1 STROINO UCENIE

1.1 Problemski prostor, ocenievanje znanja

1.2 EVALVIRANIE HIPOTEZ

Pomembni kriteriji:

- · konsistentnost hipotez z primeri (ucnimi)
- · splosnost (tocnost za nevidene primere)
- · razumljivost hipotez

TP=true positive, TN-true negative, FP-false positive (napaka 1. tipa), FN-

false negative (napaka 2. tipa)

Klasifikacijska tocnost =
$$\frac{TP+TN}{TP+TN+FP+FN} = \frac{TP+TN}{N}$$

Obcutljivost/senzitivnost = $TPR = \frac{TP+TN}{TP+FN}$

1.3 GRADNJA ODLOCITVENIH DREVES

Za koliko se entropija zmanjsa po delitvi z Atributom A:

Informacijski prispevek (najbolj informativni atribut maksimizira informacijski prispevek minimizira Ires:

 $Gain(A) = H(A) - H_{res}(A)$

$$H_{\mathrm{res}}(A) = -\sum_{a_i \in A} p(A=a_i) \sum_{c_i \in C} p(C=c_i|A=a_i) \log_2 p(C=c_i|A=a_i)$$

 $IGR(A) = \frac{Gain(A)}{H(A)}$

1.3.1 TDIDT (Top down induction decision tree) algoritem

Pozresen algoritem, ki lokalno izbira najbolsi atribut.

kratkoviden algoritem

1.3.2 Binarizacija atributov

Aleternativa za resevanje problematike z vecvrednostnimi atributi:

Strategije (za primer $B = \{Y, G, R, B\}$):

- [{Y},{R,G,B}] (one-vs-all)
- [{Y,R},{G,B}]
- · vpeljava bianrnih atributov za vsako barvo

Primer $B = \{Y, G, R\}$, konstruiramo 3 nove binarne atribute:

barva	Y	G	R	
Y	1	0	0	Prednost: manjse vejanje drevesa
G	0	1	0	riednost. manjse vejanje drevesa
R	0	0	1	

1.4 Ucenje iz sumnih podatkov (rezanje)

tocnost t...verjetnost pravilnosti klasifikacije

napaka e ... 1-t

relativna frekvenca $p = \frac{n}{N}$

m-ocena $p = \frac{n + p_a * m}{N + m}$

m... koliko zaupam apriorni verjetnosti

pa apriorna verjetnost (domenski ekspert lahko pove)

Laplacova ocena verjetnosti $p = \frac{n+1}{N+k}$

k...stevilo vseh moznih razredov

1.4.1 MEP (MINIMAL ERROR PRUNNING)

e...staticna napaka,E...vzvratna napaka, $e \le E \rightarrow$ rezemo poddrevo

(Laplace)

$$\begin{array}{l} e_L(d) = 1 - t = 1 - \frac{13 + 1}{20 + 2} = 0.363 \\ E_L(d) = 12/20 \cdot e_L(d_l) + 8/20 \cdot e_L(d_d) = \frac{12}{20} \cdot (1 - \frac{7 + 1}{12 + 2}) + \frac{8}{20} (1 - \frac{13 + 1}{20 + 2}) \end{array}$$

1.4.2 REP (REDUCED ERROR PRUNNING)

Ucna mnozica: 70% za gradnjo, 30% za rezanje (z rezanjem odstranimo poddrevesa, ki niso kriticna in so redundantna tako zmansamo velikost drevesa) G(v)=st. napacnih klasifikacij v poddrevesu - st. napacnih klasifikacij v korenu poddrevesa

 $G(v) \ge 0 \Rightarrow$ rezemo podrevo

$$e(C) = 3$$
, $e_T = 2 + 3 = 5$, $G(C) = 5 - 3 = 2 \ge 0 \rightarrow \text{rezemo}$

1.5 Ocenjevanje uspesnosti modelov

tocnost t ... verietnost pravilnosti klasifikacije

Laplacova ocena verjetnosti $p = \frac{n+1}{N+k}$

k...stevilo vseh moznih razredov

$$t_{L1} = \frac{2+1}{3+3} = 0.5, t_{L2} = \frac{4+1}{7+3} = 0.5, t_{L3} = \frac{2+1}{2+3} = 0.6$$

tocnost drevesa: $t_D = 3/12 \cdot 0.5 + 7/12 \cdot 0.5 + 2/12 \cdot 0.6 = 0.5167$

$$e = 1 - (P(B = 0)P(R = 0|B = 0) + P(B = 1)P(R = 1|B = 1))$$

1.6 OBRAVNANVA MANKAJOCIH ATRIBUTOV, NAVINI BAYESOV KLASIFIKATOR

Ce poznamo razred, kam klasificiramo ce nepoznamo atributov:

Klasifikator:
$$\operatorname{argmax}_{c \in C} P(c) \prod_{i=1}^{n} P(x_i|c)$$

c...razred, $x_i...$ atributi

Verjetnost::

$$P(C = c | x_1, ..., x_n) = \frac{P(C = c)P(X_1 = x_i | C = c)P(X_2 = x_j | C = c)...}{P(X_1 = x_i)P(X_2 = x_j)...}$$

Primer moski: visina > 175. teza > 65. spol = M

$X \setminus Y$	Razred A	Razred B
рa	$P(A) = \frac{2}{3}$	$P(B) = \frac{1}{3}$
spol	P(M A)	P(M B)
visina	$P(V \ge 175 A)$	$P(V \ge 175 B)$
teza	$P(T \ge 65 A)$	$P(T \ge 65 B)$
$P(y) \prod_{i=1}^{n} P(x_i y)$		

1.6.2 Nomogragmi

Ciljni razred $C = c_T$

$$X_{X_i=x_j} = \ln \left(\frac{P(X_i = x_j | C = c_T)}{P(X_i = x_j | C = \overline{c_T})} \right)$$

1.7 K-naibliziih sosedov

1.8 Nadzorovano ucenje (supervised learning)

Ucni primeri so podani/oznaceni kot vrednosti vhodov in izhodov.

 $(\vec{x}_1, \vec{y}_1), (\vec{x}_2, \vec{y}_2), \dots, (\vec{x}_N, \vec{y}_N)$

 $\vec{x_i}$... atributi, $\vec{y_i}$... ciljna spremenljivka

Locimo dve vrsti problemov:

- 1. Klasifikacijski problemi y_i diskretna
- 2. Regresijski problemi yi zvezna

1.8.1 Lokalno utezena regresija

$$h(\vec{x_?}) = \frac{\sum\limits_{i=1}^{k} w_i \cdot f(\vec{x_i})}{\sum\limits_{i=1}^{k} w_i}, \, w_i(d) ... \text{utez}$$

	ı — ı						
A	В	С	dolžina	d(xixi)	Wi	W:-f(~	<u>(1)</u>
0	0	0	9	4	115	915	
0	0	0	10	4	115	2_	
0	1	1	9	2_	113	3	1. () S. w f (x)
0	2	0	12	2	113	4	h(xq)= \$\frac{1}{2}, w. \cdot (\rangle r,)}
0	2	1	12	1	112	6	A
1	0	0	12	3	1/4	3	$= \frac{\frac{1}{20}}{\frac{20}{15}} = 41.359$
1	0	0	15	3	114	15/4	= 11.359
1	1	1	11	1	112	MIZ	15
1	1	1	15	1	112	1512	
1	1	1	9	1	112	912	
1	2	0	9	1	112	512	
1	2	1	12	0	1	12	
					76	1111	-

Z lokalno uteženo regresijo želimo napovedati dolžino postrvi z atributi $x_i = \{A=1, B=2, C=1\}$. Pri izračunu uporabi: • jedrno funkcijo $w_i = \frac{1}{1+d_{ij}}$

1.8.2 Regresijska drevesa

Linearna regresija je poseben primer regresijskega drevesa.

V listih regresijskega drevesa vcasih napovemo kar povprecno vrednost.

1.9 Nenadzorovano ucenie (unsupervised learning)

Ucni primeri niso oznaceni (nimajo ciljne spremenljivke), ucimo se vzorcev v podatkih, (npr. grucenje)

1.9.1 HIERARHICNO GRUCENJE

Poveze po podobnosti med primeri, primer zacne kot samostojna gruca, na koncu vsi primeri pripadajo eni gruci

Dendrogram: drevo, ki predstavlja grucenje.

Single-linkage: povezava med grucami je najkrajse razdalje med primeroma iz razlicnih gruc.

Complete-linkage: povezava med grucami je najdaljsa razdalja med primeroma iz razlicnih gruc.

Average-linkage: povezava med grucami je povprecna razdalja med primeroma iz razlicnih gruc.

1.9.2 K-MEANS

- 1. V prostor dodamo k centroidov, ki predstavljajo gruce.
- 2. Izracunamo ketri centroid je najblizji vsakemu primeru.
- 3. Izracunamo nove centre gruc = $\frac{1}{|G|} \sum_{i \in G} x_i$
- Ponovimo korake 2 in 3 dokler se centri ne premaknejo. V mnozici tock A(3,1),B(1,2),C(3,4),D(5,2),E(1), manhattanska razdalja, za-

cetni vrednosti centroidov C1(4.4) in C2(5.4)

Tocka	d(X,C1)	d(X,C2)	Gruca
A	4	5	C1
В	5	6	C1
С	1	2	C1
D	3	2	C2
E	6	7	C1

V naslednji iteraciji sta koordinati centroidov:

$$C1 = (\frac{3+1+3+1}{4}, \frac{1+2+4+1}{4}) = (2,2)$$
 in $C2 = D = (5,2) \dots$

1.10 Spodbujevalno ucenje - reinforcement learning

Inteligentni agent se uci iz zaporedja nagrad in kazni

1.11 Ocenievanie ucenia

k-fold, celo ucno mnozico razbij na k disjunktnih podmnozic za vsako od k podmnozic uporabi mnozico kot testno mnozico, preostalih k-1 mnozic kot ucno mnozico.

2 Preiskovanie

2.1 Neinformirani preiskovalni algoritmi

2.1.1 ISKANJE V SIRINO

2.1.2 ISKANJE V GLOBINO

Izboljsave (Iskanje s sestopanjem, iterativno poglabljanje)

2.1.3 ITERATIVNO POGLABLJANJE

problem gobinsko omejenega iskanja -> nastavitev meje l Mejo l postopoma povecujemo za 1, dokler ne najdemo resitve.

- · popolnost: Da
- optimalnost: Da
- casovna zahtevnost O(b^d)
- prostorska zahtevnost O(bd)

Bolise od iskania v globino/sirino

2.1.4 DVOSMERNO ISKANJE

Pozenemo vzporedni iskanji od zacetka do cilja in od cilja do zacetka.

Implemenatcija dvosmernega iskanja:

- · ciljno vozlisce mora biti znano
- originalni problemski prostor preslikamo v dvosmerni prosto stanj E1, E2 dosegljiv iz E in S1,S2,S3 dosegljiv iz S (S,E) -> (S1, E1), (S1,E2), (S2, E1), (S2, E2)... Vozlisce (Si, Ei) je v dvosmernem prostur ciljo vozlisce ce velja E=S (soda dolzina na isto mesto pridemo iz obeh strani) ali S->E (liha pot

2.2 Informirani preiskovalni algoritmi

Ideja: preiskovanje usmerjamo z dodatnim znanjem hevristiko (ocenitvena funkcija za obetavnost vozlisca)

- optimisticna/dopustna: $\forall n : h(n) \le h^*(n)$ (h^* je optimalna ocena)
- optimalna: $h(n) = h^*(n)$
- pesimisticna: $h(n) \ge h^*(n)$

2.2.1 A*

A* is informed version of dijkstra (uses heuristics and pq), ce h(dopustna)=popolna in optimalna

Casovna zahtevnost odvisna od hevristike: $E = (h^* - h)/h^*$, $O(b^{E \cdot d})$, b-stopnja vejanja, d-globina optimalne resitve

Prostorska zahtevnost problem (hrani vsa vozlisca v spominu)

f(n) = g(n) + h(n), g(n) cena do vozlisca, h(n) hevristika

Razvijamo dokler ne pridemo do ciljnega vozlisca

Razvijano	Generirana	Priority Queue
/	a(4)	[]
a	b(7) c(6)	[c(6), b(7)]
c	b'(11) g(12) h(8)	[b(7),h(8),b'(11),g(12)]
b	c'(4) d(8) e(5)	[c'(4),e(5),h(8),d(8),b'(11),g(12)]
f		

2.2.2 IDA* (Iterative deepening A*)

f(n) = g(n) + h(n), g(n) = cena poti do n

Meja	Razvijano	Generirana	DFS (list)
0	/	s(7)	/
7	/	s(7)	s
	s	a(8) b(7) c(7)	b, c
	ь	f(6) h(5)	f h c
	f	g(7) h(9) i(11)	g h c
	<u>g</u>		

2.2.3 Kakovost hevristicnih funkcij

Kakovost h ocenimo z stevilom generiranih vozlisc ter efektivnim faktorjem vejanja (N vozlisc je algoritem generiral da je na globini d nasel resitev) Hocemo imeti dopustne hevristike s cim visjimi vrednostmi in sprejelmjivo ceno (casom izracuna)

Ce $h_2(n) \ge h_1(n), \forall n$ potem h_2 dominira h_1

2.3 PREISKOVANJE GRAFOV AND/OR, NEDETERMINISTICNO OKOLJE

Pomagajo resevati probleme z dekompozicijo na manjse probleme Uporab-

- · princip deli in vladaj
- · iskanje v nedeterministicnih okoljih
- igre med dvema nasprotnikoma s popolno informacijo (sah, dama)
- · ekspertno resevanje problem

- · posplositev A* na grafe AND/OR

F(N) ocena za usmerjanje preiskovanja, H(N) dinamicna hevristicna ocena Postopek:

- 1. Razvij najcenejse vozlisce
- ce list in koncno (oznaci), preveri 3. korak, nadaljuj v 1.
- ce list in ni koncno (oznaci) vrednost vozlisca = ∞
- 2. Posodobi vse predhodnike
- v AND starsih, cena starsa = ∑ sinov + povezava v
- v OR starsih, cena starsa = min(sinovi) + povezava v
- 3. Koncaj ko obstaja pot od zacetnega vozlisca, po kateri v AND vozliscih po vseh sinovih prides do cilja, v OR vozliscih v vsaj enem

2.3.2 ALGORITEM MINIMAX

- m globina b
- 2.3.3 REZANIE ALFA-BETA

3 Planiranje

plan zaporedje akcij, ki pripelje od zacetnega do koncnega stanja

3.1 Planiranje s sredstvi in cilji (STRIPS)

Agentu opisemo svet in postavimo fizikalne omejitve.

Ne zagotovalja optimalne resitve, obravnavamo le en cilj naenkrat (ko ga dosezemo, se lahko ostali izgubijo) = Sussmanova anomalija

Akcija move(X, From, To)

- pogoj: cond=[clr(X), on(X,F), clr(T)] → pogoji za izvajanje akcije,
- poz. ucinki: $adds=[on(X, T), clr(F)] \rightarrow nova stanja$,
- neg. ucinki: dels=[on(X, F), clr(T)] → izbrisana stanja,
- omejitve: $constr=[F \neq T, X \neq F, X \neq T, block(X)] \rightarrow omejitve akcij (fizikalne$ omejitve),

- 1. Izberi se neresen cilj iz mnozice CILJEV
- 2. Izberi akcijo, ki izbrani cilj doda v stanje
- 3. Omogoci izbrano akcijo (izpolni pogoje)
- 4. Izvedi akcijo (ki izopolni najvec pogojev)
- Ce obstajajo nereseni cilji ⇒ 1.

Primer dfs, zlaganje kock

3.2 Planiranie z regresiraniem ciliev (STRIPS)

Resitev za sussmanovo anomalijo

Zacnemo v ciljih, regresiramo do zacetka $(G_i \subset S_0)$:

- 1. $G_{i+1} = G_i \cup \operatorname{cond}(A) \operatorname{adds}(A)$
- POGOJ: G_i ∩ dels(A) = ∅
- 3. Preveri da ni protislovja (npr. $G_{i+1} = [on(b,c),...,c(c)...]$)
- \rightarrow zactno_stanje = [on(a,1), on(b,a), c(b), on(c,3), c(c)]
- \rightarrow hocemo da zacetno_stanje $\subset G_i$
- 1. $G_0 = [on(a,b), on(b,c)]$
 - on(a,b): $A_0 = move(a, From, b)$
 - From = 1
 - POGOJ: G₀ ∩ dels(A₀) = ∅√
 - $G_1 = [on(a,b), on(b,c), c(a), c(b), on(a,1)] [c(1), on(a,b)] \checkmark$
- 2. $G_1 = [on(b,c),c(a),c(b),on(a,1)]$
 - c(a): $A_1 = move(X, a, To)$
 - X = c, To = 2
 - POGOJ: $G_1 \cap dels(A_1) = \emptyset \checkmark$
 - $G_2 = [on(b,c),c(a),c(b),on(a,1),c(c),c(2),on(c,a)]$ $-[c(a), on(c,2)] \times (protislovje)$
 - on(b,c): $A_2 = move(b, From, c)$
 - From = 3

- POGOJ: $G_2 \cap dels(A_2) = \emptyset \checkmark$
- $G_2 = [on(b,c),c(a),c(b),on(a,1),c(c),c(b),on(b,3)]$
- 3. $G_2 = ...$

3.3 RAZPOREJANJE OPRAVIL (PDDL)

Razsirimo lahko notacijo (PDDL):

Akcija1 < Akcija2: Akcija1 se mora zgoditi pred Akcijo2

Resources podajo stevila razpolozljivih resursov

DURATION opredejljuje trajanje posamezne akcije

CONSUME opredeljuje (trajno) porabo dolocene kolicine resursov

USE opredeljuje (zacasno) zasedenost kolicine resursov med izvajanjem

```
akcije
Jobs (AddEngine1 < AddWheels1 < Inspect1,</pre>
AddEngine2 < AddWheels2 < Inspect2 )
Resources (EngineHoists(1), WheelStations(1), Inspectors(2), LugNuts(500))
Action (AddEngine1 , DURATION:30,
         USE:EngineHoists(1))
Action (AddEngine2 , DURATION:60,
         USE:EngineHoists(1))
Action
        (AddWheels1 , DURATION:30,
         CONSUME:LugNuts(20), USE:WheelStations(1))
        (AddWheels2 , DURATION:15,
         CONSUME: LugNuts(20), USE: WheelStations(1))
Action (Inspect i, DURATION:10,
         USE:Inspectors (1))
```

Metoda kriticne poti

kriticna pot: pot, ki je najdaljsa in doloca dolzino trajanja celotnega plana vsaki akciji priredimo par [ES, LS]

- ES: najbolj zgodnji mozen zacetek (Earliest Start)
- ES(start) = 0, $ES(B) = \max_{A \in A} [ES(A) + Duration(A)]$
- LS: najbolj pozen mozen zacetek (Latest Start)
- $LS(Finish) = ES(Finish), LS(A) = \min_{A \le R} [LS(B) Duration(A)]$

rezerva(slack)=LS-ES (casovna rezerva) Algoritem po hevristiki minimum slack → na vsaki iteraciji ima prednost akcija ki ima izpolnjene predhodnike in najnizji slack, nato posodobi [ES in LS] za celotni graf in ponovi.

4 SKLEPANJE

4.1 BAYESOVSKE MREZE

Baye. mreza = Usmerjen graf, kjer so podane zahtevane verjetnosti:

- Za vozlisca brez starsev verjetnosti P(v_i)
- Za vozlisca z starsi pogojne verjetnosti vseh kombinacij starsev

Pravila verjetnostnega sklepanja:

- 1. Konjunkcija: $P(X_1 X_2 | C) = P(X_1 | C)P(X_2 | X_1 C)$
- 2. Gotov dogodek: $P(X \mid ... \mid X ...) = 1$
- 3. Nemogoc dogodek: $P(X \mid ... \overline{X}...) = 0$
- 4. Negacija: $P(\overline{X} \mid C) = 1 P(X \mid C)$
- 5. Ce je Y naslednik od X in je Y vsebovan v pogojnem delu: $P(X \mid YC) =$ $P(X \mid C) \cdot \frac{P(Y \mid XC)}{P(Y \mid C)}$
- 6. Ce pogojni del ne vsebuje naslednika od X:
- (a) ce X **nima** starsev: $P(X \mid C) = P(X)$, P(X) je podan
- (b) ce ima X starse S: $P(X \mid C) = \sum_{S \in P_Y} P(X \mid S)P(S \mid C)$
- 7. Iz 6b zgoraj: $P(i \mid gc) = P(i \mid g)$

4.2 Ovoinica Markova

X je **neodvisno** od vseh ostalih ⇔ podani **starsi**, **otroci** in **starsi otrok**

4.3 D-LOCEVANJE

A in B v mrezi sta **neodvisni** ⇔ obstaja mnozica vozlisc E, ki d-locuje A in B, potem sledi: (P(A|EB) = P(A|E))

```
za vsako neusmerjeno pot P med A in B v bavesovski mreži:
```

za vsako vozlišče X na poti P:

analiziraj pogoj za pripadnost X množici E glede na tip: divergentno ali zaporedno vozlišče: X ∈ E

konvergentno vozlišče: Xin nasledniki ∉ E Sx = množice vozlišč, ki ustrezajo pogoju za X $\mathbf{S_p} = \bigcup_X (S_X)$ // množice, ki d-ločujejo samo na poti P

(unija množic za vozlišča na poti) // množice, ki d-ločujejo v celi mreži (presek množic za vse možne poti)

! pri konvergentnem izlocimo tudi vse naslednike X

Primer d-locevanje vozlisc c in d

 $\rightarrow P(d|ca)=P(d|a), P(d|cb)=P(d|b), P(d|cab)=P(d|ab),$ P(d|cbe)=P(d|be),P(d|cabe)=P(d|abe)