1 Счетность множества рациональных чисел, несчетность множества действительных чисел

Утверждение Множество рациональных чисел \mathbb{Q} счетно.

 \blacktriangleleft Рациональное число имеет вид $\frac{m}{n}$, где $m \in \mathbb{Z}, n \in \mathbb{N}$. Запишем все рациональные числа в таблицу:

	0	1	-1	2	•••
1	$\frac{0}{1}$	$\frac{1}{1}$	$\frac{-1}{1}$	$\frac{2}{1}$	
2	$\frac{0}{2}$	$\frac{1}{2}$	$\frac{-1}{2}$	$\frac{2}{2}$	
3	$\frac{0}{3}$	$\frac{1}{3}$	$\frac{-1}{3}$	$\frac{2}{3}$	•••
•••					

Будем нумеровать рациональные числа в таблице, идя по диагоналям и пропуская те числа, которым уже присвоен номер. Так мы присвоим каждому рациональному числу натуральный номер \Rightarrow построим биекцию из $\mathbb Q$ в $\mathbb N$. Значит $\mathbb Q$ счетно. \blacktriangleright

Утверждение Множество действительных чисел ℝ несчетно.

2 Теорема о существовании точной верхней (нижней) грани множества

Теорема Каждое непустое ограниченное сверху(снизу) множество $A \subset \mathbb{R}$ имеет точную верхнюю(нижнюю) грань.

Пусть A ограничено сверху, B — множество верхних граней множества A, тогда:

$$\forall a \in A \ \forall b \in B \ (a \le b)$$

В силу свойства полноты множества действительных чисел:

$$\exists c : \forall a \in A \ \forall b \in B \ (a \le c \le b)$$

Тогда c ограничивает множество A сверху \Rightarrow принадлежит множеству B, причем является его минимальным элементом. Таким образом, c — точная верхняя грань множества A. (Случай c нижней гранью доказывается аналогично). \blacktriangleright

3 Бесконечно малые последовательности и их свойства

Теорема $\{x_n\} \subset \mathbb{R} \setminus \{0\}$ — бесконечно малая последовательность $\Leftrightarrow \left\{\frac{1}{x_n}\right\}$ — бесконечно большая последовательность.

◀ По определению предела:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N \ (|x_n| < \varepsilon) \Leftrightarrow$$

$$\Leftrightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N \ \left(\left| \frac{1}{x_n} \right| > \frac{1}{\varepsilon} \right) \Leftrightarrow$$

$$\Leftrightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N \ \left(\left| \frac{1}{x_n} \right| \in U_{\varepsilon}(\infty) \right)$$

Значит $\left\{\frac{1}{x_n}\right\}$ бесконечно большая. \blacktriangleright

Теорема Сумма конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

$$\forall \varepsilon > 0 \ \exists N_1 \in \mathbb{N} : \forall n > N_1 \ (|x_n - 0| < \frac{\varepsilon}{2})$$

$$\forall \varepsilon > 0 \ \exists N_2 \in \mathbb{N} : \forall n > N_2 \ (|y_n - 0| < \frac{\varepsilon}{2})$$

Тогда при $N = \max\{N_1, N_2\}$:

$$\forall n > N \ \left(\left(|x_n| < \frac{\varepsilon}{2} \right) \land \left(|y_n| < \frac{\varepsilon}{2} \right) \right)$$

$$\forall n > N \ (|x_n + y_n| \le |x_n| + |y_n| < \varepsilon)$$

Откуда следует, что $\lim_{n\to\infty} (x_n+y_n)=0$. (Аналогично доказывается для любого конечного числа последовательностей). \blacktriangleright

Теорема Произведение бесконечно малой последовательности на ограниченную есть бесконечно малая последовательность.

$$\exists M > 0 : \forall n \in \mathbb{N} \ (|y_n| < M)$$

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N \ \left(|x_n| < \frac{\varepsilon}{M} \right) \Rightarrow$$

$$\Rightarrow |x_n y_n| < |x_n| M < \varepsilon$$

Значит $\lim_{n\to\infty} x_n y_n = 0$. \blacktriangleright

Свойства пределов, связанные с неравенствами 4

Теорема Пусть $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = A$, причем $\exists N \in \mathbb{N} : \forall n > N \ (x_n \leq y_n \leq z_n)$, тогда $\lim_{n\to\infty}y_n=A.$ \blacksquare По определению предела:

$$\forall \varepsilon > 0 \ \exists N_1 \in \mathbb{N} : \forall n > N_1 \ (|x_n - A| < \varepsilon)$$

$$\forall \varepsilon > 0 \ \exists N_2 \in \mathbb{N} : \forall n > N_2 \ (|z_n - A| < \varepsilon)$$

Пусть $N' = \max\{N, N_1, N_2\}$, тогда:

$$\forall \varepsilon > 0 \ \forall n > N' \ (x_n \in U_{\varepsilon}(A) \land z_n \in U_{\varepsilon}(A))$$

Причем $x_n \leq y_z \leq z_n \Rightarrow \forall \varepsilon > 0 \ \forall n > N' \ (y_n \in U_{\varepsilon}(A))$. Значит $\lim_{n \to \infty} y_n = A$. \blacktriangleright

Теорема Пусть $\lim_{n \to \infty} x_n = A$ и $\exists B \in \mathbb{R} : \exists N \in \mathbb{N} : \forall n > N \ (x_n \leq B)$, тогда $A \leq B$.

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N \ (|x_n - A| < \varepsilon)$$

Предположим, что A > B. Пусть $\varepsilon = A - B > 0$, тогда:

$$\exists N \in \mathbb{N} : \forall n > N \ (|x_n - A| < A - B) \Leftrightarrow$$

$$\Leftrightarrow \exists N \in \mathbb{N} : \forall n > N \ (B < x_n < 2A - B)$$

То есть все x_n , начиная с некоторого n, больше, чем B, но это противоречит условию. Значит $A \leq B$. \blacktriangleright

Теорема Пусть $\lim_{n\to\infty} x_n = A$, $\lim_{n\to\infty} y_n = B$ и $\forall n \in \mathbb{N} \ (x_n \leq y_n)$, то $A \leq B$.

◀ Предположим, что A > B. Пусть $\varepsilon = \frac{A-B}{2} > 0$, тогда:

$$\exists N_1 \in \mathbb{N} : \forall n > N_1(|x_n - A| < \varepsilon)$$

$$\exists N_2 \in \mathbb{N} : \forall n > N_2(|y_n - B| < \varepsilon)$$

Тогда:

$$\forall n > \max\{N_1, N_2\} \ (\frac{B-A}{2} < x_n - A < \frac{A-B}{2})$$

 $\forall n > \max\{N_1, N_2\} \ (\frac{A+B}{2} < x_n < \frac{3A-B}{2})$

Аналогично:

$$\forall n > \max\{N_1, N_2\} \ (\frac{3B - A}{2} < y_n < \frac{A + B}{2})$$

Тогда:

$$\forall n > \max\{N_1, N_2\} \ \left(y_n < \frac{A+B}{2} < x_n\right)$$

Противоречие. Значит $A \leq B$. \blacktriangleright

5 Арифметические операции со сходящимися последовательностями

Теорема Пусть $\lim_{n\to\infty} x_n = A$, $\lim_{n\to\infty} y_n = B$, тогда:

$$1. \lim_{n \to \infty} (x_n + y_n) = A + B$$

$$2. \lim_{n \to \infty} x_n y_n = AB$$

3.
$$\lim_{n\to\infty}\frac{x_n}{y_n}=\frac{A}{B}$$
, если $\forall n\in\mathbb{N}\ (y_n\neq 0)$ и $B\neq 0$

1. По определению предела:

$$\forall \varepsilon > 0 \ \exists N_1 \in \mathbb{N} : \forall n > N_1 \ \left(|x_n - A| < \frac{\varepsilon}{2} \right)$$

$$\forall \varepsilon > 0 \ \exists N_2 \in \mathbb{N} : \forall n > N_2 \ \left(|y_n - B| < \frac{\varepsilon}{2} \right)$$

Тогда:

$$\forall n > \max\{N_1, N_2\} \ (|(x_n + y_n) - (A + B)| = |(x_n - A) + (y_n - B)| \le |x_n - A| + |y_n - B| < \varepsilon)$$

Значит $\lim_{n\to\infty} (x_n + y_n) = A + B$.

2. Рассмотрим $|x_n y_n - AB| = |(x_n y_n - x_n B) + (x_n B - AB)| \le |x_n| |y_n - B| + |B| |x_n - A|$. Последовательность $\{x_n\}$ ограничена, значит $\exists C > 0 : \forall n \in \mathbb{N} \ (|x_n| < C)$. Если $B \neq 0$, то:

$$\forall \varepsilon > 0 \ \exists N_1 \in \mathbb{N} : \forall n > N_1 \ \left(|x_n - A| < \frac{\varepsilon}{2|B|} \right)$$

$$\exists N_2 \in \mathbb{N} : \forall n > N_2 \ \left(|y_n - B| < \frac{\varepsilon}{2C} \right)$$

Тогда:

$$|x_n y_n - AB| < C \frac{\varepsilon}{2C} + |B| \frac{\varepsilon}{2|B|} = \varepsilon$$

Значит $\lim_{n\to\infty}x_ny_n=AB$. Если B=0, то $\{y_n\}$ бесконечно малая $\Rightarrow \lim_{n\to\infty}x_ny_n=0=AB$.

3. $\exists N \in \mathbb{N} : \forall n > N \ (|y_n| > \left|\frac{B}{2}\right|) \Leftrightarrow (\frac{1}{|y_n|} < \frac{2}{|B|})$. При этом:

$$\frac{x_n}{y_n} - \frac{A}{B} = \frac{x_n B - y_n A + AB - AB}{y_n B} = \frac{B(x_n - A) - A(y_n - B)}{y_n B}$$

Числитель дроби является бесконечно малой последовательностью, причем:

$$\left| \frac{1}{y_n B} \right| = \frac{1}{|y_n||B|} < \frac{2}{|B|^2}$$

Значит $\left\{\frac{1}{y_n B}\right\}$ ограничена $\Rightarrow \left\{\frac{x_n}{y_n} - \frac{A}{B}\right\}$ бесконечно малая $\Rightarrow \lim_{n \to \infty} \frac{x_n}{y_n} = \frac{A}{B}$. \blacktriangleright

6 Теорема о пределе ограниченной монотонной последовательности

Теорема Каждая неубывающая(невозрастающая) ограниченная сверху(снизу) последовательность имеет предел, причем он равен точной верхней(нижней) грани.

◄ Пусть $\{x_n\}$ неубывающая, ограничена сверху, тогда $\exists \sup \{x_n\} = M$. Значит:

$$\forall \varepsilon > 0 \ \forall n \in \mathbb{N} \ (x_n \le M < M + \varepsilon)$$

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : (M - \varepsilon < x_N)$$

$$\forall n > N \ (x_n \ge x_{n-1} \ge \dots \ge x_N > M - \varepsilon)$$

Тогда $M - \varepsilon < x_n < M + \varepsilon \Rightarrow \lim_{n \to \infty} x_n = M$. (Для невозрастающей последовательности доказывается аналогично). \blacktriangleright

Число е

Теорема Последовательность $\left\{\left(1+\frac{1}{n}\right)^n\right\}$ сходится, и ее предел называется числом e. \blacktriangleleft Пусть $y_n=\left(1+\frac{1}{n}\right)^{n+1}$. Для $n\geq 2$:

$$\frac{y_{n-1}}{y_n} = \frac{\left(1 + \frac{1}{n-1}\right)^n}{\left(1 + \frac{1}{n}\right)^{n+1}} = \frac{n^{2n}}{(n^2 - 1)^n} \frac{n}{n+1} = \left(1 + \frac{1}{n^2 - 1}\right)^n \frac{n}{n+1} \ge \frac{1}{n^2 - 1} \left(1 + \frac{1}{n^2 - 1}\right) \frac{n}{n+1} > \left(1 + \frac{1}{n}\right) \frac{n}{n+1} = 1$$

Поскольку все члены последовательности положительны, по теореме Вейерштрасса существует предел $\lim_{n\to\infty} y_n$. Но тогда:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} \left(1 + \frac{1}{n} \right)^{-1} =$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1}$$

Значит $\left\{\left(1+\frac{1}{n}\right)^n\right\}$ сходится. \blacktriangleright

8 Теорема Кантора о вложенных отрезках

Теорема Каждая система вложенных отрезков $\{[a_n,b_n]\}$, $[a_n,b_n]\supset [a_{n+1},b_{n+1}]$ $\forall n\in\mathbb{N}$ имеет непустое пересечение. Если, кроме того, длины отрезков стремятся к нулю, то это пересечение — точка.

◄ Непустое пересечение. $\forall n \in \mathbb{N} \ ((a_n \le a_{n+1}) \land (b_{n+1} \le b_n) \land (a_n \le b_n))$. Значит $\lim_{n \to \infty} a_n = \sup\{a_n\} = A, \lim_{n \to \infty} b_n = \inf\{b_n\} = B, A \le B$. Тогда $[A, B] \subset \bigcap_{n=1}^{\infty} [a_n, b_n]$.

Единственность точки. Пусть существуют две различные точки C и C', принадлежащие всем отрезкам, тогда:

$$\forall n \in \mathbb{N} \ (|C - C'| \le b_n - a_n)$$

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N \ (b_n - a_n < \varepsilon)$$

Взяв $\varepsilon = \frac{1}{2}|C - C'|$, получим:

$$|C - C'| < \frac{1}{2}|C - C'|$$

Противоречие. Значит общая точка всех отрезков единственна. ▶

9 Подпоследовательности и частичные пределы. Теорема о трех определениях верхнего и нижнего пределов

Определение Если $\{n_k\}$ — возрастающая последовательность натуральных чисел, то $\{x_{n_k}\}$ называется подпоследовательностью последовательности $\{x_n\}$.

Определение Если существует $\lim_{k\to\infty} x_{n_k} = A$, то A называется частичным пределом последовательности $\{x_n\}$.

Определение Верхним(нижним) пределом числовой последовательности называется наибольший(наименьший) из ее частичных пределов.

Теорема Каждая ограниченная последовательность $\{x_n\}$ имеет конечные верхний и нижний пределы $L = \overline{\lim_{n \to \infty}} x_n, l = \underline{\lim_{n \to \infty}} x_n$. Справедливы следующие утверждения:

1.
$$(\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N \ (x_n < L + \varepsilon)) \land (\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N : (x_n > L - \varepsilon))$$

 $(\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N \ (x_n > l - \varepsilon)) \land (\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N : (x_n < l + \varepsilon))$

2.
$$L = \lim_{n \to \infty} \sup \{x_n, x_{n+1}, \dots\}$$
$$l = \lim_{n \to \infty} \inf \{x_n, x_{n+1}, \dots\}$$

◄ 1. Рассмотрим последовательность $s_n = \sup\{x_n, x_{n+1}, ...\}$, причем $s_n \ge s_{n+1} \Rightarrow \{s_n\}$ невозрастающая. $s_n \ge \inf\{x_1, x_2, ...\}$. По теореме Вейерштрасса у $\{s_n\}$ есть предел $L = \lim_{n \to \infty} s_n$. Поскольку последовательность невозрастающая, $L = \inf\{s_n\}$. По определению предела:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N \ (L - \varepsilon < s_n < L + \varepsilon)$$

Из $s_n < L + \varepsilon \Rightarrow x_n < L + \varepsilon$. Зафиксируем произвольное $\varepsilon > 0$.

$$\forall N \in \mathbb{N} \ (s_{N+1} = \sup \{x_{N+1}, x_{N+2}, \dots\} \ge L)$$
$$\exists n > N \ (x_n > s_{N+1} - \varepsilon > L - \varepsilon)$$

2. Пусть $\varepsilon = 1$, тогда:

$$\exists N_1 \in \mathbb{N} : \forall n > N_1 \ (x_n < L + 1)$$

Причем:

$$\exists n_1 > N_1 + 1 : (x_{n_1} > L - 1)$$

Значит $|x_{n_1} - L| < 1$. Пусть теперь $\varepsilon = \frac{1}{2}$, тогда:

$$\exists N_2 \in \mathbb{N} : \forall n > N_2 \quad \left(x_n < L + \frac{1}{2} \right)$$

Причем:

$$\exists n_2 > \max\{N_2 + 1, n_1\} : \left(x_{n_2} > L - \frac{1}{2}\right)$$

Значит $|x_{n_2}-L|<\frac{1}{2}$. Продолжим действовать по такому же принципу. Получим последовательность $\{x_{n_k}\}$ такую, что $\forall k\in\mathbb{N}\ (|x_{n_k}-L|<\frac{1}{k})$. То есть $L-\frac{1}{k}< x_n< L+\frac{1}{k}$. По теореме о промежуточной последовательности $x_{n_k}\to L$ при $k\to\infty$. Значит L является частичным пределом $\{x_n\}$.

Пусть $t=\lim_{i\to\infty}x_{m_i}$. $\forall \varepsilon>0$ $\exists N\in\mathbb{N}: \forall n>N$ $(x_n< L+\varepsilon)$. Поскольку $\{m_i\}$ возрастает, $\exists I\in\mathbb{N}: \forall i>I$ $(m_i>N)\Rightarrow x_{m_i}< L+\varepsilon$. Значит $t\leq L+\varepsilon$. Тогда $\forall \varepsilon>0$ $(t\leq L+\varepsilon)\Rightarrow t\leq L$. Таким образом, L— наибольший из всех частичных пределов \Rightarrow верхний предел. \blacktriangleright

10 Теорема Больцано-Вейерштрасса

Теорема Каждая ограниченная последовательность содержит сходящуюся подпоследовательность.

◄ Пусть $\{x_n\}$ — ограниченная последовательность, тогда $\exists A_1, B_1 \in \mathbb{R} : \forall n \in \mathbb{N}$ $(A_1 \leq x_n \leq B_1)$. Рассмотрим отрезки $[A_1, \frac{A_1 + B_1}{2}], [\frac{A_1 + B_1}{2}, B_1]$ и выберем из них тот отрезок $[A_2, B_2]$, который содержит бесконечно много членов последовательности. Продолжим выбирать отрезки по такому же принципу. Тогда $\{[A_n, B_n]\}_{n=1}^{\infty}$ — последовательность стягивающихся вложенных отрезков, причем:

$$0 < B_n - A_n = \frac{B_1 - A_1}{2^n} < \frac{B_1 - A_1}{n}$$

По теореме о промежуточной последовательности $\lim_{n\to\infty} (B_n - A_n) = 0$. По теореме Кантора о вложенных отрезках $\bigcap_{n=1}^{\infty} [A_n, B_n] = \{C\}$.

Составим подпоследовательность $\{x_{n_k}\}$ последовательности $\{x_n\}$ по следующему принципу:

$$x_{n_1} = x_1$$

$$x_{n_2} \in [A_2, B_2], n_2 > n_1$$

$$x_{n_k} \in [A_k, B_k], n_k > n_{k-1}$$

Тогда:

$$0 \le |x_{n_k} - C| \le B_k - A_k = \frac{B_1 - A_1}{2^k}$$

По теореме о промежуточной последовательности $\lim_{n\to\infty} x_{n_k} = C \Rightarrow \{x_{n_k}\}$ — искомая подпоследовательность. \blacktriangleright

11 Критерий Коши сходимости числовой последовательности

Теорема Числовая последовательность сходится тогда и только тогда, когда она фундаментальна.

◄ Сходится ⇒ фундаментальна. Пусть $\lim_{n\to\infty}x_n=A,$ тогда $\forall \varepsilon>0$ $\exists N\in\mathbb{N}: \forall n>N$ $(|x_n-A|<\frac{\varepsilon}{2}).$ Тогда:

$$\forall p \in \mathbb{N} \ \left(|x_{n+p} - A| < \frac{\varepsilon}{2} \right)$$
$$|x_{n+p} - x_n| \le |x_{n+p} - A| + |x_n - A| < \varepsilon$$

Фундаментальна \Rightarrow сходится. Пусть $\varepsilon = 1$, тогда:

$$\exists N \in \mathbb{N} : \forall n > N \ \forall p \in \mathbb{N} \ (|x_{n+p} - x_n| < 1)$$

$$\forall n > N \ (x_{N+1} - 1 < x_n < x_{N+1} + 1)$$

Значит последовательность ограничена. Тогда по теореме Больцано-Вейерштрасса:

$$\exists A \in \mathbb{R} : \forall \varepsilon > 0 \ \exists K \in \mathbb{N} : \forall n_k > n_K \ \left(|x_{n_k} - A| < \frac{\varepsilon}{2} \right)$$

По определению фундаментальной последовательности:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N \ \forall p \in \mathbb{N} \ \left(|x_{n+p} - x_n| < \frac{\varepsilon}{2} \right)$$

Тогда:

$$\forall m > \max\{N, K\} \ (|x_m - A| \le |x_m - x_{n_m}| + |x_{n_m} - A| < \varepsilon)$$

Значит $\{x_n\}$ сходится. \blacktriangleright

12 Определение предела функции в точке в терминах окрестностей (по Коши) и в терминах последовательностей (по Гейне), их эквивалентность

Определение Пусть функция f определена в некоторой проколотой окрестности точки $x_0 \in \hat{\mathbb{R}}$. Число $A \in \hat{\mathbb{R}}$ называется пределом функции f в точке x_0 , если:

- 1. (По Коши) $\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in \mathring{U}_{\delta}(x_0) \ (f(x) \in U_{\varepsilon}(A)).$
- 2. (По Гейне) $\forall \{x_n\} \subset D(f) \setminus \{x_0\}, \lim_{n \to \infty} x_n = x_0 \ (\lim_{n \to \infty} f(x_n) = A).$

Теорема Определения по Коши и по Гейне эквивалентны.

◀ Коши ⇒ Гейне. Пусть $\lim_{x\to x_0} f(x) = A$ по Коши. Возьмем любую последовательность, сходящуюся к x_0 , все члены которой лежат в некоторой проколотой окрестности точки x_0 . Тогда начиная с некоторого номера элементы $\{x_n\}$ будут попадать в $\mathring{U}_{\delta}(x_0)$, а по определению по Коши $f(x_n)$ будут попадать в $U_{\varepsilon}(A)$. Значит в $U_{\varepsilon}(A)$ лежит бесконечное число элементов $\{f(x_n)\}$ ⇒ $\{f(x_n)\}$ сходится к A.

Гейне \Rightarrow Коши. Пусть $\lim_{x\to x_0} f(x) = A$ по Гейне. Предположим, что A не является пределом по Коши, тогда:

$$\exists \varepsilon > 0 : \forall \delta > 0 \ \exists x \in \mathring{U}_{\delta}(x_0) : (f(x) \notin U_{\varepsilon}(A))$$

Функция f определена в некоторой $\mathring{U}_{\delta_0}(x_0), \delta_0 > 0$. Возьмем $\delta = \frac{\delta_0}{n}, n \in \mathbb{N}$. Тогда:

$$\forall n \in \mathbb{N} \ \exists x_n \in \mathring{U}_{\frac{\delta_0}{n}}(x_0) \Rightarrow \lim_{n \to \infty} x_n = x_0$$

$$\forall n \in \mathbb{N} \ (f(x_n) \notin U_{\varepsilon}(A)) \Rightarrow \lim_{n \to \infty} f(x_n) \neq A$$

Противоречие. Значит A является пределом по Коши. \blacktriangleright

13 Критерий Коши существования предела функции

Теорема Конечный предел $\lim_{x \to x_0} f(x)$ функции f существует тогда и только тогда, когда

$$\forall \varepsilon > 0 \;\; \exists \delta > 0 : \forall x', x'' \in \mathring{U}_{\delta}(x_0) \;\; (|f(x') - f(x'')| < \varepsilon)$$
 $\blacktriangleleft \Rightarrow \Pi$ усть $\lim_{x \to x_0} f(x) = A \in \mathbb{R}$, тогда:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in \mathring{U}_{\delta}(x_0) \ (|f(x) - A| < \frac{\varepsilon}{2})$$

Тогда:

$$\forall x', x'' \in \mathring{U}_{\delta}(x_0) \ (|f(x') - f(x'')| \le |f(x') - A| + |f(x'') - A| < \varepsilon)$$

 \Leftarrow Зафиксируем $\varepsilon > 0$, тогда:

$$\exists \delta > 0 : \forall x', x'' \in \mathring{U}_{\delta}(x_0) \ (|f(x') - f(x'')| < \varepsilon)$$

Возьмем любую последовательность $\{x_n\} \subset D(f) \setminus \{x_0\} : \lim_{n \to \infty} x_n = x_0$, тогда:

$$\exists N \in \mathbb{N} : \forall n, m > N \ ((x_n \in \mathring{U}_{\delta}(x_0)) \land (x_m \in \mathring{U}_{\delta}(x_0))) \Rightarrow$$
$$\Rightarrow |f(x_n) - f(x_m)| < \varepsilon$$

Значит $\{f(x_n)\}$ фундаментальна \Rightarrow сходится к некоторому числу A.

Докажем, что все такие последовательности сходятся к одному числу. Предположим что $\{f(x_n)\}$ сходится к A, $\{f(x_n')\}$ сходится к A'. Рассмотрим новую последовательность $x_1, x_1', x_2, x_2', ..., x_n, x_n', ...$ Она сходится к x_0 . В силу доказанного выше, последовательность $f(x_1), f(x_1'), ..., f(x_n), f(x_n'), ...$ сходится к некоторому числу A''. Но тогда любая подпоследовательность этой последовательности должна сходиться к A''. Значит $f(x_1), f(x_2), ..., f(x_n), ...$ сходится к A'' и $f(x_1'), f(x_2'), ..., f(x_n'), ...$ сходится к A''. Значит A = A' = A''.

14 Существование односторонних пределов у монотонных функций

Теорема Если функция f определена и монотонна на интервале (a,b), то в каждой точке $x_0 \in (a,b)$ она имеет конечные пределы слева и справа.

◄ Пусть функция f(x) монотонно возрастает на (a,b). Выберем произвольную точку $x_0 \in (a,b)$. Тогда $\forall x \in (a,x_0) \ (f(x) \le f(x_0)) \Rightarrow f(x)$ ограничена сверху на $(a,x_0) \Rightarrow \exists \sup f(x) = M \le f(x_0)$. Тогда:

$$\forall x \in (a, x_0) \ (f(x) \le M)$$

$$\forall \varepsilon > 0 \ \exists x_1 \in (a, x_0) : (M - \varepsilon < f(x_1))$$

Пусть $\delta = x_0 - x_1 > 0$, тогда:

$$\forall x \in (x_1, x_0) = (x_0 - \delta, x_0) \ (f(x_1) \le f(x))$$

Значит:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in (x_0 - \delta, x_0) \ (M - \varepsilon < f(x_0 - \delta) \le f(x) \le M < M + \varepsilon)$$

Откуда следует, что $\lim_{x\to x_0-0} f(x) = M$. Аналогично $\lim_{x\to x_0+0} f(x) = \inf f(x), x \in (x_0,b)$. (Аналогично доказывается для монотонно убывающей функции). \blacktriangleright

15 Непрерывность функции в точке. Непрерывность сложной функции

Определение Пусть функция f определена в некоторой окрестности $U_{\delta_0}(x_0), x_0 \in \mathbb{R}$, тогда f называется непрерывной в точке x_0 , если $\lim_{x \to x_0} f(x) = f(x_0)$.

Определение Пусть функция f определена в $(a, x_0], -\infty \le a < x_0$, тогда f называется непрерывной в точке x_0 слева, если $\lim_{x\to x_0-0} f(x) = f(x_0)$. (Аналогично для непрерывности в точке справа).

Определение Пусть функция f определена в некоторой проколотой окрестности $\mathring{U}_{\delta_0}(x_0)$. Если f не является непрерывной в точке x_0 , то x_0 — точка разрыва функции.

Определение Если x_0 — точка разрыва функции f, и существуют конечные $\lim_{x \to x_0 = 0} f(x)$ и $\lim_{x \to x_0 + 0} f(x)$, то x_0 — точка разрыва I рода, иначе — II рода.

Определение Точка разрыва I рода функции f называется точкой устранимого разрыва, если $\lim_{x \to x \to 0} f(x) = \lim_{x \to x + 0} f(x)$.

Определение Точка разрыва II рода функции f называется точкой бесконечного разрыва, если существует хотя бы один бесконечный левосторонний предел или правосторонний предел функции f в точке x_0 .

Теорема Пусть функция f непрерывна в точке x_0 , функция g непрерывна в точке $f(x_0)$, тогда в некоторой окрестности точки x_0 определена функция $g \circ f$, и она непрерывна в x_0 .

◄ Зафиксируем $\varepsilon > 0$. Поскольку g непрерывна в точке $f(x_0)$, существует такое p > 0, что $U_p(f(x_0)) \subset D(g)$ и:

$$\forall y \in U_p(f(x_0)) \ (g(y) \in U_{\varepsilon}(g(f(x_0))))$$

Поскольку f непрерывна в точке x_0 , существует число $\delta > 0$ такое, что:

$$\forall x \in U_{\delta}(x_0) \ (f(x) \in U_p(f(x_0)))$$

Значит функция $g \circ f$ определена на $U_{\delta}(x_0)$, причем:

$$\forall x \in U_{\delta}(x_0) \ (g(f(x)) \in U_{\varepsilon}(g(f(x_0))))$$

Значит:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in U_{\delta}(x_0) \ (g(f(x)) \in U_{\varepsilon}(g(f(x_0))))$$

Значит, в силу определения непрерывности, $g \circ f$ непрерывна в точке x_0 . \blacktriangleright

16 Ограниченность функции, непрерывной на отрезке

Теорема Если функция f непрерывна на отрезке [a,b], то она ограничена на [a,b].

 \blacktriangleleft Пусть f не ограничена сверху, тогда:

$$\forall n \in \mathbb{N} \ \exists x_n \in [a, b] : (f(x_n) > n)$$

Поскольку $\forall n \in \mathbb{N} \ (a \leq x_n \leq b), \{x_n\}$ ограничена. Тогда по теореме Больцано-Вейерштрасса из нее можно выделить подпоследовательность $\{x_{n_k}\}$, сходящуюся к точке x_0 , причем $x_0 \in [a,b]$. По условию f непрерывна в точке x_0 , значит:

$$\lim_{k \to \infty} f(x_{n_k}) = f(x_0)$$

С другой стороны:

$$f(x_{n_k}) > n_k \ge k \Rightarrow \lim_{k \to \infty} f(x_{n_k}) = +\infty$$

Противоречие. Значит f ограничена сверху. (Аналогично доказывается ограниченность снизу). \blacktriangleright

17 Достижение точной верхней и точной нижней граней функцией, непрерывной на отрезке

Теорема Если функция f непрерывна на отрезке [a,b], то $\exists x',x'',\in [a,b]:f(x')=$ $=\sup_{x\in[a,b]}f(x),f(x'')=\inf_{x\in[a,b]}f(x).$ \blacktriangleleft Пусть $M=\sup_{x\in[a,b]}f(x),$ тогда:

$$\forall \varepsilon > 0 \ \exists x \in [a, b] : (M - \varepsilon < f(x) \le M)$$

Полагая $\varepsilon=1,\frac{1}{2},\frac{1}{3},...,\frac{1}{n},...,$ получим последовательность $\{x_n\}\subset [a,b]$ такую, что:

$$\forall n \in \mathbb{N} \ (M - \frac{1}{n} < f(x_n) \le M)$$

По теореме Больцано-Вейерштрасса можем выделить подпоследовательность $\{x_{n_k}\}$, сходящуюся к точке x_0 , причем $x_0 \in [a,b]$. По условию f непрерывна в точке x_0 , значит:

$$\lim_{k \to \infty} f(x_{n_k}) = f(x_0)$$

С другой стороны:

$$M - \frac{1}{n} < f(x_n) \le M$$

Тогда по теореме о промежуточной последовательности $\lim_{n\to\infty} f(x_n) = M$. При этом $\lim_{k\to\infty}f(x_{n_k})=M$. Значит $f(x_0)=M$. (Достижение нижней точной грани доказывается аналогично). ▶

18 Теорема о промежуточных значениях непрерывной функции

Теорема Пусть функция f непрерывна на отрезке [a,b], тогда $\forall f(x_1) = C < D = f(x_2), x_1, x_2 \in [a,b] \ \forall E \in (C,D) \ \exists G \in [a,b] : f(G) = E.$

▶ Рассмотрим частный случай C < E = 0 < D. Обозначим $[a_1,b_1] = [\min\{x_1,x_2\},\max\{x_1,x_2\}]$. Разделим $[a_1,b_1]$ пополам точкой $c_1 = \frac{a_1+b_1}{2}$. Если $f(c_1) = 0$, то теорема доказана, иначе из двух отрезков $[a_1,c_1]$ и $[c_1,b_1]$ выберем такой, что на его концах функция f принимает значения разных знаков. Это будет отрезок $[a_2,b_2] = [a_1,c_1]$, если $f(c_1) > 0$ и $[a_2,b_2] = [c_1,b_1]$ иначе. Продолжим разделять отрезки по такому же принципу. Если на i-том шаге точка $f(c_i) = 0$, то теорема доказана. Иначе получим последовательность вложенных стягивающихся отрезков $[a_n,b_n]$. По теореме Кантора о вложенных отрезках существует точка G, принадлежащая всем отрезкам. Докажем неравенство:

$$\forall n \in \mathbb{N} \ (f(a_n) < 0 < f(b_n))$$

Применим индукцию по n. При n=1 верно. Предположим, что верно для некоторого n. Обозначим $c_n=\frac{a_n+b_n}{2}$. Тогда $[a_{n+1},b_{n+1}]=[a_n,c_n]$, если $f(c_n)>0$, и $[a_{n+1},b_{n+1}]=[c_n,b_n]$ иначе. Неравенство справедливо при n+1. Значит справедливо при всех $n\in\mathbb{N}$. Поскольку $\forall n\in\mathbb{N}$ ($a_n\leq G\leq b_n$) и $b_n-a_n\to 0$ при $n\to\infty$, то $a_n\to G$ при $n\to\infty$ и $b_n\to G$ при $n\to\infty$. Так как f непрерывна, из $f(a_n)<0\Rightarrow f(G)=\lim_{n\to\infty}f(a_n)\leq 0$. Значит f(G)=0=E. Общий случай: F(x)=f(x)-E.

19 Теорема об обратной функции

Теорема Теоре