Generating logo images with Generative Adversarial Networks

Hristo Todorov Hristo Kanev Scientific advisors: Dr. Stoyan Vellev

August 14, 2020

Introduction

- What are we trying to achieve?
- How are we trying to achieve it?
- What is the main question we want to answer?

Dataset

- Large Logo Dataset (LLD)
- Composed of over 600 000 high-quality diverse images
- Can be used freely for academic purposes

Figure: Sample images from the dataset

Generative Adversarial Networks

Figure: Architecture of a GAN

Training a Generative Adversarial Network

- Trained via backpropagation no need for any Markov chains
- Really unstable to train
- The loss (cost) function heavily affects the training process

Binary cross-entropy

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_{z}(z)}[\log(1 - D(G(z)))] \tag{1}$$

Least Squares Loss

$$\min_{D} V_{LSGAN} = \frac{1}{2} \mathbb{E}_{x \sim p_{data}(x)} [(D(x) - 1)^{2}] + \frac{1}{2} \mathbb{E}_{z \sim p_{z}(z)} [(D(G(z))^{2}]$$
 (2)

$$\min_{G} V_{LSGAN} = \frac{1}{2} \mathbb{E}_{z \sim p_z(z)} [(D(G(z))^2]$$
 (3)

Wasserstein Generative Adversarial Network

- Minimal changes to the architecture of the discriminator
- Harder to train
- No sign of vanishing gradients and mode collapse

Figure: Architecture of a WGAN

Conditional Generative Adversarial Network

Figure: Comparison between a regular GAN and a CGAN

Feature extraction via Transfer learning

- Transfer learning using a neural network trained at solving one problem to solve different, but similar problem
- VGG16 convolutional neural network trained at classifying objects from the famous dataset ImageNet

Figure: Architecture of VGG16 - deep convolutional neural network with 16 layers

Feature extraction via autoencoder

Figure: Architecture of an autoencoder

$$\phi: X \to F \tag{4}$$

$$\psi: F \to X \tag{5}$$

$$\phi, \psi = \underset{\phi, \psi}{\arg \min} \|X - (\psi \circ \phi)X\|^2 \tag{6}$$

K-means Clustering

By using K-means clustering, we can group the images and create synthetic labels. Images that have more in common that they do with the other images will have the same label.

Figure: K-means clustering example

Image Processing Algorithms

- Blurring
- Complementing
- Color changing
- Denoising Autoencoder

Figure: Architecture of a Denoising Autoencoder

Implementation

- Python 3
- Tensorflow 2.0
- NumPy
- OpenCV
- Matplotlib
- Scikit-learn
- PIL
- Django
- HTML
- CSS
- JavaScript
- Nvidia CUDA

Results

Figure: Sample of generated images

Conclusion & Future Work

Conclusion:

- Pleasurable results, although graphic designers still cannot be completely replaced
- Room for further improvements

Future plans:

- Train the neural networks for more iterations
- Implement new image processing algorithms
- Expand the research into other UI elements such as pictograms

Personal contribution

- Architecture + hyperparameter tuning
- Development of a system, capable of producing great results
- Clarification and addressing of the main challenges in UI elements synthesis

Demo

https://calliope.pythonanywhere.com

Thank you for your attention! Any questions?