

Flu Shot Learning: Predict H1N1 and Seasonal Flu Vaccines

Big Data Analytics A.A. 2020/21

MaLuCS

Luca Corbucci Cinzia Lestini Marco Giuseppe Marino Simone Rossi

IN	TR	OD	UC'	TIO	N
-4-		D-	"	: L :.	

Dataset Description

01

DATA CLEANING

Analysis of missing and "strange" values

DATA EXPLORATION

Distributions of our variables and correlations

DATA TRANSFORMATION

How we changed our dataset

CONCLUSIONS

02

03

04

05

Malucs TEAM

Master Degree in Computer Science

Master Degree Data Science and Business Informatics

Master Degree in Computer Science

Master Degree in Computer Science

DATASET DESCRIPTION - KEY NUMBERS

26,707

Rows in training dataset

Target variables

36

Features

DATASET DESCRIPTION - FEATURES

DATASET DESCRIPTION – FEATURES

Ordinal features

Binary Features

(hlnl_knowledge....behavioral_face_mask..doctor_recc_HlNl.....chronic_med_condition..)

Nominal features

(age_group, education, race, sex, income_poverty, marital_status, employment_status)

TARGET VARIABLES

DATA CLEANING

MISSING VALUES

How many Missing Values?

In our dataset we found 30 features with missing values

Drop Features

We dropped 3 columns where the missing values were half of the column

Mode

We filled some missing values with the mode of the column

Grouped Mode

We filled some missing values grouping on a correlated features and then we used the mode

DATA CONSISTENCY AND VARIABLES ENCODING

Data Consistency

- Outliers
- "Strange" Values
- Duplicated Rows

Variables Encoding

- We encoded all the categorical features to numbers.
- This will be useful for the computation of the correlation.

DATA EXPLORATION

We show all the possible values of the data with a bar plot for each column.

DISTRIBUTION

The features conditional distribution with respect to the target variables.

CONDITIONAL HISTOGRAMS

The Pearson's linear correlation between variables.

CORRELATIONS

DATA DISTRIBUTION

DATA DISTRIBUTION

NOMINAL

CONDITIONAL HISTOGRAMS

CONDITIONAL HISTOGRAMS

CORRELATIONS

CORRELATION ANALYSIS

- weak correlation: c ≥ 20
- moderate correlation: c > 30
- strong correlation: c > 40
- very strong correlation: c > 70

CORRELATION BETWEEN FEATURES

h1n1_concern

Weakly correlated to behavior and opinion variables.

Behavior

General
moderate/weak
correlation, strong
between
behavioral_outside
_home and
behavioral_large_g
atherings

Opinion

General
moderate/weak
correlation, but
effectivity and
getting sick from
the vaccine are
not related.

Social and economic

Positive and negative correlation.

CORRELATION OF TARGET

H1N1

- 1. doctor_recc_h1n1: 0.39
- 2. opinion_h1n1_risk: 0.32
- 3. opinion_h1n1_vacc_effective: 0.26

doctor_recc_h1n1	correlation likelihood
0	0.13
1	0.53

Seasonal flu

- 1. opinion_seas_risk: 0.38
- 2. doctor_recc_seasonal: 0.36
- 3. opinion_seas_vacc_effective: 0.35

opinion_seas_risk	correlation likelihood
1	0.20
2	0.37
3	0.55
4	0.66
5	0.74

DATA TRANSFORMATION

Behaviour

We created a single feature summing all the behavioural features.

Variable Elimination

We deleted some features that are correlated with others in the dataset.

Family Size

We created a new feature for the Family Size of the respondent

Useless Features

We think that other features will be useless during the classification but we did not removed them because are not correlated with others.

THANKS!

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.

REFERENCES

- U.S. Department of Health and Human Services (DHHS). National Center for Health Statistics. The National 2009 H1N1 Flu Survey. Hyattsville, MD: Centers for Disease Control and Prevention, 2012.
- Flu Shot Learning: Predict H1N1 and Seasonal Flu Vaccines