Homework 11

- 1. Let $\omega = \{0 \le 1 \le 2 \le 3 \le \ldots\}$, interpreted as (discrete) time. Consider the category \mathbf{Sets}^{ω} of "sets through time". Prove that this is a topos, and compute the subobject classifier explicitly.
- 2. For any set I with powerset P(I), consider the functor $i: P(I) \to \mathbf{Sets}/I$ that takes a subset $U \subseteq I$ to its inclusion function $i(U): U \to I$. Show that this is indeed a functor and that is has a left adjoint

$$\sigma: \mathbf{Sets}/I \longrightarrow P(I).$$

Does it have a right adjoint (in general)? Determine the units and counits.

- 3. Given a function $f: A \to B$ between sets, show that the direct image operation $\operatorname{im}(f): P(A) \to P(B)$ is left adjoint to the inverse image $f^{-1}: P(B) \to P(A)$ (as functors between poset categories).
- 4. Given an object C in a category \mathbf{C} with finite limits, show that the evident forgetful functor from the slice category \mathbf{C}/C ,

$$U: \mathbf{C}/C \to \mathbf{C}$$

has a right adjoint. When does it have a left adjoint?

- 5. Any category \mathbf{C} determines a preorder $P(\mathbf{C})$ by setting: $A \leq B$ if and only if there is an arrow $A \to B$. Show that the functor P is (left? right?) adjoint to the evident inclusion functor of preorders into categories. Determine the units and counits.
- 6. Show that the contravariant power set functor $\mathcal{P}:\mathbf{Sets}^{\mathrm{op}}\to\mathbf{Sets}$ is self-adjoint.
- 7. * Show that there is a string of four adjoints between **Cat** and **Sets**,

$$V \dashv F \dashv U \dashv R$$

where $U: \mathbf{Cat} \to \mathbf{Sets}$ is the forgetful functor to the set of objects $U(\mathbf{C}) = \mathbf{C}_0$. (Hint: for V, consider the "connected components" of a category.)