

Statystyczna analiza danych SAD-2020/2021

Wykład 9

Hipoteza statystyczna jest to przypuszczenie dotyczące nieznanej własności rozkładu prawdopodobieństwa badanej cechy populacji.

Przykłady

- (a) Producent opon twierdzi, że nowy typ opony ma trwałość większą niż 60000 km. Jeśli μ (km) oznacza wartość średnią trwałości opon, to hipotezą producenta jest $H: \mu > 60000$.
- (b) Producent twierdzi, że średni czas bezawaryjnej pracy drukarki to więcej niż 200 godzin. Wówczas: $H: \mu > 200$
- (c) Socjolog twierdzi, że dzieci w miastach mają lepsze wyniki w nauce niż dzieci poza ośrodkami miejskimi. Niech p_1 (p_2) oznacza proporcję dzieci w miastach (poza miastami) o średnich ocenach rocznych co najmniej dobrych. Hipotezą socjologa jest $H: p_1 > p_2$.
- (d) Fizycy przypuszczają, że ilość cząstek emitowanych przez substancję radioaktywną w przedziałach czasu o danej długości jest zmienną losową o rozkładzie Poissona. Wówczas: $H: X \sim P(\lambda), \lambda > 0$.

Hipotezę nazywamy **parametryczną**, jeśli jest stwierdzeniem dotyczącym nieznanego parametru liczbowego lub wektorowego rozkładu cechy populacji, np. hipotezy (a), (b), (c).

W przeciwnym przypadku hipoteza jest nieparametryczna, np. hipoteza (d).

W zadaniach testowania hipotez formułowane są 2 hipotezy:

Hipoteza zerowa to hipoteza testowana w celu jej ewentualnego odrzucenia, oznaczana przez H_0 .

Hipoteza alternatywna to hipoteza, która będzie przyjęta, jeśli odrzucimy hipotezę zerową, oznaczana przez H_1 .

Hipotezy H_0 i H_1 muszą się nawzajem wykluczać (nie mogą być jednocześnie prawdziwe), np. niech $p \in (0,1)$ oznacza prawdopodobieństwo sukcesu w doświadczeniu Bernoulli'ego. Możliwe są hipotezy:

$$H_0: p = \frac{1}{2}, \quad H_1: p \neq \frac{1}{2}$$

lub

$$H_0: p = \frac{1}{2}, \quad H_1: p > \frac{1}{2},$$

ale niemożliwe

$$H_0: p = \frac{1}{2}, \quad H_1: p > \frac{1}{3},$$

ponieważ wartość $p=\frac{1}{2}$ jest parametrem z zakresu H_0 i H_1 jednocześnie. Zbiory parametrów wymieniane w obu hipotezach nie są więc rozłączne.

Rola hipotez H_0 i H_1 nie jest symetryczna:

- Hipoteza alternatywna H_1 to ta, którą zaakceptujemy, jeśli próbka dostarczy nam dostatecznych dowodów jej prawdziwości, ta o której sądzimy, że jest prawdziwa i szukamy potwierdzenia w próbce (ta na której nam zależy aby była prawdziwa).
- Hipoteza zerowa H_0 to ta, o której prawdziwości nie jesteśmy przekonani w sytuacji gdy nie możemy zaakceptować na podstawie próbki hipotezy alternatywnej (ta którą poddajemy w wątpliwość).

Przykład. Załóżmy, że skuteczność pewnej terapii medycznej wynosi 80%. Zaproponowano nową terapię, której oczekiwana skuteczność $p \times 100\%$ powinna być lepsza (tzn. oczekujemy, że $p \ge 0.8$). Nowa terapia będzie szeroko stosowana, jeśli po badaniach wstępnych uzyskamy "pewność", że p > 0.8. Zatem:

$$H_0$$
: $p = 0.8$ H_1 : $p > 0.8$

Przykład. Nowa technologia produkcji może zmniejszyć dobowy poziom emisji zanieczyszczeń do atmosfery. Chcielibyśmy wiedzieć, czy zmniejsza ona poziom zanieczyszczeń? Wówczas:

 H_0 : Nowa technologia <u>nie zmniejsza</u> dobowego poziomu emisji zanieczyszczeń atmosfery (nie jest lepsza od starej).

 H_1 : Nowa technologia <u>zmniejsza</u> dobowy poziom emisji zanieczyszczeń atmosfery (tzn. jest lepsza).

Możliwe decyzje weryfikacyjne:

- Nie ma dostatecznych dowodów aby odrzucić H_0 , (i tym samym. przyjąć H_1), tzn. na podstawie obserwacji nie możemy stwierdzić, że nowa technologia zmniejsza poziom zanieczyszczeń.
- Obserwacje dostarczają dostatecznych dowodów, aby przyjąć H_1 , równoważnie odrzucić H_0 , tzn. stwierdzamy, iż można uznać, że nowa technologia zmniejsza poziom zanieczyszczeń.

Model matematyczny

- (a) μ_0 znany średni poziom dobowy emisji przy starej technologii
- (b) μ nieznany średni poziom dobowy emisji przy nowej technologii
- (c) wiemy, że $\mu \le \mu_0$. Chcielibyśmy stwierdzić, że nowa technologia zmniejsza poziom emisji. Zatem:

$$H_0$$
: $\mu = \mu_0$, H_1 : $\mu < \mu_0$.

- (d) w ciągu n losowo wybranych dni obserwujemy dobowe poziomy emisji przy nowej technologii: $X_1, X_2, ..., X_n$.
- (e) zmienne losowe $X_1, X_2, ..., X_n$ są <u>niezależne o jednakowym</u> <u>rozkładzie</u> $N(\mu, \sigma)$, gdzie σ jest znane.

Decyzje: "przyjąć H_1 ", lub "nie można odrzucić H_0 " oprzemy na podstawie realizacji średniej z próby losowej \overline{X} , tzn. średniej z próbki \overline{x} .

Uzasadnienie

Średnia z próby losowej \overline{X} ma rozkład $N(\mu, \frac{\sigma}{\sqrt{n}})$ skoncentrowany wokół μ . Zatem dostatecznie małe wartości \overline{X} sugerują, że hipoteza $H_1: \mu < \mu_0$ jest prawdziwa, ponieważ:

(1) jeśli H_0 : $\mu=\mu_0$ jest prawdziwa, to wartości \overline{X} skupiają się wokół μ_0 , a statystyka __

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \approx N(0, 1)$$

(2) jeśli H_1 : $\mu < \mu_0$ jest **prawdziwa**, tzn. nieznane $\mu = \mu_1 < \mu_0$, to wartości \overline{X} skupiają się wokół μ_1 . Wówczas Z jest sumą zmiennej o rozkładzie N(0,1) oraz stałej ujemnej

$$Z = \frac{\overline{X} - \mu_1}{\sigma / \sqrt{n}} + \frac{\mu_1 - \mu_0}{\sigma / \sqrt{n}}$$

Punkty (1) i (2) sugerują sposób testowania.

Niech c będzie odpowiednio dobraną stałą, a \bar{x} wartością statystyki \bar{X} obliczoną dla konkretnej próbki, wówczas

(i) jeśli
$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \le c$$
, to przyjmujemy H_1 :.

(ii) jeśli
$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} > c$$
, to nie ma podstaw do odrzucenia H_0 .

Wybór stałej *c*

Niech α będzie małą liczbą z przedziału (0,1), np. α = 0,01, 0,05,

zaś
$$c = z_{\alpha} = -z_{1-\alpha}$$
.

Wówczas jeśli H_0 : $\mu=\mu_0$ prawdziwa, to $P_{H_0}(Z\leq z_\alpha)=\alpha$.

Stąd α jest prawdopodobieństwem podjęcia błędnej decyzji (polegającej na przyjęciu hipotezy H_1) w przypadku gdy hipoteza H_0 jest prawdziwa.

$$H_0: \mu = \mu_0$$
 przeciw $H_1: \mu < \mu_0$ $ar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right), \quad \bar{x} \to \mu, \text{ gdy } n \to \infty$ $\alpha = P_{H_0}(\bar{X} \le k_{\infty}) = P_{H_0}(Z \le z_{\alpha})$

$$z \le z_{\alpha} \implies \text{odrzuć } H_0$$

$$z > z_{\alpha} \implies$$
 nie odrzucaj H_0

Prawdopodobieństwo α podjęcia błędnej decyzji (polegającej na przyjęciu hipotezy H_1 , w przypadku gdy hipoteza H_0 jest prawdziwa) nazywamy **prawdopodobieństwem błędu l rodzaju**, lub **poziomem istotności testu.**

Zbiór $C=\{z:z\leq z_{\alpha}\}$ nazywamy **zbiorem krytycznym -** jest to zbiór wartości statystyki testowej Z dla których **odrzucamy** H_0 na korzyść H_1 .

Błędy testowania, (przy symetrycznym traktowaniu hipotez)

			Podjęta decyzja		
			Akceptacja <i>H</i> ₀	Odrzucenie <i>H</i> ₀ (Akceptacja <i>H</i> ₁)	
Stan	rzeczywisty	H₀ prawdziwa	Decyzja prawidłowa	Błąd I rodzaju	
		<i>H</i> ₁ prawdziwa	Błąd II rodzaju	Decyzja prawidłowa	

Błędy testowania, (przy "**niesymetrycznym**" traktowaniu hipotez)

		Podjęta decyzja	
		Nie odrzucamy H_0 $(H_0?)$	Odrzucenie <i>H</i> ₀ (Akceptacja <i>H</i> ₁)
an wisty	H₀ prawdziwa	(?)	Błąd I rodzaju
Stan rzeczyw	<i>H</i> ₁ prawdziwa	(?) Błąd II rodzaju	Decyzja prawidłowa

Model 1. Testowanie hipotez o wartości średniej rozkładu normalnego, gdy znana jest wariancja.

Założenie: Zmienne losowe $X_1, X_2, ..., X_n$ tworzą prostą próbę losową z rozkładu normalnego $N(\mu, \sigma), \ \sigma - \underline{\text{znane}}.$

$$H_0$$
: $\mu = \mu_0$

Statystyka testowa:

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} + \frac{\mu - \mu_0}{\sigma / \sqrt{n}}$$

Jeśli H_0 prawdziwa, to

$$Z \sim N(0,1)$$

Sytuacja 1. H_0 : $\mu = \mu_0$ przeciw $\underline{H_1}$: $\mu > \underline{\mu_0}$. (prawostronna hip.alt.)

Wówczas przyjmujemy $C = \{z : z \ge z_{1-\alpha}\}$ = zbiór krytyczny testu hipotezy H_0 przeciw H_1 na poziomie istotności α , gdzie

$$P_{H_0}(Z \in C) = P_{H_0}(Z \ge z_{1-\alpha}) = \alpha$$
.

Sytuacja 2. H_0 : $\mu = \mu_0$ przeciw $\underline{H_1}$: $\mu < \underline{\mu_0}$. (lewostronna hip.alt.)

Wówczas przyjmujemy $\{z: z \le -z_{1-\alpha}\}$ - zbiór krytyczny, gdzie

$$P_{H_0}(Z \in C) = P_{H_0}(Z \le -z_{1-\alpha}) = \alpha$$
.

Sytuacja 3. H_0 : $\mu = \mu_0$ przeciw $\underline{H_1}$: $\mu \neq \underline{\mu_0}$.(obustronna hip. alt.)

Wówczas przyjmujemy $C = \{z: |z| \ge z_{1-\alpha/2}\}$ – zbiór krytyczny, gdzie

$$P_{H_0}(Z \le -z_{1-\alpha/2}) = \alpha/2$$

$$P_{H_0}(Z \in C) = P_{H_0}(|Z| \ge z_{1-\alpha/2}) = \alpha.$$

Rozkład cechy $N(\mu,\sigma),\sigma-$ znane, $H_0\colon\mu=\mu_0$					
	Zbiór krytyczny:	Decyzja:			
H_1	С	Odrzuć H_0			
Prawostronna:		$z \in C \equiv$			
$\mu > \mu_0$	$[z_{1-lpha},\infty)$	$z \ge z_{1-\alpha}$			
Lewostronna:		$z \in C \equiv$			
$\mu < \mu_0$	$(-\infty, -z_{1-\alpha}]$	$z \le -z_{1-\alpha}$			
Obustronna:	$\left(-\infty, -z_{1-\frac{\alpha}{2}}\right] \cup \left[z_{1-\alpha/2}, \infty\right)$	$z \in C \equiv$			
$\mu \neq \mu_0$	2 1 2 1	$z \ge z_{1-\alpha/2} \text{ lub } z \le -z_{1-\alpha/2}$			

Przykład. Dotychczasowa dzienna wartość sprzedaży pewnego artykułu miała rozkład normalny o średniej 1000 (\$) i standardowym odchyleniu 100 (\$). Po serii reklam telewizyjnych, w ciągu 9 losowo wybranych dni uzyskano następujące wartości sprzedaży:

1280, 1250, 990, 1100, 880, 1300, 1100, 950, 1050.

Czy, na poziomie istotności $\alpha=0,01$, można twierdzić, że reklamy spowodowały zwiększenie sprzedaży, jeśli można założyć, że wartości dziennych sprzedaży są niezależnymi zmiennymi losowymi o jednakowym rozkładzie normalnym?

Rozwiązanie:

- 1. H_0 : $\mu = 1000$ przeciw H_1 : $\mu > 1000$
- 2. Statystyka testowa: $Z = \frac{\overline{X} 1000}{\sigma / \sqrt{n}}$
- 3. $\alpha = 0.01$, $1 \alpha = 0.99$, $z_{0.99} = 2.33$.

Zbiór krytyczny(
$$\hat{C} = \{z: z \ge 2,33\}$$
)

4. $\sigma = 100$, n = 9, średnia próbkowa $\bar{x} = 1100$, stąd wartość statystyki testowej

$$z = \frac{\overline{x} - 1000}{\sigma / \sqrt{n}} = \frac{1100 - 1000}{100 / 3} = 3.$$

5. Ponieważ $3 \ge 2{,}33 \ (z = 3 \in C) \ \underline{\text{odrzucamy}} \ H_0)$.

Odpowiedź: Na poziomie istotności $\alpha = 0.01$ stwierdzamy, że średnia wartość sprzedaży wzrosła po serii reklam.

Model 2. Testowanie hipotez o wartości średniej rozkładu normalnego, gdy nieznana jest wariancja.

Niech $X_1, X_2, ..., X_n$ będzie prostą próbą losowa z rozkładu $N(\mu, \sigma)$, σ - nieznane.

$$H_0$$
: $\mu = \mu_0$

Statystyka testowa:

$$T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} = \frac{\overline{X} - \mu}{S / \sqrt{n}} + \frac{\mu - \mu_0}{S / \sqrt{n}}.$$

Jeśli H_0 prawdziwa, to $T \sim t_{n-1} = \text{rozkład t Studenta o } n-1 \text{ stopniach swobody}$

Sytuacja 1. H_0 : $\mu = \mu_0$ przeciw H_1 : $\mu > \mu_0$.

Wówczas przyjmujemy $C = \{t : t \ge t_{1-\alpha,n-1}\}$ = zbiór krytyczny testu hipotezy H_0 przeciw H_1 na poziomie istotności α , gdzie

$$P_{H_0}(T \in C) = P_{H_0}(T \ge t_{1-\alpha,n-1}) = \alpha,$$

 $t_{1-\alpha,n-1}$ = kwantyl rzędu **1** - α rozkładu t Studenta z n - 1 stopniami swobody.

Sytuacja 2. H_0 : $\mu = \mu_0$ przeciw H_1 : $\mu < \mu_0$.

Wówczas przyjmujemy $\mathbf{C} = \{t : t \le -t_{1-\alpha,n-1}\}$ - **zbiór krytyczny**, gdzie

$$P_{H_0}(T \in C) = P_{H_0}(T \le -t_{1-\alpha,n-1}) = \alpha$$
.

Sytuacja 3. H_0 : $\mu = \mu_0$ przeciw H_1 : $\mu \neq \mu_0$.

Wówczas $\mathbf{C} = \{t : |t| \ge t_{1-\alpha/2,n-1}\}$ - zbiór krytyczny, gdzie

$$P_{H_0}(T \le -t_{1-\alpha/2,n-1}) = \alpha/2$$
, skąd $P_{H_0}(|T| \ge t_{1-\alpha/2,n-1}) = \alpha$.

Zadanie. Producent twierdzi, że nowy model samochodu ma wartość średnią przebiegu nie wymagającą żadnej interwencji 120000 (km). W teście dla 4 losowo wybranych samochodów uzyskano następujące przebiegi nie wymagające żadnego serwisu: 110000, 120000, 118000, 11200o. Czy można twierdzić, że producent zawyża wartość średniego przebiegu nowego modelu? Przyjmij $\alpha = 0,05$ oraz rozkład normalny przebiegu.

Rozkład cechy $N(\mu,\sigma), \ \sigma$ – nieznane, H_0 : $\mu=\mu_0$					
	Zbiór krytyczny:	Decyzja:			
H_1	С	Odrzuć H_0			
Prawostronna:		$t \in C \equiv$			
$\mu > \mu_0$	$[t_{1-lpha,n-1},\infty)$	$t \ge t_{1-\alpha,n-1}$			
Lewostronna:		$t \in C \equiv$			
$\mu < \mu_0$	$(-\infty, -t_{1-\alpha,n-1}]$	$t \le -t_{1-\alpha,n-1}$			
Obustronna:	$\left(-\infty, -t_{1}\underline{\alpha}_{n-1}\right]$	$t \in C \equiv$			
$\mu \neq \mu_0$	$ \left(-\infty, -t_{1-\frac{\alpha}{2},n-1} \right] $ $ \cup \left[t_{1-\frac{\alpha}{2},n-1}, \infty \right) $	$t \geq t_{1-\frac{\alpha}{2},n-1} \text{ lub } t \leq -t_{1-\frac{\alpha}{2},n-1}$			

- 1. H_0 : μ = 120000 przeciw H_1 : μ < 120000
- 2. Statystyka testowa:

$$T=rac{\overline{X}-120000}{S/\sqrt{n}}$$
 ma rozkład t-Studenta o n-1 st. Swobody

3. $\alpha = 0.05$, $1 - \alpha = 0.95$, liczba stopni swobody = n-1 = 4 - 1 = 3,

$$|t_{0,95,3}|$$
 = 2,353. Stąd **zbiór krytyczny C** = { $t: t \le -2,353$ }.

4.
$$n=4$$
, z obliczeń $\overline{x}=115000$, $s^2=\frac{680000}{4-1}=226667$, stąd wartość statystyki testowej

$$t = \frac{\bar{x} - 120000}{s / \sqrt{n}} = \frac{115000 - 120000}{\sqrt{226667 / \sqrt{4}}} = -2,10.$$

5. -2,10 > -2,353, więc nie ma podstaw do odrzucenia H_0 na poziomie istotności 0,05.

Odpowiedź: Na poziomie istotności α = 0,05 stwierdzamy, że nie można odrzucić twierdzenia producenta

p – wartość (p-value)

Definicja. Najmniejszy poziom istotności, przy którym zaobserwowana wartość statystyki testowej prowadzi do odrzucenia hipotezy zerowej nazywamy p - wartością przeprowadzonego testu.

Np. w ostatnim zadaniu

$$t = -2,10, P_{H_0}(T \le -t_{1-\alpha,n-1}) = \alpha$$

$$P_{H_0}(T \le -2.10) = 0.063.$$

Im mniejsza jest **p-wartość**, tym mocniejsze staje się przekonanie testującego o fałszywości hipotezy zerowej i prawdziwości hipotezy alternatywnej.

p-wartość

$$P_{H_0}(T \le -t_{1-\alpha,n-1}) = \alpha, \quad P_{H_0}(T \le t) := \alpha_1 = p - \text{wartość}?$$

$$\alpha \ge \alpha_1 \implies t \le -t_{1-\alpha,n-1} \equiv t \in C \quad (1)$$

$$\alpha < \alpha_1 \implies t > -t_{1-\alpha,n-1} \equiv t \notin C \quad (2)$$

Z (1) i (2) α_1 jest p — wartością

na rysunku ilustracja (1), w zadaniu (2): $\alpha = 0.05 < 0.063 = p - w$.

Model 3. Testowanie hipotez o wartości średniej rozkładu dowolnego, gdy liczebność próby jest duża.

Założenie: Niech zmienne losowe $X_1, X_2, ..., X_n$ są prostą próbą losową z dowolnego rozkładu, którego μ, σ – nieznane.

$$H_0$$
: $\mu = \mu_0$

Statystyka testowa:

$$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}.$$

Jeśli H_0 prawdziwa i n jest duże (co najmniej 100), to T ma rozkład bliski N(0,1). Podstawiając T=Z, postępujemy tak jak w Modelu 1 (str. 16)

Model 4. Testowanie hipotez o wariancji rozkładu normalnego, gdy nieznana jest wartość średnia.

Niech $X_1, X_2, ..., X_n$ będzie prostą próbą losowa z rozkładu $N(\mu, \sigma)$, μ, σ - nieznane.

$$H_0: \sigma^2 = \sigma_0^2$$
.

Statystyka testowa:

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} = \frac{(n-1)S^2}{\sigma^2} \times \frac{\sigma^2}{\sigma_0^2}$$

Jeśli $\overline{H_0}$ prawdziwa, to $\chi^2 \sim \chi^2_{n-1}$.

Sytuacja 1.
$$H_0: \sigma^2 = \sigma_0^2$$
, $H_1: \sigma^2 > \sigma_0^2$.

Wówczas
$$\mathbf{C} = \{\chi_{obl}^2 : \frac{(n-1)s^2}{\sigma_0^2} \ge \chi_{1-\alpha,n-1}^2\} = \mathbf{zbiór} \, \mathbf{krytyczny} \, \mathbf{testu}$$

hipotezy H_0 przeciw H_1 na **poziomie istotności** α , gdzie

$$P_{H_0}(\chi^2 \in C) = P_{H_0}(\chi^2 \ge \chi^2_{1-\alpha,n-1}) = \alpha,$$

$$\chi^2_{1-\alpha,n-1}$$
 = kwantyl rzędu 1 - α rozkładu χ^2_{n-1} .

Sytuacja 2.
$$H_0: \sigma^2 = \sigma_0^2$$
, $H_1: \sigma^2 < \sigma_0^2$.

Wówczas
$${m c} = \{\chi^2_{obl}: \frac{(n-1)s^2}{\sigma_0^2} \leq \chi^2_{\alpha,n-1}\}$$
 - zbiór krytyczny, gdzie $P_{H_0}(\chi^2 \in C) = P_{H_0}(\chi^2 \leq \chi^2_{\alpha,n-1}) = \alpha$.

Sytuacja 3.
$$H_0: \sigma^2 = \sigma_0^2$$
, $H_1: \sigma^2 \neq \sigma_0^2$.

Wówczas zbiór krytyczny C =

$$\{\chi_{obl}^2: \frac{(n-1)s^2}{\sigma_0^2} \le \chi_{\alpha/2}^2\} \bigcup \{\chi_{obl}^2: \frac{(n-1)s^2}{\sigma_0^2} \ge \chi_{1-\alpha/2}^2\},$$

gdzie
$$\chi_{\alpha/2}^2 = \chi_{\alpha/2,n-1}^2$$
, $\chi_{1-\alpha/2}^2 = \chi_{1-\alpha/2,n-1}^2$.

Zadanie. Zmierzono czas życia 15 losowo wybranych żarówek z bieżącej produkcji. Policzono standardowe odchylenie próbkowe s=13 (godz.). Czy na poziomie istotności $\alpha=0.05$ (5%) można twierdzić, że odchylenie standardowe czasu życia losowo wybranej żarówki jest różne od 10 (godz.)

Rozwiązanie.

1.
$$H_0: \sigma = 10$$
 przeciw $H_1: \sigma \neq 10$

2. Statystyka testowa:
$$\chi^2 = \frac{(n-1)S^2}{10^2}$$

3.
$$\alpha = 0.05$$
, $\alpha/2 = 0.025$, $1-\alpha/2 = 0.975$, $n = 15$, liczba stopni swobody $n-1=15-1=14$,

$$\chi^2_{\alpha/2,n-1} = \chi^2_{0.025,14} = 5,629, \quad \chi^2_{1-\alpha/2,n-1} = \chi^2_{0.975,14} = 26,119.$$

Reguła decyzyjna (na podstawie **zbioru krytycznego)**: **odrzuć H**₀, **jeśli obliczona wartość statystyki**

$$\chi_{obl}^2 \le 5,629$$
 lub $\chi_{obl}^2 \ge 26,119$.

Rozwiązanie (c.d.)

4. s = 13, stąd wartość statystyki testowej

$$\boxed{\chi_{obl}^2} = \frac{(n-1)s^2}{100} = \frac{(14)(13^2)}{100} = 23,66.$$

5. 5,629 < 23,66 < 26,119, więc nie ma podstaw do odrzucenia H_0 .

Odpowiedź. Na poziomie istotności 0,05, brak jest dostatecznych dowodów aby twierdzić, że $\sigma \neq 10$.

Test o różnicy wartości średnich rozkładów brzegowych (dane "sparowane") Model 5

Niech $(X_1,Y_1),(X_2,Y_2),...,(X_n,Y_n)$ będzie prostą próbą losową z rozkładu dwuwymiarowego. Niech $D_i = X_i - Y_i, i = 1,...,n$, tworzą prostą próbę losową z rozkładu normalnego o nieznanej średniej μ_D .

Hipoteza zerowa:

$$H_0: \mu_D = 0,$$

Możliwe hipotezy alternatywne:

$$H_1: \mu_D > 0$$

$$H_1: \mu_D < 0$$

$$|H_1: \mu_D \neq 0|$$

Statystyka testowa:

$$T = \frac{\overline{D}}{S_D / \sqrt{n}}$$

Test o różnicy wartości średnich rozkładów brzegowych (dane "sparowane")

Jeśli H_0 prawdziwa, to $T \sim t_{n-1}$.

Zatem obszary krytyczne takie same jak przy testowaniu hipotez o wartości średniej jednej populacji normalnej przy nieznanym odchyleniu standardowym.

Test o różnicy wartości średnich dla danych "sparowanych"

Przykład. Zmierzono ciśnienie tętnicze wśród losowo wybranej grupy chorych na pewną chorobę przed i po podaniu takiego samego leku każdemu z pacjentów. Otrzymano następujące wyniki:

Pacjent: 1 2 3 4 5 6 7

Przed: 210 180 260 270 190 250 180 **Po** : 180 160 220 260 200 230 180

Czy można twierdzić, na poziomie istotności 0,05, że lek powoduje zmniejszenie wartości średniej ciśnienia? (podać odpowiednie założenia).

1.
$$H_0: \mu_1 = \mu_2 = H_0: \mu_D = \mu_1 - \mu_2 = 0$$

$$H_1: \mu_1 > \mu_2$$
 = $H_1: \mu_D = \mu_1 - \mu_2 > 0$

3. Statystyka testowa: $T = \frac{D}{S_D / \sqrt{n}}$

Test o różnicy wartości średnich dla danych "sparowanych"

4. d_i : 30, 20, 40, 10, -10, 20, 0, $\overline{d} = 15,7$, $s_D = 15,9$, n = 7.

$$t = \frac{15,7}{15,9/\sqrt{7}} = 2,24$$

5.
$$\alpha = 0.05$$
, $1 - \alpha = 0.95$, $n - 1 = 7 - 1 = 6$,

$$t_{0,95,6} = 1,94$$

6. 2,24 >1,94, więc odrzucamy hipotezę zerową.

Odpowiedź. Można twierdzić, że lek obniżył wartość średnią ciśnienia w populacji pacjentów, na poziomie istotności 0,05.

Test dla proporcji (wskaźnika struktury)

Niech $X_1, X_2, ..., X_n$ będzie prostą próbą losową z rozkładu Bernoulli'ego o nieznanym parametrze p. Wówczas $\mu = E(X_1) = p$, $\sigma^2 = p(1-p)$. Np. gdy p jest proporcją obiektów populacji mających pewną własność, przyjmujemy $X_i = 1$ (0) gdy wylosowany obiekt posiada (nie posiada) tę własność. Niech $\hat{p} = \overline{X} =$ częstość = proporcja elementów próby o danej własności. Z CTG dla dostatecznie dużego n zmienna losowa

$$\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \quad \text{ma rozkład bliski rozkładowi standardowemu normalnemu}$$

N(0,1). (musi zachodzić $np \ge 5, n(1-p) \ge 5$).

Test dla proporcji

Hipoteza zerowa:
$$H_0$$
: $p = p_0$

$$H_0: p = p_0$$

Statystyka testowa

$$Z = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \sim \text{bliski } N(0,1),$$

jeśli hipoteza H_0 jest prawdziwa. Możliwe sytuacje:

$$H_1: p > p_0, \quad C = \{z: z \ge z_{1-\alpha}\}$$

$$H_1: p < p_0, \quad C = \{z: z \le -z_{1-\alpha}\}$$

$$H_1: p \neq p_0, \quad C = \{z: |z| \geq z_{1-\alpha/2}\}$$

Test dla proporcji

Przykład. Przypuszczamy, że proporcja samochodów w Warszawie używających gazu jako paliwa jest mniejsza niż 0,15. W próbie 200 losowo samochodów 21 było samochodami na gaz. Czy te dane potwierdzają nasze przypuszczenie, przy poziomie istotności 0,05?

1.
$$H_0: p = 0.15$$
, $H_1: p < 0.15$

2. Statystyka testowa

$$Z = \frac{p - 0.15}{\sqrt{\frac{0.15 \times 0.85}{200}}} \sim \text{bliski } N(0.1), \text{ jeśli hipoteza } H_0 \text{ jest prawdziwa.}$$

Test dla proporcji

3. Wartość statystyki testowej dla próbki:

$$Z = \frac{21/200 - 0.15}{\sqrt{\frac{0.15 \times 0.85}{200}}} = -1.79$$

- 4. Kwantyl $z_{0.95} = 1.64$
- 5. Zbiór krytyczny $C = \{z : z \le -1,64\}$
- 6. $-1,79 \in C$, więc stwierdzamy, że proporcja samochodów na gaz jest mniejsza niż 0,15, przyjmując poziom istotności 0,05 (0,05 = prawdopodobieństwo, że nasza decyzja jest błędna)

Dziękuję za uwagę