MAT 3007 Optimization: Tutorial 12

Guxin DU

The Chinese University of Hong Kong, Shenzhen

July 10, 2025

Recap: Convex Problems

Definition 1 (Convex set).

The set $S \subset \mathbb{R}^n$ is convex if for $\forall \mathbf{x}, \mathbf{y} \in S$ and $\forall \lambda \in [0, 1]$, we have $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in S$.

Definition 2 (Convex function).

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if

- (1) its domain Ω is convex and
- (2) $\forall \mathbf{x}_1, \mathbf{x}_2 \in \Omega \text{ and } \forall \alpha \in [0, 1] \text{ satisfy}$

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2).$$

Definition 3 (Concave function).

A function g is concave if -g is convex.

Recap: Convex Problems

Theorem 4 (Characterization of convex differentiable functions).

Suppose a function $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable on Ω , then the following are equivalent:

- (1) f is convex
- (2) $f(\mathbf{x}_2) \ge f(\mathbf{x}_1) + \nabla f(\mathbf{x}_1)^T (\mathbf{x}_2 \mathbf{x}_1)$ for $\forall \ \mathbf{x}_1, \mathbf{x}_2 \in \Omega$
- (3) $\nabla^2 f(\mathbf{x}) \succeq 0, \ \forall \ \mathbf{x} \in \Omega$

Remark: First order characterization of convexity implies that the stationary point is global minimal.

e.g.1
$$f(\mathbf{x}) = a^T \mathbf{x} + b$$
 is convex and concave.

e.g.2
$$f(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x} + c^T \mathbf{x} + d$$
 is convex if and only if $Q \succeq 0$.

Proof of the First Order Characterization

Proof.

 \Leftarrow let we set $z = \lambda x + (1 - \lambda)y$, then we want to prove

$$\lambda f(x) + (1 - \lambda)f(y) \ge f(\lambda x + (1 - \lambda)y) = f(z).$$

We have

$$f(x) \ge f(z) + \nabla f(z)^T (x - z)$$

$$f(y) \ge f(z) + \nabla f(z)^T (y - z)$$

Let the first inequality times λ and the second one times $1-\lambda$, we will get the ideal result. $\hfill\Box$

Proof of the First Order Characterization

 \Rightarrow let we assume f is convex and for any $x \neq z$, we define the following function $g:(0,1] \to \mathbb{R}$.

$$g(\alpha) = \frac{f(x + \alpha(z - x)) - f(x)}{\alpha}, \quad \alpha \in (0, 1]$$

If we can prove $g(\alpha)$ is monotonically increasing, then

$$g(1) = f(z) - f(x) \ge g(0) = \nabla f(x)^{T} (z - x).$$

Suppose $0<\alpha_1<\alpha_2$, let $\bar{\alpha}=\frac{\alpha_1}{\alpha_2}$, $\bar{z}=x+\alpha_2(z-x)$. Then

$$f(x + \bar{\alpha}(\bar{z} - x)) \le \bar{\alpha}f(\bar{z}) + (1 - \bar{\alpha})f(x)$$

i.e.
$$\frac{f(x+\bar{\alpha}(\bar{z}-x))-f(x)}{\bar{\alpha}}\leq f(\bar{z})-f(x)$$

This equals to $g(\alpha_1) \leq g(\alpha_2)$.

Theorem 5.

As a proposition, a convex differentiable function f has an optimal point at x^* on convex set Ω if and only if

$$\nabla f(x^*)^T(z-x^*) \geq 0, \forall z \in \Omega$$

Sufficiency: Directly from the first order chracterization.

Necessity: FONC for constrained problems:

$$S_{\Omega}(x^*) \cap S_D(x^*) = \emptyset.$$

Review: prove by contradiction, suppose for some direction z, we have

$$\lim_{\alpha \downarrow 0} \frac{f(x^* + \alpha(z - x^*)) - f(x^*)}{\alpha} = \nabla f(x^*)^T (z - x^*) < 0.$$

By the continuity of $g(\alpha)$, (finish the proof by yourself)

Recap on properties

Theorem 6 (Composition with linear function).

Suppose a function f is convex, then f(Ax + b) is a convex function. (Similar version for concave functions)

Theorem 7 (max of convex function is convex).

Suppose functions $(f_i)_{i\in I}$ is a set of convex functions where I is a finite index set, then $f(x) = \max\{f_i(x)|i\in I\}$ is a convex function. (Note: it takes max over I pointwisely) (it can be extended to uncountably many set I)

Theorem 8 (min of concave function is concave).

Suppose functions $(f_i)_{i\in I}$ is a set of concave functions where I is a finite index set, then $f(x) = min\{f_i(x)|i\in I\}$ is a concave function. (Note: it takes min over I pointwisely)

Some Proof

Linear Composition:

$$f (A(\lambda x + (1 - \lambda)y) + b)$$

$$= f (\lambda(Ax + b) + (1 - \lambda)(Ay + b))$$

$$\leq \lambda f(Ax + b) + (1 - \lambda)f(Ay + b)$$

Taking maximum:

$$\sup_{i} f_{i}(\lambda x + (1 - \lambda)y)$$

$$\leq \sup_{i} \lambda f_{i}(x) + \sup_{i} (1 - \lambda)f_{i}(y)$$

$$= \lambda \sup_{i} f_{i}(x) + (1 - \lambda) \sup_{i} f_{i}(y)$$

Exercise 1

Consider the following linear program

$$\begin{aligned} & \min_{\mathbf{x}} & \mathbf{c}^{\top} \mathbf{x} \\ & \text{s.t.} & A\mathbf{x} \leq b. \end{aligned}$$

Let p^* denote its optimal value.

- Is p^* convex or concave with c?
- Is p* convex or concave with b?

Thanks for coming!