

DH Table 1	Link 1 2 3 4 5 6	ai	di	di	θ_i	in	mm
	1	25	$\pi/2$	400	D1		
	2	315	Ð	O	Ð2		
	3	35	$\pi/2$	0	Θз		
	4	0	-T/2	362	θ4		
	5	0	11/2	D	Ð5		
	6	-296.23	30	161,44	₽б		

Find D1:

Top view:

$$\frac{\alpha_1}{\gamma_0} \times \alpha_2$$

$$\frac{\alpha_2}{\gamma_0} \times \alpha_2$$

$$\frac{\alpha_2}{\gamma_0} \times \alpha_2$$

$$\frac{\alpha_1}{\gamma_0} \times \alpha_2$$

$$\frac{\alpha_2}{\gamma_0} \times \alpha_2$$

$$\frac{\alpha_2}{\gamma_0} \times \alpha_2$$

Find Oz, O3

$$\begin{split} \overline{AD}^2 &= \overline{AE}^2 + \overline{DE}^2 - 2 \overrightarrow{AE} \ \overline{DE} \ \cos \varphi \\ &(\sqrt{\chi_c^2 + \chi_c^2} - \alpha_1)^2 + (\overline{z_c - d_1})^2 = \alpha_2^2 + \alpha_2^2 + \alpha_2^4 + \alpha_4^4 - 2\alpha_2 \alpha_2 \alpha_3^4 + \alpha_4^4 - 2\alpha_2 \alpha_3^4 + \alpha_4^4 - 2\alpha_3 \alpha_3^4 +$$