

TSN40LPSROM

TSMC 40nm Low Power VIA Programmable High Density Read-Only Memory Compiler Databook

> Version 20071100_210A July 2013

Copyright @ 2013, Taiwan Semiconductor Manufacturing Company, Ltd. All Rights Reserved. No part of this publication may be reproduced in whole or in part by any means without prior written consent.
NOTICE Taiwan Semiconductor Manufacturing Company Ltd. reserves the right to make changes in the contents of
this document without notice. No responsibility is assumed by Taiwan Semiconductor Manufacturing Company Ltd. for any infringements of patents or other rights of the third parties that may result from its use. Taiwan Semiconductor Manufacturing Company Ltd. assumes no responsibility for any error that appears

in this document.

tsn40lpsrom

Table of Contents

Chapter 1 : Compiler General Description	3
Chapter 2 : Features	
Chapter 3 : Block Diagram	
Chapter 4 : Compiler Supporting Range	
Chapter 5 : Pin Descriptions and Logic Truth Table	
Chapter 6 : Timing Specifications	
Chapter 7: Process Voltage and Temperature (PVT) Characterization Conditions	11
Chapter 8 : Power/Ground Connection Guideline	
Chapter 9 : Power Down Requirements	
Chapter 10 : Scramble Table	
Chapter 11 : Application Note	
Chapter 12 : Quick Reference Table	

Chapter 1 : Compiler General Description

Low power VLSI technology becomes increasingly important in the growing area of electronic industry. In order to provide the solution of low power application, TSMC 40nm Low-Power VIA Programmable High Density Read-Only Memory with BIST Interface compiler is provided.

TSMC 40nm Low-Power VIA Programmable High Density Read-Only Memory with BIST Interface compiler is high performance, low power, and fabricated in TSMC CLN40LP (1.1V) CMOS low power technology. This Low Power VIA Programmable High Density ROM operates at a voltage of 1.1V +/- 10% and a junction temperature range of -40°C to 125°C. The VIA-1 Programmable High- Density ROM can be configured up to 4096 Words by 64 Bits, 8192 Words by 32 Bits, 16384 Words by 16 Bits or 32768 Words by 8 Bits as shown in Figure 4.1. The compiled ROM file is divided into 4 groups according to their column-selected numbers (Mux=8, Mux=16, Mux=32, Mux=64). The "word depth" is defined as the number of words and the "word width" is defined as the number of bits per word.

Chapter 2 : Features

TSMC 40nm Low-Power VIA Programmable High Density Read-Only Memory with BIST Interface compiler has the following features:

- Fully synchronous
- Single-clock operation
- Low standby power
- Full address decoding
- Single mask level programmable (VIA-1)
- Near-Zero Hold Time (address, and control inputs)
- Chip Enable mode active low (CEB)
- Segmented Memory architecture for reduced power consumption
- 4 column mux options: 8, 16, 32, 64
- Up to 32768 Words and 144 Output Bits (can be configured up to 4096 Words by 64 Bits, 8192 Words by 32 Bits, 16384 Words by 16 Bits or 32768 Words by 8 Bits)
- BIST mux interface (optional)
- TSMC 1P10M 40nm CLN40LP (1.1V) CMOS process
- Standard-Vt high density design
- Support power mesh by metal 4 pins
- Route over SROM with metal 5 and above
- Limited porosity on metal 4
- Power down mode is low leakage mode to reduce leakage power by switching off part of periphery circuit.

Chapter 3 : Block Diagram

Chapter 4 : Compiler Supporting Range

40nm low-power ROM compiler is a parameterized static read-only memory function supported by automatic physical generation software. The physical layout data of the 40nm low-power ROM compiler is implemented as a custom, pitch-matched array of cells that is very area efficient.

40nm low-power ROM compiler can be customized by its number of words, **W**, and the number of bits per word, **N**. The number of address bits, **M**, is explicitly determined by the number of words. The column multiplexing (**CM**) is based on the number of words, **W**, and the number of bits per word, **N**. The number of rows is **W/CM**. The number of columns is **N*CM**. Valid and fully supported limits for the values of the configuration parameters are specified in the following table. This table is for general configuration information of word size and bits.

Mux Options	Word Size (Address locations)	Bits (Number of Outputs)
СМ	w	N
8	32,64,964K	2,3,4144
16	64,128,1928k	2,3,472
32	128,256,38416k	2,3,436
64	256,512,76832k	2,3,418

Figure 4.1

According to silicon result, the following ROM configurations can **NOT** be supported in this compiler.

- (1) ROM instances (**W*N**) greater than (>) 256K-bit are **NOT** supported.
- (2) ROM instances (**W*N**) less than or equal to (<=) 256K-bit with the number of rows (**W/CM**) greater than or equal to (>=) 256 (rows) **and** the number of columns (**N*CM**) greater than (>) 512 (columns) are **NOT** supported.

Example of 8kx32 ROM instance, 8kx32m16 (**W/CM** > 256 & **N*CM** = 512) is **supported**, but 8kx32m32 (**W/CM** = 256 & **N*CM** > 512) is **not** supported.

Compiler and instance naming

ts3n40lpa{**W**}x{**N**}m{**CM**} {version} or User defined library name: i.e. SROM

For example:

SROM cell: ts3 is designated for ROM compiler

tsn40lpsrom

Naming	w	N	СМ	Revision
ts3n40lpa256x72m8_210a	256	72	8	210a
ts3n40lpa8192x32m16_210a	8192	32	16	210a

Chapter 5: Pin Descriptions and Logic Truth Table

Pin Description

Pin	Туре	Description
A[M -1:0]	Input	Address Inputs
CEB	Input	Chip Enable (Active-Low)
CLK	Input	Clock
AM[M -1:0]	Input	BIST Address Inputs
CEBM	Input	BIST Chip Enable (Active-Low)
BIST	Input	BIST Interface Enable
PD	Input	Power Down (Active High)
Q[N -1]	Output	Data Outputs

Netlist Order

Inputs: A[M-1:0], CEB, CLK, PD, AM[M-1:0], CEBM, BIST

Outputs: Q[**N**-1:0]

Logic Truth Table:

Power Down Mode

Mode	PD	Q
Power Down	1	0 (tPD must be met)
Normal	0	Q (tWK must be met)

BIST Mode

Mode	BIST	Clock	Chip Select	Address
Normal	Low	CLK	CEB	Α
BIST	High	CLK	CEBM	AM

Functional

Function	CLK	CEB/CEBM	A/AM	Q[i]
Deselect	↑	High	Х	no change
Read	↑	Low	а	mem[a][i]
Standby	Low	High	Low	no change

Note:

In a non-fully decoded array, a read cycle to a nonexistent address location causes the outputs to become unknown.

Chapter 6 : Timing Specifications

Input Timing Requirements

Symbol	Parameter	From	То
tas	Address Setup Before CLK↑	A[M -1:0]	CLK
tah	Address Hold After CLK↑	A[M -1:0]	CLK
tcs	CEB Setup Before CLK↑	CEB	CLK
tch	CEB Hold After CLK↑	CEB	CLK
tams	Address M Setup Before CLK↑	AM[M -1:0]	CLK
tamh	Address M Hold After CLK↑	AM[M -1:0]	CLK
tcms	CEBM Setup Before CLK↑	CEBM	CLK
tcmh	CEBM Hold After CLK↑	CEBM	CLK
tbists	BIST Setup Before CLK↑	BIST	CLK
tbisth	BIST Hold After CLK↑	BIST	CLK
tkh	Minimum CLK Pulse High	CLK ↑	CLK↓
tkl	Minimum CLK Pulse Low	CLK ↓	CLK ↑
tcyc	Minimum Cycle Time	CLK ↑	CLK ↑

Switching Characteristics

Symbol	Parameter	From Input	To Output
tcd	CLK to Valid Q	CLK ↑	Q[N -1:0]
thold	CLK to Invalid Q	CLK ↑	Q[N -1:0]

9

Timing Diagram

Figure 7.1 Timing Diagram

Figure 7.2 Timing Diagram

^{*} Even if the address does not change, the output may go to an unknown state on the rising clock edge (see Figure 7.2 above). If it is desired to keep the same output data from previous cycle, regardless of the address changing or not, the Chip Enable (CEB) should go high (Standby Mode) before the rising clock edge (see Figure 7.2).

tsn40lpsrom

Chapter 7 : Process Voltage and Temperature (PVT) Characterization Conditions

PVT	Process	Voltage (V)	Temperature (C)	
SS0P99V125C	SS	0.99	125	Vdd-10%
SS0P99VM40C	SS	0.99	-40	Vdd-10%
SS0P99V0C	SS	0.99	0	Vdd-10%
TT1P1V125C	TT	1.10	125	Vdd
TT1P1V25C	TT	1.10	25	Vdd
FF1P21V0C	FF	1.21	0	Vdd+10%
FF1P21VM40C	FF	1.21	-40	Vdd+10%
FF1P21V125C	FF	1.21	125	Vdd+10%

Note

Chapter 8 : Power/Ground Connection Guideline

In chip design level, users must guarantee to meet the Vccmin spec(>= Vdd-10%) at the SRAM IP boundary to avoid performance impact from voltage drop of system power.

In order to have better IR drop and EM management, please follow the power/ground connection guidelines below.

- Route M5 power lines over the SRAM instances and cover as much area as possible.
- Connect M4 VDD/VSS power lines thru via as much as possible.
- M5 power/signal lines must be placed perpendicularly to M4 and drop VIAs in full of any cross-area of two metals.

^{1.} Permanent damage could occur if the operation exceeds the table listing above

Chapter 9 : Power Down Requirements

The Power Down pin (PD) is a low leakage mode by switching off partial of periphery circuit. No read cycle may take place while PD is asserted. Also, the Q outputs will be forced to logic 0.

Also, the PD input assists in situations where it is desirable to power-down the memory entirely. If PD is held high while VDD is removed from the memory macro, the Q outputs will be held to 0 rather than allowed to float.

There are two timing constraints that need to be followed for the power down mode.

tWK: ROM wake up time. This time window defines the time to charge all the powered down power nets to the vdd level. The tWK is equivalent to eight ROM cycles. ROM operation is invalid in this time window.

tPD: Idle time. During this time window, the output Q will become unknown until after tPD, which will be pulled to logic 0. ROM operation is invalid in this time window.

- The ROM data output (Q) is logic 0 when PD is activated.
- When the values of data output (Q) changes from 0 (power down mode) to unknown-X (normal stand-by mode), there is no high-Z on output Q.

Chapter 10 : Scramble Table

There are 4 column muxes in the ROM: 8, 16, 32 and 64. The maximum number of physical rows is 1024, which requires 10 addresses.

For column mux = 8 which A0:A2 are column addresses and A3:A12 are row addresses.

For column mux = 16 which A0:A3 are column addresses and A4:A13 are row addresses.

For column mux = 32 which A0:A4 are column addresses and A5:A14 are row addresses.

For column mux = 64 which A0:A5 are column addresses and A6:A15 are row addresses.

The column decoder is not scramble.

For the row decoder, every 8 wordlines or rows, the first 4 rows is not scramble and the next 4 rows are flipped.

The Q outputs are counted from left to right (Q0, Q1 ...Q [N-1])

Below is the example of 17 Bits (Q [0:16]) ROM with column mux 8 ([A0:A2] are column addresses).

Physical column = 8 * n + Column address +1, n is the output number The physical column is counted from left to right (from Q0) and start with 1 For example Q8 with column address 3 (A2=0, A1=1 & A0=1). Physical column = 8 * 8 +3 +1 = column 68

Word line scramble

1111111100 WL1020 1111111101 WL1021	
44444444	
1111111110 WL1022	
1111111111 WL1023	
1111111011 WL1019	
1111111010 WL1018	
1111111001 WL1017	
1111111000 WL1016	
• •	
• •	
•	
•	
0000001100 WL12	
0000001101 WL13	
0000001110 WL14	
0000001111 WL15	
0000001011 WL11	
0000001010 WL10	
0000001001 WL9	
0000001000 WL8	
000000100 VVL4	
0000000101 VVL5	
0000000110 VVL6	
0000000111 VVL7	
000000011 WL3	
000000010 WL2	
000000001 WL1	
000000000 WL0	

A12......A3 for column mux 8 A13......A4 for column mux 16 A14......A5 for column mux 32 A15......A6 for column mux 64

Chapter 11: Application Note

Test

The recommended test strategy in the absence of BIST circuit is to read and verify every word in the 40nm low-power ROM compiler.

Chip Enable

When Chip Enable (CEB) is low, the internal clocking is activated and the 40nm low-power ROM compiler is accessed. When CEB is high, the power is greatly reduced and the data outputs are unaffected (the data output stays the same as previous cycle).

ROM Coding

- Program "don't care" or unused locations with "0" to save power.
- Users need to prepare intended Intel hex ROM code to be inputted to ROM compiler for back-end kits generation.
- A utility of ROM code generation and verification is packed with compiler.
 - Documents:
 - N40 ROM Code Generation flow
 - N40 ROM Code Verification flow
 - Scripts:
 - hex2intel.pl: convert hex code or verilog code to Intel hex code format
 - chk_rom_code.pl: rom code verification between spice net-list file and intended ROM code file

Chapter 12 : Quick Reference Table

Symbol	Description
Size	Memory configuration
Column	Mux number
Width	Layout width
Height	Layout height
Power	AC current
IDDQ	Standby current
tcd	Access time
tckh	Clock high
tckl	Clock low
tcyc	Cycle time
tas	Address setup time
tah	Address hold time

The timing data is based on output load 0.00156pf and the input slew for each condition is shown as below table.

Voltage	Input slew
1.21V	0.0048ns
1.1V	0.0064ns
0.99V	0.0080ns

Please reference the file: tsn40lpsrom_20071100_210a_Quick_Reference_Table.pdf