

Group no.: 07 Lab group: 05

Group Representative :-Ashka Pathak - 202301270 Contact no - +91 88798 29862

Team Members:-

- 1. Ashka Pathak 202301270
- 2. Jill Chhagnani 202301273
- 3. Dhruvi Jobanputra 202301401
 - 4. Visha Sitapara 202301414
 - 5. Dhyey Patel 202301415

Relational Schema

ER Diagram

Proof that relations are in BCNF

A relation R is in Boyce-Codd Normal Form, when determinant of every FD that holds on R, is super-key# of R. In other words, For every FD A \rightarrow B that holds on relation R, A is its super-key.

1. User Table:

- FDs: user_id → name, email, password, gender, age, contact no, role
 - o user id is the primary key, and all non-key attributes depend on it.
 - o Conclusion: This relation is in BCNF.

Notification Table:

- FDs: notif id → user id, message, notif type, timestamp, is read
 - o notif id is the primary key, and all non-key attributes depend on it.
 - Conclusion: This relation is in BCNF.

3. History Table:

- FDs: history_id → user_id, status
 - o history_id is the primary key, and all non-key attributes depend on it.
 - o Conclusion: This relation is in BCNF.

4. Member Table:

- FDs: member id → user id, height, weight, BMI, fitness level, registration date
 - o member_id is the primary key, and all non-key attributes depend on it.
 - o Conclusion: This relation is in BCNF.

Trainer Table:

- FDs: trainer id → user id, specialization, experience, rating
 - o trainer id is the primary key, and all non-key attributes depend on it.
 - Conclusion: This relation is in BCNF.

6. Salary Table:

- FDs: salary id → trainer id, amount, date received, status
 - salary id is the primary key, and all non-key attributes depend on it.
 - o Conclusion: This relation is in BCNF.

7. Plans Table:

- FDs: plan_id → trainer_id, plan_name, duration_weeks, rating, price, fitness level, age min, age max, bmi min, bmi max, description
 - o plan_id is the primary key, and all non-key attributes depend on it.
 - o Conclusion: This relation is in BCNF.

8. Payment Table:

- FDs: payment_id → member_id, plan_id, transaction_id, date, status, total_amount
 - payment_id is the primary key, and all non-key attributes depend on it.
 - Conclusion: This relation is in BCNF.

9. Member Plan Table:

- FDs: member id, plan id \rightarrow start date
 - member_id, plan_id is the composite primary key.

 Conclusion: This relation is in BCNF because the composite primary key (member_id, plan_id) uniquely determines start_date, and there are no partial dependencies or violations of BCNF.

10. Exercise Table:

- FDs: exercise id → exercise name, intensity
 - o exercise id is the primary key, and all non-key attributes depend on it.
 - o Conclusion: This relation is in BCNF.

11. Plan Exercise Table:

- FDs: plan_id, exercise_id → sets, reps
 - plan_id, exercise_id is the composite primary key, and all non-key attributes depend on it.
 - Conclusion: This relation is in BCNF because the composite primary key
 (plan id, exercise id) uniquely determines sets and reps.

12. Review Table:

- FDs: review_id → plan_id, rating, comment, date_added
 - o review_id is the primary key, and all non-key attributes depend on it.
 - Conclusion: This relation is in BCNF.

All the relations in your schema satisfy the conditions for BCNF because, in every case, the left-hand side of each functional dependency either constitutes the primary key or is a superkey.