

아리랑 위성영상 AI 객체 검출 경진대회

Nov 24 2020

Kyung Tae Kim (MTC Ai LAB & Seoul National University)

1 Exploratory Data Analysis

2 Model

Conclusion & Q

Exploratory Data Analysis

Post Processing

Deep Learning Model

Backbone

Head + Neck

STEP 3

STEP 1

STEP 2

Conclusion & QA

https://dacon.i

Exploratory Data AnalysishSaugmentation

Since there are many orientation variations in aerial images implement the online rotation augmentation. (e.g. 180, 270)

Fig.1 origin rotated Fig.2 rotated Fig.3 rotated

Exploratory Data Analysisata Augmentation

This allows for the model to learn how to identify objects at a smaller scale than normal. It also encourages the model to localize different types of images in different portions of the frame.

Fig.1 origin image

Fig.2 combines 4 images

2. Model

Fig.2 ROI Transform

Fig.1 ROI Transform

Procedure 1 Routing algorithm.

- for all capsule i in layer l and capsule j in layer (l+1): $b_{ij} \leftarrow 0$.
- for r iterations do
- for all capsule i in layer $l: c_i \leftarrow softmax(b_i)$ > softmax computes Eq. 3
- for all capsule j in layer (i+1): $s_j \leftarrow \sum_i c_{ij} \hat{\mathbf{u}}_{ji}$
- for all capsule j in layer (l+1): $v_j \leftarrow squash(s_j)$ o squash computes Eq. 1
- for all capsule i in layer l and capsule j in layer (l+1): $b_{ij} \leftarrow b_{ij} + \hat{\mathbf{u}}_{j|i}.\mathbf{v}_j$ return v

Fig.3 Spatial Transformer Network https://dacon.io

Fig.4 Dynamic Routing Algorithm

2. Deformable Convolution Networks

Fig.1 Training DCN Module

Fig.2 DCN sampling locations (from the learned offset)

- 1. Enabling effective modeling of spatial transformation in convolution neural network
- 2. No additional supervision for learning spatial transformation
- 3. Significant accuracy improvements on sophisticated vision tasks

2. Model

Feature Pyramid Module with Pyramid Block

3. Result

3. Result

3. Attention Expansion Pyramid Network

3. Conclusion

- 1. Mean Average Precision
- 2. Align Deep Feature & Activation MAP
- 3. Explainable Neural Networks
- 4. Convolutional vs Transformers

Need good system 1 functionality to make a system efficient

4. Reference

- 1. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
- 2. Fully Convolutional Networks for Semantic Segmentation
- 3. Focal Loss for Dense Object Detection
- 4. Deformable Convolutional Networks
- 5. Learning Rol Transformer for Detecting Oriented Objects in Aerial Images
- 6. YOLOv4: Optimal Speed and Accuracy of Object Detection
- 7. Arbitrary-Oriented Scene Text Detection via Rotation Proposals

