Лабораторная работа 10

Задача об обедающих мудрецах

Лихтенштейн Алина Алексеевна

Содержание

3	Выводы	13
2	Выполнение лабораторной работы 2.1 Упражнение	5 8
1	Введение	4

Список иллюстраций

2.1	Граф сети задачи об обедающих мудрецах
2.2	Задание деклараций задачи об обедающих мудрецах
2.3	Модель задачи об обедающих мудрецах
2.4	Запуск модели задачи об обедающих мудрецах
2.5	Граф пространства состояний

1 Введение

Цель работы

Реализовать модель задачи об обедающих мудрецах в CPN Tools.

Задание

- Реализовать модель задачи об обедающих мудрецах в CPN Tools;
- Вычислить пространство состояний, сформировать отчет о нем и построить граф.

2 Выполнение лабораторной работы

Постановка задачи

Пять мудрецов сидят за круглым столом и могут пребывать в двух состояниях – думать и есть. Между соседями лежит одна палочка для еды. Для приёма пищи необходимы две палочки. Палочки – пересекающийся ресурс. Необходимо синхронизировать процесс еды так, чтобы мудрецы не умерли с голода.

Нарисуем граф сети. Для этого с помощью контекстного меню создадим новую сеть, добавим позиции, переходы и дуги (рис. 2.1).

Начальные данные:

- позиции: мудрец размышляет (philosopher thinks), мудрец ест (philosopher eats), палочки находятся на столе (sticks on the table)
- переходы: взять палочки (take sticks), положить палочки (put sticks)

Рис. 2.1: Граф сети задачи об обедающих мудрецах

В меню зададим новые декларации модели (рис. 2.2): типы фишек, начальные значения позиций, выражения для дуг:

- n число мудрецов и палочек (n = 5);
- p фишки, обозначающие мудрецов, имеют перечисляемый тип PH от 1 до n;
- s фишки, обозначающие палочки, имеют перечисляемый тип ST от 1 до n;
- функция ChangeS(p) ставит в соответствие мудрецам палочки (возвращает номера палочек, используемых мудрецами)

```
fun ChangeS (ph(i))=
1`st(i)++st(if = n then 1 else i+1)
```

```
▼petry philosopher.cpn
Step: 0
Time: 0
▶ Options
▶ History
▼ Declarations
▼ val n = 5;
▼ colset PH = index ph with 1..n;
▼ colset ST = index st with 1..n;
▼ var p:PH;
▼ fun ChangeS(ph(i))=
1`st(i)++1`st(if i =n then 1 else i+1)
▶ Standard declarations
▶ Monitors
philosopher
```

Рис. 2.2: Задание деклараций задачи об обедающих мудрецах

В результате получим работающую модель (рис. 2.3).

Рис. 2.3: Модель задачи об обедающих мудрецах

Заметим, что одновременно палочками могут воспользоваться только два из пяти мудрецов (рис. 2.4).

Рис. 2.4: Запуск модели задачи об обедающих мудрецах

2.1 Упражнение

Вычислим пространство состояний. Сформируем отчёт о пространстве состояний и проанализируем его.

Из отчета можем узнать, что:

- есть 11 состояний и 30 переходов между ними;
- указаны границы значений для каждого элемента: думающие мудрецы (максимум 5, минимум 3), мудрецы едят (максимум 2, минимум 0), палочки на столе (максимум 5, минимум 1, минимальное значение 2, так как в конце симуляции остаются пирожки);
- указаны границы в виде мультимножеств;
- маркировка home для всех состояний;

- маркировка dead равна None;
- указано, что бесконечно часто происходят события положить и взять палочку.

CPN Tools state space report for:

/home/openmodelica/philosopher.cpn

Report generated: Sat May 25 00:45:34 2024

Statistics

State Space

Nodes: 11

Arcs: 30

Secs: 0

Status: Full

Scc Graph

Nodes: 1

Arcs: 0

Secs: 0

Boundedness Properties

Best Integer Bounds

Upper Lower

philosopher'philosopher_eats 1

2 0

```
philosopher'philosopher_thinks 1
                               5
     philosopher'sticks_on_the_table 1
                               5
  Best Upper Multi-set Bounds
     philosopher'philosopher_eats 1
                          1`ph(1)++
1 ph(2)++
1 ph(3)++
1 ph(4)++
1`ph(5)
     philosopher'philosopher_thinks 1
                          1`ph(1)++
1`ph(2)++
1 ph(3)++
1 ph(4)++
1`ph(5)
     philosopher'sticks_on_the_table 1
                          1`st(1)++
1'st(2)++
1 \text{`st}(3) ++
1 \text{`st}(4) ++
1`st(5)
  Best Lower Multi-set Bounds
     philosopher'philosopher_eats 1
                          empty
     philosopher'philosopher_thinks 1
```

3

1

empty
philosopher'sticks_on_the_table :
emptv

Home Properties	
Home Markings	
All	
Liveness Properties	
Dead Markings	
None	
Dead Transition Instances	
None	
Live Transition Instances	
All	
Fairness Properties	
philosopher'put_sticks 1	-
Impartial	

philosopher'take_stiicks 1 Impartial

Построим граф пространства состояний (рис. 2.5).

Рис. 2.5: Граф пространства состояний

3 Выводы

В процессе выполнения данной лабораторной работы была реализована модель задачи об обедающих мудрецах в CPN Tools.