Insuring Unit Failures in Electricity Markets

Salvador Pineda
Antonio Conejo
Miguel Carrión

Universidad de Castilla-La Mancha (Spain) 2009

- > Introduction
- > Model
- Case study
- > Conclusions

- > Introduction
- > Model
- Case study
- > Conclusions

Pool market (price volatility)

Futures market (fixed price)

Risk neutral	Pool		
	Fut.		
Risk	Pool		
averse	Futures		

Pool market (price volatility)

Futures market (fixed price)

Production unit

	Failures neglected		Failures considered		
Risk neutral	Pool			Pool	
	Fut.				
Risk averse	Pool			Pool	
	Futures		Futures		

Insurance

Swiss Re New Markets and Mirant Offer Generator Forced Outage Insurance Product.

Swiss Re's Electricity Price and Outage Protection (ELPRO) is a dual-trigger solution which protects against volume and market price by financially firming up generation whenever:

- Generating units suffer unplanned outages, and
- Electricity price exceeds a pre-agreed strike price.

Sources of uncertainty

Pool prices

Unit availability

Forward contracts

Sources of uncertainty

Pool prices Unit availability

Forward contracts

Insurance policy

Pool Futures market market

Insurance?

Analyze the effect of an insurance contract on the decisions of a power producer

- > Introduction
- > Model
- Case study
- > Conclusions

MODEL

Pool prices

Pool prices

MODEL

Unit availability

Unit availability

Historical data

$$FOR(\%) = \frac{MTTR}{MTTF + MTTF}$$

Failure time series = 20, 35,

~ exp(MTTF)

Repair time series = 12, 8,

~ exp(MTTR)

Unit availability

Pool prices Unit availability

Scenario tree

Pool price scenarios

Availability scenarios

Forward contracts

Forward contracts

- Specified quantity (MWh)
- Fixed price
- Future delivery period

- Initial premium
- Insured power
- Time period covered
- Conditions:
 - Pool price > Strike price
 - Unit unavailable

MODEL

Risk aversion

Objective function

Maximize CVaR (profit)

Constraints

Production unit limits

Energy balance

Forward characteristics

Objective function

Maximize $CVaR_{\alpha}(profit_{\omega})$

Constraints

Production unit limits

Energy balance

Forward characteristics

Risk aversion

Objective function

Maximize CVaR _a(profit_o)

$$\begin{aligned} & \text{CVaR}_{\alpha} = \zeta - \frac{1}{1 - \alpha} \sum_{\omega=1}^{N_W} \pi_{\omega} \eta_{\omega} \\ & - \textit{profit}_{\omega} + \zeta - \eta_{\omega} \leq \mathbf{0} \\ & \eta_{\omega} \geq \mathbf{0} \end{aligned}$$

Constraints

Production unit limits

Energy balance

Forward characteristics

Risk aversion

Objective function

Maximize CVaR _q(profit_w)

$$\operatorname{profit}_{\omega} = \sum_{t=1}^{N_T} \pi_{\omega} \left(\lambda_{t\omega}^P P_{t\omega}^P T_t - C(P_{t\omega}^G) \right) + \sum_{c=1}^{N_C} \lambda_c P_c T_c + s_I \left(-M_I + P_I \sum_{t \in G_{\omega}} (\lambda_{t\omega}^P - \lambda_I) T_t \right)$$

 $\lambda_{t\omega}^P \to \text{Pool price}$

 $P_{t\omega}^P \to \text{Power sold in the pool}$

 $T_t \rightarrow \text{Duration of time period}$

Constraints

Production unit limits

Energy balance

Objective function

Maximize CVaR _q(profit_w)

$$\operatorname{profit}_{\omega} = \sum_{t=1}^{N_T} \pi_{\omega} \left(\lambda_{t\omega}^P P_{t\omega}^P T_t - C(P_{t\omega}^G) \right) + \sum_{c=1}^{N_C} \lambda_c P_c T_c + s_I \left(-M_I + P_I \sum_{t \in G_{\omega}} (\lambda_{t\omega}^P - \lambda_I) T_t \right)$$

 $C(\cdot) \rightarrow \text{Cost function}$

 $P_{t\omega}^G \to \text{Generated power}$

Constraints

Production unit limits

Energy balance

Objective function

Maximize CVaR _a(profit_o)

$$\operatorname{profit}_{\omega} = \sum_{t=1}^{N_T} \pi_{\omega} \left(\lambda_{t\omega}^P P_{t\omega}^P T_t - C(P_{t\omega}^G) \right) + \sum_{c=1}^{N_C} \lambda_c P_c T_c + s_I \left(-M_I + P_I \sum_{t \in G_{\omega}} (\lambda_{t\omega}^P - \lambda_I) T_t \right)$$

$$\operatorname{Pool} \quad \operatorname{Cost} \quad \operatorname{Forward}$$

 $\lambda_c \rightarrow$ Forward price

 $P_c \rightarrow$ Power sold through forward contract

 $T_c \rightarrow$ Forward contract duration

Constraints

Production unit limits

Energy balance

Objective function

Maximize CVaR q(profit_o)

$$\operatorname{profit}_{\omega} = \sum_{t=1}^{N_T} \pi_{\omega} \underbrace{\begin{pmatrix} \lambda_{t\omega}^P P_{t\omega}^P T_t \\ r_{t\omega} \end{pmatrix} + \begin{pmatrix} C(P_{t\omega}^G) \\ cost \end{pmatrix} + \sum_{c=1}^{N_C} \lambda_c P_c T_c \\ \operatorname{Forward} + \left(S_I \underbrace{\begin{pmatrix} -M_I + P_I \sum_{t \in G_{\omega}} (\lambda_{t\omega}^P - \lambda_I) T_t \\ r_{t\omega} \end{pmatrix} \right)}_{\operatorname{Insurance}}$$

Constraints

Production unit limits

Energy balance

$$s_I \rightarrow \text{Binary variable}$$
 $M_I \rightarrow \text{Initial premium}$
 $P_I \rightarrow \text{Insured power}$
 $t \in G_\omega \Leftrightarrow k_{t\omega} = \mathbf{0} \text{ and } \lambda_{t\omega}^P \geq \lambda_I$
 $\lambda_I \rightarrow \text{Strike price}$

Objective function

Maximize $CVaR_{\alpha}(profit_{\alpha})$

Constraints

Production unit limits

Balance energy

Objective function

Maximize CVaR _α(profit_ω)

Constraints

Production unit limits

Energy balance

$$P_{t\omega}^{G} = \sum_{c \in F_{t}} P_{c} + P_{t\omega}^{P}$$

$$P_{t\omega}^{P} \geq (k_{tw} - 1) \sum_{c \in F_{t}} P_{c}$$

Objective function

Maximize CVaR (profit)

Constraints

Production unit limits

Energy balance

$$P_c \leq P_c^{\max}$$

MODEL

Insurance?

- > Introduction
- > Model
- Case study
- > Conclusions

- > 3 months
- 4 forward contracts (3 monthly and 1 quarterly)
- 1 Insurance contract
 - ▶ Premium: 100,000 €
 - Insured power: 75 MW
 - Strike price: 10 €/MWh
- 300 pool price scenarios reduced to 50
- 10,000 availability scenarios reduced to 200
- Generating unit
 - Pmax = 500 MW & Pmin = 50 MW
 - > Three FOR values: 0, 4 and 8%
 - Piecewise lineal cost function

FOR	$\alpha^{\mathbf{P}}$	Average P_c (MW)	CVaR (/10 ⁶ €)
0%	0	0	11.7
U %	0.95	150	8.5
40/	0	0	11.2
4%	0.95	150	7.9
00/	0	0	10.7
8%	0.95	125	7.0

FOR	α^{P}	Average $P_c(MW)$	CVaR (/10 ⁶ €)	SI
0%	0	0	11.7	0
0%	0.95	150	8.5	0
4%	0	0	11.2	0
470	0.95	150	8.0	1
00/	0	0	10.7	1
8%	0.95	150	7.4	1

CVaR Average **FOR** $P_c(MW)$ (/106 €) 11.7 0 0 0% 8.5 0.95 150 11.2 0 4% 0.95 150 7.9 10.7 0 0 8%

125

7.0

0.95

FOR	$\alpha^{\mathbf{P}}$	Average $P_c(MW)$	CVaR (/10 ⁶ €)	SI
0%	0	0	11.7	0
0%	0.95	150	8.5	0
40/	0	0	11.2	0
4%	0.95	150	8.0	1
00/	0	0	10.7	1
8%	0.95	150	7.4	1

FOR	α^{P}	Average P_c (MW)	CVaR (/10 ⁶ €)
00/	0	0	11.7
0%	0.95	150	8.5
40/	0	0	11.2
4%	0.95	150	7.9
00/	0	0	10.7
8%	0.95	125	7.0

FOR	$\alpha^{\mathbf{P}}$	Average $P_c(MW)$	CVaR (/10 ⁶ €)	SI
0%	0	0	11.7	0
0%	0.95	150	8.5	0
4%	0	0	11.2	0
470	0.95	150	8.0	1
00/	0	0	10.7	1
8%	0.95	150	7.4	1

CVaR Average **FOR** $P_c(MW)$ (/106 €) 11.7 0 0 0% 8.5 0.95 150 11.2 0 4% 0.95 150 7.9 10.7 0 0 8% 125 0.95 7.0

FOR	$\alpha^{\mathbf{P}}$	Average $P_c(MW)$	CVaR (/10 ⁶ €)	SI
0%	0	0	11.7	0
0%	0.95	150	8.5	0
40/	0	0	11.2	0
4%	0.95	150	8.0	1
00/	0	0	10.7	1
8%	0.95	150	7.4	1

Critical premium: the maximum amount that a producer is willing to pay in exchange for a given insurance contract.

Critical premium.

CVaR is a coherent risk measure: $CVaR_{\alpha}(Y+c) = CVaR_{\alpha}(Y)+c$

Critical premium.

$$CVaR_{\alpha}(Y+c) = CVaR_{\alpha}(Y)+c$$

 $M_{\rm T}({\rm euro})$

Critical premium.

 $CVaR_{\alpha}(Y+c) = CVaR_{\alpha}(Y)+c$

 $CVaR_1^P = CVaR_0^P - M_I$

Case 2 ($s_I = 0$):

 $CVaR_2^P = CVaR_\infty^P$

Critical premium.

$$CVaR_{\alpha}(Y+c) = CVaR_{\alpha}(Y)+c$$

Case 1 ($s_I = 1$):

 $CVaR_1^P = CVaR_0^P - M_I$

Case 2 ($s_I = 0$):

 $CVaR_2^P = CVaR_\infty^P$

 $CVaR_1^P = CVaR_2^P$

 $CVaR_0^P - M_I^{P*} = CVaR_\infty^P$

 $M_I^{P*} = CVaR_0^P - CVaR_\infty^P$

Producer

$\alpha^{\mathbf{P}}$	<i>M</i> / ^{P*} (€)
0	173.275
0.3	196.166
0.5	214.615
0.9	358.210

α s	<i>M</i> _/ ^{S*} (€)
0	173.275
0.3	242.071
0.5	302.974
0.9	563.779

$$P_I = 75MW$$
 $\lambda_I = 10 \in /MWh$ FOR = 8%

Producer

$\alpha^{\mathbf{P}}$	<i>M</i> / ^{P*} (€)
0	173.275
0.3	196.166
0.5	214.615
0.9	358.210

$\alpha^{\mathbf{S}}$	<i>M</i> _/ ^{S*} (€)
0	173.275
0.3	242.071
0.5	302.974
0.9	563.779

$$P_I = 75MW$$
 $\lambda_I = 10 \in /MWh$ FOR = 8%

Producer

$\alpha^{\mathbf{P}}$	<i>M</i> / ^{P*} (€)
0	173.275
0.3	196.166
0.5	214.615
0.9	358.210

αs	<i>M</i> _/ ^{S*} (€)
0	173.275
0.3	242.071
0.5	302.974
0.9	563.779

$$P_I = 75MW$$
 $\lambda_I = 10 \in /MWh$ FOR = 8%

- > Introduction
- > Model
- Case study
- > Conclusions

Stochastic programming

Insurance

† Futures market

Insurance

Producer

Risk

Thank you!

Questions?

www.uclm.es/area/gsee