Detekcija reprezentativnih obeležja

 Cilj: identifikovati značajna obeležja na slici, odnosno važne lokalne oblike koji će nam pomoći da prepoznamo oblike na slici

- Primeri ovakvih obeležja:
 - Ivice
 - Geometrijski oblici (linije, kružnice, lukovi,...)
 - Uglovi
 - Domenski specifični oblici
 - Povezani regioni

- Cilj: konvertovati 2D sliku u skup krivih
 - Ovo nam omogućava da pronađemo istaknuta obeležja scene
 - Kompaktnija reprezentacija od piksela
- Pogled iz teorije informacija (information therory): ivice kodiraju promenu, a promene su teške za predviđanje. Zato, ivice efikasno kodiraju sliku

Ivice se na slici pojavljuju iz različitih razloga

Reflectance change: appearance information, texture

Change in surface orientation: shape

Depth discontinuity: object boundary

Cast shadows

Kontrast

Bolje je koristiti lokalna obeležja za detekciju ivica

Detekcija ivica bazirana na intenzitetu piksela

- Slike smo predstavili kao funkciju intenziteta piksela
 - Ivice su kao oštre litice
 - To su mesta na slici gde ima velikih promena intenziteta na susednim pikselima

Detekcija ivica bazirana na intenzitetu piksela

- Pri detekciji se oslanjamo samo na intenzitet ovo nije savršeno
- Ako bi se dva objekta istog intenziteta preklapala, ovo bi nas sprečilo da detektujemo ivicu
 - Morali bismo da koristimo sofisticiranija obeležja poput teksture ili boje
- Međutim, veoma retko se dešava da su dva objekta na slici baš istog intenziteta, pa je intenzitet dobar indikator ivica

- Ivica je mesto brze promene funkcije intenziteta
- Osnovna ideja: potražiti susedstvo sa značajnim znacima promene

81	82	26	24
82	33	25	25
81	82	26	24

Kako definisati susedstvo?

Kako detektovati promene?

Izvod funkcije oslikava brzinu promene funkcije

izvod predstavlja nagib tangente na funkciju – u delovima gde se ona naglo menja, nagib je velik, dok je na delovima gde se sporo menja (blizu lokalnih

ekstrema) nagib blizu 0

• Dakle, dobra indikacija ivice (nagle promene intenziteta piksela) jeste izvod funkcije intenziteta

Gradijent slike

Operator gradijenta

$$g_{x}(n_{1}, n_{2}) = \begin{bmatrix} \frac{\partial x(n_{1}, n_{2})}{\partial n_{1}} \\ \frac{\partial x(n_{1}, n_{2})}{\partial n_{2}} \end{bmatrix} = \begin{bmatrix} g_{1}(n_{1}, n_{2}) \\ g_{2}(n_{1}, n_{2}) \end{bmatrix}$$

Magnituda gradijenta:

$$M(n_1, n_2) = |g_x(n_1, n_2)|$$

$$= \sqrt{(g_1(n_1, n_2))^2 + (g_2(n_1, n_2))^2}$$

$$\theta = \tan^{-1} \left[\frac{g_2(n_1, n_2)}{g_1(n_1, n_2)} \right]$$

 Gradijent slike ukazuje na smer najveće promene u intenzitetu piksela

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

$$\nabla f = \left[0, \frac{\partial f}{\partial y}\right]$$

• Smer gradijenta se računa kao $\theta = \operatorname{atan}\left(\frac{\partial I}{\partial x}/\frac{\partial I}{\partial y}\right)$ - smer gradijenta je normalan na ivicu

Magnituda gradijenta je "snaga" ivice

$$\|\nabla f\| = \sqrt{\left(\frac{\partial I}{\partial x}\right)^2 + \left(\frac{\partial I}{\partial y}\right)^2}$$

Često koristimo kvadratni gradijent da izbegnemo računanje korena

Blurred

Gradient Magnitude

Postupak

1. Primenićemo diferencijalni operator

(kernel koji primenjen na sliku vraća funkciju izvoda te slike)

Idealno, rezultat je 0 tamo gde nema ivice, a velika vrednost na mestima velike promene gradijenta

Postupak

2. Primenićemo prag na dobijenu funkciju izvoda da selektujemo piksele ivice

Detekcija ivica – konačne razlike

- Problem: gradijent je definisan za kontinualne funkcije, a funkcija slike je definisana za niz diskretnih vrednosti (određen rezolucijom)
- Definicija parcijalnog izvoda za 2D funkciju:

$$\frac{\partial I(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

 U slučaju diskretnih podataka, aproksimiraćemo ovu formulu metodom konačnih razlika:

$$\frac{\partial I(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1} = f(x+1,y) - f(x,y)$$

Detekcija ivica – Roberts Cross

 Određivanje ivica metodom konačnih razlika možemo sprovesti pomoću konvolutivnih filtera:

$$G_x = f(x + 1, y) - f(x, y)$$

 $G_y = f(x, y) - f(x, y + 1)$

Roberts Cross convolution kernels

- Kerneli su jednaki, samo zarotirani za 90°
- Iako ovo ne odgovara tačno izvodu po x i y, odgovara izvodu po diagonalnim pravcima
- Kerneli će imati maksimalan response na ivice pod uglom od 45°

Roberts Cross

Roberts Cross convolution kernels

- Kerneli se primenjuju odvojeno na ulaznu sliku
 - odvojeno se računaju komponente gradijenta za svaki pravac
- Zatim se rezultat kombinuju da se pronađe magnituda izvoda:

$$|G| = \sqrt{G_x^2 + G_y^2}$$

(tipično aproksimiramo sa $|G| = |G_x| + |G_y|$ jer je brže za računanje)

• Ugao/orijentacija ivice se računa kao $\theta = an rac{G_\chi}{G_y} - rac{3\pi}{4}$

$$|G| = \sqrt{G_x^2 + G_y^2}$$
 $|G| = |G_x| + |G_y|$

original image

 $\begin{array}{c|c} +1 & & \\ & -1 & \\ & g_1 & & \end{array}$

Roberts Cross – prednosti i mane

Mali kernel

- Brz: za izlaz koristimo samo 4 piksela ulaza i koristimo samo + i –
- Nema parametara koje treba podešavati

- Veoma osetljiv na šum:
 posmatra razliku na 1
 pikselu
- Slab odziv na ivice koje nisu oštre

Mala razlika

 Nejasno koji izlazni piksel odgovara kom ulaznom pikselu (slika gradijenta pomerena za pola piksela i po x i y u odnosu na ulaznu)

Roberts Cross – osetljivost na šum

(Da bi slika bila jasnija, izlaz operatora je pomnožen sa 5)

Rešenje

Ideja: samo su najsnažnije ivice pouzdane - primenimo prag da dobijemo binarnu sliku

Roberts Cross – osetljivost na šum

- Možemo ga koristiti za detekciju depth discontinuity
 - Distanca objekta od aparata za snimanje je enkodirana intenzitetom piksela
 - Operator rezultuje linijom velikog intenziteta na granicama slike

Original

Slabija percepcija depth discontinuity unutar objekta

Manji prag (20) pomaže

Ali ako dodamo šum i on će biti uključen u izlaz

Gaussian smoothing

Šum možemo rešiti izglađivanjem (smoothing)

- Često se koriste 3×3 ili 5×5 Gausovi filteri
- Značajno je smanjen šum, ali slika je smanjene oštrine

Efekat izglađivanja na Roberts Cross

Pretprocesiranje izglađivanjem je dovelo do boljeg razlikovanja ivica od šuma

Original

Debljina ivice ukazuje na nesigurnost gde se tačna ivica nalazi

5 × 5 Gaussian filter

Roberts Cross – oštre ivice

- Najbolje reaguje na oštre ivice
- Ovo je primer gde ivice nisu tako oštre

Veoma slabe ivice

Kao posledica, ne možemo ih razdvojiti od šuma

Roberts Cross

- Uticaj oblika ivica (intenzitet svih ivica na originalu je jednak)
- Različita širina i orijentacija ivica utiču da rezultati veoma variraju

Sobel

- Sličan je Roberts-Cross operatoru
- Sastoji se od dva kernela koji su jednaki, samo je jedan zarotiran za 90° :

$$G_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}, G_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

- Kerneli su dizajnirani da maksimalno reaguju na ivice koje su vertikalne i horizontalne
- Primenjujemo jedan pa drugi kernel da dobijemo dva rezultata koje potom kombinujemo:

•
$$|G| = \sqrt{G_x^2 + G_y^2}$$
, $\theta = \arctan(G_y/G_x)$

Sobel – prednosti i mane

- Sporiji je od Roberts Cross
- Veći kernel "izglađuje" ulaznu sliku više od Roberts Cross operatora pa je Sobel manje osetljiv na šum
- Prirodne ivice često rezultuju izlaznim ivicama koje su par piksela široke zbog efekta "izglađivanja"
 - Možete primeniti thinnig operator (sličan eroziji/otvaranju)

Sobel i Roberts Cross

- Šum koji utiče na Roberts Cross je i ovde prisutan, ali je njegov intenzitet slabiji u odnosu na stvarne ivice
 - Ostavlja mogućnost da se boljim odabirom praga možemo rešiti šuma
- Primetite da su rezultujuće ivice deblje u odnosu na Roberts Cross
 - Posledica izglađivanja (smoothing)

Sobel

- Još nismo sasvim rešili problem kada imamo mnogo finijih varijacija usred dubine
 - Menjanjem praga ne možemo sasvim ukloniti šum
- Canny operator bi radio bolje za ovaj problem

Prewitt

- Veoma sličan Sobelovom operatoru, malo drugačiji kerneli
- Koristi se za detekciju vertikalnih i horizontalnih ivica

$$G_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}, G_{y} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix},$$

Canny

- Dizajniran da bude optimalan detektor ivica
- Dobar detektor ivica:
 - Dobra detekcija reaguje na ivice a ne na šum
 - Dobra lokalizacija detektovana ivica je blizu stvarne. Odgovor je minimalan– jedan piksel po ivici
- Imamo nagodbu detekcije/lokalizacije
 - Više izglađivanja pobojšava detekciju, ali lokalizaciju čini gorom

Canny – postupak

- 1. Uklanjanje šuma
 - izglađivanje (smoothing) Gausovim operatorom
- 2. Računanje magnitude i orijentacije gradijenta
 - Jednostavan operator poput Roberts Cross
 - Ivice na ulaznoj slici će rezultovati grebenima na izlaznoj slici
- 3. Non-maxima suppression
 - Obezbeđuje minimalan odgovor tako što "istanjuje" linije izlaza
 - Ivica se nalazi tamo gde je gradijent najveći
 - Algoritam ide po grebenima (ridge tracker) i postavlja na 0 sve piksele koji nisu na vrhu grebena
- 4. Primena dva praga

Canny: 1. korak

Canny: 2. korak

Računanje intenziteta gradijenata

 $G_{\mathcal{X}}$

Canny: 2. korak

• Računanje magnitude i uglova

Magnituda

Canny: 3. korak – Non-maximum supression

- Konačna slika bi trebala imati tanke ivice
- Pronalazi se piksel maksimalne vrednosti na ivici
- Piksel q ima veći intenzitet od piksela p i r koji imaju istu orijentaciju (ugao) gradijenta
- ullet q čuvamo, a p i r uklanjamo
- Dakle, koristimo sve informacije o gradijentu: magnitudu i ugao

Canny: 3. korak – Non-maximum supression

Originalna magnituda

Non-maximum supression

Non-maxima supression

- Od prethodnog koraka dobićemo tanku ivicu, ali možda ne i konekovanu
 - Ovo je generalan problem sa algoritmima za detekciju ivica baziranim na gradijentu
- Prisutan je i šum

Problemi se rešavaju primenom double thresholding

Double thresholding

- Pragovi T_1 i T_2 $(T_1 > T_2)$
 - Sve iznad T_1 je "jaka" ivica
 - Sve između T_1 i T_2 je "slaba" ivica (postoji određena nesigurnost jesu li ili nisu ivice)
 - Pikseli ispod T_2 nisu ivice

Double thresholding

- Koje slabe ivice su zapravo ivice?
- Edge tracking:
 - Slabe ivice koje su povezane sa jakim ivicama su stvarne ivice
 - Slabe ivice koje nisu povezane sa jakim ivicama se uklanjaju

- Tri parametra: širina Gausovog kernela, T_1 i T_2
- Veća širina Gausovog kernela → manja osetljivost na šum, ali se gube finiji detalji
- ullet Za dobre rezultate, obično biramo visoko T_1 i nisko T_2
- ullet Postavka T_2 na previsoku vrednost može rezultovati da ivice sa šumom budu razbijene u fragmente
- ullet Postavka T_1 na prenisku vrednost može rezultovati zadržavanjem lažnih fragmenata ivica u izlazu

- Problem su Y-junctions (mesta gde se tri grebena sastaju u gradijentu)
 - Dešava se kada je linija delimično zaklonjena drugim segmentom
 - Dve linije će ispasti jedan segment a treća neće biti sasvim povezana sa njima
 - Može se rešti uključivanjem ovog modela u ridge tracker

Gausov kernel sa $\sigma=1$, $T_1=255$, $T_2=1$

Većina važnih ivica je detektovana, ali još ima previše detalja za dalju obradu

U donjem levom uglu ogledala postoji *Y-junction* problem

Previsok $T_2(220)$ - ivice su rasparčanije. Vertikalne ivice na zidu nisu detektovane celom dužinom

Prenizak $T_1(128)$ - mnoge slabe ivice detektovane sa fragmentima koji predstavljaju šum Detalji kose su takođe

uhvaćeni

 $T_1=128, \sigma=2$ Ukonjeni detalji zida, ali najsnažnije ivice su tu, glatkije su i ima manje šuma

Gausov kernel sa $\sigma=1$, $T_1=$ Gausov kernel sa $\sigma=1.8$, $T_1=$ $255, T_2 = 1$

Mnogo detalja

Ali nije dobro ako smo zainteresovani samo za spoljne ivice

 $255, T_2 = 1$

Neke ivice koje su nastale usled promene orijentacije površine su ostale, ali su slabije od okvira – regulišemo pragovima

 Gausov filter može da posluži za dve svrhe: kontrola nivoa detalja i uklanjanje šuma

Gausov kernel sa $\sigma = 1.8$, $T_1 = 255$, $T_2 = 1$

Neke ivice koje su nastale usled promene orijentacije površine su ostale, ali su slabije od okvira – regulišemo pragovima

Skaliranje prethodne slike za 0.25 i onda primena Canny sa $\sigma = 1.8, T_1 = 200, T_2 = 1$

Biranje operatora

- Kao što smo videli, postoji veliki broj konvolutivnih filtera koji omogućavaju detekciju ivica
 - Ideja je da konstruišemo filter koji je osetljiv na velike gradijente na slici, a vraća nule u uniformnim regijama

Orijentacija ivica

- Geometrija operatora određuje karakterističan pravac ivica na koje je operator posebno osetljiv
- Operatori se mogu optimizovati da traže horizontalne, vertikalne ili dijagonalne linije

• Šum

- Detekcija ivica je teška na slikama sa šumom budući da i objekat na slici i šum stvaraju diskontinuitet na slici
- Pokušaju da se šum smanji uglavnom rezultuju zamućenim ivicama
- Operatori koji se koriste na slikama sa šumom su tipično veći (uprosečavanjem više podataka smanjuju uticaj piksela šuma). Nedostatak ovog pristupa je manje tačna lokalizacija detektovanih ivica

Biranje operatora

Struktura ivica

- Nemaju sve ivice nagao prelaz intenziteta
- Npr. loš fokus može izazvati postepen prelaz intenziteta i prema tome moramo birati operator
- Postoje novije wawelet-based tehnike koje su u mogućnosti da okarakterišu prirodu tranzicije za svaku ivicu
 - Npr. mogu da razlikuju ivice povezane sa kosom od ivica povezanih sa licem

Zero-crossing operatori

