	Uttech
Name:	(4)
Roll No.:	The Description and Explana
Invigilator's Signature :	

ANIMAL CELL & CULTURE AND MOLECULAR MODELING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following : $10 \times 1 = 10$
 - i) Harrison used cold blooded animal tissue for his first attempt towards cell culture due to
 - a) low incubation temperature
 - b) serum free culture conditions
 - c) easy availability
 - d) inexpensiveness.

SS-305 Turn over

- c) Integrin
- d) Transmembrane glycoprotein.
- iii) Which one of the following component is more stable and can serve to be a potential substitute for glutamine in cell culture media following autoclaving and long term media storage?
 - a) Glycylglutamine b) Valine
 - c) Proline d) Glutamate.
- iv) Prions can be removed from cell culture media by using virus filters having pore size of
 - a) $0.1~\mu m$ b) $0.4~\mu m$
 - c) 0·2 μm d) 15 nm.
- v) For insect cell culture one of the popular basal media is
 - a) BME b) IMDM
 - c) TC199 d) Schneider's medium.

	(S/B. Tech(BT)/SEP. S	UPPI	LE/ SE		Ulech	
vi)	One	example of balance	d sa	alt so		which can	
	maintain the desired pH when equilibrated with air						
	a)	EBSS	b)	НВ	SS		
	c)	ESSS	d)	PBS	S.		
vii)	Selection of cell fusion hybrid cells after a (rodent a human) fusion can be achieved by						
	a)	HGPRT	b)	TK			
	c)	PEG	d)	Oua	abain.		
viii)	Whi	ch of the following	is	true	about	secondary	
	stru	cture prediction ?					
	a)	Chow-Fasman	b)	PAN	М		
	c)	BLOSUM	d)	PSS	SM.		
ix)	То р	oredict 3D structure fr	om s	seque	nce in t	he absence	
	of ho	omology is					
	a)	Homology modeling					
	b) Ab-initio structure modeling						
	c)	Threading					

d) Model verification.

- x) QSAR stands for
 - a) Quality Structure Activity Relationship
 - b) Quality Structure Accessory Relationship
 - c) Quantitative Secondary Activity Relationship
 - d) Quantitative Structure Activity Relationship.
- xi) Which of the following database can be used to access protein domain information?
 - a) Prosite
 - b) DDBJ
 - c) Sanger
 - d) Kegg.
- xii) Databases such as CATH and SCOP are used to identify
 - a) the structural family to which a protein belongs
 - b) the genic family to which a protein belongs
 - c) homologous proteins
 - d) analogous proteins.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

- $3 \times 5 = 15$
- 2. How one can grow cells in glass bead bed bioreactor?
- 3. What are the advantages of porous carries compared to solid carriers?
- 4. Write short notes on the following:

3 + 2

- a) Mycoplasma
- b) Lipofection.
- 5. Describe Linear Free Energy Relationship developed by Hammett.
- 6. What are the three main components of tissue engineering?

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

- $3 \times 15 = 45$
- 7. a) In a conformational energy calculation, what are the two types of interaction between molecules ?
 - b) How are conformational coordinates of a protein specified?
 - c) Write out the quantitative expressions for 6 terms that are used in the evaluation of the energy of a specific protein conformation.
 - d) What role do solvent interactions play in protein structure stabilization ? How is the solvent modelled in molecular modelling ? 3+3+5+4

SS-305 5 Turn over

- 8. a) What are the different types of methods used for disaggregation fo animal tissue or orgin fragment?

 What are different enzymes used for disaggregation of animal tissue or organ fragment?
 - b) Describe briefly the procedure involved in warm and cold trypsinisation for the preparation of primary culture from animal tissue or organ fragment.
 - c) Write three important advantages of cold trypsinisation. 5 + 7 + 3
- 9. a) How animal cells are stored in the laboratory?
 - b) Discuss the method for thawing and recovering animal cells from a frozen sample.
 - c) How you can determine the viability and cell number using hemocytometer and trypan blue staining?

4 + 5 + 6

- 10. Some animal cells are immobilized in a microcarrier beads of sephadex of 8 mm diameter with cells loading of 0.018 kg/m 3 . 100 such cells are introduced in a 1.5 I CSTR stirred at 20 rpm. The kinetics of the system can be approximated as first order of 3.11 × 10 5 sec $^{-1}$ per kg cell mass:
 - a) What is the feed rate of substrate (So = 3.2×10^{-3} kg/m 3) for 80% conversion of the substrate ?
 - b) If the diffusivity of substrate the beads is $De=2.1~\times~10^{-9}~m^{2}/s, \text{ what is the value of Thiele}$ parameter, ϕ ? Comment on the intra particle diffusion effect in the system. 10+5

11. Can you use methylene blue instead of trypan blue for counting viable cells ? Why ? What is 'Colony Forming Efficiency' ? What steps would you take for the development of a new drug ? 1 + 3 + 2 + 9

SS-305 7 [Turn over