ELEC 462/562 Statistical Signal Processing Project

Due: 05.01.2021

Signal Restoration

1. Assume that we observe the signal $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{W}$ over an LTI noncausal channel given in the following figure. Here \mathbf{H} is a convolution matrix constituted by the system impulse response $h[n] = [8 \ 9 \ 10 \ 9 \ 8]/44$. The noise $\mathbf{W} \in \mathbb{R}^{256}$ is a white Gaussian vector with zero mean and variance 25×10^{-4} . \mathbf{X} and \mathbf{W} are assumed to be uncorrelated.

We assume that the signal \mathbf{X} is a Gaussian random vector with zero mean and covariance matrix $(\lambda \mathbf{L}^T \mathbf{L})^{-1}$ where \mathbf{L} is a Tikhonov regularization matrix constituted by the Laplacian operator (or impulse response) $l[n] = [-1 \ 2 \ -1]$. The parameter λ is the regularization parameter that controls the smoothing level. The observation vector $\mathbf{Y} = \mathbf{y} \in \mathbb{R}^{256}$, the ground-truth signal $\mathbf{x} \in \mathbb{R}^{256}$, the system matrix $\mathbf{H} \in \mathbb{R}^{256 \times 256}$ and the matrix $\mathbf{L} \in \mathbb{R}^{256 \times 256}$ are given in the attached mat files. In this project, your task is to estimate the signal \mathbf{X} using three different estimators and to compare their performances.

- a) Derive the maximum likelihood (ML) estimator for X.
- b) For given observation vector $\mathbf{Y} = \mathbf{y}$, obtain the ML estimate $\hat{\mathbf{x}}_{ML}$. Plot the observation \mathbf{y} . Plot the estimate $\hat{\mathbf{x}}_{ML}$ along with the ground-truth \mathbf{x} in the same figure. Interpret the result
- c) Derive the maximum-a-posteriori (MAP) estimator for X.
- d) For given observation vector $\mathbf{Y} = \mathbf{y}$, obtain the MAP estimate $\hat{\mathbf{x}}_{MAP}(\lambda)$ for $\lambda = \{1, 10, \ 100, \ 1000\}$. Plot each $\hat{\mathbf{x}}_{MAP}(\lambda)$ for different values of λ along with the ground-truth \mathbf{x} . Interpret the effect of λ on the MAP estimate.
- e) Derive the minimum mean square error (MMSE) linear estimator for X.
- f) For given observation vector $\mathbf{Y} = \mathbf{y}$, obtain the linear estimate $\hat{\mathbf{x}}_{MMSE}(\lambda)$ for $\lambda = \{1, 10, \ 100, \ 1000\}$. Plot each $\hat{\mathbf{x}}_{MMSE}(\lambda)$ for different values of λ along with the ground-truth \mathbf{x} . Interpret the effect of λ on the Linear estimate.
- g) Calculate peak signal-to-noise ratio (PSNR) of each estimate such that

$$PSNR = 20 \log_{10} \frac{\max(\mathbf{x}) \sqrt{256}}{\|\mathbf{x} - \hat{\mathbf{x}}\|}$$

List the best results in a table

	ML	MAP ($\lambda = $)	MMSE ($\lambda = $)
PSNR (dB)			