Lecture IV Notes

Michael Brodskiy Professor: V. Cherkassky

June 18, 2020

0.1 The Distance From a Point to a Plane

The distance from any point to a plane may be found using the formula $\frac{|ax+by+cz+d|}{\sqrt{a^2+b^2+c^2}}$, where a-d are the coefficients of the equation of the plane, and x-z are the coordinates of the point.

0.2 The Distance From a Plane to a Plane

Find one point on either plane, and repeat the process to find a distance from a point to a plane.

1 Cylinders and Quadric Surfaces

The equation of a quadric surface is given by the equation: $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J$, where A-J are constants.

There are six different figures that should be known:

Figure	Equation
Ellipsoid: A Figure in Which All Traces	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
are Ellipses	
Cone: A Figure in Which Horizontal	$\left \frac{x^2}{a^2} + \frac{y^2}{b^2} \right = \frac{z^2}{c^2}$
Traces are Ellipses and Vertical Traces in	
x and y are Hyperbolas	
Elliptic Paraboloid: Horizontal Traces are	$\left \frac{x^2}{a^2} + \frac{y^2}{b^2} \right = \frac{z}{c}$
Ellipses and Vertical Traces are Parabolas	
Hyperboloid of One Sheet: Horizontal	$\left \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} \right = 1$
Traces are Ellipses and Vertical Traces are	
Hyperbolas	
Hyperbolic Paraboloid: Horizontal	$\left \frac{x^2}{a^2} - \frac{y^2}{b^2} \right = \frac{z}{c}$
Traces are Hyperbolas and Vertical	
Traces are Parabolas	
Hyperboloid of Two Sheets: Horizon-	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
tal Traces are Ellipses in z and Vertical	
Traces are Hyperbolas	