Section	Property	Aperiodic signal	Fourier transform
	22 Bertanda (1980 paris - 1980 kilon Producti - 18 santan - 18	x(t)	$X(j\omega)$
		y(t)	$Y(j\omega)$
4.3.1	Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
4.3.2	Time Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
4.3.6	Frequency Shifting	$e^{j\omega_0 t}x(t)$	$X(i(\omega-\omega_0))$
4.3.3	Conjugation	$x^*(t)$	$X^*(-j\omega)$
4.3.5	Time Reversal	x(-t)	$X(-j\omega)$
4.3.5	Time and Frequency Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
4.4	Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
4.5	Multiplication	x(t)y(t)	$\frac{1}{2\pi} \int_{0}^{+\infty} X(j\theta)Y(j(\omega-\theta))d\theta$
4.3.4	Differentiation in Time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
4.3.4	Integration	$\int_{-\infty}^{t} x(t)dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
4.3.6	Differentiation in Frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$
4.3.3	Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re e\{X(j\omega)\} = \Re e\{X(-j\omega)\} \\ \Im m\{X(j\omega)\} = -\Im m\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \end{cases}$
4.3.3	Symmetry for Real and Even Signals	x(t) real and even	$\begin{cases} \langle X(j\omega) = -\langle X(-j\omega) \rangle \\ X(j\omega) \text{ real and even} \end{cases}$
4.3.3	Symmetry for Real and Odd Signals	x(t) real and odd	$X(j\omega)$ purely imaginary and odd
		$x_e(t) = \mathcal{E}v\{x(t)\}$ [x(t) real]	$\Re\{X(j\omega)\}$
4.3.3	Even-Odd Decompo- sition for Real Sig- nals	$x_o(t) = Od\{x(t)\}$ [x(t) real]	$j \mathcal{G}m\{X(j\omega)\}$
			$x[n] - x[n-1] \stackrel{\mathfrak{F}}{\longleftrightarrow} (1 - e^{-j\omega})X(e^{j\omega})$
4.3.7		on for Aperiodic Signals	$x[m] \stackrel{5}{\longleftrightarrow} \frac{1}{1 - e^{-\frac{1}{2}\omega}} X(e^{i\omega}) + \pi X(e^{i0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi)$

Section	Property	Signal	Laplace Transform	ROC
		x(t)	X(s)	R
		$x_1(t)$	$X_1(s)$	R_1
		$x_2(t)$	$X_2(s)$	R_2
9.5.1	Linearity	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	At least $R_1 \cap R_2$
9.5.2	Time shifting	$x(t-t_0)$	$e^{-st_0}X(s)$	R
9.5.3	Shifting in the s-Domain	$e^{s_0t}x(t)$	$X(s-s_0)$	Shifted version of R (i.e., s is in the ROC if $s - s_0$ is in R)
9.5.4	Time scaling	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	Scaled ROC (i.e., s is in the ROC if s/a is in R)
9.5.5	Conjugation	$x^*(t)$	X*(s*)	R
9.5.6	Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$
9.5.7	Differentiation in the Time Domain	$\frac{d}{dt}x(t)$	sX(s)	At least R
9.5.8	Differentiation in the s-Domain	-tx(t)	$\frac{d}{ds}X(s)$	R
9.5.9	Integration in the Time Domain	$\int_{-\infty}^{t} x(\tau)d(\tau)$	$\frac{1}{s}X(s)$	At least $R \cap \{\Re e\{s\} > 0\}$
	1	Taikist and Tri	L	
9.5.10	If $y(t) = 0$ for $t < 0$ and y		nal-Value Theorems	or singularities at $t = 0$, then
9.3.10	11 x(t) - 0 101 t < 0 and x		lim sX(s)	i singularities at i - 0, ulcii
	If $x(t) = 0$ for $t < 0$ and x		$s \rightarrow \infty$	

Time Domain	Periodic	Nonperiodic	_
C	Fourier Series $x(t) = \sum_{k=-\infty}^{\infty} X[k]e^{ik\omega_{n}t}$ $X[k] = \frac{1}{T} \int_{(T)}^{(T)} x(t)e^{-ik\omega_{n}t} dt$ $x(t) \text{ has period } T$ $\omega_{o} = \frac{2\pi}{T}$	Fourier Transform $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t} d\omega$ $X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$	N o n p e r i o d i c
D i s c r e t e	Discrete-Time Fourier Series $x[n] = \sum_{k=\langle N \rangle} X[k] e^{ik\Omega_{Q^n}}$ $X[k] = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk\Omega_{Q^n}}$ $x[n] \text{ and } X[k] \text{ have period } N$ $\Omega_{\alpha} = \frac{2\pi}{N}$ Discrete	Discrete-Time Fourier Transform $x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{i\Omega}) e^{i\Omega n} d\Omega$ $X(e^{i\Omega}) = \sum_{m=-\infty}^{\infty} x[n]e^{-i\Omega n}$ $X(e^{j(\omega+2\pi)}) \underset{\text{loss pariod } 2\pi}{\underbrace{X(e^{j(\omega+2\pi)})}} = X(e^{j\omega}).$ Continuous	P e r i o d i c

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a_k
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0$, otherwise
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{ otherwise}$
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1$, $a_k = 0$, $k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{\tau}{2} \end{cases}$ and $x(t+T) = x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	_
$\delta(t)$	1	=
u(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$	_
$\delta(t-t_0)$	$e^{-j\omega t_0}$	=
$e^{-at}u(t)$, $\Re e\{a\}>0$	$\frac{1}{a+j\omega}$	_
$te^{-at}u(t)$, $\Re e\{a\}>0$	$\frac{1}{(a+j\omega)^2}$	_
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$ $\Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$	<u> </u>

TABLE 9.2	LAPLACE TRANSFORMS	OF ELEMENTAR	Y FUNCTIONS
Transform pair	Signal	Transform	ROC
1	$\delta(t)$	1	All s
2	u(t)	$\frac{1}{s}$	$\Re e\{s\} > 0$
3	-u(-t)	$\frac{1}{s}$	$\Re e\{s\} < 0$
4	$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	$\Re e\{s\} > 0$
5	$-\frac{t^{n-1}}{(n-1)!}u(-t)$	$\frac{1}{s^n}$	$\Re e\{s\} < 0$
6	$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	$\Re e\{s\} > -\alpha$
7	$-e^{-\alpha t}u(-t)$	$\frac{1}{s+\alpha}$	$\Re e\{s\} < -\alpha$
8	$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^n}$	$\Re e\{s\} > -\alpha$
9	$-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)$	$\frac{1}{(s+\alpha)^n}$	$\Re e\{s\} < -\alpha$
10	$\delta(t-T)$	e^{-sT}	All s
11	$[\cos \omega_0 t] u(t)$	$\frac{s}{s^2+\omega_0^2}$	$\Re e\{s\} > 0$
12	$[\sin \omega_0 t] u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\Re e\{s\} > 0$
13	$[e^{-\alpha t}\cos\omega_0 t]u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega_0^2}$	$\Re e\{s\} > -\alpha$
14	$[e^{-\alpha t}\sin\omega_0 t]u(t)$	$\frac{\omega_0}{(s+\alpha)^2+\omega_0^2}$	$\Re e\{s\} > -\alpha$
15	$u_n(t) = \frac{d^n \delta(t)}{dt^n}$	s ⁿ	All s
16	$u_{-n}(t) = \underbrace{u(t) * \cdots * u(t)}_{}$	$\frac{1}{s^n}$	$\Re e\{s\} > 0$
	n times		

Name: Sravan K Suresh Roll no: 22B3936

Property	Section	Periodic Signal	Fourier Series Coefficients
		$x(t)$ Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	a_k b_k
Linearity	3.5.1	Ax(t) + By(t)	$Aa_k + Bb_k$
Time Shifting	3.5.2	$x(t-t_0)$	$a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$
Frequency Shifting		$e^{jM\omega_0t} = e^{jM(2\pi/T)t}x(t)$	a_{k-M}
Conjugation	3.5.6	$x^*(t)$	a_{-k}^*
Time Reversal	3.5.3	x(-t)	a_{-k}
Time Scaling	3.5.4	$x(\alpha t)$, $\alpha > 0$ (periodic with period T/α)	a_k
Periodic Convolution		$\int_T x(\tau)y(t-\tau)d\tau$	Ta_kb_k
Multiplication	3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
Differentiation		$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk\frac{2\pi}{T}a_k$
Integration		$\int_{-\infty}^{t} x(t) dt$ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k$
Conjugate Symmetry for Real Signals	3.5.6	x(t) real	$\begin{cases} a_k = a_{-k}^* \\ \Re e\{a_k\} = \Re e\{a_{-k}\} \\ \Re m\{a_k\} = -\Re m\{a_{-k}\} \\ a_k = a_{-k} \\ \not \leq a_k = - \not \leq a_{-k} \end{cases}$
Real and Even Signals	3.5.6	x(t) real and even	a_k real and even
Real and Odd Signals	3.5.6	x(t) real and odd	ak purely imaginary and odd
Even-Odd Decomposition		$\begin{cases} x_e(t) = \mathcal{E}_{\theta}\{x(t)\} & [x(t) \text{ real}] \end{cases}$	$\Re\{a_i\}$
of Real Signals		$\begin{cases} x_e(t) = \mathcal{E}v\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases}$	$j\mathfrak{G}m\{a_k\}$
		arseval's Relation for Periodic Signals	

Property	Periodic Signal	Fourier Series Coefficients
	$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	a_k Periodic with b_k period N
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling	$\begin{aligned} &Ax[n] + By[n] \\ &x[n-n_0] \\ &e^{iM(2\pi)N/n}x[n] \\ &x^*[n] \\ &x[-n] \\ &x_{(m)}[n] = \begin{cases} &x[n/m], & \text{if } n \text{ is a multiple of } m \\ &0, & \text{if } n \text{ is not a multiple of } m \end{cases} \end{aligned}$	$Aa_k + Bb_k$ $a_k e^{-jk(2\pi/N)\omega_0}$ a_{k-M} a^*_{-k} a_{-k} $\frac{1}{m}a_k \text{ (viewed as periodic)}$ with period mN
Periodic Convolution	$ \begin{bmatrix} 0, & \text{if } n \text{ is not a multiple of } m \\ (\text{periodic with period } mN) \end{bmatrix} $ $ \sum_{i=1}^{m} x[r]y[n-r] $	m with period mN)
Multiplication	$\sum_{r=\langle N \rangle} x(r) y(r)$ $x[n]y[n]$	$\sum_{l=(N)} a_l b_{k-l}$
First Difference	x[n] - x[n-1]	$(1-e^{-jk(2\pi iN)})a_k$
Running Sum	$\sum_{k=-\infty}^{n} x[k] \left(\text{finite valued and periodic only} \right)$	$\left(\frac{1}{(1-e^{-jk(2\pi/N)})}\right)a_k$
Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} a_k = a_{-k}^* \\ \operatorname{Re}\{a_k\} = \operatorname{Re}\{a_{-k}\} \\ \operatorname{Sm}\{a_k\} = -\operatorname{Sm}\{a_{-k}\} \\ a_k = a_{-k} \\ & \iff a_k = - \iff a_{-k} \end{cases}$
Real and Even Signals Real and Odd Signals	x[n] real and even $x[n]$ real and odd	a_k real and even a_k purely imaginary and odd
Even-Odd Decomposition of Real Signals	$\begin{cases} x_e[n] = \mathcal{E}v\{x[n]\} & [x[n] \text{ real}] \\ x_o[n] = \mathcal{O}d\{x[n]\} & [x[n] \text{ real}] \end{cases}$	$\Re e\{a_k\}$ $j \mathfrak{G}m\{a_k\}$
	Parseval's Relation for Periodic Signals	

Property	Aperiodic Signal	Fourier Transform
	x[n]	$X(e^{j\omega})$ periodic with
	y[n]	$Y(e^{j\omega})$ period 2π
Linearity	ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$
Time Shifting	$x[n-n_0]$	$e^{-j\omega n_0}X(e^{j\omega})$
Frequency Shifting	$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$
Conjugation	$x^*[n]$	$X^*(e^{-j\omega})$
Time Reversal	x[-n]	$X(e^{-j\omega})$
Time Expansion	$x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n = \text{multiple of } k \\ 0, & \text{if } n \neq \text{multiple of } k \end{cases}$	$X(e^{jk\omega})$
Convolution	x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$
Multiplication	x[n]y[n]	$\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$
Differencing in Time	x[n] - x[n-1]	$\frac{1}{1-e^{-j\omega}}X(e^{j\omega})$
Accumulation	$\sum_{k=-\infty}^{n} x[k]$	
Differentiation in Frequency	nx[n]	$+\pi X(e^{j(i)}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$ $j\frac{dX(e^{j\omega})}{d\omega}$
Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ \Re e\{X(e^{j\omega})\} = \Re e\{X(e^{-j\omega})\} \\ \Im e\{X(e^{j\omega})\} = -\Im e\{X(e^{-j\omega})\} \\ X(e^{j\omega}) = X(e^{-j\omega}) \\ \ll X(e^{j\omega}) = -\ll X(e^{-j\omega}) \end{cases}$
Symmetry for Real, Even Signals	x[n] real an even	$X(e^{j\omega})$ real and even
Symmetry for Real, Odd Signals	x[n] real and odd	$X(e^{j\omega})$ purely imaginary and odd
Even-odd Decomposition	$x_c[n] = \mathcal{E}v\{x[n]\} [x[n] \text{ real}]$	$\Re\{X(e^{j\omega})\}$
of Real Signals	$x_o[n] = Od\{x[n]\} [x[n] \text{ real}]$	$i\mathfrak{G}m\{X(e^{j\omega})\}$
	lation for Aperiodic Signals	Jone (A (C))

Signal	Fourier Transform		Fourier Series Coe	fficients (if periodic)
$\sum_{k=(N)} a_k e^{jk(2n/N)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$		a_k	
g joog n	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$		(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, & k \\ 0, & \text{oth} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow	= m , $m \pm N$, $m \pm 2N$, nerwise • The signal is aperiodic
cos ω ₀ n	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega)\}$	$3 - 2\pi l$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2}, & k \\ 0, & \text{oth} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow	= $\pm m$, $\pm m \pm N$, $\pm m \pm 2N$, herwise • The signal is aperiodic
$\sin \omega_0 n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega)\}$	$\phi_0 - 2\pi l)\}$	[0,	$k = r, r \pm N, r \pm 2N,$ $k = -r, -r \pm N, -r \pm 2N,$ otherwise • The signal is aperiodic
x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$		$a_k = \begin{cases} 1, & k = 0, \pm N \\ 0, & \text{otherwise} \end{cases}$	J, ±2N,
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$		$a_k = \frac{\sin[(2\pi k/N)(N_1)]}{N \sin[2\pi k/2]}$ $a_k = \frac{2N_1 + 1}{N}, \ k = 0$	$\frac{+\frac{1}{2}}{N}$, $k \neq 0, \pm N, \pm 2N,$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{N}\right)$		$a_k = \frac{1}{N}$ for all k	
$a^n u[n], a < 1$	$\frac{1}{1 - ae^{-j\omega}}$		1228	
$x[n]$ $\begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$		_	
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$	$\int_{-\infty}^{r} f(\tau)$	dτ	$\frac{F(\omega)}{j\omega} + \pi F(0)\delta(\omega)$
$\delta[n]$	1	$\delta(t)$		1
u[n]	$\frac{1}{1-e^{-j\omega}}+\sum_{k=-\infty}^{+\infty}\pi\delta(\omega-2\pi k)$	e 1001		$2\pi\delta(\omega-\omega_0)$
$\delta[n-n_0]$	$e^{-j\omega n_0}$	sgn (t)		2
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^2}$	_		jω
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^r}$	$ j\frac{1}{\pi t}$		sgn(\omega)

	Continuous time		Discrete time		
	Time domain	Frequency domain	Time domain	Frequency domain	
Fourier	$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$\frac{a_k}{T_0} = \frac{1}{T_0} \int_{T_0} x(t)e^{-jk\omega_0 t}$	$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$	$a_k = \frac{1}{N} \sum_{k=\langle N \rangle} x[n] e^{-jk(2\pi/N)i}$	
Series	continuous time periodic in time	discrete frequency aperiodic in frequency	discrete time periodic in time	> discrete frequency periodic in frequency	
Fourier	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$	$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n}$	$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$	
Transform	continuous time aperiodic in time duality	> continuous frequency aperiodic in frequency	discrete time aperiodic in time	continuous frequency periodic in frequency	

 $x(t) \xrightarrow{+} \xrightarrow{e(t)} \xrightarrow{h_1(t)} \xrightarrow{h_1(t)} y(t)$ $y(t) \xrightarrow{x(t)} \xrightarrow{h_2(t)} \xrightarrow{h_2(t)} \xrightarrow{H_2(s)} y(s)$ $Y(s) = H_1(s)[X(s) - H_2(s)Y(s)],$ $\frac{Y(s)}{X(s)} = H(s) = \frac{H_1(s)}{1 + H_1(s)H_2(s)}.$

We first must identify a continuous-time signal g(t) [=x(t) of our equation] with period $T = 2\pi$ and Fourier coefficients $a_k = x[k]$. We then 'brand' g(t) as $X(e^{iw})$ and mould the equation to synthesis equation of DTFT!

Name: Sravan K Suresh Roll no: 22B3936

4.12. Consider the Fourier transform pair

$$e^{-|t|} \stackrel{\mathfrak{F}}{\longleftrightarrow} \frac{2}{1+\omega^2}.$$

- (a) Use the appropriate Fourier transform properties to find the Fourier transform
- (b) Use the result from part (a), along with the duality property, to determine the

$$\frac{4t}{(1+t^2)^2}.$$

4.12. (a) From Example 4.2 we know that

$$e^{-|\mathbf{t}|} \stackrel{PT}{\longleftrightarrow} \frac{2}{1+\omega^2}$$

Using the differentiation in frequency property, we have

$$te^{-|t|} \stackrel{FT}{\longleftrightarrow} j \frac{d}{d\omega} \left\{ \frac{2}{1+\omega^2} \right\} = -\frac{4j\omega}{(1+\omega^2)^2}$$

(b) The duality property states that if

$$g(t) \stackrel{FT}{\longleftrightarrow} G(j\omega)$$

then

$$G(t) \stackrel{FT}{\longleftrightarrow} 2\pi g(j\omega).$$

$$te^{-|t|} \stackrel{FT}{\longleftrightarrow} - \frac{4j\omega}{(1+i)^{2/2}}$$

$$-\frac{4jt}{(1+t^2)^2} \stackrel{FT}{\longleftrightarrow} 2\pi \omega e^{-|\omega|}$$

Multiplying both sides by j, we obtain

$$\frac{4t}{(1+t^2)^2} \stackrel{FT}{\longleftrightarrow} j2\pi\omega e^{-|\omega|}$$
.

Example 4.12

Suppose that we wish to calculate the Fourier transform $X(j\omega)$ for the signal x(t) displayed in Figure 4.16(a). Rather than applying the Fourier integral directly to x(t), we instead consider the signal

$$g(t) = \frac{d}{dt}x(t).$$

Figure 4.16 (a) A signal x(t) for which the Fourier transform is to be evaluated; (b) representation of the derivative of x(t) as the sum of two components. As illustrated in Figure 4.16(b), g(t) is the sum of a rectangular pulse and two impulses. The Fourier transforms of each of these component signals may be determined from Table 4.2:

$$G(j\omega) = \left(\frac{2\sin\omega}{\omega}\right) - e^{j\omega} - e^{-j\omega}$$

Note that G(0) = 0. Using the integration property, we obtain

$$X(j\omega) = \frac{G(j\omega)}{i\omega} + \pi G(0)\delta(\omega)$$

With G(0) = 0 this becomes

$$X(j\omega) = \frac{2\sin\omega}{j\omega^2} - \frac{2\cos\omega}{j\omega}$$

The expression for $X(j\omega)$ is purely imaginary and odd, which is consistent with the fact that x(t) is real and odd.

We have the function

$$f(x) = \begin{cases} 1+x, & -1 \le x \le 0 \\ 1-x, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$

we computed its Fourier transform:

$$\hat{f}\left(t
ight)=rac{\sin^{2}\left(\pi t
ight)}{\pi^{2}t^{2}}$$

we are asked to deduce the value of the integral

$$\int_0^\infty \frac{\sin^4 x}{x^4} dx$$

how to do this?

$$\int_{-\infty}^{\infty} \frac{\sin^4(x)}{x^4} dx = \pi \int_{-\infty}^{\infty} \frac{\sin^4(\pi t)}{(\pi t)^4} dt$$
$$= \pi \int_{-1}^{0} (1+x)^2 dx + \pi \int_{0}^{1} (1-x)^2 dx$$
$$= \frac{2}{3}\pi$$

$$\int_{-\infty}^{\infty} \frac{\sin^4(x)}{x^4} dx = 2 \int_0^{\infty} \frac{\sin^4(x)}{x^4} dx$$

$$\int_0^\infty \frac{\sin^4(x)}{x^4} dx = \frac{\pi}{3}.$$

Example 3.14 ****

Suppose we are given the following facts about a sequence x[n]:

- 1. x[n] is periodic with period N = 6.
- 2. $\sum_{n=0}^{5} x[n] = 2$.
- 3. $\sum_{n=2}^{7} (-1)^n x[n] = 1$.
- 4. x[n] has the minimum power per period among the set of signals satisfying the

Let us determine the sequence x[n]. We denote the Fourier series coefficients of x[n] by a_k . From Fact 2, we conclude that $a_0 = 1/3$. Noting that $(-1)^n = e^{-j\pi n} = e^{-j(2\pi/6)3^n}$, we see from Fact 3 that $a_3 = 1/6$. From Parseval's relation (see Table 3.2), the average power in x[n] is

$$P = \sum_{k=0}^{5} |a_k|^2. {(3.115)}$$

Since each nonzero coefficient contributes a positive amount to P, and since the values of a_0 and a_3 are prespecified, the value of P is minimized by choosing $a_1 = a_2 = a_3 = a_3 = a_4 = a_3 = a_4 = a_4$ $a_5 = 0$. It then follows that

$$x[n] = a_0 + a_3 e^{j\pi n} = (1/3) + (1/6)(-1)^n,$$
 (3.116)

which is sketched in Figure 3.20.

Figure 3.20 Sequence x[n] that is consistent with the properties specified in Example 3.14.

- **4.15.** Let x(t) be a signal with Fourier transform $X(j\omega)$. Suppose we are given the following facts:
 - 1. x(t) is real.

 - **2.** x(t) = 0 for $t \le 0$. **3.** $\frac{1}{2\pi} \int_{-\infty}^{\infty} \Re\{X(j\omega)\} e^{j\omega t} d\omega = |t| e^{-|t|}$.

Determine a closed-form expression for x(t).

4.15. Since x(t) is real,

$$\mathcal{E}v\{x(t)\} = \frac{x(t) + x(-t)}{2} \stackrel{FT}{\longleftrightarrow} \mathcal{R}e\{X(j\omega)\}.$$

We are given that

$$IFT\{Re\{X(j\omega)\}\}=|t|e^{-|t|}.$$

Therefore.

$$\mathcal{E}v\{x(t)\} = \frac{x(t) + x(-t)}{2} = |t|e^{-|t|}$$

We also know that x(t) = 0 for $t \le 0$. This implies that x(-t) is zero for t > 0. We may

$$x(t) = 2|t|e^{-|t|} \quad \text{for } t \ge 0$$

Therefore.

$$x(t) = 2te^{-t}u(t)$$

4.37. Consider the signal x(t) in Figure P4.37.

- (a) Find the Fourier transform $X(j\omega)$ of x(t).
- (b) Sketch the signal

$$\tilde{x}(t) = x(t) * \sum_{k=-\infty}^{\infty} \delta(t - 4k).$$

(c) Find another signal g(t) such that g(t) is not the same as x(t) and

$$\tilde{x}(t) = g(t) * \sum_{k=-\infty}^{\infty} \delta(t - 4k).$$

(d) Argue that, although $G(j\omega)$ is different from $X(j\omega)$, $G(j\frac{\pi k}{2}) = X(j\frac{\pi k}{2})$ for all integers k. You should not explicitly evaluate $G(j\omega)$ to answer this question.

Name: Sravan K Suresh

Roll no: 22B3936

Properties of Laplace Transform

Property 1: The ROC of X(s) consists of strips parallel to the jw-axis in the s-plane.

Property 2: For rational Laplace transforms, the ROC does not contain any poles.

Property 3: If x(t) is of finite duration and is absolutely integrable, then the ROC is the entire s-plane.

Property 4: If x(t) is right sided, and if the line Re{s} = σ_0 is in the ROC, then all values of s for which Re{s} > σ_0 will also be in the ROC.

Property 5: If x(t) is left sided, and if the line $Re\{s\} = \sigma_0$ is in the ROC, then all values of s for which $Re\{s\} < \sigma_0$ will also be in the ROC.

Property 6: If x(t) is two sided, and if the line Re{s} = σ_0 is in the ROC, then the ROC will consist of a strip in the s-plane that includes the line Re{s} = σ_0 .

Property 7: If the Laplace transform X(s) of x(t) is rational, then its ROC is bounded by poles or extends to infinity. In addition, no poles of X(s) are contained in the ROC.

Property 8: If the Laplace transform X(s) of x(t) is rational, then if x(t) is right sided, the ROC is the region in the s-plane to the right of the rightmost pole. If x(t) is left sided, the ROC is the region in the s-plane to the left of the leftmost pole.

Property 9: The ROC associated with the system function for a causal system is a right-half plane.

Property 10: For a system with a <u>rational</u> system function, <u>causality</u> of the system is equivalent to the ROC being the right-half plane to the right of the rightmost pole.

Property 11: An LTI system is stable if and only if the ROC of its system function H(s) includes the entire jw-axis [i.e., Re{s} = 0].

Property 12: A causal system with rational system function H(s) is stable if and only if all of the poles of H(s) lie in the left-half of the s-plane-i.e., all of the poles have negative real parts.

Name: Sravan K Suresh Roll no: 22B3936