

Sieci komputerowe

Model OSI

Mgr Jacek Mochyła

Wykład 3

Inspiracja 1

NETWORKING: Warstwowy Model Sieci (ISO/OSI, TCP/IP, 7 Layers)

https://www.youtube.com/watch?v=01DwEl0g_cg

Inspiracja 2

https://www.youtube.com/watch?v=wDGAkp1sHM4

Historia modelu OSI

Model OSI (**Open Systems Interconnection**) został opracowany przez Międzynarodową Organizację Normalizacyjną (ISO) w latach 70. i 80. XX wieku. Jego powstanie było odpowiedzią na rosnącą potrzebę **standaryzacji** komunikacji w różnorodnych i coraz bardziej skomplikowanych **sieciach** komputerowych.

W tamtych czasach, wiele sieci komputerowych używało własnych, **niekompatybilnych** protokołów, co **utrudniało** komunikację między różnymi systemami.

Warstwy modelu OSI

WARSTWA APLIKACJI

WARTSTWA PREZENTACJI

WARTSTWA SESJI

WARTSTWA TRANSPORTOWA

WARTSTWA SIECIOWA

WARTSTWA ŁĄCZA DANYCH

WARTSTWA FIZYCZNA

Model OSI z różnych perspektyw

	OSI Layer	TCP/IP	Datagrams are called
Software	Layer 7 Application	HTTP, SMTP, IMAP, SNMP, POP3, FTP	Upper Layer Data
	Layer 6 Presentation	ASCII Characters, MPEG, SSL, TSL, Compression (Encryption & Decryption)	
	Layer 5 Session	NetBIOS, SAP, Handshaking connection	
	Layer 4 Transport	TCP, UDP	Segment
	Layer 3 Network	IPv4, IPv6, ICMP, IPSec, MPLS, ARP	Packet
Hardware	Layer 2 Data Link	Ethernet, 802.1x, PPP, ATM, Fiber Channel, MPLS, FDDI, MAC Addresses	Frame
	Layer 1 Physical	Cables, Connectors, Hubs (DLS, RS232, 10BaseT, 100BaseTX, ISDN, T1)	Bits

OSI REFERENCE MODEL TCP/IP CONCEPTUAL LAYERS **APPLICATION** 6 PRESENTATION APPLICATION SESSION TRANSPORT TRANSPORT ROUTER NETWORK **** # 8 #0 **NETWORK** SWITCH **DATA LINK NETWORK** INTERFACE **PHYSICAL** ----

Warstwa fizyczna

Physical Layer

Ethernet Hubs

Token Ring
networks

Ethernet Cables

Funkcje: przesyłanie surowych bitów przez medium fizyczne.

Komponenty: kable (miedziane, światłowodowe), radiowe, modemy.

Przykłady: standardy Ethernet (kable miedziane), Wi-Fi (fale radiowe).

W tej warstwie definiowane są parametry **fizyczne**, takie jak **napięcie**, **częstotliwość** czy **szybkość** transmisji.

Warstwa łącza danych

Funkcje: zapewnienie bezbłędnego przesyłania danych między sąsiadującymi węzłami sieci, adresowanie fizyczne.

Komponenty: Adresy MAC, mosty, przełączniki.

Przykłady: Ethernet, protokół PPP.

Na jej poziomie pojawia się pojęcie **ramek**, które są przesyłane od nadawcy do odbiorcy. Dostarcza ona również mechanizmy **kontroli** i korygowania błędów mogących wystąpić w trakcie transmisji fizycznej, ogólnie zapewniając skuteczne przekazywanie ciągów **bitów**.

Warstwa sieciowa

Funkcje: określanie trasy przesyłania danych w sieciach skomplikowanych i wielodostępnych.

Komponenty: Routery, protokoły trasowania.

Przykłady: IP (Internet Protocol), ICMP dla diagnostyki.

Pakiety mogą być przesyłane w jednym z dwóch modeli komunikacji:

połączeniowym – najpierw ustanawiane jest logiczne połączenie sieciowe tzw. kanał wirtualny, którym przesyłane są dalej odpowiednio oznakowane i okrojone z niepotrzebnych już dodatkowych informacji sterujących pakiety.

bezpołączeniowym – każdy pakiet posiada niezbędną informacje potrzebną do prawidłowego dotarcia do adresata i jest przesyłany przez sieć niezależnie (pakiety w trybie bezpołączeniowym mogą więc docierać do odbiorcy w innej kolejności niż zostały wysłane).

Ważne: mechanizmy działające w ramach wszystkich warstw powyżej warstwy sieciowej pracują wyłącznie w obrębie końcowych komunikujących się ze sobą urządzeń. W urządzeniach sieciowych biernie pośredniczących w komunikacji warstwy te nie są używane.

Warstwa transportowa

Funkcje: zapewnienie niezawodnego, w kolejności dostarczenia danych między punktami końcowymi.

Komponenty: TCP (dla niezawodności), UDP (dla szybkości).

Przykłady: TCP gwarantujący dostarczenie, UDP dla transmisji strumieniowej.

Delivers data across network connections like TCP

Different transport protocols may support a range of optional capabilities including:

Support for re-transmission

Odpowiedzialna jest za **dzielenie** przesyłanych danych na **pakiety**, **scalanie** odebranych pakietów, oraz **transport** informacji jako całości między systemami końcowymi. Transport ten, w przeciwieństwie do zadań warstwy sieciowej, gwarantuje **integralność** komunikacji. Występuje tu mechanizm **kontroli** sytuacji takich jak **zagubione** czy powielane pakiety. W razie potrzeby dokonuje ich **retransmisj**i. Zapewnia również mechanizmy nadzorujące ich właściwą kolejność oraz priorytety

Na poziomie tej warstwy dochodzi do **decyzji** czy pakiety będą przesyłane protokołem **TCP** (połączeniowy, Transmission Control Protocol) czy **UDP** (bezpołączeniowy, User Datagram Protocol).

Warstwa sesji

Funkcje: zarządzanie sesjami komunikacji między aplikacjami.

Komponenty: API umożliwiające aplikacjom otwieranie,

zarządzanie i zamykanie sesji.

Przykłady: NFS, SQL, RPC.

Posiada mechanizmy umożliwiające **sterowanie sesją** miedzy aplikacjami w systemach końcowych, określa **tryb** sesji (przekazywanie danych:

dwukierunkowe jednoczesne, naprzemienne, jednokierunkowe), realizuje funkcje odpowiedzialne za **synchronizujące** dostępu do wspólnych zasobów oraz porządkuje proces wymiany danych.

Warstwa sesji "wie", która aplikacja łączy się z którą, dzięki czemu może zapewnić właściwy kierunek przepływu danych. Wznawia je po przerwaniu.

Warstwa prezentacji

Funkcje: tłumaczenie danych pomiędzy formatem sieci a formatem zrozumiałym dla aplikacji.

Komponenty: protokoły szyfrowania, kompresji, konwersji formatów danych.

Przykłady: SSL/TLS, MIME.

Podczas ruchu **w dół** zadaniem warstwy prezentacji jest przetworzenie danych **od** aplikacji **do** postaci kanonicznej zgodnej ze **specyfikacją** modelu OSI.

Dzięki temu procesowi **niższe** warstwy zawsze otrzymują dane w tym **samym** formacie. Kiedy informacje płyną **w górę**, warstwa prezentacji **tłumaczy** format otrzymywanych danych na **zgodny** z wewnętrzną reprezentacją systemu **docelowego**.

Wynika to ze **zróżnicowania** systemów komputerowych, które mogą w różny sposób interpretować te same dane.

Warstwa aplikacji

Funkcje: Interfejs końcowy dla użytkowników i aplikacji do dostępu do sieci.

Komponenty: Aplikacje i procesy klient-serwer.

Przykłady: HTTP (strony internetowe), FTP (transfer plików), SMTP

(email). Jeżeli użytkownik posługuje się oprogramowaniem działającym w architekturze **klient-serwer**, zwykle po jego stronie znajduje się klient, a serwer działa na maszynie podłączonej do sieci świadczącej usługi równocześnie wielu klientom.

Zarówno serwer, jak i klient znajdują się w warstwie **aplikacji**. Komunikacja nigdy nie odbywa się bezpośrednio między tymi programami. Kiedy klient chce przesłać żądanie do serwera to przekazuje komunikat **w dół** do warstw niższych.

Przez ten proces następuje **fizyczne** przesyłanie go do odpowiedniej maszyny, gdzie informacje ponownie wędrują **w górę** i są ostatecznie odbierane przez **serwer**. Jednocześnie zapewnia **interfejs** między aplikacjami a siecią.

Porównanie z modelem TCP/IP

Podobieństwa:

Oba modele zapewniają zestaw warstw do zarządzania różnymi aspektami komunikacji sieciowej.

Warstwa transportowa i sieciowa w obu modelach pełnią podobne funkcje.

Różnice:

Liczba warstw: Model OSI ma **7** warstw, podczas gdy model TCP/IP opiera się na **4** warstwach.

Skupienie na standardach: Model OSI jest **bardziej** teoretyczny i skupiony na **standardach**, TCP/IP jest bardziej **praktyczny** i oparty na protokołach używanych w Internecie.

Warstwa aplikacji: W modelu OSI, warstwy aplikacji, prezentacji i sesji są oddzielne, podczas gdy w modelu TCP/IP są one zintegrowane w jedną warstwę aplikacji.

Elastyczność: TCP/IP jest bardziej **elastyczny** i łatwiejszy do **adaptacji** w praktycznych zastosowaniach internetowych.

Znaczenie modelu OSI

Standaryzacja komunikacji: model OSI stanowił ramy referencyjne dla twórców sprzętu i oprogramowania, umożliwiając tworzenie kompatybilnych i interoperacyjnych rozwiązań sieciowych.

Modularność: podział na warstwy ułatwił projektowanie sieci, umożliwiając niezależny rozwój i modyfikacje poszczególnych warstw.

Ułatwienie diagnostyki: model OSI, dzięki wyraźnemu podziałowi funkcji sieciowych na warstwy, ułatwił diagnozowanie i rozwiązywanie problemów sieciowych.

Edukacja i szkolenia: stał się standardowym narzędziem edukacyjnym w nauczaniu sieci komputerowych, umożliwiającym lepsze zrozumienie złożonych procesów zachodzących w sieci.

Popularyzacja koncepcji warstwowej: model OSI miał duży wpływ na rozwój innych modeli sieciowych, w tym modelu TCP/IP, który stał się fundamentem Internetu.

Praktyczne znaczenie modelu OSI

Chociaż w praktycznych zastosowaniach model OSI został w dużej mierze zastąpiony przez model **TCP/IP**, jego wpływ jest nadal widoczny.

Model OSI służy jako narzędzie **dydaktyczne** i teoretyczne, pomagając w zrozumieniu i projektowaniu systemów sieciowych. Jest też używany w niektórych specjalistycznych aplikacjach i standardach sieciowych.

Podsumowując, model OSI odegrał kluczową rolę w **ujednoliceniu** i rozwoju sieci komputerowych, stając się kamieniem węgielnym w edukacji i rozwoju technologii sieciowych.

Jego warstwowa struktura do dzisiaj **pomaga** w lepszym **zrozumieniu** i zarządzaniu **złożonością** systemów komunikacyjnych.

Dziękuję za uwagę