Процесна информация и обработка

Лекция №2

Грешки при измерването Errors in Measurements

Източници и Видове

- Систематични грешки *Systematic Errors*
- Случайни грешки Random Errors (Noise/Interference)
- Груби грешки Gross Errors/Human Errors

Гарантирана грешка Limiting Error (LE)

Гарантираната грешка описва външните граници на възможно най лошия сценарии на измерване.

- Включва всичките източници на грешки
- Допуските дадени от производителите при описване на точността на инструмента или сензора.
- Възможната неточност

Систематични грешки Systematic Errors (I)

• Изходът на сензора или цялостна система за измерване *(Vo)* ще бъде функция от измерваните величини *(p)* и други, косвени фактори, заедно с характеристиките на сигнала.

$$V_0 = f(q, x_1, x_2, x_3, ...)$$

- Влиянието на тези фактори в крайния изход е детерминистично. Източници:
 - Състоянието на сигнала.
 - Влияние на променливи фактори.

Hараствания на систематичната грешка Propagation of Systematic Errors

• Тъй като влиянието на различните параметри е детерминистично, комбинираният ефект от грешки (Δx) с използване на ред на Тейлър и премахване на всички членове от втори и по-висок ред.

$$\Delta V_0 = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \Delta x_i$$

• Обикновено се изразява като относителна грешка.

Пример

• *Limiting Error* при измерване на мощността върху резистор чрез измерване на тока през него:

$$P = I^{2}R$$
$$\Delta P = 2IR\Delta I + I^{2}\Delta R$$

$$\frac{\Delta P}{P} = 2 \left| \frac{\Delta I}{I} \right| + \left| \frac{\Delta R}{R} \right|$$

• Ако използваме 2% точност на мултицета и точността на резистора е известна до 1%, то LE при DC power изчисления е 5%

Влияние на външни фактори Influence Variables

Изходът на сензора е свързан не само с измервания сигнал, но и с други външни променливи:

- Temperature
- Атмосферно налягане
- Вибрации
-

Разглеждания метод на оценка с производните позволява да се отстранят ефектите на тези грешки.

Случайни грешки Random Errors (I)

- Асоцииран към всяко измерване или електронен сигнал има случайни, не-детерминирани вариации като резултат от различни източници:
 - Шум Electronic noise (Johnson, shot,..)
 - Интерференция Interference
 - Важно е да се отбележи, че докато някои източници може да се окаже наистина случаен (шум), някои от тях могат да бъдат получени като систематични (смущения), прш достатъчни усилия могат да се открият и моделират източниците. Въпреки това, обикновено е по-лесно да се моделират директно като шум.

Оценка на случайните грешки Propagation of Random Errors

• В този случай всички източници са независими и влиянията им са добавени дисперсията на крайния резултат.

$$\Delta V_0 = \pm \sqrt{\sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i} \Delta x_i\right)^2}$$

• Това количество обикновено се изразява по отношение на съотношението сигнал-шум SNR

Груби грешки Gross/Human Errors

- Хората винаги са част от верига инструмент като дизайнери, производители или наблюдатели.
- Историята е пълна с примери за грешки поради погрешно използване на мерни единици (SI срещу Standard / Imperial)
- Неправилната употреба, грешки при изчисленията и други човешки грешки са основен източник на погрешни измервания!!!!

Изисквания към сензорите

Към сензорите се поставят определени изисквания. Те биват основни, отнасящи се до всички типове сензори и специални, отнасящи се до конкретен тип сензори. Основните изисквания, изпълнявани по различен начин взависимост от принципа на действие и конструкцията на сензора са:

- висока чувствителност;
- линейност;
- висока точност;
- отсъствие на хистерезис;
- възпроизводимост;
- висока скорост на реакция;
- селективност;
- взаимозаменяемост;
- широк диапазон на измерване;
- широк диапазон на работните температури;
- стабилност към смущаващи въздействия (шумоустойчивост);
- лесна възможност за корекция (простота на калибровка);
- висока надеждност;
- дълъг срок на работа;
- устойчивост към стареене;
- устойчивост към въздействие на околната среда (топлина, вибрации, вода, прах);
- безопасност (сензорът да не може да причини вреда);
- невисока цена;
- малки габаритни размери, малко тегло и здравина.

Видове сензори

Тип на сензора	Принцип на функциониране	Измервана неелектрическа величина
Тензорезистор Термистор (NTC, PTC) Полупроводников сензор	Изменение на съпротивлението	Сила, маса, налягане, ускорение, разширение, ниво, тептературатура, влажност, газ
Капацитивен сензор	Изменение на капацитета	Сила, маса, налягане, ускорение, ниво, влажност
Индуктивен сензор	Изменение на индуктивността	Сила, маса, налягане, ускорение, брой обороти, въртящ момент, магнитно поле
Сензор на Хол	Ефект на Хол	Ъгъл, брой обороти, сила, магнитно поле
Ултразвуков сензор	Пиезоелектрически ефект	Налягане, сила, ускорение, разстояние
Пиезоелектрически сензор	Пиезоелектрически ефект	Дим, огън, топлинно разпределение
Оптоелектронни сензори	Оптоелектронни ефекти	Излъчване, ъгъл, брой обороти, преместване, въртящ момент

Акустични и звукови сензори Acoustic and sound sensors

Автомобилни сензори Automotive sensors

Химични сензори Chemical sensors

Електромагнитни сензори Electric and Magnetic

Сензори за околна среда Environment sensor

Оптични сензори Optical sensors

Wave front sensor

Механични сензори

Mechanical

Термални и температурни сензори Thermal and temperature

Сензори за близост и присъствие Proximity and presence

Ултразвукови сензори Ultrasonic Sensor

- Ultrasonic sensors are used for position measurements
- Sound waves emitted are in the range of 2-13 MHz
- Sound Navigation And Ranging (SONAR)
- Radio Dection And Ranging (RADAR) ELECTROMAGNETIC WAVES!!

Proximity Sensor Types

<u>Inductive</u> <u>Capacitive</u> <u>Magnetic</u> <u>Ultra-Sonic</u>

Detects: Metal Non-Metal Magnets Anything

Max Range: Inches Inches Feet

Analog Out: Yes No No Yes

Сензори за ускорение Accelerometer

- Акселерометрите се използват за измерване на ускоренията по няколко основни оси и са относителна нечувствителни по перпендикулярни евна на друга оси
- Приложения
- Движения, вибрации, удари

- Видове и начин на действие
- Акселерометър със сеизмична маса : сеизмична маса е свързана към измервания обект чрез пружина и амортисьор;
- Пиезоелектрични акселерометри: микроскопичен кристал е монтиран на измерваната маса. Деформациите на кристала генерират напрежение.
- Капацитивни акселерометри.
- Пиезорезистивни акселерометри
- термални акселерометри

Приложение на акселерометрите Accelerometer Applications

- Автомобили: следене на наклона, преобръщане, подхлъзване, въздействие, вибрации и т.н., за да разположи устройства за безопасност (контрол на стабилността, антиблокираща система, въздушни възглавници и т.н.) и да се осигури комфортно пътуване (активно окачване)
- Aerospace: инерционно навигационно, интелигентни боеприпаси, безпилотни превозни средства
- Спорт / Gaming: монитор на ефективността спортист и нараняване, джойстик, наклон
- Лични електроника: мобилни телефони, цифрови устройства
- Сигурност: движение и откриване на вибрациите
- Industrial: мониторинг на здравето машини
- Robotics: самостоятелно балансиране