Enhanced Performance Delay and Liveness Monitoring in Segment Routing Networks

draft-gandhi-spring-sr-enhanced-plm-03

```
Rakesh Gandhi - Cisco Systems (<u>rgandhi@cisco.com</u>) - Presenter
Clarence Filsfils - Cisco Systems (<u>cfilsfil@cisco.com</u>)
Navin Vaghamshi - Reliance (<u>Navin.Vaghamshi@ril.com</u>)
Moses Nagarajah - Telstra (<u>Moses.Nagarajah@team.telstra.com</u>)
Richard Foote - Nokia (<u>footer.foote@nokia.com</u>)
```

Agenda

- Requirements and Scope
- Summary
- Next Steps

Requirements and Scope

Requirements:

- Performance Delay Monitoring & Liveness Monitoring in SR networks
 - ✓ End-to-end P2P/P2MP SR paths
 - ✓ Applicable to SR-MPLS/SRv6 data planes
- Running single protocol in SR networks
 - ✓ Simplify implementations and reduce development cost
 - ✓ Simplify deployment and reduce operational complexity
- No reflector dependency
 - ✓ Stateless on reflector (e.g. reflector unaware of the monitoring protocol)
 - ✓ State is in the probe message spirit of SR
 - ✓ Higher scale and faster detection interval

Scope:

- RFC 5357 (TWAMP Light) compatible probe message
- RFC 8762 (Simple TWAMP (STAMP)) compatible probe message

History of the Draft

- March 2020
 - Draft was published
- April 2020
 - Presented version 00 in IETF 107 Virtual MPLS WG Meeting
- July 2020
 - Presented version 02 in IETF 108 Online SPRING WG meeting
- September 2020
 - Presented version 02 in MPLS WG Interim meeting

PM Probes in Loopback Mode for SR Policy

- Using PM delay measurement probe messages in Loopback Mode
- Probe messages are sent using Segment List(s) of the SR Policy Candidate Path(s)
- Probe messages are not punted on the reflector node out of fast-path in forwarding
- Reflector is agnostic to the monitoring protocol

Enhanced Performance Delay and Liveness Monitoring of SR Policy

- Using PM probes in loopback mode enabled with network programming function
 - The network programming function optimizes the "operations of punt and inject the probe packet" on the reflector node
 - As probe packets are forwarded in fast-path, higher scale with faster interval is possible resulting in faster failure detection
- Reflector node adds the receive timestamp in the payload of the received probe message in the fast-path
 - Only adds the receive timestamp if the source address or destination address in the probe message matches the local node address
 - Ensure loopback probe packets return from the intended reflector node

Probe Messages for Timestamp and Forward Function

- Leverage existing TWAMP implementations and deployments using compatible probe message format
- Sender adds Transmit Timestamp (t1)
- Reflector adds Receive Timestamp (t2) at offset-byte location in payload
 - offset-byte 16 from the start of the payload, or
 - locally provisioned location (consistently in the network)

SR-MPLS with Timestamp, Pop and Forward Function

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       Label(1)
  Label(n)
Extension Label (15)
Timestamp Label (TBA1)
IP Header
 Source IP Address = Reflector IPv4 or IPv6 Address
 Destination IP Address = Sender IPv4 or IPv6 Address
 UDP Header
 Source Port = As chosen by Sender
 Destination Port = As chosen by Sender
 Payload
   Example Probe Message with Timestamp Label for SR-MPLS
```

- Extended Special-purpose label (TBA1) is defined for Timestamp, Pop and Forward function
- Reverse Path can be IP or SR-MPLS
- Source and Destination Addresses are swapped that represent the Reverse direction path

SRv6 with Timestamp and Forward Endpoint Function

- Endpoint Function End.TSF is defined for Timestamp and Forward network programming and is carried for the Reflector node SID
- Reverse path can be IP
 - Reflector node removes SRH
- Reverse path can be SR
 - Reverse direction SR path Segmentlist carried in SRH
 - Reflector node does not remove the SRH
- Source and Destination Addresses are swapped that represent the Reverse direction path in the inner IPv6 header

ECMP Support for SR Paths

- SR Paths can have ECMPs between the ingress and transit nodes, between transit nodes and between transit and egress nodes.
- PM probe messages can take advantage of the hashing function in forwarding plane to explore ECMP paths.
- Existing forwarding mechanisms are applicable to PM probe messages. Examples are:
 - For IPv4 when return path is also SR-MPLS
 - Sweeping destination address in IPv4 header (e.g. 127/8)
 - For IPv6
 - Sweeping flow label in IPv6 header

Example Provisioning Model

Notifications

- Delay metrics are notified when consecutive M number of probe messages have delay values exceed the configured thresholds
- Liveness failure (bring-down loss of heart beats) is notified when consecutive N number of return probe messages are not received at the sender node
- Liveness success (bring-up success of heart beats) is notified as soon as one or more return probe messages are received at the sender node

Next Steps

- Welcome your comments and suggestions
- Requesting SPRING WG adoption

Thank you

Backup

Loopback Mode with Timestamp and Forward for SR-MPLS Policy

Thank you