Algorithm Midterm (2016 Spring)

ID: B10315013

Please select the appropriate notation for the following figures: (6%) 1.

(1)
$$f(n) = \Theta(g(n))$$

(1)
$$f(n) = \Theta(g(n))$$
 (2) $g(n) = \Theta(f(n))$ (3) $f(n) = O(g(n))$ (4) $g(n) = O(f(n))$

$$(3) f(n) = O(g(n))$$

$$(4) g(n) = O(f(n))$$

$$(5) f(n) = \Omega(g(n)) \quad (6) g(n) = \Omega(f(n)) \quad (7) f(n) = o(g(n)) \quad (9) g(n) = o(f(n))$$

(6)
$$g(n) = \Omega(f(n))$$

$$(7) f(n) = o(g(n))$$

$$(9) g(n) = o(f(n))$$

$$(9) f(n) = \omega(g(n))$$

(9)
$$f(n) = \omega(g(n))$$
 (10) $g(n) = \omega(f(n))$

() For the following statements, which one is incorrect? (2%)

(a)
$$2n = O(n^2)$$

(b)
$$2n^2 = O(n^2)$$

$$(c) 2n = o(n^2)$$

(d)
$$2n^2 = o(n^2)$$

3. What does "programming" mean in "dynamic programming"? (2%)

建表的方式(tabular method)

(b) What is the major difference between "divide-and-conquer" and "dynamic programming"? (3%)

dīvīde-and-conquer 用切的方式(主要是二分法)找出分别的最佳解

再組成最佳解 dynamic programming 是從最小單位或是最前頭建表,大單位或是 差別:一個是一邊切一邊找,一個是先於好再最後直接取用 What is the major difference between "dynamic programming" and "greedy

(c) algorithm"? (3%)

greedy 是找出目前狀態下最好的方式

差別: dynamic 會根據其它組出表 与图此有些情况需要跟别的资訊 分析 greedy 就無法概划

4. Recall in Chapter 4, we talk about the problem of buying one unit of stock one time and then selling it at a later date to maximize your profit. Please explain the basic idea of how to using divide-and-conquer to solve the problem. (6%)

先把股票走勢轉成單時增加量的表利用divide-and-conquer 找出最大區間

我最大區間: ①把目前的範圍切一半 ②我主邊最大區間, 右邊最大區間跟跨中間最大区間 ③挑最大的回傳

利用找左右最大区間來recursive達到目的

- 5. Given a chain $\langle A_1, A_2, ..., A_n \rangle$ of n matrices, where for i = 1, 2, ..., n, matrix A_i has dimension $p_{i-1} \times p_i$, fully parenthesize the product $A_1 A_2 ... A_n$ in a way that minimizes the number of scalar multiplications.
 - (a) What does "fully parenthesize" mean? (3%) 拇 AI ~ An 用抬號分開,我到完全是兩兩相乘的狀態
 - (b) Suppose that to optimally parenthesize $A_i A_{i+1} \dots A_j$, we split the product between A_k and A_{k+1} . Let m[i,j] be the minimum number of scalar multiplications needed to compute the matrix $A_{i...j}$; for the full problem, the lowest-cost way to compute $A_{1...n}$ would thus be m[1,n]. Please define m[i,j]. (3%)

$$m[\lambda, \bar{j}] = \begin{cases} 0, & \text{if } \lambda = \bar{j} \\ min(m[\lambda, k] + m[k+1, \bar{j}] + p_{i+1}p_{k}p_{j}), & \text{if } \lambda < \bar{j} \end{cases}$$

(c) Let s[i, j] be a value of k at which we split the product $A_i A_{i+1} ... A_j$ in an optimal parenthesization. Please define s[i, j]. (3%)

 $S[\lambda, j] = \begin{cases} k \mid k \in min(m[\lambda,k]) + p_{\lambda-1}p_kp_j), \\ k=\lambda tojfl$

if it

(e) The initial call PRINT-OPTIMAL-PARENS (s, 1, n) prints an optimal parenthesization of $\langle A_1, A_2, ..., A_n \rangle$. Please complete the following function. (4%)

PRINT-OPTIMAL-PARENS (s, i, j)

1 if
$$i == j$$

2 print "A"_i
3 else print "("
4 PRINT-OPTIMAL-PARENS(s , $\frac{\lambda}{s}$, $\frac{s + s + s}{s}$)
5 PRINT-OPTIMAL-PARENS(s , $\frac{s + s + s}{s}$)
6 print ")"

(f) Following (d) and (e), what would be printed when we call PRINT-OPTIMAL-PARENS (s, 1, 6)? (3%)

6. (a) Please define "prefix codes". (3%)

code 的前面不管幾碼都無法找到有对應的值, 一定要有完整的 code 可以保險誤判

(b) Please define "full binary tree". (3%)

每個節奏都有2個3樹或是沒有3樹 (node) (c) What is an optimal Huffman code for the following set of frequencies? (6%) 54

7. Determine the cost and structure of an optimal binary search tree for a set of n = 7 keys with the following probabilities:

i	0	1	2	3	4	-5	6	7
p_i		0.04	0.06	0.08	0.02	0.10	0.12	0.14
q_i	0.06	0.06	0.06	0.06	0.05	0.05	0.05	0.05

(a) The following pseudocode has some bugs. Please find them out. (8%)

OPTIMAL-BST
$$(p,q,n)$$

1 let
$$e[1 ...n + 1, 0 ...n]$$
, $w[1 ...n + 1, 0 ...n]$, and $root[1 ...n, 1 ...n]$ be new tables

2 **for** $i = 1$ **to** $n + 1$

3 $e[i, i - 1] = q_{i-1}$

4 $w[i, i - 1] = q_{i-1}$

5 **for** $l = 1$ **to** n

6 **for** $i = 1$ **to** $n - l$

7 $e[i, j] = \infty$

9 $w[i, j] = w[i, j - 1] + p_i + q_j$

10 $e[i, j] = w[i, j - 1] + e[i - 1, j] + w[i, j]$

11 $t = e[i, r - 1] + e[i - 1, j] + w[i, j]$

12 $e[i, j] = t$

13 $e[i, j] = t$

14 $root[i, j] = r$

15 **return** e and root