1 Micro-problem Coefficients

• anisotropic permeability K_{ij} :

1.1 Matrix

- D_{ijkl} : [[2.3 1.7 0.] [1.7 2.3 0.] [0. 0. 0.3]]
- μ: [3.8]
- $\bullet \ \mu^{-1} \colon [\ 0.26315789]$
- α_{ij} : [0.132 0.132 0.092]
- K_{ij} : [[[0.01 0.] [0. 0.001]] [[0.00101438 -0.00035942] [-0.00035942 0.00998562]] ..., [[0.00521131 -0.00449073] [-0.00449073 0.00578869]] [[0.00265013 -0.00348257] [-0.00348257 0.00834987]]]

1.2 Channels

- D_{ijkl} : [[0.23 0.17 0.] [0.17 0.23 0.] [0. 0. 0.03]]
- μ : [100.]
- $\bullet \ \mu^{-1} \colon [\ 0.01]$
- α_{ij} : [1. 1. 0.]
- K_{ij} : [[1. 0.] [0. 1.]]

2 Homogenized Coefficients

2.1 Steady coefficients

- E_{ijkl} : [[1.87440989e+00 1.30524837e+00 -4.35442578e-05] [1.30524837e+00 1.87431828e+00 -6.43057823e-06] [-4.35442578e-05 -6.43057823e-06 2.84664158e-01]]
- C_{ij} : [[1.34964528e-01 1.43188517e-06] [1.43188517e-06 1.34881785e-01]]
- \mathcal{B}_{ij} : [1.132376 1.13241074 0.07930384]
- M: [0.45529815]
- $\bullet \ \ volume\ fractions:\ 'Yc':\ array (0.14722441652250456),\ 'Ym':\ array (0.85277558347749483)$
- \bullet volumeYm: 1.47700731058
- \bullet volumeYc: 0.254992689417
- volumeY: 1.732

2.2 Time-dependent coefficients at t = 0+

- $\mathcal{F}_{ij}(0+)$: [-0.07244143 -0.07245437 -0.06301977]
- $H_{ijkl}(0+)$: [[0.0185935 0.01851298 0.01605949] [0.01851298 0.01851896 0.01605837] [0.01605949 0.01605837 0.01398949]]
- $\mathcal{G}(0+)$: [1.4329674]

2.3 Time-dependent coefficients

• $\mathcal{F}_{ij}(t)$

• $H_{ijkl}(t)$

• G(t)

3 Correctors

- pressure-like correctors: color = pressure, arrows = perfusion velocities (possibly scaled)
- displacements-like correctors: color = displacement, warped (possibly scaled), cauchy_stress colorbar only to see stress ranges

3.1 Steady-state pressure correctors

• pressure . . . $\tilde{\pi}^P(0+)$, perfusion velocities scaling: 1.55e-01×

• displacements . . . $\omega^{*,P}$ scaling: 1.00e+00×

3.2 Steady-state RS correctors

pressure . . . $\bar{\pi}^{11}$, perfusion velocities scaling: 7.93e+00×

• displacements . . . $\bar{\omega}^{11}$ scaling: 1.00e+00×

pressure ... $\bar{\pi}^{12}$, perfusion velocities scaling: 9.42e+00×

pressure ... $\bar{\pi}^{21}$, perfusion velocities scaling: 9.42e+00×

pressure ... $\bar{\pi}^{22}$, perfusion velocities scaling: 8.08e+00×

• displacements . . . $\bar{\omega}^{22}$ scaling: 1.00e+00×

4 Macroscopic Solution

The structure is fixed on its left side and loaded by traction in y direction on the right side boundary:

4.1 Bones macro-problem

• step 0: pressure ... p, perfusion velocities scaling: inf×

• step 0: displacements ... u scaling: $1.00e+01 \times$

• step 1: pressure ... p, perfusion velocities scaling: 2.48e+04×

• step 1: displacements . . . u scaling: 1.00e+01×

• step 10: pressure ...p, perfusion velocities scaling: 1.40e+04×

• step 25: pressure ...p, perfusion velocities scaling: 1.29e+04×

• step 25: displacements ... u scaling: 1.00e+01×

• step 50: pressure ... p, perfusion velocities scaling: 1.21e+05×

• step 100: pressure ... p, perfusion velocities scaling: 2.46e+06×

• step 200: pressure ... p, perfusion velocities scaling: 1.03e+09×

• step 400: pressure ... p, perfusion velocities scaling: 7.10e+13×

4.2 Steady-state solution of bones macro-problem

• pressure ... p, perfusion velocities scaling: inf×

• displacements ... u scaling: $1.00e+01 \times$

