WO9522254

Publication Title:

ANTIVIRAL OR ANTIFUNGAL COMPOSITION AND METHOD

Abstract:

Abstract of WO9522254

Antiviral and antifungal compositions comprise a mixture of a ferrous salt and a plant extract of pomegranate rind, Viburnum plicatum leaves or flowers, tea leaves or maple leaves in aqueous solution. Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

	HED U	UNDER THE PATENT COOPERATION TREATY (PCI)
(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 95/22254
A01N 65/00	A1	(43) International Publication Date: 24 August 1995 (24.08.95)
(21) International Application Number: PCT/GB (22) International Filing Date: 16 February 1995 ((30) Priority Data: 94301148.6 17 February 1994 (17.02.94 (34) Countries for which the regional or	16.02.9	CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, JP, KE, KG
international application was filed:	AT et	
(71) Applicant (for all designated States except US): AMI INTERNATIONAL PLC [GB/GB]; Amersham Pla Chalfont, Buckinghamshire HP7 9NA (GB).	ERSHA ace, Lit	AM With international search report. ittle
(72) Inventors; and (75) Inventors/Applicants (for US only): STEWART, Sydney, Anderson, Birnie [GB/GB]; 14 James Loughborough LE11 OQL (GB). DENYER, Step [GB/GB]; 34 Cranedown, Lewes, East Sussex I (GB). JASSIM, Sabah, Abdel, Amir [GB/CA]; I crobiology, Dept. of Food Science, Ontario A College, University of Guelph, Guelph, Ontario I (CA).	Aventohen, Pa BN7 31 Dairy Magricult	nue, Paul SNA Mi- Iture
(74) Agent: PENNANT, Pyers; Stevens, Hewlett & I Serjeants' Inn, Fleet Street, London EC4Y 1LL (Perkins, GB).	s, 1
(54) Title: ANTIVIRAL OR ANTIFUNGAL COMPOSI	TION	AND METHOD
(57) Abstract		
Antiviral and antifungal compositions comprise a m leaves or flowers, tea leaves or maple leaves in aqueous s	ixture o	of a ferrous salt and a plant extract of pomegranate rind, Viburnum plicatum.
		•

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	· Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PΓ	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	ŢĴ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	. MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ.	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		· ·		

- 1 -

ANTIVIRAL OR ANTIFUNGAL COMPOSITION AND METHOD

5

Bacteriophage represent a diverse group of viruses that exert both positive and negative effects in microbiology. For example, in the dairy industry bacteriophages of the lactic acid bacteria represent a major source of starter culture failure with consequent 10 poor-quality milk fermentations. A number of measures to prevent phage infection, including implementation of hygienic procedures, rotation of starter cultures, isolation of resistant mutants and formulation of media to suppress phage proliferation have been instituted 15 with various degrees of success [1-4]. By contrast, coliphage have proven to be valuable monitors of faecal contamination in ground water and treated drinking water [5] and are effective viral models in studies of water quality and virucidal activity [6, 7]. Recent 20 developments with genetically recombinant bacteriophage, containing either the bacterial luciferase <u>lux</u> genes or the ice nucleation gene <u>ina</u>, have established an additional value for phage in the rapid detection of bacteria in food and environmental 25 samples [8-12]. In the above examples, the eventual destruction of bacteriophage is important either from the perspective of maintaining effective fermentation or from the viewpoint of good microbiological practice in the disposal of contaminated material. At present, 30 the methods available for bacteriophage destruction such as heat and chemical disinfection [13, 14], have a significant impact on the viability and survival of associated bacteria. In the case of a sterilisation regime this is of little significance but the ability 35 to combat bacteriophage in industrial environments

- 2 -

would benefit from an environmentally benign procedure that could differentially destroy the virus without damaging metabolically-active bacterial cells. One example is in the dairy industry as mentioned above. Another concerns spraying plants which have symbiotic bacteria to control bacteriophage infection.

5

10

15

20

25

There are also many situations where it would be useful to be able to combat fungus without at the same time damaging metabolically-active cells. Plant extracts have been used against disease development in banana by fungi [15].

This invention provides an antiviral or antifungal composition comprising an effective concentration of a mixture of a ferrous salt and an extract of a plant selected from pomegranate rind, Viburnum plicatum leaves or flowers, tea leaves and maple leaves.

An antiviral composition is one which combats, e.g. by preventing growth or preferably killing, virus such as bacteriophage. An antifungal composition is one which combats, e.g. by preventing growth and preferably by killing fungus and destroying its spores. Preferred compositions are antiviral or antifungal, but without at the same time substantially damaging metabolically active bacterial or other cells with which the virus or fungus is associated. Preferably the composition is an aqueous solution, i.e. one in which water is the sole or the main constituent solvent.

The composition comprises a ferrous salt,
which may conveniently be ferrous sulphate. The nature
of the anion is however not critical, provided that the
salt is non-toxic to bacterial and other cells under
the intended conditions of use and is water-soluble. A
preferred ferrous salt concentration range is 0.1 mM to
0.1 M, particularly from 1 to 20 mM.

5

10

25

30

35

The composition also contains an extract of a plant. These plant extracts may conveniently be prepared by boiling the comminuted plant part with water or other solvent. The resulting extract may be fractionated. It is probable that the extract contains one or more active components. Although such active components have remained refractive to purification, there is a uniform consistency in the extracted activity from different sources of the plant parts and from parts obtained at different times of the year. The inventors have examined many different plants and have identified the following four as active:

- Pomegranate rind. Whole pomegranates can be comminuted and used, but the activity resides in the rind.
 - <u>Viburnum plicatum</u> leaves or flowers.
 - Tea leaves. These may be dried or green. Other parts of the tea plant <u>Camellia sinensis</u> may be used.
- Maple leaves e.g. UK <u>Acer pseudoplatanus</u> or Canadian maple leaves, or more generally leaves or flowers of any part of the genus <u>Acer</u>.

The plant extract may be used as is, or diluted as appropriate, e.g. by a factor of up to 100. Effective compositions generally contain 10-90% by volume of the ferrous salt solution together with correspondingly 90-10% by volume of the concentrated or diluted plant extract. The composition should preferably be stored in the dark.

The invention also includes solid or liquid concentrates which on dilution with water gives compositions as described.

The invention also includes a method of controlling virus or fungus, which method comprises contacting the virus or fungus with an effective concentration of a ferrous salt and an effective

- 4 -

concentration of an extract of a plant selected from pomegranate rind, <u>Viburnum plicatum</u> leaves or flowers, tea leaves and maple leaves. These two components can be used in sequence in either order. Preferably, however they are used mixed together as a composition as described above.

5

10

15

20

25

30

35

The virus or fungus to be controlled may be contacted with, e.g. immersed in, the composition, typically for a few seconds or minutes. Where the virus or fungus is on a surface, the composition may be applied to the surface, e.g. by spraying or wiping.

The surface may be for example a work surface or a vessel or utensil used in a hospital or kitchen or an industrial environment, or an external surface of a mammal e.g. a human or a plant. Or a solution containing virus or fungus may be mixed with a composition as defined.

As described in the examples below, ferrous sulphate in combination with selected plant extracts effects complete destruction of a broad range of bacteriophage infecting diverse bacterial genera. In assays incorporating both bacteriophage and bacteria at 10¹² and 10⁹/ml respectively, the bacteriophage are entirely destroyed within two minutes without affecting bacterial viability as measured by colony forming ability.

When used alone, ferrous sulphate has virucidal activity against phages, and also bactericidal activity against some bacteria. This invention is based on the observation that ferrous sulphate, either alone or in combination with certain plant extracts, offers a potent broad spectrum virucidal activity. Since the activity of relatively low levels of ferrous sulphate can be further potentiated by the addition of trace amounts of hydrogen peroxide (data not shown) it is likely that

the mechanism of action involves, at least in part, a free radical system. A mechanism similar to that operating in the phagolysozome and defined by the Modified Haber-Weiss Reaction [17] is proposed.

5

35

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + \cdot OH$$

While resistance of bacterial cells may be effected through free radical scavenging and repair systems, it is clear that the plant extracts also have a role and that remains to be elucidated.

Materials and Method

Bacteria and bacteriophage strains

One Gram-positive Staphylococcus aureus NCIMB
8588 and two Gram-negative Salmonella typhimurium LT2
and Pseudomonas aeruginosa NCIMB 10548 bacteria were
used. The bacteriophage with specificity for the above
bacteria were NCIMB 9563 for Staph.aureus, Felix 01 for
S.typhimurium [16] (obtained from Amersham
International plc., Amersham, HP7 9NA, UK) and NCIMB
10116 and 10884 for Ps.aeruginosa. (All these bacteria
and bacteriophage are available to the public.)

The bacterial cells were maintained on

Tryptose Phosphate Broth (TPB; Oxoid) supplemented with

agar (TPA) and stored at 4°C with monthly

subculture. When required, cells were resuscitated in

no ml TPB (18h, 37°C) or an orbital shaker operating at

240 rpm. Appropriate bacterial dilutions were made in

Lambda buffer (6 mM Tris, 10 mM MgSO₄.7H₂O, 50 µg/ml

gelatin; pH 7.2). After treatment bacterial survival

was determined by colony forming units (cfu) on TPA [18].

Phage stocks were developed on their appropriate host strains by a plate lysis procedure essentially equivalent to growing bacteriophage Lambdaderived vectors [19]. Typical phage titres of 10¹²/ml

were obtained. Phage stocks were maintained in Lambda buffer at 4°C and stocks retained a constant titre for several months.

5 Preparation of plant extracts

Pomegranate rind, <u>Viburnum plicatum</u> leaves or flowers, maple leaves and commercial tea leaves were blended in distilled water (25% w/v) and boiled for 10 min. After centrifugation (20,000 x g, 4°C, 30 min), supernatants were autoclaved (121°C, 15 min),

30 min), supernatants were autoclaved (121°C, 15 min), cooled and stored at -20°C. A further purification of the pomegranate extract to a molecular weight cut-off of 10,000 Da was achieved by membrane ultra filtration and the filtrate stored as above.

15

25

30

35

10

Example 1

Preparation of Composition A

a. Preparation of 4.3 mM FeSO₄.7H₂O in Lambda buffer.

First freshly prepare stock solution (0.53%) of $FeSO_4.7H_2O$ (0.053 gm ferrous sulphate in 10 ml Lambda-buffer). After sterilisation by membrane filtration (0.45 μ m, Whatman) prepare the final ferrous sulphate concentration of 4.3 mM by transferring 4.1 ml of the ferrous stock solution to a sterile test tube containing 14 ml of Lambda-buffer.

b. Preparation of 13% PRE (pomegranate rind extract): Mix 1.3 ml of stock solution of PRE (25% w/v) with 8.7 ml of Lambda-buffer.

Composition A was prepared 1-2 min prior to use by mixing 16.74 ml of 4.3 mM FeSO₄.7H₂O (a; yellow) with 8.265 ml of 13% PRE (b; yellow). After about 30 sec the colour of the mixture (a and b) changed greenish then to black. These mixtures of ferrous sulphate and PRE (a and b) should be protected

10

15

20

25

30

35

- 7 -

from light.

Example 2

5 <u>Virucidal Assav</u>

Plant extracts were diluted 1:8 in Lambda buffer immediately prior to use and 300 μl of this diluted extract added to 700 μ l of freshly prepared ferrous sulphate solution (4.3 mM FeSO₄.7H₂O; pH 6.5); these mixtures should be protected from light. Bacteriophage (20 μ l at 10¹² pfu/ml) or 20 μ l of an appropriate dilution of bacteria (109 cfu/ml) were placed in a sterile Eppendorf micro-centrifuge tube and 144 μl of the FeSO₄ solution or PRE solution or composition A (Example 1) or of the above plant extract/FeSO4 mixture added. After exposure of the bacteriophage or bacteria for 2 min at room temperature the activity of the mixture was neutralised by adding an equal volume of 2% (v/v) Tween 80 in Lambda buffer. The number of bacteriophage or bacteria surviving the above protocol were measured by plaque forming units (pfu) or colony forming units respectively.

The results are set out in the following Tables 1 and 2. Table 1 indicates that pomegranate rind extract alone has a slight virucidal activity against Pseudomonas phage but in combination with FeSO₄ there is a profound synergy. Eleven log reductions in plaque forming ability are obtained within 2 min. A similar synergy of virucidal action was achieved with other plant extracts, leaves and flowers of Viburnum plicatum, maple leaves and tea leaves (Table 2).

Our particular interest in the above studies was to select agents with maximal virucidal activity whilst having little effect on bacteria. In this regard FeSO₄, either alone or in combination with pomegranate rind extract, appears singularly

- 8 -

successful. Table 1 shows that for each bacterium and phage combination tested there is a simple treatment that can eliminate bacteriophage activity without affecting bacterial visibility. The plant extracts appear to serve a dual role in their interaction with FeSO₄. In the case of <u>Pseudomonas</u> phage they promote virucidal activity while for the <u>Salmonella</u> phage, which is completely inactivated by FeSO₄ alone, the pomegranate rind extract appears to provide a significant protection to the bacterium.

Table 1 The survival of different bacteria and bacteriophage species in 4.3 mM FeSO₄.7H₂O, 13% PRE (pomegranate rind extract; 20 min at 37°C) and Composition A (PRE + 4.3 mM FeSO₄.7H₂O; 2 min at room temperature) prepared in Lambda buffer.

Microorganisms	Lambda Buffer	13% PRE	4.3 mM FeSO ₄ .7H ₂	Composition A
Bacteriophage species (pf	w/ml):			
Staphylococcus NCIMB 9563	7 x 10 ¹¹	2 x 10 ⁷	Nit	Nil
<u>Salmonella</u> Felix 01	3 x 10 ¹²	3 x 10 ¹²	Nit	Nil
Pseudomonas NCIMB 10884	5 x 10 ¹¹	5 x 10 ⁹	5 x 10 ¹¹	Nit
Pseudomonas NCIMB 10116	5 x 10 ¹¹	5 x 10 ⁸	5 x 10 ¹¹	Nil
Bacteria species (cfu/ml):			
Staph.aureus NCIMB 8588	3 x 10 ⁹	2 x 10 ⁶	3 x 10 ⁹	5 x 10 ⁶
<u>S.typhimurium</u> LT2	2 x 10 ⁹	2 x 10 ⁹	Nil	2 x 10 ⁹
Ps.aeruginosa NCIMB 1054	8 4 x 10 ⁹	4 x 10 ⁹	1 x 10 ⁷	4 x 10 ⁹

^{* &}lt;u>Escherichia coli</u> phage M13mp18 was killed by Composition A, whilst <u>E.coli</u> JM101 was unaffected.

Table 2. Effect of 25% solutions of different plant extracts in the presence of 4.3 mMol ferrous sulphate on the inactivation within 3 minutes of <u>Ps.aeruginosa</u> bacteriophage NCIMB 10116.

5

25% Plant extract solution (%v/v)	PFU/ml
Lambda Buffer (control)	1.2 x 10 ¹⁰
Commercial tea leaves	Nil
Viburnum plicatum leaves or flowers	Nil
Maple leaves	Nil

20

25

An antiserum was raised in rabbits against the <u>Pseudomonas</u> phage. A classic precipitin band was obtained with a double-immunodiffusion assay of phage antigen against this antiserum. No such precipitin band was obtained, however, when the phage had been treated with the virucidal agent, nor if the antiserum had been raised against treated phage.

and a structures remained in any of the twenty fields examined. The result of the further tests are consistent, therefore, with a complete destruction of the bacteriophage structure by the virucidal

35 composition, to an extent that antigenic determinants are lost.

- 11 -

Example 3

Antifungal Test

Apple leaves infected with powdery mildew

were immersed in Composition A (Example 1) for about 60 seconds or until the leaves were completely wetted.

The leaves were then observed daily. The powdery mildew was completely inhibited within 24 hours and no mildew lesions were present on the treated apple leaves as they hardened off.

A further microscopic test of treated powdery mildew spores and mycellium with Composition A showed that both spores and mycellium were destroyed after 1 hour at room temperature. Composition A neutralised by 2%. TW80 was not effective however.

Example 4

Composition A was tested under the conditions 20 described in Example 2 for activity against poliovirus, herpes simplex virus type 1 (HSV-1) and human immunodeficiency virus type 1. 20 μ l of an appropriate dilution of virus was mixed with 144 μ l of composition After exposure, the virucide was neutralised by 25 addition of a 2% v/v solution of Tween 80 in lambda buffer. In cell culture assays using HT-29 cells (for poliovirus), MRC-5 cells for HSV-1 and IIUT-78 cells for HIV-1 there was complete reduction of infectivity of initial inocula of 1-4 \times 10⁶ virus. There was no 30 apparent cytopathic effect on MRC-5 cells or HT-29 cells.

REFERENCES

- 1. Terzaghi, B.E. and Sandine,, W.E. (1975) Improved medium for lactic streptocci and their
- 5 bacteriophages. Appl. Microbiol. 29, 807-813.
 - 2. Marshall, R.J. and Berridge, N.J. (1976) Selection and some properties of phage-resistant starter for cheese-making. J. Dairy Res. 43, 449-458.
 - Thunell, R., Sandine, W.E. and Bodyfelt, F.
- 10 (1981) Phage insensitive, multiple-strain starter approach to cheddar cheese. J. Dairy Sci. 64, 2270-2277.
 - 4. Sing. W.D. and Klaenhammer, T.R. (1993) A strategy for rotation of different bacteriophage
- defenses in a lactococcal single-strain starter culture system. Appl. Environ. Microbiol. 59, 365-372.
 - 5. Dutka, B.J., Palmateer, G.A., Meissner, S.M., Janzen, E.M. and Sakellaris, M. (1990) The presence of bacterial virus in groundwater and treated drinking
- 20 water. Environ. Pollut. 63, 293-298.
 - 6. Jassim, S.A.A., Ellison, A., Denyer, S.P. and Stewart, G.S.A.B. (1990). <u>In vivo</u> bioluminescence: a cellular reporter fo research and industry. J. Biolumin. Chemilumin. 5, 115-122.
- 7. Mesquita, M.M.F.D. (1990) Bacteriophages as viral models in studies of water and shellfish quality. Rev. Bras. Biol. 49, 923-932.
 - 8. Ulitzur, S. and Kuhn, J. (1987) Introduction of <u>lux</u> genes into bacteria, a new approach for specific
- determination of bacteria and their antibiotic susceptibility. In Bioluminescence and Chemiluminescence New Perspectives, (Schlomerich, J., Andereesen, R., Kapp, A., Ernst, M. and Woods, W.G. Eds), pp. 463-472. Bristol:Wiley.

PCT/GB95/00324 WO 95/22254

. - 13 -

- Stewart, G.S.A.B., Smith, A.T. and Denyer, S. 9.
- P. (1989) Genetic engineering of bioluminescent bacteria. Food Sci. Technol. Today. 3, 19-22.
- Wolber, P.K. and Green, R.L. (1990) New rapid
- 5 method for the detection of Salmonella in foods. Trends Food Sci. Technol. 1, 80-82.
 - Kodikara, C.P., Crew, H.H. and Stewart,
 - G.S.A.B. (1991) Near on-line detection of enteric bacteria using <u>lux</u> recombinanat bacteriophage, FEMS
- 10 Microbiol. Letts. 83, 261-266.
 - 12. Turpin, P.E., Maycroft, K.A., Bedford, J., Rowlands, C.L. and Wellington, E.M.H. (1993) A rapid luminescent-phage based MPN metahod for the enumeration of Salmonella typhimurium in environmental samples.
- 15 Letts. Appl. Microbiol. 16, 24-27.
 - Adams, M.H. (1959) Bacteriophages, 49-62 pp. Wiley Interscience.
 - Maillard et al. (1993) Effect of biocides on Pseudomonas aeruginosa phage F116. Letts. Appl.
- 20 Microbiol. <u>17</u>, 167-170.
 - 15. Singh, et al. (1993) Letts. Appl. Microbiol. 17, 269-271.
 - Kallings, L.O. (1967) Sensitivity of various 16. Salmonella strains to Felix 01 phage. Acta Pathol.
- 25 Microbiol. Scand. 70, 446-454.
 - Fantone, J. C. and Ward, P.A. (1982) Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am. J. Pathol. 107, 397-418.
- 30 Miles, A.A., Misra, S.S. and Irwin, J. O. (1938) The estimation of the bactericidal power of the blood. J. Hyg. (Cambridge), 38, 732-749.
 - 19. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K.
- 35 (1991) Growing lambda-derived vectors In Current Protocols in Molecular Biology, Vol. 1, pp 1.12.1-1.12.3., Wiley Interscience, New York.

- 14 -

CLAIMS

5

10

- 1. An antiviral or antifungal composition comprising an effective concentration of a mixture of a ferrous salt and an extract of a plant selected from pomegranate rind, <u>Viburnum plicatum</u> leaves or flowers and maple leaves.
- 2. A composition as claimed in claim 1, which is an aqueous solution.
- 3. A composition as claimed in claim 2, wherein the ferrous salt concentration is 0.1 mM to 0.1 M.
- A composition as claimed in claim 2 or claim
 3, wherein the plant extract is used at a dilution of 1
 to 100 times.
 - 5. A composition as claimed in any one of claims 2 to 4, wherein the iron salt is ferrous sulphate used at a concentration of 1 20 mM and the plant extract is pomegranate rind extract.
 - 6. A solid or liquid concentrate which on dilution with water gives a composition according to any one of claims 2 to 6.
- 7. A method of controlling virus or fungus, which method comprises contacting the virus or fungus with an effective concentration of a ferrous salt and an effective concentration of an extract of a plant selected from pomegranate rind, <u>Viburnum plicatum</u>
- 30 leaves or flowers, tea leaves and maple leaves.
 - 8. A method as claimed in claim 7, wherein the ferrous salt is used as a 0.1 mM to 0.1 M aqueous solution.

- 15 -

- 9. A method as claimed in claim 7 or claim 8, wherein the virus or fungus is on a surface and the ferrous slat and the plant extract are applied to the surface.
- 5 10. A method as claimed in any one of claims 7 to 9, wherein the virus or fungus is contacted with an aqueous composition comprising a mixture of the ferrous salt and the plant extract.
- 11. For use as an antiviral or antifungal agent,
 a composition containing a mixture of an effective
 concentration of a ferrous salt and an effective
 concentration of an extract of a plant selected from
 pomegranate rind, <u>Viburnum plicatum</u> leaves or flowers,
 tea leaves and maple leaves.

15

20

25

Interna 1 Application No PCT/GB 95/00324

A. CLASSII	FICATION OF SUBJECT MATTER A01N65/00			
A coording to	o International Patent Classification (IPC) or to both national classificat	tion and IPC		
	SEARCHED		·	
Minimum do	ocumentation searched (classification system followed by classification	symbols)		
IPC 6				
Documentati	ion searched other than minimum documentation to the extent that such	n documents are included in the fields se	arched	
Document.	·			
Electronic d	ata base consulted during the international search (name of data base a	nd, where practical, search terms used)		
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.	
Cangory				
X,Y	DATABASE WPI Week 1878		1-8	
	Derwent Publications Ltd., London, AN 78-32601A [18]			
	& JP,A,53 029 907 (HOTTA K) , 20 March 1978			
	see abstract		1-8	
Y	DATABASE WPI Week 4791	OD.		
	Derwent Publications Ltd., London, GB; AN 91-346759			
	& US,A,7 661 005 (US FOOD & DRUG ADMIN / US DEPT HEALTH & HUMAN SERVICES) , 15			
1	October 1991 see abstract			
	& WO,A,94 04167 ()			
	-	/- -		
X Fu	rther documents are listed in the continuation of box C.	X Patent family members are listed	in annex.	
* Special c	categories of cited documents:	T later document published after the in	ternational filing date	
'A' docu	'A' document defining the general state of the art which is not considered to be of particular relevance invention Taker document pulmate and a first with the application but or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention			
"E" carlie	"E' earlier document but published on or after the international filing date "X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to			
whic	which is cited to establish the publication date of another which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the			
'P' docu	O' document referring to an oral disclosure, use, exhibition or other means of the same natent family document published prior to the international filing date but			
later	than the priority date claimed he actual completion of the international search	Date of mailing of the international		
	28 April 1995	1 7, 05. 95		
	d mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer		
	NL - 2280 HV Riswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Lamers, W		

Intern: ul Application No PCT/GB 95/00324

ages Relevant to claim No.
1-8
and
1-8
;
tober 1-8
1-8 ; 8

Interns 1 Application No PCT/GB 95/00324

	•	PCT/GB 95/00324
C.(Continua	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DATABASE WPI Week 2490 Derwent Publications Ltd., London, GB; AN 90-181324 [24] & JP,A,02 117 608 (ITO-EN), 2 May 1990 see abstract	1-8
A	DATABASE WPI Week 4889 Derwent Publications Ltd., London, GB; AN 89-353214 [48] & JP,A,01 265 023 (TAIYO CHEMICAL IND), 23 October 1989 see abstract	1-8

Interna I Application No PCT/GB 95/00324

Patent family member(s) Publication date Publication date Patent document cited in search report NONE 17-10-60 FR-A-1234397

Form PCT/ISA/218 (patent family annex) (July 1992)