Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

> Отчёт по теоретическому заданию в рамках курса "Суперкомпьютерное моделирование и технологии" Домашнее задание 3

> > Вариант 4

Выполнил: Сизов В.С

студент гр.608иб

Оглавление

Соде	ржание	2
1.	Введение	3
2.	Математическая постановка задачи	3
3.	Вычисление $F(x,y)$ и граничных условий	4
4.	Разностная схема решения задачи	4
5.	Метод решения системы линейных алгебраических уравнений	6
6.	Результаты расчетов	8
7.	Подтверждение запуска	8

1. Введение

Требуется методом конечных разностей приближенно решить краевую задачу для уравнения Пуассона с потенциалом в прямоугольной области. Задание необходимо выполнить на следующих ПВС Московского университета:

- IBM Blue Gene/P,
- IBM Polus.

2. Математическая постановка задачи

В прямоугольнике $\Pi = [A_1, A_2] \times [B_1, B_2]$, граница Γ которого состоит из отрезков

$$\gamma_R = \{(A_2, y), B_1 \leqslant y \leqslant B_2\}, \quad \gamma_L = \{(A_1, y), B_1 \leqslant y \leqslant B_2\},
\gamma_T = \{(x, B_2), A_1 \leqslant x \leqslant A_2\}, \quad \gamma_B = \{(x, B_1), A_1 \leqslant x \leqslant A_2\},$$

рассматривается дифференциальное уравнение Пуассона с потенциалом

$$-\Delta u + q(x, y)u = F(x, y), \tag{1}$$

в котором оператор Лапласа

$$\Delta u = \frac{\partial}{\partial x} \left(k(x, y) \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(k(x, y) \frac{\partial u}{\partial y} \right).$$

Для выделения единственного решения уравнение дополняется граничными условиями. На каждом отрезке границы прямоугольника П задаются условия Дирихле:

$$u(x,y) = \varphi(x,y); \tag{2}$$

В соответствии с вариантом задания, рассматриваются следующие данные:

- 1. $\Pi = [A_1, A_2] \times [B_1, B_2] = [-1, 2] \times [-2, 2];$
- 2. $q(x,y) = (x+y)^2$;
- 3. $u(x,y) = \exp(1 (x+y)^2);$
- 4. k = x + 4;

На основе этих данных вычисляется значение правой части F(x, y).

3. Вычисление F(x,y) и граничных условий

Знаем, что $-\Delta u + q(x, y)u = F(x, y)$:

$$\frac{\partial u}{\partial x} = -2(x+y)\exp(1-(x+y)^2), \quad \frac{\partial u}{\partial y} = -2(x+y)\exp(1-(x+y)^2)$$

Оператор Лапласа вычисляется следующим образом:

$$\Delta u = \frac{\partial u}{\partial x} \left((x+4) \frac{\partial u}{\partial x} \left(\exp(1 - (x+y)^2) \right) \right) + \frac{\partial u}{\partial y} \left((x+4) \frac{\partial u}{\partial y} \left(\exp(1 - (x+y)^2) \right) \right) = (3)$$

$$= \frac{\partial u}{\partial x} \left(-(x+4)2(x+y)\exp(1-(x+y)^2) \right) + \frac{\partial u}{\partial y} \left(-(x+4)2(x+y)\exp(1-(x+y)^2) \right) 7 = (4)$$

$$= exp(1 - (x+y)^2)(2(x+y) + 4(x+4) - 8(x+4)(x+y)^2).$$
 (5)

Тогда функция F(x,y) примет следующий вид:

$$F(x,y) = \exp(1 - (x+y)^2)(2(x+y) + 4(x+4) + (x+y)^2 - 8(x+4)(x+y)^2)$$

Граничные условия являются граничными условиями Дирихле, а следовательно $\varphi(x,y) = \exp(1-(x+y)^2)$.

4. Разностная схема решения задачи.

Краевые задачи для уравнения Пуассона предлагается численно решать методом конечных разностей. В расчетной области П определяется равномерная прямоугольная сетка $\bar{\omega}_h = \bar{\omega}_1 \times \bar{\omega}_2$, где

$$\bar{\omega}_1 = \{x_i = A_1 + ih_1, \ i = \overline{0, M}\}, \ \bar{\omega}_2 = \{y_j = B_1 + jh_2, \ j = \overline{0, N}\}.$$

Здесь $h_1 = (A_2 - A_1)/M$, $h_2 = (B_2 - B_1)/N$. Через ω_h обозначим множество внутренних узлов сетки $\bar{\omega}_h$, т.е. множество узлов сетки прямоугольника, не лежащих на границе Γ .

Рассмотрим линейное пространство H функций, заданных на сетке $\bar{\omega}_h$. Обозначим через w_{ij} значение сеточной функции $w \in H$ в узле сетки $(x_i, y_j) \in \bar{\omega}_h$. Будем считать, что в пространстве H задано скалярное произведение и евклидова норма

$$[u,v] = \sum_{i=0}^{M} h_1 \sum_{j=0}^{N} h_2 \rho_{ij} u_{ij} v_{ij}, \quad ||u||_E = \sqrt{[u,u]}.$$
 (6)

Весовая функция $\rho_{ij} = \rho^{(1)}(x_i)\rho^{(2)}(y_j)$, где

$$\rho^{(1)}(x_i) = \begin{bmatrix} 1, & 1 \leqslant i \leqslant M - 1 \\ 1/2, & i = 0, \ i = M \end{bmatrix} \quad \rho^{(2)}(y_j) = \begin{bmatrix} 1, & 1 \leqslant j \leqslant N - 1 \\ 1/2, & j = 0, \ j = N \end{bmatrix}$$

В методе конечных разностей дифференциальная задача математической физики заменяется конечно-разностной операторной задачей вида

$$Aw = B, (7)$$

где $A: H \to H$ – оператор, действующий в пространстве сеточных функций, $B \in H$ – известная правая часть.

При построении разностной схемы следует аппроксимировать (приближенно заменить) все уравнения краевой задачи их разностными аналогами — сеточными уравнениями, связывающими значения искомой сеточной функции в узлах сетки. Полученные таким образом уравнения должны быть функционально независимыми, а их общее количество — совпадать с числом неизвестных, т.е. с количеством узлов сетки.

Уравнение (1) во всех внутренних точках сетки аппроксимируется разностным уравнением

$$-\Delta_h w_{ij} + q_{ij} w_{ij} = F_{ij}, \quad i = \overline{1, M - 1}, \ j = \overline{1, N - 1},$$
 (8)

в котором $F_{ij} = F(x_i, y_j), q_{ij} = q(x_i, y_j),$ разностный оператор Лапласа

$$\Delta_h w_{ij} = \frac{1}{h_1} \left(k(x_i + 0.5h_1, y_j) \frac{w_{i+1j} - w_{ij}}{h_1} - k(x_i - 0.5h_1, y_j) \frac{w_{ij} - w_{i-1j}}{h_1} \right) + \frac{1}{h_2} \left(k(x_i, y_j + 0.5h_2) \frac{w_{ij+1} - w_{ij}}{h_2} - k(x_i, y_j - 0.5h_2) \frac{w_{ij} - w_{ij-1}}{h_2} \right).$$

Введем обозначения правой и левой разностных производных по переменным $x,\,y$ соответственно:

$$w_{x,ij} = \frac{w_{i+1j} - w_{ij}}{h_1}, \quad w_{\overline{x},ij} = w_{x,i-1j} = \frac{w_{ij} - w_{i-1j}}{h_1},$$
$$w_{y,ij} = \frac{w_{ij+1} - w_{ij}}{h_2}, \quad w_{\overline{y},ij} = w_{y,ij-1} = \frac{w_{ij} - w_{ij-1}}{h_2},$$

а также определим сеточные коэффициенты

$$a_{ij} = k(x_i - 0.5h_1, y_j), \quad b_{ij} = k(x_i, y_j - 0.5h_2).$$

С учетом принятых обозначений разностный оператор Лапласа можно представить в более компактном и удобном виде

$$\Delta_h w_{ij} = \left(aw_{\overline{x}}\right)_{x,ij} + \left(bw_{\overline{y}}\right)_{y,ij}.$$

Краевые условия первого типа аппроксимируются точно равенством

$$w_{ij} = \varphi(x_i, y_j), \quad i = 0, \ j = \overline{0, N}$$
 (9)

$$w_{ij} = \varphi(x_i, y_j), \quad i = M, \ j = \overline{0, N}$$
 (10)

$$w_{ij} = \varphi(x_i, y_j), \quad i = \overline{0, M}, \ j = N$$
 (11)

$$w_{ij} = \varphi(x_i, y_j), \quad i = \overline{0, M}, \ j = 0$$
 (12)

$$-\Delta_h w_{ij} + q_{ij} w_{ij} = F_{ij}, \quad i = \overline{1, M-1}, \ j = \overline{1, N-1},$$

Эти соотношения представляют собой систему линейных алгебраических уравнений с числом уравнений равным числу неизвестных и определяют единственным образом неизвестные значения $w_{ij}, i = 0, 1, 2, \ldots, M, j = 0, 1, 2, \ldots, N$. Систему можно представить в операторном виде (7), в котором оператор A определен левой частью линейных уравнений, функция B – правой частью.

5. Метод решения системы линейных алгебраических уравнений.

Приближенное решение системы уравнений (7) для сформулированных выше краевых задач может быть получено итерационным методом наименьших невязок. Этот метод позволяет получить последовательность сеточных функций $w^{(k)} \in H$, k = 1, 2, ..., сходящуюся по норме пространства H к решению разностной схемы, т.е.

$$||w - w^{(k)}||_E \to 0, \quad k \to +\infty.$$

Начальное приближение $w^{(0)}$ можно выбрать любым способом, например, равным нулю во всех точках расчетной сетки. Метод является одношаговым. Итерация $w^{(k+1)}$ вычисляется по итерации $w^{(k)}$ согласно равенствам:

$$w_{ij}^{(k+1)} = w_{ij}^{(k)} - \tau_{k+1} r_{ij}^{(k)}, \tag{13}$$

где невязка $r^{(k)} = Aw^{(k)} - B$, итерационный параметр

$$\tau_{k+1} = \frac{\left[Ar^{(k)}, r^{(k)}\right]}{\left\|Ar^{(k)}\right\|_E^2}.$$

В качестве условия остановки итерационного процесса можно взять неравенство

$$\|w^{(k+1)} - w^{(k)}\|_E < \varepsilon,$$

где ε – положительное число, определяющее точность итерационного метода. Оценку точности приближенного решения сеточных уравнений (7) можно проводить в других нормах

пространства сеточных функций, например, в максимум норме

$$||w||_C = \max_{x \in \overline{\omega}_h} |w(x)|. \tag{14}$$

Константа ε для данной задачи равна 10^{-6} .

6. Результаты расчетов

Таблица 1. Таблица с результатами расчетов на ПВС IBM Polus

	T		
Число процессоров N_p	Число точек сетки $M \times N$	Время решения T	Ускорение S
4	500×500	68.086	1
8	500×500	12.723	5.35
16	500×500	6.394	10.65
4	500×1000	98.546	1
8	500×1000	20.453	4.82
16	500×1000	10.723	9.19

7. Подтверждение запуска

```
Falling back to the standard locale ("C").

Falling back to the standard locale ("C").

Submitted to default queue <short>.

122-608-06@polus-ib HW3]$ export LC_CTYPE=en_US.UTF-8

122-608-06@polus-ib HW3]$ mpisubmit.pl -w 00:20 -p 4 hw3 1 1 1 127

Submitted to default queue <short>.

122-608-06@polus-ib HW3]$ mpisubmit.pl -w 00:20 -p 8 hw3 1 1 1 127

Submitted to default queue <short>.
```

Рис. 1. Запуск на Polus