## **AKAI**

## **SERVICE MANUAL**

## Model: LCT2721AD

| 1.  | Safety Instructions                     | 1~2     |
|-----|-----------------------------------------|---------|
| 2.  | Production Specification.               | 3~8     |
| 3.  | Block Diagram                           | 9       |
| 4.  | Circuit diagram.                        | 10~39   |
| 5.  | Basic Operations & Circuit Description. | 40~42   |
| 6.  | Main IC Information.                    | 43~81   |
| 7.  | Panel Information.                      | 82~112  |
| 8.  | Explored View.                          | 113     |
| 9.  | Spare Pare List.                        | 114~117 |
| 10. | V-Chip Password.                        | 118     |
| 11. | Software Upgrade                        | 119~136 |

This manual is the latest at the time of printing, and does not include the modification which may be made after the printing, by the constant improvement of product.

### I. Safety Instructions



### **CAUTION**

### RISKOF ELECTRIC SHOCK DO NOT OPEN



CAUTION: TO REDUCETHERISK OF ELECTRIC SHOCK, DONOT REMOVE COVER (OR BACK). NO USER-SERVICEABLE PARTSINSIDE. REFER SERVICING TO QUALIFIED SERVICE PERSONNEL ONLY.



The lightning flash with arrowhead symbol, within an equilateral triangle, is intended to alert the user to the presence of uninsulated "dangerous voltage" within the product's enclosure that may be of sufficient magnitude to constitute a risk of electric shock to persons.



The exclamation point within an equilateral triangle is intended to alert the user to the presence of important operating and maintenance (servicing) instructions in the literature accompanying the appliance.

### PRECAUTIONS DURING SERVICING

- In addition to safety, other parts and assemblies are specified for conformance with such regulations as those applying to spurious radiation. These must also be replaced only with specified replacements. Examples: RF converters, tuner units, antenna selection switches, RF cables, noise-blocking capacitors, noise-blocking filters, etc.
- 2. Use specified internal Wiring. Note especially:
  - 1) Wires covered with PVC tubing
  - 2) Double insulated wires
  - 3) High voltage leads
- 3. Use specified insulating materials for hazardous live parts. Note especially:
  - 1) Insulating Tape
  - 2) PVC tubing
  - 3) Spacers (insulating barriers)
  - 4) Insulating sheets for transistors
  - 5) Plastic screws for fixing micro switches
- When replacing AC primary side components (transformers, power cords, noise blocking capacitors, etc.), wrap ends of wires securely about the terminals before soldering.



- Make sure that wires do not contact heat generating parts (heat sinks, oxide metal film resistors, fusible resistors, etc.)
- 6. Check if replaced wires do not contact sharply edged or pointed parts.
- 7. Make sure that foreign objects (screws, solder droplets, etc.) do not remain inside the set.

## MAKE YOUR CONTRIBUTION TO PROTECT THE ENVIRONMENT

Used batteries with the ISO symbol for recycling as well as small accumulators (rechargeable batteries), mini-batteries (cells) and starter batteries should not be thrown into the garbage can.

Please leave them at an appropriate depot.

### WARNING:

Before servicing this TV receiver, read the X-RAY RADIATION PRECAUTION, SAFETY INSTRUCTION and PRODUCT SAFETY NOTICE.

### X-RAY RADIATION PRECAUTION

- 1. Excessively high can produce potentially hazardous X-RAY RADIATION. To avoid such hazards, the high voltage must not exceed the specified limit. The normal value of the high voltage of this TV receiver is 27 KV at zero bean current (minimum brightness). The high voltage must not exceed 30 KV under any circumstances. Each time when a receiver requires servicing, the high voltage should be checked. The reading of the high voltage is recommended to be recorded as a part of the service record, It is important to use an accurate and reliable high voltage meter.
- The only source of X-RAY RADIATION in this TV
  receiver is the picture tube. For continued X-RAY
  RADIATION protection, the replacement tube must be
  exactly the same type as specified in the parts list.
- Some parts in this TV receiver have special safety related characteristics for X-RADIATION protection.
   For continued safety, the parts replacement should be under taken only after referring the PRODUCT SAFETY NOTICE.

### **SAFETY INSTRUCTION**

The service should not be attempted by anyone unfamiliar with the necessary instructions on this TV receiver. The following are the necessary instructions to be observed before servicing.

- An isolation transformer should be connected in the power line between the receiver and the AC line when a service is performed on the primary of the converter transformer of the set.
- Comply with all caution and safety related provided on the back of the cabinet, inside the cabinet, on the chassis or picture tube.
- To avoid a shock hazard, always discharge the picture tube's anode to the chassis ground before removing the anode cap.

- Completely discharge the high potential voltage of the picture tube before handling. The picture tube is a vacuum and if broken, the glass will explode.
- When replacing a MAIN PCB in the cabinet, always be certain that all protective are installed properly such as control knobs, adjustment covers or shields, barriers, isolation resistor networks etc.
- When servicing is required, observe the original lead dressing. Extra precaution should be given to assure correct lead dressing in the high voltage area.
- 7. Keep wires away from high voltage or high tempera ture components.
- Before returning the set to the customer, always perform an AC leakage current check on the exposed metallic parts of the cabinet, such as antennas, terminals, screwheads, metal overlay, control shafts, etc., to be sure the set is safe to operate without danger of electrical shock. Plug the AC line cord directly to the AC outlet (do not use a line isolation transformer during this check). Use an AC voltmeter having 5K ohms volt sensitivity or more in the following manner.

Connect a 1.5K ohm 10 watt resistor paralleled by a 0.15µF AC type capacitor, between a good earth ground (water pipe, conductor etc.,) and the exposed metallic parts, one at a time.

Measure the AC voltage across the combination of the 1.5K ohm resistor and 0.15 uF capacitor. Reverse the AC plug at the AC outlet and repeat the AC voltage measurements for each exposed metallic part.

The measured voltage must not exceed 0.3 V RMS. This corresponds to 0.5 mA AC. Any value exceeding this limit constitutes a potential shock hazard and must be corrected immediately.

The resistance measurement should be done between accessible exposed metal parts and power cord plug prongs with the power switch "ON". The resistance should be more than 6M ohms.



### PRODUCT SAFETY NOTICE

Many electrical and mechanical parts in this TV receiver have special safety-related characteristics. These characteristics are offer passed unnoticed by visual spection and the protection afforded by them cannot necessarily be obtained by using replacement components rates for a higher voltage, wattage, etc. The replacement parts which have these special safety characteristics are identified by A marks on the schematic diagram and on the parts list. Before replacing any of these components, read the parts list in this manual carefully. The use of substitute replacement parts which do not have the same safety characteristics as specified in the parts list may create shock, fire, X-RAY RADIATION or other hazards.

## **Product Specification**

| 1.1 VIDEO SECTION                            | CMO V270B1-L01<br>MK8202<br>USA                 |  |  |
|----------------------------------------------|-------------------------------------------------|--|--|
|                                              |                                                 |  |  |
| Display Size                                 | 27"/16:9                                        |  |  |
| Display Resolution                           | 1366 X 768                                      |  |  |
| Pixel Pitch                                  | 146.0μm (H) x 436.5μm (V) 500(nits)             |  |  |
| Peak Brightness Contract Ratio               | 1000:1, Typical (1/100 White Window, Dark Room) |  |  |
| View Angle                                   | Hor. And Vert. ≥170 degree                      |  |  |
|                                              |                                                 |  |  |
| Color Deeps                                  | 16.7M Color (R / G/B each 256 Scales)           |  |  |
| PC Resolution Supporting                     | VGA, SVGA, XGA,WXGA                             |  |  |
| HDTV Compatible                              | 480p/720p/1080i                                 |  |  |
| Progressive Scanning Film Mode Pull Down     | Yes<br>Yes                                      |  |  |
|                                              |                                                 |  |  |
| "GAMMA" Correction Color Temperature Control | Yes<br>Yes                                      |  |  |
| Comb Filter                                  | Yes                                             |  |  |
| Second De-interlace for Sub picture          | No                                              |  |  |
| Wide Mode                                    | Full, 4:3 and Panoramic.                        |  |  |
|                                              |                                                 |  |  |
| TV System                                    | NTSC M, ATSC                                    |  |  |
| Dual Tuner System                            | No                                              |  |  |
| AV Input Color System                        | PAL /NTSC                                       |  |  |
| PIP                                          | No                                              |  |  |
| 1.2 AUDIO SECTION                            |                                                 |  |  |
| Audio Output Power                           | 7W×2 (8 ohm)                                    |  |  |
| Sound Effect                                 | Spatial Effect and Surround                     |  |  |
| Tone Control                                 | Yes                                             |  |  |
| 1.3 Input/Output Terminal                    | D-Sub 9 Pin Type (Analog-RGB Input ) ×1         |  |  |
|                                              | HDMI (Ver 1.1) Connector x 1                    |  |  |
|                                              | D-Sub 9 Pin (RS-232)                            |  |  |
|                                              | RF (F-type Input ) ×2 (ATV, DTV)                |  |  |
|                                              | Component Video-YPbPr × 1 RCA Terminals         |  |  |
|                                              | S-Video Input (Mini Din 4Pin) ×1                |  |  |
|                                              | Video Input RCA Terminal x 1                    |  |  |
|                                              | Stereo Audio Input x 4                          |  |  |
|                                              | Audio Output (RCA; L&R Type) ×1                 |  |  |
| 1.4 Others                                   |                                                 |  |  |
| Closed Caption / V-Chip                      | Yes                                             |  |  |
| Teletext                                     | No                                              |  |  |
| OSD Language                                 | English, Français, Español                      |  |  |

| Stereo Decode     | MTS with SAP  |
|-------------------|---------------|
| Power Rating      | AC 120V, 60Hz |
| Power Consumption | ≤180W         |

1.5 Support the Signal Mode This machine can support the different from VGA signal mode in 6 kinds

| Resolution | Horizontal<br>Frequency<br>(kHz) | Vertical<br>Frequency<br>(kHz) |
|------------|----------------------------------|--------------------------------|
| 640 x 480  | 31.50                            | 60.00                          |
| 040 X 480  | 37.86                            | 72.81                          |
|            | 35.16                            | 56.25                          |
| 900 600    | 37.90                            | 60.32                          |
| 800 x 600  | 48.08                            | 72.19                          |
| 1024 x 768 | 48.40                            | 60.00                          |

### 1.8 HDTV Mode (YPbPr)

| Resolution       | Horizontal<br>Frequency<br>(KHz) | Vertical<br>Frequency<br>(Hz) |
|------------------|----------------------------------|-------------------------------|
| 480i             | 15.734                           | 59.94                         |
| 480p(720x480)    | 31.468                           | 59.94                         |
| 720p(1280x720)   | 45.00                            | 60.00                         |
| 1080i(1920x1080) | 33.75                            | 60.00                         |

DVD player's spec. For LCD-TV Combo

|             | DVD player's spec. For LCD              |                                           |
|-------------|-----------------------------------------|-------------------------------------------|
| Division    | Section                                 | Remarks                                   |
|             | name                                    | AKAI                                      |
|             | Marketing Area( setup default language) | USA                                       |
| General     | Power supply                            | +5v,+3.3v                                 |
|             | Power Consumption                       | 15W                                       |
|             | Manufactruer of Loader mechanism        | Foryou DL06-LS                            |
| DVD Module  | Opitical Pick UP                        | Sanyo HD-62/65                            |
| DVD Module  | Chipset used                            | MTK 1389FE                                |
| Playback    | Playable Media Type                     | Playable Disc Type: DVD, CD,              |
| Disc Type   | Playable Disc Type                      | DVD(Single/ Dual layer, Double sided), CD |
|             | Disc Size                               | 8cm/12cm                                  |
|             | Regional code                           | Regional 1                                |
|             | NTSC/ PAL Disc playback                 | 0/0                                       |
| Video       | Video output signal                     | NTSC                                      |
|             | Video DAC                               | 27MHz/ 10bit                              |
| Audio       | Audio DAC                               | 48Khz/96KHz/24-bit:selectable             |
| 14410       | Dynamic range                           | Present                                   |
|             | Dolby digital decoder                   | Present                                   |
|             | DTS decoder                             | optional                                  |
|             | SRS + TruSurround for 2 channel         | Not present                               |
|             | 3D Virtual surround for 2 channel       | Not present                               |
| Playback    | Fast forward/backward                   | x2,x4,x8,x16,x32                          |
| Features    | Slow motion forward                     | x1/2,x1/4,x1/8,x1/16                      |
| reatures    | Slow motion backward                    |                                           |
|             |                                         | optional<br>Present                       |
|             | Still picture                           |                                           |
|             | Frame by frame forward/reverse          | Forward only (Step function)              |
|             | Skip forward/reverse                    | Present                                   |
|             | Repeat function                         | Present                                   |
|             | DVD closed caption                      | Present                                   |
|             | Transition Effect for picture CD        | Not present                               |
|             | Rotation of picture for picture CDs     | Present                                   |
| D: 1        | Last Memory                             | Present                                   |
| Display     | Graphical user interface                | Not present                               |
| user        | OSD Language                            | 3 (ENG is base ,SPA and French)           |
| operation   | Subtitle                                | Present                                   |
|             | Screen saver                            | Present                                   |
|             | Resume play                             | Present                                   |
|             | Program function                        | Present                                   |
|             | PBC ON/OFF                              | Default on PCB                            |
|             | Parental lock                           | Passward: 0000                            |
|             | Picture mode selector                   | 16:9, 4:3 LB, 4:3 PS(4:3 PS as default)   |
|             | Intro scan                              | Not present                               |
|             | Digest in VCD                           | Present, only for PIC CD                  |
|             | Time search                             | Present                                   |
|             | Multi angle                             | Present                                   |
|             | Selectable audio language streams       | Present                                   |
|             | kalaoke function                        | X                                         |
| Front Panel | VFD/ LED                                | x                                         |
|             | No. of keys                             | 3(Open/Close, Play, Stop)                 |
| Rear Panel  | Composite Video output                  | x                                         |
|             | Component Video output                  | x                                         |
|             | Progressive scan output (480P)          | Present                                   |
|             | 2 channel audio output                  | Present                                   |
|             | Coaxial audio output                    | Present                                   |
| i .         | T                                       |                                           |

## Technical Data

| 1. Power supply                        | TV                                | AC 120V, 60Hz                           |            |  |
|----------------------------------------|-----------------------------------|-----------------------------------------|------------|--|
|                                        | Remote control                    | Battery 3V (UM-3/R6P/AAA×2)             |            |  |
| 2. TV system                           | TV System                         | NTSC M                                  | ATSC       |  |
|                                        | Stereo Decode                     | MTS                                     | MPEG-2     |  |
|                                        | Closed Caption/V-Chip             | Yes                                     | Yes        |  |
|                                        | Channel                           | 181 CH                                  | 2-69 CH    |  |
| 3. Intermediate frequencies            | Picture                           | 45.75MHz                                |            |  |
| 4. Scanning                            | Horizontal (Hz)                   | 15625/15750                             |            |  |
|                                        | Vertical (Hz)                     | 50/60                                   |            |  |
| 5. AC plug                             |                                   | UL Plug                                 |            |  |
| 6. Panel                               |                                   | V270B1-L01                              |            |  |
| 7. Speaker                             | Internal                          | 8 ohm 10W ×2                            |            |  |
| 8. Operating temperature               | Fulfill all specifications        | 15°C ~ 30°C                             |            |  |
|                                        | Accept picture/sound reproduction | 5°C ~ 33°C                              |            |  |
| 9. Operating relative humidity         | Fulfill all specifications        | 45% ~ 75%                               |            |  |
|                                        | Accept picture/sound reproduction | 20% ~ 80%                               |            |  |
| 10. Electrical & optical specification |                                   | See the attachment 1.                   |            |  |
| 11. Circuit diagram drawing No.        |                                   |                                         |            |  |
| 12. Cabinet                            |                                   |                                         |            |  |
| 13. Cabinet color                      |                                   |                                         |            |  |
| 14. Packing                            |                                   | 1 set per                               |            |  |
| 15. Container stuffing method          |                                   | RD/05/P/LC26HAB/CSI/02 R                | EV: 01     |  |
| 16. Dimension (mm)                     | LCD-TV                            | 698(W) × 513 (H) × 99(D)mm (            | w/o Stand) |  |
| (No packing)                           |                                   | 698(W) × 554(H) × 250(D)mm (with Stand) |            |  |
| (* ** F***8)                           | Remote control unit               | 183(L) × 53(W) ×28(T)mm                 |            |  |
| 17. Net weight                         | LCD-TV                            | 13.9Kg (with Stand) approx.             |            |  |
|                                        | Remote control                    | 93g                                     |            |  |
| 18. Cell Defect                        |                                   | Subject to Panel supplier specification |            |  |
|                                        |                                   |                                         |            |  |
|                                        |                                   |                                         |            |  |

### Remote Control

- 1 Power ( 0): Press to turn on and off.
- ② **Mute** ( ☼ ): Press to mute the sound. Press again or press VOL+/- to restore the sound.
- 3 CCD: Press to select the Closed Caption mode.
- 4 V-Chip: Press to select the child protect mode.
- 5 **MTS**: Press repeatedly to cycle through the Multi-channel TV sound (MTS) options: Mono, Stereo and SAP (Second Audio Program).
- 6 **Favorite**: Press repeatedly to cycle through the favorite channel list.
- 7 PIC.Size: Press to change the screen size, such as Full, 4:3, Panoramic. (Note: In VGA mode, it can select picture size is Full. While in DTV mode, it can select picture size is: Full and 4:3.)
- 8 **Freeze**: Press to freeze the picture, press again to restore the picture. (This button is not available for VGA mode.)
- 9 P.Mode: Press repeatedly to cycle through the picture mode: Hi-Bright, User, Cinema, Normal and Vivid.
- **Display**: Press to display the channel information and it disappear after 3 seconds.
- (11) Sleep: Press repeatedly until it displays the time in minutes (15 Min, 30 Min, 60Min, 90 Min, 120 Min and, OFF) that you want the TV to remain on before shutting off. To cancel sleep time, press Sleep button repeatedly until sleep OFF appears.
- **I2 Zoom**: Press to zoom the image. (This button is not available for VGA mode.)
- [13] **S.Mode**: Press repeatedly to cycle through the sound mode: Normal, News, Cinema, Concert and User.
- **System**: Press repeatedly to cycle through the system options: AUTO, NTSC3.58 and PAL. (This button is activate for AV, S-Video input source.)
- 15 Add/Erase: Press to add or delete favorite channel.
- 16 **DTV**: Press to select Digital TV mode.
- 17 **0~9 Number Buttons**: In TV mode, press 0~9 to select a channel; the channel changes after 2 seconds. In DVD mode, press 0~9 to input the items.
- 18 **EPG**: Press to display EPG (Electronic Program Guide) menu.
- 19 **DOT**: Press number buttons with it to select the channels directly in DTV.
- 20 **Source**: Press to select the signal source.
- 21 **Recall**: Press to return previous channel.
- [22] Enter: To select an item, press Enter to confirm.
- 23 **VOL +/-**: Press to adjust the volume.
- 24 **CH +/-**: Press to scan through channels. To scan quickly through channels, press and hold down either channels.
- (25) <, $\wedge$ , $\vee$ ,>: Press <, $\wedge$ , $\vee$ ,> to move the on-screen cursor.

2  $\square$ (₩) (3). 4 6 (5). (7) 8 9 10 <u> 11</u> 12 [13] 14 [15] [16] 17 18]-9) [19]-20 [21]\_ 22 Enter VOL.+ (сн.+) [23]-24 [25]-26 Menu [27]. 28 29 30 31 -[32] 33. 34 [35] (36) [37]--38 39 40 41

(Continued on next page)

- 26 **Menu**: Press to enter on-screen setup menu, press again to exit.
- 27 ◀◀, ▶▶ : Press to search the backward or forward.
- 28 ►/II: Press to play or pause the DVD disc.
- 29 ■: Press to stop playing the disc.
- 30 | ◀ , ▶ : Press to skip the backward or forward.
- 31 ▲: Press to open or close the disc tray.
- 32 **DVD Menu**: Press to return DVD disc menu.
- 33 **Prog.**: Press to display the program menu. Press it again to exit.
- Repeat: Press repeatedly to cycle through the options: CHAPTER, TITLE, ALL and nothing.
- 35 **Subtitle**: Press to select desired DVD subtitle.
- 36 Audio: Press to select desired audio track.
- 37 **Setup**: Press to display a menu. Press it again to exit menu.
- 38 **Angle**: Press to select desired viewing angle of the Video (disc feature).
- 39 **Title**: Press to display to DVD disc title.
- 40 **DVD Info**: Press to display DVD information.
- [41] Color Buttons:

(Only available in DTV EPG mode)

**Red**: Press this button to access the red item or page.

**Blue**: Press this button to access the blue item or page.

**Green**: Press this button to access the green item or page.

**Yellow**: Press this button to access the yellow item or page.



Note: Press CH+/- on the remote control can turn on TV set from last preview mode.



## **Parts Position**



### MT8202E (PBGA388) LCDTV BOARD 4 LAYERS FOR AKAI

- 1. INDEX / POWER / RESET / EEPROM
- 2. LDO
- 3. MT8202E PBGA388
- 4. MT8202 DECOUPLING
- 5. DDR MEMORY & FLASH
- 6. MT5351 INTERFACE
- 7. HDMI MT8293
- 8. DAUGHTER BOARD IN
- 9. WM8776 & VIDEO BYPASS
- 10. AUDIO / VIDEO IN CIRCUIT
- 11. VGA & PC AUDIO IN
- 12. LVDS OUT
- 13. BACK LIGHT / KEYPAD
- 14. TUNER IN
- 15. AV IN
- 16. AUDIO IN
- 17.AUDIO Amplifier





Size Document Number AKAI\_MT8202\_27US\_LVDS\_V0.0

11 / 196















# 





### KAWA Confidential

| DAUGHTER BOARD IN |                            |          |                     |     |
|-------------------|----------------------------|----------|---------------------|-----|
| Size              | Document Number            |          |                     | Rev |
| C                 | AKAI_MT8202_27US_LVDS_V0.0 | Checked: | <checker></checker> | יוד |
| •                 |                            |          |                     |     |

18 / 136



















#### MT5351RA-V2

### MT5111 / MT5351 REFERENCE DESIGN - 4 LAYERS

| Rev   | History                                   | P# | DATE       |
|-------|-------------------------------------------|----|------------|
| RA-V1 | INITIAL VERSION                           |    | 2005/06/15 |
| RA-V2 | ADDED AUDIO SWITCH / REFINE POWER CIRCUIT |    | 2005/07/14 |
|       |                                           |    |            |
|       |                                           |    |            |
|       |                                           |    |            |

01. INDEX AND INTERFACE

02. POWER

03. TUNER

04. MT5111 ASIC

05. MT5351 ASIC

06. MT5351 PERIPHERAL

07. DDR MEMORY

08. NOR FLASH / JTAG / UART

**NS: NON-STUFF** 

| ER |
|----|
|    |
|    |









MediaTek Confidential





















# **Basic Operations & Circuit Description**

## **MODULE**

There are 1 pcs panel and 5 pcs PCB including 3 pcs Extension PCB, 1 pcs Timming controller board and 1 pcs Back Light board in the Module.

## SET

There are 6 pcs PCBs including 1 pcs ATV Tuner board, 1 pcs keypad board, 1 pcs Remote Control Receiver board, 2 pcs L/R Speakers and 1 pcs Main(Video)board, 1 pcs ATSC board in the SET.

# **PCB** funtion

- 1. Power:
  - (1). Input voltage: AC 120V, 60Hz.
  - (2). To provide power for PCBs.
- 2. Main board: To converter TV signals, S signals, AV signals, Y Pb/Cb Pr/Cr signals, DVI/HDMI signals and D-SUB signals to digital ones and to transmit to Control board.
- 3. Control board: Dealing with the digital signal for output to panel.
- 4. Extension board: Output addressing signals.
- 5. ATV Tuner Board: To convert TV RF signal to video and SIF audio signal to Main board.
- 6. ATSC Board: Receiver and converter ATSC TV signal to transmit to main board.

# **PCB** failure analysis

- 1. CONTROL: a. Abnormal noise on screen. b. No picture.
- 2. MAIN: a. Lacking color, Bad color scale.
  - b. No voice. (Make sure status: Mute / Internal, External speaker)
  - c. No picture but with signals output, OSD and back light.
  - d. Abnormal noise on screen.
- 3. POWER: NO picture, no power output.
- 4. Back Light: a. No picture.
  - b. Flash on screen.
  - c. Darker picture with signals.
- 5. ATV Tuner: a. No ATV Noise
  - b. No ATV signals
- 6. ATSC: a No ATSC TV signal

# **Main IC Specifications**

- M13S128168A (ESMT) 2M x 16 Bit x 4 Banks Double Data Rate SDRAW
- MT5111CE Single-Chip HDTV/CATV Demodulator
- MT5351
   MT5351 is a DTV Backend Decoder SOC which support flexible transport demux,
   HD MPEG-2 video decoder, MPEG1,2, MP3, AC3 audio decoder, HDTV encoder.
   MT5351 is powered by ARM 926EJ with 16K I-Cache and 16K D-Cache. It can support 64Mb to 1Gb DDR DRAM devices with configurable 32/64 bit data bus interface.
- MT8202
   MT8202G is a highly integrated Single-Chip for LCD TV supporting video input and output format up to HDTV. It includes 3D comb filter TV decoder to retrieve the best image from popular composite signals.
- MT8293
   HDMI PanelLink Cinema Receiver
- R2S15102NP
   Digital Power Amplifier R2S15102NP
- WM8776 24-bit, 192kHz Stereo CODEC with 5 Channel I/P Multiplexer

MT5111CE July 2005

#### **MT5111CE**

# Single-Chip HDTV/CATY Demodulator

# **Key Features**

- Compliant with ATSC digital television standard
- Supports SCTE DVS-031 and ITU J.83 Annex B digital CATV standard
- Accepts direct IF (44 MHz or 43.75MHz) and low IF (5.38MHz)
- Differential IF input with programmable input signal level: 0.5Vpp to
   2Vpp
- NTSC interference rejection capability
- © Compensate echo up to -5 to +47us range forterrestrial HDTV reception
- On-chip 10-bit ADC for HDTV/CATV demodulator
- On-chip programmable gain amplifier
- 25MHz crystal for clock generation
- On-chip PLL clock generation
- Full-digital timing recovery no VCXO is required
- Full-digital frequency offset recovery with wide acquisition range ±1MHz for ATSC and ±250kHz for CATV reception
- Dual digital AGC controls for IF and RF respectively
- MPEG-2 transport stream output in parallel or serial format
- On-chip error rate estimators for TS packets, TCM decoder, and equalizer
- EIA/CEA-909 antenna interface
- Controlled by I<sup>2</sup>C interface
- Supports sleep mode to save power consumption
- Core power supply: 1.8V peripheral power supply: 3.3V
- 100-LQFP package
- Lead Free



MT5111CE July 2005

# **Functional Block Diagram**



Figure 1: MT5111CE Functional Block Diagram

# General Description

MT5111CE is a fully integrated single-chip 8-VSB and 64/256-QAM demodulator. The chip is designed specifically for the digital terrestrial HDTV and CATV receivers, and is fully compliant with ATSC A/53, SCTE DVS-031, and ITU J.83 Annex B standards.

MT5111CE includes a 10-bit A/D converter, 8-VSB/QAM demodulator, TCM (Trellis-Coded Modulation) decoder, and Reed-Solomon Forward Error Correction decoder. Moreover, an internal controller handles the acquisition and tracking to ensure the best receiving performance. The internal controller communicates with the external host controller via the I2C-compatible interface, and also provides direct control to the RF tuner via the second I2C-compatible

interface.

MT5111CE accepts either the direct IF signals centered at 44MHz or 43.75MHz, or the low IF signals centered at 5.38MHz. The center frequency of the incoming IF signal can also be programmed to other frequencies for various applications. An On-chip programmable gain-controlled amplifier is designed to provide sufficient signal amplitude when the received RF signal is weak. The IF signal is first sampled by a 10-bit A/D converter. Afterward, the digitized samples are further processed for adjacent channel interference rejection.

MT5111CE measures the power level of the digitized sequence, and feeds the control voltages back to the RF tuner and the IF amplifier respectively. The control voltages are converted to analog signals through the on-chip 1-bit sigmadelta D/A converters plus the off-chip R-C low-pass filters. The automatic gain control keeps the received power level at a desired level and maximizes the received SNR.

The carrier frequency offset and symbol timing offset are both estimated and compensated by a fully digital synchronizer. The synchronizer also controls the rate conversion in the digital re-sampling device by estimating the sampling frequency offset. All synchronization in MT5111CE are integrated in digital circuits, no external VCXO is required.

The equalizer is adopted to cancel the effect of multi-path fading channel during signal propagation in the air or over cable networks. The equalizer is not only capable of acquiring correct coefficients combination by specified adaptive algorithms, but also programmable to different configurations for various channel conditions.

The following FEC decoder corrects most of the errors by the concatenation

MT5111CE \_\_\_ July 2005

of TCM and Reed-Solomon decoders. For CATV reception, MT5111CE detects and aligns de-puncturing timing of the received sequence. The timing synchronization is also automatically performed to lock the FEC frames. The on-chip error rate estimator can simultaneously monitor the receiving qualities at the three stages: equalizer output, TCM decoder, and transport stream packets. The chip finally outputs the decoded MPEG-2 packets in either the serial or parallel transport stream format.

In addition to the demodulation of HDTV signal, MT5111CE also provides the capability to remove the NTSC co-channel interference. To achieve the best reception condition, an antenna interface compliant with EIA/CEA-909 is designed to control the antenna parameters.

MT5111CE is designed with efficient mechanisms of power saving. When configured to enter the sleep mode by the system host, it can immediately turn off almost all embedded hardware except the on-chip controller to reduce the power consumption. Resuming from sleep mode is also triggered by the system host. Upon returning to the operation mode, the chip will try to re-acquire the DTV signal automatically.





MT5111CE July 2008

# Pin Description

| Signal Name       | Pin No                                                           | ΙØ                        |                                                                 |
|-------------------|------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------|
| Transport Stream  | . #                                                              | #                         |                                                                 |
| TSDATA[7:0]       | 22;23;24,25,28,<br>29,32,33                                      | О                         | TS data output TS packet start signal TS output valid signal    |
| TSSYNC            | 34                                                               | 0                         | TS packet start signal                                          |
| TSVAL             | 38                                                               | 0                         | TS output valid signal                                          |
| TSCLK 💮 🐰         |                                                                  | 0                         | TS output clock                                                 |
| TSERR #           | 39                                                               | 0                         | S packet error indicator                                        |
| Analog Signal     | i i wa                                                           |                           |                                                                 |
| IN+               | # 82                                                             | <u> 1</u> .#              | A 377 3155 - A 115 1 - A                                        |
| IN-               | 81                                                               |                           | Anålög differential IF input                                    |
| REFTOP            |                                                                  | "Ö                        | ADC reference top voltage. Decouple with a capacitor to AVSS    |
| REFBOT            | 88<br>86<br>87                                                   | 0                         | ADC reference bottom voltage. Decouple with a capacitor to AVSS |
| VCMEXT            | ∦ ∞87                                                            | 0                         | ADC common mode voltage                                         |
| Antenna Interface |                                                                  |                           |                                                                 |
| ANTIF             | 62                                                               | 0                         | CEA-909 Antenna Control Interface                               |
| Clock Generation  |                                                                  |                           | CEA-909 Antenna Control Interface 225MHz crystal input          |
| XTAL1             | 97                                                               | . 1                       | 25MHz crystal input                                             |
| XTAL2             | 96                                                               | <u>†</u> 1                | 2 Sivilaz ci yatal nipur                                        |
| Control Signals   |                                                                  |                           |                                                                 |
| HOST_CLK          |                                                                  |                           | Host processor serial clock input, 5 volt compatible            |
| HOST_DATA         | 44 §                                                             |                           | Host processor senal data pin, 5 volt compatible                |
| TUNER_CLK         | 69.8                                                             |                           | Tuner senal clock output, 5 volt compatible                     |
| TUNER_DATA        | 68                                                               | 1/O                       | Tuner senal data pin, 5 vott compatible                         |
| IF_AGC            | 72                                                               | #O                        | IF AGC output                                                   |
| RF_AGC            | 73                                                               | 22.12                     | RFAGC output                                                    |
| RESET             | 48                                                               | 響け                        | Power reset pin, low active                                     |
| SA0               | 66<br>67                                                         | [編18]                     | Chip slave address selection pin, tie to VDD3.3 or DGND         |
| SA1               | 67                                                               | 網。                        | Chip slave address selection pin, tie to VDD3.3 or DGND         |
| Power Supply      |                                                                  |                           |                                                                 |
| VDD3.3            | 17,26,35,42,<br>52,60,70                                         | Р                         | Digital power supply, tie to 3.3V                               |
| VDD1.8            | 18,30,40,45,<br>55,64,75                                         | Р                         | Digital power supply, tie to 1.8V                               |
|                   | 16,19,27,31,                                                     |                           |                                                                 |
| DGND              | 36,41,43,46,51,56,<br>61,63,65,71,74                             | P                         | Digital ground, tie to digital ground plane                     |
| AVDD              | 3,10,12,80,83,91,<br>92,93,99                                    |                           | Analog power supply the to 3.3V                                 |
| AVSS              | 7,11,79,85,89,94,<br>95,98,100                                   | Services<br>Participation | Analog ground tie to analog ground plane                        |
| ADVDD3.3          |                                                                  | 171 344                   | Digital power supply for analog component, tie to 3.3V          |
| AVDD1.8           | 15,76<br>90                                                      |                           | Digital power supply for analog component, tie to 1.8V          |
| Others            |                                                                  | 8                         |                                                                 |
| (30, 37)          | \$,2,4,5,6,8,9,13,14,<br>20,21,49,50,53,54,<br>57,58,59,77,78,84 |                           | Not Connected                                                   |
| <u> </u>          | DI HE IN HOUSE                                                   | * ***                     |                                                                 |

Table 1: Pin Description

July 2005 MT5111CE

# **Electrical Characteristic**

# Recommended Operating Condition

| Symbol  | Description Description               | Min           | Typical | Max  | Unit |
|---------|---------------------------------------|---------------|---------|------|------|
| Tj 🕍    | Chip Junction Temperature             | oda<br>Soluti |         | 125  | °C   |
| VDD1.8  | 18V Digital/Gore Power Supply Voltage | 1.62          | 1.8     | 1.98 | Volt |
| AVDD    | 3 3V Analog Power Supply Voltage      | 3.15          | 3.3     | 3.45 | Volt |
| VDD3,3  | 3.3V Digital IO Power Supply Voltage  | 3             | 3.3     | 3.6  | Volt |
| AVDD1.8 | 1.8V Analog Power Supply Voltage      | 1.7           | 1.8     | 1.9  | Volt |
| VIH     | Digital Input High Voltage            | 3 🔏           | 3.3     | 3.6  | Volt |
| VIL     | Digital Input Low Voltage             | - 4           | 0,      |      | Volt |

# Table 2: Recommend Operating Condition Typical Current and Power Dissipation (ASTC Mode)

| Symbol                 | Description                            | Typical | Unit |
|------------------------|----------------------------------------|---------|------|
| I_VDD1.8               | 1.8V Digital Core Power Supply Current | 350     | mA   |
| I_AVDD                 | 3.3V Analog Power Supply Current       | 70      | mA   |
| I_VDD3.3               | 3.3V Digital I/O Power Supply Current  | 16      | mA   |
| I_AVDD1.               | 1.8V Analog Power Supply Current       | 2       | mA   |
| P_VDD1.8               | 1.8V Digital Core Power Dissipation    | 630     | mW   |
| P_AVDD                 | 3.3V Analog Power Dissipation          | 231     | mW   |
| P_VDD3.3               | 3.3V Digital IO Power Dissipation      | 52.8    | ∦ mW |
| P_AVDD1 <sub>8</sub> 8 | 1 8V Analog Power Dissipation          | 3.6     | mW   |
| P_Total                | Total Power Dissipation                | 917.4   | mW   |
| P_Sleep                | Total Power Dissipation (Sleep Mode)   | 130     | mW   |

Table 3 Typical Current and Power Dissipation (ATSC Mode)



MT5111CE July 200

# Typical Current and Power Dissipation (QAM Mode)

| Symbol    | Description                            | Typical    | Unit ,          |
|-----------|----------------------------------------|------------|-----------------|
| I_VDD1.8  | 1.8V Digital Core Power Supply Current | <b>475</b> | mA              |
| I_AVDD    | 3.3V Analog Power Supply Current       | 70         | mA              |
| I_VDD3.3  | 3.3V Digital I/O Power Supply Current  | 19         | mA              |
| I_AVDD1.8 | 1.8V Analog Power Supply Current       | 2          | mA              |
| P_VDD1.8  | 1.8V Digital Core Power Dissipation    | 315        | mW              |
| P_AVDD    | 3.3V Analog Power Dissipation          | 231        | mW              |
| P_VDD3.3  | 3.3V Digital IO Power Dissipation      | 62.7       | mW              |
| P_AVDD1.8 | 1.8V Analog Power Dissipation          | 3.6        | <sub>∰</sub> mW |
| P_Total   | Total Power Dissipation                | 612.3      | mW              |
| P_Sleep   | Total Power Dissipation (Sleep Mode)   | 130        | mW              |

Table 4: Typical Current and Power Dissipation (QAM Mode)





Specifications are subject to change without notice,

## MT8293

# HDMI PanelLink Cinema Receiver

MT8293 is a low-cost, fully HDMI-compliant receiver that fits directly into home theater products such as LCD TVs, plasma TVs and HDTVs. The receiver is capable of supporting bandwidths up to 165MHz and video resolutions up to 1080p and UXGA. The MT8293 supports the DVD Audio standard, including 7.1- surround audio at 96kHz and stereo audio at 192kHz.

The built-in High-bandwidth Digital Content Protection (HDCP) decryption engine secures the digital link for transmission of valuable high-definition video and audio.Built-in HDCP self-test engine simplifies manufacturing testing.

#### **FEATHRES**

- Industry-Standard
  - HDMI 1.1
  - DVI 1.0
  - EIA/CEA-861B
  - HDCP 1.1
- Digital Video Output
  - Integrated PanelLink Core
  - Supports DTV (480i/576i/480p/576p/720p/1080i/1080p) and PC (VGA/XGA/SXGA/UXGA) resolution up to 165MHz (using dual edge to transmit video data for pixel clock over 112MHz)
  - Flexible digital video interface
    - 24-bit RGB/YCbCr 4:4:4
    - 16-bit YCbCr 4:2:2
    - 8-bit YcbCr 4 2:2 (ITU-R BT.656)
  - Integrated RGB <-> YCbGr color space conversion (both 601 and 709)
  - 4:2:2 <-> 4:4:4 converter
  - Integrated Deinterlacer for 480i/576i (SDTV only)
  - Integrated Down-Scaler (with CEN)
- Digital Audio Output
  - Industry-standard \$/PDIF and 3-wire output

- Supports high-end audio including DVD-Audio

  - 8-ch. 32-96kHz
- Programmable 3-wire output supports numerous low-cost I2S audio DACs
- Supports IEC60958 2-channel PCM
- Capable of carrying IEC61937 compressed audio (Dolby Digital, DTS, etc.)
- Content Protection
  - Integrated HDCP cipher engine
  - External EEPROM for encrypt HDCP keys
  - Builtin HDGP self est
  - Decrypts beth video and audio
- System Operation
  - Register-programmable via slave I2C interface
  - Auto video mode
  - Auto audio mode
  - Flexible interrupt registers with interrupt pin
- Power Management
  - 1.8V core provides low-power operation
  - Flexible power-down modes
- Outline
  - 128-pin QFP package





PRELIMINARY, SUBJECT TO CHANGE WITHOUT NOTICE MTK CONFIDENTIAL, NO DISCLOSURE West the Control of t nakanasaranganak Water the second second CGND18 CVCC18 MUTE IOVCC33 IOGND33 SPDIF 31 IDVCC33 30 IOGND33 29 GPI04 28 GPI05 27 GPI06 SD 26 GPI07 25 CGND18 SD2 24 CVCC18
23 GPI08
22 GPI09
21 GPI010
20 GPI011 SD1 SD0 CVCC18 GPIO8 ws sci IOVCC33 IDGND33 MCLK CGND18 CVCC18 AUUPVCC18 77 78 79 80 81 29 GPI011
19 100VCC33
19 100H012
17 GPI013
18 GPI014
18 GPI015
19 MEDIATEK AUDPGND 83 AUDPGND XTALIN XTALIVCC REGVCC RSVDL RESET# 88 87 88 TO DESCRIPTION OF THE PROPERTY OF THE PARTY 89 90 91 DVCC38 DGND33 DGND33 DGC\_IN SOG\_IN CEN SC DT INT QE23 92 93 94 95 96 QE22 QE21 QE20 QE18 VSYNC 0613 0613 0614 0616 0616 0617 0617 0618 0017 0017 0017 0017 0017 0017 0017 088 (1089) 0E10 0E11 10ACC33 QEB
QEE
QES
IOVCC33
ODCK
IOGND33
QES
QES
QES
COND18
CVCC18 HSYNC CVCC18 CGND18 Pennedirparagentering pages. がある ACCOMPANION TO THE PROPERTY OF Washing salid Dalaging ANTERCER CERTIFICATION



MT8**2**93





| MED    | A IATEK          |                                            |         | , <b>MT82</b> 93                                                                                                    |
|--------|------------------|--------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------|
| PRELIM | INARY, SUBJECT T | O CHANGE WITHOUT NOTICE                    |         | MTK CONFIDËNTIAL, NO DISCLOSURE                                                                                     |
| Item   | Symbol           | Pin#                                       | Туре    | Description 2                                                                                                       |
|        |                  |                                            | DIG     |                                                                                                                     |
|        |                  |                                            | Power/G | round (45)                                                                                                          |
| 1      | CVCC18           | 12,24,3 <b>6</b> ,4 <b>5</b> ,66,81,112,12 |         | round (45)  Digital Logic 1.8V power  Digital Logic ground                                                          |
| 2      | CGND18           | 13,25,37,65,80,113,126                     | I I     | Digital Logic ground                                                                                                |
| 3      | IOVCC33          | 7,19,31,68,77,98,107,120                   |         | Input/Output Rin 3.3V power                                                                                         |
| 4      | IOGND33          | 6,18,30,69,78,97,106,118                   |         | input/⊙utput Pin ground                                                                                             |
| 5      | AVCC             | 49,53,57,61                                |         | TMDS Analog 3.3V power                                                                                              |
| 6      | AGND             | 52,56,60,64                                | I       | TMDS Analog ground                                                                                                  |
| 7      | PVCC             | 47                                         | 1       | TMDS PLL 3.3V power                                                                                                 |
| 8      | PGND             | 46                                         | I       | TMDS PLL ground                                                                                                     |
| 9      | AUDPVCC18        | 82                                         | I #     | TMDS PLL ground  ACR PLL ground  ACR PLL ground                                                                     |
| 10     | AUDPGND          | 83                                         | 1       | ACR PLU ground                                                                                                      |
| 11     | XTALVCC          | 86                                         |         | TMDS PLL ground  ACR PLL 1.8V power  ACR PLL ground  ACR PLL crystal input 3.3V power  ACR PLL regulator 3.3V power |
| 12     | REGVCC           | 87                                         | l l     | 3) 201 201 201 201 201 201 201 201 201 201                                                                          |
|        |                  |                                            |         | rogramming (20)                                                                                                     |
| 1      | INT              | 91                                         | О       | Interrupt output                                                                                                    |
| 2      | RESET#           | 91<br>89<br>42                             |         | Reset Pin. Active low                                                                                               |
| 3      | DSCL             | 42                                         |         | DDC I2C clock, 5V tolerance                                                                                         |
| 4      | DSDA             | 41                                         | I/O     | DDC I2C data, 5V tolerance                                                                                          |
| 5      | CSCL             | <b>4</b> 0                                 | - H     | Configuration I2C clock                                                                                             |
| 6      | CSDA             | 39                                         | I/O.    | Configuration I2C data                                                                                              |
| 7      | KSCL             | 11                                         | 0       | KEYS EERPOM I2C clock                                                                                               |
| 8      | KSDA             | 10                                         |         | KEYS EEPROM 126 data                                                                                                |
| 9      | KWP              | 9                                          | 0       | KEYS EEPROM write protect                                                                                           |
| 10     | SCDT             | 90                                         | 0       | Indicates active video at HDMI input port                                                                           |
| 11     | CISCA            | 38                                         | I       | I2C device address select                                                                                           |





MTK CONFIDENTIAL, NO DISCLOSURE

| Item | Symbol | Pin#                        | Туре       | Description                                           |
|------|--------|-----------------------------|------------|-------------------------------------------------------|
| 12   | PWR5V  | 44                          | l          | TMDS port transmitter detect (hot:plug), 5V tolerance |
| 13   | RSVDL  | 88<br>48                    |            | Must be tied low                                      |
| 14   | RSVD   | 1999 <del>[4]</del> (2) (4) | 0          |                                                       |
| 15   | NC     | 43                          | - 44       | No connect                                            |
| 16   | NC     | 8.5<br>4                    | - 7        | No connect                                            |
| 17   | OSC_IN | 3                           |            | Oscillator input, External in                         |
| 18   | SOG_IN | 3                           | l          | SOG input, External AD                                |
| 19   | CEN    | 2                           | 0          | Clock enable, for 8202 CEN input                      |
|      |        | Dig                         | ital Audio | o Interface (9)                                       |
| 1    | MCLK   | 79                          | I/Q /      | Audio master clock input reference                    |
| 2    | SCK    | 76                          | O          | I2S serial clock output                               |
| 3    | ws     | 75                          | 0 0        | I2S word select output                                |
| 4    | SD0    | 74                          | O          | I2S serial data output                                |
| 5    | SD1    | 73                          | 0          | I2S serial data output                                |
| 6    | SD2    | 72                          | 0          | I2S serial data output                                |
| 7    | SD3    | 71                          | 0          | I2S serial data output  S/PDIF audio output           |
| 8    | SPDIF  |                             |            | S/PDIF audio output                                   |
| 9    | MUTE   | 67                          |            | Mute audio output                                     |
|      |        |                             | GPIO Inte  | arface (16)                                           |
| 1    |        | 35                          | I/O        | <b>GP</b> O                                           |
| 2    | GPIO1  | 35                          |            | GPIO                                                  |
| 3    | GPIO2  | 33                          | I/O        | GPIO                                                  |



MT8**2**93

PRELIMINARY, SUBJECT TO CHANGE WITHOUT NOTICE

MTK CONFIDENTIAL, NO DISCLOSURE

| Item | Symbol | Pin#              | Туре     | Description                                       |
|------|--------|-------------------|----------|---------------------------------------------------|
| 4    | GPIO3  | 32                | I/O      | GPIO A                                            |
| 5    | GPIO4  | 29                | I/O      | GPIO  GPIO  GPIO                                  |
| 6    | GPIO5  | 29<br>28          | I/O      | GPIO GPIO                                         |
| 7    | GPIO6  | 27                | I/O      |                                                   |
| 8    | GPIO7  | 26                | I/O      | GPIO                                              |
| 9    | GPIO8  | 23                | I/O      | GPIO                                              |
| 10   | GPIO9  | 22                | I/O      | GPIO GPIO GPIO GPIO                               |
| 11   | GPIO10 | 21                | I/O      | GPIO GPIO GPIO GPIO GPIO                          |
| 12   | GPIO11 | 20                | I/O      | GPIO B                                            |
| 13   | GPIO12 | 17                | 1/0      | GPIO /                                            |
| 14   | GPIO13 | 6                 | 1/0      | GPIO GPIO                                         |
| 15   | GPIO14 |                   | I/O      | GPIO                                              |
| 16   | GPIO15 |                   | I/O      | GPIO                                              |
|      | a<br>a |                   | TTL Inte | rface (28)                                        |
| 1    | DE     | 127               | 0        | Data enable                                       |
| 2    | VSYNC  | 1                 | O        | Vertical sync  Herizontal sync  Qutput data clock |
| 3    | HSYNC  | 128               | Q        | Herizontal sync                                   |
| 4    | ODCK   | 119<br>124<br>123 | o.       |                                                   |
| 5    |        | 124<br>123<br>122 | 0 6      | 24-bit Even pixel                                 |
| 6    | QE1    | 123               | 9        | 24-bit Even pixel                                 |
| 7    | QE2    | 122               | 0        | 24-bit Even pixel                                 |





MTK CONFIDENTIAL, NO DISCLOSURE

| Item | Symbol | Pin #                    | Туре        | Description                                                                |
|------|--------|--------------------------|-------------|----------------------------------------------------------------------------|
| 8    | QE3    | 121                      | 0           | 24-bit Even pixel                                                          |
| 9    | QE4    | 117                      | О           | 24-bit Even pixel  24-bit Even pixel  24-bit Even pixel                    |
| 10   | QE5    | 116                      | 0           | 24-bit Even pixel                                                          |
| 11   | QE6    | 115<br>114<br>111<br>110 | 0           |                                                                            |
| 12   | QE7    | 114                      | O.          | 24-bit Even pixel                                                          |
| 13   | QE8    | 111                      | l lib       | 24-bit Even pixel                                                          |
| 14   | QE9    | 110                      | 0           | 24-bit Even pixel                                                          |
| 15   | QE10   | 109                      | 0           | 24-bit Even pixel 24-bit Even pixel 24-bit Even pixel                      |
| 16   | QE11   | 108                      | 0           | 24-bit Even pixel  24-bit Even pixel  24-bit Even pixel  24-bit Even pixel |
| 17   | QE12   | 105                      | О           | 24-bit Even pixel                                                          |
| 18   | QE13   | 104                      | 1 20 THE S  | 24-bit Even pixel                                                          |
| 19   | QE14   | 103                      | 0 0         | 24-bit Even pixel                                                          |
| 20   | QE15   | 103                      | Ø           | 24-bit Even pixel                                                          |
| 21   | QE16   | 01                       | 0           | 24-bit Even pixel                                                          |
| 22   | QE17   | 100                      | 0           | 24-bit Even pixel                                                          |
| 23   | QE18   | 99<br>acien              | )           | 24-bit Even pixel  24-bit Even pixel  24-bit Even pixel                    |
| 24   | QE19   | 96                       | O           | 24-bij Even pixel                                                          |
| 25   | QE20   | 95                       |             | 24-bit Even pixel 24-bit Even pixel 24-bit Even pixel                      |
| 26   | QE21   | 95                       | 0           | 24-bit Even pixel 24-bit Even pixel 24-bit Even pixel                      |
| 27   | QE22   |                          | O.          | 24-bit Even pixel                                                          |
| 28   | QE23   | 92                       | 0           | 24-bit Even pixel                                                          |
|      | 20,00  |                          | ··········· |                                                                            |





Walked and a second sec

OCOCHANICA MANAGEMENTO CONTRACTO CON

MTK CONFIDENTIAL, NO DISCLOSURE

| PRELIM  | INARY, SUBJECT I    | O CHANGE WITHOUT NOTICE |      | MTK CONFIDENTIAL, NO DISCLO                                      |  |  |  |
|---------|---------------------|-------------------------|------|------------------------------------------------------------------|--|--|--|
| 140,000 | Comphal             | D:- #                   | T =  |                                                                  |  |  |  |
| Item    | Symbol              | Pin #                   | Туре | Description                                                      |  |  |  |
|         |                     |                         |      | .OG (8)                                                          |  |  |  |
|         | Differential signal |                         |      |                                                                  |  |  |  |
| 1       | RXC+                | 51                      |      | tial signal  TMDS input clock pair  TMDS input clock pair        |  |  |  |
| 1       | RXC-                | 50                      |      | a MDS Iliput clockpail                                           |  |  |  |
| 1       | RX0                 | 55 /                    | I a  | i wigo inbut data panger                                         |  |  |  |
| 1       | RX0                 | 54                      |      | TMDS input data pair                                             |  |  |  |
| 1       | RX1                 | 54<br>59                | ı    | TMDS input data pair                                             |  |  |  |
| 1       | RX1                 | 58                      | ı    | TMDS input data pair                                             |  |  |  |
| 1       | RX2                 | 63                      | I    | TMDS input data pair  TMDS input data pair  TMDS input data pair |  |  |  |
| 1       | RX2                 | 62                      | 1    | TMDS input data pair TMDS input data pair                        |  |  |  |
|         |                     |                         | PLLg | roup(2)                                                          |  |  |  |
| 68      | XTALIN              | 85                      |      | Crystat Input PAD                                                |  |  |  |
| 69      | XTALOUT             | 84                      | O    | Crystal output PAD                                               |  |  |  |

WESTERN.

Werdsterrend the contraction of the contraction.

White the second second





MT8202

# HDTV-Ready LCD TV Chip

Specifications are subject to change without notice,

MT8202 is a highly integrated single chip for LCD TV supporting video input and output format up to HDTV. It includes 3D comb filter TV decoder to retrieve the best image from popular composite signals. Embedded HDTV/VGA decoders let the high bandwidth input signals perfectly reproduced. 24/16/8 bits digital port may accept all kinds of external digital input video source. New 2nd generation advanced motion adaptive de-interlacer converts accordingly the interlace video into progressive one with overlay of a 2D Graphic processor. Advanced full function color processing with fully 10-bit path provides high quality video contents. Independent two Flexible scalers provide wide adoption to various LCD panels for two of different video sources at the same time. Its on-chip audio processor decodes analog signals from tuner with lip sync control, delivering high quality post-processed sound effect to customers. On-chip microprocessor reduces the system BOM and shortens the schedule of Ul design by high level C program. MT8202 is a cost-effective and high performance HDTV ready solution to LCD TV manufactures.

#### **FEATURES**

#### Video Input

- Support fully programmable 8 Composite/SV input pins
- Support 2 Component inputs with SDTV format & HDTV 480p/720p/1080i format
- Support 1 VGA input up to SXGA (1280x1024x75Hz) including SOG signals
- Support DVI 24-bit RGB digital input
- Support CCIR 656/601 digital input

#### TV decoder

- Full 10-bit data path to enhance the video resolution and reduce digital trungation ergres
- Support PAL (B, C, D, H, M, N, I, Nc) PAL (Nc), PAL, NTSC, NTSC 4.43 SECAM
- Automatic Luma/Chroma gain control

#### Automatic TV standard detection

- 2nd generation NTSC/PAL Motion Adaptive 3D comb filter with huge improvement
- Motion Adaptive 3D Noise Reduction
- VBI decoder for Closed-Caption/XDS/ Teletext/WSS/VPS
- High speed advanced Teletext/Closed-Caption drawing engine directly on OSD plane
- Macrovision detection
- Adjustable norizontal delay for combination of SCART Composite/RCB input

#### Video Processor

- Fully 10-bit processing to enhance the video quality
- Advanced lesh tone and color processing
- Gamma/anti-Gamma correction
- Advanced Color Transient Improvement (CTI)
- 2D Peaking 3
- Advanced horizontal/vertical sharpness
- Saturation/hue adjustment
- Brightness and contrast adjustment
- Black level extender
- White peak level limiter
- Adaptive Luma/Chroma management
- Automatic detect film or video source
- 3:2/2:2 pull down source detection
- 2<sup>nd</sup> generation Advanced Motion adaptive de-interlacing
- Arbitrary ratio vertical/horizontal scaling of video, from 1/32X to 32X
- Advanced linear and non-linear Panorama scaling
- Programmable Zoom viewer
- Progressive scan output
- Picture-in-Picture (PIP)
- Picture-Out-Picture (POP)
- Advanced dithering processing for LCD display with 6/8/10 bit output
- Frame rate conversion, 50Hz to 75Hz

#### Audio DSP

- Support BTSC/EIAJ/A2/NICAM decode
- Stereo demodulation, SAP demodulation





MTK CONFIDENTIAL, NO DISCLOSURE

- Noise reduction
- Mode selection (Main/SAP/Stereo)
- Pink noise and white noise generator
- Equalizer
- Sub-woofer/Bass enhancement
- Noise auto mute
- 3D surround processing include virtual surround
- Audio and video lip synchronization
- Support Reverberation

#### Audio Input/Output

- Decode audio AF from Tuner
- 2 channel audio L/R digital line in
- 7.1-channel slave digital line in
- Including full 7.1-channels digital output, 2channel bypass and 2-channel headphone output
- Embedded 3 internal DAC output

#### DRAM Controller

- Supports up to 32M-byte SDR/DDR DRAM
- Supports 2x16 bit SDR/DDR bus interfaces
- Build in a DRAM interface programmable clock to optimize the DRAM performance
- Programmable DRAM access cycle and refresh cycle timings
- Support 3.3/2.5-Volt SDR/DDR Interface

#### ■ Video Output

- TV pattern generator for testing
- Interlaced 50Hz to 120Hz
- Support up to 1366 horizontal points
- 6/8/10-bit single channel or 6/8/10-bit dual channel LVDS output
- Support video gutput mirror and upside down
- 2D-Graphic/3 OSD processor

- Embedded Two backend RGB domain OSD planes and one YUV domain QSD
- Support Text/Bitmap decoder
- Support ine/rectangle/gradient fill
- Support bitblt
- Support color Key function
- Support Clip Mask
- Support Alpha blending with video output
- 65535/256/16/4/2-color bitmap format OSD,
- Automatic vertical scrolling of OSD image
- Support OSD mirror and upside down

#### Host Micro controller

- Turbo 8032 micro controller
- Built-in internal 373 and 8-bit programmable lower address\_port
- 2048-bytes on-chip RAM
- Up to 4M bytes FLASH-programming interface
- Supports 5/3.3-Volt. FLASH interface
- Supports power-down mode
- Supports additional serial port
- IR control serial input
- Support 2 RS232 interface for external source confimunication
- Support 2 PWM output
- Support DDC2Bi/DDC2B/DDC1/DDCCI
- Programmable GPIO setting for complex external device control

#### Outline

- 388-pin BGA package
- Lead Free
- 3.3/2.5/1.8-Volt operating voltages
- 0.18um process



MTK CONFIDENTIAL, NO DISCLOSURE

#### **BLOCK DIGRAM**



#### **Analog Switch**

Analog switches are built in MT8202 to connect to 17 input signals and there is need to add external components to add analog video multiplexes on board.

There are 9 high-speed differential input pairs for 3 sets of YPRPB/VGA input signals.

The 8 Composite/S signal input pins can be fully programmed to connect to any AV/SV inputs.

#### **ADC/ Source Select**

The video ADC sample analog input signals. After ADC all signal processing is digital domain. The source select multiplex all inputs from digital and analog video ports and route them into data path.

#### **Audio Interface**

Audio interface accept analog audio signal from Tuner, e.g. AF. It also includes preprocessing circuit to filter the noisy audio signals. Audio decoder will decode the B TSC or NCAM, and opitput best sound with enhanced 3D surround post-processing.

Embedded 7.1 channel digital audio input (slave) and 2 channels (master) digital audio inputs.

Embedded 3 high performance audio DACs

#### DSP



MTK CONFIDENTIAL, NO DISCLOSURE

DSP handle audio decoding as well as computing intensive jobs. The downloadable micro code enables last function convergence for various audio standards in the world.

Advanced DSP engine supports full functions of sound effects.

#### MDDi/Scaler

MDDi is MTK proprietary desinterlaging technology, 2<sup>nd</sup> generation MDDi solution provides improved low angle processing and more accurate motion detection for all interlace sources. The techniques reduce jagged edges and broken images. The MDDi engine supports both Main and Sub channel SDTV inputs or one channel 1080 high quality de-interlacing.

Two totally independent scaler support full functions of PIP/POP and frame rate conversion.

With MDDi and high quality scaler, MT8202 guarantee all input format could be translated to output format with best video quality for motion and still pictures.

#### Color/Gamma

MT8202 includes advanced color management function to allow user to improve video quality with fully flexibility. With contrast/hue/saturation/Gamma/anti-Gamma/flesh tone function, MT8202 deliver the best video quality with vivid color.

Advanced dither function support 6/8/10-bit video output for any kinds of display wiit (LCD REDP, CRT)

#### 8032

On-chip Turbo8032 provide the most cost effective development environment for system house Well-proven F/W could speed up the system design significantly.

#### 2D-G/OSD

On-chip graphic engine draw bitmap OSD and store them into DRAM OSD read data from DRAM and display on screen. With 2D-G and OSD. The computing power requirement of  $\mu$  P will be minimized.

One YUV space OSD added to support Main/PIP Telefext/Close-caption functions.





MT5351

## DTV Backend Decoder SOC

Specifications are subject to change without notice.

**MediaTek MT5351** is a DTV Backend Decoder SOC which support flexible transport demux, HD MPEG-2 video decoder, JPEG decoder, MPEG1,2, MP3, AC3 audio decoder, HD TV encoder. The MT5351 enables consumer electronics manufactures to build high quality, feature-rich DTV, STB or other home entertainment audio/video device.

**World-Leading Technology:** HW support worldwide major broadcast network and CA standards, include ATSC, DVB, OpenCable, DirectTV, MHP.

**Rich Feature for high value product:** To enrich the feature of DTV, the MT5351 support 1394-56 component to external DVHS. Dual display, PIP/POP and quad pictures provide user a whole new viewing experience.

**Credible Audio/Video Quality:** The MT5351 use advanced motion adaptive de-interlace algorithm to achieve the best movie/video playback, The embedded 4X over-sample video DAC could generate very fine display quality. Also, the audio 3D surround and equalizer provide professional entertainment



# Key Features:

- 1. Flexible Demuxer
- 2. Dual HD MPEG2 Video Decoder
- 3 Dual MPEG1,2, MP3, AC3 Audio decode
- 4. Dual Display
- 5. PIP/POP/Quad Mode
- 6. IEEE1394-5C
- 7. POD/DVB-CI

# Application:

- 1. DTV
- 2. Set-top Box
- 3. DTV Recorder
- 4. Home Media Center

#### Order Information:

MT5351AG → one HD decoder MT5351CG → two HD decoder All Package are Lead Free



LLLLL

DDDD Date Code
#: Subcontractor Code
LLLL: Lot Number

MTK CONFIDENTIAL, NO DISCLOSURE

#### **General Feature List**

#### ■ Host CPU

- ARM 926EJ
- 16K I-Cache and 16K D-Cache
- 8K Data TCM and 8K Instruction TCM
- JTAG ICE interface
- Watch Dog timers

#### ■ Transport Demuxer

- Support 3 independent transport stream inputs
- Support serial / parallel interface for each transport stream input.
- Support ATSC DVB, and MPEG2 transport stream inputs
- Programmable sync detection.
- Support DES/3-DES de-scramble
- 96 PID filter and 128 section filters.
- Support TS recording via IEEE1394 interface

#### ■ MPEG2 Decoder

- Support dual MPEG 2 HD decoder or up to 8 SD decoder
- Complaint to MP@ML, MP@HL and MPEG-1 video standards

#### ■ JPEG Decoder

Decode Base-line or progressive JPEG file

#### 2D Graphics

- Support multiple color modes
- Point, horizontal /vertical line primitive drawing
- Rectangle fill and gradient fill functions
- Bitblt with transparent, alpha blending, alpha composition and stretch
- Font rendering by color expansion
- Support clip masks
- YCbCr to RGB color space transfer

#### OSD Display

- 3 linking list OSDs with multiple color mode
- OSD scaling with arbitrary ratio from 1/2x to 2x
- Square size, 32x32 or 64x64 pixel hardware cursor

#### ■ Video Processing

Advanced Motion adaptive de-interlace on SDTV resolution

- Support dip
- 3:2/2=2 pell down source detection
- Arbitrary ratio vertical/horizontal scaling of video, from 1/15X to 16X
- Support Edge preserve
- Support horizontal edge enhancement
- Support Quad-Picture

#### Main Display

- Mixing two video and three OSD and hardware cursor
- Contrast/Brightness adjustment
- Gamma correction
- Picture-in-Picture (PIP)
- Picture-Out Picture (POP)
- 480i/576i/480p/576p/720p/1080i output

#### Auxiliary Display

- Mixing one video and one OSD
- 480i/576i output

#### TV Encoder

- Support NTSC M/N, PAL M/N/B/D/G/H/I
  - Macrovision Rev 7.1.L1
  - CGMS/WSS
  - Closed Captioning
  - Six12-bit video DACs for CVBS, S-video or RGB/YPbPr output

#### ■ Digital Video Interface

- Support SAV/EAV
- Support 8/16 for SD/HD digital video input
- Support 8/16/24 bits digital output for main display
- Support 8 bits digital output for aux display

#### ■ DRAM Controller

- Supports 64Mb to 1€b DDR DRAM devices
- Configurable 32/64 bit data bus interface
- Support DDR266, DDR333, DDR400 JEDEC specification compliant SDRAM

#### Peripheral Bus Interface

- Support NOR/NAND flash
- Support CableCard host control bus

#### Audio





MTK CONFIDENTIAL, NO DISCLOSURE

- Support Dolby Digital AC-3 decoding
- MPEG-1 layer I/II, MP3 decoding
- Dolby prologic II
- Main audio output: 5.1ch + 2ch (down mix)
- Auxiliary audio output: 2ch
- Pink noise and white noise generator
- Equalizer
- Bass management
- 3D surround processing include virtual surround
- Audio and video lip synchronization
- Support reverberation
- SPDIF out
- 12S I/F

Peripherals

- Three UARTs with Tx and Rx EIFO, two of them have hardware flow control
- Two serial interfaces, one is master only, the other can be set to master mode or slave mode
- Two PWMs
- IR blaster and receiver
- IR blaster and receiver
  IEEE 1394 link controller
  IDE pus ATA/ATAPI7 UDMA mode 5, 100 MB/s
- Real-time clock and watchdog controller
- Memory card I/F: MS/MS-Pro, SD, CF, and MMC
- PCMCIA/POD/CI interface

#### IC Outline

- 471 Pin BGA Package
- 3.3V/1.2V dual Voltage







MTK CONFIDENTIAL, NO DISCLOSURE

## **Electrical Characteristics**

**Absolute Maximum Rating** 

| Symbol                              | Parameters Value Value                                                                                                     | Unit |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------|
| IOVDD                               |                                                                                                                            | V    |
| IOVDD<br>CVDD                       | 3.3V supply voltage  1.2V supply voltage  40.5 to 4.6  20.5 to 1.8  Analog supply voltage  DDR supply voltage  -0.5 to 3.5 | V    |
| AVDD                                | Analog supply voltage #-0.5 to 4.6                                                                                         | V    |
| RVDD                                | DDR supply voltage -0.5 to 3.5 Input Voltage(3.3 V IO) VSS-1.0 to 3.63                                                     | V    |
|                                     | Input Voltage(3.3V IO) VSS-1.0 to 3.63                                                                                     | V    |
| VIN(3.3V) VIN(5V tolerance) Vout Ts | Input Voltage(5V tolerance IO) VSS-1.0 to 55                                                                               | V    |
| Vout                                | Output Voltage -0.3 to VDD3+0.3                                                                                            | V    |
| Vout<br>Ts                          | Storage Temperature 40 to 150                                                                                              | С    |
| Ta                                  | Storage Temperature 40 to 150 Ambient Temperature 0 to 70                                                                  | С    |
|                                     |                                                                                                                            |      |
|                                     |                                                                                                                            |      |
| DC Characteristic                   |                                                                                                                            |      |

# **DC Characteristics**

| 20 Ollara    |                                                                                                                                                                                                                    |                       |         | 414                |      |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|--------------------|------|
| Symbol       | Parameters                                                                                                                                                                                                         | Min                   | Тур     | Max                | Unit |
| IOVDD        | 3.3 V supply voltage 1.2 V supply voltage                                                                                                                                                                          | 2.97 <b>J</b><br>1.08 | 3.3     | √ <sup>3</sup> .63 | V    |
| CVDD         | 1.2V supply voltage                                                                                                                                                                                                | <b>1</b> .08          | 1.2     | 1.32               | V    |
| AVDD         | 1.2V supply voltage Analog supply voltage                                                                                                                                                                          | 2.97                  | 3.3     | 3.63               | V    |
| VIH(3.3V)    | 3.3V input voltage high                                                                                                                                                                                            | 2.0                   |         |                    | V    |
| VIL(3.3V)    | 3.3V input voltage low                                                                                                                                                                                             |                       |         | 0.8                | V    |
| VOH(3.3V)    | 3.3V output voltage high                                                                                                                                                                                           | 2.4                   | . A. A. |                    |      |
| VOL(3.3V)    | 3.3V output voltage low 3/5V tolerance input voltage high 3/5V tolerance output voltage high 3/5V tolerance output voltage high 3/5V tolerance output voltage low Junction operation temperature Power dissapation |                       |         | 0.4                |      |
| VIH(3/5V)    | 3/5V tolerance input voltage high                                                                                                                                                                                  | 2.0                   |         |                    | V    |
| VIL(3/5V)    | 3/5V tolerance input voltage low                                                                                                                                                                                   |                       | 25      | 0.8                | V    |
| VOH(3/5V)    | 3/5V tolerance output voltage high                                                                                                                                                                                 | 2.4                   |         | V.o                | V    |
| VOL(3/5V)    | 3/5V tolerance output voltage low                                                                                                                                                                                  | 2.4                   | ## W    | 0.4                | V    |
| Tj           | Junction operation temperature                                                                                                                                                                                     | -40                   | 25      | 125                | C    |
| PD(estimate) | Power dissapation                                                                                                                                                                                                  |                       | 1.5     |                    | W    |
| Pdown        | Power down mode                                                                                                                                                                                                    | **                    | 2       |                    | mW   |
|              |                                                                                                                                                                                                                    |                       |         | -                  |      |





MTK CONFIDENTIAL, NO DISCLOSURE

DDR ELECTRICAL Characteristics and DC Operating Condiction

| Symbol      | Parameters                                   | Min 🌲            | Тур      | Max                | Unit |
|-------------|----------------------------------------------|------------------|----------|--------------------|------|
| RVDD(DDR333 | ) DDR I/O supply voltage for DDR266          | 2.3              | 2.5      | 2.75               | V    |
|             | or DDR333                                    |                  |          | 2.7                |      |
| RVDD(DDR400 | ) DDR I/O supply voltage for DDR400          | 2.5<br>0.49*RVDD | 2.6      | 2.7<br>0 0.51*RVDD | V    |
| DVREF       | DDR I/O reference voltage                    |                  | 0.5*RVDD | 0.51*RVDD          | V    |
| VTT         | DDR I/O termination voltage                  | VREF-0.04        | VREF     | VREF+0.04          | V    |
| VIH         | DDR input voltage high                       | VREF+0.15        |          | RVDD+0.3           | V    |
| VIL         | DDR input voltage high DDR input voltage low | -0.3             |          | VREF-0.15          | V    |

DDR AC Operating Condiction

|        |                                             | 172   |                                  |       |
|--------|---------------------------------------------|-------|----------------------------------|-------|
| Symbol | Parameters                                  | ∉ Min | Тур Мах                          | Unit  |
| VIH    | Input high voltage, DQ DQS                  | DVREF | #0.31<br>DVREF-0                 | V     |
| VIL    | Input low voltage, DQ DQS                   |       | <b>‡</b> 0.31 <b>DVREF-0</b> 1.5 | .31 V |
| Vslew  | Input minimum slew rate Input maximum swing | 1.0   |                                  | V/ns  |
| Vswing | Input maximum swing                         |       | 1.5                              | V     |
|        |                                             |       |                                  |       |

# Digital Power Amplifier R2S15102NP

# 10Wx2ch(SE)/20Wx1ch(BTL) Digital Audio Power Amplifier

#### 1.Outline

R2S15102NP is a Digital Power Amplifier IC developed for TV. R2S15102NP can realize maximum Power 10W  $\times$  2ch (VD = 24V,THD = 10%, SE) at 8  $\Omega$  load.

It is possible to replace from the conventional analog amplifier system to the digital amplifier system easily.

#### 2.Feature

High Output Power(THD=10%)without external Heat Sink (note) the thermal pad is soldered the thermal pad with the printed-circuit board directly.

Recommanded Power Condition

SE operation mode :10Wx2ch(VD=24V) at 8  $\Omega$  BTL operation mode: 20Wx1ch(VD=18V) at 8  $\Omega$ 

The RENESAS original circuits realize high power efficiency, low noise and low distortion characteristics.

Pop sound Less

Built-in protection function

(Over Current, Over Temperature and Under Voltage)

Built-in Mute and Stand-by function



# 3.Operating Condition

Recommanded Power supply voltage: from 11V to 25V Recommanded Speaker Impedance: from 4 to  $8\Omega$ 

### 4.Block Diagram



# Digital Power Amplifier R2S15102NP

# **5** . Pin Configuration(Table.1)

| No. | NAME  | I/O | Description                                                                                                        |                                                          |  |
|-----|-------|-----|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|
| 1   | OUT1  | О   | Power Output pin #1                                                                                                |                                                          |  |
| 2   | VD1   | -   | Power supply pin for power output stage #2                                                                         |                                                          |  |
| 3   | STBYL | I   | Stand-by control pin. When this is "L", circuit current is reduced. There is the pull-down resistor: 50Kohm(typ.). |                                                          |  |
| 4   | PWM1  | I   | PWM input pin                                                                                                      | #1 ( for phase compensation)                             |  |
| 5   | IN1   | I   | Analog input #1. The gain is depended on the external resistance.                                                  |                                                          |  |
| 6   | CBIAS | I/O | A capacitor is connected so that it may not be influenced of power supply change(Ripple Filter).                   |                                                          |  |
| 7   | ROSC  | I   | Control pin for PWM carrier frequency                                                                              |                                                          |  |
| 8   | GND   | ı   | GND pin for analog block                                                                                           |                                                          |  |
| 9   | VREF  | I/O | Capacitor connection pin for analog block reference voltage source                                                 |                                                          |  |
| 10  | PROT  | О   | Protection Timer pin. At protection mode, the output becomes "L"-level.                                            |                                                          |  |
|     |       |     | (The timing capacitor is connected)                                                                                |                                                          |  |
| 11  | IN2   | I   | SE operation                                                                                                       | Analog input #2(as same as IN1)                          |  |
|     |       | I   | BTL operation                                                                                                      | When this is connected to DVDD pin via                   |  |
|     |       |     |                                                                                                                    | the resister, Reversed signal of OUT1 is output to OUT2. |  |
| 12  | PWM2  | I   | PWM input pin#2 ( for phase compensation)                                                                          |                                                          |  |
| 13  | MUTEL | I   | Mute control pin. When this is "L", it becomes mute status.                                                        |                                                          |  |
| 14  | VD2   | ı   | Power supply pin for power output stage #2                                                                         |                                                          |  |
| 15  | OUT2  | O   | Power Output pin #2                                                                                                |                                                          |  |
| 16  | VS2   | -   | Ground pin for power output stage #2                                                                               |                                                          |  |
| 17  | HB2   | I/O | Capacitor connection pin for bootstrap                                                                             |                                                          |  |
| 18  | DVDD  | О   | Built-in power supply pin for internal digital block.                                                              |                                                          |  |
| 19  | HB1   | I/O | Capacitor connection pin for bootstrap #1                                                                          |                                                          |  |
| 20  | VS1   | ı   | Ground pin for power output stage #1                                                                               |                                                          |  |

# Digital Power Amplifier R2S15102NP

# 6 . Absolute Maximum Rating(Table.2)

| Symbol | Parameter                     | Condition            | Value     | Unit |
|--------|-------------------------------|----------------------|-----------|------|
| VD max | Maximum VD Voltage            | VD1,VD2 pin voltage  | 27        | V    |
| HB max | Maximum HB Voltage            | HB1, HB2 pin voltage | 40        | V    |
| Pd     | Power dispassion              | Ta = 25°C :See Fig.3 | 4.2       | W    |
| ja     | Thermal Resistance            | See Fig.3            | 30        | /W   |
| Tj     | Junction temperature          | Maximum Temperature  | 150       |      |
| Та     | Operating ambient temperature | Temperature range    | -20 ~ 75  |      |
| Tstg   | Storage temperature           | Temperature range    | -40 ~ 150 |      |

Fig.3 Thermal De-rating(on PCB: printed-circuit board ): Size 75mm x 75mm



(NOTE)

# PCB pattern design for high effective thermal conductivity

(1) The exposed die pad is directly soldered with the printed-circuit board pattern .



# Consideration about the PCB design

The Power dispassion at 10Wx2ch(SE) or 20Wx1ch(BTL) is estimated almost 2W. It has enough margin, designing the PCB at ja=30 /W.

# (1)PCB basic design (copper plane)



<PCB size estimation >

10Wx2ch: 75mm x 75mm



The GND&Power line total area size is also equal to the above GND&Power line total area size of the 4layer PCB.

<PCB size estimation >

10Wx2ch: (75+ )mm x (75+ ) mm

# (2)PCB Thermal Pad

The exposed die pad is directly soldered with the printed-circuit board pattern .



# 7. Recommended Operating condition(Table.3)

| Symbol | Parameter                     | Condition           | MIN | TYP | MAX | Unit |
|--------|-------------------------------|---------------------|-----|-----|-----|------|
| VD     | Supply Voltage                | VD1,VD2 pin voltage | 11  | -   | 25  | V    |
| VH     | Control voltage of high level | STBYL, MUTEL        | 2   | -   | 5   | V    |
| VL     | Control voltage of low level  | STBYL, MUTEL        | 0   | -   | 0.8 | V    |
| fosc   | Carrier Frequency             | R= 33 k             | 300 | 400 | 600 | kHz  |

(note) · STBYL: High level:normal operation Low level:Stand-by

· MUTEL:High level:normal operation Low level:Mute

· The carrier frequency can be changed by the resistance at Pin#.7 .

# 8 . Electronic Characteristics(Table.4)

(Unless otherwise noted, Ta=25°C, VD=24V, Carrier Frequency=400kHz, f=1kHz,SE operation)

| Symbol | Parameter                  |        | Condition                | MIN | TYP   | MA<br>X | Unit      |
|--------|----------------------------|--------|--------------------------|-----|-------|---------|-----------|
| IVD    | Circuit Current            |        | No Signal                | TBD | 28    | TBD     | mA        |
|        |                            |        | MUTE                     | TBD | -     | TBD     | mA        |
|        |                            |        | Stand-by                 | -   | -     | 10      | uA        |
| VDPR   | Detection Vol              | tage   | VD under-voltage         | TBD | 9.8   | TBD     | V         |
| TPR    | Protection Temperature     |        | Thermal Shut-dawn        | -   | 150   | -       |           |
| TRL    | Release Temperature        |        | Thermal Shut-dawn        | -   | 120   | -       |           |
| IPR    | Protection Current         |        | Output over-current      | -   | 6     | -       | A         |
| Pomax  | Pomax Maximum a output     |        | THD=10%, VD=24V, RL=8    | TBD | 10    | -       | W/ch      |
|        | power                      | at BTL | THD=10%, VD=18V,<br>RL=8 | TBD | 20    | -       | W         |
| THD    | Total Harmon<br>Distortion | ic     | Po=1W                    | -   | 0.1   | TBD     | %         |
| No     | Output Noise level         |        | A-Weighted filter        | -   | (100) | TBD     | uVrm<br>s |
| Eff    | Power                      | at SE  | Po=10+10W                | TBD | 93    | ı       | %         |
|        | Efficiency                 | at BTL | Po=20W                   | TBD | 89    | -       | %         |
| Mute   | Mute Attenuation           |        |                          | TBD | 80    | ı       | dB        |
| PSRR   | Ripple Rejec<br>Ratio      | tion   | dVD=100mVrms,f=100<br>Hz | TBD | 50    | -       | dB        |

# 9 . Application Examples

# Fig.4 SE operation mode(10Wx2ch)

#### (note)

"R for GND" 's are for the evaluation only and not needed actually.



Fig.5 BTL operation mode (20W)





Fig.7 BTL operation mode without output LPF coil





# 24-bit, 192kHz Stereo Codec with 5 Channel I/P Multiplexer

#### DESCRIPTION

The WM8776 is a high performance, stereo audio codec with five channel input selector. The WM8776 is ideal for surround sound processing applications for home hi-fi, DVD-RW and other audio visual equipment.

A stereo 24-bit multi-bit sigma delta ADC is used with a five stereo channel input mixer. Each ADC channel has programmable gain control with automatic level control. Digital audio output word lengths from 16-32 bits and sampling rates from 32kHz to 96kHz are supported.

A stereo 24-bit multi-bit sigma delta DAC is used with digital audio input word lengths from 16-32 bits and sampling rates from 32kHz to 192kHz. The DAC has an input mixer allowing an external analogue signal to be mixed with the DAC signal. There are also Headphone and line outputs, with volume controls for the headphones.

The WM8776 supports fully independent sample rates for the ADC and DAC. The audio data interface supports I<sup>2</sup>S, left justified, right justified and DSP formats.

The device is controlled in software via a 2 or 3 wire serial interface, selected by the MODE pin, which provides access to all features including channel selection, volume controls, mutes, and de-emphasis facilities.

The device is available in a 48-pin TQFP package.

#### **BLOCK DIAGRAM**

#### **FEATURES**

- Audio Performance
  - 108dB SNR ('A' weighted @ 48kHz) DAC
  - 102dB SNR ('A' weighted @ 48kHz) ADC
- DAC Sampling Frequency: 32kHz 192kHz
- ADC Sampling Frequency: 32kHz 96kHz
- Five stereo ADC inputs with analogue gain adjust from +24dB to –21dB in 0.5dB steps
- Programmable Limiter or Automatic Level Control (ALC)
- Stereo DAC with independent analogue and digital volume controls
- · Stereo Headphone and Line Output
- 3-Wire SPI Compatible or 2-Wire Software Serial Control Interface
- Master or Slave Clocking Mode
- Programmable Audio Data Interface Modes
  - I<sup>2</sup>S, Left, Right Justified or DSP
  - 16/20/24/32 bit Word Lengths
- · Analogue Bypass Path Feature
- · Selectable AUX input to the volume controls
- 2.7V to 5.5V Analogue, 2.7V to 3.6V Digital supply Operation

#### **APPLICATIONS**

- Surround Sound AV Processors and Hi-Fi systems
- DVD-RW



WOLFSON MICROELECTRONICS pic

Product Preview, June 2004, Rev 1.91

w::www.wolfsonmicro.com

Copyright ©2004 Wolfson Microelectronics plc

# **PIN CONFIGURATION**



# **ORDERING INFORMATION**

| DEVICE        | TEMPERATURE<br>RANGE | PACKAGE                                   | MOISTURE<br>SENSITIVITY LEVEL | PEAK SOLDERING<br>TEMPERATURE |
|---------------|----------------------|-------------------------------------------|-------------------------------|-------------------------------|
| WM8776EFT/V   | -25 to +85°C         | 48-pin TQFP                               | MSL2                          | 240°C                         |
| WM8776EFT/RV  | -25 to +85°C         | 48-pin TQFP (tape and reel)               | MSL2                          | 240°C                         |
| WM8776SEFT/V  | -25 to +85°C         | 48-pin TQFP<br>(lead free)                | MSL2                          | 260°C                         |
| WM8776SEFT/RV | -25 to +85°C         | 48-pin TQFP<br>(lead free, tape and reel) | MSL2                          | 260°C                         |

Note:

Reel quantity = 2,200



# PIN DESCRIPTION

|          | CRIPTION     | т                                                |                                                                          |
|----------|--------------|--------------------------------------------------|--------------------------------------------------------------------------|
| PIN      | NAME         | TYPE                                             | DESCRIPTION                                                              |
| 1        | AIN2L        | Analogue Input                                   | Channel 2 left input multiplexor virtual ground                          |
| 2        | AIN1R        | Analogue Input                                   | Channel 1 right input multiplexor virtual ground                         |
| 3        | AIN1L        | Analogue Input                                   | Channel 1 left input multiplexor virtual ground                          |
| 4        | DACBCLK      | Digital input/output                             | DAC audio interface bit clock                                            |
| 5        | DACMCLK      | Digital input                                    | Master DAC clock; 256, 384, 512 or 768fs (fs = word clock frequency)     |
| 6        | DIN          | Digital Input                                    | DAC data input                                                           |
| 7        | DACLRC       | Digital input/output                             | DAC left/right word clock                                                |
| 8        | ZFLAGR       | Open Drain output                                | DAC Right Zero Flag output (external pull-up resistor required)          |
| 9        | ZFLAGL       | Open Drain output                                | DAC Left Zero Flag output (external pull-up resistor required)           |
| 10       | ADCBCLK      | Digital input/output                             | ADC audio interface bit clock                                            |
| 11       | ADCMCLK      | Digital input                                    | ADC audio interface master clock                                         |
| 12       | DOUT         | Digital output                                   | ADC data output                                                          |
| 13       | ADCLRC       | Digital input/output                             | ADC left/right word clock                                                |
| 14       | DGND         | Supply                                           | Digital negative supply                                                  |
| 15       | DVDD         | Supply                                           | Digital positive supply                                                  |
| 16       | MODE         | Digital input                                    | Control interface mode select (5V tolerant)                              |
| 17       | CE           | Digital input                                    | Serial interface Latch signal (5V tolerant)                              |
| 18       | DI           | Digital input                                    | Serial interface data (5V tolerant)                                      |
| 19       | CL           | Digital input                                    | Serial interface clock (5V tolerant)                                     |
| 20       | HPOUTL       | Analogue Output                                  | Headphone left channel output                                            |
| 21       | HPGND        | Supply                                           | Headphone negative supply                                                |
| 22       | HPVDD        | Supply                                           | Headphone positive supply                                                |
| 23       | HPOUTR       | Analogue Output                                  | Headphone right channel output                                           |
| 24       | NC           | Not bonded                                       |                                                                          |
| 25       | NC           | Not bonded                                       |                                                                          |
| 26       | VOUTL        | Analogue output                                  | DAC channel left output                                                  |
| 27       | VOUTR        | Analogue output                                  | DAC channel right output                                                 |
| 28       | VMIDDAC      | Analogue output                                  | DAC midrail decoupling pin; 10uF external decoupling                     |
| 29       | DACREFN      | Analogue input                                   | DAC negative reference input                                             |
| 30       | DACREFP      | Analogue input                                   | DAC positive reference input                                             |
| 31       | AUXR         | Analogue input                                   | DAC mixer right channel input                                            |
| 32       | AUXL         | Analogue input                                   | DAC mixer left channel input                                             |
| 33       | VMIDADC      | Analogue Output                                  | ADC midrail divider decoupling pin; 10uF external decoupling             |
| 34       | ADCREFGND    | Supply                                           | ADC negative supply and substrate connection                             |
| 35       | ADCREFP      | Analogue Output                                  | ADC positive reference decoupling pin; 10uF external decoupling          |
| 36<br>37 | AVDD<br>AGND | Supply                                           | Analogue positive supply                                                 |
| 38       | AGND         | Supply Analogue Input                            | Analogue negative supply and subVstrate connection                       |
| 39       | AINOPR       | <del>                                     </del> | Right channel multiplexor virtual ground                                 |
| 40       | AINVGL       | Analogue Output  Analogue Input                  | Right channel multiplexor output                                         |
| 41       | AINOPL       | Analogue Output                                  | Left channel multiplexor virtual ground  Left channel multiplexor output |
| 42       | AIN5R        | Analogue Output  Analogue Input                  | Channel 5 right input multiplexor virtual ground                         |
| 43       | AIN5L        | Analogue Input                                   | Channel 5 left input multiplexor virtual ground                          |
| 44       | AIN4R        | Analogue Input                                   | Channel 4 right input multiplexor virtual ground                         |
| 45       | AIN4K        | Analogue Input                                   | Channel 4 left input multiplexor virtual ground                          |
| 46       | AIN3R        | Analogue Input                                   | Channel 3 right input multiplexor virtual ground                         |
| 47       | AIN3L        | Analogue Input                                   | Channel 3 left input multiplexor virtual ground                          |
| 48       | AIN2R        | Analogue Input                                   | Channel 2 right input multiplexor virtual ground                         |
| -70      | AINZIN       | , maiogue imput                                  | Ondrano, 2 hght input mulupiexor virtual ground                          |

Note: Digital input pins have Schmitt trigger input buffers and pins 16, 17, 18 and 19 are 5V tolerant.



#### **ABSOLUTE MAXIMUM RATINGS**

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.



ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device

Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.

MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

| CONDITION                                                                     | MIN        | MAX         |
|-------------------------------------------------------------------------------|------------|-------------|
| Digital supply voltage                                                        | -0.3V      | +3.63V      |
| Analogue supply voltage                                                       | -0.3V      | +7V         |
| Voltage range digital inputs (DI, CL, CE and MODE)                            | DGND -0.3V | +7V         |
| Voltage range digital inputs (MCLK, DIN, ADCLRC, DACLRC, ADCBCLK and DACBCLK) | DGND -0.3V | DVDD + 0.3V |
| Voltage range analogue inputs                                                 | AGND -0.3V | AVDD +0.3V  |
| Master Clock Frequency                                                        |            | 37MHz       |
| Operating temperature range, T <sub>A</sub>                                   | -25°C      | +85°C       |
| Storage temperature                                                           | -65°C      | +150°C      |

#### Notes:

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER               | SYMBOL                               | TEST CONDITIONS | MIN  | TYP | MAX  | UNIT |
|-------------------------|--------------------------------------|-----------------|------|-----|------|------|
| Digital supply range    | DVDD                                 |                 | 2.7  |     | 3.6  | V    |
| Analogue supply range   | AVDD, HPVDD,<br>DACREFP              |                 | 2.7  |     | 5.5  | ٧    |
| Ground                  | AGND, DGND,<br>DACREFN,<br>ADCREFGND |                 |      | 0   |      | V    |
| Difference DGND to AGND |                                      |                 | -0.3 | 0   | +0.3 | V    |

Note: digital supply DVDD must never be more than 0.3V greater than AVDD.



79 / 136

<sup>1.</sup> Analogue and digital grounds must always be within 0.3V of each other.

# **ELECTRICAL CHARACTERISTICS**

#### **Test Conditions**

AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, T<sub>A</sub> = +25°C, fs = 48kHz, MCLK = 256fs unless otherwise stated.

| PARAMETER                                     | SYMBOL            | TEST CONDITIONS                               | MIN        | TYP    | MAX        | UNIT |
|-----------------------------------------------|-------------------|-----------------------------------------------|------------|--------|------------|------|
| Digital Logic Levels (TTL Levels              |                   |                                               |            |        | 1          |      |
| Input LOW level                               | V <sub>IL</sub>   |                                               |            |        | 0.8        | V    |
| Input HIGH level                              | V <sub>IH</sub>   |                                               | 2.0        |        |            | V    |
| Output LOW                                    | Vol               | I <sub>OL</sub> =1mA                          |            |        | 0.1 x DVDD | V    |
| Output HIGH                                   | V <sub>OH</sub>   | I <sub>OH</sub> =1mA                          | 0.9 x DVDD |        |            | V    |
| Analogue Reference Levels                     |                   |                                               |            |        |            |      |
| Reference voltage                             | $V_{VMID}$        |                                               |            | AVDD/2 |            | V    |
| Potential divider resistance                  | R <sub>VMID</sub> |                                               |            | 50k    |            | Ω    |
| DAC Performance (Load = 10k Ω                 | , 50pF)           |                                               |            |        |            |      |
| 0dBFs Full scale output voltage               |                   |                                               |            | 1.0 x  |            | Vrms |
|                                               |                   |                                               |            | AVDD/5 |            |      |
| SNR (Note 1,2)                                |                   | A-weighted,                                   |            | 108    |            | dB   |
|                                               |                   | @ fs = 48kHz                                  |            |        |            |      |
| SNR (Note 1,2)                                |                   | A-weighted                                    |            | 108    |            | dB   |
|                                               |                   | @ fs = 96kHz                                  |            |        |            |      |
| Dynamic Range (Note 2)                        | DNR               | A-weighted, -60dB                             |            | 108    |            | dB   |
|                                               |                   | full scale input                              |            |        |            |      |
| Total Harmonic Distortion (THD)               |                   | 1kHz, 0dBFs                                   |            | -97    | -90        | dB   |
| DAC channel separation                        |                   |                                               |            | 100    |            | dB   |
| Power Supply Rejection Ratio                  | PSRR              | 1kHz 100mVpp                                  |            | 50     |            | dB   |
|                                               |                   | 20Hz to 20kHz                                 |            | 45     |            | dB   |
|                                               |                   | 100mVpp                                       |            |        |            |      |
| Headphone Buffer                              |                   |                                               |            |        |            |      |
| Maximum Output voltage                        |                   |                                               |            | 0.9    |            | Vrms |
| Max Output Power (Note 4)                     | ₽₀                | $R_L = 32 \Omega$                             |            | 25     |            | mW   |
|                                               |                   | R <sub>L</sub> = 16 Ω                         |            | 50     |            | mW   |
| SNR (Note 1,2)                                |                   | A-weighted                                    | 85         | 92     |            | dB   |
| Headphone analogue Volume<br>Gain Step Size   |                   |                                               | 0.5        | 1      | 1.5        | dB   |
| Headphone analogue Volume<br>Gain Range       |                   | 1kHz Input                                    | -73        |        | +6         | dΒ   |
| Headphone analogue Volume<br>Mute Attenuation |                   | 1kHz Input, 0dB gain                          |            | 100    |            | dB   |
| Total Harmonic Distortion                     | THD+N             | 1kHz, R <sub>L</sub> = 32Ω @ P <sub>o</sub> = |            | -80    | -60        | dB   |
| +Noise                                        |                   | 10mW rms                                      |            | 0.01   | 0.1        | %    |
|                                               |                   | 1kHz, $R_L = 32\Omega$ @ $P_o =$              |            | -77    | -40        | dB   |
|                                               |                   | 20mW rms                                      |            | 0.014  | 1.0        | %    |
| Power Supply Rejection Ratio                  | PSRR              | 20Hz to 20kHz, without supply decoupling      |            | -40    |            | dB   |
| ADC Performance                               |                   |                                               |            |        |            |      |
| Input Signal Level (0dB)                      |                   |                                               |            | 1.0 x  |            | Vrms |
|                                               |                   |                                               |            | AVDD/5 |            |      |
| SNR (Note 1,2)                                |                   | A-weighted, 0dB gain<br>@ fs = 48kHz          |            | 102    |            | ďΒ   |
| SNR (Note 1,2)                                |                   | A-weighted, 0dB gain                          |            | 100    |            | dB   |
|                                               |                   | @ fs = 96kHz<br>64 x OSR                      |            |        |            |      |
| Dynamic Range (note 2)                        |                   | A-weighted, -60dB full scale input            |            | 102    |            | dB   |
|                                               |                   | I inii acaic ilihut                           |            |        |            |      |



#### **Test Conditions**

AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, T<sub>A</sub> = +25°C, fs = 48kHz, MCLK = 256fs unless otherwise stated.

|                                              |               | 1kHz, -3dBFs             |             | -95             | -85   | dB   |
|----------------------------------------------|---------------|--------------------------|-------------|-----------------|-------|------|
| ADC Channel Separation                       |               | 1kHz Input               |             | 90              |       | dB   |
| Programmable Gain Step Size                  |               |                          | 0.25        | 0.5             | 0.75  | dB   |
| Programmable Gain Range                      |               | 1kHz Input               | -21         |                 | +24   | dB   |
| (Analogue) Programmable Gain Range (Digital) |               | 1kHz Input               | -103        |                 | -21.5 | dB   |
| Mute Attenuation (Note 6)                    |               | 1kHz Input, 0dB gain     |             | 76              |       | dB   |
| Power Supply Rejection Ratio                 | PSRR          | 1kHz 100mVpp             |             | 50              |       | dB   |
|                                              |               | 20Hz to 20kHz<br>100mVpp |             | 45              |       | dB   |
| Analogue input (AIN) to Analogu              | ue output (VO | UT) (Load=10k Ω, 50pF, α | gain = 0dB) | Bypass Mode     |       | -t   |
| 0dB Full scale output voltage                |               |                          |             | 1.0 x<br>AVDD/5 |       | Vrms |
| SNR (Note 1)                                 |               |                          | 90          | 100             |       | dB   |
| THD                                          |               | 1kHz, 0dB                |             | -90             |       | dB   |
|                                              |               | 1kHz, -3dB               |             | -95             |       | dB   |
| Power Supply Rejection Ratio                 | PSRR          | 1kHz 100mVpp             |             | 50              |       | dB   |
|                                              |               | 20Hz to 20kHz<br>100mVpp |             | 45              |       | dB   |
| Mute Attenuation                             |               | 1kHz, 0dB                |             | 100             |       | dB   |
| Supply Current                               |               |                          |             | 1               |       |      |
| Analogue supply current                      |               | AVDD = 5V                |             | 48              |       | mA   |
| Digital supply current                       |               | DVDD = 3.3V              |             | 8               |       | mA   |

#### Notes:

- Ratio of output level with 1kHz full scale input, to the output level with all zeros into the digital input, measured 'A' weighted.
- All performance measurements done with 20kHz low pass filter, and where noted an A-weight filter. Failure to use
  such a filter will result in higher THD+N and lower SNR and Dynamic Range readings than are found in the Electrical
  Characteristics. The low pass filter removes out of band noise; although it is not audible it may affect dynamic
  specification values.
- 3. VMID decoupled with 10uF and 0.1uF capacitors (smaller values may result in reduced performance).
- 4. Harmonic distortion on the headphone output decreases with output power.
- 5. All performance measurement done using certain timings conditions (Please refer to section 'Digital Audio Interface').
- 6. A better MUTE Attenuation can be achieved if the ADC gain is set to minimum.

#### **TERMINOLOGY**

- Signal-to-noise ratio (dB) SNR is a measure of the difference in level between the full scale output and the output with no signal applied. (No Auto-zero or Automute function is employed in achieving these results).
- Dynamic range (dB) DNR is a measure of the difference between the highest and lowest portions of a signal. Normally a THD+N measurement at 60dB below full scale. The measured signal is then corrected by adding the 60dB to it. (e.g. THD+N @ -60dB= -32dB, DR= 92dB).
- 3. THD+N (dB) THD+N is a ratio, of the rms values, of (Noise + Distortion)/Signal.
- 4. Stop band attenuation (dB) Is the degree to which the frequency spectrum is attenuated (outside audio band).
- Channel Separation (dB) Also known as Cross-Talk. This is a measure of the amount one channel is isolated from the other. Normally measured by sending a full scale signal down one channel and measuring the other.
- 6. Pass-Band Ripple Any variation of the frequency response in the pass-band region.



# **TFT LCD Preliminary Specification**

MODEL NO.: V270B1 - L01

| LCD TV Head Division                             |          |          |          |  |  |  |  |
|--------------------------------------------------|----------|----------|----------|--|--|--|--|
|                                                  |          |          |          |  |  |  |  |
|                                                  |          |          |          |  |  |  |  |
| TVHD / PDD                                       |          |          |          |  |  |  |  |
| QRA Dept.                                        | DDIII    | DDII     | DDI      |  |  |  |  |
| Approval                                         | Approval | Approval | Approval |  |  |  |  |
|                                                  |          |          |          |  |  |  |  |
|                                                  |          |          |          |  |  |  |  |
|                                                  |          |          |          |  |  |  |  |
| LCD TV Marketing and Product Management Division |          |          |          |  |  |  |  |
|                                                  |          |          |          |  |  |  |  |

Product Manager

# - CONTENTS -

| REVISION HISTORY                                                                                                                                                                                         |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS                                                                                |          |
| 2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT                                                                |          |
| 3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT INVERTER UNIT 3.2.1 CCFL(Cold Cathode Fluorescent Lamp) CHARACTE 3.2.2 INVERTER CHARACTERISTICS 3.2.3 INVERTER INTERTFACE CHARACTERISTICS | ERISTICS |
| 4. BLOCK DIAGRAM<br>4.1 TFT LCD MODULE                                                                                                                                                                   |          |
| 5. INTERFACE PIN CONNECTION 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 INVERTER UNIT 5.4 BLOCK DIAGRAM OF INTERFACE 5.5 LVDS INTERFACE 5.6 COLOR DATA INPUT ASSIGNMENT                                    |          |
| 6. INTERFACE TIMING<br>6.1 INPUT SIGNAL TIMING SPECIFICATIONS<br>6.2 POWER ON/OFF SEQUENCE                                                                                                               |          |
| 7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS                                                                                                                                |          |
| 8. DEFINITION OF LABELS<br>8.1 CMO MODULE LABEL                                                                                                                                                          |          |
| 9. PACKAGING<br>9.1 PACKING SPECIFICATIONS<br>9.2 PACKING METHOD                                                                                                                                         |          |
| 10. PRECAUTIONS<br>10.1 ASSEMBLY AND HANDLING PRECAUTIONS<br>10.2 SAFETY PRECAUTIONS                                                                                                                     |          |
| 11. MECHANICAL CHARACTERISTICS                                                                                                                                                                           |          |

# **REVISION HISTORY**

| Version | Date        | Page<br>(New) | Section | Description                                 |
|---------|-------------|---------------|---------|---------------------------------------------|
| Ver 1.0 | Jun. 15,'05 | All           | All     | Preliminary Specification was first issued. |
|         |             |               |         |                                             |
|         |             |               |         |                                             |
|         |             |               |         |                                             |
|         |             |               |         |                                             |
|         |             |               |         |                                             |
|         |             |               |         |                                             |
|         |             |               |         |                                             |
|         |             |               |         |                                             |
|         |             |               |         |                                             |
|         |             |               |         |                                             |
|         |             |               |         |                                             |
|         |             |               |         |                                             |
|         |             |               |         |                                             |
|         |             |               |         |                                             |
|         |             |               |         |                                             |
|         |             |               |         |                                             |
|         |             |               |         |                                             |

#### 1. GENERAL DESCRIPTION

#### 1.1 OVERVIEW

V270B1- L01 is a TFT Liquid Crystal Display module with 14-CCFL Backlight unit and 1ch-LVDS interface. The display diagonal is 27". This module supports 1366 x 768 WXGA format and can display true 16.7M colors(8-bits colors). The inverter module for backlight is built-in.

#### **1.2 FEATURES**

- Excellent brightness (550 nits)
- Ultra high contrast ratio (1000:1)
- Fast response time (8ms)
- High color saturation NTSC 75%
- WXGA (1366 x 768 pixels) resolution
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Optimized response time for both 50/60 Hz frame rate
- Ultra wide viewing angle: 176(H)/176(V) (CR>20) Super MVA technology
- 180 degree rotation display option
- Low color shift function option
- Color reproduction (Nature color)

#### 1.3 APPLICATION

- TFT LCD TVs

- High brightness, multi-media displays

\_

#### 1.4 GENERAL SPECIFICATIONS

| Item                    | Specification                                                        | Unit  | Note |
|-------------------------|----------------------------------------------------------------------|-------|------|
| Active Area             | 596.259 (H) x 335.232 (V) (27" diagonal)                             | mm    | (1)  |
| Bezel Opening Area      | 603.22 (H) x 341.98 (V)                                              | mm    | (1)  |
| Driver Element          | a-si TFT active matrix                                               | -     |      |
| Pixel Number            | 1366 x R.G.B. x 768                                                  | pixel |      |
| Pixel Pitch (Sub Pixel) | 0.1460 (H) x 0.4365 (V)                                              | mm    |      |
| Pixel Arrangement       | RGB vertical stripe                                                  | -     |      |
| Display Colors          | 16.7M                                                                | color |      |
| Display Operation Mode  | Transmissive mode / Normally black                                   | -     |      |
| Surface Treatment       | Hardness : 3H, Haze : 40%<br>Anti-reflective coating < 2% reflection | -     |      |

#### 1.5 MECHANICAL SPECIFICATIONS

| It          | em            | Min.   | Тур.   | Max.   | Unit | Note              |
|-------------|---------------|--------|--------|--------|------|-------------------|
|             | Horizontal(H) | 636.85 | 637.55 | 638.25 | mm   |                   |
| Module Size | Vertical(V)   | 379.1  | 379.8  | 380.5  | mm   |                   |
| Module Size | Depth(D)      | 33.9   | 35.4   | 36.9   | mm   | To PCB cover      |
|             | Depth(D)      | 39.2   | 40.7   | 42.2   | mm   | To inverter cover |
| We          | eight         | 3700   | 4000   | 4300   | g    |                   |

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

#### 2. ABSOLUTE MAXIMUM RATINGS

#### 2.1 ABSOLUTE RATINGS OF ENVIRONMENT

| Item                          | Symbol           | Va   | lue  | Unit  | Note     |  |
|-------------------------------|------------------|------|------|-------|----------|--|
| item                          | Symbol           | Min. | Max. | Ullit | Note     |  |
| Storage Temperature           | T <sub>ST</sub>  | -20  | +60  | °C    | (1)      |  |
| Operating Ambient Temperature | T <sub>OP</sub>  | 0    | +50  | °C    | (1), (2) |  |
| Shock (Non-Operating)         | S <sub>NOP</sub> | -    | 50   | G     | (3), (5) |  |
| Vibration (Non-Operating)     | $V_{NOP}$        | -    | 1.0  | G     | (4), (5) |  |

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 60 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 60 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for  $\pm X$ ,  $\pm Y$ ,  $\pm Z$ .
- Note (4) 10 ~ 500 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

#### **Relative Humidity (%RH)**



# 2.2 ELECTRICAL ABSOLUTE RATINGS

# 2.2.1 TFT LCD MODULE

| Item                 | Symbol   | Value |      | Unit  | Note |
|----------------------|----------|-------|------|-------|------|
| item                 | Syllibol | Min.  | Max. | Ullil | Note |
| Power Supply Voltage | Vcc      | -0.3  | 6.0  | V     | (1)  |
| Input Signal Voltage | Vin      | -0.3  | 3.6  | V     | (1)  |

#### 2.2.2 BACKLIGHT UNIT

| Item                 | Symbol   | Test<br>Condition | Min. | Туре | Max. | Unit      | Note     |
|----------------------|----------|-------------------|------|------|------|-----------|----------|
| Lamp Voltage         | $V_W$    | Ta = 25           | ı    | -    | 3000 | $V_{RMS}$ |          |
| Power Supply Voltage | $V_{BL}$ | -                 | 0    | -    | 30   | V         | (1)      |
| Control Signal Level | -        | -                 | -0.3 | -    | 7    | V         | (1), (3) |

- Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.
- Note (2) No moisture condensation or freezing.
- Note (3) The control signals includes Backlight On/Off Control, Internal PWM Control, External PWM Control and Internal/External PWM Selection.

# 3. ELECTRICAL CHARACTERISTICS

# 3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

|           | Parameter                    |                 | Cumbal              |       | Value |       | Linit | Note |
|-----------|------------------------------|-----------------|---------------------|-------|-------|-------|-------|------|
|           |                              |                 | Symbol              | Min.  | Тур.  | Max.  | Unit  | note |
| Power Su  | pply Voltage                 |                 | V <sub>cc</sub>     | 4.5   | 5.0   | 5.5   | V     | (1)  |
| Power Su  | pply Ripple Vo               | Itage           | $V_{RP}$            | -     | -     | 150   | mV    |      |
| Rush Curi | rent                         |                 | I <sub>RUSH</sub>   | -     | -     | 3.0   | Α     | (2)  |
|           |                              | White           |                     | ı     | 1.8   | -     | Α     |      |
| Power Su  | pply Current                 | Black           | I <sub>CC</sub>     | ı     | 1.2   | -     | Α     | (3)  |
|           |                              | Vertical Stripe |                     | ı     | 1.65  | -     | Α     |      |
|           | Differential In              |                 | V <sub>LVTH</sub> - |       |       | +100  | mV    |      |
| LVDS      | Threshold Vol                | tage            | V LVTH              | -     | -     | 1100  | IIIV  |      |
| Interface | Differential In              |                 | $V_{LVTL}$          | -100  | _     | _     | mV    |      |
| Interface | Threshold Vol                |                 | VLVIL               | -100  |       | _     | IIIV  |      |
|           | Common Inpu                  | ıt Voltage      | $V_{LVC}$           | 1.125 | 1.25  | 1.375 | V     |      |
|           | Terminating Resistor         |                 | $R_T$               |       | 100   |       | ohm   |      |
| CMOS      | Input High Threshold Voltage |                 | V <sub>IH</sub>     | 2.7   | -     | 3.3   | V     |      |
| interface | Input Low Thr                | eshold Voltage  | $V_{IL}$            | 0     | -     | 0.7   | V     |      |

Note (1) The module should be always operated within above ranges.

# Note (2) Measurement Conditions:



# Vcc rising time is 470us



Note (3) The specified power supply current is under the conditions at Vcc = 5 V, Ta =  $25 \pm 2$  °C,  $f_v$  = 60 Hz, whereas a power dissipation check pattern below is displayed.



# c. Vertical Stripe Pattern



# 3.2 BACKLIGHT INVERTER UNIT

# 3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

| Parameter               | Symbol         |        | Value  |      | Unit              | Note                  |
|-------------------------|----------------|--------|--------|------|-------------------|-----------------------|
| Farameter               | Syllibol       | Min.   | Тур.   | Max. | Ullit             | Note                  |
| Lamp Voltage            | V <sub>W</sub> | -      | 1120   | -    | $V_{RMS}$         | $I_L = 4.7 \text{mA}$ |
| Lamp Current            | ΙL             | 4.2    | 4.7    | 5.2  | mA <sub>RMS</sub> | (1)                   |
| Lanco Otantino Valta na | .,             | -      | -      | 1650 | $V_{RMS}$         | (2), Ta = 0 °C        |
| Lamp Starting Voltage   | Vs             | -      | -      | 1500 | $V_{RMS}$         | (2), Ta = 25 °C       |
| Operating Frequency     | Fo             | 50     | -      | 70   | KHz               | (3)                   |
| Lamp Life Time          | $L_BL$         | 50,000 | 60,000 | -    | Hrs               | (4)                   |

# **3.2.2 INVERTER CHARACTERISTICS** (Ta = $25 \pm 2$ °C)

| Parameter             | Symbol          |      | Value |      | Unit              | Note                       |
|-----------------------|-----------------|------|-------|------|-------------------|----------------------------|
| Farameter             | Symbol          | Min. | Тур.  | Max. | Offic             | Note                       |
| Power Consumption     | $P_{BL}$        | -    | 92    | -    | W                 | (5), $I_L = 4.7 \text{mA}$ |
| Power Supply Voltage  | $V_{BL}$        | 22.8 | 24    | 25.2 | $V_{DC}$          |                            |
| Power Supply Current  | I <sub>BL</sub> | -    | 3.8   | -    | Α                 | Non Dimming                |
| Input Ripple Noise    | -               | -    | ı     | 500  | mV <sub>P-P</sub> | V <sub>BL</sub> =22.8V     |
| Backlight Turn on     | $V_{BS}$        | 1790 | ı     | ı    | $V_{RMS}$         | Ta = 0 °C                  |
| Voltage               | <b>V</b> BS     | 1200 | ı     | ı    | $V_{RMS}$         | Ta = 25 °C                 |
| Oscillating Frequency | F <sub>W</sub>  | 53   | 56    | 59   | kHz               |                            |
| Dimming Frequency     | F <sub>B</sub>  | 150  | 160   | 170  | Hz                |                            |
| Minimum Duty Ratio    | $D_{MIN}$       | -    | 10    | -    | %                 |                            |

Note (1) Lamp current is measured by utilizing high frequency current meters as shown below:



- Note (2) The lamp starting voltage  $V_S$  should be applied to the lamp for more than 1 second under starting up duration. Otherwise the lamp could not be lighted on completed.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.

- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point.) as the time in which it continues to operate under the condition Ta =  $25 \pm 2$  and  $I_L = 4.2 \sim 5.2 \text{ mA}_{RMS}$ .
- Note (5) The power supply capacity should be higher than the total inverter power consumption P<sub>BL</sub>. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when inverter dimming.

#### 3.2.3 INVERTER INTERTFACE CHARACTERISTICS

| Item                    |        | Symbol            | Test<br>Condition      | Min. | Тур. | Max. | Unit | Note               |
|-------------------------|--------|-------------------|------------------------|------|------|------|------|--------------------|
| On/Off Control          | ON     | V                 | -                      | 2.0  | -    | 5.0  | V    |                    |
| Voltage                 | OFF    | $V_{BLON}$        | -                      | 0    | -    | 8.0  | V    |                    |
| Internal/External       | HI     | V                 | -                      | 2.0  | -    | 5.0  | V    |                    |
| PWM Select Voltage      | LO     | $V_{SEL}$         | -                      | 0    | -    | 8.0  | V    |                    |
| Internal PWM            | MAX    | V                 | \/ -1                  | -    | -    | 3.0  | V    | minimum duty ratio |
| Control Voltage         | MIN    | $V_{IPWM}$        | M V <sub>SEL</sub> = L | -    | 0    | -    | V    | maximum duty ratio |
| External PWM            | HI     | $V_{EPWM}$        | \/ <b>-</b> U          | 2.0  | -    | 5.0  | V    | duty on            |
| Control Voltage         | LO     |                   | V <sub>SEL</sub> = H   | 0    | -    | 8.0  | V    | duty off           |
| Control Signal Rising   | j Time | Tr                | -                      | -    | -    | 100  | ms   |                    |
| Control Signal Falling  | g Time | T <sub>f</sub>    | -                      | -    | -    | 100  | ms   |                    |
| PWM Signal Rising Time  |        | $T_{PWMR}$        | -                      | -    | -    | 50   | us   |                    |
| PWM Signal Falling Time |        | T <sub>PWMF</sub> | -                      | -    | -    | 50   | us   |                    |
| Input impedance         |        | R <sub>IN</sub>   | -                      | 1    | -    | -    | М    |                    |
| BLON Delay Time         |        | T <sub>on</sub>   | -                      | 1    | -    | -    | ms   |                    |
| BLON Off Time           | )      | T <sub>off</sub>  | -                      | 1    | -    | -    | ms   |                    |

Note (1) The SEL signal should be valid before backlight turns on by BLON signal. It is inhibited to change the internal/external PWM selection (SEL) during backlight turn on period.

Note (2) The power sequence and control signal timing are shown as the following figure.



#### 4. BLOCK DIAGRAM

#### **4.1 TFT LCD MODULE**



# 5. INTERFACE PIN CONNECTION

#### **5.1 TFT LCD MODULE**

#### **CNF1 Connector Pin Assignment**

| Pin No. | Symbol  | Description                           | Note |
|---------|---------|---------------------------------------|------|
| 1       | GND     | Ground                                |      |
| 2       | RPF     | Display Rotation                      | (3)  |
| 3       | SELLVDS | Select LVDS data format               | (5)  |
| 4       | NC      | No Connection                         | (2)  |
| 5       | NC      | No Connection                         | (=)  |
| 6       | ODSEL   | Overdrive Lookup Table Selection      | (4)  |
| 7       | EN LCS  | Low Color Shift                       | (6)  |
| 8       | GND     | Ground                                |      |
| 9       | RX0-    | Negative transmission data of pixel 0 |      |
| 10      | RX0+    | Positive transmission data of pixel 0 |      |
| 11      | RX1-    | Negative transmission data of pixel 1 |      |
| 12      | RX1+    | Positive transmission data of pixel 1 |      |
| 13      | RX2-    | Negative transmission data of pixel 2 |      |
| 14      | RX2+    | Positive transmission data of pixel 2 |      |
| 15      | RXCLK-  | Negative of clock                     |      |
| 16      | RXCLK+  | Positive of clock                     |      |
| 17      | RX3-    | Negative transmission data of pixel 3 |      |
| 18      | RX3+    | Positive transmission data of pixel 3 |      |
| 19      | GND     | Ground                                |      |
| 20      | GND     | Ground                                |      |
| 21      | GND     | Ground                                |      |
| 22      | GND     | Ground                                |      |
| 23      | GND     | Ground                                |      |
| 24      | GND     | Ground                                |      |
| 25      | GND     | Ground                                |      |
| 26      | VCC     | Power supply: +5V                     |      |
| 27      | VCC     | Power supply: +5V                     |      |
| 28      | VCC     | Power supply: +5V                     |      |
| 29      | VCC     | Power supply: +5V                     |      |
| 30      | VCC     | Power supply: +5V                     |      |

Note (1) Connector Part No.: FI-X30SSL-HF(JAE) or compatible

Note (2) Reserved for internal use. Left it open.

Note (3) Low: normal display (default), High: display with 180 degree rotation

Note (4) Overdrive lookup table selection. The Overdrive lookup table should be selected in accordance to the frame rate to optimize image quality.

| ODSEL | Note                                             |
|-------|--------------------------------------------------|
| L     | Lookup table was optimized for 60 Hz frame rate. |
| Н     | Lookup table was optimized for 50 Hz frame rate. |

Note (5) Please refer to 5.5 LVDS INTERFACE (Page 17)

Note (6) Enable Low color shift function.

| EN LCS | Note                |
|--------|---------------------|
| L      | Low color shift off |
| Н      | Low color shift on  |

#### **5.2 BACKLIGHT UNIT**

The pin configuration for the housing and leader wire is shown in the table below.

CN3-CN9 (Housing): BHR-03VS-1 (JST)

| Pin No. | Symbol | Description  | Wire Color |
|---------|--------|--------------|------------|
| 1       | HV     | High Voltage | Pink       |
| 2       | HV     | High Voltage | White      |

Note (1) The backlight interface housing for high voltage side is a model BHR-03VS-1, manufactured by JST. The mating header on inverter part number is SM02(8.0)B-BHS-1-TB(LF) or equivalent.

CN10 (Housing): ZHR-2 (JST) or equivalent

| Pin No. | Symbol | Description     | Wire Color |
|---------|--------|-----------------|------------|
| 1       | LV     | Low Voltage (+) | Gray       |
| 2       | NC     | No Connection   | -          |

Note (2) The backlight interface housing and return cable for low voltage side is a model ZHR-2, manufactured by JST or equivalent. The mating header on inverter part number is S2B-ZR-SM3A-TF(D)(LF) or equivalent.



# **5.3 INVERTER UNIT**

CN1(Header):S10B-PH-SM3-TB(D)(LF)(JST) or equivalent.

| Pin |     | Description      |
|-----|-----|------------------|
| 1   |     |                  |
| 2   |     |                  |
| 3   | VBL | +24V Power input |
| 4   |     |                  |
| 5   |     |                  |
| 6   |     |                  |
| 7   |     |                  |
| 8   | GND | Ground           |
| 9   |     |                  |
| 10  |     |                  |

# CN2(Header): S12B-PH-SM3-TB(D)(LF)(JST) or equivalent.

| Pin | Name  | Description                                                                                                  |
|-----|-------|--------------------------------------------------------------------------------------------------------------|
| 1   |       |                                                                                                              |
| 2   |       |                                                                                                              |
| 3   | VBL   | +24V Power input                                                                                             |
| 4   |       |                                                                                                              |
| 5   |       |                                                                                                              |
| 6   |       |                                                                                                              |
| 7   | GND   | Ground                                                                                                       |
| 8   |       |                                                                                                              |
| 9   | SEL   | Internal/external PWM selection<br>High : external dimming<br>Low : internal dimming                         |
| 10  | E_PWM | External PWM control signal  E_PWM should be connected to low when internal PWM was selected (SEL = low).    |
| 11  | I_PWM | Internal PWM control signal I_PWM should be connected to ground when external PWM was selected (SEL = high). |
| 12  | BLON  | Backlight on/off control                                                                                     |

# CN3-CN9(Header): SM02(8.0)B-BHS-1-TB(LF)(JST) or equivalent

| Pin | Name     | Description       |
|-----|----------|-------------------|
| 1   | CCFL HOT | CCFL high voltage |
| 2   | CCFL HOT | CCFL high voltage |

# CN10(Header): S2B-ZR-SM3A-TF(D)(LF)(JST) or equivalent

| Pin | Name      | Description      |
|-----|-----------|------------------|
| 1   | CCFL COLD | CCFL low voltage |
| 2   | NC        | -                |

Note (1) Floating of any control signal is not allowed.

#### **5.4 BLOCK DIAGRAM OF INTERFACE**



R0~R7 : Pixel R Data ,
G0~G7 : Pixel G Data ,
B0~B7 : Pixel B Data ,
DE : Data enable signal

Note (1) The system must have the transmitter to drive the module.

Note (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

# **5.5 LVDS INTERFACE**

| SIGNAL |               |               | ISMITTER<br>3LVDM83A | INTERF<br>CONNEC |            |           | ECEIVER<br>63LVDF84A | TFT CONTROL<br>INPUT |               |               |
|--------|---------------|---------------|----------------------|------------------|------------|-----------|----------------------|----------------------|---------------|---------------|
|        | SELLVDS<br>=L | SELLVDS<br>=H | PIN                  | INPUT            | Host       | TFT-LCD   | PIN                  | OUTPUT               | SELLVDS<br>=L | SELLVDS<br>=H |
|        | R0            | R2            | 51                   | TxIN0            |            |           | 27                   | Rx OUT0              | R0            | R2            |
|        | R1            | R3            | 52                   | TxIN1            |            |           | 29                   | Rx OUT1              | R1            | R3            |
|        | R2            | R4            | 54                   | TxIN2            | TA OUT0+   | Rx 0+     | 30                   | Rx OUT2              | R2            | R4            |
|        | R3            | R5            | 55                   | TxIN3            |            |           | 32                   | Rx OUT3              | R3            | R5            |
|        | R4            | R6            | 56                   | TxIN4            |            |           | 33                   | Rx OUT4              | R4            | R6            |
|        | R5            | R7            | 3                    | TxIN6            | TA OUT0-   | Rx 0-     | 35                   | Rx OUT6              | R5            | R7            |
|        | G0            | G2            | 4                    | TxIN7            |            |           | 37                   | Rx OUT7              | G0            | G2            |
|        | G1            | G3            | 6                    | TxIN8            |            |           | 38                   | Rx OUT8              | G1            | G3            |
|        | G2            | G4            | 7                    | TxIN9            |            |           | 39                   | Rx OUT9              | G2            | G4            |
|        | G3            | G5            | 11                   | TxIN12           | TA OUT1+   | Rx 1+     | 43                   | Rx OUT12             | G3            | G5            |
|        | G4            | G6            | 12                   | TxIN13           |            |           | 45                   | Rx OUT13             | G4            | G6            |
|        | G5            | G7            | 14                   | TxIN14           |            |           | 46                   | Rx OUT14             | G5            | G7            |
|        | В0            | B2            | 15                   | TxIN15           | TA OUT1-   | Rx 1-     | 47                   | Rx OUT15             | В0            | B2            |
|        | B1            | В3            | 19                   | TxIN18           |            |           | 51                   | Rx OUT18             | B1            | В3            |
| 24     | B2            | B4            | 20                   | TxIN19           |            |           | 53                   | Rx OUT19             | B2            | B4            |
| bit    | В3            | B5            | 22                   | TxIN20           |            |           | 54                   | Rx OUT20             | В3            | B5            |
|        | B4            | В6            | 23                   | TxIN21           | TA OUT2+   | Rx 2+     | 55                   | Rx OUT21             | B4            | В6            |
|        | B5            | В7            | 24                   | TxIN22           |            |           | 1                    | Rx OUT22             | B5            | В7            |
|        | DE            | DE            | 30                   | TxIN26           |            |           | 6                    | Rx OUT26             | DE            | DE            |
|        | R6            | R0            | 50                   | TxIN27           | TA OUT2-   | Rx 2-     | 7                    | Rx OUT27             | R6            | R0            |
|        | R7            | R1            | 2                    | TxIN5            |            |           | 34                   | Rx OUT5              | R7            | R1            |
|        | G6            | G0            | 8                    | TxIN10           |            |           | 41                   | Rx OUT10             | G6            | G0            |
|        | G7            | G1            | 10                   | TxIN11           |            |           | 42                   | Rx OUT11             | G7            | G1            |
|        | В6            | В0            | 16                   | TxIN16           | TA OUT3+   | Rx 3+     | 49                   | Rx OUT16             | В6            | В0            |
|        | В7            | B1            | 18                   | TxIN17           |            |           | 50                   | Rx OUT17             | В7            | B1            |
|        | RSVD 1        | RSVD 1        | 25                   | TxIN23           |            |           | 2                    | Rx OUT23             | NC            | NC            |
|        | RSVD 2        | RSVD 2        | 27                   | TxIN24           | TA OUT3-   | Rx 3-     | 3                    | Rx OUT24             | NC            | NC            |
|        | RSVD 3        | RSVD 3        | 28                   | TxIN25           |            |           | 5                    | Rx OUT25             | NC            | NC            |
|        |               | DCLK          | 31                   | TxCLK IN         | TxCLK OUT+ |           | 26                   | RxCLK OUT            | DC            | LK            |
|        |               |               |                      |                  | TxCLK OUT- | RxCLK IN- |                      |                      |               |               |

R0~R7: Pixel R Data (7; MSB, 0; LSB)

G0~G7: Pixel G Data (7; MSB, 0; LSB)

B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Data enable signal

Notes(1) RSVD(reserved)pins on the transmitter shall be "H" or "L".

# **5.6 COLOR DATA INPUT ASSIGNMENT**

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

|        |                 |    |    |    |    |    |    |    |    |    |    | Da | ata | Sigr | nal |    |    | ı  |    |    |     |    |    |    |    |
|--------|-----------------|----|----|----|----|----|----|----|----|----|----|----|-----|------|-----|----|----|----|----|----|-----|----|----|----|----|
|        | Color           |    |    | •  | Re | ed |    |    |    |    |    |    | G   | reer | 1   |    |    |    |    | •  | Blu | ue |    |    |    |
|        |                 | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | G7 | G6 | G5 | G4  | G3   | G2  | G1 | G0 | В7 | В6 | B5 | B4  | ВЗ | B2 | В1 | В0 |
|        | Black           | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|        | Red             | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|        | Green           | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1   | 1    | 1   | 1  | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
| Basic  | Blue            | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  |
| Colors | Cyan            | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1   | 1    | 1   | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  |
|        | Magenta         | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  |
|        | Yellow          | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1    | 1   | 1  | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|        | White           | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1    | 1   | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  |
|        | Red(0) / Dark   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|        | Red(1)          | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
| Gray   | Red(2)          | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
| Scale  | :               | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :   | :    | :   | :  | :  | :  | :  | :  | :   | :  | :  | :  | :  |
| Of     | :               | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :   | :    | :   | :  | :  | :  | :  | :  | :   | :  | :  | :  | :  |
| Red    | Red(253)        | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
| l (Cu  | Red(254)        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|        | Red(255)        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|        | Green(0) / Dark | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|        | Green(1)        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
| Gray   | Green(2)        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 1  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
| Scale  | :               | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :   | :    | :   | :  | :  | :  | :  | :  | :   | :  | :  | :  | :  |
| Of     | :               | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :   | :    | :   | :  | :  | :  | :  | :  | :   | :  | :  | :  | :  |
| Green  | Green(253)      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1   | 1    | 1   | 0  | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|        | Green(254)      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1   | 1    | 1   | 1  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|        | Green(255)      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1   | 1    | 1   | 1  | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|        | Blue(0) / Dark  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|        | Blue(1)         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 1  |
| Gray   | Blue(2)         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 1  | 0  |
| Scale  | :               | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :   | :    | :   | :  | :  | :  | :  | :  | :   | :  | :  | :  | :  |
| Of     | :               | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :   | :    | :   | :  | :  | :  | :  | :  | :   | :  | :  | :  | :  |
| Blue   | Blue(253)       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 1  | 1  | 1  | 1   | 1  | 1  | 0  | 1  |
|        | Blue(254)       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 0  |
|        | Blue(255)       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  |

Note (1) 0: Low Level Voltage, 1: High Level Voltage

# **6. INTERFACE TIMING**

#### **6.1 INPUT SIGNAL TIMING SPECIFICATIONS**

The input signal timing specifications are shown as the following table and timing diagram.

|                                |                             |        | _    |      |      |      |            |
|--------------------------------|-----------------------------|--------|------|------|------|------|------------|
| Signal                         | Item                        | Symbol | Min. | Typ. | Max. | Unit | Note       |
|                                | Frequency                   | 1/Tc   | 60   | 86   | 88   | MHz  |            |
| LVDS Receiver Clock            | Input cycle to cycle jitter | Trcl   | -    | -    | 200  | ps   |            |
| LVDS Receiver Data             | Setup Time                  | Tlvsu  | 600  | -    | ı    | ps   |            |
| LVD3 Receiver Data             | Hold Time                   | Tlvhd  | 600  | -    | -    | ps   |            |
|                                | Frame Rate                  | Fr5    | 47   | 50   | 53   | Hz   | (2)        |
|                                | i fame Nate                 | Fr6    | 57   | 60   | 63   | Hz   | (=)        |
| Vertical Active Display Term   | Total                       | Tv     | 770  | 795  | 888  | Th   | Tv=Tvd+Tvb |
|                                | Display                     | Tvd    | 768  | 768  | 768  | Th   | -          |
|                                | Blank                       | Tvb    | 2    | 27   | 120  | Th   | -          |
|                                | Total                       | Th     | 1436 | 1798 | 1936 | Tc   | Th=Thd+Thb |
| Horizontal Active Display Term | Display                     | Thd    | 1366 | 1366 | 1366 | Tc   | _          |
|                                | Blank                       | Thb    | 70   | 432  | 570  | Tc   | -          |

Note (1) Since this module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

(2) Please refer to 5.1 for detail information.

# **INPUT SIGNAL TIMING DIAGRAM**



# LVDS RECEIVER INTERFACE TIMING DIAGRAM



#### **6.2 POWER ON/OFF SEQUENCE**

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.



**Power ON/OFF Sequence** 

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

# 7. OPTICAL CHARACTERISTICS

# 7.1 TEST CONDITIONS

| Item                             | Symbol                     | Value                    | Unit             |
|----------------------------------|----------------------------|--------------------------|------------------|
| Ambient Temperature              | Ta                         | 25±2                     | °C               |
| Ambient Humidity                 | На                         | 50±10                    | %RH              |
| Supply Voltage                   | $V_{CC}$                   | 5.0                      | V                |
| Input Signal                     | According to typical value | alue in "3. ELECTRICAL ( | CHARACTERISTICS" |
| Lamp Current                     | l <sub>L</sub>             | $4.7\pm0.5$              | mA               |
| Oscillating Frequency (Inverter) | $F_W$                      | 56 ± 3                   | KHz              |

# 7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

| Ite                   | em             | Symbol               | Condition                      | Min. | Тур.    | Max.  | Unit              | Note |
|-----------------------|----------------|----------------------|--------------------------------|------|---------|-------|-------------------|------|
| Contrast Ratio        | Contrast Ratio |                      |                                |      | (1000)  |       | -                 | (2)  |
| Response Tim          | е              | Gray to gray average |                                |      | (8)     |       | ms                | (3)  |
| Center Lumina         | nce of White   | L <sub>C</sub>       |                                |      | (550)   |       | cd/m <sup>2</sup> | (4)  |
| White Variation       | า              | δW                   |                                |      |         | (1.3) | -                 | (7)  |
| Cross Talk            |                | CT                   | $\theta_x$ =0°, $\theta_Y$ =0° |      |         | (4)   | %                 | (5)  |
|                       | Red            | Rx                   | Viewing Normal                 |      | (0.652) |       | -                 |      |
|                       | Reu            | Ry                   | J                              |      | (0.331) |       | -                 |      |
|                       | Green          | Gx                   | Angle                          |      | (0.275) |       |                   |      |
| Color                 |                | Gy                   |                                |      | (0.597) |       | -                 | (6)  |
| Color<br>Chromaticity | Dive           | Bx                   |                                |      | (0.143) |       | -                 | (6)  |
| Chilomaticity         | Blue           | Ву                   |                                |      | (0.063) |       | -                 |      |
|                       | White          | Wx                   |                                |      | (0.285) |       | Torget            |      |
|                       | vviille        | Wy                   |                                |      | (0.293) |       | Target            |      |
|                       | Color Gamut    | CG                   |                                |      | (75)    |       | %                 | NTSC |
|                       | Horizontol     | $\theta_x$ +         |                                |      | (88)    |       |                   |      |
| Viewing               | Horizontal     | $\theta_{x}$ -       | CD>20                          |      | (88)    |       | Dog               | (1)  |
| Angle                 | Vertical       | θ <sub>Y</sub> +     | CR≥20                          |      | (88)    |       | Deg.              |      |
| •                     | Vertical       | θ <sub>Y</sub> -     |                                |      | (88)    |       |                   |      |

#### Note (1) Definition of Viewing Angle ( $\theta x$ , $\theta y$ ):

Viewing angles are measured by EZ-Contrast 160R (Eldim)



#### Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

# Note (3) Definition of Gray to Gray Switching Time:



The driving signal means the signal of gray level 0, 63, 127, 191, 255.

Gray to gray average time means the average switching time of gray level 0 ,63,127,191,255 to each other .

#### Note (4) Definition of Luminance of White (L<sub>C</sub>, L<sub>AVE</sub>):

Measure the luminance of gray level 255 at center point and 5 points

$$L_{\rm C} = L (5)$$

$$L_{AVE} = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$$

L (x) is corresponding to the luminance of the point X at the figure in Note (7).

# Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

Y<sub>A</sub> = Luminance of measured location without gray level 0 pattern (cd/m²)

Y<sub>B</sub> = Luminance of measured location with gray level 0 pattern (cd/m<sup>2</sup>)



#### Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.



# Note (7) Definition of White Variation ( $\delta W$ ):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$ 



# 8. DEFINITION OF LABELS

#### 8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.



(a) Model Name: V270B1-L01

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.



Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2001~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1<sup>st</sup> to 31<sup>st</sup>, exclude I ,O, and U.

(b) Revision Code: Cover all the change

(c) Serial No.: Manufacturing sequence of product

(d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

#### 9. PACKAGING

#### 9.1 PACKING SPECIFICATIONS

(1) 4 LCD TV modules / 1 Box

(2) Box dimensions :  $742(L) \times 327 (W) \times 510 (H)$ 

(3) Weight: approximately 19Kg (4 modules per box)

#### 9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method



Figure.9-1 packing method

Corner Protector:L1020\*50mm\*50mm

Pallet:L1100\*W1100\*H135mm

Corrugated Fiberboard:L1100\*W1100mm

Pallet Stack:L1100\*W1100\*H1160mm

Gross:168kg



Figure. 9-2 packing method

#### 10. PRECAUTIONS

#### 10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

#### **10.2 SAFETY PRECAUTIONS**

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

### 11. MECHANICAL CHARACTERISTICS







| Item | Part Number        | Part Description                                                                    | Usage / unit | Unit  | Key/Spare   |
|------|--------------------|-------------------------------------------------------------------------------------|--------------|-------|-------------|
|      | LCT27ADADA1CS-A02  | AKAI LCT27"(LCT2721AD) (II) S-                                                      | 22397 31110  |       | 1117, 55410 |
|      |                    | MT8202 +DVD(NEON)/CMO                                                               |              |       |             |
| 1.   | 510-L27AD03-09AK   | AC120V/60HZ USA SILVER CARTON BOX AKAI LCT2721AD                                    | 1.000000     | Piece | K           |
| 1>   | 510-L27AD03-09AK   | CARTON BOX AKAI LC12/21AD                                                           | 1.000000     | Piece | , n         |
| 2>   | 580-L27AD2B-03AP   | IB E FOR AKAI LCT2721AD DTV                                                         | 1.000000     | Piece | K           |
|      |                    | +DVD S-MT8202 CMO USA                                                               |              |       |             |
| 3>   | E7501-061001       | REMOTE CONTROL K002 AKAI FOR<br>MT8202 COMBO 60KEYS SIL/BLK                         | 1.000000     | SET   | К           |
| 4>   | E7801-P02001       | PCB ASSY PSU BOARD MEGMEET<br>MLT168 FOR 27LCD AC110-240V<br>OUTPUT 12V/8V/24V 200W | 1.000000     | SET   | К           |
| 5>   | 771EL27AD04-05     | MAIN PCB ASS'Y S-MT8202 DVD<br>(NEON) USA CMO                                       | 1.000000     | SET   | К           |
| 6>   | 771S42D102-02      | ATSC TUNER PCB ASS'Y<br>(MT5111CE) W/O MAX3232                                      | 1.000000     | SET   | К           |
| 7>   | 200-L27AD21-STD01A | CABINET FRONT SILVER/BLACK A                                                        | 1.000000     | Piece | S           |
| 8>   | 202-L27AD51-01A    | BACK CABINET BLACK LCT27AD                                                          | 1.000000     | Piece | S           |
| 9>   | 206-L27AD11-01R    | SPEAKER CABINET AKAI<br>LCT2701TD(MT8205) R                                         | 1.000000     | Piece | S           |
| 10>  | 236-L27AD11-01RV   | DVD COVER BLACK LCT2701TD R                                                         | 1.000000     | Piece | S           |
| 11>  | 258-L27AD21-01R    | DVD FUNCTION KNOB COVER<br>KNOB BLACK R                                             | 1.000000     | Piece | S           |
| 12>  | 269-42SD01-01L     | REMOTE RECEIVE LENS                                                                 | 1.000000     | Piece | S           |
| 13>  | 277-L27AD11-01S    | DVD FUNCTION KNOB BLK<br>LCT2701TD S                                                | 1.000000     | Piece | S           |
| 14>  | 277-L32AD11-01S    | FUNCTION KEY SIL(MATERIAL:<br>BLACK) LCT32SD                                        | 1.000000     | Piece | S           |
| 15>  | 300-L27AD05-02C    | POLYFOAM BOTTOM                                                                     | 1.000000     | Piece | S           |
| 16>  | 300-L27AD06-02C    | POLYFOAM TOP                                                                        | 1.000000     | Piece | S           |
| 17>  | 310-030404-01      | POLYBAG 110MMX80MMX0.04MM                                                           | 1.000000     | Piece | S           |
| 18>  | 310-041204-01V     | POLYBAG 4"X12"X0.04 AV                                                              | 1.000000     | Piece | S           |

| 19> | 310-111404-07V   | POLYBAG 11"X14"X0.04 FV                         | 1.000000 | Piece | S |
|-----|------------------|-------------------------------------------------|----------|-------|---|
| 20> | 310-383550-07V   | POLYBAG LAMIFILM 38"X35"X0.5MM                  | 1.000000 | Piece | S |
| 202 |                  |                                                 |          |       |   |
| 21> | 370-42D102-01    | PAD CORD SPONG FOR SPK                          | 1.000000 | Piece | S |
| 22> | 387-L27AD01-07AH | MODEL PLATE AKAI LCT2721AD                      | 1.000000 | Piece | S |
| 23> | 389-L32AB01-01   | PVC SHEET L32AB                                 | 2.000000 | Piece | S |
| 24> | 426-L27AD05-01S  | POWER BRACKET THROUGH<br>WITHOUT SWITCH LCT27AD | 1.000000 | Piece | S |
| 25> | 428-L27AD01-01S  | PANEL BRACKET                                   | 1.000000 | Piece | S |
| 26> | 436-L27AD0D-01S  | TERMINAL SHEET S-MT8202 W/DVD                   | 1.000000 | Piece | S |
| 27> | 481-L27AD01-01S  | DVD BOTTOM PLATE FOR NEON                       | 1.000000 | Piece | S |
| 28> | 483-L27AD11-01S  | SHIELD COVER-MAIN PCB                           | 1.000000 | Piece | S |
| 29> | 486-M32111-01    | NAME PLATE M AKAI                               | 1.000000 | Piece | S |
| 30> | 522-421D01-01    | MASKING PAPER                                   | 1.000000 | Piece | S |
| 31> | 530-080032-10    | FBP WHR 3.2X8.0X1.0                             | 1.000000 | Piece | S |
| 32> | 563-119-         | SERIAL NO. LABEL                                | 1.000000 | Piece | S |
| 33> | 568-P46T02-02    | WARNING LB ENG 42SF NIL                         | 1.000000 | Piece | S |
| 34> | 578-L32AD01-02AP | FUNCTION SHEET FOR S-MT8202<br>W/DVD P          | 1.000000 | Piece | S |
| 35> | 579-42D102-09    | SERIAL NO/BAR CODE LABEL 42D1                   | 1.000000 | Piece | S |
| 36> | 579-42D105-01    | PROTECTIVE EARTH LABEL FOR<br>ESA 42TD1         | 1.000000 | Piece | S |
| 37> | 579-L27AD02-05AP | UPC LABEL OF C/B AKAI LCT2721AD                 | 2.000000 | Piece | S |
| 38> | 579-L27AD09-01   | CAUTION LABEL ENG AKAI                          | 1.000000 | Piece | S |

| 39> | 579-L32AD03-02   | CLASS I LASER PRODUCT LOGO                                               | 1.000000 | Piece | S |
|-----|------------------|--------------------------------------------------------------------------|----------|-------|---|
| 40> | 590-L27AD01-12AP | WARRANTY CARD AKAI LCT2721AD                                             | 1.000000 | Piece | S |
| 41> | E3404-157010     | AC CORD UL 1.88M FOR MT8202 (W/<br>O FILTER)                             | 1.000000 | Piece | S |
| 42> | E3407-081001     | CORD FFC P0.5 50P L=110 B-0.5-<br>50X110-4(8)X4(8)-0.3X0.035             | 1.000000 | Piece | S |
| 43> | E3421-925118     | WIRE ASSY 8P2.5/7P2.0 L170MM 5V<br>12V SIGNAL POWER MT8202               | 1.000000 | Piece | S |
| 44> | E3421-925119     | WIRE ASSY P2.5 11P/11P L400MM<br>5V SIGNAL POWER MT8202                  | 1.000000 | Piece | S |
| 45> | E3421-925127     | WIRE ASSY TJC3-2Y L860 SPK-R<br>MT8202                                   | 1.000000 | Piece | S |
| 46> | E3421-925133     | WIRE ASSY TJC3-3Y L650 SPK-L<br>MT8202                                   | 1.000000 | Piece | S |
| 47> | E3421-925145     | WIRE ASSY 10P/10P 2.5/2.5 L400MM<br>12V/9V MT8202                        | 1.000000 | Piece | S |
| 48> | E3421-926125     | WIRE ASSY P2.5 4P/4P L400MM<br>AMP24V EMI MT8202                         | 1.000000 | Piece | S |
| 49> | E3461-064036     | WIRE ASSY INVERTER 12P2.0+8P2.5<br>+3P2.0 L450MM L650MM MT8202           | 1.000000 | Piece | S |
| 50> | E3461-064038     | WIRE ASSY P2.5 7P/7P L400MM 5V<br>STANBY POWER MT8202 FOR<br>27"/32" LCD | 1.000000 | Piece | S |
| 51> | E3461-064039     | WIRE ASSY 5P2.5 L560MM 5V 3.3V<br>SIGNAL WIRE EMI MT8202                 | 1.000000 | Piece | S |
| 52> | E3471-000048     | WIRE WS SHIELD WIRE FOR 32LCD TV+COMBO KEY WIRE FOR DVD                  | 1.000000 | Piece | S |
| 53> | E3471-000057     | WIRE WS SHIELD WIRE 27" L300MM<br>MICO CMO MT8202 LVDS NEW               | 1.000000 | Piece | S |
| 54> | E3471-000072     | WIRE WS SHIELD FOR MT8202<br>MICO KEY 13P/8P+5P L650/L750MM<br>W/O EMI   | 1.000000 | Piece | S |
| 55> | E3471-002005     | WIRE WS SHIELD 6P2.0/+2P2.5<br>+8P2.0 COMBO DVD SIGNAL WIRE<br>MT8202    | 1.000000 | Piece | S |
| 56> | E3471-002006     | WIRE WS SHIELD WIRE 27LCD TV<br>+COMBO DVD SIGNAL WIRE MT8202            | 1.000000 | Piece | S |
| 57> | E4801-124001     | SPEAKER 8 OHM 10W D3" YD78-1                                             | 2.000000 | Piece | S |

| 58> | E6203-27CD02   | DISPLAY LCD 27" CMO V270B1-L01<br>1366X768 1000:1 HIGH CONTRAST | 1.000000 | Piece | S |
|-----|----------------|-----------------------------------------------------------------|----------|-------|---|
| 59> | E7301-010002   | BATTERY AAA R03P1.5V <2>                                        | 2.000000 | Piece | S |
| 60> | E7801-D02001   | DVD PCB ASSY NEON FOR MT8202<br>NEW                             | 1.000000 | SET   | S |
| 61> | 734-L27AD03-01 | ELLIPSE PLASTIC BASE ASSY W/O<br>LOGO W/O PACKING SILVER        | 1.000000 | SET   | S |
| 62> | 771BL37AD01-01 | IR RECEIVE PCB ASSY FOR<br>LCT37AD                              | 1.000000 | SET   | S |
| 63> | 771KL27AD02-01 | KEY PCB ASSY FOR DVD LCT27AD<br>ATSC & DVD S-MT8202G            | 1.000000 | SET   | S |
| 64> | 771KL37AD01-01 | KEY PCB ASSY FOR LCT37AD                                        | 1.000000 | SET   | S |

# If you forget your V-Chip Password

- Omnipotence V-Chip Password: 8202.

Using the "Change Password" item

- When enter the "V-Chip" menu, select "Change Password".
- ☑ Press ▲ or ▼ button to highlight the "Change Password" item.
- Press Enter button to confirm and pop up a menu.



Use 0~9 buttons input the omnipotence password (8202), then Press Enter button to enter and pop up a menu.



- □ Press ▼ button to move to confirm blank.
- ☐ Use 0~9 buttons input your new password again.
- Press Enter button to confirm

<sup>-</sup>Suggest: Change to your familiar Password again.

### **Software Upgrade**

### **Process of update MT8202**

#### **Preparing:**

- 1. Connect the Plasma/LCD TV and PC with the **Software Upgrade Board**. Please find the details for connecting **referring to the appendix at the end of this file.**
- **2.** Store the MtkTool into the PC.

### **Downloading:**

- **3.** Turn on AC power of the TV and then press the button "standby" of the remote control. The image could be found on the screen of the Plasma TV while the color of the power indicator is green. (the mode of the TV will be standby mode if after turn on the main power only.)
- **4.** Execute MTKtool and select the chipset as MT8202. (the software of MTKtool will be sent to your side)



**5.** Select current COM port. (please try to check the COM port of your PC).



- **6.** Choose the bit rate as 115200.
- **7.** Select the update binary by pressing browse button. For example, the binary file name is PDP4210EA1 V09.bin. (this update firmware will be sent to your side)



**8.** Press Upgrade button and start update process.





**9.** The update process is successful as the progress bar is 100%. After the update process is ok,

turn off power and wait indicator light is off. Turn on power and TV can work.

#### Checking

It is needed to check the version of the firmware for MT8202 which has been download into the Plasma TV .

Press Menu button of the remote control, following input "8202" of the remote control and OSD menu for Factory Setting is appeared on the screen.

Use the remote control and select the mode of Firmware Version and then enter the mode of Firmware Version . It is easy to be found the version of the current firmware for MT8202 is as the following: "Factory ID: PDP4210EA1 VXX"

## Appendix:

### **Quick Installation Guide**

For

## **Software Upgrade Board**

- 1. Parts List
  - Software upgrade board x 1 (#1)
  - RS232 null cable x 1 for PC (#2)
  - RS232 VGA cable (#4)
  - USB cable x 1 (#5)
- 2. Installation for ATV upgrade
  - 2.1 Connect RS232 cable (#2) to PC serial port



### Connect another side of RS232 cable (#2) to the board (#1)



### 2.2 Connect RS232-VGA cable (#4) (RS232 side) to the board (#1)



Connect RS232-VGA cable (#4) (VGA side) to the TV



### 2.3 Connect USB cable (#5) to the board (#1)



Connect another side of USB cable (#5) to PC



### 3. Cables Standard for Upgrade Board

# Software upgrade board x 1 (#1)



# RS232 Null Cable for PC (#2)



# RS232 - VGA Cable (#4)



# USB Cable (#5)



Connector 1: Standard USB Male Connector 2: Standard USB Male

### **Software Upgrade**

### Process of update MT5351AG

#### **Preparing:**

- 1. Connect the Plasma/LCD TV and PC with the **Software Upgrade Board**. Please find the details for connecting **referring to the appendix at the end of this file**.
- 2. Store the MtkTool into the PC

### **Downloading:**

- **3.** Turn on AC power of the TV and then press the button "standby" of the remote control. The image could be found on the screen of the Plasma TV while the color of the power indicator is green. (the mode of the TV will be standby mode if after turn on the main power only.)
- **4.** Execute MTKtool and select the chipset as MT5351. (the software of MTKtool will be sent to your side)



**5.** Select current COM port. (please try to check the COM port of your PC).



- **6.** Choose the bit rate as 115200.
- **7.** Select the update binary by pressing browse button. For example, the binary file name is XXXX\_PDP4210EA1\_000000XX\_X\_P.bin. (this update firmware will be sent to your side)



**8.** Press Upgrade button and start update process.



**9.** The update process is successful as the progress bar is 100%. After the update process is ok, turn off power and wait indicator light is off. Turn on power and TV can work.

### **Checking:**

It is needed to check the version of the firmware for MT5351AG which has been download into the Plasma TV .

Press Menu button of the remote control and the main OSD menu is appeared on the screen .

Use the remote control and select the DTV menu . following input "0000" (zero , zero , zero , zero) of the remote control .Then enter the mode of factory after input the digits .

It is easy to be found the version of the current firmware for MT5351AG is "PDP4210EA1 CLA\_QAM\_XXXXXX\_XX"under the mode of factory .

## **Appendix:**

## **Quick Installation Guide**

For

## **Software Upgrade Board**

#### 1. Parts List

- Software upgrade board x 1 (#1)
- RS232 null cable x 1 for PC (#2)
- RS232 null cable x 1 for DTV (#3)
- USB cable x 1 (#5)

### 2. Installation for DTV upgrade

### 2.1 Connect RS232 cable (#2) to PC serial port



Connect another side of RS232 cable (#2) to the board (#1)



### 2.2 Connect RS232 cable for DTV (#3) to the board (#1)



Connect another side of RS232 cable for DTV (#3) to the TV



### 2.3 Connect USB cable (#5) to the board (#1)



Connect another side of USB cable (#5) to PC



## 3. Cables Standard for Upgrade Board

# Software upgrade board x 1 (#1)



# RS232 Null Cable for PC (#2)



# RS232 Null Cable for DTV (#3)



# USB Cable (#5)



Connector 1: Standard USB Male Connector 2: Standard USB Male