Real-Time Routing logic in C++

The off-line routing gives us the best path when sending a packet at the beginning of a slice. But in simulation, a packet might arrive at any time. We need to realize real-time routing in the simulation.

Instruction:

Image a packet pkt arrives its source tor src_tor at time tm. And tm belongs to slice n ($n \in [0, 215]$). Its destination tor is dst_tor . Using (src_tor, dst_tor, n) , we could get the first hop of the best path. Let's say it is $first_hop_tor$. However, the best path is calculated assuming pkt is sending at the beginning of slice n (t0). We need to check if we could send pkt to $first_hop_tor$ in slice n with the arriving time tm (pkt might span two or three slices. We say slice n could transmit pkt if the first bit of pkt is in slice n). See the following figure.

Part I: Main logic

If *pkt* could be transmitted in slice *n*:

Transmit *pkt* to *first_hop_tor*;

Now we have a new source tor *src_tor*' and new slice *n*'. Repeat the whole logic again until *pkt* arrives *dst tor*;

Else:

Wait for next slice *n+1*. Calculate the best path using (*src_tor*, *dst_tor*, *n+1*) and get the *new_first_hop_tor*. Transmit *pkt* to *new first hop tor* and repeat the whole logic.

Part II: How to know if *pkt* could be transmitted in slice *n*.

(This part is quite complex and not sure if we need such logic implementations in C++)

Preliminaries:

- (1) In the following figures, *E* and *R* stand for SLICE_E and SLICE R, respectively.
- (2) A tor to tor connection accounts for 6 superslices, which means 12 slices in total (6 SLICE_E + 6 SLICE_R). During 12 slices, active time is 6 SLICE_E + 5 SLICE_R and one SLICE_R is for reconfiguration. See the following figure.

(3) We assume that SLICE_E should be enough to transmit a whole packet (PKT_SIZE = 1200ns). SLICE_E >= 1200ns. SLICE_R could be any value.

Since *pkt* might span two or three slices, we need to know if src_tor to first hop tor has connections in next two slices.

In the following, we will calculate the earliest sending and latest sending time during slice n. If arriving time $tm \le latest$ sending time, then we could use slice n to transmit pkt. Otherwise NOT.

Case II: SLICE_R < PKT_SIZE

Code on calculating earliest/latest sending time (early_send/ late_send)