Enhancing Stock Market Prediction using Extended News and Transformer Models

Team Members:

Muhammed Mustafa 22101336 Ramez Ezzat 22100506

Noureen Muhammed 22101109 Rokaia Islam 22101084

Introduction

- Why predict stock market trends?
- Traditional methods:
 - o Technical analysis: Based on past stock prices/volumes.
 - o Fundamental analysis: Based on company data.
- Problems with Traditional Methods:
 - o Manual, slow.
 - o Miss important external (news) events.

Problem with Previous Work

- Headline sentiment is too simplistic.
- Manual feature engineering limits model learning.
- Cannot fully capture market complexity.

Research Paper Solution

- Full article embeddings (FinBERT + TinyBERT, instead of headlines only).
- 1D convolutions on raw financial metrics (no manual indicators).
- LoRA fine-tuning for lightweight adaptation.

Baseline vs TinyBERT+LoRA

Metric	StockFormer (Baseline)	TinyBERT+LoRA (Research Paper)
R ²	0.9956	0.9986
Directional Accuracy	57.66%	62.50%
Normalized MSE	0.004659	0.000113

Our Project Plan

- **Re-implement** TinyBERT+LoRA baseline.
- Expand dataset: Use 12+ months of news and stock data. (if possible)
- Improve models: Try DeBERTa / DistilBERT / Ensemble models.
- Feature fusion: Smarter integration of text and stock signals.
- Adding reinforcement learning (RL) for dynamic decision-making.

Our Innovation

- Extend history window: 20 days instead of 9.
- Use larger pre-trained models (DeBERTa / DistilBERT).
- Optional: **Ensemble** multiple transformer models.
- Optional: Add new technical indicators (MACD, RSI, etc.)

Planned Steps

- 1. Rebuild original TinyBERT+LoRA model.
- 2. Train and evaluate using 5-month dataset (fair comparison).
- 3. Extend dataset to 12 months.
- 4. Train improved models.
- 5. Analyze and compare results.

Dataset Details

- News Sources: Bloomberg, CNBC, Yahoo Finance.
- Stocks: FAANG (Meta, Amazon, Netflix, Google, Apple).
- Stock Metrics: Open, High, Low, Close, Volume from Yahoo Finance.

Model Architecture

- Baseline:
 - TinyBERT + 1D Convolutions + LoRA.
- Innovation:
 - o Longer news history input.
 - o DeBERTa or DistilBERT.(for speed and more accuracy)
 - o Potential ensemble learning.
- RL agent for decision-making to decide.
 - o Buy/Hold/Sell based on model predictions.
 - o Risk management (stop-loss, position sizing).

Evaluation Metrics

- MSE (Mean Squared Error)
- R² Score (Coefficient of Determination)

- Directional Accuracy (price up/down)
- Optional: Mean Absolute Error (MAE)

Team Roles

Team Member	Task
Member 1	Rebuild baseline TinyBERT+LoRA model
Member 2	Extend dataset (download extra articles, stock data)
Member 3	Build and train improved models (DeBERTa, Ensemble)
Member 4	Write and format project report (LaTeX)

Timeline

Week	Task
Week 1	Baseline model + dataset extension
Week 2	Train innovative models + experiment tracking
Week 3	Analysis, visualizations, error analysis
Week 4	Finalize report and code submission

Expected Results

- Higher prediction accuracy vs baseline.
- More stable performance over longer periods.
- Potential opportunity for conference publication (top teams).

Conclusion

- We combine data expansion, stronger models, and smarter feature engineering.
- Targeting maximum marks in innovation, analysis, and execution.
- Clear experiments, effective teamwork, and professional reporting.