The Limit of a Function

· Limits are the same; you can get a number that is closer and closer but never that number because it does not exist.

Screen clipping taken: 29/08/2023 1:10 pm

Numerical Investigation:

1 Definition Suppose f(x) is defined when x is near the number a. (This means that f is defined on some open interval that contains a, except possibly at a itself.) Then we write

$$\lim_{x \to a} f(x) = L$$

and say

"the limit of f(x), as x approaches a, equals L"

if we can make the values of f(x) arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a (on either side of a) but not equal to a.

EXAMPLE 1 Guess the value of $\lim_{x \to 1} \frac{x-1}{x^2-1}$.

x < 1	f(x)
0.5	0.666667
0.9	0.526316
0.99	0.502513
0.999	0.500250
0.9999	0.500025

x > 1	f(x)
1.5	0.400000
1.1	0.476190
1.01	0.497512
1.001	0.499750
1.0001	0.499975

$$\lim_{x \to 1} \frac{x - 1}{x^2 - 1} = 0.5$$

$$g(x) = \begin{cases} \frac{x-1}{x^2 - 1} & \text{if } x \neq 1 \\ 2 & \text{if } x = 1 \end{cases}$$

EXAMPLE 3 Guess the value of
$$\lim_{x\to 0} \frac{\sin x}{x}$$
.

X	$\frac{\sin x}{x}$
±1.0	0.84147098
±0.5	0.95885108
±0.4	0.97354586
±0.3	0.98506736
±0.2	0.99334665
±0.1	0.99833417
±0.05	0.99958339
±0.01	0.99998333
±0.005	0.99999583
±0.001	0.99999983

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

- $\lim_{x \to a} f(x) = L \quad \text{if and only if} \quad \lim_{x \to a^{-}} f(x) = L \quad \text{and} \quad \lim_{x \to a^{+}} f(x) = L$
- **EXAMPLE 7** The graph of a function g is shown in Figure 10. Use it to state the values (if they exist) of the following:
- (a) $\lim_{x\to 2^-} g(x)$
- (b) $\lim_{x \to 2^+} g(x)$
- (c) $\lim_{x\to 2} g(x)$

- (d) $\lim_{x\to 5^-} g(x)$
- (e) $\lim_{x \to 5^+} g(x)$
- (f) $\lim_{x\to 5} g(x)$

Infinite Limits

EXAMPLE 8 Find
$$\lim_{x\to 0} \frac{1}{x^2}$$
 if it exists.

X	$\frac{1}{x^2}$
±1	1
±0.5	4
±0.2	25
±0.1	100
± 0.05	400
±0.01	10,000
±0.001	1,000,000

$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$

Laws of Limit & Substitution

Limit Laws Suppose that *c* is a constant and the limits

$$\lim_{x \to a} f(x) \qquad \text{and} \qquad \lim_{x \to a} g(x)$$

exist. Then

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

4.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{if } \lim_{x \to a} g(x) \neq 0$$

- **6.** $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$ where *n* is a positive integer
- $7. \lim_{x \to a} c = c$

- $8. \lim_{x \to a} x = a$
- **9.** $\lim_{x\to a} x^n = a^n$ where *n* is a positive integer
- **10.** $\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$ where *n* is a positive integer (If *n* is even, we assume that a > 0.)
- 11. $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$ where *n* is a positive integer

If *n* is even, we assume that $\lim_{x\to a} f(x) > 0$.

EXAMPLE 2 Evaluate the following limits and justify each step.

(a)
$$\lim_{x \to 5} (2x^2 - 3x + 4)$$
 (b) $\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$

SOLUTION

(a)
$$\lim_{x \to 5} (2x^2 - 3x + 4) = \lim_{x \to 5} (2x^2) - \lim_{x \to 5} (3x) + \lim_{x \to 5} 4$$
$$= 2 \lim_{x \to 5} x^2 - 3 \lim_{x \to 5} x + \lim_{x \to 5} 4$$
$$= 2(5^2) - 3(5) + 4$$
$$= 39$$

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \frac{\lim_{x \to -2} (x^3 + 2x^2 - 1)}{\lim_{x \to -2} (5 - 3x)}$$

$$= \frac{\lim_{x \to -2} x^3 + 2 \lim_{x \to -2} x^2 - \lim_{x \to -2} 1}{\lim_{x \to -2} 5 - 3 \lim_{x \to -2} x}$$

$$= \frac{(-2)^3 + 2(-2)^2 - 1}{5 - 3(-2)}$$

$$= -\frac{1}{11}$$

Algebraic Simplification

EXAMPLE 3 Find
$$\lim_{x\to 1} \frac{x^2-1}{x-1}$$
.

$$\frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{x - 1}$$

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$$
$$= \lim_{x \to 1} (x + 1)$$
$$= 1 + 1 = 2$$

$$\lim_{x \to 1} g(x) = \lim_{x \to 1} (x+1) = 2$$

EXAMPLE 7 Show that $\lim_{x\to 0} |x| = 0$.

SOLUTION Recall that

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

V EXAMPLE 8 Prove that $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

EXAMPLE 9 If

$$f(x) = \begin{cases} \sqrt{x-4} & \text{if } x > 4\\ 8-2x & \text{if } x < 4 \end{cases}$$

Continuity

1 Definition A function f is continuous at a number a if

$$\lim_{x \to a} f(x) = f(a)$$

Notice that Definition 1 implicitly requires three things if *f* is continuous at *a*:

- 1. f(a) is defined (that is, a is in the domain of f)
- 2. $\lim_{x \to a} f(x)$ exists
- $3. \lim_{x \to a} f(x) = f(a)$

As illustrated in Figure 1, if f is continuous, then the points (x, f(x)) on the graph of f approach the point (a, f(a)) on the graph. So there is no gap in the curve.

GeoGebra Link: Limits & Continuity

Again, all this means is that there are no **holes**, **breaks**, or **jumps** in the graph. Otherwise, the function is considered discontinuous.

EXAMPLE 1 Figure 2 shows the graph of a function *f*. At which numbers is *f* discontinuous? Why?

V EXAMPLE2 Where are each of the following functions discontinuous?

(a)
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

(b)
$$f(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$$

(c)
$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2\\ 1 & \text{if } x = 2 \end{cases}$$

(d)
$$f(x) = [x]$$

SOLUTION

- (a) Notice that f(2) is not defined, so f is discontinuous at 2. Later we'll see why f is continuous at all other numbers.
- (b) Here f(0) = 1 is defined but

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1}{x^2}$$

does not exist. (See Example 8 in Section 2.2.) So f is discontinuous at 0.

(c) Here f(2) = 1 is defined and

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 - x - 2}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 1)}{x - 2} = \lim_{x \to 2} (x + 1) = 3$$

exists. But

$$\lim_{x\to 2} f(x) \neq f(2)$$

so f is not continuous at 2.

(d) The greatest integer function $f(x) = [\![x]\!]$ has discontinuities at all of the integers because $\lim_{x\to n} [\![x]\!]$ does not exist if n is an integer. (See Example 10 and Exercise 51 in Section 2.3.)

(a)
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

(b)
$$f(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$$

(c)
$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2\\ 1 & \text{if } x = 2 \end{cases}$$

(d)
$$f(x) = [x]$$

Recall that there are four types of discontinuity:

- 1. Removable
- 2. Infinite
- 3. Jump
- 4. Oscillating

Removable Discontinuity Infinite Discontinuity

3 Definition A function *f* is **continuous on an interval** if it is continuous at every number in the interval. (If *f* is defined only on one side of an endpoint of the interval, we understand *continuous* at the endpoint to mean *continuous from the right* or *continuous from the left*.)

7 Theorem The following types of functions are continuous at every number in their domains:

polynomials rational functions root functions

trigonometric functions inverse trigonometric functions

exponential functions logarithmic functions

From the graph of g, state the intervals on which g is continuous.

$$f(x) = \begin{cases} \cos x & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ 1 - x^2 & \text{if } x > 0 \end{cases}$$
 $a = 0$