离散数学

第十八章 着色

主要内容

- 18.1支配集、点覆盖集与点独立集
- **→ 18.2边覆盖与匹配**
- → 18.3二部图中的匹配
- 18.4点着色
- 18.5地图着色与平面图的点着色
- 18.6边着色

离散数学

第十八章 着色

主要内容

- 18.1支配集、点覆盖集与点独立集
- 18.2边覆盖与匹配
- 18.3二部图中的匹配
- 18.4点着色
- 18.5地图着色与平面图的点着色
- 18.6边着色

离散数学 18.1 支配集、点覆盖集与点独立集

支配集与支配数

定义18.1 设*G*=<*V*,*E*>,*V**⊆*V*.

- (1) V*为支配集—— $\forall v_i \in V V^*, \exists v_j \in V^*$,使得 $(v_i, v_j) \in E$
- (2) V*为极小支配集——V*的真子集不是支配集
- (3) 最小支配集——元素最少的支配集
- (4) 支配数 $\gamma_0(G)$ ——最小支配集中的元素个数

离散数学

极小与最小支配集之间的关系

最小支配集为极小支配集,但反之不真。 另外,极小支配集与最小支配集都可能不惟一。 又易知完全图、轮图、星形图的支配数均是1。

图中,(1),(2),(3)(彼得松图)的支配数分别为1,2,3 请各找出一个最小支配集.

点独立集与点独立数

定义18.2 设*G*=<*V*,*E*>,*V**⊆*V*.

- (1) 点独立集V*——V*中顶点彼此不相邻
- (2) V*为极大点独立集——V*中再加入任何顶点就不是点独立集
- (3) 最大点独立集——元素最多的点独立集
- (4) 点独立数——最大点独立集中的元素个数,记为 β_0

极大独立集与极小支配集

定理18.1 设 $G=\langle V,E\rangle$ 中无孤立点,则G的极大点独立集都是极小支配集.

证明线索:

- (1) 设 V^* 为G的极大点独立集,证明它也是支配集. $\forall v \in V V^*$,必 $\exists v' \in V^*$,使 $(v,v') \in E$,否则 $\exists v_0 \in V V^*$ 不与 V^* 中任何顶点相邻,则 $V^* \cup \{v_0\}$ 仍为点独立集,这与 V^* 是极大点独立集矛盾.
- (2) 证V*是极小支配集. 只需证V*的真子集不是支配集.

特别注意,定理18.1其逆不真.

点覆盖集与点覆盖数

定义18.3 设*G*=<*V*,*E*>, *V**⊆*V*.

- (1) V^* 是点覆盖集(简称点覆盖)—— $\forall e \in E$, $\exists v \in V^*$,使e与v关联
- (2) V*是极小点覆盖集——V*的任何真子集都不是点覆盖集
- (3) 最小点覆盖集(或最小点覆盖)——顶点数最少的点覆盖集
- (4) 点覆盖数 $\alpha_0(G)$ ——最小点覆盖的元素个数

图中,点覆盖数依次为3,4,6

点覆盖集与点独立集的关系

定理18.2 设G=<V,E>无孤立点, $V^*\subseteq V$,则 V^* 是点覆盖当且仅当 $\overline{V^*}=V$ - V^* 为点独立集

证 必要性. 若 $\exists v_i, v_j \in \overline{V}^*$ 相邻,即 $(v_i, v_j) \in E$,则 V^* 中顶点不能 覆盖 (v_i, v_i) ,这是矛盾的.

充分性. 由于 $\overline{V}^* = V \cdot V^*$ 是点独立集,因而 $\forall e \in E$,e的两个端点至少一个在 V^* 中.

推论 设G为n阶无孤立顶点图,则V*是极小(最小)点覆盖当且仅当是极大(最大)点独立集,从而有 $\alpha_0+\beta_0=n$

离散数学 18.1支配集、点覆盖集与点独立集(回顾)

定义18.1 设*G*=<*V*,*E*>,*V**⊆*V*.

- (1) V*为支配集—— $\forall v_i \in V V^*$, $\exists v_j \in V^*$,使得 $(v_i, v_j) \in E$
- (4) 支配数 $\gamma_0(G)$ ——最小支配集中的元素个数

定义18.3 设*G*=<*V*,*E*>, *V**⊆*V*.

- (1) V^* 是点覆盖集—— $\forall e \in E$, $\exists v \in V^*$,使 $e \ni v$ 关联
- (4) 点覆盖数 $\alpha_0(G)$ ——最小点覆盖的元素个数

定义18.2 设G=<V,E>, $V*\subseteq V$.

- (1) 点独立集V*——V*中顶点彼此不相邻
- (4) 点独立数——最大点独立集中的元素个数,记为 β_0

$$\alpha_0 + \beta_0 = n$$

第十八章 着色

主要内容

- 18.1支配集、点覆盖集与点独立集
- 18.2边覆盖与匹配
- 18.3二部图中的匹配
- 18.4点着色
- 18.5地图着色与平面图的点着色
- 18.6边着色

18.2 边覆盖集与匹配

边覆盖集与边覆盖数

定义18.4 设G=<V,E>, $E*\subseteq E$,

- (1) E^* 为边覆盖集—— $\forall v \in V$, $\exists e \in E^*$,使得 $v = e \notin E$
- (2) E* 为极小边覆盖——E* 的真子集不是边覆盖
- (3) 最小边覆盖——边数最少的边覆盖
- (4) 边覆盖数 α₁——最小边覆盖中元素个数

图中各图的边覆盖数依次为3,4,5 请各找出一个最小边覆盖.

匹配(边独立集)与匹配数(边独立数)

定义18.5 设 $G=<V,E>,E*\subseteq E$,

- (1) 匹配(边独立集) E^* —— E^* 中各边均不相邻
- (2) 极大匹配 E^* —— E^* 中不能再加其他边了
- (3) 最大匹配——边数最多的匹配
- (4) 匹配数——最大匹配中的边数,记为β₁

上图中各图的匹配数依次为3,3,4

关于匹配中的其他概念

定义18.6 设M为G中一个匹配(边独立集).

- $(1) v_i 与 v_j 被M匹配——(v_i,v_j) \in M$
- (2) v为M饱和点——有M中边与v关联
- (3) v为M非饱和点——无M中边与v关联
- (4) M为完美匹配——G中无M非饱和点
- (5) M的交错路径——从M与E-M中交替取边构成的G中路径
- (6) M的可增广交错路径——起、终点都是M非饱和点的交错路径
- (7) M的交错圈——由M与E-M中的边交替出现构成的G中圈

上图中,只有第一个图存在完美匹配

可增广路径及交错圈

设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路径均为可增广的交错路径;(2)中的全不是可增广的交错路径;(3)中是一个交错圈.

□ 不难看出,可增广交错路径中,不在*M*中的边 (绿色) 比 在*M*中的边 (红色) 多一条.交错圈一定为偶圈.

离散数学

最大匹配与最小边覆盖之间关系

定理18.3 设n阶图G中无孤立顶点.

- (1) 设M为G中一个最大匹配,对于G中每个M非饱和点均取一条与其关联的边,组成边集N,则 $W=M\cup N$ 为G中最小边覆盖.
- (2) 设 W_1 为G中一个最小边覆盖,若 W_1 中存在相邻的边就移去其中的一条,设移去的边集为 N_1 ,则 M_1 = W_1 - N_1 为G中一个最大匹配.
- (3) G中边覆盖数α₁与匹配数β₁满足α₁+β₁=n.

证明见教材.

推论

推论 设G是n阶无孤立顶点的图.M为G中的匹配,W是G中的边覆盖,则 $|M| \le |W|$,等号成立时,M为G中完美匹配,W为G中最小边覆盖.

最大匹配判别定理

定理18.4 M为G中最大匹配当且仅当G中不含M的可增广交错路径.

证明(略)

18.2边覆盖与匹配(回顾)

定义18.4 设G=<V,E>, $E*\subseteq E$,

- (1) E^* 为边覆盖集—— $\forall v \in V$, $\exists e \in E^*$, 使得 $v = e \notin E$
- (4) 边覆盖数α1——最小边覆盖中元素个数

定义18.5 设 $G=\langle V,E\rangle$, $E*\subseteq E$,

- (1) 匹配(边独立集) E^* —— E^* 中各边均不相邻
- (4) 匹配数β₁——最大匹配中的边数

$$\alpha_1 + \beta_1 = n$$

第十八章 着色

主要内容

- 18.1支配集、点覆盖集与点独立集
- 18.2边覆盖与匹配
- 18.3二部图中的匹配
- 18.4点着色
- 18.5地图着色与平面图的点着色
- 18.6边着色

18.3 二部图中的匹配

定义18.7 设 $G=<V_1,V_2,E>$ 为二部图, $|V_1|\le |V_2|$,M是G中最大匹配,若 V_1 中顶点全是M饱和点,则称M为 V_1 到 V_2 的完备匹配。 $|V_1|=|V_2|$ 时完备匹配变成完美匹配.

图中, 红边组成各图的一个匹配,

- (1)中为完备匹配,
- (2)中匹配不是完备的,(2)中无完备匹配,
- (3)中匹配是完备的,也是完美的.

Hall定理

定理18.5 (Hall定理)设二部图 $G=\langle V_1,V_2,E\rangle$ 中, $|V_1|\leq |V_2|$. G中存在从 V_1 到 V_2 的完备匹配当且仅当 V_1 中任意 $k(k=1,2,...,|V_1|)$ 个顶点至少与 V_2 中的k个顶点相邻. 本定理中的条件常称为"相异性条件".

由Hall定理立刻可知,

图(2)为什么没有完备匹配.

定理18.6 设二部图 $G=\langle V_1,V_2,E\rangle$ 中, V_1 中每个顶点至少关联 t ($t\geq 1$)条边,而 V_2 中每个顶点至多关联 t 条边,则G 中存在 V_1 到 V_2 的完备匹配.

定理18.6中的条件称为 $t(t\geq 1)$ 条件.

一个应用实例

□ 某课题组要从*a*, *b*, *c*, *d*, *e* 5人中派3人分别到上海、广州、香港去开会.已知*a*只想去上海,*b*只想去广州,*c*, *d*, *e*都表示想去广州或香港.问该课题组在满足个人要求的条件下,可以派遣吗?若可以,共有几种派遣方案?

解 用二部图中的匹配理论解本题方便.

令 $G=\langle V_1,V_2,E\rangle$,其中 $V_1=\{s,g,x\}$,s,g,x分别表示上海、广州和香港. $V_2=\{a,b,c,d,e\}$, $E=\{(u,v)\mid u\in V_1,v\in V_2,v$ 想去 $u\}$. G如图所示.

G满足相异性条件,因而可派遣,共有9种派遣方案(请给出这9种方案).

9种方案

第十八章 着色

主要内容

- 18.1支配集、点覆盖集与点独立集
- **→ 18.2边覆盖与匹配**
- → 18.3二部图中的匹配
- 18.4点着色
- 18.5地图着色与平面图的点着色
- 18.6边着色

18.4 点着色

定义18.8

- (1) 图*G*的一种点着色——给图*G*的每个顶点涂上一种颜色,使相邻顶点具有不同颜色
- (2) 对G进行k着色(G是k-可着色的)——能用<math>k种颜色给G的 顶点着色
- (3) G的色数 $\chi(G)=k$ ——G是k-可着色的,但不是(k-1)-可着色的.

色数的上界

定理18.7 对于任意无向图G,均有 $\chi(G) \leq \Delta(G)+1$

证明线索:对G的阶数n做归纳.

定理18.8 若连通无向图G不是 K_n , $(n \ge 3)$,也不是奇圈,则 $\chi(G) \le \Delta(G)$

定理18.8称为布鲁克斯定理.

关于顶点着色的几个简单结果

- 1. $\chi(G)=1$ 当且仅当G为零图
- 2. $\chi(K_n)=n$
- 3. 若G为偶圈,则 $\chi(G)=2$,若G为奇圈或奇阶轮图,则 $\chi(G)=3$,若G为偶阶轮图,则 $\chi(G)=4$.
- 4. 若G的边集非空,则 $\chi(G)=2$ 当且仅当G为二部图.

上述各图中,色数分别为2,3,4,5,为什么?

离散数学 韦尔奇·鲍威尔法(Welch Powell)

- 1) 将图*G* 中的结点按度数递减的次序进行排列 (相同度数的结点的排列随意)。
- 2) 用第一种颜色,对第一点着色,并按排列次序对与前面结点不相邻的每一点着同样的颜色。
- 3) 用第二种颜色对尚未着色的点重复第 2 步,直到所有的点都着上颜色为止。

色

•按度数递减次序排列各点

¢ABFGHDE

• 第一种颜色: *C, A, G*

• 第二种颜色: *B*, *H*, *D*, *E*

• 第三种颜色: *F*

所以图是3色的。 另外图不能是两色的, 因为图中有A,B,F 两两邻接, 所以 $\chi(G)=3$

实例

注意: 韦尔奇·鲍威尔法并不总能得到最少颜色数目的着色方案

ABCDEFGH

ACEGBDFH

点着色的应用实例1

例: 一个班级的学生共计选修A、B、C、D、E、F六门课程,其中一部分人同时 选修D、C、A,一部分人同时选修B、C、F,一部分人同时选修B、E,还有一 部分人同时选修A、B,期终考试要求每天至少安排一场考试,且为了减轻学生 负担,每人在一天内最多只参加一场考试,请问,最少几天能考完?并设计一 个考试日程表。

解:以每门课程为一个顶点,共同被选修的课程之间用边相连,来构造一个图(左图), 按题意,相邻顶点对应课程不能安排在同一天中,相邻顶点不同色, 不相邻顶点对应课程能安排在同一天中。不相邻顶点可以同色

排序: BCADFE

最少3天能考完 如BD CE AF, 就是一个符合 要求的考试日 程表

点着色的应用实例2

例:某校计算机系学生在本学期共选6门选修课 C_i , i=1,2,...,6. 设 $S(C_i)$ 为选 C_i 课的学生集.已知:

$$S(C_i) \cap S(C_6) \neq \emptyset, i=1, 2, ..., 5,$$

$$S(C_i) \cap S(C_{i+1}) \neq \emptyset$$
, $i=1, 2, 3, 4$,

$$S(C_5) \cap S(C_1) \neq \emptyset$$
.

问这6门课至少几天能考完?

点着色的应用实例2(续)

解:由已知条件做无向图G=<V,E>,其中 $V=\{C_1,C_2,...,C_6\}$,

 $E=\{(C_i,C_j)|S(C_i)\cap S(C_j)\neq\emptyset\},$

如图所示 W_6 .

给G一种着色(点着色), C_i 与 C_i 着同色

- $\Leftrightarrow C_i 与 C_i$ 不相邻
- ⇔ 没有学生既学 C_i 又学 C_i
- $\Leftrightarrow C_i$ 与 C_i 可同时考.

于是最少的考试时间为

$$\chi(G)=4$$

 $S(C_i) \cap S(C_6) \neq \emptyset$, i=1, 2, ..., 5, $S(C_i) \cap S(C_{i+1}) \neq \emptyset$, i=1, 2, 3, 4, $S(C_5) \cap S(C_1) \neq \emptyset$.

第十八章 着色

主要内容

- 18.1支配集、点覆盖集与点独立集
- **→ 18.2边覆盖与匹配**
- → 18.3二部图中的匹配
- 18.4点着色
- 18.5地图着色与平面图的点着色
- 18.6边着色

北京地图

18.5 地图着色与平面图的点着色

- (1) 地图——连通无桥平面图的平面嵌入与所有的面
- (2) 国家——地图的面
- (3) 两个国家相邻——它们的边界至少有一条公共边

在上图的地图中,有5个国家,其中1与2相邻,1与4相邻,2,3,4均与5相邻.

地图的面着色

定义18.9

- (1) 地图G的面着色——对G的每个国家涂上一种颜色,相邻国家涂不同颜色
- (2) G是k-面可着色的——能用k种颜色给G的面着色
- (3) G的面色数 $\chi^*(G)=k$ ——最少用k种颜色给G的面着色.

地图的面着色转化成对偶图的点着色

定理18.9 地图G是k-面可着色的当且仅当它的对偶图G*是k-点可着色的.

四色定理

定理18.10 任何平面图都是4-可着色的剩下的大问题: 四色猜想是否为真

第十八章 着色

主要内容

- 18.1支配集、点覆盖集与点独立集
- **→ 18.2边覆盖与匹配**
- → 18.3二部图中的匹配
- 18.4点着色
- 18.5地图着色与平面图的点着色
- 18.6边着色

18.6 边着色(无环无向图)

定义18.10

- (1) 对G的边着色——每条边着一种颜色,相邻的边不同色
- (2) G是k-边可着色的——能用k种颜色给G的边着色
- (3) G的边色数χ′(G)——最少用k种颜色给G的边着色

定理18.11 (Vizing定理)G为无向简单图,则 $\Delta(G) \le \chi'(G) \le \Delta(G)+1$

定理18.12 二部图的边色数等于最大度.

- 偶圈边色数为2, 奇圈边色数为3.
- $\chi'(W_n) = n-1, n \ge 4$.
- n为奇数($n \neq 1$)时, $\chi'(K_n)=n$; n为偶数时, $\chi'(K_n)=n-1$.

边着色的应用实例

例:一个科研小组中共有5名同学,老师要安排这5名同学两两互相交流,要求交流时间必须是一个小时,那么如何安排才能使完成全部交谈所需总时间最少?

解:以每名同学为一个顶点,若同学之间有交流就将对对应的两点之间用边相连,来构造一个图(左图),按题意,欲使完成全部交谈总时间最少,就要最大化地安排交谈并行进行,这可以转化为一个边着色问题。

- ◆按边的相邻度排序: abcdefghij
- ◆边着色结果:

ac bd eh fg ij

- ◆一个具体安排如下:
 - 12 34
 - 23 45
 - 15 24
 - 25 13
 - 35 14
- ◆用时5个小时

边着色的应用实例

例:某中学高三年级有5个班,由4位教师(A,B,C,D)为他们授课,周一每位教师为每个班上课的节数如下表所示.问:本年级周一至少要安排多少节课?需要多少个教室?

	1班	2班	3班	4班	5班
Α	1	0	1	0	0
В	1	0	1	1	0
C	0	1	1	1	1
D	0	0	0	1	2

根据题意构造二部图**G**(右图), 其中ABCD四位教师给12345班上课, 每条边代表某位教师给某个班上一节课

边着色的应用实例

C3	C4	C5	В3	B4	D4	D5	D5'	A3	B1	C2	A1
5	5	5	4	4	4	4	4	3	3	3	2

与同一个顶点关联的边对应同一位教师或同一个班上的课,不能安排在同一时间。不相邻的边对应不同教师和不同班上的课,可以安排在同一时间。这正好对应图G的边着色4(图2)。

着不同颜色的边对应的课必须安排在不同时间,着相同颜色的边对应的课可以安排在同一时间。因此,每天至少安排的节数正好为**G**的边色数**4**。

由于着同色的边所对应的课程必须在不同的教室上课,所以同色边数的最大值是所用教室的个数,应该使这个最大值尽可能小(图3)。(改边A1和D4)

按边相邻度排序并着色

至少安排4节课,3个教室

第十八章 着色

18.1支配集、点覆盖集与点独立集

18.2边覆盖与匹配 (边独立) ●

18.3二部图中的匹配

色数 $\chi(G)$

18.4点着色 \bigcirc $\chi(G) \le \Delta(G)+1$

韦尔奇.鲍威尔法

18.5地图着色与平面图的点着色

|面色数χ*(*G*)

地图的面着色转化成对偶图的点着色

边色数 $\chi'(G)$

18.6边着色 ⊙ Δ(G) ≤ χ'(G) ≤ Δ(G)+1

二部图的边色数等于最大度

ch18着色