

ReCell Case Study Project 3 Supervised Learning Foundation (SLF)

December 2, 2022

Contents / Agenda

- Executive Summary
- Business Problem Overview and Solution Approach
- EDA Results
- Data Preprocessing
- Model Performance Summary
 - Model Building & Performance Check; Final Model
- Appendix
 - Data Background and Context
 - Model Assumptions Check

Executive Summary

- The model is able to explain ~84% of the variation in the data and is able to predict the normalized used price within +/- 4.5%
- The most significant predictor of the **normalized_used_price** is **normalized_new_price**. For every unit (euro) increase in **normalized_new_price**, the **normalized_used_price** will increase by 0.44.
- The same holds true for the other significant predictors of the **normalized_used_price**. Those are **years_since_release** (-0.03), **ram** (0.02), **main_camera_mp** (0.02), **selfie_camera_mp** (0.01), **4G** and **5G** networks.
- To capitalize on customer preferences, **ReCell** should look for phones that have a higher new price, recent release date, better cameras, more RAM, and have 5G.
- **ReCell** should also look for trends in technology that align with these preferences an identify where the peak of customer interest may shift to **the next tech advancement** in device features. Such as 4G phasing out to 5G. Or leveling off in demand for highest resolution cameras. Partner with device makers.
- **ReCell** may also want to overlay **customer demographics** and location to better target marketing campaigns. Such as customer more inclined to travel, share photos, or desire the latest technological capabilities and the means to buy.

Business Problem Overview and Solution Approach

Context

• The used and refurbished device (phones and tablets) market has had an uptick in demand likely due to considerable savings compared with new models. Other market drivers for buying and selling used and refurbished devices include being sold with warranties, insured with proof of purchase, attractive offers to customers for selling or trading in refurbished devices, reduces their environmental impact.

Objective

ReCell needs an ML-based solution to develop a dynamic pricing strategy for used and refurbished devices. ReCell want to (1) analyze the data provided and (2) build a linear regression model to predict the price of a used phone/tablet and (3) identify factors that significantly influence it.

Problem definition

Predict the price of a used phone/tablet and identify factors that significantly influence it

Great Learning

Business Problem Overview and Solution Approach

Business Problem Overview and Solution Approach

Business Context

- Buying and selling used phones and tablets used to be something that happened on a handful of online marketplace sites. But the <u>used and refurbished device</u> market has grown considerably over the past decade, and a new IDC (International Data Corporation) forecast predicts that the used phone market would be worth \$52.7bn by 2023 with a compound annual growth rate (CAGR) of 13.6% from 2018 to 2023. This growth can be attributed to an <u>uptick in demand</u> for used phones and tablets that offer <u>considerable savings</u> compared with new models.
- Refurbished and used devices continue to provide cost-effective alternatives to both consumers and businesses that are looking to save money when purchasing one. There are plenty of other benefits associated with the used device market. Used and refurbished devices can be sold with warranties and can also be insured with proof of purchase. Third-party vendors/platforms, such as Verizon, Amazon, etc., provide attractive offers to customers for refurbished devices. Maximizing the longevity of devices through second-hand trade also reduces their environmental impact and helps in recycling and reducing waste. The impact of the COVID-19 outbreak may further boost this segment as consumers cut back on discretionary spending and buy phones and tablets only for immediate needs.

Objective

• The rising potential of this comparatively under-the-radar market fuels the need for an ML-based solution to develop a dynamic pricing strategy for used and refurbished devices. <u>ReCell</u>, a startup aiming to tap the potential in this market, has hired you as a data scientist. They want you to analyze the data provided and build a linear regression model to predict the price of a used phone/tablet and identify factors that significantly influence it.

Great Learning

Business Problem Overview and Solution Approach

ReCell Data Description:

• The data contains the different attributes of used/refurbished phones and tablets. The data was collected in the year 2021.

ReCell Data dictionary is given below:

brand_name:
 os:
 Screen_size:
 Name of manufacturing brand
 OS on which the device runs
 Size of the screen in cm

4g: Whether 4G is available or not5g: Whether 5G is available or not

main_camera_mp: Resolution of the rear camera in megapixels
 selfie_camera_mp: Resolution of the front camera in megapixels
 int_memory: Amount of internal memory (ROM) in GB

• ram: Amount of RAM in GB

• battery: Energy capacity of the device battery in mAh

• weight: Weight of the device in grams

release_year: Year when the device model was released

• days_used: Number of days the used/refurbished device has been used

• normalized_new_price: Normalized price of a new device of the same model in euros

• normalized_used_price: Normalized price of the used/refurbished device in euros

EDA Results – Overview & Questions

- Please mention the key results from EDA
- Problem definition, questions to be answered Data background and contents Univariate analysis - Bivariate analysis - Insights based on EDA
- Please mention answers to the insight-based questions provided

Questions:

- 1. What does the distribution of normalized used device prices look like?
- 2. What percentage of the used device market is dominated by Android devices?
- 3. The amount of RAM is important for the smooth functioning of a device. How does the amount of RAM vary with the brand?
- 4. A large battery often increases a device's weight, making it feel uncomfortable in the hands. How does the weight vary for phones and tablets offering large batteries (more than 4500 mAh)?
- 5. Bigger screens are desirable for entertainment purposes as they offer a better viewing experience. How many phones and tablets are available across different brands with a screen size larger than 6 inches?
- 6. A lot of devices nowadays offer great selfie cameras, allowing us to capture our favorite moments with loved ones. What is the distribution of devices offering greater than 8MP selfie cameras across brands?
- 7. Which attributes are highly correlated with the normalized price of a used device?

Great Learning

EDA Results – Univariate, price

 The used price, normalized_used_price and the new price, normalized_new_price have many outliers and appear to have a normal distribution. Used price has a slight left skew.

Link to Appendix slide on data background check

EDA Results – Univariate, screen_size

Screen size

Link to Appendix slide on data background check

EDA Results – Univariate, weight and battery

- Weight, long right tail, many outliers concentrated to the right, possible exponential distribution
- Battery, long right tail, many outliers to the right, possible exponential distribution

Link to Appendix slide on data background check

EDA Results – Univariate, main camera, selfie camera

• Cameras: main camera (back), selfie camera (front)

Link to Appendix slide on data background check

EDA Results – Univariate

• Memory: internal and RAM

Link to Appendix slide on data background check

EDA Results - Univariate, days_used

• Days Used

Link to Appendix slide on data background check

Great Learning

EDA Results – Univariate, brand_name

- For brand_name count, Samsung has the most (9.9%) of the devices, next is Huawei, LG, and Lenovo with 7.3%, 5.8%, 5.0% respectively
- Others is 14%
- Brand is ad has a wide distribution

Link to Appendix slide on data background check

EDA Results - Univariate, os operating system

- For OS operating system, Android dominates the sample dataset with 93%.
- Then Windows (1.9%) and iOS (1.0%), others collectively is 4.0%

Link to Appendix slide on data background check

EDA Results – Univariate, 4g, 5g networks

- For 4g, yes is 67% no is 32.4%. Yes is twice as much as no. 2 / 3rd of the dataset has 4G.
- For 5g, no is 95.6%, yes is 4.4%. No is overwhelmingly dominant. Only less than 5% of the dataset has 5g

Link to Appendix slide on data background check

EDA Results - Univariate, release_year

- For release_year, generally, the earlier years have more of the used and refurbished devices (URD)
- Uptick peaks in 2014 and 2019
- Highest year is 2014 at 18.6%
- Highest increase from 2018 to 2019
- Highest increase from at 12.9% to at 9.3%

Link to Appendix slide on data background check

EDA Results – Bivariate, Correlation

- The normalized_used_price and normalized_new_price are highly correlated (0.83).
- Three, screen_size and weight and battery, are closely correlated with each other. (0.83), (0.81),(0.70)
- The days_used is inversely correlated with all other numerical features; most inversely correlated with selfie_camera (-0.55)

Link to Appendix slide on data background check

Great Learning

EDA Results - Bivariate, brand_name vs ram

- The amount of RAM variation across brands
- Most all the companies' phones are 4GB for at least 50% of the devices; the smashed interquartile range (between 25 and 75).
- 75% OnePlus phones are 4GB or higher, 50% of OnePlus phones are 6GB or higher
- 75% of phones are at or below 4GB for Infinix and Celkon

EDA Results – Bivariate, brand_name vs weight, large battery AHEAD

- On battery capacity above 4500 mAh.
- Many brands with variety of weight options. Motorola, Realme, Vivo, Gionee, and many others have light weight phones with battery capacity above 4500 mAh.

Link to Appendix slide on data background check

EDA Results – Bivariate, brand_name vs count, on screen_sizever AHEAD

- For screen size above 6 inches, The highest percentage count is **Huawei at ~14%.** Followed by **Samsung** at **~11%**, and others at **9%**, **Vito at ~7%**
- Four in the middle were all ~6.5 (Honor, Oppo, Xiaomi)
- The lowest was **Motorola at** ~ **4%**, followed by **LG at 5.4%**.

Link to Appendix slide on data background check

EDA Results – Bivariate – Brand main camera above 16 mp

- Main camera above 16 MP
- Sony ~40% of the devices with the main camera above 16 MP

Link to Appendix slide on data background check

EDA Results – Bivariate

• The normalized used price has been increasing steadily between 2013 and 2020, slightly leveled off in recent years.

Link to Appendix slide on data background check

EDA Results - Bivariate, price variation, 4g & 5g networks

- The used price is higher for phones with at least 4G is higher than those without 4G
- Those used devices that do have 5G have a higher used price than those without 5G
 - As stated in the univariate, less than 5% of the dataset has 5g.
 - This may change in the coming years as 4G is phased out and more phone have 5G

Link to Appendix slide on data background check

Data Preprocessing – Duplicate, Missing Values, Imputation POWER AHEAD

● There are <u>no <mark>duplicate</u> values. ------→ ------→ ------→ --------→</u></mark>

- There are missing values. ------→
 - main_camera_mp 179
 selfie_camera_mp 2
 int_memory 4
 ram 4
 battery 6
 weight 7

 Count
 Percentage

 main_camera_mp
 179
 5.182397

 selfie_camera_mp
 2
 0.057904

 int_memory
 4
 0.115808

 ram
 4
 0.173712

 weight
 7
 0.202664

2018

2017

10

- The most missing values are for main_camera_mp at 179. These are spread over 15 different brands. But increasingly concentrated over the release years 2017 to 2020. ----------> $\frac{2020}{2019}$ $\frac{122}{45}$
- The missing values were imputed by the column medians each column grouped by release_year and brand_name.

 This helped fill int_memory and ram. Used medians because of many outliers
- Then imputed by the column **medians** grouped by **brand_name** only. This helped all but 10 in **main_camera_mp**.
- Then filled the remaining 10 in main_camera_mp by the column median.

Data Preprocessing – Outlier check (treatment if needed)

 Outliers in nearly all columns, but we are not treating them because we see no curent evedence that they are erronious.

days_used

400 500

weight

Data Preprocessing – Feature engineering

Created a new column years_since_release from the release_year column.

Consider the year of data collection, 2021, as the baseline, 0; 2020 as 1 year, 2019 as 2 years and

3454.000000

7.000000 8.000000

count

so on. Dropped the **release_year** column.

mean 5.034742
years_since_release, std 2.298455
min 1.000000
25% 3.000000
50% 5.500000

• Data processing post-model and assumption checks may require transforming variables. To be determined in next iteration.

75%

max

Data Preprocessing – Data preparation for modeling

- The objective is to predict the normalized_used_price
 of devices so we define that as y, dependent variable,
 target variable.
- All other columns as X, independent variables.
- Added intercept to data.
- Used one hot encoding on categorical features to create dummy variables
- Split the data into train (70% of data) and test (30% of data).

```
X.columns
Index(['const', 'screen size', 'main camera mp', 'selfie camera mp',
       'int_memory', 'ram', 'battery', 'weight', 'days_used',
       'normalized new price', 'years since release', 'brand name Alcatel',
       'brand_name_Apple', 'brand_name_Asus', 'brand_name_BlackBerry',
       'brand name Celkon', 'brand name Coolpad', 'brand name Gionee',
       'brand_name_Google', 'brand_name_HTC', 'brand_name_Honor',
       'brand_name_Huawei', 'brand_name_Infinix', 'brand_name_Karbonn',
       'brand name LG', 'brand name Lava', 'brand name Lenovo',
       'brand name Meizu', 'brand name Micromax', 'brand name Microsoft',
       'brand name Motorola', 'brand name Nokia', 'brand name OnePlus',
       'brand_name_Oppo', 'brand_name_Others', 'brand_name_Panasonic',
       'brand_name_Realme', 'brand_name_Samsung', 'brand_name_Sony',
       'brand name Spice', 'brand name Vivo', 'brand name XOLO',
       'brand name Xiaomi', 'brand name ZTE', 'os Others', 'os Windows',
       'os iOS', '4g yes', '5g yes'],
     dtype='object')
```

Number of rows in train data = 2417 Number of rows in test data = 1037

- Built model of ordinary least squares (OLS) regressions
- The value for **R-squared** is **0.845**
- The value for adjusted R-squared is
 0.842. The baseline model is able to explain ~85% of the variance.

OLS Regression Results						
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Mon, 28 M	OLS Squares	R-squared: Adj. R-square F-statistic: Prob (F-stati Log-Likelihoo AIC: BIC:	istic):	0.8 268	9.7
	coef	std er	· t	P> t	[0.025	0.975]
const screen_size main_camera_mp selfie_camera_mp int_memory ram battery weight days_used normalized_new_price years_since_release	1.3156 0.0244 0.0208 0.0135 0.0001 0.0230 -1.689e-05 0.0010 4.216e-05	0.072 0.003 0.003 0.003 6.97e-09 0.009 7.27e-09 0.000 3.09e-09	7.163 7.163 13.848 11.997 1.651 4.451 5 -2.321 7.480 1.366 2 35.147	0.000 0.000 0.000 0.000 0.099 0.000 0.020 0.000 0.172 0.000	1.176 0.018 0.018 0.011 -2.16e-05 0.013 -3.12e-05 0.001 -1.84e-05 0.407 -0.033	1.455 0.031 0.024 0.016 0.000 0.033 -2.62e-06 0.001 0.000 0.455 -0.015
os_Others os_Windows os_iOS 4g_yes 5g_yes	-0.0510 -0.0207 -0.0663 0.0528 -0.0714	0.033 0.049 0.146 0.016 0.031	-0.459 -0.453 5 3.326	0.120 0.646 0.651 0.001 0.023	-0.115 -0.109 -0.354 0.022 -0.133	0.013 0.068 0.221 0.084 -0.010

- Baseline coefficients (coef) of the predictor variable excluding dummy variables are shown here.
- The highest coefficient is normalized_new_price with 0.43, meaning this is the most significant predictor.
- For every unit (euro) increase in normalized_new_price, the normalized_used_price we are trying to predict will increases by 0.43.
- P-value is 0.000, meaning we can trust the 0.43 coef as significant.

OLS Regression Results							
Dep. Variable:	 normalized_use	d_price	======================================		0.845		
Model:		OLS	Adj. R-square	d:	0.842		
Method:	Least	Squares	F-statistic:		268.7		
Date:	Mon, 28 N	lov 2022	Prob (F-stati	stic):	0	.00	
Time:	1	8:11:28	Log-Likelihoo	d:	123	.85	
No. Observations:		2417	AIC:		-149	9.7	
Df Residuals:		2368	BIC:		134	4.0	
Df Model:		48					
Covariance Type:	no	nrobust					
	coef	std err	· t	P> t	[0.025	0.975	
const	1.3156	0.071	18.454	0.000	1.176	1.45	
screen size	0.0244	0.003		0.000	0.018	0.03	
main camera mp	0.0208	0.003		0.000	0.018	0.03	
selfie camera mp	0.0208	0.002		0.000	0.018	0.01	
int memory	0.0001	6.97e-05		0.000	-2.16e-05	0.00	
ram	0.0230	0.005		0.000	0.013	0.03	
battery	-1.689e-05	7.27e-06		0.020	-3.12e-05	-2.62e-0	
weight	0.0010	0.000		0.000	0.001	0.00	
days used	4.216e-05	3.09e-05		0.172	-1.84e-05	0.00	
normalized new price	0.4311	0.012	35.147	0.000	0.407	0.45	
years_since_release	-0.0237	0.005	-5.193	0.000	-0.033	-0.01	
os Others	-0.0510	0.033	-1.555	0.120	-0.115	0.01	
os Windows	-0.0207	0.045	-0.459	0.646	-0.109	0.06	
os_i0S	-0.0663	0.146	-0.453	0.651	-0.354	0.22	
4g_yes	0.0528	0.016	3.326	0.001	0.022	0.084	
5g_yes	-0.0714	0.031		0.023	-0.133	-0.016	

- Baseline significance coef and 0.000 p-value.
- normalized_new_price 0.4311
 screen_size, 0.0244
 years_since_release -0.0237
 ram 0.0230
 main_camera_mp 0.0208
 selfie_camera_mp 0.0135
 4g 0.0528
 5g -0.0714
- Might remove the non-significant predictor variables due to negligible coeff and or, high pvalue indicating insignificance.
- int_memory
- days_used
- battery

OLS Regression Results						
Dep. Variable:	 normalized_us	ed_price	R-squared:		0.845	
Model:		OLS	Adj. R-square	d:	0.842	
Method:	Least	Squares	F-statistic:		268.7	
Date:	Mon, 28 I	Nov 2022	Prob (F-stati	stic):	0.00	
Time:		18:11:28	Log-Likelihoo	d:	123.85	
No. Observations:		2417	AIC:		-14	9.7
Df Residuals:		2368	BIC:		13	4.0
Df Model:		48				
Covariance Type:		onrobust				
	coef	std err		P> t	[0.025	0.975
const	1.3156	0.071	18.454	0.000	1.176	1.455
screen size	0.0244	0.003		0.000	0.018	0.031
main camera mp	0.0244	0.003		0.000	0.018	0.024
selfie camera mp	0.0135			0.000	0.011	0.016
int memory	0.0001				-2.16e-05	0.000
ram	0.0230			0.000	0.013	0.033
battery	-1.689e-05	7.27e-06	-2.321	0.020	-3.12e-05	-2.62e-06
weight	0.0010		7.480	0.000	0.001	0.001
days_used	4.216e-05	3.09e-05	1.366	0.172	-1.84e-05	0.000
normalized_new_price	0.4311	0.012	35.147	0.000	0.407	0.455
years_since_release	-0.0237	0.005	-5.193	0.000	-0.033	-0.015
os Others	-0.0510	0.033	-1.555	0.120	-0.115	0.01
os Windows	-0.0207	0.045		0.646	-0.109	0.06
os iOS	-0.0663	0.146		0.651	-0.354	0.22
 4g_yes	0.0528	0.016		0.001	0.022	0.08
4g_yes 5g_yes	-0.0714	0.010		0.023	-0.133	-0.01

Baseline for brand dummy variables

	coef	std err	t	P> t	[0.025	0.975
brand_name_Alcatel	0.0154	0.048	0.323	0.747	-0.078	0.109
brand_name_Apple	-0.0038	0.147	-0.026	0.980	-0.292	0.285
brand_name_Asus	0.0151	0.048	0.314	0.753	-0.079	0.109
brand_name_BlackBerry	-0.0300	0.070	-0.427	0.669	-0.168	0.108
brand_name_Celkon	-0.0468	0.066	-0.707	0.480	-0.177	0.083
brand_name_Coolpad	0.0209	0.073	0.287	0.774	-0.122	0.164
brand_name_Gionee	0.0448	0.058	0.775	0.438	-0.068	0.158
brand_name_Google	-0.0326	0.085	-0.385	0.700	-0.199	0.133
brand_name_HTC	-0.0130	0.048	-0.270	0.787	-0.108	0.081
brand_name_Honor	0.0317	0.049	0.644	0.520	-0.065	0.128
brand_name_Huawei	-0.0020	0.044	-0.046	0.964	-0.089	0.089
brand_name_Infinix	0.1633	0.093	1.752	0.080	-0.019	0.346
brand_name_Karbonn	0.0943	0.067	1.405	0.160	-0.037	0.226
brand_name_LG	-0.0132	0.045	-0.291	0.771	-0.102	0.076
brand_name_Lava	0.0332	0.062	0.533	0.594	-0.089	0.159
brand_name_Lenovo	0.0454	0.045	1.004	0.316	-0.043	0.134
brand_name_Meizu	-0.0129	0.056	-0.230	0.818	-0.123	0.097
brand_name_Micromax	-0.0337	0.048	-0.704	0.481	-0.128	0.066
brand_name_Microsoft	0.0952	0.088	1.078	0.281	-0.078	0.268
brand_name_Motorola	-0.0112	0.050	-0.226	0.821	-0.109	0.086
brand_name_Nokia	0.0719	0.052	1.387	0.166	-0.030	0.174
brand_name_OnePlus	0.0709	0.077	0.916	0.360	-0.081	0.223
brand_name_Oppo	0.0124	0.048	0.261	0.794	-0.081	0.106
brand_name_Others	-0.0080	0.042	-0.190	0.849	-0.091	0.075
brand_name_Panasonic	0.0563	0.056	1.008	0.314	-0.053	0.166
brand_name_Realme	0.0319	0.062	0.518	0.605	-0.089	0.153
brand_name_Samsung	-0.0313	0.043	-0.725	0.469	-0.116	0.05
brand_name_Sony	-0.0616	0.050	-1.220	0.223	-0.161	0.037
brand_name_Spice	-0.0147	0.063	-0.233	0.816	-0.139	0.109
brand_name_Vivo	-0.0154	0.048	-0.318	0.750	-0.110	0.086
brand_name_XOLO	0.0152	0.055	0.277	0.782	-0.092	0.12
brand_name_Xiaomi	0.0869	0.048	1.806	0.071	-0.007	0.181
brand name ZTE	-0.0057	0.047	-0.121	0.904	-0.099	0.087

Great Learning

Model Building - Linear Regression Results - Final

- Tested baseline model performance
- Tested assumptions.
- See appendix for assumption details.
- Removed multicollinearity.
- Dropped high p-value variables.
- Re-ran the model.
- Compared statistics
- Re-evaluated model performance
- Reduced the predictive variables while maintain the performance

Dep. Variable:	ormalized use	d price	R-squared:		0.839	7	
Model:		OLS	Adj. R-square	d:	0.838	.	
Method:	Least :	Squares	F-statistic:		895.7		
Date:	Sun, 04 D	ec 2022	Prob (F-stati	stic):	0.00		
Time:	0	7:40:16	Log-Likelihoo	d:	80.645		
No. Observations:		2417	AIC:		-131.3		
Df Residuals:		2402	BIC:		-44.44		
Df Model:		14					
Covariance Type:	no	nrobust					
	coef	std err	t	P> t	[0.025	6.975]	
const	1.5000	0.048	30.955	0.000	1.405	1.595	
main camera mp	0.0210	0.001	14.714	0.000	0.018	0.024	
selfie camera mp	0.0138	0.001	12.858	0.000	0.012	0.016	
ram	0.0207	0.005	4.151	0.000	0.011	0.030	
weight	0.0017	6e-05	27.672	0.000	0.002	0.002	
normalized_new_price	0.4415	0.011	39.337	0.000	0.419	0.463	
years_since_release	-0.0292	0.003	-8.589	0.000	-0.036	-0.023	
brand_name_Karbonn	0.1156	0.055	2.111	0.035	0.008	0.223	
brand_name_Samsung	-0.0374	0.016	-2.270	0.023	-0.070	-0.005	
brand_name_Sony	-0.0670	0.030	-2.197	0.028	-0.127	-0.007	
brand_name_Xiaomi	0.0801	0.026	3.114	0.002	0.030	0.130	
os_Others	-0.1276	0.027	-4.667	0.000	-0.181	-0.074	
os_iOS	-0.0900	0.045	-1.994	0.046	-0.179	-0.002	
4g_yes	0.0502	0.015	3.326	0.001	0.021	0.080	
5g_yes	-0.0673	0.031	-2.194	0.028	-0.127	-0.007	
========= Omnibus:	 246	.183 Dui	 rbin-Watson:	=======	1.902		
Prob(Omnibus):	0	.000 Jai	rque-Bera (JB)		483.879		
Skew:	-0	.658 Pro	ob(JB):		8.45e-106		
Kurtosis:	4	.753 Cor	nd. No.		2.39e+03		
Kurtosis: 4.753 Cond. No. 2.39e+03							

Model Building - Linear Regression Results - Final

- Final results have reduced the predictive variables while maintain the performance.
- Final coefficients (coef) and the most significant predictors of the normalized_used_price variable are shown here.
- normalized_new_price 0.4415
 years_since_release, -0.0292
 ram 0.0207
 main_camera_mp 0.0210
 selfie_camera_mp 0.0138
 weight 0.0017
 4g 0.0502
 5q -0.0673
- For every unit (euro) increase in normalized_new_price, the normalized_used_price we are trying to predict will increases by 0.44.
- The same holds true for the other predictors.

target = intercept + constant1*feature1 + constant2*feature2 + constant3*feature3 +

Dep. Variable: r Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Sun, 04 De 07	OLS quares	Adj. R-square F-statistic:	stic):	0.83 895. 0.6 80.64 -131. -44.4	38 7 90 15 3
	coef	std err	t	P> t	[0.025	0.975]
const	1.5000	0.048	 30.955	0.000	1.405	1.595
main camera mp	0.0210	0.001	14.714	0.000	0.018	0.024
selfie camera mp	0.0138	0.001	12.858	0.000	0.012	0.016
ram	0.0207	0.005	4.151	0.000	0.011	0.030
weight	0.0017	6e-05	27.672	0.000	0.002	0.002
normalized_new_price	0.4415	0.011	39.337	0.000	0.419	0.463
years_since_release	-0.0292	0.003	-8.589	0.000	-0.036	-0.023
brand_name_Karbonn	0.1156	0.055	2.111	0.035	0.008	0.223
brand_name_Samsung	-0.0374	0.016	-2.270	0.023	-0.070	-0.005
brand_name_Sony	-0.0670	0.030	-2.197	0.028	-0.127	-0.007
brand_name_Xiaomi	0.0801	0.026	3.114	0.002	0.030	0.130
os_Others	-0.1276	0.027	-4.667	0.000	-0.181	-0.074
os_iOS	-0.0900	0.045	-1.994	0.046	-0.179	-0.002
4g_yes	0.0502	0.015	3.326	0.001	0.021	0.080
5g_yes	-0.0673	0.031	-2.194	0.028	-0.127	-0.007
======================================		000 Jai	======== rbin-Watson: rque-Bera (JB) bb(JB):		1.902 483.879 8.45e-106	
Kurtosis:	4.	753 Coi	nd. No.		2.39e+03	

Model Performance Summary –

Evaluation Metrics for a Regression Model

R-squared Adjusted R-squared	Mean Absolute Error	Root Mean Square Error
 Measure of the % of variance in the target variable explained by the model Generally the first metric to look at for linear regression model performance Higher the better Conceptually, very similar to R-squared but penalizes for the addition of too many variables Generally used when you have too many variables as adding more variables always increases R^2 but not Adjusted R^2 Higher the better 	 Simplest metric to check prediction accuracy Same unit as the dependent variable Not sensitive to outliers i.e. errors doesn't increase too much if there are outliers Difficult to optimize from a mathematical point of view (pure maths logic) Lower the better 	 Another metric to measure the accuracy of prediction Same unit as the dependent variable Sensitive to outliers - errors will be magnified due to the square function But has other mathematical advantages that will be covered later Lower the better

Link to Appendix slide on model assumptions

Model Performance Summary – Baseline vs Final

- The training R-squared is 0.844 so the model is not underfitting.
- The train and test RMSE and MAE are comparable, so the model is not overfitting
- MAE suggests that the model can predict the normalized used price within a mean error of 0.18 on the test data. That is +/- 0.18.
- MAPE of 4.5 on the test data indicates the model is able to predict the normalized used price within 4.5%. That is +/-4.5%
- See chart of test vs training and compare the adjusted R-squared is 84.2% vs 83.5%.
- The training and testing metrics for the model were the same as the baseline model within rounding. The model was not underfitting, not overfitting, and able to predict the normalized used price within +/- 4.5%.
- See chart of test vs training and compare the adjusted R-squared is 83.8% vs 83.6%.

APPENDIX

Data Background and Context – Appendix

Please mention about the data background and contents

Data Background and Context – Business Context & Objectives AHEAD

Context

- Buying and selling used phones and tablets used to be something that happened on a handful of online marketplace sites. But the used and refurbished device market has grown considerably over the past decade, and a new IDC (International Data Corporation) forecast predicts that the used phone market would be worth \$52.7bn by 2023 with a compound annual growth rate (CAGR) of 13.6% from 2018 to 2023. This growth can be attributed to an uptick in demand for used phones and tablets that offer considerable savings compared with new models.
- Refurbished and used devices continue to provide cost-effective alternatives to both consumers and businesses that are looking to save money when purchasing one. There are plenty of other benefits associated with the used device market. Used and refurbished devices can be sold with warranties and can also be insured with proof of purchase. Third-party vendors/platforms, such as Verizon, Amazon, etc., provide attractive offers to customers for refurbished devices. Maximizing the longevity of devices through second-hand trade also reduces their environmental impact and helps in recycling and reducing waste. The impact of the COVID-19 outbreak may further boost this segment as consumers cut back on discretionary spending and buy phones and tablets only for immediate needs.

Objective

• The rising potential of this comparatively under-the-radar market fuels the need for an ML-based solution to develop a dynamic pricing strategy for used and refurbished devices. ReCell, a startup aiming to tap the potential in this market, has hired you as a data scientist. They want you to analyze the data provided and build a linear regression model to predict the price of a used phone/tablet and identify factors that significantly influence it.

Data Background and Context - ReCell Dataset

Data Description:

• The data contains the different attributes of used/refurbished phones and tablets. The data was collected in the year 2021.

Data dictionary is given below:

brand_name: Name of manufacturing brandos: OS on which the device runs

• screen_size: Size of the screen in cm

4g: Whether 4G is available or not5g: Whether 5G is available or not

main_camera_mp: Resolution of the rear camera in megapixels
 selfie_camera_mp: Resolution of the front camera in megapixels
 int_memory: Amount of internal memory (ROM) in GB

• ram: Amount of RAM in GB

• battery: Energy capacity of the device battery in mAh

• weight: Weight of the device in grams

release_year: Year when the device model was released

• days_used: Number of days the used/refurbished device has been used

• normalized_new_price: Normalized price of a new device of the same model in euros

• normalized_used_price: Normalized price of the used/refurbished device in euros

DATA OVERVIEW – Rows, Columns, Data types

Rows and Columns

- 3,454 rows,
- 15 columns

Data types include

- Eleven (11) **numeric**, consisting of
- nine (9) float64 and
- two (2) int64.
- Four (4) categorical, consisting of
- four (4) object type.

There are missing values

Data	columns (total 15 columns	mns):	
#	Column	Non-Null Count	Dtype
0	brand_name	3454 non-null	object
1	05	3454 non-null	object
2	screen_size	3454 non-null	float64
3	4g	3454 non-null	object
4	5g	3454 non-null	object
5	main_camera_mp	3275 non-null	float64
6	selfie_camera_mp	3452 non-null	float64
7	int_memory	3450 non-null	float64
8	ram	3450 non-null	float64
9	battery	3448 non-null	float64
10	weight	3447 non-null	float64
11	release_year	3454 non-null	int64
12	days_used	3454 non-null	int64
13	normalized_used_price	3454 non-null	float64
14	normalized_new_price	3454 non-null	float64
dtyp	es: float64(9), int64(2), object(4)	ALCO ALCO NOTION

DATA OVERVIEW – Statistical Summary, Numerical

Numerical columns descriptive statistics summary

			_		2	***	747	
	count	mean	std	min	25%	50%	75%	max
screen_size	3454.0	13.713115	3.805280	5.080000	12.700000	12.830000	15.340000	30.710000
main_camera_mp	3275.0	9.460208	4.815461	0.080000	5.000000	8.000000	13.000000	48.000000
selfie_camera_mp	3452.0	6.554229	6.970372	0.000000	2.000000	5.000000	8.000000	32.000000
int_memory	3450.0	54.573099	84.972371	0.010000	16.000000	32.000000	64.000000	1024.000000
ram	3450.0	4.036122	1.365105	0.020000	4.000000	4.000000	4.000000	12.000000
battery	3448.0	3133.402697	1299.682844	500.000000	2100.000000	3000.000000	4000.000000	9720.000000
weight	3447.0	182.751871	88.413228	69.000000	142.000000	160.000000	185.000000	855.000000
release_year	3454.0	2015.965258	2.298455	2013.000000	2014.000000	2015.500000	2018.000000	2020.000000
days_used	3454.0	674.869716	248.580166	91.000000	533.500000	690.500000	868.750000	1094.000000
normalized_used_price	3454.0	4.364712	0.588914	1.536867	4.033931	4.405133	4.755700	6.619433
normalized_new_price	3454.0	5.233107	0.683637	2.901422	4.790342	5.245892	5.673718	7.847841

DATA OVERVIEW - Statistical Summary, Categorical

DATA OVERVIEW – Rows, Columns, Data types

Rows and Columns

- 3,454 rows,
- 15 columns

Data types include

- Eleven (11) **numeric**, consisting of
- nine (9) float64 and
- two (2) int64.
- Four (4) categorical, consisting of
- four (4) object type.

There are no duplicate values

There are missing values

```
Data columns (total 15 columns):
     Column
                            Non-Null Count
                                             Dtype
     brand name
                            3454 non-null
                                             object
 1
                            3454 non-null
                                             object
     05
                            3454 non-null
                                             float64
     screen size
 3
                            3454 non-null
                                             object
     4g
 4
                                             object
     5g
                            3454 non-null
                                             float64
     main camera mp
                            3275 non-null
     selfie camera mp
                                             float64
                            3452 non-null
 7
     int memory
                            3450 non-null
                                             float64
                                             float64
 8
                            3450 non-null
     ram
     battery
                            3448 non-null
                                             float64
 9
 10 weight
                            3447 non-null
                                             float64
 11
    release year
                            3454 non-null
                                             int64
    days used
                            3454 non-null
                                             int64
 12
    normalized used price 3454 non-null
                                             float64
    normalized new price
                            3454 non-null
                                             float64
dtypes: float64(9), int64(2), object(4)
```


DATA OVERVIEW - Missing Values, Check, Percentage

Checked for missing values and percentages

brand_name	ø
os	0
screen_size	0
4g	0
5g	0
main_camera_mp	179
selfie_camera_mp	2
int_memory	4
ram	4
battery	6
weight	7
release_year	0
days_used	0
normalized_used_price	0
normalized_new_price	0
dtype: int64	

	Count	Percentage
main_camera_mp	179	5.182397
selfie_camera_mp	2	0.057904
int_memory	4	0.115808
ram	4	0.115808
battery	6	0.173712
weight	7	0.202664

Model Assumptions – Overview

- Checking the following Linear Regression assumptions:
 - No Multicollinearity among independent variables
 - Linearity of variables. There should be a linear relationship between dependent and independent variables.
 - **Independence of error terms**. The residuals should be independent of each other.
 - Normality of error terms. The residuals must be normally distributed.
 - No Heteroscedasticity. The residuals must have constant variance.
- Tests conducted for checking model assumptions and the Results obtained

Model Assumptions – No Multicollinearity

- There should be **no multicollinearity** among independent variables.
- Tested using VIF. Dummy variables were excluded from consideration. Two showed moderate multicollinearity (above 5), screen_size (\sim 7.7) and weight (\sim 6.4).
- Dropped screen_size because it had the least impact on the adjusted R-squared of the model and re-ran VIF. The resulting VIF of weight decreased to 2.99.

Model Assumptions – Linearity of variables

- There should be a linear relationship between dependent and independent variables.
- Plotted the fitted values vs residuals. **Saw no pattern**, so the **model is assumed linear.**
- However, weight may warrant further investigation due to curved patter exhibited in scatterplot with used price.

Model Assumptions – Normality of error terms

- The error terms, **residuals** must be **normally distributed**. Tested for normality by: (1) checking the **distribution of residuals**, (2) by checking the **Q-Q plot of residuals**, and (3) by using the **Shapiro-Wilk test**.
 - (1) The residuals follow a normal distribution with a **slight left- skew**.
 - (2) The Q-Q plot of residuals **generally make a straight-line plot**. **This could be improved.**
 - (3) Shapiro-Wilk test, resulted in statistic=0.9676972031593323 pvalue=6.995328206686811e-23).
 - P-vale is 0.0000 (**NOT** greater than 0.05), we can **NOT** say the residuals are normally distributed. The **residuals are NOT normal as** per Shapiro-Wilk test. This may need further investigation.

Model Assumptions – No Heteroscedasticity

• The **residuals** must have **constant variance**. Tested for **homoscedasticity** by using the **goldfeldquandt test**. The Goldfeldquandt test, resulted in F statistic = \sim 1.00875..., p-value = \sim 0.4402. Since the p-value was greater than 0.05, we can say that the residuals are homoscedastic.

Happy Learning!

