

# MAQAO Performance Analysis and Optimization Tool

Performance Evaluation Team, University of Versailles

http://www.maqao.org



## Performance Analysis and Optimisation

- Where is the application spending most execution time and resources?
- Why is the application spending time there?
  - Algorithm, implementation, runtime or hardware?
  - Data access or computation?
- How to improve the application?
  - At which step(s) of the design process?
  - What additional information is needed?
- How much gain can be expected?
  - What would the effort/gain ratio be?





### **Motivating Example**

Code of a loop representing ~10% walltime

```
do j = ni + nvalue1, nato
     nj1 = ndim3d*j + nc ; nj2 = nj1 + nvalue1 ; nj3 = nj2 + nvalue1
     u1 = x11 - x(nj1); u2 = x12 - x(nj2); u3 = x13 - x(nj3)
     rtest2 = u1*u1 + u2*u2 + u3*u3; cnij = eci*qEold(j)
     rij = demi*(rvwi + rvwalc1(j))
     drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)
     Eq = qq1*qq(j)*drtest
     ntj = nti + ntype(j)
     Ed = ceps(ntj)*drtest2*drtest2*drtest2
     Eqc = Eqc + Eq; Ephob = Ephob + Ed
     gE = (c6*Ed + Eq)*drtest2; virt = virt + gE*rtest2
     u1g = u1*gE; u2g = u2*gE; u3g = u3*gE
     q1c = q1c - u1q; q2c = q2c - u2q; q3c = q3c - u3q
     gr(nj1, thread_num) = gr(nj1, thread_num) + u1g
     gr(nj2, thread_num) = gr(nj2, thread_num) + u2g
     gr(nj3, thread_num) = gr(nj3, thread_num) + u3g
end do
```

Where are the bottlenecks?



### **Motivating Example**

Code of a loop representing ~10% walltime

```
6) Variable number of iterations
 do i = ni + nvalue1, nato
                                            2) Non-unit stride accesses
       nj1 = ndim3d*j + nc; nj2 = nj1 + nvalue1; nj3 = nj2 + nvalue1
       u1 = x11 - x(nj1); u2 = x12 - x(nj2); u3 = x13 - x(nj3) \leftarrow
        rtest2 = u1*u1 + u2*u2 + u3*u3; cnij = eci*qEold(j)
1) High number of statements
       rij = demi*(rvwi + rvwalc1(j))
                                                           4) DIV/SQRT
       drtest2 = cni/(rtest2 + rij); drtest = sqrt(drtest2)
        Eq = qq1*qq(i)*drtest
                                                   3) Indirect accesses
       ntj = nti + ntype(j)
        Ed = ceps(ntj)*drtest2*drtest2*drtest2
        Eqc = Eqc + Eq; Ephob = Ephob + Ed
       gE = (c6*Ed + Eq)*drtest2; virt = virt + gE*rtest2
                                                          5) Reductions
       u1g = u1*gE; u2g = u2*gE; u3g = u3*gE
       g1c = g1c - u1g; g2c = g2c - u2g; g3c = g3c - u3g
       gr(nj1, thread_num) = gr(nj1, thread_num) + u1g
       gr(nj2, thread_num) = gr(nj2, thread_num) + u2g
        gr(nj3, thread_num) = gr(nj3, thread_num) + u3g _
                                          2) Non-unit stride accesses
 end do
```

- 1) High number of statements
- 2) Non-unit stride accesses
- 3) Indirect accesses
- 4) DIV/SQRT
- 5) Reductions
- 6) Variable number of iterations

Which is the dominant one?

→ Need analysis tools to evaluate performance issues



### A Multifaceted Problem

- What type of problems are we facing?
  - CPU or data access problems
  - Identifying the dominant issues: Algorithms, implementation, parallelisation, ...
- What transformations to apply?
  - Compiler switches, partial/full vectorisation
  - Loop blocking/array restructuring, If removal, Full unroll
  - Binary transforms (prefetch)
  - **–** ...
- Making the best use of the machine features
  - Complex multicore and manycore CPUs
  - Complex memory hierarchy
- Finding the most rewarding issues to be fixed
  - 40% total time, expected 10% speedup
    - → TOTAL IMPACT: 4% speedup
  - 20% total time, expected 50% speedup
    - → TOTAL IMPACT: **10%** speedup











## Our Approach

### Nobody wants problems everybody wants solutions ©

- Our primary targets:
  - Developers: code experts but not performance experts
  - Benchmarkers: performance experts but not code experts
- Focusing on the knobs that code developers can operate:
  - Compiler flags and runtime settings
  - Code restructuring: Change loop/parallel construct body (remove dependencies, simplify control flow, ...), insert pragmas ...
  - Data restructuring
- Helping the developer/benchmarker in using these knobs
- → Instead of pinpointing problems, guiding the user towards a way to address them.



### **MAQAO:**

### Modular Assembly Quality Analyzer and Optimizer

### Objectives:

- Characterizing performance of HPC applications
- Focusing on performance at the core level
- Guiding users through optimization process
- Estimating return of investment (R.O.I.)

### Characteristics:

- Support for x86-64 and Aarch64 (beta)
  - On-going development on GPU support
- Modular tool offering complementary views
- LGPL3 Open Source software
- Developed at UVSQ since 2004
- Binary release available as static executable
- Philosophy: Analysis at Binary Level
  - Compiler optimizations increase the distance between the executed code and the source code
  - Source code instrumentation may prevent the compiler from applying certain transformations
    - → What You Analyse Is What You Run





### **Success stories:**

### Optimisation of Industrial and Academic HPC Applications

- QMC=CHEM (IRSAMC)
  - Quantum chemistry
  - Speedup: > 3x
    - Moved invocation of function with identical parameters out of loop body
- Yales2 (CORIA)
  - Computational fluid dynamics
  - Speedup: up to 2,8x
    - Removed double structure indirections
- Polaris (CEA)
  - Molecular dynamics
  - Speedup: 1,5x 1,7x
    - Enforced loop vectorisation through compiler directives
- AVBP (CERFACS)
  - Computational fluid dynamics
  - Speedup: 1,08x 1,17x
    - Replaced division with multiplication by reciprocal
    - Complete unrolling of loops with small number of iterations
- Ongoing effort
  - TREX CoE project codes
  - CEA DAM codes









## **Partnerships**

- MAQAO is part of the POP Centre of Excellence
  - Provides performance optimisation and productivity services for academic and industrial codes
  - <a href="https://pop-coe.eu/">https://pop-coe.eu/</a>
- MAQAO has been funded by UVSQ, Intel and CEA (French department of energy) through Exascale Computing Research (ECR) and various European projects (H4H, COLOC, PerfCloud, ELCI, MB3, POP2 CoE, TREX CoE, etc...)
- Provides core technology to be integrated with other tools:
  - TAU performance tools with MADRAS patcher through MIL (MAQAO Instrumentation Language)
    - X86\_64 only, aarch64 under development
  - Intel Advisor



### **MAQAO** Team and Collaborators

### MAQAO Team

- William Jalby, Prof.
- Cédric Valensi, Ph.D.
- Emmanuel Oseret, Ph.D.
- Mathieu Tribalat, M.Sc.Eng
- Salah Ibn Amar, M.Sc.Eng
- Hugo Bolloré , M.Sc.Eng
- Kévin Camus, Eng.
- Max Hoffer, Eng.
- Aurélien Delval, Eng.

#### Collaborators

- David J. Kuck, Prof. (Intel Fellow)
- Eric Petit, Ph.D. (Intel)
- Pablo de Oliveira, Ph.D. (McF UVSQ)
- David Wong, Ph.D. (Intel)
- Othman Bouizi, Ph.D. (Intel)
- AbdelHafid Mazouz Ph.D.(Intel)
- Jeongnim Kim (Intel)

### Past Collaborators or Team members

- Andrés S. Charif-Rubial, Ph.D.
- Denis Barthou, Prof. (Univ. Bordeaux)
- Jean-Thomas Acquaviva, Ph.D. (DDN)
- Stéphane Zuckerman, Ph.D. (McF Univ Cergy)
- Julien Jaeger, Ph.D. (CEA DAM)
- Souad Koliaï, Ph.D. (CELOXICA)
- Zakaria Bendifallah, Ph.D. (ATOS)
- Tipp Moseley, Ph.D. (Google)
- Jean-Christophe Beyler, Ph.D. (Google)
- Vincent Palomarès, Ph.D. (Google)
- José Noudohouenou, Ph.D. (AMD)
- Franck Talbart, M. Sc. Eng (DDN)
- Nicolas Triquenaux, Ph.D. (DDN)
- Jean-Baptiste Le Reste , M.Sc.Eng
- Sylvain Henry, Ph.D.
- Aleksandre Vardoshvili , M.Sc.Eng
- Romain Pillot, Eng
- Youenn Lebras, Ph.D.



### Website & resources

- MAQAO website: www.maqao.org
  - Mirror: <a href="https://magao.liparad.uvsq.fr">https://magao.liparad.uvsq.fr</a>
- Documentation: www.maqao.org/documentation.html
  - Tutorials for ONE View, LProf and CQA
  - Lua API documentation
- Latest release: http://www.maqao.org/downloads.html
  - Binary releases (2-3 per year)
  - Core sources
- Publications: <a href="http://www.maqao.org/publications.html">http://www.maqao.org/publications.html</a>
- Repository of MAQAO analyses:
   <a href="http://datafront.exascale-computing.eu/public">http://datafront.exascale-computing.eu/public</a>
- Email: contact@maqao.org



### **MAQAO** Main Features

- Binary layer
  - Builds internal representation from binary
    - Construct high level structures (CFG, DDG, SSA, ...)
    - Links binary instructions to source code
  - Allows patching through binary rewriting
- Profiling
  - LProf: Lightweight sampling-based Profiler operating at process, thread, function and loops level
- Static analysis
  - CQA (Code Quality Analyzer): Evaluates the quality of the binary code and offers hints for improving it
- Performance view aggregation module: ONE View
  - Goal: Guiding the user through the analysis & optimization process.
  - Synthesizes information provided by different MAQAO modules
  - Automatizes execution of experiments invoking other MAQAO modules and aggregates their results to produce high-level reports in HTML or XLSX format



## **MAQAO** Main Structure





## SIMD/Vectorization/Data Parallelism

- Scalar pattern (C): a[i] = b[i] + c[i]
- Vector pattern (FORTRAN): a(i, i + 8) = b(i, i + 8) + c(i, i + 8)
- Benefits: increases memory bandwidth and IPC
- Implementations:
  - x86 : SSE, AVX, AVX512
  - ARM: Neon, SVE
- FMA/MAC: (the core operation of LinAlg/DSP algorithms)
  - Fused-Multiply-Add
  - Multiply-Accumulate







Scalar addition

FMA / MAC

**Vector addition** 



## Memory and caches

- Computations are, in general, faster than memory accesses
- Alignment/Contiguity of memory (x86): posix\_memalign, aligned\_alloc, ...
- Are caches (L1, L2, L3) used properly?
- Memory performance → Maximum bandwidth





## Compiler optimisations

- Compiler flags:
  - Loop unrolling: -funroll-loops
    - Reduce branches
    - Fill the pipeline (more instructions per iteration)
    - Increases memory bandwidth and IPC
  - Function inlining: -finline-functions
  - Vectorization: -ftree-vectorize, -ftree-slp-vectorize, ...
  - Target micro-architectures: -march or -mtune or -xHOST
- Compiler directives:
  - OpenMP directives: #pragma omp simd, #pragma omp parallel for, ...
  - Intel compiler specific: #pragma simd, #pragma unroll, #pragma inline, ...
- Compiler/language keywords/features:
  - Using restrict for pointers aliasing in C/C++
  - Using inline for function inlining in C
  - Using array sections in FORTRAN



### MAQAO LProf: Lightweight Profiler

 Goal: Localization of application hotspots

- Features:
  - Lightweight
  - Sampling based
  - Access to hardware counters
  - Analysis at function and loop granularity
- Strengths:
  - Non intrusive: No recompilation necessary
  - Low overhead
  - Agnostic with regard to parallel runtime





# MAQAO CQA: Code Quality Analyzer

- Goal: Assist developers in improving code performance
- Features:
  - Static analysis: no execution of the application
  - Allows cross-analysis of/on multiple architectures
  - Evaluates the quality of compiler generated code
  - Proposes hints and workarounds to improve quality / performance
  - Loop centric
    - In HPC loops cover most of the processing time
  - Targets compute-bound codes





### MAQAO CQA Main Concepts

- Applications only exploit at best 5% to 10% of the peak performance
- Main elements of analysis:
  - Peak performance
  - Execution pipeline
  - Resources/Functional units



Process up to 8X (SP) data

- Key performance levers for core level efficiency:
  - Vectorising
  - Avoiding high latency instructions if possible (e.g. DIV/SQRT)
  - Guiding the compiler code optimisation
  - Reorganizing memory and data structures layout



### "What If" Scenarios: Vectorization

- Code "Clean"
  - Generate an Assembly "Clean" variant : keep only FP Arithmetic and Memory operations, suppress all other
  - Generate a CQA Performance estimate on the "Clean" Variant
- Code "FP Vector"
  - Generate an Assembly "FP Vector" variant : only replace scalar FP
     Arithmetic by Vector FP Arithmetic equivalent. Generate additional
     instructions to fill in Vector Registers.
  - Generate a CQA Performance estimate
- Code "Full Vector"
  - Generate an Assembly "Full Vector" variant: replace both scalar FP
     Arithmetic and FP Load/Store by their Vector equivalent.
  - Generate a CQA Performance estimate
- All of these "What If Scenarios" are generated in a fully static manner.



## MAQAO CQA Guiding the compiler and hints

- Compiler can be driven using flags, pragmas and keywords:
  - Ensuring full use of architecture capabilities (e.g. using flag -xHost on AVX capable machines)
  - Forcing optimization (unrolling, vectorization, alignment...)
  - Bypassing conservative behaviour when possible (e.g., 1/X precision)
- Hints for implementation changes
  - Improve data access
    - Memory alignment
    - Loop interchange
    - Change loop stride
    - Reshaping arrays of structures
  - Avoid instructions with high latency (SQRT, DIV, GATHER, SCATTER, ...)



# MAQAO CQA Advanced Features Vector Efficiency

- Ex: vectorized SSE code on AVX machine
- Compiler: "LOOP WAS VECTORIZED"
- In reality 50% vectorization speedup loss
- CQA:
- vectorization ratio: 100% ("all instructions vectorized")
- vec. efficiency ratio: 50% ("but using only half vector width")
- hint: "recompile with –xHost" (on Intel compilers)





## MAQAO CQA Application to Motivating Example

#### Issues identified by CQA



CQA can detect and provide hints to resolve most of the identified issues:

- 1) High number of statements
- 2) Non-unit stride accesses
- Indirect accesses
- **DIV/SQRT**
- 5) Reductions
- Variable number of iterations
- 7) Vector vs scalar



## MAQAO ONE View: Performance View Aggregator

- Goal: Automating the whole analysis process
  - Invoke multiple MAQAO modules
  - Generate aggregated performance views
    - Reports in HTML or XLS format





### MAQAO ONE View: Performance View Aggregator

### Main steps:

- Invokes LProf to identify hotspots
- Invokes CQA on loop hotspots
- Available results:
  - Speedup predictions
  - High-level summary
  - Global code quality metrics
  - Hints for improving performance
  - Detailed analyses results
  - Parallel efficiency analysis





## **ONE View Reports Levels**

### ONE VIEW ONE

- Requires a single run of the application
- Profiling of the application using LProf
- Static analysis using CQA

### Scalability

- Requires as many additional runs as parallel configurations
- Can be executed in addition to another report
- Profiling using LProf on different parallel configurations

### Comparison mode

- Comparison of multiple runs (iso-binary or iso-source)
- Allows to compare performance across different datasets, compilers, or hardware platforms

### Stability mode

- Multiple runs with identical parameters
- Allows to assess the stability of execution time



# **Comparative Analysis**

- Basic principles: run different "code versions" and compare them on "appropriate levels".
- TRIAL AND ERROR and comparison are fundamental techniques in scientific approach.
- Different "code versions"
  - Different runtime settings (on different number of cores, etc..)
  - Different compilers
  - Different hardware (X86, ARM, ...) with same or different ISA
  - Different code versions
- "Appropriate levels":
  - ISOBINARY: the same binary is compared in different settings
  - ISOSOURCE: the same source is compared
  - ISOFUNCTION STRUCTURE: the source code can be different but the function structure is preserved.
  - Generic: much harder to compare
- Not very sophisticated at first but very useful and implementation is a bit subtle



### Analysing an application with MAQAO

- ONE View execution
- Provide all parameters necessary for executing the application
  - Parameters can be passed on the command line or as a configuration file
  - Parameters include binary name, MPI commands, dataset directory, ...

```
$ maqao oneview --create-report=one --executable=bt-mz.C.16 --mpi_command="mpirun -n 16"
```

```
$ maqao oneview --create-report=one --config=my_config.json"
```

- Analyses can be tweaked if necessary
  - Report level one corresponds to lightweight profiling (LProf) and code quality analysis (CQA)
- ONE View can reuse an existing experiment directory to perform further analyses
- Results available in HTML format by default
  - XLS spreadsheets and textual output generation are also available
- Online help is available:

```
$ magao oneview --help
```



## Analysing an application with MAQAO

# MAQAO modules can be invoked separately for advanced analyses

- LProf
  - Profiling

```
$ magao lprof xp=exp dir --mpi-command="mpirun -n 16" -- ./bt-mz.C.16
```

Display functions profile

```
$ maqao lprof xp=exp_dir -df
```

Displaying the results from a ONE View run

```
$ maqao lprof xp=oneview_xp_dir/lprof_npsu -df
```

### CQA

```
$ maqao cqa loop=42 bt-mz.C.16
```

### Online help is available:

```
$ maqao lprof --help
$ maqao cqa --help
```



Questions?

# **THANKS FOR YOUR ATTENTION!**



# **NAVIGATING ONE VIEW REPORTS**



## MAQAO ONE View Global Summary

- Experiment summary
  - Characteristics of the machine where the experiment took place
- Global metrics
  - General quality metrics derived from MAQAO analyses
  - Global speedup predictions
    - Speedup prediction depending on the number of vectorised loops
    - Ordered speedups to identify the loops to optimise in priority





### **ONE View Global Metrics**

- Global metrics
  - General quality metrics derived from MAQAO analyses
  - Global speedup predictions
- Potential speedups
  - Speedup prediction depending on the number of optimised loops
  - Ordered speedups to identify the loops to optimise in priority
- Global Speedup =  $\sum_{loops}$  coverage \* potential speedup
- LProf provides coverage of the loops
- CQA and DECAN provide speedup estimation for loops
  - Speedup if loop vectorised or without address computation
  - All data in L1 cache



### TYPICAL ONE VIEW GLOBAL TAB



FOCUS: on transformations and impact at the application level

Perfect flow complexity: evaluate performance gain if innermost loops had no branches

Iteration count: evaluate the impact of having all loop iteration count over 100

Array Access Efficiency: Percentage of Unit Stride access



### TYPICAL ONE VIEW GLOBAL TAB

| Global Metrics                                             |                     | 8     |
|------------------------------------------------------------|---------------------|-------|
| Total Time (s)                                             |                     | 63.86 |
| Profiled Time (s)                                          |                     | 61.31 |
| Time in analyzed loops (%)                                 |                     | 61.6  |
| Time in analyzed innermost loops (%)                       |                     | 61.2  |
| Time in user code (%)                                      |                     | 61.6  |
| Compilation Options                                        |                     | OK    |
| Perfect Flow Complexity                                    |                     | 1.01  |
| Iterations Count                                           |                     | 1.00  |
| Array Access Efficiency (%)                                |                     | 88.3  |
| Perfect OpenMP + MPI + Pthread                             |                     | 1.00  |
| Perfect OpenMP + MPI + Pthread + Perfect Load Distribution |                     | 1.00  |
| No Scalar Integer                                          | Potential Speedup   | 1.02  |
|                                                            | Nb Loops to get 80% | 7     |
| FP Vectorised                                              | Potential Speedup   | 1.01  |
|                                                            | Nb Loops to get 80% | 4     |
| Fully Vectorised                                           | Potential Speedup   | 1.04  |
|                                                            | Nb Loops to get 80% | 11    |
| FP Arithmetic Only                                         | rotential Speedup   | 1.10  |
|                                                            | Nb Loops to get 80% | 11    |

FOCUS: on transformations and impact at the application level

FP vectorized: Performance gain if all the FP arithmetic operations were vectorized

Fully vectorized: Performance gain if all the FP arithmetic operations+ Load/Store instructions were vectorize



## MAQAO ONE View Application Characteristics

- Application categorisation
  - Time spent in different regions of code
- Function based profile
  - Functions by coverage ranges
- Loop based profile
  - Loops by coverage ranges
- Detailed loop based profile
  - Loop types by coverage ranges





## MAQAO ONE View Application Characteristics Time Categorisation

## Identifying at a glance where time is spent

- Application
  - Main executable
- Parallelization
  - Threads
  - OpenMP
  - MPI
- System libraries
  - I/O operations
  - String operations
  - Memory management functions
- External libraries
  - Specialised libraries such as libm / libmkl
  - Application code in external libraries





### MAQAO ONE View: Functions Profiling

#### Identifying hotspots

- Exclusive coverage
- Load balancing across threads
- Loops nests by functions







#### **MAQAO ONE View Loop Profiling Summary**

- Identifying loop hotspots
- Vectorisation information
- Potential speedups by optimisation
  - Clean: Removing address computations
  - FP Vectorised: Vectorising floating-point computations
  - Fully Vectorised: Vectorising floating-point computations and memory accesses



Framework 39



### **MAQAO ONE View Loop Expert Summary**

• All metrics derived from CQA, VProf and DECAN analyses

| Expert Summ  | arv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                                           |        |       |                    |          |                            |        |                |      |                  |       |                 |                       |           |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------|--------|-------|--------------------|----------|----------------------------|--------|----------------|------|------------------|-------|-----------------|-----------------------|-----------|
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                           |        |       |                    |          |                            |        |                |      | _                |       |                 |                       |           |
| ✓ Analysis   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | speedup if clea |                                           |        |       | eedup if fully vec |          | Number of  <br>  Number of |        | □ORIG / DL     |      | Saturation ratio |       |                 | ∃Saturati<br>STA (EP) |           |
|              | □FP/CQA(FP) □DL1/CQA(DL1) ☑FP/LS □Frequency Impact ☑ORIG (cycles per iteration) ☑STA (ORIG) □REF (cycles per iteration) □STA (REF) ☑FP (cycles per iteration) ☑STA (FP) ☑LS (cycles per iteration) ☑STA (FES) □CQA cycles □CQ |                 |                                           |        |       |                    |          |                            |        |                |      |                  |       |                 |                       |           |
| □CQA cycles  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . — .           | Iteration count □ Function □ Sourc        |        |       |                    | Nb FP_ML |                            | AP(FP) |                | -    | T(FP)            |       |                 | □SAT(L1               |           |
| □CAP(L1W)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | T(L1W) □CAP(L2) □BW(L2) □S.               | AT(L2) | □ CA  | AP(L3) □ BW(I      |          |                            | AP(RAI |                | _    |                  |       |                 |                       |           |
| ID           | Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Coverage (%     | Analysis                                  | ORIG / | ED/LG | ORIG (cycles       | STA      | FP (cycles per             | STA    | LS (cycles per | STA  | DL1 (cycles      | STA   | FES (cycles per | r STA                 | Iteration |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | app. time)      |                                           | DLI    |       | per iteration,     | (ORIG)   | iteration)                 | (FP)   | iteration)     | (LS) | per iteration)   | (DL1) | iteration)      | (FES)                 | count     |
| ► Loop 18403 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.71           | RAM bound                                 | 8.49   | 0.09  | 82.88              | 0.80     | 6.40                       | 0.21   | 73.20          | 0.34 | 9.76             | 0.31  | 8.72            | 0.12                  | 25        |
| ► Loop 26027 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.01           | Balanced workload (back-end starvation)   | 1.01   | 1.01  | 150.69             | 0.15     | 155.04                     | 0.11   | 153.48         | 0.19 | 148.98           | 0.10  | 137.44          | 0.13                  | 96        |
| ► Loop 18424 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.81           | RAM bound                                 | 3.53   | 0.42  | 66.94              | 0.21     | 32.12                      | 0.03   | 75.73          | 0.27 | 18.98            | 0.03  | 17.41           | 0.02                  | 51        |
| ► Loop 18474 | binary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.84            | RAM bound                                 | 4.18   | 0.37  | 78.98              | 0.40     | 32.24                      | 0.02   | 88.04          | 0.46 | 18.90            | 0.07  | 17.25           | 0.01                  | 51        |
| ► Loop 26026 | binary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.78            | L1 bound                                  | 0.98   | 0.71  | 173.54             | 0.18     | 175.29                     | 0.07   | 246.79         | 0.25 | 177.54           | 0.12  | 163.29          | 0.07                  | 96        |
| ► Loop 26028 | binary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.64            | Balanced workload (back-end starvation)   | 0.98   | 1.04  | 171.90             | 0.24     | 174.58                     | 0.05   | 168.48         | 0.06 | 175.27           | 0.07  | 165.73          | 0.15                  | 96        |
| ▶ Loop 8754  | binary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.57            | Balanced workload (fast front-end supply) | 5.37   | 0.77  | 47.72              | 0.03     | 4.35                       | 0.01   | 5.65           | 0.06 | 9.09             | 0.01  | 4.84            | 0.01                  | 1489      |
| ► Loop 12711 | binary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.41            | L1 bound                                  | 1.00   | 0.97  | 9.86               | 0.16     | 10.68                      | 0.14   | 10.99          | 0.25 | 9.88             | 0.15  | 10.38           | 0.13                  | 384       |
| ▼ Loop 18501 | binary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.22            | RAM bound                                 | 4.40   | 0.32  | 325.64             | 0.08     | 79.09                      | 0.01   | 248.73         | 0.19 | 74.09            | 0.02  | 63.73           | 0.00                  | 22        |
| ▼ Bucket 9   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 98.86           | RAM bound                                 | 4.40   | 0.32  | 325.64             | 0.08     | 79.09                      | 0.01   | 248.73         | 0.19 | 74.09            | 0.02  | 63.73           | 0.00                  | 22        |
| ▼ Bucket 10  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.08            | RAM bound                                 | 6.56   | 0.18  | 488.18             | 0.53     | 79.00                      | 0.01   | 435.73         | 0.63 | 74.36            | 0.01  | 64.27           | 0.01                  | 22        |
| ► Loop 12729 | binary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.12            | Balanced workload (back-end starvation)   | 1.04   | 1.22  | 8.94               | 0.19     | 10.36                      | 0.08   | 8.47           | 0.18 | 8.61             | 0.22  | 8.91            | 0.12                  | 384       |
| ► Loop 12688 | binary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.09            | RAM bound                                 | 2.28   | 0.93  | 31.92              | 0.24     | 33.17                      | 0.06   | 35.67          | 0.92 | 14.00            | 0.14  | 11.00           | 0.07                  | 24        |
| ► Loop 8912  | binary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.97            | Balanced workload (fast front-end supply) | 5.01   | 0.93  | 49.52              | 0.07     | 5.75                       | 0.03   | 6.16           | 0.10 | 9.88             | 0.05  | 6.23            | 0.04                  | 128       |
| ► Loop 26800 | binary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.85            | Balanced workload (fast front-end supply) | 0.83   | 1.16  | 119.00             | 0.14     | 122.50                     | 0.38   | 106.00         | 0.21 | 143.25           | 0.13  | 107.00          | 0.24                  | 8         |
| ► Loop 20240 | binary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.78            | RAM bound                                 | 1.28   | 0.57  | 10.60              | 0.21     | 10.00                      | 0.05   | 17.50          | 0.04 | 8.30             | 0.03  | 6.05            | 0.02                  | 384       |
| ► Loop 8755  | binary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.47            | Balanced workload (fast front-end supply) | 5.02   | 1.17  | 52.47              | 0.13     | 4.92                       | 0.04   | 4.20           | 0.02 | 9.46             | 0.00  | 4.16            | 0.01                  | 372       |



### MAQAO ONE View Loop Analysis Report

#### High level reports

- Reference to the source code
- Bottleneck description
- Hints for improving performance
- Reports categorized by probability that applying hints will yield predicted gain
  - Gain: Good probability
  - Potential gain: Average probability
  - Hints: Lower probability





## MAQAO ONE View Loop Analysis Reports Expert View

- Low level reports for performance experts
  - Assembly-level
  - Instructions cycles costs
  - Instructions dispatch predictions
  - Memory access analysis
- Assembly code
  - Highlights groups of instructions accessing the same memory addresses
- CQA internal metrics





#### MAQAO ONE View Thread/Process View

- Software Topology
  - Nodes list
  - Processes by node
  - Thread by process
- View by thread
  - Function profile at the thread
    - or process level



| MA <b>®</b> AO                       | Global                     | Application     | Functions     | Loops     | Topology   | Hel             | lp       |
|--------------------------------------|----------------------------|-----------------|---------------|-----------|------------|-----------------|----------|
| Profiling node sl                    | kylake01 - p               | rocess 359337 - | thread 359337 |           |            |                 |          |
|                                      |                            | Name            |               | N         | Module     | Coverage<br>(%) | Time (s) |
| <ul> <li>MPIDI_CH3I_Pro</li> </ul>   | gress                      |                 |               | libm      | pi.so.12.0 | 20.62           | 2.31     |
| ► calc_data_gradie                   | ent                        |                 |               | 3D        | _cylinder  | 4.95            | 0.56     |
| ► ics_advance_velo                   | ocity_tfv4a_4th            | 1               |               | 3D        | _cylinder  | 3.75            | 0.42     |
| ► calc_data_tridiag                  | g_op_product               |                 |               | 3D        | _cylinder  | 3.58            | 0.4      |
| <ul> <li>MPIR_Allreduce_</li> </ul>  | group                      |                 |               | libm      | pi.so.12.0 | 3.22            | 0.36     |
| ► filter_real_data                   |                            |                 |               | 3D.       | _cylinder  | 2.43            | 0.27     |
| ► update_int_com                     | m                          |                 | 3D.           | _cylinder | 2.42       | 0.27            |          |
| <ul> <li>system_call_afte</li> </ul> | er_swapgs                  |                 | SYS           | TEM CALL  | 1.66       | 0.19            |          |
| ► adv_scalar_w_u_                    | tfv4a_4th                  |                 | 3D.           | _cylinder | 1.59       | 0.18            |          |
| ▶ solve_linear_sys                   | tem_deflated_ <sub> </sub> | ocg             | 3D.           | _cylinder | 1.45       | 0.16            |          |



### **MAQAO ONE View Scalability Reports**

- Goal: Provide a view of the application scalability
  - Profiles with different numbers of threads/processes
  - Displays efficiency metrics for application





# MAQAO ONE View Scalability Reports Application View

- Coverage per category
  - Comparison of categories for each run
- Coverage per parallel efficiency

$$- Efficiency = \frac{T_{sequential}}{T_{parallel}*N_{threads}}$$

- Distinguishing functions only represented in parallel or sequential
- Displays efficiency by coverage







# MAQAO ONE View Scalability Reports Functions and Loops Views

- Displays metrics for each function/loop
- Efficiency
- Potential speedup if efficiency=1



MAQAO Performance Analysis and Optimization
Framework



### ISO BINARY: SCALABILITY RUNS (1)

MINIQMC: Weak Scalability Analysis

r0:1 core r1:2 cores r2:4 cores r3:8 cores r4:16 cores r5:32

cores r6: 64 Cores

| Global Metrics                                                |          |           |            |            |            |            | •            |
|---------------------------------------------------------------|----------|-----------|------------|------------|------------|------------|--------------|
| Metric                                                        | r0       | r1        | r2         | r3         | r4         | r5         | r6           |
| Total Time (s)                                                | 54.59    | 56.02     | 56.89      | 59.12      | 67.23      | 93.17      | 156.70       |
| Profiled Time (s)                                             | 53.81    | 55.22     | 56.06      | 57.98      | 65.20      | 89.03      | 148.10       |
| Time in analyzed loops (%)                                    | 51.7     | 50.7      | 50.1       | 49.5       | 47.5       | 48.8       | 46.2         |
| Time in analyzed innermost loops (%)                          | 51.6     | 50.6      | 50.0       | 49.4       | 47.4       | 48.7       | 46.1         |
| Time in user code (%)                                         | 52.2     | 51.3      | 50.6       | 49.9       | 48.0       | 49.2       | 46.5         |
| Compilation Options Score (%)                                 | 25.0     | 25.0      | 25.0       | 25.0       | 25.0       | 25.0       | 25.0         |
| Perfect Flow Complexity                                       | 1.00     | 1.00      | 1.00       | 1.00       | 1.00       | 1.00       | 1.00         |
| Array Access Efficiency (%)                                   | Not      | Not       | Not        | Not        | Not        | Not        | Not          |
| Array Access Efficiency (70)                                  | Availabl | e Availab | le Available |
| Perfect OpenMP + MPI + Pthread                                | 1.00     | 1.00      | 1.00       | 1.00       | 1.00       | 1.01       | 1.00         |
| Perfect OpenMP + MPI + Pthread +<br>Perfect Load Distribution | 1.00     | 1.01      | 1.01       | 1.01       | 1.01       | 1.01       | 1.01         |
| Potential Speedup                                             | 1.02     | 1.02      | 1.02       | 1.02       | 1.02       | 1.01       | 1.01         |
| No Scalar Integer Nb Loops to get 80%                         | 4        | 4         | 4          | 4          | 4          | 4          | 4            |
| Potential Speedup                                             | 1.00     | 1.00      | 1.00       | 1.00       | 1.00       | 1.00       | 1.00         |
| FP Vectorised Nb Loops to get 80%                             | 3        | 3         | 3          | 3          | 3          | 3          | 3            |
| Potential Speedup                                             | 1.02     | 1.02      | 1.02       | 1.02       | 1.02       | 1.02       | 1.01         |
| Fully Vectorised Nb Loops to get 80%                          | 4        | 4         | 4          | 5          | 5          | 5          | 6            |
| Potential Speedup                                             | 1.16     | 1.15      | 1.15       | 1.15       | 1.13       | 1.12       | 1.10         |
| Only FP Arithmetic Nb Loops to get<br>80%                     | 6        | 6         | 6          | 6          | 7          | 6          | 7            |
| Scalability - Gap                                             | 1.00     | 1.03      | 1.04       | 1.08       | 1.23       | 1.71       | 2.87         |



### ISO BINARY: SCALABILITY RUNS (2)

MINIQMC: Weak Scalability Analysis

r0:1 core r1:2 cores r2:4 cores r3:8 cores r4:16 cores r5:32

cores r6: 64 Cores

| ▼ Colums Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                          |                          |                          |                          |           |                          | 9               |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------|--------------------------|-----------------|--|
| Coverage m1o1 (%)  Coverage m1o2 (%)  Coverage m1o4 (%)  Coverage m1o8 (%)  Coverage m1o16 (%)  Coverage m1o32 (%)  Coverage m1o64 (%)  Max Time Over Threads m1o1 (s)  Max Time Over Threads m1o2 (s)  Max Time Over Threads m1o8 (s)  Max Time Over Threads m1o64 (s)  Max Time Over Threads m1o8 (s)  Max Time Over Threads m1o8 (s)  Time w.r.t. Wall Time m1o4 (s)  Time w.r.t. Wall Time m1o4 (s)  Max Time Over Threads m1o4 (s)  Time w.r.t. Wall Time m1o4 (s)  Time w.r.t. Wall Time m1o4 (s)  Max Time Over Threads m1o4 (s)  Time w.r.t. Wall Time m1o4 (s)  Max Time Over Threads m1o4 (s)  Time w.r.t. Wall Time m1o4 (s)  Time w.r.t. Wall Time m1o4 (s)  Max Time Over Threads m1o4 (s)  Time w.r.t. Wall Time m1o4 (s) |             |                          |                          |                          |                          |           |                          |                 |  |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Module      | Max Time<br>Over Threads | Max Time<br>Over Threads | Max Time<br>Over Threads | Max Time<br>Over Threads |           | Max Time Over<br>Threads | Max Time Over A |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | m1o1 (s)                 | m1o2 (s)                 | m1o4 (s)                 | m1o8 (s)                 | m1o16 (s) | m1o32 (s)                | m1o64 (s)       |  |
| o dgemm_sve_big                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | libarmpl.so | 21.99                    | 22.86                    | 23.6                     | 24.73                    | 29.12     | 37.66                    | 60.43           |  |
| ▶ void qmcplusplus::DTD_BConds <double, 39="" 3u,="">::computeDistances<qmcplusplus::tinyvector<double, 3u="">, qmcplusplus::VectorSoAContainer<double, 32ul="" 32ul,="" 3u,="" qmcplusplus::mallocator<double,="">&gt;, qmcplusplus::VectorSoAContainer<dou< td=""><td></td><td>10.95</td><td>11.01</td><td>11.15</td><td>11.28</td><td>11.39</td><td>11.6</td><td>12.27</td></dou<></double,></qmcplusplus::tinyvector<double,></double,>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 10.95                    | 11.01                    | 11.15                    | 11.28                    | 11.39     | 11.6                     | 12.27           |  |
| ➤ void miniqmcreference::MultiBsplineEvalRef::evaluate_v <double>(qmcplusplus::b spline_traits<double, 3u="">::SplineType const*, double, double, double, double*, uns igned long)</double,></double>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 6.83                     | 6.87                     | 7.01                     | 7.31                     | 8.78      | 18.58                    | 35.49           |  |
| void miniqmcreference::MultiBsplineEvalRef::evaluate_vgh <double>(qmcplusplu s::bspline_traits<double, 3u="">::SplineType const*, double, double, double, double*, double*, double*, unsigned long)</double,></double>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | miniqmc     | 5.44                     | 5.69                     | 5.73                     | 5.98                     | 6.88      | 8.89                     | 13.9            |  |
| o interleave_2vl_sve_kernel_dc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | libarmpl.so | 1.71                     | 1.92                     | 1.9                      | 2.01                     | 2.21      | 4.42                     | 11.45           |  |
| ▶ void qmcplusplus::DTD_BConds <double, 39="" 3u,="">::computeDistances<qmcplusplus::tinyvector<double, 3u="">, qmcplusplus::VectorSoAContainer<double, 32ul,="" 3u,="" q<="" td=""><td></td><td>0.93</td><td>0.92</td><td>1.05</td><td>1.05</td><td>1.04</td><td>1</td><td>1.16</td></double,></qmcplusplus::tinyvector<double,></double,>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 0.93                     | 0.92                     | 1.05                     | 1.05                     | 1.04      | 1                        | 1.16            |  |



#### ISO SOURCE: COMPILER COMPARISON

#### MINIQMC: ARM Clang versus ARM Clang + ARM PL

#### **▼** Compared Reports

- r0: miniqmc\_ov1\_armclang\_o1m1
- r1: miniqmc\_ov1\_armclang\_o1m1\_pl

| N                                         | 1etric              | r0            | r1            |
|-------------------------------------------|---------------------|---------------|---------------|
| Total Time (s)                            |                     | 231.75        | 53.89         |
| Profiled Time (s)                         |                     | 231.03        | 53.16         |
| Time in analyzed l                        | oops (%)            | 11.8          | 51.9          |
| Time in analyzed ii                       | nnermost loops (%)  | 11.8          | 51.7          |
| Time in user code                         | (%)                 | 12.0          | 52.3          |
| Compilation Option                        | ns Score (%)        | 25.0          | 25.0          |
| Perfect Flow Comp                         | lexity              | 1.00          | 1.00          |
| Array Access Efficion                     | ency (%)            | Not Available | Not Available |
| Perfect OpenMP + MPI + Pthread            |                     | 1.00          | 1.00          |
| Perfect OpenMP +  <br>Perfect Load Distri |                     | 1.00          | 1.00          |
| No Coalar Integer                         | Potential Speedup   | 1.00          | 1.02          |
| No Scalar Integer                         | Nb Loops to get 80% | 4             | 6             |
| FP Vectorised                             | Potential Speedup   | 1.00          | 1.00          |
| rr vectoriseu                             | Nb Loops to get 80% | 3             | 3             |
| Fully Vectorised                          | Potential Speedup   | 1.00          | 1.02          |
| runy vectoriseu                           | Nb Loops to get 80% | 5             | 7             |
| Only FP Arithmetic                        | Potential Speedup   | 1.03          | 1.16          |
| Only 11 Anumeuc                           | Nb Loops to get 80% | 6             | 7             |



#### ISO FUNCTION STRUCTURE

| Global Metrics     |                                                               |       |       |       |       | •     |
|--------------------|---------------------------------------------------------------|-------|-------|-------|-------|-------|
| M                  | etric                                                         | r0    | r1    | r2    | r3    | r4    |
| Total Time (s)     |                                                               | 29.12 | 22.53 | 21.32 | 19.63 | 21.80 |
| Profiled Time (s)  |                                                               | 28.78 | 22.18 | 20.92 | 19.25 | 21.49 |
| Time in analyzed   |                                                               | 87.3  | 81.1  | 79.7  | 79.8  | 78.7  |
| Time in analyzed   | innermost loops                                               | 37.8  | 47.1  | 43.8  | 51.4  | 51.7  |
| Time in user code  | e (%)                                                         | 94.6  | 90.7  | 90.0  | 88.8  | 88.5  |
| Compilation Opti   | ons                                                           | OK    | OK    | OK    | OK    | OK    |
| Perfect Flow Com   | plexity                                                       | 1.00  | 1.05  | 1.00  | 1.00  | 1.00  |
| Iterations Count   |                                                               | 1.04  | 1.02  | 1.03  | 1.03  | 1.02  |
| Array Access Effic |                                                               | 79.6  | 81.9  | 71.8  | 70.3  | 71.3  |
| Perfect OpenMP -   |                                                               | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  |
|                    | Perfect OpenMP + MPI + Pthread +<br>Perfect Load Distribution |       | 1.00  | 1.00  | 1.00  | 1.00  |
|                    | Potential Speedup                                             | 1.23  | 1.20  | 1.19  | 1.17  | 1.16  |
| No Scalar Integer  | Nb Loops to get 80%                                           | 12    | 13    | 10    | 12    | 11    |
|                    | Potential Speedup                                             | 1.18  | 1.27  | 1.27  | 1.29  | 1.27  |
| FP Vectorised      | Nb Loops to get 80%                                           | 14    | 14    | 14    | 17    | 18    |
|                    | Potential Speedup                                             | 3.69  | 2.86  | 2.73  | 2.63  | 2.58  |
| Fully Vectorised   | Nb Loops to get 80%                                           | 41    | 41    | 41    | 41    | 41    |
| Only FP            | Potential Speedup                                             | 2.01  | 1.65  | 1.65  | 1.59  | 1.69  |
| Arithmetic         | Nb Loops to get<br>80%                                        | 26    | 29    | 28    | 35    | 37    |
|                    | Potential Speedup                                             | 1.05  | 1.06  | 1.07  | 1.10  | 1.08  |
| Data In L1 Cache   | Nb Loops to get<br>80%                                        | 5     | 4     | 5     | 6     | 6     |

5 successive code versions of CHAMP

Unicore runs SKL

Regular gains except for the last one!!



#### ISO FUNCTION STRUCTURE: FUNCTION LEVEL

#### **CHAMP Unicore on SKL**

|                           |            |              |             | -            |                            |                                    |
|---------------------------|------------|--------------|-------------|--------------|----------------------------|------------------------------------|
| Functions                 |            |              |             |              |                            |                                    |
| Name                      | Module     | -h 01 15h    | sk 262 15h  | Time (s)     | shamp 20apr ou2 apargy 15h | shamp 11may av2 apargy 151         |
| multidatarminanta         | um e m oul |              |             |              | 3.45                       | champ_11may_ov3_energy_15k<br>3.55 |
|                           | vmc.mov1   | 7.37<br>2.19 | 4.6<br>1.85 | 4.07<br>2.09 | 1.96                       | 1.93                               |
| basis_fns                 | vmc.mov1   | 6.01         | 0.13        | 0.13         | 0.08                       | 3.6                                |
|                           | vmc.mov1   |              |             |              | 1.43                       | 1.48                               |
| orbitals                  | vmc.mov1   | 1.49         | 1.56        | 1.47         | 1.43                       | 1.44                               |
|                           | vmc.mov1   | 1.37         | 1.28        | 1.38         | 1.11                       | 1.19                               |
| multideterminante_grad    | vmc.mov1   | 1.09         | 1.09        | 1.11         | 0.7                        | 0.82                               |
| •                         | vmc.mov1   | 1.29         | 0.9         | 0.76         | 0.7                        | 0.86                               |
| orbitalse                 | vmc.mov1   | 0.79         | 0.87        | 0.8          | 0.56                       | 0.7                                |
| matinv                    | vmc.mov1   | 0.85         | 0.94        | 0.93         |                            |                                    |
| powr8i4                   | vmc.mov1   | 0.62         | 0.76        | 0.71         | 0.68                       | 0.7                                |
| idiff                     | vmc.mov1   | 0.65         | 0.65        | 0.7          | 0.66                       | 0.66                               |
| splfit                    | vmc.mov1   | 0.56         | 0.55        | 0.51         | 0.58                       | 0.61                               |
|                           | vmc.mov1   | 1.31         | 0.56        | 0.5          | 0.2                        | 0.21                               |
| intel_avx_rep_memset      | vmc.mov1   | 0.12         | 0.57        | 0.47         | 0.53                       | 0.5                                |
|                           | vmc.mov1   | 0.25         | 0.14        | 0.42         | 0.46                       | 0.82                               |
| determinante_psit         | vmc.mov1   | 0.49         | 0.3         | 0.36         | 0.32                       | 0.55                               |
| update_ymat               | vmc.mov1   | 0.54         | 0.3         | 0.24         | 0.23                       | 0.31                               |
| libm_log_l9               | vmc.mov1   | 0.24         | 0.31        | 0.25         | 0.23                       | 0.23                               |
| psinl                     | vmc.mov1   | 0.13         | 0.16        | 0.14         | 0.14                       | 0.17                               |
| slm                       | vmc.mov1   | 0.15         | 0.16        | 0.15         | 0.12                       | 0.13                               |
| multideterminants_define  | vmc.mov1   | 0.11         | 0.13        | 0.07         | 0.11                       | 0.12                               |
| libm_exp_l9               | vmc.mov1   | 0.13         | 0.1         | 0.09         | 0.11                       | 0.09                               |
| jastrow4e                 | vmc.mov1   | 0.14         | 0.06        | 0.07         | 0.05                       | 0.07                               |
| compute_determinante_grad | vmc.mov1   | 0.07         | 0.04        | 0.07         | 0.05                       | 0.07                               |



#### ISO SOURCE: DIFFERENT HARDWARE

All runs were unicore and used the same compiler GNU 11 Code MAHYCO (Arcane framework)

r0: SKL r1: ZEN\_2 r2: ZEN\_3

| Global Metrics                     |                             |           |           | <b>?</b>  |
|------------------------------------|-----------------------------|-----------|-----------|-----------|
|                                    | Metric                      | <u>r0</u> | <u>r1</u> | <u>r2</u> |
| Total Time (s)                     |                             | 916.81    | 738.02    | 592.37    |
| Profiled Time (s)                  |                             | 915.78    | 734.50    | 590.03    |
| Time in analyzed loo               | ps (%)                      | 72.8      | 69.3      | 68.2      |
| Time in analyzed in                | nermost loops (%)           | 41.7      | 40.1      | 41.4      |
| Time in user code (%               | 6)                          | 87.7      | 86.6      | 85.9      |
| Compilation Options                | 3                           | OK        | OK        | OK        |
| Perfect Flow Comple                | Perfect Flow Complexity     |           | 1.26      | 1.28      |
| Array Access Efficier              | ncy (%)                     | 64.0      | 62.1      | 61.7      |
| Perfect OpenMP + M                 | PI + Pthread                | 1.00      | 1.00      | 1.00      |
| Perfect OpenMP + M<br>Distribution | PI + Pthread + Perfect Load | 1.00      | 1.00      | 1.00      |
| No Scalar Integer                  | Potential Speedup           | 1.26      | 1.17      | 1.16      |
| NO Scarar integer                  | Nb Loops to get 80%         | 5         | 5         | 5         |
| FP Vectorised                      | Potential Speedup           | 1.41      | 1.31      | 1.29      |
| rr vectorised                      | Nb Loops to get 80%         | 5         | 7         | 7         |
| Fully Vectorised                   | Potential Speedup           | 2.26      | 1.91      | 1.88      |
| runy vectoriseu                    | Nb Loops to get 80%         | 16        | 14        | 14        |
| Only FP Arithmetic                 | Potential Speedup           | 1.46      | 1.42      | 1.33      |
| Only Fr Anthimetic                 | Nb Loops to get 80%         | 7         | 6         | 6         |



## **BACKUP SLIDES**



#### **MAQAO** History

- 2004: Begun development
  - Focusing on Intel Itanium architecture
  - Analysis of assembly files
- 2006: Transition to Intel x86-64
- 2009: Binary analysis support
  - First version of decremental analysis
- 2012: Support of KNC architecture
- 2014: Profiling features
- 2015: First version of ONE View
- 2017: Prototype support of ARM architecture
- 2018: Scalability mode
- 2020: Comparison mode
- 2022: Support of ARM (beta)
- 2023: High-level summary
- 2024: Ongoing developments
  - GPU profiler prototype
  - ARM decremental analysis & value profiling







### MAQAO CQA: Code Quality Analyzer Application to motivating example

