2098 \overline{NARC} , PATH

sliding_sum 5.352

DESCRIPTION	LINKS	GRAPH

Origin **CHIP**

Constraint sliding_sum(LOW, UP, SEQ, VARIABLES)

Synonym sequence.

Arguments LOW int UP int

> SE_Q int VARIABLES

: collection(var-dvar)

Restrictions UP > LOW SEQ > 0

 $SEQ \le |VARIABLES|$

 ${\color{red} \textbf{required}}({\tt VARIABLES}, {\tt var})$

Constrains all sequences of SEQ consecutive variables of the collection VARIABLES so Purpose that the sum of the variables belongs to interval [LOW, UP].

Example $(3,7,4,\langle 1,4,2,0,0,3,4\rangle)$

> The example considers all sliding sequences of SEQ = 4 consecutive values of $\langle 1, 4, 2, 0, 0, 3, 4 \rangle$ collection and constraints the sum to be in [LOW, UP] = [3, 7]. The sliding_sum constraint holds since the sum associated with the corresponding subsequences $1\ 4\ 2\ 0$, $4\ 2\ 0$, 0, $2\ 0\ 0$, and $0\ 0\ 3\ 4$ are respectively 7, 6, 5 and 7.

Typical ${\tt LOW} \ge 0$

Algorithm

 $\mathtt{UP} > 0$

 ${\tt SEQ}>1$

SEQ < |VARIABLES| ${\tt VARIABLES.var} \geq 0$

UP < sum(VARIABLES.var)</pre>

Symmetry Items of VARIABLES can be reversed.

Arg. properties • Contractible wrt. VARIABLES when SEQ = 1.

• Prefix-contractible wrt. VARIABLES.

• Suffix-contractible wrt. VARIABLES.

Beldiceanu and Carlsson [30] have proposed a first incomplete filtering algorithm for the sliding_sum constraint. In 2008, Maher et al. showed in [273] that the sliding_sum constraint has a solution "if and only there are no negative cycles in the flow graph associated with the dual linear program" that encodes the conjunction of inequalities. They derive a bound-consistency filtering algorithm from this fact.

20000128 2099

Systems sliding_sum in MiniZinc.

See also common keyword: sliding_distribution(sliding sequence constraint).

part of system of constraints: sum_ctr.
soft variant: relaxed_sliding_sum.
used in graph description: sum_ctr.

Keywords characteristic of a constraint: hypergraph, sum.

combinatorial object: sequence.

constraint type: decomposition, sliding sequence constraint, system of constraints.

filtering: linear programming, flow, bound-consistency.

 \overline{NARC} , PATH

 Arc input(s)
 VARIABLES

 Arc generator
 PATH → collection

 Arc arity
 SEQ

 Arc constraint(s)
 • sum_ctr(collection, ≥, LOW)

 • sum_ctr(collection, ≤, UP)

 Graph property(ies)
 NARC= |VARIABLES| - SEQ + 1

Graph model

We use sum_ctr as an arc constraint. sum_ctr takes a collection of domain variables as its first argument.

Parts (A) and (B) of Figure 5.706 respectively show the initial and final graph associated with the **Example** slot. Since all arc constraints hold (i.e., because of the graph property NARC = |VARIABLES| - SEQ + 1) the final graph corresponds to the initial graph.

Figure 5.706: (A) Initial and (B) final graph of the sliding_sum $(3,7,4,\langle 1,4,2,0,0,3,4\rangle)$ constraint of the **Example** slot where each ellipse represents an hyperedge involving SEQ = 4 vertices (e.g., the first ellipse represents the constraint $1+4+2+0 \in [3,7]$)

Signature

Since we use the PATH arc generator with an arity of SEQ on the items of the VARIABLES collection, the expression |VARIABLES| - SEQ + 1 corresponds to the maximum number of arcs of the final graph. Therefore we can rewrite the graph property NARC = |VARIABLES| - SEQ + 1 to $NARC \ge |VARIABLES| - SEQ + 1$ and simplify \overline{NARC} to \overline{NARC} .

20000128 2101