南京邮电大学 2013-2014 学年研究生最优化方法试题

一、(3分×8) $\min 3x_1 - x_2$ 线性规划 $s.t. \quad 2x_1+x_2 \leq -2 \\ 3x_1-5x_2 = -1 \qquad \qquad , 给定一个点,让我们求其$ (1) 有效集,给定可行方向 $(a,-1)^T$,求 a 的取值范围。 (2) 在二维空间中,集合 $\{(x,y) \mid x^2 + y^2 \le 1, x \ge 0, y \ge 0\}$ 的极点构成的集合为 (3) 已知 $f(x)=x^2-3x+1$ 用黄金分割法求解某个函数在区间[0,4]上的极小点,则迭代一 次后的区间为 (4) 函数 $f(x_1, x_2) = 2x_1^2 + 2x_2^2 + ax_1x_2 - 2x_1 - x_2 + 6$ 为严格凸函数,则常数 a 的 取值范围_____。 (5) 求函数 $f(x_1, x_2) = x_1^2 + 2x_2^2$ 的极小点,取 $x^{(0)} = (0,1)^T$,用最速下降法一步得到的下 降方向为_____。 min $x_1^2 + x_2^2$ (6) 用外罚函数法求解 f(x) s.t. $1-x_1 \le 0$,其增广目标函数为______ $x_2 \ge 0$

二、 $(10 \, eta)$ 证明对于无约束最优化问题 $\min f(x)$,采用最速下降法求最优点,两个相邻的方向是正交的。

$$\max \ z_1 = c^T x \qquad \max \ z_2 = c^T x$$
 Ξ 、(10 分)) 设 z^* , s^* 分别是两个线性规划问题 (I) $s.t.$ $Ax \le b$ 与 (II) $s.t.$ $Ax \le b + k$ $x \ge 0$ $x \ge 0$

的最优值, y_1^* 是 (I) 的对偶问题的最优解。求证: $s^* \leq z^* + y_1^{*T} k$ 。

四、(18分)(1)用单纯形方法求解下面的线性规划

min -
$$2x_1 - x_2$$

s.t. $3x_1 + 5x_2 \le 15$
 $6x_1 + 2x_2 \le 24$
 $x_1 \ge 0, x_2 \ge 0$

(2) 若在上面的线性规划中要求变量为整数,在相应的整数规划中,用分枝定界法,对变量 x_2 写出对应的分支方程。

五、(12 分) 用 DFP 算法求解
$$x^{(0)}=(0,0)^T$$
 , $H_0=I_2$
$$\min f(x)=x_1^2+2x_2^2-2x_1x_2-4x_1$$

其中
$$H_{k+1}=H_k-\frac{H_ky_ky_k^TH_k}{y_k^TH_ky_k}+\frac{s_ks_k^T}{y_k^Ts_k}$$

六、(10分) 用内罚函数(倒罚函数法)求解 $\min \frac{1}{2}x$

$$s.t.3 - x \le 0$$

七、(10分)检验(2,1)^T是否为 K-T 点

$$\min(x_1 - 3)^2 + (x_2 - 2)^2$$
s. t. $x_1^2 + x_2^2 \le 5$

$$x_1 + 2x_2 \ge 4$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

八、(8分)设A为n阶对称正定矩阵,非零向量p1,p2,…Pn为关于A的共轭向量

证明
$$A^{-1} = \sum_{k=1}^n \frac{p_k p_k^T}{p_k^T A p_k}$$