# Machine Learning

Lecture 4: Data

COURSE CODE: CSE451

2023

## Course Teacher

## **Dr. Mrinal Kanti Baowaly**

**Associate Professor** 

Department of Computer Science and Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Bangladesh.

Email: mkbaowaly@gmail.com



## DATA

- Data can be any unprocessed fact, value, text, sound, picture or video that is not being interpreted and analyzed
- Data is the most important part of all Data Mining, Machine Learning,
   Artificial Intelligence
- Without data, we can't train any model and all modern research and automation will go vain
- Big Enterprises are spending loads of money just to gather as much certain data as possible
- Example: Facebook acquires WhatsApp by paying a huge price of \$19 billion

# Information and Knowledge

- Information: Processed, organized, or structured data to provide context and meaning.
- Knowledge: Combination of inferred information, experiences, learning and insights. Knowledge is useful and actionable information that can lead to impact.
- Machine Learning is a tool for turning information into knowledge

$$\frac{\mathsf{DATA}}{\mathsf{Raw}} \xrightarrow{\mathsf{INFORMATION}} \xrightarrow{\mathsf{Processed}} \frac{\mathsf{KNOWLEDGE}}{\mathsf{Actionable}}$$

# Types of Data (Variable) in Statistics

| Numeric / Quantitative Take numerical values only and the values reflect the actual measurement (with units) of the subjects or object                                               |                                                                                                                | Categorical / Qualitative Contains categories only. Each category represents a particular characteristic of interest within a group of subjects or objects. Typically text data, but numerically coded by statistical packages |                                                                                                                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| Continuous Takes any value in a lange of values and additional values can be aken that fit between each consecutive value Height (metres) Age (days, months or lears Temperature (C) | Discrete Normally takes integer values typically counts  Number of Children in family Number of Asthma attacks | Ordinal Categories are mutually exclusive & have a ranked order, however, each interval may not be equally spread  Cancer Staging: 0 1 2 3 4  Likert scale: strongly agree, agree, neutral, disagree,                          | Nominal Categories are mutually exclusive but have no implicit order  Blood Group: A, B, AB, O  Eye Colour: Blue, Brown, Green |  |

## Quantitative data vs Qualitative data

#### Quantitative data

- Number-based, countable, or measurable, also known as numerical data
- Tell us how many, how much, or how often in calculations
- Analyzed using statistical analysis
- Examples: measurable such as distance, area, time, speed, height, length, weight, cost; counts such as the number of website visitors, sales, or email sign-ups etc.

#### Qualitative data

- Interpretation-based, descriptive, and relating to language but not measured or counted, also known as categorical data
- Analyzed by grouping it in terms of meaningful categories
- Can help us to understand why, how, or what happened behind certain behaviors
- Examples: Employee ID, text, documents, color, marital status, nationality, gender, grades, education level, etc.

## Discrete data vs Continuous data

#### Discrete Data

- Can be counted
- Has only a finite or countably infinite set of values
- Examples: the number of students in a class, the number of words in a document, the number of heads in 100 coin flips
- Often represented as integer variables.

#### **Continuous Data**

- Can only be measured
- Has any value (real number) within a range
- Examples: temperature, height, or weight.
- represented as real or floating-point variables.

## Nominal data vs Ordinal data

#### **Nominal Data**

- Qualitative or categorical data
- Can't be quantified, neither have any implicit ordering
- No numeric operations can be performed
- Examples: Colour of hair (White, Red, Brown, Black, etc.), Marital status (Single, Widowed, Married), Nationality (Indian, German, American), Gender (Male, Female, Others), Eye Color (Black, Brown, etc.)

#### **Ordinal Data**

- Qualitative or categorical data
- Have some kind of ranked order, and it is possible to assign numbers to the data
- It is possible to compare one item with another in terms of ranking.
- Examples: Grades in the exam (A, B, C, D, etc.), Ranking in a competition (First, Second, Third, etc.), Economic Status (High, Medium, and Low), Education Level (Higher, Secondary, Primary)

## What is Data set?

Collection of data objects and their attributes

An attribute is a property or characteristic of an object

- Examples: eye color of a person, temperature, etc.
- Attribute is also known as variable, field, characteristic, or feature

A collection of attributes describe an object

 Object is also known as record, point, case, sample, entity, or instance

#### Attributes

| Tid | Refund | Marital<br>Status | Taxable<br>Income | Cheat |
|-----|--------|-------------------|-------------------|-------|
| 1   | Yes    | Single            | 125K              | No    |
| 2   | No     | Married           | 100K              | No    |
| 3   | No     | Single            | 70K               | No    |
| 4   | Yes    | Married           | 120K              | No    |
| 5   | No     | Divorced          | 95K               | Yes   |
| 6   | No     | Married           | 60K               | No    |
| 7   | Yes    | Divorced          | 220K              | No    |
| 8   | No     | Single            | 85K               | Yes   |
| 9   | No     | Married           | 75K               | No    |
| 10  | No     | Single            | 90K               | Yes   |

**Objects** 

## Types of Data sets

#### 1. Record

- Data Matrix
- Document Data
- Transaction Data

## 2. Graph

- Generic
- World Wide Web
- Molecular Structures

#### 3. Ordered

- Sequential Transaction Data
- Time Series Data
- Sequence Data
- Spatial and Spatio-Temporal Data

## 1. Record Data

Data that consists of a collection of records, each of which consists of a fixed set of attributes

| Tid | Refund | Marital<br>Status | Taxable Income | Cheat |
|-----|--------|-------------------|----------------|-------|
| 1   | Yes    | Single            | 125K           | No    |
| 2   | No     | Married           | 100K           | No    |
| 3   | No     | Single            | 70K            | No    |
| 4   | Yes    | Married           | 120K           | No    |
| 5   | No     | Divorced          | 95K            | Yes   |
| 6   | No     | Married           | 60K            | No    |
| 7   | Yes    | Divorced          | 220K           | No    |
| 8   | No     | Single            | 85K            | Yes   |
| 9   | No     | Married           | 75K            | No    |
| 10  | No     | Single            | 90K            | Yes   |

## Data Matrix

If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute

Such data set can be represented by an  $m \times n$  matrix, where there are m rows, one for each object, and n columns, one for each attribute.

| Projection of x Load | Projection of y load | Distance | Load | Thickness |
|----------------------|----------------------|----------|------|-----------|
| 10.23                | 5.27                 | 15.22    | 2.7  | 1.2       |
| 12.65                | 6.25                 | 16.22    | 2.2  | 1.1       |

## Document Data

Each document becomes a 'term' vector,

each term is a component (attribute) of the vector,

• the value of each component is the number of times the corresponding term

occurs in the document.

|            | team | coach | pla<br>y | ball | score | game | wi<br>n | lost | timeout | season |
|------------|------|-------|----------|------|-------|------|---------|------|---------|--------|
| Document 1 | 3    | 0     | 5        | 0    | 2     | 6    | 0       | 2    | 0       | 2      |
| Document 2 | 0    | 7     | 0        | 2    | 1     | 0    | 0       | 3    | 0       | 0      |
| Document 3 | 0    | 1     | 0        | 0    | 1     | 2    | 2       | 0    | 3       | 0      |

## Transaction Data

### A special type of record data, where

- each record (transaction) involves a set of items.
- For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Coke, Milk         |
| 2   | Beer, Bread               |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Coke, Diaper, Milk        |

## 2. Graph Data

Examples: Generic graph, linked webpages/social networks, and a

molecule





Benzene Molecule: C6H6

#### **Useful Links:**

- Bibliography
- Other Useful Web sites
  - ACM SIGKDD
  - o K<u>Dnuggets</u>
  - The Data Mine

#### Book References in Data Mining and Knowledge Discovery

Usama Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy uthurasamy, "Advances in Knowledge Discovery and Data Mining", AAAI Press/the MIT Press, 1996.

J. Ross Quinlan, "C4.5: Programs for Machine Learning", Morgan Kaufmann Publishers, 1993. Michael Berry and Gordon Linoff, "Data Mining Techniques (For Marketing, Sales, and Customer Support), John Wiley & Sons, 1997.

## **Knowledge Discovery and Data Mining Bibliography**

(Gets updated frequently, so visit often!)

- Books
- General Data Mining

#### **General Data Mining**

Usama Fayyad, "Mining Databases: Towards Algorithms for Knowledge Discovery", Bulletin of the IEEE Computer Society Technical Committee on data Engineering, vol. 21, no. 1, March 1998.

Christopher Matheus, Philip Chan, and Gregory Piatetsky-Shapiro, "Systems for knowledge Discovery in databases", IEEE Transactions on Knowledge and Data Engineering, 5(6):903-913, December 1993.

## 3. Ordered Data

## **Sequential Transaction Data:**

- An extension of transaction data, where each transaction has a time associated with it.
- It is possible to find patterns such as "people who by DVD players, tend to buy DVDs immediately following the purchase."

| Time | Customer | Items Purchased |
|------|----------|-----------------|
| t1   | C1       | A, B            |
| t2   | C3       | A, C            |
| t2   | C1       | C, D            |
| t3   | C2       | A, D            |
| t4   | C2       | E               |
| t5   | C1       | A, E            |

| Customer | Time and Items Purchased    |
|----------|-----------------------------|
| C1       | (t1: A,B) (t2:C,D) (t5:A,E) |
| C2       | (t3: A, D) (t4: E)          |
| C3       | (t2: A, C)                  |

(a) Sequential transaction data.

# 3. Ordered Data (Cont.)

## **Sequence Data:**

- Sequence of individual entities, such as sequence of words or letters.
- Have no time stamps; instead, there are positions in the ordered sequence. For example, the genomic sequence data have sequence of nucleotides (A, T, C, and G) that make up an organism's DNA.
- Enable advancements in biology, medicine, agriculture, and various other fields.

(b) Genomic sequence data.

# 3. Ordered Data (Cont.)

#### **Time Series Data:**

- Each record is a time series, i.e. a series of data collected at consistent intervals over a set period rather than just collecting the data intermittently or randomly
- One of the study's main goal is to predict future value



(c) Temperature time series.

# 3. Ordered Data (Cont.)

## **Spatial and Spatio-Temporal Data:**

- Spatial data: have spatial attributes, such as locations or areas, for example, weather data.
- Spatio-temporal data: when spatial data are collected over time, for example, tracking the trajectories of objects such as vehicles, in time and space.



(d) Spatial temperature data.

# Test Your Understanding

- Take part in the following Quiz Test on Types of Data
- Click <u>here</u>



# How to get datasets for Machine Learning

- Popular sources for Machine Learning datasets
  - Kaggle Datasets
  - UCI Machine Learning Repository
  - Datasets via AWS
  - Google's Dataset Search Engine
  - Microsoft Datasets
  - Government Datasets
  - Computer Vision Datasets
  - Scikit-learn dataset

Source: <u>JavaTPoint</u>

# End of Lecture-4