So simple, yet so effective

So simple, yet so effective

Ottavia M. Epifania

Table of contents I

- Introduction
- 2 Real data

Introduction

- Experiments with fully-crossed structures
- Random Factors and Random Effects
- Random structures

2 Real data

- Introduction
 - Experiments with fully-crossed structures
 - Random Factors and Random Effects
 - Random structures

2 Real data

An example: The SNARC effect

Small numbers: Perceived on the left Large numbers: Perceived on the right

How do we ivestigate such an effect?

Small numbers:

Large numbers:

1, 2, 3, 4

6, 7, 8, 9

Two conditions:

The "innatural" one

So simple, yet so effective Introduction Experiments with fully-crossed structures	
p_1	
p_2	©
p_3	

 p_1

 p_2

 p_3

So simple, yet so effective $\mathrel{\bigsqcup_{\mathsf{Introduction}}}$ Experiments with fully-crossed structures p_2

 p_3

Forse qui metterei Jane e John Does

o simple, yet so effective	
- Introduction	
Experiments with fully-crossed stru	ıctures

Every experiment where the same set of stimuli is administered multiple times within and between associative conditions within and between respondents

Sample-level differences

Individual differences

Tunical Convince months de

Typical Scoring methods

Inventa qualcosa di carino per rappresentare le medione attraverso i trial Mettere come key concept il fatto che i soggetti sono effetti random e gli stimoli sono effetti fissi, ma che in questo ambito non ha senso perché gli stimoli sono dei rappresentati eccetera, riprendi la presentazione di berlino

Issues of Typical scoring methods

Two main big enourmous terrible issues:

- Completely ignore all the sources of error variance
- 2 Ignoring the stimuli variability implies ignoring the information at the stimulus level

Problem 1: Linear Mixed Effects Models

Problem 2: Rasch model

The best solution: Rasch-like parametrization estimated with Linear Mixed Effects Models

The Rasch Model

A GLM for dichotmous responses

The log-normal model

A linear model

When psychometrics meets statsitics

La tabellina delle similarità

- Introduction
 - Experiments with fully-crossed structures
 - Random Factors and Random Effects
 - Random structures

2 Real data

oo simple, yet so effective	
— Introduction	
Random Factors and Random	Effects

Model matrix e cose varie con tanto di esempio con il gamma

So simple, yet so effective

Introduction

Random Factors and Random Effects

I BLUP e le conditional modes

- Introduction
 - Experiments with fully-crossed structures
 - Random Factors and Random Effects
 - Random structures

2 Real data

The maximal model

Too complex

The models that are uself for ones aim

Given the structure of the experiments:

Common goal: Investigate the changes in the performance of the respondents between the associative conditions

Less common: Investigate the changes in the functioning of the stimuli between the associative conditions

Preliminarities

Index	Meaning	Variable
$p = 1, \dots, P$ $s = 1, \dots, S$ $c \in \{0, 1\}$ i	Stimulus	respondents stimuli condition

Accuracy: Log-time response **GLMM LMM** y = [0, 1]

 $y = [0, +\infty]$ (log-transformed) $\varepsilon \mathcal{N}(0, \sigma^2)$

Model 1

i Mathematical Notation

$$y = \beta_c X_c + \alpha_p[i] + \alpha_s[i]$$

1me4 notation

♦ Rasch-like parametrization

	MM LM	١V
$\begin{array}{ccc} \text{respondents} & \theta_p \\ \text{stimuli} & b_s \end{array}$	$\begin{matrix}\tau_p\\\delta_s\end{matrix}$	

Model 2

i Mathematical Notation

$$y = \beta_c X_c + \alpha_p[i] + \beta_s[i]c_i$$

1me4 notation

♦ Rasch-like parametrization

	GLMM	LMN
respondents stimuli	$\begin{matrix}\theta_p\\b_{sc}\end{matrix}$	$\begin{matrix}\tau_p\\\delta_{sc}\end{matrix}$

Model 3

i Mathematical Notation

$$y = \beta_c X_c + \beta_p[i] c_i + \alpha_s[i]$$

1me4 notation

♦ Rasch-like parametrization

	GLMM	LMM
respondents stimuli	$\begin{matrix}\theta_{pc}\\b_s\end{matrix}$	$\begin{matrix}\tau_{pc}\\\delta_s\end{matrix}$

All models are wrong...

Find the useful model via model comparison: AIC and BIC

The lower the value, the better the model

! AIC, BIC, and model complexity:

Total number of parameters: β and Γ

NOT the levels in d

Model 2 and Model 3: Same complexity, different focus

The chosen model is the least wrong model given the models considered: Relativity applies everywhere

- 1 Introduction
 - Experiments with fully-crossed structures
 - Random Factors and Random Effects
 - Random structures

2 Real data

So simple, yet so effective Real data

Get set

```
library(lme4) # Fitting LMMs
library(ggplot2) # Plots
```

The Implicit Association Test

Individual Differences!

copia e incolla direttamente la slide del predoc!!

[1] "C:/Users/Ottavia/Documents/GitHub/beyond-summer-school/a