Metodología de la Programación

Grado en Ingeniería Informática de Gestión y Sistemas de Información Escuela de Ingeniería de Bilbao (UPV/EHU) Departamento de Lenguajes y Sistemas Informáticos Curso: 1º Curso académico: 2020-2021 Grupo 01

Tema 4: Derivación formal de programas 1,5 puntos

15-04-2021

Enunciado

Índice

1 Derivación formal de un programa iterativo (1,5 puntos)

Derivar, utilizando la regla del while y el axioma de la asignación del Cálculo de Hoare, un programa que recibe como datos de entrada los siguientes elementos:

- un vector no vacío de enteros no negativos A(1..n),
- un entero x, que es mayor o igual que 2,
- un entero no negativo s.

Y devuelve en la variable booleana q, la decisión sobre si para cada elemento de A(1..n), el resto de dividirlo por x es s.

El programa ha de ser derivado teniendo en cuenta la precondición y la postcondición (φ y ψ), el invariante INV y la expresión cota E. El programa obtenido ha de ser eficiente en el sentido de que si en algún momento se detecta que la respuesta va a ser negativa, el programa ha de parar sin analizar las posiciones restantes.

En la figura 1 de la página 3 se muestra la estructura que ha de tener el programa derivado. En esa misma figura se indica cuáles son las fórmulas φ , ψ , INV y E en las que se ha de basar la derivación. Además, se da la definición del predicado que se utiliza tanto en φ como en INV.

En el programa de la figura 1, mod representa el resto de la división entera. Ejemplos: $20 \ mod \ 3 = 2$, $18 \ mod \ 3 = 0$, $19 \ mod \ 3 = 1$. En esos tres ejemplos, la división entera, representada aquí como div, devolvería 6: $20 \ div \ 3 = 6$, $18 \ div \ 3 = 6$, $19 \ div \ 3 = 6$. Otros ejemplos para la división entera: $19 \ div \ 2 = 9$; $19 \ div \ 3 = 6$; $19 \ div \ 4 = 4$; $17 \ div \ 3 = 5$; $8 \ div \ 12 = 0$.

En la tabla 1 de la página 3, se recogen las abreviaciones que se recomienda utilizar durante el proceso de verificación. En la tabla 2 de la página 3, se recopilan las denominaciones de las letras griegas utilizadas en este enunciado. Finalmente, en la tabla 3 de la página 4, se muestra la puntuación de los distintos pasos o apartados que han de ser considerados en el proceso de derivación.

Todos los elementos numéricos de la figura 1 de la página 3 y de la tabla 1 de la página 3) representan números enteros. Por tanto, los valores representados por esos elementos pertenecen a \mathbb{Z} , donde el conjunto \mathbb{Z} es el siguiente:

$$\{\ldots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}$$

Formalmente, $\mathbb{Z} = \mathbb{N} \cup \{-y \mid y \in \mathbb{N} \land y \geq 1\}$, donde $\mathbb{N} = \{0, 1, 2, 3, \dots\}$ es el conjunto de los números naturales $y \cup es$ la unión de conjuntos.

Ejemplo 1.1. (Para el programa a derivar y cuya estructura se muestra en la figura 1) Sea el siguiente vector A(1...8):

Para esos valores de A(1..8) y los valores x=5 y s=3, el programa a derivar —cuya estructura se muestra en la figura 1— devolvería el valor booleano True en q, porque para cada elemento de A(1..8), el resto de dividirlo por x es s.

En cambio, si el vector A(1...8) fuese el que se muestra a continuación, la respuesta debería ser F alse en q porque no ocurre que para cada elemento de A(1..n), el resto de dividirlo por x sea s. En concreto, para los elementos de las posiciones 2, 6 y 7 de A(1...8), el resto de dividirlos por x no es s puesto que $10 \mod 5 = 0 \neq 3$, $29 \mod 5 = 4 \neq 3$ y $31 \mod 5 = 1 \neq 3$.

A(18)	28	10	8	18	3	29	31	33
	1	2	3	4	5	6	7	8

Figura 1: Estructura del programa a derivar, definiciones de φ , INV, E y ψ y definición del predicado utilizado.

```
Abreviaciones recomendadas: \lambda \equiv n \geq 1 \ \land \ mayor\_igual(A(1..n),0) \ \land \ x \geq 2 \ \land \ s \geq 0 \gamma(\ell) \equiv A(\ell) \ mod \ x = s \mu(\ell) \equiv \forall k (1 \leq k \leq \ell \ \rightarrow \ A(k) \ mod \ x = s) \mu(\ell) \equiv \forall k (1 \leq k \leq \ell \ \rightarrow \ \gamma(k))
```

Tabla 1: Abreviaciones que se recomienda utilizar.

```
Letras griegas utilizadas: \varphi: \text{fi} \quad \psi: \text{psi} \quad \gamma: \text{gamma} \quad \mu: \text{mu} \quad \lambda: \text{lambda}
```

Tabla 2: Denominaciones de las letras griegas utilizadas.

Puntuación:

- (a) Cálculo de las inicializaciones previas al while: 0,250
- (b) Cálculo de la condición del while (B): 0,380
 - (b.1) Formulación de la condición del while (B): 0,150
 - (b.2) Comprobación del punto (II) de la regla del while: 0,005
 - (b.3) Comprobación del punto (IV) de la regla del while: 0,200
 - (b.4) Comprobación del punto (V) de la regla del while: 0,025
- (c) Cálculo de las instrucciones que van dentro del while: 0,850
 - (c.1) Desarrollo relacionado con el punto (III) de la regla del while: 0,550
 - (c.2) Desarrollo relacionado con el punto (VI) de la regla del while: 0,300
- (d) Escribir el programa completo al final: 0,020
- Cuando no se explique por qué se cumple una implicación, se contará cero. Es decir, indicar que una implicación sí se cumple sin razonar por qué se cumple cuenta 0.
- Para aprobar el ejercicio es obligatorio obtener al menos la mitad de la puntuación en los apartados (a), (b) y (c).

Tabla 3: Puntuación por apartados.