Practice Problems 18: Improper Integrals

1. Show that $\int_1^\infty \frac{1}{t^p} dt$ converges to $\frac{1}{p-1}$ if p>1 and it diverges to ∞ if $p\leq 1$.

2. Let $f:[a,\infty)\to\mathbb{R}$ be differentiable and f' be integrable on [a,x] for all $x\geq a$. Show that $\int_{a}^{\infty} f'(t)dt$ converges if and only if $\lim_{t\to\infty} f(t)$ exists.

3. Find the limits of the following improper integrals.

(a)
$$\int_0^{\pi/2} \ln t dt$$

(b)
$$\int_{0}^{1} \ln \frac{1}{t} dt$$

(c)
$$\int_0^\infty e^{-t} dt$$

(d)
$$\int_0^\infty \frac{dt}{e^t + e^{-t}} dt$$

(b)
$$\int_0^1 \ln \frac{1}{t} dt$$
 (c) $\int_0^\infty e^{-t} dt$
(e) $\int_1^\infty p^t dt$, 0

4. (Cauchy Criterion) Let $f:[a,\infty)\to\mathbb{R}$ be integrable on [a,x] for all $x\geq a$. Show that $\int_a^\infty f(t)dt$ converges if and only if for every $\epsilon > 0$ there exists $N \geq a$ such that $\left| \int_{x}^{y} f(t) dt \right| < \epsilon \text{ for every } x, y \ge N.$

5. Let $f:[0,\infty)\to\mathbb{R}$ be defined by $f(t)=\frac{(-1)^{n+1}}{n}$ when $t\in[n-1,n),\ n\in\mathbb{N}$. Show that $\int_0^\infty f(t)dt$ converges but not absolutely.

6. Let $f:[1,\infty)\to\mathbb{R}$ be defined by f(n)=1 for all $n\in\mathbb{N}$ and f(x)=0 if $x\in[1,\infty)\setminus\mathbb{N}$. Then show that

- (a) $\int_1^\infty f(t)dt$ converges but $\sum_{n=1}^\infty f(n)$ diverges.
- (b) $\int_{1}^{\infty} (f(t) 1) dt$ diverges but $\sum_{n=1}^{\infty} (f(n) 1)$ converges.

7. (Integral Test) Let $f:[1,\infty)\to\mathbb{R}$ be a non-negative decreasing function. Then show that

(a) (μ_n) is decreasing and bounded below where $\mu_n = (\sum_{k=1}^n f(k)) - \int_1^n f(t) dt$.

(b) either both $\sum_{n=1}^{\infty} f(n)$ and $\int_{1}^{\infty} f(t)dt$ converge or else both diverge.

(a) Let $f:[1,\infty)\to\mathbb{R}$ be such that f(n)=1 for all $n\in\mathbb{N}$ and f(t)=0 otherwise. Show that $\int_1^\infty f(t)dt$ converges but $f(t) \to 0$ as $t \to \infty$.

(b) Does there exist a continuous function $f:[1,\infty)\to\mathbb{R}$ such that $\int_1^\infty f(t)dt$ converges but $f(t) \rightarrow 0$ as $n \rightarrow \infty$?

9. Determine the values of k for which the improper integral $\int_{1}^{\infty} \left[\frac{kt}{1+t^2} - \frac{1}{2t} \right] dt$ converges.

10. (Drichlet Test) Let $f, g : [a, \infty) \to \mathbb{R}$ be such that

- (a) f is continuous, decreasing and $f(t) \to 0$ as $t \to \infty$,
- (b) there exists M such that $\left| \int_a^x g(t)dt \right| \leq M$ for all x > a.

Then $\int_{a}^{\infty} f(t)g(t)dt$ converges.

11. Determine the values of p for which the following improper integrals converge. (a) $\int_{1}^{\infty} \frac{\sin t}{t^{p}} dt$ (b) $\int_{1}^{\infty} \frac{\ln t}{t^{p}} dt$ (c) $\int_{0}^{\infty} \frac{t^{p-1}}{1+t} dt$ (d) $\int_{1}^{\infty} t^{p} e^{-t} dt$ (e) $\int_{0}^{1} \frac{1-\cos t}{t^{p}} dt$.

(a)
$$\int_{1}^{\infty} \frac{\sin t}{t^p} dt$$

(b)
$$\int_{1}^{\infty} \frac{\ln t}{t^p} dt$$

(c)
$$\int_{0}^{\infty} \frac{t^{p-1}}{1+t} dt$$

(d)
$$\int_{1}^{\infty} t^{p} e^{-t} dt$$

(e)
$$\int_0^1 \frac{1-\cos t}{t^p} dt$$

12. (Root Test) Let $f:[a,\infty)\to\mathbb{R}$ be such that f is integrable on [a,x] for all x>a. Suppose $|f(t)|^{\frac{1}{t}} \to \ell$ as $t \to \infty$ for some $\ell \in \mathbb{R}$ or $\ell = \infty$. Then

- (a) if $\ell < 1$, then the integral $\int_a^\infty f(t)dt$ converges absolutely.
- (b) if $\ell > 1$ and f is non-negative then the integral $\int_a^\infty f(t)dt$ diverges.
- 13. Determine the convegence/divergence of the following integrals.

 - (a) $\int_{0}^{1} \frac{\sqrt{t}}{e^{\sin t 1}} dt$. (b) $\int_{0}^{\frac{\pi}{2}} \ln(\sin t) dt$ (c) $\int_{0}^{\infty} \frac{1}{t^2 + \sqrt{t}} dt$ (d) $\int_{0}^{1} \cos \frac{1}{t^2} dt$.

- (e) $\int_{0}^{\infty} \sin t^{3} dt$ (f) $\int_{1}^{\infty} \frac{\sin 2t}{\sqrt{t}} e^{\sin t} dt$ (g) $\int_{1}^{\infty} t \sin t^{4} dt$ (h) $\int_{0}^{\frac{\pi}{4}} \frac{dt}{t \sin t}$
- (i) $\int_{1}^{\infty} \frac{1 5\sin 2t}{t^2 + \sqrt{t}} dt$ (j) $\int_{0}^{1} \frac{e^{\frac{t}{2}}}{\sqrt{1 \cos t}} dt$ (k) $\int_{1}^{\infty} \frac{t^t}{e^{2t}} dt$

- $(\ell) \quad \int\limits_{-\frac{e^t}{4^t}}^{\infty} dt.$
- 14. (Gamma Function) Show that the following function Γ , called Gamma function, is well defined: $\Gamma:(0,\infty)\to\mathbb{R}$ given by $\Gamma(p)=\int_0^\infty e^{-t}t^{p-1}dt$.

Practice Problems 18: Hints/Solutions

- 1. If $p \neq 1$ then for $x \in [1, \infty)$, $\int_1^x \frac{1}{t^p} dt = \frac{x^{1-p}-1}{1-p}$. If p = 1, then for $x \in [1, \infty)$, $\int_1^x \frac{1}{t} dt = \ln x$.
- 2. By the FTC, $\int_a^x f'(t)dt = f(x) f(a)$, for $x \in [a, \infty)$.
- 3. (a) $\lim_{x\to 0} \int_x^{\frac{\pi}{2}} \ln t dt = \lim_{x\to 0} [t \ln t t]_x^{\frac{\pi}{2}} = \frac{\pi}{2} [\ln \frac{\pi}{2} 1].$
 - (b) $\lim_{x\to 0} \int_{-\pi}^{1} \ln \frac{1}{t} dt = \lim_{x\to 0} [t t \ln t]_{x}^{1} = 1$.
 - (c) $\lim_{x\to\infty} \int_0^x e^{-t} dt = \lim_{x\to\infty} [-e^{-t}]_0^x = \lim_{x\to\infty} [1 e^{-x}] = 1$.
 - (d) $\lim_{x\to\infty} \int_0^x \frac{e^t}{e^{2t}+1} dt = \lim_{x\to\infty} \int_1^{e^x} \frac{1}{1+u^2} du = \lim_{x\to\infty} [\tan^{-1} u]_1^{e^x} = \frac{\pi}{2} \frac{\pi}{4} = \frac{\pi}{4}$
 - (e) $\lim_{x\to\infty} \int_1^x p^t dt = \lim_{x\to\infty} \left\lceil \frac{p^x p}{\ln p} \right\rceil = \frac{-p}{\ln p}$.
- 4. $\int_a^{\infty} f(t)dt = \ell \Leftrightarrow \forall \epsilon > 0 \ \exists N \geq a \ \text{such that } \left| \int_a^x f(t)dt \ell \right| < \epsilon \text{ for every } x \geq N.$
- 5. Let $\alpha = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$. Observe that $\lim_{n \to \infty} \int_0^n f(t)dt = \lim_{n \to \infty} \left(\int_0^1 f(t)dt + \int_1^2 f(t)dt + \dots + \int_{n-1}^n f(t)dt \right) = \alpha$ and for $x \in [n, n+1]$, $\left|\alpha - \int_0^x f(t)dt\right| \le \max\left\{\left|\alpha - \int_0^n f(t)dt\right|, \left|\alpha - \int_0^{n+1} f(t)dt\right|\right\}$.
- 6. Trivial
- (a) Note that, since f is decreasing, $f(n+1) \leq \int_n^{n+1} f(t)dt \leq f(n)$. Now $\mu(n+1) - \mu(n) = f(n+1) - \int_{n}^{n+1} f(t)dt \le 0 \text{ and}$ $\mu(n) = \sum_{k=1}^{n} f(k) - \left(\sum_{k=1}^{n-1} \int_{k}^{k+1} f(t)dt\right) \ge \sum_{n=1}^{n} f(k) - \sum_{n=1}^{n-1} f(k) = f(n) > 0.$
 - (b) Follows from (a).
- 8. (a) Trivial.
 - (b) Yes. The graph of such a function is given in Figure 1.
- 9. Note that $\frac{kt}{1+t^2} \frac{1}{2t} = \frac{(2k-1)t^2-1}{2t(1+t^2)}$. When $k = \frac{1}{2}$, use the LCT with $\frac{1}{t^3}$ and when $k \neq \frac{1}{2}$ use the LCT with $\frac{1}{t}$.

- 10. (*) Let $\epsilon > 0$. Since f is decreasing and $f(t) \to 0$ as $t \to \infty$, there exists N > 0 such that $|f(t)| \le \frac{\epsilon}{2M}$ for all $t \ge N$. Let y > x > N. Then by the second MVT for integrals, there exists $c \in [x,y]$ such that $\left| \int_x^y f(t)g(t)dt \right| = \left| f(c) \int_x^y g(t)dt \right| \le |f(c)| \left| \int_a^y g(t)dt \int_a^x g(t)dt \right| \le \frac{\epsilon}{2M} 2M = \epsilon$. By the Cauchy Criterion (Problem 4), $\int_a^\infty f(t)g(t)dt$ converges.
- 11. (a) For p > 0, $\int_1^\infty \frac{\sin t}{t^p} dt$ converges by the Dirichlet test. For $p \le 0$, let q = -p. Then $\int_1^\infty t^q \sin t dt$ does not converge. If so, then its partial integral is bounded and hence again by the Dirichlet test $\int_1^\infty \frac{t^q \sin t}{t^q} dt$ converges.
 - (b) Let p>1 and 1< q< p. Then $\frac{(\ln t)/t^p}{1/t^q}=\frac{\ln t}{t^{p-q}}\to 0$ as $t\to\infty$. Therefore by the LCT, the integral converges. For $p\le 1$, $\frac{(\ln t)/t^p}{1/t^p}=\ln t\to\infty$ as $t\to\infty$. Therefore by the LCT, the integral diverges for $p\le 1$.
 - (c) Consider $I_1 = \int_0^1 \frac{t^{p-1}}{1+t} dt$ and $I_2 = \int_1^\infty \frac{t^{p-1}}{1+t} dt$. For convergence of I_1 , use the LCT with t^{p-1} . This shows that I_1 converges for 1-p<1; that is p>0. For the convergence of I_2 , use the LCT with t^{p-2} . This shows that I_2 converges for p<1. Therefore I converges only for 0< p<1.
 - (d) Let $p \in \mathbb{R}$. Use the LCT with $\frac{1}{t^2}$. Hence $\int_1^\infty t^p e^{-t} dt$ converges for all $p \in \mathbb{R}$.
 - (e) Observe that $1 \cos t$ behaves like $\frac{t^2}{2}$ near 0. So use the LCT with $\frac{1}{t^{p-2}}$ and observe that the integral converges for p < 3 and diverges for $p \ge 3$.
- 12. (a) If $\ell < 1$ then find $\epsilon > 0$ such that $\ell + \epsilon < 1$. Then there exists $N \in \mathbb{N}$ such that $|f(t)|^{\frac{1}{t}} \leq \ell + \epsilon$ for all $t \geq N$. That is $|f(t)| \leq (\ell + \epsilon)^t$ for all $t \geq N$. By Problem 3(e) and the comparison test, the integral converges absolutely.
 - (b) If $\ell > 1$, then there exists $N \in \mathbb{N}$ such that $|f(t)|^{\frac{1}{t}} > 1$ for all $t \geq N$. That is |f(t)| > 1 for all $t \geq N$. This show that the integral diverges.
- 13. (a) Converges: Use the LCT with $\frac{1}{\sqrt{t}}$.
 - (b) Converges : Write $\int_{0}^{\frac{\pi}{2}} \ln(\sin t) dt = \int_{0}^{\frac{\pi}{2}} [\ln(\frac{\sin t}{t}) + \ln t] dt$. Note that $\int_{0}^{\frac{\pi}{2}} \ln(\frac{\sin t}{t}) dt$ is proper integral and use Problem 3(a).
 - (c) Converges: Write $\int_{0}^{\infty} \frac{1}{t^2 + \sqrt{t}} dt = \int_{0}^{1} \frac{1}{t^2 + \sqrt{t}} dt + \int_{1}^{\infty} \frac{1}{t^2 + \sqrt{t}} dt.$ Observe that $\frac{1}{t^2 + \sqrt{t}} \le \frac{1}{\sqrt{t}}$ and $\frac{1}{t^2 + \sqrt{t}} \le \frac{1}{t^2}$.
 - (d) Converges: Use the LCT test with $\frac{1}{\sqrt{t}}$.
 - (e) Converges: Take $u=t^3$ and use the Dirichlet test for $\int_1^\infty (3u^{\frac{3}{2}})^{-1} \sin u du$.
 - (f) Converges: Observe that, for x > a, $\left| \int_a^x e^{\sin t} \sin 2t dt \right| \le 8e$ and use the Dirichlet test.
 - (g) Converges: Using the substitution $u = t^2$ leads to the integral $\frac{1}{2} \int_1^\infty \sin u^2 du$.
 - (h) Diverges : Use the LCT with $\frac{1}{t^3}$.
 - (i) Converges absolutely: Use the comparison test with $\frac{6}{t^2}$.
 - (j) Diverges: Observe that $\sqrt{1-\cos t} = \sqrt{2}\sin\frac{t}{2}$ and use the LCT with $\frac{1}{t}$.
 - (k) Diverges: Apply the Root test.
 - (l) Converges: Apply the Root test.
- 14. Let $f(t) = e^{-t}t^{p-1}$. Suppose $I_1 = \int_0^1 f(t)dt$ and $I_2 = \int_1^\infty f(t)dt$. By Problem 11 (d), I_2 converges for all $p \in (0, \infty)$. If $p \ge 1$, then f is bounded on (0, 1] and hence I_1 converges. If p < 1, use LCT with $\frac{1}{t^{1-p}}$ and verify that I_1 converges for 1 p < 1; that is for p > 0.