This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCI)

(51) Classification internationale des brevets 7: C07F 9/40, C08F 4/00

A1

(11) Numéro de publication internationale:

WO 00/49027

(43) Date de publication internationale:

24 août 2000 (24.08.00)

(21) Numéro de la demande internationale:

PCT/FR00/00335

(22) Date de dépôt international:

10 février 2000 (10.02.00)

(30) Données relatives à la priorité:

99/01998

18 février 1999 (18.02.99)

FR

(71) Déposant (pour tous les Etats désignés sauf US): ELF ATOCHEM S.A. [FR/FR]; 4/8, cours Michelet, F-92800 Puteaux (FR).

(72) Inventeurs; et

- (75) Inventeurs/Déposants (US seulement): COUTURIER, Jean-Luc [FR/FR]; 26, rue Lieutenant-Colonel Prévost, F-69006 Lyon (FR). HENRIET-BERNARD, Christiane [FR/DE]; 6, Talstrasse, D-65719 Hofheim-Lorsbach (DE). LE MERCIER, Christophe [FR/FR]; 8, rue de la Chartreuse, F-13004 Marseille (FR). TORDO, Paul [FR/FR]; 7, boulevard du Jardin Zoologique, F-13004 Marseille (FR). LUTZ, Jean-François [FR/FR]; 9, rue Sainte-Croix, F-34000 Montpellier (FR).
- (74) Mandataire: POISSON, Pierre; Elf Atochem S.A., DCRD / DPI, Cours Michelet, La Défense 10, F-92091 Paris La Défense Cedex (FR).

(81) Etats désignés: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, brevet ARIPO (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), brevet européen (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée

Avec rapport de recherche internationale.

(54) Title: ALKOXYAMINES ISSUES DE NITROXIDES SS-PHOSPHORES

(54) Titre: ALCOXYAMINES ISSUES DE NITROXYDE SS-PHOSPHORES

(57) Abstract

The invention concerns alkoxyamines derived from β -phosphorous nitroxides corresponding to formula (1). Said compounds can be used as (co)polymerisation initiators of at least a monomer polymerisable by radical polymerisation.

(57) Abrégé

L'invention a pour objet des alcoxyamines issues de nitroxyde

 β -phosphorés répondant à la formule (I). Ces composés peuvent être utilisés comme amorceurs des (co)polymérisation d'au moins un monomère polymérisable par voie radicalaire.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaguie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaĭdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IL	Israči	MR	Mauritanie	UG	Ouganda
BY	Bélarus	S	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	zw	Zimbabwe
Cl	Côte d'Ivoire	KP	République populaire	NZ	Nonvelle-Zélande	211	Sundaywe
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	LI	Liechtenstein	SD	Soudan		,
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Estonie	LR	Libéria	SG	Singapour		
					V F		

WO 00/49027 PCT/FR00/00335

ALKOXYAMINES ISSUES DE NITROXYDE SS-PHOSPHORES

La présente invention a pour objet des hydroxylamines α,β,βtrisubstituées, ci-après désignées par alcoxyamines, obtenues à partir de
nitroxyde-β-phosphorés, utilisables notamment comme amorceurs des
polymérisations radicalaires. L'utilisation des alcoxyamines telles que
celles dérivées du (2,2,6,6-tétraméthyl-pipéridinyl)-N-oxyde (TEMPO) dans
la préparation des macromolécules a donné lieu à de nombreuses
publications.

Ainsi, HAWKER C.J. et coll. (Macromolécules 1996, 29, pages 5245-5254) ont montré que l'utilisation d'alcoxyamines dérivées du TEMPO telles que le (2',2',6',6'-tétraméthyl-1'-pipéridinyloxy)méthylbenzène comme amorceurs de polymérisation radicalaire du styrène permettait de contrôler la polymérisation et d'accéder à des polymères bien définis avec des bas indices de polydispersité et ils ont constaté que les vitesses de polymérisation étaient sensiblement équivalentes aux vitesses obtenues lorsqu'ils utilisaient des amorceurs classiques tels que l'AIBN ou le peroxyde de benzoyle en présence de TEMPO.

On a maintenant trouvé que l'utilisation d'alcoxyamines dérivées de nitroxydes β -phosphorés comme amorceurs des polymérisations ou copolymérisations d'au moins un monomère polymérisable par voie radicalaire procurait un excellent contrôle de la polydispersité tout en assurant une bonne vitesse de polymérisation ou de copolymérisation.

L'invention a donc pour objet des alcoxyamines de formule :

20

25

30

dans laquelle R¹ et R², identiques ou différents, représentent un atome d'hydrogène, un radical alkyle linéaire ou ramifié ayant un nombre d'atomes de carbone allant de 1 à 10, un radical aryle, un radical aralkyle ayant un nombre d'atomes de carbone allant de 1 à 10, ou bien R¹ et R² sont reliés entre eux de façon à former un cycl incluant l'atome de carbone portant lesdits R¹ et R², ledit cycle ayant un nombre d'atomes de

carbone, incluant le carbone porteur des radicaux R1 et R2, allant de 3 à 8; R³ représente un radical hydrocarboné, linéaire ou ramifi', saturé ou insaturé, pouvant comprendre au moins un cycle, ledit radical ayant un nombre d'atomes de carbone allant de 1 à 30 ; R⁴ et R⁵ identiques ou 5 différents, représentent un radical alkyle, linéaire ou ramifié, un radical cycloalkyle, aryle, alcoxyle, aryloxyle, aralkyloxyle, perfluoroalkyle, aralkyle, thioalkyle ayant un nombre d'atomes de carbone allant de 1 à 20, ou bien R4 et R5 sont reliés entre eux de façon à former un cycle incluant l'atome de phosphore, ledit hétérocycle ayant un nombre d'atomes de carbone allant de 2 à 6 et peut contenir en outre un ou plusieurs atomes d'oxygène ou de soufre ;

Z est un reste de formule :

$$-C \stackrel{R^6}{\underset{R^8}{\sim}}$$

15

25

dans laquelle R⁶, R⁷ et R⁸, identiques ou différents, représentent un atome d'hydrogène, un radical alkyle, linéaire ou ramifié, ayant un 20 nombre d'atomes de carbone allant de 1 à 10, un radical phényle, un radical benzyle, un radical cyano, un radical cycloalkyle ayant un nombre d'atomes de carbone allant de 3 à 12 ; un radical -(CH2)n C(O)OR9 dans lequel R9 représente un alkyle, linéaire ou ramifié, ayant un nombre d'atomes de carbone allant de 1 à 6, n=0 à 6.

Parmi les composés de formule (I), on préfère tout lesquels $R^1 = H$, $R^2 = R^3 = (CH_3)_3 C_7$ particulièrement ceux dans $R^4 = R^5 = CH_3CH_2O_7$, $Z = C_6H_5CH_2^-$, $(CH_3)_2C(CN)_1$, $(R^6 = R^7 = CH_3^-)$ $R^8 = NC$ -), $CH_3OC(O)C(CH_3)_2$ -, $(R^6 = R^7 = CH_3$ -, $R^8 = -(CH_2)nC(O)OR^9$ avec n=0 et $R^9=-CH_3$); $CH_3OC(0)CH(CH_3)-(R^6=H, R^7=CH_3-, R^8=$ 30 $(CH_2)_nC(O)OR^9$ avec n=0 et $R^9=-CH_3$; C_6F_{13} , $C_6H_5CH(CH_3)$ -, $C_6H_5C(CH_3)_2$ -, C_6H_{12} -, $CH_3(CH_2)_5$ -.

Les alcoxyamines de formule (I) peuvent être préparées selon des méthodes connues dans la littérature. La méthode la plus courante implique le couplage d'un radical carboné avec un radical nitroxyde. Le 35 radical carboné Z^o peut être généré par différentes méthodes décrites dans la littérature : décomposition d'un composé azoïque, abstraction d'un atome d'hydrogène sur un substrat approprié, addition d'un radical sur une oléfine. Le radical Zº peut également être généré à partir d'un

composé organométallique comme un organomagnésien Z-MgX tel que décrit par Hawker C.J. et coll. dans Macromolecules 1996, 29, 5245-5254 ou à partir d'un dérivé halogéné Z-X en présence d'un système organométallique comme CuCl/bipyridine selon une réaction de type ATRA (Atom Transfer Radical Addition) tel que décrit par Dorota Greszta et coll. dans Macromolecules 1996, 29, 7661-7670.

Parmi toutes ces méthodes, on utilisera de préférence pour la préparation des composés de formule (I), la méthode mettant en jeu la réaction ATRA.

Cette méthode consiste à transférer un atome ou un groupe d'atomes sur une autre molécule en présence d'un système catalytique organométallique tel que CuBr/bipyridine et en milieu solvant.

Le mode opératoire généralement utilisé consiste à mettre en solution le complexe organo-métallique tel que CuBr/bipyridine dans un solvant organique de préférence aromatique tel que le benzène ou le toluène puis à introduire dans la solution le composé ZX et le nitroxyde-β phosphoré.

Le mélange réactionnel est agité ensuite à une température comprise entre 20°C et 70°C pendant une durée au moins égale à 48 heures, voire plus.

Ensuite, le précipité est filtré, rincé avec un solvant tel que l'éther puis le filtrat est lavé avec une solution aqueuse à 5 % en poids de CuSO₄ puis enfin avec de l'eau.

Après séchage sur MgSO₄, les solvants sont évaporés sous pression réduite.

Les alcoxyamines de formule (I) selon la présente invention peuvent être utilisées pour la polymérisation et la copolymérisation de tout monomère présentant une double liaison carbone-carbone susceptible de polymériser par voie radicalaire. La polymérisation ou la copolymérisation est réalisée dans les conditions habituelles connues de l'homme du métier compte tenu du ou des monomères considérés. Les monomères considérés peuvent être un monomère vinylaromatique (styrène, styrènes substitués), un diène, un monomère acrylique tel que l'acrylate de méthyle ou l'acrylate de butyle ou un monomère méthacrylique. Le monomère peut également être le chlorure de vinyle, le difluorure de vinylidène ou l'acrylonitrile.

Les alcoxyamines (I) peuvent être avantageusement introduites dans le milieu de polymérisation ou de copolymérisation à des teneurs

10

30

35

4

allant de 0,005 % à 5 % en poids par rapport au(x) monomère(s) mis en œuvre.

Les exemples qui suivent illustrent l'invention.

Le β-nitroxyde phosphoré de formule :

sera utilisé dans les exemples ci-après et sera désigné par DEPN.

Il a été obtenu par oxydation, du 2,2-diméthyl-1-(1,1-diméthyléthylamino)propyl phosphonate de diethyle au moyen de l'acide métachloroperbenzoïque selon un protocole décrit dans la demande internationale WO 96/24620.

Les composés obtenus ont été caractérisés par analyse élémentaire et par RMN du ¹H, ¹³C, ³¹P et ¹⁹F.

Les spectres de RMN ont été effectués sur un appareil BRUKER AC 100 (1 H, 100 MHz; 31 P, 40,53 MHz; 19 F, 94,22 MHz; 13 C, 25,18 MHz). Les RMN 13 C et 31 P sont réalisées avec découplage au 1 H.

Les déplacements chimiques δ sont donnés en ppm, par rapport au tétraméthylsilane (référence interne) pour le proton et le carbone, par rapport à H_3PO_4 à 85 % (référence externe) pour le phosphore et par rapport à l'acide trifluoroacétique pour le fluor.

EXEMPLE 1

Synthèse du N-tertiobutyl, N-1-diéthylphosphono-2,2-diméthylpropyl, O-1-phényléthylhydroxylamine (1):

$$CH_3$$

 $(CH_3)_3 C - N - O - CH - O$
 $(CH_3)_3 C - CH - P(O) (OEt)_2$
(1)

Dans un tube de Schlenk de 100 ml purgé à l'argon, on introduit 0,57 g de CuBr (4 mmol) t 1,25 g de 2,2'-bipyridine (8 mmol). On ajoute 0,74 g de (1-bromoéthyl)benzène (4 mmol) et 0,68 g d DEPN 86 % (2

25

30

mmol) dissous dans 9 ml de toluène anhydre. Sous agitation, on laisse réagir pendant 48 heures à température ambiante. L mélange réactionnel est filtré sur célite. Le filtrat est lavé avec une solution aqueuse à 5 % de sulfate de cuivre, puis à l'eau. La phase organique est séchée sur sulfate 5 de magnésium, puis le solvant est évaporé. Le produit est purifié par chromatographie sur colonne de silice en utilisant un éluant pentane/éther 6/4. On obtient 0,75 g du composé (1) (rendement = 95 %) sous la forme de deux diastéréoisomères dans des proportions 64/36 déterminées sur le spectre 31P du mélange brut par intégration des signaux à 23,14 et 24,36 ppm (I/II = 64/36).

Les résultats analytiques sont donnés ci-après :

<u>lsomère l</u>:

RMN ³¹P(CDCl₃) : δ 23,14

RMN 1 H(CDCl₃): δ 0,88 (t,J_{H-H}=7,2Hz,3H); 1,21

-1,27 (m,21H) ; 1,55 (d, $J_{H-H} = 6,6Hz,3H$) (s,9H) ; 3,40 $(d,J_{H-P}=26Hz, 1H)$; 3,18-3,40 et 3,70-4,05 (m, 4H); 5,22 (q, $J_{H-P}=26Hz$) $_{H}$ = 6,6Hz, 1H); 7,24-7,47 (m,5H).

RMN ¹³C (CDCl₃) : δ 16,23 (2d,J_{C-P}=7Hz, <u>C</u>H₃CH₂), 21,18 (s, $\underline{C}H_3CH$), 28,19 (s, $\underline{C}H_3$ -C-CH), 30,63 (d, J_{C-P} =7Hz, $\underline{C}H_3$ -CN), 35,33 20 (d, $J_{C-P} = 6Hz$, <u>C</u>-CH-P), 58,58 (d, $J_{C-P} = 7,5Hz$, <u>C</u>-CH₃), 61,4 (d, $J_{C-P} = 7,5Hz$ $_{P}$ =7Hz, $_{C}$ H₂-0), 70,06 (d, $_{C-P}$ = 138,5 Hz, $_{C}$ H-P), 78,36 (s, $_{C}$ H-O), 127,33 (s, \underline{C} H ar), 127,81 (s, \underline{C} H ar), 127,88 (s, \underline{C} H ar), 143,31 (s, \underline{C} ar).

Microanalyse ($C_{21}H_{37}NO_4P$): % calculé C 63,12; H 9,59; N 3,51. % trouvé C 63,01; H 9,60; N 3,42.

Isomère II:

RMN 31 P (CDCl₃) : δ 24,36. RMN 1H (CDCl₃) : δ 0,82 (s,9H) ; 1,22 (s,9H) ; 1,29 (t, J_{H-H} 7,0Hz , 3H) ; 1,32 (t, J_{H-H} = 7,0Hz, 3H) ; 1,58 (d, $J_{H-H} = 6.7$ Hz, 3H); 3,32 (d, $J_{H-P} = 26.2$ Hz, 1H); 3,9-4,2 et 4,3-4,4 (m, 4H); 4.97 (q, $J_{H-H} = 6.8$ Hz, 1H); 7.17-7.3 (m, 5H).

RMN 13 C (CDCl₃) : δ 16,24 (d,J_{C-P}=7,1Hz, <u>C</u>H₃CH₂), 16,71 (d, $J_{C-P} = 5.2Hz$, CH_3CH_2), 24,00 (s, CH_3CH), 28,50 (s, CH_3-C-CH), 30,12 (d, $J_{C-P} = 5.7$ Hz, $\underline{C}H_3$ -C-N), 35,37 (d, $J_{C-P} = 5.8$ Hz, \underline{C} -C_{H-P}), 58,80 (d, $J_{C-P} = 5.8$ Hz, \underline{C} -C_{H-P}), \underline{C} -C_{H-P}) $_{P}$ = 7,4Hz, $_{C}H_{2}$ -O), 61,10 (s, C-N), 61,56 (d, $_{C-P}$ = 6Hz, $_{C}H_{2}$ -O), 69,84 (d, $J_{C-P} = 138,4Hz$, <u>C</u>H-P), 85,23 (s, <u>C</u>H-O), 126,96 (s, <u>C</u>H ar), 127,08 35 (s, <u>C</u>H ar), 127,95 (s, <u>C</u>H ar), 145,36 (s, <u>C</u> ar).

Microanalyse ($C_{21}H_{37}NO_4P$) : % calculé C 63,12 ; H 9,59 ; N 3,51. % trouvé C 63,05; H 9,51; N 3,50.

20

35

EXEMPLE 2

Synth's du N-tertiobutyl, N-1-diéthylphosphono-2,2-diméthylpropyl, O-b nzylhydroxylamine (2):

$$(CH_3)_3 C - N - O - CH_2 - O$$

$$(CH_3)_3 C - CH - P (O) (OEt)_2$$
(2)

Le mode opératoire est le même que pour l'exemple 1. Les réactifs utilisés sont : bromure de benzyle (1,03 g, 6 mmol), CuBr (0,86 g, 6 mmol), 2,2'-bipyridine (1,87 g, 12 mmol), DEPN 72 % (1,23 g, 3 mmol), benzène (16 ml). Le produit est purifié par chromatographie sur colonne de silice (éluant pentane/acétate d'éthyle 7/3). On obtient 0,46 g du composé (2) (rendement = 40 %) sous forme d'un solide blanc de point de fusion égal à 68-70°C.

Les résultats analytiques sont donnés ci-après :

Micronalyse (C20H36NO4P):

% calculé: C 62,32; H 9,41; N 3,63

% trouvé: C62,52; H 9,27; N 3,18.

RMN ³¹P (CDCI₃) : δ 23,38

RMN 1 H (CDCl $_{3}$): δ 1,01 (t, J $_{H-H}$ =7Hz, 3H), 1,17 (s, 9H), 1,20 (s, 9H), 1,23 (t, J $_{H-H}$ =7Hz, 3H), 3,26 (d, J $_{H-P}$ =24,3Hz, 1H), 3,45-3,8 et 3,85-4,2 (m, 4H), 4,56 (d, J $_{H-H}$)=9,3Hz, 1H), 5,21 (d, J $_{H-H}$ =9,5Hz, 1H), 7,27,5 (m, 5H).

RMN 13 C (CDCl₃): δ 16,18 (d, J_{C-P} =7,1 Hz, CH_3CH_2), 16,31 (d, J_{C-P} =5,8Hz, $\underline{C}H_3CH_2$), 27,74 (s, $\underline{C}H_3$ -C-CH), 30,10 (d, J_{C-P} =6,34Hz, $\underline{C}H_3$ -C-N), 35,26 (d, J_{C-P} =5,4Hz, \underline{C} -CH-P), 58,72 (d, J_{C-P} =7,3Hz, $\underline{C}H_2$), 61,56 (d, J_{C-P} =7,0Hz, $\underline{C}H_2$ -O), 61,97 (s, \underline{C} -N), 69,64 (d, J_{C-P} =140Hz, 30 \underline{C}_{H-P}), 77,79 (s, $\underline{C}H_2$ -O), 127,65 (s, $\underline{C}H$ ar), 127,95 (s, $\underline{C}H$ ar); 129,56 (s, $\underline{C}H$ ar), 136,79 (s, \underline{C} ar).

EXEMPLE 3

Synthèse du N-tertiobutyl, N-1-diéthylphosphono-2,2-diméthyl-propyl, O-1-cyano-1-méthyléthylhydroxylamine (3):

$$(CH_3)_3 C - N - OC(CH_3)_2 CN$$

 $|$ (3)
 $(CH_3)_3 C - CH - P (O) (OEt)_2$

25

Le mode opératoire est le même que pour l'exemple 1. Les réactifs utilisés sont : 2-bromo-2-méthylpropionitrile (0,89 g, 6 mmol), CuBr (0,86 g, 6 mmol), 2,2'bipyridine (1,87 g, 12 mmol), DEPN 72 % (1,23 g, 3 mmol), benzène (16 ml). Le produit est purifié par chromatographie sur colonne de silice (éluant pentane/acétate d'éthyle 5/5). On obtient 0,77 g du composé (3) (rendement = 73 %).

Le 2-bromo-2-méthylpropionitrile est préparé par bromation de l'isobutyronitrile par la N-bromosuccinimide à reflux dans CCI₄.

Les résultats analytiques sont donnés ci-après :

RMN ³¹P (CDCl₃): δ 23,04

RMN ^{1}H (CDCl $_{3}$) : δ 1,25-1,37 : m, 1,72 (s, 3H), 1,89 (s, 3H), 3,38 (d, $J_{H-P}\!=\!24,\!3$ Hz, 1H), 3,8 et 4,4 (m, 4H).

RMN 13 C(CDCl₃): δ 16,25 (d, $J_{C-P}=6,6Hz$, CH_3CH_2), 16,68 (d, $J_{C-P}=5,4Hz$, CH_3CH_2), (s, CH_3-C-CH), 28,86 (s, CH_3-C-O), 29,07 (s, CH_3-C-O), 30,50 (d, $J_{C-P}=5,5Hz$, CH_3), 36,16 (d, $J_{C-P}=5,5Hz$, C-CH-P), 59,20 (d, $J_{C-P}=7,3Hz$, CH_2), 61,61 (d, $J_{C-P}=5,9Hz$, CH_2), (s, C-N), 69,84 (d, $J_{C-P}=138,8Hz$, CH-P), 77,78 (s, C-CN), 121,21 (s, C-CN).

EXEMPLE 4

Synthèse du N-tertiobutyl, N-1-diéthylphosphono-2,2-diméthylpropyl, O-1-méthoxycarbonyléthylhydroxylamine (4):

$$(CH_{3})_{3} C - N - O - CH(CH_{3}) C(O)OCH_{3}$$

$$(4) (CH_{3})_{3} C - CH - P(O) (OEt)_{2}$$

Le mode opératoire est le même que pour l'exemple 1. Les réactifs utilisés sont : 2-bromoproprionate de méthyle (1 g, 6 mmol), CuBr (0,86 g, 6 mmol), 2,2'-bipyridine (1,87 g, 12 mmol), DEPN 86 % (1,08 g, 3 mmol), benzène (16 ml). Le produit est purifié par chromatographie sur

colonne de silice (éluant pentane/acétate d'éthyle 5/5). On obtient 1,07 g de composé (4) sous la forme de deux diastéréoisomères dans les proportions 56/44 (rendement = 93 %).

Rapport diastéréoisomérique dans les proportions 56/44 déterminées sur le spectre ³¹P du mélange brut par intégration des signaux à 23,55 et 22,96 ppm (I/II = 56/44).

Isomère I:

RMN ³¹P (CDCl₃) : δ 23,55.

RMN 1 H (CDCl $_{3}$): δ 1,10 (s, 9H); 1,16 (s, 9H); 1,30 (t, J $_{H}$ =7Hz, 6H); 1,50 (d, J $_{H}$ -P=7Hz, 3H); 3,28 (d, J $_{H}$ -P=25,3Hz, 1H); 3,70 (s, 3H); 3,9-4,3 (m, 4H); 4,60 (q, 1H).

RMN 13 C (CDCl₃): δ 16,18 (d, $J_{C-P}=6Hz$, CH_3CH_2), 16,48 (d, $J_{C-P}=6Hz$, CH_3CH_2), 19,09 (s, CH_3CH), 27,83 (s, CH_3-C-CH), 29,57 (d, $J_{C-P}=6Hz$, CH-C-N), 35,53 (d, $J_{C-P}=5Hz$, C-CH-P), 51,34 (s, O-CH₃), 58,73 (d, $J_{C-P}=7$,4Hz, CH_2), 61,59 (s, C-N), 61,77 (d, $J_{C-P}=6$,6Hz, CH_2), 69,62 (d, $J_{C-P}=139$,4 Hz, CH-P), 82,38 (s, CH-O), 174,33 (s, C=O).

Microanalyse (C₁₇H₃₆NO₅P): % calculé C 53,51; H 9,52, N 3,67. % trouvé C 53,50; H 9,49; N 3,55.

Isomère II:

RMN 31 P (CDCI₃) : δ 22,96.

RMN 1 H (CDCl $_{3}$): δ 1,13 (s, 9H); 1,16 (s, 9H); 1,27 et 1,29 (2t, J_{H-H} =7Hz, 6H); 1,47 (d, J_{H-H} =7Hz, 3H); 3,36 (d, J_{H-P} =26,4Hz, 1H); 3,70 (s, 3H); 3,85-4,3 (m, 4H); 4,65 (q, 1H).

RMN 13 C (CDCl₃) : δ 16,32 (d, $J_{C-P}=6Hz$, CH_3CH_2), 16,66 (d, $J_{C-P}=6Hz$, CH_3CH_2), 17,99 (s, CH_3CH_3), 28,09 (s, CH_3-C-CH_3), 30,35 (d, $J_{C-P}=6Hz$, CH_3-C-N_3), 37,47 (d, $J_{C-P}=5Hz$, $CCH-P_3$), 51,54 (s, 0-CH₃), 59,02 (d, $J_{C-P}=7.7Hz$, CH₂), 61,51 (s, C-N), 61,97 (d, $J_{C-P}=6Hz$, CH_2), 69,39 (d, $J_{C-P}=139.6$ Hz, CH-P), 77,10 (s, CH_3 -O), 173,23 (s, $C=O_3$).

Microanalyse ($C_{17}H_{36}NO_5P$) : % calculé C 53,51 ; H 9,52, N 3,67. % trouvé C 53,39 ; H 9,34 ; N 3,50.

EXEMPLE 5

25

30

Synthèse du N-tertiobutyl, N-1-diéthylphosphono-2,2-diméthylpropyl, O-1-méthyl-1-méthoxycarbonyéthylhydroxylamine (5):

$$(CH_3)_3 C - N - O C(CH_3)_2 CO_2 CH_3$$

 $| (CH_3)_3 C - CH - P (O) (OEt)_2$
(5)

Le mode opératoire est le même que pour l'exemple 1. Les réactifs utilisés sont : 2-bromo-2-méthylpropionate de méthyle (1,09 g, 6 mmol), CuBr (0,86 g, 6 mmol), 2,2'-bipyridine (1,87 g, 12 mmol), DEPN 86 % (1,08 g, 3 mmol), benzène (16 ml). Le produit est purifié par chromatographie sur colonne d silice (éluant pentane/acétate d'éthyle 5/5). On obtient 0,47 g du composé (5) (rend m nt = 43 %).

Le 2-bromo-2-méthylpropionate de méthyle est préparé par réaction du méthanol sur le bromure de 2-bromo-2-méthylpropionyle.

RMN ³¹P (CDCl₃) : δ 24,46.

RMN 1 H (CDCl $_{3}$): δ 1,10 (s, 9H); 1,17 (s, 9H); 1,28 (m, 6H); 1,57 et 1,63 (2s, 6H); 3,24 (d, J_{H-P} =26Hz, 1H); 3,67 (s, 3H); 3,9-4,3 (m, 4H).

RMN 13 C (CDCl₃): δ 18,75 (d, $J_{C-P}=6,9Hz$, CH_3CH_2), 16,11 (d, $J_{C-P}=5,9Hz$, CH_3CH_2), 22,60 (s, CH_3C-0), 26,79 (s, CH_3-C-0), 27,71 (s, CH_3-C-0), 29,39 (d, $J_{C-P}=5,7Hz$, CH_3-C-0), 35,44 (d, $J_{C-P}=6,6Hz$, 10 C-CH-P), 51,33 (s, $O-CH_3$), 58,11 (d, $J_{C-P}=7,2Hz$, CH_2), 61,29 (d, $J_{C-P}=7,4Hz$, CH_2), 61,68 (s, C-0), 69,67 (d, $J_{C-P}=136,8Hz$, CH-P), 83,61 (s, C-0), 175,11 (s, C-0).

EXEMPLE 6

Synthèse du N-tertiobutyl, N-1-diéthylphosphono-2,2-diméthyl
propyl, O-1-perfluorohexylhydroxylamine (6):

$$(CH_3)_3 C - N - O(CF_2)_5 CF_3$$

 $(CH_3)_3 C - CH - P(O)(OEt)_2$
(6)

20

30

35

Le mode opératoire est le même que pour l'exemple 1 excepté que la réaction est conduite à 60°C. Les réactifs utilisés sont : iodure de perfluorohexyle (1,34 g, 3 mmol), CuBr (0,43 g, 3 mmol), 2,2'-bipyridine (0,94 g, 6 mmol), DEPN 72 % (0,61 g, 1,5 mmol), benzène (10 ml). Le produit est purifié par chromatographie sur colonne de silice (éluant pentane/acétate d'éthyle 7/3). On obtient 0,50 g du composé (6) incolore.

Les résultats analytiques sont reportés ci-après :

Microanalyse : C₁₉H₂₉F₁₃NO₄P :

% calculé : C 37,20 ; H 4,77 ; N 2,28

% trouvé :C 37,18 ; H 4,76 ; N 2,21

RMN ³¹P (CDCl₃) : δ 20,65

RMN 1 H (CDCl $_{3}$): δ 1,19 (s, 9H), 1,22 (s, 9H), 1,31 (t, 6H), 3,51 (d, JH-P=30Hz, 1H), 4,10 (m, 4H).

RMN 19F: (CDCI3)

$$\delta$$
 - 126,61 (m, C₅E₂, 2F)

- 123,47 - -122,66 (m, 6F, C_2E_2 , C_3E_2 , C_4E_2)

- 81,40 (t, 3F,
$$J_{FF} = 9Hz$$
, CE_3)

- 83,94 (dt, 1F, J_{FA-FB} = 143,3 Hz, J_{FF} = 12,9 Hz, FA)

$$-78,66 \text{ (dt, 1F, } F_{FA-FB} = 152,8 \text{ Hz, } J_{FF} = 9\text{Hz, } FB)$$

$$RMN \ ^{13}C : (CDCl_3)$$

$$\delta - 16,20 \text{ (t, } JC-P = 7,4 \text{ Hz, } \underline{C}H_3\text{-C}H_2)$$

$$- 27,73 \text{ (s, } \underline{C}H_3\text{-C-CH})$$

$$- 30,35 \text{ (d, } JCP = 3,72 \text{ Hz, } \underline{C}H_3\text{-C-N})$$

$$- 36,33 \text{ (d, } J_{C-P} = 2,5\text{Hz, } CH_3\text{-}\underline{C}H)$$

$$- 60,66 \text{ (d, } JCP = 7,55 \text{ Hz, } CH_3\text{-}\underline{C}H_2\text{-O})$$

$$- 61,63 \text{ (d, } JCP = 7,04 \text{ Hz, } CH_3\text{-}\underline{C}H_2\text{-O})$$

$$- 63,91 \text{ (s, } \underline{C}\text{-N})$$

$$- 67,46 \text{ (d, } 137,2 \text{ Hz} = \text{JCP ; } \underline{C}\text{H-P})$$

$$- 105,2\text{-}121,9 \text{ (m, } \underline{C}F_2 \text{ et } \underline{C}F_3)$$

$$- 127,8\text{-}133,9 \text{ (m, } \underline{C}F_2)$$

EXEMPLE 7

Synthèse du N-tertiobutyl, N-1-diéthylphosphono-2,2-diméthyl-15 propyl, O-1-hexylhydroxylamine (7):

$$(CH_3)_3 C - N - O (CH_2)_5 CH_3$$

 $(CH_3)_3 C - CH - P (O) (OEt)_2$ (7)

20

Dans un tube de Schlenk de 100 ml purgé à l'argon, on introduit 1,03 g de DEPN 94 % (3,3 mmol) et 30 ml de THF préalablement distillé sur sodium/benzophénone. On refroidit la solution à -90°C et on ajoute goutte à goutte à la seringue via un septum 0,6 ml d'une solution d'hexyllithium 2,5 M dans l'hexane (1,5 mmol). Le mélange réactionnel est ramené lentement à température ambiante, puis il est hydrolysé avec une solution saturée de NH₄Cl. La phase aqueuse est extraite 3 fois à l'éther. Les phases organiques sont rassemblées et séchées sur sulfate de magnésium, puis les solvants sont évaporés. Le produit est purifié par chromatographie sur colonne de silice en utilisant un éluant pentane/acétate d'éthyle 75/25. On obtient 0,36 g de composé (7) (rendement = 59 %).

RMN 31 P (CDCI₃) : δ 83,72

RMN ¹H (CDCl₃): δ 0,88 (t, 3H); 1,13 et 1,15 (2s, 18 H), 1,25-1,32 (m, 12H), 1,52-1,55 (m, 2H), 3,21 (d, J_{H-P} =24Hz, 1H), 3,60 (q, 1H), 3,92-4,17 (m, 5H).

RMN ^{13}C : (CDCl3) : δ 14,03 (s, CH3), 16,29 (d, $J_{\text{C-P}}\!=\!6,2\text{Hz},$ CH3CH2), 16,63 (d, $J_{\text{C-P}}\!=\!5,8\text{Hz},$ CH3CH2), 22,61 (s, CH2), 25,70 (s,

10

15

25

 CH_2), 27,74 (s, CH_3 -C), 28,61 (s, CH_2), 29,90 (d, $J_{C-P} = 6,5Hz$, CH_3 -C-N), 31,87 (s, CH_2), 35,31 (d, $J_{C-P} = 5.8Hz$, CH_3 -C-CH), 58,80 (d, $J_{C-P} = 5.8Hz$), CH_3 -C-CH), CH_3 -C-CH $_{P}$ = 7,3Hz, CH₂), 61,40 (d, $_{C-P}$ = 6,51Hz, CH₂-O), 61,60 (C-N), 69,59 (d, $J_{C-P} = 139,8Hz$, CH-P), 76,45 (s, CH₂-O).

Microanalyse (C₁₉H₄₂NO₄P): % calculé C 60,11; H 11,16; N 3,69 et % trouvé C 60,10; H 11,22; N 3,62.

EXEMPLE 8

Synthèse du N-tertiobutyl, N-1-diéthylphosphono-2,2-diméthylpropyl, O-cyclohexylhydroxylamine (8):

$$(CH_3)_3 C - N - O - H$$
(CH₃)₃ C - CH - P (O) (OEt)₂
(8)

Le mode opératoire est le même que pour l'exemple 7. Les réactifs utilisés sont : DEPN 94 % (1,03 g, 3,3 mmol), bromure de cyclohexylmagnésium (0,75 ml d'une solution 2M dans l'éther, 1,5 mmol), THF (30 ml). Le produit est purifié par chromatographie sur colonne de silice (éluant pentane/éther 75/25). On obtient 0,42 g du composé (8) (rendement = 75 %) sous forme d'une solide blanc.

RMN ³¹P (CDCl₃) : δ 23,57

RMN ¹H (CDCl₃): δ 1,10 (t, 9H); 1,15 (s, 9 H), 1-1,15 (m, 4H), 1,27 et 1,30 (2t, 6H); 1,56-1,8 (m, 4H); 2,05-2,4 (m, 2H); 3,37(d, J_{H-} p = 26,8Hz, 1H); 3,87-4,28 (m, 5H).

RMN ¹³C : (CDCl₃) : δ 16,37 (d, $J_{C-P} = 9.2Hz$, $C_{H_3}CH_2$), 16,41 (d, $J_{C-P} = 9.9$ Hz, $\underline{C}H_3$ CH₂), 24,95 (s, $\underline{C}H_2$), 25,21 (s, $\underline{C}H_2$), 26,30 (s, $\underline{C}H_2$), 28,18 (s, $\underline{C}H_2$ -C), 30,84 (d, J_{C-P} =5,85Hz, $\underline{C}H_3$ -C-N), 31,99 (s, $\underline{CH_2}$), 32,42 (s, $\underline{CH_2}$), 35,32 (d, $J_{C-P} = 5,5Hz$, \underline{C} -CH-P), 58,80 (d, $J_{C-P} = 5,5Hz$ P = 7.4Hz, $CH_2-O)$, 60,50 (s, C-N), 61,48 (d, $J_{C-P} = 6$ Hz, CH_2-O), 69,66 30 (d, $J_{C-P} = 138,8Hz$, CH-P), 79,67 (s, HC-O).

Microanalyse (C₁₉H₄₀NO₄P): % calculé C 60,43; H 10,69; N 3,71 et % trouvé C 60,41; H 10,75; N 3,65.

EXEMPLE 9

Utilisation du N-tertiobutyl, N-1-diéthylphosphono-2,2-35 diméthylpropyl, O-1-phényléthylhydroxilamine (1) préparé selon l'exemple 1 comme amorceur dans la polymérisation du styrène :

R'actifs:

- Le styrène a été préalablement distillé sous pression réduite.

Polymérisation:

Dans un tricol muni d'une arrivée de gaz, sont introduits le styrène (4,93 g soit 0,047 mol) et le composé (1) (0,0952 g soit 2,38.10-4 mole). Le mélange est par la suite dégazé par bullage d'argon pendant 20 5 minutes, puis porté à 123°C dans un bain d'huile thermostaté. Pendant toute la durée de la réaction, le milieu est agité par un barreau aimanté sous atmosphère inerte. Les prélèvements sont effectués à intervalles réguliers à l'aide d'une seringue dégazée.

Analyses:

Les masses molaires moyennes en nombre (Mn) et les indices de polymolécularité (Ip) ont été mesurés par chromatographie d'exclusion stérique (C.E.S.). Les chromatogrammes ont été enregistrés par un appareil Spectra Physics muni d'une pompe SP8810, d'un réfractomètre différentiel Shodex RE-61RI, de deux colonnes Plgel mixed D (éluant : 15 THF, 30°C). Les étalonnages ont été réalisés avec des échantillons de polystyrène standard.

La conversion est déterminée par mesure d'extrait sec sur les échantillons prélevés.

La masse théorique visée pour une conversion totale est toujours $Mn_{th} = 19800 \text{ g/mol.}$

Les résultats sont reportés dans le tableau 1

Temps (minutes)	Mn _{exp} (g/mol)	i _p	Conversion (%)	Mn _{th} (g/mol)	In[M] _o /[M] _t
30	5049	1,33	24,2	4792	0,27
60	7429	1,26	36,7	7266	0,45
90	8906	1,26	47,3	9376	0,64
120	10515	1,24	56,8	11251	0,83
150	12157	1,24	63,5	12578	1,00
180	13002	1,24	69	13677	1,17
210	13624	1,25	74,1	14677	1,35
240	14114	1,25	80,6	15972	1,64
270	14200	1,24	83,1	16455	1,77

TABLEAU 1

Ces résultats permettent de tracer les deux courbes cinétiques suivantes:

nous avons représenté sur la figure 1 le ln[M]_o/[M]_t en fonction du temps et sur la figur 2 Mn en fonction de la conversion.

Le bon alignem nt des points et le faible indice de polymolécularité (I_p) sont caractéristiques d'une polymérisation radicalaire contrôlée.

REVENDICATIONS

1. Composés de formule :

10

15

20

25

30

35

dans laquelle R¹ et R², identiques ou différents, représentent un atome d'hydrogène, un radical alkyle linéaire ou ramifié ayant un nombre d'atomes de carbone allant de 1 à 10, un radical aryle, un radical aralkyle ayant un nombre d'atomes de carbone allant de 1 à 10, ou bien R¹ et R² sont reliés entre eux de façon à former un cycle incluant l'atome de carbone portant lesdits R¹ et R², ledit cycle ayant un nombre d'atomes de carbone, incluant le carbone porteur des radicaux R1 et R², allant de 3 à 8 ; R³ représente un radical hydrocarboné, linéaire ou ramifié, saturé ou insaturé, pouvant comprendre au moins un cycle, ledit radical ayant un nombre d'atomes de carbone allant de 1 à 30 ; R⁴ et R⁵ identiques ou différents, représentent un radical alkyle, linéaire ou ramifié, un radical cycloalkyle, aryle, alcoxyle, aryloxyle, aralkyloxyle, perfluoroalkyle, aralkyle, thioalkyle ayant un nombre d'atomes de carbone allant de 1 à 20, ou bien R⁴ et R⁵ sont reliés entre eux de façon à former un cycle incluant l'atome de phosphore, ledit hétérocycle ayant un nombre d'atomes de carbone allant de 2 à 6 et peut contenir en outre un ou plusieurs atomes d'oxygène ou de soufre ;

Z est un radical CF₃(CF₂)₅-, (CH₃)₂C(CN)-, ou un reste de formule :

$$-C \stackrel{R^6}{\underset{R^8}{\sim}}$$

dans laquelle R⁶, R⁷ et R⁸, identiques ou différents, représentent un atome d'hydrogène, un radical cyano, un radical cycloalkyle ayant un nombre d'atomes de carbone allant de 3 à 12 ; un radical -(CH₂)n C(O)OR⁹ dans lequel R⁹ représente un alkyle, linéaire ou ramifié, ayant un nombre d'atomes de carbone allant de 1 à 6, n=0 à 6.

- 2. Composés selon la revendication 1, caractérisés en ce que $R^1=H$, $R^2=R^3=(CH_3)_3C$ -, $R^4=R^5=CH_3CH_2O$ et que Z répond à l'un des restes : $(CH_3)_2C(CN)$ -, $CH_3OC(O)C(CH_3)_2$ -, $CH_3OC(O)CH(CH_3)$ -, C_6F_{13} -.
- 3. Le N-tertiobutyl, N-1-diéthylphosphono-2,2-diméthyl-propyl, O-1-cyano-1-méthyléthylhydroxylamine:

$$(CH_3)_3 C - N - OC(CH_3)_2 CN$$

10 | (CH₃)₃ C - CH - P (O) (OEt)₂

4. Le N-tertiobutyl, N-1-diéthylphosphono-2,2-diméthyl-propyl, O-1-méthyl-1-méthoxycarbonyléthylhydroxylamine :

$$(CH_3)_3 C - N - OC(CH_3)_2 C(O)OCH_3$$

 $|$
 $(CH_3)_3 C - CH - P (O) (OEt)_2$

20 5. Le N-tertiobutyl, N-1-diéthylphosphono-2,2-diméthyl-propyl, O-1-méthoxycarbonyléthylhydroxylamine :

6. Le N-tertiobutyl, N-1-diéthylphosphono-2,2-diméthyl-propyl, O-1-perfluorohexyl hydroxylamine :

7. Utilisation comme amorceurs des polymérisations ou copolymérisations d'au moins un monomère polymérisable par voie radicalaire, des composés de formule :

15

20

25

30

35

dans laquelle R¹ et R², identiques ou différents, représentent un atome d'hydrogène, un radical alkyle linéaire ou ramifié ayant un nombre d'atomes de carbone allant de 1 à 10, un radical aryle, un radical aralkyle ayant un nombre d'atomes de carbone allant de 1 à 10, ou bien R¹ et R² sont reliés entre eux de façon à former un cycle incluant l'atome de carbone portant lesdits R¹ et R², ledit cycle ayant un nombre d'atomes de carbone, incluant le carbone porteur des radicaux R¹ et R², allant de 3 à 8 ; R³ représente un radical hydrocarboné, linéaire ou ramifié, saturé ou insaturé, pouvant comprendre au moins un cycle. ledit radical ayant un nombre d'atomes de carbone allant de 1 à 30 ; R4 et R⁵ identiques ou différents, représentent un radical alkyle, linéaire ou ramifié, un radical cycloalkyle, aryle, alcoxyle, aryloxyle, aralkyloxyle, perfluoroalkyle, aralkyle, thioalkyle ayant un nombre d'atomes de carbone allant de 1 à 20, ou bien R4 et R5 sont reliés entre eux de façon à former un cycle incluant l'atome de phosphore, ledit hétérocycle ayant un nombre d'atomes de carbone allant de 2 à 6 et peut contenir en outre un ou plusieurs atomes d'oxygène ou de soufre ;

Z est un radical $CF_3(CF_2)_{5^-}$, un radical cycloalkyle ayant un nombre d'atomes de carbone allant de 3 à 12, ou un reste de formule :

$$-c < R^6$$

dans laquelle R^6 , R^7 et R^8 , identiques ou différents, représentent un atome d'hydrogène, un radical alkyle, linéaire ou ramifié, ayant un nombre d'atomes de carbone allant de 1 à 10, un radical phényle, un radical benzyle, un radical cyano, un radical cycloalkyle ayant un nombre d'atomes de carbone allant de 3 à 12 ; un radical -(CH_2)n $C(O)OR^9$ dans lequel R^9 représente un alkyle, linéaire ou ramifié, ayant un nombre d'atomes de carbone allant de 1 à 6, n=0 à 6.

20

25

35

40

- 8. Utilisation selon la revendication 7 des composés de formule (I) dans laquelle R^1 =H, R^2 = R^3 =(CH₃)₃C-, R^4 = R^5 =CH₃CH₂O- et que Z répond à l'un des restes : $C_6H_5CH_2$ -, (CH₃)₂C(CN)-, CH₃OC(O)C(CH₃)₂-, CH₃OC(O)CH(CH₃)-, C₆F₁₃-, C₆H₅CH(CH₃)-, C₆H₅C(CH₃)₂-, C₆H₁₂-, CH₃(CH₂)₅-.
- 9. Utilisation selon l'une des revendications 7 ou 8 du N-tertiobutyl, N-1- diéthylphosphono-2,2-diméthylpropyl, O-1-phényléthylhydroxylamine :

$$CH_3$$
10

 $(CH_3)_3 C - N - O - CH - O$
 $(CH_3)_3 C - CH - P(O) (OEt)_2$

15 10. Utilisation selon l'une des revendications 7 ou 8 du N-tertiobutyl, N-1diéthylphosphono-2,2-diméthylpropyl, O-benzylhydroxylamine :

$$(CH_3)_3 C - N - O - CH_2 - O$$

$$(CH_3)_3 C - CH - P (O) (OEt)_2$$

11. Utilisation selon l'une des revendications 7 ou 8 du N-tertiobutyl, N-1-diéthylphosphono-2,2-diméthyl-propyl, O-1-cyano-1-méthyléthylhydro-xylamine :

30 12. Utilisation selon l'une des revendications 7 ou 8 du N-tertiobutyl, N-1-diéthylphosphono-2,2-diméthyl-propyl, O-1-méthyl-1-méthoxycarbonyléthylhydroxylamine :

$$(CH_3)_3 C - N - OC(CH_3)_2 C(O)OCH_3$$

 $|$
 $(CH_3)_3 C - CH - P (O) (OEt)_2$

13. Utilisation selon l'une des revendications 7 ou 8 du N-tertiobutyl, N-1-diéthylphosphono-2,2-diméthyl-propyl, O-1-méthoxycarbonyléthylhydro-xylamine :

14. Utilisation selon l'une des revendications 7 ou 8 du N-tertiobutyl, N-1-diéthylphosphono-2,2-diméthyl-propyl, O-1-perfluorohexyl hydroxylamine:

10

$$(CH_3)_3 C - N - O(CF_2)_5 CF_3$$

 $|$
 $(CH_3)_3 C - CH - P (O) (OEt)_2$

15. Utilisation selon l'une des revendications 7 ou 8 du N-tertiobutyl, N-1 diéthylphosphono-2,2-diméthyl-propyl, O-1-hexylhydroxylamine :

20

16. Utilisation selon l'une des revendications 7 ou 8 du N-tertiobutyl, N-1-diéthylphosphono-2,2-diméthyl-propyl, O-cyclohexyl hydroxylamine :

$$(CH_3)_3 C - N - O - H$$
 $(CH_3)_3 C - CH - P(O)(OEt)_2$

25

30

17. Utilisation selon l'une des revendications 7 à 16, caractérisée en ce que le monomère polymérisable est le styrène, l'acrylate de méthyle ou l'acrylate de butyle.

FIGURE 2

INTERNATIONAL SEARCH REPORT

inte. onal Application No PCT/FR 00/00335

	· · · · · · · · · · · · · · · · · · ·	1.0.7	
A. CLASS IPC 7	IFICATION OF SUBJECT MATTER C07F9/40 C08F4/00		
According t	o International Patent Classification (IPC) or to both national classif	ication and IPC	
B. FIELDS	SEARCHED		
Minimum di IPC 7	ocumentation searched (classification system followed by classification CO7F CO8F	tion symbols)	
	tion searched other than minimum documentation to the extent that		·
Electronic d	lata base consulted during the international search (name of data b	ase and, where practical, search te	ma used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the re	November of the second	D-lawed to strice No.
Calogo,	Опшин и осошнать являтический, жизге арририка, от ще и	жеуал развадев	Relevant to claim No.
A	HAWKER C J ET AL: "INITIATING S NITROXIDE-MEDIATED "LIVING" FREE POLYMERIZATIONS: SYNTHESIS AND E MACROMOLECULES,	RADICAL	1-12
	vol. 29, no. 16, 29 July 1996 (1996-07-29), pages 5245-5254, XP000596748 ISSN: 0024-9297 cited in the application		
Α	the whole document US 5 077 329 A (STEPHEN D. PASTO 31 December 1991 (1991-12-31)	R)	1
	column 4, line 1-33		
		-/	
X Furth	er documents are listed in the continuation of box C.	X Patent family members as	e listed in annex.
° Special cat	egories of cited documents:	"T" later document published after	the international filing date
conside	nt defining the general state of the art which is not ered to be of particular relevance	or priority date and not in conf cited to understand the princip Invention	ilct with the application but
filing da		"X" document of particular relevant cannot be considered novel or	r cannot be considered to
which i	nt which may throw doubts on priority claim(s) or a cited to establish the publication date of another or other special reason (as specified)	involve an inventive step wher "Y" document of particular relevant	n the document is taken alone se; the claimed invention
	nt referring to an oral disclosure, use, exhibition or	cannot be considered to involu- document is combined with or ments, such combination bein	/e an inventive step when the ne or more other such docu- g obvious to a person skilled
"P" docume later th	nt published prior to the international filing date but an the priority date claimed	in the art. "&" document member of the same	
Date of the a	ctual completion of the international search	Date of mailing of the internation	onal search report
12	2 May 2000	23/05/2000	
Name and m	ailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3018	Beslier, L	

INTERNATIONAL SEARCH REPORT

Inte. onal Application No PCT/FR 00/00335

ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	SHATZMILLER S.: "Synthesen von -alpha-Aminophosphonsäuren aus N-Ethoxy- iminium-Salzen, II" JUSTUS LIEBIGS ANNALEN DER CHEMIE., no. 9, 1993 - September 1993 (1993-09), pages 955-958, XP002115861 VERLAG CHEMIE GMBH. WEINHEIM., DE	1
A	ISSN: 0075-4617 page 956, formulas 5-17, 24, 25 SHATZMILLER S.: "Synthesis of alpha-Amino Phosphonic Acids via Oxoiminium Salts" JUSTUS LIEBIGS ANNALEN DER CHEMIE., no. 2, 1991 - February 1991 (1991-02), pages 161-164, XP002115862 VERLAG CHEMIE GMBH. WEINHEIM., DE ISSN: 0075-4617	1
Ρ,Χ	formulas 9a et 9b LE MERCIER C ET AL: "Characteristics of phosphonylated nitroxides and alkoxyamines used in controlled/ "living" radical polymerizations" POLYM. PREPR. (AM. CHEM. SOC., DIV. POLYM. CHEM.) (ACPPAY,00323934);1999; VOL.40 (2); PP.313-314, XP000909196 CNRS et Universites d'Aix-Marseille; Laboratoire Structure et Reactivite des Especes Paramagnetiques; Marseille; 13397; Fr. (FR) in particular composites of formulas 6-8	1,2,5,7, 8,13,17
Ρ,Χ	BENOIT D ET AL: "Development of a Universal Alkoxyamine for "Living" Free Radical Polymerizations" J. AM. CHEM. SOC. (JACSAT,00027863);1999; VOL.121 (16); PP.3904-3920, XP002115863 IBM Almaden Research Center;NSF Center for Polymeric Interfaces and Macromolecular Assemblies; San Jose; 95120-6099; CA; USA (US) in particular pages 3908 and 3917, composite 27	7-9,13
Р,Х	MARSAL P ET AL: "Thermal stability of 0-H and 0-alkyl bonds in N-alkoxyamines. A density functional theory approach" J. PHYS. CHEM. A (JPCAFH, 10895639);1999; VOL.103 (15); PP.2899-2905, XP002115864 CNRS et Universites d'Aix-Marseille I et III;Laboratoire de Chimie Theorique UMR 6517; Marseille; 13397; Fr. (FR) *in particular figure 1 and table 3*	7,8,10, 13

INTERNATIONAL SEARCH REPORT

information on patent family members

intc. Jonal Application No PCT/FR 00/00335

			PC1/PK 00/0033					
 Pa cited	atent document I in search repor	t	Publication date	Pa	atent family nember(s)		Publication date	
US	5077329	Α	31-12-1991	US	5137951	A	11-08-1992	
			·					
								İ
								İ
			•					

RAPPORT DE RECHERCHE INTERNATIONALE Den de internationale No

PCT/FR 00/00335

			.,
A. CLASSE CIB 7	EMENT DE L'OBJET DE LA DEMANDE C07F9/40 C08F4/00		
Selon la cla	assification internationale des brevets (CIB) ou à la fois seion la classif	fication nationale et la CIB	
	NES SUR LESQUELS LA RECHERCHE A PORTE		·
CIB 7	tion minimate consultée (système de classification suivi des symboles C07F C08F		
	tion consultée autre que la documentation minimale dans la mesure o		
base ue uu	nnées électronique consultée au cours de la recherche internationale	(nom de la base de données, et si realisar	ole, termes de recherche utilisés)
C. DOCUM	ENTS CONSIDERES COMME PERTINENTS		
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication	des passages pertinents	no. des revendications visées
Α	HAWKER C J ET AL: "INITIATING SY: NITROXIDE-MEDIATED "LIVING" FREE POLYMERIZATIONS: SYNTHESIS AND EV	RADICAL	1-12
	MACROMOLECULES, vol. 29, no. 16, 29 juillet 1996 (1996-07-29), page 5245-5254, XP000596748 ISSN: 0024-9297 cité dans la demande le document en entier		
A	US 5 077 329 A (STEPHEN D. PASTOR) 31 décembre 1991 (1991-12-31) colonne 4, ligne 1-33) /	1
	!		
<u> </u>	la suite du cadre C pour la fin de la liste des documents	X Les documents de familles de bre	vets sont indiqués en annexe
"A" docume	nt définissant l'état général de la technique, non	F" document ultérieur publié après la date date de priorité et n'appartenenant par	s à l'état de la
conside "E" docume	éré comme particulièrement pertinent ent antérieur, mais publié à la clate de dépât international	technique pertinent, mais cité pour cor ou la théorie constituant la base de l'in K" document particulièrement pertinent; l'is	vention
"L" documer priorité	nt pouvant jeter un doute sur une revendication de ou cité pour déterminer la date de publication d'une	dre considérée comme nouvelle ou co inventive par rapport au document con "document particulièrement pertinent; l'ir	omme impliquant une activité nsidéré isolément
"O" docume	ent se référant à une divulgation orale, à un usage, à position ou tous autres moyens	ne peut être considérée comme impliq lorsque le document est associé à un documents de même nature, cette con	Nant une activité inventive ou plusieurs autres
posteri		pour une personne du métier L' document qui fait partie de la même fan	
Date à laque	ble la recherche internationale a été effectivement achevée	Date d'expédition du présent rapport de	e recherche internationale
12	2 mai 2000	23/05/2000	
Nom et adres	sse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk	Fonctionnaire autorisé	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Beslier, L	

RAPPORT DE RECHERCHE INTERNATIONALE Den o Internationale No

PCT/FR 00/00335

A	· · · · · · · · · · · · · · · · · · ·	CT/FR 00/00335
·····	OCUMENTS CONSIDERES COMME PERTINENTS	
Catégorie 9	Identification des documents cités, avec,le cas échéant, l'Indicationdes passages pertin	no. des revendications visées
Α	SHATZMILLER S.: "Synthesen von -alpha-Aminophosphonsäuren aus N-Ethoxy- iminium-Salzen, II" JUSTUS LIEBIGS ANNALEN DER CHEMIE., no. 9, 1993 - septembre 1993 (1993-09), pages 955-958, XP002115861 VERLAG CHEMIE GMBH. WEINHEIM., DE ISSN: 0075-4617 page 956, formules 5-17, 24, 25	1
A	SHATZMILLER S.: "Synthesis of alpha-Amino Phosphonic Acids via Oxoiminium Salts" JUSTUS LIEBIGS ANNALEN DER CHEMIE., no. 2, 1991 – février 1991 (1991-02), pages 161-164, XP002115862 VERLAG CHEMIE GMBH. WEINHEIM., DE ISSN: 0075-4617 formules 9a et 9b	1
P,X	LE MERCIER C ET AL: "Characteristics of phosphonylated nitroxides and alkoxyamines used in controlled/ "living" radical polymerizations" POLYM. PREPR. (AM. CHEM. SOC., DIV. POLYM. CHEM.) (ACPPAY,00323934);1999; VOL.40 (2); PP.313-314, XP000909196 CNRS et Universites d'Aix-Marseille; Laboratoire Structure et Reactivite des Especes Paramagnetiques; Marseille; 13397; Fr. (FR) en particulier les composés de formules 6-8	1,2,5,7, 8,13,17
P,X	BENOIT D ET AL: "Development of a Universal Alkoxyamine for "Living" Free Radical Polymerizations" J. AM. CHEM. SOC. (JACSAT,00027863);1999; VOL.121 (16); PP.3904-3920, XP002115863 IBM Almaden Research Center;NSF Center for Polymeric Interfaces and Macromolecular Assemblies; San Jose; 95120-6099; CA; USA (US) en particulier pages 3908 et 3917, composé 27	7-9,13
P, X	MARSAL P ET AL: "Thermal stability of O-H and O-alkyl bonds in N-alkoxyamines. A density functional theory approach" J. PHYS. CHEM. A (JPCAFH, 10895639);1999; VOL.103 (15); PP.2899-2905, XP002115864 CNRS et Universites d'Aix-Marseille I et III;Laboratoire de Chimie Theorique UMR 6517; Marseille; 13397; Fr. (FR) * en particulier la figure 1 et le tableau 3 *	7,8,10, 13

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Formulaire PCT/ISA/210 (annexe familles de brevets) (juliet 1992)

Den e Internationale No PCT/FR 00/00335

Document brevet cit au rapport de recherc	é he	Date de publication	Me famil	mbre(s) de la le de brevet(s)	Date de publication
US 5077329	Α	31-12-1991	US	5137951 A	11-08-1992
-					
		•			
					·
	•				