LOGIC GATES AND BOOLEAN ALGEBRA

CHAPTER 2 (CONT.....)

Logic Gates

Name	Graphical Symbol	Algebraic Function	Truth Table
AND	x	f = x.y	x y f 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1
OR	x y	f = x + y	x y f 0 0 0 0 1 1 1 0 1 1 1 1
INVERTER	x	f = x'	

Logic Gates

Name	Graphical Symbol	Algebraic Function	Truth Table
NAND	x — — — f	f = (x.y)'	x y f 0 0 1 0 1 1 1 0 1 1 1 0
NOR	<i>x</i>	f = (x + y)'	x y f 0 0 1 0 1 0 1 0 0 1 1 0
EX-OR	x → _ f	f = x'y + xy'	x y f 0 0 0 0 1 1 1 0 1 1 1 0
EX-NOR	x →	f = x'y' + xy	x y f 0 0 1 0 1 0 1 0 0 1 1 1

Boolean Expression

- Boolean expressions are a much better form for representing digital circuits because it is much easier to manipulate and simplify.
- A Boolean expression is an expression formed with:
 - binary variables
 - the binary operators OR and AND
 - the operator NOT
 - parentheses
 - an equal sign
- For example,
 - F = xy + z F is 1 when z = 1 OR when x = 0 AND y = 1.
- The precedence of operations is as follows:
 - parentheses,
 - NOT,
 - AND
 - OR.

Boolean Algebra

- **Definition**: Theorems that are used at design time to manipulate and simplify Boolean expressions for easier and less expensive implementation.
- Any Boolean expression can be represented using only AND, OR, and NOT operations.
- May need to use Boolean algebra to change the form of a Boolean expression to better utilize the types of gates provided by the component library being used.
- A Boolean variable, x, can have two values, typically 1 and 0 (on and off)

Laws and Rules Boolean Algebra

Boolean Addition:	Boolean Multiplication:
* A+0 = A	* A·0 = 0
* A+1 = 1	* A·1 = A
* A+A = A	* A·A = A
* A+Ā = 1	* A·Ā = 0
Complement Rules:	Boolean other Rules:
=	* A+AB = A
* A = A	* A+ĀB = A+B
	Ā+AB = Ā+B
Commutative Laws:	Associative Laws:
A+B = B+A	A+(B+C) = (A+B)+C
$A \cdot B = B \cdot A$	A(BC) = (AB)C
Distributive Laws:	Demorgan's Theorem:
A(B+C) = AB+AC	$\overline{XY} = \overline{X} + \overline{Y}$
* $(A+B)(A+C) = A+BC$	
	X + Y = XY

- The Boolean Expression for a Logic Circuit
 - Any logic circuit, may completely described using the Boolean expressions.
 - To derive the Boolean Expression of a given logic circuit, begin the left-most inputs and work toward the final output, writing the expression for each gate.

Ex:

- Constructing Truth Table for a logic circuit
 - Once the Boolean expression has been determined, truth table can be developed.
 - Boolean expression have to evaluate for all possible combinations of values input variable.
 - If there are four input variables (A, B, C, D) therefore sixteen (2⁴=16) combinations of values possible.
- Evaluating the Expression:
 - To evaluate the expression, first find the values of the variables that make the expression equal to 1, using rules for Boolean addition and multiplication.

- Putting the Results in Truth Table Format.
 - The first step, list the sixteen input variable combinations of 1s and 0s in binary sequence.
 - Place a 1 in the output column for each combination of input variables.
 - Place a 0 in the output column for all other combinations input variables.

DeMorgan's Theorem

- Apply DeMorgan's theorem to the expression:
 - \overline{WXYZ}

$$\overline{W+X+Y+Z}$$

$$(A+B+C)D$$

$$\overline{AB} + \overline{CD} + EF$$

Simplification Using Boolean Algebra

Ex: Simplify the Boolean expression

$$Y = AB + A(B+C) + B(B+C)$$

$$F = (X+Y)(X+\overline{Y})(\overline{X}+Z)$$

$$\overline{ABC} + A\overline{BC} + \overline{ABC} + A\overline{BC} + ABC$$

$$\overline{AB + AC} + \overline{ABC}$$

$$F = XY + \overline{X}Z + YZ$$

Standard Forms of Boolean Expressions

- All Boolean expressions, regardless of their form can be converted into either of two standard forms:
 - sum-of-product forms
 - product-of-sums forms
- Standardization makes the evaluation, simplification and implementation of Boolean expressions much more systematic and easier.

Standard Forms of Boolean Expressions

- Sum-of-products (SOP) form:
 - Two or more product terms are summed by Boolean addition.
 - OR the outputs of two or more AND gates.
 - **Eg**: ABC + AB + ABCD
 - A single over bar cannot extend over more than one variable, eg: \overline{ABC}
 - Standard SOP-all the variables in the domain apear in each product term, eg: ABCD + ABCD + ABCD

Sum-of-products (SOP)

- Converting product terms to standard SOP
 - Step 1: multiply each nonstandard product term by a term made up of the sum of a missing variable and its complement.
 - Repeat step 1 until all resulting product terms contain all variables.
 - Ex: Convert following Boolean expression into standard SOP form: ABC + AB + ABCD

Standard Forms of Boolean Expressions

- Product-of-Sums (POS) form:
 - Two or more um terms are multiplied by Boolean multiplication.
 - AND the outputs of two or more QR gates.
 - Eg: $(A + \overline{B} + C)(\overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D)$
 - A single over bar cannot extend over more than one variable, eg: $\overline{A+B+C}$
 - Standard POS- all the variables in the domain appear in each product term, eg: $|A+B+\overline{C}+D|A+\overline{B}+\overline{C}+\overline{D}|A+B+C+\overline{D}|$

Product-of-Sums (POS)

- Converting a sum term to Standard POS
 - Add to each nonstandard product term a term made up of the product of the missing variable and its complement.
 - Repat step 1 untill all esuling sum terms contain all variables.
 - Ex: Convert the following Boolean expression into standard POS form: $(A + \overline{B} + C)(\overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D)$

Standard Forms of Boolean Expressions

- Converting Standard SOP to Standard POS
 - Step1: Determine the binary numbers for each literal.
 - Step2: Determine the absent binary numbers.
 - Step3: Write the binary numbers from Step 2 in equivalent term in opposite standard
- Ex: Convert the following SOP expression to an equivalent POS expression

$$\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

Converting Standard SOP & Standard POS to Truth Table Format

- SOP- equal to 1 only if at least one of the product terms is equal to 1.
- POS-equal to 0 only if at least one of the sum terms is equal to 0.

Converting Standard SOP to Truth Table Format

A	В	С	Y	
0 0 0	0 0 1	0 1 0	0 1 0	$\rightarrow \overline{ABC}$
0 1 1	1 0 0	1 0 1	1 - 0	\overrightarrow{ABC}
1 1	1 1	0	0 0	\overrightarrow{ABC}

Ex: Develop the truth table for the expression Y = ABC + ABC and draw the logic circuit.

Converting Standard POS to Truth Table Format

A	В	С	Y		
0	0	0	1		
0	0	1	1		$A + \overline{B} + C$
0	1	0	0	_	A + D + C
$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	1		0 —		
1	0	1	1		A + B + C
1	1	0	1		
1	1	1	0 —		A + B + C

Ex: Develop the truth table for $(A + \overline{B}) \bullet (\overline{A} + B) \bullet (A + B)$ and draw logic circuit.

The Karnaugh Map (K-map)

- Is an array of cells in which each cell represents a binary value of the input variables.
- Can be used for expressing two, three, four, and five variables.
- Mapping a nonstandard SOP expression:
 - A Boolean expression must first be in standard form before putting in Karnaugh map.

The K-Map SOP Minimization

- Grouping/looping the 1s
 - Each cell in a group must be adjacent, this included wrap-around adjacent.
 - Maximize the size of the groups, but minimize the number of groups.
 - A group must contain either 1,2,4,16 cells (power of 2).
 - Overlapping groups is allowed.
- Determine the minimum SOP expression
 - Each group of cells containing 1s creates one product terms composed of all variables that occur either uncomplemented or complemented.
 - Variables with both uncompleted and complemented within the group are eliminated.

2 variables K-map

A two variable K-map with their truth table which is showing product terms of each line as shown below

A	В	Product term
0	0	$\overline{A}\overline{B}$
0	1	\overline{AB}
1	0	$A\overline{B}$
1	1	
		AB

Ex: Map the following SOP expression of two variables. $\overline{AB} + A\overline{B} + AB$

2 variables K-map

A	В	С	Product terms
0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	\overline{ABC}

	\overline{C}	С
\overline{AB}	\overline{ABC}	\overline{ABC}
$\overline{A}B$	$\overline{A}B\overline{C}$	$\overline{A}BC$
$A\overline{B}$	$A\overline{B}\overline{C}$	$A\overline{B}C$
AB	$AB\overline{C}$	ABC

Ex: Map the SOP expression $\overline{ABC} + \overline{ABC} + \overline$

Ex: Map the following four variable SOP expressions:

$$\overline{ABCD} + A\overline{BCD} + \overline{ABCD} + \overline{ABCD}$$

Use a K-map to simplify the following Boolean function:

$$F(A,B,C) = \Sigma m(0,2,3,7)$$

Use a K-map to simplify the following Boolean function:

$$F(A,B,C,D) = \Pi M(0,1,2,4,9,11,15)$$

$$F(A,B,C,D) = \Sigma m(3,5,6,7,8,10,12,13,14)$$

Prime Implicants

Essential Prime Implicants

Final Expression

$$F(A,B,C,D) = BC'D + AD' + A'CD + BCD'$$

"Don't Care" On Karnaugh Map

- "Don't Care" conditions
 - Eg: in BCD code which have 6 invalid combination: 1010, 1011, 1100, 1101, 1110, and 1111.
 - A "X" is placed in the cell.
 - It can be treat as either 1 or 0.
 - When grouping, the Xs, it can be treated as 1s to make a larger grouping.

The K-Map POS Minimization

- Determine the minimum SOP expression
 - Determine the binary value of each sum term in the standard POS expression.
 - As each sum term is evaluated, place a 0 on the Karnaugh map in the corresponding cell.

The K-Map POS Minimization

Ex: Map the following standard POS expression on a K-map.

$$(A+B+C)(A+B+\overline{C})(A+\overline{B}+C)(A+\overline{B}+\overline{C})(\overline{A}+\overline{B}+C)$$

$$(\overline{A} + \overline{B} + C + D)(\overline{A} + B + \overline{C} + \overline{D})(A + B + \overline{C} + D)(\overline{A} + \overline{B} + \overline{C} + \overline{D})(A + B + \overline{C} + \overline{D})$$