13. Intervalové odhady parametrů

Jednou ze základních úloh statistiky je stanovení hodnot parametrů rozdělení, ze kterého máme k dispozici náhodný výběr. Nejčastěji hledáme odhady dvou druhů:

-bodový odhad je odhad parametru pomocí statistiky (funkce náhodného výběru), jejíž hodnotu pro datový soubor považujeme za hledanou hodnotu neznámeho parametru rozdělení:

-intervalový odhad je stanovení intervalu, ve kterém se hodnota neznámého parametru vyskytuje s požadovanou pravděpodobností blízkou jedné.

13.1. Intervalový odhad. Jestliže je θ neznámý parametr zkoumaného rozdělení, pak hledáme statistiky T_d a T_h takové, že pro koeficient spolehlivosti $(1 - \alpha)$ platí:

 $P(T_d \leq \theta \leq T_h) = 1 - \alpha$, (**oboustranný odhad**) přičemž obvykle ještě požadujeme $P(\theta < T_d) = P(\theta > T_h) = \frac{\alpha}{2}$.

Intervalovým odhadem (oboustranným) parametru θ je interval (T_d, T_h) .

Někdy hledáme pouze jednostranné odhady. Je pak:

$$\theta \in (T_d, \infty)$$
, kde $P(\theta \ge T_d) = 1 - \alpha$ a $P(\theta < T_d) = \alpha$;

$$\theta \in (-\infty, T_h)$$
, kde $P(\theta \le T_h) = 1 - \alpha$ a $P(\theta > T_h = \alpha)$.

Obvykle volíme $\alpha = 0,05$. Spolehlivost odhadu je pak $(1 - \alpha) = 0,95$. To znamená, že v 95%, případů leží hodnota parametru v uvedeném intervalu spolehlivosti. Vyjímečně volíme $\alpha = 0,01$, nebo 0,1.

Intervalové odhady parametrů některých rozdělení.

13.2. Normální rozdělení.

A) Odhadujeme parametr μ v rozdělení $N(\mu, \sigma^2)$ při známem rozptylu σ^2 . Zde použijeme statistiku \overline{X} (výběrový průměr). Víme, že náhodná veličina

$$U = \frac{\overline{X} - \mu}{\sigma} \sqrt{n}$$
 má normované normální rozdělení $N(0,1)$. Potom je

$$P(|U| \le u_{1-\frac{\alpha}{2}}) = 1 - \alpha \Leftrightarrow -u_{1-\frac{\alpha}{2}} \le \frac{\overline{X} - \mu}{\sigma} \sqrt{n} \le u_{1-\frac{\alpha}{2}},$$

kde symbolem u_p , 0 označujeme <math>p-kvantil normovaného normálního rozdělení N(0,1). Odtud dostaneme, že

$$T_d = \overline{X} - \frac{\sigma}{\sqrt{n}} u_{1-\frac{\alpha}{2}} \le \mu \le T_h = \overline{X} + \frac{\sigma}{\sqrt{n}} u_{1-\frac{\alpha}{2}}.$$

Jednostrannými odhady jsou

$$\mu \le T_h = \overline{X} + \frac{\sigma}{\sqrt{n}} u_{1-\alpha}, \quad \text{resp.} \quad \mu \ge T_d = \overline{X} - \frac{\sigma}{\sqrt{n}} u_{1-\alpha}.$$

B) Odhadujeme funkci σ^2 při známé střední hodnotě μ . Zde použijeme skutečnosti, že má náhodná veličina $U_i = \frac{X_i - \mu}{\sigma}$ normované normální rozdělení N(0,1). Potom má náhodná veličina $\sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2$ rozdělení $\chi^2(n)$. Je pak

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \mu)^{2} = \frac{\sigma^{2}}{n} \sum_{i=1}^{n} \left(\frac{X_{i} - \mu}{\sigma} \right)^{2}.$$

Má tudíž statistika $V=\frac{ns^2}{\sigma^2}$ rozdělení $\chi^2(n)$. Pro oboustranný odhad dostaneme

$$P(v_1 \le V \le v_2) = 1 - \alpha \Rightarrow v_1 = \chi_{\frac{\alpha}{2}}^2(n)$$
 a $v_2 = \chi_{1-\frac{\alpha}{2}}^2(n)$,

kde symbolem $\chi_p^2(n)$ označujeme p- kvantil rozdělení $\chi^2(n)$. Odtud plyne odhad

$$\frac{ns^2}{\chi_{1-\frac{\alpha}{2}}^2(n)} \le \sigma^2 \le \frac{ns^2}{\chi_{\frac{\alpha}{2}}^2(n)}.$$

Obdobně dostaneme jednostranné odhady

$$\sigma^2 \le \frac{ns^2}{\chi_{\alpha}^2(n)}, \quad \text{resp.} \quad \sigma^2 \ge \frac{ns^2}{\chi_{1-\alpha}^2(n)}.$$

C) Odhadujeme střední hodnotu μ za podmínky, že rozptyl uvažovaného rozdělení není znám. Ke stanovení intervalu spolehlivosti použijeme statistiku $T=\frac{\overline{X}-\mu}{S}\sqrt{n}$, o které víme, že má Studentovo t- rozdělení t(n-1) o (n-1) stupních volnosti. Interval spolehlivosti určíme z podmínky

$$P\left(|T| \le t_{1-\frac{\alpha}{2}}(n-1)\right) = 1 - \alpha.$$

Odtud je

$$-t_{1-\frac{\alpha}{2}} \le \frac{\overline{X} - \mu}{S} \sqrt{n} \le t_{1-\frac{\alpha}{2}},$$

tudíž

$$\overline{X} - \frac{S}{\sqrt{n}} t_{1 - \frac{\alpha}{2}} \le \mu \le \overline{X} + \frac{S}{\sqrt{n}} t_{1 - \frac{\alpha}{2}}$$

je oboustraný interval spolehlivosti pro parametr μ .

Obdobně dostaneme jednostrané intervaly ve tvaru:

$$\mu \le \overline{X} + \frac{S}{\sqrt{n}} t_{1-\alpha}, \quad \mu \ge \overline{X} - \frac{S}{\sqrt{n}} t_{1-\alpha},$$

kde symbolem t_{α} označujeme α kvantil uvažovaného rozdělení.

D) Odhadujeme parametr σ^2 při neznámé střední hodnotě μ . Zde použijeme statistiku $Y = \frac{n-1}{\sigma^2}S^2$, která má rozdělení $\chi^2(n-1)$. Vycházíme ze skutečnosti, že pro statistiku S^2 je $E(S^2) = \sigma^2$ a může tedy sloužit jako vhodný odhad parametru σ^2 . Oboustraný interval spolehlivosti dostaneme z podmínky

$$P(v_1 \le Y \le v_2) = 1 - \alpha \Rightarrow v_1 = \chi_{\frac{\alpha}{2}}^2(n-1), \ v_2 = \chi_{1-\frac{\alpha}{2}}^2(n-1)$$

jsou odpovídající kvantily rozdělení χ^2 . Odtud plyne pro oboustraný interval spolehlivosti

$$v_1 \le \frac{(n-1)S^2}{\sigma^2} \le v_2 \Rightarrow \frac{(n-1)}{v_2}S^2 \le \sigma^2 \le \frac{(n-1)}{v_1}S^2.$$

Jednoduchou úpravou získáme jednostrané intervaly spolehlivosti ve tvaru

$$\sigma^2 \le \frac{(n-1)}{v_1} S^2, \quad \frac{(n-1)}{v_2} S^2 \le \sigma^2,$$

kde v_1 a v_2 jsou zde po řadě kvantily $\chi^2_{\alpha}(n-1)$, $v_2 = \chi^2_{1-\alpha}(n-1)$ rozdělení *chí*-kvadrát o (n-1) stupních volnosti.

13.3. Exponenciální rozdělení.

Uvedeme interval spolehlivosti pro rozdělení $Ex(0;\delta)$, kde využijeme skutečnosti, že je střední hodnota $E(\overline{X}) = \delta$. Statistika $T = \frac{2n\overline{X}}{\delta}$ má totiž rozdělení $\chi^2(2n)$. Interval spolehlivosti získáme z identity

$$P(v_1 \le T \le v_2) = 1 - \alpha \Rightarrow v_1 \le \frac{2n\overline{X}}{\delta} \le v_2 \Rightarrow \frac{2n\overline{X}}{v_2} \le \delta \le \frac{2n\overline{X}}{v_1},$$

kde $v_1=\chi^2_{\frac{\alpha}{2}}(2n)$ a $v_2=\chi^2_{1-\frac{\alpha}{2}}(2n)$ kvantil rozdělení *chí*-kvadrát.

Obdobně dostaneme jednostrané intervaly spolehlivosti ve tvaru

$$\frac{2n\overline{X}}{v_2} \le \delta, \qquad \delta \le \frac{2n\overline{X}}{v_1},$$

kde $v_1 = \chi_{\alpha}^2(2n)$ a $v_2 = \chi_{1-\alpha}^2(2n)$ kvantil rozdělení *chí*-kvadrát.

13.5. Alternativní rozdělení.

Odhadujeme hodnotu parametru p, kde využíváme skutečnosti, že pro náhodný výběr z alternativního rozdělení má výběrový úhrn $\tilde{X} = \sum\limits_{i=1}^n X_i$ binomické rozdělení Bi(n,p). Podle centrální limitní věty lze pro dostatečně rozsáhlý výběr předpokládat, že součet má normální rozdělení. Protože je $E(\tilde{X}) = np$ a $D(\tilde{X}) = np(1-p)$, má pro np(1-p) > 9 výběrový úhrn \tilde{X} normální rozdělení N(np, np(1-p)). Má potom náhodná veličina

$$Z = \frac{\tilde{X} - np}{\sqrt{np(1-p)}} = \frac{\overline{X} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0; 1)$$

normované normální rozdělení.

Potom je

$$P(|Z| \le u_{1-\frac{\alpha}{2}}) = 1 - \alpha \Leftrightarrow -u_{1-\frac{\alpha}{2}} \sqrt{\frac{p(1-p)}{n}} \le \overline{X} - p \le u_{1-\frac{\alpha}{2}} \sqrt{\frac{p(1-p)}{n}}.$$

Odtud plyne, že pro parametr p platí

$$\overline{X} - u_{1-\frac{\alpha}{2}} \sqrt{\frac{p(1-p)}{n}} \le p \le \overline{X} + u_{1-\frac{\alpha}{2}} \sqrt{\frac{p(1-p)}{n}}.$$

Intervalový odhad parametru p obsahuje ale hodnotu rozptylu, která závisí na p. Hodnotu rozptylu nahradíme jeho odhadem $\frac{\overline{X}(1-\overline{X})}{n}$. Pro parametr p dostaneme intervalový odhad

$$\overline{X} - u_{1 - \frac{\alpha}{2}} \sqrt{\frac{\overline{X}(1 - \overline{X})}{n}} \le p \le \overline{X} + u_{1 - \frac{\alpha}{2}} \sqrt{\frac{\overline{X}(1 - \overline{X})}{n}}.$$