Percurso em Grafos

A conectividade k(G) de um grafo G é o menor número de vértices que se removidos desconectam o grafo ou resulta no grafo trivial.

k(G) é, portanto, a conectividade em vértices do grafo G.

Um grafo biconexo é um grafo conexo que permanece conexo mesmo após a remoção de qualquer vértice.

Em outras palavras, para todo vértice do grafo, se ele for removido junto com suas arestas, o grafo resultante ainda terá um caminho entre quaisquer dois vértices restantes.

Articulação

Um vértice v é dito uma articulação se G - v possui mais c<mark>omponentes conexas do que G. É um vértice que, se removido, desconecta G.</mark>

Ponte

Uma aresta e é chamada de ponte se G - e possui mais componentes conexas do que G.

Obs. Os vértices com grau maior que 1 que sejam terminais de uma ponte são articulações do grafo.

Um grafo é dito k-conexo se $k(G) \ge k$

OBS1:

Um grafo conexo tem conectividade maior ou igual a 1.

OBS2:

Se um grafo não possui articulações, então ele é 2-conexo (biconexo).

A conectividade k(G) de um grafo G é o menor número de vértices que se removidos desconectam o grafo ou resulta no grafo trivial. k(G) é, portanto, a conectividade em vértices do grafo G.

Um vértice \mathbf{v} è dito uma articulação se $\mathbf{G} - \mathbf{v}$ possui mais componentes conexas do que \mathbf{G} . É um vértice que, se removido, desconecta \mathbf{G} . (nó crítico)

A conectividade k(G) de um grafo G é o menor número de vértices que se removidos desconectam o grafo ou resulta no grafo trivial. k(G) é, portanto, a conectividade em vértices do grafo G.

Uma aresta e é chamada de **ponte** se G - e possui mais componentes conexas do que G. (conexão crítica)

um grafo **biconexo** pode ser decomposto em componentes biconexos (também chamados de blocos), que são subgrafos maximamente biconexos.

Lema. Considere um grafo G

(i) Cada aresta pertence a exatamente um bloco do grafo.

(ii) Um vértice v só pertence a mais de um bloco se v for uma articulação.

Aplicação do algoritmo de percurso em profundidade para a determinação de blocos

Considere um grafo G(V,E) e uma árvore de profundidade $T(V_T,E_T)$ de G.

Define-se a função Lowpt: $V \rightarrow V$.

Lowpt: $V \rightarrow V$

Para cada vértice $v \in V$, Lowpt (v) é igual ao vértice mais próximo da raiz de T que pode ser alcançado a partir de v, caminhando-se em T para baixo através de zero ou mais arestas na árvore e, em seguida, para cima utilizando no máximo uma aresta de retorno.

Lowpt: $V \rightarrow V$

V	S	а	b	С	d	е	f	g	h	i
Lowpt	S	0	b	2	0	C	f	8	h	ì

Lowpt: $V \rightarrow V$

V	S	а	b	C	d	е	f	g	h	i
Lowpt	S	a	b	a	a	С	f	g	h	i

Lema. Considere G(V, E) um grafo conexo e T uma árvore de profundidade de G,

v ∈ V é uma articulação se e somente se

🦳 (i) v é raiz de T e possui mais de um filho. 🕊

(ii) \mathbf{v} não é raiz de \mathbf{T} e \mathbf{v} possui um filho \mathbf{w} tal que Lowpt (\mathbf{w}) = \mathbf{v} ou \mathbf{w} .

Articulações

v é raiz de T e possui mais de um filho.

v não é raiz de T e v possui um filho w tal que:

Lowpt(
$$\underline{\mathbf{w}}$$
) = $\underline{\mathbf{v}}$ OU
Lowpt(\mathbf{w}) = \mathbf{w} .

Algoritmo para o cálculo de Lowpt

{g(v) é o ancestral de v mais alto em T tal que exista (v,w) aresta de retorno. Caso não exista g(v) = v}

Se v é uma folha então lowpt(v) = g(v).

Senão

lowpt(v) = vértice mais próximo à raiz dentre g(v) e lowpt(w) para todo filho u de v.

V	S	а	b	С	d	е	f	g	h	i
g(v)	S	а	b	C	(a)	C	f	g	h	i
Lowpt(v)		а			а		_	g	h	i

Determinação dos blocos

Demarcador – vértice v com lowpt(v) = v ou w, sendo w pai de v em T.

{v é demarcador de w em T} ←

Articulação – Vértice pai de um ou mais demarcadores.

Obs. Os filhos da raiz são todos demarcadores. 👉

Lema.

Considere G(V,E) um grafo, T uma árvore de profundidade de G e v, w \in V, w demarcador de v, tal que a subárvore T_w de T com raiz w não possui articulações. \leftarrow Então, os vértices de T_w juntamente com v induzem um componente biconexo de G.

Prova. Não existem vértices em T_w que sejam articulações.

Determinação dos blocos

Aplicar o lema anterior repetidamente até que não haja mais demarcadores.

Obs. Se uma articulação v tem somente um demarcador w, ao se retirar T_w, v deixa de ser considerado articulação.

Determinação dos blocos

Passo Inicial.

Identificar demarcadores e articulações de G, através de uma busca em profundidade que produz a árvore T.

Passo Geral.

Escolher demarcador w tal que a subárvore T_w de T, com raiz w, não possui articulações de G.

{v com T_w induz um bloco de G}

Vértice v com Lowpt (v) = v ou w, sendo w pai de v em T.

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador w tal que, a subárvore w não possui articulações de G.

1

Demarcador

Vértice \mathbf{v} com Lowpt $(\mathbf{v}) = \mathbf{v}$ ou \mathbf{w} , sendo \mathbf{w} pai de \mathbf{v} em \mathbf{T} .

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador \mathbf{w} tal que a subárvore $\mathbf{T}_{\mathbf{w}}$ não possui articulações de \mathbf{G} .

Demarcador
Vértice v com
Lowpt (v) = v ou w,

sendo w pai de v em T.

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador \mathbf{w} tal que a subárvore $\mathbf{T}_{\mathbf{w}}$ não possui articulações de \mathbf{G} .

V	1	2	3	4	5	6	7	8	9
Predecessor	-	1							
Lowpt(v)									

Demarcador

Vértice v com
Lowpt (v) = v ou w,
sendo w pai de v em T.

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador \mathbf{w} tal que a subárvore $\mathbf{T}_{\mathbf{w}}$ não possui articulações de \mathbf{G} .

V	1	2	3	4	5	6	7	8	9
Predecessor	-	1	2						
Lowpt(v)									

V	1	2	3	4	5	6	7	8	9
Predecessor	-	1	2	3					
Lowpt(v)									

Demarcador

Vértice v com
Lowpt (v) = v ou w,
sendo w pai de v em T.

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador \mathbf{w} tal que a subárvore $\mathbf{T}_{\mathbf{w}}$ não possui articulações de \mathbf{G} .

V	1	2	3	4	5	6	7	8	9
Predecessor	-	1	2	3		4			
Lowpt(v)						3			

Demarcador

Vértice v com
Lowpt (v) = v ou w,
sendo w pai de v em T.

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador \mathbf{w} tal que a subárvore $\mathbf{T}_{\mathbf{w}}$ não possui articulações de \mathbf{G} .

V	1	2	3	4	5	6	7	8	9
Predecessor	-	1	2	3		4			
Lowpt(v)				3		3			

Demarcador

Vértice v com

Lowpt $(\mathbf{v}) = \mathbf{v}$ ou \mathbf{w} , sendo \mathbf{w} pai de \mathbf{v} em \mathbf{T} .

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador **w** tal que a subárvore **T**_w não possui articulações de **G**.

V	1	2	3	4	5	6	7	8	9
Predecessor	-	1	2	3		4			
Lowpt(v)				3		3			

Demarcador

Vértice v com
Lowpt (v) = v ou w,
sendo w pai de v em T.

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador **w** tal que a subárvore **T**_w não possui articulações de **G**.

V	1	2	3	4	5	6	7	8	9
Predecessor	-	1	2	3		4			
Lowpt(v)				3		3			

Demarcador

Vértice v com
Lowpt (v) = v ou w,
sendo w pai de v em T.

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador w tal que a subárvore Tw não possui articulações de G.

V	1	2	3	4	5	6	7	8	9
Predecessor	-	1	2	3	3	4			
Lowpt(v)				3		3			

Demarcador

Vértice v com
Lowpt (v) = v ou w,
sendo w pai de v em T.

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador **w** tal que a subárvore **T**_w não possui articulações de **G**.

V	1	2	3	4	5	6	7	8	9
Predecessor	-	1	2	3	3	4	5		
Lowpt(v)				3		3			

Demarcador

Vértice v com
Lowpt (v) = v ou w,
sendo w pai de v em T.

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador **w** tal que a subárvore **T**_w não possui articulações de **G**.

V	1	2	3	4	5	6	7	8	9
Predecessor	-	1	2	3	3	4	5	7	
Lowpt(v)				3		3			

Demarcador

Vértice v com
Lowpt (v) = v ou w,
sendo w pai de v em T.

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador **w** tal que a subárvore **T**_w não possui articulações de **G**.

Demarcador Vértice v com Lowpt (v) = v ou w, sendo w pai de v em T.

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador \mathbf{w} tal que a subárvore $\mathbf{T}_{\mathbf{w}}$ não possui articulações de \mathbf{G} .

V	1	2	3	4	5	6	7	8	9
Predecessor	-	1	2	3	3	4	5	7	8
Lowpt(v)				3		3			7

Demarcador Vértice **v** com

Lowpt $(\mathbf{v}) = \mathbf{v}$ ou \mathbf{w} , sendo \mathbf{w} pai de \mathbf{v} em \mathbf{T} .

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador **w** tal que a subárvore **T**_w não possui articulações de **G**.

V	1	2	3	4	5	6	7	8	9
Predecessor	-	1	2	3	3	4	5	7	8
Lowpt(v)				3		3		5	7

Demarcador

Vértice v com

Lowpt(v) = v ou w,

sendo w pai de v em T.

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador **w** tal que a subárvore **T**_w não possui articulações de **G**.

Demarcador

Vértice v com
Lowpt (v) = v ou w,
sendo w pai de v em T.

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador **w** tal que a subárvore **T**_w não possui articulações de **G**.

Demarcador

Vértice v com
Lowpt (v) = v ou w,
sendo w pai de v em T.

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador w tal que a subárvore Tw não possui articulações de G.

Demarcador

Vértice v com

Lowpt(v) = v ou w,

sendo w pai de v em T.

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador **w** tal que a subárvore **T**_w não possui articulações de **G**.

Demarcador

Vértice v com
Lowpt (v) = v ou w,
sendo w pai de v em T.

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador **w** tal que a subárvore **T**_w não possui articulações de **G**.

Demarcador

Vértice v com
Lowpt (v) = v ou w,
sendo w pai de v em T.

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador w tal que a subárvore Tw não possui articulações de G.

Demarcador

Vértice v com

Lowpt(v) = v ou w,

sendo w pai de v em T.

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador \mathbf{w} tal que a subárvore $\mathbf{T}_{\mathbf{w}}$ não possui articulações de \mathbf{G} .

Demarcador

Vértice v com Lowpt(v) = v ou w,sendo w pai de v em T.

Articulação

Vértice pai de um ou mais demarcadores.

Passo Geral

Escolher demarcador w tal que a subárvore Tw não possui articulações de G.

