

Influence of Loss Functions on the Latent Representation of Speech Emotions

Sneha Das (sned@dtu.dk)

- $^{
 m 1}$ Department of Applied Mathematics and Computer Science, Technical University of Denmark
- ²Child and Adolescent Mental Health Center, Copenhagen University Hospital, Capital Region
- ³Faculty of Health, Department of Clinical Medicine, Copenhagen University

DTU Compute

Department of Applied Mathematics and Computer Science

Motivation

- Speech emotion recognition (SER): inferring emotional state from speech signals.
- Emotion recognition employed in healthcare, education sector, criminal justice system.
- SER: signal processing, machine learning, deep learning.

DTU

WristAngel: Intervention and Research for OCD Treatment

Figure: Obsessions and compulsions behave cyclically. Original image from https://medium.com/amalgam/ocd-is-not-what-you-think-it-is-ee818028e79c

- Mental disorder wherein "People are caught in a cycle of obsession and compulsions".
- ullet Obsessions ullet intrusive and disruptive urges, thoughts, images, etc.
- ullet Compulsions o behavior to overcome obsessions, distress.
- In 2010, anxiety disorders including obsessive-compulsive disorders -alone cost Europe over €74 billion (Gustavsson et al., 2011).

Role of Audio (Speech) in OCD Treatment

Speech signals and OCD

- Challenges:
 - ullet Danish and child speech o Generalizing existing models unlikely.
 - ullet Low resource conditions: few labels, not a lot of data (compared to input dimensions) o Training new models from scratch unlikely.
- ullet Transferable models o Trained on open datasets and apply to Danish-speech from children.

Semi-supervision methods

- Semi-supervision through loss function:
 - $\mathbf{1}$ Cluster-loss \rightarrow Learning emotion classes
 - **2** Continuous metric-loss \rightarrow Learning dimensional model of emotions \rightarrow Activation, valence.

Semi-supervision with cluster-loss

Objectives and Contributions

Objectives for transferability:

- 1 Latent embedding with discrimination between emotion classes.
- 2 Latent distribution that are consistent over corpora.

Loss functions:

- 1 Low-complexity DAE and VAE.
- 2 VAE with KL-loss annealing: balancing KL-loss and reconstruction loss.
- **3** VAE with semi-supervision incorporating clustering in latent space.

• DAE:

$$\arg\min_{f_{\theta},g_{\phi}} \quad \mathcal{L}_{\text{rec}} = \mathbb{E} \|\mathbf{x} - g_{\phi}(f_{\theta}(\mathbf{x_n}))\|_2^2, \quad (1)$$

• VAE:

$$\begin{split} \arg\min_{\theta,\phi} \quad \mathcal{L}_{\text{rec}} + \mathcal{L}_{\text{KL}} &= -\mathbb{E}_{\mathbf{z} \sim q_{\theta}(\mathbf{z}|\mathbf{x})} \log p_{\phi}(\mathbf{x}|\mathbf{z}) \\ &+ D_{KL}(q_{\theta}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})), \end{split} \tag{2}$$

VAE with KL-annealing:

$$\underset{\theta,\phi}{\arg\min} \quad \mathcal{L}_{\text{rec}} + \mathcal{L}_{\text{KL}} = -\mathbb{E}_{\mathbf{z} \sim q_{\theta}(\mathbf{z}|\mathbf{x})} \log p_{\phi}(\mathbf{x}|\mathbf{z}) + \beta_e D_{KL}(q_{\theta}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})),$$
(3)

where the standard formulation of β_e :

$$\beta_e = \begin{cases} f(\tau) = \frac{0.25}{R}\tau, & \tau \leq R \\ 0.25, & \tau > R \quad \text{where} \quad \tau = \frac{\text{mod}(e-1,\frac{T}{M})}{\frac{T}{M}}, \end{cases}$$

• VAE with semi-supervision:

$$\arg \min_{\theta, \phi} \quad \mathcal{L}_{\text{rec}} + \beta_e \mathcal{L}_{\text{KL}} + \gamma \mathcal{L}_{\text{clus}},$$

$$\mathcal{L}_{\text{clus}} = \frac{D_{\text{intra}}}{D_{\text{inter}}} = \frac{\sum_{k=1}^{K} \sum_{\forall i \in k} D(\mathbf{z_i}, \overline{\mathbf{z}^k})}{\sum_{k=1}^{K-1} \sum_{j=k+1}^{K} D(\overline{\mathbf{z}^k}, \overline{\mathbf{z}^j})},$$
(5)

Architecture

Figure: Illustration of the architecture employed for all the models explored in this work.

- Training: 50 epochs, batch size 64, Adam optimizer (learning rate: 1e-3).
- Latent embedding used as input features to a linear SVC.

Evaluation

- Datasets: IEMOCAP, SAVEE, Emo-DB, CaFE, URDU, AESD
- Input features: eGeMAPS using OpenSmile
- ullet Preprocessing: remove outliers using z-score normalization (-10>z>10)
- 5-fold cross validation

Results: Classification performance

Figure: (1) Balanced accuracy on unseen transfer data sets using (a) 4 emotion classes, (b) 3 emotion classes; balanced accuracy with access to 20% of the unlabeled transfer data sets with (c) 4 emotions and (d) 3 emotion classes.

Results: Consistency of latent space

Figure: Scatter plots depicting the overlap between the latent embedding obtained from the methods investigated for all the transfer data sets.

Results: Consistency of latent space

Semi-supervision with continuous metric-loss

Motivation: Dimensional model of emotions!

- Goal: Semi-supervised DAE-to shape the latent space with emotion-relevant information.
- Challenges: Labels, Continuous metric learning functions?
- Discussion: Method for continuous metric learning to order samples in latent space.

$\textbf{Audio-features} \rightarrow \textbf{Feature-embedding} \rightarrow \textbf{Emotion-recognition}$

DAE:

$$\arg\min_{f_{\theta},g_{\phi}} \quad \mathcal{L}_{\text{rec}} = \mathbb{E} \|\mathbf{x} - g_{\phi}(f_{\theta}(\mathbf{x_n}))\|_2^2, \tag{6}$$

DAE with metric-loss

$$\arg\min_{f_{\theta},g_{\phi}} \quad \mathcal{L}_{\text{rec}} + \mathcal{L}_{\text{met}} = \mathcal{L}_{\text{rec}} + \mathcal{L}_{\text{res}} + \mathcal{L}_{\text{sl}}, \tag{7}$$

$$\mathcal{L}_{\mathsf{res}} = \mathbb{E} \|\mathbf{z}_{\mathbf{d}} - \hat{\mathbf{z}}_{\mathbf{d}}\|_{2}^{2}, \quad \hat{\mathbf{z}}_{\mathbf{d}} = p\mathbf{l}_{\mathbf{d}}, \quad \mathbf{l}_{\mathbf{d}} = d(l_{i}, l_{i+1})$$
(8)

$$p = (\mathbf{l_d}^T \mathbf{l_d})^{-1} \mathbf{l_d}^T \mathbf{z_d}$$
(9)

$$\mathcal{L}_{\mathsf{sl}} = \left\| \frac{\hat{\mathbf{z}}_{\mathsf{d}}(a_1) - \hat{\mathbf{z}}_{\mathsf{d}}(a_2)}{\mathbf{l}_{\mathsf{d}}(a_1) - \mathbf{l}_{\mathsf{d}}(a_2)} - 1 \right\|_{2},\tag{10}$$

Method	R^2 -Act $(\mu \pm \sigma)$	R^2 -Val $(\mu \pm \sigma)$
Unsupervised	$0.11 {\pm} 0.06$	0.03±0.02
Metric-act	0.21 ± 0.05	$\boldsymbol{0.06 \pm 0.02}$
Metric-val	$0.12 \!\pm 0.05$	0.05 ± 0.02

Table: Adjusted squared correlation coefficient presenting the linear dependence of $\mathbf{z_d}$ on $\mathbf{l_d}$ for the three models. Mean and standard deviation over five folds are presented.

Evaluation

- Datasets: IEMOCAP (Training), SAVEE, Emo-DB, CaFE, URDU, AESD (Transfer)
- Input features: eGeMAPS using OpenSmile
- ullet Preprocessing: remove outliers using z-score normalization (-10>z>10)
- 5-fold cross validation

Reference methods

- DAE unsupervised: Correlation and classification
- Supervised SVC: Classification
- SUPERB model: Classification
- Semi-supervision with the transfer dataset labels: Correlation

Method (DAE)	IEMOCAP		EMO-DB		CA	.FE	UR	DU	AESD	
	\mathbb{R}^2 -Act	$\mathbb{R}^2 ext{-Val}$	\mathbb{R}^2 -Act	\mathbb{R}^2 -Val	\mathbb{R}^2 -Act	\mathbb{R}^2 -Val	\mathbb{R}^2 -Act	$\mathbb{R}^2 ext{-Val}$	\mathbb{R}^2 -Act	\mathbb{R}^2 -Val
Metric-act (supervised)	NA	NA	0.38 ± 0.05	0.16 ± 0.04	0.62 ± 0.01	0.16 ± 0.01	0.34 ± 0.05	0.15 ± 0.04	0.44 ± 0.03	0.18 ± 0.01
Metric-val (supervised)	NA	NA	0.45 ± 0.03	0.21 ± 0.03	0.44 ± 0.05	0.29 ± 0.06	0.32 ± 0.06	0.16 ± 0.04	0.4 ± 0.06	0.17 ± 0.03
DAE-Unsupervised	0.41 ± 0.04	0.06 ± 0.02	0.63 ± 0.04	0.05 ± 0.04	0.41 ± 0.03	0.14 ± 0.02	0.28 ± 0.05	0.14 ± 0.03	0.3 ± 0.01	$-0.0 \pm 0.0^*$
DAE-Metric-act	0.49 ± 0.02	0.05 ± 0.01	$\boldsymbol{0.63 \pm 0.04}$	0.04 ± 0.02	0.46 ± 0.02	0.13 ± 0.03	0.32 ± 0.06	0.13 ± 0.02	$\boldsymbol{0.31 \pm 0.05}$	$-0.0 \pm 0.0^*$
DAE-Metric-val	0.39 ± 0.03	0.11 ± 0.01	0.61 ± 0.03	$\boldsymbol{0.1 \pm 0.04}$	0.43 ± 0.02	$\boldsymbol{0.15 \pm 0.01}$	$\boldsymbol{0.38 \pm 0.01}$	$\boldsymbol{0.17 \pm 0.03}$	0.27 ± 0.03	$0.01 \pm 0.01^*$

Table: Adjusted squared correlation coefficient presenting the linear dependence of l on z, the activation and valence labels for the three models. Mean and standard deviation over five folds are presented.

Method	IEMOCAP $(\mu \pm \sigma)$		EMO-DB $(\mu \pm \sigma)$		SAVEE $(\mu \pm \sigma)$		CAFE $(\mu \pm \sigma)$		URDU $(\mu \pm \sigma)$		AESD $(\mu \pm \sigma)$	
	N-S-A	N-S-H-A	N-S-A	N-S-H-A	N-S-A	N-S-H-A	N-S-A	N-S-H-A	N-S-A	N-S-H-A	S-A	S-H-A
SVC (supervised)	0.65 ± 0.02	0.65 ± 0.02	0.89 ± 0.03	0.68 ± 0.03	0.74 ± 0.03	0.68 ± 0.05	0.66 ± 0.03	0.51 ± 0.03	0.89 ± 0.03	0.82 ± 0.02	0.94 ± 0.03	0.7 ± 0.06
SUPERB (> 3×10^8)	0.79	0.79	0.57	0.66	0.7	0.68	0.39	0.51	0.26	0.39	0.34	0.53
DAE-Unsupervised†	0.51 ± 0.02	0.51 ± 0.02	0.72 ± 0.06	0.56 ± 0.05	0.59 ± 0.02	0.49 ± 0.02	0.43 ± 0.0	0.32 ± 0.01	0.51 ± 0.05	0.38 ± 0.03	0.4 ± 0.05	0.22 ± 0.03
DAE-Metric-act [‡]	0.54 ± 0.02	0.54 ± 0.01	0.74 ± 0.04	0.57 ± 0.04	0.58 ± 0.02	0.46 ± 0.03	$\boldsymbol{0.46 \pm 0.04}$	0.33 ± 0.02	0.55 ± 0.01	0.41 ± 0.03	$\boldsymbol{0.44 \pm 0.02}$	0.27 ± 0.02
DAE-Metric-val [‡]	0.54 ± 0.01	0.54 ± 0.02	$\boldsymbol{0.78 \pm 0.03}$	0.61 ± 0.03	0.61 ± 0.05	0.49 ± 0.02	0.45 ± 0.01	0.34 ± 0.02	0.6 ± 0.02	$\boldsymbol{0.43 \pm 0.02}$	0.42 ± 0.02	0.25 ± 0.02
$(< 4 \times 10^2 \text{ parameters})$												

Table: Balanced classification accuracy for (a) three emotion classes (neutral, sad, anger) and (b) four emotion classes (neutral, sad, happy, anger) presented using mean and standard deviation ($\mu \pm \sigma$) computed over 5-fold cross validation. † and ‡ represents the baseline and proposed methods, respectively. Complexity of SUPERB and proposed models are presented in parentheses.

Scatter-plots of VAE latent space

Method	IEMOCAP $(\mu \pm \sigma)$		EMO-DB $(\mu \pm \sigma)$		CAFE	$(\mu \pm \sigma)$	URDU	$(\mu \pm \sigma)$	AESD $(\mu \pm \sigma)$	
	Transfer	Supervised	Transfer	Supervised	Transfer	Supervised	Transfer	Supervised	Transfer	Supervised
Unsupervised	0.26 ± 0.17	0.26 ± 0.17	0.31 ± 0.22	0.31 ± 0.22	0.24 ± 0.14	0.24 ± 0.14	0.12 ± 0.1	0.1 ± 0.07	0.18 ± 0.11	0.16 ± 0.09
Metric-cluster	0.19 ± 0.14	0.19 ± 0.14	0.23 ± 0.16	0.28 ± 0.19	0.12 ± 0.08	0.07 ± 0.04	0.07 ± 0.06	0.09 ± 0.07	0.12 ± 0.06	0.11 ± 0.05
Metric-act	0.76 ± 0.05	0.76 ± 0.05	0.53 ± 0.08	0.61 ± 0.04	0.35 ± 0.04	0.39 ± 0.03	0.38 ± 0.05	0.39 ± 0.05	0.31 ± 0.01	0.31 ± 0.01
Metric-val	0.29 ± 0.11	0.29 ± 0.11	-0.05 ± 0.03	0.27 ± 0.24	0.31 ± 0.09	0.32 ± 0.1	0.03 ± 0.08	0.07 ± 0.1	0.01 ± 0.05	0.14 ± 0.1

Table: Spearman's rank order correlation for VAEs with different losses.

Conclusions

Cluster-loss:

- 1 DAE: highest classification accuracy, worst distribution consistency.
- 2 VAE-vanilla: best consistency, classification accuracy random.

Continuous-metric loss:

- 1 Proposed metric loss works (Activation as self-supervision)
- **2** Our formulation seems to be able to model activation in the latent space \rightarrow different approach necessary for valence.
- 3 Continuous metric loss seems better model emotion representations over language (correlation).

References

- 1 Towards Transferable Speech Emotion Representation: On loss functions for cross-lingual latent representations. ICASSP, May 2022
 Sneha Das, Nicole Nadine Lønfeldt, Anne Katrine Pagsberg, Line H. Clemmensen
- 2 Continuous Metric Learning For Transferable Speech Emotions Recognition and Embedding Across Low-resource Languages. NLDL, Jan 2022 Sneha Das, Nicklas Leander Lund, Nicole Nadine Lønfeldt, Anne Katrine Pagsberg, and Line H. Clemmensen

Thankyou!