Logistic regression - an introdution

Ian Handel June 2019

Learning Outcomes

- **Refresher** on logs, odds, probability and linear regression
- Understand why linear regression not sensible for binary data
- Explain how logit and binomial model let us extend linear regression
- Be able to run a simple logistic regression in R
- Be able to explain basic R glm output
- Be able to explain **estimates** with categorical and continuous variables
- Explain **significance test results** on variables
- Things to watch out for!
- Know where to go next!

But first - some R

```
library(tidyverse)
library(boot)
library(broom)
library(skimr)
library(sjPlot)

dat ← read_csv("logreg_data_01_20190530.csv")
skim(dat)
```

Logarithms ('logs')

Can we skip this bit?

$$log_{10}(10) = 1$$

$$log_{10}(1000) = 3$$

$$log_{10}(0.01) = -2$$

We can have other bases e.g. e

$$log_e(2.718) \simeq 1$$

And reversing this...

$$10^3 = 1000$$

$$e^2 \simeq 7.389$$

Odds and probability

Probabilities have values from 0 ('never happens') to 1 ('always happens')

'events of interest' : 'all events'

What is the probability that a fair coin lands on heads?

$$1/2 = 0.5$$

What is the probability that a 6 sided die lands on 4?

$$1/6 \simeq 0.166$$

Odds have values from 0 ('never happen') to infinity ('always happens')

'events of interest' : 'other events'

What is the odds that a fair coin lands on heads?

$$1/1 = 1$$

What is the odds that a 6 sided die **lands on 4?

$$1/5 = 0.2$$

Linear regression

- numerical outcome
- numerical / categorical predictors
- linear relationship

Linear regression in R

```
mod ← lm(weight ~ age + sex, data = dat
                                                    100
Call:
                                                   Weight (Kg)
lm(formula = weight ~ age + sex, data = dat)
Residuals:
  Min 10 Median 30 Max
-3.54 - 0.88 - 0.02 0.89 3.07
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 39.1901 0.7026
                                56 <2e-16 ***
   0.1515 0.0033 46 <2e-16 ***
age
sexmale 22.2796 0.1136 196 <2e-16 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.3 on 497 degrees of freedom Multiple R-squared: 0.99, Adjusted R-squared: 0.99

F-statistic: 2e+04 on 2 and 497 DF, p-value: <2e-16

Analysing binary data

Binary data common in epidemiology e.g.

- alive/dead
- healthy/diseased

Example data

ID	treatment	age	region	sex	weight	status
A0458	control	209	С	female	70.9	healthy
A0468	treated	190	С	female	68.3	healthy
A0143	control	239	В	female	73.7	diseased
A0413	control	235	D	male	97.8	healthy
A0319	control	197	В	male	89.1	healthy
A0257	control	194	В	female	69.7	healthy

Univariable analysis

Status vs treatment

treatment	diseased	healthy	
control	43	168	
treated	34	255	

Fisher's Exact Test for Count Data

```
data: status and treatment
p-value = 0.01175
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
    1.142387 3.238178
sample estimates:
odds ratio
    1.917107
```

Multivariable analysis

How about recoding the outcome as 0/1?

Example data

ID	treatment	age	region	sex	weight	status	status01
A0458	control	209	С	female	70.9	healthy	0
A0468	treated	190	С	female	68.3	healthy	0
A0143	control	239	В	female	73.7	diseased	1
A0413	control	235	D	male	97.8	healthy	0
A0319	control	197	В	male	89.1	healthy	0
A0257	control	194	В	female	69.7	healthy	0

Then use linear regression...

Linear regression 1

Linear regression 2

Problems

- -predicts (impossible) intermediate values
- -can predict <0 and >1

So how do we fix this?

Linear regression does this...

 $weight \sim eta_0 + eta_1 age + eta_2 sex + \epsilon$

or in english...

The outcome, weight, is related to the predictors

by one or more straight lines.

For binary data we want

Our outcome to be 0 or 1

So rather than modelling the outcome.

We model the **probability** of something e.g. being diseased...

The logistic bit...

Linear regression models model numbers, any numbers!

Probabilities go from...

0 to 1

So we need to turn any number into 0 - 1

In fact the regression value is the log of the odds of the outcome.

The logistic bit 2

So we have an outcome, e.g. being diseased vs healthy, that is coded 0 or 1

And our model is

$$log_e(rac{prob}{1-prob}) \sim eta_0 + eta_1 age + eta_2 treatment)$$

or in english

The log of the odds of an animal being diseased are modelled by a linear combination of the predictor variables

Worked example in R

R code for logistic regression

head(dat)

ID	treatment	age	region	sex	weight	status	status01
A0001	control	219	А	female	71.4	diseased	1
A0002	control	218	А	female	70.1	healthy	0
A0003	treated	214	D	female	71.4	healthy	0
A0004	treated	194	D	female	68.9	healthy	0
A0005	control	185	D	female	67.3	healthy	0
A0006	treated	235	D	male	98.6	healthy	0

A linear model of weight

```
mod_weight ← lm(weight ~ age + sex, data = dat)
```

A logistic regression model of disease status

```
mod_disease ← glm(status01 ~ treatment + age, family = binomial, data = dat)
```

The output

summary(mod disease)

Call: glm(formula = status01 ~ treatment + age, family = binomial, data = dat)Deviance Residuals: 1Q Median 3Q Min Max -0.8300 -0.6054 -0.5320 -0.4210 2.2841 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -5.074379 1.613819 -3.144 0.00166 ** 0.017514 0.007521 2.329 0.01987 * age Signif. codes: 0 '*** ' 0.001 '** ' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 429.59 on 499 degrees of freedom Residual deviance: 417.16 on 497 degrees of freedom AIC: 423.16 Number of Fisher Scoring iterations: 4

The output

```
print(summary(mod disease), digits = 3)
Call:
glm(formula = status01 ~ treatment + age, family = binomial,
   data = dat)
Deviance Residuals:
          1Q Median 3Q
  Min
                            Max
-0.830 -0.605 -0.532 -0.421 2.284
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.07438 1.61382 -3.14 0.0017 **
0.01751 0.00752 2.33 0.0199 *
age
Signif. codes: 0 '*** ' 0.001 '** ' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 429.59 on 499 degrees of freedom
Residual deviance: 417.16 on 497 degrees of freedom
AIC: 423.2
Number of Fisher Scoring iterations: 4
```

The output

Lets get 'tidy output...

odds ratios

The estimates = log(odds ratios)

i.e.

 $\frac{odds\ of\ outcome\ if\ have\ factor}{odds\ of\ outcome\ if\ dont\ have\ factor}$

So we get odds ratios by 'inverse logging them'.

We can remove the intercept.

A results table

```
tidy(mod_disease) %>%
  mutate(OR = exp(estimate)) %>%
    bind_cols(exp(confint(mod_disease)) %>%
    as_tibble()
) %>%
filter(term ≠ "(Intercept)") %>%
select(term, OR, `2.5 %`, `97.5 %`, p.value)
```

term	OR	2.5 %	97.5 %	p.value
treatmenttreated	0.516	0.313	0.842	0.008
age	1.018	1.003	1.033	0.020

But what does it mean?

Interpreting the odds ratios

term	OR	2.5 %	97.5 %	p.value
treatmenttreated	0.516	0.313	0.842	0.008
age	1.018	1.003	1.033	0.020

Odds ratios multiply

Categorical predictors

How many times greater the odds of outcome are **if** the risk factor (etc) is present.

So for the treatment variable (which can be control or treatment) the odds of disease if treated are 0.516 **times greater** than if untreated (control).

Interpreting the odds ratios

term	OR	2.5 %	97.5 %	p.value
treatmenttreated	0.516	0.313	0.842	0.008
age	1.018	1.003	1.033	0.020

Odds ratios multiply

Numerical predictors

How many times greater the odds of outcome are for **each unit change** in the variable

So for the age variable the odds of disease are 1.018 **times greater** for each day older.

So for 3 days it's 1.018 x 1.018 x 1.018 \simeq 1.055.

Things to watch out for

Factor levels

How does R know if you are predicting 'healthy' or 'diseased'?

Perfect predictors

E.g. all the males are diseased and all the females are healthy

Linear on logit 😡

Disease risk might go up and then down

More help

Dohoo book