Problem Set 2

Problem 1. (1 point) Let X be a set and let d_1 and d_2 be two metrics on X. Then d_1 and d_2 are equivalent if a subset E of X is open with respect to d_1 if and only if it is open with respect to d_2 . Show that on $X := \mathbb{R}^2$, the euclidean metric, the Manhattan metric, and the maximum metric are all equivalent to each other.

Problem 2. (1 point) Determine the closures of the following subsets of \mathbb{R} with the euclidean metric. You must prove your assertions.

- (a) $E_1 = \mathbb{Z}$.
- (b) $E_2 = \{1/n : n = 1, 2, 3, \dots\}.$
- (c) $E_3 = \{ r \in \mathbb{Q} : r^2 \le 2 \}.$

Problem 3. (1 point) Let E be a subset of a metric space X.

- (a) Must E and its closure \bar{E} have the same interiors? If so, prove it. If not, provide a counterexample and prove that it is a counterexample.
- (b) Must E and its interior E° have the same closures? If so, prove it. If not, provide a counterexample and prove that it is a counterexample.

Problem 4. (1 point) Let E be a connected subset of a metric space.

- (a) Must its closure \bar{E} be connected? If so, prove it. If not, provide a counterexample and prove that it is a counterexample.
- (b) Must its interior E° be connected? If so, prove it. If not, provide a counterexample and prove that it is a counterexample.

Problem 5. (1 point) Does there exist a compact subset of \mathbb{R} whose set of limit points is countably infinite? If so, provide an example and prove that it is an example. If not, prove that no such set exists.

Problem 6. (3 points)

(a) A metric space X is *separable* if it contains a countable dense subset. Give an example of a metric space which is *not* separable.

(b) A base for a metric space X is a collection \mathcal{U} of open subsets of X such that, for every open set $G \subseteq X$, there exists a collection of open sets $U_{\alpha} \in \mathcal{U}$ such that

$$G = \bigcup_{\alpha} U_{\alpha}.$$

Give an example for a base for the metric space \mathbb{R}^2 .

(c) Show that a metric space X is separable if and only if it has a countable base.

Problem 7. (5 points) Let X be a metric space in which every infinite subset has a limit point.

- (a) For any $\varepsilon \geq 0$, show that X can be covered by finitely many open balls of radius ε .
- (b) Show that X is separable.
- (c) Show that X is compact.

Problem 8. (5 points) Let (X, d) be a metric space and let \mathcal{C} be the set of all nonempty, bounded and closed subsets of X. Define $f: X \times \mathcal{C} \to \mathbb{R}$ by

$$f(x,B) := \inf_{b \in B} d(x,b)$$

and define $g: \mathcal{C} \times \mathcal{C} \to \mathbb{R}$ by

$$g(A,B) := \sup_{a \in A} f(a,B).$$

- (a) Show that g need not be a metric on \mathcal{C} .
- (b) Let $h: \mathcal{C} \times \mathcal{C} \to \mathbb{R}$ be defined by

$$h(A,B) := \max\{g(A,B),g(B,A)\}.$$

Show that h is a metric on C.