1. (10 points) Exercise 4.1-2: Brute-force method of sovling the maximum-subarray problem.

Ans:

The brute-force method to find the maximum-subarray of a given array A[1..n] is to check all the possible sub-array A[i..j] where $1 \le i \le j \le n$ and record the result with the maximum sum.

FIND-MAXIMUM-SUBARRAY (A)

- 1. n = A.length, $max_sum = -\infty$
- 2. for i = 1 to n
- $3. \quad \text{sum} = 0$
- 4. for j = i to n
- 5. sum = sum + A[j]
- 6. if $sum > max_sum$:
- 7. low = i
- 8. high = j
- 9. $max_sum = sum$
- 10. return (low, high, max_sum)

The operations in line 7~11 only cost constant time. Therefore, in the worst-case, the running time is: $T(n) = c(n + (n - 1) + \dots + 1) = \frac{c}{2}n(n + 1) = \Theta(n^2)$, where n is the length of the array and c is a constant.

2. (10 points) Exercise 4.4-4: Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = 2T(n-1) + 1. Use the substitution method to verify your answer.

Ans:

The recursion tree for T(n) = 2T(n-1) + 1 is:

According to the recursion tree, the total cost is:

$$T(n) = \sum_{i=1}^{n} 2^{i-1} = \frac{1 \cdot (2^{n-1} - 1)}{2 - 1} = 2^{n-1} - 1 = O(2^n)$$

To verify our answer, we use substitution method: we try the solution $T(n) = O(2^n)$ and guess $T(n) \le c2^n - d$, then we have: $T(n) \le 2(c2^{n-1} - d) + 1 = c2^n - 2d + 1 \le c2^n - d$, as long as $d \ge 1$. Then for $n \ge 1$ and $n \ge 1$ and $n \ge 1$.

3. (10 points) Exercise 4.5-4: Can the master method be applied to the recurrence $T(n) = 4T(n/2) + n^2 lgn$? Why or why not? Give an asymptotic upper bound for this recurrence.

Ans:

According to the master theorem we know that a=4, b=2, and $f(n)=n^2lgn$, so f(n) seems to be larger than $n^{\log_b a}=n^2$. However, we can NOT apply the master method for the following reasons:

- 1) f(n) is not polynomially larger than $n^{\log_b a}$, where it requires $f(n) = \Omega(n^{\log_b a + \varepsilon})$.
- 2) The condition (for some constant c < l and all sufficiently large n) is NOT satisfied since:

However, we can use the recursion tree method:

The total cost is:

$$T(n) = n^2 \sum_{i=1}^{\log n} \log \frac{n}{2^i} = n^2 (\log^2 n - \sum_{i=1}^{\log_2 n} i) = n^2 (\log^2 n - \frac{1}{2} \log n (\log n + 1))$$
$$= O(n^2 \log^2 n).$$

4. (70 points) Problem 4-1: Recurrence examples

Ans:

a. $T(n) = 2T(n/2) + n^4$: using the master theorem, a=2, b=2, and $f(n)=n^4$, then we know

 $f(n) = \Omega(n^{1+\varepsilon})$ for $\varepsilon = 1 > 0$ and $\frac{n^4}{8} \le cn^4$ for c = 0.5 < 1 and all sufficiently large n. So, $T(n) = \Theta(n^4)$ according to the case 3.

b. T(n)=T(7n/10)+n: using the master theorem we have a=1, b=10/7 and f(n)=n, then $f(n)=\Omega(n^{0+\varepsilon})$ for $\varepsilon=0.5>0$ and $0.7n\le cn$ for c=0.8<1 and all sufficiently large n. According to the case 3, we have $T(n)=\Theta(n)$.

c. $T(n) = 16T(n/4) + n^2$: using the master theorem we have a=16, b=4 and $f(n)=n^2$, then $f(n) = \Theta(n^{2+\varepsilon})$. According to the case 2, we have $T(n) = \Theta(n^2 \lg n)$.

d. $T(n) = 7T(n/3) + n^2$: using the master theorem we have a=7, b=3 and $f(n)=n^2$, then $f(n) = \Omega(n^{1.8+\varepsilon})$ for $\varepsilon = 0.1 > 0$ and $\frac{7}{9}n \le cn$ for $c = \frac{8}{9} < 1$ and all sufficiently large n. According to the case 3, we have $T(n) = \Theta(n^2)$.

e. $T(n) = 7T(n/2) + n^2$: using the master theorem we have a=7, b=2 and $f(n)=n^2$, then $f(n) = O(n^{2.8-\varepsilon})$ for $\varepsilon = 0.3 > 1$. According to the case 1, we have $T(n) = O(n^{\log_2 7})$.

f. $T(n) = 2T(n/4) + n^{1/2}$: using the master theorem we have a=2, b=4 and $f(n)=n^{1/2}$, then According to the case 2, we have

g. $T(n) = T(n-2) + n^2$: using the substitution method, we guess $T(n) = \Theta(n^3)$.

Upper bound: assuming that $T(n) \le c_1 n^3$ then

$$T(n) \le c_1(n-2)^3 + n^2$$

= $c_1 n^3 - ((6c_1 - 1)n^2 + 4c_1 n + 8c_1)$
 $\le c_1 n^3$,

where the last step holds as long as $c_1 > 1/6$.

Lower bound: assuming that $T(n) \ge c_2 n^3$ then

$$T(n) \ge c_2(n-2)^3 + n^2$$

= $c_1 n^3 + ((1 - 6c_2)n^2 - 4c_2n + 8c_2)$
 $> c_2 n^3$.

where the last step holds as long as $c_2=0.1$ for sufficiently large n.

Therefore, we have $T(n) = \Theta(n^3)$.