Hypothesis

Clinicopathological info of kidney patients

Patient_ID	sex	age	stage	metastases	grade	necrosis	sarcomatoid changes	lymphovascular invasion	Leibovich	Histology	VHL	PBRM1	BAP1	SETD2	TSC2	KDM5C
PD43824	male	41-50	1b	0	2	no	no	no	2	ccRCC	ns-sub					
PD43948	female	71-80	3a	1	4	yes	yes	yes	8	ccRCC					bifs	
PD44714	male	51-60	NA	0	NA				NA	Benign						
PD44966	male	51-60	1a	0	3	no	no	no	1	ccRCC	fs		fs			
PD44967	male	71-80	NA	1	4	no	no	no	8	ccRCC	-	-	-	-	-	-
PD45814	male	61-70	3a	0	4	yes	yes	yes	8	ccRCC	fs	fs				
PD45815	male	51-60	3a	0	2	no	no	no	4	ccRCC	fs					
PD45816	female	71-80	3a	0	4	yes	yes	yes	9	ccRCC			ns-sub			
PD47171	female	51-60	3a	0	4	yes	yes	yes	7	ccRCC	ns-sub	fs	ns-sub			
PD47172	male	51-60	NA	0	NA				NA	oncocytoma						
PD47465	female	61-70	3a	0	3	no	no	yes	5	ccRCC	ns-sub	fs		fs		ns-sub
PD47512	male	51-60	3a	0	4	yes	yes	yes	8	ccRCC	fs	ns-sub		ns-sub		

Malfunction of VHL, a crucial driver of ccRCC, leads to accumulation HIF-2α TSC2 frameshift mutation leads to loss of mTOR pathway suppression

Epi_non-PT : non-proximal tubule epithelial Epi PT : proximal tubule epithelial

RCC = renal cell carcinoma

VHL (Von Hippel-Lindau)
TSC2 (Tuberous Sclerosis Complex)

Identification of human ccRCC cell populations

Epithelial cells of RCC

✓ Clusters unique to a donor through heterogenicity can bias the pseudo-time trajectory

→ Harmonization is needed

After harmonization

Cancer-Epithelial cells (RCC, Epi_PT, Epi_non-PT, Fibro, EC) & Immune cells (Myeloid, NK, T-cell) are separated clearly

After harmonization

Pseudo-time trajectory: EMT increased & PT decreased

Clustering

gene_id [‡]	gene_short_name	cell_group ^
MT2A	MT2A	1
MT1E	MT1E	1
MT1X	MT1X	1
RARRES2	RARRES2	2
LDHA	LDHA	2
P4HB	P4HB	2
TMSB10	TMSB10	3
CAV1	CAV1	3
VIM	VIM	3
GSTA2	GSTA2	4
GSTA1	GSTA1	4
CD24	CD24	4
RARRES2	RARRES2	5
VIM	VIM	5
NDUFA4L2	NDUFA4L2	5
LDHA	LDHA	6
CRYAB	CRYAB	6
VIM	VIM	6
TMSB10	TMSB10	7
GNB2L1	GNB2L1	7
GAPDH	GAPDH	7
ALDOB	ALDOB	8
ASS1	ASS1	8
GATM	GATM	8

EMT activation, metabolic reprogramming, hypoxia response (cluster 2~7)

Normal renal cell (cluster 8)

Anti-oxidant defense, Stress-adaptive, adaptive-survival, drug-resistance (cluster 1)

RARRES2: lipid metabolism contributing to tumor growth LDHA: tumor metastasis facilitated by EMT and Warburg effect P4HB: cancer progression facilitated by EMT TMSB10: cancer progression marker regulated by JUN CAV1: metastasis promotion in RCC

NMF for

MP5: IER2, FOS, JUNB, EGR1, FOSB, ZFP36
MP4: NEAT1, MALAT1, DDX17, FOSB, VEGFA, EGR1
MP3: SRGN, HLA-E, CCL5, SH3BGRL3, ZFP36L2, NKG7
MP2: MT1X, MT1G, MT1E, MT1F, MT2A, FOS
MP6: APOE, MT1G, DCXR, ACAA1, PEPD, SUCLG1

 \downarrow

Preprocessing for SCENIC analysis

A minimal amount of filtering is needed before running a SCENIC analysis. On a cell level, we examine the number of expressed genes and remove cells that fell into the distribution extremes. In the peripheral blood mononuclear cell (PBMC) study case (Table 1), we discard cells with <200, and more than -5,000, expressed genes; however, these thresholds must be determined empirically. We further filter out cells that have a large fraction of mitochondrial gene transcripts; these cells are thought to be of lower quality as this is indicative of cell membrane breach 2. We again use the empirical distribution to select an upper threshold on mitochondrial genes expressed, and this is highly dependent on cell type but typically 5–15%. Finally, on the gene level, genes with low overall expression are removed; with our default settings, we remove genes expressed in fewer than three cells in the data set.

Raw UMI count data without In(x+1) transformation

Delete ribosomal gene and exclude cell with percent.mt over 10

Auxiliary data info:

[FeatherRankingDatabase(name="hg38__refseq-r80__10kb_up_and_down_tss.mc9nr.genes_vs_motifs.rankings")]

AUCell: 3 clusters

AUCell: 3 clusters

Differential TFs (Normal → EMT → Stress-adaptive)

ESRRA, RAD21, NR4A3, CREB1, ELK3, PITX1, STAT2, PPARA, SP4, HHAT, SP3, KLF16, FOXN3, PHF8, ETV2, JDP2, MEF2D, ELF5, IRF4, TGIF2

HNF4A, NR2F6, NR1H4, ATF5, ATF4,

KLF10, FOSB, JUN, ATF3, MAFF, EGR1, JUNB, FOS, MYC, KLF4, KLF6, CEBPD, CEBPB, ZBTB7B, ELF3, HNF1B, PAX8, NFIB, FOXJ3, FOXO3

RELB, BCL3, ETV7, IRF1, STAT1, AHR, NPDC1, ETV1

Preprocessing for CellOracle analysis

Preprocessing for scVI analysis

Preprocessing for scVI analysis

