2016/17 MPhil ACS / CST Part III Category Theory and Logic (L108) Exercise Sheet 1 – Solution Notes

Question 1

- (a) In Lecture 2 we saw that a morphism in **Set** is an isomorphism iff it is a bijection; but there is no bijection $3 \cong 2$, since any function $f: 3 \to 2$ cannot be injective.
- (b) Any function $f: Q \to P$ that is monotonic satisfies $f \in Q$ in P and hence $f \in Q$. So f is not a bijection. But any isomorphism in **Pre** is in particular an isomorphism in **Set** of the underlying sets (why?) and hence a bijection.
- (c) Recall that the set \mathbb{Q} of rational numbers is countably infinite, that is, in bijection with \mathbb{N} ; so \mathbb{N} and \mathbb{Q} are isomorphic in **Set**. However, as a pre-ordered set the rationals are dense: writing x < y to mean $x \le y \land x \ne y$, we have $(\forall x, y \in \mathbb{Q})$ $x < y \Rightarrow (\exists z \in \mathbb{Q})$ $x < z \land z < y$; whereas (\mathbb{N}, \leq) is not a dense pre-ordered set. It is not hard to see that the density property of pre-ordered sets is preserved under isomorphism. So (\mathbb{N}, \leq) cannot be isomorphic to (\mathbb{Q}, \leq) in **Pre**.

Question 2

(a)

$$\begin{array}{ll} (g\circ f)\circ (f^{-1}\circ g^{-1})=(g\circ (f\circ f^{-1}))\circ g^{-1} & \text{(associativity)}\\ &=(g\circ \mathrm{id}_Y)\circ g^{-1} & \text{(definition of } f^{-1})\\ &=g\circ g^{-1} & \text{(unity)}\\ &=\mathrm{id}_Z & \text{(definition of } g^{-1}) \end{array}$$

and a similar proof shows that $(f^{-1} \circ g^{-1}) \circ (g \circ f) = \mathrm{id}_X$. So $g \circ f$ is an isomorphism with inverse $f^{-1} \circ g^{-1}$.

(b) If f and $g \circ f$ have inverses $f^{-1} \in \mathbf{C}(Y,X)$ and $(g \circ f)^{-1} \in \mathbf{C}(Z,X)$, then consider $h \triangleq f \circ (g \circ f)^{-1} \in \mathbf{C}(Z,Y)$. We have

$$g\circ h=g\circ (f\circ (g\circ f)^{-1})=(g\circ f)\circ (g\circ f)^{-1}=\mathrm{id}_Z$$

and

$$h \circ g = (f \circ (g \circ f)^{-1}) \circ g = f \circ (g \circ f)^{-1} \circ g \circ f \circ f^{-1} = f \circ f^{-1} = id_Y$$

so that g is an isomorphism with inverse h.

(c) No. In the category **Set** take $X = \{0\} = Z$, $Y = \{0,1\}$, $f \in \mathbf{Set}(X,Y)$ to be the function f = 0 and $g \in \mathbf{Set}(Y,Z)$ to be the function with constant value 0. Then neither f nor g are isomorphisms (since they are not bijections), but $g \circ f = \mathrm{id}_X$ is one.

Question 3 The identity morphism $id_n \in \mathbf{Mat}(n, n)$ is the $n \times n$ matrix whose $(i, j)^{\text{th}}$ entry is 1 if i = j and is 0 otherwise.

The morphism $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in \mathbf{Mat}(2,2)$ is a non-identity isomorphism since $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathrm{id}_2$.

Two objects m and n are isomorphic in \mathbf{Mat} only if m=n. For if $M \in \mathbf{Mat}(m,n)$ is an isomorphism, then $M = \begin{pmatrix} \vec{v}_1 \\ \vdots \\ \vec{v}_m \end{pmatrix}$ consists of m rows that are linearly independent vectors

 $\vec{v}_1, \ldots, \vec{v}_m \in \mathbb{R}^n$: for if $\lambda_1 \vec{v}_1 + \cdots + \lambda_m \vec{v}_m = \vec{0} \in \mathbb{R}^n$, that is, $\begin{pmatrix} \lambda_1 & \cdots & \lambda_m \end{pmatrix} M = \vec{0}$, then applying the inverse of M we get $\vec{0} = \vec{0}M^{-1} = \begin{pmatrix} \lambda_1 & \cdots & \lambda_m \end{pmatrix} M M^{-1} = \begin{pmatrix} \lambda_1 & \cdots & \lambda_m \end{pmatrix}$. So since \mathbb{R}^n is a vector space of dimension n, we must have $m \leq n$. By a symmetric argument, $n \leq m$.

Question 4

- (a) If f is an isomorphism, its inverse f^{-1} is in particular a left inverse. If g is a left inverse for f, then for all $h, k \in \mathbf{C}(Z, X)$ we have $f \circ h = f \circ k \Rightarrow h = \mathrm{id}_X \circ h = g \circ f \circ h = g \circ f \circ k = \mathrm{id}_X \circ k = k$, so that f is a monomorphism.
- (b) If $h, k \in \mathbf{C}(W, X)$ satisfy $(g \circ f) \circ h = (g \circ f) \circ k$, then $f \circ h = f \circ k$ since g is a monomorphism; and then h = k since f is a monomorphism.
- (c) If $h, k \in \mathbf{C}(W, X)$ satisfy $f \circ h = f \circ k$, then $(g \circ f) \circ h = (g \circ f) \circ k$ and since $g \circ f$ is a monomorphism, this implies h = k.
- (d) The monomorphisms in **Set** are exactly the injective functions.

Proof. If $f \in \mathbf{Set}(X,Y)$ is injective, then for any $g,h \in \mathbf{Set}(Z,X)$, if $f \circ g = f \circ h$, then for all $z \in Z$ we have f(gz) = f(hz), so gz = hz (since f is injective); therefore g and h are equal functions.

Conversely, if $f \in \mathbf{Set}(X,Y)$ is a monomorphism, then for any $x,x' \in X$ let $\lceil x \rceil, \lceil x \rceil \in \mathbf{Set}(1,X)$ be the functions mapping the unique element of $1 = \{0\}$ to x and x' respectively. If f = f x', then $f \circ \lceil x \rceil = f \circ \lceil x' \rceil \in \mathbf{Set}(1,Y)$. Since f is a monomorphism, this implies $\lceil x \rceil = \lceil x' \rceil$ and hence $x = \lceil x \rceil 0 = \lceil x' \rceil 0 = x'$. So f is injective. \square

Not every monomorphism in **Set** is split. For example, consider the unique morphism in **Set**(\emptyset , 1) (where \emptyset denotes the empty set). This is injective (vacuously), but there is no function $1 \to \emptyset$ in **Set**.

- (e) Consider $2 = \{0,1\}$, $3 = \{0,1,2\}$ and the injective function $f \in \mathbf{Set}(2,3)$ with f = 0 and f = 1. There are two different left inverses for f, one mapping 2 to 0 and the other mapping 2 to 1.
- (f) All morphisms in a pre-ordered set are monomorphisms, because there is at most one morphism between two objects. The only split monomorphisms are the isomorphisms (since if $f: p \to q$ and $g: q \to p$ then f and g are isomorphisms, since $g \circ f$ and

 $f \circ g$ are necessarily equal to the unique morphism, namely the identity, on p and q respectively).

Question 5

- (a) Suppose $f \in \mathbf{Set}(X,Y)$ is surjective. If $g,h \in \mathbf{Set}(Y,Z)$ and $g \circ f = h \circ f$, then for all $y \in Y$, there exists $x \in X$ with y = f x (since f is surjective) and hence $g y = g(f x) = (g \circ f) x = (h \circ f) x = h(f x) = h y$; therefore g and h are equal functions.
 - Conversely, suppose $f \in \mathbf{Set}(X,Y)$ is an epimorphism. For each $y \in Y$, consider the functions $g_y, h_y \in \mathbf{Set}(Y, \{0,1\})$ that map y to 0 and to 1 respectively, and map all other elements of Y to 0. Since $g_y \neq h_y$ and f is an epimorphism, we must have $g_y \circ f \neq h_y \circ f$ and hence $g_y(f x) \neq h_y(f x)$, for some $x \in X$. Since g_y and h_y only take different values at y, it follows that f x = y. Therefore f is surjective.
- (b) Since the opposite category P^{op} of a pre-ordered set P is again a pre-ordered set, we can re-use the answer to question (4f): all the morphisms of P are epimorphisms.
- (c) In the pre-ordered set Q from question 1(b), the unique morphism $0 \to 1$ is both a monomorphism (by 4(f)) and an epimorphism (by 5(b)), but not an isomorphism, because there is no morphism from 1 to 0.

Question 6

- (a) $(1,0,id_1)$ is a terminal object, where $1 = \{0\}$.
- (b) Consider the object $(\mathbb{N}, 0, succ)$ where $succ \in \mathbf{Set}(\mathbb{N}, \mathbb{N})$ is the successor function, succ n = n + 1. This is initial in \mathbf{C} , because for any object (X, x_0, x_s) , the function $f : \mathbb{N} \to X$ recursively defined by

$$f 0 = x_0$$

$$f(n+1) = x_s(f n)$$

gives a morphism $f \in \mathbf{C}((\mathbb{N}, 0, succ), (X, x_0, x_s))$. It is the only such morphism, because if $g \in \mathbf{C}((\mathbb{N}, 0, succ), (X, x_0, x_s))$, then $g = x_0$ and for all $n \in \mathbb{N}$, $g(n+1) = (g \circ succ)$ $n = (x_s \circ g)$ $n = x_s(g n)$; hence by induction on n, we have $(\forall n \in \mathbb{N})$ g = f n.

Question 7

- (a) Each element $x \in X$ of a set $X \in \mathbf{Set}$ determines a point $\lceil x \rceil : 1 \to X$ in \mathbf{Set} , namely the function mapping the unique element of $1 = \{0\}$ to x. The mapping $x \mapsto \lceil x \rceil$ is injective, since $\lceil x \rceil 0 = x$; furthermore for every $f \in \mathbf{Set}(X,Y)$, $f \circ \lceil x \rceil = \lceil f x \rceil$. So if $(\forall p \in \mathbf{Set}(1,X))$ $f \circ p = g \circ p$, then $(\forall x \in X)$ f x = g x, that is, f = g.
- (b) **Set**^{op} is not well-pointed. Note that the empty set \emptyset is a terminal object in **Set**^{op} (because it is initial in **Set**) and that $\mathbf{Set}^{\mathrm{op}}(\emptyset, X) = \mathbf{Set}(X, \emptyset)$ is empty when $X \neq \emptyset$. Then for example $\mathrm{id}_{\mathbb{N}} \neq \mathit{succ} \in \mathbf{Set}^{\mathrm{op}}(\mathbb{N}, \mathbb{N})$, but $(\forall p \in \mathbf{Set}^{\mathrm{op}}(\emptyset, \mathbb{N}) \mathrm{id}_{\mathbb{N}} \circ p = \mathit{succ} \circ p$ is vacuously true.