U19CS076 DAA ASSIGNMENT 4

KRITHIKHA BALAMURUGAN

- Q1. Assist an architect in drawing the skyline of a city given the locations of the buildings in the city. All buildings are rectangular in shape and they share a common bottom (a flat surface). A building is specified by an ordered triplet (L_i, R_i, H_i) where L_i and R_i are the left and right (x) coordinates, respectively, of the building i $(0 < L_i < R_i)$ and H_i is the height of the building.
 - For example, the input can be as follows.

(33, 41, 5)

(4, 9, 21)

(30, 36, 9)

(14, 18, 11)

(2, 12, 14)

(34, 43, 19)

(23, 25, 8)

(14, 21, 16)

(32, 37, 12)

(7, 16, 7)

(24, 27, 10)

The pseudocode/program should give the minimum number of points on graph (coor dinates) as output to assist the architect in drawing the skyline.

1.1.Write a pseudocode (using an incremental/conventional approach) to find the skyline. Analyze the time complexity.

VIE AIN WILLIAM	
U19CSD76	
Skyline Problem	
Incremental Approach	
through make input function	z) to (x,h,f;
) / Frod / (- /)	
We wreate the structure of (x, h, an array and sort in ascend	f) into
Make output function converts input	to skyline
Male output (sky [i])	Cost
- 11 Declare weed height array, set prev=0	
For i=0 to sky.size()-1 Set tmp = sky[i].h	Ci n
IF (sky[i].f = 1) For j = 0 to height. 8ize()-)	(3' h-)
IF top>= height [5]	C4 10(n-1)
Shift & insert elements tempj	C, n-1
k = find tmp in height[] Frase k	Cos log (n-1.
Set max = height[0] If prev = max	C10 n-1
Declare tempt, tem 2 Set tempt. × = sky[i].x	
	e12 n-1

(ost templ. sky Sky size (i-1) temp2.h = sky[sky.size(i-1)].h temp2.f = sky[sky.size(i-1)].f I'E (temp2 h < temp.h) last element Push in struct temp3 ELSE Push in temp structinsky[]c, n-1 back temp3 in skyout Size= Size + 1 Set prev = max in & sky [i-1], x, 0, 13 Time complexity analysis $I(n) = C_1(n) + C_2(n-1) + C_3(n-1) + C_4(n-1) +$ +(Cs+C6)[R(n-3)]+ Cyn+ Cs logn(n-1) Cgn(n-1)+ G6(n-1)+C11(n-1)+ C12 + C13 + C12 + C15 + C16 + C17 + G8 + C19 + C20 21 + C22 + C23 + C24] (n-1) + C25 $T(n) = A(n) + B(1) + C_8(n \log n)$ + (c=+ G) (Kn/2) An2 + Bn + C -> for best and worst Case

1.2. Write a program using an incremental (conventional) approach to find the skyline.

```
#include<bits/stdc++.h>
using namespace std;
struct initial{
 int x;
 int y;
 int h;
};
struct skyline{
int x;
int h;
int f; //flag if 1 then start of building if 0 then end of building
};
struct initial c[]={ //input
                                 {31, 41, 5},
                                 {4, 9, 21},
                                 \{30, 36, 9\},\
                                 {14, 18, 11},
                                 \{2, 12, 14\},\
                                 {34, 43, 19},
                                 {23, 25, 8},
                                 \{14, 21, 16\},\
                                 {32, 37, 12},
                                 {7, 16, 7},
                                 {24, 27, 10}
vector<struct skyline> in;
vector<struct skyline> out;
int size=0;
void make_input(vector<struct skyline> &in);
void sort(int n);
void make_output(vector<struct skyline> &out);
int main()
 int i;
  make_input(in);
  sort(in.size());
 /*cout<<"\n\nBuilding coords are : "<<endl;
  for(i=0;i<in.size();i++)
  cout<<"( "<<in[i].x<<" , "<<in[i].h<<" )"<<endl;
  make_output(out); //skyline function
```

```
void make_input(vector<struct skyline> &in)
 int i;
  cout<<"\n\nEntered input was : "<<endl;</pre>
  for(i=0;i<11;i++)
         cout<<"( "<<c[i].x<<", "<<c[i].h<<", "<<c[i].y<<") "<<"\t";
  struct skyline s;
  for(i=0;i<11;i++)
  {
         s.x=c[i].x;
         s.h=c[i].h;
         s.f=1;
         in.push_back(s);
         s.x=c[i].y;
         s.h=c[i].h;
         s.f=0;
         in.push_back(s);
  }
         /*cout<<"\n\nNow modified input is: "<<endl;
 for(i=0;i<in.size();i++)
         cout<<"( "<<in[i].x<<", "<<in[i].h<<") "<<endl;
  }*/
void sort(int n) //for sorting
 int i;
  for(int i = 0; i < in.size(); i++)
         bool swap = false;
         for (int j = 0; j < in.size()-i-1; j++)
                 if(in[j].x > in[j+1].x)
                         int x1, h1, f1;
                                                                //swapping both
                         x1 = in[i].x;
                         h1 = in[j].h;
                         f1 = in[j].f;
                         in[j].x = in[j+1].x;
                         in[j].h = in[j+1].h;
                         in[j].f = in[j+1].f;
                         in[j+1].x = x1;
                         in[j+1].h = h1;
                         in[j+1].f = f1;
```

```
swap = true;
                 }
         if(!swap)
                 break;
  }
void make_output(vector<struct skyline> &out)
  vector<int> height; //height vector is made such that it is sorted in //descending order
  int temp,prev=0,max;
  struct skyline s1,s2,s3;
  int i,j,l;
  for(i=0;i<in.size();i++)
         temp=in[i].h;
         if(in[i].f==1) //start of building
                 if(height.empty()==true) //no height in the vector
                         if(i!=0) //to append the points when a skyline starts
                                s1.x=in[i-1].x;
                                s1.h=0;
                                s1.f=0; //flags not relavent
                                out.push_back(s1);
                                size++;
                         }
                         else
                                                                       //for first case initalise
x and h with 0
                                s1.x=0;
                                s1.h=0;
                                s1.f=1;
                                out.push_back(s1);
                                size++;
                         }
                                height.push_back(temp);
                 else //height vector not empty
                         for(j=0;j<height.size();j++)
                                if(temp>=height[j])
                                        break;
                         }
```

```
height.push_back(0);
                      for(l=height.size()-1; l>j; l--) //shifting right
                      {
                              height[l]=height[l-1];
                              height[j]=temp; //height added to vector
               max=height[0]; //since its in desc order
       else //f==0 i.e. end of building
               auto k=find(height.begin(),height.end(),temp);
               height.erase(k);
               max=height[0];
       if(prev!=max)
               s3.x=in[i].x;
               s3.h=max;
               s3.f=1;
               if(size!=0) //size here is size of out
                      s2.x=out[size-1].x;
                      s2.h=out[size-1].h;
                      s2.f=out[size-1].f;
                      if(s2.x==s3.x)
                              if(s2.h < s3.h)
                              out.pop_back(); //to remove repeated pts
                              out.push_back(s3);
                      }
                      else
                      {
                              out.push_back(s3);
                      }
               }
               else
                      out.push_back(s1); //appending the original point
               size++;
               prev=max; //changing previous max height
}
```

```
s3.x=in[i-1].x; //appending the last point
s3.h=0;
s3.f=1;
out.push_back(s3);
//displaying
cout<<"\n\nSkyline output is : "<<endl;
for(i=0;i<out.size();i++)
{
      cout<<"( "<<out[i].x<<" , "<<out[i].h<<" ) "<<endl;
}
}</pre>
```

Result;

```
■ Select D:\svnit\sem4\daa\assgn4skyline.exe
                                                                                                 Entered input was :
             (4,21,9)(30,9,36) (14,11,18) (2,14,12)
                                                                                 (34,19,43)
(31,5,41)
                 (14, 16, 21) (32, 12, 37) (7, 7, 16) (24, 10, 27)
(23,8,25)
Skyline output is :
0,0)
2 , 14 )
4 , 21 )
 9 , 14 )
 12,7)
 14,16)
 21 , 0 )
 23,8)
 24 , 10 )
 27 , 0 )
 30,9)
 32 , 12 )
 34 , 19 )
 43,0)
Process exited after 0.08736 seconds with return value 0
Press any key to continue . . .
```

1.3. Write a pseudocode to find the skyline using the divide and conquer approach. Analyze the time

Complority

U19CS676

Divide and Conquer Approach
There are 2 structures -> building (x, y, h) and point coordinates of (x, y)
- point coordinates of (x, y)
Skuling (int & int & vactor Shulding > Sku)
Skyline (int l, int h, vector <brulding> Sky)</brulding>
Declare who cit & points
Declare vector Estruct sty 7 skyline
+ > h
return skyline vector
FLSE IF L=h
1. Push back skyline Ssky [17. x sky[1].h]
Ecky (17.4.03
Push back skyline Sky[l] x sky[l].h], Sky[l].y, o3 ELSE
Set vector < struct points > sky: l = skyline(d, mid sky) Set vector < struct points > sky: l = skyline(d, mid sky) Set vector < struct points > sky h = skyline(d, mid sky) Here
1 est ut cat t 12 l = ab (10 11)
Set vector Struct points sky: 1 - skyline (1, mid sky
Set Vector < Struct points > sky h= Skyline (frid , in sky)
Return merge_sky (sky_l, sky_h)
Merge_sky (vector < points > sky_l, vector &points > sky_h)
o de la
(Set h_l=0, h_h=0
set vector < points > merged_sky while i < sky l. size 0 & J < sky h. size () If sky l on sky h is empty
While i < sky l cize Me = sky l singl
1 16 of a charles of the size ()
sky h is empty
Set temp of Estruct points
It sky l[i]-x < sky-h[j]-2
temp.x = sky_l[i] .x
Set temp of <struct points=""> IF sky l[i]-x < sky-h[j]-2 ! temp.x = sky l[i].x temp.y = sky l[i].y IF sky-l[i].y < h-h</struct>
IF sky_lsij.y <h-h< td=""></h-h<>

temp y = h = sky e (1) temp-x sky-hlj = max [sky-l[j].y, sky-sky-l[j].y sky-h (j].y 'temp' in merged 1 Push in Size() in 1 FLSE mx+=1

U19CS076

. 2
(c + : a + and fast size()
for to redundant
For the i=0 to redundant size() IF redundant [i] =1
if redundant [i] = 1 merged_sky [i] = -1 return merged_sky
morgea-say cos
return merged sky
Time complexity analysis
,
Recursion Tree Method.
Kettision The mention
T(n)
$T(n_2)$ $T(n_2)$
(1/2)
T(m) $T(m/2)$ $T(m/2)$
T(m) $T(m/4)$ $T(m/4)$
$T(\underline{n})$ $T(\underline{n}_{4})$ $T(\underline{n}_{4})$
T(2) can be written as
T(n) = 0 T(n() + A(n)
T(m) = 2T(m/2) + O(m) will (1)
$T(n) = 2T(n/2) + \Theta(n)$ Merge of take $O(n)$
also $\theta(n) = cn$
also $\theta(n) = cn$ $T(n) = 2T(n/2) + cn$
$I(h) = Z(h/2) \cdot Ch$
and T(n/2) = 2T(n/4)+. cn/2
(10)
T. 111-2
T(n) = 47(n) + cn + cn
11/4 T(n)= 2" T/n). + (n 2"
(2)
$0.h = m \rightarrow 0.4$
= $n = 209 n$
T(n) = nT(1) + cn (logn)
T(n) = Cnlogn + n + 1 = O(nlogn)
(Tilly)

1.4. Write a program using the divide-and-conquer approach to find the skyline.

```
#include <bits/stdc++.h>
using namespace std;
struct input{
 int x;
  int y;
 int h;
};
struct sky{
 int x;
 int y;
};
vector<struct input> in{
                                                {31, 41, 5},
                                                {4, 9, 21},
                                                {30, 36, 9},
                                                {14, 18, 11},
                                                {2, 12, 14},
                                                {34, 43, 19},
                                                {23, 25, 8},
                                                {14, 21, 16},
                                                {32, 37, 12},
                                                \{7, 16, 7\},\
                                                {24, 27, 10}
                         };
vector<struct sky> out;
vector<struct sky> mergesky(vector<sky> sky_l,vector<struct sky> sky_h);
vector<struct sky> skyline(int l, int h,vector<struct input> skyl);
int main()
  out=skyline(0,in.size()-1,in);
  out.insert(out.begin(),\{0,0\});
  int i;
  cout<<"Skyline output for Divide and Conquer method!\n";
  for(i=0;i<out.size();i++)
  {
         if(out[i].x!=-1)
                                                //we made it to remove redundant pts
                 cout<<"( "<<out[i].x<<" , "<<out[i].y<<" ) ";
                 cout<<endl;
  return 0;
```

```
vector<struct sky> merge(vector<struct sky> sky_l,vector<struct sky> sky_h)
 int h_l=0, h_h=0;
  int ind=0;
  int i=0, j=0;
  vector<struct sky> merged_sky;
  while(i < sky_l.size() && j<sky_h.size())
         if(sky_l.empty() || sky_h.empty())
                 break;
         struct sky temp;
         if(sky_l[i].x < sky_h[j].x)
         {
                 temp.x=sky_l[i].x;
                 temp.y=sky_l[i].y;
         //if the height of selected coordinate is less than previous height of other skyline
then update height of the coordinate of point to be inserted
                 if(sky_l[i].y < h_h)
                 {
                        temp.y=h_h;
                 h_l=sky_l[i].y; //changing h_l which is previous height of sky_l vector
         else if(sky_l[i].x > sky_h[j].x) //similar with sky_h vector
                 temp.x=sky_h[j].x;
                 temp.y=sky_h[j].y;
                 if(sky_h[j].y < h_l)
                        temp.y=h_l;
                 h_h = sky_h[j].y;
                 j++;
         else
                                               //if both are equal then point would be the x
coordinate of either one y would be max height
                 temp.x = sky_h[j].x;
                 temp.y = max(sky_l[i].y,sky_h[j].y);
                 h_l = sky_l[i].y;
                 h_h = sky_h[i].y;
                 i++;
                 j++;
```

```
merged_sky.push_back(temp);
  if(i>= sky_l.size()) //adding the remaining points of sky_l
         while(j< sky_h.size())</pre>
                merged_sky.push_back(sky_h[j]);
                j++;
  if(j>= sky_h.size()) //adding the remaining points of sky_h
         while(i< sky_l.size())</pre>
                merged_sky.push_back(sky_l[i]);
                 i++;
  int inx = 1;
  vector<int> redundant;
  redundant.push_back(0);
  while(inx < merged_sky.size())</pre>
         if(merged_sky[inx].y == merged_sky[inx-1].y)
                 redundant.push_back(1);
         else
         redundant.push_back(0);
         inx++;
  for(i=0;i<redundant.size();i++)
         if(redundant[i]==1)
                 merged_sky[i].x=-1;
  return merged_sky;
vector<struct sky> skyline(int l,int h,vector<struct input> skyl)
  vector<struct sky> sky_line;
```

```
if(1 > h)
     {
           return sky_line;
     else if(l==h)
           struct sky p=\{sky1[1].x,sky1[1].h\};
           sky_line.push_back(p);
           p.x=sky1[1].y;
           p.y=0;
           sky_line.push_back(p);
           return sky_line;
     }
     else
           int mid=1+((h-1)/2);
           vector<struct sky> sky_l=skyline(l,mid,sky1);
           vector<struct sky> sky_h=skyline(mid+1,h,sky1);
           return merge(sky_l,sky_h);
     }
 D:\svnit\sem4\daa\assgn4sky_d&c.exe
Skyline output for Divide and Conquer method!
 0,0)
  2,14)
    , 21 )
     , 14 )
  12 , 7 )
  14 , 16 )
  21,0)
  23,8)
  24, 10)
     ,0)
  27
  30,9)
  32 , 12 )
  34 , 19 )
  43,0)
Process exited after 0.1035 seconds with return value 0
```

Press any key to continue . . .

- 2. Given two matrices *A* and *B*, answer the following questions.
 - 2.1. Write a pseudocode (using an incremental/conventional approach) to multiply the given matrices. Analyze the time complexity.

2.2. Write a program using an incremental (conventional) approach to multiply the given matrices.

```
#include <bits/stdc++.h>
using namespace std;
int ** matrix_allocate(int n)
{
    int ** mat = new int *[n];
    for (int i = 0; i < n; ++i)</pre>
```

```
mat[i] = new int[n];
       for(int i=0;i<n;i++)
               for(int j=0;j< n;j++)
                       mat[i][j]=0;
        }
       return mat;
int main() {
       int r1,c1,r2,c2;
       cout<<"Rule: The number of columns of the 1st matrix must equal the number of rows of
the 2nd matrix n;
       cout<<"Enter the row and column of matrix A :";</pre>
       cin>>r1>>c1;
       cout<<"Enter row and column of matrix B :";</pre>
       cin>>r2>>c2;
       if(c1!=r2)
        cout<<"Error!Refer Rule";</pre>
         return 0;}
       int n = \max(r1, \max(c1, \max(r2, c2)));
       if(ceil(log(n))!=floor(log(n)))
               n=pow(2,ceil(log2(n)));
        int ** a = matrix_allocate(n);
        int ** b = matrix_allocate(n);
        int ** c = matrix_allocate(n);
         cout<<"\nEnter elements of first matrix: ";</pre>
       for (int i = 0; i < r1; i++)
          for (int j = 0; j < c1; j++)
             cin>>a[i][j];
       cout<<"Enter elements of second matrix: ";</pre>
       for (int i = 0; i < r2; i++)
          for (int j = 0; j < c2; j++)
             cin>>b[i][j];
```

```
for (int i = 0; i < r1; i++)
 {
         for (int j = 0; j < c2; j++)
            c[i][j] = 0;
            for (int k = 0; k < c1; k++)
              c[i][j] += a[i][k] * b[k][j];
         }
        }
        cout<<"Product:\n";
       for(int i=0;i<r1;i++)
              for(int j=0; j< c2; j++)
                      cout << c[i][j] << "\t";
              cout << "\n";
       }
 return 0;
 D:\svnit\sem4\daa\matrix multi standard.exe
Rule:The number of columns of the 1st matrix must equal the number of rows of the 2nd matrix
Enter the row and column of matrix A :3 3
Enter row and column of matrix B :3 3
Enter elements of first matrix:
100
010
001
Enter elements of second matrix:
100
010
001
Product:
        0
```

1

Press any key to continue . . .

Process exited after 36.12 seconds with return value 0

2.3. Write a pseudocode to multiply the given matrices using the divide and con quer approach. Analyze the time

U19CS076 Matrix multiplication (Divide & Conquer) We use estrassen matrix mult technique. Matrix-mult (ASJCJ, BSJCJ, malrix ix_mult (matrix_add (a22, a22, n/2), b11, = matrix_mult (a 22, matrix_sub (b 21, b11, n/2), n/2) Po = matrix mult (matrix add (a11, a22, n/2), matrix add (b11, b22, n/2), n/2, Pb = matrix mult (matrix sub (a12, a22, n/2), matrix add (b21, b22, n/2), n/2,

1 P = motrix-mult (matrix_sub (a11, a21, m/2), matrix_add (b11, b12, m/2), m/2)
(C1) = matrix-sub(m+ty -100 +: 110000 1) Po m)
C12 = matrix - add (P1, P2, n/2) $C21 = matrix - add (P3, P4, n/2)$ $C22 = matrix - add (P3, P4, n/2)$ $C22 = matrix - sub (matrix, sub (matrix, add (P5, P1, n/2), P3, n/2), P4, n/2)$
1 Sub (matrix, Sub (matrix, add (15, 11, 11/2), 173, 11/2)
For $i=0$ to $m/2$
For $j=0$ to $m/2$ $C[i][j] = C[i][i][j]$ $C[i][j+m/2] = C[2[i][j]$
C[i + n/2] Cj = C2 [i]Cj] $C[i + n/2] [j + n/2] = C22 [i]Cj]$
Return C $= \frac{CL_1 + n/2}{3} \left[\int_{-\infty}^{+\infty} \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}$
The functions of add, subtract join and s
The functions of add subtract join and s have been declared. They have complexity of $O(n^2)$
$T(n) = 7 T(n/2) + \Theta(m^2)$
By Master method $ \frac{n \log_{2} x}{n} = \frac{n \log_{2} x}{n} = \frac{f(n) = cn^{2}}{n} $ $ \frac{\log_{2} x}{n} = \frac{n^{2 \cdot 807}}{n} > f(n) $ $ T(n) = \theta(n^{2 \cdot 807}) $
$n^{\log_2 \frac{7}{2}} = n^{2 \cdot 867} > f(n)$
$T(n) = \theta(n^{2.507})$

2.4. Write a program using the divide-and-conquer approach to multiply the given matrices.

```
#include <bits/stdc++.h>
using namespace std;
int **matrix_allocate(int n)
       int ** mat = new int *[n];
       int i,j;
        for (i = 0; i < n; ++i)
          mat[i] = new int[n];
        for(i=0;i<n;i++)
               for(j=0;j< n;j++)
                       mat[i][j]=0;
        return mat;
int max(int a,int b)
       if(a>=b)
               return a;
        else
               return b;
void matrix_free(int ** m, int n)
 int i;
 for (i = 0; i < n; i++)
  free(m[i]);
 free(m);
int **matrix_add(int ** a, int ** b, int n)
 int i, j;
 int ** c = matrix_allocate(n);
 for (i = 0; i < n; i++)
```

```
for (j = 0; j < n; j++)
        c[i][j] = a[i][j] + b[i][j];
 return c;
int **matrix_sub(int ** a, int ** b, int n)
 int i, j;
 int ** c = matrix_allocate(n);
 for (i = 0; i < n; i++)
 {
  for (j = 0; j < n; j++)
      c[i][j] = a[i][j] - b[i][j];
 }
 return c;
int **mul_strassen(int ** a, int ** b, int n)
{
 int i, j;
 int **c = matrix_allocate(n);
 if (n == 1)
   c[0][0] = a[0][0] * b[0][0];
 else
   int ** a11 = matrix_allocate(n / 2);
   int ** a12 = matrix\_allocate(n / 2);
   int ** a21 = matrix allocate(n / 2);
   int ** a22 = matrix_allocate(n / 2);
   int ** b11 = matrix\_allocate(n / 2);
   int ** b12 = matrix\_allocate(n / 2);
   int ** b21 = matrix\_allocate(n / 2);
   int ** b22 = matrix\_allocate(n / 2);
   for (i = 0; i < n / 2; i++)
     for (j = 0; j < n / 2; j++)
         a11[i][j] = a[i][j];
         a12[i][j] = a[i][j + n / 2];
         a21[i][j] = a[i + n / 2][j];
```

```
a22[i][j] = a[i + n / 2][j + n / 2];
        b11[i][j] = b[i][j];
        b12[i][j] = b[i][j + n / 2];
        b21[i][j] = b[i + n / 2][j];
        b22[i][j] = b[i + n / 2][j + n / 2];
     }
   int** P1 = mul\_strassen(a11, matrix\_sub(b12, b22, n/2), n/2);
   int** P2 = mul strassen(matrix add(a11, a12, n/2), b22, n/2);
   int** P3 = mul\_strassen(matrix\_add(a21, a22, n/2), b11, n/2);
   int** P4 = mul\_strassen(a22, matrix\_sub(b21, b11, n/2), n/2);
   int** P5 = mul_strassen(matrix_add(a11, a22, n/2), matrix_add(b11, b22, n/2), n/2);
   int** P6 = mul\_strassen(matrix\_sub(a12, a22, n/2), matrix\_add(b21, b22, n/2), n/2);
   int** P7 = mul_strassen(matrix_sub(a11, a21, n/2), matrix_add(b11, b12, n/2), n/2);
   int** c11 = matrix\_sub(matrix\_add(matrix\_add(P5, P4, n/2), P6, n/2), P2, n/2);
   int** c12 = matrix add(P1, P2, n/2);
   int** c21 = matrix_add(P3, P4, n/2);
   int** c22 = matrix sub(matrix sub(matrix add(P5, P1, n/2), P3, n/2), P7, n/2);
   for (i = 0; i < n / 2; i++)
     for (j = 0; j < n / 2; j++)
        c[i][j] = c11[i][j];
        c[i][i + n / 2] = c12[i][i];
        c[i + n / 2][j] = c21[i][j];
        c[i + n / 2][j + n / 2] = c22[i][j];
     }
   matrix_free(c11, n/2);
   matrix free(c12, n/2);
   matrix_free(c21, n/2);
   matrix free(c22, n/2);
   return c;
int main()
int i, j;
 int r1,c1,r2,c2;
cout<<"Rule: The number of columns of the 1st matrix must equal the number of rows of the 2nd
matrix \n";
 cout << "Enter row and column of matrix A:";
 cin>>r1>>c1;
 cout << "Enter row and column of matrix B:";
```

```
cin>>r2>>c2;
if(c1!=r2)
      {
              cout<<"Error!Refer Rule";</pre>
              return 0;
      int n=\max(r1,\max(c1,\max(r2,c2)));
      if(ceil(log(n))!=floor(log(n)))
              n=pow(2,ceil(log2(n)));
       int ** a = matrix_allocate(n);
       int ** b = matrix_allocate(n);
       cout<<"\nEnter elements of first matrix: ";</pre>
      for (i = 0; i < r1; i++)
      for (j = 0; j < c1; j++)
       cin>>a[i][j];
      printf("Enter elements of second matrix: ");
      for (i = 0; i < r2; i++)
      for (j = 0; j < c2; j++)
    cin>>b[i][j];
      int **c=mul_strassen(a, b, n);
      cout<<"Product:\n";</pre>
      for(i=0;i<r1;i++)
              for(j=0; j< c2; j++)
                      cout<<c[i][j]<<"\t";
      cout << "\n";
      return 0;
```

}

D:\svnit\sem4\daa\matrix mul d&C.exe

```
Rule:The number of columns of the 1st matrix must equal the number of rows of the 2nd matrix
Enter row and column of matrix A :3 2
Enter row and column of matrix B :2 3
Enter elements of first matrix:
3 2
3 1
1 2
Enter elements of second matrix:
1 2 3
2 1 3
Product:
       8
               15
               12
       4
               9
Process exited after 20.13 seconds with return value 0
Press any key to continue . . .
```