

In Beijing, China — August 20th-24th 2018

Fine-tuning

TWO-STAGE CONVOLUTIONAL NETWORK FOR IMAGE SUPER-RESOLUTION

{ZHENG HUI, XIUMEI WANG AND XINBO GAO}

SCHOOL OF ELECTRONIC ENGINEERING XIDIAN UNIVERSITY

ABSTRACT

Super-Resolution

High-resolution image

- Deep convolutional neural networks have recently advanced the state-of-the-art on the issue of single image super-resolution.
- An accurate and lightweight deep model is devised for image super-resolution.
- The proposed method constructs the multi-path information fusion (MIF) module to collect abundant information from the feature maps of the input, output and intermediary in a module.
- To improve the SR performance, a refinement network with local residual topology architecture is introduced.
- To speed up the inference, the proposed approach adopts less number of filters.
- Experimental results show that the proposed method achieves fast inference time and state-of-the-art SR results on four benchmark datasets simultaneously.

EXECUTION TIME

AVERAGE PSNR/SSIM/IFC RESULTS

Method	Scale	Set5 PSNR / SSIM / IFC	Set14 PSNR/SSIM/IFC	BSD100 PSNR/SSIM/IFC	Urban100 PSNR/SSIM/IFC
Bicubic		33.66 / 0.9299 / 6.083	30.24 / 0.8688 / 6.105	29.56 / 0.8431 / 5.619	26.88 / 0.8403 / 6.245
FSRCNN		37.00 / 0.9558 / 8.047	32.63 / 0.9088 / 7.731	31.50 / 0.8906 / 7.082	29.85 / 0.9009 / 8.026
VDSR	× 2	37.53 / 0.9587 / 8.580	33.03 / 0.9124 / 8.159	31.90 / 0.8960 / 7.494	30.76 / 0.9140 / 8.629
DRCN	~ Z	37.63 / 0.9588 / 8.783	33.04 / 0.9118 / 8.370	31.85 / 0.8942 / 7.577	30.75 / 0.9133 / <u>8.959</u>
LapSRN		37.52 / <u>0.9591</u> / <u>9.010</u>	32.99 / 0.9124 / <u>8.501</u>	31.80 / 0.8952 / <u>7.715</u>	30.41 / 0.9103 / 8.907
DRRN		<u>37.74</u> / <u>0.9591</u> / 8.670	<u>33.23</u> / <u>0.9136</u> / 8.280	<u>32.05</u> / 0.8973 / 7.513	<u>31.23</u> / <u>0.9188</u> / 8.889
TSCN		37.88 / 0.9602 / 9.175	33.28 / 0.9147 / 8.729	32.09 / 0.8985 / 7.871	31.29 / 0.9198 / 9.442
Bicubic		30.39 / 0.8682 / 3.580	27.55 / 0.7742 / 3.473	27.21 / 0.7385 / 3.138	24.46 / 0.7349 / 3.620
FSRCNN		33.16 / 0.9140 / 4.964	29.43 / 0.8242 / 4.549	28.52 / 0.7893 / 4.030	26.42 / 0.8064 / 4.842
VDSR	× 3	33.66 / 0.9213 / 5.203	29.77 / 0.8314 / 4.691	28.82 / 0.7976 / 4.151	27.14 / 0.8279 / 5.159
DRCN	3	33.82 / 0.9226 / 5.336	29.76 / 0.8311 / 4.782	28.80 / 0.7963 / 4.184	27.15 / 0.8276 / 5.314
LapSRN		33.81 / 0.9220 / 5.194	29.79 / 0.8325 / 4.662	<u>28.82</u> / 0.7980 / 4.057	27.07 / 0.8275 / 5.156
DRRN		<u>34.03</u> / <u>0.9244</u> / <u>5.394</u>	<u>29.96</u> / <u>0.8349</u> / <u>4.870</u>	28.95 / <u>0.8004</u> / <u>4.235</u>	27.53 / 0.8378 / <u>5.440</u>
TSCN		34.18 / 0.9256 / 5.544	29.99 / 0.8351 / 4.970	28.95 / 0.8012 / 4.350	<u>27.46</u> / <u>0.8362</u> / 5.559
Bicubic		28.42 / 0.8104 / 2.329	26.00 / 0.7027 / 2.237	25.96 / 0.6675 / 1.978	23.14 / 0.6577 / 2.361
FSRCNN		30.71 / 0.8657 / 2.986	27.59 / 0.7535 / 2.707	26.96 / 0.7128 / 2.359	24.60 / 0.7258 / 2.895
VDSR	× 4	31.35 / 0.8838 / 3.542	28.01 / 0.7674 / 3.106	27.29 / 0.7251 / 2.679	25.18 / 0.7524 / 3.462
DRCN		31.53 / 0.8854 / 3.543	28.02 / 0.7670 / 3.098	27.23 / 0.7233 / 2.633	25.14 / 0.7510 / 3.465
LapSRN		31.54 / 0.8852 / 3.559	28.09 / 0.7700 / 3.145	27.32 / 0.7275 / 2.677	<u>25.21</u> / 0.7562 / 3.530
DRRN		<u>31.68</u> / <u>0.8888</u> / <u>3.700</u>	<u>28.21</u> / <u>0.7721</u> / <u>3.249</u>	<u>27.38</u> / <u>0.7284</u> / <u>2.746</u>	25.44 / <u>0.7638</u> / <u>3.669</u>
TSCN		31.82 / 0.8907 / 3.766	28.28 / 0.7734 / 3.286	27.42 / 0.7301 / 2.792	25.44 / 0.7644 / 3.715

TIME PERFORMANCE

Methods	Scale	Set5 PSNR / TIME	Set14 PSNR / TIME	BSD100 PSNR / TIME	Urban100 PSNR / TIME
TSCN_I	×2	37.87 / 0.017	33.26 / 0.028	32.08 / 0.017	31.23 / 0.071
TSCN	×2	37.88 / 0.028	33.28 / 0.046	32.09 / 0.028	31.29 / 0.130
TSCN_I	× 3	34.14 / 0.013	29.96 / 0.018	28.93 / 0.012	27.38 / 0.043
TSCN	× 3	34.18 / 0.025	29.99 / 0.037	28.95 / 0.023	27.46 / 0.104
TSCN_I	×4	31.78 / 0.011	28.25 / 0.015	27.41 / 0.010	25.40 / 0.034
TSCN	×4	31.82 / 0.023	28.28 / 0.034	27.42 / 0.021	25.44 / 0.094

CODE

FRAMEWORK Loss function $\mathcal{L}_{MAE} = \frac{1}{N} \sum_{i=1}^{N} ||I_i - \hat{I}_i||_1$

Training

VISUAL RESULTS

Bicubic (26.46/0.8318/2.271)

FSRCNN (29.34/0.8886/3.025)

DRRN (30.36/0.9111/3.860) LapSRN (30.32/0.9090/3.710)

TSCN (30.73/0.9147/3.957) Visual comparison for $4 \times SR$ on "woman" from Set5.

TRAINING DETAILS

DRCN (30.10/0.9064/3.668)

Implementation

IKAINING DETAILS		
Item	Detail	
Input channels	1 (Y)	
Training images	291	
Mini-batch size	64	
Learning rate	10^{-4} , halved at every 5×10^5 iterations	
Data augmentation	Rotate, Flip and Downscale (×40)	
Optimizer	ADAM ($\beta_1 = 0.9$)	
Dataset	91 images + BSD200	

Caffe

Patch size				
Scale	Patch size			
2	$35^2/70^2$			
3	$25^2/75^2$			
4	$19^2/76^2$			

Kernel size of transposed convolution

Scale	Kernel size
2	4×4
3	5×5
4	8×8