Problem

ABCD is a convex quadrilateral. M and N are midpoints of AD, BC, respectively. Show that $MN \leq \frac{1}{2}(AB + DC)$.

Solution

If AB//DC, ABCD is a trapezoid ABCD.

By Theorem 2.3, $MN = \frac{1}{2}(AB + DC)$. Otherwise, Connect AC. Take P, the midpoint of AC. Connect PA, PN. Since M and P are midpoints of AD, AC, respectively, by Theorem 2.1,

 $MP = \frac{1}{2}DC$ Since N and P are midpoints of BC, AC, respectively, by Theorem 2.1,

 $NP = \frac{1}{2}AB$

(1) +(2): $MP + N\tilde{P} = \frac{1}{2}(DC + AB)$

By the triangle inequality theorem, MP + NP > MN.

Thus $MN < \frac{1}{2}(AB + DC)$. Therefore, we have $MN \leq \frac{1}{2}(AB + DC)$.