Week 5

THEORY

Constraints Optimization

- ➤ Un<u>constraint optimization</u>: In the last week, the functions we examined were unconstrained, meaning they either had **no boundaries**, **or the boundaries** were soft.
- Constraint optimization: In this week, we will be examining the functions with constraint. A constraint is a *hard limit placed on the value of a variable*, which *prevents us from going forever in certain directions*.
- ➤ <u>Example</u>: Travel car from Surat to Mumbai Constraint → must visit the Nashik city

- ☐ <u>Task/Problem</u>: Climb as high as possible on the mountain to have a better view of the moon.
- ☐ Constraint: The car must be on the road

Equality constraint optimization

Q: For a rectangle whose perimeter is 20m, find the dimensions that will maximize the area?

Let consider breadth = b, length = l, Area = A and Perimeter = P

$$Maximize f(x) = A = l \times b$$

$$st g(x) = 2l + 2b = 20$$

Applying 1st order condition

$$\nabla f(b) = -\lambda \nabla g(l,b)$$

$$l = -2\lambda$$
 (2)

$$\nabla f(b) = -\lambda \nabla g(b)$$
• $b = -2\lambda$ (1) • $l = -2\lambda$ (2) • $2l + 2b = 20$ (3) • Solving above equation (1) and (2) **gives** $l = b$. Putting these value in equation (3) gives

$$l=5m$$
 and $b=5m$

Calculating the dimensions, the Area of the rectangle is A = 5*5 = 25

Q: Find the points on the circle $x^2 + y^2 - 80$ which are closest to & farthest from the point (1,2)?

• Distance d from any point (x,y) to the point (1,2) is $d = \sqrt{(x-1)^2 + (y-2)^2}$

Maximize
$$f(x,y) = (x-1)^2 + (y-2)^2$$

$$g(x) = x^2 + y^2 = 80$$

Applying 1st order condition

$$\nabla f(x,y) = -\lambda \nabla g(x,y)$$

$$\frac{\delta f}{\delta x} = 2(x - 1)$$

$$\frac{\delta g}{\delta x} = 2x$$

$$\frac{\delta f}{\delta y} = 2(y - 2)$$

$$\frac{\delta g}{\delta y} = 2y$$

Putting all derivatives into the main 1st order equation gives

$$\frac{x-1}{x} = -\lambda \quad (1) \qquad \frac{y-2}{y} = -\lambda \quad (2) \qquad x^2 + y^2 = 80 \quad (3)$$

Solving equation (1) and (2) gives y = 2x. This value substituted in equation (3)

$$x^2 + y^2 = 80 \rightarrow x^2 + (2x)^2 = 80 \rightarrow x^2 + 4x^2 = 80 \rightarrow x = \pm 4$$

- Putting x values in equation (3) gives y = ± 8
- So we obtained the points where (4,8) is the nearest and (-4,-8) is the farthest point from (1,2)

Q:
$$f(x, y, z) = x + z$$

 $g(x, y, z) = x^2 + y^2 + z^2 - 1$

Applying 1st order condition

$$\nabla f(x,y,z) = -\lambda \nabla g(x,y,z)$$

$$1 = -2\lambda x \quad (1)$$

$$0 = -2\lambda y \quad (2)$$

$$1 = -2\lambda x$$
 (1) $0 = -2\lambda y$ (2) $1 = -2\lambda z$ (3)

Substituting above variables in the constraint equation

$$x^2 + y^2 + z^2 = 1 \rightarrow$$

$$x^2 + x^2 = 1 \rightarrow$$

$$x^2 + y^2 + z^2 = 1 \rightarrow \qquad \qquad x^2 + x^2 = 1 \rightarrow \qquad 2x^2 = 1 \rightarrow \qquad x = \pm \sqrt{\frac{1}{2}}$$

Calculating other point by putting x in the above equations gives

Pt.1=
$$(\sqrt{\frac{1}{2}}, 0, \sqrt{\frac{1}{2}})$$
 pt.2 = $(-\sqrt{\frac{1}{2}}, 0, -\sqrt{\frac{1}{2}})$

22) = 249 = 249 = 249

Inequality constraint optimization

$$\min_{\mathbf{x}_{1}, \mathbf{x}_{2}} \frac{2x_{1}^{2} + 4x_{2}^{2}}{st \quad 3x_{1} + 2x_{2} \ge 12}$$

equality of = -199

 $3x_1 + 2x_2 = 12$

Multivariate inequality constraint

```
\min_{\mathbf{x}_{1}, \mathbf{x}_{2}} \quad \begin{array}{ccc}
 & 1 & 4x_{2}^{2} \\
 & \text{st } 3x_{1} + 2x_{2} \leq 12 \\
 & 2x_{1} + 5x_{2} \leq 10 \\
 & x_{1} \leq 1
\end{array}
```


$$L(x_1, x_2, \mu_1, \mu_2, \mu_3) = 2x_1^2 + 4x_2^2 + \mu_1(3x_1 + 2x_2 - 12) + \mu_2(10 - 2x_1 - 5x_2) + \mu_3(x_1 - 1)$$

• First order KKT conditions
$$2\mu_{3}^{2}$$
 $4x_{1} + 3\mu_{1} - 2\mu_{2} + \mu_{3} = 0$ $8x_{2} + 2\mu_{1} - 5\mu_{2} = 0$

$$\mu_1(3x_1 + 2x_2 - 12) = 0$$

$$\mu_2(10 - 2x_1 - 5x_2) = 0$$

$$\mu_3(x_3 - 1) = 0$$

$$\mu_i \ge 0$$

SI.no		(A) /Inac onstrain (b)		Solution (x,μ)	Possible optima (Y/N)	Remark
1	А	Α	Α	Infeasible	N	Equations do not have a valid solution
2	Α	Α	1	x = [3.6364 0.5455] $\mu = [-5.2 -1.45 0]$	N	$x_1 \leq 1$ is not satisfied, $\mu_1 < 0$, $\mu_2 < 0$
3	Α	1	Α	x = [1 4.5] $\mu = [-18 0 50]$	N	$\mu_1 < 0$
4	Mao	Α	Α	x = [1 1.6] $\mu = [0 2.56 1.12]$	Y	All constraints and KKT conditions satisfied
5	Α	P	E I	x = [3.27 1.09] $\mu = [-4.36 0 0]$	N	$x_1 \le 1$ is not satisfied
6	1	Α	1	$x = \begin{bmatrix} 1.21 & 1.51 \end{bmatrix}$ $\mu = \begin{bmatrix} 0 & 2.45 & 0 \end{bmatrix}$	N	$x_1 \le 1$ is not satisfied
7	1	1	А	$x = \begin{bmatrix} 1 & 0 \end{bmatrix}$ $\mu = \begin{bmatrix} 0 & 0 & -4 \end{bmatrix}$	N	$2x_1 + 5x_2 \ge 10$ is not satisfied
8	1	1	1	$x = \begin{bmatrix} 0 & 0 \end{bmatrix}$ $\mu = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	N	$2x_1 + 5x_2 \ge 10$ is not satisfied

Week 5

ASSIGNMENT QUESTIONS

1) Which of the following statements is/are not TRUE with respect to the multi variate optimization?							
I - The gradient of a function at a point is parallel to the contours II - Gradient points in the direction of greatest increase of the function III - Negative gradient points in the direction of the greatest decrease of the function IV - Hessian is a non-symmetric matrix I and III II and III II and IV							
○ III and IV							
Accepted Answers: I and IV							

2) The solution to an unconstrained optimization problem is always the same as the solution to the constrained one.
○ True
○ False
Accepted Answers: False

3) Gradient based algorithm methods compute	
only step length at each iteration	
both direction and step length at each iteration	
only direction at each iteration	
onone of the above	

Accepted Answers: both direction and step length at each iteration

- 4) For an unconstrained multivariate optimization given $f(\bar{x})$, the necessary second order condition for \bar{x}^* to be the minimizer of f(x) is
- $\overset{\frown}{
 abla}^2 f(\overline{x}^*)$ must be negative definite.
- $\nabla^2 f(\overline{x}^*)$ must be positive definite.

Accepted Answers:

 $\nabla^2 f(\overline{x}^*)$ must be positive definite.

Use the following information to answer Q5, 6, 7 and 8

$$\min_{x_1,x_2\in\mathbb{R}}f(x_1,x_2)=x_1^2+4x_2^2-2x_1+8x_2.$$

5) Which among the following is the stationary point for $f(x_1, x_2)$?

$$(0,0)$$
 $(1,-1)$
 $(-1,-1)$
 $(-1,1)$

Accepted Answers: (1,-1)

6) Find the eigen values corresponding to Hessian matrix of f.

 $\begin{bmatrix} 0 \\ 1, -1 \\ 0 \\ 1, 1 \\ 0 \\ 2, 8 \\ 0, 2 \end{bmatrix}$

Accepted Answers: 2, 8

7) Find the minimum value of f.

Accepted Answers:

2 x 4 das - 3 da - 8 da

8) What is the minimum value of $f(x_1,x_2)$ subject to the constraint $x_1+2x_2=7$?

$$\begin{array}{c} \bigcirc \\ -5 \\ \bigcirc \\ -1 \\ \hline 27 \\ \bigcirc \\ 0 \\ \end{array}$$

minimum value of
$$f(x_1, x_2)$$
 subject to the constraint $x_1 + 2x_2 = 7$?
$$\int (x_1 x_2) = x_1^2 + 4 x_2^2 + 4 x_3^2 + 4 x_4^2 + 4 x_4^$$

$$\nabla \int = \left[2t_1 - 2 \right]$$

$$\frac{-(2)}{2^{1/2}} = -\lambda(1)$$

$$\frac{8^{1/2}}{6^{1/2}} = -\lambda(2)$$

$$\frac{8^{1/2}}{6^{1/2}} = -3^{1/2}$$

$$\frac{2^{1/2}}{2^{1/2}} = 2^{-1/2}$$

$$\frac{1}{2^{1/2}} = 2^{-1/2}$$

9) Find the maximum value of $f(x,y)=49-x^2-y^2$ subject to the constraint x+3y=10.

$$\begin{cases}
f(h,y) = 49 - x^{3} - y^{2} \\
46
\end{cases}$$

$$\nabla f = \begin{bmatrix} -2x \\ -2y \end{bmatrix}$$

$$\nabla g = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Accepted Answers:

$$\nabla f = -\lambda \log y$$

$$-\partial x = -\lambda y = -3\lambda$$

$$x = -\lambda y = 3\lambda$$

$$y = 3\lambda$$

$$\frac{2}{\lambda} + 3\left(\frac{3\lambda}{\lambda}\right) - 10 = 0$$

$$\frac{10\lambda}{\lambda} - 10 = 0$$

$$\lambda = 2$$

10) Consider an optimization problem $\min_{x_1,x_2} x^2 - xy + y^2$ subject to the constraints

$$2x+y\leq 1 \ x+2y\geq 2 \ x\geq -1$$

$$L(x,y,H_{11},u_{x},H_{3}) = x^{2}-xy+y^{2}+\mu_{1}(2x+y-1)$$

+ $\mu_{2}(x-x-2y)$
oblem.
 $+\mu_{3}(-x-1)$

Find the lagrangian function for the above optimization problem.

$$L(x,y,\mu_1,\mu_2,\mu_3)=x^2-xy+y^2+\mu_1(2x+y-1)+\mu_2(2-x-2y)+\mu_3(-x-1)$$

Accepted Answers:

$$L(x,y,\mu_1,\mu_2,\mu_3) = x^2 - xy + y^2 + \mu_1(2x+y-1) + \mu_2(2-x-2y) + \mu_3(-x-1)$$

Practice Questions

Consider the objective function $\max f(x)=xy$ subject to $x+y^2\leq 2$ and $x,y\geq 0$. The Lagrangian function is given by $L(x,y,\mu_1,\mu_2,\mu_3)=xy-\overline{\mu_1(-x-y^2+2)-\mu_2x-\mu_3y}$

1) Which of the following is not an apt representation of the constraint?

$$x+y^2 \leq 2$$

$$-x \ge 0$$

$$-x < 0$$

1) Solution: b)

Feedback: The given constraint has not been mentioned as a part of the problem.

Consider the objective function maxf(x)=xy subject to $x+y^2\leq 2$ and $x,y\geq 0$. The Lagrangian function is given by $L(x,y,\mu_1,\mu_2,\mu_3)=xy-\mu_1(-x-y^2+2)-\mu_2x-\mu_3y$

2) The values of μ_1 , μ_2 and μ_3 while evaluating the Karush-Kuhn-Tucker (KKT) condition with all the constraints being inactive are

$$\mu_1 = \mu_2 = \mu_3 = 1$$
 $\mu_1 = \mu_2 = \mu_3 = 0$
 $\mu_1 = \mu_3 = 0, \mu_2 = 1$
 $\mu_1 = \mu_2 = 0, \mu_3 = 1$

2) Solution: b)

Feedback: When all the constraints are inactive, $\mu_1 = \mu_2 = \mu_3 = 0$.

Consider the function $f(x,y) = 5x^2 + 3y^2 + 8xy + 12x + 6y$ as the function to be optimized and answer question 3.

3) The saddle point of the function f(x, y) exists in which of the following coordinates (x, y).

$$(6, -9)$$

$$(5, 3)$$

$$(5, 3)$$

$$(2, -3)$$

$$(7 + 8y + 12)$$

$$(9 + 8x + 6)$$

$$(4 + 8x + 6)$$

$$(7 + 8x = -6)$$

There is no saddle point

3) Solution: a)

Feedback: To find the saddle point, we have to solve the equations $\frac{\delta f(x,y)}{\delta x} = 0$ and $\frac{\delta f(x,y)}{\delta y} = 0$. This gives us the equations 10x + 8y = -12 and 8x + 6y = -6. Solving the equations, we get x = 6 and y = -9. Hence, the saddle point is (6, -9).

~ 0

x = 15.733, y = 1.573

$$x = 10.911, y = 11.443$$

$$x = 1.573, y = 15.733$$

$$x = 4.564, y = 15.138$$

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} - \frac{\partial u}{\partial y} + \frac{\partial u}{\partial x} = 0$$

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} = 0$$

$$\frac{2(x-10)}{x}$$
 $\frac{2y}{x} - \frac{2(y-1)}{x}$ $\frac{2x}{x} = 0$
 $\frac{4xy}{x} - \frac{40y}{x} - \frac{2xy}{x} = 0$

$$100y^{3}+y^{3}=250$$
 $y=\pm 1.573$ $x=\pm 15.735$

(-15.733,-1.573)

4) Solution: a)

Feedback: The optimization problem to find out a given point (x, y) can be formulated as follows

$$min f(x, y) = (x - 10)^2 + (y - 1)^2,$$

 $s. t. g(x, y) = x^2 + y^2 - 250$

The condition for finding the stationary point(s) in case of a multivariate optimization problem is

$$\frac{\delta f(x,y)}{\delta x} * \frac{\delta g(x,y)}{\delta y} - \frac{\delta f(x,y)}{\delta y} * \frac{\delta g(x,y)}{\delta x} = 0$$

$$\Rightarrow 2(x - 10) * 2y - 2(y - 1) * 2x = 0$$

$$\Rightarrow$$
 4xy - 40y - 4xy + 4x = 0

Solving this equation, we get x = 10y. Substituting for x in the constraint, we get $y = \pm 1.573$, and hence $x = \pm 15.73$. Hence the optimum values are (15.73, 1.573) and (-15.73, -1.573)

Substituting the coordinates of the points, we can observe that the point (15.73, 1.573) is closer to the point (10, 1). Hence, x = 15.73, y = 1.573

5) A function is defined as, f(x,y) = 10x + 5y + 29. Find the maximum such that the constraint $5x + 5y^2 = 44$ is satisfied using a Lagrange multiplier.

$$x = 8.738, y = 0.25$$

 $x = 7.8, y = 1$
 $x = 8.55, y = 0.5$
 $x = 4.8, y = 2$

$$L(x,y,\lambda) = 10x+5y+29 - \lambda(5x+5y^2-44)$$

$$L'(x,y,\lambda) = \begin{bmatrix} \partial L(x,y,\lambda) \\ \partial L \\ \partial y \end{bmatrix} = \begin{bmatrix} 10-5\lambda \\ 5-10\lambda y \\ -5x-5y^2+44 \end{bmatrix} = 0$$

$$\lambda = \lambda$$

$$\lambda = \lambda$$

$$5 - 20y = 0$$

$$\lambda = \frac{1}{4}$$

$$-5x = -44 + 5y^2$$

$$\lambda = 5 + 44 + 5y^2$$

Solution: a)

Feedback: The Lagrangian function for the given problem can be defined as

$$L(x, y, \lambda) = 10x + 5y + 29 - \lambda(5x + 5y^2 - 44)$$

Differentiating the function w.r.t the decision variables, we get

$$L'(x, y, \lambda) = \begin{bmatrix} \frac{\partial L(x, y, \lambda)}{\partial x} \\ \frac{\partial L(x, y, \lambda)}{\partial y} \\ \frac{\partial L(x, y, \lambda)}{\partial \lambda} \end{bmatrix}$$

Equating $L'(x, y, \lambda)$ to 0, we get $\lambda = 2$, y = 0.25, x = 8.7375

A manufacturer incurs a monthly fixed cost of \$7350 and a variable cost,

 $C(m) = 0.001 m^3 - 2 m^2 + 324 m$ dollars. The revenue generated by selling these units is,

 $R(m) = -6m^2 + 1065m$. How many units produced every month (m) will generate maximum profit?

$$\bigcirc$$
 m = 46

$$\sqrt{m} = 90$$

$$TC(m) = 7350 + 0.001m^{3} - 2m^{2} + 324m$$
 $TC(m) = R(m) - TC(m)$
 $TC(m) = R(m) - TC(m)$
 $P(m) = -0.001m^{3} - 4m^{2} + 141m^{2}$
 $P(m) = -0.001m^{3} - 4m^{2} + 141$

$$A = -0.001$$
 $A = -0.001$
 $A = -0.003$
 $A = -0.003$
 $A = -0.003$

Solution: b)

Feedback: The total cost (per month) incurred by the company for manufacturing **m** units is $TC(m) = 0.001m^3 - 2m^2 + 324m + 7350$, and the revenue is $R(m) = -6m^2 + 1065m$. Hence, the profit (objective function) upon manufacturing **m** units is given by

$$P(m) = -0.001m^3 - 4m^2 + 741m - 7350$$

Based on the first derivative necessary condition for the function P(m), we get m = -2756.28, 89.61 (~ 90)

7) An optimization problem, solved for N variables, with one equality constraint will have
N equations in N variables
○ N + 1 equations in N + 1 variables
N equations in N + 1 variables
None of these

Solution: b)

Feedback: This problem contains N + 1 variables: N decision variables and 1 multiplier variable λ corresponding to the constraint, which can be found using N + 1 equations: N equations by solving $\nabla f(x_i) = \lambda \nabla h(x_i)$ and 1 equation by solving the constraint $h(x_i) = 0$ (where i = 1, 2, ..., n)

Extra Questions

1) For a function $f(x,y)=2x^2-xy+y^2-3x-y$, the stationary point (x,y) is (Hint: Stationary point is a solution to the first order necessary conditions for maxima or minima of f(x,y))

$$\circ$$
 (-1,0)

$$\frac{24}{2n} = 4n - y - 3$$

2) The Hessian matrix of $f(x,y)=2x^2-xy+y^2-3x-y$ is $\begin{vmatrix}
 4 - \lambda & -1 \\
 -1 & 2 - \lambda
\end{vmatrix} = 0$ $(4 - \lambda) (2 - \lambda) - 1 = 0$ 4 - 41 + 4 1.585 3) The Eigenvalues of Hessian matrix of $f(x,y)=2x^2-xy+y^2-3x-y$ is

- O -1.585786, -4.414214
- O 3.828427, -1.828427
- **4.414214**, 1.585786
- O -3.828427, 1.828427

4) The Hessian matrix of $f(x,y)=2x^2-xy+y^2-3x-y$ is

opositive definite

positive semidefinite

negative definite

negative semidefinite

5) The function $f(x,y)=2x^2-2y^2$

- has no stationary point
- O has a stationary point at (1,1)
- O has a stationary point at (1,-1)
- \nearrow has a stationary point at (0,0)

17 4 12 12-0 -44 4=0