離散構造

問 1

集合 $V = \{x \mid x \in \mathbb{N}, 0 \le x \le 14\}$ とし, $P(x) = x \mod 3 + 5 \times \lfloor \frac{x}{5} \rfloor$ と定める. 次に V 上の 2 項関係 R, S をそれぞれ以下のように定める.

$$R = \{ \langle x, y \rangle \mid y = P(x) + 2 \}$$

$$S = \{ \langle x, y \rangle \mid y = P(x) + 3 \land x \le 11 \lor y = 0 \}$$

- (1-a) 頂点集合を V, 辺集合を $R \cup S$ とする有向グラフ G を図示せよ.
- (1-b) 有向グラフ G の頂点と辺の数をそれぞれ答えよ.
- (1-c) 有向グラフ G において、最長の単純道を一つ挙げ、その長さを答えよ.
- (1-d) 合成関係 $S \circ S$ が同値関係であるか否かを答えよ.

問 2

自然数の集合を N とし、集合 D を $\{x \in \mathbb{N} \mid 0 \le x \le 9\}$ と定義する. また、集合 D 上のリストの集合 $List_D$ を以下のように帰納的に定義する.

- Base Case: $\langle \rangle \in List_D$
- Induction Step; $L \in List_D \land x \in D \Rightarrow cons(x, L) \in List_D$

(2-a) 集合 $List_D$ の部分集合

 $D = \{\langle x_1, ..., x_n \rangle \in List_D \mid n \geq 0, \forall x (xmod3 = 0 \lor xmod5 = 0)\}$ を帰納的に定義せよ.

(2-b) 関数 $calc = List_D \to \mathbb{N}$ と $length = List_D \to \mathbb{N}$ を以下のように帰納的に定義する.

$$calc(L,l) = \begin{cases} 0 & (L=nil) \\ calc(L',l-1) + n \cdot 2^{l-1} & (L=cons(n,L') \wedge l > 0) \end{cases}$$

$$length(L) = \begin{cases} 0 & (L=nil) \\ 1 + length(L') & (L=cons(n,L')) \end{cases}$$

 $A = \langle 1, 0, 1, 1 \rangle \in S$ としたとき, $\operatorname{calc}(A, \operatorname{length}(A))$ を calc, length の定義に従って計算せよ.

(2-c) $\Sigma = \{T, F\}$ を文字集合とし、その部分集合を E を以下のように定義する.

- Base Case: $\Lambda \in E$
- Induction Step: $e \in E \Rightarrow Te \in E$
- Induction Step: $e \in E \Rightarrow Fe \in E$

また, $List_D$ の要素を E の要素に変換する関数 $comp: List_D \to E$ を以下のように定義する.

$$comp(L_1, L_2) = \begin{cases} \Lambda & (L_1 = nil \lor L_2 = nil) \\ Fcomp(L'_1, L'_2) & (cons(n_1, L'_1) \land cons(n_2, L'_2) \land (n_1 \neq n_2 \lor n_1 = 0 \lor n_2 = 0)) \\ Tcomp(L'_1, L'_2) & (cons(n_1, L'_1) \land cons(n_2, L'_2) \land n_1 = n_2 \land n_1 = 1 \land n_2 = 1) \end{cases}$$

このとき, $comp(\langle 0,1,0,0\rangle,\langle 1,1,0,0\rangle)$ を comp の定義に従って計算せよ.

(2-d) E の要素を $List_D$ の要素に変換する関数 $serialize: E \to List_D$ を以下のように定義する.

$$serialize(A) = \begin{cases} \langle \rangle & (A = \Lambda) \\ cons(0, serialize(A')) & (A' = sA \land s = F) \\ cons(1, serialize(A')) & (A' = sA \land s = T) \end{cases}$$

このとき, $List_D$ の任意の要素 L_1, L_2 について, L_1 と L_2 の各要素が全て同じとき, $l = length(L_1)$ とし, $calc(L_1, l) = calc(serialize(comp(L_1, L_2)), l)$ が成り立つことを示せ.