Aprendizaje Supervisado

Cristian Cardellino

Tercera Clase

Temario de la Clase

- ¿Qué es aprendizaje supervisado?
- Aprendizaje supervisado.
 - Repaso: Regresión Lineal y Polinomial, Regresión Logística, Naive Bayes.
- Support Vector Machines.
 - o Repaso: Perceptrón.
 - o SVC/SVR. Datos no linealmente separables. Función de costo.
- Ensemble learning.
 - Repaso: Decision Trees
 - o Random Forest, Bagging, Boosting, Voting.
- Redes neuronales.
 - o Perceptrón multicapa.
- Sistemas de recomendación.
 - Filtrado colaborativo.
- Prácticas de reproducibilidad

Redes Neuronales (Introducción)

Por qué redes "neuronales"?

Repaso de la Regresión Logística

- Dado x, el objetivo es encontrar: $\hat{y} = P(y=1|x)$
- Cuál es la forma más sencilla de transformar un vector x?

Repaso de la Regresión Logística

- ullet Dado x, el objetivo es encontrar: $\hat{y}=P(y=1|x)$
- Cuál es la forma más sencilla de transformar un vector x?

$$\hat{y} = w^T x + b$$

• Pero nos gustaría que \hat{y} fuese una probabilidad: $0 \le \hat{y} \le 1$

Repaso de la Regresión Logística: Sigmoid

Función de Sigmoid

Repaso de la Regresión Logística: Coste

Se disponen de m instancias $\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\dots(x^{(m)},y^{(m)})\}$ Se pretende predecir $\hat{y}^{(i)}pprox y^{(i)}$

Luego, buscamos minimizar (en regresión logística):

$$\mathcal{L}(\hat{y},y) = -[y\log\hat{y} + (1-y)\log(1-\hat{y})]$$

Siendo entonces la función de coste: $\mathcal{J}(w,b) = rac{1}{m} \sum_{i=1}^m \mathcal{L}(\hat{y}^{(i)},y^{(i)})$

Para minimizarla, usamos descenso por gradientes. Necesitaremos:

$$rac{\partial}{\partial w_1}\mathcal{J}(w,b) = rac{1}{m} \sum_{i=1}^m rac{\partial}{\partial w_1} \mathcal{L}(a^{(i)},y^{(i)})$$

La Regresión Logística como una neurona

Redes Neuronales

Redes Neuronales

Funciones de Activación:

- Sigmoid (como en la regresión logística)
- tanh: $\frac{\exp(x)-\exp(-x)}{\exp(x)+\exp(-x)}$
- Rectified Linear Unit (ReLU): $\max(0, x)$

Demo Time (demo_10_neural_networks)

Softmax Regression (Multiple Classes)

Buscamos predecir un vector de probabilidades (cada clase es una dimensión del vector).

Modificamos nuestra hipótesis:

$$h_{ heta}(x) = egin{bmatrix} P(y=1|x; heta) \ P(y=2|x; heta) \ dots \ P(y=K|x; heta) \end{bmatrix} = rac{1}{\sum_{j=1}^{K} \exp(heta^{(j) op}x)} egin{bmatrix} \exp(heta^{(1) op}x) \ \exp(heta^{(2) op}x) \ dots \ \exp(heta^{(2) op}x) \end{bmatrix}$$

Softmax Regression: Cost Function

Cambia la función de costo:

$$J(heta) = -\left[\sum_{i=1}^m \sum_{k=1}^K \mathbb{1} \left\{ y^{(i)} = k
ight\} \log rac{\exp(heta^{(k) op} x^{(i)})}{\sum_{j=1}^K \exp(heta^{(j) op} x^{(i)})}
ight]$$

Donde el valor de $1\{y^{(i)}=k\}$ es igual a 1 si la condición entre $\{\}$ se cumple y 0 en caso contrario.

Multiclass Neural Networks

Redes Neuronales Profundas (Deep Learning)

Redes Neuronales Profundas

Redes Neuronales

Dataset:

• Train/Test/Validation

Redes Neuronales

Dataset:

Train/Test/Validation

- Ahora?
 - Muchísimos datos (>> 10.000.000 registros)

Asegurarse que test / validation vienen de la misma distribución

Redes Neuronales: sesgo y varianza

Underfitting (high bias):

- Ampliar la red
- Cambiar la arquitectura de la red

Overfitting (high variance):

- Agregar más datos
- Regularización
- Cambiar la arquitectura de la red

Redes Neuronales

Cómo se determinan?

- el número de capas ocultas (hidden layers)?
- el número de unidades (units)?
- qué función de activación usar?
- ...

Redes Neuronales: Regularización

Logistic regression:

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Neural network:

$$h_{\Theta}(x) \in \mathbb{R}^{K} \quad (h_{\Theta}(x))_{i} = i^{th} \text{ output}$$

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_{k}^{(i)} \log(h_{\Theta}(x^{(i)}))_{k} + (1 - y_{k}^{(i)}) \log(1 - (h_{\Theta}(x^{(i)}))_{k}) \right]$$

$$+ \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{l}} \sum_{i=1}^{s_{l+1}} (\Theta_{ji}^{(l)})^{2}$$

Redes Neuronales: Dropout

(a) Standard Neural Net

(b) After applying dropout.

Sistemas de Recomendación (Introducción)

Sistemas de Recomendación: ejemplos

Sistemas de Recomendación: objetivos

Los sistemas de recomendación se centran en:

- *items*, para eCommerce
- contenido, para eLearning, noticias
- links, para navegación

en general, se habla de ítems como término genérico.

El objetivo general de estos sistemas es el de guiar a los usuarios a tomar decisiones.

Tipos de Sistemas de Recomendación

- Basados en contenido: tratan el problema de manera específica para cada usuario y "aprenden" una clasificación de lo que a un usuario le gusta basado en las características (contenido) de un ítem.
- **Filtros colaborativos:** se basan en la idea que los usuarios que coinciden en el pasado lo harán en el futuro y que les gustarán ítems similares.
- Basados en el conocimiento: el usuario proporciona explícitamente parámetros del producto que quiere
- Basados en cuestiones demográficas
- Sistemas híbridos

Filtros colaborativos

Combina usuarios con intereses similares

- Se podría requerir de muchos usuarios para que las posibilidades de encontrar un par con intereses en común.
- Tiene que existir un método sencillo para reflejar los intereses de los usuarios.
- Se necesita de un algoritmo eficiente para combinar a los usuarios con gustos similares.

Filtros colaborativos: cómo funcionan?

INPUT

Usuarios generan puntuaciones a un conjunto de ítems (implícita o explícitamente): matriz de puntuaciones usuario-ítem

OUTPUT

- Predicción (numérica) indicando cuánto a un usuario le gusta un ítem
- Una lista con N ítems recomendados por usuario

Filtros colaborativos: Vecindarios basado en usuarios

Dado un usuario (Alice) y un ítem que todavía no se ha asignado un puntaje, se debe:

- encontrar el conjunto de usuarios que más se parecen a Alice (usuarios a los que les gustan ítems similares) y han puntuado el objeto
- usar sus puntuaciones para predecir si a Alice le gustará el ítem
- aplicar este proceso sobre todos los objetos que Alice no ha puntuado y recomendar los que tienen mayor puntuación

	Item1	ltem2	ltem3	Item4	ltem5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Similitud entre usuarios

Coeficiente de correlación (Pearson correlation)

$$ext{sim}(a,b) = rac{\sum_{p \in P} (r_{a,p} - ar{r_a}) (r_{b,p} - ar{r_b})}{\sqrt{\sum_{p \in P} (r_{a,p} - ar{r_a})^2} \sqrt{\sum_{p \in P} (r_{b,p} - ar{r_b})^2}}$$

donde:

- a y b son usuarios;
- r_{a,p} es la puntuación del usuario a al ítem p;
 y P es el conjunto de ítems que ya han sido puntuados por a y b .

Similitud entre usuarios

$$ext{sim}(a,b) = rac{\sum_{p \in P} (r_{a,p} - ar{r_a}) (r_{b,p} - ar{r_b})}{\sqrt{\sum_{p \in P} (r_{a,p} - ar{r_a})^2} \sqrt{\sum_{p \in P} (r_{b,p} - ar{r_b})^2}}$$

	Item1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

sim(Alice, User1) = 0.85 sim(Alice, User2) = 0.70 sim(Alice, User3) = 0 sim(Alice, User4) = -0.79

Similitud entre usuarios

Coeficiente de correlación

$$\operatorname{pred}(a,p) = ar{r_a} + rac{\sum_{b \in N} \sin(a,b)(r_{b,p} - ar{r_b})}{\sum_{b \in N} \sin(a,b)}$$

donde:

- N es el conjunto de "vecinos"
- p es un ítem

pred(Alice, item5) =
$$4 + \frac{0.85(3-2.4)+0.7(5-3.8)}{0.85+0.7}$$

Filtros colaborativos: Vecindarios basado en ítems

Se usan las semejanzas entre los ítems (y no entre los usuarios) para hacer las predicciones. Por ejemplo, busquemos los ítems parecidos al *Item5*. Ahora usamos las puntuaciones que Alice le asignó a tales ítems para darle un valor al *Item5*.

	Item1	ltem2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Similitud entre ítems

Distancia (ajustada) del coseno

$$ext{sim}(a,b) = rac{\sum_{u \in U} (r_{u,a} - ar{r_u})(r_{u,b} - ar{r_u})}{\sqrt{\sum_{u \in U} (r_{u,a} - ar{r_u})^2} \sqrt{\sum_{u \in U} (r_{u,b} - ar{r_u})^2}}$$

donde:

- *a* y *b* son ítems;
- $r_{u.a}$ es la puntuación del usuario u al ítem a;
- y U es el conjunto de usuarios que han puntuado a los ítems a y b.

Similitud entre ítems

$$ext{pred}(u, item_j) = ar{r_u} + rac{\sum_{item_i \in N} ext{sim}(item_i, item_j) r_{u, item_i}}{\sum_{item_i \in N} ext{sim}(item_i, item_j)}$$

donde:

- N es el conjunto de "vecinos"
- u es un usuario

$$ext{pred}(ext{Alice}, item_5) = ar{r}_{ ext{Alice}} + rac{\sum_{item_i \in N} ext{sim}(item_i, item_5) r_{ ext{Alice}, item_i}}{\sum_{item_i \in N} ext{sim}(item_i, item_5)}$$

Filtros colaborativos: Preprocesamiento

Para que estos sistemas de recomendación sean escalables, es necesario aprender el modelo "offline".

- Calcular offline todos las similitudes entre pares de objetos
- Calcular la predicción en tiempo real (pred de la slide anterior)
- El vecindario (N) suele ser bastante pequeño (el usuario puntúa pocos objetos)

Este preprocesamiento funciona en CF por ítems (y no en CF por usuarios): las similitudes entre ítems suelen ser más estables que entre usuarios.

Filtros colaborativos: Preprocesamiento

Requerimientos de memoria: si consideramos n ítems, tendremos n² similitudes.

En la práctica, la matriz es dispersa (muchos pares de ítems que no tienen similitud).

Se suelen usar reducciones fijando un umbral mínimo de "co-ratings": se eliminan ítems que tienen pocas puntuaciones comunes, usando al menos n' usuarios.

Se puede también limitar el tamaño del vecindario (N).

Filtros colaborativos: Problemas

Cold start problem:

- ¿Cómo recomendamos nuevos ítems?
- ¿Qué le recomendamos a usuarios nuevos?

Soluciones inmediatas:

- Forzar a los usuarios a puntuar un conjunto de objetos (-1)
- Emplear otro método para la estos casos (basado en contenido, información demográfica o recomendaciones no personalizadas)

Filtros colaborativos: Problemas

Problemas con los vecindarios:

El conjunto de usuarios ítems similares puede ser muy pequeño. Lo que produce malas predicciones.

Alternativas:

- CF recursivo
 - Transitividad entre vecinos

Demo Time (demo_11_recommender_systems)

Fin de la tercera clase