Wärmelehre

Grundlagen

Mol: $1mol = N_A Atome = 6.02 \cdot 10^{23} Teilchen$ Atomar mass unit: $1u = 1.66053 \cdot 10^{-27} kg$

Größe Atom: $\approx 1 \cdot 10^{-10} m$

Thermodynamik Idealer Gase

Ideale Gase:

Boltzmann Konstante: $k_B=1,38\cdot 10^{-23}\frac{kg\cdot m^2}{s^2\cdot K}$ mittlere quadratische Geschindigkeit: $\frac{1}{2}k_B\cdot T$ Abstand von Atomen unter Normaldruck: $5\cdot 10^{-9}m$

Mittlere Geschwindigkeit: $v = 0 \frac{m}{s}$

Mittlere Kinetische Energie: $E = \frac{3}{2} m_{teilchen} v^2$

Allg. Gasgleichung: $p \cdot V = N \cdot K_B \cdot T$

Teilchendichte: $n = \frac{N}{V}$

Druck: $p = \frac{F}{A}$

Druck in einer Flüssigkeit: $p(h) = \rho \cdot h \cdot g$

Gleichverteilungssatz: $E_{kin} = E_{tra} + Erot = \frac{f}{2} \cdot K_B \cdot t$

Barom. Höhenformel: $p(h) = p_0 \cdot e^{-\frac{h}{h_0}}$

Energiesatz: $\Delta U = \Delta Q + \Delta W$ Innere Energie: $U = \frac{f}{2}K_B \cdot T \cdot N$ Isentropenkoeffizient: $\kappa = 1 + \frac{2}{f}$

Isotherme Zustandsänderung: | Isochore Zustandsänderung:

T = const $\Delta W = -NK_bT \ln(\frac{p_1}{p_2})$ $\Delta Q = -\Delta W = N \dot{K}_b T ln(\frac{p_1}{n^2})$ $\Delta U = 0$ $\Delta S = NK_b ln(\frac{p-1}{p_2})$

V = const; $\Delta W = 0$
$$\begin{split} \Delta Q &= \tfrac{f}{2} N K_b \Delta T = \tfrac{f}{2} \cdot V \Delta p \\ \Delta U &= \tfrac{f}{2} N K_b \Delta T = \tfrac{f}{2} \cdot V \Delta p \\ \Delta S &= \tfrac{f}{2} N K_b \to const. \end{split}$$

Adiabate Zustandsänderung:

Isobare Zustandsänderung:

p = const;

 $\Delta W = -pdV = NK_b \Delta T$

 $\Delta Q = (\frac{f}{2} - 1)p\Delta V$ $\Delta U = \frac{f}{2}NK_b\Delta T = \frac{f}{2}p\Delta V$ $\Delta S = (\frac{f}{2} - 1)p\frac{\Delta V}{T}$

 $p \cdot V^{\kappa} = const$ $\Delta W = p_1 V_1 \frac{f}{2} ((\frac{V_2}{V_1})^{\frac{f}{2}} - 1)$ $\Delta Q = 0$

 $\Delta U = 0$ $\Delta S = 0$

Wirkungsgrad: $\eta = \frac{P_{ab}}{P_{zu}} = \frac{W_{ab}}{W_{zu}} = \frac{|\Delta W|}{|\Delta Q_h|}$ Carnot Wirkungsgrad: $\frac{T_h - T_t}{T_h}$

Entropie: $S = K_b ln(W), \Delta S = K_b ln(\frac{W_2}{W_1}) = \frac{\Delta Q}{T}$ Satz v. Stirling: ln(N!) = Nln(N) für N >> 0

Thermodynamik Realer Gase

Van der Waals Gleichung: $NK_bT=(P+aN^2\frac{1}{V^2})\cdot(V-Nb)\to p=\frac{NK_bT}{V-Nb}-\frac{N^2a}{V^2}$

Wärmeleitung und Wärmeausdehnung

Wärmekapazität v = const: $c_K = \frac{f}{2} \cdot N_A K_B$ Wärmekapazität p = const: $c_K = (\frac{f}{2} + 1) N_A K_B$ Wärmestrom: $Q'_{(t)} = q'A = -\lambda \cdot \frac{dT}{dx}$ Dulong-Petit'sche Regel: $c_K = 3N_A K_B$ Wärmeausdehnung linear: $\Delta L = \alpha L \Delta T$

Wärmeausdehnung Kubisch: $\Delta V = \beta V \Delta T, \beta = 3\alpha$

Richmannsche Mischungsregel: TODO

Richmannsche Mischungsregel mit Wärmemengen: TODO

Wellen und Optik

Wellengleichung

Allg. Wellengleichung:

Lsg für ebene Wellen im R^1 : $A_{(x,t)} = A_0 \cdot \cos(\omega t - k * x_0), k = \frac{2\pi}{\lambda}, \omega = \frac{2\pi}{T}$

Lsg für ebene Wellen im \mathbb{R}^3 :

Lsg für Kreiswellen: $A(x,y,t) = \frac{A_0}{\sqrt{r}} \cdot \cos(\omega t - |k| \cdot \sqrt{x^2 + y^2})$

Lsg für Zylinderwellen:

Lsg für Kugelwellen: $A(x,y,t) = \frac{A_0}{r} \cdot cos(\omega t - |k| \cdot \sqrt{x^2 + y^2 + z^2})$

Wellenlänge: $\lambda = c \cdot T$

Interferenz

Interferenz:

Doppler Effekt

Quelle ruht, Empfänger bewegt: $f_E = f_Q(1 - \frac{v_E}{c})$ Empfänger ruht, Quelle bewegt: $f_E = f_Q \cdot (\frac{1}{1 - \frac{V_Q}{c}})$

Beide bewegt: $f_e = f_s \frac{c - V_s}{c - V_e}$ Oktave: 1 Oktave = Verdopplung der Frequenz = 12 Halbtöne $f' \to f'': \frac{f''}{f'} = \frac{f'''}{f''} = x$ $x^{12} = 2 \to x = 2^{1/12}$

Brechung

durch Transportschicht verursachter Gangunterschied