直流单臂电桥实验报告

专业<u>工科试验班</u> 姓名<u>史峰源</u> 学号<u>2412526</u> 分组及座号 <u>H-12</u> 实验日期 周二上午

单臂电桥实验报告

1 实验目的

- 1. 掌握箱式电桥的用法
- 2. 掌握电桥测量电阻的原理与方法
- 3. 掌握电桥测量精确度衡量的方法及其影响因素

2 仪器用具

FB3081 型电流数显微电流计,比例臂电阻四个 $(10\Omega,100\Omega,100\Omega,1000\Omega)$,电阻箱,待测电阻两个,直流电源

3 实验原理

- 1. 适用范围: 直流单臂电桥适用于测量中等阻值的电阻
- 2. 实验电路图:

• 3. 推导测量公式: 图中的四个电阻称为电桥的四个"臂",接入电流计的支路称为桥。其中,电阻 R_a 与电阻 R_b 称为比例臂,其比值 $C=R_a/R_b$ 称为比例臂的倍率,与 R_x 并联的电阻 R_0 称为比较臂, R_x 称为待测臂,当电流计的示数为零时,说明 C,D 两点的电位相同。基于此,可推导出电阻的测量公式为:

$$R_x = \frac{R_a}{R_b} R_0 = C R_0 \tag{1}$$

- 4. 选取比例臂倍率: 在选取比例臂倍率时, 应尽可能最大程度利用滑动变阻器从而提高测量精度, 进而减小实验误差
- 5. 电桥灵敏度的概念及其影响因素: 电桥灵敏度为:

$$S = \frac{\Delta I}{\Delta R_x / R_x} \tag{2}$$

$$S = \frac{E}{K[(R_a + R_b + R_0 + R_x) + (2 + \frac{R_b}{R_a} + \frac{R_x}{R_a})Rg]}$$
(3)

其中 K, R_q 分别为电流计的电流常量和内阻。由此可见,适当提高电源电压 E、选择电流常量 K 和内阻 R_q 适当小的灵敏电流计、适当减小桥臂电阻等,都可以提高灵敏度

• 6. 换臂法的使用: 在 C=1 时, 通过交换两比例臂, 分别计算换臂前的测量值 R_x 与 R_x' , 将两者相乘并开根 号可以消除因 C 引起的误差,这种方法成为换臂法,公式表现为:

$$R = \sqrt{R_x R_x'} \approx \frac{R_x + R_x'}{2} \tag{4}$$

数据处理

 1. 测量未知电阻 R₁(约 1200Ω) 及灵敏度: 选取 $R_a = 1200\Omega, R_b = 100\Omega, C = 1$ 换臂前:

电桥状态	R_0/Ω	R_1/Ω	$\Delta R_0/\Omega$	$\Delta I/nA$	S_1/nA
换臂前	1185.1	1185.1	0.1	1.5	17776.5
换臂后	1185.4	1185.4	0.1	1.6	18966.4

表 1: 实验数据

$$\rho_x = \sqrt{\rho_0^2 + \rho_c^2 + (\frac{\delta}{S})^2} \tag{5}$$

计算得:

$$\rho_x = \sqrt{0.001^2 + 0.001^2 + (\frac{0.1}{17776.5})^2} \approx 0.0014$$
(6)

$$\Delta R_x = \rho_x R_x' \approx 1.7\Omega \tag{7}$$

$$R_x = R_x' \pm \Delta R_x = (1185.1 \pm 1.7)\Omega$$
 (8)

利用换臂前后的数据计算:

$$R_x \approx \frac{R_0 + R_0'}{2} = 1185.25\Omega$$
 (9)

$$R_x \approx \frac{R_0 + R_0'}{2} = 1185.25\Omega$$

$$\rho_x = \sqrt{\rho_0^2 + (\frac{\delta}{S})^2} = \sqrt{0.001^2 + (\frac{0.1}{18371.5})^2} \approx 0.0010$$
(10)

$$\Delta R_x = \rho_x R_x' \approx 1.2\Omega$$
 (11)

$$R_x = R_x' \pm \Delta R_x = (1185.25 \pm 1.2)\Omega$$
 (12)

• 2. 观察电桥灵敏度与电源电压的关系:

选取 $R_a=R_b=100\Omega, R_x=1200\Omega$, 改变电压 E, 测量 $\Delta I, \Delta R_0$, 计算出相应的 S 并作图: 可判断出基本 上呈正比关系

(接下页)

电源电压	0.5V	1.0V	1.5V	2.0V	2.5V	3.0V	3.5V
R_0/Ω	1185.4	1185.4	1185.4	1185.4	1185.4	1185.4	1185.4
$\Delta R_0/\Omega$	0.3	0.3	0.3	0.3	0.3	0.3	0.3
$\Delta I/nA$	1.0	1.9	2.8	3.7	4.8	5.5	6.8
S/mA	0.0040	0.0075	0.011	0.015	0.019	0.021	0.026

表 2: 实验数据

• 3. 测量未知电阻 R_2 (约 20Ω 及灵敏度: 选取 $R_a = 10\Omega, R_b = 100\Omega, C = 0.01$ 计算得:

电桥状态	R_0/Ω	R_2/Ω	$\Delta R_0/\Omega$	$\Delta I/nA$	S_2/nA
对应数据	4976.5	49.765	10	10.6	5275.09

表 3: 实验数据

$$\rho_x = \sqrt{0.002^2 + 0.001^2 + (\frac{0.1}{5275.09})^2} \approx 0.0020$$
 (13)

$$\Delta R_x = \rho_x R_x' \approx 0.10\Omega \tag{14}$$

$$R_x = R_x' \pm \Delta R_x = (49.77 \pm 0.10)\Omega$$
 (15)

5 实验分析谈论及思考题

本实验利用直流单臂电桥测量未知电阻。实验表明,该方法测量精度较高,但仍受仪器误差和人为操作等影响。通过使用高精度电阻、改进操作方法,可以进一步提高测量的准确性。本实验加深了对直流电桥的理解,同时也培养了分析误差的能力。

- 1. 若电桥保证准确度范围为 $20-99999\Omega$,要测一个 $1\times 10^6\Omega$ 左右的电阻,可否用一只 100Ω 的标准电阻与之并联起来测量? 能否测准?
 - 答:可以,并联后可以测准。
- 2. 根据实验中测 R_1 和 R_2 时的电路参数,计算电桥灵敏度 S_1, S_2 并与测量值比较,看看是否一致。 答:基本一致。

• 3. 用替代法测 R_x , 即电桥平衡后若以电阻箱某值 R_0 替下 R_x 时桥仍平衡,则 $R_x = R_0$ 。注意替代时需断开电源,这种测法要求 R_a , R_b , R_0 准确吗?要求电源稳定吗? 答: 不要求 R_a , R_b , R_0 准确,要求电源稳定。

6 分析总结

通过本次实验,我深入理解了直流单臂电桥测量电阻的基本原理和应用,并在实际操作过程中体会到该方法的优势与局限性。

首先,在数据测量过程中,我意识到接线是否正确有效,是否严格遵守实验步骤是影响实验进度的重要因素。因此,在后续实验中,我会更加注重实践操作并遵循实验步骤。本次实验也我认识到尽管理论计算可以给出精确的电阻值,但实验测量总会受到各种因素的影响。因此,在实验中,不仅要关注如何获取测量数据,更要学会分析误差来源,并尝试通过优化实验方法来减少误差。

在未来的实验中,我将更加注重实验操作的细节,提高数据处理能力,以提高自己的能力。