LSE Summer week

2022

Day 1

Présenté par: Pierre Parrend, Professeur HDR Laboratoire Systèmes de l'EPITA (Kremlin-Bicêtre)/ICube (Strasbourg) Enseignant à l'EPITA Strasbourg

Thanks to organizers!

Marc, Fabrice, and all others!

Trusted Al for secure critical systems

Présenté par: Pierre Parrend, Professeur HDR Laboratoire Systèmes de l'EPITA (Kremlin-Bicêtre)/ICube (Strasbourg) Enseignant à l'EPITA Strasbourg

LSE – some piece of news

LSE Summer week 2022

When? ▼	Who	What?
10h	Pierre Parrend	Trusted AI for secure critical systems
		Generating synthetic traffic to improve the robustness of network
10h45	Grégory Blanc	intrusion detection
11h15	Julius Pfrommer	Industrial Communication with OPC UA – Secure by Design?
11h45	Mark Angustures	Port scans and DDos detection by time series filtering
12h30 - paus	e	
14h	Chistian Elloh	Anonymisation of DNS requests through blockchain
14h45	Badis Hammi	Is it really easy to detect sybil attacks in C-ITS ?
15h30	Mohammed Badredine Zouhair	Malwares
16h15	Laurent Beaudoin, Loica Avanthey	Cartography of submarine zones with lightweight means

Thursday, 7/7/22

Who	What?
Marc Espie	To cache or not to cache, making pkg_add faster
Martin Grenouilloux	Discovering new ways of attacking AES when trying to do something else
Alex Levigoureux, Antoine Jouan	Work on UEFI driver rootkit with a bare metal hypervisor
Younes Benreguieg	Metrics for graph-based Anomaly Detection
Darius Engler	Writing a bare metal GPU driver for the Raspberry PI 4

Saturday, 9/7/22 TO be finalized

A brief history of LSE

Security-Systems Team

Team members

Doctorants: Amani Abou Rida, Julien Michel (, Majed Jaber + YOU)

Younes Benreguieg, Antoine Jouan, Nabih Benazzouz, Sébastien Delsart, Alexis Ehret, Thomas Berlioz,
Daniel Frederic, Leo Benito, Mathieu Fourre, Alex Levigoureux, Alexandre Fresnais, Martin Grenouilloux,
Pierre-Emmanuel Patry, Cesar Belley, Esteban Blanc, Arthur Cohen, Tanguy Dubroca, Martin Schmidt

Scientific goals - 2022

The SOC cybersecurity use case

Software

	2018	2019	2020	2021	2022	Total
Research				2	2	2 CREA, Cybergraphe
Open Source	2	2	2	2	1	2 Glibc; OpenBSD
> Commit	915	488	209	179	134	OpenBSD (Marc is 1 of 3 maiin contributors)
Google Summer of Code	2		2			4 libvirt, Vulkan, gcc-rs, Radare2
Student projects	9	many	many	many	3	
POCs				1	2	3
EPITA Infrastructure	2	2	2	2		2 Moulinette; infra ACUs
(LSE	1	1	1 07/07/2022 11	1	1	1 EPIT
Total	7	5	7	8	7	14

Detection

The adversary

- Example Multi-step Attack
 - Dataset DARPA 2000

LLDoS 2.0.2

1-dimension

Training duration:16.657758951187134

N-dimensions

Error-based features separate out genuine and fraudulent transactions

N dimensions

Classification as prediction oracle

- XGBoost
- MLP Multi-layer processing

•

Limitations

Al and critical systems

What is Trusted IA?

Human oversight

Towards explainability

The challenge: getting accuracy and interpretability back together

Trusted graphs

From ML to Graph learning

Euclidean domains

1,..., n dimensional

Machine learning-based network anomaly detection methods such as one-class support vector machines (OSVM), autoencoders (AE), and isolation forests (IS).

Non-Euclidean domains

Graph learning such as graph analysis, graph embedding, graph neural network

Expectations

Traceability: graph nodes can support data embedding. Interactions are visible!

Transparency: most graph algos are intrinsically transparent (not all)

Comprehensibility: output is typically a graph part (not always)

Explainability: making interactive graph plots is straightforward

Interpretability: see all repvious points

Explainability in graph models

Machine learning with graphs 1/3 First order search

The Cybergraph tool: low hanging fruits

The Cybergraph tool

BotIOT

Node behaviour analytics

Machine learning with graphs 2/3 Graph features, Euclidian ML

Some graph metrics: communities

Density d

0 = < d = < 1

Rate of number of connections between nodes in a community wrt number of possible connections number of connections

Externality e

0 = < e = < 1

Rate of edges with 1 end node not in the **C1** community and 1 in **C1** wrt. the total number of edges having at least 1 end node in **C1**

Julien Michel

$$d = 2/3$$

- 2 connections in C(1,2) and (1,3)
- 3 possible connections (1,2),
 (1,3) et (2,3)

$$e = 0.5$$

- 2 edges with end node outside C1 (3,4) et (2,5)
- 4 edges with at least 1 node in C1 (1,2), (1,3) et (2,3)

Benchmarking learning incl extracted graph features

Machine learning with graphs 3/3 Graph learning

Metrics for evaluating explainability

Fidelity

difference of accuracy between the original predictions and the new predictions after masking out important input features

Fidelity =
$$\frac{1}{N} \sum_{i=1}^{N} (f(G_i)_{yi} - f(G_i^{(1-m_i)})_{yi})$$

Infidelity =
$$\frac{1}{N} \sum_{i=1}^{N} (f(G_i)_{yi} - f(G_i^{(m_i)})_{yi})$$

Sparsity

the fraction of features selected as important by explanation methods

$$Sparsity = \frac{1}{N} \sum_{i=1}^{N} (1 - \frac{|m_i|}{|M_i|})$$

Machine learning with graphs Summary

Future challenges

Next application domains

de Strasbourg

This is a call for PhD Students ...

Merci!!

