CHEM STRY MARKING SCHEME OUTSI DE DELHI -2013 SET -56/2

1	CH ₃ NH ₂	1
2	CCI ₂ F ₂ / Freon	1
3	Che mi sorpti on	1
4	Due to H- bonding	1
5	2- Bromo-4-chloropentane.	1
6.	El ectrol ytic Refining	
7.	Pepti de li nkage	1
8.	Dacron/ Clyptal/ Nylon-66/ Bakelite/ Melamine for mal dehyde resin/ Urea for mal dehyde resin	1
	(any one)	
9.	(i) Due to creation of F-center / Anionic vacancies filled by free electrons	
	(ii) PQ	1+1
10	(a) Rei ner-Tie mann reaction	
	OH CHCl ₃ + aq NaOH Intermediate CHCl ₃ + aq NaOH NaOH NaOH CHO NaOH Salicylaldehyde (b) Wlli a ms on synt hesi s	
	$R-X + R'-O Na \longrightarrow R-O-R' + Na X$	1+1
11	Ther mopl astics. These polymers are easily softened on heating moulded and then hardened on	1/2+1/2
	cooling	
	Examples: polythene, polypropylene, polystyrene, polyvinyl chloride, teflon, polyvinyl acetate,	

	et c. (any one)	
	Ther mosetting polymers These polymers on heating become infusible and for man insoluble	1/2+1/2
	hard mass thus, cannot be remoulded.	
	Examples: Bakelite, urea-formal delyde resins, etc.	
	OR	
11	The polymers which can be degraded by the micro organism	1
	Example: PHBV (or any other correct one example)	1
12		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	H - C - C + H $H - H H$ $H H$ $H H$ $H H$ $H H$ H H H H H H H H H	1
13	The interhal ogen compounds can be prepared by the direct combination or by the action of	1
	hal ogen on lower interhal ogen compounds.	
	General composition $XX \square n$ (where $n = 1, 3, 5, 7$ & $X \square$ is more electronegative)	1

14	(i)	
	F F F	1+1
	(ii)	111
	O O O O O O O O O	
15	For f. c. c unit cell $r = \underline{a}$	1/2
	$2\sqrt{2}$	
	$a = 2 r x \sqrt{2}$	
	$a = 21 \text{ X} \sqrt{2}$ = 2 x 125 pm x 1.414	1
	=353.5 pm	1/2
16	$\triangle \mathbf{G} = -\mathbf{n} \ \mathbf{FE}^{\circ} \ \mathbf{cell}$	1/
16	$= -2 \times 96500 \text{ C mol}^{-1} \times 1.1 \text{ V}$	1/ ₂ 1/ ₂
	$= -212300 \text{ J} \text{ mol}^{-1} \text{ or } -212.3 \text{ k J} \text{ mol}^{-1}$	1
17	(a) or der = $2 + \frac{1}{2} = 5/2$	1/2
1/	(a) order = $2 + \frac{1}{2} = 3/2$ (b) $t_{\frac{1}{2}} = 0.693$	1/2
	k	
	$= \frac{0.693 \text{ s}}{5.5 \times 10^{14}}$	
	5.5 x 10 ··	1
	$=1.26 \times 10^{13} \text{ s}$	1
18	(i) Zone refining: the impurities are more soluble in the melt than in the solid state of the metal.	
	(ii) Vapour phase refining: In this method, the metal is converted into its volatile compound	
		<u> </u>

	and is then decomposed to give pure metal.	1+1
19	(i) Associated Colloids: There are some substances which at low concentrations behave as	
	normal strong electrolytes, but at higher concentrations exhibit colloidal behaviour due to the	
	for mation of aggregates. The aggregated particles thus for med are called micelles . These are also	
	kno wn as associated colloi ds .	1/2+1/2
	Example: Soap solution	
	(ii) Lyophilic Sol: In which there is affinity between disperse phase & disperssion medium (or	
	sol vent loving)	1/2+1/2
	Example: Starch sol, Gum sol, Celatin sol (any one)	
	(iii) Adsorption: The accumulation of molecular species at the surface rather than in the bulk of a	
	solid or liquidister med adsorption.	
	Example: Adsorption of poisonous gases on charcoal	1/2+1/2
20	G ven cell not ation is incorrect	
	Correct cell for mula is	
	$Cu^{2+} (10^{-1} \text{ M} Cu_{(s)} Ag^{+} (10^{-3} \text{ M} Ag_{(s)})$	
	G ven E° cell = $0.46 \mathrm{V}$	
	$E_{\text{cell}} = E_{\text{cell}}^{0} - \frac{0.0591}{n} \log \frac{[\text{Cu}^{2+}]}{[\text{Ag}^{+}]^{2}}$	1
	$E_{\text{cell}} = 0.46 - \frac{0.0591}{2} \log \frac{[0.1]}{[10^{-3}]^2}$	1
	$E_{\text{cell}} = 0.46 - 0.02955 \log \frac{[0.1]}{[10^{-6}]}$	
	$E_{\text{cell}} = 0.46 - 0.02955 \log 10^5$	
	$E_{\text{cell}} = 0.46 - 0.02955 \times 5$	

	$E_{ell} = 0.46 - 0.146$	1
	$E_{cell} = 0.314 V$	
	α	
	$E_{cell} = E_{cell}^{9} - \frac{0.059}{2} \log \left[\frac{Ag^{+}}{2} \right]^{2}$	1
	$= 0.46 \mathrm{V} - \frac{0.059}{2} \log \left[\frac{10^3}{0.1} \right]^2$	
	$= 0.46 \text{V} - \frac{0.059}{2} \log \left[\frac{10^3}{0.1} \right]^2$	1
	$= 0.46 V + 0.0295 \times 5$	1
	=0.6075 V	1
21	(i) Mas. Anuradha has shown generosity/caring/helping/kindness attitude towards poor	
	(ii) Vt. B ₁₂ .	
	(iii) Vitamin B/C	1x3=3
22	(i) $C_6 H_3 N_2 C_1 \xrightarrow{H_3 PO_2 + H_2 O} C_6 H_6 + H_3 PO_3 + HC_1 + N_2$.	
	(ii) $\xrightarrow{NH_2} \xrightarrow{Br_2(aq)} \xrightarrow{Br} \xrightarrow{Br} \xrightarrow{Br}$	
	(iii) $CH_3-C-NH_2 \xrightarrow{Br_2 + NaOH} CH_3NH_2 + Na_2CO_3 + NaBr + H_2O$	1x3=3
23	G ven if rate at 293 Kis R thus at 313 Krate becomes 4R	
	$\operatorname{Log} \underbrace{\frac{k_2}{k_1}}_{k_1} = \frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 \times T_2} \right]$	1

	$Log \frac{4R}{R} = \frac{E_{a}}{2.303 \times 8.314} \left[\frac{313 - 293}{293 \times 313} \right]$	1
	$Log 4 = \frac{E_a}{19 \cdot 1471} \left[\frac{20}{91709} \right]$ $0.6021 = \frac{E_a}{19 \cdot 1471} \left[\frac{20}{91709} \right]$	
	$\frac{0.6021 \times 19.1471 \times 91709}{20} = \text{Ea}$	
	$Ea = 52863 \cdot 2177J \text{ or } 52.863 \text{ KJ}$	1
24	(i) tetrachl ori doni ckel at e(II) i on	
	(ii) sp ³	
	(iii) Tetrahedral.	
	OR	1x3=3
24	The energy involved in splitting the degenerate d-orbitals into two sets t_{2g} and e_g is called crystal field splitting energy. (i) $t_{2g}^4 e_g^0$ (ii) $t_{2g}^3 e_g^1$	1 1+1
25	(i) I, is better leaving group / C-I bond is weeker then C-Br bond.	
	(ii) Because it is a racemic mixture / equal & opposite rotation of two enantiomers cancel each	
	ot her. (iii) Due to resonance in hal obenzene $/ sp^2$ hybri di zati on of C - at om in hal obenzene $\& sp^3$	1x3=3
	hybridization of C-atomin CH ₃ X	
26	(i) Ant aci d / Ant i hi st a mi ne	
	(ii) Synt hetic detergents	
	(iii) 0·2 % Phenol	1x3=3

		I
27	(i) Being small in size p_{π} - p_{π} bonding/multiple bond is possible in oxygen & not in sulphur.	
	(ii) It decomposes to give nascent oxygen.	
	(iii) As B - Hoond is weakest.	1x3=3
28		
	(a)	
	(i) CH_3 – C – CH_3 $\xrightarrow{\text{LiAlH}_4 \text{ or}}$ CH_3 CHCH ₃	
	$(ii) CH_3-C-H+HCN \longrightarrow CH_3-C-OH \xrightarrow{H_2O/H^+} CH_3-C-OH \xrightarrow{COOH}$	
	(iii) $\stackrel{\text{CH}_3}{\longrightarrow} \stackrel{\text{COOH}}{\longrightarrow}$	1x3=3
	(b) (i) Add I_2 & Na OH in both the solutions pentan-2-one gives yellow colured precipitate, but	
	pent an- 3- one does not.	
	(ii) Add I_2 & Na OH in both the solutions ethanal gives yellow columed precipitate, but propanal	1+1
	does not. (or any other correct suitable test)	
28	OR	
	(a)	
	(i) CH_3 – C – CH_3 $\xrightarrow{Zn-Hg}$ CH_3 – CH_2 – CH_3+H_2O	
	(ii) CH_3 – C – $Cl + H_2$ Pd – $BaSO_4$ CH_3 – C – H + HCl	
	(iii) $\xrightarrow{\text{COOH}} \xrightarrow{\text{COOH}} \xrightarrow{\text{Br}_2 / \text{FeBr}_3} \xrightarrow{\text{Br}} + \text{HBr}$	1x3=3

	(b) (i) F- CH ₂ - COOH	1+1
	(ii) СӉ СООН	
29	(a) Partial vapour pressure of a liquid component is directly propertional to its mole fraction in its	1
	solution.	
	The partial pressure of the volatile component or gas is directly proportional to its mole fraction in	
	solution. Only the proportionality constant K _H differs from P ^o _A . Thus, Raoult's law becomes a	1
	special case of Henry's lawin which K _H becomes equal to P' _A .	
	(b) Given $W_B = 1.00g$, $W_A = 50g$, $W_A = 5 \cdot 12 \text{K kg/ mol}^{-1}$; $\triangle T_f = 0.40 \text{K}$	
	$\Delta T_{\rm f} = K_{\rm F} \frac{W_{\rm B} X 1000}{M_{\rm R} X W_{\rm A} (\text{in grams})}$	1
	$M_{_{\mathrm{B}}} X W_{_{\mathrm{A}}}$ (in grams)	
	$M_B = K_f \frac{W_B X 1000}{\Delta T_f X W_A}$	1
	$M_{B} = \frac{5.12 \times 1 \times 1000}{0.40 \times 50}$	
	$=256g \text{ mol}^{-1}$	1
	O _r	
29	(a) (i) Ideal Solution: Those solutions which follows Raoult's law under all conditions of	
	temperature and pressure.	
	(ii) Azeotrope: Aliquid mixture which distills at constant temperature without under going any	
	change in composition is called Azeotrope.	
	(iii) Os motic Pressure: The minimum excess pressure that has to be applied on the solution side	
	to prevent the entry of the solvent into the solution through the semi - per meable membrane is	1x3=3
	called os motic pressure.	
	(b) Given Molecular mass of Giucose = 180, % by vt = 10	

	1000 x wt % w x 1000	1/2+1/2
	$m = \frac{100 - \text{wt \%}}{(100 - \text{wt \%}) \times \text{mol. wt. of solute}} \text{or} m = \frac{1}{M \times W}$,2,,2
	1000 x 10	
	$m = \frac{1000 \times 10}{(100 - 10) \times 180}$	
	$m = \frac{10000}{90 \times 180}$	
	76 X 100	1
	$m = 0.617 \mathrm{m}$	
30	(a) (i) Mh^{3+} (3d ⁴) good electron accept or as resulting species is more stable (3d ⁵)	
	(ii) The $E^0(\hat{M}^+/M)$ values are not regular which can be explained from the irregular variation of	
	i oni sati on ent hal pi es ($\Delta i H_1 + \Delta i H_2$), subli mati on ent hal pi es and hydrati on ent hal pi es.	
	(iii) Due to multiple bond for mation ability of oxygen with Mhin Mh ₂ O ₇ .	1x3=3
	(b) (i) $2 \text{Gr } Q^{2-} + 2 \text{H}^{\dagger} - \longrightarrow \text{Gr}_2 Q^{2-} + \text{H}_2 Q$	
	(ii) $2KMh Q_1 \xrightarrow{Heat} K_2 Mh Q_4 + Mh Q_2 + Q_2$.	1+1
	OR	
		1x3=3
30	(a) Because of incomplete filling of d-orbitals	123-3

lant hanoi d. Misch met al	
Misch met al	
Sh. S.K.Munjal	Dr (Mrs.) Sangeeta
Bhatia	
Prof. R.D.Shukla	Mr. K.M. Abdul Raheem
Dr. K.N.Uppadhya	Mr.D. A Mishra
Mr. Rakesh Dhawan	Mr.Deshbir Singh
Ms. Neeru Sofat	Mr. Akhileshwar Mishra
Mr. Virendra Singh	