The Laplace Transformation

The preparatory reading for this section is Chapter-2 of {cite} karris which

- defines the Laplace transformation
- gives the most useful properties of the Laplace transform with proofs
- presents the Laplace transforms of the elementary signals discussed in the last session
- presents the transforms of the more common system response types that are found in basic signals and systems.

Colophon

An annotatable copy for this presentation is available as Worksheet 4.

- The source code for this page is content/laplace_transform/1/index.ipynb. You can view the notes for this presentation as a webpage (HTML).
- This page is downloadable as a PDF file.

There is some intellectual benefit to being aware of the properties of the Laplace transformation and their proofs but being a pragmatic breed, we engineers

Do I really need to learn the theory?

typically prefer to make use of quick references of these properties and transforms, relying on Mathematics only when facing a problem not before encountered.

In our practice, we want to encourage you to use of the properties and transform tables to solve problems so I will present only the properties and not the proofs.

Agenda

- Definition of the Laplace Transform
- Some Selected Properties
- Transforms of Elementary Signals

Common system responses

• Transform tables

Examples

Definition of the Laplace Transform

Laplace transform

$$\mathcal{L}{f(t)} = F(s) = \int_0^\infty f(t)e^{-st}dt$$

Region of convergence

Inverse Laplace Transform

$$\mathcal{L}^{-1}{F(s)} = f(t) = \frac{1}{2\pi j} \int_{\sigma - j\omega}^{\sigma + j\omega} F(s)e^{st} ds$$

 $\left| \int_0^\infty f(t)e^{-st} dt \right| < \infty$

(See discussion of exponential order on Page 2-2 of {cite} karris).

For most signals and systems of interest in this module it will be.

For a Laplace transforation to exist, the integral must be bounded. That is

The Laplace transform and its inverse come in pairs which are tabulated for ease of reference. For any given function of time f(t) we only need to know the

Informal transform notation

transform $f(t) \Leftrightarrow F(s)$

Some Selected Properties

Linearity

Frequency shift

Time shift

$$e^{-at} f(t) \Leftrightarrow F(s+a)$$

 $c_1 f_1(t) + c_2 f_2(t) + \dots + c_n f_n(t) \Leftrightarrow c_1 F_1(s) + c_2 F_2(s) + \dots + c_n F_n(s)$

 $f(t-a)u_0(t-a) \Leftrightarrow e^{-as}F(s)$

Scaling

$$f(at) \Leftrightarrow \frac{1}{a}F\left(\frac{s}{a}\right)$$

$$f'(t) = \frac{d}{dt}f(t) \Leftrightarrow sF(s) - f(0^{-})$$

The differentiation property can be extended to higher-orders as follows

This property facilitates the solution of differential equations

Differentiation in the time domain

 $f''(t) = \frac{d^2}{dt^2} f(t) \Leftrightarrow s^2 F(s) - s f(0^-) - f'(0^-)$

$$f''(t) = \frac{d^3}{dt^3} f(t) \Leftrightarrow s^3 F(s) - s^2 f(0) - s f'(0^-) - f''(0^-)$$
$$f^{(n)}(t) = \frac{d^n}{dt^n} f(t) \Leftrightarrow s^n F(s) - s^{n-1} f(0^-) - s^{n-2} f'(0^-) - \dots - f^{(n-1)}(0^-)$$

and in general

Differentiation in the complex frequency domain
$$tf(t) \Leftrightarrow -\frac{d}{ds}F(s)$$

and in general

and is now the basis for numerical integration systems like Simulink.

$$t^n f(t) \Leftrightarrow (-1)^n \frac{d^n}{ds^n} F(s)$$

Integration in the time domain

$$\int_{-\infty}^{t} f(\tau)d\tau \Leftrightarrow \frac{F(s)}{s} + \frac{f(0^{-})}{s}$$

This property is important because it provides a way to model the solution of a differential equation using op-amp integrators in so-called Analogue Computers

Integration in the complex frequency domain Providing that

 $\lim_{t\to 0}\frac{f(t)}{t}$

exists

$$\frac{f(t)}{t} \Leftrightarrow \int_{s}^{\infty} F(s)ds$$

Time periodicity property

Time periodicity property If
$$f(t)$$
 is a periodic function with period T such that $f(t)=f(t+nT)$ for $n=1,2,3,\ldots$ then
$$f(t+nT) \Leftrightarrow \frac{\int_0^T f(t)e^{-st}\,dt}{1-e^{-sT}}$$

 $\lim_{t \to 0} f(t) \Leftrightarrow \lim_{s \to \infty} sF(s) = f(0^{-})$

Initial value theorem

$$\lim_{t \to \infty} f(t) \Leftrightarrow \lim_{s \to 0} sF(s) = f(\infty)$$

Transform tables

Don't panic

Convolution in the time domain

and then inverse Laplace transforming the result.

Final value theorem

 $f_1(t) * f_2(t) = \int_0^t f_1(\tau) f_2(t - \tau) d\tau \Leftrightarrow F_1(s) F_2(s)$

Multiplying two signals together in the time domain is the same as performing convolution in the complex frequency domain. $f_1(t)f_2(t) \Leftrightarrow \frac{1}{2\pi j}F_1(s) * F_2(s) = \frac{1}{2\pi j} \lim_{T \to \infty} \int_{c-jT}^{c+jT} F_1(\sigma)F_2(s-\sigma)d\sigma$

Convolution in the complex frequency domain is nasty – multiplication in the time domain is relatively painless.

This is usually much simpler than computing the convolution integral in the time domain – an operation we we see later!

Every textbook that covers Laplace transforms will provide a tables of properties and the most commonly encountered transforms. Karris is no exception and you will find a table of transforms in Tables 2.1 and 2.2.

Here are a couple that are on the net for your reference

Convolution in the complex frequency domain

• Laplace transform (Wikipedia) Laplace Transform (Wolfram Alpha)

2

Tables of Laplace transform properties and transforms will be included with the exam paper.

Transforms of Elementary Signals

3
$$u_0(t) \qquad \frac{1}{s}$$
4
$$tu_0(t) \qquad \frac{1}{s^2}$$
5
$$t^n u_0(t) \qquad \frac{n!}{s^{n+1}}$$
6
$$e^{-at} u_0(t) \qquad \frac{1}{s+a}$$
7
$$t^n e^{-at} u_0(t) \qquad \frac{n!}{(s+a)^{n+1}}$$
8
$$\sin(\omega t) u_0(t) \qquad \frac{\omega}{s^2 + \omega^2}$$

F(s)

 e^{-as}

 $10 \quad e^{-at} \sin(\omega t) u_0(t)$ 11 $e^{-at} \cos(\omega t) u_0(t) = \frac{s+a}{(s+a)^2 + \omega^2}$

 $\cos(\omega t)u_0(t)$

f(t)

 $\delta(t)$

 $\delta(t-a)$

Refer to the textbook if you want to see the proof of these transforms.

Laplace transforms of common waveforms We will work through a few of the following on the board in class

 Rectangular periodic waveform (square wave) · Half rectified sine wave

Pulse

Linear segment

Triangular waveform

- Using Matlab to Find Laplace Transforms ¶
- The Matlab function laplace can be used to find laplace transforms of time functions. The lab exercises will illustrate this.

Homework Attempt at least one of the end-of-chapter exercises from each question 1-7 of Section 2.7 of (cite) karris. Don't look at the answers until you have

If we have time, I will work through one or two of these in class.

Reference See **Bibliography**

attempted the problems.