mean is greater than median
 - Left skew (left tail longer)
 - Median is greater than mean

Shape of frequency distributions

- Show examples of each in Stata
 - X-axis=value of observations
 - Y-axis=number of observations
- Ask class:
 - Right-skewed, left-skewed, bell-shaped?
 - What is the value of the median relative to the mean?

Annual Production of Master's Degrees

	University	University	University	Liberal Arts	Liberal Arts	
	Low Select	Med Select	High Select	Low/Med Select	High Select	
MEAN						
1970	142	353	609	5	36	
1980	226	466	728	14	22	
1990	219	483	871	30	18	
2000	303	631	1,035	77	19	
2009	412	790	1,349	143	21	
MEDIAN						
1970	48	148	343	0	3	
1980	121	256	442	0	0	
1990	117	254	551	0	0	
2000	164	367	708	11	0	
2009	234	473	881	42	0	
N 1990	304	380	39	484	33	

Variability

- We just did measures of centrality
 - Mean, median
- Now we move to measures of variability
 - Deviation
 - Standard deviation

Variability: Sample Standard Deviation

- What we want to find out:
 - What is the average distance between each observation and the mean?
 - Let's say avg. income (in means) in class is \$30,000.
 Standard deviation tells us, if we select a random student, how far away their income is likely to be from \$30,000.
 - Note: \$24K and \$36K would both be \$6K away from mean
- Concepts we will use to calculate sample std dev
 - Mean
 - deviation

Variability of Data: Deviation

• Deviation:

- Difference between an observation, y_i , and the sample mean, \bar{y}
- Deviation of $y_i = (y_i \bar{y})$
 - e.g., $y_i = 6$; $\bar{y} = 4$; $(y_i \bar{y}) = 6 4 = 2$
- Show in excel
 - Example: income
 - deviation_i = $(income_i \overline{income})$

Could this be a measure of sample standard deviation?

Potential measure

- Sample standard deviation =
$$\frac{\sum_{i}^{n}(y_{i}-\bar{y})}{n-1}$$

- Answer: No!
- Why not?
- Show in excel
- Why (n-1) instead of n? don't worry about it for now

Could this be a measure of sample standard deviation?

Is this a good measure of standard deviation?

$$- = \frac{\sum_{i}^{n} (y_i - \bar{y})^2}{n - 1}$$

- Answer: No!
- Why not?
 - This is average *squared* distance from the mean
 - Average squared distance from the mean is called the "variance"
- Show in excel
- Why (n-1) instead of n? don't worry about it for now

Sample Standard Deviation

- Definition (in words)
 - Avg absolute distance between an obs and the sample mean
- Definition (algebraic)

$$-s = \sqrt{\frac{\sum_{i}^{n}(y_{i} - \bar{y})^{2}}{n-1}} = \sqrt{\frac{sum \ of \ squared \ deviations}{sample \ size - 1}}$$

- Do in excel
- Intuition
 - Why the squared term? Because the sum of all deviations=0
 - Why the square root? To compensate for the squared term
 - Why divide by sample size? To get the average (like calculating a mean)
 - Why n-1 instead of n? Don't worry about it.

Sample Standard Deviation

Standard deviation

$$-s = \sqrt{\frac{\sum_{i}^{n}(y_{i} - \bar{y})^{2}}{n-1}} = \sqrt{\frac{sum \ of \ squared \ deviations}{sample \ size - 1}}$$

- Example: variable with 5 observations
 - Obs= 6, 12, 19, 17, 4; mean= $\bar{y} = 11.6$

•
$$S = \sqrt{\frac{(6-11.6)^2 + (12-11.6)^2 + (19-11.6)^2 + (17-11.6)^2 + (4-11.6)^2}{5-1}}$$

•
$$s = \sqrt{\frac{173.2}{4}} = 6.58$$

Properties of Sample Standard Deviation

- Sample Standard deviation
 - Average absolute distance between an obs and the sample mean
- Some Properties
 - Standard deviation is sensitive to presence of outliers
 - Standard deviation does not necessarily increase or decrease in size as sample size increases

In Class Exercise

Standard deviation

$$-s = \sqrt{\frac{\sum_{i}^{n}(y_{i} - \bar{y})^{2}}{n-1}} = \sqrt{\frac{sum\ of\ squared\ deviations}{sample\ size\ -1}}$$

- Observations:
 - 23, 35, 12, 8, 49
- Questions. What is the:
 - Mean? Median? Standard Deviation?

Notation: estimates vs. parameters

- Parameter
 - Based on the population
- Estimate (also called "statistic")
 - Based on a sample
 - An estimate is our best guess of the parameter
- Estimates use regular alphabet, parameters use Greek alphabet

	Estimate (sample)	Parameter (population)
Mean	$ar{x}$	$\mu~or\mu_{ m x}$
Standard deviation	$s \ or \ s_{\chi}$	$\sigma\ or\sigma_{_{ m X}}$
Sample size	n	N

Break

Introduction to Stata

- What we will do
 - Open a dataset in Stata
 - Familiarize w/ Stata windows
 - Download dataset from D2L and open in Stata
 - Run a few commands

Open Stata

- You can use lab PC or your laptop
 - If you use your laptop, make sure you are connected to wireless internet
- Open Stata
- Discuss the different "windows"
 - Big window= "results" window
 - Bottom of screen= "command" line
 - A command is when you tell Stata to do something
 - Bottom left=list of variables
 - Top left= list of commands you ran previously

Open a dataset in Stata

- Three ways to enter commands in Stata
 - (1) command line; (2) point-and-click; (3) "do" file
- Typing commands in command line
 - Do not type "bullets"; type commands in lowercase;
 type the command; press "return" to enter command
- Type the following commands (one at a time):
 - webuse census
 - Describe
 - tabulate region
- Tell students how to read description of dataset

Open a dataset in Stata

- Show students where to see actual dataset
- Show students the variables window
- Show students the "previous command window"
- How to enter previously run commands on command line
 - Click previous command on "previous command window"
 - Press "page up" button on keyboard
 - "page down" button shows subsequent command
- Note: you can copy commands onto MS Word file

Download Stata dataset from D2L

- Go to D2L website for this class
- Datasets >> datasets for "small" stata
 - Download ipeds_2010_small_stata (zipped)
- Save the zipped dataset to a folder (any folder) you can find again
- "unzip" (i.e., un-compress) the dataset
 - Show class how to do this on your PC, may be different on theirs
 - save it in same folder as the zipped dataset

Open the ipeds dataset in Stata

- Open Stata
- Using your mouse, *click* on:
 - File >> open >> (browse for "ipeds_2010_small_stata" and click "open"
- See the command you just ran in the "results window" and in "previous command window"
- Look at actual data in "Data Editor (Browse)"

Learn three Stata commands

- Three commands
 - describe
 - Describes variables in the dataset
 - tabulate variable_name
 - shows frequencies and relative frequencies
 - *summarize* variable_name
 - shows means, standard deviations, etc.
- Type these commands:
 - describe
 - tabulate sector
 - tabulate offerlev2
 - summarize tfugoutst
 - summarize totfte

In class exercise

- Open Stata
- Type "clear" in command line (without quotations) to clear any open dataset
- Open the dataset ipeds_2010_small_stata
- Describe the dataset
- For the variable totbachv2, what is the mean value?
 What is the standard deviation?
- For the variable sector, how many obs are "public, 4-year or above"? What percentage of obs are "public, 4-year or above"?
- What is the mean and standard deviation of the variable satp50