Q1: Are lake and terrestrial primary productivity coherent?

Jonathan Walter, Grace Wilkinson, Rachel Fleck, Michael Pace 4/17/2019

This document organizes for openness and reproducibility analyses of the temporal coherence of interannual variation in lake primary productivity with terrestrial primary productivity in the landscape surrounding the lake.

Data import

Data produced in 'ms1_prep.Rmd' are loaded. load("/Users/jonathanwalter/Box Sync/NSF EAGER Synchrony/Data/RData files/ms1_analysis_inprogress1.RDat any(sapply(analysislakes\$lakedata, function(x){any(is.infinite(x))})) ## [1] FALSE any(sapply(analysislakes\$lakedata, function(x){any(is.na(x))})) ## [1] FALSE which(sapply(analysislakes\$lakedata, function(x){any(is.na(x))})) ## named integer(0) analysislakes\$lakeinfo[which(sapply(analysislakes\$lakedata, function(x){any(is.na(x))})),] ## [1] lagoslakeid nhd_lat gnis_name ## [4] nhd_long lake_area_ha lake_perim_meters ## [7] nhd_ftype nhd_fcode hu4_zoneid ## [10] hu12_zoneid state zoneid elevation m ## [13] start end ## <0 rows> (or 0-length row.names) # image(accndvi) # points(lakepts.prj[which(sapply(analysislakes\$lakedata, function(x){any(is.na(x))})),]) dbuff[which(sapply(analysislakes\$lakedata, function(x){any(is.na(x))}))] ## numeric(0) analysislakes\$lakeinfo<-analysislakes\$lakeinfo[!sapply(analysislakes\$lakedata, function(x){any(is.na(x) analysislakes\$lakedata<-analysislakes\$lakedata[!sapply(analysislakes\$lakedata, function(x){any(is.na(x) analysislakes\$lakeinfo\$tslength<-analysislakes\$lakeinfo\$end-analysislakes\$lakeinfo\$start+1 # analysislakes\$lakedata<-analysislakes\$lakedata[!analysislakes\$lakeinfo\$tslength < 20] # analysislakes\$lakeinfo<-analysislakes\$lakeinfo[!analysislakes\$lakeinfo\$tslength < 20,] source("~/GitHub/AquaTerrSynch/AnalysisCode/bandtest_coh.R")

tsranges < -rbind(c(2,4),c(4,Inf),c(2,Inf))

```
coh.chlaXaccndvi<-NULL
coh.chlaXmaxndvi<-NULL
for(lind in 1:length(analysislakes$lakedata)){
  lakedat.ii<-cleandat(analysislakes$lakedata[[lind]], as.numeric(colnames(analysislakes$lakedata[[lind
  chlaXaccndvi<-coh(lakedat.ii[1,], lakedat.ii[2,], as.numeric(colnames(analysislakes$lakedata[[lind]])</pre>
                    norm="powall", sigmethod="fast", nrand=10000)
  chlaXmaxndvi<-coh(lakedat.ii[1,], lakedat.ii[3,], as.numeric(colnames(analysislakes$lakedata[[lind]])
                    norm="powall", sigmethod="fast", nrand=10000)
  for(rind in 1:nrow(tsranges)){
    chlaXaccndvi<-bandtest.coh(chlaXaccndvi, tsranges[rind,])</pre>
    chlaXmaxndvi<-bandtest.coh(chlaXmaxndvi, tsranges[rind,])</pre>
  }
  coh.chlaXaccndvi<-rbind(coh.chlaXaccndvi, c(t(as.matrix(chlaXaccndvi$bandp[,3:5]))))</pre>
  coh.chlaXmaxndvi<-rbind(coh.chlaXmaxndvi, c(t(as.matrix(chlaXmaxndvi$bandp[,3:5]))))</pre>
}
coh.chlaXaccndvi<-as.data.frame(coh.chlaXaccndvi)</pre>
coh.chlaXmaxndvi<-as.data.frame(coh.chlaXmaxndvi)</pre>
colnames(coh.chlaXaccndvi) <-paste0("accndvi",c("p.ts1","phi.ts1","coh.ts1","p.ts2","phi.ts2","coh.ts2",
colnames(coh.chlaXmaxndvi) <-paste0("maxndvi",c("p.ts1","phi.ts1","coh.ts1","p.ts2","phi.ts2","coh.ts2",
coh.chlaXaccndvi$lagoslakeid<-analysislakes$lakeinfo$lagoslakeid
coh.chlaXmaxndvi$lagoslakeid<-analysislakes$lakeinfo$lagoslakeid
#short timescales
hist(coh.chlaXaccndvi$accndvicoh.ts1, main="Accumulated NDVI, short timescales", xlab="Coherence", ylab
```

Accumulated NDVI, short timescales

Maximum NDVI, short timescales

hist(coh.chlaXaccndvi\$accndviphi.ts1[coh.chlaXaccndvi\$accndvip.ts1<0.2]/pi, main="Accumulated NDVI, s

coh.chlaXaccndvi\$accndviphi.ts1[coh.chlaXaccndvi\$accndvip.ts1 <

#hist(coh.chlaXmaxndvi\$maxndviphi.ts1[coh.chlaXmaxndvi\$maxndvip.ts1<0.2]/pi, main="Maximum NDVI, short
#long timescales
hist(coh.chlaXaccndvi\$accndvicoh.ts2, main="Accumulated NDVI, long timescales", xlab="Coherence", ylab=</pre>

Accumulated NDVI, long timescales

Maximum NDVI, long timescales


```
quantile(coh.chlaXaccndvi$accndvicoh.ts2)
                    25%
                                          75%
                                                    100%
## 0.06700155 0.35635453 0.56072757 0.75753276 0.96052338
quantile(coh.chlaXmaxndvi$maxndvicoh.ts2)
##
          0%
                    25%
                               50%
                                          75%
                                                    100%
## 0.04123391 0.35832298 0.61507443 0.78760333 0.96402244
alpha=0.05
sum(coh.chlaXaccndvi$accndvip.ts2<alpha)/nrow(coh.chlaXaccndvi)</pre>
## [1] 0.05185185
sum(coh.chlaXmaxndvi$maxndvip.ts2<alpha)/nrow(coh.chlaXmaxndvi)</pre>
## [1] 0.05925926
print(coh.chlaXaccndvi$accndviphi.ts2[coh.chlaXaccndvi$accndvip.ts2<alpha]/pi)</pre>
## [7] 0.89471121
print(coh.chlaXmaxndvi$maxndviphi.ts2[coh.chlaXmaxndvi$maxndvip.ts2<alpha]/pi)</pre>
## [1] 0.69982097 -0.97179292 -0.04190360 0.02097044 -0.67004320 -0.58501674
## [7] -0.31373024 -0.33804686
\# hist(coh.chlaXaccndvi\#accndviphi.ts2[coh.chlaXaccndvi\#accndvip.ts2<0.2]/pi, \#main="Accumulated NDVI, \#1 hist(coh.chlaXaccndvi\#1.5)
```

rose(coh.chlaXaccndvi\$accndviphi.ts2[coh.chlaXaccndvi\$accndvip.ts2<0.3], unit="radian",

breaks=seq(0,2*pi,length.out=16))

coh.chlaXaccndvi\$accndviphi.ts2[coh.chlaXaccndvi\$accndvip.ts2 <

 $\verb| \#hist(coh.chlaXmaxndvi\$maxndvi\$maxndvi\$maxndvicoh.ts2>0.6]/pi, main="Maximum NDVI, shorwardville" | main="Maximum NDV$

```
states<-readOGR("~/Box Sync/NSF EAGER Synchrony/Data/statesp020.shp")

## OGR data source with driver: ESRI Shapefile

## Source: "/Users/jonathanwalter/Box Sync/NSF EAGER Synchrony/Data/statesp020.shp", layer: "statesp020

## with 2895 features

## It has 9 fields

## Integer64 fields read as strings: STATESP020 DAY_ADM YEAR_ADM

getstates<-c("Minnesota", "Iowa", "Wisconsin", "Illinois", "Missouri", "Michigan", "Indiana", "Ohio", "lagosstates<-states[states@data$STATE %in% getstates,]

plot(lagosstates, main="Lakes selected for analysis")

points(analysislakes$lakeinfo$nhd_long, analysislakes$lakeinfo$nhd_lat, pch=16, cex=1, col="blue")</pre>
```

Lakes selected for analysis


```
cohplotdata<-left_join(analysislakes$lakeinfo, coh.chlaXaccndvi, by="lagoslakeid")
pal<-viridis(100)
par(mar=c(1,0,2,0))
plot(lagosstates, main="Lakes by short timescale coherence")
points(cohplotdata$nhd_long, cohplotdata$nhd_lat, pch=16, cex=1, col=pal[round(cohplotdata$accndvicoh.tcolorbar.plot(x=mean(par("usr")[1:2]),y=par("usr")[3],strip=1:100,col=pal,horizontal = T)</pre>
```

Lakes by short timescale coherence

plot(lagosstates, main="Lakes by long timescale coherence")
points(cohplotdata\$nhd_long, cohplotdata\$nhd_lat, pch=16, cex=1, col=pal[round(cohplotdata\$accndvicoh.t
colorbar.plot(x=mean(par("usr")[1:2]),y=par("usr")[3],strip=1:100,col=pal,horizontal = T)

Lakes by long timescale coherence

#Need to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag #agriculture -- is 500m buffer best? Other options include 100m buffer (probably too small) and hu12 wa $\#\ pct.ag <-lagosne_select (table="buffer 500 m. lulc",\ vars=c ("lagoslake id", "buffer 500 m_nlcd 2001_pct_82", "buffer 500 m_nl$ pct.ag<-lagosne_select(table="hu12.lulc", vars=c("hu12_zoneid","hu12_nlcd2001_pct_82","hu12_nlcd2006_pc pct.ag<-pct.ag[pct.ag\$hu12_zoneid %in% analysislakes\$lakeinfo\$hu12_zoneid,] pct.ag.avg<-data.frame(hu12_zoneid=pct.ag\$hu12_zoneid, pct.ag=rowMeans(pct.ag[,2:4])) #Wetlands pct.wetlands<-lagosne_select(table="hu12.lulc", vars=c(c("hu12_zoneid", "hu12_nlcd2001_pct_90", "hu12_nlc "hu12_nlcd2011_pct_90", "hu12_nlcd2001_pct_95", "hu12_nlcd2011_pct_95"))) pct.wetlands<-pct.wetlands[pct.wetlands\$hu12_zoneid %in% analysislakes\$lakeinfo\$hu12_zoneid,] pct.wetlands\$sum2001<-rowSums(pct.wetlands[,c(2,5)])</pre> pct.wetlands\$sum2006<-rowSums(pct.wetlands[,c(3,6)])</pre> pct.wetlands\$sum2011<-rowSums(pct.wetlands[,c(4,7)])</pre> pct.wetlands.avg<-data.frame(hu12_zoneid=pct.wetlands\$hu12_zoneid, pct.wetlands=rowMeans(pct.wetlands[, #depth depth<-lagosne_select(table="lakes_limno", vars=c("lagoslakeid", "maxdepth"))</pre> depth<-depth[depth\$lagoslakeid %in% analysislakes\$lakeinfo\$lagoslakeid,] #use max depth because it's mo #growing season Chlorophyll-a chla<-lagosne_select(table="epi_nutr", vars=c("lagoslakeid","samplemonth","chla"))</pre> chla<-chla[chla\$lagoslakeid,] analysislakes\$lakeinfo\$lagoslakeid,] gs.chla<-chla[chla\$samplemonth %in% 5:9,]

avg.chla<-aggregate(chla ~ lagoslakeid, data=gs.chla, FUN=mean, na.rm=T)</pre>

```
#growing season DOC
doc<-lagosne_select(table="epi_nutr", vars=c("lagoslakeid", "samplemonth", "doc"))</pre>
doc<-doc[doc$lagoslakeid %in% analysislakes$lakeinfo$lagoslakeid,]
gs.doc<-doc[doc$samplemonth %in% 5:9,]
avg.doc<-aggregate(doc ~ lagoslakeid, data=gs.doc, FUN=mean, na.rm=T)
#Chlorophyll-a TSI class
\#TSI(CHL) = 9.81 \ ln(CHL) + 30.6
tsi.chl<-data.frame(lagoslakeid=avg.chla$lagoslakeid, tsi=9.81 * log(avg.chla$chla) + 30.6)
tsi.chl$tsi.cat<-rep("lake",nrow(tsi.chl))</pre>
tsi.chl$tsi.cat[tsi.chl$tsi < 40]<-"oligotrophic"
tsi.chl$tsi.cat[tsi.chl$tsi >=40 & tsi.chl$tsi < 50]<-"mesotrophic"
tsi.chl$tsi.cat[tsi.chl$tsi >=50 & tsi.chl$tsi < 70]<-"eutrophic"
tsi.chl$tsi.cat[tsi.chl$tsi >= 70] <-"hypereutrophic"</pre>
#CV of terrestrial NDVI
cv.accndvi<-NULL
for(lake in 1:length(analysislakes$lakedata)){
  tmp<-analysislakes$lakedata[[lake]] [rownames(analysislakes$lakedata[[lake]])=="accndvi",]</pre>
 cv.accndvi<-c(cv.accndvi, sd(tmp)/mean(tmp))</pre>
 # rm(tmp)
}
cv.accndvi<-data.frame(lagoslakeid=as.numeric(names(analysislakes$lakedata)), cv.accndvi=cv.accndvi)</pre>
#mean precipitation
prcp.normal <-raster("~/Box Sync/NSF EAGER Synchrony/Data/PRISM Data/PRISM_ppt_30yr_normal_800mM2_annual
lakepts<-SpatialPoints(coords=cbind(analysislakes$lakeinfo$nhd_long,analysislakes$lakeinfo$nhd_lat))
lake.prcp<-data.frame(lagoslakeid=analysislakes$lakeinfo$lagoslakeid, prcp.normal=raster::extract(prcp.:
#huc2 and huc4 watershed codes
huc_codes<-read.csv("/Users/jonathanwalter/GitHub/AquaTerrSynch/AnalysisCode/match_huc_codes.csv", colC
#state info
states<-lagosne_select(table="state", vars=c("state_zoneid", "state_name"))</pre>
predictors<-analysislakes$lakeinfo</pre>
predictors<-left_join(predictors, depth, by="lagoslakeid")</pre>
predictors<-left_join(predictors, pct.ag.avg, by="hu12_zoneid")</pre>
## Warning: Column `hu12_zoneid` joining factors with different levels,
## coercing to character vector
predictors<-left_join(predictors, pct.wetlands.avg, by="hu12_zoneid")</pre>
## Warning: Column `hu12_zoneid` joining character vector and factor, coercing
## into character vector
predictors<-left_join(predictors, avg.chla, by="lagoslakeid")</pre>
predictors<-left_join(predictors, tsi.chl, by="lagoslakeid")</pre>
predictors<-left_join(predictors, states, by="state_zoneid")</pre>
## Warning: Column `state_zoneid` joining factors with different levels,
## coercing to character vector
```

```
predictors<-left_join(predictors, cv.accndvi, by="lagoslakeid")</pre>
predictors<-left_join(predictors, avg.doc, by="lagoslakeid")</pre>
predictors<-left_join(predictors, lake.prcp, by="lagoslakeid")</pre>
#predictors<-left_join(predictors, huc_codes, by="hu4_zoneid")</pre>
for(nn in 1:ncol(predictors)){
  if(is.factor(predictors[,nn])){
    predictors[,nn]<-factor(predictors[,nn])</pre>
}
str(predictors)
## 'data.frame': 135 obs. of 25 variables:
## $ lagoslakeid
                      : num 211 249 618 906 969 ..
                      : chr NA NA "Butternut Lake" "Sparkling Lake" ...
## $ gnis_name
## $ nhd_lat
                      : num 44.5 43.7 45.9 46 45.8 ...
## $ nhd_long
                      : num
                             -73.3 -73.4 -89 -89.7 -89.3 ...
## $ lake_area_ha
                    : num
                             113496.4 30 504.7 63.7 210.2 ...
## $ lake perim meters: num
                             1042251 3494 13134 3777 9402 ...
## $ nhd_ftype
                    : int 390 390 390 390 390 390 390 390 390 ...
                      : int 39004 39004 39004 39004 39004 39004 39004 39004 39004 ...
## $ nhd_fcode
                      : Factor w/ 28 levels "HU4_10","HU4_12",...: 17 17 11 8 12 10 10 10 10 10 ...
## $ hu4_zoneid
                      : chr "HU12_17646" "HU12_16835" "HU12_13309" "HU12_13098" ...
## $ hu12 zoneid
## $ state zoneid
                      : chr "State 17" "State 5" "State 9" "State 9" ...
                      : num 28.8 28.2 514.5 494.7 503.3 ...
## $ elevation_m
## $ start
                      : num
                             1989 1990 1993 1989 1994 ...
## $ end
                      : num 2010 2010 2013 2011 2013 ...
## $ tslength
                      : num
                             22 21 21 23 20 21 21 21 21 22 ...
                             97 NA 12.8 20 11.6 ...
## $ maxdepth
                      : num
## $ pct.ag
                             2.5298 0.4199 0.0976 0.3029 6.6886 ...
                      : num
## $ pct.wetlands
                             5.3 7.27 32.8 19.36 48.32 ...
                      : num
## $ chla
                             5.39 7.94 2.44 1.86 2.04 ...
                      : num
                      : num 47.1 50.9 39.4 36.7 37.6 ...
## $ tsi
                      : chr "mesotrophic" "eutrophic" "oligotrophic" "oligotrophic" ...
## $ tsi.cat
## $ state_name
                      : Factor w/ 10 levels "Maine", "Michigan", ...: 9 6 10 10 10 2 2 2 2 2 ...
                      : num 0.0572 0.0542 0.0443 0.0561 0.0417 ...
## $ cv.accndvi
                      : num 5.07 4.41 NA 3.36 1.46 ...
## $ doc
                      : num 895 931 794 796 793 ...
## $ prcp.normal
hist(predictors$tslength)
```

Histogram of predictors\$tslength

hist(predictors\$lake_area_ha)

Histogram of predictors\$lake_area_ha

hist(log10(predictors\$lake_area_ha))

Histogram of log10(predictors\$lake_area_ha)

hist(predictors\$lake_perim_meters)

Histogram of predictors\$lake_perim_meters

hist(log10(predictors\$lake_perim_meters))

Histogram of log10(predictors\$lake_perim_meters)

3 (1 - 1 -

```
##
## 39000 39004 39009 39010 39012 43601
## 1 110 14 3 6 1
```

table(predictors\$hu12_zoneid)

```
## HU12_16125 HU12_1615 HU12_1621 HU12_16347 HU12_16746 HU12_16747
## HU12_16749 HU12_16835 HU12_16882 HU12_17143 HU12_17178 HU12_17235
##
## HU12_17401 HU12_17407 HU12_17433 HU12_17477 HU12_17488 HU12_17504
## HU12_17512 HU12_17513 HU12_17541 HU12_17646 HU12_17651 HU12_17655
##
##
   HU12_1802 HU12_18174 HU12_1819 HU12_1828 HU12_18730
                                                          HU12_1896
  HU12_19726 HU12_1980 HU12_19842 HU12_20279
                                                HU12_2173
##
##
              HU12_2410
                         HU12_2412
                                    HU12_2429
                                                HU12_4337
##
   HU12_2239
##
                HU12_488
                           HU12_509
                                      HU12_542
                                                 HU12_581
##
     HU12_442
                                                            HU12_829
##
            1
```

hist(predictors\$elevation_m)

Histogram of predictors\$elevation_m

hist(predictors\$maxdepth)

Histogram of predictors\$maxdepth

hist(log10(predictors\$maxdepth))

Histogram of log10(predictors\$maxdepth)

hist(predictors\$pct.ag)

Histogram of predictors\$pct.ag

hist(log10(predictors\$pct.ag))

Histogram of log10(predictors\$pct.ag)

hist(predictors\$chla)

Histogram of predictors\$chla

hist(log10(predictors\$chla))

Histogram of log10(predictors\$chla)

hist(predictors\$tsi)

Histogram of predictors\$tsi


```
##
## eutrophic hypereutrophic mesotrophic oligotrophic
## 55 3 48 29
```

Histogram of predictors\$cv.accndvi

hist(predictors\$pct.wetlands)

Histogram of predictors\$pct.wetlands

hist(predictors\$doc)

Histogram of predictors\$doc

hist(predictors\$prcp.normal)

Histogram of predictors\$prcp.normal

 $\begin{tabular}{ll} \# predictors \$log 10_lake_area_ha <-log 10 (predictors \$lake_area_ha) \# not necessary to transform with random \# predictors \$log 10_lake_perim_meters <-log 10 (predictors \$lake_perim_meters) \# predictors \$log 10_max depth <-log 10 (predictors \$max depth) \\ \end{tabular}$

```
# predictors$log10_pct.ag<-log10(predictors$pct.ag+1)</pre>
# predictors$log10 chla<-log10(predictors$chla)</pre>
modvars.accndvi<-left_join(predictors, coh.chlaXaccndvi, by="lagoslakeid")
modvars.accndvi$nhd_ftype<-factor(modvars.accndvi$nhd_ftype)</pre>
modvars.accndvi$tsi.cat<-factor(modvars.accndvi$tsi.cat)</pre>
modvars.accndvi$tslength<-modvars.accndvi$end-modvars.accndvi$start + 1</pre>
modvars.accndvi<-modvars.accndvi[!is.na(modvars.accndvi$maxdepth),]
modvars.accndvi<-modvars.accndvi[!is.na(modvars.accndvi$pct.ag),]</pre>
modvars.accndvi.phist<-modvars.accndvi[modvars.accndvisaccndvip.ts1<0.3,]
modvars.accndvi.philt<-modvars.accndvi[modvars.accndvisaccndvip.ts2<0.3,]
# cforest.st<-partykit::cforest(accndvicoh.ts1 ~ lake_area_ha + lake_perim_meters + maxdepth + pct.ag +
                       data=modvars.accndvi, ntree=20000)
cforest.st<-party::cforest(accndvicoh.ts1 ~ lake_area_ha + lake_perim_meters + maxdepth + pct.ag + chla
                              cv.accndvi + pct.wetlands + doc + prcp.normal,
                    data=modvars.accndvi, controls=cforest_control(ntree=80000))
predcoh.st<-predict(cforest.st, newdata=modvars.accndvi,type="response")</pre>
hist(predcoh.st)
```

Histogram of predcoh.st

hist(modvars.accndvi\$accndvicoh.ts1)

Histogram of modvars.accndvi\$accndvicoh.ts1

modvars.accndvi\$accndvicoh.ts1

plot(predcoh.st, modvars.accndvi\$accndvicoh.ts1, xlab="predicted", ylab="empirical", main="Coherence, statim=c(0,1), ylim=c(0,1))
abline(a=0,b=1)

Coherence, short ts


```
cor.test(predcoh.st,modvars.accndvi$accndvicoh.ts1)
##
##
   Pearson's product-moment correlation
##
## data: predcoh.st and modvars.accndvi$accndvicoh.ts1
## t = 10.891, df = 129, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5907395 0.7720072
## sample estimates:
##
         cor
## 0.6921333
varimp.coh.st<-varimp(cforest.st)</pre>
print(varimp.coh.st[order(varimp.coh.st, decreasing=T)])
##
         prcp.normal lake_perim_meters
                                                   pct.ag
                                                                lake_area_ha
##
        9.278537e-04
                          4.617445e-04
                                             4.515888e-04
                                                                2.004486e-04
##
            maxdepth
                                   chla
                                                                pct.wetlands
                                                       doc
##
        1.496844e-04
                          2.991505e-05
                                            -3.426664e-05
                                                               -6.120999e-05
##
          cv.accndvi
                                tsi.cat
                                               hu4\_zoneid
       -7.853194e-05
                                            -4.489029e-04
##
                          -4.122779e-04
partial(cforest.st, pred.var="prcp.normal", train=modvars.accndvi, type="regression", plot=T)
    0.41 -
    0.40
    0.39
    0.38
    0.37 -
                            800
                                                1000
                                                                    1200
                                          prcp.normal
```

partial(cforest.st, pred.var="lake_perim_meters", train=modvars.accndvi, type="regression", plot=T)

partial(cforest.st, pred.var="lake_area_ha", train=modvars.accndvi, type="regression", plot=T)

partial(cforest.st, pred.var="maxdepth", train=modvars.accndvi, type="regression", plot=T)

partial(cforest.st, pred.var="chla", train=modvars.accndvi, type="regression", plot=T)

partial(cforest.st, pred.var="doc", train=modvars.accndvi, type="regression", plot=T)

partial(cforest.st, pred.var="pct.wetlands", train=modvars.accndvi, type="regression", plot=T)

partial(cforest.st, pred.var="cv.accndvi", train=modvars.accndvi, type="regression", plot=T)

partial(cforest.st, pred.var="tsi.cat", train=modvars.accndvi, type="regression", plot=T)

partial(cforest.st, pred.var="hu4_zoneid", train=modvars.accndvi, type="regression", plot=T)

Coherence, long st

cor.test(predcoh.lt,modvars.accndvi\$accndvicoh.ts2)

```
##
##
    Pearson's product-moment correlation
##
## data: predcoh.lt and modvars.accndvi$accndvicoh.ts2
## t = 11.357, df = 129, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
   0.6094646 0.7835671
## sample estimates:
         cor
##
## 0.7070735
varimp.coh.lt<-varimp(cforest.lt)</pre>
print(varimp.coh.lt[order(varimp.coh.lt, decreasing=T)])
##
        pct.wetlands
                             cv.accndvi
                                               hu4\_zoneid
                                                                          doc
                                                               -4.653009e-05
##
        1.582801e-03
                           7.624162e-04
                                             2.758428e-04
## lake_perim_meters
                                tsi.cat
                                              prcp.normal
                                                                lake_area_ha
##
       -5.198571e-05
                          -5.683584e-05
                                            -6.433487e-05
                                                               -6.734775e-05
##
                chla
                                                  maxdepth
                                 pct.ag
       -1.453204e-04
##
                          -2.628562e-04
                                            -4.630118e-04
partial(cforest.lt, pred.var="pct.wetlands", train=modvars.accndvi, type="regression", plot=T)
```


partial(cforest.lt, pred.var="cv.accndvi", train=modvars.accndvi, type="regression", plot=T)

partial(cforest.lt, pred.var="hu4_zoneid", train=modvars.accndvi, type="regression", plot=T)

partial(cforest.lt, pred.var="doc", train=modvars.accndvi, type="regression", plot=T)

partial(cforest.lt, pred.var="lake_area_ha", train=modvars.accndvi, type="regression", plot=T)

partial(cforest.lt, pred.var="lake_perim_meters", train=modvars.accndvi, type="regression", plot=T)

partial(cforest.lt, pred.var="prcp.normal", train=modvars.accndvi, type="regression", plot=T)

partial(cforest.lt, pred.var="chla", train=modvars.accndvi, type="regression", plot=T)

partial(cforest.lt, pred.var="tsi.cat", train=modvars.accndvi, type="regression", plot=T)

partial(cforest.lt, pred.var="pct.ag", train=modvars.accndvi, type="regression", plot=T)

partial(cforest.lt, pred.var="maxdepth", train=modvars.accndvi, type="regression", plot=T)

cos(phase), short ts


```
cor.test(predphi.st,cos(modvars.accndvi.phist$accndviphi.ts1))
```

```
##
    Pearson's product-moment correlation
##
##
## data: predphi.st and cos(modvars.accndvi.phist$accndviphi.ts1)
## t = 7.4412, df = 41, p-value = 3.955e-09
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
    0.5925567 0.8620811
## sample estimates:
         cor
## 0.7579989
varimp.phi.st<-varimp(cforest.phi.st)</pre>
print(varimp.phi.st[order(varimp.phi.st,decreasing=TRUE)])
##
            maxdepth
                           lake_area_ha lake_perim_meters
                                                                          doc
        0.0666963952
                           0.0205644289
                                                               -0.0000204130
##
                                             0.0094512279
##
        pct.wetlands
                             cv.accndvi
                                              prcp.normal
                                                               -0.0045256547
##
       -0.0002650534
                          -0.0007521639
                                             -0.0032173289
##
              pct.ag
                                tsi.cat
                                               hu4_zoneid
##
       -0.0057197196
                          -0.0087476728
                                             -0.0255910417
```

partial(cforest.phi.st, pred.var="maxdepth", train=modvars.accndvi.phist, type="regression", plot=T)

partial(cforest.phi.st, pred.var="lake_area_ha", train=modvars.accndvi.phist, type="regression", plot=T

partial(cforest.phi.st, pred.var="lake_perim_meters", train=modvars.accndvi.phist, type="regression", p

partial(cforest.phi.st, pred.var="doc", train=modvars.accndvi.phist, type="regression", plot=T)

partial(cforest.phi.st, pred.var="cv.accndvi", train=modvars.accndvi.phist, type="regression", plot=T)

partial(cforest.phi.st, pred.var="pct.wetlands", train=modvars.accndvi.phist, type="regression", plot=T

partial(cforest.phi.st, pred.var="prcp.normal", train=modvars.accndvi.phist, type="regression", plot=T)

partial(cforest.phi.st, pred.var="chla", train=modvars.accndvi.phist, type="regression", plot=T)

partial(cforest.phi.st, pred.var="pct.ag", train=modvars.accndvi.phist, type="regression", plot=T)

partial(cforest.phi.st, pred.var="tsi.cat", train=modvars.accndvi.phist, type="regression", plot=T)

partial(cforest.phi.st, pred.var="hu4_zoneid", train=modvars.accndvi.phist, type="regression", plot=T)

$+ U \underline{A} \underline{U} \underline{A} \underline{U}$

cos(phase), short ts


```
cor.test(predphi.lt,cos(modvars.accndvi.philt$accndviphi.ts2))
```

```
##
   Pearson's product-moment correlation
##
##
## data: predphi.lt and cos(modvars.accndvi.philt$accndviphi.ts2)
## t = 8.0163, df = 39, p-value = 9.002e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
   0.6354414 0.8823734
## sample estimates:
         cor
## 0.7888722
varimp.phi.lt<-varimp(cforest.phi.lt)</pre>
print(varimp.phi.lt[order(varimp.phi.lt, decreasing=TRUE)])
##
          hu4 zoneid
                           lake_area_ha
                                              prcp.normal
                                                                pct.wetlands
        9.612657e-02
                           7.211592e-03
                                             3.891822e-03
                                                                2.798545e-03
##
## lake_perim_meters
                                                                  cv.accndvi
                                                      chla
        2.597939e-03
##
                         -7.088558e-06
                                            -3.057271e-03
                                                               -3.490754e-03
##
            maxdepth
                                 pct.ag
                                                  tsi.cat
##
       -3.980460e-03
                          -6.273336e-03
                                            -8.006286e-03
```

partial(cforest.phi.lt, pred.var="hu4_zoneid", train=modvars.accndvi.philt, type="regression", plot=T)

partial(cforest.phi.lt, pred.var="lake_area_ha", train=modvars.accndvi.philt, type="regression", plot=T

partial(cforest.phi.lt, pred.var="prcp.normal", train=modvars.accndvi.philt, type="regression", plot=T)

partial(cforest.phi.lt, pred.var="pct.wetlands", train=modvars.accndvi.philt, type="regression", plot=T

partial(cforest.phi.lt, pred.var="lake_perim_meters", train=modvars.accndvi.philt, type="regression", p

partial(cforest.phi.lt, pred.var="doc", train=modvars.accndvi.philt, type="regression", plot=T)

partial(cforest.phi.lt, pred.var="chla", train=modvars.accndvi.philt, type="regression", plot=T)

partial(cforest.phi.lt, pred.var="cv.accndvi", train=modvars.accndvi.philt, type="regression", plot=T)

partial(cforest.phi.lt, pred.var="maxdepth", train=modvars.accndvi.philt, type="regression", plot=T)

partial(cforest.phi.lt, pred.var="pct.ag", train=modvars.accndvi.philt, type="regression", plot=T)

partial(cforest.phi.lt, pred.var="tsi.cat", train=modvars.accndvi.philt, type="regression", plot=T)

