5 (a) (i) Complete the Boolean function that corresponds to the following truth ta

	INPUT			
Α	В	С	Х	
0	0	0	0	
0	0	1	0	
0_	1	0	0	
0	18	1		
1	0	0	0	
1	0	1	0	
_1	_1	0	1 -	
1	1	1	_1_	

$$X = \overline{A} \cdot B \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$
 [3]

The part to the right of the equals sign is known as the sum-of-products.

(ii) For the truth table above complete the Karnaugh Map (K-map)

The K-map can be used to simplify the function in part(a)(i).

- (iii) Draw loop(s) around appropriate groups of 1's to produce an optimal sum-of-products. [2]
- (iv) Using your answer to part (a)(iii), write the simplified sum-of-products Boolean function.

(b) The truth table for a logic circuit with four inputs is given below:

	re	1/0
LC	0	
AB O	10/	1
01	X	
ζ. []	14	
10	X	

	INF	PUT		OUTPUT	
Α	В	С	D	Х	
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	0	
0	0	1	1	0	
0	1	0	0	1	€ 0100
0	1	0	1	0	
0	1	1	0	1	C-0110
0	1	1	1	0	
1	0	0	0	0	
1	0	0	1	0	
1	0	1	0	0	
1	0	1	1	0	
1	1	0	0	1	C 1100
1	1	0	1	0	
1	1	1	0	1	< /110
1	1	1	1	1	< /110 < ///

(i) Complete the K-map corresponding to the truth table above.

ABC P 0100 0110 1100 (110

[4]

(ii) Draw loop(s) around appropriate groups 1's to produce an optimal sum-of-products.
[2]

(iii) Using your answer to part (b)(ii), write the simplified sum-of-products Boolean function.

$$X = ABC + BD$$
 [2]

5 (a) (i) Complete the Boolean function that corresponds to the following truth ta

	INPUT		
Р	Q	R	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

$$Z = P \cdot \overline{Q} \cdot \overline{R} + \dots$$
 [3]

The part to the right of the equals sign is known as the sum-of-products.

(ii) For the truth table above complete the Karnaugh Map (K-map).

		PQ					
		00	01	11	10		
R	0						
	1						

[1]

The K-map can be used to simplify the function in part(a)(i).

- (iii) Draw loop(s) around appropriate groups of 1's to produce an optimal sum-of-products. [2]
- (iv) Using your answer to part (a)(iii), write the simplified sum-of-products Boolean function.

(b) The truth table for a logic circuit with four inputs is given below:

ıſ	۲	h
		ı
Ŀ	L	Ц

	INF	OUTPUT		
Р	Q	R	S	Z
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

(i) Complete the K-map corresponding to the truth table above.

[4]

(ii) Draw loop(s) around appropriate groups of 1's to produce an optimal sum-of-products. [2]

(iii) Using your answer to part (b)(ii), write the simplified sum-of-products Boolean function.

Z =[2]

QUESTION 7.

3 Consider the following logic circuit, which contains a redundant logic gate.

(a) Write the Boolean algebraic expression corresponding to this logic circuit.

(b) Complete the truth table for this logic circuit.

Α	В	С	9	Working space	Working space	
0	0	0	1	0	Í	0
0	0	1	1	0)	9
0	1	0	0	0	0	Ò
0	1	1	0	I	1	0
1	0	0	1	д	1	1
1	0	1	1	D	/	1
1	1	0	D	0	0	δ
1	1	1	D	1	7	/

(c) (i) Complete the Karnaugh Map (K-map) for the truth table in part (b).

		АВ					
		00	01	11	10		
С	0						
	1						

The K-map can be used to simplify the expression in part (a).

(ii) Draw loop(s) around appropriate groups to produce an optimal sum-of-products. [2]

(iii) Write a simplified sum-of-products expression, using your answer to part (ii).

[2]

[1]

(d) One Boolean identity is:

$$A + \overline{A}.B = A + B$$

Simplify the expression for X in **part (a)** to the expression for X in **part (c)(iii)**. You should the given identity.

A \hat{R} \hat{R}

ABABC	
A (B+BC)	
A(B+c) = AB+AC	
	[2]

rule

QUESTION 8.

3 A logic circuit is shown:

(a) Write the Boolean algebraic expression corresponding to this logic circuit:

C	_	1	и.
\circ	_		4

((b)	Complete	the truth	table for	this	loaic	circuit:

Р	Q	R	Working space	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		

[2]

(c) (i) Complete the Karnaugh Map (K-map) for the truth table in part (b).

1

PQ

		00	01	11	10
R	0				
n	1				

[1]

The K-map can be used to simplify the function in part (a).

- (ii) Draw loop(s) around appropriate groups to produce an optimal sum-of-products. [1]
- (iii) Write a simplified sum-of-products expression, using your answer to part (ii).

0		·	F4	1
u	_			

(d) One Boolean identity is:

1

1

$$(A + B) \cdot C = A \cdot C + B \cdot C$$

Simplify the expression for S in part (a) to the expression for S in part (c)(iii).

You should use the given identity and De Morgan's Laws.

QUESTION 9.

J

4 (a) A Boolean expression corresponds to the following truth table.

ıſ	T	ı
	۲	- /

	INPUT					
Α	В	С	X			
0	0	0	0			
0	0	1	0			
0	1	0	0			
0	1	1	1			
1	0	0	0			
1	0	1	1			
1	1	0	1			
1	1	1	1			

/i\	Write the Boolean	expression for the truth	table by a	annlying the	sum-of-products
(1)	write the boolean	expression for the truth	i labie by a	applying the	Sum-or-products.

X =[2]

(ii) Complete the Karnaugh Map (K-map) for the truth table.

AB

		00	01	11	10
•	0				
С	1				

[1]

(iii) The K-map can be used to simplify the expression in part (a)(i).

Draw loop(s) around appropriate groups of 1s in the table in **part (a)(ii)** to produce an optimal sum-of-products. [3]

(iv) Write the simplified sum-of-products expression for your answer to part (a)(iii).

X =[3]

(b) A logic circuit with four inputs produces the following truth table.

Г	1	h
		ı
Ŀ	ا	Ц

	INPUT						
Α	В	С	D	Х			
0	0	0	0	0			
0	0	0	1	0			
0	0	1	0	0			
0	0	1	1	0			
0	1	0	0	1			
0	1	0	1	0			
0	1	1	0	0			
0	1	1	1	0			
1	0	0	0	0			
1	0	0	1	0			
1	0	1	0	0			
1	0	1	1	0			
1	1	0	0	1			
1	1	0	1	1			
1	1	1	0	1			
1	1	1	1	1			

(i) Complete the K-map that corresponds to the truth table.

AB

[4]

(ii) Draw loop(s) around appropriate groups of 1s in the table in **part** (b)(i) to produce an optimal sum-of-products. [2]

(iii) Write the simplified sum-of-products expression for your answer to part (b)(ii).

X =[2]

QUESTION 10.

3 (a) Consider the following Boolean expression.

_	_	_	_		
A.B	C + A	. B . C) + A	В	\mathcal{C}

Use Boolean algebra to simplify the expression.	
	[4]

(b) (i) Complete the truth table for the following logic circuit.

A	В	С	Working space	Х	
0	0	0			
0	0	1			
0	1	0			
0	1	1	(No William)		
1	0	0		1	
1	0	1			
1	1	0		_1	
1	1	1		1	

(ii) Complete the Karnaugh Map (K-map) for the truth table in part (b)(i).

A	

		00	01	11	10
•	0				
С	1				

[1]

[2]

- (iii) Draw loops around appropriate groups of 1s in the table in **part (b)(ii)** to produce an optimal sum-of-products. [2]
- (iv) Using your answer to part (b)(iii), write a simplified sum-of-products Boolean expression.

X =		[2	2]
------------	--	----	----

(c) The truth table for a logic circuit with four inputs is shown.

Г		7	ī
			ı
L		_	

	OUTPUT			
Α	В	С	D	х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

(i) Complete the K-map for the truth table in part (c).

AB

[4]

(ii) Draw loops around appropriate groups of 1s in the table in **part (c)(i)** to produce an optimal sum-of-products. [2]

(iii) Using your answer to part (c)(ii), write a simplified sum-of-products Boolean expression.

X =[2]

QUESTION 11.

3 (a) A Boolean algebraic expression produces the following truth table.

╝,

	INPUT				
Α	В	С	X		
0	0	0	1		
0	0	1	1		
0	1	0	1		
0	1	1	1		
1	0	0	1		
1	0	1	1		
1	1	0	0		
1	1	1	0		

(i) Complete the Karnaugh Map (K-map) for the truth table.

Δ	н

		00	01	11	10
^	0				
С	1				

[1]

The K-map can be used to simplify the expression that produced the truth table in part (a).

- (ii) Draw loops around appropriate groups of 1s in the K-map to produce an optimal sum-of-products. [2]
- (iii) Write the simplified sum-of-products Boolean expression for the truth table.

V	_	· ·	(0)	L
Л				1

(b) A logic circuit with fou

ur ir	nputs produ				
	INF	PUT		OUTPUT	
	В	С	D	Х	

Α	В	С	D	X		
0	0	0	0	0		
0	0	0	1	0		
0	0	1	0	1	<- 00 lo	
0	0	1	1	1	× 001)	
0	1	0	0	0		
0	1	0	1	0		
0	1	1	0	1	~ 0110	
0	1	1	1	1	€ 0111	
1	0	0	0	1	1000	
1	0	0	1	1 4	1001	
1	0	1	0	0		
1	0	1	1	0		
1	1	0	0	1	× 1100	
1	1	0	1	1	< 1101	
1	1	1	0	0		

Complete the K-map for the truth table.

1

1

			A	B		1100
		00	01	//	10	1101
	00	0	0	1	T	100
CD	01	0	O	1	I	AC
CD	(1	1	1	0	4	
	10	1	1	6	70	> 0011
						001 (0 [4]

1

0

(ii) Draw loops around appropriate groups of 1s in the K-map to produce a optimal sum-of-products. [2]

(iii) Write the simplified sum-of-products Boolean algebraic expression for the truth table.

1

QUESTION 12.

4 A Boolean expression produces the following truth table.

γ	

	INPUT				
Α	В	С	X		
0	0	0	1		
0	0	1	1		
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	1		
1	1	0	0		
1	1	1	1		

(a)	Write the Boo	olean expression	for the truth	table as a	sum-of-products.
-----	---------------	------------------	---------------	------------	------------------

(b) Complete the Karnaugh Map (K-map) for the truth table above.

AB

		00	01	11	10
С	0				
C	1				

[1]

The K-map can be used to simplify the expression in part (a).

- (c) Draw loops around appropriate groups in the K-map in **part** (b) to produce an optimal sum-of-products. [2]
- (d) Write, using your answer to **part** (c), a simplified sum-of-products expression for the truth table.

v	,	Γ	٧.
A	=	1/	•
-	. —	 1-	-

QUESTION 13.

2 (a) A Boolean expression produces the following truth table

oduce	es the follow	ing truth tal		
	INPUT		OUTPUT	
4	В	С	Х	
	_	_		

	INPUT					
Α	В	С	X			
0	0	0	1			
0	0	1	1			
0	1	0	1			
0	1	1	1			
1	0	0	1			
1	0	1	1			
1	1	0	0			
1	1	1	0			

(i)	Write the Boolean	expression for	the truth	table by	applying the	sum-of-products.
-----	-------------------	----------------	-----------	----------	--------------	------------------

X	=	 												
		 	 [3]											

(ii) Complete the Karnaugh Map (K-map) for the truth table in part (a).

AB

	00	01	11	10
0				
1				

[1]

The K-map can be used to simplify the function in part (a)(i).

C

- (iii) Draw loop(s) around appropriate groups in the table in **part (a)(ii)**, to produce an optimal sum-of-products. [2]
- (iv) Write, using your answer to **part** (a)(iii), a simplified Boolean expression for your Karnaugh map.

	-	-	٠.
·¥	_	11	,
_	_	1/	-

 $(\overline{W} + X) \cdot (Y + \overline{Z})$

(b) Simplify the following expression using De Morgan's laws. Show your working

=	(w+x)+(y+z)

