

UNIVERSITÉ ABDELMALEK ESSAÂDI École nationale des sciences appliquées Al Hoceima

Module: Analyse Réelle (AP12) CP 1ère année

Année 2018/2019 Semestre: 1

Examen d'Analyse

Exercice 1 (6 points) (Questions de cours)

Soit $f: I \longrightarrow \mathbb{R}$ une fonction continue.

- 1. (a) Soit $x_0 \in I$, montrer que pour toute suite (u_n) qui converge vers x_0 , la suite $(f(u_n))$ converge vers $f(x_0)$.
- χ (b) Montrer que si f est injective alors f est srictement monotone sur I
- (c) Supposons que f est dérivable sur I = [a, b]. Montrer qu'il existe au moins une valeur $c \in]a,b[$ tel que : $f'(c) = \frac{f(b)-f(a)}{b-a}$
- 2. Peut-on affirmer ces assertion suivantes:
 - (a) Si (u_n) est bornée alors (u_n) est de cauchy
 - (b) Si f est continue sur I alors f est uniformément continue sur I. Justifier vos réponses.

Exercice 2 (6 points)

Soit I un intervalle fermé non vide et $f:I\longrightarrow I$ une fonction contractante sur I.Soit $(u_n)_n$ une suite réelle définie par $u_0 \in I$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.

- 1. Montrer que : pour tout $n \in \mathbb{N}^*$, $|u_{n+1} u_n| \le k^n |u_1 u_0|$
- 2. Montrer que : pour tout $p, q \in \mathbb{N}$ avec p > q, $|u_p u_q| \le \frac{k^q}{1 k} |u_1 u_0|$
- 3. En déduire que la suite (u_n) est de Cauchy
- 4. Montrer que f admet un unique point fixe l dans I

Exercice 3 (8 points)

On pose $I_n = \int_0^{\frac{\pi}{2}} \sin^n(x) dx$

- 1. Montrer que la suite (I_n) est décroissante et strictement positive
- 2. Etablir une formule de récurrence entre I_n et I_{n-2}
- 3. Montrer que pour tout n de \mathbb{N}^* , $I_n I_{n-1} = \frac{\pi}{2n}$
- In Just = M In-12 4. Montrer que $I_n \sim \frac{\sqrt{\pi}}{\sqrt{2n}}$
- 5. Calculer I_{2p} et I_{2p+1} pour tout $p \in \mathbb{N}$
- 6. Sachant que $n! \sim K n^n e^{-n} \sqrt{n}$ avec K > 0. Trouver la constante K