4.	O (objednévla)	R(reklomaci)	2 (zbytel)	1 2
E (email)	25	10	15	50
T (tel.)	32	4	4	40
P (pap. form)	1	₹	1	10
2	58	22	20	100

a)
$$P(R) = \frac{22}{100} = 0.22$$
 b) $P(T/R) = \frac{4}{22} = \frac{2}{100}$

C)
$$X \dots poced hovori La 10 min. $\nu Po(\frac{2}{3}), f: P(X=k) = \frac{(\frac{2}{3})^k}{k!} e^{-\frac{k}{3}}$

$$P(X=0) = \frac{(\frac{2}{3})^o}{o!} e^{-\frac{2}{3}} = e^{-\frac{k}{3}}$$

$$poced hovori La 10 min. $\nu Po(\frac{2}{3}), f: P(X=k) = \frac{(\frac{2}{3})^k}{k!} e^{-\frac{k}{3}}$

$$poced hovori La 10 min. $\nu Po(\frac{2}{3}), f: P(X=k) = \frac{(\frac{2}{3})^k}{k!} e^{-\frac{k}{3}}$$$$$$$

(NEBO TAKÉ:

Y. doba do prish'ho hovoru [min.]
$$N = xp(\frac{1}{15}), \frac{1}{15}$$

$$f(x) = \frac{1}{15}e^{-\frac{x}{15}} \quad a \quad F(x) = 1 - e^{-\frac{x}{15}} \quad pno \quad x > 0$$

$$= 0 \qquad pno \quad x \leq 0$$

$$P(Y > 10) = 1 - P(Y \le 10) = 1 - F(10) = 1 - (1 - e^{-\frac{12}{15}}) = e^{-\frac{2}{3}}$$

$$= \int_{10}^{\infty} \frac{1}{15} e^{-\frac{1}{15}} dx = \int_{10}^{\infty} - e^{-\frac{1}{15}} \int_{10}^{\infty} = e^{-\frac{1}{3}}$$

7... počet hovorů za zbylých 50 min.
$$(f. 2a dobu, kely)$$
mesi $8:00$ a $9:00$ hevarí kovu) ν $\mathcal{B}(\frac{10}{3}), f. \mathcal{P}(\frac{1}{1}=k) = \frac{10}{k!}e^{-\frac{10}{3}}$

pro $k=0,1,...$

$$P(X=0,Y \leq 2) = P(X=0) \cdot P(Y \leq 2) = e^{-\frac{1}{3}} \cdot \left(\frac{(9)}{3}\right)^{\circ} \cdot e^{-\frac{1}{3}} + \left(\frac{(9)}{3}\right)^{1} \cdot e^{-\frac{1}{3}} \cdot \left(\frac{(9)}{3}\right)^{2} \cdot e^{-\frac{1}{3}}\right)$$

e)
$$X$$
... počít emailie, které nejsou neklomoce, přid první e-mail neklomocé $X \times Geom(0,2)$, $f: P(X=k) = 0,8^k 0,2$ pro $k=0,1,...$ $P(X \le L) = \sum_{k=0}^{2} 0,8^k 0,2 = 0,2 \cdot \frac{1-0,8^3}{1-0,8} = \frac{1-0,8^3}{1-0,8} = \frac{1-0,8^3}{1-0,8}$

(NEBO:

Y. počel reklamaci mesi prvnimi tremi emaily
Yn Brinom
$$(3; 0,2)$$
, $f: P(Y=k) = {3 \choose k} 0,2^k 0,8^{3-k}$ pro $k=0,1,2,3$

$$P(Y \ge 1) = 1 - P(Y=0) = 1 - {3 \choose 0} 0,2^0 0,8^3 = 1 - 0,8^3$$

f) X... pocil objednovek meai péh nohodně vybranými emaily X ~ Poinom (865,0,5), f.
$$P(X=k)=\binom{5}{k}0,5^k0,5^{5-k}$$
 pno $k=0,1,...,5$ $P(X=2)=1-P(X=1)=1-\binom{5}{0}0,5^00,5^5+\binom{5}{1}0,5^10,5^4)=1-6.05^5$

g)
$$X_{i} = 1$$
, j_{i} - l_{i} i - l_{i}' of $winy'$ email object now $kal_{i} = 1$ i - l_{i}' l_{i}'

 $= 1 - \phi(-2) = \phi(2) = \underline{09772}$

b)
$$EX = X_{15} = \frac{76.5}{15} = \frac{5.1}{15}$$
 $van X = S_{15}^2 = \frac{3.14}{14} = 0.22$

c)
$$H_0 : EX = 5$$

$$H_1 : EX \neq 5$$

$$d = 5\%$$

=) Ho nesamiléme se prospèch HA: EX +5 no hladine d:5%

=) ani ade nesomitéme to tentobrét us mospèch the EX>5 he hledini L=5%

(3) a) Ho:
$$p_{p} = p_{V} = \frac{1}{2}$$
 kole p_{p} , $nesp.$ p_{V} je pst , \tilde{x} no hodně vybroní

Ha: $p_{p} \neq p_{V}$ objednoní v polední, $resp.$ $večin$
 $d = 1\%$
 $\chi^{2} = \frac{(120 - 100)^{2}}{100} + \frac{(80 - 100)^{2}}{100} = \frac{400}{100} + \frac{400}{100} = 8$
 $\chi^{2} = \frac{(120 - 100)^{2}}{100} + \frac{(120 - 100)^{2}}{100} = \frac{400}{100} + \frac{400}{100} = 8$
 $\chi^{2} = \frac{(120 - 100)^{2}}{100} + \frac{(120 - 100)^{2}}{100} = \frac{400}{100} + \frac{400}{100} = 8$
 $\chi^{2} = \frac{(120 - 100)^{2}}{100} + \frac{(120 - 100)^{2}}{100} = \frac{400}{100} + \frac{400}{100} = 8$
 $\chi^{2} = \frac{(120 - 100)^{2}}{100} + \frac{(120 - 100)^{2}}{100} = \frac{400}{100} + \frac{400}{100} = 8$
 $\chi^{2} = \frac{(120 - 100)^{2}}{100} + \frac{(120 - 100)^{2}}{100} = \frac{400}{100} + \frac{400}{100} = 8$
 $\chi^{2} = \frac{(120 - 100)^{2}}{100} + \frac{(120 - 100)^{2}}{100} = \frac{400}{100} + \frac{400}{100} = 8$
 $\chi^{2} = \frac{(120 - 100)^{2}}{100} + \frac{(120 - 100)^{2}}{100} = \frac{400}{100} + \frac{400}{100} = 8$
 $\chi^{2} = \frac{(120 - 100)^{2}}{100} + \frac{(120 - 100)^{2}}{100} = \frac{400}{100} + \frac{400}{100} = 8$
 $\chi^{2} = \frac{(120 - 100)^{2}}{100} + \frac{(120 - 100)^{2}}{100} = \frac{400}{100} + \frac{400}{100} = 8$
 $\chi^{2} = \frac{(120 - 100)^{2}}{100} + \frac{(120 - 100)^{2}}{100} = \frac{400}{100} + \frac{400}{100} = 8$
 $\chi^{2} = \frac{(120 - 100)^{2}}{100} + \frac{(120 - 100)^{2}}{100} = \frac{400}{100} + \frac{400}{100} = 8$
 $\chi^{2} = \frac{(120 - 100)^{2}}{100} + \frac{(120 - 100)^{2}}{100} = \frac{(120 - 100)^{2}}{100} + \frac{(120 - 100)^{2}}{100} = \frac{(120 - 100)^{2}}{100}$

C) THE Band X. poced chutovek meet tremi vecernimi objednovkomi

$$X \sim Binom(3; \frac{40}{80}) = Binom(3; 0,5), j: P(X=k) = {3 \choose k} 0,5^{3-k}$$
 $P(X=0) = {3 \choose 0} 0,5^3 = 0,5^3$
 $P(X=0) = {3 \choose 0} 0,5^3 = 0,5^3$

USTNI CAST.

(i)
$$X = Y = 0$$
 neporche, justifie $h(x,y) = f(x) \cdot g(y)$ $f(x,y) = R$
=) $h(x,y) = (\frac{1}{2}x - \frac{1}{2})(1 - \frac{1}{2}y) = \frac{1}{2}x - \frac{1}{4}xy + \frac{1}{4}y - \frac{1}{2}$ pro $x \in (1,3)$ & $y \in (0,2)$
= 0 pro $x \notin (1,3)$ nebo $y \notin (0,2)$

$$=) P(X>2, Y<1) = P(X>2) \cdot P(Y<1) = \frac{3}{4} \cdot \frac{3}{4} = \frac{9}{16}$$

