June 17, 2015

Stephanie Lund (2555914) Aljoscha Dietrich (2557976)

Exercise 1

1.1

See included files hw5.m, PCA.m, and MSE.m. $\,$

1.2

Exercise 2

If z_1 and z_2 are independent, the covariance matrix is:

$$\begin{bmatrix} E[(z_1 - \mu_1)^2] & E[(z_1 - \mu_1)(z_2 - \mu_2)]^2 \\ E[(z_1 - \mu_1)(z_2 - \mu_2)]^2 & E[(z_2 - \mu_2)^2] \end{bmatrix}$$

To show that the matrix is diagonal, we need to show that $E[(z_1 - \mu_1)(z_2 - \mu_2)]^2 = 0$.

$$E[(z_1 - \mu_1)(z_2 - \mu_2)] = E[z_1 z_2 - z_1 \mu_2 - z_2 \mu_1 + \mu_1 \mu_2)]$$

$$= E[z_1 z_2] - E[z_1] E[z_2] - E[z_1] E[z_2] + E[z_1] E[z_2]$$

$$= E[z_1 z_2] - E[z_1] E[z_2]$$

$$= 0$$

The last step is true since z_1 and z_2 are independent.