Colossal Trajectory Mining Semantic Co-movement Pattern Mining

Chiara Forresi, Matteo Francia*, Enrico Gallinucci, Matteo Golfarelli, Manuele Pasini DISI - University of Bologna, Italy

Spatio-temporal mobility patterns are at the core of urban planning applications

- Mobility patterns can be defined depending on spatiotemporal constraints (co-location, flow, swarm, convoy)
- Existing approaches extract small groups of objects sharing fine-grained paths
 - Many approaches for single patterns
 - One approach (SPARE) manages the four types of co-movement patterns

Milan has 88 districts (NIL) with over $3 \cdot 10^6$ inhabitants (i.e., potential MOs)

- Coarse-grained: finding groups of 100 people in a NIL with 16K residents could require to enumerate $\binom{16000}{100}$ groups!
- Semantic features: how do people move within the districts at different times of the day?

Rather than enumerating groups of MOs and computing the similarity of their trajectories...

- Map trajectories into a multidimensional tessellation
 - Tessellation defines the granularity of the analysis
 - We can consider semantic dimensions (e.g., means of transport, activity, times of the day)
- Create a transactional dataset (1 transaction=1 tile)
- Mine the co-movement patterns
 - Bread-first row-enumeration approach: high parallelism plus early pruning through constraints
 - Colossal: by combining the tessellation's tiles (and not the MOs), CTM is highly efficient when #transactions (tiles) << items (#MOs)
 - Mine different pattern types depending on spatiotemporal constraints

	Milan ($mCrd=100,\ mSup=12$)						
Type	S	Patterns	Enum.	Time (s)	Shape check	Card. check	Red. check
Flow Co-loc. Convoy ⁴ Swarm	88 88 528 528	$9.7 \cdot 10^{4}$ $2.3 \cdot 10^{5}$ 0 124	$2.1 \cdot 10^{7}$ $2.6 \cdot 10^{7}$ $5.5 \cdot 10^{8}$ $3.0 \cdot 10^{8}$	$31 \\ 44 \\ 180 \\ 127$	53% $31%$ $1%$ $8.2%$	82% 82% 99% 98%	$30\% \\ 31\% \\ 90\% \\ 70\%$

References

Francia Matteo et al. "Colossal Trajectory Mining: A unifying approach to mine behavioral mobility patterns." Expert Systems with Applications 238 (2024): 122055.

Tessellation Raw trajectories

Abstracting Trajectories

Trajectories

Creating Transactions

Transactions

$$I_{A} = \{T_{R}, T_{B}\}$$

$$I_{B} = \{T_{R}, T_{B}\}$$
...

$$I_X = \{T_R\}$$

Co-movement Patterns

Contact Matteo Francia **Assistant Professor** m.francia@unibo.it

