

Tuterial 3 Design a DFA for I language accepting all strings ending with aba over £= £9,6% Min length string = aba S(q1,a) -q o(x) abo" $\delta(q_2,b) \rightarrow q_1(x)$ "abbba" δ(q,3,a) → q2(x) abaaa" α $S(q_3/a) \rightarrow q_0(x)$ "a barabia" Ь S(q3,6)-q,(x)" aba ba" S(q3,6)→q,0(x) ababa Design a DFA for a language of string 0 and 1 that is string is ending with 10.

ending with 11.

ending with 1. L= £10,010,410,01010,.... min = 10

(iii)
$$L = \xi_{1}, 01, 11, 1101....$$
 ξ_{1}

- Q3) Design a DFA for language L= Ew/w does not contain bbb as substring 3 over E= Eq, 63

$$\mathcal{E}(q_{\cdot}, \alpha) \rightarrow q_{3}(x) \ \alpha''$$

$$\mathcal{E}(q_{\cdot}, \alpha) \rightarrow q_{0}(x) \ bbb\alpha''$$

Scanned with CamScanner

08	Design a NFA for birary number where first and last digit are same. E= E0, 13.
A8)	L= E0, 1,00, 11, 010, 111, } RE-
	()° 1
09)	Design a NFA for a set of strugs on $z = \{0,1\}$ that states starts with 01 and end with 10.
An)	Regular expression: - 01.(0+1)*.10 min =0110
Ø10)	Design aNFA for L= loss 01 " U OLOO 3 where n> 1 over £= lo, l}
A 10	$R \cdot E = (010.1^*) + (0100)$
	010.1* 0
	010.1 G
	0100
	90 91 1 91 0 93 1 (S) 1
	(9v)