

Tema 3.2 .-Álgebra relacional. (1 de 4)

Dinámica del modelo Relacional

- Una vez estudiada la componente estática del modelo relacional, se expondrá la dinámica del mismo:
 - el álgebra y el cálculo relacionales
- El modelo relacional, como todo modelo de datos
 - lleva asociada a su parte estática (estructura y restricciones) una dinámica
 - que permite la transformación entre estados de la base de datos
 - Esta transformación de un estado origen a un estado objetivo se realiza aplicando un conjunto de operadores
 - mediante los cuales se llevan a cabo las siguientes operaciones:
 - inserción de tuplas
 - borrado de tuplas
 - modificación de tuplas
 - consulta
 - En este último caso los valores de la base de datos en el estado origen y en el estado objetivo son los mismos
 - aunque sí se producen cambios en los valores de los indicadores

Dinámica del modelo Relacional

- Tanto el estado origen como el estado objetivo deben satisfacer las restricciones de integridad estática
 - y la transformación ha de cumplir las restricciones de integridad dinámica (entre estados)
- La dinámica del modelo relacional actúa sobre conjuntos de tuplas
 - y se expresa mediante lenguajes de manipulación relacionales que asocian una sintaxis concreta a las operaciones
- Los lenguajes relacionales, por tanto, operan también sobre conjuntos de tuplas
 - es decir, no son lenguajes de navegación sino de especificación

Dinámica del modelo Relacional

Los lenguajes relacionales se dividen en dos tipos:

Algebraicos:

- se caracterizan porque los cambios de estado se especifican mediante operaciones, cuyos operandos son relaciones y cuyo resultado es otra relación
 - Genéricamente se conocen como álgebra relacional

Predicativos:

- donde los cambios de estado se especifican mediante predicados que definen el estado objetivo sin indicar las operaciones que hay que realizar para llegar al mismo
 - Genéricamente se conocen como **cálculo relacional** y se dividen en dos tipos:
 - orientados a tuplas
 - orientados a dominios

Álgebra relacional

- La constituyen un conjunto de operaciones sobre relaciones.
- Cada operación
 - toma una o más relaciones como operandos
 - > y produce una relación como resultado (propiedad de *cerradura*)
 - Esto permite escribir expresiones relacionales anidadas, dado que el resultado de una expresión es siempre una relación
 - > aunque esta cerradura se aplica desde el punto de vista conceptual
 - y en la práctica, en aras de conseguir un mejor desempeño, no se materializan como relaciones todos los resultados intermedios
- Consta de dos grupos de operadores:
 - Los **operadores tradicionales de conjuntos**: *unión*, *intersección*, *diferencia* y *producto cartesiano*
 - ➤ todos ellos con ligeras modificaciones debidas al hecho de tener como operandos relaciones en vez de conjuntos arbitrarios
 - y los **operadores relacionales especiales**: restricción (o selección), proyección, reunión (o join) y división

Renombrado de atributos

- Toda relación con nombre tiene una cabecera
- Pero ¿cuál será la cabecera de las relaciones sin nombre (resultantes)?
 - La propiedad de cerradura prescribe que debe tener una cabecera para que sea una relación, y el sistema necesita saber cuál es.
 - Nótese que es importante que una relación tenga un conjunto apropiado de nombres de atributos
 - * porque podría ser el resultado de una expresión anidada dentro de otra
 - ❖ y obviamente se necesitará alguna forma de referirnos a los atributos del resultado de la expresión interior desde esa expresión exterior
- Como paso previo para garantizar cabeceras apropiadas para todas las relaciones introduciremos un nuevo operador *rename* (renombrar)
 - cuyo propósito es en esencia cambiar el nombre de los atributos de una relación

Renombrado de atributos

- El operador *rename* toma una relación especificada y
 - al menos conceptualmente

crea una copia nueva de esa relación en la cual se ha dado un nombre diferente a uno de los atributos

- Por ejemplo,
 - S rename Ciudad as SCiudad
 - El resultado de evaluar esta expresión es una relación sin nombre con el mismo cuerpo que la relación S pero en la cual el atributo Ciudad se llama SCiudad
 - Los demás nombres de atributos se heredan sin modificación
- Como simplificación se admitirá que
 - (S rename Ciudad as SCiudad) rename S# as SNum
- es equivalente a
 - S rename Ciudad as SCiudad, S# as SNum

Compatibilidad respecto a la unión

- La *unión* del álgebra relacional no es la unión matemática, sino una forma **limitada** de la misma a fin de conservar la propiedad de *cerradura*
 - se obliga a que las relaciones operandos tengan lo que podríamos llamar en términos informales "*la misma forma*"
 - la unión del conjunto de tuplas de la tabla S y de la tabla P es un conjunto **pero no una relación**
 - las dos relaciones deben contener tuplas de proveedores o las dos deben contener tuplas de partes, pero no una mezcla
- Esto es lo que se denomina compatibilidad respecto a la unión

Compatibilidad respecto a la unión

- Dos relaciones son compatibles respecto a la unión si y sólo si sus cabeceras son idénticas:
 - o las dos tienen el **mismo conjunto de nombres de atributos** (y por fuerza el mismo grado); y
 - o los atributos correspondientes (es decir, los atributos con el mismo nombre en las dos relaciones) se **definen sobre el mismo dominio**
 - La *unión*, la *intersección* y la *diferencia* requieren todas operandos compatibles respecto a la unión
 - o El producto cartesiano, en cambio, no tiene este requerimiento
 - o aunque sí tiene otra restricción diferente, como se verá
 - Si necesitamos convertir en compatibles a dos relaciones
 - o las cuales serían compatibles si no fuese por ciertas diferencias en los nombres de los atributos
 - podemos emplear el operador *rename* antes de efectuar la *unión* (o *intersección* o *diferencia*)

Operadores tradicionales de conjuntos

- *Unión*: La *unión* de dos relaciones *A* y *B compatibles respecto a la unión*, *A union B (A U B)*, es una **relación**
 - cuya **cabecera** es idéntica a la de A o B
 - y cuyo **cuerpo** está formado por todas las tuplas *t* pertenecientes ya sea a *A* o a *B* (o a las dos)
 - Adviértase que se han de eliminar las tuplas repetidas
- Intersección: La intersección de dos relaciones A y B compatibles respecto a la unión, A intersect B ($A \cap B$), es una relación
 - cuya cabecera es idéntica a la de A o B
 - y cuyo **cuerpo** está formado por todas las tuplas *t* que pertenecen tanto a *A* como a *B*

Operadores tradicionales de conjuntos

- $lue{Diferencia}$: La diferencia entre dos relaciones A y B compatibles respecto a la unión, A minus B (A B), es una relación
 - \square cuya **cabecera** es idéntica a la de A o B
 - \square y cuyo **cuerpo** está formado por todas las tuplas t pertenecientes a A pero no a B
- ☐ En matemáticas, el producto cartesiano de dos *conjuntos* es el *conjunto* de todos los **pares ordenados** de elementos tales que
 - □el primer elemento de cada par pertenece al primer conjunto
 - y el segundo elemento de cada par pertenece al segundo conjunto
 - ☐ El producto cartesiano de dos *relaciones* sería un *conjunto* de **pares ordenados** de tuplas
 - pero se desea conservar la **propiedad de cerradura**, es decir:
 - deseamos un **resultado compuesto de tuplas** y no de pares ordenados de tuplas

Producto cartesiano ampliado

- Por lo tanto, la versión del producto cartesiano para el álgebra relacional es una forma ampliada de dicha operación
 - # en la que cada par ordenado de tuplas es reemplazado por la tupla resultante de la "combinación" de las dos tuplas en cuestión

 $\{A_1:a_1,...,A_m:a_m\}$ combinada con $\{B_1:b_1,...,B_n:b_n\}$

 ${A_1:a_1, ..., A_m:a_m, B_1:b_1, ..., B_n:b_n}$

Compatibilidad respecto al producto

- Otro problema en relación al producto cartesiano es la necesidad de una cabecera bien formada para la relación resultante
 - Como la cabecera del resultado es la combinación de las cabeceras de las dos relaciones operandos
 - o se presentará un **problema** si esas dos **cabeceras** tienen algún **nombre de atributo en común**
 - o en cuyo caso deberemos **emplear previamente** el operador *rename* para modificar de manera apropiada los nombres de los atributos
 - O Diremos que dos relaciones son *compatibles respecto al producto* si y sólo si sus **cabeceras** son **disjuntas** (<u>no</u> tienen nombres de atributos en común)

Operadores tradicionales de conjuntos

- Producto cartesiano: El producto cartesiano de dos relaciones A y B compatibles respecto al producto, A times B (A x B), es una relación
 - cuya **cabecera** es la *combinación* de las cabeceras de *A* y *B*
 - y cuyo **cuerpo** está formado por el conjunto de todas las tuplas *t* tales que *t* es la combinación de una tupla *a* perteneciente a *A* y una tupla *b* perteneciente a *B*
- La unión, la intersección y el producto cartesiano son asociativas
 - La diferencia **no** lo es
- La unión, la intersección y el producto cartesiano son conmutativas
 - La diferencia **no** lo es