

Maria VanrellDEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

... hasta ahora

Descriptores de píxeles (COLOR)

Conclusión: Los descriptores basados en la información del píxel son muy **sensibles a cambios** y sobre todo **no consideran la información espacial** que es relevante en la descripción de un objeto.

Template Matching, la imagen como descriptor

Si continuamos con el detector de manos

Imagen de entrada: Objetivo:

Descriptor total: Una mano es una imagen, un patrón (template), como este

En resumen

Template matching (correspondencia de patrón). Es una técnica para detectar una parte de una imagen, aquella <u>ventana que más se parece</u> a un <u>template o patrón dado</u>. Este patrón representa el objeto que queremos detectar.

Algoritmo básico:

- Cálculo de la diferencia. Para cada punto de la imagen se asigna un valor que representa la <u>semejanza entre el patrón y la ventana</u> correspondiente a cada punto y que tiene tamaño igual al patrón
- Extracción de mínimos. El punto de la imagen que presente <u>el valor</u> <u>mínimo de las diferencias</u> nos dará la localización del objeto encontrado en la imagen. Si queremos detectar varias apariciones, otros mínimos locales que aparezcan en el mapa de distancia.

UAB Universitat Autònoma de Barcelona

Esquema general de un sistema detector de objetos

Esquema simplificado:

Para cada píxel de la imagen se desplaza la ventana del *template*

W W W

Cálculo de la diferencia entre el patrón que buscamos y la ventana de la imagen

Diferencia mínima →

sobre las diferencias

calculadas

Mayor similitud

Template

Ventana Imagen

Dos maneras de estimar la semejanza entre el template y cada ventana de la Imagen:

- Cálculo de las diferencias (DISIMILITUD)
- Cálculo de similitudes (SIMILITUD)

Template matching basado en diferencia

T(x,y): Template de tamaño $s_1 \times s_2$

I(x,y): Imagen

$$TM_{I,T}(x,y) = \sum_{x',y'} (T(x',y') - I(x+x',y+y'))^2$$

Ejemplo:

Template:

Imagen:

Negro: 0

Blanco: 255

Ejemplo: Cálculo de diferencias por cada ventana

$$1(x,y) = 156$$

 $8*(255)^2$

$$4*(255)^2 + 4*(128)^2$$

UAB

Universitat Autònoma de Barcelona

Ejemplo: con una escena real

Template:

Imagen

UAB
Universitat Autònoma
de Barcelona

Detección

Mínimo global de la imagen

Ejemplo: variaciones entre la imagen y el template

Ejemplo: cuando la imagen presenta variaciones de intensidad

Mínimo global de

la imagen

Zonas de mínimos locales

UAB

Dos maneras de estimar la semejanza entre el template y cada ventanas de la Imagen:

• Cálculo de las diferencias (DISIMILITUD)

• Cálculo de similitudes (SIMILITUD)

Template matching basado en similitud (correlación normalizada)

T(x,y): Template de tamaño $s_1 \times s_2$

I(x,y): Imagen

$$TM_{I,T}(x,y) = \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}$$

$$x' = -\frac{s_1}{2}, \dots, \frac{s_1}{2}$$

$$y' = -\frac{s_2}{2}, ..., \frac{s_2}{2}$$

Template:

Imagen:

I(x,y)

Ejemplo: Cálculo de SIMILITUDES por cada ventana

$$TM_{I,T}(x,y) = \sum_{x',y'} (T(x',y') \cdot I(x+x',y+y')) / \sqrt{\sum_{x',y'}} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2$$

$$TM(x,y) = 255$$

$$IM(x,y) = 255$$

 $8\cdot(255255)/\sqrt{8\cdot255^2\cdot8\cdot255^2} = 1$
 $TM(x,y) = 0$

$$4\cdot(255128)/\sqrt{8\cdot255^2\cdot4\cdot128^2} = \frac{4}{\sqrt{32}}$$

UAB

Ejemplo: con una escena real

Template:

Imagen

Ejemplo: variaciones entre la imagen y el template

Imagen:

UAB Universitat Autònoma de Barcelona

Ejemplo: cuando la imagen presenta variaciones de intensidad

Imagen:

Máximo global de la imagen

Template que no proviene de la imagen:

Zonas de máximos locales

En resumen:

- Se ha introducido un método muy básico de detección de objetos: el Template Matching.
- La imagen del objeto como descriptor que nos ha permitido trabajar con la forma del objeto.
- Hemos visto que la diferencia es una medida de disimilitud que no es invariante a la intensidad.
- En cambio la correlación normalizada, como medida de similitud, nos permite detectar objetos independientemente de variaciones de la intensidad.