第四章 矩阵分析

4.3 矩阵级数

在数学分析中,我们以数列极限来讨论级数理论,现在我们以矩阵序列理论为基础来引入矩阵级数. 在4.1节中我们知道:

$$\lim_{\mathbf{k}\to\infty}A_k=A_0 \Leftrightarrow \lim_{\mathbf{k}\to\infty}a_{ij}^{(k)}=a_{ij}^{(0)}\,,$$

$$\forall 1\leq j\leq n, 1\leq i\leq m$$

定义1: 设 $\{A_k\}$, $A_k \in \mathbb{C}^{m \times n}$, 称 $\sum_{k=1}^{\infty} A_k$ 为矩阵级数.

 $\diamondsuit S_N = \sum_{k=1}^N A_k$,若矩阵序列 $\{S_N\}$ 收敛且有极限

S, 即 $\lim_{N\to\infty} S_N = S$, 则级数 $\sum_{k=1}^{\infty} A_k$ 收敛且有和S, 记

为
$$S = \sum_{k=1}^{\infty} A_k = \lim_{N \to \infty} \sum_{k=1}^{N} A_k$$

注: 不收敛的级数我们称为发散级数.

注:由定义知,

 $\sum_{k=1}^{\infty} A_k$ 收敛 $\Leftrightarrow mn$ 个数值级数 $\sum_{k=1}^{\infty} a_{ij}^{(k)}$ 收敛 而 $\sum_{k=1}^{\infty} A_k$ 发散 $\Leftrightarrow mn$ 个数值级数中至少有一个发散

定义2: 若 $\sum_{k=1}^{\infty} A_k$ 所对应的

mn个数值级数 $\sum_{k=1}^{\infty} a_{ij}^{(k)} (1 \le i \le m, 1 \le j \le n)$ 都绝对收敛,则称 $\sum_{k=1}^{\infty} A_k$ 绝对收敛

显然有以下性质:

- 1) $\sum_{k=1}^{\infty} A_k$ 绝对收敛 $\Rightarrow \sum_{k=1}^{\infty} A_k$ 收敛
- 2) $\sum_{k=1}^{\infty} A_k$ **绝对收敛** \Leftrightarrow 对任一(向量)范数||·||, $\sum_{k=1}^{\infty} ||A_k||$ 收敛

2) $\sum_{k=1}^{\infty} A_k$ **绝对收敛** \Leftrightarrow 对任一(向量)范数||·||, $\sum_{k=1}^{\infty} ||A_k||$ 收敛

证明: (2)充分性" ← "

设
$$\sum_{k=1}^{\infty} \|A_k\|_1$$
 收敛,此处 $\|A_k\|_1 = \sum_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \left|a_{ij}^{(k)}\right|$,而

$$\left|a_{ij}^{(k)}\right| < \|A_k\|_1$$
, 由比较原理知,

$$\sum_{k=1}^{\infty} |a_{ij}^{(k)}| (1 \le i \le m, 1 \le j \le n)$$
 收敛,

即 $\sum_{k=1}^{\infty} A_k$ 绝对收敛.

2) $\sum_{k=1}^{\infty} A_k$ **绝对收敛** \Leftrightarrow 对任一(向量)范数||·||, $\sum_{k=1}^{\infty} ||A_k||$ 收敛

证明: (2)必要性"⇒"

由条件 $\sum_{k=1}^{\infty} \left| a_{ij}^{(k)} \right| (1 \le i \le m, 1 \le j \le n)$ 收敛,

$$\sum_{k=1}^{\infty} \left(\sum_{1 \le i \le m \atop 1 \le j \le n} |a_{ij}^{(k)}| \right)$$
收敛, 即 $\sum_{k=1}^{\infty} ||A_k||_1$ 收敛. 而

任一范数(矩阵的向量范数)是等价的, 所以由比较原理知, 结论成立.

性质 3) 对于任取常矩阵 $P, Q, P \in \mathbb{C}^{p \times m}, Q \in \mathbb{C}^{n \times q}$. 若 $\sum_{k=1}^{\infty} A_k$ 收敛(绝对收敛),则矩阵级数 $\sum_{k=1}^{\infty} PA_k Q$ 收敛(绝对收敛).

证明:
$$\sum_{k=1}^{\infty} PA_k Q = \lim_{N \to \infty} \sum_{k=1}^{N} PA_k Q =$$

$$\lim_{N \to \infty} P(\sum_{k=1}^{N} A_k) Q = P(\lim_{N \to \infty} \sum_{k=1}^{N} A_k) Q =$$

$$P(\sum_{k=1}^{\infty} A_k) Q \text{ (若} \sum_{k=1}^{\infty} A_k \text{ 收敛)}$$

若 $\sum_{k=1}^{\infty} A_k$ 绝对收敛,由性质2知, $\sum_{k=1}^{\infty} \|A_k\|$ 收敛.
而 $\|PA_kQ\| \le \|P\|\|A_k\|\|Q\| = k\|A_k\|$ (取相容的矩阵范数即可).则由比较原理知 $\sum_{k=1}^{\infty} \|PA_kQ\|$ 收敛.
再由性质2, $\sum_{k=1}^{\infty} PA_kQ$ 绝对收敛.

定义3: (幂级数)

设 $A \in \mathbb{C}^{n \times n}$, 称 $\sum_{m=0}^{\infty} c_m A^m$ 为幂级数.

定理1: 设复变量幂级数 $\sum_{m=0}^{\infty} c_m z^m$ 的收敛半径为R,

 $A \in \mathbb{C}^{n \times n}$, 谱半径为 $\rho(A)$, 则

- 1) 当 $\rho(A) < R$ 时, $\sum_{m=0}^{\infty} c_m A^m$ 绝对收敛.(Abel 型定理)
- 2) 当 $\rho(A) > R$ 时, $\sum_{m=0}^{\infty} c_m A^m$ 发散

推论: $\sum_{m=0}^{\infty} A^m$ 收敛 $\Leftrightarrow \rho(A) < 1$ (Neumann), 此时和为 $(I - A)^{-1}$

1) 当 $\rho(A) < R$ 时, $\sum_{m=0}^{\infty} c_m A^m$ 绝对收敛.(Abel 定理) 证明 1): 因为 $\rho(A) < R$, $\exists \varepsilon > 0$,使 $\rho(A) + \varepsilon < R$. 由Able定理知 $\sum_{m=0}^{\infty} |c_m| (\rho(A) + \varepsilon)^m$ 收敛. 由4.1 节定理10可知存在矩阵范数 $\|\cdot\|$ 使 $\|A\| \le \rho(A) + \varepsilon$,所以 $\|c_m A^m\| = \|c_m\| \|A^m\| \le \|c_m\| \|A\|^m \le \|c_m\| (\rho(A) + \varepsilon)^m$

由比较原理知,

 $\sum_{m=0}^{\infty} \|c_m A^m\|$ 收敛, 从而 $\sum_{m=0}^{\infty} c_m A^m$ 绝对收敛.

2) 当 $\rho(A) > R$ 时, $\sum_{m=0}^{\infty} c_m A^m$ 发散

则
$$A\frac{x}{\|x\|} = \lambda_k \frac{x}{\|x\|}$$
, \$\diamsymp y = \frac{x}{\|x\|}\$, 则 $\|y\| = 1$, 且 $Ay = \lambda_k y$.

(反证法)若 $\sum_{m=0}^{\infty} c_m A^m$ 收敛, 由性质3) 知

$$y^H \left(\sum_{m=0}^{\infty} c_m A^m\right) y = \sum_{m=0}^{\infty} c_m y^H A^m y =$$

$$\sum_{m=0}^{\infty} c_m y^H \lambda_k^{\ m} y = \sum_{m=0}^{\infty} c_m \lambda_k^{\ m} y^H y = \sum_{m=0}^{\infty} c_m \lambda_k^{\ m}$$

也收敛,与Abel定理矛盾,故当 $\rho(A) > R$ 时,

$$\sum_{m=0}^{\infty} c_m A^m$$
发散.

注: 定理1实际上定义了一种映射 $f(z) = \sum_{m=0}^{\infty} c_m z^m$, |z| < R(收敛半径), $\forall A \in \mathbb{C}^{n \times n}$ 满足 $\rho(A) < R$, $f(A) = \sum_{m=0}^{\infty} c_m A^m$ 收敛, 所以对应一个矩阵, 称f(A)为矩阵函数.

定理2:

若对矩阵A的某一种范数||A|| < 1, 则 $\lim_{k \to \infty} A^k = 0$

定理2:

若对矩阵A的某一种范数||A|| < 1, 则 $\lim_{k \to \infty} A^k = 0$

证明: 由 $||A^k|| \le ||A||^k$, 即可证得.

定理3: 已知矩阵序列 $A, A^2, \dots, A^k, \dots, \text{则}\lim_{k \to \infty} A^k = 0$ 的充分必要条件是 $\rho(A) < 1$.

定理3: 已知矩阵序列 $A, A^2, \dots, A^k, \dots, \text{则}\lim_{k \to \infty} A^k = 0$ 的充分必要条件是 $\rho(A) < 1$.

证明:证明过程需要用到下面的公式:设Jordan块

例1: 判断矩阵序列 A^k 的敛散性.

$$(1) A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$(2) A = \begin{bmatrix} 0.9 & 1 \\ 0 & 0.9 \end{bmatrix}$$

(3)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.9 & 1 \\ 0 & 0 & 0.9 \end{bmatrix}$$
 (4) $A = \begin{bmatrix} 0.3 & 0.8 \\ 0.6 & 0.1 \end{bmatrix}$

$$(4) A = \begin{bmatrix} 0.3 & 0.8 \\ 0.6 & 0.1 \end{bmatrix}$$

$$(1) A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$(2) A = \begin{bmatrix} 0.9 & 1 \\ 0 & 0.9 \end{bmatrix}$$

解:

(1)
$$A^k = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$$
, 故 $\lim_{k \to \infty} A^k$ 发散.

(2)
$$\rho(A) = 0.9 < 1$$
, $ightharpoonup kinds $ightharpoonup kinds A^k = 0$.$

$$(3)A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.9 & 1 \\ 0 & 0 & 0.9 \end{bmatrix} \qquad (4) A = \begin{bmatrix} 0.3 & 0.8 \\ 0.6 & 0.1 \end{bmatrix}$$

解:

$$(4) \|A\|_1 = 0.9 < 1$$
, 故 A^k 收敛, 且 $\lim_{k \to \infty} A^k = 0$.

例2: 判断矩阵序列
$$A^k$$
的敛散性. $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$

例2: 判断矩阵序列
$$A^k$$
的敛散性. $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$

解: A的特征值 $\lambda_1 = \lambda_2 = \lambda_3 = 1$, $\rho(A) = 1$, 设 J是A的Jordan标准型, 由于 $A^k = PJ^kP^{-1}$, 所以只需要判别 J^k 的敛散性即可.

通过计算得出
$$J = \begin{bmatrix} 1 & & & \\ & 1 & 1 \\ & & 1 \end{bmatrix}$$
,则 $J^k = \begin{bmatrix} 1 & & \\ & 1 & k \\ & & 1 \end{bmatrix}$,故 A^k 发散.

例3: 判断矩阵序列
$$A^k$$
的敛散性. $A = \frac{1}{3} \begin{bmatrix} 7 & 1 & -4 \\ 0 & 3 & 0 \\ -2 & 1 & 5 \end{bmatrix}$

例3: 判断矩阵序列
$$A^k$$
的敛散性. $A = \frac{1}{3} \begin{bmatrix} 7 & 1 & -4 \\ 0 & 3 & 0 \\ -2 & 1 & 5 \end{bmatrix}$

解: A的特征值 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = 3$, $\rho(A) = 3 > 1$, 所以 A^k 发散.

例4: 判断矩阵幂级数的敛散性.

$$(1) \sum_{k=1}^{\infty} \frac{1}{k^2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^k$$

$$(1) \sum_{k=1}^{\infty} \frac{1}{k^2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^k \qquad (2) \sum_{k=1}^{\infty} \frac{1}{k^2} \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}^k$$

(3)
$$\sum_{k=1}^{\infty} \frac{1}{k^2} \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}^{k}$$

$$(4) \sum_{k=1}^{\infty} \frac{1}{k^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}^k$$

$$(1) \sum_{k=1}^{\infty} \frac{1}{k^2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^k$$

$$\mathbf{\widetilde{H}}: \quad \sum_{k=1}^{\infty} \frac{1}{k^2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^k = \sum_{k=1}^{\infty} \frac{1}{k^2} \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{k=1}^{\infty} \frac{1}{k^2} & \sum_{k=1}^{\infty} \frac{1}{k} \\ 0 & \sum_{k=1}^{\infty} \frac{1}{k^2} \end{bmatrix}$$

故级数发散.

(2)
$$\sum_{k=1}^{\infty} \frac{1}{k^2} \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}^k$$

$$\mathbf{\tilde{H}}: \quad \sum_{k=1}^{\infty} \frac{1}{k^2} \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}^k =$$

$$= \sum_{k=1}^{\infty} \frac{1}{k^2} \begin{bmatrix} (-1)^k & k(-1)^{k-1} \\ 0 & (-1)^k \end{bmatrix}$$

$$=\begin{bmatrix} \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} & \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \\ 0 & \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} \end{bmatrix}, \text{ by \emptyset ξ $\frac{1}{2}$.}$$

$$(3)\sum_{k=1}^{\infty} \frac{1}{k^2} \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}^k$$

解:原式

$$= \sum_{k=1}^{\infty} \frac{1}{k^2} \begin{bmatrix} (-1)^k & k(-1)^{k-1} & \frac{k(k-1)}{2}(-1)^{k-2} \\ 0 & (-1)^k & k(-1)^{k-1} \\ 0 & 0 & (-1)^k \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} & \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} & \sum_{k=1}^{\infty} \frac{(k-1)(-1)^{k-2}}{2k} \\ 0 & \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} & \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \\ 0 & 0 & \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} \end{bmatrix},$$

$$= \begin{bmatrix} \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} & \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \\ 0 & \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} \end{bmatrix},$$

所以级数发散

$$(4) \sum_{k=1}^{\infty} \frac{1}{k^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}^k$$

解:

$$\sum_{k=1}^{\infty} \frac{1}{k^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}^k = \sum_{k=1}^{\infty} \frac{1}{k^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & (-1)^k & k(-1)^{k-1} \\ 0 & 0 & (-1)^k \end{bmatrix}$$

$$=\begin{bmatrix} \sum_{k=1}^{\infty} \frac{1}{k^2} & 0 & 0\\ 0 & \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} & \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}\\ 0 & 0 & \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} \end{bmatrix}, \text{ 级数条件收敛}.$$

例5: 设 $A \in \mathbb{C}^{n \times n}$, 且 $\rho(A) < 1$, 求 $\sum_{k=1}^{\infty} k^2 A^k$.

例5: 设 $A \in \mathbb{C}^{n \times n}$, 且 $\rho(A) < 1$, 求 $\sum_{k=1}^{\infty} k^2 A^k$

解:考虑复变幂级数 $\sum_{k=1}^{\infty} k^2 z^k$,因为 $\lim_{k\to\infty} \frac{(k+1)^2}{k^2} = 1 \to \mathbf{\psi}$ 敛半径为1.因为 $\rho(A) < 1 \to \sum_{k=1}^{\infty} k^2 A^k \mathbf{\psi}$ 敛.

设
$$f(z) = \sum_{k=1}^{\infty} k^2 z^k$$
, $|z| < 1$.

$$\Leftrightarrow f_1(z) = \sum_{k=1}^{\infty} k^2 z^{k-1}, \ \mathbb{M}f(z) = z f_1(z).$$

当
$$|z|$$
 < 1时, $\int_0^z f_1(z)dz = \int_0^z \left(\sum_{k=1}^\infty k^2 z^{k-1}\right)dz =$

解: 当
$$|z| < 1$$
时, $\int_0^z f_1(z) dz =$

$$\int_0^z \left(\sum_{k=1}^\infty k^2 z^{k-1}\right) dz = \sum_{k=1}^\infty \int_0^z k^2 z^{k-1} dz = \sum_{k=1}^\infty k z^k = z \sum_{k=1}^\infty k z^{k-1}.$$

$$\overline{\text{mi}} \int_0^z \left(\sum_{k=1}^\infty k z^{k-1} \right) dz = \sum_{k=1}^\infty \int_0^z k z^{k-1} dz = \sum_{k=1}^\infty z^k$$

$$= \frac{z}{1-z} \Rightarrow \sum_{k=1}^{\infty} kz^{k-1} = \frac{1}{(1-z)^2}.$$

所以
$$f(z) = \frac{z(z+1)}{(1-z)^3}$$
, $|z| < 1$

$$\Rightarrow f(A) = A(I+A)(I-A)^{-3}, \rho(A) < 1.$$

