ЛАБорАторнАя №1

АНТОНОВА АЛЁНА, КУДАЙБЕРДИЕВА ДИАНА, МАНДРОЩЕНКО ЕКАТЕРИНА, ПОВАРОВА СОФЬЯ, ПЕНСКАЯ ТАИСИЯ

1. Методы одномерного поиска

Будем рассматривать класс симметричных методов, то есть на каждом шаге будут выбираться две точки x_1 и x_2 , симметричных расположенных относительно центра этого отрезка.

Definition 1.1. Пусть $a < x_1 < x_2 < b, f$ — унимодальная, если существует такая точка x^* , что в полуинтервале $[a, x^*)$ функция убывает, а в полуинтервале $(x^*, b]$ функция возрастает.

Тогда при предположении, что f – унимодальная: - если $f(x_1) < f(x_2)$, то минимум на отрезке $[a, x_2]$ - если $f(x_1) > f(x_2)$, то минимум на отрезке $[x_1, b]$ - если $f(x_1) == f(x_2)$, то минимум на отрезке $[x_1, x_2]$ Данный подход описан в методе:

get_next_interval_base(...args)

1.1. Метод дихотомии.

Definition 1.2. Дихотомия — деление отрезка на 2 части.

Метод реализован в функции:

bisection_search(...args)

Недостатки: - сходимость метода всегда равна сходимости в наихудшем случае - на каждом шаге функция считается 2 раза

1.2. Метод золотого сечения.

Definition 1.3. Золотое сечение:
$$\frac{b-a}{b-x_1} = \frac{x_2-a}{x_1-a} = \frac{b-x_1}{b-x_2} = \frac{b-x_1}{x_1-a} = \frac{1+\sqrt{5}}{2}$$

Метод реализован в функции:

Описание алгоритма: - на первом шаге функция вычисляется от двух точек - дальше функция вычисляется только от одной точки, потому что другая берется из предыдущего шага

1.3. Метод Фибоначчи.

Definition 1.4. Числа Фибоначчи:
$$F_n = \frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n), n = 1, 2, ...$$

Метод реализован в функции:

То же, что и в золотом сечение, только коэффициенты другие.

1.4. Сравнение методов.

1

2. МЕТОД ГРАДИЕНТОГО СПУСКА

Будем пользоваться классом методов спуска, где будем двигаться в направлении наискорейшего спуска, заданного с помощью антиградиента: $x^{k+1} = x^k - \lambda^k * \Delta f(x^k)$.

2.1. Метод градиентого спуска для одномерных функций. На каждом шаге будем с помощью одномерных методов оптимизации находить оптимальное λ . Метод реализован в функции: gradient_descent(...args)

2.2. Метод градиентого спуска для квадратичных функций. В общем случае, квадратичная целевая функция имеет вид: $F(x) = \frac{1}{2}(Qx,x) + (c,x)$, где Q – симметричная матрица порядка n, а $c \in \mathbb{R}^n$ – заданный вектор. Для упрощения выкладок будем рассматривать положительно определенную квадратичную форму $f(x) = \frac{1}{2}(Qx,x)$, которую можно получить параллельным переносом прямоугольной системы координат. Для минимизации будем использовать метод градиентого спуска: gradf(x) = Qx, таким образом: $x^{k+1} =$

 $(I_n - \lambda^k Q)x^k$. Последовательность x_k будет сходиться к x*=0, если $||I_n - \lambda Q|| = q(\lambda) < 1$. Заметим, что $||I_n - \lambda Q|| = max|1 - \lambda z_1|, |1 - \lambda z_n|$, где z_1 и z_n – наименьшее и наибольшее собственные значения матрицы Q соответственно. Таким образом, нужно обеспечить $|1 - \lambda z_1| < 1$ и $|1 - \lambda z_n| < 1$, тогда если выбрать $\lambda \in (0, 2/\lambda_n)$, то оба неравенства будут выполнены. Наименьшее значение $q(\lambda)$ соответствует равенству $|1 - \lambda z_1| = |1 - \lambda z_n|$, тогда получаем, что оптимальным значением будет $q(\lambda) = \frac{c(Q)-1}{c(Q)+1}$, где $c(Q) = \frac{z_n}{z_1}$ – число обусловленности матрицы Q.

В данной лабораторной были рассмотрены три метода градиентого спуска для квадратичных функций:

- c оптимальным значением, найденным выше quadratic_gradient_descent_optimal(...args)
- c константным шагом quadratic_gradient_descent_constant(...args)
- с выбором оптимального значения с помощью одномерных методов поиска quadratic_gradient_descent_with_optimizer(...args)

Для методов были построены траектории их спуска:

А также графики зависимости скорости от числа обусловленности и количества параметров:

Gradient descent statistics

3. Полезные ссылки

- Ссылка на наше решение
- Условие лабораторной