二叉树

@M了个J

https://github.com/CoderMJLee http://cnblogs.com/mjios

> 小码哥教育 SEEMYGO 实力IT教育 www.520it.com

码拉松

多叉树

小門司教育 生活中的树形结构

Myseemys。 树 (Tree) 的基本概念

- 节点、根节点、父节点、子节点、兄弟节点
- 一棵树可以没有任何节点, 称为空树
- 一棵树可以只有1个节点, 也就是只有根节点
- ■子树、左子树、右子树
- 节点的度 (degree): 子树的个数
- 树的度: 所有节点度中的最大值
- ■叶子节点 (leaf) : 度为0的节点
- 非叶子节点: 度不为0的节点

Myganga 树 (Tree) 的基本概念

- 层数 (level): 根节点在第1层,根节点的子节点在第2层,以此类推 (有些教程也从第0层开始计算)
- 节点的深度(depth): 从根节点到当前节点的唯一路径上的节点总数
- 节点的高度 (height) : 从当前节点到最远叶子节点的路径上的节点总数
- 树的深度: 所有节点深度中的最大值
- 树的高度: 所有节点高度中的最大值
- 树的深度 等于 树的高度

Mygganga 有序树、无序树、森林

- ■有序树
- □树中任意节点的子节点之间有顺序关系
- 无序树
- □树中任意节点的子节点之间没有顺序关系
- □也称为"自由树"
- ■森林
- □由m (m ≥ 0) 棵互不相交的树组成的集合

Myganga 二叉树 (Binary Tree)

- ■二叉树的特点
- □每个节点的度最大为2(最多拥有2棵子树)
- □左子树和右子树是有顺序的
- □即使某节点只有一棵子树, 也要区分左右子树

- 二叉树是有序树 or 无序树?
- □有序树

小码 哥教育 SEEMYGO 二叉树的性质

- 非空二叉树的第i层,最多有2ⁱ⁻¹个节点(i ≥ 1)
- 在高度为h的二叉树上最多有 2^h 1个结点 ($h \ge 1$)
- 对于任何一棵非空二叉树,如果叶节点个数为n0, 度为2的节点个数为n2, 则有: n0 = n2 + 1
- □假设度为1的节点个数为n1, 那么二叉树的节点总数n = n0 + n1 + n2
- □ 二叉树的边数T = n1 + 2 * n2 = n 1 = n0 + n1 + n2 1
- □因此n0 = n2 + 1

Myganana 真二叉树 (Proper Binary Tree)

■ 真二叉树: 所有非叶子节点的度都为2

■下图不是真二叉树

Mundand 满二叉树(Full Binary Tree)

■ 满二叉树: 所有非叶子节点的度都为2, 且所有的叶子节点都在最后一层

- 假设满二叉的高度为h (h ≥ 1) , 那么
- □第i层的节点数量: 2ⁱ⁻¹
- □叶子节点数量: 2^{h-1}
- □总节点数量n

$$\sqrt{n} = 2^{h} - 1$$

$$\checkmark h = \log_2(n+1)$$

- 在同样高度的二叉树中,满二叉树的叶子节点数量最多、总节点数量最多
- 满二叉树一定是真二叉树,真二叉树不一定是满二叉树

完全工文材(Complete Binary Tree)

■ 完全二叉树:高度为h、有n个结点的二叉树,从左至右、从上到下对节点进行编号,当其每一个结点都与高度为h 的满二叉树中相同编号的结点——对应时, 称之为完全二叉树

- 完全二叉树从根结点至倒数第二层是一棵满二叉树, 最后一层的叶子结点都靠左对齐
- 满二叉树一定是完全二叉树,完全二叉树不一定是满二叉树

Myggaga 完全二叉树的性质

- 叶子节点只会出现在最下面2层
- 度为1的节点只有左子树
- 同样节点数量的二叉树,完全二叉树的高度最小
- 假设完全二叉树的高度为h (h ≥ 1),那么
- ■至少有 2^{h-1} 个节点
- □最多有 2^h 1 个节点
- □总节点数量为n
- \checkmark h = floor(log₂n) + 1
- ✓floor是向下取整的意思
- $\geqslant 2^{h-1} \le n < 2^h$
- $> h 1 \le \log_2 n < h$

完全二叉树

- 一棵有n个节点的完全二叉树 (n > 0) , 从上到下、从左到右对节点进行编号, 对任意第i个节点 (0 < i < n)
- □如果i = 1, 它是根节点
- □如果i > 1, 它的父节点编号为floor(i / 2)
- □如果2i ≤ n,它的左子节点编号为2i
- □如果2i > n, 它无左子节点
- □如果2i + 1 ≤ n, 它的右子节点编号为2i + 1
- □如果2i + 1 > n, 它无右子节点

Negan 下图不是完全二叉树 SEEMYGO 下图不是完全二叉树

小妈哥教育 SEEMYGO 国外教材的说法

- Full Binary Tree: 完满二叉树
- □所有非叶子节点的度都为2
- Perfect Binary Tree: 完美二叉树
- □所有非叶子节点的度都为2, 且所有的叶子节点都在最后一层
- □就是国内说的"满二叉树"
- □Complete Binary Tree: 完全二叉树
- □跟国内的定义一样

Perfect Binary Tree

Full Binary Tree

Complete Binary Tree

Myseemyso 练习 - 翻转二叉树

https://leetcode-cn.com/problems/invert-binary-tree/

输入:

■ 请分别用递归、迭代 (非递归) 两种方式实现