P3 de Álgebra Linear I -2009.1

Data: 19 de Junho de 2009.

Nome:	Matrícula:	
Assinatura:	Turma:	

Duração: 1 hora 50 minutos

Preencha CORRETA e COMPLETAMENTE todos os campos (nome, matrícula, assinatura e turma).

Provas sem nome não serão corrigidas e terão nota ZERO.

Provas com os campos matrícula, assinatura e turma não preenchidos ou preenchidos de forma errada serão penalizadas com a perda de 1 ponto por campo.

Questão	Valor	Nota	Revis.
1a	1.5		
1b	0.5		
2a	0.5		
2b	1.0		
2c	1.0		
3a	0.5		
3b	0.5		
3c	2.0		
4a	1.0		
4b	0.5		
4c	1.0		
Total	10.0		

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- Não é permitido o uso de corretor (liquid paper).
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas.
- Escreva de forma clara, ordenada legível.
- O desenvolvimento de cada questão deve estar a seguir da palavra **Resposta** no lugar a ele destinado. Desenvolvimentos fora do lugar (p. ex. no meio dos enunciados, nas margens, etc) <u>não serão corrigidos</u>!!.

Aviso

- Justifique cuidadosamente todas as respostas de forma completa, ordenada e coerente.
- Esta prova tem caráter discursivo. Portanto, o raciocínio completo é parte da resposta. O raciocínio é essencial para que a resposta seja considerada correta.

Observação

Justificar: Legitimar. Dar razão a. Provar a boa razão do seu procedimento.

Cuidado: Atenção, cautela, desvelo, zelo. cuidadoso: Quem tem ou denota cuidado.

Raciocínio: Encadeamento lógico de juízos ou pensamentos.

fonte: mini-Aurélio

1)

(a) Determine a inversa da matriz

prova A)

$$A = \left(\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 2 & 1 & 1 \end{array}\right),$$

prova B)

$$A = \left(\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 2 & 3 & 1 \end{array}\right),$$

prova C)

$$A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 3 & 1 \end{array}\right),$$

prova D)

$$A = \left(\begin{array}{ccc} 2 & 3 & 1 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{array}\right).$$

(b) Sejam $B = A^2$ e C a matriz inversa de B, (isto é $C = B^{-1}$). Suponha que

$$C = \begin{pmatrix} c_{1,1} & c_{1,2} & c_{1,3} \\ c_{2,1} & c_{2,2} & c_{2,3} \\ c_{3,1} & c_{3,2} & c_{3,3} \end{pmatrix}.$$

Determine o coeficiente $c_{1,2}$ da matriz C.

Critério de correção: Um erro nos coeficientes da inversa **nota 1.0**, dois erros **nota 0.5**, três ou mais erros **nota zero**. O desenvolvimento da questão é necessário. O coeficiente $c_{1,2}$ da matriz C deve ser correto, caso contrário, a nota do item será **zerada**.

Escreva a resposta final a <u>caneta</u> no retângulo

$$c_{1,2} =$$

Desenvolvimento. Resposta:

- 2) Considere matrizes 3×3 A, B e C.
- (a) Sabendo que $A^2 = A$ e que o determinante de A é diferente de zero, encontre um autovalor de A.
- (b) Suponha que a matriz B verifica

$$B = PDP^{-1},$$

onde

$$P = \begin{pmatrix} 6 & -3 & 2 \\ 3 & 2 & 6 \\ 2 & 6 & -3 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Ache ${f todos}$ os autovalores de B e para cada autovalor de B ache um autovetor associado.

(c) Suponha que

$$C = \left(\begin{array}{ccc} 22 & 31 & 17 \\ 44 & 62 & 34 \\ 66 & 93 & 51 \end{array}\right).$$

Prove que os autovalores de C são 0 (de multiplicidade 2) e

$$22 + 62 + 51 = 135$$
.

Resposta:

3) Considere uma transformação linear $T\colon \mathbb{R}^3 \to \mathbb{R}^3$ que verifica

$$T(1, -1, 1) = 2(1, -1, 1),$$

$$T(1, 1, 0) = 3(1, 1, 0),$$

$$T(1, 0, -1) = 3(1, 0, -1).$$

- (a) Determine os autovalores de T e suas multiplicidades.
- (b) Encontre, se possível, uma base ortonormal de \mathbb{R}^3 formada por autovetores de T.
- (c) Escreva a matriz $[T]_{\mathcal{E}}$ de T na base canônica da forma

$$[T]_{\mathcal{E}} = M D M^{-1},$$

onde D é diagonal. As matrizes $M,\ D$ e M^{-1} devem ser calculadas **explicitamente**.

Resposta:

4) Considere a transformação linear $L\colon\mathbb{R}^3\to\mathbb{R}^3$ cuja matriz na base canônica é

$$[L]_{\mathcal{E}} = \left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & 2 \end{array} \right).$$

- (a) Determine os autovalores de L e suas multiplicidades.
- (b) Existe uma forma diagonal de L? Explique cuidadosamente sua resposta.
- (c) Considere a base de \mathbb{R}^3

$$\beta = \{(0,0,1), (0,1,1), (1,1,1)\}.$$

Determine a matriz $[L]_{\beta}$ de L na base β .

Resposta: