Work in progress

by

Alfred Alocias Mariadason

THESIS

for the degree of

MASTER OF SCIENCE

Faculty of Mathematics and Natural Sciences University of Oslo

May 2018

TODO: write creative commons licence

Abstract

Work in progress

${\bf Acknowledgements}$

Work in progress

Contents

1	Intr	roduction	9								
	1.1	Structure and Goals	9								
2			11								
3	Mai	Iany-Body Quantum Theory									
	3.1	The Hamiltonian and the Born-Oppenheimer Approximation	13								
	3.2	Slater Determinant and Permanent	14								
	3.3	Variational Principle	14								
	3.4	Energy Functional	15								
	3.5	·	15								
		3.5.1 Assumptions	15								
		3.5.2 The \mathcal{J} and \mathcal{K} Operators	16								
		1	16								
	3.6	•	17								
	3.7	·	18								
		1 1	18								
		3.7.2 The Trial Wave Function	19								
		v	19								
		1 0 0	19								
		3.7.5 Importance Sampling	20								
4			21								
	4.1	Hermite Functions	21								
	4.2	Gaussian Type Orbitals	21								
		4.2.1 Hermite-Gaussian Functions	22								
	4.3	Integral Elements	22								
		4.3.1 Overlap Distribution	23								
		4.3.2 Overlap Integral	24								
		4.3.3 Potential Integral	25								
		4.3.4 Laplacian Integral	25								
		4.3.5 Coulomb Potential Integral	26								
		4.3.6 Coulomb Interaction Integral	27								
		4.3.7 Recurrence Relation	28								
		4.3.8 Coulomb Distribution Integral	29								
5	Nur	merical Optimization	31								
	5.1		31								
	5.2	•	31								
	5.3		$\frac{31}{32}$								
	5.4	1	$\frac{32}{32}$								
	5.5	•	34								
	5.6		34								

6	Imp	elementation	35
	6.1	Variational Monte Carlo	35
	6.2	Hartree-Fock	35
		6.2.1 Parallelization of Two-Body Matrix	35
	6.3	Minimization	35
		6.3.1 More-Thuente Linesearch	35
		6.3.2 Conjugate Gradient	35
	6.4	Verification	35
A			37
	A.1	Lagrange Multiplier Method	37
		Interaction-Term in Fock-Operator	
		Multi-Index Notation	
В			39
	B.1	Integral-elements in Least-Squares Fitting	39
	B.2	Derivative of Energy and Variance	

Symbols List

Work in progress make for $w_{i \rightarrow j} \equiv w\left(i|j\right)$

Source Code

Work in progress

Introduction

This chapter will give a brief introduction to the structure of the thesis and the goals laid forth beforehand.

1.1 Structure and Goals

The main goal (at least at some point into the semester) was to make a code-base for large-scale quantum many-body calculations from scratch. Of course there exists many such code-bases and competing with those in terms of scalability and computational efficiency is beyond the scope of this thesis, the choice for a from-scratch approach was made in order to gain some insight into the methods and a better understanding for the programming aspects which would follow. With this in mind, we did however get much inspiration from previous theses and implementations from other sources as well. The main goals for the thesis was

- Make a general C++ code for the *Hartree-Fock method* and the *Variational Monte Carlo method* which could take any basis into play with minimal effort.
- Use the C++ code on different quantum mechanical many-body systems and use this as validation of the code and benchmark the code.
- Build an optimal one-body basis with the Hartree-Fock method and make improvements on this basis with the variational Monte-Carlo method with a *Slater-Jastrow* wavefunction.

With this in mind a general open-source code for the restricted Hartree-Fock method was developed and is open for use in https://github.com/Oo1Insane1oO/HartreeFock. The variational Monte-Carlo method is also open-source and for use in » URL THIS «. Both repositories each have a directory with tests implemented, see section 6.4 for more information on these tests.

Extending the code to other systems is made easier with python scripts given in the mentioned repositories. A better description of these are given in the repositories themselves and involve auto-generation of abstract wavefunction classes which only need to be filled in with analytical expressions and are otherwise already integrated with the existing code.

Many-Body Quantum Theory

This chapter takes forth the theory regarding the basics of identical particles and $many-body\ quantum\ mechanics$. The reader is referred to [5] for an introductory text on quantum mechanics(for single particles) and also the so-called Dirac-notation used throughout the entire chapter. We will address » LIST METHODS « regarding computational quantum mechanics and further deepen into Hartree-Fock methods and Variational Monte Carlo method. Optimization of calculation is also given while structure of program is given in » REF TO PROGRAM STRUCTURE CHAPTER «. General statistical theory used is given in » REF TO STATISTICS CHAPTER «

3.1 The Hamiltonian and the Born-Oppenheimer Approximation

The task at hand is to solve the many-body system described by Schrödinger's equation

$$H|\Psi_i\rangle = E_i|\Psi_i\rangle \tag{3.1}$$

for some state $|\Psi_i\rangle$ with energy E_i . Usually the desired state is the ground-state energy E_0 of the system meaning we are primarily interested in the *ground-state* $|\Psi_0\rangle$.

With the goal determined we can define the system to consist of N identical particles¹ with positions $\{r_i\}_{i=0}^{N-1}$ and A nuclei with positions $\{R_k\}_{k=0}^{A-1}$. The Hamiltonian H is then

$$H = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i < j} f\left(\boldsymbol{r}_{j}, \boldsymbol{r}_{j}\right) - \frac{1}{2} \sum_{k} \frac{\nabla_{k}^{2}}{M_{k}} + \sum_{k < l} g\left(\boldsymbol{R}_{k}, \boldsymbol{R}_{l}\right) + V\left(\boldsymbol{R}, \boldsymbol{r}\right)$$
(3.2)

The first and second terms represent the kinetic- and inter-particle interaction terms² for the N identical particles while the latter three represent kinetic- and interaction terms for the nuclei(with the last one being the nuclei-particle interaction). The constant M_k is the mass of nucleon k and Z_k is the corresponding atomic number.

We assume the nuclei to be much heavier than the identical particles, meaning they move much slower, at which the system can be viewed as electrons moving around the vicinity of stationary nuclei. This means the kinetic term for the nuclei vanish and the nuclei-nuclei interaction becomes a constant³. The approximation we end up with is the so-called *Born-Oppenheimer approximation* and the Hamiltonian is now

$$H = H_0 + H_I \tag{3.3}$$

where we have split the Hamiltonian in a one-body part and a two-body or interaction parts defined as

$$H_0 \equiv -\frac{1}{2} \sum_{i} \nabla_i^2 + V(\mathbf{R}, \mathbf{r})$$
(3.4)

and

$$H_{I} \equiv \sum_{i < j} f\left(\boldsymbol{r}_{i}, \boldsymbol{r}_{j}\right) \tag{3.5}$$

 $^{^{1}}$ These are in both atomic physics and in the quantum dot case always fermions or bosons.

²This is usually the well-known Coulomb interaction.

³ Adding a constant to an operator does not alter the eigenvector, only the eigenvalues by the constant factor[12].

3.2 Slater Determinant and Permanent

Throughout section 3.1 we only referred to the wavefunction Ψ as a state, a function closely connected to the probabilistic nature of the quantum particles. However, we have not given it a form. One possible solution is the *Hartree product* Ψ_H defined as

$$\Psi_{\rm H} = \prod_{i} \psi_i(\boldsymbol{r}_i) \tag{3.6}$$

with $\{\psi\}_{i=0}^N$ being the orbitals which solve the single-particle Schrödinger equation for H_0 . The Hartree-product is unfortunately a poor choice since it does not solve the H_I part meaning it is not a physically valid solution. This comes from the fact that the Hartree-product does not take into account the fact that the particles in question are *identical particles*. Since the particles are identical, switching the labels on the particles shouldn't change the expectation value of some observable. If we run this remark through we end up with the conclusion that the state $|\Psi\rangle$ must be either symmetric or antisymmetric with the symmetric part being the *bosonic state* and antisymmetric being the *fermionic state*. The connection between antisymmetric states and fermions is called the *Pauli exclusion principle*.

The problem with the Hartree-product is, with the above sentiment, that it is not symmetric nor antisymmetric. However we can transform it with an operator

$$\mathcal{B} \equiv \frac{1}{N!} \sum_{P} \sigma_b P \tag{3.7}$$

where σ_b is defined as

$$\sigma_b \equiv \begin{cases} 1 & b \text{ represents bosonic system} \\ (-1)^p & b \text{ represents fermionic system} \end{cases}$$
 (3.8)

P is a permutation operator that switches the labels on particles 4 and p is the parity of permutations. The operator \mathcal{B} has the following properties

- Applying \mathcal{B} to itself doesn't change the operator meaning $\mathcal{B}^2 = \mathcal{B}$.
- The Hamiltonian H and \mathcal{B} commute, that is $[\mathcal{B}, H] = [H, \mathcal{B}]$.
- \mathcal{B} is unitary, which means $\mathcal{B}^{\dagger}\mathcal{B} = \mathcal{I}$.

The solution Ψ_T to the Schrödinger equation can now be written as

$$\Psi_T(\mathbf{r}) = \sqrt{N!} \mathcal{B} \Psi_{\mathrm{H}}(\mathbf{r}) \tag{3.9}$$

The antisymmetric case of \mathcal{B} results in a Slater determinant

$$\Psi_T^{AS} = \frac{1}{\sqrt{N!}} \sum_{P} (-1)^p P \prod_i \psi_i$$
 (3.10)

while the symmetric case gives the so-called $permanent^5$.

$$\Psi_T^{S} = \frac{1}{\sqrt{N!}} \sum_{P} P \prod_{i} \psi_i \tag{3.11}$$

Notice that the coordinated $r_{i=0}^N$ is a bit of a sloppy notation as it also implicitly includes the spin orbitals discussed in * ref section on spin orbitals «.

3.3 Variational Principle

One important remark is that the Slater determinant and the permanent do not solve the interaction part, but only serves as a so-called *ansatz* or guess on the true ground-state wavefunction. This is quite useful due to the *variational principle*.

The Variational principle states that for any normalized function Ψ in Hilbert Space » REF HILBERT

 $^{{}^{4}}P_{ij}\Psi_{\boldsymbol{(r_1,\ldots,r_i,\ldots,r_j,r_N)}} = \Psi_{\boldsymbol{(r_1,\ldots,r_j,\ldots,r_i,r_N)}} [19].$

⁵The permanent is basically just a determinant with all the negative signs replaced by positive ones.

« with a Hermitian operator H the minimum eigenvalue E_0 for H has an upper-bound given by the expectation value of H in the function Ψ . That is

$$E_0 \le \langle H \rangle = \langle \Psi | H | \Psi \rangle = \int \Psi^* H \Psi dr$$
 (3.12)

See [5] for proof and more.

The mentioned ansatz is thereby guaranteed to give energies larger than or equal the true ground state energy meaning a minimization method is sufficient in order to get closer to this minimum.

3.4 Energy Functional

We can find a more convenient expression for this energy by using equations 3.9 and 3.12. This gives us

$$E\left[\Psi\right] = N! \left\langle \Psi_{H} \middle| H\mathcal{B} \middle| \Psi_{H} \right\rangle \tag{3.13}$$

where the hermitian and unitary property of \mathcal{B} as well as the fact that \mathcal{B} and \mathcal{H} commute have been used. This energy functional (functional in the sense that it is dependant on the wave function). Applying the \mathcal{B} operator to the Hartree-product, pulling the sum out of the integrals and relabeling with the following definitions

$$\langle p|h|q\rangle \equiv \langle \psi_{p}(\boldsymbol{r})|h(\boldsymbol{r})|\psi_{q}(\boldsymbol{r})\rangle = \int \psi_{p}^{*}(x)h(\boldsymbol{r})\psi_{q}(\boldsymbol{r})d\boldsymbol{r}$$

$$\langle pq|f|rs\rangle \equiv \langle \psi_{p}(\boldsymbol{r}_{1})\psi_{q}(\boldsymbol{r}_{2})|f(\boldsymbol{r}_{1},\boldsymbol{r}_{2})|\psi_{r}(\boldsymbol{r}_{1})\psi_{s}(\boldsymbol{r}_{2})\rangle = \int \psi_{p}(\boldsymbol{r}_{1})\psi_{q}(\boldsymbol{r}_{2})f(\boldsymbol{r}_{1},\boldsymbol{r}_{2})\psi_{r}(\boldsymbol{r}_{1})\psi_{s}(\boldsymbol{r}_{2})d\boldsymbol{r}$$
(3.14)

yields in

$$E\left[\Psi\right] = \langle p|H_0|p\rangle + \frac{1}{2} \sum_{p,q} \left[\langle pq|f_{pq}|pq\rangle \pm \langle pq|f_{pq}|qp\rangle \right]$$
(3.15)

The first part is written with the assumption that the single-particle wave functions $\{\psi\}$ are orthogonal and the 1/2 factor in front of the so-called *direct* and *exchange* terms⁶ is due to the fact that we count the permutations twice in the sum when applying the \mathcal{B} operator. The sign in the interaction term are chosen as positive for bosonic systems and negative for fermionic systems.

The expression given in equation 3.15 is the functional form we will use to derive the Hartree-fock equations in the following section.

3.5 Hartree-Fock Theory

Hartree-Fock method is a many-body method for approximating the wavefunction of a stationary many-body quantum state and thereby also obtain an estimate for the energy in this state. In this section we will derive the Hartree-Fock equations from scratch, following closely the literature by J.M Thjissen[19].

3.5.1 Assumptions

Hartree-Fock method makes the following assumptions of the system

- The Born-Oppenheimer approximation, see » REF BO «.
- All relativistic effects are negligible.
- The wavefunction can be described by a single *Slater determinant*.
- The Mean Field Approximation holds.

With these inherent approximations the last one is the most important to take into account as it can cause large deviations from test solutions (analytic solutions, experimental data etc.) since the electron correlations is in reality, for many cases, not negligible. There exists many methods that try to fix this problem » LIST METHODS «. The *Variational Monte Carlo* (or VMC) is the method for deeper explorations in this Thesis, see section 3.7 for more details.

⁶The direct term is just due to inherent behaviour of the charge of the particles (known as the Coulomb repulsion). The exchange term is a direct consequence of the probabilistic nature of the identical particles.

3.5.2 The \mathcal{J} and \mathcal{K} Operators

Before we begin with the Hartree-Fock equations it is desirable to rewrite the energy function obtained in section 3.4 (form given in equation 3.15) with two operators \mathcal{J} and \mathcal{K} defined as

$$\mathcal{J} \equiv \sum_{k} \langle \psi_{k}^{*} | f_{12} | \psi_{k} \rangle = \int \psi_{k}^{*}(\boldsymbol{r}) f_{12} \psi_{k}(\boldsymbol{r}) d\boldsymbol{r}$$

$$\mathcal{K} \equiv \sum_{k} \langle \psi_{k}^{*} | f_{12} | \psi \rangle = \int \psi_{k}^{*}(\boldsymbol{r}) f_{12} \psi(\boldsymbol{r}) d\boldsymbol{r}$$
(3.16)

The \mathcal{J} operator just gives the simple interaction-term while the \mathcal{K} operator gives the exchange term with the arbitrary (notice no index) $\psi(r)$. The energy functional is thus rewritten to

$$E\left[\Psi\right] = \sum_{i} \left\langle \psi_{i} \left| h + \frac{1}{2} \left(\mathcal{J} \pm \mathcal{K} \right) \right| \psi_{i} \right\rangle \tag{3.17}$$

where the one-body Hamiltonian is split into a sum of single particle functions as $H_0 = \sum_i h(\mathbf{r}_i)$.

3.5.3 Hartree-Fock Equations

As a reminder. The wavefunctions $\{\psi\}$ in equation 3.17 are spin-orbitals with both a spacial part and a spin part. In order to obtain the Hartree-Fock equations we try to minimize the energy functional in order to obtain the ground-state energy for a many-body system. This is done by a variational method.

The first observation to notice is the fact that variations in the spin-orbitals $\{\psi\}$ need to respect the spin-orthogonality relation

$$\langle \psi_i | \psi_j \rangle = \delta_{ij} \tag{3.18}$$

with δ_{ij} being the well-known Kronecker-delta. This property is essentially a constraint to the minimization problem and the method to be used is the Lagrange multiplier method[12], with the following Lagrangian

$$\mathcal{L} = \delta E\left[\Psi\right] - \sum_{ij} \Lambda_{ij} \left[\langle \psi_i | \psi_j \rangle - \delta_{ij} \right]$$
(3.19)

We know then that the minimum is reached when a displacement on the spin-orbitals $\psi_i \to \psi_i + \delta \psi_i$ results in an energy variation of zero meaning $\delta E\left[\Psi\right] = 0$ in the minimum. Which giving the variational problem

$$\sum_{i} \langle \delta \psi_{i} | h + \mathcal{J} \pm \mathcal{K} | \psi_{i} \rangle - \sum_{ij} \Lambda_{ij} \langle \delta \psi_{i} | \psi_{j} \rangle + \text{c.c} = 0$$
(3.20)

where c.c is a notation for the complex conjugate of the inner-products on its left-hand side.

The shift in the spin orbitals $\{\delta\psi\}$ is arbitrary and the constraints are symmetric⁷ meaning we can with the Fock-operator

$$\mathcal{F} \equiv h + \mathcal{J} \pm \mathcal{K} \tag{3.21}$$

define the following eigenvalue problem

$$\mathcal{F}\psi_i = \sum_j \Lambda_{ij}\psi_j \tag{3.22}$$

Choosing the Lagrange parameter Λ_{ij} such that $\{\psi\}_{k=1}^N$ forms an orthonormal set for \mathcal{F} with eigenvalues $\{\varepsilon\}_{k=1}^N$. This reduces the eigenvalue equation to

$$\mathcal{F}|\psi\rangle = \varepsilon |\psi\rangle \tag{3.23}$$

with $\varepsilon = (\varepsilon_0, \dots, \varepsilon_N)$ being the set of eigenvalues of \mathcal{F} meaning we have N+1 equations to be solved. If we only take the N lowest eigenfunctions into the Slater the corresponding eigenenergy is referred to as the Hartree-Fock energy and is the estimated ground-state energy which the Hartree-Fock method gives. We can rewrite the energy functional with the eigenenergies to

$$E\left[\Psi\right] = \sum_{i} \left\langle \psi_{i} \middle| \varepsilon_{i} - \frac{1}{2} \left(\mathcal{J} \pm \mathcal{K}\right) \middle| \psi_{i} \right\rangle$$
(3.24)

 $^{^{7}\}langle\psi_{i}|\psi_{j}\rangle=\langle\psi_{j}|\psi_{i}\rangle^{*}\Rightarrow\Lambda_{ij}=\Lambda_{ii}^{*}$

In the derivation of the Hartree-Fock equations we only worked with spin-orbital functions $\{\psi\}$. However it is much more convenient to rewrite these in terms of spatial orbitals $\{\phi\}$ and integrate the spin-dependant part out. There are two ways of doing this and the two different approaches give the so-called restricted Hartree-Fock and unrestricted Hartree-Fock methods.

3.6 Restricted Hartree-Fock and Roothan-Equations

The restricted spin-orbitals are paired as⁸

$$\{\psi_{2l-1}, \psi_{2l}\} = \{\phi_l(\mathbf{r})\alpha(s), \phi_l(\mathbf{r})\beta(s)\}$$
(3.25)

with $\alpha(s)$ and $\beta(s)$ being different spin-states (up and down). This pairing of spin-states with same and same spacial-orbitals means we can pull the spin degrees of freedom out from the \mathcal{J} and \mathcal{K} operators, reduce the sum to only run over half the states and multiply the entire sum by 2. The result is that the restricted energy-functional reads

$$E\left[\Psi\right] = \sum_{i=1}^{N} \varepsilon_{i} - \sum_{i=1}^{\frac{N}{2}} \left\langle i \mid 2\mathcal{J} \pm \mathcal{K} \mid i \right\rangle \tag{3.26}$$

Notice that the K operators sum only runs up to half the number of states.

As the title suggests we are going to end up with a set of equations referred to as the *Roothan-equations*. We start by first expanding the spacial part $\{\phi\}$ of the spin orbitals $\{\psi\}$ in some known orthonormal basis $\{\chi\}_{i=1}^{L}$

$$\phi_i(\mathbf{r}) = \sum_{p=1}^{L} C_{pi} \chi_p(\mathbf{r})$$
(3.27)

and introduce the Fock-matrix F (associated with the Fock-operator) with elements

$$F_{pq} = h_{pq} + \sum_{pq} \rho_{pq} \left(2D_{prqs} \pm D_{prsq} \right)$$
 (3.28)

We have here introduced a one-body matrix defined as

$$h_{pq} \equiv \langle p \mid h \mid q \rangle \tag{3.29}$$

a density matrix defined as 9

$$\rho_{pq} \equiv \sum_{i=1}^{\frac{N}{2}} C_{pi} C_{qi}^* \tag{3.31}$$

and an interaction-matrix D with elements

$$D_{pqrs} \equiv \langle pq \mid f_{12} \mid rs \rangle \tag{3.32}$$

for convenience. The implicit relabeling of $\chi_p(r) \to p$ is also present in the above expression for the Fock-matrix. The Hartree-Fock equations (equation 3.23) are then for the restricted case written as

$$FC_i = \varepsilon SC_i \tag{3.33}$$

with S being the overlap matrix with elements

$$S_{pq} \equiv \langle p \mid q \rangle \tag{3.34}$$

$$\sum_{i} |\phi_{i}\rangle \langle \psi_{i}| \tag{3.30}$$

which is in quantum mechanics defined as the so-called density matrix.

⁸This is specialised for a two-spin system. For a system with more spin-states one needs to either choose different spacial-orbitals or add more such orbitals which effectively changes the energy-levels.

⁹This is just the matrix formed by

3.7 Quantum Monte Carlo

Quantum Monte Carlo, or QMC is a method for solving Schrödinger's equation by a statistical approach using so-called *Markov Chain* simulations (also called random walk). The nature of the wave function at hand is fundamentally a statistical model defined on a large configuration space with small areas of densities. The Monte Carlo method is perfect for solving such a system because of the non-homogeneous distribution of calculation across the space. An standard approach with equal distribution of calculation would then be a waste of computation time.

We will in this chapter address the Metropolis algorithm which is used to create a Markov chain and derive the equations used in the variational method.

The chapter will use *Dirac Notation* [5] and all equations stated assume atomic units ($\hbar = m_e = e = 4\pi\varepsilon_0$) » REF HERE ATOMIC UNITS «.

3.7.1 The Variational Principle and Expectation Value of Energy

Given a Hamiltonian \hat{H} and a trial wave function $\Psi_T(\mathbf{R}; \boldsymbol{\alpha})$, the variational principle [5, 11] states that the expectation value of \hat{H}

$$E[\psi_T] = \left\langle \hat{H} \right\rangle = \frac{\left\langle \psi_T \middle| \hat{H} \middle| \psi_T \right\rangle}{\left\langle \Psi_T \middle| \Psi_T \right\rangle} \tag{3.35}$$

is an upper bound to the ground state energy

$$E_0 \le \left\langle \hat{H} \right\rangle \tag{3.36}$$

Now we can define our PDF as(see section 3.7.3 for a more detailed reasoning)

$$P(\mathbf{R}) \equiv \frac{|\psi_T|^2}{\langle \Psi_T | \Psi_T \rangle} \tag{3.37}$$

and with a new quantity

$$E_L(\mathbf{R}; \boldsymbol{\alpha}) \equiv \frac{1}{\Psi_T(\mathbf{R}; \boldsymbol{\alpha})} \hat{H} \Psi_T(\mathbf{R}; \boldsymbol{\alpha})$$
(3.38)

the so-called local energy, we can rewrite equation 3.35 as

$$E[\Psi_T(\mathbf{R}; \boldsymbol{\alpha})] = \langle E_L \rangle \tag{3.39}$$

The idea now is to find the lowest possible energy by varying a set of parameters α . The expectation value itself is found with the Metropolis algorithm, see section 3.7.4.

An important property of the local energy is when we differentiate it with respect to one of the variational parameters $\{\alpha\}$ within the context of an expectation value. The result in this case would be zero. This is easily seen by direct calculation

$$\left\langle \frac{\partial E_L}{\partial \alpha} \right\rangle = \int \frac{|\psi|^2 \frac{\partial}{\partial \alpha} \left[\frac{1}{\psi} H \psi \right]}{\int |\psi|^2 dr} dr$$

$$= \int \frac{|\psi|^2 \frac{\psi^* \frac{\partial}{\partial \alpha} (H \psi) - (H \psi^*) \frac{\partial \psi}{\partial \alpha}}{|\psi|^2}}{\int |\psi|^2 dr} dr$$

$$= \int \frac{\psi^* H \frac{\partial \psi}{\partial \alpha} - \psi^* H \frac{\partial \psi}{\partial \alpha}}{\int |\psi|^2 dr} dr$$

$$= 0$$
(3.40)

We have used the fact that H is not dependant on any variational parameter and used the hermitian properties [5] of H to justify the movement of H within the integral.

This neat result presented in equation 3.40 will show its usefulness in the minimization when derivatives of the expectation value and variance comes into play since finding the derivative of the local energy would be much more of a hassle.¹⁰

¹⁰The differentiation of the wavefunction is enough to reduce the quality of life on its own!

3.7.2 The Trial Wave Function

The trial wave function is generally an arbitrary choice specific for the problem at hand, however it is in most cases favorable to expand the wave function in the eigenbasis (eigenstates) of the Hamiltonian since they form a complete set. This can be expressed as

$$\Psi_T(\mathbf{R}; \boldsymbol{\alpha}) = \sum_i C_i \psi_i(\mathbf{R}; \boldsymbol{\alpha})$$
(3.41)

where the ψ_i 's are the eigenstates of the Hamiltonian.

3.7.3 Use Diffusion Theory and the PDF

The statistics describing the expectation value states that any distribution may be applied in calculation, however if we take a close look at the local energy (equation 3.38) we see that for all distributions the local energy is not defined at the zeros of $\Psi_T(\mathbf{R}; \alpha)$. This means that an arbitrary PDF does not guarantee generation of points which makes $\psi_T = 0$. This can be overcome by introducing the square of the wave function to be defined as the distribution function as given in equation 3.37.

Because of the inherent statistical property of the wave function Quantum Mechanics can be modelled as a diffusion process, or more specifically, an *Isotropic Diffusion Process* which is essentially just a random walk model. Such a process is described by the Langevin equation with the corresponding Fokker-Planck equation describing the motion of the walkers(particles). See [6] for details.

3.7.4 Metropolis-Hastings Algorithm

The Metropolis algorithm bases itself on moves (also called transitions) as given in a Markov process. » REF THIS HERE «. This process is given by

$$w_i(t+\varepsilon) = \sum_j w_{i\to j} w_j(t) \tag{3.42}$$

where $w(j \to i)$ is just a transition from state j to state i. In order for the transition chain to reach a desired convergence while reversibility is kept, the well known condition for detailed balance must be fulfilled » REF HERE DETAILED BALANCE «. If detailed balance is true, then the following relations is true

$$w_i T_{i \to j} A_{i \to j} = w_j T_{j \to i} A_{j \to i} \Rightarrow \frac{w_i}{w_j} = \frac{T_{j \to i} A_{j \to i}}{T_{i \to j} A_{i \to j}}$$

$$(3.43)$$

We have here introduced two scenarios, the transition from configuration i to configuration j and the reverse process j to i. Solving the acceptance A for the two cases where the ratio in 3.43 is either 1(in which case the proposed state j is accepted and transitions is made) and when the ratio is less then 1. The Metropolis algorithm would in this case not automatically reject the latter case, but rather reject it with a proposed uniform probability. Introducing now a probability distribution function(PDF) P the acceptance A can be expressed as

$$A_{i \to j} = \min\left(\frac{P_{i \to j}}{P_{j \to i}} \frac{T_{i \to j}}{T_{j \to i}}, 1\right)$$

$$(3.44)$$

The so-called selection probability T is defined specifically for each problem. For our case the PDF in question is the absolute square of the wave function and the selection T is a Green's function derived in section 3.7.5. The algorithm itself would then be

- (i) Pick initial state *i* at random.
- (ii) Pick proposed state at random in accordance to $T_{j\rightarrow i}$.
- (iii) Accept state according to $A_{i \to i}$.
- (iv) Jump to step (ii) until a specified number of states have been generated.
- (v) Save the state i and jump to step (ii).

3.7.5 Importance Sampling

Using the selection probability mentioned in section 3.7.4 in the Metropolis algorithm is called an *Importance sampling* because it essentially makes the sampling more concentrated around areas where the PDF has large values.

In order to derive the form of this equation we use the statements presented in section 3.7.3. With

$$\frac{\partial r}{\partial t} = DF(r(t)) + \eta \tag{3.45}$$

the $Langevin\ equation\ *REF\ HERE\ LANGEVIN\ *$ and apply Euler's method (Euler-Maryama *REF *) and obtain the new positions

$$r^{\text{new}} = r^{\text{old}} + DF^{\text{old}}\Delta t + \xi \tag{3.46}$$

with the r's being the new and old positions in the Markov chain respectively and $F^{\rm old} = F(r^{\rm old})$. The quantity D is a diffusion therm equal to 1/2 due to the kinetic energy(remind of natural units) and ξ is a Gaussian distributed random number with 0 mean and $\sqrt{\Delta t}$ variance.

As mentioned a particle is described by the Fokker-Planck equation

$$\frac{\partial P}{\partial t} = \sum_{i} D \frac{\partial}{\partial x_{i}} \left(\frac{\partial}{\partial x_{i}} - \mathbf{F}_{i} \right) P \tag{3.47}$$

With P being the PDF (in current case the selection probability) and F being the drift therm. In order to achieve convergence, that is a stationary probability density, we need the left hand side to be zero in equation 3.47 giving the following equation

$$\frac{\partial^2 P}{\partial x_i^2} = P \frac{\partial \mathbf{F_i}}{\partial x_i} + \mathbf{F_i} \frac{\partial P}{\partial x_i}$$
(3.48)

with the drift-therm being on the form $\mathbf{F} = g(x)\partial P/\partial x$ we finally have that

$$F = \frac{2}{\psi_T} \nabla \psi_T \tag{3.49}$$

This is the so-called *Quantum Force* which pushes the walkers towards regions where the wave function is large.

The missing part now is to model the selection probability in equation 3.44. Inserting the quantum force into the Focker-Planck equation (equation 3.47 the following diffusion equation appears

$$\frac{\partial P}{\partial t} = -D\nabla^2 P \tag{3.50}$$

Applying the Fourier Transform to spatial coordinate r in equation 3.50 »REF THIS «, the equation is transformed to

$$\frac{\partial P(s,t)}{\partial t} = -Ds^2 P(s,t) \tag{3.51}$$

which has solution »REF THIS«

$$P(s, \Delta t) = P(s, 0)e^{Ds^2\Delta t}$$
(3.52)

Now we need to find the constant P(s, 0), and as is apparent with t = 0, we will make use of an initial condition. The initial positions are spread out from origin, that is $D\Delta t \mathbf{F}_j$. We can express this with a Dirac-delta function» REF THIS « giving

$$P(s,0) = \delta \left(\mathbf{r}_i - D\Delta t \mathbf{F}_i \right) \tag{3.53}$$

Inserting this into equation 3.52 and making the inverse Fourier transform yields the following Green's function as solution

$$P(a, b, \Delta t) = \frac{1}{\sqrt{4\pi D\Delta t}} \exp\left(-\frac{(\mathbf{r}_a - \mathbf{r}_b - D\Delta t \mathbf{F}_b)^2}{4D\Delta t}\right)$$
(3.54)

This expression is precisely the selection probability T, Notice also that the indices a and b label a state transition $a \to b$ and not particle indices. The full transition probability needs to be summed over for all particles since we only solved the Focker-Planck equation for 1 particle(since the other solutions are found in the exact same manner). For clarity the full selection probability ratio is

$$\frac{T(b, a, \Delta t)}{T(a, b, \Delta t)} = \sum_{i} \exp \left(-\frac{\left(\boldsymbol{r}_{i}^{(b)} - \boldsymbol{r}_{i}^{(a)} - D\Delta t \boldsymbol{F}_{i}^{(a)}\right)^{2}}{4D\Delta t} + \frac{\left(\boldsymbol{r}_{i}^{(a)} - \boldsymbol{r}_{i}^{(b)} - D\Delta t \boldsymbol{F}_{i}^{(b)}\right)^{2}}{4D\Delta t} \right)$$
(3.55)

We will in this chapter mentiond some popular basis-sets used in atomic physics and deepen into a particular set of functions called Gaussian Type orbitals and mimic the well known Hermite polynomials.

4.1Hermite Functions

Hermite functions are functions of the following form

$$\phi_n^a(\mathbf{r}) \equiv \prod_d N_d H_{n_d}(\sqrt{a}x_d) \exp\left(-\frac{a}{2}x_d^2\right)$$
(4.1)

with $r = \sum_{d} \mathbf{e}_{d} x_{d}$ and the sum over d being the sum over the number of dimensions and the H_{n} is the

Hermite polynomial of order n. The integer n_d is the order of the function while the parameter a is a scaling factor and N_d is a normalization factor. These functions show up as eigenfunctions for the quantum harmonic oscillator system[5] with the scaling parameter a equal to the oscillator frequency (ω) of the system.

The Hermite functions are orthogonal and give a good ansatz for the VMC method, see section 3.7, with the scaling parameter transformed with an additional variational parameter. The problem with these are however that the matrix-elements introduced in the Hartree-Fock method (section 3.5) are not solvable directly with the Hermite functions as basis functions. \gg REF FURTHER DISCUSSION «

4.2 Gaussian Type Orbitals

Gaussian Type Orbitals or GTO's are functions of the following form » REF GTO here «

$$G_n(\boldsymbol{\alpha}; \boldsymbol{r}, \boldsymbol{A}) \equiv \prod_d (x_d - A_d)^{n_d} e^{-\alpha_d (x_d - A_d)^2}$$
(4.2)

We call α for the scaling parameter and i for the order of the GTO. The variable A is where the function is centered. These are in many literatures referred to as primitive Gaussians and they alone make a poor approximation to the true wave function.

In atomic physics these functions are used directly as a linear combination referred to as contracted Gaussian functions. These are written as

$$G_k(x,A) \equiv \sum_{a_k=0}^{P} C_{a_k} G_{a_k}(\alpha_{a_k}; x, A)$$
 (4.3)

and are fitted to Slater-type orbitals, which are functions with decaying properties (present in atomic systems), or found by some variational method before-hand.

These functions are unfortunately not orthogonal, but they behave nicely in integrals and actually give an analytic expression for the interaction-elements mentioned in section 3.5. For this reason we will go forth and use the Gaussian contracted functions and actually fit them to Hermite functions.

 $^{^{1}}$ In quantum mechanics the number n is referred to as the principal quantum number and is associated with the energy of a given orbital(energy-level) of the system. $^2{\rm Meaning}$ we find the parameters $C_{a_k}.$ and α_{a_k}

4.2.1**Hermite-Gaussian Functions**

The GTO's described can be explicitly expressed in terms of so-called Hermite-Gaussian functions³ defined as

$$\Lambda_n(\boldsymbol{\alpha}; \boldsymbol{r}, \boldsymbol{A}) = \prod_d \left(\frac{\partial}{\partial A_d}\right)^{n_d} e^{\alpha_d (x_d - A_d)^2}$$
(4.4)

meaning

$$G_n(\boldsymbol{\alpha}; \boldsymbol{r}, \boldsymbol{A}) = \prod_d (2\alpha_d)^{-n_d} \left(\frac{\partial}{\partial A_d}\right)^{n_d} e^{\alpha_d (x_d - A_d)^2}$$
(4.5)

Some properties of the one-dimensional Hermite-Gaussians are as follows

$$\frac{\partial \Lambda_t}{\partial A_x} = \Lambda_{t+1}$$

$$\Lambda_{t+1} = \left(\frac{\partial}{\partial A_x}\right)^t \frac{\partial \Lambda_0}{\partial A_x} = 2\alpha(x - A_x) \left(\frac{\partial}{\partial A_x}\right)^t \Lambda_0$$

$$\Lambda_{t+1} = 2\alpha((x - A_x)\Lambda_t - t\Lambda_{t-1})$$

$$(x - A_x)\Lambda_t = \frac{1}{2\alpha}\Lambda_{t+1} + t\Lambda_{t-1}$$
(4.6)

4.3 Integral Elements

In the Hartree-Fock scheme described in chapter 3 we need to calculate the integrals which define the different matrix elements. The integrals to be found are of the following form

$$\langle i | j \rangle = \int_{-\infty}^{\infty} g_{i}(\alpha_{i}; r, A) g_{j}(\alpha_{j}; r, B) d\mathbf{r}$$

$$\langle i | x_{d}^{k} | j \rangle = \int_{-\infty}^{\infty} g_{i}(\alpha_{i}; r, A) r^{k} g_{j}(\alpha_{j}; r, B) d\mathbf{r}$$

$$\langle i | \nabla^{2} | j \rangle = \int_{-\infty}^{\infty} g_{i}(\alpha_{i}; r, A) \nabla^{2} g_{j}(\alpha_{j}; r, B) d\mathbf{r}$$

$$\langle i | \nabla^{2} | j \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g_{i}(\alpha_{i}; r, A) \nabla^{2} g_{j}(\alpha_{j}; r, B) d\mathbf{r}$$

$$\langle ij | \frac{1}{r} | kl \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g_{i}(\alpha_{i}; r_{1}, A) g_{j}(\alpha_{j}; r_{2}, B) \frac{1}{r_{12}} g_{k}(\alpha_{k}; r_{1}, C) g_{l}(\alpha_{l}; r_{2}, D) d\mathbf{r}_{1} d\mathbf{r}_{2}$$

$$(4.7)$$

where dr means integration over all dimensions and with the g's being the usual Hermite-Gaussians defined as

$$g_n(\alpha; \mathbf{r}, \mathbf{A}) = \prod_d (x_d - A_d)^{n_d} e^{-\alpha(x_d - A_d)^2}$$

$$\tag{4.8}$$

We will in this chapter limit ourselves to work with isotropic gaussians (meaning α_d is the same for all dimensions) as this will yield a simpler closed-form solution to the integrals. » Ref non-isotropic «. The approach given further follows closely the excellent text by Helgaker »REF«, who calculates the integral elements in 3 dimensions.

Before we throw ourselves out into the integrals, let us first express the Hermite-Gaussians in a more convenient way » REF HELGAKER «. The Gaussians can be expressed as

$$g_n(\alpha; \mathbf{r}, \mathbf{A}) = \prod_d \left(\frac{\partial}{\partial A_{x_d}}\right)^{n_d} e^{-\alpha(x_d - A_d)^2} = \prod_d \left(\frac{\partial}{\partial A_{x_d}}\right)^{n_d} g_0(\alpha; \mathbf{r}, \mathbf{A})$$
(4.9)

Since the derivatives are with respect to the center variables we may pull them out of the integration meaning the integrals will only be over s-type Gaussians, greatly simplifying the calculations. With the mentioned simplification in mind, the problem is to find a closed-form expression for the integrals over s-type Gaussians.

We also introduce the Gaussian product rule⁴ which basically states that the product of two Gaussian

³The reason for the name is that the polynomial factors generated by the differentiation are precisely the Hermite polynomials.

⁴Still in the isotropic case.

functions is just a third Gaussian centered between the center of the two. The expressions give

$$g_0(\alpha; \mathbf{r}, \mathbf{A})g_0(\beta; \mathbf{r}, \mathbf{B}) = K_{AB} \exp(-(\alpha + \beta)\mathbf{r}_s^2)$$
(4.10)

where

$$K_{AB} \equiv \exp\left(-\frac{\alpha\beta}{\alpha+\beta}R_{AB}^{2}\right)$$

$$R_{AB} = |\mathbf{A} - \mathbf{B}|$$

$$\mathbf{r}_{s} = \mathbf{r} - \mathbf{P}$$

$$\mathbf{P} = \frac{\alpha\mathbf{A} + \beta\mathbf{B}}{\alpha+\beta}$$

$$(4.11)$$

the vector \mathbf{r}_S is just somewhere between \mathbf{A} and \mathbf{B} (We will see that r_S disappears when the integration is done). The Gaussian product rule greatly simplifies the integral over two Gaussian functions since we can just pull K_{AB} out of the integration since it is a constant.

4.3.1 Overlap Distribution

An $overlap\ distribution$ is defined $*REF\ THIS$ « as the product between two Hermite-Gaussian functions, that is

$$\Omega_{ij} = \prod_{d} g_{i_d}(x_d, \alpha, A_d) g_{j_d}(x_d, \beta, B_d) = K_{A_d B_d} x_A^{i_d} x_B^{j_d} e^{-(\alpha + \beta) x_P^2}$$
(4.12)

with the Gaussian product rule, which is just another Gaussian function centered in P, but with the extra monomial factors in r-A and r-B. These factors are troublesome when integrating. With the motivation that Hermite-Gaussians make life simpler, we expand the overlap distribution in a Hermite-Gaussian basis. Following *REF HELGAKER* and working in one dimension(since Hermite-Gaussians can be split in each respective dimension) we have

$$\Omega_{ij}(\alpha, \beta, \mathbf{r}, \mathbf{A}, \mathbf{B}) = \sum_{t=0}^{i+j} E_t^{ij} g_t(\alpha, \beta, \mathbf{r}, \mathbf{P})$$
(4.13)

Again, we stress that the indices in equation 4.13 and the calculations further are in 1 dimension. Explicit expressions for the coefficients E_t^{ij} are difficult to derive, however a set of recurrence relations are possible to find using the properties of the Hermite-Gaussian functions. Consider firstly the incremented distribution

$$\Omega_{i+1,j} = \sum_{t=0}^{i+1+j} E_t^{i+1,j} g_t
= \left(x_P - \frac{\beta}{\alpha + \beta} (A_x - B_x) \right) \Omega_{ij}
= \sum_{t=0}^{i+j} E_t^{ij} \left(x_P - \frac{\beta}{\alpha + \beta} (A_x - B_x) \right) \Lambda_t
= \sum_{t=0}^{i+j} E_t^{ij} \left(\left(t \Lambda_{t-1} + \frac{1}{2(\alpha + \beta)} \Lambda_{t+1} \right) - \frac{\beta}{\alpha + \beta} (A_x - B_x) \Lambda_t \right)
= \sum_{t=0}^{i+j} \left((t+1) E_{t+1}^{ij} + \frac{1}{2(\alpha + \beta)} E_{j-1}^{ij} - \frac{\beta}{\alpha + \beta} (A_x - B_x) \right) \Lambda_t$$
(4.14)

Using the properties listed in equation 4.6 (mainly the recurrence) and the expansion equation 4.13. The incrementation of j follows the exact same derivation. The starting coefficient is thus

$$E_0^{00} = K_{AB} (4.15)$$

This is found by inserting in i = j = 0 into equation 4.14, realizing the exponental is the same for all i and j and using the orthogonality between the Hermite-Gaussians⁶. The recurrent coupled relations for

⁵The indices i and j are now in 1 dimension!

 $^{^6}$ Another way of expressing this statement is to say that each index t in the sum corresponds to an equation for E_t^{ij} .

the E's are

$$E_{t}^{i+1,j} = \frac{1}{2(\alpha+\beta)} E_{t-1}^{ij} - \frac{\beta}{\alpha+\beta} (A_{x} - B_{x}) E_{t}^{ij} + (t+1) E_{t+1}^{ij}$$

$$E_{t}^{i,j+1} = \frac{1}{2(\alpha+\beta)} E_{t-1}^{ij} - \frac{\alpha}{\alpha+\beta} (A_{x} - B_{x}) E_{t}^{ij} + (t+1) E_{t+1}^{ij}$$

$$(4.16)$$

The overlap distribution can with this be expanded in Hermite-Gaussian functions.

As mentioned, the whole point of using Hermite-Gaussian functions is because of the inherent definition with the derivative with respect to the centering (remember s-types). This means that for attaining the final expression we must in the end differentiate the expansion coefficients. We state here the coefficients differentiated with respect to the difference variable $Q_x = A_x - B_x$

$$\begin{split} E_{0}^{00;n+1} &= -\frac{2\alpha\beta}{\alpha+\beta} \left(Q_{x} E_{0}^{00;n} + n E_{0}^{00;n-1} \right) \\ E_{t}^{i+1,j;n} &= \frac{1}{2(\alpha+\beta)} E_{t-1}^{ij;n} - \frac{\beta}{\alpha+\beta} \left(Q_{x} E_{t}^{ij;n} + n E_{t}^{ij;n-1} \right) + (t+1) E_{t+1}^{ij;n} \\ E_{t}^{i,j+1;n} &= \frac{1}{2(\alpha+\beta)} E_{t-1}^{ij;n} - \frac{\alpha}{\alpha+\beta} \left(Q_{x} E_{t}^{ij;n} + n E_{t}^{ij;n-1} \right) + (t+1) E_{t+1}^{ij;n} \\ E_{t}^{ij;n} &\equiv \frac{\partial^{n} E_{t}^{ij}}{\partial Q_{x}^{n}} \end{split} \tag{4.17}$$

Notice that these expressions are just the same relations as for the coefficients, but with an extra factor in the middle.

4.3.2 Overlap Integral

With The simplification to s-types and the product rule, the integration may begin. Starting with the overlap $\langle i | j \rangle$ and using equation 4.13^7

$$\langle i | j \rangle = \int_{-\infty}^{\infty} \Omega_{ij}(\alpha_p, \beta_p, \mathbf{r}, \mathbf{A}, \mathbf{B}) d\mathbf{r}$$

$$= \sum_{p}^{i+j} E_p^{ij} \int_{-\infty}^{\infty} g_p(\alpha, \beta, \mathbf{r}, \mathbf{P}) d\mathbf{r}$$

$$= \sum_{p}^{i+j} E_p^{ij} \int_{-\infty}^{\infty} (\mathbf{r} - \mathbf{P})^p e^{-(\alpha_p + \beta_p)(\mathbf{r} - \mathbf{P})^2} d\mathbf{r}$$

$$= \sum_{p}^{i+j} E_p^{ij} \left(\frac{((-1)^p - 1) \Gamma(\frac{p+1}{2})}{2(\alpha_p + \beta_p)^{\frac{p+1}{2}}} \right)^d$$
(4.18)

The power d comes from splitting the integral into the d dimensions. Also using the *multi-index notation* (section A.3)⁸ and expanding

$$E_n^{ab} = \prod_d E_{n_d}^{a_d b_d} \tag{4.19}$$

Such that the coefficients are all just products over coefficients in each dimension. A substitution in each dimension (i.e $u = x - P_x$) is also used. Notice in addition that the scaling factors α and β are specific for each p because of the overlap expansion.

 $^{^7}$ Also using the following integral $\int\limits_{-\infty}^{\infty} {\rm e}^{-\lambda x^2} = \sqrt{\frac{\pi}{\lambda}}, \quad \lambda > 0.$ »REF ROTTMANN«

⁸The power d also means that with the multi-index notation the entire expression in the paranthesis are to be calculated for each dimension in p and then multiplied together.

4.3.3 Potential Integral

The second integral with the x_d^k part shows up in the external potential part of the Hamiltonian and again with the Gaussian product rule the expression gives

$$\langle i | x_d^k | j \rangle = \int_{-\infty}^{\infty} x_d^k \Omega_{ij}(\alpha_p, \beta_p, \mathbf{r}, \mathbf{A}, \mathbf{B}) d\mathbf{r}$$

$$= \sum_{p}^{i+j} E_p^{ij} \int_{-\infty}^{\infty} x_d^k (\mathbf{r} - \mathbf{P})^p e^{-(\alpha_p + \beta_p)(\mathbf{r} - \mathbf{P}_p)^2} d\mathbf{r}$$

$$= \sum_{p}^{i+j} E_p^{ij} \left(\frac{((-1)^p - 1) \Gamma\left(\frac{p+1}{2}\right)}{2(\alpha_p + \beta_p)^{\frac{p+1}{2}}} \right)^{D-1} \int_{-\infty}^{\infty} (u + P_d)^k \exp\left(-(\alpha_p + \beta_p)u^2\right) du$$

$$= \sum_{p}^{i+j} E_p^{ij} \left(\frac{((-1)^p - 1) \Gamma\left(\frac{p+1}{2}\right)}{2(\alpha_p + \beta_p)^{\frac{p+1}{2}}} \right)^{D-1} \sum_{l=0}^{k} \binom{k}{l} P_d^{k-l} \int_{-\infty}^{\infty} u^l \exp\left(-(\alpha_p + \beta_p)u^2\right) du$$

$$= \sum_{p}^{i+j} E_p^{ij} \left(\frac{((-1)^p - 1) \Gamma\left(\frac{p+1}{2}\right)}{2(\alpha_p + \beta_p)^{\frac{p+1}{2}}} \right)^{D-1} \sum_{l=0}^{k} \binom{k}{l} \frac{P_d^{k-l}}{2(\alpha_p + \beta_p)^{\frac{l}{2}}} \left((-1)^l + 1\right) \Gamma\left(\frac{l+1}{2}\right)$$

$$(4.20)$$

The integrals are split in each dimension and the dimensions not equal to $d(\ln x_d^k)$ are pulled out and the approach in equation 4.18 is applied. The integral over dimension d is then substituted with $u = x_d + P_d$. In line four $(u + P_d)^k$ is rewritten with the binomial expansion⁹.

4.3.4 Laplacian Integral

The third integral with the Laplacian operator arises in the kinetic part of the Hamiltonian. This integral can be expressed in terms of equation 4.18, the overlap integral, however the Laplacian applied to a Hermite-Gaussian has to be calculated first

$$\nabla^{2} g_{i}(\alpha; \boldsymbol{r}, \boldsymbol{A}) = \sum_{d} \frac{\partial^{2}}{\partial x_{d}^{2}} \left(\prod_{d'} (x - A_{d'})_{d'}^{i_{d'}} \exp\left(-\alpha (x_{d'} - A_{d'})^{2}\right) \right)
= \sum_{d} \prod_{d' \neq d} g_{i,d'} \frac{\partial^{2}}{\partial x_{d}^{2}} \left((x_{d} - A_{d})^{i_{d}} \exp\left(-\alpha (x_{d} - A_{d})^{2}\right) \right)
= \sum_{d} \prod_{d' \neq d} g_{i,d'} g_{i,d} \left(4\alpha^{2} (x_{d} - A_{d})^{i_{d}+2} - 2\alpha (2i_{d}+1) (x_{d} - A_{d})^{i_{d}} + i_{d} (i_{d}-1) (x_{d} - A_{d})^{i_{d}-2} \right)
= g_{i} \sum_{d} \left(4\alpha^{2} (x_{d} - A_{d})^{i_{d}+2} - 2\alpha (2i_{d}+1) (x_{d} - A_{d})^{i_{d}} + i_{d} (i_{d}-1) (x_{d} - A_{d})^{i_{d}-2} \right)$$

$$(4.21)$$

Now for the integral we have

$$\langle i | \nabla^{2} | j \rangle = \int_{-\infty}^{\infty} g_{i}(\alpha; \boldsymbol{r}, \boldsymbol{A}) \nabla^{2} g_{j}(\beta; \boldsymbol{r}, \boldsymbol{B}) d\boldsymbol{r}$$

$$= \sum_{d} \prod_{d' \neq d} \langle i_{d'} | \sigma_{d'} (S_{d}(\beta; x - B_{d})) | j_{d'} \rangle$$
(4.22)

with

$$S_{d}(\alpha; x_{d} - A_{d}) \equiv \left(4\alpha^{2} (x_{d} - A_{d})^{i_{d}+2} - 2\alpha (2i_{d}+1) (x_{d} - A_{d})^{i_{d}} + i_{d} (i_{d}-1) (x_{d} - A_{d})^{i_{d}-2}\right)$$

$$\sigma_{d}(S_{d}) \equiv \begin{cases} 1, & d' \neq d \\ S_{d}, & d' = d \end{cases}$$
(4.23)

⁹The integral $\int_{-\infty}^{\infty} x^n e^{-ax^2} dx = \frac{1}{2}a^{-\frac{n}{2}}\Gamma\left(\frac{k+1}{2}\right)$, n > -1, n even, » REF THIS «< is used as well.

meaning the Laplacian integral can be expressed in terms of the overlap integrals $\langle i | j + 2 \rangle$, $\langle i | j \rangle$ and $\langle i | i - 2 \rangle^{10}$.

4.3.5 Coulomb Potential Integral

Lastly, the troublesome¹¹ Coulomb integral needs to be calculated. Due to the 1/r term we cannot split the integral in each respective dimension as previously. Before we approach the full Coulomb integral, lets calculate a simpler integral over a so-called *Coulomb Potential distribution*

$$\int_{-\infty}^{\infty} e^{-\alpha (\mathbf{r} - \mathbf{A})^2} \frac{1}{|\mathbf{r} - \mathbf{B}|} d\mathbf{r}$$
(4.24)

The calculation of this integral will be beneficial for the calculation of the Coulomb integral as we can reuse most of the tricks used. With equation 4.10, the Gaussian product rule, in mind. We rewrite the inverse term with

$$\int_{-\infty}^{\infty} e^{r_B^2 t^2} dt = \frac{\sqrt{\pi}}{r_B} \Rightarrow \frac{1}{r_B} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{r_B^2 t^2} dt$$

$$(4.25)$$

The Coulomb potential integral is thus, with equation 4.10(again the product rule)

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\alpha(\mathbf{r} - \mathbf{A})^{2}} \frac{1}{|\mathbf{r} - \mathbf{B}|} d\mathbf{r} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\alpha(\mathbf{r} - \mathbf{A})^{2}} e^{t^{2}(\mathbf{r} - \mathbf{B})^{2}} d\mathbf{r} dt$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{\alpha t^{2}}{\alpha + t^{2}} (\mathbf{A} - \mathbf{B})^{2}} e^{-(\alpha + t^{2}) r_{S}^{2}} d\mathbf{r} dt$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \left(\frac{\pi}{\alpha + t^{2}}\right)^{\frac{d}{2}} e^{-\frac{\alpha t^{2}}{\alpha + t^{2}} (\mathbf{A} - \mathbf{B})^{2}} dt \tag{4.26}$$

The integral over t has to be addressed separately for two- and three dimensions. For the three-dimensional case the reader is referred to » REF HELGAKER «. Here we will derive a closed-form form expression for the two-dimensional case. First let us use the following substitution

$$u = \frac{t}{\sqrt{\alpha + t^2}}$$

$$t = u\sqrt{\frac{\alpha}{1 - u^2}}$$

$$\frac{du}{dt} = \frac{\alpha}{(\alpha + t^2)^{\frac{3}{2}}}$$

$$\lim_{t \to -\infty} u(t) = -1$$

$$\lim_{t \to \infty} u(t) = 1$$
(4.27)

The integrand (ignoring the exponential part) is then

$$\frac{\mathrm{d}t}{\alpha + t^2} = \frac{1}{\alpha + t^2} \frac{(\alpha + t^2)^{\frac{3}{2}}}{\alpha} \mathrm{d}u$$

$$= \frac{\sqrt{\alpha + t^2}}{\alpha} \mathrm{d}u$$

$$= \frac{t}{\alpha u} \mathrm{d}u$$

$$= \frac{1}{\alpha u} u \sqrt{\frac{\alpha}{1 - u^2}} \mathrm{d}u$$

$$= \frac{1}{\sqrt{\alpha}} \sqrt{\frac{1}{1 - u^2}} \mathrm{d}u$$
(4.28)

¹⁰Since $xg_i = g_{i+1}$ and $\frac{g_i}{x} = g_{i-1}$.

¹¹Damn inverse term prevents dimensional decomposition.

giving

$$I_{2D} = \sqrt{\frac{\pi}{\alpha}} \int_{-1}^{1} \frac{1}{\sqrt{1 - u^2}} e^{-\alpha u^2 |\mathbf{A} - \mathbf{B}|^2} du$$
 (4.29)

and for the three-dimensional case we have a simpler form(easily seen with the same substitution)

$$I_{3D} = \pi \int_{-1}^{1} e^{-\alpha u^2 |\mathbf{A} - \mathbf{B}|^2} du$$
 (4.30)

These integrals must be solved numerically. One can also rewrite the 2D-integral in terms of the Modified Bessel function of first kind by using $u^2 = 1/2(1 - \cos(\theta))$ REF WOLFRAM(MATHWORKS) «. The 3D-integral can be rewritten with an incomplete Gamma function »REF HELGAKER«. From equation 4.9, the integrals have to be differentiated in order to get the final closed form expressions, see section 4.3.7.

4.3.6 Coulomb Interaction Integral

In the previous section an expression for integral over a Coulomb potential was derived. Before we embark into handling the full Coulomb interaction integral, another exercise with simpler interaction integral is worthwhile. The integral in question is

$$I' = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\alpha (\mathbf{r'} - \mathbf{A})^2} e^{-\beta (\mathbf{r} - \mathbf{B})^2} \frac{1}{|\mathbf{r'} - \mathbf{r}|} d\mathbf{r} d\mathbf{r'}$$
(4.31)

This is an interaction between two distributions. Firstly, notice that we can rewrite the distribution centered in \mathbf{A} and the Coulomb interaction with the previously calculated Coulomb potential integral given in equation 4.26. Using I as a general label for equations 4.29 and 4.30 we have

$$I' = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\alpha (\mathbf{r'} - \mathbf{A})^{2}} e^{-\beta (\mathbf{r} - \mathbf{B})^{2}} \frac{1}{|\mathbf{r'} - \mathbf{r}|} d\mathbf{r} d\mathbf{r'}$$

$$= \int_{-\infty}^{\infty} I_{D}(\alpha; |\mathbf{r} - \mathbf{A}|) e^{-\beta (\mathbf{r} - \mathbf{B})^{2}} d\mathbf{r}$$
(4.32)

Inserting in the definition for u(the substitution in equation 4.27) and using the extremely useful Gaussian product rule for the product between the distribution centered in \mathbf{B} and the exponential factor in I(which is labelled the same for both the two- and three dimensional case) is

$$e^{-\alpha u^{2}(\mathbf{r}-\mathbf{A})^{2}}e^{-\beta(\mathbf{r}-\mathbf{B})^{2}} = e^{-(\alpha u^{2}+\beta)\mathbf{r}_{S}^{2}}e^{-\frac{\alpha u^{2}\beta}{\alpha u^{2}+\beta}(\mathbf{A}-\mathbf{B})^{2}}$$
(4.33)

Inserting this into equation 4.32 with

$$v \equiv \begin{cases} \sqrt{\frac{\pi}{\alpha}} \sqrt{\frac{1}{1 - u^2}}, & 2D \\ \pi, & 3D \end{cases}$$
 (4.34)

we have

$$I' = \int_{-\infty}^{\infty} \int_{-1}^{1} v e^{-(\alpha u^2 + \beta) r s^2} e^{-\frac{\alpha u^2 \beta}{\alpha u^2 + \beta} (\mathbf{A} - \mathbf{B})^2} d\mathbf{r} du$$

$$= \int_{-1}^{1} v \left(\frac{\pi}{\alpha u^2 + \beta}\right)^{\frac{d}{2}} e^{-\frac{\alpha u^2 \beta}{\alpha u^2 + \beta} (\mathbf{A} - \mathbf{B})^2} du$$

$$(4.35)$$

Specializing to the two-dimensional case and substituting

$$v = u\sqrt{\frac{\alpha + \beta}{\alpha u^2 + \beta}}$$

$$\frac{\mathrm{d}v}{\mathrm{d}u} = \frac{\beta\sqrt{\alpha + \beta}}{(\alpha u^2 + \beta)^{3/2}}$$

$$u = v\sqrt{\frac{\beta}{\alpha + \beta - \alpha v^2}}$$

$$v(-1) = -1$$

$$v(1) = 1$$
(4.36)

The integrand is

$$\frac{1}{\sqrt{1-u^2}} \frac{1}{\alpha u^2 + \beta} du = \frac{1}{\sqrt{1-u^2}} \frac{1}{\alpha u^2 + \beta} \frac{(\alpha u^2 + \beta)^{3/2}}{\beta \sqrt{\alpha + \beta}} dv$$

$$= \frac{1}{\sqrt{1-u^2}} \frac{u}{\beta v} dv$$

$$= \sqrt{\frac{\alpha + \beta - \alpha v^2}{(\alpha + \beta)(1-v^2)}} \frac{1}{\beta v} v \sqrt{\frac{\beta}{\alpha + \beta - \alpha v^2}} dv$$

$$= \frac{1}{\sqrt{\beta(\alpha + \beta)}} \frac{1}{\sqrt{1-v^2}} dv$$
(4.37)

we have

$$I'_{\rm 2D} = \frac{\pi^{\frac{3}{2}}}{\sqrt{\alpha\beta(\alpha+\beta)}} \int_{-1}^{1} \frac{1}{\sqrt{1-v^2}} e^{-\frac{\alpha\beta}{(\alpha+\beta)}v^2(\mathbf{A}-\mathbf{B})^2} dv$$
 (4.38)

This expression will be of great use when calculating the final full interaction integral over the Coulomb distribution. The next section will derive the mentioned recurrence relation before the full Coulomb integral is calculated

4.3.7 Recurrence Relation

Following » REF HELGAKER «, we proceed with finding a similar recurrence relation for the derivatives. We define a function containing the integral which needs to be solved numerically

$$\zeta_n(x) \equiv \int_{-1}^{1} \frac{u^{2n}}{\sqrt{1 - u^2}} e^{-u^2 x} du$$

$$\frac{\partial \zeta_n}{\partial x} = -\zeta_{n+1}$$
(4.39)

The Coulomb potential integral is then, in terms of $\zeta_n(x)$

$$I_{\rm 2D} = \sqrt{\frac{\pi}{\alpha}} \zeta_0 \left(\alpha R_{AB}^2 \right) \tag{4.40}$$

and the first derivative with respect to A_x is

$$\frac{\partial I_{\text{2D}}}{\partial A_x} = \sqrt{\frac{\pi}{\alpha}} \frac{\partial}{\partial A_x} \zeta_0 \left(\alpha R_{AB}^2 \right)
= -2\sqrt{\alpha \pi} X_{AB} \zeta_1 \left(\alpha R_{AB}^2 \right)$$
(4.41)

With this we define an auxiliary function

$$\xi_{tu}^{n} = \left(\frac{\partial}{\partial A_{x}}\right)^{t} \left(\frac{\partial}{\partial A_{y}}\right)^{u} \xi_{00}^{n}$$

$$\xi_{00}^{n} = (-2)^{n} \alpha^{n - \frac{1}{2}} \zeta_{n} \left(\alpha R_{AB}^{2}\right)$$

$$(4.42)$$

and take a look at the incrementation of t

$$\xi_{t+1,u}^{n} = \left(\frac{\partial}{\partial A_{x}}\right)^{t} \left(\frac{\partial}{\partial A_{y}}\right)^{u} \frac{\partial \xi_{00}^{n}}{\partial A_{x}} \\
= \left(\frac{\partial}{\partial A_{x}}\right)^{t} X_{AB} \xi_{0u}^{n+1} \tag{4.43}$$

Using the commutator between $\partial_{A_m}^{t-12}$

$$\frac{\partial^{t}}{\partial A_{x}^{t}} X_{AB} = \left[\frac{\partial^{t}}{\partial A_{x}^{t}}, X_{AB} \right] + X_{AB} \frac{\partial^{t}}{\partial A_{x}^{t}}$$

$$= t \frac{\partial^{t-1}}{\partial A_{x}^{t-1}} + X_{AB} \frac{\partial^{t}}{\partial A_{x}^{t}}$$
(4.44)

the final form of equation 4.43 is^{13}

$$\xi_{t+1,u}^{n} = t\xi_{t-1,u}^{n+1} + X_{AB}\xi_{t,u}^{n+1}
\xi_{t,u+1}^{n} = u\xi_{t,u-1}^{n+1} + Y_{AB}\xi_{t,u}^{n+1}$$
(4.45)

With this all Hermite integrals of order $t + u \leq N$ can be calculated from ζ of order $n \leq N$, the only difference being X_{AB} and Y_{AB} . The Coulomb interaction integral (equation 4.38) follows this exact recurrence, but with a different proportionality factor $\alpha\beta/(\alpha+\beta)$. We will write it out for the sake of clarity

$$\frac{\partial I'_{2D}}{\partial A_x} = -\frac{2\alpha\beta}{\alpha + \beta} X_{AB} \zeta_1 \left(\frac{\alpha\beta}{\alpha + \beta} R_{AB}^2 \right)
\xi_{00}^n = \left(\frac{-2\alpha\beta}{\alpha + \beta} \right)^n \zeta_n \left(\frac{\alpha\beta}{\alpha + \beta} R_{AB}^2 \right)$$
(4.46)

Notice that the only difference between the obtained recurrence relations and the ones obtained by Helgaker » REF HELGAKER « is in equation 4.42 and equation 4.46. Other than this the incrementation of ζ_n gives the exact same X_{AB} (and similar for the other directions) as with the incomplete gamma function.

4.3.8Coulomb Distribution Integral

With the derived expressions for the Coulomb potential integral the full two-body distribution can be treated. The expression with the simplification in equation 4.9 gives

$$\left\langle ij \left| \frac{1}{r_{12}} \right| kl \right\rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Omega_{ik}(\boldsymbol{\alpha}, \boldsymbol{\gamma}, \boldsymbol{r_1}, \boldsymbol{A}, \boldsymbol{C}) \frac{1}{|\boldsymbol{r_1} - \boldsymbol{r_2}|} \Omega_{jl}(\boldsymbol{\beta}, \boldsymbol{\delta}, \boldsymbol{r_2}, \boldsymbol{B}, \boldsymbol{D}) d\boldsymbol{r_1} d\boldsymbol{r_2}$$

$$= \sum_{pq}^{i+k, j+l} E_p^{ik} E_q^{jl} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{g_p(\alpha + \gamma, \boldsymbol{r_1}, \boldsymbol{P}) g_q(\beta + \delta, \boldsymbol{r_2}, \boldsymbol{Q})}{|\boldsymbol{r_1} - \boldsymbol{r_2}|} d\boldsymbol{r_1} d\boldsymbol{r_2}$$

$$= \frac{\pi^{d-\frac{1}{2}}}{\sqrt{(\alpha + \gamma)(\beta + \delta)(\alpha + \gamma + \beta + \delta)}} \sum_{pq}^{i+k, j+l} E_p^{ik} E_q^{jl} (-1)^q \xi_{p+q} \left(\frac{(\alpha + \gamma)(\beta + \delta)}{\alpha + \gamma + \beta + \delta}, \boldsymbol{R_{S_1 S_2}} \right)$$

$$(4.47)$$

Where we have used the multi-index¹⁴ notation for p, q, i, k, j, and l equation 4.19 and used equation 4.38 to arrive at the final step. An additional simplification due to the fact that ζ_n is only dependant on the relative distance of the centers is also used, for the x-coordinate it is stated as

$$\left(\frac{\partial}{\partial P_x}\right)^{p_x} \left(\frac{\partial}{\partial Q_x}\right)^{q_x} = (-1)^{p_x + q_x} \left(\frac{\partial}{\partial P_x}\right)^{p_x + q_x} \tag{4.48}$$

and the same for the other directions.

 $^{^{12}\}partial_x^t = \frac{\partial^t}{\partial x^t}$ $^{13} \text{The incrementation of } u \text{ is derived in the exact same manner as with } t.$

¹⁴Essentially just expanding an index in each dimension, for instance $i = (i_x, i_y, i_z)$ with corresponding $p = (p_x, p_y, p_z)$ with each index inside the tuple running to each respective index, meaning for instance $p_x = 0$ to i_x and so on.

Numerical Optimization

In the Variational Monte Carlo method in section 3.7 the essential point was to vary a set of variational parameters in order to reach an eigenbasis which gives the ground-state energy of the Hamiltonian in question. There are many was one could approach this. One way could be to wildly guess random parameters and hope for the best, obviously this is a poor approach. The more sound approach would be to optimize(minimization int the VMC case) the wavefunction using methods from a popular field in mathematics called numerical optimization. The two methods used in this thesis was the Conjugate Gradient method and a version of the Adaptive Stochastic Gradient Descent. The explaining of the approaches for numerical optimization is only explained briefly. For a better mathematical explanation see » REF THESE «

5.1 The Optimization Problem

We will explain the general approach for minimizing a multi-variate function and set the terminology in this section.

The problem in question is the following. Given a continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$, for what set of parameters $\{\alpha\}_{k=1}^n$ is

$$\nabla_{\alpha} f = \mathbf{0} \tag{5.1}$$

fulfilled¹. This means we seek a point α_m in the real where variation of the value of f is zero. In reality the condition in equation 5.1 is only approximate, that is we terminate the search for a minimum if we reached a point where the absolute value of f is within a threshold ϵ

$$|\nabla_{\alpha} f| \le \epsilon \tag{5.2}$$

One might at this point have the question, wouldn't the condition presented in equation 5.2 (and equation 5.1 be valid for a maximum as well? The answer is yes, it would. The simple fix to this is to define the *search direction*, more precisely the sign of the search direction. The next section explains this in better detail.

5.2 Gradient Descent

We defined the optimization problem and defined a simple condition for the extremal and mentioned a search direction in the previous section. A search direction in our context is a direction $p \in \mathbb{R}^n$ which points towards α_m . To find p we use the well known second derivative test to determine the curvature of f. This, mentioned qualitatively, means that the gradient of f any point α_i points towards an extremal and that the negative gradient (negative sign) points towards the minimum and the positive gradient points towards the maximum. This observation gives a simple rule for finding α_m . Start out with blindly guessing a point α_0 and keep updating the parameters according to the following recursive rule

$$\alpha_n = \alpha_{n-1} - \gamma \nabla_{\alpha} f \tag{5.3}$$

 $^{^{1}}abla_{lpha}=\sum_{k}m{e}_{k}rac{\partial}{\partiallpha_{k}}$ with $m{e}_{k}\in\mathbb{R}^{n}$ a unit vector along direction k.

and terminate the search when equation 5.2 is fulfilled. \gg REF AND MAKE ALGORITHM « 2

This method of finding the minimum is known as the method of $Gradient\ Descent$ and is the simplest method for finding a minimum. The problem however is stability, the termination condition is firstly not optimal » REF THIS « and the step-size γ is a constant which can give allot of oscillations around minimum as the algorithm might get close to the minimum and then over-shoot and go past the minimum point, turn around(because the sign changes) and over-shoot again and then keep going. Many(seriously many) methods have been devised to account for these problems and other. We will contain ourselves with the methods mentioned in the introduction of this chapter.

5.3 Adaptive Stochastic Gradient Descent

Along with the limitations of the method of gradient descent, the Adaptive Stochastic Gradient Descent tries to account for those, but also takes into account the variance introduced by the stochastic nature of the probability distribution. As such many variations of the method have been proven to be popular among problems in which the function to be minimized is an expectation value. The method used in this thesis is the one described in [18]. We will give a summary of the method here, for a more detailed outline and description see [18].

Like the gradient descent method the adaptive stochastic gradient descent method updates the parameters in the same manner as in equation 5.3, the difference however is that the step γ is changed for each iteration in accordance to the following

$$\gamma_{n+1} = \frac{a}{t_{n+1} + A}$$

$$t_{n+1} = \max(t_n + g(X_n), 0)$$

$$X_n = -\nabla f_n \cdot \nabla f_{n+1}$$

$$g(x) = g_{\min} + \frac{g_{\max} - g_{\min}}{1 - \frac{g_{\max}}{g_{\min}}} e^{-\frac{x}{\omega}}$$

$$(5.4)$$

The whole idea of the method is that the form of g and the accumulative combination of gradient estimations for each step the total error would tend quickly to zero, meaning the central element (namely the gradient) in the minimization is well behaving.

The main concern with the method is the convergence, although the error in the gradient estimations tend towards zero, the step-sizes themselves will also be quite small after some iterations. Fro this reason we use the adaptive method with a quasi-Newton method. This means that we start with a random guess at the parameters and keep iterating with the quasi-Newton method until the norm of the gradient is below some threshold, at which the adaptive method is applied from that point and onward till convergence is reached.

5.4 Newtons-Method and Quasi-Newton Methods

We will here explain briefly Newton's method and Quasi-Newton methods as the ideas presented will be used in the next section.

Newton's method[12](or Newton-Raphson method) is originally a method for finding the zeros of a function. The rule states that given a real-valued function $f: \mathbb{R} \to \mathbb{R}$ and an initial guess $x \in \mathbb{R}$ for the zero-point, recursively find better approximations for the zero by

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \tag{5.5}$$

This method would then within a number iterations find the zero that is closest to x_0 .

²Change the negative sign in front of the gradient if a maximum is desired.

For the optimization problem the condition for a point to be an extremal is equation 5.1 meaning, again, that one needs to find the zero of the derivative. Newton's method in this case would be

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}, \quad n \ge 0$$
 (5.6)

Of course in the real world one might work with multi-variate function, not to worry as Newton's method for optimization problems in the multi-variate case with $f: \mathbb{R}^n \to \mathbb{R}$ (still real-valued) is

$$\boldsymbol{x}_{n+1} = \boldsymbol{x}_n - |\boldsymbol{H}f(\boldsymbol{x}_n)|^{-1} \dot{\nabla}f(\boldsymbol{x}_n), \quad n \ge 0$$
(5.7)

where \mathbf{H} is the Hessian matrix. One might also introduce a step-length multiplied to the Hessian part in order to induce conditions[14] which ensure some stability of the method.

Newton's method, in most cases, converges faster (less iterations) towards the minimum than gradient descent making it favorable, however the full Hessian has to be known. This matrix (or its inverse) is in many cases too expensive to compute or difficult to express in closed-form. In these cases the class of methods knows as Quasi-Newton methods can be utilized.

Quasi-Newton methods give an estimate of the inverse Hessian by using the first derivatives. Introduce the Taylor approximation of f around an iteration point x_n

$$f(\boldsymbol{x}_k + \boldsymbol{s}) \approx f(\boldsymbol{x}_k) + (\nabla f(\boldsymbol{x}_k))^T \boldsymbol{s} + \frac{1}{2} \boldsymbol{s}^T \boldsymbol{H} \boldsymbol{s}$$
 (5.8)

differentiate with respect to the change \boldsymbol{s}

$$\nabla_s f(x_k + s) \approx \nabla f(x_k) + Hs \tag{5.9}$$

and introduce the condition in equation 5.1 and set this gradient to zero to find the change s

$$\boldsymbol{s} = -\boldsymbol{H}^{-1} \nabla f(\boldsymbol{x}_k) \tag{5.10}$$

Another way to determine this particular form for s is to say that the approximation to the Hessian must satisfy the *secant equation* which is equation 5.9. The updating rule for x_n is then given by

$$\boldsymbol{x}_{n+1} = \boldsymbol{x}_n - \gamma_k \boldsymbol{H}_n^{-1} \nabla f(\boldsymbol{x}_n) \tag{5.11}$$

where γ_k is again introduced to give some stability conditions. The important part of this equation is the index on the inverse Hessian. This is essentially just a relabeling at the change s is technically applied for each iterate x_n . Note also that s takes the role of the search direction in this case. The algorithm is then to make an initial guess on the Hessian(usually just the identity matrix) and then use a type of updating formula that finds a new approximation for the Hessian at each step n. There are a number of these updating formulas, just to mention some we have DFP, SR1, McCormick, Boryden, BFGS and more. The one we will mention in more detail is the BFGS method, but a main formula that shows up in all of the updating methods is the *Sherman-Morrison formula* for the inverse. This basically means that the need calculation of the inverse matrix is completely removed.

With the mention expression we can devise an algorithm similar to Newton's method for finding the minimum x_m . Starting with an initial guess for the inverse Hessian H_0^{-1} and minimum x_0 with the condition that H_0^{-1} is positive-definite (identity matrix a nice start if nothing else is known) proceed with

- $\boldsymbol{x}_{n+1} = \boldsymbol{x}_n \gamma_n \boldsymbol{H}_0^{-1} \nabla f(\boldsymbol{x}_n)$
- Calculate the gradient $\nabla f(\boldsymbol{x}_{n+1})$
- Use $\nabla f(\boldsymbol{x}_{n+1})$ and $f(\boldsymbol{x}_n)$ in a updating formula of choice to find $\boldsymbol{H}_{n+1}^{-1}$

5.5 **BFGS**

In the previous section we gave an outline for Newton's method and the class known as Quasi-Newton methods. The latter used an approximation for the inverse of the Hessian matrix, which was updated at each step in the algorithm. For the sake of brevity only conditions employed to arrive at the expression for the updating formula and the formula itself is given here, for more see [2, 7, 8, 14, 16]. The conditions enforced is

- Secant condition: $\boldsymbol{H}_{n+1}\boldsymbol{s}_n = \nabla f(\boldsymbol{x}_{n+1}) \nabla f(\boldsymbol{x}_n)$
- Strong curvature: $\mathbf{s}_k^T \cdot (f(\mathbf{x}_{n+1}) \nabla f(\mathbf{x}_n)) > 0$

and the resulting formula states with $y_k = f(x_{n+1}) - \nabla f(x_n)$

$$\boldsymbol{H}_{n+1} = \boldsymbol{H}_n + \frac{\boldsymbol{y}_n \boldsymbol{y}_n^T}{\boldsymbol{y}_n^T \boldsymbol{s}_n} - \frac{\boldsymbol{H}_n \boldsymbol{s}_n \boldsymbol{s}_n^T \boldsymbol{H}_n}{\boldsymbol{s}_n^T \boldsymbol{H}_k \boldsymbol{s}_n}$$
(5.12)

With the Sherman-Morrison formula [17] the inverse is updated with

$$\boldsymbol{H}_{n+1}^{-1} = \boldsymbol{H}_{n}^{-1} + \frac{\left(\boldsymbol{s}_{n}^{T} \boldsymbol{y}_{n} + \boldsymbol{y}_{n}^{T} \boldsymbol{H}_{n}^{-1} \boldsymbol{y}_{n}\right) \left(\boldsymbol{s}_{n} \boldsymbol{s}_{n}^{T}\right)}{\left(\boldsymbol{s}_{n}^{T} \boldsymbol{y}_{n}\right)^{2}} - \frac{\boldsymbol{H}_{n}^{-1} \boldsymbol{y}_{n} \boldsymbol{s}_{n}^{T} + \boldsymbol{s}_{n} \boldsymbol{y}_{n}^{T} \boldsymbol{H}_{n}^{-1}}{\boldsymbol{s}_{n}^{T} \boldsymbol{y}_{n}}$$
(5.13)

5.6 Linesearch methods

In the optimization methods described in section 5.4 There was one important part neglected, namely how to find the step-length γ , introduced in the updating formula. As it is, one can choose it in any manner desired, however a class if one-dimensional minimization methods knows as lineasearch methods are often used to get an (usually rough) estimate for the step length at each iteration in the optimization. These methods all have some conditions for stability and convergence as an innate property in itself, meaning the validity of the step length is betterIt's actually present.... Some popular linesearch methods are backtracking linesearch, Hager-Zhang method, Strong Wolfe conditions and the More-Thuente linesearch method. The one used here is the latter. For an exact derivation and explanation of linesearch methods in general see [14].

The idea of linesearch methods is to solve a one-dimensional problem of minimizing

$$\phi(\alpha) = f(\alpha \boldsymbol{p}_k + \boldsymbol{x}_k) \tag{5.14}$$

with $f: \mathbb{R}^n \to \mathbb{R}$ and p_k is a search direction as described with the quasi-Newton methods and x_k is the current iterate(point) in the minimization. Notice also that

$$\frac{\partial \phi}{\partial \alpha} = \boldsymbol{p}_k \cdot \nabla f(\alpha \boldsymbol{p}_k + \boldsymbol{x}_k) \tag{5.15}$$

by the chain-rule and the gradient on the right hand side is over the parameters x_k . One usually perform this linesearch loosely since the search direction is not necessarily directly pointing towards the minimum, meaning we only search for a step length that gives a *sufficient decrease* in the function value f.

Implementation

This chapter will explain the code used in the thesis in detail. The code itself i given in \times REF GITHUB REPO «. General information of the usage of packages are given in appendix \times REF APPENDIX « while the structure and workflow of the code is given here. Theory backing the implementation is given in \times REF THEORY CHAPTER «

- 6.1 Variational Monte Carlo
- 6.2 Hartree-Fock
- 6.2.1 Parallelization of Two-Body Matrix
- 6.3 Minimization
- 6.3.1 More-Thuente Linesearch
- 6.3.2 Conjugate Gradient

BFGS

6.4 Verification

Appendix A

A.1 Lagrange Multiplier Method

See [3, 4]. The optimization method of Lagrange multipliers maximizes(or minimizes) a function $f: \mathbb{R}^N \to \mathbb{R}$ with a constraint $g: \mathbb{R}^N \to \mathbb{R}$ We assume that f and g have continuous first derivatives in all variables(continuous first partial derivatives).

Given the above we can define a so-called Lagrangian \mathcal{L}

$$\mathcal{L}[x_1, \dots, x_N, \lambda_1, \dots, \lambda_M] = f(x_1, \dots, x_N) - \lambda g(x_1, \dots, x_N)$$
(A.1)

where the λ is called a Lagrange-multiplier. We now state that if $f(x_1^0, \ldots, x_N^0)$ is a maxima of $f(x_1, \ldots, x_N)$ then there exists a Lagrange-multiplier λ_0 such that $(x_1^0, \ldots, x_N^0, \lambda_0)$ is a stationary point for the Lagrangian. This then yields the N+1 Lagrange-equations

$$\sum_{i=1}^{N} \frac{\partial \mathcal{L}}{\partial x_i} + \frac{\partial \mathcal{L}}{\partial \lambda} = 0 \tag{A.2}$$

to be solved for x_1, \ldots, x_N and λ .

A.2 Interaction-Term in Fock-Operator

Introducing the so-called permutation operator P which interchanges the labels of particles meaning we can define

$$A \equiv \frac{1}{N!} \sum_{p} (-1)^p P \tag{A.3}$$

the so-called antisymmetrization operator. This operator has the following traits

- The Hamiltonian H and A commute since the Hamiltonian is invariant under permutation.
- A applied on itself (that is A^2) is equal to itself since permuting a permuted state reproduces the state.

We can now express our Slater Ψ_T in terms of A as

$$\Psi_T = \sqrt{N!} A \prod_{i,j} \psi_{ij} \tag{A.4}$$

where $\psi_{ij} = \psi_j(\mathbf{r}_i)$ is element i, j of the Slater matrix (the matrix associated with the Slater determinant Ψ_T).

The interaction part of H is then

$$\langle \Psi_T | H_I | \Psi_T \rangle = N! \prod_{i,j} \langle \psi_{ij} | AH_I A | \psi_{ij} \rangle \tag{A.5}$$

The interaction \mathcal{H}_I and \mathcal{A} commute since \mathcal{A} commutes with \mathcal{H} giving

$$AH_I A |\psi_{ij}\rangle = \frac{1}{N!^2} \sum_{i < j} \sum_p (-1)^{2p} f_{ij} P |\psi_{ij}\rangle$$
 (A.6)

$$= \frac{1}{N!^2} \sum_{i < j} f_{ij} (1 - P_{ij}) |\psi_{ij}\rangle \tag{A.7}$$

A.3

The factor $1 - P_{ij}$ comes from the fact that contributions with $i \neq j$ vanishes due to orthogonality when P is applied. The final expression for the interaction term is thus

$$\langle \Psi_T | H_I | \Psi_T \rangle = \sum_{i < j} \prod_{k,l} \left[\langle \psi_{kl} | f_{ij} | \psi_{kl} \rangle - \langle \psi_{kl} | f_{ij} | \psi_{lk} \rangle \right] \tag{A.8}$$

Writing out the product and realizing the double summation over pairs of states we end up with

$$\langle \Psi_T | H_I | \Psi_T \rangle = \frac{1}{2} \sum_{i,j} \left[\langle \psi_{ij} \psi_{ji} | f_{ij} | \psi_{ij} \psi_{ji} \rangle - \langle \psi_{ij} \psi_{ji} | f_{ij} | \psi_{ji} \psi_{ij} \rangle \right]$$
(A.9)

More comprehensive details and derivations are given in [9, 19].

A.3 Multi-Index Notation

» REF THIS « This section will give a brief overlook of a notation which compresses indices running in similar fashion, the so-called $multi-index\ notation$. We will make use of this to reduce indices in each dimension down to one.

The rules are states as, given a n-tuple $(x_1, \ldots x_n)$ over any field \mathbb{F} (real, complex, etc.), a multi index is defined to be

$$i = (n_1, \dots i_n) \in \mathbb{Z}_+^n \tag{A.10}$$

with expansions

$$|i| = i_1 + \dots + i_n$$

 $i! = i_1! \dots i_n!$
 $x^i = x_1^{i_1} \dots x_n^{i_n} \in \mathbb{F}[x]$
 $i \pm j = (i_1 \pm j_1, \dots, i_n + j_n) \in \mathbb{Z}$
(A.11)

In essence the notation just wraps the notion of element-wise operations into one index variable.

Appendix B

B.1 Integral-elements in Least-Squares Fitting

The integral elements are as follows

$$X_{ij} = \int g_i(x)g_j(x)dx$$

$$= \int x^i N_i N_j e^{\frac{\omega}{2}x^2} x^j e^{\frac{\omega}{2}x^2} dx$$
(B.1)

and

$$b_{i} = \int g_{i}(x)f(x)dx$$

$$= \int N_{i}x^{i}e^{\frac{\omega}{2}x^{2}} \left(2^{n}n!\sqrt{\frac{\pi}{\omega}}\right)^{-\frac{1}{2}} H_{n}(\sqrt{\omega}x)e^{\frac{\omega}{2}x^{2}}dx$$
(B.2)

We dont contract the expressions further in favor of reusing the normalization factors.

B.2 Derivative of Energy and Variance

The derivative with respect to a general variational parameter α of the energy expectation value $\langle E \rangle$ is

$$\frac{\partial \langle E \rangle}{\partial \alpha} = 2 \left\langle \frac{E_L}{\psi} \frac{\partial \psi}{\partial \alpha} \right\rangle + \left\langle \frac{\partial E_L}{\partial \alpha} \right\rangle - 2 \left\langle \frac{\langle E \rangle}{\psi} \frac{\partial \psi}{\partial \alpha} \right\rangle
= 2 \left(\left\langle \frac{E_L}{\psi} \frac{\partial \psi}{\partial \alpha} \right\rangle - \langle E \rangle \left\langle \frac{1}{\psi} \frac{\partial \psi}{\partial \alpha} \right\rangle \right)$$
(B.3)

by using the hermiticity of the Hamiltonian (contained in the local energy E_L). The derivative of the variance is » REF THIS STARTER «

$$\frac{\partial \sigma^{2}}{\partial \alpha} = 2 \left\langle \left(\frac{\partial E_{L}}{\partial \alpha} - \frac{\partial \langle E \rangle}{\partial \alpha} \right) (E_{L} - \langle E \rangle) \right\rangle
= 2 \left(\left\langle E_{L} \frac{\partial E_{L}}{\partial \alpha} \right\rangle - \left\langle E \right\rangle \left\langle \frac{\partial E_{L}}{\partial \alpha} \right\rangle + \left\langle \frac{\partial \langle E \rangle}{\partial \alpha} (\langle E \rangle - E_{L}) \right\rangle \right)
= 2 \left\langle E \right\rangle \left(\frac{\partial \langle E \rangle}{\partial \alpha} - 1 \right)$$
(B.4)

Bibliography

- [1] John Dirk Walecka Alexander L. Fetter. Quantum theory of many-particle systems. First Edition. Pure & Applied Physics. Mcgraw-Hill College, 1971. ISBN: 9780070206533.
- [2] C. G. Broyden. "The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations". In: *IMA Journal of Applied Mathematics* 6.1 (1970), pp. 76–90. DOI: 10.1093/imamat/6.1.76.
- [3] Bruce van Brunt. The calculus of variations. 1st ed. Universitext. Springer, 2004. ISBN: 9780387402475.
- [4] Bernard Dacorogna. *Introduction to the calculus of variations*. Imperial College Press; Distributed by World Scientific, 2004. ISBN: 9781860945083.
- [5] Griffiths D.J. Introduction to quantum mechanics. 2nd Edition. Pearson PH, 2005. ISBN: 0131911759.
- [6] Nicola Bruti-Liberati (auth.) Eckhard Platen. Numerical Solution of Stochastic Differential Equations with Jumps in Finance. 1st ed. Stochastic Modelling and Applied Probability 64. Springer-Verlag Berlin Heidelberg, 2010. ISBN: 9783642120572.
- [7] R. Fletcher. "A new approach to variable metric algorithms". In: *The Computer Journal* 13.3 (1970), pp. 317–322. DOI: 10.1093/comjnl/13.3.317.
- [8] D. Goldfarb. "A Family of Variable-Metric Methods Derived by Variational Means". In: *Math. Comp.* 24 (1970), pp. 23–26. DOI: https://doi.org/10.1090/S0025-5718-1970-0258249-6.
- [9] Morten Hjort-Jensen. Computational Physics: Hartree-Fock methods and introduction to Many-Body Theory. https://www.github.com/CompPhysics/ComputationalPhysics2/blob/gh-pages/doc/pub/basicMB/pdf. 2017.
- [10] Morten Hjort-Jensen. Computational Physics: Variational Monte Carlo methods. https://www.github.com/CompPhysics/ComputationalPhysics2/blob/gh-pages/doc/pub/vmc/pdf. 2017.
- [11] Henri Orland John W. Negele. *Quantum many-particle systems*. Advanced BOOK Classics. Perseus BOOKs, 1998. ISBN: 9780738200521.
- [12] David C. Lay. Linear Algebra and Its Applications (4th Edition). 4th. Addison Wesley / Pearson, 2011. ISBN: 9780321385178.
- [13] Jorge J. Moré and David J. Thuente. "Line Search Algorithms with Guaranteed Sufficient Decrease". In: *ACM Trans. Math. Softw.* 20.3 (Sept. 1994), pp. 286–307. ISSN: 0098-3500. DOI: 10.1145/192115. 192132.
- [14] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Second Edition. Springer-Verlag New York, 2006. ISBN: 978-1-4939-3711-0. DOI: 10.1007/978-0-387-40065-5.
- [15] James P. Sethna. Statistical mechanics: Entropy, Order parameters and complexity. illustrated edition. Oxford Master Series in Physics. Oxford University Press, USA, 2006. ISBN: 9780198566779.
- [16] D. F. Shanno. "Conditioning of quasi-Newton methods for function minimization". In: Math. Comp., Mathematics of Computation 24.0274029 (1970), pp. 647–656. ISSN: 0025-5718. DOI: 10.2307/2004840.
- [17] Jack Sherman and Winifred J. Morrison. "Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix". In: *The Annals of Mathematical Statistics* 21 (1950). DOI: 10.1214/aoms/1177729893.
- [18] Mariaus Staring Stefan Klein Josien P.W Pluim and Max A. Viergever. "Adaptive Stochastic Gradient Descent Optimisation for Image Registration". In: (2009). DOI: 10.1007/s11263-008-0168-y.

B.2 B

[19]~ J. M. Thijssen. Computational~Physics. 2nd Edition. Cambridge University Press, 2013. ISBN: 9781107677135.

 $[20] \quad \text{Dimitri Van Neck Willem H. Dickhoff. } \textit{Many-body theory exposed!: propagator description of quantum mechanics in many-body systems. World Scientific, 2005. ISBN: 981256294X.}$