# **Telecommunication Networks 15B11EC611**



# Time Division Switching

Till now, we discussed time division switches where an inlet or outlet corresponded to a single subscriber line with one speech sample appearing every 125 µs on the line. Such switches are used in local exchanges.

- **❖** Time multiplexed switches **→** 
  - Switches required in transit exchanges.
  - Inlets and outlets are trunks which carry time division multiplexed data
- **Time multiplexed switches:** 
  - 1. Time multiplexed space switching
  - 2. Time multiplexed time switching



- Time multiplexed space switch has
  - N time-multiplexed trunks as inlets and outlets.
  - There are M time slots in a frame carrying PCM voice samples.
- Being a space switch, there is no time shift of voice samples.

- CM has MN locations, one for each time slot.
- A memory location is specified as (i, j).
- Location (i, j) corresponds to time slot i of outlet j.
- Location (i, j) contains address k which corresponds to inlet k.
- ✓ It implies that voice sample in *i th* time slot of inlet *k will be switched to i th time slot of outlet j.*







- > CM is read column-wise and from top to bottom.
- > If (1, 1) location in CM contains 2,
  - $\rightarrow$  2<sup>nd</sup> inlet is connected to outlet 1 and 8-bit data (x) of time slot 1 of inlet 2 is switched to outlet 1 at the output.

If t<sub>s</sub> is the switching time,

The number of trunks (N) that can be supported by the switch is

$$N = 125/(M t_s)$$
,  $M = time slots$ 

#### The Switch cost C can be estimated as

- > C = Number of switches + Number of memory words
- $\triangleright$  C = 2N + MN



#### **Example**

Calculate the number of trunks that can be supported on a time multiplexed space switch, given that

- a) 32 channels are multiplexed in each stream,
- b) Control memory access time is 100 ns,
- c) Bus switching and data transfer time is 100 ns per transfer.

#### Solution:

The total switching time  $t_s = 100 \text{ ns} + 100 \text{ ns} = 200 \text{ ns}$ 

 $N = 125/(32 \times 200 \times 10^{-3}) = 19.53 \approx 20$ 

- > Time multiplexed space switch does not provide full availability as it does not permit time-slot interchange (TSI).
- > i th time slot of input trunk can only be switched as i th time slot of any output trunk.



- Thus for any voice channel, there are only N possible time slots out of total MN time slots at the outlets.
- $\triangleright$  Rest MN-N = N(M-1) outlets cannot be reached.

- Time multiplex time switch is based on time slot interchange (TSI).
- Speech sample of a time slot is switched to different time slot.



- Time switching necessarily involves delay.
  - A time multiplexed frame must first be stored.
- Contents of its time slots can then be switched and transmitted.







#### **Example**

- At time slot instance 2
- 1. Content (13) of time slot 2 of input is written into DM at location 2.
- 2. Location 2 of CM is read simultaneously. It gives the DM address 7.
- 3. DM location 7 is read and its content (42) is sent as output in TS 2.

There two sequential memory accesses per time slot.

$$t_{TS} = 2t_{m}$$

$$125 = 2Mt_{m}$$

where  $t_m$  is memory access time in  $\mu$ s.

• Since there are no switching elements, switch cost C is based on memory locations.

**C = Data memory locations + Control memory locations** 

$$C = M + M = 2M$$





- ☐ Time switch has inherent delay of one time slot.
  - All the 8 bits of a time slot become available at the end of the time slot.
  - Then these 8 bits are written into DM.
- ☐ The voice channels may have delay ranging from 1 to M time slots.
  - Delay depends on output time slot to which an input time slot content is switched.



#### Example

- □ 2nd location of CM contains 7.
- □ 7th location of DM has data 42 that was written during previous frame during 7th time slot.
- □ Delay =  $[M-7+2+1]t_{TS}$ = (M-4) Time slots
  - > 2 is added as 42 is being read in 2nd timeslot of current frame.
  - > 1 is added as there is delay of one TS between input and output streams.

In general, Delay = M - Inlet + Outlet + 1

**Example:** For a TSI switch with 1 trunk and 24 slots, working in sequential write/random read mode. Find out the delay in getting sample at outlet for following connections:

**Solution:** 

Trunk, N = 1 Channel / Slots, M = 32

Time slot duration,  $t_{TS} = 125 \mu s/M =$ 

 $\rightarrow$  Inherent delay = 1  $t_{TS}$ 

$$\rightarrow$$
 For 2 - 7, Delay = [M - 2 + 7 + 1]  $t_{TS}$ 

$$\rightarrow$$
 For 3 - 4, Delay = [M - 3 + 4 + 1]  $t_{TS}$ 

$$\rightarrow$$
 For 1 - 1, Delay = 1  $t_{TS}$ 

# **Combination Switching**

- ☐ Time multiplexed time division space switch does not provide full availability as it cannot do time slot interchange.
- ☐ Time multiplexed time division Time switch cannot switch time slot data across different trunks.
- A combination of time and space switches can achieve both time switching (i.e. time slot interchange) & space switching (i.e. Sample switching across trunks).
- > A combination switch can be build using several stages of time and space switching.

```
2 stage switch: TS (Time-Space)
```

ST (Space-Time)

3 stage switch: TST (Time-Space-Time)

STS (Space-Time-Space)



- **❖** 1<sup>st</sup> Stage consists → 1 time slot interchanger per inlet
- $\diamond$  2<sup>nd</sup> Stage consists  $\rightarrow$  a N x N space switch
- ☐ Each time-multiplexed inlet/outlet carries M channels.

Notation for subscribers for input and output side

- $I_{47} \rightarrow A$  input subscriber assigned to line 4 (TSI-4) at time slot 7.
- $O_{56} \rightarrow$  A subscriber connected to the outlet 5 and time slot 6.
- $\diamond$  The respective time slots are identified as  $IS_{47}$  and  $OS_{56}$ .

Suppose  $I_{47}$  is to be connected to  $O_{56}$ .



- 1. Data of time slot  $IS_{47}$  is moved to  $IS_{46}$  by TSI-4.
- 2. Data of time slot  $IS_{46}$  of inlet 4 is moved to  $OS_{56}$  of outlet 5 by the space switch.
  - ✓ Note that time slot location remains same '6' in space switch.
- **\Leftrightarrow** Connection between  $I_{47}$  and  $O_{56}$  established.

Note that any inlet  $I_{xy}$  can be connected any outlet  $O_{mn}$ . Thus, 2-stage TS switch provides Full Availability.

- $\triangleright$  Consider that connection  $IS_{47} \rightarrow OS_{29}$  is already established.
  - Note that time slot location is '9' in outlet 2.



□ There is request for another connection  $IS_{43} \rightarrow OS_{69}$ .

Note that time slot location required is '9' in outlet 6, a different outlet.

- ✓ For the new connection, TSI-4 needs to switch data of time slot  $IS_{43}$  to time slot  $IS_{49}$ .
- As  $IS_{49}$  is already engaged for  $IS_{47}$ , the new connection request  $IS_{43} \rightarrow OS_{69}$  will be blocked by the switch.



- > This situation always occurs when two or more inlets of a time frame are to be connected to the same timeslot in different outlets.
- > 2-stage TS switch provides Full availability but it is Blocking switch.

- Space switch has N-inlets/outlets each carrying time-multiplexed M channels.
- > Each outlet of the space switch has TSI switch that interchanges the time-slot data.
- > Notation for inputs, outputs & time-slots is same as before.



- **Suppose**  $I_{47}$  is to be connected to  $O_{69}$ .
- 1. Data of time slot  $IS_{47}$  is switched from inlet 4 to outlet 6.
- 2. It is then switched to time slot 9 by TSI-6 and the connection is established.
- ✓ As in case of TS switch, this switch has Full Availability.



- $\triangleright$  Consider that connection  $IS_{75} \rightarrow OS_{96}$  is already established.
  - IS<sub>75</sub> is space switched as OS<sub>95</sub>.
  - $OS_{95}$  is time switched as  $OS_{96}$ .
- $\triangleright$  There is request for another connection  $IS_{85} \rightarrow OS_{92}$ .



- $\triangleright$  IS<sub>85</sub> is to be space switched as OS<sub>95</sub>.
- $\triangleright$  But  $OS_{95}$  is already engaged by the connection  $IS_{75} \rightarrow OS_{96}$ .
- $\triangleright$  The new connection request  $IS_{85} \rightarrow OS_{92}$  is blocked.



✓ ST switch has Full Availability but it is a Blocking switch.

**Three-Stage Combination Switching** 

#### **Three-Stage Combination Switching**

❖ 3-stage time and space combination switches are more flexible than 2-stage



- 3-stage combination switch architecture has the two configurations:
  - Time-Space-Time (TST) switch.
  - Space-Time-Space (STS) switch.
- The middle switch introduces the flexibility of switching a incoming channel to
  - a free intermediate time slot (in case of TST)
  - A free intermediate outlet (in case of STS).
- Subsequently, the intermediate time slot/outlet is switched to the desired time slot/outlet.

#### Time-Space-Time (TST) switch

- $\bullet$  Let us say there is request for connection  $I_{47} \rightarrow O_{29}$ 
  - ITSI-4 switches the data of  $IS_{47}$  to a free intermediate time slot  $IS_{48}$  that has path through the space switch to outlet 2.
  - Space switch switches time slot ( $IS_{48}$ ) data to outlet 2 ( $OS_{28}$ ).
  - OTSI-2 switches the data of  $OS_{28}$  to the desired location  $OS_{29}$ .



- Let us say there is working connection  $I_{47} \rightarrow O_{29}$ . There is request for another connection  $I_{43} \rightarrow O_{69}$ .
- 2-stage TS switch will block this call because intermediate time slot IS<sub>49</sub> would be engaged by the first call.
  - 1.  $IS_{47} \rightarrow IS_{49} \rightarrow OS_{29}$
  - 2.  $IS_{43} \rightarrow IS_{49} \rightarrow OS_{69}$
- 3-stage TST does not block this call as there are alternative intermediate time slots.

## Time-Space-Time (TST) switch



$$*$$
  $IS_{47} \rightarrow IS_{48} \rightarrow OS_{28} \rightarrow OS_{29}$ 

$$\star IS_{43} \rightarrow IS_{41} \rightarrow OS_{61} \rightarrow OS_{69}$$

✓ So long as alternative free intermediate time slot that has path through the space switch is available, the next call will not be blocked.

#### Blocking in (TST) switch

#### For some specific situation, TST switch can be blocking.

- **Consider** a situation:
  - (M-1) slots in an inlet  $I_i$  are all busy.
  - Let traffic arrive in the *M-th* slot destined to a time slot outlet  $O_k$ .
  - It is possible that during the time slot M, the outlet  $m{O}_k$  is busy receiving some other output.
  - As a result, blocking occurs.
- ☐ If this happens, we need one more additional slot to establish a connection.
- **\clubsuit** This means that we need a total of 2M-1 time slots in the intermediate space stage.

## Blocking in (TST) switch

- In a functional sense, a TST switch is identical to a 3-stage space division network.
- > An equivalent Lee's graph of TST switch is shown.
  - M1 number of time slots of a frame in the middle stage.
- Recall that for blocking space switch blocking probability is

$$P_B = [1 - (1 - \alpha/k)^2]^s$$

- For non-blocking space switch, s = 2p 1
  - p is number of inlets in input module.



#### IN SIMILAR FASION

> The expression for the blocking probability of a TST switch is given by

$$P_{\rm B} = (1 - (1 - \alpha/L)^2)^{\rm M}_{1}$$

Where  $M_1$  = number of time slots on the output side of the TSI switch L = expansion or concentration factor =  $M_1/M$   $\alpha$  = traffic intensity on an inlet

✓ Non blocking TST switch has frame size of  $M_1$ = 2M-1 for the middle stage.

**Example:** A TST switch supports 32 trunks of 32 channels each. A time expansion/concentration factor of 2 and a single stage space switch are used. What is the blocking probability of the switch if the channel loading is 0.9E per channel?

#### **Solution:**

> the blocking probability of a TST switch is given by

$$P_{\rm B} = (1 - (1 - \alpha/L)^2)^{\rm M}_{1}$$

Where  $M_1$  = number of time slots on the output side of the TSI switch L = expansion or concentration factor =  $M_1/M$   $\alpha$  = traffic intensity on an inlet

Given, 
$$\alpha = 0.9 \text{ E}$$
  
 $M = 32$   
 $L = 2 = M_1 / M \rightarrow M1 = 2*32 = 64$   
 $P_B = (1 - (1 - \alpha/L)^2)^{M_1}$   
 $P_B = (1 - (1 - 0.9/2)^2)^{64}$   
 $P_R = 9.7 \times 10^{-11}$ 

## Space-Time-Space (STS) switch



- > A Space-Time-Space (STS) switch consists of-
  - An  $N \times k$  space matrix at the input
  - k TSI switches in middle
  - A  $k \times N$  space matrix at the output

## Space-Time-Space (STS) switch

For example, consider a connection  $I_{79} \rightarrow O_{84}$ 



- > Space switch (A) switches data (x) of  $IS_{79}$  from 7th inlet to  $3^{rd}$  outlet. Time slot location within frame remains same (9).
- Time switch TSI-3 switches data (x) from time slot 9 to time slot 4.
- > Space switch (B) switches data (x) from its 3rd inlet to its 8th outlet. Time slot location within frame remains same (4).

# Blocking in STS Switch

- For some specific situation, STS switch can be blocking.
- Blocking can be overcome by having expansion / compression (concentration) space switches.

✓ Blocking probability

$$P_B = [1 - (1 - \alpha / L)^2]^k$$

where expansion factor L = k/N

✓ It can reasoned out that the STS switch is non-blocking when  $k \ge (2N - 1)$ .

# **Cost Analysis**

Cost of STS switch



Cost of a N × k space-switch with MN memory locations

$$C_s = Nk + MN$$

Cost of 2 space-switches

$$2C_s = 2Nk + 2MN$$

 Cost of k time-switches is determined by memory required for MN data elements and MN addresses.

$$C_T = 2MN$$

Cost of STS switch

$$C_{STS} = 2Nk + 4MN$$

# **Cost Analysis**

#### Cost of TST switch



- Cost of N × N space-switch with MN memory locations
  - $C_s = N*N + MN$
- Cost of 2N time-switches
  - $2CT = 2N \times 2M = 4MN$
- > Cost of TST switch
  - $C_{TST} = N^2 + 5MN$

# **Cost Analysis**

- ☐ For concentrating switches,
  - $TST \rightarrow M_1 < M$
  - STS  $\rightarrow$  k < N
  - o For M = k = N/2, we have

$$C_{STS} = 3N^2$$
,  $C_{TST} = 3.5N^2$ 

○ For symmetric switches, M = k = N

$$C_{STS} = 6N^2, \qquad C_{TST} = 6N^2$$

- ☐ For expanding switches,
  - $TST \rightarrow M_1 > M$
  - STS  $\rightarrow$  k > N,
  - $M_1 = k = 2N$

$$C_{STS} = 12N^2$$
,  $C_{TST} = 11N^2$ 

**Example:** A STS switch support 16 trunks and 16 channels each, and expansion factor of 2 is used. Calculate the blocking probability if the channel traffic intensity is 60 %. Also calculate the cost of switch.

#### Solution:

**Blocking probability** 

$$P_B = [1 - (1 - \alpha / L)^2]^k$$

where expansion factor L = k/N

Given, N = 16 trunks  

$$\alpha = 60 \% = 0.6$$
  
 $L = 2 = k/N \implies k = L*N = 2* 16 = 32$ 

$$P_B = [1 - (1 - 0.6 /2)^2]^{32}$$
  
 $P_B = 4.387 \times 10^{-10}$ 

Cost of STS switch, CSTS = 
$$12*N^2$$
  
CSTS =  $12*16^2$   
CSTS =  $3072$ 

#### TST vs STS Switch

- ✓ TST switches have distinct advantages
  - TST switch is more cost effective than STS switch because time expansion is less costly than space expansion.
  - TST switch can handle larger volume of traffic.
- ✓ STS architecture is used for smaller switches.

# THANK YOU