Algebraic Geometry

Ikhan Choi

May 23, 2024

Contents

Ι		2
1	Schemes	3
2	Morphisms	4
3	Quasi-coherent sheaves	5
4	Curves	6
	4.1 Preliminaries	6
	4.2 Lower genus	6
	4.3 Classification by genus and moduli spaces	6
	4.4 Classification by degree in \mathbb{P}^3	7
5	Surfaces	8
6	Étale cohomology	9
	6.1	Q

Part I

Schemes

Morphisms

smooth, finite type, proper, regular, dominant, unramified, flat, complete intersection closed immersion direct image, inverse image

- **2.1** (Integral schemes). A scheme *X* is said to be *integral* if it is non-empty and every non-empty affine open is isomorphic to the spectrum of an integral domain. A *generic point* of a topological space is a point whose closure is the whole space.
 - (a) A scheme is integral if and only if it is reduced and irreducible.
 - (b) An integral scheme has a unique generic point.
- **2.2** (Projective schemes). We say a variety is *projective* if it is isomorphic to a closed subvariety of \mathbb{P}^n for some n.

For a fixed a base ring A, let S be a $\mathbb{Z}_{\geq 0}$ -graded ring such that $S_0 = A$, and define the *irrelavent ideal* $S_+ := \bigoplus_{i \geq 1} S_i$ of S. The *Proj construction* of S is a scheme Proj S constructed as follows. The set Proj S consists of all homogeneous prime ideals of S not containing S_+ , the topology is determined by setting $V(\mathfrak{a}) := \{\mathfrak{p} \in \operatorname{Proj} S : \mathfrak{a} \subset \mathfrak{p}\}$ as closed sets where \mathfrak{a} runs through the homogeneous ideals of S, and the structure sheaf defined such that $\mathcal{O}_{\operatorname{Proj} S}(D(f)) := S_{((f))}$ for homogeneous $f \in S_+$, where $S_{(\mathfrak{p})} := (S_{\mathfrak{p}})_0$ denotes the zeroth graded piece of localized \mathbb{Z} -graded rings $S_{\mathfrak{p}}$, and the set $D(f) := \operatorname{Proj} S \setminus V(f)$ is called a *standard open* of $\operatorname{Proj} S$, which can be shown to be affine.

There is a canonical \mathbb{Z} -graded $\mathcal{O}_{\text{Proj}S}$ -modules, of which the graded pieces $\mathcal{O}(i)$ are line bundles called the *Serre twisting sheaves*.

Some analysis of line bundles construct projective embeddings

Quasi-coherent sheaves

Curves

In general, a variety over k is meant by an integral (=reduced+irreducible) scheme which is separated and of finite type. We wan to classify

- Hartshorne: integral scheme of dimension 1 which is proper and regular.
- Vakil: integral scheme of dimension 1 which is projective and regular.

I think they are equivalent to smooth complete curves.

4.1 Preliminaries

Invariants

- genus: $p_a(X) = p_g(X) = h^1(\mathcal{O}_X)$
- Weil vs Cartier divisor groups: $Cl(X) \cong Pic(X)$

Computation tools

- $|D| \longleftrightarrow PH^0(X, \mathcal{L}(D))$ so that |D| is identified as a projective space
- $\Omega_X \cong \omega_X$
- Riemann-Roch theorem: $l(D) l(K D) = \deg D + 1 g$
- Hurwitz theorem: $2g(X) 2 = \deg f \cdot (2g(Y) 2) + \deg R$

birational iff isomorphic A morphism $f: X \to Y$ induces a field extension $\mathcal{K}(X)/\mathcal{K}(Y)$.

4.2 Lower genus

elliptic: invariants, moduli space, structures hyperelliptic: non-hyperelliptic: canonical embedding

4.3 Classification by genus and moduli spaces

Deligne-Mumford: \mathcal{M}_g for $g \ge 2$ is an irreducible quasi-projective variety of dimension 3g-3.

4.4 Classification by degree in \mathbb{P}^3

A divisor D is called *very ample* if $\mathcal{L}(D) \cong \mathcal{O}(1)$ in some closed immersion into a projective space. A divisor D is called *ample* if $\mathcal{F} \otimes \mathcal{L}^n$ is generated by global sections for sufficiently large n, for each coherent sheaf \mathcal{F} . A *linear system* is a projective subspace of some complete linear system $|D| \cong \mathbb{P}^{l(D)-1}$, the set of all effective divisors linearly equivalent to D, which is identified to a projective space. The *base locus* of a linear system \mathfrak{d} is the set $\bigcap_{D \in \mathcal{S}} \operatorname{supp} D$. It is known that |D| is base point free if and only if $\mathcal{L}(D)$ is generated by global sections, and a linear system is base point free if and only if some embedding....?

Any choice of a finite system of non-simultaneously vanishing global sections of a globally generated line bundle defines a morphism to a projective space. If the line bundle is very ample, then the morphism is an embedding.

chow variety or hilbert scheme

Surfaces

Étale cohomology

6.1

6.1. Let $\varphi: Y \to X$ be a morphism of schemes. It is called *étale* if it is flat and unramified.