7/10/23, 10:53 AM OneNote

# **Feature Engineering**

06 July 2023 19:50

Feature Engineering is the process of converting the raw data into the data which is comparatively more clean, useful and informative in terms of feeding to Our Machine Learning Models.

This generally involves following steps:



- 1. Feature Transformation refers to the process of converting and modifying the existing features to enhance their usefulness.
  - a. Missing Value Removal/Imputation
  - b. Handling Categorical Features like One-Hot Encoding
  - c. Outlier Detection
  - d. Feature Scaling
- 2. **Feature Construction** refers to creating new features from existing ones to capture additional information for better performance of the model.

For \*Example creating one additional feature "num\_family\_members" by combining SiblingSpouse and ParentsChildren features.

| P. Id | Survived | Pclass | Name .                                       | Sex    | Age | SibSp | Parch | Ticket    | Fare    | Cabin | Embarked |
|-------|----------|--------|----------------------------------------------|--------|-----|-------|-------|-----------|---------|-------|----------|
| 1     | 0        | 3      | Braund, Mr. Owen Harris                      | male   | 22  | 1     | 0     | A/5 21171 | 7.25    |       | S        |
| 2     | 1        | 1      | Cumings, Mrs. John Bradley (Florence Brigg   | female | 38  | 1     | 0     | PC 17599  | 71.2833 | C85   | С        |
| 3     | 1        | 3      | Heikkinen, Miss. Laina                       | female | 26  | 0     | 0     | STON/O2.  | 7.925   |       | S        |
| 4     | 1        | 1      | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35  | 1     | 0     | 113803    | 53.1    | C123  | S        |
| 5     | 0        | 3      | Allen, Mr. William Henry                     | male   | 35  | 0     | 0     | 373450    | 8.05    |       | S        |
| 6     | 0        | 3      | Moran, Mr. James                             | male   |     | 0     | 0     | 330877    | 8.4583  |       | Q        |
| 7     | 0        | 1      | McCarthy, Mr. Timothy J                      | male   | 54  | 0     | 0     | 17463     | 51.8625 | E46   | S        |
| 8     | 0        | 3      | Palsson, Master. Gosta Leonard               | male   | 2   | 3     | 1     | 349909    | 21.075  |       | S        |
| 9     | 1        | 3      | Johnson, Mrs. Oscar W (Elisabeth Vilhelmin   | female | 27  | 0     | 2     | 347742    | 11.1333 |       | S        |
| 10    | 1        | 2      | Nasser, Mrs. Nicholas (Adele Achem)          | female | 14  | 1     | 0     | 237736    | 30.0708 |       | С        |

|       |   | •     | •                  |                |  |  |  |
|-------|---|-------|--------------------|----------------|--|--|--|
| SibSp |   | ParCh | num_family_members | Family_size    |  |  |  |
| 0     |   | 0     | 0                  | Alone - 0      |  |  |  |
| 3     |   | 1     | 4                  | Medium - [3-4] |  |  |  |
| 0     |   | 2     | 2                  | Small [1-2]    |  |  |  |
| 1     | , | 0     | 1                  | Small          |  |  |  |
| 1     |   | 4     | 5                  | Large [>4]     |  |  |  |

3. Feature Selection refers to the process of identifying and selecting the most relevant and informative features only from the available set of features and not using the remaining features for training the model. This improves the overall performance of the model.



4. Feature Extraction refers to programmatically extracting completely new features from a given set of features OR finding a smaller set of new features by combining the existing features, containing basically the same or additional information. - This is completely different from Feature Construction.



1. Feature Transformation refers to the process of converting and modifying the existing features to enhance their usefulness.

7/10/23, 10:53 AM OneNote

### a. Missing Value Removal/Imputation: - Today's Agenda

As **Sci-kit Learn** needs **data with no null values** to train the model, So we would either **Remove** the missing values(if <5%) or **Replace** the missing/null values with the **Mean, Median, Mode (Most Frequent Category)** etc.

| ID | City   | Age    | Married ? |          | ID       | City   | Age    | Married |    |   |
|----|--------|--------|-----------|----------|----------|--------|--------|---------|----|---|
| 1  | Lisbon | 25     | 0         | I        | 1        | Lisbon | 25     | 0       |    |   |
| 2  | Berlin | 25     | 1         |          |          |        | 2      | Berlin  | 25 | 1 |
| 3  | Lisbon | 30     | 1         |          |          | 3      | Lisbon | 30      | 1  |   |
| 4  | Lisbon | n 30 1 |           | 4        | Lisbon   | 30     | 1      |         |    |   |
| 5  | Berlin | 18     | 0         | <b> </b> | <b>→</b> |        | 5      | Berlin  | 18 | 0 |
| 6  | Lisbon | NaN    | 0         |          |          | 6      | Lisbon | 26      | 0  |   |
| 7  | Berlin | 30     | 1         |          |          |        | 7      | Berlin  | 30 | 1 |
| 8  | Berlin | NaN    | 0         |          |          | 8      | Berlin | 26      | 0  |   |
| 9  | Berlin | 25     | 1         |          | 9        | Berlin | 25     | 1       |    |   |
| 10 | Madrid | 25     | 1         |          | 10       | Madrid | 25     | 1       |    |   |

# b. <u>Handling Categorical Features like One-Hot Encoding:</u>

As Sci-kit Learn works with numerical data only, that is why we have to transform/convert the Categorical Features in Numerical Features.



### c. Outlier Detection:

**Outliers** refer to the data points that exist outside the expected range. Or we can say those data points which lie at an abnormal distance from all other values.

Removing outliers is must to ensure better accuracy and performance of the model.

We'll cover the Outlier Detection Techniques later.







# d. Feature Scaling: like Normalization and Standardization

Feature scaling is a data preprocessing technique used to transform the values of features or variables in a dataset to a similar scale.

The purpose is to ensure that all features contribute equally to the model and to avoid the domination of features with larger values.

Without scaling features, the algorithm may be biased towards the feature with values higher in magnitude.

| 4  | Α       | B   | С      | D         |
|----|---------|-----|--------|-----------|
| 1  | Country | Age | Salary | Purchased |
| 2  | France  | 44  | 72000  | No        |
| 3  | Spain   | 27  | 48000  | Yes       |
| 4  | Germany | 30  | 54000  | No        |
| 5  | Spain   | 38  | 61000  | No        |
| 6  | Germany | 40  |        | Yes       |
| 7  | France  | 35  | 58000  | Yes       |
| 8  | Spain   |     | 52000  | No        |
| 9  | France  | 48  | 79000  | Yes       |
| 10 | Germany | 50  | 83000  | No        |
| 11 | France  | 37  | 67000  | Yes       |

Euclidean Distance formula i.e. the shortest distance between the 2 points which is used in kNN Algorithm.



