

Bacharelado em Ciência da Computação

Estruturas de Dados Material de Apoio

Parte VI – Ordenação

Prof. Nairon Neri Silva naironsilva@unipac.br

Ordenação

- Ordenar: processo de rearranjar um conjunto de objetos em uma ordem ascendente ou descendente.
- A ordenação visa facilitar a recuperação posterior de itens do conjunto ordenado.
 - Dificuldade de se utilizar um catálogo telefônico se os nomes das pessoas não estivessem listados em ordem alfabética.
- Atividade relevante e fundamental em processamento de dados.

Ordenação

- Notação utilizada nos algoritmos:
 - Os algoritmos trabalham sobre os registros de um arquivo.
 - Cada registro possui uma chave utilizada para controlar a ordenação.
 - Podem existir outros componentes em um registro.

Ordenação

Estrutura de um registro:

```
typedef struct {
    int Chave;
    /* outros componentes */
} TipoItem;
```

 Qualquer tipo de chave sobre o qual exista uma regra de ordenação bem-definida pode ser utilizado.

Estabilidade

- Um método de ordenação é estável se a ordem relativa dos itens com chaves iguais não se altera durante a ordenação.
- Alguns dos métodos de ordenação mais eficientes não são estáveis.
- Ex.: Se uma lista dos funcionários é ordenada pelo campo "Salário", um método estável produz uma lista em que os funcionários com o mesmo salário aparecem em ordem alfabética

Estabilidade

- A estabilidade pode ser forçada quando o método é não-estável.
- Sedgewick (1988) sugere agregar um pequeno índice a cada chave antes de ordenar, ou então aumentar a chave de alguma outra forma.

Estabilidade - Exemplo

Elementos ordenados pelo código. Devendo ser ordenados pelo salário:

código	10	20	30	40	50	60	70	80	90
salário	R\$								
	100,00	100,00	200,00	400,00	500,00	600,00	600,00	500,00	400,00

Após Ordenação...

Estável: ordenou pelo salário e manteve a ordem relativa dos códigos iguais.

10	20	30	40	90	50	80	60	70
R\$								
100,00	100,00	200,00	400,00	400,00	500,00	500,00	600,00	600,00

Instável: ordenou pelo salário, porém alterou a ordem dos códigos.

20	10	30	90	40	50	80	70	60
R\$								
100,00	100,00	200,00	400,00	400,00	500,00	500,00	600,00	600,00

Classificação do Métodos de Ordenação

- Classificação dos métodos de ordenação:
 - Ordenação interna: arquivo a ser ordenado cabe todo na memória principal.
 - Ordenação externa: arquivo a ser ordenado não cabe na memória principal.

Classificação do Métodos de Ordenação

- Diferenças entre os métodos:
 - Em um método de ordenação interna, qualquer registro pode ser imediatamente acessado.
 - Em um método de ordenação externa, os registros são acessados sequencialmente ou em grandes blocos.

Classificação do Métodos de Ordenação

 A maioria dos métodos de ordenação é baseada em comparações das chaves.

Existem métodos de ordenação que utilizam o princípio da distribuição.

Princípio da distribuição

- Exemplo de ordenação por distribuição:
 - considere o problema de ordenar um baralho
 com 52 cartas na ordem:

Princípio da distribuição

Algoritmo:

1. Distribuir as cartas abertas em treze montes:
 ases, dois, três, : : ; reis.

- 2. Colete os montes na ordem especificada.
- 3. Distribua novamente as cartas abertas em quatro montes: paus, ouros, copas e espadas.
- 4. Colete os montes na ordem especificada.

Princípio da distribuição

- O método não utiliza comparação entre chaves.
- Uma das dificuldades de implementar este método está relacionada com o problema de lidar com cada monte.
- Se para cada monte nós reservarmos uma área, então a demanda por memória extra pode tornar-se proibitiva.

Ordenação Interna

- Na escolha de um algoritmo de ordenação interna deve ser considerado o tempo gasto pela ordenação.
- Sendo n o número registros no arquivo, as medidas de complexidade relevantes são:
 - Número de comparações C(n) entre chaves.
 - Número de movimentações M(n) de itens do arquivo.

Ordenação Interna

• O uso econômico da memória disponível é um requisito primordial na ordenação interna.

Métodos de ordenação in situ são os preferidos.

Ordenação Interna

 Métodos que utilizam listas encadeadas não são muito utilizados.

 Métodos que fazem cópias dos itens a serem ordenados possuem menor importância.

Classificação dos métodos de ordenação interna

- Métodos simples:
 - Adequados para pequenos arquivos.
 - Requerem mais comparações que os métodos eficientes.
 - Produzem programas pequenos.
- Métodos eficientes:
 - Adequados para arquivos maiores.
 - Usam menos comparações.
 - As comparações são mais complexas nos detalhes.
- Métodos simples são mais eficientes para pequenos arquivos.

Exercício

Considere que os números a seguir estão em um array do tipo int na ordem apresentada:

$$10 - 4 - 8 - 7 - 11 - 1 - 15 - 3 - 5 - 4 - 2 - 12 - 6$$

Crie um algoritmo que seja capaz de ordenar os números presentes no array sem utilizar outro array (você pode usar variáveis auxiliares).

Obs.: Crie a sua solução, não copie nenhum algoritmo de ordenação.

Algoritmos de Ordenação Interna

- Métodos simples
 - Seleção (Selection Sort)
 - Inserção (Insertion Sort)
 - Bolha (Bubblesort)
- Métodos eficientes
 - ShellSort
 - HeapSort
 - QuickSort
 - MergeSort

Referências

- FORBELLONE, André Luiz Villar; EBERSPACHER, Henri Frederico. *Lógica de Programação*. Makron books.
- GUIMARAES, Angelo de Moura; LAGES, Newton Alberto Castilho. *Algoritmos e estruturas de dados*. LTC Editora.
- FIDALGO, Robson. Material para aulas. UFRPE.
- NELSON, Fábio. *Material para aulas: Algoritmo e Programação*. UNIVASP.
- FEOFILOFF, P., Algoritmos em linguagem C, Editora Campus, 2008.
- ZIVIANI, N., *Projeto de algoritmos com Implementações em Pascal e C*, São Paulo: Pioneira, 2d, 2004.
- http://www.ime.usp.br/~pf/algoritmos/
- MELLO, Ronaldo S., Material para aulas: Ordenação de Dados, UFSC-CTC-INE
- MENOTTI, David, *Material para aulas: Algoritmos e Estrutura de Dados I*, DECOM-UFOP