# Lösungen 1

# Patrick Bucher

28.02.2017

1

1.3

b)

ggt(28, 68)

ggtIterativi(): 7 Iterationen

| b  | a  |
|----|----|
| 68 | 28 |
| 40 | 28 |
| 12 | 28 |
| 12 | 16 |
| 12 | 4  |
| 8  | 4  |
| 4  | 4  |
|    |    |

ggtIterativ2(): 4 Iterationen

| a  | b  |
|----|----|
| 28 | 68 |
| 28 | 12 |
| 4  | 12 |
| 4  | 0  |

ggtRekursiv(): 7 Aufrufe

| ŀ  | a  |
|----|----|
| 68 | 28 |
| 40 | 28 |
| 12 | 28 |
| 12 | 16 |
| 12 | 4  |
| 8  | 4  |
| 4  | 4  |

Die beiden iterativen Lösungen haben einen geringeren Speicherbedarf als die rekursive Lösung, bei der die Variablen a und b jeweils in siebenfacher Ausführung bestehen.

2

2.3

a)

| Parameter n | Anzahl Methodenaufrufe |
|-------------|------------------------|
| I           | 9                      |
| 2           | 18                     |
| 3           | 31                     |
| 4           | 48                     |
| 5           | 48<br>69               |
| 6           | 94                     |
| 7           | 123                    |
| 8           | 156                    |
| 9           | 193                    |
| IO          | 234                    |
|             |                        |

b)

| Anzahl Methodenaufrufe | Parameter n |
|------------------------|-------------|
| 20304                  | 100         |
| 80604                  | 200         |
| 2003004                | 1000        |
| 8006004                | 2000        |
| 200030004              | 10000       |

| Parameter n | Anzahl Methodenaufrufe |
|-------------|------------------------|
| 20000       | 800060004              |

Ja, bei einer Verdoppelung des Parameters n werden erhöht sich die Anzahl der Methodenaufrufe nahezu um Faktor vier.

c)

| Parameter n | Methodenaufrufe | Laufzeit |
|-------------|-----------------|----------|
| I           | 9               | 46       |
| 2           | 18              | 92       |
| 3           | 31              | 157      |
| 4           | 48              | 244      |
| 5           | 69              | 353      |
| 6           | 94              | 482      |
| 7           | 123             | 631      |
| 8           | 156             | 796      |
| 9           | 193             | 989      |
| IO          | 234             | 1193     |

3

3.3

a)

| n!       | 3^n      | 2^n      | n^3      | n^2   | n*log n | n   | ld n  | log n |
|----------|----------|----------|----------|-------|---------|-----|-------|-------|
| 1.00e+00 | 3.00e+00 | 2.00e+00 | 1.00e+00 | I     | 0.000   | I   | 0.000 | 0.000 |
| 2.00e+00 | 9.00e+00 | 4.00e+00 | 8.00e+00 | 4     | 1.386   | 2   | 1.000 | 0.693 |
| 1.20e+02 | 2.43e+02 | 3.20e+0I | 1.25e+02 | 25    | 8.047   | 5   | 2.322 | 1.609 |
| 3.63e+06 | 5.90e+04 | 1.02e+03 | 1.00e+03 | 100   | 23.03   | IO  | 3.322 | 2.303 |
| 2.43e+18 | 3.49e+09 | 1.05e+06 | 8.00e+03 | 400   | 59.91   | 20  | 4.322 | 2.996 |
| 3.04e+64 | 7.18e+23 | 1.13e+15 | 1.25e+05 | 2500  | 195.6   | 50  | 5.643 | 3.912 |
| 9.33e+16 | 5.15e+47 | 1.27e+30 | 1.00e+06 | 10000 | 460.5   | 100 | 6.644 | 4.605 |

b)

1. exponentiell O(m^n)

- 2. logarithmisch O(ln n)
- 3. polynominal O(n^4)
- 4. polynominal O(n^3)
- 5. Fakultät O(n!)
- 6. linear O(n)

#### c)

- logarithmisch (2.)
- linear (6.)
- polynominal (4.)
- polynominal (3.)
- exponentiell (1.)
- Fakultät (5.)

# d)

- I. O.IS
- 2. IOS
- 3. 1.25s (Proportionalität berechnen!)

# e)

log b ist ein konstanter Faktor, da nicht von n abhängig, und somit für die Ordnung irrelevant.

## f)

- I. O(n)
- 2. O(n)
- 3. O(n<sup>3</sup>)

4

#### 4.3

```
a) und b)
```

```
Implementierung:
public static int fiboRec1(int n) {
    // Rekursionsbasis
    if (n < 2) {
        return 1;
    } else {
        // Rekursionsvorschrift (n >= 2)
        return fiboRec1(n - 2) + fiboRec1(n - 1);
    }
}
Testfall:
@Test
public void testFibonacciNumbmers() {
    int fib[] = { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 };
    for (int n = 0; n < fib.length; n++) {
        Assert.assertEquals(fib[n], Fibonacci.fiboRec1(n));
    }
}
c)
Lösung mit Cache (Map statt Array):
private static Map<Integer, Integer> fibCache = new TreeMap<>();
public static int fiboRec2(int n) {
    if (fibCache.containsKey(n)) {
        return fibCache.get(n);
    }
    int fib = 0;
    if (n < 2) {
        fib = 1;
    } else {
        fib = fiboRec2(n - 2) + fiboRec2(n - 1);
    fibCache.put(n, fib);
    return fib;
```

```
}
```

### d)

```
public static int fiboIter(int n) {
    if (n < 2) {
        return 1;
    }
    int twoBack = 1;
    int oneBack = 1;
    int fib = 1;
    while (n >= 2) {
        fib = twoBack + oneBack;
        twoBack = oneBack;
        oneBack = fib;
        n--;
    }
    return fib;
}
```

#### e)

| Methode  | Laufzeit |
|----------|----------|
| fiboReci | 641 ms   |
| fiboRec2 | ı ms     |
| fiboIter | o ms     |

5

5.3

a)

```
n: 0123 m: 4221

ack(0,4): 4 + 1 = 5

ack(1,2) \rightarrow ack(0, ack(1,1))

ack(1,1) \rightarrow ack(0, ack(1,0))

ack(1,0) \rightarrow ack(0,1)

ack(0,1) \rightarrow 2
```

```
ack(1,0) \rightarrow 2
     ack(1,1) \rightarrow ack(0,2)
          ack(0,2) \rightarrow 3
     ack(1,1) -> 3
ack(1,2) \rightarrow ack(0,3)
     ack(0,3) \rightarrow 4
ack(1,2) \rightarrow 4
ack(2,2) \rightarrow ack(1,ack(2,1))
     ack(2,1) \rightarrow ack(1,ack(1,1))
           ack(1,1) \rightarrow ack(0, ack(1,0))
                ack(1,0) \rightarrow ack(0,1)
                      ack(0,1) \rightarrow 2
                ack(1,0) \rightarrow 2
           ack(1,1) \rightarrow ack(0,2)
                ack(0,2) \rightarrow 3
           ack(1,1) -> 3
     ack(2,1) \rightarrow ack(1,3)
           ack(1,3) \rightarrow ack(0, ack(1,2))
                ack(1,2) \rightarrow 4 [siehe oben!]
           ack(1,3) \rightarrow ack(0,4)
                ack(0,4) -> 5
           ack(1,3) \rightarrow ack(0, ack(1,2))
                ack(1,2) -> 4 [siehe oben!]
           ack(1,3) \rightarrow ack(0,4)
                ack(0,4) -> 5
           ack(1,3) -> 5
     ack(2,1) -> 5
ack(2,2) \rightarrow ack(1,5)
     ack(1,5) \rightarrow ack(0, ack(1,4))
           ack(1,4) \rightarrow TODO
ack(3,1) \rightarrow 13
```

b)

Der Call Stack hat eine maximale Tiefe von 5, die Ackermann-Funktion wird 27 mal aufgerufen.

c)

Ein Funktionsaufruf verwendet für den rekursiven Aufruf seiner selbst einen weiteren rekursiven Aufruf als Parameter.

```
public static int ack(int n, int m) {
    if (n == 0) {
        return m + 1;
    } else if (m == 0) {
        return ack(n - 1, 1);
    } else {
        return ack(n - 1, ack(n, m - 1));
    }
}
```

6

6.3



Figure 1: colorArea