Лабораторная работа №3

Логические вентили и синтез комбинационных схем

Цель работы

- 1. Используя программу для моделирования аналоговых и цифровых электронных устройств «Electronic Workbench» (EWB), реализовать логические вентили НЕ, И-НЕ, ИЛИ-НЕ.
- 2. В соответствии со своим вариантом построить на логических вентилях заданную булеву функцию.

Порядок работы

- 1. Изучить «Руководство по Electronic Workbench».
- 2. Реализовать логический вентиль НЕ.
 - 2.1. Построить следующую схему:

Рис. 1. Транзисторный инвертор

Элемент	Название	Группа элементов в EWB	Значение параметра	Примечание
100 mV	Батарея (Battery)	Sources	100 мВ (100 милливольт)	Для изменения значения параметра использовать команду контекстного меню <i>Component properties</i> или двойной щелчок мышью на элементе
5 V	Батарея (Battery)	Sources	5 В (5 вольт)	Для поворота использовать команду контекстного меню <i>Rotate</i>
	Заземление (Ground)	Sources		
1 k Ohm	Резистор (Resistor)	Basic	1 кОм (1 килоом)	
4	NPN- транзистор (NPN transistor)	Transistors		
V	Вольтметр (Voltmeter)	Indicators		
+	Точка соединения (Connector)	Basic		

- 2.2. Сохранить построенную схему под именем **Inverter.ewb**.
- 2.3. Нажать кнопку *Activate simulation* в верхнем правом углу EWB. На вольтметре должно появиться значение выходного напряжения в вольтах. Записать его, а также значение входного напряжения (батарея 100 мВ) в таблицу.

Входное напряжение U	Выходное напряжение (вольтметр)

- 2.4. Изменить значение входного напряжения на 2 В (использовать команду *Component properties* контекстного меню батареи 100 мВ или двойной щелчок мышью на батарее).
- 2.5. Нажать кнопку *Activate simulation*. Записать значение входного и выходного напряжений.
- 2.6. Проанализировать полученные результаты. Почему данная схема называется инвертором?
- 3. Реализовать логический вентиль И-НЕ.
 - 3.1. Построить следующую схему:

Рис. 2. Схема И-НЕ

- 3.2. Сохранить построенную схему под именем **NAND.ewb**.
- 3.3. Нарисовать таблицу:

Входное напряжение U1	Входное напряжение U2	Выходное напряжение (вольтметр)

- 3.4. Нажать кнопку *Activate simulation* в верхнем правом углу EWB. На вольтметре должно появиться значение выходного напряжения в вольтах. Записать его в соответствующую строку таблицы.
- 3.5. Изменить значение входного напряжения U1 на 2 В (использовать команду *Component properties* контекстного меню батареи).
- 3.6. Нажать кнопку *Activate simulation*. Записать значение выходного напряжения в соответствующую строку таблицы.
- 3.7. Изменить значение входного напряжения U1 обратно на 100 мВ, а значение входного напряжения U2 сделать равным 2 В.
- 3.8. Нажать кнопку *Activate simulation*. Записать значение выходного напряжения в соответствующую строку таблицы.
- 3.9. Оба входных напряжения сделать равными 2 В.
- 3.10. Нажать кнопку *Activate simulation*. Записать значение выходного напряжения в соответствующую строку таблицы.
- 3.11. Проанализировать полученные результаты. Почему данная схема называется И-НЕ?

- 4. Реализовать логический вентиль ИЛИ-НЕ.
 - 4.1. Построить следующую схему:

Рис. 3. Схема ИЛИ-НЕ

- 4.2. Сохранить построенную схему под именем **NOR.ewb**.
- 4.3. Повторить пункты 3.3 3.10 предыдущего задания.
- 4.4. Проанализировать полученные результаты. Почему данная схема называется ИЛИ-НЕ?
- 5. В соответствии со своим вариантом, аналогично разобранному ниже примеру, построить на логических вентилях заданную булеву функцию.
 - 5.1. *Пример*. Реализовать булеву функцию f (x,y,z),заданную таблицей истинности:

X	y	Z	f(x,y,z)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Для таблицы истинности получаем логическую формулу:

$$f(x, y, z) = \overline{x} \cdot \overline{y} \cdot \overline{z} + \overline{x} \cdot y \cdot \overline{z} + x \cdot \overline{y} \cdot \overline{z} + x \cdot y \cdot \overline{z}.$$

По формуле строим схему с применением логических вентилей И, ИЛИ, НЕ:

Элемент	Название	Группа элементов в EWB	Значение параметра	Примечание
[1] E	Переключатель (Switch)	Basic	Клавиша «1» (Key «1»)	Положение переключателя изменяется клавишей «1». Клавиша выбирается через команду контекстного меню <i>Component properties</i> или двойным щелчком мышью на элементе. Для поворота использовать команду контекстного меню <i>Rotate</i>
- 1 -	Инвертор (NOT Gate)	Logic gates		
& _	Элемент И (AND Gate)	Logic gates	3 входа (3 inputs)	Количество входов выбирается через контекстное меню элемента
= 21	Элемент ИЛИ (OR Gate)	Logic gates	4 входа (4 inputs)	Количество входов выбирается через контекстное меню элемента
9	Красный индикатор (Red probe)	Indicators	Красный цвет	Цвет индикатора выбирается через контекстное меню

Управляя переключателями с помощью клавиш «1», «2», «3», на входе схемы можно получить любую комбинацию 0 и 1 из таблицы истинности. По индикатору определяется выход схемы (также с помощью индикаторов можно отслеживать наличие 0 или 1 в любой части схемы). Если запустить данную модель на выполнение и перебрать все 8 входов, то выход схемы будет совпадать с требуемым значением заданной булевой функции.

- 5.2. Подсчитайте количество транзисторов в построенной схеме.
- 5.3. Упростите логическую формулу (запишите процесс упрощения). Используйте законы де Моргана для получения в итоговой формуле функций И-НЕ, ИЛИ-НЕ.

5.4. Постройте по упрощенной формуле схему из вентилей. Подсчитайте количество транзисторов. Сравните с количеством транзисторов в исходной схеме.

Требования к отчету

Отчет по лабораторной работе должен включать:

- 1. Схемы логических вентилей НЕ, И-НЕ, ИЛИ-НЕ, выполненные в «Electronic Workbench».
- 2. Таблицы входных и выходных напряжений для каждой схемы.
- 3. Таблицу истинности, формулу, упрощенную формулу и две схемы из вентилей для своего варианта. Количество транзисторов для обеих схем.

Варианты заданий

Вариант 1:

X	у	Z	f(x,y,z)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Вариант 2:

X	у	Z	f(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Вариант 3:

X	У	Z	f(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Вариант 4:

X	y	Z	f(x,y,z)
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Вариант 5:

X	У	Z	f(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Вариант 6:

X	y	Z	f(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Вариант 7:

X	у	Z	f(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Вариант 8:

X	y	Z	f(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Вариант 9:

X	y	Z	f(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Вариант 10:

,	L		
X	у	Z	f(x,y,z)
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Вариант 11:

X	У	Z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Вариант 12:

X	у	Z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Вариант 13:

X	у	Z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Вариант 14:

X	У	Z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Вариант 15:

X	у	Z	f(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Вариант 16:

X	у	Z	f(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Вариант 17:

X	у	Z	f(x,y,z)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Вариант 18:

X	У	Z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Вариант 19:

X	у	Z	f(x,y,z)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Вариант 20:

X	17	Z	f(x,y,z)
	<u>y</u>	2	
0	0	O	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1