UCLouvain – EPL LMAT2450: CRYPTOGRAPHY Year 2020-2021 Last Name: Given Name: NOMA:

LMAT2450 - First Homework

Question 1: Pseudorandom Generator.

Let G be a pseudorandom generator (PRG) such that, if $s \in \{0,1\}^n$, then $G(s) \in \{0,1\}^{l(n)}$ with l(n) > n.

We define, for $s_1, s_2 \in \{0, 1\}^n$, $G'(s_1||s_2) := G(s_1)||s_2|$ where $G'(s_1||s_2) \in \{0, 1\}^{l(n)+n}$.

Show that either G' is a PRG by offering a reduction to the security of G, or that G' is not a PRG by exhibiting an attack (building a distinguisher with non negligible advantage).

Solution:	

 $\begin{array}{c} \text{Last Name:} \\ \text{UCLouvain - EPL} \\ \text{LMAT2450: CRYPTOGRAPHY} \\ \text{Year 2020-2021} \\ \end{array} \qquad \begin{array}{c} \text{Cast Name:} \\ \text{Given Name:} \\ \text{NOMA:} \\ \end{array}$

Question 2	2:	Pseudorandom	Function.
------------	----	--------------	-----------

Consider F a pseudorandom function (PRF) such that $F: \{0,1\}^n \times \{0,1\}^n \longrightarrow \{0,1\}^n$. We define $F': \{0,1\}^n \times \{0,1\}^n \longrightarrow \{0,1\}^n$ such that $F'(k,x||y) := F(k,x) \oplus F(k,y)$. Show either that F' is a PRF by providing a reduction to the security of F, or that F' is not a PRF by exhibiting an attack (building a distinguisher with non negligible advantage).

Solution:	

UCLouvain – EPL
LMAT2450: CRYPTOGRAPHY
Year 2020-2021

Last Name:
Given Name:
NOMA:

Question 3: How not to derive a PRG.

Let G be a PRG such that, if $s \in \{0,1\}^n$, then $G(s) \in \{0,1\}^{l(n)}$ with l(n) > n. Define also G' such that $G'(s) := G(s) \oplus (0^{l(n)-n}||s)$.

Show that G' may not be a PRG.

Solution: