Emergent Equivariance in Deep Ensembles

Jan E. Gerken^{*}

in collaboration with

from

Pan Kessel

台 Easy to implement

ரு No exact equivariance

台 Easy to implement

 ⚠ No specialized architecture necessary

ரு No exact equivariance

Can we understand data augmentation theoretically?

Empirical NTK

Training dynamics under continuous gradient descent:

Empirical NTK

Training dynamics under continuous gradient descent:

learning rate
$$\frac{d\mathcal{N}_{\theta}(x)}{dt} = -\frac{\eta}{N} \sum_{i=1}^{N} \Theta_{\theta}(x, x_{i}) \frac{\partial L}{\partial \mathcal{N}(x_{i})}$$
training sample

with the empirical neural tangent kernel (NTK)

$$\Theta_{\theta}(x, x') = \sum_{\mu} \frac{\partial \mathcal{N}(x)}{\partial \theta_{\mu}} \frac{\partial \mathcal{N}(x')}{\partial \theta_{\mu}}$$

Infinite width limit

[Jacot et al. 2018]

△ NTK becomes independent of initialization

- △ NTK becomes independent of initialization
- △ NTK becomes constant in training

- △ NTK becomes independent of initialization
- 凸 NTK becomes constant in training
- △ NTK can be computed for most networks

- **心** NTK becomes constant in training
- **心** NTK can be computed for most networks
- ✓ Training dynamics can be solved

$$\mu_t(x) = \Theta(x, X)\Theta(X, X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X, X)t})Y$$

neural tangent kernel
$$\mu_t(x) = \Theta(x,X)\Theta(X,X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X,X)t})Y$$

$$\mu_t(x) = \Theta(x, X)\Theta(X, X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X, X)t})Y$$

group transformation
$$\mu_t(\rho(g)x) = \Theta(x,X)\Theta(X,X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X,X)t})\underbrace{\rho(g)Y}_{=Y}$$
 for invariance

group transformation
$$\mu_t(\rho(g)x) = \Theta(x,X)\Theta(X,X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X,X)t})\underbrace{\rho(g)Y}_{=Y}$$

$$= \mu_t(x)$$
 for invariance

 $\mu_t(x)$

$$\mu_t(x) = \mathbb{E}_{\theta_0 \sim \text{initializations}} [\mathcal{N}_{\theta_t}(x)]$$

$$\mu_t(x) = \mathbb{E}_{\theta_0 \sim \text{initializations}}[\mathcal{N}_{\theta_t}(x)] = \lim_{n \to \infty} \frac{1}{n} \sum_{\theta_0 = \text{init}_1}^{\text{init}_n} \mathcal{N}_{\theta_t}(x)$$

$$\mu_t(x) = \mathbb{E}_{\theta_0 \sim \text{initializations}} \big[\mathcal{N}_{\theta_t}(x) \big] = \lim_{n \to \infty} \underbrace{\frac{1}{n} \sum_{\theta_0 = \text{init}_1}^{\text{init}_n} \mathcal{N}_{\theta_t}(x)}_{\text{mean prediction of deep ensemble}}$$

R

- Proof of exact equivariance for
 - full data augmentation
 - infinite ensembles
 - at infinite width

- Proof of exact equivariance for
 - full data augmentation
 - infinite ensembles
 - at infinite width
- ✓ Equivariance holds for all training times

- Proof of exact equivariance for
 - full data augmentation
 - infinite ensembles
 - at infinite width
- Equivariance holds for all training times
- ✓ Equivariance holds away from the training data

Intuitive explanation

- ✓ Equivariance holds for all training times
- ✓ Equivariance holds away from the training data

Intuitive explanation

- ✓ Equivariance holds for all training times
- ✓ Equivariance holds away from the training data

 At infinite width, the mean output at initialization is zero everywhere.

Intuitive explanation

- Equivariance holds for all training times
- ✓ Equivariance holds away from the training data

- At infinite width, the mean output at initialization is zero everywhere.
- ➡ Training with full data augmentation leads to an equivariant function.

Toy example

Initialization 0.5 0 -0.5 **Ground Truth** --- MLP

Initialization 0.5 0 -0.5 **Ground Truth** --- MLP

After 1 Training Step

After 2 Training Steps

After 3 Training Steps

After 2000 Training Steps

After 2000 Training Steps

Initialization

After 1 Training Step

After 2 Training Steps

After 3 Training Steps

After 2000 Training Steps

After 2000 Training Steps

Experiments

Relative Standard Deviation

[Kather et al. 2018]

Orbit Same Predictions = 3

✓ Emergent invariance for rotated FashionMNIST

- Emergent invariance for rotated FashionMNIST
- ✓ Partial augmentation for continuous symmetries

- Emergent invariance for rotated FashionMNIST
- ✓ Partial augmentation for continuous symmetries
- ✓ Emergent equivariance (as opposed to invariance)

Comparison to other methods

Comparison to other methods

Comparison to other methods

Orbit same predictions out of distribution:

	C ₄	C ₈	C ₁₆
DeepEns+DA	3.85±0.12	7.72±0.34	15.24±0.69
only DA	3.41 ± 0.18	6.73 ± 0.24	12.77 ± 0.71
E2CNN ¹	4 ± 0.0	7.71 ± 0.21	15.08 ± 0.34
Canon ²	4±0.0	7.45±0.14	12.41±0.85

¹[Weiler et al. 2019], ²[Kaba et al. 2022]

If you need ensembles

△ use data augmentation to obtain an equivariant model.

If you need ensembles

△ use data augmentation to obtain an equivariant model.

If you need data augmentation

△ use an ensemble to boost the equivariance.

If you need ensembles

△ use data augmentation to obtain an equivariant model.

If you need data augmentation

△ use an ensemble to boost the equivariance.

Analysis of neural tangent kernel can lead to powerful practical insights!

Paper

Emergent Equivariance in Deep Ensembles

Jan E. Gerken*, Pan Kessel*
ICML 2024 (Oral)

* Equal contribution

Thank you