MATH 324 Computer HW 1

Corey Russ

Due: 2/14/19

Exercise 1:

(a) Use c() to generate two datasets.

```
modifiedMortar=c(16.85, 16.40, 17.21, 16.35, 16.52, 17.04, 16.96, 17.15, 16.59, 16.57) unmodifiedMortar=c(16.62, 16.75, 17.37, 17.12, 16.98, 16.87, 17.34, 17.02, 17.08, 17.27)
```

(b) Use mean() and median() to calculate the mean and median of each dataset.

mean(modifiedMortar)

[1] 16.764

median(modifiedMortar)

[1] 16.72

mean(unmodifiedMortar)

[1] 17.042

median(unmodifiedMortar)

[1] 17.05

(c) Use sd(), var() and IQR() to calculate the sample standard deviation, sample variance

and IQR of each dataset.

sd(modifiedMortar)

[1] 0.3164455

var(modifiedMortar)

[1] 0.1001378

IQR(modifiedMortar)

[1] 0.4875

sd(unmodifiedMortar)

[1] 0.2479158

var(unmodifiedMortar)

[1] 0.06146222

IQR(unmodifiedMortar)

[1] 0.335

(d) Construct the histograms for the two datasets and make comments about the shapes. hist(modifiedMortar)

Histogram of modifiedMortar

hist(unmodifiedMortar)

Histogram of unmodifiedMortar

The modified mortar has one cluster of data with higher frequency. The unmodified mortar is more spread

out over all of the data.

(e) Construct comparative box-plots for the two groups and make comments about the similarity and difference.

boxplot(list(modifiedMortar=modifiedMortar, unmodifiedMortar=unmodifiedMortar), col="blue")

The median of the modified mortar is lower than the median of the unmodified mortar. The median of the unmodified mortar is the Q3 of modified mortar.

Exercise 2:

(a) Use c() to generate the data.

```
survey=c(4, 2, 3, 3, 1, 5, 4, 2, 2, 4, 5, 6, 4, 3, 3, 4, 4, 5, 6, 1, 2, 2, 3, 4, 3, 3, 5, 2, 1, 3)
```

(b) Construct the frequency table using table().

table(survey)

```
## survey
## 1 2 3 4 5 6
## 3 6 8 7 4 2
```

(c) Construct pie chart using pie(). Add colors and title to the chart.

pie(survey, labels=survey[1:30], col=rainbow(30), main="Number of Courses Taken per Student for 30 Studen

Number of Courses Taken per Student for 30 Students

(d) Construct bar-plot using barplot(). Add color and title to the plot.

barplot(survey, col=rainbow(30),main="Number of Courses Taken per Student")

Number of Courses Taken per Student

(e) Use R functions to count how many students are taking more than three courses.

sum(survey>3)

[1] 13

Exercise 3:

(a) Use seq() to generate a sequence $2, 4, \ldots, 24$.

sequence=seq(2,12, by=2)

(b) Use log() to generate a new sequence where each element is log-transformed from the sequence in (a).

```
sequence=log10(sequence)
```

(c) Remove the second to fifth elements in the resulting sequence in (b).

```
sequence=sequence[-(2:5)]
```

(d) Use length() to obtain the length of the resulting sequence in (c).

```
length(sequence)
```

```
## [1] 2
```

(e) Sort the resulting sequence in (d) from high to low using sort().

```
sort(sequence, decreasing=TRUE)
```

```
## [1] 1.079181 0.301030
```