

Sciences

Norwegian University of Science and Technology Deptartment of Mathematical TMA4190 Introduction to Topology Spring 2018

Exercise set 4

- 1 Let  $f: X \to Y$  be a submersion and U an open subset of X. Show that f(U) is open in Y. (In other words, submersions are open maps.)
- a) If X is compact and Y connected, show that every (nontrivial) submersion  $f: X \to Y$  is surjective. (Recall that a space Y is called connected if Y cannot be written as the union of two nonempty disjoint open subsets; or equivalently, if Y and  $\emptyset$  are the only subsets which are both open and closed in Y).
  - b) Show that there exist no submersions of compact manifolds into  $\mathbb{R}^n$  for any n.
- 3 Show that the orthogonal group O(n) is compact. (Hint: Show that if  $A=(a_{ij})$  lies in O(n), then for each  $i, \sum_j a_{ij}^2 = 1$ .)
- Show that the tangent space to O(n) at the identity matrix I is the vector space of skew symmetric  $n \times n$ -matrices, i.e. matrices B satisfying  $B^t = -B$ .
- Prove that the set  $R_1$  of all  $2 \times 2$ -matrices of rank 1 is a three-dimensional submanifold of  $\mathbb{R}^4 = M(2)$ . (Hint: Show that the determinant function is a submersion on the manifold of nonzero  $2 \times 2$ -matrices  $M(2) \setminus \{0\}$ .)