TRABALHO 1 – Algoritmos Genético

O problema a ser otimizado é a Função Binária f₆, a mesma usada no livro texto do curso (L. Davis, *Handbook of Genetic Algorithms*, VNR, 1991).

INDIQUE NOS GRÁFICOS OS EXPERIMENTOS OU IMPRIMA COLORIDO E ENTREGUE O TRABALHO

1) Reproduzindo Resultados

Variando os parâmetros, execute Algoritmos Genéticos de modo a obter resultados semelhantes aos apresentados no livro texto. Os parâmetros usados no livro se encontram na tabela abaixo. **Compare as curvas referentes à média de 20 rodadas de cada GA.**

Incluir dois gráficos: um com GA1-1, GA2-1 e GA2-2 e outro com GA 2 -3 e GA2-4.

GA	População	Total.Ind.	Crossover	Mutação	Nor mLinear	Elitismo	Stead-State
1-1	100	4000	65%	0.8%	NÃO	NÃO	NÃO
2-1	100	4000	65%	0.8%	Max=100/Min=1	NÃO	NÃO
2-2	100	4000	65%	0.8%	Max=100/Min=1	SIM	NÃO
2-3	100	4000	65%	0.8%	Max=100/Min=1	NÃO	C/Duplicados
2-4	100	4000	65%	0.8%	Max=100/Min=1	NÃO	S/Duplicados

Obs: 1) Nestes experimentos utilize somente one-point-crossover.

2) Para os GAs que utilizam steady-state, determine o GAP (número de indivíduos substituídos a cada ciclo) ideal. Para isso, use um incremento de 5 indivíduos a cada tentativa, começando com um GAP=5. Não entregue os gráficos referentes aos testes de GAP.

3) Taxas de Crossover e Mutação

Verifique o que acontece quando se roda o GA2-1 20 vezes com taxa de crossover muito baixa (pouca recombinação em torno de 10%) e alta taxa de mutação (muitas mudanças aleatórias em torno de 80%). Imprima o resultado (um gráfico), compare com o resultado do GA2-1 obtido no item 1 e explique brevemente o que acontece.

4) Tamanho da População

Analise o efeito do tamanho da população, obtendo as curvas de desempenho do GA2-2 (20 rodadas) para vários tamanhos de população (ex: 20, 50, 100, 150) e sempre com o mesmo número de gerações (total de indivíduos variável).

Imprima as curvas para e tire conclusões sobre o efeito do tamanho da população no desempenho do algoritmo genético.

5) Convergência

Repita o GA2-1 e o GA2-2 (20 rodadas cada) modificando apenas o total de indivíduos criados para o 10000.

Imprima as curvas em dois um gráficos separados, um para o GA2-1 e outro para o GA2-2, e verifique se é vantajoso todo esse esforço computacional, em outras palavras, determine o número de indivíduos para o qual cada algoritmo converge.

6) Crossover

Compare o efeito dos 3 tipos de crossover disponíveis na ferramenta, executando o GA2-1 (s/ elitismo) e o GA2-2 (c/elitismo) com apenas 2500 indivíduos (20 rodadas) para cada tipo de crossover, usando taxa de crossover 80%.

Imprima as curvas em dois um gráficos separados , um para o GA2-1 e outro para o GA2-2, e tire conclusões a respeito da característica conservadora/destrutiva de cada crossover.

7) Normalização Linear

Repita o GA2-3COM gap = 75 para vários valores de máximo. Verifique o que acontece quando o valor de máximo aumenta e diminui (avalie para os valores 10, 50, 100, 200, 300).

Imprima as curvas em apenas um gráfico e tire breves conclusões.

8) Gerais

Fazendo variações nos parâmetros e técnicas disponíveis no GADEMO, estude livremente o efeito de cada um destes no desempenho de algoritmos genéticos. **Destaque e explique uma importante constatação.**