ALGORITHM COMPLEXITY

INSTRUCTOR: KASHFIA SAILUNAZ

SOME PARTS ARE ADAPTED FROM THE TEXTBOOK & ENSF 593/594 LECTURE02 BY MOHAMMAD MOSHIRPOUR

OUTLINE

- Algorithmic Complexity
- Complexity Analysis
- Asymptotic Analysis
- Notations
- Complexity Measures
- Rules
- Examples

LEARNING OUTCOME

- At the end of this lecture, we will be able to-
 - Understand the necessity of complexity analysis,
 - Define and distinguish different types and notations of complexity analysis, and
 - Analyze complexities of algorithms.

ALGORITHMIC COMPLEXITY

- Algorithms must be
 - correct,
 - efficient, and
 - easy to implement.
- Algorithmic Complexity: A measure of the performance of any algorithm or computation based on-
 - time required Time Complexity
 - space required Space Complexity
 - number of steps required Computational Complexity
- Algorithmic complexity is measured with respect to the input size
 - Input size : n
 - Algorithmic Complexity: function of n

COMPLEXITY ANALYSIS

- Empirically implementation based
- Logically analyzing algorithms step by step

• // Compute the maximum element in the array a.

```
Algorithm max(a, n):

max \leftarrow a[0]

i \leftarrow 1

while i \leq n-1 do

if max < a[i] then

max \leftarrow a[i]

i \leftarrow i+1

return max
```

```
2 operations
1 operation
2 operations, n times
2 operations, n-1 times
2 operations, n-1 times
2 operations, n-1 times
1 operation
```

Total = summation of all

COMPLEXITY ANALYSIS

- Best case scenario: the first element a[0] is the maximum
- Worst case scenario: a is in ascending order and the last element is the maximum
- Average case scenario: others

- Best case: 2 + 1 + 2n + 4(n-1) + 1 = 6n
- Worst case : 2 + 1 + 2n + 6(n-1) + 1 = 8n 2

```
Algorithm max(a, n):

max \leftarrow a[0]
i \leftarrow 1

while i \leq n-1 do

if max < a[i] then

max \leftarrow a[i]
i \leftarrow i + 1

return max
```

2 operations
1 operation
2 operations, n times
2 operations, n-1 times
2 operations, n-1 times
2 operations, n-1 times
1 operation

ASYMPTOTIC ANALYSIS

- Running time of operations/algorithms in mathematical units of computations
- Allows to simplify the complexity analysis
- Ignores constants, lower order terms etc.
 - For example, 8n 2 will be O(n)
- Scenarios:
 - Best case minimum time required for algorithm execution
 - Average case average time required for algorithm execution
 - Worst case maximum time required for algorithm execution

NOTATIONS

- O Big Oh Notation upper bound/worst case time complexity
- Ω Big Omega Notation lower bound/best case time complexity
- Θ Theta Notation upper and lower bound simultaneously
- o Little Oh Notation strict upper bound
- \bullet ω Little Omega Notation strict lower bound

COMPLEXITY MEASURES

Classes of Algorithms:

O(1)

- constant
- O(lg n)
- logarithmic

• O(n)

- linear
- O(n lg n)
- N Log N
- $O(n^2)$
- quadratic

• $O(n^3)$

cubic

• $O(2^n)$

exponential

COMPLEXITY MEASURES

Source: https://devopedia.org/algorithmic-complexity

EXAMPLES

• // Compute the maximum element in the array a.

```
Algorithm max(a, n):

max \leftarrow a[0]

i \leftarrow 1

while i \leq n-1 do

if max < a[i] then

max \leftarrow a[i]

i \leftarrow i+1

return max
```

```
2 operations
1 operation
2 operations, n times
2 operations, n-1 times
2 operations, n-1 times
2 operations, n-1 times
1 operation
```

Total = summation of all

Worst case: a is in ascending order and the last element is the maximum

$$2 + 1 + 2n + 6 (n-1) + 1 = 8n - 2$$

EXAMPLES

• // Compute the maximum element in the array a.

Algorithm max(a, n):

max ← a[0]	O(1)	2 operations
i ← 1	O(1)	1 operation
while $i \le n-1$ do	O(n)	2 operations, n times
if $max < a[i]$ then	O(n)	2 operations, n-1 times
$\max \leftarrow a[i]$	O(n)	2 operations, n-1 times
i ← i + 1	O(n)	2 operations, n-1 times
return max	O(1)	1 operation

Total = summation of all

Worst case: a is in ascending order and the last element is the maximum

$$2 + 1 + 2n + 6 (n-1) + 1 = 8n - 2 = O(n)$$

RULES OF COMPLEXITY CALCULATIONS

- Big O worst case scenario
- Simple statements that don't depend on inputs are O (1)
 - i.e. take constant time
- Ignore differences in execution times for simple statements
 - Multiplicative constants are discarded in big O analysis
- Use the worst case for conditional statements
 - i.e. Take the "longest path" through the algorithm
- If the number of steps is halved on each iteration of a loop, then the complexity is O(lg n)
 - Also true if multiplying by 1/3, 1/4, etc.
- Sum rule: if the complexity of a sequence of statements is the sum of two or more terms, discard the lower order terms
 - i.e., $n^3 + n^2$ is $O(n^3) + O(n^2) = O(n^3)$
- Product rule: if a process is repeated for each n of another process, then O is the product of the O s of each process
 - i.e. Nested loop processing of a 2 D array is O (n). O (n) = O (n . n) = O(n^2)

Algorithm squareSum (a, b, c, d):

$$s_a \leftarrow a * a$$

$$s_b \leftarrow b * b$$

$$s_c \leftarrow c * c$$

$$s_d \leftarrow d * d$$

$$sum \leftarrow s_a + s_b + s_c + s_d$$

return sum

$$COMPLEXITY = O(1)$$

$$O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

Algorithm oddEvenCheck (a):

if
$$a\%2 = 0$$
 then $O(1)$

$$s \leftarrow$$
 "even" $O(1)$

else s
$$\leftarrow$$
 "odd" $O(1)$

COMPLEXITY: O(1)

Algorithm arraySortingCheck (a, flag):

if (flag) then O(1)

sort(a) O(n lg n)

return true O(1)

else return false O(1)

COMPLEXITY : O(n lg n)

• Algorithm simpleLoop:

$$x \leftarrow 0$$
 O(1)

$$y \leftarrow 10$$
 O(1)

for
$$i \leftarrow 0$$
 to 3 do $O(1)$

$$x \leftarrow x + I$$
 O(1)

$$y \leftarrow y - 1$$
 O(1)

return x, y
$$O(1)$$

COMPLEXITY: O(1)

Algorithm simpleLoop :

$$s \leftarrow 0$$

for $i \leftarrow 0$ to n do

$$s \leftarrow s + 1$$

return s

$$O(n)$$
 $O(1)$
 $O(n) * O(1) = O(n)$

0(1)

COMPLEXITY: O(n)

Algorithm doubleLoop:

$$s \leftarrow 0$$

for $i \leftarrow 0$ to n do

for $k \leftarrow 0$ to m do

$$s \leftarrow s + 1$$

return s

O(m) or O(n)
$$-O(n) * O(n) * O(1) = O(n^2)$$

COMPLEXITY : $O(n^2)$

Algorithm tripleLoop:

$$x \leftarrow 0$$
 O(1)
 $y \leftarrow 0$ O(1)
for $i \leftarrow 0$ to n do O(n)

for
$$j \leftarrow 0$$
 to n do

for
$$k \leftarrow 0$$
 to n do

$$x \leftarrow x + 1$$

$$y \leftarrow y + 3$$

return s

$$O(n) * O(n) * O(n) = O(n^3)$$

O(n)

O(n)

0(1)

COMPLEXITY : $O(n^3)$

Algorithm reverseLoop:

$$s \leftarrow 0$$

for $i \leftarrow 0$ to n do

for $k \leftarrow m$ to 1 do

$$s \leftarrow s + 1$$

return s

$$O(m)$$
 or $O(n)$

$$O(m)$$
 or $O(n)$

 $-O(n) * O(n) * O(1) = O(n^2)$

O(1)

COMPLEXITY : $O(n^2)$

Algorithm decreasedLoop:

$$s \leftarrow 0$$

 $i \leftarrow 0$

while i < n do

$$s \leftarrow s + 1$$

 $i \leftarrow i * 2$

return s

0(1)

O(1)

O(1)

$$O(\lg n) * O(1) * O(1) = O(\lg n)$$

0(1)

COMPLEXITY : O(lg n)

Algorithm decreasedLoop2:

$$s \leftarrow 0$$

O(1)

$$i \leftarrow n$$

0(1)

while
$$i > 0$$
 do

O(lg n)

$$s \leftarrow s + 1$$

0(1)

O(1)

 $O(\lg n) * O(1) * O(1) = O(\lg n)$

return s

0(1)

COMPLEXITY : O(lg n)

Algorithm dependentLoop:

$$s \leftarrow 0$$

for $i \leftarrow 0$ to n do

for $k \leftarrow i+1$ to n do

$$s \leftarrow s + 1$$

return s

$$O(n^2) = 1+2+....+(n-2)+(n-1) = n(n-1)/2 = n^2/2 - n/2$$

COMPLEXITY : $O(n^2)$

- Algorithm recursiveFunc:
- Factorial of n = n! = n * (n-1) * (n-2) ** 2 * 1 = n * (n-1)!

- Iterative Algorithm
- Recursive Algorithm

Iterative Algorithm

Factorial(n):

$$f \leftarrow 1$$

O(1)

$$for \ i \leftarrow 2 \ to \ n \ do$$

O(n)

$$f \leftarrow f * i$$

$$O(1)$$
 = $O(n)$

return f

Recursive Algorithm

Factorial(n):

if
$$(n==0)$$
 then

O(1)

O(n)

COMPLEXITY: O(n)

COMPLEXITY: O(n)

• Why is 'else' part O(n)?

3 operations – 1 comparison, 1 multiplication, 1 subtraction

$$T(n) = T(n-1) + 3$$

= $T(n-2) + 6$
= $T(n-3) + 9$

$$= T(n-4) + 12$$

$$= T(n-r) + 3r$$

T(0) = 1, so we need to find r so that (n-r) = 0

If n-r = 0, then r = n

So,
$$T(n) = T(0) + 3n = 1 + 3n = O(n)$$

Recursive Algorithm

Factorial(n):

if
$$(n==0)$$
 then

O(1)

return 1

O(n)

return n * Factorial(n-1)

COMPLEXITY: O(n)

Algorithm for Fibonacci Series

0,1,1,2,3,5,8,13,21,34,55,89,144,...

OR

1,1,2,3,5,8,13,21,34,55,89,144,...

$$F(n) = F(n-1) + F(n-2)$$

$$F1 = 1$$
 (or 0), $F2 = 1$

Iterative Algorithm

Input: Some non-negative integer nOutput: The nth number in the Fibonacci Sequence $A[0] \leftarrow 0$; $A[1] \leftarrow 1$; for $i \leftarrow 2$ to n-1 do $A[i] \leftarrow A[i-1] + A[i-2]$; return A[n-1] Recursive Algorithm

```
Input: Some non-negative integer n
Output: The nth number in the Fibonacci Sequence if n \le 1 then

| return n
else
| return F(n-1) + F(n-2);
```

Try it yourself

