CS 310-0

Homework Assignment No. 2

Due Fri 1/21/2000

1. Using the Principle of Extension, prove the following absorption law:

$$A \cap (A \cup B) = A$$
.

2. Using algebra of sets, prove the following distributive property of the intersection respect to the symmetric difference of sets:

$$A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C).$$

Use the following "definition" of symmetric difference: $A \triangle B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$.

- 3. Find the following: (a) $\bigcup_{n=1}^{\infty} \left[\frac{1}{n}, 1\right]$, (b) $\bigcap_{n=1}^{\infty} (0, 1 + \frac{1}{n})$, (c) $\bigcap_{n=1}^{\infty} [n, \infty)$. Justify the answer.
- 4. Find the properties (reflexive, transitive, symmetric, antisymmetric) verified by the following relations:
 - (a) Strict inequality of integers: $x \Re y \Leftrightarrow x < y$.
 - (b) Non-equality of integers: $x \mathcal{R} y \Leftrightarrow x \neq y$.
 - (c) The following relation on \mathbb{N} : $x \mathcal{R} y \Leftrightarrow \exists z \in \mathbb{N}, x + 3z = y$.
 - (d) The following relation on \mathbb{R} : $x \mathcal{R} y \Leftrightarrow x y \in \mathbb{Q}$.
- 5. We define the following relation on \mathbb{Z}^* : $x \mathcal{R} y$ if and only if
 - (a) x is negative and y is positive, or
 - (b) x and y have the same sign and $|x| \leq |y|$.

For instance: $2 \Re 6$, $(-3) \Re (-7)$, $(-5) \Re 2$.

- 1. Prove that \mathcal{R} is a total order.
- 2. For each of the following numbers find a successor an immediate successor, a predecessor and an immediate predecessor, or show that there is none: -2, -1, 1, 2.
- 6. Prove that the following is an equivalence relation on $\mathbb{Z} \times \mathbb{Z}^*$:

$$(a,b) \Re (a',b') \Leftrightarrow ab' = a'b$$
.

Is it also an equivalence relation on $\mathbb{Z} \times \mathbb{Z}$?

- 7. On \mathbb{Z}^+ we define the following relation: $a \mathcal{R} b \Leftrightarrow \exists n \in \mathbb{N}, b = 2^n a$. Prove that \mathcal{R} is a partial order. Find the minimal elements of \mathbb{Z}^+ .
- 8. Let \mathcal{R} be the relation defined in problem 7. Let \mathcal{S} be the following relation on \mathbb{Z}^+ : $a \mathcal{S} b$ if and only if $a \mathcal{R} b$ or $b \mathcal{R} a$. Show that $a \mathcal{S} b \Leftrightarrow \exists n \in \mathbb{Z}, b = 2^n a$. Show that \mathcal{S} is an equivalence relation. Describe the equivalence classes.

[|]x| = absolute value of x.

 $^{^{2}\}mathbb{Z}^{*}=\mathbb{Z}-\{0\}.$