Mathematics W4043 Algebraic Number Theory Assignment # 3

Benjamin Church
Worked With Matthew Lerner-Brecher

December 20, 2017

1. Let α be algebraic over \mathbb{Q} with minimal polynomial:

$$P(X) = X^{d} + a_{d-1}X^{d-1} + \dots + a_0 = (X - \alpha_1)\dots(X - \alpha_d)$$

Also, let $\alpha \in K$ with $[K : \mathbb{Q}(\alpha)] = m$. Then there must exist a basis of length m of K over $\mathbb{Q}(\alpha)$ which we write as $\{k_1, \ldots, k_m\}$. Now, since $\{1, \alpha, \alpha^2, \ldots, \alpha^{d-1}\}$ is a basis for $\mathbb{Q}(\alpha)$ over \mathbb{Q} then an arbitrary element $k \in K$ can uniquely be wirtten as,

$$k = \sum_{i=1,j=0}^{m,d-1} k_i \alpha^j c_{ij}$$

for $c_{ij} \in \mathbb{Q}$. Thus, $\{k_1, k_1\alpha, \dots k_1\alpha^{d-1}, \dots, k_m\alpha^{d-1}\}$ is a basis for K. We express the transformation A_{α} in this basis. Now, $A_{\alpha}(d_i\alpha^j) = d_i\alpha^{j+1}$ but for any j, $\alpha^{j+1} \in \operatorname{span}\{1, \alpha, \dots, \alpha^{d-1}\}$ thus, $A_{\alpha}(d_i\alpha^j) \in \operatorname{span}\{d_i, d_i\alpha, \dots, d_i\alpha^{d-1}\}$ and therefore, so is A_{α} acting on any linear combination in $\operatorname{span}\{d_i, d_i\alpha, \dots, d_i\alpha^{d-1}\}$. So A_{α} acts invariantly on the subspace $\operatorname{span}\{d_i, d_i\alpha, \dots, d_i\alpha^{d-1}\}$ and thus is represented by a block diagonal matrix with m blocks of size $d \times d$. Also, each block has identical matrix elements because each $d_i \neq 0$ so,

$$A_{\alpha}\left(d_{i}\alpha^{j}\right) = d_{i}\alpha^{j+1} = \sum_{l=0}^{d-1} A_{lj}d_{i}\alpha^{j} \iff A_{\alpha}\alpha^{j} = \alpha^{j+1} = \sum_{l=0}^{d-1} A_{lj}\alpha^{j}$$

Thus, each block has identical matrix elements to A_{α} acting on $\mathbb{Q}(\alpha)$. Thus the trace of each block is $\alpha_1 + \cdots + \alpha_d$ and the determinant of each block is $\alpha_1 \cdots \alpha_d$. Since the trace of a block diagonal matrix is the sum of the traces of its blocks and likewise the determinant is the products of the block determinants, we conclude that:

$$\operatorname{Tr}_{\mathbb{O}}^{K}(\alpha) = m(\alpha_{1} + \dots + \alpha_{d}) \text{ and } \operatorname{N}_{\mathbb{O}}^{K}(\alpha) = (\alpha_{1} \dots \alpha_{d})^{m}$$

- 2. Let $K = \mathbb{Q}(\sqrt{-14})$ and because $-14 \equiv 2 \mod 4$ we have that $\mathcal{O}_K = \mathbb{Z}[\sqrt{-14}]$
 - (a) $N_{\mathbb{Q}}^{K}\left(3+\sqrt{-14}\right)=3^{2}+14=23$. If $3+\sqrt{-14}=\alpha\beta$ with $\alpha,\beta\in\mathcal{O}_{k}$ then $N_{\mathbb{Q}}^{K}\left(3+\sqrt{-14}\right)=N_{\mathbb{Q}}^{K}\left(\alpha\right)N_{\mathbb{Q}}^{K}\left(\beta\right)=23$ but 23 is prime so either $N_{\mathbb{Q}}^{K}\left(\alpha\right)=1$ or $N_{\mathbb{Q}}^{K}\left(\beta\right)=1$ thus one is a unit. Therefore, $3+\sqrt{-14}$ is irreducible.
 - (b) Suppose that for $x \in \mathcal{O}_K$ that $\mathcal{N}_{\mathbb{Q}}^K(x) = 3$ then $x = a + b\sqrt{-14}$ and $\mathcal{N}_{\mathbb{Q}}^K(x) = a^2 + 14b^2 = 3$ with $a, b \in \mathbb{Z}$. Since both terms are positive, b > 0 implies that $a^2 + 14b^2 \ge 14$ so we must have b = 0. Thus, $a^2 = 3$. However, 3 is square free so we reach a contradiction.

- (c) $N_{\mathbb{Q}}^{K}(3) = 3^{2} = 9$ so if $\alpha\beta = 3$ for $\alpha, \beta \in \mathcal{O}_{K}$ then $N_{\mathbb{Q}}^{K}(\alpha) N_{\mathbb{Q}}^{K}(\beta) = 9$. Therefore, if neither is a unit (so neither has norm 1) then $N_{\mathbb{Q}}^{K}(\alpha) = N_{\mathbb{Q}}^{K}(\beta) = 3$ which is impossible. Thus, 3 is irreducible.
- (d) The ideal (3) is not prime because the product $(1+\sqrt{-14})\cdot(1-\sqrt{-14})=15=5\cdot3\in(3)$ however, $N_{\mathbb{Q}}^K\left(1\pm\sqrt{-14}\right)=15$ which is not divisible by $N_{\mathbb{Q}}^K\left(3\right)=9$ so $1\pm\sqrt{-14}\notin(3)$. I claim that $(3)=(3,1+\sqrt{-14})(3,1-\sqrt{-14})$ and that the ideals $(3,1+\sqrt{-14})$ and $(3,1-\sqrt{-14})$ are prime.

An arbitrary element of $(3, 1 \pm \sqrt{-14})$ is:

$$3x_1 + 3y_1\sqrt{-14} + (x_2 + y_2\sqrt{-14})(1 \pm \sqrt{-14}) = (3x_1 + x_2 \mp 14y_2) + (3y_1 + y_2 \pm x_2)\sqrt{-14}$$

Reducing the coeficients modulo 3,

$$3x_1 + 3y_1\sqrt{-14} + (x_2 + y_2\sqrt{-14})(1 \pm \sqrt{-14}) = (x_2 \pm y_2) + (y_2 \pm x_2)\sqrt{-14} \pmod{3}$$

Since x_2 and y_2 are arbitary we can make any element of \mathbb{F}_3 subject to the constraints that the two terms are, in the plus case, congruent modulo 3, and in the minus case, congruent to minus eachother. By adding multiples of 3 to either component (which we can do because 3 is in both ideals) we recover any pair of coefficients subject to this constraint modulo 3.

Then, for
$$\alpha = a_1 + a_2 \sqrt{-14} \in (3, 1 + \sqrt{-14})$$
 and $\beta = b_1 + b_2 \sqrt{-14} \in (3, 1 - \sqrt{-14})$ take:

$$\alpha \beta = (a_1 b_1 - 14 a_2 b_2) + (b_1 a_2 + a_1 b_2) \sqrt{-14} = (a_1 b_1 + a_2 b_1) + (b_1 a_2 + a_1 b_2) \sqrt{-14} \pmod{3}$$

But $a_1 \equiv a_2 \mod 3$ and $b_1 \equiv -b_2 \mod 3$ so $a_1b_1 \equiv -a_2b_2 \mod 3$ and $b_1a_2 \equiv -a_1b_2 \mod 3$ thus $3 \mid \alpha\beta$ so $(3, 1 + \sqrt{-14})(3, 1 - \sqrt{-14}) \subset (3)$. Also,

$$3 = 3 \cdot [3 - [1 - \sqrt{-14}]] + [1 + \sqrt{-14}] \cdot (-3) \in (3, 1 + \sqrt{-14})(3, 1 - \sqrt{-14})$$

Thus,
$$(3) \subset (3, 1 + \sqrt{-14})(3, 1 - \sqrt{-14})$$
 so $(3) = (3, 1 + \sqrt{-14})(3, 1 - \sqrt{-14})$.

It remains to show that these ideals are prime. If we add any disjoint element to $(3, 1 \pm \sqrt{-14})$ we are adding an element whose coeficients modulo 3 do not satisfy the above criteria (for the plus and minus cases seperately) i.e. if $\gamma = g_1 + g_2 \sqrt{-14}$ and $g_1 \not\equiv \pm g_2 \mod 3$ then $\gamma \mp g_2 (1 \pm \sqrt{-14}) = (g_1 \mp g_2) \in (3, 1 + \sqrt{-14}, \gamma)$ which is an integer that is non-zero modulo 3 and thus coprime to 3. By Bezout, there exist integers x, y such that $1 = 3x + (g_1 \mp g_2)y \in (3, 1 + \sqrt{-14}, \gamma)$ and thus $(3, 1 + \sqrt{-14}, \gamma) = \mathcal{O}_K$. Thus, adding any element to $(3, 1 \pm \sqrt{-14})$ gives the entire ring i.e. $(3, 1 + \sqrt{-14})$ is maximal and thus prime.

3. Let $K = \mathbb{Q}(\sqrt{-d})$ for various values of d. Now,

$$\mathcal{O}_K = \begin{cases} \mathbb{Z}[\sqrt{-d}] & d \not\equiv -1 \bmod 4 \\ \mathbb{Z}\left\lceil \frac{1+\sqrt{-d}}{2} \right\rceil & d \equiv -1 \bmod 4 \end{cases}$$

i) Take $\alpha, \beta \in \mathcal{O}_K$ with $\beta \neq 0$ then, $\frac{\alpha}{\beta} \in K$ thus $\frac{\alpha}{\beta} = p + q\sqrt{-d}$ with $p, q \in \mathbb{Q}$.

In the case $d \not\equiv -1 \mod 4$, take $n, k \in \mathbb{Z}$ to be the best integer approximations of p, q respectively i.e. $|p-n| \leq \frac{1}{2}$ and $|q-k| \leq \frac{1}{2}$. This is possible by Lemma 0.1. Now, define $\gamma = n + k\sqrt{-d} \in \mathcal{O}_K$ and $\delta = \alpha - \beta \gamma \in \mathcal{O}_K$. Thus,

$$N_{\mathbb{Q}}^{K}(\delta) = N_{\mathbb{Q}}^{K}(\beta) N_{\mathbb{Q}}^{K}\left(\frac{\alpha}{\beta} - \gamma\right) = N_{\mathbb{Q}}^{K}(\beta) N_{\mathbb{Q}}^{K}\left((p - n) + (q - k)\sqrt{-d}\right)$$
$$= N_{\mathbb{Q}}^{K}(\beta) \cdot \left((p - n)^{2} + d(q - k)^{2}\right) \leq N_{\mathbb{Q}}^{K}(\beta) \left(\frac{1}{4} + \frac{d}{4}\right) = N_{\mathbb{Q}}^{K}(\beta) \frac{1 + d}{4}$$

Therefore, if d < 3 then $\forall \alpha, \beta \in \mathcal{O}_K$ with $\beta \neq 0$ we have $\exists \gamma, \delta \in \mathcal{O}_K : \alpha = \beta \gamma + \delta$ and $N_{\mathbb{O}}^K(\delta) < N_{\mathbb{O}}^K(\beta)$ so \mathcal{O}_K is Euclidean and thus a PID. These conditions holds for d = 1, 2.

In the case $d \equiv -1 \mod 4$, take $k \in \mathbb{Z}$ to be the best integer approximations of 2q and n to be the best integer approximation of $p - \frac{k}{2}$ i.e. $|2q - k| \leq \frac{1}{2}$ and $|p - \frac{k}{2} - n| \leq \frac{1}{2}$. This is possible by Lemma 0.1. Now, define $\gamma = n + k \frac{1 + \sqrt{-d}}{2} \in \mathcal{O}_K$ and $\delta = \alpha - \beta \gamma \in \mathcal{O}_K$. Thus,

$$\begin{split} \mathbf{N}_{\mathbb{Q}}^{K}\left(\delta\right) &= \mathbf{N}_{\mathbb{Q}}^{K}\left(\beta\right) \mathbf{N}_{\mathbb{Q}}^{K}\left(\frac{\alpha}{\beta} - \gamma\right) = \mathbf{N}_{\mathbb{Q}}^{K}\left(\beta\right) \mathbf{N}_{\mathbb{Q}}^{K}\left(\left(p - n - \frac{k}{2}\right) + \left(q - \frac{k}{2}\right)\sqrt{-d}\right) \\ &= \mathbf{N}_{\mathbb{Q}}^{K}\left(\beta\right) \cdot \left(\left(p - n - \frac{k}{2}\right)^{2} + \frac{d}{4}(2q - k)^{2}\right) \leq \mathbf{N}_{\mathbb{Q}}^{K}\left(\beta\right) \left(\frac{1}{4} + \frac{d}{16}\right) = \mathbf{N}_{\mathbb{Q}}^{K}\left(\beta\right) \frac{4 + d}{16} \end{split}$$

Therefore, if d < 12 then $\forall \alpha, \beta \in \mathcal{O}_K$ with $\beta \neq 0$ we have $\exists \gamma, \delta \in \mathcal{O}_K : \alpha = \beta \gamma + \delta$ and $N_{\mathbb{Q}}^K(\delta) < N_{\mathbb{Q}}^K(\beta)$ so \mathcal{O}_K is Euclidean and thus a PID. These conditions holds for d = 3, 7, 11.

- ii) For d = 19, 43, 67, 163 the norm $N_{\mathbb{Q}}^K \left(\frac{1+\sqrt{-d}}{2}\right) = \frac{1+19}{4} = 5, \frac{1+43}{4} = 11, \frac{1+67}{4} = 17, \frac{1+163}{4} = 41$ which are all prime. We are asked to establish that every prime $p \leq N_{\mathbb{Q}}^K \left(\frac{1+\sqrt{-d}}{2}\right)$ is inert in \mathcal{O}_K . This is equivalent to $\left(\frac{-d}{p}\right) = -1$ which is equivalent to $\left(\frac{d}{p}\right) = -(-1)^{\frac{p-1}{2}}$. By quadratic reciprocity, $\left(\frac{p}{d}\right) = (-1)^{\frac{p-1}{2}\frac{d-1}{2}} \left(\frac{d}{p}\right)$ but every d in the list is 1 modulo 4 so $\left(\frac{p}{d}\right) = -1$. This must be checked for every prime $p < \frac{1+d}{4}$ which is tedious by hand but easily done with a computer and turns out to be true.
- iii) Let $\mathfrak p$ be a prime ideal of $\mathcal O_K$ with $\mathrm N(\mathfrak p)<\frac{2\sqrt d}{\pi}$. Now, every non-zero ideal of $\mathcal O_K$ contains an elelment of $\mathbb Z^+$ (because for any $a\in I\setminus\{0\}$, $a\bar a\in I\cap\mathbb Z^+$). Let $z\in\mathfrak p\cap\mathbb Z^+$. By the fundamental theorem of arithmetic, $z=q_1^{k_1}\cdots q_n^{k_n}$ for primes q_1,\ldots,q_n . Thus, $\mathfrak p\supset (z)=(q_1)^{k_1}\cdots (q_n)^{k_n}$ so there exists and ideal I s.t. $\mathfrak pI=(q_1)^{k_1}\cdots (q_n)^{k_n}$ and thus by Dedekind unique prime factorization, $\mathfrak p$ must appear in the prime factorization of some (q_i) . However, because K is a quadratic extension of $\mathbb Q$, one of $(q_i)=\mathfrak p\mathfrak p'$ or $(q_i)=\mathfrak p$ or $(q_i)=\mathfrak p^2$ must hold (since we established that $\mathfrak p$ is one of the factors and the factorization is unique). In all of these cases, $\mathrm N(\mathfrak p)=q_1$ or q_1^2 so $q_1\leq \mathrm N(\mathfrak p_i)<\frac{2\sqrt d}{\pi}<\frac{1+d}{2}$. By part (ii) this implies that q_1 is inert i.e. $(q_1)=\mathfrak p$ so $\mathfrak p$ is principal. Now, consider any ideal I with $\mathrm N(I)<\frac{2\sqrt d}{\pi}$ then by Dedekind prime factorization, $I=\mathfrak p_1\cdots\mathfrak p_k$ and $\mathrm N(I)=\mathrm N(\mathfrak p_i)\cdots\mathrm N(\mathfrak p_k)$ so each $\mathfrak p_i$ has norm less than $\frac{2\sqrt d}{\pi}$ and thus is principal i.e. $\mathfrak p_i=(q_i)$. Therefore, $I=(q_1)\cdots(q_k)=(q_1\cdots q_k)$ so I is principal.

Now Corollary 5.10 states that every ideal class contains an ideal with norm less than Minkowski's constant $c_1 = (4/\pi)^{r_2} \frac{n!}{n^n} \sqrt{\Delta_K}$. In this case, the minimal polynomial of $\sqrt{-d}$ is $X^2 + d$ which has no real root and one pair of complex roots so $r_2 = 1$. Also, $\{1, \frac{1+\sqrt{-d}}{2}\}$ is a basis of \mathcal{O}_K because $d \equiv -1 \mod 4$ and the embeddings of K in \mathbb{C} are id: $x \mapsto x$ and $\sigma: x \mapsto \bar{x}$ thus

$$\Delta_K = \det \begin{pmatrix} 1 & \frac{1+\sqrt{-d}}{2} \\ 1 & \frac{1-\sqrt{-d}}{2} \end{pmatrix}^2 = d$$

Therefore, $c_1 = \frac{4}{\pi} \frac{2}{4} \sqrt{d} = \frac{2\sqrt{d}}{\pi}$. Thus each ideal class contains an ideal with norm less than $\frac{2\sqrt{d}}{\pi}$ which is therefore principal. Thus, by Lemma 0.2, every ideal class contains only principal ideals so \mathcal{O}_K is a PID.

- 4. (a) Let $f \in \mathbb{Q}[X]$ have degree three and let K/\mathbb{Q} be the splitting field of f with $[K:\mathbb{Q}] = 3$. Let $\sigma: K \to K$ denote the automorphism given by $\sigma(x) = \bar{x}$ which fixes \mathbb{Q} so $\sigma \in Gal(K/\mathbb{Q})$. If for some $x \in K$, $\sigma(x) \neq x$ then $\sigma \neq \operatorname{id}_K$ so $\operatorname{ord}(\sigma) > 1$. However, $\sigma^2 = \operatorname{id}$ thus, $\operatorname{ord}(\sigma) = 2$ so $\langle \sigma \rangle$ is a subgroup of $Gal(K/\mathbb{Q})$ of order 2. However, because K is a splitting field, K/\mathbb{Q} is Galois and thus $|Gal(K/\mathbb{Q})| = [K:\mathbb{Q}] = 3$. But then $|\langle \sigma \rangle | \not | |Gal(K/\mathbb{Q})|$ which contradicts Lagrange's Theorem. Thus, $\forall x \in K: \sigma(x) = x$. In paricular, because K is the splitting field of f, every root f of f is contained in f and thus satisfies f is the splitting field of f is real.
 - (b) Consdier the polynomial $f(X) = X^3 + X^2 2X 1 \in \mathbb{Q}[X]$. Let $\xi = \zeta + \zeta^6$ where ζ is a generator of the seventh roots of unity. Now, ξ is a root of f because,

$$(\zeta + \zeta^6)^3 + (\zeta + \zeta^6)^2 - 2(\zeta + \zeta^6) - 1 =$$

$$\zeta^3 + \zeta^4 + 3\zeta + 3\zeta^6 + \zeta^2 + 2 + \zeta^5 - 2(\zeta + \zeta^6) - 1 =$$

$$1 + \zeta + \zeta^2 + \zeta^3 + \zeta^4 + \zeta^5 + \zeta^6 = 0$$

There are three such distinct choices: $\xi = \zeta_7 + \zeta_7^6$, $\zeta_7^2 + \zeta_7^5$, $\zeta_7^3 + \zeta_7^4$. Thus, these are the three roots of f. Furtheremore, $(\zeta_7 + \zeta_7^6)^2 - 2 = \zeta_7^2 + \zeta_7^5$ and $(\zeta_7 + \zeta_7^6)^3 - 3(\zeta_7 + \zeta_7^6) = \zeta_7^3 + \zeta_7^4$ and thus, $\zeta_7 + \zeta_7^6$, $\zeta_7^2 + \zeta_7^5$, $\zeta_7^3 + \zeta_7^4 \in \mathbb{Q}(\zeta_7 + \zeta_7^6)$. Therefore, $\mathbb{Q}(\zeta_7 + \zeta_7^6)$ is the splitting field of f. Since $\mathbb{Q}(\zeta_7 + \zeta_7^6)$ is extended by a single element, $[\mathbb{Q}(\zeta_7 + \zeta_7^6) : \mathbb{Q}] = 3$ because f is the minimal polynomial for $\zeta_7 + \zeta_7^6$ (because any f with $\zeta_7 + \zeta_7^6$ as a root must have at least three roots by the above) and f has degree three. Now, f has no roots in \mathbb{F}_5 because:

$$f(1) = 1^{3} + 1^{2} - 2 \cdot 1 - 1 = 4 \pmod{5}$$

$$f(2) = 2^{3} + 2^{2} - 2 \cdot 2 - 1 = 2 \pmod{5}$$

$$f(3) = 3^{3} + 3^{2} - 2 \cdot 3 - 1 = 4 \pmod{5}$$

$$f(4) = 4^{3} + 4^{2} - 2 \cdot 4 - 1 = 1 \pmod{5}$$

$$f(0) = 0^{3} + 0^{2} - 2 \cdot 0 - 1 = 4 \pmod{5}$$

Finally, consider the prime factorization of (5) in \mathcal{O}_K . (5) = $\prod_{i=1}^k \mathfrak{p}_i^{e_i}$. For each \mathfrak{p}_i , we have, $\xi + \mathfrak{p}_i \notin \mathbb{F}_5 \subset \mathcal{O}_K/\mathfrak{p}_i$. If this were true, then consider the map $\pi : \alpha \mapsto \mathfrak{p}_i + \alpha$ which is a ring homomorphism. Thus,

$$f(\pi(\xi)) = \pi(f(\xi)) = \pi(0) = 0_{\mathcal{O}_K/\mathfrak{p}_i}$$

Because the coeficients map into \mathbb{F}_5 if $\pi(\xi) \in \mathbb{F}_5$ then $f(\pi(\xi)) = 0$ which we know is impossible. Therefore, $\mathcal{O}_K/\mathfrak{p}_i \supset \mathbb{F}_5[\xi]$ but since f is irreducible over \mathbb{F}_5 (since it has degree 3 and no roots) we have $[\mathbb{F}_5[\xi] : \mathbb{F}_5] = 3$ and thus $[\mathcal{O}_K/\mathfrak{p}_i : \mathbb{F}_5] \geq 3$ so $f_i \geq 3$. However,

$$N(5) = N_{\mathbb{Q}}^{K}(5) = 5^{3}$$

because 5 is fixed by all three galois automorphisms. Therefore,

$$3 = \sum_{i=1}^{k} e_i f_i$$

so the only possibility is that k = 1 with $e_1 = 1$ and $f_1 = 3$ (because each $f_i \ge 3$). This implies that there is exctly one prime factor with multiplicity one so (5) must itself be a prime ideal, (5) = \mathfrak{p} i.e. 5 is inert in \mathcal{O}_K . Furthermore, the residue field at (5) is $\mathcal{O}_K/(5)$. The order of this residue field is $[\mathcal{O}_K:(5)] = N(5\mathcal{O}_K) = N_{\mathbb{O}}^K(5) = 5^3 = 125$.

Lemmas

Lemma 0.1. $\forall r \in \mathbb{R} : \exists z \in \mathbb{Z} \text{ s.t. } |z-r| \leq \frac{1}{2}. \text{ In particular, this holds for } r \in \mathbb{Q}.$

Proof. Consider $S = \{n \in \mathbb{Z} \mid r < n+1\}$. S is non-empty because \mathbb{Z} is unbounded but S is bounded below by r so by well ordering, S has a least element z. Since $z \in S$, r < z+1. Suppose that r < z then $z-1 \in S$ contradicting the fact that z is the least element. Thus, $z \le r < z+1$.

Now if $|r-z|<\frac{1}{2}$ then we are done. Else, $|r-z|=r-z\geq\frac{1}{2}$ so $1-\frac{1}{2}\geq z+1-r$ so $(z+1)-r\leq\frac{1}{2}$. However, z+1>r so $|(z+1)-r|\leq\frac{1}{2}$ and $z+1\in\mathbb{Z}$.

Lemma 0.2. If an ideal class contains a principal ideal, then every ideal in the class is principal. Furthermore, the set of non-zero principal ideals is an ideal class.

Proof. Let I be an ideal in the same class as (a). Then $I \sim (a)$ so there exist $\alpha, \beta \in \mathcal{O}_K$ s.t. $\alpha I = \beta(a)$. Thus, $\beta a \in \alpha I$ so for some $k \in I$, we have $\beta a = \alpha k$. Now for any $r \in I$ we have $\alpha r \in \beta(a)$ so $\alpha r = \beta sa$ for $s \in \mathcal{O}_K$. Thus, $\alpha r = \alpha ks$ so because \mathcal{O}_K is a domain, r = ks so $I \subset (k)$. But $k \in I$ so by closure and absorption, $(k) \subset I$. Thus, I = (k) is principal. Also, $\alpha(\beta) = \beta(\alpha)$ so all non-zero principal ideals are equivalent. Thus, an ideal I is in the same class as (a) iff I is principal.