- 1. Find all function $f: \mathbb{Q}^+ \to \mathbb{Q}^+$ such that:
 - i) f(x) is an integer if and only if x is an integer.
 - ii) f(f(xf(y)) + x) = yf(x) + x for all $x, y \in \mathbb{Q}^+$.
- 2. Let f(x) be a monic polynomial of degree 1991 with integer coefficients. Define $g(x) = f^2(x) 9$. Show that the number of distinct integer solutions of g(x) = 0 cannot exceed 1991.
- 3. For all positive real numbers a, b, c satisfying a+b+c=3, prove that

$$\sum_{cvc} \frac{a^2 + 3b^2}{ab^2(4 - ab)} \ge 4$$

- 4. Let $a_0, a_1, a_2, ...$ be a sequence of nonnegative integers satisfying the conditions:
 - (1) $a_{n+1} = 3a_n 3a_{n-1} + a_{n-2}$ for n > 1
 - (2) $2a_1 = a_0 + a_2 2$
 - (3) For every positive integer m, in the sequence a_0 , a_1 , a_2 , ... there exists m terms a_k , a_{k+1} , ..., a_{k+m-1} which are perfect squares.

Prove that a_i is a perfect square for all $i \ge 0$.

- 5. Let n be a positive integer and let p(x) be a polynomial with real coefficients on the interval [0, n] such that p(0) = p(n). Prove that there are n distinct ordered pairs (a_i, b_i) with i = 1, 2, ..., n such that $0 \le a_i < b_i \le n$, $b_i a_i$ is an integer and $p(a_i) = p(b_i)$.
- 6. Find all the functions $f: \mathbb{R} \to \mathbb{R}$ such that

$$f(x - f(y)) = f(f(y)) + xf(y) + f(x) - 1$$

for all $x, y \in \mathbb{R}$.

- 7. Let α be a rational number with $0 < \alpha < 1$ and $\cos(3\pi\alpha) + 2\cos(2\pi\alpha) = 0$. Prove that $\alpha = \frac{2}{3}$.
- 8. A polynomial $P(x) \in \mathbb{Q}[x]$ is called *integer-valued* iff $P(a) \in \mathbb{Z}$ whenever $a \in \mathbb{Z}$. Define the polynomial $P_k(z) = {z \choose k}$. Prove that f(x) is integer-valued polynomial of degree n iff

$$f(x) = \sum_{k=0}^{n} a_k P_k(x)$$

for some integers $a_1, a_2, ..., a_n$.

9. Let a, b, c be real positive numbers with abc = 1 Prove that

$$a^3 + b^3 + c^3 + 9 \ge 4(ab + ac + bc)$$

1

10. Let P and Q be monic polynomials with integer coefficient. Suppose that P(a) = Q(b) = 0. Prove that there exists monic polynomial with integer coefficient T such that T(a+b) = 0.