Codsoft Task 2 - Credit Card Fraud Detection

For this task, we'll be using Logistic Regression, Decision Trees or Random Forests to classify transactions as fraudulent or legitimate

Importing required libraries

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   %matplotlib inline
   import seaborn as sns
   import plotly.express as px
   import warnings
   warnings.filterwarnings('ignore')
In [2]: train = pd.read_csv('./Dataset/fraudTrain.csv',index_col=0)
   test = pd.read_csv('./Dataset/fraudTest.csv',index_col=0)
```

Lets Analyze Training data

```
In [3]: train.head()
```

]:	trans_date_trans_time	cc_num	merchant	category	amt	first
0	2019-01-01 00:00:18	2703186189652095	fraud_Rippin, Kub and Mann	misc_net	4.97	Jennifer
1	2019-01-01 00:00:44	630423337322	fraud_Heller, Gutmann and Zieme	grocery_pos	107.23	Stephanie
2	2019-01-01 00:00:51	38859492057661	fraud_Lind- Buckridge	entertainment	220.11	Edward
3	2019-01-01 00:01:16	3534093764340240	fraud_Kutch, Hermiston and Farrell	gas_transport	45.00	Jeremy
4	2019-01-01 00:03:06	375534208663984	fraud_Keeling- Crist	misc_pos	41.96	Tyler
5 rc	ows × 22 columns					

In [4]: train.info()

<class 'pandas.core.frame.DataFrame'>
Index: 1296675 entries, 0 to 1296674
Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype
0	trans_date_trans	_time 1296675 non-null	object
1	cc_num	1296675 non-null	int64
2	merchant	1296675 non-null	object
3	category	1296675 non-null	object
4	amt	1296675 non-null	float64
5	first	1296675 non-null	object
6	last	1296675 non-null	object
7	gender	1296675 non-null	object
8	street	1296675 non-null	object
9	city	1296675 non-null	object
10	state	1296675 non-null	object
11	zip	1296675 non-null	int64
12	lat	1296675 non-null	float64
13	long	1296675 non-null	float64
14	city_pop	1296675 non-null	int64
15	job	1296675 non-null	object
16	dob	1296675 non-null	object
17	trans_num	1296675 non-null	object
18	unix_time	1296675 non-null	int64
19	merch_lat	1296675 non-null	float64
20	merch_long	1296675 non-null	float64
21	is_fraud	1296675 non-null	int64
d+vn	os: float64(5) i	n+64(5) $ohiec+(12)$	

dtypes: float64(5), int64(5), object(12)

memory usage: 227.5+ MB

In [5]: train.shape

Out[5]: (1296675, 22)

In [6]: train.describe()

Out[6]: cc_num amt zip lat long city_p **count** 1.296675e+06 1.296675e+06 1.296675e+06 1.296675e+06 1.296675e+06 1.296675e+ mean 4.171920e+17 7.035104e+01 4.880067e+04 3.853762e+01 -9.022634e+01 8.882444e+ **std** 1.308806e+18 1.603160e+02 2.689322e+04 5.075808e+00 1.375908e+01 3.019564e+ min 6.041621e+10 1.000000e+00 1.257000e+03 2.002710e+01 -1.656723e+02 2.300000e+ **25%** 1.800429e+14 9.650000e+00 2.623700e+04 3.462050e+01 -9.679800e+01 7.430000e+ **50%** 3.521417e+15 4.752000e+01 4.817400e+04 3.935430e+01 -8.747690e+01 2.456000e+ **75%** 4.642255e+15 8.314000e+01 7.204200e+04 4.194040e+01 -8.015800e+01 2.032800e+ max 4.992346e+18 2.894890e+04 9.978300e+04 6.669330e+01 -6.795030e+01 2.906700e+

```
Out[7]: trans_date_trans_time
        cc_num
        merchant
                                  0
                                  0
        category
         amt
                                  0
        first
                                  0
        last
                                  0
                                  0
         gender
        street
                                  0
                                  0
        city
        state
                                  0
        zip
                                  0
        lat
                                  0
        long
                                  0
        city_pop
                                  0
        job
        dob
                                  0
        trans_num
                                 0
        unix_time
        merch_lat
                                  0
        merch_long
                                  0
        is_fraud
        dtype: int64
In [8]: train.duplicated().sum()
Out[8]: 0
```

From the above we can clearly see that there are no duplicates and null values in the training dataset.

We can see that the training data is imbalanced

Lets Analyze the test data

```
In [10]: test.head()
```

Out[10]:	trans_date_trans_time		cc_num	merchant	category	amt	first
	0	2020-06-21 12:14:25	2291163933867244	fraud_Kirlin and Sons	personal_care	2.86	Jeff
	1	2020-06-21 12:14:33	3573030041201292	fraud_Sporer- Keebler	personal_care	29.84	Joanne
	2	2020-06-21 12:14:53	3598215285024754	fraud_Swaniawski, Nitzsche and Welch	health_fitness	41.28	Ashley
	3	2020-06-21 12:15:15	3591919803438423	fraud_Haley Group	misc_pos	60.05	Brian
	4	2020-06-21 12:15:17	3526826139003047	fraud_Johnston- Casper	travel	3.19	Nathan

5 rows × 22 columns

In [11]: test.info()

<class 'pandas.core.frame.DataFrame'>
Index: 555719 entries, 0 to 555718
Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype
0	<pre>trans_date_trans_time</pre>	555719 non-null	object
1	cc_num	555719 non-null	int64
2	merchant	555719 non-null	object
3	category	555719 non-null	object
4	amt	555719 non-null	float64
5	first	555719 non-null	object
6	last	555719 non-null	object
7	gender	555719 non-null	object
8	street	555719 non-null	object
9	city	555719 non-null	object
10	state	555719 non-null	object
11	zip	555719 non-null	int64
12	lat	555719 non-null	float64
13	long	555719 non-null	float64
14	city_pop	555719 non-null	int64
15	job	555719 non-null	object
16	dob	555719 non-null	object
17	trans_num	555719 non-null	object
18	unix_time	555719 non-null	int64
19	merch_lat	555719 non-null	float64
20	merch_long	555719 non-null	float64
21	is_fraud	555719 non-null	int64
	C3 + C4/=\ . + C4/=	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

dtypes: float64(5), int64(5), object(12)

memory usage: 97.5+ MB

In [12]: test.shape

Out[12]: (555719, 22)

In [13]: test.describe()

Out[13]: cc_num zip lat long city amt **count** 5.557190e+05 555719.000000 555719.000000 555719.000000 555719.000000 5.557190 mean 4.178387e+17 69.392810 48842.628015 38.543253 -90.231325 8.822189

std 1.309837e+18 26855.283328 5.061336 13.721780 3.003909 156.745941 min 6.041621e+10 1.000000 1257.000000 20.027100 -165.672300 2.300000 1.800429e+14 -96.798000 7.41000C 25% 9.630000 26292.000000 34.668900 50% 3.521417e+15 47.290000 48174.000000 39.371600 -87.476900 2.408000

75% 4.635331e+15 83.010000 72011.000000 41.894800 -80.175200 1.968500 max 4.992346e+18 22768.110000 99921.000000 65.689900 -67.950300 2.906700

In [14]: test.isnull().sum()

```
Out[14]: trans_date_trans_time
          cc_num
                                   0
          merchant
                                   0
          category
                                   0
          amt
                                   0
          first
                                   0
                                   0
          last
          gender
                                   0
          street
                                   0
          city
                                   0
                                   0
          state
                                   0
          zip
                                   0
          lat
          long
                                   0
          city_pop
                                   0
          job
                                   0
          dob
                                   0
          trans_num
                                   0
          unix_time
                                   0
          merch_lat
                                   0
          merch_long
                                   0
          is_fraud
          dtype: int64
In [15]: test.duplicated().sum()
Out[15]: 0
```

Visualization

```
In [16]: cat_his = px.histogram(data_frame=train,x='category',color='is_fraud');
    cat_his.show();
```



```
In [17]: gen_his = px.histogram(data_frame=train,x='gender',color='is_fraud');
    gen_his.show()
```


Data Processing & Cleaning

```
In [20]: #Date of birth --> Age of customer

train['dob'] = pd.to_datetime(train['dob'],format='mixed')
test['dob'] = pd.to_datetime(test['dob'],format='mixed')
```

```
train['trans_date_trans_time'] = pd.to_datetime(train['trans_date_trans_time'],form
         test['trans_date_trans_time'] = pd.to_datetime(test['trans_date_trans_time'],format
         train['age'] = (train['trans_date_trans_time'].dt.year - train['dob'].dt.year).asty
         test['age'] = (test['trans_date_trans_time'].dt.year - test['dob'].dt.year).astype(
         train.drop(columns='dob',inplace=True)
         test.drop(columns='dob',inplace=True)
In [21]: #cleaning merchant column
         train['merchant'] = train['merchant'].apply(lambda x : x.replace('fraud ',''))
         test['merchant'] = test['merchant'].apply(lambda x : x.replace('fraud_',''))
In [22]: #Converting gender to binary classification
         train = pd.get_dummies(train,columns=['gender'],drop_first=True)
         test = pd.get_dummies(test,columns=['gender'],drop_first=True)
In [23]: train_numerical_columns = train.select_dtypes(include=['int64', 'float64']).columns
         train_numerical_columns
Out[23]: Index(['cc_num', 'amt', 'zip', 'lat', 'long', 'city_pop', 'unix_time',
                 'merch_lat', 'merch_long', 'is_fraud'],
                dtype='object')
In [24]: test numerical columns = test.select dtypes(include=['int64', 'float64']).columns
         test_numerical_columns
Out[24]: Index(['cc_num', 'amt', 'zip', 'lat', 'long', 'city_pop', 'unix_time',
                 'merch_lat', 'merch_long', 'is_fraud'],
                dtype='object')
In [25]: train.drop(
             columns = ['cc_num','trans_date_trans_time','first', 'last','street','state',
                         'zip', 'lat', 'long', 'city_pop', 'unix_time', 'merch_lat', 'merch_long'
         test.drop(
             columns = ['cc_num', 'trans_date_trans_time', 'first', 'last', 'street', 'state',
                         'zip', 'lat', 'long', 'city_pop', 'unix_time', 'merch_lat', 'merch_long
In [26]: | train = train[['merchant','category','city','job','gender_M','age','amt','is_fraud'
         train.head()
```

Out[26]:		merchant	category	city	job	gender_M	age	amt	is_fraud
	0	Rippin, Kub and Mann	misc_net	Moravian Falls	Psychologist, counselling	False	31	4.97	0
	1	Heller, Gutmann and Zieme	grocery_pos	Orient	Special educational needs teacher	False	41	107.23	0
	2	Lind- Buckridge	entertainment	Malad City	Nature conservation officer	True	57	220.11	0
	3	Kutch, Hermiston and Farrell	gas_transport	Boulder	Patent attorney	True	52	45.00	0
	4	Keeling- Crist	misc_pos	Doe Hill	Dance movement psychotherapist	True	33	41.96	0
In [27]:		st = test[st.head()	['merchant','d	category',	'city','job','	gender_M','	age'	,'amt','	is_fraud'

Out[27]:		merchant	category	city	job	gender_M	age	amt	is_fraud
	0	Kirlin and Sons	personal_care	Columbia	Mechanical engineer	True	52	2.86	0
	1	Sporer- Keebler	personal_care	Altonah	Sales professional, IT	False	30	29.84	0
	2	Swaniawski, Nitzsche and Welch	health_fitness	Bellmore	Librarian, public	False	50	41.28	0
	3	Haley Group	misc_pos	Titusville	Set designer	True	33	60.05	0
	4	Johnston- Casper	travel	Falmouth	Furniture designer	True	65	3.19	0

Now we wil encode the String columns

```
In [28]: # We will use Weight of Evidence encoder for this task
    from category_encoders import WOEEncoder

In [29]: encoder = WOEEncoder(cols=['city', 'job', 'merchant', 'category'])
    train_transformed = encoder.fit_transform(train[['city', 'job', 'merchant', 'category']])
    test_transformed = encoder.transform(test[['city', 'job', 'merchant', 'category']])
```

```
# Replace the original columns with the transformed values
         train[['city', 'job', 'merchant', 'category']] = train_transformed
         test[['city', 'job', 'merchant', 'category']] = test_transformed
In [30]: train.head(3)
Out[30]:
            merchant category
                                    city
                                             job gender_M
                                                            age
                                                                  amt is fraud
           0.959326
                      0.924914 -2.469513 -1.080186
                                                             31
                                                                  4.97
                                                                             0
                                                      False
            False
                                                             41 107.23
                                                                             0
         2 -0.790166 -0.847622 -1.076791 1.120434
                                                       True
                                                             57 220.11
                                                                             0
In [31]: test.head(3)
Out[31]:
                                             job gender_M
                                                                 amt is_fraud
            merchant category
                                    city
                                                            age
                                                                 2.86
         0 -1.259443 -0.869588
                               0.364725
                                         0.430148
                                                       True
                                                             52
                                                                            0
         1 -0.569596 -0.869588 0.215637
                                         0.200487
                                                      False
                                                             30
                                                                29.84
                                                                            0
         2 -1.202771 -1.315531 -0.626823 -0.637068
                                                      False
                                                             50 41.28
                                                                            0
```

We can see that the data is not standardized. Lets Standardize

```
In [32]: from sklearn.preprocessing import StandardScaler
In [33]: scaler = StandardScaler()
In [34]: X_train = train.drop('is_fraud',axis=1)
    y_train = train['is_fraud']
    X_test = test.drop('is_fraud',axis=1)
    y_test = test['is_fraud']
In [35]: X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
```

Now we have Standardized the Train & Test Data

Model Building

First we will proceed with Models without sampling the data. Then we will sample the data and check the accuracies before and after Sampling

```
In [36]: from sklearn.linear_model import LogisticRegression
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier
```

```
from sklearn.metrics import *
In [37]: models = [LogisticRegression(),DecisionTreeClassifier()]
        # Removed RandomForestClassifier() model as it is taking very long time for predict
In [38]: def model_prediction(X_train,y_train,X_test,y_test):
            for model in models:
                model.fit(X_train,y_train)
               y_prediction = model.predict(X_test)
                print(f"{model} Model")
                print("\nAccuracy Score :",accuracy_score(y_test,y_prediction))
                print("Precision :",precision_score(y_test,y_prediction))
                print("Recall Score :",recall_score(y_test,y_prediction))
                print("F1 Score :",f1_score(y_test,y_prediction))
                print(".....\n")
In [39]: model_prediction(X_train,y_train,X_test,y_test)
       LogisticRegression() Model
       Accuracy Score: 0.9956704737466238
       Precision: 0.03225806451612903
       Recall Score: 0.004195804195804196
       F1 Score: 0.007425742574257425
       DecisionTreeClassifier() Model
       Accuracy Score : 0.9951612235680263
       Precision: 0.3353510895883777
       Recall Score : 0.25827505827505826
       F1 Score: 0.29180932314985514
```

Lets Apply Sampling and check the Accuracies

```
In [40]: from imblearn.over_sampling import SMOTE
In [41]: smote = SMOTE()
   X_train,y_train = smote.fit_resample(X_train,y_train)
In [42]: model_prediction(X_train,y_train,X_test,y_test)
```

From the above, We can clearly see that the accuracies, precisions, recall & F1 score are very low. Now we try with dropping String columns from the train and test dataset.

```
In [43]: fraudTrain_df = pd.read_csv('./Dataset/fraudTrain.csv',index_col=0)
         fraudTest_df = pd.read_csv('./Dataset/fraudTrain.csv',index_col=0)
In [44]: # Remove string columns
         numeric_fraudTrain_df = fraudTrain_df.select_dtypes(exclude=['object'])
         numeric_fraudTest_df = fraudTest_df.select_dtypes(exclude=['object'])
In [45]: X_train = train.drop('is_fraud',axis=1)
         y_train = train['is_fraud']
         X_test = test.drop('is_fraud',axis=1)
         y_test = test['is_fraud']
In [46]: # Standardize the features
         scaler = StandardScaler()
         X_train_scaled = scaler.fit_transform(X_train)
         X_test_scaled = scaler.transform(X_test)
In [47]: # Initialize classifiers
         log_reg = LogisticRegression()
         dec_tree = DecisionTreeClassifier()
In [48]: # Train classifiers
         log_reg.fit(X_train_scaled, y_train)
         dec_tree.fit(X_train, y_train)
Out[48]: ▼ DecisionTreeClassifier
         DecisionTreeClassifier()
In [49]: # Make predictions
         y_pred_log_reg = log_reg.predict(X_test_scaled)
```

```
y_pred_dec_tree = dec_tree.predict(X_test)
In [50]: # Calculate metrics
        metrics = {}
        metrics['Logistic Regression'] = {
            'Precision': precision_score(y_test, y_pred_log_reg),
            'Recall': recall_score(y_test, y_pred_log_reg),
            'Accuracy': accuracy_score(y_test, y_pred_log_reg),
            'F1 Score': f1_score(y_test, y_pred_log_reg)
        }
        metrics['Decision Tree'] = {
            'Precision': precision_score(y_test, y_pred_dec_tree),
            'Recall': recall_score(y_test, y_pred_dec_tree),
            'Accuracy': accuracy_score(y_test, y_pred_dec_tree),
            'F1 Score': f1_score(y_test, y_pred_dec_tree)
In [51]: # Print the metrics for each model
        for model, scores in metrics.items():
            print(f'{model} metrics:')
            print('\n')
            for score_name, score_value in scores.items():
                print(f'{score_name}: {score_value:.4f}')
            print('....')
       Logistic Regression metrics:
       Precision: 0.0323
       Recall: 0.0042
       Accuracy: 0.9957
       F1 Score: 0.0074
       Decision Tree metrics:
       Precision: 0.3370
       Recall: 0.2555
       Accuracy: 0.9952
       F1 Score: 0.2906
```