CO4- Learn the use of change of variables in solving multiple integrals
CO5- Find the gradient of a scalar field and divergence, curl of a vector field
CO6- Know various integral theorems related to line, surface and volume integrals

Printed Pages: 3

University Roll No.

Mid Term Examination, Odd Semester 2022-23 B. Tech. (All sections), First Year, First Semester Subject Code & Subject Name-BMAS 0104 & ENGINEERING CALCULUS

Time: 2 Hours

Maximum Marks: 30

Instructions for students:

Attempt all questions.
 Answers should be brief and lucid.

Section - A Attempt All Questions.

3 X 5 = 15 Marks

No.	Detail of Question	Marks	CO	BL	KL
1	Write down the n^{th} derivative of the following functions: (i) $y = \sin 2x$ (ii) $y = \log_e x$ (iii) $y = e^{3x}$	1+1+1	1	U	P
2	If $z = \log_e (x^2 + xy + y^2)$ then prove that: $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 2$	3	2	A	F

	TIE .		_	1.	-
	$V = \frac{x^4 y^4}{x^4 + y^4}$				
	then using Euler's theorem, prove that:	- lotes	1		
3	$(i) x \frac{\partial V}{\partial x} + y \frac{\partial V}{\partial y} = 4 V$	3	2	A	С
	(ii) $x^2 \frac{\partial^2 V}{\partial x^2} + 2 xy \frac{\partial^2 V}{\partial x \partial y} + y^2 \frac{\partial^2 V}{\partial y^2} = 12 V$			ing.	
•	Expand $f(x,y) = e^x \sin y$ in powers of x and y as far as the terms of the third degree.	. 3	2	A	P
	If $y_1 = \frac{x_2 x_3}{x_1}, y_2 = \frac{x_1 x_3}{x_2}, y_3 = \frac{x_1 x_2}{x_3}$ then show that:	3	2	U	F
	$\frac{\partial(y_1, y_2, y_3)}{\partial(x_1, x_2, x_3)} = 4.$		- Mg		

Section - B

Attempt All Questions

No.	Detail of Question	5 X 3			
110.		Marks	CO	BL	KI
	Prove that: $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 2 \tan u$				
	if, $u = \sin^{-1}\left(\frac{x^3 + y^3 + z^3}{ax + by + cz}\right)$	5	2	An	М
	(ax + by + cz)				1

	If $w = f(x, y)$ where, $x = e^u \cos v$ and $y = e^u \sin v$				
	then, show that,				
	$y\frac{\partial w}{\partial u} + x\frac{\partial w}{\partial v} = e^{2u}\frac{\partial w}{\partial y}$				
	OR,	5	2	A	P
	If $u^3 + v^3 = x + y$, $u^2 + v^2 = x^3 + y^3$				
t	then evaluate: $\partial (u, v)$				
	$\frac{\partial}{\partial (x,y)}$				
Į	Jsing Lagrange's method of undetermined multipliers,				
s	how that the rectangular solid of maximum volume				
ti	hat can be inscribed in a given sphere is a cube.				
	OR,	5	2	С	M
I	$f y = \sin (m \sin^{-1} x)$, then prove that				, i.
	(i) $(1-x^2)y_2 - xy_1 + m^2y = 0$		4		
1	(ii) $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} = (n^2 - m^2)y_n$		44		
Н	lere, m is a constant.				

CO - Course Outcome, BL - Abbreviation for Bloom's Taxonomy Level (R-Remember, U-Understand, A-Apply, An-Analyze, E-Evaluate, C-Create), KL - Abbreviation for Knowledge Level (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive).