Gaussian Process Regression with Noisy Inputs

Dan Cervone

Harvard Statistics Department

March 3, 2015

Gaussian process regression

Introduction

A smooth response x over a surface $\mathbb{S} \subset \mathbb{R}^p$.

• For $s_1, \ldots, s_n \in \mathbb{S}$,

$$egin{pmatrix} x(s_1) \ dots \ x(s_n) \end{pmatrix} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}(\mathbf{s}_n, \mathbf{s}_n))$$

• $[C(s_n, s_n)]_{ij} = c(s_i, s_j)$, where c is the covariance function.

A smooth response x over a surface $\mathbb{S} \subset \mathbb{R}^p$.

• For $s_1, \ldots, s_n \in \mathbb{S}$,

$$egin{pmatrix} x(s_1) \ dots \ x(s_n) \end{pmatrix} \sim \mathcal{N}(\mathbf{0}, \mathsf{C}(\mathsf{s}_n, \mathsf{s}_n))$$

• $[C(s_n, s_n)]_{ij} = c(s_i, s_j)$, where c is the covariance function.

Interpolation/prediction at unobserved locations in input space

- Observe $\mathbf{x}_n = (x(s_1) \ldots x(s_n))'$.
- Predict $\mathbf{x}_{k}^{*} = (x(s_{1}^{*}) \dots x(s_{k}^{*}))'$.

$$\mathbf{x}_k^* | \mathbf{x}_n \sim \mathcal{N} \left(\mathbf{C}(\mathbf{s}_k^*, \mathbf{s}_n) \mathbf{C}(\mathbf{s}_n, \mathbf{s}_n)^{-1} \mathbf{x}_n, \right. \\ \left. \mathbf{C}(\mathbf{s}_k^*, \mathbf{s}_k^*) - \mathbf{C}(\mathbf{s}_k^*, \mathbf{s}_n) \mathbf{C}(\mathbf{s}_n, \mathbf{s}_n)^{-1} \mathbf{C}(\mathbf{s}_n, \mathbf{s}_k^*) \right)$$

Example

Example

GPs with noisy inputs

Scientific examples

Location error model

Instead of observing x, we observe the process y(s) = x(s+u), where $u \sim g(u)$ are errors in the input space \mathbb{S} .

Note:

- We observe \mathbf{s}_n , \mathbf{y}_n , but wish to predict $x(s^*)$.
- Note: y is never a GP.

Location errors (e.g. geocoding error, map positional error) is a problem in many scientific domains.

- Epidemiology [3, 10, 2].
- Environmental sciences [1, 16].
- Object tracking/computer vision [9, 15].

GP location errors vs errors-in-variables

GP input/location errors:

•
$$y(s) = x(s+u) + \epsilon$$
.

GP location errors vs errors-in-variables

GP input/location errors:

•
$$y(s) = x(s+u) + \epsilon$$
.

Traditional errors-in-variables model [5]:

- $x^* = f_\theta(x) + \epsilon$.
- $x(s^*) = f_{\theta,s_n}(\mathbf{x}_n) + \epsilon$ (GP regression).

GP location errors vs errors-in-variables

GP input/location errors:

•
$$y(s) = x(s+u) + \epsilon$$
.

Traditional errors-in-variables model [5]:

- $x^* = f_\theta(x) + \epsilon$.
- $x(s^*) = f_{\theta, \mathbf{s}_n}(\mathbf{x}_n) + \epsilon$ (GP regression).
- Observe $y = x + \eta$, ie $\mathbf{y}_n = \mathbf{x}_n + \boldsymbol{\eta}_n$.
- Common to assume $\eta \perp x$ (classical) or $\eta \perp y$ (Berkson).

GP location errors vs errors-in-variables

GP input/location errors:

•
$$y(s) = x(s+u) + \epsilon$$
.

Traditional errors-in-variables model [5]:

- $x^* = f_\theta(x) + \epsilon$.
- $x(s^*) = f_{\theta, \mathbf{s}_n}(\mathbf{x}_n) + \epsilon$ (GP regression).
- Observe $y = x + \eta$, ie $\mathbf{y}_n = \mathbf{x}_n + \boldsymbol{\eta}_n$.
- Common to assume $\eta \perp x$ (classical) or $\eta \perp y$ (Berkson).

GP input errors does not yield a traditional errors-in-variables regression problem:

- Errors y(s) x(s) depend on x(s).
- True regression function is unknown: $x(s^*) = f_{\theta, s_n + u_n}(y_n) + \epsilon$.

Methodology

Methods to properly accounting for noisy inputs are essential for reliable inference in this regime.

We seek:

- Optimal (MSE) point prediction, and interval predictions with correct coverage.
- Consistent/efficient parameter estimation.
- The location-error regime can actually deliver more precise predictions than the error-free regime.

Methodology

Methods to properly accounting for noisy inputs are essential for reliable inference in this regime.

We seek:

- Optimal (MSE) point prediction, and interval predictions with correct coverage.
- Consistent/efficient parameter estimation.
- The location-error regime can actually deliver more precise predictions than the error-free regime.

We discuss three methods:

Methodology

Methods to properly accounting for noisy inputs are essential for reliable inference in this regime.

We seek:

- Optimal (MSE) point prediction, and interval predictions with correct coverage.
- Consistent/efficient parameter estimation.
- The location-error regime can actually deliver more precise predictions than the error-free regime.

We discuss three methods:

Ignoring location errors.

Methodology

Methods to properly accounting for noisy inputs are essential for reliable inference in this regime.

We seek:

- Optimal (MSE) point prediction, and interval predictions with correct coverage.
- Consistent/efficient parameter estimation.
- The location-error regime can actually deliver more precise predictions than the error-free regime.

We discuss three methods:

- Ignoring location errors.
- Kriging (BLUP), using moment properties of error-induced process y.

Methodology

Methods to properly accounting for noisy inputs are essential for reliable inference in this regime.

We seek:

- Optimal (MSE) point prediction, and interval predictions with correct coverage.
- Consistent/efficient parameter estimation.
- The location-error regime can actually deliver more precise predictions than the error-free regime.

We discuss three methods:

- Ignoring location errors.
- Kriging (BLUP), using moment properties of error-induced process *y*.
- MCMC on the space $(\mathbf{x}_k^*, \mathbf{u}_n)$.

Sometimes, you can get lucky

Analyst just assumes $\mathbf{y}_n = \mathbf{x}_n$:

• "Kriging Ignoring Location Errors" (KILE) [6]:

$$\hat{x}_{\text{\tiny KILE}}(s^*) = \mathbf{C}(s^*, \mathbf{s}_n)\mathbf{C}(\mathbf{s}_n, \mathbf{s}_n)^{-1}\mathbf{y}_n.$$

• Parameter inference based on assuming $\mathbf{y}_n = \mathbf{x}_n \sim \mathcal{N}(\mathbf{0}, \mathbf{C}(\mathbf{s}_n, \mathbf{s}_n))$.

Sometimes, you can get lucky

Analyst just assumes $\mathbf{y}_n = \mathbf{x}_n$:

• "Kriging Ignoring Location Errors" (KILE) [6]:

$$\hat{x}_{\text{\tiny KILE}}(s^*) = \mathbf{C}(s^*, \mathbf{s}_n)\mathbf{C}(\mathbf{s}_n, \mathbf{s}_n)^{-1}\mathbf{y}_n.$$

• Parameter inference based on assuming $\mathbf{y}_n = \mathbf{x}_n \sim \mathcal{N}(\mathbf{0}, \mathbf{C}(\mathbf{s}_n, \mathbf{s}_n))$.

Example: $c(s_1, s_2) = \exp(-(s_1 - s_2)^2)$, and $u \sim \mathcal{N}(0, \sigma_u^2)$.

Sometimes, you can get lucky

Analyst just assumes $\mathbf{y}_n = \mathbf{x}_n$:

• "Kriging Ignoring Location Errors" (KILE) [6]:

$$\hat{x}_{\text{KILE}}(s^*) = \mathbf{C}(s^*, \mathbf{s}_n)\mathbf{C}(\mathbf{s}_n, \mathbf{s}_n)^{-1}\mathbf{y}_n.$$

• Parameter inference based on assuming $\mathbf{y}_n = \mathbf{x}_n \sim \mathcal{N}(\mathbf{0}, \mathbf{C}(\mathbf{s}_n, \mathbf{s}_n))$.

Example: $c(s_1, s_2) = \exp(-(s_1 - s_2)^2)$, and $u \sim \mathcal{N}(0, \sigma_u^2)$.

Sometimes, you can get lucky

Analyst just assumes $\mathbf{y}_n = \mathbf{x}_n$:

• "Kriging Ignoring Location Errors" (KILE) [6]:

$$\hat{x}_{\text{KILE}}(s^*) = \mathbf{C}(s^*, \mathbf{s}_n)\mathbf{C}(\mathbf{s}_n, \mathbf{s}_n)^{-1}\mathbf{y}_n.$$

• Parameter inference based on assuming $\mathbf{y}_n = \mathbf{x}_n \sim \mathcal{N}(\mathbf{0}, \mathbf{C}(\mathbf{s}_n, \mathbf{s}_n))$.

Sometimes, disaster strikes

Assuming known covariance funciton, KILE is **not** a self-efficient procedure.

• Self-efficiency [12]: estimator cannot be improved by removing/subsampling data.

Sometimes, disaster strikes

Assuming known covariance funciton, KILE is **not** a self-efficient procedure.

• Self-efficiency [12]: estimator cannot be improved by removing/subsampling data.

Theorem

Assume covariance function c and error model $u \sim g(u)$ satisfy regularity conditions. Let $\hat{x}^n_{\text{KILE}}(s^*)$ be the KILE estimator for $x(s^*)$ given \mathbf{x}_n . Then for any \mathbf{s}_n and s^* , there exists s_{n+1} such that

$$\mathbb{E}[(x(s^*) - \hat{x}_{_{\text{KILE}}}^{n+1}(s^*))^2] \geq \mathbb{E}[(x(s^*) - \hat{x}_{_{\text{KILE}}}^{n}(s^*))^2].$$

Sometimes, disaster strikes

Assuming known covariance funciton, KILE is **not** a self-efficient procedure.

• Self-efficiency [12]: estimator cannot be improved by removing/subsampling data.

Theorem

Assume covariance function c and error model $u \sim g(u)$ satisfy regularity conditions. Let $\hat{x}_{\text{KILE}}^n(s^*)$ be the KILE estimator for $x(s^*)$ given \mathbf{x}_n . Then for any \mathbf{s}_n and s^* , there exists s_{n+1} such that

$$\mathbb{E}[(x(s^*) - \hat{x}_{\text{\tiny KILE}}^{n+1}(s^*))^2] \geq \mathbb{E}[(x(s^*) - \hat{x}_{\text{\tiny KILE}}^{n}(s^*))^2].$$

Regularity conditions:

- *c* twice differentiable everywhere.
- $k(s_1, s_2) = \mathbb{E}[c(s_1 + u_1, s_2 + u_2)]$ twice differentiable everywhere except $s_1 = s_2$.

Sometimes, disaster strikes

Example: $c(s_1, s_2) = \exp(-(s_1 - s_2)^2)$, and $u \sim \mathcal{N}(0, 0.04)$.

Sometimes, disaster strikes

Sometimes, disaster strikes

Example: $c(s_1, s_2) = \exp(-(s_1 - s_2)^2)$, and $u \sim \mathcal{N}(0, 0.04)$.

Second moment properties of y(s) and $(x(s^*), y(s))$:

$$k(s_1, s_2) = \mathbb{C}[y(s_1), y(s_2)] = \mathbb{E}[c(s_1 + u_1, s_2 + u_2)] \text{ for } s_1 \neq s_2$$

 $k(s, s) = \mathbb{C}[y(s), y(s)] = \mathbb{E}[c(s + u, s + u)]$
 $k^*(s, s^*) = \mathbb{C}[y(s), x(s^*)] = \mathbb{E}[c(s + u, s^*)].$

Second moment properties of y(s) and $(x(s^*), y(s))$:

$$k(s_1, s_2) = \mathbb{C}[y(s_1), y(s_2)] = \mathbb{E}[c(s_1 + u_1, s_2 + u_2)] \text{ for } s_1 \neq s_2$$

 $k(s, s) = \mathbb{C}[y(s), y(s)] = \mathbb{E}[c(s + u, s + u)]$
 $k^*(s, s^*) = \mathbb{C}[y(s), x(s^*)] = \mathbb{E}[c(s + u, s^*)].$

k is the covariance function for y, and we can use it for Kriging adjusting for location error (KALE) [6]:

$$\hat{x}_{\text{KALE}}(s^*) = \mathbf{K}^*(s^*, \mathbf{s}_n) \mathbf{K}(\mathbf{s}_n, \mathbf{s}_n)^{-1} \mathbf{y}_n.$$

Second moment properties of y(s) and $(x(s^*), y(s))$:

$$k(s_1, s_2) = \mathbb{C}[y(s_1), y(s_2)] = \mathbb{E}[c(s_1 + u_1, s_2 + u_2)] \text{ for } s_1 \neq s_2$$

 $k(s, s) = \mathbb{C}[y(s), y(s)] = \mathbb{E}[c(s + u, s + u)]$
 $k^*(s, s^*) = \mathbb{C}[y(s), x(s^*)] = \mathbb{E}[c(s + u, s^*)].$

k is the covariance function for y, and we can use it for Kriging adjusting for location error (KALE) [6]:

$$\hat{x}_{\text{KALE}}(s^*) = \mathbf{K}^*(s^*, \mathbf{s}_n) \mathbf{K}(\mathbf{s}_n, \mathbf{s}_n)^{-1} \mathbf{y}_n.$$

- For any error structure u, k is a valid covariance function if and only if c is.
- If c is known, then KALE dominates KILE in MSE.

Covariance function k

Sometimes, k is available in closed form:

• Example: for $c(s_1, s_2) = \tau^2 \exp(-\beta ||s_1 - s_2||^2)$ and $u_i \sim \mathcal{N}(\mathbf{0}, \sigma_u^2 \mathbf{I}_p)$,

$$k(s_1, s_2) = \frac{\tau^2}{(1 + 4\beta\sigma_u^2)^{p/2}} \exp\left(-\frac{\beta}{1 + 4\beta\sigma_u^2}||s_1 - s_2||^2\right).$$

• Not generally true that *c* and *k* have same functional form.

Covariance function k

Sometimes, k is available in closed form:

• Example: for $c(s_1, s_2) = \tau^2 \exp(-\beta ||s_1 - s_2||^2)$ and $u_i \sim \mathcal{N}(\mathbf{0}, \sigma_u^2 \mathbf{I}_p)$,

$$k(s_1, s_2) = \frac{\tau^2}{(1 + 4\beta\sigma_u^2)^{p/2}} \exp\left(-\frac{\beta}{1 + 4\beta\sigma_u^2}||s_1 - s_2||^2\right).$$

Not generally true that c and k have same functional form.

Most commonly, k is computed by Monte Carlo.

$$k(s_1, s_2) \approx \frac{1}{M} \sum_{i=1}^{M} c(s_1 + u_{1i}, s_2 + u_{2i})$$

• $u_{ji} \stackrel{iid}{\sim} g(u_j)$ for $i = 1, \ldots, M$.

Interval estimation

We get interval estimates for KALE by deriving the distribution function of prediction errors:

Proposition

Let

$$W(\mathbf{u}_n) = \mathbb{V}[x(s^*)] + \gamma' \mathbf{C}(\mathbf{s}_n + \mathbf{u}_n, \mathbf{s}_n + \mathbf{u}_n) \gamma - 2\gamma' \mathbf{C}(\mathbf{s}_n + \mathbf{u}_n, s^*)$$

where $\gamma = \mathbf{K}(\mathbf{s}_n, \mathbf{s}_n)^{-1} \mathbf{K}^*(\mathbf{s}_n, s^*)$.

Then

$$\mathbb{P}(x(s^*) - \hat{x}_{\text{KALE}}(s^*) < z) = \mathbb{E}\left[\Phi\left(\frac{z}{\sqrt{W(\mathbf{u}_n)}}\right)\right],$$

where Φ is the standard normal distribution function.

Interval estimation

We get interval estimates for KALE by deriving the distribution function of prediction errors:

Proposition

Let

$$W(\mathbf{u}_n) = \mathbb{V}[x(s^*)] + \gamma' \mathbf{C}(\mathbf{s}_n + \mathbf{u}_n, \mathbf{s}_n + \mathbf{u}_n) \gamma - 2\gamma' \mathbf{C}(\mathbf{s}_n + \mathbf{u}_n, s^*)$$

where $\gamma = \mathbf{K}(\mathbf{s}_n, \mathbf{s}_n)^{-1} \mathbf{K}^*(\mathbf{s}_n, s^*)$.

Then

$$\mathbb{P}(x(s^*) - \hat{x}_{\text{KALE}}(s^*) < z) = \mathbb{E}\left[\Phi\left(\frac{z}{\sqrt{W(\mathbf{u}_n)}}\right)\right],$$

where Φ is the standard normal distribution function.

• These yield confidence intervals, not conditional probability intervals.

Parameter estimation

Inferring parameters of covariance function:

Likelihood:

$$L(\theta; \mathbf{y}_n) \propto \int |\mathbf{C}_{\theta}(\mathbf{s}_n + \mathbf{u}_n, \mathbf{s}_n + \mathbf{u}_n)| \exp\left(-\frac{1}{2}\mathbf{y}_n'\mathbf{C}_{\theta}(\mathbf{s}_n + \mathbf{u}_n, \mathbf{s}_n + \mathbf{u}_n)^{-1}\mathbf{y}_n\right) d\mathbf{u}_n.$$

Stochastic EM.

Parameter estimation

Inferring parameters of covariance function:

Likelihood:

$$L(\theta; \mathbf{y}_n) \propto \int |\mathbf{C}_{\theta}(\mathbf{s}_n + \mathbf{u}_n, \mathbf{s}_n + \mathbf{u}_n)| \exp\left(-\frac{1}{2}\mathbf{y}_n'\mathbf{C}_{\theta}(\mathbf{s}_n + \mathbf{u}_n, \mathbf{s}_n + \mathbf{u}_n)^{-1}\mathbf{y}_n\right) d\mathbf{u}_n.$$

- Stochastic EM.
- Pseudo-likelihood, based on Gaussian approximation to first two moments
 [6, 5]:

$$\tilde{L}(\theta; \mathbf{y}_n) \propto |\mathbf{K}_{\theta}(\mathbf{s}_n, \mathbf{s}_n)|^{-1/2} \exp\left(-\frac{1}{2}\mathbf{y}_n'\mathbf{K}_{\theta}(\mathbf{s}_n, \mathbf{s}_n)^{-1}\mathbf{y}_n\right).$$

- Pseudo-score is an unbiased estimating equation.
- Maximum pseudo-likelihood estimator is asymptotically normal under proper domain conditions.

MCMC

 \mathbf{y}_n contains information about location errors \mathbf{u}_n :

$$\begin{split} \hat{x}(s^*) &= \mathbb{E}[x(s^*)|\mathbf{y}_n] \\ &= \int \left(\mathbf{C}(s^*, \mathbf{s}_n + \mathbf{u}_n) [\mathbf{C}(\mathbf{s}_n + \mathbf{u}_n, \mathbf{s}_n + \mathbf{u}_n)]^{-1} \mathbf{y}_n \right) \pi(\mathbf{u}_n|\mathbf{y}_n) d\mathbf{u}_n. \end{split}$$

 \mathbf{y}_n contains information about location errors \mathbf{u}_n :

$$\begin{split} \hat{x}(s^*) &= \mathbb{E}[x(s^*)|\mathbf{y}_n] \\ &= \int \left(\mathbf{C}(s^*, \mathbf{s}_n + \mathbf{u}_n) [\mathbf{C}(\mathbf{s}_n + \mathbf{u}_n, \mathbf{s}_n + \mathbf{u}_n)]^{-1} \mathbf{y}_n \right) \pi(\mathbf{u}_n|\mathbf{y}_n) d\mathbf{u}_n. \end{split}$$

- Dominates KALE in MSE.
- $x(s^*)|\mathbf{y}_n$ yields conditional probability intervals.
- Naturally incorporates parameter estimation/uncertainty.

Distributional assumptions

KALE/KILE does not require Gaussian assumption for x to obtain point predictions, but MCMC procedure does.

Distributional assumptions

KALE/KILE does not require Gaussian assumption for x to obtain point predictions, but MCMC procedure does.

• Similar to arguments in favor of conjugate priors when using squared error loss [14], it makes sense to assume normality in x when Kriging.

Distributional assumptions

KALE/KILE does not require Gaussian assumption for x to obtain point predictions, but MCMC procedure does.

- Similar to arguments in favor of conjugate priors when using squared error loss [14], it makes sense to assume normality in x when Kriging.
- Let $\Pi_{0,C}$ be the family of joint distributions for \mathbf{x}_n with first two moments $\mathbf{0}, \mathbf{C}$.
- For $\pi_1, \pi_2 \in \Pi_{0,C}$, let

$$R_{\pi_1}(\pi_2) = \mathbb{E}_{\pi_1}[(\mathbb{E}_{\pi_2}[x(s^*)|\mathbf{x}_n] - x(s^*))^2].$$

Distributional assumptions

KALE/KILE does not require Gaussian assumption for x to obtain point predictions, but MCMC procedure does.

- Similar to arguments in favor of conjugate priors when using squared error loss [14], it makes sense to assume normality in x when Kriging.
- Let $\Pi_{0,C}$ be the family of joint distributions for \mathbf{x}_n with first two moments $\mathbf{0}, \mathbf{C}$.
- For $\pi_1, \pi_2 \in \Pi_{0,C}$, let

$$R_{\pi_1}(\pi_2) = \mathbb{E}_{\pi_1}[(\mathbb{E}_{\pi_2}[x(s^*)|\mathbf{x}_n] - x(s^*))^2].$$

If π_0 is Gaussian, then for all $\pi \in \Pi_{0,C}$,

$$R_{\pi}(\pi) \leq R_{\pi}(\pi_0) = R_{\pi_0}(\pi_0) \leq R_{\pi_0}(\pi).$$

Distributional assumptions

KALE/KILE does not require Gaussian assumption for x to obtain point predictions, but MCMC procedure does.

- Similar to arguments in favor of conjugate priors when using squared error loss [14], it makes sense to assume normality in x when Kriging.
- Let $\Pi_{0,C}$ be the family of joint distributions for \mathbf{x}_n with first two moments $\mathbf{0}, \mathbf{C}$.
- For $\pi_1, \pi_2 \in \Pi_{0,\mathbf{C}}$, let

$$R_{\pi_1}(\pi_2) = \mathbb{E}_{\pi_1}[(\mathbb{E}_{\pi_2}[x(s^*)|\mathbf{x}_n] - x(s^*))^2].$$

If π_0 is Gaussian, then for all $\pi \in \Pi_{0,C}$,

$$R_{\pi}(\pi) \leq R_{\pi}(\pi_0) = R_{\pi_0}(\pi_0) \leq R_{\pi_0}(\pi).$$

- $R_{\pi_0}(\pi) R_{\pi_0}(\pi_0)$ is the cost of incorrectly assuming π when x is Gaussian.
- $R_{\pi}(\pi_0) R_{\pi}(\pi)$ is the opportunity cost of a Gaussian assumption.

This problem favors gradient-based MCMC samplers (HMC, MALA):

$$\begin{split} \log(\pi(\theta, \mathbf{u}_n | \mathbf{y}_n)) &= -\frac{1}{2} \log(|\mathbf{C}_{\theta}(\mathbf{u}_n)|) - \frac{1}{2} \mathbf{y}_n' \mathbf{C}_{\theta}(\mathbf{u}_n)^{-1} \mathbf{y}_n + \text{const.} \\ \frac{\partial}{\partial u_i} \log(\pi(\theta, \mathbf{u}_n | \mathbf{y}_n)) &= \\ &\frac{1}{2} \text{Tr} \left(\mathbf{C}_{\theta}(\mathbf{u}_n)^{-1} \left[\frac{\partial}{\partial u_i} \mathbf{C}_{\theta}(\mathbf{u}_n) \right] \left(\mathbf{C}_{\theta}(\mathbf{u}_n)^{-1} \mathbf{y}_n \mathbf{y}_n' - \mathbf{I}_n \right) \right) + \frac{\partial}{\partial u_i} \log(\pi(\mathbf{u}_n)) \\ \frac{\partial}{\partial \theta_i} \log(\pi(\theta, \mathbf{u}_n | \mathbf{y}_n)) &= \\ &\frac{1}{2} \text{Tr} \left(\mathbf{C}_{\theta}(\mathbf{u}_n)^{-1} \left[\frac{\partial}{\partial \theta_i} \mathbf{C}_{\theta}(\mathbf{u}_n) \right] \left(\mathbf{C}_{\theta}(\mathbf{u}_n)^{-1} \mathbf{y}_n \mathbf{y}_n' - \mathbf{I}_n \right) \right) + \frac{\partial}{\partial \theta_i} \log(\pi(\theta)) \end{split}$$

where $C_{\theta}(\mathbf{u}_n) = C_{\theta}(\mathbf{s}_n + \mathbf{u}_n, \mathbf{s}_n + \mathbf{u}_n)$.

• Computational complexity of both log-likelihood and gradient dominated by $\mathbf{C}_{\theta}(\mathbf{u}_n)^{-1}$.

Multimodality

Multimodality is a common problem.

- ullet In error-free regime, likelihood for heta can be multimodal [20].
- In isotropic model with location errors \mathbf{u}_n , $\pi(\mathbf{y}_n|\mathbf{u}_n,\theta)$ constant for \mathbf{u}_n across contours preserving pairwise distances.

Multimodality

Multimodality is a common problem.

- ullet In error-free regime, likelihood for heta can be multimodal [20].
- In isotropic model with location errors \mathbf{u}_n , $\pi(\mathbf{y}_n|\mathbf{u}_n,\theta)$ constant for \mathbf{u}_n across contours preserving pairwise distances.

Example of isolated modes:

- n = 2, p = 1.
- $c(s_1, s_2) = \exp(-(s_1 s_2)^2) + \sigma_x^2 \mathbf{1}[s_1 = s_2].$
- $u_i \sim \mathcal{N}(0, \sigma_u^2)$.

Multimodality

Multimodality is a common problem.

- In error-free regime, likelihood for θ can be multimodal [20].
- In isotropic model with location errors \mathbf{u}_n , $\pi(\mathbf{y}_n|\mathbf{u}_n,\theta)$ constant for \mathbf{u}_n across contours preserving pairwise distances.

Example of isolated modes:

- n = 2, p = 1.
- $c(s_1, s_2) = \exp(-(s_1 s_2)^2) + \sigma_{\star}^2 \mathbf{1}[s_1 = s_2].$
- $u_i \sim \mathcal{N}(0, \sigma_u^2)$.

$$\sigma_u^2 = 2$$
, $\sigma_x^2 = 0.0001$

$$\sigma_{y}^{2}=2, \ \sigma_{x}^{2}=1$$

$$\sigma_u^2 = 0.1, \ \sigma_x^2 = 0.0001$$

Simulation study compares

- data: $c(s_1, s_2) = \tau^2 \exp(-\beta ||s_1 s_2||^2) + \sigma_x^2 \mathbf{1}[s_1 = s_2].$
- location errors: $u_i \stackrel{iid}{\sim} \mathcal{N}(\mathbf{0}, \sigma_u^2 \mathbf{I}_2)$.
- methods: KILE, KALE, HMC.
- tasks: parameter inference, point prediction, interval prediction.
- scenarios: parameters assumed known, parameters first estimated.

Simulation study compares

- data: $c(s_1, s_2) = \tau^2 \exp(-\beta ||s_1 s_2||^2) + \sigma_x^2 \mathbf{1}[s_1 = s_2].$
- location errors: $u_i \stackrel{iid}{\sim} \mathcal{N}(\mathbf{0}, \sigma_u^2 \mathbf{I}_2)$.
- methods: KILE, KALE, HMC.
- tasks: parameter inference, point prediction, interval prediction.
- scenarios: parameters assumed known, parameters first estimated.

Parameter	Values used
$ au^2$	1
β	0.001, 0.01, 0.1, 0.5, 1, 2
σ_{x}^{2}	0.0001, 0.01, 0.1, 0.5, 1
σ_u^2	0.0001, 0.01, 0.1, 0.5, 1

Parameter values used in simulation study.

Simulation study compares

- data: $c(s_1, s_2) = \tau^2 \exp(-\beta ||s_1 s_2||^2) + \sigma_x^2 \mathbf{1}[s_1 = s_2].$
- location errors: $u_i \stackrel{iid}{\sim} \mathcal{N}(\mathbf{0}, \sigma_u^2 \mathbf{I}_2)$.
- methods: KILE, KALE, HMC.
- tasks: parameter inference, point prediction, interval prediction.
- scenarios: parameters assumed known, parameters first estimated.

		$\beta = 0.001$								
Parameter	Values used	ω -	•	0	•	•	0	•	•	٠
τ^2 β	1 0.001, 0.01, 0.1, 0.5, 1, 2	9 -	•	•	•	•	•	•	•	•
$\sigma_x^2 \ \sigma_u^2$	0.0001, 0.01, 0.1, 0.5, 1 0.0001, 0.01, 0.1, 0.5, 1	4 -	•	•	•	•	•	•	•	•
Parameter values used in simulation study.			•	•	•	•	•	•	•	•

black = observed locations; white = predicted locations.

Simulation study compares

- data: $c(s_1, s_2) = \tau^2 \exp(-\beta ||s_1 s_2||^2) + \sigma_x^2 \mathbf{1}[s_1 = s_2].$
- location errors: $u_i \stackrel{iid}{\sim} \mathcal{N}(\mathbf{0}, \sigma_u^2 \mathbf{I}_2)$.
- methods: KILE, KALE, HMC.
- tasks: parameter inference, point prediction, interval prediction.
- scenarios: parameters assumed known, parameters first estimated.

Values used
1
0.001, 0.01, 0.1, 0.5, 1, 2
0.0001, 0.01, 0.1, 0.5, 1
0.0001, 0.01, 0.1, 0.5, 1

Parameter values used in simulation study.

• black = observed locations; white = predicted locations.

Simulation study compares

- data: $c(s_1, s_2) = \tau^2 \exp(-\beta ||s_1 s_2||^2) + \sigma_x^2 \mathbf{1}[s_1 = s_2].$
- location errors: $u_i \stackrel{iid}{\sim} \mathcal{N}(\mathbf{0}, \sigma_u^2 \mathbf{I}_2)$.
- methods: KILE, KALE, HMC.
- tasks: parameter inference, point prediction, interval prediction.
- scenarios: parameters assumed known, parameters first estimated.

Parameter	Values used
τ^2	1
β	0.001, 0.01, 0.1, 0.5, 1, 2
σ_{x}^{2}	0.0001, 0.01, 0.1, 0.5, 1
σ_u^2	0.0001, 0.01, 0.1, 0.5, 1

Parameter values used in simulation study.

• black = observed locations; white = predicted locations.

MSE ratios

- Parameters assumed known.
- Nugget: $\sigma_x^2 = 0.0001$.

Relative MSPE for HMC/KALE 0.87 0.78 0.71 0.93 0.95 0.96 0.5 0.83 0.78 0.89 0.95 0.96 0.90 0.81 0.94 0.97 0.99 0.82 0.01 1.00 0.91 0.98 1.00 1.00 1e-04 1.00 1.00 0.99 1.00 1.00 1.00 0.001 0.01 0.1 0.5 1 2

MSE ratios

- Parameters assumed known.
- Nugget: $\sigma_x^2 = 0.01$.

Relative MSPE for KALE/KILE 1.00 0.93 0.64 0.41 0.79 1.02 0.5 1.00 0.94 0.79 0.48 1.02 1.00 0.99 0.87 0.97 1.01 0.01 1.00 1.00 1.00 0.98 1.00 1.00 1e-04 1.00 1.00 1.00 1.00 1.00 1.00 0.001 0.01 0.1 0.5 2 В

Relative MSPE for HMC/KALE 0.96 0.92 0.77 0.91 0.95 0.96 0.5 0.99 0.71 0.93 0.94 0.95 0.96 1.00 0.99 0.87 0.93 0.98 0.99 0.01 1.00 1.00 0.99 1.00 1.00 1e-04 1.00 1.00 1.00 1.00 1.00 1.00 0.001 0.01 0.1 0.5 1 2

MSE ratios

- Parameters assumed known.
- Nugget: $\sigma_x^2 = 0.1$.

Relative MSPE for KALE/KILE 1.00 0.96 0.86 0.84 1.03 0.5 0.89 1.00 0.99 0.94 0.77 1.01 1.00 0.99 0.92 0.99 1.00 1.00 0.01 1.00 1.00 1.00 1.00 1.00 1e-04 1.00 1.00 1.00 1.00 1.00 1.00 0.001 0.01 0.1 0.5 2 В

Relative MSPE for HMC/KALE

MSE ratios

- Parameters assumed known.
- Nugget: $\sigma_x^2 = 1$.

Relative MSPE for KALE/KILE 1.00 1.00 0.99 0.92 0.97 1.01 0.98 0.5 1.00 1.00 0.96 1.01 0.01 1.00 1.00 1e-04 1.00 1.00 1.00 1.00 0.001 0.01 0.1 0.5 2 В

Relative MSPE for HMC/KALE 1.00 0.99 0.98 0.98 0.5 1.00 1.00 0.98 0.98 1.00 0.01 1.00 1.00 1e-04 1.00 1.00 1.00 1.00 0.001 0.01 0.1 0.5 2

Interval coverage (KILE only)

Parameters assumed known.

• $\sigma_{x}^{2} = 0.0001$

95% interval coverage for KILE 0.91 0.66 0.85 0.95 0.77 0.88

•
$$\sigma_{x}^{2} = 0.01$$

Interval coverage (KILE only)

Parameters assumed known.

95% interval coverage for KILE 0.66 0.70 0.95 0.90 0.95 0.01 1e-04 0.001 β

• $\sigma_{x}^{2} = 0.1$

95% interval coverage for KILE

95% interval coverage for KILE										
1	0.95	0.94	0.89	0.89	0.93	0.95				
0.5	0.95	0.95	0.91	0.92	0.94	0.95				
σ_u^2 0.1	0.95	0.95	0.94	0.94	0.95	0.95				
0.01	0.95	0.95	0.95	0.95	0.95	0.95				
1e-04	0.95	0.95	0.95	0.95	0.95	0.95				
· ·	0.001	0.01	0.1	0.5	1	2				
	β									

•
$$\sigma_x^2 = 1$$

Estimating parameters

When parameters $\tau^2, \beta, \sigma_x^2$ are unknown:

- KILE: estimated with maximum likelihood.
- KALE: estimated with maximum pseudo-likelihood.
- ullet HMC: given flat priors over reasonable range and sampled jointly with $oldsymbol{u}_n$.

Estimating parameters

When parameters $\tau^2, \beta, \sigma_x^2$ are unknown:

- KILE: estimated with maximum likelihood.
- KALE: estimated with maximum pseudo-likelihood.
- HMC: given flat priors over reasonable range and sampled jointly with \mathbf{u}_n .

Recall the form of k for this simulation:

$$k(s_1, s_2) = \frac{\tau^2}{(1 + 4\beta\sigma_u^2)^{p/2}} \exp\left(-\frac{\beta}{1 + 4\beta\sigma_u^2}||s_1 - s_2||^2\right).$$

- $\tau^2, \beta, \sigma_u^2$ not identifiable.
- MLE invariance yields same estimated covariance function for KALE/KILE, though Kriging equations will be different.

MSE ratios

- Parameters unknown and first estimated.
- Nugget: $\sigma_x^2 = 0.0001$.

Relative MSPE for HMC/KALE 0.92 0.82 1.00 0.98 0.98 0.5 0.97 0.74 0.80 0.94 0.96 0.98 0.96 0.83 0.77 1.00 0.98 0.97 0.01 0.99 0.92 0.85 1.09 1.02 0.98 1.00 0.98 1e-04 0.99 1.14 1.03 0.97 0.001 0.01 0.1 0.5 2

MSE ratios

- Parameters unknown and first estimated.
- Nugget: $\sigma_x^2 = 0.01$.

Relative MSPE for HMC/KALE 0.98 0.79 0.93 0.98 0.99 0.5 1.06 0.92 0.75 0.98 0.96 0.97 0.95 0.88 0.99 0.98 0.01 1.05 0.99 0.98 1.01 0.97 0.99 1e-04 1.05 0.99 1.06 1.05 0.97 0.001 0.01 0.1 0.5 2

MSE ratios

- Parameters unknown and first estimated.
- Nugget: $\sigma_x^2 = 0.1$.

Relative MSPE for HMC/KALE 0.85 0.82 0.99 0.97 0.98 0.5 1.14 0.97 0.87 0.97 0.95 0.95 1.16 0.98 0.97 0.97 0.97 0.01 1.18 0.99 0.99 0.98 1.00 0.98 1e-04 1.15 0.99 0.98 0.98 1.00 0.96 0.001 0.01 0.1 0.5 1 2

MSE ratios

- Parameters unknown and first estimated.
- Nugget: $\sigma_x^2 = 1$.

Interval coverage

• Nugget: $\sigma_x^2 = 0.0001$.

Interval coverage

• Nugget: $\sigma_x^2 = 0.01$.

Interval coverage

• Nugget: $\sigma_x^2 = 0.1$.

Interval coverage

• Nugget: $\sigma_x^2 = 1$.

Interpolating northern hemisphere temperature anomolies for summer 2011¹

¹Data available: http://www.cru.uea.ac.uk/cru/data/temperature/

Interpolating northern hemisphere temperature anomolies for summer 2011¹

- \bullet Temperatures are averaged over April–September time window and $5^{\circ}\times5^{\circ}$ long–lat grid cell.
- Values expressed as anomolies relative to 1860-2010 average [18].
- We further subtract the 2011 mean.
- Numerous pre-processing steps and adjustments to data [4, 13, 7].

¹Data available: http://www.cru.uea.ac.uk/cru/data/temperature/

Interpolating northern hemisphere temperature anomolies for summer 2011¹

- \bullet Temperatures are averaged over April–September time window and $5^{\circ}\times5^{\circ}$ long–lat grid cell.
- Values expressed as anomolies relative to 1860-2010 average [18].
- We further subtract the 2011 mean.
- Numerous pre-processing steps and adjustments to data [4, 13, 7].

Geo-referencing by grid cells is a location error problem.

¹Data available: http://www.cru.uea.ac.uk/cru/data/temperature/

Interpolating northern hemisphere temperature anomolies for summer 2011

Covariance function is based on distance along the Earth's surface [19]:

$$\begin{split} c(s_1,s_2) &= \tau^2 \exp(-\beta \Delta) + \sigma_x^2 \mathbf{1}[s_1 = s_2] \\ \Delta &= 2r \arcsin \sqrt{\sin^2 \left(\frac{\phi_2 - \phi_1}{2}\right) + \cos(\phi_1)\cos(\phi_2)\sin^2 \left(\frac{\psi_2 - \psi_1}{2}\right)}, \end{split}$$

- $s = (\psi, \phi)$ are longitude, latitude pairs.
- r = 6371 is the Earth's radius in km.

Interpolating northern hemisphere temperature anomolies for summer 2011

Covariance function is based on distance along the Earth's surface [19]:

$$\begin{split} c(s_1,s_2) &= \tau^2 \exp(-\beta \Delta) + \sigma_x^2 \mathbf{1}[s_1 = s_2] \\ \Delta &= 2r \arcsin \sqrt{\sin^2 \left(\frac{\phi_2 - \phi_1}{2}\right) + \cos(\phi_1)\cos(\phi_2)\sin^2 \left(\frac{\psi_2 - \psi_1}{2}\right)}, \end{split}$$

- $s = (\psi, \phi)$ are longitude, latitude pairs.
- r = 6371 is the Earth's radius in km.

We assume location errors are i.i.d. in terms of distance on the Earth's surface:

$$u_i \sim \mathcal{N} \left(\mathbf{0}, \sigma_u^2 \left(rac{180}{\pi r}
ight)^2 \left(egin{matrix} rac{1}{\cos^2(\phi_i)} & 0 \\ 0 & 1 \end{matrix}
ight).$$

• $\sigma_u^2 = 500$ yields a 28km expected distance between s + u and s.

Interpolating northern hemisphere temperature anomolies for summer 2011

KALE/KILE approach:

Interpolating northern hemisphere temperature anomolies for summer 2011

KALE/KILE approach:

	$\hat{ au}^2$	\hat{eta}	$\hat{\sigma}_x^2$
KILE	1.167	1.428×10^{-4}	0.075
KALE	1.167	1.430×10^{-4}	0.074
KALE	1.167	1.430×10^{-4}	

Parameter estimates

Interpolating northern hemisphere temperature anomolies for summer 2011

KALE/KILE approach:

	$\hat{ au}^2$	\hat{eta}	$\hat{\sigma}_{x}^{2}$
KILE	1.167	1.428×10^{-4}	0.075
KALE	1.167	1.430×10^{-4}	0.074

Parameter estimates

KALE - KILE for point predictions:

KALE - KILE for interval length:

Interpolating northern hemisphere temperature anomolies for summer 2011

HMC approach

Interpolating northern hemisphere temperature anomolies for summer 2011

HMC approach

This looks different from Kriging estimates

- HMC also averages over posterior parameter uncertainty.
- More meaningful comparison is against $\sigma_u^2 = 0$ model using HMC.

Interpolating northern hemisphere temperature anomolies for summer 2011

HMC approach

This looks different from Kriging estimates

- HMC also averages over posterior parameter uncertainty.
- More meaningful comparison is against $\sigma_u^2 = 0$ model using HMC.

$$\{\sigma_u^2=500\}-\{\sigma_u^2=0\}$$
 point predictions: $\{\sigma_u^2=500\}-\{\sigma_u^2=0\}$ interval lengths:

$$\{\sigma_{u}^{2} = 500\} - \{\sigma_{u}^{2} = 0\}$$
 interval lengths:

Interpolating northern hemisphere temperature anomolies for summer 2011

HMC differs in parameter inference for $\{\sigma_u^2=500\}$ and $\{\sigma_u^2=0\}$ models:

Interpolating northern hemisphere temperature anomolies for summer 2011

HMC differs in parameter inference for $\{\sigma_u^2 = 500\}$ and $\{\sigma_u^2 = 0\}$ models:

• HMC with $\{\sigma_u^2 = 0\}$ agrees with parameter inference from KALE/KILE.

Interpolating northern hemisphere temperature anomolies for summer 2011

HMC differs in parameter inference for $\{\sigma_u^2 = 500\}$ and $\{\sigma_u^2 = 0\}$ models:

• HMC with $\{\sigma_n^2 = 0\}$ agrees with parameter inference from KALE/KILE.

Location errors and noisy inputs are a common (but often ignored) problem in GP regression.

Location errors and noisy inputs are a common (but often ignored) problem in GP regression.

Analyst can get away with ignoring location errors when:

- Spatial correlations are either very strong or very weak and location errors are sufficiently small.
- Nugget variance σ_x^2 is large.

Location errors and noisy inputs are a common (but often ignored) problem in GP regression.

Analyst can get away with ignoring location errors when:

- Spatial correlations are either very strong or very weak and location errors are sufficiently small.
- Nugget variance σ_x^2 is large.

Kriging using moment properties of y (KALE) is an acceptable solution in some situations:

- Dominates KILE in MSE when covariance parameters are known.
- Provides correct confidence intervals when covariance parameters are known.

Location errors and noisy inputs are a common (but often ignored) problem in GP regression.

Analyst can get away with ignoring location errors when:

- Spatial correlations are either very strong or very weak and location errors are sufficiently small.
- Nugget variance σ_x^2 is large.

Kriging using moment properties of y (KALE) is an acceptable solution in some situations:

- Dominates KILE in MSE when covariance parameters are known.
- Provides correct confidence intervals when covariance parameters are known.

Using MCMC, we gain several additional advantages:

- Dominates KALE in MSE when covariance parameters are known.
- Provides correct confidence intervals when covariance parameters are known.
- Naturally incorporates uncertainty from estimated parameters.

Location errors and noisy inputs are a common (but often ignored) problem in GP regression.

Analyst can get away with ignoring location errors when:

- Spatial correlations are either very strong or very weak and location errors are sufficiently small.
- Nugget variance σ_x^2 is large.

Kriging using moment properties of y (KALE) is an acceptable solution in some situations:

- Dominates KILE in MSE when covariance parameters are known.
- Provides correct confidence intervals when covariance parameters are known.

Using MCMC, we gain several additional advantages:

- Dominates KALE in MSE when covariance parameters are known.
- Provides correct confidence intervals when covariance parameters are known.
- Naturally incorporates uncertainty from estimated parameters.

Difficulties that remain:

- Prior sensitivity is an issue, particularly for spatial problems.
- MCMC covergence issues due to multiple (isolated) modes.
- Coverage guarantees when parameters are estimated.

Future work

Climate reconstruction

Future work

Climate reconstruction

- Incorporating proxy data, with location uncertainties [11].
- Spatiotemporal heteroskedasticity in location errors.
- Nonstationary covariance behavior [17, 8].

Thanks to

This work:

- Natesh Pillai
- Peter Huybers
- Luke Bornn

My dissertation committee:

- Natesh Pillai
- Carl Morris
- Luke Bornn

Faculty, classmates, and friends in the Statistics Department.

References I

- J. J. Barber, A. E. Gelfand, and J. A. Silander.
 Modelling map positional error to infer true feature location. *Canadian Journal of Statistics*, 34(4):659–676, 2006.
- [2] L. Beale, J. J. Abellan, S. Hodgson, and L. Jarup. Methodologic issues and approaches to spatial epidemiology. Environ Health Perspect, 116(8):1105–1110, 2008.
- [3] M. R. Bonner, D. Han, J. Nie, P. Rogerson, J. E. Vena, and J. L. Freudenheim. Positional accuracy of geocoded addresses in epidemiologic research. *Epidemiology*, 14(4):408–412, 2003.
- [4] P. Brohan, J. J. Kennedy, I. Harris, S. F. Tett, and P. D. Jones. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. Journal of Geophysical Research: Atmospheres (1984–2012), 111(D12), 2006.
- [5] R. J. Carroll, D. Ruppert, L. A. Stefanski, and C. M. Crainiceanu. Measurement error in nonlinear models: a modern perspective. CRC press, 2006.
- [6] N. Cressie and J. Kornak. Spatial statistics in the presence of location error with an application to remote sensing of the environment. Statistical science, 18(4):436–456, 2003.
- [7] P. Jones, D. Lister, T. Osborn, C. Harpham, M. Salmon, and C. Morice. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. Journal of Geophysical Research: Atmospheres (1984–2012), 117(D5), 2012.
- The Annals of Applied Statistics, pages 1271–1289, 2008.

 [9] D. Koller, K. Daniilidis, T. Thorhallson, and H.-H. Nagel. Model-based object tracking in traffic scenes. In Computer VisionECCV'92, pages 437–452. Springer, 1992.

Nonstationary covariance models for global data.

M. Jun and M. L. Stein.

References II

[10] N. Krieger, J. T. Chen, P. D. Waterman, M.-J. Soobader, S. Subramanian, and R. Carson. Geocoding and monitoring of us socioeconomic inequalities in mortality and cancer incidence: does the choice of area-based measure and geographic level matter? the public health disparities geocoding project.

American journal of epidemiology, 156(5):471-482, 2002.

[11] M. E. Mann, Z. Zhang, M. K. Hughes, R. S. Bradley, S. K. Miller, S. Rutherford, and F. Ni. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proceedings of the National Academy of Sciences, 105(36):13252–13257, 2008.

[12] X.-L. Meng.

Multiple-imputation inferences with uncongenial sources of input.

Statistical Science, pages 538-558, 1994.

[13] C. P. Morice, J. J. Kennedy, N. A. Rayner, and P. D. Jones. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The hadcrut4 data set. Journal of Geophysical Research: Atmospheres (1984–2012), 117(D8), 2012.

[14] C. N. Morris.

Natural exponential families with quadratic variance functions: statistical theory.

The Annals of Statistics, pages 515-529, 1983.

[15] D. Pfoser and C. S. Jensen.

Capturing the uncertainty of moving-object representations.

In Advances in Spatial Databases, pages 111-131. Springer, 1999.

[16] D. Rocchini, J. Hortal, S. Lengyel, J. M. Lobo, A. Jimenez-Valverde, C. Ricotta, G. Bacaro, and A. Chiarucci. Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. *Progress in Physical Geography*, 35(2):211–226, 2011.

[17] M. L. Stein.

Space-time covariance functions.

Journal of the American Statistical Association, 100(469):310-321, 2005.

[18] M. P. Tingley.

A bayesian anova scheme for calculating climate anomalies, with applications to the instrumental temperature record. Journal of Climate, 25(2):777–791, 2012.

References III

[19] M. P. Tingley and P. Huybers. A bayesian algorithm for reconstructing climate anomalies in space and time. part i: Development and applications to paleoclimate reconstruction problems. Journal of Climate, 23(10):2759–2781, 2010.

[20] J. Warnes and B. Ripley. Problems with likelihood estimation of covariance functions of spatial gaussian processes. Biometrika, 74(3):640–642, 1987.