### Chương 5

# KIỂM ĐỊNH GIẢ THIẾT THỐNG KÊ

## 1. CÁC KHÁI NIỆM

## 1.1 Giả thiết thống kê

Khi nghiên cứu về các lĩnh vực nào đó trong thực tế ta thường đưa ra các nhận xét khác nhau về các đối tượng quan tâm. Những nhận xét như vậy thường được coi là các giả thiết, chúng có thể đúng và cũng có thể sai. Việc sai định tính đúng sai của một giả thiết được gọi là kiểm định.

Giả sử cần nghiên cứu tham số  $\theta$  của đại lượng ngấu nhiên X, người ta đưa ra giả thiết cần kiểm đinh

$$H:\theta=\theta_0$$

Gọi  $\overline{H}$  là giả thiết đối của H thì  $\overline{H}$  :  $\theta \neq \theta_0$ .

Từ mấu ngấu nhiên  $W_X = (X_1, X_2, \dots, X_n)$  ta chọn thống kê  $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$  sao cho nếu H đúng thì  $\hat{\theta}$  có phân phối xác suất hoàn toàn xác định và với mấu cụ thể thì giá trị của  $\hat{\theta}$  sẽ tính được.  $\hat{\theta}$  được gọi là tiêu chuẩn kiểm định giả thiết H.

Với  $\alpha$  b<br/>é tùy ý cho trước ( $\alpha \in (0,01;0,05)$ ) ta tìm được miền  $W_{\alpha}$  sao cho  $P(\hat{\theta} \in W_{\alpha}) = \alpha$ .

 $W_{\alpha}$  được gọi là  $mi\hat{e}n$  bác  $b\acute{o}$  ,  $\alpha$  được gọi là  $m\acute{u}c$  ý nghĩa của  $ki\acute{e}m$  định.

Thực hiện phép thủ đối với mẫu ngấu nhiên  $W_X = (X_1, X_2, \dots, X_n)$  ta được mẫu cụ thể  $w_x = (x_1, x_2, \dots, x_n)$ . Tính giá trị của  $\hat{\theta}$  tại  $w_x = (x_1, x_2, \dots, x_n)$  ta được  $\theta_0 = \hat{\theta}(x_1, x_2, \dots, x_n)$  ( $\theta_0$  được gọi là giá trị quan sát).

- Nếu  $\theta_0 \in W_\alpha$  thì bác bỏ giả thiết H và thùa nhận giả thiết đối  $\overline{H}$ .
- Nếu  $\theta_0 \notin W_{\alpha}$  thì chấp nhận giả thiết H.

#### ⊙ Chú ý

Có trường hợp giả thiết kiểm định và giả thiết đối được nêu cụ thể hơn. Chẳng hạn:

$$H: \theta \leq \theta_0; \qquad \overline{H}: \ \theta > \theta_0$$

Khi đó ta có kiểm định một phía.

### 1.2 Sai lầm loại 1 và loại 2

Khi kiểm định giả thiết thống kê, ta có thể mắc phải một trong hai loại sai lầm sau:

i)  $Sai\ l\hat{am}\ loại\ 1:$  là sai lầm mắc phải khi ta bác bỏ một giả thiết H trong khi H đúng.

Xác suất mắc phải sai lầm loại 1 bằng  $P(\hat{\theta} \in W_{\alpha}) = \alpha$ .

ii) Sai lầm loại 2: là sai lầm mắc phải khi ta thừa nhận giả thiết H trong khi H sai. Xác suất mắc phải sai lầm loại 2 bằng  $P(\hat{\theta} \notin W_{\alpha})$ .

#### ⊙ Chú ý

Nếu ta muốn giảm xác suất sai lầm loại 1 thì sẽ làm tăng xác suất sai lầm loại 2 và ngược lại.

Đối với một tiêu chuẩn kiểm định  $\hat{\theta}$  và với múc ý nghĩa  $\alpha$  ta có thể tìm được vô số miền bác bỏ  $W_{\alpha}$ . Thường người ta ấn định trước xác suất sai lầm loại 1 (túc cho trước mức ý nghĩa  $\alpha$ ) chọn miền bác bỏ  $W_{\alpha}$  nào đó có xác suất sai lầm loại 2 nhỏ nhất.

## 2. KIỂM ĐỊNH GIẢ THIẾT VỀ TRUNG BÌNH

Đại lượng ngấu nhiên X có trung bình E(X)=m chưa biết. Người ta đưa ra giả thiết

$$H: m = m_0 \quad (\overline{H}: m \neq m_0)$$

## 2.1 Trường hợp 1:

$$\left\{ \begin{array}{ll} Var(X) = \sigma^2 \, \mathrm{d}\tilde{\mathrm{a}} \, \, \mathrm{bi\acute{e}t} \\ n \geq 30 \quad \mathrm{ho\check{a}c} \quad (n < 30 \, \mathrm{v\grave{a}} \, \, \mathrm{X} \, \, \mathrm{c\acute{o}} \, \, \mathrm{ph\acute{a}n} \, \, \mathrm{ph\acute{o}i} \, \, \mathrm{chu\acute{a}n}) \end{array} \right.$$

Chọn thống kê 
$$U = \frac{(\overline{X} - m_0)\sqrt{n}}{\sigma}$$
. Nếu  $H_0$  đúng thì  $U \in N(0, 1)$ 

Với mức ý nghĩa  $\alpha$  cho trước, xác định phân vị chuẩn  $u_{1-\frac{\alpha}{2}}$ . Ta tìm được miền bác bỏ

$$W_{\alpha} = \{u : |u| > u_{1-\frac{\alpha}{2}}\} = (-\infty; -u_{1-\frac{\alpha}{2}}) \cup (u_{1-\frac{\alpha}{2}}; +\infty)$$

Vì

$$P(U \in W_{\alpha}) = P(U < -u_{1-\frac{\alpha}{2}} + P(U > u_{1-\frac{\alpha}{2}}))$$

$$= P(U < u_{\frac{\alpha}{2}}) + 1 - P(U > u_{1-\frac{\alpha}{2}})$$

$$= \frac{\alpha}{2} + 1 - (1 - \frac{\alpha}{2}) = \alpha$$

Lấy mẫu cụ thể và tính giá trị quan sát  $u_0 = \frac{|\overline{x} - m_0|}{\sigma} \sqrt{n}$ .

So sánh  $u_0$  và  $u_{1-\frac{\alpha}{2}}$ .

- Nếu  $u_0 > u_{1-\frac{\alpha}{2}}$   $(u_0 \in W_\alpha)$  thì bác bỏ giả thiết H và chấp nhận  $\overline{H}$ .
- Nếu  $u_0 < u_{1-\frac{\alpha}{2}}$   $(u_0 \notin W_\alpha)$  thì chấp nhận  $H_0$ .
- Ví dụ 1 Một tín hiệu của giá trị m được gởi từ địa điểm A và được nhận ở địa điểm B có phân phối chuẩn với trung bình m và độ lệch tiêu chuẩn  $\sigma=2$ . Tin rằng giá trị của tín hiệu m=8 được gởi mỗi ngày. Người ta tiến hành kiểm tra giả thiết này bằng cách gởi 5 tín hiệu một cách độc lập trong ngày thì thấy gia trị trung bình nhận được tại địa điểm B là  $\overline{X}=9,5$ . Với độ tin cậy 95%, hãy kiểm tra giả thiết m=8 đưng hay không?

#### Giải

Ta cần kiểm định giả thiết  $H: m_0 = 8 \quad (\overline{H}: m_0 \neq 8)$ 

Ta có n=5<30. Độ tin cậy  $1-\alpha=0,95\implies 1-\frac{\alpha}{2}=0,975$ 

Phân vị chuẩn  $u_{0,975} = 1,96$ .

Miền bác bỏ là  $W_{\alpha} = (-\infty; -1, 96) \cup (1, 96; +\infty).$ 

Giá trị quan sát 
$$u_0 = \frac{|\overline{x} - m_0|}{\sigma} \sqrt{n} = \frac{9, 5 - 8}{2} \sqrt{5} = 1,68.$$

Ta thấy  $m_0 \notin W_{\alpha}$  nên giả thiết H được chấp nhận.

### 2.2 Trường hợp 2:

$$\begin{cases} \sigma^2 \text{ chưa biết} \\ n \ge 30 \end{cases}$$

Trong trường hợp này ta vẫn chọn thống kê như trên trong đó độ lệch tiêu chuẩn  $\sigma$  được thay bởi độ lệch tiêu chuẩn của mẫu ngấu nhiên S'.

$$U = \frac{(\overline{X} - m_0)}{S'} \sqrt{n}$$

Nếu H đúng thì  $U \in N(0,1)$ . Tưởng tự như trên ta có miền bác bỏ là

$$W_{\alpha} = \{u : |u| > u_{1-\frac{\alpha}{2}}\} = (-\infty; u_{1-\frac{\alpha}{2}}) \cup (u_{1-\frac{\alpha}{2}}; +\infty)$$

Lấy mẫu cụ thể và ta tính giá trị quan sát  $u_0 = \frac{|\overline{x} - m_0|}{s'} \sqrt{n}$ .

So sánh  $u_0$  và  $u_{1-\frac{\alpha}{2}}$ .

- Nếu  $u_0 > u_{1-\frac{\alpha}{2}}$   $(u_0 \in W_\alpha)$  thì bác bỏ giả thiết H và chấp nhận  $\overline{H}$ .
- Nếu  $u_0 < u_{1-\frac{\alpha}{2}}$   $(u_0 \notin W_{\alpha})$  thì chấp nhận  $H_0$ .

• Ví dụ 2 Một nhóm nghiên cứu tuyên bố rằng trung bình một người vào siêu thị X tiêu hết 140 ngàn đồng. Chọn một mẫu ngẫu nhiên gồm 50 người mua hàng, tính được số tiền trung bình họ tiêu là 154 ngàn đồng với độ lệch tiêu chuẩn điều chỉnh của mẫu là S' = 62. Với mức ý nghĩa 0,02 hãy kiểm định xem tuyên bố của nhóm nghiên cứu có đúng hay không?

Giải

Ta cần kiểm định giả thiết  $H: m = 140 \quad (\overline{H}: m \neq 140)$ 

Ta có 
$$n = 50 > 30$$
 và  $1 - \frac{\alpha}{2} = 0,99$ .

Phân ví chuẩn  $u_{0.99} = 2,33$ .

Miền bác bở  $W_{\alpha} = (-\infty; -2, 33) \cup (2, 33; +\infty)$ 

Giá trị quan sát 
$$u_0 = \frac{|\overline{x} - m_0|}{S'} \sqrt{n} = \frac{154 - 140}{62} \sqrt{50} = 1,59.$$

Ta thấy  $u_0 \notin W_{\alpha}$  nên chưa có cơ sở để loại bỏ H. Tạm thời chấp nhận rằng báo cáo của nhóm nghiên cứu là đúng.

### 2.3 Trường hợp 3:

 $\left\{ \begin{array}{l} \sigma^2 \; \text{chua biết} \\ n < 30 \; \text{và X có phân phối chuẩn} \end{array} \right.$ 

Chon thống kê

$$T = \frac{(\overline{X} - m_0)}{S'} \sqrt{n}$$

Nếu H đúng thì  $T \in T(n-1)$ 

Với mức ý nghĩa  $\alpha$  cho trước, ta xác định phân vị Student (n-1) bậc tự do mức  $1-\frac{\alpha}{2}$  là  $t_{1-\frac{\alpha}{2}}$ .

Khi đó miền bác bỏ là

$$W_{\alpha} = \{t : |t| > t_{1-\frac{\alpha}{2}}\} = (-\infty; -t_{1-\frac{\alpha}{2}}) \cup (t_{1-\frac{\alpha}{2}}; +\infty)$$

Lấy mẫu cụ thể và tính giá trị quan sát  $t_0 = \frac{|\overline{x} - m_0|}{s'} \sqrt{n}$ .

- Nếu  $t_0 > t_{1-\frac{\alpha}{2}}$   $(t_0 \in W_\alpha)$  thì bác bỏ giả thiết H và chấp nhận H.
- Nếu  $t_0 < t_{1-\frac{\alpha}{2}} \quad (t_0 \notin W_\alpha)$  thì chấp nhận H.
- Ví dụ 3 Trọng lượng của các bao gạo là đại lượng ngẫu nhiên có phân phối chuẩn với trọng lượng trung bình là 50kg. Sau một khoảng thời gian hoạt động người ta nghi ngờ trọng lượng các bao gạo có thay đổi. Cân 25 bao gạo thu được các kết quả sau

| $X(kh\acute{o}i\ lu\acute{o}ng)$ | $n_i(s\hat{o}\ bao)$ |
|----------------------------------|----------------------|
| 48 - 48, 5                       | 2                    |
| 48, 5 - 49                       | 5                    |
| 49 - 49, 5                       | 10                   |
| 49,5-50                          | 6                    |
| 50 - 50, 5                       | 2                    |

Với độ tin cậy 99%, hãy kết luận về điều nghi ngờ nói trên.

Giải

Xét giả thiết H: m = 50

$$T = \frac{(\overline{X} - 50)\sqrt{25}}{S'} \in T(24)$$

| $x_i - x_{i+1}$ | $x_i^0$ | $n_i(\hat{\text{so bao}})$ | $u_i n_i$ | $x_i^2 n_i$ |
|-----------------|---------|----------------------------|-----------|-------------|
| 48 - 48, 5      | 48,25   | 2                          | 96,5      | 4656,125    |
| 48, 5 - 49      | 48,75   | 5                          | 243,75    | 11882,812   |
| 49 - 49, 5      | 49,25   | 10                         | 492,5     | 24255,625   |
| 49,5-50         | 49,75   | 6                          | 298,5     | 14850,375   |
| 50 - 50, 5      | 50,25   | 2                          | 100,5     | 5050,125    |
| Σ               |         | 25                         | 1231,75   | 60695,062   |

Ta có 
$$1 - \alpha = 0,99 \implies 1 - \frac{\alpha}{2} = 0,995$$

Phân vị Student mức 0,995 với 24 bậc tự do là  $\,t_{1-\frac{\alpha}{2}}=u_{0,995}=2,797\,$ 

Miền bác bỏ là 
$$W_{\alpha}=(-\infty;-2,797)\cup(2,797;\infty)$$

$$\overline{x} = \frac{1231,75}{25} = 49,27.$$

$$s^2 = \frac{60695,06}{25} - (49,27)^2 = 2427, 8 - 2427, 53 = 0,27$$

$$s^{'2} = \frac{25}{24}0, 27 = 0, 2812 \implies s' = 0, 53$$

Giá trị quan sát 
$$t_0 = \frac{|(49,27-50)|\sqrt{25}}{0.53} = 6,886$$

Ta thấy  $t_0 \in W_{\alpha}$ , nên giả thiết bị bác bỏ. Vậy điều nghi ngờ là đúng.

## 3. KIỂM ĐỊNH GIẢ THIẾT VỀ TỶ LỆ

Giả sử tổng thể có hai loại phần tử có tính chất A và không có tính chất A, trong đó tỷ lệ phần tử có tính chất A là  $p_0$  chủa biết. Ta đưa ra thiết

$$H: p=p_0$$

Lập mẫu ngấu nhiên  $W_X = (X_1, X_2, \dots, X_n)$  và tính tỷ lệ f các phần tử của mấu có tính chất A.

Với mức ý nghĩa  $\alpha$  cho trước, xác định phân vị chuẩn  $u_{1-\frac{\alpha}{2}}$ . Miền bác bỏ là

$$W_{\alpha} = \{u : |u| > u_{1-\frac{\alpha}{2}}\} = (-\infty; u_{1-\frac{\alpha}{2}}) \cup (u_{1-\frac{\alpha}{2}}; +\infty)$$

Lấy mẫu cụ thể và tính giá trị quan sát  $u_0 = \frac{|f - p_0|\sqrt{n}}{\sqrt{p_0q_0}}$ 

- Nếu  $u_0 > u_{1-\frac{\alpha}{2}}$   $(u_0 \in W_\alpha)$  thì bác bỏ H và chấp nhận  $\overline{H}$ .
- Nếu  $u_0 < u_{1-\frac{\alpha}{2}}$   $(u_0 \notin W_\alpha)$  thì chấp nhận H.
- Ví dụ 4 Tỷ lệ phế phẩm ở một nhà máy cần đạt là 10%. Sau khi cải tiến, kiểm tra 400 sản phẩm thì thấy có 32 phế phẩm với độ tin cậy 99%. Hãy xét xem việc cải tiến kỹ thuật có kết quả hay không?

Giải

Ta có n = 400

Gọi p là tỷ lệ phế phẩm của nhà máy .Ta kiểm định giả thiết

$$H: p = 0, 1.$$
 (giả thiết đối  $\overline{H}: p < 0, 1$ )

Tỷ lệ phế phẩm trong 400 sản phẩm là  $f = \frac{32}{400} = 0,08$ 

Độ tin cậy 
$$1 - \alpha = 0,99$$
  $\Longrightarrow$   $1 - \frac{\alpha}{2} = 0,995$   $\Longrightarrow$   $u_{0,995} = 2,576$ 

Miền bác bỏ là  $W_{\alpha}=(-\infty;-2,576)\cup(2,576;+\infty)$ 

Giá trị quan sát 
$$u_0 = \frac{(|0,08-0,1|)\sqrt{400}}{\sqrt{0,1.0,9}} = 1,333 \notin W_{\alpha}$$
.

Do đó chấp nhận  $H_0$ .

Vậy việc cải tiến có hiệu quả.

## 4. KIỂM ĐỊNH GIẢ THIẾT VỀ PHƯƠNG SAI

Giả sử X là đại lượng ngấu nhiên có phân phối chuẩn với phương sai Var(X) chưa biết. Ta đưa ra giả thiết

$$H: Var(X) = \sigma_0^2$$

Lập mẫu ngẫu nhiên  $W_X = (X_1, X_2, \dots, X_n)$  và chọn thống kê

$$\chi^2 = \frac{(n-1)S^{'2}}{\sigma_0^2}$$

Nếu H đúng thì  $\chi^2$  có phân phối " khi—bình phương " với n-1 bậc tự do.

Với mức ý nghĩa  $\alpha$  cho trước, ta xác định các phân vị "khi—bình phương"  $\chi^2_{n-1,\frac{\alpha}{2}}$ ,  $\chi^2_{n-1,1-\frac{\alpha}{2}}$  (n-1) bậc tự do, mức  $\frac{\alpha}{2}$ ,  $1-\frac{\alpha}{2}$ . Khi đó miền bác bỏ là

$$W_{\alpha} = \{t: t < \chi^2_{n-1,\frac{\alpha}{2}} \text{ hoặc } t > \chi^2_{n-1,1-\frac{\alpha}{2}}\} = (-\infty;\chi^2_{n-1,\frac{\alpha}{2}}) \cup (\chi^2_{n-1,1-\frac{\alpha}{2}};+\infty)$$

- Nếu  $\chi_0^2 < \chi_{n-1,\frac{\alpha}{2}}^2$  hoặc  $\chi_0^2 > \chi_{n-1,1-\frac{\alpha}{2}}^2$   $(\chi_0^2 \in W_\alpha)$  thì bác bỏ H và chấp nhận  $\overline{H}$ .
- Nếu  $\chi^2_{n-1,\frac{\alpha}{2}} < \chi^2_0 < \chi^2_{n-1,1-\frac{\alpha}{2}} \ (\chi^2_0 \notin W_\alpha)$  thì chấp nhận H.
- Ví dụ 5 Nếu máy móc hoạt động bình thường thì trọng lượng của sản phẩm là đại lượng ngấu nhiên X có phân phối chuẩn với D(X) = 12. Nghi ngờ máy hoạt động không bình thường người ta cân thử 13 sản phẩm và tính được  $s'^2 = 14, 6$ . Với mức ý nghĩa  $\alpha = 0,05$ . Hãy kết luận điều nghi ngờ trên có đúng hay không?

#### Giải

Ta kiểm định giả thiết  $H: Var(X) = 12; \overline{H}: Var(X) \neq 12.$ 

Từ các số liệu của bài toán ta tìm được  $\chi_0^2 = \frac{(13-1)14,6}{12} = 14,6$ 

Với  $\alpha=0,05$ , tra bảng phân vị  $\chi^2$  với (n-1)=12 bậc tự do ta được

$$\chi_{\frac{\alpha}{2}}^2 = \chi_{0,025}^2 = 4,4$$
 và  $\chi_{1-\frac{\alpha}{2}}^2 = \chi_{0,975}^2 = 23,3$ 

Ta thấy 4, 4 < 14, 6 < 23, 3 nên chấp nhân giả thiết H.

Vậy điều nghi ngờ trên là không đúng. Máy vấn hoạt động bình thường.

## 5. KIỂM ĐỊNH MỘT PHÍA

Trong các bài toán trên ta chỉ xét giả thiết đối có dạng  $\overline{H}:\theta\neq\theta_0$ . Ta cũng có thể giải bài toán kiểm định với giả thiết đối có dạng:  $\overline{H}:\theta<\theta_0$  hoặc  $\overline{H}:\theta>\theta_0$ . Khi giải các bài toán này ta cũng áp dung các qui tắc đã được trình bày với chú ý là:

- i) Khi tính gía trị quan sát  $u_0$  (hoặc  $t_0$ ) trong các qui tắc kiểm định trên ta bỏ dấu trị tuyệt đối ở tử số và thay bằng dấu ngoặc đơn (...). Chẳng hạn  $u_0 = \frac{(\overline{x} \mu_0)}{\sigma} \sqrt{n}$ .
- ii) Nếu giả thiết đối có dạng  $\overline{H}: \theta > \theta_0$  thì ta so sánh gía trị quan sát  $u_0$  với  $u_{\gamma} = u_{1-\alpha}$  (hoặc  $t_{\gamma} = t_{1-\alpha}$ , hoặc  $\chi^2_{1-\alpha}$ ).

Nếu  $u_0 > u_\gamma$  (hoặc  $t_0 > t_\gamma, \chi_0^2 > \chi_{1-\alpha}^2$ ) thì bác bỏ H và thừa nhận H. Nếu ngược lại thì chấp nhận H.

iii) Nếu giả thiết đối có dạng  $H:\theta<\theta_0$  thì ta so sánh  $u_0$  với  $u_\gamma=-u_{1-\alpha}$ , (hoặc  $t_\gamma=-t_{1-\alpha}$ , hoặc  $\chi^2_\alpha$ ).

 Nếu  $u_0<-u_{1-\alpha}$ ; (hoặc  $t_0<-t_{1-\alpha},\chi_0^2<\chi_\alpha^2$ ) thì bác bỏ H. Nếu ngược lại thì chấp nhân H. • Ví dụ 6 Một nhà sản xuất thuốc chống dị ứng thực phẩm tuyên bố rằng 90% người dùng thuốc thấy thuốc có tác dụng trong vòng 8 giờ. Kiểm tra 200 người bị dị ứng thực phẩm thì thấy trong vòng 8 giờ thuốc làm giảm bốt dị ứng đối với 160 người. Hãy kiểm định xem lời tuyên bố trên của nhà sản xuất có đúng hay không với mức ý nghĩa  $\alpha = 0,01$ .

#### Giải

Ta đưa ra giả thiết  $H: p_0 = 0, 9 \ (\overline{H} < 0, 9)$ 

$$\alpha = 0,01 \longrightarrow 1 - \alpha = 0,99 \Longrightarrow -u_{1-\alpha} = -2,326$$

$$f = \frac{160}{200} = 0,8$$

$$u_0 = \frac{f - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n} = \frac{0, 8 - 0, 9}{\sqrt{0, 9 \times 0, 1}} \sqrt{200} = -\frac{0, 1}{0, 3}.14, 14 = -4, 75$$

Ta thấy  $u_0 < -u_{1-\alpha}$  nên bác bỏ giả thiết H.

Vậy lời tuyên bố của nhà sản xuất là không đúng sư thật.

## 6. KIỂM ĐỊNH GIẢ THIẾT VỀ SỰ BẰNG NHAU GIỮA HAI TRUNG BÌNH

Giả sử X và Y là hai đại lượng ngấu nhiên độc lập có cùng phân phối chuẩn với E(X) và E(Y) chưa biết. Ta cần kiểm định giả thiết

$$H: E(X) = E(Y) \qquad (\overline{H}: E(X) \neq E(Y))$$

Lấy mãu ngấu nhiên kích thước n đối X và mẫu ngấu nhiên kích thước m đối với Y và xét các trường hợp:

i) Trường hợp biết  $Var(x) = \sigma_x^2, Var(y) = \sigma_y^2$ 

Tính giá trị quan sát 
$$u_0 = \frac{|\overline{x} - \overline{y}|}{\sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}}}$$

ii) Trường hợp chưa  $bi\acute{e}t\ Var(X), Var(Y).$ 

Tính giá trị quan sát 
$$u_0 = \frac{|\overline{x} - \overline{y}|}{\sqrt{\frac{s_x'^2}{n} + \frac{s_y'^2}{m}}}$$
.

Với mức ý nghĩa  $\alpha$  cho trước, xác định phân vị chuẩn  $u_{1-\frac{\alpha}{2}}$ .

Ta tìm được miền bác bỏ  $W_{\alpha}=\{\,u:\,|u|>u_{1-\frac{\alpha}{2}}\,\}.$ 

So sánh  $u_0$  và  $u_{1-\frac{\alpha}{2}}$ 

\* Nếu  $u_0 > u_{1-\frac{\alpha}{2}}$  thì bác bỏ giả thiết H và thừa nhận  $\overline{H}$ .

- \* Nếu  $u_0 < u_{1-\frac{\alpha}{2}}$  thì thừa nhận H.
- Ví dụ 7 Trọng lượng sản phẩm do hai nhà máy sản xuất là các đại lượng ngấu nhiên có phân phối chuẩn và có cùng độ lệch tiêu chuẩn là  $\sigma=1kg$ . Với mức ý nghĩa  $\alpha=0,05$ , có thể xem trọng lượng trung bình của sản phẩm do hai nhà máy sản xuất là như nhau hay không? Nếu cân thử 25 sản phẩm của nhà máy A ta tính được  $\overline{x}=50kg$ , cân 20 sản phẩm của nhà máy B thì tính được  $\overline{y}=50,6kg$ .

#### Giải

Gọi trọng lượng của nhà máy A là X; trọng lượng của nhà máy B là Y thì X, Y là các đại lượng ngẫu nhiên có phân phối chuẩn với Var(X) = Var(Y) = 1.

Ta kiểm tra giả thiết  $H: E(X) = E(Y); (E(X) \neq E(Y))$ 

Với mức ý nghĩa  $\alpha = 0,05$  thì  $u_{1-\frac{\alpha}{2}} = 1,96$ .

Tính 
$$u_0 = \frac{|50-50,6|}{\sqrt{\frac{1}{25} + \frac{1}{20}}} = 2.$$

Ta thấy  $u_0 > u_{1-\frac{\alpha}{2}}$  nên bác bỏ giả thiết H, túc là trọng lượng trung bình của sản phẩm sản xuất ở hai nhà máy là khác nhau.

## 7. KIỂM ĐỊNH GIẢ THIẾT VỀ SỰ BẰNG NHAU CỦA HAI TY LỆ

Giả sử  $p_1,p_2$  tương ứng là tỷ lệ các phân tử mang dấu hiệu nào đó của tổng thể thún<br/>hất, tổng thể thú hai. Ta cân kiểm định giả thiết

$$H: p_1 = p_2 = p_0 \qquad (H: p_1 \neq p_2)$$

i) Trường hợp chưa biết  $p_0$ .

Chọn thống kê 
$$U = \frac{(P^* - p_1) - (p^* - p_2)}{\sqrt{p^*(1 - p^*)(\frac{1}{n_1} + \frac{1}{n_2})}}.$$

với 
$$p^* = \frac{n_1.f_{n_1} + n_2.f_{n_2}}{n_1 + n_2}$$
 (ước lượng hợp lý tối đa của  $p_0$ )

trong đó

 $f_{n_1}$  là tỷ lệ phần tử có dấu hiệu của mẫu thứ nhất với kích thước  $n_1$ .

 $f_{n_2}$  là tỷ lệ phần tử có dấu hiệu của mẫu thứ hai với kích thước  $n_2.$ 

Với  $n_1, n_2$  khá lớn thì U có phân phối chuẩn hóa.

ii) Trường hợp biết  $p_0$ .

Chọn thống kê 
$$U = \frac{f_{n_1} - f_{n_2}}{\sqrt{p_0(1 - p_0)(\frac{1}{n_1} + \frac{1}{n_2})}}$$

### \* Qui tắc kiểm định

Lấy hai mẫu ngẫu nhiên kích thước  $n_1, n_2$  và tính

$$u_0 = \frac{|f_{n_1} - f_{n_2}|}{\sqrt{p^*(1 - p^*)(\frac{1}{n_1} + \frac{1}{n_2})}} \qquad (p^* = \frac{n_1 \cdot f_{n_1} + n_2 \cdot f_{n_2}}{n_1 + n_2}) \quad \text{n\'eu chua bi\'et } p_0$$

hoặc

$$u_0 = \frac{|f_{n_1} - f_{n_2}|}{\sqrt{p_0(1 - p_0)(\frac{1}{n_1} + \frac{1}{n_2})}}$$
 nếu biết  $p_0$ .

Với mức ý nghĩa  $\alpha$  cho trước, xác định phân vị chuẩn  $u_{1-\frac{\alpha}{2}}.$ 

Ta tìm được miền bác bỏ  $W_{\alpha} = \{ u : |u|.u_{1-\frac{\alpha}{2}} \}.$ 

So sánh  $u_0$  và  $u_{1-\frac{\alpha}{2}}$ 

- \* Nếu  $u_0 > u_{1-\frac{\alpha}{2}}$  thì bác bỏ giả thiết H.
- \* Nếu  $u_0 < u_{1-\frac{\alpha}{2}}$  thì thừa nhận giả thiết H.
- Ví dụ 8 Kiểm tra các sản phẩm được chọn ngẫu nhiên ở hai nhà máy sản xuất ta được các số liêu sau:

| Nhà máy I | Số sản phẩm được kiểm tra | $S \hat{o} p h \hat{e} p h \hat{a} m$ |
|-----------|---------------------------|---------------------------------------|
| I         | $n_1 = 100$               | 20                                    |
| II        | $n_2 = 120$               | 36                                    |

 $V\acute{o}i$  mức ý nghĩa  $\alpha=0,01$ ; có thể coi tỷ lệ phế phẩm của hai nhà máy là như nhau không?

Giải

Gọi  $p_1, p_2$  tương ứng là tỷ lệ phế phẩm của nhà máy I, II.

Ta kiểm tra giả thiết  $H: p_1 = p_2$   $(H: p_1 \neq p_2)$ .

Với mức ý nghĩa  $\alpha = 0,01$  thì  $u_{1-\frac{\alpha}{2}} = u_{0,995} = 2,58$ .

Từ các số liệu đã cho ta có

$$f_{n_1} = \frac{20}{100} = 0, 2; f_{n_2} = \frac{36}{120} = 0, 3$$

$$p^* = \frac{100 \times 0, 2 + 120 \times 0, 3}{100 + 120} = 0, 227 \implies 1 - p^* = 0, 773$$
Do đó  $u_0 = \frac{|0, 2 - 0, 3|}{\sqrt{0, 227 \times 0, 773(\frac{1}{100} + \frac{1}{120})}} \approx 1, 763.$ 

Ta thấy  $u_0 < u_{1-\frac{\alpha}{2}}$  nên chấp nhận giả thiết H, túc là tỷ lệ phế phẩm của hai nhà máy là nhủ nhau.

## 8. KIỂM ĐỊNH GIẢ THIẾT VỀ SỰ BẰNG NHAU GIỮA HAI PHƯƠNG SAI

Giả sử X,Y là hai đại lượng ngấu nhiên độc lập có phân phối chuẩn với các tham số tưởng ứng  $\sigma_x^2,\,\sigma_y^2$  chưa biết. Ta cần kiểm định giả thiết

$$H: \ \sigma_x^2 = \sigma_y^2 \qquad (\text{giả thiết đối } \overline{H}: \sigma_x^2 \neq \sigma_y^2)$$

Lấy mẫu ngấu nhiên  $W_X = (X_1, X_2, \dots, X_n), W_Y = (Y_1, Y_2, \dots, Y_n)$  đối với X, Y.

Chọn các thống kê

$$S_x^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}$$
  $S_y^2 = \frac{\sum_{i=1}^m (Y_j - \overline{X})^2}{m-1}$ 

Ta thấy  $\frac{(n-1)S_x^2}{\sigma_x^2}$  và  $\frac{(m-1)S_y^2}{\sigma_y^2}$  là các đại lượng ngấu nhiên độc lập có phân phối  $\chi^2$  với n-1 và m-1 bậc tự do. Do đó  $\frac{S_x^2/\sigma_x^2}{S_y^2/\sigma_y^2}$  có phân phối F với các tham số n-1 và m-1.

Khi H đúng thì  $S_x^2/S_y^2 \in F_{\alpha/2,n-1,m-1}$  và có

$$P(F_{1-\alpha/2,n-1,m-1} < S_x^2/S_y^2 < F_{\alpha/2,n-1,m-1}) = 1 - \alpha$$

Ta tìm được

- \* Miền bác bỏ  $W_{\alpha} = (-\infty, F_{1-\alpha/2, n-1, m-1}) \cup (F_{\alpha/2, n-1, m-1}, +\infty).$
- \* Giá trị quan sát  $v = \frac{S_x^2}{S_x^2}$

Do đó

- Nếu  $v \in W_{\alpha}$  thì bác bỏ giả thiết H và chấp nhận  $\overline{H}$ .
- Nếu  $v \notin W_{\alpha}$  thì chấp nhận giả= thiết H.
- $\odot$  **Chú ý** Kiểm định ở trên bị ảnh hưởng bởi giá trị quan sát  $v=S_x^2/S_y^2$  và xác suất  $P(F_{n-1,m-1} < v)$  trong đó  $F_{n-1,m-1}$  là đại lượng ngấu nhiên có phân phối F với các tham số n-1,m-1. Nếu xác suất nhỏ hơn  $\frac{\alpha}{2}$  (xảy ra khi  $S_x^2$  nhỏ hơn  $S_y^2$ ) hoặc lớn hơn  $1-\alpha/2$  (xảy ra khi  $S_x^2$  lớn hơn  $S_y^2$ ) thì giả thiết bị từ chối.

Nếu đặt

$$p - \text{giá tri} = 2 \min[P(F_{n-1,m-1 < v}), 1 - P(F_{n-1,m-1})]$$

thì giả thiết bị từ chối khi mức ý nghĩa  $\alpha$  t lớn hơn p-giá trị.

• Ví dụ 9 Có hai cách chọn chất xúc tác khác nhau để kích thích một phản ứng hóa học. Để kiểm định phương sai sản sinh ra có giống nhau hay không người ta lấy mẫu gồm 10 nhóm dùng cho chất xúc tác thứ nhất và 12 nhóm dùng cho chất xúc tác thứ hai.

 $D\tilde{u}$  liệu cho kết quả  $S_1^2=0,14$  và  $S_2^2=0,28$ . Với mức ý nghĩa 5%, hãy kiểm định giả thiết trên.

Giải

Ta cần kiểm định giả thiết  $H: \sigma_1^2 = \sigma_2^2$ .

Ta có 
$$v = \frac{S_1^2}{S_2^2} = \frac{0.14}{0.28} = 0,5$$
 và  $P(F_{9,11<0,5}) = 0,1539$ .

Do đó p-giá trị =  $2 \min(0, 1539; 0, 8461) = 0, 3074$ .

Ta thấy  $\alpha=0,05 < p-$ giá trịnên giả thiết về sự bằng nhau của hai phương sai được chấp nhân.

## 9. BÀI TẬP

- 1. Độ bền của một loại dây thép sản xuất theo công nghệ cũ là 150. Sau khi cải tiến kỹ thuật người ta lấy mẫu gồm 100 sợi dây thép để thủ độ bền thì thấy độ bền trung bình là 185 và s=25. Với mức ý nghĩa  $\alpha=0,05$ , hỏi công nghệ mới có tốt hơn công nghệ cũ hay không?
- 2. Độ dày của một chi tiết mấy do một máy sản xuất là một đại lượng ngấu nhiên phân phối theo qui luật chuẩn với độ dày trung bìng 1,25mm. Nghi ngờ máy hoạt động không bình thường người ta kiểm tra 10 chi tiết máy thì thấy độ dài trung bình là 1,325 với độ lệch tiêu chuẩn 0,075mm. Với mức ý nghĩa  $\alpha=0,01$ , hãy kết luận về điều nghi ngờ nói trên?
- 3. Trọng lượng của một loại sản phẩm do một nhà máy sản xuất là đại lượng ngấu nhiên phân phối theo qui luật chuẩn với trọng lượng trung bình là 500 gr. Nghi ngờ trọng lượng của loại sản phẩm này có xu hướng giảm sút, người ta cân thử 25 sản phẩm và thu được kết quả cho ở bảng sau:

| Trọng lượng (gr) | 480 | 485 | 490 | 495 | 500 | 510 |
|------------------|-----|-----|-----|-----|-----|-----|
| Số sản phẩm      | 2   | 3   | 8   | 5   | 3   | 4   |

Với mức ý nghĩa  $\alpha=0,05$ , hãy kết luận về điều nghi ngờ nói trên?

4. Năng suất lúa trung bình trong vụ trước là 4,5 tấn/ha. Vụ lúa năm nay người ta áp dụng một biện pháp kỹ thuật mối cho toàn bộ diện tích trồng lúa ở trong vùng. Theo dõi năng suất lúa ở 100 hecta ta có bảng số liệu sau:

| Năng suất (tạ/ha) | Diện tích (ha) |
|-------------------|----------------|
| 30 - 35           | 7              |
| 35 - 40           | 12             |
| 40 - 45           | 18             |
| 45 - 50           | 27             |
| 50 - 55           | 20             |
| 55 - 60           | 8              |
| 60 - 65           | 5              |
| 65 - 70           | 3              |

Hãy cho kết luận về biện pháp kỹ thuật mới này?

- 5. Tuổi thọ trung bình của một mẫu gồm 100 bóng đèn được sản xuất ở một nhà máy là 1570 giờ với độ lệch tiêu chuẩn 120 giờ. Gọi  $\mu$  là tuổi thọ trung bình của tất cả bóng đèn nhà máy sản xuất ra. Với mức ý nghĩa  $\alpha=0,05$ , hãy kiểm tra giả thiết  $H_0: \mu=1600$  giờ với giả thiết đối  $H_1: \mu<1600$  giờ.
- 6. Một hãng dược phẩm sản xuất một loại thuốc trị dị ứng thực phẩm tuyên bố rằng thuốc có tác dụng giảm dị ứng trong 8 giờ đối với 90% người dùng. Kiểm tra 200 người bị dị ứng dùng thì thấy thuốc có tác dụng đối với 160 người . Với mức ý nghĩa  $\alpha=0,01$ , kiểm tra xem lời tuyên bố trên có đúng không?
- 7. Tỷ lệ phế phẩm của một nhà máy trước đây là 5%. Năm nay nhà máy áp dụng một biện pháp kỹ thuật mới. Để xem biện pháp kỹ thuật mới có tác dụng làm giảm tỷ lệ phế phẩm của nhà máy hay không, người ta lấy một mẫu gồm 800 sản phẩm để kiểm tra và thấy có 24 phế phẩm trong mẫu này.
  - a) Với mức ý nghĩa  $\alpha=0,01$ , hãy cho kết luận về biện pháp kỹ thuật mới đó?
  - b) Nếu nhà máy báo cáo tỷ lệ phế phẩm sau khi áp dụng biện pháp kỹ thuật mới đã giảm xuống 2% (vơs i múc ý nghĩa  $\alpha=0,05$ ) thì có chấp nhận được không?
- 8. Giám đốc một nhà máy tuyên bố 90% máy móc của nhà máy đạt tiêu chuẩn kỹ thuật quốc tế. Người ta tiến hành kiểm tra 200 máy thì thấy có 168 máy đạt tiêu chuẩn kỹ thuật quốc tế. Với mức ý nghĩa  $\alpha=0,05$ , hãy kết luận về lời tuyên bố trên?
- 9. Nếu máy móc làm việc bình thường thì kích thước của một loại sản phẩm là đại lượng ngẫu nhiên phân phối theo qui luật chuẩn với Var(X)=0,25. Nghi ngờ máy làm việc không bình thường, người ta tiến hành đo thử 28 sản phẩm và thu được kết quả cho ở bảng sau:

| Kích thước (cm) | 19,0 | 19,5 | 19,8 | 20,4 | 20,6 |
|-----------------|------|------|------|------|------|
| Số sản phẩm     | 2    | 4    | 5    | 12   | 5    |

Với mức ý nghĩa  $\alpha = 0,02$ , hãy kết luân về điều nghi ngờ nói trên?

- 10. Trọng lượng của gói hàng được đóng bao bởi một máy trước đây là 1135 gram với độ lệch tiêu chuẩn là 7,1 gram. Nghi ngờ máy hoạt động không tốt, người ta tiên hành kiểm tra 20 gói hàng thì thấy độ lệch tiêu chuẩn là 9,1 gram. Với mức ý nghĩa  $\alpha=0,05$ , hãy kiểm tra giả thiết ( $H_0:\sigma=7,1$  gram) với giả thiết đối ( $H_1:\sigma>7,1$  gram).
- 11. Theo dõi số tai nạn lao động của hai phân xưởng, ta có số liệu sau: phân xưởng I: 20/200 công nhân, phân xưởng II: 120/800 công nhân. Với mức ý nghĩa  $\alpha=0,005$  hỏi có sự khác nhau đáng kể về chất lượng công tác bảo hộ lao động ở hai phân xưởng trên hay không?
- 12. Để nghiên cứu ảnh hưởng của một loại thuốc, người ta cho 10 bệnh nhân uống thuốc. Lần khác họ cũng cho bệnh nhân uống thuốc nhưng là thuốc giả (thuốc không có tác dụng). Kết quả thí nghiệm thu được như sau:

| Bệnh nhân                | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Số giờ ngủ có thuốc      | 6,1 | 7,0 | 8,2 | 7,6 | 6,5 | 8,4 | 6,9 | 6,7 | 7,4 | 5,8 |
| Số giờ ngủ với thuốc giả | 5,2 | 7,9 | 3,9 | 4,7 | 5,3 | 5,4 | 4,2 | 6,1 | 3,8 | 6,3 |

Giả sử số giờ ngủ của các bệnh nhân có qui luật chuẩn. Với mức ý nghĩa  $\alpha=0,05$ , hãy kết luận về ảnh hưởng của loại thuốc ngủ trên?

### TRẢ LỜI BÀI TẬP

- 1.  $u_0 = 14 > 1,645$  nên việc cải tiến kỹ thuật là có hiệu quả.
- **2.** Vì  $u_0 = 3 < 3,25$  nên điều nghi ngờ trên là sai.
- 3.  $t_0 = 3,37$ . Điều nghi ngờ là đúng.
- 4. Biện pháp kỹ thuật mới có tác dụng làm tăng năng suất lúa trung bình của toàn vùng.
  - 5. Vì  $u_0 = -2, 5 < -1,645$  nên bác bỏ  $H_0$ .
  - **6.**  $u_0 = 4,73$ . Lời tuyên bố không đúng.
  - 8. Lời tuyên bố là sai.
  - 9. Nghi ngờ sai. Máy làm việc bình thường.
  - 10.  $\chi_0^2 = 32,86 > 30,1$  nên bác bỏ  $H_0$ .
- **11.** Do 1,82 < 1,96 nên không có cơ sở cho rằng sự khác biệt đáng kể về chất lượng công tác bảo hộ lao động ở hai phân xưởng.
  - 12. Loại thuốc ngủ trên có tác dụng.