3 Simple estimation (Initialization)

3.1 Simulated Annealing

Consider a simple version of model $Y = A \sin(g(x) + b) - B \cos(2g(x) + 2b)$ where we assume the growth-time process g(x) is a piecewise linear function with a single breakpoint, to accommodate for a change in frequency:

$$g(x) = \begin{cases} a_1 x & x < x_0 \\ (a_1 - a_2)x_0 + a_2 x & x \ge x_0 \end{cases}$$
 (7)

This is a non-stochastic model, where we have introduced 3 new parameters, namely breakpoint x_0 and frequencies a_1 and a_2 respectively. Let \hat{y}_i be the fitted values in in this simple model, then we propose the following loss function:

$$loss(A, B, b, a_1, a_2, x_0) = \underbrace{\sum_{i=1}^{N} (\hat{y}_i - y_i)^2}_{Prediction Error} + \underbrace{\lambda \left(\left(\frac{e_{min}}{e_N} - 1 \right) \mathbf{1} (e_N < e_{min}) + \left(\frac{e_N}{e_{max}} - 1 \right) \mathbf{1} (e_N > e_{max}) \right)}_{Prediction Error},$$
(8)

where the model estimate for the number of cycles is

$$e_N = \frac{1}{2\pi} g(x_N) = \frac{1}{2\pi} \int_0^{x_N} \xi_s \, ds \tag{9}$$

and the interval (e_{min}, e_{max}) puts a restriction on this estimate. Consequently, the penalization controls the number of cycles, thereby reducing the likelihood of fitting signals with a cycle count beyond this pres-specified interval and also reduces the susceptibility of the method to fit fluctuating noise. The hyperparameter λ is the standard penalization factor, which can for instance be calibrated using cross-validation or similar techniques.

Optimizing (8) requires robust optimization, and we propose Simulated Annealing, for example implemented in the R package GenSA [5]. From the optimization, we directly obtain initial estimates for the parameters A, B and b of the full model. Our guess at g(x), ξ_x and σ can also be derived, whereas β , ω cannot and should be estimated in another way. This procedure is summarized in Algorithm 1.

Algorithm 1: Initialization using Simulated Annealing

Data: $\{(x_1, y_1), \dots, (x_N, y_N)\}$

Result: $\hat{\xi}_{x}^{0}, \hat{a}^{0}, \hat{A}^{0}, \hat{B}^{0}, \hat{b}^{0}, \hat{\sigma}^{0}$

Step(0) Fit simple version of (??), (??) with g(x) given by eq. (7). Use loss function (8) and Simulated Annealing. This provide estimates \hat{A}^0 , \hat{B}^0 , \hat{b}^0 and $\hat{g}(x)$, \hat{a}_1 , \hat{a}_2 ;

Step(1) Put $\hat{\xi}_x^0 = \hat{g}(x) - \hat{g}(x - \Delta x)$ with $\Delta x = x_i - x_{i-1}$;

Step(2) Put $\hat{a}^0 = \frac{1}{N} \sum_{i=1}^{N} \hat{\xi}_{x_i}^0$;

Step(3) Put $\hat{\sigma}^0 = \sqrt{\frac{1}{N-2} \sum_{i=1}^{N} r_i^2}$ where r_i are the (simple) model residuals;

Step(4) Initialize β^0, ω^0 , for example by drawing from distributions in equation (8), (9) and

(11) and under the Feller condition (??)