Sport_Repression_Assignment

April 9, 2023

1 International Sports Events: Window Dressing and Repression

In this assignment you will replicate partly a study on the relationship between repression in autocratic regimes and international sports events:

• Scharpf, A., Gläßel, C., Pearce, E. (2022) International Sports Events and Repression in Autocracies: Evidence from the 1978 FIFA World Cup, American Political Science Review, 1-18. https://doi:10.1017/S0003055422000958.

Read the paper, locate, download, and familiarize yourself with the dataset provided by the authors at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/RJY34I. You should use the dataset in its archival format (.tab).

Panos Louridas, Associate Professor Department of Management Science and Technology Athens University of Economics and Business louridas@aueb.gr

1.1 Questions

1.1.1 Q1: Overview

Make sure you have the right data by replicating Table SI.3.1 and SI.3.2 of the Supporting Information.

Replicate Figure 1 of the main paper and Figure SI.1.1 from the Supporting Information.

1.1.2 Q2: Repression in Departments with and without Host Cities

The authors formulate two hypotheses:

- H1: In the run-up to an international sports tournament, state repression spikes in host cities, but not in other cities.
- H2: During an international sports tourna- ment, state repression drops in host cities but remains unchanged in other cities.

They validate their hypotheses using a series of regression analyses. They use negative binomial regression models, but they find that their findings are robust with Ordinary Least Squares (OLS), so we'll use OLS in this assignment.

You will run the three first models of Table 1 of the main paper, which correspond to columns (1)-(3). You can find a partial report of the results in Table SI.4.1 of the Supporting Information; you should detail the control variables as in Table 1.

How do you interpret the results?

1.1.3 Q3: Graphical Overview of Effects

Replicate Figure 5 of the main paper using your own model. Moreover, enrich the figure by plotting also relevant information from the actual data (not predictions).

How do you interpret the results?

1.1.4 Q4: Robustness Check Using a Dichotomous Indicator of Repression

As an additional robustness check, the authors run logistic regressions using a binary outcome variable for regression. They report their results in Table SI.4.5 of the Supplementary Information; replicate these results.

1.1.5 Q5: Robustness Check Using Matched Samples

Another robustness check that the authors have undertaken is to run regression analyses on matched samples. They have created subsets of the data that pair similar departments with and without host cities. The matching has been carried out both manually, by using the range of population size, and algorithmically. We will focus on the simple, manual matching.

Replicate table SI.4.7 of the Supplementary Information and recreate Figure 6 of the main paper.

How do you interpret the results?

1.2 Beginning of Assignment

1.2.1 Q1: Overview

First of all, we import the libraries that we are going to need for this notebook

```
[1]: import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import datetime
import matplotlib.pyplot as plt
```

we then import the main data table into a pandas dataframe

```
[2]: maindf = pd.read_table("dataverse_files/main_data.tab", parse_dates=["date"])
maindf
```

```
[2]:
                       muni
                                 id
                                                     id_prov
                                              prov
     0
              adolfo alsina
                                1.0
                                     buenos aires
                                                         1.0
     1
              adolfo alsina
                                1.0
                                                         1.0
                                     buenos aires
     2
              adolfo alsina
                                1.0
                                     buenos aires
                                                         1.0
     3
              adolfo alsina
                                1.0
                                     buenos aires
                                                         1.0
                                1.0
     4
             adolfo alsina
                                                         1.0
                                     buenos aires
                                                        24.0
     133727
                yerba buena 499.0
                                           tucuman
     133728
                yerba buena
                              499.0
                                           tucuman
                                                        24.0
```

133729	yerba buen	a 499.0	tuc	uman	24.0			
133730	yerba buen	a 499.0	tuc	uman	24.0			
133731	yerba buen	a 499.0	tuc	uman	24.0			
			-	pression	lnrepres		nrepression	\
0	adolfo alsina	a buenos a	aires	0.0		0.0	0.0	
1	adolfo alsin	a buenos a	aires	0.0		0.0	0.0	
2	adolfo alsin	a buenos a	aires	0.0		0.0	0.0	
3	adolfo alsin	a buenos a	aires	0.0		0.0	0.0	
4	adolfo alsin	a buenos a	aires	0.0		0.0	0.0	
•••			•	•••	•••		••	
133727	yerba	buena tuc	cuman	0.0		0.0	0.0	
133728	yerba	buena tuc	cuman	0.0		0.0	0.0	
133729	yerba	buena tuo	cuman	0.0		0.0	0.0	
133730	yerba	buena tuo	uman	0.0		0.0	0.0	
133731	yerba	buena tuo	cuman	0.0		0.0	0.0	
	•	stcitynum	subzo	ne12 sub		bzone14	subzone15	\
0	0.0	NaN	•••	0	0	0	1	
1	0.0	NaN	•••	0	0	0	1	
2	0.0	NaN	•••	0	0	0	1	
3	0.0	NaN	•••	0	0	0	1	
4	0.0	NaN	•••	0	0	0	1	
			•••				•	
133727	0.0	NaN	•••	0	1	0	0	
133728	0.0	NaN	•••	0	1	0	0	
133729	0.0	NaN	•••	0	1	0	0	
133730	0.0	NaN	•••	0	1	0	0	
133731	0.0	NaN	•••	0	1	0	0	
	subzone16 s	ıbzone17	subzone1	8 match	ed_simple	matched	_allhosts	\
0	0	0		0	NaN	ma o o no a	NaN	`
1	0	0		0	NaN		NaN	
2	0	0		0	NaN		NaN	
3	0	0		0	NaN		NaN	
4	0	0		0	NaN		NaN	
					wan		Nan	
 133727	 O		•••	0	NaN	•••	NaN	
133728	0	0		0	NaN		NaN	
133729	0	0		0	NaN		NaN	
133730	0	0		0	NaN		NaN	
133731	0	0		0	NaN		NaN	
100101	U	U		· ·	IVaIV		ivalv	
	matched_noca	ofed						
0		NaN						
1		NaN						
2		NaN						
_								

```
3 NaN
4 NaN
... ...
133727 NaN
133728 NaN
133729 NaN
133730 NaN
133731 NaN
```

[133732 rows x 126 columns]

then we select the columns that we will be using for the first table, we limit the data to the dates during and after the world cup and rename the columns

```
[3]: sumdf = maindf[["date", "repression", "lnrepression", "dumrepression",
     "prox_hotelpress", "time", "time2", "time3", "lnpop_1970", __

¬"literacy_avg",
                       "vote_frejuli", "lnrebact1974", "lnrepression70_77", 
     "lnlag_strikes", "lnlag2_strikes", "zone1", __
     sumdf = sumdf.loc[sumdf["date"] >= "1978-06-01"]
    sumdf = sumdf.rename(columns={"repression" : "Repression_Events", __

¬"Inrepression" : "Repression_Events_ln",
                                "dumrepression" : "Repression_Events_bin", __
     "prox_hotelonly" : "Proximity_to_Hotel", __

¬"prox_hotelpress" : "Proximity_to_Journalist_Venue",
                                "lnpop_1970" : "Population_Size_ln", __

¬"literacy_avg" : "Literacy_Rate",
                                "vote_frejuli" : "Peronist_Vote_Share", __

¬"Inrebact1974" : "Rebel_Activity",
                                "lnrepression70_77" : "Past_Repression", _

¬"Instrikes" : "Protest_Current",
                                "lnlag_strikes" : "Protest_1Month", u

¬"lnlag2_strikes": "Protest_2Month",
                                "zone1" : "Military Zone1", "zone2" : ...

¬"Military_Zone2","zone3" : "Military_Zone3",
                                "zone4" : "Military_Zone4", "zone5" : ...

¬"Military_Zone5"})
    sumdf
```

154	1978-06-04	0.0)		0.0		
155	1978-06-05	0.0)		0.0		
•••	•••	•••					
133727	1978-09-21	0.0)		0.0		
	1978-09-22	0.0			0.0		
	1978-09-23	0.0			0.0		
	1978-09-24	0.0			0.0		
133/31	1978-09-25	0.0)		0.0		
			a 5			,	
	Repression_Event		-	roximity_		\	
151		0.0	0.0		6.274075		
152		0.0	0.0		6.274075		
153		0.0	0.0		6.274075		
154		0.0	0.0		6.274075		
155		0.0	0.0		6.274075		
					•		
133727		0.0	0.0		7.020316		
133728		0.0	0.0		7.020316		
133729		0.0	0.0		7.020316		
133730		0.0	0.0		7.020316		
133731		0.0	0.0		7.020316		
100/01		0.0	0.0		7.020010		
	Proximity_to_Jou	irnalist Voni	ie time	time2	time3	\	
151	110x1m10y_00_500	6.27407			0.804357	\	
						•••	
152		6.27407			0.830584	•••	
153		6.27407			0.857375	•••	
154		6.27407			0.884736	•••	
155		6.27407	75 0.97	0.9409	0.912673	•••	
•••		•••			•••		
133727		7.08925	55 NaN		NaN	•••	
133728		7.08925	55 NaN	NaN	NaN	•••	
133729		7.08925	55 NaN	NaN	NaN	•••	
133730		7.08925	55 NaN	NaN	NaN	•••	
133731		7.08925	55 NaN	NaN	NaN	•••	
	Past_Repression	latitude	Protest	_Current	Protest_1	Month	\
151	=	-37.199072		0.0	_	0.0	
152		-37.199072		0.0		0.0	
153		-37.199072		0.0		0.0	
154		-37.199072		0.0		0.0	
155		-37.199072				0.0	
155	1.090012	-31.199012		0.0		0.0	
			•••	0.0	•••	0 0	
133727		-26.796579		0.0		0.0	
133728		-26.796579		0.0		0.0	
133729		-26.796579		0.0		0.0	
133730		-26.796579		0.0		0.0	
133731	3.931826	-26.796579		0.0		0.0	

	Protest_2Month	Military_Zone1	Military_Zone2	Military_Zone3	\
151	0.0	0	0	0	
152	0.0	0	0	0	
153	0.0	0	0	0	
154	0.0	0	0	0	
155	0.0	0	0	0	
•••	•••		•••	•••	
133727	0.0	0	0	1	
133728	0.0	0	0	1	
133729	0.0	0	0	1	
133730	0.0	0	0	1	
133731	0.0	0	0	1	
	Military_Zone4	Military_Zone5			
151	Military_Zone4 0	Military_Zone5			
151 152	•	· · · · · · · · · · · · · · · · · · ·			
	0	1			
152	0	1 1			
152 153	0 0 0	1 1 1			
152 153 154	0 0 0 0	1 1 1 1			
152 153 154 155	0 0 0 0	1 1 1 1 1			
152 153 154 155 	0 0 0 0 0	1 1 1 1 1			
152 153 154 155 133727	0 0 0 0 0	1 1 1 1 1 			
152 153 154 155 133727 133728	0 0 0 0 0	1 1 1 1 1 			
152 153 154 155 133727 133728 133729	0 0 0 0 0 	1 1 1 1 1 			

[58383 rows x 24 columns]

we then generate descriptive statistics for the dataframe and in order to replicate the S.I. 3.1 table we transpose the table, drop a few columns and rename some others

```
[4]: sumdffinal = sumdf.describe()
sumdffinal = sumdffinal.transpose()
sumdffinal = sumdffinal.drop(columns=["25%", "50%", "75%"])
sumdffinal = sumdffinal.rename(columns={"count" : "obs", "std" : "std_dev"})
```

[5]: sumdffinal

```
[5]:
                                         obs
                                                    mean
                                                            std_dev
                                                                            min
     Repression_Events
                                                0.003858
                                                           0.096237
                                                                       0.000000
                                     58321.0
     Repression_Events_ln
                                     58321.0
                                                0.002141
                                                           0.046726
                                                                       0.00000
     Repression_Events_bin
                                     58321.0
                                                0.002366
                                                           0.048587
                                                                       0.000000
     Host_City
                                     58383.0
                                                0.010020
                                                           0.099598
                                                                       0.00000
     Proximity_to_Hotel
                                     58321.0
                                                7.005477
                                                           1.612787
                                                                       0.000000
     Proximity_to_Journalist_Venue
                                                7.083793
                                     58321.0
                                                           1.627998
                                                                       0.000000
     time
                                     12475.0
                                                1.050000
                                                           0.072114
                                                                       0.930000
     time2
                                     12475.0
                                                1.107700
                                                           0.151510
                                                                       0.864900
```

```
time3
                                12475.0
                                           1.174005
                                                      0.239637
                                                                  0.804357
Population_Size_ln
                                56628.0
                                           9.701179
                                                      1.336451
                                                                  6.056784
Literacy_Rate
                                56628.0
                                           0.717073
                                                      0.110344
                                                                  0.315790
Peronist_Vote_Share
                                57447.0
                                          58.752138
                                                     11.538778
                                                                 28.500000
Rebel_Activity
                                58383.0
                                           1.937065
                                                      2.068920
                                                                  0.000000
Past_Repression
                                58383.0
                                           0.908222
                                                      1.434340
                                                                  0.000000
latitude
                                58383.0 -32.378240
                                                      5.459773 -54.748861
Protest_Current
                                58383.0
                                           0.008036
                                                      0.081731
                                                                  0.000000
Protest 1Month
                                58383.0
                                           0.008089
                                                      0.082416
                                                                  0.000000
Protest 2Month
                                58383.0
                                           0.009527
                                                      0.100825
                                                                  0.000000
Military Zone1
                                58383.0
                                           0.246493
                                                      0.430973
                                                                  0.000000
Military_Zone2
                                58383.0
                                           0.220441
                                                      0.414548
                                                                  0.00000
Military_Zone3
                                58383.0
                                           0.378758
                                                      0.485082
                                                                  0.000000
Military_Zone4
                                58383.0
                                           0.020040
                                                      0.140139
                                                                  0.000000
Military_Zone5
                                58383.0
                                           0.134269
                                                      0.340944
                                                                  0.000000
                                      max
                                 9.000000
```

Repression_Events Repression_Events_ln 2.302585 Repression_Events_bin 1.000000 Host_City 1.000000 Proximity to Hotel 9.398466 Proximity_to_Journalist_Venue 9.398466 time 1.170000 time2 1.368900 time3 1.601613 14.904898 Population_Size_ln Literacy_Rate 0.900552 Peronist_Vote_Share 94.300000 Rebel_Activity 5.036952 Past_Repression 7.557473 latitude -22.128710 Protest_Current 1.386294 Protest_1Month 1.386294 Protest_2Month 2.079442 Military_Zone1 1.000000 Military Zone2 1.000000 Military_Zone3 1.000000 Military Zone4 1.000000 Military_Zone5 1.000000

In order to replicate table S.I. 3.2 we create a new dataframe with a certain few columns from the main dataframe, we limit the data to the rows that are during and after the world cup and rename some of the columns

```
[6]: postdf = maindf[["date", "repression", "lnrepression", "hostcity",
```

```
"time_postwc", "time2_postwc", "time3_postwc", "lnpop_1970", __

¬"literacy_avg",
               "vote_frejuli", "lnrebact1974", "lnrepression70_77",
               "zone1", "zone2", "zone3", "zone4", "zone5"]]
postdf = postdf.loc[postdf["date"] >= "1978-06-01"]

¬"Inrepression" : "Repression_Events_ln",
                              "hostcity" : "Host_City", "lnpop_1970" : _

¬"Population_Size_ln",
                              "literacy_avg" : "Literacy_Rate", __

¬"vote_frejuli" : "Peronist_Vote_Share",
                              "lnrebact1974" : "Rebel_Activity", __

¬"Inrepression70_77" : "Past_Repression",
                              "zone1" : "Military Zone1", "zone2" : ...

¬"Military_Zone2", "zone3" : "Military_Zone3",
                              "zone4" : "Military_Zone4", "zone5" : ...

¬"Military_Zone5"})
postdf
                Repression_Events Repression_Events_ln Host_City \
      1978-06-01
                               0.0
                                                    0.0
                                                              0.0
151
152
      1978-06-02
                               0.0
                                                    0.0
                                                              0.0
```

```
[6]:
     153
                                       0.0
                                                                         0.0
            1978-06-03
                                                             0.0
     154
                                                                         0.0
            1978-06-04
                                       0.0
                                                             0.0
     155
            1978-06-05
                                       0.0
                                                             0.0
                                                                         0.0
     133727 1978-09-21
                                       0.0
                                                             0.0
                                                                         0.0
     133728 1978-09-22
                                       0.0
                                                             0.0
                                                                         0.0
                                       0.0
                                                                         0.0
     133729 1978-09-23
                                                             0.0
     133730 1978-09-24
                                       0.0
                                                             0.0
                                                                         0.0
     133731 1978-09-25
                                       0.0
                                                             0.0
                                                                         0.0
             time_postwc time2_postwc time3_postwc Population_Size_ln \
                    0.01
                                0.0001 9.999999e-07
                                                                 9.919902
     151
     152
                    0.02
                                0.0004 7.999999e-06
                                                                 9.919902
     153
                    0.03
                                0.0009 2.700000e-05
                                                                 9.919902
     154
                    0.04
                                0.0016 6.39999e-05
                                                                  9.919902
                                0.0025 1.250000e-04
     155
                    0.05
                                                                  9.919902
     133727
                    1.13
                                1.2769 1.442897e+00
                                                                       NaN
     133728
                    1.14
                                1.2996 1.481544e+00
                                                                       NaN
     133729
                    1.15
                                 1.3225 1.520875e+00
                                                                       NaN
     133730
                    1.16
                                 1.3456 1.560896e+00
                                                                       NaN
     133731
                    1.17
                                 1.3689 1.601613e+00
                                                                       NaN
```

Literacy_Rate Peronist_Vote_Share Rebel_Activity Past_Repression \

151	0.800738	5	50.4 5.0	36952	1.098612
152	0.800738	5	5.0	36952	1.098612
153	0.800738	5	50.4 5.0	36952	1.098612
154	0.800738	5	50.4 5.0	36952	1.098612
155	0.800738	5	50.4 5.0	36952	1.098612
•••	•••	•••	•••	•••	
133727	NaN		NaN 2.8	33213	3.931826
133728	NaN		NaN 2.8	33213	3.931826
133729	NaN		NaN 2.8	33213	3.931826
133730	NaN		NaN 2.8	33213	3.931826
133731	NaN		NaN 2.8	33213	3.931826
	Military_Zone1	Military_Zone2	Military_Zone	.3 Military	Zone4 \
151	0	0		0	0
152	0	0		0	0
153	0	0		0	0
154	0	0		0	0
155	0	0		0	0
•••	•••	•••	•••	•••	
133727	0	0		1	0
133728	0	0		1	0
133729	0	0		1	0
133730	0	0		1	0
133731	0	0		1	0
	Military_Zone5				
151	1				
152	1				
153	1				
154	1				
155	1				
 133727					
133728	0				
133729	0				
133730	0				
133731	0				
100/01	Ü				

[58383 rows x 17 columns]

Then in order to create the binary value "Post_World_Cup_Period" we create a new row and assign 1 to the rows where the date is after the world cup and 0 to the ones where it's during the world cup

```
[7]: postdf['Post_World_Cup_Period'] = np.where(postdf.date > "1978-06-25", 1, 0)
```

Then we do the exact same thing that we did for the table S.I. 3.1 in order to replicate 3.2

```
[8]: postdffinal = postdf.describe()
  postdffinal = postdffinal.transpose()
  postdffinal = postdffinal.drop(columns=["25%", "50%", "75%"])
  postdffinal = postdffinal.rename(columns={"count" : "obs", "std" : "std_dev"})
```

[9]: postdffinal

[9]:	obs	mean	std_dev	min	max
Repression_Events	58321.0	0.003858	0.096237	0.000000e+00	9.000000
Repression_Events_ln	58321.0	0.002141	0.046726	0.000000e+00	2.302585
Host_City	58383.0	0.010020	0.099598	0.000000e+00	1.000000
time_postwc	58383.0	0.590000	0.337740	1.000000e-02	1.170000
time2_postwc	58383.0	0.462167	0.411383	1.000000e-04	1.368900
time3_postwc	58383.0	0.407277	0.460040	9.99999e-07	1.601613
Population_Size_ln	56628.0	9.701179	1.336451	6.056784e+00	14.904898
Literacy_Rate	56628.0	0.717073	0.110344	3.157895e-01	0.900552
Peronist_Vote_Share	57447.0	58.752138	11.538778	2.850000e+01	94.300000
Rebel_Activity	58383.0	1.937065	2.068920	0.000000e+00	5.036952
Past_Repression	58383.0	0.908222	1.434340	0.000000e+00	7.557473
Military_Zone1	58383.0	0.246493	0.430973	0.000000e+00	1.000000
Military_Zone2	58383.0	0.220441	0.414548	0.000000e+00	1.000000
Military_Zone3	58383.0	0.378758	0.485082	0.000000e+00	1.000000
Military_Zone4	58383.0	0.020040	0.140139	0.000000e+00	1.000000
Military_Zone5	58383.0	0.134269	0.340944	0.000000e+00	1.000000
Post_World_Cup_Period	58383.0	0.786325	0.409904	0.000000e+00	1.000000

We then import the .tab file from the given dataset in order to replicate table 1.1 of the supporting information

```
[10]: supdf = pd.read_table("dataverse_files/figure_SI11_data.tab")
supdf
```

```
[10]:
                     regime
                             baseline
                                         democ
                                                autoc
              year
      0
            1987.0
                        0.0
                                   2.5
                                           3.0
                                                   NaN
      1
            1987.0
                        0.0
                                   2.5
                                           3.0
                                                   NaN
      2
            1991.0
                        0.0
                                   2.5
                                           3.0
                                                   NaN
      3
                        0.0
                                           3.0
            1991.0
                                   2.5
                                                   NaN
            1995.0
                        1.0
                                   2.5
                                           NaN
                                                   2.0
      . .
                                    •••
               •••
      328
            2010.0
                        0.0
                                  27.5
                                          28.0
                                                   NaN
      329
           2014.0
                        0.0
                                  27.5
                                          28.0
                                                   NaN
      330 2018.0
                        0.0
                                  27.5
                                          28.0
                                                   {\tt NaN}
      331
                        0.0
                                  27.5
                                          28.0
           2018.0
                                                   NaN
      332 2022.0
                        1.0
                                  27.5
                                           NaN
                                                  27.0
```

[333 rows x 5 columns]

We then create a column that is basically the subtraction of democ/autoc column from the baseline for each row in the dataframe

```
[11]: supdf['offset'] = np.where(supdf['regime']==1.0, -0.5, 0.5)
```

Finally, in order to plot the data we break the dataframe into two dataframes, one for democracies and one for autocracies and then plot the data using the 'baseline' column as the y axis value, and then draw lines on each distinct y value for each sport represented by those values

```
[12]: events = ["Volleyball World Championship", "Basketball World Cup",
                    "World Table Tennis Championships", "World Handball Championship",
                    "Cricket World Cup", "FIFA World Cup",
                    "Ice Hockey World Championships", "World Athletics Championships",
                    "Summer Olympic Games", "Winter Olympic Games", "Rugby World Cup"]
      dem_supdf = supdf[supdf.offset > 0]
      autoc_supdf = supdf[supdf.offset < 0]</pre>
      plt.figure(figsize=(20, 5))
      plt.plot(dem_supdf.year, dem_supdf.baseline + dem_supdf.offset,
               linestyle="None", marker="s", markersize=10, mfc="grey", mec="grey")
      plt.plot(autoc_supdf.year, autoc_supdf.baseline + autoc_supdf.offset,
               linestyle="None", marker="s", markersize=10, mfc="k", mec="k")
      ticks = np.arange(2.5, 30, 2.5)
      for height in ticks:
          plt.axhline(y=height, color="grey")
      plt.yticks(ticks, events)
      plt.show()
```


In order to replicate figure 1 we will simply be using the figure_1_data.tab file, creating a new column for the years values and plotting that column with the 'autochostperc' column

```
firstqdf ['years'] = years
firstqdf
```

```
[13]:
                   event_selec
                                 autochost
                                            autochostperc
         postcwy
                                                                 years
              1.0
                                                  8.000000
      0
                          25.0
                                       2.0
                                                             1990-1994
      1
              2.0
                          31.0
                                       4.0
                                                 12.903226
                                                             1995-1999
      2
             3.0
                          25.0
                                       5.0
                                                 20.000000
                                                             2000-2004
      3
             4.0
                          24.0
                                       6.0
                                                 25.000000
                                                             2005-2009
      4
             5.0
                          30.0
                                       6.0
                                                 20.000000
                                                             2010-2014
      5
             6.0
                          32.0
                                       9.0
                                                 28.125000
                                                             2015-2019
      6
             7.0
                          27.0
                                      10.0
                                                 37.037037
                                                             2020-2024
```

[14]: (0.0, 50.0)

1.2.2 Q2: Repression in Departments with and without Host Cities

We create our first model using hostcitytime, hostcitytime2, hostcity, time and time2

Dep. Variable: Model: Method: Date: Time: No. Observations Df Residuals: Df Model: Covariance Type:	Le Sun,	05:32:40 58107 58101 5		Adj. R-squared:		0.046 0.045 554.0 0.00 9824. 6e+05 6e+05
0.975]	coef	std err	t	P> t	[0.025	
Intercept 0.004 hostcitytime 0.451 hostcitytime2 -0.282 hostcity 0.033 time 0.002 time2 0.006	0.0026 0.4012 -0.3230 0.0202 -0.0028 0.0020	0.001 0.026 0.021 0.007 0.003 0.002	3.912 15.680 -15.372 3.086 -1.106 0.959	0.000 0.000 0.000 0.002 0.269 0.338	0.001 0.351 -0.364 0.007 -0.008	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		125118.610 0.000 19.504 462.518	Durbin-Wa Jarque-Be Prob(JB): Cond. No.	ntson: era (JB):		1.677 2.904 0.00 201.

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

We then add the control variables (literacy_avg, vote_frejuli, lnrebact1974, lnrepression70_77)

```
[16]: Informulactrl = "Inrepression" + columnsctrl
  model = snf.ols(Informulactrl, data = maindf)
  res2 = model.fit()
  res2.summary()
```

[16]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results									
Dep. Variable: Model: Method: Date: Time: No. Observations Df Residuals: Df Model: Covariance Type:	Least Sun, 18 D C	oression OLS Squares Dec 2022 05:32:41 56628 56618 9 Onrobust	R-squared: Adj. R-square F-statistic: Prob (F-stat Log-Likeliho AIC: BIC:	0.058 0.058 389.1 0.00 87274. -1.745e+05 -1.744e+05					
0.975]	coef	std err	t	P> t	[0.025				
Intercept	0.0038	0.003	1.356	0.175	-0.002				
hostcitytime 0.452	0.4014	0.026	15.612	0.000	0.351				
hostcitytime2 -0.282	-0.3231	0.021	-15.305	0.000	-0.364				
hostcity 0.010	-0.0034	0.007	-0.511	0.609	-0.016				
time 0.002	-0.0030	0.003	-1.161	0.246	-0.008				
time2 0.006	0.0022	0.002	1.007	0.314	-0.002				
literacy_avg 0.002	-0.0038	0.003	-1.375	0.169	-0.009				
vote_frejuli 7.79e-06	-3.731e-05	2.3e-05	-1.621	0.105	-8.24e-05				

lnrebact1974	-6.027e-05	0.000	-0.427	0.669	-0.000	
0.000 lnrepression70_77 0.005	0.0046	0.000	25.053	0.000	0.004	
				=======		
Omnibus:	120581	.536	Durbin-Watson	n:	1.698	
<pre>Prob(Omnibus):</pre>	0	.000	Jarque-Bera	(JB):	468542387.264	
Skew:	19	.008	Prob(JB):		0.00	
Kurtosis:	446	.995	Cond. No.		9.19e+03	
===============		======	==========	========		

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.19e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Finally we add the military zones to our third model

```
[17]: Informulazone = "Inrepression" + columnszone
    model = snf.ols(Informulazone, data = maindf)
    res3 = model.fit()
    res3.summary()
```

[17]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

		=======					
Dep. Variable:	lnrepression		R-squared:		0.061		
Model:	_	OLS	Adj. R-squar	red:	0.061		
Method:	Least S	Squares	F-statistic:	:	283.6		
Date:	Sun, 18 De	ec 2022	Prob (F-stat	tistic):	0.00		
Time:	·		Log-Likeliho	ood:	87360.		
No. Observations:		56628	AIC:		-1.747e+05		
Df Residuals:		56614	BIC:		-1.746e+05		
Df Model:		13					
Covariance Type:	nonrobust						
=====							
	coef	std err	t	P> t	[0.025		
0.975]							
Intercept	0.0058	0.003	2.103	0.035	0.000		
0.011							
hostcitytime	0.4014	0.026	15.635	0.000	0.351		
0.452							

hostcitytime2 -0.282	-0.3231	0.021	-15.328	0.000	-0.364	
hostcity	-0.0034	0.007	-0.506	0.613	-0.016	
0.010 time	-0.0030	0.003	-1.163	0.245	-0.008	
0.002 time2	0.0022	0.002	1.008	0.313	-0.002	
0.006	0.0022	0.002		0.010	0.002	
literacy_avg -0.005	-0.0107	0.003	-3.440	0.001	-0.017	
vote_frejuli 6.73e-05	1.287e-05	2.78e-05	0.463	0.643	-4.16e-05	
lnrebact1974 -0.001	-0.0009	0.000	-5.532	0.000	-0.001	
lnrepression70_77	0.0049	0.000	24.950	0.000	0.005	
zone1	0.0078	0.001	9.465	0.000	0.006	
0.009 zone2	-0.0015	0.001	-2.287	0.022	-0.003	
-0.000 zone3	-0.0011	0.001	-1.245	0.213	-0.003	
0.001 zone4	-0.0002	0.002	-0.117	0.907	-0.003	
0.003 zone5	0.0007	0.001	0.955	0.340	-0.001	
0.002	.=======					===
Omnibus:	120	0377.988	Durbin-Watso	on:	1.	703
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Bera	(JB):	464147526.	917
Skew:		18.934	Prob(JB):		0	.00
Kurtosis:		444.905	Cond. No.		7.42e	+16

Looking at the values of the coefficients alone, we can see that the hostcitytime column makes the biggest statistical difference in whether there are repression effects or not, which leads us to further look into how the number of repression events change in host and non-host cities seperately, while taking time into consideration (seeing how the numbers shift from before the world cup to during/after it)

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The smallest eigenvalue is 3.67e-26. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

1.2.3 Q3: Graphical Overview of Effects

For this question we will take our original dataframe from when we imported the main data in the first question and split it in two dataframes, one for host cities and one for non host cities, then group them by date after getting rid of rows with nan values in certain columns

```
[18]: hostdf = maindf[maindf.hostcity==1]
    nonhostdf = maindf[maindf.hostcity==0]
    columns = ["repression", "hostcitytime", "hostcity", "time"]
    hostdf = hostdf.dropna(subset = columns)
    nonhostdf = nonhostdf.dropna(subset = columns)
    nonhostdf = nonhostdf.groupby(by="date").mean()
    hostdf = hostdf.groupby(by="date").mean()
```

We then fit a model almost identical to the third one from Q2 (this time using repression instead of Inrepression)

```
[19]: formulazone = "repression" + columnszone
model = snf.ols(formulazone, data = maindf)
res4 = model.fit()
res4.summary()
```

[19]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

		=======		========		
Dep. Variable:	rep	ression	R-squared:		0.053	
Model:	-	OLS	Adj. R-squar	ed:	0.053	
Method:	Least	Squares	F-statistic:		244.4	
Date:	Sun, 18 D	ec 2022	Prob (F-stat	istic):	0.00	
Time:	0	5:32:41	Log-Likeliho	od:	48724.	
No. Observations:		56628	AIC:		-9.742e+04	
Df Residuals:		56614	BIC:		-9.729e+04	
Df Model:		13				
Covariance Type:		nrobust				
====						
	coef	std err	t	P> t	[0.025	
0.975]						
Intercept	0.0096	0.005	1.775	0.076	-0.001	
0.020						
hostcitytime	0.9026	0.051	17.769	0.000	0.803	
1.002						
hostcitytime2	-0.7119	0.042	-17.071	0.000	-0.794	
-0.630						
hostcity	-0.0470	0.013	-3.578	0.000	-0.073	

Skew: Kurtosis:	1	29.363 219.721	Prob(JB): Cond. No.	. ,		0.00
Omnibus: Prob(Omnibus):	145	513.233	Durbin-Watso		1 3501167322	.702 .475
0.004	0.0010	0.001 =======	1.040	0.290	0.001	
0.004 zone5	0.0016	0.001	1.048	0.295	-0.001	
0.002 zone4	-0.0024	0.003	-0.778	0.436	-0.009	
0.000 zone3	-0.0018	0.002	-1.029	0.303	-0.005	
0.018 zone2	-0.0023	0.001	-1.818	0.069	-0.005	
zone1	0.0146	0.002	8.963	0.000	0.011	
-0.001 lnrepression70_77 0.009	0.0085	0.000	21.789	0.000	0.008	
0.000 lnrebact1974	-0.0016	0.000	-5.057	0.000	-0.002	
-0.007 vote_frejuli	3.507e-05	5.5e-05	0.638	0.523	-7.27e-05	
0.013 literacy_avg	-0.0191	0.006	-3.114	0.002	-0.031	
0.004 time2	0.0046	0.004	1.093	0.274	-0.004	
-0.021 time	-0.0064	0.005	-1.240	0.215	-0.017	

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The smallest eigenvalue is 3.67e-26. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

We then use the model to get predictions for the host and non host cities respectively and merge the summary dataframes with the host/nonhost city dataframes

```
[20]: predictions = res4.get_prediction(hostdf)
    preddf = predictions.summary_frame(alpha=0.05)
    preddf.index = hostdf.index
    hostdf = pd.concat([hostdf, preddf], axis=1)
```

```
[21]: predictions = res4.get_prediction(nonhostdf)
    preddf = predictions.summary_frame(alpha=0.05)
    preddf.index = nonhostdf.index
```

```
nonhostdf = pd.concat([nonhostdf, preddf], axis=1)
```

We then plot the data in a similar way to figure 5

```
[22]: note = "Note: Graph shows predicted numbers of daily repression events in.
      departments with host cities (left panel) and in other departments (right \
      panel). Shading around lines gives 95% confidence intervals."
      plt.figure(figsize=(20,10))
      fig, (ax1, ax2) = plt.subplots(1,2, figsize=(15, 5))
      fig.suptitle("Figure 5: Substantive Effects")
      plt.figtext(0.5, -0.25, note, wrap=True, horizontalalignment='center',
       ⇔fontsize=12)
      ax1.plot(hostdf['mean'])
      ax1.fill_between(hostdf.index, hostdf['mean_ci_lower'],_
       ⇔hostdf['mean_ci_upper'], alpha=.1, color='grey')
      ax1.fill_between(pd.date_range('1978-06-01','1978-06-28'), 0, 0.5, alpha=.1,__

color='grey')

      ax1.set_yticks(np.arange(0, 0.6, 0.1))
      ax1.set title('(a) Host Cities')
      ax1.set_ylabel('Predicted number of daily repression events')
      ax1.text(s = "World Cup", x=pd.Timestamp('1978-06-04'), y=0.45, fontsize=12)
      ax1.tick_params(labelrotation=45, axis='x')
      ax2.plot(nonhostdf['mean'])
      ax2.fill_between(nonhostdf.index, nonhostdf['mean_ci_lower'],__
       →nonhostdf['mean_ci_upper'], alpha=.1, color='grey')
      ax2.fill between(pd.date range('1978-06-01','1978-06-28'), 0, 0.05, alpha=.1, 1

color='grey')

      ax2.set_yticks(np.arange(0, 0.06, 0.01))
      ax2.set_title('(b) Other Cities')
      ax2.set_ylabel('Predicted number of daily repression events')
      ax2.text(s = "World Cup", x=pd.Timestamp('1978-06-04'), y=0.045, fontsize=12)
      ax2.tick_params(labelrotation=45, axis='x')
      plt.show()
```

<Figure size 1440x720 with 0 Axes>

Note. Graph shows predicted numbers of daily repression events in departments with host cities (left panel) and in other departments (right panel). Shading around lines gives 95% confidence intervals.

We can clearly see a difference in the number of repression events in host cities compared to other cities, with the number being up to 100 times higher (~ 0.003 in early may in non-host cities compared to ~ 0.3 in host cities), as well as a clear spike in repression events only in host cities right before the world cup. this leads us to believe that the argentine government wanted to get rid of any possible sources of rebelions, riots and other expressions of political unrest right before the world cup. The number of repression events significantly drops as soon as the world cup starts in host cities, since there starts to be worldwide media coverage of argentina, however in non-host cities it remains at around the same levels it was before the world cup

1.2.4 Q4: Robustness Check Using a Dichotomous Indicator of Repression

for this question we do almost the exact same thing as in Q2, this time using dumrepression (binary count of repression events) instead of Inrepression and logistic regression instead of OLS

```
[23]: binformulabase = "dumrepression" + columns1
model = snf.logit(binformulabase, data = maindf)
res5 = model.fit()
res5.summary()
```

Optimization terminated successfully.

Current function value: 0.019190

Iterations 10

[23]: <class 'statsmodels.iolib.summary.Summary'>

Logit Regression Results

______ Dep. Variable: No. Observations: dumrepression 58107 Model: Logit Df Residuals: 58101 Method: MLE Df Model: 5 Sun, 18 Dec 2022 Pseudo R-squ.: Date: 0.1533 Time: 05:32:42 Log-Likelihood: -1115.1 LL-Null: -1317.0converged: True Covariance Type: nonrobust LLR p-value: 4.467e-85

==========			========			==
=	coef	std err	z	P> z	[0.025	
0.975]	5551	500 011	_	1. (2)	[0.020	
_						
Intercept -5.358	-5.8507	0.251	-23.280	0.000	-6.343	
hostcitytime 7.986	4.1403	1.962	2.110	0.035	0.295	
hostcitytime2 -0.058	-3.2143	1.610	-1.996	0.046	-6.370	
hostcity 4.149	3.1376	0.516	6.081	0.000	2.126	
time 1.140	-0.8733	1.027	-0.850	0.395	-2.886	
time2 2.217	0.5355	0.858	0.624	0.533	-1.146	
=======================================		=======	=======		=======================================	==
11 11 11						

```
[24]: binformulactrl = "dumrepression" + columnsctrl
      model = snf.logit(binformulactrl, data = maindf)
      res6 = model.fit()
      res6.summary()
```

 ${\tt Optimization} \ {\tt terminated} \ {\tt successfully}.$

Current function value: 0.014029

Iterations 13

[24]: <class 'statsmodels.iolib.summary.Summary'>

Logit Regression Results

Dep. Variable:	dumrepression	No. Observations:	56628
Model:	Logit	Df Residuals:	56618
Method:	MLE	Df Model:	9
Date:	Sun, 18 Dec 2022	Pseudo R-squ.:	0.3918
Time:	05:32:42	Log-Likelihood:	-794.45
converged:	True	LL-Null:	-1306.2
Covariance Type:	nonrobust	LLR p-value:	1.444e-214
=======================================			
=====			
	coef std err	z P> z	[0.025
0.975]			

Intercept -8.350	-14.3365	3.054	-4.694	0.000	-20.323	
hostcitytime 8.706	4.6727	2.058	2.271	0.023	0.639	
hostcitytime2 -0.326	-3.6364	1.689	-2.153	0.031	-6.947	
hostcity -0.117	-1.2555	0.581	-2.161	0.031	-2.394	
time 1.068	-0.9933	1.052	-0.944	0.345	-3.055	
time2 2.341	0.6184	0.879	0.704	0.482	-1.105	
literacy_avg 12.675	6.2364	3.285	1.899	0.058	-0.202	
vote_frejuli 0.045	0.0177	0.014	1.270	0.204	-0.010	
lnrebact1974 0.096	-0.0429	0.071	-0.607	0.544	-0.181	
<pre>lnrepression70_77 1.182</pre>	1.0377	0.074	14.099	0.000	0.893	

=====

Possibly complete quasi-separation: A fraction 0.31 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

```
[25]: binformulazone = "dumrepression" + columnszone
model = snf.logit(binformulazone, data = maindf)
res7 = model.fit()
res7.summary()
```

Optimization terminated successfully.

Current function value: 0.013699

Iterations 13

[25]: <class 'statsmodels.iolib.summary.Summary'>

Logit Regression Results

______ dumrepression No. Observations: Dep. Variable: 56628 Model: Logit Df Residuals: 56614 MLE Df Model: Method: 13 Date: Sun, 18 Dec 2022 Pseudo R-squ.: 0.4061 05:32:42 Log-Likelihood: Time: -775.77 converged: True LL-Null: -1306.2Covariance Type: nonrobust LLR p-value: 1.437e-218

==========	========	:=======	========	========		==
====						
	coef	std err	Z	P> z	[0.025	
0.975]						
Intercept	-11.1736	nan	nan	nan	nan	
nan						
hostcitytime	5.2525	2.171	2.420	0.016	0.998	
9.507	4 4444	1 700	0.200	0.001	7 606	
hostcitytime2 -0.623	-4.1144	1.782	-2.309	0.021	-7.606	
hostcity	-1.0374	0.626	-1.658	0.097	-2.264	
0.189						
time	-0.9896	1.050	-0.943	0.346	-3.047	
1.068						
time2	0.6161	0.877	0.702	0.483	-1.104	
2.336	4 4075	0.044	4 450	0.445	4 500	
literacy_avg 10.403	4.4375	3.044	1.458	0.145	-1.529	
vote_frejuli	0.0372	0.015	2.517	0.012	0.008	
0.066						
lnrebact1974	-0.2621	0.083	-3.150	0.002	-0.425	
-0.099						
-	1.0024	0.075	13.324	0.000	0.855	
1.150	4 0407					
zone1	-1.3437	nan	nan	nan	nan	
nan zone2	-3.2781	nan	non	non	nan	
nan	-3.2761	nan	nan	nan	nan	
zone3	-2.7616	nan	nan	nan	nan	
nan	2.7010	11011	11011	11011	11011	
zone4	-1.5473	nan	nan	nan	nan	
nan	- · · -	- -	- -		-	
zone5	-2.2429	nan	nan	nan	nan	
nan						

=====

Possibly complete quasi-separation: A fraction 0.24 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

1.2.5 Q5: Robustness Check Using Matched Samples

We first need to create three subdivisions of the main dataframe that include:

- the host cities
- the matched non-host cities
- both host and matched non-host cities (for model fitting purposes)

```
[26]: host_df = maindf[maindf.hostcity==1]
      nonhost_df = maindf[maindf.hostcity==0]
      matched_df = maindf[maindf['lnpop_1970'] >= host_df['lnpop_1970'].min()]
      matched_nonhost_df = nonhost_df[nonhost_df['lnpop_1970'] >=__
       ⇔host_df['lnpop_1970'].min()]
```

We then fit 4 OLS models, the first 3 for the replication of table SI.4.7 of the Supplementary Information and the fourth one for figure 7 of the main paper

```
[27]: res8 = snf.ols(lnformulabase, data = matched_df).fit()
      res9 = snf.ols(lnformulactrl, data = matched_df).fit()
      res10 = snf.ols(lnformulazone, data = matched_df).fit()
      res11 = snf.ols(formulazone, data = matched_df).fit()
```

below we see the results of the first 3 models

```
[28]: res8.summary()
```

[28]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results _____

Dep. Variable: Model: Method: Date: Time: No. Observations Df Residuals: Df Model: Covariance Type:	Le Sun,	nrepression OLS ast Squares 18 Dec 2022 05:32:43 4095 4089 5 nonrobust	Prob (F-s	uared: ic: tatistic):	1	0.033 0.032 27.69 1.15e-27 1250.8 -2490. -2452.
0.975]	coef	std err	t	P> t	[0.025	
Intercept 0.047 hostcitytime	0.0292	0.009	3.172 4.456	0.002	0.011	
0.610 hostcitytime2 -0.187 hostcity 0.041	-0.3405 -0.0064	0.078	-4.360 -0.263	0.000	-0.494 -0.054	

time	-0.0255	0.036	-0.710	0.478	-0.096	
0.045						
time2	0.0196	0.030	0.663	0.507	-0.038	
0.077						
=========	========			=======		==
Omnibus:		4313.416	Durbin-Wa	tson:	1.7	10
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Be	ra (JB):	218155.1	16
Skew:		5.436	Prob(JB):		0.0	00
Kurtosis:		37.064	Cond. No.		58	.7
==========						==

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

[29]: res9.summary()

Dep. Variable:

[29]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

R-squared:

lnrepression

0.060

Dep. variable:	Inrep.	ression	k-squared:		0.000	J
Model:		OLS	Adj. R-square	ed:	0.058	
Method:	Least	Squares	F-statistic:		28.78	8
Date:	Sun, 18 D	ec 2022	Prob (F-stati	.stic):	5.26e-49	9
Time:	0	5:32:43	Log-Likelihoo	od:	1308.	5
No. Observations:		4095	AIC:		-2597	
Df Residuals:		4085	BIC:		-2534	
Df Model:		9				
Covariance Type:	no	nrobust				
=======================================	=======	=======				===
=====						
	coef	std err	t	P> t	[0.025	
0.975]						
Intercept	-0.1564	0.117	-1.338	0.181	-0.385	
0.073						
hostcitytime	0.4239	0.094	4.517	0.000	0.240	
0.608						
hostcitytime2	-0.3405	0.077	-4.420	0.000	-0.492	
-0.189						
hostcity	-0.0704	0.025	-2.806	0.005	-0.120	
-0.021						
time	-0.0255	0.035	-0.719	0.472	-0.095	
0.044						

time2	0.0196	0.029	0.672	0.501	-0.038
0.077					
literacy_avg	0.2156	0.130	1.653	0.098	-0.040
0.471					
vote_frejuli	-0.0010	0.001	-1.959	0.050	-0.002
7.54e-07					
lnrebact1974	-0.0054	0.002	-2.558	0.011	-0.009
-0.001					
lnrepression70_77	0.0218	0.003	7.684	0.000	0.016
0.027					
=======================================	========				
Omnibus:	42	226.762	Durbin-Watso	on:	1.757
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Bera	(JB):	204161.998
Skew:		5.268	Prob(JB):		0.00
Kurtosis:		35.948	Cond. No.		3.60e+03
=======================================					

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.6e+03. This might indicate that there are strong multicollinearity or other numerical problems.

[30]: res10.summary()

[30]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

============	=======		========	========	=========
Dep. Variable:	lnrepr	ression	R-squared:		0.088
Model:		OLS	Adj. R-squar	ed:	0.085
Method:	Least S	quares	F-statistic:		30.13
Date:	Sun, 18 De	ec 2022	Prob (F-stat	istic):	5.38e-72
Time:	05	5:32:43	Log-Likeliho	od:	1370.3
No. Observations:		4095	AIC:		-2713.
Df Residuals:		4081	BIC:		-2624.
Df Model:		13			
Covariance Type:	non	robust			
=====					
	coef	std err	t	P> t	[0.025
0.975]					
Intercept	-0.0351	0.103	-0.340	0.734	-0.238
0.167					

hostcitytime	0.4239	0.092	4.583	0.000	0.243
0.605 hostcitytime2	-0.3405	0.076	-4.485	0.000	-0.489
-0.192	0.0400	0.070	4.400	0.000	0.403
hostcity	-0.0625	0.025	-2.486	0.013	-0.112
-0.013					
time	-0.0255	0.035	-0.730	0.465	-0.094
0.043					
time2	0.0196	0.029	0.682	0.495	-0.037
0.076	0 0045	0 127	1 620	0 100	0 044
literacy_avg 0.493	0.2245	0.137	1.638	0.102	-0.044
vote_frejuli	-0.0018	0.001	-3.110	0.002	-0.003
-0.001					
lnrebact1974	-0.0200	0.003	-7.364	0.000	-0.025
-0.015					
lnrepression70_77	0.0128	0.003	4.032	0.000	0.007
0.019					
zone1	0.0643	0.022	2.869	0.004	0.020
0.108 zone2	-0.0352	0.024	-1.466	0.143	-0.082
0.012	-0.0552	0.024	-1.400	0.143	-0.002
zone3	-0.0438	0.022	-2.016	0.044	-0.086
-0.001					
zone4	0.0129	0.022	0.599	0.549	-0.029
0.055					
zone5	-0.0334	0.021	-1.626	0.104	-0.074
0.007					
 Omnibus:	=======	4119.326	======= Durbin-Wats	======= nn ·	1.810
Prob(Omnibus):		0.000	Jarque-Bera		187080.354
Skew:		5.067	Prob(JB):	·/ ·	0.00
Kurtosis:		34.524	Cond. No.		9.50e+16
============			========		==========

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.47e-27. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

We then follow the exact same method as Question 3 to predict the amount of repression events for host cities and matched non-host cities

```
[31]: host_df = host_df.dropna(subset = columns)
matched_nonhost_df = matched_nonhost_df.dropna(subset = columns)
```

```
matched_nonhost_df = matched_nonhost_df.groupby(by="date").mean()
host_df = host_df.groupby(by="date").mean()
```

```
[32]: predictions = res11.get_prediction(host_df)
preddf = predictions.summary_frame(alpha=0.05)
preddf.index = host_df.index
host_df = pd.concat([host_df, preddf], axis=1)
```

```
[33]: predictions = res11.get_prediction(matched_nonhost_df)
preddf = predictions.summary_frame(alpha=0.05)
preddf.index = matched_nonhost_df.index
matched_nonhost_df = pd.concat([matched_nonhost_df, preddf], axis=1)
```

Finally we plot the data

```
[34]: plt.figure(figsize=(12,6))
     plt.suptitle("FIGURE 6. Substantive Effects for Matched Sample")
      plt.plot(host_df['mean'])
      plt.fill_between(host_df.index, host_df['mean_ci_lower'],__
       ⇔host_df['mean_ci_upper'], alpha=.1, color='grey')
      plt.tick params(labelrotation=45, axis='x')
      plt.plot(matched_nonhost_df['mean'])
      plt.fill_between(matched_nonhost_df.index, matched_nonhost_df['mean_ci_lower'],__

→matched_nonhost_df['mean_ci_upper'], alpha=.1, color='grey')

      plt.fill_between(pd.date_range('1978-06-01','1978-06-28'), 0, 0.5, alpha=.1,__
       plt.yticks(np.arange(0, 0.6, 0.1))
      plt.vlim((0, 0.5))
      plt.text(s = "World Cup", x=pd.Timestamp('1978-06-04'), y=0.45, fontsize=21)
      plt.ylabel('Predicted number of daily repression events')
      plt.xlabel('Date')
      plt.show()
```

FIGURE 6. Substantive Effects for Matched Sample

Using matched samples, we again see similar results to the ones we saw in Q3, this time with the difference being smaller, which can be explained by the larger average size of the non-host cities.

[]: