МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Вятский государственный университет»

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Отчет Лабораторная работа №3 по дисциплине «Исследование операций» Вариант 2

Выполнил студент группы ИН	BT-32	/Рзаев А. Э./
Проверил преподаватель		/Коржавина А. С./

1 Цель работы

Целью лабораторной работы является получение навыков решения задач линейного программирования (ЗЛП) методом Гомори.

2 Задание

Решить ЗЛП методов ветвей и границ и методом Гомори:

$$f(x) = x_2 \rightarrow max$$

 $x_1 - 2x_2 \le 0$
 $-x_1 + x_2 \le 1$
 $x_1 + x_2 \le 1,5$
 $x_1, x_2 \ge 0$, целые

3 Практическая часть

Решим симплекс-методом следующую задачу.

$$f(x) = x_2 \to max$$

$$x_1 - 2x_2 \le 0$$

$$-x_1 + x_2 \le 1$$

$$x_1 + x_2 \le 1,5$$

$$x_1, x_2 \ge 0$$

Переход к канонической форме

$$f(x) = x_2 \rightarrow max$$

$$x_1 - 2x_2 + x_3 = 0$$

$$-x_1 + x_2 + x_4 = 1$$

$$x_1 + x_2 + x_5 = 1,5$$

$$x_i \ge 0, j = 1..2$$

Поиск максимума

Найдем начальное БР. x_1, x_2 – свободные переменные, значит:

$$x_1 = 0$$

 $x_2 = 0$
 $x_3 = 0$
 $x_4 = 1$
 $x_5 = 1.5$

Заполним таблицу 1 для отображения хода вычислений и рассчитаем относительные оценки.

Таблица 1 – поиск максимума

Базис	В	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	$\overline{\text{BP}/\overline{a_{ir}}}$
x_3	0	1	-2	1	0	0	-
x_4	1	-1	1	0	1	0	1
x_5	3/2	1	1	0	0	1	3/2
$f(X_0)$	0	0	-1	0	0	0	

Текущий опорный план не оптимален, так как в индексной строке находятся отрицательные коэффициенты. В качестве разрешающего столбца можем выбрать столбец x_2 . Берем первый столбец и анализируем его коэффициенты, они положительны, значит переменная x_2 вводится в число базисных. Для определения переменной, выводимой из базиса, находим наименьшее из неотрицательных отношений $\frac{\mathrm{БP}}{a_{tr}}=1$, значит x_4 выводится из базиса.

Новое БР отображено в таблице 2

Таблица 2 – поиск максимума

Базис	В	x_1	x_2	x_3	x_4	x_5	БР/ $\overline{a_{ir}}$
x_3	2	-1	0	1	2	0	-
x_2	1	-1	1	0	1	0	-
<i>x</i> ₅	1/2	2	0	0	-1	1	1/4
$f(X_1)$	1	-1	0	0	1	0	

Текущий опорный план не оптимален, так как в индексной строке находятся отрицательные коэффициенты. В качестве разрешающего столбца можем выбрать столбец x_1 . Берем первый столбец и анализируем его коэффициенты, они положительны, значит переменная x_1 вводится в число базисных. Для определения переменной, выводимой из базиса, находим наименьшее из неотрицательных отношений $\frac{\mathrm{БP}}{\mathrm{d}_{1r}}=1/4$, значит x_5 выводится из базиса.

Новое БР отображено в таблице 3

Таблица 3 – поиск максимума

Базис	В	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	x_5	БР/ $\overline{a_{ir}}$
x_3	9/4	0	0	1	3/2	1/2	
x_2	5/4	0	1	0	1/2	1/2	
x_1	1/4	1	0	0	-1/2	1/2	
$f(X_2)$	5/4	0	0	0	1/2	1/2	

Среди значений индексной строки нет отрицательных. Поэтому эта таблица определяет оптимальный план задачи, значит решение $x_1 = 1/4$, $x_2 = 5/4$ является оптимальным, но нецелочисленным.

Наибольшей нецелочисленной координатой с наибольшей дробной частью оказалась x_2 . Выписываем из таблицы 2 уравнение, соответствующее ей.

$$\mathbf{x}_2 + \frac{1}{2} \, \mathbf{x}_4 + \frac{1}{2} \, \mathbf{x}_5 = \frac{5}{4}$$
, или $\mathbf{x}_2 = \frac{5}{4} - \frac{1}{2} \mathbf{x}_4 - \frac{1}{2} \mathbf{x}_5$

Обозначим за x_2' переменную, которая принимает только целочисленные значения. Получаем $x_2' = \frac{5}{4} - \frac{1}{2}x_4' - \frac{1}{2}x_5'$. Так как x_2' целое число можем записать $\frac{5}{4} - \frac{1}{2}x_4' - \frac{1}{2}x_5' = int$.

Если прибавить к каждому из слагаемых целочисленных значений, то равенство не изменится, получаем

$$\left(\frac{5}{4} \pm int\right) - \left(\frac{1}{2} \pm int\right)x_4' - \left(\frac{1}{2} \pm int\right)x_5' = int$$

Подставим вместо каждого int максимальное положительное целое значение, чтобы выражение в каждой скобке оставалось положительным. Таким образом получаем $\frac{5}{4}-1=\frac{1}{4},\frac{1}{2}-0=\frac{1}{2},\frac{1}{2}-0=\frac{1}{2}$. Подставим получившиеся значения вместо скобок. Получим $\frac{1}{4}-\frac{1}{2}x_4'-\frac{1}{2}x_5'=int$.

Так как x_2' и x_4' положительные числа, то можем записать новое ограничение $\frac{1}{4} - \frac{1}{2}x_4 - \frac{1}{2}x_5 \le 0$, коэффициенты которого введем дополнительной строкой в оптимальную симплексную таблицу.

Поскольку двойственный симплекс-метод используется для поиска минимума целевой функции, делаем преобразование F(x) = -F(x).

Таблица 4 –	поиск	максим	ума
-------------	-------	--------	-----

Базис	В	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	БР/ $\overline{a_{ir}}$
x_3	9/4	0	0	1	3/2	1/2	0	
x_2	5/4	0	1	0	1/2	1/2	0	
x_1	1/4	1	0	0	-1/2	1/2	0	
<i>x</i> ₆	-1/4	0	0	0	-1/2	-1/2	1	
$f(X_0)$	-5/4	0	0	0	-1/2	-1/2	0	

Среди отрицательных значений базисных переменных выбираем наибольший по модулю. Ведущей будет 4-ая строка, а переменную x_6 следует вывести из базиса, а переменную x_5 необходимо ввести в базис.

Таблица 5 – поиск максимума

Базис	В	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆	$BP/\overline{a_{ir}}$
x_3	2	0	0	1	1	0	1	
x_2	1	0	1	0	0	0	1	
x_1	0	1	0	0	-1	0	1	
x_5	1/2	0	0	0	1	1	-2	
$f(X_1)$	-1	0	0	0	0	0	-1	

Решение получилось целочисленным. Нет необходимости применять метод Гомори. Оптимальный целочисленный план можно записать так:

$$x_1 = 0, x_2 = 1, f(X) = 1$$

6 Проверка решения

Проверка решения была выполнена с помощью сервиса math.semestr.ru.

На следующих рисунках представлено решение методом Гомори.

Метод Гомори

Рисунок 1 – Занесение начальных данных

В	Х1	X ₂	Х3	X ₄	X ₅	Х6
21/4-(-1/4 • 1/2):-1/2	0-(0 • 1/2):-1/2	0-(0 • 1/2):-1/2	1-(0 • 1/2):-1/2	11/2-(-1/2 • 1/2):-1/2	1/2-(-1/2 • 1/2):-1/2	0-(1 • 1/2):-1/2
11/4-(-1/4 • 1/2):-1/2	0-(0 • 1/2):-1/2	1-(0 • 1/2):-1/2	0-(0 • 1/2):-1/2	1/2-(-1/2 • 1/2):-1/2	1/2-(-1/2 • 1/2):-1/2	0-(1 • 1/2):-1/2
1/4-(-1/4 • 1/2):-1/2	1-(0 • 1/2):-1/2	0-(0 • 1/2):-1/2	0-(0 • 1/2):-1/2	-1/ ₂ -(-1/ ₂ • 1/ ₂):-1/ ₂	1/2-(-1/2 • 1/2):-1/2	0-(1 • 1/2):-1/2
⁻¹ / ₄ : ⁻¹ / ₂	0:-1/2	0:-1/2	0:-1/2	-1/2:-1/2	-1/2:-1/2	1:-1/2
11/4-(-1/4 • -1/2):-1/2	0-(0 • -1/2):-1/2	0-(0 • -1/2):-1/2	0-(0 • -1/2):-1/2	-1/2-(-1/2 • -1/2):-1/2	-1/2-(-1/2 • -1/2):-1/2	0-(1 • -1/2):-1/

Решение получилось целочисленным. Нет необходимости применять метод Гомори.

Оптимальный целочисленный план можно записать так:

 $x_1 = 0, x_2 = 1$

 $F(X) = 1 \cdot 1 = 1$

Решение было получено и оформлено с помощью сервиса:

Метод Гомори

Рисунок 2 – Полученное решение

7 Выводы

В ходе выполнения лабораторной работы были получены навыки по решению задач линейного программирования методом ветвей и границ и методом Гомори. Более простым и точным оказался метод ветвей и границ, так как в этом методе выполняются более простые преобразования, недостатком этого метода является множество итераций и большие объемы вычислений.