## Assignment No.1

| Page N | O. | 1 |  |
|--------|----|---|--|
| Date   |    |   |  |

Name - Kudharon Sumit Dattatraya

RCII NO - 200401

Class - TE4

subject -

### Problem Statement -

Implement depth first Search and breadth first Search algorithm. Use an undirected graph of develop a recursive algorithm for Searching all the Vertices of a graph or tree data Structure.

### Theory -

- \* Algorithm in AI.
- · AI is the study of building agents that act rotationally.
- · Most of the time these agents perform some kind of search agonithm in the background in order to achieve their tasks.
- · A search Problem Consist of State space start space good test.
- · A state space set of all possible creates where you can be.
- · A good test A function that looks at the current state returns whether or not . It is the good state.
- . A start Beate the state from where the search begins.
- . The solution to a search problem is a sequences of actions caused plan that transforms the start state to goal state

Search Algorithm

Uniformed Search

informed Search

- i) Depth first Search
- 1) Greedy Search
- 2) Breadth first search
- 2) A\* Search
- 3) Uniform cost search
- 3) Graph Search

\* What is informed & uniformed Search algorithm in At.

#### Informed Search:

Informed Search Algorithm have information on the goal State which helps in more efficient searching.

### Uniformed Search:

Uniformed Search alognithm have no additional information on the goal node other than the one provided in the Problem definition.

- \* Depth First Search (DFS).
- It is a recursive algorithm.
- -It uses idea of back tracking.
- .It involves exhaustive searches of all the nodes by going ahead if Possible else by back tracking.
- ·Here · the word backtrocking means that when you are moving forward & there are no more nodes along the current path.
- Then you move backcoard on the same path to find codes to traverse.
- ·All the nodes will be visited on the current path till the unvisited nodes have been traversed after which the next path will be selected.
- · The recursive nature of DFS can be implemented using stack.

  Example.



| Charge Wa | 2 |  |
|-----------|---|--|
|           | 9 |  |
| (Date)    |   |  |

### Algorithm -

- 1) set status = 1 i.e. ready state for each node G.
- Push the Starting node (A) on the Stack & set its status = 2 i.e. waiting state.
- 3 Repeat steps 485 ontill the stack is empty.
- @ pop the top node (N) process it & set its status = 3 i.e. processed state.
- Push on the stack all the neighbours of (N) that we in the ready state whose status=1, bet it as status=2 & this will end the loop.
- 6 Stop.

# Advantages -

- 1) It requires very little memory as it only needs to store a stack of the nodes on the path from root node to current node.
- 2 It takes less time to reach the goal node than BF9 if it traverses in the eight path.

## pisadvantages -

- 1) There is the Probability that many states keep reoccurrings there is no gurantee of finding the solution.
- 15 many 90 into infinite loop.

### Applications -

- 1) For finding the path.
- 1 To test of graph is biportile.
- 3 finding the strongly connected components of graph.
- @ for detecting cycle in graph.

\* Breadth First Search (BFS) -

- -BFS is an algorithm for traversing or searching tree or graph data structures.
- It starts at the tree root of explore an of the neighbours at the present depth prior to moving on the nodes at the next depth level.
- The algorithm Starts with an initial node of then Proceeds to explore all adjacent nodes in a breadth first Fashion.
- As opposed to DFS which goes down a particular branch till all nodes in the branch are visited.
- It means it traverses the graph level coise 3 not moving down a level till all the nodes in that level are visited for marked.

Example.



Algorithm -

- O Assign (a) as the root node & insort it into the queue.
- @ Extract (a) from the queue & insert child nodes of (a)
- 3 Print rode(a)
- 1 The queue is not empty of base node (b) & (c).
- (F) Since (b) is the first node in the queue extract it.
- ( Insert the child node of (b).
- 1 Repeat above steps toit until the queue gets empty.
- 8 Exit.

| Page No. | 5 |  |
|----------|---|--|
| Date     |   |  |

## Advantages -

- O It coil provide a solution if any exists.
- @ IF there is more than one solution for agiven Problem then BFS will provide the optimal solution.

# Disadvantages -

- 1) It requires a lot of memory since each level of tree must be saved into memory.
- 2 BFG needs a lot of time if the solution is for away from root node.

#### Application -

- 1) To build index try search index.
- 1 For GPE Navigation.
- 3 path finding augorithm.
- 1 In ford falkesson augorithm to find maximum flow in a network.
- 3 Cycle desection in an undirected graph.
- \* compare DFS and BFS.

|   | 878                           | DFS                                 |
|---|-------------------------------|-------------------------------------|
| 0 | BFS Stands for Breadth first  | DF3 stands for Depth first Search.  |
|   | Search.                       |                                     |
| 2 | 8FS uses queue data structure | DFS uses stack data Structure.      |
|   | for finding the shortest poth |                                     |
| 3 | BFS is more schedular for     | DFS is more suitable when there     |
|   | searching vortices which are  | are solutions away from source.     |
|   | closes to the given source.   |                                     |
|   | BF3 Consider all neighbours   | DFS is more suitable for game or    |
|   | first 4 therefore suitable.   | puzzle problems we make a decision  |
|   |                               | then explore all paths through this |
|   |                               | decision.                           |

| Page No. 6                                         |
|----------------------------------------------------|
|                                                    |
|                                                    |
| Conclusion -                                       |
| Learned & implemented Depth First Search & Breadth |
| First Search Algorithm.                            |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |