Linear Methods

Shyue Ping Ong

University of California, San Diego

NANO281

Overview

- Preliminaries
- 2 Linear regression
- Model selection
- Beyond least squares
 - Subset selection
 - Shrinkage
 - Derived input directions

Preliminaries

- We will go very deep into linear models.
- Most of you probably have seen linear models in some form, but we will start from scratch to further illustrate key concepts such as bias and variance.
- We will then discuss techniques such as regularization and transformation of inputs in the context of linear methods.

Notation

- Capital letters, e.g., X denote variables.
- Lower-case letters e.g., x, denote observations.
- Dummy index j to denotes different variables, e.g., X_j
- Dummy index i to denotes different observations, e.g., x_i
- Bolded variables are vector/matrices, e.g., y, X

Linear Regression

Linear Regression

Simplest possible model between target and feature

$$Y = f(X_1, X_2, ..., X_p) = \beta_0 + \sum_{j=1}^p \beta_j X_j$$

X_j can be:

- Quantitative inputs
- Transformations of quantitative inputs, e.g., log, exp, powers, etc. Basis expansions, e.g., $X_2 = X_1^2$, $X_3 = X_1^3$
- Interactions between variables
- Encoding of levels of inputs

Supervised learning

- Given a set of paired observations $\{x_{ij}, y_i\}$, what are the model parameters (in this case, the coefficients β_i) that are "optimal"?
- "Optimal" is typically defined as minimization of some loss function (also known as cost function) that measures the error of the model.

Least squares regression

Consider the simple case of

$$Y = \beta_0 + \beta_1 X_1$$

In least squares regression, the loss function is defined as the sum squared error given the N observations:

$$L(Y, \hat{f}(X)) = \sum_{i=1}^{N} (y_i - f(x_i))^2$$
$$= \sum_{i=1}^{N} (y_i - \beta_0 - \beta_1 x_{i1})^2$$

What are the optimal parameters β_0 and β_1 ?

Derivation in class...

Considering N observations of

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

Let

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_p \end{pmatrix}, \mathbf{X} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & & & & \\ 1 & x_{N1} & x_{N2} & \dots & x_{Np} \end{pmatrix},$$

So,

$$y = X\beta$$

Note that **y** is a $N \times 1$ vector, $\boldsymbol{\beta}$ is a $(p+1) \times 1$ vector, and **X** is a $N \times (p+1)$ matrix.

Reformulating the general multiple linear regression as a vector equation. . .

$$L = RSS = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

Assuming (for the moment) that \mathbf{X} has full column rank, and hence $\mathbf{X}^T\mathbf{X}$ is positive definite, It can be shown using the same principles that the following unique solution for $\boldsymbol{\beta}$ is:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$\hat{\mathbf{y}} = \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Graphic representation of MLR with two dependent variables

Figure: MLR minimizes sum square of residuals. The projection $\hat{\mathbf{y}}$ represents the vector of the least squares predictions onto the hyperplane spanned by the input vectors $\mathbf{x_1}$ and $\mathbf{x_2}$. [1].

- Observations are independently drawn at random.
- Variance of **y** is constant given by σ^2 .

$$\operatorname{var}(\hat{\boldsymbol{\beta}}) = (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2$$

ullet and σ is estimated using:

$$\sigma^2 = \frac{1}{N - p - 1} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Hypothesis Testing for Coefficients

- To derive insights into a model, we often want to know which of the input parameters are the most relevant to the target.
- Under assumptions of the errors in y follow a Gaussian distribution $N(0, \sigma^2)$, the errors in $\hat{\beta}$ also have a Gaussian distribution $N(\beta, (\mathbf{X}^T\mathbf{X})^{-1}\sigma^2)$
- Hypothesis testing can be carried out for whether a particular β_j is 0 using the following test statistic:

$$t_j = \frac{\hat{\beta}_j}{\sigma \sqrt{\mathsf{v}_j}}$$

where v_j is the *j*th diagonal element of $(\mathbf{X}^T\mathbf{X})^{-1}$. t_j has a t distribution with N-p-1 degrees of freedom (dof).

Hypothesis Testing for Groups of Coefficients

- More often, we want to test groups of coefficient for significance.
 E.g., to the k levels of a categorical variable.
- We will use the following *F* statistic:

$$F = \frac{(\text{RSS}_0 - \text{RSS}_1)/(p_1 - p_0)}{\text{RSS}_1/(N - p_1 - 1)}$$

where RSS_0 is the RSS of the larger model with p_0+1 parameters and RSS_1 is the RSS of the smaller model with p_1+1 parameters with p_0-p_1 parameters set to zero. The F statistic has a distribution of $F_{p_1-p_0,N-p_1-1}$.

Gauss-Markov Theorem

• Consider the estimator $\hat{\theta}$ for a variable θ .

MSE =
$$E(\hat{\theta} - \theta)^2$$

= $var(\hat{\theta}) + [E(\hat{\theta}) - \theta]^2$

• The MSE can be broken down into the variance of the estimate itself and the square of the bias.

Gauss-Markov Theorem

The least squares estimator has the smallest variance among all linear *unbiased* estimators.

• However, there can be estimators that are biased with smaller MSE.

Example materials data

- Target: Bulk modulus of elements (from Materials Project)
- Candidate features:
 - Melting point (MP)
 - Boiling point (MP)
 - Atomic number (Z)
 - Electronegativity (χ)
 - Atomic radius (r)
- Question: Why these features?
- We will add some transformations of these inputs as well, i.e., the square and square root of the electronegativity and atomic radius.


```
import pandas as pd
# Read in data and set first column as index.
data = pd.read_csv("element_data.csv", index_col=0)
# Generate transformations as additional columns.
data["X^2"] = data["X"] ** 2
data["sqrt(X)"] = data["X"] ** 0.5
data["r^2"] = data["r"] ** 2
data["sqrt(r)"] = data["r"] ** 0.5
# Define our features, which is all the columns
# excluding K, which is the target.
features = [c for c in data.columns if c != "K"]
x = data[features]
y = data["K"]
```

Recommendation: Go through the 10 minute guide to pandas.

MLR in scikit-learn

```
from sklearn import linear_model
reg = linear_model.LinearRegression()
reg.fit(x, y)
print(ref.coef_)
print(reg.intercept_)
```

- Note that x should contain the features only there is no need to add a 1 column for the intercept. By default, the parameter fit_intercept in sklearn.linear_model.LinearRegression is True. You can set it to False to do a MLR without intercept.
- Documentation: link.

Model selection

Model selection

Model performance

- We will take a brief digression into model assessment and selection before continuing on to other linear methods.
- Model performance is related to its performance on independent test data, i.e., one cannot simply report a model's performance on training data alone.
- Note that this section is deliberately limited to high level concepts that are needed to continue further in exploration of linear methods.
 A more detailed discussion will be performed in later lectures.

Typical measures of model performance

Mean squared error (MSE):

$$L(Y, \hat{f}(X)) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2$$

Mean absolute error (MAE):

$$L(Y, \hat{f}(X)) = \frac{1}{N} \sum_{i=1}^{N} |y_i - f(x_i)|$$

- Test error: *L* over independent test set.
- Training error: *L* over training set.

Training and test errors with model complexity

- Model complexity increases as the number of parameters increases (e.g., number of independent variables in MLR).
- Training errors always decrease with increasing model complexity.
- However, test errors do not have a monotonic relationship with model complexity. Test errors are high when model complexity is too low (underfitting) or too high (overfitting).

Training, validation and test data

- Model selection: estimating the performance of different models in order to choose the best one.
- Model assessment: having chosen a final model, estimating its prediction error (generalization error) on new data.
- Ideal data-rich situation: Divide data into three parts:
 - Training set: For training the model.
 - Validation set: For estimating prediction error to select the model.
 - Test set: For assessing the generalization error of the final model.
- Typical training:validation:test split is 50:25:25 or 80:10:10, or in very data-poor situations, maybe even 90:5:5.
- Note that at no point in the model fitting process should the test set be "seen".

K-fold cross validation (CV)

- Simplest and most widely used approach for model validation.
- Data set is split into *K* buckets (usually by random).
- Typical values of K is 5 or 10. K = N is known as "leave-one-out" CV.

Train Train Validate Train Train

 CV score is computed on the validate data set after training on the train data:

$$CV(\hat{f}^{-k(i)}, \alpha) = \frac{1}{N_{k(i)}} \sum_{i=1}^{N_{k(i)}} L(y_i, \hat{f}^{-k(i)}(x_i, \alpha))$$

• assuming the k^{th} data bucket has $N_{k(i)}$ data points and $\hat{f}^{-k(i)}$ refers to the model fitted with the k^{th} data left out $(N - N_{k(i)})$ data in fitting).

CV in scikit-learn

```
from sklearn.model_selection import cross_validate, KFold
kfold = KFold(n_splits=5, shuffle=True, random_state=42)
cv_results = cross_validate(ridge, z, y, cv=kfold)
```

- Note that we have customized the KFold object passed to the cross_validate method. The reason is that our element data is non-random by default. So we want to perform shuffling prior to doing the splits.
- Documentation: link.

Model selection

Characteristics of the example materials dataset

- Before proceeding further, let us try to tease out some aspects of the dataset.
- Quite clearly, there are correlations between some sets of variables.
- In other words, the input features are non-orthonormal with each other.

Demo

Notebook Binder

Beyond least squares

Beyond least squares

Model selection

- Often, we want to improve on the least squares model.
 - To improve prediction accuracy by sacrificing some bias for reduced variance.
 - To improve interpretability by reducing number of features or descriptors.
- Three main approaches:
 - Subset selection
 - Shrinkage methods
 - Oimension reduction

Subset selection

Best subset selection

- Brute force approach.
- From *p* parameters, find the subset of *k* parameters that results in the smallest RSS.
- Combinatorially expensive for large p and large k.
- Note that the best subset for a larger k does not necessarily include the best subset for a smaller k.

Forward- or backward-stepwise selection

- Forward: Start with intercept, and iteratively add feature that most improves the fit.
- Backward: Start with full model, and sequentially deletes the feature with least impact on the fit.

Demo

Notebook Binder

Shrinkage methods

- Subset methods is discrete, i.e., retains/discards variables, and tends to exhibit high variance.
- Shrinkage methods are more continuous and do not suffer as much from high variability.
- Basic concept: instead of finding the parameters that minimizes the RSS only, we add a penalty term that penalizes more complex models, e.g., models with larger coefficients or larger number of coefficients. This "shrinks" the coefficients, in some cases, to 0.

Ridge regression (L_2 regularization)

$$\beta^{\hat{ridge}} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

- $\lambda \geq 0$ is the shrinkage parameter. The larger the λ , the greater the shrinkage.
- Also equivalent to:

$$\begin{split} \beta^{\hat{ridge}} &= \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_j)^2 \\ &\quad \operatorname{subject\ to} \sum_{j=1}^{p} \beta_j^2 \leq t \end{split}$$

Ridge regression - Key details

- Intercept (β_0) is not part of penalty term.
- Inputs should be scaled prior to performing ridge regression, typically by centering to the mean and scaling to unit variance:

$$z_j = \frac{x_j - \mu_{x_j}}{s_{x_j}}$$

Demo

Notebook Binder

LASSO (L_1 regularization)

$$\beta^{L\widehat{ASSO}} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

- Least Absolute Shrinkage and Selection Operator
- $\lambda \ge 0$ is the shrinkage parameter. The larger the λ , the greater the shrinkage.
- Also equivalent to:

$$\beta^{L\hat{ASSO}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_j)^2$$

$$\text{subject to } \sum_{i=1}^{p} |\beta_i| \le t$$

LASSO regression - Key details

- Intercept (β_0) is not part of penalty term.
- Inputs should be scaled prior to performing lasso regression, just as in ridge regression.

Demo

Notebook Binder

Subset vs ridge vs LASSO

- Consider a set of orthonormal features.
 - Ridge: proportional shrinkage. No coefficients are set to zero.
 - LASSO: "soft" thresholding. Translates coefficients by a factor, truncating at zero.
 - Best-subset: "hard" thresholding. Drops all coefficients below a certain threshold.

Other variants of shrinkage methods

• Elastic net penalty:

$$\lambda \left(\alpha \sum_{j=1}^{p} \beta_j^2 + (1 - \alpha) \sum_{j=1}^{p} |\beta_j| \right)$$

Least angle regression

Derived input directions

- \bullet General concept: transforms input \boldsymbol{X} into a smaller subset of $\boldsymbol{z_m}$ and regress on $\boldsymbol{z_m}$
- Principal component regression:
 - Transform non-orthonormal features into orthonormal directions using Principal Component Analysis (PCA).
 - Choose M directions that have the highest eigenvalues (explains the most variance) and discards the rest.
 - Will revisit at a later lecture.

Partial Least Squares (PLS)

- Algorithm:
 - ① Compute $\phi_{1i} = \langle \mathbf{x_j}, \mathbf{y} \rangle$ for each j.
 - ② First transformed direction $\mathbf{z_1} = \sum_j \phi_{1i} \mathbf{x_j}$, i.e., each direction is weighted by strength of effect on \mathbf{y} .
 - **3** Regress **y** on $\mathbf{z_1}$ to obtain θ_1 , orthogonalize $\mathbf{x_1}, ... \mathbf{x_p}$ wrt $\mathbf{z_1}$ via $x_j' = x_j \frac{\langle \mathbf{z_1}, \mathbf{x_j} \rangle}{\langle \mathbf{z_1}, \mathbf{z_1} \rangle} \mathbf{z_1}$.
 - **1** Repeat until $M \le p$ coefficients are obtained.
- Finds directions with high variance and high correlation with response.

Bibliography

Trevor Hastie, Robert Tibshirani, and Jerome Friedman.

The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition.

Springer, New York, NY, 2nd edition edition, 2016.

The End