Selecting a Map Projection

GEOG482 Spring 2020

• "...there is no such thing as a bad projection — there are only good and bad choices."

Arthur Robinson

The round earth vs. a flat map

- The process of map projections
- Geographic coordinates
- Projected coordinates
- Map projection characteristics
- Distortion
- Scale and scale factor
- Projection selection
- More projection examples

The spherical Earth

- Points of reference based on Earth's position relative to the sun...
 - Equator
 - North and south poles
 - ▶ Cf. Magnetic poles
- ...and arbitrary agreements
 - Prime meridian
- Reference system
 - A geographic grid (graticule)
 measured in a sexagesimal
 (base-sixty) scale; degrees, minutes,
 and seconds

The spherical Earth – the geographic grid

- ▶ Lines of longitude Meridians (|)
 - From pole to pole
 - ▶ E and W of the Prime meridian
- ▶ Lines of latitude Parallels (—)
 - ightharpoonup East $\leftarrow \rightarrow$ West
 - N and S of the Equator
- E.g., I250 N Bellflower Blvd Long Beach, CA 90840

Decimal Degrees Deg:Min:Sec

Lat: 33.781466 33° 46' 53.28" N

Lon: -118.119035 118°7' 8.53" W

Some examples

Where is Seoul, Korea?

Lat. 37° 34' N Long. 126° 58' E

- What's at
 - Lat. 33° 49' N
 - Long. I18° 9'W ?

Long Beach, CA

Converting from DMS to DD

To convert degrees, minutes, and seconds (DMS) to degrees and decimals of a degree (DD): ex) 59°19′48″N

I. Convert the seconds

```
Since there are 60 seconds in each minute, 59°19′ 48″ / 60 converts to 59°19.8 ′
```

2. Convert the minutes

```
Since there are 60 minutes in each degree 59° 19.8 ′ / 60 converts to Lat. 59.33 °
```

Calculator example: 18° 04′12″ E

```
Enter 12.00 / 60 = then displays 0.2

Enter + 4 = then displays 4.2

Enter / 60 = then displays 0.07

Enter + 18 = then displays 18.07
```

Long. 18.07 is your final decimal degrees for longitude

3. For South or West Coordinates, add a negative sign to the DD

Converting from DD to DMS

- To convert degrees, minutes, and seconds (DMS) from degrees and decimals of a degree (DD): ex) Lat. 59.33
 - 1. The whole number part is the whole degrees, 59°.
 - 2. Subtract the whole degrees (59.33 59 = 0.33) and multiply the decimal degree to minutes. 0.33 * 60 = 19.8 (the number of minutes in a degree). The whole number of the answer is the whole minutes, 19.
 - **3.** Subtract the whole minutes from the answer (19.8 19 = 0.8) and multiply the decimal minutes to seconds. 0.8 * 60 = 48 (the number of seconds in a minute). The answer is the seconds, 48 ".
 - 4. If there is a decimal remaining, keep as the decimal of a second.

Answer: 59° 19′ 48″ N

Exercise

Convert from DD to DMS: Long18.07	

Some things to note

- On a spherical grid:
 - Scale is the same everywhere on the globe
 - Meridians (|) are spaced evenly on parallels and converge towards the poles
 - ▶ Parallels (—) are parallel... and spaced equally on the meridians
 - Meridians and parallels intersect at right (90°) angles
 - Quadrilaterals of a certain longitudinal extent have equal areas
 - Areas of quadrilaterals decrease towards the poles

Terms related to distance and direction

Great Circle

- Formed by plane cutting through the center of the Earth and its intersection with the surface
- E.g., Equator, meridians –
 measure shortest distance from
 a Great Circle (themselves)
 - All great circles have equal lengths

Small circle

E.g., Parallels

FIGURE 7.4 Examples of great and small circles on the Earth's surface.

Terms related to distance and direction (cont.)

Azimuth

- Measures angles
 between meridians
 from points A to B
 - E.g., a, b, and c in the figure 7.5
- Useful for describing direction of the shortest path (on a great circle) between two points
 - E.g., points A and B

FIGURE 7.5 A great circle arc from point A to point B

Great circle path

Azimuth (cont.)

Terms related to distance and direction (cont.)

Loxodrome

- A path formed by keeping a constant bearing from points A to B
- Useful for navigation

FIGURE 7.6 A line drawn from point A to point B crossing each meridian at a constant angle is called a loxodrome. If extended, this line will continue to spiral toward the North Pole.

Azimuth vs. Loxodrome

The Earth is not precisely round

- Earth's rotation and differences in geology/density results in a non-spherical shape
- Geodesy refers to Earth's true shape as the geoid
 - Average ocean surface of the Earth
- To calculate locations easier a reference ellipsoid is used that approximates the geoid
- This introduces some distortions

FIGURE 7.18 The relationship among surfaces representing the Earth, a reference ellipsoid, and a geoid. Note that when determining geodetic latitude, a line perpendicular to the reference ellipsoid is not perpendicular to the geoid.

Datum

A mathematical model of the earth which approximates the shape of the earth, built on top of a spheroid

 Different regions on the earth have different datums (Ellipsoids A and B in the figure)

Calculations in a consistent and more accurate manner for a

specific region

If comparing GPS coordinates to a chart or map...

the map datum in the GPS unit must be set to match the chart for accurate comparison

⁽http://www8.garmin.com/support/faqs/faq.jsp?faq=17; Bolstad, 2012)

Choose datum that better matches to geoid

Why bother?

- Well, a lot of position readings today are done using a GPS and this requires specifying what datum to use.
 - ► (Map's datum = GPS's datum)
 - e.g., scuba diving (this link provides a useful example of applied GPS and earth coordinate knowledge)
- But, for most medium of small-scale thematic mapping we can ignore these details
- I) Choose a datum, then2) choose a projection for your study area to make the map more precise

The projection concept

- Any map projection is the systematic arrangement of the earth's meridians and parallels onto a plane surface (Dent 1999).
- ▶ The basic steps
 - Choose a scale reduction
 - Choose a projection type
 - Direct developable surfaces (ex. somewhere on Earth)
 - ▶ Indirect purely mathematically defined surfaces

Ex. A projected map (<u>http://www.answers.com/topic/map-projection</u>) and The Costa surface (<u>http://www.philosophy.umd.edu/Faculty/jhbrown/BtyAdds/</u>)

The scale reduction

- ▶ The amount of spatial reduction from real world to the map
- Expressed
 - Numerically
 - Graphically
 - Verbally

"Imm on the map represents 700,000 mm on the earth"

- Generally:
 - Important to use same units when comparing different maps!

Other statements of scale

- Cartographic
 - Verbal, representative fraction (RF), graphic
- Geographic
 - "Large" scale, Vs. "small" scale (extents)

- Resolution
 - "Minimum mapping unit"
 - E.g., a census block-group (vector data)or a pixel size (raster data)

Some common mapping scales

I:24,000 scale,
I inch represents
2,000 feet

I:100,000 scale,
I inch represents about
I.6 miles (8,448 feet)

1:250,000 scale, I inch represents about 4 miles (21,120 feet)

Q. Using calculator or whatever, answer A, B, and C:
 1/24,000 = A
 1/100,000 = B
 1/250,000 = C

Break!

Choosing a projection

Checklist

- Projection properties (Equivalency: area, conformality: angle, equidistance: distance, azimuthality: direction)
- Deformational patterns across mapped area
- Projection center
- Familiarity

Selecting map projections

- ▶ Three basic rules (after Maling, 1992)
 - A country in the tropics asks for a cylindrical projection.
 - ▶ A country in the temperate zone asks for a conical projection.
 - A polar area asks for an azimuthal projection.

Projection and distortion

- Each projection creates specific distortions
- Typically we can choose to preserve one or two spatial properties but not all:
 - Areas Equivalent proj.
 - Angles Conformal proj.
 - ▶ Distances Equidistant proj.
 - ▶ Directions Azimuthal proj.
 - ▶ See Table 9.1 (p.155) on the textbook for details of Named Projection for each Property of projection

A closer look at distortion

- Distortion increases away from the standard line
 - Scale on reference globe equals to scale on developable surface only at the standard line(s)!
 - Q. What does it mean?
 - Q. Scales and amount of distortions are (the same/different) for every location on the map
 - Scale Factor (next)
- Ways to mitigate distortion
 - Secant case (intersect 2 points)
 - Modify aspect of projection

Scale Factor =

Local scale Principal scale

Distortion increases away from the standard line.
Then how much distortion?

- How to calculate:
 - Step I. Get the Principal scale (=RF, representative fraction)

- Conventional constant scales for particular projections measured on standard line(s) or point(s)
 - □ e.g., 1:250,000, 1:100,000, 1:10,000 ...
- The scale of a reduced or generating globe representing the sphere or spheroid
- Step2. Calculate the Local scale (at the location of interest on the map) (e.g., 1:239,000)

 Map distance

 $Local scale = \frac{Map \ distance}{Earth \ distance}$

- ▶ Then calculate... local scale/principal scale
 - If the answer is < I = compressed
 If the answer is > I = exaggerated
 If the answer is = I = no distortion

Scale Factor Example

Quartic Authalic Projection –
 its Principal Scale is 1:300,000,000
 (Standard line is 0°at the Prime Meridian)

- What is the SF at some point along the 40°N parallel between 0° and 15°?
- I. Measure the distance on the map. If you measured with a ruler the distance between 0° and 15° at 40° N parallel = 0.41 cm (map distance)
- 2. Get true length of I°longitude at 40°from Appendix A in textbook = 85,393.86 m
- 3. Multiply by number of degree's (15 \times 85,393.86 m = 1,280,907.9 m) (earth distance)
- 4. Complete the equation:

Local scale =
$$\frac{map\ distance}{earth\ distance}$$

Local scale =
$$\frac{0.41}{128,090,790} = \frac{1}{312,416,560}$$

6. Scale factor =
$$\frac{Local\ scale}{Principal\ scale} = \frac{1/312,416,560}{1/300,000,000}$$

$$\frac{60}{00} = 0.96$$

← exaggerated or compressed?

Exercise 1

- What is the scale factor when the map distance is 0.9cm? (still at some point along the 40°N parallel between 0° and 15°)
 - True length of 1°= still 85,393.86 m
 - \blacktriangleright Earth distance: I5 x 85,393.86 m = 1,280,907.9 m
 - ▶ 1,280,907.9*m* is 128,090,790*cm*

Local scale =
$$\frac{\text{map distance}}{\text{earth distance}}$$
Local scale =
$$\frac{0.9}{128,090,790} = \frac{1}{142,323,100}$$

Scale factor:
$$\frac{Local\ scale}{Principal\ scale} = \frac{1/142,323,100}{1/300,000,000} = 2.11$$

 [\$\leftarrow\$ exaggerated or compressed?](#)

Exercise 2

What is the scale factor when the map distance is 0.3cm? (still at some point along the 40°N parallel between 0° and 15°)

Scale factor varies across a projected map

- Depends on
 - Type of projection
 - Case
 - Aspect

Aspects by latitude

- Equatorial
- Oblique
- Polar

See how shapes and sizes of the lands change

Figure 8.14 (Solcum et al. 2009)

Tissot's indicatrix

- A way to visually explore and understand distortion of different projections
- A symbol representing a really small point on the reference globe with unit radius

Geographic vs. projected coordinates

- Because of projection a geographic coordinate grid will typically not be squareshaped
- This is inconvenient in a flat map context and also in a GIS where digitizers and remote sensing data use square grids
- It also introduces errors in Euclidean measurement

geographic coordinate grid

Source: Goode's World Atlas

Choices, choices, choices...

- Snyder's projection selection guidelines
 - World (Table 9.1, p.155)
 - Conformal
 - Equivalent
 - Equidistant
 - Straight loxodromes
 - Compromise
 - Hemisphere (Table 9.2, p. 156)
 - ▶ Continent, ocean or smaller (Table 9.3, p. 158)

Measurement error example

- Using a
 geographic grid,
 distance between
 two points is
 calculated along
 great circles from
 a central point
 - E.g., 6,828km

Mercator distance

- Projected data as measured on a map will be distorted
- What really is 6,828km is measured to be about 11,700 km!

Azimuthal distance

- Equidistant azimuthal projection centered on two different points can be used to measure the correct distance
- What is a straight line in Mercator projection is a curved line (loxodrome) in Azimuthal projection
- What really is 6,828km is measured to be about 6,832 km!

Some common map coordinate systems

Universal Transverse Mercator (UTM) grid

- Specified for 60 x 20 zones (ex. IIN)
- Measured in meter
- Distortions within I meter

Some common map coordinate systems (cont.)

- State plane coordinate systems (SPC)
 - Each state uses an optimal projection
 - Measured in feet
 - Distortions less thanI foot
 - ▶ False Easting, Northing

California State has 6 SPCs

Appendix. More projection examples -Albers Equal Area Conic

- Equivalent Equal area
- Conic developable surface
- Works very well for mid-latitudes

Azimuthal projections

Equal area Projections - Sinusoidal

Equal area Projections - Mollweide

Equal area Projections - Goode's homolosine

Robinson

▶ Compromise – minimize distortion (shape, area, angle...)

For next time

- Reading
 - ▶ Ch. 5
- ▶ Lab I on Thursday
- Questions...?

