In [17]: import scipy.stats as stats

```
In [3]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

file_name = r"/Users/ /Documents/Work/Narela/AC-1-voterlist.xlsx"

sheet = 'VoterList'
df = pd.read_excel(io=file_name, sheet_name=sheet, sep='\s*,\s*')
```

In [4]: df.head()

Out[4]:

	ACNo	PartNo	SINo	EName	Sex	RName	RType	AGE	IDCardNo	STATUSTYPE	VHo
0	1	1	1	BIMLA DEVI	F	JAGDISH CHANDER	Н	64	XVX0000026	N	1
1	1	1	2	JAGDISH CHAND BHARA	М	MITTHAN LAL	F	61	XVX0000018	N	1
2	1	1	3	SANDEEP	М	JAGDISH CHAND	F	37	XVX0000034	N	1
3	1	1	4	SARITA DEVI	F	SANDEEP KUMAR	Н	34	XVX1521111	N	1
4	1	1	5	RAJA MISHRA	М	NISHIKANT MISHRA	F	21	XVX2556710	N	1

```
In [10]: df.hist(column='AGE', bins = 50)
    plt.xlabel('Age')
    plt.ylabel('Count')
    plt.show()
```


In [78]: df.AGE.value_counts().sort_index().head()

Out[78]: 18 1044 19 3584 20 5088 21 5595 22 6382 Name: AGE, dtype: int64

1/6

In [15]: plt.bar(df.AGE.value_counts().index, df.AGE.value_counts().values)
 plt.show()

In [52]: plt.scatter(df.AGE.value_counts().sort_index().index, df.AGE.value_counts().sor
 t_index().values)
 plt.show()


```
In [25]: sigma = df.AGE.std()
  mean = df.AGE.mean()
  print("sigma " + str(sigma))
  print("mean " + str(mean))
```

sigma 13.864475891832324 mean 38.5884051357574

In [71]: y = stats.norm.pdf(df.AGE.value_counts().sort_index().index,mean,sigma)

```
In [72]: plt.plot(df.AGE.value_counts().sort_index().index, y)
    plt.title("Normal Age Distribution : $\mu = $ %.1f $\sigma = $ %.1f" %(mean, sig
    ma))
    plt.xlabel("Age")
    plt.ylabel("Probability Density")
    plt.show()
```


POSITIVE SKEW

```
In [60]: y = stats.norm.pdf(df.AGE.value_counts().sort_index().index,mean,5)

In [61]: plt.plot(df.AGE.value_counts().sort_index().index, y)
    plt.title("Normal Age Distribution : $\mu = $ %.1f $\sigma = $ %.1f" %(mean,5))
    plt.xlabel("Age")
    plt.ylabel("Probability Density")
    plt.show()
```



```
In [66]: y = stats.norm.pdf(df.AGE.value_counts().sort_index().index,75,sigma)
```

```
In [67]: plt.plot(df.AGE.value_counts().sort_index().index, y)
    plt.title("Normal Age Distribution : $\mu = $ %.1f $\sigma = $ %.1f" %(75,sigma
    ))
    plt.xlabel("Age")
    plt.ylabel("Probability Density")
    plt.show()
```


NEGATIVE SKEW

```
In [74]: num_bins = 20
    counts, bin_edges = np.histogram (df.AGE, bins=50, normed=True)
    cdf = np.cumsum (counts)
    plt.plot (bin_edges[1:], cdf/cdf[-1], color ='y')
    plt.xlabel('AGE')
    plt.ylabel('Probability')
    plt.title('CDF')
    plt.show()
```


CDF

TASK: What is a Q-Q Plot?

```
In [85]: stats.probplot(df.AGE, dist="norm", plot=plt)
   plt.show()
```


To check the normality of the given data.

Say we have a normal distribution, then the corresponding QQ Plot is:

```
In [90]: mean = df.AGE.value_counts().index.values.mean()
    sigma = df.AGE.value_counts().index.values.std()
    y = stats.norm.pdf(df.AGE.value_counts().sort_index().index, mean, sigma)
    plt.plot(df.AGE.value_counts().sort_index().index, y)
    plt.title("Normal Age Distribution : $\mu = $ %.1f $\sigma = $ %.1f" $\(mean, \sigma)
    ma))
    plt.xlabel("Age")
    plt.ylabel("Probability Density")
    plt.show()
```


In [91]: stats.probplot(df.AGE.value_counts().index, dist="norm", plot=plt)
 plt.show()

