Master Game Dev 2014/2015

Game Engines

Trasformazioni Spaziali

Trasformazioni spaziali: intro

Concetto molto generale...

- Parte di molte strutture dati:
 - nello scene graph (trasf. di modellazione)
 - nelle animazioni cinematiche
 - nelle animazioni rigged (skeleton based)
- Vengono usate in molti processi
 - nel rendering, dalla GPU (vertex shader!)
 - trasformazione di mollezione, di vista, di proiezione
 - trasformano geometria e normali delle mesh renderizzate
 - nella modellazione, interattivamente, dall'artista
 - x deformare un'intero oggetto o una sua sottoparte

Punti, Vettori, Transformazioni Spaziali

Serve un manuale?

 $\label{eq:mathematics} \textbf{Mathematics} \ \text{for 3D Game Progr. and C.G. (3za ed)} \\ \textbf{Eric Lengyel}$

Capitoli 2, 3, 4

Trasformazioni spaziali

- Funzioni
 - input: un punto (oppure un vettore)
 - output: un punto (oppure un vettore)

- punti e vettori:
 - rappresentati da coordinate

$$q = f(p)$$

 $v = f(u)$

- trasformazioni:
 - "cambiano le coordinate"
 - nuove coords = funz(vecchie coords)

Classi utili di trasformazioni spaziali

- Isometrie (rototraslazioni)
 - "Mantengono le distanze"
 - Rotaz + Traslaz
- Similitudini (trasformaz. conformali)
 - "Mantengono gli angoli"
 - Rotaz + Traslaz + Scaling uniforme
- Lineari (trasformaz. affini)

$$f(\alpha v_0 + \beta v_1) = \alpha f(v_0) + \beta f(v_1)$$

Trasformazioni affini

- Definizioni equivalenti:
 - trasf esprimibili con moltiplicaz con matrice 4x4 con ultima riga: 0,0,0,1
 - si moltiplica la matr il vett di coordinate affini
 - cambio di frame
 (di origine + sistema di assi catesiani)
 - da: spazio di origine a: spazio di destinazione
 - trasf lineari: cioè t.c.

$$f(\alpha v_0 + \beta v_1) = \alpha f(v_0) + \beta f(v_1)$$

- tasformazioni di un tetraedro in un tetraedro (in 3D)
 - (in 2D: di un triagolo in un triangolo)

Inciso: Coordinate affini

POSIZIONI

- punto **p** con coordinate (catesiane): x,y,z
 - \rightarrow coordiante affini di p: (x,y,z,1)

DIREZIONI / SPOSTAMENTI

- vettore **v** con coordinate (catesiane): x,y,z
 - \rightarrow coordiante affini di \mathbf{v} : $(x,y,z,\mathbf{0})$

Trasformazioni affini: cosa fanno

- mantengono sempre:
 - rapporti fra volumi
 - parallelisimo fra rette
- non mantengono (in generale):
 - volumi, o aree, o angoli, o lunghezze
 - o rapporti fra aree, o fra lunghezze
- non includono:
 - defomazioni prospettiche

Classi utili di trasformazioni spaziali

- Isometrie (rototraslazioni)
 - "Mantengono le distanze"
 - Rotaz + Traslaz

- Similitudini (trasformaz. conformali)
 - "Mantengono gli angoli"
 - Rotaz + Traslaz + Scaling uniforme

• Lineari (trasformaz. affini)

$$f(\alpha v_0 + \beta v_1) = \alpha f(v_0) + \beta f(v_1)$$

Una classe di trasf (senza nome) spesso usata nei game engines

- Trasformazioni ottenibili combinando:
 - Rotazioni
 - Traslazioni
 - Scalature... ma anche NON uniformi
 - (un altro sottoinsieme delle trasformazioni affini)
 - Utile in pratica
 - facile da specificare, abb. flessibile e intuitiva
 - Bruttina in teoria
 - non e' chiusa rispetto a combinazione :-O :-(
 - (non mantiene... angoli, nulla)

Come rappresento (internamente) una rotazione in 3D?

cioè anche gli orientamenti di un oggetto nello spazio

Reminder

- Tutte e sole le isometrie (trasf. rigide)
 - = roto-traslazioni
 - = rotazioni (*) + traslazioni
- Rotazioni (*):
 - quante possibili?
 - come rappresentarle (internamente)?
 - (*) generiche = attorno ad assi passanti per l'origine

Reppresentazioni possibili per rotazioni: criteri

- Buone (o meno) per:
 - compattezza
 - quanto sono prolisse in memoria?
 - facilità di applicazione
 - quanto è oneroso applicare ad uno (o ventimila) punti / vettori?
 - interpolabilità
 - è possibile/facile trovare un'inerpolazione fra N rotazioni date?
 - quanto è "buono" il risultato
 - combinabilità
 - è facile trovare la risultante di N rotazioni date, eseguite in successione?
 - invertibilità
 - è facile trovare l'inversa?
 - intuitività
 - quanto è difficile spiegarla ai modellatori / editori di scene / etc

Per paragone: reppresentazione delle *traslazioni*

- Banale: vettore di displacement (tre float)!
 - perfetta secondo tutti i criteri (verificare!)

Per paragone: reppr. delle *rotazioni in 2D*

- Banale: un angolo (un float)
 - perfetta secondo tutti i criteri (verificare per es.!)
 - (unica scelta: degrees or radiants?) [0,360) [0,2·Pi)

Per paragone: reppr. delle *rotazioni in 2D*

Passaggio angolo → vettore

Per paragone: reppr. delle rotazioni in 2D • Passaggio angolo ← vettore pro tip: use atan2

Reppresentazioni per rotazioni (in 3D)

- Molte possibili, vanno più o meno bene coi vari criteri
- Tutte molto diffuse ed usate
- Modi per passare da una rappr. all'altra?

Reppresentazioni principali delle rotazioni

- Matrici 3x3
 - quello tipic. usato durante il rendering (nella GPU)

Modo 1: matrice 3x3 (9 floats)

- dopotutto, una rot è un es di trasf affine
- (sottomatrice 3x3 della matrice di trasf 4x4)

• come sappiamo, R ortonormale con det = 1

Modo 1: matrice 3x3 (9 floats)

- Prolissa (9 numeri invece di 3)
- Facile da applicare (molt matrice-vettore)
 - come sappiamo, cumulabile con qualunque altra trasf. affine
- Abb. facile da cumulare (molt matrice-matrice)
- Facilissima da invertire (trasposiz matrice)
- Problematica da interpolare:

perché?

 $k R_0$

+ (1-k)

 R_1

M

in genere NON di rotazione (non ortonormale)

Modo 1: matrice 3x3 (9 floats)

- Molto efficiente da applicare
 - prodotti e somme, no trigonometria
- cumulabile con tutte le altre trasf affini
 - come una sola matrice 4x4
- metodo tipic. adottato per memorizzare ed eseguire trasformazioni spaziali nel GPU-based rendering! (nel vertex shader)

Reppresentazioni principali delle rotazioni

- Matrici 3x3
- Angoli di Eulero
 - il più intuitivo dei metodi per specificare a mano una rot
 - molto usato nei software di modellazione

Modo 2: angoli di eulero (3 floats)

- Qualunque rotazione (*) può essere espressa come:
 - rotazione lungo asse X (di α gradi), seguita da:
 - rotazione lungo asse Y (di β gradi), seguita da:
 - rotazione lungo asse Z (di γ gradi):
- Angoli α β γ : "angoli di Eulero" di quella rotazione
 - (quindi: le "coordinate" di quella rotaz)

oridine (X-Y-Z) arbitrariamente scelto, (ma 1 volta x tutte)

Modo 2: angoli di eulero (3 floats)

• In linguaggio nautico / areonautico: angoli di "rollio, beccheggio, imbardata"

rollio (roll)

beccheggio (pitch)

imbardata (yaw)

Modo 2: angoli di eulero (3 floats)

 Implementaz. fisica: "mappamondo a tre assi"

Modo 2: angoli di eulero (3 floats)

- Compattezza: perfect!
- Da applicare: un po' faticoso
 - (tre rotazioni in fila)
- Da interpolare: possibile...
 - intrerpolaz dei tre angoli
 - (occhio ad interpolare angoli: ricordarsi equivalenza angoli: α = α +360 (k))
 - ...ma risultati non sempre intuitivi)
- Da cumulare e invertire: problematico...

perché sommare e invertire gli angoli non funziona?

da: angoli di eulero a: matrice 3x3

Facile!

$$M = R_z(\gamma) \cdot R_y(\beta) \cdot R_x(\alpha)$$

- Il viceversa?
 - (solo a suon di conti e funz trigon. inverse)

Reppresentazioni principali delle rotazioni

- Matrici 3x3
- Angoli di Eulero
- Asse + angolo

Modo 3: asse e angolo

- Qualunque rotazione (*) data può essere espressa come:
 - una rotazione (di un angolo) attorno ad un asse

opportunamente scelti

- Angolo: uno scalare (1 float)
- Asse: un vettore unitario (3 float)
 - (asse passante per l'origine)

Modo 3: asse e angolo

- Compattezza: buono
- Interpolazione: ottimo!
 - interpolare asse, intrerpolare angolo (nb: rinormalizzare asse!)
 - funziona alla grande
- Applicare: maluccio 🕾
 - modo migliore: passare a matrice 3x3 (come?) (o a quaternione)
- Cumulare: non del tutto immediato
- Invertire: facilissimo
 - (invertire angolo *oppure* asse)

Modo 3: asse e angolo: variante

- asse: V (vett normale, |V| = 1)
- angolo: α (scalare)
- rappresentarli internamente come 1 solo vett: V' (3 float in tutto)

```
V' = \alpha V
```

- angolo $\alpha = |V'|$
- asse V = V' / |V'|
- (nota: se angolo = 0, asse si perde... infatti non conta)
- Più coinciso, ma per il resto equivalente
- (molto comune es. in fisica)

da: asse e angolo a: matrice 3x3

esercizio!

Reppresentazioni principali delle rotazioni

- Matrici 3x3
- Angoli di Eulero
- Asse + angolo
- Quaternioni

Ripasso: numeri complessi

Assunzione "fantasiosa":

c'è un i t.c.

$$i^2 = -1$$

Conseguenze:

- "Num complesso": (a + b i)
 - interpretaz geom: punti 2D (a, b)
- Moltiplicaz fra complessi: ...
 - interpretaz geom: ...
- Dunque:
 - moltiplicare per ruotare in 2D numero complesso → (attorno (a norma 1) all'origine)
 - numeri complessi → rappresentaz (a norma 1) rotazioni in 2D

Passare ai quaternioni

Assunzione "fantasiosa":

ci sono i j k t.c.

cioè:

$$i^{2} = j^{2} = k^{2} = -1$$

 $ij = k$ $ji = -k$
 $jk = i$ $kj = -i$
 $ki = i$ $ik = -i$

Conseguenze:

- "Quaternione": (a i+bj+ck+d)
 - *interpr. geom:* punti 3D (a,b,c), quando d=0
- Molitplicare due quat: ...
- Invertire un quat: ...
- Coniungare due quat q e p (fare q p q): ...
 - interpretaz geom: ruotare p

 con la rotaz def da q
- Dunque:
 - coniugare con un → ruotare in 3D quat (con norma 1)
 ruotare in 3D (asse pass. x ori)
 - quaternioni
 (a norma 1)
 → rappresentaz
 rotazioni in 3D

Modo 4: "quaternioni" (4 float)

- Compattezza: buono
- Cumulare: facillimo ;)
- Invertire: facillimo ;)
- Interpolare: facillimo;) ...e best results!
- Applicazione diretta: facillimo ;)
 - (ma, per cumulare con altre trasformazioni, meglio passare a forma matriciale cmq)

Modo 4: "quaternioni"

- analogo (in 4D) dei numeri complessi (in 2D)
- struttura simile ad asse + angolo:
 q = (asse_x, asse_y, asse_z, cos(angolo / 2))
 | q | = 1
- teoria molto elegante e solida
- ecco un altro "vec4" molto utile!
- storia:
 - roba di mezz'800!
 - cross e dot products emergono dalla loro teoria (!)
 - nati proprio per lo scopo (rappresentare rotazioni)

convenzione: Rosso = X Verde = Y

GUI: come *specifico* le scalature in 3D?

- scaling gizmo
 - (tipic. orientato in spazio oggetto)
 - tre handles per le scalature anisotropichje
 + un handle centrale per scalature uniformi

convenzione: Rosso = X Verde = Y

Rotazioni in unity

- Nella GUI del game tool:
 - Euler Angles
- Internamente:
 - Quaternions
 - Dunque, negli scripts: class quaternion

Rotazioni in OpenGL

- Nelle API «old school»: glRotate3f
 - Asse e angolo
- Internamente:
 - Matrici
 - (come tutte le altre trasformazioni spaziali)

Reppresentare rotazioni

- Matrici 3x3
- Angoli di Eulero
- Asse + angolo
- Quaternioni

Reppresentare roto-traslazioni

- Matrici 3x3
- Angoli di Eulero
- Asse + angolo
- Quaternioni

+ Traslazione (displ. vec)

Dual Quaternions