CS475: Project 3

Trevor Bramwell

May 5, 2015

False Sharing

This project used OpenMP to show how false-sharing can affect the performance of parallel applications. These insights were gained by writing a program that performed computations on a C struct with variable end-padding. The program was compiled using gcc (without compiler optimizations) and ran on the rabbit.engr.oregonstate.edu Xeon processor with 32 CPUs (not the Xeon Phi). It used the following combination of parameters:

• Padding Size (in integers):

- 0	- 8
- 1	- 9
- 2	- 10
- 3	- 11
- 4	- 12
- 5	- 14
- 6	- 15
- 7	- 16

• Threads:

- 1	- 8
- 2	- 16
- 4	10

Along with the combinations of the above resources, the program was also ran with a private variable maintained by each thread for accumulation. This put a stop to the false-sharing, and showed a more consistent improvement in performance when more threads were added.

Graph

Patterns

Private Variables The lines 1-p, 2-p, and 4,8,16-p are the average performance per thread using private variables. They are baselines for the best average-performance for those numbers of threads.

One Thread With a single thread there is no performance gain as it is being ran on a single CPU and can't take advantage of spatial coherence.

Two Threads With two threads, performance stays constant after a padding of 3-4. I believe this is because the number of cache lines is greater than 2, and being limited to two threads, the program can't take advantage of the other cache lines.

- **4,8,16 Threads** The following is an explanation of the performance of the program while padding is increased each step of the way.
- **0:** Without any padding, performance was abysmal (worse than a single thread) even with 16 threads. This is the most important data point since it helps characterize the rest.
- 1: There is the slightest increase in performance.
- 2: Performance is continuing to increase, though the greatest comes with two threads. Remember that the Xeon has 2 CPU sockets. This same performance can be seen in the 4,8, and 16 threads, but at a lower gain because of the cache-miss overhead.
- **3-6:** Performance peaks and begins to stabilize.
- 7: There is a distinct drop in performance as false-sharing has started. With 4 or more threads each cache line is reloaded with the same data multiple times.
- **8-12:** There is little change in performance.
- **13-16:** The cache lines are now all being taken advantage of, false-sharing has stopped, and the best performance has been reached.

There is difference in the amount of padding needed before false-sharing stops, between this graph and the one in the notes. The performance increases at 13, while the notes show an increase at 15. This is because of the Xeon most likely has a slightly smaller 4-Way L1 cache than the machine the notes used.

Tables

NUM	NUMT	PERF	TIME				
0	1	32.3884	$12.3501\mathrm{s}$				
1	1	35.07	11.4058s				
2	1	32.3727	$12.3561\mathrm{s}$				
3	1	34.0742	$11.7391\mathrm{s}$				
4	1	34.0726	11.7396s				
5	1	35.0725	11.405s	NUM	NUMT	PERF	TIME
6	1	34.4015	11.6274s	0	2	21.2069	18.8618s
7	1	34.401	$11.6276 \mathrm{s}$	1	$\frac{2}{2}$	21.5146	18.592s
8	1	32.4631	$12.3217\mathrm{s}$	$\frac{1}{2}$	$\frac{2}{2}$	30.7336	13.0151s
9	1	34.7607	11.5072s	3	$\frac{2}{2}$	59.5413	6.71803s
10	1	33.9478	11.7828s	4	$\frac{2}{2}$	66.7354	5.99382s
11	1	34.0513	11.747s	5	$\frac{2}{2}$	60.7943	6.57957s
12	1	34.94	11.4482s	6	$\frac{2}{2}$	60.1138	6.65404s
13	1	35.0815	11.402s	7	$\frac{2}{2}$	65.1904	6.034048 6.13587s
14	1	35.0714	11.4053s	8	$\frac{2}{2}$	66.7568	5.9919s
15	1	35.0785	11.403s	9	$\frac{2}{2}$	60.7737	6.58179s
16	1	35.0736	11.4046s	10	$\frac{2}{2}$	69.1342	5.78585s
m 1	1 1 D 1	l' 1 (T)	1 1	11	$\frac{2}{2}$	63.7171	6.27775s
Tab	ole I: Paq	ding - 1 T	nread	12	$\frac{2}{2}$	59.3136	6.74382s
				13	$\frac{2}{2}$	60.8943	6.56876s
				14	$\frac{2}{2}$	63.647	6.28467s
				15	$\frac{2}{2}$	59.5327	6.719s
				16	$\frac{2}{2}$	59.6032	6.71105s
				10	4	55.0052	0.111000

Table 2: Padding - 2 Threads

NUM	NUMT	PERF	TIME	NUM	NUMT	PERF	TIME
0	4	18.643	21.4558s	0	8	18.4491	21.6813s
1	4	18.9978	$21.0551\mathrm{s}$	1	8	18.9462	21.1124s
2	4	25.0836	$15.9467\mathrm{s}$	2	8	22.5273	17.7562s
3	4	40.2898	$9.92808 \mathrm{s}$	3	8	38.1387	$10.488 \mathrm{s}$
4	4	37.7572	10.594s	4	8	37.782	$10.5871\mathrm{s}$
5	4	37.9033	10.5532s	5	8	38.392	10.4188s
6	4	37.9384	10.5434s	6	8	38.0468	10.5134s
7	4	29.7119	$13.4626 \mathrm{s}$	7	8	28.8034	$13.8873\mathrm{s}$
8	4	31.0881	$12.8666 \mathrm{s}$	8	8	28.4657	14.052s
9	4	29.2485	$13.6759 \mathrm{s}$	9	8	29.1355	$13.729\mathrm{s}$
10	4	28.0729	14.2486s	10	8	27.8339	14.371s
11	4	30.1886	13.25s	11	8	30.006	$13.3307\mathrm{s}$
12	4	30.8928	12.948s	12	8	29.0607	$13.7643\mathrm{s}$
13	4	119.824	$3.33823\mathrm{s}$	13	8	110.353	3.62473s
14	4	115.119	$3.47465 \mathrm{s}$	14	8	101.234	3.95126s
15	4	117.79	3.39588s	15	8	106.736	3.74758s
16	4	113.938	$3.51067\mathrm{s}$	16	8	106.101	3.76999s

Table 3: Padding - 4 Threads

Table 4: Padding - 8 Threads

NUM	NUMT	PERF	TIME
0	16	18.9503	21.1078s
1	16	18.923	21.1383s
2	16	22.9774	$17.4084\mathrm{s}$
3	16	36.7524	$10.8837\mathrm{s}$
4	16	36.2713	$11.028 \mathrm{s}$
5	16	36.8519	10.8543s
6	16	37.5977	$10.6389 \mathrm{s}$
7	16	30.6643	$13.0445\mathrm{s}$
8	16	29.6074	$13.5101\mathrm{s}$
9	16	29.4533	$13.5808\mathrm{s}$
10	16	29.7997	13.423s
11	16	30.8653	12.9595s
12	16	29.6794	$13.4774\mathrm{s}$
13	16	106.074	$3.77093 \mathrm{s}$
14	16	107.565	$3.71869 \mathrm{s}$
15	16	121.744	$3.28559\mathrm{s}$
16	16	98.7983	$4.04865\mathrm{s}$

Table 5: Padding - 16 Threads

Tables - Private Sum

NUM	NUMT	PERF	TIME				
0	1	34.3947	$11.6297\mathrm{s}$				
1	1	31.4988	12.6989s				
2	1	35.0762	$11.4037\mathrm{s}$				
3	1	35.0786	11.403s				
4	1	35.0789	$11.4029 \mathrm{s}$				
5	1	33.0348	12.1085s	NUM	NUMT	PERF	TIME
6	1	34.0649	$11.7423\mathrm{s}$	0	2	60.2753	6.63622s
7	1	33.61	11.9012s	1	2	60.6648	$6.59361\mathrm{s}$
8	1	32.1739	12.4324s	2	2	59.7313	$6.69665 \mathrm{s}$
9	1	35.0788	$11.4029 \mathrm{s}$	3	2	66.6845	5.9984s
10	1	34.4016	11.6274s	4	2	63.5273	$6.29651\mathrm{s}$
11	1	35.0792	$11.4028 \mathrm{s}$	5	2	59.4386	$6.72964 \mathrm{s}$
12	1	35.0787	$11.4029 \mathrm{s}$	6	2	64.7578	$6.17687\mathrm{s}$
13	1	35.0808	11.4022s	7	2	65.1093	6.14352s
14	1	34.401	$11.6276 \mathrm{s}$	8	2	63.9279	$6.25705 \mathrm{s}$
15	1	34.3965	11.6291s	9	2	63.5375	6.29549s
16	1	34.0274	11.7552s	10	2	66.7765	5.99013s
	D 111	4 777		11	2	61.2848	$6.5269 \mathrm{s}$
	Padding	- 1 Threac	d - Private	12	2	63.084	$6.34075 \mathrm{s}$
Sum				13	2	60.0052	$6.66608 \mathrm{s}$
				14	2	60.7519	6.58416s
				15	2	59.6553	6.70518s
				16	2	60.3798	6.62473s

Table 7: Padding - 2 Threads - Private Sum

NUM	NUMT	PERF	TIME	NUM	NUMT	PERF	TIME
0	4	103.685	3.85782s	0	8	95.0553	4.20808s
1	4	91.8025	$4.35718\mathrm{s}$	1	8	88.3615	4.52686s
2	4	101.258	$3.95029\mathrm{s}$	2	8	102.719	3.89412s
3	4	103.1	$3.87975 \mathrm{s}$	3	8	102.557	$3.90027\mathrm{s}$
4	4	102.234	3.9126s	4	8	101.912	$3.92497\mathrm{s}$
5	4	101.976	3.9225s	5	8	102.063	3.91915s
6	4	103.385	$3.86904 \mathrm{s}$	6	8	84.0855	$4.75706\mathrm{s}$
7	4	102.916	$3.88665 \mathrm{s}$	7	8	107.811	$3.71019\mathrm{s}$
8	4	103.089	$3.88014\mathrm{s}$	8	8	104.796	$3.81693 \mathrm{s}$
9	4	103.197	$3.87607\mathrm{s}$	9	8	107.466	3.72212s
10	4	107.438	$3.72306 \mathrm{s}$	10	8	90.1571	$4.4367\mathrm{s}$
11	4	103.235	$3.87466 \mathrm{s}$	11	8	101.511	3.94045s
12	4	107.463	3.72221s	12	8	102.968	$3.88469 \mathrm{s}$
13	4	124.427	3.21473s	13	8	102.28	$3.91085 \mathrm{s}$
14	4	107.747	3.71238s	14	8	103.273	$3.87321\mathrm{s}$
15	4	125.768	$3.18045\mathrm{s}$	15	8	106.845	$3.74376 \mathrm{s}$
16	4	119.878	3.33672s	16	8	106.548	3.75418s

NUM	NUMT	PERF	TIME
0	16	108.223	$3.69608 \mathrm{s}$
1	16	103.515	3.86418s
2	16	95.166	4.20318s
3	16	103.62	$3.86025\mathrm{s}$
4	16	107.856	$3.70864\mathrm{s}$
5	16	102.225	3.91293s
6	16	104.835	$3.81551\mathrm{s}$
7	16	105.167	3.80348s
8	16	103.976	$3.84705\mathrm{s}$
9	16	105.246	$3.80061\mathrm{s}$
10	16	102.479	3.90323s
11	16	101.987	$3.92207\mathrm{s}$
12	16	102.094	$3.91795 \mathrm{s}$
13	16	107.091	$3.73513\mathrm{s}$
14	16	120.715	$3.31359\mathrm{s}$
15	16	124.035	3.22489s
16	16	102.44	$3.90473\mathrm{s}$

Table 10: Padding - 16 Threads - Private Sum