NUMBER SYSTEMS

Malik Adnan Jaleel

Number Systems

Positional number systems

- Uses only a few symbols called digits
- These digits represents different values depending on the position they occupy in the number
- The value of each digit is determined by
 - the digit itself
 - the position of the digit in the number
 - the base of the number system
 - base is the total number of digits in the number system

Non-positional number systems

- Uses symbols such as I for 1, II for 2, III for 3 etc.
- Each symbol represents the same value regardless of its position in the number
- The symbols are simply added to find out the value of a particular number
- It is difficult to perform arithmetic with such a number system

Decimal Number System

- A positional number system which has 10 symbols or digits
- A total of 10 digits means base of decimal number system is 10
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- The maximum value of a single digit is 9 (one less than the value of the base)
- Each position of a digit represents a specific power of the base (10)
- The most popular and used by us in our day-to-day life

```
(2586)<sub>10</sub>
(163)<sub>10</sub>
(981)<sub>10</sub>
```

Binary Number System

A positional number system which has only two digits

- Base = 2, only two digits 0, 1
- The maximum value of a single digit is 1 (one less than the value of the base)
- Each position of a digit represents a specific power of the base (2)
- Mostly is used in the field of computer science

```
(10101)<sub>2</sub>
(101111010)<sub>2</sub>
(1110101)<sub>2</sub>
```

Octal Number System

- A positional number system which has eight digits
- Base = 8, total digits 0, 1, 2, 3, 4, 5, 6, 7
- The maximum value of a single digit is 7 (one less than the value of the base)
- Each position of a digit represents a specific power of the base (8)
- Not much used in the real-world mathematics

```
(2057)<sub>8</sub>
(6605)<sub>8</sub>
(321)<sub>8</sub>
```

Hexadecimal Number System

- A positional number system which has a total of 16 digits or symbols
- Base = 16, so total 16 symbols and digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- The symbols A, B, C, D, E, F represents decimal values 10, 11, 12, 13, 14 and 15
- The maximum value of a single digit is 15 (one less than the value of the base)
- Each position of a digit represents a specific power of the base (16)
- Not much used in the real-world mathematics

```
(1AF)<sub>16</sub>
(9EA)<sub>16</sub>
(664BD)<sub>16</sub>
```

Conversion between Number Systems

Converting a number of another base to decimal number

$$(4706)_8 = (4x8^3) + (7x8^2) + (0x8^1) + (6x8^0)$$

= $(4x512) + (7x64) + (0x8) + (6x1)$
= $2048 + 448 + 0 + 6$
= $(2502)_{10}$

Conversion between Number Systems

 Converting a decimal number to a number of another base

$$\square$$
 (952)₁₀ = ?₈

 \square Hence, $(952)_{10} = (1670)_8$

Data Types

- Numeric data consists of only numbers, 0, 1, 2,,
- Alphabetic data consists of only letters A, B, C,, Z, in both uppercase and lowercase, and blank character
- □ Alphanumeric data is a string of symbols where a symbol may be one of the letters A, B, C, ..., Z, in either uppercase or lowercase, or one of the digits 0, 1, 2, ..., 9, or a special character such as + - * / (= etc.

Bit, Byte, and Words

- In binary coding, every symbol that appears in the data is represented by a group of bits (Binary Digits)
- The group of bits used to represents a symbol is called a byte
- As most modern coding schemes use 8 bits to represents a symbol, the term byte is often used to mean a group of 8 bits
- To differentiate between bits and bytes, bit is written with a small 'b' while byte with a capital 'B'

Bit, Byte, and Words

- A binary number represented using 8 bits is called a byte
- A less common, 4 bits representation is called nibble
- 16 bits is a word, 32 bits is a double word, and 64 bits is called a quadruple word
- Other quantifiers:

```
KILO 1K = 2^{10}
```

MEGA
$$1M = 2^{20}$$

• GIGA
$$1G = 2^{30}$$

TERA
$$1T = 2^{40}$$

- Computer codes are used for internal representation of data in computers
- As computers use binary numbers for internal data representation, computers codes use binary coding schemes
- Commonly used computer codes are BCD, EBCDIC, ASCII and Unicode

- BCD or Binary Coded Decimal
- It is one of the early computer codes
- It uses 6 bits to represents a symbol
- □ It can represents 64 (2⁶) different characters

	BCD Code		Octal	
Char	Zone	Digit		
Α	11	0001	61	
В	11	0010	62	
С	11	0011	63	
D	11	0100	64	
Е	11	0101	65	
F	11	0110	66	
G	11	0111	67	
Н	11	1000	70	
I	11	1001	71	
J	10	0001	41	
K	10	0010	42	
L	10	0011	43	
М	10	0100	44	

	BCD Code		Octal
Char	Zone	Digit	
N	10	0101	45
0	10	0110	46
Р	10	0111	47
Q	10	1000	50
R	10	1001	51
S	01	0010	22
Т	01	0011	23
U	01	0100	24
V	01	0101	25
W	01	0110	26
X	01	0111	27
Υ	01	1000	30
Z	01	1001	31

	BCD Code		Octal
Character	Zone	Digit	Equivalent
1	00	0001	01
2	00	0010	02
3	00	0011	03
4	00	0100	04
5	00	0101	05
6	00	0110	06
7	00	0111	07
8	00	1000	10
9	00	1001	11
0	00	1010	12

Example:

■ The binary digits used to record the word BASE in BCD

B = 110010

A = 110001

S = 010010

E = 110101

So, 110010 110001 010010 110101 will record BASE in BCD

EBCDIC or Extended Binary Coded Decimal Interchange Code

- It uses 8 bits to represents a symbol
- □ It can represents 256 (28) different characters

	EBCDIC Code		Hev
Char	Digit	Zone	Hex
А	1100	0001	C1
В	1100	0010	C2
С	1100	0011	C3
D	1100	0100	C4
Е	1100	0101	C5
F	1100	0110	C6
G	1100	0111	C7
Н	1100	1000	C8
I	1100	1001	C9
J	1101	0001	D1
K	1101	0010	D2
L	1101	0011	D3
М	1101	0100	D4

Char	EBCDIC Code		Hex
Chai	Digit	Zone	
N	1101	0101	D5
0	1101	0110	D6
Р	1101	0111	D7
Q	1101	1000	D8
R	1101	1001	D9
S	1110	0010	E2
Т	1110	0011	E3
U	1110	0100	E4
V	1110	0101	E5
W	1110	0110	E6
Х	1110	0111	E7
Υ	1110	1000	E8
Z	1110	1001	E9

	EBCDIC Code		Hexadecima
Character	Digit	Zone	I Equivalent
0	1111	0000	F0
1	1111	0001	F1
2	1111	0010	F2
3	1111	0011	F3
4	1111	0100	F4
5	1111	0101	F5
6	1111	0110	F6
7	1111	0111	F7
8	1111	1000	F8
9	1111	1001	F9

Example:

■ The binary digits used to record the work BIT in EBCDIC

B = 11000010

I = 11001001

T = 11100011

■ So, 11000010 11001001 11100011 will record BIT in EBCDIC

- ASCII or American Standard Code for Information Interchange
- It is of type types, ASCII-7 and ASCII-8
- ASCII-7 uses 7 bits (2⁷) and ASCII-8 uses 8 bits (2⁸) to represents a symbol
- □ First 128 characters in both ASCII-7 and ASCII-8 are same

Character	ASCII-7 / ASCII-8		Hexadecimal
Character	Zone	Digit	Equivalent
А	0100	0001	41
В	0100	0010	42
С	0100	0011	43
D	0100	0100	44
Е	0100	0101	45
F	0100	0110	46
G	0100	0111	47
Н	0100	1000	48
I	0100	1001	49
J	0100	1010	4A
K	0100	1011	4B
L	0100	1100	4C
М	0100	1101	4D

Character	ASCII-7 / ASCII-8		Hexadecimal
Character	Zone	Digit	Equivalent
N	0100	1110	4E
0	0100	1111	4F
Р	0101	0000	50
Q	0101	0001	51
R	0101	0010	52
S	0101	0011	53
Т	0101	0100	54
U	0101	0101	55
V	0101	0110	56
W	0101	0111	57
X	0101	1000	58
Υ	0101	1001	59
Z	0101	1010	5A

Character	ASCII-7 / ASCII-8		Hexadecimal
Character	Zone	Digit	Equivalent
0	0011	0000	30
1	0011	0001	31
2	0011	0010	32
3	0011	0011	33
4	0011	0100	34
5	0011	0101	35
6	0011	0110	36
7	0011	0111	37
8	0011	1000	38
9	0011	1001	39

Example:

■ The binary digits used to record the work BOY in ASCII-7

B = 1000010

O = 1001111

Y = 1011001

So, 100010 1001111 1011001 will record BOY in ASCII-7

Example:

■ The binary digits used to record the work SKY in ASCII-8

S = 01010011

K = 01001011

Y = 01011001

So, 01010011 01001011 01011001 will record SKY in ASCII-8

- Unicode or Universal Code, provides a consistent way to encoding multilingual plain text
- Defines codes for characters used in all major languages of the world
- Defines codes for special characters, mathematical symbols, technical symbols and diacritics
- Capacity to encode as many as million characters
- Assigns each character a unique numeric value and name
- Reserves a part of the code space for private use
- Affords simplicity and consistency for ASCII, even corresponding characters have same code
- Specifies an algorithm for the presentation of text with bi-directional behaviour
- Unicode Transformation Format UTF-8, UTF-16 and UTF-32 variants
 - Read more about Unicode at https://unicode-table.com/en/