## **DS** [15]

# А. Максимум на отрезке

2 секунды, 64 мегабайта

Реализуйте структуру данных которая позволит вам отвечать на запросы о максимуме на отрезке, а так же изменять значения на отрезке.

#### Входные данные

В первой строке дано единственное число N ( $1 \le N \le 10^5$ ) — число элементов в массиве. В следующей строке содержатся N целых чисел, не превосходящих по модулю  $10^8$  — элементы массива. Далее идет число K ( $0 \le K \le 10^5$ ) — количество запросов к структуре данных. Каждая из следующих K строк содержит три целых числа I, F и X ( $1 \le I \le T \le N$ ,  $-10^8 \le X \le 10^8$ ) — левую и правую границы отрезка в массиве для данного запроса и значение, которое нужно прибавить ко всем числам на отрезке.

#### Выходные данные

Для каждого запроса выведите максимум из значений на заданном отрезке после модификации.

```
ВХОДНЫЕ ДАННЫЕ

5
000000
3
1 3 1
3 5 1
2 4 1

ВЫХОДНЫЕ ДАННЫЕ

1
2
3
```

# В. Сумма на отрезке

2 секунды, 64 мегабайта

Реализуйте структуру данных которая позволит вам отвечать на запросы о сумме значений на отрезке, а так же изменять значения на отрезке.

## Входные данные

В первой строке дано единственное число N ( $1 \le N \le 10^5$ ) — число элементов в массиве. В следующей строке содержатся N целых чисел, не превосходящих по модулю  $10^8$  — элементы массива. Далее идет число K ( $0 \le K \le 10^5$ ) — количество запросов к структуре данных. Каждая из следующих K строк содержит три целых числа l, r и x ( $1 \le l \le r \le N$ ,  $-10^8 \le x \le 10^8$ ) — левую и правую границы отрезка в массиве для данного запроса и значение, которое нужно прибавить ко всем числам на отрезке.

#### Выходные данные

Для каждого запроса выведите сумму значений на заданном отрезке после модификации.

```
Входные данные

5
0 0 0 0 0 0
3
1 3 1
3 5 1
2 4 1

Выходные данные

3
4
7
```

## С. Ещё что-то на отрезке

2 секунды, 64 мегабайта

Реализуйте структуру данных которая позволит вам отвечать на запросы о наименьшем числе не меньшем заданного на отрезке.

#### Входные данные

В первой строке дано единственное число N ( $1 \le N \le 10^5$ ) — число элементов в массиве. В следующей строке содержатся N целых чисел, не превосходящих по модулю  $10^8$  — элементы массива. Далее идет число K ( $0 \le K \le 10^5$ ) — количество запросов к структуре данных. Каждая из следующих K строк содержит три целых числа I, F и X ( $1 \le I \le T \le N$ ,  $-10^8 \le X \le 10^8$ ) — левую и правую границы отрезка в массиве для данного запроса и нижняя граница на искомое значение.

#### Выходные данные

Для каждого запроса выведите минимальное число не меньшее заданного на заданном отрезке, если все значения на отрезке строго меньше заданного, то выведите "None" (без кавычек).

```
Входные данные

5
1 2 3 5 5
3
1 3 1
3 5 4
2 4 10

Выходные данные

1
5
None
```

# D. Сумма на большом отрезке

2 секунды, 256 мегабайт

Реализуйте структуру данных которая позволит вам отвечать на запросы о сумме значений на отрезке, а так же изменять значение элемента. Изначально структура данных заполнена нулями.

#### Входные данные

В первой строке дано единственное число K ( $0 \le K \le 5 \cdot 10^5$ ) — количество запросов к структуре данных. Каждая из следующих K строк содержит три целых числа q, x и y. Если q=0, то требуется вывести сумму чисел на отрезке [x,y], если q=1, то требуется добавить y в ячейку x. Все числа в запросах лежат в отрезке  $[1,10^9]$ .

#### Выходные данные

Для каждого запроса суммы выведите его результат.

```
Входные данные

5
0 1 5
1 1 10
0 1 3
1 3 3
0 2 4

Выходные данные

0
10
3
```

## Е. Большинство

1 секунда, 256 мегабайт

Реализуйте структуру данных которая позволит вам отвечать на запросы о том принадлежит ли какому-либо значению на подотрезке большинство, то есть есть ли такая величина, которая встречается на подотрезке более чем в половине позиций.

## Входные данные

В первой строке дано два числа N и Q  $(1 \leq N, Q \leq 2 \cdot 10^5)$  — число элементов в массиве и количество запросов к структуре данных. В следующей строке содержатся N натуральных чисел, не превосходящих  $10^5$  — элементы массива. Каждая из следующих Q строк содержит два целых числа l и r  $(1 \leq l \leq r \leq N)$  — левую и правую границы отрезка в массиве для данного запроса.

#### Выходные данные

входные данные

Для каждого запроса выведите элемент, которому принадлежит большинство на заданном отрезке, либо "-1" если такого элемента нет.

#### 5 15 1 2 1 2 1 1 1 1 2 1 3 1 4 1 5 2 2 2 3 2 4 2 5 3 3 3 4 3 5 4 4 4 5 5 5 выходные данные 1 -1 1 -1 1 2 -1 2 -1 1 -1 2 -1 1

```
    ВХОДНЫЕ ДАННЫЕ

    7 4

    1 2 3 1 2 3 1

    4 4

    3 5

    2 6

    1 7
```

# выходные данные 1 -1 -1 -1

# **F.** Жуки

2 секунды, 64 мегабайта

На днях Вася был на выставке современного искуства, на которой он видел один занимательный экспонат. Это был прямой отрезок по которому бегали одинаковые жуки с одинаковой скоростью. Жуки были неплохо выдрессированы, поэтому никогда не сворачивали с этого отрезка, однако при этом убегали, если доходили до одного из его концов. Так же они не могли обойти друг друга, поэтому, когда два жука встречались в одной точке, они немедленно разворачивались и продолжали движение в обратном направлении. Смысла этого экспоната Вася, к сожалению, не понял, однако ему удалось узнать, что, если все жуки разбегутся, смысл этого экспоната полностью исчезнет и его немедленно уберут из экспозиции. Вася запомнил позиции всех жуков на отрезке, и теперь ему стало интересно через какое время экспонат уберут из экспозиции.

#### Входные данные

В первой строке вам заданы два числа N и L  $(1 \le N \le 10^5, \ 1 \le L \le 10^9)$  — количество жуков на прямой и длина прямой. В следующих N строках вам дана пара значений: целое число  $p_i$   $(0 \le p_i \le L)$  и символ  $d_i$   $(d_i \in {}^\prime L', R')$  разделённые пробелом — расстояние от жука до левого конца отрезка и направление движения, гарантируется что все  $p_i$  попарно различны. Скорости всех жуков равны одной единице расстояния в одну единицу времени.

#### Выходные данные

Выведите единственное число — количество времени, которое потребутеся, чтобы все жуки сбежали с отрезка.



Codeforces (c) Copyright 2010-2021 Михаил Мирзаянов Соревнования по программированию 2.0