1.	In logistic regression given ${\bf x}$ and parameters $w\in \mathbb{R}^{n_x}, b\in \mathbb{R}.$ Which of the following best expresses what we want \hat{y} to tell us?
	$\int \sigma(W \mathbf{x} + b)$
	$\bigcirc \ \sigma(W \mathbf{x})$
	$igcap P(y=\hat{y} \mathbf{x})$
	\bigcirc Correct Yes. We want the output \hat{y} to tell us the probability that $y=1$ given ${f x}.$
2	. Suppose that $\hat{y}=0.5$ and $y=0$. What is the value of the "Logistic Loss"? Choose the best option.
	\bigcirc $+\infty$
	$\mathcal{L}(\hat{y}, y) = -\left(y \log \hat{y} + (1 - y) \log(1 - \hat{y})\right)$
	O 0.5
	0.693
3	3. Consider the Numpy array x :
	x = np.array([[[1], [2]], [[3], [4]]])
	What is the shape of x?
	(1, 2, 2)
	(2,2,1)
	O (4,)
	(2, 2)
	 Correct Yes. This array has two rows and in each row it has 2 arrays of 1x1.
4.	Consider the following random arrays a and b , and c :
	$a = np.random.randn(2,3) \ \# \ a.shape = (2,3)$
	b = np.random.randn(2,1) # b.shape = (2,1)
	c = a + b
	What will be the shape of c ?
	c.shape = (2, 3)
	The computation cannot happen because the sizes don't match. It's going to be "Error"!
	C.shape = (2, 1)
	c.shape = (3, 2)
	Correct Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column of a.

5.	Consider the two following random arrays a and b :	
	$a = np.random.randn(4,3) \ \# \ a.shape = (4,3)$	
	$b = np.random.randn(3,2) \ \# \ b.shape = (3,2)$	
	c = a * b	
	What will be the shape of c ?	
	C.shape = (4, 3)	
	C.shape = (4,2)	
	C.shape = (3, 3)	
	The computation cannot happen because the sizes don't match. It's going to be "Error"!	
6.	\bigcirc Correct Indeed! In numpy the "*" operator indicates element-wise multiplication. It is different from "np.dot()". If you would try "c = np.dot(a,b)" you would get c.shape = (4, 2). Suppose you have n_x input features per example. Recall that $X = [x^{(1)}x^{(2)}x^{(m)}]$. What is the dimension of X?	
	$\bigcap (m, n_x)$	
	$left(n_x,m)$	
	\bigcap $(m,1)$	
	$\bigcirc \ (1,m)$	
	⊘ Correct	
7.	Consider the following array:	
	$a=np.array \big([[2,1],[1,3]]\big)$	
	What is the result of $a*a$?	
	The computation cannot happen because the sizes don't match. It's going to be an "Error"!	
	$\bigcirc \begin{pmatrix} 4 & 1 \\ 1 & 9 \end{pmatrix}$	
	$O\begin{pmatrix} 4 & 2 \\ 2 & 6 \end{pmatrix}$	
	$ \bigcirc \begin{pmatrix} 5 & 5 \\ 5 & 10 \end{pmatrix} $	
8.C	onsider the following code snippet:	
a.s	hape = $(3, 4)$ a.shape= $(3, 4)$	
b.s	shape = $(4, 1)$ b. shape= $(4, 1)$	
for i in range(3):		
for j in range(4):		
c[i][j] = a[i][j]*b[j]	

How do you vectorize this?

- \bigcirc c = a.T*b
- O c = a*b
- \bigcirc c = a*b.T
- \bigcirc c = np.dot(a,b)

⊘ Correct

Yes. b.T gives a column vector with shape (1, 4). The result of c is equivalent to broadcasting a*b.T.

Consider the following arrays:

&a = np.array([[1, 1], [1, -1]])\$\$

$$b = np.array([[2],[3]])$$

$$c = a + b$$

Which of the following arrays is stored in c?

- The computation cannot happen because the sizes don't match. It's going to be an "Error"!
- $\begin{pmatrix}
 3 & 3 \\
 3 & 1 \\
 4 & 4 \\
 5 & 2
 \end{pmatrix}$

correct
 Yes. The array b is a column vector. This is copied two times and added to the array a to construct the array
 Consider the following computational graph.

What is the output of J?

- $\bigcirc (a-1)(b+c)$
- $\bigcirc \ \left(a+c\right)\left(b-1\right)$
- $\bigcirc (c-1)(a+c)$
- $\bigcirc ab + bc + ac$

 $\text{Yes. }J=u-v+w=ab-\left(a+c\right)+bc=ab-a+bc-c=a\left(b-1\right)+c\left(b-1\right)=\left(a+c\right)\left(b-1\right)$