

Моделирование конкурентных стратегий гетерогенных фирм с помощью обучения с подкреплением

Выполнил: Перепелкин Владимир Андреевич БЭК205 Научный руководитель: Пильник Николай Петрович

R Содержание

- 1. Введение
- 2. Обзор литературы
- 3. Агентная модель
- 4. Обучение модели
- 5. Эксперименты
- 6. Итоги
- 7. Вопросы и ответы

Проблемы агентного моделирования в экономике:

- Недостаток микроэкономических оснований.
- Большое количество гиперпараметров.
- Задание правил поведения агентов извне. Они могут быть неадекватными их целям в конкретной среде. Это решается эндогенизацией поведения агентов по отношению к среде с помощью обучения с подкреплением.
- Производственный сектор экономики, как правило, довольно сильно упрощается.

Цель работы: разработка агентной модели многоотраслевой экономики несовершенной конкуренции с фирмами, политика которых вырабатывается с помощью обучения с подкреплением, а также последующий анализ динамики развития агентной модели и поведения фирм.

Обзор литературы

Обучение с подкреплением для моделирования производственной экономики

• Micro-Founded General Equilibrium Models with Many Agents using Deep Reinforcement Learning (Curry и др., 2022).

Переменные управления фирмы — зарплаты w, цены p, Δk Производственные функции: $Y_{i,t} = A_i k_{i,t}^{1-\alpha} L_{i,t}^{\alpha}$ Формула для изменения капитала: $k_{i,t+1} = k_{i,t} + \Delta k_{i,t}$

• **ABIDES-Economist** (2024, февраль). (Dwarakanath и др., 2024) Объёмы производства зависят от случайного экзогенного фактора $\varepsilon_{t,j}$

$$\epsilon_{t,j} = (\epsilon_{t-1,j})^{\rho_j} \exp(\varepsilon_{t,j})$$
$$y_{t,j} = \epsilon_{t,j} (L_{t,j})^{\alpha_j}$$

• Rational macro ABM (2024, май). (Brusatin и др., 2024)

Два типа агентов: рациональные и следующие тренду.

Две отрасли: средства производства и предметы потребления.

Переменные управления фирм — $Y_{i,t}^*, P_{i,t}$.

Производственные функции: $Y_{i,t} = \min(\alpha_N N_{i,t}, \alpha_K K_{i,t})$

Предметы потребления не хранятся на рынке больше одного периода.

Характеристики рынка	Обозначение
Количество фирм	n
Количество отраслей	k
Матрица цен	$P \in \mathbb{R}^{n \times k}$
Матрица объёмов товаров	$V \in \mathbb{R}^{n imes k}$

Характеристика фирмы	Обозначение
Денежные ресурсы	m
Срок жизни основного капитала	d
Основной капитал (лимит)	$\mathcal{K} = \sum_{ au = t-d}^t \mathcal{K}_ au$
Производственная функция	$f_{prod}(ec{x}_{in},\mathcal{K}) =$
	$= min(f_{prod}(ec{x}_{in}), \mathcal{K}) ightarrow ec{x}_{out}$
Инвестиционная функция	$f_{invest}(ec{x}_{in}) ightarrow \mathcal{K}_{new}$
Политика	$\pi(observation) o actions$

- 1. Получение наблюдения. Фирма η получает наблюдение $o_{\eta} = (P, V, \vec{res}_{\eta}, m_{\eta}, \mathcal{K}_{\eta})$, соответствующее текущему состоянию среды.
- 2. Получение параметров действий. Фирма применяет свою текущую политику к наблюдению и семплирует параметры действий:

$$\pi_{\eta}(o_{\eta})
ightarrow (A^{buy}_{\eta}, ar{a}^{prod}_{\eta}, ar{a}^{invest}_{\eta}, ar{a}^{sale}_{\eta}, ar{a}^{prices}_{\eta})$$

3. Действия.

Алгоритм. Ход фирмы ч.1

Покупка товаров на рынке

1:
$$V_{i,j}^{bought} \leftarrow \min\{m_{\eta} \cdot \frac{A_{i,j}^{buy}}{P_{i,i}}, V_{i,j}\}$$

2:
$$m_n \leftarrow m_n - \operatorname{tr}(P^T V^{bought})$$

3:
$$m_i \leftarrow m_i + \langle V_i^{bought}, P_i \rangle$$

4:
$$\vec{res}_{i}^{\eta} \leftarrow \vec{res}_{i}^{\eta} + \sum_{i}^{k} V_{i,i}^{bought}$$

Алгоритм. Ход фирмы ч.2

Инвестиции

5:
$$\vec{x}_{invest} \leftarrow \vec{res} \odot \vec{a}^{invest}$$

6:
$$\mathcal{K}_t^{\eta} \leftarrow f_{invest}^{\eta}(\vec{x}_{invest})$$

7:
$$\mathcal{K}^{\eta} \leftarrow \mathcal{K}^{\eta} + \mathcal{K}^{\eta}_{t}$$

8:
$$\vec{res}^{\eta} \leftarrow \vec{res}^{\eta} - \vec{x}_{invest}$$

Производство товаров

9:
$$\vec{x}_{in} \leftarrow r\vec{e}s \odot a_{prod}^{use}$$

10:
$$\vec{x}_{out} \leftarrow f_{prod}^{\eta}(\vec{x}_{in})$$

11:
$$\vec{res}^{\eta} \leftarrow \vec{res}^{\eta} + \vec{x}_{out} - \vec{x}_{in}$$

Выставление товаров на рынок

12:
$$\vec{x}_{sale} \leftarrow r\vec{e}s \odot a^{sale}$$

13:
$$V_{\eta} \leftarrow V_{\eta} + \vec{x}_{\mathsf{sale}}$$

14:
$$\vec{res}^{\eta} \leftarrow \vec{res}^{\eta} - \vec{x}_{sale}$$

Назначение цен и амортизация

15:
$$P_{\eta} \leftarrow a^{prices} \cdot (p_{max} - p_{min}) + p_{min}$$

16:
$$\mathcal{K}^{\eta} \leftarrow \sum_{\tau=t-d}^{t} \mathcal{K}^{\eta}_{\tau}$$

Определение резервов для инвестиций
 Производство основного капитала

⊳ Обновление лимитов

⊳ Обновление резервов

⊳ Определение резервов для производства

⊳ Производство ресурсов

Обновление резервов

⊳ Определение резервов, идущих на рынок

⊳ Приращение на рынке

⊳ Обновление резервов

⊳ Изменение цен на рынке

Изнашивание основного капитала

Рис.: Архитектура централизованного критика. $\phi = (W_1, b_1, W_2, b_2)$

Алгоритм — Multi-Agent Proximal Policy Optimization (Schulman и др., 2017, Yu и др., 2022, Lowe и др., 2020).

- Централизованный критик $V(o_1, \ldots, o_n; \phi)$.
- Децентрализованные акторы $\pi_1(o_1; \theta_1), \dots, \pi_n(o_n; \theta_n)$.

Функция награды. Задача агента — максимизация $\mathbb{E}\left(\sum_{t=1}^{\infty} r_t \gamma^{t-1}\right)$.

• Производственная

$$R_t^{prod} = \log\left(\epsilon + \sum_{j=1}^k f^{prod}(\vec{x_{in}})_j\right)$$

• Финансовая

$$R_t^{fin} = \text{revenue}_{t+1} - \text{costs}_t$$

• Смешанная

$$R_t^{mix} = R_t^{fin} + \nu \cdot R_t^{prod}$$

Эксперимент 1. Обучение модели. «Производство, 2 симметричные отрасли»

Таблица: Функции фирм в эксперименте 1

Фирма	f ^{prod}	f ^{invest}
1	$(0,2x_1)$	$2\min(x_1,x_2)$
2	$(2x_2,0)$	$2\min(x_1,x_2)$

Таблица: Параметры эксперимента 1

Параметр	Значение
d (срок жизни \mathcal{K})	2
Начальные лимиты	2
Начальные резервы	(10, 10)
Начальные цены	50
Начальные финансы	500
Интервал цен	$p \in [1, 100]$
Итераций	32
Функция награды	R ^{prod}
Тип данных	int64

Эксперимент 1.

Динамика среды. «Производство, 2 симметричные отрасли»

Политика фирм. «Производство, 2 симметричные отрасли»

Рис.: Параметры действий фирмы 1

Эксперимент 2.

Обучение модели. «Производство и финансы, 2 симметричные отрасли»

Таблица: Функции фирм в эксперименте 2

Фирма	f ^{prod}	f ^{invest}
1	$(0,2x_1)$	$2\min(x_1,x_2)$
2	$(2x_2,0)$	$2\min(x_1,x_2)$

Таблица: Параметры эксперимента 2

Параметр	Значение
d (срок жизни \mathcal{K})	2
Начальные лимиты	2
Начальные резервы	(10, 10)
Начальные цены	50
Начальные финансы	500
Интервал цен	$p \in [1, 100]$
Итераций	32
Функция награды	R ^{mix}
Тип данных	int64

Эксперимент 2.

Динамика среды. «Производство и финансы, 2 симметричные отрасли»

Политика фирм. «Производство и финансы, 2 симметричные отрасли»

0.2

0.4

0.6

0.8

Рис.: Параметры действий фирмы 2

Эксперимент 3

Обучение модели. «Производство и финансы, 3 отрасли»

Таблица: Функции фирм в эксперименте 3

Фирма	f ^{prod}	f ^{invest}
1	$(3 \min(x_2, x_3), 0, 0)$	<i>X</i> 3
2	$(0,3\min(x_1,x_3),0)$	<i>X</i> 3
3	$(0,0,3\min(x_1,x_2))$	<i>X</i> 3

Таблица: Параметры эксперимента 3

Параметр	Значение
d (срок жизни \mathcal{K})	2
Начальные лимиты	2
Начальные резервы	(10, 10)
Начальные цены	50
Начальные финансы	500
Интервал цен	$p \in [1, 100]$
Итераций	32
Функция награды	R ^{mix}
Тип данных	int64

Эксперимент 3

. Динамика среды. «Производство и финансы, 3 отрасли»

Синергетические эффекты:

- Цены отражают дефицитность согласно производственным технологиям
- Ускоренный рост отрасли, производящей ресурсы для основного капитала
- Внутриотраслевая конкуренция \Rightarrow фирмы устанавливают приблизительно одинаковые цены
- Переток денежных ресурсов от конкурентной отрасли к монополии

Параметры политик фирм:

- При усреднении, как правило, меняются несильно от эпохи к эпохе ⇒ агрегированные параметры действий можно описать константой или простым уравнением динамики
- Ценовая политика фирм иногда не соответствовала традиционным экономическим теориям. Фирмы могут держать высокие цены для предотвращения ошибок со стороны контрагентов.

- Изменение архитектура рынка. Текущая архитектура рынка не подходит для большого числа агентов.
- Добавление других видов агентов. Государство, банки, потребители.
- Адаптация модели для регулирования: данный подход позволяет понять, какие политики могут возникнуть у фирм в той или иной среде ⇒ можно использовать для выработки оптимальных механизмов регулирования хозяйственной деятельности.

Моделирование конкурентных стратегий гетерогенных фирм с помощью обучения с подкреплением

Выполнил: Перепелкин Владимир Андреевич БЭК205 Научный руководитель: Пильник Николай Петрович

Литература

Brusatin, S. и др. (2024). Simulating the economic impact of rationality through reinforcement learning and agent-based modelling. arXiv: 2405.02161 [cs.LG].

Curry, М. и др. (2022). Analyzing Micro-Founded General Equilibrium Models with Many Agents using Deep Reinforcement Learning. arXiv: 2201.01163 [cs.GT].

Dwarakanath, К. и др. (2024). ABIDES-Economist: Agent-Based Simulation of Economic Systems with Learning Agents. arXiv: 2402.09563 [cs.MA].

Leontief, W. (1986). Input-output economics. Oxford: Oxford University Press.

Lowe, R. и др. (2020). Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. arXiv: 1706.02275 [cs.LG].

Schulman, J. и др. (2017). Proximal Policy Optimization Algorithms. arXiv: 1707.06347 [cs.LG].

Yu, C. и др. (2022). The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games. arXiv: 2103.01955 [cs.LG].

Пеонидов, А. В. и Е. Е. Серебрянникова (2017). «Динамическая модель несовершенной конкуренции в многосекторной экономике». В: Пробл. управл. 4, с. 8—16. URL: http://mi.mathnet.ru/pu1035.

Приложение. Семплирование параметров действий Алгоритм получения параметров действий

Алгоритм. Получение параметров действий.

1:
$$a_j^{sale} \sim \mathsf{Beta}(\alpha_{1,j}^{\vec{}}, \vec{\beta}_{1,j})$$

2:
$$a_j^{prices} \sim \text{Beta}(\alpha_{2,j}^{\vec{j}}, \vec{\beta}_{2,j})$$

3:
$$(a_j^{prod}, a_j^{invest}, a_j^{save}) \sim \text{Dir}(\alpha_{3,j})$$

4:
$$a^{buy} \sim \text{Dir}(\vec{\alpha_4})$$

5:
$$A_{i,j}^{buy} \leftarrow a_{i+(j-1)\cdot k}^{buy}$$

⊳ Доли резеревов на продажу

⊳ Параметры цен

⊳ Доли резервов на инвестиции и производство

⊳ Доли затрат на покупки

Получение подходящей размерности

Приложение. МАРРО

Алгоритм Multi-Agent Proximal Policy Optimization

Алгоритм. Multi-Agent Proximal Policy Optimization

```
1: Собрать батч из K траекторий \mathcal{D} \leftarrow (\mathcal{D}_1, \dots \mathcal{D}_K)
  2: for случайный мини-батч b из D do
             s, s', a, p, v, \hat{V}, \hat{A}^{GAE} \leftarrow b
  3.
  4:
             for agent i = 1 to n do
                    V_{t,i}^{old} \leftarrow \mathsf{v}_{t,i}
  5:
  6:
                    a_{t,i}, p_{t,i} \leftarrow a_{t,i}, p_{t,i}
                    V_{\star i}^{clip} \leftarrow \text{clip}(V_{t i}(s_{t}; \phi), V_{\star i}^{old} - 0.2, V_{\star i}^{old} + 0.2)
                   \mathcal{L}_{i}^{C}(\phi) \leftarrow \frac{1}{T} \sum_{t=1}^{T} \max\{L_{1}(V_{t,i}(s;\phi), \hat{V}_{t,i}), L_{1}(V_{\star,i}^{clip}, \hat{V}_{t,i})\}
  8:
                    Нормализация \hat{A}^{GAE}
 9:
                    Получение вероятностей действий p(a_i|s_i;\theta_i) для актуальных параметров \theta_i
10:
                    \mathsf{ratios}_{t,i} \leftarrow \mathsf{exp}\left(\log p(a_i|s_i) - \log p_{old}(a_i|s_i)\right)
11:
                    ratios_{t}^{clip} \leftarrow clip(ratios_{t,i}, 0.8, 1.2)
12:
                    \mathcal{L}_{i}^{A}(\theta_{i}) \leftarrow -\sum_{t=1}^{T} \min\{\hat{A}_{t}^{GAE} \cdot \text{ratios}_{t,i}, \hat{A}_{t}^{GAE} \cdot \text{ratios}_{t}^{clip}\}
13:
                    Обновление параметров актора i: \theta_i \leftarrow \arg\min_{\theta_i} \mathcal{L}_i^A(\theta_i)
14.
                    Обновление параметров централизованного критика: \phi \leftarrow \arg\min_{\phi} \mathcal{L}_{i}^{C}(\phi)
15:
             end for
16:
17: end for
```


Приложение. Эксперимент 4.

Обучение модели. «Производство и финансы, 2 асимметричные отрасли»

Таблица: Функции фирм в эксперименте 4

Фирма	f ^{prod}	f ^{invest}
1	$(x_2,0)$	$2\min(x_1,x_2)$
2	$(0,2x_1)$	$2\min(x_1,x_2)$

Таблица: Параметры эксперимента 4

Параметр Значени	
d (срок жизни \mathcal{K})	2
Начальные лимиты	2
Начальные резервы	(10, 10)
Начальные цены	50
Начальные финансы	500
Интервал цен	$p \in [1, 100]$
Итераций	32
Функция награды	R ^{mix}
Тип данных	int64

Приложение. Эксперимент 4.

Динамика среды. «Производство и финансы, 2 асимметричные отрасли»

R

Приложение. Эксперимент 4.

Политика фирм. «Производство и финансы, 2 асимметричные отрасли»

Приложение. Эксперимент 5. Обучение модели. «Финансы, 2 симметричные отрасли»

Таблица: Функции фирм в эксперименте 4

Фирма	f ^{prod}	f ^{invest}
1	$(2x_2,0)$	_
2	$(0,2x_1)$	_

Таблица: Параметры эксперимента 4

Параметр	Значение
Основной капитал	Отсутствует
Начальные резервы	(10, 10)
Начальные цены	50
Начальные финансы	500
Интервал цен	$ ho \in [1,100]$
Итераций	32
Функция награды	R ^{fin}
Тип данных	int64

Приложение. Эксперимент 5

Динамика среды. «Финансы, 2 симметричные отрасли»

Приложение. Эксперимент 5. Политика фирм. «Финансы, 2 симметричные отрасли»

Рис.: Фирма 1 (дефицит)

Приложение. Эксперимент 6.

Обучение модели. «Производство, 2 симметричные отрасли»

Таблица: Функции фирм в эксперименте б

Фирма	f ^{prod}	f ^{invest}
1	$(2x_2,0)$	_
2	$(0,2x_1)$	_

Таблица: Параметры эксперимента 6

Параметр	Значение	
Основной капитал	Отсутствует	
Начальные резервы	(10, 10)	
Начальные цены	50	
Начальные финансы	500	
Интервал цен	$p \in [1, 100]$	
Итераций	32	
Функция награды	R ^{prod}	
Тип данных	int64	

Приложение. Эксперимент б

Динамика среды. «Производство, 2 симметричные отрасли»

R

Приложение. Эксперимент 6.

Политика фирм. «Производство, 2 симметричные отрасли»

Приложение. Пример запуска без агрегирования динамика среды.

Приложение. Пример запуска без агрегирования политика фирм.

