Deep Generative Models: Recurrent Neural Networks

Fall Semester 2025

René Vidal

Director of the Center for Innovation in Data Engineering and Science (IDEAS),
Rachleff University Professor, University of Pennsylvania
Amazon Scholar & Chief Scientist at NORCE

Taxonomy of Generative Models

Autoregressive Models

- Many kinds of models
 - Markov Chains
 - Hidden Markov Models
 - Markov Random Fields
 - Linear Dynamical Systems
 - Recurrent Neural Networks
 - Transformers
- This lecture: we focus on Recurrent Neural Networks
 - Vanilla RNNs
 - Basic applications for Language Modeling
 - Training and Issues with RNNs
 - LSTMs and GRUs

Applications of RNNs

- NLP: Machine Translation, Text Classification, POS Tagging
- Healthcare: Gesture Forecasting, EGG
- Computer Vision: Self-driving, Image/Texture Classification
- Finance: Stock Price Forecasting
- Many, many more

Healthcare: Gesture Forecasting

NLP: Machine Translation

Finance: Stock Forecasting

Recurrent Neural Network (RNNs)

 Recurrent Neural Networks (RNNs) are non-linear dynamical systems described by

$$z_t = g(Az_{t-1} + Wx_t) + w_t$$
$$y_t = f(Cz_t) + v_t$$

- Here
 - $x_1, ..., x_T \in \mathbb{R}^D$ denote the **inputs**
 - $y_0, ..., y_T \in \mathbb{R}^m$ denote the **outputs**
 - $z_0, \dots, z_T \in \mathbb{R}^d$ denote the **hidden states**, with z_0 the initial state
 - $A \in \mathbb{R}^{d \times d}$, $W \in \mathbb{R}^{d \times D}$, $C \in \mathbb{R}^{m \times d}$ are weight matrices
 - f and g are nonlinear functions (e.g. f can be a Softmax function for soft classification)
 - No noise w_t , v_t when RNN used for prediction instead of generation.

RNNs vs LDSs

Linear Dynamic Systems

$$z_t = Az_{t-1} + Bx_t + w_t, \qquad w_t \sim \mathcal{N}(0, Q)$$

$$y_t = Cz_t + v_t, \qquad v_t \sim \mathcal{N}(0, R)$$

- Everything is linear
- Can be deterministic or stochastic
- Distributions of z_t and y_t has closedform due the Gaussian assumption
- Exact inference via Kalman filter
- Parameter learning via **EM algorithm**

Recurrent Neural Networks

$$z_t = g(Az_{t-1} + Wx_t) + w_t, \quad w_t \sim \mathcal{N}(0, Q)$$

$$y_t = f(Cz_t) + v_t, \quad v_t \sim \mathcal{N}(0, R)$$

- Has nonlinearity from f and g
- Can be deterministic or stochastic
- Distributions of z_t and y_t does not necessarily admit a closed form
- Approximate inference via extended Kalman filter, particle filter, etc.
- Parameter learning via
 Backpropagation Through Time

Extended Kalman Filters for RNNs

• Let us consider an RNN with no inputs and with noise added to the state and output.

$$z_t = g(Az_{t-1}) + w_t$$

$$y_t = f(Cz_t) + v_t$$

- Can we use EM and the Kalman filter for learning and inference with RNNs?
- On the one hand, we can write a probabilistic model with Gaussian conditionals

$$p(z_t \mid z_{t-1}) = \mathcal{N}(g(Az_{t-1}), Q)$$
$$p(y_t \mid z_t) = \mathcal{N}(f(Cz_t), R)$$

- On the other hand, even if z_0 is Gaussian, $z_1 = g(Az_0) + w_t$ may not!
 - Reason: a linear transformation of a Gaussian is Gaussian, but the non-linearity breaks that.
- Why is this a problem?
 - A Gaussian is uniquely determined by its mean and covariance (μ, Σ)
 - The Kalman filter tracks the evolution of the mean and covariance of $z_t \mid y_{1:t-1}$. If this is not Gaussian, then we cannot track that anymore.

$$K_{t} = \hat{\Sigma}_{t|t-1} C^{\mathsf{T}} (C \hat{\Sigma}_{t|t-1} C^{\mathsf{T}} + R)^{-1}$$

$$\hat{z}_{t+1|t} = A \hat{z}_{t|t-1} + A K_{t} (y_{t} - C \hat{z}_{t|t-1})$$

$$\hat{\Sigma}_{t+1|t} = A (\hat{\Sigma}_{t|t-1} - K_{t} C \hat{\Sigma}_{t|t-1}) A^{\mathsf{T}} + Q$$

Extended Kalman Filters for RNNs

- How do we apply the Kalman filter to RNNs?
 - We linearize f and g around current estimate of mean and covariance using first-order Taylor expansion
 - We run a Kalman filtering step using the Jacobians J_f , J_g of f and g.

$$z_t = g(Az_{t-1}) + w_t$$

$$y_t = f(Cz_t) + v_t$$

$$\tilde{z}_t = \tilde{A}_t \tilde{z}_{t-1} + w_t
y_t = \tilde{C}_t \tilde{z}_t + v_t$$

$$\tilde{A}_t \coloneqq J_g(A\hat{z}_{t-1|t-1})A$$

 $\tilde{C}_t \coloneqq J_f(C\hat{z}_{t|t-1})C$

• Prediction

$$\hat{z}_{t+1|t} = A\hat{z}_{t|t}$$

$$\hat{\Sigma}_{t+1|t} = A\hat{\Sigma}_{t|t}A^{T} + Q$$

$$\hat{z}_{t+1|t} = g(A\hat{z}_{t|t})$$

$$\hat{\Sigma}_{t+1|t} = \tilde{A}_{t}\hat{\Sigma}_{t|t}\tilde{A}_{t}^{T} + Q$$

We do not have any optimality guarantees.

Update

$$K_{t} = \hat{\Sigma}_{t|t-1} C^{\mathsf{T}} (C \hat{\Sigma}_{t|t-1} C^{\mathsf{T}} + R)^{-1}$$

$$\hat{z}_{t|t} = \hat{z}_{t|t-1} + K_{t} (y_{t} - C \hat{z}_{t|t-1})$$

$$\hat{\Sigma}_{t|t} = \hat{\Sigma}_{t|t-1} - K_{t} C \hat{\Sigma}_{t|t-1}$$

$$K_{t} = \hat{\Sigma}_{t|t-1} \tilde{C}_{t}^{\mathsf{T}} \left(\tilde{C}_{t} \hat{\Sigma}_{t|t-1} \tilde{C}_{t}^{\mathsf{T}} + R \right)^{-1}$$

$$\hat{z}_{t|t} = \hat{z}_{t|t-1} + K_{t} (y_{t} - f(C\hat{z}_{t|t-1}))$$

$$\hat{\Sigma}_{t|t} = \hat{\Sigma}_{t|t-1} - K_{t} \tilde{C}_{t} \hat{\Sigma}_{t|t-1}$$

Unrolling and Parameter Tying

$$z_t = g(Az_{t-1} + Wx_t)$$

$$y_t = f(Cz_t)$$

 Rather than treating an RNN as a neural network with recurrent inputs and outputs, we can *unroll* the network such that it becomes a feed-forward network

• Here A, C, W are the same matrices for all timestep, known as **Parameter Tying**

Note: Here we omit the noise terms w_t and v_t for simplicity.

→ Apply matrix multiplication & function

Backpropagation Through Time (BPTT)

- The unrolled graph is a well-formed **computation graph** (which is a directed acyclic graph), so we can run backpropagation on it
- Parameters are tied across time, derivatives are aggregated across all time steps
- This is known as **Backpropagation Through Time**
- Question: Why do we want to tie the parameters?
 - Reduce the number of parameters to be learned
 - Deal with arbitrarily long sequences

- What if we always have short sequences?
 - We may untie the parameters, then we would simply have a standard feedforward neural network instead

Loss Computation in Time

$$z_t = g(Az_{t-1} + Wx_t)$$

$$y_t = f(Cz_t)$$

- Given (x, y), with $x = \{x_t\}_{t=1}^T$ and $y = \{y_t\}_{t=1}^T$, we can define different losses
- For a task that requires prediction at each time step \hat{y}_t , we can compute the loss $l_t(\hat{y}_t, y_t)$ for each timestep and sum over all timesteps

$$\mathcal{L}(\hat{y}, y) = \sum_{t=1}^{T} l_t (\hat{y}_t, y_t)$$

• For a task that needs a single prediction, we can compute the final loss $\mathcal{L}(\hat{y}, y_T)$

Application of RNNs: Next Word Prediction

• Let us consider using an RNN for a **language modeling task**. Given some preceding context, we want the language model to predict the next word:

$$P(y_t = \text{``week''}| y_{0:t-1} = \text{``Homework 2 is due next''})$$
Next word

Context

- Suppose we have a set of N sentences $\{y^{(i)}\}_{i=1}^N$, where $y^{(i)}=[y_1,\dots,y_{T_i}]$ is a sentence of length T_i
- If V is the set of **all possible words**, then we can represent each word using a one-hot vector with size $|V| \times 1$
- Then using a word embedding matrix $E \in \mathbb{R}^{D \times |V|}$, we can retrieve the word embedding associated to the current word
- This provides a way for us to go from a word to its mathematical representation

Application of RNNs: Next Word Prediction

- We want each time step of the RNN to select the next word y_t from our vocabulary, which is a discrete choice. In this case, we can use the Softmax function for modeling the distribution $P(y_t \mid z_t)$
- Using BPTT, we apply cross-entropy loss on the prediction of each timestep

Application of RNNs: Text Classification

- Another application of RNNs is to summarize the whole sequence into a single category.
- For example, given the title of a news article, predict the news category

Issues with RNN: Exploding/Vanishing Gradients

- While RNNs can capture long-term dependencies, training can be challenging
- Consider a simple RNN model with output at the last iteration:

$$z_t = g(Az_{t-1} + Wx_t)$$
$$\hat{y} = Cz_T$$

$$\frac{\partial \mathcal{L}}{\partial z_1} = \frac{\partial z_2}{\partial z_1} \cdot \frac{\partial z_3}{\partial z_2} \cdots \frac{\partial \hat{y}}{\partial z_T} \cdot \frac{\partial \mathcal{L}}{\partial \hat{y}} = A^{\mathsf{T}} A^{\mathsf{T}} A^{\mathsf{T}} \cdots C^{\mathsf{T}} \frac{\partial \mathcal{L}}{\partial \hat{y}} = (CA^{T-1})^{\mathsf{T}} \frac{\partial \mathcal{L}}{\partial \hat{y}}$$

Assuming g = identity

If the eigenvalues of A are less than 1, gradients vanish; If greater than 1, gradients explode.

Exploding/Vanishing Gradients: LDS case

More generally,

$$\frac{\partial \mathcal{L}}{\partial z_t} = (CA^{T-t})^{\top} \frac{\partial \mathcal{L}}{\partial \hat{y}} \implies \frac{\partial \mathcal{L}}{\partial A} = \sum_{t} \frac{\partial z_t}{\partial A} \cdot \frac{\partial \mathcal{L}}{\partial z_t} = \sum_{t} \frac{\partial z_t}{\partial A} \cdot (CA^{T-t})^{\top} \frac{\partial \mathcal{L}}{\partial \hat{y}}$$

- Let $\lambda_1(A)$ be the maximum eigenvalue of A.
- For any initial condition z_0 and a large $T \to \infty$
 - Exploding: If $|\lambda_1(A)| > 1$, A^T will grow to infinity
 - Vanishing: If $|\lambda_1(A)| < 1$, A^T will diminish to zero
- Hence, the gradient involving A^T terms will also either explode or vanish.

Issues with RNN: Vanishing Gradients

- We have to backpropagate through many gradient terms to reach the first time step
- This means long-range dependencies are difficult to learn (although in theory they are learnable)

Solutions:

- Better optimizers (e.g., second order or approximate second order methods)
- Normalization (at each layer to keep gradient norms stable)
- Clever initializations (e.g., start with random orthonormal matrices to prevent gradients from vanishing)
- Alternative parameterization: LSTMs and GRUs

Introduction to Long Short-Term Memory (LSTM)

- Recap of RNN: chain of repeating modules of neural network
 - In standard RNN, the repeating network is just a single tanh layer

• Motivation: Vanishing gradients happen because we multiply many gradients across time, and we want some ways to prevent that

Long Short-Term Memory (LSTM)

- LSTM introduces **cell states** c_t
 - Each repeating module has three gates to update and control the cell state: forget gate, input gate, and output gate

LSTM: Cell State

• Cell states c_t

- Runs straight down the entire chain, with only some linear interactions
- In this way, information can flow through time without gradients vanishing

- To update and control the cell states, LSTM introduced gates:
 - A sigmoid neural network and a pointwise multiplication operation
 - The sigmoid layer outputs numbers between 0 and 1, controlling how much information could go through

LSTM: Forget Gate

• Forget gate controls how much information to forget from the previous cell state c_{t-1}

Colah. Blog. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Input Gate

Input gate decides which new information to store in the cell state

$$i_t = \sigma(W_i[z_{t-1}, x_t])$$

$$\widetilde{c_t} = \tanh(W_c[z_{t-1}, x_t])$$

Then update cell state by $c_t = f_t * c_{t-1} + i_t * \widetilde{c_t}$

Colah. Blog. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Output Gate

Output gate decides what to output

Why LSTMs work

- Forget gate f_t : decides what to forget from the previous cell state
- Input gate i_t : decides what new information to add
- Output gate o_t : decides what to output to the next layer
- ullet Constant path through **cell states** c_t helps prevent vanishing gradients

$$\begin{split} f_t &= \sigma \big(W_f[z_{t-1}, x_t] \big) & \text{Forget gate} \\ i_t &= \sigma \big(W_i[z_{t-1}, x_t] \big) & \text{Input gate} \\ \widetilde{c_t} &= \tanh \big(W_c[z_{t-1}, x_t] \big) & \\ c_t &= f_t * c_{t-1} + i_t * \widetilde{c_t} & \text{Update cell state} \\ o_t &= \sigma \big(W_o[z_{t-1}, x_t] \big) & \text{Output gate} \\ z_t &= o_t * \tanh(c_t) & \end{split}$$

Other Variants: Gated Recurrent Neural Networks

- Another famous variant of the vanilla RNNs is Gated Recurrent Neural Network
 - Instead of a memory cell, it uses what's known as a Gated Recurrent Unit (GRU)
- On a high level, rather than using forget, input and output gates like LSTM
- GRU uses a weighted sum of two hidden states

$$z_t = (1 - s_t) \odot z_{t-1} + s_t \odot \widetilde{z_t}, \qquad \widetilde{z_t} = \tanh(W[x_t; r_t \odot z_{t-1}])$$

where s_t denotes the update gate

• Empirically, GRUs perform just as well as LSTMs, but much more efficient because they have **fewer gates**

(a) Long Short-Term Memory

(b) Gated Recurrent Unit

Other Variants: Bidirectional-RNNs

- Vanilla RNNs/LSTMs only go forward in time t=1,2,...,T
 - This makes it hard trajectories with long histories, i.e., when T is large
- Proposed Modification: To have another trajectory that goes backward in time
 - And the output $P(y_t \mid h_{ ext{forward}}, h_{ ext{backward}})$ depends on forward and backward hidden states
- Intuition from NLP: knowing a word means knowing what comes before and after the word
- Experiments show this reduces the vanishing gradient problem

Other Variants

• Conclusion: Once you know what the building blocks are, you can create different variants that are suitable for your task

 This is also not limited to RNNs. As we will see in next lecture, for example, we can combine RNNs with VAEs for more complicated tasks