

W0: Vectors and linear combinations

Oleksandr Kulkov

ETH Zürich

19.09.2025

Group: 24

Location: CHN G 46

Teaching assistant: Oleksandr Kulkov

Language: English Focus group¹: Yes

Website: https://ti.inf.ethz.ch/ew/courses/LA25

Please don't hesitate to interrupt at any moment if have any questions!

¹More thorough and detailed explanation of basics

Introductions

Let's get to know each other!

Intro questions

- Your name?
- A bit about yourself?
- What do you expect from a focus group?

Intro Scalars Tuples Vectors Geometry Exercises

Course info

- Exam structure:
 - Calculations: Solve standard compute tasks (answer-only);
 - o Proofs: Need to justify anything that wasn't in lectures;
 - o Multi-choice questions: Pick the only correct option;
- Weekly bonus tasks: up to 0.25 extra points to grade;
- Hand-ins: One exercise per week, get feedback;

Scalars

Recall "standard" sets of numbers:

- N: Natural numbers;
- Z: Integer numbers;
- Q: Rational numbers;
- ℝ: **Real** numbers;

Represent *quantity*, typically called the **scalars**².

²from "scale"

 \mathbb{R}^m is the set of **tuples**: $\mathbb{R}^m = \{(x_1, \dots, x_m) : x_i \in \mathbb{R}\}^3$:

- $\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}$ points of a 2D **plane**;
- $\mathbb{R}^3 = \{(x, y, z) : x, y, z \in \mathbb{R}\}$ points of a 3D space;

The **power** symbol corresponds to the **Cartesian product**:

$$A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$$

We may use *indices* to refer to the *components* of a tuple.

 $^{^3}x_i \in \mathbb{R}$ means that x_i is an element of the set \mathbb{R}

Vectors

Real vectors⁴ are elements of a set V, called **vector space**, with:

- Addition: $\mathbf{u} + \mathbf{v} \in V$ for $\mathbf{u}, \mathbf{v} \in V$;
- Scaling: $k\mathbf{v} \in V$ for $k \in \mathbb{R}$ and $\mathbf{v} \in V$;

Addition and scaling are collectively called **linear operations**⁵. In most general case, addition and scaling are **axiomatic**⁶. In our course, we will mostly work with $V=\mathbb{R}^m$.

⁴in our course, denoted by lowercase **bold** letters

⁵hence, they are the subject of *linear* algebra

⁶defined by their properties

For $V = \mathbb{R}^m$, our course uses columns to represent vectors:

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix},$$

and the addition and scaling are component-wise:

- $(\mathbf{u} + \mathbf{v})_i = u_i + v_i$;
- $(k\mathbf{v})_i = kv_i$;

This is geometry-motivated for m=2 and m=3.

Vector addition properties⁷

- Associativity: $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$;
- Commutativity: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$;
- Zero vector: $\mathbf{v} + \mathbf{0} = \mathbf{0} + \mathbf{v} = \mathbf{v}$;
- Negatives: $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$;

Scaling properties

- Compatibility with multiplication of scalars: $\alpha(\beta \mathbf{v}) = (\alpha \beta) \mathbf{v}$;
- Unit scaling: $1\mathbf{v} = \mathbf{v}$;
- Distributivity with vector addition: $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$;
- Distributivity with scalar addition: $(\alpha + \beta)\mathbf{v} = \alpha\mathbf{v} + \beta\mathbf{v}$;

⁷in abstract algebra sense, vector space is a commutative group

9 / 25

Vector geometry

In geometry, vectors have direction and magnitude8:

Addition adds vector direction, scaling changes magnitude

⁸but **not** origin!

Linear combinations

A linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_n \in V$ with coeffs. $\alpha_1, \dots, \alpha_n \in \mathbb{R}$:

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n \in V$$

Some α_i may be zero. **Trivial** combination: $\alpha_1 = \cdots = \alpha_n = 0$.

- Affine: $\alpha_1 + \cdots + \alpha_n = 1$;
- Conic: $\alpha_1, \ldots, \alpha_n > 0$;
- Convex: $\alpha_1 + \cdots + \alpha_n = 1$ and $\alpha_1, \ldots, \alpha_n \geq 0$.

We can rewrite $\alpha_1 + \cdots + \alpha_n = 1$ as $\alpha_1 = 1 - \alpha_2 - \cdots - \alpha_n$:

$$\mathbf{v}_1 + \alpha_2(\mathbf{v}_2 - \mathbf{v}_1) + \dots + \alpha_n(\mathbf{v}_n - \mathbf{v}_1) \in V$$

Thus, affine combinations are linear combinations with "shifted" origin.

Intro Scalars Tuples Vectors Geometry Exercises

Triangle combinations

Statement

Sketch sets of all possible linear, affine, conic and convex combinations of 3 distinct points on a plane. Consider all cases.

Triangle combinations

Linear: The whole plane or a line (if collinear with 0).

Affine: The whole plane or a line (if collinear).

Conic: The area between "tangent" rays or the whole plane (if 0 is inside).

Convex: The triangle spanned on the 3 points.

The perfect long drink (a)

Statement

You have drinks G and T. You have two drinks:

- 1. 15 ml of G and 85 ml of T;
- 2. 35 ml of G and 65 ml of T;

Can we mix a perfect drink (23 ml of G and 77 ml of T)?

e periect long drink (a)

Use x of first drink and y of second drink:

$$x \begin{bmatrix} 15\\85 \end{bmatrix} + y \begin{bmatrix} 35\\65 \end{bmatrix} = \begin{bmatrix} 23\\77 \end{bmatrix} \iff \begin{cases} 15x + 35y = 23\\85x + 65y = 77 \end{cases}$$

Add equations:

$$100(x+y) = 100 \iff x+y = 1$$

Substitute x = 1 - y into first equation:

$$15(1-y) + 35y = 23 \iff 20y = 8 \iff y = \frac{2}{5}$$

From x=1-y, we get $x=\frac{3}{5}$. It's feasible, because $0 \le x,y \le 1$.

The perfect long drink (b)

Statement

Consider the set of all 100 ml drinks:

$$D = \left\{ \begin{bmatrix} g \\ t \end{bmatrix} \in \mathbb{R}^2 : g, t \ge 0 \text{ and } g + t = 100 \right\}$$

For $\mathbf{v} = \begin{bmatrix} 15 \\ 85 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 35 \\ 65 \end{bmatrix}$, which 100 ml drinks can be mixed?

Any mix can be represented as $x\mathbf{v}+y\mathbf{w}$, where $x,y\geq 0$. Since initial drinks are 100 ml, final drink volume is $x\cdot 100+y\cdot 100$. We need it to still be 100, hence $(x+y)\cdot 100=100\iff x+y=1$. On the other hand, it is also sufficient for the drink to be in D, thus

$$\hat{D} = \{x\mathbf{v} + y\mathbf{w} : x, y \ge 0 \text{ and } x + y = 1\}$$

 \hat{D} are convex combinations of ${f v}$ and ${f w}$, aka the segment between them.

The perfect long drink (c)

Statement

For
$$\mathbf{v} = \begin{bmatrix} 15 \\ 85 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 35 \\ 65 \end{bmatrix}$, which (any) drinks can be mixed?

The perfect long drink (c)

Since the drink no longer needs to be 100 ml, we get rid of x+y=1. But, it should be $x,y\leq 1$, as we can't use more than 100% of a drink.

$$\bar{D} = \{x\mathbf{v} + y\mathbf{w} : 0 \le x, y \le 1\}$$

 \bar{D} is a parallelogram spanned on 0, v, w and v + w.

Statement

Sketch the following set in \mathbb{R}^3 :

$$\left\{ \lambda_1 \begin{bmatrix} -1\\1\\1 \end{bmatrix} + \lambda_2 \begin{bmatrix} -2\\2\\2 \end{bmatrix} + \lambda_3 \begin{bmatrix} -3\\3\\3 \end{bmatrix} : \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} \right\}$$

Scalars Tuples Vectors Geometry Exercises

Geometry of linear combinations (a)

lets use a, b and c to denote vectors. Note that b = 2a and c = 3a. We can safely remove vectors that are linear combinations of others. Thus, the set is simply $\lambda_1 \mathbf{a}$, aka the line going through $\mathbf{0}$ and \mathbf{a} .

Statement

Sketch the following set in \mathbb{R}^3 :

$$\left\{ \lambda_1 \begin{bmatrix} -1\\1\\3 \end{bmatrix} + \lambda_2 \begin{bmatrix} -2\\2\\0 \end{bmatrix} + \lambda_3 \begin{bmatrix} -3\\3\\3 \end{bmatrix} : \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} \right\}$$

Geometry of linear combinations (b)

Note that c = a + b, so we can "ignore" c. Thus, the set is $\lambda_1 a + \lambda_2 b$, a plane passing through 0, a and b.

Geometry of linear combinations (c)

Statement

Sketch the following set in \mathbb{R}^3 :

$$\left\{ \lambda_1 \begin{bmatrix} -1\\1\\3 \end{bmatrix} + \lambda_2 \begin{bmatrix} -2\\2\\0 \end{bmatrix} + \lambda_3 \begin{bmatrix} 2\\3\\-1 \end{bmatrix} : \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} \right\}$$

Geometry of linear combinations (c)

Vectors point in three independent directions. The set of all linear combinations covers the whole \mathbb{R}^3 .