## CZ4045 Natural Language Processing

Words and Transducers (Chapter 3)

## **Outline**

- English Morphology
- Stemming: Normalizing the words
- Tokenizing: Getting the words (or word-like elements)
- Segmentation: Getting sentences

# **English Morphology**

- Morphology is the study of the ways that words are built up from smaller meaningful units called morphemes
- We can usefully divide morphemes into two categories
  - Stems: The core meaning-bearing units
  - Affixes: Bits and pieces that adhere to stems to change their meanings and grammatical functions
  - Example
    - cat → cats
    - regular → irregular

## **English Morphology**

- We can further divide morphology up into two broad classes
  - Inflectional: has the same word class as the original, cat -> cats
  - Derivational: Changes of word class, care -> careless
- Word Classes
  - By word class, we have in mind familiar notions like noun and verb
    - We'll go into the details in POS tagging (Chapter 5)
  - Right now we're concerned with word classes because the way that stems and affixes combine is based to a large degree on the word class of the stem

## Inflectional Morphology

- Inflectional morphology concerns the combination of stems and affixes where the resulting word:
  - Has the same word class as the original
  - Nouns are simple
    - Markers for plural and possessive
    - E.g. table, tables
  - Verbs are only slightly more complex
    - Markers appropriate to the tense of the verb
    - E.g. Walk, walks, walking

## Regulars and Irregulars

- It is a little complicated by the fact that some words misbehave (refuse to follow the rules)
  - Mouse/mice, goose/geese, ox/oxen
  - Go/went, fly/flew
- The terms regular and irregular are used to refer to words that follow the rules and those that don't

## Regular and Irregular Verbs

- So inflectional morphology in English is fairly straightforward
- But is complicated by the fact that there are irregularities
- Regulars...
  - Walk, walks, walking, walked, walked
- Irregulars
  - Catch, catches, catching, caught, caught
  - Cut, cuts, cutting, cut, cut

## **Derivational Morphology**

- Derivational morphology
  - More complicated.
  - Many paths are possible...
  - Start with compute
    - Computer -> computerize -> computerization
    - Computer -> computerize -> computerizable
  - Meaning change
    - E.g., care -- careless
  - Changes of word class

## **Derivational Examples**

Nouns and Verbs → Adjectives

| -al   | computation | computational |
|-------|-------------|---------------|
| -able | embrace     | embraceable   |
| -less | clue        | clueless      |

Verbs and Adjectives → Nouns

| -ation | computerize | computerization |
|--------|-------------|-----------------|
| -ee    | appoint     | appointee       |
| -er    | kill        | killer          |
| -ness  | fuzzy       | fuzziness       |

## Morphology and FSAs

- We'd like to use the machinery provided by FSAs to capture these facts about morphology
  - Accept strings that are in the language
  - Reject strings that are not
  - Determine whether an input string of letters make up a legitimate English words
- So that we do not have to list all the words in the language

## Start Simple

- Regular singular nouns are ok
  - Regular plural nouns have an -s on the end
- Irregulars are ok as is
- Simple Rules



## Now, Plug in the Words

 Replace the class names like "reg-noun" with FSAs that recognize all the words in that class.



- Recognize strings, e.g. geese, goat, foxs
  - − → more complicated solutions are needed

#### **Derivational Rules**

If everything is an accept state, how do things ever get rejected?



#### **Notations:**

**noun**<sub>i</sub>: A subset of nouns that can accept *-ize*.

adjal: Adjectives ending with -al



## Exercise: Write a regular expression for the FSA

- A|B A or B
- (ABC) ABC as a component
- A? A is optional



# **Parsing**

- We can now run strings through these machines to recognize strings in the language
  - Spelling checking
- Often if we find some string in the language we might like to assign a structure to it (parsing)
  - From "cats" to "cat +N +PL"
  - From "caught" to "catch+V+past"
- The kind of parsing we're talking about is normally called morphological analysis

## **Applications**

- Application 1: An important stand-alone component of many applications (spelling correction, information retrieval)
- Application 2: Simply a link in a chain of further linguistic analysis (e.g. parsing)



## **Light-Weight Morphology**

- Sometimes you just need to know the stem of a word and you don't care about the structure.
  - E.g. camera, cameras
- In fact you may not even care if you get the right stem, as long as you get a consistent string—Stemming
- Stemming for Information Retrieval
  - Run a stemmer on the documents to be indexed
  - Run a stemmer on users' queries
  - Match to the index

## Porter's stemming

- No lexicon needed
- Basically a set of staged sets of rewrite rules that strip suffixes
  - ING  $\rightarrow$  ε (e.g., monitoring  $\rightarrow$  monitor)
  - SSES→ SS (e.g., grasses → grass)
- More Example (recursive)
  - Computerization
    - ization -> -ize computerize
    - ize -> ε computer

## Porter's stemming

- Handles both inflectional and derivational suffixes
- Doesn't guarantee that the resulting stem is really a stem
  - Lack of guarantee doesn't matter for IR
- Code:
  - <a href="http://tartarus.org/martin/PorterStemmer/">http://tartarus.org/martin/PorterStemmer/</a>
  - Implementations in C, Java, Perl, Python, C#, Lisp, Ruby, VB, javascript, php, Prolog, Haskell, matlab, tcl, D, and erlang

## Stemming used in search

- Recall: reduce false negative? (Not matching things that we should have matched)
  - Query: "dog"
  - Doc 1: I love my dog
  - Doc 2: I do not like dogs -

Works in this case

- Precision: increase false positives? (Matching strings that we should not have matched)
  - Query: "policy"
  - Doc 3: Singapore policy on gum
  - Doc 4: Singapore police cool

policy—policies
police—policing

Wrong results here

# **Tokenizing**

- Identifying the tokens (words and symbols) in a text that we may want to deal with
- Called word segmentation, word tokenization
  - tokenizer
- Pretty much a prerequisite to doing anything interesting

## **Tokenizing**

- For English, why not just use white-space?
  - -Mr. Sherwood said reaction to Sea Containers' proposal has been "very positive." In New York Stock Exchange composite trading yesterday, Sea Containers closed at \$62.625, up 62.5 cents.
  - "I said, 'what're you? Crazy?' " said Sadowsky. "I
    can't afford to do that.''
- Using white-space gives you words like:
  - -cents.
  - -said,
  - -positive."
  - Crazy?'

#### Punctuation Issues

- Word-internal punctuation
  - M.P.H.
  - Ph.D.
  - AT&T
  - -01/02/06
  - Google.com
  - Yahoo!
  - -555,500.50

- Clitics
  - What're
  - -I'm
- Multi-token words (named entity detection)
  - New York
  - Rock 'n' roll

## Language Issues

- Chinese and Japanese have no spaces between words
  - 莎拉波娃现在居住在美国东南部的佛罗里达。
  - 莎拉波娃 现在 居住在 美国 东南部 的 佛罗里达
  - Sharapova now lives in US southeastern Florida
- Example of other languages? Thai
- Further complicated in Japanese, with multiple alphabets intermingled
  - フォーチュン500社は情報不足のため時間あた\$500K(約6,000万円)

## Segmentation in Chinese

- Words composed of characters
- Average word is 2.4 characters long.
- Standard segmentation algorithm:
  - Maximum Matching or Maxmatch (also called greedy algorithm)

## Maximum Matching Word Segmentation

- Given a lexicon of Chinese, and a string
- Start a pointer at the beginning of the string
- Find the longest word in dictionary that matches the string starting at pointer
- Move the pointer over the word in string
- Go to 2

Lexicon (Dictionary)
the
table
down
there

thetabledownthere



the table down there

## **Another Example**

thetabledownthere



theta bled own there

Lexicon (Dictionary)
the
theta
table
down
there
bled
own

- But works pretty well in Chinese
  - 莎拉波娃现在居住在美国东南部的佛罗里达。
  - 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
  - Sharapova now lives in US southeastern Florida
- State-of-the-art solutions are mostly based on probabilistic

## **Practical Examples**

- URL segmentation
  - www.dietsthatwork.com
  - www.choosespain.com
- Hashtag segmentation
  - #unitedbrokemyguitar
  - + manchesterunited
  - allows Twitter users to track what many people (especially people whom you aren't already following) are reporting or thinking about a particular topic or event.

## Sentence Segmentation

- !, ? are relatively unambiguous
- Period "." is quite ambiguous
  - Sentence boundary
  - Abbreviations like Inc. or Dr.
- General idea:
  - Build a binary classifier:
    - · Looks at a "."
    - Decides EndOfSentence/NotEOS
    - Could be hand-written rules, sequences of regular expressions, or machine-learning

## Decision Tree Version (An example solution)



## **Summary**

- English Morphology
- Morphological analysis: Identifying morphological structure of words
- Stemming: Normalizing the words
- Tokenizing: Getting the words (or word-like elements)
- Segmentation: Getting sentences