ΑΣΚΗΣΕΙΣ - ΠΡΟΒΛΗΜΑΤΑ

7 Φεβρουαρίου 2017

ΑΛΓΕΒΡΑ Α΄ ΛΥΚΕΙΟΥ

Ανισώσεις

ΑΝΙΣΩΣΕΙΣ 200 ΒΑΘΜΟΥ

ΘΕΩΡΙΑ - ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ

1.

ΑΣΚΗΣΕΙΣ - ΠΡΟΒΛΗΜΑΤΑ

1. Να παραγοντοποιηθούν τα παρακάτω τριώνυμα

i.
$$x^2 - 5x + 6$$

iii.
$$x^2 + 4x + 4$$

v.
$$2x^2 - 5x + 3$$

ii.
$$x^2 - 3x + 2$$

iv.
$$25x^2 - 10x + 1$$

vi.
$$x^2 + x + 2$$

2. Να απλοποιηθούν οι παρακάτω ρητές παραστάσεις.

i.
$$\frac{x^2 - 3x + 2}{x^2 - 5x + 6}$$

ii.
$$\frac{x^2 - 2x + 1}{x^2 - 1}$$

iii.
$$\frac{2x^2 - 5x + 3}{4x^2 - 4x + 1}$$

3. Να βρεθούν τα πρόσημα των παρακάτω τριωνύμων.

i.
$$x^2 - 3x + 2$$

iii.
$$3x^2 - 7x + 2$$

iv. $x^2 + 6x + 9$

v.
$$-x^2 + 10x - 25$$

ii.
$$-x^2 + 8x - 7$$

iv.
$$x^2 + 6x + 9$$

vi.
$$x^2 + x + 1$$

4. Να λυθούν οι παρακάτω ανισώσεις.

i.
$$x^2 - 4x + 3 > 0$$

iv.
$$-x^2 + 9x - 10 \ge 0$$

vii
$$-4x^2 + 4x - 1 < 0$$

ii.
$$4x^2 - 5x + 1 < 0$$

v.
$$9x^2 - 6x + 1 > 0$$

viii.
$$x^2 + 3x + 5 > 0$$

i.
$$x^2 - 4x + 3 > 0$$
 iv. $-x^2 + 9x - 10 \ge 0$ vii. $-4x^2 + 4x - 1 < 0$ ii. $4x^2 - 5x + 1 < 0$ v. $9x^2 - 6x + 1 > 0$ viii. $x^2 + 3x + 5 \ge 0$ iii. $-2x^2 - 7x - 6 \le 0$ vi. $x^2 + 10x + 25 < 0$ ix. $-x^2 - x + 4 > 0$

vi.
$$x^2 + 10x + 25 < 0$$

$$|x - x^2 - x + 4 > 0$$

5. Να λυθούν οι παρακάτω ανισώσεις

i.
$$x^2 - 8x \le -7$$

iii.
$$(x-2)^2 > 2x-5$$

ii.
$$4 - x^2 \ge 3x$$

iv.
$$2(3-x) < (1-x)^2 + 4$$

6. Να βρεθούν οι κοινές λύσεις των παρακάτω ανισώσεων.

i.
$$x^2 - 7x + 6 < 0$$
 KQI $-x^2 + 5x - 6 > 0$

- ii. $x^2 6x + 9 > 0$ kai $x^2 + 4x 3 > 0$
- iii. $3 (x 1)^2 < 2x 5$ kai $(x + 2)^2 \ge (2x + 3)^2$
- 7. Να δειχθεί οτι η εξίσωση $(\lambda+1)x^2-2\lambda x+\lambda-1=0$ με $\lambda\neq -1$ έχει δύο πραγματικές λύσεις για κάθε $\lambda\in\mathbb{R}.$
- 8. Δίνεται η εξίσωση $(1 \lambda)x^2 + 2\lambda x 4 = 0$ με $\lambda \neq 1$.
 - Να γραφτεί η διακρίνουσα της παραπάνω εξίσωσης σαν συνάρτηση του λ.
 - ii. Να υπολογιστούν οι τιμές της παραμέτρου λ για τις οποίες η εξίσωση
 - α. έχει δύο ρίζες άνισες.
- β. έχει μια ρίζα.
- γ. είναι αδύνατη.

- **9.** Δίνεται η εξίσωση $x^2 (\lambda 3)x + 4 = 0$.
 - i. Να βρεθούν οι τιμές της παραμέτρου λ ώστε η εξίσωση να έχει δύο πραγματικές και άνισες λύσεις.
 - ii. Αν x_1, x_2 είναι οι λύσεις της εξίσωσης τότε να υπολογιστούν το άθροισμα τους S και το γινόμενό τους P.
 - iii. Να λυθεί η ανίσωση $-(x_1 + x_2)^2 + 6x_1x_2 + 1 \ge 0$
- **10.** Δίνεται η εξίσωση $(\lambda 2)x^2 2\lambda x 1 = 0$ με $1 < \lambda \neq 2$.
 - i. Να δειχθεί οτι η εξίσωση έχει πάντα πραγματικές λύσεις για κάθε τιμή του $\lambda \in (1, +\infty) \{2\}$.
 - ii. Αν x_1, x_2 είναι οι λύσεις της εξίσωσης να εκφραστούν το άθροισμα S και το γινόμενο P των λύσεων με τη βοήθεια του λ .
 - iii. Να βρεθούν οι τιμές του λ για τις οποίες ισχύει $x_1+x_2+\frac{18x_1x_2}{\lambda}=0$
- 11. Να βρεθούν οι τιμές της παραμέτρου $\lambda \in \mathbb{R}$ ώστε η εξίσωση

$$x^2 + (\lambda^2 - 3\lambda + 2)x + 1 = 0$$

- ί. να έχει δύο λύσεις άνισες.
- οι λύσεις της εξίσωσης να είναι θετικές για κάθε τιμή της παραμέτρου λ.
- **12.** Να βρεθούν οι τιμές της παραμέτρου $\lambda \in (4, +\infty)$ ώστε οι λύσεις της εξίσωσης

$$x^{2} - (\lambda^{2} - 5\lambda + 6)x + \lambda - 3 = 0$$

να είναι θετικές για κάθε τιμή της παραμέτρου λ. Η διακρίνουσα του τριωνύμου είναι θετική.

- 13. Δίνεται η εξίσωση $x^2 (\lambda^2 4\lambda + 3) x + 4 3\lambda \lambda^2 = 0$. Να βρεθούν οι τιμές της παραμέτρου λ ώστε
 - ί. η εξίσωση να έχει δύο λύσεις άνισες.
 - ii. η εξίσωση να έχει μια διπλή λύση.
 - iii. οι ρίζες τις εξίσωσης να είναι
 - α. ομόσημες
- β. ετερόσημες
- γ. θετικές
- δ. αρνητικές