CISC 102 (Fall 20) Homework #4: Functions (20 Points)

Student Name/ID: Amy Brons / 20252295

Solutions are due before 11:59 PM on October 20, 2020 .

1. (2pts)

Determine whether the mappings from \mathbb{R} to \mathbb{R} shown below are or are not functions, and explain your decision.

(a) f(x) = 1/x

Because there is no definition for x=0, we must say that f(x)=1/x is not a function from $\mathbb R$ to $\mathbb R$

(b) $f(x) = \sqrt{x}$

Because \sqrt{x} is not a real number for any negative number this does not work for \mathbb{R} to \mathbb{R} , unless we define this function to only non-negative real numbers. Therefore we say: $f(x) = \sqrt{x}$ is not a function from \mathbb{R} to \mathbb{R} .

2. (2pts)

Determine whether each of the following functions from \mathbb{R} to \mathbb{R} is a bijection, and explain your decision. HINT: Plotting these functions may help you with your decision.

(a)
$$f(x) = -x^2 + 2$$

Figure 1: $f(x) = -x^2 + 2$ Graph.

As we can see from this graph, this is not a bijection because it is not unto or one-to-one. We can see this because any horizontal line put on the graph will intersect more than one, or not at all.

(b) $f(x) = x^3 - x^2$

Figure 2: $f(x) = x^3 - x^2$ Graph.

As we can see from the graph, this is not a bijection for \mathbb{R} to \mathbb{R} , because f(x) = 0 for both x = 0 and x = 1.

3. (2pts)

Suppose the function $f:A\to B$ is a bijection. What can you say about the values |A| and |B|?

If $f:A\to B$ is a bijection, then we can say that the cardinalities of A and B are equal. In other words: |A|=|B|

4. (2pts)

Let $f: \{1, 2, 3, 4, 5, 6\} \rightarrow \{red, yellow, beige, green, umber, teal\}$ be a one-to-one function. Prove, by contradiction, that f is a bijection.

In order to prove this is a bijection by contradiction, we first must assume that this is not a bijection.

Assign $\{1,2,3,4,5,6\} = A$ and $\{red, yellow, beige, green, umber, teal\} = B$

Assume $|A| \neq |B|$.

If |A| = 6

and |B| = 6

and 6 = 6,

$$\therefore |A| = |B|$$

Marking our initial assumption wrong, and therefore proving f as a bijection.

5. (2pts) Let $A = \{1, 2, 3, 4\}$

Let
$$B = \{a, b\}$$

Let $C = \{curling, hockey, table-tennis\}$

(a) How many one-to-one functions are there from C to A?

$$|C| = x$$

$$|A| = y$$

$$\frac{y!}{(y-x)!} = \frac{4!}{(4-4)!}$$

$$4! = 24$$
 and $0! = 1$

: there are 24 one to one functions.

(b) How many *onto* functions are there from C to B?

(Hint: count the non-onto functions)

$$C(4val) \to B(2val) = C \to B \text{ is } 2 * 2 * 2 * 2 = 16$$

However since each value in C has 2 possible images in B, there are 2 non-onto functions.

$$\therefore C \rightarrow B = 14$$
 onto and 2 non-onto

6. (4pts)

Decide for each of the following expressions: Is it a function? If so,

- (i) what is its domain, codomain, and image?
- (ii) is it injective? (why or why not)
- (iii) is it surjective? (why or why not)
- (iv) is it invertible? (why or why not)
- (a) $f: \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto x^3$

This is a function, denoted by $f(x) = x^3$ We will refer to x as A and x^3 as B.

(i) The domain can be defined by $\mathbb R$. Codomain is also defined as $\mathbb R.$ The image is also $\mathbb R.$

(ii) $f(x) = x^3$. Here we need to find if f(a) = f(b):

$$f(a) = a^3$$

$$f(b) = b^3$$

$$b^{3} = a^{3} \implies \sqrt[3]{b^{3}} = \sqrt[3]{a^{3}}$$

 $b = a : f : \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto x^3$ is injective.

(iii)
$$f(x) = x^3$$

$$f(x) = \sqrt[3]{y^3}$$

 $f(x) = y : f : \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto x^3$ is surjective.

- (iv) Because each input has a unique output, we can say that $f: \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto x^3$ is invertable.
- (b) $f: \mathbb{R} \times \mathbb{Z} \to \mathbb{Z}$ defined by $(r, z) \to \lceil r \rceil * z$
 - (i) Domain for r is \mathbb{R} , and the domain for z is \mathbb{Z} . The codomain is \mathbb{Z} . This image is \mathbb{Z} .
 - (ii) For this function to be injective, the cardinality of $\lceil r \rceil * z \geq (r, z)$. However we can see that this is not true, as not every r,z point will have a place to map in $\lceil r \rceil * z$, because of the ceiling function and multiplication.
 - (iii) This function is surjective because the cardinality of $\lceil r \rceil * z \leq (r, z)$, as so every point from the $\lceil r \rceil$ *z will have a place to map on (r,z).
 - (iv) This is not invertible. This is because a function must be bijective to be invertible, and because this is not injective it cannot be bijective.
- 7. (2pts)

Let f be a function from the set A to the set B. Let S and T be subsets of A. Show that

(a)
$$f(S \cup T) = f(S) \cup f(T)$$
:

Let $x \in f(S \cup T)$ Then $\{\exists y \in S \cup T | f(y) = x\}.$

$$y \in S \lor y \in T : f(x) \in f(S) \lor f(y) \in f(T)$$

Because f(y) = x we can rewrite as $x \in f(S) \lor x \in x\mathcal{F}(T)$

$$x \in f(S) \cup f(T) \mathrel{\dot{.}.} f(S \cup T) \subseteq f(S) \cup f(T)$$

For the second part, we need to take the equations: $y \in S \lor y \in T$ such that f(y) = x

Because we are looking for the union we rewrite as $y \in S \cup T$

 $f(y) \in f(S \cup T) \equiv x \in f(S \cup T)$ Then we can rewrite as $f(S) \cup f(T) \subseteq f(S \cup T)$.

From the above work we can see that:

$$f(S) \cup f(T) \subseteq f(S \cup T) = f(S \cup T) \subseteq f(S) \cup f(T)$$

$$\therefore f(S) \cup f(T) = f(S \cup T)$$

(b) $f(S \cap T) \subseteq f(S) \cap f(T)$.

Let
$$x \in f(S \cap T)$$
 Then $\{\exists y \in S \cap T | f(y) = x\}$
 $y \in S \land t \in T \equiv f(y) \in f(S) \land f(y) \in f(T) \equiv x \in f(S) \land x \in f(T)$
To find the intersection: $x \in f(S) \cap f(T)$
 $\therefore f(S \cap T) \subseteq f(S) \cap f(T)$

8. (1pts) find the inverse function of $f(x) = x^3 + 1$

$$f(x) = x^{3} + 1 \equiv y = x^{3} + 1$$

$$x^{3} = y - 1$$

$$x = \sqrt[3]{y - 1}$$

$$\therefore f^{-1}(x) = \sqrt[3]{x - 1}$$

9. (2pts)

Suppose that g is a function from A to B and f is a function from B to C.

(a) Show that if both f and g are one-to-one functions, then $f \circ g$ is also one-to-one.

$$f(x) = f(y)$$
 : $x = y$. This shows that f is one to one. $g(x) = g(y)$: $x = y$. This shows that g is one to one.

If $g:A\to B$ is one to one and $f:B\to C$ is one to one, $f\circ g$ is one to one. This is how we see this:

Assume
$$(f \circ g(x)) = (f \circ g(y))$$

 $f(g(x)) = f(g(y))$
Because f and g are both one to one:
 $g(x) = g(y)$
 $x = y$

Here we can see that $x = y : f \circ g$ is a one to one function.

(b) Show that if both f and g are onto functions, then $f \circ g$ is also onto.

$$f = \forall x \in C \exists y \in B. : f(y) = x$$
. This shows that f is onto.

$$g = \forall y \in B \exists z \in A. : g(z) = y$$
 This shows that g is onto.

Using the functions found above we can see: $(f \circ g)(z) = f(g(z)) = f(y) = x$. This means that $\{ \forall x \in C \exists z \in A | (f \circ g)(z) = x \}$.

Therefore $f \circ g$ is onto.

10. (1pts)

Find $f \circ g$ and $g \circ f$, where $f(x) = x^2 + 1$ and g(x) = x + 2, are functions from \mathbb{R} to \mathbb{R} .

Because f and g are both from \mathbb{R} to \mathbb{R} then this must mean that $f \circ g$ and $g \circ f$ are also from \mathbb{R} . To find $f \circ g$ we do the following:

$$f \circ g = f(g(x)) = f(x+2) = (x+2)^2 + 1 = x^2 + 4x + 5$$

 $\therefore f \circ g = x^2 + 4x + 5$

To find $g \circ f$ we do the following:

$$g \circ f = g(f(x)) = g(x^2 + 1) = x^2 + 1 + 2 = x^2 + 3$$

 $\therefore g \circ f = x^2 + 3$

Answer: $f \circ g = x^2 + 4x + 5$ and $g \circ f = x^2 + 3$