

Этикетка

КСНЛ.431256.002 ЭТ

Микросхема 1564ТЛ2Т1ЭП

Микросхема интегральная 1564ТЛ2Т1ЭП Функциональное назначение: Шесть инвертирующих триггеров Шмитта

Условное графическое обозначение Схема расположения выводов Номера выводов показаны условно ТН 1 Масса не более 1 г. 2, 4, 6, 8, 10, 12 1, 3, 5, A 9, 11, 13 14 V_{CC} 0V7 <6> 14 Ключ

Таблица назначения выводов

№	Обозначение	Назначение	№	Обозначение	Назначение
вывода	вывода	вывода	вывода	вывода	вывода
		Вход первого			Выход четвер-
1	A1	триггера	8	Y4	того триггера
		Выход первого			Вход четвер-
2	Y1	триггера	9	A4	того триггера
		Вход второго			Выход пятого
3	A2	триггера	10	Y5	триггера
		Выход второго			Вход пятого
4	Y2	триггера	11	A5	триггера
		Вход третьего			Выход шестого
5	A3	триггера	12	Y6	триггера
		Выход третьего			Вход шестого
6	Y3	триггера	13	A6	триггера
7	0V	Общий	14	V_{CC}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
U_{CC} =2,0 B, U_{IH} =2,0 B; 1,5 B; 1,3 B, I_{O} = 20 мкА	U _{OL max}	-	0,10
U_{CC} =4,5 B, U_{IH} =4,5 B; 3,15 B; 2,75 B, I_{O} = 20 мкА		-	0,10
U_{CC} =6,0 B, U_{IH} =6,0 B; 4.2 B; 3,6 B, I_{O} = 20 мкА		-	0,10
при:			
U_{CC} =4,5 B, U_{IH} =3,15 B, I_{O} =4,0 mA		-	0,26
$U_{CC}=6.0 \text{ B}, U_{IH}=4.2 \text{ B}, I_{O}=5.2 \text{ mA}$		-	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
U_{CC} =2,0 B, U_{IL} =0,3 B; 0 B; 0,5 B, I_{O} = 20 мкА	$U_{ m OHmin}$	1,9	-
U_{CC} =4,5 B, U_{IL} =0,9 B; 0 B; 1,3 B, I_{O} = 20 мкА		4,4	-
U_{CC} =6,0 B, U_{IL} =1,2 B; 0 B; 1,8 B, I_{O} = 20 мкА		5,9	-
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, I_{O} = 4,0 mA		4,0	-
U_{CC} =6,0 B, U_{IL} =1,2 B, I_{O} = 5,2 mA		5,5	-
3. Входной ток низкого уровня, мкА, при:			
U_{CC} = 6,0 B, U_{IL} = 0 B, U_{IH} = U_{CC}	I_{IL}	-	/-0,1/

4. Входной ток высокого уровня, мкА, при: $U_{CC}\!=\!6,\!0~B,U_{IL}\!=\!0~B,U_{IH}\!=\!U_{CC}$	I_{IH}	-	0,1
5.Ток потребления, мкА, при: $U_{CC}\!\!=\!6,\!0$ B, $U_{IL}\!\!=\!0$ B, $U_{IH}\!\!=\!\!U_{CC}$	I_{CC}	-	1,0
6. Динамический ток потребления, мА, при: $U_{CC}\!=\!6,\!0\;B,f\!=\!10,\!0\;M\Gamma_{I\!I}$	I _{occ}	-	15
7. Время задержки распространения при включении и выключении , нс, при: $U_{CC}=2,0\text{ B, }C_L=50\pi\Phi$ $U_{CC}=4,5\text{ B, }C_L=50\pi\Phi$ $U_{CC}=6,0\text{ B, }C_1=50\pi\Phi$	t _{PHL} , t _{PLH}	-	115 24 20
8. Входная емкость, пФ	C _I	-	10

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г. серебро г.

в том числе:

золото г/мм

на 14 выводах длиной мм.

Цветных металлов не содержится

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ($T_{\rm C_7}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯР.431200.424-07ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ТЛ2Т1ЭП соответствуют техническим условиям АЕЯР.431200.424-07ТУ и признаны годными для эксплуатации.

Приняты по от	
(извещение, акт и др.) (дата)	
Место для штампа ОТК	Место для штампа ПЗ
Место для штампа « Перепроверка произведена	»
Приняты по от от (дата)	
Место для штампа ОТК	Место для штампа ПЗ
Пена договорная	

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ.