Analyse I - Résumé

Mahel Coquaz

Semestre d'automne 2025

Contents

1	$\mathbf{Pr}\mathbf{\acute{e}}$	requis	5
	1.1	Identités algébriques	5
	1.2		5
		1.2.1 Exponentielles	5
		1.2.2 Logarithmes	5
	1.3	Trigonométrie	6
	1.4		6
		1.4.1 Types de fonctions	6
		1.4.2 Injectivité, surjectivité, bijectivité	6
		1.4.3 Fonctions réciproques	7
		1.4.4 Fonctions composées	7
2	Nor	nbre réels	9
	2.1	Ensembles	9

4 CONTENTS

Introduction

Ce qui suit se veut être un résumé ultra condensé du cours d'Analyse I pour IN (MATH-101e) donné au semestre d'automne 2025 à l'EPFL. Le contenu de ce cours ne m'appartient pas et est quasiment intégralement extrait du cours des Professeurs Anna Lachowska qui l'a enseigné. J'ai cependant pris la liberté de sauter/raccourcir certains passages et d'ajouter des notes lorsqu'il me semblait pertinent de le faire.

Ce résumé/polycopié n'est pas exempt d'erreurs, si vous en trouvez une, vous pouvez me contacter sur mon adresse EPFL mahel.coquaz@epfl.ch ou via le repo GitHub https://github.com/hotwraith/LectureNotes.

Le repository GitHub est aussi où se trouvent les dernières versions des fichiers PDFs et T_EXpour ce cours (et éventuellement d'autres).

Chapter 1

Prérequis

1.1 Identités algébriques

- $(x+y)^2 = x^2 + 2xy + y^2$
- $(x+y)(x-y) = x^2 y^2$
- $(x-y)(x^2+xy+y^2)=x^3-y^3$
- $(x+y)(x^2 xy + y^2) = x^3 + y^3$

1.2 Exponentielles & Logarithmes

1.2.1 Exponentielles

Avec $a, b \in \mathbb{R}$

- $\bullet \ a^x a^y = a^{x+y}$
- $\bullet \ \ \frac{a^x}{a^y} = a^{x-y}$
- $(ab)^x = a^x b^x$
- $a^0 = 1$
- $\bullet \ (a^x)^y = a^{xy}$
- $\sqrt[n]{a} = a^{1/n}$
- $\bullet \ \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$
- $a^1 = a$

1.2.2 Logarithmes

Avec ln = log le logarithme naturel

- $\ln(xy) = \ln(x) + \ln(y)$
- $\ln(\frac{x}{y}) = \ln(x) \ln(y)$

- $\ln(x^c) = c \cdot \ln(x)$
- ln(1) = 0
- $\log_a(a) = 1$

1.3 Trigonométrie

Avec $\sin(x), \cos(x) \ \forall x \in \mathbb{R}$

- $\tan x = \frac{\sin x}{\cos x} \& \cot x = \frac{\cos x}{\sin x}$
- $\sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y)$
- $cos(x \pm y) = cos(x) cos(y) \mp sin(x) sin(y)$
- $\cos(0) = \cos(x x) = \cos^2(x) + \sin^2(x) = 1$
- $\sin(2x) = \sin(x+x) = \sin(x)\cos(x) + \cos(x)\sin(x) = 2\sin(x)\cos(x)$
- $\cos(2x) = \cos(x+x) = \cos^2(x) \sin^2(x)$

1.4 Fonctions élémentaires

1.4.1 Types de fonctions

- 1. Polynomiales
 - Linéaire: f(x) = ax + b; $a, b \in \mathbb{R}$
 - Quadratiques: $f(x) = ax^2 + bx + c$; $a, b, c \in \mathbb{R}, a \neq 0$
- 2. Fonctions rationnelles: $f(x)\frac{P(x)}{Q(x)}$ où P(x) et Q(x) sont des polynômes, et $Q(x) \neq 0$
- 3. Fonctions algébriques: Toute fonction qui est une solution d'une équation polynomiale, ex: $f(x) = \sqrt{x}$
- 4. Fonctions transcendantes: fonctions non algébriques
 - (a) Exponentielles et logarithmiques: $f(x) = e^x$, $g(x) = \ln(x)$
 - (b) Fonctions trigos et réciproques: $f(x) = \sin(x), g(x) = \cos(x)$

1.4.2 Injectivité, surjectivité, bijectivité

Définition 1.4.1 $D(f) = \{x \in \mathbb{R} : f(x) \text{ est bien définie }\} = \text{le domaine de définition de } f$

$$f(D) = \{y \in R : \exists x \in D(f) : f(x) = y\} = l$$
'ensemble image de f

Définition 1.4.2 Surjectivité

 $f: E \to F$ est surjective $si \ \forall y \in F, \exists \ au \ \underline{moins} \ un \ x \in E: f(x) = y$

Définition 1.4.3 Injectivité

 $f: E \to F$ est **injective** $si \ \forall y \in F, \exists \ au \ \underline{plus} \ un \ x \in E: f(x) = y$ Autrement dit: Soit $x_1, x_2 \in D_f: f(x_1) = \overline{f(x_2)} \to x_1 = x_2$

Définition 1.4.4 Bijectivité $Si\ f: E \to F$ est injective ET surjective, alors elle est bijective

1.4.3 Fonctions réciproques

Définition 1.4.5 N'existent que si $f: E \to F$ est **bijective** et est définie par $f^{-1}: F \to E$ donc $f(x) = y \Leftrightarrow x = f^{-1}(y)$

1.4.4 Fonctions composées

Soit $f:D_f\to\mathbb{R}$ et $g:D_g\to\mathbb{R}$ avec $f(D_f)\subset D_g$ on peut alors définir la fonction composée $g\circ f:D_f\to \operatorname{par}\,g\circ f(x)=g(f(x))^{-1}$

 $^{{}^{1}\}mathrm{Il}$ est bon de noter que de manière générale: $g\circ f\neq f\circ g$

Chapter 2

Nombre réels

2.1 Ensembles

Un ensemble est une "Collection des objets définis et distincts" (G. Cantor)

 $\begin{array}{l} \textbf{D\'efinition 2.1.1} \ \ \textbf{X} \subset \textbf{Y} \ \textit{Soit} \ \forall b \in X \Rightarrow b \in Y \\ \textit{Sa n\'egation:} \ \ \textbf{X} \not\subset \textbf{Y} \\ \exists a \in X: a \notin Y \end{array}$