REINFORCEMENT LEARNING OF PACMAN FINAL PROJECT

陳亭禎、郭冠宏、李宗穎

授課教師:曾士桓博士

TEAM09

電腦與通訊工程系

BACKGROUND OR TREND

- 發現問題:如何使電腦擁有自我學習的能力?
 - ▶ 於期中前所學:
 - ✓ Informed Search
 - ✓ UnInformed Search

還不算是讓電腦擁有自我學習的能力

✓ BerkeleyCS188 Pacman程式中Project3 Reinforcement learning的部份當成我們期末專題的實作內容。

MOTIVATION

- 根據前頁的問題,說明解問題的方向
 - ➤ 近些年因人工智慧(ALPHAGO、DRIVERLESS CAR)應用的風行,許多人工智慧相關的應用也接連不斷的出現於生活中,而我們團隊在本次的期末專題採用強化學習的動機主要有兩大重點:

• 圖片來源:https://reurl.cc/g0WRKX、https://reurl.cc/MbA3rk

MOTIVATION

- 根據前頁的問題,說明解問題的方向
 - ➤ 近些年因人工智慧(ALPHAGO、DRIVERLESS CAR)應用的風行,許多人工智慧相關的應用也接連不斷的出現於生活中,而我們團隊在本次的期末專題採用強化學習的動機主要有兩大重點:

1. 利用強化學習作出行為(action)與環境(Environment)互動接收不同的反饋(獎勵、懲罰)來對未知環境做出最好(optimal)的決策。

怪物抓到吃豆人,給予獎勵 怪物沒抓到吃豆人,給予懲罰

吃豆人吃到豆子,給予獎勵 吃豆人被怪物抓到,給予懲罰

OBJECTIVE

• 根據動機,說明解問題的方式

2. 大家可能會問? 那為何不用Supervised learning? Unsupervised learning? 監督式學習---有特定答案讓電腦學習

身高	體重	性別
162	60	女
172	60	男
172	55	男

身高	體重	性別
152	48	?

非監督式學習---沒有特定答案讓電腦學習,從特徵中尋找關聯

數學	物理	國文	英文
76	89	36	42
88	92	89	70
52	35	25	40
27	15	82	79

數學好 可能 物理好國文好 可能 英文好

OBJECTIVE

• 根據動機,說明解問題的方式

強化式學習---根據所處環境學習,無特定特徵,只設定所需達成目標,並建立獎懲機制以利學習

CHALLENGE

- 這類問題有什麼普遍的挑戰或解這問題方式的挑戰
 - 如何定義獎懲機制?

Agent	Event	Reward
吃豆人	吃到豆子	Score加10分
	吃完豆子	Score加500分
	被怪物抓到	Score減500分
	每經過一個Action	Score減1分
怪物	抓到吃豆人	怪物Score加500分
	每經過一個Action,且沒有抓到吃豆人	怪物Score減1分

CHALLENGE

- 這類問題有什麼普遍的挑戰或解這問題方式的挑戰
 - 達成目標後,如何判斷是不是最佳的?
 - ✓利用各別Agent的score判斷, score越高,訓練效果越好。
 - 如何互換怪物以及吃豆人的學習成果,並加以訓練?
 - ✓怪物和吃豆人的學習是同步的,故無交換之可能。
 - 是否好收斂?
 - ✔原先使用Q-Learning發現成效不彰,故使用Approximate
 - Q-Learning °

POTENTIAL SOLUTIONS

- 你會採取的演算法、技術等等
 - 演算法
 - 吃豆人--- Q-LEARNING
 - 怪物--- SARSA

SOLUTIONS

- 你會採取的演算法、技術等等
 - 演算法
 - 吃豆人---APPROXIMATE Q-LEARNING
 - 怪物--- APPROXIMATE SARSA
 - 繪圖技術
 - 吃豆人、豆子---CIRCLE()函式繪製
 - 怪物---POLYGON()函式繪製
 - 初始畫面---PYGAME函式庫、LABEL()建立MENU

Q-LEARNING / SARSA

演算法方面我們將會使用Q-LEARNING 及SARSA來實作。

首先兩演算法內部基礎概念來源於TD(TEMPORAL DIFFERENCE)-UPDATE RULE,由下圖所示:

$$Q(S,A) \leftarrow Q(S,A) + \alpha(R + \gamma Q(S',A') - Q(S,A))$$

藉由應用該公式,我們能透過程式在每一次的STATE-TRANSITION中進行Q-VALUE的更新,使得Q-VALUE能夠被逐漸訓練成在PACMAN遊戲中能表現出最好(OPTIMAL)成效的Q-VALUE。而實作過程中,我們也會應用到EPSILON GREEDY以機率決定AGENT在STATE上擁有隨機選擇ACTION的能力能夠來探索地圖世界。

Q-LEARNING / SARSA

• 圖片來源:https://reurl.cc/5GrRgG

對各別AGENT(怪獸及吃豆人的)演算法差異說明

Initialize Q(s,a) arbitrarily Repeat (for each episode): Initialize s Repeat (for each step of episode): **Q-Learning** Choose a from s using policy derived from Q (e.g., ε -greedy) Take action a, observe r, s' $Q(s,a) \leftarrow Q(s,a) + \alpha [r + \gamma \max_{a'} Q(s',a') - Q(s,a)]$ Off-policy $s \leftarrow s'$: until s is terminal Initialize Q(s,a) arbitrarily Repeat (for each episode): Initialize s Choose a from s using policy derived from Q (e.g., ε -greedy) Repeat (for each step of episode): Sarsa Take action a, observe r, s'Choose a' from s' using policy derived from Q (e.g., ε -greedy) On-policy $Q(s,a) \leftarrow Q(s,a) + \alpha [r + \gamma Q(s',a') - Q(s,a)]$ $s \leftarrow s'$; $a \leftarrow a'$; until s is terminal

• Q-LEARNING / SARSA

而我們將吃豆人與怪獸的 AGENT 分別對應至 Q-LEARNING 與 SARSA,其原因為,吃豆人的主要目標是將所有豆子吃光,因此會選擇能立刻吃到豆子的路線(亦即更新公式中的MAX ACTION)進行更新;而怪獸則是只要能在遊戲結束前將吃豆人吃掉,即可獲得勝利,因此不急於一時,所以採用 SARSA 作為其 AGENT。

• 整體流程圖

• 吃豆人流程圖

• 吃豆人流程圖

• 怪物流程圖

• 怪物流程圖

• Q-LEARNING與APPROXIMATE Q-LEARNING差異

1. 從Q-FUNTION原先以Q-TABLE的查表法(LOOK UP TABLE)的方式換成以權重(WEIGHT)*特徵(FEATURES)的方式來進行APPROXIMATION。

$$Q(s,a) = \sum_{k=1}^{n} f_k(s,a) \omega_k$$

2. 透過將Q-FUNCTION轉變成FUNCTION APPROXIMATION的方式且透過將更新的規則改成以更新權重的方式來進行計算,能夠有效地強化吃豆人在行為決策上的優化。

$$w_i \leftarrow w_i + \alpha \cdot \text{difference} \cdot f_i(s, a)$$

difference = $\left(r + \gamma \max_{a'} Q(s', a')\right) - Q(s, a)$

3. 而在本次期末專題報告中我們組設定了四個特徵(豆子會不會被吃掉、距離下一個豆子的距離遠近、是否即將撞上怪獸、是否與怪獸只差一步的距離)來進行訓練後,使得吃豆人在5X6MEDIUMGRID地圖的表現有了更顯著的提升。

• Q-LEARNING與APPROXIMATE Q-LEARNING差異

1. 從Q-FUNTION原先以Q-TABLE的查表法(LOOK UP TABLE)的方式換成以權重(WEIGHT)*特徵(FEATURES)的方式來進行APPROXIMATION。

$$Q(s,a) = \sum_{k=1}^{n} f_k(s,a) \omega_k$$

2. 透過將Q-FUNCTION轉變成FUNCTION APPROXIMATION的方式且透過將更新的規則改成以更新權重的方式來進行計算,能夠有效地強化吃豆人在行為決策上的優化。

$$w_i \leftarrow w_i + \alpha \cdot \text{difference} \cdot f_i(s, a)$$

difference = $(r + \gamma Q(s', a')) - Q(s, a)$

4. 而在怪獸的部分,我們設定了兩個特徵,分別為:怪獸是否吃到吃豆人、怪獸與吃豆人的距離,藉此提升怪獸的效能。

PARAMETER SETTING

α = 0.6 \ γ = 0.4 \ ε = 0.6 --- 動態調整

PARAMETER SETTING

α =0.6 \ γ =0.4 \ ε =0.6 --- 動態調整

PARAMETER SETTING

• $\alpha = 0.6 \cdot \gamma = 0.4 \cdot \varepsilon = 0.6 --- 動態調整$

STATE&ACTION

· 吃豆人與怪物之STATE&ACTION

吃豆人

:	state			(x,y)		
input	action	上	下	左	右	停止
output	state	(x,y+1)	(x,y-1)	(x-1,y)	(x+1,y)	(x,y)

怪物

inaut	state	(x,y)				
input	action	十	ユ	左	右	停止
output	state	(x,y+1)	(x,y-1)	(x-1,y)	(x+1,y)	(x,y)

INTERFACE AND ANIMATION DESIGN

• 繪圖技術

- 介面:使用PYTHON套件當中的TKINTER不斷更新遊戲畫面,其中 畫面更新率為每0.05秒更新一次;選單畫面則由PYTHON套件當中的 PYGAME進行更新。
- 怪物:使用座標點建構出圖形,使用PYTHON內建POLYGON()函式 描繪;其中眼睛的部分再以額外一變數儲存目前X,Y位置。 POLYGO N(已整理好且放入陣列之座標,顏色)

INTERFACE AND ANIMATION DESIGN

• 繪圖技術

- 吃豆人:使用PYTHON內建CIRCLE()函式描繪。
- 豆子:使用PYTHON內建CIRCLE()函式描繪。
- 初始畫面:利用PYGAME函式庫建立文字選單。
 - 使用LABEL()建立文字---開始、結束、關於,各項選擇分別有各自的 INDEX。
 - 利用PYGAME來不斷偵測"上鍵"、"下鍵"以及"ESC"之操作。

Index狀態	選單項目	對應結果
0	Start	呼叫演算法
1	About	呼叫顯示訊息頁面
2	Exit	停止所有遊戲

RESOURCE REQUIRED

• 介紹專題需要的軟硬體設備和開發工具

• 軟體: PYTHON3.6

• 硬體: INTEL(R) CORE (TM) I7-2600CPU 3.4GHZ

• 人員的工作分配

- 演算法設計
 - 郭冠宏、李宗穎
- 動畫圖畫設計
 - 陳亭禎
- 成果簡報製作
 - 陳亭禎、郭冠宏、李宗穎

SCHEDULE

• 專題的規畫時程

SCHEDULE

• 專題的規畫時程

DEMO TIME

APPROXIMATE Q-LEARNING

Q-LEARNING

DEMO TIME

• Q-LEARNING/APPROXIMATE Q-LEARNING訓練 結果

DEMO TIME

Q-LEARNING/APPROXIMATE Q-LEARNING訓練
 結果

CONCLUSION

- 本專題核心目標在於吃豆人能自我學習避開怪物並將豆子全數吃光,而為了完成此目標,本專題利用強化式學習之APPROXIMATE Q-LEARNING演算法,使吃豆人能以當下所得環境進行目標得學習。從實作成果當中可發現,本專題除了成功使得吃豆人可避開怪物並吃掉豆子,還利用強化式學習當中的APPROXIMATE SARSA演算法讓怪物也可自我學習,以達成追逐吃豆人之目標。
- 我們冀希此專題後續能達成:
 - 1. 怪物數量增加;
 - 2. 吃豆人吃到大力丸時,能夠反追怪物,以獲得更高的REWARD;
 - 3. 地圖環境更為龐大。

完成上述目標後,本專題發展可更為寬廣。

REFERENCES

- JO, T. (2021). MACHINE LEARNING FOUNDATIONS: SUPERVISED, UNSUPERVISED, AND ADVANCED LEARNING. SPRINGER NATURE.
- SUTTON, R. S., & BARTO, A. G. (2018). REINFORCEMENT LEARNING: AN INTRODUCTION. MIT PRESS.
- STUART, R., & NORVIG, P. (2010). ARTIFICIAL INTELLIGENCE: A MODERN APPROACH 3RD EDITION. UPPER SADDLE RIVER, NEW JEYSEY.
- XU, Z. X., CAO, L., CHEN, X. L., LI, C. X., ZHANG, Y. L., & LAI, J. (2018). DEEP REINFORCEMENT LEARNING WITH SARSA AND Q-LEARNING: A HYBRID APPROACH. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 101(9), 2315-2322.
- ALFAKIH, T., HASSAN, M. M., GUMAEI, A., SAVAGLIO, C., & FORTINO, G. (2020). TASK OFFLOADING AND RESOURCE ALLOCATION FOR MOBILE EDGE COMPUTING BY DEEP REINFORCEMENT LEARNING BASED ON SARSA. IEEE ACCESS, 8, 54074-54084.
- MESUT YANG, & CARL QI. (2021). CS188|SUMMER 2021. RETRIEVED FROM HTTPS://INST.EECS.BERKELEY.EDU/~CS188/SU21/. (NOVEMBER 8,2021)

REINFORCEMENT LEARNING OF PACMAN FINAL PROJECT

陳亭禎、郭冠宏、李宗穎

授課教師:曾士桓博士

TEAM09

電腦與通訊工程系