Fall 2021, Math 328, Homework 2

Due: End of day on 2022-10-01

$1 \quad (10 \text{ points})$

- 1. Compute the order of each of the elements in the following groups: D_6 , D_8 , D_{10} .
- 2. Suppose that σ is an element of S_n which has the form

$$\sigma = (a_1, a_2, \dots, a_m).$$

Let i be any integer. Prove that $\sigma^i(a_k) = a_r$ where $r \equiv k + i \mod m$. Determine the order of σ as an element of S_n .

3. For n = 3, 4, write out all elements of S_n in cycle notation, and compute the order of each element.

2 (10 points)

Given a group G, an element $g \in G$ is called *central* provided that for all $h \in G$, one has $g \cdot h = h \cdot g$. The identity element is clearly central.

- 1. Prove that the product of two central elements is central.
- 2. Prove that the inverse of a central element is central.
- 3. Prove that the collection of all central elements of G forms a subgroup of G. This group is called *the centre* of G, and is denoted by Z(G).
- 4. Find the centre of the following groups: S_4 , Q_8 , D_{2n} (arbitrary $n \geq 3$).

$3 \quad (10 \text{ points})$

Let $\varphi: G \to H$ be a homomorphism of groups and let $g \in G$ be given. Prove that $\varphi(g^a) = \varphi(g)^a$ for all $a \in \mathbb{Z}$.

4 (10 points)

- 1. Prove that S_3 and D_6 are isomorphic.
- 2. Prove that S_4 and D_{24} are not isomorphic.
- 3. For a pair of groups G and H, prove that $G \times H$ and $H \times G$ are isomorphic.
- 4. Let G be a group, and let Aut(G) be the set of automorphisms of G. Prove that Aut(G) is a group under composition of automorphisms.
- 5. Suppose that G and H are isomorphic. Prove that Aut(G) is isomorphic to Aut(H).

5 (20 points)

For each of the following, a subset of a group is specified. Determine (with proof) whether the given subset is a subgroup.

- 1. The set of complex numbers of the form $\{a + i \cdot a \mid a \in \mathbb{R}\}$, a subset of \mathbb{C} .
- 2. The set of complex numbers of absolute value 1, a subset of $(\mathbb{C}, +)$.
- 3. The set of complex numbers of absolute value 1, a subset of $(\mathbb{C}^{\times}, \times)$.
- 4. The set of transpositions in S_n , with $n \geq 3$.
- 5. The set of reflections in D_{2n} , with $n \geq 3$.
- 6. The set of odd integers in \mathbb{Z} .
- 7. The set of integers which are divisible by n in \mathbb{Z} , for $n \in \mathbb{N}$.
- 8. The set $\{1, r^2, s, sr^2\}$ in D_8 .
- 9. The set $\{1, r^2, sr, sr^3\}$ in D_8 .
- 10. The set $\{1, r^2, s, sr^2\}$ in D_{10} .
- 11. The set $\{1, r^2, sr, sr^3\}$ in D_{10} .
- 12. The set $\{1, i, j, k\}$ in Q_8 .
- 13. The set $\{1, i, -1, -i\}$ in Q_8 .
- 14. The subset of S_4 containing the following elements:
 - (a) The identity.
 - (b) All cycles of length 3.
 - (c) The elements (1,2)(3,4), (1,3)(2,4), (1,4)(2,3).