Rules:

- Unless otherwise stated, all answers must be mathematically justified.
- Partial answers will be graded.
- Your submission has to be uploaded to Gradescope. In Gradescope, indicate the page on which each problem is written.
- You can work in groups but each student must write his/her/their own solution based on his/her/their own understanding of the problem. Please list on your submission the students you work with for the homework (this will not affect your grade).
- Problems with a (*) are extra credit, they will not (directly) contribute to your score of this homework. However, for every 4 extra credit questions successfully answered your lowest homework score get replaced by a perfect score.
- If you have any questions, feel free to ask them on Ed Discussion (so that everyone can benefit from the answer) or stop at the office hours.

Problem 3.1 (2 points). True or false? Give a justification if true and a counterexample if false. Note: "singular" is another way of saying "not invertible".

(a) A square matrix with a column of zeros cannot be invertible.

True. Consider the matrix organized in columns $\mathbf{A} \in \mathbb{R}^{m \times n}$ that takes the form $\begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_j = \vec{0} & \cdots & \vec{b}_n \end{bmatrix}$ where $j = 1, 2, \cdots, n$, then we can always find a vector in

the input space $\vec{a} \in \mathbb{R}^n$ that takes the form $\begin{bmatrix} 0 \\ 0 \\ \vdots \\ x_j \\ \vdots \\ 0 \end{bmatrix}$ where $x_j \neq 0$ and satisfies $A\vec{a} = \vec{0}$.

This shows that there are non-zero vectors in the $\tilde{\mathcal{N}}(\mathbf{A})$, which is logically equivalent to say $\mathcal{N}(\mathbf{A}) \neq \{0\}$, which implies that \mathbf{A} is not invertible.

(b) A square matrix whose all entries are non-zero is invertible.

False. The counterexample would be $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ where $rk(\mathbf{A}) = 1 \geq 2$, which implies \mathbf{A} is not invertible.

(c) A square matrix where every row adds up to zero must be singular.

True. Consider the matrix organized in columns $\mathbf{A} \in \mathbb{R}^{m \times n}$ that takes the form $\begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{b}_n \end{bmatrix}$ with the property that $\sum_{i=1}^n \vec{a}_i = \vec{0}$. Rearranging the term we could get $\vec{a}_i = \sum_{j \neq i} (-1) \times \vec{a}_j \quad \forall i = 1, 2, \cdots, n$, this is equivalent to say that \vec{a}_i is linearly dependent with the other column vectors. Thus $Span(\{\vec{a}_j\}_{j \neq i}) = Span(\{\vec{a}_1, \cdots, \vec{a}_n\}), \forall i = 1, 2, \cdots, n$. Thus $rk(\mathbf{A}) = dim(Span(\{\vec{a}_1, \cdots, \vec{a}_n\})) = dim(Span(\{\vec{a}_j\}_{j \neq i})) \leq n - 1, \forall i = 1, 2, \cdots, n$. By the theorem in the lecture we know that \mathbf{A} is singular(not invertible).

(d) Every matrix with zeros down the main diagonal is singular.

False. Consider this matrix $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. The column of this matrix is clearly linearly independent and then spans the whole \mathbb{R}^n . Thus $rk(\mathbf{A}) = dim(Span(\{\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}\})) = 2$, which by theorem in the lecture we know that \mathbf{A} is nonsingular.

Problem 3.2 (2 points). Let A be a square $n \times n$ matrix.

- (a) Assume that A is invertible. Is A^{-1} invertible? If yes, what is its inverse? True. Since A is invertible, $\exists A^{-1}$ s.t. $AA^{-1} = I_n$ and $A^{-1}A = I_n$ by definition and by this definition we change the perspective to A^{-1} , then $\exists A$ s.t. $A^{-1}A = I_n$ and $AA^{-1} = I_n$, which implies that A is invertible and the inverse of A^{-1} is just A.
- (b) Assume that A is invertible. Show that A^{\top} is invertible and that its inverse is $(A^{-1})^{\top}$: in other words, $(A^{\top})^{-1} = (A^{-1})^{\top}$ (hint: calculate the entries of $A^{\top}(A^{-1})^{\top}$). We first verify the diagonal entries of $A^{\top}(A^{-1})^{\top}$. The derivations are as follows:

$$\mathbf{A}^{\top}(\mathbf{A}^{-1})_{ii}^{\top} = \sum_{k=1}^{n} \mathbf{A}_{ik}^{\top}(\mathbf{A}^{-1})_{ki}^{\top}$$
 (By definition)

$$= \sum_{k=1}^{n} \mathbf{A}_{ki} \mathbf{A}_{ik}^{-1}$$
 (By properties of transpose)

$$= \sum_{k=1}^{n} \mathbf{A}_{ik}^{-1} \mathbf{A}_{ki}$$
 (Rearrange the terms)

$$= 1$$
 (By the property of matrix inverse)

We then verify the non-diagonal entries of $\mathbf{A}^{\top}(\mathbf{A}^{-1})_{ij}^{\top}$ where $i \neq j$. The derivations are as follows:

$$\mathbf{A}^{\top}(\mathbf{A}^{-1})_{ij}^{\top} = \sum_{k=1}^{n} \mathbf{A}_{ik}^{\top} (\mathbf{A}^{-1})_{kj}^{\top}$$
 (By definition)

$$= \sum_{k=1}^{n} \mathbf{A}_{ki} \mathbf{A}_{jk}^{-1}$$
 (By properties of transpose)

$$= \sum_{k=1}^{n} \mathbf{A}_{ik}^{-1} \mathbf{A}_{kj}$$
 (Rearrange the terms)

$$= 0$$
 (By the property of matrix inverse)

Thus the result matrix is just an $n \times n$ diagonal matrix \mathbf{I}_n . The derivation of $(\mathbf{A}^{-1})^{\top} \mathbf{A}^{\top} = \mathbf{I}_n$ is the same, which implies that $(A^{\top})^{-1} = (A^{-1})^{\top}$.

(c) Assume that A is diagonal:

$$A = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix}$$

What is the rank of A? When is A invertible? In such cases, what is its inverse? (hint: it is also diagonal).

The rank depends on the number of non-zero elements among a_1, \dots, a_n . Mathematically, $rk(\mathbf{A}) = \sum_{i=1}^{n} \mathbf{1}\{a_i \neq 0\}$. When $a_i \neq 0$, $\forall i = 1, 2, \dots, n$, \mathbf{A} is invertible. And its inverse is also a diagonal matrix, which is

$$A^{-1} = \begin{pmatrix} \frac{1}{a_1} & 0 & \cdots & 0\\ 0 & \frac{1}{a_2} & \cdots & 0\\ 0 & 0 & \ddots & \vdots\\ 0 & 0 & \cdots & \frac{1}{a_n} \end{pmatrix}$$

, which makes $\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n$ hold.

(d) Assume that A is upper-triangular:

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ 0 & a_{2,2} & \cdots & a_{2,n} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n,n} \end{pmatrix}$$

When is A invertible?

Again, when $a_{i,i} \neq 0$, $\forall i = 1, 2, \dots, n$, \boldsymbol{A} is invertible, otherwise, one can easily express that column j with $a_{j,j} = 0$ in terms of the linear combination of the columns before it(namely column $1, 2, \dots, j-1$).

Problem 3.3 (2 points). (a) Let $A, B \in \mathbb{R}^{n \times n}$. Suppose that AB is invertible. Show that A and B are both invertible. (In particular, if AB = Id, then A is invertible). Express the inverse of AB in terms of the inverses of A and B.

Since AB is invertible, we have that Rank(AB) = n. Since we have $Rank(AB) \le Rank(A)$ and $Rank(A) \le \min\{m,n\} = n$. We know that Rank(A) = n. Asymmetric argument could show that Rank(B) = n, which are equivalent to say that both A and B are invertible and we denote them by A^{-1} and B^{-1} . The expression of $(AB)^{-1}$ is $B^{-1}A^{-1}$ and we verify it. We have $(AB)B^{-1}A^{-1} = A(BB^{-1})A^{-1} = I_n$ and $B^{-1}A^{-1}(AB) = B^{-1}(A^{-1}A)B = I_n$.

(b) Let $A \in \mathbb{R}^{n \times m}$ with $n \neq m$, is it possible to find a matrix $B \in \mathbb{R}^{m \times n}$ such that $AB = \mathrm{Id}_n$ and $BA = \mathrm{Id}_m$?

No, it is impossible. We prove it from the perspective of matrix rank and derive a contradiction. Suppose $AB = I_n$ holds, we have $Rank(AB) = n \leq Rank(A) \leq \min\{m, n\}$, which implies Rank(A) = n and n < m since $n \neq m$. Now with this we have $Rank(BA) \leq Rank(A) = n < m = Rank(I_m)$, which is a contradiction.

Now suppose $\mathbf{B}\mathbf{A} = \mathbf{I}_m$ holds, we have $Rank(\mathbf{B}\mathbf{A}) = m \leq Rank(\mathbf{B}) \leq \min\{m, n\}$, which implies Rank(B) = m and m < n since $n \neq m$. Now with this we have $Rank(\mathbf{A}\mathbf{B}) \leq Rank(\mathbf{B}) = m < n = Rank(\mathbf{I}_n)$, which is a contradiction.

Problem 3.4 (2 points). Let A be a square $n \times n$ matrix. Define $A^k = \underbrace{A \times \cdots \times A}_{k \text{ times}}$, with $A^0 = \operatorname{Id}_n$.

- (a) What can you say about the sequence $(\operatorname{rank}(A^k))_{k\in\mathbb{N}}$?

 Without further information, we know that $\operatorname{rk}(A^{m+1}) \leq \operatorname{rk}(A^m)$, $\forall m = 0, 1, 2, \dots, k$. Since $\operatorname{rk}(A^0) = \operatorname{rk}(I_n) = n$, we know $\operatorname{rk}(A^k) \leq n$.
- (b) Assume that A is invertible. Show that for all $k \in \mathbb{N}$, A^k is invertible and its inverse is $(A^{-1})^k$ (in other words, $(A^k)^{-1} = (A^{-1})^k$, and we write this matrix A^{-k}).

We can prove it by induction.

Proof. Suppose our inductive hypothesis P(k) is: \mathbf{A}^k is invertible.

- (a) Base Step: When k = 0, $\mathbf{A} = \mathbf{I}_n$, which is indeed invertible, P(0) is true.
- (b) Inductive Step: Suppose for some $k = n \ge 0$, P(n) is true, then $Rank(\mathbf{A}^n) = n$. We will have $Rank(\mathbf{A} \times \mathbf{A}^n) = Rank(\mathbf{A}^n) = n$ since \mathbf{A} is invertible, which implies that \mathbf{A}^{n+1} is invertible.

By mathematical induction, \mathbf{A}^k is invertible $\forall k \in \mathbb{N}$. \square Now we move on to show its inverse, again we prove by induction: **Proof.** Suppose our inductive hypothesis is P(k): \mathbf{A}^k 's inverse is $(\mathbf{A}^{-1})^k$

- (a) Base Step: When k = 0, $\mathbf{A}^0 = \mathbf{I}_n$, whose inverse is $I_n = (\mathbf{A}^0)^{-1}$, which implies that the inductive hypothesis P(0) is true.
- (b) Inductive Step: Suppose for some $n \geq 0$, P(n) is true and that the inverse of \mathbf{A}^n is $(\mathbf{A}^{-1})^n$. Then the inverse of \mathbf{A}^{n+1} is the inverse of $\mathbf{A} \times \mathbf{A}^n$, which, as shown in problem 3.3, is $((\mathbf{A})^n)^{-1}\mathbf{A}^{-1} = (\mathbf{A}^{-1})^n\mathbf{A}^{-1} = (\mathbf{A}^{-1})^{n+1}$, which implies that P(n+1) is true.

By mathematical induction, P(k) is true $\forall k \in \mathbb{N}$.

Problem 3.5 (*). Let $A \in \mathbb{R}^{n \times n}$ given by

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}.$$

(a) What is rank(A)?

 $rk(\mathbf{A}) = n - 1$. Since there are n - 1 pivot elements.

(**b**) Compute A^2 . What is rank (A^2) ?

We notice that it is a matrix that will zero out the first column for each right multiplication. From this we get that A^2

$$A = \begin{pmatrix} 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

and the $rank(\mathbf{A}^2) = n - 2$.

(c) Compute A^k for all $k \in \mathbb{N}$. What is rank (A^k) ?

By intuition we would have $Rank(\mathbf{A}^k) = n - k$ Because each time we multiply the matrix \mathbf{A} on the left, we will get a column of all zero and the rank will shrink by 1.