Contents

Triangle Inequality																	 			1
Practice questions:]
Infinite Sequence .																	 			1

Triangle Inequality

$$|x - y| \le |x - z| + |z - y|$$

[[Screenshot 2025-09-10 at 11.29.49 AM.png]] It suggests the straight distance between two points is a direct line Without loss of generality, suppose $x \leq y$ swap x and y, $|x-y| \leq |x-z| + |z-y| \iff |y-x| \leq |y-x| \leq |y-x|$ $|x - z| + |y - z| \iff |x - y| \le |x - z| + |z - y|$

Proof: (number line) Case $1(z \le x \le y)$: $|x-y| \le |z-y| \le |x-z| + |z-y|$ Case $2(x \le z \le y)$: |x-y| = |x-z| + |z-y| so $|x-y| \le |x-z| + |z-y|$ Case $3(x \le y \le z)$: $|x-y| \le |x-z| + |z-y|$ ### Triangle Inequality $2 \ \forall a,b \in \mathbb{R}, |a+b| \le |a|+|b|$ Proof: By Triangle Inequality, $|x-y| \le |x-z|+|z-y|, \forall x,y,z \in \mathbb{R}$ in particular, x = a, y = -b, z = 0 becomes $|a + b| \le |a - 0| + |0 - (-b)| = |a| + |b|$

Is it true that $|a-b| \le |a| - |b|, \forall a, b \in \mathbb{R}$? No, let $a = 10, b = -9 \implies |10 - (-9)| \le |10| - |-9|$

Examples of inequalities: 1) $|x-a| < \delta$ implies $x \in (a-\delta, a+\delta)$ 2) $|x-a| \le \delta$ implies $x \in [a-\delta, a+\delta]$ 3) $0 < |x - a| \le \delta \text{ implies } x \in (a - \delta, a) \cup (a, a + \delta)$

Practice questions:

- 1) Solve $|-2x+6| < 5 \implies 2|x-3| < 5 \implies |x-3| < 5/2$ Solution interval is $(3-\frac{5}{2},3+\frac{5}{2})$ Solve $2 < |x+7| \le 3 \implies 2 < |x-(-7)| \le 3$ Solution interval is $[-10,-9) \cup (-5,-4]$
- 3) Solve $\frac{|x+2|}{|x-2|} > 5$

$$|x+2| = \begin{cases} x+2, & \text{if } x \ge -2\\ -x+2, & \text{if } x < -2 \end{cases}$$

$$|x-2| = \begin{cases} x-2, & \text{if } x \ge 2\\ -x-2, & \text{if } x < 2 \end{cases}$$

Case 1(x<-2): $\frac{-x-2}{2-x}>5\iff -x-2>10-5x\iff x>3\iff$ impossible Case $2(-2\le x<2)$: $\frac{x+2}{2-x}>5\iff x+2>10-5x\iff \frac{x>4}{3}\implies x\in(\frac{4}{3},2)$ Case 3(x>2): $\frac{x+2}{x-2}>5\iff x+2>5$ $5x-10\iff 3>x\implies x\in(2,3)$ Solution: $x \in (\frac{4}{2}, 2) \cup (2, 3)$

Infinite Sequence

An infinite sequence is a list of numbers in a definite order

$$a_1, a_2, a_3, a_4, \dots, a_n, \dots$$

where $a_i \in \mathbb{R}$ for $i \in \mathbb{N}$. We use notation $\{a_n\}_{n=0}^{\infty}$

Let $\{a_n\}$ be a sequence of real numbers and $n_1 < n_2 < \dots$ be increasing sequence of natural numbers

$$a_{n_1}, a_{n_2}, a_{n_3} \dots$$

denoted $\{a_n\}$ is called a subsequence of $\{a_n\}$.

The subsequence $a_k, a_{k+1}, a_{k+2}, \dots$ of $\{a_n\}$ is called the **tail** of $\{a_n\}$ with **cutoff** k

Examples: What is happening to the sequence $\{1/n\}$ and $\{(-1)^n\}$ as n gets larger and larger? 1) Arbitrary close to 0 2) Never arbitrarily close to any single number #### Convergence of Infinite Sequence

IMPORTANT: Let $\{a_n\}$ be a sequence and $L \in \mathbb{R}$. We say that L is the limit** of $\{a_n\}$ if for every $\epsilon > 0, \exists N \in \mathbb{R}$ s.t. if n > N, then

$$|a_n - L| < \epsilon$$

If such an L exists, we say $\{a_n\}$ converges to L and write

$$\lim_{n\to\infty}a_n=L \text{ or } a_n\to L$$

If no such L exists, then we say $\{a_n\}$ diverges.

We can also define the limit of a sequence in terms of tails!

Theorem(Equivalent Definition of the Limit of a Sequence)

- 1) $\lim_{n\to\infty} a_n = L$
- 2) For every $\epsilon > 0$, the interval $(L \epsilon, L + \epsilon)$ contains a tail of $\{a_n\}$
- 3) For every , the number of elements of $\{a_n\}$ that do not lie in $(L-\epsilon,L+\epsilon)$ is finite
- 4) Every interval (a,b) containing L contains a tail of $\{a_n\}$
- 5) Given any interval (a,b) containing L, the number of elements of $\{a_n\}$ that do not lie in (a,b) is finite

Example 1: We want to show that $\lim_{n\to\infty}\frac{1}{\sqrt[3]{n}}=0$. For now, we suppose $\epsilon=\frac{1}{1000}$ Side work: $|\frac{1}{\sqrt[3]{n}}-0|<\epsilon\iff |\frac{1}{\sqrt[3]{n}}|<\epsilon\iff \frac{1}{\sqrt[3]{n}}<\epsilon,$ since $n>0\iff \sqrt[3]{n}>\frac{1}{\epsilon}\iff n>\frac{1}{\epsilon^3}$

Actual proof work Let $\epsilon>0$ be given, choose $N=\frac{1}{\epsilon^3}$. Then if n>N, $|a_n-L|=|\frac{1}{\sqrt[3]{n}}-0|=|\frac{1}{\sqrt[3]{n}}|$ Since $n>N \implies \sqrt[3]{n}>\sqrt[3]{N}, \frac{1}{\sqrt[3]{n}}<\frac{1}{\sqrt[3]{N}}=\frac{1}{\sqrt[3]{\frac{1}{\epsilon}}}=\frac{1}{\epsilon}=\epsilon$

Example 2: Prove that $\lim_{n \to \infty} \frac{3n^2 + 2n}{4n^2 + n + 1} = \frac{3}{4}$ using the formal definition of the limit of a sequence Side work: we want N s.t. for $n > N, |a_n - L| < \epsilon |\frac{3n^2 + 2n}{4n^2 + n + 1} - \frac{3}{4}| \iff |\frac{12n^2 + 8n}{16n^2 + 4n + 4} - \frac{12n^2 + 3n + 3}{16n^2 + 4n + 4}| = |\frac{5n - 3}{16n^2 + 4n + 4}| = \frac{5n - 3}{16n^2 + 4n + 4}$ (to get a common factor to cancel, make top bigger and make bottom smaller)

$$\tfrac{5n-3}{16n^2+4n+4} < \tfrac{5n}{16n^2+4n} = \tfrac{5}{\frac{16}{4}} < \epsilon \iff 16n+4 > \tfrac{5}{\epsilon} \iff n > \tfrac{5}{16\epsilon} - \tfrac{1}{4}$$

Actual proof work: Let $\epsilon > 0$ be given, choose $N = \frac{5}{16\epsilon} - \frac{1}{4}$. Then $|a_n - L| = |\frac{3n^2 + 2n}{4n^2 + n + 1} - \frac{3}{4}| = |\frac{12n^2 + 8n}{16n^2 + 4n + 4} - \frac{12n^2 + 3n + 3}{16n^2 + 4n + 4}| = |\frac{5n - 3}{16n^2 + 4n + 4}| < \frac{5n}{16n^2 + 4n + 4} = \frac{5}{16n^2 + 4n} = \frac{5}{16n^2 + 4n + 4} = \frac{5}{16n^2 + 4n + 4}$