3.5: Implicit Differentiation

So far, we have focused on differentiating *explicit* functions of x of the form y = f(x). Using **implicit differentiation**, we can solve for y' without knowing the form of y = f(x). That is, we can solve for y' from *implicit* functions of x and y such as

$$x^{2} + y^{2} = 25$$
, $x^{3} + y^{3} = 6xy$, and $\sin(x + y) = y^{2} \cos x$.

Example 1.

- (a) If $x^2 + y^2 = 25$, find $\frac{dy}{dx}$.
- (b) Find an equation of the tangent to the circle $x^2 + y^2 = 25$ at the point (3,4).

Example 2.

- (a) Find y' if $x^3 + y^3 = 6xy$.
- (b) Find the tangent to the curve $x^3 + y^3 = 6xy$ at the point (3,3).
- (c) At what point in the first quadrant is the tangent line horizontal?

Example 3. Find y' if $sin(x+y) = y^2 cos x$.

Derivatives of Inverse Trigonometric Functions

Implicit deifferentiation is especially useful for differentiating the inverse trigonometric functions.

Example 4. Use implicit differentiation to find the derivatives of

- (a) $\sin^{-1} x$.
- (b) $\tan^{-1} x$.

The derivatives of the inverse trigonometric functions are

1.
$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$

4.
$$\frac{d}{dx}(\csc^{-1}x) = -\frac{1}{x\sqrt{x^2-1}}$$

2.
$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$$

5.
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2-1}}$$

3.
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

6.
$$\frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}$$

Example 5. Differentiate (a) $y = \frac{1}{\sin^{-1} x}$ and (b) $f(x) = x \arctan x$.