END TERM EXAMINATION

SECOND SEMESTER [B.TECH] JULY 2023

Paper Code: BS-106 Subject: Applied Physics-II Time: 3 Hours Maximum Marks: 75 Note: Attempt five questions in all including Q.No.1 which is compulsory. Select one question from each unit. Assume missing data, if any. Q1 Answer the following questions:-(3x5=15)(a) An eigen function of an operator $\frac{d^2}{dx^2}$, is $\Psi = e^{ax}$. Find the corresponding Eigen (b) Show that Wien's law is a special case of Planck's radiation law. (c) Lattice constant of a cubic lattice is 'a'. Calculate spacing between (011), (101), (112), (111) and (100) planes. (d) Explain why semiconductor acts as insulator at 0K? (e) The wave function of a particle is $\Psi = A\cos^2 x$ for interval $-\pi/2$. Find the value of A. UNIT-I Q2 (a) What do you mean by particle in a box? Show that the energy of an electron in the box varied as the square of the natural numbers. (b) Prove quantum mechanically that particle will not exist in a box if its energy is zero. (3) (c) Differentiate between Ψ and $|\Psi^2|$ (2)Q3 (a) Distinguish between phase and group velocity. Show that the de-Broglie wave group associated with moving particle travels with same velocity as the particle. (3+7=10)(b) What is the physical significance of wave function? (c) The particle trapped in one dimensional box of length L is described by a wave function Ψ = x. Normalise the wave function between a and b. (2)UNIT-II Q4 (a) State Planck's formula for Black body radiation and derive it from BE statistics. (8) (b) If the Sun has a surface temperature of 5700K, what is the wavelength of maximum intensity of solar radiation? (4)(c) Define Stefan's law. (3) Q5 (a) An electron gas obeys the Maxwell-Boltzman statistics. Calculate average thermal energy (in eV) of an electron in the system at 300 K. (4)(b) Distinguish between a Boson and Fermions. (3)(c) What is the relative population of the first two single particle energy levels of a system of distinguishable particles if the energies of the levels is $\epsilon_0 = 0$ and $\epsilon_1 = kT$? (4)(d) Discuss the Fermi-Direct distribution with the help of the distribution function; explain the concept of Fermi level and Fermi energy. (4)

UNIT-III

Q6	(b) St	tate Bragg's law? How is it applied? rite short notes on:	3) 3) 9)
		i. Point defects ii. Frenkel defects iii. Schottky defects	
Q7	(a)	Define the following:- (i) Unit Cell (ii) Space Lattice (iii) Coordiante number (iv) Miller indices	B)
	(b)	Deduce Miller indices for the plane having intercepts a, b and c at -	
	(c)	X- rays of wavelength 2 x10-11 m suffer first order reflection from (11 crystal plane at an angle of 450. What is the inter atomic spacing of the	_
		UNIT-IV	
Q8	(a) (b)	Explain Kronig-Penney model for the motion of electron in a period	4) lic 7)
	(c)	Differentiate conductor, insulator and semiconductor using energy-bar	-
Q9	(a)	Show that the Fermi energy lies midway between the conduction bar and valence band for intrinsic semiconductor.	ıd i)
	(b)	Write short notes on:- (i) Zener diode (ii) PN junction diode (iii) Photodiode	

https://www.ggsipuonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें,

Paytm or Google Pay सं
