FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142 Listado 2 (Conjuntos)

- 1. Dados los conjuntos: $A = \{x \in \mathbb{R} : x^2 1 = 0\}, B = \{x \in \mathbb{R} : x + 1 \ge 2\}$ y $C = \{x \in \mathbb{R} : |x| \ge 2\}$. Determine: (En práctica)
 - a) $A \cap \mathbb{N}$, y $A^c \cap B$ b) |A| y $|A \cap C|$ c) $\mathcal{P}(A)$ d) $A \cap B$ y $B \cap C$ e) $A \times B$
- 2. Sea $A = \{\emptyset, \{1, 2\}, \{1\}, \{\emptyset\}, 1, \{2\}\}\$, determine si son válidas las siguientes afirmaciones. Justifique, en cada caso, su respuesta. (En práctica)
 - a) $1 \in A$ b) $2 \in A$ c) $\{2\} \in A$ d) $\{2\} \subseteq A$ e) $\emptyset \subseteq A \land \{\emptyset\} \in A$
 - f) $\{1, \{1\}\} \in \mathcal{P}(A) \land \{1, 2, \{1, 2\}\} \in \mathcal{P}(A)$ g) |A| = 7
- 3. Demuestre que:

(En práctica: g), i), j), k), y n))

 $A \cap B \subseteq A$ a)

- b) $(A-B) \cup (A \cap B) \cup (B-A) = A \cup B$

 $A \cap B = B \Leftrightarrow B \subseteq A$ c)

d) $(A - C) \cup (B - C) = (A \cup B) - C$

 $A - B = A \cap B^c$ e)

f) $(A - B) \cap (A - C) = A - (B \cup C)$

- $A = (A B) \cup (A \cap B)$
- h) $A \times (B \cup C) = (A \times B) \cup (A \times C)$

 $A \cap B^c = \emptyset \Leftrightarrow A \subseteq B$ i)

- j) $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- $A\subseteq B \,\Rightarrow\, \forall\, M\subseteq U\,:\, M\cap A\subseteq M\cap B\quad \mathsf{l}) \quad A\subseteq B \,\Rightarrow\, \forall\, M\subseteq U\,:\, M\cup A\subseteq M\cup B$
 - n) $(M \subseteq A \land M \subseteq B) \Leftrightarrow M \subseteq A \cap B$

m) $A \subseteq B \Leftrightarrow B^c \subseteq A^c$

- $A \cap B^c = \emptyset \Leftrightarrow A \cap B = A$ o)
- p) $A \cap B = \emptyset \Leftrightarrow A \subseteq B^c$
- 4. La diferencia simétrica entre dos conjuntos A y B está definida por:

$$A \triangle B := (A - B) \cup (B - A)$$

El objetivo de este problema es demostrar que la diferencia simétrica es asociativa. Para ello:

- a) Demuestre que: $\forall x \in U : x \in (A \triangle B) \iff (x \in A) \veebar (x \in B)$, donde \veebar es el conectivo "disyunción excluyente" definido en el Listado 1.
- b) Pruebe que el conectivo \vee es asociativo.
- c) Concluya que la diferencia simétrica entre conjuntos es asociativa.
- d) Para el caso particular de $A = \{x \in \mathbb{N} : x \leq 10\}, B = \{x \in \mathbb{N} : x \leq 15 \land x \text{ es par}\}$ y $C = \{x \in \mathbb{N} : 3 \le x^2 \le 20\}$, verifique que $(A \triangle B) \triangle C = A \triangle (B \triangle C)$.
- 5. Sean A_1, A_2, \ldots, A_n subconjuntos de \mathbb{N} definidos por $A_k = \{i \in \mathbb{N} : 1 \le i \le k+10\}$.
 - a) Pruebe que $\bigcup_{k=1}^{n} A_k = A_n$ y $\bigcap_{k=1}^{n} A_k = A_1$.
 - b) Determine $\bigcup_{k=1}^{n} A_k^c \ y \bigcap_{k=1}^{n} A_k^c$.
 - c) Sean $B_1 = A_1$, $B_2 = A_2 A_1$ y $B_3 = A_3 (A_2 \cup A_1)$. Verifique que $\{B_1, B_2, B_3\}$ es una partición de A_3 . (En práctica: b) y c))

- 6. Sean A y B dos subconjuntos del conjunto universo U. Demuestre que:
 - a) $A \subseteq B \Longrightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B)$
- c) $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$
- b) $\mathcal{P}(A) = \mathcal{P}(B) \Longrightarrow A = B$
- d) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$ (¿por qué no =?)

(En práctica: a) y c))

- 7. Un investigador ha estudiado la dieta normal de 1000 personas e informa lo siguiente: 630 consumen carne diariamente, 723 consumen verduras, 816 consumen productos lácteos, 470 consumen carne y verduras, 463 consumen carne y lácteos, 562 consumen verduras y lácteos, y 310 consumen carne, verduras y lácteos. ¿Puede confiarse en la veracidad de estos datos? (En práctica)
- 8. De entre los pacientes de un hospital con enfermedades respiratorias se encontró que 8 individuos padecían enfisema pulmonar, 15 bronquitis crónica y 13 asma; 6 tenían sólo asma y bronquitis; 4 sólo asma; 3 tenían las tres enfermedades y ninguno sólo enfisema y bronquitis.
 - a) ¿Cuántos pacientes del hospital padecían enfermedades respiratorias?
 - b) ¿Cuántos padecían de enfisema solamente?
 - c) ¿Cuántos padecían de bronquitis crónica solamente?
- 9. De un total de 1186 alumnos del liceo "Andalién," 879 están tomando un curso intensivo de inglés, 378 uno de alemán y 690 uno de francés. Se sabe que 506 alumnos están en cursos de inglés y francés, que 77 están en alemán y francés, que los que están en alemán pero no en inglés son 159 y que hay 13 en los tres cursos de idiomas. (En práctica)
 - a) ¿Cuántos alumnos no estudian ninguno de los idiomas?
 - b) ¿Cuántos estudian sólo el inglés y el francés?
- 10. En una encuesta a 200 estudiantes se encontró que 68 prefieren matemáticas, 138 son deportistas y 160 son artistas; 120 son artistas y deportistas; 20 prefieren matemáticas pero no son deportistas; 13 prefieren matemáticas y son deportistas pero no artistas; y 15 prefieren matemáticas, son artistas pero no deportistas. Determine
 - a) ¿cuántos prefieren matemáticas, son artistas y son deportistas?
 - b) ¿cuántos son artistas y deportistas pero no prefieren matemáticas?
 - c) ¿cuántos no prefieren matemáticas, no son deportistas ni artistas?
- 11. Un conjunto $M \subseteq \mathcal{P}(E)$ se denomina un álgebra de las partes de E si verifica las siguientes propiedades:
 - (i) $E \in M$,
 - (ii) $\forall A, B \in M : A \cup B \in M$,
 - (iii) $\forall A \in M : (E A) \in M$.

Se pide:

- a) Demostrar que $\emptyset \in M$.
- b) Demostrar que si $A, B \in M$, entonces $A \cap B \in M$.
- c) Sea $E = \{1, 2, 3, 4\}$ y sea $M = \{\emptyset, E, \{1\}, \{2\}, \{1, 2\}, \{3, 4\}\}$. ¿Es M un álgebra? Si no lo es, agregue el menor número de conjuntos para que lo sea.