Written Evaluation II Review Continuity, Derivatives and Curves

Yahoo

UM-SJTU Joint Institu(te

Summer 2017

- Continuity
- Punctions and Derivatives
- Curves

Open and closed sets

2.1.2. Definition. Let $(V, \|\cdot\|)$ be a normed vector space. A set $U \subset V$ is called *open* if for every $a \in U$ there exists an $\varepsilon > 0$ such that $B_{\varepsilon}(a) \subset U$.

2.1.18. Definition. Let $(V, \|\cdot\|)$ be a normed vector space and $M \subset V$. Then M is said to be *closed* if its complement $V \setminus M$ is open.

Continuous Functions

Theorem

Let $(U, ||\cdot||_1)$ and $(V, ||\cdot||_2)$ be normed vector spaces and $f: U \to V$ a function. Then f is continuous at $a \in U$ if and only if

$$\forall \exists_{\varepsilon>0} \forall \exists_{\delta>0} \forall ||x-a||_1 < \delta \qquad \Rightarrow \qquad ||f(x)-f(a)||_2 < \varepsilon.$$

Continuous functions

Question.

Continuous or not: Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} (1 - \cos \frac{x^2}{y})\sqrt{x^2 + y^2} & y \neq 0\\ 0 & y = 0 \end{cases}$$

Continuous functions

Question.

Continuous or not: Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} (1 - \cos \frac{x^2}{y})\sqrt{x^2 + y^2} & y \neq 0\\ 0 & y = 0 \end{cases}$$

Comment.

- y = 0, f(x, y) is continuous.
- $y \neq 0$, we want to show $\lim_{\sqrt{x^2+y^2} \to 0} f(x,y) = 0$. Let $\sqrt{x^2+y^2} \to 0$, then

$$|f(x,y)| \le |1 - \cos \frac{x^2}{y}|\sqrt{x^2 + y^2} \le 2\sqrt{x^2 + y^2} \to 0$$

Continuous Functions

Theorem

Let $(U, ||\cdot||_1)$ and $(V, ||\cdot||_2)$ be normed vector spaces and $f: U \to V$ a function. Then f is continuous if and only if the pre-image $f^{-1}(\Omega)$ of every open set $\Omega \subset V$ is open.

Continuous Functions

Theorem

Let $(U, ||\cdot||_1)$ and $(V, ||\cdot||_2)$ be normed vector spaces and $f: U \to V$ a function. Then f is continuous if and only if the pre-image $f^{-1}(\Omega)$ of every open set $\Omega \subset V$ is open.

Example

The determinant function is continuous.

Compact Sets

Definition

K is said to be compact if every sequence in K has a convergent subsequence with limit contained in K.

Compact Sets

Definition

K is said to be compact if every sequence in K has a convergent subsequence with limit contained in K.

Theorem

Let $(V, ||\cdot||)$ be a (possibly infinite-dimensional) normed vector space and $K \subset V$ be compact. Then K is closed and bounded.

Compact Sets

Definition

K is said to be compact if every sequence in K has a convergent subsequence with limit contained in K.

Theorem

Let $(V, ||\cdot||)$ be a (possibly infinite-dimensional) normed vector space and $K \subset V$ be compact. Then K is closed and bounded.

Theorem

Let $(V, ||\cdot||)$ be a finite-dimensional normed vector space and $K \subset V$ is closed and bounded, then K is compact.

Compact Set and Continuous Functions

Theorem

Let $(U, ||\cdot||_1)$ and $(V, ||\cdot||_2)$ be normed vector spaces and $K \subset V$ be compact. Let $f: K \to V$ be continuous. Then

- i) ran f = f(K) is compact in V.
- ii) f has a maximum in K.
- iii) f is uniformly continuous on K.

Question.

Clarify the following

The set
$$\Omega = \{A \in \operatorname{Mat}(2 \times 2) \colon \det A = 1\}$$
 is

- □ bounded.
- □ open.
- □ closed.
- □ compact.

Solution.

• For example, $A = \begin{pmatrix} n & 0 \\ 0 & \frac{1}{n} \end{pmatrix} \in \Omega$. Take the max norm for determinant $\|\cdot\| = \max_{i,j} |a_{ij}|$ and let $n \to \infty$, we can see that Ω is not bounded.

Solution.

- For example, $A = \begin{pmatrix} n & 0 \\ 0 & \frac{1}{n} \end{pmatrix} \in \Omega$. Take the max norm for determinant $\|\cdot\| = \max_{i,j} |a_{ij}|$ and let $n \to \infty$, we can see that Ω is not bounded.
- Since Ω is not bounded, then Ω is not compact.

Solution.

- For example, $A = \begin{pmatrix} n & 0 \\ 0 & \frac{1}{n} \end{pmatrix} \in \Omega$. Take the max norm for determinant $\|\cdot\| = \max_{i,j} |a_{ij}|$ and let $n \to \infty$, we can see that Ω is not bounded.
- Since Ω is not bounded, then Ω is not compact.
- We argue that Ω is not open. Take $A=\begin{pmatrix} n & 0 \\ 0 & \frac{1}{n} \end{pmatrix}$ $(n>1)\in \Omega$ and the max norm, we find $B_{\varepsilon}(A)$ for $\varepsilon>0$, $B=\begin{pmatrix} n+\frac{\varepsilon}{2} & 0 \\ 0 & \frac{1}{n} \end{pmatrix}$ $\in B_{\varepsilon}(A)$, but $B\notin \Omega$.

Solution.

• We claim Ω is closed. We know that for a continuous function, the pre-image of an open set is open. If the function is defined on the whole vector space, we can take the complement of the image set and pre-image set. Then we have the following conclusion

Solution.

ullet We claim Ω is closed. We know that for a continuous function, the pre-image of an open set is open. If the function is defined on the whole vector space, we can take the complement of the image set and pre-image set. Then we have the following conclusion

Theorem

For a continuous function, the pre-image of a closed set is closed, if the function is defined on the whole vector space.

Solution.

• We claim Ω is closed. We know that for a continuous function, the pre-image of an open set is open. If the function is defined on the whole vector space, we can take the complement of the image set and pre-image set. Then we have the following conclusion

Theorem

For a continuous function, the pre-image of a closed set is closed, if the function is defined on the whole vector space.

We know that the determinant is a continuous function, then the pre-image of a closed set will be closed. Since $\{1\} \in \mathbb{R}$ is closed, then Ω is closed.

- Continuity
- 2 Functions and Derivatives
- 3 Curves

Differentiability

Definition

There is a linear map $L_x \in \mathcal{L}(X, V)$ (called derivative) such that

$$f(x+h) = f(x) + L_x h + o(h)$$

as $h \rightarrow 0$.

Differentiability

Definition

There is a linear map $L_x \in \mathcal{L}(X, V)$ (called derivative) such that

$$f(x+h) = f(x) + L_x h + o(h)$$

as $h \rightarrow 0$.

Comment.

We may thus regard the derivative as a linear map

$$D: C^1(\Omega, V) \to C(\Omega, \mathcal{L}(X, V)),$$

$$f \mapsto Df$$
.

Derivative

Example

Exercise 3. Calculate the derivative of the map

$$\Psi \colon \operatorname{Mat}(n \times n, \mathbb{R}) \to \operatorname{Mat}(n \times n, \mathbb{R}),$$

$$\Psi(A) = A \cdot A^T$$

where A^T denotes the transpose of A.

Derivative

Example

Exercise 3. Calculate the derivative of the map

$$\Psi \colon \operatorname{Mat}(n \times n, \mathbb{R}) \to \operatorname{Mat}(n \times n, \mathbb{R}),$$

$$V(A) = A \cdot A^T$$

where A^T denotes the transpose of A.

Solution.

Proof. We have

$$\Psi(A+H) = (A+H)(A+H)^T = AA^T + HA^T + AH^T + HH^T.$$

(1 Mark) We see that $HH^T = o(H)$, since using the operator norm,

$$\lim_{\|H\|\rightarrow 0}\frac{\|HH^T\|}{\|H\|}\leq \lim_{\|H\|\rightarrow 0}\|H^T\|=0.$$

(1 Mark) Hence,

$$D\Psi|_A H = HA^T + AH^T.$$

Jacobian

If the function is differentiable, there is a quicker way to calculate the derivative.

Jacobian

If the function is differentiable, there is a quicker way to calculate the derivative.

Definition

The matrix is called the Jacobian of f.

$$J_f(x) := \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix} \bigg|_{x}$$

where the partial derivatives are defined as

$$\frac{\partial f}{\partial x_j}\Big|_{x} := \lim_{h \to 0} \frac{f(x + he_j) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x_1, \dots, x_{j-1}, x_j + h, x_{j+1}, \dots, x_n) - f(x)}{h}$$

Jacobian and continuity

Theorem

Suppose all partial derivatives of f exist

- i) If all partial derivatives are bounded, then f is continuous
- ii) If all partial derivatives are continuous, then f is continuously differentiable. The Jacobian is just the derivative.

Definition

$$D(f \circ g)|_{x} = Df|_{g(x)} \circ Dg|_{x}$$

Definition

$$D(f \circ g)|_{x} = Df|_{g(x)} \circ Dg|_{x}$$

Example

Calculate the derivative of $f(x, y, z) = x^2 + y^2 + z^2$ in spherical coordinate: $(r, \theta, \varphi) \in (0, +\infty) \times [0, \pi] \times [0, 2\pi)$

$$\Phi(r,\theta,\varphi) = \begin{pmatrix} r\cos\theta\\ r\sin\theta\cos\varphi\\ r\sin\theta\sin\varphi \end{pmatrix}$$

Solution.

First, the derivative of $\Phi(r, \theta, \varphi)$

$$D\phi \bigg|_{(r,\theta,\varphi)} = \begin{pmatrix} \cos\theta & -r\sin\theta & 0\\ \sin\theta\cos\varphi & r\cos\theta\cos\varphi & -r\sin\theta\sin\varphi\\ \sin\theta\sin\varphi & r\cos\theta\sin\varphi & r\sin\theta\cos\varphi \end{pmatrix}$$

Solution.

First, the derivative of $\Phi(r, \theta, \varphi)$

$$D\phi \bigg|_{(r,\theta,\varphi)} = \begin{pmatrix} \cos\theta & -r\sin\theta & 0\\ \sin\theta\cos\varphi & r\cos\theta\cos\varphi & -r\sin\theta\sin\varphi\\ \sin\theta\sin\varphi & r\cos\theta\sin\varphi & r\sin\theta\cos\varphi \end{pmatrix}$$

Then the derivative of f

$$Df \bigg|_{\Phi(x,y,z)} = (2r\cos\theta, 2r\sin\theta\cos\varphi, 2r\sin\theta\sin\varphi)$$

Solution.

Solution.

Comment.

The derivative can be obtained in another way.

$$f(r,\theta,\varphi) = (r\cos\theta)^2 + (r\sin\theta\cos\varphi)^2 + (r\sin\theta\sin\varphi)^2 = r^2$$

$$Df\Big|_{(r,\theta,\varphi)} = (\frac{\partial f}{\partial r}, \frac{\partial f}{\partial \theta}, \frac{\partial f}{\partial \varphi}) = (2r,0,0)$$

Mean Value Theorem

Theorem

Let $f \in C^1(\Omega, V)$. Let $0 \le t \le 1$, then

$$f(x+y) - f(x) = \int_0^1 Df|_{x+ty} y \, dt = \left(\int_0^1 Df|_{x+ty} \, dt\right) y.$$

Theorem

Let $f: I \times \Omega \to V$ be a continuous function such that $Df(t,\cdot)$ exists and is continuous for every $t \in I$. Then g(x) is differentiable and the derivative is

$$g(x) = \int_a^b f(t, x) dt \qquad Dg(x) = \int_a^b Df(t, \cdot)|_x dt$$

- Continuity
- 2 Functions and Derivatives
- 3 Curves

Curves and Parametrization

- A set $C \subset V$ for which there exists a continuous, surjective and locally injective map $\gamma: I \to C$ is called a curve.
- The map γ is called a parametrization of C.
- Locally injective means that in the neighborhood $B_{\varepsilon}(x) \cap I$ of any point $x \in I$ the parametrization is injective.

Simple, Open and Closed Curves

Example

Reparametrization

- 2.3.9. Definition. Let $\mathcal{C} \subset V$ be a curve with parametrization $\gamma \colon I \to \mathcal{C}$.
 - (i) Let $J \subset \mathbb{R}$ be an interval. A continuous, bijective map $r: J \to I$ is called a *reparametrization*.of the parametrized curve (\mathcal{C}, γ) .

Comment.

Given any two parametrizations $\gamma,\widetilde{\gamma}$ of an open curve, one can always find a reparametrization by setting $r=\gamma^{-1}\circ\widetilde{\gamma}$ (the continuity and local injectivity is enough for this definition to make sense).

Reparametrization

Question.

Can we find a reparametrization of curve S, $r:[0,1] \rightarrow [0,2\pi]$ such that

$$\gamma: [0, 2\pi] o S, \quad \gamma(t) = egin{pmatrix} \cos(t) \ \sin(t) \end{pmatrix} \ ilde{\gamma}: [0, 1] o S, \quad ilde{\gamma}(t) = egin{pmatrix} -\cos(2\pi t) \ -\sin(2\pi t) \end{pmatrix}$$

 $\tilde{\gamma} = \gamma \circ r$

Reparametrization

Solution.

$$\tilde{\gamma}(t) = \begin{pmatrix} -\cos(2\pi t) \\ -\sin(2\pi t) \end{pmatrix} = \begin{pmatrix} \cos(2\pi t \pm \pi) \\ \sin(2\pi t \pm \pi) \end{pmatrix}$$
$$r(t) = \begin{cases} 2\pi t + \pi & t \in [0, \frac{1}{2}] \\ 2\pi t - \pi & t \in [\frac{1}{2}, 1] \end{cases}$$

However, function r is not continuous at point $t = \frac{1}{2}$.

- Tangent Vector: $T \circ \gamma(t) = \frac{\gamma'(t)}{\|\gamma'(t)\|}$
- Normal Vector: $N \circ \gamma(t) = \frac{(T \circ \gamma)'(t)}{\|(T \circ \gamma)'(t)\|}$
- Binormal vector: $B \circ \gamma(t) = T \circ \gamma(t) \times N \circ \gamma(t)$ (Only in \mathbb{R}^3)
- Curve length: $I(C) = \int_a^b \|\gamma'(t)\| dt$
- Curve function: $I \circ \gamma(t) = \int_a^t \|\gamma'(t)\| dt$
- Curvature: $\kappa \circ I^{-1}(s) = \left\| \frac{d}{ds} T \circ I^{-1}(s) \right\| = \frac{\left\| (T \circ \gamma)'(t) \right\|}{\left\| \gamma'(t) \right\|}$
- Curvature in \mathbb{R}^3 : $\kappa \circ I^{-1}(s) = \frac{\|\gamma'(t) \times \gamma''(t)\|}{\|\gamma'(t)\|}$
- Torsion: $\frac{d(B \circ I^{-1}(s))}{ds} = -\tau(s)(N \circ I^{-1}(s))$, then $\tau(s) = -\frac{d(B \circ I^{-1}(s))}{ds} \cdot (N \circ I^{-1}(s))$

Question.

Find the tangent vector, normal vector, curve length function, curvature of cycloid $\gamma(t),\ t\in(0,2\pi)$

$$\gamma(t) = \begin{pmatrix} t - \sin t \\ 1 - \cos t \end{pmatrix}$$

Solution.

•

$$\gamma'(t) = \begin{pmatrix} 1 - \cos t \\ \sin t \end{pmatrix}$$

$$T \circ \gamma(t) = \frac{\gamma'(t)}{\|\gamma'(t)\|} = \frac{1}{2\sin(t/2)} \begin{pmatrix} 1 - \cos t \\ \sin t \end{pmatrix} = \begin{pmatrix} \sin(t/2) \\ \cos(t/2) \end{pmatrix}$$

$$(T \circ \gamma)'(t) = \frac{1}{2} \begin{pmatrix} \cos(t/2) \\ -\sin(t/2) \end{pmatrix}$$

$$N \circ \gamma(t) = \frac{(T \circ \gamma)'(t)}{\|(T \circ \gamma)'(t)\|} = \begin{pmatrix} \cos(t/2) \\ -\sin(t/2) \end{pmatrix}$$

Solution.

$$\|\gamma'(t)\| = 2\sin(t/2)$$
 $I \circ \gamma(t) = \int_0^t \|\gamma'(t)\| dt = 4(1-\cos t/2), \quad t \in (0,2\pi)$
 $I \circ \gamma(2\pi) = 8$

 $\kappa \circ I^{-1}(s) = \frac{\|(T \circ \gamma)'(t)\|}{\|\gamma'(t)\|} = \frac{1}{4\sin(t/2)}$

