TRIGONOMETRY Chapter 14

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL II

El numero phi en la naturaleza

SIGNOS DE LAS RAZONES TRIGONOMÉTRICAS

Como el radio vector (r) es siempre positivo, los signos de las razones trigonométricas en cada cuadrante dependen de los signos de la abscisa (x) y la ordenada (y).

$$sen\alpha = \frac{y}{r} = \frac{(+)}{(+)} = (+)$$
 $cos\alpha = \frac{x}{r} = \frac{(-)}{(+)} = (-)$ $tan\alpha = \frac{y}{r} = \frac{(-)}{(-)} = (+)$ $csc\alpha = \frac{r}{v} = \frac{(+)}{(-)} = (-)$

$$\cos\alpha = \frac{x}{r} = \frac{(-)}{(+)} = (-)$$

$$\gt$$
 Si $\alpha \in IIIC$

$$tan\alpha = \frac{y}{x} = \frac{(-)}{(-)} = (+)$$

\triangleright Si $\alpha \in IVC$

$$csc\alpha = \frac{r}{y} = \frac{(+)}{(-)} = (-)$$

SIGNOS DE LAS RAZONES TRIGONOMÉTRICAS

Así tenemos:

	IC	IIC	IIIC	IVC
sen	(+)	(+)	(-)	(-)
cos	(+)	(-)	(-)	(+)
tan	(+)	(-)	(+)	(-)
cot	(+)	(-)	(+)	(-)
sec	(+)	(-)	(-)	(+)
csc	(+)	(+)	(-)	(-)

Esquema practico:

Ejemplos:

$$sen 48^{\circ} = (+)$$

$$IC$$

$$tan 120^{\circ} = (-)$$

$$IIC$$

$$cos 250^{\circ} = (-)$$

IIIC

Del gráfico, determine signo de: $E = \frac{sen\alpha \cdot tan\theta}{c}$

cosß

^{el}RESOLUCIÓN:

Del gráfico

$$\alpha \in IIC$$
 $\beta \in IIIC$ $\theta \in IVC$

$$E = \frac{sen\alpha \cdot tan\theta}{cos\beta}$$

$$E = \frac{(+)(-)}{(-)}$$

$$E = (+)$$

Determine el signo, si $\alpha \in IIC$ y $\theta \in IVC$.

$$P = sen\theta . tan\alpha ; Q = \frac{sec\theta}{cot\alpha}$$

Recordar:

RESOLUCIÓN:

$$P = sen\theta . tan\alpha Q$$

$$P = (-) (-)$$

$$P = (+)$$

$$Q = \frac{sec\theta}{cot\alpha}$$

$$Q = \frac{(+)}{(-)}$$

$$Q = (-)$$

Determine el signo de:

$$A = sen 100^{\circ} . cos 220^{\circ}$$

$$B = \frac{tan40^{\circ}. cos340^{\circ}}{sen210^{\circ}}$$

Recordar:

RESOLUCIÓN:

$$A = sen \underline{100}.cos \underline{220}^{\circ} = (+) (-)$$

$$IIC \qquad IIIC$$

$$A = (-)$$

$$B = \frac{tan\overline{40^{\circ}} \cdot cos\overline{340^{\circ}}}{sen210^{\circ}} = \frac{(+)(+)}{(-)}$$

$$B = (-)$$

$$IIIC$$

Si $sen \alpha > 0$ y $cos \alpha < 0$ RESOLUCIÓN:

determine a qué cuadrante

pertenece α .

$$sen \alpha > 0 \qquad \alpha \in IC \ \lor \alpha \in IIC$$
(+)

$$\cos \alpha < 0$$
 $\alpha \in IIC \lor \alpha \in IIIC$

Por lo tanto:

 $\alpha \in IIC$

Determinar a qui cuadrante pertenece θ , si

 $sen\theta$. $csc140^{\circ} > 0$ $cos200^{\circ}$. $tan\theta < 0$

Recordar:

quRESOLUCIÓN:

$$sen\theta.csc140^{\circ} > 0$$

$$(+) \quad (+) = (+)$$

$$sen\theta = (+) \quad \alpha \in IC \quad \forall \quad \alpha \in IIC$$

$$IIIC$$

$$cos200^{\circ}.tan\theta < 0$$

$$(-) \quad (+) = (-)$$

$$tan\theta = (+) \quad \alpha \in IC \quad \forall \quad \alpha \in IIIC$$
Por lo tanto: $\alpha \in IC$

Carlita ha pedido permiso **RESOLUCIÓN**: a sus padres para asistir a una fiesta; por lo que su papá, un matemático, le dice que resuelva е siguiente ejercicio:

$$A = \frac{\sec 320^{\circ} \cdot \sec^3 145^{\circ}}{\cos^2 100^{\circ}}$$

Si el resultado tiene signo (+) tendrá permiso, y si el resultado tiene signo (-) no tendrá permiso. ¿Cuál será la decisión del padre de Carlita?

$$A = \frac{\sec 320^{\circ} \cdot \sec^{3} 145^{\circ}}{\cos^{2} 100^{\circ}}$$

$$IIC$$

$$A = \frac{(+) (+)^3}{(-)^2} = \frac{(+) (+)}{(+)}$$

$$A = (+)$$

RPTA: Carlita tiene permiso para asistir a la fiesta

Maribel observa la posición de las agujas de un reloj durante ciertas horas del día y mide los ángulos formados por dichas agujas con un transportador. Las medidas que registran son 100°, 140° y 200°. Respecto a dicha información, calcule, respectivamente, el signo de las siguientes expresiones:

 $S = sen140^{\circ} \cdot tan100^{\circ}$

 $O = csc100^{\circ} - cos200^{\circ}$

RESOLUCIÓN:

$$S = sen140^{\circ} \cdot tan100^{\circ} = (+) (-)$$

$$IIC \qquad IIC$$

$$S = (-)$$

$$\mathbf{O} = csc \underline{\mathbf{100}}^{\circ} - cos \underline{\mathbf{200}}^{\circ} = (+) - (-)$$

$$IIIC$$

$$0 = (+)$$