EE230- Analog lab (Homework-4) Spring Semester: Year 2021-22

January 29, 2022

Instructions:

- Show your netlists and simulation results of each question to the evaluating TA.
- Deadline: Feb 3, 2:00 pm.
- You can refer: NGSPICE tutorial, model files uploaded on the course moodle / MS Teams channel and your written netlists of previous experiments.
- 1. Write NGSPICE netlist for the circuit shown in Figure [1]. For the given circuit, use a single supply of +5V for the op-amp LM324. Sweep the input voltage (V_{in}) from $0.1V_{dc}$ to $5V_{dc}$ in the steps of 0.1V and comment on the relationship between V_{in} and V_{out} .

Figure 1: OP-AMP based Circuit-1

2. Write NGSPICE netlist of the circuit shown in Figure [2]. Use op-amp 741 and supply voltage of $\pm 15V$.

Figure 2: OP-AMP based Circuit-2

- (a) Simulate the circuit, where $R_x = 10k\Omega$, $R = 10k\Omega$ and C = 47nF. Perform the AC analysis and observe the phase and gain plots for the circuit. Make sure that the dc component is 0V and ac signal should be $1V_{pp}$ for the V_{in} source.
- (b) Now, repeat above step for $R_x = 10k\Omega$, $R = 1k\Omega$ and C = 1nF.
- (c) Write your observations in the gain plots and phase plots for part (a) and (b)?
- (d) What is the gain value in linear scale for part (a) and (b)?
- (e) What is the above circuit called and what are the applications of the circuit you could think of?
- 3. (a) Write NGSPICE netlist for the circuit shown in Figure [3]. Use op-amp 741 and supply voltage of $\pm 15V$. In a single window, plot V_{out} v/s V_{in} for $-5V \le V_{in} \le +5V$. Find the values of V_{in} for which V_{out} trips.

Upper trip point $V_T^+ = ---$

Lower trip point $V_T^- = ---$

- (b) Write NGSPICE netlist for the circuit shown in Figure [4]. Use the same op-amp and power supplies as in Part (a). Observe the input and steady state output from 100 ms to 110 ms.
- (c) Write NGSPICE netlist which interconnects the circuits in Figure [3] and [4] to form a closed loop without any external input.

Hint: An output of Figure [4] in part (b), let's call it (V'_{out}) , will be an input to Figure [3] in part (a). Also, an output of Figure [3] in part (a) will be an input to Figure [4] in part (b). **Output of Figure** [3] will be your final output (V_{out}) .

You should re-use the existing netlists from part (a) and (b). You can use the existing netlists as sub-circuits in writing the netlist for part (c) (optional).

Figure 3: OP-AMP based Circuit-3

Figure 4: OP-AMP based Circuit-4

- i. Observe the steady state outputs V_{out} and $V_{out}^{'}$ from 99 ms to 101 ms.
- ii. Write the frequency of $V_{out} = ---$

Positive peak of $V_{out}^{'} = ----$

Negative peak of $V_{out}^{'} = ----$