מיני פרויקט שחמט - חיזוי תוצאות משחקים

מסמך מטרות ותכנון מפורט

המטרה הכללית

פיתוח פרויקט קטן ומתוכנן היטב שמשמש כהכנה מעשית לפרויקט הגמר בבינה מלאכותית, תוך שילוב למידת כלים טכניים חיוניים שנלמדים במקביל בקורסים אקדמיים.

המטרות הספציפיות 📥

מטרה A: משית Machine Learning משית

- הבנת עקרונות עבודה Random Forest הבנת עקרונות עבודה, hyperparameters, ואופטימיזציה
- Decision Trees או Logistic Regression מול Random Forest מול
- מלא מניקוי נתונים ועד הערכת מודל ML **מלא**
- הבנת עקרונות חיזוי features, target variables, train/test split

מטרה B: שליטה מעשית-SQL

- עבודה עם PostgreSQL בהתאם לקורס "מסדי נתונים" שנלמד במקביל
- יצירת מסד נתונים מובנה טבלאות עם קשרים נכונים (שחקנים, משחקים, תוצאות)
- פונקציות אגרגציה ,JOIN, GROUP BY **שאילתות מתקדמות**
- חומר הנלמד בקורס PostgreSQL פונקציות

מטרה C: עבודה עם APIs

- rate limiting ומגבלות REST APIs הבנת REST APIs ומגבלות
- המרה לפורמט מתאים למסד נתונים **JSON עיבוד**
- ניהול נתונים איסוף הדרגתי וניקוי

🯀 הקשר לפרויקט הגמר

מערכת המלצות טקטיות למאמני) AIAC פרויקט זה משמש כ**אב טיפוס מוקטן** לפרויקט הגמר NBA):

- **גישה דומה**: חיזוי תוצאות על בסיס נתונים היסטוריים
- כלים זהים: Python, SQL, API integration, ML algorithms
- עקרונות דומים: feature engineering, model evaluation, data pipeline
- **מורכבות מותאמת**: פרויקט פשוט יותר לצורך למידה ותרגול

📊 תיאור הפרויקט הטכני

הבעיה לפתרון

חיזוי תוצאות משחקי שחמט (ניצחון לבן/שחור/תיקו) על בסיס:

- דירוגי השחקנים (ELO rating)
- היסטוריית מפגשים
- סטטיסטיקות אישיות

מקור הנתונים

- Chess.com API או Lichess API (חינמיים ונגישים)
- (בגודל מתאים ללמידה) איקף התחלתי: 500-1,000 משחקים
- איכות נתונים: משחקים של שחקנים מדורגים (rating 1200+)

הארכיטקטורה הטכנית

Chess API → Python Data Processing → PostgreSQL Database → ML Pipeline → Predictions

השלבים המתוכננים 🔀

שלב 1: הקמת תשתית (שבוע 1)

- התקנת סביבה PostgreSQL התקנת
- בדיקת חיבור ל-Chess API
- יצירת מבנה מסד נתונים בסיסי

שלב 2: איסוף וניקוי נתונים (שבוע 2)

- כתיבת scripts כתיבת API
- הזנה למסד נתונים
- ניקוי וולידציה של הנתונים

שלב 3: עבודה עם SQL (3 שבוע שבוע שבוע

- כתיבת שאילתות לחילוץ features
- יצירת views I-aggregations
- תרגול פונקציות PostgreSQL מהקורס

4 שלב: Machine Learning (4 שבוע)

• לאימון datasets הכנת

- וישום Random Forest וישום
- השוואת ביצועים והערכת מודלים

מדדי הצלחה 🥒

מדדים טכניים

- 60% **דיוק חיזוי**: מעל (baseline מתקבל על הדעת לשחמט)
- איכות קוד: מבנה נקי ומתועד
- יעילות מהירות ומתקדמות :SQL יעילות

מדדי למידה

- ותוצאות hyperparameters יכולת להסביר hyperparameters הבנת
- כתיבת שאילתות מורכבות בביטחון -SQL שליטה ב
- עבודה עם API: הבנת עקרונות וטיפול בשגיאות

מגבלות והיזהרויות 🔔

גודל והיקף

- לא להיסחף: הפרויקט צריך להישאר פשוט ומתאים לזמן הזמין
- **500-1000 משחקים בלבד**: מספיק ללמידה, לא יותר מדי לביצוע
- מוספים, לא Random Forest + 1-2 אלגוריתמים בסיסיים deep learning

דגשים חשובים

- הוא מרכזי: לא רק לאחסון, אלא גם לתרגול הקורס SQL
- **ML הוא מרכזי**: חובה להבין איך האלגוריתמים עובדים
- תיעוד ולמידה: מטרה ללמוד, לא רק לסיים

התוצרים הצפויים

מוצר טכני

- עובד ומובנה PostgreSQL מסד נתונים
- Pipeline עד חיזוי וAPlמלא מ
- מודל ML מאומן עם הערכת ביצועים

מוצר אקדמי

• תיעוד מפורט של התהליך

- ניתוח השוואתי של אלגוריתמים
- זוגמאות שאילתות SQL מתקדמות

ערך מוסף

- ביטחון טכני לפרויקט הגמר
- כלים עובדים לתרגול SOL
- הבנה מעמיקה של ML pipeline

מסגרת זמן

סך הכל: 3-4 שבועות

- זמן סביר שלא יפריע ללימודים
- מספיק ללמידה מעמיקה
- יספק תשתית טובה לפרויקט הגמר

מטרה ללמוד ולהתקדם, לא ליצור מוצר מושלם - "Better done than perfect" **עקרון מנחה**.

סיכום

פרויקט זה הוא **גשר מעשי** בין הלמידה התיאורטית בקורסים לבין הפרויקט הגדול הקרוב. הוא מאפשר תרגול מכויקט זה הוא **גשר מעשי** בין הלמידה התיאורטית בקורסים לבין הפרויקט הגדול היקף סביר ומטרות ברורות.

המטרה היא לבנות **בסיס טכני חזק** ו**ביטחון עצמי** שיאפשרו להתמודד בהצלחה עם פרויקט הגמר המאתגר יותר.