B38DF

Computer Architecture and Embedded Systems

Alexander Belyaev

Heriot-Watt University
School of Engineering & Physical Sciences
Electrical, Electronic and Computer Engineering

E-mail: <u>a.belyaev@hw.ac.uk</u>

Office: EM2.29

Based on the slides prepared by Dr. Mustafa Suphi Erden

Recall of Primary Memory

- Computer programs must be in the main memory (random access memory – RAM)
- Main memory (primary memory/internal memory) is the only large storage area that the processor can access directly
 - Usually too small to store all the needed programs
 - Volatile storage device that loses its contents when power is turned off
- Secondary memory/storage devices → Large and permanent

Memory Hierarchy

A five-level memory hierarchy

Magnetic Disks (1)

A disk with four **platters**

- Platters: 3-12 cm in diameter
- 60-120 rev/sec

Magnetic Disks (2)

A disk with five zones. Each zone has many tracks.

- Radial: 800-2000 tracks per cm
 5-10 micron thickness per bit
- Circumferential
 50,000-100,000 bits/cm
- 60-120 rev/sec

Magnetic Disks (3)

- Preamble: Allows the head to be synchronized before reading or writing; created during formatting.
- ECC: Error-Correcting Code (Hamming codes or codes that can correct burst-errors called Reed-Solomon codes).
- Difference between the <u>unformatted</u> and <u>formatted</u> disc capacity:
 Preamble, ECC and gaps.

CD-ROMs – Compact Disc – Read Only Memory (1)

- All CDs are 120 mm across and 1.2-mm thick, with a 15-mm hole in the middle.
- Prepared by using a high-power infrared laser to burn 0.8-micron diameter holes in a coated glass master disk
- "Pit" and "Land" structures
 constructed on the polycarbonate
 substrate encode the data; these
 are illuminated by a laser diode and
 read by a photodetector.
 - The pits and lands are written in a single continuous spiral, which makes 22,188 revolutions with a length of around 5.6 km, leading to a capacity of 650 MB.

Pits (binary value of 0 or off, due to lack of reflection when read) and **lands** (binary value of 1 or on, due to a reflection when read) on a special material on one of its flat surfaces

CD-ROMs (2)

- Preamble includes a code for recognition of the start of a sector, the sector number, and the mode (one of the two modes of data coding)
- Every byte is encoded in a 14-bit symbol (for error-correction)
- Single-bit errors are corrected at the <u>lowest level</u>, short burst errors are corrected at the <u>frame level</u>, and any residual errors are caught at the <u>sector level</u>. → <u>7203 bytes used for only 2048-byte data with an **efficiency of 28%**</u>

DVD – Digital Versatile Disc

- DVDs use the <u>same general design as CDs</u>, with 120-mm injection-molded polycarbonate disks containing pits and lands that are illuminated by a laser and read by a photodetector. What is new is the use of:
 - 1. Smaller pits (0.4 microns versus 0.8 microns for CDs),
 - 2. A tighter spiral (0.74 microns between tracks versus 1.6 microns for CDs),
 - 3. A red laser (at 0.65 microns versus 0.78 microns for CDs).
- These improvements <u>raise the capacity sevenfold to 4.7 GB</u>

Semiconductor Memory Types

Memory Type	Category	Erasure	Write Mechanism	Volatility
Random-access memory (RAM)	Read-write memory	Electrically, byte level	Electrically	Volatile
Read-only memory (ROM)		N	Masks	Nonvolatile
Programmable ROM (PROM)	Read-only memory	Not possible		
Erasable PROM (EPROM)		UV light, chip level	alk LE mugfi	
Electrically Erasable PROM (EEPROM)	Read-mostly memory	Electrically, byte level	Electrically	
Flash memory	an halamah al singi za bila dari hat darina	Electrically, block level	Liantenze har er eur Hegigaa sean els e	

Semiconductor Memory Types

Туре	Category	Erasure	Byte alterable	Volatile	Typical use
SRAM	Read/write	Electrical	Yes	Yes	Level 2 cache
DRAM	Read/write	Electrical	Yes	Yes	Main memory (old)
SDRAM	Read/write	Electrical	Yes	Yes	Main memory (new)
ROM	Read-only	Not possible	No	No	Large volume appliances
PROM	Read-only	Not possible	No	No	Small volume equipment
EPROM	Read-mostly	UV light	No	No	Device prototyping
EEPROM	Read-mostly	Electrical	Yes	No	Device prototyping

Synchronous dynamic random-access memory (**SDRAM**) is any DRAM where the operation of its external pin interface is coordinated by an externally supplied clock signal.

DDR SDRAM (double data rate SDRAM) is a further development of DRAM

Read-Only Memory (ROM)

- A ROM contains a permanent pattern of data that cannot be changed.
- A ROM is <u>nonvolatile</u>; that is, no power source is required to maintain the bit values in memory.
- The data is recorded in ROM as a part of the <u>fabrication process</u>.
- An important application of ROM is microprogramming.

(The execution of instructions is somewhat like running a very small program. Some machines have a little program, called a **microprogram**, to execute their instructions.)

Programmable ROM (PROM)

- A PROM is nonvolatile like a ROM, and may be written into only once.
- The writing process is performed <u>electrically</u> and may be performed at a time later than the original chip fabrication.
- Special equipment is required for the writing or "programming" process.

Erasable Programmable ROM (EPROM)

- An EPROM is read and written <u>electrically</u>, as with PROM; however, before a write operation <u>all the storage cells must be erased</u> to the same initial state by exposure of the packaged chip to <u>ultraviolet</u> <u>radiation</u>.
- Each erasure can take as much as 20 minutes.

Electrically Erasable Programmable ROM (EEPROM)

- An EEPROM can be written into at any time without erasing prior contents; only the <u>byte or bytes addressed are updated</u>.
- The write operation takes considerably longer than the read operation, on the order of several hundred microseconds per byte.
- Combines the <u>advantage of nonvolatility with the flexibility of being</u> <u>updatable in place</u>, using ordinary bus control, address, and data lines.

Flash Memory

- A flash memory uses an <u>electrical erasing</u> technology, like EEPROM
- An entire flash memory can be erased in one or a few seconds, which is much faster than EPROM.
- It is also possible to erase just blocks of memory rather than an entire chip.
- Flash memory gets its name because the microchip is organized so that a section of memory cells are erased in a single action or "flash".
- However, unlike EEPROM, a flash memory does not provide byte-level erasure.

The Future of Data Storage (1)

- Advances in technology have defied all efforts to define the ultimate upper limit for magnetic disk storage.
 - In the 1970s, the upper limit was thought to be around 2Mb/in².
 - Today's disks (2015) commonly support 20Gb/in².
- Improvements have occurred in several different technologies including:
 - Materials science
 - Magneto-optical recording heads.
 - Error correcting codes.

The Future of Data Storage (2)

- As data densities increase, bit cells consist of proportionately fewer magnetic grains.
- There is a point at which there are too few grains to hold a value, and a 1 might spontaneously change to a 0, or vice versa.
- This point is called the superparamagnetic limit.
 - In 2006, the superparamagnetic limit is thought to lie between 150Gb/in² and 200Gb/in².
- Even if this limit is wrong by a few orders of magnitude, the greatest gains in magnetic storage have probably already been realized.

The Future of Data Storage (3)

- Future exponential gains in data storage most likely will occur through the use of totally new technologies.
- Research into finding suitable replacements for magnetic disks is taking place on several fronts.
- Some of the more interesting technologies include:
 - Biological materials
 - Holographic systems
 - Micro-electro-mechanical devices
 - Memristors
 - Carbon nanotubes

The Future of Data Storage (4)

- Present day biological data storage systems combine organic compounds such as proteins or oils with inorganic (magentizable) substances.
- Early prototypes have encouraged the expectation that densities of 1Tb/in² are attainable.
- Of course, the ultimate biological data storage medium is DNA.
 - Trillions of messages can be stored in a tiny strand of DNA.
- Practical DNA-based data storage is most likely decades away.

The Future of Data Storage (5)

 Holographic storage uses a pair of laser beams to etch a threedimensional hologram onto a polymer medium.

A **hologram** is a physical structure that uses light diffraction to make an image; the image can appear to be three-dimensional.

The Future of Data Storage (6)

 Data is retrieved by passing the reference beam through the hologram, thereby reproducing the original coded object beam.

The Future of Data Storage (7)

- Because holograms are three-dimensional, tremendous data densities are possible.
- Experimental systems have achieved over 30Gb/in², with transfer rates of around 1GBps.
- In addition, holographic storage is content addressable.
 - This means that there is no need for a file directory on the disk.
 Accordingly, access time is reduced.
- The major challenge is in finding an inexpensive, stable, rewriteable holographic medium.

The Future of Data Storage (8)

- Micro-electro-mechanical storage (MEMS) devices offer another promising approach to mass storage.
- IBM's Millipede is one such device.
- Prototypes have achieved densities of 100Gb/in² with 1Tb/in² expected as the technology is refined.

- Millipede consists of thousands of cantilevers that record a binary 1 by pressing a heated tip into a polymer substrate.
- The tip reads a binary 1 when it dips into the imprint in the polymer

Photomicrograph courtesy of the IBM Corporation. © 2005 IBM Corporation

The Future of Data Storage (9)

- Carbon nanotubes (CNTs) are a cylindrical form of elemental carbon:
 The walls of the cylinders are one atom thick.
- CNTs can act like switches, opening and closing to store bits.
- Once "set" the CNT stays in place until a release voltage is applied.

The Future of Data Storage (10)

- Memristors are electronic components that combine the properties of a resistor with memory.
- Resistance to current flow can be controlled so that states of "high" and "low" store data bits.
- Like carbon nanotubes, memristor memories are non-volatile, holding their state until certain threshold voltages are applied.
- These non-volatile memories promise enormous energy savings and increased data access speeds in the very near future.