Reikalavimai ataskaitoms:

Ataskaitos keliamos į Moodle iki gynimo dienos. Ataskaitoje pateikiama užduotis, rezultatai, programų kodai.

Ataskaitoje privaloma taikyti darbo forminimo reikalavimus, pateiktus "<u>Rašto darbų rengimo metodiniai nurodymai</u>", dalyje "Formalieji rašto darbų reikalavimai".

Visais atvejais atsiskaitymo metu galima naudotis namų užduotyje ir laboratorinių darbų metu nagrinėtomis programomis.

Gynimo metu studentas privalo paaiškinti bet kurią programos išeities teksto eilutę; jeigu to padaryti nesugeba, darbas vertinamas 0.

Ataskaitoje pateikiama:

- 1. užduotis;
- 2. teorinė dalis: naudotų algoritmų aprašymas, pseudo kodai arba programinio kodo fragmentai realizuojantys konkretų algoritmą;
- 3. atliktų užduočių rezultatai, komentarai ir darbo apibendrinimas.
- 4. programos, realizuojančios užduotis, aprašymas (pateikiamas kaip priedas. Galima įtraukti flowchart diagramas, aprašyti kaip pateikiami išvedami duomenys, vartotojo vadovą).

I užduotis. Interpoliavimas daugianariu.

1 lentelėje duota interpoliuojamos funkcijos analitinė išraiška. Pateikite interpoliacinės funkcijos išraišką naudodami *1 lentelėje* nurodytas bazines funkcijas, kai:

- a. Taškai pasiskirstę tolygiai.
- b. Taškai apskaičiuojami naudojant Čiobyševo abscises.

Interpoliavimo taškų skaičių parinkite laisvai, bet jis turėtų neviršyti 30. Pateikite du grafikus, kai interpoliuojančios funkcijos apskaičiuojamos naudojant skirtingas abscises ir gautas interpoliuojančių funkcijų išraiškas. Tame pačiame grafike vaizduokite duotąją funkciją, interpoliuojančią funkciją ir netiktį.

II užduotis. Interpoliavimas daugianariu ir splainu per duotus taškus

Sudarykite *2 lentelėje* nurodytos šalies 1998-2018 metų šiltnamio dujų emisiją (galimo duomenų šaltinio nuoroda apačioje) interpoliuojančias kreives, kai interpoliuojama *2 lentelėje* nurodyto tipo splainu. Pateikite rezultatų grafiką (interpoliavimo mazgus ir gautą kreivę (vaizdavimo taškų privalo būti daugiau nei interpoliavimo mazgų)).

III užduotis. Aproksimavimas

Mažiausių kvadratų metodu sudarykite *2 lentelėje* nurodytos šalies 1998-2018 metų šiltnamio dujų emisiją (galimo duomenų šaltinio nuoroda apačioje) aproksimuojančias kreives (**pirmos, antros, trečios** ir **penktos** eilės daugianarius). Pateikite gautas daugianarių išraiškas ir grafinius rezultatus.

IV užduotis. Parametrinis aproksimavimas.

Naudodami **parametrinį aproksimavimą Haro bangelėmis** suformuokite *2 lentelėje* nurodytos šalies kontūrą. Analizuokite bent 10 detalumo lygių. Pateikite aproksimavimo rezultatus (aproksimuotą kontūro kreivę) ne mažiau kaip 4 skirtinguose lygmenyse. Jei šalis turi keletą atskirų teritorijų (pvz., salų), pakanka analizuoti didžiausią iš jų.

1 lentelė. Interpoliuojamos funkcijos išraiška

Var. Nr.	Funkcijos išraiška	Bazinė funkcija
1	$e^{-x^2} \cdot \sin(x^2) \cdot (x-3); -3 \le x \le 2$	Čiobyševo
2	$e^{-x^2} \cdot \sin(x^2) \cdot (x-3); -3 \le x \le 2$ $\frac{\ln(x)}{(\sin(2 \cdot x) + 1,5)} + x/5; 2 \le x \le 10$	Vienanarių
3	$e^{-x^2} \cdot \cos(x^2) \cdot (x-3); -3 \le x \le 2$	Niutono
4	$\cos(2 \cdot x) \cdot (\sin(2 \cdot x) + 1.5) + \cos x; -2 \le x \le 3;$	Čiobyševo
5	$\cos(2 \cdot x) \cdot (\sin(2 \cdot x) + 1,5) + \cos x; -2 \le x \le 3;$ $e^{-x^2} \cdot \sin(x^2) \cdot (x-3); -3 \le x \le 2$	Vienanarių
6	$\frac{\ln(x)}{(\sin(2 \cdot x) + 1,5)} + x/5; 2 \le x \le 10$ $\cos(2 \cdot x) \cdot (\sin(2 \cdot x) + 1,5) - \cos\frac{x}{5}; -2 \le x \le 3;$	Niutono
7	$\cos(2 \cdot x) \cdot (\sin(2 \cdot x) + 1.5) - \cos\frac{x}{5}; -2 \le x \le 3;$	Čiobyševo
8	$\frac{\ln(x)}{(\sin(2 \cdot x) + 1.5)} + x/5; 2 \le x \le 10$ $\cos(2 \cdot x) \cdot (\sin(2 \cdot x) + 1.5) + \cos x; -2 \le x \le 3;$ $\cos(2 \cdot x) \cdot (\sin(3 \cdot x) + 1.5) - \cos \frac{x}{2}; -2 \le x \le 3;$	Vienanarių
9	$\cos(2 \cdot x) \cdot (\sin(2 \cdot x) + 1.5) + \cos x; -2 \le x \le 3;$	Niutono
10	$\frac{\cos(2^{-1}x)^{-1}(\sin(3^{-1}x)+1,3)-\cos 5}{5}$	Čiobyševo
11	$e^{-x^2} \cdot \cos(x^2) \cdot (x-3); -3 \le x \le 2$	Vienanarių
12	$\frac{\ln(x)}{(\sin(2 \cdot x) + 1,5)} + x/5; 2 \le x \le 10$ $\cos(2 \cdot x) \cdot (\sin(2 \cdot x) + 1,5) + \cos x; -2 \le x \le 3;$ $\frac{\ln(x)}{(\sin(2 \cdot x) + 2,5)}; 2 \le x \le 10$	Niutono
13	$\cos(2 \cdot x) \cdot (\sin(2 \cdot x) + 1,5) + \cos x; -2 \le x \le 3;$	Čiobyševo
14	$\frac{\ln(x)}{(\sin(2 \cdot x) + 2.5)}; 2 \le x \le 10$	Vienanarių
15	$\frac{\ln(x)}{(\sin(2 \cdot x) + 2.5)}; 2 \le x \le 10$ $\frac{\ln(x)}{(\sin(2 \cdot x) + 1.5)}; 2 \le x \le 10$ $\cos(2 \cdot x) / (\sin(2 \cdot x) + 1.5) - \cos\frac{x}{5}; -2 \le x \le 3;$	Niutono
16	$\cos(2 \cdot x) / (\sin(2 \cdot x) + 1.5) - \cos\frac{x}{5}; -2 \le x \le 3;$	Čiobyševo
17	$e^{-x^2} \cdot \cos(x^2) \cdot (x+2); -2 \le x \le 3$	Vienanarių
18	$e^{-x^2} \cdot \cos(x^2) \cdot (x+2); -2 \le x \le 3$ $\frac{\ln(x)}{(\sin(2 \cdot x) + 1,5)} - x/7; 2 \le x \le 10$	Niutono
19	$\cos(2 \cdot x) / (\sin(2 \cdot x) + 1.5) - \frac{x}{5}; -2 \le x \le 3;$	Čiobyševo
20	$\frac{\ln(x)}{(\sin(2\cdot x) + 1.5)} + \sin\left(\frac{x}{5}\right); 2 \le x \le 10$	Vienanarių
21	$\frac{\ln(x)}{(\sin(2 \cdot x) + 1,5)} - x/7; 2 \le x \le 10$ $\frac{\ln(x)}{(\sin(2 \cdot x) + 1,5)} - x/7; 2 \le x \le 10$ $\cos(2 \cdot x)/(\sin(2 \cdot x) + 1,5) - \frac{x}{5}; -2 \le x \le 3;$ $e^{-x^2} \cdot \cos(x^2) \cdot (x - 3) \cdot (x^2 + 3); -3 \le x \le 3$ $\frac{\ln(x)}{(\sin(2 \cdot x) + 1,5)} - x/7; 2 \le x \le 10$ $\cos(2 \cdot x)/(\sin(2 \cdot x) + 1,5) - \frac{x}{5}; -2 \le x \le 3;$	Niutono
22	$\cos(2 \cdot x) / (\sin(2 \cdot x) + 1.5) - \frac{x}{5}; -2 \le x \le 3;$	Čiobyševo
23	$e^{-x^2} \cdot \cos(x^2) \cdot (x-3) \cdot (x^2+3); -3 \le x \le 3$	Vienanarių
24	$\frac{\ln(x)}{(\sin(2\cdot x) + 1.5)} - x/7; 2 \le x \le 10$	Niutono
25	$\cos(2 \cdot x) / (\sin(2 \cdot x) + 1.5) - \frac{x}{5}; -2 \le x \le 3;$	Čiobyševo
26	$e^{-x^2} \cdot \cos(x^2) \cdot (x-3) \cdot (x^2+3); -3 \le x \le 3$	Vienanarių
27	$e^{-x^2} \cdot \cos(x^2) \cdot (x-3) \cdot (x^2+3); -3 \le x \le 3$ $\frac{\ln(x)}{(\sin(2 \cdot x) + 1,5)} + \sin(\frac{x}{5}); 2 \le x \le 10$ $\cos(2 \cdot x) / (\sin(x) + 1,5) - \frac{x}{5}; -2 \le x \le 3;$	Niutono
28	$\cos(2 \cdot x) / (\sin(x) + 1.5) - \frac{x}{5}; -2 \le x \le 3;$	Čiobyševo
29	$e^{-x^2} \cdot \sin(x^2) \cdot (x+2); -2 \le x \le 3$	Vienanarių
30	$\frac{\ln(x)}{(\sin(2 \cdot x) + 1.5)} - \cos(\frac{x}{5}); 2 \le x \le 10$	Niutono

2 lentelė. Šalys ir splaino tipas interpoliavimui.

Var. Nr.	Šalis	Splainas	
1	Argentina	Globalus	
2	Prancūzija	Ermito (Akima)	
3	Ispanija	Globalus	
4	Latvija	Ermito (Akima)	
5	Kroatija	Globalus	
6	Malis	Ermito (Akima)	
7	Venesuela	Globalus	
8	Austrija	Ermito (Akima)	
9	Panama	Globalus	
10	Zambija	Ermito (Akima)	
11	Brazilija	Globalus	
12	Kipras	Ermito (Akima)	
13	Bolivija	Globalus	
14	Moldova	Ermito (Akima)	
15	Vengrija	Globalus	
16	Mongolija	Ermito (Akima)	
17	Bulgarija	Globalus	
18	Šveicarija	Ermito (Akima)	
19	Slovakija	Globalus	
20	Italija	Ermito (Akima)	
21	Armėnija	Globalus	
22	Paragvajus	Ermito (Akima)	
23	Peru	Globalus	
24	Lenkija	Ermito (Akima)	
25	Rumunija	Globalus	
26	Suomija	Ermito (Akima)	
27	Portugalija	Globalus	
28	Vokietija	Ermito (Akima)	
29	Čekija	Globalus	
30	Kamerūnas	Ermito (Akima)	

Galimas duomenų šaltinis:

Šiltnamio dujų emisijos duomenys:

 $\underline{https://data.worldbank.org/indicator/EN.ATM.GHGT.KT.CE?end=2018\&start=1998}$

Šalių kontūrai:

http://www.naturalearthdata.com/downloads/10m-cultural-vectors/