MC558 - Complexidade de Algoritmos II

Primeiro semestre de 2023

Laboratório 4

Construindo uma rede com k clusters

A famosa engenheira Ana Sabi Tudor foi encarregada de construir uma rede de computadores para a futura sede de uma empresa. Os mainframes dos computadores já foram instalados. Agora resta conectar os computadores por fibras óticas para garantir a interconexão entre eles. A empresa viabiliza para um par A, B de computadores a possibilidade de construir uma fibra ótica ligando ambos; o custo desta instalação depende de vários fatores (distância entre os computadores, importância de A e/ou B etc.) Naturalmente, a empresa quer gastar o mínimo possível nesta parte de construção da rede.

Lembrando das suas aulas de MC558 na Unicamp, Ana sabe que isto é essencialmente o problema de encontrar uma **árvore geradora mínima**. Entretanto, ao chegar perto da data do início da construção da rede, a empresa disse que por motivo de contenção de gastos e para manter a independência de certos setores, seria necessário construir uma rede com k clusters em vez de apenas um. Novamente, a empresa gostaria de fazer isto gastando o mínimo possível. Não há problema se algum cluster ficar com apenas um computador, o importante é ter exatamente k clusters. Como Ana está muito atarefada e o prazo de construção da rede está se aproximando, ela pediu a sua ajuda para resolver este problema.

1 Entrada e Saída

Entrada: A primeira linha da entrada contém três inteiros N, M e K (separados por um espaço) que representam, respectivamente, o número de computadores instalados ($9 \le N \le 10^4$), o número de conexões entre os computadores ($N-1 \le M \le 10^5$) e o número de clusters desejados ($1 \le K \le N$). As M linhas seguintes contém três inteiros A, B e W (separados por um espaço) indicando que o computador A está conectado com o computador B ($0 \le A, B < N$) com custo de conexão W ($0 \le W \le 100$).

Saída: A saída é um único inteiro que representa o custo total da rede (há uma quebra de linha após o número).

2 Exemplos

Entrada	Saída
9 14 2	28
0 1 4	
0 7 8	
1 2 8	
1 7 11	
2 3 7	
2 5 4	
282	
3 4 9	
3 5 14	
4 5 10	
5 6 2	
6 7 1	
6 8 6	
7 8 7	

Entrada	Saída
8 10 4	23
0 1 27	
0 6 20	
1 4 3	
1 5 20	
2 3 21	
2 7 14	
3 5 7	
4 6 7	
4 7 6	
5 6 23	

3 Implementação e Submissão

- A solução deverá ser implementada em C, C++11 ou Python 3.
- O programa deve ser submetido no SuSy, com o nome principal t4 (por exemplo, t4.c).
- O número máximo de submissões é 20.
- A tarefa contém 10 testes abertos e 10 testes fechados. A nota será proporcional ao número de acertos nos testes fechados.
- Casos de plágio implicam em nota ZERO na disciplina para todos os envolvidos.
- Não é permitido o uso de bibliotecas que não sejam padrão, bem como diretivas ou flags de otimização.

4 Prazo final de submissão

Segunda-feira 22 de maio às 6h da manhã.