Politechnika Wrocławska

Projekt Odlewu

Technologie wytwarzania implantów

I. Cel projektu:

Celem projektu jest zaprojektowanie odlewu wybranego elementu, który zostanie wykonany z żeliwa szarego, a następnie wszystkie jego powierzchnie zostaną obrobione mechanicznie.

II. Obliczenia potrzebne do wykonania rysunku surowego odlewu:

Rys. 1. Schemat gotowego odlewu

Celem obliczeń jest poznanie wymiarów potrzebnych do narysowania układu wlewowego.

1. Obliczenie objętości odlewu:

Aby obliczyć objętość odlewu należy policzyć jego objętość gdyby był on jednolitym prostopadłościanem, a następnie odjąć objętość pustych przestrzeni. W obliczeniach pomijamy otwory widoczne na rzucie z rysunku 1, ponieważ zostaną one wykonane w późniejszej obróbce.

$$V = 60 \cdot 70 \cdot 20 = 84000 mm^3 = 84 \ cm^3$$

V – objętość elementu bez pustych przestrzeni.

$$V_C = V - V_I - V_{II} - V_{III}$$

V_I, V_{II} i V_{III} to objętości pustych przestrzeni zaznaczone na rysunku 1.

$$V_I = 20 \cdot 34 \cdot 20 = 13600 \ mm^3 = 13.6 \ cm^3$$

$$V_{II} = 20 \cdot 40 \cdot 20 = 16000 \ mm^3 = 16 \ cm^3$$

$$V_{III} = 20 \cdot \pi \cdot 20^2 \cdot 0.5 = 12600 \text{ mm}^3 = 12.6 \text{ cm}^3$$

$$V_C = 84000 - 13600 - 16000 - 12600 = 41800 \, mm^3 = 41.8 \, cm^3$$

2. Obliczenia masy surowego odlewu:

Gęstość żeliwa wynosi: $\rho = 7.2 \frac{g}{cm^3}$ ^[1]

$$Q_{odl} = V_C \cdot \rho = 41.8 \cdot 7.2 = 300.96 g$$

Masę odlewu wraz z układem zasilającym i wlewowym obliczamy ze wzoru [2]:

$$Q_c = Q_{odl} \cdot k$$

,gdzie k - współczynnik charakteryzujący uzysk, zależny od rodzaju stopu z którego wykonany ma być odlew. Dla żeliwa szarego k=1,2.

Stad:

$$Q_c = Q_{odl} \cdot k = 300,96 \cdot 1,2 = 361,15 g$$

3. Obliczenia optymalnego czasu zalewania:

Optymalny czas zalewania formy dla danego odlewu określa się ze wzoru empirycznego Sobolewa [2]:

$$\tau = s\sqrt[3]{gQ_c}$$

,gdzie:

τ - optymalny czas zalewania w s,

Q_c - masa odlewu wraz z układem wlewowym i zasilającym w kg,

g - przeważająca (średnia) grubość ścianek odlewu w mm,

s - współczynnik zależny od rodzaju metalu, jego stopnia przegrzania i lejności oraz miejsca doprowadzenia metalu.

W odlewie przeważa grubość ścianek g = 20 mm

Współczynnik s dla żeliwa szarego ma wartość s = 1,9

Stad:

$$\tau = 1.9 \sqrt[3]{20 \cdot 0.36} = 3.67 s$$

4. Prędkość podnoszenia się metalu:

W celu dalszych obliczeń konieczne jest określenie prędkości liniowej podnoszenia się metalu. W tym celu konieczne jest określenie w jakiej pozycji będzie zalewany odlew oraz uwzględnienie naddatków.

Rys. 2. Schemat odlewu z nowymi oznaczeniami.

Naddatki określa się na podstawie klasy odlewu, której dobór wygląda następująco:

Tab. 1. Zakresy stopni naddatków dla wybranych materiałów oraz metod obróbkowych. [6]

Metoda/materiał:	Żeliwo szare	Żeliwo sferoidalne	Żeliwo ciągliwe	Stopy metali lekkich	Stopy miedzi
Odlewanie do form piaskowych formowanych ręcznie.			F÷H		
Odlewanie do form piaskowych formowanych maszynowo i skorupowo.			E÷G		

Wybrano klasę odlewu G, co z kolei pozwala na wybór wielkości naddatku.

Tab. 2. Naddatki obróbkowe dla obróbki skrawaniem.

największy wymiar [mm]		Naddatki obróbkowe dla obróbki skrawaniem [mm] Stopień naddatku obróbkowego				
od	do włącznie	Е	F	G	Н	
40	63	0,4	0,5	0,7	1,0	
63	100	0,7	1,0	1,4	2,0	
100	160	1,1	1,5	2,2	3,0	
160	250	1,4	2,0	2,8	4,0	
250	400	1,8	2,5	3,5	5,0	
400	630	2,2	3,0	4,0	6,0	

Największym wymiarem odlewu jest wysokość odlewu wynosząca 70 mm. Na tej podstawie można stwierdzić, że wartość naddatku powinna wynosić 1,4 mm.

W celu łatwiejszego wyciągnięcia odlewu z formy powinno się również dodać pochylenie odlewnicze.

Tab. 3.Pochylenia odlewnicze.

Wartość		Typ pochyleń odlewniczych						
wymiaru		I		II		III		
ŀ	Н	Rodzaj powierzchni odlewu						
		Wartość wymiaru n						
>	<=	obrabiana	surowa	obrabiana	surowa	obrabiana	surowa	
	25	0,7		0.7		0,7		
25	40			0,7		1,0		
40	60			1,0		1,6		
60	100	0,9		1,8		2,6		
100	150	1,3		2,6		3,9		
150	250	2,1		3,0	4,4	4,4	6,6	

Wymiar H to długość odcinka, który ma zawierać pochylenie. W wypadku obliczanego odlewu H=10 mm. Pochylenie odlewu powinno więc wynosić n=0,7 mm.

Rys. 3. Wymiary odlewu z naddatkami.

Prędkość podnoszenia się metalu obliczono ze wzoru^[3]:

$$v = \frac{C}{\tau}$$

,gdzie:

v – prędkość podnoszenia się metalu,

C – wysokość odlewu w położeniu do zalewania,

 τ – optymalny czas zalewania.

Na rysunku 2 i 3 przedstawiono wartość C = 22,8 mm = 2,28 cm.

Stad:

$$v = \frac{C}{\tau} = \frac{2,28}{3,67} = 0,67 \frac{cm}{s}$$

Prędkość podnoszenia się metalu w formie jest znormalizowana i jej wartość powinna zawierać się w określonych granicach.

Tab. 4. Znormalizowane wartości prędkości podnoszenia się metalu w formie

Grubość ścianek odlewu	Prędkość dopuszczalna υ [cm/s]			
[mm]	odlewy żeliwne	odlewy staliwne		
do 4	3 ÷ 10	1.5		
4 ÷10	2 ÷ 3	2		
10 ÷ 40	1 ÷ 3	1		
powyżej 40	$0.8 \div 1.0$	0,8		

Otrzymana wartość prędkości nie mieści się w narzuconych przedziałach. W celu jej zoptymalizowania należy zmodyfikować czas zalewania lub położenie odlewu w formie. Ze względu na kształt odlewu zmiana pozycji jego zalewania jest dosyć problematyczna. Należy więc zmodyfikować czas zalewania. W tym celu przyjęto prędkość zalewania $v=\frac{cm}{s}$.

$$\tau = \frac{C}{v} = \frac{2,28}{1} = 2,28 \, s.$$

5. Obliczanie średniego ciśnienia metalostatycznego:

W celu obliczenia przekrojów kanałów układu wlewowego, w pierwszej kolejności należy obliczyć średnie ciśnienie metalostatyczne, które obliczamy ze wzoru [4]:

$$h_{\pm r} = H_0 - \frac{P}{2C}$$

, gdzie:

H₀ – początkowe maksymalne ciśnienie metalostatyczne podawane w cm,

P – wysokość odlewu nad poziomem wlewów doprowadzających,

C – całkowita wysokość odlewu w położeniu zalewania.

Aby kontynuować obliczenia należy określić wartość H₀. Najczęściej przyjmuje się wysokość górnej skrzynki formierskiej, która jest normalizowana.

Rys. 4. Graficzny opis wymiarów skrzynki formierskiej.^[5]

Długość wykonywanego odlewu to 74,2 mm, a jego szerokość to 22,8 mm. Minimalne wymiary skrzynki formierskiej to L = 250 mm i B = 250 mm (wymiar A = 350 mm). Takie wymiary zapewniają wystarczająco przestrzeni, żeby zmieścić odlew z układem wlewowym.

Wysokość skrzynki dla wybranych wymiarów jej pola mieści się w przedziale 50÷200 mm, co 25 mm. [5]

Żeby uzyskać odpowiednie ciśnienie metalostatyczne, wartość różnicy H_0 – P, musi być równa minimalnie 40 mm.^[4]

Najmniejsza wysokość skrzynki wynosi 50 mm, jednak ta wartość spełnia postawionego warunku (50–11,4 = 38,6 mm). Dlatego wybrano następną dostępną wysokość czyli 75 mm.

Stad:

$$h_{\pm r} = H_0 - \frac{P}{2C} = 7.5 - \frac{1.14}{2 \cdot 2.28} = 7.25 cm$$

6. Obliczanie przekroju wlewu doprowadzającego:

W celu uproszczenia obliczeń wprowadzono symbolikę przedstawioną na rysunku 6.

Rys. 5. Graficzny opis wymiarów skrzynki formierskiej. [3]

W pierwszej kolejności należy określić wartość sumy przekrojów wlewów doprowadzających^[3]:

$$F_{WD} = \frac{Q_c}{0.31 \cdot \mu \sqrt{h_{\$r}} \cdot \tau}$$

Qc - masa odlewu wraz z układem wlewowym i nadlewami w kg,

μ - ogólny współczynnik oporu formy,

h_{śr} – średnie ciśnienie metalostatyczne w cm,

staliwne

τ – optymalny czas zalewania w s.

Współczynnik oporu formy przyjmuje wartości wypisane w tabeli 2.

 Rodzaj odlewów
 Rodzaj formy
 Opór formy

 duży
 średni
 mały

 żeliwne
 wilgotna
 0,35
 0,42
 0,50

 suszona
 0,41
 0,48
 0,60

wilgotna

suszona

Tab. 5. Wartości współczynnika oporu formy.

Przyjęto $\mu = 0.42$.

$$F_{WD} = \frac{0,361}{0,31 \cdot 0,42\sqrt{7,25} \cdot 2,91} = 0,354 \ cm^2 = 35,4 \ mm^2$$

0,25

0,30

0,32

0,38

0,42

0,50

Znając wartość F_{WD} można określić pozostałe pola przekroju F_{WR} i F_{WG} . Zalecane proporcje dla żeliwa szarego to: F_{WG} : F_{WD} : F_{WD} : F_{WD} = 1: 1,2: 1,4.^[4]

$$F_{WR} = 1.2 \cdot F_{WD} = 1.2 \cdot 0.354 = 0.425 \, cm^2 = 42.5 \, mm^2$$

$$F_{WG} = 1.4 \cdot F_{WD} = 1.4 \cdot 0.354 = 0.496 \, cm^2 = 49.6 \, mm^2$$

7. Obliczenia objętości zbiornika wlewowego.

Ostatnim etapem obliczeń jest określenie objętości zbiornika wlewowego.

$$A = \frac{Q_c \cdot \tau_1 \cdot 1000}{\tau \cdot \rho}$$

,gdzie:

A – objętość zbiornika (lejka) wlewowego w cm3,

Q_c – masa surowego odlewu wraz z układem wlewowym i zasilającym w kg,

 τ_1 – czas rezerwy metalu w s,

τ – optymalny czas zalewania w s,

ρ – gęstość ciekłego metalu w g/cm3

Czas rezerwy metalu τ_1 jest wartością tabelaryczną i znajduje się w następujących przedziałach:

Tab. 6. Czas rezerwy metalu w zbiorniku wlewowym w zależności od masy odlewu. [4]

Masa metalu w formie Q _c [kg]	100	100 ÷ 500	500 ÷ 1000	1000 ÷ 5000	powyżej 5000
Rezerwa τ ₁ [s]	2 ÷ 3	3 ÷ 4	4 ÷ 6	5 ÷7	6 ÷ 8

Całkowita masa odlewu Q_c wynosi 361,15 g, dlatego dobrano wartość $\tau_1 = 3$ s.

$$A = \frac{Q_c \cdot \tau_1 \cdot 1000}{\tau \cdot \rho} = \frac{0.36 \cdot 3 \cdot 1000}{2.28 \cdot 7.2} = 65.8 \ cm^3$$

III. Źródła:

- [1] https://tiny.pl/w69tq (dostep 04.04.2023)
- [2] Materiały dostarczone w ramach prezentacji na pierwszych zajęciach z kursu.
- [3] https://pbc.gda.pl/Content/4427/pbc_skoblik.pdf (dostep 04.04.2023).
- [4] A. Jopkiewicz, Odlewnictwo laboratorium, praca zbiorowa Politechnika Łódzka, PDF.
- [5] https://home.agh.edu.pl/~ktfo/download/04-skrzynki formierskie.pdf (dostep 04.04.2023).
- [6] https://procestechnologiczny.com.pl/odlew-polfabrykat-projekt/ (dostęp 04.04.2023)