Sandwich Al

- 차량 외관 불량 검사 시스템

샌드위치 조

컴퓨터공학과 18011881 김정민 컴퓨터공학과 19011579 서해영 컴퓨터공학과 19011554 하소영 경제통상학과 18012248 신민기

Contents

01 Intro

02 기능

03 모델성능

04 기대 효과

> 개발 배경

2022년 미국 도로교통안전국에서 발표한 가장 많은 차량 리콜 대상 조사 3위를 기록한 크라이슬 러사의 리콜 사유의 일부는 차량 후미등의 장착 불량으로 인한 외관 불량이었다.

- 1. Ford: 67 recalls, 8,636,265 units
- 2. Volkswagen Group: 45 recalls, 1,040,885 units
- 3. Fiat-Chrysler/Stellantis: 38 recalls, 3,041,431 units
- 4. Mercedes-Benz: 33 recalls, 969,993 units
- 5. General Motors: 32 recalls, 3,371,302 units
- 6. Kia: 24 recalls, 1,458,962 units
- 7. Hyundai: 22 recalls, 1,452,101 units
- 8. Tesla: 20 recalls, 3,769,581 units
- 9. BMW: 19 recalls, 1,000,455 units
- 10. Nissan: 15 recalls, 1,568,385 units

July 28, 2022 NHTSA CAMPAIGN NUMBER: 22V544000

Damaged Tail Light Side Marker Assembly/FMVSS 108

A tail light side marker that does not illuminate can reduce vehicle visibility to other drivers, increasing the risk of a crash.

NHTSA Campaign Number: 22V544000

Manufacturer Chrysler (FCA US, LLC)

Components EXTERIOR LIGHTING

출처: NHTSA (National Highway Traffic Safety Administration)

> 개발 목표

Al를 활용해 차량 외관 검사 공정을 자동화하여 검수의 효율성 증가와 비용 절감 등 생산성 향상을 도모하는 웹 서비스

<mark>타겟층</mark>: 차량 제조 공장

> 개발 목표

플랫폼이 사용될 공장은 차량 외관을 촬영하기 위한 **카메라와 센서**가 구축되어 있다고 **가정**

출처: https://www.youtube.com/watch?v=gdhhdQljpxw

> 제공 기능

1. 차량 검수

시스템 메인 기능. 차량 검수 번호와 이미지 8장을 업로드해 이미지 기반의 외관 불량 검사.

> 제공 기능

2. 데이터 조회

- 차량 검수 결과 세부 조회
- 날짜별 검수 결과 조회

> 제공 기능

3. 파일 저장

날짜별 검수 결과 조회 시 엑셀 파일 저장 기능 제공

2023년 11월 30일 검사 결과 보고서 2023-11-30 🗎 날짜선택 총 검사 개수: 13개 불량 차량 개수: 10개

다운로드

인덱스	차량번호	단차	외관손상	스크래치	장착불량	총갯수
1	a1b1c1	0	0	0	0	0
2	호十十十	0	0	0	0	0
3	klnb	0	0	10	0	10
4	kjhklgchxg	0	2	6	2	10
5	test33322	0	0	6	0	6
6	a1a1a1	0	0	10	0	10
7	b1b1b1	0	0	0	0	0
8	q1q1q1	0	0	10	0	10
9	dfgdhsaDFGHLOAGHLKEW4	0	0	10	0	10
10	test333221	0	0	6	0	6
11	dateTest2	0	0	6	0	6
12	dateTest3	0	0	6	0	6
13	dateTest4	0	0	6	0	6

> flow: 차량 검수

* 파일 업로드

차량의 전, 후, 측면을 8각도에서 캡쳐된 8장의 이미지

> AI 모델 학습 데이터

Al Hub 부품 품질 검사 영상 데이터 사용

부품: 도어, 라디에이터 그릴, 루프사이드, 범퍼,

테일 램프, 헤드 램프, 휀더

불량 유형: 스크래치, 외관 손상, 장착 불량, 단차

데이터 분류		품질상태			ше
대분류(부품)	소분류(불량유형)	양품	불량품	합계	비율
도어	스크래치	4,000	6,000	10,000	5.0%
	외관 손상	3,000	3,000	6,000	3.0%
라디에이터 그릴	단차	3,000	3,000	6,000	3.0%
루프사이드	장착 불량	6,000	6,000	12,000	6.0%
배선	고정 불량	6,000	6,000	12,000	6.0%
범퍼	스크래치	4,000	10,000	14,000	7.0%
카울커버	고정핀 불량	6,000	6,000	12,000	6.0%
기절기미	연계 불량	6,000	6,000	12,000	6.0%
커넥터	유격 불량	6,000	9,000	15,000	7.5%
714-1	체결 불량	6,000	12,000	18,000	9.0%
테일 램프	단차	7,000	7,000	14,000	7.0%
	외관 손상	3,000	4,000	7,000	3.5%
프레임	실링 불량	2,000	4,000	6,000	3.0%
=410	헤밍 불량	5,000	5,000	10,000	5.0%
	홀 변형	4,000	4,000	8,000	4.0%
헤드 램프	단차	7,000	7,000	14,000	7.0%
휀더	외관 손상	4,000	4,000	8,000	4.0%
펜니	단차	8,000	8,000	16,000	8.0%
합계		90,000	110,000	200,000	100.0%

#12

기능

> AI 모델 학습 데이터

Al Hub 부품 품질 검사 영상 데이터 사용

부품: 도어, 라디에이터 그릴, 루프사이드, 범퍼,

테일 램프, 헤드 램프, 휀더

불량 유형: 스크래치, 외관 손상, 장착 불량, 단차

Da	Status			
Parts	Type	Normal	Defective	Total
도어	스크래치	4,000	6,000	10,000
五人	외관 손상	3,000	3,000	6,000
라디에이터 그릴	단차	3,000	3,000	6,000
루프사이드	장착 불량	6,000	6,000	12,000
범퍼	스크래치	4,000	10,000	14,000
테일 램프	단차	7,000	7,000	14,000
헤드 램프	단차	7,000	7,000	14,000
휀더	외관 손상	4,000	4,000	8,000
켄니	단차	8,000	8,000	16,000
Total		46,000	54,000	100,000

> AI 모델 학습 데이터 이미지 예시

라디에이터 그릴 학습 데이터 예시

<mark>범퍼</mark> 학습 데이터 예시

모델성능

> Precision-Recall Curve

scratch 0.690

exterior-damage 0.771

flush 0.228

installation-defect 0.990

all classes 0.670 mAP@0.5

모델성능

> 정확도 분석

정확도/클래스	스크래치	외관 손상	단차	장착 불량
기본 학습 이후				
	0.4	0.2	0.1	0.8
Background Image 추가 학습 이후				
	0.5	0.3	0.2	0.97
변형된 데이터 추가 학습 이후				
	0.5	0.3	0.2	0.98
파라미터 조절 이후				
	0.69	0.77	0.22	0.99

모델성능

> 정확도 분석

정확도/클래스	스크래치	외관 손상	단차	장착 불량
기본 학습 이후				
	0.4	0.2	0.1	0.8
Background Image 추가 학습 이후				
	0.5	0.3	0.2	0.97
변형된 데이터 추가 학습 이후				
	0.5	0.3	0.2	0.98
파라미터 조절 이후				
	0.69	0.77	0.22	0.99

기대 효과

품질 향상

인공지능 모델을 활용해 차량 외관 부 품의 불량을 캐치해 제품의 결함을 감 소시켜 품질을 향상시킨다.

생산 효율성 향상

품질 검수 프로세스의 자동화를 통해 노동 등 생산요소 비용을 절감해 생산 성을 높여 제품의 가격경쟁력을 확보 한다.

신뢰성 향상

데이터 기반 의사결정을 통해 제품 품 질에 대한 균일한 신뢰성을 갖추며 장 기적으로 제조사의 시장경쟁력 강화 를 기대한다.