Econometrics I

Lecture 1: Probability

Fall 2025

Roadmap

- 1. Probability spaces
- 2. Random variables
- 3. Distribution and density functions
- 4. Moments of random variables, mean and variance
- 5. Conditional expectations
- 6. Multivariate distributions
- 7. Independence
- 8. Bayes's Theorem
- 9. Law of Iterated Expectations

Basic Definitions

To discuss probability we first need a few basic definitions:

- ▶ An outcome is something we can observe but may not know in advance
 - Example: For a coin flip, H (heads) is an outcome
 - Example: The wage of a randomly sampled worker
- \blacktriangleright A sample space, Ω , is a set of all possible outcomes
 - Example: For a coin flip, $\{H, T\}$ is the sample space
 - Example: For two coin flips, $\{HH, HT, TH, TT\}$ is the sample space
- ▶ An event is any subset of the sample space
 - Example: For two coin flips, $\{HH, TT\}$ is the event "getting the same side both times"
- \blacktriangleright A probability is a function from S, the set of all events, to [0,1] such that
 - 1. $P(E) \in [0,1]$ for any event, E
 - **2.** $P(\Omega) = 1$
 - 3. $P(A \cup B) = P(A) + P(B)$ whenever $A \cap B = \emptyset$

Outcomes and Events as a Venn Diagram

- \blacktriangleright A and B are events in the sample space, Ω
- ▶ The intersection, $A \cap B$, is the purple part
- ▶ The union, $A \cup B$, would be everything that isn't white

Random Variables

▶ A random variable assigns numeric values to outcomes:

$$X:\Omega\to\mathbb{R}$$

▶ We can define a probability distribution on this random variable in terms of our original probability space:

$$\Pr(X = x) = \Pr\left(\bigcup_{\omega: X(\omega) = x} \omega\right)$$

Example: If rolling two dice, probability of the sum being 11 is given by:

$$\begin{split} P(D_1+D_2=11) &= P((D_1=5,D_2=6) \cup (D_1=6,D_2=5)) = \\ &= P(D_1=5,D_2=6) + P(D_1=6,D_2=5)) \\ &= 1/36 + 1/36 = 1/18 \end{split}$$

Continuous Random Variables

- For a continuous random variable X the probability that X = x is "0" since any one outcome happens with vanishingly small probability
- Instead we think about sets like Pr(a < X < b)
- \blacktriangleright Define the Cumulative Distribution Function of X to be:

$$F(x) = \Pr(\omega : X(\omega) \le x)$$

- \blacktriangleright n.b.: CDF's are always weakly increasing and live in [0,1]
- Actually, any non-decreasing, right-continuous function F with $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$ is a CDF.

Standard Normal (Gaussian) CDF

$$\begin{split} & \text{if}(!(\text{require}(\text{ggplot2}))) \\ & \text{install.packages}(\text{'ggplot2})) \\ & \text{ggplot}(\text{data.frame}(\mathbf{x}=\mathbf{c}(\text{-}4,\,4)),\,\text{aes}(\mathbf{x}=\mathbf{x})) \\ & + \\ & \text{stat}_f unction(fun=pnorm) + ylab("cdf") + \\ & ggtitle("StandardNormalCDF") \end{split}$$

$$F(x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x - \mu}{\sigma\sqrt{2}}\right) \right]$$

n.b.: $\mu = 0$, $\sigma = 1$, plotted here, is what we call the standard normal

Exponential CDF

$$\begin{split} & \text{if}(!(\text{require}(\text{ggplot2}))) \\ & \text{install.packages}(\text{'ggplot2}) \\ & \text{ggplot}(\text{data.frame}(\mathbf{x} = \mathbf{c}(\text{-}1,\,4)),\, \text{aes}(\mathbf{x} = \mathbf{x})) \\ & + \text{stat}_f unction(fun = pexp) + ylab("cdf") + \\ & \text{ggtitle}("ExponentialCDF") \end{split}$$

$$F(x) = \begin{cases} 0 & \text{if } x < 0\\ 1 - e^{-\lambda x} & \text{if } x \ge 0 \end{cases}$$

where $\lambda > 0$ is the rate parameter, plotted here for $\lambda = 1$.

Check properties of exponential CDF

Bernoulli CDF

$$\begin{split} & \text{if}(!(\text{require}(\text{ggplot2}))) \text{install.packages}(\text{'ggplot2})) \\ & \text{sfun0} < \text{-stepfun}(0:1, \text{c}(0., .3, 1.), \text{f} = 0) \text{ x} = \\ & \text{seq}(\text{-.1, 1.1, length.out} = 100) \text{ df} = \\ & \text{data.frame}(\text{x} = \text{x}, \text{y} = \text{sfun0}(\text{x})) \text{ ggplot}(\text{df}, \\ & \text{aes}(\text{x},\text{y})) + \text{geom}_s tep() + y lab("cdf") + \\ & ggtitle("BernoulliCDF") \end{split}$$

The Bernoulli distribution describes a random variable $X \in \{0, 1\}$.

Plotted is Bernoulli distribution with probability of success Pr(X = 1) = p = .7

CDF: draw your own!

Probability Density Functions

▶ A random variable's Probability Density Function is the derivative of its CDF:

$$f(x) = \frac{d}{dx}F(x)$$

▶ PDFs are well-defined when the CDF is absolutely continuous (which requires continuity and almost-everywhere differentiability)

Standard Normal (Gaussian) PDF

$$\begin{split} & \text{if}(!(\text{require}(\text{ggplot2}))) \\ & \text{install.packages}(\text{'ggplot2}) \\ & \text{ggplot}(\text{data.frame}(\mathbf{x}=\mathbf{c}(\text{-}4,\,4)),\,\text{aes}(\mathbf{x}=\mathbf{x})) \\ & + \\ & \text{stat}_f unction(fun=dnorm) + ylab("pdf") + \\ & ggtitle("StandardNormalPDF") \end{split}$$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$

n.b.: $\mu = 0$, $\sigma = 1$, plotted here, is what we call the standard normal

Exponential PDF

$$\begin{split} & \text{if}(!(\text{require}(\text{ggplot2}))) \\ & \text{install.packages}(\text{'ggplot2'}) \\ & \text{ggplot}(\text{data.frame}(\mathbf{x}=\mathbf{c}(\text{-}1,\,4)),\, \text{aes}(\mathbf{x}=\mathbf{x})) \\ & + \text{stat}_f unction(fun=dexp) + \\ & ylab("pdf") + ggtitle("ExponentialPDF") \end{split}$$

$$f(x) = \begin{cases} 0 & \text{if } x < 0\\ \lambda e^{-\lambda x} & \text{if } x \ge 0 \end{cases}$$

where $\lambda > 0$ is the rate parameter, plotted here for $\lambda = 1$.

Discrete vs continuous random variables

- ▶ Note that for discrete distributions like the Bernoulli distribution, we have discontinuous jumps in the CDF, and the PDF is not defined.
- ▶ Instead of a PDF, we can define a probability mass function:

$$p\left(x\right) = \Pr\left(X = x\right)$$

▶ The set of points x such that $\Pr(X = x) > 0$ are call the support of X. Similarly, the support of a continuously distributed random variable can be defined as those points x where the pdf f(x) > 0.

Expectations

▶ For a continuously distributed random variable:

$$\mathbb{E}_F\left[X\right] \equiv \int x f(x) dx$$

▶ For a discretely distributed random variable:

$$\mathbb{E}_{p}\left[X\right] \equiv \sum_{x \in Supp(X)} xp\left(x\right)$$

- ▶ These expectations are also called the mean or first moment of X. Often, $\mu \equiv \mathbb{E}[X]$.
- \blacktriangleright The F subscript denotes the distribution used to take the expectation. We will often omit it when there is no ambiguity.

Expectations of functions of random variables

▶ For a continuously distributed random variable:

$$\mathbb{E}_{F}\left[g\left(X\right)\right] \equiv \int g\left(x\right) f(x) dx$$

▶ For a discretely distributed random variable:

$$\mathbb{E}_{p}\left[g\left(X\right)\right] \equiv \sum_{x \in Supp\left(X\right)} g\left(x\right) p\left(x\right)$$

▶ Note that functions of random variables are random variables themselves, so we're not adding much here.

Jensen's Inequality

Jensen's Inequality If g is convex, $\mathbb{E}\left[g\left(X\right)\right]\geq g\left(\mathbb{E}\left[X\right]\right)$.

If g is concave, $\mathbb{E}\left[g\left(X\right)\right] \leq g\left(\mathbb{E}\left[X\right]\right)$.

Application to even moments: If $g(x) = x^{2k}$, and X is a random variable, then g is convex as

$$\frac{d^2g}{dx^2}(x) = 2k(2k-1)x^{2k-2} \ge 0 \quad \forall x \in \mathbb{R}$$

and so

$$g(\mathbb{E}[X]) = (\mathbb{E}[X])^{2k} \le \mathbb{E}[X^{2k}]$$

What does this mean if k = 1?

Jensen's Inequality

Jensen's Inequality If g is convex, $\mathbb{E}\left[g\left(X\right)\right] \geq g\left(\mathbb{E}\left[X\right]\right)$.

If g is concave, $\mathbb{E}\left[g\left(X\right)\right] \leq g\left(\mathbb{E}\left[X\right]\right)$.

Application to even moments: If $g(x) = x^{2k}$, and X is a random variable, then g is convex as

$$\frac{d^2g}{dx^2}(x) = 2k(2k-1)x^{2k-2} \ge 0 \quad \forall x \in \mathbb{R}$$

and so

$$g(\mathbb{E}[X]) = (\mathbb{E}[X])^{2k} \leq \mathbb{E}\left[X^{2k}\right]$$

What does this mean if k = 1?

Variance

▶ The variance of a random variable:

$$Var\left[X\right] \equiv \mathbb{E}\left[\left(X - \mu\right)^{2}\right]$$

where
$$\mu = \mathbb{E}[X]$$

- Usually, $\sigma^2 \equiv Var[X]$
- ightharpoonup $\mathbb{E}\left[X^{k}\right]$ is called the kth (uncentered) moment of X
- ▶ Note that knowing first two moments is equivalent to knowing mean and variance.

Pareto distribution

▶ Pareto distribution:

$$F(x) = \begin{cases} 0 & \text{if } x < 1\\ 1 - \left(\frac{1}{x}\right)^2 & \text{if } x \ge 1 \end{cases}$$

▶ What are the mean and variance of this distribution?

Moment-generating function

 \blacktriangleright The moment generating function of X is

$$m_{X}(t) = \mathbb{E}\left[\exp\left(tX\right)\right],$$

as long as this expectation is defined for t in a neighborhood of zero.

- $ightharpoonup \frac{d^k m_X(0)}{dt^k}$ equals the kth moment of X.
- ▶ If two random variables have the same moment generating function, they have the same distribution. [We can use this later].

Multivariate distributions

- ▶ Econometric models are usually concerned with several random variables.
- ▶ Denote a collection of random variables:

$$\left\{X_T\right\}_{t=1}^T.$$

Note that t here does not necessarily have anything to do with time.

- **Examples**:
 - \blacktriangleright One of the variables is "dependent" (denoted Y) and the others "explanatory"
 - ▶ A measurement observed repeatedly over time (a time series), e.g.,
 - ▶ the price of a stock
 - ▶ A measurement observed for different individuals (a cross section), e.g.,
 - wages or income
 - ▶ Most commonly, we will have a combination of these things: multiple observations of several variables. (panel data)

Random vector

▶ We can now define

$$X_T: \Omega \to \mathbb{R}^T$$

where
$$X_T(\omega) = (X_1(\omega), \dots, X_T(\omega))$$

Joint and marginal distributions

▶ The joint CDF is a natural extension to the CDF for a single random variable:

$$F_{\mathbf{X}}\left(\mathbf{x}\right)=\Pr\left(\omega:X_{1}\left(\omega\right)\leq x_{1},\ldots,X_{T}\left(\omega\right)\leq x_{T}\right)$$

where $\mathbf{x} = (x_1, \dots, x_T) \in \mathbb{R}^T$.

- ▶ The joint PDF can be defined as $f(\mathbf{x}) = \frac{\partial^T F_{\mathbf{X}}(\mathbf{x})}{\partial x_1 \partial x_2 ... \partial x_T}$.
- \blacktriangleright Marginal distributions refer to the CDF of the individual X_t variables,

$$F_{X_{t}}\left(x\right) = \Pr\left(\omega: X_{t}\left(\omega\right) \leq x\right)$$

Formally, marginal CDFs can be obtained from joint distributions by integrating over the other variables.

Covariance

Covariance is an important property of the joint distribution of random variables:

$$Cov\left(X_{1},X_{2}\right)=\mathbb{E}\left[\left(X_{1}-\mathbb{E}\left[X_{1}\right]\right)\left(X_{2}-\mathbb{E}\left[X_{2}\right]\right)\right]$$

▶ And more generally for a random vector

$$Cov\left(\mathbf{X}_{T}\right)=\mathbb{E}\left[\left(\mathbf{X}_{T}-\mathbb{E}\left[\mathbf{X}_{T}\right]\right)\left(\mathbf{X}_{T}-\mathbb{E}\left[\mathbf{X}_{T}\right]\right)'\right],$$

which is a $T \times T$ matrix.

Note that Cov(X, X) = Var(X).

Properties of expectations and covariance I

 \blacktriangleright For constants a, b, you should be able to show that

$$\mathbb{E}\left[a+bX\right] = a+b\cdot\mathbb{E}\left[X\right]$$

From this, it follows that

$$Cov\left[a+b\cdot X_{1},X_{2}\right]=b\cdot Cov\left[X_{1},X_{2}\right]$$

From this, it follows that

$$Var(a + b \cdot X) = b^2 \cdot Var(X)$$

Properties of expectations and covariance II

 \blacktriangleright For constants a, b, you should be able to show that

$$\mathbb{E}\left[aX+bY\right]=a\cdot\mathbb{E}\left[X\right]+b\cdot\mathbb{E}\left[Y\right]$$

From this, it follows that

$$Cov[aX + bY, Z] = a \cdot Cov[X, Z] + b \cdot Cov[Y, Z]$$

Independence

▶ Two events $A, B \subset \Omega$ are independent iff

$$Pr(A \cap B) = Pr(A) Pr(B)$$

▶ A collection of random variables X is independent iff

$$F_{\mathbf{X}}\left(\mathbf{x}\right) = F_{X_{1}}\left(x_{1}\right)F_{X_{2}}\left(x_{2}\right)\dots F_{X_{T}}\left(x_{T}\right)$$

▶ A collection of random variables X is independent iff for any (measurable) real-valued functions g_1, g_2, \dots, g_T ,

$$\mathbb{E}\left(g_{1}\left(X_{1}\right)g_{2}\left(X_{2}\right)\dots g_{T}\left(X_{T}\right)\right)=\mathbb{E}\left[g_{1}\left(X_{1}\right)\right]\mathbb{E}\left[g_{2}\left(X_{2}\right)\right]\dots \mathbb{E}\left[g_{T}\left(X_{T}\right)\right]$$

▶ What does this imply about the relationship between $\mathbb{E}[XY]$ and $\mathbb{E}[X]\mathbb{E}[Y]$?

Conditional probability

 \blacktriangleright The conditional probability of event A given event B can be defined as

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$

▶ The conditional CDF of random variable X conditional on Y = y can be written

$$F_X\left(x_0|Y=y\right) = \int_{-\infty}^{x_0} \frac{f\left(x,y\right)}{f_Y\left(y\right)} dx$$

where $f_{Y}(y)$ is the marginal density of y

Conditional Probability in a Venn Diagram

- ▶ The probability of A, Pr(A) is the relative area of A (within Ω)
- \blacktriangleright But what if B definitely occurred?

Conditional Probability in a Venn Diagram

- ightharpoonup The probability of A is STILL the relative area of A
- \blacktriangleright But we only take into account the part of A "inside" B

Bayes's Theorem

▶ From $Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$, we have

$$\Pr(A \cap B) = \Pr(A|B)\Pr(B) = \Pr(B|A)\Pr(A)$$

▶ Bayes's Theorem follows:

$$\Pr(A|B) = \Pr(B|A) \frac{\Pr(A)}{\Pr(B)},$$

which is useful to frame Bayesian inference. If A is a theory (or parameter vector) and B is evidence, our updated (posterior) probability of the theory A depends on the probability of the observed evidence conditional on the theory.

Confusion Matrix

		True Value		Sensitivity: $= TP/(TP + FN)$	
		Positive	Negative	l .	(good at identifying who has
Estimate	Positive	TP	FP	P'=TP+I	$=$ TP+ $F_{\mathbf{P}}^{\mathbf{the}}$ disease)
	Negative	FN	TN	N'=FN+7	Specificity: $= TN/(TN + FP)$ (good at identifying who
	Total	TP + FN	FP + TN	N	doesn't)

Bayes's Theorem: Application

Imagine a scientist develops a test for a disease.

- ▶ The test has a false positive rate $Pr(Test = + \mid Disease = -) = 5\%$.
- ▶ The test has a false negative rate $Pr(Test = \mid Disease = +) = 0\%$.
- ▶ If 1% of the population has the disease, what is the odds that someone with a positive test has the disease?
- ▶ If 0.05% have the disease, what is the odds that someone with a positive test has the disease?

"If you hear hoofbeats, think horses not zebras"

Conditional expectations

- ▶ Conditional expectations are extremely important in this course and econometrics broadly.
- ▶ The conditional expectation of g(X) given Y = y is

$$\mathbb{E}\left[g\left(X\right)|Y=y\right] = \int g\left(x\right) \frac{f\left(x,y\right)}{f_{Y}\left(y\right)} dx$$

Note that this conditional expectation is a value for a given value y, but we can also treat conditional expectations as random variables. In other words, when the conditioning variable Y is a random variable

$$\mathbb{E}\left[g\left(X\right)|Y\right]$$

is a random variable.

Law of Iterated Expectations

▶ The Law of Iterated Expectations holds that

$$\mathbb{E}\left[\mathbb{E}\left[g\left(X\right)|Y\right]\right] = \mathbb{E}\left[g\left(X\right)\right]$$

▶ Define $\varepsilon = Y - \mathbb{E}[Y|X]$. What is $\mathbb{E}[\varepsilon X]$?

Linear Algebra Review

Linear Algebra Review

Basic Definitions

- ightharpoonup A vector in \mathbb{R}^n is a column of numbers $(x_1, x_2, ..., x_n)$.
- A matrix in $\mathbb{R}^{n \times m}$ is m columns of length n vectors (so n is the number of rows and m is the number of columns). We denote an element of a matrix by m_{ij} for row i and column j:

$$M = \left(\begin{array}{cc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array} \right)$$

For an entity on which there are many pieces of data, we store the data in a vector x_i

Example: For the USA could have $x_{USA} = (GDP_{USA}, Population_{USA}, ...)$

 \blacktriangleright For many entities we can store all the data in a data matrix, X.

Example: For two countries:

$$X = \begin{pmatrix} GDP_{USA} & Population_{USA} \\ GDP_{Canada} & Population_{Canada} \end{pmatrix}$$

Matrix Multiplication

For two vectors of equal length define the dot product as $v \cdot w$ or $\langle v, w \rangle$:

$$v \cdot w = \sum_{i=1}^{n} v_i \times w_i$$

- ▶ For two matrices, A and B of sizes $n \times m$ and $m \times k$ define the matrix product C = AB as the $n \times k$ matrix with entries $c_{ij} = \sum_{l=1}^{m} a_{il}b_{lj}$
 - Easy way to remember: $(i, j)^{th}$ element of product is dot product of i^{th} row and j^{th} column of A and B respectively.
 - Not all matrices can be multiplied: left matrix must have column length equal to right matrix's row length
 - ▶ Multiplication is NOT commutative: $AB \neq BA$ even if they both exist

```
https://eli.thegreenplace.net/2015/visualizing-matrix-multiplication-as-a-linear-combination/
```

Transposes

- ▶ Define the transpose of A as the matrix A' with elements $a'_{ij} = a_{ji}$ (reverse columns and rows)
- ightharpoonup A matrix is symmetric if A' = A
- ▶ Important Properties:
 - ▶ The matrix B = A'A is always a square matrix
 - ▶ The matrix B = A'A is always symmetric
 - (A')' = A
 - ▶ Multiplication Rule: (AB)' = B'A'
 - Addition Rule: (A+B)' = A' + B'
- Note that dot products can also be written as an inner product: $v \cdot w = v'w$.
- \blacktriangleright Note that the outer product of two vectors is a matrix rather than a scalar: vw'.

Inverses

- ▶ The Identity Matrix, I, is a matrix with 1s on the diagonal and 0s elsewhere. Clearly AI = A.
- ▶ Define the left inverse of A to be the matrix A^{-1} such that $A^{-1}A = I$
 - ▶ Can analogously define right inverse
 - \triangleright Right and left inverse will NOT be the same if A is not a square matrix
 - ightharpoonup Right and left inverse WILL be equal if A is square (then we just say inverse)
- ▶ Important Properties:
 - ▶ Multiplication Rule: $(AB)^{-1} = B^{-1}A^{-1}$
 - ▶ Tranpose Rule: $(A')^{-1} = (A^{-1})'$
 - ightharpoonup Dot Product: $v \cdot w = v'w$

Matrix Calculus

▶ For a function $f: \mathbb{R}^n \to \mathbb{R}^m$ recall the definition of the derivative or Jacobian of f:

$$Df = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_m}{x_1} \\ \vdots & & & \\ \frac{\partial f_1}{\partial x_n} & \dots & \frac{\partial f_m}{x_n} \end{pmatrix}$$

- \blacktriangleright We WON'T be doing anything too complicated! But we can define two important functions given a vector x and a matrix A:
 - For Ax, D(Ax) = A (as a line in 1-D calc)
 - For x'Ax, D(x'Ax) = x'(A + A') (as a quadratic in 1-D calc)

The matrix cookbook https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf has a lot (more) helpful properties.