Derivation of cavity photon number

April 30, 2016

Nomenclature

κ_c	Photon loss rate due to leakage
κ_i	Photon loss rate due to internal dissipation
κ_T	Total photon loss rate
ω_r	Resonant cavity frequency
P_{App}	Applied power at input of resonator
P_{cav}	Cavity photon power
$P_{ m in}$	Power leaking into cavity
$P_{ m out}$	Power leaking out of cavity
Q_c	Coupling quality factor
Q_i	Internal quality factor
Q_T	Total quality factor

DERIVATION

The power leaking into a cavity is proportional to the applied power at the cavity input capacitor (inductor) mediated by the coupling strength

$$P_{\rm in} = P_{\rm App} \frac{\kappa_c}{\omega_r} = \frac{P_{\rm App}}{Q_c} \tag{1}$$

Additionally, the power leaking *out* of a cavity is a linear combination of the power dissipated in the cavity and the power that leaks back out of the coupling capacitor(s).

$$P_{\text{out}} = P_{\text{cav}} \frac{\kappa_c + \kappa_i}{\omega_r} = \frac{P_{\text{cav}}}{Q_T}$$
 (2)

At equilibrium, the powers leaking into and out of the cavity will be equal yielding

$$P_{\rm cav} = P_{\rm App} \frac{Q_T}{Q_c} \tag{3}$$

In the absence of applied power, we can think of the resonator as an energy source that delivers power at a rate

$$P_{\text{cav}} = \bar{n}\hbar\omega\kappa_T = \frac{\bar{n}\hbar\omega^2}{Q_T} \tag{4}$$

Equating equations (3) and (4) we find that

$$\bar{n} = P_{\rm App} \times \left(\frac{Q_T^2}{Q_c \hbar \omega^2}\right)$$
 (5)

where

$$Q_T = \left(\frac{1}{Q_c} + \frac{1}{Q_i}\right)^{-1} \tag{6}$$