

Third equation.

$$e = -d\phi$$
 dt
 $e = -d\phi$
 $e = -d\phi$

β (J- Q VXH) ds = 0. : J = VXH.

div
$$\overline{J} = \text{div}(\overline{V}xy) = 0$$
.

div $\overline{J} + \partial f = 0$. or div $\overline{J} = -\partial f = 0$.

To correct this, Maxwell aggested that the total arount divisity rads to an additional deemponent i.e. \overline{J} .

 $\overline{V}x\overline{H} = \overline{J} + \overline{J}'$

the div $\overline{J}x(\overline{V}x\overline{H}) = \text{div}(\overline{J} + \overline{J}')$
 $O = \text{d$

It states that the crubtion of a vector field \bar{A} around a closed path \bar{c} is equal to the surface integral of the curl of \bar{A} on the open surface \bar{s} bounded by \bar{c} provided that \bar{A} and $\bar{\nabla} \times \bar{A}$ are centimos on \bar{s} .

It relates closed line integral of the field with surface \bar{s} bounded \bar{s} .