

MATES

BOOK-03

https://t.me/upsc_pdf https://upscpdf.com https://t.me/upsc_pdf

* REAL NUMBER SYSTEM*

The Set of natural numbers $N = \{1, 2, 3, ---\}$

the set of whole numbers

 $\omega = \{0, 1, 2, 3 - \dots\}$ The Set of integers

T= {- --- = 3, -2, -1,0, 1,2,3---}

The Set of the integers $2^+=\{1,2,3,--\}$

The Set of ve integers

7 = {---, -3, -2, -1}

The set of rational numbers

 $Q = \left\{ \frac{P}{q} \middle/ P, q \in I, q \neq 0 \right\}$

the set of irrational numbers

Q = the numbers which cannot be expressed in the form of P/q

(7+0) are known as irrational numbers.

Ex! 12,15, e, 11 etc.

Note:

expressed either as a terminating decimal (or) non-terminating receiving decimal.

+cs). An irrational number can be expressed as non-terminating mon-recurring decimal.

the set of real numbers 12=2000 i.e. the set of real numbers 12 which contains the set of rational numbers

Note:

- (1). NCWCICRCIR and RICIR.
 (2). Between any two distinct
 Consequtive integers, there exists
 no integer.
- 3) Between any two distinct. rational numbers, there like infinitely many rational numbers.
- (4) Between any two rational numbers there lie infinitely many irrational numbers.
- 5) Between any two irrational numbers—there lie infinitely many irrational numbers as well as infinitely many retional numbers.
- (6) Between any two real numbers there lie infinitely many real numbers.

 Note: The Symbols I and V are known as Quantifies and the Symbols in Connectives.

 Some important Properties of real numbers in the form of Quions. These axioms can be

divided into three types:

1. Eield axioms 2. order axioms.

(1) Field Axioms:

Let IR be the set of real numbers then the algebraic structure (IR,+,) satisfies the following axioms.

E) ((R,+) is an abelian group. i-c-(i) closure Property: $\forall a,b \in (R \Rightarrow a+b \in R)$

(ii) Associative Property:

 $\forall a,b,C\in\mathbb{R} \Rightarrow a+(b+c)=(a+b)+c$

(1111) Existence of identity:

that such that a such that a such that

The additive identity of IR.

(iv) Existence of Poverse:

Vacin, I bein such that atb=0=bta

The real number 'b' is called the additive inverse of a'.

(V) Commutative Property:

(II) (IR,.) is an ability

i.e (i) closure Property

¥ a, b∈IR > a, b∈IR

(ii) Associative Property:

₩ a,b,C EIR > a. (b.c)=(a.b).c

(iii) Ezistence of Identity:

Y agir, 3 1618 Such that

a.1=1.a=a.

the real number '1' is called the multiplicative identity of IR.

(iv) Existence of inverse:

that a.b=b.a=1

The real number 'b' is called the multiplicative inverse of 'a'

and is denoted by a'.

V) Commutative Property:

VabeiR ⇒ a.b=b.a.

matiplication is distributive
with respect to addition in R.

i.e. $\forall a,b,c \in \mathbb{R}$ $\Rightarrow a.(b+c) = a.b+a.c.(c.D.L)$

and (b+c): a = b.a.+ c.a (-R.D.L)

to be field if it possesses

the two compositions than Oi: Y a,b,cer;

and satisfied all the above axioms.

Exi-(Q, tr.) is a field bout (Z, +, in) & (N, +, in) are not fields.

The Order relation > between pain of real numbers

IR satisfies the following arioms:

Let a, b, C & IR! then

On for a, b = IR, exactly one of the following holds:

(i) a>b (ii) a=b and

(iii) b>a
which is known as the law of

to cholony.

a>6,6>C=iR;
a>6,6>C=>a>C
which is known as the law of transitivity.

O3:- Y a,b,CCIR;

a>b => a+c>b+c

which is known as the monotor

property for +n.

 $\frac{2b \text{ and } C>0}{\text{ be and } C>0} \Rightarrow \frac{ac>bc}{\text{ be the monotone}}$ thich is known as the monotone property for \times^n

Properties, is called an codere field.

Hence (IR, +, .) is an ordered field

Moter (Q, +,) is an ordered fi

* Some more of articles:-

action is denoted by 18th.

t -ve real numbers: acir is said to be -vi if aco and is denoted by IR-: IR = IR U {0} UIR+ → If a etr+ and betr-then a>b. -> a>b ⇔ -a<-b \rightarrow A real number a' is said to be \rightarrow $a>0 \Leftrightarrow \sqrt{a}>0$. greater than (or) equal to b (i.e. a>b) if either a>b (or)a=b -> A real number a is said to be less than (or) equal to b'(i-easb) - a>b>0 => a>band if either act (or) a=6. * > Some Properties of order relation: → acipt ⇔ a>o and acipt ⇔a<0 THE Q LOCK AND STORY AND aber 1.e. a>0, 6>0 Vaber => atber and abelrt. ___

i.e. aco, 500 at6<0 & a6>0.

> acb and bec = acc

+ acb = atc < btc kacb

and $C < 0 \Rightarrow ac > bc$.

(law of transitivity)

 $\rightarrow \alpha < 0 \Leftrightarrow -\alpha > 0$ a>0 ⇔ -a<0. $\rightarrow a>b \Leftrightarrow (a-b)>0 &$ $a < b \iff (a-b) < 0$ $\rightarrow a > b > 0 \Rightarrow \frac{1}{a} > \frac{1}{a} > 0$ $\rightarrow a \neq 0 \Rightarrow a^2 > 0$. $a < b < 0 \Rightarrow a^2 > b^2$. → the relations > and < are known as the weak inequalities and the relations > and < are known as the Strict inequalities.

|* Intervals :-

Intervals are two types:

- O finite intervals
- @ Infinite intervals.

1. Finite Intervals:

ist a bein with a < b then in the Set {x/reir, as a so} is called a closed interval and is denoted by [a,b], a and b are called the end points of the interval.

a is Called the left. end point while b is called the right end point there both the end points add belong to the interval.

ii, the set { x | x eir; a < x < b } is called an open interval. and is denoted by (a,6) or] a. 5[.

Here both the endpoints donot belong to the interval. iii, the set {2/2EIR, a < x < b} | iv, the set {2/2EIR, x < a} is is Called left - half closed internal (or right-half open interval). and is denoted

by laib) or laibl. there the left end point a belon to the interval and right end po b' does not belong to the intervi iv, the set {x|xer, a<x<b} is Called right - half closed interv (or left-half-open interval) as is denoted by (a, b) or]a, b Note: - If a=b

 $(a,a) = \emptyset$ and $[a,a] = \{a\}$.

2. Infinite intervals!

Let aeir then

- (i) the Set {x|x EIR, 2>a? is called a closed right ray a is denoted by (a,)
- ili, The set falaeir, actifis Called open right ray and is denoted by (a, ∞).
- iii, the set {x [x EIR, x < a] is call. closed left ray and is denoted (-∞, a].
- Called open left ray and is denoted by (-0,a).

The set {x|x EIR{ is also Called an interval and has no end points. It is denoted by (-00, 00).

of an interval:

For each interval whose end points are any real numbers all be such that all, the length 3. A ray is an infinite of the interval is b-a.

Obviously the length of each of the intervals [a,b],]a,b[,]a,b] and [a, b[is b-a. These intervals are called finite intervals because the length of each of them is finite.

The intervals [a, of, Ja,of, $\exists -\infty, a$], $] -\infty, a$ [and $] -\infty, \infty$ [

are Called infinite intervals because the length of each of them is infinite.

Note: - (i) Every interval is an set but every infinite infinite Set need not be an internal.

- Ex! D N is not an interval:
 - not an intenal ② Z is
 - 3 Q is not an interval
 - @ IR-Q is not an interval
 - 6 φ, IR sets are intervals.
- 2. A finite interval is also an infinite set because the world finite only signifies that the length of the interval is -Anite.
- interval.

\$4 (TR*):-

System by adjoining two system by adjoining two ideal points denoted by two and -00. The enlarged set is called the set of lextended heal numbers.

Lote: RR denoted by (-00,00) and R* by [-0,00]

If ver then -0<x<00,

x+0 = 0+x = -x+0 = 0-x = 0; x-0 = -0+x = -0-x=-x-0

 $\frac{x}{\infty} = 0$ $\frac{x}{2} = 0$

Further 00x00=(-0)x(-0)=0+0

ax(-0)=(-0)xd=-0-0=-

The following combinations are meaningless.

a-a, -a+a, oxa, ano, a

Bounds of Set :-

Lower bound of a subset

Let & be a non-empty subser of R. If there exists a number work such that

called a lower bound of S.

PO:0) N={1,2,3,...} CR.

AKX TXEN.

bound of N.

(a) The set S={0,1,2,3,...}€

- O'R the lower bound

Bounded below Set:

A non-empty subset Sof R (i.e, SCIR) is said to be bounded below if it has lower bound.

Since 1 90 Lower bound.

e) pt={x/x>0}=(0,0)

Since o ex lower bound & of

(3) S={2/270}=[0,0) & bound

Since o is lower bound of st Note: Still lower bound of st every seal number smatter than & also alower bound of S. i.e. if a let S. it bounded

below then the set of all such

bounds of S is infinite.

greatest tower bound (glb) or infimum:

of IR If a set is is bounded below and if the set of all lower bounds of is has a greatest member, say it then it is called greatest lower bounds or infimum of is

If t is a lower bound of sand any real number greater than t is not lower bound of sthem tis called the greatest lower bound or infimum of s.

a number t is said to be

greatest lower bound or infimum

of 3 if it satisfies the condition

1. t is lower bound of s and

2. if w's any lower bound of

S then wet.

Since -1 < 2 & 2Es.

1 -1 is lower bound of s but

-1 is not greatest lower bound of

8.

Since 0 < 2 & 2Es.

but 0 is not greatest lower bound of 8.

Since 0.9 < x & Zes

but 9 is not greatest

1 < x + x < s lower bound of s.

1 is a lower bound of s.

and is greatest lower bound of s.

betause, the greatest of all lower bounds of s is 1.

Note: - If t is infimum of sthem for each 6>0 (however small),

the number t+6 is not a lower bound of s, there exists at least one member x & S such that

empty subset of IR. If there exists

t5x< t+6.

XSV Y xes then V is caused To Lease an upper bound of s. Ex: $8 = \{ ---3, -2, -1 \} \subseteq \mathbb{R}$ スミー1 サメモら :- 1 is called the upper bound

Bounded Above set A non-empty subset s of IR (ice SCIR) is said to be bounded above if it has an upper bound. Ex: - (1) $R = \{x \in R : x < 0\} = (-\infty, 0)$ is bounded above Since o is an upper bound and Of IR (2). S={xex: x≤0} = (-∞,0] is bounded above. Since to is an upper bound and (1) tills an upper bound of s and oes. Note: - If vis an upper bound of a set is then every real number greater than is also ion upper bound of site if a set 3' 18 bounded above then set of all such numbers that are supper bounds of sis

Zupremum:

Let s be a non-empty Subset of IR. If a Set's is bown above and if the Set of all apperbounds of s has a least men say to then to is called least apper bound (or) Supremum of s.

If this an upper bound of so any real number less than t, is not an upper bound of s then t, is least upper bound (0x) Supre Called of s. __ (০૪)

If sis bounded above then a num t, is said to be least upper bound Supremum of s if it satisfies the following Corditions.

If is any exprer bound of s. then tiswi

Ex:- S= { = -- 48,49,50} CIR

since 2<51 + 2€s

: 51 is an upper bound of s but is not supremum of s.

Since 2<50.5 YZES : 50.5 is an apper bound of s but is not supremum of s. 250 ¥2€S

infinite.

Note! - If this supremum of s then for each e>0 (however small) the number tite is not an upper bound of 5, there exists at least one member zes such that the existing

-> Find the infimum & supremum of the following sets and also find Whether they are belong to set or not.

(3)
$$S = \{\frac{3n+2}{2n+1} | n \in N \} \subseteq \mathbb{R}$$

Since year. $n > 0$
 $\Rightarrow 0 < \frac{1}{n} \le 1 + n \in N$. $= \frac{5}{3} \in S$; $\inf = 1 + s$
 $\Rightarrow 0 < 1 \le 1 + n \in N$. $= \frac{5}{3} \in S$; $\inf = 1 + s$
 $\Rightarrow 0 < 1 \le 1 + n \in N$. $= \frac{3}{2} \notin S$.

$$\Rightarrow 0 < \frac{1}{n} \le 1$$

$$\Rightarrow -1 \le -1/n < 0.$$

$$\therefore \inf = -i \in S \& \sup = 0 \notin S.$$

B.
$$S = \{\frac{-1}{n}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{5}, \frac{1}{4}, \frac{1}{5}, \frac{1}{5}, \frac{1}{4}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{4}, \frac{1}{5}, \frac$$

bounds of
$$G$$
 $S = \{a + \frac{1}{n} \mid n \in \mathbb{N}\} = \{a + 1, a + \frac{1}{n} = 1\}$

since $n \in \mathbb{N}$, $n > 0$

apremium $\Rightarrow 0 < \frac{1}{n} \le 1$

also find $\Rightarrow a < a + \frac{1}{n} \le a + 1$

$$S = \frac{3n+2}{2n+1} \left\{ n \in \mathbb{N} \right\} \leq \mathbb{R}$$

$$= \left\{ \frac{5}{3}, \frac{8}{5}, --- \right\}$$

Sup =
$$\frac{5}{3}$$
 es; inf = $\frac{1}{3}$ ts.

32

(6) $8 = \{ 2^n \mid n \in \mathbb{N} \} = \{ 2^1, 2^2, 2^2, \dots - \}$ $\{ n_1 = 2 \in S : \text{ sup = Lt } 2^n = \infty . \}$

Supremum does not exit.

- 1 S= { 1-1/m/nen}
- (B) S= {x/-5 < 2 < 3}
- 3={x/a=(-1)"; nen}
- $S = \{ -1, 2, -3, 4, -5, 6, -4, --- \}$ $= \{ -1, 2, -3, 4, -5, 6, -4, --- \}$ $= \{ -1, -3, -5, ---, 2, 4, 6, --- \}$
 - inf s = does not exist, & sups = does not exist.

* Bounded Subset souf

be bed if it is bdd below as well as bdd above.

i.e. A set 3' is bdd iff there exist two real numbers u, v such that u<x<v yxes.
i.e. re[ii]; xes

i.e. safus

ie. S is a subset of [u,v].

Ex: -11). Every finite set is bold and it has inf & sup.

of inf & sup of o does not exist

Because:

The null set \$\phi\$ is bold above it is any real number then it is an upper bound for \$\phi\$ obviously-condition \$\times \text{u}\$ for all \$\times \text{to}\$ is vaccuously satisfied because \$\phi\$ in elements.

thus every real number is an upper bound for ϕ . Since the s of all real numbers has no small member.

- : Sup of does not exist similarly inf of does not exist.
- (3). N = {1,2,3, ---} is bold below but not bold above.
- this. IR+ = { TEIR | 200 of is, both below but not bdd above.
- (5). IR = { x er | x < 0 } is bdd about but not bdd below.
- * Greatest & Least members
- S' of TR is a member of a subtet

 S' of TR is a member of 3

 Ci-e. S attains its suprement the

 this Supremum is called greatest

If the inf of a subset is of IR is a member of i (i.e. is attains (4). supremum & infimum of a its infimum) then this infimum bounded set need not belong is least member of S.

-> Ex:= (1) S =]2,3[i.e. S={x/2<x<3} Sup 5= 3\$3 & inf 5=2\$5.

i. 3 is not greatest member & alis not least member.

(2) $S=\begin{bmatrix}2,3\end{bmatrix}$ i.e. s= {x |2 < x < 3}

S=[1,2) i.e. S={\(\times \) | \(\siz \) | (3).

S= (1,2] i-e. S= {x/1< x≤2}

(5). The unbounded intervals are

1] an [] an all []

ind 三个人是一个

· least member of s=a.

* Note F(1). Every finite Set has two

.bounds df (mon infinite set may or may not have bounds.

may not belong to the set. to the set.

(5) Every greatest member of a set s is the supremum of s but every sup of s need not be the greatest (6). Every least member of a set s' is the infimum of i' but every inf of s' need not

* Completeness property of IR (or Completaness oxiom)!

be the least member s

Every non-emply real meaning the state of the

ie # s is any nonempty subset of 12 which is boarded above, then the set of all apper bounds of 3 must have smallest member i.e. & must possess the least upper board which is a member of R.

This property of real numbers 1 completeness axiom. is known as completeness. (This property is also called the numbers is an ordered field be Surremum property of IR).

- Every Mon-empty subset of real numbers which is bounded below has the infimem (or glb) ordered field. in R. This property of Real numbers the known as conflict This property of itso called infimum property of K

* Complete Ordered field-An ordered field Fis said to be a complete ordered field. if every mon -empty Subset sof F (i-e. SCF) which is sboarded above has the Supremum Cor least apper bound) in F. Ex: - 1. The set IR of real numbers is complete contered

Bécause IR satisfies.

1 field-arions

field.

19 order axional and

tx:-(2). The set Q of rational

not Completeness.

-> Now we shall show the the ordered field of rational numbers is not a complete

for this we are eno to show that there exists a non-empty sebset of 0 which bounded above but which does have a supremum in Q. i.e. no rational numbers exis which can be the supremum.

Let us considérathe set of all those the tational num: whose squares trave tess than i.e. let 8 = { x : x e Q+ and oxx -Since les 17-5 = (3+2x \$ # 8 ::

i.e. sis non-emply. clearly 2 is an upper boun 약 3.

. S is bounded above.

. S is a non-empty subject of & and is bounded above.

KOZZIPIE ORANDOSE ENERE INC rational number K be its least it which is contradiction. upper bound.

clearly k is the.

By law of trichotomy, which holds good in Q one and only one of (1) k2<2 (1) k=2

(iii) K2>2 holds.

(i) K2<2

Let us consider the tre rational then $k-y=k-\left(\frac{4+3k}{3+2k}\right)$

number $y = \frac{4+3k}{3+3k}$

then $k-y = k - \left(\frac{4+3k}{3+2k}\right)$

S= { Ko | new} S= {\langle \langle \next{\formal} = \frac{2(\k^2-2)}{3+2\k}

E W MKKYATO (K2<2

Also 2-y7 = 2- (4+35)2 2"120 bxxx 73 (25)2

and 042,45

= 2-K2

>0 (: K22 i.e.2-K2>0)

→ yes

... The member y of s is greater. than k so that K Cannot be an

(1) K=2, we know that there exists no rational number whose Square is equal to 2.

i. This case is not Possible.

(iii) K²>2

let as Consider the tre rational number.

 $-y = \frac{4+3k}{3+2k}$ (>0)

 $=\frac{2(K^{2}-2)}{}$

>0 (K2>2

· k-4>0

Also 2-42 = 2 - (4+3k)2

 $\frac{2-K^{2}}{(3+2K)^{2}}<0$

 $\Rightarrow y^2 > 2$.

-9< K & y >2 => y2< K2 & y2>2

=> 2<4~< k2

If a is any member of 3 then

≥ OKZ<Y<K.

capper bounds of S.

But YK

K Cannot be the supremum.

Since K is any rational number, we conclude that no rational number can be the Supremum of S.

If all be any two head numbers and of the integer on Such that na > 4.

Proof: Let all be any two real numbers and a > 0.

Now if possible - appose that
for all the integers n - for all the integers had next the integer to cound of s).

Consider the integers n - for all the integers had next the integer to cound of s).

... By Completeness Property of the Ordered field of real numbers, the set s-must have a supremum M (say)

SOURCH A DEIT

→ na≤M-a ∀ neI!

... M-a is an apper bound of s

the number M-a is less than a

Supremum M (least apper bound

is an apper bound of s.

... which is a contradiction.

... Our supposition is wrong.

... Hence theorem.

=7 (1H1) C =17

Absolute Value (modulus of a real number):—

If pacific then the modulus

(For absolute Value or numerical design of a is denoted by [a] and

Sefined as $|\alpha| = \int_{-\infty}^{\infty} if |a>0$

Proporties:

Prove that (i) $|x| = \max\{x, -x\}$ (ii) $|x|^2 = x^2$ (iii) $x \le |x|$ and $-x \le |x|$ (iv) |x| = |-x|

Proof: -(i) Since $x \in \mathbb{R}$, either x > 0If x > 0 then x = x and x > 0

and if is then late-2 and

1/21 is greater of this number

101 J. F.

 $|x| = \operatorname{Max}\{x, -x\}$

week to be a second of the control o		and the second of the second o	San and the san
(1) Since $ x = x$ if	x > 0 (a) 2-	+81= J(x+y)-	.
=-2 if	2<0	Z Ja+4+224	
$\therefore x ^{\nu} = x^{\nu}$	Dr) (-x)2	≤ \2747+2/9/18/1	1
= 22	*	- (- 32)	ते & ४५५
1/212-22		= JIai7/8/7/2/21	
		()	31
(iii) Since 191 = Max. {	9 .	= [[121+18]]2	-
x >x or		= 121 + 121 (=	121=12
$x \le x $ and $-x$	≤ (x).	= 12/+18/ (-: 121=	-]
iv) since $ x = Max [x]$		je, ja	
$\sim 30 \ mint_{c} M_{\odot} \sim 10^{-1}$			a>0·
and $[-x] = Max \{-x, x\}$	7 - 3	No. 10 Property of the Control of th	
17-60/2010 [17] = 1-7]	(b) 1x-y	= 1(2-4)2	, and 1
Notes - INIV = XX		= /2+y-224	
600 Tal 2 = ± 12		> \sigma + y^- 2/21/18/	1.10
Since 21>0.		(= 25 N 87 N 18	
in registing the -ve	sign,	>> 2y < 19/1! >-2y > -121	1819
we have $[x] = \sqrt{x^2}$		= /1217 1212-2121	
The second of the second		= \((1x1 - 101))2	
15 18 1 - Jar	, 5, 3, 3 ₀	_ 1	- 2/2/269
$ x = x = x ^2$ $ (-x) = (-x) ^2$	Service Services	= [181-18]	1-17
= 1/2	1.17	41 - [171-181]	· ·
E TATE	60	5 6412	
X = X		= (20)2 = (20)2	- Productions
रे में त्र क्षेत्र वर्ष वर्ष		- Jar. Jyr	: '
number of the second	· · · · · · · · · · · · · · · · · · ·	= 181 181	
then (a) 12+7 [&]	(d) (3)=	(3)2	
r - [6], [n-9] >	121-191)		ided
(c)	(8)	1/2" = 1/1 Prov	870
(a) · [3] = 13	1 17 J 70 ·		-
30			retirinate produces
VE			- Gibbs has a should be
e/upsc_pdf	https://upscpdf.com	ht	tps://t.me/upsc_

→ -8 < x < 8</p>

Proof: -(i) $|x-y| \leq |x| + |y|$ Proof: -(i) $|x-y| \leq |x| + |y|$ Proof: -(i) |x-y| = |x+(-y)|

= 121+131 = 121+131 (:-1-41=141)

12-41 = 121+141.

g a < 2 < p = 1

Adding throughout - (a+b), we get

$$\Leftrightarrow a - \left(\frac{a+b}{2}\right) < x - \left(\frac{a+b}{2}\right) < b - \left(\frac{a+b}{2}\right)$$

 $\Leftrightarrow \frac{u-o}{2} < \pi - \left(\frac{u+b}{2}\right) < \frac{b-u}{2}$ $\Leftrightarrow -\left(\frac{b-a}{2}\right) < \chi - \left(\frac{a+b}{2}\right) < \left(\frac{b-c}{2}\right)$ $\Leftrightarrow \left|\chi - \left(\frac{a+b}{2}\right)\right| < \frac{b-a}{2}$ $(|\chi| < \delta \Leftrightarrow -\delta < \chi < \delta)$

* Neighbourhood of a point.

If a is any real number a SXX (however small), then the open interval (a-a, a+b) is called a 3- neighbourhood of a and is denoted by No(a) or N (a) i.e. No (a) = (a a, a+b).

Shortly written as neighbourhood of a shortly written as neighbourhood.

* RE (Q-5, Q45)

If from the neighbourhood of a point that point is a deleated heighbourhood of that point is a deleated neighbourhood of a point à and is denoted by Nadla)

i.e. Nadla = Na(a) - [a].

i.e. Nadla = Na(a) - [a].

ta! If a=5, s=0.2 >0 then

(4.8,5.2) is a neighbourhood of Now re (4.8,5.2) - [5] => xe(4.8,5.2)

7 \$5 is a deleted

Note: $- \chi \in N_{\delta}(a)$ $\Leftrightarrow \chi \in (\alpha - \delta, \alpha + \delta)$ $\Leftrightarrow \alpha - \delta < \chi < \alpha + \delta$ $\Leftrightarrow -\delta < \chi - \alpha < \delta$ $\Leftrightarrow |\chi - \alpha| < \delta$ $(\uparrow \chi | < \gamma \Leftrightarrow - \gamma < \chi < \delta)$ and $\chi \in N_{\delta}d(a)$

⇒ xe (a-5,a+5) - {a}

⇒ xe (a-5,a+5); x≠a

⇒ a-5 < x < a+5; x≠a
</p>

|x-a| < 5; x≠a
</p>

⇒ |x-a| < 5; x≠a
</p>

Heighbourhood of a set 2.

Amorphoushood of a set 2.

Said be perphosorhood of a point are if there exists a \$>0

(however small) such that

(amorphoushood of

deleted neighbourhood of a because a neighbourhood of a because $a \in (a-3)$, $a+3) \subseteq R$.

(2) If exercise then Q is not neighbour hood of a because are(a=5, a+5) \$\forall Q\$.

hara de el gradició

heighbourhood of a because a e (a-s, a+s) & z

(+). If a e N C ir then N is not neighbourhood of a because a e (a-s, a+s) & N.

Problems

Any Open interval is a neighbourboad of each calculation.

Points

soln: Let S = (a,b)

let P be any point of (a,b)

i.e. PE (a,b) $\Rightarrow a < P < b$

Let E = Min { P-a, b-p} >0

⇒ E ≤ P-a; E ≤ b-P ⇒ a ≤ P-E; b > PTE ⇒ a ≤ P-E < P < PTE ≤ b ⇒ PE (P-E, P+E) C (a,b) ∴ (a,b) is a neighbourhood of P.

A closed interval [90] is
a noighbourhood of carb of its
points carept the two leads
points a be

sot's - Let s=[a,b]

Let PG[a,b].

1 Ry 1

D -

→ a < P ≤ b ⇒(i) a<P<b) ... di, p=a & Pzb. Let e = Hin [P-a, b-P]>0. in Pe (pre, pte) . C (a, b) C [a, b] : Pe (P-E, PAE) C [a,6] ...[d,b] is a neighbourhood of i.e. [a,6] is a neighbourhood of each Pe (a,b) ¢[a,b] to han of a iii, barpaba ji T (P-E, P+E)= (b-E, b+E) in[9,6] is not a neighbourhood → (a,b) is a theightbourhood of

each of its points except à

-> (a,b] is a neighbourhood of each of its points except -> A non-empty finite set cann be a neighbourhood any of its Points_ sol'n - Let s be any non-empty finite set. Let p be any point of s Let E>O (however small) then (P-E, PtE) is an infinit : (P-E, P+E) \$ => (P-E, P+E) = (a-E, a+E) : S.is not a neighbourhood of > Empty set of is a neighborethic : [a,to] is not neighbourhood of each of its points. 12] soln - The empty set of is a. neighbourhood of each of with poi because there is no point at all and so there is no point in or which it is not a neighbourhood -> show that the set N of all natural is not a neighbourhood c ary of its points. Solin Let PEN and let e>0.

Infinitely many rational and irrational numbers.

: (P-E, P+E) (N

in is not a neighbourhood of any point PEN.

Similarly, the set w' of all whole numbers is not a neighbourhood of any of its points.

- and the set I of integers is not a neighbourhood of any of ____

show that the set Q of all of ational numbers is not a meighbourhood of any of its points

set - Let PEQ and let e>o

they then (Price Pto) Contains

infinitely many irrational numbers

which are not members of Q.

to epec, ptc) to Q.

" od is not a neighbourhood of

any point PED.

irrational numbers is not not of any of its points.

es a nod of each of its points.

Sol?: Let PEIR and let exo.

then (P-E, P+E) Cointaine
infinitely many seal number

PE(P-E, P+E) CR

if he let 12 of seal numbers

es a nod of its points.

nbd of any point of

then p & S.

let <>0.

Point persons

of p. also inbd of p. solo: Let S be a nbd of p. \Rightarrow (p-f, p+f) C.S.

if T is any superset of is,

(P-E, P+E) CSCT > (P-E, P+E) CT. Tile a nid of P. +> The intersection of two hoas of a prime Is also a nod of that point. 201: Let M, and M, be two nibds of P. . F G, and 62 70 Chowever (mal) (uch trafpe (Pt, Nte) CM, and pe (P-Ez, NEG) CM Let E = min { E, 62} ·· (P-E, P+E) (P-E, P+G) CM, - and (P-t, pte) & (P-GzPeer) CM-· PE(P-G,P+G) CMINM2 : MINM2 Is also and of P. 7 8f. M. Kand of P. 600 M. Era nod of P then MIUM2 Halso a nod of P. Ruterior point of a set !-Let SER, PES is called an interior point of a set S if S is a nod of P. ins#7 670 Chowar (mall) eyech that (P-E, P+E) CSnow (U.) Ey (1) every point of an open, interval (a,6) It an interior point of the interval (2) Every point of a closed Poterval Cartil El an interior point of the interview except the end points a and b. (3) Every point of a semi closed interval [arb) is an enterior point of the Interval

37

Telegram for More Update: - https://t.me/ups except the left end point 'a'. fr every point of a semi open interval (a, b] is an interior point of the interval except the right end point b. set it an interior point.

Freny point of the empty set has no interior

Freny non-empty fixite set has no interior I) I has no interior point Similarly W, Z, Q, R-Q. fr Every point of a real number set is an · Enterior point of R. anterior of a sety: - The set of all interior points of a set 3 is

Called Interfor of a set 's' and is denoted by s'(or) sates).

If S=(a,b) then S=S because every point of Sis an Enterior point of S

(a) If S=[a,b] then S=(a,b) because every point of sis an interior point offs encept the end points a. & b.

(3) If s=[a,b) then so=(a,b)

(A) If S= (a, b) then S= (a, b).

(3) R°=1R because every point of R is an interior point.

(6) Et Sis a non-empty finite let then S=6.

(A) N°=+, 2°=+, 6°=+, (R-Q)°=+ & w°=+. because N. F. Q. R-Q, ware not nod of any points and therefor no point is an interior point of N.Z.Q, R-Q or w.

(B) st. s=0 then so=0.

Afford the interior (1) {1,2,3,4,5} (i) [0,1] (ii) [0,1] U[3,5] (iv) {1/1/4) Soly: (1) Let N= {1,2,3,4,5}. then A is a non-empty finite set. ⇒ A le not nod of any point. .. no point of an interior point of A. → A°= .-(ii) Let A = [0,1] U[3,5]. then A is abd of each point of (DIDU (3)5) .. A = (0,1) U (3,5). (iv) Let A={ h/nen} it, per that > 1 ik not an interior point of A. in , A was no intentor point

openset if Sis a nod of each of its points i.e., if for each pts I an too such that (Ptilte) CS.

every point of S is an interior point of Sie, S is open & Sol.

En Every open interval il an openset.

Os S= [a,b] then S° = (a,b).

⇒ Sis not an open eut.

Smilaely [a, b), (a, b] are not opented.

(3) S=N then so=b.

: S \ S is not open set.

Similarly w, 7. Q and R-Q mare not opensely

(4) S=R. then S=IR.

: S = 50. -> S 13 open.

(5) S=1Rt = (0,00) Is an open set. because let x es

I an ESO (however small) buch

a - (2-15, 215) (6) S=1R = (-0,0) is an open set. (7) Every non-empty-finite set is not an open set. for every nod of a point contains because infinitely many points. S={ 9 14 an open set. because so=p CA s= { 1 | nitrol } Is not an openier Serve S.7 St n of two open sets is an open set. het s, and so be two open sets. Let S=5,032 The fat at S = a esi Usz at see-si then I ground that THE CS CS, USL, &S of acs then I ero quel that the 20 (x-6, x+6) C 52 C 51 C/52 (5-52 15 open) cae (mer, nate) c'sillinges 2 il an interior point of S1 US2 =5 + 6 2 gut & an open let to continue with the major we the hours of

+> The union of an arbitrary family of open sets is an open set. he intersection of two open sets is an open set. " Let s, & is abor two open lets. TO IT SIDS2 is also an openset. Let sasinsz. het 2+5 = XESIPS2 > respland rest => x +(2-6,2+6) CS, and 26 (2-62, 2+62) CS2 C: SI & Sr are two open cets) Choosing e= man (0, @ >0 2 E(x-E, x+e) C (x-E, ,x+E,) CS, and x = (2-e, x+6) (2-62) x+6) C S2 > xc(x=6, x+e) C 51032 =5 .. s=s10s2 ls an openset. The conservation of a finite collection of Open sets is an openiet. The intercection of air Infinite collection of opened of need not be an openset. (1) Lot come (-1, 1) (1: (-1)) (-5, 5) () ---(10) 7 S(182) 159 15 (1) = 803. which is not an opensel. Because (OTE, ote) + Eof. . The interdection of an antifinite collection

of openessis not an open set.

wer In= cuillyson Then Sinsan--- = (0,1) or (0,2) O----= (0,1) which is an open set. the intersection of an infinite collection of opensets need not be anopen set. Mote: Every open interval is an open set. but every openset need not be an open interval. - Span sets. Si OS2 = C1,2) U (3,4) is an openful but (1,2) 0 (3,4). 12 not an open interval. Limit point of a subset sot Re-A point persons said to be a limit point and an subset 19 of the it every mother of the of point of I other than pitters A point PEIR Regard. to be a limit point of a subset Plot R if every nod of P infinite number of points of be a dimet point of A point per is edid to Subset is of R Eff every nod of P contains

atleast one point of S other than D. ie, pis a limit point of & (P-E, P+E) n s-8p3 + p. Note: Limit point is also called cluster point (00) condensation point (or) accumulation point (2) A limit point, of S' may or may not belong to the set 's (3) A set may have no limit point, a unique light point or a finite or intimite number of limit points. (4) PEIR 13 not at limit point tofma subject 'S' of IR of there emists a nod of p which does not contain any point of S (5) PH not a limit point of 'I'd for some , e>0, (1-E1 PHE) US= \$ 600 (PE, PAE) nS= EP3. ping was finite let has no water point set that A be a finite set. pie a limit point let Ez then (P-E, Pt E) - contains number of points of A A Minfinite. 2+ is a dont madication A has no limit points ir à finite Retainas, no, Limit points

Closure of a set:-

The set of all adherent points of a set 'S' is Called the closure of S and is denoted by Clsors Thus 3 = SUD(5).

Dense Set:

A subset 's of R is said to be dense (or dense in 1R or everywhere deuse) if every point of IR is a point of s or a limit point of s. or both.

Let SCIR then 'S' is said to be durse of 5=1R

Dense in itself:

A set S is said to be dense in itself if every point of S es a limit point of 'S.º

A subset is of IR is said to be dense in itself

A subset & of R is laid to be dense- in-vitsely if it possesses no isolated points.

perfect set;

A set & is said to be perfect set if S=DCD

A set g'is soud to be perfect set if it is dense -in-itself and if it contains all its timit points.

> The set of of rational numbers. Let S= QCR Let x be my red number. Then for each £70 (Lowever (mell); (x-E1x+E) is a ubb of x and it contains a sufficiety many retioned number obserts an xi. ic (2- E) 24 (-) 0 9-120 + 0 1 = x is a limit possit of Stage = every real number of a limit possible Hence the set of the limit poents of p es the set of all real numbers IR : (D(9) = R all mos 5 - SUB(S) = QUR 13 = R clearly 's' is dense en mands sod .: S = 9 is dense - en - Pt Self sence S = D(S) -.. S=9 is not a perfect see 1. i.e Q + D(8) > The TR-9 of errational numbers. fret S= 12-9 C Be Ken D(S) = R. of the Bet is of natural numbers

* Adherent point: A real number p'is casted en adherent point of a set SER if every had of P contains a point of s. ie poset peix is an adversary poset of SCRE for each and N of P, NAS = 0 Note: Due to a close resemblance between the defentions of an adherent point of a set and a limit possit of a set, the distriction between the this should be corresponding world. for a posut p' to be a limit of a Cet of, every ubd N of p' must contain a point of S other than P. re nos-101 + 0. for a point p' to be an adherent pont of a set S; every bbd of p must contain a point of S which can be p'itself. ire Wasto. If PES, then pres an adherent point of S, since every sild of p contains -p which belongs to S. If perposithen p is a limit point of S. I and, therefore, every had of p contains a port of S other than p Thus p is also an adherent point of. clearly, a real number p is an adheren posite estimar pres or pe D(S). - Every point of S is an adherent of S. - Every limet point of SIS - adherent point But en adherent point of s need not be a limet point of s.

perived Set!

The set of all limit points of a subset 's' of R is called the derived set of S and is denoted by S' or D(S).

ine, D(S) or S'= { new / a is a limit point of Sf Again the derived set of D(S) is called the

Second derived set of D(s) is called insecond derived set of s and is denoted by D'(s), or S".

En general, the nth derived set of S devioted by D(S) or S

7 A set & said to be of first species if

- Et has only a finite number of derived sets.

Rt is said to be of second species if the
number of derived sets is infinite.

riote: 1) If the set Sis finite, then 's' has no limit point and consequently, D(S) = \$.

- (2) If a set is is of first species, then its last derived set must be empty.
- 3. A set whose nto derived set is a finite set of so that its (n+1)to derived set is empty

 He called a set of nto order.

1) N= \$1,2,3, 3 CR has no limit points. -> A= { ... -3, -2, -1} has no limit points. Gvery point of the set R of all real numbers is a limit point of R. Let S=1R. (P-E,P+E) NR = infinite number of deal number Every head number is a fimite point of the @ of all lational numbers Let S=Q (P-t, P+t) NS = infinite - number of gratificial number Similarly; S=& or R=Q. The empty set & has no limit points PER SOS (P-G, P+G) n3 = P not an infinite set S = (a,b)molin levery point of ses is a limit point of s. Every point of 5 is a limit point of so [2] stilla, b], (a, b), [a, b); > S= { h | nen} = {1, ½, 3, --- } QR Let ÖER; 6,0 - (o-e, ote) als = infinite let. : of a limit point of s. Hit = = = 0 flo (i.e. o is not a member of s

= { |-n+1 | nen }. Since IER, e>o such that (1-6,1+6) contains Entinitely many points of s. ... I is a limit point of S and 100s HS = 1 &S. Ea limit point. -) S= { 1- to [new] n-10 se a limit point of s. ナ らことへかんのといることが、から、村の一はり、 sme It's which is odd " Shas two limit points - | and +1."
which does members of s S= {(-1,+2,-3,+4,-5,---} has no finit monts. SPOCE INTO INTO 10 15 1 to 18 n. is ever 1) Every finite set has no limit points
(2) Every infinite set may or may not have
limit points. (3) Every Enterior point ist à limit point, but every limit point need not be an interior point.

every limit point need not be an interior point.

every limit point need not be an interior point.

every limit point need not be an interior point.

every limit points but not interior points.

of the supremum of a set does not belong to the set, then It is a limiting point of the her 5 be the non-empty subset of real number (et R. and has supremum but not lelongy to the set s. Let of be 'u' i.e. u = sufremum of S but u &} NOW we have to prove that it is limiting point of a set is. for this we have to move that every not. Et le point le containe en point of S. Let (U-E, ute) be my hod of the printing other than a. where eyo. Since a = l.u. (Congression) of S. 1. Use is not an upper bound of s. 1.7 Some x ES' & E & 7 U-6 (2 Es - u + s Also neacute from O and O, we have une <> < Bit where > + U. = $(u-\epsilon, u+\epsilon)$ contains a post a es =) will a limeting port of the set S.

If the Refimum of a cer does not belong to the set, then if it a limit point of a set for escargle! 0 S= (-0,0) CR .: S ?s bld chove - - Suy S = a & S in a is a limiting point of s. S= (a, a) _ (2) : 3 is bild below by a and ends = a & s is a limiting point of st. = Isolated point: 6. porne pes is called in isolated porhet of S AP is not a limit point of S. ive if I a uld of p'which contains no posses of s' other than p' et self. - A set 's' is called a descrete set of all ste possits are isolated possits. for example: Let S=[1,12,13,....] sience all the points of the set S' are its isolated points and so it is a fricte set

AT NEW the had of a lite a-vision contains no polyt of N other than a 1. x & not limbt point of all of network H x + N, then the utd of 's' does not contain my poeut of S of a is not limit point of the set N of notural numbers. . I has no limit populs · DW) = P. sence no posent of it a limit posent All the points of N are replaced points. of No. . Hence Mis descrété-sep-Also [N is of first speckes]. (: OW=0) 14 The see of all whole numbers. the ser I of all entegers. y Let. S= Ø CIR Let x CIP, then for each C>0, (however, さっ(カーモ)の中一中 en a limet poemt of s = p. =). NO real number is a limit of op. $\neg \cdot (b (b) = b)$ 3 = SUD(S) = + h N (b) 5= D · s denset et self: spice PED(P) Alo S = D(I) is $\phi = D(I)$

LEF DEFRER Then for each 670, Chowever (m 21) the old of a (i.e (x-+12++)) contains - su fampsely many red numbers x is a timit point of the => Every real number 13 a limet popul of the. D(P) = P展-RUDR) $[\overline{\mathbb{R}} = \mathbb{R}]$ IR is dense set and it is danse-in-strelf Also etisperfect set (: be = DOD) we have D(R)=R, D(R)=D(R) D3(12) = 12 and so on. i for every the entiger in, Digo zo .. The number of derived sers of the is renfrite : R is of the second species. S=(a,b), If 20[0,6] then 2 = a or 2 = b or 2 = (a, b) If n=a, then for every 6>0, $= (x-\epsilon, x+\epsilon) = (x-\epsilon, x+\epsilon)$ contains individely many points of (0,5) to the right of 'at

If a=b, then for every 6>0, $(x-\epsilon, x+\epsilon) = (6-\epsilon, 5+\epsilon)$ Contains infinitely many points of (a, 5) to the left of b. If x e (a, b) , then for every 670,. (2-t, x+E) contains infinitely many points of (mgb). Thus, if ac[a,b], then for every c>0. (2-E, 2+E) Hambd of 'n' containing infinitely many points of (9,5). -=> every point of [a, b] is a limit point of (a, 5), sace 3 = 300(s) = (a,b) U[c,l] 5 = [a,b] CIR grecce SCD(S) ine carb) c (arb). .. S is dence-re-self. since s # D(s) sis not a perfect set. y s=[c,6) -> s= (a.b) -> S=[e,8]. > S= [ThEN] SIR (O,1) SIR H p=0, Hen for each (>0 (howeversmal) Let pe en (0-6,0+6) 13 a hed of 'O'. and it contains sufficiely many posits of s'otherthan o'

in O is the liver nome of g NOW we shall show that no other real number p otherthen's con be a limit point of. S. The following cases arise: cir (1) If P <0 Hen (-0,0) is as not of ph which's · Contains no pant wolf in, (0,0) ns=p .. p is not & limit point of S. Que(i): If P>1 Hen (1,0) is a nod of P which doernot Contain any point of S. i.e, (1500) NS-4 P is not a limit point of s. Case(ii): If p=1, then (1,0) es a nod of p which Contains no point of s' other than p. is prismot point of S If oxpx1, then \$>0. ti. I a unique natural number 's Such that ns I < pt1. かかりか からくりくりくり => The nod (it is not p contains only one point to of s. in pe is not limit point of S. Hence o is the only limit point of $\mathcal{D}(S) = \{0\}$

D (SI = D(U) - 4. ALSO . The get S is of the first species and of first order. and $\bar{S} = SUD(s)$ = { th/nen} U 809 > fred S'r.c D(S) where S= (h | n+Z, n+O). Let S= In nez] = [-11] = IR Let p=0 ETR then the und of 'o' controlls Restartely many numbers. is o is a limit of S. 2100 we shall show that no real number potterten o con le a limit porch of S. The following cases will write: case () If P < -1 How (-0,-1) is a wood of P which contains no point of s i.e (-0,-1) 05 = 0. in pris mot a limit poput of s. cese(ii) of p>1 nen (1,0) is = had of P. which contains no point of 5. 1-e (100m) 1 5 = 0 coseGii): If P=1 then (5,00) is a und of P. which does not contain any pont of S other then P. ie (210) ns= [1] = p. if it not a limet polit of s: ceselin) If p=-1 Hen (-0,-12) is a wind of p which does not contain any port of S other than P. 1-e (-かっち) ハ s-{-1-3 = ゆ

Orti bac)

(· (· 3)

ام:

(14

fs. of ocpal, may (that 1: tra) is a ward of P which contains only one popul · ie a frite number of porty of 8 in pies not a limit posent of 8 -1, >0, 7 a vigue nont ne p < n+1 一一一一一一一 → ナルイナム EP < -1 = The ned (then ! that) of p contains only one rosent -1 . P is not a limer poset of s. Hence 'o' is the only limit point of 5. $\therefore D(I) = \{0\}.$ J = 5 (107 ... - Fred the derived set of each of the following: (i) (1,0) (ii) (-0, -1) (ii) - [n/n-]. (IM) (a+ In/a ER INEW) (i) { 1+ (4) / hear } (vi) { \frac{1}{24} / hear} .

Let 5= (11=1=" Let at be any real number. If x<1, then for oce <1-7, (x-E, x+C) n(10) = p. Trany real number < 1 is not a limit H x G [1,2), then for every +>0, (x-+, x++) contains sufficiely many posents of (1,0) to Every, elt of [1,0) is a limit point of $(\Omega, \alpha)^! = [1, \alpha).$ (ii) Ans: (2, 1) = (0, 1). (1) Let S={ 1+(-1)h /n (n)} CD when in is odd, 1+(4)1/2 = 1-1/2 = 0. when 'n' is even 1+ (=) h = 1+1 = 2; :, S=[0]U[=/s EN and n es even} = [0] [=] = , = , ----] =[0] U[1, 1/2,1/3,---] C[0,1] CR. Let PEIR If 1=0 then for each (>0 (Lowever smed), (0-t, 0+t) is a hod of of and of of and of the contains in finitely many populs of S other them of · O Ble Limit poset of S.

number potterten o' can be a limet The following cases arise: case() If p<0 Fen (-00,0) Hand of p'which contains no point of Si.e $(-2.0) \cap S = \emptyset$. .. p is not a limit point of S. case(ii) If P>1 then (1,00) is a hid of p which does not contake any point of S i.e (1,00) 05=p in p is not a limit point of 8. ase (ii): If P=1, then (12,00) is a hod of P which contains no point of s' other than p 1-e(1/2/00) NS-(1) = \$.. Pis not a limit. case(v). HOCPCI, then 1,>0. : . I a unique natural number ! -Such that he for < h+1 コートシャンー => Into CPS Localist => The hold (his, his) of P contains only one point in of s. in p is not limite point of s Hence 'o' is the only limit polit of g · D(S) =] 0 }-

S={(05(== // n==) = 1== clearely -1.0,1 and limit posits of s $D(S) = \{-1,0,1\}.$ > S= { sin (nt) / new } = | P their D(8) = [-1,011]. -> Let S= (cos (nt) / nc) 2102. -then D(S)= (-1, -1, 2,1). Let Sol small / non 3 CR Hen $-D(\zeta)=\left\{-\frac{C_1}{2},\frac{C_2}{2}\right\}$ Enestence of limit populs of a set golzano-weierstrass theorem: we have seen that as frest sep has no liment politi. Also we have observed that Puffite set may or may not have a best posit. for example! The enfaite set it of natural numbers has no limet posent whereas the sufferite set S= [] heri] has 'o' as Pts. Kimit point. we observe that the set s is bod. NOW we shall give a theorem which gives us a set of sufficient conditions for a set to have a limit, polat. The Heavenus Be brown as Rola to we Construct theorem

Every Infinite bounded set of real mi has a limit point.

Note: The converse of the above need not be true. i.e, An infinite set has a limit point, then the set is not bounded.

for example:

[a, 0) is an infinite bet and has limit points but. It is not bounded.

DE2 S=0, R-Q, R

Some results on Derived lett:

> 8f A and B be any two labels of R, then

- (1) ACB -> D(A) CD(B)
- (2) D(AUB) = D(A) U D(B)
- (3) DEAMB) & DIA) OD(B)
- (4) D(D(A)) C D(A)
 - D (UAT) = D (AT) UD(AZ). U ---
 - > D(OA) ED(A) (D(A)) (A) () --

Mote

- 0) The derived set of any bounded set is bounded.
- (2) Every infinite bounded set has the greatest and the smallest limit points.

i.e, the derived set of any infinite bounded set attains its bounds.

(3). The smallest and the greatest immore u of the derived set D(s) of an infinite and bounded set S always exist.

They are usually denoted by lims and lims respectively and are called the

inferior (or Lower) limit of S and the . Superior (or upper) limit of S.

Also lims < lims

(4) The supremum (or infimum) of a bounded set S is always members of 5

(5) If S is bounded then 5-4 also bounded

Closed Set:

A subset S of R is said to be closed if its complement (i.e. SC=RS) is on open set.

A set SCIR is senid to be closed if every limit point of the set S is a member of the

Or)
A Russet'S of IR is said to be closed if DCS) CS

(3) & is closed set (DCS) CS ___

cin 5 is closed bet (=> 3° is open.

(iii) Sis open set \$ 5 14 closed

(iv) S is closed set \$ 5=S

```
If Sis a cosed set then every limit point of Sis a member of S., but every point of Sis not limit point
```

$$= \mathbb{R} - \{a\}$$

$$= \mathbb{R} - \{a\}$$

$$= (\{a, a\} \cup (a, a))$$

Since union of two open sets is

s' is open.

=> S is closed.

...(6v)

(DX)

$$S = \{a\}$$
 then $D(S) = \emptyset$.

$$S = S \cup D(S)$$

$$= \{a\} \cup \emptyset = \{a\}$$

$$= S$$

.: S is closed.

.- S18 closed

Similarly, S=W, I.

- then Designot closed
- (3) $S = \mathbb{R} \mathbb{Q}$ then $D(S) = \mathbb{R}$, $\mathcal{L}S$ - $\Rightarrow S \text{ is not closed.}$
- (6) S = (a, b)then $D(S) = [a, b] \not\subset S$ S = (a, b)
- (#) S = [a, b], (a, b]then $D(S) = [a, b] \notin S$ S is not closed
- (8) -S= [a, b].

 then D(s) = [a, b] C S

 ... S [8 closed.
- (9) TS=IR . toen DCS); = IR 3 DCS) CIR 3

· Single

- (6) $S = \mathbb{R}^{+}$ = (0, 0) = (0, 0)
 - $D(S) = [0, \infty)$ $D(S) \nsubseteq S$

S & Closed

- (H) $S = \mathbb{R}$ $= (-\infty, 0) \Rightarrow D(S) = (-\infty, 0] \nsubseteq S$ $= (-\infty, 0) \hookrightarrow D(S) = (-\infty, 0) \nsubseteq S$
- (1) S= { \(\frac{1}{n} \) \(
- (13) S= {th | nt7} then DCS = {o} \$\frac{4}{5}\$.

 S is not closed.

Note: If a set has no limit point then 5=S.

then S_1^r , S_2^r , S_3^r , ... be closed sets.

then S_1^r , S_2^r , S_3^r , ... be the open sets.

Let $S = S_1 \cap S_2 \cap S_3 \cap \cdots \cap f$ $= S_1^r \cup S_2^r \cup S_3^r \cup \cdots \cap f$ $= S_1^r \cup S_2^r \cup S_3^r \cup \cdots \cap f$ Show the remain of authority family of open sets at open.

So es open

S es open.

-> The union of a finite collection of closed set.

sor: Let S, S2, ... In be closed sets.

then si, sz, sz, -- so be the openser.

Let S=51050-7-1050

-> 5 = (8, U20 U2n)

- \$ = S, OS2 0 --- OSB

- Since Portersection of finite collection of open sets of open.

se is an opener

s is closed set

The union of an infinite collection of closed sets need not be a closed set.

2-11-2

Let Sne [thill when . Then each In is a closed set NOW OSn = S1 US2 US3 U...~. = {1} 0[5,1] 0[5,1] 0... = (0,1] = sky) which is not a closed set ("DO) The union of an infinite collection of - closed eets need not be actived eet.

Let A be a closed set and B be an openset. then (1) A-B & closed in B-A & open.

some since A is closed > AC is open B'is open >> B'-is closed."

> B-A= BOAC. (ů) Since Bound A are open, \$ BAR ofen. .. B-A & open

(ii) A-B= AnBC. Since A and BC are closed. 3 Ang & closed .. AB is closed:

Compact self

A nan-comply seables of R is said to be compacts the closed out to deal of

\$ 5=\$. D(S) = \$. CS S is closed and bounded. 3. S & Compact.

10

```
D(S) = [9,3] CS
       : S is closed and bounded.
              .. S is compact.
(3) S= [-1,1] U[2,3]
       Since the union of two closed sets is closed
            and bounded.
           ". S'is compact.
(<del>4</del>)
          DO = P.CN
            .: sie closed but not bounded.
            S is not compact
  Similarly, S=W, 7.
    S= Q. = D(T)=1R. $Q.
             ic, DCD CS.
                : S is not closed and not bound.
             . S is not compact.
(6)
    S = R-Q.
           + DCD = R & R-Q.
               .. C'is not closed and bounded
               ie, D(s) &s
               is is not compact.
    S=IR , D(S) =IR.
          · DOS CR.
            .. I is closed but not bounded.
             S is not ctosed
   S= (a,b) => D(5) =[a,b] &S
                     ie Dus &S
                 . Sis not closed but Sto bounded
               I is not cooper.
 Prinilally sa [a,b), (a,b].
```

S= { x: a < x7. = [a, a). ⇒ DCS) = [a, x) CS: .. S is closed but is not bounded. .2)(2)(... .. S is not compact. (19 $S = \{ 1, 2, 3, \dots (23)^2 \}.$ Since Sis finite. : = D(S) = 9 CS .: SH Closed and bounded ⇒ DCD CS · g 13 - compact. The union of finite Sanity of compact sets 98 compact. for het S, Sz, ... In be campael-self. Then Si, 32, 53, In be closed and Let 8= 0 8: Since the union of finite collection of closed sets is a closed. gis closed.

gis closed. Also Ste Cai, J. Osien Et & = min { a, 92, -- an} and 52 thing 51,12, -- 5 -- 5mg then S = OS: O[a,b] 1- 1. S is bounded. Mass Sis Closed and bounded. of the compact "

The intersection of an arbitrary family of Compact sets. Containing atteast one point so common, is conyact.

Solt: Let S. Sz. Sn. be albitrary femily
of correpart Rets

Then Si, s2, ... he blosed and

Let s= ns:

Since the intersection of arbitrary damily of closed lets is closed.

: Six closed.

Also SCS; for each i.

and each Si bounded.

. S is bounded

. '. I so closed and bounded.

. . & He compact.

Cover of a set-

Let 'S' be a set and [Gat be a family

of sets.

We say that (Gx) so a cover of S, if the curion of members of (Gx) contains, S, as a subser.

i.e., if every point of I belongs to some member of the family (Gx).

member of [Gi] is an open cover it every

Let si be a set and {Get be a collection of Some open susself of IR such that SEUG. Then {Get is Called on Open cover of S.

7SIT G = & (-n; N) n EN & is an open cover-of the let IR. Gires G= { (-1, n) /n (-1)} $= \left\{ \left(\frac{-1}{2}, 1 \right), \left(\frac{-2}{3}, 2 \right), \left(\frac{-3}{3}, 3 \right), \frac{-1}{3} \right\}$ Since every acir belongs, to at least one of the openinterval in G .. G. fis an open cover of iR. - 13 ((0)) 3 Also R = UGn, Alexe G= (-n,n). (= { (-2n, 2n) / herry nEN. G= 180 an, n+2) / n CZ 4 G3 = { (n, n+1)/n+Z} are open covers of R. => Show that G= (4, 7), (3, 7), (5, 9)} 3 open covered open cover of the insterval (1,2). (4, 4) (5, 4) is an open cover of the interval [1,2] Since every clement of the let S=[1,2]=[x/15xc? belongs to atleast once of the subsets of Gr and each of the subsets of G, Is an open let. · Gi is an open cover of S=[1,2] (ky (Sky 1 5/2 1/3 2) 2 今 [12] (年長)((元)((元))

(9= ((2, 4), (3, 4)) is not on open cover of the internal 5 = [1,2] = {2/16262} because none of points in the interval ise, S=fir] is not covered by union of openeurs (\$\frac{1}{4},\frac{9}{4}) \frac{1}{4},\frac{9}{4})

i. \frac{9}{2} is not an open object of \frac{9}{2}.

3/2 3/2 3/4

Subcover and finite Rubcover of a get?

Let G be an open cover of a set S. A subcollection Et G. B. Called a subcover of S if E too Is

further, of there are only a finite number of (setting to a finite number to gets in E, then we

say that E is a finite subcover of the open cover G

Hust of G is an open cover of a set S, then a Collection I is a finite existencer of the open cover of S provided the tollowing three conditions hold

(i) E is contained in G.

is a finite collection

(iii) Ein strelf a cover of s

Heine - Borel property:

A subjet S of IR is said to have the Heine-Borel property of every open cover of S has a finite sub-cover

sequence: - A -function whose domain is the set it of at natural numbers and the range is assumed that numbers is called a sequence: (3) Real sequence The sequence is devoted by X N -+ R. 100 CA A set of numbers which are 1811 (mappoidere. collist matural normbers 18 called a securities.

The domain for a sequence es fivage naturel num - A sequence & specified by the lattie x(n) (or) 1. - A sequence may be devoted by ? in nem? (OV) - (The THE) (OV) X (OV) { 24, 12 - - 24. The values a, a, ... in, - are called first, tecond third...terms of the sequence. - The mth dints. terms. xm&xn for m + in one treater

as distinct terms even if im = n. i.e, the terms of a convence are arranged in a définité order at first, second, tried, ... terms. and the terms occurring at different positions are

- beated as destruct terms even of they have the

Sance Value

colled

Note: En a sequence [xn:new] and Nie infinite, The number of terms to a sequence is aways infinite - The rouge of a lequence may be finile set. [] ma (-13); MEN thin { 7m} = { -1, 41, -1, 41, --- }

The range of a recuence [25] = {-1,+1}...

which is finite.

 $\{x_i, x_j\} = \{x_i, x_j\}_{i=1}^n$

All the élements of the reguerce ale distinct.

problems ;

The selvence [200] is defined by the following formulas for the nto term while his first five terms in each Cax.

(a) 2n = 1+ (-1)? (b) 2n = (-1)? (c) 2n = 1 (d) 2n = 1

Cot 1/2, 1/2, 1/2, 1/3, ---- (1) 1, 4, 9, 16, --- (2) 2 (2) 18 /n en).

g stjolet territor

all liv sequences in R then X+Y=(2n+yn) in R. R. Called Sum of liv sequences.

- of calcad difference of two ecquences.
 - product of sequences: (1) x= (2n) and y= (4n)

 are two sequences then xy = (1n) in IR is

 called product of two sequences:
- Onoticut: Ef X = (3n), Y = (4n) are Two seques in R then $\frac{X}{Y} = \left(\frac{3n}{4n}\right) \left(\frac{3n}{4n+6}\right)$ fs called quotient.

Bounds of a sequence c- If the range of a sequence is bad to be bad below, then the Sequence if there is and to be bad below if there is and to be bad above then the sequence if the large of a sequence if bad above then the sequence is level to be bad above.

- Por Receivence from Jet said to be bodd above
- ie, A sequence Englis bold, et flivo seal
- numbers K, K lit & 2n EK An EN.

 numbers K, K lit & 2n EK An EN.

 A Sequence & said to be unbdd if ff H not bdd

 The sea lowerbound of fue sequence [2n], every

 led numberless than K is also lower bound of seq?

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of fre

 The greatest of all lower bounds is called glb (01) if of free

 The greatest of all lower bounds is called glb (01) if of free

 The greatest of all lower bounds is called glb (01) if of free

 The greatest of all lower bounds is called glb (01) if of free

 The greatest of all lower bounds is called glb (01) if of free

 The greatest of all lower bounds is called glb (01) if of free

 T

thank & also an upperbound of a leg ? I'm , the lest of all out

-> (') x= (an) or fant where anen Anew Imf = Inlnen] = {1,23, -- } is not bdd Requerce. Since LB=1 ; OB il not défénses . Requence gang is bold below. -) (1) X= {-n/n ENY. -> 0) X= {(-1) / n = N} = {-1,+1,-1,+1...} = {-1,+1} is bodd feeting -2 (d) X= {(E1), 2 / 24/ -1(1) No (for /o en). peterson: A seguence fant is houded ... I we hard number M City, M20) 4th langeM sined. Let fangbe a sold sag. By defn of two real numbers b, k st hernsk than. Let M = max (181, 1kg) > INISM, IKI &M -M S K S M -MShSM from (1), (2) & (3) -MSh Sanskam JuEN => -M 62n SM HITEN => |an| & M Stock. Im CM ANEN > -MS 30 SH HOEN a Earl Ps bdd. Level of a Concert by X= (2) se a sequente and ath, the water number a 18 said to be the Construction () and () to contract the contract of the contr International one; in the selection (6)

アートーモベ カーなく (- サカッド = a-e < an < a+e +n>k AN E (A-F, ME) Ansik. Est of a sequences - Let (ZM) be a sequence HI To a then the sequences (tip) is sai a sequence (xn) has a limit the sequence to be egs to 't (an) is called Cgt sequence. A l'equience (20) se caid to be cgs 10 x, of for -given Eso (however Emali); I a tre ûnlêger k Tk depending on e, i.e, k(e)) 3.f | >n->]< E+n Here the head number x is limit of the Requeste Privergence of a requences pet (an) be a sequence Ef. It m = to (01) -D. This The Sequence (20) El called det sequence. -> If a requence has no limit The recurre ix colled digt leques is () A-sequence (in) is said to des to to. If goven any eve leal number k (howeverland K>O-Jatve Ensliger m (depending on K) sit

かかな、サークグか

int, stran = to (or) an od as noto.

(ii) A sequence (an) & laid to dos to . If given one twe lest number k (however large) I a toe solig

 y_2, \dots

になっかめ みりつめ

Oscillatory sequences - Ef a seaucues neither Gs to a finele number nor divorget to +0 (or) -0, then the sequence (3,) is colled as oscillatory sequence.

-> It he overlatory economic in bdd their the begannie es called | finite occillatory bequerce. -> Ef the scellatory lequence it unbed then the

sequence ex caséed an infinile oscillatouses

いいつけんしていままかい :. U.B=1, L.B=0

Lt In = H 1 = 0 · (n) is egt

(2) $(a_n) = \frac{1}{3n}$ (3) $(a_n) = n^2$ (4) $(a_n) = -n$

(e) (gu) = (4), = (4141'41'41'...) LB=-1; UB=+1

> Itan = -1 ef nis odd no = +1 of n is even

(m) & nesther egt nor egt

. It is oscillatory sequence and it is bodder.

: Penite occillatory lequence

(6) (2n) = (-1, +2, -3, +4, ---)-OB = not defined; LB = not defined,

Han = +a for Beven -- D Fn Bodd

.. It is mether Cgt nor dyt-

1. Et is oscillatory bequerce and it is unbad.

Detalle beginning of water (2,) & salt to be and eg The state of the constant of the contract of t

it, p sequence Cannot Conserge to more than one Earth.

Prost : If possible let a sequence (20) converge lo ... two distinct limits at & I

cince x + x" => [x-2"]>0. let 6= - [31-311]

since the segmence (an) cgs to 21. Given 6x0, 7 a tre l'ateger k' (dépendent on t

s.t lan-all < e/2 anakl.

and also the sequence (20) ego to 2th. Given C-30, il a eve unteger Ell (depending or

8. F. |2n-2" | < C/2 And Ky

LEF K = Max { K', k"}.

then Inn-24/2662 & [2n-24/26/2 702)

NOW [m - > 11] = [2 - 2 n + 2 n - 2 11] & fatant + lane all

2 G2+ G2 = (-

: (n'- nu) < C of horking which is a contradiction to e= 1/2/24 , our assumption that a sequence costo tur destinct limits 21, 211°91 weing.

1 2/2 2/1.

Hubern - Theory egt be querce con bodd. et cgs to a (day)

A Griven ero, 7 à natural number kettan-46

S |2n-2|+|2|Z E-f |2|.

Let M = Sup { $|2||, |2||, -- |2||, |2||}$ i $|2n| \le M$ \text{ Ne N}

i $|2n| \le M$ \text{ bdd}

ote: The converse of above theorem need

Note: The converse of above thesem need not be true.

ii, Every bed requence need not be egt.

Ex: (20) = ((-1)) H pad.

but Itan = - 1 if nis odd no = +1 if nis even. - Cf. is an oscillatory sequence.

(9 L+ (t) 20

Sul Ginen eto we have | th-0| = th-0

for given 620, by Archemedian property FREST

 $3.1 \quad k \in \mathcal{V}$ $\Rightarrow \frac{1}{K} k \in -2$

NOW WE have anxite = LCK

() 1 -0 | C - chn x c i () 1 -0 | C - chn x c

32. . . . :

and let xep. it (an) is a ceruence of the seas numbers with it an = 0 and if for some constance of the seas constance of the some constance of the some constance of the some men. We have | m-x| & can thus then it follows that it an = x.

Correspondition of the Charactery of the Charact

a) Let X = (2n) and X = (3n) be sequenced of seal numbers

that C_{g} to 1 by respectively and C_{g} then the sequence

**HY, **Y, **Y and **Expectively and to 1 be queue of non

Ten seal numbers that C_{g} to 1 and if 1 be queue of non

questional sequence 1 that 1 and 1 and if 1 then the

Then A+B+... +Z = (a, + bn+...+2n) is also Cat and Hantbut ... + 2n) = Itan + Lt but ... + Lt 2n and Lt (and by - - 2n) = Lt an . Lt bo. . - Et Zn -> (a) il a egt sequence Lt at dryan) The sem. If X=(1) is gt to a and it an >0 -theo 2 - H 30 %0 (10,220) proof: af possible suppose that 2<0 - Since the Bequence (an) . Cgt to a. . J KEI St lan-atkt wink. ⇒ スート <カく 3+ F そり> k-Jaking G=-1/270 (260) これかくなかくカーユーサカンド But which is contradiction to the hypothesis that anyo AneN. "Our suppossition that 200 gr wrong The oline of x = (m) and y (yn) are of and if proof: Since (An) & (yn) Gt sequences and converge to x & y (say). 11 m= x) Hy y Let In In in their In 20 40 (In In 20). いいいます。またかっかかかかりかりかんとう

Sequence and if asznsbynen then a < It xin < b. Proof: Let yn = b-an than 1236 AD (; p>1) : Lt ym = Lt-(b-2n) こりしまなの > b-Ltxn>0 ("9n>b) ⇒ b>は xn ⇒はなららb Similarly Stringa (Let 4= xn-a)

.. a < Lt <n <b

Squeeze Theorem :-Suppose that x=(xn), Y=(Vn) and Z=(Z) are sequences of real rambers such that ansynezh & nen and that It 2m = Lt = then Y = (Yn) is Convergent and 大大(なか) = 七七はかりませんでかり、 proof- Let litan) = Itzn= w i.e. the Sequences (DCm) & (291) are, convergent to w. : Given 670, 3 Ke It such that $n > k \Rightarrow |x_n - \omega| < \epsilon; |z_n - \omega| < \epsilon$ n>k ⇒ ω-ε < an < ω+ε and wite < 2 m < wife

Theorem: - If x =(xn) is a convergent since xn < in < Zn & new. : we have w-E < zn & yn & Zn < wi => W-E < Yn < WHE Y MOK. → (yn-u)< + n>K. = = . It & = w ((yn) Converges to w. and also It In = It yn = It zn.. Theorem - Let the sequence x= a converge to x then the sequence (12n1) of absolute values convey to tal is if the xx = 2 then Lt ([xn]) = 1x1. proof: Since x=(2n) is convergent " Given EZO, IKEIT Such that 12n-x1< + 4 n>K. Now we have [xn1-x1] < |xn-x | < E > h>K :. | | | | | | < E + n>K : (xnt converges to [x].

> Converse part Ex - (2n) = (-1)") Ynen_ Bearing Let (2n) be a sequence of Franciscal numbers Such that If then (20) Compensation Proof - since xn>0 y n

- 1/n+1/2	The second secon
: xn+1 >0 ∀n	Since L>0
n -	0 < L < L + E < 1
$\lim_{n\to\infty} \frac{1+(x_n+1)}{x_n} = L \gg 0$	⇒ 0 < L + e < 1 — ③
i.e_L>O.	From @, we have
Since It anti =L	$\frac{x_n}{x_k} < (L+e)^{n-k}$
Given 670, 3 KEN Such that	$\Rightarrow \alpha_n < \alpha_k (lete)^{n-k}$
Tan -L < + Y no K.	$\Rightarrow x_n < x_K (L+\epsilon)^{\frac{1}{\eta}} \frac{(L+\epsilon)^K}{(L+\epsilon)^K}$
	since 7n>0- Vn
$\Rightarrow -e < \frac{2n+1}{2n} - L < e \lor n > k$	1 0 < xn < xK (L+&) n 1 (L+&)k
$\Rightarrow L - e < \frac{x_{n+1}}{x_n} < L + e \forall n > k$	Let m=7K (L+c)K >0
Now replacing & by K, K+1, K+2,	0 < an < m (1++) " (by (+) - (5)
n-tin we get	since oculte < 1 (by 3)
L-E < 3K+1 < L+E	y→∞ 1+ (1+€) =0
$L-e < \frac{\chi_{K+2}}{\chi_{K+1}} < L+e$	since the equin (5) is of the
L-e < 7 K+3 < L+6	form yn < xn < Zn +n
7 K+2.e	with It yn = It zn = 0
	. By squeeze- theorem, L+ xn=0
L-e < 2n < L+e	and (27) is convergent to
Nova - int	Zero.
Now multiplying the above (n-k)	20 - 2
inequalities, we have	74.
$(L-\epsilon)^{n-k} < \frac{x_n}{x_n} < (L+\epsilon)^{n-k}$	10 \$ 50 no k.
^α κ.	n= 50, So+1, 50+2, 69
Since 1×1	k, k+1, k+2, 17-1 69 → 50 = 20 terms
	mik=zc

Problems
Apply above theorem
lie let (2n) be a sequence of
the real numbers Such that
$L = \frac{1}{2\pi} \left(\frac{2(n+1)}{2n} \right) $ exists. If $L < 1$,
then (2n) Converges and
Lt (2n) =0) to the following
Sequences, where arb satisfy
0 <a<1,-b>1.</a<1,-b>
$(a) \left(\frac{h}{b^n}\right) \left(\left(\frac{2^{3n}}{3^{2n}}\right)\right) \left(\left(\frac{b^n}{3^n}\right)\right)$
$\frac{soin - a}{bn}$.
nu
Let $x_n = \frac{n}{6^n}$ then $x_{n+1} = \frac{n+1}{6^{n+1}}$
Now $\frac{2n+1}{2n} = \frac{n+1}{6^{n+1}} \times \frac{6^n}{n}$
= n+1
bm
= 1+ \forall n
(3 m + 1/2)
$Lt\left(\frac{x_{n+1}}{x_n}\right) = Lt\left(\frac{1+1/n}{b}\right)$
= 1+0 = 1 <1
$=\frac{1+0}{5}=\frac{1}{5}<1$
2n; 1, 1, 1
$\frac{(56>1)}{x_n} = \frac{1}{6} < 1 (1.6.1 < 1)$
(2n) Converges & Hin=0.
(b) $\left(\frac{2^{3n}}{3^{2n}}\right)$
(3 ²ⁿ)
Let $x_n = \frac{2^{3n}}{2^{3n+3}}$ then $x_{n+1} = \frac{2^{3n+3}}{2^{3n+2}}$

NOW of $\frac{1}{3n} = dt \left(\frac{3}{3n} \times \frac{1}{2^{3n}} \right)$
330+2 230
(0)
$= LF\left(\frac{23}{3^2}\right) = 8/9 < 1$
: (2n) is convergent & Lt xn=t
$(c.) \left(\frac{b^n}{2^n}\right)$
Let $x_n = \frac{b^n}{2^n}$ then $x_{n+1} = \frac{b^{n+1}}{2^{n+1}}$
271
Now $\frac{x_{n+1}}{x_n} = \frac{b^{n+1}}{b^{n+1}} \cdot \frac{2^{n+1}}{b^n}$
= 6/2
: Lt (2nt) = 6/2
I 1 <b<2 (xn+1)="b/2<</td" lt="" then=""></b<2>
: (an) is convergent & Lt xn =0.
If $b>2$ then $L=\frac{(\alpha_{n+1})}{(\alpha_n)}=b/2>1$
.'(xn) is not convergent & H-xn=
to Couchy's First theorem On
Lamits
IP (onverges to I then t
HDHD Estado (n.K. 22magspyn
Olso Converses to Surveyor
TE SO N.
Proof "- Let bn = an -1" then
It $b_n = at a_n - 1$ $n \to \infty$

$$= \frac{1}{n} \left[|b_1 + b_2 + \cdots + b_m + b_{m+1} + b_{m+1} + b_{m+1} \right] + \left(|b_{m+1} + \cdots + b_m| \right) + \left(|b_{m+1} + \cdots$$

$$= \frac{1}{n} \left[|b_1 + b_2 + \cdots + b_m + b_{12n+1} + b_{2n+1} + -b_{2n+1} + b_{2n+1} + -b_{2n+1} + b_{2n+1} + -b_{2n+1} + b_{2n+1} + -b_{2n+1} + b_{2n+1} + b$$

bitb2t -- + bn $\rightarrow 0$ as $n \rightarrow \infty$ $\lambda_n \rightarrow l$ as $n \rightarrow \infty$ i.e. $\lambda t \lambda_n = l$ $n \rightarrow \infty$ Hence the theorem.

Note: — The Converse of the above theorem need not be true.

i.e. If the sequence $\{x_n\}$ converges to $\{x_n\}$ then the sequence $\{a_n\}$ need not be converge to $\{x_n\}$ where $\{x_n\}$ and $\{x_n\}$

Ex: Let $\{an\} = \{(-1)^n\}$ $o = \{-1, \pm 1, -1, \pm 1, ---\}$ then $an = \frac{a_1 \pm a_2 + - + a_n}{n}$ $\begin{cases} an = \frac{a_1 \pm a_2 + - + a_n}{n} \\ = 0 \end{cases}$ of $n \in \mathbb{R}$ even $an \in \mathbb{R}$

n=soo Convergent to 0

But {an} is not convergent.

because It $\alpha_n = Lt(-1)^n = +1$ if his even.

Ean is oscillatory sequence.

. It is not convergent.

Let $\alpha_n = \frac{n+1}{n}$ then $dt \alpha_n = dt (1 + \frac{3}{2} + \frac{7}{3} +$

By Cauchy's first theorem on lim $\frac{1+\frac{\alpha_1+\alpha_2+\cdots+\alpha_n}{n}=1}{n} = 1$ $\frac{1+\frac{3}{2}+\cdots+\left(\frac{n+1}{n}\right)}{n} = 1$

-> show that

$$\frac{L \cdot H \cdot S}{n \rightarrow \infty} \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \cdots + \frac{1}{\sqrt{n^2 + 2}}$$

$$= \frac{1}{\sqrt{1+1/n^2}} + \frac{1}{\sqrt{1+2/n^2}} + \frac{1}{\sqrt{1+1/n^2}}$$

1+1/n n-100
By Couchy's first theorem on
$ \frac{a_1 + a_2 + \cdots + a_n}{n \to \infty} = 1 $
$ \frac{1}{1+\sqrt{1+\sqrt{1+2}}} + \frac{1}{1+2\sqrt{1+2}} + \frac{1}{1+2\sqrt{1+2}} = \frac{1}{1+2\sqrt{1+2}} $
Le. 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
>> show that
$\frac{1!}{n \to \infty} \left[\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} + \cdots + \frac{1}{\sqrt{an}} \right] = \infty$
L.H.S. It $\frac{1}{n} \left(\frac{n}{n} + \frac{n}{\sqrt{n+1}} + \cdots + \frac{n}{\sqrt{2n}} \right)$
Let $a_n = \frac{n}{\sqrt{a_n}}$ then $a_n = \frac{1}{\sqrt{2}} \sqrt{n}$
It $a_n = \infty$
By Cauchy's first theorem on limit
$dt = \frac{\left[\frac{n}{\sqrt{n}} + \frac{n}{\sqrt{n+1}} + \cdots + \frac{n}{\sqrt{n}}\right]}{n} = \infty$
i.e. It $\left[\frac{1}{\sqrt{n}} + \cdots + \frac{1}{\sqrt{2n}}\right] = \infty$
two show that
$\lim_{n \to \infty} \left[\frac{1}{n^2} + \frac{1}{(n+1)^2} + \cdots + \frac{1}{(n+1)^2} \right] = 0.$

If {an} is a sequence of the terms for all in and It an = I then prod - Let by = logan Vin Can Since It an = 1 itt bn = logs (2 1>0 because anzo yn) By Cauchy's first theorem on limits. (by0) $\Rightarrow 1+ \frac{\log \left[\alpha_1, \alpha_2 - -\alpha_n\right]}{n}$ => It log (a,.. an) n = logl: ⇒ log[lt (a.a. -an) n = logl $\Rightarrow \coprod_{n\to\infty} (a_1 \cdot a_2 - a_n)^n$ If (an) is a sequence such - Let us define the Sequence { bn} such that $b_1 = \alpha_1$, $b_2 = \frac{\alpha_2}{\alpha_1}$, $b_3 = \frac{\alpha_3}{\alpha_2}$, -- b_n

 $\Rightarrow Lt \frac{\alpha n}{n \to \infty} = l \Rightarrow Lt \quad bn=l$

Since an>0 yn

., Pu>0 Au

Now we have à sequence [bm] Such that bn >0 +n and it bn=1

: Lt (b, b2 -- bn) In = 1

(By Previous theorem)

=> lt (an) in =1

Note - The converse of above

theorem need not be true:

Ex: - Let $a_n = 2^{-n} + (-1)^{n}$ then $a_n = 2^{-1} + \frac{(-1)^n}{n}$

.. Lt $\alpha_n^{\vee n} = 2^{-1}$ $\sqrt{\frac{\text{Lt }(-1)^n}{n}} = 0$ \longrightarrow show that

But $\frac{\alpha_{n+1}}{\alpha_n} = \frac{2^{-(n+1)+(-1)^{n+1}}}{2^{-n}+(-1)^n}$ $\longrightarrow Find II. (n1)^{n}$

= 2-1+(-1)n+1-(-1)n

= 2 +1+1 = 2 if nis ad

= 2 if n is odd.

It anti does not exist.

Note! - The above theorem known Cauchy's second theorem on limit

Problems :

-show that Into Converges to 1.

soin. Let anon then

anti (nt) =(1+ /2)

Noω It 99+ =1

. By Caricly's second theorem on

 $\frac{1}{n}\left(1+2^{1/2}+3^{1/3}+\cdots+n^{1/n}\right)=1$ First theorem.

let an = n; then ant = (n+1)!

Now $\frac{\alpha_{n+1}}{\alpha_n} = n+1$

niseven limits Lt (an) n = 0

i.e. It (n!) I'm zoo

Join Telegram for More

$$x_{n} = x_{n} = x_{$$

$$\frac{2n+1}{n \to \infty} = \frac{2n+1}{n} = \frac{2n+1}{n}$$

$$\frac{2n+1}{n} = \frac{2n+1}{n} = \frac{2n+1}{n} = \frac{2n+1}{n}$$

then show that it $x_n = e$.

Let $a_n = \left(\frac{2}{1}\right)\left(\frac{3}{2}\right)^2 \left(\frac{4}{3}\right)^3 = -\left(\frac{n+1}{n}\right)^n$

then $a_{n+1} = \left(\frac{2}{1}\right)\left(\frac{3}{2}\right)\left(\frac{4}{3}\right)^3 = -\frac{n+1}{n}$

Now $\frac{a_{n+1}}{a_n} = \left(\frac{n+1}{n+1}\right)^n \left(\frac{n+2}{n+1}\right)^n$

$$= \left(\frac{1+1}{n+1}\right)^n + \frac{1}{n+1}$$

It $\frac{a_{n+1}}{a_n} = e$

I (aucher's second theorem on limits.

How show that it
$$\frac{(nn)^m}{n!} = e$$

(Cauchy's second theorem)

How show that it $\frac{(n!)^m}{n!} = e$

(Cauchy's second theorem)

Show that it $\frac{(n!)^m}{n!} = e$

(Cauchy's second theorem)

Sequence (2n) be convergent Sequence. Then we have to Prove that (2n) is bounded.

Sufficient Condition -

Let the Sequence (2n) be monotone bounded Sequence. Then we have to Prove that the sequence (2n) is Convergent. Since (2n) is monotone bounded Sequence.

or M & Sequence

Also it is bounded above as well as bounded below.

(is suppose that the sequence (xn) is bounded IM & Sequence then (xn) is bounded above.

(ii) suppose that the sequence (2n) is bounded M & sequence, then (2n) is bounded below.

* Limit Points of a degreence

Limit point of a sequence (orn)

if every aeighbourhood of scontains infinitely many terms of the sequence.

i.e. LER is limit point of the

hood of ! contains infinitely me terms of the sequence.

→ V €>0, \(\chi_n\) \(\exi(\dot{l}-\)\), \(\exi\) for infinitely many values of \(\exi\).

infinitely many values of n.

 $\underline{\underline{Ex}}:=(1) \quad (x_n)=(E1)^n)$

= (-1,+1,-1,+1,-1,---

has two limit points.

Let $x_n = (-1)^n \forall n$

then zn = -1 if n is odd.

and $x_n = +1$ if n is even.

Centains all the odd terms of Sequence (xn).

: -1 is a limit point.

Similarly every neighbowhood Il Contains all even terms the cequence (2n).

. : +1 is a limit point.

 $\underline{\underline{Ex!(2)}}$. $(x_n)=(\frac{1}{n})$

 $=(v_1, v_2, v_3, ---)h$

a limit point O.

Because the neighbourhood of 0 Cont infinitely many terms of the sequence.

https://upscpdf.com

https://t.me/upsc_pdf https://upscpdf.com https://t.me/upsc_pdf

where $x_n = 1 \ \forall \ n \in \mathbb{N}$ has the only limit point 1.

Yote: - (1) A limit point of a sequence is also called cluster point (or)

an accumulation point (or)

Condensation point of the sequence

(2) Limit point of a sequence is different from limit of a sequence

i.e. if less is the limit of

I men such that |2n-11<E7n>m.

i.e. Every neighboarhood of l

Contains all except a finite number of terms of the sequence.

a sequence (xn) then for E>0,

where as if leik is a limit point of the sequence (an) then every neighbourhood of I contains infinitely many terms of the sequence (an) does not exclude the possibility of an infinite number of terms of the sequence lying outside that neighbourhood.

Hence limit of a sequence is a limit point of the sequence, but a limit point of a sequence need not be the limit of the

(3) If $x_n = l$ for infinitely many values of n then l is a limit point of (x_n) .

- (4) If for €>0, Zn∈ (1-€, 1+€)

 -for finitely many values of n

 then lis not a limit point of

 the sequence (2n).
- (5) Limit point of a Sequence need not be a term of the Sequence.

> Bolzano - Weierstrass Theorem

for Sequences:

Every bounded sequence has at least one limit point.

Cauchy's General principle of

A necessary and sufficient Condition for the Convergence of a sequence (xn) is that, for each 6>0. I me I+ Such that $|x_{n+p}-x_n| < \varepsilon$. $\forall x_n \Rightarrow m$ and p > i.

Mecessay Condition:

Let the sequence (xn) be -Convergent and let it be Convergent to 1.

 $\begin{array}{cccc}
 & \text{Lt } x_n = 1 \\
 & n \to \infty \\
 & \text{i.e. } x_n \to 1 & \text{as } n \to 0
\end{array}$

: Given 6>0, 3 meIT such that $|x_n-1| < \epsilon/2 \quad \forall n > n$ Since P>1=>n+P>n+1>n>m. 1 | 1 n+p-2 | < €2 + n>m & p>1 Now we have $\left[x_{n+p}-x_n\right]=\left[x_{n+p}-\ell+\ell-x_n\right]$ < | xn+p-1+ | xn-1 | < E/2 + E/2 + n>m => |xn+p-xn|< + + n>m and P>1. Sufficient Condition :-Given that for each 6>0, I mest such that |xn+p-xn|<e Vn>m and P≥1 Proporticular n=m. : [xm+p-1m] < E Y P>1. => -E < xm+p-xm < € + p>1. [[] = \] = xm-E < xm+p < xm+E 12 0 2 0 3 3 4 0 6] K = Max {x, 12, - $\therefore h \leq x_n \leq k \; \forall \; n$ i. (In) is bounded. Bolsano - weierstrais theorem - every bounded sequence has at

Lerise U. i.e. the sequence (an) has a limit Doint Say 1. we shall show that the sequence (an) converges tol. i-e. Lt 2n = 2 -- 3 Given that , for each 6>0. Ime Such that |7n+p-2n | < 53 + n>m & P>1 Inparticular n=m $|x_{m+p}-x_m|<\epsilon_3 \forall p\geq 1$ Since lis a limit point! I my>m such that [xm,-1] < =/3 -- 6 since m, >m infrom 6. $|x_m, -x_m| < \xi/2 - 6$ now we have 1 xm+p-1 = 1xm+p-xm + xm-xm+ < | 2m+p-2m + | 2m-2m; < 6/3 + 6/3 + E/3 Y P>1 1 amp-1 | < € - 4 p>1 = Tan-l | < + n>m. .. (an) is convergent tol.

A sequence (rn) is kid to be cauchy sequence (or)-fundamental sequence.

if for each E>O, I mEIt
Such that

| Intp -In | <€ 7 n>m and P≥1.

'or) |sp-sq| < € + P,9 > m.

heorem Every Cauchy's sequence is bounded.
heorem If X = (xn) is a Convergent
Sequence of real numbers then xis

a country sequence.

Note: A sequence cannot converge if for each 6>0, 7 me It such that

[xn+p-2n] & E > nzm& P>1.

The property of the second	Carlo and the American Section of the Section of th	the second of th
Charren		
	; the least upper bound	Now I at least one troops of the.
twatypen .	quence (xn).	Sequence (2n) is rim such that.
:	₹x 4.n.	2m>K, K>0 (however large)
) =0	is given then I-E is not	Since the Sequence (2n) is my
- [bound of the sequence(in	Seguence.
		- 11
nen	it one term of the sequence	
n €N	in the interval (x-E, z)	=> K<\u00e4n>m.
	$n \in (x - \epsilon, x)$	-: (\(\alpha_n\)) diverges to +\(\alpha\)
	-e < 1m ≤ 1 < 1+e — (i)	i.e. Lt $x_n = \infty$
•) is monotopically increasing.	
"+nen	7	Theorem - If $Y = (Y_n)$ is a bounded
	an ≤ anti V nen.	decreasing sequence then
NEN!	•	It (yn) = inf [yn: nEN]
0	$<\chi_m < \chi_{m+1} < \chi_{m+2} <$	further if (4n) is an unbounded
· ①	≤	decreasing then It yn = -0.
	e < In < Ite y nom	(OR)
	=< 2n-2<€ \ n>m	Every Monotonically decreasing
	2n-x/ <€ \n>m.	Sequence, which is bounded below
	$d + \alpha_n = \alpha$	converges to its greatest lower
	n->>-	bourd.
0	the Sequence (In) Converges	further, Every Monotonically
		decreasing Sequence which is not
	Let the Sequence (an) be	bounded below diverges to $-\infty$.
	ided 1 and let (an) be	bounded seed
	and which is not bounded	Monotone Convergence Theorem
		A monotone sequence of real
	Prove that it diverges to ∞.	numbers Convergent if it is bounded
	(an) is MA and which is	Meseriary Condition: Let the Mondon
1.	<u> </u>	The state of the s

neN

n €N

+ nen

nen.

- (L)

0

https://t.me/upsc_pdf

https://upscpdf.com

https://t.me/upsc_po

+ A sequence (2n) la said to be H privation by an and another The Yaen ; i.e. ans and i e a state and a subject of the sub to A sequence (20) is said to be monotonically decreasing if THE STAN Y MEN ' P AN ZAMHYA 1-e 7574 17.757 377 377 377 -> A sequence (Mn) is soid to be monotonic if it is either monotonically increasing or monotonically decreasing. + A sequence, is said to be strictly monotonically increasing if an < anti 4n. → A sequence -(xn) is said to be Strictly monotonically decrusing if > A sequence (an) in said to be strictly ... manotonic if it is either strictly increasing or strictly decreasing. (1,2,3,4,,-1,,--),(1,2,2,3,3,3,4,4,4-4-4 (a,a,as, --an,...) if asi are (1-1: nen)=12, 1-4, 1-13, ---) sequences (1, 1/2, 1/3 --- Kn), (1, 1/2, 1/2-- (n-1-) (b, b, b3 --- bn, ---) if 0 < b < 1.

(1+1, 1+2, 1+13---)ar decreasing sequences. 3(+1,-1,+1,--(-1)n+1,--); (-1,+2, -3, - (-1)n, n, ---) are not monotonic sequences. Because which are neither increasing nor decreasing. Theorem: If x = (2n) is a bounder increasing sequence. then Lt (In) = Sup { In: nen }. furth if (2n) is unbounded increasing sequence then It in =00. (OR) Every monotonically increasing sequence which is bounded above Converge to its least upperbound Freither Every monotonically increasing sequence which is not bounded above diverges to so. proof - cose1: Let X = (in) be a bounded increasing sequence x = (an) be a monotonice and let increasing which is bounded above Prove that the (an) Converge to its least upper bound. Since (an) is monotonically interes

+not the

) =0

neN

n EN

then

ven.

- (L)

0

Problems -> use the definition of the limit of a sequence to establish the -following limits.

$$(1) \quad 1 + \left(\frac{3n+1}{2n+5}\right) = 3/2$$

sol'i - Let exo be given Now $\frac{3n+1}{2n+5} - \frac{3}{2} = \frac{-13}{1+n+10}$

$$=\frac{13}{4n+10}<\frac{13}{4n}$$

けられ >し

i.e. $n > \frac{13}{46}$

Now if m is a tree integer > $\frac{(3)}{46}$

$$\frac{3n+1}{2n+5} \longrightarrow \frac{3}{2} \text{ as } n \longrightarrow \infty$$

i.e. Lt $\frac{3n+1}{2n+5} = \frac{3}{2}$

(20x)

Now we have

$$\left| \frac{3n+1}{2n+5} - 3\frac{1}{2} \right| = \left| \frac{-13}{4n+10} \right|$$

$$=\frac{13}{4n+10}<\frac{13}{4n}$$

For E>O, by Archemedian property

 $\exists \ K \in I^+$ Such that $K \in > \frac{13}{h}$.

NOW We have

n>K ⇒ よミナ・

 $\Rightarrow \frac{1}{h} \leq \frac{1}{K} \leq \frac{1}{13} \in \text{(by (2))}$

$$\therefore \text{ (i) } = \left| \frac{3n+1}{2n+5} - \frac{3}{2} \right| < \frac{13}{4} \left(\frac{4}{13} \right) \in \forall n > 1$$

$$\frac{3n+1}{2n+5} - 3\frac{1}{2} < \epsilon + n > k.$$

i.e. It
$$\frac{3n+1}{2n+5} = 3l_2$$

$$\bigoplus_{n \to \infty} \frac{1}{3^n} = 0$$

Soin :- Let E>0 be given

$$|-|\frac{1}{3n}-0| = |\frac{1}{3n}|$$

$$=\frac{1}{3n}<\epsilon \text{ if } 3^n>\frac{1}{\epsilon}$$

i.e. if nlog 3 > log(=)

i.e. if n > log (1/6) (... log

Now if mistre integer > log(/ log3

$$=\frac{13}{4n+10}<\frac{13}{4n}$$
 Then $\left|\frac{1}{3n}-0\right|<\varepsilon \quad \forall \quad n>m$

i.e.
$$\frac{1}{3n} \rightarrow 0$$
 as $n \rightarrow \infty$

least the integer m such that $\left| \left| x_{n-1} \right| \right| < \frac{1}{10^{3}} \quad \forall \quad n > m.$ $\frac{\operatorname{sol}^n}{\operatorname{Now}} = \left[1 + \frac{(-1)^n}{2n} - 1\right]$ $=\left|\frac{3m}{(-1)n}\right|$ = /2n - (1) Since $|x_n-1| \leq \frac{1}{10^3}$ $\Rightarrow \frac{1}{2n} < \frac{1}{10^3} \quad (\text{by } \bigcirc)$

Taking m = 500 / coe have

|2n-1| < 100 \$ n>m where m=500

#w. If 2n = 2+(-1)? find the least the integer in Such that |2n-2| < 104 + n>m.

Theorem Let (xn) be a sequence of real numbers and let xER, if (an) is a sequence of the real numbers with It (an) = 0 and if for some Constant c>0 and some meN. \cos have $|x_n-x| \leq C\alpha_n \quad \forall n \geqslant m$. then it follows that

If 2>-1 then (Ita) 1+marking Problems I It are then It (tha) =0 Soin: Since a>0 => na>0 Ynen → O< na< I that y n∈N A OK HAR THEN 1-1-10 = 1-1-10 Hand = 1 tha < na +new $= \left(\frac{1}{\alpha}\right) \left(\frac{1}{n}\right) \forall n \in \mathbb{N}$. $\frac{1}{1+n\alpha} = 0 \left| \left(\frac{1}{\alpha} \right) \left(\frac{1}{n} \right) \right| \quad \forall n \in \mathbb{N}$ Since It (1) =0

⇒%>0.. $\frac{1}{1+na} = 0$ (bn) =0 Soince Ochel

Pake b= 1+a where $a = (\frac{1}{b}) - 1$ By Bernoulli's inequality, . we have (1+a) > 1+na +n. = 1 (1+a) + n EN (1)

исю ,	0 <pu =<="" th=""><th>(Ita)"</th></pu>	(Ita)"
	≤.	t+na (by (1)
_	<	Tha to new

$$|b^{m}-0| = \sqrt{\frac{(1+\alpha)^{m}}{1-\alpha}} = 0$$

$$= \frac{1}{1+na}$$

$$< \frac{1}{na} \quad (by \oplus) \cdot \forall n \in \mathbb{N}$$

$$= \left(\frac{1}{a}\right) \left(\frac{1}{n}\right)$$

Since
$$dt\left(\frac{r}{n}\right)=0$$

and
$$a > 0$$

$$\Rightarrow \frac{1}{a} > 0.$$

$$n \rightarrow \infty$$

Soin - (ase(i):

$$det c = 1 \text{ then}$$

$$(c!n) = (1,1,1,---)$$

$$det (c!n) = 1$$

$$(c!n) = 1$$

$$($$

then
$$C^{\prime n} = 1 + d_n$$
 for some $d_n > 0$

and $C = (1 + d_n)^n > (1 + nd_n) \forall n$

(by Bernoullis inequality)

C> 1+ndn
$$\forall n$$
 $c_{-1} > dn \forall n$

Now we have,
$$c_{-1} = dn$$

$$\leq \frac{C-1}{n} \forall n (by \oplus)$$

$$= (C-1)(\frac{1}{n}) - \oplus$$
Since $Jt(k_n) = 0$

since
$$f(h_n) = 0$$

and $(c-1) > 0$ $(c-1)$

$$\lim_{n\to\infty} (c^m) = 1$$

Case(ii):

Let
$$0 < C < 1$$

then $C^{Vn} = \frac{1}{1 + hn}$ for some $h > 0$
 $C = \frac{1}{1 + hn}$ (3)

Rough idea
$$\begin{array}{l}
C = 0.5 \\
= V_{2} \\
C^{4}n = \left(\frac{V_{2}}{2}\right)^{1/2}n \\
= \left(\frac{V_{2}}{2}\right)^{1/2}, \left(\frac{V_{2}}{2}\right)^{1/2} \\
= \frac{1}{1+1}, \frac{1}{1+0.414} \\
= \frac{1}{1+6n}; h_{n} > 0.
\end{array}$$

From \$ 8 G $= C = \frac{1}{(1 + h_n)} \times \frac{1}{(1 + h_n)}$ ⇒ C ≤ 1 / hhn < hhn NOW we have, occephn >> occhn < h +h \Rightarrow 0 < h, $< \left(\frac{1}{n} \right) \left(\frac{1}{n} \right) + n$ now we have, 10m-1 = 1 1+hn-1 $=\left|\frac{-h_n}{1+h_n}\right|$ = hm < hn th <(\(\frac{c}{T} \) (\frac{c}{T} \) (by6) ⇒ 1 >0

Let a be a tre Seal number (ie a>0) an {zn} a sequence of ration numbers such that Itan = Show that It a == 1. Soln: Given that [in] a: sequence of Rational numbers Such that It in Let the sequence らかりことかり then we show that $\mu + a^{kn} = 1$ (proceed as in the above problem.)

prove that the seque whose not terms are given below, are monotonic.

find out whether they as increasing (or) decreasing

(i) 1/2+1/2+1/3+...+1/2n.

NOW 2n+1-2n = - 2n+1 >0 An >2n+1>2n +n 今 なのくなかれる

$$\vec{(i)}$$
 $\frac{1}{n} + \frac{1}{n+1} + \frac{1}{2n-1} + \frac{1}{2n-1}$

$$(7)$$
 $1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{(n-1)!}$

Soll. Let
$$a_{n} = (1+\frac{1}{n})^{n}$$

$$= n_{c_{0}}(1)^{n}(\frac{1}{n}) + n_{c_{1}}(1)(\frac{1}{n})$$

$$+ n_{c_{1}}(1)^{n}(\frac{1}{n})^{n} + \dots + n_{c_{1}}(1)(\frac{1}{n})^{n}$$

$$= 1+n \cdot \frac{1}{n} + \frac{n(n-1)}{2!}(\frac{1}{n^{2}}) + \dots + n_{c_{1}}(\frac{1}{n^{2}}) + \dots + n_{c_{1}}(\frac{1}{n^{2}}) + \dots + n_{c_{1}}(\frac{1}{n^{2}}) + \dots + n_{c_{1}}(\frac{1}{n^{2}}) + \dots + n_{c_{1}}(\frac{1}{n^{2}})(1-\frac{1}{n})$$

$$= 1+1+\frac{1}{2!}(1-\frac{1}{n})(1-\frac{1}{n})(1-\frac{1}{n})$$

$$= 1+1+\frac{1}{2!}(1-\frac{1}{n})(1-\frac{1}{n})(1-\frac{1}{n})$$

$$= 1+1+\frac{1}{n!}(1-\frac{1}{n})(1-\frac{1}{n})\dots (1-\frac{(n-1)}{n})$$

2ht1 = 1+1+ 1-(1-1-)= 士(1-二)(1-二) (hti) (1-hti) (1-hti) (一次(一部) = K < K Prick! - K > -K PnEN $\Rightarrow \left| -\frac{k}{h+1} \right\rangle = \frac{k}{h}, \quad k = 1, 2-n$ (an) 8-M 1 1+1+1 (in) (i+1) (in) (in) (in) if monotonic (x) a= and an= \2+an Sol? Given that $a_{1} = 1 \% \quad a_{n} = \sqrt{2 + \alpha_{n-1}}$ $\frac{n(n-1)(n-1)(\frac{1}{n^2})}{2!(\frac{1}{n^2})} + a_2 = \sqrt{2+a_1}$ $= \sqrt{2+1}$ $= \sqrt{3}$ $= \sqrt{3} > 1 = a_1$ $= \sqrt{3} > 1 = a_1$

suppose, an zan-1 for some in >> 2+an > 2+an-1 ⇒ [2+an > [2+an-1 ey mathematical induction (an) is an increasing .. (an) is monotonic sequence show that the sequence (a) defined by in (1+1) Soly Given that nn = (1+1) >> an = 1+1+1 (1-1) + $\frac{3!}{1!} \left((1 - \frac{1}{2}) \left((1 - \frac{2}{2}) + \cdots \right) \right)$ $+\frac{1}{n!}\left(-\frac{1}{n}\right)\left(-\frac{2}{n}\right)-\left(-\frac{n-1}{n}\right)$ and 20+1= 1+1+ (1- 1+1) + 1 (1-1/mi) (1-2/mi) 4, + (v41)] (1- v41) $\left(1-\frac{2}{n+1}\right)\cdots\left(1-\frac{n}{n+1}\right)$ an & anti An (in) es on increating

(2n) FS monotonez lequence 1/2 (1-1/2)(1-2/2)+... $+\frac{1}{n!}(1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{n}{n})$ = 1+1+ 1 + 1 + - + + = 1.7 (1-2m) (By G. = 1+2(1-1) = 3 - 1 . (an) il beld above. Since (m) is monotonially increating & bad above. . . (In) is gt Note: Clearly 25an -25 2n 53 An => 25 Hm <3 >> 25 H (1+ 1) 1 63 D) H (HL) = e

+ DISCUM the convergence of the sequence (2m)

(i) $x_n = \frac{n+1}{n}$ (ii) $x_n = \frac{n}{n+1}$ (m) 7h = 1+ 1+ 1 + ... + 1 30

(i) is monotonically increasing . It cgs.

(ii) & bounded

Colin Let $n_n = \frac{2n-7}{3n+2}$

 $n+1-2n=\frac{25}{(3n+5)(3n+2)}$. . - (7n) egs to $2\sqrt{3}$

(ii) The given sequence it in the bod and

{-1, -3 -1 , 14, 17, --- {1 (ii) cgs to 3/2

theory an & -1 An

and also $1-x_n = 1 - \frac{2n-7}{2n+2}$

· (an) is bounded

Pit the sequence {2n-7/3n+2}, (iii) Since (2n) is M 1

(ii) tends to the limit = . Man jt 2n = It 2n=7

HW p.T the sequence · whole with term it sont

increasing (i) is monotonically increasing

= ht9 >0 4n Syra Given that 21=1, 2n+1 = 132n 2n

Similarly 2272

Similarly 2272

Now suppose rint 1 > 2n

3 × not 1 > 3× n

3 × not 1 > 3× n

3 × not 1 > 2n

induction

2nt 2 > 2nt 1:

By mathematical induction

2nt 1 > 2n

Can is monotonically

Encreasing.

NOW $a_1 = 1 < 3$ $n_2 = \sqrt{3} a_1$ $= \sqrt{3} < 3$ $n_3 = \sqrt{3} n_2$ $= \sqrt{3 \cdot 13} < 3$ Suppose $a_n < 3$ then $a_{n+1} = \sqrt{3} a_n$ $< \sqrt{3 \cdot 3} = 3$ $-1 \cdot a_{n+1} < 3$

By-mathemetical induction and In.

.. (an) is bold above by 3. Since (Ax) M. T. and bad .. It is cot. NOW let It in = ! then Hanny NOW NAT! = 13xn. Yn A 10-13 AX $\Rightarrow 1 = \sqrt{31}$ $\Rightarrow 1^2 - 3 \hat{1} = 0$ > 1(1-3) =0 => 1=0, 1=3. But I to, Since 30 >10 . L+ x = 3. Show that the seque (In), where a =1 and 2n= 12+xn-1 4772.12 Cgt and Cgs to 2.

defined by n=17, *n+1=15,

Gs to the tre root of
the equation n-1-7=

1231

71= J7, Anti= J7+An n= 17+x, = 577-21 -, 25 5 XI Similarly 73 > 7/2 Scillarse Jut > yo for your -> 7+7n+1 > 7+1/n > TAMMEN > JA+nn Anti 79n+1 .. By mathemetical induction 22 5x2 020 : (2n) PE M 1 NOW W= IFX7 302 JHJF S7 Similarly 23 < 7. Suppose on <7 => 7+2, <14 ⇒ 17+26 < 114
</p> => 2n+1 < 1/4 < 1/49=7 >> nnti <7 By nathematical induction. an < 7 An.

Since (xn) is M ? bdd above. in It is got. Fet It in = 1 H anti = 1 NOW may = Jitan > H 2m+1 = 17+4-in - 1 = J7+1 かパーノーキョー ⇒ J=1±√29 But 1=1-179 10 where 1 + 1-129 : an cas to 14529 which is tree root of the equation of 1-7-70 His profeser fant defined by sure to any 124 ho gs to the the stoot of the equation 2-2-2 =0

-1> Let 2 = 8 and 2 + = 1/2 m+2 Show that (2.) I bodd and monotone find the limit sol : Given that 21=8, 71 = 122n+2 ガニシダナン = 1(8)+2 = 6 < 8=21 ... n < x1 Similarly x8 < 25. Now Suppose antican シタマカナノ 人」なり => 12 may +2 < 1 2 2 2 2 1 + 2 > Just Cynfl .. By mathematical induction and < m - An. But wkit every decreasing seemence is always bold Since - xn > xn+1 &n EN. →m>+m+2 An

\$ 2kn > 2n+4 +n

>> m>4 An · (an) is bdd below : (3n) is bdd. Since (2n) is M I and. bed below :- It is cept fertian el & Hantiel Since not! = 20 72 00 > H ant = 1 1 2, +2 ラ トニューナン → l=4 いみか 一年・ HD LEF Y= (yn) be defines inductively by 1/451; gan = 1 (24 5 +3) 4 n 7 1 Show that 11 3/2 HW. Let Z=(Z) be the seque of sed numbers defined by 7=1, In+1= [2/2] for nen then show that H(Fn)=2

HET MENY, YOU, OMI NITTY for nEN Show that (Yn) cgs and find Sol": Y= IP; P70 & mai Tray, An NOW Y = 1 / 1744, = \ \ P + P - > \ P = 7; 127h Similarly 3373 rtow Suppose, Jn-ey Jn シャナガッサンタナカッ; > TP+ym+1 > TP+ym Antz 2 ynf1 By mathematical induction かれ、>がかかか · () 18 M 1. Since In Conti on 对为人了时期 如 ラ リッペ アナが、から → ダーカーへののか > (4, - 1+ 11+4p) (4 - 1-(1+4p) <0 > [4-1+1+4p] <0

17 Jn < 1+1/1741 < 14 JI+41 < 1+ J4P < 1+ JP : (3,14 bad. Since (9,) 13 M 7 & bdd above. To find limit of (1,) Cel Hynel & Hyntel NOW Yn+1 = [P+/m ; P>0 Alt your set prey > 1 = JP+1 => 12-1-1=0 => l= 1+ JHAP 1= 1+ (-: 1=1-/1+40 c 1+ 4 = 1 (1+ /1+41).

JP

to het ye Inti orn when Show that (In) and (In In) Converge find their limits. Sam (1) /m = [m+1-1] = (That 1 - Vin) (In+1+(0)) Jint1 + 15 - Intition Since OK yn An - from (P) &(B). 0< 3/2 1/2 which is in the form of an < yn & In th. with It an = 0 = It In ing squere theorem . 2 (Jn) cgs to zero. (i) In yn = In (Int + In)

Vinti tonti > Justi ton > 2 Tintl > Tintl + Tin > 1 5 50 mm. 5 Total (- Total) from @ AD we have 2/1+10 < In yn < 2 of the form xn < on < In. .. By speck theorem fr(In Yn) = Y2 -> Catablish the Convergence of the sequence (yn), where you that hats 21;

1 + 1 - 1 1 nt1 2 nt2 nt1 = 1 2(n+1)(2n+1) Just 7 m Vn : (3m) 18 M 2 Now yn = 1 + 1 + < Lithit at 1 < 1, + 1, + · · · + 1, in & Ou cal · (In) Is bet a above. _ -- (%) H gt -> If (bn) 19 bdd sequence and It (an) so then Show that Litanba)=0. SUT : Since (5,) is bold Sequence. . 7 M>0 Such that [In 15M +1

.. Give, HO 7 KEDT Evely that |an-0| 2 kg, (M>0) NOW we have (anh -0 = (anh) = lan | bo1 K.M. [anbn-0] KE Anylo It and co

Set - II Infinite Series - If {2n} is a sequence of real numbers. They the eapression xxx 7xx (i.e. the securce strick are infinite is humber) is called an infinite server. The infinite series x1+2,+---++2,+--- it usually denoted by 5 2 2 Dr Sizy The numbers 24, 32, -- 25, -- and colled the first, second third --- it's term (or general term) ---of the series. Scoies of positive terms: If all the terms of the seeies $\Sigma x_n = x_1 + x_2 + x_3 + \cdots + x_n + \cdots$ are positive i.e, if $x_n > 0$ then the series In is called a selice of positive terms. A series in which the terms are alternatively tre and -re is called an alternating selies. ic, \(\(\(\) \) \(\) = \(\) = \(\) - \(\) where 2,00 to is an alternating series. is an infinite Partial Sums: St ≤2n = 91+22+ · - - - +2m+·· scries where the terms may be the or we then Sin= x1+2,+...+xn is called the nth partial Sum of Sxn. The nth partial Sum of an instructe Server is

si, sz, sz, -- are the first, second, third, --partial dams of the series.

Since neal, [Sn] is a sequence of called the Sequence of partial sums of the Infinite series $\leq x_n$, there corresponds a sequence of $\{S_n\}$ of its partial sums.

Mature of infinite Series:

- Sequence of its partial Sums Cgs.
- (ii) If H-Sn = +00 (or) -0 then the seeier 5.4m is called dgs.
- (ii) The series Ex, is neither egt nor det, the series Ex, is called oscillatory series:
- The series Σ_{π_n} excellenting finitely if the sequence $\{s_n\}$ of its partial sums oscillates finitely.
 - ive, Exy oscillates finitely if [sin] is bounded and neither egt nor det.
- The Series Zxn oscillates indinitely if the Sequence {snf of its partial sums oscillates infinitely.

 i.e., Zxn oscillates indinitely if {snf it unbounded and neither __egs nor dgs.

Discuss the eqs and dos.

(1)
$$\sum_{n=1}^{\infty} \alpha_n = \sum_{n=1}^{\infty} n$$
 $= 1+2+3+\cdots+n+\cdots$

Let $S_n = 1+2+\cdots+n$

(P)
$$\leq x_n = \leq n^*$$

$$= 1 + 2 + \cdots + n^*$$
Let $\int_{0}^{\infty} \frac{1}{6} \left(\frac{1}{2} + \cdots + \frac{1}{$

(3)
$$\sum_{n=0}^{\infty} \frac{1}{3^n} = \frac{1}{3^0} + \frac{1}{3^1} + \frac{1}{3^n} + \cdots + \frac{1}{3^{n-1}} + \frac{1}{3^{n-1}} + \cdots + \frac{1}{3^{n-1}} = \frac{1}{3^n} + \frac{1}{3^n} + \frac{1}{3^n} + \cdots + \frac{1}{3^{n-1}} = \frac{1}{3^n} + \frac{1}{3^n} + \cdots + \frac{1}{3^n} = \frac{1}{3^n} = \frac{1}{3^n} = \frac{1}{3^n} + \cdots + \frac{1}{3^n} = \frac{1}{3^n} =$$

$$1+S_{n}=3/2$$
who
$$SS_{n}\} \text{ is } Cgt.$$

$$\Sigma x_{n} \text{ is } Sgt.$$

 $=\frac{1}{3}\left(1-\frac{3}{1-1}\right)$

```
SK (Constant) = k+ K+ · · · + K+ · · · ·
           Sn = k+k+....+k. (n terms)
             · 2 Smy is dat -
            : The leater In is dot.
Mote: - Every constant seemence in left but the constant
        series is det.
    \sum_{n \in n(1)} = \frac{1}{1-2} + \frac{1}{2\cdot 2} + \frac{1}{1\cdot 4} + \cdots + \frac{1}{1\cdot 4} + \cdots
         Let Sn = 1-7 1-7 1-1 7-4 ni(nt)
               = (ナメ)+(ナーシ)+(ギーち)+・・・+(だーか)
                                              十(太一十1)
               c. I-L
               infonting cot to 1
            : Ean is Cot to 1.
Antimetic Series:
   = a+(a+d)+ (a+2d)+...+ (a+h-1)d)+
Let C= a+ (o+d)+(a+2d)+....+ (a+k-1)
         ma = = [2a+(n-1)d]
        1+5n =0
. {Sn} is dgf.
            · Eznis dyt.
```

#21

ラッカニ トナイナヤー・ファイマー・・・ ドラロ (i) gs of nerel remain (ii) des it x7,1 (iii) oscillors fraitely it x=-1 (iv) oscillors infinitely it x2-1 $- \text{Hen } S_n = \frac{1 - r^n}{1 - r}$ 1+54 = h1(1-r) = 1-2 (finete) [Sn] is cg+. (ii) # +7/1
subcare (i): 2+ x=1 三 り(i). ~1000 L+53 = 00 :: [si] i dyt => Ern fi dyt. ascucii): If +>1 : {55h} is dot Ermis dyt.

: L+ Sy = 10 of n 17 every y ~ 11091 .. [Si] is oscillary seq. : 5 x is oscillating serres. This oscillowy wing is fruit oscillowy sency. 1+2, it "12099 H sn = 1. [+0 if n is 02] of nisaven. .. The series str ; sossillang leng .- This oscillous sentimity. whote! The g.s cgs only ween numerically less than 11. De En :- Enforte lives the terms are changed, a fraite number of terms. are added (or) omitted and each term of the series is multiplied and divided by the fined Thum of the series does not

Problems

The geometric Series

30=1+8+8+

(1) Converges 1 -1 < 8 < 1 i.e. (8) < 1 the diverges if 1>1 in ascillate finitely if r=1 tive oscillates infinitely if ox-1.

P-Test (br) P- Series:

The series & TP= 1 + 1 + - 1 T

(c) Converges if P>1 win diverges if PSI.

>* The nth term Test: If the series Exo Converges then It $(x_n) = 0$.

Note! (1) Exn Converges => Ltz =0

B) It xn = 0 => Exn may(on) may not convergent

(4) The series $\sum_{n=1}^{\infty} \frac{1}{n}$ is called the

of A positive term series either converges (or) diverges to too.

harmonic series

+ If an>O Vn and It an +0 then Exn diverges to + 00.

Comparison Test! Let x=(xn) and y = (yn) be non-negative sequences of real numbers and Sleppose that for some KEN, we have 05205 yn for

then

@ the convergence of Eyn => the Convergence of Exn

(b) the divergence of Exn=+ the divergence of Eyn.

-> Limit Companison Test: Suppose that $x = (x_n)$ and $y = (y_n)$ are strictly the sequences and Suppose that the following limit exists in IR=

 $\alpha = Tf\left(\frac{d^2}{d^2}\right)$

(a) If 870 (finite) then Exnis Convergent (or divergent) iff Eyn is convergent: (or divergent).

(b) If r=0 and if Eyn is convergent then Exn is convergent.

3) It an 40 => Ex, is not convergent () If r=00 and if Eyn divergenthen Zin diverges.

> Problems-The series In The Converges.

soi'n - clearly the inequality.

 $0 < \frac{1}{n^2 + n} < \frac{1}{n^2} \quad \forall n$

which is in the form of Ocxneyn

where $\lambda_n = \frac{1}{n+n} & y_n = \frac{1}{n+n}$

Now
$$\geq y_n = \geq \frac{1}{n^2}$$
 is of the form $\geq \frac{1}{n^p}$ where $p = 2 > 1$

.. By P-Test

Eyn is convergent.

.. By Comparison Test

Exn is convergent.

(0r)

Let $\overline{x}_n = \frac{1}{n^n + n} = \frac{1}{n^n + n}$

Let yn = 1

then $\frac{\chi_n}{y_n} = \frac{1}{1+y_n}$

 $\frac{dt}{n+\alpha}\frac{x_n}{y_n}-1\neq 0.$

Since Eyn = E 1 ls Convergent

By Comparison test

∴ ≥ αn is convergent.

Convergent.

The series E ____ is divergent

By using partial fractions, show that

(a) $\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+1)} = 1$

(b)
$$\leq \frac{1}{n=0} \frac{1}{(x+n)(x+n+1)} = \frac{1}{\alpha} > 0$$
if $x > 0$

@ \(\sigma\) \(\nu\) \(\nu\) = \(\frac{1}{4}\)

sol'n: (a) Let $\gamma_n = \frac{1}{(n+1)(n+2)}$

 $=\frac{1}{n+1}-\frac{1}{n+2}$

:. The nth partial Sum

Sn = 20+x,+---+2n-1

 $= (1-\cancel{7}) + (\cancel{7}-\cancel{7}) + (\cancel{7}-\cancel{7}).$

= '1- -

:. dt sn =1

= \(\frac{2}{x_n} = 1 \)

6. Let $x_n = \frac{1}{(\alpha+n)(\alpha+n+1)}$

= 1 - 1 - x+n+1

 $\int_{-1}^{1} dx = x_0 + x_1 + \dots + x_{n-1}$

 $= \left(\frac{1}{\sqrt{1 - \frac{1}{\sqrt{1 + 1}}}}\right) + \left(\frac{1}{\sqrt{1 + 1}} - \frac{1}{\sqrt{1 + 1}}\right)$ $- - - + \left(\frac{1}{\sqrt{1 + 1}} - \frac{1}{\sqrt{1 + 1}}\right)$

 $=\frac{1}{\alpha}-\frac{1}{\alpha+n}$

 $\therefore dt s_{\overline{n}} = \frac{1}{\alpha} > 0 \text{ if } \alpha > 0.$

@. Let an = 1 (n+1) (n+2):

 $=\frac{1}{2n}-\frac{n+1}{n+1}+\frac{2(n+1)}{2(n+1)}$

 $S_n = x_1 + x_2 + \cdots + x_{n-1} + x_n$

-> Discuss the Convergence or divergence of the following

$$\frac{3n!n!}{2n!}$$
 Let $\sum x_n = \sum_{i=1}^{n} \frac{n}{2(n+i)}$

$$= -\sqrt{\frac{1}{4}} + \sqrt{\frac{2}{6}} + - + \sqrt{\frac{n}{2(n+1)}}$$

Here
$$x_n = \sqrt{\frac{n}{2(n+1)}}$$

$$= \sqrt{\frac{1}{2(1+\frac{1}{2n})}}$$

$$\therefore dt \propto_n = -dt \frac{1}{\sqrt{2(1+k_n)}}$$

Let
$$a_n = \frac{1}{\sqrt{n(n+1)}}$$

Since
$$\Sigma g_n = \Sigma \frac{1}{n}$$
 is divergent.

soln: Let
$$x_n = \frac{n+1}{nP}$$

. Let
$$y_n = \frac{1}{n^{p-1}}$$

then
$$\frac{\alpha_n}{y_n} = 1 + \frac{y_n}{n}$$
.

$$\lim_{n\to\infty}\left(\frac{a_n}{y_n}\right)=1\neq0.$$

Since
$$\Sigma_{\eta} = \sum_{n} \frac{1}{n^{p-1}}$$
 is Convergent.

 $\stackrel{\text{h.w.}}{\longrightarrow} \sum (3n^{-1})^{-1}$

$\sum \left(\sqrt{n^3+n^3}\right)$
Sol'n. Let Mn= 103+1= 193
$= \left(\sqrt{n^3 + 1} + \sqrt{n^3} \right) \times \sqrt{\frac{n^3 + 1}{n^3}} + \sqrt{n^3}$
$\sqrt{n^3+1} + \sqrt{n^3}$
$= \frac{n^3 + 1 - n^3}{\sqrt{n^3 + 1} + \sqrt{n^3}}$
$=\frac{1}{\sqrt{n^3+1}+\sqrt{n^3}}$
$n^{3/2}\left(1+\sqrt{1+\sqrt{1}}\right)$
Let $y_n = \frac{1}{n^{3/2}}$
then $\frac{2n}{y_n} = \frac{1}{1+\sqrt{1+\frac{y_n}{y_n}}}$
$\therefore dt \frac{a_n}{y_n} = \frac{1}{2} \neq 0.$
Since $\leq y_n = \leq \frac{1}{n^{3/2}}$ is convergent
by P- Test Here P=3/2>1
By Comparison test
Ezn is convergent.
$\rightarrow \sum (\sqrt{n^2+1}-n)$
$\Rightarrow \sum \left(\sqrt{n^{k+1}} - n^{2} \right)$
3012 Let 200 - 3/17
1

	25/04
be a vicinity of the second	N. CANCONCONCE
$= n^{\frac{1}{3}} \left[(x + \frac{1}{3})^{\frac{1}{3}} + \frac{1}{3} \right]$	Weildays, s
$= n\sqrt{3} \left[\frac{1}{3n} - \frac{1}{9n} + \frac{1}{3n} \right]$	
$= \frac{1}{n^{2}} \left[\frac{1}{3} - \frac{1}{9n} + \cdots \right]$	
Let $y_n = \frac{1}{n\eta_3}$	
then $\frac{2n}{4n} = \frac{1}{3} - \frac{1}{4n} + \frac{1}{3}$	**************************************
:- 1 = 1 ±0.	
Since Eyn = \(\frac{1}{n^3 \int_3}\) is divergent	
by P-Test where P= 3/3<1	villandos
in By comparison test	Secretaria
San is divergent.	A Walley
$\longrightarrow \sum \left(\sqrt[3]{n^3+1} - n \right)$	
Note!	
Rationalisation is effective only	•
square soots are involved where	
as this method of Binomial	
expansion is general.	
Test the Convergence of the	
series.	
(a) $\sum \sin \frac{1}{n}$ (b) $\sum \frac{1}{n} \sin \frac{1}{n}$	ંજનનો છે.
(C) $\sum \frac{1}{\sqrt{n}} \sin \frac{1}{n}$ (d) $\sum \cos \frac{1}{n}$	AND
(e) $\leq \tan^{-1} \frac{1}{n}$ (f) $\leq \cot^{-1} n^{2}$	
(9) \(\frac{1}{10}\)\tan\frac{1}{10}	Anadidente uto delificio de la constanta del del constanta d
<u>& (n)</u> : (0) <u>S Sin In</u>	
let $a_n = 9in \frac{1}{n}$	
and let $y_n = \frac{1}{n}$	S
then It in all sin yn	https://t.me/upsc_po
İ	A STATE OF THE STA
	SCHOOL AND
	SK BOXES
s://upscpdf.com	https://t.me/upsc_pd

 $= \frac{dt}{h} = \frac{3in \ln h}{\ln (\ln h \to \infty)}$ since $\Sigma y_n = \Sigma - \frac{1}{n}$ is divergent. by P-Test where P=1.

.. By Comparison Test Exn is divergent.

6. Let an = 1 strin Let $y_n = \frac{1}{n^2}$ then It an - It Sin In. =1 70.

Since $\Sigma y_n = \Sigma \perp_{n^2}$ is convergent by P-Test where P=2>1.

. By Comparison test Ean is Convergent.

Q. Let 2n= In Sin h det yn = 1/3/2

let xn = cos 1 $= 1 - \frac{(\gamma_n)^2}{2!} + \frac{(\gamma_n)^4}{4!} \longrightarrow \Xi \frac{1}{n^{1+\gamma_n}}$

Let yn= 1/2 then $\frac{\chi_n}{4n} = n - \frac{1}{n \cdot 2!} + \frac{1}{n^3 \cdot 4!}$

- i dt
$$\frac{2n}{y_n} = \infty$$

since Eyn = E 1 is divergent (by p-rest)

: By comparison test Eanis divergent. (X)

It $2n = d - \cos \frac{1}{n}$ $\rightarrow \infty$

= 1 40.

Since Exn is a series of the terms.

i.e. xn>0 4n.
and It zn +0.

: Exn is divergent.

(e). Let zn=tant./n

 $=\frac{1}{n}-\frac{1}{2n^3}+\frac{1}{5n^5}-\frac{1}{7n^7}+\frac{1}{7n^7}$

(f) Let $\lambda_n = \cot^{-1} n^{2\nu}$ $= teur^{-1} \left(\frac{1}{n^2} \right) \begin{vmatrix} \cdots \cot^{-1} x = 0 \\ \Rightarrow x = \cot 0 \end{vmatrix}$ $\Rightarrow tou0 = \frac{1}{n^2}$ $\Rightarrow 0 = tour^{-1} \left(\frac{1}{n^2} \right)$

(8) Let $\alpha_n = \frac{1}{\sqrt{n}} \cdot \tan^{-1}(\frac{1}{n})^{-1}$

Let yn = 1

 $\frac{(\gamma_n)^k}{6!} + --- \frac{soi^n - \text{Let } \chi_n = \frac{1}{n \cdot n^{k_n}}$

 $=1-\frac{1}{n^2-2!}+\frac{1}{n!+1!}$ Let $y_n=y_n$ then $\frac{x_n}{y_n}=\frac{1}{n! n!}$

 $\therefore \text{ th } \frac{x_n}{y_n} = \text{dh } \frac{1}{n^{k_n}} = \frac{1}{1}$

Since $\sum y_n = \sum \frac{1}{n}$ is divergent by

. By Comparison test Exnis divergent

Alembot's Poetro Tut: If I un is a series of the larms such that @ It han =1 then Sun Converges If 1>1 di E un diverges if 1<1 dill & up may converge or diverge Che the test fails if l=1) Note: In general the ratio test is applied when fractionals & combination of powers involved. My Discuss the convergence of the following Sentes. 1+ 2! + 3! + 4! + ---solh: - tet un = nt then un+1 = (n+1)! $\frac{1}{No\omega} = \frac{n!}{(n+i)!} \times \frac{(n+i)^{n+1}}{(n+i)!}$ $=\frac{n(1+\ln n)^{n+1}}{(n+1)}$ = (1+1/2)7 un+1 = 2+ (1+1/n)" = 6 > 1 · By D' Alemberts Ratio test. Elen is Convergent. $\frac{1^{2} \cdot 2^{1}}{1!} + \frac{2^{2} \cdot 3^{2}}{9!} + \frac{3^{2} \cdot 4^{2}}{3!} + \cdots$ solh = det un = m, (n+1)2 then un+1 = (n+1)2 (n+2)2

$$\frac{(n+1)^{2}}{(n+1)^{2}} \frac{(n+1)^{2}}{(n+1)^{2}} \frac{(n$$

The state of the s	2340376.232.322
	j
	i.e. xrel
$= \frac{3}{2} \left(1 + \ln \right)^2$	i.e. if x<1
Now It is = 3	and the Series divergent.
	°f 1 <1
. By D'Alemberts test	\ -e. 2 [~] >1
Eun converges if 3/x>1	
) · · · · · · · · · · · · · · · · · · ·
ie. 2<3	If 2=1 i.e. x=1, then the ratio test
and diverges if 3/x < 1 i	-l. 2>3foils.
if = 2=3 then It un	=1 - if $\alpha=1$ then $\alpha=\frac{1}{2n}$
Ratio Test fails.	Let Un = in their
Now if $x=3$, $u_n = \frac{3^n}{3^n, n^2}$	$=\frac{1}{2n^2} \qquad \frac{\alpha_n}{\alpha_n} = \frac{1}{2}$
$\therefore \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} is Convergent$	sent by $\frac{1}{2}$ dt $\frac{\ln n}{\ln n} = \frac{1}{2} \pm 0$.
P-Test-	· Since · Sun = Et is divergent by
· Eunis Convergent if	Y≤3. P-Test.
	- by comparison test & un isdivingent
and divergent if 2>3	· Zun is divergent-
$\rightarrow \sum \frac{x^h}{Q+\sqrt{h}}$; $x>0$	if x >1
Q+Vn	and Ean is Convergent
$\geq \sqrt{\frac{n+1}{h^3+1}} \cdot x^0 : x>0$	if x<1.
√ 42 F1	* Candag Root Test!
$1+\frac{2^{2}}{2}+\frac{2^{4}}{h}+\frac{2^{6}}{6}+\cdots$	
$\frac{soin}{n}$ Let $u_n = \frac{\chi n}{2n}$ (le	aving the Sachathal
-	irst term) (term) -
then $u_{n+1} = \frac{z^{n+1}}{2(n+1)}$	all stan Converges If 1 < 1
	1 E Gooding of the 121
$\frac{1}{(a_{n+1})} = \frac{1}{2^n} \left(\frac{1+1}{1+1} \right)$	n) in San may Converge or diverge
$\therefore \text{if } \frac{u_n}{-u_{n+1}} = \frac{1}{x^r}$	if the
_Li _{η+1} χ ^γ	(ing the test fasts if 1=1).
By D'Alembert's Ratio	
Ein is convergent	n so
if 1/2 >1	4
	1

Notes the roof test is used when powers are involved.

problems:

* Test the Convergence of the

$$\frac{(d) \leq n^{2} \times n}{3n}, x > 0 \quad (e) \leq \left(\frac{n+1}{3n}\right)^{n}$$

$$\frac{\sin^{2} n}{n} = \left(\frac{n}{n}\right)^{n^{2}}$$

then
$$(x_n)^{y_n} = \left(\frac{n}{n+1}\right)^{y_n}$$
. $\Rightarrow \sum_{n=2}^{\infty} \frac{1}{\left[\log(\log n)^{-1}\right]^n}$

$$= \left(\frac{1+|\mathcal{V}|}{\nu}\right)_{+\nu} = \left(\frac{1+|\mathcal{V}|}{\nu}\right)_{+\nu}$$

$$= \left(\frac{1+|\mathcal{V}|}{\nu}\right)_{+\nu}$$

Now
$$\lim_{n\to\infty} (x_n)^{k_n} = e^{-1}$$

". By Cauchy's root test

Exn Converges.

C. Let
$$\lambda_n = \frac{1}{(\log n)^n}$$

then $\lambda_n^{Yn} = \frac{1}{\log n}$

$$\frac{dt}{n \rightarrow \infty} = \frac{1}{n \rightarrow \infty} = 0 < 1$$

. By rout test

Exn is convergent.

$$\rightarrow$$
 $\leq 5^{-n-(-1)^n}$

then
$$(x_n)^{y_n} = 5^{1 - \frac{(-1)^n}{n}}$$

$$dt z_0^{1/2} = 5^{-1}$$

$$n \to \infty$$

.. By root test

Exn is Convergent.

$$\Rightarrow \sum_{n=2}^{\infty} \frac{1}{[\log(\log n)]^n}$$

$$\sum_{n=1}^{\infty} 3^{-2n-5(-1)n}$$

Note: - Cauchy's root test is general than D'Alembert's MOLS ratio test.

because!

now un exists => It win exists.

(Cauchy's second theoremonlimits)

: whenever ratio test is applicable, · so is the soof fest.

(ii) If It un exists then

tt. un+1 may not exist.

when the ratio test fails the root test succeeds.

12

than the ratio test.

than the ratio test.

show that Caecelish root test establishes the Convergence of the series $\sum_{i=1}^{n} a_i - (-i)^{n}$ while D' Alembert's ratio test

Sol'n: det $u_n = 3^{-n} - (-1)^n$ then It $u_n = 1 + 3^{-1} - (-1)^n$ $n \to \infty$

fails to do so.

= 3⁻¹

.. By root test & un is Convergent

Now if 'n is odd ('so that n+1 is even)

$$= 3^{-n-2}$$

... It un = It
$$\frac{3^{n+1}}{3^{n-1}}$$

$$= dt \left(\frac{3!}{3-2}\right)$$

= 33

=27 >1

when nis even

(So that n±1 is odd)

$$u_{n} = 3^{\frac{n}{n-1}}, u_{n+1} = 3$$

: It un does not exist.

.. D' Alembert's ratio test feils.

* Ranbes Test

7.f & unis a series of the terms

Such that -

It n (un -1) = 1 then

is Elen Converges If 1>1-

dir Sulp diverges it 1<1.

dily the test fails if t=1.

Note! - Reabe's test is stronger than

D'Alemberts ratio test and may

succeed where the ratto test falls.

For example:

Let un = 1

$$u_{n+1} = \frac{1}{(n+1)^2}$$

: It until = It mts

$$= I + \left(1 + \frac{1}{n}\right)^{2}$$

= 1

Here e=1

: the ratio test fails.

But It $n \left(\frac{u_n}{u_{n+1}} - 1\right) = \lim_{n \to \infty} \left[\left(\frac{|u_n|^2 - 1}{n} \right) \right]$

$$= \Upsilon f \int_{\mathbb{R}^{N \to \infty}} \left[\frac{u_r}{(\mu + 1)_r} - 1 \right]$$

$$= dt \quad \pi \left[\frac{x^{n+1} + 2x^{n-1}x^{2}}{x^{n}} \right]$$

$$= dt \quad \left(\frac{1}{n} + 2 \right) = 2 > 1$$

$$= \frac{1}{n + \infty} \left(\frac{1}{n} + 2 \right) = 2 > 1$$

By Roabe's test Eun is Convergent.

Note: -① If dt $n \left(\frac{u_n}{u_{n+1}} - 1\right) \supset \infty$ then Sun & Convergent.

Zun is divergent.

- In general Rabbe's test is used when D' Alemberts ratio test fails and the salto un does not involve
- when unt involves 'e' we apply Logarithmic test after the ratio test and not Rabbe's test.

Logarithmic test:

If Zun is presented of the tome such that the notation is we apply the logarithmic test.

-then (i) Zun converges if is (in Sun diverger if 151 Time the fall of the

then $c_{n+1} = \frac{(n+1)^{n+1} x^{n+1}}{(n+1)!}$ $\frac{1}{(n+1)} = \frac{n^{n} \cdot n^{n}}{n!} \times \frac{(n+1)!}{(n+1)^{n+1} \cdot n+1}$ $=\frac{1}{(1+\frac{1}{x})^n}\cdot\frac{1}{x}$ Now It un = 1 ex

: By D'Alembest's test, the series Zun Converges if 1 >1

i.e. 2 < /p

and diverges if Yex <1

If $x = \frac{1}{6}$ then the ratio test

Now if x = /e then un - 1

since un involves the number e

Now log (un+1) = log (H/n)"

= loge - nlog (1+ 1/n)

 $= 1 - n \left[\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} - \frac{1}{3n^2} + \frac{1}{3n^$

 $= dt \quad n \left[\frac{1}{dn} - \frac{1}{3n^2} + - - - \right]$

= 1/2 < 1

the series Sun is divergent.

Lun is divergent if 2>1/e. and

Converges if x < 1/e

the Series.

 $1+\frac{1}{2}x+\frac{1\cdot 3}{2\cdot 4}x^{7}+\frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}x^{8}+\frac{1}{2\cdot 4\cdot 6}$

Sol'n: Neglecting the first term, let $u_n = \frac{1\cdot 3\cdot 5 \cdot \cdots \cdot (2n-1)}{2\cdot 4\cdot 6 \cdot \cdots \cdot (2n)} \cdot \sqrt{2n}$

 $u_{n+1} = \frac{1 \cdot 3 \cdot 5 - 1 - (2n - 1)(2n+1)}{2 \cdot 4 \cdot 6 \cdot - - (2n)(2n+2)} x^{n+1}$

Now $\frac{un}{u_{n+1}} = \frac{2n+2}{9n+1} \cdot \frac{1}{n} = \frac{1+\frac{1}{n}}{1+\frac{1}{2n}} \cdot \frac{1}{n}$

i.e. 7 < 1 & diverges if $\frac{1}{2} < 1$ i.e. 7 < 1 & diverges if $\frac{1}{2} < 1$ i.e. 7 < 1 & diverges if $\frac{1}{2} < 1$ i.e. 7 > 1If 7 = 1 then the ratio fails but when $7 = \frac{2n+1}{2n+1}$

Clearly which is not involving in e. so we capply the Raigher test.

2008. Discuss the Convergence of the Series $\frac{2}{2} + \frac{13}{2.4} + \frac{2}{2.4} + \frac{3}{2.4.6} + \frac{3}{2.4.6}$

* Graces Test:

The Eun is a series of positive terms such that $\frac{(\alpha_n)}{(\alpha_n)} = 1 + \frac{1}{n} + \frac{\alpha_n}{n^{1+\delta}}$ where $\delta > 0$ and (α_n) is a bounded sequence, then

(i) ∑un Converges if >>1 (ii) ∑un diverges if >≤1.

Note!—

(1) The test never fails as we know that the series diverges for $\lambda=1$.

Moreover, the test is applied after the failure of Ratio test and when it is possible to expand an inpowers of the Binomial Theorem (or) by appropriate method.

(2) Roabes Test (or) Grauss Test If

un does not involve the number e.

units

Best un envolves the number &

apply logarithmic test.

Hor application of Gaus Pest,

expand an in powers of has

 $\frac{u_n}{u_{n+1}} = 1 + \frac{\lambda}{n} + O\left(\frac{1}{n^2}\right) \text{ where }$

O(1) stands for terms of order h

and higher powers of In.

De Morgeon's and Bestand's Test

Elen is a series of positive

terms such that

 $\frac{dt}{N\to\infty} \left[\left\{ N \left(\frac{u_n}{u_{n+1}} - 1 \right) - 1 \right\} \log n \right] = 1$

then (1) Eun Converges if 1>1.

test is to be applied Note! - This when both D' Alembests ratio test and Raabe's test fails.

An alternative to Bestrand's

Il Zun is a series of positive

terms such that

It (n log cen - 1) logn = l

-then O- Eun Converges if 1>1.

1) Eun diverges if k1.

Note! - This test is to be applied when the logarithmic but fails.

Problem:

Let
$$u_n = \frac{13.5 - - - + 2n - 1}{2.4.6 - - - - 2n}$$

$$=\frac{2n+2}{2n+1}=\frac{1+\frac{1}{2}}{1+\frac{1}{2n}}$$

Now dt uh = 1.

· D' Alembert's Rotio test fails.

Now we apply the Raabe's test

(2)
$$\leq u_n$$
 diverger if $l < 1$: $n \left[\frac{u_n}{u_{n+1}} - 1 \right] = n \left[\frac{2n+2}{2n+1} - 1 \right]$
is test is to be amind

$$\frac{1}{2n+1} = \frac{1}{2n+1}$$

$$\frac{1}{n \to \infty} \int_{-\infty}^{\infty} \frac{u_n}{u_{n+1}} - 1 = \frac{1}{2} < 1$$

. By Roabe's test, Eun diverges

then $u_{n+1} = \frac{1^2 \cdot 3^2 \cdot 5^2 - - (2n-1)(2n+1)}{2^2 \cdot 4^2 \cdot 6^2 - - (2n)^2 \cdot (2n+2)}$

$$\frac{u_n}{u_{n+1}} = \frac{(2n+2)^2}{(2n+1)^2} = \frac{(1+\frac{1}{2}n)^2}{(1+\frac{1}{2}n)^2}$$

$$\therefore dt \frac{u_n}{u_{n+1}} = 1$$

.. D'Alembert's Ratio test fails

Now apply Roabe's test

$$= \frac{(2n+1)^2}{(1+\frac{3}{4n})^2}$$

.. Raabe's test fails.

Now we apply Gaus test

$$\frac{u_n}{v_{n+1}} = \frac{(a_{n+2})^2}{(a_{n+1})^2}$$

$$= (1 + \frac{1}{n})^2 (1 + \frac{1}{2n})^2$$

$$= \left(1 + \frac{2}{n} + \frac{1}{n^2}\right) \left(1 - \frac{2}{2n} + \frac{3}{4n^2} - \cdots + \frac{3}{n^2}\right) \cdot \frac{4n}{4n+1} = \frac{3n+7}{3n+3} \cdot \frac{1}{2}$$

$$1 + \frac{4}{3n}$$

$$= \left(1 - \frac{2\ell}{2n} + \frac{3}{4n^2} - \frac{1}{2n} + \left(\frac{2}{n} - \frac{4\ell^2}{2n^2} + \frac{6}{4n^3} - \frac{1}{2n} + \frac{6}{4n^3} - \frac{1}{2n^2} - \frac{1}{2n^2} + \frac{6}{4n^3} - \frac{1}{2n^2} - \frac$$

$$= 1 + \frac{1}{n} + 0 \left(\frac{1}{n^2} \right)$$
Now companies with

1D

$$\frac{u_n}{u_{n+1}} = 1 + \frac{1}{n} + 0 \left(\frac{1}{n^2}\right)$$

we have $\lambda=1$

i' By Gaus Test =

Zun is divergent.

Notat when D'Almeterts test falls then we may directly apply Ganutest

7 1+ 22 + 22.42 + 22.42.62+

soin - Ornitting the first term.

 $u_n = \frac{2^2 \cdot 4^2 \cdot 6^2 - - - (2n)^2}{3^2 \cdot 5^2 \cdot 7^2 - - - (2n+1)^2}$

$$\rightarrow 1 + \frac{3}{7} + \frac{3 \cdot 6}{7 \cdot 10} + \frac{3 \cdot 6 \cdot 9}{7 \cdot 10} + \frac{2}{7 \cdot 10} + \frac{3}{7 $

Sol's! - Leaving the first term,

$$u_n = \frac{3.6.9. - - (3n)}{7.10.13. - - (3n+4)}$$

$$= \left(1 + \frac{1}{n}\right)^{2} \left(1 + \frac{1}{2n}\right)^{2} \implies u_{n+1} = \frac{3.6.9 \cdot ... \cdot (3n)(3n+3)}{7.10.13 \cdot ... \cdot (3n+4)(3n+3)}$$

$$\frac{u_n}{u_{n+1}} = \frac{3n+7}{3n+3} \cdot \frac{1}{2}$$

· By D'Alembest's Ratio test

$\geq u_n$ Converges if $\frac{1}{x} > 1$ i.e. $x < 1$
i.e. x < 1
and Eun diverges if 1/2<1
1.0 2>1
If 2=1 then, the ratio test
fails.
Jans. $a = 1, \frac{u_n}{u_{n+1}} = \frac{3n+7}{3n+3}$
Now we apply Grans Test.
$\frac{u_n}{u_{n+1}} = \frac{3n+7}{3n+3}$
$\frac{u_{n+1}}{u_{n+1}} = \frac{3n+7}{3n+3}$ $= \left(1 + \frac{7}{3n}\right)\left(1 + \frac{1}{n}\right)^{-1}$
$= \left(1 + \frac{4}{3n}\right) \left(1 - \frac{1}{n} + \frac{1}{n^2} - \frac{1}{n^3} + \dots - \frac{1}{n^n}\right)$
$= \left(1 - \frac{1}{n} + \frac{1}{n^2} - \cdots\right) + \left(\frac{7}{3n} - \frac{7}{3n^2} + \cdots\right)$
$= 1 + \frac{4}{3n} - \frac{4}{3n^2} +$
$= 1 + \left(\frac{1}{3}\right) \frac{1}{n} + 0\left(\frac{1}{n^2}\right)$
Companing it with
$\frac{u_{n+1}}{u_{n+1}} = 1 + \frac{\lambda}{n} + o\left(\frac{1}{n^2}\right)$
where $\lambda = \frac{4}{3} > 1$
: By Gaurs test,
Eun is Convergent.
The given converge fxs1
and diverges if 2>1

		Meronania Section
		Services Services
$\frac{1}{1} + \frac{1}{2} \cdot \frac{13}{3} + \frac{13}{24} \cdot \frac{25}{5} + \frac{1}{3}$		ASSA
	`	
1.3.5 2.4.6 7 +	1	
	:	- X
Soln: - Maglesting the first term	,	8
we have	ł	organ
		80):6
an = 1.3.5.7 (2n-1) x 2n+1	-	
2.4.6 - (an) (an+1))	
The state of the s		. 4
* Cauchys Condensation Ter	E	Towns
	-	i gattan
det & a(n) be such that (am)	기 ·	STORE STORE
is a decreasing sequence of storet	4	9 00 00 00 00 00 00 00 00 00 00 00 00 00
		eusile:
bositive sumpers.		
South Comment (or diverse) !!	-	7,500
Sa(n) Converges (or diverges) iff		. Words
2 a (2n) converges (or diverges)		Service Servic
yei a a (51) countiles (or arrives)		· 4
Problems -	٩	. 2
	· -	2.00
$(i) \underset{n=2}{\overset{\infty}{\geq}} \frac{1}{\ln n} (ii) \underset{n=2}{\overset{\infty}{\geq}} \frac{1}{n \ln n}$	•	Same.
_ `		ortura.
(ii) \(\sum_{\text{order}} \)	-	Targetti (
n=3 n(ln n)(ln ln n)	.40	CORPORTED TO
(iv) 500 1		SESTING.
n=4. n(lnn)(lnlnn)(lnlnlnn)	وْ *	
	. • -	2000 (A)
Sol'n:-(i) Here given that		4 25 C
$\sum_{n=2}^{\infty} \frac{1}{\ln n} = \sum_{n=2}^{\infty} \frac{1}{\log n}$	-	Aplian.
n=2 lnn n=2 logn		200
	. 40	200
Put $\sum_{n=2}^{\infty} a(n) = \sum_{n=2}^{\infty} \frac{1}{209n}$	-	
Here $a(n) = \frac{1}{\log n}$.		7130 ds
luga	•	STORIES .
Since (logn) is an increasing		WHEE.
Since (logn) is an increasing sequence.	•	KINES
	•	MONTH OF
		## Sec.
•	https://t.me/up	HEARING STATE
		RANK
	·	Sec.
tps://upscpdf.com	https://t.me/up	sc_pa
•		

1 · · ·
$\therefore (acm) = \left(\frac{1}{\log n}\right) is a$
decreasing sequence.
. 5 9na (2n) = 2 2n · 1
$\sum_{n=2}^{\infty} 2^n \alpha \left(2^n \right) = \sum_{n=2}^{\infty} 2^n \frac{1}{\log(2^n)}$
$= \sum_{n=2}^{\infty} 2^n \frac{1}{12 \cdot \log 2}$
$= \frac{1}{\log_2} \sum_{n=2}^{\infty} 2^n \cdot \frac{1}{n} = 0$
Let $v_n = \frac{a^n}{n}$
then vn/n = 1/n
$\frac{1}{n \to \infty} \frac{dt}{dt} = \frac{2}{1}$
= 2>1
. By cauchy's root test,
- Eun is divergent.
= 2 na (2n) is divergent
By Cauchy's Cordensation test
$S = \alpha(n) = S = \frac{1}{2nn}$
is divergent.
i, Given that
$\frac{8}{n_{2}} \frac{1}{n \ln n} = \frac{8}{n \log n}$
put & agn) = & - 1
Here a(n) = 1
Since (nlogn) is an increasing

31.
sequence.
$\therefore (a(n)) = \frac{1}{(n \log n)} \text{ is } a$
decreasing sequence.
$\sum_{n=2}^{\infty} 2^n \alpha (2^n) = \sum_{n=2}^{\infty} 2^n \frac{1}{2^n \log \lfloor n \rfloor}$
$=\frac{1}{2}\frac{1}{n=2}\frac{1}{n\log 2}$
$=\frac{1}{\log 2}\sum_{n=2}^{\infty}\frac{1}{n}$
is divergent by P-Test where P=1-
By Cauchy's Condensation test.
$\sum a(n) = \sum \frac{1}{n \ln n}$ is divergent.
lii, Given $\leq \frac{1}{n=3} \frac{1}{n(\ln n)(\ln \ln n)} = \frac{1}{n}$
$\frac{2}{n=3}\frac{1}{n(\log n)(\log \log n)}$
Put $\leq a(n) = \leq \frac{1}{n(\log n)(\log \log n)}$
Here $\alpha(n) = \frac{1}{n(\log n)(\log \log n)}$
Since (n(logn) (log logn)) is an
in (reasing sequence-
. (a(n)) is a decreasing sequence
$1 \leq z^{\eta} \alpha^{-} (z^{\eta}) = \leq z^{\eta} \frac{1}{z^{\eta} (\log z^{\eta}) (\log \log z^{\eta})}$
(29/2)(9/2)
= \(\langle \
= Exn. (Say)
Since Tog2<1
•

```
Pair \sum_{n=4}^{\infty} a(n) =
   net n(logn) (log logn) (log log logn)
Here \alpha(n) = \frac{1}{n(\log n)(\log \log n)(\log \log \log n)}
 Since (n(togn) (log log logn) is
 an increasing sequence.
i.(a(n)) is a decreasing sequence
1. ≥ 2n a(2n)=
 Sy (lod 7) (lod lod 2) (rod fod 7)
      (nlogz) (lag (nlogz))(log log(nlogz)
= \frac{1}{\log_2} \ge \frac{1}{n(\log n \log 2)(\log \log n \log 2)}
= \(\suy)
 Since log2 < 1
⇒ lognlog2 < logn — A
⇒ log log n log2 < log log n
tog logn log2 > log logn
\Theta =
logn loge > logn
```

from O, O, D five,

n(logn 10g1). (log Logn 20g2) n(logn)(log logn)

= yn say

: x"> A". Au

i.e. yn xn yn

But by 13,

diverges (byliii))

: By Comparison test

Σχη also diverges.

: By Cauchy's Condensation test,

Za(n) diverges. . .

-> If C>1 then show that

the following series are convergent.

@ = + nllogn)c

 $\underline{\underline{sd'n}}$:(a) $\Sigma a(n) = \sum_{n} \frac{1}{n(\log n)^n}$

is decreasing for C>1.

 $\sum 2n \sigma(3n) = \sum 3n \frac{3n(\log n)}{1}$

= > (nlog2)E

 $=\frac{1}{(\log 2)^c} \ge \frac{1}{n^c}$

Since $\sum \frac{1}{n^c}$ is convergent for

: E 2na (2n) is convergent.

.. By Causlys Condensation test,

∑a(n) is Convergent.

Comparison test: Note! Let & un and & vn be two terms and let h&k be the real numbers such that hun < tin < kun Vn Then the Series -Sun & Sun-Converge (or) diverge together. > Examine the following series for Convergence. (i) $\sum \frac{1}{(\log n)^{\log n}}$ (ii) $\sum \frac{1}{(\log \log n)^{\log n}}$ riii, Ezlogn Soin: - (i) Since It log(logn) = 0 · we can find n so large that log(logn) >2 r gols < [(ngal) gal Ingal log (logn) logn > logn2 => (logn) logn > m2 (rodu) rodu < 12 -Since & 1 1s convergent (by P-Test)

E- (logn) logn is convergent dis since It log(log.logn) = 00 So looge that log(log logn) >2-> logn. log(19 logn)>2logn ⇒ log (log logn) logn > logn2 > (log logn) togn > n2. (rogradu) rogu < 12 Since $\leq \frac{1}{n^2}$ is Convergent. .. By Comparison test. E (log sogn) logn is convergent (iii) since the multiplication of numbers is Commutative. : logn logr = logr logn $\Rightarrow \log(x_{10}, y_0) = \log(y_1, y_0)$ => stogn =nlogs · Erlogn = Enlogr -= 1 = -10gx By P-Peit it is convergent. if -logr>1 ie. if logr <-1 he if logr z-loge

i.e. if logr < loge i.e. if 8<1 : Exlogn converges iff r</2. * Alternating Series: A Series with terms alternatively the and -ve is Called an alternative series. i.e. u,-42+43=44+--+(-1) n-1 untwhere un>0 yn is alternating series and is shortly written as 5 (-1) n-1 un. * Leabnite's Test on Alternating Senies The alternating series $\geq (-1)^{n-1}u_n = u_1 - u_2 + u_3 - u_4 + - -$ un>O V To Conveyer if is un> untito and 也 tan =0 Note: - the alternating series will not be convergent if any one of the two Conditions is not satisfied: 4 Absolute and Conditional

Convergence

A series & un is said to be abstitutely convergent if the series of the s

7 If Sun Converges but not absolutely. i.e. stant diverges then the Series Eun is Called Conditional Convergent (Or) Semi-Convergent (Or) non-absolutely Convergent. Note: - Every absolutely convergent Series is convergent but convergent Series need not be absolute Convergent 5 (-1),n-1 = 1-1/2+1/3-1/4+ Sdn:- let un= In then un>0 yn Since in > 1 An. ⇒ un >un+1 Vn and It is n = dt + 1 = 0. i By leibnitz's test, S_C-117-1 Convergent. But the series $\geq \frac{(-1)^{n-1}}{n}$ = 5 is divergent ______(by P-Test) Problems:-

Problems:—
Test the Convergence and absolute convergence of the series.

(i) 1-1/3+1/5-1/4+----

Solly - The given series $\sum u_n = \sum \frac{(-1)^{n-1}}{2n-1}$ = E (-1)n-1 vn It is an alternating Series. Here $\sqrt{n} = \frac{1}{2n-1} > 0 \forall n$ Un+1 = 2n+1 3ince 2n-1 < 2n+1 Vn $\frac{1}{a_{n+1}} > \frac{1}{a_{n+1}} \forall n$ ⇒ Vn > Vn+1 ∀n and It is =0. .. By Leibnits's test, the series is Convergent. Now $|u_n| = \frac{1}{2^{n-1}}$ Since 1 > 1 7 7 7 $\sum \frac{1}{2n} = \frac{1}{2} \sum \frac{1}{n}$ is divergent (by P-Test). By Comparison test, $\sum_{n=1}^{\infty}$ is divergent. : \S lunl is divergent. : the Jenes S(-1)ⁿ⁻¹ is Conditional Convergent · 1 - + + - - + + -

7 -1 -1 -1 -1 -1 -1 -1 sol'n: the gaven series is $\sum v_n = \sum \frac{(-1)^{n-1}}{n \cdot (n+2)} = \sum (-1)^{n-1} v_n$ It is an alternating series. 1092 1093 1094 1095 Sol's :- The given series is $\sum u_n = \sum_{n \in I} \frac{(-1)^{n-1}}{\log(n+1)}.$ = \(\big(-1 \)_{21-1} \(\big)^{\nu} \) . It is alternating series. -Here In = 1 log(n+1) and $v_{n+1} = \frac{1}{\log (n+2)}$ Since (n+1) = (n+2) \forall n log(n+1) < log(n+2) vn > log(n+2) > log(n+2) \n ⇒ Vn > Vn+1 4n. It Bn = dt log(n+1) By Leibnitz's test, the series is Convergent -Now lund = log(n+1) -Since log(n++) <(n++) YA

18

	<u> </u>
• • •	$\Rightarrow \frac{1}{\log(n+1)} > \frac{1}{n+1} + \frac{1}{n+1} $
	Since $\sum \frac{1}{n+1} = \sum 2n (Say)$
•-	det an = 1111
•	and $y_n = k_n$
	then $\frac{2n}{4n} = \frac{1}{(1+1/n)}$
· .	1 dt 2 = 1 70.
·	Since \(\frac{2}{3}\text{yn} = \frac{1}{n}\) is divergent
- :	(by P-Test)
. •	: By Comparison test
	$\sum x_n = \sum_{n+1} is divergut.$
	again by Comparison test
	$\sum u_n = \sum \frac{1}{\log(n+1)}$ is divergent.
	$u_n = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)}$
	is conditional Convergent.
.	> show that \(\sum_{n=1}^{\infty} \text{Ch}^n \tau \)
	absolutely Convergent.
	$\frac{\text{Sol'n}}{\sum_{n=1}^{\infty} \alpha_n = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n!}}$
	$\left \left \left$
-	$\left \frac{u_{\eta}}{u_{\eta+1}} \right = dt \left(\frac{n+1}{2} \right) = \infty > 1$

.. By D'Alembert's satio test. 2 Juni is Convergent. ". The Fiven alternating Perics is Obsolutely Convergent. Abels Test: If 5 an is Convergent and the sequence - { bn } is monotonic and bounded then San-bn's Consequent Problem ()! Test the Convergence of \frac{5}{2} \frac{C-11^{n-1}}{12} \left(1+ \frac{1}{2} \right)^n sol's: Let $a_n = \frac{(-1)^{n-1}}{n}$ and $p^{2} = \left(1 + \frac{1}{n}\right)_{n} \neq n$ clearly Ean is convergent -(by leibnitz's Test) and the Sequence {bn} is monotone (increasing) and bounded. Hence by Abeli Test, the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent. Postion D Feet the Convergence of 822 - 53 - 142 - 1

$$\frac{\text{Sol'n'}}{3 \cdot 2^{2}} + \frac{1}{5 \cdot 3^{2}} + \frac{1}{4 \cdot 4^{2}} + \cdots$$

$$= \frac{\sum_{n} (2n-1)^{n-1}}{(2n-1)^{n^{2}}}$$

$$\det a_{n} = \frac{(-1)^{m-1}}{n^{2}} \text{ and } b_{n} = \frac{1}{2n-1}$$

Soilo: show that the series $\frac{(n+1)^{3}-n}{2} \text{ is convergent.}$ Soilo: Let $a_{n} = (n^{5}+1)^{3}-n$, $b_{n} = \frac{1}{\log n}$ then the series can be writtenes $\sum_{n=1}^{\infty} a_{n}b_{n}.$ Now $a_{n} = (n^{3}+1)^{3}-n = n\left(1+\frac{1}{n^{3}}\right)^{\frac{3}{3}}-n$ $= n\left[1+\frac{1}{3}\cdot\frac{1}{n^{3}}+\frac{1}{3}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{3}-\frac{1}{n^{6}}+\cdots+\right]$ $= \frac{1}{n^{3}}\left[\frac{1}{3}-\frac{1}{4n^{3}}+\cdots+\right]$

Take $C_n = \frac{1}{n^2}$ then $\frac{Q_n}{C_n} = \frac{1}{3} - \frac{1}{q_{n^2}} + \cdots$

It $\frac{\sin x}{\cos x} = \frac{1}{3}$ which is finite and $\frac{\cos x}{\cos x} = \frac{1}{3}$

By Comparison test. Σ an and Σ Converge (or) diverge together.

But Σ Convergent.

Ean is Convergent.

Also (bn) is -a monotonically decreasing sequence of the terms and bounded below.

By Abeli test the Series

2 and an is Convergent.

H Dirichtetis Text

nth partial sum Ism I sbowded

and Schofts a monotonic Sequence Converging to Zero -then Z Convergent. > Note! Leibnita's Test as a particular case of Dirichlet's Test! The series 5 (-1) n-1 has boarded Partial sums Since $S_n = \begin{cases} 1 & \text{if n is odd.} \end{cases}$ $\begin{array}{c} S_n = \begin{cases} 1 & \text{if n is odd.} \end{cases}$ If [and is a monotonically decreasing sequence of the numbers Convergent to O i.e. if (i) an>0 then (1) an>anti Vn in an to asn -> 0 then by Dirichlet's test. the series $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ i.e. the alternating series. a,-a2+a3-a4+ --- is convergent. Problem: - Discuss the Convergence of $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n}$, (P>0) $\underline{\operatorname{sol'n}}:=$ Let $a_n=(-1)^{n-1}$ and $b_n=\frac{1}{n^p}$ then the series & an = 5(-1)n-1 has bourded partial Sums, Since sn = { 1 if n is odd and the sequence $\{b_n\} = \{\frac{1}{nP}\}(P>0)$ is monotonically decreasing sequences of the numbers convergent to c

i-e. (i) bn>0 4n

(ii) bn> bn+1 4n

(ii) bn>0 as n>0

Hence by Dirichlet's Test & anbnis

Convergent.

* Rearrangement of Terms: E by is said to arise from a series 5 an by a rearrangement of terms if there exists a one-to-one Correspondence between the terms of the two series so that every an is some by and conversely. for example, the series. 1+3-12+15+17-14+ is a rearrangement of series 1-2+3-14+15-16+--ie 1-3+5-4+5-6+ on rearranging the terms so that term is followed by each positive two negative terms, 1-5-14+13-16-18+15-10-12+

— If we add finitely many numbers, their sum has the Same value. no matter how the terms of the sum arranged. But this is not so when infinite series are involved. An

devangement (or equally every devangements) or change in the order of the terms in an infinite series may not only after the sum but may change its rattere all together.

Converging to s', then any

derangement - Ean also converges

ii) If I an is divergent positive term. series then so also is I bn.

Dirichlet's theorem():

If \(\sum_{\text{n=1}} \alpha_n \) is an absolutely Convergent

Series then every derangement

\(\sum_{n=1}^{\infty} \) by also Converges absolutely to

the same sum as the original series.

A conditionally convergent series can be made by detangement of terms. (i) to Converge to any real

* Riemann's Theorem :-

city to diverge to any two or -00.

Problem! (1) Discuss the Convergence of the series - 1+/2-22+/52-42+6 soi'n: - the given series is a rearrangement of the Series 1-12+32-42+ which is absolutely Convergent. Hence by the Dirichlet's theorem, the given series is convergent: Note: - Riemann's method is of theoretical importance only for pratical applications, the method given by pringsheim's is useful (Ind) pringsheim's Method: Let f(n) be a tre fin decreasing to zero as n-> or. Then by Leibnita's test, the alternating - Series 5 (-1)n-1-f(n) is convergent Let the terms of the E-(1)n-1 f(n) be rearranged by taking alternatively & positive terms and progrative terms. If g=mf(m) and K= 1/B. then the alternation in the sum due to this rearrangement is Lalogk. In particular, if Fen) = /n.

then $\sum_{n=1}^{\infty} (-1)^{n-1} f(n) = \sum_{n=1}^{\infty} (-1)^{n-1} f(n)$ =1-2+3-14+---then we know that the series is Conditionally convergent and its Sam is logz. Also g = m-fcm) $= xy \cdot \frac{xy}{1} = 1$. If the terms are rearranged by taking alternately & +ve terms & B -ve- terms. then the Sam of new Series is log2 + 13 logk = log2+ 1/2 logk Problems: Offind the sam of the series 1-12-14+13-16-18+15soin; The given series. 1-12-14+13-16-18+15is rearrangement of the series = 1-1/2+1/3-1/4+1/5: --= = == (-1)"-1/1 and is Conditionally convergent and whose sum is log2. Here the rearranged given series is formed by taking afternatively one the and two -ve terms. Let a be the toc terms & B be the -ve terms. then k= 4/B= 1/2. and g=mf(m)=m.1=1

the sum of the rearranged given

Series is $\log 2 + \frac{1}{2} \int \log k$. $= \log_2 + \frac{1}{2} \log \frac{1}{2}$ $= \log_2 - \frac{1}{2} \log_2$

 $= \log_2 - \log_2$ $= \log_2 - \log_2$ $= \log_2 - \log_2$

> find the sum of the sedes.

c) 1+13-13+15+17-14+19-

(ii) 1-13+15-12+14+19+11-12-18

Series 1-13+13-14+15-16+---will reduce its Sum to zero.

Soin: - The given series is

1-1/2+1/3-1/4+1/3-1/6+--=\(\Sigma\) This Conditionally Convergent with

It is conditionally convergent with Sum Log2.

Let it be deranged by taking alternately α +ve & β -ve terms & that $k = \alpha/\beta$.

and g=mf(m)

 $=m\cdot\frac{1}{m}=1$

The skin of the deranged. = Tog2 + 12 glogk.

= leg 2 + 1/2 log K.

But the sun is given to be Zero.

To get the sam zero, one the term should be followed by four -ve terms.

the deranged series.

1-1/2-1/4-1/6-1/8+1/3-1/10-1/2-1/14-1/6

+1/5+-----

Scries 1-1/2+1/3-1/4+1/5----will reduce its sum to 1/2/092.

the Rearrange the series.

 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ to converge to 1.

i.e. what derangement of the series of the series of the series its

Sum to 1.

(auchy product of Two Profinite series! If Ear and Eby are two enfinite series then theer product, called the country product, it defends as E cy where Cu = a, bn + arbny + arbny tenb, = Earbnery for each new Thus & Ch = (& ch) (& bn) = (aj+a++---) (bj+b++----) = alb + (a1 b2 + a2 b1) + (a1 b3+a b3+a) The teams by the product are so arreage that all to terms which have the same sum of sufficiel are brincketed together. NOTE: (1) The cauchy product of Ean and Ellin Fi defensed as E Ch where ch = aob, + a, b, , + a, b, , + ... + co, 60 = E Grbn-r for each n Gal. (3) Ch = = arbnart1 = = an an-r+1 br and Ch = E ar bn- = E ampor. (3) If E an and E on converge the ft per necessary that & Cy of & cu converges if () Ean and Eby are convergent served

- (ii) Ear and E by are absolutely convergent
- (ii) É au aird É by are convergent and

one of them is absolutely convergent.

() If E an and E by are two series of hon-negative terms converging to A and IR respectively their their cauchy product & Ch

converges to AR. (ii) It Eight and Elm are two absolutely

convergent series such that & an EA a Ely=1 Then their cauchy product & cy

of also absolutely convergent and E on = Ass.

(iii) Merten's Theorem
Let San end Sobre two convergent

Scries and let & on converge absolutely.

moduct. En converges to A.R.

> Cesaro's Theorem! If two sequences (on) and (by) converge to 'a' and b' respectively, then the sequence (m) where xu= abn+abn++....+aub,

converge to chi:

7 Moel's Test: - Let & an and & by be

two convergent server such that

San=A and Ebnza. If their carely product

En converges, then En in = A.T.

Series = (1)47 well itself is not convergent Sol Given that (-1)h1 . Fet an = bn = (-Dht), the .. By Leibnitz's test, the series & and Ely are both convergent (but not chrotusely) the crucky's product of the two cerre (of where che appropriate of the $0 = \frac{(-1)^{n}}{1} \cdot \frac{(-1)^{n+1}}{n} + \frac{(-1)^{n+1}}{2} \cdot \frac{(-1)^{n+1}}{n-1} + \frac{(-1)^{n+1}}{2} + \frac{(-1)^$ ··· + (-1) - (-1) 0 $= (-1)^{n+1} \cdot \left[\frac{1}{1 \cdot n} + \frac{1}{2 \cdot (n-1)} + \frac{1}{3 \cdot (n-2)} + \cdots + \frac{1}{n-1} \right].$ = (-1)21-1 [2-1-(n) (n) +1 - = 1 (6/7/+0h1/4) Ky =) IK Call tin. Rie statisdat - Elapsodyt LF (u \$0 (By con-gander)

Hence Ech converge. Note: The chare example illustrates that the rouchy product of two underionally convergent series need not be necessarely convergente: Show that the country product of the invergent series (4) ht with steelf is not convergent. 501 Let | cn = 6n = (-1) non, non By Les buitz's test, the sentes Ean and Elm are both convergent (but not esosoweely). The cauchy product of the two serves PS & Cy; where (n= c16n+a26n-1++tmb) - + (-1) - . (-1) -> (-1) h 1 [1 + 1 / h.n + 1 / h.n] = (-1) 1 [1 + 1 + 1 + 1 + - - - + 1] = (-1) n -1 [n] 1 Ch | 7/ 4 h (m) 一一十二十一 - Hence & Ch Cannot Converge

Dy show that the couchy product of the convergent series (4)h with stielf is not convergent sol Let an = by = (-i)h, th cal. By Lelbrita's test, the series & an end & by are both convergent (but Kot distutely). The couchy product of the two serves Es Ety where Cy= 96n+a2by-1+....+cnb1 = (-1) 1 (-1) + (-1) - (-1) + + 7/(H) n+1/ ((n+1) + ((n+1) (n+1) (h+1) (h+1) $= (-1)^{n+1} \left(\frac{n}{n+1} \right)^{-1}$ i. (h) / (-) " (h) - + (N) 1 Ch / 1 , the . Since & my fit divergent (By comparitor test) = [un | of divergent => L+ (4 +0. Hence Ech Courant Converge Server the country product of two devergent and & by = ++1+1+1+1+1+...... 18 convergent.

https://t.me/upsc_pdf

San and Ely are geometric server with common ratios and I respectively. sence the geometric senies & in is divergent -for ry11 . The series Ean and Eby are both direngent The cauchy product of the two gives serves is on, where (n = abn+ anbny + of by-zt ... + any by = 2.1+2.1.+2.1+2.1+2.1+. · + 2 -1 +2 -1 (-1) = 2+ (2+2+23+ ...+2+2)-2+7 $= 2 + \frac{2(2^{n-2}-1)}{94} - 2^{n-1} \left(\begin{array}{c} 3 \\ 3 \end{array} \right)$ ニュナタトナーコーメルブ 二〇 サックノレー Thus & Cy = -2+0+0+0+ clearly which cgs to -2. Services Ecu = 1-3 - (3/2) - (2/2)- $\lim_{h \to 0} \frac{1}{h} = 1 + \left(2 + \frac{1}{2^{1}}\right) + \frac{3}{2} \left(2^{1} + \frac{1}{2^{2}}\right) + \left(2^{2} + \frac{1}{2^{4}}\right)$

Ps convergent.

sol for with Ean is a geometric series with common ratio of (71). Also Eby-is a series of positive forms and buy! In fal Space Lt by + 0 : Eby 15 divergent The cauchy orroduer of the two gives some English where and -for 4711, Co = ao by taxon taxon taxon tango tanto $=1.\left(\frac{7}{2}\right)^{n-1}\left(2^{n}+\frac{1}{2^{n+1}}\right)-\left(\frac{7}{2}\right)\cdot\left(\frac{7}{2}\right)^{n-1}\left(2^{n-1}+\frac{1}{2^{n}}\right)$ $-\left(\frac{7}{2}\right)^{2}\left(\frac{7}{2}\right)^{\frac{1}{2}}\left(2^{\frac{1}{2}}+\frac{1}{2^{\frac{1}{2}}}\right)^{-1}$ $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{2}{2}$ = \left(\frac{3}{2}\right)^{57} \left(2^{5} + \frac{1}{3^{5}+1}\right) - \left(2^{57} + 2^{57} + \dots + 2\right)$ $-\left(\frac{1}{2^{n}}+\frac{1}{2^{n+1}}+\frac{1}{2^{n}}\right)-\left(\frac{7}{2}\right)^{n}$ $= \left(\frac{3}{2}\right)^{n-1} \left[2^{n-1} - \frac{1}{2^{n-1}} - \frac{2\left(2^{n-1} - \frac{1}{2^{n-1}}\right)}{2^{n-1}} - \frac{1}{2^{n-1}} \left(1 - \frac{1}{2^{n-1}}\right) - \frac{3}{2^{n-1}} \right]$ $= \left(\frac{3}{2}\right)^{1/2} \left(\frac{9}{2} + \frac{1}{3^{2}+1} - \frac{9}{2} + 2 - \frac{1}{2} + \frac{1}{2} - \frac{1}{2}\right)^{1/2}$ $= \left(\frac{3}{2}\right)^{n-1} \left[\frac{3}{2} + \frac{1}{2^{n+1}} + \frac{1}{2^{n}} \right] - \left(\frac{3}{2}\right)^{n}$ $= \left(\frac{1}{2}\right)^{n-1} \left(\frac{7}{2} + \frac{3}{2^{n+1}} - \frac{3}{2}\right) = \frac{2^{n-1}}{2^{2n}} = \left(\frac{7}{4}\right)^{n}$

$$\Rightarrow \sum_{h=0}^{\infty} C_h = \sum_{h=0}^{\infty} \left(\frac{7}{4}\right)^h$$

clearly which is a geometric series of positive terms with common resio : 3 (<1) is absolutely arrangent

(1) S.7 the couldy modult of two divergent series $\leq \alpha_1 = [-\frac{3}{2} - (\frac{3}{2})^2 - (\frac{7}{2})^3 - \cdots$

 $\sum_{n=1}^{\infty} b_n = 1 + \left(2 + \frac{1}{2^n}\right) + \frac{2}{2} \left(2^n + \frac{1}{2$ $\left(\frac{3}{2}\right)^{2}\left(2^{3}+\frac{1}{24}\right)+\cdots$

In enample (an is the (n+1)th term of so such the season where as an enample (6),

as is the nts term of East

prove that the cauchy product of the two serves 3+ Z 3 and -2+ Z 2' es absolutely Convergent, although both the series are divergent.

8017: Let & an = 3+3+3+33+ ... = 3+ & 17 and Z by = -2+2+2+23+....= -2+ & 27

> Show that

 $(1-\frac{1}{2}+\frac{1}{8}-\cdots)^2 = \frac{5}{5}(-1)^{n-1} \left[\frac{1}{1+n} + \frac{1}{2(n-1)} + \frac{1}{2$

Let $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} = \sum_{n=1}^{\infty} a_n$ then San converges (conditionally).

By Abel's test if the cauchy product
$$\sum_{n=1}^{\infty} C_n$$
 of $\sum_{n=1}^{\infty} (2)$

with fibely converges,

then $(\sum_{n=1}^{\infty} a_n)^2 = \sum_{n=1}^{\infty} C_n$

NDW

 $C_n = 1 \cdot \frac{C_n}{C_n} \cdot \frac{1}{2} \cdot \frac{(-1)^{n-2}}{(-1)^n} + \frac{(-1)^{n-2}}{(-1)^n} \cdot \frac{(-1)^{n-$

$$\Rightarrow |Cn| > |Cn+1|$$

$$\therefore \text{ By Feibmit 2's test, the alternating server}$$

$$\frac{Z}{N} = \sum_{n=1}^{\infty} (-1)^{n-1} \left[\frac{1}{1 \cdot n} + \frac{1}{2(n-1)} + \cdots + \frac{1}{n \cdot 1} \right] \left(\frac{b}{J} \left(\frac{a}{J} \right) \right)$$

$$Converges$$

$$(1-\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\cdots)^{n-1} = \sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{1}{1 \cdot n} + \frac{1}{2(n-1)} + \cdots + \frac{1}{n \cdot 1} \right)$$

$$(1-\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots)^{n-1} = 2\left(\frac{1}{2} - \frac{1}{3}(1+\frac{1}{2}) + \frac{1}{4}(1+\frac{1}{3}+\frac{1}{3}) + \cdots + \frac{1}{3} + \frac{1}{4} + \cdots \right)$$

$$= 2\left(\frac{1}{2} - \frac{1}{3}(1+\frac{1}{2}) + \frac{1}{4}(1+\frac{1}{3}+\frac{1}{4}) + \cdots \right)$$

$$= 2\left(\frac{1}{2} - \frac{1}{3}(1+\frac{1}{2}) + \frac{1}{4}(1+\frac{1}{3}+\frac{1}{4}) + \cdots \right)$$

* Infinite products:-Af (an) is a sequence, then He produce aparajources is called an ser feele product and is denoted by IT an or straply by Than ive Han = gravag 'and is called the bits factor of the product. The product of ferst in terms of the sequence (ai) is called the hts partial product and is devoted by Pn. .. This P = 91.82.63...... = Mar The sequence (Ph.) is called the sequence of partial products of the sequence (an) * convergence of Infente products: Let Ph = IT ar bethe nt partial product of the sufferste product IT an. (i) It no factor as & zero, then the product II to converges if the sequence (Ph) converges to a non-zero finite number The FLED P then P is called the value of the product and we write Tran= P. - It it Py = athen the module IT air is said to diverge to 2 If the Pin = 0, then the product Than is said to

(11) It sufferettly many factors on are 30001 the the product II an is said to diverge to or (iii) of finitely many factors an are zero, then the product II an said to converge it converges when the 3000 factors are removed (iv) If a freete number of factors are negative, their there enters a josetive histoger m' such that and the product Man er said to enverge if the module Sily ce II an = an an II an h= not (V) If the sequence (Pn) oscillates, then the modulet 17 an it said to occillate. Note: 1. It is usually convenient to write the factors of the Ruffenste product as I tay Enstead of an Thus an Restalte modult is usually system as TT (1+an) and Pr= 17 (2+ar). 1) we shall assume throughout our discussion that and I seltan >0 the sotsat log (sean) is defined for all n.

https://t.me/upsc_pdf

where
$$S_n = \frac{1}{2} \log (1+\alpha_n)$$
 is the nth of pour Hed sum of the series $\frac{1}{2} \log (1+\alpha_n)$
 $P_n = e^{S_n}$
 $P_n = e^{S_n$

Hence the green sentiente mod $\lim_{h \to 1} \left(1 - \frac{1}{(h+1)^{2}} \right) = \frac{1}{2}.$ Hey show that the suffer fre moducet $\left(1-\frac{2}{2\cdot 3}\right)\left(1-\frac{2}{7\cdot 4}\right)\left(1-\frac{2}{4\cdot r}\right)$. (i) $\prod_{n=1}^{\infty} (1+\frac{1}{n})$ and (ii) $\prod_{n=1}^{\infty} (1-\frac{1}{n})$ are both divergen converges to 1/3 (sol ()) Given restructe product 12 (1) (+1) = [] (+1) $\frac{1}{1} = \frac{2}{1} \cdot \frac{3}{3} \cdot \frac{7}{5} = \frac{(n+1)}{3}$ Let Pn = 17 (K+1) $=\frac{x^{2}}{1}\cdot\frac{x^{2}}{2}\cdot\frac{x^{2}}{2}\cdot\frac{x^{2}}{2}\cdot\dots\cdot\frac{x^{2}}{2}\cdot\frac{x^{2}}{2}\cdot\dots\cdot\frac{x^{2}}{2}\cdot\frac{x^{2}}{2}$ The given fur frenche product $\Pi(1+L_5)$ it det.

i.e $\Pi(1+L_5) = \omega$. NOW HPM = 00 (ii) $\prod_{1 \neq 1} (1 - \frac{1}{y}) = \prod_{n \neq 1} (\frac{n-1}{y})$ · Ph = 1 2 2 ... King = 1 => 1+ Pn = 0 (dgs to '0 $-\frac{1}{2}$

Let $P = (1 - \frac{1}{2})(1 - \frac{1}{2})(1 - \frac{1}{4})$ lgg p = log (1-1/2) + log (1-1/32) + $\cdot = \underbrace{\$ \log \left(1 - \frac{1}{h^2}\right)}_{\bullet}$ = E an (say) -1. 1100 = cy = 10g ("1-1") --- (2+ 2× + 2) = -1 1+ 1 + 1 + 7h4 7 ---) Let by = 1 +n then ht cur or hold that ere Sby = 3 Ly 13 cg+ (by 1-Test) isy emparison test, a). is convergent to fruste is from O, logp = a faite number's when if P = a flytte under e when .. The gren moduct is egt.

Show that the suffered mo $\frac{7}{2} \cdot \frac{3}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{7}{6} \cdot \cdots \cdot \frac{(2h-1)}{2h} \cdot \frac{[2h+1)}{2h}$ 5.1 the sufferste moduct (1+/2) (1-1/3) (1+/4) (1-1/5) (onverges to 1: Sil Gersen fuffulte moduct is (1+1/2) (1-1/3) (1+1/4) (1-1/5). Let P = (1+1/4) (1-1/4) (1-1/4). 1 then 10gp = 10g((1+1/2)(1+1/4)]+10g[(1+1/4)(1-1/2)] + + Tog [(+ 1/2)) (1 - 1/2)) + $= \underbrace{109}_{h-1} \left(1 + \underbrace{1}_{2h} \right) \left(1 - \underbrace{1}_{2h+1} \right) \right)$ = 50 10g [1+(1/21-1/21)-1/24(2441)). = \(\frac{\xeta}{\partial} \left| \frac{1}{\partial} \left| \frac{1}{\ · = = 108[] = 0. The given suffiste modult is A necessary consistion for convergen If the product - I (Itan) it convergent,

moof Given that M (1+an) is egt and it gs to p (say) : P+O; L+Ph=P and L+Ph-J=P 210 w Ph = (1+ C1) (1+ C1) (1+ C1) (1+ C1) (1+ C1) Pn = (1+ah) · + + (+ ch) = hope Phr 1+(1+ch) =1 10tel!- The converse of the above need wor i eil he and i e and och who heed with The referete modulet as an = 1, - 10 as h-10 but the modult is diverget Che La General mensiple of convergence of an enfinite moduce. A necessary and sufficient condition for for the convergence of the enfinite moduce T(1+an) is that for every E>0, there emitts a positive Ritager on s.t / Ph+P -1/ < + xn>m, N>1. Alote! In order to establish the convergence (or diver ence) of so forthe moderate, we now give the following statements.

Ty of an 7,0 then the series & an ac He product [(1+ an) converge or diver J. H -1 Can 60, then the series the moduct ((1+as) converge or diverge Hogether. # 05 buch then TT (-by) converges non-zero finete limet, it & by denverges en diverges to zero if Elon diverges. If the serves & and is convergent, then the modulet Ti (1+24) and senies East converge or diverge together If san is convergent, then we have san £ log(140n) converge or diverge together-Also Slog (1+an) and S(1+an) converge or diverge to gether. H Zan converges, then Z log (1+an) converges and therefore IT (Itan) Converges. if Zan diverges to 2, then Z log (1+an) diverges to a and therefore To (1+an) divergento-so. > if \(\mathbb{E}\) and diverges to -0, then \(\mathbb{E}\) log((1+an)) diverges to -a and therefore of (Han) diverges to zero.

Also, if san diverges and san converges or oscillates finitely then The (14an) diverges to sero -> Absolute convergence of Infinite products The product Tilitan) is said to be absolutely convergent of the product To (1+1an1) es convergent. The product The (1+an) of absolutely convergent its the series & an is absolutely convergents The product to (1+an) is absolutely convergent iff the Series & log (Itan) is absolutely convergent. > Every absolutely convergent infinite product is convergent. The of The circum is an alroquitely convergent (in the off (ittent) is cgr) (1) (1+on) is cot. NIOTE: - The fectors of an absolvery convergent infrarte product may be rearranged un any order without affecting its convergence buspens (i) $\prod_{n=1}^{\infty} (1+\frac{1}{n^2})$ (ii) $\prod_{n=1}^{\infty} (1+\frac{1}{n^2})$ (iii) $\prod_{n=1}^{\infty} (1+\frac{1}{n^2})$ (iv) (iv) 17-(1+1/2), 0< < < 1 (v) 1/2 (1+1/2) (v) 1/3 (1+1/2) Sol (1) grein, moduct is

[1] (1+1) = II (1+an), where an = 1 >0

- Diffines the (i) fi (I+ smo) (ii) fi (I+nsmo) (iii) TI (1+ 2 b) ; where x is the real winder sol The green moduetis / (1+51/2 0) = 11(1+a) the modult // (1+an) and the NOW an = Sur o = (su o) $=\left(\frac{1}{2} - \frac{1}{1} \cdot \frac{n_3}{0_3} + \frac{1}{1} \cdot \frac{n_1}{0_2} - \frac{n_2}{1}\right)$ $= \frac{\delta^2}{2} - 2\left(\frac{1}{2}, \frac{\delta^4}{24}\right) + \cdot$ $=\frac{1}{4}\left[0^{2}-2\left(\frac{1}{2},\frac{04}{5}\right)+\cdots\right]$

Take by = 1 1. 7+ CT = 00

race Sin = 5 is sgl

ing comparison test Earlis of Hence Hermoduct is col.

(iii) (H= 1/hp) = [] (1+ch)

The profit II (item) and the senses

NOW Ears English = a E 1 hay ho phách is egt if 171 Hence the green moderat B if py 1 and dgt if PSI (1+a) (1+2) (1+3). dgs to too or to o' according sol The given modulet it 11 (1+2) = 11 (1+cm) where ch = 3/h. NION E ON = E ON = 3 E - 1 which do to to to if ayo dest to -0: if x < 0. Hence the given modult des to a if 270 dgs to -0 of 260. -) Discuss the convergence of the moduck! (1) 1 (1 + (-1)) (ii) (1-1/2) (1+1/2) (1-1/2) (1+1/2). (iii) (1+1/2) (1-1/3) (1+1/4) (1-1/5) -(iv) $\left(1+\frac{1}{G}\right)\left(1-\frac{1}{G}\right)\left(1+\frac{1}{G}\right)\left(1+\frac{1}{G}\right)$. (V) [1. (1+ (-1))1]).

sol (1) The given modulet is

[1] (1+ c-1)h

has (1+ c-1)h

has an = (-1)h MIOH & an = SCHIM Is col by Leibnits's took and \(\frac{2}{2} = \frac{1}{2} \frac{1}{12} \) 11 30 cg/t : grennoduet is gt. Discues the convergence of the pufinite product (1.- 1) (1+ /2) (1-/2) - (1+/2) - - sol The gren moduct is [(1+ (+)". 1/2) = 17 (1+an) where an = (-1)? 1. NOW ECH = SHY - 12 三点至四次 = 1/2 (-1+1-1+1-1-...) which oscillares 8/w- 2 and o E an = & 1 = 1 + 1 + 1 + 1 which is dg+(to in) Hence the given modult dgs to dere-

Thow that the renfrence of [] (1+(1)!).

show that the Ruffenth module.

[] (1+ (-1)h) 15 convergent if x > 1/2.

10 The grown module is a (Han) where an = (-1)h NOW Ear = Eth gc ifd >0 (by Leibites test) Also = = = = cgs 1 2471 in the xy Hence Her moduct egs if dy Distass the convergence of the module 17 (1+ (ha h+1) h sol Here an - (ha) :. and = na = d in Ltanky = x. cauly's root test, the series & on is - dg+ if a < 1. Hence the given product is cg+ if a<1 and dg+ Azzli. - If x = 1 then an = (1 + 1/2) h then ce to (!+an) 15 dgt.

Then the groven modulet is cgt of x(1 and dgt of x)/1.

following refinite modules: $\frac{1}{(1)} \frac{1}{(1)} \frac{1$ 1 - 1 . 0 - 1 - 4 . 04 = 1 (-0~ + 04 ---NOW | an | = 1 | - or + o4 -Let by = by then Ly kind = or, But 5- bn =: Et is gt (by p-Tell). EIBNITS egt (by comparison text). E Ben is absolutely comvengent ifte modult well (item) in [] toron is strolutely egt. $=\frac{1}{(2)}\left[\frac{2}{3}-\frac{1}{2!}-\frac{2!}{2!}+\frac{1}{2!}\cdot\frac{2!}{2!}-\frac{2}{2!}\right]$ = 1-11 - 2 - + 11 - 24 -一) ~ = - 1 2 + 51 24-

= \frac{1}{5' \text{ fin} - \frac{27}{31 \text{ fin} - \frac{27}{5' \text{ fin}} - \frac{1}{5' \text{ fin}} \text{ may . prove ther II (1+2) = 3/4 II alcolutely convergent for any real x. Here 1+an = (1+3/4) + 3/4 = (1+2/y) (1-2+ 2 + 2 - 2) 12) $=1-\frac{2^{2}}{2^{2}}+\frac{2^{2}}{2^{2}}-\frac{2^{2}}{2^{2}}$ =) ch = -3 + 13 --- $= \frac{1}{12} \left(-\frac{2}{2} + \frac{2}{3} - \cdots \right)$ Ph H3 Way HID) has (1+ a rot) e not is advolvedy egt for all values of a. HAD P. T II (1+1) ets 15 clossolwely cyty rest the absolutely convergence of the Referite product (1/2+22h). Here 1+an = $\frac{x+\lambda^{2n}}{1+a^{2n}} = \frac{(1+a^{2n})+(n-1)}{1+x^{2n}}$ = K+

 $|a_1| = \left|\frac{x-1}{1+x^{2n}}\right| = \frac{|x-1|}{|1+x^{2n}|} \le \frac{|x-1|}{1+x^{2n}} \le \frac{|x-1|}{x^{2n}}$ NOW E TO E Sun (say). Here we - 1 - Link = 1 (21) (: 12/71) : By couly's nt root test & 1 is ago. By comparison test, Elculis cgi .. E an is atsolutely cgt. Hence II (1+an) is absolutely convergent MOW, when 19/1 (ir-12941), $1+c_{1}=\frac{x+y^{2n}}{1+y^{2n}}=\frac{x(1+y^{2n-1})}{1+y^{2n}}=\frac{x}{1+y^{2n-1}}=\frac{x}{1+y^{2n-1}}$ =) in do esnot tend to or (:-16161) : The modult [[(1+an) 15 divergent. NOW, when x = 1, every factor is very ine $\prod_{h=1}^{\infty} \left(\frac{\lambda + \lambda^{h_h}}{1 + \lambda^{2h_h}} \right) = \left(\frac{K + \lambda^{\frac{1}{4}}}{1 + \lambda^{\frac{1}{4}}} \right) \left(\frac{X + \lambda^{\frac{1}{4}}}{1 + \lambda^{\frac{1}{4}}} \right)$

11

Have the product is y Discuss the convergence of the suffered produce $\int_{\gamma=1}^{\infty} \left(1+\frac{x^{\gamma}}{x^{2n}+1}\right).$ 50 Here 1+ ay = 1+ xh 30 that ay = 305 +1 NIOW ab+1 = xh+1 $= \left| \frac{x^{2n+2}}{x(x^{2n}+1)} \right| = \left| \frac{x^{2n+2}}{|x|} \right|$: ATAKICIE 76261),-1+ and = 1 > is By ratio test, Elan (gs and hence TT (1+an) igs absolutely. Jf 12171, $= L + \left| \frac{x + \frac{1}{x^{m+1}}}{1 + \frac{1}{x^{m+1}}} \right| = |a| \times |a|$ IT (1-10) (gs absolutely.

They to. The modult Tiltan) is : Ear is dgt. hence the product [[(1+cn) : e dgt Ha=-1, the product in (i+ xh) becomes $\left(1-\frac{1}{2}\right)\left(1+\frac{1}{2}\right)\left(1-\frac{1}{2}\right)\cdot\left(1+\frac{1}{2}\right)\cdot \cdot \cdot$ which dogs to o' (cheedy we have done.) Show that I [1-(1-1) mm] cgs absolutely -for 12171 Here Hay = 1 - (1-12) an solfet $\frac{a_{n+1}}{a_{n+1}} = \frac{-(1-\frac{1}{n})^{-n-1}}{-(1-\frac{1}{n})^{-n-1}} = \frac{(1-\frac{1}{n})^{n+1}}{(1-\frac{1}{n})^{n}} \times \frac{a_{n+1}}{a_{n+1}} = \frac{-(1-\frac{1}{n})^{n+1}}{(1-\frac{1}{n})^{n}} \times \frac{a_{n+1}}{a_{n+1}} = \frac{a$

Jo	oin Telegram for More Undate : - https://t.me/upscpdf	A CONTRACTOR OF THE PROPERTY O	e Keren
			ดนอะนษ
1. 4+ (2n)	$=\frac{e}{e} a $		Springere
<u>.</u>	= 121 > 1.		2012000
	t, slan is gt.		
· ·	fyfighte product of stroubly		Series en
Show that	11 (1+a2) cgs 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	ensolvasans
sol Geren Af	entre product le		
TT (-+72")) = (1+2) (1+2) (1+2)	•	Kerther
h=0	· · · · (H 22) (1+32) · · · · · · · · · · · · · · · · · · ·		Steen Marketon
Pn=11(1+x24) =	(1+2) (1+22) (1+222) (1+222)	-	ANGERGERAL
•	$\frac{1}{1-1} \left[\left(\frac{1+a^{2}}{1+a^{2}} \right) \cdot \left(\frac{1+a^{2}}{1+a^{2}} \right) \left(\frac{1+a^{2}}{1+a^{2}} \right) \left(\frac{1+a^{2}}{1+a^{2}} \right) \right]$		A AMERICAN CONTRACTOR
$=\frac{1}{4}$	$\frac{1}{-\lambda}\left[\left(1-\lambda^{\frac{1}{2}}\right)\left(1+\lambda^{\frac{1}{2}}\right)\left(1+\lambda^{\frac{1}{2}}\right)\cdots\left(1+\lambda^{\frac{1}{2}}\right)\right]$	-	90,880,801 816:
= 1	- (1-(3)) (1+2x) (4+3)	CREATURE OF THE LAW OF	######################################
$=\frac{1}{1-2}$	$-\left[\left(1-\lambda^{\frac{4}{2}}\right)\left(1+a^{\frac{4}{3}}\right)\left(1+a^{\frac{1}{3}}\right)\left(1+a^{\frac{1}{3}}\right)\right]$	-	
=-	- [(1-f4)2)(1+2) (1+3)		Sections of the second
= 1	[[1-18] (1+28) (1+22)		
= 1	[(-(8)2) (1+22) (1+22)	· · · <u>-</u>	
	$= \left[\left(1 - 2^{16} \right) \left(1 + 2^{4} \right) \dots \left(1 + 2^{2^{n-7}} \right) \right]$		MEGREDIE
2 1-			
= 1	$= \left(\left(1 - \frac{3}{2} \right)^{\frac{1}{2}} \right) \left(-1 + \frac{3}{2} \right) \cdot \cdot \cdot \cdot \left(1 - \frac{3}{2} \right)^{\frac{1}{2}} \right)$		
	$-\left(1-3^{2^{n}}\right).$	-	
1 .			
32		•	NA WAR
	•		
me/upsc_pdf	https://upscpdf.com	https://t.me/ups	c_pdf

Now if 12/ (i.e. -1 < ac/) The firste modult [[(1+29)) est to

Set -IV Limits and Continuity

Real valued functions:

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ Constant function: defined by fa=k, (KCR) & Called a constant function. Range of f= { K} & a singleton set.

Edentity function: A function f: P

by fin = x is called the Identity tunction Range of f= IR = Domain of f.

polynomial function: A function f: R -> R defined

by $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$, where $a_0, a_1, a_2, \dots + a_n x^n$, where $a_0, a_1, a_2, \dots + a_n x^n$ and $\in \mathbb{R}$.

n col and an \$0 & called a polynomial function.

If $a_c = a_1 = \dots = a_n = 0$ then A(x) = 0 A(x) = 0

En this case we say that fix a zero prignomial function.

Rational function: Et fig are two polynomial functions and A= {a/xer, g(0) +0} then the function h: A defined by h(2) = f(2) is called a grational function.

h(2) = 1 Ha rational function with domain R- (0)

power franction for for for the by the xer bearing power The separe not function defined

Absolute value function (or) mod function: The function f: R-> R defined by f(a)=x 計2次0 =-x if 200 is called mod function. It is denoted by for = |a]. for= Acn= Range of f = [0,0). Signature Junition: The function f: R -> R defined 1101=1; 2>0 = 0 ; 7=0 = -1 , 2500 & called signature function. IF is denoted by fine = sgn (2). inen Son (2) = 1 H 2>0 i & Sing(a) = [1] if 270 Range of Squ(x) = {-1,0,1} > Entegral part function or step function or greatest integer functions The function for R defined by fraj = [2] = integral part of x, of called Chep function ie, fine [7] is a greatest integer x, is called the greatest in fearthon.

i.e, for every x FR, I unique not such that n < x < n +1 and [x] = n.

The range of the step function = Z.

Ex: x=2.5; [x]=2 since 2<x<3. 1-5,2 < x < 2+1

2=0.); [2] =0 Shee 02241

2=0; [2]=0 Since 052(1)

2=-2.5; [a]=-3 Since -3<a<-2

TN = 1.5 ; ["x] = 1.

-2 -10 1 2 3

· Exponential function:

The function f: IR - IR defined by for= ex is Called exponential function.

The range of enponential function = IRT. -> If a C-IR-[1] then fine = ax from R -> IR & St also called exponential function.

The exponential function fix-IR Logarithmic function: - defined by france the both 1-1 and onto

The soverce function of this exponential function

es called Logarithmic function.

f: R+ > R. defined by fin = logs is the natural logarithmer function.

Rauge = (-0,00) = R. tion fine logan

Trigonometric functions:

- The function f: R > R defined by fin)=sint R called Sine function.

Range f = [-1,1]

The function f: R > R defined by f(x) = cos

Es called cosine function.

Rauge if = [-1,1]

If $A = \left(\frac{2 + iR}{2} = n\Pi + \frac{\Pi}{2}; n \in E\right)$ then the function $f: (iR - A) \longrightarrow R$ defined by

 $f(a) = \frac{\sin x}{\cos x} = \tan x$

ge called tangent function

Domein f = IR-A (od) values)

Range f = R.

If A = { x CHR/ x = nT : n F } then the function

f: R-A-> R defined by fine cosa = cota

is called cotangent function.

Domain FER-A

. Range f=1R.

A= {x GR /2 = (2n+1) II: n = } then the function f: (R-A) -> R. defined by fo) = 1

Domain f = R-A Reny f = R-(-1,1).

- 8f A= {QAR/2= NT: NCZ} then the function f=(R-A)->R defined by f(x)= sinx = copeex

Ps called cole cant function.

Domain f = 1R-A Dance f = R-[-11]

Boundedness of a function: INSTITUTE FOR IASHFOS EXAMINATION NEW DELHI-110053 A function of is daid to be bounded if its Lange is bounded. Otherwise et il unbounded i.e, A function f eg said to be bounded on adomain D of these exist two real numbers hik such that he for sk treed where h is called a lower bound of of kis called an upperbound of f. A function fis gaid to be bounded on a domain Dif. thereenist a tre head number M (ien Myo) such that I find I SM +26D. (2): frat= store, frat = coste are bounded function on 12 But fin = tank is not bounded on R. Cluster point of a set or Limit point of a set: LitaCR. A point CER is a cluster point of A ef for every 570 there exists at least one point xEA, I+C guch that |x-c| < 8 i.e, 0< 1x-c/26. Let ACR, A point CER le a cluster point of A of every 5-nod of Contains atleast one point of A. other than C. i.e., 570, (c-5, (+5), contains at least one

A point CER H. a cluster point of A if every

point of the fet A other than C.

7

nod of C contains infinitely many points off. i.e, 570, ((-5, (+5) Contains infinitely many points of A.

En: (1) for the open interval - A = (0,1), every point of the closed interval [0,11] is a Cluster point of A1. The points o & 1 are cluster points of Ayz, · but donot belong to A1. All the points of A, are cluster points of A (2) A finite set has no cluster points.

(3). The Infinite set N has no Cluster points. The set A4 = { In (new) has only the point

'o' as a claster point.

None of the points in Aq is a cluster point of A4

Note: A cluster point of the set A may (or) to the let A.

may not belong to lis said to be A ga for if at It pt a

Limit of a function.

Let A CR and let C be a cluster point of A. for a function f: A -> R, a Real number L & faid to be a limit of & at C; if given any eso, there will a 570 (departing on E, is, SE) such that if net and ox 12-1/28 then

1 fin = L1 KE. 1.21 |fix 1 < t whenever 0< 1x-t | 28. in (1-6, 1+6) +x6 (65, 6+8);

Note: (1) If L is a limit of the at conthem we L P car to L at C

denseite H f(n) = L (or) Lr f = L ne ne

we also say that fox) approaches L as a approaches C.

ieg fraj -> L as 2-> C.

(2) If the limit of f at c does not exist, we say that f diverge at c.

(3) If e'is-not a cluster point of A then
the limit of a function if doesnot discuss
at 'c'.

(4) The function of may (or) may not be defined at the limit points.

(3) Ef A = (0,1) and of A = The then

1 is a cluster point of A.

but if is not defined at 1.

smitally at o

to show that for one to, and my 570
there is alta, ocla-(1<8=> |fing-L1>6.

(6) If f: A -> IR and of C is a cluster point.
of A then of Can have only one limit at ('.

Sequential Criteriani

Let f: A R and let is be a cluster point of A then the following are equivalent.

1) - Lefa = L

in for every (x) in A egs to c such that

an & C +nEN, the sequence (firm) cgs to L-Use the E-8 definition of limit, to Show that 1+ = 1 C70. son Let from = 1 2 >0 and let C>0. To shappar I- fra = /. for the are enough to show that for any Eso; I a 5>0 (depends on t) such that Thin-1 / < c whenever ox 12-c1<8. NOW we have |fran-t|=|===t] $r = \left| \frac{1}{C-\lambda} \right|$ By taking a sufficiently close to c we have 0<10-c1<2c. (-:3<1c) $\Rightarrow |2-(1)>0 \text{ and } |2-(1)<\frac{1}{2}c$. 2+c and -10(2-c < 1c. x+c and $\frac{5}{2}(x) < \frac{3}{2}c$. 2+c and $\frac{c}{2}$ $\frac{1}{2}$. 2+C and 2072 and |2C| > (2)
and |2C| < 2
|2C| < 2 CE |f(2)-1-1 < = 12-c) < whenever 2 = C/ < C/2 E.

Choosing
$$b = \min \{\frac{1}{2}C, \frac{C^{\alpha}}{2}C\}$$

$$|f(n) - \frac{1}{C}| \angle F \text{ Dhenever of } |m-c| \angle b$$

$$- \frac{1}{2}C + \frac{1}{2}C + \frac{1}{2}C + \frac{1}{2}C$$

$$- \frac{1}{2}C + $

7. Use either the es definition of timit (0x) the sequential criterion for limits to establish the following limits.

(i)
$$\frac{1}{1+x} = -1$$
 (2) $\frac{1+x}{1+x} = \frac{1}{2}$

(3)
$$4 + \frac{2^{2}}{121} = 0$$

Let $f(x) = \frac{1}{1-x}$, then we prove that Lt fax = -1.

for this we are enough to prove that fore each to 7 0 8>0 Such that If(x) - (-1) < E whenever 0< 12-2/ 6-

We have
$$|f(x) - (-1)| = \left| \frac{1}{1-x} - (-1) \right|^{\frac{1}{1-x}}$$

$$= \left| \frac{1}{1-x} + 1 \right|$$

$$= \left| \frac{2-2}{1-x} \right|$$

$$= \left| \frac{x-2}{x-1} \right|$$

$$f(x)-(-1)=\left|\frac{x-2}{x-1}\right| \qquad \qquad \boxed{3}$$

for n->2 by taking a sufficiently close to 2. we have 0<12-21<1 (30<6<1) => |2-2| >0 and |2-2| < | => x = 2 and -1<2-2<) ⇒ 7 = 2 and 2-1<7/9+1 Since x>1 ウィー>0 ⇒ 上 70 ⇒ 1.1 >0; ≥ 0< |± |≤1 ⇒ 上 51 ()= | f(2) (-1) | < 1. | 2-2 | < F whenever 1x-21< = choosing &= mln { 1, } : | f(2)-(-1) | < + whenever 0 < | 7-2 | < 8.

· L+ fα) = -1

Sequential Method:

Take
$$2n = \frac{2n}{n+1}$$
 $\Rightarrow n = 2$
 $f(2n) = \frac{1}{1-2n} = \frac{n+1}{1-n}$

It
$$f(2n) = \lim_{n \to \infty} \left(\frac{1+n}{1-n}\right)$$

$$= \lim_{n \to \infty} \left(\frac{1+1}{n-1}\right)$$

$$= \frac{6+1}{n-1} = -1$$

$$\lim_{n \to \infty} \left(\frac{1+1}{n-1}\right) = \frac{6+1}{n-1} = -1$$

$$\lim_{n \to \infty} \int_{-1}^{\infty} f(2n) = -1$$

(3) By - C-5 Method:

$$|\frac{3^{2}}{|3|} - 0|^{2} = \frac{|3|^{2}}{|3|}$$

$$= \frac{|3|^{2}}{|3|}$$

$$= |3| < C \text{ (3ay)}$$

$$= \frac{|3|^{2}}{|3|} - 0| < C \text{ whenever } |3| < \delta = C.$$

$$+ C > 0 \text{ Such that}$$

$$+ C > 0, \exists \delta = C > 0 \text{ Such that}$$

$$|\frac{3^{2}}{|3|} - 0| < C \text{ whenever } |3 - 0| < \delta.$$

Divergence Griteria

A SP, III f. A -> R and let CGB be a

Cluster point of A.

Capaif LER then & does not have limit Late. iff there exists a sequence (in) in A with inte there such that the sequence (2n) gs to but the sequence (fan) doesnot converge tol.

(6)

(b) The function of does not have a limit at it if there exists a sequence (2n) in A with 2n = when such that the sequence (2n) cgs to it but the sequence (fran) does not converge in R

fr: It & doesnot exist in IR.

Sollie Let $f(n) = \frac{1}{x}$; e = 0Let $a_n = \frac{1}{h}$ $\Rightarrow \forall n$

then 1-2n = 0 = 0

NOW $f(\pi_n) = \frac{1}{\pi_n} = \frac{1}{\gamma_n} = n$ on

Ltfin) = It n = +00

(f(xn)) & not Gt in IR.

> Show that the following limits do not exist.

(a) . If \(\frac{1}{2} \) (270) \(\frac{1}{2} \)
(C) 71- (d) 11- (x+ (d)(x)) (e) 11- (i) x

(+) Ex [in(2)).

Soll: (C) At lgn(a)NOW. lgn(x) = lgn(a) = NOW WE have to show that sign (2) does not have a limit at 2=0.

Let
$$2n = \frac{(-1)^n}{n}$$
 $+n$ then $++2n = 0$ $n \to \infty$ $(2n) cgs to 0 .$

Now
$$\text{Sgn}(x_n) = \frac{(-1)^n}{|(-1)^n/n|} = (-1)^n$$
 . It $\text{Sgn}(x_n) = \frac{(-1)^n}{|(-1)^n/n|} = (-1)^n$. It $\text{Sgn}(x_n) = \frac{(-1)^n}{|(-1)^n/n|} = (-1)^n$.

- San (an) Free mot

(e) L+
$$\sin(\frac{1}{x})$$

Let $f(x) = \frac{\sin(x)}{x}$; $c = 0$

By introducing two sequences (20) & (yn).

Let 3n = Int In and let Yn = 1 ITH 2NTT then It in = 0

NOW $f(y_n) = Sin(n\pi)$ NOW $f(y_n) = Sin\left(\frac{1}{1\pi + 2n\pi}\right)$

= Sin(+T+2nn)

= 1 -20

: 1: fra) doesnot enist.

(f) It
$$Sin(\frac{1}{2})$$

wet $f(n) = Sin(\frac{1}{2})$; $c = 0$

Let $2n = \frac{1}{2}$.

(7)

Algebra of limits:

FOLACR. Let f& g be two functions on A tolk. and CEIR be a cluster point of A. Further

let bER of Ltf=L and Ltg=M

then (1) Hiff ±g)= L±M V, th If |x = th Ifcol

(Lr(fg) = LM

(iii) I+(bf)=bL (iv) I+(f) = Im provided

N to

Thesen Let ACIR, let f: A -> R and let CHR be a cluster point of A.

Ef a ≤ f(x) ≤ b +2EA; 2 ≠ C

and Lt f(a) exists. o

then a & It for & b.

Squeeze theorem:

Let A CIR, let f, g, b. A -> R and let c CHR be a cluster point of A. if & fin & g(a) & h(a) TacA;

then It g(a) = L

2ER, 270 then

we have G -2 & SO) & 2

(D) 1-52-6-6(1)6)

(ii) 1-1-3 (Sh) 2x

(N) 1=12 ≤ C(2) ≤ 1-12+2

Here Sini = S(2) - & cosa = ((2)

37

Sol Let
$$-1 \le C(t) \le 1$$
 $\Rightarrow t \in \mathbb{R}$

-if $2 \ne 0$ then

$$-\int dt \le \int C(t) dt \le \int dt$$

$$t=0 \quad 0 \quad 0$$

$$= \int -x \le S(x) \le x$$

$$C_{1} + c_{2} + c_{3} + c_{4} + c_{5} +$$

Problems:

The
$$3^{3/2} = 0$$
; (270)

2017: Let $g(x) = x^{3/2}$; 270

The have $x < x^2 \ge 1$ for $0 < x \le 1$
 $\Rightarrow x^2 < x^{3/2} \le x$ for $0 < x \le 1$

If of the form $f(x) \le g(x) \le h(x)$.

Therefore $f(x) = x^2$; $h(x) = x^3$; $h(x) = x^3$.

The fixed $f(x) = x^2$; $g(x) = x^{3/2}$; $h(x) = x^3$.

The fixed $f(x) = 0 = 1$ to $f(x)$.

The fixed $f(x) = 0 = 1$ to $f(x) = 0$.

The fixed $f(x) = 0 = 1$ to $f(x) = 0$.

The fixed $f(x) = 0 = 1$ to $f(x) = 0$.

The fixed $f(x) = 0 = 1$ to $f(x) = 0$.

The fixed $f(x) = 0 = 1$ to $f(x) = 0$.

The fixed $f(x) = 0 = 1$ to $f(x) = 0$.

The fixed $f(x) = 0 = 1$ to $f(x) = 0$.

Since
$$-x \le \sin x \le 2$$
 $\Rightarrow 2 \ge 0$.

Since $-x \le \sin x \le 2$ $\Rightarrow 2 \ge 0$.

Since $-x \le \sin x \le 2$ $\Rightarrow 2 \ge 0$.

Since $-x \le \sin x \le 2$ $\Rightarrow 2 \ge 0$.

Let $f(x) = 0 = \text{Jin}(x)$

If
$$|g_{1}| = 0$$
.

If $|g_{1}| = 0$.

If $|g_{1}| = 0$.

If $|g_{1}| = 0$.

If $|g_{1}| = 0$.

If $|g_{1}| = 0$.

If of the form $|g_{1}| \leq |g_{1}| \leq |g_{1}| \leq |g_{1}|$.

If $|g_{1}| = \frac{1}{2} \leq |g_{1}| \leq |g_{1}| \leq |g_{1}| \leq |g_{1}|$.

If $|g_{1}| = \frac{1}{2} = |g_{1}| = |g_{1}| = |g_{1}|$.

If $|g_{1}| = \frac{1}{2} = |g_{1}| = |g_{1}| = |g_{1}|$.

If $|g_{1}| = |g_{1}| = |g_{1}| = |g_{1}|$.

If $|g_{1}| = |g_{1}| = |g_{1}| = |g_{1}| = |g_{1}| = |g_{1}|$.

If $|g_{1}| = |g_{1}| = |g_{1}| = |g_{1}| = |g_{1}| = |g_{1}|$.

If $|g_{1}| = |g_{1}| = |g_{1}| = |g_{1}| = |g_{1}|$.

If $|g_{1}| = |g_{1}| = |g_{1}| = |g_{1}| = |g_{1}|$.

If $|g_{1}| = |g_{1}| = |g_{1}| = |g_{1}| = |g_{1}|$.

If $|g_{1}| = |g_{1}| = |g_{1}| = |g_{1}| = |g_{1}|$.

If $|g_{1}| = |g_{1}| = |g_{1}| = |g_{1}|$.

If $|g_{1}| = |g_{1}| = |g_{1}| = |g_{1}|$.

was Lot ATT = 3 Sin to

Since -1 & Sin 1 21; n +0 ヨースとからかならかりなるの · B of the fam tim & gen & h(2) where frai = -2; g(3) = a sint and h(2)=2 1 f(x) = 1 h(x) =0 .. By squeete theorem, H 9(2) -0 $2 + 2 \sin(\frac{1}{2}) = 2$ It sign ($\sin \frac{1}{\lambda}$) = ? Golin: Let for = sgn (sin 1); x =0 | Sin + | -, > +0 Since 4 Sin & doesnot enist. .: Li- (gn(sint) doesnot exist. One -Sided Limits: > LetASIR and f: A -> IR of CER is a cluster point of the set An(c, 0) = {x EA/276} then we say that LER is a hight-hand limit of farc if given 670; 7 a 570 such that

The signt-hand limit (R+11) re denoted by

1.6, If (2) (D) If f

2-64 with 0/2-C/25, then If (x) -1/2E

1.6, If (x) -1/2 (-1) Le denoted by

1.5 f(x) (D) If f

2-7(+)

Sf CER is a cluster point of the ger

An (-0, c) = {x \in A/x < c};

then we say that LER is a left-hand

limit of if at c.

if given any exo, fabro such that

for all zer with 0 < (-2 < 5 then |f(3)-L|

for all nea with 0<1-2<5, then |f(1)-L|<6

ie, |f(1)-L|<6 whenever 0<1-2<5.

- The left-hand 15met (LHL) es denoted by.

LITT(2) (02) 1+ f.

2->C2->C-

Existence of a limit-3

1+ fra) = L ← L − fraj = L = L + fra) 2→ C+

Let ACIR, let $f: A \rightarrow IR$, and let CHR be a cluster point of $A \cap (C, \infty)$ then the following statements are equivalent

(i) It fix) = L 2 -> (t & for every sequence (2n) that cgs to C' such that - In EA' and 2n>C +nen, the sequence

(fram) Cgs to L.

[In this way for left - hand firm!]

Examples:

Solition For f(x) = 9 $x \to 0$ $x \to 0$

NOW Let
$$f(x) = 1$$
 of $f(x) = -1$

Let $f(x) \neq 1$ for $f(x)$
 $f(x) \neq 1$ for $f(x) \neq 1$

Let $f(x) = 1$ for $f(x) \neq 1$

Now $f(x) \neq 1$

Let $f(x) = 1$ for $f(x) \neq 1$

Now $f(x) \neq 1$

Let $f(x) = 1$ for $f(x) \neq 1$

Let $f(x) \neq 1$

Sin $f(x) \neq 1$

Sin $f(x) \neq 1$

Sin $f(x) \neq 1$

Sin $f(x) \neq 1$

Let $f(x) = 1$

Let $f(x) = 1$
 $f(x) \neq 1$

Let $f(x) = 1$
 $f(x) \neq 1$

https://t.me/upsc_pdf

- Limits at infinity and Infinite limits:

(in) Lt f(x) = L.

At function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to L as x -> -a,

A function f(x) se said to fend to fend to L as x -> -a,

A function f(x) se said to fend to fend to L as x -> -a,

A function f(x) se said to fend to fend to fend to L as x -> -a,

A function f(x) se said to fend
(iii) 1+fr) = too

A forction frais eaid to tend to so as x>C

A forction frais eaid to tend to so as x>C

A forction frais eaid to tend to so as x>C

(however large) of a tre number

S' such that ox (2-c) < b => fra) > K.

(FIN Lt f(x) = -00

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

given Kyo (however large), I a 570 such that 0x (x-1)/6

if in Lt f(x) = -00

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to tend to -00 as x > C, if

Afunction f(x) for said to -00 as x > C, if

Afunction f(x) for said to -00 as x > C, if

Afunction f(x) for said to -00 as x > C, if

Afunction f

(M L+ f(n) = +d

2 d A function f(a) is said to tend to +d asn >0

if any K>O (however large). I a number k >0 such

that 27 k' => f(a)> k.

(vi) Lt f(2). = -0.

A function from & land to few to -0 as

2 - 0. et given k>0 (howeverlarge), I a number

k'>0 ench that 2> k' => f(2) < -k.

(ii) L+ f(x) = &.

(iii) L+ f(x) = &.

A function f(x) it said to tend to & as

A function f(x) it said to tend to & as

(however large), I a number k'>0

(however large), I a number k'>0

(depends on k) such that x<-k' > f(x) > k.

(vii) L+ f(x) = -2.

(viii) L+ f(x) = -2.

(

32

Continuous functions:

INSTITUTE FOR IASIIFOS EXAMINATION

Let A SR, f: A > IR and CEA be a cluster point of A then we say that if is continuous at 'c' - of . Lt f(x) = f(c)

(or) Lt f(x) = Lt f(x) = f(c)

Let A CR, f: A > R and CEA be a cluster · point of A then we eay that f is continuous · at 'c' if given e>o. I a s>o(depending on t) such that if a CA satisfying

then | f(a) - f(c) | & E i.e, |f(1)-f(c)| < E whenever 12-c1< 5. ie, f(x) ∈ (f(0)-+, f(0)++) - +x + ((-6, (+6)

Continuous from the left at a point:

A function til continuous from the left (or left continuous) at the point x = C = f(x) = f(C).

(OV)

Let A.C.R, let f: A > 1R, EEA. IS a clusies point of An (-0, c] Then we say that f is left continuous at 'C',
if given any - C>O (however emall),

I a \$>O (depends on c) such that

- C-6 <2 < C \rightarrow | f(c) | < C

Continuity from the right at a point:

A function f is continuous from the right (or) right continuous at the point x = c if f(x) = f(c)

Let ASR, let f: A -> R, CFA Pf a

Cluster point of An [c, \alpha) = \[2\in A/2>c\]

then we lay that f & right continuous

at c, & given any +> 0 (however small)

I a \$>0 (depends on +) such that

(\(\in \chi < (+\beta => |f(\eta) - f(\alpha)| < \in \chi.

Discontinuity:

If f is not continuous at c'

then f is laid to be discontinuous at c

i.e, Lt f(x) f f(y)

x -> c

ACIR, let f: A-IR; cen 15 a chuster point of A then fiss not conti. - nuovy of c, 1 +>0, 7 = 5>0 S. + 7 15 any pont of A sourcefying later () |f(x)-f(c)|>| = -Note: - 1) If cisa cluster point of A then sequence (+ (m)) cys to for the following three

conditions must hold for: of to be continuous at in (1) & should be defined at 5: (le fa) ensis).

- (ii) It for exists and
- f(1) & h+ fm and equel.
- (2) f of discontinuous at n=c because of any one of the following real on:
- 1) fis not defined or i'
- (ii) L+ to doesoot wish 1. L+ for + L+ for one of the limet day not exist or

(ii) 4 to 8 fr) enis (12) but one not equel-

- J Sequential Criterian for continuity.

& function fix > R is continuous at we point CHA iff for every sequence (nu) for a that eg! to. e', the

Let promite, let f: A -112, and but con then fis discontinuous at (iff there enists a sequence (m) on Attat . cgs to c', but the sequence (fram)) dués not converge to for.

Let A CIR and let f: A JR if BEA, we say that ITS continuous on the Set B if I is continuous at every pont of 1.

unk of the limits do not exist

J. Con! Prulon open general: function of 15 Card open merry (out), if it is continuency so every point of (aik). A function of is said to [ab] if et 15 , ~ ~ 标之的 (i) left const at b ie ht for 2- fts (ii) conti in (ack) A function which It not continuous even et a single point of an interval is said to be Affects continuing in that interval. A Types of Discontinuity:

i.e L+ f(2) = f(c); x=cHay) Continuity by a choiced execute for contictor a closed futeral ie Lifer=f(y: Cr(cs) Demorable discontinuity! Herton exists but it work ther I was

discontinuity as & ic (to 2 ht for) + f(c) E1:-0 fa= (sha if = +0 sol L+ for = W Smi fe) =2. L+ f(a) + f(c). Sq:-0 f(a) = [2~-2 if a>2 4-a if a62 L+ f8) = L+ ff at 122 f(y) =1 ((L+ to - L+ for) + f(2)

If ht for and ht for both exist but are not equel and f(c) exists, it is equal to the either from the left at 6' If (or) heitser of L+ fa) (or) L+ fa) does not exist L+ fta, then f 15 called and c+ distantinuty of first kind. - f is said to be grantinging of farst knd from the left of 'c' if he for exists but It is not equal to \$(1). if is said to be disconti continuity of the first kind from right at i'd if he for wish he is not equal to for. En! - faj = { 2 -- if 2>2 } 3-7 if 2<2

3 Disconti. of second 7 If It for & LL for both donot exist they file all disconti. of entire of is lead to be a disconti. If the second kind y fis said to be a disconti of the second kind from the right and if Lit fin does not exist. Ea!- fa=(sn(k) 付 9年0 0_1+=0 L+ +(1) 2 L+ SM(1/2) = (-:-12/51) i lis frite nulser

but It is not fined become 1 rotates with -1 to 1. int for dres not expli · Ply RHL does not entit

4 mise on discontinuity: . If a function of has discontinuity of the grand kind on one side of 'c' and other erde a discontinuity of freekand construction continuous Her of 15 celled a misel disconti I é If one of the limits Hofen & Hofen exist but wat the other thous of is called mixed disconfinuous at C. Lt for does not exist not exual (80) goes mer ever L+ +61) Le the entite and an ay (or) may not. equal to fty.

E7:- faiz | Sin 1 1/2>0

Infinite dissonti If one (on) soty limits Lt for & ht for (or) to then of 15 colled infinite Its costinuity & E. Ear for = } = 1 2-2 : 272 and her for enists and from ht for effect on his eggs. (f)。 は(t+9)(3) = は(fかま)(5) 三日かれたりの = f(c) + g(c). c(f±9)(9) (ii) L+ (f.g) & = L+ (from g(m))

(iv) H(+) (v) = H+ +(0) $=\frac{f(0)}{g(0)}$ =(=)(c) problems using t-8 definition, pro ve that () f(a) = 3×+1 is continuous clooking &= E. , sol (1) fa) = 32+1, | for - for | = | 32+1 - 7 | = 7/1-2/56 If chore J= 5, they |fa: -for | LE wherever 12-165 .: fails contint x >2. (i) for= 2 1 1 +2

at 122; fer = 4.

Let +> co be grey, (14) 140- f(x) = | 2-4-4 - 2-4-4xff = | 2~-42+4 2 (2-1) - the conflort finesion fan = b is conti the in - grantina. has zalis entiona (S confe on Λ=(2 ft) 20) -Han \$100 = 1 and 12 1 2 1

· ht p(x) = p(y). · par 15 conti at

y OCI = 13 11 wet conti be cause is not defined &. AZO sul ht e does not enist 7 The signum function sgn not until it and SOI Let for = 59 n (2) L+ fa) = -1 & h+ fa = 1 :. ht for + ht for LI fa, does not entit. Let A= IR and let fin no defined y for a first simil Which is least - Dirichlet Jacks

-> S.T Hat the Dirichlet's

ery point of the.

function is not continung

let az c FIR they Ciss either motional or irr Amd nule If CIS Q -Hand Let (our) be sequence of project numbers Hat converges to c Since f(2m) = 074 (in is illational) · Lr +(2,1) = 0 #f(c) : (f(m)) doesnot cominge to fell), :- f(a) is not continuing at the rolling huters. Let (our) be a seguina ef rational numbers How munger to c since f (m) =1 m. : Lt f(m) = 1 + f(c) : (f(xu)) does not converge to f(c). i. f(2) is not conti. at the - irrational number c. -SOI Let forz [1 it 2 is rotal]

prove that the planting function of defined. The to where continued. f defined by

[1/2, 1/2 215 ration of

[1/2, 1/2 215 ration of

[1/3 it 215 ration] y Definic 9: 102-312 by -contradiction g 13 continuos. sol Given that

Let 3 be any real monday, that \$70 be given, for each new, I a residual for a residual numbers his humberajand per irrogand number bing such that オートりく これくなけり のし)

すいの =x = Lth If g is continuous then we must have L+ 9 (8h) = 9(h) = L+ 9(h) But g(an) = 2 cm & g(bn) = bn+3. 1. Lt 2ah = g(a) = L+ (by +3) 7 21+ on = 96) = L+ bn +3 g = g(x) = x + 3=7 22 = 2+3 $\rightarrow \int x = 3$ 3 is the only possible

out of continuous and discontini I every other point. now we show the g [901-90]= [27-6] = 212-31 ->0 for an irroland muse x a1711 = 17+3-61=12-31->B

from D, 1900-900 = 212-314+ 3 | 2 - 3 | < t 3 + e indicated 10mt. 3 + e indicated 10mt. 3 + e indicated 10mt.

: 1901-900) & + wenever

19(1)-9(1) = 1-12-3/4 (iii) f(1)= (ch_eta) if x = 0.

1001 Let f is defined onto $\sqrt{f(x)} = \begin{cases} x & e^{\frac{x^2}{1+e^{\frac{x^2}{2}}}}, f_{1+e^{\frac{x^2}{2}}} \end{cases}$ by tet + my faz = 1, if x is also only

framphe the continuity 126 of the following functions!

(i) for = \(\frac{c4}{1+c4}, \frac{1}{220} \)

9(a) 15 continuous of 2=3. (iv) fa) = (1-e) = 1 +1

12.

$$\frac{1-e^{-\frac{\pi}{2}}}{1+e^{-\frac{\pi}{2}}}$$

$$\frac{1-e^{-\frac{\pi}{2}}}{1+e^{-\frac{\pi}{2}}}$$

$$\frac{1-e^{-\frac{\pi}{2}}}{1+e^{-\frac{\pi}{2}}}$$

$$\frac{1+e^{-\frac{\pi}{2}}}{1+e^{-\frac{\pi}{2}}}$$

$$\frac{1+e^{-\frac{\pi}{2}}}{1+e^{-\frac{\pi}$$

$$\frac{LHL}{L+f(n)} = \begin{cases} (x-e) \left(\frac{e^{x}e^{-1}}{e^{\frac{1}{2}}}\right) & \text{fin} \end{cases} = \begin{cases} x \sin \frac{1}{2} & \text{fin} \end{cases}$$

$$= 0 \times \left(\frac{e^{-1}}{e^{-1}} \right)$$

$$\frac{1}{2} \circ \left(\frac{0-1}{0-1} \right) = 0 \times C$$

$$= 0 \times \left[\frac{1-e^{-2}}{1-e^{-2}} \right]$$

$$= 0 \times \left(\frac{e^{-1}}{e^{-1}}\right) \quad (v) \quad f(x) = \left(\frac{x^2 \leq 60}{4}\right) \quad (7) \quad (7) \quad (7) \quad (8) \quad$$

juna R	alegra mick wiere opdate : :: https://tune/ops	ic_pdf
Since 2-30	15 th for 2 ht 2	Say
	-> ~».	- 17717.)
L+ ft» = 10-	20.	CESSON ON TO SERVICE OF THE SERVICE
$=\frac{1}{2}$	21 At fly 2	12 5 m /g 2-70+ - 0x ((-144-1).
R+ for = 1+23	at >=0 -fe)=	A CONTRACTOR OF THE PARTY OF TH
$= 2^{10} =$ $\therefore k + f v, dves$	Let fa, 2 ht f	€ J = J(e)
: f is disconti	- t12 ca	11 d 120.
i) Pince 2 -> 07 =>	SALE 200	+ > 1 -> + ~ .
Lith L+ for 2 L+ ga	= 1	- No-
since lis fritched	wer is wet	fored with
3-10-	CIV RIAL	fred rot out ent. Does not ent. ontiment of the control of the c
sly RHL does wat	O B wat	, ontimery
ii) since and of of	· → ~ \	
	· · · · · · · · · · · · · · · · · · ·	
t.me/upsc_pdf	https://upscpdf.com	https://t.me/upsc_pd

(i) for = (a-a) cos (1-a) if n=15 $f(x) = \int_{-\infty}^{\infty} \cos c(x-a) dx + a$

- - framene the dist continuty of the following

(2) far = { 121 , when x = 0 . at x=0 . I when x = 0

(i) from= 121+12=11 d-1=0

(ii) $f(x) = \begin{cases} \frac{n-1}{n}, & \text{if } x \neq 0 \\ \frac{1}{n}, & \text{if } x \neq 0 \end{cases}$

(iv) $f_{0} = \begin{cases} \frac{12-21}{2} & f_{0} \neq 1 \\ -1 & f_{0} = 1 \end{cases}$ (iv) $f_{0} = \begin{cases} \frac{12-21}{2} & f_{0} \neq 1 \\ -1 & f_{0} = 1 \end{cases}$ (iv) $f_{0} = \begin{cases} \frac{12-21}{2} & f_{0} \neq 1 \\ -1 & f_{0} = 1 \end{cases}$ (iv) $f_{0} = \begin{cases} \frac{12-21}{2} & f_{0} \neq 1 \\ -1 & f_{0} = 1 \end{cases}$ (iv) $f_{0} = \begin{cases} \frac{12-21}{2} & f_{0} \neq 1 \\ -1 & f_{0} = 1 \end{cases}$ (iv) $f_{0} = \begin{cases} \frac{12-21}{2} & f_{0} \neq 1 \\ -1 & f_{0} = 1 \end{cases}$ (iv) $f_{0} = \begin{cases} \frac{12-21}{2} & f_{0} \neq 1 \\ -1 & f_{0} = 1 \end{cases}$ (iv) $f_{0} = \begin{cases} \frac{12-21}{2} & f_{0} \neq 1 \\ -1 & f_{0} = 1 \end{cases}$ (iv) $f_{0} = \begin{cases} \frac{12-21}{2} & f_{0} \neq 1 \\ -1 & f_{0} = 1 \end{cases}$ (iv) $f_{0} = \begin{cases} \frac{12-21}{2} & f_{0} \neq 1 \\ -1 & f_{0} = 1 \end{cases}$ (iv) $f_{0} = \begin{cases} \frac{12-21}{2} & f_{0} \neq 1 \\ -1 & f_{0} = 1 \end{cases}$

(v) for z (12) 1+2+0

vii). fa, z (11x1 +2", fx + 0,

RINCE MATHEMATICAL SCENARIO PROPERTY OF THE PR

LH for 2 ht 121 - LIGHT

L+ for = +1.

こよか キトトか : for is not conti of

 $f(i) = |\alpha| + |\alpha - 1|.$

1 x x0 Hen 121 = -7 8

: AV= 121+19-11

If $0 \le n \le 1$ then |x| = x |x-1| = -(x) |x-1| = x |x-1| = x |x-1| = x

: f(v) = 1-23 if x<0
1 if v \le n \le 1.

contraity of 220:-

LHL L+ fa, 2 L+ (1-24)

= 1-18/21

RHL L+ fe = L+ (1)

- L+ for = fe)

: frs conti da =0.

Continuity of a=1:

At x=1, f0=1.

LHL L+ fr. = L+ ()=1

RHL stf(2) = dt (2x-1)

= 2(1)-1

(1-1-)= fer

=> L+ fer = fay.

-: f 15 conti. + 2=4

d 2=2 fe)=-1

LHL
2+ fa 2 + 12-21
2-2-2
2-1+ -(2-2)

ラスラント ラネス (2)

= L+(-1)

RHL 2+1+

- L+ fm + L+ fm

i. Lt for decement earn

of B not certificase

Let f: R -> R Le

naterialize the iduational and

It f(x) = it(x) = 0. Z→0+

JUHL = RHL = f(0)

.. of is continuous at o'.

THD: L41(0) = L+ f(x)-f(0) = Lt -2-b

RHD:- Rfl(0) = H f(2) - f(0) x→0+ 2-0

 $= 1 + \frac{\chi - 0}{\chi}$

: LHD ≠ RHD

if is not differentiable at o.

Notece): If f is not continuous at any point, it can not be derivable at that Point.

Note(1)! ICR be an interval, let CEI and let f: I -> 1R and g: I -> 1R be functions that are differentiable at c. Then

- @ 2f ex ex then the function of is differentiable at c and (of)(c) = xflCc)
- (6) The function ftg is differentiable
- @ the function gis differentiable at ic' and (fg)(c) = f(c)g(c) + f(e)g(c).

1 of g(c) to then the function fly is differentiable at c and (fly)(c) = flc)g(c)-glc)f(c)

Problems:

er use the definition to find the derivative of each of the following functions.

- (a). of(x) = 73 & 7 CER
- 9(x) = 1 YZEIR.; 2 +0.
- **②** . $h(x) = \sqrt{x} \forall x > 0$.
- $(x) = \frac{1}{\sqrt{1-1}} for x>0.$
- <u> ۱٬۵ نې S</u> Let λ = C>0 thin h(c)=10

Now $\mu_{\gamma}(c) = \Gamma \Gamma - \mu(x) - \mu(c)$

 $= q + \left(\frac{x - \sqrt{x}}{\sqrt{x} - \sqrt{x}}\right) \times \left(\frac{\sqrt{x} + \sqrt{x}}{\sqrt{x} + \sqrt{x}}\right)$

= dt (x-c)

 $= \frac{1}{\sqrt{c} + \sqrt{c}} = \frac{1}{\sqrt{c}} \text{ exists.}$

at 'c' and (+9)(c) = +1(c)+9(c) : +1 is defined for all +ve values of R and $f(x) = \frac{1}{2\sqrt{x}}$.

is not differentiable at x=0.

solo: at 2=0; f(0)=0

Now \$1(0)= 1+ f(x)-f(0)

 $= \underbrace{\text{lt}}_{x\to 0} \left(\frac{1}{x}\right)^{2/3} \text{ does not}$ exist.

i. f is not differentiable at 220.

-> Let f: tR -> 1R be defined

 $f(x) = \begin{cases} x^{2} & \text{for } x \text{ sational.} \\ o & \text{for } x \text{ irrational.} \end{cases}$

Show that I is differentiable at x=0 and find flo).

 $\frac{30in}{x+0}: \text{ Let } f(x) = 4i \cdot \frac{f(x)-f(0)}{x-0}$

= 1 - 0

(i) when of is rational number

then $f(0) = J + \frac{\chi^2 - 0}{\chi \rightarrow 0}$

 $= dt \frac{x^{2}}{x \rightarrow 0}$ $= dt \frac{x}{x} = 0$

, when x is irrational number

then $f(0) = dt - \frac{0-0}{x-c}$

= Lt(0) =0:

 $f(0) = 1 + \frac{f(0) - f(0)}{2 - 0} = 0$

Now ive have

$$\frac{-f(x) - f(0)}{x - 0} - L = \frac{-f(x) - f(0)}{x - 0} - 0$$

 $= \left| \frac{\alpha^2 - 0}{\alpha^2 - 0} - 0 \right|$

(lanoitar zi Fi)

= |x1 < E whenever

121 < 4.

choosing s==

$$\frac{1}{x-0} - \frac{1}{x-0} = \frac{1}{x-0} \times \frac{1}$$

Now we have

$$\left|\frac{f(x)-f(0)}{x-0}-\dot{L}\right|=\left|\frac{f(x)-f(0)}{x-0}-\dot{C}\right|$$

 $= \left| \frac{0-0}{2-0} - 0 \right|$

+ risirrational

= 0< E when ever

0< 12-01< 3

$$\frac{1}{x-0} \left| \frac{f(x)-f(0)}{x-0} \right| < \epsilon \text{ when eve}$$

$$0 < |x-0| < 3$$

if is differentiable at 2=0.

and f(0) = 0.

P-I 2006s Find a' & b So that f'(2) exists

where

 $f(x) = \begin{cases} \frac{1}{2!} & \text{if } |x| > 2 \\ \alpha + 6x^2 & \text{if } |x| \leq 2 \end{cases}$

型n: at 2=0 f(0)=c L+ fa 2 L+ 54 (a+1) x+5Ax =- h+ [sin(+1) x + sm2] = It ((c+1) ((+1))) + It (h) = (x+1) Lt Sin (x+1) 1 + Lt (1/1) => 0+2 = 1 2 C (-, 1 -) 0 =) (-, 1 -) 2 -)

$$\frac{2HL}{1+6x} = L + (x+6x)^{\frac{1}{2}} x^{\frac{1}{2}}$$

$$= L + x^{\frac{1}{2}} - (1+6x)^{\frac{1}{2}} x^{\frac{1}{2}}$$

$$= \lambda + x^{\frac{1}{2}} - (1+6x)^{\frac{1}{2}} x^{\frac{1}{2}}$$

$$= \lambda + x^{\frac{1}{2}} - (1+6x)^{\frac{1}{2}} x^{\frac{1}{2}}$$

$$= \frac{\lambda^{+}}{\lambda \rightarrow 0^{+}} \frac{(1+b\lambda)^{2}-1}{b\lambda}$$

$$= \frac{\lambda^{+}}{\lambda^{+}} \frac{(1+b\lambda)^{2}-1}{b\lambda} \times \frac{(1-b\lambda)^{2}+1}{(1-b\lambda)^{2}+1} \times \frac{(1+b\lambda)^{2}-1}{(1-b\lambda)^{2}+1} \times \frac{(1+b\lambda)$$

any non-len Since fis conti at n=0. + f(n) = L+ f(n) = f(e)

$$= \frac{28}{3} = \frac{-3}{3} = \frac{-3}{3$$

L+ fa = L+ $(x+bx)^{\frac{1}{2}}$ Discuss the continual of the function f(x)=[x]= L+ 2/2 (1+bx) 2/2 dt the points 12 21, 2-10+ b224 of the points 12 denotes the uture [a] denotes the great Enteger ().

$$= \frac{1}{1+50} + 1$$

LH the = L+ [a] 1- for -1- [2] 1. 1+ for + L+ for; -: fa, 13 wt - cuti -> Discuss the continuing fa=[!-1]+[2-1]. fa) = [1-1]+[1-1] 2[0],+[0] Lot fin = L+ (3-1)+(2+1)

ことに「一つ」もした「れー」. =-1+0, (= 3-1-= 1,7,2)
-(+ fa) = L+ fa) + fa) if Is not continual of Show was we 1271 fuers of defined by for = {[2-1] + |2-1] | f = +1 is discontining 221. for= 1 1- fx=2 3x-5. of x>2

ニューシュー

= 0 + (1) = -1. (: 2 > 1 - > 1 < 1 - 2 = 5.6.9,8,9)

Determine the points. of continuity of the following functions!

(i) -f(x) = [a], (ii) -f(x) = ^[A]

(iii) A(N = 2-1) (N)=(1)

rol (1) +(2); x +(2)

Let M= C+7 (ic mag rd vluy It for 2 L+ [A] -Hen f(c) = [c] = c

L+16) = L+[x]

briting == c-r (: 120

24/L 2+fr) = L+ [x]

putting x = (+h (:h>0)

L+ for = L+ [c+5]

= tt(c) (-c< c++(c4+).

. = _C

トトかートかけ

. for is not continued シュニ C EZ.

しゃ コニ ごを取って ive x z non-entegral velin If n is the greatest entoyer less men c mun [c] =h.

Now f(c) = [c] = 4.

= (h) ("'n((-)kh)

LF for = LF [0]

= L+ ((+L) (ph)=(+

= Lt(n) (:nx(2+4) < n+1

(h+ fo, = L+ ft) = f().

-: f 15 wht. D==(+RZ

ine fiss until at the

(il) K(a) = (i) ; (a + 0) , a HR

@ Let x= C (except 0 8±1).

NOW トトもの ニドトしょう = L+ [-- h] (1-1 h) (1-1 h)

トナタの マルナ (1) = L+[1 (+4) (p+ ZLF (n) (no 1 com)?

- (+ f(x) = L+ f(x)) = f(e).

B) Let n = C ← R-7 134 oheren of a = C = the stand (2) かったいいから enteger if a=c = L+ (-1) (put c-1; 1,70) = LE(-1) (:: = 1< cist o

RIHL 1+ for = L+ 1/2 = L+ [1 c+h] (put == 170. = L+(1) (1 < 1 < 1+1) = = :

- x-) c+ + x-> c-

1) if 1=1 is not an ateger if スキュナナラデー · Let i he greisest let +70 be given. Meg er less then to then Now we were

[t] z h lemen

[t] z h lemen

[c] z h lemen LHL LHAN 2 LA (1)

= ht (th) (pt asch) = 14(h) (: m < 1-cm)

RHL LT fin = LT []

: 4 f(x) = 1 f(n = f(0) i for it continuous at 火产生, 步,---

y Show that the devolute function f(x) = 12/ is continuous at every point Sol Gren the few =121 +240] < 1>0 (depending +) 5.t CERR I air - C'FOR then bronzici

MOW we will show them. L+ f6, = f(c) ie from from 1+(2) - +(0) = 1 |x1-1(1). o choosing J= =. : If con-fig / < stemener i.e for of a -> c.

Emp Let K>0 and let f:R R satisfy the condition |f(x) - f(y) = KT n-8/ + 2, you.

To every point (E 102.

L+ f(x) = f(c).

101 K>0, f:R->R sorisfies the condition 1701- RUIL K12-81 waiy to NOW we shall chan the Lr to = +(). ie forms ffor for this we are evough to green any +>0 (howeversmill), 1 la - 40/ < + whenever 12-1/25

Now from O,	NOW LIGOFIE	= L+(2+) "), 15 m
we have	10-	2
1f(a) - f(y) SK 2-y -4 Teking 2=2, y=0	7, y + ((-5, cn) and -, veget L+(g of)(a) =	Sent sent sent sent sent sent sent sent s
1fcx)-f(c) = x+x=c)	- 2-	Medal. 092
< € 011	(L+(90 F)(x)	of) 1)=2
Choosing of	£ 1+(9°)(5)	2 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -
: If (i) -fo <+ we	Bit + x=01	e de destron
; e f(x)-7f(c) =5 2-	(gof) (e) = (-
1-e L+ f(x) = f(c)		A STATE OF THE STA
for is continued	1 H (3.04)(0) +(3)	
y Let g be defi	ied on R	assume the same of
by g(n) = for 2	= down of the ction :	f: 1 → R
2 for	\$1 said to be add	(y) or nyear
1 let +(x) = x+1	+> CR . Vit f (2+3) = f(x) +	
Show the h+ (9 of) (3)	+(90+)6)	
ra for	prove that if f	T whi -
$g(x) = \begin{cases} 2 & \text{for} \\ 0 & \text{for} \end{cases}$	x=1. himus of some x0.1	والمعالمة المعالمة ا
	wen-it is cons	
and f(2) = 2+1 +1 +	every point of	583322 888
10W f(3) = 2+1 +ne	ID. Sol	A+ 20.
1000 (gof) (x) = 9	(fai) continuity of the po	
=9(2	+1) ++ f(20-1)	putting
[2 f	or x+1+1/2-720 h-70	570
o fo	every point of the point of th	putting farty) = farty) https://t.me/upsc_party
[2 fes	= L+ f(20) + L+ f(-1)	
= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$= f(x_0) + \lim_{n \to 0} f(-n)$	
395 500		
•		
·		* See Street
ne/upsc_pdf	https://upscpdf.com	https://t.me/upsc_p

Sly is
$$f(a) = L + f(a+b)$$

Actor

Let $f(a) = L + f(a+b)$
 $f(a) = L + f(a)$
 $f(a) + f(b)$
 ta male f(x) = { | if x > 0 -1 of x < 0 1 f(x) = | f(x) = 1 +x +10. L+ 1+100 2 1+0 A=0, 141(0) = 1fe)] · Lifez Ifle). | f | 15 conti at 2=0 Jhoons Let fig: IR -> IR 1) contenues of co. and let has = Max (+(2), 5(3) ie, sy fan, sw for x +12 (ii) show to - 1/2 (fort 900) +1/2/for-9(3) Use this to-show the his Continuon of c. proof: since fire on & g: R - R are two

1 + fax = f(1) & sinie 481 = SUP (for 130) 1 x 600 ic h(a) = Hen (f(1),)(x) ; , Ha NOW SMCE, IN A HAR! 1/2 (fax + 9(0) + 1/2 | fax - 9(0) | = [12(190+00)+12[10-90], it tous 90 1/2 (fer + 20) + /2 [-(fer - 20)] , f fer 690 = \ f(x) if f&, 69 8). (by @). since filt g are continung : f+g 15 250 mi + 6' ⇒ / (++) is 20 cm / eti 20 (f-9) 15 conti et ! =) If-9/15 of o untirung = 1/1 1 1 10 cm + 2'

from © 80) $\frac{1}{2}(f+g)+\frac{1}{2}|f-g| \text{ is also continuous at 'c'}.$ $\frac{1}{2}(f+g)+\frac{1}{2}|f-g| \text{ is also continuous at 'c'}.$

the horse h(0).

How Let $f, g: \mathbb{R} \to \mathbb{R}$ be continuous at c' and let $h(x) = \inf\{f(x), g(x)\}$ for $x \in \mathbb{R}$ Show that $h(x) = \frac{1}{2}(f(x) + g(x)) - \frac{1}{2}|f(x) - g(x)| + x \in \mathbb{R}$ Use this to show that $h: \mathbb{R}$ continuous at c'

each Eyo. F 6 8 yo such that | f(x1)-f(x2) | < t whenever 21, 22 ((-8, (+8)).

proof: (i) Let f be a continuous function at c.

then for each e>o, 3 a 5>o such that

| f(a)-f(c)| < \incide interior |x-c| < \incide
-5< x-c< \incide \in

 \Rightarrow |f(x)-f(t)| < t/2 whenever -8<x-c<3.

=> Ifin -fcc) < GL whenever c-8< 2< c+5.

> | frais | (CHL whenes x (- (c-6, (+6)

NOW for M, In E (C-8, (+6))
1 +19.3 - +101 | < +12 & (+12) - +(c) | < +12

NOW we have | f(n) - f(n) = | f(n) - f(c) + f(c) - f(x2) | < | f(2,) -f(c) | + | f(2)-fel) | 147 4 = (MD) 1 f(2,)-f(2,) / < whenever y an € (c-6, (+5) conveniely Suppose that for each 670, 7 a 870 such that |frain - frain < E whenever 31, 32 € ((-8, 6+8). Taking n=x & 2-C we have |f(x)-f(i) | < F whenever : f is continuous at x = CIf a function f. 18 continuous—at "c' Then bounded in some upd of C. Since f is continuous at c! : Given 6>0, 7 a 570. Buch that Itia; -fc() < E bhenever 1x-c) < 5;9 + Df. > f(c)-← < f(x) < f(c)+€ Whenever (-6Ln < (+ 8; x(+)) her M=max [| f(1)-E |, | f(1)+E| } then -M & fine & M whenever 26 (6-5, (+5) n) => If(a) I & M whenever at (c-3, (+3), ND) i f is bounded en some abd of c. fra = sina is continuous for all ack and the range of sinx is [-1,1] (x) :- 15 Sinx 51 -72 CR. inf = -1 & sup=1 file bold. (for each need of x)

The functional 'Counting of x satisfying the functional 'Counting for f(x+y) = f(x) + f(y)Show that f(x) = ax, where $a \in a$ constant.

Golds: Given that fig continuous and f(x+y) = f(x) + f(y) = 0Taking $x = d = y \cdot f(x)$ Taking

Taking g = -x.

(i) f(x + (-x)) = f(x) + f(-x) f(x) = f(x) + f(-x) f(x) = f(x) + f(-x) f(x) = -f(x)

for be a +ve integer,

we have f(x) = f(t) + f(t)

best NOW let & be a re integer.

We write x = -y so that y if the

we have
$$f(x) = f(-y)$$

$$= -f(y)$$

$$= -ay$$

$$= a(-y)$$

$$= ax$$

Again let $x = \frac{p}{y}$ be a lational number;
$$q \text{ being +ve.}$$
we have
$$f(p) = f(\frac{p}{4}, y)$$

$$= f(\frac{p}{4} + \frac{p}{4} + \dots +$$

Let n-100.

- As filacontinuous function
we obtain from (2)

f(3) = aa - Vx.

Hence the result

partition of a closed

Let [aib] be a closed

Button of

If : c= x0 < 21 < 22 (-- - 22-1 < 22 (22+1)

- Hen the finite Set

p= [x0,21,22,---2,21,27,---2] [] colled a partition of [a,b]

- the (1x+1) points no 121, -- 24 - are called lowerthan ponts of the set P!

- The closed intervity [20,21], [21 12m], ---- [22-12m], ---- [25-12m] are called the a suboluterral of the photo enterrolland.

The rt substitute [27-1,27] is denoted by 2, and its length x -x-1 It is devoted by Jr. it 5 = 2 -2-1.

= If for is contino [a, 8] then given to Choweversonly, the closed futurd [a,b] can - se divided fato a finite number of substanty the each of which the oscillation of is less than & in |f(x1)-f(x2) < + for

my two points 2, 8 m ly the same sibortand.

If f is continued fin [c,6] then of is cidd Ry ty futured.

proof since fis consisting inpution n=92, · en [a, b]

Grus +70 (comment), [ais] can be divided finds proceeding, forte number of Etimberrals en each of wich we If(a) < n + If(b)

oscillation of f 15 less han

[ani, end]

1. F | f(21) - f(2~) | < €

for my two points as in Jelngng two the some sombered.

Let a be any point of the frit Jubilitary [c, a,] was the fixed not continuous

. by O, 1f(n) - fer | < +

: |fa) = | fox-fox+fox | 41for- Hor +1for1

< € + | fex |.

Inperticular nza,

(fa) < + + | fa) (2) Let at [c1.52] Wen by 1

- | fca) - f(g) | < +

: | f(x) = | f(x) - f(x) + f(x)]

. .c. 1 fai) | ---

= 2++1 8691

1 for < 2++1for

1 few / < 2+ + 1 fest.

Shilarly, we have

- Wit [ana).

. This inequality is Let [a=co. at], [xr, an], --- Solisticol over the wide

in firstad on [alt].

Note: The inverse of the doe Heavery weed not be

ie If fix. sold on [as]

-fen = (sin 1 1 1 2 2 2 0 一十八信言言.

sol. f(n) = sn 1/3

=> f(1/1) = sh(1)

& f(2) = sm(1/2)

·. 一人for < 1 +x f[音音];

but is not continuous themen of a=0. . If fit continuous of a=0; f(0) =0. [ais] tent attacks of Because: bounds. (08) NOW SINCE -1 ESM'S EI Jf fis conti on [a,6) 140. Hen of strong ets pupocommo & enfirme oblest once in [ab] is of the form 9(x) & fax = h(x) proof Let fle continuo (ab) g(x) 2-1, fx= 2m/2 & has =-1 -then f is sold on [a,b]. . 8 of f - 8 leaf on [a.6] wits L+5() キはしい eaist. .. By SE weete theorem Let Masy of 8 on zet of f or [a,s] L+ fla, o does not exist. .. fly is not conti. or 20 : f(x) is not continting ... f(x) EM & f(x) > m ~~~ (-[<, b] Note: If f is contion now we were to show then (aik) then of need not of witchs its buy a the attest once en [c, 6]. ie frip ([a,s] such the be sold for the ensured. f(x)= M & f(e)= m. 52'- A(A) = 12. + x + (0,1). since f is contion on (on) now if possible suppose but II not idd on (on) that of doesnot ston for + M taticis]. Jecouse: .. x>0 M- fer \$0 to F[ai8] TATE(0,2) Shee M is constant 少のくけくめ it is continuous ford x and f 15 continuous on [as]. =) OCT +x+(0,1) =) Oz flar sext(oi) ... M- flar is continuous on lab => m-fa) ss yo conti on [ais] => (: m-f(x). +0) if is not sol.

I we set where k SI I H- for EK + NHENS => M-f() > 1 ~ rat(as) M-1 > fa) +nefant P) for EM-L wortand) M-T is on upper sound of f. on [a.b] and this upper tound less. then by of for [a,6]. .. which is contradiction to the hypothesis that M is sup (lub) of f on [a,b] :. I defa, b] s. t fa) = M ... fattains its sup atleast once on [a, b] sly f attains its inf Note: The above theorem is not true if the intered is not EN - f(x) = x + x + x + (0,1) fis (onti-on (0,1) and is bdd on (0,17 10)=> f(1)=1

ind Hank 1

clearly fattains Sup but not attain Inf on Coill: Shy f on [0,1) attains the infimum but not the sup Sty for (0,1) does not attain inf & Sup. Note (2) The converse of above theorem need not be true E7: - f(x) = (Sin(x)) x+0 ヤマモ[寺寺] If f is continuous

Theorem at least once on [a,b] on [a,b] then fig bodd and attains its bounds atteast once on [a,b] proof: Above two theorems proofs combined.

Sign preservation theorem:

if file continuous on [a,b] and a < c < b

such that f(c) to then I a sto such that f(a)

has the same sign as f(c) +xe((-6,(+6)).

Therein Ef a function f is continuous on [a,b] and from & f(b) are of opposite signs then I atleast one point (c-(a,b) such that f(c)=0

Enternediate value theorem:

If fis continuous on [a, 5] and frant f(5)

then f assumes every value between \$400 &4

f(6) at least once.

Uniform Continuityer

w.k.T a function fils continuous at a point

xo of an interval [, if given too,] a 500

such that I first foros | < to whenever | 12-201 < 6.

Here & depends, in general, not only on the but also on the point of at which the continuity of 'f' is Considered.

i=e; b= b(x, x) -

for example:

$$f(x) = x^{2} + x \in \mathbb{R}$$
.
Tet $f(x) - f(x_{0}) = |x^{2} - 0|$
 $= |x^{2}|$
 $= |x^{2}| < f(x_{0}) = |x^{2}|$
whenever $|x| < \sqrt{6}$.

Since $C = \frac{1}{4}$ $(-1) = f(x_0) + f(x_0) + (-1) = \frac{1}{4}$ Taking $3 = \frac{1}{2}$ $(-1) = f(x_0) + (-1) = \frac{1}{4}$ Now let $4 = \frac{1}{4}$ We cause:

Let $4 = \frac{1}{4}$ But $|f(x_0) - f(x_0)| = |1 - 96 - 1|$ $= 0.96 \neq \frac{1}{4} (=6)$

.: F>0, the same value of 8 doesnot work for different points of the interval.

i- If a continuous function f is such that given 6>0, we can find a uniform 5>0 which depends only on f and not on the point 76 at which the continuity is considered, then we say that f is uniformly continuous.

Detn: A function defined on an interval I is daid to be uniformly continuous on I for given 6,0, I a 570 (depends on 6 only) such that - (fra)-fraz) fix & whenever (2,-2,165)

Note: III Uniform Continuity of a function

Re a global propary we talk of

1). Continuity on the otherhand is a local broberta

3. A function file not uniformly continuous on 2 if I some to for which no \$20 i.e, for any 870, 7 71,72 ES such that

12,-22/58=> (f(n)-f(20)) 76.

-> Every Constant function is uniformly continuous. on-R.

SON: Let fear = C (EIR) constant function.

Given EZO, such that Now Choosing 370

121-721 <5; 71, 2 CR

→ (fen,) -fins) |= |G-E|-

i-f (n) = c (ER) & uniformly continuous

> The identity function fine x +xCR is unistormy Continuous on R.

Roll: Given frances 2 2 north

Let c70 be given. Let 21, 22 GR such that (21-22) 26.

Now we have

(f(a)) -f(a)) = (n-a) < + whenever in- 12/2/

Choosing 3== ..- |-f(2) | < €. · fers=x is uniformly continuous ST frais is unifolding continuous on [-1] sol': Let (70 be given and let 2, 2 (E) => n [[-1,1] & n2 [-1,1]. ⇒ -1 < 2, ≤1 & -1 < 2, ≤) → 1211 €1. & 1221 SI. NOW we have [f(x,)-f(n2)] = | xy2- x2, = \ (2,-7)(2,+ 72) = | 71-72 | | 21+72) = (1 21 | + 122) (121- 22) - -< (1+1) { 24=22) . = 2 | 21-21 <= whenever |21-21<= Choosing 3= 42 : (f(2,1) - f(2)) < E Whenever on [-1,1]: > IT frais 2 if uniformly continuous on [0,2] Let ETO be given, Let 21, 22 C [0,2] → 0≤2/8 0≤2/8 0≤2/E2 we have $|f(x_1) - f(x_2)| = \left|\frac{x_1}{x_1+1} - \frac{x_2}{x_2+1}\right|$ $= \left| \frac{\lambda_1 - \frac{\lambda_2}{(\lambda_1 + 1)(\lambda_2 + 1)}}{(\lambda_1 + 1)(\lambda_2 + 1)} \right|$ [n+1] [n+1]

DE 1<71+1≤3 & 1≤2+1≤3. $\Rightarrow |2_1+1|2_1| & |2_2+1|2_1| \\ \Rightarrow \frac{1}{|2_1+1|} \leq 1 & \frac{1}{|2_2+1|} \leq 1$ INSTITUTE FOR IASHFOS EXAMINATION : 0= (f(a)-f(a) / (1)(1) /2-2/ Choosing $5 = \frac{C}{1}$. [Ha] - $f(x_1)$ | C Dhenever $(|x_1-x_2| < 5)$ f is uniformly continuous on [0,2] S.T $f(x) = \frac{2x}{2n-1}$ is uniformly Continuous on $[1, \infty)$ Sol": Let +>0, be given. Get 24 2 (- [1,0) then 2121 8 2 21 - 1 we have $|f(\lambda_1) - f(\lambda_2)| = \left| \frac{2\lambda_1}{2\lambda_1 - 1} - \frac{2\lambda_2}{2\lambda_2 - 1} \right|$ $=\frac{2|x_1-x_2|}{|2x_1-i|||2x_2-i||}=$ () = 221-1 ×1 & 22-1>1 ⇒ 12×1-1/31 & 122-1/71 $\Rightarrow \frac{1}{|2n_1-1|} \leq 1 \otimes \frac{1}{|2n_2-1|} \leq 1.$ we have --[f(2))-f(2)] < (1)(1)(2) |21-22) LF Whenever 12,-3,K/2 Choosing &= 51. :- (f(2)) -f(2)/ < whenever |21-22/ < 6. ... f is uniformly continuous on [1,0)

continuous but not Converse.

Continuous but not Converse.

int, every continuous function need not be uniformly continuous.

for example?

front= or is continuous on R, but not

uniformly continuous on R.

because,

pet f>0 be given

pet f>0 be given

now we shall show that for each 670,

now we shall show that $|n-n_2| < 6$ $\exists n_1 n_2 \in \mathbb{R}$ such that $|n-n_2| < 6$ $\Rightarrow |f(n_1) - f(n_2)| > 6$.

Taking $n_2 = n_1 + \frac{3}{2}$ $|x_1 - x_2| = |x_1 - x_1 - \frac{3}{2}|$ $= \frac{3}{2} < 3$

NOW $|f(x_1) - f(x_2)| = |x_1 - x_2|$ $= |x_1 - x_2| |x_1 + x_2|$ $= \frac{\delta}{2} |x_1 + x_1 + \frac{\delta}{2}|$ $= (\frac{\delta}{2}) |x_1 + \frac{\delta}{2}|$

gince 52 >0 and 2,5 < C- 22 >1 CHR.; 2170 Et is impassible, 5 depends on 622; The given function is not uniformly Continuous on R.

on [a,b] then

it is uniformly continuous on [a,b].

Gran = 275272 Vac [0,4]

Differentiability

INSTITUTE OF MATHEMATICAL SCIENCES)
NSTITUTE FOR LASIFOS EXAMINATION
NEW DELHI-110009
Mod: 09999197625

Geometrical Meaning of Derivative at a point:

consider the curve y=f(x) defined in an-open interval (a,b).

Let z = c & (a, b)

Let y = f(x) be differentiable

at z=c.

let P (C, f(c)) be a point

on the curve y = f(x).

and let Q (x, f(x)) be a

neighbouring point on the Curve

Now the slope—of the chord $PR = \frac{f(x) - f(c)}{x - c}$ [if $\frac{y_2 - y_1}{x_2 - x_1}$]

Taking limit as Q -> P

i.e. a -> c, we get

It (slope of the
$$= dt - f(x) - f(c)$$
 $\longrightarrow C$ R Chord PQ) $= x + c - x - c$

As R-P, chord PQ becomes tangent—at P.

. from (1) ; we have

slope of the tangent at P.

$$= dt \frac{f(x) - f(c)}{x - c} = \left[\frac{d}{dx}(f(x))\right](x) f'(x)$$

the slope of the taugent to the curve y = f(x) at the point (C, f(c)).

If a function is not differentiable at x=c only if the point (C,f(c)) is a corner point of the curve y=f(x) i.e., the curve suddenly change its direction

at a point- (c, f(c)).

Consider the function f(x)

defined on (a,b).

Jet P(c,f(c)) be a point on

the curve Y = f(x)Let Q (c-h, f(c-h))&

P(c+h, f(c+h)) be two

R (c+h, f(c+h)) be two O ch c c+h & neighbouring points on the left hand side (LHS) and RHS

respectively of the point P.

Now slope of the chord $PQ = \frac{f(C-h) - f(c)}{(C-h) - C}$

 $=\frac{f(c-h)-f(c)}{-h}$

and slope of chord PR = $\frac{-f(C+h) - f(C)}{C+h - C}$

 $=\frac{f(c+h)-f(c)}{h}$

Now taking limit as _Q→P
i.e. h→0

Q >p (slope of chord PQ) = dt f(c-h)-f(c) - 1

similarly dt (slope of Chord PR)=dt f(c+h)-f(c) -@

As Q->P& R->P. the chords Pa & PR-become tangent

at P. . . from O&D, we have the slope of the taugent at P.

 $\frac{dt}{h \rightarrow 0} \frac{f(c-h) - f(c)}{-h} = \frac{dt}{h \rightarrow 0} \frac{f(c+h) - f(c)}{h}$

.: f(x) is differentiable at 2=C

 $\Leftrightarrow \text{It} \quad \frac{f(c-h)-f(c)}{-h} = \text{It} \quad \frac{f(c+h)-f(c)}{h}$

Let . f: [a, b] -> IR be a function and CE(a,b), then f is

Said to be derivable (or differentiable)

exists the limit is Called the derivative (or) the differential coefficient of the function fatzer and is denoted by fla:

i.e. $f'(c) = it \frac{f(x) - f(c)}{x \rightarrow c}$

Let $f:[a,b] \rightarrow IR$ and Ce(a,b).

Then we say that a real number L is the derivative of f at c if g iven any E>0, $\exists S(E)>0$ Such that if $z\in I$ satisfies e f(x-c)<5then $\left|\frac{f(x)-f(c)}{2-c}-L\right|<6$

In this case, we say that f is differentiable at c'and we write f'(c) for L.

⇒ <u>Left-hand</u> <u>Desivative</u>: —

Let $f:[a,b] \rightarrow \mathbb{R}$ be a function and $C \in (a,b)$ if

It $\frac{f(x)-f(c)}{x-c}$ (or) It $\frac{f(c-h)-f(c)}{h\to o}$ exists.

then this limit is called the lefthand derivative of fat c' and is denoted by fl(c-o) (or) fl(c-) for Lfl(c).

+ Right-hand Derivative:

Let f! [a,b] -> R be a function and ce(a,b).

If $t+\frac{f(x)-f(c)}{2-c}$ (or) $t+\frac{f(c+h)-f(c)}{h}$

exists. then this limit is called the right hand derivative of f'at'c' and denoted by f'(C+) (or) f'(C+o) (or) pf'(c).

Note: The derivative f(C) exists $\iff Lf'(C) = Rf'(C).$

Desirability in an interval:

* A function $f:[a,b] \rightarrow iR$ is said to

be derivable in the open interval (a,b)

if f'(c) exists for each $C \in (a,b)$.

* A function $f'[a_ib] \rightarrow R$ is said to be derivable in $[a_ib]$ if (i, f(c)) exists at $c \in (a_ib)$ (i) Rf'(a) exists (i)

ix A function $f: I \rightarrow IR$ 18 Said to be derivable on I if f is derivable at every point of I.

Ex:
$$\bigcirc$$
 $f(x) = x^{2} + x \in \mathbb{R}$

Let $x = C \in \mathbb{R}$

then $f(c) = c^{2}$

Now $f(c) = J \in f(x) - f(c)$
 $x \to c$

$$= dt \frac{x^2 - c^2}{x - c}$$

$$= dt (x + c)$$

· f(1) is desirable functional

if I(a) is defined on iR and fi(a)=za

YZER.

$$\frac{\exists x : -\emptyset}{\exists (x) = \{x\} \forall x \in \mathbb{R}}$$

$$\frac{\exists x : -\emptyset}{\exists (x) = \{x\} \forall x \neq \emptyset}$$

$$\frac{\exists x : -\emptyset}{\exists (x) = \{x\} \forall x \neq \emptyset}$$

$$\frac{\exists x : -\emptyset}{\exists (x) = \{x\} \forall x \neq \emptyset}$$

at 7=0 , f(0)=0.

$$LFI(0) = LF \frac{f(x)-f(0)}{x-0}$$

$$= LF \frac{-x-0}{x}$$

$$= LF (-1) = -1$$

$$\frac{\text{HD}}{2} := \frac{1}{2} + \frac{f(x) - f(0)}{2 - 0}$$

$$= 4t \frac{3-0}{x}$$

$$= 4t \frac{3-0}{x}$$

· Lfi(0) + 031(0)

theorem: If f! I -> IR has as desirative at CEI Then fis.

Proof: Since I has a derivative at

$$f(c) = \underbrace{f(x) - f(c)}_{x \to c} \forall c \in I.$$

Now for REI; x #C,

we have

$$f(x) - f(c) = \left(\frac{f(x) - f(c)}{x - c}\right) * (x - c)$$

Now applying limit on bothsides at

$$\lim_{x\to c} (f(x) - f(c)) = \lim_{x\to c} \frac{f(x) - f(c)}{x-c} (x-c)$$

$$= 41(c) \times (0)$$

$$3 \rightarrow c$$

$$= 41(c) \times (1 - c) (p(0))$$

$$\Rightarrow$$
 $Lt -f(x) = -f(c)$

is Continuous at iz=c.

Note: (1) The Converse of the above theorem need not be true.

$$\frac{Ex!}{-} - f(x) = |x| \quad \forall x \in \mathbb{R}$$

$$= \begin{cases} x & \text{if } x > 0 \\ -x & \text{if } x < 0 \end{cases}$$

$$\begin{array}{ccc} & & \text{LHL} & \text{LH} &$$

2015 Since f is derivable at $|\alpha|=2$ i.e. at $\alpha=2$:

i.f. is Continuous at $|\alpha|=2$ Now LHL

Lt $f(\alpha) = Lt$ ($\alpha+b\alpha^{-1}$) $|\alpha| > 2^{-1}$ $|\alpha| > 2^{-1}$ $|\alpha| + 2^{-1}$ $|\alpha| + 2^{-1}$

Now RHL

It fix) = at
$$\left(\frac{1}{|x|}\right)$$
 $|x| \rightarrow 2+$
 $|x| \rightarrow 2+$
 $= \frac{1}{2}$

and at
$$|x| = 2$$
, i.e. $x = 2$
 $f(2) = a + 4b$

Since f 1s Continuous at 121=

$$\frac{1 p'(2)}{|2| + 2} = \frac{-f(2) - -f(2)}{2 - 2}$$

$$= dt \quad \underbrace{(\alpha + bx^2) - (\alpha + 4b)}_{\chi - 2}$$

$$= dt \qquad b(x^2-4)$$

$$= b(2+2) = 4b.$$

NOW RHD

$$R+1(2) = J+ f(\alpha) = f(2)$$

$$|x| \rightarrow a+ x = a$$

$$= 4t \frac{1}{121} - (\alpha + 4b)$$

$$= \frac{1}{|x|+3+} \left[\frac{3-|x|}{3|x|(x-2)} \right]$$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

$$= -\frac{1}{d(2)} = -\frac{1}{4}$$

Since f is derivable at 171=2.

$$\Rightarrow 4b = -\frac{1}{4}$$

$$\Rightarrow 5 = -\frac{1}{16}$$

3.5

at x=1The what choice of a & b, if

y. will the function $f(x) = \begin{cases} ax - \epsilon & \text{if } x > 1 \\ bx^2 & \text{if } x \leq 1 \end{cases}$

ecome differentiable at 7=12

Determine if f(x) has derivative at x=0 when $f(x) = \begin{cases} x^{x} \sin x & x \neq 0 \\ 0 & x=0 \end{cases}$

Examine the function $f(x) = \begin{cases} x^2(0) / x & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ for the existence of derivative at x = 0

T Discuss the Continuity and, differentiability of the following femotions at 2-a. $(i) f(x) = \left(x-a\right) sin\left(\frac{1}{x-a}\right)$; $x \neq a$ (ii) $f(x) = \begin{cases} (2-a)^2 \sin\left(\frac{1}{x-a}\right); x \neq a \end{cases}$ Soin(i): since x -> a - > (a-a) -> o-Continuous at x=a: at xa f(a) = 0 LHL $\begin{array}{lll}
\text{Lt-f(x)} &= & \text{Lt-}(x-a)\sin\left(\frac{1}{x-a}\right) \\
x &= & \text{Lt-}(x-a)\sin\left(\frac{1}{x-a}\right)
\end{array}$ = 0x0 (:-1=1=1) $x \rightarrow \alpha +$ $x \rightarrow \alpha +$ RHIL = Dxl (: -15(51) 1. LHL = RHL = f(0) i. f is Continuous at z=a Differentiable at 2-a: LHD: $= dt - \sin\left(\frac{1}{x-a}\right) = \ell$

INSTITUTE OF MARCHANICA STEMES:

INSTITUTE FOR INSTITUTE F

over each Sabinterval The only doubtful: points are the breaking points are the breaking

$$\frac{LHL}{x} \text{ if } f(x) = \text{if } (3-2x)$$

$$- x \to 1-$$

$$= 3-2(1)$$

RHC It
$$f(\alpha) = Lt(1) = 1$$

if is Continuous at 2=1.

NOW THD ;

$$\mathsf{Lf}^{\mathsf{l}}(1) = \mathsf{d}\mathsf{l} + \frac{\mathsf{f}(2) - \mathsf{f}(1)}{2 - \mathsf{l}}$$

$$= 4 + \underbrace{3-22-1}_{2-1}$$

$$-\frac{1}{2 + 1 - \left(\frac{-32 + 2}{2 - 1}\right)}$$

$$\frac{R+D}{x \to H}: Rf^{1}(1) = \frac{1}{x \to H} \frac{f(x) - f(1)}{x \to H}$$

$$= \frac{3 \rightarrow 1+}{1-1} = 0$$

·· LP(CI) 产R型(I).

.. fis not differentiable at x=1.

similarly we can easily show that
fis continuous at x=2 but not
differentiable at x=2.

i. fis Continuous on [0,3] files differentiable on [0,3] except at x=1 and x=2.

High Distinct the continuity and differentiability of the function $f(x) = \frac{1}{2} - 2 + \frac{1}{2} |x-3| \text{ in } [1,4].$ The Determine where each of the

following functions from R-IR is differentiable and find derivative.

Sol'n: (a) = |x| + |x+1| the value of f depends on x < 0, x > 0;

(6r) 2+1<0 , 2+1>0 -2<0, x>0

if 2<-1; |x| = -x& |x+1]=-(2+1)

if -1 < x < 0; $|x| = -x \cdot |x+1| = x+1$

$$\therefore = \{(x) = 1\}$$

if
$$a > 0$$
; $|x| = 2 \cdot |2+1| = x+1$

$$\frac{1}{1}(x) = 3a+1$$

$$\frac{1}{2}(x) = \frac{1}{2}(x+1) - \frac{1}{2}(x)$$

$$\frac{1}{2}(x) = \frac{1}{2}(x+1) - \frac{1}{2}(x)$$

$$\frac{1}{2}(x) = \frac{1}{2}(x+1) - \frac{1}{2}(x)$$

$$\frac{1}{2}(x) = \frac{1}{2}(x+1) - \frac{1}{2}(x+1)$$

$$\frac{1}{2}(x+1) + \frac{1}{2}(x+$$

The value of
$$f$$
 depends on $x < 0$
and $x > 0$.

If $x < 0$ then $|x| = -x$

If $(x) = -x^2$

If $(x) = -x$

Examine its continuity and derivability at $x=\pi/2$.

I show that the function defined by f(x) = |x| + |x-1| is Continuous but not derivable at x = 0 and x = 1.

2<0; 05251; 1<x

|x| = -x -|x| = 1-x -|f(x)| = 1-2x

if 0 < 0 < 1;] \(|x - 1| = 1 - \times \)

$$f(\alpha) = 1$$

f(x): |x| = x |x-1| = x-t |f(x) = 2x-1|

: f(x) = 1 - 2x if x < 01 if 0 < x < 12x-1 if x > 1

Continuity at 2=0:

Desivability at 2=0; not

Continuity at 2=1;

Desivability at 2=1; not

+ show that the function f(x) defined by f(x)=|x-1|+2|x-2|.

is continuous but not desivable at 1 and 2.

I and 2.

Discuss the continuity and differentiability of the function.

S(x) = |x-1|+|x-2| in the interval [0,3]

Sol'n:
[x] [x] [x] [x]

O | 2 3

O | 2 3

if $0 \le a \le 1$ $|x-1| = |1-x| \le 1$ |x-2| = 2-x |x| = 3-2x

if $1 \le \alpha \le 2$; $|\alpha - 1| = \alpha - 1 = 0$ $|\alpha - 2| = 2 - \alpha$ $|\beta(\alpha) = 1|$

if $2 \le n \le 3$; |n-1| = n-1 & 4|n-2| = n-2

 $f(\alpha) = 2\alpha - 3$ $f(\alpha) = \begin{cases} 3 - 2\alpha & \text{if } 0 \le \alpha \le 1 \\ 1 & \text{if } 1 \le \alpha \le 2 \end{cases}$ $2\alpha - 3 & \text{if } 2 \le \alpha \le 3$

Since is a linear (polynomial)
function or Constant function
over the various Subintervals.

Here I is finite but not fixed because it rotates with -1 to+1. : LHD does not enist. Similarly RHD doce not exist. i-fis not differentiable at x=a 20/02 Let f(a) = [apsink; x +0 Obtain Condition P strong that (i) fis continuous at x=0 and in fix differentiable at x=0. sodin: (i) at x=0 f(0) = 0 LHL It f(x) = It x (sin /2) RHL 4 f(x) = dt x f(sin $\frac{1}{x}$) - $\frac{1}{x \to 0+}$ fis continuous at x=0 if the limits 1 & D both meut 1 32 This is possible only sken it .. the required Condition for Counting off at 2=0 is P>0.15 Lf(0) = $1 + \frac{f(x) - f(0)}{x - 0}$ di, LHD $= \text{Lt} \quad \frac{x^{p_{sin}} y_{x} - 0}{x}$ = dt 2(P-1)sin 1/2 Rf(0) = 1 + f(x) - f(0) $x \to 0 + x - 0$ $= Jt \frac{2 P \sin k - 0}{2}$

 $= 4t 2^{(P-1)} \sin \frac{1}{4}$

f is differentiable at 120 if the limits (3) (4) both must be Zero.

this is possible only when. (P-1)>0: The required Condition for differentiability of fatz=ois P>1. Hws. Let $f(x) = \begin{cases} x^m \sin k; & x \neq 0 \\ 0; & x = 0 \end{cases}$ what conditions should be imposed on in so that és of may be continuous et x=0. ii, I may be differentiable at 2=0 #w. show that the following function is continuous at =1, for all values of P. $f(x) = \begin{cases} Px+1 & \text{if } x > 1 \\ x^{y}+P & \text{if } x < 1 \end{cases}$ And the left - hand & right - heind distributives of f(a) at z=1. thence find the condition for the existence of the desivative at that point. Let $f(x) = \sqrt{\frac{e^{\lambda_x} - e^{\lambda_x}}{e^{\lambda_x} + e^{\lambda_x}}}, x \neq c$

Show that is continuous but not differentiable at x=0.

Hug A function f(a) is defined as follows.

 $f(x) = \begin{cases} 1 + \sin x & \text{for } 0 < x < \frac{\pi}{2} \\ 2 + (x - \frac{\pi}{2})^2 & \text{for } x > \frac{\pi}{2} \end{cases}$

Prove if $g: R \rightarrow R$ is a differentiable odd function then glis an even function.

soin: - @ since f is ever function

Now
$$-\beta(c) = ac$$

$$\frac{f(-a) = f(c)}{x \rightarrow c} - \frac{f(x) - f(c)}{x - c}$$

Now f(-c) = dt - f(-x) - f(-c)

$$= dt \frac{f(a) - f(c)}{-(a - c)}$$
("Lis even)

$$= -\lambda + \frac{f(x) - f(c)}{x - c}$$

if is an odd function.

Since gis edd function
∴g(-z):=-g(z) ¥xeIR.

Let 7=c & R. then g(-c)=-g(a)

Now $g'(c) = Jt \frac{g(x) - g(c)}{x - c}$

Now g(-c) = 1 + g(-x) - g(-c)

= 1+
$$-g(x)+g(c)$$

by $f(x) = \sin(x) = f(x)$ be define by $f(x) = \sin(x) = f(x)$ be Continuous on $(-\pi, \pi)$? If it is Continuous, then is it differentiable on $(-\pi, \pi)$: $\frac{\sin(\pi)}{\pi} - f(x) = \sin(\pi) = \frac{\sin(\pi)}{\pi}$

The gill $\rightarrow \mathbb{R}$ be defined by $g(x) = \begin{bmatrix} x^{2} \sin(x^{2}) & \text{for } x \neq 0. \\ 0 & \text{for } x = 0. \end{bmatrix}$

show that g is differentiable for all XEIR.

Also show that the derivative glis not bounded on the interval [-1,1]

 $\frac{3cl^{2n}}{2} = \frac{3cl^{2n}}{2} + 2 \frac{2}{2} cs \frac{1}{2}$

 $= 2\pi \sin\left(\frac{1}{x^2}\right) - \frac{2}{7} \cos\left(\frac{1}{x^2}\right)$

igl(x) is well defined for z = 0.

Now at 2=0:

g(0) =0

$$= J + \frac{g(2) - g(0)}{2 - 0}$$

Now we have

 $\exists \leq Sin\left(\frac{1}{2^{1}}\right) \leq 1 \quad \forall \alpha \in \mathbb{R} : \chi \neq 0$.

 $\Rightarrow -x \leq x \sin(\frac{1}{x^2}) \leq x \quad \forall \quad x > 0. \text{ is}$

of the form

 $f(x) \leq f(x) \leq h(x)$

Here f(x) = -x; $f(x) = x \sin(\frac{1}{x^2})$ h(x) = x

 $\frac{1}{\lambda \to 0} = 0 = 1 + h(\lambda)$

By_ Squeeze theorem

$$\frac{dt}{x \to 0} = \frac{x \sin\left(\frac{t}{x^2}\right)}{x \to 0} = 0.$$

.. 9 is differentiable at x=0

A) = gl(x) is not bounded.

on [-1,1] as of [-1,1]

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x^{1/2} \sin(x) & x \neq 0 \\ 0 & x \neq 0 \end{cases}$

Determine these values of refor.

Thirth f(0) exists. $\frac{sol^{1}n:-}{}$. At x=0; f(0)=0Now $f(0) = \frac{1}{2} + \frac{f(x)-f(0)}{2-0}$ $= \frac{1}{2} + \frac{x^{2} \sin k_{x}}{2}$ $= \frac{1}{2} + \frac{x^$

...f(0) exists for 8>1.

* Extreme Value (Definition):

A real number it is called an interior point of a set A if A is neighbourhood of x.

1-e. 7 6 >0 such that (2-e, 2+e)CA.

Ex:-(1) Every point of (a,b) is its Interior point.

(2) Every point [a,b] is its interior point except a&b.

The function fixther is said to

have a relative maximum (or)
maximum value (or) maxima at CEI

if f(c) is the greatest value of the function f in a small neighboring

of v = 1/3(c) of c.

i-e for all 2 e (C-5, 15th); \$>0

Such that f(x) sf(c) + 2 e vnI.

The function $f: \mathbb{T} \to \mathbb{R}$ is said to have a relative minimum (or) minimum value (or) minima at

C∈? if f(c) is the least value

of the function in a small

neighbourhood V= Vz(c)[ie((-5, (+5)]

鲜 C.

i.e. for all 2e (C-5, C+5); 5>0

such that f(x) > f(c) & IEVAI

> the function f: I - R is said to

have relative extremum (01) extreme value at CEI, if f has either relative maximum (01) relative minimum at c'.

Let c be an interior point of the interval of at which fill the a relative extremum at c. If the derivative of fat cerists then f(c) = 0.

Proof: Since of has a relative extrema at c'.

Suppose that of has a relative suppose at c'.

f(x) sf(c) + xe In y(c).

If possible let $f(c) \neq 0$. then f(c) > 0 or f(c) < 0.

Careir: If flor >0

i-e. Lt $\frac{f(x)-f(c)}{x-c} > 0$.

 $\frac{f(x)-f(c)}{2-c} > 0 \forall l \in IDV_{S(c)};$

Now if $z \in V_3(c)$ and z > cthen $f(z) - f(c) = \left(\frac{f(z) - f(c)}{z - c}\right)(z - c) > 0$ $\Rightarrow f(z) - f(c) > 0$

 \Rightarrow $f(x) > f(c) - \emptyset$

But 1 & @ are Contradiction.

: 1 (c) to - 0

Case(i): If f(c) < 0 then $\frac{df}{dc} = \frac{f(x) - f(c)}{x - c} < 0$ $\frac{f(x) - f(c)}{x - c} < 0 + x \in In y(c);$ $\frac{f(x) - f(c)}{x - c} < 0 + x \in In y(c);$ If $x \in Y_s(c)$ and x < c then

 $f(x) - f(c) = \left[\frac{f(x) - f(c)}{(x-c)}\right] \times (x-c)$

f(x) - f(c) > 0 f(x) > f(c) - 0

>O.

But () & (5) are Contradiction

· f(cc) KO . --- B

from A&B

f(CC) =0

Note! (1) If f has relative extremum at c' then flcc) may not exist.

if it exists then flcc) =0.

Ex!- $f(x) = |x| + 2 \cdot [-1,1]$

for $x = V_3(0)$ $x = V_3(0)$

→ 2e (-8,5)

i) 7 E (-5,0)

 \Rightarrow $\pm(x) > \pm(c) = 0$

. f(x) has minimum f(0) < f(x)
at x = 0 ∀x ∈(-5,5)

) JE (0'8)

 \Rightarrow f(x) > f(0)=0

inf(1) has reinimum at 12=0

. I has relative extremum at x=0.

 $f(0) = H \frac{f(\alpha) - f(0)}{\alpha - 0}$

 $= dt \quad |\alpha| - 0$ $x \to 0 \quad |\alpha| - 0$

= 1 |x1

Now $1 + \frac{|x|}{x} = 1 + \frac{-(x)}{x}$

2→0-= 9F (-1)= -1

Now at $\frac{1}{x}$ = It $\frac{x}{x}$ = It (1) = 1

i fl (0) does not exist.

Note(2):(a) The converse of above theorem need not be true.

If f(cc) = 0 then -

f(c) may not be an entreme value

 $Ex! - f(x) = x^3$ $\forall x \in \mathbb{R}$

·f(x) = 3x2

At 2=0; flor= 0.

But .= f is strictly increasing in R and has no local extremum.

Destinition -

The point C is said to be stationary

Point and of(c) the stationary

Value of the function of if floor===

Rolle's Theorem: - [Only problems]
Suppose that fis continuous on

I = [a, b] that the derivative fi

exists at every point of (a,b) and f(a) = f(b) = 0. Then there exists at least one point Ce (a, b) Such that f'(c) = 0.

proof! Careli) If f(a)=0 on I =[a;b] then f(x)=0 +xe[a,b] · f(()=0+7= CE(a,b)

Casein :

If f(a) +0 > 2 ∈ [a,b] then f(a)>0 or f(x)<0.

Suppose that f(x)>0 Yze[a,b] i.e. of assumes the tre values in 1=[a,b]

Since f is Continuous on I = [a,b] i f attains its Supremum (lub) at least once in (a, b).

i.e. let f altains its supremum at some point CE[a,b].

i.e.f(c) = sup { f(x) (x = I=[Q, b] }>0

at $x = c \in I$

⇒ 7 € (C-5, C+-5)

Since I takes some the Values.

 $f(x) \leq f(c)$

¥ 2 € I N (C-5, C+6)

INSTITUTE FOR IASAECS EXAMINATION NEW DELHILI 67:09

Diop: 05999197625

우(c) >o.

Since f(a) = f(b) = 0

and then Cta, Ctb

→ CE (a,b)

since of exists at every point of (a,b).

: fl(c) exists.

. I has relative maximum at C: and of has derivative at ic'.

: By interior extremem theorem -- ft(c) =0

for at least one point (a.b). Hence the theorem.

* failure of Rolle's Theorem:-

Rolle's theorem fails to hold good fo a function which does not satisfy cell th three conditions of the theorem.

theorem is not applicable if their (1) fis not Continuous in [a, b] (or) ii, fis not desivable in (a,b). (or) \tilde{m}_1 $f(a) \neq f(b)$.

Note! The converse of Rolles theorem is not true i.e. fl(x)=0 at z=ce(a,b) without f(2) satisfying all the three Conditions of Rolle's theorem.

121-1 when 122 <2

.: I has relative maximum at c. Learly fis not continuous and not

derivable at x=1.

if is not continuous in [0,2] and fis not derivable in [0,2].

Also $f(0) \neq f(2)$.

But $f(x)=0 \forall x \in (0,1) \subset (0,2)$. i.e. f'(x)=0 by at least one point $x \in (0,2)$.

Note(2): Another form of Rollestheorem

If f is continuous on [a, e+h]

derivable on (a, a+h) and

f(a)=f(a+h)=0. then I at least

One real number $\Theta \in (0,1)$ such

that f'(a+Gh)=0

Here. b=a+h; h>0 and c=a+bhSince $C\in(a,b)$ $\Rightarrow a< c< b$

> \Rightarrow a < a + oh < a + h \Rightarrow 0 < 8 h < h

⇒ 0<0<1 (::h>0)

⇒ θ∈(0,1).

Problems:

Verify Rolle's theorem in the following cases:

(1) -1(x)=(x-a)m(1-5)n

where men are the integers.

in the interval [a, b]

 $\frac{s_{e1}^{b}}{-f(x)} = (x-a)^{m} (x-b)^{n}$

(i) Since men are the integers.

: f(z) is polynomial in z

(on expansion by binomial theorem).

Since every polynomial struction is

Continuous function of z

for all values of z.

if(x) is Continuous function for all values of z.

: It is Continuous on [a,b].

(i) $f'(x) = m(x-a)^{m-1}(x-b)^n + n(x-a)^n$

 $= (x-a)^{m-1} (x-b)^{m-1} \left[m(x-b) + n(x-a) \right]$

 $= (\lambda - \alpha)^{-1} (\lambda - \beta)^{n-1} \left[(m+n)\chi - (m\beta + n\alpha) \right]$ exists in (α, β)

f(x) is derivable in (a,b).

(iii) -f(a) = f(b) =0.

conditions of Rollis theorem.

i. I at least one value = ce(a,6)

such that fl(c)=0

 $-f'(c) = (c-a)^{m-1}(c-b)^{m-1}[c(m+n)-(mb+na)]$

= D

→ C(m+n)- (mb+na)=0 (:: C≠a c ≠b)

⇒ c(m+n) = mb+na

 $C = \frac{mb + nc}{m+n} \in (0,b)$

: Rolle's -theorem is Vesified.

(1) + (x-a)3(x-b)4 + xe[a,6] $\Rightarrow f(\alpha) = 2 + (\alpha - 1)^2 (3 \quad \forall \alpha \in [0, 2]$ sol's: Since f(2)=3 (2-1)-13

which does not exist in $2 = 1 \in (0,2)$

- if (a) does not exist in (0,2)
- .. f is not derivable in (0,2)
- : Rolle's theorem is not applicable Hunc fix) = x(2+3)e-2/2 & 20[-3,0] to f(a) in [0,2].

 $\rightarrow f(x) = e^x \sin x \ \forall x \in [0,11]$

Sol'n: - ci) since et & sina are both Continuous functions for values of

- i e Sinx is also Continuous for au Values of 1.
- f(x) is continuous in [0,T].
- ii, fl(x) = excosx + exsinx which exists in (O.TT).
- : f(x) is derivable in (CIT).

(ii) f(0) = e sin(0)

 $-f(\pi)=e^{\pi}\sin(\pi)$

 $f(0) = f(\pi) = 0$

- . The Conditions of Roller theorem are satisfied.
- .. I atteast one value ce (0,71) Such that fl(c)=0

f(c) = ec ((osc+sinc) =0

=> (csc + sinc =0 (: ec +0)

⇒ coss =-sinc

=> 1 = -tanc

=>tane = -1

=> tanc = -tan (T/4)

 $= tan(\overline{u}-\overline{u}/4)$

31)

⇒ c = 11-11/4

 $\Rightarrow c = 3\pi/4 \in (0.17)$

. Rolle's theorem is verified.

 $\rightarrow f(\alpha) = |\alpha| \forall \alpha \in [-1,1].$

solo :- il since f(x) = |x| is continuous -for all values of x...

- if It is continuous in [-1,1]
- (ii), Since f(a) is not derivable at · 2=0∈(-1,1)
- if is not derivate in (-1,1)
- .The Rolle's is not applicable to

 $\Rightarrow f(x) = \log \left[\frac{-x^2 + ab}{x(a+b)} \right] \forall x \in [a,b]$ 0¢ [a,b]

801": (i) f(x) = log(x+abj-log(x(a+b)

 $= \log(x^2 + ab) - \log x - \log(atb)$

It is continuous in [a,b] of [a,b]

(i) $f'(z) = \frac{2z}{z^2 + ab} - \frac{1}{z}$ $= \frac{x^{2} - ab}{x(x^{2} + ab)}$ exists in (a,b)

f(1) is derivable in (a,6).

iii)
$$f(a) = \log \left[\frac{(a^2 + ab)}{a(a+b)} \right]$$

$$= \log \left(\frac{a^2 + ab}{a^2 + ab} \right)$$

$$= \log(1) = 0$$

$$f(b) = \log \left[\frac{b^2 + ab}{b(a+b)} \right]$$

$$= \log(1) = 0$$

The Conditions of Rolle's theorem

.. I atteast one point CC(a,b)Such that f(c) = 0

$$-f(c) = \frac{c^2 - ab}{c(-a^2 + ab)} = 0$$

...f(a) = f(b) = 0

$$\Rightarrow$$
 $c^2 = ab$

$$\Rightarrow$$
 C = $\pm \sqrt{ab}$

$$\Rightarrow c = \pm \sqrt{ab} \in (a,b)$$

.. Roller is verified. (neglecting-ta)

$$\xrightarrow{\text{H.w.}} f(x) = \log \left(\frac{x^{2}+3}{4x} \right) \forall x \in [1,3]$$

$$\rightarrow f(3) = 3^{2} - 63 + 8 \quad \forall \quad 3 \in [2,4]$$

$$\rightarrow f(1) = 8x - x^{\gamma} \forall x \in [2, 6]$$

$$f(\alpha) = \begin{bmatrix} \alpha^{n} + 1 & \text{for } 0 \leq \lambda \leq 1 \\ 3 - \lambda & \text{for } 1 \leq \lambda \leq 2 \end{bmatrix}$$

sol'?:- Here f(x) is defined in [0,2]

is a polynomial.

. It is continuous & denvarle.

Since
$$f(x) = 3 - x$$
 for $1 \le x \le 2.7s$

a folynomial.

It is continuous & derivable in [1,2]
Since the domain of function of (x)
is [0,2] which is partioned at x=1
we are not sure about the
Continuity and derivability of

f(x) at x=1

Now LHI It
$$-f(x) = It (x^2 + 1)$$

= 2

$$\frac{\text{RHL}}{x \to 1+} \int_{1+}^{1+} (x) = 2.$$

at 2=1

i.f is continuous at x=1.

$$\begin{array}{rcl}
& \text{HD} \\
& \text{Lf}^{\dagger}(1) &= \text{Lf} & \frac{f(\alpha) - f(1)}{\chi - 1} \\
&= \text{Lf} & \frac{\chi^{2} - 1}{\chi - 1} \\
&= \text{Lf} & \frac{\chi^{2} - 1}{\chi - 1}
\end{array}$$

$$= 3l^{2} \frac{3-\chi-2}{3-\chi-2}$$

$$= \underbrace{1-x}_{2\rightarrow 1}$$

·= -

- LIHD + RHD

· fis not derivable at ==

i fis not derivable in (0,2)

· Rolle's theorem is not applicable to f(x) in [0,2]

$$\frac{2mp}{n+1} + \frac{a_1}{n} + \frac{a_2}{n-1} + \dots + \frac{a_{n-1}}{2} + a_n = 0$$

show that the function $a_0x^n + a_1x^{n-1} + \cdots + a_n$ Vanisher atteast once in (0,1).

$$\frac{300^{10}}{10^{10}} = 4 \cdot \frac{1}{10^{10}} + \frac{1}{10^{10}}$$

¥ 2€ [0,1]

Since f(x) is a polynomial.

which is continuous & desivable for

fis continuous in [0,1] & derivable

in (0,1).

Also f(0) = 0.

and $f(1) = \frac{a_0}{n+1} + \frac{a_1}{n} + \dots + \frac{a_{n-1}}{2} + a_{n-1}$ $= 0 \quad (given)$

.. The Conditions of Rolle's theorem i

.. I attent one point re (0,1) such that f(x) = 0.

$$\Rightarrow f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1} x^n$$

$$+ a_n = 0.$$

Him. By Considering the function $(x-4)\log x$, show that the equation alog x=4-x is satisfied by at least one value of $x \in (1,4)$.

Sol'n - Let $f(x) = (x-4)\log x$ There that between any two roots of $e^{x}\cos x = 1$, \exists at least one root of $e^{x}\sin x - 1 = 0$.

i.e. $\sin^{2} x = e^{x} = 0$ Sol'n: Let $x = a \cdot x = b$ be two

soin: Let = 7 = a & x = b de two distinct roots of the given equation excorx=1

in [a,b]

f(3) is continuous in [a, b]

ti, fl(a) = sina - e-x

which exists for all x ∈ (a, b).

. fis derivable in (a,t).

in, f(a) = stosa te a

$$f(a) = f(b) = 0$$

in the Conditions. of Rolle's

theorem are satisfied.

 $\therefore \exists$ at least one point $C \in (a,b)$

Such that fl(c) = 0.

 \Rightarrow $f(c) = \sin c - e^{-c} = 0$

$$\Rightarrow$$
 Sinc = e^{-c}

 $\Rightarrow \alpha = c \in (\alpha, b)$ is a root of

the equation ersinx-1 =0

i, esina - 1 has at least one root b/w

any two roots of the equation.

en cosx = 1.

1-w Prove that bleo any trac

roots of enilar 1, 3 atteast

One real root of

ex Calx +1=0.

* Lagrange's Mean Value Theorem: -

(first Hear Value theorem of Differential Calculus) -

Statement: Suppose that fis Continuous on I=[a,b] and f has a derivative in (a,b). Then there exists at least one point CE (a,b) Such - that $f'(c) = \frac{-f(b) - f(a)}{b-a}$

Proof: - Consider the function

\$(x) = f(x) - f(a) - k(x-a) V xe[a,6] where $k = \frac{f(b) - f(a)}{b - a}$

Since f(x) is continuous on I=[a,6]

Since (2-a) is polynomial it Continuous on I and fla) & k are Constants.

. φ(x) is continuous on [a,b].

 $N_0\omega - \phi'(x) = f(x) - \kappa$ exists in (0.6)

[: flatezists in (a,b)]

 $Nc\omega \Phi(\alpha) = 0$

and $\phi(b) = f(b) - f(a) - k(b-a)$

=(f(b)-f(a))-(f(b)-f(a))

 $\ddot{\varphi}(\omega) = \phi(b) = 0$

i d(x) satisfies the Conditions of Rolle's theorem.

: I at least one CE(Q, 5) such the $\Phi'(c) = 0$.

 $\Phi'(c) = f'(c) - k = 0$

 $\Rightarrow f(c) = K$

 \Rightarrow f(c) = $\frac{f(b) - f(a)}{b-a}$

-Another Statement:

If a function of defined on [a,b] is (i) Continuous on [a,a+h] (ii, desivable on (a, a+h) then 3 attent one real number $\theta \in (0,1)$ Such that f(a+h) = f(a)+hfl(a+0h)

Here b=a+b

& c = a+8h

from Lagrange's * Deductions Mean Value theorem:

-> If a function f is continuous on closed interval I=[a,b] and derivable on (a; b) - and fla) = 0 tre(a, b) then f is

Constant on ? = [a,b]

Sci's = Let x1, x2 (with x1<x2) be

any two distinct points of [a.5]

Then I satisfies both conditions of tagranges mean value Theorem QU[1'4] -

: 3 (c (2,, 2) Such that $\frac{f(\alpha_2)-f(\alpha_1)}{\alpha_2-\alpha_1}=f(c).$

But fl(x) =0. V xe (a,b) and JIC C < 12

· + fl(c)=0

from (1), $\frac{f(x_1)-f(x_1)}{x_2-x_1}=0$...

 $\Rightarrow f(\alpha_1) - f(\alpha_1) = 0$ $\rightarrow f(x_1) = f(x_2)$

Since x, & 22 are any two distinct points of [a,b].

it follows that & Keeps the same value for every ze[a,b].

...f(x) is constant on-[a,b]

-> If two functions fly are Continuous on [a,b], differentiable on (a,b) and fla = gla) trefab then f-g is a constant on [a,b]

 $\underline{\underline{!d'^n}} \cdot \text{ Let } u \cdot \text{ Consider } \varphi(x) = f(x) - g(x) \longrightarrow x_1 < x_2 \Longrightarrow f(x_1) \gg f(x_2)$

4x6a,6}

Since f & g (entinuous on $[a,b] \longrightarrow x_1 < x_2 \longrightarrow f(x_1) > f(x_2)$ and differentiable on (a,5)

. ф is Continuous on [a,b]and differentiable on (a, b).

 $-\phi'(x) = f'(x) - f'(x)$ exists on (a_1b)

Since fl(a) = gl(a) \ \ \ \ \ [a,b]

 $\phi(x) = 0 \quad \forall x \in (a,b).$

Since of is continuous on [a,b] differentiable on (a,b) and

 $\phi'(x) = 0 \quad \forall \ x \in (a,b)$

- . o is a constant function ona,6]

i.e. f-g is tenstant on [a,b]

* Increasing and Decreasing Functions ~

If in a part of the domain of the function f(x),

 $\rightarrow \alpha_1 < \alpha_2 \Rightarrow f(\alpha_1) \leq f(\alpha_2)$ then

f(x) is called monotonically

increasing function in that part.

 $\rightarrow \tau_1 < \tau_2 \Rightarrow f(\tau_1) < f(\tau_2)$ then

f(2) Is Called Strictly monotonically increasing function in that part.

Monotonically decreasing.

Strictly Monotonially decreasing

Theorem:

Let f! I -> IR be differentiable

on I then

a f is increasing on I H $\textbf{J}(x) \geq 0 \quad \forall x \in \mathbb{I}.$

6 f is decreasing on 7

iff fl(x) < p vxei.

Proof - @ suppose that f!(a) >0

Let $x_1, x_2 \in I$ with $x_1 < x_2$.

Sothat $[x_1, x_2] \subset I$.

since f is differentiable on I

and therefore it is continuous
on [2, 2]

in f satisfies both the Conditions of Lagranges mean value theorem on $[\alpha_1, \alpha_2]$.

: ∃ C∈ (2,12) such that

$$\frac{f(\overline{x_2}) - f(x_1)}{x_2 - x_1} = f'(c).$$

 $\Rightarrow f(x_2) - f(x_1) = (x_2 - x_1) f'(c)$

Since $x_1 < x_2 \Rightarrow x_2 - x_1 > 0$.

fl(1) ≥0 + 1 EI and 7, < C < 1/2

⇒f'(c)>0.

 f_{trun} (), $f(x_t) - f(x_t) \gg 0$

 $\Rightarrow f(x_1) \leq f(x_2)$.

Since $x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$

if is an increasing on I.

Conversely - Suppose that of is in

differentiable on I and fis an

increasing on I.

Now for x=+CGI then 2>c or 2<c

Casein if x>c (1-e (x-c)>0)

then $f(x) \gg f(c)$. ("fis increasing ont).

$$\Rightarrow f(x) - f(c) \geqslant 0$$

$$\Rightarrow f(x) - f(c)$$

$$\Rightarrow \frac{f(\pi) - f(c)}{\gamma - c} > 0 \quad (\because \chi - c > 0)$$

Corein 2f 2 < c (i.e. (2-c) <0)

then f(x) < f(c) (: f is increasive on I)

$$\Rightarrow f(x) - f(c) \leq 0$$

$$\Rightarrow \frac{3-c}{3-c} > 0 \quad (x-c<0)$$

$$\Rightarrow 4 + \frac{f(x) - f(c)}{2 - c} > 0$$

$$3 \rightarrow c \qquad 3$$

Since fis differentiable on I.

Let if be differentiable at CFI.

$$f(c) = 1 + \frac{f(x) - f(c)}{x - c}$$

· from OLD

we have

(b) the lacel of part (6) is similar.

Problems:

* Verify Lagranges mean value theorem for the following functions in the specified intervals:

→ f(x) = x (x-1)(x-2) \ x \ [0, /2]

 $\frac{\text{Solin}}{\text{Had}} = \chi^3 - 3\chi^2 + 2\chi \text{ is } \alpha$

-polynomial in a.

which is continuous in [0,1/2]

 $f'(\alpha) = 3x^{2} - 6x + 2 \text{ exists in } (0, \frac{1}{2})$

is f is differentiable in (0,1/2).

. I satisfies the Conditions of Lagranges Mean value Theorem.

: I CE (O.1/2) Seech that $f(c) = \frac{f(k_2) - f(0)}{2}$

 \Rightarrow 3c²-6c+2 = $\frac{318-0}{1}$

=> 3c2-6C+2 = 3/2

> 120 -240+8=3

7 1207-246+5=0

 $\Rightarrow c = \frac{31}{34 \pm \sqrt{336}}$

 $\Rightarrow C = \frac{94 \pm 4\sqrt{81}}{24}$

 $\Rightarrow c = \frac{6 + \sqrt{21}}{6}$

Now the two values of care $\Rightarrow \frac{1-0}{6-1}$

科技面,一份面

In these two values of c the second Value 1- /6/21 € (01/2).

I attempt one value of

C=1-1/21 e (0,1/2) such that

 $\frac{f(1/2)-f(0)}{V-D}=-f'(c)$

. The Lagranges Mean value theorem is verified.

 $\rightarrow f(x) = x^{2} - 3x + 2 \quad \forall \ x \in [-2,3]$

 $f(x) = x^3 + x^9 - 6x \ \forall \ \gamma \in [-1, 4]$

 \rightarrow f(x) = e^{x} on [0,1]

> f(x) = logx & re[1,e] where C= 2.71828.

sol's: Since -f(x) = logx is continuous for all +ve values of z.

: It is continuous on [1, E] and $J'(x) = \sqrt{x}$ exists in (1,e).

: fis derivable in (1.e)

: L Satisfies the Conditions of Lagranges. Mean Value theorem.

i at least one ce (lie) such that

- ft(c) = f(e)-f(t)

= lege - 10g(1)

⇒ e-1 = C ⇒ c = e-1 ∈ (1,e) ∴ The Lagrangis Near Value

: The lagranges Mean value theorem is satisfied.

$$f(x) = \sqrt{2^9 - 4} \quad \forall \quad x \in [2, 4]$$

$$\Rightarrow f(x) = \begin{bmatrix} 2 & \text{if } 1 < x < 2 \\ 1 & \text{if } x = 2 \end{bmatrix}$$

soln: Since $f(x) = x^n$ is a polynomial function in 1 < x < 2 and every polynomial function is Continuous for all values of x.

: It is continuous on (1,2)

Now at x=1;

Now It $f(x) = 4tx^{2}$

$$\int_{\lambda \to 1+}^{\infty} f(x) \neq f(1).$$

At
$$\chi = 3$$
; $f(2) = 1$

Now $\lambda + \beta(x) = \lambda + x^2$

$$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$$

.. f(x) is not at 1=1 2

.. $f(\pi)$ is continuous in (1,2) but not in [1,2]

.. f(x) does not latisfy the Conditions of Lagrange's Hean Value theorem.

is not applicable to f(2).

Solh: It is Continuous on [-1,2] and it is differentiable at each point in
$$(-1,2)$$
 except at $x=0$.

if (x) is not differentiable in (-1,2)

.. f(x) does not satisfy the

Conditions of Lagranges Mean Value

not applicable to f(x).

$$\alpha = 0, b = 4$$
 find c of lagrange

Mean value theorem.

$$\frac{361^{(0)}}{60} = f(x) = (x-1)(x-2)(x-3)$$

$$= x^3 - 6x^2 + 11x - 6$$

$$f(x) = f(0)$$

$$= -6$$

$$f(6) = f(4)$$

$$= (3)(2)(1) = 6$$

$$\frac{f'(c) = \frac{f(b) - f(a)}{b - a}}{\frac{b - a}{a}}$$

$$3c^{2}-12c+11 = \frac{6-(-6)}{4-0}$$

$$\Rightarrow 3c^{2}-12c+11 = \frac{12}{4}$$

$$\Rightarrow 3c^{2}-12c+11 = 3$$

$$\Rightarrow 3c^{2}-12c+8 = 0$$

$$\Rightarrow c = 12 \pm \sqrt{144-96}$$

$$2 \times 3$$

$$\Rightarrow c = 12 \pm \sqrt{48}$$

$$\Rightarrow C = \frac{12 \pm \sqrt{48}}{6}$$

$$\Rightarrow C = \frac{12 \pm 4\sqrt{3}}{6}$$

$$\Rightarrow C = 2 \pm \frac{2}{\sqrt{3}} \in (0,4).$$

$$f(x) = \frac{1}{2} \forall x \in [-1, 1]$$

 $\frac{\text{Sod'} n}{n}$: $f(0)$ is not finite white $0 \in [-1, 1]$.

LHL

It
$$f(x) = -\infty &$$
 $x \to 0 -$

RHL

It $f(x) = -\infty &$
 $x \to 0 +$

ig.
$$f(x) = x^{1/3}$$
 in $[-1,1]$

$$= \frac{\pi}{(1+\pi)^{2}} > 0 \quad (: \pi) > 0$$
of $f(x) = \frac{1}{3}x^{-1/3} = \frac{1}{3\pi^{2/3}}$
i. $f(x) > 0 \quad \text{when } x > 0$
decend exist at $x = 0 \in (-1,1)$ i.e. $f(x)$ is an increasing when Lagranges Mean value theorem is
$$f(x) > f(0).$$

not applicable to f(x).

However
$$\frac{f(1)-f(-1)}{1-(-1)}$$
 $= \frac{1}{3(1/3)}$
 $\Rightarrow \frac{1-(-i)}{-2} = \frac{1}{3(1/3)}$
 $\Rightarrow 3c^{1/3} = 1$
 $\Rightarrow c^{1/3} = \frac{1}{3}$
 $\Rightarrow c^{1/3} = \frac{1}{3}$
 $\Rightarrow c^{1/3} = \frac{1}{3}$

.. The hypothesis of lagranges Near Value theorem is not valid.

i.e., the two conditions of lagranger Mean Value theorem are sufficient but not necessary.

> show that if >>0, log(l+x)> x and hence prove that x-1 log (1+x) decreases monotonilally as x increases from 0 to so.

$$\frac{\text{Sol'n}}{\text{--}} = \frac{\text{Let } f(x) = \log(1+x) - \frac{x}{1+x}}{1+x}$$

$$= \frac{1}{1+x} - \frac{(1+x) \cdot 1 - x}{(1+x)^2}$$

$$= \frac{1}{1+x} - \frac{1}{1+x} + \frac{x}{(1+x)^2}$$

$$= \frac{x}{(1+x)^2} > 0 \quad (x > 0)$$

: flox>0 when x>0

· -f(x)>-f(o).

Noco
$$f(0) = \log(1+0) - \frac{0}{1+0}$$

$$= \log(1-0)$$

$$= 0$$

$$= \log(1+1) - \frac{1}{2} > 0$$

$$\Rightarrow \log (1+x) > \frac{1}{x}$$

$$F^{1}(x) = \frac{x}{1+x} - \frac{\log(1+x)}{x^{2}}$$

$$- \left[\log(1+x) - \frac{x}{x}\right]$$

$$=\frac{-\left[\log(1+x)-\frac{x}{1+x}\right]}{x^2}$$

$$= \frac{-f(a)}{a^2} < o \text{ for } a > 0$$

... F(a) is an decreasing function

$$x-\frac{3^2}{2} < \log(1+x) < x-\frac{3^2}{2(1+x)}$$
; $x>0$: $g(x)$ is a decreasing function.

$$f(x) = 1 - 2 - \frac{1}{1 + x}$$

$$= \frac{1 - 2^{2} - 1}{1 + x}$$

$$= \frac{-2^{2}}{1 + x} < 0 \text{ for } x > 0.$$

: fl (a) <0 for x>0.

. f(x) is a decreasing function for 200-

Now
$$f(0) = 0 - 0 - \log 1$$

$$\Rightarrow 2 - \frac{2^2}{2} - \log(1+x) < 0$$

Now let 8(x) = log(1+x) - x+ -x2

$$\Rightarrow g(x) = \frac{1}{1+x} - 1 + \frac{(1+x)2x - 2^{2}(1)}{(1+x)^{2}}$$

$$= \frac{1}{1+x} - 1 + \frac{1}{2} \left[\frac{2x + x^{2}}{(1+x)^{2}} \right]$$

$$= \frac{1}{1+x} - 1 + \frac{2x + x^{2}}{1+x}$$

$$=\frac{1}{1+x}-1+\frac{1}{2}\frac{2x+x^2}{(1+x)^2}$$

$$- = \frac{2(1+x)^2}{2(1+x)^2+2x+x^2}$$

$$= \frac{-n^2}{2(1+n)^2} < 0 \text{ for } n > 0.$$

for x 70.

But 9(0) 20 · 9(x) <0 $\Rightarrow \log(1+x) - x + \frac{x^2}{2(1+x)} < 0$ Combining 1 60, $\chi - \frac{\chi_{\perp}}{2} \leq \log \left(1 + \chi \right) \leq \chi - \frac{\chi_{\perp}}{2(1 + \chi)}$ 2002 PT Show that b-a = sin b-sin a = b-a \\ \frac{1-b^2}{1-b^2} 0<acb<1. sol'n: Let f(n) = sinta Vxe[a,0] where a>0; b<1 i.e. 0<a<b<1. fla) is continuous & derivable in [a,b] and $-f'(x) = \frac{1}{\sqrt{1-x^2}} \forall x \in (a,b)$: By Lagrange's Mean Value theorem; 7 CE(a, b) Such that f(c) = f(b) - f(a) $\Rightarrow \frac{1}{\sqrt{1-c^2}} = \frac{\sin^2 b - \sin^2 a}{b-a}$ Since CE (a,b) ⇒ a < c < b ⇒ a2< c2<b2. ⇒ -a2>-c2>-b2

=> 1-a2 > 1-c2 > 1-b2 => 11-a2 > 11-62 > 11-62 $\Rightarrow \log(1+x) < \chi - \frac{\chi^2}{2(1+\chi)}$ $\Rightarrow \frac{b-a}{\sqrt{1-a^2}} < \sin^{-1}b - \sin^{-1}a < \frac{b-a}{\sqrt{1-b^2}}$ Prove that 15 + 13 < sim 0.6 < 16+1 edis: putting b=3/5, a=1/2 then $\frac{\frac{3}{5} - \frac{1}{2}}{\sqrt{1 - \frac{1}{1}}} < \sin^{-1} 3/5 - \sin^{-1} \frac{1}{2} < \frac{\frac{3}{5} - \frac{1}{2}}{\sqrt{1 - \frac{9}{1}}}$ $\Rightarrow \frac{1}{10} \times \frac{2}{15} < \sin^{-1}(0.6) - \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10}$ $\Rightarrow \frac{1}{5/3} < \sin^{-1}(0.6) - \frac{11}{6} < \frac{1}{8}$ $\Rightarrow \frac{\sqrt{3}}{15} + \frac{\pi}{6} < \sin^{-1}(0.6) < \frac{\pi}{6} + \frac{1}{8}$ 2008 (m) If 2>0, Show that 1+x < log (1+x) <x. Soin Let f(t) = log(1+t) Vte[0,7] Opere x>0 It is continuous & différentiable in [0.2] and f'(t) = I V te(c,x) By Lagrange Mean Value theorem ∃ CE(O, X) such that

$$f(c) = \frac{f(x) - f(0)}{x - 0}$$

$$\Rightarrow \frac{1}{1 + c} = \frac{\log(1 + x) - \log 1}{x}$$

$$\Rightarrow \frac{1}{1 + c} = \frac{\log(1 + x) - 0}{x}$$

$$\Rightarrow \frac{1}{1 + c} = \frac{\log(1 + x)}{x} = 0$$
Since $c \in (0, x)$.
$$\Rightarrow 0 < c < x$$

$$\Rightarrow 1 < 1 + c < 1 + x$$

$$\Rightarrow 1 > \frac{\log(1 + x)}{x} > \frac{1}{1 + x}$$

$$(b = 0)$$

$$\Rightarrow x > \log(1 + x) > x \circ$$

$$(b = 0)$$

$$\Rightarrow x > \log(1 + x) > x \circ$$

$$(b = 0)$$

$$\Rightarrow x > \log(1 + x) > x \circ$$

$$(b = 0)$$

$$\Rightarrow x > \log(1 + x) < x$$

Som Use the Mean value theorem

to Prove that $\frac{2}{4} < \log(1.4) < \frac{2}{5}$ Sol : Let $f(t) = \log(1.4)$ $\forall t \in [0, \pi]$

where x>0.

fit) is continuous & differentiable on [0,7]

and filt) = 1 + te(0,x)

By Lagrange's Mean value theorem

I ce(0,x) such that

$$f(c) = \frac{f(x) - f(0)}{x - 0}$$

$$\Rightarrow \frac{1}{1+C} = \frac{\log(1+x) - \log 1}{2}$$

$$\Rightarrow \frac{1}{1+C} = \frac{\log(1+x)}{2} - \frac{\log 1}{2}$$

$$\Rightarrow \frac{1}{1+C} = \frac{\log(1+x)}{2} - \frac{\log 1}{2}$$

$$\Rightarrow \frac{1}{1+C} = \frac{\log(1+x)}{2} - \frac{\log(1+x)$$

and $f'(t) = \frac{1}{1+1} \forall t \in (0, \alpha)$. $\left| \frac{301}{1} \right| \cdot \text{let } f(\alpha) = \text{tent} \alpha \forall \alpha \in [0, \alpha]$ by lagranges mean value theorem I Ce (o,x) such that fl(c)=f(x)-flo => 1 = log(1+2) - log(1) => 1 = log(1+x) - (1) Since CE(0,x) :x>0 ⇒ 0 < C < x →1<1+c<1+x. $\Rightarrow \overline{1} > \frac{1}{1+c} > \overline{1}$ $\Rightarrow \frac{1}{1+x} < \frac{\log(1+x)}{x} < 1 \pmod{0}$ $\Rightarrow (1+7) > \frac{3}{\log(1+3)} > 1$ $\Rightarrow \frac{1}{x} + 1 > \frac{1}{\log(1+x)} > \frac{1}{x}$ ⇒ 1> 1/2 >0 → 0 < [log (i+x)] - 2 <0

Use Lagranges Mean Value theorem to prove that 1+2 < e7 < 1+2e7 (Isina-siny) < 12-41. Let $f(t) = e^{t} \forall t \in [0,x]$ where x>0. 4. show that 1-132 < taily-taily < 10-11 if

ifucis and deduce that

4+3/25 < tan 4/3 < 17/4+1/6.

--- use the Mean Value theorem 1: to Prove that |Sina-Siny| = |a-y | Vayer soin: If x=y then there is nothing is. If 7>y then Consider the function f(t) = 8int + te[y,x]. clearly if f is continuous on [y, x] and fl(t) = cost exists on [y,x] . By Mean Value theorem ICE(y,x) Such that $f'(c) = \frac{f(x) - f(y)}{x - 4}$ $\Rightarrow \cos c = \frac{\sin x - \sin y}{x - y}.$ $\Rightarrow \frac{|\sin x - \sin y|}{|\sin x - y|} = |\cos x|$ $\Rightarrow \frac{1\sin x - \sin y}{|\bar{x} - y|} = |\cos x| \le 1$ $\Rightarrow |\sin x - \sin y| \leq |x - y|$.'-+ x, y € iR

H. w. Use the Mean value Throng to Percue that 2-1 < ln x < (x-1) forx>1 Let fits= Int V t (1.2] where \Rightarrow f(t) = log t.

Scot P. B.

Using Lagrange's fream value

Theorem, show that I (1016 - (1016) | [b-a]

Theorem, show that I (1016 - (1016) | [b-a]

That derivative f'' is continuous on [a,b]and derivable son (a,b), then show that $f(b) = f(a) + (b-a)f'(a) + f(b-a)^2 + f''(c)$ Sol'n: Let $\phi(x) = f(x) + (b-a)f'(x)$ where $K = \frac{f(b) - f(a) - (b-a)f'(a)}{(b-a)^2}$

Since of is continuous on [a, 6]

=>-Plexists on [a,b]

⇒ f is derivable on [a,b]

→ f is continuous on[a,b]

- The functions fand of are toutingent function on [a,b] and derived the many

(b-x), $(b-x)^2$ and k are continuous on [a,b] and derivable on (a,b). $\phi(x)$ is continuous on [a,b] and

derivable on (a.b).

Now

二 引(b) --

and \$(b) = f(b)

 $\psi(\alpha) = \phi(5)$

INSTITUTE OF MAINTENANCH SYZNEES
INSTITUTE FOR IASVIFOS EXAMINATION
NEW DELH:-11:0009
Mob: 09999197625

f(x) Let the function. $f(x) = f(x) + (b-x)f(x) + (b-x)^{2}$ where k is a Constant to be determined Such that f(a) = f(b) $f(a) + (b-a)f(a) + (b-a)^{2}k = f(b)$ f(b) - f(a) - (b-a)f(a) $f(b-a)^{2}$.. \$ satisfies the conditions of Rollis theorem.

 $\exists \ C \in (\Omega,b) \ \text{Such that } \mathcal{O}^{1}(c) = 0$ but $\Phi^{1}(x) = f^{1}(x) + (-1)f^{1}(x) + (b-x)f^{1}(x)$ + 3(b-x)(-1)k

 $\rightarrow \phi'(cc) = (b-c)f''(c)+$ = 2(b-c)(-1)K

 $\Rightarrow 0 = (b-c) \left[4''(c) - 3k \right]$ - (by0)

 $\Rightarrow \stackrel{\text{fil}(c)}{=} -3\kappa = 0 \quad (b-c \neq 0$ $i.e. \quad (e(a,b))$ $\Rightarrow ci < c \Leftrightarrow b$

 $\Rightarrow f''(c) = ak$

→ k=1/21"(c)

 $\Rightarrow \frac{f(b) - f(a) - (b-a)f'(a)}{(b-a)^2} = \frac{1}{2}f''(a)$

 $\Rightarrow f(b) - f(a) - (b-a) - f'(a) = -\frac{1}{2} (b-a)^2 - f''(c)$

 \Rightarrow f(b) = f(a) + (b-a)^2+1(a)

+ 1/2 (6-11)2 + 11(0)

differentiable on [a.a+h] then show that f(a+h) = f(a)+hf(a) + hf(a+ch)

of (C,1).

sol'n: - Since fis twice differentiable on [a. a.h.]

=> f', f" exist on [a,a+h]

⇒ f.f! are differentiable on [a, a+in]

-> fificure continuous on [a,a+h]

let : 0(x) =

 $f(x) + (0+h-x) - f(x) + \frac{(0+h-x)^2}{8!} + \frac{(0+h$

where K is a Constant to be

determined sques that $\phi(a) = \phi(a+h)$

 $\Rightarrow f(a) + hf(a) + \frac{h^2}{2!} k = f(a+h)$

 $\Rightarrow \kappa = f(a+h) - f(a) - \frac{hf(a)}{\left(\frac{h^2}{2!}\right)}$

Since first are continuous on [a,a+h]

[a+h-x] and (a+h-x)2 K are

Continuous functions on [a,a+h]

since f & f are derivable on (a, a+h) and (a+h-z), $\frac{(a+h-z)^2}{2}$. Rare

derivable on (a, a+6).

⇒ tis derivable on (aia+h).

Also $\phi(\alpha) = \phi(b)$

A satisfies the conditions of Rolle's theorem.

.] a real number DE(O,1) suchthat

 $\phi_1(0+6P) = 0$

But $\phi(a) = f(a) - f(a) + (ah - a)f(a)$

- (a+h-z)K

= (a+b-x)[A''(x)-K]

3.7

 $\Rightarrow \phi'(a+\theta h) = (a+h-a-\theta h)$ $[f''(a+\theta h)-k]$ $\Rightarrow f''(a+\theta h)-k = 0 (h-\theta h \neq 0)$ $\Rightarrow f''(a+\theta h)=k$ $\Rightarrow f''(a+\theta h) = \frac{f(a+h)-f(a)-hf(a)}{a!}$ $\Rightarrow h^{2} f''(a+\theta h) = f(a+h)-f(a)-hf(a)$

P-II DOM, P-IIM
2006 201012M

A twice differentiable function of

on [a, b] is such that f(a)=f(b)=0

and f(c)>0 for a < c < b.

Prove that there is at least

one value & a < E < b for which

f''(5) < 0.

 \Rightarrow f(a+h) = f(a) + hf(a)+ $\frac{h^2}{a^2}$ f"(a+oh)

Soin f is twice differentiable on [a, b]

 $\Rightarrow f! f!!$ exist on [a,b]

⇒ f, f' are differentiable on [a,b]

f p' are continuous functions

on [a,b]

since accob, applying

Lagranges Mian value theorem to on the intervals [a,c] and [c,b] we get $\frac{-f(c)-f(a)}{-f(c)-f(a)}=f'(\xi_i)$

where a < E < C and

1(b)-f(c) = f(5) where C<5<

But f(a) = f(b) =0

 $f(\xi_i) = \frac{f(c)}{c-a} \text{ and }$

f'(5) = -f(c) where.

. By lagranges Mean value theorem

Substituting the values of f'(S,)

and I'({}), we get

Since a< { < < { < bard-\$60>0

: f" (\xi) < 0 where a < \xi < b.

Cauchy's Mean Value

theorem (Second Mean Value

Statement: Let fand 9 be Continuous on [a,b] and differentiable on (a,b) and assume that g(x) to Y 2 E (0,6) then 3 Ce (0,6)

Such that
$$\frac{f(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Proof - det \$ (1) - f(2) - f(2)-

$$K[g(x)-g(a)]\forall re[a]$$
Where $K = \frac{f(b)-f(a)}{g(b)-g(a)}$

and differentiable on (a,b)

. I Satisfies the Conditions of

Roller - theorem.

Twhich is contradiction to $f(x) \neq 0$

Vac (0,5)

 $\frac{1}{2} g(\alpha) \neq g(\delta)$. (12) is well defined.

Since f(x) & g(x) are Continuais functions on [a,b]. and f(a), g(a) and k are constants Continuous for all x. are Phese . φ(x) is Continuous on [a,b]. and $\Phi'(x) = f'(x) - kg'(x)$ exists on (a,b). because fly are différentiable. functions on (a,b). : of is differentiable function on (a,b) :Now p(a)=0

and \$(6) = f(6)-f(a)-k \(g(6)-g(6) \) $K[g(x)-g(a)]\forall i\in [a,b] = [f(b)-f(a)] - \frac{f(b)-f(a)}{g(b)-g(a)}[g(b)-g(a)]$

Since g(x) is continuous on words 197625 (x) Satisfies the Constitions of Rolle's theorem.

: ∃ C∈(a,b) Such that \$'(c) = 0

But
$$\phi(x) = f'(x) - kg'(x)$$

¥2€ (0,5).

$$\Rightarrow$$
 0 = $f'(c) - kg'(c) (: \Phi(c) = c)$

$$\Rightarrow f(c) = kg(c)$$

$$\Rightarrow K = \frac{-1(c)}{8(c)}$$

$$\Rightarrow \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

If two functions fanding defined on [a,a+h] are

(i, Continuous an [a, a+h] (ii, differentiable on (a, a+h) (111, g'(x) ±0 for any x ∈ (a, 4+5) then I atleast one real number DE (0,1) such that f (a+0h) = f(a+h)-f(a)

 $g'(a+\theta h)$ $g(a+h)-g(\alpha)$ → If -1', g' are continuous and

that for acceb.

$$f(b) - f(a) - (b-a)f(a) = 100$$

differentiable on [a,b] then show

8"(c) 9(6) - 9(a) - (b-a) 9(a)

sot's: - Let us consider

$$k \left[g(x) + (b-x)g'(x) \right].$$

tine [a,b]

where k is a constant to be

determined Such that \$(a) =\$16)

-f(a) + (b-a) f (a) + K [g(a)+(b-0)g(a)

= f(5) + Kg(6).

Another form of the statement: $\Rightarrow k = \frac{f(b) - f(a) - (b-a)f'(a)}{(b-a)f'(a)}$ ga)+(b-a)gra)-gb)

> Since I. g are Continuous and differentiable functions on [a, b] φ(x) is continuous and differential on [a,b]

: \$ (2) satisfies the conditions Rolle's theorem. on an interval [a,b] : 3 Ce (a,b) such that \$\phi'(c) = 0. But 0'(x) = f'(x) + (b-x)f'(x)-f(他のでして一日十八日間オナ

= (b-x) f"(x)+ k (b-a) g"(x)

$$\Rightarrow -0 = (b-c)-\beta''(c) + k(b-c)\beta''(c)$$

$$(-\phi c) = 0$$

$$\Rightarrow k = -\frac{f''(c)}{g''(c)} \quad (b-c \neq 0).$$

$$\Rightarrow \frac{f(b) - f(a) - (b-a)f'(a)}{f(a) + (b-a)f'(a) - g(b)} = \frac{f'(a)}{g'(a)}$$

$$\Rightarrow \frac{f(b) - f(a) - (b-a)f'(a)}{g(b) - g(a) - (b-a)g'(a)} = \frac{f''(c)}{g''(c)}$$

P-I)
2005
Pf f'(x) and g'(x) exist for
all $x \in [a,b]$ and if g'(x) does not
vanish any where on (a,b) then
prove that for some c between
a and b.

$$\frac{f(c)-f(a)}{g(b)-g(c)}=\frac{f'(c)}{g'(c)}$$

Sel'n: Let us consider $\phi(x) = f(\pi)g(\pi) - f(\alpha)g(\alpha) - \frac{1}{2}(\beta)f(\alpha) \forall x \in [a,b]$

Since I' and g' exists in [a,b].

- on [a,b]
- if and g are continuous functions $\Rightarrow \frac{f(c) f(a)}{g(b) g(c)} = \frac{f'(c)}{g'(c)}$
- on [0,6] and derivable

and
$$\phi(a) = -f(a)g(b)$$
:
 $\phi(b) = -f(a)g(b)$
 $\phi(a) = \phi(b)$

of Rolling theorem on [a,b]

: I at least one point (C(a,b) Such that $\phi'(c) = 0$ But $\phi'(x) = f'(x)g(x) + f(x)g'(x)$ -f(a) g1(1) -g(5) f(x). $\Rightarrow \phi'(c) = f'(c)g(c) + f(c)g'(c)$ -f(a) g'(c) -g(5)f'(c) $\Rightarrow 0 = f'(c) g(c) + f(c) g'(c)$ -f(a) g(c) - g(b) fice) $(\dot{\varphi} = 0)$ g'(c) [f(c)-f(a)]+ f'(c)[g(c)-g(b)]=0 $\Rightarrow g'(c)[f(c)-f(0)]=-f'(c)[g(6)-g(c)]$ 9 (7) = OVXE(a,b)

& Generalised Mean Value Theorem. defined on [a,b] are in Continuous on [a,b] ill, Differentiable on (a.b)

There exists a real number (E (G,b)

Such that $\begin{cases} f(t) & g'(t) & h'(t) \\ f(a) & g(a) & h(a) \\ f(b) & g(b) & h(b) \end{cases} = 0.$

Proof: - Consider the function of on [a,b] defined by

$$\Phi(x) = \begin{vmatrix}
f(x) & g(x) & h(x) \\
f(a) & g(a) & h(a) \\
f(b) & g(b) & h(b)
\end{vmatrix}$$

$$= f(x) \left| \frac{g(a) h(a)}{g(b) h(b)} - \frac{g(x)}{g(b) h(b)} \right| f(a) h(a)$$

functions on [a,b]

fig.h are differentiable on (ait if three functions fig and h |: (12) is differentiable on (0,6) and $\phi(a) = \phi(b) = 0$.

> : \$ satisfies the conditions of Rolles theorem.

· = C ∈ (a, b) such that φ'(c)=0.

But 0'(x)=Af'(x) |+ Bg'(x)+ch'(x)

$$= \begin{vmatrix} f(x) & f(x) & f'(x) \\ f(a) & g(a) & h(a) \\ f(b) & g(b) & h(b) \end{vmatrix}$$

$$= f(\pi) \begin{vmatrix} g(a) & h(a) \\ g(b) & h(b) \end{vmatrix} - g(\pi) \begin{vmatrix} f(a) & h(a) \\ f(b) & h(b) \end{vmatrix}$$

$$\Rightarrow 0 = \begin{vmatrix} f(c) & g'(c) & h'(c) \\ -1(a) & g(a) & h(a) \\ -1(b) & g(b) & -1(b) \end{vmatrix}$$
where $C \in (a,b)$.

where CE (a,b).

= Af(2) + Bg(2) + ch(2) -> when h is a constant function where A,B, c are Constants. The above theorem reduces to Since figh are continuous (auchy's mean value theorem. Let h(1) = K (constant) then iφ(x) is continuous on [a,b] and h(a) = h(b) = k and h'(c) =0.

Substituting generalised mean value theorem, we get,

$$f(c)$$
 gives R
 $f(a)$ g(a) $K = 0$
 $f(b)$ g(b) K

$$\Rightarrow \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

which is the Cauchy's Mean value theorem.

-> when g(x) = x and h(x)= K(Constant) - Also g(x) = 3x2 + 5 for any x e(1,2) -the above theorem (generalised Mean Value) if & g Satisfy the conditions of reduces to lagrange's mean value -theorem

$$\beta(x) = x \quad \text{and} \quad h(x) = K$$

$$\Rightarrow \beta'(x) = 1 \quad \text{and} \quad h'(x) = 0$$

$$\Rightarrow \beta'(c) = 1, \quad h'(c) = 0 \quad \text{and}$$

$$\beta(a) = a; \quad \beta(b) = b; \quad h(a) = h(b) = K$$

From generalised mean value theorem $0 = \frac{2C}{3C^2} = \frac{4-1}{8-1}$

$$\begin{cases}
 f(c) & 1 & 0 \\
 f(a) & a & k \\
 f(b) & b & k
 \end{cases}
 = 0$$

$$\Rightarrow f'(c) = \frac{f(b) - f(a)}{b - a}$$

which is' the lagrange's Mean value theorem.

Problems:-

> Verify Cauchy's Mean Value theorem for the following pairs of functions in the specified intervals.

soin: Since f&g are Continuous -on [1,2] and differentiable on (1,2)

Cauchy's Mean Value theorem.

i ∃ C∈(1.2) Such that

$$\frac{f'(c)}{g'(c)} = \frac{f(2\lambda - f(1))}{g(2\gamma - g(1))} = 0$$

But $g'(x) = 3x^{2} & -f'(x) = 2x$: f'(c) = 2 c° &° g'(c) = 3 c2

· Cauchy Mean Value theorem is Verified.

Find C' of Cauchy's Mean value sot?! Let f(a) = Sina Pheorem for the following pairs of functions.

$$g(a) = e^a$$
; $f(b) = e^b$
 $g(a) = e^a$; $g(b) = e^b$

$$f'(x) = e^{x} \Rightarrow f'(c) = e^{c}$$

$$g'(x) = -e^{-x} \Rightarrow g'(c) = -e^{-c}$$

$$\frac{f(c)}{g(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

$$\Rightarrow \frac{e^{c}}{-e^{-c}} = \frac{e^{b}-e^{a}}{e^{b}-e^{-a}}$$

$$\Rightarrow -e^{2c} = \frac{-e^{b} - e^{a}}{\frac{1}{e^{b}} - \frac{1}{e^{a}}}$$

$$\frac{-e^{\alpha}-e^{b}}{e^{\alpha}e^{b}}$$

$$= -e^{\mathbf{q}} \cdot e^{\mathbf{b}}$$
$$= -e^{(\mathbf{q} + \mathbf{b})}$$

$$\Rightarrow \alpha = a + b$$

$$\Rightarrow c = \frac{a+b}{2} \in (a-b)$$

$$\begin{cases} \frac{1}{(1)} - \frac{1}{2}(x) = x^3 - \frac{1}{2}(x) = x \forall x \in [a, b] \end{cases}$$

Show that
$$\frac{\sin \alpha - \sin \beta}{\cos \beta - \cos \alpha} = \cot \theta$$

where $0 < \alpha < \theta < \beta < \pi /_2$

: {(a) = Cox y 2 ∈ [4, β] Since I and of are both Continuous on [x, B] and differentiable on. (d, B).

9(2) = - sinx + o for - any x ∈ (x, B)

: By Cauchys Mean value theorem ∃θ∈ («,β) Such that

$$\frac{f(0)}{g(\beta)-g(\alpha)} = \frac{f(\beta)-f(\alpha)}{g(\beta)-g(\alpha)} - 0$$

But fl(n) = cosx; gl(n) = -sinx → f'(0) = (00; 91(0) = - sino.

$$(1) = \frac{\sin \beta - \sin \alpha}{(\alpha \beta - \cos \alpha)} = \frac{\cos \beta}{-\sin \beta} : 0 \in (x, \beta)$$

$$\Rightarrow \frac{\sin \alpha - \sin \beta}{\cos \alpha - \cos \beta} = \cot \theta, \ \theta \in (\alpha, \beta).$$

* Miscellaneous Problems:-

 \rightarrow Assuming f^{11} to be Continuous on [a,b], show that

$$f(c) - f(a) \left(\frac{b-c}{b-a}\right) - \left(\frac{c-a}{b-a}\right) f(b) =$$

 $\frac{1}{2}(C-a)(C-b)f''(\xi)$ where c and ξ both lie in [a,b]ife. $C, \xi \in [a,b]$.

Sol' " we have to show that

(b-a)f(c) - (b-c)f(a) - (c-a)f(b)

= 1/2 (b-a) (c-a) (c-b) f"(5)

Let us Consider the function for

af [a,b] defined by

 $\phi(a) = (b-a) f(a) - (b-x) f(a) - (x-a) f(b)$

- (b-a) (x-a) (x-b)k

where K is a constant to be determined such that $\Phi(c) = 0$.

0 = (b-a)f(c) - (b-c)f(a) - (c-a)f(b-a) (c-a) (b-b) k

 $c = \frac{(b-a)f(c) - (b-c)f(a) - (c-a)f(b)}{c}$

(b-a)(c-a)(c-b)

clearly $\phi(a) = \phi(b) = 0$ and $\phi(a)$ is differentiable in [a,b]

The function of satisfies all the

conditions of Rolle's theorem on each intervals [a,c] and [c,b].

.. I two numbers ξ_1, ξ_2 in (a,c) and (c,b) such that $\phi(\xi_1) = 0$ and $\phi(\xi_2) = 0$

But $\phi'(x) = (b-a)f'(x) + f(a) - f(b)$ $(b-a)[2x = (a+b)]_{K}$

which is continuous on [a,b] and derivable on (a,b)

· Continuous and derivable on [5, 5.]

Also \$ (5) = \$ (5) =0

in By Rollin theorem,

3 ge((1,12) Such that \$"(\xi)=0

But \$1(a) = (b-a) +11(x)-2(b-a)K.

+ f"(ξ) -2κ =0 (b-a+0% φ"(ξ)=0)

 $\Rightarrow K = k + \frac{1}{2} \left(\frac{1}{2} \right) \text{ where}$ $0 < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2}$

from (1) &(2), we have

(b-a)f(c)- (b-c)f(a)-(c-a)f(b)
(b-a) (c-a) (c-b)

--=12f"(5)-

 $\Rightarrow f(c) - \left(\frac{b-c}{b-a}\right) f(a) - \left(\frac{c-a}{b-a}\right) f(b)$

= ½ ((-a) (c-b) +"(5).

Let R be the set of real numbers the integer. and f: iR -> 12 Such that for all rand soin - Let f(x) = xn-a y in R, |f(x)-f(y)| < |x-y|3, Prove that f(x) is a constant function. sah: - Given | f(x) - f(y) | < |x-y|3 + 7,4ER --(1)

Let YEIR and x be Choosen arbitrarily close to y but not equal

$$\therefore \bigcirc \bigcirc = \left| \frac{f(x) - f(y)}{x - y} \right| \leq \left| \frac{1}{x} - y \right|^2$$

Taking limit when Thanky we get

$$\frac{1+\left|\frac{f(x)-f(y)}{x-y}\right| \leq \frac{1+\left|x-y\right|^{2}}{x-y}$$

$$\Rightarrow \left| \begin{array}{c} 1 + \frac{f(x - f(y))}{x - y} \right| \leq \left| \begin{array}{c} 1 + (x - y) \end{array} \right|^{2p} \quad \text{wheneves} \quad 0 < x < \pi/2 \end{array}$$

$$\Rightarrow |f'(x)| = 0 \left(\begin{array}{c} \lambda + \frac{1}{x-y} \\ \lambda - \frac{1}{y} \end{array} \right) = f'(x)$$

$$\Rightarrow |f'(x)| = 0 \left(\begin{array}{c} \lambda + \frac{1}{x-y} \\ \lambda - \frac{1}{y} \end{array} \right) = f'(x)$$

$$\Rightarrow -f(a) = 0$$

· f(x) is Constant.

Prove that an equation of the form xn = a where neward x >0 is a year number, has a Posilive boot

show that $x^n - \alpha = 0$ has at most One real the soot if nis a

then $f'(x) = nx^{n-1}$

Since fl(x1>0 for x>0.

hence f(x) is increasing on (0,00)

let 1, 1, 2, 6 (0, 0) and 6<1 < 3<12

Such that -f(x) = 0.

Then f(x,)<f(x)<f(x2) (01)

f(xi) < 0 < f(x)

. This shows that if a + rif(a) + 0 00 (0,00)

i.e. an-a = 0 has out most one

2008 Prove that tanx > x Sinx

Solo: - tanx or lanx sinx-x2

7 Sinx 7 sinx

Since asinx >0 VXE (O,T/2)

: we are enough to show that

tanx. sinx - 2 >0 Vie (0, T/2)

Let -f(x) = taux. Sinx-x2 HXE(C.水)

=>-fl(x) = Secrasing + trans (osx-2x

= Sinx (Ser27+1)-27

we cannot decide about the sign of f'(7) (because of the

Presence of 2x term)

Let $g(x) = f(x) + \lambda \in (0, \pi/2)$. $\Rightarrow g(x) = \cos x \left(\sec^2 x + \cos x \right) + \cos x \left(2 \sec^2 x + \cos x \right) - 2$ $= \sec x + \cos x - 2 + 2\sin^2 x \sec^3 x$ $= \left(\frac{\sec x}{\sec x} - \frac{\cos x}{\cot x} \right)^{-1} 2\sin^2 x \sec^3 x$ Since $g(x) > 0 + \lambda \in (0, \pi/2)$. $\Rightarrow g(x) \text{ is an increasing-function}$

 $\Rightarrow g(0) < g(2) \text{ in } 0 < x < \frac{\pi}{2}.$ g(0) = 0 $\therefore g(2) > 0.$

 $\Rightarrow f(x)>0 \text{ whenever } 0<x<T_2$ $\therefore f \text{ is an increasing function}$ $\text{in } 0<x<T_2.$

(O, TL).

 $\Rightarrow c < f(a)$

=> tanx sinx - 22 >0in (0, 11/2).

=> taux sinx >0.

 $\Rightarrow \frac{\tan x}{2} - \frac{x}{\sin x} > 0$

 $\Rightarrow \frac{\tan x}{x} > \frac{\pi}{\sin x}$ whenever $0 < x < \frac{\pi}{2}$.

-> Prove that if if be defined for all real a Such that

 $|f(x)-f(y)|<(x-y)^2$ then -f(x).

Constant.

 $\frac{Sol^n}{-}$ Here we have to show that f'(x)=0 $\forall x\in \mathbb{R}$.

Let a = CEIR.

Now we have

$$\left|\frac{f(a)-f(c)}{\alpha-c}-v\right| \text{ for } \alpha \neq c.$$

$$= \frac{|f(\alpha) - f(c)|}{|a-c|}$$

 $= \frac{|f(x) - f(c)|}{|x - c|} < \frac{(x - c)^2}{|x - c|} = \frac{|x - c|^2}{|x - c|}$ (by hyp).

= |2-c/< c sohenever |2-c/< E

 $\left| \frac{f(x) - f(c)}{c} - 0 \right| < \epsilon \text{ Coheneues}$

 $|x-c| < \delta$ by choosing $\delta = \frac{\epsilon}{1}$

 $\frac{1}{x \rightarrow c} + \frac{f(x) - f(c)}{x - c} = 0$

i.e flo =0 Y CEIR.

=> f is constant function.

-> Find the interval in which the

-function f(x) = Sin (logar)-(cs (logar)

is strictly increases.

Soin: Given that

f(x) = Sin(logex) - (cs (logex)

Here domain is 2>0 as logex

exists when >0, $f'(x) = \frac{\cos(\log_e x) + \sin(\log_e x)}{\cos(\log_e x)}$ 12 \ Sin 1/4 Cos (log 2) + (05 1/5 sinlog 2) [12 Sin (T/4 + Logex) Since fex) is Strictly increases when 子(xが>0. ie sin (T/4+ loge x) > 0. > anti < Ti Hoge x < (2n++) Ti Vnez = 2nti-T/4 < logex < 2nti+Ti-T/4 $\Rightarrow e^{2n\pi-\pi/\hbar} \leq x \leq e^{2n\pi+3\sqrt{4}}$ infinites strictly increasing when X (e 9 n n - 1/4 - e 2 n n + 3 1 /4 3 1 /4 -> Let g(2) = f(2)+f(1-x) and f"(x)>0 & xe (0,1). find the intervals of increase and decrease of g(z). selo - we have f(x) = f(x) + f(1-x)then gl(x) = fl(x) - fl(1-x) - 3 Since - f 11(2)>0 & 2E (0,1) if (x) is increasing on (Oil).

INSTITUTE FOR IASAFOS EXAMINATION two Hence Case(i): x>1-2 and fi(x) is increasing for + 2>1/2 in (0.1) => f'(1-x)<f'(x) Yx>5. ⇒f!(2)-f!(1-7)>04x>! (0,1) >0 Y x> /2 in (0,1) 1.e. 3 (x)>0 y 2 € (x,1) ⇒ g(a) is increasing in (511). Carenis ax 1-2 and f'(2) increasing for "> +1(x) < - f'(1-x) for 0 < x < 1/2 => - f'(x) - f'(1-x) < 0 for 0<x < 1/2 → 91(2) ×0; x∈ (0,1/2) → d(n) is decreasing function in (0, 1/2) & show that 2 Sinx <1, Oca < T/2 Solo - Let. $-J(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0 \\ \frac{1}{x} & x = 0 \end{cases} \forall x \in [0, \pi/2]$

then f is continuous in [0,1/2]

and derivable in (0,1/2)

and fl(a) = 2con-sinx

Let $f(x) = \alpha \cos x - \sin x$; $\alpha \in (0, \pi/2)$

F'(x) = Cosx - x sinx - cosx

= -xsinx

< 0 ; xe (0, 7/2)

i. F is decreasing in (0, T/2)

: F(x) < F(0) for x > 0 in (0.11/2)

> F(7) < 0 for x € (0, 17/4)

(" F(0) =0)

テ f (x) < o; スモ (0.7%)

··· f(x) is decreasing in (0,71/2)

 \Rightarrow f(0)>f(2)>f(π /₂) for $0 < \chi < \pi$ /₂.

 $\Rightarrow 1 > \frac{\sin x}{x} > \frac{2}{\pi}$

 $\Rightarrow \frac{9}{11} < \frac{\sin x}{x} < 1 \ \forall x \in (0, \pi_{\ell_2})$

Taylor's Theorem:

statement:

If a function f defined on [0,b], if such that (n-1) is continuous on [a,b] if the (n-1) th derivative f is continuous on [a,b]. It is the nth derivative $f^{(n)}$ exists on (a,b). Then there exist atteast one real number (a,b) such that f(b) = f(a) + (b-a)
where p & a given the integer...

proof: Let $G(2) = f(2) - \left(\frac{b-2}{b-a}\right)^{p} f(a)$

where $F(3) = f(5) - f(3) - (b-3) f(3) - (b-3)^{2} f'(3) - \cdots$ $F(3) = f(5) - f(3) - (b-3) f(3) - (b-3)^{2} f'(3) - \cdots$

Since the (n-1) to destrain of (n-1) of continuous

on Labj.

(m) one continuous on [a, 7].

and $(b-x)^8$, $x=1,2,3,\dots$ n-1 Les Continuous for all x.

... f(x) is continuous on [c,b].

: Gin is continuous on [a, b].

Since the nh derivative f exists on (0,6).

-f. f. f. (n-1) are différentiable on (a.s)

and $(b-2)^{x}$; $x=1,2,3,-\cdots$ (n-1).

Is differentiable for all x.

: f(a) is differentiable on (a, b).

: G(2) is differentiable on (0,5)

NOW G(a) =
$$f(a) - \frac{(b-a)^{p}}{(b-a)} f(a)$$

= 0

(a) $G(b) = F(b) - 0$

= $f(b) - f(b) - \frac{(b-b)}{(b-a)} f(b)$

(b) $G(a) = G(b) - 0$

G(a) Satisfies the conditions of Rollis theorem,

I attend one such number (e-(a,b))

Ruch that $G(c) = G(a) + p \cdot \frac{(b-a)^{p}}{(b-a)^{p}} f(a)$

NOW $p'(a) = 0 - f'(a) + f'(a) - \frac{(b-a)^{p}}{(b-a)^{p}} f'(a)$

$$= \frac{(b-a)^{p}}{(b-a)^{p}} f'(a) + \frac{(b-a)^{p}}{(b-a)^{p}} f(a)$$

$$\Rightarrow 0 = f'(c) + p \cdot \frac{(b-c)^{p-1}}{(b-a)^{p}} f(a)$$

$$\Rightarrow f'(c) = -\frac{p(b-c)^{p-1}}{(b-a)^{p}} f(a)$$

$$\Rightarrow f'(a) = -\frac{p(b-c)^{p-1}}{(b-c)^{p-1}} f'(a)$$

$$\Rightarrow f'(b) - f'(a) - \frac{p(b-c)^{p-1}}{(b-c)^{p-1}} f'(a)$$

$$\Rightarrow f'(b) - f'(a) - \frac{p(b-c)^{p-1}}{(b-c)^{p-1}} f'(a)$$

$$\Rightarrow f(b) = f(a) + (b-a) f(a) + (b-a)^{2} f'(a) + \cdots$$

$$\frac{(b-a)^{n-1} f(b-a)}{(n-1)!} f(a) + (b-a)^{2} (b-a)^{2} f(b)$$

$$= p(a) + R_{1}(a)$$

(i) For p=1, $R_{n} = (b-a)(b-1) = f(a)$ (b-1)!form of Remainder.

(ii) for P=n,

Rn = (b-a) f (1) called Lagrange's

form of general index

3. Another form of Taylor's Theorem.

If a function of defined on [a, a+h] if luch that (n-1) is -continuous (h) the (n-1) h derivative fine

on [a, a+h] (m) exists on (a, a+h)

then $\exists \ O \in \{0,1\} \}$ such that $f(a+b) = f(a) + b + f(a) + \frac{b^2}{2!} f(a) + \dots + \frac{b^2}{(n-1)!} f(a)$ where $p \in \{0,1\} \}$ such that $f(a+b) = f(a) + b + f(a) + \frac{b^2}{2!} f(a) + \dots + \frac{b^2}{(n-1)!} f(a)$ where $p \in \{0,1\} \}$ such that

3.

H. Maclausin's theorem:

putting a = 0, h = x in Taylor's theorem.

i.e., If a function f defined on [0,x] is such that (i) the (f-1) th derivative $f^{(n-1)}$ is continuous on [0,x]in the ith derivative $f^{(n)}$ enists on (0,n) then $f(0) + x f^{(n)} = x f^{(n)}$

Jaylor's and Maclaurin's series:

Let a function of be continuous derivatives of every order in [a,a+h] then for all new we have by Taylor's theorem

That hi = f(a) + h f last hr f la) + h f (a+bh)

where de(0.1)

Let Pn = f(a) + h f (a) + h f (a

the infinite sersies

feart hotica) + $\frac{h^2}{2!}$ f¹(a) + ... + $\frac{h^{n-1}}{(m!)!}$ f⁽ⁿ⁻¹⁾

converges to f(a+h)

f(a) + $\frac{h^2}{2!}$ f¹¹(a) + ... is called

Taylor's series which is egs to f(a+h)

If Lt Rn =0 $\frac{h^{n-1}}{(m!)!}$ f⁽ⁿ⁻¹⁾ $\frac{h^{n-1}}{(m!)!}$ f⁽ⁿ⁻

Hence if $f:[a,a+h] \rightarrow \mathbb{R}$ possesses continuous desiratives of every order in [a,a+h] and laylor's remainder $\mathbb{R}_n \rightarrow 0$ as $n \rightarrow a$.

then $f(a+h) = f(a) + h + (a) + \frac{h^n-1}{2!} f(a) + \cdots + \frac{h^{n-1}}{(n-1)!} f^{(n-1)}(a) + \cdots$

 $f(x) = f(c) + \chi f(c) + \frac{2^{n}}{2!} f'(c) + \cdots + \frac{n^{n}}{n!} f(c)$

This is called maciausin's sestes.

Note: This ferics is useful in finding the expansion of functions.

Problems:

If $f(x+h) = f(x) + hf(x) + \frac{h^2}{2!} f(x+h)$, find

the value of θ as $x \to a$ if $f(x) = (a-a)^{5/2}$

Sor: Given $f(x) = (x-6)^{5/2}$ $\Rightarrow f(x+h) = (x+h-a)^{5/2}$ and $f'(x) = \frac{5}{2}(x-6)^{3/2}$ $\Rightarrow f'(x) = \frac{15}{4}(x-6)^{5/2}$ $\Rightarrow f'(x+6h) = \frac{15}{4}(x+6h-a)^{5/2}$

$$f(x+h) = f(3) + hf(3) + \frac{h^2}{2!}f'(x+0h)$$

$$\Rightarrow (x+h,0)^{1/2} = (x-6)^{5/2} + h(\frac{2}{2})(x-0)^{3/2} + \frac{h^2}{2!}(\frac{15}{4})(x+0h-a)^{5/2}$$
when $x \to a$, we get
$$h^{5/2} = \frac{h^{5/2}}{2!}(\frac{15}{4})(0h)^{1/2}$$

$$\Rightarrow h^{5/2} = \frac{h^{5/2}}{2!}(\frac{15}{4})(0h)^{1/2}$$

$$\Rightarrow 0 = \frac{64}{15}$$
value of $0 = 3 \to 1$ of $f(a) = (1-a)^{5/2}$

$$\Rightarrow 0 = \frac{64}{15}$$
value of $0 = 3 \to 1$ of $f(a) = (1-a)^{5/2}$

$$\Rightarrow 0 = \frac{64}{15}$$

$$\Rightarrow 0 = \frac{1}{15}$$

$$\Rightarrow 0 = \frac{1}{15$$

het 200 => -270 . put 4= -x; y.>0 By Case(2), Cosy > 1-2 $\Rightarrow (o?(-3) \rightarrow (-3)_{3}$ $\sim \cos(x > 1 - \frac{x^2}{2})$. combining all cases, colx > 1-22 +x €R 1十十十二くとって1十八十二でつう Let f(n) = ex; x>0 "then f (a) = en = f"(a) Since f(n) = f(0)+xf'(0)+ 2 f'(6x). where ocox! 17 27 e 0x __ @ 到のくらかくなー; スクロ => eO < eOx < ex → I < eax Lex => 2 × 2 × e ex < 2 2 2 . => 1+2+2 × 1+x+2 = Ex < 1+2+2 = 7. → 1+x+= < ex < 1+3+== ((40) -> Expand e as an infinite series Soln: Let fin = ex fini= e7 => f(0)=1 flor = en => flo=1in(a) = e = = f(b) (8x) = e &x

```
clearly fand i'll derivatives exist and are continuous
                                          for every value of x.
                                                                             Rolling = 20 CLER)
                                                               \frac{1}{n \rightarrow \infty} = e^{\Theta x} \prod_{n \rightarrow \infty} \frac{x^n}{n!} - 0
                                                           Now let an = no strew
                                                                                                                           => anti Then
                                                                                                                     Lt (anti) = It intl
                                                                                                                                                       \therefore LFQn = 0 \quad \left( -if_{n\to\infty} \left( \frac{a_{n+1}}{a_n} \right) = 1 < 1 \right)
                                                                                                          The conditions of Maclaurin's series are
                                                                                                                                                                    -f(0) + 2f(0) + \frac{\lambda^{2}}{2}f(0) + \cdots + \frac{\lambda^{2}}{n!}f(0)
                                                                                                                                                                  =1+2+\frac{2^{3}}{2!}+\cdots+\frac{2^{n}}{n!}+
? (spand finz as infinite cerits
                                               Let fine Sinz.
                                            f(2) = f(0)+ 2 f(0) + 2 f f'(0)+...
                                                          Here Rn(7) must be tend to 'o'.
                                       NOW f(a) = g(a) = g(a
                                                                                                    f'(a) = \frac{1}{5} f(a) = \frac{1}{5} f(a
                                                            · Generally of (1) (1) = sin (2+ 2)
                                                                                               .. f and all its distratives east
                                                                                                                              and continuous for every less
```

$$R_h(x) = \frac{x^n}{n!} \cdot \operatorname{lin}(0) + \frac{n\pi}{2}$$

: The conditions of Maelaurins Series is satisfied trek.

$$\frac{2^{n}}{3!} = n - \frac{2^{3}}{3!} + \frac{2^{5}}{5!} - \frac{1}{n}$$

$$\rightarrow f(n) = a^{n}$$

Extreme Values of a function!

Maxima and Minima:

[Some definitions discussed in Pg

NO.(8)]

Theorem (First desivative Test):

Let f be Continuous on I = [a,b]

and let c be an interior point on I

Asseure that f is differentiable on

(1) If there is a neighbounhood $(C-6,C+6)\subseteq I$ Such that $f'(\alpha)\geqslant 0$ for $C-6<\alpha< C$ and $f'(\alpha)\leq 0$ for $C<\alpha< C+6$ then f' has maximum at C'

(a,c) and (.c,b). Then

First there is neighbourhood (C-5, C+5) \subseteq I such that = $f'(x) \le 0$ for C-6 < x < C and = $f'(x) \ge 0$ for C < x < C+5 then = = $f'(x) \ge 0$ minimum at C'.

> Theorem :-

Let ICIR be an interval, let fire let cer and assume that f has a derivative at continue that f has a derivative at continue then in the frame of them.

Such that f(x)>-f(c)-for 2 EI.

Such that c < x < (15)

Such that f(x)> f(c) for 2 EI.

Such that c < x < (15)

Such that c < x < (15)

Such that f(x)> f(c) for 2 EI.

& Darboux's Theorem: If I is differentiable on I = la, b] and if K is a number between fla) &fl(b) then I CE(a,b) Such that fl(c) = k. Proof: - Since Kis number between fla) &fl(b). suppose that fla < K < fl(b) . Now we define $g(x) = Kx - f(x) \forall x \in [a,b] = \mathbb{C}$ Since f is differentiable on I. . if is continuous on I and kx is a polynomial which is Continuous On I ig (x) is continuous on I :0 . g(a) attains its Supremum (infimus atleast, once on [a,b] = I , Since 9 (x) = K-f(x) + x & [a,5] $\Rightarrow g'(\alpha) = (k-f'(\alpha)) > 0$ (flax K < f'(b))

 \Rightarrow g'(a) > 0.

We know that g has derivative at a' and g'(a) > 0. Then, $\exists a \not> c$ such that $g(a) > g(a) \forall x \in I$.

Such that a < x < a + b.

.. g does not have the maximum at z=a.

Similarly g does not have the minimum at z=b.

.. g has maximum at $C \in (a,b)$

: Interior entremum theorem $g'(c) = 0 \forall Ce(a,b)$ $f'(c) = k \forall Ce(a,b)$

Hereralised lest:

Let I be an interval, let a of I

and let n>2.

Suppose that the derivatives

f! f!! --- f(n) exist and are

Continuous in a neighbourhood of to

and that

f!(xo) = f!!(xo) = --- = f'(xo) = 0

but f''(to) to.

i) If n is even and fr(20) >0 then
that minimum at 20

If nis even and fn(xo) < 0 they,

f has maximum at 20.

is If n is odd then I has neither a minimum nor maximum at zo.

First Method For Finding Rule For Finding Maxima and Minima:

) Denote the given function byfor)
) find fl(2) and equate it to zero.

Let its state be 2, 32, ---) find fl(2), but 2=1. If

fl(2) < 0, f(2) has a maximum
at 2=2.

If $f^{11}(x_1)>0$, f(x) has a minimum at $x=x_1$.

If $f^{11}(x_1) \neq 0$, there is neither maximum nor minimum at $x=x_1$.

If $f^{11}(x_1) \neq 0$, find $f^{11}(x_1)$.

If $f^{11}(x_1) = 0$, find $f^{11}(x_1)$.

If $f^{11}(x_1) > 0$, $f^{11}(x_1) = 0$, that a minimum at $x=x_1$.

Working Rule for L'inding
Maraima and Minima:

(Second Method by First Derivative Test)

(2). Find f'(x) and equate it to zero. Let its roots be x_1, x_2, x_3, \dots

(3) Fest these values in succession. Consider 2:2, (say).

- f(x) <0-for 7,-5<2<2, and f(2)>0
-for 1,62<2,1+5 then f has minimum
at 2

-f((2) ≤0 (≥0 only) -for 7,-6<2<1, and 2,<2<1,+5 then f is neither maximum nor minimum at 2, (14) Similarly test all these values of a obtained in @.

Problems:-

Examine the following function for extreme values $(x-3)^5$ $(x+1)^4$.

Soin: - Let $-f(x) = (x-3)^5$ $(x+1)^4$ $-f(x) = (x-3)^5 + (x+1)^3 + (x+1)^4 + 5(x-3)^4$ $-(x-3)^4 + (x+1)^3 - (x+1)^5 -$

for maximum or minimum fla)=0

$$\Rightarrow [\chi=3,-1,7]q$$

Second Method:

Take x = 3E(3-5, 3+5); 6 > 0 for $3-5 < x < 3 \Rightarrow f^{1}(x) > 0$ and for $3 < x < 3+5 \Rightarrow f^{1}(x) > 0$.

: -f(x) > 0 -for 3-6 < x < 3 and 3 < x < 3+6

··-f(x) is neither minimum nor maximum at x=3.

Take $2 = -1 \in (-1-8, -146)$, \$>0 for $-1-6 < x < -1 \Rightarrow -1(x) > 0$ and for $-1 < x < -1+8 \Rightarrow -1(x) < 0$

By first derivative test for

MATHUE FOR IASHFOS EXAMINATION NEW DELHI-110009

extrema,

-fix) has maximum at 2=-1.

:. Imax = f(-i) = 0.

Take 7= 7/9 = (7/9-5, 7/9+5)

for +19-5-2< = 19;

⇒f (α)<0

for 7/9<2 < 7/9+8 => f1(x)>0.

:- f(2) has minimum, at == 7/9.

(By first Octivative test for extreme) -

:. $f_{min} = f(7/9) = \frac{-43.5^{5}}{318}$

How Examine for maxima and minima of the function defined by

 $f(x) = x^{2} (1-x)^{3}$

show that . Sinx (1+(dx) is

a maximum when x= Ti/3.

First Method -

Soin: Let -1(7) = Simx (1+(057))

then fl(2) = (052 (14 (052)+Sin2 (-Sinz

= (052 - Sin 7 + Cosa

- = (022x + (02x

and fl(x) = -asinax -sinx

For maxima or minima of (x)=0

⇒ (cs27+(os2 =0)

 $\Rightarrow 3(0(\frac{3x}{3x}))(0)(\frac{3x}{3})=0$

=> either 3x = 1/2 60x 3/2 = 1/2

⇒ x=1/3 (08) x=11.

Here we consider only the point x=1/3.

$$f''(\pi/3) = -2\sin(\frac{2\pi}{3}) - \sin(\frac{\pi}{3})$$

$$= -2\sin(120^{\circ}) - \sin60^{\circ}$$

$$= -3\sin(180^{\circ} - 60^{\circ}) - \sin60^{\circ}$$

$$= -2\sin60^{\circ} - \sin60^{\circ}$$

$$= -3\sin60^{\circ}$$

$$= -3\sqrt{3} < 0.$$

.'. f(x) has a maximum at x=11/3. · from = f(T/3) = sin T/3 (1+ cot T/3) = 1/3 (1+ 1/2) $=\frac{\sqrt{3}}{2}\left(\frac{3}{4}\right)=\frac{3\sqrt{3}}{4}$

Values if any of the Sunction

$$\frac{Sol^{n}}{-} = \frac{(1-x)^{2}e^{x}}{-}$$
then $f(x) = (1-x)^{2}e^{x} - 2(1-x)e^{x}$

$$= \frac{(1-x)^{2}e^{x} - 2(1-x)e^{x}}{-}$$

$$= \frac{(1+x^{2}-2x^{2}-2+2x)e^{x}}{-}$$

$$= \frac{(x^{2}-1)^{2}e^{x}}{-}$$

For maximizing or minimizin.

$$\Rightarrow e^{2}(x^{2}-1)=0$$

$$\Rightarrow x^{2}-1=0 \quad (e^{2}+0)$$

$$\Rightarrow x^{2}=\pm 1$$

$$\frac{\cosh (x)}{\cosh (x)} = e^{x}(x^{2}-1) + e^{x}(2x)$$

$$= e^{x}\left[x^{2}+2x-1\right]$$

$$= e^{1}(1) = e^{1}(1+2-1)$$

. fis minimum at 7=1.

when x = -1: 711(2) = ex (2+2x-1)

$$-\frac{1}{2} \left(-1 \right) = \frac{1}{2} \left(\frac{1}{1 - 2} - 1 \right)$$

i. I is maximum at ==-1.

-> find the maximum value of logx

D<7 < 00.

Sol'n: Let
$$f(\tau) = \frac{\log \tau}{2}$$

then
$$f'(x) = \frac{x(\frac{1}{x}) - \log x}{x^2}$$

Find the maximum and minimum and
$$-\beta^{11}(x) = \frac{x^{2}(-\frac{1}{2}) - (1 - \frac{1}{2}\cos x)}{x^{2}}$$

For maximum or minimum.

when z=e:

$$-P''(e) = \frac{-\epsilon - 2e + 2e \log e}{e^{4}}$$

$$=\frac{-e}{e^{i}}$$

$$=\frac{1}{1}<0$$

if is maximum at x = e. : Imaa = f(e) = lage = ! : Prove that the function (1/2)? 2>0. has a maximum at 2=1/e. Soin Let $f(x) = \left(\frac{1}{x}\right)^{x}$; x > 0=> log f(r) = x log 1/2 $\Rightarrow logf(x) = x[-logx]$ $\Rightarrow \log f(x) = -x \log x$ $\Rightarrow \frac{1}{-f(x)} f'(x) = -\left[x \frac{1}{x} + \log x\right]$ $\Rightarrow \left| f'(x) = -f(x) \left[1 + \log x \right] \right|$ and $f^{l}(x) = -f(x)\frac{1}{x} - f^{l}(x)\left[1 + \log x\right]$ For maximum (01) minimum f(x)=0 => -f(x) [logx +1] =0 => 1.109x =0 (:.f(x)+0): => logx =-1 $\Rightarrow |x = e^{-1}|$ Now when $x=\bar{e}^{\dagger}$: $-\beta''(e^{-1}) = --f(e^{-1})\frac{1}{e^{-1}} - f(e^{-1})[1 + \log(e^{-1})]$ $=-\left(\varepsilon\right)^{\frac{1}{\varepsilon-1}}-0\left[1+\log(\varepsilon^{-1})\right].$ = -(E)/e.p Lis naximum at a=10

 $f_{\text{max}} = f\left(\frac{1}{e}\right) = \left(\frac{1}{\frac{1}{e}}\right)^{\frac{1}{e}} = (\epsilon)^{\frac{1}{e}}$

H.w. Prove that the function xx, a>0 has a minimum at x=1/e. -> find the maximum and Values of the following minimeum -functions: 1 243-922-242-20. (3/1) (3-2) (3-3) for each of the following functions on R-71R find points of extrema, the intervals on which the function is increasing, and those on it is decreasing. (i) f(x) = x2-3x.15 (ii) 8(x) = 3x-4xx (ii) $h(x) = x^3 - 3x - 4$ Soin (1) f(x) = 22-32+5 f'(x) = 2x-3for maximum (or , minimum flx)-0 Now x=3/28 (3/2-5, 3/2+6) For 3/2-3<2<3/2 ⇒ f (2)<0 and $3/2 < x < 3/15 \Rightarrow 1/(x) > 0$. By first derivative test for extrema -f(x) has minimum at =3/2. fmin = f(3/2) = (3/2) 2-3(3/2)+5 = 9/4 - 9/2 +5 = 9-18+20

Now f'(x) = 2x - 3if $x < 3/2 \Rightarrow f'(x) < 0$.

if (a) is an decreasing in (= 00.3/2)

· f(a) is an increasing in (3/2,00)

h(x) - x3-37-4

Sdn: $h'(\alpha) = 3\alpha^2 - 3$

for maximum or minimum $h^{1}(x) = 0$

 $\Rightarrow 3\chi^2 - 3 = 0$

 $\Rightarrow x^2 - 1 = 0$

⇒ へ = ±1

Al x=1: h(x) has minimum.

At x = -1: h(x) has maximum.

Now $h'(x) = 3x^2 - 3$

= 3(x-1)(x+1)_____

if .7<-1

 $\Rightarrow (2-1) < 0; (2+1) < 0$

 $O<(\kappa), k \equiv 0$

in (a) is increasing in (-00,71);

13-1<2<1 =>(2-1)<0,(2-1)>0

· () = p,(x)<0

in h(7) is decreasing in (-1;1).

y x>1⇒ (2-1)>0; (2+1)>0.

: (1) = h1(2)>0

.. h(2) is increasing in (1,00).

: In (-∞,-1) U (i,∞),

. h(x) is increasing.

and in (-1,1), h(x) is decreasing.

* L Hospital's Rules*

Procleterminate Forms:

If A = J + f(x) and B = J + f(x).

and if $B \neq 0$ then it $\frac{f(x)}{x \rightarrow c} = \frac{A}{B}$

However, if BEO then it has no Conclusion

If B=0 and A=0 then the limit is infinite. (when it exists).

The A=0 & B=0 then It find is

said to be indeterminate form.

Ex: - (1) If \alpha is any real number and if we define f(x) = ax and f(x) = x then

$$\frac{dt}{2 \rightarrow e} \frac{f(x)}{g(x)} = \frac{dt}{2 \rightarrow e} \frac{\sqrt{x}}{x} \qquad \left| \frac{0}{0} \right| = \frac{1}{0} = \frac{1$$

= 2

 $E_{3}:-(2): 3f -f(3) = 3^{2}-1 \text{ and } g(3)=3-1$

with a=1

then we have

$$x \to \alpha \frac{g(x)}{g(x)} = 2t \frac{x^2 - 1}{x - 1} \frac{0}{0} \text{ form}$$

= df (2+1)

= 2

Tepresented by the Symbols $\frac{\infty}{\infty}$, 0.00,

on the indeterminate forms of and on

The other indeterminate cases are usually reduced to the form $\frac{O}{O}(0r) \approx 0$ by taking logarithms, exponentials, or algebraic manipulations.

* We first establish an elementary result that is based simply on the definition of the desirative

Theorem: -

Let f and g be defined on [a,b]Let f(a) = g(a) = 0 and $g(x) \neq 0$ for $x \in (a,b)$ (i.e. a < x < b) if fand g are differentiable at a and

if $g(a) \neq 0$ then the limit of $\frac{f}{g}$ at a exists and is equal to $\frac{f'(a)}{g'(a)}$

i.e It $\frac{f(x)}{g(a)} = \frac{-f'(a)}{g'(a)}$

Norking Rule for finding the Value of H $\frac{f(x)}{f(x)}$:

where $f(\alpha) = 0 = g(\alpha)$.

- (1) Differentiate—the numerator and denominator Separately.
- (3) put z=a and remove the word limit.

3) If the indeterminate form O still persists, repeat the above process.

Problem :

Evaluate the following limits:

$$\frac{501^{n}}{2 \rightarrow 0} \cdot \frac{1}{2} \cdot \frac{(1+x)^{n}-1}{2} \cdot \frac{0}{0} \cdot form$$

separately)

$$\xrightarrow{\chi \to 0} \frac{\chi_2}{\chi_{01}} = \frac{\chi_2}{\chi_{02}} = \frac{\chi_2}{\chi_2} = \frac{\chi_2}{\chi_2$$

$$\xrightarrow{\lambda \to 1} \left(\frac{1 - \lambda + \log \lambda}{1 - \lambda + \log \lambda} \right)$$

$$\Rightarrow \frac{1}{u} \frac{du}{dx} = x \left(\frac{1}{x}\right) + \log x$$

$$\Rightarrow \frac{du}{dx} = u \left(1 + \log x\right)$$

Now It
$$\left(\frac{x^2-x}{1-x+\log x}\right)$$
 from $\frac{0}{0}$ (1) It $\frac{x^0-a^2}{x^2-a^2}$

$$= \frac{dt}{2^{\alpha}} \frac{2^{\alpha} (1 + \log x) - 1}{-1 + \frac{1}{2}} \left[form \frac{10}{0}, \frac{1}{0} \right]$$

$$= \frac{dt}{2^{\alpha}} \frac{x^{2} (\frac{1}{2}) + x^{2} (1 + \log x) (1 + \log x)}{-\frac{1}{2^{2}}}$$

$$= \frac{1^{1} (\frac{1}{1}) + 1^{1} (1 + \log x)^{2}}{-\frac{1}{1^{2}}}$$

$$= \frac{1 + 1 (1 + 0)^{2}}{-1}$$

$$= \frac{1 + 1}{-1} = -2$$

Let -∞≤a<b≤ ∞ and letif, g be differentiable on (a, b) such that glasto 426 (a.6)

Suppose that

$$\frac{dt}{dt} - f(x) = 0 = dt - g(x)$$

$$\frac{\int 2f}{2 + \frac{f'(2)}{2}} = L \in \{-\infty, \infty\} \text{ then}$$

$$\frac{\int f'(2)}{2 + \alpha_1} = L$$

$$\frac{\int f'(2)}{2 + \alpha_1} = L$$

Evaluate the following limits.

$$3 \rightarrow 6 \qquad 3 \sin x$$

(b) It
$$\frac{\tan x - x}{x + \cos x}$$

$$(1) \text{ If } \lambda_0 - \alpha_3$$

(f) It
$$\frac{e^{2}\sin^{2}(-x^{2}-x^{2})}{x^{2}+2\log(1-x)}$$

$$= dt \frac{\tan x - x}{x \rightarrow 0} \frac{1}{\tan x} - \frac{x}{\tan x}$$

= dt
$$\frac{\tan 2-7}{x^3}$$
 dt $\frac{\pi}{2}$

$$= 1t \frac{\tan x - x}{\cos x^3}$$
 (1)

$$= dt \frac{\tan - x}{x \to 0}$$

$$=\frac{6}{3(1)}\cdot (1)$$

$$\lim_{\lambda \to \alpha} \left(\frac{\lambda^{\alpha} - \alpha^{\alpha}}{\lambda^{\alpha} - \alpha^{\alpha}} \right)$$

$$= 2t \frac{\alpha x^{\alpha-1} - \alpha^{\alpha} \log \alpha}{x^{\alpha} \left(1 + \log \alpha\right) - 0}$$

$$= \frac{a.\bar{a}' - \log a}{1 + \log a}$$

-> what is wrong with the following application of L'Hospital rule:

$$= dt \quad \frac{\tan 2 - \lambda}{2} \quad \frac{0}{0} - form \quad \frac{3x^2 + 3}{2 + 3x^2 + 2 - 3} \quad \frac{dt}{4x + 1} \quad \frac{3x^2 + 3}{4x + 1} = \frac{dt}{2x + 1} = \frac{6x}{4x + 1}$$

= 11-
$$\frac{\sec(2n-1)}{3n^2}$$
 | $\frac{0}{\cos(2n-1)}$ | $\frac{1}{\cos(2n-1)}$ | \frac

Now the expression 3x7+3 is not

. It is not correct to apply

L. Hospitals Rule to evaluate of 177+

$$\frac{33^{3}+3}{3+1} = \frac{3(1)+3}{4(1)+1} = 6/5.$$

-> what is wrong with the following ase of L'Hospital's Rule:

$$\frac{1}{3} + \frac{3^{4} - 43^{3} + 3}{33^{2} - 3 - 2} = \frac{1}{3} + \frac{43^{3} - 123^{2}}{63 - 1}$$

= dt 1292-26x
= -2
For what value of a does
Sinza + a sina tend to a finite
limit las þr→o? when a has
this value, what is the value of 1? Sol's: It singly osing form 5
= dt 2 cos 2x + a cos x (i)
The denominator (1) -0 as x -0
but (1) a a finite limit I
. The numerator (Dicszz +aicsz) mus
be tend to zero as 2 -> 0.
2 (c) (0) + a (c)(0) =0
→ 2+a=0
$\Rightarrow \boxed{a = -2}$ with this - value of a
$ \begin{array}{c} x \to 0 & \frac{3x_{x}}{5\cos(xx - 3)\cos(x)} & \frac{0}{0} & \cos(x) \\ \end{array} $
$= 4t \frac{-4 \sin 2x + 2 \sin x}{6x} \boxed{\frac{0}{0} \text{ for}}$
= dt -80012x + 2101x
$= \frac{-8(1) + 2(1)}{6} = -6/6 = -1$
1 1 = -i

+ Find the values of a and b in order that it $\frac{2(1-a(osi)+bsima)}{a \rightarrow 0}$ may be equal to by. Soin: It & (1-acesa) + bring form 0 2(a sina)+ (1-acor)+blosx The denominator of 1 -> 0 as x >0 but (1) -> 1/3 as 2 > 0 .. The numerator of 1. 1 (asinx)+(1-acaz) + 6 corx texts to zero as $x \rightarrow 0$. → 0(0) + (1-a(1)) + b(1) = p ⇒ 1-a+b=0 --- ③ If the relation @ holds then from 1) LF ansinx + (1-acax) + bcax (is of the form 0) asing + azcost + asing -bsing бι. -foim O = It acoix + acoix - axiinx + acoix - bcosx $a(1) + \underline{a(1)} = a(0) + a(1) - b(1)$ but the limit of (equal to & (9) was $\frac{30-b}{6} = \frac{1}{3}$

j → 3a-b =2· — ③

from @ & we get

$$a = \frac{1}{2}$$
, $b = -\frac{1}{2}$

H.W. Find the valuesp and 9 for which It - 2 (1+ PGsx) - 9 sinx exists

and equals 1.

2006 P-I find the values of a and b = $\frac{a}{3}(1) - \frac{b}{12}(1)(1)$

Such -that

Solin It asin'x + blog(orx form 0)

$$3 \rightarrow 0 \qquad 4x^{3}$$

the denominator of O-o aix-o.

but () - a finite limit value &

. The numerator of 1 must be Zero as 2-0.

$$\therefore \text{ (i)} \equiv \Im \sigma \ Cel(0) - \rho \imath \epsilon \epsilon, \text{ (o)} = 0$$

$$\Rightarrow \boxed{2a-b=0} - \boxed{3}$$

with this form 1.

$$\frac{1+\frac{2\alpha \cos 2x - b \sec 2x}{0 \text{ form.}}}{12x^2}$$

$$= 16 \frac{-462 \sin 2x - 6[35ec^2x \tan x]}{x+x}$$

$$= dt \left[\frac{-4asinx}{a4n} - \frac{absecratana}{aban} \right]$$

=
$$\frac{-0}{3}$$
 lt $\frac{\sin 2x}{2x}$ $\frac{b}{i2}$ lt $\frac{\sec^2 x}{x \to 0}$ $\frac{\tan x}{x}$

$$=\frac{a}{3}(1)-\frac{b}{12}(1)(1)$$

$$\frac{-a}{3} - \frac{b}{12} - \frac{-4a-b}{12}$$

but limit of 1 is equal to 1/2

$$\frac{-4a-\frac{6}{b}}{12}=\frac{1}{2}$$

* Hospital's Rule - 2:

Let - or sac be or and let-

1.9 be différentiable on (a,b)

such that 9'(2) +0 42 (0,5)

Suppose that $\frac{1}{x \rightarrow a_1}g(x) = \pm \infty$

$$\frac{d+}{2+\alpha+}\frac{f(2)}{g(2)}=1$$

(b) If It
$$\frac{f'(x)}{g'(x)} = Le\{-\infty,\infty\}$$
, then

$$\frac{dt}{2 \rightarrow \alpha +} \frac{f(\alpha)}{f(\alpha)} = L$$

Note: In most of the Problems of the form on, it is necessary to Change it into the form o at the Proper Stage, Otherwise the process will never and.

Problems.

Evaluate the following limits:

$$= \frac{1}{2} \frac{2 \log x}{2 \log x} \qquad | \frac{1}{1} \operatorname{ferm} \frac{\omega}{\omega} | \frac{1}{2} \operatorname{sog} z = -\infty$$

$$= \frac{1}{2} \frac{1}{x} \qquad | \frac{1}{x} \operatorname{cot} z = -\infty$$

$$= \frac{1}{x} \frac{1}{x} \qquad | \frac{1}{x} \operatorname{cot} z = -\infty$$

$$= Tf \left(\frac{3r}{2^{1/3}}\right) \left(\frac{6}{6} + \frac{1}{6}\right)$$

$$\frac{Sol^n}{\lambda \to 0+} \frac{1}{\log \chi} \frac{\log (1+\alpha x)}{\log x}$$

$$= \frac{1}{\lambda \to 0+} \frac{\log (1+\alpha x)}{\log x}$$

$$=\frac{2}{2(1)}=1$$

A Other Indeterminate forms: > 1+ \(\frac{1}{4\pi} - \frac{71}{2\pi(e^{\pi 2}+1)} \) The indeterminate forms so - 00; Oxer, 100,000 combe reduced to any one of the two indeterminate forms $\frac{0}{0}$ or $\frac{\infty}{\infty}$ $\longrightarrow dt \left[\frac{1}{\log(x-3)} - \frac{1}{x-4}\right]$ by algebraic manipulations and the exponential functions: This is illustrated by the following examples Form 00-00 $\rightarrow dt \left(\frac{1}{\lambda} - \frac{1}{\sin x}\right)$ = at sinx | form 0 = 1+ -3 yinx+ 3 (02x $=\frac{0}{2}=0$ 11.00. dt (-12 - 1 2 tous) $\frac{11.00}{\lambda \to 0} \frac{1}{\lambda} - \cot x$ Hip It (Seca-tours) 11-10 dt = -12 log (1+2)

and the state of the contract
•
$= 1 + \frac{2\alpha - (\alpha^9 + 1) \left(\frac{3 \ln 2\alpha}{2}\right) + 2\alpha \cos 2}{\alpha + \alpha}$
2 >0
ξχ ² .
$= d+ \left[\frac{\partial + 2(\cos 2x - 4x) \sin 2x - 4x \sin 2x - 4(x^2 + 1)\cos x}{\partial^2 + 2x^2}\right]$
[2,2,
= dt 4+2(032x-42)in2x-42sin2x-4(x+1)Co
2-30
of the state of th
1.00
The state of the s
11 -851 22 16 2
2+0 -8 Sin2x -1626052x -8xc032x+2(4x2+2) sin:
482
· L
* - * - * - * - * - * - * - * - * - * -
2+0 = 247. Col2x + (82-4) 31/12x form-
2-70 482 form-
10.7
•
-21.6
: 1+ -24(crzx + 482 sin22+ 162 sin2x+2 (82-4)(05
270 48
118
-2t, t
$\frac{-34+0+0-8}{48} = \frac{-32}{48} = -\frac{2}{3}.$
$\frac{1}{48} = \frac{-32}{} = -2/$
18 73
£ .
Form Dx & -
*Evaluate " for A.
+ Evaluate the following timits:
一ナ は ないな
N->0+
goin dt 2 lnx 0x00-form
7 → 0+
= dt dogx \ \ \frac{\infty}{\infty} \cdot \frac{\infty}{\i
2->0+ /2
= 1+ 1/2
$= dt \frac{1}{2}$
$= \frac{x \rightarrow c_1}{1 - x_2} - \dots$
X->C1 3
•
= 1/2 (-3)

n were wiggare a timps of ontextops (_801)	-
	1
2x It n3 ln x	ing regarding of
2 > 0 2 (10gx)2	HISTORIAN PERSONAL CONTRACTION PROCESSAN (STANDARD)
301, u. 9F 1 0x00	\$ 19180 (c) (5) (6) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
from $= 2t + \frac{\sqrt{x}}{x \to 0}$ (logx) $\frac{ao}{ao}$ from	# SARBUCKEAK SERVICE
124	State of the state
$= dt \left(\frac{-\sqrt{2}}{2(\log x) \frac{1}{4}} \right)$	(*************************************
$= d \leftarrow \frac{-1/2}{2 \log 2} \qquad \qquad \frac{\infty}{\infty} \text{ form}$	o constantial control
$= J + \frac{1}{12}$ $= 3 + \frac{1}{12}$ $= 3 + \frac{1}{12}$	\$2.0%
$= \frac{1}{x \to 0} \frac{1}{2x}$	Control of the contro
= ∞	2,000
$\frac{1}{2} + \frac{2}{2} = 1$	on all the second
Forms: 0°, 1°0, ∞°	7380
$- \xrightarrow{\lambda \to 0+} 9 + y = y$	TOTERREAD TOTAL PERSONS TOTAL
$\frac{\text{Sol'n}}{\lambda \to 0}$. Let $\frac{d}{dt} = 0$ of form	C Section of the sect
$\Rightarrow \log\left[\frac{1+}{1+}\right] = \log 1$	
$\Rightarrow \text{lt} \left[\log(\alpha^{2})\right] = \log 1$	
⇒ log l = Jt [\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A STANSON AND A
$= \frac{1}{2} + \frac{\log x}{\sqrt{x}} \qquad \left(\frac{\infty}{\infty} \right) = \frac{1}{2} + \frac{\log x}{\sqrt{x}}$	2
	A CONTROL OF THE CONT
https://upscpdf.com	https://t.me/upsc_pc

= 0

 $\rightarrow \text{at} \left(1 + \frac{1}{2}\right)^2 = ?$ $= dt \frac{\chi_1}{\chi_2}$ 301n. TF (1+12)3 /00, town $= \frac{3 \rightarrow 0 + \left(\frac{3}{3}\right)}{1 - 3}$ Let l= It (1+1/2)2 = dt (-x) = 0 iloge = 0 ⇒ log l = It [log(1+1/2)] $\Rightarrow l = e^0$ = lt [2 [09 (1+1/2)] $\begin{array}{ccc}
 & \text{it } (1+1/2)^{1/2} = 0 \\
 & \times \to \infty
\end{array}$ = 1+ 209(1+1/2) Sol'n: It (1+1/2) 2 | on form Let I = 1+ (1+1/2)3 loge = It [2 log(1+ /2)] $=\left(\frac{1}{1+\frac{1}{2}}\right)$ = It $\frac{\log(1+1/2)}{\sqrt{2}}$ $\frac{1}{6}$ from $\frac{1}{2 + \infty}$ $\frac{1}{3^2}$ $(0,\infty)$ (b) It $\frac{\ln x}{\sqrt{x}}$ (0,\infty) $= Jt \left[\frac{1}{1+1/2} \left(-\frac{1}{2} \right)^{\frac{1}{2}} \right] - \frac{1}{1+1/2} \left(-\frac{1}{2} \right)^{\frac{1}{2}}$ (1) dt alnsina (0.11) (d) It $\frac{1+\ln 1}{1+\ln 1}$ (0,0) ∞ form \rightarrow (0) 11. x_{33} (0.0) $= J + \frac{1}{1} = 1$ (b) If $(1+3\sqrt{3})^3$; $(0,\infty)$ (c) $\underset{\chi\to\infty}{\downarrow}$ $(1+3/x)^{\chi}$; $(0,\infty)$ => 1-e1

0x00

(0,0)

- (b) It (finx)2; (0,11)
- (€) It asinx : (0,0)
 - (d) dt (secx-taux); (0, 1/2)

https://upscpdf.con

https://t.me/upsc_pdf https://upscpdf.com https://t.me/upsc_pdf

INTERPORTATION OF THE PROPERTY https://upscpdf.com https://t.me/upsc_pdf