Roger Access Control System

Instrukcja obsługi ekspanderów MCX2-BRD i MCX8-BRD

Wersja produktu: 2.0

Oprogramowanie firmowe: 2.0.30.266 lub nowsze

Wersja dokumentu: Rev. D

 ϵ

1. BUDOWA I PRZEZNACZENIE

MCX2-BRD oraz MCX8-BRD to ekspandery linii wejściowych i wyjściowych przeznaczone do wykorzystania w systemie RACS 5. Urządzenia umożliwiają zwiększenie ilości dostępnych linii wejściowych oraz wyjściowych w systemie. Linie te są wykorzystywane m.in. do podłączenia zamków, czujników, przycisków, urządzeń sygnalizacyjnych, itp.

Ekspandery posiadają interfejs RS485 za pośrednictwem, którego są podłączane do magistrali komunikacyjnej kontrolera MC16.

Charakterystyka

- Ekspander linii WE/WY do systemu RACS 5
- 2 wejścia parametryczne (MCX2-BRD)
- 8 wejść parametrycznych (MCX8-BRD)
- 2 wyjścia przekaźnikowe (MCX2-BRD)
- 8 wyjść przekaźnikowych (MCX8-BRD)
- Interfejs RS485
- Zaciski śrubowe

Zasilanie

Ekspander wymaga zasilania z napięcia stałego w zakresie 11-15V. Napięcie to może być doprowadzone z ekspandera MCX2D/MCX4D zestawu MC16-PAC-KIT, kontrolera dostępu MC16 (wyjście zasilania AUX) lub z osobnego zasilacza. Przekroje przewodów zasilania należy tak dobrać, aby napięcie zasilania przy urządzeniu nie różniło się więcej niż o 1V względem napięcia na wyjściu zasilacza. Dobór właściwych przekrojów przewodów jest szczególnie krytyczny w sytuacji, gdy urządzenie jest zasilane ze źródła znajdującego się w znacznej odległości. W takim przypadku należy rozważyć użycie dodatkowego zasilacza umieszczonego blisko urządzenia. Minus takiego dodatkowego zasilacza należy połączyć z minusem kontrolera (GND) przy pomocy przewodu o dowolnie małym przekroju. W tabeli poniżej przedstawiono dopuszczalne długości kabla UTP w zależności od ilości par użytych do zasilania urządzenia.

Tabela 1 Okablowanie zasilania			
llość par kabla UTP użytych do zasilania urządzenia	Maksymalna długość kabla zasilającego urządzenie		
1	150m		
2	300m		
3	450m		
4	600m		

Rys. 1 Zasilanie ekspandera z kontrolera MC16

Rys. 2 Zasilanie ekspandera z osobnego zasilacza

Magistrala RS485

Komunikację ekspandera z kontrolerem dostępu MC16 zapewnia magistrala RS485, do której można w sumie podłączyć do 16 urządzeń systemu RACS 5, każde o indywidualnym adresie w zakresie 100-115. Magistralę tą można kształtować w sposób swobodny stosując topologie gwiazdy i drzewa a także ich kombinacje. Nie dopuszcza się jednak stosowania topologii pętli. Nie jest wymagane stosowanie rezystorów terminujących na końcach linii transmisyjnych magistrali komunikacyjnej RS485. W większości przypadków komunikacja działa bezproblemowo dla wszystkich rodzajów kabla (zwykły kabel telefoniczny, skrętka ekranowana lub nieekranowana), niemniej preferowana jest nieekranowana skrętka komputerowa (U/UTP kat. 5). Zastosowanie kabli w ekranie należy ograniczyć do instalacji narażonych na silne zakłócenia elektromagnetyczne. Standard transmisji RS485 stosowany w systemie RACS 5 gwarantuje poprawną komunikację na odległości do 1200 metrów (liczoną po kablu) i charakteryzuje się wysoką odpornością na zakłócenia.

Uwaga: Do komunikacji RS485 nie należy wykorzystywać więcej niż jednej pary przewodów w kablu UTP.

Wskaźniki LED

Ekspandery są wyposażone we wskaźniki LED, które służą do sygnalizacji wbudowanych funkcji.

Tabela 2. Wskaźniki LED			
Wskaźnik	Symbol	Kolor	Funkcja wbudowana
PWR	()	Zielony	Wskaźnik sygnalizuje zasilanie ekspandera.
LINK	•	Czerwony	Wskaźnik sygnalizuje komunikację na magistrali RS485.
REL1-REL8		Czerwony	Wskaźniki sygnalizują załączenie skojarzonego przekaźnika.

Linie wejściowe

Ekspander udostępnia parametryczne linie wejściowe ogólnego przeznaczenia typu NO, NC, 3EOL/DW/NO i 3EOL/DW/NC. Typy i parametry elektryczne wejść takie jak czas reakcji i rezystory parametryzujące ustawia się w ramach konfiguracji niskopoziomowej (VISO v2 lub RogerVDM). Funkcje przypisuje się poszczególnym wejściom w ramach konfiguracji wysokopoziomowej (VISO). Istnieje możliwość przypisania jednocześnie wielu funkcji do danego wejścia.

Tabela 3. Typy linii wejściowych

Linia typu NO RYD CA Red230

Linia typu NO może znajdować się w stanie normalnym lub wyzwolenia. W stanie normalnym styki C_{A} są otwarte. Wyzwolenie wejścia następuje poprzez zamknięcie styku C_{A} .

Linia typu NC

Linia typu NC może znajdować się w stanie normalnym lub wyzwolenia. W stanie normalnym styki C_A są zamknięte. Wyzwolenie wejścia następuje poprzez otwarcie styku C_A .

Linia typu 3EOL/DW/NO

Linia typu 3EOL/DW/NO działa w taki sposób, że zwarcie styku C_{A} jest interpretowane jako wyzwolenie pierwszego wejścia a zwarcie styku C_{B} jest interpretowane jako wyzwolenie drugiego wejścia. W programie VISO linia wejściowa typu DW jest prezentowana jako dwa niezależne wejścia a każde z nich może pełnić odmienną funkcję w systemie.

Linia typu 3EOL/DW/NC

Linia typu 3EOL/DW/NC działa w taki sposób, że rozwarcie styku C_{A} jest interpretowane jako wyzwolenie pierwszego wejścia a rozwarcie styku C_{B} jest interpretowane jako wyzwolenie drugiego wejścia. W programie VISO linia wejściowa typu DW jest prezentowana jako dwa niezależne wejścia a każde z nich może pełnić odmienną funkcję w systemie.

Rezystory parametryzujące

Dla wszystkich wejść urządzenia obowiązują jednakowe wartości rezystorów parametryzujących. Rezystory mogą przyjmować wartości z szeregu: $1k\Omega$, $1,2k\Omega$, $1,5k\Omega$, $1,8k\Omega$, $2,2k\Omega$, $2,7k\Omega$, $3,3k\Omega$, $3,9k\Omega$, $4,7k\Omega$, $5,6k\Omega$, $6,8k\Omega$, $8,2k\Omega$, $10k\Omega$ i $12k\Omega$. Rezystor Alarm A określa wartość rezystora służącego do detekcji stanu wyzwolenia pierwszej linii wejściowej a rezystor Alarm B określa wartość rezystora służącego do detekcji wyzwolenia drugiej linii wejściowej dla wejścia typu 3EOL/DW (Double Wiring). Wartość rezystora Alarm A musi różnić się względem wartości Alarm B o co najmniej trzy pozycje w szeregu. Całkowita rezystancja przewodu zastosowanego do podłączenia styków do linii wejściowej nie powinna przekraczać 100Ω . Domyślne wartości rezystorów parametryzujących:

- Alarm A = 2,2 kΩ
- Alarm B = $5.6 \text{ k}\Omega$

Czas reakcji

Parametr czas reakcji określa minimalny czas trwania impulsu na linii wejściowej, który spowoduje rozpoznanie zmiany jej stanu. Dla każdego wejścia można ustawić indywidualny czas reakcji w zakresie od 50 do 5000 ms w ramach konfiguracji niskopoziomowej (VISO v2 lub RogerVDM).

Linie wyjściowe

Ekspander udostępnia wyjścia przekaźnikowe ze stykami NO/NC. Parametry elektryczne wyjść takie jak polaryzacja ustawia się w ramach konfiguracji niskopoziomowej (VISO v2 lub RogerVDM). Funkcje poszczególnym wyjściom przypisuje się w ramach konfiguracji wysokopoziomowej (VISO). Istnieje możliwość przypisania jednocześnie wielu funkcji do danego wyjścia z ustaleniem ich priorytetów.

2. INSTALACJA

Rys. 3 Ekspander MCX2-BRD

Tabela 4. Opis zacisków MCX2-BRD		
Nazwa	Opis	
+12V	Zasilanie 12VDC	
GND	Potencjał odniesienia (masa)	
A*	Magistrala RS485, linia A	
B*	Magistrala RS485, linia B	
IN1	Linia wejściowa IN1	
IN2	Linia wejściowa IN2	
NC	Zacisk rozwierany przekaźnika RELx	
СОМ	Zacisk wspólny przekaźnika RELx	
NO	Zacisk zwierany przekaźnika RELx	

^{*} W starszych modelach ekspanderów MCX2-BRD, zaciski A i B na płytce ekspandera mogą być oznaczone odpowiednio jako IO1 i IO2

Rys. 4 Ekspander MCX8-BRD

Tabela 5. Opis zacisków MCX8-BRD		
Nazwa	Opis	
+12V	Zasilanie 12VDC	
GND	Potencjał odniesienia (masa)	
Α	Magistrala RS485, linia A	
В	Magistrala RS485, linia B	
СОМ	Zacisk wspólny przekaźnika RELx	
NC	Zacisk rozwierany przekaźnika RELx	
NO	Zacisk zwierany przekaźnika RELx	
IN1IN8	Linia wejściowa IN1IN8	

W zestawie ekspander posiada uchwyty do montażu na szynie DIN35. Można więc instalować ekspandery w obudowach typu ME wyposażonych w taką szynę. Alternatywnie możliwe jest też zamocowanie ekspanderów z wykorzystaniem wkrętów i otworów w płytce ekspandera.

Rys. 5 Instalacja ekspanderów

Wskazówki instalacyjne

- Wszelkie podłączenia elektryczne należy wykonać bez obecności napięcia.
- W przypadku gdy ekspander i kontroler zasilane są z osobnych źródeł to konieczne jest zwarcie minusa zasilania ekspandera z minusem zasilania kontrolera.

3. SCENARIUSZE PRACY

Ekspander MCX2-BRD po podłączeniu do kontrolera dostępu MC16 może być wykorzystywany przede wszystkim do zwiększenia ilości dostępnych linii wejściowych i wyjściowych jeżeli nie wystarczają te, które oferuje kontroler i podłączone do niego terminale.

Ekspander MCX8-BRD po podłączeniu do kontrolera dostępu MC16 może być wykorzystywany do:

- Uniwersalnej kontroli dostępu w windach (zgodnie z notą aplikacyjną AN030).
- Przewodowej kontroli dostępu w szafkach (zgodnie z notą aplikacyjną AN029).
- Sprzętowej integracji z systemami alarmowymi (zgodnie z notą aplikacyjną AN027).
- Kontroli dostępu na przejściach (zgodnie z notą aplikacyjną AN002).
- Innych zastosowań wymagających dodatkowych linii WE/WY w tym do automatyki budynkowej.

4. Konfiguracja urządzenia

Konfiguracja niskopoziomowa ma na celu przygotowanie urządzenia do pracy w systemie. W przypadku systemu RACS 5 v1 adres ekspandera musi być ustawiony za pomocą programu RogerVDM przed podłączeniem do kontrolera MC16. Z kolei w systemie RACS 5 v2 adresowanie i konfiguracja niskopoziomowa mogą być wykonane na etapie finalnej konfiguracji systemu z poziomu oprogramowania VISO v2. Oznacza to, że w systemie RACS 5 v2 konfiguracja z poziomu RogerVDM, jak też manualna zmiana adresu są opcjonalne i na etapie instalacji wystarczające jest samo podłączenia ekspandera do kontrolera MC16.

Konfiguracja niskopoziomowa (VISO v2)

W systemie RACS 5 v2 ekspander może zostać zainstalowany w miejscu docelowym bez konieczności jego wcześniejszej konfiguracji. Zgodnie z notą aplikacyjną AN006 zarówno ustawienie jego adresu, jak i skonfigurowanie innych jego opcji może być wykonane za pomocą programu zarządzającego systemem kontroli dostępu VISO v2 bez dostępu do styków serwisowych (rys. 3/4) ekspandera.

Konfiguracja niskopoziomowa (RogerVDM)

Konfiguracja niskopoziomowa ma na celu przygotowanie urządzenia do pracy w systemie.

Rys. 6 Sposób podłączenia ekspandera do interfejsu RUD-1 (konfiguracja niskopoziomowa).

Procedura programowania z poziomu programu RogerVDM:

- 1. Podłącz urządzenie do interfejsu RUD-1 zgodnie z rys. 6, a interfejs RUD-1 do portu USB komputera.
- 2. Zdejmij zworkę ze styków JP7 (rys. 3/4) jeżeli jest założona.
- 3. Wykonaj restart urządzenia (naciśnij przycisk RESET lub wyłącz/włącz zasilanie) a LED PWR zacznie pulsować i w ciągu 5 sekund od restartu załóż zworkę na styki JP7.
- 4. Uruchom program RogerVDM i wskaż urządzenie *MCX v2.x*, wersję firmware *v2.0*, kanał komunikacyjny *RS485* oraz port szeregowy pod którym zainstalował się interfejs komunikacyjny RUD-1.
- 5. Kliknij *Połącz*, program nawiąże połączenie z urządzeniem i automatycznie przejdzie do zakładki *Konfiguracja*.
- 6. Ustaw odpowiedni adres RS485 w zakresie 100-115 oraz stosownie do indywidualnych wymagań pozostałe nastawy konfiguracyjne.
- 7. Kliknij przycisk Wyślij do urządzenia a program prześle nowe ustawienia.
- 8. Opcjonalnie zapisz ustawienia konfiguracyjne do pliku na dysku (polecenie Zapisz do pliku...).
- 9. Odłącz urządzenie od interfejsu RUD-1 i pozostaw zworkę na stykach JP7 by umożliwić późniejszą zdalną konfigurację z programu VISO v2 lub usuń zworkę z kontaktów JP7, jeśli urządzenie ma być zablokowane przed zdalnym programowaniem.

Tabela 6. Lista parametrów konfiguracji niskopoziomowej		
Opcje komunikacyjne		
Adres RS485	Parametr określa adres urządzenia na magistrali RS485. Zakres wartości: 100-115. Wartość domyślna: 100.	
Opóźnienie sygnalizacji braku komunikacji z kontrolerem [s]	Parametr określa opóźnienie, po jakim urządzenie zacznie sygnalizować brak komunikacji z kontrolerem. Wartość 0 wyłącza sygnalizację. Zakres wartości: 0-64s. Wartość domyślna: 20s.	
Szyfrowanie komunikacji RS485	Parametr załącza szyfrowanie komunikacji na magistrali RS485. Zakres wartości: [0]: Nie, [1]: Tak. Wartość domyślna: [0]: Nie.	
Hasło szyfrowania komunikacji RS485	Hasło do szyfrowania komunikacji na magistrali RS485. Zakres wartości: 4-16 znaków ASCII.	
Typy wejść		
IN1 - IN8	Parametr określa typ linii wejściowej. Zakres wartości: [1]: NO, [2]: NC, [3]: EOL/NO, [4]: EOL/NC, [5]: 2EOL/NO, [6]: 2EOL/NC, [7]: 3EOL/NO, [8]: 3EOL/NC, [9]: 3EOL/DW/NO, [10]: 3EOL/DW/NC. Wartość domyślna: [1]: NO.	
Rezystancje wejść parametryczn	ych	
Tamper, Alarm A, Alarm B [Ohm]	Parametr określa wartość rezystora dla parametrycznych linii wejściowych EOL.	
Czasy reakcji wejść		
IN1 – IN8 [ms]	Parametr określa minimalny czas trwania impulsu wymaganego, aby wyzwolić linię wejściową. Zakres wartości: 50-5000. Wartość domyślna: 50.	
Polaryzacja wyjść		
REL1 – REL2	Parametr określa rodzaj polaryzacji linii wyjściowej. Polaryzacja normalna oznacza, że linie wyjściowa w stanie domyślnym jest wyłączona a polaryzacja odwrócona oznacza, że w stanie domyślnym linia wyjściowa jest załączona. Zakres wartości: [0]: Polaryzacja normalna, [1]: Polaryzacja odwrócona. Wartość domyślna: [0]: Polaryzacja normalna.	
Komentarze		
DEV	Dowolny tekst, który pojawi się w programie zarządzającym VISO i ułatwi identyfikację tego urządzenia.	
Komentarze do wejść		

IN1 - IN8	Dowolny tekst, który pojawi się w programie zarządzającym VISO i ułatwi identyfikację tego obiektu.
Komentarze do wyjść	
REL1 – REL8	Dowolny tekst, który pojawi się w programie zarządzającym VISO i ułatwi identyfikację tego obiektu.

Uwaga: Tabela 6 zawiera sumaryczne zestawienie parametrów dla obu wersji ekspandera. Przykładowo ustawienia dotyczące wejść IN3-IN8 oraz wyjść REL3-REL8 nie są dostępne dla ekspanderów MCX2-BRD.

Manualne ustawienie adresu

Adres RS485 ekspandera ustawiany za pomocą programu VISO v2 lub RogerVDM to adres programowy. Alternatywnie adres RS485 ekspandera MCX8-BRD można ustawić za pomocą zworek i jest to wtedy adres sprzętowy, który ma wyższy priorytet niż adres programowy.

Uwaga: Każdorazowo po zmianie adresu sprzętowego należy dokonać restartu urządzenia.

Rys. 7 Manualne ustawienie adresu ekspandera MCX8-BRD

Jeżeli na stykach JP5 nie jest założona żadna zworka to ustawiany jest adres z przedziału 201-215. Jednakże adresy z tego przedziału nie mogą być wykorzystywane do komunikacji z kontrolerem MC16.

Konfiguracja wysokopoziomowa (VISO)

Konfiguracja wysokopoziomowa definiuje logikę działania ekspandera współpracującego z kontrolerem MC16 i zależy od przyjętego scenariusza pracy. Konfigurację przykładowego systemu kontroli dostępu opisano w nocie aplikacyjnej AN006 dostępnej na stronie www.roger.pl.

5. AKTUALIZACJA OPROGRAMOWANIA

Oprogramowanie firmowe (firmware) urządzenia może być zmieniane na nowsze lub starsze. Wgranie oprogramowania odbywa się za pośrednictwem interfejsu RUD-1 i programu RogerVDM. Na stronie producenta urządzenia <u>www.roger.pl</u>. publikowane są pliki oprogramowania.

Procedura aktualizacji oprogramowania:

1. Podłącz urządzenie do interfejsu RUD-1 zgodnie z rys. 8, a interfejs RUD-1 do portu USB komputera.

- 2. Załóż zworkę na styki FDM (rys. 3/4).
- 3. Wykonaj restart urządzenia (naciśnij przycisk RESET lub wyłącz/włącz zasilanie).
- 4. Uruchom program RogerVDM i w menu górnym wybierz *Narzędzia*, a następnie polecenie *Aktualizuj* oprogramowanie.
- 5. W nowo otwartym oknie wskaż typ urządzenia, port komunikacyjny pod którym zainstalował się RUD-1 oraz ścieżkę dostępu do pliku firmware (*.hex)
- 6. Wciśnij przycisk *Aktualizuj* by rozpocząć wgrywanie firmware do urządzenia. W dolnej części okna widoczny będzie pasek postępu.
- 7. Gdy aktualizacja zostanie ukończona zdejmij zworkę ze styków FDM i wykonaj restart urządzenia.

Rys. 8 Sposób podłączenia terminala do interfejsu RUD-1 (aktualizacja firmware).

6. DANE TECHNICZNE

Tabela 7. Dane techniczne			
Napięcie zasilania	Nominalne 12VDC, dopuszczalne 10-15VDC		
Pobór prądu (średni)	30mA (bez załączonych przekaźników)		
Wejścia	MCX2-BRD: Dwie (IN1, IN2) MCX8-BRD: Osiem (IN1IN8) parametrycznych linii wejściowych elektrycznie połączonych wewnętrznie z +12V przez rezystor 15 kΩ, próg przełączania ok. 3.5V		
Wyjścia przekaźnikowe	MCX2-BRD: Dwa wyjścia przekaźnikowe REL1: 30VDC/1,5A REL2: 30VDC/5A MCX8-BRD: Osiem wyjść przekaźnikowych REL1REL8: 30VDC/1.5A Każde z wyjść wyposażone w jeden styk NO/NC.		
Odległości	Do 1200 m długości magistrali RS485 pomiędzy kontrolerem a ekspanderem		
Stopień ochrony	IP20		
Klasa środowiskowa (wg EN 50133-1)	Klasa I, warunki wewnętrzne, temperatura otoczenia: +5°C- +40°C, wilgotność względna: 10 do 95% (bez kondensacji)		
Wymiary W x S x G	MCX2-BRD: 80 x 54 x 20 mm MCX8-BRD: 72 x 155 x 20 mm		

Waga	MCX2-BRD:	50g
	MCX8-BRD:	115g
Certyfikaty	CE	

7. OZNACZENIA HANDLOWE

Tabela 8. Oznaczenia handlowe		
MCX2-BRD	Ekspander we/wy; 2 wejścia EOL; 2 wyjścia przekaźnikowe	
MCX8-BRD	Ekspander we/wy; 8 wejść EOL; 8 wyjść przekaźnikowych	
RUD-1	Przenośny interfejs komunikacyjny USB-RS485 oraz programator urządzeń kontroli dostępu firmy ROGER	

8. HISTORIA PRODUKTU

Tabela 9. Historia produktu		
Wersja	Data	Opis
MCX2-BRD v1.0	03/2016	Pierwsza komercyjna wersja produktu
MCX2-BRD v2.0	10/2019	Zmiany w obrębie płyty PCB, zmieniona procedura konfiguracji niskopoziomowej
MCX8-BRD v1.0	03/2016	Pierwsza komercyjna wersja produktu
MCX8-BRD v2.0	10/2019	Zmiany w obrębie płyty PCB, zmieniona procedura konfiguracji niskopoziomowej

Symbol ten umieszczony na produkcie lub opakowaniu oznacza, że tego produktu nie należy wyrzucać razem z innymi odpadami gdyż może to spowodować negatywne skutki dla środowiska i zdrowia ludzi. Użytkownik jest odpowiedzialny za dostarczenie zużytego sprzętu do wyznaczonego punktu gromadzenia zużytych urządzeń elektrycznych i elektronicznych. Szczegółowe informacje na temat recyklingu można uzyskać u odpowiednich władz lokalnych, w przedsiębiorstwie zajmującym się usuwaniem odpadów lub w miejscu zakupu produktu. Gromadzenie osobno i recykling tego typu odpadów przyczynia się do ochrony zasobów naturalnych i jest bezpieczny dla zdrowia i środowiska naturalnego. Masa sprzętu podana jest w instrukcji obsługi produktu.

Kontakt: Roger sp. z o.o. sp.k. 82-400 Sztum Gościszewo 59 Tel.: +48 55 272 0132

Faks: +48 55 272 0133
Pomoc tech.: +48 55 267 0126
Pomoc tech. (GSM): +48 664 294 087
E-mail: pomoc.techniczna@roger.pl

Web: www.roger.pl