Loop Transformation Frameworks for Sparse Codes and Program Synthesis Opportunities

Michelle Mills Strout (University of Arizona),
Mary Hall (University of Utah), and
Catherine Olschanowsky (Boise State University)

Sparse Codes are Hard to Optimize and Transform

- Indirect accesses are slow
- Many different sparse formats
- Which sparse format is ideal depends on: algorithm, sparse structure, AND computation

Current Approaches

- Developing new sparse formats and optimizations: HiCOO, sparse tiling, wavefront parallelization, ...
- Code generation from a DSL
 - Bernoulli compiler work
 - TACO work generates efficient implementations given a sparse tensor formats and a tensor expression
- Transforming existing code
 - Sparse Polyhedral Framework
 - CHiLL-I/E, scripting compiler for specifying inspectorexecutor transformations

Transformation Example: SpMM from LOBPCG (NUCLEI)

```
/* SpMM from LOBCG on symmetric matrix */
for( i =0; i < n ; i ++) {
   for ( j = index [ i ]; j < index [ i +1]; j ++)
      for( k =0; k < m ; k ++);
      y [ i ][ k ]+= A [ j ]* x [ col [ j ]][ k ];
   /* transposed computation exploiting symmetry*/
   for ( j = index [ i ]; j < index [ i +1]; j ++)
      for( k =0; k < m ; k ++)
      y [ col [ j ]][ k ]+= A [ j ]* x [ i ][ k ];
}</pre>
```

Code A: Multiple SpMV computations (SpMM), 7 lines of code

Code B: Manually-optimized SpMM from LOBCG, 2109 lines of code

Take-away message: Compiler-optimized Code A faster than manual Code B!

CHiLL-I/E: Inspector-Executor Transformations

```
Sparse Computation
for (i=0; i<N; i++) {
  u[i] = f[i];
  for (j=rowptr[i]; j<diag[i]; j++) {</pre>
    x[i] = x[i] - A[j] *x[col[j]];
  u[i] = u[i] / A[diag[i]];
              CHILL Script
 level set() = wave-par(<i loop>)
               CHILL-I/E
               compiler
```


Compile time

Run time

Opportunities to Leverage Synthesis Tools?

- Constraint-solving-based synthesis techniques
 - Polyhedral model uses Farkas lemma to derive scheduling constraints from data dependences
 - Sparse Polyhedral Framework can produce constraints for the uninterpreted functions the inspector must produce at runtime
- Run-time realization of uninterpreted functions
 - Could be synthesized to specialize for usage
 - Data structure synthesis tools like Cozy

Deriving constraints for uninterpreted functions

- Constraint-based data dependence analysis
- Transformations introduce new uninterpreted functions and modify data dependences
- Convert data dependence relations into constraints on uninterpreted functions

Constraint-Based Data Dependence Analysis of Sparse Computation

```
for (int j=0; j<n; j++){
    x[j] = x[j] / Lx[colPtr[j]];
    for(int p=colPtr[j]+1; p<colPtr[j+1]; p++){
        x[row[p]] = x[[row[p]] - Lx[p] * x[j];</pre>
```

$$\{[j,p] \rightarrow [j',p']: j=j' \land p < p' \land \overbrace{row(p)=j'}^{Array\ Access\ Equality} \land \underbrace{0 \leq j,j' < n \land\ colPtr(j) < p < colPtr(j+1) \land\ colPtr(j') < p' < colPtr(j'+1)}^{Array\ Access\ Equality} \land \underbrace{0 \leq j,j' < n \land\ colPtr(j) < p < colPtr(j+1) \land\ colPtr(j') < p' < colPtr(j'+1)}^{Array\ Access\ Equality}$$

Example Transformation Introducing an Uninterpreted Function

$$T_{F_1 \to F_2} = \{ [s, 0, i] \to [s, 0, t, 0, i] \mid t = \Theta(0, i) \}$$

$$\cup \{ [s, 1, j] \to [s, 0, t, 1, j] \mid t = \Theta(1, j) \} \cdots$$

$$F_1 = \{[s,0,i]\} \cup \{[s,1,j]\} \cup \{[s,2,k]\}$$

Transformed Dependences Need to be Lexicographically Non-Negative

$$D_{I_0 \to J_0} = \{ [s, 0, i] \to [s, 1, j] \mid i = l(j) \lor i = r(j) \}$$

$$T_{F_1 \to F_2} = \{ [s, 0, i] \to [s, 0, t, 0, i] \mid t = \Theta(0, i) \}$$

$$\cup \{ [s, 1, i] \to [s, 0, t, 1, j] \mid t = \Theta(1, j) \} \cdots$$

$$D_{I_0 \to J_0} = \{ [s, 0, t_1, 0, i] \to [s, 0, t_2, 1, j] \mid (t_1 = \Theta(0, i) \land t_2 = \Theta(1, j) \land i = l(j)) \\ \lor (t_1 = \Theta(0, i) \land t_2 = \Theta(1, j) \land i = r(j)) \}$$

Constraints Derived from Dependence

$$D_{I_0 \to J_0} = \{ [s, 0, t_1, 0, i] \to [s, 0, t_2, 1, j] \mid (t_1 = \Theta(0, i) \land t_2 = \Theta(1, j) \land i = l(j)) \\ \lor (t_1 = \Theta(0, i) \land t_2 = \Theta(1, j) \land i = r(j)) \}$$

$$\forall s, t_1, t_2, i, j : (i = l(j) \lor i = r(j)) \Rightarrow \Theta(0, i) \leq \Theta(1, j)$$

If iteration i must be executed before iteration j, then iteration i must be in the same or earlier tile than j.

Summary: Synthesis and Transformed Sparse Codes

- Use dependence analysis of original code and inspector-executor transformations to create constraints
- Remains to be seen how these constraints can be used to synthesize inspector code
- Use data structure synthesis to generate specialized implementations of run-time realizations of uninterpreted functions (not discussed)