\equiv

coursera

Classification and Representation

Logistic Regression Model

- Video: Cost Function
 10 min
- Reading: Cost Function
 3 min
- Video: Simplified Cost
 Function and Gradient
 Descent
 10 min
- Reading: Simplified Cost Function and Gradient Descent
 3 min
- Video: Advanced
 Optimization
 14 min
- Reading: Advanced
 Optimization
 3 min

Multiclass Classification

- Video: Multiclass
 Classification: One-vs-all
 6 min
- Reading: Multiclass
 Classification: One-vs-all
 3 min

Review

Solving the Problem of Overfitting

Review

°----

Advanced Optimization

Note: [7:35 - '100' should be 100 instead. The value provided should be an integer and not a character string.]

"Conjugate gradient", "BFGS", and "L-BFGS" are more sophisticated, faster ways to optimize θ that can be used instead of gradient descent. We suggest that you should not write these more sophisticated algorithms yourself (unless you are an expert in numerical computing) but use the libraries instead, as they're already tested and highly optimized. Octave provides them.

We first need to provide a function that evaluates the following two functions for a given input value θ :

$$\frac{J(\theta)}{\frac{\partial}{\partial \theta_i}}J(\theta)$$

We can write a single function that returns both of these:

Then we can use octave's "fminunc()" optimization algorithm along with the "optimset()" function that creates an object containing the options we want to send to