Small Test Grid Search Solution

This is the example vignette for function: **snw_vfi_main_grid_search** from the **PrjOptiSNW Package.** This function solves for policy function using grid search. Small Solution Analysis. Small Solution Analysis, husband 5 shocks, wife 1 shocks.

Test SNW_VFI_MAIN_GRID_SEARCH Defaults Small

Call the function with defaults parameters.

```
mp_param = snw_mp_param('default_small');
[V VFI,ap VFI,cons VFI,mp valpol more] = snw vfi main grid search(mp param);
SNW VFI MAIN GRID SEARCH: Finished Age Group:18 of 18
SNW_VFI_MAIN_GRID_SEARCH: Finished Age Group:17 of 18
SNW VFI MAIN GRID SEARCH: Finished Age Group:16 of 18
SNW VFI MAIN GRID SEARCH: Finished Age Group:15 of 18
SNW VFI_MAIN_GRID_SEARCH: Finished Age Group:14 of 18
SNW_VFI_MAIN_GRID_SEARCH: Finished Age Group:13 of 18
SNW_VFI_MAIN_GRID_SEARCH: Finished Age Group:12 of 18
SNW_VFI_MAIN_GRID_SEARCH: Finished Age Group:11 of 18
SNW_VFI_MAIN_GRID_SEARCH: Finished Age Group:10 of 18
SNW_VFI_MAIN_GRID_SEARCH: Finished Age Group:9 of 18
SNW VFI MAIN GRID SEARCH: Finished Age Group:8 of 18
SNW_VFI_MAIN_GRID_SEARCH: Finished Age Group:7 of 18
SNW VFI MAIN GRID SEARCH: Finished Age Group:6 of 18
SNW VFI MAIN GRID SEARCH: Finished Age Group:5 of 18
SNW_VFI_MAIN_GRID_SEARCH: Finished Age Group:4 of 18
SNW VFI MAIN GRID SEARCH: Finished Age Group:3 of 18
SNW_VFI_MAIN_GRID_SEARCH: Finished Age Group:2 of 18
SNW_VFI_MAIN_GRID_SEARCH: Finished Age Group:1 of 18
Elapsed time is 5.586732 seconds.
Completed SNW_VFI_MAIN_GRID_SEARCH; SNW_MP_PARAM=default_small; SNW_MP_CONTROL=default_base
```

Small Param Results Define Frames

Define the matrix dimensions names and dimension vector values. Policy and Value Functions share the same ND dimensional structure.

```
% Grids:
age_grid = [19, 22:5:97, 100];
agrid = mp_param('agrid')';
eta_H_grid = mp_param('eta_H_grid')';
eta_S_grid = mp_param('eta_S_grid')';
ar_st_eta_HS_grid = string(cellstr([num2str(eta_H_grid', 'hz=%3.2f;'), num2str(eta_S_grid', 'wz=du_grid = [0,1];
marry_grid = [0,1];
kids_grid = (1:1:mp_param('n_kidsgrid'))';
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
cl_mp_datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, {'age', age_grid});
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, {'savings', agrid});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, {'Hshock', eta_H_grid});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'marry', marry_grid});
```

```
cl mp datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids grid});
```

Analyze Savings and Shocks

First, analyze Savings Levels and Shocks, Aggregate Over All Others, and do various other calculations.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
```

MEAN(VAL(A,Z)), MEAN(AP(A,Z)), MEAN(C(A,Z))

Tabulate value and policies along savings and shocks:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar permute = [1,4,5,6,3,2];
% Value Function
tb_az_v = ff_summ_nd_array("MEAN(VAL(A,Z))", V_VFI, true, ["mean"], 4, 1, cl_mp_datasetdesc, ar
mean_Hshock_0
                                              mean_Hshock__0_91976
                        mean_Hshock__1_8395
                                                                                     mean_Hshock_0_91976
                                                                                                           mea
   group
             savings
                              -17.394
                                                                        -4.4582
     1
                                                      -9.166
                                                                                           -1.6255
     2
            0.0097656
                              -16.968
                                                     -9.0297
                                                                         -4.383
                                                                                           -1.5651
     3
             0.078125
                              -15.017
                                                     -8.2656
                                                                        -3.9672
                                                                                           -1.2425
     4
                                                                                          -0.73314
              0.26367
                              -11.958
                                                     -6.9235
                                                                        -3.2427
     5
               0.625
                               -8.614
                                                     -5.2917
                                                                        -2.3144
                                                                                          -0.18776
     6
               1.2207
                              -5.6438
                                                     -3.6124
                                                                        -1.3711
                                                                                           0.33039
     7
               2.1094
                              -3.2727
                                                     -2.0767
                                                                                            0.8309
                                                                       -0.51202
     8
               3.3496
                              -1.4899
                                                    -0.79383
                                                                        0.23904
                                                                                            1.2876
     9
                   5
                             -0.18672
                                                     0.21807
                                                                        0.87882
                                                                                            1.6686
    10
              7.1191
                              0.75696
                                                     0.99324
                                                                         1.4131
                                                                                            1.9855
    11
               9.7656
                               1.4411
                                                      1.5836
                                                                         1.8494
                                                                                            2.2522
    12
               12.998
                               1.9409
                                                      2.0281
                                                                         2.1992
                                                                                            2.4786
    13
               16.875
                               2.3126
                                                      2.3665
                                                                         2.4779
                                                                                            2.6713
    14
               21.455
                               2.5903
                                                      2.6255
                                                                         2.6981
                                                                                            2.8331
               26.797
                               2.8009
    15
                                                      2.8241
                                                                         2.8737
                                                                                             2.968
               32.959
    16
                               2.9638
                                                      2.9792
                                                                         3.0129
                                                                                            3.0797
    17
                  40
                               3.0907
                                                      3.1014
                                                                         3.1247
                                                                                            3.1725
               47.979
                               3.1906
                                                      3.1981
    18
                                                                         3.2147
                                                                                            3.2492
    19
               56.953
                               3.2703
                                                      3.2756
                                                                         3.2877
                                                                                            3.3131
    20
               66.982
                               3.3347
                                                      3.3386
                                                                         3.3473
                                                                                            3.3663
    21
               78.125
                               3.3872
                                                        3.39
                                                                         3.3965
                                                                                            3.4106
    22
               90.439
                               3.4302
                                                      3.4324
                                                                         3.4373
                                                                                             3.448
    23
               103.98
                               3.4659
                                                      3.4675
                                                                         3.4712
                                                                                            3.4795
    24
               118.82
                               3.4957
                                                       3.497
                                                                         3.4998
                                                                                            3.5062
    25
                  135
                               3.5208
                                                      3.5218
                                                                          3.524
                                                                                             3.529
% Aprime Choice
```

tb_az_ap = ff_summ_nd_array("MEAN(AP(A,Z))", ap_VFI, true, ["mean"], 4, 1, cl_mp_datasetdesc, a

xxx MEAN(AF	<pre>MEAN(AP(A,Z)) xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</pre>			mean_Hshock_0	mean_Hshock_0_91976	
1	0	1	1.1111	1.5694	2.5926	

2	0.0097656	1.0463	1.1852	1.6343	2.6065
3	0.078125	1.7917	1.9815	2.1806	2.8519
4	0.26367	2.9306	3.0231	3.2083	3.6065
5	0.625	4.0509	4.1296	4.2454	4.5185
6	1.2207	5.1296	5.2176	5.2639	5.3889
7	2.1094	6.1065	6.1852	6.2361	6.2454
8	3.3496	7.0324	7.0648	7.1574	7.1481
9	5	7.9259	7.963	8.037	8.0648
10	7.1191	8.8519	8.875	8.9306	9.0093
11	9.7656	9.7824	9.7963	9.8472	9.9259
12	12.998	10.593	10.625	10.639	10.722
13	16.875	11.481	11.491	11.537	11.597
14	21.455	12.407	12.407	12.426	12.486
15	26.797	13.282	13.296	13.306	13.356
16	32.959	14.116	14.12	14.153	14.19
17	40	14.981	14.981	14.991	15.032
18	47.979	15.88	15.88	15.884	15.912
19	56.953	16.75	16.769	16.782	16.796
20	66.982	17.681	17.685	17.699	17.722
21	78.125	18.495	18.5	18.509	18.551
22	90.439	19.338	19.338	19.347	19.37
23	103.98	20.25	20.264	20.269	20.278
24	118.82	21.097	21.097	21.13	21.144
25	135	21.963	21.968	21.977	21.995

% Consumption Choices

tb_az_c = ff_summ_nd_array("MEAN(C(A,Z))", cons_VFI, true, ["mean"], 4, 1, cl_mp_datasetdesc, a

group	savings	mean_Hshock1_8395	mean_Hshock0_91976	mean_Hshock_0	mean_Hshock_0_91970
1	0	0.31042	0.44057	0.71427	1.2574
2	0.0097656	0.3215	0.4505	0.72262	1.2662
3	0.078125	0.38861	0.50889	0.7788	1.329
4	0.26367	0.51067	0.62506	0.88538	1.4326
5	0.625	0.686	0.78667	1.0455	1.6042
6	1.2207	0.9128	0.98784	1.2592	1.8667
7	2.1094	1.2523	1.3082	1.5599	2.2603
8	3.3496	1.7189	1.8031	1.9833	2.7116
9	5	2.3724	2.4345	2.6057	3.2749
10	7.1191	3.1536	3.2269	3.4012	3.948
11	9.7656	4.0911	4.176	4.3322	4.8361
12	12.998	5.4598	5.4763	5.7216	6.1634
13	16.875	6.9683	7.0533	7.1634	7.6403
14	21.455	8.5994	8.7201	8.9245	9.3583
15	26.797	10.632	10.678	10.918	11.355
16	32.959	13.22	13.312	13.401	13.881
17	40	16.041	16.161	16.385	16.799
18	47.979	18.978	19.099	19.35	19.836
19	56.953	22.58	22.534	22.697	23.281
20	66.982	26.096	26.175	26.329	26.804
21	78.125	30.85	30.924	31.108	31.367
22	90.439	35.936	36.056	36.235	36.674
23	103.98	40.993	40.925	41.151	41.738
24	118.82	47.079	47.199	47.025	47.532
25	135	53.5	53.545	53.689	54.103

Graph Mean Values:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(value(a,z)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(value(a,z))'};
ff_graph_grid((tb_az_v{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Graph Mean Savings Choices:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(APRIME(a,z)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(APRIME(a,z))'};
ff_graph_grid((tb_az_ap{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Graph Mean Consumption:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(C(a,z)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(C(a,z))'};
ff_graph_grid((tb_az_c{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Analyze Kids and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["k0M0", "K1M0", "K2M0", "k0M1", "K1M1", "K2M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = { 'o', 'd', 's', 'o', 'd', 's'};
mp_support_graph('cl_colors') = {'red', 'red', 'red', 'blue', 'blue', 'blue'};
```

MEAN(VAL(KM,J)), MEAN(AP(KM,J)), MEAN(C(KM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,4,1,6,5];
% Value Function
tb_az_v = ff_summ_nd_array("MEAN(VAL(KM,J))", V_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc, a
group
           kids
                  marry
                          mean_age_19
                                       mean_age_22
                                                    mean_age_27
                                                                 mean_age_32
                                                                              mean_age_37
                                                                                           mean_age_42
     1
            1
                    0
                            1.4134
                                         1.6987
                                                      1.8877
                                                                   1.9428
                                                                                 1.9141
                                                                                              1.8282
     2
            2
                    0
                           -0.11224
                                         0.38086
                                                      0.75969
                                                                   0.96426
                                                                                 1.0617
                                                                                              1.0785
                                                                   0.20487
     3
            3
                    0
                           -0.88391
                                        -0.40356
                                                      -0.0148
                                                                                0.31925
                                                                                             0.35976
     4
            1
                    1
                            1.9721
                                          2.188
                                                      2.3283
                                                                   2.3713
                                                                                 2.3479
                                                                                              2.2743
     5
            2
                           0.97335
                   1
                                         1.2928
                                                      1.5422
                                                                   1.6825
                                                                                 1.7486
                                                                                              1.7527
                           0.52474
                                        0.81914
                                                      1.0571
                                                                    1.1945
                                                                                 1.2619
                                                                                              1.277
% Aprime Choice
tb_az_ap = ff_summ_nd_array("MEAN(AP(KM,J))", ap_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
group
           kids
                                       mean age 22
                                                    mean age 27
                                                                 mean age 32
                                                                              mean age 37
                                                                                           mean age 42
                  marry
                          mean age 19
                           12.948
                                         12.92
                                                      13.052
                                                                   13.152
                                                                                 13.22
                                                                                             13.264
     1
            1
                    0
     2
            2
                    0
                           12.924
                                         12.88
                                                      13.004
                                                                   13.092
                                                                                13.156
                                                                                              13.1
     3
            3
                   0
                                        12.848
                                                      12.972
                                                                   13.08
                                                                                13.104
                                                                                              13.02
                           12.856
     4
            1
                                                                   13.072
                                                                                13.132
                                                                                             13.184
                   1
                            12.86
                                        12.856
                                                      12.972
     5
            2
                                                      12.956
                                                                   13.028
                                                                                13.096
                                                                                             13.124
                   1
                           12.876
                                         12.82
     6
            3
                    1
                             12.8
                                        12.784
                                                      12.912
                                                                   12.984
                                                                                13.056
                                                                                             13.032
% Consumption Choices
```

```
tb_az_c = ff_summ_nd_array("MEAN(C(KM,J))", cons_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
```

XXX	x MEAN(C(KM,J))		XXXXXXXX	XXXXXXXXXXXXXXXX	XXXX				
	group	kids 	marry	mean_age_19 	mean_age_22 	mean_age_27 	mean_age_32	mean_age_37	mean_age_42
	1	1	0	6.6347	6.7448	6.9773	7.1425	7.2321	7.2843
	2	2	0	6.6476	6.7581	6.9907	7.1658	7.2726	8.8505
	3	3	0	6.6714	6.7696	7.0001	7.1702	7.8471	9.5071
	4	1	1	6.885	7.0096	7.2673	7.4592	7.5807	7.6332
	5	2	1	6.856	6.987	7.2319	7.4245	7.5495	7.8087
	6	3	1	6.8708	6.9855	7.2175	7.4148	7.5369	8.689

Graph Mean Values:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(value(KM,J)), a=age, z=kids+marry'};
mp_support_graph('cl_st_ytitle') = {'MEAN(value(KM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Savings Choices:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(APRIME(KM,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(APRIME(KM,J))'};
ff_graph_grid((tb_az_ap{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(C(KM,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(C(KM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Analyze Education and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["E0M0", "E1M0", "E0M1", "E1M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {'*', 'p', '*', 'p' };
mp_support_graph('cl_colors') = {'red', 'red', 'blue', 'blue'};
```

MEAN(VAL(EKM,J)), MEAN(AP(EKM,J)), MEAN(C(EKM,J))

Tabulate value and policies:

```
% Set
 % NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
 ar_permute = [2,3,6,1,4,5];
 % Value Function
 tb_az_v = ff_summ_nd_array("MEAN(VAL(EKM,J))", V_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
 group
             edu
                   marry
                           mean_age_19
                                         mean_age_22
                                                      mean_age_27
                                                                    mean_age_32
                                                                                 mean_age_37
                                                                                               mean_age_42
      1
              0
                     0
                            -0.27576
                                           0.0889
                                                        0.38392
                                                                      0.55759
                                                                                   0.6492
                                                                                                 0.67483
       2
              1
                     0
                             0.55395
                                           1.0284
                                                         1.3712
                                                                      1.5171
                                                                                   1.5475
                                                                                                 1.5028
       3
                     1
                             0.78157
                                           1.0452
                                                          1.254
                                                                      1.3788
                                                                                   1.4422
                                                                                                  1.453
       4
                              1.5319
                                           1.8215
                                                         2.0311
                                                                        2.12
                                                                                   2.1301
                                                                                                  2.083
 % Aprime Choice
 tb az ap = ff summ nd array("MEAN(AP(EKM,J))", ap VFI, true, ["mean"], 3, 1, cl mp datasetdesc
 group
             edu
                   marry
                           mean_age_19
                                         mean_age_22
                                                      mean_age_27
                                                                    mean_age_32
                                                                                 mean_age_37
                                                                                               mean_age_42
       1
              0
                     0
                             12.989
                                           12.976
                                                        13.032
                                                                      13.091
                                                                                   13.125
                                                                                                 13.069
       2
              1
                     0
                             12.829
                                           12.789
                                                        12.987
                                                                      13.125
                                                                                   13.195
                                                                                                 13.187
       3
                     1
                             12.933
                                           12.923
                                                        12.976
                                                                      13.021
                                                                                   13.067
                                                                                                 13.075
                             12.757
                                           12.717
                                                        12.917
                                                                      13.035
                                                                                   13.123
                                                                                                 13.152
 % Consumption Choices
 tb_az_c = ff_summ_nd_array("MEAN(C(EKM,J))", cons_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
 xxx MEAN(C(EKM,J))
                    XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
     group
             edu
                   marry
                           mean_age_19
                                         mean_age_22
                                                      mean_age_27
                                                                    mean_age_32
                                                                                 mean_age_37
                                                                                               mean_age_42
      1
              0
                     0
                             6.6262
                                           6.6905
                                                        6.8287
                                                                      6.9345
                                                                                   7.2519
                                                                                                 8.4212
      2
              1
                     0
                             6.6762
                                           6.8246
                                                        7.1501
                                                                      7.3846
                                                                                   7.6493
                                                                                                 8.6734
                                           6.8929
      3
                                                                      7.1732
                                                                                    7.262
                                                                                                7.8099
              0
                     1
                             6.8114
                                                        7.0479
      4
              1
                             6.9297
                                           7.0952
                                                        7.4299
                                                                                   7.8494
                                                                                                 8.2774
                     1
                                                                      7.6925
Graph Mean Values:
 mp support graph('cl st graph title') = {'MEAN(value(EM,J)), a=age, z=kids+marry'};
```

```
mp_support_graph('cl_st_graph_title') = {'MEAN(value(EM,J)), a=age, z=kids+marry'};
mp_support_graph('cl_st_ytitle') = {'MEAN(value(EM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Savings Choices:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(APRIME(EK,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(APRIME(EK,J))'};
ff_graph_grid((tb_az_ap{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(C(EK,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(C(EK,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


