Riemann Surfaces

Winter semester 2018/2019 Dr. A. Haydys

6th exercise sheet

Exercise 1 (2P). Let

$$\Sigma := \{ y^2 = (x - \lambda_1) \cdot \ldots \cdot (x - \lambda_n) \} \subset \mathbb{CP}^2,$$

where all λ_j are distinct. Show that each $f_j := (x - \lambda_j)^{-1}|_{\Sigma}$ is a meromorphic function on Σ with a unique pole of order 2 at $(\lambda_j, 0)$. In particular, Σ is hyperelliptic. What is the genus of Σ ? If n = 3 (so that Σ is an elliptic curve), can you represent f_j via known functions?

Exercise 2 (3P). Let $D = \{p_1, \ldots, p_n\}$ be a finite subset of a Riemann surface Σ . Show that ζ_D , which is the obstruction to the existence of meromorphic functions with at most simple poles along D, is well-defined as a map

$$\bigoplus_{p \in D} T_p \Sigma \longrightarrow H^{0,1}(\Sigma).$$

Exercise 3 (5P). For a point $p \in \Sigma$ and a positive integer n denote

$$\begin{split} H^0(np) &:= \big\{ f \colon \Sigma \setminus \{p\} \to \mathbb{C} \text{ holom. } | \operatorname{ord}_p f \ge -n \big\}, \qquad & h^0(np) := \dim H^0(np), \\ H^0\big(K - np\big) &:= \big\{ \omega \in H^{0,1}(\Sigma) \mid \operatorname{ord}_p \omega \ge n \big\}, \qquad & h^0(K - np) := \dim H^0\big(K - np\big). \end{split}$$

In other words, $H^0(np)$ consists of meromorphic functions on Σ with a pole only at p of order at most n, whereas $H^0(K-np)$ consists of holomorphic differentials having a zero at p of multiplicity at least n.

The Riemann–Roch formula in this case reads:

$$h^{0}(np) - h^{0}(K - np) = n - g + 1.$$

Let $\Sigma = E$ be an elliptic curve.

- (i) With the help of the Riemann–Roch formula, show that for any given $p \in E$ there is a meromorphic function f on E with a double pole at p.
- (ii) Show that $\operatorname{Res}_p f = 0$.
- (iii) Show that af + b coincides with the Weierstraß \wp -function for suitable $a, b \in \mathbb{C}$.
- (iv) Show that $e := (1, \wp, \wp')$ is a basis of $H^0(3p)$.

(v) Show that any choice of a basis of $H^0(3p)$ yields an embedding $E \to \mathbb{CP}^3$, which in fact can be factorized as $E \to \mathbb{CP}^2 \to \mathbb{CP}^3$, where the last map is a natural embedding.

Check also that the map $E \to \mathbb{CP}^2$ obtained in (v) realizes E as a plane algebraic curve $\{y^2 = 4x^3 + g_2x + g_3\}$.

Return: Friday, 2019/02/08, at 2 pm before the lecture.