Начала общей топологии

- 1. Открытые множества в смысле окрестностной топологии это в точности открытые множества.
- 2. Подмножество замкнуто тогда и только тогда, когда содержит все свои точки прикосновения.
- 3. В хаусдорфовом пространстве точка замкнутое множество.
- 4. Если X компактно, Y хаусдорфово, а $f: X \to Y$ непрерывно, то прообраз $f^{-1}(V)$ всякого компактного подмножества $V \subset Y$ компактен в X.
- 5. Приведите пример отображения $f \colon X \times Y \to Z$, непрерывного по каждой переменной, но не непрерывного.
- 6. Существует ли биекция между компактными пространствами, не являющаяся гомеоморфизмом?
- 7. Канторово множество гомеоморфно счётному произведению множества $\{0,1\}$ на себя: $\mathcal{C}\cong\prod_{i=1}^{\infty}\{0,1\}$.
- 8. Индуцированная топология на $A\subset X$ является самой грубой из всех топологий, для которых отображение $A\hookrightarrow X$ непрерывно.
- 9. Фактор-топология на X/\sim является самой тонкой из всех топологий, для которых отображение проекции $X\to X/\sim$ непрерывно.
- 10. Пространство $[0,1]/\{0,1\}$ гомеоморфно S^1 . Сформулируйте и докажите более общее утверждение.
- 11. (Лемма о склейке.) Пусть пространство X представлено конечным объединением замкнутых множеств X_i , $i = \overline{1,n}$, и заданы отображения $f_i \colon X_i \to Y$, причём если $X_{ij} = X_i \cap X_j$ непусто, то $f_i|_{X_{ij}} = f_j|_{X_{ij}}$. Тогда существует единственное непрерывное отображение $f \colon X \to Y$ такое, что $f|_{X_i} = f_i$.