Interpretable Machine Learning

Leave One Covariate Out (LOCO)

Learning goals

- Definition of LOCO
- Interpretation of LOCO

Interpretable Machine Learning

Feature Importances 1 Leave One Covariate Out (LOCO)

Figure: Bike Sharing Dataset

Learning goals

- Definition of LOCO
- Interpretation of LOCO

LOCO Lei et al. (2018) Tibshirani (2018)

LOCO idea: Remove the feature from data, refit model on reduced data, and measure the loss in performance compared to model fitted on complete data.

LOCO | LEI_2018 | TIBSHIRANI_2018

LOCO idea: Remove the feature from data, refit model on reduced data, and measure the loss in performance compared to model fitted on complete data.

LOCO idea: Remove the feature from data, refit model on reduced data, and measure the loss in performance compared to model fitted on complete data.

Definition: Given train and test data $\mathcal{D}_{\text{train}}$, $\mathcal{D}_{\text{test}} \subseteq \mathcal{D}$, a learner \mathcal{I} , and model $\hat{f} := \mathcal{I}(\mathcal{D}_{\text{train}})$, the LOCO importance for feature $j \in \{1, \dots, p\}$ is computed by:

• Learn model on $\mathcal{D}_{\text{train},-j}$ where feature x_j was removed, i.e. $\hat{t}_{-j} = \mathcal{I}(\mathcal{D}_{\text{train},-j})$

LOCO LEI_2018 TIBSHIRANI_2018

LOCO idea: Remove the feature from data, refit model on reduced data, and measure the loss in performance compared to model fitted on complete data.

Definition: Given train and test data $\mathcal{D}_{\text{train}}$, $\mathcal{D}_{\text{test}} \subseteq \mathcal{D}$, a learner \mathcal{I} , and model $\hat{f} := \mathcal{I}(\mathcal{D}_{\text{train}})$, the LOCO importance for feat $j \in \{1, \dots, p\}$ is computed by:

LOCO idea: Remove the feature from data, refit model on reduced data, and measure the loss in performance compared to model fitted on complete data.

Definition: Given train and test data $\mathcal{D}_{\text{train}}$, $\mathcal{D}_{\text{test}} \subseteq \mathcal{D}$, a learner \mathcal{I} , and model $\hat{f} := \mathcal{I}(\mathcal{D}_{\mathsf{train}})$, the LOCO importance for feature $j \in \{1, \dots, p\}$ is computed by:

- Learn model on $\mathcal{D}_{\text{train }-i}$ where feature x_i was removed, i.e. $\hat{f}_{-i} = \mathcal{I}(\mathcal{D}_{\text{train }-i})$
- 2 Compute the difference in local L_1 loss for each element in \mathcal{D}_{test} , i.e.

$$\Delta_j^{(i)} = \left| y^{(i)} - \hat{t}_{-j}(x_{-j}^{(i)}) \right| - \left| y^{(i)} - \hat{f}(x^{(i)}) \right| \text{ with } i \in \mathcal{D}_{\text{test}}$$

LOCO > LEI_2018 > TIBSHIRANI_2018

LOCO idea: Remove the feature from data, refit model on reduced data, and measure the loss in performance compared to model fitted on complete data.

Definition: Given train and test data \mathcal{D}_{train} , $\mathcal{D}_{test} \subseteq \mathcal{D}$, a learner \mathcal{I} , and model $\hat{f} := \mathcal{I}(\mathcal{D}_{\text{train}})$, the LOCO importance for feat $j \in \{1, \dots, p\}$ is computed by:

• Learn model on
$$\mathcal{D}_{\text{train},-j}$$
 where feature x_j was removed, i.e. $\hat{t}_{-i} = \mathcal{I}(\mathcal{D}_{\text{train},-i})$

 $\Delta_{i}^{(i)} = \left| y^{(i)} - \hat{f}_{-i}(x_{-i}^{(i)}) \right| - \left| y^{(i)} - \hat{f}(x^{(i)}) \right| \text{ with } i \in \mathcal{D}_{\text{test}}$

• Compute the difference in local
$$L_1$$
 loss for each element in \mathcal{D}_{test} , i.e.

Interpretable Machine Learning - 1/5 Interpretable Machine Learning - 1/5

LOCO idea: Remove the feature from data, refit model on reduced data, and measure the loss in performance compared to model fitted on complete data.

Definition: Given train and test data $\mathcal{D}_{\text{train}}$, $\mathcal{D}_{\text{test}} \subseteq \mathcal{D}$, a learner \mathcal{I} , and model $\hat{f} := \mathcal{I}(\mathcal{D}_{\mathsf{train}})$, the LOCO importance for feature $j \in \{1, \dots, p\}$ is computed by:

- Learn model on $\mathcal{D}_{\text{train }-i}$ where feature x_i was removed, i.e. $\hat{f}_{-i} = \mathcal{I}(\mathcal{D}_{\text{train }-i})$
- **2** Compute the difference in local L_1 loss for each element in \mathcal{D}_{test} , i.e. $\Delta_i^{(i)} = \left| y^{(i)} - \hat{t}_{-i}(x_{-i}^{(i)}) \right| - \left| y^{(i)} - \hat{t}(x^{(i)}) \right| \text{ with } i \in \mathcal{D}_{\text{test}}$
- **3** Compute importance score by LOCO_i = med (Δ_i)

LOCO > LEI_2018 > TIBSHIRANI_2018

LOCO idea: Remove the feature from data, refit model on reduced data, and measure the loss in performance compared to model fitted on complete data.

Definition: Given train and test data $\mathcal{D}_{\text{train}}$, $\mathcal{D}_{\text{test}} \subseteq \mathcal{D}$, a learner \mathcal{I} , and model $\hat{f} := \mathcal{I}(\mathcal{D}_{\mathsf{train}})$, the LOCO importance for feat $j \in \{1, \dots, p\}$ is computed by:

Compute the difference in local
$$L_1$$
 loss for each element in $\mathcal{D}_{\text{test}}$, i.e.
$$\Delta_i^{(i)} = \left| y^{(i)} - \hat{f}_{-i}(x_{-i}^{(i)}) \right| - \left| y^{(i)} - \hat{f}(x^{(i)}) \right| \text{ with } i \in \mathcal{D}_{\text{test}}$$

3 Compute importance score by LOCO_i = med
$$(\Delta_i)$$

LOCO idea: Remove the feature from data, refit model on reduced data, and measure the loss in performance compared to model fitted on complete data.

Definition: Given train and test data $\mathcal{D}_{\text{train}}$, $\mathcal{D}_{\text{test}} \subseteq \mathcal{D}$, a learner \mathcal{I} , and model $\hat{f} := \mathcal{I}(\mathcal{D}_{\mathsf{train}})$, the LOCO importance for feature $j \in \{1, \dots, p\}$ is computed by:

2 Compute the difference in local
$$L_1$$
 loss for each element in $\mathcal{D}_{\text{test}}$, i.e. $\Delta_i^{(i)} = \left| y^{(i)} - \hat{f}_{-j}(x_{-i}^{(i)}) \right| - \left| y^{(i)} - \hat{f}(x^{(i)}) \right|$ with $i \in \mathcal{D}_{\text{test}}$

3 Compute importance score by LOCO_i = med (Δ_i)

The method can be generalized to other loss functions and aggregations. If we use mean instead of median we can rewrite LOCO as

$$\mathsf{LOCO}_i = \mathcal{R}_{\mathsf{emp}}(\hat{f}_{-i}) - \mathcal{R}_{\mathsf{emp}}(\hat{f}).$$

LOCO > LEI_2018 > TIBSHIRANI_2018

LOCO idea: Remove the feature from data, refit model on reduced data, and measure the loss in performance compared to model fitted on complete data.

Definition: Given train and test data $\mathcal{D}_{\text{train}}$, $\mathcal{D}_{\text{test}} \subseteq \mathcal{D}$, a learner \mathcal{I} , and model $\hat{f} := \mathcal{I}(\mathcal{D}_{\text{train}})$, the LOCO importance for feat $j \in \{1, \dots, p\}$ is computed by:

- Learn model on $\mathcal{D}_{\text{train},-i}$ where feature x_i was removed, i.e. $\hat{f}_{-i} = \mathcal{I}(\mathcal{D}_{\text{train }-i})$
- **2** Compute the difference in local L_1 loss for each element in \mathcal{D}_{test} , i.e. $\Delta_i^{(i)} = \left| y^{(i)} - \hat{t}_{-j}(x_{-i}^{(i)}) \right| - \left| y^{(i)} - \hat{t}(x^{(i)}) \right| \text{ with } i \in \mathcal{D}_{\mathsf{test}}$
- **3** Compute importance score by LOCO_i = med (Δ_i)

The method can be generalized to other loss functions and aggregations. If we use mean instead of median we can rewrite LOCO as

$$\mathsf{LOCO}_i = \mathcal{R}_{\mathsf{emp}}(\hat{t}_{-i}) - \mathcal{R}_{\mathsf{emp}}(\hat{t}).$$

BIKE SHARING EXAMPLE

- Trained random forest (default hyperparameters) on 70% of bike sharing data
- Performance measure: mean squared error (MSE)
- Computed LOCO on test set for all features, measuring increase in MSE
- temp was most important: removing it increased MSE by approx. 140.000

BIKE SHARING EXAMPLE

- Trained random forest (default hyperparams) on 70% of bike sharing data
- Performance measure: mean squared error (MSE)
- Computed LOCO on test set for all features, measuring increase in MSE
- temp was most important: removal increased MSE by approx. 140.000

Interpretation: LOCO estimates the generalization error of the learner on a reduced dataset \mathcal{D}_{-j} .

Can we get insight into whether the ...

- feature x_i is causal for the prediction \hat{y} ?
 - In general, no also because we refit the model (counterexample next slide)
- 2 feature x_i contains prediction-relevant information?
 - In general, no (counterexample on the next slide)
- \bullet model requires access to x_i to achieve its prediction performance?
 - Approximately, it provides insight into whether the *learner* requires access to x_i

INTERPRETATION OF LOCO

Interpretation: LOCO estimates the generalization error of the learner on a reduced dataset \mathcal{D}_{-i} .

Can we get insight into whether the ...

- feature x_i is causal for the prediction \hat{y} ?
 - In general, no, also because we refit the model (counterexample on the next slide)
- \bullet feature x_i contains prediction-relevant information?
 - In general, no (counterexample on the next slide)
- \bullet model requires access to x_i to achieve its prediction performance?
 - Approximately, it provides insight into whether the *learner* requires access to x_i

Example: Sample 1000 observations with

•
$$x_1, x_3 \sim N(0,5), x_2 = x_1 + \epsilon_2 \text{ with } \epsilon_2 \sim N(0,0.1)$$

•
$$y = x_2 + x_3 + \epsilon$$
 with $\epsilon \sim N(0,2)$

• Trained LM: $\hat{f}(x) = -0.02 - 1.02x_1 + 2.05x_2 + 0.98x_3$

INTERPRETATION OF LOCO

Example: Sample 1000 observations with

•
$$x_1, x_3 \sim N(0,5), x_2 = x_1 + \epsilon_2 \text{ with } \epsilon_2 \sim N(0,0.1)$$

•
$$y = x_2 + x_3 + \epsilon$$
 with $\epsilon \sim N(0,2)$

• Trained LM:
$$\hat{f}(x) = -0.02 - 1.02x_1 + 2.05x_2 + 0.98x_3$$

Interpretable Machine Learning - 4/5

Example: Sample 1000 observations with

• $x_1, x_3 \sim N(0,5), x_2 = x_1 + \epsilon_2 \text{ with } \epsilon_2 \sim N(0,0.1)$

• $y = x_2 + x_3 + \epsilon$ with $\epsilon \sim N(0,2)$

• Trained LM: $\hat{f}(x) = -0.02 - 1.02x_1 + 2.05x_2 + 0.98x_3$

Correlation matrix

LOCO importance from LM trained on 70% of data, evaluated on remaining 30%

INTERPRETATION OF LOCO

Example: Sample 1000 observations with

•
$$x_1, x_3 \sim N(0,5), x_2 = x_1 + \epsilon_2 \text{ with } \epsilon_2 \sim N(0,0.1)$$

•
$$y = x_2 + x_3 + \epsilon$$
 with $\epsilon \sim N(0,2)$

• Trained LM:
$$\hat{f}(x) = -0.02 - 1.02x_1 + 2.05x_2 + 0.98x_3$$

Correlation matrix

LOCO importance from LM trained on 70% of data, evaluated on remaining 30%

Example: Sample 1000 observations with

• $x_1, x_3 \sim N(0,5), x_2 = x_1 + \epsilon_2 \text{ with } \epsilon_2 \sim N(0,0.1)$

• $y = x_2 + x_3 + \epsilon$ with $\epsilon \sim N(0,2)$

• Trained LM: $\hat{f}(x) = -0.02 - 1.02x_1 + 2.05x_2 + 0.98x_3$

LOCO importance from LM trained on 70% of data, evaluated on remaining 30%

Correlation matrix

 \Rightarrow We cannot infer (1) from LOCO (e.g. LOCO₂ \approx 0 but coefficient of x_2 is 2.05)

INTERPRETATION OF LOCO

Example: Sample 1000 observations with

•
$$x_1, x_3 \sim N(0,5), x_2 = x_1 + \epsilon_2 \text{ with } \epsilon_2 \sim N(0,0.1)$$

•
$$y = x_2 + x_3 + \epsilon$$
 with $\epsilon \sim N(0,2)$

• Trained LM:
$$\hat{f}(x) = -0.02 - 1.02x_1 + 2.05x_2 + 0.98x_3$$

LOCO importance from LM trained on 70% of data, evaluated on remaining 30%

Correlation matrix

 \Rightarrow We cannot infer (1) from LOCO (e.g. LOCO₂ \approx 0 but coef. of x_2 is 2.05)

Example: Sample 1000 observations with

- $x_1, x_3 \sim N(0,5), x_2 = x_1 + \epsilon_2 \text{ with } \epsilon_2 \sim N(0,0.1)$
- $y = x_2 + x_3 + \epsilon$ with $\epsilon \sim N(0,2)$
- Trained LM: $\hat{f}(x) = -0.02 1.02x_1 + 2.05x_2 + 0.98x_3$

LOCO importance from LM trained on 70% of data, evaluated on remaining 30%

Correlation matrix

$$\Rightarrow$$
 We also can't infer (2), e.g., $Cor(x_2, y) = 0.68$ but LOCO₂ ≈ 0

INTERPRETATION OF LOCO

Example: Sample 1000 observations with

- $x_1, x_3 \sim N(0,5), x_2 = x_1 + \epsilon_2 \text{ with } \epsilon_2 \sim N(0,0.1)$
- $y = x_2 + x_3 + \epsilon$ with $\epsilon \sim N(0,2)$
- Trained LM: $\hat{f}(x) = -0.02 1.02x_1 + 2.05x_2 + 0.98x_3$

LOCO importance from LM trained on 70% of data, evaluated on remaining 30%

Correlation matrix

- \Rightarrow We cannot infer (1) from LOCO (e.g. LOCO₂ \approx 0 but coef. of x_2 is 2.05)
- \Rightarrow We also can't infer (2), e.g., $Cor(x_2, y) = 0.68$ but LOCO₂ ≈ 0

 $[\]Rightarrow$ We cannot infer (1) from LOCO (e.g. LOCO₂ \approx 0 but coefficient of x_2 is 2.05)

Example: Sample 1000 observations with

- $x_1, x_3 \sim N(0,5), x_2 = x_1 + \epsilon_2 \text{ with } \epsilon_2 \sim N(0,0.1)$
- $y = x_2 + x_3 + \epsilon$ with $\epsilon \sim N(0, 2)$
- Trained LM: $\hat{f}(x) = -0.02 1.02x_1 + 2.05x_2 + 0.98x_3$

LOCO importance from LM trained on 70% of data, evaluated on remaining 30%

Correlation matrix

- \Rightarrow We cannot infer (1) from LOCO (e.g. LOCO₂ \approx 0 but coefficient of x_2 is 2.05)
- \Rightarrow We also can't infer (2), e.g., $Cor(x_2, y) = 0.68$ but LOCO₂ ≈ 0
- \Rightarrow We can get insight into (3): x_2 and x_1 highly correlated with LOCO₁ = LOCO₂ \approx 0 $\rightarrow x_2$ and x_1 take each others place if one of them is left out (not the case for x_3)

INTERPRETATION OF LOCO

Example: Sample 1000 observations with

•
$$x_1, x_3 \sim N(0,5), x_2 = x_1 + \epsilon_2 \text{ with } \epsilon_2 \sim N(0,0.1)$$

•
$$y = x_2 + x_3 + \epsilon$$
 with $\epsilon \sim N(0,2)$

• Trained LM:
$$\hat{t}(x) = -0.02 - 1.02x_1 + 2.05x_2 + 0.98x_3$$

LOCO importance from LM trained on 70% of data, evaluated on remaining 30%

Correlation matrix

- \Rightarrow We cannot infer (1) from LOCO (e.g. LOCO₂ \approx 0 but coef. of x_2 is 2.05)
- \Rightarrow We also can't infer (2), e.g., $Cor(x_2, y) = 0.68$ but LOCO₂ ≈ 0
- \Rightarrow We can get insight into (3): x_2 , x_1 highly corr. with LOCO₁ = LOCO₂ \approx 0
- x_2 and x_1 take each others place if one of them is left out (unlike x_3)

PROS AND CONS

Pros:

- Requires (only?) one refitting step per feature for evaluation
- Easy to implement
- Testing framework available in Lei et al. (2018)

Cons:

- Provides insight into a learner on specific data, not a specific model
 - + for algorithm-level insight
 - for model-specific insights
- Model training is a random process and LOCO estimates can be noisy
- → Limits inference about on model and data, or multiple refittings necessary?
- Requires re-fitting the learner for each feature
 - Computationally intensive compared to PFI

PROS AND CONS

Pros:

- Requires (only?) one refitting step per feature for evaluation
- Easy to implement
- Testing framework available in ► Lei 2018

Cons:

- Provides insight into a learner on specific data, not a specific model
 - + for algorithm-level insight
 - for model-specific insights
- Model training is a random process and LOCO estimates can be noisy
 → Limits inference on model and data, or multiple refittings necessary?
- Requires re-fitting the learner for each feature
 - Computationally intensive compared to PFI

