Quantum Machine Learning

Meltem Tolunay Research Staff Member IBM Quantum

Overview

1

Machine learning preliminaries

2

Variational circuits and data encoding

3

Quantum kernels and support vector machines

4

Quantum neural networks

Machine learning preliminaries

"Learning and adapting without following explicit instructions, by analyzing and drawing inferences from patterns in data"

Machine learning overview

Function approximation and optimization

$$g(x)$$
 true function

approximate

x: data featurese.g. pixel values of an image

 $f(\hat{x}, \overrightarrow{\theta})$

mathematical model

e.g.
$$h(x, \overrightarrow{\theta}) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

Goal: choose
$$f$$
 train $\overrightarrow{\theta}$

Machine learning types

Supervised Learning

- Classification
- Regression

2

Unsupervised Learning

- Dimensionality reduction
- Clustering
- Some generative models like GAN, autoencoder, etc.

3

Reinforcement Learning

Agent maximizing rewards in an environment

Supervised learning workflow

e.g. Mean squared error

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n \left(Y_i - \hat{Y_i}
ight)^2.$$

e.g. Gradient descent

Model validation

Model should work well both on training and the test data

The model should not overfit or underfit to training data (poor generalization)

"bias-variance" trade-off

Variational circuits and data encoding

Quantum machine learning

Schuld, Maria, and Francesco Petruccione. Supervised learning with quantum computers. Vol. 17. Berlin: Springer, 2018.

Also: near-term vs fault-tolerant

- Quantum SVM– HHL algorithm
- Quantum NNs– Quantum PCA

Harrow, Aram W., Avinatan Hassidim, and Seth Lloyd. "Quantum algorithm for linear systems of equations." Physical review letters 103.15 (2009): 150502. Lloyd, Seth, Masoud Mohseni, and Patrick Rebentrost. "Quantum principal component analysis." Nature Physics 10.9 (2014): 631-633.

Variational circuit as a classifier

Variational circuit

Parametrized quantum circuit (PQC)

Ansatz

Variational circuit as a classifier

Task: Supervised learning (suppose binary classification, {1, -1})

Step 1: Encode the classical data into a quantum state

Step 2: Apply a parameterized model

Step 3: Measure the circuit to extract labels

Step 4: Use optimization techniques (like gradient descent) to update

model parameters

Basis encoding: Encode each *n*-bit feature into *n* qubits

$$\overrightarrow{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 11 \\ 01 \\ 00 \\ 11 \end{bmatrix} = \begin{bmatrix} |11 \rangle \\ |01 \rangle \\ |00 \rangle \\ |11 \rangle \end{bmatrix}$$

One of the computational basis states of 8 qubits

Amplitude encoding: Encode into quantum state amplitudes $|\psi_x
angle=\sum_i x_i|i
angle$

$$|\psi_x
angle = \sum_{i=1}^N x_i |i
angle$$

$$\overrightarrow{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3/\sqrt{19} \\ 1/\sqrt{19} \\ 0/\sqrt{19} \\ 3/\sqrt{19} \end{bmatrix}$$

$$\frac{10)}{(0)} - \frac{1}{(\alpha)}$$

Amplitudes of 2 qubits

Angle encoding: Encode values into qubit rotation angles

$$\overrightarrow{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3/\sqrt{19} \\ 1/\sqrt{19} \\ 0/\sqrt{19} \\ 3/\sqrt{19} \end{bmatrix}$$

$$|0\rangle - \left[R_{x}(x_{1})\right] - \left[R_{x}(x_{2})\right] - \left[R_{x}(x_{3})\right] - \left[R_{x}(x_{4})\right]$$

$$|0\rangle - \left[R_{x}(x_{4})\right] - \left[R_{x}(x_{4})\right]$$

$$|x\rangle = \bigotimes_{i=1}^{N} \cos(x_i)|0\rangle + \sin(x_i)|1\rangle$$

$$|x\rangle = \bigotimes_{i=1}^{n} \cos(x_{2i-1})|0\rangle + e^{ix_{2i}} \sin(x_{2i-1})|1\rangle$$

angle encoding

dense angle encoding

Higher order encoding: Feature maps

$$\overrightarrow{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

blocks can be repeated

Basis Encoding

Encode each *n*-bit feature into *n* qubits

$$x = (b_{n-1}, ..., b_1, b_0) \rightarrow |x\rangle = |b_{n-1}, ..., b, b_0\rangle$$

Amplitude Encoding

Encode into quantum state amplitudes

$$x = \begin{bmatrix} x_0 \\ \vdots \\ x_{N-1} \end{bmatrix} \rightarrow |\psi_x\rangle = \sum_{j=0}^{N-1} x_j |j\rangle$$

Angle Encoding

Encode values into qubit rotation angles

$$|x\rangle = \bigotimes^{N} \cos(x_i) |0\rangle + \sin(x_i) |1\rangle$$

Arbitrary Encoding (Feature Map)

Encode N features on N rotation gates in constant-depth circuit with n qubits

$$x = \begin{bmatrix} x_0 \\ \vdots \\ x_{N-1} \end{bmatrix} \rightarrow |\psi_x\rangle = \mathcal{U}_{\Phi(x)}|0\rangle$$

Encoding	# Qubits	State prep runtime
Basis	nN	O(N)
Amplitude	log(N)	$\frac{O(N)}{O(\log(N))}$
Angle	N	O(N)
Arbitrary	n	O(N)

N features each

Variational model

Goal: designing a

hardware-efficient ansatz

expressivity and depth

Leone, Lorenzo, et al. "On the practical usefulness of the hardware efficient ansatz." arXiv preprint arXiv:2211.01477 (2022).

Extracting labels

measurement outcomes

labels cost function

classical optimizer

Binary classification {1,-1}:

1. Parity post-processing (00, 01, 10, 11)

2.Measure only 1 qubit ($\langle Z \rangle \rangle = 0$, otherwise)

sampler

Qiskit

estimator

Optimization: parameter update

e.g. Mean squared error

Cost:

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n \left(Y_i - \hat{Y_i}
ight)^2.$$

If optimizer needs:

$$\partial_{\theta_i} f(\boldsymbol{\theta})$$

Parameter-shift rule

Gradient =
$$|0\rangle^{\otimes n}$$
 $U(\theta + s)$ $\hat{y}_{\theta + s}$ $U(\theta - s)$ $\hat{y}_{\theta - s}$ / 2

Remark: SPSA (Simultaneous Perturbation Stochastic Approximation)

Quantum kernels and support vector machines

Support vector machines (SVMs)

Classification problem, e.g. binary classification

Primal formulation

$$f(x) = \overrightarrow{O}^T \overrightarrow{x} + b$$

Dual formulation

$$f(x) = \sum_{i=1}^{n} \alpha_i y_i \left(\vec{x}_i^T \vec{X} \right) + b$$

Support vector machines

When data is not linearly separable

$$\overrightarrow{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\phi(\overrightarrow{x}) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{bmatrix}$$

feature map

Support vector machines

Primal formulation

$$f(x) = \overrightarrow{O}^T \overrightarrow{x} + b$$

$$f(x) = \Theta^T \Phi(x) + b$$

Dual formulation

$$f(x) = \sum_{i=1}^{n} \alpha_i y_i \left(\vec{X}_i^T \vec{X} \right) + b$$

$$f(x) = \sum_{i=1}^{n} \alpha_i y_i (\phi(x_i)^T \phi(x)) + b$$

inner product "kernel"

Quantum kernels

- Interpreting data encoding to a quantum state as a feature map

$$x \to |\phi(x)\rangle$$

- Quantum kernels can only be expected to do better than classical kernels
 if they are hard to estimate classically.
 - necessary but not sufficient
- It was shown that learning problems **exist**, for which learners with access to quantum kernel methods have a quantum advantage over all classical learners.

Havlíček, Vojtěch, et al. "Supervised learning with quantum-enhanced feature spaces." Nature 567.7747 (2019): 209-212.

Glick, Jennifer R., et al. "Covariant quantum kernels for data with group structure." Nature Physics (2024): 1-5.

Quantum SVM

quantum kernel estimator

$$K_{i,j} = |\langle \Phi(x_j) | \Phi(x_i) \rangle|^2$$

$$\Pr[\text{measure } |0\rangle] = |\langle 0| \Phi(x_j)^{\dagger} \Phi(x_i) |0\rangle)|^2$$

For i,j in the training set:

- Prepare $\Phi(x_j)^{\dagger}\Phi(x_i)\ket{0}$
- Let $K_{i,j} = \Pr[\text{measure} |0\rangle]$
- Plug K_{i,i} into the dual form and solve
- Return $\{\alpha_i\}$
- Label label(s) = $sign(\sum_i \alpha_i K(x_i, s) + b)$

Quantum neural networks

Classical feed-forward neural networks

perceptron

$$f(\overrightarrow{x}) = \sigma(\overrightarrow{w} \cdot \overrightarrow{x} + b)$$

non-linear activation function

Quantum perceptron

Need to implement non-linearity with quantum circuits

QFT based perceptron

M. Schuld et al., Phys. Lett. A 379, 660 (2015)

Non-linearity from measurement

F. Tacchino et al., npj Quantum Inf. 5, 26 (2019)

Quantum neural networks

30

classical feed-forward neural network

quantum neural networks

difference: data reuploading universal function approximators

Pérez-Salinas, Adrián, et al. "Data re-uploading for a universal quantum classifier." Quantum 4 (2020): 226.

Convolutional neural networks (CNNs)

Quantum convolutional neural networks (QCNNs)

Properties:

- QCNNs have O(logN) layers and parameters
- They don't suffer from the problem of barren plateaus

Pesah, Arthur, et al. "Absence of barren plateaus in quantum convolutional neural networks." Physical Review X 11.4 (2021): 041011.

Cong, Iris, Soonwon Choi, and Mikhail D. Lukin. "Quantum convolutional neural networks." Nature Physics 15.12 (2019): 1273-1278.

Barren plateaus

Random initialization of parameters in deep circuits:

Gradients of the cost function vanish exponentially with the number of qubits

Mitigating barren plateaus:

Initialization strategies

For an alternating layered ansatz: shallow circuits local cost functions

####