ESTRUCTURA DE COMPUTADORES

Segundo examen parcial

23 de marzo de 2015

		Apellidos y nombre	DNI	Grupo
1	(1 punt	o) Una CPU tiene una capacidad de direccionamiento de 16 GB y	emplea palabras de 64 bits.	
	a)	¿Cuántos bits de dirección son necesarios para direccionar toda	la memoria? Razona la respu	esta
	b)	¿Cuántas líneas de selección de octeto tiene la CPU (BE;*)? Razo	na la respuesta	
)2 Day on the control of	
	c)	¿Cómo se denominan las líneas físicas de dirección de la CPU (A _i)? Razona la respuesta	
2	(1 punt de men	o) El cronograma de la figura corresponde a una operación de lec noria SDRAM que funciona a 100 MHz y tiene un ancho de palabr cycle 0 1 2 3 4 5 6	ctura de un bloque de 4 palak ra de 16 bits. 7 8 9 10	oras de un chip
		command ACT NOP NOP READ NOP NOP NOP		
	L. P.	data	W2 W3 W4	
	Indica:			
	a)	Cuál es el tiempo de acceso de esta memoria, expresado en nan	osegundos.	
	b)	Cuál es su ancho de banda .		
	•			

a) Dos bloques de una misma fila en un mismo banco	o. 🗆 SÍ	\square NO	
b) Dos bloques en dos filas distintas de un mismo bar	nco. 🗆 Sí	\square NO	
c) Dos bloques en dos bancos distintos.	□sí	□no	
(1 punto)			
A) Considera un MIPS al que se ha conectado un módul mapa (esto es, que contiene la dirección 0xFFFFFFFF)		. de 256 MB en l	a dirección más
A.1 ¿Cuál es la menor dirección de las contenidas en	ei modulo?		
A.2 ¿Cuál será la función de selección activa por nive	l bajo?		
B) Disponéis de un módulo M2 de 128 MB y queréis inst	talarlo de manera	que no quede es	pacio libre entre
M1.		que no quede es	pacio libre entre
		que no quede es	spacio libre entre
M1.		que no quede es	pacio libre entre
M1.	el módulo?	que no quede es	pacio libre entre
M1. B.1 ¿Cuál es la menor dirección de las contenidas en	el módulo?	que no quede es	pacio libre entre
M1. B.1 ¿Cuál es la menor dirección de las contenidas en	el módulo?	que no quede es	pacio libre entre
M1. B.1 ¿Cuál es la menor dirección de las contenidas en	el módulo?	que no quede es	pacio libre entre
M1. B.1 ¿Cuál es la menor dirección de las contenidas en B.2 ¿Cuál será la función de selección activa por nive C) Un día encontráis instalado otro módulo M3 de mem	el módulo?		
M1. B.1 ¿Cuál es la menor dirección de las contenidas en B.2 ¿Cuál será la función de selección activa por nive	el módulo? I bajo? oria con la función		
M1. B.1 ¿Cuál es la menor dirección de las contenidas en B.2 ¿Cuál será la función de selección activa por nive C) Un día encontráis instalado otro módulo M3 de mem SelM3 = A31 + /A30 + A29	el módulo? I bajo? oria con la función		
M1. B.1 ¿Cuál es la menor dirección de las contenidas en B.2 ¿Cuál será la función de selección activa por nive C) Un día encontráis instalado otro módulo M3 de mem SelM3 = A31 + /A30 + A29	el módulo? I bajo? oria con la función el módulo?	n de selección ac	tiva por nivel ba

5 (2 puntos) Se dispone de una memoria cache de datos de 32 KB y memoria principal de 4 GB. Por limitaciones de diseño, el tamaño de la memoria de control asociada a esta cache no debe sobrepasar el 10% del tamaño neto para datos. Indica cuáles de las siguientes configuraciones de cache cumplen esta restricción y cuáles no. Justifica las respuestas indicando el número de entradas de la memoria de control y el formato de cada entrada en cada uno de los casos.

Tamaño bloque (Bytes)	Correspondencia	Política escritura (acierto)	Política escritura (fallo)	Algoritmo de reemplazo	¿Cumple?
16	Directa	Write through	No allocate	_	
16	4 vías	Write back	Allocate	LRU	
32	Directa	Write through	No allocate	_	
32	4 vías	Write back	Allocate	LRU	

- a) Calcula la suma de las componentes del vector $\mathbf{f0} = \sum_{i=0}^{N-1} V[i]$
- b) Hace la división de todas las componentes del vector por el valor obtenido en a)

Seguidamente se muestra el código correspondiente en un lenguaje de alto nivel y en ensamblador del MIPS R2000. Obsérvese que se hacen dos recorridos del vector, ambos en orden creciente de direcciones. *N* es una constante que toma el valor indicado más abajo. Cada pseudoinstrucción que aparece en el código fuente de ensamblador se traduce en una única instrucción máquina.

Alto nivel	Ensamblador		
<pre>float V[N];</pre>		.data 0x10000000	
float f0;	V:	.float 2.0, # N componentes	
int t0,t1;			
		.text 0x00400000	
f0 = 0.0; t0=0;		la \$t0,V	
for (t1=N; t1>0; t1){		li \$t1,N	
f0 = f0 + V[t0];		mtc1 \$zero,\$f0	
t0 = t0 + 1;	for1:	lwc1 \$f10,0(\$t0)	
}		add.s \$f0,\$f0,\$f10	
t0=0;		addi \$t1,\$t1,-1	
for (t1=N; t1>0; t1){		addi \$t0,\$t0,4	
V[t0] = V[t0]/f0;		bgtz \$t1,for1	
t0 = t0 + 1;			
}		la \$t0,V	
•		li \$t1,N	
	for2:	lwc1 \$f10,0(\$t0)	
		div.s \$f10,\$f10,\$f0	
		swc1 \$f10,0(\$t0)	
		addi \$t1,\$t1,-1	
		addi \$t0,\$t0,4	
		bgtz \$t1,for2	

El procesador dispone de memorias cache separadas para instrucciones y para datos (1KB + 1KB) con bloques de 32 bytes. En el momento en que comienza la ejecución del programa, todas las líneas de la cache son inválidas.

A) ¿Cuántas instrucciones caben en un bloque? ¿Cuántas componentes del vector V caben en un bloque?				

B) Supón que las memorias cache son de correspondencia directa, escritura posterior (*write back*) y sin ubicación en escritura (*no-write-allocate*). Con N=100, calcula los valores siguientes al final de la ejecución del código:

Memoria cache	Parámetro	Valor
	Número de accesos	
Instrucciones	Número de bloques	
Instrucciones	referenciados	
	Tasa de aciertos	
	Número de accesos	
	Número de bloques	
	referenciados	
Datos	Número de reemplazos	
	Tasa de aciertos	
	Número de escrituras de bloque	
	en memoria principal	

C) Si N = 260, con una memoria cache de las mismas características, calcula:

Memoria cache	Parámetro	Valor
	Número de accesos	
	Número de bloques referenciados	
Datos	Número de reemplazos	
Datos	Tasa de aciertos	
	Número de escrituras de bloque en la memoria principal	
	Número de bloques de cache no coherentes con memoria	

D) ¿Qué cambiaría en el apartado B (con N=100) si la memoria cache de datos aplicara las políticas de escritura directa (write-through) y con ubicación (write-allocate)

7	(1.5 puntos) Un procesador semejante al MIPS tiene conectada una memoria cache de datos de correspondencia
	directa y escritura posterior (write-back) con ubicación (write-allocate) formada por 8 líneas que contiener
	bloques de 32 bytes. La estructura de la dirección que interpreta la memoria cache es

31	8	7	5	4	0
E (24 bits)		L (3	bits)	D (5	bits)

La tabla de la derecha muestra el estado inicial de la memoria cache

A) ¿Cuál es el rango de direcciones del bloque conteni	do en la línea 6?

B) Explica cómo afecta al estado de la cache cada una de las instrucciones que tenéis más abajo. En cada caso tienes de contestar cuál es la línea afectada, si se trata de un caso de acierto (A) o de fallo

Línea	V	М	E (hex)
0	1	1	100000
1	0	_	
2	1	0	000200
3	1	0	1af002
4	0	_	
5	0	_	
6	1	0	87654£
7	1	1	000666

(F) y el estado en que quedan los bits de válido (V), modificado (M) y la etiqueta (E). Considera que **\$t0 = 0x10000000**. Debéis partir siempre del estado inicial.

			Estado resultante		
	Línea	A/F	V	М	E
lw \$t1,0(\$t0)					
lw \$t1,0x120(\$t0)					
sw \$t1,0x120(\$t0)					