ELE 0316 / ELE 0937 - Eletrônica Básica

Departamento de Engenharia Elétrica FEIS - UNESP

Aula 07 : Portas Lógicas e Álgebra Booleana

7.1 – Portas Lógicas e Expressões Algébricas

7.1 – Portas Lógicas e Tabela-Verdade

Α	В	С		Х
0	0	0		0
0	0	1		1
0	1	0		1
0	1	1		0
1	0	0		0
1	0	1		0
1	1	0		0
1	1	1		1
(b)				

Α	В	С	D	Χ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1		0	0
1	1	0		0
1	1	1	1 0	0 0 1 0 0
1	1	1	1	1
		(c)		

FIGURA 3.1

Exemplos de tabelas-verdade para circuitos de: (a) duas entradas, (b) três entradas e (c) quatro entradas.

7.1 – Portas Lógicas e Tabela-Verdade

Α	В	С		Χ
0	0	0		0
0	0	1		1
0	1	0		1
0	1	1		0
1	0	0		0
1	0	1		0
1	1	0		0
1	1	1		1
(b)				

Α	В	С	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0 0 1 1 0 0 1 0 0 0 1 0 0 0 1
0	1	0	1 0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0		0
1	0	1	1 0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1
		(c)		

FIGURA 3.1

Exemplos de tabelas-verdade para circuitos de: (a) duas entradas, (b) três entradas e (c) quatro entradas.

OR				
Α	В		X = A + B	
0	0		0	
0	1		1	
1	0		1	
1	1		1	
(a)				

FIGURA 3.2

(a) Tabela-verdade que define a operação OR;(b) Símbolo de uma porta OR de duas entradas.

7.2 – Porta Lógica OR (OU ou ≥1)

Α	В	Output
0	0	0
0	1	1
1	0	1
1	1	1

	г	

Α	В		X = A + B		
0	0		0		
0	1		1		
1	0		1		
1	1		1		
(a)					

FIGURA 3.2

(a) Tabela-verdade que define a operação OR;(b) Símbolo de uma porta OR de duas entradas.

FIGURA 3.3

Símbolo e tabela-verdade para uma porta OR de três entradas.

Α	В	С	X = A + B + C
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

7.2 – Porta Lógica OR (OU ou ≥1)

FIGURA 3.2

(a) Tabela-verdade que define a operação OR;(b) Símbolo de uma porta OR de duas entradas.

7.2 – Porta Lógica OR (OU ou ≥1) Diagrama de temporização: 2 Entradas

FIGURA 3.5 Exemplo 3.2.

7.2 – Porta Lógica OR (OU ou ≥1) Diagrama de temporização: 2 Entradas

FIGURA 3.5 Exemplo 3.2.

7.2 – Porta Lógica OR (OU ou ≥1) Diagrama de temporização: 3 Entradas

FIGURA 3.6 Exemplos 3.3A e 3.3B.

7.3 - Porta Lógica AND (E ou &)

FIGURA 3.7

(a) Tabela-verdade para a operação AND; (b) símbolo da porta AND.

Α	В	С	x = ABC
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

FIGURA 3.8

Tabela-verdade e símbolo para uma porta AND de três entradas.

7.3 – Porta Lógica AND (E ou &)

(a) Tabela-verdade para a operação AND; (b) símbolo da porta AND.

7.3 – Porta Lógica AND (E ou &)

(a) Tabela-verdade para a operação AND; (b) símbolo da porta AND.

AND					
Α	В		$X = A \cdot B$		
0	0		0		
0	1		0		
1	0		0		
1	1		1		
		(2	a)		

FIGURA 3.9 Exemplo 3.4.

7.3 - Porta Lógica AND (E ou &)

(a) Tabela-verdade para a operação AND; (b) símbolo da porta AND.

FIGURA 3.10 Exemplos 3.5A e 3.5B.

7.4 – Porta Lógica NOT (NÃO ou 1)

FIGURA 3.11

(a) Tabela-verdade;(b) Símbolo para oINVERSOR (circuitoNOT);(c) Exemplosde formas de ondas.

FIGURA 3.12

Uma porta NOT indicando que um botão *não* está pressionado quando a saída é verdadeira.

Obtenha a expressão de X.

FIGURA 3.13

- (a) Um circuito lógico e suas expressões booleanas;
- (b) Circuito lógico com uma expressão que requer parênteses.

(a)

FIGURA 3.14 Circuitos com INVERSORES.

FIGURA 3.13

- (a) Um circuito lógico e suas expressões booleanas;
- (b) Circuito lógico com uma expressão que requer parênteses.

(a)

FIGURA 3.14 Circuitos com INVERSORES.

7.6 – Resumo Geral das Principais Portas Lógicas

7.7 – Portas Lógicas e Principais Circuitos Integrados

7.7 – Portas Lógicas e Principais Circuitos Integrados

SN5400, SN54LS00, SN54S00 SN7400, SN74LS00, SN74S00 QUADRUPLE 2-INPUT POSITIVE-NAND GATES

schematics (each gate)

7.9 – Portas Lógicas e Principais Circuitos Integrados

NAND - 7410 e 7420 - Família TTL

7.10 - Portas Lógicas e Níveis de Tensão

a	b	$f_{\text{AND}}\left(a,b\right)=ab$
0	0	0
0	L	0
1	0	0
1	1	1

A	В	Y
L	L	L
L	Н	L
Н	L	L
Н	Н	Н

7.10 - Portas Lógicas e Níveis de Tensão

7.10 - Portas Lógicas e Níveis de Tensão

7.11 - Identidades Booleanas => Resumo

Additive

$$A + 0 = A$$

$$A + 1 = 1$$

$$A + A = A$$

$$A + \overline{A} = 1$$

Multiplicative

$$0A = 0$$

$$1A = A$$

$$AA = A$$

$$A\overline{A} = 0$$

7.12 – Propriedade Comutativa - OR

Commutative property of addition

Generic switch contact designation

Normally-open Normally-closed

7.12 – Propriedade Comutativa - AND

Commutative property of multiplication

Generic switch contact designation

Normally-open

Normally-closed

7.13 – Propriedade Associativa - OR

Associative property of addition

7.13 – Propriedade Associativa - AND

Associative property of multiplication

7.14 – Propriedade Distributiva

7.15 – Propriedades: Resumo

Basic Boolean algebraic properties

Additive

Multiplicative

$$A + B = B + A$$
 $AB = BA$
 $A + (B + C) = (A + B) + C$ $A(BC) = (AB)C$
 $A(B + C) = AB + AC$

$$A + \overline{A}B = A + B$$

$$A + \overline{A}B = A + B$$

A +
$$\overline{A}B$$

Applying the previous rule to expand A term

A + $AB = A$

A + $AB + \overline{A}B$

Factoring B out of 2^{nd} and 3^{rd} terms

A + $B(A + \overline{A})$

Applying identity $A + \overline{A} = 1$

A + $B(1)$

Applying identity $A + \overline{A} = A$

A + B

7.17 – Propriedades para Simplificação

$$(A + B)(A + C) = A + BC$$

7.17 – Propriedades para Simplificação

$$(A + B)(A + C) = A + BC$$

7.18 – Propriedades para Simplificação

Useful Boolean rules for simplification

$$A + AB = A$$

$$A + \overline{A}B = A + B$$

$$(A + B)(A + C) = A + BC$$

Exercicio: Obter a tabela-verdade do circuito

Exercício: Obter a tabela-verdade do circuito

Α	В	С	u= A	V= AB	W= BC	X= V+W
0	0	0	1			
0	0	1	1			
0	1	0	1			
0	1	1	1			
1	0	0	0			
1	0	1	0			
1	1	0	0			
1	1	1	0			
			(1	b)		

Α	В	С	<u>u</u> =	V= AB	W=	X=
			Α	AB	BC	V+W
0	0	0	1			
0	0	1	1			
0	1	0	1			
0	1	1	1			
1	0	0	0			
1	0	1	0			
1	1	0	0			
1	1	1	0			
			(1	b)		

[A D O									
Α	В	С	<u>u</u> =	<u>V=</u>	W=	X=			
			$\frac{U=}{A}$	V= AB	BC	V+W			
0	0	0	1	0					
0	0	1	1	0					
0	1	0	1	1					
0	1	1	1	1					
1	0	0	0	0					
1	0	1	0	0					
1	1	0	0	0					
1	1	1	0	0					
	(c)								

Α	В	С	u= A	V= AB	W= BC	X= V+W
0	0	0	1			
0	0	1	1			
0	1	0	1			
0	1	1	1			
1	0	0	0			
1	0	1	0			
1	1	0	0			
1	1	1	0			
			(1	b)		

	Α	В	С	U=	V=	W=	X=	
Ш				u= A	V= AB	BC	V+W	
Ш	0	0	0	1	0			
Ш	0	0	1	1	0			
Ш	0	1	0	1	1			
	0	1	1	1	1			
l	1	0	0	0	0			
Ш	1	0	1	0	0			
l	1	1	0	0	0			
	1	1	1	0	0			
_	(c)							

Α	В	С	u= A	V= ĀB	w= BC	X= V+W
0	0	0	1	0	0	
0	0	1	1	0	0	
0	1	0	1	1	0	
0	1	1	1	1	1	
1	0	0	0	0	0	
1	0	1	0	0	0	
1	1	0	0	0	0	
1	1	1	0	0	1	

(d)

FIGURA 3.16 Análise de um circuito lógico usando tabelas-verdade.

io tabelas verdade.

1	4	В	С	u= A	⊻= AB	W= BC	X= V+W
(О	0	0	1			
(0	0	1	1			
(0	1	0	1			
(0	1	1	1			
	1	0	0	0			
	1	0	1	0			
	1	1	0	0			
	1	1	1	0			

Α	В	С	u=	V=	W=	X=
			$\frac{U=}{A}$	ĀB	BC	V+W
0	0	0	1	0		
0	0	1	1	0		
0	1	0	1	1		
0	1	1	1	1		
1	0	0	0	0		
1	0	1	0	0		
1	1	0	0	0		
1	1	1	0	0		

1	h	١	
١	ν	,	

- 6	\sim 1
	G,
•	-,

Α	В	С	u= A	v= AB	w= BC	X= V+W
0	0	0	1	0	0	
0	0	1	1	0	0	
0	1	0	1	1	0	
0	1	1	1	1	1	
1	0	0	0	0	0	
1	0	1	0	0	0	
1	1	0	0	0	0	
1	1	1	0	0	1	

	Α	В	С	u= A	V=	W=	X=
	_	_	_		AB	BC	V+W
П	0	0	0	1	0	0	0
	0	0	1	1	0	0	0
	0	1	0	1	1	0	1
	0	1	1	1	1	1	1
	1	0	0	0	0	0	0
	1	0	1	0	0	0	0
	1	1	0	0	0	0	0
	1	1	1	0	0	1	1

Análise de um circuito lógico usando tabelas-verdade.

Α	В	С	u= A	V= AB	w= BC	X= V+W
0	0	0	1			
0	0	1	1			
0	1	0	1			
0	1	1	1			
1	0	0	0			
1	0	1	0			
1	1	0	0			
1	1	1	0			
1	1	-	0			

Ш	Α	В	С	u= A	V=	W=	X=
$\ $				Α	ĀB	BC	V+W
$\ $	0	0	0	1	0		
$\ $	0	0	1	1	0		
	0	1	0	1	1		
	0	1	1	1	1		
	1	0	0	0	0		
	1	0	1	0	0		
	1	1	0	0	0		
	1	1	1	0	0		
Ц							

(b)

(С
٠	

Α	В	С	u= A	v= AB	w= BC	X= V+W
0	0	0	1	0	0	
0	0	1	1	0	0	
0	1	0	1	1	0	
0	1	1	1	1	1	
1	0	0	0	0	0	
1	0	1	0	0	0	
1	1	0	0	0	0	
1	1	1	0	0	1	

Α	В	С	u= A	<u>V</u> =	W=	X=
			Α	ĀΒ	BC	V+W
0	0	0	1	0	0	0
0	0	1	1	0	0	0
0	1	0	1	1	0	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	0	0	0
1	1	1	0	0	1	1

(e)

FIGURA 3.16

Análise de um circuito lógico usando tabelas-verdade.

Exemplo 1: Construindo um Circuito Lógico a partir da expressão

$$y = AC + B\overline{C} + \overline{A}BC$$

Exemplo 1: Construindo um Circuito Lógico a partir da expressão

$$y = AC + B\overline{C} + \overline{A}BC$$

Exemplo 2: Construindo um Circuito Lógico a partir da expressão

$$X = (A + B) (\overline{B} + C)$$

Exemplo 2: Construindo um Circuito Lógico a partir da expressão

$$X = (A + B) (\overline{B} + C)$$

Porta NOR: Not OR

FIGURA 3.19

- (a) Símbolo da porta NOR;
- (b) Circuito equivalente;
- (c) Tabela-verdade.

			→ OH					
Α	В		A + B		A + B			
0	0		0		1			
0	1		1		0			
1	0		1		0			
1	1		1		0			
	(c)							

Porta NOR: Not OR Diagrama de Temporização

FIGURA 3.20 Exemplo 3.8.

Porta NOR: Not OR Diagrama de Temporização

FIGURA 3.20 Exemplo 3.8.

Porta NAND: Not AND

		AND			NAND		
Α	В		AB		ĀB		
0	0		0		1		
0	1		0		1		
1	0		0		1		
1	1		1		0		
(c)							

FIGURA 3.22

- (a) Símbolo da porta NAND;(b) Circuito equivalente;
- (c) Tabela-verdade.

Porta NAND: Not AND Diagrama de Temporização: Obtenha x.

Porta NAND: Not AND Diagrama de Temporização

Obtenha a Tabela-Verdade.

Teoremas para uma única variável.

(a) Circuitos equivalentes relativos ao teorema (16);(b) Símbolo alternativo para a função NOR.

(a) Circuitos equivalentes relativos ao teorema (17);(b) Símbolo alternativo para a função NAND.

FIGURA 3.21 Exemplo 3.9.

Obtenha a expressão do circuito abaixo e simplifique

FIGURA 3.28 Exemplo 3.17.

$$z = \overline{A \cdot B \cdot \overline{C}} = \overline{A} + \overline{B} + \overline{\overline{C}} = \overline{A} + \overline{B} + \overline{C}$$

Obtenha as expressões de saída.

FIGURA 3.29

As portas NAND podem ser usadas para implementar qualquer função booleana.

Porta NOR

Porta NOR

Obtenha as expressões de saída.

FIGURA 3.30

As portas NOR podem ser usadas para implementar qualquer operação booleana.

Exercício: Implementar o seguinte circuito usando apenas portas NAND

FIGURA 3.32 Implementações possíveis para o Exemplo 3.18.

FIGURA 3.32 Implementações possíveis para o Exemplo 3.18.

Refazer o circuito seguinte utilizando apenas portas NAND de duas entradas (CI 7400).

7.7 – Portas Lógicas e Principais Circuitos Integrados

NAND - 7400 - Família TTL

Refazer o circuito seguinte utilizando apenas portas NOR de duas entradas (CI 7400).

Refazer o circuito seguinte utilizando apenas portas NOR de duas entradas (CI 7400).

Símbolos-padrão e alternativos para várias portas lógicas e para o inversor.

Α	В	S
0	0	
0	1	
1	0	
1	1	

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	0

Porta Or-Exclusivo ou XOR

Α	В	S
0	0	
0	1	
1	0	
1	1	

Α	В	S
0	0	1
0	1	0
1	0	0
1	1	1

Tabela-Verdade XOR

Α	В	S
0	0	1
0	1	0
1	0	0
1	1	1

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	0

A	В	S
0	0	1
0	1	0
1	0	0
1	1	1

Tabela-Verdade XOR

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	0

NXOR ou Coincidencia

A	В	S
0	0	1
0	1	0
1	0	0
1	1	1

Tabela-Verdade XOR

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	0

Equivalencia entre portas

alternativos para várias portas lógicas e para o inversor.

Símbolos-padrão e

Entrada / Saída Ativa - Nível Alto / Nível Baixo

A saída vai para o nível BAIXO somente quando todas as entradas forem para o nivel ALTO.

A saída vai para o nível ALTO quando qualquer entrada for para o nível BAIXO.

FIGURA 3.34

Interpretação dos dois símbolos da porta NAND.

Entrada / Saída Ativa - Nível Alto / Nível Baixo

A saída vai para o nível ALTO quando qualquer entrada for para o nível ALTO.

A saída vai para o nível BAIXO somente quando todas as entradas forem para o nível BAIXO.

FIGURA 3.35

Interpretação dos dois símbolos da porta OR.

- (a) Circuito original usando símbolos-padrão NAND;
- (b) Representação equivalente em que a saída Z é ativa-ALTO;
- (c) Representaçãoequivalente em que a saídaZ é ativa-BAIXO;
- (d) Tabela-verdade.

Α	В	С	D	Z
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	0 1 0 1	1
0	1	0	0	0
0	1	0	1	0
0 0 0 0 1 1 1 1	1	1	0	0 1 0 0 0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0 1 0 1 0 1	0 0 1 1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1
		(d)		

- (a) Circuito original usando símbolos-padrão NAND;
- (b) Representaçãoequivalente em que a saídaZ é ativa-ALTO;
- (c) Representaçãoequivalente em que a saídaZ é ativa-BAIXO;
- (d) Tabela-verdade.

				_	
Α	В	С	D		Z
0	0	0	0		0
0	0	0			0
0	0	1	0		0
0	0	1	1 0 1 0 1		1
0	1	0	0		0
0	1	0	1		0
0 0 0 0 0 0 0 1 1	1	1 0 0 1	0		0
0	1	1	1		1
1	0	0	0		0
1	0	0	0 1 0 1		0
1	0	1	0		0
1	0	1	1		1
1	1	0	0		1
1 1 1	1	0	0		1
1	1	1			1
1	1	1	0 1		0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1
		(d)			

Α	В	С	D		Z
0	0	0	0		0
0	0	0	1		0
0	0	1	0		0
0	0	1	1		1
0	1	0	0		0
0	1	0	1 0		0
0	1	1	0		0
0	1	1	1		1
1	0	0	0		0
1	0	0	0 1		0
1	0	1	0 1		0
1	0	1	1		1
1	1	0	0		1 0 0 0 1 0 0 0 1 1 1 1 1
1	1	0	1		1
1	1	1	0		1
1	1	1	1		1
(d)					

- (a) Circuito original usando símbolos-padrão NAND;
- (b) Representação equivalente em que a saída Z é ativa-ALTO;
- (c) Representaçãoequivalente em que a saídaZ é ativa-BAIXO;
- (d) Tabela-verdade.

FIGURA 3.37 Exemplo 3.20.

Quais são as entradas para MEM = 0 ?

FIGURA 3.39 Exemplo 3.22.

Quais são as entradas para DRIVE =1 ?

