Машинно-зависимые языки и основы компиляции

МГТУ им. Н.Э. Баумана Факультет Информатика и системы управления Кафедра Компьютерные системы и сети Лектор: д.т.н., проф.

Иванова Галина Сергеевна

Структура дисциплины

Лекции (34 часа):

- структура процессора IA-32 и система машинных команд;
- язык ассемблера (среда RADAsm для Masm32);
- связь разноязыковых модулей;
- основы построения компиляторов;
- макросредства ассемблера

Семинары (8 занятий): подготовка к лабораторным работам.

Лабораторные работы: 4 занятия по 4 часа – 5 лабораторных работ.

Домашние задания: 1-е — 10 неделя, 2-е — 16 неделя.

Контроль знаний:

Рк1: Структура машинной команды (6 неделя) — 6..10 баллов.

КР1: Ветвления и циклы (10 неделя) — 15..25 баллов.

Рк2: Правила передачи параметров (13 неделя) — 6..10 баллов.

КР2: Основы конструирования компиляторов (16 нед.) — 15..25 баллов.

Экзамен - 18..30 баллов.

1

Литература не покрывает курса!

Основная литература

1. Г.С. Иванова, Т.Н. Ничушкина. Главы 1-4. Учебные пособия в эл. виде.

Дополнительно:

- 1. Юров В.И. Assembler. Учебник для вузов. СПб.: Питер, 2010. 637 с.
- 2. Пирогов В.Ю. Ассемблер. Учебный курс. СПб.: БХВ-Петербург, 2003.
- 3. Пирогов В.Ю. Ассемблер для Windows. СПб.: БХВ-Питербург, 2007.
- 4. Ирвин К. Язык ассемблера для процессоров Intel. М.: ИД «Вильямс», 2005.
- 5. Грис Д. Конструирование компиляторов для цифровых вычислительных машин. М.: Мир, 1975.
- 6. Ахо А., Ульман Дж. Теория синтаксического анализа, перевода и компиляции.
- 7. Аблязов Р. Программирование на ассемблере на платформе x86-64. М.: ДМК Пресс, 2011.
- 8. Зубков С.В. Assembler. Для Dos, Windows и Unix. М.: ДМК Пресс, 2015.

Глава 1 *Организация* ядра ЭВМ на базе IA-32

МГТУ им. Н.Э. Баумана Факультет Информатика и системы управления Кафедра Компьютерные системы и сети Лектор: д.т.н., проф. Иванова Галина Сергеевна

1.1 Архитектура вычислительной системы на базе процессоров IA-32

Архитектурой ВС называют совокупность основных характеристик системы, определяющих особенности ее функционирования.

Архитектура «с общей шиной» предполагает, что основные устройства ВС взаимодействуют через единственную шину, называемую системной, которая включает:

- шину адреса;
- шину данных;
- шину управления.

Центральный процессор: IA-32, IA-64 и другие.

64 разрядные процессоры

Различают 2 совершенно разные, несовместимые друг с другом, микропроцессорные архитектуры:

- Intel 64 это Pentium 4 (последние модели), ряд моделей Celeron D, семейство Core 2 и некоторые модели Intel Atom;
- IA-64 это семейства Itanium и Itanium 2, предназначены для серверов.

Процессоры архитектуры Intel 64 поддерживают два режима работы:

- Long mode позволяет выполнять 64-битные программы; есть поддержка выполнения 32-битных приложений, но устранены сегментная модель памяти, аппаратная поддержка мультизадачности и т.п.;
- Legacy mode («наследственный», режим совместимости с x86) предоставляет полную совместимость с 32/16-битным кодом и операционными системами.

Таблица - Процессоры (февраль 2010)

Процессор	Тактовая частота, ГГц	Частота системной шины	Коэффициент умножения	Объем кэш-памяти второго уровня, Мбайт	Цена при поставке партиями по 1000 штук, долл.
Intel Pentium 4 Extreme Edition 3,73 ГГц	3,73	1066	14	2	999
Intel Pentium 4 660	3,60	800	18	2	605
Intel Pentium 4 650	3,40	800	17	2	401
Intel Pentium 4 640	3,20	800	16	2	273
Intel Pentium 4 630	3,00	800	15	2	224

Оперативная память

Оперативная память ВС организована как последовательность байт, которым соответствуют номера — целые числа от 0: 0,1,2 и т.д.

Номер байта является его физическим адресом.

Для данного класса систем приняты следующие обозначения:

- **слово** (word) 2 байта = 16 бит;
- **двойное слово** (double word dword) -2 слова = 32 бита;
- учетверенное слово (qword) 2 двойных слова = 64 бита.

Кроме этого используются:

- параграф 16 байт;
- страница 256 (512, 4096) байт.

Младший байт Старший байт	тиладший байт Старший байт	іий байт	адший байт	
---------------------------	----------------------------	----------	------------	--

Номера бит в байте: 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Номера бит в слове: 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

Типы обрабатываемых данных

- **целые числа** представляются в двоичной системе счисления, со знаком или без знака, длиной 1, 2, 4 байта, если число со знаком, то старший бит содержит знак;
- вещественные числа представляются в двоичной системе счисления в виде мантиссы со знаком и порядка общей длиной от 4 до 10 байт;
- **двоично-кодированные десятичные числа** со знаком, длиной до 16 байт тип больше не используется;
- **символы** (ASCII, ANSI, Unicode), длиной 1 или 2 байта

1.2 Программная модель процессора і8086

Под *программной моделью* процессора понимается совокупность его характеристик, существенных для разработки программного обеспечения.

В общем случае, программная модель процессора включает описание:

- способов адресации памяти;
- регистров;
- форматов данных;
- системы команд

w

Структура процессора і8086

Регистр флагов

SP

BP SI DI

Сегментная модель 16-ти разрядной адресации памяти

Сегмент при 16-ти разрядной адресации – фрагмент памяти размером не более 64 кбайт, который начинается с адреса, кратного 16. 12

Адресация сегментов различных типов

Программа размещается в сегментах трех типов, каждый из которых адресуется одним из сегментных регистров и регистром или регистрами, содержащими смещение.

1. Сегмент кода:

Сегментны й адрес

CS: IP

Смещение в сегменте

2. Сегмент стека:

- SS:SP
- 3. Основной и дополнительный сегменты данных:

BX + DI + <Непосредственное смещение>

BX + SI + <Непосредственное смещение>

BP + DI + < Непосредственное смещение >

DS: BP + SI + <Непосредственное смещение>

ES: _BX + <Непосредственное смещение>

ВР + <Непосредственное смещение>

SI + <Непосредственное смещение>

DI + <Непосредственное смещение>

Индекс

База

Схема 16-ти разрядной адресации памяти

Система машинных команд i8086. Форматы команды MOV

Префиксы	Код операции	1 байт адресации	2 байта смещения	2 байта данных	
ег-р/память → регистр	100010 DW	Mod Reg R/N	И Смещени млад. бай		
итерал→ ег-р/память	1100011 W	Mod 000 R/N	И Смещени млад. бай		е Данные

D - 1- в регистр, 0 - из регистра

W - 1- операнды-слова, 0 - байты

Mod - 00 – смещение Disp=0 байт

01 – смещение Disp=1 байт

10 – смещение Disp=2 байта

11 – операнды-регистры

	W=1	W=0	Sr	M = 000	EA=(BX)+(SI)+Disp
Reg	000 AX	000 AL	00 ES	001	EA=(BX)+(DI)+Disp
	001 CX	001 CL	01 CS	010	EA=(BP)+(SI)+Disp
	010 DX	010 DL	10 SS	011	EA=(BP)+(DI)+Disp
	011 BX	011 BL	11 DS	100	EA=(SI) + Disp
				101	EA=(DI) + Disp
	100 SP	100 AH			EA=(BP) + Disp *
	101 BP	101 CH		111	EA=(BX) + Disp 15

Примеры машинных команд

Примеры:

1) mov BX, CX

89 CB

100010DW Mod Reg Reg

10001001 11 001 011

2) mov CX, 6[BX]

8B 4F 06

100010DW Mod Reg Mem См.мл.байт

10001011 01 001 111 00000110

3) mov byte ptr 6[BX], 10

C 6 4 7 0 6 0 A

1100011W Mod 000 Mem См.мл.байт Данные

11000110 01 000 111 00000110 00001010

Семейство процессоров IA-32

Модель (Intel)	РОНы/ Данные/ Адрес	Основные характеристики
I8086 (1978) - I80186	16/16/20	4-8 МГц, 1 Мб
I80286 (1982)	16/16/24	8-20 МГц,защищенный режим
I80386 (1985)	32/32/32	20-40 МГц, виртуальный режим
180486 (1989)	32/32/32	20-100 МГц, внутренний сопроцессор
Pentium (1993)	32/64/32	60-150 МГц, конвейерные и суперскалярные схемы
Pentium Pro (1995)	32/64/32	100-200 МГц
Pentium II (1997)	32/64/32	233-300 МГц
Pentium III (1999)	32/64/36	450-500 МГц
Pentium IV (2001)	32/64/36	2.8 ГГц
Pentium IV 3,2 (2003)	32/64/36	3.2 ГГц
Pentium Core 2 Extreme QX9775 (2008)	32/64/36	3.2 (до 3.73) ГГц, двухядерные, частота системной шины до 1.6 ГГц
Pentium 4 670		3.8 ГГц, одноядерный
Pentium Core i7 970 Extreme		3.33 (до 3.6) ГГц, шестиядерный, частота системной шины 6.400 ГГц

1.3 Программная модель процессоров ІА-32

Процессоры ІА-32 могут функционировать в одном из трех режимов:

- реальной адресации (Real address mode) процессор работает как процессор i8086, адресует только 1 Мб памяти, с использованием 32х разрядных расширений, например, 32-х разрядных регистров или команд перехода в защищенный режим;
- **защищенном (Protected mode)** процессор работает с 32-х разрядными адресами и при этом использует сегментную и, как правило, страничную модели памяти;
- управления системой (System Management mode) для выполнения действий с возможностью их полной изоляции от прикладного программного обеспечения и операционной системы. Переход в режим возможен только аппаратно. используется для выполнения таких операции, как переход в энергосберегающее состояние.

Кроме этого раньше использовался *режим виртуальной адресации*, когда выполняется эмуляция нескольких «одновременно» работающих i8086.

Схема 32-х разрядной адресации

Плоская модель памяти Flat

Модель памяти Flat используется в приложениях Windows:

- база = 0;
- граница совпадает с объемом доступной оперативной памяти;
- сегмент кода, сегмент данных и сегмент стека располагаются в одном и том же пространстве адресов, которое разделено между указанными сегментами.

Начальные адреса памяти отводятся для размещения операционной системы. В связи с этим все модули компонуются не с начальных адресов, а с базового адреса в сегменте - 0х400000. в РЕ формате, несмотря на то, что сам формат позволяет выравнивать секции на 512 байт, используется выравнивание секций на границу 4 кб, меньшее выравнивание в Windows не считается корректным.

Адресное пространство приложения

0 Windows Сегмент стека Сегмент данных Сегмент кода

Поскольку аналогично адресуются все приложения, защита сегментов не работает (нельзя писать в сегмент кода, но можно в сегмент данных, расположенный в том же пространстве). Работает только защита страниц.

Основные блоки процессора IA-32

Регистры процессоров семейства IA-32

1. **Регистры данных** (32-х разр.):

Селен

Селекторы (16-ти разр.):

IP

FLAGS

AH	AL	EAX
BH	BL	EBX
CH	CL	ECX
DH	DL	EDX
SI		ESI
DI		EDI
BP		EBP
SP		ESP

•	•
CS	
CS SS	
DS	
ES	
FS	
GS	

- 3. Регистр указатель команд (32):
- 4. Слово системных флагов (32):
- 5. Управляющие регистры: CR0..CR3
- 6. Регистры системных адресов:

GDTR – регистр адреса таблицы глобальных дескрипторов;

LDTR – регистр адреса таблицы локальных дескрипторов;

IDTR – регистр адреса таблицы дескрипторов прерываний;

TR – регистр состояния задачи;

- 7. Отладочные регистры
- 8. Тестовые регистры

FIP

EFLAGS

Системные флаги

Флаги статуса CF, PF, AF, ZF, SF и OF отражают статус выполнения арифметических инструкций (таких как ADD, SUB, MUL, DIV).

- CF флаг переноса (Carry Flag).
- PF флаг четности (Parity Flag).
- AF флаг вспомогательного переноса (Adjust Flag).
- **ZF** флаг нуля (Zero Flag).
- \blacksquare SF флаг знака (Sign Flag).
- lacktriangle OF флаг переполнения (Overflow Flag).
- \blacksquare **DF** флаг направления (Direction Flag)

Системные флаги и поле IOPL влияют на процесс исполнения задачи, и поэтому не должны изменяться прикладной программой.

Система команд семейства процессоров IA-32

Размер команды от 1 до 15 байт:

d – направление: 1 – в регистр, 0 – из регистра;

w - 1 — операнды - двойные слова, 0 — байты;

mod - 00 - Disp=0 – смещение в команде 0 байт;

01 - Disp=1 – смещение в команде 1 байт;

10 - Disp=2 – смещение в команде 4 байта;

11 - операнды-регистры.

Sib присутствует, если:

- операнд находится в памяти;
- поле m = 100.

W:	=1	W=	= 0
000	EAX	000	AL
001	ECX	001	CL
010	EDX	010	DL
011	EBX	011	BL
100	ESP	100	AH
101	EBP	101	CH
110	ESI	110	DH
111	EDI	111	BH

Примеры:

1) mov EBX, ECX

100010DW Mod Reg Reg **10001001 11 001 011**

2)mov BX,CX

В режиме use32 префикс 66h определяет 16-ти разрядный операнд

префикс1 100010DW Mod Reg Reg **01100110 10001001 11 001 011**

Схемы адресации памяти без байта Sib

Поле	Эффектин	вный адрес второго	операнда
r/m	mod = 00B	mod = 01B	mod = 10B
000B	EAX	EAX+Disp8	EAX+Disp32
001B	ECX	ECX+Disp8	ECX+Disp32
010B	EDX	EDX+Disp8	EDX+Disp32
011B	EBX	EBX+Disp8	EBX+Disp32
100B	Определяется Sib	Определяется Sib	Определяется Sib
101B	Disp32	SS:[EBP+Disp8]	SS:[EBP+Disp32]
110B	ESI	ESI+Disp8	ESI+Disp32
111B	EDI	EDI+Disp8	EDI+Disp32

1)	mov	/ EC	X,DS	6:6[E	BX]
100010	W	Mod	Reg	m	См.мл.байт
1000101	.1	01	001	011	00000110

8 B | 4 B | 0 6

2) mov CX,DS:6[EBX] префикс 100010DW Mod Reg m См.мл.байт 01100110 10001011 01 001 011 00000110

66 8B 4B 06

3) **mov CX,ES:6[EBX]**

66 26 8B 4B 06

префикс1 префикс2 100010DW Mod Reg m Смещение мл.байт 01100110 00100110 10001011 01 001 011 00000110

Схемы адресации памяти с байтом Sib

Поле	Эффективный адрес второго операнда					
base	mod = 00B	mod = 01B	mod = 10B			
000B	EAX+ss*index	EAX+ss*index +Disp8	EAX+ss*index +Disp32			
001B	ECX+ss*index	ECX+ss*index +Disp8	ECX+ss*index +Disp32			
010B	EDX+ss*index	EDX+ss*index +Disp8	EDX+ss*index +Disp32			
011B	EBX+ss*index	EBX+ss*index +Disp8	EBX+ss*index +Disp32			
100B	SS:[ESP+ ss*index]	SS:[ESP+ ss*index]+ Disp8	SS:[ESP+ ss*index] +Disp32			
101B	Disp32+ss*index	SS:[EBP+ss*index +Disp8]	SS:[EBP+ss*index +Disp32]			
110B	ESI+ss*index	ESI+ss*index +Disp8	ESI+ss*index +Disp32			
111B	EDI+ss*index	EDI+ss*index +Disp8	EDI+ss*index +Disp32			

```
ss – масштаб;
index – индексный регистр;
base – базовый регистр
```

Пример:

mov ECX,6[EBX+EDI*4]

8B 4C BB 06

100010DW Mod Reg Mem SS Ind Base См.мл.байт

10001011 01 001 **100** 10 111 011 00000110