$12a_{0585} (K12a_{0585})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{90} - u^{89} + \dots - 3u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 90 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{90} - u^{89} + \dots - 3u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{10} + 5u^{8} + 8u^{6} + 3u^{4} - u^{2} + 1 \\ u^{10} + 4u^{8} + 5u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{6} - 3u^{4} - 2u^{2} + 1 \\ -u^{8} - 4u^{6} - 4u^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{17} + 8u^{15} + 25u^{13} + 36u^{11} + 19u^{9} - 4u^{7} - 2u^{5} + 4u^{3} + u \\ u^{19} + 9u^{17} + 32u^{15} + 55u^{13} + 43u^{11} + 9u^{9} + 4u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{28} + 13u^{26} + \dots - u^{2} + 1 \\ u^{28} + 12u^{26} + \dots + 2u^{6} - 3u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{28} + 13u^{26} + \dots + 2u^{6} - 3u^{4} \\ u^{28} + 12u^{26} + \dots + 2u^{6} - 3u^{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{57} - 26u^{55} + \dots + 2u^{3} - u \\ -u^{57} - 25u^{55} + \dots + 3u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{46} + 21u^{44} + \dots + 6u^{4} + 1 \\ u^{48} + 22u^{46} + \dots + 2u^{4} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{89} 4u^{88} + \cdots + 20u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{90} + 29u^{89} + \dots + u + 1$
c_2, c_7	$u^{90} + u^{89} + \dots - u + 1$
<i>c</i> ₃	$u^{90} + u^{89} + \dots + 5329u + 2941$
c_4	$u^{90} - u^{89} + \dots + 11u + 1$
c_5, c_{10}, c_{11}	$u^{90} + u^{89} + \dots + 3u + 1$
C ₈	$u^{90} - 5u^{89} + \dots - u + 1$
<i>c</i> ₉	$u^{90} - 19u^{89} + \dots - 88451u + 4523$
c_{12}	$u^{90} + 7u^{89} + \dots + 941u + 55$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_{1}, c_{6}	$y^{90} + 65y^{89} + \dots + 5y + 1$
c_{2}, c_{7}	$y^{90} + 29y^{89} + \dots + y + 1$
c_3	$y^{90} - 27y^{89} + \dots - 251343687y + 8649481$
C_4	$y^{90} + 5y^{89} + \dots - 47y + 1$
c_5, c_{10}, c_{11}	$y^{90} + 81y^{89} + \dots + y + 1$
<i>C</i> ₈	$y^{90} + y^{89} + \dots + 29y + 1$
<i>c</i> ₉	$y^{90} + 29y^{89} + \dots + 330837793y + 20457529$
c_{12}	$y^{90} + 13y^{89} + \dots + 155009y + 3025$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.092360 + 0.990486I	-0.19734 - 2.09371I	0
u = -0.092360 - 0.990486I	-0.19734 + 2.09371I	0
u = -0.174167 + 1.065840I	-2.74452 + 3.55694I	0
u = -0.174167 - 1.065840I	-2.74452 - 3.55694I	0
u = 0.109638 + 1.103100I	1.18483 - 1.77466I	0
u = 0.109638 - 1.103100I	1.18483 + 1.77466I	0
u = -0.208911 + 1.105270I	2.33069 + 9.15031I	0
u = -0.208911 - 1.105270I	2.33069 - 9.15031I	0
u = 0.196314 + 1.116870I	3.28147 - 3.51353I	0
u = 0.196314 - 1.116870I	3.28147 + 3.51353I	0
u = 0.708793 + 0.299494I	1.68759 - 12.58900I	-1.92424 + 10.40743I
u = 0.708793 - 0.299494I	1.68759 + 12.58900I	-1.92424 - 10.40743I
u = -0.703274 + 0.301535I	2.64941 + 6.81481I	-0.10297 - 5.63570I
u = -0.703274 - 0.301535I	2.64941 - 6.81481I	-0.10297 + 5.63570I
u = 0.700545 + 0.282219I	-3.78579 - 6.94246I	-7.67165 + 8.00926I
u = 0.700545 - 0.282219I	-3.78579 + 6.94246I	-7.67165 - 8.00926I
u = -0.678301 + 0.287933I	0.05334 + 4.69227I	0.02736 - 6.79114I
u = -0.678301 - 0.287933I	0.05334 - 4.69227I	0.02736 + 6.79114I
u = 0.384609 + 0.625740I	2.97480 + 8.70845I	0.78880 - 5.17975I
u = 0.384609 - 0.625740I	2.97480 - 8.70845I	0.78880 + 5.17975I
u = -0.646374 + 0.328778I	4.40452 + 4.07878I	2.14162 - 6.13926I
u = -0.646374 - 0.328778I	4.40452 - 4.07878I	2.14162 + 6.13926I
u = 0.677349 + 0.249229I	-1.86025 - 1.15632I	-5.97482 + 1.58422I
u = 0.677349 - 0.249229I	-1.86025 + 1.15632I	-5.97482 - 1.58422I
u = -0.386229 + 0.609030I	3.89211 - 2.96681I	2.65198 + 0.23669I
u = -0.386229 - 0.609030I	3.89211 + 2.96681I	2.65198 - 0.23669I
u = 0.633442 + 0.335557I	3.95811 + 1.65651I	1.36233 + 0.56944I
u = 0.633442 - 0.335557I	3.95811 - 1.65651I	1.36233 - 0.56944I
u = -0.677616 + 0.197513I	-2.43312 + 5.36697I	-7.06462 - 7.35684I
u = -0.677616 - 0.197513I	-2.43312 - 5.36697I	-7.06462 + 7.35684I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.031544 + 1.295490I	5.21152 - 2.64980I	0
u = 0.031544 - 1.295490I	5.21152 + 2.64980I	0
u = 0.322486 + 0.620173I	-2.39255 + 3.21804I	-4.96336 - 2.89069I
u = 0.322486 - 0.620173I	-2.39255 - 3.21804I	-4.96336 + 2.89069I
u = -0.669378 + 0.147993I	-5.42459 - 0.27478I	-11.47130 - 0.26528I
u = -0.669378 - 0.147993I	-5.42459 + 0.27478I	-11.47130 + 0.26528I
u = -0.673819 + 0.103290I	-0.64886 - 5.80042I	-5.73200 + 4.09941I
u = -0.673819 - 0.103290I	-0.64886 + 5.80042I	-5.73200 - 4.09941I
u = 0.472908 + 0.471039I	4.58313 - 5.28881I	3.03353 + 6.59017I
u = 0.472908 - 0.471039I	4.58313 + 5.28881I	3.03353 - 6.59017I
u = -0.455824 + 0.486101I	5.13756 - 0.42861I	4.31086 - 0.88245I
u = -0.455824 - 0.486101I	5.13756 + 0.42861I	4.31086 + 0.88245I
u = 0.655716 + 0.096723I	0.258872 + 0.271367I	-4.04834 + 0.93869I
u = 0.655716 - 0.096723I	0.258872 - 0.271367I	-4.04834 - 0.93869I
u = -0.237515 + 1.320140I	3.78695 - 2.51925I	0
u = -0.237515 - 1.320140I	3.78695 + 2.51925I	0
u = 0.216994 + 1.327150I	4.68022 - 2.85442I	0
u = 0.216994 - 1.327150I	4.68022 + 2.85442I	0
u = 0.130514 + 0.640490I	-0.18588 - 2.20059I	-2.47638 + 3.41832I
u = 0.130514 - 0.640490I	-0.18588 + 2.20059I	-2.47638 - 3.41832I
u = 0.621324 + 0.194532I	-1.33310 - 1.05611I	-4.15239 + 1.37352I
u = 0.621324 - 0.194532I	-1.33310 + 1.05611I	-4.15239 - 1.37352I
u = -0.251712 + 1.349720I	-0.70074 + 3.04867I	0
u = -0.251712 - 1.349720I	-0.70074 - 3.04867I	0
u = -0.336547 + 0.528039I	1.25107 - 1.13212I	3.66694 + 1.15328I
u = -0.336547 - 0.528039I	1.25107 + 1.13212I	3.66694 - 1.15328I
u = -0.263703 + 1.372860I	2.54773 + 8.78045I	0
u = -0.263703 - 1.372860I	2.54773 - 8.78045I	0
u = 0.244027 + 1.378980I	3.69075 - 4.21685I	0
u = 0.244027 - 1.378980I	3.69075 + 4.21685I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.167948 + 1.402410I	4.84787 - 3.56837I	0
u = 0.167948 - 1.402410I	4.84787 + 3.56837I	0
u = 0.26458 + 1.40036I	3.40298 - 4.58323I	0
u = 0.26458 - 1.40036I	3.40298 + 4.58323I	0
u = 0.12081 + 1.42071I	3.80098 + 1.71948I	0
u = 0.12081 - 1.42071I	3.80098 - 1.71948I	0
u = -0.14262 + 1.42305I	7.25500 + 0.67184I	0
u = -0.14262 - 1.42305I	7.25500 - 0.67184I	0
u = -0.26571 + 1.41535I	5.49670 + 8.13758I	0
u = -0.26571 - 1.41535I	5.49670 - 8.13758I	0
u = 0.27503 + 1.41433I	1.63219 - 10.49430I	0
u = 0.27503 - 1.41433I	1.63219 + 10.49430I	0
u = -0.12638 + 1.44027I	10.26750 - 1.23375I	0
u = -0.12638 - 1.44027I	10.26750 + 1.23375I	0
u = 0.12126 + 1.44108I	9.40156 + 7.03291I	0
u = 0.12126 - 1.44108I	9.40156 - 7.03291I	0
u = 0.24469 + 1.42692I	9.59469 - 1.56240I	0
u = 0.24469 - 1.42692I	9.59469 + 1.56240I	0
u = -0.16537 + 1.43882I	11.22680 + 1.83058I	0
u = -0.16537 - 1.43882I	11.22680 - 1.83058I	0
u = -0.24986 + 1.42658I	10.02060 + 7.36006I	0
u = -0.24986 - 1.42658I	10.02060 - 7.36006I	0
u = 0.17139 + 1.43884I	10.64090 - 7.63501I	0
u = 0.17139 - 1.43884I	10.64090 + 7.63501I	0
u = -0.27478 + 1.42281I	8.16280 + 10.37730I	0
u = -0.27478 - 1.42281I	8.16280 - 10.37730I	0
u = 0.27732 + 1.42248I	7.1924 - 16.1793I	0
u = 0.27732 - 1.42248I	7.1924 + 16.1793I	0
u = 0.431223 + 0.324576I	-0.62645 - 1.33595I	-2.95240 + 5.88577I
u = 0.431223 - 0.324576I	-0.62645 + 1.33595I	-2.95240 - 5.88577I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{90} + 29u^{89} + \dots + u + 1$
c_{2}, c_{7}	$u^{90} + u^{89} + \dots - u + 1$
c_3	$u^{90} + u^{89} + \dots + 5329u + 2941$
c_4	$u^{90} - u^{89} + \dots + 11u + 1$
c_5, c_{10}, c_{11}	$u^{90} + u^{89} + \dots + 3u + 1$
c ₈	$u^{90} - 5u^{89} + \dots - u + 1$
<i>c</i> 9	$u^{90} - 19u^{89} + \dots - 88451u + 4523$
c_{12}	$u^{90} + 7u^{89} + \dots + 941u + 55$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{90} + 65y^{89} + \dots + 5y + 1$
c_{2}, c_{7}	$y^{90} + 29y^{89} + \dots + y + 1$
c_3	$y^{90} - 27y^{89} + \dots - 251343687y + 8649481$
c_4	$y^{90} + 5y^{89} + \dots - 47y + 1$
c_5, c_{10}, c_{11}	$y^{90} + 81y^{89} + \dots + y + 1$
c ₈	$y^{90} + y^{89} + \dots + 29y + 1$
<i>c</i> 9	$y^{90} + 29y^{89} + \dots + 330837793y + 20457529$
c_{12}	$y^{90} + 13y^{89} + \dots + 155009y + 3025$