Вычисление нормы заданной многоугольником

1— ср
 — Вычисление нормы заданной выпуклым, центрально симметричным многоугольником в
 \mathbb{R}^2

Условие задания: четыре точки с положительными координатами

$$A(x_a, y_a, z_a), B(x_b, y_b, z_b), C(x_c, y_c, z_c), D(x_d, y_d, z_d)$$

надо отражать точки относительно координатных осей – получатся все точки вида

$$A(\pm x_a, \pm y_a, \pm z_a), B(\pm x_b, \pm y_b, \pm z_b), C(\pm x_c, \pm y_c, \pm z_c), D(\pm x_d, \pm y_d, \pm z_d)$$

далее надо построить W – выпуклую оболочку этих точек (некоторые точи окажутся лишними)

после этого можно определить норму

$$||x||_W = \min\{\lambda : \frac{x}{\lambda} \in W\}$$

геометрически этот означает перемещение точки по лучу, соединяющую ее с началом координат, до тех пор пока точка не попадет на границу многоугольника

до того как перейти к описанию алгоритма этой нормы, опишем простой способ построения W

начать построение нужно с устранения лишних точек (точек заведомо не принадлежащих границе W)

- 1) если точки A и B из списка расположены так, что B попадает в замкнутый прямоугольник с диагональю (0,0), A, то точка B лишняя она не принадлежит границе множества
- 2) если точки $A(x_a, y_a)$, $B(x_b, y_b)$ и $C(x_c, y_c)$ из списка расположены так, что $x_a < x_c < x_b$ и точка C находится ниже отрезка AB, то точка C лишняя

После такой операции все точки, полученные отражениями будут находится на границе W, и останется только соединить их в естественном порядке

Подготовка описание алгоритма вычисления нормы

Разобьем всю плоскость на углы с вершиной в начале координат и сторонами проходящими через пару соседних вершин многоугольника W

Рассмотрим базис в плоскости, образованный векторами, начинающимися в нуле O и заканчивающимися в двух соседних вершинах многоугольника $A,\,B$

Получать разложение вектора по этому базису удобно, используя биортогональный базис OA', OB'

$$(OA, OA') = 1, (OA, OB') = 0, (OB, OA') = 0, (OB, OB') = 1,$$

решить эту задачу легко

$$A(x_a, y_a), B(x_b, y_b) \rightarrow A_1(-y_b, x_b), A' = \frac{1}{(OA, OA_1)} A_1$$

для определения коэффициентов разложения $OP = p_a OA + p_b OB$ нужно вычислить два скалярных произведения

$$p_a = (OP, OA'), p_b = (OP, OB')$$

Свойства коэффициентов разложения

1) точка P лежит в угле образованном лучами $OA\ OB$ тогда и только тогда, когда $p_a \geq 0$ $p_b \geq 0$

- 2) если $p_a \ge 0$, $p_b \ge 0$ и $p_a + p_b = 1$, то точка P принадлежит отрезку AB
- 3) если $p_a \ge 0, \; p_b \ge 0$ и $p_a + p_b < 1, \; {\rm то} \; {\rm точка} \; P$ лежит в угле под отрезком отрезку AB
- 4) если $p_a \ge 0$, $p_b \ge 0$ и $p_a + p_b > 1$, то точка P лежит в угле над отрезком отрезку AB

Алгоритм вычисления нормы

- 1) по многоугольнику формируем разбиение плоскости на углы
- 2) в каждом угле строим фиксируем базис, порожденный многоугольником и биортогональный базис
- 3) перебираем углы и поводим разложение рассматриваемого вектора по базису $OP = p_a OA + p_b OB$

для угла, которому принадлежит точка получим $p_a \ge 0$ $p_b \ge 0$

$$||P||_W = p_a + p_b$$

Замечание. Норма, порожденная многоугольником симметричным относительно осей координат, одинакова для все точек вида ($\pm A, \pm b$) поэтому достаточно дать описание базисов углов, находящихся в положительном квадранте

1– ДЗ – Вычисление нормы заданной выпуклым, центрально симметричным многогранником в \mathbb{R}^3

УСЛОВИЕ: даны шесть точек

 $A(x_a,y_a,0), B(x_b,0,z_a), H(0,y_h,z_h), AA(x_{aa},0,0), BB(0,y_{bb},0), HH(0,0,z_{hh}),$ являющиеся вершинами выпуклой поверхности W_1 в первом квадранте

ЗАДАНИЕ: по правилу приведенному ниже, сформировать выпуклый, центрально симметричный многогранник W

подготовить систему векторов, по которой можно вычислять соответствующую норму

проверить неравенство треугольника в W-норме для пары заданных точек

ПРАВИЛО построения многогранника:

надо трижды симметрично отображать заданную поверхность относительно координатных плоскостей

1)
$$W_1 \rightarrow W_2 (x, y, z) \rightarrow (x, -y, z)$$

- 2) $W_2 \rightarrow W_3 \ (x,y,z) \rightarrow (-x,y,z)$ поверхность в полупространстве ((x,y,z): z>0)
- 3) $W_3 \to W_-(x,y,z) \to (x,y,-z)$ замкнутая, симметричная относительно координатных плоскостей поверхность

как и в случае плоскости, симметрия фигуры такова, что

$$||(x, y, z)||_W = ||(|x|, |y|, |z|)||_W$$

поэтому достаточно научиться вычислять нормы точек с ((x,y,z):z>0) правило вычисления тоже, что для плоскости (с учетом специфики размерности) надо рассмотреть все трехгранные углы в ((x,y,z):z>0)

OABH, OABAA, AHBB, OHBHH

для заданной точки найти угол, в базисе которого она имеет положительные координаты, тогда норм окажется суммой координат

Рассмотрим, для примера, угол OABH и покажем как построить для базиса $OA,\ OB,\ OH$ биортогональный

то есть надо найти вектора OA', OB', OH' такие, что

$$(OA', OA) = 1$$
, $(OA', OB) = 0$, $(OA', OH) = 0$,
 $(OB', OA) = 0$, $(OB', OB) = 1$, $(OB', OH) = 0$,
 $(OH', OA) = 0$, $(OH', OB) = 0$, $(OH', OH) = 1$

заготовку для этого дают векторные произведения

$$OA_1 = OB \times OH, \ OB_1 = OA \times OH, \ OH_1 = OA \times OB,$$

$$OA' = \frac{1}{(OA_1, OA)} \ OA_1, \quad OB' = \frac{1}{(OB_1, OB)} \ OB_1, \quad OH' = \frac{1}{(OH_1, OH)} \ OH_1$$

тогда для любого вектора OP

$$OP = k_1OA + k_2OB + k_3OH$$
, $k_1 = (OP, OA')$, $k_2 = (OP, OB')$, $k_3 = (OP, OH')$

такую процедуру надо проводить для каждого из углов, до тех пор пока не появиться

$$k_1 \ge 0, \quad k_2 \ge 0, \quad k_3 \ge 0,$$

 $||P||_W = k_1 + k_2 + k_3$

этой конструкции достаточно, поскольку, симметрии многогранника гарантируют, что

$$||(x, y, z)||_W = ||(|x|, |y|, |z|)||_W$$