

Introduction to HR analytics

Assistant Professor of Data Science
American University of Armenia

What is HR analytics?

- Also known as People analytics
- Is a data-driven approach to managing people at work.

Problems addressed by HR analytics

- Hiring/Assessment
- Retention
- Performance evaluation

- Learning and Development
- Collaboration/team composition
- Other (e.g. absenteeism)

Employee turnover

- Employee turnover is the process of employees leaving the company
- Also known as employee attrition or employee churn
- May result in high costs for the company
- May affect company's hiring or retention decisions

Course structure

- 1. Describing and manipulating the dataset
- 2. Predicting employee turnover
- 3. Evaluating and tuning prediction
- 4. Selection final model

The Dataset

```
[1]: import pandas as pd
In
       data = pd.read csv("turnover.csv")
   [2]: data.info()
Out [2]:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14999 entries, 0 to 14998
Data columns (total 10 columns):
satisfaction level 14999 non-null float64
last evaluation 14999 non-null float64
time_spend_company 14999 non-null int64
              14999 non-null int64
work accident
                  14999 non-null int64
churn
promotion last 5years 14999 non-null int64
          14999 non-null object
department
salary
                     14999 non-null object
dtypes: float64(2), int64(6), object(2)
memory usage: 1.1+ MB
```


The Dataset (cont'd)

In [1]: data.head()

	satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spend_company	work_accident	churn	promotion_last_5years	department	salary
0	0.38	0.53	2	157	3	0	1	0	sales	low
1	0.8	0.86	5	262	6	0	1	0	sales	medium
2	0.11	0.88	7	272	4	0	1	0	sales	medium
3	0.72	0.87	5	223	5	0	1	0	sales	low
4	0.37	0.52	2	159	3	0	1	0	sales	low

Unique values

```
In [1]: print(data.salary.unique())
array(['low', 'medium', 'high'], dtype=object)
```


Let's practice!

Transforming categorical variables

Hrant Davtyan
Assistant Professor of Data Science
American University of Armenia

Types of categorical variables

- Ordinal variables with two or more categories that can be ranked or ordered
 - Our example: salary
 - Values: low, medium, high
- Nominal variables with two or more categories with do not have an instrinsic order
 - Our example: department
 - Values: sales, accounting, hr, technical, support, management, IT, product mng, marketing, RandD

Encoding categories (salary)

Old values	New values
low	0
medium	1
high	2

Getting dummies

```
In [1]: # Get dummies and save them inside a new DataFrame
    departments = pd.get_dummies(data.department)
```

Example output

IT	RandD	accounding	hr	management	marketing	product_mng	sales	support	technical
0	0	0	0	0	0	0	0	0	1

Dummy trap

```
In [1]: departments.head()
```

IT	RandD	accounding	hr	management	marketing	product_mng	sales	support	technical
0	0	0	0	0	0	0	0	0	1

```
In [1]: departments = departments.drop("technical", axis = 1)
```

In [2]: departments.head()

ΙΤ	RandD	accounding	hr	management	marketing	product_mng	sales	support
0	0	0	0	0	0	0	0	0

Let's practice!

Descriptive Statistics

Hrant Davtyan

Assistant Professor of Data Science American University of Armenia

Turnover rate

Summary

Stayed	Left
76.19%	23.81%

Correlations

```
In [1]: import matplotlib.pyplot as plt
In [2]: import seaborn as sns
In [3]: corr_matrix = data.corr()
In [4]: sns.heatmap(corr_matrix)
In [5]: plt.show()
```

	satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spend_company	work_accident	churn	promotion_last_5years	salary
satisfaction_level	1	0.11	-0.14	-0.02	-0.10	0.06	-0.39	0.03	0.05
last_evaluation	0.11	1	0.35	0.34	0.13	-0.01	0.01	-0.01	-0.01
number_project	-0.14	0.35	1	0.42	0.20	0.00	0.02	-0.01	0.00
average_montly_hours	-0.02	0.34	0.42	1	0.13	-0.01	0.07	0.00	0.00
time_spend_company	-0.10	0.13	0.20	0.13	1	0.00	0.14	0.07	0.05
work_accident	0.06	-0.01	0.00	-0.01	0.00	1	-0.15	0.04	0.01
churn	-0.39	0.01	0.02	0.07	0.14	-0.15	1	-0.06	-0.16
promotion_last_5years	0.03	-0.01	-0.01	0.00	0.07	0.04	-0.06	1	0.10
salary	0.05	-0.01	0.00	0.00	0.05	0.01	-0.16	0.10	1

Let's practice!