INFO-H-303 Bases de données Séance d'exercices 4 Algèbre relationnelle : première partie

30 novembre 2011

Algèbre relationnelle

- Collection d'opérations unaires ou binaires.
- ► Chaque opération renvoie une relation.
- Opérations principales :
 - Sélection (restriction)
 - Projection
 - Union, intersection, différence
 - Jointure
 - Jointure naturelle
 - Renommage
 - Division (prochain TP)

Sélection (restriction)

- Sélectionne les tuples qui satisfont une condition.
- Syntaxe : $\sigma_{\text{condition}}(\text{relation})$
- ► Condition simple : comparaison $(=, \neq, <, \leq, >, \geq)$ d'un attribut avec un attribut ou une valeur
- ► Condition composée : conditions simples séparées par ∨ ou ∧.

Sélection : Exemple

	R	
Α	В	С
1	а	1
2	а	1
3	С	2
4	d	2

$\sigma_{\rm C=2}({\rm R})$

Α	В	С
3	С	2
4	d	2

Projection

- ▶ Sélectionne un sous ensemble d'attributs d'une relation.
- Syntaxe : $\pi_{\text{attributs}}(\text{relation})$
- La projection implique la suppression des doublons.

Projection : Exemple

	R	
Α	В	С
1	а	1
2	а	1
3	С	2
4	d	2

$\pi_{\mathrm{B,C}}(\mathrm{R})$

В	С
а	1
С	2
d	2

Union, intersection, différence

- Opérations ensemblistes sur deux relations compatibles
- Compatible = même nombre d'attributs et attributs de même domaine (type)
- ▶ Union : relation ∪ relation
- ▶ Intersection : relation \cap relation
- ▶ Différence : relation relation

Union, intersection, différence : Exemples

Student		
FName LName		
Susan	Yao	
Ramesh	Shah	
Barbara	Jones	
Amy	Ford	
Jimmy	Wang	

Prot		
FName	LName	
John	Smith	
Ricardo	Brown	
Susan	Yao	
Francis	Johnson	
Ramesh	Shah	

$Student \cup Prof$

FName	LName	
Susan	Yao	
Ramesh	Shah	
Barbara	Jones	
Amy	Ford	
Jimmy	Wang	
John	Smith	
Ricardo	Brown	
Francis	Johnson	

$\mathsf{Student} \cap \mathsf{Prof}$

Student 1 101		
FName	LName	
Susan	Yao	
Ramesh	Shah	

Student - Prof

LName
lones
Jones
Ford
Wang

Produit cartésien

- Chaque tuple d'une relation est associé à chaque tuple de l'autre
- ► Syntaxe : relation × relation
- Le résultat est une relation contennant les attributs des deux relations (attention aux attributs de même nom).

Produit cartésien : Exemple

?			5	
В		С	D	
B1		C1	D1	
B2		C2	D2	
	B B1 B2	B B1 B2	ВС	

$R \times S$				
Α	В	С	D	
A1	B1	C1	D1	
A1	B1	C2	D2	
A2	B2	C1	D1	
A2	B2	C2	D2	

Jointure

- Une jointure combine deux relations sur base d'une condition.
- ► Syntaxe : relation ⋈_{condition} relation
- ► Condition simple : comparaison $(=, \neq, <, \leq, >, \geq)$ de deux attributs
- ► Condition composée : combinaison de conditions simples séparées par ∧
- Attention aux attributs de même nom

Jointure : Exemple

$R \bowtie_{B=C} S$				
Α	В	С	D	
а	b	b	С	
а	b	b	d	
С	b	b	С	
С	b	b	d	
d	e	е	a	

Jointure naturelle

- ▶ Une jointure naturelle combine deux relations sur base de l'égalité de leur attribut commun.
- ► Syntaxe : relation * relation
- ► Il existe d'autres types de jointures (voir cours)

Jointure naturelle : Exemple

Combinaison des opérations

- Les opérations peuvent être imbriquées ou en séquence
- ► Imbrication :
 - $\qquad \qquad \pi_{A,B}(\sigma_{C=2}(R))$
- ► Séquence :
 - ▶ $Temp \leftarrow \sigma_{C=2}(R)$
 - $\pi_{A,B}(Temp)$

Renommage

- Renomme un attribut d'une relation.
- Syntaxe :
 - $ightharpoonup \alpha_{\text{attribut:attribut}}(\text{relation})$
 - ▶ ou relation(nouveauxAttributs) ← relation

Renommage: Exemple

	R	
Α	В	С
1	а	1
2	а	1
3	С	2
4	d	2

$$\begin{aligned} \alpha_{C:D}(R) \\ \text{ou} \\ R(A,B,D) \leftarrow R \end{aligned}$$

	R	
Α	В	D
1	а	1
2	а	1
3	С	2
4	d	2

Rappel des notations

- Sélection : $\sigma_{\text{condition}}(\text{relation})$
- Projection : $\pi_{\text{attributs}}(\text{relation})$
- ▶ Union : relation ∪ relation
- ▶ Intersection : relation \cap relation
- ▶ Différence : relation relation
- ▶ Produit cartésien : relation × relation
- ▶ Jointure : relation $\bowtie_{\text{condition}}$ relation
- ▶ Jointure naturelle : relation * relation
- Renommage :
 - $ightharpoonup \alpha_{\text{attribut:attribut}}(\text{relation})$
 - ▶ ou relation(nouveauxAttributs) ← relation