

| ] | NUN | <b>IER</b> | UCZ | ZNIA |  |  |
|---|-----|------------|-----|------|--|--|
|   |     |            |     |      |  |  |

# POZIOM ROZSZERZONY

Część I

# ARKUSZ EGZAMINACYJNY PROJEKTU INFORMATURA

**DATA: 9 GRUDNIA 2016 R.** 

CZAS PRACY: 60 MINUT

Liczba punktów do uzyskania: 15

| WPISUJE ZDAJĄCY | WYBRANE:           |  |
|-----------------|--------------------|--|
|                 | (środowisko)       |  |
|                 | (kompilator)       |  |
|                 | (program użytkowy) |  |

#### Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 10 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków lub języka programowania, który wybrałaś/eś na egzamin.
- 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

#### Zadanie 1. Cecha podzielności liczb (0-6)

Zadanie polega na badaniu podzielności liczb naturalnych (n > 0) przez 7, 11 lub 13. Cecha podzielności przez 7, 11 lub 13 oparta jest na równości 7 \* 11 \* 13 = 1001. Aby sprawdzić, czy liczba jest podzielna przez 7, 11 lub 13, grupujemy cyfry danej liczby n po trzy od końca i każdą taką grupę oznaczamy, poczynając od pierwszej z prawej, przez  $n_1$ ,  $n_2$ ,  $n_3$ , ...,  $n_k$ , gdzie k=[d/3], a d to liczba cyfr liczby n.

Dana liczba n dzieli się przez 7, 11 lub 13 jeśli suma s wyznaczona jako  $s = n_1 - n_2 + n_3 - \dots - n_k$ , dla parzystego k, lub  $s = n_1 - n_2 + n_3 - \dots + n_k$ , dla nieparzystego k, jest podzielna przez 7, 11 lub 13.

Użyty zapis [x] oznacza zaokrąglenie do najbliższej liczby całkowitej w górę, np. dla x = 2,4 zapis [2,4] równy jest 3, a dla x = 5 zapis [5] równy jest 5.

#### Przykład:

n = 22133645

s = 645 - 133 + 22 = 534.

Ponieważ 534 nie dzieli się ani przez 7, ani przez 11, ani przez 13, zatem n nie dzieli się przez 7, 11 lub 13.

#### **Zadanie 1.1. (0-1)**

Przeanalizuj powyższy opis oraz przykłady i uzupełnij tabelę.

| Wprowadzona<br>liczba n | Wartość<br>wyznaczonej<br>sumy s | Czy liczba n<br>jest podzielna<br>przez 7? | Czy liczba n<br>jest podzielna<br>przez 11? | Czy liczba n<br>jest podzielna<br>przez 13? |
|-------------------------|----------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------|
| 22133645                | s = 645 - 133 + 22 = 534         | NIE                                        | NIE                                         | NIE                                         |
| 20449                   |                                  |                                            |                                             |                                             |
| 1343342                 |                                  |                                            |                                             |                                             |

#### Miejsce na obliczenia



#### **Zadanie 1.2. (0-3)**

W wybranej przez siebie notacji (lista kroków lub wybrany przez Ciebie język programowania) zapisz algorytm zgodny z poniższą specyfikacją, **wykorzystujący opisaną wyżej metodę** sprawdzania, czy liczna *n* jest podzielna przez 7, 11 lub 13.

W zapisie algorytmu możesz korzystać tylko z następujących operacji arytmetycznych: dodawania, odejmowania, mnożenia oraz dzielenia całkowitego (div) i obliczania reszty z dzielenia (mod). Załóż, że typ całkowity obsługuje dowolnie duże liczby naturalne.

#### Specyfikacja:

*Dane*: Dowolnie duża liczba naturalna n > 0.

*Wynik*: Komunikat zawierający trzy słowa *TAK* lub *NIE*, oddzielone znakami odstępu. Pierwsze słowo informuje, czy liczba *n* jest podzielna przez 7, drugie słowo informuje, czy liczba *n* jest podzielna przez 11, trzecie informuje, czy liczba *n* jest podzielna przez 13.

## Algorytm



| Wypełnia    | Nr zadania          | 1.1. | 1.2. |
|-------------|---------------------|------|------|
|             | Maks. liczba pkt    | 1    | 3    |
| egzaminator | Uzyskana liczba pkt |      |      |

#### **Zadanie 1.3. (0-2)**

Sprawdźmy, czy cechy podzielności liczby naturalnej n (n > 0) przez 7, 11 lub 13 powielają się dla odwróconej liczby n.

Liczba odwrócona n to liczba powstała z zapisu liczby n od końca. Dla liczby n = 12345, jej postać odwrócona to 54321.

| Wprowadzona<br>liczba n | Odwrócona<br>liczba <i>n</i> | Wartość<br>wyznaczonej<br>sumy s | Czy<br>odwrócona<br>liczba n<br>jest<br>podzielna<br>przez 7? | Czy<br>odwrócona<br>liczba n<br>jest<br>podzielna<br>przez 11? | Czy<br>odwrócona<br>liczba n<br>jest<br>podzielna<br>przez 13? |
|-------------------------|------------------------------|----------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| 22133645                | 54633122                     | s = 122 - 633 + 54 = -457        | NIE                                                           | NIE                                                            | NIE                                                            |

W wybranej przez siebie notacji (lista kroków lub wybrany przez Ciebie język programowania) zapisz algorytm zgodny z poniższą specyfikacją, który zwraca odwróconą liczbę naturalną n > 0. Załóż, że typ całkowity obsługuje dowolnie duże liczby naturalne.

## Specyfikacja:

*Dane*: Dowolnie duża liczba naturalna n > 0.

Wynik: Odwrócona liczba n.

#### Algorytm



Strona 4 z 10

#### Zadanie 2. Planeta Hop (0-5)

Na planecie Hop żyją dwa plemiona: Skoków i Fików. Plemię Fików chciało przesyłać wiadomości między swoimi osiedlami tak, by nie mogły być one przeczytane przez przedstawicieli plemienia Skoków. Postanowili rzucać białymi i czarnymi szyszkami.

Alfabet, który umożliwia zapisanie wszystkich wyrazów z języka Fików składa się z 6 liter. Na początek zakodowali swoje litery następująco:

PIERWSZY SPOSÓB KODOWANIA (kodowanie znaków za pomocą kodów o stałej długości)

| Litera | F   | I   | K   | A   | M   | Y   |
|--------|-----|-----|-----|-----|-----|-----|
| Kod    | 000 | 001 | 010 | 011 | 100 | 101 |

W powyższym zapisie rzut czarną szyszką oznaczono cyfrą 1, a rzut białą szyszką cyfrą 0. Ponieważ szyszek nie mają zbyt wiele chcą, by wiadomości były jak najkrótsze.

W starych księgach odnaleźli następujący przepis:

#### Najpierw utwórz drzewo

- 1) Ustal prawdopodobieństwo (lub częstość występowania) dla każdej litery z twojego alfabetu.
- 2) Utwórz listę uporządkowaną drzew binarnych (na początku składających się tylko z korzeni), które w wierzchołkach przechowują pary: litera i prawdopodobieństwo jej wystąpienia w tekście. Po lewej stronie umieść wierzchołek z literą, która występuje najrzadziej.
- 3) Jeśli na liście jest tylko jedno drzewo, zakończ pracę.
- 4) Usuń z listy dwa drzewa o najmniejszym prawdopodobieństwie zapisanym w korzeniu i utwórz z nich nowe drzewo, w którego korzeniu jest suma prawdopodobieństw usuniętych drzew, natomiast one same stają się jego lewym i prawym poddrzewem. Korzeń drzewa nie przechowuje symbolu, tylko prawdopodobieństwo.
- 5) Nowe drzewo umieść na liście tak jak powstało, czyli gałęziami do góry a korzeniem do dołu tak, by po jego lewej stronie znajdowały się tylko drzewa, które w korzeniach mają zapisane mniejsze prawdopodobieństwo.
- 6) Wróć do kroku 3.

#### Teraz czytaj z drzewa

- 1) Po utworzeniu drzewo jest ustawione korzeniem do dołu. Na każdej gałęzi znajdującej się po lewej stronie wierchołka zapisz cyfrę 1, a po prawej cyfrę 0.
- 2) Jeśli chcesz odczytać kod litery umieszczonej w liściu, rozpocznij drogę od korzenia i zapisuj cyfry, które napotkasz.

| Wanalaia                | Nr zadania          | 1.3. |
|-------------------------|---------------------|------|
| Wypełnia<br>egzaminator | Maks. liczba pkt    | 2    |
|                         | Uzyskana liczba pkt |      |

Fikowie przeanalizowali dotychczas wysyłane wiadomości, a wyniki analiz zamieścili w tabeli.

| Litera<br>alfabetu<br>Fików | Średnia liczba wystąpień litery w<br>wiadomości<br>składającej się z 25 liter | Prawdopodobieństwo<br>wystąpienia litery<br>w tekście |
|-----------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------|
| F                           | 1                                                                             | 0,04                                                  |
| I                           | 4                                                                             | 0,16                                                  |
| K                           | 6                                                                             | 0,24                                                  |
| A                           | 7                                                                             | 0,28                                                  |
| M                           | 5                                                                             | 0,20                                                  |
| Y                           | 2                                                                             | 0,08                                                  |

Postępując według opisu w starej księdze otrzymali poniższe kody dla swoich liter. **DRUGI (UDOSKONALONY) SPOSÓB KODOWANIA** (kodowanie znaków za pomocą kodów o zmiennej długości)

| Litera | F    | I   | K  | A  | M  | Y    |
|--------|------|-----|----|----|----|------|
| Kod    | 0111 | 010 | 10 | 00 | 11 | 0110 |

#### **Zadanie 2.1. (0-1)**

Oblicz jaka będzie liczba szyszek potrzebnych do zakodowania 40-literowej wiadomości przy wykorzystaniu <u>pierwszego sposobu kodowania</u>, w którym każda litera kodowana jest z użyciem trzech szyszek.

#### Miejsce na obliczenia



Oblicz jaka będzie średnia liczba szyszek potrzebnych do zakodowania 40-literowej wiadomości przy wykorzystaniu <u>drugiego sposobu kodowania</u>, w którym liczbę szyszek potrzebnych do zakodowania każdej litery dobrano tak, by liczba szyszek użytych do zakodowania wiadomości była minimalna.

#### Miejsce na obliczenia



#### **Zadanie 2.2. (0-2)**

Plemię Skoków pozazdrościło Fikom wspaniałego pomysłu. Udało im się wykraść tajny przepis. Też chcą mieć możliwość wysyłania wiadomości sposobem Fików. Choć wiadomości utworzone w ten sposób nie będą już ściśle tajne, to będą krótkie i przez to łatwe do przesłania.

Skokowie przeanalizowali dotychczas wysyłane wiadomości.

| Litera alfabetu<br>Skoków | Średnia liczba wystąpień litery w wiadomości<br>składającej się z 50 liter |
|---------------------------|----------------------------------------------------------------------------|
| S                         | 4                                                                          |
| K                         | 6                                                                          |
| A                         | 15                                                                         |
| С                         | 1                                                                          |
| Z                         | 2                                                                          |
| Е                         | 8                                                                          |
| M                         | 11                                                                         |
| Y                         | 3                                                                          |

Pomóż Skokom zakodować litery ich alfabetu. **Narysuj drzewo** według przepisu wykradzionego ze starej księgi Fików i wykorzystaj je do zakodowania alfabetu Skoków.

#### Miejsce na rysunek



| Wypełnia    | Nr zadania          | 2.1. | 2.2. |
|-------------|---------------------|------|------|
| egzaminator | Maks. liczba pkt    | 1    | 2    |
| egzammator  | Uzyskana liczba pkt |      |      |

| Litera alfabetu<br>Skoków | Kod litery odczytany z powyższego<br>drzewa |
|---------------------------|---------------------------------------------|
| S                         |                                             |
| K                         |                                             |
| A                         |                                             |
| С                         |                                             |
| Z                         |                                             |
| Е                         |                                             |
| M                         |                                             |
| Y                         |                                             |

#### **Zadanie 2.3 (0-1)**

Alfabet Skoków składa się z 8 liter. Napisz, ile szyszek potrzebowaliby Skokowie do zakodowania jednej litery, jeśli zapragnęliby kodować swoje znaki za pomocą stałej liczby szyszek, czyli z wykorzystaniem pierwszego sposobu kodowania Fików.





#### **Zadanie 2.4 (0-1)**

Odczytaj tekst zakodowany na planecie Hop: 11011110011110

Miejsce na obliczenia



Czy możesz ustalić, które plemię wysłało tę wiadomość?

#### Miejsce na odpowiedź



Czy możesz ustalić, czy nadawca użył kodu o stałej liczbie znaków, czy zmiennej?

Odpowiedź uzasadnij.

#### Miejsce na odpowiedź



# Zadanie 3. Oceń prawdziwość poniższych zdań (0-4)

Zaznacz P, jeśli zdanie jest prawdziwe, albo F, jeśli zdanie jest fałszywe. W każdym zadaniu cząstkowym punkt uzyskasz tylko za komplet poprawnych odpowiedzi. **Zadanie 3.1.** 

|                                                                                                                         | P/F |
|-------------------------------------------------------------------------------------------------------------------------|-----|
| Protokołu POP3 używa się do odbioru poczty elektronicznej z serwera.                                                    |     |
| Aby stacja robocza pobierała automatycznie adres IP, na serwerze musi być uruchomiona usługa DNS.                       |     |
| Dynamiczne konfigurowanie parametrów TCP/IP hosta na podstawie adresu MAC karty sieciowej jest zadaniem protokołu DHCP. |     |
| Usługa sieciowa FTP standardowo korzysta z portu 53.                                                                    |     |

# Zadanie 3.2.

|                                                                                           | P/F |
|-------------------------------------------------------------------------------------------|-----|
| Liczba 10101000 <sub>2</sub> to liczba -88 zapisana na 8 bitach w kodzie U2               |     |
| Liczba 10000010 <sub>2</sub> to liczba -2 zapisana na 8 bitach w kodzie U2                |     |
| Liczba 00101000 <sub>2</sub> zapisana na 8 bitach w kodzie U2 jest równa 28 <sub>16</sub> |     |
| Liczba 10101000 <sub>2</sub> to liczba 168 zapisana na 8 bitach w kodzie U2               |     |

#### Zadanie 3.3.

| Cztery   | podstawowe warunki licencji CC (Creative Commons) to:                                                                                                                                                                       | P/F |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| •        | Uznanie autorstwa. Wolno kopiować, rozprowadzać, przedstawiać i wykonywać objęty prawem autorskim utwór oraz opracowane na jego podstawie utwory zależne pod warunkiem, że zostanie przywołane nazwisko autora pierwowzoru. |     |
| <b>©</b> | Użycie komercyjne. Wolno kopiować, rozprowadzać, przedstawiać i wykonywać objęty prawem autorskim utwór oraz opracowane na jego podstawie utwory zależne do celów komercyjnych.                                             |     |
| <b>③</b> | Na tych samych warunkach. Wolno rozprowadzać utwory zależne jedynie na licencji identycznej do tej, na jakiej udostępniono utwór oryginalny.                                                                                |     |
| =        | Bez utworów zależnych. Wolno kopiować, rozprowadzać, przedstawiać i wykonywać utwór jedynie w jego oryginalnej postaci – tworzenie utworów zależnych nie jest dozwolone.                                                    |     |

| Wypełnia<br>egzaminator | Nr zadania          | 2.3 | 2.4. | 3.1. | 3.2. | 3.3. |
|-------------------------|---------------------|-----|------|------|------|------|
|                         | Maks. liczba pkt    | 1   | 1    | 1    | 1    | 1    |
|                         | Uzyskana liczba pkt |     |      |      |      |      |

# Zadanie 3.4.

| Rozdzielczość obrazu cyfrowego zmniejszono trzykrotnie (tzn. na tej samej długości znalazło się trzy razy mniej pikseli). Liczba pikseli w całym obrazie zmniejszy się | P/F |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3- krotnie                                                                                                                                                             |     |
| 3 <sup>2</sup> - krotnie                                                                                                                                               |     |
| 2 <sup>3</sup> - krotnie                                                                                                                                               |     |
| 3 <sup>3</sup> - krotnie                                                                                                                                               |     |

| Wypełnia<br>egzaminator | Nr zadania          | 3.4. |
|-------------------------|---------------------|------|
|                         | Maks. liczba pkt    | 1    |
|                         | Uzyskana liczba pkt |      |

BRUDNOPIS (nie podlega ocenie)