

Netflix Scale

- Started streaming videos10 years ago
- > 100M members
- > 190 countries
- > 1000 device types
- A third of peak US downstream traffic

Recommendation System: Ideal State

Turn on Netflix, and the absolute best content for you would automatically start playing

Title Ranking

Recommendations are driven by machine learning algorithms

Over 80% of what members watch comes from our recommendations

RIVERDALE

Running Experiments

 Try an idea offline using historical data to see if it would have made better recommendations

 If it would, deploy a live A/B test to see if it performs well in production

Running Experiments

Feature Generation: Feature Computation

Version 1: RDD-Based Feature Generation

- RDD: Resilient Distributed Dataset
- Our first version was written when only RDD operations were available
- Opacity
 - Data are opaque
 - Computation is opaque

Version 1: RDD-Based Feature Generation

Version 1: RDD-Based Feature Generation

RDD operations are at low level.

You are responsible for performance optimization.

RDD operations are on whole objects, even if only one field is required.

- DataFrame: Structured Data Organized into Named Columns
- Transparency
 - Data are structured
 - Computations are planned based on common patterns

Spark SQL optimizer, Catalyst, optimizes

DataFrame operation

- 50 ~ 80 executors
- ~3 cores per executor
- ~24GB per executor

~3x run time gain in feature generation

Let's take a look at the physical plan of the DataFrame taken from snapshot...

```
== Physical Plan ==
Project [...]
+- Filter (...)
+- Scan ExistingRDD[...]
```


Version 2: Using DataFrame (with RDD[Row])

We use RDD[Row] from data frame and create a new data frame by manipulating the Row object.

Version 2: Using DataFrame (with RDD[Row])

Even the new DataFrame, created from RDD[Row], has columns with the same names, they are different to Spark

col1#5	col2#6	col3#7	col1#12	col2#13	col3#14

Version 2: Using DataFrame (with RDD[Row])

Manipulations on row objects are completely opaque, blocking optimizer from moving operations around.

Most of the operations are essentially column(s) to column(s)

col1#5	col2#6	col3#7	col1#5	col2#6	col3#14

Most of the operations are essentially column(s) to column(s)

Possible Replacement for row manipulations:

- Spark SQL Functions
- User-Defined Functions
- Catalyst Expression

Spark SQL Functions (org.apache.spark.sql.functions)

- Built-in
- Highly efficient
 - Internal data structure
 - Code generation
 - Supports rule-based optimization
- A variety of categories
 - Aggregation
 - Collection
 - Math
 - String

User-Defined Functions (UDFs)

- Scala functions with certain types
- Highly flexible
- Data encoding/decoding required

User-Defined Catalyst Expressions

- Flexible
 - User defines the operations
- Efficient
 - Internal data structure
 - Code generation possible

We replaced row manipulation with Catalyst expression


```
case class RemoveDuplications(child: Expression) extends
UnaryExpression {
...
}
```


Physical Plan with Column Operations

```
== Physical Plan ==
Project [...]
+- BroadcastHashJoin (...)
   :- *Filter (...)
   : +- LocalTableScan [...]
   +- BroadcastExchange HashedRelationBroadcastMode(...)
      +- Project [...]
         +- Generate explode(...), true, false, [...]
            +- Project [...]
               +- Filter (...)
                  +- Scan json (...)
```


- 50 ~ 80 executors
- ~3 cores per executor
- ~24GB per executor

~2x run time gain compared to version 2

Conclusions

- Time Travel in Offline Training
 - Fact logging + offline feature generation
- Optimization
 - Remove "black boxes"
 - Prefer high-level DataFrame APIs
 - Prefer column operations over row manipulations

