Resource sharing

Giovanni De Micheli Integrated Systems Centre EPF Lausanne

Module 1

- Objectives
 - Motivation and problem formulation
 - ▲ Flat and hierarchical graphs
 - **▲** Functional and memory resources
 - **▲** Extension to module selection

Allocation and binding

- Allocation:
 - **▲** Number of resources available
- Binding:
 - **▲** Relation between operations and resources
- Sharing:
 - **▲** Many-to-one relation
- Optimum binding/sharing:
 - **▲** Minimize the resource usage

Binding

- Limiting cases:
 - **▲** Dedicated resources
 - **▼** One resource per operation
 - **▼** No sharing
 - **△**One multi-task resource
 - **▼** ALU
 - **△**One resource per type

Optimum sharing problem

- Scheduled sequencing graphs
 - **▲**Operation concurrency well defined
- Consider operation types independently
 - **▲** Problem decomposition
 - **▲**Perform analysis for each resource type

Compatibly and conflicts

- Operation compatibility:
 - Same type
 - Non concurrent

t1	x=a+b	y=c+d	1	2
t2	s=x+y	t=x-y	3	4
t3	z=a+t		5	

- Compatibility graph:
 - Vertices: operations
 - **▲** Edges: compatibility relation
- Conflict graph:
 - Complement of compatibility graph

Compatibility graph

Conflict graph

(c) Giovanni De Micheli

6

Compatibility and conflicts

- Compatibility graph:
 - Partition the graph into a minimum number of cliques
 - ▲ Find clique cover number _k (G₊)
- Conflict graph:
 - **▲** Color the vertices by a minimum number of colors.
 - ▲ Find the chromatic number x (G_)
- NP-complete problems:
 - **▲** Heuristic algorithms

t1	x=a+b	y=c+d	1	2
t2	s=x+y	t=x-y	3	4
t3	z=a+t		5	

Conflict

)——(4)

Compatibility

Coloring

ALU1: 1,3,5 ALU2: 2,4

Partitioning

Perfect graphs

Comparability graph:

ightharpoonup Graph G (V, E) has an orientation G (V, F) with the transitive property

$$(v_i, v_i) \in F$$
 and $(v_i, v_k) \in F \rightarrow (v_i, v_k) \in F$

Interval graph:

- **▲** Vertices correspond to *intervals*
- Edges correspond to interval intersection
- ▲ Subset of *chordal* graphs
 - **▼** Every loop with more than three edged has a chord

Data-flow graphs (flat sequencing graphs)

- The compatibility/conflict graphs have special properties:
 - Compatibility
 - **▼** Comparability graph
 - **▲** Conflict
 - **▼** Interval graph
- Polynomial time solutions:
 - **▲** Golumbic's algorithm
 - **▲** Left-edge algorithm

Left-edge algorithm

- Input:
 - ▲ Set of intervals with *left* and *right edge*
 - ▲ A set of *colors* (initially one color)
- Rationale:
 - ▲ Sort intervals in a *list* by *left* edge
 - ▲ Assign non overlapping intervals to first color using the list
 - ▲When possible intervals are exhausted, increase color counter and repeat

Left-edge algorithm

```
LEFT_EDGE(I) {
    Sort elements of I in a list L in ascending order of I_i;
    c=0;
   while (some interval has not been colored) do {
            S = \emptyset;
            r=0;
            while ( exists s \in L such that l_s > r) do {
                         s = First element in the list L with I_s > r;
                         S = S \cup \{s\};
                         r = r_s;
                         Delete s from L;
            c = c + 1;
            Label elements of S with color c;
```


Conflict graph

Colored conflict graph

Hierarchical sequencing graphs

- Hierarchical conflict/compatibility graphs:
 - **▲** Easy to compute
 - **▲** Prevent sharing across hierarchy
- Flatten hierarchy:
 - **▲**Bigger graphs
 - **▲** Destroy nice properties

Register binding problem

- Given a schedule:
 - ▲ Lifetime intervals for variables
 - **▲** Lifetime overlaps
- Conflict graph (interval graph):
 - **△** Vertices ↔ variables
 - **▲** Edges ↔ overlaps
 - Interval graph
- Compatibility graph (comparability graph):
 - Complement of conflict graph

Register sharing in data-flow graphs

- Given:
 - **▲** Variable lifetime conflict graph
- Find:
 - **▲** Minimum number of registers storing all the variables
- Key point:
 - ▲ Interval graph
 - **▼** Left-edge algorithm (polynomial-time complexity)

Register sharing general case

- Iterative conflicts:
 - Preserve values across iterations
 - ▲ Circular-arc conflict graph
 - **▼** Coloring is intractable
- Hierarchical graphs:
 - **▲** General conflict graphs
 - **▼** Coloring is intractable
- Heuristic algorithms

Example Variable-lifetimes and circular-arc conflict graph

Multiport-memory binding

- Find minimum number of ports to access the required number of variables
- Variables use the same port:
 - **▲**Port compatibility/conflict
 - **▲** Similar to resource binding
- Variables can use any port:
 - \triangle Decision variable x_{ij} id TRUE when variable i is accessed is step l
 - **Optimum:** max $\sum_{j=1..nvar} X_{j}$ s.t. $1 \le l \le \lambda + 1$

Multiport-memory binding

- Find max number of variables to be stored through a fixed number of ports a
 - ▲ Boolean variables { b_i , $i = 1, 2, ..., n_{var}$ }:
 - **▼** Variable with i=1 will be stored in array

$$\max \sum_{i=1}^{\infty} b_i$$
 such that

$$\sum_{i=1}^{n} b_i x_{ii} \le a$$
 $I = 1, 2, ..., \lambda + 1$

```
Time – step 1: r_3 = r_1 + r_2; r_{12} = r_1

Time – step 2: r_5 = r_3 + r_4; r_7 = r_3 * r_6; r_{13} = r_3

Time – step 3: r_8 = r_3 + r_5; r_9 = r_1 + r_7; r_{11} = r_{10} / r_5

Time – step 4: r_{14} = r_{11} & r_8; r_{15} = r_{12} | r_9

Time – step 5: r_1 = r_{11}; r_2 = r_{15}
```

 $\max \sum_{i=1}^{15} b_i$ such that

$$b_1 + b_2 + b_3 + b_{12} \le a$$

$$b_3 + b_4 + b_5 + b_6 + b_7 + b_{13} \le a$$

$$b_1 + b_3 + b_5 + b_7 + b_8 + b_9 + b_{10} + b_{11} \le a$$

$$b_8 + b_9 + b_{11} + b_{12} + b_{14} + b_{15} \le a$$

$$b_1 + b_2 + b_{14} + b_{15} \le a$$

- ◆ One port *a* = 1:
 - \blacktriangle { b_2 , b_4 , b_8 } non-zero
 - \blacktriangle 3 variables stored: v_2 , v_4 , v_8
- **◆** Two ports *a* = 2:
 - ▲6 variables stored: v_2 , v_4 , v_5 , v_{10} , v_{12} , v_{14}
- Three ports a = 3:
 - \triangle 9 variables stored: V_1 , V_2 , V_4 , V_6 , V_8 , V_{10} , V_{12} , V_{13}

Bus sharing and binding

- Find the minimum number of busses to accommodate all data transfer
- Find the maximum number of data transfers for a fixed number of busses
- Similar to memory binding problem
- ILP formulation or heuristic algorithms

- One bus:
 - **▲3** variables can be transferred
- Two busses:
 - ▲ All variables can be transferred

(c) Giovanni De Micheli

31

Module selection problem

- Extension of resource sharing
 - **▲** Library of resources:
 - **▲** More than one resource per type
- Example:
 - **▲** Ripple-carry adder
 - ▲ Can look-ahead adder
- Resource modeling:
 - ▲ Resource subtypes with
 - **▼** (area, delay) parameters

Module selection solution

- ILP formulation:
 - **▲** Decision variables
 - **▼** Select resource sub-type
 - **▼** Determine (*area, delay*)
- Heuristic algorithm
 - **▲** Determine *minimum latency* with fastest resource subtypes
 - **▲** Recover area by using slower resources on non-critical paths

- Multipliers with:
 - ▲ (Area, delay) = (5,1) and (2,2)
- Latency bound of 5

- Latency bound of 4
 - ▲ Fast multipliers for $\{v_1, v_2, v_3\}$
 - **▲** Slower multiplier can be used elsewhere
 - **▼** Less sharing
- Minimum-latency design uses fast multipliers only
 - ▲ Impossible to use slow multipliers

Module 2

- Objectives
 - **▲** Data path generation
 - **▲** Control synthesis

Data path synthesis

- Applied after resource binding
- Connectivity synthesis:
 - **▲** Connection of resources to *multiplexers busses* and *registers*
 - **▲** Control unit interface
 - ▲I/O ports
- Physical data path synthesis
 - **▲** Specific techniques for regular datapath design
 - **▼** Regularity extraction

Control synthesis

- Synthesis of the control unit
- Logic model:
 - **▲**Synchronous FSM
- Physical implementation:
 - Hard-wired or distributed FSM
 - **▲** Microcode

Summary

- Resource sharing is reducible to vertex coloring or to clique covering:
 - **▲** Simple for flat graphs
 - **▲**Intractable, but still easy in practice, for other graphs
 - **▲**Resource sharing has several extensions:
 - **▼** Module selection
- Data path design and control synthesis are conceptually simple but still important steps
 - **▲** Generated data path is an interconnection of blocks
 - **▲** Control is one or more finite-state machines