Curved Yang-Mills-Higgs theories

Simon-Raphael Fischer, based on joint works with Camille Laurent-Gengoux, and with Mehran Jalali Farahani, Hyungrok Kim (金炯錄), Christian Sämann

Motivation

Motivation: Covariantisation of Yang-Mills(-Higgs) theory

Covariantization

Classical theory	Covariantised flat theory	Curved Theory	
Vector space V	Trivial vector bundle $M \times V$	Vector bundle $V o M$	
$rac{\partial}{\partial x^i}$	Canonical flat connection $ abla^0$	Vector bundle connection $ abla$	
Coordinate changes may lead to extra terms	Coordinate expressions form-invariant under coordinate changes		

Curved Yang-Mills gauge theory (curved YM theory)

Covariantization

S.-R. Fischer. *Integrating curved Yang–Mills gauge theories*, arXiv: 2210.02924, 2022.

S.-R. Fischer. Geometry of curved Yang–Mills–Higgs gauge theories, Ph.D. thesis, Institut Camille Jordan [Villeurbanne], France, U. Geneva, Switzerland, 2021; doi: 10.13097/archive-ouverte/unige:152555

Curved Yang-Mills-Higgs theory (curved YMH theory)

Covariantization

YMH theory	Covariantised YMH theory	Curved YMH theory
Lie group G with right-action on N	Action groupoid $N \times G$	Lie groupoid $G ightrightarrows N$
Maurer-Cartan form	Fibre-wise Maurer-Cartan	Covariant adjustments
Field redefinitions lead to extra terms in gauge transformations and field strength	Expressions form-invariant under field redefinitions, but curvature transforms non-trivially	

S.-R. Fischer, M. Jalali Farahani, H. Kim, and C. Saemann. Adjusted connections I: Differential cocycles for principal groupoid bundles with connection, arXiv: 2406.16755, 202.

S.-R. Fischer. Geometry of curved Yang–Mills–Higgs gauge theories, Ph.D. thesis, Institut Camille Jordan [Villeurbanne], France, U. Geneva, Switzerland, 2021; doi: 10.13097/archive-ouverte/unige:152555

Lie groupoids

$$\mathcal{G}$$
 $\downarrow \downarrow s$
 N

Definition (Lie groupoids)

 \mathscr{G} a **Lie groupoid** if there are surjective submersions $s,t\colon \mathscr{G}\to N$, source and target, respectively, and a smooth multiplication map $\mathscr{G}_s\times_t\mathscr{G}\to\mathscr{G}$ such that

$$s(g'g) = s(g),$$
 $t(g'g) = t(g')$

for all $(g',g) \in \mathcal{G}_{s} \times_{t} \mathcal{G}$ (i.e. s(g') = t(g)), satisfying the typical expected properties, that is,

Associativity:
$$(g''g')g = g''(g'g),$$
 Units:
$$ge_{s(g)} = g, \qquad e_{t(g)}g = g,$$
 Inverse:
$$g^{-1}g = e_{s(g)}, \qquad gg^{-1} = e_{t(g)}$$

for all $(g'', g', g) \in \mathcal{G}_s \times_t \mathcal{G}_s \times_t \mathcal{G}$, where one requires the existence of the *unit* e as a global section of both, s and t, and the *inverse* $g^{-1} \in \mathcal{G}$ of g.

Example (Lie groups)

Lie groups G

$$G$$
 $t \downarrow \downarrow s$
 $\{*\}$

Example (Lie group bundles (LGBs))

LGB $\pi_{\mathscr{C}} : \mathscr{C} \to M$

$$\mathcal{G}$$
 $\pi_{\mathcal{G}} \bigcup_{\mathcal{M}} \pi_{\mathcal{G}}$

Example (Action groupoid (trivial))

Lie group G with action $\Psi \colon N \times G \to N$, $(x, q) \mapsto x \cdot q$, on N.

$$\begin{array}{c}
N \times G \\
 pr_1 \downarrow \downarrow \Psi \\
N
\end{array}$$

$$(x,q) (x \cdot q, q') = (x, qq') ,$$

$$e_x = (x,e) ,$$

$$(x,q)^{-1} = (x \cdot q, q^{-1})$$

Definition (Groupoid right-action)

A **right-action** is a smooth map $P {\,}_{\Phi} \times_t {\,}^{\mathscr C} \to P$ such that

$$\Phi(p \cdot g) = s(g),$$

$$(p \cdot g) \cdot g' = p \cdot (gg'),$$

$$p \cdot e_{\Phi(p)} = p$$

for all $(p, g, g') \in P_{\Phi} \times_t \mathcal{G}_s \times_t \mathcal{G}$.

Principal bundles and their

Ehresmann connections

Definition (Principal groupoid-bundles)

 $\pi: P \to M$ surjective submersion is a **principal** \mathscr{G} -bundle if

$$\pi(p\cdot g)=\pi(p)$$

for all $(p,g) \in P_{\Phi} \times_t \mathcal{G}$, and if

$$P {}_{\Phi} \times_t \mathscr{G} \to P {}_{\pi} \times_{\pi} P,$$

 $(p,g) \mapsto (p,p \cdot g)$

is a diffeomorphism.

Ehresmann connection

Remarks

Infinitesimal action:

$$\mathsf{T}P_{\mathsf{D}\Phi} \times_{\mathsf{D}t} \mathsf{T}\mathscr{G} \to \mathsf{T}P,$$

 $(X,Y) \mapsto X \cdot Y.$

For $r_g(p) := p \cdot g$ with $\Phi(p) = t(g)$, its infinitesimal version corresponds to

$$Dr_g(X) = X \cdot 0$$

for all X with $D\Phi(X) = 0$.

Ehresmann connection

Remarks

Infinitesimal action:

$$\mathsf{T}P_{\mathsf{D}\Phi} \times_{\mathsf{D}t} \mathsf{T}\mathscr{G} \to \mathsf{T}P,$$

 $(X,Y) \mapsto X \cdot Y.$

For $r_g(p) := p \cdot g$ with $\Phi(p) = t(g)$, its infinitesimal version corresponds to

$$Dr_g(X) = X \cdot 0$$

for all X with $D\Phi(X) = 0$.

Ehresmann connection

Infinitesimal \mathcal{G} -action on P:

$$\mathsf{T}P_{\mathsf{D}\Phi} \times_{\mathsf{D}t} \mathsf{T}\mathscr{G} \to \mathsf{T}P,$$

 $(X,Y) \mapsto X \cdot Y.$

Idea

Horizontal distribution HP (w.r.t. π) with

$$\mathsf{D}\Phi(\mathsf{H}P)=0.$$

- I. Moerdijk and J. Mrčun. Introduction to foliations and Lie groupoids, Cambridge University Press, 2003.
- D. Signori and M. Stiénon. On nonlinear gauge theories, J. Geom. Phys. 59 1063, 2009.

We lose covariantization

Me would lose the equivalence to the covariantised theory where we set $\Phi=\pi$

S.-R. Fischer. *Integrating curved Yang–Mills gauge theories*, arXiv: 2210.02924, 2022.
S.-R. Fischer. *Geometry of curved Yang–Mills–Higgs gauge theories*, Ph.D. thesis, Institut Camille Jordan [Villeurbanne], France, U. Geneva, Switzerland, 2021; doi: 10.13097/archive-ouverte/unige:152555

New idea!

Idea (Ehresmann connection on P)

Equip $\mathscr G$ with a horizontal distribution $H\mathscr G$ (w.r.t. t). An Ehresmann connection on P is a horizontal distribution HP (w.r.t. π) so that the infinitesimal $\mathscr G$ -action on P restricts

$$\mathsf{H}P \,_{\mathsf{D}\Phi} \times_{\mathsf{D}t} \mathsf{H}\mathscr{G} \to \mathsf{H}P.$$

Invariance then via the modified right-pushforward \mathcal{P}_{g*}

$$r_{g*}(X) := X \cdot Y$$

for all $X \in T_p P$, where $Y \in H_g \mathcal{G}$ is the unique lift of $D_p \Phi(X)$.

- S.-R. Fischer, M. Jalali Farahani, H. Kim, and C. Saemann. Adjusted connections I: Differential cocycles for principal groupoid bundles with connection, arXiv: 2406.16755, 202.
- S.-R. Fischer. Integrating curved Yang-Mills gauge theories, arXiv: 2210.02924, 2022.

New idea!

Idea (Ehresmann connection on P)

Equip $\mathscr G$ with a horizontal distribution $H\mathscr G$ (w.r.t. t). An Ehresmann connection on P is a horizontal distribution HP (w.r.t. π) so that the infinitesimal $\mathscr G$ -action on P restricts

$$\mathsf{H}P _{\mathsf{D}\Phi} \times_{\mathsf{D}t} \mathsf{H}\mathscr{G} \to \mathsf{H}P.$$

Invariance then via the **modified right-pushforward** \mathscr{V}_{g*}

$$r_{g*}(X) := X \cdot Y$$

for all $X \in T_p P$, where $Y \in H_g \mathcal{G}$ is the unique lift of $D_p \Phi(X)$.

- S.-R. Fischer, M. Jalali Farahani, H. Kim, and C. Saemann. Adjusted connections I: Differential cocycles for principal groupoid bundles with connection, arXiv: 2406.16755, 202.
- S.-R. Fischer. Integrating curved Yang-Mills gauge theories, arXiv: 2210.02924, 2022.

& it generalises the previous idea!

Idea (Ehresmann connection on P)

Equip $\mathscr G$ with a horizontal distribution $H\mathscr G$ (w.r.t. t). An Ehresmann connection on P is a horizontal distribution HP (w.r.t. π) so that the infinitesimal $\mathscr G$ -action on P restricts

$$\mathsf{H}P_{\mathsf{D}\Phi} \times_{\mathsf{D}t} \mathsf{H}\mathscr{G} \to \mathsf{H}P.$$

Invariance then via the modified right-pushforward \mathcal{F}_{g*}

$$r_{g*}(X) := X \cdot Y$$

for all $X \in T_p P$, where $Y \in H_g \mathcal{G}$ is the unique lift of $D_p \Phi(X)$.

Remarks

If $D\Phi(X) = 0$, then

$$r_{g*}(X) = X \cdot 0 = \mathsf{D} r_g(X).$$

- S.-R. Fischer, M. Jalali Farahani, H. Kim, and C. Saemann. Adjusted connections I: Differential cocycles for principal groupoid bundles with connection, arXiv: 2406.16755, 202.
- S.-R. Fischer. Integrating curved Yang-Mills gauge theories, arXiv: 2210.02924, 2022.

Idea

HP Ehresmann, then

$$\mathsf{H}P_{\mathsf{D}\Phi} \times_{\mathsf{D}t} \mathsf{H}\mathscr{G} \to \mathsf{H}P.$$

Theorem

Given such an HP, then HS is Cartan,

$$H\mathscr{G}_{Ds}\times_{Dt}H\mathscr{G}\to H\mathscr{G}.$$

Sketch as a proof for LGBs.

W.r.t. parallel transports we have

$$PT^{P}(p \cdot g) = PT^{P}(p) \cdot PT^{\mathscr{G}}(g).$$

- S.-R. Fischer, M. Jalali Farahani, H. Kim, and C. Saemann. Adjusted connections I: Differential cocycles for principal groupoid bundles with connection, arXiv: 2406.16755, 202.
- S.-R. Fischer. Integrating curved Yang-Mills gauge theories, arXiv: 2210.02924, 2022.

Idea

HP Ehresmann, then

$$\mathsf{H}P_{\mathsf{D}\Phi} \times_{\mathsf{D}t} \mathsf{H}\mathscr{G} \to \mathsf{H}P.$$

Theorem

Given such an HP, then H\$\mathcal{G}\$ is Cartan,

$$H\mathscr{G}_{Ds}\times_{Dt}H\mathscr{G}\to H\mathscr{G}.$$

Sketch as a proof for LGBs.

W.r.t. parallel transports we have

$$\mathsf{PT}^P(p \cdot g) = \mathsf{PT}^P(p) \cdot \mathsf{PT}^{\mathscr{G}}(g).$$

- S.-R. Fischer, M. Jalali Farahani, H. Kim, and C. Saemann. Adjusted connections I: Differential cocycles for principal groupoid bundles with connection, arXiv: 2406.16755, 202.
- S.-R. Fischer. Integrating curved Yang-Mills gauge theories, arXiv: 2210.02924, 2022.

Theorem

Given such an HP, then H \mathscr{G} is **Cartan**,

$$\mathsf{H}\mathscr{G}_{\mathsf{D}s} \times_{\mathsf{D}t} \mathsf{H}\mathscr{G} \to \mathsf{H}\mathscr{G}.$$

Sketch as a proof for LGBs.

W.r.t. parallel transports we have

$$\mathsf{PT}^P(p \cdot g) = \mathsf{PT}^P(p) \cdot \mathsf{PT}^{\mathscr{G}}(g),$$

then

$$PT^{P}(p \cdot (gq)) = PT^{P}(p) \cdot PT^{\mathscr{G}}(gq)$$

$$\parallel$$

$$PT^{P}((p \cdot g) \cdot q) = PT^{P}(p) \cdot (PT^{\mathscr{G}}(g) PT^{\mathscr{G}}(q)).$$

- S.-R. Fischer, M. Jalali Farahani, H. Kim, and C. Saemann. Adjusted connections I: Differential cocycles for principal groupoid bundles with connection, arXiv: 2406.16755, 202.
- S.-R. Fischer. Integrating curved Yang-Mills gauge theories, arXiv: 2210.02924, 2022.

Idea

HP Ehresmann, then

$$\mathsf{H}P \,_{\mathsf{D}\Phi} \times_{\mathsf{D}t} \mathsf{H}\mathscr{G} \to \mathsf{H}P.$$

Theorem

Given such an HP, then HG is Cartan,

$$\mathsf{H}\mathscr{G}_{\mathsf{D}s}\times_{\mathsf{D}t}\mathsf{H}\mathscr{G}\to\mathsf{H}\mathscr{G}.$$

Remarks

Vice versa, if $H\mathscr{G}$ is Cartan, then such HP exist.

- S.-R. Fischer, M. Jalali Farahani, H. Kim, and C. Saemann. Adjusted connections I: Differential cocycles for principal groupoid bundles with connection, arXiv: 2406.16755, 202.
- S.-R. Fischer. Integrating curved Yang-Mills gauge theories, arXiv: 2210.02924, 2022.

What else?

Idea

Open a textbook about ordinary gauge theory, and replace:

- Right-pushforward → Modified right-pushforward,
- Adjoint representation → Adjoint representation via Cartan connections (?)
- Generalising the concept of field strength accounting for a possible curvature coming from ${\mathscr G}$

Too much to introduce! (Lie algebroids, Lie algebroid connections, basic curvature, basic connections, and so on...)

Thus, for today: LGBs!

Curved Yang-Mills gauge theory

Remarks

The groupoid is now an LGB $\pi_{\mathscr{G}} \colon \mathscr{G} \to M$ with structural Lie group G.

Gauge invariance requires us to study special Cartan connections:

Definition (Multiplicative Yang-Mills connections)

A connection 1-form $\mu_{\mathscr{G}}$ on the LGB \mathscr{G} is a multiplicative Yang-Mills connection (w.r.t. a $\zeta \in \Omega^2(M; \mathscr{Q})$) if it is a Cartan connection satisfying the generalised Maurer-Cartan equation:

$$\left(d^{\pi_{\mathscr{G}}^* \nabla^{\mathscr{G}}} \mu_{\mathscr{G}} + \frac{1}{2} [\mu_{\mathscr{G}} \wedge \mu_{\mathscr{G}}]_{\pi_{\mathscr{G}}^* \mathscr{Q}} \right) \Big|_{\mathscr{G}} = \operatorname{Ad}_{\mathscr{G}^{-1}} \circ \pi_{\mathscr{G}}^! \zeta \Big|_{\mathscr{G}} - \pi_{\mathscr{G}}^! \zeta \Big|_{\mathscr{G}}$$

for all $g \in \mathcal{G}$, where g is the Lie algebra bundle (LAB) of \mathcal{G} , and $\nabla^{\mathcal{G}}$ is the naturally induced LAB connection.

Remarks

The groupoid is now an LGB $\pi_{\mathscr{G}} : \mathscr{G} \to M$ with structural Lie group G.

Gauge invariance requires us to study special Cartan connections:

Definition (Multiplicative Yang-Mills connections)

A connection 1-form $\mu_{\mathscr{G}}$ on the LGB \mathscr{G} is a multiplicative Yang-Mills connection (w.r.t. a $\zeta \in \Omega^2(M; \mathscr{Q})$) if it is a Cartan connection satisfying the generalised Maurer-Cartan equation:

$$\left. \left(\mathrm{d}^{\pi_{\mathscr{G}}^* \nabla^{\mathscr{G}}} \mu_{\mathscr{G}} + \frac{1}{2} [\mu_{\mathscr{G}} \stackrel{\wedge}{,} \mu_{\mathscr{G}}]_{\pi_{\mathscr{G}}^* \mathscr{G}} \right) \right|_{g} = \mathrm{Ad}_{g^{-1}} \circ \pi_{\mathscr{G}}^! \zeta \big|_{g} - \pi_{\mathscr{G}}^! \zeta \big|_{g}$$

for all $g \in \mathcal{G}$, where g is the Lie algebra bundle (LAB) of \mathcal{G} , and $\nabla^{\mathcal{G}}$ is the naturally induced LAB connection.

Remarks (Closed connection, exact curvature)

$$R_{\nabla^{\mathcal{G}}} = \operatorname{ad} \circ \zeta.$$

Remarks

The groupoid is now an LGB $\pi_{\mathscr{G}} : \mathscr{G} \to M$ with structural Lie group G.

Gauge invariance requires us to study special Cartan connections:

Definition (Multiplicative Yang-Mills connections)

A connection 1-form $\mu_{\mathscr{G}}$ on the LGB \mathscr{G} is a multiplicative Yang-Mills connection (w.r.t. a $\zeta \in \Omega^2(M; \mathscr{Q})$) if it is a Cartan connection satisfying the generalised Maurer-Cartan equation:

$$\left. \left(\mathrm{d}^{\pi_{\mathscr{G}}^* \nabla^{\mathscr{G}}} \mu_{\mathscr{G}} + \frac{1}{2} [\mu_{\mathscr{G}} \stackrel{\wedge}{,} \mu_{\mathscr{G}}]_{\pi_{\mathscr{G}}^* \mathscr{G}} \right) \right|_{g} = \mathrm{Ad}_{g^{-1}} \circ \pi_{\mathscr{G}}^! \zeta \big|_{g} - \pi_{\mathscr{G}}^! \zeta \big|_{g}$$

for all $g \in \mathcal{G}$, where g is the Lie algebra bundle (LAB) of \mathcal{G} , and $\nabla^{\mathcal{G}}$ is the naturally induced LAB connection.

Remarks (Closed connection, exact curvature)

$$R_{\nabla^{\mathcal{G}}} = \operatorname{ad} \circ \zeta.$$

Definition

The field strength F of an Ehresmann connection $A \in \Omega^1(P; \pi^*g)$ on $\pi: P \to M$ is defined by

$$F := \mathrm{d}^{\pi^* \nabla^{\mathcal{G}}} A + \frac{1}{2} [A \stackrel{\wedge}{,} A]_{\pi^* \mathscr{Q}} + \pi^! \zeta.$$

Theorem

By contracting F with an ad-invariant scalar product we achieve a gauge-invariant Lagrangian $\mathcal{L}[A]$, that is,

$$\mathscr{L}[L^!A] = \mathscr{L}[A$$

for all $L \in Aut(P)$

Definition

The field strength F of an Ehresmann connection $A \in \Omega^1(P; \pi^*g)$ on $\pi: P \to M$ is defined by

$$F := \mathrm{d}^{\pi^* \nabla^{\mathscr{G}}} A + \frac{1}{2} [A \stackrel{\wedge}{,} A]_{\pi^* \mathscr{G}} + \pi^! \zeta.$$

Theorem

By contracting F with an ad-invariant scalar product we achieve a gauge-invariant Lagrangian $\mathcal{L}[A]$, that is,

$$\mathscr{L}[L^!A] = \mathscr{L}[A]$$

for all $L \in Aut(P)$.

Examples

Idea (Cooking recipe)

- 1. Find \mathscr{G} with curved multiplicative Yang-Mills connection, which cannot be flattened by field redefinitions.
- 2. Find *P*.

Then define the field strength F and the Lagrangian $\mathscr L$ as before.

 \Rightarrow New theory \odot

Remarks

- 01: By finding \mathscr{G} which do not admit flat connections at all we can avoid introducing field redefinitions
- @2: By setting $P = \mathscr{G}$ ("trivial" principal bundle) we can avoid this step, too.

Idea (Cooking recipe)

- 1. Find \mathscr{G} with curved multiplicative Yang-Mills connection, which cannot be flattened by field redefinitions.
- 2. Find *P*.

Then define the field strength F and the Lagrangian $\mathscr L$ as before.

 \Rightarrow New theory \odot

Remarks

- @1: By finding $\mathscr G$ which do not admit flat connections at all we can avoid introducing field redefinitions
- 02: By setting $P = \mathcal{G}$ ("trivial" principal bundle) we can avoid this step, too.

Idea

Let us assume that the structural Lie group G is semisimple, then:

Theorem

There is a unique (up to isomorphism) principal G-bundle Q such that

$$\mathscr{G} = (Q \times G)/G,$$

multiplicative Yang-Mills connections on & are precisely associated connections, thus in 1:1 correspondence to Ehresmann connections on Q, and ζ is the corresponding curvature on Q.

Corollary

There are only curved multiplicative Yang-Mills connections on $\mathscr G$ if and only if Q is not flat.

Example

Hopf fibration $Q := \mathbb{S}^7 \to \mathbb{S}^4$,

$$\mathscr{G} = (Q \times SU(2))/SU(2).$$

Remarks

Some technical details:

- This is stable under field redefinitions.
- This can be relaxed to \mathscr{G} with a trivial centre, using a nice geometric interpretation via singular foliations. However, dynamics of gauge theory require Ad-invariance...

See Camille's talk on Friday ©

Corollary

There are only curved multiplicative Yang-Mills connections on G if and only if Q is not flat.

Example

Hopf fibration $Q := \mathbb{S}^7 \to \mathbb{S}^4$.

$$\mathscr{G} = (Q \times SU(2))/SU(2).$$

Remarks

Some technical details:

- This is stable under field redefinitions.
- This can be relaxed to S with a trivial centre, using a nice geometric interpretation via singular foliations. However, dynamics of gauge theory require Ad-invariance...

See Camille's talk on Friday ©

About Lie groupoids...

Idea

Assume that G is semisimple **and** acts faithfully on \mathbb{R}^d fixing 0. Then \mathscr{G} acts faithfully on

$$N := \left(Q \times \mathbb{R}^d\right) / G$$
,

giving rise to an action groupoid structure on $\phi^*\mathscr{G}$ $(\phi\colon N o M)$

$$\phi^* \mathcal{G}$$

$$t \iiint_{S} s$$

$$N$$

Theorem

The pullback of the multiplicative Yang-Mills connection on $\phi^*\mathcal{G}$ is flat up to field redefinitions if and only if Q is flat.

About Lie groupoids...

Idea

Assume that G is semisimple **and** acts faithfully on \mathbb{R}^d fixing 0. Then \mathscr{G} acts faithfully on

$$N := \left(Q \times \mathbb{R}^d\right) / G$$
,

giving rise to an action groupoid structure on $\phi^*\mathscr{G}$ $(\phi\colon N o M)$

$$\phi^*\mathcal{G}$$

$$t \bigcup_{N} s$$

$$N$$

Theorem

The pullback of the multiplicative Yang-Mills connection on $\phi^*\mathcal{G}$ is flat up to field redefinitions if and only if Q is flat.

Theorem

The pullback of the multiplicative Yang-Mills connection on $\phi^*\mathcal{G}$ is flat up to field redefinitions if and only if Q is flat.

Remarks

Other technical details:

- Also stable under field redefinitions!
- Here semi-simplicity is rather important.

Example

Again Q the Hopf fibration $\mathbb{S}^7 \to \mathbb{S}^4$, then naturally choose $\mathbb{R}^d = \mathbb{C}^2$.

Theorem

The pullback of the multiplicative Yang-Mills connection on $\phi^*\mathcal{G}$ is flat up to field redefinitions if and only if Q is flat.

Remarks

Other technical details:

- Also stable under field redefinitions!
- Here semi-simplicity is rather important.

Example

Again Q the Hopf fibration $\mathbb{S}^7 \to \mathbb{S}^4$, then naturally choose $\mathbb{R}^d = \mathbb{C}^2$.

Outlook

- $\,\blacksquare\,$ More applications? So far: Singular foliations & Symmetry Breaking
- Local examples?

Thank you!

A quick funny example, again by \mathbb{S}^7

Example

The Lie groupoid \mathscr{G} given as the pair groupoid of \mathbb{S}^7 leads to descriptions of curved Yang-Mills-Higgs theories, which cannot be described in an ordinary way due to the lack of non-associativity on \mathbb{S}^7 .

S.-R. Fischer. Geometry of curved Yang-Mills-Higgs gauge theories, Ph.D. thesis, Institut Camille Jordan [Villeurbanne], France, U. Geneva, Switzerland, 2021; doi: 10.13097/archive-ouverte/unige:152555