Math 621 Midterm review questions

Paul Hacking

March 13, 2012

- (1) Find the power series expansion of $\frac{1}{z+i}$ centered at z=1. What is its radius of convergence?
- (2) Find the poles and residues of the function $\frac{1}{1-e^z}$.
- (3) Show that $f(z) = \cos z \sin z$ has an essential singularity at ∞ .
- (4) Find the Laurent series expansion for $f(z) = \frac{1}{(z-1)(z-2)}$ about z=0 in the regions |z| < 1, 1 < |z| < 2, and |z| > 2.
- (5) What is the radius of convergence of the power series expansion of $f(z) = \frac{1}{\sin z}$ about z = i?
- (6) Let $f: \mathbb{C} \to \mathbb{C}$ be a holomorphic function such that the real part of f is bounded above. Prove that f is constant.
- (7) Compute the integral of $f(z) = z^2 + 3z + 2$ along a path γ from 1 to i.
- (8) Compute the following integrals.
 - (a) $\int_{\gamma} \frac{z^4}{e^z+1} dz$ where $\gamma = \{z \mid |z| = 4\}$ with its positive orientation.
 - (b) $\int_{-\infty}^{\infty} \frac{x^2+1}{x^4+1} dx$.
 - (c) $\int_0^{2\pi} \frac{1}{5-4\cos\theta} d\theta.$
- (9) (a) Find the number of zeroes of $f(z) = z^{100} + 8z^{10} 3z^3 + z^2 + z + 1$ in the unit disc $D = \{z \mid |z| < 1\}$.
 - (b) Show that the equation $ze^{\lambda-z}=1$ has exactly one solution in the unit disc for $\lambda\in\mathbb{R},\ \lambda>1$. Show also that this solution is a real number.

(10) Let $\Omega \subset \mathbb{C}$ be an open set and $f: \Omega \to \mathbb{C}$ a holomorphic function. Let $z_0 \in \Omega$ be a point such that $f'(z_0) \neq 0$. Show that

$$\frac{2\pi i}{f'(z_0)} = \int_{\gamma} \frac{1}{f(z) - f(z_0)} dz$$

where γ is a small circle centered at z_0 traversed counterclockwise.

- (11) Let $\Omega \subset \mathbb{C}$ be a connected open set, $f \colon \Omega \to \mathbb{C}$ a non-constant holomorphic function, and $z_0 \in \Omega$.
 - (a) Show that there exists $\epsilon > 0$ such that $f(z) \neq 0$ for $0 < |z z_0| < \epsilon$.
 - (b) What does it mean to say that f has a zero of order m at z_0 ? Show that in this case there exist $\delta, \epsilon > 0$ such that for $0 < |\lambda| < \delta$ the equation $f(z) = \lambda$ has exactly m solutions satisfying $|z z_0| < \epsilon$.