Advanced Linear Algebra Week 7

Jamie Gabe

Recall from group theory: Let (G, +) be an abelian group, and $H \subseteq G$ be a subgroup (automatically normal in the abelian case).

For each $x \in G$ define the coset

$$x + H = \{x + h \mid h \in H\} \subseteq G.$$

The quotient $G/H = \{x + H \mid x \in G\}$ is the set of all such cosets, and it is an abelian group with

$$(x + H) + (y + H) = (x + y) + H.$$

Recall that an \mathcal{F} -vector space V is an abelian group when equipped with +. And any subspace $U\subseteq V$ is a subgroup. Form the quotient

$$V/U = \{x + U \mid x \in V\}$$

which is an \mathcal{F} -vector space with scalar multiplication

$$\alpha(\mathbf{x}+\mathbf{U}):=\alpha\mathbf{x}+\mathbf{U}.$$

Lemma (2.12)

Let V be an \mathcal{F} -vector space, and $U \subseteq V$ be a subspace. Then V/U (as before) is an \mathcal{F} -vector space. Moreover, the map $\pi \colon V \to V/U$ given by

$$\pi(x) = x + U, \quad for \ x \in V$$

is a surjective linear map with null-space $N(\pi) = U$.

Proof.

Omitted (this is straightforward).

Definition

V/U is called the quotient space of V by U, and the linear surjection $\pi \colon V \to V/U$ is called the (canonical) projection.

In what follows, let $U \subseteq V$ be a subspace.

Theorem (2.14)

Let $C \subseteq U$ be a basis, and let $B \subseteq V$ be a basis such that $C \subset B$.

Then the projection π maps $B \setminus C$ bijectively onto a basis for V/U.

In particular, if dim $V < \infty$, then dim $(V/U) = \dim V - \dim U$.

Proof.

Let $W := \operatorname{Span}(B \setminus C)$. We will show that $\pi|_W \colon W \to V/U$ is a linear isomorphism.

Note that $V/U = \pi(V) = \pi(\operatorname{Span}B) = \operatorname{Span}\pi(B)$. Since $C \subseteq U = N(\pi)$, we have $\pi(C) = \{0\}$. Then $\pi(W) = \operatorname{Span}\pi(B \setminus C) = V/U$. So $\pi|_W$ is surjective.

Theorem (2.14)

Let $C \subseteq U$ be a basis, and let $B \subseteq V$ be a basis such that $C \subseteq B$. Then the projection π maps $B \setminus C$ bijectively onto a basis for V/U. In particular, if dim $V < \infty$, then $\dim(V/U) = \dim V - \dim U$.

Proof.

 $W=\operatorname{Span}(B\setminus C)$ and $\pi|_W\colon W\to V/U$ is surjective. As B is linearly independent, so are C and $B\setminus C$. Hence C and $B\setminus C$ are bases for $U=\operatorname{Span}C$ and $W=\operatorname{Span}(B\setminus C)$ respectively. Any $x\in U\cap W$ can be written as a unique linear combination from B, C and $B\setminus C$. This implies that x=0 is the only option, so $U\cap W=\{0\}$. Hence $N(\pi|_W)=N(\pi)\cap W=U\cap W=\{0\}$, so $\pi|_W$ is injective and thus bijective.

So $\pi|_W \colon W \to V/U$ is a linear isomorphism. The rest follows easily.

Theorem (2.14)

Let $C \subseteq U$ be a basis, and let $B \subseteq V$ be a basis such that $C \subseteq B$. Then the projection π maps $B \setminus C$ bijectively onto a basis for V/U.

Consider the subspace
$$U=\left\{\left(egin{array}{c}x\\-x\end{array}
ight)\mid x\in\mathcal{F}
ight\}\subseteq\mathcal{F}^2$$
 .

Then
$$C = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$$
 is a basis for U , and

$$B = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$
 is a basis for \mathcal{F}^2 .

Question: What can we conclude from Theorem 2.14?

(a)
$$\left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} + U \right\}$$
 is a basis for \mathcal{F}^2/U ;

(b)
$$\left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} + U \right\}$$
 is a basis for \mathcal{F}^2/U ;

(c) Theorem 2.14 isn't applicable.

Theorem (2.14)

Let $C \subseteq U$ be a basis, and let $B \subseteq V$ be a basis such that $C \subseteq B$. Then the projection π maps $B \setminus C$ bijectively onto a basis for V/U.

Consider the subspace
$$U = \left\{ \left(\begin{array}{c} x \\ -x \end{array} \right) \mid x \in \mathcal{F} \right\} \subseteq \mathcal{F}^2$$
.

Then
$$C = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$$
 is a basis for U , and

$$B = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$
 is a basis for \mathcal{F}^2 .

By Theorem 2.14, $B \setminus C = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ maps bijectively onto a

basis for
$$\mathcal{F}^2/U$$
, and thus $\pi(B\setminus C)=\{\left(\begin{array}{c}0\\1\end{array}\right)+U\}$ is a basis

for \mathcal{F}^2/U

Now, U, V are \mathcal{F} -vector spaces and $X \subseteq U, Y \subseteq V$ are subspaces.

Let $A \in \operatorname{Hom}(U, V)$ such that $A(X) \subseteq Y$. If $u_1, u_2 \in U$ are such that $u_1 + X = u_2 + X$ then

$$u_1 - u_2 \in X \Rightarrow Au_1 - Au_2 \in Y \Rightarrow Au_1 + Y = Au_2 + Y.$$

Hence there is a quotient map \overline{A} : $U/X \to V/Y$ given by

$$\overline{A}(u+X) = Au + Y, \qquad u \in U.$$

It is easy to check that \overline{A} is linear.

Special case (for U = V and X = Y): Let $A \in \text{End}(V)$. A subspace $X \subseteq V$ is A-invariant if $A(X) \subseteq X$.

In this case we get an induced $\overline{A} \in \operatorname{End}(V/X)$.

Let $A \in \operatorname{Hom}(U, V)$ and consider $X = N(A) \subseteq U$ and $Y = \{0\} \subseteq V$. We get an induced $\overline{A} \colon U/N(A) \to V/\{0\} = V$ by

$$\overline{A}(u+N(A))=Au.$$

Theorem (2.17 (a la first isomorphism theorem))

 \overline{A} defines an isomorphism $U/N(A) \to R(A)$.

Proof.

Clearly $R(A) = R(\overline{A})$, so \overline{A} is surjects onto R(A). Also, $\overline{A}(u + N(A)) = Au = 0$ implies $u \in N(A)$, so u + N(A) = 0. Hence $N(\overline{A}) = \{0\}$. So \overline{A} : $U/N(A) \to R(A)$ is an isomorphism.

Definition

For $A \in \text{Hom}(U, V)$ we define

- (a) null(A) = dim N(A) called the nullity of A;
- (b) rank(A) = dim R(A) called the rank of A.

Corollary (2.19 (rank-nullity theorem))

If dim $U < \infty$, then

$$rank(A) + null(A) = \dim U.$$

Proof.

As $U/N(A) \cong R(A)$ we have

$$rank(A) = dim(U/N(A)) = dim U - dim N(A) = dim U - null(A).$$

Consider the linear map $A \colon M_2(\mathbb{R}) \to \mathbb{R}$ of \mathbb{R} -vector spaces

given by
$$A\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + b + c + d$$
.

Question What are the rank and nullity of A?

- (a) rank(A) = 1 and null(A) = 2;
- (b) rank(A) = 2 and null(A) = 2;
- (c) rank(A) = 1 and rull(A) = 3;
- (d) rank(A) = 2 and rull(A) = 4.

Answer: A is surjective so $\operatorname{rank}(A) = \dim \mathbb{R} = 1$. By rank-nullity we get

$$\operatorname{null}(A) = \dim M_2(\mathbb{R}) - \operatorname{rank}(A) = 4 - 1 = 3.$$

An $n \times m$ -matrix over \mathcal{F} is a matrix

$$[A] = \begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1m} \\ \vdots & & \vdots \\ \alpha_{n1} & \cdots & \alpha_{nm} \end{pmatrix} \text{ where all } \alpha_{ij} \text{ are in } \mathcal{F}.$$

 $M_{n,m}(\mathcal{F})$ denotes the set of $n \times m$ -matrices over \mathcal{F} .

Recall that $M_{n,m}(\mathcal{F}) = \operatorname{Hom}(\mathcal{F}^m, \mathcal{F}^n)$ in the following way: If [A] is a matrix as above, we get a linear map $A \colon \mathcal{F}^m \to \mathcal{F}^n$ by

$$\begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1m} \\ \vdots & & \vdots \\ \alpha_{n1} & \cdots & \alpha_{nm} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_m \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^m \alpha_{1i} \beta_i \\ \vdots \\ \sum_{i=1}^m \alpha_{ni} \beta_i \end{pmatrix}.$$

If $A\in \mathrm{Hom}(\mathcal{F}^m,\mathcal{F}^n)$ we obtain the matrix coefficients $lpha_{ij}$ by

$$Ae_j=\left(egin{array}{c}lpha_{1j}\ lpha_{nj}\end{array}
ight)\in\mathcal{F}^n$$
 where $e_j\in\mathcal{F}^m$ is the vector with 1 in

the j th coordinate and zero everywhere else.

If $A \in \operatorname{Hom}(\mathcal{F}^m, \mathcal{F}^n)$ we obtain the matrix coefficients α_{ij} by

$$Ae_j=\left(egin{array}{c} lpha_{1j}\ dots\ lpha_{nj} \end{array}
ight)\in \mathcal{F}^n ext{ where } e_j\in \mathcal{F}^m ext{ is the vector with 1 in}$$

the j'th coordinate and zero everywhere else.

Note: this uses the standard (ordered) bases

$$\{e_1,\ldots,e_m\}\subseteq \mathcal{F}^m$$
 and $(!)$ in order to extract $lpha_{ij}$ from

$$Ae_j = \begin{pmatrix} \alpha_{1j} \\ \vdots \\ \alpha_{nj} \end{pmatrix}$$
, we also use the standard (ordered) basis in

 \mathcal{F}^n (to pick out the *i*'th coordinate).

Try to keep this idea in mind for the next slide!

Let U and V be finite-dimensional vector spaces with bases $\{x_1, \ldots, x_m\}$ and $\{y_1, \ldots, y_n\}$ respectively.

We also fix an ordering on the bases as indicated. E.g. we can talk about the first basis vector in U, in this case x_1 , or the j'th basis vector, in this case x_j .

Let $A \in \text{Hom}(U, V)$. We define coefficients α_{ij} as follows: Write

$$Ax_j = \alpha_{1j}y_1 + \alpha_{2j}y_2 + \cdots + \alpha_{ij}y_i + \cdots + \alpha_{nj}y_n.$$

Definition

If $A \in \operatorname{Hom}(U, V)$, then the matrix of A is $[A] \in M_{n,m}(\mathcal{F})$ with the coefficients α_{ij} as defined above (with respect to the fixed ordered bases).

Warning: This depends (very much!) on the bases and the ordering!

Let $A \in \text{Hom}(U, V)$. We define coefficients α_{ij} as follows: Write

$$Ax_j = \alpha_{1j}y_1 + \alpha_{2j}y_2 + \cdots + \alpha_{ij}y_i + \cdots + \alpha_{nj}y_n.$$

Question: Consider \mathbb{R}^2 with ordered basis $\left(\begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \end{pmatrix}\right)$.

Consider the linear map $A \in \mathrm{Hom}(\mathbb{R}^2,\mathbb{R}^2)$ given by

$$A\left(\begin{array}{c}\beta\\\gamma\end{array}\right) = \left(\begin{array}{c}\beta+\gamma\\\beta+\gamma\end{array}\right).$$

What is the α_{11} coefficient in the matrix of A (with respect to the given ordered bases)?

- (a) 0
- (b) 1
- (c) 2

Question: Consider
$$\mathbb{R}^2$$
 with ordered basis $\begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \end{pmatrix}$.

Consider the linear map
$$A\in \mathrm{Hom}(\mathbb{R}^2,\mathbb{R}^2)$$
 given by

$$A\begin{pmatrix}\beta\\\gamma\end{pmatrix}=\begin{pmatrix}\beta+\gamma\\\beta+\gamma\end{pmatrix}.$$
 What is the α ₁₁ coefficient in the matrix of A (with respect

What is the α_{11} coefficient in the matrix of A (with respect to the given ordered bases)?

$$A\begin{pmatrix}2\\0\end{pmatrix}=\begin{pmatrix}2\\2\end{pmatrix}=\mathbf{1}\cdot\begin{pmatrix}2\\0\end{pmatrix}+\frac{2}{3}\begin{pmatrix}0\\3\end{pmatrix}.$$

So $\alpha_{11}=1$. We also see that $\alpha_{21}=\frac{2}{3}$. Also

$$A\left(\begin{array}{c}0\\3\end{array}\right)=\left(\begin{array}{c}3\\3\end{array}\right)=\frac{3}{2}\left(\begin{array}{c}2\\0\end{array}\right)+1\cdot\left(\begin{array}{c}0\\3\end{array}\right)$$

so
$$\alpha_{12}=\frac{3}{2}$$
 and $\alpha_{22}=1$. Hence $[A]=\left(egin{array}{cc}1&3/2\\2/3&1\end{array}
ight)$.

Recall how to multiply matrices: We have a multiplication map

$$M_{p,n}(\mathcal{F}) \times M_{n,m}(\mathcal{F}) \to M_{p,m}(\mathcal{F})$$

given as follows: if $B \in M_{p,n}(\mathcal{F})$ has elements β_{ij} , and $A \in M_{n,m}(\mathcal{F})$ has elements α_{jk} , then the product $BA \in M_{p,m}(\mathcal{F})$ has elements γ_{ik} given by

$$\gamma_{ik} = \sum_{j=1}^{n} \beta_{ij} \alpha_{jk}.$$

Let U, V have ordered bases $(x_1, \ldots, x_m), (y_1, \ldots, y_n)$ and $A \in \operatorname{Hom}(U, V)$ with induced matrix $[A] \in M_{n,m}(\mathcal{F})$ with elements α_{ii} . Let $u \in U$ and write $u = \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_m x_m$. Then

$$Au = \beta_1 Ax_1 + \beta_2 Ax_2 + \dots + \beta_j Ax_j + \dots + \beta_m Ax_m$$

And so $\beta_i A x_i = \alpha_{1i} \beta_i y_1 + \cdots + \alpha_{ni} \beta_i y_n$. Hence

$$Au = \left(\sum_{j=1}^{m} \alpha_{1j}\beta_{j}\right)y_{1} + \cdots + \left(\sum_{j=1}^{m} \alpha_{ij}\beta_{j}\right)y_{i} + \cdots + \left(\sum_{j=1}^{m} \alpha_{nj}\beta_{j}\right)y_{n}.$$

Compare with

$$\begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1m} \\ \vdots & & \vdots \\ \alpha_{n1} & \cdots & \alpha_{nm} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_m \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^m \alpha_{1j}\beta_j \\ \vdots \\ \sum_{j=1}^m \alpha_{nj}\beta_j \end{pmatrix}$$
 SDU *

We have just argued for the following:

Lemma

Let U, V be finite-dimensional \mathcal{F} -vector spaces with ordered bases $(x_1, \ldots, x_m), (y_1, \ldots, y_n)$, and $A \in \text{Hom}(U, V)$ with induced matrix $[A] \in M_{n,m}(\mathcal{F})$.

Let $u \in U$ and let $[u] \in M_{m,1}(\mathcal{F})$ be its vector of coordinates in the basis (x_1, \ldots, x_m) .

Then the matrix product $[A][u] \in M_{n,1}(\mathcal{F})$ is exactly the vector of coordinates for Au in the basis (y_1, \ldots, y_n) .

Note: if we write $[Au] \in M_{n,1}(\mathcal{F})$ for the vector of coordinates of Au in the ordered basis (y_1, \ldots, y_n) , the lemma states that

$$[A][u] = [Au].$$

Let U, V, W be vector spaces over \mathcal{F} , and let $A \in \text{Hom}(U, V)$ and $B \in \text{Hom}(V, W)$.

It is easy to check that the composition $B \circ A \colon U \to W$ is linear, and thus $B \circ A \in \operatorname{Hom}(U, W)$.

We call the composition the product of the linear maps A and B, which we write BA instead of $B \circ A$.

Suppose U, V, W all are finite dimensional and that we fix ordered bases for these. Arguing essentially the same way as for [A][u] = [Au] before, one gets that

$$[B][A] = [BA].$$

Consider \mathbb{R}^2 with ordered basis $\left(\begin{pmatrix} 2\\0 \end{pmatrix}, \begin{pmatrix} 0\\3 \end{pmatrix}\right)$. Consider the linear map $A \in \operatorname{Hom}(\mathbb{R}^2, \mathbb{R}^2)$ given by

$$A\left(\begin{array}{c}\beta\\\gamma\end{array}\right)=\left(\begin{array}{c}\beta+\gamma\\\beta+\gamma\end{array}\right).$$

Recall that
$$[A] = \begin{pmatrix} 1 & 3/2 \\ 2/3 & 1 \end{pmatrix}$$
.

Question: What is the first coordinate of $A\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ in the given

- basis?
- (a) 0
- (b) 1
- (c) 2
- (d) 2/3

Consider \mathbb{R}^2 with ordered basis $\left(\begin{pmatrix}2\\0\end{pmatrix},\begin{pmatrix}0\\3\end{pmatrix}\right)$. Consider the linear map $A\in\mathrm{Hom}(\mathbb{R}^2,\mathbb{R}^2)$ given by

$$A\left(\begin{array}{c}\beta\\\gamma\end{array}\right)=\left(\begin{array}{c}\beta+\gamma\\\beta+\gamma\end{array}\right).$$

Recall that
$$[A] = \begin{pmatrix} 1 & 3/2 \\ 2/3 & 1 \end{pmatrix}$$
.

Question: What is the first coordinate of $A\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ in the given basis?

We have $\begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, so

$$[A][\begin{pmatrix} 2 \\ 0 \end{pmatrix}] = \begin{pmatrix} 1 & 3/2 \\ 2/3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2/3 \end{pmatrix}.$$

The first coordinate is 1.

If U = V = W then the product becomes a map

$$\operatorname{End}(V) \times \operatorname{End}(V) \to \operatorname{End}(V).$$

This map is bilinear in the sense that it is linear in each variable, i.e.

$$A \mapsto AB \text{ (fixed } B), \qquad \text{and} \qquad B \mapsto AB \text{ (fixed } A)$$

are linear maps $\operatorname{End}(V) \to \operatorname{End}(V)$.

Definition

An algebra over \mathcal{F} is an \mathcal{F} -vector space \mathcal{A} with a bilinear product $\mathcal{A} \times \mathcal{A} \to \mathcal{A}$.

Hence $\operatorname{End}(V)$ is an (associative) algebra (with unit). This example includes $M_{n,n}(\mathcal{F}) = \operatorname{End}(\mathcal{F}^n)$.

