What is claimed is:

1. A process for the production of an optically active amino alcohol represented by the following formula (I)

(wherein, R², R³, R⁴, R⁵, A¹, A², m, n and * have the same meanings which will be defined below where the relative configuration of hydroxyl group to amino group on each of asymmetric carbons marked * is trans) or a salt thereof, comprising by reacting an optically active hydroxycarboxylate represented by the following formula (IV)

(wherein, R^1 is an alkyl group having 1 to 6 carbon(s); R^2 to R^5 each independently is hydrogen atom, a lower alkyl group or an optionally-substituted phenyl group; with proviso that R^2 and R^4 or R^2 and R^5 or R^3 and R^4 or R^3 and R^5 taken together with the carbon atoms to which they are attached optionally form a ring or fused ring; A^1 is $-(CH_2)_m$ — while A^2 is $-(CH_2)_n$ — (where m and n each is an integer of 0 to 3 and m + n is 1 to 3); and * is an asymmetric carbon atom where the relative

configuration of hydroxyl group to alkoxycarbonyl group on each of the asymmetric carbons marked * is trans) with hydrazine to prepare an optically-active hydroxycarboxylic hydrazide compound represented by the following formula (III)

(wherein, R^2 to R^5 , A^1 , A^2 , m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to hydrazinocarbonyl group on each of asymmetric carbons marked * is trans), then conducting a Curtius reaction in the presence of an alcohol represented by the following formula (VI)

$$R^6OH$$
 (VI)

(wherein, R^6 is an alkyl group having 1 to 6 carbon(s) or an optionally-substituted benzyl group) to give an optically active alkoxycarbonylamino alcohol represented by the following formula (II)

(wherein, R^2 to R^6 , A^1 , A^2 , m, n and * have the same meanings as defined above where the relative configuration of hydroxyl

group to alkoxycarbonylamino group on each of asymmetric carbons marked * is trans) and then deprotecting a protective group for the amino group.

2. A process for the production of an optically active alkoxycarbonylamino alcohol represented by the following formula (II)

(wherein, R^2 to R^6 , A^1 , A^2 , m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to alkoxycarbonylamino group on each of asymmetric carbons marked * is trans), comprising by reacting an optically active hydroxycarboxylate represented by the following formula (IV)

(wherein, R¹ to R⁵, A¹, A², m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to alkoxycarbonyl group on each of the asymmetric carbons marked * is trans) with hydrazine to prepare an optically-active hydroxycarboxylic hydrazide compound represented by the

following formula (III)

(wherein, R^2 to R^5 , A^1 , A^2 , m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to hydrazinocarbonyl group on each of asymmetric carbons marked * is trans) and conducting to a Curtius reaction in the presence of an alcohol represented by the following formula (VI)

$$R^6OH$$
 (VI)

(wherein, R⁶ has the same meaning as defined already).

3. The process for the production according to claim 1 or 2, wherein the optically active hydroxycarboxylate represented by the following formula (IV)

(wherein, R^1 to R^5 , A^1 , A^2 , m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to alkoxycarbonyl group on each of the asymmetric carbons marked * is trans) is a product prepared by subjecting a β -keto

ester represented by the following formula (V)

(wherein, R^1 to R^5 , A^1 , A^2 , m and n have the same meanings as defined above) to an asymmetric hydrogenation in the presence of a ruthenium complex including an optically active phosphine compound as a ligand.

- 4. The process for the production according to any one of claims 1 to 3, wherein ${\bf R}^6$ is an optionally substituted benzyl group.
- 5. The process for the production according to any one of claims 1 to 4, wherein R^6 is benzyl group.