Лекция 2 Многошаговая биномиальная модель

Финансовая математика

Евгений Лукаш | ЦМФ МГУ

Москва, МГУ, 24 октября 2015 года

Содержание

- Трехшаговая биномиальная модель
 - Содержание модели
 - Реплицирующий портфель платежного обязательства
 - Риск-нейтральное ценообразование

Многошаговая биномиальная модель

- Многошаговая биномиальная модель является обобщением одношаговой модели, рассмотренной в предыдущей лекции.
- Сначала мы рассмотрим трехшаговую модель в качестве демонстрации основополагающих принципов, которые далее будут обобщены на модель с количеством N>2 временных периодов.
- Первая задача сформулировать модель изменения цены рискового актива в дискретном времени.
- Далее мы выполняем построение хеджирующего (реплицирующего) портфеля для европейского платежного обязательства. Мы рассматриваем метод решения системы уравнений с неизвестной величиной капитала портфеля. Если мы знаем ее в начальный момент времени, то мы знаем начальную цену европейского платежного обязательства.
- Отдельно отметим, что рассматриваемая модель находит широкое применение в практике, например, при оценке стоимости Американских опционов, а также облигаций с встроенными опционами.

Вероятностное пространство

В модели имеется три момента времени t = 0, 1, 2, 3.

Для описания стохастической природы цены рискового актива мы будем использовать вероятностное пространство Ω_t серии независимых экспериментов по подбрасыванию t монет.

Пусть результат отдельного эксперимента описывается двумя исходами, соответствущие выпавшим сторонам – орел H или решка T.

В каждый из t мы рассматриваем вероятностное пространство

$$\Omega_t \equiv \{\omega = \omega_1 \dots \omega_t\}$$
 выпавших сторон t монет.

В случае $t = 1, 2, 3, \omega_1 \dots \omega_t$ принимают значения:

$$\begin{split} \Omega_1 &\equiv \{\omega_1 \in \{H,T\}\} \\ \Omega_2 &\equiv \{\omega_1 \omega_2 \in \{HH,HT,TH,TT\}\} \end{split}$$

$$\Omega_2 \equiv \{\omega_1 \omega_2 \in \{HH, HT, TH, TT\}\}$$

$$\Omega_3 \equiv \{\omega_1\omega_2\omega_3 \in \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}\}$$

Вероятностное пространство

Пусть при каждом отдельном подбрасывании

$$\mathbb{P}(\omega = H) = p_u, \mathbb{P}(\omega = T) = p_d \tag{1}$$

Обозначим

-

 <br/
-

 <br/

Поскольку подбрасывания являются независимыми, то вероятность получения определенного количества H или T в элементарном исходе $\omega_1 \dots \omega_t$

$$\mathbb{P}(\omega_1 \dots \omega_t) = p_u^{\#H(\omega_1 \dots \omega_t)} p_d^{\#T(\omega_1 \dots \omega_t)}$$

Например, $\mathbb{P}(\omega_1\omega_2\omega_3=HHT)=p_u^2p_d.$

Модель цены актива

В качестве рискового актива рассмотрим акцию, по которой не выплачивается дивидендов.

Как и в одношаговой модели, цена акции моделируется как случайный процесс — последовательность случайных величин $S_t(\omega)$, определенных в каждый t на множестве элементарных исходов $\{\omega=\omega_1\ldots\omega_t\}$ из $\Omega_t,\,t=0,1,2,3.$

В начальный момент времени $S_0=s={
m const.}$ Для одного временного шага (одного подбрасывания)

$$S(\omega) = \begin{cases} su & \omega = H \text{с вероятностью } p_u \\ sd & \omega = T \text{с вероятностью } p_d \end{cases} \tag{2}$$

Модель цены актива

Ввиду независимости подбрасываний, из (2) для t временных шагов

$$S_t(\omega_1\dots\omega_t) = su^{\#H(\omega_1\dots\omega_t)}d^{\#T(\omega_1\dots\omega_t)}$$
 с вероятностью $p_u^{\#H(\omega_1\dots\omega_t)}p_d^{\#T(\omega_1\dots\omega_t)}$ (3)

Например, $S_3(HHT)=su^2d$ и $\mathbb{P}(S_3(\omega_1\omega_2\omega_3)=su^2d)=p_u^2p_d$. Значения вероятностной меры \mathbb{P} являются истинными вероятностями – вероятностями принятия случайной величиной $S_t(\omega)$ значений в реальном мире. Примером может служить эмпирическая функция распределения значений, полученная из исторических данных.

Как и в одношаговой модели, кроме акции у нас имеется облигация B_t с фиксированным доходом R, соотвествтующим одному периоду. К тому же, при выборе параметров мы придерживаемся безарбитражному неравенству

$$0 \le d \le (1+R) \le u$$

Пример биномиального дерева (два шага)

Европейское платежное обязательство

Рассмотрим европейский опцион колл, который дает право (не обязательство) на покупку одной акции по цене K в определенный момент времени (но не до него).

Пусть мы можем совершить покупку на втором шаге цены (t=2). Далее мы снимем это ограничение и рассмотрим общий случай.

Наша задача — определить такую цену платежного обязательства в t=0, которая исключает возможность арбитража.

Построение реплицирующего портфеля

Обозначим стоимость опциона в момент времени t через H_t . В дату экспирации t=2 стоимость контракта равна функции выплат

$$H_2 = (S_2 - K)^+ = \begin{cases} S_2 - K, & S_2 - K \ge 0 \\ 0, & S_2 - K < 0 \end{cases},$$

где H_2 и S_2 зависят от первого и второго подбрасываний $\omega_1\omega_2.$

Теперь мы рассмотрим такую стратегию (определенные в каждый момент времени t количества Δ_t покупки или продажи акций), а также величину капитала V_t^h реплицирующего портфеля h (с учетом финансирования за счет облигаций B_t), что в каждый t=0,1,2

$$H_t = V_t^h. (4)$$

Построение реплицирующего портфеля

Допустим, что мы продали опцион нашему контрагенту за H_0 . Значение этой величины мы будем искать.

t=0. Покупаем Δ_0 акций, на оставшееся $H_0-\Delta_0 s$ покупаем облигаций (при $H_0 - \Delta_0 s < 0$ мы занимаем денег через облигации – финансируемся). Итого величина капитала портфеля равна $V_0^h = H_0$.

 $t=1.~\mathrm{B}$ зависимости от значения реализованного элементарного исхода ω_1 , капитал портфеля принимает значение

$$V_1^h(H) = \Delta_0 S_1(H) + (1+R)(H_0 - \Delta_0 s) \tag{5}$$

$$V_1^h(T) = \Delta_0 S_1(T) + (1+R)(H_0 - \Delta_0 s) \tag{6}$$

После определения цены $S_1(\omega_1)$, мы можем изменить структуру портфеля, изменив количество акций на $\Delta_1(\omega_1)$. Новое количество является случайной величиной, определенной на вероятностном пространстве Ω_1 , также как и величина капитала портфеля $V_1^h(\omega_1)$.

На оставшееся $V_1^h - \Delta_1 S_1$ покупаем облигаций (при $V_1^h - \Delta_1 S_1 < 0$ мы занимаем денег через облигации).

Величина капитала реплицирующего портфеля

Построение реплицирующего портфеля

 $t=2.~{
m B}$ зависимости от значения реализованного элементарного исхода $\omega_1\omega_2,$ капитал портфеля принимает значение

$$V_2^h(\omega_1\omega_2) = \Delta_1(\omega_1)S_2(\omega_1\omega_2) + (1+R)(V_1^h(\omega_1) - \Delta_1(\omega_1)S_1(\omega_1))$$

Согласно (4), мы хотим чтобы при любой возможной цене акции в t=2 цена опциона $H_2(\omega_1\omega_2)$ равнялась капиталу портфеля, т. е.

$$H_2(HH) = \Delta_1(H)S_2(HH) + (1+R)(V_1^h(H) - \Delta_1(H)S_1(H)) \tag{7}$$

$$H_2(HT) = \Delta_1(H)S_2(HT) + (1+R)(V_1^h(H) - \Delta_1(H)S_1(H)) \tag{8}$$

$$H_2(TH) = \Delta_1(T)S_2(TH) + (1+R)(V_1^h(T) - \Delta_1(H)S_1(T))$$
(9)

$$H_2(TT) = \Delta_1(T)S_2(TT) + (1+R)(V_1^h(T) - \Delta_1(H)S_1(T)) \eqno(10)$$

 $H_2(\omega_1\omega_2)$ является случайной величиной, определенной на вероятностном пространстве Ω_2 , также как и величина капитала портфеля $V_2^h(\omega_1\omega_2)$.

Нахождение неизвестных переменных

В шести уравнениях (5) – (10) мы имеем шесть неизвестных $H_0,$ $\Delta_0,$ $\Delta_1(H),$ $\Delta_1(T),$ $V_1^h(H)$ и $V_1^h(T).$

Из (9) и (10) посредством вычитания следует формула дельта-хеджирования

$$\Delta_1(T) = \frac{H_2(TH) - H_2(TT)}{S_2(TH) - S_2(TT)}. (11)$$

При подстановке этого в те же (9) или (10) имеем

$$V_1^h(T) = \frac{1}{1+R} [p^* H_2(TH) + q^* H_2(TT)], \tag{12}$$

где

$$p^* = \frac{1+R-d}{u-d}, q^* = \frac{u-1-R}{u-d}.$$
 (13)

Величина $V_1^h(T)$ показывает значение капитала реплицирующего портфеля в t=1, если цена акции упадет между t=0 и t=1. Согласно (4),

$$H_1(T) = V_1^h(T) = \frac{1}{1+R}[p^*H_2(TH) + q^*H_2(TT)] \tag{14} \label{eq:14}$$

Нахождение неизвестных переменных

Аналогичными рассуждениями из (7) и (8) имеем

$$\Delta_1(H) = \frac{H_2(HH) - H_2(HT)}{S_2(HH) - S_2(HT)} \tag{15}$$

$$H_1(T) = \frac{1}{1+R} [p^* H_2(HH) + q^* H_2(HT)]$$
 (16)

В итоге из (5) – (6), приравнивая $V_1^h(H) = H_1(H)$ и $V_1^h(T) = H_1(T)$

$$\Delta_0 = \frac{H_1(H) - H_1(T)}{S_1(H) - S_1(T)} \tag{17}$$

$$H_0 = \frac{1}{1+R} [p^* H_1(H) + q^* H_1(T)] \tag{18}$$

Экономический смысл хеджирования

Вывод

Если мы в t=0 начнем с капиталом H_0 из (18) и будем следовать стратегии по покупке или продаже акций в размере Δ_0 , $\Delta_1(H)$ и $\Delta_1(T)$ в зависимости от того, какие значения в будущем принимает акция (при реализации H или T- информации, от которой зависит цена акции), совершая финансирование или размещение свободных денег по ставке R, то в дату экспирации контракта t=2 у нас будет достаточно капитала для выполнения своих обязательств (как продавца опциона).

Согласно принципу безарбитражности, цены контракта и реплицирующего портфеля должны быть равны. Мы захеджировали свой риск, полученный при продаже нами контракта.

Разумеется, что возможно получить формулу цены опциона, аналогичную (18), для ситуации, когда мы купили контракт.

Риск-нейтральная мера

Значения p^* и q^* из (13) соответствуют всем условиям для признания их альтернативной вероятностной мерой $\mathbb{Q}(\cdot)$ на пространстве Ω_1 , которая в данном случае носит название риск-нейтральной.

При истинных вероятностях p_u и p_d из (1) средний темп роста цены рискового актива (например, акции) $\mathbb{E}(S_t)$ обычно выше темпа роста того же объема инвестиции в безрисковый актив (например, государственной облигации). Для истинной вероятности

$$S_0(1+R) < \mathbb{E}(S_1) = p_u S_1(H) + p_d S_1(T),$$

для риск-нейтральной вероятности

$$S_0(1+R) = \mathbb{E}^{\mathbb{Q}}(S_1) = p^*S_1(H) + q^*S_1(T).$$

Таким образом, в так называемом риск-нейтральном мире инвесторы нейтральны относительно принимаемых на себя рисков — они как не требуют премию за него, с одной стороны, так и не готовы за него дополнительно платить, с другой.

В формуле цены опциона (18) отсутствуют истинные вероятности. В этом не должно быть ничего удивительного, поскольку построенный нами реплицирующий портфель "страхует" нас во всех предполагаемых ситуациях.