Wstep do metod numerycznych

Zestaw 7 na 03.01.2011

- 1. Mierzymy dwie wielkości y_1 i y_2 . Każdą z nich mierzymy N razy.
 - (a) Jak oszacować wariancję, kowariancję i odchylenie standardowe tych wielkości?
 - (b) Co dzieje się z kowariancją gdy wyniki pomiarów y_1 i y_2 są nieskorelowane?
 - (c) Jaka jest korelacja pomiędzy wielkościami $z_1=y_1\cos y_2$ i $z_2=y_1\sin y_2$ jeśli y_1 i y_2 są nieskorelowane.
- 2. Mierzymy y_1 i y_2 . Liczymy funkcję $f(y_1,y_2)$. Wiemy, iż wariancja (niepewność pomiaru) zmiennej y_i wynosi $\sigma_{y_i}^2$. Jaka jest wariancja σ_f^2 funkcji $f(y_1,y_2)$ wyrażona za pomocą wariancji $\sigma_{y_1}^2$, $\sigma_{y_2}^2$? Jaka jest σ_f^2 jeżeli y_1 i y_2 są nieskorelowane?
- 3. Regresja liniowa. Mierzymy wielkości $(x_i, y_i), i = 1...N$. Zakładamy, że x_i znamy dokładnie, a y_i jest obarczone niepewnością σ_{y_i} . Do zbioru (x_i, y_i) chcemy dopasować prostą y = a + bx, która byłaby mu najbliższa w sensie najmniejszych kwadratów. Znaleźć wzory na współczynniki a i b takiej prostej.
- 4. Policzyć niepewności σ_a^2 i σ_b^2 współczynników ai bz zadania 3.
- 5. Załóżmy, że w poprzednim zadaniu nie znamy niepewności σ_{y_i} . Wówczas możemy przyjąć, że dla każdego i jest ona taka sama, równa σ (nie znamy tej liczby). Czy da się wtedy policzyć współczynniki a i b?

N19 Dane sa dane pomiarowe:

x_i	0.0000	0.1000	0.2000	0.3000	0.4000	0.5000	0.6000	0.7000
y_i	-7.43239	-6.93795	-5.99228	-5.95172	-4.83701	-4.67837	-4.05978	-3.00445

Dopasować metodą regresji liniowej i narysować prostą y=ax+b wraz z danymi.

N20 Dane są dane pomiarowe:

x_i	-2.0000	-0.9000	0.2000	1.3000	2.4000	3.5000	4.6000	5.7000
y_i	-0.41239	-0.86843	-1.22095	-4.46543	7.76899	1.76163	0.86807	0.91436

Odchylenie standardowe dla każdego y_i jest takie samo i wynosi 0.35. Dopasować krzywą $y=\frac{a}{x+b}$ i narysować ją wraz z danymi. Wskazówka: zmienić zmienne tak aby można było dopasować prostą, należy również przetransformować błąd.

N21 Do danych z zadania N20 dopasować krzywą

$$y = c + \frac{a}{x+b}.$$

dr Tomasz Romańczukiewicz