Relaciones para flujos de efectivo discretos con capitalización al final del periodo

Tipo	Encontrar/ Dado	Notación con factor y su fórmula	Relación	Ejemplo de diagrama del flujo de efectivo
Cantidad única	F/P Cantidad capitalizada P/F Valor presente	$(F/P,i,n) = (1+i)^n$ $(P/F,i,n) = \frac{1}{(1+i)^n}$	F = P(F/P,i,n) $P = F(P/F,i,n)$ (Sec. 2.1)	0 1 2 n-1 n
Serie uniforme	P/A Valor presente A/P Recuperación del capital	$(P/A,i,n) = \frac{(1+i)^n - 1}{i(1+i)^n}$ $(A/P,i,n) = \frac{i(1+i)^n}{(1+i)^n - 1}$	P = A(P/A,i,n) $A = P(A/P,i,n)$ (Sec. 2.2)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	F/A Valor capitalizado A/F Fondo de amortización	$(F/A,i,n) = \frac{(1+i)^n - 1}{i}$ $(A/F,i,n) = \frac{i}{(1+i)^n - 1}$	F = A(F/A,i,n) $A = F(A/F,i,n)$ (Sec. 2.3)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Gradiente aritmético	P_G/G Valor presente A_G/G Series uniformes	$(P/G,i,n) = \frac{(1+i)^n - in - 1}{i^2(1+i)^n}$ $(A/G,i,n) = \frac{1}{i} - \frac{n}{(1+i)^n - 1}$ (Sólo gradiente)	$P_G = G(P/G,i,n)$ $A_G = G(A/G,i,n)$ (Sec. 2.5)	$P_{G} \xrightarrow{A_{G}} \xrightarrow{A_{G}} \xrightarrow{A_{G}} \xrightarrow{A_{G}} \xrightarrow{A_{G}}$ $0 1 2 3 n$ $G 2G \qquad (n-1) G$
Gradiente geométrico	P_g/A_1 y g Valor presente	$P_g = \begin{cases} A_1 \left[1 - \left(\frac{1+g}{1+i} \right)^n \right] \\ i - g \\ A_1 \frac{n}{1+i} \end{cases}$ (Gradiente y base A_1)	$g \neq i$ $g = i$ (Sec. 2.6)	$A_1 A_1 (1+g) A_1 (1+g)^{n-1}$ $A_1 A_2 A_3 A_4 (1+g) A_4 (1+g)^{n-1}$ $A_1 A_2 A_4 (1+g) A_4 (1+g)^{n-1}$

Cap 4. Tasa efectiva por PC = $i = \frac{r}{m}$ i efectivo por periodo = $\left(1 + \frac{r}{m}\right)^m - 1$

$$VA = RC + A$$

$$RC = -P(A \backslash P, I.n) + S(A \backslash F, i, n)$$