9 - memory and programable unit

memory unit = Storage cells + circuits need to tranfor data in and out

two types of memory (in digital systems)

Cs-enable/disable > WR-read/write >

- ORAM random access memory can perform both read and write
- @ ROM read-only memory also considered a programmable logic device

words = a memory unit Stores binary information in groups of bits (mostly 8 bits=1 byt Ls a memory word may represent a number, an instruction, a char, etc.

RAM

- · bunch of registers connected together, allowing users to sellect a particular address to read
- · access times for different locations are always the same
- ADRS-k address lines > 2 words 2 x n = address, read and change change write/read Memory operation none read selected we write selected we

• pc's usually come with 8-GB/16-GB of RAM, smartphones have 2/4-GB of menory virtual menory = makes the menory larger than RAM's capacity.

Les the operating system uses hard disk as a virtual menory

**CS > L (engle) ** content clock > memory unit does not have an internal clock

(bos) 0 < 6W . address · ADRS > desired address inputs output adata input unused

-) USCS EXTERNAL DEVICES (CPUS) access time = select a word and read it cycle time = complete a write operation

writing RAM

·cs ->1 (enable)

·WS → 1 (write) • ADES → desired address • DATA → word to store

inputs * no output fast/cost more

types of memories

(1) startic ram (SRAN) = the stored duta remains valid as long as the power is supplied Is use latches instead of flip-flops = because lather are faster, cheaper, less hardwere,

but getting the timing exactly right is problematic @ dynamic ram (DRAM) = built with capacitors -> 1: stored charge, 0: no charge La capacitors lose their charge after a few milliseconds -> requires constant refreshing to charge the capacitor (that is to charge the capacitor (that is to charge the capacitor (that is to charge the capacitor (the same I call 4-6 transistors)

Lis advantage = its proved then SRAM Liseasier to use for a computer's main memory La disadvatage = its speed

caches = real systems augment dynamic memory with small but fast selections of static memory (its size 128KB-120KB, but it increas the computer's speed significently)

Static RAM	Dynamic RAM
Made up of flip-flops.	Made up of capacitors.
Large in size.	Small in size.
Data store in the form of voltage.	Data store in the form of charge.
Much expensive as compare to dynamic RAM	Less expensive as compare to static RAM
Low storage capacity	High storage capacity.
Consume more power	Consume less power
Fast	Slow
Data sustain with time.	Data loses with time, so need refreshing circuit*.

building RAM

one-bit ram cell: (no need address input, because it is just one-bit memory)

Ly ram: 4 words, each 1 bit bonly one cell can be read or written at a time

4×4 ram

* to scleet words we use decoders (in linear way it is too complex)

Ly 2d decoding 5x12

Sx12

error correction

Is we need to detect whether there is an error : parity bit, etc..

SDRAM = synchronous DRAM > common now (menory chips = modules)

DDR-RAM = double data rate RAM > newer type (faster, use less power -> notebooks, phony)

L>DDR > DDR3 > DDR4 > DDR S(released in 2020)

programmable logic devices (PLD's)

5 reconfigurable IC (integrated drewit), built with many gates

types:-programmable hom

programmable logic array (PLA)

programmable array logic (PAL)

FPGA

ROM

- · contents cannot be easily modified
- · Computers use roms to store the system &IOS
- · cell-phones, verding machines, gone machines ets. contain rom.

they are actually combinational devices (not sequential)
Is rom table is just a truth table, implemented using decoders, and or gates

how it is programmable = implementing different functions between the connections between the decoder and the or gates

rom example =

ROMS US RAMS

roms are "non-volatile" = data is preserved even without power rams contents disappear once power is lost

Programmable Logic Arrays

- a rom is potentially inefficient because it uses a decode -> generates all possible minterns (no minimizatio
- PLA makes the decoder part of the rom "programmable" too -> instead of generating all minterns, generate necessary products

3×4×3 PLA example

blank

another example

K×m×n n-> functions

Ł→ inputs

m→ expressible max n product tems

- @SPLD (sequential/simple programmable logic devices)
- DCPLD (complex programmable logic devices)
- 3 FPGA (field-programmable gate array)

