

TRINITY COLLEGE DUBLIN SCHOOL OF COMPUTER SCIENCE AND STATISTICS DUBLIN 2, IRELAND

QUIZ - II (November 13, 2024) CS7GV1: Computer Vision

Time	:	30	M	i	nutes
Max.	I	/Iar	ks	:	24

NOTE: Each MCQ (Q1-Q8 and Q11-Q12) answer and -0.5 for wrong answer.	carries +2 marks for correct
1. In Harris corner detection, the Eigenare λ_1 and λ_2 . What is the relationship edge detection.	n values of matrix $\left[\sum \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}\right]$ between λ_1 and λ_2 for
(A) $\lambda_1 = \lambda_2 \approx 0$ (C) $\lambda_1 \ll \lambda_2$	(B) $\lambda_1 >> \lambda_2$ (D) both (B) and (C)
2. Harris corner detection is (A) Scale invariant (C) Intensity shifting invariant	(B) Rotation variant (D) both (B) and (C)
 3. In SIFT, the difference of gaussian (DoG information. (A) first-order derivative (C) 3rd order derivative 	(B) second-order derivative (D) both (B) and (C)
4. The SIFT algorithm is(A) Scale variant(C) Intensity shifting variant	(B) Rotation invariant (D) both (B) and (C)
5. The speed-up robust features (SURF) algor (A) Taylor series (C) Integral image	rithm is developed based on (B) Laplacian operator (D) both (B) and (C)
6. In 3D camera coordinate system, the opining plane.(A) parallel(C) 30 degrees	tical or principal axis is to the (B) orthogonal (D) 60 degrees
7. In stereo depth estimation, the pixel in left location in right camera.(A) (20,50)(C) (10,20)	ft camera is (20,30). Find the same pixel (B) (20,20) (D) (30,30)
8. Parallel lines in the 3D space converge at (A) Vanishing point(C) both (A) and (B)	(B) Vanishing line (D) None of the above

9. Write the formula of stereo depth estimation in terms of disparity. (2 Marks)

10. Please refer to Figure 1 and make and mark an estimate of the height at which this photo was taken. (2 Marks)

Figure 1

(A) Rotation Invariant (C) Translational Invariant	(B) Scale Invariant (D) None of the above	1
12. Identify the linear activation laye (A) Sigmoid (C) Thresholding	er(s) of NN in the following. (B) Tanh (D) None of the above	1
A	LL THE BEST	