Name, group no:			

1. (10 points) Solve the equation

$$z^{3} + iz^{2} - \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z - i\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 0$$

in complex numbers if one of the roots is -i.

Name, group no:	
	• • • • •

2. (10 points) The function f(x,y,z) is homogeneous of degree 9. Consider two functions, $h(x,y,z)=(x+3y+5z)\frac{\partial^2 f}{\partial x\partial y}$ and $q(x,y,z)=h(x,y,z)+(x^3+3xyz)\frac{\partial f}{\partial x}$. Check the homogeneity of these functions, for homogeneous functions state the degree.

Name, group no:		

3. (10 points) Find the minimal value of $x_1+2x_2+3x_3$ for non-negative values of all x_i given that $x_1+2x_2+2x_3\geq 3$ and $3x_1+2x_2+x_3\geq 4$.

Name, group no:	

4. (10 points) Bill and John are relaxing in a pub. Bill decided to spend 10 dollars, John decided to spend 2 dollars. Money is infinitely divisible. They love the same music. Each can spend money on music or on drinks. The utility of each player is $u_i = (m_1 + m_2) \cdot d_i$, where $(m_1 + m_2)$ — is the total sum of money spent on music by both players and d_i — the personal expenses on drinks.

Find all Nash Equilibria in pure strategies.

Name, group no:		

5. (10 points) Find the global maximum of x+2y+3z given that $x^2+y^2+z^2\leq 6$.

Naı	m	e, į	gı	oı	ıр	n	10:																																		
					•			•	 	•		 	 							 			 •			 					•		•				 		•	•	

6. (10 points) Find the general solution of the difference equation $y_{t+3} - 2y_{t+2} + y_{t+1} - 2y_t = 2^t$.

Variant μ Good luck! Total time: 120 min

Name, group no:	

7. In exchange economy of two agents and two goods all Pareto-optimal allocations can be found by solving the maximization problem

$$\begin{cases} u_1 = 2\sqrt{x_1} + y_1 \to \max \\ u_2 = 2x_2 + y_2 \ge \bar{u}_2; \\ x_1 + x_2 = 1; \\ y_1 + y_2 = 1, \end{cases}$$

where \bar{u}_2 is a nonnegative parameter and all the amounts of goods x_1, x_2, y_1, y_2 are consumed by agents in nonnegative quantities.

- (a) (5 points) Write the Kuhn-Tucker Lagrangian of the problem and set the system of first-order Kuhn-Tucker conditions;
- (b) (5 points) Solve it in particular case when all goods are consumed in positive quantities;
- (c) (10 points) Solve the system completely and find all corner solutions.

Name, group no:	

8. (20 points)

Consider the system of differential equations

$$\begin{cases} \dot{x} = x - y + \frac{\sin t + \cos t}{2\sin t}; \\ \dot{y} = 2x - y. \end{cases}$$

- (a) (4 points) Reduce the system to a single equation for y(t).
- (b) (16 points) By applying the variation of parameters method or otherwise find general solution for y(t).

Note: you don't need to find x(t).

Name, group no:	

1. (10 points) Solve the equation

$$z^{3} + iz^{2} - \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)z - i\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = 0$$

in complex numbers if one of the roots is -i.

Name, group no:		

2. (10 points) The function f(x,y,z) is homogeneous of degree 8. Consider two functions, $h(x,y,z)=(2x+4y+3z)\frac{\partial^2 f}{\partial x\partial y}$ and $q(x,y,z)=h(x,y,z)+(x^3+2xyz)\frac{\partial f}{\partial x}$. Check the homogeneity of these functions, for homogeneous functions state the degree.

Name, grou	ip no:		
		• • • • • • • • • • • • • • • • • • • •	

3. (10 points) Find the minimal value of $x_1+2x_2+4x_3$ for non-negative values of all x_i given that $x_1+2x_2+2x_3\geq 3$ and $3x_1+2x_2+x_3\geq 4$.

Jame, group no:	

4. (10 points) Bill and John are relaxing in a pub. Bill decided to spend 20 dollars, John decided to spend 4 dollars. Money is infinitely divisible. They love the same music. Each can spend money on music or on drinks. The utility of each player is $u_i = (m_1 + m_2) \cdot d_i$, where $(m_1 + m_2)$ — is the total sum of money spent on music by both players and d_i — the personal expenses on drinks.

Find all Nash Equilibria in pure strategies.

Name, group no:	

5. (10 points) Find the global maximum of 2x + y + 3z given that $x^2 + y^2 + z^2 \le 6$.

Name, group no:		

6. (10 points) Find the general solution of the difference equation $y_{t+3} + 2y_{t+2} + y_{t+1} + 2y_t = (-2)^t$.

Variant ρ Good luck! Total time: 120 min

Name, group no:	

7. In exchange economy of two agents and two goods all Pareto-optimal allocations can be found by solving the maximization problem

$$\begin{cases} u_1 = 2\sqrt{x_1} + y_1 \to \max \\ u_2 = 2x_2 + y_2 \ge \bar{u}_2; \\ x_1 + x_2 = 1; \\ y_1 + y_2 = 1, \end{cases}$$

where \bar{u}_2 is a nonnegative parameter and all the amounts of goods x_1, x_2, y_1, y_2 are consumed by agents in nonnegative quantities.

- (a) (5 points) Write the Kuhn-Tucker Lagrangian of the problem and set the system of first-order Kuhn-Tucker conditions;
- (b) (5 points) Solve it in particular case when all goods are consumed in positive quantities;
- (c) (10 points) Solve the system completely and find all corner solutions.

Name, group no:		

8. (20 points)

Consider the system of differential equations

$$\begin{cases} \dot{x} = x - y + \frac{\sin t + \cos t}{2\sin t}; \\ \dot{y} = 2x - y. \end{cases}$$

- (a) (4 points) Reduce the system to a single equation for y(t).
- (b) (16 points) By applying the variation of parameters method or otherwise find general solution for y(t).

Note: you don't need to find x(t).

Name, group no:	

1. (10 points) Solve the equation

$$z^{3} - iz^{2} - \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z + i\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 0$$

in complex numbers if one of the roots is i.

Name, grou	ip no:		
		• • • • • • • • • • • • • • • • • • • •	

2. (10 points) The function f(x,y,z) is homogeneous of degree 7. Consider two functions, $h(x,y,z)=(4x+3y+5z)\frac{\partial^2 f}{\partial x\partial y}$ and $q(x,y,z)=h(x,y,z)+(5x^3+3xyz)\frac{\partial f}{\partial x}$. Check the homogeneity of these functions, for homogeneous functions state the degree.

Name, group no:	

3. (10 points) Find the minimal value of $x_1+2x_2+5x_3$ for non-negative values of all x_i given that $x_1+2x_2+2x_3\geq 3$ and $3x_1+2x_2+x_3\geq 4$.

Jame, group no:	

4. (10 points) Bill and John are relaxing in a pub. Bill decided to spend 30 dollars, John decided to spend 6 dollars. Money is infinitely divisible. They love the same music. Each can spend money on music or on drinks. The utility of each player is $u_i = (m_1 + m_2) \cdot d_i$, where $(m_1 + m_2)$ — is the total sum of money spent on music by both players and d_i — the personal expenses on drinks.

Find all Nash Equilibria in pure strategies.

Name, group no:	

5. (10 points) Find the global maximum of 3x + 2y + z given that $x^2 + y^2 + z^2 \le 6$.

Name, group no:	

6. (10 points) Find the general solution of the difference equation $2y_{t+3} + y_{t+2} + 2y_{t+1} + y_t = (-1/2)^t$.

Variant ξ Good luck! Total time: 120 min

Name, group no:	

7. In exchange economy of two agents and two goods all Pareto-optimal allocations can be found by solving the maximization problem

$$\begin{cases} u_1 = 2\sqrt{x_1} + y_1 \to \max \\ u_2 = 2x_2 + y_2 \ge \bar{u}_2; \\ x_1 + x_2 = 1; \\ y_1 + y_2 = 1, \end{cases}$$

where \bar{u}_2 is a nonnegative parameter and all the amounts of goods x_1, x_2, y_1, y_2 are consumed by agents in nonnegative quantities.

- (a) (5 points) Write the Kuhn-Tucker Lagrangian of the problem and set the system of first-order Kuhn-Tucker conditions;
- (b) (5 points) Solve it in particular case when all goods are consumed in positive quantities;
- (c) (10 points) Solve the system completely and find all corner solutions.

Name, group no:	

8. (20 points)

Consider the system of differential equations

$$\begin{cases} \dot{x} = x - y + \frac{\sin t + \cos t}{2\sin t}; \\ \dot{y} = 2x - y. \end{cases}$$

- (a) (4 points) Reduce the system to a single equation for y(t).
- (b) (16 points) By applying the variation of parameters method or otherwise find general solution for y(t).

Note: you don't need to find x(t).

Name, group no:	

1. (10 points) Solve the equation

$$z^{3} - iz^{2} - \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)z + i\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = 0$$

in complex numbers if one of the roots is i.

Name, group no:	

2. (10 points) The function f(x,y,z) is homogeneous of degree 6. Consider two functions, $h(x,y,z)=(4x-3y+5z)\frac{\partial^2 f}{\partial x\partial y}$ and $q(x,y,z)=h(x,y,z)+(7x^3+3xyz)\frac{\partial f}{\partial x}$. Check the homogeneity of these functions, for homogeneous functions state the degree.

Name, group no:	

3. (10 points) Find the minimal value of $x_1+2x_2+6x_3$ for non-negative values of all x_i given that $x_1+2x_2+2x_3\geq 3$ and $3x_1+2x_2+x_3\geq 4$.

Vame, group no:	

4. (10 points) Bill and John are relaxing in a pub. Bill decided to spend 40 dollars, John decided to spend 8 dollars. Money is infinitely divisible. They love the same music. Each can spend money on music or on drinks. The utility of each player is $u_i = (m_1 + m_2) \cdot d_i$, where $(m_1 + m_2)$ — is the total sum of money spent on music by both players and d_i — the personal expenses on drinks.

Find all Nash Equilibria in pure strategies.

Name, group no:	

5. (10 points) Find the global maximum of 3x + y + 2z given that $x^2 + y^2 + z^2 \le 6$.

fame, group no:	
	• • • •

6. (10 points) Find the general solution of the difference equation $2y_{t+3} - y_{t+2} + 2y_{t+1} - y_t = (1/2)^t$.

Name, group no:	

7. In exchange economy of two agents and two goods all Pareto-optimal allocations can be found by solving the maximization problem

$$\begin{cases} u_1 = 2\sqrt{x_1} + y_1 \to \max \\ u_2 = 2x_2 + y_2 \ge \bar{u}_2; \\ x_1 + x_2 = 1; \\ y_1 + y_2 = 1, \end{cases}$$

where \bar{u}_2 is a nonnegative parameter and all the amounts of goods x_1, x_2, y_1, y_2 are consumed by agents in nonnegative quantities.

- (a) (5 points) Write the Kuhn-Tucker Lagrangian of the problem and set the system of first-order Kuhn-Tucker conditions;
- (b) (5 points) Solve it in particular case when all goods are consumed in positive quantities;
- (c) (10 points) Solve the system completely and find all corner solutions.

Name, group no:	

8. (20 points)

Consider the system of differential equations

$$\begin{cases} \dot{x} = x - y + \frac{\sin t + \cos t}{2\sin t}; \\ \dot{y} = 2x - y. \end{cases}$$

- (a) (4 points) Reduce the system to a single equation for y(t).
- (b) (16 points) By applying the variation of parameters method or otherwise find general solution for y(t).

Note: you don't need to find x(t).