- 17. 使用泵浦引理,证明下列集合不是正则集:
- (1) 由文法 G 的生成式 S→aSbS | c 产生的语言 L(G)
- $(3) \{0^{n}1^{m}2^{n+m} | n, m \ge 1\}$
- (4) $\{\omega \omega \mid \omega \in \{a, b\} *\}$

证明: (1) 在 L(G) 中, a 的个数与 b 的个数相等

假设 L(G) 是正则集,对于足够大的 k 取 $\omega = a^k$ (cb) k c

 $\omega \in L \perp L \mid \omega \mid > k$, $\diamondsuit \omega = \omega_1 \omega_0 \omega_2$, $\not\perp \perp + |\omega_0| > 0 \mid \omega_1 \omega_0| \leq k$

因为存在ω。使ω₁ω。˙ω₂∈L

所以对于任意满足条件的 ω_0 只能取 ω_0 = a^n $n \in (0, k]$

则 $\omega_1 \omega_0^{\ i} \omega_2$ = $a^{k-n} (a^n)^i (cb)^k c$,在i 不等于1 时不属于 L

与假设矛盾。则 L(G)不是正则集

(3) 假设该集合是正则集,对于足够大的 k 取 $\omega = 0^k 1^x 2^y$ 其中 y = k + x;

 $\omega \in L \perp L \mid \omega \mid > k$, 令 $\omega = \omega_1 \omega_0 \omega_2$, 其中 $\mid \omega_0 \mid > 0 \mid \omega_1 \omega_0 \mid \leq k$

因为存在ω。使ωιωι˙ωεL

所以对于任意满足条件的 ω_0 只能取 $\omega_0=0^n$ n \in (0, k],

则 $\omega_1\omega_0^i\omega_2=0^{k-n}(0^n)^i1^*2^y$ 在i不等于1时,y不等于k+x,因此不属于该集合。

与假设矛盾。则该集合不是正则集

(4) 假设该集合是正则集,对于足够大的 k 取 $\omega = a^k ba^k b$

 $\omega \in L \ \underline{l} \ | \ \omega \ | > k$, 令 $\omega = \omega_1 \omega_0 \omega_2$ 其中 $| \ \omega_0 | > 0 \ | \ \omega_1 \omega_0 | \leqslant k$

因为存在 ω_0 使 $\omega_1\omega_0^i\omega_2$ EL

所以对于任意满足条件的 ω_0 只能取 ω_0 = a^n $n \in (0, k]$

则 $\omega_1\omega_0^i\omega_2=a^{k-n}(a^n)^iba^kb$ 在i不等于1时不满足 ω ω 的形式,不属于该集合

与假设矛盾。则该集合不是正则集

20. 已知 DFA 的状态转移表如下,构造最小状态的等价 DFA。

	0	1
->A	В	А
В	D	С
С	D	В
*D	D	А
E	D	F
F	G	E
G	F	G
Н	G	D

答:由表可得,E、F、G、H 是不可达状态,可以删除,余下的状态构成状态集 $\{A, B, C, D\}$,对该状态集划分为终止状态集 π^1 和非终止状态集 π^2 ,而 $\pi^1=\{D\}$, $\pi^2=\{A, B, C\}$ 。

对 π^1 ,很显然不可再细分;

对 π^2 ={A, B, C} 经标 0 的边,可达集是 {B, D},由于 B, D 分别属于 π^1 和 π^2 ,故将 π^2 细分为 π^{21} ={A}, π^{22} ={B, C}。

对 π^{22} ={B, C} 经标 1 的边,可达集是{B, C},由于 B, C 分别同属于和 π^{22} ,故不可再细分。这样可得最后的划分为: {{A}, {B, C}, {D}},最后可得简化了的 DFA 为:

	0	1
->A	В	А
В	D	В
*D	D	А

易错点:有的同学未删除不可达状态。

9.对应图(a)(b)的状态转换图写出正则式。(图略)

注意:答案不唯一。

(a) 由图可知
$$q_0$$
= aq_0 + bq_1 + a + ϵ

$$q_1=aq_2+bq_1$$

$$q_2=aq_0+bq_1+a$$

$$q_1=abq_1+bq_1+aaq_0+aa$$

$$=(b+ab) q_1+aaq_0+aa$$

$$=(b+ab)*(aaq_0+aa)$$

$$q_0=aq_0+b(b+ab)*(aaq_0+aa)+a+\epsilon$$

=
$$(a+b (b+ab) *aa) q_0 + b(b+ab) *aa+a+ \epsilon$$

$$=(a+b (b+ab) *aa) *(b(b+ab) *aa+a+ \varepsilon)$$

$$=(a+b (b+ab)*aa)*$$

(b)
$$q_0=aq_1+bq_2+a+b$$

$$q_1=aq_0+bq_2+b$$

$$q_2=aq_1+bq_0+a$$

$$q_1=aq_0+baq_1+bbq_0+ba+b$$

$$= (ba)*(aq_0 + bbq_0 + ba + b)$$

$$q_2$$
=aa q_0 +ab q_2 +b q_0 +ab+a

$$=(ab)*(aaq_0 +bq_0 + ab+a)$$

$$q_0=a(ba)*(a+bb)q_0+a(ba)*(ba+b)+b(ab)*(aa+b)q_0+b(ab)*(ab+a)+a+b$$

$$=[a(ba)*(a+bb)+b(ab)*(aa+b)]*(a(ba)*(ba+b)+b(ab)*(ab+a)+a+b)$$

18. 构造米兰机和摩尔机

对于{a,b}*的字符串,如果输入以 bab 结尾,则输出 1;如果输入以 bba 结尾,则输出 2;否则输出 3。

答: 米兰机:

说明状态 qaa 表示到这个状态时,输入的字符串是以 aa 结尾。其他同理。

摩尔机, 状态说明同米兰机。

