

TEKNOFEST 2022 ROKET YARIŞMASI Lise Kategorisi Kritik Tasarım Raporu (KTR) Sunuşu **Apeiron Roket Takımı**

Takım Yapısı

Apeiron Roket Takımı

Yücel Boru Fen Lisesi 11. Sınıf öğrencisi. Takım içi iş planlaması ve denetlemesini yapar. Montaj stratejisi oluşturur.

Yücel Boru Fen Lisesi 12. Sınıf öğrencisi. Open Rocket, roket tasarımından sorumludur.

Berat E Dilekoğlu

Yücel Boru Fen Lisesi 10, Sınıf

öğrencisi. Open Rocket, roket tasarımından sorumludur.

öğrencisi. Aviyonik sistemlerin olusturulması, test edilmesi

Barış Çomak Danışman Öğretmen

Yücel Boru Fen Lisesi Fizik Öğretmeni. Aperion Roket Takımı'nın danışmanı. Yarışma başvurusu, raporların kontrolü ve sisteme yüklenmesini sağlar.

Yücel Boru Fen Lisesi 10. Sınıf öğrencisi. Sosyal Meyda ile ilgiilenir; grafik ve şablonları

Yücel Boru Fen Lisesi 9. Sınıf öğrencisi. Aviyonik sistemlerin olusturulması, test edilmesi

Mertcan Gökçe Modelleme Ekibi

Yücel Boru Fen Lisesi 11. Sınıf öğrencisi, CAD görüntüsü ve teknik resimleriioluşturur.

Ahmet Harun Açık Modelleme Ekibi

Yücel Boru Fen Lisesi 10. Sınıf öğrencisi. CAD görüntüsü ve teknik resimleriioluşturur.

Yusuf Cevik Modeleme Ekibi

Yücel Boru Fen Lisesi 10. Sınıf öğrencisi. CAD görüntüsü ve teknik resimleriiolusturur.

Faruk Can Yılmaz Aviyonik Ekibi

Lisesi I I. Sinif öğrencisi, Aviyonik sistemlerin oluşturulması, test edilmesi ve montajından

Yarışma Roketi Genel Bilgiler

Yarışma Roketi Hakkında Genel Bilgiler

	Ölçü
Boy (mm):	1750 mm
Çap (mm):	120 mm
Roketin Kuru Ağırlığı (g):	11094 g
Yakıt Kütlesi (g):	1774.0 g
Motorun Kuru Ağırlığı (g):	1584.3 g
Faydalı Yük Ağırlığı (g):	5109 g
Toplam Kalkış Ağırlığı (g):	17977g

Tahmin Edilen Uçuş Verileri ve Analizleri

	Ölçü
Kalkış İtki/Ağırlık Oranı:	2,06
Rampa Çıkış Hızı (m/s):	25,2 m/s
Stabilite (0.3 Mach için):	2,06 cal
En büyük ivme (g):	5,89 g
En Yüksek Hız (m/s):	177 m/s
En Yüksek Mach Sayısı:	0,53 Mach
Tepe Noktası İrtifası (m):	1608 m

Motor

L1050

Genel Tasarım

Operasyon Konsepti (CONOPS)

Aperion Roket Uçuş Profili			
	Zaman	İrtifa	Hız
Fırlatma	T	0	0
Rampa Tepesi	T + 0.52 s	6 m	25,1 m/s
Burn Out	T + 3.75 s	370 m	173.6 m/s
Tepe Noktası	T + 19.2 s	1608 m	0.89 m/s
Paraşüt Açılması	T + 19.2 s	1608 m	0.89 m/s
Paraşüt Sonrası	-	-	8.81 m/s

ÖTR - KTR Değişimler - 1

Değişim Konusu	ÖTR'de Hangi Sayfada?	ÖTR'de İçerik Neydi?	KTR'de İçerik Ne Oldu?	KTR'de Hangi Sayfada?
Kütle Bütçesi	6	Faydalı Yük Paraşütü 81,4 g Ana Paraşüt 283 g	Faydalı Yük Paraşütü 250 g Ana Paraşüt 410 g	8
Kurtarma Sistemi – Paraşütler	21	Ana paraşüt açık alan 38.013 cm2 Yük Paraşütü açık alan 7.853 cm2	Ana paraşüt açık alan 2.4052818754 m2 Yük Paraşütü açık alan 1.2271846303 m2	31
Kurtarma Sistemi – Paraşütler -2	23	Ana paraşüt açık alan 38.013 cm2 Yük Paraşütü açık alan 7.853 cm2	Ana paraşüt açık alan 2.4052818754 m2 Yük Paraşütü açık alan 1.2271846303 m2	33
Kurtarma Sistemi – Paraşütler -2	23	Ana paraşüt Süreklenme Katsayısı 0,8 Yük Paraşütü Süreklenme Katsayısı 0,8	Ana paraşüt Süreklenme Katsayısı 1 Yük Paraşütü Süreklenme Katsayısı 1	33
Genel Tasarım	4	Faydalı Yük Bölümü 60 mm	Faydalı Yük Bölümü 100 mm	4
Aviyonik – 1.Sistem Detay/2 (Ticari Sistem)	30	Ticari Sistem Blok Diyagramı	Blok diyagram revize edildi. İstenilenleri daha net karşılar hale getirildi.	43
Aviyonik – 2.Sistem Detay/3	36	Kurtarma sistemi algoritması	Algoritma revize edildi. Daha detaylı hale geldi.	48

ÖTR - KTR Değişimler - 2

Değişim Konusu	Yeni İçerik Konusu	KTR'deki İçerik Neydi?	KTR'de Hangi Sayfada?
(CONOPS)	Uçuş profili eklendi	Profilin tablosu eklendi.	5
Kanatçık Mekanik Görünüm	Kanat montaj elemanı eklendi	Cad görüntüsü ve teknik resmi eklendi.	12
Motor Bölümü Mekanik Görünüm & Detay	Motor kapağı eklendi.	Cad görüntüsü ve teknik resmi eklendi.	22
Kurtarma Sistemi – Paraşüt Açma Sistemi	Barut haznesi eklendi.	Cad görüntüsü ve teknik resmi eklendi.	27
Görev Yükü	Faydalı yük aviyonik sistem koruma bölümü eklendi.	Cad görüntüsü eklendi.	34
Görev Yükü	Faydalı yük aviyonik sistem pcb tasarımı.	Kart tasarım cad görüntüsü eklendi.	35
Aviyonik – 1.Sistem Detay/1 (Ticari Sistem)	Araç takip sistemi	Araç takibin detayları ve kart tasarımarı eklendi.	42
Aviyonik – 2.Sistem Detay/2	Yedek aviyonik kart tasarımı	Kart tasarım cad görüntüsü eklendi	47
Aviyonik – İletişim	Link bütçesi yapıldı	Veri tablosu eklendi.	50
Aviyonik – İletişim	İletişimin diğer elemları da tanıtıldı.	Açıklamalar eklendi.	50
Kontrol Listesi	Kontrol listesine eksik maddeler eklendi.	17, ve 18, maddeler eklendi	56
Kontrol Listesi	Kontrol listesine eksik maddeler eklendi.	19., 20., 21., 22 ve 23. madeler eklendi	57

Kütle Bütçesi

Apeiron Roket Takımı Ürün Ağacı				
Alt Sistem İsmi	Komponent	Kütle (gram)	Malzeme	Adet
Викир	Burun Konisi	1981 g	Alüminyum	1
Burun	Мара	140 g	Dövülmüş Çelik	2
	Ray butonu	4 g	Fiberglass	2
Vanual Bütünlük	Üst Gövde	1166 g	Fiberglass	1
Yapısal Bütünlük	Alt Gövde	892 g	Fiberglass	1
	Tube copuler	243 g	Fiberglass	1
	Bulkhead	840 g	Alüminyum	3
Motor	Motor Bloğu	715 g	Alüminyum	1
	Center Ring	423 g	Alüminyum	3
	Kanatlar	548 g	Alüminyum	4
	Faydalı Yük Paraşütü	250 g	Ripstop Naylon	1
Vurtarma	Faydalı Yük	5109 g	Bakır	1
Kurtarma	Ayırma elemanı	100 g	Karabarut	1
	Roket Paraşütü	410 g	Ripstop Naylon	1
Avivonile	Ticari aviyonik	1100 g	.	1
Aviyonik	Yedek aviyonik	900 g	-	1

Roket Alt Sistem Detayları

Burun Konisi Mekanik Görünüm

Burun konisi cad görüntüsü.

Teknik resim.

OpenRocket ekran görüntüsü.

Burun Konisi Ogive fonksiyonu kullanarak tasarlanmıştır. Şekil parametresi 1'dir.

Burun Konisi – Detay

	Burun Konisi Malzeme Bilgisi			
Malzeme	Avantaj	Dezavantaj	Açıklama	
Alüminyum (Seçildi)	Sağlam yapıda olması. Ağırlık merkezini dengelemesi. Ucuz olması	-	Motor ve gövdeleri dengeleyip, ağırlık merkezini istenen konuma getirmesi için burun konisi Alüminyum seçildi.	

Malzeme Özellikleri			
Malzeme Yoğunluk		Çekme Dayanımı	
Alüminyum (6061 t6)	2,7 g/cm ³	530-570 MPa	

Burun Konisi Üretim Yöntemleri			
Yöntem	Avantaj	Dezavantaj	Açıklama
CNC ile Üretim (Seçildi)	Burun konisinin geometrisi nedeniyle üretimin kolay olması	Maliyetli olması	Alüminyumun işlenmesi ve boşaltılması için en uygun yöntem CNC'dir

Burun konisi için belirlenen malzeme ve üretim yöntemi yeşil renge boyanmıştır.

Burun Konisi Ogive fonksiyonu kullanarak tasarlanmıştır. Şekil parametresi 1'dir.

Kanatçık Mekanik Görünüm

Alt gövdeye montajlı kanat.

Tekil kanat cad görüntüsü.

Kanat montaj center ringi cad görüntüsü.

Kanatçık teknik resmi.

Kanat montaj center ringi teknik resimi.

Kanatçık – Detay

	Kanatçık Malzeme Bilgisi				
Malzeme	Avantaj	Dezavantaj	Açıklama		
Alüminyum (Seçildi)	Sağlam, esneme yapmayan kanatlar. Kolay üretim.	-	Cam Elyafından üretilecek kanatın uçuş boyunca yapacağı esnemeler, stabiliteyi etkileyecektir. Alüminyum kanatlar da ise böyle bir şey söz konusu değildir. Ayrıca üretimi basit ve ucuzdur.		

Malzeme Özellikleri			
Malzeme	Yoğunluk	Çekme Dayanımı	
Alüminyum (6061 t6)	2,7 g/cm ³	530-570 MPa	

Kanatçık için belirlenen malzeme ve üretim yöntemi yeşil renge boyanmıştır.

Kanatçık Üretim Yöntemleri			
Yöntem	Avantaj	Dezavantaj	Açıklama
Alüminyum Doğrama (Seçildi)	Düşük maliyet, kolay üretim.	-	Kanatlarının şekil ve yapısı, alüminyum doğrama ile üretime oldukça uygundur.

Roketin kanatları, roketin stabilitesi için hazır şekil kullanılmamış, elle çizilmiştir. (Freeform) Toplam 4 adettir ve 90 derecelik açılar ile monte edilecektir. Motor bloğuna sabitlenecek center ringlere, kanatların yerleştirilebilmesi için özel kanallar açılmıştır.

Gövde Parçaları & Gövde Montaj Parçaları (YAPISAL) Mekanik Görünüm

Vida delikleri ve aviyonik kapağı nihai cad görüntüsüne dahil edilmiştir.

Üst gövde cad görüntüsü

Alt gövde teknik resim

Üst gövde teknik resim

Gövde Parçaları & Gövde Montaj Parçaları (YAPISAL) Mekanik Görünüm

Rokete dışarıdan, üst gövdeye açılacak bu kapak ile erişilecektir. Aviyonik sistemin montajını kolaylaştırmak için açılan kapağın uzunluğu 31 cm dir. İki bulkhead arasında olan kapak, yine bulkheadlere m5 vida ile sabitlenecektir.

	Göve	de Malzeme Bilgisi	
Malzeme	Avantaj	Dezavantaj	Açıklama
Cam Elyafı (Seçildi)	Hafif ve dayanıklı olması. Sinyallere olumsuz etki etmemesi.	Bu boyuttaki parçaların üretim zorluğu.	Cam Elyafı'nın yoğunluğunun daha düşük olması, gövdeleri daha hafif yapacaktır. Bunun yanı sıra alüminyum haberleşmeye olumsuz etki yapmaktadır.

Malzeme Özellikleri			
Malzeme	Yoğunluk	Çekme Dayanımı	
Alüminyum (6061 t6)	2,7 g/cm ³	530-570 MPa	
Cam Elyafı	1,85 g/cm ³	300 MPa	
Gövdeler için seçilen malzeme ve üretim			

	Gövde Üretim Yöntemleri				
Yöntem	Avantaj	Dezavantaj	Açıklama		
El Yatırması (Seçildi)	Düşük maliyet. Üretim kısıtlamalarının az olması.	-	Roketin boyutlarına uygun hazır Cam Elyafı bulunmadığı için özel üretilecektir. Üretimde sınırlamaların az olması ve ucuz olmasından dolayı El Yatırması seçilmiştir		

Gövdeler için seçilen malzeme ve üretin yöntemi yeşil renge boyanmıştır.

Roket kesit alanında çıkıntı yaratacak herhangi bir unsur bulunmamaktadır. Gövdeler cam elyafından olup, birbirine coupler ile monte edilecektir. Gerek coupler gerek bulkhead montajı için m5 vida kullanılacaktır.

Yapısal – Gövde/Gövde İçi Yapısal Destekler (Entegrasyon Gövdeleri vb.)

Entegrasyon gövdesi cad görüntüsü.

Entegrasyon gövdesi teknik resmi.

Motor bloğu cad görüntüsü.

Motor bloğu teknik resmi.

Yapısal – Gövde/Gövde İçi Yapısal Destekler (Entegrasyon Gövdeleri vb.)

Motor bloğunun üstündeki bulkheade ve burun konisine sabitlenecek m6 mapa.

Center ring cad görüntüsü.

Bulkhead cad görüntüsü.

Center ring teknik resmi.

Bulkhead teknik resmi.

Yapısal – Gövde/Gövde İçi Yapısal Destekler (Entegrasyon Gövdeleri vb.)

Entegrasyon Govdesi Maizeme Bilgisi					
Malzeme	Avantaj	Dezavantaj	Açıklama		
Cam Elyafı (Seçild	li) Roket gövdelerinin de cam elyafı olması.	Maliyetli üreti	Roketin gövdeleri de Cam Elyafı olduğu için, entegrasyon gövdesi cam elyafı olacaktır.		
	Motor Bloğu ve Ya	pısal Destekler Malzeme B	ilgisi		
Malzeme	Avantaj	Dezavantaj	Açıklama		
Alüminyum (Seçildi) Yapısal desteklerin ucuza mal edilmeleri. Motor bloğunun hazır bulunması ve hızlı tedarik.		-	Motorun tutturulması için istenen bloğun hazır bulunması ve daha sağlam olması nedeniyle alüminyum seçildi. Aynı şekilde yapısal desteklerin kolay üretimi sebebiyle alüminyum seçildi.		

Entegrasyon Göydesi Malzeme Rilgisi

Malzeme Özellikleri			
Malzeme	Çekme Dayanımı		
Alüminyum (6061 t6)	2,7 g/cm ³	530-570 MPa	
Cam Elyafı	1,85 g/cm ³	300 MPa	

Malzeme Özellikleri				
Malzeme	Çekme Dayanımı			
Alüminyum (6061 t6)	2,7 g/cm ³	530-570 MPa		
Cam Elyafı	1,85 g/cm ³	300 MPa		

	Üretim Yöntemleri — — — — — — — — — — — — — — — — — — —				
Parça	Yöntem	Avantaj	Açıklama		
Yapısal Destek Parçaları	Torna ile Üretim	Düşük maliyet, kolay üretim.	Bulkhead ve center ringlerin üretimi için, ucuz ve kolay bir yol olan torna seçilmiştir.		
Entegrasyon Gövdesi	El Yatırması	Düşük maliyet. Üretim kısıtlamların az olması.	Üretimde sınırlamaların az olması ve ucuz olmasında dolayı El Yatırması seçilmiştir		

Entegrasyon gövdesi, roketin alt ve üst gövdesine m5 vidalar ile sabitlenecektir. Bu kısımdan herhangi bir ayrılma gerçekleşmeyecektir.

Motor Bölümü Mekanik Görünüm & Detay

Motor Bölümü cad görüntüleri.

Motor Bölümü elemanları cad görüntüleri.

Malzeme Özellikleri				
Malzeme	Yoğunluk	Çekme Dayanımı		
Alüminyum (6061 t6)	2,7 g/cm ³	530-570 MPa		
Cam Elyafı	1,85 g/cm ³	300 MPa		

Motor bölümünün elemanları; motor bloğu, center ring, bulkhead alüminyum malzemeden üretilecektir.

Elemanlar gövdeye m5 vida ile sabitlenecektir. Vida delikleri cad görüntlerinde mevcuttur. Ayrıca kanatların montajı için tasarlanan center ring de görsellerde mevcuttur.

Motor Bölümü Mekanik Görünüm & Detay

Üretim Yöntemleri					
Parça	Yöntem	Avantaj	Açıklama		
Yapısal Destek Parçaları	Torna ile Üretim	Düşük maliyet, kolay üretim.	Bulkhead ve center ringlerin üretimi için, ucuz ve kolay bir yol olan torna seçilmiştir.		

Roketin tasarım aşamasında, motor bloğu seçilirken araştırma yapılmıştır. Sonradan özel üretim bir motor kullanmak maliyeti arttıracağı için hazır boyutlara bakılmıştır. İstenen çap ve boyda alüminyum bloğun temini oldukça rahattır.

Motor bölümü elemanları (bulkhead, center ring) teknik resimleri.

Motor Bölümü Mekanik Görünüm & Detay

Roket Motoru, roketin montajı tamamlandıktan sonra monte edilecektir. Motorun ucundaki vida, motor bloğu bulkheadine açtığımız yuvaya geçecektir. Bunun için roketin tamamen toplanması gerekmektedir. Motor da rokete monte edildiğinde, motor kapağı takılacak ve roket uçuşa hazır hale gelecektir.

Görsel 1) Tamamen toplanmış roketin üst gövdesi saydamlaştırılmıştır. Motor ucundaki vidanın geçeceği bulkhead görülmekte. Motorun monte edilebilmesi için roketin tamamen toplanması gerekmektedir. Görsel 2) Motor takıldıktan sonra motor bloğunun montajını gösterir. Roket atışa tamamen hazır hale gelir.

Görsel 2

Motor Kapağı teknik resmi.

Motor Kapağı cad görüntüsü.

Roket Montaj Stratejisi

Roketin montajı için belirlenen stratejide, takım üyeleri iki ekibe ayrılıyor. İlk ekip alt gövdeyi toplarken, ikinci ekip aviyonik sistem ve üst gövdeyi topluyor. Böylece vakitten tasarruf ediliyor. Detaylıca ekiplerin yapacağı işler ve montaj stratejisi verilmiştir.

1.1: Hazır haldeki motor bloğu, alt gövdeye m5 vidalar ile sabitleniyor.

Montaj Stratejisi için hazırlanan animasyon videosu: Linke <u>Tıklayınız</u>

1.2: Alt gövdeye, kanatçık yuvalarına kanatlar yerleştirilip, sabitleniyor.

1.3: Alt gövde tamamen hazır olduğunda içerisine coupler Böylece alt gövde montajı tamamlanıyor. geçirilip sabitleniyor.

Roket Montaj Stratejisi

Sıcak gaz üreteci, bu noktada ara işlem olarak haznesine yerleştiriliyor. Ayrıca aviyonik sistem bloğuna, diğer ucu burun konisine gitmek üzere şok kordonu bağlanıyor. Montaja 2.2 aşamasından devam ediliyor.

2.2: Sonrasında aviyonik sistem kapak açılmış üst gövdeye yerleştirilip, kapak sabitleniyor.

2.3: Devamında sırası ile ana paraşüt, faydalı yük ve paraşütü yerini alıyor.

2.4: Alt gövdeyi de couplere geçirilip vidaları atılıyor. Geriye sadece burun konisini yerleştirmek kalıyor. Burun konisini de yerleştirince roket motor montajı için hazır hale geliyor.

2.1: Belirlenen diğer ekip

Roket Montaj Stratejisi

Roket montaj elemanlarının montajı için metrik 5 civata kullanılacaktır. CAD görüntüleri verilen tüm elemanlara m5 civataya uygun delikler açılacaktır. Kanatlar, kanat montaj center ringine sıkı geçilir ve motor kapağı takıldıktan sonra yine m5 vidalar ile sabitlenir. Motor bloğuna motor gireceği için herhangi bir vida atılmaz. M5 civata 8.8 dayanım sınıfı için;

- Çekme Dayanımı (σ k) = 8 x 100 = 800 N/mm²
- Akma Dayanımı (σ Ak) = 8 x 8 x 10 = 640 N/mm²

Civata dayınımı alınan kaynak: https://www.sertcivata.com/teknik-bilgi/

Hakem Altimetresi, roket rampada iken, rokete mekanik olarak eriştiğimiz aviyonik kapağından monte edilecektir. Aviyonik bölümü içerisinde özel olarak ayırdığımız böyle altimetre yerleştirilecek, ve aviyonik sistem çalıştırılacatır. Sonrasında ise aviyonik kapağı geri kapatılacaktır.

Kurtarma Sistemi Mekanik Görünüm

Üst gövde mekanik görünümü.

Paraşüt açma sistemi mekanik görünümü.

Üst gövde mekanik görünümü.

Paraşüt bölümü mekanik görünümü.

Kurtarma Sistemi – Paraşüt Açma Sistemi

Seçenek 2			Getir/Götür Analizi	
Unsur	Jnsur Avantaj Dezavantaj		Açıklaması	
Karabarut	Azımsanacak kadar az yer kaplaması ve hafif olması.	Aktivasyonu sırasında yaşanabilecek zorluklar.	Roketimizde karabarut ile kurtarma seçeneğini kullanacağız. Yer ve kütle bakımından oldukça avantajlı konumda. Aktivasyonda yaşanabilecek problemleri ise yedek aviyonik sistemi ile ortadan kaldıracağız.	

Aviyonik sistemin üstündeki bulkheade, yine alüminyumdan yapılacak barut haznesi konuşlandırılacak. İçine barut yerleştirilecek.

Hazneler ucuz ve kolay olduğu için tornada üretilecektir.

Barut haznesi cad görüntüsü.

Tekil hazne teknik resmi.

Bulkheadli barut haznesi teknik resimi.

Kurtarma Sistemi – Paraşüt Açma Sistemi

Alt Sistem	İşlevi	Hacim
Aviyonik	Apogee noktasında karabarutu aktifleştirmek.	3.392 cm3
Karabarut ve Haznesi	Apogee noktasında patlayarak burun konisini ayırmak	-
Paraşütler	Parçaların yere güvenli inişini sağlamak	2.56 cm3
Fır Döndü	Paraşüt iplerinin karışmasını önlemek.	-
Mapa	Gövdeleri ve burun konisini bi arada tut mak.	-
Şok Kordonu	Gövdeleri ve burun konisini bi arada tutmak.	-

Kurtarma Sistemi – Paraşüt Açma Sistemi

1) Ticari aviyonik (gerektiğinde yedek aviyonik) istenen irtifaya ulaşıldığı zaman karabarutun aktivasyonunu yapacak.

2) Karabarut patlayınca; faydalı yük kendi paraşütü, burun konisi ve gövdeler ana paraşüt ile iniş yapmaya başlayacak.

3) Kurtarılacak tüm parçalar güvenli bir şekilde yere iniş yapacak.

4) Konum belirleme sistemi ile parçalar tespit edilecek ve kurtarılacak.

Sıcak Gaz Üreteci Gereksinimleri

Ayrılma		Basınçlandırılacak hacim (m^3)	Ulaşılmak istenen basınç (Bar)
Ayrılma	116 mm	0,006340 m^3	0.6895

Kurtarma Sistemi – Paraşütler -1

Apeiron Roket Takımı Ana Paraşüt Detayları					Apeiron Roket Takımı Faydalı Yük Paraşütü Detayları				
Renk	Düşüş Hızı	Kütlesi	Kapalı Paket Hacim	Açık Alan	Renk	Düşüş Hızı	Kütlesi	Kapalı Paket Hacim	Açık Alan
Kırmızı	8,81 m/s	410 g	1,425497666566 4 cm ³	2.4052818754 m2	Turuncu	8,81 m/s	250 g	1,140398133253 1 cm ³	1.2271846303 m 2

v= hız(m/s), ρ= hava yoğunluğu(1,22 kg/m3), r= yarıçap(m) Cd= sürüklenme katsayısı(1), m= kütle(kg), g=yer çekimi

Faydalı yük paraşütü 5.109 kg, Ana paraşüt ise paraşütü ise 11.0043 kg taşıyacaktır.

Kurtarma Sistemi – Paraşütler -1

Kurtarma Sistemi – Paraşütler -2

Paraşüt Sistemi	Paraşüt Alanı (m^2)	Paraşüt Sisteminin Taşayacağı Kütle (kg)	Paraşüt Sürükleme Katsayısı	Düşüş Hızı (m/s)
Ana Paraşüt	2.4052818754 m2	11.0043 kg	1	8,81 m/s
Görev Yükü Paraşütü	1.2271846303 m2	5.109 kg	1	8,81 m/s

Görev Yükü

Faydalı yük bakırdan (8,96 g/cm3) üretilecektir. Toplam 5109 gram olan faydalı yükün çapı 110 mm, uzunluğu 60 mm'dir. Herhangi bir bilimsel görevi bulunmamaktadır.

Faydalı yükün üzerine, konum belirleme sistemini koruması ve paraşüte bağlanması için bir hazne yapılacaktır. Haznenin üzerindeki bulkheade m6 mapa yerleştirilecektir.

Görev Yükü

Faydalı yük, Apogee noktasında, karabarut sistemi ile roketten ayrılacaktır. Apogee noktasında aktifleşen karabarut sayesinde, önce burun konisi ve ana paraşüt açılacak, ardından faydalı yük kendi paraşütü ile roketten ayrılacaktır. Yere indikten sonra ise konum belirleme sistemi ile bulunacaktır.

Faydalı Yük Kart Tasarımı

Faydalı yükün konum belirleme sistemi.

Kurtarma Sistemi Prototip Testi

Orijinal bulkhead ile birebir boyutta bir kontraplak bulkheadd kesilmiş ve üzerine 3D printerdan basılan birebir boyutlardaki barut haznesi yerleştirilmiştir. Köşeye açılan ufak delik sayesinde fünye içerisine yerleştirilmiştir. Hazneye belirli miktarlarda barut yerleştirilip iyice sıkıştırılmıştır.

Roketin
patlatılacak hacmi ile
birebir PVC gövde
alınmıştır (Dış Çap 120
mm iç çap 116 mm
uzunluk 450 mm). Ayrıca
temsili aviyonik kapağı da
açılmıştır. Bulkhead yerine
yerleştirilip, M5 vidaları
temsilen herhangi bir vida
ile gövdeye sabitlenmiştir.

Patlamalar, 5-6 metrelik kablolar ile güvenli bir mesafedan yapılmıştır. Sonuçların sağlıklı yorumlanması için 2,5 g ve 5 g olmak üzere 2 farklı barut miktarı ile yapılmıştır. Gövdenin üzerine ise 100 g, 500 g ve 1000 g olmak üzere 3 farklı yük koyulmuştur. Kullanılan kibrit başı 0,5 amper akım değeri ile çalışır.

Kurtarma Sistemi Prototip Testi

Yapılan ilk testte, 2,5 g karabarut 100 g ağırlığı 3-4 m yukarı fırlatmıştır.

Yapılan ikinci testte, 2,5 g karabarut 500 g ağırlığı yarım m yukarı fırlatmıştır.

Yapılan üçüncü testte, 5 g karabarut 1000 g ağırlığı 2,5-3 m yukarı fırlatmıştır.

Yaptığımız testleri incelediğimizde 5 gr kara barut yeterince sıkıştırıldığında 1 kg ağırlığı 2.5 metre yukarı çıkarmıştır. 1(kg)*2.5(m)*9.81(m/s ^2)= 24.52 J enerji sağlamıştır. Roketimiz ayırmayı yaptığı esnada 15 derece eğimde bulunacaktır. Yaklaşık 1.7 kg olan burun konisinin ağırlığı 4.3N, alüminyum sürtünme katsayısı 1.3, burun konisi omuz(18 cm)ile ana gövde arasındaki sürtünmeyi hesapladığımızda burun konisinin açılması için gereken enerjinin teorik olarak sin(15)*1.7(kg)*9.81(m/s^2)*0.18($m)+1.3*sin(15)*1.7(kg)*9.81(m/s^2)*0.18(m)=$ 1.8 J olarak hesaplanmıştır. Olası kayıplar ve olumsuz durumlar göz önünde bulundurulduğunda 5 gr barutun yeterli ve gerekli olduğu düşünülmektedir. Kesin sonuca roketin parçaları üretildikten sonra varılacaktır

Kurtarma Sistemi Prototip Testi

Paraşüt açılma testleri 17 m yükseklikten yapılmıştır. Paraşüt, temsili yüklere 1,5 m şok kordonu ile bağlanmıştır. Öncelikle faydalı yük temsili, 5200 g yük turuncu faydalı yük paraşütüne bağlanmıştır. Sonrasında ise roketin kuru ağırlığı temsili 11000 g yük kırmızı ana paraşüte bağlanmıştır.

Sonuç olarak paraşütler 17m gibi kısa bir mesafe bile başarılı bir şekilde açılmıştır. Paraşüt iplerinde ya da şok kordununda herhangi bir dolaşıklık ya da hata bulunmamaktadır. Roket paraşütleri şimdiden kullanıma hazırdır.

Test videosu linki: Bu bağlantıya tıklayınız.

Aviyonik – Özet

Ticari Aviyonik Telemega (09200)					
Bağımsız Sistem	Temel Görevi				
GPS Sistemi	Roket iniş yaptıktan sonra konum bilgisi sağlar.				
Basınç Sensörü	Roketteki basınç değişimlerini verir.				
Yön Sensörü	Roketin, gyro verilerinin alınmasını sağlar. X Y konum bilgilerini paylaşır.				
C120 RF Modülü	Yer istasyonu ile Telemega'nın haberleşmesini sağlar.				

• Ticari Uçuş Bilgisayarı olarak, Telemega (09200) Seçilmiştir. Telemega içerisinde, GPS, basınç ve yön sensörlerini barındırıyor. Yer istasyonuyla haberleşme kısmında ise C120 RF Modülü devreye giriyor.

Yedek (Özgün) Aviyonik					
Bağımsız Sistem	Temel Görevi				
İşlemci	Yedek aviyoniğin işlemlerini yapar.				
Manyometre sensörü	İvme sensörü. Ayrıca içinde ma ntometre ve Jiroskop da bulund uruyor				
Barometre	Roketteki basınç değişimleri ni verir.				
Haberleşme modülü	Yer istasyonu ile haberleşmeyi sağlar				

Aviyonik – Özet

Sistem	Benzerlikler	Farklılıklar
Ticari Aviyonik		1) Haberleşmede; yedek aviyonikte lora modülü, ticari aviyonikte CC1200 kullanıması.
Yedek Aviyonik	Alınan basınç, gyro verileri.	2) Konumda; yedek aviyonikte Adafruit Ultimate, ticari aviyonikte u-blox kullanılması. 3) Güç kaynağında; yedek aviyonikte 7.4 V 5000 mAh Lipo pil, ticari aviyonikte 3.7 V 850 mAh Lion pil kullanılması.

 Kullanılan uçuş bilgisayarları arasında elektriksel veya kablolu bir bağ bulunmamaktadır. Roket rampada iken iki sistem de çalıştırılacaktır. Uçuş boyunca yedek aviyonik de aktif olacaktır. Ana aviyoniğin apogeede fünyeyi patlatması beklenmektedir. Her koşulda yedek aviyonik de apogeede fünyeye güç verecektir. Kurtarma sistemi aktifleşmemiş ise aktifleşecektir. Aynı mantıkla roket yere iniş yaptığı zaman iki bilgisayar da konum verisi gönderecektir. Böylelikle ana aviyonikte oluşabilecek hata tolere edilecektir.

Aviyonik – 1.Sistem Detay/1 (Ticari Sistem)

Ticari aviyonik sistem olarak TeleMega (09200) kullanılacak:

TeleMega profesyonel roketlerde kullanılan sağlam bir ticari aviyonik sistemdir. Oldukça küçük bir boyuta sahip bu kart, en işlevli ve testleri yapılmış, güvenilir bir karttır.

- •GPS verisi (u-blox): Roketimiz bizden uzaklaştığında konumunu belirler.
- •Altimetre (Micro Altimeter Module): Roketimizin kaç metre yukarıya çıktığını ölçer.
- •İvmeölçer (ADXL375): Eğer deneysel motorlar kullanıyorsanız motorun itme grafiğini çıkartabilir.
- •Jiroskop: Roketin eğimini ölçer.
- •Telemetri (CC1200): Tüm bu sensörlerden alınan verileri bize iletir.

Kullanılmadan önce yapılacak ayarlar:

- 428 Mhz bandında veri iletimi için RF modülü ayarları yapılacak.
- Apogeede kurtarma sistemi aktivasyonu için fünye ayarları yapılacak.
- Hangi bantta, kaç kilobyte veri basılacak, ayarlanacak.
- Veri filtre ayarları yapılacak.
- Switch ile aç/kapat ayarları yapılacak.
- TeleBT ile haberleşmesi için ayarlar yapılacak.

Aviyonik – 1.Sistem Detay/1 (Ticari Sistem)

Araç Takip Sistemi:

Rokete, ticari ve yedek aviyonik harici, bir de araç takip sistemi eklenecektir. Araç takip sistemi <u>Armoli</u>'den temin edilecektir. Kendi harici bataryası bulunan araç takip sistemi (<u>L300 modeli</u>) 100 g ağırlığa sahiptir. Boyutları 65 mm x 90 mm x 38 mm'dir. Aviyonik bölümde oldukça az yer kaplıyor. Roket iniş yaptığında konumunu bulmamızı oldukça kolaylaştıracaktır. Konum bilgileri anlık olarak 2850 server üzerinden web sitesine gönderilir. Böylelikle Lora'da oluşabilecek hatalar tamamen tolere edilir.

Aviyonik – 1.Sistem Detay/2 (Ticari Sistem)

Uçuş Bilgisayarı Blok Diyagramı **TELEMEGA v5.0 WINBOND BUZZER** W25Q64FW **BELLEK U-BLOX** ADXL375 **İVMEÖLÇER** MAX-8Q GPS STM32L151 CC1200 RF MS5607 MODÜL ALTIMETRE Yer İstasyonu BMX160 YÖN **BATARYA** SENSÖRÜ

Aviyonik – 1.Sistem Detay/2 (Ticari Sistem)

Komponent	Ürün Adı / Kodu / Türü	Kurtarma Algoritmasında Verileri Kullanılıyor Mu?	Kurtarma Algoritmasında Kullanılan Verilerin İşlevi
İşlemci	STM32F103C8T6 / 18587 /		
Barometresi (Basınç Sensörü)	MS5611 GY-63 / 14485 /	Evet	İrtifayı belirler. İrtifaya göre patlama gerçekleşir.
Manyometre (Gyro Sensörü)	MPU 9250 / DSTK6097 /	Evet	Roketin eksen hareketlerini inceler. Güvenlik önlemi olarak eklenmiştir.
Haberleşme Modülü	Lora SX 1278 / 12521 /	Hayır	
GPS Modülü	Adafruit Ultimate / 11239 /	Evet	Roketin konum bilgisini paylaşır.
Anten	RF 433Mhz 5dBi SMA / 19342 /	Hayır	

Üretim Yöntemi

 Öncelikle pcbde kullanılacak devre elemanlarıseçilecek ve devre şeması oluşturulacak. Sonrasında pcb üzerinde dizayn oluşturulacak ve dosyaların çıktısı PCBway firmasına gönderilerek. Firma PCB baskı yöntemi ile üretim yapacak.

Veri	Veri Alınan Sensör
Gyro verisi	MPU 9250 Manyometre
Konum verisi	Adafruit Ultimate GPS (11239)
Basınç verisi	MS5611 GY-63 Barometre

Kurtarma sistemini tetikleyecek parametreler:

Basınç: Sensörden alınan verilerin irtifa verisine dönüştürülmesi sonucunda eğer roket apogee ye ulaşmışsa patlama gerçekleşir. İrtifa bilgisini basınç ile ölçtüğümüz için, kurtarma sisteminde basınç verisi kullanıldık.

Gyro: Roketin doğrultusunu ölçerek roketin artık apogeye ulaştığını doğrular. Güvenlik önlemi olarak basınç verisiyle birlikte gyro da kullanılmıştır.

Veri Filtreleme Yöntemleri Karşılaştırması					
Yöntem	Filtrelenecek Veriler	Açıklama			
Medyan	İrtifa ve Konum Verileri	Sensörlerin ölçümü sonucu alınan verileri sekizerli olarak gruplandırıp her grubun medyanını alarak bize grafik çıkartır. Bu filtreleme yöntemi kullanılmasındaki sebep sensörlerde oluşan ufak hatalardan dolayı verilerdeki anlık dalgalanmalardan kurtularak düzgün bir grafik elde etmektir. Kullanımının kolaydır ve en önemlisi sağlıklı bir filtreleme yöntemidir.			

Aviyonik – İletişim

Ana aviyonik yer istasyonu iletişim modülü (TeleBT): Verilerin alınıp bilgisayara aktarılmasını sağlar.

Ana aviyonik yer istasyonu alıcı yagi anteni: Telemega ile haberleşme sağlar.

Link Bütçesi						
K	AYIPLAR	KAZANÇLAR				
Serbest uzay kaybı	20*log(428)+20*log(8000)-27.55=103.1 dbm	Gönderici modü lün çıkış gücü	20 dbm (lora Sx1278)			
Kablolarda oluşacak iletim kaybı	3 dbm tolerans bırakıldı.	Alıcı anten kazancı	12 dbm			
Atmosferik kayıp	3 dbm tolerans bırakıldı.	Verici anten kazancı	5 dbm			
Polarizasyon kaybı	3 dbm tolerans bırakıldı.					
Toplam Kayıp: -103 -3	-3-3= -112 dbm	Toplam Kazanç: 20+12+5=37 dbm				

Modülümüzün alma hassasiyeti 138 dbm, sistemimizin hassasiyeti 112-37=75 dbm olarak hesaplanmış olup sistemimizin iletişiminde bir sorun çıkarmayacağı düşünülmektedir.

Yedek aviyonik iletişim modülü(Lora Sx1278): Verilerin alınıp bilgisayara aktarılmasını sağlar.

Yedek aviyonik Yer istasyonu alıcı sma anten: Yedek sistem ile haberleşme sağlar.

Veriler 428 mHz bandında, 10 bytelik veri paketleri ile aktarılacaktır. İletilecek veriler: Basınç verisi(irtifa), konum verisi, gyro verisi

Aviyonik Prototip Testi

Aviyonik sistem algoritma testi: Algoritma testinde aviyonik sistem vakumlu kabın içerisine yerleştirilmiştir. Süpürge yardımı ilehava çekilince kapalı kabın basıncı düşmüştür. Süpürgeyi kapatınca basınç geri artmaya başlamıştır.

Yani aviyonik sistem artık apogeeye çıktığını, daha fazla yükselmeyeceğini (basıncın azalmayacağını) anlamıştır. Basınç artmaya başlayınca da kurtarma sistemini aktifleştirmiştir. Test Yücel Boru Fen Lisesinde, hazır olan nihai sistemimiz TeleMega ile yapılmıştır. Yedek aviyonik için detaylı test takvimi verilmiştir.

Aviyonik sistem iletişim testi:

İletişim testi için, etraftaki binalar sinyali olumsuz etkileyeceği için şehir merkezinden uzak bir yer Kirazpınar tercih edilmiştir.

Yer istasyonunu kurduktan sonra bir ekip TeleMega ile arabaya binmiş ve istasyondan 1 kilometre uzağa gitmiştir. Bu süre boyunca iletişim hiç kopmamış, anlık veri alınmıştır Araç geri gelirken konum verisindeki değişim videoda göz ükmektedir. Araç akışının olduğu kısmen kalabalık bir bölge de bile sinyaller sorunsuz gelmektedir.

Aviyonik Prototip Testi

Aviyonik algoritma ve iletişim testleri yapılmış olsa da, ilerleyen tarihlerde farklı zaman ve konumlarda tekrar yapılacaktır. Özellikle iletişim testinde iş çıkış saatine denk gelmemek, şehir içinden biraz uzaklaşmak ve açına alanlara gitmek oldukça önemlidir. Kalabalık binalar ve elektronik topluluğu sinyalleri olumsuz etkiliyebilir.

Test videosu linki: Bu bağlantıya tıklayınız.

Bütçe

Apeiron Roket Takımı Roket Bütçesi 2022						
Ürün	Malzeme Maliyeti	Üretim M.	Adet	T. Maliyeti (TRY)		
Ticari Aviyonik	900 Amerikan Doları	-	1	₺13.401,81		
STM32F103C6T6A Geliştirme Kartı	159 Türk Lirası	-	2	₺318,00		
Adafruit Ultimate GPS Breakout	896,62 Türk Lirası	-	1	₺ 896,62		
MS5611 GY-63 Basınç - Altimetre Sensörü	133 Türk Lirası	-	1	\$133,00		
MPU 9250 9 Eksen Gyro İvme Manyeto	175 Türk Lirası	-	1	 175,00		
Lora Modülü	245 Türk Lirası	-	2	₺490,00		
Lipo Batarya	1188 Türk Lirası	-	3	₺1.188,00		
Sd Kart Modulü	30 Türk Lirası	-	1	 \$30,00		
Lipo Safe Bag	184 Türk Lirası	-	2	₺184,00		
Fiberglass t Gövdeler	3000	3000	2	老6.000,00		

Ürün	Malzeme Maliyeti	Üretim M.	Adet	T. Maliyet (TRY)	
Alüminyum Burun Konisi	2500 Türk Lirası	2000	1	₺ 4.500,00	
Alüminyum Kanat	600 Türk Lirası	600	4	₺1.200,00	
Roket Paraşütü	1900 Türk Lirası		1	₺1.900,00	
Faydalı Yük Paraşütü	1900 Türk Lirası		1	老1.900,00	
Paraşüt Koruyucu Kılıf Ve Şok Kordonu	500 Türk Lirası		2	₺1.000,00	
Faydalı Yük	450 Türk Lirası	-	1	 \$450,00	
Motor Bloğu	800 Türk Lirası	-	1	 \$800,00	
Tube coupler	500 Türk Lirası	500	1	老1.000,00	
Bulkhead, Centerring	500 Türk Lirası	500	3	老1.000,00	
Karabarut	300 Türk Lirası	-	1	\$300,00	
Genel Topla	Kur: 14,89				

	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
1	3.1.9.	Takımlar en az altı (6) en fazla on (10) kişiden oluşmalıdır.		Slayt 2	Takım şablonu verilmiştir.
2	3.2.1.1.	Takımlar, fırlatma sonrası rokete ait tüm bileşenleri (alt bileşenler ve sistemler dahil) ve Görev Yükünü tekrar kullanılabilir şekilde kurtarmaktan sorumludurlar. Kurtarmayı sağlamak için paraşütlerin kullanılması zorunludur.		Slayt 29	Paraşüt ile kurtarma sistemi açıklaması ile verilmiştir.
3	3.2.1.3.	Orta İrtifa ve Yüksek İrtifa Kategorisindeki roketler Şekil 1'de örnek olarak belirtilen operasyon konseptini icra etmekle yükümlüdürler.		Slayt 5	Operasyon konsepti verilmiştir.
4	3.2.1.23	Takımlar Görev Yüklerini "Unspecified Mass" ismiyle girmeyecektir. Görev Yükü "PAYLOAD" ismi ile adlandırılıp, kütlesi en az 4000 gram (4 kg) ve tek bir parça olarak girilecektir. Şekil 3 ile verilen "Fırlatma Simülasyonu- Launch Simulation" ekranında yer alan değerler simülasyona girilmelidir. Bu değerler ile benzetim yapmamış olan takımlar elene cektir.		Slayt 34	Görev yükünün ağırlığı ve sisteme girilen ismi OpenRocket ekran görüntüsü olarak verilmiştir
5	3.2.2.2	Roketin ve parçaların hasar görmemesi için ikincil paraşütle taşınan yüklerin hızı azami 9 m/s, asgari ise 5 m/s olmalıdır		Slayt 31	Paraşüt katsayı, alan ve düşüş hızı bilgileri tablo halinde verilmiştir.
6	3.2.2.13.	Her paraşüt birbirinden farklı renkte ve çıplak gözle uzaktan rahat seçilebilir olacaktır (paraşütlerin kesinlikle beyaz ve ma vi renklerde veya bu renklerin farklı tonlarında olmamasıönemlidir).		Slayt 31	Paraşütlerin rengi belirtilmiştir.
7	3.2.4.1.	Lise, Orta İrtifa ve Zorlu Görev kategorilerinde yarışacak roketlerin ses altı hızlarda (1 Mach'dan düşük hız) uçmaları gerekmektedir		Slayt 4	OpenRocket ekran görüntüsü verilmiştir.

	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
8	3.2.4.5.	Tüm kategorilerdeki roketlerin 0.3 Mach'taki stabilite değeri 1.5 ile 2.5 arasında olmalıdır		Slayt 4	OpenRocket ekran görüntüsü verilmiştir.
9	3.2.4.7	Rampadan asgari çıkış hızları; Lise Kategorisi için 15 m/s, Orta İrtifa Kategorisi için 25 m/s, Yüksek İrtifa Kategorisi için 30 m/s ve Zorlu Görev Kategorisi için 20 m/s'dir.		Slayt 3	Tahmin Edilen Uçuş Verileri ve Analizleri tablosunda verilmiştir.
10	3.2.5.1.	Roketin iç ve dış basıncı dengeli olmalıdır. Basınç dengesini sağlamak için burun ile göv de ön bölgesi arasında, aviyonik sistemlerin bulunduğu gövde parçasında ve gövde arkası ile motor arasındaki gövde üzerinde 3.0-4.5 mm arasında çapa sahip asgari üç (3) delik bulunmalıdır		Slayt 14	Gövdelerin CAD görüntülerinde, delikler gözükmektedir.
11	3.2.5.5.	Burun omuzluğunun diğer gövdeye girecek kısmının gövde dış çapının en az bir buçuk (1.5) katı olması gerekmektedir. Entegrasyon gövdelerinin entegre edilecekleri gövdeler in her ikisine de gövde dış çapının en az (0.75) katı kadar girmesi beklenmektedir. Bu duruma uymamak diskalifiye sebebidir.		Slayt 4	Burun konisi ve entegrasyon gövdesinin uzunluğu gösterilmiştir.
12	3.2.6.5.	Özgün uçuş kontrol bilgisayarı geliştiren Lise takımları geliştirdikleri uçuş kontrol bilgisayarını (yedek uçuş kontrol bilgisayarı olarak) ticari bilgisayara (asıl uçuş kontrol bilgisayarı olarak) ilave olarak kullanabilirler. Bunu tercih eden Lise takımları özgün tasarım ödülü değerlendirmesine alınacaktır.		Slayt 39	Ticari ve yedek (özgün) aviyonik belirtilmiştir.

	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt NO	Açıklama
13	3.2.6.6	Ticari uçuş kontrol bilgisayarında konum belirleme ve haberleşme sistemi bulunmuyorsa takımların ayırıca haberleşme bilgisayarı geliştirmesi zorunludur		Slayt 41	Ticari uçuş bilgisayara eklenecek iletişim modülü, avantajları ve açıklaması ile eklenmiştir.
14	3.2.6.9.	Sistemde kullanılan uçuş kontrol bilgisayarlarının arasında herhangi bir elektriksel veya kablosuz bağlantı olamaz.		Slayt 40	Ticari ve özgün aviyoniğin ilişkisi açıklanmasıdır
15	3.2.6.33	Uçuş algoritmalarında ayrılma sekanslarını tetikleyecek asgari iki kriter belirlenmelidir		Slayt 48	Tetiklemeyi sağlayacak parametreler ve kriterleri verilmiştir.
16	3.2.6.35	Sensörlerden okunan veriler doğrudan kullanılmamalı ve herhangi bir hatalı okuma ya da sensör hatası durumu göz önünde Bulundurulmalıdır. Bu gibi durumlar için alınacak önlemler (filtreleme vs.) ilgili tasarım raporlarında detaylı anlatılmalıdır.		Slayt 36	Kullanılan filtreleme yöntemi, filtrelenecek veriler ve kriterler belirtilmiştir.
17	3.2.3.1.	Görev Yükünün kütlesi asgari dört (4) kg olmalıdır.		Slayt 34	OpenRocket ekran görüntüsü verilmiştir.
18	3.2.5.10	Uçuş bilgisayarı ve görev yükündeki tüm anahtarlar roketin nozülünden azami 2500 mm mesafede olmalıdır		Slayt 4	OpenRocket ekran Görüntüsü ile genel tasarım ölçekli verilmiştir.

	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt NO	Açıklama
19	3.2.6.13.	Uçuş kontrol bilgisayarlarında en az iki (2) adet sensör bulunmalıdır ve uçuş kontrol algoritmasında bu sensörlerden gelen veriler kullanılmalıdır		Slayt 48	Algoritma ve kullanılan sensör/veriler verilmiştir.
20	3.2.6.14	Kullanılacak olan her bir uçuş kontrol bilgisayarında en az bir (1) adet basınç sensörü olmak zorundadır.		Slayt 43 Slayt 46	Ticari ve yedek aviyonik diyagramları verilmiştir.
21	3.2.6.23	RF modülünün gücü değerlendirilerek link bant genişliği bütçesinin yapılması ve ilgili tasarım raporlarında sunulması gerekmektedir.		Slayt 50	Link bütçesi verilmiştir.
22	3.2.6.33.	Uçuş algoritmalarında ayrılma sekanslarını tetikleyecek asgari iki kriter belirlenmelidir.		Slayt 48	Algoritma ve kullanılan sensör/ve riler verilmiştir
23	3.2.6.37	Kullanılacak ticari uçuş kontrol bilgisayarlarının EK-7'de yer alan listedeki ürünlerden (Yarışma Komitesi tarafından onaylanmış olan ürünler) seçilmesi gerekmektedir		Slayt 41	Ticari aviyonik tanıtılmıştır.

HTEA

Hata Türleri ve Etkileri Analizi

Apeiron Roket Takımı Hata Türleri ve Etkileri Analizi											
Hata No	Komponent	İşlevi	Oluşabilecek Hata	Hata Nedeni	Göre v Evre si	ETKİSİ	Hata Tespiti	Önleyici	Alınan Önleml er	Şiddet Puanı	
Hata- 1	RF Modülü	Roketin anlık konumunu tespit etmek	Veri alınamaması	RF Modülü etki alanı dışına çıkması	Uçuş	Roketin ya da faydalı yükü n bulunama ması	Telemetri Verisi	Roketin maksimum sa pma alanından fazla etki alanına sahip modül seçimi	Son verilerin işlenmesi ile yaklaşık konum elde edilmesi, kırmızı renk seçilen ana paraşüt ve yaklaşınca ötmeye başlayan buzzer ile arama yapılması.	9	
Hata- 2	Ayırma Mekanizması	Belirtilen irtifada devreye girerek, faydalı yükü roketten ayırmak	İstenilan irtif ada devreye girmemesi	Aviyonik sistemin de oluşabilecek aksaklık nedeni ile fünyenin ateşlenmemesi	Uçuş	Faydalı yükün roketten ayrılmaması, roketin paraş üt açmaması.	Telemetri Verisi	Aviyonik sistemin deta ylı test edilmesi ve uçuş verilerin simüle edilmesi	Kendine özel pili ve denetleyicisi ile yedek aviyonik sistemin oluşturulması	10	
Hata- 3	Batarya	Sistemlere gerekli gücü sağlamak	Tüm sistemler için gerekli gücün sağlanamaması	Tekrar kullanım yüzünden pilin hasar alması ve yetersiz kalması	Uçuş	Aviyonik sistemlerin çalışmamsı	Telemetri Verisi	Tüm sistemlerin volt hesabı nın yapılması ve bunlara gerekli olan süreden daha fazla çalıştıracak pillerin kullanılması	Yedek aviyonik sisteminin harici bir pil ile çalışması	9	