Basic Argument Forms

Name	Equivalence	Description
Modus Ponens	$(p \to q)$ p $\therefore q$	if p then q; p; therefore q
Modus Tollens	$(p \to q)$ $\neg q$ $\therefore \neg p$	if p then q; not q; therefore not p
Hypothetical Syllogism	$(p \to q)$ $(q \to r)$ $\therefore (p \to r)$	if p then q; if q then r; therefore, if p then r
Disjunctive Syllogism	$(p \lor q)$ $\neg p$ $\therefore q$	Either p or q; not p; therefore, q
Constructive Dilemma	$(p \to q)$ $(r \to s)$ $(p \lor r)$ $\therefore (q \lor s)$	if p then q; and if r then s; but either p or r; therefore either q or s
Destructive Dilemma	$(p \to q)$ $(r \to s)$ $(\neg q \lor \neg s)$ $\therefore (\neg p \lor \neg r)$	if p then q; and if r then s; but either not q or not s; therefore either not p or not r $ \\$
Simplification	$(p \wedge q)$ $\therefore p$	p and q are true; therefore p is true
Conjunction	p, q $\therefore (p \land q)$	p and q are true separately; therefore they are true conjointly
Addition	$p \\ \therefore (p \lor q)$	p is true; therefore the disjunction (p or q) is true
Composition	$(p \to q)$ $(p \to r)$ $\therefore (p \to (q \land r))$	if p then q; and if p then r; therefore if p is true then q and r are true
De Morgan's Theorem (1)	$\neg (p \land q)$ $\therefore (\neg p \lor \neg q)$	The negation of (p and q) is equiv. to (not p or not q)

De Morgan's Theorem (2)	$\neg (p \lor q)$ $\therefore (\neg p \land \neg q)$	The negation of (p or q) is equiv. to (not p and not q)
Commutation (1)	$(p \lor q)$ $\therefore (q \lor p)$	(p or q) is equiv. to (q or p)
Commutation (2)	$(p \wedge q)$ $\therefore (q \wedge p)$	(p and q) is equiv. to (q and p)
Association (1)	$(p \lor (q \lor r))$ $\therefore ((p \lor q) \lor r)$	p or (q or r) is equiv. to (p or q) or r
Association (2)	$(p \wedge (q \wedge r))$ $\therefore ((p \wedge q) \wedge r)$	p and (q and r) is equiv. to (p and q) and r
Distribution (1)	$(p \wedge (q \vee r))$ $\therefore ((p \wedge q) \vee (p \wedge q))$	p and (q or r) is equiv. to (p and q) or (p and r) r))
Distribution (2)	$(p \lor (q \land r))$ $\therefore ((p \lor q) \land (p \lor$	p or (q and r) is equiv. to (p or q) and (p or r)
Double Negation	<i>p</i> ∴ ¬¬ <i>p</i>	p is equivalent to the negation of not p
Transposition	$(p \to q)$ $\therefore (\neg q \to \neg p)$	if p then q is equiv. to if not q then not p
Material Implication	$(p \to q)$ $\therefore (\neg p \lor q)$	if p then q is equiv. to not p or q
Exportation	$((p \land q) \to r)$ $\therefore (p \to (q \to r))$	from (if p and q are true then r is true) we can prove (if q is true then r is true, if p is true)
Importation	$(p \to (q \to r))$ $\therefore ((p \land q) \to r)$	
Tautology (1)	$\begin{array}{c} p \\ \therefore (p \lor p) \end{array}$	p is true is equiv. to p is true or p is true
Tautology (2)	$p \\ \therefore (p \wedge p)$	p is true is equiv. to p is true and p is true
Tertium non datur (Law of Excluded Middle)	$\therefore (p \vee \neg p)$	p or not p is true

Source: http://en.wikipedia.org/wiki/Propositional_logic