Riduzione Gerarchica di Modello in 3D con le basi istruite

Matteo Aletti & Andrea Bortolossi

Politecnico di Milano

16 Ottobre 2013

- Fondamenti teorici
 - Hierarchical Model Reduction in 3D
 - Basi istruite

- 2 Implementazione
 - Basis1DAbstract
 - ModalSpace
 - HiModAssembler
- Risultati numerici

- Fondamenti teorici
 - Hierarchical Model Reduction in 3D
 - Basi istruite

- 2 Implementazione
 - Basis1DAbstract
 - ModalSpace
 - HiModAssembler
- 3 Risultati numerici

Motivazione

esistenza di una direzione dominante

Vogliamo risolvere un certo tipo di problemi: quelli che presentano una direzione preferenziale

Modello 3D

Alta precisione ©

Costoso ©

Motivazione

esistenza di una direzione dominante

Vogliamo risolvere un certo tipo di problemi: quelli che presentano una direzione preferenziale

Modello 1D Bassa precisione © Economico ©

Motivazione

esistenza di una direzione dominante

Vogliamo risolvere un certo tipo di problemi: quelli che presentano una direzione preferenziale

Impostazione geometrica

il dominio

- Fibra di supporto rettilinea Ω_{1D} dove avviene la dinamica dominante.
- Suddivisione del dominio in slices γ_x ortogonali alla fibra di supporto.

Idea

mapping e serie di Fourier

• mappare Ω in un dominio di riferimento $\widehat{\Omega}$ in modo che

$$\gamma_{\mathsf{x}} \mapsto \widehat{\gamma}_{\widehat{\mathsf{x}}} = \widehat{\gamma} \ \forall \widehat{\mathsf{x}} \in \widehat{\Omega}_{1D} \Longrightarrow \widehat{\Omega} = \widehat{\Omega}_{1D} \times \widehat{\gamma}$$

 espandere, in direzione trasversale, la soluzione rispetto alla base di Fourier generalizzata

$$\{\hat{\varphi}_k(\hat{y},\hat{z})\}_{k\in\mathbb{N}}$$

Notazione: lavoreremo già sul riferimento, non useremo quindi i cappelli.

Spazi in direzione trasversale

$$V_{\gamma}^{\infty} = \left\{ v(y, z) = \sum_{k=1}^{\infty} v_k \varphi_k(y, z) \right\}$$

$$V_{\gamma}^m = \left\{ v(y, z) = \sum_{k=1}^{m} v_k \varphi_k(y, z) \right\}$$

Usiamo uno spazio V_{1D} di tipo $H^1(\Omega_{1D})$ lungo la **direzione principale**. Possiamo ora definire gli spazi ridotti come **spazi prodotto**

Spazi ridotti

$$V^{\infty}(\Omega) = V_{1D} \otimes V_{\gamma}^{\infty} := \left\{ v(x, y, z) = \sum_{k=1}^{\infty} v_k(x) \varphi_k(y, z), v_k \in V_{1D} \right\}.$$

$$V^{m}(\Omega) = V_{1D} \otimes V_{\gamma}^{m} := \left\{ v(x, y, z) = \sum_{k=1}^{m} v_k(x) \varphi_k(y, z), v_k \in V_{1D} \right\}.$$

 $\grave{\mathsf{E}}$ lo spazio delle **combinazioni lineari a coefficienti in \mathsf{V}_{1D}** delle funzioni di base della fibra trasversale.

II problema

Caso condizioni di Dirichlet

Il problema che vogliamo risolvere ...

$$\begin{cases} -\mu \Delta u + \beta \cdot \nabla u + \sigma u = f \text{ in } \Omega \\ u = 0 \text{ su } \partial \Omega \end{cases}$$

... e la sua formulazione debole

Trovare $u \in H_0^1(\Omega)$ tale che

$$\int_{\Omega} \mu \nabla u \nabla v + \beta \cdot \nabla u v + \sigma u v d\Omega = \int_{\Omega} \mathit{fv} d\Omega \qquad \forall v \in \mathit{H}^{1}_{0}(\Omega).$$

Problemi 1D accoppiati

Problema 3D in forma debole su $V^m(\Omega)$

Problemi 1D accoppiati

Problemi 1D accoppiati

Trovare
$$\{u_k\}_{k=1}^m$$
 con $u_k \in V_{1D} \ \forall k = 1 \dots m$ tale che

$$\sum_{k=1}^{m} \int_{\Omega_{1D}} \left[\underbrace{r_{k,j}^{11} \frac{\partial u_k}{\partial x} \frac{\partial \theta_j}{\partial x}}_{\text{Diffusione}} + \underbrace{r_{k,j}^{10} \frac{\partial u_k}{\partial x} \theta_j}_{\text{Trasporto}} + \underbrace{r_{k,j}^{00} u_k \theta_j}_{\text{Reazione}} dx \right] = \int_{\Omega_{1D}} \underbrace{\theta_j f_k}_{\text{Forzante}} dx. \ \, \forall j = 1 \dots m \quad \theta_j \in V_{1D}$$

Problemi 1D accoppiati

I coefficienti $r_{k,j}^{st}$ accoppiano i problemi 1D: comprimono le informazioni nella fibra trasversale tramite opportuni integrali su γ .

Trovare
$$\{u_k\}_{k=1}^m$$
 con $u_k \in V_{1D} \ \forall k=1 \dots m$ tale che

$$\sum_{k=1}^{m} \int_{\Omega_{1D}} \left[\underbrace{r_{k,j}^{11} \frac{\partial u_k}{\partial x} \frac{\partial \theta_j}{\partial x}}_{\text{Diffusione}} + \underbrace{r_{k,j}^{10} \frac{\partial u_k}{\partial x} \theta_j}_{\text{Trasporto}} + \underbrace{r_{k,j}^{00} u_k \theta_j}_{\text{Reazione}} dx \right] = \int_{\Omega_{1D}} \underbrace{\theta_j f_k}_{\text{Forzante}} dx. \ \forall j = 1 \dots m \quad \theta_j \in V_{1D}$$

Struttura alegebrica

Pattern di sparsità

Per V_{1D} utilizziamo una discretizzazione elementi finiti P1 ottenendo il seguente **pattern di sparsità**.

14 elementi, 3 modi.

Nota: i blocchi si riferiscono alle frequenze, ogni blocco ha il pattern proprio degli elementi finiti

Scelta della base

Basi trigonometriche e polinomi di Legendre

In **letteratura** è stato considerato il problema di **Dirichlet** in **2D**. Le basi scelte sono state

- Funzioni trigonometriche: $sin(\pi kx)$ in (0,1)
- Polinomi di Legendre moltiplicati per un fattore $(1 x^2)$ e ortogonalizzati alla Gram-Schmidt

In questo progetto

abbiamo esteso l'approccio trigonometrico al $caso\ 3D$ con condizioni al bordo omogenee di tipo piú generale

- Fondamenti teorici
 - Hierarchical Model Reduction in 3D
 - Basi istruite

- 2 Implementazione
 - Basis1DAbstract
 - ModalSpace
 - HiModAssembler
- 3 Risultati numerici

Basi istruite

Dominio parallelepipedo

Ipotesi per BC su Γ_{lat}

- omogenee
- di ogni tipo con coefficienti costanti

Idea

costruire un problema agli autovalori sulla slice trasversale e usarne le autofunzioni come base incorporando le condizioni al bordo [Aletti, Perotto, Veneziani in preparazione]

Teorema spettrale per forme bilineari

Sia V uno spazio di tipo H^1 . Sia $a(\cdot, \cdot)$ una **forma bilineare** in V, continua, **simmetrica** e debolmente coerciva $(a(u, u) \ge \alpha ||u||_V^2 + \lambda_0 ||u||_{L^2}^2)$. Allora:

- (a) L'insieme degli autovalori è numerabile ed è una successione $\{\lambda_m\}_{m\geq 1}$ tale che $\lambda_m\to +\infty$;
- (b) se u ,v sono autofunzioni corrispondenti ad autovalori differenti, allora

$$a(u, v) = 0 = (u, v)_{L^2}$$
.

Inoltre, L^2 ha una base ortonormale $\{u_m\}_{m\geq 1}$ di autofunzioni di a;

(c) la successione $\{u_m/\sqrt{\lambda_0+\lambda_m}\}_{m\geq 1}$ è anche una base ortonormale in V, rispetto al prodotto scalare

$$((u, v)) = a(u, v) + \lambda_0(u, v)_{L^2}.$$

Problema agli autovalori ausiliario

Due sottoproblemi agli autovalori

Problema agli autovalori su γ : un caso con condizioni al bordo miste Dirichlet e Robin

$$\begin{cases} -\Delta u = \lambda u & \text{in } \gamma \\ u = 0 & \text{su } 1, 3, 4 \\ \mu \frac{\partial u}{\partial y} + \chi u = 0 & \text{su } 2 \end{cases}$$

Ipotesi:
$$u(y,z) = Y(y)Z(z)$$

$$\begin{cases} -\frac{Y''}{Y} - \frac{Z''}{Z} = \lambda & \longrightarrow -Y'' = K_y Y, \ -Z'' = K_z Z, \ \lambda = K_z + K_y \\ u = 0 \text{ su } 1, 3 & \longrightarrow Y(y)Z(1) = 0, \ Y(y)Z(0) = 0 \ \forall y \in (0, L_y) \\ u = 0 \text{ su } 4 & \longrightarrow Y(0)Z(z) = 0 \ \forall z \in (0, L_z) \\ \mu \frac{\partial u}{\partial y} + \chi u = 0 \text{ su } 2 & \longrightarrow \mu \frac{\partial Y}{\partial y}(1)Z(z) + \chi Y(1)Z(z) = 0 \ \forall z \in (0, L_z) \end{cases}$$

Soluzione (semi-)analitica del problema agli autovalori

Soluzione dei due sottoproblemi e combinazione dei risultati

$$\begin{cases} -Y'' = K_y Y \text{ in } (0, L_y) \\ Y(0) = 0 \\ \mu Y'(L_y) + \chi Y(L_y) = 0 \end{cases} \begin{cases} -Z'' = K_z Z \text{ in } (0, L_z) \\ Z(0) = 0 \\ Z(L_z) = 0 \end{cases}$$

$$\Longrightarrow \{\varphi_{\mathbf{y},p}(\mathbf{y}), K_{\mathbf{y},p}\}_{p=1}^{\infty} \qquad \Longrightarrow \{\varphi_{\mathbf{z},q}(\mathbf{z}), K_{\mathbf{z},q}\}_{q=1}^{\infty}$$

Combinando queste successioni otteniamo le soluzioni del problema 2D agli autovalori su γ

$$\{\varphi_k(y,z),\lambda_k\}=\{\varphi_{y,p}(y)\varphi_{z,q}(z),K_{y,p}+K_{z,q}\}$$

Due questioni da affrontare...

- Come risolvere il singolo problema agli autovalori ?
- Siamo interessati ad ordinare le $\{\varphi_k(y,z)\}$ rispetto al valore di $\{\lambda_k\}$: come è possibile farlo a partire da $\{K_{y,p}\}$ e $\{K_{z,q}\}$?

Risoluzione sottoproblema agli autovalori

Ricerca degli zeri

Forma della soluzione generale

$$\phi_{y,k}(y) = A_k \sin(w_{y,k}y) + B_k \cos(w_{y,k}y), \quad w_{y,k}^2 = K_{y,k}$$

3 incognite
$$A_k, B_k, w_{y,k}$$
 2 condizioni di bordo 1 normalizzazione

- Note: 1. ortogonalità garantita dal teorema spettrale
 - 2. equazione spesso non lineare in $w_{y,k}$

а	b	С	d	Type	λ_k	Α	В
χ	μ	χ	μ	Rob-Rob	$\tan\left(\sqrt{\lambda_k}\right)\left(\chi-\frac{\mu^2\lambda_k}{2}\right)+2\mu\sqrt{\lambda_k}=0$	1	$\frac{\mu\sqrt{\lambda_k}}{\chi}$
1	0	χ	μ	Dir-Rob	$ an\left(\sqrt{\lambda_k}\right) + rac{\mu\sqrt{\lambda_k}}{\chi} = 0$ $\lambda_k = (k\pi)^2$	1	$-\operatorname{tan}\left(\sqrt{\lambda_k}\right)$
1	0	1	0	Dir-Dir	$\lambda_k = (k\pi)^2$	1	0
0	1	0	1	Neu-Neu	$\lambda_k = (k\pi)^2$	0	1

Il problema della gerarchia

Esempio caso condizioni di Dirichlet

Esempio: condizioni di Dirichlet su Γ_{lat} con $L_v = \pi$ e $L_z = 3\pi/2$. Si ha che

$$K_{y,p} = p^2, K_{z,q} = (2/3q)^2.$$

Per il problema dell'ordinamento abbiamo sviluppato l'algoritmo implementato in EigensProvider. Vai direttamente all'algoritmo

- Fondamenti teorici
 - Hierarchical Model Reduction in 3D
 - Basi istruite
- 2 Implementazione
 - Basis1DAbstract
 - ModalSpace
 - HiModAssembler
- 3 Risultati numerici

Schema delle classi

- Fondamenti teorici
 - Hierarchical Model Reduction in 3D
 - Basi istruite

- 2 Implementazione
 - Basis1DAbstract
 - ModalSpace
 - HiModAssembler
- 3 Risultati numerici

Basis1DAbstract

Una classe astratta per risolvere i sottoproblemi agli autovalori

Il problema viene sempre rimappato nell'intervallo (0,1)

- Calcola gli autovalori
 - \rightarrow Next()
- Valuta le funzioni di base
 - ightarrow EvaluateBasis(...)

Ricerca degli zeri con condizioni di Robin

Polimorfismo su Basis1DAbstract...

... e su EducatedBasisFunctorAbstract

Per gestire le diverse classi figlie di Basis1DAbstract abbiamo utilizzato una **factory**.

- Fondamenti teorici
 - Hierarchical Model Reduction in 3D
 - Basi istruite

- 2 Implementazione
 - Basis1DAbstract
 - ModalSpace
 - HiModAssembler
- 3 Risultati numerici

ModalSpace

Una classe che gestisce la costruzione dell'intera base modale

- Gestisce le formule di quadratura sulla slice
- Istanzia i corretti generatori di base
 - \rightarrow AddSliceBC(...)
- Calcola gli autovalori del problema 2D
 - ightarrow EigensProvider(...)
- Valuta le funzioni di base e le loro derivate nei nodi di quadratura
 - ightarrow EvaluateBasis(...)
- Calcola i coefficient $r_{k,j}^{st}$
 - ightarrow Compute_*(...)

AddSliceBC(...)

due metodi uno per ogni direzione

```
void ModalSpace::
AddSliceBCY (const string& left, const string& right, const
    Real& mu, const Real& chi)
   Creation of the correct basis generator
M_genbasisY = Basis1DFactory::istance().createObject(left+
    right);
// Setting of the parameters
M_genbasisY \rightarrow setL(M_Ly);
M_genbasisY \rightarrow setMu(mu);
M_genbasisY -> set Chi (chi);
return:
```

Ordinare correttamente gli autovalori non è facile

◆ torna alla parte teorica

Nodi già salvati in M_eigenvalues, è un vector il cui indice, k, è già associato all k-esima frequenza.

Ordinare correttamente gli autovalori non è facile

Nodi già salvati in M_eigenvalues, è un vector il cui indice, k, è già associato all k-esima frequenza.

Nodi temporaneamente salvati in un set.

Esso, grazie ad un'opportuna **relazione d'ordine**, è in grado di evitare i doppioni, senza rimuovere gli autovalori doppi e mantenendo sempre in prima posizione l'autovalore più piccolo pronto per l'estrazione.

Ordinare correttamente gli autovalori non è facile

Nodi già salvati in M_eigenvalues, è un vector il cui indice, k, è già associato all k-esima frequenza.

Nodi temporaneamente salvati in un set.

Esso, grazie ad un'opportuna **relazione d'ordine**, è in grado di evitare i doppioni, senza rimuovere gli autovalori doppi e mantenendo sempre in prima posizione l'autovalore più piccolo pronto per l'estrazione.

Ordinare correttamente gli autovalori non è facile

Nodi già salvati in M_eigenvalues, è un vector il cui indice, k, è già associato all k-esima frequenza.

Nodi temporaneamente salvati in un set.

Esso, grazie ad un'opportuna **relazione d'ordine**, è in grado di evitare i doppioni, senza rimuovere gli autovalori doppi e mantenendo sempre in prima posizione l'autovalore più piccolo pronto per l'estrazione.

Ordinare correttamente gli autovalori non è facile

Nodi già salvati in M_eigenvalues, è un vector il cui indice, k, è già associato all k-esima frequenza.

Nodi temporaneamente salvati in un set.

Esso, grazie ad un'opportuna **relazione d'ordine**, è in grado di evitare i doppioni, senza rimuovere gli autovalori doppi e mantenendo sempre in prima posizione l'autovalore più piccolo pronto per l'estrazione.

EigensProvider()

Ordinare correttamente gli autovalori non è facile

Nodi già salvati in M_eigenvalues, è un vector il cui indice, k, è già associato all k-esima frequenza.

Nodi temporaneamente salvati in un set.

Esso, grazie ad un'opportuna **relazione d'ordine**, è in grado di evitare i doppioni, senza rimuovere gli autovalori doppi e mantenendo sempre in prima posizione l'autovalore più piccolo pronto per l'estrazione.

EigensProvider()

Ordinare correttamente gli autovalori non è facile

Nodi già salvati in M_eigenvalues, è un vector il cui indice, k, è già associato all k-esima frequenza.

Nodi temporaneamente salvati in un set.

- Esso, grazie ad un'opportuna **relazione d'ordine**, è in grado di evitare i doppioni, senza rimuovere gli autovalori doppi e mantenendo sempre in prima posizione l'autovalore più piccolo pronto per l'estrazione.
- Nodi doppi **esclusi** dal set perché già presenti nell'albero.

EigensProvider()

Ordinare correttamente gli autovalori non è facile

Nodi già salvati in M_eigenvalues, è un vector il cui indice, k, è già associato all k-esima frequenza.

Nodi temporaneamente salvati in un set.

- Esso, grazie ad un'opportuna **relazione d'ordine**, è in grado di evitare i doppioni, senza rimuovere gli autovalori doppi e mantenendo sempre in prima posizione l'autovalore più piccolo pronto per l'estrazione.
- Nodi doppi **esclusi** dal set perché già presenti nell'albero.

EvaluateBasis(...)

Valutare le funzioni di base sui nodi di quadratura

```
void ModalSpace::
EvaluateBasis()
    // Compute all the eigens from the 1D problems
    EigensProvider();
    // Fill the matrices with the evaluation of
    // the monodimensional basis and its derivatives
    M_{genbasisY} \rightarrow EvaluateBasis (M_{phiy}, M_{dphiy},
                                    M_eigenvaluesY, M_quadruleY);
    M_{genbasis}Z \rightarrow EvaluateBasis (M_{phiz}, M_{dphiz},
                                    M_eigenvaluesZ, M_quadruleZ);
```

Compute_*(..)

Sfruttando la separazione di variabili

```
Real ModalSpace::
Compute_PhiPhi (const UInt& j, const UInt& k) const
{ //...
    //... (Date le frequenze estrae i sottoindici p e q)
    for (UInt n = 0; n < M_quadruleY -> nbQuadPt(); ++n)
    coeff_y += M_phiy [p_i][n] * normy *
                     M_phiy [p_k][n] * normy *
                     M_Lv * M_quadruleY \rightarrow weight (n);
    for (UInt n = 0; n < M_quadruleZ \rightarrow nbQuadPt(); <math>++n)
    coeff_z += M_phiz[q_j][n] * normz *
                     M_{phiz}[q_k][n] * normz *
                     M_Lz * M_quadruleZ \rightarrow weight (n);
    return coeff_v * coeff_z;
```

WIP: Abbiamo aggiunto dei metodi per considerare **coefficienti non costanti** che si occupano di calcolare i coefficienti $r_{i,k}^{st}$ senza separare le variabili.

Sono ancora da testare e da ottimizzare.

- Fondamenti teorici
 - Hierarchical Model Reduction in 3D
 - Basi istruite

- 2 Implementazione
 - Basis1DAbstract
 - ModalSpace
 - HiModAssembler
- 3 Risultati numerici

HiModAssembler

La classe che combina gli elementi finiti e la base modale

Membri principali

- M modalbasis
- M_etfespace
- Metodi per l'assemblaggio
 - AddADRProblem(...)
 - interpolate(...)
 - Addrhs(...)
 - AddDirichletBC_In(...)
- Metodi per l'analisi
 - evaluateBase3DGrid(...) //HiMod vector
 - evaluateBase3DGrid(...) //Function type
 - normL2(...)
- Metodi per l'export
 - ExportStructuredVTK(...)
 - ExportFunctionVTK(...)

AddADRProblem(...)

Utilizzo del pacchetto ETA per assemblare i problemi 1D

```
for i {
for k
VectorSmall <5> Coeff:
Coeff[0] = M_modalbasis \rightarrow Compute_PhiPhi(j, k);
 using namespace ExpressionAssembly;
  // . . .
  integrate (
      elements (M_etfespace -> mesh()),
      M_fespace \rightarrow qr(),
      M_etfespace,
      M_etfespace.
      mu*Coeff[0]*dot(grad(phi_i),grad(phi_i))
  >>(systemMatrix—>block(k,j));
return:
```

- Fondamenti teorici
 - Hierarchical Model Reduction in 3D
 - Basi istruite

- 2 Implementazione
 - Basis1DAbstract
 - ModalSpace
 - HiModAssembler
- Risultati numerici

Convergenza DRDR

$$u_{\rm es}(x,y,z) = 1e5(Lx-x)^2 z(L_z-z) exp\left(70\frac{y^2}{xz+1} - 140\frac{y^3}{3L_y(xz+1)} - \chi\frac{(L_y-2y)^2}{4L_y\mu}\right)$$

Convergenza RRRR

$$C_1(x,y) = \frac{70}{1+x} \left(-\frac{2}{3L_y} y^3 + y^2 \right) \quad C_2(x,z) = \frac{70}{1+x} \left(-\frac{2}{3L_z} z^3 + z^2 \right)$$

$$u_{es}(x,y,z) = 10^5 \exp\left(-\frac{\chi}{\mu L_y} (y - Ly/2)^2 + C_1 - \frac{\chi}{\mu L_z} (z - L_z/2)^2 + C_2 \right) (Lx - x)^2$$

Test camini

1	$(-\Delta u + (20, 2, 0)^T \cdot \nabla u + 0.3u = f$	in Ω
J	$u=u_{in}$	su Γ _{in}
	$u = u_{in}$ $\frac{\partial u}{\partial \mathbf{n}} = 0$ $u = 0$	su Γ_{out}
į	u = 0	su Γ_{vaso}

Slice XZ 2D

Slice XZ

...e work in progress

Obbiettivo raggiunto!

HiMod consente un notevole risparmio di gradi di libertà.

...e work in progress

Obbiettivo raggiunto!

HiMod consente un notevole risparmio di gradi di libertà.

Work in progress

Generalizzazione a coefficienti non costanti e mapping.

...e work in progress

Obbiettivo raggiunto!

HiMod consente un notevole risparmio di gradi di libertà.

Work in progress

Generalizzazione a coefficienti non costanti e mapping.

...e work in progress

Obbiettivo raggiunto!

HiMod consente un notevole risparmio di gradi di libertà.

Work in progress

Generalizzazione a coefficienti non costanti e mapping.

Dove intervenire adesso?

• Sviluppo di una struttura dati ad hoc per la matrice di sistema

...e work in progress

Obbiettivo raggiunto!

HiMod consente un notevole risparmio di gradi di libertà.

Work in progress

Generalizzazione a coefficienti non costanti e mapping.

- Sviluppo di una struttura dati ad hoc per la matrice di sistema
- Parallelizzazione del codice

...e work in progress

Obbiettivo raggiunto!

HiMod consente un notevole risparmio di gradi di libertà.

Work in progress

Generalizzazione a coefficienti non costanti e mapping.

- Sviluppo di una struttura dati ad hoc per la matrice di sistema
- Parallelizzazione del codice
- Base modale con polinomi di Legendre

...e work in progress

Obbiettivo raggiunto!

HiMod consente un notevole risparmio di gradi di libertà.

Work in progress

Generalizzazione a coefficienti non costanti e mapping.

- Sviluppo di una struttura dati ad hoc per la matrice di sistema
- Parallelizzazione del codice
- Base modale con polinomi di Legendre
- Estensione a un dominio a sezione circolare

...e work in progress

Obbiettivo raggiunto!

HiMod consente un notevole risparmio di gradi di libertà.

Work in progress

Generalizzazione a coefficienti non costanti e mapping.

- Sviluppo di una struttura dati ad hoc per la matrice di sistema
- Parallelizzazione del codice
- Base modale con polinomi di Legendre
- Estensione a un dominio a sezione circolare
- Geometria generica con la mappa

Fine

Coefficienti dei modelli ridotti

◆ Back

3D - Dirichlet omogeneo, no mappa

$$\begin{split} r_{k,j}^{11} &= \int_{\gamma} \mu \varphi_{j} \varphi_{k} dy dz \\ r_{k,j}^{10} &= \int_{\gamma} \beta_{1} \varphi_{j} \varphi_{k} dy dz \\ r_{k,j}^{00} &= \int_{\gamma} \mu \left(\frac{\partial \varphi_{j}}{\partial y} \frac{\partial \varphi_{k}}{\partial y} + \frac{\partial \varphi_{j}}{\partial y} \frac{\partial \varphi_{k}}{\partial y} \right) dy dz \\ &+ \int_{\gamma} \beta_{2} \varphi_{j} \frac{\partial \varphi_{k}}{\partial y} dy dz + \int_{\gamma} \beta_{3} \varphi_{j} \frac{\partial \varphi_{k}}{\partial z} dy dz + \int_{\gamma} \sigma \varphi_{j} \varphi_{k} dy dz \end{split}$$

+ ModalSpace

#M quadruleY : const QuadratureRule* #M quadruleZ : const QuadratureRule* #M Lv : Real #M Lz : Real #M eigenvalues : EigenContainer #M_genbasisY: basis1d_ptrType #M genbasisZ: basis1d_ptrType #M mtot : UInt #M subMmax: UInt #M_phiy: MBMatrix_type #M_phiz: MBMatrix_type #M dphiv: MBMatrix type #M_dphiz: MBMatrix_type +virtual Compute_PhiPhi(): Real +virtual Compute_DyPhiPhi(): Real +virtual Compute DzPhiPhi(): Real +virtual Compute DyPhiDyPhi(): Real +virtual Copmute_DzPhiDzPhi(): Real +virtual Compute Phi(): Real +virtual Coeff fk(): Real +virtual FourierCoefficients(): vector<Real> #virtual EigensProvider(): void +AddSliceBCY() + AddSliceBCZ() +EvaluateBasis()

+ HiModAssembler

- -M_modalbasis : modalbasis_ptrType
- -M_fespace : fespace_ptrType
- -M_etfespace : etfespace_ptrType
- +AddADRProblem(): void
- +interpolate(): void
- +Addrhs(): void
- +Addrhs_functor(): void
- +AddDirichletBC_In(): void
- +funCoeff_3D(): vector_type
- +normL2(): Real
- +evaluateHiModFunc(): Real
- +ExporterStructuredVTK(): void
- +ExporterGeneralVTK(): void
- $+E\times porterFunctionVTK(): void$

