ECM253 – Linguagens Formais, Autômatos e Compiladores

Lista de Exercícios

Métodos de prova em lógica proposicional

Marco Furlan

Fevereiro, 2021

Aluno:

Rodrigo Machado Pedreira

18.01569-7

1. Utilizar o **algoritmo** TestarTautologia para provar que as expressões a seguir são tautologias:

Obs. do aluno: Considerar para todos os itens abaixo que quando um elemento apresentar dois valores verdade diferentes as expressões são tautologias. Já que estamos tentando prova las falsas esse acontecimento é uma inconsistência, não é possível algo ser verdadeiro e falso ao mesmo tempo em lógica proposicional, portanto é falso que não são tautologias, consequentemente é verdadeiro que elas são tautologias.

X = Desconhecido

(a)
$$[\neg B \land (A \rightarrow B)] \rightarrow \neg A$$

(b)
$$[(A \to B) \land A] \to B$$

(c) $(A \wedge B) \wedge \neg B \to A$

- 2. Traduzir em Lógica Proposicional os argumentos apresentados a seguir e, depois, provar que são argumentos válidos utilizando sequências de prova com regras de equivalência e regras de inferência a partir de hipóteses (como apresentado em aula). Empregar os símbolos proposicionais indicados.
 - (a) A colheita é boa, mas não há água suficiente. Se tivesse bastante chuva ou não tivesse bastante sol, então haveria água suficiente. Portanto, a colheita é boa e há bastante sol. (C, A, H, S)

Resposta:

$$[(C \land \neg A) \land [(H \lor \neg S) \to A]] \to (C \land S)$$

Prova:

1.
$$(C \land \neg A)$$
(hip.)
5. $\neg (H \lor \neg S)$
2,4 mp

2. $[(H \lor \neg S) \to A]$
(hip.)
6. $\neg H \land S$
5, dm

3. C
1, sim
7. S
6, sim

4. $\neg A$
1, sim
8. $(C \land S) \Box$
3,7, con

(b) Rússia tinha um poder superior, e ou a França não era forte ou Napoleão cometeu um erro. Napoleão não cometeu um erro, mas se o exército não tivesse falhado, a França seria forte. Portanto, o exército falhou e a Rússia tinha um poder superior. (R, F, N, E)

Resposta:

$$R \wedge (\neg F \vee N) \wedge [\neg N \wedge (\neg E \to F)] \to (E \wedge R)$$

Prova:

1.
$$R$$
(hip.)
5. $F \rightarrow N$
2, imp

2. $\neg F \lor N$
(hip.)
6. $\neg F$
5,4 mt

3. $\neg N \land (\neg E \rightarrow F)$
(hip.)
7. $\neg E \rightarrow F$
3, sim

4. $\neg N$
3, sim
8. E
7,6, mt

9. $E \land R_{\square}$
8,1, con

(c) Não é verdade que se as taxas de eletricidade subirem, o consumo diminuirá, nem é verdade que novas usinas de energia serão construídas ou as contas não serão atrasadas. Portanto o consumo não diminuirá e as contas serão atrasadas. (T, C, U, Co)

Resposta:

$$\neg (T \to C) \land \neg (U \lor \neg Co) \to (\neg C \land Co)$$

Prova: $(\neg C \land Co)$

(d) Se José pegou as joias ou a Sra. Krasov mentiu, então ocorreu um crime. O sr. Krasov não estava na cidade. Se ocorreu um crime, então o sr. Krasov estava na cidade. Portanto José não pegou as joias. (J, M, C, E).

Resposta:

$$[[(J \lor M) \to C] \land \neg E \land (C \to E)] \to \neg J$$

Prova:

1.
$$(J \lor M) \to C$$
4. $\neg C$
3,2, mt

2. $\neg E$
(hip.)
5. $\neg (J \lor M)$
1,4,mt

3. $C \to E$
(hip.)
6. $\neg J \land \neg M$
5, dm

7. $\neg J \sqcap$
6, sim

 $3. \ \ Estabelecer a validade (válido ou inválido) do argumento por dedução (sequência de prova):$

$$((P \to Q) \land (Q \to (R \land S)) \land (\neg R \lor (\neg T \lor U)) \land (P \land T)) \to U$$

1. $P \rightarrow Q$ (hip.)	9. $(\neg Q \lor R) \land (\neg Q \lor S)$
2. $Q \to (R \land S)$ (hip.)	10. $\neg Q \lor R$
3. $\neg R \lor (\neg T \lor U)$	11. $Q \rightarrow R$
4. $P \wedge T$ (hip.)	12. <i>R</i> 11,7, mp
5. T	13. $R \to (\neg T \lor U)$
6. <i>P</i>	14. $\neg T \lor U$
7. <i>Q</i>	15. $T \to U$
8. $\neg Q \lor (R \land S)$	16. U \square