

Chamada, filtragem e avaliação de qualidade de variantes

José Ferrão e Hugo Martiniano

Variant calling

 Variant calling is the process through which variants are identified from aligned reads.

Base quality and error

- Base quality: 20 = error probability 0.01
- 100 samples with 40x coverage
- In total 40 errors expected

Calculation of PL and GQ by HaplotypeCaller

P(Genotype | Data) is the conditional probability of the Genotype given the sequence Data that we have observed.

Alleles

Reference: A

Read: T

Conditional probabilities calculated by HC

 $P(AA \mid Data) = 0.000001$ $P(AT \mid Data) = 0.000100$

 $P(TT \mid Data) = 0.010000$

Genotype	A/A	A/T	т/т
Raw PL	-10 * log(0.000001) = 60	-10 * log(0.000100) = 40	-10 * log(0.010000) = 20

PL is the Phred-scaled Likelihood of the genotype

PL: the probability that the genotype is not correct. In other words, low PL values mean a genotype is more likely, and high PL values means it's less likely.

Calculation of PL and GQ by HaplotypeCaller

PL is the Phred-scaled Likelihood of the genotype

PL: the probability that the genotype is not correct. In other words, low PL values mean a genotype is more likely, and high PL values means it's less likely.

Genotype	A/A	A/T	т/т
Normalized PL	60 - 20 = 40	40 - 20 = 20	20 - 20 = 0

GQ: Genotype Quality

The value of GQ is simply the difference between the second lowest PL and the lowest PL (which is always 0)

Estimating the genotype

Genotype likelihood (simplified):

$$\textbf{P(Genotype | Data)} \quad \boxed{ \qquad } \quad \mathcal{L}(g) = \frac{1}{m^k} \prod_{j=1}^l \left[(m-g)\epsilon_j + g(1-\epsilon_j) \right] \prod_{j=l+1}^k \left[(m-g)(1-\epsilon_j) + g\epsilon_j \right]$$

g: genotype (i.e. 0, 1 or 2)

m: ploidy (2 for human)

€: base error

k: number of bases at the site

I: number of bases that equal reference

Li H. Bioinformatics. 2011;27:2987-93.

In GATK: $PL = -10*log10(\mathcal{L}(g))$

PL and GQ

Our example: 8 REF and 1 ALT Assuming base error probability $\epsilon = 0.01$ PL = $-10*log10(\mathcal{L}(g))$

Genotype	HomRef	Heterozygous	HomAlt
$\mathcal{L}(g)$	0.0092	0.0020	9.9E-17
PL (20	27	160

Lowest PL = most likely genotype GQ = Second lowest PL - Lowest PL = 27 - 20 = 7

Base quality correction

- Essential for estimating genotype likelihood
- Context can affect base quality, e.g.:
 - homopolymers
 - cycle
- estimated error rate # 'real' error rate
- Base quality score recalibration (BQSR) takes this context into account

Alignments to candidates

The data exposed to the caller

Reference

Direct detection of haplotypes

HaplotypeCaller

identifies what are the possible haplotypes present in the data

identifies potentially variant sites

HaplotypeCaller

vcf

Header

lines starting with ##: arbitrary number of meta-information lines line starting with #: column definition – mandatory columns include:

CHROM chromosome

POS position of the start of the variant

ID unique identifier of the variant (e.g. rs number for SNPs)

REF reference allele

ALT comma separated list of alternate non-reference alleles

QUAL phred-scaled quality score FILTER site filtering information

INFO user extensible annotation (e.g. samtools and GATK may differ in this)

samples follow

Data

one line per site (all columns described above per line); useful information per site and per sample

vcf

##fileformat=VCFv4.3

```
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50, Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GO, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HO, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS
                           REF
                                 ALT
                                        QUAL
                                              FILTER
                                                       INFO
                                                                                          FORMAT
                                                                                                       NA00001
                                                                                                                        NA00002
                                                                                          GT:GO:DP:HO
                                                                                                       0 0:48:1:51,51
                                                                                                                       1 0:48:8:51,51
20
       14370
                rs6054257
                           G
                                         29
                                               PASS
                                                       NS=3;DP=14;AF=0.5;DB;H2
                                                                                                                       0 1:3:5:65,3
20
       17330
                                         3
                                                       NS=3; DP=11; AF=0.017
                                                                                          GT:GQ:DP:HQ
                                                                                                       0 0:49:3:58,50
                                               q10
                                                       NS=2; DP=10; AF=0.333, 0.667; AA=T; DB
                                                                                         GT:GQ:DP:HQ
                                                                                                       1 2:21:6:23,27
                                                                                                                       2 1:2:0:18,2
20
       1110696 rs6040355 A
                                 G.T
                                         67
                                               PASS
                                                                                          GT:GQ:DP:HQ
                                                                                                       0 0:54:7:56,60
                                                                                                                       0 0:48:4:51,51
20
       1230237
                                               PASS
                                                       NS=3; DP=13; AA=T
               microsat1 GTC
                                                                                          GT:GQ:DP
20
       1234567
                                 G.GTCT 50
                                               PASS
                                                       NS=3:DP=9:AA=G
                                                                                                       0/1:35:4
                                                                                                                        0/2:17:2
                                                                                                       samples
reference allele (GT: 0)
                                             alternative allele (GT: 2)
```

alternative allele (GT: 1)

15

vcf

```
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT sample1
4 1031852 . A T 9473.06 PASS
AC=2;AF=1.00;AN=2;BaseQRankSum=2.038;DP=298;ExcessHet=3.0103;MQRankSum=0.000;RAW_MQandD
P=1087200,302;ReadPosRankSum=-0.842 GT:AD:DP:GQ:PL:SB 1/1:4,293:298:99:9887,790,0:2
,2,220,74
```

GT

0/0 - homozygous reference

0/1 - heterozygous

1/1 - homozygous alternative

variant calling – filtering variants

Common cautions:

Base quality BQ20

Depth (min and max) very dependent on your average

Mapping quality MQ50/60

- Strand-bias p-value>0.05

SNP density dependent on the genome [e.g. no more than 1 SNP/4bp]

- QUAL >20/25

Genotype Quality (GQ) >20/30

Keep in mind your project may have some specific requirements

Further reading: "Consensus Rules in Variant Detection from Next-Generation Sequencing Data" Jia et al 2012 PLoS One

variant calling - evaluating

variant calling – evaluating

Site-level concordance with a truth set

Sensitivity (Recall)

$$\frac{TP}{TP + FN} = \frac{7}{7 + 3} = 70\%$$

Specificity (Precision)

$$\frac{\text{TP}}{\text{TP + FP}} = \frac{7}{7 + 5} = 58\%$$

DNA Sequencing – NGS (Germline)

PERFORMANCE CRITERIA

For the 2022, Performance Criteria have been applied to the results of this EQA1.

The marking schema includes:

- NGS variant concordance using the F-score for single nucleotide polymorphisms (SNPs) only, located within the highconfidence (HC) regions of the genome.
- The performance outcome for this EQA is Satisfactory OR Poor. EMQN and GenQA staff will ensure consistency of scoring between and within the EQA rounds.

Poor performance is defined as follows:

 Those participants having a submission with an F-score below 90% for SNPs within the high-confidence regions of the genome.

Please note:

- 'High confidence' is defined as genomic regions exclusive of union of all tandem repeats, all homopolymers >6bp, all imperfect homopolymers >10bp, all difficult to map regions, all segmental duplications, GC <25% or >65%, "Bad Promoters", and "Other Difficult Regions" as published by NIST in Genome In A Bottle Genome Stratifications (https://doi.org/10.18434/M32190).
- The F-score of indels (<50bp) is excluded from the current Performance Criteria

SEASON: 2021

SCHEME: DNA SEQUENCING - NGS (v Germline)

Variant call assessment

Region	all		high confide	high confidence		
Variant type	snp	indel	snp	indel		
True positives	7423	216	5341	101		
False positives	54	2	2	0		
False negatives	503	171	223	10		
Sensitivity	93.65%	55.81%	95.99%	90.99%		
Precision	99.28%	99.08%	99.96%	100.00%		
F-Score	96.38%	71.40%	97.94%	95.28%		
1 00010	70.0070	71.1070	77.77	70.2070		

SUMMARY OF YOUR PERFORMANCE IN THIS SCHEME

Performance

Scheme result (SATISFACTORY or POOR)

Performance ³ (mean score)				
2.00				
SATISFACTORY				

SCHEME: DNA SEQUENCING - NGS (Germline) SEASON: 2022

Variant call assessment

Region	all		high confidence		
Variant type	snp	indel	snp	indel	
True positives	7419	220	5343	88	
False positives	147	48	40	4	
False negatives	556	145	232	8	
Sensitivity	93.03%	60.27%	95.84%	91.67%	
Precision	98.06%	82.09%	99.26%	95.65%	
F-Score	95.48%	69.51%	97.52%	93.62%	

SUMMARY OF YOUR PERFORMANCE IN THIS SCHEME

Assessment Category	Performance ³ (mean score)			
Genotyping	2.00			
Scheme result (SATISFACTORY or POOR)	SATISFACTORY			

Variant consensus analysis report (NGS EQA 2022) Germline.xlsx

Variant position	Туре	Gene	Submitted genotype	EQA genotype	EQA consensus ratio	Classification	Notes	Region
1:1041950	snp	AGRN	c/c	c/c	50/50	Agree		low confidence
1:1046551	snp	AGRN	G/G	G/G	77/78	Agree		low confidence
1:1047614	snp	AGRN	c/c	c/c	78/78	Agree		high confidence
1:1048922	snp	AGRN	C/C	c/c	78/78	Agree		low confidence
1:1051820	snp	AGRN	т/т	т/т	54/54	Agree		low confidence
1:1054900	snp	-	т/т	т/т	78/78	Agree		low confidence
1:1212042	snp	TNFRSF4		т/т	72/73	Missing		low confidence
1:1334174	snp	DVL1	T/C	T/C	76/76	Agree		low confidence
1:1721589	snp	-	т/т	т/т	40/41	Agree		low confidence
1:2025598	snp	GABRD	T/C	T/C	77/77	Agree		high confidence

```
Script_EMQN_VCF_JAF_07-07-2021.py — C\Users\jose.ferrao\Desktop\Bioinformatica_UTI-ZE\SCRIPT_EMQN\variants_vs_newVCF\EMQN_2020_novo_VCF_soGATK — Atom

File Edit View Selection Find Packages Help

Script_EMQN_VCF_JAF_07-07-2021.py

23

24 def compare_emqnvar_vcf(emqn_var_file, sample_vcf_snp, sample_vcf_indel):
    """

26 Compara variantes do programa EMQN (resultado final), com as variantes obtidas para a mesma amostra mas pex com alterações à p

variant calling também).

27

28 Requires: Ficheiro variantes EMQN tab delimited, sem cabecalho, e com chr e posição da variante em duas colunas, ie, de 1:9576

e ainda dividir as colunas Submitted genotype e EQA genotype em duas, pela "/".

Ensures: Lista variantes com a respectiva classificação (Agree, Disagree, Extra, etc) e resultado ao nível de TP, FP, FN, prec

31

32 """
```