À rendre le lundi 18 mars.

Problème. Algèbre linéaire et suites récurrentes.

Dans tout ce problème, a désigne un réel différent de 1.

On se propose d'étudier les suites $(u_n)_{n\in\mathbb{N}}$ vérifiant une relation de récurrence du type

$$\forall n \in \mathbb{N} \quad u_{n+1} = au_n + P(n), \quad \text{où } P \text{ est un polynôme.}$$

Le \mathbb{R} -espace vectoriel des suites réelles est noté $\mathbb{R}^{\mathbb{N}}$.

Un élément de $\mathbb{R}^{\mathbb{N}}$ est noté indifféremment $(u_n)_{n\in\mathbb{N}}$ ou u.

0) Justifier que l'espace vectoriel $\mathbb{R}^{\mathbb{N}}$ n'est pas de dimension finie.

Partie I Cas où P est constant.

Dans cette partie, on pose $E_a^{(0)} = \{u \in \mathbb{R}^{\mathbb{N}}; \exists b \in \mathbb{R}; \forall n \in \mathbb{N}; u_{n+1} = au_n + b\}.$

- 1. Soit $u \in E_a^{(0)}$. Il existe donc b réel tel que $\forall n \in \mathbb{N}$ $u_{n+1} = au_n + b$. Montrer l'unicité de b. On notera $b = b_u$, pour $u \in E_a^{(0)}$.
- 2. Cas a=0. Déterminer $E_0^{(0)}$. On mettra en évidence qu'il s'agit d'un plan vectoriel.
- 3. Montrer que $E_a^{(0)}$ est un \mathbb{R} -espace vectoriel.
- 4. Soit x la suite constante égale à 1 et y la suite définie par : $\forall n \in \mathbb{N}$ $y_n = a^n$. Montrer que (x, y) est une famille libre de $E_a^{(0)}$. On précisera b_x et b_y .
- 5. Soit $u \in E_a^{(0)}$.
 - (a) Montrer qu'il existe $(\lambda, \mu) \in \mathbb{R}^2$ unique tel que $\begin{cases} \lambda x_0 + \mu y_0 = u_0 \\ \lambda x_1 + \mu y_1 = u_1 \end{cases}$
 - (b) Le couple (λ, μ) étant celui défini à la question précédente, montrer que

$$\forall n \in \mathbb{N} \quad u_n = \lambda x_n + \mu y_n.$$

- (c) Que peut-on en conclure sur (x, y)?
- 6. Prouver que $E_a^{(0)}$ est de dimension finie et en donner une base et la dimension.

Partie II Cas où P est un polynôme quelconque.

On fixe un entier naturel p. On note $\mathbb{R}_p[X]$ le \mathbb{R} -espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à p.

On pose $E_a^{(p)} = \{ u \in \mathbb{R}^{\mathbb{N}}; \exists P \in \mathbb{R}_p[X]; \forall n \in \mathbb{N}, u_{n+1} = au_n + P(n) \}.$

On conserve la notation y pour désigner la suite définie par $\forall n \in \mathbb{N}$ $y_n = a^n$.

1. Soit $u \in E_a^{(p)}$. Il existe donc $P \in \mathbb{R}_p[X]$ tel que :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = au_n + P(n)$$

Montrer l'unicité de P.

On notera $P = P_u$ pour $u \in E_a^{(p)}$.

- 2. Montrer que $E_a^{(p)}$ est un \mathbb{R} -espace vectoriel.
- 3. Justifier $\theta: u \mapsto P_u$ est une application linéaire de $E_a^{(p)}$ dans $\mathbb{R}_p[X]$.
- 4. Justifier que $\operatorname{Ker} \theta$ est une droite vectorielle engendrée par y.
- 5. Justifier que θ est une application surjective. Donner la dimension de ${\rm Im}\theta$.
- 6. Pour $k \in [0, p]$, on fixe $v^{(k)}$ un antécédent de X^k par θ dans $E_a^{(p)}$.
 - (a) Démontrer que la famille $(v^{(0)}, \ldots, v^{(p)}, y)$ engendre $E_a^{(p)}$. Pour $u \in E_a^{(p)}$, on pourra commencer par appliquer θ .
 - (b) Montrer qu'il s'agit de surcroît d'une famille libre.
 - (c) Justifier que $E_a^{(p)}$ est de dimension finie et préciser sa dimension.
- 7. Pour $k \in [0, p]$, on pose $x^{(k)}$ la suite définie, pour tout n de \mathbb{N} , par : $x_n^{(k)} = n^k$. Démontrer que $(x^{(0)}, \ldots, x^{(p)}, y)$ est une base de $E_a^{(p)}$.
- 8. Application : déterminer la suite $(u_n)_{n\in\mathbb{N}}$ vérifiant $u_0=-2$ et

$$\forall n \in \mathbb{N} \quad u_{n+1} = 2u_n - 2n + 7.$$