Cloudy With A Chance of Football

Georgetown University School of Continuing Studies Professional Certificate in Data Science Cohort 23 (Spring 2021)

Ermina Mujan Aidan O'Connor Griffin Taub Yaphet Tewahade

Agenda

- I. Introduction
- II. Hypothesis
- III. Methodology
 - Understanding the Problem
 - Identifying Data Requirements
 - Data Collection and Ingestion
 - Architecture
 - Munging, Wrangling, and Feature Selection
 - Statistical Analysis
 - Modeling and Application
- IV. Demonstration and Conclusion

I. Introduction

Introduction to Fantasy Football

- League: 8 12 person league (managers)
- Managers:
 - Competitively draft players at beginning of season
 - Set lineups weekly (typically QB, 2xWR, 2xRB, TE, DEF, K, Flex)
 - Select unaffiliated players off of waiver wire as needed
 - Trade with other managers
 - Win by real-life points produced by lineup players weekly
- Decision-making:
 - Subjective
 - Data-informed, not usually data-driven

Source: National Football League

II. Hypothesis

Hypothesis

On any given week, will an NFL player score **above or below** their **projected** fantasy score? What are the **factors that have influenced performance** the most so that we can *best predict future performance*? If we can determine the features that have the most influence on player performance then we will be able to make an informed prediction on whether a player will score above or below their projected fantasy score on any given week during the regular NFL season.

We hypothesize that we can accurately predict whether an NFL player will perform better or worse than they are projected to perform based on environmental data and historical performance data.

III. Methodology

Understanding the Problem

In order to predict a player's performance, we needed to find historical performance data for each player, which consisted of position-specific stats and predicted and actual full points per reception (full PPR) data. We also incorporated gameday weather data to be able to make more accurate, holistic predictions.

Methodology

Identifying Data Requirements

Target

Our target is a binary column that is based on whether a player performed above (1) or below (0) the amount of fantasy points projected by fantasydata.com

Features

Passing

PassingAttempts

PassingCompletions

PassingYards

PassingCompletionPercentage

PassingYardsPerAttempt

PassingYardsPerCompletion

PassingTouchdowns

PassingInterceptions

PassingRating

PassingLong

PassingSacks

PassingSackYards

PassesDefended

TwoPointConversionPasses

Defense and Special Teams

Fumbles

FumblesLost

SoloTackles

AssistedTackles

TacklesForLoss

Sacks

SackYards

QuarterbackHits

FumblesForced

FumblesRecovered

FumbleReturnTouchdowns

Interceptions

InterceptionReturnTouchdowns

Safeties

TouchdownsScored

FieldGoalsAttempted

FieldGoalsMade

ExtraPointsMade

TwoPointConversionRuns

ExtraPointsAttempted

FieldGoalsMade0to19

FieldGoalsMade20to29

FieldGoalsMade30to39

FieldGoalsMade40to49

FieldGoalsMade50Plus

PointsAllowedByDefenseSpecialTeams

BlockedKickReturnTouchdowns

PointsAllowed

SpecialTeamsTouchdowns

DefensiveTouchdowns

BlockedKicks

TwoPointConversionReturns

FieldGoalReturnTouchdowns

PuntReturns

PuntReturnYards

PuntReturnTouchdowns

KickReturns

KickReturnYards

KickReturnTouchdowns

Receiving

ReceivingTargets

Receptions

ReceivingYards

ReceivingYardsPerReception

ReceivingTouchdowns

ReceivingLong

TwoPointConversionReceptions

Rushing

RushingAttempts

RushingYards

RushingYardsPerAttempt

RushingTouchdowns

RushingLong

Features

Player and Game Data

PlayerID Week Team Opponent HomeOrAway Position

PositionCategory InjuryStatus week_id days_since_last_game

absolute_hours_displaced elevation_displacement age

Played Started

Weather

weather_temperature
weather_wind_mph_number
weather_wind_direction
weather_cloud_cover
weather_precipitation
weather_humidity
weather_detail

Redzone

PassingYardsRZ
PassingTouchdownsRZ
PassingInterceptionsRZ
PassingYardsRZ
PassingTouchdownsRZ
PassingInterceptionsRZ

OpponentRZ RushingYardsRZ

RushingTouchdownsRZ

ReceptionsRZ

ReceivingYardsRZ

ReceivingTouchdownsRZ

SacksRZ

InterceptionsRZ

FumblesForcedRZ

FumlbesRecoveredRZ

Data Collection and Ingestion

Kaggle.com

API Calls

FantasyData.com

API Calls

FantasyFootballDataPros.com

Python Ingestion Script

NFLWeather.com

Web Scraping

Methodology

Architecture

Methodology

Munging, Wrangling, and Feature Selection

Munging, Wrangling, and Feature Selection

- De-selection of stats from non-global models
- Shifting stats ahead to predict next week performance

PlayerID	week_id	 Stat1	Stat2	Stat3	Stat4	Stat5	Stat6	performance
12345	2019_1	 1	15	2.2	0	6	8	1
12345	2019_2	 3	8	1.5	2	9	3	0

PlayerID	week_id	•••	Stat1	Stat2	Stat3	Stat4	Stat5	Stat6	performance
12345	2019_1		0	0	0	0	0	0	1
12345	2019_2		1	15	2.2	0	6	8	0

Methodology

Statistical Analysis

EDA (Exploratory Data Analysis)

Non-Binary Columns After Application of Min-Max

Methodology

Modeling and Application

Modeling and Application

Initial Assumptions and Plan:

- Class imbalance, but consistent imbalance across weeks
 - Penalize mistakes on minority class selection
- Time-aware model
 - Train on weeks 1 14
 - > Test on weeks 15 17
- Many instances, but variety of positions
 - ➤ Global model
 - Position-based models
- Desired more options from which to choose than fewer, more accurate options
 - Recall is the desired measure

NFL Season Weeks 1 - 17 (Aggregated 2019 and 2020 data)

an 200 - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

^{*} With the exception of the Defense Model

Modeling and Application

Model	Reason for Selection
SVC()	Effective in high dimensional spaces as a binary classifier, and effectively handles unbalanced classes
NuSVC()	Similar to SVC, but includes a parameter to control the number of support vectors
LinearSVC()	Similar to SVC and scales better to large numbers of samples. Also has more flexibility in the choice of penalties
SGDClassifier()	Efficient model for evaluating many thousands of training data points
<pre>KNeighborsClassifier()</pre>	Unlike linear models (which try to draw distinctive lines between classes), classifies based on nearest neighbors in dataset
LogisticRegression()	A binary classifier that handles imbalanced classes well
LogisticRegressionCV()	Similar to LogisticRegression, but uses cross validation as well
<pre>BaggingClassifier()</pre>	Uses base estimators, then aggregates them, which may help find signal in the noise better than the others
<pre>ExtraTreesClassifier()</pre>	Controls over-fitting by fitting randomized decision trees on the data (which may help with the class imbalance)
<pre>RandomForestClassifier()</pre>	Unlike ExtraTreesClassifier, this chooses the optimal decision tree split

Step 1: Initial models with default parameters models = [SVC(), NuSVC(), LinearSVC(), SGDClassifier(), KNeighborsClassifier(), LogisticRegression(), LogisticRegressionCV(), BaggingClassifier(), ExtraTreesClassifier(), RandomForestClassifier()

```
Step 2:
Same initial models with some parameters specified

modified_models = [
    SVC(gamma = 'auto'),
    NuSVC(gamma = 'auto'),
    LinearSVC(max_iter = 2000),
    SGDClassifier(max_iter = 100, tol = 1e-3),
    KNeighborsClassifier(n_neighbors = 10),
    LogisticRegression(solver = 'lbfgs'),
    LogisticRegressionCV(cv=3, max_iter=100),
    BaggingClassifier(n_estimators = 15),
    ExtraTreesClassifier(n_estimators = 300),
    RandomForestClassifier(n_estimators = 300)]
```

```
Step 3a:
Models with below 0.50 recall for performance

other_models = [
    LinearSVC(max_iter = 6000),
    KNeighborsClassifier(n_neighbors = 10),
    LogisticRegression(solver='lbfgs', max_iter = 2000),
    LogisticRegressionCV(cv=3, max_iter=600),
    BaggingClassifier(n_estimators = 20),
    ExtraTreesClassifier(n_estimators = 600),
    RandomForestClassifier(n_estimators = 600)
]
```

Step 3c: Models with above 0.50 recall for overperformance good_models = [SVC(gamma='auto'), NuSVC(gamma='auto'), SGDClassifier(max_iter=100, tol=1e-3), BaggingClassifier(n_estimators = 40) "Wild Card" model added to good models

good_models.append(BaggingClassifier(n_estimators = 20))

Step 3b:

Step 4: Final pre-GridSearch model selection good_models = [SVC(gamma = 'auto', class_weight = 'balanced' NuSVC(gamma = 'auto', class_weight = 'balanced' SGDClassifier($max_iter = 100$, class_weight = 'balanced' BaggingClassifier(n = 40

Step 5a1:

Set SVC GridSearch parameters

```
param_grid_SVC = {
    'C' : [1, 10],
    'gamma' : ['scale','auto'],
    'kernel' : ['linear', 'rbf'],
    'class_weight' : ['balanced']
}
```

Step 5a2:

Run gridsearch on SVC

```
grid = GridSearchCV(
    SVC(),
    param_grid_SVC,
    refit = True,
    verbose = 2,
    n_jobs = -1
)
```

Step 5a3:

Run SVC with best parameters

```
{
    'C': 1,
    'class_weight': 'balanced',
    'gamma': 'scale',
    'kernel': 'rbf'
}
```

Step 5b1:

Set SGDClassifier GridSearch parameters

```
param_grid_SGDClassifier = {
    'loss': ['hinge','log'],
    'max_iter' : [100, 500],
    'penalty': ['l1','l2'],
    'n_jobs': [-1],
    'class_weight' : ['balanced']
}
```

Step 5b2:

Run gridsearch on SGDClassifier

```
grid = GridSearchCV(
    SGDClassifier(),
    param_grid_SDGClassifier,
    refit = True,
    verbose = 2
)
```

Step 5b3:

Run SGDClassifier with best parameters

```
{
    'class_weight': 'balanced',
    'loss': 'hinge',
    'max_iter': 500,
    'n_jobs': -1,
    'penalty': 'l1'
}
```


Tuned SGDClassifier Parameters: {'alpha': 0.0001, 'class_weight': None, 'loss': 'log', 'max_iter': 200}
Best score is 0.5649953105836519

Top performing models with default parameters

F1 SCORE SGDClassifier: 0.5854241338112306

F1 SCORE NuSVC: 0.5831381733021078

F1 SCORE SVC: 0.5667090216010167

F1 SCORE SVC: 0.5831381733021078

Why Wide Receivers?

- majority of the players are WR
- less injury prone than running backs
- managers tend to worry more about them


```
grid.best_params_
{'C': 1, 'class_weight': 'balanced', 'gamma': 'auto', 'kernel': 'rbf'}
```

```
grid.best_params_

{'class_weight': 'balanced',
  'loss': 'log',
  'max_iter': 100,
  'n_jobs': -1,
  'penalty': '12'}
```

F1 SCORE SGDClassifier: 0.5244338498212158

IV. Brief Demonstration and Conclusion

Conclusion

Areas of future study:

- Individual Defensive Players
- Multi-class classification
- Regression
- Play-by-play data
- Application to other sports