Digital Image Processing (CSE/ECE 478) Lecture2: Intensity transformations and histograms

Vineet Gandhi

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Matrix scene

Motivation

Image courtesy: NASA

Motivation

Image courtesy: rationalqm.us

Organization (today's lecture)

Organization (today's lecture)

1. Intensity Transformation Functions

2. Histogram Processing

Intensity transformation

- Input pixel (r) → output pixel (s)
- Independent pixel to pixel mapping

Standard Intensity transformations

Image Negatives

FIGURE 3.4

(a) Original digital mammogram.

(b) Negative image obtained using the negative transformation in Eq. (3.2-1).

(Courtesy of G.E. Medical Systems.)

Intensity levels: [0, L-1]

Transformation: s = L - 1 - r

Log Transformations

a b

FIGURE 3.5

(a) Fourier spectrum. (b) Result of applying the log transformation given in Eq. (3.2-2) with c = 1.

$$s = c \log(1+r)$$

Power-Law (Gamma) Transformations

$$s = c r^{\Upsilon}$$

Power-Law (Gamma) Transformations

a b c d

FIGURE 3.9

(a) Aerial image. (b)–(d) Results of applying the transformation in Eq. (3.2-3) with c = 1 and $\gamma = 3.0$, 4.0, and 5.0, respectively. (Original image for this example courtesy of NASA.)

Piecewise Transformations

Piecewise Transformations: Contrast Stretching

Bit Plane Slicing

Dorothea Lange's "Migrant Mother"

Bit Plane Slicing

Organization (today's lecture)

1. Intensity Transformation Functions

2. Histogram Processing

Courtesy: wikipedia

$$h_r(i) = n_i$$

i → intensity value, range [0 L-1]
 n_i → number of pixels with intensity i

Different images can have same histogram

No information about distribution of intensity values

What can we infer from histograms?

Histogram viewing standard in most DSLR cameras

Histograms can help interpret the images

Original Image and histogram

Compressed Image and histogram

Histogram and contrast

Histograms and brightness

Under exposure

Histograms and brightness

Over exposure

Intensity transformation

Histogram Equalization

Image Courtesy: Gonzalez and Woods

Histogram Matching

Local Histogram Processing

What point operations can't do?

Image Sharpening

What point operations can't do?

Noise removal

Organization (today's lecture)

1. Intensity Transformation Functions

2. Histogram Processing

Spatial Filtering → Next class