

Content

- 1) What is at Java?
- 2) Dataset
- 3) Exploratory Data Analysis

At Java

- Enter new market with 5 products
- Current market:
 - 4 segments (A,B,C,D)

Task: Predict the new customers' segment

Dataset

- 8068 clients records
- 11 features
- Target variable: Segmentation

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8068 entries, 0 to 8067
Data columns (total 11 columns):
     Column
                     Non-Null Count Dtype
     ID
                     8068 non-null
                                     int64
 0
     Gender
                     8068 non-null
                                     object
     Ever_Married
                     7928 non-null
                                     object
 3
                     8068 non-null
                                     int64
     Age
     Graduated
                                     object
                     7990 non-null
     Profession
                     7944 non-null
                                     object
     Work_Experience 7239 non-null
                                     float64
                                     object
     Spending_Score
                     8068 non-null
     Family_Size
                     7733 non-null
                                     float64
     Var 1
                     7992 non-null
                                     object
    Segmentation
                     8068 non-null
                                     object
dtypes: float64(2), int64(2), object(7)
memory usage: 693.5+ KB
```

Exploratory Data Analysis

Most of the customers of the automobile company is:

- 54.75% male
- 57.55% married
- 61.58% a graduate
- 31.18% an artist
- 60.46% of a low spender score
- 64.92% in an anonymised category 6

Relationships

- ever_married have the highest correlation at 0.68 with spending_score
- non-married people are all low-spenders (40%) compared to married people who fall in the 3 categories

- ever_married and profession at 0.52
- single artists (22%) and married healthcarers (14%) are the biggest customers

- spending_score and profession: 0.44
- artist & healthcare are the biggest customers in the low-spending-score
- artists are the biggest customers in the mid-spending-score
- executives & lawyers are the biggest customers in the high-spending-score

Numerical variables

Cleaning

- 1) Missing values:
 - a) Mode
 - b) median
- 2) No removal of outliers
- 3) Cleaning columns
 - a) family_size/work_experience to integer type
 - b) Lower case

	percent_missing
Work_Experience	10.28
Family_Size	4.15
Ever_Married	1.74
Profession	1.54
Graduated	0.97
Var_1	0.94
ID	0.00
Gender	0.00
Age	0.00
Spending_Score	0.00
Segmentation	0.00

Encoding

		ID	Gender	Ever_Married	Age	Graduated	Profession	Work_Experience	Spending_Score	Family_Size	Var_1	Segmentation
	0 462	809	Male	No	22	No	Healthcare	1.0	Low	4.0	Cat_4	D
	1 462	643	Female	Yes	38	Yes	Engineer	NaN	Average	3.0	Cat_4	А
į	2 466	315	Female	Yes	67	Yes	Engineer	1.0	Low	1.0	Cat_6	В
9	3 461	735	Male	Yes	67	Yes	Lawyer	0.0	High	2.0	Cat_6	В
	4 462	669	Female	Yes	40	Yes	Entertainment	NaN	High	6.0	Cat_6	А

	id	gender	ever_married	age	graduated	work_experience	spending_score	family_size	anon_cat	Doctor	Engineer	Entertainment
0	462809	1	0	22	0	1	2.0	4	4	0	0	0
1	462643	0	1	38	1	1	0.0	3	4	0	1	0
2	466315	0	1	67	1	1	2.0	1	6	0	1	0
3	461735	1	1	67	1	0	1.0	2	6	0	0	0
4	462669	0	1	40	1	1	1.0	5	6	0	0	1

- One-hot encoding
 - Gender, ever_married, graduated
- Multicategories
 - o Ordered: spending_score
 - o Unordered: profession

• Standardisation: Min-Max Scale

K Means Clustering

Experimentation

#1: 32%: just standardise-scaling all variables

#2:**40**% 1+ deleting id, anon_cat

#3: 29% 1+ deleted id, anon_cat, gender

#4: 41.5% deleting id, anon_cat, min max scale all va didn't replace outliers <--- best one

#5: 17% 1+ 4 + mean instead of median

#6: **28**% 1+ 4 + replacing outliers

Optimal number of clusters

Centroids

```
Final centroids:
ΓΓ 4.64508230e+05 5.47856431e-01 6.05184447e-01 6.14656032e-01
  2.20887338e+00 1.29661017e+00 7.97607178e-02 1.22133599e-01
  1.08175474e-01 9.52143569e-02 1.53539382e-01 1.14656032e-02
  5.83250249e-02 4.18743769e-02 -1.37906726e-02 1.17205653e-01
 -4.27180774e-027
Γ 4.62276731e+05 5.58662007e-01 5.95107339e-01 6.12081877e-01
  2.29505741e+00 1.31003495e+00 1.03344983e-01 8.28756865e-02
  1.03844234e-01 7.48876685e-02 1.64253620e-01 4.09385921e-02
  7.08936595e-02 3.24513230e-02 -2.61669984e-02 2.41934730e-02
  3.61637796e-027
Γ 4.66806917e+05 5.43033761e-01 5.96766524e-01 6.34807418e-01
  2.41892534e+00 1.39752734e+00 8.36899667e-02 7.18021874e-02
  1.22206372e-01 6.60960533e-02 1.78792202e-01 3.80408940e-02
  8.41654779e-02 3.09082263e-02 1.52061186e-02 -6.97605297e-02
  3.82173672e-027
T 4.60077482e+05 5.40388548e-01 5.73619632e-01 6.40081800e-01
  2.62321063e+00 1.43558282e+00 7.41308793e-02 7.00408998e-02
  1.36503067e-01 6.08384458e-02 1.63087935e-01 3.11860941e-02
  9.56032720e-02 3.98773006e-02 2.45900408e-02 -6.99732480e-02
 -3.43122241e-0277
```

Accuracy: 30-40%

	id	gender	ever_married	age	graduated	profession	work_experience	spending_score	family_size	var_1	segmentation	labels
0	462809	Male	No	22	No	Healthcare	1.0	Low	4.0	Cat_4	D	D
2	466315	Female	Yes	67	Yes	Engineer	1.0	Low	1.0	Cat_6	В	В
7	464347	Female	No	33	Yes	Healthcare	1.0	Low	3.0	Cat_6	D	D
11	464942	Male	No	19	No	Healthcare	4.0	Low	4.0	Cat_4	D	D
13	459573	Male	Yes	70	No	Lawyer	NaN	Low	1.0	Cat_6	А	Α
8052	467455	Female	No	37	Yes	Artist	8.0	Low	2.0	Cat_6	С	С
8053	465667	Male	No	23	No	Healthcare	1.0	Low	3.0	Cat_2	D	D
8055	461291	Male	No	18	No	Healthcare	0.0	Low	2.0	Cat_6	D	D
8059	460132	Male	No	39	Yes	Healthcare	3.0	Low	2.0	Cat_6	D	D
8065	465406	Female	No	33	Yes	Healthcare	1.0	Low	1.0	Cat_6	D	D
2485 rows × 12 columns												

Next

- automate the cleaning and K Means model pipeline
- try one-hot-encoding on binary features:'gender', 'married','graduated'
- try other ways of dealing with outliers
- try to log 'age' so the distribution is closer to the gaussian distribution

Conclusion

- Possibility of 6 well targeted segments of customers
- Company's clients are mostly young people

