STAT 3355 Introduction to Data Analysis

Lecture 06: Summaries for Univariate Data I

Created by: Qiwei Li Assistant Professor of Statistics Presented by: Octavious Smiley Assistant Professor of Instruction

Department of Mathematical Sciences The University of Texas at Dallas

Learning Goals

- Summarize a univariate data in two ways
 - Center
 - Spread
- Numerical summaries for discrete data
 - Center: The mode
- Graphical summaries for discrete data
 - Bar chart

Discrete Data

- Samples share a finite number of values (have ties)
- Data type
 - Integer (if the number of possible values is small)
 - Categorical data
 - Logical data
- Examples
 - The whole number of age of people in this class
 - Adult or nonadult of a person
 - The blood type of a person: A, B, AB, or O
 - The political party that a person vote for: Democratic, republican, etc.

Data Tabulating

Denote a univariate discrete dataset by

$$x = [x_1, \dots, x_i, \dots, x_n], \text{ where } x_i \in \{0, 1, \dots, K-1\}$$

Tabulating data is to obtain a frequency table, which is an integer vector

$$f = [n_0, \dots, n_k, \dots, n_{K-1}], \text{ where } n_k = \sum_{i=1}^n I(x_i = k)$$

Here $I(\cdot)$ is an indicator function

- Interpretation
 - The frequency of each possible value

Data Tabulating

- Implementation in R
 - x is a integer/factor/logical vector
 - \blacksquare table(x)
 - lacksquare x is a integer/factor/logical variable in a data frame X
 - \blacksquare table(X\$x_name)
 - NA will be omitted
 - Output

Data type	Order
Integer	From smallest to largest
Factor	Alphabetical
Ordered factor	Self-defined levels
Logical	FALSE, TRUE

Data Tabulating

Examples

```
library(UsingR)
# Load data babies
data("babies")
# Smoke variable
x <- babies$smoke
table(x)
# Turn x into a factor vector
x <- factor(x, labels = c("Never", "Now", "
   Until pregnancy", "Once but quit", "
   Unknown"))
table(x)
```

The Mode

00000000000000

Denote a univariate discrete dataset by

$$x = [x_1, \dots, x_i, \dots, x_n], \text{ where } x_i \in \{0, 1, \dots, K-1\}$$

and the resulting frequency table by

$$f = [n_0, \dots, n_k, \dots, n_{K-1}], \text{ where } n_k = \sum_{i=1}^n I(x_i = k)$$

The mode

$$m = \operatorname{argmax}_k \boldsymbol{f}$$

- Interpretation
 - The unique value in x that occurs most often

The Mode

- Implementation in R
 - x is a integer/factor/logical vector
 - \blacksquare names(which.max(table(x)))
 - lacktriangleq x is a integer/factor/logical variable in a data frame X
 - names(which.max(table(X\$x_name)))

The Diversity

Denote a univariate discrete dataset by

$$x = [x_1, \dots, x_i, \dots, x_n], \text{ where } x_i \in \{0, 1, \dots, K-1\}$$

and the resulting frequency table by

$$f = [f_0, \dots, f_k, \dots, f_{K-1}], \text{ where } f_k = \sum_{i=1}^n I(x_i = k)$$

The relative frequency table is defined by

$$oldsymbol{p} = [p_0, \dots, p_k, \dots, p_{K-1}]\,, ext{ where } p_k = rac{f_k}{\sum_{j=0}^{K-1} f_j}$$

The Shannon Index

The Shannon index

$$H_{\mathsf{shannon}} = -\sum_{k=0}^{K-1} p_k \log p_k$$

- Originates from information science (Shannon, 1948)
- Interpretation
 - lacksquare All the values have the same frequency, then $H_{\sf shannon} = \log K$
 - The data has only one value, then $H_{\sf shannon} = 0$
 - lacktriangle The more unequal the distribution of the types, the smaller the $H_{
 m shannon}$
- Implementation in R: p = table(x)/sum(table(x)) and $H_{shannon} = -sum(p * log(p))$

The Simpson Index

The Simpson index

$$H_{\mathsf{simpson}} = 1 - \sum_{k=0}^{K-1} p_k^2$$

- Originates from economics (Gini, 1912)
- Interpretation
 - All the values have the same frequency, then $H_{\rm simpson} = 1 1/K$
 - The data has only one value, then $H_{simpson} = 0$
 - \blacksquare The more unequal the distribution of the types, the smaller the ${\cal H}$
- Implementation in R: p = table(x)/sum(table(x)) and $H_{simpson} = 1 sum(p * p)$

The Diversity

- Suppose there are only K=2 categories
- If the relative frequency for one category is p, then the one for the other is 1-p

Your Turn

- Apply the function table() to the age variable in the dataset babies
- Identify the missing values and change them to NA
- Turn the integer vector to a factor vector by truncating values into 10s, 20s, 30s, and 40s
- What is the mode of the factor vector?
- What is the proportion of pregnancy women whose age were above 40?

Your Turn

```
# Load data
library(UsingR)
data("babies")
x <- babies$age
# Tabulate data
table(x)
# Change the value of 99 to NA
x[which(x == 99)] <- NA
# Turn x to a factor vector
x \leftarrow cut(x, breaks = c(0, 19, 29, 39, 49),
   labels = c("10s", "20s", "30s", "40s"))
```

Your Turn

```
# What is the mode
names(which.max(table(x)))

# What is the proportion of 40s women
round(table(x)["40s"]/sum(table(x)), 3)
```

Bar Chart

- Also known as barplots
 - One axis arranges the levels of a discrete univariate data in some order
 - The other axis represents their frequency with a bar of a height proportional to the frequency
- The input is the output of the function table()

Bar Chart

- Implementation in R
 - x is a integer/factor/logical vector
 - barplot(table(x))
 - lacktriangleq x is a integer/factor/logical variable in a data frame X
 - barplot(table(X\$x_name))

Bar Chart

Examples

```
# Smoke variable
x <- babies$smoke
table(x)
# Change the value of 9 to NA
index_9 \leftarrow which(x == 9)
x[index 9] <- NA
# Turn x to a factor vector
x <- factor(x, labels = c("Never", "Now", "
   Until pregnancy", "Once but quit"))
# Plot the bar chart
barplot(table(x))
```

The Function barplot()

- Important arguments controlling the bars
 - horiz: A logical value for the orientation of the bars
 - col: A vector of colors for each bar

- border: A vector of colors for the boarder of each bar
- ylim: A numerical vector of two values indicating the limits for the axis that represents the frequency
- xpd: A logical value indicating if bars go outside region

The Function barplot()

- Important arguments controlling the labels
 - main: A string of title
 - names.arg: A character vector of names for each bar
 - xlab and ylab: A string of label for the axis names
 - \blacksquare las: A numeric value of $\{0,1,2,3\}$ for the orientation of axis labels

The Function barplot()

- Important arguments controlling the label size
 - cex.main: A numeric value for the title size
 - cex.lab: A numeric value for the size of axis labels
 - cex.axis: A numeric value for the size of x axis label
 - cex.names: A numeric value for the size of axis names

Discussions

- Sort the levels in terms of their frequencies
 - sort(table(x))
 - \blacksquare sort(table(x), decreasing = TRUE)
- Transfer frequency to relative frequency
 - \blacksquare table(x)/sum(table(x))
 - \blacksquare table(x)/length(x)
- Mislead audience by truncating the y axis
 - barplot(table(x), ylim = c(,))
- Barplots can be used to illustrate time-series data
 - barplot(x)

Time-series Data

Examples

```
# Load data
data("central.park")

# Plot the average temperature in May 2003
    at Central Park, NYC
barplot(central.park$AVG)
```

- Make the barplot of the average daily temperature in May 2003 at Central Park more informative and pretty
 - Name the bars from day 1 to 31
 - Name the x axis as "Days in May 2003" and name the y axis as "Temp. (Fahrenheit)"
 - Set the title as "Average Temperature at Central Park, NYC"
 - Limit the bottom of y axis to 32, which corresponds to freezing point of water
 - Color those days above the average temperature in May in red; otherwise in blue

```
x <- central.park$AVG
# Name the bars from day 1 to 31
barplot(x, names.arg = 1:31)
# Name the x and y axis
barplot(x, names.arg = 1:31, xlab = "Days in
    May 2003", ylab = "Temp. (Fahrenheit)")
# Set the title
barplot(x, names.arg = 1:31, xlab = "Days in
    May 2003", ylab = "Temp. (Fahrenheit)".
   main = "Average Temperature at Central
   Park, NYC")
```

```
# Limit the bottom of y axis to freezing
  point
barplot(x, names.arg = 1:31, xlab = "Days in
    May 2003", ylab = "Temp. (Fahrenheit)",
    main = "Average Temperature at Central
    Park, NYC", ylim = c(32, 75), xpd = FALSE
  )
```

```
# Color each bar with respect to above or
   below the mean
cr <- rep("blue", 31)
index <- which(central.park$AVG > mean(
   central.park$AVG))
cr[index] <- "red"</pre>
```

```
barplot(x, names.arg = 1:31, xlab = "Days in
   May 2003", ylab = "Temp. (Fahrenheit)",
   main = "Average Temperature at Central
   Park, NYC", ylim = c(32, 75), xpd = FALSE
   , col = cr, border = cr)
```

Final display

Average Temperature at Central Park, NYC

Pie Chart

- A common graphic to represent proportions
 - Wedges of a circle indicate the relative frequencies of each unique value in a discrete univariate data
- Fails at discerning differences
- Not suitable when the number of unique values is large

Pie Chart

- Implementation in R
 - lacksquare x is a factor/logical vector
 - pie(table(x))
 - lacksquare x is a factor/logical variable in a data frame X
 - \blacksquare pie(table(X\$x_name))

Pie Chart

Example

```
# Load data
library(UsingR)
data("babies")
x <- babies$smoke
# Clean data
x[which(x == 9)] <- NA
x <- factor(x, labels = c("Never", "Now", "
   Until pregnancy", "Once but quit"))
# Plot data
pie(table(x), radius = 1, col = c("red". "
   orange", "yellow", "purple"), border = c(
   "red", "orange", "yellow", "purple"))
```

Dot Chart

- Also known as Cleveland dotplots
 - y axis arranges the levels of a discrete univariate data in some order
 - x axis represents their frequency over the range of the data
- Difference from the largest to the smallest is very obvious

Dot Chart

- Implementation in R
 - lacksquare x is a factor/logical vector
 - \blacksquare dotchart(table(x)) or dotchart2(table(x))
 - lacksquare x is a factor/logical variable in a data frame X
 - dotchart(table(X\$x_name)) and dotchart2(table(X\$x_name))

```
dotchart2(table(x), ylab = "Frequency")
```

After-class Reading

- Using R for Introductory Statistics (1st Ed.) by John Verzani
- Chapter 2 Univariate data
 - Section 2.1 Categorical data
 - Subsection 2.1.1 Tables
 - Subsection 2.1.2 Barplots
 - Subsection 2.1.3 Pie charts
 - Subsection 2.1.4 Dot charts
 - Subsection 2.1.5 Factors

After-class Reading

- Using R for Introductory Statistics (2nd Ed.) by John Verzani
- Chapter 2 Univariate data
 - Section 2.4 Categorical data