Lista 6

Wiktor Kuchta (nr indeksu 315599)

6 kwietnia 2023

1	2	3	4	5	6	7
+	+		+	+	+	+

1.

Lemat. Jeśli $\Gamma \vdash M : \sigma$, to $\Gamma[\alpha := \tau] \vdash M : \sigma[\alpha := \tau]$.

Dowód. Indukcja względem wyprowadzenia $\Gamma \vdash M : \sigma$. Rozważamy wszystkie przypadki reguł mogących konczyć wyprowadzenie:

• (Ass) Mamy $x : \sigma \vdash x : \sigma$, czyli $\Gamma \equiv x : \sigma$ i $M \equiv x$. Z reguły (Ass) mamy

$$x : \sigma[\alpha := \tau] \vdash x : \sigma[\alpha := \tau],$$

co należało pokazać, bo $x : \sigma[\alpha := \tau] \equiv \Gamma[\alpha := \tau].$

• ($\rightarrow I$) Mamy $\Gamma \vdash \lambda x.M' : \sigma_1 \rightarrow \sigma_2$, czyli $M \equiv \lambda x.M'$ i $\sigma \equiv \sigma_1 \rightarrow \sigma_2$. Z założenia indukcyjnego mamy $(\Gamma, x : \sigma_1)[\alpha := \tau] \vdash M' : \sigma_2[\alpha := \tau]$. Skoro $(\Gamma, x : \sigma_1)[\alpha := \tau] \equiv \Gamma[\alpha := \tau], x : \sigma_1[\alpha := \tau], z \text{ reguly } (\rightarrow I)$ mamy

$$\Gamma[\alpha := \tau] \vdash \lambda x.M' : \sigma_1[\alpha := \tau] \rightarrow \sigma_2[\alpha := \tau],$$

co należało pokazać, bo $\sigma_1[\alpha := \tau] \to \sigma_2[\alpha := \tau] \equiv \sigma[\alpha := \tau].$

• ($\rightarrow E$) Mamy $\Gamma_1, \Gamma_2 \vdash N_1 N_2 : \sigma$, czyli $\Gamma \equiv \Gamma_1 \Gamma_2$ i $M \equiv N_1 N_2$. Z założenia indukcyjnego mamy $\Gamma_1[\alpha := \tau] \vdash N_1 : (\rho \rightarrow \sigma)[\alpha := \tau]$ oraz $\Gamma_2[\alpha := \tau] \vdash N_2 : \rho[\alpha := \tau]$. Skoro $(\rho \rightarrow \sigma)[\alpha := \tau] \equiv \rho[\alpha := \tau] \rightarrow \sigma[\alpha := \tau]$, z reguły $(\rightarrow E)$ mamy

$$\Gamma_1[\alpha := \tau], \Gamma_2[\alpha := \tau] \vdash N_1N_2 : \sigma[\alpha := \tau],$$

co należało pokazać, bo $\Gamma_1[\alpha:=\tau], \Gamma_2[\alpha:=\tau] \equiv \Gamma[\alpha:=\tau].$

• (W) Mamy $\Gamma', x : \rho \vdash M : \sigma$, czyli $\Gamma \equiv \Gamma', x : \rho$. Z założenia indukcyjnego mamy $\Gamma'[\alpha := \tau] \vdash M : \sigma[\alpha := \tau]$, więc z reguły (W) otrzymujemy

$$\Gamma'[\alpha := \tau], x : \rho[\alpha := \tau] \vdash M : \sigma[\alpha := \tau],$$

co należało pokazać, bo $\Gamma'[\alpha:=\tau], x: \rho[\alpha:=\tau] \equiv \Gamma[\alpha:=\tau].$