

Optimisation non linéaire sans contraintes

Recherche opérationnelle GC-SIE

Méthodes de descente

• Problème :

 $min \ f: IR^n \to IR$

f continûment différentiable

• Idée:

- On démarre d'un point x₀
- On génére des vecteurs x₁, x₂,... tels que la valeur de f décroit à chaque itération :

$$f(x_{k+1}) < f(x_k) k=1,2,...$$

Méthodes de descente

Michel Bierlaire

- Soit $x \in IR^n$ tel que $\nabla f(x) \neq 0$.
- Condidérons la demi-droite

$$x_{\alpha} = x - \alpha \nabla f(x)$$

• Théorème de Taylor (1er ordre)

$$f(x+s) = f(x) + \nabla f(x)^{T}s + o(\frac{1}{1}|s|\frac{1}{1}|)$$
avec $s = x_{\alpha}$ -x
$$f(x_{\alpha}) = f(x) + \nabla f(x)^{T}(x_{\alpha}-x) + o(\frac{1}{1}|x_{\alpha}-x|\frac{1}{1}|)$$

$$= f(x) - \alpha \frac{1}{1}|\nabla f(x)|\frac{1}{1}^{2} + o(\alpha|\frac{1}{1}|\nabla f(x)|\frac{1}{1}|)$$

$$= f(x) - \alpha \frac{1}{1}|\nabla f(x)|\frac{1}{1}^{2} + o(\alpha)$$

Méthodes de descente

Michel Bierlaire

5

Directions de descente

$$f(x_{\alpha}) = f(x) - \alpha \cdot |\nabla f(x)|^{2} + o(\alpha)$$

- Si α est petit, on peut négliger o(α)
- Donc, pour α positif mais petit,

$$f(x_{\alpha}) < f(x)$$

Théorème:

• Il existe δ tel que, pour tout $\alpha \in]0,\delta[$

$$f(x-\alpha\nabla f(x)) < f(x)$$

Méthodes de descente

Michel Bierlaire

- Gradient = plus forte pente
- Question : y a-t-il d'autres directions de descente que $-\nabla f(x)$?
- Appliquons le même raisonnement avec $d \neq 0$.

Méthodes de descente

Michel Bierlaire

7

Directions de descente

Condidérons la demi-droite

$$x_{\alpha} = x + \alpha d$$

Théorème de Taylor (1^{er} ordre)

$$f(x+s) = f(x) + \nabla f(x)^{T}s + o(\frac{1}{1}s\frac{1}{1})$$
avec $s = x_{\alpha}$ -x
$$f(x_{\alpha}) = f(x) + \nabla f(x)^{T}(x_{\alpha}-x) + o(\frac{1}{1}x_{\alpha}-x\frac{1}{1})$$

$$= f(x) + \alpha \nabla f(x)^{T}d + o(\alpha \frac{1}{1}d\frac{1}{1})$$

$$= f(x) + \alpha \nabla f(x)^{T}d + o(\alpha)$$

Méthodes de descente

Michel Bierlaire

$$f(x_{\alpha}) = f(x) + \alpha \nabla f(x)^{T} d + o(\alpha)$$

- Si α est petit, on peut négliger o(α)
- Pour avoir $f(x_{\alpha}) < f(x)$, il faut

$$\nabla f(x)^T d < 0$$

Théorème:

• Soit d tel que $\nabla f(x)^T d < 0$. Il existe δ tel que, pour tout $\alpha \in]0,\delta[$

$$f(x+\alpha d) < f(x)$$

Méthodes de descente

Michel Bierlaire

9

Directions de descente

Définition:

 Soit f:IRⁿ→IR, une fonction continûment différentiable, et x un vecteur de IRⁿ. Le vecteur d ∈ IRⁿ est appelé direction de descente de f en x ssi

$$\nabla f(x)^T d < 0$$

Méthodes de descente

Michel Bierlaire

Méthodes de descente

Algorithme de base :

- Soit $x_0 \in IR^n$. Poser k=0.
- Tant que $\nabla f(x_k) \neq 0$
 - Choisir d_k tel que $\nabla f(x_k)^T d_k < 0$
 - Choisir $\alpha_k > 0$
 - Poser $x_{k+1} = x_k + \alpha_k d_k$

Méthodes de descente

Michel Bierlaire

11

Méthodes de descente

Notes:

- Il y a beaucoup de choix possibles
- $\bullet \;$ En général, on choisit α_{k} tel que

$$f(x_k + \alpha_k d_k) < f(x_k)$$

mais il y a des exceptions

• Il n'y a aucune garantie de convergence pour l'algorithme de base

Méthodes de descente

Michel Bierlaire

Choix de la direction

- Ecrivons $d_k = -D_k \nabla f(x_k)$ où D_k est une matrice n x n
- La condition $\nabla f(x_k)^T d_k < 0$ s'écrit

$$\nabla f(x_k)^T D_k \nabla f(x_k) > 0$$

- Si D_k est définie positive, cette condition est toujours vérifiée.
- Le choix de la direction revient donc au choix d'une matrice définie positive.

Méthodes de descente

Michel Bierlaire

13

Choix de la direction

Quelques exemples souvent utilisés

Méthode de la plus forte pente

$$-D_k = I$$

$$-\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \, \nabla \mathbf{f}(\mathbf{x}_k)$$

• Méthode de Newton

$$-D_k = (\nabla^2 f(x_k))^{-1}$$

$$- x_{k+1} = x_k - \alpha_k (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

Attention: il faut que $\nabla^2 f(x_k)$ soit inversible et déf. pos.

Méthodes de descente

Michel Bierlaire

Choix de la direction

• Mise à l'échelle diagonale

$$-D_{k} = \begin{pmatrix} d_{k1} & 0 & 0 & \cdots & 0 \\ 0 & d_{k2} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_{kn} \end{pmatrix}$$

- d_{ki} > 0 pour tout i

- Exemple :
$$d_{ki} = \left(\frac{\partial^2 f(x_k)}{\partial x_i^2}\right)^{-1}$$

Méthodes de descente

Michel Bierlaire

15

Choix de la direction

Méthode de Newton modifiée

$$\begin{split} & - D_k = (\nabla^2 f(x_0))^{-1} \\ & - x_{k+1} = x_k - \alpha_k (\nabla^2 f(x_0))^{-1} \nabla f(x_k) \end{split}$$

• etc...

Méthodes de descente

Michel Bierlaire

Choix du pas

- 1. Règle de minimisation
 - Problème à une seule variable
- 2. Règle d'approximation
 - Minimisation prend du temps
 - Section d'or nécessite l'unimodalité
 - A-t-on besoin du minimum exact ?
 - Idée :
 - Choisir un pas qui diminue suffisamment la valeur de la fonction.

Méthodes de descente

Michel Bierlaire

17

Choix du pas : approximation

- Démarche:
 - Voyons d'abord ce que sont de « mauvais » pas.
 - Déterminons des règles empêchant les « mauvais » pas.
- Prenons

$$-f(x)=x^2$$

$$-x^*=0$$

Méthodes de descente

Michel Bierlaire

- Algorithme
 - $d_k = (-1)^{k+1}$
 - $-\alpha_k = 2+3(2^{-(k+1)})$
 - $x_k = (-1)^k (1+2^{-k})$
- Lorsque k est grand
 - $d_k = (-1)^{k+1}$
 - $-\alpha_{\textbf{k}}\approx \textbf{2}$
 - $\mathbf{x_k} \approx (-1)^k$

Méthodes de descente

Michel Bierlaire

19

Choix du pas : approximation

Michel Bierlaire

- Algorithme
 - $d_k = (-1)^{k+1}$
 - $-\alpha_k = 2+3(2^{-(k+1)})$
 - $x_k = (-1)^k (1+2^{-k})$
- Lorsque k est grand
 - $d_k = (-1)^{k+1}$
 - $-\alpha_{\mathbf{k}} \approx \mathbf{2}$
 - $\mathbf{x}_{k} \approx (-1)^{k}$

k	Xk	d _k	Cίk	f(x _k)
0	2.000	-1	3.500	4.000
1	-1.500	1	2.750	2.250
2	1.250	-1	2.375	1.563
3	-1.125	1	2.188	1.266
4	1.063	-1	2.094	1.129
5	-1.031	1	2.047	1.063
10	1.001	-1	2.001	1.002
999	-1.000	1	2.000	1.000
1000	1.000	-1	2.000	1.000

Méthodes de descente

- Problème:
 - très petites diminutions de f relativement à la longueur des pas
- Solution:
 - exiger une diminution suffisante de f

Méthodes de descente

Michel Bierlaire

• On choisit α_k tel que

$$f(\mathbf{x}_k + \alpha_k \mathbf{d}_k) \le f(\mathbf{x}_k) + \alpha_k \beta_1 \nabla f(\mathbf{x}_k)^\mathsf{T} \mathbf{d}_k$$
$$\beta_1 \in \]0,1[$$

- · Reprenons l'exemple (k grand et impair)
- $f(x)=x^2$, $x_k=-1$, $d_k=1$, $\alpha_k=2$, f'(x)=2x $f(-1+2\bullet 1) \leq 1+2\beta_1(-2 \bullet 1)$ $1 \leq 1-4 \ \beta_1$ $4 \ \beta_1 \leq 0$ Impossible

L'algorithme sera rejeté par cette règle

Méthodes de descente

Michel Bierlaire

23

Choix du pas : approximation

• Conditions d'Armijo-Goldstein

$$\begin{aligned} f(x_k + \alpha_k d_k) &\leq f(x_k) + \alpha_k \beta_1 \nabla f(x_k)^T d_k \\ \beta_1 &\in \]0,1[\end{aligned}$$

Méthodes de descente

Michel Bierlaire

Algorithme de recherche linéaire

- Soient $g(\alpha)$, β_1 , $\lambda \in]0,1[$, $\alpha_0 > 0$
- Pour k=1,2,...
 - Si $f(x_k + \alpha_k d_k) \le f(x_k) + \alpha_k \beta_1 \nabla f(x_k)^T d_k$ alors $\alpha^* = \alpha_k$ STOP
 - $-\alpha_{k+1}=\lambda\,\alpha_k$

Méthodes de descente

Michel Bierlaire

25

Convergence

Concept de non orthogonalité

- Supposons que d_k est déterminée de manière unique par x_k.
- On dit que la suite (d_k)_{k=0,1,...} est en relation gradient avec la suite (x_k)_{k=0,1,...} si la propriété suivante est vérifiée :
- Pour toute sous-suite $(x_k)_{k \in \mathcal{K}}$ qui converge vers un point non stationnaire, la sous-suite correspondante $(d_k)_{k \in \mathcal{K}}$ est bornée et vérifie :

$$lim \ sup_{\{k \to \infty, k \in \mathcal{K}\}} \ \nabla f(x_k)^T d_k < 0$$

Méthodes de descente

Michel Bierlaire

Convergence

Notes:

- On peut souvent garantir a priori que (d_k) est en relation-gradient.
- En particulier, c'est le cas si
 - $-d_k = -D_k \nabla f(x_k)$, et
 - les valeurs propres de D_k sont bornées, i.e. pour c1 et c2 > 0, on a

$$c_1 \mid |z| \mid |z| \leq z^T D_k z \leq c_2 \mid |z| \mid |z| \mid |z|$$
, $\forall z \in IR^n$, $k=0,1,...$

Méthodes de descente

Michel Bierlaire

27

Convergence

Théorème:

- Si (d_k) est en relation-gradient avec (x_k)
- Si le pas est choisi
 - soit par la règle de minimisation
 - soit par la règle d'Armijo-Goldstein
- Alors tous les points limites de (x_k) sont stationnaires.

Méthodes de descente

Michel Bierlaire

Critère d'arrêt

- En général, ces méthodes ne permettent pas de trouver la solution en un nombre fini d'itérations.
- Quand arrête-t-on les itérations ?

Critère 1:

```
|\cdot| \nabla f(x_k)| \cdot |\cdot| < \epsilon, avec \epsilon > 0 petit.
```

- Problèmes :
 - Supposons ε=10⁻³, et f(x)∈ [10⁻⁷,10⁻⁵]. Il est probable que toutes les valeurs de x vérifieront la condition d'arrêt.
 - Par contre, si f(x) ∈ $[10^5,10^7]$, cela n'arrivera peut-être jamais.

Méthodes de descente

Michel Bierlaire

20

Critère d'arrêt

Critère 2:


```
| | r(x) | |_{\infty} \le \varepsilon, avec \varepsilon > 0 petit,
avec r(x)_i = (\nabla f(x)_i x_i) / f(x).
```

r(x) est le gradient relatif en x.

Ce critère est indépendant de changement d'unités en f et en x.

Attention si f ou x est proche de 0.

Méthodes de descente

Michel Bierlaire

Critère d'arrêt

Critère 3:

$$\max_{1 \leq i \leq n} \left| \frac{\nabla f(x_k)_i \max(\left| (x_k)_i \right|, tx_i)}{\max(\left| f(x_k) \right|, tf)} \right| \leq \varepsilon$$

où

- ε > 0 est petit.
- tx_i est une valeur typique de x_i.
- tf est une valeur typique de f.

Méthodes de descente

Michel Bierlaire