HANGUERA EDUCACIONAL

Lista de exercícios: MATEMÁTICA APLICADA II - VETORES Cursos: CIÊNCIA DA COMPUTAÇÃO - Professora: Thabata Martins

PRODUTO ESCALAR

1) Dados os vetores $\vec{u} = (2, -3, -1) e \vec{v} = (1, -1, 4)$, calcular

a) $2\vec{u} \cdot (-\vec{v})$

c) $(\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} - \overrightarrow{v})$

b) $(\vec{u} + 3\vec{v}) \cdot (\vec{v} - 2\vec{u})$

- d) $(\vec{u} + \vec{v}) \cdot (\vec{v} \vec{u})$
- 2) Sejam os vetores $\vec{u} = (2, a, -1), \vec{v} = (3, 1, -2) e \vec{w} = (2a 1, -2, 4)$. Determinar a de modo que \overrightarrow{u} . $\overrightarrow{v} = (\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{v} + \overrightarrow{w})$.
- 3) Dados os pontos A (4, 0, -1), B (2, -2, 1) e C (1, 3, 2) e os vetores $\vec{u} = (2, 1, 1)$ e $\vec{v} = (-1, -2, 3)$, obter o vetor \vec{x} tal que

a) $3\vec{x} + 2\vec{v} = \vec{x} + (\overrightarrow{AB}, \vec{u})\vec{v}$

b) $(\overrightarrow{BC}, \overrightarrow{v}) \overrightarrow{x} = (\overrightarrow{u}, \overrightarrow{v}) \overrightarrow{v} - 3\overrightarrow{x}$

Provar que os pontos A(-1, 2, 3), B(-3, 6, 0) e C(-4, 7, 2) são vértices de um triângulo retângulo. 4)

PRODUTO VETORIAL

1) Se $\vec{i} = 3\vec{i} - \vec{j} - 2\vec{k}$, $\vec{v} = 2\vec{i} + 4\vec{j} - \vec{k}$ e $\vec{w} = -\vec{i} + \vec{k}$, determinar

a) lu x u l

e) $(\vec{u} - \vec{v}) \times \vec{w}$

b) $(2\overrightarrow{v}) \times (3\overrightarrow{v})$ f) $(\overrightarrow{u} \times \overrightarrow{v}) \times \overrightarrow{w}$ c) $(\overrightarrow{u} \times \overrightarrow{w}) + (\overrightarrow{w} \times \overrightarrow{u})$ g) $\overrightarrow{u} \times (\overrightarrow{v} \times \overrightarrow{w})$

d) $(\vec{u} \times \vec{v}) \times (\vec{v} \times \vec{u})$ h) $\vec{u} \times (\vec{v} + \vec{w})$

- 2) Dados os vetores $\vec{u} = (-1,3,2), \vec{v} = (1,5,-2)$ e $\vec{w} = (-7,3,1)$. Calcule as coordenadas dos vetores:

a) $\vec{u} \times \vec{v}$

b)
$$\vec{V} \times \vec{W}$$

c)
$$\vec{V} \times (\vec{u} \times \vec{W})$$

d) $(\vec{v} \times \vec{u}) \times \vec{w}$

$$e)(\vec{u} + \vec{v}) \times (\vec{u} + \vec{w})$$

f)
$$(\vec{u} - \vec{w}) \times \vec{w}$$

- 3) Determine um vetor unitário ortogonal aos vetores $\vec{V}_1 = (-1, -1, 0)$ e $\vec{V}_2 = (0, -1, -1)$.
- 4) Dados os vetores $\vec{u} = (3, -1, 2)$ e $\vec{v} = (-2, 2, 1)$, calcular
 - a) a área do paralelogramo determinado por u e v;
- 5) Dados os vetores $\vec{u} = (1, -1, 1)$ e $\vec{v} = (2, -3, 4)$, calcular
 - a) a área do paralelogramo determinado por u e v;
 - b) A área do triângulo formado por \vec{u} e \vec{v} .

- Sejam os vetores $\vec{u} = (1, -1, -4)$ e $\vec{v} = (3, 2, -2)$. Determinar um vetor que seja
 - a) ortogonal a u e v;
 - b) ortogonal a u e v e unitário;
 - c) ortogonal a u e v e tenha módulo 4:
 - d) A área do triângulo formada pelos vetores \vec{u} e \vec{v} .

RESPOSTAS - PRODUTO ESCALAR

- 1) a) -2
- b) 21 c) -4
- d) 4

- 2) $a = \frac{5}{8}$
- 3) a) (3, 6, -9) b) $(-\frac{1}{3}, -\frac{2}{3}, 1)$
- $\overrightarrow{BA} \cdot \overrightarrow{BC} = 0$

RESPOSTAS – PRODUTO VETORIAL

- 1) a) 0
- b) $\vec{0}$
- d) $\vec{0}$
 - e) (-5, 0, -5) g) (-6, -20, 1)

- f) (-1, -23, -1) h) (8, -2, 13)
- **2) Resp:** a)(-16,0,8) b)(11,13,38) c)(64,-12,2) d)(-24,-72,48) e)(24,0,64)

- f)(-3,-13,18)
- 3) Resp: $\pm \frac{1}{\sqrt{3}} (1,-1,1)$
- 4) Resp: a) $3\sqrt{10}$
- 5a) Resp: $\sqrt{6}$ u.a
- 5b) Resp: $\frac{1}{2}$.($\sqrt{6}$ u.a)
- 6a) Resp: α (10, -10, 5), $\alpha \in \mathbb{R}$.
- 6b) Resp: $(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3})$
- 6c) Resp: $4(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}) = (\frac{8}{3}, -\frac{8}{3}, \frac{4}{3}).$
- **6d)** Resp: A = 7,5 u. a.