

Self-Pretrainable In-situ Normalizer For Deep Learning Error Function

Speaker: Jyun-Xin Ke

Advisor: Tsung-Chu Huang

Outline

- Introduction
- Previous Work
- Error Function
- Online Fine-Tuning Method
- Offline Sampling Ranking Method
- Experiment for SPINDLE
- Experiment for KDE-SPINDLE
- Conclusions

Introduction

- Neural networks have become the mathematical model in the field of AI, and have been applied in the consumer electronics.
- Since the data come from <u>different datasets</u>, the input <u>probability density Function</u> (<u>pdf</u>) of activation function is no longer <u>normal distribution</u>.

Introduction

- With the expansion of information, neural networks have more layers and higher training costs each year.
- Backbone neural networks can reduce training time by utilizing <u>pre-trained</u> convolutional networks.

Backbone-Based Neural Network

1. Multi-head Attention

Multi-head Attention is a module for attention mechanisms which runs through an attention mechanism several times in parallel.

Fig.1 Vision Transformer^[17]

Fig.2 GELU

Backbone-Based Neural Network

2. Single Head Detector

A single head refers to a single set of output units in the network.

These output units are responsible for generating predictions or outputs for a specific task.

Fig.1 Yolo^[20] model

Fig.2 Mish & LeakyReLU

Backbone Classifier

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig.1 LeNet-5^[9] Model

Fig.2 AlexNet^[10] Model

Fig.3 ResNet-18^[11] Model

Fig.4 VGG-16^[12] Model

Non-Backbone-Based Neural Network

The piecewise linear function (PWL) is constructed using segments or pieces to <u>calculate different</u>

patterns of features.

However, each time a different curve is used, it is necessary to redesign the piecewise function.

Fig.1 PWL tanh function

Fig.2 PWL hardware circuit^[24]

Error Function

What is Error Function?

According to the <u>law of large numbers</u>, the distribution of features tends to approach a <u>normal</u> distribution.

Therefore, the <u>cumulative probability distribution function(CDF)</u> of the activation function will be an error function.

$$\operatorname{erf}(x) = \frac{2}{\sigma\sqrt{2\pi}} \int_0^x e^{-\frac{(t-\mu)^2}{2\sigma}} dt$$

$$CDF(x) = \int_{-\infty}^{x} PDF(t)dt$$

Error Function

What is Error Function?

Four kinds of ReLUs

$$ReLU(s_x, s_y, x) = s_y \cdot \max(0, s_x \cdot (x - bias))$$

Monotonic increasing function
$$ReLU(1, s_y, x) = \mathcal{L}(s_y, x - bias) = s_y \cdot \max(0, (x - bias))$$

SPINDLE architecture

Binary Search LS-PWL

$$CDF(x) = \int_{-\infty}^{x} PDF(t)dt$$

Binary Search Light-Slope Piece-Wise Line

Binary Search Light-Slope Piece-Wise Line

Binary Search Light-Slope Piece-Wise Line

- Sampling Method
 - 1. Sampling Ranking Method

- Sampling Method
 - 2. Inverse Transform Sampling

$$CDF(x) = P(X \le x) = \int_{-\infty}^{\infty} PDF(t)dt$$

$$U = CDF(X)$$

$$X = CDF^{-1}(U)$$

Feature extractor

In computer vision, a <u>feature extractor</u> takes an image as input and <u>identifies key visual patterns</u> or characteristics that are useful for subsequent analysis or classification.

Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test is used to decide if a sample comes from a population with a specific distribution.

Given a sample $x_1, x_2, ..., x_n$ of i.i.d, random variables with distribution function F,

$$F(x) = P(X \le x)$$

Here F_n is a normal distribution

$$D = \max_{1 \le i \le n} (|F_n(x_i) - F(x_i)|)$$

KDE-SPINDLE

KDE means Kernel Density Estimation, we use <u>custom sigmoid</u> as the kernel function to replace the ReLU unit.

BLS-PWL

```
Algorithm Dichotomy LS-PWL
def PWL(m, bias, X):
     return (2**m) * X + bias
def intercept(X):
     return CDF(X) - PWL(m, bias, X)
d1 <- gradient(CDF(X))</pre>
d2 <- gradient(gradient(CDF(X)))</pre>
(In order to find ALL blocks and start points)
for All blocks in PWL(slope from -m to m):
     if PWL (L side + R side) < error rate</pre>
          output result(err,m,c,bias,nL,nR)
     else
          do another PWL
     if all PWL > error rate
          do range / 2
     else
          output all PWL(err,m,c,bias,nL,nR)
```


BLS-PWL


```
y = logistic(X).....(1)

y = 0.5 * logistic(x + 2) + 0.5 * logistic(2 * x - 3)......(2)

y = 0.1 * logistic(X + 2) + 0.2 * logistic(2 * X - 3) + 0.3 * logistic(X - 5)......(3)
```

Table.1 BLS-PWL

BLS-PWL			-	Equation(1)		Equation(2) Equation(3))		
	PDF	Type		Unimodal			Bimodal		Multimodal			
	Target error		0.01	0.005	0.001	0.01	0.005	0.001	0.01	0.005	0.001	
	Cost	PWL	23	33	163	17	35	137	19	31	129	
	Cost	ReLU	46	66	326	34	70	274	38	62	258	

Table.2 LS-PWL

LS-PWL[25]		Equation(1)			Equation(2)			Equation(3)		
PDF Type			Unimodal			Bimodal			Multimodal	
Target error		0.01	0.005	0.001	0.01	0.005	0.001	0.01	0.005	0.001
Cost	PWL	7	11	32	NA	NA	NA	NA	NA	NA

Fig.1 LS-PWL^[25] bimodal function

Fig.2 BLS-PWL bimodal function

Table. Compare with pervious work

	LS-PWL ^[25]	BLS-PWL
Fine-Tune	No	Yes
Hardware circuit	Yes	Yes
PWL Cost	Low	high
Function	Only Unimodal distribution	Any distribution

SPINDLE


```
def ReLU(s, x, b):
    return s* max(0, x-b)

def spindle(s, x, b, L, R):
    n = s.size
    y = 0.0
    for i in range(n):
        y += ReLU(s[i], x, b[i]) * 2 ** L[i]
    y = y / (2 ** R)
    return y
```

Fig.1 SPINDLE.ipynb (Python code)

Fig.2 Four kinds of activation (Golden data)

• SPINDLE

Fig.1 block diagram

Fig.2 timing diagram

SPINDLE

```
≡ spindle.v × ③ Workspace Trust
      wire [9:0] sign_max[0:7];
      wire [9:0] Relu;
       reg [9:0] com result[0:7];
      wire [7:0] i data b two s complement[0:7];
       genvar gen i;
         for (gen i = 0; gen i < 8; gen i = gen i + 1) begin : gen two s complement
          assign i data b two s complement[gen i] = ~i data b[gen i] + 1;
       always @(*) begin
            i data x[7], i data b[k][7]
             2'b00: com_result[k] = i_data_x > i_data_b[k] ? i_data_x - i_data_b[k] : 0;
             2'b01: com result[k] = i_data_x + i_data_b_two_s_complement[k];
             2'b10: com result[k] = 0;
             2'bll: com result[k] = i data x > i data b[k] ? i data x - i data b[k] : 0;
             default: com result[k] = i data x > i data b[k] ? i data x - i data b[k] : 0;
       genvar gen_x;
         for (gen_x = 0; gen_x < 8; gen_x = gen_x + 1) begin : max_gen
          assign max[gen x] = com result[gen x];
           assign sign max[gen x] = i data s[gen x] ? max[gen x] : ~max[gen x] + 1; // 1 p
       assign Relu = return max[0] + return max[1] + return max[2] + return max[3] + retur
       assign temp y = (Relu >> i data R);
```

Fig.1 SPINDLE.v (Verilog Code)

Fig.2 Four Output Wave View

Table. CHIP PAT

	SPINDLE				
function	Any kind of activ	ation (Fine-Tune)			
stage	Per-sim	Post-sim			
Power(<i>mW</i>)	4.4151	5.4151			
Area(μm^2)	991848.318711	997419.837070			
Timing(ns)	15.24	16.13			

Sampling Ranking Method

Sampling Ranking Method

Inverse Transform Sampling

Fig.1 Two dataset PDF

Fig.2 Two dataset CDF & difference value

Three kinds of backbone neural network

Fig.1 nirscene1^[2] dataset

Fig.2 non-normal distribution feature map (VGG-16)

Table.1 Feature Extraction Parameters

Model	AlexNet[10]	ResNet-18[11]	VGG-16[12]			
Dataset	nirscene1[2]	nirscene1[2]	nirscene1[2]			
Kernel Unit	y = A * torch.sigmoid(B * x - C)					
Kernel Number	2	2	2			
Variable Value	[0.2, 522.6, -26.6]	[0.3, 79, -33.1]	[0.8, 36.8, 2.3]			
variable value	[0.8, 788.3, -41.5]	[0.7, 84.8, -32.7]	[0.2, 51.7, 5.9]			

Table.2 Compare with Test Accuracy

Datas	et		nirscene1[2]							
Mode	Madal		AlexNet[10]		ResNet-18[11]		16[12]			
MIOUE	71	Orig.	Ours	Orig.	Ours	Orig.	Ours			
Input	(C,H,W)	(3,256	5,256)	(3,224	(3,224,224)		4,224)			
Batch s	ize	~	8		3	8				
Train / Tes	Train / Test num.		612 / 342		612 / 342		612 / 342			
Laye	r	27		73		40				
Learning	Rate	1e-5	1e-5	1e-4	5e-5	1e-5	1e-5			
Epoc	h	500		100		100				
Total Par	Total Params		11.24 M		44.69M		51 M			
Params size	Params size (MB)		2.25	106	5.27	67.	5.7			
Accuracy	(%)	38.89	42.4	41.8	42.4	66.67	71.92			

Three kinds of backbone neural network

Three kinds of custom datasets

Fig.1 PolyMNIST^[27] dataset

Fig.2 non-normal distribution feature map (M0-dataset)

Table.1 Feature Extraction Parameters

Model	LeNet-5[9]						
Dataset	M0-MNIST	M1-MNIST	M2-MNIST				
Background	Candy	Fire	Sea				
Kernel Unit	y = A	A * torch.sigmoid(B * x - C)					
Kernel Number	2	3	2				
Variable Value	[0.5, 522.6, -26.6] [0.8, 788.3, -41.5]	[0.2, 173.1, -17.9] [0.5, 138, -12.9] [0.3 188.5 -15.9]	[0.5, 185.3, -23.3] [0.5, 121, -16.2]				

Table.2 Compare with Test Accuracy

Kind		Ва	ise		Backbone		Ours
A	·•	ReLU	Sigmoid	L-ReLU	Mish	GeLU	CDIMIDLE
Acti	vation	[13]	[15]	[19]	[19]	[21]	SPINDLE
1.60	Accuracy	97.24	97.09	97.22	97.14	96.99	97.25
M0	Inaccuracy	2.76	2.91	2.78	2.86	3.01	2.75
3.61	Accuracy	98.65	98.71	98.7	98.75	98.61	98.79
M1	Inaccuracy	1.35	1.29	1.3	1.25	1.39	2.75
2.40	Accuracy	98.89	98.73	98.78	98.82	98.83	98.85
M2	Inaccuracy	1.11	1.27	1.22	1.18	1.17	1.15

Fig.1 Self Pre-trainable In-situ Normalizer for Deep Learning Error function

Table.1 Ranking of the six activation functions

Kind		Ва	ise		Ours		
	.•	ReLU	Sigmoid	L-ReLU	Mish	GeLU	
Activation		[13]	[15]	[19]	[19]	[21]	SPINDLE
MO	Rank	II	V	III	IV	VI	I
M1	Rank	V	III	IV	II	VI	I
M2	Rank	I	VI	V	IV	III	II
Total Rank		II	V	IV	III	VI	I

Conclusions

- ✓ This paper is to improve the dataset with non-normal distributions. Basic activation functions are unable to achieve accurate normalization.
- ✓ This design must be applicable to the backbone network.
- In Online SPINDLE, we propose <u>BLS-PWL algorithm</u> that can generate <u>initial points</u> and <u>boundary</u>, and introduce a <u>fine-tuning</u> feature.
- In Offline KDE-SPINDLE, we implemented an in-situ design that allows us to change the shape of the activation function through pre-sampling.
- 3. We propose two methods to demonstrate the <u>quantization</u> characteristics of the sampled dataset.
- Our approach exhibits <u>higher accuracy</u> compared to various backbone networks and existing activation functions.

Thanks for your attention.