Листок 14. Теория игр.

DM-ML 94. Дана система из n линейных уравнений. Докажите, что система несовместна тогда и только тогда, когда линейными комбинациями из этих уравнений можно получить 0 = 1 (в решении нельзя без доказательства пользоваться теоремами линейной алгебры, если вы их еще не изучали в Академическом университете).

DM-ML 95. Пусть платежная матрицы игры квадратная и кососим-метрическая (т.е. $a_{i,j} = -a_{j,i}$). Покажите, что цена игры равняется нулю.

DM-ML 96. Рассмотрим вещественную матрицу $m \times n$. Седловым элементом матрицы называется элемент, который является минимальным (или одним из минимальных) в своей строке и максимальным (или одним из максимальных) элементов своего столбца.

- (а) Покажите, что если седловых элементов несколько, то они все равны.
- (б) Покажите, что если в матрице есть седловой элемент, то он равен цене игры.

DM-ML 97. Найдите цены игр и оптимальные стратегии для матричных игр, которые задаются такими матрицами:

(a)
$$\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$

(6) $\begin{bmatrix} 3 & 2 & 2 \\ 1 & 3 & 4 \\ 2 & 2 & 1 \end{bmatrix}$

DM-ML 27. Правило ослабления позволяет вывести из дизъюнкта A дизъюнкт $A \lor B$ для любого дизъюнкта B. Покажите, что если из дизъюнктов D_1, D_2, \ldots, D_n семантически следует дизъюнкт C (это значит, что любой набор значений переменных, который выполняет все дизъюнкты D_i , выполняет также и C), то C можно вывести из D_i с помощью применений правил резолюции и ослабления.

DM-ML 28.

(г) Покажите, что существует схема для сложения двух n-битных чисел размера O(n) и глубины $O(\log n)$.

DM-ML 65. Докажите, что если вершины графа имеют степень не больше, чем k, то его вершины можно покрасить в [k/2]+1 цвет так, чтобы для каждой вершины не более одного ребра исходило в вершины того же цвета ([x] обозначает целую часть числа x).

DM-ML 70. Покажите, что для формулы в КНФ, состоящей из m дизъюнктов, в которой любые три дизъюнкта можно одновременно выполнить, существует набор значений переменных, который выполняет как минимум $\frac{2}{3}m$ дизъюнктов.

DM-ML 85.

(б) Предположим, что у нас есть оракульный доступ к строке Z (это значит, что можно делать запросы к строке Z, за один запрос можно узнать один бит строки Z), которая отличается от WH(a) не более, чем в доле $\frac{1}{4}-\epsilon$ позиций, где ϵ — это некоторая константа, причем строка $a\in\{0,1\}^n$ нам неизвестна. Придумайте вероятностный алгоритм, который для всех $x\in\{0,1\}^n$ вычислит $f_a(x)$ с вероятностью как минимимум $\frac{9}{10}$, причем этот алгоритм может должен делать лишь константное число запросов к строке Z и работать полиномиальное от n время.

DM-ML 86. Назовем вероятностной булевой схемой такую схему, часть входов которой называются случайными битами. Пусть схема C имеет n+m входов, первые n входов мы будем понимать как непосредственно входы, оставшиеся m входов как случайные биты. Будем говорить, что схема C вычисляет функцию $f:\{0,1\}^n \to \{0,1\}$ с ограниченной ошибкой, если для каждого $x \in \{0,1\}^n$ выполняется $\mathsf{P}[f(x) = C(x,r)] \geq \frac{2}{3}$, где вероятность берется по случайной строке r, которая принимает все значения из множества $\{0,1\}^m$ с равными вероятностями. Пусть функция $f:\{0,1\}^n \to \{0,1\}$ вычисляется вероятностной схемой C размера s с ограниченной ошибкой.

- (а) Покажите, что для каждого многочлена p(n) найдется такая вероятностная схема C' с n+m' входами, размер которой полиномиален относительно sn, что при всех $x\in\{0,1\}^n$ выполняется $\mathsf{P}[f(x)=C(x,r)]\geq 1-2^{-p(n)}$, где вероятность берется по случайной строке r, которая принимает все значения из множества $\{0,1\}^{m'}$ с равными вероятностями.
- (б) Покажите, что найдется обычная схема с n входами, размер которой полиномиален относительно sn, что для всех $x \in \{0,1\}^n$ выполняется f(x) = C(x).