Data Scientist - Molecular Breeding -Interview

Part 2: Genomic selection

By Zixiang Wen

- 1. Genomic selection for general combining ability (GCA) of Yield.
 - 1.1 Try Lasso for yield
 - 1.2 Try Ridge for yield
 - 1.3 Try Random Forest for yield
- 2. Genomic selection for GCA of plant height.
 - 2.1 Try Lasso for height
 - 2.2 Try Ridge for height
 - 2.3 Try Random Forest height
- 3. Genomic selection for GCA of Silk DAP.
 - 3.1 Try Lasso for silk dap
 - 3.2 Try Ridge for silk dap
 - 3.3 Try Random Forest for silk dap

Major results from the above analysis:

1. Based on the above analysis, Random forest outperformed other methods in prediction accuracy at top 30% selection intensity across all three traits.

- 2. Prediction accuracy is higher for silk DAP which controlled by major gene (higher heritability), whereas lower for yield which controlled by multiple genes (lower heritability)
- 3. Mismatch between genotypic and phenotypic data hamper the proper sample size and prediction accuracy.

Works needed to be done in the future

- 1. Hyperparameter tuning for Random Forest.
- 2. Try Bayes method.
- 3. Enlarge population size for both genotyping and phenotyping
- 4. Separate Heterotic group for training model.

Part 2 Genomic Selection Python Code and Output

November 26, 2019

0.1 1 Genomic selection for GCA of Yield

```
[1]: # main modules needed
    import pandas as pd
    import numpy as np
    import seaborn as sns
    from sklearn import linear_model
    from sklearn.model_selection import train_test_split
    from matplotlib import pyplot as plt
    from scipy import stats
    from sklearn.decomposition import PCA
    from sklearn.preprocessing import StandardScaler
    from sklearn.preprocessing import scale
[2]: num_g=pd.read_csv('Numeric data012_R.csv')
   num_g.head()
[3]:
       Unnamed: 0
                    2
                             8
                                9
                                    10
                                        11
                                            12
                                                 13
                                                           303496
                                                                   303499
                                                                            303500
    0
                                             1
                 1
                    1
                       1
                          1
                             1
                                1
                                     1
                                         1
                                                  1
                                                     . . .
                                                                1
                                                                         1
                                                                                 1
                 2
                   0
                       2 0 0 1
                                         2
                                             0
    1
                                     1
                                                  0
                                                     . . .
                                                                1
                                                                        1
                                                                                 1
                 3
    2
                   1 1 1 1
                                1
                                     1
                                         1
                                             1
                                                  1
                                                                1
                                                                         1
                                                                                 1
                    0
                                2
                                     2
                                                                                 2
    3
                       1
                          0
                             0
                                         1
                                             0
                                                                0
                                                                        0
                                                  1
                    0
                       1
                                                                                 2
                                                                         0
               303502
                       303504
                                303505
                                         303507
                                                  303510
                                                          303511
       303501
    0
            1
                     1
                              1
                                      1
                                               1
                                                       1
    1
            1
                             1
                                      1
                                               1
                                                       1
                     1
                                                                1
    2
                                      1
            1
                     1
                              1
                                               1
                                                       1
                                                                1
    3
            0
                     1
                             1
                                      2
                                               1
                                                       0
                                                                0
    4
                             2
                                      2
            0
                                               1
                                                       0
    [5 rows x 136341 columns]
[4]: cname=pd.read_csv('c_name.csv')
[5]: num_g['Unnamed: 0']=cname['id']
[6]: num_g
```

```
[6]:
                  Unnamed: 0
                                            8
                                               9
                                                   10
                                                        11
                                                             12
                                                                 13
                                                                            303496
                                                                                      303499
                                    3
                                        4
                                                                      . . .
     0
                      BLANK-1
                                        1
                                            1
                                               1
                                                    1
                                                         1
                                                              1
                                                                   1
                                                                                  1
                                                                                            1
     1
                      BLANK-2
                                     2
                                            0
                                                    1
                                                         2
                                                              0
                                                                   0
                                                                                  1
                                                                                            1
                                                                      . . .
     2
                      BLANK-3
                                 1
                                     1
                                        1
                                            1
                                               1
                                                         1
                                                              1
                                                                                  1
                                                                                            1
                                                    2
     3
             PHN11 Oh43 0075
                                        0
                                            0
                                                              0
                                                                                  0
                                                                                            0
     4
                 W10004_0248
                                                              0
                                                                                  0
                                                                                            0
      . . .
                                                                      . . .
     1572
                     PI538011
                                 0
                                     1
                                        1
                                            0
                                               0
                                                    0
                                                         0
                                                              1
                                                                   1
                                                                                  2
                                                                                            2
     1573
                    Ames27138
                                     2
                                               2
                                                         0
                                                                                            0
                                 0
                                                    0
                                                              0
                                                                   0
                                                                                  0
                                                                      . . .
                                                                                            2
     1574
                          Va35
                                 0
                                     2
                                                    1
                                                         1
                                                              0
                                                                      . . .
                                                                                  2
     1575
                         Tx303
                                     2
                                        2
                                            0
                                               2
                                                    1
                                                         2
                                                              0
                                                                   2
                                                                                  0
                                                                                            2
                                 0
     1576
                     PI601773
                                 0
                                     2
                                                              1
                                                                                  2
                                                                                            2
             303500
                      303501
                                303502
                                         303504
                                                   303505
                                                             303507
                                                                      303510
                                                                                303511
     0
                   1
                            1
                                      1
                                               1
                                                         1
                                                                   1
                                                                                      1
     1
                   1
                            1
                                      1
                                               1
                                                         1
                                                                   1
                                                                            1
                                                                                      1
     2
                   1
                            1
                                      1
                                               1
                                                         1
                                                                   1
                                                                            1
                                                                                      1
                   2
                                                         2
     3
                            0
                                      1
                                               1
                                                                   1
                                                                            0
                                                                                      0
     4
                   2
                            0
                                      2
                                               2
                                                         2
                                                                   1
                                                                            0
                                                                                      0
                                                                            2
     1572
                   1
                            2
                                      0
                                               0
                                                         0
                                                                   1
                                                                                      0
     1573
                            0
                                      2
                                               2
                                                         0
                                                                            0
                   0
                                                                   0
                                                                                      0
     1574
                   0
                            2
                                      0
                                               0
                                                         0
                                                                   1
                                                                            2
                                                                                      0
                   0
                            2
                                      2
                                               2
                                                         0
                                                                   2
                                                                            0
     1575
                                                                                      0
     1576
                   0
                            2
                                      0
                                               0
                                                         0
                                                                   2
                                                                            2
                                                                                      0
     [1577 rows x 136341 columns]
 [7]: num_g.rename(columns={"Unnamed: 0": "id"},inplace=True)
 [8]: num_g.to_csv('clean_g_with-name.csv')
 [9]:
     cn=pd.read_csv('clean_g_name.csv')
     num_geno=pd.merge(num_g, cn,left_on=num_g.id, right_on=cn.id, how='inner')
     num_geno=num_geno.drop(['key_0','id_y','simple_id'],axis=1)
[12]:
     num_geno.head()
[12]:
                                         8
                                                 10
                                                          12
                                                               13
                                                                          303496
                                                                                   303499
                                                                                             \
                        id_x
                               2
                                  3
                                             9
                                                     11
                     AS6103
                                  2
                                         0
                                                                                0
                                                                                         0
     0
                              0
                                      1
                                             0
                                                  0
                                                       0
                                                           1
                                                                1
     1
         PHN11_LH145_0029
                               0
                                  2
                                         0
                                             0
                                                       0
                                                           0
                                                                                2
                                                                                         2
     2
                                                           0
                                                                                0
                                                                                         0
               W10005_0107
                               0
                                  2
                                      0
                                         0
                                             0
                                                       0
                                                                0
     3
               W10005_0032
                              0
                                  2
                                                                    . . .
                                                                                0
                                                                                         0
               W10004_0082
                              1
         303500
                  303501
                            303502
                                     303504
                                               303505
                                                         303507
                                                                   303510
                                                                            303511
     0
               0
                         0
                                  2
                                            2
                                                     0
                                                               0
                                                                        0
                                                                                  0
               0
                         2
                                  0
                                            0
                                                     0
                                                               2
                                                                        2
                                                                                  0
     1
```

4	0	0		2		1		2		1		0		0			
[5	rows x	136341 c	olumi	ns]													
3]: nu	m_geno.l	nead()															
3]:		id_	x 2	3 4	4 8	9	10	11	12	13		30	3496	30	3499	\	
0		AS610	3 0	2	1 0	0	0	0	1	1			0		0		
1		.H145_002		2	0 0	0	0	0	0	0			2		2		
2		10005_010			0 0	0	0	0	0	0			0		0		
3		10005_003			0 0	1	1	0	0	0			0		0		
4	W1	10004_008	2 1	1	1 1	1	0	0	1	1	• • •		0		0		
	303500	303501	303	502	30350)4	3035	05	303	507	3035	10	3035	11			
0	0	0		2		2		0		0		0		0			
1	0	2		0		0		0		2		2		0			
2	2	0		2		2		0		1		0		0			
3	2	0		2		2		0		0		0		0			
4	0	0		2		1		2		1		0		0			
		ad_csv('y									J						
5]: g_	plus_p=¡	od.merge(=num	n_ge:	no.i	d_x,	righ	t_on	=р_у	.id,	J	
5]: g_ 5]: g_	plus_p=p how='in plus_p.s	od.merge(ner') shape						=nun	n_ge	no.i	d_x,	righ	t_on	=p_y	r.id,	J	
[5]: g [6]: g [6]: (5	plus_p=p how='in plus_p.s	od.merge(ner') shape						=nun	n_ge:	no.i	d_x,	righ	t_on	=p_y	.id,	J	
[5]: g_ [6]: (5 [7]: g_	plus_p=p how='in plus_p.s	od.merge(ner') shape	num_{			lef	t_on								d,	1	
[5]: g [6]: g [6]: (5	plus_p=phow='in plus_p.s 76, 1363 plus_p	od.merge(ner') shape 344)	num_{	geno,	р_у,	lef	t_on	2	3	4	3 9	10	11 0	=p_y		\	
[5]: g [5]: g [5]: (5	plus_p=phow='in plus_p.s 76, 1363 plus_p	od.merge(ner') shape	num_{ y_0 029		р_у, 1_LH:	lef	t_on	2 0		4 0	3 9		11	12		\	
5]: g_ 6]: g_ 7]: g_ 0	plus_p=phow='in plus_p.s 76, 1363 plus_p	od.merge(ner') shape 844) ke	y_0 029	geno,	P_Y, 1_LH: W100	lef 145_ 005_	id_x 0029	2 0 0	3 2	4 0 0	3 9 0 0	10 0	11 0	12 0		\	
5]: g 5]: g 6]: (5 7]: g 0 1 2 3	plus_p=phow='in plus_p.s 76, 1363 plus_p	cod.merge(ner') shape 844) ke 1_LH145_0 W10005_0 W10004_0	y_0 029 107 082 028	geno,	P_Y, 1_LH: W100 W100	1ef 145_ 005_ 004_ 145_	id_x 0029 0107 0082 0028	2 0 0 1 0	3 2 2 1 2	4 0 0 1 0	3 9 0 0 0 0 1 1 0 0	10 0 0 0	11 0 0 0	12 0 0		\	
5]: g 5]: (5]: (5]: (5]: (5]: (2]: (2]: (2]: (2]: (2]: (2]: (2]: (2	plus_p=phow='in plus_p.s 76, 1363 plus_p	pd.merge(ner') shape 344) ke 1_LH145_0 W10005_0 W10004_0	y_0 029 107 082 028	geno,	P_Y, 1_LH: W100 W100	1ef 145_ 005_ 004_ 145_	id_x 0029 0107	2 0 0 1 0	3 2 2 1	4 0 0 1 0	3 9 0 0 0 0	10 0 0	11 0 0	12 0 0		\	
5]: g 5]: (5]: (5]: (5]: (2	plus_p=phow='in plus_p.s 76, 1363 plus_p PHN11	cod.merge(ner') shape 344) ke 1_LH145_0 W10005_0 W10004_0 1_LH145_0 W10005_0	y_0 029 107 082 028 029	geno,	P_Y, 1_LH: W100 W100	lef 145_ 005_ 004_ 145_ 005_	id_x 0029 0107 0082 0028 0029	2 0 0 1 0 0	3 2 1 2 2	4 0 0 1 0 1	3 9 0 0 0 0 1 1 0 0 0 0	10 0 0 0 0	11 0 0 0 0	12 0 0 1 0 1		\	
5]: g 5]: (5 7]: g 0 1 2 3 4 57	plus_p=phow='in plus_p.s 76, 1363 plus_p PHN11	cd.merge(ner') shape 344) ke 1_LH145_0 W10005_0 W10004_0 1_LH145_0 W10005_0	y_0 029 107 082 028 029	geno,	P_Y, W100	lef 145_ 005_ 004_ 145_ 005_	id_x 0029 0107 0082 0028 0029	2 0 0 1 0 0	3 2 2 1 2 2 2	4 0 0 1 0 1	3 9 0 0 0 0 1 1 0 0 0 0 	10 0 0 0 0 0	11 0 0 0 0 0	12 0 0 1 0 1		\	
5]: g 5]: (5 7]: g 7]: 0 1 2 3 4 57	plus_p=p how='in plus_p.s 76, 1363 plus_p PHN11	cd.merge(ner') shape 344) ke L_LH145_0 W10005_0 W10004_0 L_LH145_0 W10005_0	y_0 029 107 082 028 029 	geno,	P_Y, 1_LH: W100 W100 1_LH: W100	145_ 005_ 004_ 145_ 005_	id_x 0029 0107 0082 0028 0029 	2 0 0 1 0 0	3 2 2 1 2 2 2	4 0 0 1 0 1 	3 9 0 0 0 0 1 1 0 0 0 0 	10 0 0 0 0 0	11 0 0 0 0 0	12 0 0 1 0 1 		\	
5]: g 5]: (5 6]: (5 7]: g 0 1 2 3 4 57 57	plus_p=p how='in plus_p.s 76, 1363 plus_p PHN11 PHN11	cd.merge(ner') shape 344) ke 1_LH145_0 W10005_0 W10004_0 1_LH145_0 CM Z013E0 Z022E0	y_0 029 107 082 028 029 105 080 009	geno,	P_Y, 1_LH: W100 W100 1_LH: W100	1ef 145_ 005_ 004_ 145_ 005_ 013E	id_x 0029 0107 0082 0028 M105 0080	2 0 0 1 0 0 0	3 2 2 1 2 2 2 0 2	4 0 0 1 0 1 0	3 9 0 0 0 0 1 1 0 0 0 0 0 0 1 2	10 0 0 0 0 0	11 0 0 0 0 0 0	12 0 0 1 0 1 1 0		\	
5]: g 5]: (5 7]: g 7]: 0 1 2 3 4 57	plus_p=phow='in plus_p.s 76, 1363 plus_p PHN11 PHN11	cd.merge(ner') shape 344) ke 1_LH145_0 W10005_0 W10005_0 U_LH145_0 CM Z013E0 Z022E0 Z022E0	y_0 029 107 082 028 029 105 080 009	geno,	P_Y, 1_LH: W100 W100 1_LH: W100	145_ 005_ 004_ 145_ 005_ 005_ 022E	id_x 0029 0107 0082 0028 0029 	2 0 0 1 0 0 0 0	3 2 2 1 2 2 2	4 0 0 1 0 1 	3 9 0 0 0 0 1 1 0 0 0 0 	10 0 0 0 0 0	11 0 0 0 0 0	12 0 0 1 0 1 		\	
5]: g 5]: (5 7]: g 7]: 0 1 2 3 4 57 57 57	plus_p=p how='in plus_p.s 76, 1363 plus_p PHN11 PHN11 1 2 3 4 5	cd.merge(ner') shape 344) ke 1_LH145_0 W10005_0 W10005_0 CM Z013E0 Z022E0 Z022E0 A	y_0 029 107 082 028 029 105 080 009 048 H83	PHN1	P_Y, 1_LH2 W100 W100 1_LH2 W100	145_ 005_ 004_ 145_ 005_ 005_	id_x 0029 0107 0082 0028 8M105 80080 80009 80048 AH83	2 0 0 1 0 0 0 0 0 0 0 0 0	3 2 2 1 2 2 2 0 2 2 2	4 0 0 1 0 1 0 0 0 0	3 9 0 0 0 0 1 1 0 0 0 0 1 2 0 1 0 1	10 0 0 0 0 0 1 1 1 1	11 0 0 0 0 0 0 0	12 0 0 1 0 1 1 0 0		\	
5]: g 5]: (5 7]: g 7]: 0 1 2 3 4 57 57 57	plus_p=phow='in plus_p.s 76, 1363 plus_p PHN11 PHN11	cd.merge(ner') shape 344) ke L_LH145_0 W10005_0 W10005_0 CM Z013E0 Z022E0 Z022E0 A	y_0 029 107 082 028 029 105 080 009 048 H83	geno,	P_Y, 1_LH2 W100 W100 1_LH2 W100	145_ 005_ 004_ 145_ 005_ 005_ 022E	id_x 0029 0107 0082 0028 0029 M105 0009 00048 AH83	2 0 0 1 0 0 0 0	3 2 2 1 2 2 2 0 2 2 2 2 2 2 5	4 0 0 1 0 1 0 0 0 0	3 9 0 0 0 0 1 1 0 0 0 0 1 2 0 1 0 1	10 0 0 0 0 0 1 1 1	11 0 0 0 0 0 0 0 0 0	12 0 0 1 0 1 1 0 0		\	


```
2
             0
                        0
                                   2
                                              1
                                                          2
                                                                     1
                                                                                0
                                                                                           0
3
             0
                        2
                                   0
                                              0
                                                          0
                                                                     2
                                                                                2
                                                                                           0
4
             2
                        0
                                   2
                                              2
                                                          0
                                                                     0
                                                                                0
                                                                                           0
                                            . . .
. .
           . . .
                      . . .
                                 . . .
                                                       . . .
                                                                  . . .
                                                                             . . .
                                                                                         . . .
                                                                                2
                                                                                           0
571
             0
                        1
                                   1
                                              1
                                                          1
                                                                     1
572
             0
                        0
                                   2
                                              2
                                                          0
                                                                     0
                                                                                0
                                                                                           0
573
             2
                        0
                                   2
                                              2
                                                          0
                                                                     0
                                                                                0
                                                                                           0
             2
                                   1
                                              2
                                                                                0
                                                                                           0
574
                        1
                                                          0
                                                                     1
                                   2
                                              2
                                                                                0
575
             0
                        1
                                                          0
                                                                     0
                                                                                           0
```

```
id
                            yield
0
     PHN11_LH145_0029
                        1.612589
1
          W10005_0107
                       -3.249752
2
          W10004_0082
                         1.901994
3
     PHN11_LH145_0028 -10.440723
4
          W10005_0029
                        6.706560
. .
                   . . .
571
                CM105 -6.000902
572
            Z013E0080
                       8.373906
573
            Z022E0009 -9.101649
574
            Z022E0048 -2.145668
575
                 AH83 -51.816062
```

[576 rows x 136344 columns]

C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:3:
SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

This is separate from the ipykernel package so we can avoid doing imports until

```
[22]: g_plus_p.shape
[22]: (576, 136345)
[23]: g_plus_p=g_plus_p.dropna()
[24]: X=g_plus_p.iloc[:,2:136342]
     Y=g_plus_p['yield']
[25]: # first trait analyzed
     X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2)
     print(X_train.shape, y_train.shape)
     print(X_test.shape, y_test.shape)
    (451, 136340) (451,)
    (113, 136340) (113,)
[26]: print('
                   min max mean sd')
     print('Train:', y_train.min(), y_train.max(), y_train.mean(), np.sqrt(y_train.
     \rightarrowvar()))
     print('Test:', y_test.min(), y_test.max(), y_test.mean(), np.sqrt(y_test.var()))
           min
                 max mean
                              sd
    Train: -25.04241474 16.96414301 -2.833114460982261 8.2296339886234
    Test: -24.65461518 19.30790655 -3.1429814772566367 8.181027222389439
[27]: plt.title('Train / test data')
    plt.hist(y_train, label='Train')
     plt.hist(y_test, label='Test')
     plt.legend(loc='best')
     plt.show()
     # marker PCA, use whole X with diff color for train and test
     X = np.concatenate((X_train, X_test))
     pca = PCA(n_components=2)
     p = pca.fit(X).fit_transform(X)
     Ntrain=X_train.shape[0]
     plt.title('PCA decomposition')
     plt.scatter(p[0:Ntrain,0], p[0:Ntrain,1], label='Train')
     plt.scatter(p[Ntrain:,0], p[Ntrain:,1], label='Test', color='orange')
     plt.legend(loc='best')
     plt.show()
```


[28]: ## simple model for GWAS

pvals = []

```
for i in range(X_train.shape[1]):
    b, intercept, r_value, p_value, std_err = stats.linregress(np.
    →asarray(X_train.iloc[:,i]), np.asarray(y_train))
    pvals.append(-np.log10(p_value))
pvals = np.array(pvals)
len(pvals)
```

[28]: 136340

```
[29]: # plot GWAS
plt.ylabel('-log10 P-value')
plt.xlabel('SNP')
plt.plot(pvals, marker='.')
plt.show()

# select by min_P_value
# min_P_value = 5 # P = 0.000001
# snp_list = np.nonzero(pvals>min_P_value)

## SNP selection based on p-value
N_best = 10000
snp_list = pvals.argsort()[-N_best:]

# finally slice X
X_train = X_train[X_train.columns[snp_list]]
X_test = X_test[X_test.columns[snp_list]]
```


0.1.1 1.1 Try Lasso for yield

```
[30]: ## try lasso
     import sklearn.metrics as sm
     # alpha is the regularization parameter
     lasso = linear_model.Lasso(alpha=0.32)
     lasso.fit(X_train, y_train)
     y_hat = lasso.predict(X_test)
     # mean squared error
     mse = sm.mean_squared_error(y_test, y_hat)
     print('\nMSE in prediction =',mse)
     # correlation btw predicted and observed
     corr = np.corrcoef(y_test,y_hat)[0,1]
     print('\nCorr obs vs pred =',corr)
     # plot observed vs. predicted targets
     plt.title('Lasso: Observed vs Predicted Y')
     plt.ylabel('Predicted')
     plt.xlabel('Observed')
     plt.scatter(y_test, y_hat, marker='.')
     plt.show()
```

```
MSE in prediction = 51.51863639598614
Corr obs vs pred = 0.4802466586058425
```



```
[31]: ## Define the cutoff of 30% selection intensity

cutoff30=0.3*y_hat.shape[0]
print(cutoff30)

## Creat a function to calculate the accuracy under 30% selection intensity.

def ACC_30intensity (test,hat):
    yt=pd.DataFrame(test)
    yh=pd.DataFrame(hat)
    yh.index=yt.index
    combine=pd.concat([yt,yh],axis=1)
    a=pd.DataFrame(combine.iloc[:,0].argsort()[-34:])
    b=pd.DataFrame(combine.iloc[:,1].argsort()[-34:])
    ccc=pd.concat([a,b],axis=1)
    common=ccc.iloc[:,0].isin(ccc.iloc[:,1]).value_counts().to_frame().iloc[0,0]
    return print('Accuary under 30% selection intensity is',common/ccc.
    shape[0])
```

33.9

```
[32]: ACC_30intensity (y_test,y_hat)
```

Accuary under 30% selection intensity is 0.5294117647058824

```
[33]: | ## The above best alpha=0.42 was calculated from the following GridSearch CV_
      ⇔code:
     import warnings
     warnings.filterwarnings('ignore')
     from sklearn.linear_model import ElasticNet
     from sklearn.metrics import mean_squared_error
     from sklearn.model_selection import GridSearchCV, train_test_split
     # Create the hyperparameter grid
     a = np.linspace(0, 1, 20)
     param_grid = {'alpha': a}
     # Instantiate the ElasticNet regressor: elastic_net
     lasso = linear_model.Lasso()
     # Setup the GridSearchCV
     gm_cv=GridSearchCV(lasso,param_grid,cv=5)
     # Fit it to the training data
     gm_cv.fit(X_train,y_train)
     # Predict on the test set and compute metrics
     y_pred = gm_cv.predict(X_test)
     r2 = gm_cv.score(X_test, y_test)
     mse = mean_squared_error(y_test, y_pred)
     print("Tuned lasso alpha: {}".format(gm_cv.best_params_))
     print("Tuned R squared: {}".format(r2))
     print("Tuned lasso MSE: {}".format(mse))
    Tuned lasso alpha: {'alpha': 0.3157894736842105}
    Tuned R squared: 0.21265587306975386
    Tuned lasso MSE: 52.22997849603867
[34]: from sklearn.model_selection import cross_val_score
     reg = lasso
     # Compute 10-fold cross-validation scores: cv scores
     cv_scores = cross_val_score(reg,X_train,y_train,cv=10)
     # Print the 10-fold cross-validation scores
     print(cv_scores)
     print("Average 10-Fold CV Score: {}".format(np.mean(cv_scores)))
    [ \ 0.09681262 \ -0.03737164 \ \ 0.25932491 \ \ 0.13584449 \ \ 0.10822413 \ \ 0.12529307 ]
      0.15695921 0.13833454 0.02070628 0.05969437]
    Average 10-Fold CV Score: 0.1063821981838089
```

0.1.2 1.2 Try Ridge for yield

```
[35]: ## Find best alpha for ridge regression
import warnings
warnings.filterwarnings('ignore')
# Import necessary modules
from sklearn.linear_model import RidgeCV
regr_cv = RidgeCV(alphas=[0.1, 1.0, 10.0])
model_cv = regr_cv.fit(X_train, y_train)
model_cv.alpha_
[35]: 10.0
```

```
[36]: ## Use the best alpha=10 to predict X_test
     import sklearn.metrics as sm
     # alpha is the regularization parameter
     ridge = linear_model.Ridge(alpha=10)
     ridge.fit(X_train, y_train)
     y_hat = ridge.predict(X_test)
     # mean squared error
     mse = sm.mean_squared_error(y_test, y_hat)
     print('\nMSE in prediction =',mse)
     # correlation btw predicted and observed
     corr = np.corrcoef(y_test,y_hat)[0,1]
     print('\nCorr obs vs pred =',corr)
     # plot observed vs. predicted targets
     plt.title('Lasso: Observed vs Predicted Y')
     plt.ylabel('Predicted')
     plt.xlabel('Observed')
     plt.scatter(y_test, y_hat, marker='.')
     plt.show()
```

```
MSE in prediction = 56.66407953816876
Corr obs vs pred = 0.5179601793018527
```



```
[37]: ACC_30intensity (y_test,y_hat)
```

Accuary under 30% selection intensity is 0.5882352941176471

```
[38]: from sklearn.model_selection import cross_val_score
reg=ridge
# Compute 10-fold cross-validation scores: cv_scores
cv_scores = cross_val_score(reg,X_train,y_train,cv=10)
# Print the 10-fold cross-validation scores
print(cv_scores)

print("Average 10-Fold CV Score: {}".format(np.mean(cv_scores)))
```

```
[ 0.21884316 -0.13471916 0.37380859 0.26556722 0.24340188 -0.06092082 0.27064002 0.17649123 -0.07587234 0.36677644]

Average 10-Fold CV Score: 0.16440162179797257
```

0.2 1.3 Try RandomForest Regressor for yield

```
[39]: from sklearn.ensemble import RandomForestRegressor
    clf = RandomForestRegressor(120)

[40]: clf = RandomForestRegressor()
    clf.fit(X_train, y_train)
```

```
y_hat = clf.predict(X_test)

# mean squared error
mse = sm.mean_squared_error(y_test, y_hat)
print('\nMSE in prediction =',mse)

# correlation btw predicted and observed
corr = np.corrcoef(y_test,y_hat)[0,1]
print('\nCorr obs vs pred =',corr)

# plot observed vs. predicted targets
plt.title('Random Forest: Observed vs Predicted Y')
plt.ylabel('Predicted')
plt.xlabel('Observed')
plt.scatter(y_test, y_hat, marker='o')
plt.show()
```

MSE in prediction = 46.34015635370706

Corr obs vs pred = 0.5518813878006141


```
[41]: ACC_30intensity (y_test,y_hat)
```

Accuary under 30% selection intensity is 0.5588235294117647

[42]: reg = clf

```
# Compute 10-fold cross-validation scores: cv_scores
     cv_scores = cross_val_score(reg,X_train,y_train,cv=10,scoring='r2')
     # Print the 10-fold cross-validation scores
     print(cv_scores)
     print("Average 10-Fold CV Score: {}".format(np.mean(cv_scores)))
    [0.23649492 0.13182958 0.3171866 0.39873873 0.26170186 0.32231752
     0.35842361 0.30982434 0.20795259 0.30298462]
    Average 5-Fold CV Score: 0.2847454372260335
    0.3 2. Genomic selection for GCA of plant height
[43]: p_y_h=pd.read_csv('h_blup_total.csv')
[44]: | g_plus_p=pd.merge(num_geno,p_y_h, left_on=num_geno.id_x, right_on=p_y_h.id,_u
      →how='inner')
[45]: g_plus_p.shape
[45]: (575, 136344)
[46]: g_plus_p.head()
[46]:
                                       id_x
                                             2
                                                 3
                                                    4
                                                       8
                                                          9
                                                             10
                                                                 11
                                                                      12
                                                                          . . .
                                                                               303500
                   key_0
                                                 2
       PHN11_LH145_0029
                          PHN11_LH145_0029
                                             0
                                                    0
                                                       0
                                                          0
                                                              0
                                                                  0
                                                                       0
                                                                                    0
                                                                          . . .
             W10005_0107
                                W10005_0107
                                             0 2
                                                    0
                                                                                    2
     1
                                                       0
                                                                          . . .
             W10004_0082
                                W10004_0082
                                             1
                                                 1
                                                    1
                                                       1
                                                              0
                                                                  0
                                                                                    0
                                                 2
                                                    0
     3
        PHN11_LH145_0028
                           PHN11_LH145_0028
                                             0
                                                                          . . .
     4
             W10005_0029
                                W10005_0029
                                             0
                                                                          . . .
        303501
                303502 303504
                                 303505 303507
                                                  303510
                                                          303511
                                                                                 id \
     0
             2
                     0
                              0
                                      0
                                               2
                                                       2
                                                               0
                                                                  PHN11_LH145_0029
                     2
                              2
     1
             0
                                      0
                                               1
                                                       0
                                                               0
                                                                        W10005 0107
     2
             0
                     2
                                      2
                                               1
                                                       0
                              1
                                                               0
                                                                        W10004 0082
             2
                                                       2
     3
                     0
                                      0
                                               2
                                                                  PHN11_LH145_0028
                              0
                              2
                                      0
                                               0
             0
                                                                        W10005_0029
         p_height
     0 -2.085339
     1 -13.954188
     2 -2.117761
```

[5 rows x 136344 columns]

3 -15.784165 4 3.809174

```
[47]: X=g_plus_p.iloc[:,2:136342]
[48]: Y=g_plus_p['p_height']
[49]: # first trait analyzed
     X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2)
     print(X_train.shape, y_train.shape)
     print(X_test.shape, y_test.shape)
    (460, 136340) (460,)
    (115, 136340) (115,)
[50]: print('
                                     sd')
                         max mean
                   min
     print('Train:', y_train.min(), y_train.max(), y_train.mean(), np.sqrt(y_train.
     print('Test:', y_test.min(), y_test.max(), y_test.mean(), np.sqrt(y_test.var()))
           min
                 max mean
    Train: -32.459111789999994 30.43450674 -1.8652208231717398 8.406251686869487
    Test: -32.459111789999994 21.11487856 -3.1070581186391304 9.092016742445761
[51]: plt.title('Train / test data')
     plt.hist(y_train, label='Train')
     plt.hist(y_test, label='Test')
     plt.legend(loc='best')
     plt.show()
     # marker PCA, use whole X with diff color for train and test
     X = np.concatenate((X_train, X_test))
     pca = PCA(n_components=2)
     p = pca.fit(X).fit_transform(X)
     Ntrain=X_train.shape[0]
     plt.title('PCA decomposition')
     plt.scatter(p[0:Ntrain,0], p[0:Ntrain,1], label='Train')
     plt.scatter(p[Ntrain:,0], p[Ntrain:,1], label='Test', color='orange')
     plt.legend(loc='best')
     plt.show()
```



```
[52]: pvals = []
for i in range(X_train.shape[1]):
```

```
b, intercept, r_value, p_value, std_err = stats.linregress(np.

asarray(X_train.iloc[:,i]), np.asarray(y_train))

pvals.append(-np.log10(p_value))

pvals = np.array(pvals)

print(len(pvals))
```

136340

```
[53]: # plot GWAS
plt.ylabel('-log10 P-value')
plt.xlabel('SNP')
plt.plot(pvals, marker='o')
plt.show()

# select by min_P_value
#min_P_value = 5
#snp_list = np.nonzero(pvals>min_P_value)

N_best = 10000
snp_list = pvals.argsort()[-N_best:]

# finally slice X
X_train = X_train[X_train.columns[snp_list]]
X_test = X_test[X_test.columns[snp_list]]
snp_list
```



```
[53]: array([79424, 3161, 96743, ..., 6663, 19403, 25392], dtype=int64)
```

0.4 2.1 Try Lasso for height

```
[54]: ## Use the best a to predict X_test
     import sklearn.metrics as sm
     # alpha is the regularization parameter
     lasso = linear_model.Lasso(alpha=0.26)
     lasso.fit(X_train, y_train)
     y_hat = lasso.predict(X_test)
     # mean squared error
     mse = sm.mean_squared_error(y_test, y_hat)
     print('\nMSE in prediction =',mse)
     # correlation btw predicted and observed
     corr = np.corrcoef(y_test,y_hat)[0,1]
     print('\nCorr obs vs pred =',corr)
     # plot observed vs. predicted targets
     plt.title('Lasso: Observed vs Predicted Y')
     plt.ylabel('Predicted')
     plt.xlabel('Observed')
     plt.scatter(y_test, y_hat, marker='o')
    plt.show()
```

```
MSE in prediction = 53.67158851342249

Corr obs vs pred = 0.5974851858991395
```



```
[55]: ACC_30intensity (y_test,y_hat)
```

Accuary under 30% selection intensity is 0.5

```
[56]: ## Best alpha was calculated from the following code:
     import warnings
     warnings.filterwarnings('ignore')
     # Import necessary modules
     from sklearn.linear_model import ElasticNet
     from sklearn.metrics import mean_squared_error
     from sklearn.model_selection import GridSearchCV, train_test_split
     # Create the hyperparameter grid
     a = np.linspace(0, 1, 20)
     param_grid = {'alpha': a}
     # Instantiate the ElasticNet regressor: elastic_net
     lasso = linear_model.Lasso()
     # Setup the GridSearchCV
     gm_cv=GridSearchCV(lasso,param_grid,cv=5)
     # Fit it to the training data
     gm_cv.fit(X_train,y_train)
```

```
# Predict on the test set and compute metrics
     y_pred = gm_cv.predict(X_test)
     r2 = gm_cv.score(X_test, y_test)
     mse = mean_squared_error(y_test, y_pred)
     print("Tuned alpha: {}".format(gm_cv.best_params_))
     print("Tuned R squared: {}".format(r2))
     print("Tuned MSE: {}".format(mse))
    Tuned alpha: {'alpha': 0.3684210526315789}
    Tuned R squared: 0.30354739551513654
    Tuned MSE: 57.07146638448894
[57]: reg = lasso
     # Compute 10-fold cross-validation scores: cv_scores
     cv_scores = cross_val_score(reg,X_train,y_train,cv=10,scoring='r2')
     # Print the 10-fold cross-validation scores
     print(cv scores)
     print("Average 10-Fold CV Score: {}".format(np.mean(cv_scores)))
    [ \ 0.06008879 \ \ 0.05643373 \ \ 0.17290932 \ \ 0.06738805 \ \ 0.24109008 \ -0.02410407 ]
      0.33645841 0.24498782 0.22654576 0.29071651
    Average 5-Fold CV Score: 0.1672514396025843
    0.4.1 2.2 Try Ridge for height
[58]: ## Find best alpha for ridge regression
     import warnings
     warnings.filterwarnings('ignore')
     # Import necessary modules
     from sklearn.linear_model import RidgeCV
     regr_cv = RidgeCV(alphas=[0.1, 1.0, 10.0])
     model_cv = regr_cv.fit(X_train, y_train)
     model_cv.alpha_
[58]: 10.0
[59]: ## try Ridge
     import sklearn.metrics as sm
     # alpha is the regularization parameter
     ridge = linear_model.Ridge(alpha=10)
     ridge.fit(X_train, y_train)
     y_hat = ridge.predict(X_test)
     # mean squared error
```

mse = sm.mean_squared_error(y_test, y_hat)

```
print('\nMSE in prediction =',mse)

# correlation btw predicted and observed

corr = np.corrcoef(y_test,y_hat)[0,1]
print('\nCorr obs vs pred =',corr)

# plot observed vs. predicted targets
plt.title('Lasso: Observed vs Predicted Y')
plt.ylabel('Predicted')
plt.xlabel('Observed')
plt.scatter(y_test, y_hat, marker='.')
plt.show()
```

MSE in prediction = 49.85027975535253

Corr obs vs pred = 0.6361211424442832

[60]: ACC_30intensity (y_test,y_hat)

Accuary under 30% selection intensity is 0.5294117647058824

```
[61]: reg=ridge
# Compute 10-fold cross-validation scores: cv_scores

cv_scores = cross_val_score(reg,X_train,y_train,cv=10)

# Print the 10-fold cross-validation scores
print(cv_scores)

print("Average 10-Fold CV Score: {}".format(np.mean(cv_scores)))
```

```
[ 0.06698646  0.26677477  0.2024842  0.27302912  0.47938761 -0.15118739  0.498393  0.15495287  0.37401065  0.47189177]
Average 5-Fold CV Score: 0.26367230602971437
```

0.4.2 2.3 Try RandomForest Regressor for height

```
[62]: from sklearn.ensemble import RandomForestRegressor
     clf = RandomForestRegressor(100)
[63]: clf.fit(X_train, y_train)
     y_hat = clf.predict(X_test)
     # mean squared error
     mse = sm.mean_squared_error(y_test, y_hat)
     print('\nMSE in prediction =',mse)
     # correlation btw predicted and observed
     corr = np.corrcoef(y_test,y_hat)[0,1]
     print('\nCorr obs vs pred =',corr)
     # plot observed vs. predicted targets
     plt.title('Random Forest: Observed vs Predicted Y')
     plt.ylabel('Predicted')
     plt.xlabel('Observed')
     plt.scatter(y_test, y_hat, marker='o')
     plt.show()
```

```
MSE in prediction = 49.23582516560573
Corr obs vs pred = 0.6612758114785884
```



```
[64]: ACC_30intensity (y_test,y_hat)
```

Accuary under 30% selection intensity is 0.5

```
[65]: reg = clf
# Compute 10-fold cross-validation scores: cv_scores
cv_scores = cross_val_score(reg,X_train,y_train,cv=10,scoring='r2')
# Print the 10-fold cross-validation scores
print(cv_scores)
print("Average 10-Fold CV Score: {}".format(np.mean(cv_scores)))
```

[0.14692038 0.26536649 0.30613919 0.20222267 0.49720162 0.11871432 0.4762445 0.39918695 0.45267231 0.49579089]
Average 10-Fold CV Score: 0.3360459328645949

0.5 3 Genomic selection for GCA of Silk DAP

```
[66]: p_y=pd.read_csv('s_blup_total.csv')

[67]: g_plus_p=pd.merge(num_geno,p_y, left_on=num_geno.id_x, right_on=p_y.id,__
→how='inner')
```

```
[68]: g_plus_p.shape
[68]: (575, 136344)
[69]: g_plus_p.head()
[69]:
                                        id_x 2 3 4
                                                                  11
                                                                      12
                                                                                303500
                   key_0
                                                       8
                                                         9
                                                              10
                           PHN11_LH145_0029
                                                 2
                                                                   0
        PHN11_LH145_0029
                                             0
                                                    0
                                                       0
                                                          0
                                                               0
                                                                       0
                                                                                     0
     0
     1
             W10005 0107
                                W10005 0107
                                              0
                                                2
                                                    0
                                                       0
                                                               0
                                                                                     2
     2
             W10004_0082
                                W10004_0082
                                                                                     0
                                                                           . . .
       PHN11_LH145_0028
                           PHN11_LH145_0028
                                              0
                                                 2
                                                    0
                                                       0
                                                               0
                                                                                     0
                                                                           . . .
             W10005_0029
                                W10005_0029
                                              0
                                                 2
                                                                          . . .
        303501
                303502 303504
                                 303505 303507
                                                  303510
                                                          303511
                                                                                  id \
     0
             2
                     0
                              0
                                      0
                                               2
                                                       2
                                                                   PHN11 LH145 0029
                                                                0
     1
             0
                      2
                              2
                                      0
                                                       0
                                                                0
                                                                        W10005_0107
                                               1
     2
             0
                      2
                                      2
                                                       0
                              1
                                               1
                                                                0
                                                                        W10004 0082
             2
     3
                      0
                              0
                                      0
                                               2
                                                       2
                                                                   PHN11_LH145_0028
             0
                      2
                              2
                                       0
                                               0
                                                       0
                                                                0
                                                                        W10005_0029
           s_day
     0 -0.443623
     1 -1.722697
     2 - 0.732552
     3 -0.425980
     4 -1.471173
     [5 rows x 136344 columns]
[70]: X=g_plus_p.iloc[:,2:136342]
[71]: Y=g_plus_p['s_day']
[72]: # first trait analyzed
     X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2)
     print(X_train.shape, y_train.shape)
     print(X_test.shape, y_test.shape)
    (460, 136340) (460,)
    (115, 136340) (115,)
[73]: print('
                                      sd')
                   min
                          max mean
     print('Train:', y_train.min(), y_train.max(), y_train.mean(), np.sqrt(y_train.
     print('Test:', y_test.min(), y_test.max(), y_test.mean(), np.sqrt(y_test.var()))
           min
                  max mean
                              sd
```

Train: -10.69074918 8.077160751000001 0.0656371015771739 2.1012938122877243 Test: -6.4046343325000015 4.1929703 -0.31234098288260875 2.221639448093306

```
[74]: plt.title('Train / test data')
   plt.hist(y_train, label='Train')
   plt.hist(y_test, label='Test')
   plt.legend(loc='best')
   plt.show()

# marker PCA, use whole X with diff color for train and test
X = np.concatenate((X_train, X_test))
   pca = PCA(n_components=2)
   p = pca.fit(X).fit_transform(X)
   Ntrain=X_train.shape[0]
   plt.title('PCA decomposition')
   plt.scatter(p[0:Ntrain,0], p[0:Ntrain,1], label='Train')
   plt.scatter(p[Ntrain:,0], p[Ntrain:,1], label='Test', color='orange')
   plt.legend(loc='best')
   plt.show()
```



```
[75]: ## Features selection based GWAS results
pvals = []
for i in range(X_train.shape[1]):
    b, intercept, r_value, p_value, std_err = stats.linregress(np.
    asarray(X_train.iloc[:,i]), np.asarray(y_train))
    pvals.append(-np.log10(p_value))
pvals = np.array(pvals)
print(len(pvals))
```

136340

```
[76]: # plot GWAS
plt.ylabel('-log10 P-value')
plt.xlabel('SNP')
plt.plot(pvals, marker='.')
plt.show()

# select SNP by min_P_value
# min_P_value = 12 #
# snp_list = np.nonzero(pvals>min_P_value)

N_best = 10000
snp_list = pvals.argsort()[-N_best:]
```

```
# finally slice X
X_train = X_train[X_train.columns[snp_list]]
X_test = X_test[X_test.columns[snp_list]]
leng=[item for item in snp_list]
```


0.5.1 3.1 Try Lasso Silk DAP

```
[77]: ## The best
## Cross-validation and greid search best a for lasso
# Create the hyperparameter grid
a = np.linspace(0, 1, 20)
param_grid = {'alpha': a}

# Instantiate the ElasticNet regressor: elastic_net
lasso = linear_model.Lasso()

# Setup the GridSearchCV
gm_cv=GridSearchCV(lasso,param_grid,cv=5)

# Fit it to the training data
gm_cv.fit(X_train,y_train)

# Predict on the test set and compute metrics
y_pred = gm_cv.predict(X_test)
```

```
r2 = gm_cv.score(X_test, y_test)
mse = mean_squared_error(y_test, y_pred)
print("Tuned lasso alpha: {}".format(gm_cv.best_params_))
print("Tuned lasso R squared: {}".format(r2))
print("Tuned MSE: {}".format(mse))
Tuned lasso alpha: {'alpha': 0.05263157894736842}
```

Tuned lasso alpha: {'alpha': 0.05263157894736842}
Tuned lasso R squared: 0.584461626437456
Tuned MSE: 2.03313072307695

```
[78]: ## Use the best alpha to predict the X-test
     import sklearn.metrics as sm
     # alpha is the regularization parameter
     lasso = linear_model.Lasso(alpha=0.11)
     lasso.fit(X_train, y_train)
     y_hat = lasso.predict(X_test)
     # mean squared error
     mse = sm.mean_squared_error(y_test, y_hat)
     print('\nMSE in prediction =',mse)
     # correlation btw predicted and observed
     corr = np.corrcoef(y_test,y_hat)[0,1]
     print('\nCorr obs vs pred =',corr)
     # plot observed vs. predicted targets
     plt.title('Lasso: Observed vs Predicted Y')
     plt.ylabel('Predicted')
     plt.xlabel('Observed')
     plt.scatter(y_test, y_hat, marker='.')
     plt.show()
```

MSE in prediction = 2.388403219136664

Corr obs vs pred = 0.7302615281345879


```
[79]: ## Define the cutoff of 30%
    cutoff30=0.3*y_hat.shape[0]
    print(cutoff30)

## Creat a function to calculate the accuracy under 30% selection intensity.

def ACC_30intensity (test,hat):
    yt=pd.DataFrame(test)
    yh=pd.DataFrame(hat)
    yh.index=yt.index
    combine=pd.concat([yt,yh],axis=1)
    a=pd.DataFrame(combine.iloc[:,0].argsort()[-35:])
    b=pd.DataFrame(combine.iloc[:,1].argsort()[-35:])
    ccc=pd.concat([a,b],axis=1)
    common=ccc.iloc[:,0].isin(ccc.iloc[:,1]).value_counts().to_frame().iloc[0,0]
    return print('Accuary under 30% selection intensity is',common/ccc.

→shape[0])
```

34.5

```
[80]: ACC_30intensity (y_test,y_hat)
```

Accuary under 30% selection intensity is 0.6857142857142857

```
[81]: training_accuracy = lasso.score(X_train, y_train)
     test_accuracy = lasso.score(X_test, y_test)
     print("Accuracy on training data: {:2f}".format(training_accuracy))
     print("Accuracy on test data: {:2f}".format(test_accuracy))
    Accuracy on training data: 0.719402
    Accuracy on test data:
                               0.511850
[82]: # Compute 10-fold cross-validation scores: cv_scores
     reg = lasso
     cv_scores = cross_val_score(reg,X_train,y_train,cv=10,scoring='r2')
     # Print the 10-fold cross-validation scores
     print(cv_scores)
     print("Average 10-Fold CV Score: {}".format(np.mean(cv_scores)))
    [0.33042325 0.57912634 0.57720112 0.31091246 0.67373152 0.59992068
     0.32427942 0.69509696 0.35160778 0.51043897]
    Average 5-Fold CV Score: 0.49527385052655665
    0.5.2 3.2 Try ridge for Silk DAP
[83]: ## Find best alpha for ridge regression
     import warnings
     warnings.filterwarnings('ignore')
     # Import necessary modules
     from sklearn.linear_model import RidgeCV
     regr cv = RidgeCV(alphas=[0.1, 1.0, 10.0])
     model_cv = regr_cv.fit(X_train, y_train)
     model_cv.alpha_
[83]: 10.0
[84]: ## try Ridge
     import sklearn.metrics as sm
     # alpha is the regularization parameter
     ridge = linear_model.Ridge(alpha=10)
     ridge.fit(X_train, y_train)
     y_hat = ridge.predict(X_test)
     # mean squared error
     mse = sm.mean_squared_error(y_test, y_hat)
     print('\nMSE in prediction =',mse)
     # correlation btw predicted and observed
     corr = np.corrcoef(y_test,y_hat)[0,1]
```

```
print('\nCorr obs vs pred =',corr)

# plot observed vs. predicted targets
plt.title('Lasso: Observed vs Predicted Y')
plt.ylabel('Predicted')
plt.xlabel('Observed')
plt.scatter(y_test, y_hat, marker='.')
plt.show()
```

MSE in prediction = 1.6396097653108253

Corr obs vs pred = 0.8193273719523999

[85]: ACC_30intensity (y_test,y_hat)

Accuary under 30% selection intensity is 0.6571428571428571

```
[86]: reg=ridge
# Compute 10-fold cross-validation scores: cv_scores

cv_scores = cross_val_score(reg,X_train,y_train,cv=10)
```

```
# Print the 10-fold cross-validation scores
print(cv_scores)
print("Average 10-Fold CV Score: {}".format(np.mean(cv_scores)))
```

```
[ 0.42514713  0.70391462  0.62008691 -0.31770842  0.77879404  0.4841562  0.11471732  0.61728037  0.14781385  0.31420127]
Average 5-Fold CV Score: 0.38884032971541754
```

0.5.3 3.3 Try Random Forest for Silk DAP

```
[87]: from sklearn.ensemble import RandomForestRegressor
     clf = RandomForestRegressor(100)
[88]: clf.fit(X_train, y_train)
     y_hat = clf.predict(X_test)
     # mean squared error
     mse = sm.mean_squared_error(y_test, y_hat)
     print('\nMSE in prediction =',mse)
     # correlation btw predicted and observed
     corr = np.corrcoef(y_test,y_hat)[0,1]
     print('\nCorr obs vs pred =',corr)
     # plot observed vs. predicted targets
     plt.title('Random Forest: Observed vs Predicted Y')
     plt.ylabel('Predicted')
     plt.xlabel('Observed')
     plt.scatter(y_test, y_hat, marker='.')
     plt.show()
```

MSE in prediction = 1.7729229680919807 Corr obs vs pred = 0.8207449081394613


```
[89]: ACC_30intensity (y_test,y_hat)
```

Accuary under 30% selection intensity is 0.6857142857142857

```
[90]: training_accuracy = clf.score(X_train, y_train)
    test_accuracy = clf.score(X_test, y_test)
    print("Accuracy on training data: {:2f}".format(training_accuracy))
    print("Accuracy on test data: {:2f}".format(test_accuracy))
```

Accuracy on training data: 0.941146 Accuracy on test data: 0.637644

```
[91]: reg = clf
# Compute 10-fold cross-validation scores: cv_scores
cv_scores = cross_val_score(reg,X_train,y_train,cv=10,scoring='r2')
# Print the 10-fold cross-validation scores
print(cv_scores)
print("Average 10-Fold CV Score: {}".format(np.mean(cv_scores)))
```

[0.46121065 0.65952029 0.6810676 0.22180212 0.77829311 0.62204751 0.27063762 0.72655111 0.49733918 0.56166547]
Average 5-Fold CV Score: 0.5480134657923644

[27]: <seaborn.axisgrid.FacetGrid at 0xf0b00f0>

