Quantitative Laser Diagnostics for Combustion Chemistry and Propulsion

Lecture 7: Electronic Spectra of Diatomics

- Term symbols for diatomic molecules
- Common molecular models for diatomics
- 3. Improved treatments
- 4. Quantitative absorption

1. Term symbols for diatomic molecules

Term symbols characterize key features of electron spin and orbital angular momentum

Important terms

For an atom: ${}^{2S+1}L_J$ For a diatomic: ${}^{2S+1}\Lambda_\Omega$

projection of orbital angular momentum onto the internuclear axis.

Magnitude: $|\vec{\Lambda}| = \Lambda \hbar$

Symbols: Λ 0 1 2 Symbol Σ Π Δ

Atoms	L	0	1	2	
	Symbol	S	Р	D	_

 \vec{S} total electronic spin angular momentum (the sum of electron spin in unfilled shells) Magnitude: $|\vec{S}| = S\hbar$, S will have 1/2-integer values

projection of \vec{S} onto the internuclear axis (only defined when $\Lambda \neq 0$). $\vec{\sum}$ Magnitude: $|\Sigma| = \Sigma \hbar$ Allowed values: $\Sigma = S, S - 1, ..., -S (2S + 1 \text{ values})$

 $\dot{\Omega}$ sum of projections along the internuclear axis of electron spin and orbital momentum

$$\vec{\Omega} = \vec{\Sigma} + \vec{\Lambda}$$

$$\Omega = \Lambda + S, \Lambda + S - 1, ..., |\Lambda - S| \quad (2S + 1 \text{ values for } \Lambda \ge S)$$

1. Term symbols for diatomic molecules

Examples

NO The ground state for NO is $X^2\Pi$

$$S = 1/2$$
, $\Lambda = 1$, $\Omega = 3/2$, $1/2$

There are two spin-split sub-states: ${}^{2}\Pi_{1/2}$, ${}^{2}\Pi_{3/2}$

Separation: 121cm⁻¹

CO The ground state for CO is $X^1\Sigma^+$

S = 0 and $\Lambda = 0$, therefore Ω is unnecessary. This is a rigid rotor molecule. <u>Easiest case!</u>

For a diatomic: ${}^{2S+1}\Lambda_{\Omega}$

 O_2 The ground state for O_2 is $X^3\Sigma_g^-$

$$S = 1, \Lambda = 0$$

The - and g are notations about symmetry properties of wave functions. This is an example of a molecule that is modeled by Hund's case **b**

Four common molecular models

Rigid Rotor	$\Lambda = 0$, $S = 0$
Symmetric Top	$\Lambda \neq 0$, S = 0
Hund's a	∧ ≠ 0, S ≠ 0
Hund's b	$\Lambda = 0, S \neq 0$

2S+1 = 1 **⇒** "singlets" - no influence of electron spin on spectra

Spin important through interaction of Λ and Σ

This lecture:

Rigid Rotor

Symmetric Top

Followed by:

Hund's a

Hund's b

Rigid rotor $(^{1}\Sigma)$

- $\Lambda = 0$, $S = 0 \Rightarrow {}^{1}\Sigma$ type, Ω is not defined
- Λ = 0 means the projection of the orbital angular momentum onto the A-axis is zero, and rotation must thus be around the B-axis

4

2. Common molecular models for diatomics

Rigid rotor (¹Σ)

Rotational Energy
$$F(J) = B_v J(J+1) - D_v J^2 (J+1)^2$$

Total Energy
$$E(T_e, v, J) = T_e + G(v) + F(J)$$

Energy Change
$$\Delta E = \Delta T_e + \Delta G + \Delta F$$

Selection Rules Rotational spectra:
$$\Delta J = J' - J'' = +1$$

Rovibrational spectra:
$$\Delta v = v' - v'' = +1$$

$$\Delta J = \pm 1$$

Rovibronic spectra: Δv determined by Frank-

Condon factors

$$\Delta J = \pm 1$$

Note: an alternate form is sometimes used

$$\Delta \alpha = \alpha_{\text{final}} - \alpha_{\text{initial}}$$
 $\alpha = J \text{ or v}$

Rigid rotor (¹Σ)

Intensity Distribution

Within each band (v', v"), the intensity distribution follows the Boltzmann distribution for J modified by a J-dependent branching ratio (i.e., for the P and R branch), known as the Hönl-London factor.

The relative intensities <u>among all the vibrational bands</u> originating from a single initial level v_{initial} to all possible final levels v_{final} are given by Franck-Condon factors.

The relative <u>total emission or absorption</u> from $v_{initial}$ depends directly on the <u>Boltzmann fraction</u> in that level, i.e., $n_{v initial}/n$

Examples

Most stable diatomics: CO, Cl₂, Br₂, N₂, H₂ are rigid rotors Exceptions: NO ($X^2\Pi$), O₂($X^3\Sigma$)

Note: no $X\Delta$ states for diatomics – all X states are Σ or Π ! Some linear polyatomics: $CO_2(\widetilde{X}^1\Sigma_g^+)$, HCN and $N_2O(\widetilde{X}^1\Sigma^+)$ are rigid rotors with $^1\Sigma$ ground states.

Nuclear spin will have an impact on the statistics of homonuclear diatomic molecules

Symmetric top

- $\Lambda \neq 0$, S = 0 (non-zero projection of orbital angular momentum on the internuclear axis and zero spin) ⇒ ground states ${}^{1}\Pi$, ${}^{1}\Delta$
- Important components

 $ec{N}$ angular momentum of nuclei

 $ec{\Lambda}$ A-axis projection of electron orbital angular momentum $ec{J}$ total angular momentum; $ec{J}=ec{N}+ec{\Lambda}$

Only the axial component of orbital angular momentum is used, because only $\vec{\Lambda}$ is a "good" quantum number, i.e., a constant of the motion

Symmetric top ($\Lambda \neq 0$, S = 0)

Rotational Energy
$$F(J) = BJ(J+1) + (A-B)\Lambda^2, J = \Lambda, \Lambda + 1,...$$

$$A, B = \frac{h}{8\pi^2 c I_{A,B}}$$

Since $I_A < I_B$, A > B, lines with $J < \Lambda$ are missing, as $J = \Lambda$. $\Lambda + 1$

Selection Rules

$$\Delta \Lambda = 0, \Delta J = \pm 1, 0 \quad (\Delta J = 0 \text{ is weak})$$

 $\Delta \Lambda = \pm 1, \Delta J = \pm 1, 0$

As a result of having a Q branch (i.e., $\Delta J = 0$), the bands for a symmetric top will be doubleheaded, in contrast to the single-headed character of rigid rotor bands

• Symmetric top $(\Lambda \neq 0, S = 0)$

Spectra for $\Delta \Lambda = 0$ (${}^{1}\Pi \leftarrow {}^{1}\Pi$ or ${}^{1}\Delta \leftarrow {}^{1}\Delta$)

$$T' = B'J'(J'+1) + (A'-B')\Lambda^2 + G(v') + T_e' = 0 \text{ for ground state}$$

$$T'' = B''J''(J''+1) + (A''-B'')\Lambda^2 + G(v'') + T_e''$$

$$\overline{V}_{\infty} = \text{upper(for } J' = 0) - \text{lower(for } J'' = 0) = \text{constant}$$

$$m_{P} = -J$$

$$m_{Q} = +J$$

$$m_{R} = J + 1$$

P and R branches:
$$\overline{v}=\overline{v}_{\infty}+am+bm^2$$
 Q branch: $\overline{v}=\overline{v}_{\infty}+bm+bm^2$ where $a=B'+B''$, $b=B'-B''$

Symmetric top ($\Lambda \neq 0$, S = 0)

Spectra for $\Delta \Lambda = 0$

P and R branches:
$$\overline{V} = \overline{V}_{\infty} + am + bm^2$$

Q branch:
$$\overline{v} = \overline{v}_{\infty} + bm + bm^2$$

where
$$a = B' + B'', b = B' - B''$$

Notes:

- Band heads in the Q and R branches for the typical case of B'<B".
- $m_P = -J, m_O = +J, m_R = J+1$
- $J_{min} = 2 \text{ for } ^{1}\Delta \leftarrow ^{1}\Delta$
 - → m_{min}=3 for R branch m_{min}=2 for Q branch $|m_{min}|=3$ for P branch
 - missing lines near the origin

Intensity Distribution

Relative intensities depend on [n₁/n, and

Hönl-London factors $(S_I^{P,Q,R})$ - "relative intensity factors / line Lstrengths" ➡ breakdown of the principle of equal probability 11

Example – 1: Hönl-London Factors for Symmetric Top (see Herzberg)

For
$$\Delta \Lambda = 0$$
 $S_J^R = \frac{(J+1+\Lambda)(J+1-\Lambda)}{J+1} \approx J+1 \ (J>>\Lambda)$
$$S_J^Q = \frac{(2J+1)\Lambda^2}{J(J+1)} \approx \frac{2\Lambda^2}{J} \approx 0 \qquad \text{for large } J$$

$$S_J^P = \frac{(J+\Lambda)(J-\Lambda)}{J} \approx J \qquad \text{for large } J$$
 of the second of the second second

Notes:

- $\Sigma S_J = 2J+1$, the total degeneracy!
- The R-branch line for a specific J, is ~ J+1/J times as strong as the P-branch line

3. For
$$\Delta \Lambda = \pm 1$$
, J>> Λ

$$S_J^R = \frac{(2J+1)}{4}$$

$$S_J^Q = \frac{(2J+1)}{2}$$

$$S_J^P = \frac{(2J+1)}{4}$$

determining the relative line and branch strengths of rovibronic spectra.

Example – 2: Symmetric Top Ground State

If $X = {}^{1}\Pi$, possible transitions (Recall $\Delta \Lambda = 0, \pm 1$)

¹ Π ← ¹ Π	¹ Δ ← ¹ Π	¹Σ ← ¹Π
∆∧ = 0	ΔΛ = 1	$\Delta \Lambda = -1$

- 1. Three separate "systems" of bands possible from $X^1\Pi$
- 2. Hönl-London factors for $\Delta \Lambda = \pm 1$ differ from for $\Delta \Lambda = 0$ (see previous page)

3. Electronic Spectra of Diatomic Molecules: Improved Treatments (add Spin)

- Review of angular momentum
- 2. Interaction of Λ and Σ
- 3. Hund's case a $(\Lambda \neq 0, S \neq 0)$
- 4. Hund's case b ($\Lambda = 0$, S $\neq 0$)
- 5. Λ-doubling

- Review then add spin
 - Term symbol

- 4 models
 - Rigid Rotor $\Lambda = S = 0$
- e.g., N_2 , H_2 : $X^1\Sigma$
- Symmetric Top $\Lambda \neq 0$; S = 0
- e.g., ¹∏
- Hund's a $\Lambda \neq 0$; $S \neq 0$ Hund's b $\Lambda = 0$; $S \neq 0$
- e.g., OH, NO (both $X^2\Pi$)

- e.g., O_2 : $X^3\Sigma$

- Electronic angular momentum for molecules
 - Orbital angular momentum of electrons
 - 1. Separate from spin and nuclear rotation
 - 2. Strong electrostatic field exists between nuclei.

So \vec{L} precesses about field direction (internuclear axis) with "allowed" components along axis

3. If we reverse direction of electron orbit in \vec{E} field, we get the same energy but $\Lambda \to -\Lambda$ (Λ doubling)

- Electronic angular momentum for molecules
 - Spin of electrons
 - 1. To determine L and S for molecule, we usually sum I & s for all electrons. e.g., $S = \sum_{i} s_{i}$

So even number of electrons → integral spin

odd number of electrons → half-integral spin

- 2. For $\Lambda \neq 0$, precession of L about internuclear axis \Rightarrow magnetic field along axis. So m_s is defined. $m_s \equiv \Sigma = S$, S-1, ... -S.
 - Note for change of orbital direction, energy of electron spinning in magnetic field changes → no degeneracy → 2S+1 possibilities (multiplets)
- 3. For $\Lambda = 0$, no magnetic field exists and the projection of S on the nuclear axis is not conserved (Σ not defined)

- Electronic angular momentum for molecules
 - Total electronic angular momentum
 - 1. Total electronic angular momentum along internuclear axis is $\vec{\Omega} = \vec{\Lambda} + \vec{\Sigma}$ But since all in same direction, use simple addition

$$\Omega = |\Lambda + \Sigma|$$

2. For $\Lambda \neq 0$, magnetic field $H \propto \Lambda$.

Magnetic moment of "spinning" electron $\mu_H \propto \Sigma$.

So interaction energy is proportional to E $\sim \mu H \sim \Lambda \Sigma$, or

$$T_e = T_0 + A\Lambda\Sigma$$
 (more on this later)

3.2. Interaction of Λ and Σ

 This interaction is key to modeling the influence of spin on the electronic state structure.

When $\Lambda \neq 0$, S $\neq 0$, they combine to form a net component of Ω .

- $\Lambda \neq 0$ net current about the axis causes an associated magnetic field. This field interacts with spinning electrons.
 - Spin-orbit coupling (spin-splitting of energy levels)

Comments:

- Models are only approximations.
- Coupling may change as J ranges from low to high values

3.2. Interaction of Λ and Σ

Examples

$${}^{3}\Delta_{3} \leftarrow S = 1, \Lambda = 2, \Omega = 3 (\Sigma = 1)$$

$${}^{3}\Delta_{2} \leftarrow S = 1, \Lambda = 2, \Omega = 2 (\Sigma = 0)$$

$${}^{3}\Delta_{1} \leftarrow S = 1, \Lambda = 2, \Omega = 1 (\Sigma = -1)$$

Electronic energies $T_e = T_0 + A\Lambda\Sigma$

$$T_e = T_0 + A\Lambda\Sigma$$

Energy without interaction

☐ Spin-orbit coupling constant, generally increases with molecular weight and the number of electrons

$$^{3}\Delta \Rightarrow S = 1, \Lambda = 2, \Sigma = 1,0,-1$$

$$T_e = T_0 + A(2) \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \qquad \frac{3\Delta}{}$$

Sample constants

$$A_{BeH} \approx 2 \text{ cm}^{-1}$$

 $A_{NO} \approx 124 \text{ cm}^{-1}$
 $A_{HgH} \approx 3600 \text{ cm}^{-1}$
 $A_{OH} \approx -140 \text{ cm}^{-1}$ Negative!

Notes:

- The parameter Y is often specified, where $Y = A/B_v$
- Values for A given in Herzberg, Vol.I

Now, consider Hund's cases where $S \neq 0$

3.3. Hund's case a

• $\Lambda \neq 0$, $S \neq 0$, $\Sigma = S$, S-1, ..., -S

$$F(J) = BJ(J+1) + (A-B)\Omega^{2}$$

$$\Omega = \Lambda + S, \Lambda + S - 1, ..., |\Lambda - S|$$

$$J = \Omega, \Omega + 1, ...$$
Recall
$$A = \frac{h}{8\pi^{2}I_{A}c}, B = \frac{h}{8\pi^{2}I_{B}c}$$

Recall
$$A = \frac{h}{8\pi^2 I_A c}, B = \frac{h}{8\pi^2 I_B c}$$
Not to be confused

with spin-orbit constant

P, Q, R branches for each value of Ω .

Example:

 $^{2}\Pi \Rightarrow \Omega = 3/2$ and 1/2, two electronic sub-states

⇒ a total of 2 x 3 = 6 branches

3.4. Hund's case b

- Applies when spin is not coupled to the A-axis
 - E.g., 1. For $\Lambda = 0$, $\vec{\Sigma}$ is not defined, must use \vec{S}
 - 2. At high J, especially for hydrides, even with $\Lambda \neq 0$

Allowed J: J = N+S, N+S-1, ..., N-S, $J \ge 0$ only

For this case, \vec{S} and \vec{N} couple directly,

3.4. Hund's case b

- Example O₂
 - Ground state X³Σ has three J's for each N!

$$F_2(N)$$
 $F_3(N)$
 $J = N$ $J = N - 1$

Notes:

- Split rotational levels for N > 0
- Each level has a degeneracy of 2J + 1, and a sum of Hönl-London factors of 2J + 1
- Minimum J is |N-S|
- In N = 0 level, only spin is active (S = 1), so this is the minimum value of J

3.5. Λ – doubling

- Further complexity in the energy levels results from Λ-doubling
 - Different coupling with nuclear rotation (\vec{N} and $\vec{\Lambda}$ interaction)
 - → The two orientations of $\vec{\Lambda}$ (± Λ along the A-axis) have slightly different energies

$$F(J) \rightarrow F_c(J) \text{ and } F_d(J)$$

$$F_c(J) \qquad F_c(J)$$

- By definition, F_c(J)>F_d(J) (c,d replaced by e,f in some literature)
- Lambda doubling usually results in a very small change in energy, affecting Boltzmann distribution only slightly.
- Change of parity between Λ-doubled states reduces the accessible fraction of molecules for a given transition (due to selection rules)

- Review of Beer's law and spectral absorption as interpreted for molecules with multiplet structure
 - Beer's Law $\left(\frac{I}{I^0}\right)_{...} = \exp(-k_{\nu}L)$

For two-level system
$$k_{v} = S_{12}\phi(v) = \left(\frac{\pi e^{2}}{m_{e}c}\right) n_{1}f_{12}\left(1 - \exp(-hv/kT)\right)\phi(v)$$

$$f_{ij}, i - \text{initial}, j - \text{final}$$
Integrated absorption intensity [cm⁻¹s⁻¹]

For a complex, multiple level system, we have 2 quantities to specify:

- Boltzmann fraction?
- Oscillator strength for a specific transition?

Boltzmann fraction

 $n_1 = n_i \frac{n_1}{n_i}$

 n_i = the total number density of species I n_1/n_i = the fraction of species i in state/level 1

 $\frac{n_1}{n_i} = \frac{N_i(n, \mathbf{v}, \Sigma, \Lambda, J, N)}{N_i}$

Quantum numbers:

n – electronic

v - vibrational

 Σ – spin

∧ – orbital

J – total angular momentum

N – nuclear rotation

c or $d - \Lambda$ -component

We will illustrate this in the next lecture!

Oscillator strength

Strength of a specific, single transition (i.e., from one of the J" substates to a specific J' substate), f_{J",J'}

$$f_{12} = f_{(m,v'',J'')(n,v',J')} = f_{J''J'}$$

$$= \underbrace{f_{el}}_{\text{"system" osc.}} \times \underbrace{q_{v''v'}}_{\text{Franck-Condon}} \times \underbrace{\frac{S_{J''J'}}{2J''+1}}_{\text{normalized H-L factor or line strength}}$$

Notes:

- $\sum_{\mathbf{v}'} q_{\mathbf{v}''\mathbf{v}'} = 1$
- $\sum_{J'} S_{J''J'} = (2J''+1)[(2S+1)\delta]$ $\delta = 1$ for $\Sigma \Sigma$, otherwise $\delta = 2$ (Λ -doubling). [(2S+1) δ] = 4 for OH's $A^2\Sigma \leftarrow X^2\Pi$ system.
- $\sum_{\mathbf{y}',I'} f_{J''J'} = [(2S+1)\mathcal{S}]f_{el}$ sum is \mathbf{f}_{el} for a single J" substate.

Oscillator strength

Remarks

- 1. Band oscillator strength $f_{v"v'} = f_{el}q_{v"v'}$ \rightarrow often is tabulated e.g., $f_{00} = 0.001$ (OH $A^2\Sigma \leftarrow X^2\Pi$)
- 2. $f_{J"J'} = f_{v"v'} \left(\frac{S_{J"J'}}{2J"+1} \right)$ e.g., if only P and R are allowed $S_{J"J'}^P = J", S_{J"J'}^R = J"+1$
 - In some cases, an additional "correction term" $T_{J"J'}$ is used, e.g., in OH $f_{J"J'} = f_{v"v'} \left(\frac{S_{J"J'}}{2J"+1} \right) T_{J"J'}, T_{J"J'} \text{ always near 1}$
- 4. In terms of A-coefficient $f_{v"v'} = \left(\frac{m_e c \lambda^2}{8\pi^2 e^2}\right) A_{v'v"} \left(\frac{g_{e'}}{g_{e''}}\right)$ $= \frac{g_{e'}}{g_{e''}} f_{v'v"}$

Next: Case Study of Molecular Spectra

Ultraviolet: OH