

Stochastic Processes

Communicating Classes, Class Properties, Irreducibility, Aperiodicity, Invariant Distribution

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

28 March 2025

Reachability

Definition (Reachability)

State $y \in \mathcal{X}$ is said to be reachable from state $x \in \mathcal{X}$ if there exists $n \in \mathbb{N} \cup \{0\}$ such that the probability of reaching y in n steps starting from x is strictly positive.

Notation: $x \longrightarrow y$.

Reachability

Definition (Reachability)

State $y \in \mathcal{X}$ is said to be reachable from state $x \in \mathcal{X}$ if there exists $n \in \mathbb{N} \cup \{0\}$ such that the probability of reaching y in n steps starting from x is strictly positive.

Notation: $x \longrightarrow y$.

Remark: For a time-homogeneous Markov chain with state space \mathcal{X} and TPM P,

 $x \longrightarrow y \iff \exists n \in \mathbb{N} \cup \{0\} \text{ such that } P_{x,y}^n > 0.$

Communication

Definition (Communication)

Two states x and y are said to communicate with each other if $x \longrightarrow y$ and $y \longrightarrow x$.

Notation: $x \longleftrightarrow y$.

Communication is an Equivalence Relation

Proposition (Communication is an Equivalence Relation)

 \longleftrightarrow defines an equivalence relation on $\mathcal{X} \times \mathcal{X}$. Formally:

- 1. (Reflexive): $x \longleftrightarrow x$ for all $x \in \mathcal{X}$.
- 2. (Symmetric): For all $x, y \in \mathcal{X}$,

$$x \longleftrightarrow y \iff y \longleftrightarrow x$$
.

3. (Transitive): For all $x, y, z \in \mathcal{X}$,

$$x \longleftrightarrow y$$
, $y \longleftrightarrow z \implies x \longleftrightarrow z$.

• Reflexive:

$$P^0 = I \quad \Longleftrightarrow \quad P^0_{x,x} = 1 > 0 \quad \Longleftrightarrow \quad x \longleftrightarrow x.$$

• Reflexive:

$$P^0 = I \quad \Longleftrightarrow \quad P^0_{x,x} = 1 > 0 \quad \Longleftrightarrow \quad x \longleftrightarrow x.$$

• Symmetric:

$$x \longleftrightarrow y \iff x \longrightarrow y, y \longrightarrow x \iff y \longleftrightarrow x.$$

• Reflexive:

$$P^0 = I \iff P^0_{x,x} = 1 > 0 \iff x \longleftrightarrow x.$$

• Symmetric:

$$x \longleftrightarrow y \iff x \longrightarrow y, \quad y \longrightarrow x \iff y \longleftrightarrow x.$$

$$x \longleftrightarrow y, \ y \longleftrightarrow z \implies \exists m, n \in \mathbb{N} \cup \{0\} \text{ such that } P^m_{x,y} > 0, \ P^n_{y,z} > 0$$

• Reflexive:

$$P^0 = I \iff P^0_{x,x} = 1 > 0 \iff x \longleftrightarrow x.$$

• Symmetric:

$$x \longleftrightarrow y \iff x \longrightarrow y, \quad y \longrightarrow x \iff y \longleftrightarrow x.$$

$$x \longleftrightarrow y, \ y \longleftrightarrow z \implies \exists m, n \in \mathbb{N} \cup \{0\} \text{ such that } P^m_{x,y} > 0, \ P^n_{y,z} > 0$$

• Reflexive:

$$\label{eq:p0} \textit{$P^0 = I$} \quad \Longleftrightarrow \quad \textit{$P^0_{x,x} = 1 > 0$} \quad \Longleftrightarrow \quad \textit{$x \longleftrightarrow x$}.$$

• Symmetric:

$$x \longleftrightarrow y \iff x \longrightarrow y, \quad y \longrightarrow x \iff y \longleftrightarrow x.$$

$$x \longleftrightarrow y, \ y \longleftrightarrow z \implies \exists m, n \in \mathbb{N} \cup \{0\} \text{ such that } P^m_{x,y} > 0, \ P^n_{y,z} > 0$$

$$P^{m+n}_{x,z} = \sum_{w \in \mathcal{X}} P^m_{x,w} P^n_{w,z}$$

• Reflexive:

$$P^0 = I \iff P^0_{x,x} = 1 > 0 \iff x \longleftrightarrow x.$$

• Symmetric:

$$x \longleftrightarrow y \quad \Longleftrightarrow \quad x \longrightarrow y, \quad y \longrightarrow x \quad \Longleftrightarrow \quad y \longleftrightarrow x.$$

$$x \longleftrightarrow y, \ \ y \longleftrightarrow z \implies \exists m, n \in \mathbb{N} \cup \{0\} \text{ such that } P^m_{x,y} > 0, \ \ P^n_{y,z} > 0$$

$$P^{m+n}_{x,z} = \sum_{w \in \mathcal{X}} P^m_{x,w} P^n_{w,z}$$

$$\geq P^m_{x,y} P^n_{y,z} > 0$$

• Reflexive:

$$P^0 = I \iff P^0_{x,x} = 1 > 0 \iff x \longleftrightarrow x.$$

• Symmetric:

$$x \longleftrightarrow y \quad \Longleftrightarrow \quad x \longrightarrow y, \quad y \longrightarrow x \quad \Longleftrightarrow \quad y \longleftrightarrow x.$$

$$x \longleftrightarrow y, \ y \longleftrightarrow z \implies \exists m, n \in \mathbb{N} \cup \{0\} \text{ such that } P^m_{x,y} > 0, \ P^n_{y,z} > 0$$

$$P^{m+n}_{x,z} = \sum_{w \in \mathcal{X}} P^m_{x,w} P^n_{w,z}$$

$$\geq P^m_{x,y} P^n_{y,z} > 0$$

$$\implies x \longleftrightarrow z.$$

Communicating Class

Definition (Communicating Class)

The communication relation \longleftrightarrow creates a partition of the state space \mathcal{X} . Each element of the partition is referred to as a communicating class.

Open and Closed Communicating Classes

Definition (Open and Closed Communicating Classes)

A communicating class C is said to be open if there exists an edge that leaves the class, i.e., there exists $x \in C$ and $y \in C^c$ such that $P_{x,y} > 0$.

A communicating class C is said to be closed if there is no edge leaving the class, i.e.,

$$P_{x,y}=0 \qquad \forall x \in \mathcal{C}, \ y \in \mathcal{C}^c.$$

Irreducibility and Periodicity

Irreducible Markov Chain

Definition (Irreducible Markov Chain)

A time-homogeneous DTMC is said to be irreducible if its entire state space constitutes a single communicating class.

That is, for all $x, y \in \mathcal{X}$, there exists $n \in \mathbb{N} \cup \{0\}$ such that $P_{x,y}^n > 0$.

Remark:

Some textbooks (particularly on RL) refer to irreducibility as unichain property.

Period

- Consider a time-homogeneous DTMC on a discrete state space $\mathcal X$ and TPM P
- For any $x \in \mathcal{X}$, let

$$\mathcal{R}(x) := \left\{ n \in \mathbb{N} : P_{x,x}^n > 0 \right\}$$

denote the set of return times to x

Period

- Consider a time-homogeneous DTMC on a discrete state space $\mathcal X$ and TPM P
- For any $x \in \mathcal{X}$, let

$$\mathcal{R}(x) := \left\{ n \in \mathbb{N} : P_{x,x}^n > 0 \right\}$$

denote the set of return times to x

Definition (Period)

The period of a state $x \in \mathcal{X}$, denoted d(x), is defined as the greatest common divisor of the set of return times, i.e.,

$$d(x) := \gcd\{n \in \mathbb{N} : P_{x,x}^n > 0\}.$$

Period

- Consider a time-homogeneous DTMC on a discrete state space $\mathcal X$ and TPM P
- For any $x \in \mathcal{X}$, let

$$\mathcal{R}(x) := \left\{ n \in \mathbb{N} : P_{x,x}^n > 0 \right\}$$

denote the set of return times to x

Definition (Period)

The period of a state $x \in \mathcal{X}$, denoted d(x), is defined as the greatest common divisor of the set of return times, i.e.,

$$d(x) := \gcd\{n \in \mathbb{N} : P_{x,x}^n > 0\}.$$

A state x is called aperiodic if d(x) = 1. If d(x) > 1, the state x is said to be periodic.

Aperiodic Markov Chain

Definition (Aperiodic Markov Chain)

A time-homogeneous DTMC is said to be aperiodic if

- 1. The Markov chain is irreducible, and
- 2. The period of every state is 1.

Class Properties

Period is a Class Property

Proposition (Period is a Class Property)

If $x \longleftrightarrow y$, then d(x) = d(y).

Thus, all states within a communicating class possess the same period.

Observe that

$$x \longleftrightarrow y \implies \exists m, n \in \mathbb{N} \cup \{0\} \text{ such that } P^m_{x,y} > 0, \ \ P^n_{y,x} > 0.$$

Observe that

$$x \longleftrightarrow y \implies \exists m, n \in \mathbb{N} \cup \{0\} \text{ such that } P^m_{x,y} > 0, \ P^n_{y,x} > 0.$$

• Suppose $r \in \mathcal{R}(x)$, i.e., $P_{x,x}^r > 0$. Then,

Observe that

$$x \longleftrightarrow y \implies \exists m, n \in \mathbb{N} \cup \{0\} \text{ such that } P^m_{x,y} > 0, \ P^n_{y,x} > 0.$$

• Suppose $r \in \mathcal{R}(x)$, i.e., $P_{x,x}^r > 0$. Then,

Observe that

$$x \longleftrightarrow y \implies \exists m, n \in \mathbb{N} \cup \{0\} \text{ such that } P^m_{x,y} > 0, \ P^n_{y,x} > 0.$$

• Suppose $r \in \mathcal{R}(x)$, i.e., $P_{x,x}^r > 0$. Then,

$$P^{n+m}_{\gamma,\gamma} \geq P^n_{\gamma,x} \cdot P^m_{x,\gamma} > 0, \qquad P^{n+r+m}_{\gamma,\gamma} \geq P^n_{\gamma,x} \cdot P^r_{x,x} \cdot P^m_{x,\gamma} > 0,$$

Observe that

$$x \longleftrightarrow y \implies \exists m, n \in \mathbb{N} \cup \{0\} \text{ such that } P^m_{x,y} > 0, \ P^n_{y,x} > 0.$$

• Suppose $r \in \mathcal{R}(x)$, i.e., $P_{x,x}^r > 0$. Then,

$$P_{\gamma,\gamma}^{n+m} \geq P_{\gamma,x}^n \cdot P_{x,\gamma}^m > 0, \qquad P_{\gamma,\gamma}^{n+r+m} \geq P_{\gamma,x}^n \cdot P_{x,x}^r \cdot P_{x,\gamma}^m > 0,$$

thereby implying that

$$n+m \in \mathcal{R}(y), \qquad n+m+r \in \mathcal{R}(y)$$

Observe that

$$x \longleftrightarrow y \implies \exists m, n \in \mathbb{N} \cup \{0\} \text{ such that } P^m_{x,y} > 0, \ P^n_{y,x} > 0.$$

• Suppose $r \in \mathcal{R}(x)$, i.e., $P_{x,x}^r > 0$. Then,

$$P^{n+m}_{\gamma,\gamma} \geq P^n_{\gamma,x} \cdot P^m_{x,\gamma} > 0, \qquad P^{n+r+m}_{\gamma,\gamma} \geq P^n_{\gamma,x} \cdot P^r_{x,x} \cdot P^m_{x,\gamma} > 0,$$

thereby implying that

$$n+m \in \mathcal{R}(\gamma), \qquad n+m+r \in \mathcal{R}(\gamma)$$

 $\implies d(\gamma) \mid n+m, \qquad d(\gamma) \mid n+m+r$

Observe that

$$x \longleftrightarrow y \implies \exists m, n \in \mathbb{N} \cup \{0\} \text{ such that } P^m_{x,y} > 0, \ P^n_{y,x} > 0.$$

• Suppose $r \in \mathcal{R}(x)$, i.e., $P_{x,x}^r > 0$. Then,

$$P^{n+m}_{\gamma,\gamma} \geq P^n_{\gamma,x} \cdot P^m_{x,\gamma} > 0, \qquad P^{n+r+m}_{\gamma,\gamma} \geq P^n_{\gamma,x} \cdot P^r_{x,x} \cdot P^m_{x,\gamma} > 0,$$

thereby implying that

$$\begin{array}{ll} n+m \in \mathcal{R}(\gamma), & n+m+r \in \mathcal{R}(\gamma) \\ \Longrightarrow & d(\gamma) \mid n+m, & d(\gamma) \mid n+m+r \\ \Longrightarrow & d(\gamma) \mid r \end{array}$$

• Thus, if $r \in \mathcal{R}(x)$, then $d(y) \mid r$, implying that d(y) is a common divisor of $\mathcal{R}(x)$

- Thus, if $r \in \mathcal{R}(x)$, then $d(y) \mid r$, implying that d(y) is a common divisor of $\mathcal{R}(x)$
- This implies $d(y) \le d(x)$, as d(x) is the greatest common divisor of $\mathcal{R}(x)$

- Thus, if $r \in \mathcal{R}(x)$, then $d(y) \mid r$, implying that d(y) is a common divisor of $\mathcal{R}(x)$
- This implies $d(y) \le d(x)$, as d(x) is the greatest common divisor of $\mathcal{R}(x)$
- Switching the roles of x and y, we can establish that $d(x) \leq d(y)$

Transience and Recurrence are Class Properties

Proposition (Transience and Recurrence are Class Properties)

Transience and recurrence are class properties, i.e., the states within a communicating class are either all transient or all recurrent.

• Suppose x is recurrent, and $x \longleftrightarrow y$

- Suppose *x* is recurrent, and $x \longleftrightarrow y$
- By definition of communication, there exist $m,n\in\mathbb{N}\cup\{0\}$ such that

$$P_{x,y}^m > 0, \qquad P_{y,x}^n > 0.$$

- Suppose x is recurrent, and $x \longleftrightarrow y$
- By definition of communication, there exist $m,n\in\mathbb{N}\cup\{0\}$ such that

$$P_{x,y}^m>0, \qquad P_{y,x}^n>0.$$

• x recurrent \iff $\mathbb{E}[N_x \mid X_0 = x] = \sum_{s \in \mathbb{N}} P_{x,x}^s = +\infty$

- Suppose x is recurrent, and $x \longleftrightarrow y$
- By definition of communication, there exist $m,n\in\mathbb{N}\cup\{0\}$ such that

$$P_{x,y}^m > 0, \qquad P_{y,x}^n > 0.$$

- x recurrent \iff $\mathbb{E}[N_x \mid X_0 = x] = \sum_{s \in \mathbb{N}} P_{x,x}^s = +\infty$
- Then, it follows that

$$\mathbb{E}[N_{\gamma} \mid X_0 = \gamma] = \sum_{k \in \mathbb{N}} P_{\gamma,\gamma}^k$$

- Suppose x is recurrent, and $x \longleftrightarrow y$
- By definition of communication, there exist $m,n\in\mathbb{N}\cup\{0\}$ such that

$$P_{x,y}^m > 0, \qquad P_{y,x}^n > 0.$$

- x recurrent \iff $\mathbb{E}[N_x \mid X_0 = x] = \sum_{s \in \mathbb{N}} P_{x,x}^s = +\infty$
- Then, it follows that

$$\mathbb{E}[N_{\gamma} \mid X_0 = \gamma] = \sum_{k \in \mathbb{N}} P_{\gamma,\gamma}^k$$

- Suppose *x* is recurrent, and $x \longleftrightarrow y$
- By definition of communication, there exist $m,n\in\mathbb{N}\cup\{0\}$ such that

$$P_{x,y}^m > 0, \qquad P_{y,x}^n > 0.$$

- x recurrent \iff $\mathbb{E}[N_x \mid X_0 = x] = \sum_{s \in \mathbb{N}} P_{x,x}^s = +\infty$
- Then, it follows that

$$\mathbb{E}[N_{y} \mid X_{0} = y] = \sum_{k \in \mathbb{N}} P_{y,y}^{k}$$

$$\geq P_{y,y}^{m+n+1} + P_{y,y}^{m+n+2} + \cdots$$

- Suppose *x* is recurrent, and $x \longleftrightarrow y$
- By definition of communication, there exist $m,n\in\mathbb{N}\cup\{0\}$ such that

$$P_{x,y}^m > 0, \qquad P_{y,x}^n > 0.$$

- x recurrent \iff $\mathbb{E}[N_x \mid X_0 = x] = \sum_{s \in \mathbb{N}} P_{x,x}^s = +\infty$
- Then, it follows that

$$\mathbb{E}[N_{\gamma} \mid X_0 = \gamma] = \sum_{k \in \mathbb{N}} P_{\gamma, \gamma}^k$$

$$\geq P_{\gamma, \gamma}^{m+n+1} + P_{\gamma, \gamma}^{m+n+2} + \cdots$$

$$= \sum_{k \in \mathbb{N}} P_{\gamma, \gamma}^{m+n+s}$$

- Suppose *x* is recurrent, and $x \longleftrightarrow y$
- By definition of communication, there exist $m,n\in\mathbb{N}\cup\{0\}$ such that

$$P_{x,y}^m > 0, \qquad P_{y,x}^n > 0.$$

- x recurrent \iff $\mathbb{E}[N_x \mid X_0 = x] = \sum_{s \in \mathbb{N}} P_{x,x}^s = +\infty$
- Then, it follows that

$$\mathbb{E}[N_{\gamma} \mid X_0 = \gamma] = \sum_{k \in \mathbb{N}} P_{\gamma, \gamma}^k$$

$$\geq P_{\gamma, \gamma}^{m+n+1} + P_{\gamma, \gamma}^{m+n+2} + \cdots$$

$$= \sum_{s \in \mathbb{N}} P_{\gamma, \gamma}^{m+n+s}$$

$$\geq \sum_{s \in \mathbb{N}} P_{\gamma, x}^s P_{x, x}^s P_{x, \gamma}^m$$

- Suppose x is recurrent, and $x \longleftrightarrow y$
- By definition of communication, there exist $m, n \in \mathbb{N} \cup \{0\}$ such that

$$P_{x,y}^m > 0, \qquad P_{y,x}^n > 0.$$

- x recurrent \iff $\mathbb{E}[N_x \mid X_0 = x] = \sum_{s \in \mathbb{N}} P_{x,x}^s = +\infty$
- Then, it follows that

$$\mathbb{E}[N_{y} \mid X_{0} = y] = \sum_{k \in \mathbb{N}} P_{y,y}^{k}$$

$$\geq P_{y,y}^{m+n+1} + P_{y,y}^{m+n+2} + \cdots$$

$$= \sum_{s \in \mathbb{N}} P_{y,y}^{m+n+s}$$

$$\geq \sum_{s \in \mathbb{N}} P_{y,x}^{n} P_{x,x}^{s} P_{x,y}^{m} = P_{y,x}^{n} P_{x,y}^{m} \left(\sum_{s \in \mathbb{N}} P_{x,x}^{s}\right)$$

- Suppose *x* is recurrent, and $x \longleftrightarrow y$
- By definition of communication, there exist $m, n \in \mathbb{N} \cup \{0\}$ such that

$$P_{x,y}^m > 0, \qquad P_{y,x}^n > 0.$$

- x recurrent \iff $\mathbb{E}[N_x \mid X_0 = x] = \sum_{s \in \mathbb{N}} P_{x,x}^s = +\infty$
- Then, it follows that

$$\begin{split} \mathbb{E}[N_{\gamma} \mid X_{0} = \gamma] &= \sum_{k \in \mathbb{N}} P_{\gamma, \gamma}^{k} \\ &\geq P_{\gamma, \gamma}^{m+n+1} + P_{\gamma, \gamma}^{m+n+2} + \cdots \\ &= \sum_{s \in \mathbb{N}} P_{\gamma, \gamma}^{m+n+s} \\ &\geq \sum_{s \in \mathbb{N}} P_{\gamma, x}^{n} P_{x, x}^{s} P_{x, y}^{m} &= P_{\gamma, x}^{n} P_{x, y}^{m} \left(\sum_{s \in \mathbb{N}} P_{x, x}^{s} \right) &= +\infty \end{split}$$

• Suppose x is transient, and $x \longleftrightarrow y$

- Suppose *x* is transient, and $x \longleftrightarrow y$
- By definition of communication, there exist $m, n \in \mathbb{N} \cup \{0\}$ such that

$$P_{x,y}^m > 0, \qquad P_{y,x}^n > 0.$$

- Suppose x is transient, and $x \longleftrightarrow y$
- By definition of communication, there exist $m,n\in\mathbb{N}\cup\{0\}$ such that

$$P_{x,y}^m>0, \qquad P_{y,x}^n>0.$$

• x transient \iff $\mathbb{E}[N_x \mid X_0 = x] = \sum_{s \in \mathbb{N}} P_{x,x}^s < +\infty$

- Suppose *x* is transient, and $x \longleftrightarrow y$
- ullet By definition of communication, there exist $m,n\in\mathbb{N}\cup\{0\}$ such that

$$P_{x,y}^m>0, \qquad P_{y,x}^n>0.$$

- x transient \iff $\mathbb{E}[N_x \mid X_0 = x] = \sum_{s \in \mathbb{N}} P_{x,x}^s < +\infty$
- Then, it follows that

$$\mathbb{E}[N_{\gamma} \mid X_0 = \gamma] = \sum_{k \in \mathbb{N}} P_{\gamma,\gamma}^k$$

- Suppose *x* is transient, and $x \longleftrightarrow y$
- ullet By definition of communication, there exist $m,n\in\mathbb{N}\cup\{0\}$ such that

$$P_{x,y}^m>0, \qquad P_{y,x}^n>0.$$

- x transient \iff $\mathbb{E}[N_x \mid X_0 = x] = \sum_{s \in \mathbb{N}} P_{x,x}^s < +\infty$
- Then, it follows that

$$\mathbb{E}[N_{\gamma} \mid X_0 = \gamma] = \sum_{k \in \mathbb{N}} P_{\gamma,\gamma}^k$$

- Suppose *x* is transient, and $x \longleftrightarrow y$
- ullet By definition of communication, there exist $m,n\in\mathbb{N}\cup\{0\}$ such that

$$P_{x,y}^m > 0, \qquad P_{y,x}^n > 0.$$

- x transient \iff $\mathbb{E}[N_x \mid X_0 = x] = \sum_{s \in \mathbb{N}} P_{x,x}^s < +\infty$
- Then, it follows that

$$\mathbb{E}[N_{\gamma} \mid X_0 = \gamma] = \sum_{k \in \mathbb{N}} P_{\gamma,\gamma}^k$$

$$= \frac{1}{P_{x,\gamma}^m P_{\gamma,x}^n} \sum_{s \in \mathbb{N}} P_{x,\gamma}^m P_{\gamma,\gamma}^s P_{\gamma,x}^n$$

- Suppose *x* is transient, and $x \longleftrightarrow y$
- ullet By definition of communication, there exist $m,n\in\mathbb{N}\cup\{0\}$ such that

$$P_{x,y}^m > 0, \qquad P_{y,x}^n > 0.$$

- x transient \iff $\mathbb{E}[N_x \mid X_0 = x] = \sum_{s \in \mathbb{N}} P_{x,x}^s < +\infty$
- Then, it follows that

$$\mathbb{E}[N_{\gamma} \mid X_{0} = \gamma] = \sum_{k \in \mathbb{N}} P_{\gamma, \gamma}^{k} \\
= \frac{1}{P_{x, \gamma}^{m} P_{\gamma, x}^{n}} \sum_{s \in \mathbb{N}} P_{x, \gamma}^{m} P_{\gamma, \gamma}^{s} P_{\gamma, x}^{n} \\
\leq \frac{1}{P_{x, \gamma}^{m} P_{\gamma, x}^{n}} \sum_{s \in \mathbb{N}} P_{x, x}^{m+n+s}$$

- Suppose *x* is transient, and $x \longleftrightarrow y$
- By definition of communication, there exist $m,n\in\mathbb{N}\cup\{0\}$ such that

$$P_{x,y}^m>0, \qquad P_{y,x}^n>0.$$

- x transient \iff $\mathbb{E}[N_x \mid X_0 = x] = \sum_{s \in \mathbb{N}} P_{x,x}^s < +\infty$
- Then, it follows that

$$\begin{split} \mathbb{E}[N_{\gamma} \mid X_{0} = \gamma] &= \sum_{k \in \mathbb{N}} P_{\gamma, \gamma}^{k} \\ &= \frac{1}{P_{x, \gamma}^{m} P_{\gamma, x}^{n}} \sum_{s \in \mathbb{N}} P_{x, \gamma}^{m} P_{\gamma, y}^{s} P_{\gamma, x}^{n} \\ &\leq \frac{1}{P_{x, \gamma}^{m} P_{\gamma, x}^{n}} \sum_{s \in \mathbb{N}} P_{x, x}^{m+n+s} &\leq \frac{1}{P_{x, \gamma}^{m} P_{\gamma, x}^{n}} \sum_{k \in \mathbb{N}} P_{x, x}^{k} \end{split}$$

- Suppose x is transient, and $x \longleftrightarrow y$
- By definition of communication, there exist $m,n\in\mathbb{N}\cup\{0\}$ such that

$$P_{x,y}^m>0, \qquad P_{y,x}^n>0.$$

- x transient \iff $\mathbb{E}[N_x \mid X_0 = x] = \sum_{s \in \mathbb{N}} P_{x,x}^s < +\infty$
- Then, it follows that

$$\begin{split} \mathbb{E}[N_{\gamma} \mid X_{0} = \gamma] &= \sum_{k \in \mathbb{N}} P_{\gamma, \gamma}^{k} \\ &= \frac{1}{P_{x, \gamma}^{m} P_{\gamma, x}^{n}} \sum_{s \in \mathbb{N}} P_{x, \gamma}^{m} P_{\gamma, \gamma}^{s} P_{\gamma, x}^{n} \\ &\leq \frac{1}{P_{x, \gamma}^{m} P_{\gamma, x}^{n}} \sum_{s \in \mathbb{N}} P_{x, x}^{m+n+s} &\leq \frac{1}{P_{x, \gamma}^{m} P_{\gamma, x}^{n}} \sum_{k \in \mathbb{N}} P_{x, x}^{k} &< +\infty \end{split}$$

Positive/Null Recurrence are Class Properties

Proposition (Positive/Null Recurrence are Class Properties)

Positive recurrence and null recurrence are class properties, i.e., the states within a communicating class are either all positive recurrent or all null recurrent.

A guided proof of this will be demonstrated in the homework.

An Important Result About Open and Closed Communicating Classes

Proposition (Result about Open/Closed Communicating Classes)

- 1. If C is an open communicating class, then every state within C is transient.
- 2. If C is a closed communicating class, and $|C| < +\infty$, then every state within C is positive recurrent.

As a corollary, an irreducible DTMC with a finite state space is positive recurrent.