CREDIT EDA CASE-CHINY

By FIZA & AYUSH

PROBLEM STATEMENT

 This case study aims to identify patterns which indicate the driving factors (or driver variables) behind loan default

 In other words if a client has difficulty paying their instalments which may be used for taking actions such as denying the loan, reducing the amount of loan, lending (to risky applicants) at a higher interest rate, etc

TWO TYPES OF RISKS FOR THE BANK

- If the applicant is likely to repay the loan, then not approving the loan results in a loss of business to the company
- If the applicant is not likely to repay the loan, i.e. he/she is likely to default, then approving the loan may lead to a financial loss for the company.
- Hence this case-study is to mitigate the risks for the bank

UNDERSTANDING RAW DATA

- Analysis is done on two data set -
 - Loan Application Dataset
 - Previous Application Dataset
- Loan Application Dataset Contains all the information of the client at the time of application. The data is about whether a client has payment difficulties.
- Previous Application Dataset contains information about the client's previous loan data. It contains the data whether the previous application had been Approved, Cancelled, Refused or Unused offer.

ANALYSIS APPROACH

- Identifying the missing data and use of appropriate method to deal with it.
- Identifying the outliners in the data.
- Finding Imbalance and depicting the ratio of Imbalance
- Inferencing top 10 correlation for the Client with payment difficulties and all other cases
- Inclusion of Plots and visualization approach for better understanding of the Analysis
- Summary and conclusion depicting the further steps to be taken

DEFAULTERS AND NON-DEFAULTERS DATA IMBALANCE

- Here after calculating Imbalance percentage for target column, we can clearly infer that Target_l i.e., Defaulter are 10.55 times less the Non-Defaulters
- Defaulter are 8.7 % of the total data and Non Defulters are 91.3%
- Hence Ratio of Data Imbalance is 10.55

GENDER IMBALANCE IN THE DATA

- Calculating Gender Imbalance we can determine that Female are 62.3% and Males are 37.7%
- Clearly more Loan customers are female.

Number of Customer Distributed by NAME_FAMILY_STATUS for Target Group-1(Defaulters)

Number of Customer Distributed by NAME FAMILY STATUS for Target Group-0(Non Defaulters)

FAMILY STATUS DISTRIBUTION

- This is Family Status data for Defaulter and Non-Defaulters
- We Can infer that Except married all the Family statuses are less in the defaulters.
- Hence, we can loosely say that People who are single, civil married, separated, widow are less chances of defaulting the loan

Number of Customer Distributed by WORKING_AGE_GROUP for Target Group-1(Defaulters)

Number of Customer Distributed by WORKING_AGE_GROUP for Target Group-0(Non Defaulters)

WORKING SINCE DISTRIBUTION

- This is graph shows the distribution of How many days before the application the person started current employment
- Plots of both Defaulter and Non-Defaulters are quite similar
- We can clearly see that most of the defaulters as well as Non-Defaulters are Working since 1 to 10 years

Number of Customer Distributed by NAME_CONTRACT_TYPE for Target Group-1(Defaulters)

Number of Customer Distributed by NAME_CONTRACT_TYPE for Target Group-0(Non Defaulters)

CONTRACT TYPE DISTRIBUTION

- This is graph shows the distribution Contract product types
- Plots of both Defaulter and Non-Defaulters are quite similar
- We can clearly see that most of the defaulters as well as Non-Defaulters take cash-loans
- Hence, we can clearly say that banks should focus more on cash-loans

Number of Customer Distributed by Income Range for Target Group-1(Defaulters)

INCOME WITH GENDER DISTRIBUTION

- This is graph shows the Income types along with Gender distribution.
- In Defaulters for Medium income-group we can see that Males are equal to Female
- Except that it is evident that Females are more loan getters as well as more defaulters
- We can also Infer that most of the Application for Loan ares from Medium Income-Group

LOAN CREDIT WITH GENDER DISTRIBUTION

- This is graph shows the Loan Credit along with Gender distribution.
- In Defaulters for Medium Credit-group we can see that Males are Almost equal to female.
- Except that it is evident that Females are more credit getters as well as more defaulters
- We can also Infer that the greatest number of applications are for Medium Credit group for both Defaulters and Non-Defaulters

Number of Customer Distributed by AGE GROUP for Target Group-0(Non Defaulters)

AGE GROUP WITH GENDER DISTRIBUTION

- This is graph shows the Age Group along with Gender Distribution.
- Most of the applications are from Age group 31-40 age group for both Defaulters and Non-
- Females are more in every Age-Group for both defaulter and Non-Defaulters
- Except for Age-Group 51-60 in Defaulters here number of application for Males and Females are almost equal.

Number of Customer Distributed by NAME_EDUCATION_TYPE for Target Group-0(Non Defaulters)

NAME EDUCATION TYPE

EDUCATION TYPE WITH GENDER DISTRIBUTION

- This is graph shows the Education Type along with Gender Distribution.
- Most of the applications are from Education type Secondary/Secondary
 Special group for both Defaulters and Non-Defaulters
- Females are more in every Education type for both defaulter and Non-Defaulters
- Except for Education type Lower Secondary in Non-Defaulters. here number of application for Males and Females are almost equal.

Number of Customer Distributed by INCOME_GROUP and AGE_GROUP for Target Group-1(Defaulters)

Number of Customer Distributed by INCOME GROUP and AGE GROUP for Target Group-0(NON Defaulters)

INCOME GROUP & AGE GROUP DISTRIBUTION

- This is graph shows the Income group and Age Group Distribution.
- Most of the Non-Defaulter customers are from Medium salary with AGE_GROUP as 31-40 and 41-50
- Most of the **Defaulter** customers are from **Medium** salary with AGE_GROUP as 31-40 and 20-30
- Hence Giving loan to Age-Group 20-to 30 of Medium Income is RISK

CORRELATIONS

Finding the correlation between columns through Heatmap for Target Group-0(Non-Defaulters) AMT INCOME TOTAL AMT_CREDIT AGE WORKING SINCE REGISTRATION SINCE CNT CHILDREN REG_REGION_NOT_LIVE_REGION AMT_ANNUITY REGION_POPULATION_RELATIVE REG_REGION_NOT_LIVE_REGION -0.2REG_REGION_NOT_WORK_REGION LIVE_REGION_NOT_WORK_REGION -0.0 REG_CITY_NOT_LIVE_CITY REG_CITY_NOT_WORK_CITY LIVE CITY NOT WORK CITY - -0.2 AGE CITY AMT_CREDIT WORKING_SINCE REGION_NOT_WORK_REGION REG_CITY_NOT_WORK_CITY REGISTRATION_SINCE REG_CITY_NOT_LIVE_

CORRELATIONS BETWEEN VARIABLES FOR NON-DEFAULTERS

From the Heatmap above, we can find the following correlations between columns for the NON-DEFAULTERS:

* Between the column
LIVE_REGION_NOT_WORK_REG
ION and
REG_REGION_NOT_WORK_REGI
ON, there are positively correlated.

* Followed with

REG_CITY_NOT_WORK_CITY

and

LIVE_CITY_NOT_WORK_CITY,

AMT_ANNUITY and

AMT_CREDIT.

* Negatively correlated columns such as CNT_CHILDREN and AGE.

CORRELATIONS BETWEEN VARIABLES FOR DEFAULTERS

From the Heatmap above, we can find the following correlations between columns for DEFAULTERS:

* Based from the column
LIVE_REGION_NOT_WORK_REG
ION and
REG_REGION_NOT_WORK_REGI
ON, we can conclude that both of the
columns are positively correlated.

* This positively correlated column followed with and LIVE_CITY_NOT_WORK_REG_CITY _NOT_WORK_CITY CITY, AMT_ANNUITY and AMT_CREDIT.

* There are also columns which are negatively correlated such as **AGE** and **CNT_CHILDREN**, **REG_CITY_NOT_LIVE_CITY** and **AGE** so on.

CONCLUSION AND SUMMARY FOR APPLICATION DATASET

- Proportion of Defaulter to Non-Defaulters is 8.7%
- Females are More Loan Getter with Greater risk of being loan Defaulters
- Females get higher amount of credit then males
- People who are single, civil married, separated, widow are less chances of defaulting the loan
- Giving loan to Age-Group 20-to 30 of Medium Income is RISK
- Less defaults when applicants have Longer employment and Longer Registration days
- Banks should focus more on cash-loans as they are more revenue generating along with more defaulters are in the Cash-loans

MERGING THE DATASET

CORRELATIONS OF THE VARIABLES IN THE DATASET

- The correlations that we can conclude from the heatmap will be as follows;
 - AMT APPLICATION and AMT CREDIT
 - Positively Correlated 99%
 - HOUR_APPR_PROCESS_START and AMT_CREDIT
 - Positively Correlated -- 6.6%
 - HOURS_APPR_PROCES_START and DECISION
 - Positively Correlated 3.5%
 - SELLERPLACE_AREA and AMT CREDIT
 - Negatively Correlated -- 1.6%
 - SELLERPLACE_AREA and AMT_APPLICATION
 - Negatively Correlated -1.4%

DISTRIBUTION OF CONTRACT STATUS WITH THE LOAN PURPOSE

- Application of Loans for the purposes of 'Repairs' carried most Rejections
- Significant Rejections outcome can be seen for 'Other' purposes as well, followed closely by applying loan for the purposes of 'Urgent Need'
- There are also Applications where the applicant refused to name the goal of the application process, this carried the least Approval and Rejection cases
- In a summary, we can see that the number of Rejections exceeded the number of Approved loans.

DISTRIBUTION OF CONTRACT STATUS WITH TARGET

- Application for the purpose of Repairs are facing more difficulties in payment on time.
- We can see significance differences in regards with the loan payment than the difficulties of payments such as for the purpose of 'Buying a land', 'Buying a garage',' Buying a new car' and so on.
- In a summary, we can focus on the purposes which lead to very less of payment difficulties and highly repayment for the bank.

CREDIT AMOUNT VS LOAN PURPOSES

- The Amount Credit for the purpose of Buying a new car, buying a home and buying a land are higher for the repeated and refreshed clients.
- Refreshed clients have a significant amount of credit applied.
- Money for a third person have less credits applied for.

CREDIT AMOUNT VS HOUSING TYPE

- For the Office Apartment are higher Amount of Credit especially for the non-Defaulters as compared with the Defaulters.
- Here we can conclude that the bank should avoid applying loans for Co-op apartment as they have the greater chances of not making payment.
- In a nutshell, the focus for the bank should be for the housing type of House/Apartment, or With parents as they have greater values of making payments.

CONCLUSION AND SUMMARY

- Bank should approve more loans for the Housing Type of House/Apartment, Office Apartment, or With parents as there are having less payment difficulties.
- Bank can focus more on the 'Working' Females as they applied most of the applications, less focus for the Pensioner, Age range within 61-70.
- Also, Bank should provide more loans to 'Business entity Type 3' and 'Self Employed'.

THANK YOU

