Interest Rate Shock Model

Alain LeBel

16 February 2017

What is the *Interest Rate Shock Model*?

Start with multi factor model with only two factors, being the benchmark equity index (B) and the bond index (F) for fixed income):

$$r_t = \alpha + \beta_B r_{B,t} + \beta_F r_{F,t} + \theta_t$$

For every stock, I run a **multilinear regression** using three years of weekly historic data to determine the values of α and the two β 's. The result is a simple linear model: plug in returns of the two factors to get an estimated return of the stock.

To build a complete *Interest Rate Shock Model*, we use simpler 1-factor models to estimate how yield changes affect the two factor returns, and plug those estimates into the above equation.

The factors and the shock parameter

For the benchmark, I use the MSCI AC World total return index.

For the bond, I use the total return of the *Citigroup US Broad Investment-Grade Bond Index* (as does Northfield).

For the yield, I use the *U.S. 10y Treasury Yield*.

When I shock the yield (by increasing it by 100 bp), I actually compute the return of the latest yield:

$$3.39\%/2.39\% = 1.41841$$

is the "return of the yield" shock. I use this to estimate the returns of the benchmark and bond index.

How yield affect bond index returns

Returns of the yield are highly correlated to bonds: saying "The (return of the) yield goes up x%" is almost the same as saying "The bond index goes down -0.096x%":

How yield affect benchmark returns

Don't forget correlation: If the bond changes, then the benchmark will change, too:

Why 3 years weekly?

We tried all timespans from six months to five years, with daily, weekly and monthly frequencies:

months

Now the results:

PCGLUF PCGPEN

How does this compare to Barra?

How PCGLUF from Oct compares to the numbers Barra.