V 4011 D 4 NAND-Gatter mit je 2 Eingängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform V 4011 D: DIP-14, Plast (Bild 3) Bauform V 4011 S: SO-14 (Bild 28)

Typstandard: TGL 38605

Funktionstabelle

In1	In2	Ōn
L	L	Н
L	Н	Н
Н	${f L}$	Н
H	H	L

$$(n = 1...4)$$

Ausgewählte Kennwerte

Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Flankenübergangszeit der	t _{TLH}	$U_{\mathrm{DD}} = 5 \text{ V}$		200	ns
Ausgangssignale	$ \ ^{ m t}_{ m THL} $	$U_{ m DD} = 10 \text{ V}$,	100	ns
		$U_{\mathrm{DD}} = 15 \text{ V}$		80	ns
Verzögerungszeit	t _{PLH}	$U_{\mathrm{DD}} = 5 \text{ V}$		150	ns
	$ $ $\mathrm{t_{PHL}}$	$U_{\mathrm{DD}} = 10 \text{ V}$		75	ns
		$U_{\mathrm{DD}} = 15 \text{ V}$		60	ns

CMOS-Schaltkreise Logikbaureihe Vxxx

Die CMOS-Schaltkreise der Logikbaureihe V 4000 sind in gepufferter Schaltungstechnik ausgeführt (außer V 4007 D) und entsprechen in ihren statischen elektrischen Parametern der JEDEC-Standard-B-Serien-Spezifikation. Im Vergleich zu TTL- bzw. Low-power. TTL-Schaltkreisen zeichnen sich die CMOS-Schaltkreise durch folgende Vorteile aus

- Niedrige Verlustleistung bis ca. 10 MHz (ermöglicht den Einsatz in batteriegepufferten Schaltungen),
- der Maximalwert der Ausgangsimpedanz ist nahezu unabhängig von allen erlaubten Ein gangsbelegungen,
- nahezu ideale Übertragungskennlinie,
- großer Betriebsspannungsbereich (${\rm U}_{
 m DD}$ = 3 bis 15 V), geringe Stabilisierung der Betriebsspannung erforderlich,
- hohe statische Störsicherheit,
- niedrige, einheitliche Eingangskapazität,
- Arbeitstemperaturbereich von -40 bis 85 °C,
- Lieferung in Dual-in-line-Plastgehäusen.

Diese Eigenschaften erschließen CMOS-Schaltkreisen eine Reihe neuer Anwendungsmöglichkeiten in Ergänzung zu den TTL-Schaltkreisfamilien.

Grenzwerte

	Kurz- zeichen	min.	max.	Einheit
Betriebsspannung	$U_{ m DD}$	U _{SS} - 0,5	U _{SS} + 18	V
Eingangsspannung	U	U _{SS} - 0,5 U _{SS} - 0,5	U _{DD} + 0.2.5	ν
Ausgangsspannung	UO	U_{SS}^{2} - 0,5	$U_{\mathrm{DD}}^{\mathrm{DD}} + 0.5$	ν
Verlustleistung je	P_{V}	~~	100	mW,
Ausgangstransistor				i.
Gesamtverlustleistung	Ptot		$300^{1)}$	mW
			$300^{1)} \\ 150^{2)}$	mW
Gesamtverlustleistung3)	Ptot		$600^{1)}$	mW
	101		$300^{2)}$	mW
Lastkapazität je Ausgang	C_{T}		5	nF
Eingangsstrom	$egin{array}{c} \mathrm{C}_{\mathrm{L}} \ \mathrm{I_I} \end{array}$		10	mA
Betriebstemperaturbereich	Ta	-40	+85	°C
Lagerungstemperaturbereich	Tstg	-55	+125	°C

¹⁾ $T_a = -40...+70$ °C; 2) $T_a = +85$ °C; 3) nur V 4034 D

Ausgewählte Kennwerte (außer V 4007)

Kennwert	Kurz-	Meßbedingungen			min.	max.	Einheit
Keumor	zeichen	U _{DD}	Ι _Ο (μΑ)	U _O (V)		, max.	Limier
Ausgangsspannung High	U _{ОН}	5	< 1	VACTO 1	4,95		V
		10	< 1		9,95		V
Š		15	< 1		14,95	:	V
Ausgangsspannung Low	UOL	5	< 1			0,05	v
		10	< 1			0,05	V
		15	< 1			0,05	V
Ausgangsstrom High	-I _{OH}	5		4,6	0,4		mA
		10		9,5	0,9		mA
		15		13,5	2,4		mA
Ausgangsstrom Low	IOL	5		0,4	0,4		mA
	-	10		0,5	0,9		mA
		15		1,5	2,4		mA
Eingangsspannung High	U _{IH}	5	< 1	0,5/4,5	3,5		v
		10	< 1	1,0/9,0	7,0		v
		15	< 1	1,5/13,5	11,0		v
Eingangsspannung Low	U _{IL}	5	< 1	0,5/4,5		1,5	v
		10	< 1	1,0/9,0		3,0	v
		15	< 1	1,5/13,5		4,0	V
Eingangsreststrom High		15		T ₈ = -25 °C		0,1	μΑ
		15		$T_a = 85 ^{\circ}\text{C}$		1,0	μΑ
Reststrom der	I _{ZH}	15		15,T _a = -25 ℃		1,2	μΑ
Tristate-Ausgänge		15		15,T _a = 85 ℃		12	μΑ
Reststrom der	$-I_{ZL}$	15		0, T _a = 25 ℃		1,2	μA
Tristate-Ausgänge		15		0, T _a = 85 °C		12	μA
Eingangskapazität	CI			T _a = -25 °C		7,5	рF
Stromaufnahme	I_{DD}	5				7,5	μΑ
Gatter		10				15	μΑ
	*	15				30	μΑ
Stromaufnahme	I _{DD}	5				30	μΑ
Flip - Flop,Latch		10				60	μΑ
Gatter		15				120	μA
Stromaufnahme	I_{DD}	5				150	μΑ
Zähler, Register		10				300	μA
		15				600	μΑ

Bild 3 (DIP-14, Plast)

Bild 4 (DIP-16, Plast)

Bild 27 (SO-8)

Ebenneitstoleranz: 0.15Pintagetoleranz: $\frac{T}{2} = 0.125$