

Prabesh Dhakal 2020 May 14

WHAT ARE WE DOING TODAY?

We briefly revisit the contents from last week.

Chi-square Tests

We talk about data distribution.

We also talk about hypothesis

testing.

EXERCISE

Applying

Please ask if you have any questions now.

Otherwise, we can move on to the recap.

p-value

probability of you making the observations if H₀ were true

 $p - value = P(data | H_0 is true)$

Video source: https://www.youtube.com/watch?v=-MKT3yLDkqk

SIGNIFICANCE LEVEL (α) AND p-value

When $p - value \leq \alpha$, we reject H_0

- The result is statistically significant
 - We are reasonably sure that there is something besides chance that gave us an observed sample

When $p - value > \alpha$, we fail to reject the H_0

- The result is not statistically significant.
 - We are reasonably sure that our observed data can be observed by chance alone

Hypothesis Testing

Tests for Normality

Chi-square Tests

TESTS OF NORMALITY

1. Visual Approach

- Box Plot
- Histogram
- Density Plot
- Q-Q Plot

2. Inferential Approach

Shapiro-Wilk's Test

WHICH OF THESE ARE NORMALLY DISTRIBUTED?

Statistics Tutorial Day 6 2020-05-14

Q-Q PLOTS

An alternative graphical method that works well for small sample size.

It compares the data to a perfect normal distribution.

SHAPIRO-WILK'S TEST FOR NORMALITY

Works well for smaller data sets. However, you get more false negatives with larger datasets.

- H0: The data comes from a normally distributed population
- H1: The data does not come from a normally distributed population

Fail to reject H0 if p - value <= 0.05

CHI-SQUARE TESTS

Allows you to look at differences between categorical variables E.g. Gender, political differences, etc.

Test Statistic:

$$\chi^2 \text{ test statistic} = \sum_{i=1}^{N} \frac{(O_i - E_i)^2}{E_i}$$

Types of Test:

- Goodness of Fit Test
- Test of Independence

Statistics Tutorial Day 6 2020-05-14

GOODNESS OF FIT TEST - I

Compared observed distribution of the data against the expected distribution

H0: The data follows the "expected"/specified distribution

H1: The data does not come follow the specified distribution

$$\chi^2 \text{ test statistic} = \sum_{i=1}^{N} \frac{(O_i - E_i)^2}{E_i} \qquad \begin{array}{l} E_i = N * p_i \text{ for bin } i \\ N = \text{ the sample size} \\ p_i = \text{ hypothesized distribution of bin } i \end{array}$$

Degrees of freedom (df) = no. of categories -1 = k - 1

Statistics Tutorial Day 6 2020-05-14

GOODNESS OF FIT TEST - II

H0: The data follows the "expected"/specified distribution

H1: The data does not come follow the specified distribution

Chi-Square Distribution Table

The shaded area is equal to α for $\chi^2 = \chi^2_{\alpha}$.

df	$\chi^2_{.995}$	$\chi^{2}_{.990}$	$\chi^2_{.975}$	$\chi^{2}_{.950}$	$\chi^{2}_{.900}$	$\chi^{2}_{.100}$	$\chi^{2}_{.050}$	$\chi^{2}_{.025}$	$\chi^2_{.010}$	$\chi^{2}_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188

 $\chi^{2} \text{ test statistic} = \sum_{i=1}^{N} \frac{(O_{i} - E_{i})^{2}}{E}$

 $E_i = N * p_i$ for bin i N =the sample size $p_i =$ distribution of bin i

Rejection Criteria:

- $p-value <= significance level (\alpha)$
- test statistic > critical value

GOODNESS OF FIT TEST - EXAMPLE

$$\chi^{2} \text{ test statistic} = \sum_{i=1}^{N} \frac{(O_{i} - E_{i})^{2}}{E_{i}} \quad \begin{array}{l} E_{i} = N * p_{i} \text{ for bin } i \\ N = \text{ the sample size} \\ p_{i} = \text{ distribution of bin } i \end{array}$$

df	$\chi^{2}_{.995}$	$\chi^{2}_{.990}$	$\chi^{2}_{.975}$	$\chi^{2}_{.950}$	$\chi^{2}_{.900}$	$\chi^{2}_{.100}$	$\chi^{2}_{.050}$	$\chi^{2}_{.025}$	$\chi^2_{.010}$	$\chi^{2}_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750

Statistics Tutorial Day 6 2020-05-14

TEST OF INDEPENDENCE

Check if two variables are independent

H0: The two categorical variables are independent

H1: The two variables are not independent

$$\chi^{2} \ test \ statistic = \sum_{i=1}^{N} \frac{\left(O_{i} - E_{ij}\right)^{2}}{E_{ij}} \qquad \begin{array}{c} E_{ij} = \frac{R_{i}C_{j}}{N} \\ R = \text{row} \\ C = column \end{array}$$

Degrees of freedom (df) = (no. of rows - 1)*(no. of columns - 1)

Click here if you want to know how to do this by hand.

Perform Shapiro-Wilk's Test and Chi-square Tests in R

Download the PDF file named "Problem Set 1" from MyStudy.

You can work either individually or in group.

PLAN FOR NEXT WEEK

That's it for today! :-)

Next week, we are going to discuss:

- t-Test
- F-test

If you want to reach me, mail me at: prabesh.dhakal@stud.leuphana.de