Predição de Energia Solar com Machine Learning e IoT

Aluno: Guttardo Néri Pereira Orientador: Ricardo Santos Ferreira

18 de Abril de 2018

Por que a energia solar?

Fonte: LabSol

Por que a energia solar?

Fonte: LabSol

Projeto no DEL-UFV

• Ideia inicial era utilizar de sensores LDR para estimar a irradiação solar

Machine Learning e IoT

- Pesquisas passadas em IA
- Interesse pessoal em microcontroladores e na vasta gama de possibilidades envolvendo IoT

 Motivações
 Métodos e Objetivos
 Cronograma
 Referências

 ○○○●
 ○○

Competição Internacional

Fonte: https://www.kaggle.com/c/ams-2014-solar-energy-prediction-contest (Acesso em 15/04/2018)

Métodos e Objetivos

- Coletar e persistir dados de sensores de temperatura, umidade e iluminação, todos de baixo custo;
- Coletar informações metereológicas através de APIs, com intervalo de alguns minutos/horas entre cada medição;
- Plataforma WEB para visualização de gráficos e precisão das medidas previstas pela API;
- Utilizando os dados coletados, predizer a quantidade de energia solar disponível na estação para intervalos de 10 ou mais dias.

Cronograma

	MARÇO	ABRIL	MAIO	JUNHO	JULHO
Definição do Tema	Х				
Estudo de Machine Learning	Χ	X	X	Χ	X
Preparação de Material		X			
Plataforma WEB		X	X		
Leitura de Dados dos Sensores			X	Χ	X

Referências

- E. F. A. Fadigas. Disponível em: https://edisciplinas.usp.br/pluginfile.php/56337/mod_resource/content/2/Apostila_solar.pdf.
- S. Raschka. Python Machine Learning. 1.ed. Birmingham, Reino Unido: Packt, 2015.

DÚVIDAS? SUGESTÕES?