HAUSAUFGABENBLATT 4 MATHEMATISCHE METHODEN

Dr. Michael Czerner

Abgabetermin 22.11.2021

Aufgabe 1: Produkte von ε -Tensoren

Zeigen Sie, dass gilt:

$$\sum_{ij}^{3} \varepsilon_{ijk} \varepsilon_{ijn} = 2\delta_{kn}$$

Vereinfachen Sie den folgenden Ausdruck soweit wie möglich:

$$\sum_{i,j,k}^{3} \varepsilon_{ijk} \, \varepsilon_{ijk}$$

Aufgabe 2: Cramersche Regel

Lösen Sie das folgende Gleichungssystem mit der Cramerschen Regel:

$$x_1 + 3x_2 + x_3 = 2$$
$$4x_1 - x_2 + x_3 = 1$$
$$2x_1 + 5x_2 + 2x_3 = 4$$

Aufgabe 3: Gleichungssysteme und Matrizen

Gegeben ist die Matrix
$$A = \begin{pmatrix} \alpha & 3 & \alpha \\ 1 & 1 & 2 \\ \alpha & \alpha & 1 \end{pmatrix}$$
.

- a) Für welche $\alpha \in \mathbb{R}$ hat das Gleichungssystem $A\vec{x} = \vec{0}$ eine nicht-triviale Lösung?
- b) Für welche $\alpha \in \mathbb{R}$ ist das Gleichungssystem $A\vec{x} = \vec{b}$ immer eindeutig lösbar? \vec{b} ist dabei ein beliebiger Vektor.

Aufgabe 4: Diagonalisierung

Gegeben sind die beiden Matrizen
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
 und $B = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 2 \end{pmatrix}$.

- a) Zeigen Sie, dass die beiden Matrizen kommutieren.
- b) Bestimmen Sie die Eigenvektoren, die beide Matrizen gemeinsam haben.
- c) Berechnen Sie die Matrix U^T , wobei die Spalten von U^T von den normierten Eigenvektoren gebildet werden, die beide Matrizen gemeinsam haben.
- d) Berechnen Sie UAU^T und UBU^T .

Aufgabe 5: Drehmatrizen

Gegeben ist die Matrix
$$A = \begin{pmatrix} \frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \\ 0 & 1 & 0 \\ -\frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \end{pmatrix}$$
.

- a) Zeigen Sie, dass die Matrix A eine Drehmatrix ist.
- b) Drehen Sie mit Hilfe von Matrix A den Einheitsvektor $\vec{r} = \frac{1}{\sqrt{x^2 + y^2 + z^2}} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.
- c) Bestimmen Sie den Winkel zwischen dem gedrehten und dem ursprünglichen Vektor.
- d) Um welche Achse und um welchen Winkel wird gedreht?
- e) Betrachten Sie folgende Grenzfälle:
 - (i) Der ursprüngliche Vektor ist orthogonal zur Drehachse.
 - (ii) Der ursprüngliche Vektor ist parallel zur Drehachse.

Wie müssen Sie den Vektor wählen und um welchen Winkel wird dann gedreht?