Regresi Linear

Stevanus Sembiring/162112133099

2022-10-05

```
library(readxl)
df = read_excel("Tingkat Pengangguran.xlsx")
```

1. Model regresi dan menentukan variabel prediktor dan respon

```
# Menentukan variabel prediktor dan respon
x1 = df$`Kepadatan (Jiwa/m2)`
x2 = df$`Proporsi remaja dengan TIK (%)`
y = df$`Tingkat Pengangguran Terbuka (%)`
```

Variabel Tingkat Pengangguran Terbuka adalah sebagai Variabel respon (y) sedangkan variabel Proporsi remaja dengan TIK dan Kepadatan adalah variabel prediktor (x).

2. Estimasi model menggunakan excel

Hasil estimasi model menggunakan excel ada di dalam folder

3. Uji Asumsi Klasik

Uji Variansi error konstan

1. Menguji ketidaksamaan variansi dari residual dengan menggunakan **uji glejser**

```
H_0: Data\ bersifat\ Homogen

H_1: Data\ bersifat\ Heterogen

\alpha: 5\%
```

```
# Uji Glejser
library(skedastic)
glejser(model1)
```

```
## # A tibble: 1 x 4
## statistic p.value parameter alternative
## <dbl> <dbl> <dbl> <chr>
## 1 2.11 0.348 2 greater
```

Dari hasil uji glejser didapatkan P-Value = 0.3477001, sehingga kesimpulannya **Gagal Tolak H0**, karena P-Value $(0.3477001) > \alpha(0,05)$. Kesimpulannya, data ini **tidak** melanggar asumsi Homoskedastisitas (data bersifat homogen).

Uji Independensi Error (autokorelasi)

menguji apakah dalam model regresi linier ada korelasi antara error dari observasi satu dan lainnya. Uji yang digunakan adalah **Uji Durbin-Watson**.

 $H_0: Tidak \ ada \ autokorelasi$

 $H_1: Terdapat\ autokorelasi$

 $\alpha:5$

```
# Uji Durbin Watson
library(lmtest)
dwtest(model1)
```

```
##
## Durbin-Watson test
##
## data: model1
## DW = 2.0095, p-value = 0.4524
## alternative hypothesis: true autocorrelation is greater than 0
```

Dari hasil pengujian Durbin-Watson, P-Value yang didapat adalah 0.4524. Sehingga kesimpulan adalah Gagal Tolak $\mathbf{H_0}$, karena P-Value(0.4524) > (0,05). Sehingga dapat disimpulkan bahwa data tersebut Tidak ada autokorelasi.

Uji Normalitas

Menguji error berdistribusi normal.

 $H_0: Error\ berdistribusi\ normal$

 $H_1: Error\ tidak\ berdistribusi\ normal$

 $\alpha:5\%$

```
# Uji Kolmogorov-Smirnov (KS)
error = model1$residuals
library(stats)
ks.test(error, "pnorm")
```

```
##
## One-sample Kolmogorov-Smirnov test
##
## data: error
## D = 0.17509, p-value = 0.2207
## alternative hypothesis: two-sided
```

Dari pengujian Kolmogorov-Smirnov (KS) di atas, P-Value yang didapat sama dengan 0.2207, maka **Gagal Tolak H**₀ karena P-value(0.2207) $> \alpha(0.05)$ dan dapat disimpulkan bahwa dalam data ini error telah berdistribusi normal.

Uji Multikolinieritas

Menguji hubungan antara variabel prediktor dengan melihat nilai Variance Inflation Factor (VIF), Nilai VIF ketika tidak terjadi Multikolinieritas adalah < 5.

```
# Nilai VIF
library(regclass)
VIF(model1)
```

```
## x1 x2
## 1.041007 1.041007
```

Dari hasil Uji Multikolinieritas di dapatkan hasil VIF dari variabel X1 dan X2 < 5 sehingga dapat disimpulkan bahwa **Tidak terjadi Multikolinieritas**

Dari hasil pengujian asumsi klasik yang telah dilakukan didapatkan TIDAK ADANYA pelanggaran pada Uji Asumsi Klasik (Semua Asumsi Terpenuhi)

4. Hasil Estimasi

```
# hasil estimasi
summary(model1)
```

```
##
## Call:
## lm(formula = y ~ x1 + x2, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4484 -1.0422 -0.4126 0.9772 4.1546
##
```

```
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.7346537 2.2664993 0.765
              0.0002008 0.0001102
                                    1.822
                                             0.0781 .
              0.0407785 0.0255746
                                    1.594 0.1210
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.688 on 31 degrees of freedom
## Multiple R-squared: 0.1907, Adjusted R-squared: 0.1385
## F-statistic: 3.652 on 2 and 31 DF, p-value: 0.03767
\beta_0 = 1.734653685
\beta_1 = 0.000200775 \ \beta_2 = 0.040778518
R-squared=0.1907
```

5. pemodelan

Pemodelan dengan polinom derajat 2

```
# Model Regresi Kuadrat (Polinom derajat dua)
polinom_model = lm(y~x1+I(x1^2)+x2+I(x2^2), data=df)
summary(polinom_model)
##
```

```
## Call:
## lm(formula = y \sim x1 + I(x1^2) + x2 + I(x2^2), data = df)
##
## Residuals:
      Min
               1Q Median
                               3Q
## -2.5863 -1.0651 -0.1261 1.0701 4.4363
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.313e+00 5.715e+00 0.230
                                             0.8198
## x1
               1.957e-03 8.925e-04
                                     2.193
                                             0.0365 *
## I(x1^2)
              -1.087e-07 5.441e-08 -1.998
                                             0.0552 .
## x2
              7.264e-02 1.696e-01 0.428
                                             0.6716
              -3.597e-04 1.216e-03 -0.296
## I(x2^2)
                                             0.7694
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.632 on 29 degrees of freedom
## Multiple R-squared: 0.2925, Adjusted R-squared: 0.1949
## F-statistic: 2.998 on 4 and 29 DF, p-value: 0.0347
```

Pemodelan dengan interaksi

```
# Model Regresi dengan Interaksi
linmod_Interaksi = lm(y~x1+x2+x1*x2, data = df)
summary(linmod_Interaksi)
```

```
##
## Call:
## lm(formula = y \sim x1 + x2 + x1 * x2, data = df)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -3.0974 -0.9409 -0.2114 0.8772 4.5854
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3077642 2.1190801
                                      0.617
                                              0.5418
## x1
               0.0430352 0.0179153
                                      2.402
                                              0.0227 *
## x2
               0.0395024 0.0238321
                                              0.1078
                                      1.658
## x1:x2
              -0.0004353 0.0001821
                                     -2.391
                                              0.0233 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.573 on 30 degrees of freedom
## Multiple R-squared: 0.3202, Adjusted R-squared: 0.2522
## F-statistic: 4.71 on 3 and 30 DF, p-value: 0.00824
```

Dari 2 pemodelan yang dilakukan di dapatkan bahwa model regresi dengan interaksi memiliki R-Squared lebih tinggi.

6. Membandingkan hasil no.4 dan 5

Dari hasil kedua Model Regresi di atas, ketika data pengamatan yang diregresikan dengan Regresi dengan interaksi mendapatkan nilai kebaikan model (R-Squared) **lebih baik atau lebih tinggi** jika dibandingkan dengan Model Regresi Linier dan Model regresi polinomial 2 derajat. model yang didapatkan adalah **0,3202** atau **32,20%**. Sehingga model ini lebih baik untuk dimodelkan ke dalam **model regresi dengan interaksi**

7. Interpretasi model terbaik dari no.6

```
_
```

linmod Interaksi

```
##
## Call:
## lm(formula = y ~ x1 + x2 + x1 * x2, data = df)
##
## Coefficients:
## (Intercept) x1 x2 x1:x2
## 1.3077642 0.0430352 0.0395024 -0.0004353
```

 $y(Tingkat\ Pengangguran) = 1.3077642 - 0.0430352x1 + 0.0395024x2 + -0.0004353x1 : x2$

- Ketika seluruh variabel prediktor konstan maka Tingkat Pengangguran Terbuka bernilai 1.3077642%.
- Ketika variabel prediktor lainnya konstan, maka Kepadatan akan menambah Tingkat Pengangguran Terbuka sebesar 0.0430352 setiap Jiwa/m^2.
- Ketika variabel prediktor lainnya konstan, maka Proporsi Remaja dengan TIK akan akan menambah Tingkat Pengangguran Terbuka sebesar 0,0395024 setiap Persen(%).
- Ketika variabel prediktor lainnya konstan, maka Interaksi antara Kepadatan dan Proporsi Remaja dengan TIK akan mengurangi Tingkat Pengangguran Terbuka sebesar 0,0004353.