```
1 import pandas as pd
2 df = pd.read_csv('http://wolfpack.hnu.ac.kr/Stat_Notes/example_data/baseball.csv')
```

→ 과업1

Position 변수를 count 하시오.

```
1 df.Position.value_counts()
    \mathbb{C}
           40
    3B
           32
    2B
           31
           31
     1B
    SS
           30
    0F
           30
    RF
           26
    CF
           26
    LF
           25
    DH
           16
    UT
           14
    01
            4
    3S
            3
    D0
             2
             2
    0S
    CD
             1
    32
    S3
    2S
    OD
     10
    13
    CS
    23
    30
    Name: Position, dtype: int64
```

→ 과업2

df데이터와 ct 데이터 합치시오.

선수가 16명 이상있는 Position만 (가져오기)

```
1 ct = pd.DataFrame(df.Position.value_counts())
2 ct.reset_index(inplace=True)
3 ct.columns=['Position', 'count']
1 df0=pd.merge(df,ct,on='Position',how='inner')
```

rai_or arotarot occurr je roj

→ 과업3

포지션별 선수연봉 나무상자그림

```
1 df_ct = df_ct[df_ct.Salary!='.']
1 df_ct['Salary']=pd.to_numeric(df_ct.Salary)
1 df_ct.boxplot(column= 'Salary', by='Position')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f65a36dc6a0>

⊸ 과업4

포지션별 선수연봉 분산분석 하시오

튜키방법으로 사후검정하시오.

결론작성하시오.

▼ 분산분석

귀무가설: 모든 포지션의 선수연봉은 동일하다.

mu1=mu2=mu3=...=mui

대립가설: 적어도 한 포지션의 선수연봉은 다르다.

- 1 import statsmodels.api as sm
- 2 from statsmodels.formula.api import ols ## 집단 세개 이상의 평균비교 (=분산분석)
- 3 results = ols('Salary~Position',data=df_ct).fit() #데이터~집단
- 1 racilta alimmaru/)

4 resurts.summary()

OLS Regression Results Dep. Variable: Salary R-squared: 0.072 OLS Model: Adj. R-squared: 0.035 F-statistic: Method: Least Squares 1.926 Date: Fri, 08 Nov 2019 **Prob (F-statistic):** 0.0495 Time: 04:38:37 Log-Likelihood: -1760.6 No. Observations: 234 AIC: 3541. **Df Residuals:** 224 BIC: 3576.

Df Model: 9

Covariance Type: nonrobust

 lntercept
 786.6667
 93.475
 8.416
 0.000
 602.464
 970.870

 Position[T.2B]
 -272.7436
 129.627
 -2.104
 0.036
 -528.187
 -17.300

 Position[T.3B]
 -168.7333
 125.410
 -1.345
 0.180
 -415.868
 78.401

 Position[T.C]
 -267.6333
 125.410
 -2.134
 0.034
 -514.768
 -20.499

 Position[T.CF]
 -220.8406
 133.623
 -1.653
 0.100
 -484.159
 42.478

 Position[T.DH]
 -229.7576
 166.738
 -1.378
 0.170
 -558.333
 98.817

 Position[T.LF]
 -274.2167
 138.646
 -1.978
 0.049
 -547.434
 -0.999

 Position[T.OF]
 -395.8030
 135.165
 -2.928
 0.004
 -662.160
 -129.446

 Position[T.SS]
 -5.6667
 135.165
 -0.042
 0.967
 -272.024
 260.690

 Position[T.SS]
 -359.0897
 129.627
 -2.770
 0.006
 -614.533
 -103.646

 Omnibus:
 64.011
 Durbin-Watson:
 1.967

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 132.378

 Skew:
 1.335
 Prob(JB):
 1.80e-29

 Kurtosis:
 5.539
 Cond. No.
 10.9

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
1 aov_table=sm.stats.anova_lm(results, typ=2)
2 aov_table
```

_>		sum_sq	df	F	PR(>F)	
	Position	3.634287e+06	9.0	1.925634	0.049487	
	Residual	4.697330e+07	224.0	NaN	NaN	

0.0495는 0.05보다 작으므로 귀무가설을 기각. 즉, 적어도 한 포지션의 선수 연봉은 다르다.

▼ 튜키방법

귀무가설: 그룹1 포지션과 그룹2 포지션의 선수연봉은 동일하다.

mu1=mu2=mu3=...=mut

대립가설: 적어도 그룹1 포지션과 그룹2 포지션의 선수연봉은 다르다.

- 1 from statsmodels.stats.multicomp import pairwise_tukeyhsd
- 2 from statsmodels.stats.multicomp import MultiComparison
- 3 mc=MultiComparison(df_ct.Salary, df_ct.Position)
- 4 print(mc.tukeyhsd())

Multiple Comparison of Means - Tukey HSD, FWER=0.05

WUIL				- Tukey Ik	5U, FWEN-(J.05
group1	group2	meandiff	p-adj	lower	upper	reject
1B	2B	-272.7436	0.5228	-687.0166	141.5294	False
1B	3B	-168.7333	0.9	-569.5304	232.0637	False
1B	С	-267.6333	0.5046	-668.4304	133.1637	False
1B	CF	-220.8406	0.7968	-647.8853	206.2041	False
1B	DH	-229.7576	0.9	-762.6333	303.1182	False
1B	LF	-274.2167	0.5994	-717.3145	168.8812	False
1B	OF	-395.803	0.104	-827.7753	36.1692	False
1B	RF	-5.6667	0.9	-437.6389	426.3056	False
1B	SS	-359.0897				
2B	3B	104.0103	0.9	-288.1293	496.1498	False
2B	С			-387.0293		
2B	CF			-367.0269		
2B	DH			-483.409		
2B	LF			-436.7555		
2B	OF	-123.0594	0.9	-547.0113	300.8924	
2B				-156.8749		
2B				-492.2491		
3B				-476.7751		
3B				-457.716		
3B				-576.8807		
3B		-105.4833				
3B				-637.8633		
3B				-247.7269		
3B		-190.3564				
С	CF			-358.816		
С	DH	37.8758	0.9	-477.9807	553.7322	
С	LF	-6.5833	0.9	-429.0606	415.8939	False
С	OF	-128.1697				
С	RF			-148.8269		
С	SS			-483.5959		
CF	DH			-545.4212		
CF	LF	-53.3761	0.9	-500.8309	394.0788	False
CF	OF	-174.9625	0.9	-611.4028	261.4779	False
CF	RF	215.1739	0.8435	-221.2665	651.6143	False
CF	SS	-138.2492	0.9	-557.1791	280.6807	False
DH	LF	-44.4591	0.9	-593.8272	504.909	False
DH	OF	-166.0455	0.9	-706.4801	374.3892	False
DH	RF	224.0909	0.9	-316.3438	764.5256	False
DH	SS	-129.3322	0.9	-655.7272	397.0628	False
LF		-121.5864				
LF	RF			-183.6101		
LF	SS			-520.1555		False
0F	RF			-51.1267		
0F	SS			-387.2385		
RF		-353.4231				

reject가 모두 False 이므로 귀무가설 채택, 그룹1 포지션과 그룹2 포지션의 선수연봉은 같다. 결론 : 분산분석 결과 요인 수준에 따른 포지션별 평균 차이가 있어도 쌍체 비교에서는 유의한 쌍체 (전체적으로는 포지션별 선수연봉의 차이가 있지만, 쌍체비교를 통한 포지션별로는 차이가 없음

→ 과업5

포지션별 선수연봉 평균을 출력하시오.(groupdy 사용)

1 pd.DataFrame(df_ct.groupby('Position').Salary.mean()).sort_values(by='Salary', ascending=False)

\Box		Salary
	Position	

Position	
1B	786.666667
RF	781.000000
3B	617.933333
CF	565.826087
DH	556.909091
С	519.033333
2B	513.923077
LF	512.450000
SS	427.576923
OF	390.863636