$\begin{array}{c} {\rm High\mbox{-}Throughput\ Sequencing\ Course} \\ {\rm DESeq\ Model\ for\ RNA\mbox{-}Seq} \end{array}$

Biostatistics and Bioinformatics

 $Summer\ 2019$

OUTLINE

- ► Review: Standard linear regression model (e.g., to model gene expression as function of an experimental condition or continuous covariate)
- ► Review: Logistic model: To model probability of abinary event as a function of a covariate
- ▶ Parameter interpretation: Linear and logistic regression
- ► Introduction: Negative binomial regression model for RNA-Seq
- ► Overview: Maximum likelihood estimation

LINEAR REGRESSION EXAMPLE: GENE EXPRESSION

► Consider the simple linear regression model

$$Y = \beta_0 + \beta_1 x + \epsilon,$$

where

- ightharpoonup x = 0 (untreated)
- ightharpoonup or x = 1 (treated)
- ightharpoonup Y is the observed "expression" of the gene
- ightharpoonup ϵ is the measurement noise term
- ▶ We assume that it follows a normal distribution with mean 0 and variance σ^2

REMINDER: IMPORTANT FACT ABOUT NORMAL DISTRIBUTION

- \blacktriangleright Consider a normal distribution with mean 0 and standard deviation σ
- ▶ If the data are shifted by a constant μ , then
 - 1. resulting distribution remains normal
 - 2. The mean of the new distribution is $\mu + 0 = \mu$
 - 3. Its standard deviation remains unchanged
- ► The last two (but not first) property are true for any distribution
- ightharpoonup Recall $Y = \beta_0 + \beta_1 x + \epsilon$
- ► Y follows a normal distribution with mean $\mu = \beta_0 + \beta_1 x$ and variance σ^2
- ▶ IMPORTANT: μ depends on x (unless of course $\beta_1 = 0$)

LINEAR REGRESSION EXAMPLE: INTERPRETATION

► Model

$$Y = \beta_0 + \beta_1 x + \epsilon,$$

- ightharpoonup The goal of (mean) regression is to estimate the expected value of Y given treatment status
- ightharpoonup Conditional on x=0 (i.e., not receiving treatment), the expected value of Y is

$$\beta_0 + \beta_1 \times 0 = \beta_0$$

ightharpoonup Conditional on x=1 (i.e., receiving treatment), the expected value of Y is

$$\beta_0 + \beta_1 \times 1 = \beta_0 + \beta_1$$

GENERAL CONDITIONAL EXPECTATION

- ► Expectation is another word for average
- ▶ We can write the conditional expectation of Y given that X = x as E[Y|X = x]
- ightharpoonup English: This is the average value of the outcome Y if the value of X is equal to x
- \blacktriangleright The unconditional expectation of Y is denoted by E[Y]
- ▶ If Y does not depend on X, then E[Y|X = x] = E[Y] for every x
- ▶ The goal of linear regression is to model E[Y|X=x] as "Linear" function
- ▶ Our Example: $E[Y|X=x] = \beta_0 + \beta_1 x$

LINEAR REGRESSION EXAMPLE: INTERPRETATION

► Model

$$Y = \beta_0 + \beta_1 x + \epsilon,$$

- \blacktriangleright β_0 (the intercept) is the expected value of Y if no treatment is administered (average baseline value)
- \triangleright β_1 is the treatment effect
- ► If treatment is administered, the expected value of expression is
 - ▶ increased by β_1 units if $\beta_1 > 0$
 - ▶ decreased by β_1 units if $\beta_1 < 0$
 - unchanged if $\beta_1 = 0$

LINEAR REGRESSION EXAMPLE: CONTINUOUS COVARIATE

► Model

$$Y = \beta_0 + \beta_1 x + \epsilon,$$

where x is continuous (quantitative)

- ▶ If $\beta_1 > 0$, then increasing x by one unit, increases Y on average by β_1 units
 - ▶ If $\beta_1 < 0$, then increasing x by one unit, decreases Y on average by β_1 units
 - ▶ If $\beta_1 = 0$, then changes in x do not affect the expected value of Y

REGRESSION FOR BINARY OUTCOMES

- ightharpoonup Suppose that Y is a binary outcome
- \blacktriangleright It assumes values 0 or 1
- ► This is a count outcome
- ► Consider the previous model

$$Y = \beta_0 + \beta_1 x + \epsilon,$$

► Is it appropriate? Why or why not?

LOGISTIC REGRESSION

- ▶ Relate the probability of the outcome of the event Y = 1 to treatment
- ▶ More specifically, relate the log-odds to the treatment
- \blacktriangleright The log-odds will be modeled as a linear function of x

$$\beta_0 + \beta_1 x + \epsilon$$

- ▶ This is an example of a generalized linear model (GLM)
- ► Note: The model used by DESeq is a GLM on the basis of the NB (instead of binomial distribution)
- \blacktriangleright The expected outcome of Y is not modeled directly as a linear function
- ightharpoonup A transformation of the expected outcome of Y is modeled as a linear function

EXPECTED VALUE OF A BINARY EVENT

- ▶ Suppose that Y assumes 1 with probability π or 0 with probability 1π
- ► $P(Y = 1) = \pi$ and $P(Y = 0) = 1 \pi$
- ► IMPORTANT: P(Y = 1) = E(Y)
- lacktriangle The expected value of Y is the probability that it assumes the value 1
- ► Why?

Relationship between x and $\frac{\exp(x)}{1+\exp(x)}$

Odds vs Probability

- ▶ Suppose that $\pi = P(Y = 1)$
- ightharpoonup The odds of the event Y=1 (to occur) is defined as

$$\mathrm{Odds}[Y=1] = \frac{\mathrm{Probability~that~} Y = 1~\mathrm{occurs}}{\mathrm{Probability~that~} Y = 1~\mathrm{does~not~occur}} = \frac{\pi}{1-\pi}$$

Odds Ratio Versus Relative Risk

- ▶ $\pi_0 = P[Y = 1 | X = 0]$: Probability that the event occurs if sample is not treated
- \bullet $\pi_1 = P[Y = 1 | X = 1]$: Probability that the event occurs if X = 1sample is treated
- ► The odds-ratio is

$$OR = \frac{\frac{\pi_1}{1 - \pi_1}}{\frac{\pi_0}{1 - \pi_0}}$$

► The relative risk is

$$RR = \frac{\pi_1}{\pi_0}$$

THE LOGISTIC MODEL

▶ The log-odds of the event Y = 1

$$\log \frac{P(Y=1|X=x)}{1 - P(Y=1|X=x)} = \beta_0 + \beta_1 x$$

► or equivalently

$$\log \frac{E(Y|X=x)}{1 - E(Y|X=x)} = \beta_0 + \beta_1 x$$

► or equivalently

$$P(Y = 1|X = x) = E(Y|X = x) = \frac{\exp(\beta_0 + \beta_1 x)}{1 + \exp(\beta_0 + \beta_1 x)}$$

PARAMETER INTERPRETATION

- ▶ If $\beta_1 > 0$, a unit increase in x, results in an expected increase of $\exp(\beta_1)$ in the odds of the event
- ▶ If $\beta_1 < 0$, a unit increase in x, results in an expected decrease of $\exp(\beta_1)$ in the odds of the event
- ▶ If $\beta_1 = 0$, then changes in x do not affect the odds of realization of the event

LINK FUNCTION

 \blacktriangleright For a probability π , define the "logit" transformation as

$$\log \frac{\pi}{1-\pi}$$

- \blacktriangleright This is the log-odds of an event with probability π
- ▶ Note that in the logistic model, the probability of the event is linear in the parameter through this logit transformation

$$\log \frac{E(Y|X=x)}{1 - E(Y|X=x)} = \beta_0 + \beta_1 x$$

▶ In the GLM literature, this is called the link function

OVERDISPERSION

- ▶ Recall that if K follows a binomial distribution with parameters n and π , then
 - ightharpoonup mean $\mu = n\pi$
 - variance $\sigma^2 = n\pi(1-\pi)$
- ► Clustering in the data results in the actual variance to be different than the nominal variance $(n\pi(1-\pi))$
 - Overdispersion: Actual variance is larger than nominal variance
 - ▶ Underdispersion: Actual variance is smaller than nominal variance
- ► The choice of a GLM and evaluation of its performance should start and end with considering/addressing the overdispersion issue
- ► The use of Poisson (actually a variation thereof) and Negative Binomial models are two common choices for GLM for overdispersed data

GENERALIZED LINEAR MODELS (GLM)

Define $\mu_x = E(Y|X=x)$ as the expected value of the outcome given treatment status (x=0 or x=1)

Distribution	Link	Mean	
Binomial	$0, 1, \dots, n$	$\beta_0 + \beta_1 x = \log \frac{\mu_x}{1 - \mu_x}$	$\mu_x = \frac{\exp(\beta_0 + \beta_1 x)}{1 + \exp(\beta_0 + \beta_1 x)}$
Poisson	$0, 1, 2, \dots$	$\beta_0 + \beta_1 x = \log(\mu_x)$	$\mu_x = \exp(\beta_0 + \beta_1 x)$
Negative Binomial	$0, 1, 2, \dots$	$\beta_0 + \beta_1 x = \log(\mu_x)$	$\mu_x = \exp(\beta_0 + \beta_1 x)$

GENERAL NOTE

▶ Recall the simple linear regression model for expression

$$Y = \beta_0 + \beta_1 x + \epsilon,$$

where

- $\blacktriangleright x = 0 \text{ (untreated)}$
- ightharpoonup or x = 1 (treated)
- \triangleright Y is the observed "expression" of the gene
- ightharpoonup is the measurement noise term
- ▶ The parameter of interest is β_1 (the treatment effect)
- ▶ There are two other unknown parameters, β_0 and σ^2 the estimation procedure has to deal with in a *principled* manner
- ▶ β_0 and σ^2 are nuisance parameters
- ► They are not of primary (or any) interest. But you have to deal with them!

GENERAL HYPOTHESIS

- ightharpoonup Is the RNA abundance level for any of the m genes affected by treatment
- \blacktriangleright Let H_j denote the null hypothesis for gene j
- ▶ H_j : The RNA abundance level for gene j is not affected by treatment
- ▶ \bar{H}_j : The RNA abundance level for gene j is affected by treatment
- ▶ The global null hypothesis: H_1 and H_2 and and H_m are all true
- ▶ The global alternative: \bar{H}_1 or \bar{H}_2 or or \bar{H}_m is true
- ► In other words, under the alternative at least one of the marginal null hypotheses is false

Observed Data

- ► Some notation
 - ightharpoonup n denotes the number of samples
 - \blacktriangleright m denotes the number of genes
 - K_{ij} denotes the observed number of reads mapped to gene i
 for sample j
 - \triangleright $x_i = 0$ or 1 denotes the treatment status for sample j
- \blacktriangleright What is observed for sample j is the vector

$$K_{1i},\ldots,K_{mi},x_i$$

- ightharpoonup In other words m counts (one per gene) and the experimental factor
- Note that the K_{ij} form a table of counts of dimension $n \times m$ (n samples and m genes)

DESEQ: NOTATION FOR NEGATIVE BINOMIAL DISTRIBUTION

- ▶ The count K is assumed to follow a negative binomial distribution with parameters $p \in (0,1)$ and r > 1
- ► The distribution is PMF is

$$P(K = k) = {\binom{k+r-1}{r-1}} p^r (1-p)^k,$$

for k = r, r + 1, ...

▶ Rather than considering the model as NB[p, r] we will consider it as $NB[\mu, \alpha]$, where

$$P[K=k] = \frac{\Gamma[k+\alpha^{-1}]}{\Gamma[\alpha^{-1}]\Gamma[k+1]} \bigg(\frac{1}{1+\mu\alpha}\bigg)^{\alpha^{-1}} \bigg(\frac{\mu}{\alpha^{-1}+\mu}\bigg)^k,$$

where $k = 0, 1, \ldots$

DESEQ: NOTATION

- ► K_{ij} denotes the *observed* number of reads mapped to gene i for sample j
- $ightharpoonup K_{ij}$ follows a negative binomial distribution with
 - ▶ Mean μ_{ij} (indexed by gene i and sample j)
 - ightharpoonup Dispersion parameter α_i (indexed by the gene i)
- ▶ The mean is assumed to be $\mu_{ij} = s_j q_{ij}$ where

 - \triangleright s_j is a gene j specific normalization constant

DESEQ: REFORMULATE HYPOTHESES

- ► Hypotheses of interest
 - ▶ The global null hypothesis: H_1 and H_2 and and H_m are all true
 - ▶ The global alternative: \bar{H}_1 or \bar{H}_2 or or \bar{H}_m is true
- ► Reformulation
 - ▶ The global null hypothesis: $\beta_{11}=0$ and $\beta_{21}=0$ and and $\beta_{m1}=0$
 - ▶ In other words, all of the β_{j1} are equal to zero
 - ▶ The global alternative: $\beta_{11} \neq 0$ or $\beta_{21} = 0$ or or $\beta_{m1} = 0$
 - ▶ In other words, at least one of the β_{j1} is not equal to zero

DESEQ: Assumption on Distribution

 K_{ij} follows a negative binomial distribution with mean μ and dispersion parameter α

DESEQ: Assumption on Mean of Distribution

▶ Conditional on the treatment status of sample j ($x_j = 0$ or 1), the expected value of K_{ij} is

$$\mu_{ij} = s_j \times q_{ij}$$

where

$$\log q_{ij} = \beta_{i0} + \beta_{i1} x_j$$

- ightharpoonup Note that two regression parameters are indexed by i
- \blacktriangleright Why? Because these are gene i specific parameters
- ▶ Why is x_j not indexed by i?
- ► Final Assumption: $s_{ij} = s_j$
- ▶ In other words: Within sample j, the normalization parameter is constant across the genes
- ► How many assumptions so far?

DESEQ: MAIN PARAMETERS AND NUISANCE PARAMETERS

 \blacktriangleright The *m* main parameters of interest

$$\beta_{11},\ldots,\beta_{m1}$$

- ► The unknown nuisance parameters are
 - ightharpoonup The m gene specific intercepts

$$\beta_{10},\ldots,\beta_{m0}$$

 \blacktriangleright the *n* sample specific normalization constants

$$s_1, \dots, s_n$$

ightharpoonup The m gene specific nuisance parameters

$$\alpha_1,\ldots,\alpha_m$$

DESEQ: MAIN PARAMETERS AND NUISANCE

PARAMETERS

- Assuming the model assumptions are correct, the estimation of the regression parameters β_{i0} , β_{i1} is fairly straightforward
- ightharpoonup The DESeq authors propose to estimate the normalization constant for sample j as

$$s_j = \text{median} \frac{K_{ij}}{K_i^R},$$

where

$$K_i^R = \left(\prod_{j=1}^m K_{ij}\right)^{\frac{1}{m}}$$

- ▶ Here K_i^R is the geometric mean of K_{i1}, \ldots, K_{in} (the *n* counts for gene *i*)
- ▶ The median is taken over all m genes for which K_i^R is positive

DESEQ: DISPERSION PARAMETER

► A key issue in using the NB model is proper handling of the gene specific dispersion parameters

$$\alpha_1,\ldots,\alpha_m$$

- ► The estimation of the dispersion parameter is a challenging task
- ▶ DESeq2 assumes that α_i is random following a normal distribution
- ▶ The results are sensitive to the estimates
- ▶ One of the key differences between DESeq2 and DESeq is the approach taken to estimate these nuisance parameters

DESEQ SOFTWARE OVERVIEW

- ► The analysis of RNA-Seq data using the DESeq2 package will be reviewed in detail in the upcoming weeks
- ► The estimation and inference for the model is done through the DESeq function
- ▶ It performs the following steps in the order give
 - 1. estimation of size factors s_1, \ldots, s_n
 - 2. estimation of dispersion parameters $\alpha_1, \ldots, alpha_m$
 - 3. Fit NB GLM model

DESEQ: MODEL EXERCISE

- ▶ K_{ij} denotes the *observed* number of reads mapped to gene i for sample j
- $ightharpoonup x_j = 0$ or 1 denotes the treatment status for sample j
- Say we want to account for another covariate z_j (e.g., temperature)
- \blacktriangleright What is observed for sample j is the vector

$$K_{1j},\ldots,K_{mj},x_j,z_j$$

- ► Questions
 - ► State the hypotheses
 - ▶ Propose a model (that incorporates the additional covariate)
 - ▶ List any assumptions that you have made

DESEQ: MODEL EXERCISE

► The null hypothesis

$$H_0: \beta_{11} = 0 \text{ and } \beta_{21} = 0 \text{ and } \dots \beta_{m1} = 0$$

- ▶ Conditional on x_j and z_j , the observed number of reads mapped to gene i for sample j, K_{ij} , follows a negative binomial distribution with
 - ► Mean μ_{ij}
 - \blacktriangleright Dispersion parameter α_i (gene specific)
- ▶ Conditional on the treatment status of sample j ($x_j = 0$ or 1) and the temperature z_j , the expected value of K_{ij} is

$$\mu_{ij} = s_j \times q_{ij}$$

where

$$\log q_{ij} = \beta_{i0} + \beta_{i1}x_j + \beta_{i2}z_j$$

► The normalization parameters are assumed to be sample (not gene) specific $(s_{ij} = s_j)$

DESEQ: MODEL NUISANCE PARAMETER

ightharpoonup The m main parameters of interest

$$\beta_{11},\ldots,\beta_{m1}$$

- ► The unknown nuisance parameters are
 - ightharpoonup The m gene specific intercepts

$$\beta_{10},\ldots,\beta_{m0}$$

ightharpoonup The m gene specific coefficients for the new covariate

$$\beta_{12},\ldots,\beta_{m2}$$

ightharpoonup the *n* sample specific normalization constants

$$s_1, \ldots, s_n$$

ightharpoonup The m gene specific nuisance parameters

$$\alpha_1,\ldots,\alpha_m$$

EDGER: ANOTHER NB MODEL FOR RNA-SEQ COUNTS

- ► Assume that the K_{ij} follows a NB distribution with mean μ_{ij} and dispersion parameter α_i
- ightharpoonup The mean (conditional on treatment status x) is

$$\mu_i j = M_i p_{xi}$$

where

- $ightharpoonup M_j$ is the library size (total number of reads for sample j
- \triangleright p_{xi} is the relative abudance of the gene i given treatment status r
 - \triangleright p_{0i} is the relative abudance of the gene i given no treatment
 - \triangleright p_{1i} is the relative abudance of the gene i given treatment
- ► Treatment changes the abudance of RNA in gene *i* if $p_{0i} \neq p_{1i}$
- ▶ This is same distributional assumption as in DESeq

MLE ILLUSTRATION

- ▶ In a GLM, the parameters β_{i0} and β_{i1} are estimated using the method of Maximum likelihood (MLE)
- ▶ We illustrate the method using this coin tossing example:
- ▶ We toss a coin once and record the number of heads
- ► Suppose that you conduct two independent replicates of this experiment
- ▶ K_1 the number of events (among n = 1 trial) in experiment
- ▶ K_2 the number of events (among n = 1 trial) in experiment 2
- ▶ The PMF of K_1 is

$$P(K_1 = k) = \pi^k (1 - \pi)^{1 - k}$$

▶ The PMF of K_1 is

$$P(K_2 = k) = \pi^k (1 - \pi)^{1 - k}$$

ightharpoonup Here k=0 or 1

JOINT DISTRIBUTION

- ▶ $P(K_1 = k_1)$ denotes the probability of the event that $K_1 = k_1$
- ▶ $P(K_2 = k_2)$ denotes the probability of the event that $K_2 = k_2$
- ► These are called marginal probabilties
- ▶ What is $P(K_1 = k_1, K_2 = k_2)$
- ▶ This is probability of the event that $K_1 = k_1$ and $K_2 = k_2$
- ▶ If you assume that these are independent tosses then
- $P(K_1 = k_1, K_2 = k_2) = P(K_1 = k_1) \times P(K_2 = k_2)$
- ► In other words, the probability of the *joint* event is equal to the probability of the marginal events.

Likelihood

- ▶ Suppose that the realized value of K_1 is k_1
- ▶ Unlike K_1 , k_1 is a fixed non-random number
- ▶ The likelihood of π given the observed data k_1, k_2 is

$$L(\pi) = \pi^{k_1} (1 - \pi)^{1 - k_1} \pi^{k_2} (1 - \pi)^{1 - k_2}$$

► Note that this is the joint probability of the events evaluated at the realized values

JOINT DISTRIBUTION

- \triangleright Repeat the experiment B times
- ► The joint PMF is

$$P(K_1 = k_1, ..., K_B = k_B) = \pi^{k_1} (1 - \pi)^{1 - k_1} \times ... \times \pi^{k_B} (1 - \pi)^{1 - k_B}$$

- ► Note that the implicit assumption is that the experiments are mutually independent
- ► Under this assumption, the joint PMF is the product of the marginal PMFs
- ▶ Plugging in the *observed* counts into the joint PMF yields the likelihood function

BINOMIAL EXAMPLE: OBSERVED DATA

```
set.seed(2131)
x = rbinom(5, 1, 0.5)
x
## [1] 1 0 0 0 1
```

- ▶ Observed data $x_1 = 1$, $x_1 = 0$, $x_3 = 0$, $x_4 = 0$ and $x_5 = 1$
- ► What is the likelihood?

BINOMIAL EXAMPLE: LIKELIHOOD

- ▶ Observed data $x_1 = 1$, $x_1 = 0$, $x_3 = 0$, $x_4 = 0$ and $x_5 = 1$
- ► The likelihood

$$L[\pi] = \pi^{x_1} (1 - \pi)^{x_1} \times \pi^{x_2} (1 - \pi)^{x_2} \times \pi^{x_3} (1 - \pi)^{x_3} \times \pi^{x_4} (1 - \pi)^{x_4} \times \pi^{x_5} (1 - \pi)^{x_5} \times \\ = \pi^1 (1 - \pi)^{1-1} \times \pi^0 (1 - \pi)^{1-0} \times \pi^0 (1 - \pi)^{$$

ightharpoonup Given the observed data find the value of π that maximizes this probability

BINOMIAL EXAMPLE: MAXIMUM LIKELIHOOD

The maximum value of the function $L[\pi] = \pi^2 (1 - \pi)^3$ occurs at $\pi = 0.4$.

MAXIMUM LIKELIHOOD CALCULATION FOR NB

- ▶ For gene i, let k_{11}, \ldots, k_{1n} the n observed counts
- ► For patient j plug the observed count k_{ij} into the PMF of the NB distribution $f[k_{ij}; \mu_{ij}; \alpha_i]$
- lacktriangle Write the likelihood function as a product of these n terms

$$L = \prod_{j=1}^{n} f[k_{ij}; \mu_{ij}; \alpha_i] = f[k_{ij}; \beta_{0i}, \beta_{1i}, s_j, \alpha_i]$$

- ▶ The function depends on $\beta_{0i}, \beta_{1i}, s_j$ and α_i
- ▶ One approach: Come up with some estimates of s_j and α_i and plug them into the likelihood
- ▶ Pretend that these are the *true* values
- ▶ Now the likelihood is only a function of β_{0i} and β_{1i}