EEOB563 – Assignment #6

The prior probabilities of the prize being behind each clow are equal-P(P1) = 13 = P(P2) = P(P3) prike believe door 1 Now it gets more complicated. Let's say we picked cloor 1. Now the question is which door doe the moderator open. of course not door 1, so Plan=0 If DZ how the prize, the moderator will not open it, then he will open D3 P(D2|P2)=0 and like voice P(D2|P3)=1 P(D3|P2)=1 and like voice P(D3|P3)=0 of the prix is behind an clour 1, P(D21P1) = P(D31P1) = 72 Oh, what next... So now we know that he opened alove 3 and it has a goat so we want to know how our chances are now P(P/1D3) and we can solve that with Dayes P(D31PA) . P(PA) P(PAID3) = P(D3) On we have the top ones but we need P(D3) and we can we the formula for total probability for that P(D3) = P(D31P1) . P(P1) + P(D31P2) . P(P2) + P(D31P3) . P(P3) = 1/2 1/3 + 1 1/3 + 0 $= \frac{1}{2}$ So $P(P(1)D3) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{3}$ and the other day $P(P(2)D3) = \frac{1 \cdot 1}{12} = \frac{2}{3}$ => the should switch to cloor 2! Spotify

Pour I

2

It seems very certain that A and B form a clade (credibility value 100). Assuming this tree is the correct one, A contracted HIV from L1 and then passed it on to B.

3

There were two models with the same probability of 0.099. See here for more details on the models: https://github.com/Thyra/EEOB563/tree/master/assignments/6/mb/

1		Posterior	Standard	Min.	Max.
2	Model	Probability	Deviation	Probability	Probability
3					
4	<pre>gtrsubmodel[112212]</pre>	0.099	0.008	0.093	0.105

5	<pre>gtrsubmodel[112312]</pre>	0.099	0.015	0.088	0.109
6	gtrsubmodel[123323]	0.081	0.000	0.081	0.081
7	gtrsubmodel[112313]	0.075	0.013	0.065	0.084
8					

4

The PSRF+ values are all very close to 1. I used mcmcp ngen=100000 printfreq=100 samplefreq=100 nchains=4 but it was so fast that I could probably have done more generations. I would say the conclusion is independent of the starting tree because the clade has 100% credibility, but I'm not completely sure, so this statement only has about 45% credibility.

1				95% HPD	Interval		
3	Parameter Nruns	Mean	Variance	Lower	Upper	Median	PSRF+
4							
5	length[1]	0.133600	0.000471	0.090225	0.174682	0.132569	1.005
6	length[2]	0.003615	0.000006	0.000028	0.008128	0.003151	1.000
7	length[3]	0.001687	0.000003	0.000000	0.004720	0.001223	0.999
8	length[4]	0.019735	0.000037	0.009787	0.032235	0.019310	1.000
9	length[5]	0.018359	0.000036	0.007804	0.030208	0.017806	1.003
10	length[6]	0.004177	0.000006	0.000422	0.008733	0.003701	1.003
11	length[7]	0.002930	0.000005	0.000079	0.006834	0.002416	1.000
12	length[8]	0.004302	0.000006	0.000404	0.009115	0.003800	1.000
13	length[9]	0.004934	0.000008	0.000421	0.010383	0.004374	1.000
14		0.007185	0.000010	0.002101	0.013977	0.006690	0.999

length[11]	0.015553	0.000024	0.006808	0.025650	0.015038	0.999
length[12]	0.011753	0.000018	0.004477	0.020130	0.011254	1.000
length[13]	0.005158	0.000009	0.000735	0.010871	0.004596	1.000
length[14]	0.008233	0.000016	0.001471	0.015983	0.007575	0.999
length[15]	0.002804	0.000005	0.000014	0.007103	0.002313	1.001
length[16]	0.006219	0.000013	0.000382	0.013299	0.005612	1.001
2 length[17] 2	0.003315	0.000006	0.000005	0.008337	0.002805	1.003
length[18]	0.004411	0.000013	0.000004	0.011162	0.003482	0.999
length[19]	0.004070	0.000010	0.000006	0.010670	0.003225	1.000
length[20]	0.001559	0.000002	0.000003	0.004798	0.001065	0.999
length[21]	0.001448	0.000002	0.000006	0.004005	0.001113	1.000
length[22]	0.001382	0.000002	0.000003	0.004302	0.000956	1.000
length[23]	0.001827	0.000003	0.000005	0.005579	0.001297	0.997
length[24]	0.001712	0.000003	0.000006	0.005181	0.001135	1.004
length[25]	0.004996	0.000015	0.000001	0.013337	0.004300	0.996
2	0.001717	0.000003	0.000006	0.004645	0.001203	1.000

Here is another convergence statistic that has reached its optimum:

```
Summary statistics for informative taxon bipartitions
          (saved to file "6.2_main.tstat"):
2
3
            #obs
                     Probab.
                                 Sd(s)+
                                              Min(s)
4
       ID
                                                           Max(s)
                                                                     Nruns
5
          1502
                   1.000000
                                0.000000
                                             1.000000
                                                          1.000000
                                                                       2
6
      12
           1484
                   0.988016
                                0.003766
                                             0.985353
                                                          0.990679
                                                                       2
7
       13
8
       14
           1453
                   0.967377
                                0.000942
                                             0.966711
                                                          0.968043
                                                                       2
       15
           1445
                   0.962051
                                0.006591
                                             0.957390
                                                          0.966711
                                                                       2
9
       16
           1208
                   0.804261
                                0.011299
                                             0.796272
                                                          0.812250
                                                                       2
                                                                       2
       17
            962
                   0.640479
                                0.007532
                                             0.635153
                                                          0.645806
       18
            720
                   0.479361
                                0.007532
                                             0.474035
                                                          0.484687
                                                                       2
                                0.006591
                                             0.400799
                                                                       2
       19
            609
                   0.405459
                                                          0.410120
13
                                                                       2
       20
            513
                   0.341545
                                0.019773
                                             0.327563
                                                          0.355526
14
       21
            491
                   0.326897
                                0.014123
                                             0.316911
                                                          0.336884
                                                                       2
       22
            471
                   0.313582
                                0.000942
                                             0.312916
                                                          0.314248
                                                                       2
       23
            290
                   0.193076
                                0.001883
                                             0.191744
                                                          0.194407
                                                                       2
17
18
       24
            239
                                             0.153129
                                                                       2
                   0.159121
                                0.008474
                                                          0.165113
                                                                       2
       25
            228
                   0.151798
                                0.015065
                                             0.141145
                                                          0.162450
                                             0.094541
                                                                       2
            154
                   0.102530
                                0.011299
                                                          0.110519
       26
       + Convergence diagnostic (standard deviation of split frequencies)
         should approach 0.0 as runs converge.
```