Lecture 7: Long run growth

ECON30009/90080 Macroeconomics Semester 2, 2025

> Shu Lin Wee Department of Economics The University of Melbourne

Last class

We looked at the predictions of the OLG model regarding growth along the transition path
As the economy moves towards its steady state, $k_t \to \bar{k}$, y_t, c_t, w_t increase, while R_t falls.
Starting at a point $k_0 < \bar k$, our model predicted that the welfare of each generation is improving as $k \to \bar k$
At steady state, \bar{k} , output per capita, consumption per capita, welfare etc, are constant

Long-run growth

Growth mechanics

□ Barring no shocks, an economy starting at k₀ < k̄ grows via capital accumulation until it reaches k̄
 □ The economy can reach a higher steady state level when TFP, z, permanently increases
 □ What does the dynamics of capital accumulation and that of aggregate variables look like when TFP observes a one-time permanent increase?

Increases in z drive long-run growth

• Increases in z lead to higher steady state \bar{k} .

Suppose the economy is initially at steady state and then observes a permanent increase in z on date t_0 . Which aggregate variables rise on impact at date t_0 ?

Pre-determined variables vs. jump variables

- On impact, capital supply per person does not rise (it is pre-determined!)
- o Investment, however, can rise and thus capital per person next period is higher

Pre-determined variables vs. jump variables

 \circ On impact, output per person does jump with rise in TFP z

What other variables jump on impact?

Long-run growth: summary

☐ The only mechanism for generating LR growth in output per capita (in this model) is growing TFP

Long-run growth: summary

- ☐ The only mechanism for generating LR growth in output per capita (in this model) is growing TFP
 - With a constant population size, but continuing improvements in TFP z_t , the transition curve will continually shift up
 - $\circ~$ An increase in $z\uparrow$ MPL and MPK, higher MPL \uparrow saving and capital accumulation.

Long-run growth: summary

- ☐ The only mechanism for generating LR growth in output per capita (in this model) is growing TFP
 - \circ With a constant population size, but continuing improvements in TFP z_t , the transition curve will continually shift up
 - $\circ~$ An increase in $z\uparrow$ MPL and MPK, higher MPL \uparrow saving and capital accumulation.
 - o Thus, positive LR TFP growth can sustain positive LR growth in income per capita

Growth predictions from our simple OLG model: Summary

Away from its long-run steady state and absent other shocks, growth is driven by capital accumulation.

Growth predictions from our simple OLG model: Summary

- Away from its long-run steady state and absent other shocks, growth is driven by capital accumulation.
- □ Long-run growth can be driven only by exogenous TFP growth (there is a limit to capital deepening).

Growth predictions from our simple OLG model: Summary

Away from its long-run steady state and absent other shocks, growth is driven by capital accumulation.
Long-run growth can be driven only by exogenous TFP growth (there is a limit t capital deepening).
These predictions while similar to Solow-Swan, were derived in a model where individuals were making their own consumption and savings choices

So what can we use our OLG growth model for?

What can we use these growth models for?

- □ Solow-Swan model is a descriptive model. Originally developed to explain why there are differences in growth across countries
 - The Solow-Swan model tries to ascribe these differences to factors like a country's population growth rate, savings rate, depreciation rate and technological progress
- ☐ The OLG growth model allows us to analyze how policies can affect growth, especially if these policies affect the consumption-savings behaviour of households
 - In particular, because the model we study analyzes how households make their decisions, it allows us to study how policies affect endogenous choice variables.

A question we can ask using our OLG growth model

Is there a Pareto-optimal \bar{k} ?

Or put differently, how much should we as a society save?

Pareto optimality

- ☐ A pareto optimal outcome is one such that there is no way to reallocate resources to make an individual better off without making someone else worse off.
- ☐ How do we find the pareto optimum? Consider the social planner's problem

A social planner

- ☐ What's a social planner?
 - A hypothetical construct: a social planner is a benevolent dictator who decides how much people consume, work and save
- ☐ What is the social planner's goal?
 - Make people as happy as possible (maximize the utility of all generations) given the technological constraints of the economy.

A social planner

- ☐ In choosing the pareto optimum, the social planner does not use markets
 - o This means that prices do not show up in the social planner's problem
- ☐ Rather, the planner chooses how to allocate (assign) factors to production, consumption and investment so as to maximize the utility of **all** households
- □ Planner is only subject to feasibility (technological constraints).
 - Feasibility example: the planner cannot assign more goods to consumption than what is currently being produced.

A social planner's problem

- \square Suppose as before, $\delta=1$ (full depreciation) and no population growth
- \square Suppose further that $z_t = z$
- ☐ And that the social planner puts equal weight on all generations
- \square We want to find the pareto optimal \bar{k} that maximizes the steady state utility of all generations.

A social planner's problem

Goal: find pareto optimal $ar{k}$ that maximizes household's lifetime utility in the long-run

☐ The social planner seeks to maximize households' lifetime utility in the LR

$$W = \max U(\bar{c}^y, \bar{c}^o)$$

subject to technological constraints:

$$\bar{c}^y + \bar{c}^o + \bar{k} = \bar{y}$$

- $\circ~$ Note 1: at steady state, consumption of young and old is not changing across time
- Note 2: we have written the technological or resource constraint in per-capita terms

- \square Suppose $U(c^y,c^o)=\ln c^y+\beta\ln c^o$ and Cobb-Douglas production function.
- ☐ We can re-write the social planner's problem with a Lagrangian:

$$\mathcal{L} = \max \ln \bar{c}^y + \beta \ln \bar{c}^o + \lambda \left[z\bar{k}^\alpha - \bar{c}^y - \bar{c}^o - \bar{k} \right]$$

- Note: λ in the planner's problem now represents the shadow value of relaxing the resource constraint
 - \circ In other words, λ represents how much happier households would be if the planner had more resources to allocate towards consumption
- \Box The planner can choose \bar{c}^y,\bar{c}^o and \bar{k}

$$\mathcal{L} = \max \ln \bar{c}^y + \beta \ln \bar{c}^o + \lambda \left[z\bar{k}^\alpha - \bar{c}^y - \bar{c}^o - \bar{k} \right]$$

 \square Taking FOC, we can characterize the planner's optimality conditions for any t:

$$\mathcal{L} = \max \ln \bar{c}^y + \beta \ln \bar{c}^o + \lambda \left[z\bar{k}^\alpha - \bar{c}^y - \bar{c}^o - \bar{k} \right]$$

- \square Taking FOC, we can characterize the planner's optimality conditions for any t:
 - \circ FOC wrt \bar{c}^y :

$$\frac{1}{\bar{c}^y} = \lambda$$

$$\mathcal{L} = \max \ln \bar{c}^y + \beta \ln \bar{c}^o + \lambda \left[z\bar{k}^\alpha - \bar{c}^y - \bar{c}^o - \bar{k} \right]$$

- \square Taking FOC, we can characterize the planner's optimality conditions for any t:
 - FOC wrt \bar{c}^y :

$$\frac{1}{\bar{c}^y} = \lambda$$

• FOC wrt \bar{c}^o :

$$\frac{\beta}{\bar{c}^o} = \lambda$$

$$\mathcal{L} = \max \ln \bar{c}^y + \beta \ln \bar{c}^o + \lambda \left[z\bar{k}^\alpha - \bar{c}^y - \bar{c}^o - \bar{k} \right]$$

- \square Taking FOC, we can characterize the planner's optimality conditions for any t:
 - FOC wrt \bar{c}^y :

$$\frac{1}{\bar{c}^y} = \lambda$$

• FOC wrt \bar{c}^o :

$$\frac{\beta}{\bar{c}^o} = \lambda$$

o FOC wrt \bar{k} :

$$\alpha z \bar{k}^{-(1-\alpha)} = 1$$

$$\mathcal{L} = \max \ln \bar{c}^y + \beta \ln \bar{c}^o + \lambda \left[z\bar{k}^\alpha - \bar{c}^y - \bar{c}^o - \bar{k} \right]$$

- \square Taking FOC, we can characterize the planner's optimality conditions for any t:
 - \circ FOC wrt \bar{c}^y :

$$\frac{1}{\bar{c}^y} = \lambda$$

• FOC wrt \bar{c}^o :

$$\frac{\beta}{\bar{c}^o} = \lambda$$

• FOC wrt \bar{k} :

$$\alpha z \bar{k}^{-(1-\alpha)} = 1$$

 \circ FOC wrt λ

$$z\bar{k}^{\alpha} - \bar{c}^y - \bar{c}^o - \bar{k} = 0$$

☐ Optimal LR allocations across generations:

- ☐ Optimal LR allocations across generations:
 - \circ Using FOC wrt \bar{c} and FOC wrt $\bar{c^o}$, we have:

$$\frac{1}{\bar{c}^y} = \frac{\beta}{\bar{c}^o}$$

- ☐ Optimal LR allocations across generations:
 - \circ Using FOC wrt \bar{c} and FOC wrt $\bar{c^o}$, we have:

$$\frac{1}{\bar{c}^y} = \frac{\beta}{\bar{c}^o}$$

 \Box Optimal LR choice of gross investment, \bar{k} , satisfies:

$$\alpha z \bar{k}^{-(1-\alpha)} = 1$$

- ☐ Optimal LR allocations across generations:
 - Using FOC wrt \bar{c} and FOC wrt $\bar{c^o}$, we have:

$$\frac{1}{\bar{c}^y} = \frac{\beta}{\bar{c}^o}$$

 \Box Optimal LR choice of gross investment, \bar{k} , satisfies:

$$\alpha z \bar{k}^{-(1-\alpha)} = 1$$

☐ Optimal choices are feasible (resource constraint)

$$z\bar{k}^{\alpha} = \bar{c}^y + \bar{c}^o + \bar{k}$$

Question

Is the steady-state in our market economy in our OLG model pareto-efficient?

Social planner

- \square Denote the social planner's choice of $ar{k}$ as $ar{k}^{SP}$
- \square Pareto-optimal steady state k given by $\bar{k}^{SP} = [\alpha z]^{1/(1-\alpha)}$
- \square Denote the market economy steady state k as $ar{k}^M$
- \square So long as $\bar{k}^M \neq \bar{k}^{SP}$, market economy LR equilibrium is inefficient!
- ☐ Same example (utility function, production function) in market economy yielded:

$$\bar{k}^{M} = \left[\frac{\beta (1-\alpha)}{(1+\beta)}z\right]^{1/(1-\alpha)}$$

Dynamic inefficiency

In general, can get $ar{k}^M eq ar{k}^{SP}$
Each household in the market economy does not consider other generations' utility/welfare when making their own choices
This is unlike the social planner who cares about the utility of all generations
In particular, capital stock per person at the start of the period is determined by the previous generation's investment. k_t is predetermined and $=a_t$
The amount of k_t at the start of the period available for production affects prices w_t, R_t which in turn affects how much young today consumes and saves

Dynamic inefficiency

- ☐ Put differently, the market economy does not achieve pareto-optimality (despite perfect competition among firms and no credit frictions, etc)
- Because there is a missing market: the young of generation t cannot trade with the young in generation t+1 in period t because the latter are not born yet!

Over-accumulation of capital per person

Over-accumulation of k can occur: case where $\bar{k}^M > \bar{k}^{SP}$
In this case, the inefficiency is not at the cost of lower \boldsymbol{y}
But the economy is inefficient because everyone can be made better off if they consumed more and saved less
If the young invested less in k , they will have higher c^y
Lower $k \implies$ higher MPK. \uparrow in return to savings is large enough such that c^o also higher
Then everyone is better off if did not over-accumulate k , implying we can have a pareto-improvement.

Over-accumulation of capital per person

Intuitively, over-accumulation of k can occur when the young save too much.
This over-saving can happen when you expect your income to decline over your lifetime.
But the more one saves, the lower the return to savings (because MPK is lower with higher k)
A lower return to savings yields less income to spend on consumption when old

Over-accumulation of capital per person

In general, the outcome in the market economy is not pareto-efficient Role for government to step in to provide incentives to change consumption and savings behavior In particular, the OLG model suggests there is a role for social security to deal with over-accumulation of kBut to talk about this, we need to introduce a new agent into the model: the government

Wrapping up

- \square This class: pareto optimum \bar{k}
- ☐ Introducing government and fiscal policy