Lecture 12

Instructor: Subrahmanyam Kalyanasundaram

26th September 2019

Plan

- Complete the proof of correctness of Dijkstra's
- Minimum spanning trees

Weighted Graphs

A weighted graph is a graph G = (V, E) with a weight function:

$$w: E \to \mathbb{Z}$$

The weight of an edge $(u, v) \in E$ is w((u, v)).

For this lecture, we look at directed weighted graphs with weight function $w: E \to \mathbb{Z}^+$.

Shortest path in weighted graphs

Input:

- Graph G = (V, E)
- ▶ Weight function $w: E \to \mathbb{Z}^+$
- ▶ Source vertex $s \in V$.

Goal: Compute the shortest path from *s* to all reachable vertices.

Dijkstra's Algorithm Pseudocode

Algorithm 1 Dijkstra's algorithm

```
1: For all u \in V, d[u] \leftarrow \infty, \pi[u] \leftarrow \text{NIL}
 2: d[s] \leftarrow 0
 3: Initialize min-priority queue Q \leftarrow V
 4: S \leftarrow \emptyset
 5: while Q \neq \emptyset do
     u \leftarrow \mathsf{Extract-Min}(Q)
 7: S \leftarrow S \cup \{u\}
    for each v \in \mathcal{N}(u) do
 8:
            if d[u] + w(u, v) < d[v] then
               d[v] \leftarrow d[u] + w(u, v)
10:
               DECREASE-KEY(v, d[v]).
11:
               \pi[v] \leftarrow u
12:
            end if
13:
        end for
14:
15: end while
```


Dijkstra's algorithm

"It is the algorithm for the shortest path, which I designed in about twenty minutes. One morning I was shopping in Amsterdam with my young fiancée, and tired, we sat down on the café terrace to drink a cup of coffee and I was just thinking about whether I could do this, and I then designed the algorithm for the shortest path. As I said, it was a twenty-minute invention."

-Edsger Dijkstra

Dijkstra's Algorithm Pseudocode

Algorithm 2 Dijkstra's algorithm

```
1: For all u \in V, d[u] \leftarrow \infty, \pi[u] \leftarrow \text{NIL}
 2: d[s] \leftarrow 0
 3: Initialize min-priority queue Q \leftarrow V
 4: S \leftarrow \emptyset
 5: while Q \neq \emptyset do
     u \leftarrow \mathsf{Extract-Min}(Q)
 7: S \leftarrow S \cup \{u\}
    for each v \in \mathcal{N}(u) do
 8:
            if d[u] + w(u, v) < d[v] then
               d[v] \leftarrow d[u] + w(u, v)
10:
               DECREASE-KEY(v, d[v]).
11:
               \pi[v] \leftarrow u
12:
            end if
13:
        end for
14:
15: end while
```

Time Complexity of Dijkstra's

- ▶ Initialization: O(|V|)
- ▶ We need to do |V| Extract-Min's and |E| Decrease-Key's
- ▶ Depends on the implementation of the priority queue.

Time Complexity of Dijkstra's

- ▶ Initialization: O(|V|)
- ▶ We need to do |V| Extract-Min's and |E| Decrease-Key's
- Depends on the implementation of the priority queue.
- Array: Extract-Min takes O(|V|) and Decrease-Key takes O(1)
- ▶ Heap: Extract-Min and Decrease-Key both take $O(\log |V|)$ We need to maintain pointers from vertices to heap entries and vice versa.
- ► Fibonacci Heap: Decrease-Key takes O(1) amortized time

Theorem

At the end of Dijkstra's algorithm, we have:

$$\forall u \in V, d[u] = \delta(s, u)$$

Proof

Loop Invariant:

At the start of each iteration, we have $\forall v \in S, d[v] = \delta(s, v)$.

Init: At the start of the first iteration, $S = \emptyset$.

Maintenance: Let $u \in V$ be the first vertex for which $d[u] \neq \delta(s, u)$.

If *u* is not reachable from *s*, then $d[u] = \delta(s, u) = \infty$, so *u* must be reachable. Why?

If u = s, then the claim holds. So assume $u \neq s$.

Take a shortest path σ from s to u.

Let y be the first vertex on σ that is outside S.

Let $x \in S$ be the vertex on σ just before y.

So the path σ looks like:

$$s \stackrel{\sigma_1}{\leadsto} x \rightarrow y \stackrel{\sigma_2}{\leadsto} u$$

Claim 1: $d[y] = \delta(s, y)$.

$$\sigma = s \stackrel{\sigma_1}{\leadsto} x \to y \stackrel{\sigma_2}{\leadsto} u$$

Claim 1: $d[y] = \delta(s, y)$.

Since y appears before u in σ , we have $\delta(s, y) \leq \delta(s, u)$.

Claim 2: $d[u] \geq \delta(s, u)$.

Thus:

$$d[y] = \delta(s, y) \le \delta(s, u) \le d[u]$$

Although y and u were in $V \setminus S$, Extract-Min returned u. This means $d[u] \leq d[y]$. Hence:

$$d[y] = \delta(s, y) = \delta(s, u) = d[u]$$

Claim 1

$$\sigma = s \stackrel{\sigma_1}{\leadsto} x \rightarrow y \stackrel{\sigma_2}{\leadsto} u$$

We have $d[y] = \delta(s, y)$

Proof

From loop invariant, for all vertices that were added to S before u, we computed the correct shortest distance.

So $d[x] = \delta(s, x)$.

We updated d[y] when we added x to S.

Now we note a *convergence* property:

Let $s \rightsquigarrow x \rightarrow y$ be a shortest path, and $d[x] = \delta(s, x)$.

Then, relaxing the edge (x, y) sets $d[y] = \delta(s, y)$.

Claim 2

$$d[u] \geq \delta(s, u)$$

Proof

Induction on number of times d is updated after initialization.

Base case: Immediately after init, $\forall v, d[v] = \infty$ except d[s] = 0. So the claim holds.

Step: Assume claim for up to k many updates on d.

The value of d[u] is updated when:

- We visit a vertex v and there exists edge (v, u).
- ► d[u] > d[v] + w((v, u)).

Claim 2

$$d[u] \geq \delta(s, u)$$

Proof

Induction on number of times d is updated after initialization. **Base case:** Immediately after init, $\forall v, d[v] = \infty$ except d[s] = 0

0. So the claim holds.

Step: Assume claim for up to k many updates on d.

- The value of d[u] is updated when:
 - We visit a vertex v and there exists edge (v, u).
 - | d[u] > d[v] + w((v, u)).

The new d[u] = d[v] + w((v, u)).

The hypothesis holds for vertex $v: d[v] \ge \delta(s, v)$. So:

$$d[u] = d[v] + w((u,v)) \ge \delta(s,v) + w((u,v)) \ge \delta(s,u)$$

Spanning Trees

Spanning Tree

Definition: An undirected graph *G* is *connected* if every vertex is reachable from every other vertex.

A graph T = (V, E') is a spanning tree of an undirected connected graph G = (V, E) if:

- $ightharpoonup E' \subseteq E$.
- ► *T* is a *tree*. i.e., *T* is an acyclic and connected.

Informally: A spanning tree for *G* is a tree that can be found inside *G* which *spans* all vertices of *G*.

What are the possible spanning trees for this graph?

Minimum Spanning Tree Problem

Input

- ▶ Undirected connected graph G = (V, E)
- ▶ Weight function $w: E \to \mathbb{Z}^+$

Goal

Compute a spanning tree for *G* with minimum total weight.

Kruskal's Algorithm (informal)

- Sort the edges in nondecreasing order by weight
- ▶ Set $T = \emptyset$
- ► Choose the lightest edge and add it to *T* as long as it does not create a cycle in *T*
- Terminate when T is spanning

Kruskal's algorthm example

Kruskal's Algorithm Pseudocode

Algorithm 3 Kruskal's algorithm

```
1: A = \emptyset
2: for each vertex v \in V do
      Make-Set(v)
4: end for
5: Sort the edges in E into nondecreasing order by weight w
6: for each edge (u, v) \in E taken in nondecreasing order by weight do
7:
      if FIND-SET(u) \neq FIND-SET(v) then
         A = A \cup \{(u, v)\}
         Union(u, v)
9:
      end if
10:
11: end for
12: Return A
```