RehabApp – Al-Powered Physiotherapy Coach 🏋

RehabApp is an end-to-end research prototype that:

- **Trains** a lightweight multi-head CNN + Bi-LSTM (PoseQualityNet-KP) on the REHAB24-6 physiotherapy corpus.
- **III** Evaluates its accuracy, ablation variants, and inference speed.
- Serves real-time, joint-level feedback through a FastAPI back-end and a React front-end.

Repository Layout

Path	What's inside
Data/	Contains links and information about the data sources used.
└ Data Source Links.txt	Text file with links/references to the original and processed datasets.
Data Preprocessing - Model Creation and Evaluation/	Data-prep helpers and the main Jupyter notebook
_model_training_evaluation_and_Inference.ipynb	
└─ Data-REHAB24-6_New/	Augmented window tensors & meta-data generated by the notebook
Documentation/	Project documentation, reports, and guides.
└Presentation/	Slides (PDF) and recorded project presentations.
└ Project Report/	Detailed project report (PDF and Latex code)
└─ User Guide/	Instructions and guides for using Repo and RehabApp.
rehab-app-backend/	FastAPI service (main.py, model loader, SQLite storage, Dockerfile)
rehab-app-frontend/	React client (pose capture, WebSocket, dashboard UI)
docker-compose.yml	One-shot build & launch for both apps
gitignore	Ignores editor caches (.vscode/, .qodo/, etc.)

Running the Application:

- 1. Clone the repository:
 - git clone https://github.com/IS06-Jithin/RehabApp.git
- 2. Command prompt/terminal navigate to RehabApp folder
 - o cd RehabApp
- 3. Build and run with Docker Compose:
 - o docker-compose up --build
- 4. Access the application: Once the build is complete and containers are running:
 - React Client (Frontend): http://localhost:3000/ (allow webcam access when prompted)

5. Using the App

- Select the exercise from the dropdown menu and click the start button
- Perform the selected Exercise
- o Pay attention to the visual/Auditory feedback and correct yourself
- Upon completion, click the **Stop** button and review your session summary
- If you have any feedback on the App's usability, click the feedback button and provide it.

X Prerequisites

- Docker & Docker Compose:
 - o Windows / macOS: Install Docker Desktop from docker.com.
 - Linux: Install the Docker Engine and the docker-compose plugin from your distribution's package manager or follow the <u>official guide</u>.
- **Git:** Download and install from git-scm.com.
- (Optional) NVIDIA Driver + CUDA:
 - Needed only if you want to benchmark the model on a GPU. CPU inference works out of the box.

Model at a Glance

Architecture

Block	Details
Frame Encoder	1-D CNN (99 → 128 → 512 channels)
Temporal Encoder	2-layer Bi-LSTM (256 hidden units/direction)
Exercise Embedding	6 → 64 MLP
Prediction Heads	Quality (2-way) • 14-Joint Regression • Exercise ID (6-way)
Total Footprint	3.41 M parameters (≈ 13 MB)

Performance Highlights

- **6 91.5% F1-score** on repetition quality assessment.
- **D 99.5% F1-score** on exercise identification.
- **L. 4.73° Mean Absolute Error** for joint-angle regression.
- **30 FPS** on a mid-range CPU (or ~7,500 windows/second on GPU).

License

This project is released under the MIT License. The dataset media (REHAB24-6) remain under their original license. Please see the REHAB24-6 Zenodo record for details.

i Citation

If you use RehabApp or its components in your research, please cite it as:

@misc{rehabapp2025,

```
= {Jithin Krishnan},
author
       = {RehabApp: AI-Powered Real-Time Physiotherapy Coach},
title
year
        = \{2025\},
howpublished = {\url{https://github.com/IS06-Jithin/RehabApp}}
```