

M. Hohle:

Physics 77: Introduction to Computational Techniques in Physics Bonus: Entropy

What do you think: in which image is entropy higher?

low entropy

high entropy

first of all:

Entropy is **not** a measure of disorder!

i: states

 n_i : number of particles in state i

Often people explain entropy with an ordered vs messy office...

first of all:

Entropy is **not** a measure of disorder!

...and then say, that entropy (disorder) grows with time (in closed systems).

- But how is it possible, that an office can do that, just by itself?
- What if my office just looks messy,
 but I can still pull any file you are asking me for?

order/disorder is not a physical quantity!

Those examples have nothing to do with entropy conceptionally!

actually, the idea of entropy is more like that:

Entropy:

data analysis:

- image processing
- noise reduction
- feature detection

Cryo-EM image of ribosomes

biophysics:

- molecular driving forces
- formation of macromolecules
- "ordering forces"

AI:

- optimization
- cross entropy

Entropy:

statistics/information theory:

- maximum entropy, given constrains

Distribution name	Probability density / mass function	Maximum Entropy constraint	Support
Uniform (discrete)	$f(k) = \frac{1}{b-a+1}$	None	$\{a,a+1,\ldots,b-1,b\}$
Uniform (continuous)	$f(x) = \frac{1}{b-a}$	None	[a,b]
Bernoulli	$f(k)=p^k(1-p)^{1-k}$	$\mathbb{E}[\ K\]=p$	{0,1}
Geometric	$f(k)=(1-p)^{k-1}\;p$	$\mathbb{E}[K]=rac{1}{p}$	$\mathbb{N} \smallsetminus \{0\} = \{1,2,3,\dots\}$
Exponential	$f(x) = \lambda \exp(-\lambda x)$	$\mathbb{E}[\ X\]=rac{1}{\lambda}$	$[0,\infty)$
Laplace	$f(x) = rac{1}{2b} \expigg(-rac{ x-\mu }{b}igg)$	$\mathbb{E}[\ X-\mu \]=b$	$(-\infty,\infty)$
Asymmetric Laplace	$f(x) = rac{\lambda \; \expig(-\left(x-m ight) \lambda \; s \; \kappa^sig)}{\left(\kappa + rac{1}{\kappa} ight)}$ where $s \equiv \mathrm{sgn}(x-m)$	$\mathbb{E}[\;(X-m)\;s\;\kappa^s\;]=rac{1}{\lambda}$	$(-\infty,\infty)$
Pareto	$f(x)=rac{lpha\ x_m^lpha}{x^{lpha+1}}$	$\mathbb{E}[\; \ln X] = rac{1}{lpha} + \ln(x_m)$	$[x_m,\infty)$
Normal	$f(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\Biggl(-rac{(x-\mu)^2}{2\sigma^2}\Biggr)$	$egin{aligned} \mathbb{E}[\ X\] &= \mu\ , \ \mathbb{E}[\ X^2\] = \sigma^2 + \mu^2 \end{aligned}$	$(-\infty,\infty)$
Gamma	$f(x) = rac{x^{k-1} \exp\left(-rac{x}{ heta} ight)}{ heta^k \; \Gamma(k)}$	$\mathbb{E}[\;X\;] = k\; heta\;, \ \mathbb{E}[\;\ln X\;] = \psi(k) + \ln heta$	$[0,\infty)$

What is entropy, really?

N: number of dice

 n_i : number of dice exposing a certain number i

(= having a certain state i)

I: number of states a die can have

What is the probability *P* to observe the *system* in a certain state?

What is the probability p_i to observe a die in a certain state?

$$\Omega = \frac{N!}{n_1! \, n_2! \dots n_I!}$$

assumption: all *i* are equally likely:

 $P = 1/\Omega$

$$\Omega = \frac{N!}{n_1! \, n_2! \dots n_I!}$$

N: number of dice

 n_i : number of dice exposing a certain number i

(= having a certain state i)

I: number of states a die can have

is large, even for small systems!

Stirling's approximation

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

$$\Omega = \frac{N!}{n_1! \, n_2! \dots n_I!}$$

N: number of dice

number of dice exposing a certain number i n_i :

(= having a certain state i)

number of states a die can have

is large, even for small systems!

for large n_i :

$$\Omega = \frac{N!}{n_1! \, n_2! \, \dots \, n_I!} \approx \frac{N^N}{n_1^{n_1} n_2^{n_2} \, \dots \, n_I^{n_I}}$$

$$p_i pprox rac{n_i}{N}$$

$$\approx \frac{1}{p_1^{n_1} p_2^{n_2} \dots p_I^{n_I}}$$

$$ln\Omega = -\sum_{i}^{I} n_{i} \ lnp_{i}$$
 $\frac{\ln\Omega}{N} = -\sum_{i}^{I} p_{i} \ lnp_{i}$ $s = -\sum_{i}^{I} p_{i} \ lnp_{i}$ entropy per particle

$$S = -\sum_{i}^{I} p_{i} \ln p_{i}$$

$$S = -\sum_{i}^{I} p_{i} \, ln p_{i}$$

N: number of dice

 n_i : number of dice exposing a certain number i

(= having a certain state i)

: number of states a die can have

 p_i : n_i/N

assumption: all *i* are equally likely: $P = 1/\Omega$

subsets of Ω : - sum M of all numbers on the dice

- dice can only be distinguished by their state

M = 2: min(M) = 1 + 1 = 2

max(M) = 6 + 6 = 12

most likely M = 7 (or $2 \times mean(I)$), because there are **six** possibilities to obtain it:

$$1 + 6$$
; $1 + 6$; $2 + 5$; $5 + 2$; $3 + 4$; $4 + 3$

M = N: min(M) = N

max(M) = I M

most likely $M = N \times mean(I)$

Bonus - Entropy

$$S = -\sum_{i}^{I} p_{i} \, ln p_{i}$$

N: number of dice

 n_i : number of dice exposing a certain number i

(= having a certain state i)

number of states a die can have

 p_i : n_i/N

assumption: all *i* are equally likely:

N = 100

- some subsets of Ω , hence some states of the system are way more likely than other states
- becomes more extreme for large N

N = 1000

Bonus - Entropy

$$S = -\sum_{i}^{I} p_{i} \, ln p_{i}$$

N: number of dice

 n_i : number of dice exposing a certain number i

(= having a certain state i)

: number of states a die can have

 p_i : n_i/N

we can also see this as dynamical process:

t = 0 : all dice have the same state

Bonus - Entropy

$$S = -\sum_{i}^{I} p_{i} \, ln p_{i}$$

N: number of dice

 n_i : number of dice exposing a certain number i

(= having a certain state i)

: number of states a die can have

 p_i : n_i/N

we can also see this as dynamical process:

t = 0 : all dice have the same state

Bonus - Entropy

$$S = -\sum_{i}^{I} p_{i} \, ln p_{i}$$

N: number of dice

 n_i : number of dice exposing a certain number i

(= having a certain state i)

: number of states a die can have

 p_i : n_i/N

we can also see this as dynamical process:

t = 0 : all dice have the same state

Bonus - Entropy

$$S = -\sum_{i}^{I} p_{i} \, ln p_{i}$$

N: number of dice

 n_i : number of dice exposing a certain number i

(= having a certain state i)

: number of states a die can have

 p_i : n_i/N

we can also see this as dynamical process:

t = 0 : all dice have the same state

Bonus - Entropy

$$S = -\sum_{i}^{I} p_{i} \, ln p_{i}$$

N: number of dice

 n_i : number of dice exposing a certain number i

(= having a certain state i)

: number of states a die can have

 p_i : n_i/N

we can also see this as dynamical process:

t = 0 : all dice have the same state

Bonus - Entropy

$$S = -\sum_{i}^{I} p_{i} \, ln p_{i}$$

N: number of dice

 n_i : number of dice exposing a certain number i

(= having a certain state i)

I: number of states a die can have

 p_i : n_i/N

10 dice 300 timesteps

Bonus - Entropy

$$S = -\sum_{i}^{I} p_{i} \, ln p_{i}$$

N: number of dice

 n_i : number of dice exposing a certain number i

(= having a certain state i)

I: number of states a die can have

 p_i : n_i/N

10 dice 300 timesteps

1,000 dice 10,000 timesteps

check out random_machine.ipynb

constrain: M is conserved, I is free, but >0

conclusions:

- entropy increases with time (in a closed system) because it is the **most likely** state
- the larger the system, the more deterministic it looks
- for small systems: entropy can fluctuate in both ways and does not increase!
 (Stirling's approximation)
- large systems: (thermodynamic) arrow of time (question: what if we are at S_{max} already)
- small systems: symmetry in time!
- even if i are not equally likely (constrains, some states are more accessible)
 → different weights, but same principle
- uniform distribution has highest entropy (do the math:))

- entropy high → information low
- entropy low → information high

I		
$S = -\sum_{i=1}^{n}$	$p_i lnp_i$	
i		

fair die: events are

 p_n are

1, 2, 3, 4, 5, 6

 p_1 , p_2 , p_3 , p_4 , p_5 , p_6 = 1/6 for all p_n

I have no idea, so all numbers are equally likely if it's a fair die.

- entropy high → information low
- entropy low → information high

fair die: events are

 p_n are

1, 2, 3, 4, 5, 6

 p_1 , p_2 , p_3 , p_4 , p_5 , p_6 = 1/6 for all p_n

$$S = -\frac{1}{6}ln\left(\frac{1}{6}\right) * 6 = 1.79 \dots$$

- entropy high → information low
- entropy low → information high

	Ι		
S = -	$-\sum_{i} \gamma_{i}$	p_i l	lnp_i
S = -	$-\sum_{i} i$	p_i l	lnp_i

fair die: events are

 p_n are

1, 2, 3, 4, 5, 6

 p_1 , p_2 , p_3 , p_4 , p_5 , p_6 = 1/6 for all p_n

Alright, so then $p_6=0$ and all the other $p_5=1/5$.

- entropy high → information low
- entropy low → information high

	Ι		
S = -	$-\sum_{i} \gamma_{i}$	p_i l	lnp_i
S = -	$-\sum_{i} i$	p_i l	lnp_i

fair die: events are

 p_n are

1, 2, 3, 4, 5, 6

 p_1 , p_2 , p_3 , p_4 , p_5 , p_6 = 1/6 for all p_n

Hence,
$$S = -\frac{1}{5} ln \left(\frac{1}{5}\right) * 5 = 1.61 ...$$

- entropy high \rightarrow information low
- entropy low → information high

1
$S = -\sum_{i} p_{i} ln p_{i}$

fair die: events are

 p_n are

1, 2, 3, 4, 5, 6

 $p_1, p_2, p_3, p_4, p_5, p_6 = 1/6$ for all p_n

Come on, don't be so nerdy. It is an odd number.

This helps a lot: $p_2=p_4=p_6=0$ and thus, $p_1=p_3=p_5=1/3$

- entropy high → information low
- entropy low → information high

	Ι	
S = -	$\sum_{i} p_{i} \ln p$	ì
S = -	$\sum_{i} p_{i} \ln p$	ì

fair die: events are

 p_n are

1, 2, 3, 4, 5, 6

 p_1 , p_2 , p_3 , p_4 , p_5 , p_6 = 1/6 for all p_n

Hence,
$$S = -\frac{1}{3} ln \left(\frac{1}{3}\right) * 3 = 1.10 ...$$

- entropy high → information low
- entropy low → information high

fair die: events are

 p_n are

1, 2, 3, 4, 5, 6

 p_1 , p_2 , p_3 , p_4 , p_5 , p_6 = 1/6 for all p_n

I give up. It's a five. Next time I am gonna play with Schroedinger.

Fantastic! So all $p_n=\mathbf{0}$ except for n = 5

- entropy high → information low
- entropy low → information high

I		
$S = -\sum_{i}$	$p_i lnp_i$	
i		

fair die: events are

 p_n are

1, 2, 3, 4, 5, 6

 p_1 , p_2 , p_3 , p_4 , p_5 , p_6 = 1/6 for all p_n

I give up. It's a five. Next time I am gonna play with Schroedinger.

Hence, $S = -0 \ ln(0) * 5 - 1 * ln(1) = 0$

But don't mention your cat!

- entropy high → information low
- entropy low → information high

	I
$S = \frac{1}{2}$	$-\sum p_i lnp_i$
	i

Entropy:

Information:

none (any number) S = 1.79

not a six S = 1.61

an odd number S = 1.10

the actual number S = 0.00

M. Hohle:

Thank you for your attention and Happy X-Mas!!

