Autor Prof. Cheșcă Ciprian Liceul Tehnologic "Costin Nenițescu" Buzău

Varianta 1 ("brut force")

Conform teoremei lui Pick care afirmă ca aria unei suprafețe poligonale este A = b/2 + i - 1, unde b = numărul punctelor laticiale de pe fontieră iar i = numărul punctelor laticiale din interiorul suprafeței poligonale, deducem că aria triunghiurilor căutate este ½ deoarece b = 0 și i = 0;

Notând cu (b,a) coordonatele celui de-al doilea vârf și cu (d,c) coordonatele celui de-al treilea vârf putem calcula aria acestor triunghiuri și în funcție de aceste coordonate obținem:

$$A = \frac{1}{2}(bd-ac)$$
.

Aşadar toate triunghiurile căutate au bd - ac = 1 (1).

Această relație permite o soluție în $O(n^4)$ care obține 15-20 puncte.

Varianta 2

Așadar am dedus că toate triunghiurile căutate respectă relația bd - ac = 1. Această relație este relația ce caracterizează 2 termeni consecutivi dintr-o secvență Farey.

Reamintim primele 6 secvențe Farey:

F_1	$\frac{0}{1}$ $\frac{1}{1}$													
F_2						$\frac{0}{1}$	$\frac{1}{2}$	<u>1</u>						
F_3					$\frac{0}{1}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{2}{3}$	<u>1</u>					
F_4				<u>0</u>	<u>l</u>	$\frac{1}{3}$	$\frac{1}{2}$	<u>2</u>	<u>3</u>	<u>1</u>				
F_5		<u>0</u>	$\frac{1}{3}$	<u>1</u>	$\frac{1}{3}$	<u>2</u>	$\frac{1}{2}$	<u>3</u>	$\frac{2}{3}$	<u>3</u>	<u>4</u> 5	<u>1</u>		
F_6	<u>0</u>	$\frac{1}{6}$	<u>1</u>	<u>1</u>	$\frac{1}{3}$	<u>2</u>	$\frac{1}{2}$	<u>3</u>	<u>2</u> 3	<u>3</u>	<u>4</u> 5	<u>5</u>	<u>1</u>	

Așadar trebuie să determinăm câte perechi de fracții dintr-o secvență Farey respectă relația bd - ac = 1.

De aici se poate deduce o altă soluție analizând toate perechile de secvențe care verifică relația (1). Ordinul de complexitate al soluției nu este însă avantajos, deoarece numărul de fracții dintr-o secvență Farey este φ (2)+ ... + φ (n), (unde φ (n) este

indicatorul Euler, adică numărul de numere prime cu n și mai mici decât n), care poate fi aproximat cu n^2 ceea ce duce la un ordin de complexitate n^4 , analog cu prima soluție ("brut").

Să continuăm analiza perechilor căutate.

Există 3 categorii de perechi care respectă relația (1), după cum urmează:

- a) Perechi de fracții consecutive din secvența Farey de ordin n, al căror număr trebuie adunat la total.
- b) Perechi de fracții consecutive din secvențele anterioare, al căror număr trebuie deasemenea adunat la total.
- c) Perechi care se repetă în secvența Farey de ordin n și în una din secvențele anterioare, al căror număr trebuie scăzut.

Să calculăm numărul perechilor din fiecare categorie:

- a) Numărul este egal cu numărul de termeni din secvența Farey de ordinul n, adică φ (1) + φ (2) + ... + φ (n).
- b) Numărul este egal cu φ (1) în F_1 , apoi φ (1) + φ (2) în F_2 și φ (1) + φ (2) + ... + φ (n-1) în F_{n-1}
- c) Numărul este egal cu φ (1) φ (2) în F_1 , φ (1)+ φ (2)- φ (3) în F_2 și φ (1)+ φ (2)+...+ φ (n-1) φ (n) în F_n .

Efectuând totalul, obținem, surprinzător!!!,

2 x (
$$\varphi$$
 (1)+ φ (2)+ ... + φ (n)) - 1.

Această soluție nu presupune determinarea termenilor din secvența Farey de ordin n, ci doar a numărului de termeni din secvență, adică a indicatorului Euler(i), cu i de la 1 la n.

Soluția obține 100 puncte.