CPSC 323, Assignment No.2 (CFG of some statements in C++)

Name: Jesse Shaihor, Jay Vang, row.
Name Cristian Solinas

50 points

Name

1. (8 points) Consider the following grammar:

S? aSbBIAIc

A? calc

B? dIA

Trace the grammar to determine which of the following words are accepted or rejected?

- i. accbc (use parse tree) ii. acccdd (use left-most-derivation)
- 2. (8 points) Given the following CFG:

s ? I=E

E ? E+TIE-TIT

T ? T*FIT/FIF

= ?(E)II

ι 🤋 alb

Use parsing tree to trace the grammar and decide which of the following statements are accepted or rejected.

i. $a=a^*(b-a^*a)$

ii. b=a*b - b*(a + b)

3. (8 points) Find the language of the following grammars:

•	. (e points) i ma the language of the following grammars.	
	a. S? aSIbBIaAΙλ	b. Sa aSIbAlλ
	B? bB∣aA	A 🖟 aA I bX Iλ
	A 🤁 aA l bA l λ	x 🛭 aXIbXIλ

- 4. (9 points) Find a CFG for each of the following languages
 - (i) $L=a^* + b^*$ (ii) $L=a^*b^*c^*$ (iii) $L=ab^* + ba^* + c$

Programming assignment

(17 points) Write a program to find the value of a postfix expression. Variables are one or more characters each. We might have some integer numbers as part of the expression. (Hint. Read each part of the expression as a token of type string, if the first character of the token is a letter that indicates the token is a variable name, push its value in stack. If the token is an integer number use the predefined function <a href="mailto:stoin_stoin

Enter a postfix expression with a \$ at the end:

20 jerry 45 + tom - *\$

Enter the value of jerry: 10

Enter the value of tom: 5

Expression's value is 1000

CONTINUE(y/n)? y

Enter a postfix expression with a \$ at the end:

myscore yourscore 45 + 100 + *\$

Enter the value of myscore: 3

Enter the value of yourscore: 5

Expressions value is 450

CONTINUE(y/n)? n

As input, please use the given expressions and the given values

accbc is accepted

stop no rule to start with b

$$a = a * (b - 0 * a)$$

$$b = a \times b - b \times (a + b)$$

(3)