

Ares I-X Overview – The First Chapter in the Next Great Adventure

Bart Leahy
Schafer Corporation
Ares Projects
Marshall Space Flight Center
October 2008
www.nasa.gov

Agenda

- ◆ **Ares Launch Vehicles Background**
- ◆ **Ares I-X Mission Background**
- ◆ **Flight Test Objectives**
- ◆ **Vehicle Overview**
- ◆ **Flight Test Trajectory**
- ◆ **Vehicle Elements**
 - Orion Crew Module/Launch Abort System (CM/LAS) Simulator
 - Upper Stage Simulator (USS)
 - Roll Control System (RoCS)
 - First Stage
 - Avionics
- ◆ **Vehicle Assembly Building (VAB) Operations**
- ◆ **Processing Flow**
- ◆ **Launch Operations**
- ◆ **Summary**

Ares Launch Vehicles Background

- ◆ **Deliver crew and cargo for missions to International Space Station (ISS) and to Moon and beyond**
- ◆ **Continuing progress toward design, component testing, and early flight testing**
- ◆ **Ares I Crew Launch Vehicle**
 - Will carry 6 crew to ISS, 4 to Moon
 - First flight test 2009
 - Initial Operating Capability 2015
- ◆ **Ares V Cargo Launch Vehicle**
 - Will launch Earth departure stage and Altair lunar lander to low Earth orbit for lunar missions
 - Largest launch vehicle ever designed
 - Will begin detailed development work in 2011

Ares I-X Background

- ◆ Ares I-X is a development test flight to provide engineering data to inform the design of the Ares I prior to CDR

Ares I will replace the Space Shuttle which is scheduled for 2010 retirement

- ◆ Ares I-X is an uncrewed, sub-orbital development flight test
- ◆ Ares I-X will provide opportunity to test ground facilities and operations at NASA's Kennedy Space Center

Ares I-X Flight Test Objectives

- P(1) Demonstrate control** of a dynamically similar, integrated Ares I/Orion, using Ares I relevant ascent control algorithms
- P(2) Perform an in-flight separation/staging** event between a Ares I-similar First Stage and a representative Upper Stage
- P(3) Demonstrate assembly and recovery** of a new Ares I-like First Stage element at KSC
- P(4) Demonstrate First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics, and parachute performance**
- P(5) Characterize magnitude of integrated vehicle roll torque** throughout First Stage flight

Vehicle Overview

◆ Combines proven space flight and simulated hardware

- Space flight hardware includes:

- Four-segment solid rocket booster (Space Shuttle)
- Atlas V-based avionics
- Roll control system (Peacekeeper)
- Separation system (Space Shuttle)
- Parachutes deceleration system (Space Shuttle)
- Booster deceleration and tumble motors (Space Shuttle)
- Developmental flight instrumentation

- Simulator hardware

- Upper stage
- Orion crew module
- Launch abort system
- Fifth segment of booster

	Ares I-X	Ares I
First Stage Max. Thrust (vacuum):	14.1M N (3.13M lbf)	15.8M N (3.5M lbf)
Max. Speed:	Mach 4.7	Mach 5.84
Staging Altitude:	39,624 m (130,000 ft)	57,453 m (188,493 ft)
Liftoff Weight:	834k kg (1.8M lbfm)	927k kg (2.0M lbfm)
Length:	99.1 m (327 ft)	99 m (325 ft)
Max. Acceleration:	2.46 g	3.79 g

Ares I-X Development Flight Test

P2) Perform in-flight separation/staging event at 124 sec ~ 130,000 feet

~ 150,000 feet

Vehicle Height:	327 feet
Weight at Ignition:	1.8 M-lbm
Max. Acceleration:	2.5 g's
Max. Speed:	Mach 4.7

P5) Characterize integrated vehicle roll torque

in-flight separation plane

P1) Demonstrate controllability

P4) Demonstrate FS entry dynamics and sequencing of events (parachute deployment, etc.)

P3) Demonstrate assembly and recovery of an Ares I similar FS

USS/CM/LAS
Uncontrolled descent and impact

Booster, parachutes and recovery

Orion Crew Module/ Launch Abort System (CM/LAS) Simulator

LAS Party Hat Assembly

LAS Tube Machining

CM Lower Ring

CM Upper Ring

CM/LAS Transport Vehicle

LAS Transition Fitting

- ◆ Outer mold line (OML) resembles earlier Ares I design due to flight test schedule
- ◆ Developmental flight instrumentation sensors will measure aerodynamic and acoustic loads
- ◆ Developed at the NASA Langley Research Center, Hampton, VA

Upper Stage Simulator (USS)

- ◆ USS is a mass and Outer Mold Line (OML) simulator
- ◆ Hardware includes:
 - Interstage (IS) Simulator
 - Upper Stage (US) Simulator
 - Spacecraft Adapter (SA) Simulator
 - Service Module (SM) Simulator
- ◆ Developed at the NASA Glenn Research Center, Cleveland, OH

Flange Machining

Support Welding

Super Stack

USS Internal Access Concept

- ◆ Provides access from the Frustum to the CM/LAS
- ◆ Door in the IS-1 segment
 - Internal access platforms and ladders
 - Provides Environmental Control System (ECS) ductwork to maintain a safe work temp, air flow and controlled humidity

Internal access door

Roll Control System (RoCS)

Propellant Tank

Pressurization System

Cold Flow Assembly

Thruster

- ◆ Provides post-launch 90-degree roll and mitigation against adverse roll torques
- ◆ Modular propulsion system housed in the Ares I-X USS Interstage
- ◆ Proven space hardware harvested from Peacekeeper 4th Stage
- ◆ Managed at the NASA Marshall Space Flight Center, Huntsville, AL

First Stage

Main Parachute

Frustum Forward Ring

Aft Skirt at ARF

♦ Heritage Hardware

- 4 Segment Reusable Solid Rocket Motor (RSRM) w/Nozzle
- Thrust Vector Control (TVC)
- Flight Termination System (FTS)
- Nose Cap w/Thrusters
- Booster Separation Motors (BSMs)

♦ Modified Heritage Hardware

- Shuttle Derived Avionics
- Aft Skirt

♦ New Developments for Ares I-X

- Fifth Segment Simulator (5SS)
- Forward Skirt (FS)
- Forward Skirt Extension (FSE)
- Main Parachute Support Structure (MPSS)
- Frustum

♦ Ares I Designs

- Parachutes
- FTS Extension to Aft Segment

♦ Managed at the NASA Marshall Space Flight Center, Huntsville, AL

Avionics

Avionics SII

- ◆ Primary avionics subsystems:
 - FSAM (located in First Stage fifth segment)
 - Guidance & Control System
 - Ground Command, Control, and Communication (GC3)
- ◆ Managed at the NASA Marshall Space Flight Center, Huntsville, AL

FSAM Assembly

ATVC Testing

FSAM

FTINU (Flight Computer)

FSAM Harness Template

Development Flight Instrumentation (DFI) and Video

Sensor Summary

Appendix

Element	Number of Sensors	% of Total
CM/LAS	149	20%
SM, SA, US 1-7	156	21%
Interstage 1&2	62	8%
1st Stage	384	51%
Total	751	100%

Note: Totals include Pyro Sensor Counts

- ◆ Instrumented for 924 measurements
 - Thermal
 - Structures
 - GNC/Trajectory
 - Aero
 - Shock
- ◆ Cameras strategically located
- ◆ Data to be retrieved via telemetry and a data recorder box that is recovered from the First Stage after flight
- ◆ Managed at the NASA Langley Research Center, Hampton, VA

DFI Protuberances

Ares I-X Processing Flow

Vehicle Assembly Building (VAB) Operations

Arial of the VAB, Pad B, and Pad A

FTV in VAB

USS Segments and CM/LAS in Hi-Bay 4

- ◆ The Upper Stage Simulator (USS) segments and Orion Crew Module/Launch Abort System (CM/LAS) will be assembled into stacks and Development Flight Instrumentation (DFI) tested in VAB Hi-Bay 4.
- ◆ The First Stage segments and stacks will be integrated in Hi-Bay 3.

Ares I-X on Mobile Launch Platform

Pad 39B at NASA Kennedy Space Center, FL

Stabilizer

Upper Stage Access Arm

1st Stage Avionics Module Access

Video

Summary

- ◆ Ares I-X is the first flight of NASA's new Constellation Program
- ◆ Ares I-X is a developmental test flight to support the Ares I
- ◆ Ares I-X is on track for May 2009 launch date
- ◆ For more information, see http://www.nasa.gov/mission_pages/constellation/ares/flighttests/aresIx/index.html or http://staging.cms.nasa.gov/mission_pages/constellation/ares/flighttests/aresIx/index.html

Backup Slides

Systems Engineering & Integration

Trajectory

- Trajectories
- Malfunction Turn
- Baseline Databook
- Prelim Range Data Package

Aerodynamics

- Ascent Aero
- Transition Lift-off CFD
- Stage Separation CFD
- Rigid Buffet

Integrated Design & Analysis

Structures

- Coupled Loads Cycle 1
- Cycle 2 Update
- Assess Rigid Buffet data

Thermal

- Preliminary Stack
- Ascent on Pad
- Thermal Prediction Report & Databook

Integrated Mass Properties

Guidance, Navigation & Control

- Initial Flight Control Architecture
- Preliminary Stability Analysis
- Updated Drift Analysis
- Stage Separation Analysis

Systems Engineering & Integration

Systems Engineering

- Outer Mold Line
- Development Flight Instrumentation
- Design Definition Document

- Systems Engineering
- System Requirements & Verification
- Launch Operations & Flight Integration

Launch Operations & Flight Integration

- Tailored Range Document
- Launch Commit Criteria
- Flight Data Package

System Requirements & Verification

- System Requirements Document
- Verification Requirements Document
 - Interface Control Documents
 - Interface Requirements Documents

Ares I-X FTV Integration

