Assignment - Regression

1. Problem Statement:

By using insurance_pre this data we are going to predict, When the customer need the insurance amount and we need to give them the insurance charges.

2. Basic Info:

The dataset is in Excel sheet and it is number so we use Machine Learning Domain. Input and Output is clear so we use Supervised Learning. Output is in Numerical Form so we use Regression.

Machine Learning--→Supervised Learning-→Regression.

This dataset has 1339 Rows and 6 Columns.

3. Preprocessing Method:

In this data sex column and smoker column is in string type. This name will not be comparable so we use Nominal method to change string into numerical data.

4. Good Model:

I have used all the algorithm of machine learning Like MLR, SVM, Decision Tree, and Random Forest. I got the best model creation in Random Forest for this data.

5.Research Values:

Assignment - Regression

A. Decision Tree:

		Max		
S No	Criterion	Features	Splitter	R-value
				0.6989439315848283
1	mse	auto	best	
				0.7844482749258906
2	mse	auto	random	
				0.7209933620273439
3	mse	sqrt	best	0.6958343776511821
4				0.0930343770311021
4	mse	sqrt	random	0.5707284915756702
5	mse	log2	best	0.3707201313730702
	11136	10g2	nest	0.7542854327899727
6	mse	log2	random	
	50	1082	ranaom	
				0.6768709786342195
7	Mae	auto	best	
				0.7331061564452007
8	mae	auto	random	
				0.7206115179262382
9	mae	sqrt	best	0.7169409323485165
40				0./169409323483163
10	mae	sqrt	random	0.7129887794608034
11	mag	log2	best	0.7123007731000031
11	mae	log2	nest	0.64713317125108
12	mae	log2	random	
	mac	1082	Tanaom	0.7192459036805052
13	friedman mse	auto	best	
	_			0.7013814962540014
14	friedman_mse	auto	random	
				0.7262562323994066
15	friedman_mse	sqrt	best	
				0.6644955069320679
16	friedman_mse	sqrt	random	
				0.5823669200812815
17	friedman_mse	log2	best	
				0.6968958892484836
18	friedman_mse	log2	random	

Assignment - Regression

B. Multiple Linear Regression(R-value)= 0.7894790349867009

C. Support Vector Machine:

	Hyper		,		
S NO	Parameter	Linear (r_value)	rbf(Non-linear)r_value	Poly	Sigmoid
	1	-0.080959968427891	-0.08907451521042731	-0.08830237655410711	-0.08826991450485111
1	C=0.1				
	1	0.462468414233968	-0.03227329390671052	0.038716222760231456	0.03930714378274347
2	C=10				
		0.7414236599249314	0.8663393950916756	0.8598930084494388	-2.1244194786689854
3	C=3000			!	
	1	0.7414198803066961	0.8717407869762046	0.8600049580588055	-5.510333547108606
4	C=4000				
		0.7414179301704098	0.8747778174940977	0.8595656394397817	-7.530043237831949
5	C=5000				
		0.7414223482452932	0.87769236904483	0.8596647468701699	-17.954807014731475
6	C=7000				
		0.7414230132428099	0.8779952426221569	0.8591715079473912	-34.151535978496256
7	C=10000				

D. Random Forest(R-value): 0.8539235792996565

6.My Final Model Creation done for this dataset is by using Support Vector Machine(C=10000,'rbf').It has good model when compared to others.