THEORETICAL PART:

CAUTION:

When using the notation $\sin^{-1}(x)$, remember that

$$\sin^{-1}(x) \neq \frac{1}{\sin(x)}$$

Definition (Arcsine)

Given $x \in [-1, 1]$, **arcsine** is defined by either of the following:

$$\arcsin(x) = y \Leftrightarrow x = \sin y$$

or

$$\sin^{-1}(x) = y \Leftrightarrow x = \sin y$$

In words, x is the angle whose sine is x; that is, $\sin(\arcsin x) = x$. Since the restricted domain of sine is $[-\pi/2, \pi/2]$ and its range is [-1, 1], the domain of arcsine is [-1, 1] and its range is $[-\pi/2, \pi/2]$.

S.No.	Inverse Cir. Fn.	Domain	Range	Graph
1.	$\sin^{-1} x = \theta \text{ iff}$ $\sin \theta = x, -\pi/2 \le \theta \le \pi/2$	[-1, 1]	[-π/2,π/2]	7/2 0 1 - π/2
2.	$\cos^{-1} x = \theta \text{ iff}$ $\cos \theta = x, 0 \le \theta \le \pi$	[-1, 1]	[0, π]	π -1 0 1
3.	$\tan^{-1} x = \theta$ iff $\tan \theta = x$, $\frac{\pi}{2} < \theta < \frac{\pi}{2}$	$(-\infty, \infty)$	(-π/2, π/2)	Ο π/2
4.	$\cot^{-1} x = \theta$ iff $\cot \theta = x$, $0 \le \theta \le \pi$	(-∞, ∞)	(0, π)	π σ/2
5.	$\begin{array}{l} \sec^{-1} x = \theta \\ \text{iff sec } \theta = x, \ 0 \leq \theta \leq \pi \\ \text{and } \theta \neq \frac{\pi}{2} \end{array}$	$(-\infty, -1]$ $\cup [1, \infty)$	$\begin{bmatrix} 0, \pi \\ \theta \neq \frac{\pi}{2} \end{bmatrix}$	$\frac{\pi}{-1}$ $\frac{\pi}{2}$
6.	$cosec^{-1} x = \theta$ $iff cosec \theta = x$ $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}, \ \theta \ne 0$	$(-\infty, -1]$ $\cup [1, \infty)$	$\begin{bmatrix} -\pi/2, \ \pi/2 \end{bmatrix}$ $\theta \neq 0$	-1 0 1 1 -π/2

PRACTICAL PART:

1. Evaluate the following expressions:

a.
$$arctan(-1)$$

b.
$$\csc^{-1} 2$$

c.
$$\sin^{-1}(2.3)$$

(a) aretan
$$(-1) = -\frac{T}{L}$$

(b)
$$\csc^{-1}(\mathfrak{A}) = \frac{\pi}{6}$$

2. Evaluate the following expressions is possible.

a.
$$\arcsin\left(\sin\left(\frac{3\pi}{4}\right)\right)$$

b.
$$\cos(\cos^{-1}(-0.2))$$

c.
$$\arctan\left(\tan\left(\frac{7\pi}{6}\right)\right)$$

(a) arosin (
$$\sin\left(\frac{3\pi}{4}\right)$$
) = arosin ($\frac{\sqrt{2}}{2}$) = $\frac{\pi}{4}$

(b)
$$\cos(\cos^{-1}(-0.2)) = [-0.2]$$

- 0.2 \(\text{Dom}(\cos^{-1/2})

(c)
$$\operatorname{arctan}(\tan(\frac{3\pi}{6})) = \operatorname{arctan}(\frac{1}{\sqrt{3}}) = \frac{\pi}{6}$$

 $\operatorname{tan}(\frac{3\pi}{6}) = \operatorname{tan}(\pi + \frac{\pi}{6}) = \frac{1}{\sqrt{3}}$

3. Evaluate the following expressions:

a.
$$\tan\left(\arcsin\left(-\frac{4}{5}\right)\right)$$

b. cos(arctan(0.4))

(a)
$$tan(axcsin(-\frac{1}{5})) = 0$$

$$axesin(-\frac{1}{5}) = 0 = 1$$

$$tan(\theta) = -\frac{1}{3}$$

$$x = 3$$

$$\sqrt{\theta} - 4$$

$$x$$

4. Express $\sin(\cos^{-1}(2x))$ as an algebraic function of x, assuming that $-1/2 \le x \le 1/2$.

$$\cos^{-1}(2x) = y$$

$$2x = \cos y$$

$$x = \frac{1}{2}\cos y$$

