## الگوریتمهای رمز متقارن





- توابع
- رمزگذاری (E)
- رمزگشایی (*D*)

- شنودکننده
- اسكار (O)

- طرفین پروتکل
  - آلیس (A)
    - باب (B)

## الگوریتمهای رمز متقارن



- فرض کنید در یک شبکه کامپیوتری بین هر دو میزبان یک کلید
  متفاوت به اشتراک گذاشته شود
  - تعداد کل میزبانها
    - *n* •
    - تعداد كل كليدها
    - n(n-1)/2
      - مثال •
      - ۱۰ میزبان
  - ۴۵ کلید متفاوت
    - ۱۰۰ میزبان
  - ۴۹۵۰ کلید متفاوت

# الگوریتمهای رمز کلید عمومی



- ا برای هر یک از طرفین پروتکل یک زوج کلید تولید میشود
  - کلید خصوصی (Private Key)
    - کلید عمومی (Public Key)

#### فرضيات

- هر پیام دلخواه را می توان با کلید عمومی رمز کرد
- هر پیام دلخواه رمز شده با کلید عمومی را فقط با کلید خصوصی می توان
  رمزگشایی کرد
- استنتاج کلید خصوصی از روی کلید عمومی از نظر محاسباتی غیرممکن است

## الگوریتمهای رمز کلید عمومی



- مثال
- فرض کنید کلید خصوصی باب  $KR_b$  و کلید عمومی وی  $^ullet$  باشد  $^ullet$ 
  - آلیس قصد دارد پیام محرمانه M را برای باب ارسال کند  $\bullet$ 
    - **•** باب
    - ارسال کلید عمومی  $KU_b$  به آلیس lacktriangle
      - **آلیس**
    - $KU_b$  رمزگذاری پیام M با استفاده از کلید عمومی lacktriangle
      - ارسال پیام رمز شده C از طریق یک کانال ناامن lacktriangle
        - باب
  - $KR_b$  و رمزگشایی آن با استفاده از کلید خصوصی  $^{ullet}$

# توابع یک طرفه



- تابع f یک تابع یک طرفه نامیده می شود اگر برای هر x محاسبه  $y = f^{-1}(y)$  از نظر محاسباتی آسان و محاسبه y = f(x) محاسباتی غیرممکن باشد
  - $f^{-1}$
  - f وارون تابع
    - مثال
  - مساله تجزیه اعداد به عوامل اول
    - مساله لگاریتم گسسته

# توابع درهمسازی



- تابع درهمسازی یک طرفه
- نوعی تابع یک طرفه که هر پیام با طول متغیر را به یک مقدار درهمسازی با طول ثابت نگاشت میکند
  - طول ورودی
    - متغير
  - طول خروجی
    - ثابت



## توابع درهمسازی



#### ٰ مثال



## كدهاى تصديق اصالت پيام



- کد تصدیق اصالت پیام (MAC)
  - تابعی از پیام و یک کلید سری





- ویژگیهای امضا
- امضا دارای اصالت است
- امكان جعل امضا وجود ندارد
- امضا غيرقابل استفاده مجدد است
- متن امضا شده غيرقابل تغيير است
  - امضا غيرقابل انكار است
    - سرویسهای امنیتی
    - تصديق اصالت پيام
      - عدم انکار



- امضای پیامها با استفاده از الگوریتمهای رمز کلید عمومی
  - دو مرحله
    - امضا
  - کلید خصوصی
    - درستیسنجی
    - کلید عمومی
  - الگوریتمهای رمز کلید عمومی
    - RSA •
    - **DSA** •



- مثال •
- فرض کنید کلید خصوصی آلیس  $KR_a$  و کلید عمومی وی  $^ullet$  باشد  $^ullet$ 
  - آلیس قصد دارد پیام M را امضا کرده و برای باب ارسال کند
    - **آلیس**
- $S(KR_a,M)$  و ایجاد پیام M با استفاده از کلید خصوصی  $KR_a$  و ایجاد پیام امضا شده M
  - ارسال پیام  $S(KR_a,M)$  به باب
    - باب
  - $KU_a$  رمزگشایی پیام  $S(KR_a,M)$  با استفاده از کلید عمومی  $^ullet$ 
    - درستیسنجی امضا



- امضای پیامها با استفاده از الگوریتمهای رمز کلید عمومی و توابع درهمسازی یک طرفه
  - مثال •
  - ullet آلیس قصد دارد پیام M را امضا کرده و برای باب ارسال کند
    - آليس
    - h(M) ایجاد کد درهمسازی
  - $KR_a$  رمزگذاری کد درهمسازی h(M) با استفاده از کلید خصوصی
    - ارسال پیام M و کد درهمسازی رمز شده  $S(KR_a,h(M))$  به باب  $\bullet$ 
      - باب
  - $KU_a$  رمزگشایی کد درهمسازی رمز شده  $S(KR_a,h(M))$  با استفاده از کلید عمومی  $lacksymbol{^{ullet}}$ 
    - درستیسنجی امضا