Heterogeneous Agent Models

David Childers

CMU, Tepper School of Business

4/24/2023

Heterogeneous Agent Models

- Motivation
- Cross-sectional Distributions
 - Kolmogorov Forward/Fokker-Planck Equations
- Parameter Estimation
- Steady State: Huggett procedure
- Nonstochastic Dynamics
- Stochastic Dynamics
 - Krusell-Smith Method
 - Perturbation Method

Motivation

- Dynamic optimization describes behavior of single agent
 - Consumer, Firm, Household, Government
- How to describe population of these agents?
 - Derive cross-sectional distribution implied by behavior
 - Consider feedback from distribution to behavior
 - Solve for fixed point: equilibrium
- Applications
 - Distribution allows estimating model parameters
 - May care about feedback
 - Role of heterogeneity in economic environment
 - May care about distributions directly
 - Find how it evolves or changes

Example Model: (Approximately) Huggett (1993)

- ► Standard consumption savings problem we have seen all class
- Assume 1 bond with return R, lower limit \underline{a} on borrowing
- ▶ Typical agent i chooses c_t^i to solve

$$\begin{aligned} \max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \frac{(c_t^i)^{1-\gamma}}{1-\gamma} \\ \text{s.t.} \quad w_{t+1}^i &= R_t(w_t^i - c_t^i) + s_t^i \\ R_t(w_t^i - c_t^i) &\geq \underline{a}, \ \underline{a} < 0 \end{aligned}$$

- ▶ Income $s_t^i \sim g(.)$ drawn iid over time **and** across individuals
- Everyone solves same problem, but
 - Receives different draw of income s
 - So chooses different consumption c
 - Ends up with different wealth w
- Heterogeneity encoded in random variables
 - Model provides complete statistical description of data

Huggett Model: Goals

- Tasks
 - 1. Derive joint distribution of consumption, income, wealth (c_t^i, s_t^i, w_t^i)
 - 2. Allow feedback: let interest rate R be endogenous
 - 3. Add "aggregate" variability, so distribution also random
- ▶ Distribution of s^i is given g(s)
- ▶ Policy function c(w), law of motion for w solved for by standard (dynamic programming) methods
- ▶ Use above objects to find distribution $m_t(w)$ of w_t^i
 - ► This is Kolmogorov Forward/Fokker Planck equation
- ► Feedback is feature added to model: use general equilibrium
 - ► Simplest: Market for bonds clears with 0 net supply

$$\int (w_t^i - c_t^i) \mathrm{d}i = 0$$

- ▶ For now, assume steady state:
 - ▶ Individual income and choices dynamic, stochastic
 - \triangleright Cross-section distribution (and so R_t) fixed

Kolmogorov Forward Equation

- ► Turns policy rule into density rule
- Intuition simpler in finite state case
 - ▶ Let $[H]_{ij} = Pr(x' = j | x = i)$
- ► Then, given population with $Pr(x = i) = [m]_i$, next period distribution is

$$m' = H^T m$$

- Rule is transpose ("adjoint") of Markov transition matrix
 - Hence called "adjoint Markov operator"
- Continuous state case same: switch integrand in conditional expectation
 - $H[\phi] := E[\phi(x')|x] = \int \phi(x')f(x'|x)dx'$
 - $H^*[m] = \int m(x) f(x'|x) dx$
- Obtain next density from conditional density, current density
- Use initial (or terminal) conditions or steady state requirement m=m' to find implied path
- Model doesn't directly give conditional density, but can derive it

Deriving KFE From Policy Rule

- ▶ Assume rule $x' = h(x, \epsilon)$, where $\epsilon \sim G(\epsilon)$
- ightharpoonup Population follows above rule, with independent draws of ϵ
- Assume current distribution of x in this population is $\mu(x)$
- Adding up" rule: expectation of any function of x' tomorrow is expectation of that function over distribution of x, ϵ
- For all $\phi(.)$, distribution μ' satisfies

$$\int \phi(x')d\mu'(x') = \int \int \phi(h(x,\epsilon))d\mu(x)dG(\epsilon)$$

- ▶ Simplifies considerably if $h(x, \epsilon)$ has inverse $h_x^{-1}(x')$ in ϵ for every x, and μ , G have densities m, g
- ▶ (Apply above to $1\{x' \le z\}$ to get law for CDF, differentiate to get PDFs, and apply change of variables)

$$m(x') = \int g(h_x^{-1}(x')) \left| \det \frac{dh_x^{-1}(x')}{dx'} \right| m(x) dx$$

► This expresses $m(x') = \int f(x'|x)m(x)dx$ using conditional density implied by rule

Continuous time case: Fokker-Planck Equation

▶ In continuous time case, *x* follows diffusion equation

$$dx = \mu(x, t)dt + \sigma(x, t)dW$$

- ▶ Evolution of conditional expectation described by "infinitesimal generator" $A[\phi] = \frac{dE[\phi(x_{t+\Delta})|x_t]}{d\Delta}$
- Apply It $ar{o}$'s lemma to obtain $A[\phi] = \phi'(x)\mu(x) + rac{\sigma(x)^2}{2}\phi''(x)$
- ▶ Evolution of distribution described by its (L^2) adjoint A^*
- ▶ Density m(x, t), it evolves as $\frac{\partial}{\partial t}m(x, t) =$

$$A^*[m(x,t)] := -\frac{\partial}{\partial x}(m(x,t)\mu(x,t)) + \frac{\partial^2}{\partial x^2}(\frac{\sigma(x,t)^2}{2}m(x,t))$$

- Steady state: Assume μ, σ depend only on x, set LHS to 0
 - Second order PDE in m
- Can extend to jump processes, multiple dimensions

Solving Kolmogorov Forward Equation

- Solve for policy using standard dynamic programming method
- KFE is a functional equation
 - ightharpoonup Represent density m(x) by function representation
 - Linear in coefficients if $m(x) = \sum_{i=1}^{k} a_i \phi_i(x)$
- ▶ If discrete or discretized, KFE is a Markov matrix H*
 - Transpose of discretized differential operator in HJB equation
- ▶ May need to impose that density nonnegative, sums to 1
 - ▶ Divide each column by sum of entries
 - Or add additional equation
- ▶ If solving for steady state, this is fixed point $m = H^*m$
 - Can use fixed point iteration
- Linear fixed point is eigenproblem
 - lacktriangle Use eigensolver to find eigenvector with eigenvalue closest to 1
 - 0 in continuous time
 - Guaranteed to exist if normalized (Frobenius-Perron thm)
 - ▶ May need to multiply by −1 to ensure sign correct
- Can "solve" by simulating many agents forward
 - Error bad, but no need to derive formula

Application 1: Estimation

- Above results enough to perform estimation if all agents iid
- Given parameters θ , solve optimization for law of motion
- ▶ Solve KFE for steady state density $\tilde{m}(x,\theta)$
- ▶ Given data $\{x_i\}_{i=1}^n$, find MLE or Bayes
 - $\hat{\theta}_{MLE} = \arg\max_{n} \sum_{i=1}^{n} \log \tilde{m}(x_i, \theta)$
 - ► Given prior $\pi(\theta)$, run MCMC to sample from $\pi(\theta|X) \propto \tilde{m}(x_i, \theta)\pi(\theta)$
- Note: need numerical error in likelihood of $o(\frac{1}{\sqrt{n}})$ to be able to ignore approximation error in asymptotic results¹
- With panel data, can use conditional densities directly
 - Derive these from Fokker-Planck in continuous time
- ▶ When some individual variables unobserved, need to marginalize
 - ▶ Use filtering methods (Kalman if linear, Particle o/w)
 - or just simulate and match moments

¹And other conditions: see Kristensen & Salanié (2017)

Adding Feedback

- Optimization and KFE describe population behavior in given environment
- Close model by adding response of environment to behavior
 - ▶ E.g. market clearing. Price matches supply and demand
 - ► Huggett Model: interest rate R solves $\int (w c(w, R))m(w)dw = 0$
- ▶ More generally: parameter P of decision problem depends on distribution through some "equilibrium condition"
- ► For some problems "P" is itself a function
 - ▶ Nash equilibrium: respond directly to others' behavior
 - ► Spatial/network models: response at every value of argument
- Steady state equilibrium is
 - ▶ Decision rule h(.), distribution μ , parameter P, st.
 - 1. Given P, h(.) satisfies optimality condition
 - 2. μ satisfies steady state KFE derived from h(.)
 - 3. P satisfies equilibrium condition given $h(.), \mu$

Solution Procedure: "Huggett Algorithm"

- ▶ Write function J(P) for equilibrium
 - 1. Given P, solve optimization problem for policy rule h(.)
 - Use h(.) to solve KFE for steady state distribution μ
 Output value of equilibrium condition equation given h, μ, P
- ▶ Solve J(P) = 0 by, e.g., bisection
- ▶ Step 1 by Value/Policy iteration or projection for Euler equation
- ▶ Step 2 by fixed point iteration or eigensolver
- ▶ Step 3 usually involves numerical integration
- ▶ If P a vector, use nonlinear solver
 - ▶ Keep tolerance large, since interior loops approximate
- ▶ If P is function, use functional equation methods (projection, etc) to solve J(P) = 0
- ► Nested structure convenient because interior problems often contraction *conditionally* on value of other arguments

Example: Huggett Model

- ▶ Reduce optimization problem to Bellman or Euler equation
 - ▶ Bellman easier, more robust, Euler gets rid of max
- ► Fix *R*, solve Euler for consumption rule

$$\ell(w) = \mathbb{E}_t \beta R \int g(w' - R(w - c(w, \ell(w), R))) c(w', \ell(w'), R)^{-\gamma} dw'$$

- where $c(w, \ell, R) = \min\{\ell^{1/\gamma}, w \frac{\underline{a}}{R}\}$
- ▶ "Parameterized Expectations" transform: $\ell(w) = \beta \cdot$ expected m.u. of consumption (Christiano & Fisher 2000)
 - ► Turns Euler equation into fixed point problem
 - ► Gets rid of Lagrange multipliers in equation
 - Represent $\ell(w)$ by basis functions, run fixed point iteration
- ▶ Solve KFE for m(w)

$$m(w') = \int g(w' - R(w - c(w, \ell(w), R)))m(w)dw$$

- \blacktriangleright Represent m(w) by basis functions, solve by eigensolver
- ▶ Bisection in *R* to solve $\int (w c(w, \ell(w), R)) m(w) dw = 0$

Results: Equilibrium Policy Function and State Distribution

Steady State Policy and Wealth Distribution

Figure 1: Huggett Model Results

Extension: Nonstochastic dynamics

- ▶ Suppose initial condition t = 0 not a steady state
- Nonstochastic dynamics can be solved by shooting method
 - Use Huggett algorithm to solve for steady state
 - ▶ Choose large *T* for time economy returns to steady state
 - ► Conjecture **sequence** $\{P_t\}_{t=0}^T$, $P_t = P^*$ for t > T
 - ► Solve optimization problem given sequence (eg by iterating value functions backward)
 - ▶ Solve KFE forward from μ_0 using sequence of policies
 - Check sequence of equilibrium conditions
 - Iterate over prices until equilibrium conditions satisfied
- Describes path response to unanticipated economic changes
 - "MIT Shock": non-equilibrium parameter change
 - Start at a steady state
 - Change a parameter of economic environment
 - Solve for path back to new steady state

Stochastic Dynamics

- \triangleright Consider adding random variables Z_t that affect all agents
 - ▶ Business cycles: income distribution fluctuates
 - Aggregate policy (fiscal/monetary/regulatory)
- Creates major computational problem
 - Whole distribution shifts in response to shocks
 - Stochastic law of endogenous distribution enters decision problem
 - Value and policy functions take distribution as argument
- This is a functional equation "squared":
 - Functions to solve for are functions of functions: "Operators"
 - E.g. map from income distribution to spending
- Try to solve by functional equation approach
 - Projection
 - Perturbation
- ▶ How to represent infinite dimensional function?
 - Curse of dimensionality
 - Need approximation which reduces dimension

Example: Huggett with aggregate shocks

- ▶ Take original Huggett model but
- ▶ instead of income $s_t^i \stackrel{iid}{\sim} g(.)$ face income $s_t^i + z_t$
 - $s_t^i \stackrel{iid}{\sim} g(.|\sigma_t)$, σ_t, z_t shared for all agents
- ▶ $Z_t = (\sigma_t, z_t)$ are aggregate shocks to mean and variance of income risk
- ▶ Direct effect: 2 more variables in decision problem
- Indirect effects
 - 1. since shared, whole wealth distribution depends on them
 - 2. Interest rate now stochastic
 - to keep track of interest rate, need to know state of shocks and distribution
- ▶ Decision rule c(w, Z, m(.)) takes additional arguments
 - One of which is a distribution

Dimension reduction method 1: Krusell Smith method

- Projection represents decision/value function by basis functions over arguments
- ightharpoonup Polynomials or discretization over ∞ arguments not representable
- ► So cut down # of arguments
- ▶ Maybe you don't really need full distribution m(w)
- lacktriangle Approximate by small number of summary statistics ζ
 - ▶ Mean $\zeta_1 = \int wm(w)dw$, Variance $\zeta_2 = \int w^2m(w)dw$, etc
 - ► Include enough info to describe components of state that matter for agents: eg, prices
 - $c(w, Z, \zeta)$ takes (small) finite number of arguments
- ▶ Idea: "approximate aggregation"
 - Only care about distribution as way to forecast R
 - Can get good forecast accuracy with just moments
 - ▶ Use this forecast in place of true law in decision rule
 - Solve for fixed point in which implied decision rule generates law consistent with forecast

Krusell Smith Method: Steps

- 1. Conjecture a simple parameterized law of motion for ζ
 - ▶ Typically linear conditional on shocks: e.g. $\zeta' = \beta_0(Z) + \beta_1(Z)\zeta$
- 2. Solve optimization problem with conditional expectation over distribution given by above law
- 3. Simulate shocks Z, population of agents following policy, and prices each period
- 4. Re-estimate parameters β for moments using simulated data
- Repeat until coefs from simulated moments match conjectured coefficients
- ▶ Works well if you get good forecasts with just moments
 - ▶ Not a feature of all models: can fail, especially if many shocks
 - Interpret as behavioral: agents discard info to make forecast

Perturbation Approach

- Linearization method from last class can be applied directly
 - Instead of scalar variables, allow functions to be variables
 - Instead of scalar derivatives, take functional derivatives
- Huggett model:
 - ▶ Variables are $\ell_t(.), m_t(.), \sigma_t, z_t, R_t$
 - Equations are Euler, KFE, market clearing, and law of shocks
- ► Functional derivative of a nonlinear operator *F*(.) is a linear map between functions
 - ▶ $\int k(x,y)[.]dx$ is linear map taking f(x) to f(y)
- ightharpoonup Still ∞ dimensional but can approximate by Galerkin approach
 - ▶ Function valued variables replaced by vector of *k* coefficients
 - ▶ Derivatives of equilibrium conditions just $k \times k$ matrices
- As $k \to \infty$, approximate derivatives converge
- Apply standard RE solver to derivative matrices
 - Approximates first order Taylor approx of policy operator

Perturbation method: Details

- ▶ To use linearization, need nonstochastic steady state values
 - Only shut down aggregate shocks (e.g., σ_t , z_t , not s_t^i)
 - Exactly result of Huggett algorithm!
- Need system of equations differentiable w.r.t. functions
 - Usually means using FOC approach
- ▶ How to take functional derivatives?
 - ▶ Derive symbolically, then project to get coefs (Childers 2018)
- ► Alternate approach (Reiter (2009), Winberry (2018), Childers (2022))
 - 1. Represent functions by vector of coefficients or discretized values
 - 2. Take scalar derivatives wrt points/coefs
- Discretization works, but inefficient for smooth functions
- Better method: take derivatives wrt points, get coefficients by interpolation

Modified Perturbation: Steps

1. Represent Model as system of functional equations

$$\mathbb{E}\mathcal{F}(x,y,x',y',\sigma)=0$$

2. Solve for function values at nonstochastic steady state

$$\mathcal{F}(x^*, y^*, x^*, y^*, 0) = 0$$

integral equations by weighted sums

3. Represent functions by their values at a set of grid points, and

$$\{\tilde{\mathcal{F}}(\{x(s_j)\}_{j=1}^n, \{y(s_j)\}_{j=1}^n, \{x'(s_j')\}_{j=1}^n, \{y'(s_j')\}_{j=1}^n, \sigma)(t_i)\}_{i=1}^n = 0$$

4. Differentiate w.r.t. function values around steady state

$$(\tilde{\mathcal{F}}_{\mathsf{X}}, \tilde{\mathcal{F}}_{\mathsf{V}}), (\tilde{\mathcal{F}}_{\mathsf{X}'}, \tilde{\mathcal{F}}_{\mathsf{V}'})$$

5. Apply matrix transforms to get coefficient representation

$$(\tilde{A}, \tilde{B}) = (M(\tilde{\mathcal{F}}_{\mathsf{x}}, \tilde{\mathcal{F}}_{\mathsf{y}})M^{\mathsf{T}}, M(\tilde{\mathcal{F}}_{\mathsf{x}'}, \tilde{\mathcal{F}}_{\mathsf{y}'})M^{\mathsf{T}})$$

6. Apply standard linear ratex solution code to matrices

Perturbation Application: Huggett with Aggregate Shocks

- ▶ Solve for steady state setting z, σ shocks to 0
- ▶ Represent equilibrium conditions with functions $\ell(w)$, m(w) replaced by values at grid points
 - ▶ $\{m(w_i)\}_{i=1}^{nw} \{\ell(w_i)\}_{i=1}^{nw}$
 - Integrals replaced by weighted w/ quadrature weights π^i
- ▶ E.g., Kolmogorov equation becomes $0 = \mathcal{F}^2(.)(w'_j) =$

$$m_{t+1}(w_j') - \sum_{j} \pi^i g(w_j' - R_t(w_i + z_t - c(w_i + z_t, \ell_t(w_i), R_t)); \sigma_t) m_t(w_i)$$

- Euler, market clearing equations replaced similarly
- Apply automatic differentiation to get derivatives
- ▶ Map matrix on function values to matrix on coefficients
 - ► E.g., by Wavelet or just Histogram (piecewise constant) transform *M*
- Plug into RE algorithm to get policy functions
 - $harpoonup \tilde{h}_x$ maps $m(.), z, \sigma$ to $m'(.), z', \sigma'$
 - \tilde{g}_x maps $m(.), z, \sigma$ to $\ell(.), R$

IRF: Response of wealth distribution to z

cash dist. response to aggregate income shock

Figure 2: Deviation from Steady State Density

IRF: Response of consumption function to z

consumption response to aggregate income shock

Figure 3: Deviation from Steady State Policy Function

Simulation: Exogenous Shock Process z_t

Figure 4: Deviation of z from Steady State

Simulation: Exogenous Shock Process σ_t

Figure 5: Deviation of σ from Steady State

Simulation: Endogenous Wealth Distribution

Simulated Cash Distribution Deviations

Figure 6: Deviation of m(w) from Steady State

Simulation: Endogenous Consumption Function

Simulated Consumption Function Deviations

Figure 7: Deviation of c(w) from Steady State

Simulation: Endogenous Interest Rate

Figure 8: Deviation from Steady State R

Conclusions

- Dynamic models can incorporate heterogeneity and (mediated) interactions by deriving distribution
- Steady state needs 1 more functional equation (Kolmogorov) and a single loop
- Dynamics feasible by incorporating distribution as a state for projection/perturbation
- Krusell-Smith: Standard projection methods workable by massive dimensionality reduction
 - Preserves global, nonlinear effect of aggregates
 - No accuracy guarantees
- Perturbation: take functional derivatives, apply to projected distributions
 - Preserves nonlinearity in individual decisions, not in aggregates
 - Applicable even with many or infinite shocks
 - Whole function can be a stochastic process
 - Strong guarantees for first order

References 1

- Childers, David. "Solution of Rational Expectations Models with Function Valued States" (2018)
 - "Automated Solution of Heterogeneous Agent Models" (2022)
- Christiano, Lawrence & Jonas Fisher. "Algorithms for Solving Dynamic Models with Occasionally Binding Constraints" (2000) Journal of Economic Dynamics and Control 24(8)
- Huggett, Mark. "The risk-free rate in heterogeneous-agent incomplete-insurance economies" (1993) Journal of Economic Dynamics and Control 17(5-6)
- Kristensen, Dennis & Bernard Salanié. "Higher Order Properties of Approximate Estimators" (2017) Journal of Econometrics 198(2)

References 2

- Krusell, Per & Anthony A. Smith. "Income and Wealth Heterogeneity in the Macroeconomy" (1998) Journal of Political Economy 106(5)
- Reiter, Michael. "Solving Heterogeneous Agent Economies by Projection and Perturbation" (2009) Journal of Economic Dynamics and Control 33(3)
- Winberry, Thomas. "A Toolbox for Solving and Estimating Heterogeneous Agent Macro Models" (2018) Quantitative Economics 9(3)