Chapitre 23

Dénombrement

Sommaire

I	Cardinal d'un ensemble fini		
	1)	Rappels: injections, surjections, bijections, permutations	
	2)	Ensembles finis	
	3)	Propriétés du cardinal	
II	Déno	ombrement	
	1)	Préliminaires	
	2)	Le nombre d'applications	
	3)	Le nombre de parties d'un ensemble	
	4)	Le nombre de bijections	
	5)	Le nombre de p-parties (ou p-combinaisons)	
III	Solu	Solution des exercices	

I CARDINAL D'UN ENSEMBLE FINI

1) Rappels: injections, surjections, bijections, permutations

- a) La composée de deux injections (respectivement surjections) est une injection (respectivement surjection).
- b) Si $f: E \to F$ est injective, alors f **induit** une bijection de E sur Im(f).
- c) Si $f \circ g$ est injective, alors g est injective.
- d) Si $f \circ g$ est surjective, alors f est surjective.
- e) Si $f: E \to F$ est une application, alors f induit une surjection de E sur Im(f).
- f) Si $f: E \to F$ est surjective, alors il existe une application $g: F \to E$ telle que $f \circ g = \mathrm{id}_F$.

Définition 23.1

Soit E un ensemble, on appelle permutation de E toute bijection de E vers E. L'ensemble des permutations de E est noté $\mathcal{S}(E)$.

Théorème 23.1

Soit E un ensemble non vide, alors $(\mathcal{S}(E), \circ)$ est un groupe (non commutatif en général), appelé groupe des permutations de E.

Preuve : Celle - ci est simple et laissée en exercice. On vérifie que l'élément neutre est l'application identité de E : id_E , et que le symétrique de $f \in \mathcal{S}(E)$ est la bijection réciproque f^{-1} .

2) Ensembles finis

Soit E un ensemble non vide, on dit que E est fini lorsqu'il existe un entier $n \in \mathbb{N}^*$ et une bijection $\phi: [1:n] \to E$. Si c'est le cas, on pose card(E) = n (ou |E| = n ou #(E) = n), sinon on dit que E est un ensemble infini. Par convention Ø est un ensemble fini de cardinal nul.

Remarque 23.1:

- Dire que E est fini de cardinal $n \ge 1$ revient à dire que l'on peut indexer les éléments de E de 1 à n: $E = \{e_1, \dots, e_n\}$ (les éléments étant distincts deux à deux).
- Si E est fini de cardinal n + 1 et si a ∈ E, alors $E \setminus \{a\}$ est fini de cardinal n. En effet: soit $\phi: [1; n+1] \to E$ une bijection, soit τ la permutation de E qui échange $\phi(n+1)$ et a, alors $\tau \circ \phi \colon [1; n+1] \to E$ est une bijection qui envoie n+1 en a, elle induit donc une bijection de [1; n] sur
- Si E est fini de cardinal n et $b \notin E$, alors $E \cup \{b\}$ est fini de cardinal n + 1.

Maria Propied Propied

Soit $n \in \mathbb{N}^*$, toute partie de [1; n] est un ensemble fini de cardinal au plus égal à n. De plus, si $F \subset [1; n]$ et si card(F) = n alors F = [1; n].

Preuve: Par récurrence sur n: pour n = 1 c'est évident. Supposons le théorème établi pour un entier $n \ge 1$ et soit F une partie de [1; n+1]. Si $n+1 \notin F$, alors F est une partie de [1; n] donc (hypothèse de récurrence) F est fini et $\operatorname{card}(F) \leq n < n + 1$. Si $n + 1 \in F$, alors $F \setminus \{n + 1\}$ est une partie de [1; n], donc $F \setminus \{n + 1\}$ est un ensemble fini de cardinal $p \le n$, mais alors F est fini de cardinal $p+1 \le n+1$. Supposons maintenant que card(F) = n+1, on a nécessairement $n+1 \in \mathbb{F}$, d'où $\mathbb{F} \setminus \{n+1\} \subset [1; n]$ et card $(\mathbb{F} \setminus \{n+1\}) = n$, donc $\mathbb{F} \setminus \{n+1\} = [1; n]$ (hypothèse de récurrence) et finalement F = [1; n+1].

Théorème 23.3

Soient $n, p \in \mathbb{N}^*$, et soit $f : [1; n] \to [1; p]$ une application :

- Si f est injective, alors $n \leq p$.
- Si f est surjective, alors $n \ge p$.
- Si f est bijective, alors n = p.

Preuve: On remarque que la troisième propriété découle des deux précédentes. Montrons la première: on a $f: [1; n] \rightarrow$ [1;p] une injection, alors f induit une bijection de [1;n] sur Im(f), donc Im(f) est fini de cardinal n, or Im(f) est une partie de [1; p], donc Im(f) est fini de cardinal au plus p, *i.e.* $n \le p$.

Montrons la deuxième : $f: [1; n] \to [1; p]$ est surjective, alors il existe une application $g: [1; p] \to [1; n]$ telle que $f \circ g = \mathrm{id}_{\llbracket 1;p \rrbracket}$, donc g est injective et par conséquent $p \leqslant n$.

Conséquence: soit E un ensemble fini non vide, il existe un entier $n \ge 1$ et une bijection $\phi: [1; n] \to E$, s'il existe un autre entier p et une bijection $\psi: [1; p] \to E$, alors l'application $\psi^{-1} \circ \phi$ est une bijection de [1; n]sur [1; p], donc n = p. Ce qui prouve l'unicité du nombre card(E) et justifie à posteriori la définition.

🔛 Théorème 23.4

Soit $n \ge 1$, toute application injective (respectivement surjective) de [1; n] dans [1; n] est bijective.

Preuve: Si $f: [1;n] \to [1;n]$ est injective, alors f induit une bijection de [1;n] sur Im(f), donc Im(f) est fini de cardinal n, mais $\text{Im}(f) \subset [1; n]$, donc Im(f) = [1; n] i.e. f est surjective (et donc bijective).

Supposons maintenant que f est surjective, alors il existe $g: [1; n] \to [1; n]$ telle que $f \circ g = \mathrm{id}_{[1; n]}$, mais alors g est injective, donc bijective d'après ce qui précède et $f = (f \circ g) \circ g^{-1}$ composée de bijections, donc f est bijective.

3) Propriétés du cardinal

Soient E et F deux ensembles finis non vides, avec $n = \operatorname{card}(E)$ et $p = \operatorname{card}(F)$ et soit $f : E \to F$ une application:

- Si f est injective alors $n \leq p$.
- Si f est surjective alors $n \ge p$.
- Si f est bijective alors n = p.

Preuve: Soient ϕ_1 : $[1; n] \to E$ et ϕ_2 : $[1; p] \to F$ deux bijections. Si f est injective alors $\phi_2 \circ f \circ \phi_1$ est une injection de [1; n] vers [1; p], donc $n \le p$. Le raisonnement est le même pour les deux autres points.

Remarque 23.2 – Il en découle que si F est en bijection avec E et si E est fini, alors F est fini de même cardinal de E.

Soient E et F deux ensembles finis non vides **de même cardinal** et soit $f: E \to F$ une application, les assertions suivantes sont équivalentes :

- a) f est injective.
- b) f est surjective.
- c) f est bijective.

Preuve: Soient $\phi: [1; n] \to E$ et $\psi: [1; n] \to F$ deux bijections, alors $g = \psi^{-1} \circ f \circ \phi$ est une application de [1; n] vers lui - même, avec $f = \psi \circ g \circ \phi^{-1}$. Si f est injective, alors g aussi, donc g est bijective et f aussi. Si f est surjective, alors g aussi et donc g est bijective et f aussi.

Exemple: Soit A un anneau intègre fini, alors A est nécessairement un corps. En effet, soit a un élément non nul de A, l'application $f: A \to A$ définie par $f(x) = a \times x$ est injective (car A est intègre), or A est fini, donc fest bijective, par conséquent il existe $a' \in A$ tel que f(a') = 1 i.e. $a \times a' = 1$. De même il existe $a'' \in A$ tel que $a'' \times a = 1$, mais alors $a'' = a'' \times (a \times a') = (a'' \times a) \times a' = a'$. Finalement, tout élément non nul de A possède un inverse et donc A est un corps.

🛂 Théorème 23.7

Si E est un ensemble fini et si F est une partie de E, alors F est fini. De plus, si card(F) = card(E), alors F = E.

Preuve: On écarte le cas évident où $E = \emptyset$. Soit n = card(E) et $\phi : [1; n] \to E$ une bijection. Notons $i : F \to E$ définie par i(x) = x, i est une injection donc $g = \phi^{-1} \circ i$ est une injection de F vers [1; n] qui induit donc une bijection de F sur $\operatorname{Im}(g)$, or $\operatorname{Im}(g)$ est une partie de [1; n], donc $\operatorname{Im}(g)$ est un ensemble fini de cardinal $p \leq n$, par conséquent F est fini de cardinal p. Si n = p, alors Im(g) = [1; n] donc g est une bijection ce qui entraı̂ne que i est une bijection, donc Im(i) = E, c'est à dire F = E.

🔛 Théorème 23.8

Soient E et F deux ensembles finis, l'ensemble $E \cup F$ est fini et :

 $card(E \cup F) = card(E) + card(F) - card(E \cap F)$

Preuve: Si l'un des deux est vide, il n'y a rien à démontrer. Supposons E et F non vides, dans un premier temps on envisage le cas où $E \cap F = \emptyset$, soit $f: [1; n] \to E$ et $g: [1; p] \to F$ deux bijections, on considère l'application $\phi: [1; n+p] \to F$ $E \cup F$ définie par $\varphi(k) = f(k)$ si $1 \le k \le n$ et $\varphi(k) = g(k-n)$ si $n+1 \le k \le n+p$, comme $E \cap F = \emptyset$ on voit que φ est injective, d'autre part la surjectivité est évidente, donc ϕ est bijective, ce qui montre que $E \cup F$ est fini de cardinal n + p.

Passons maintenant au cas général : posons $I = E \cap F$, on a $E \cup F = E \cup (F \setminus E)$ et ces deux ensembles sont disjoints et finis, donc $E \cup F$ est fini et $card(E \cup F) = card(E) + card(F \setminus E)$, d'autre part $F = I \cup (F \setminus E)$ et ces deux ensembles sont disjoints et finis, donc card(F) = card(I) + card(F\E), on a donccard(F\E) = card(F) - card(I), ce qui donne la formule. \Box

Si E et F sont deux ensembles finis, alors l'ensemble $E \times F$ est fini et $card(E \times F) = card(E) \times card(F)$.

Preuve: Si l'un des deux est vide, alors $E \times F$ est vide et le résultat est évident. Soit n = card(E), si n = 1 alors $E = \{e\}$ et l'application $f: F \to E \times F$ définie par f(x) = (e, x) est une bijection, donc $E \times F$ est fini de même cardinal que F, le théorème est donc vrai pour n = 1.

Supposons le théorème démontré pour un entier $n \ge 1$ et supposons card(E) = n + 1, on fixe un élément $e \in E$ et on pose $E' = E \setminus \{e\}$. On a $E \times F = (\{e\} \times F) \cup (E' \times F)$, ces deux ensembles sont disjoints et finis (hypothèse de récurrence), $\operatorname{donc} E \times F \text{ est fini et } \operatorname{card}(E \times F) = \operatorname{card}(\{e\} \times F) + \operatorname{card}(E' \times F) = \operatorname{card}(F) + \operatorname{card}(E') \times \operatorname{card}(F) = (n+1) \times \operatorname{card}(F).$ Le théorème est démontré au rang n+1.

Conséquence : si $p \in \mathbb{N}^*$, et si E est fini de cardinal $n \ge 1$, alors E^p (ensemble des p - uplets d'éléments de E) est fini et card(E^p) = [card(E)] p .

DÉNOMBREMENT

Préliminaires

Définition 23.3

Dénombrer un ensemble fini E c'est calculer son cardinal. Dans la pratique, c'est le mettre en bijection avec un ensemble F dont on connaît le cardinal.

La fonction factorielle : elle est définie sur \mathbb{N} par : $n! = \begin{cases} 1 & \text{si } n = 0 \\ 1 \times \cdots \times n & \text{si } n > 0 \end{cases}$. On peut également en donner une définition récurrente : 0! = 1 et $\forall n \in \mathbb{N}, (n+1)! = (n+1) \times n!$

Théorème 23.10 (diviser pour mieux compter)

Soient E un ensemble fini et soient $A_1, ..., A_n$ n parties de E deux à deux disjointes et dont la réunion est égale à E, alors : $card(E) = \sum_{k=0}^{n} card(A_k)$.

Preuve : Celle - ci est simple, c'est un raisonnement par récurrence sur n, sachant que la formule est vraie pour n=2. \square **Application** – Si $f: E \rightarrow F$ est une application et si E est fini, alors :

$$\operatorname{card}(\mathsf{E}) = \sum_{y \in \operatorname{Im}(f)} \operatorname{card}(f^{-1}(\{y\}))$$

Dans le cas où les éléments de Im(f) ont tous le même nombre d'antécédents p, alors card(E) = p card(Im(f)).

Le nombre d'applications 2)

🔛 Théorème 23.11

Soit E et F deux ensembles finis avec p = card(E) et n = card(F), l'ensemble des applications de E vers $F, \mathcal{F}(E,F)$ (ou F^E), est fini de cardinal n^p .

Preuve: Posons $E = \{e_1, ..., e_p\}$, on vérifie que l'application $\phi : F^E \to F^p$ définie par $\phi(f) = (f(e_1), ..., f(e_p))$ est une bijection. Or F^p est un ensemble fini de cardinal n^p ce qui donne le résultat.

Remarque 23.3:

- Le théorème justifie le raisonnement suivant : pour construire une application de E vers F on compte pour chaque élément de E le nombre de choix possibles pour son image (soit n choix), puis on fait le produit, soit n^p constructions possibles.
- Le nombre de façons de tirer avec remise p boules parmi n est n^p .
- Le nombre de façons de ranger p boules dans n boites est n^p.

Complément: lorsque $p \le n$, le nombre d'injections de E vers F est $n(n-1)\cdots(n-p+1)$.

3) Le nombre de parties d'un ensemble

Définition 23.4

Soit E un ensemble et A une partie de E, on appelle **fonction indicatrice** de A l'application $\mathbb{1}_A$: $E \to \mathbb{1}_A$ $\{0;1\}$ définie par $\mathbb{1}_{A}(x) =$

阿 Théorème 23.12

Si E est fini de cardinal n, alors $\mathcal{P}(E)$, l'ensemble des parties de E, est fini de cardinal 2^n .

Preuve : Il est facile de vérifier que l'application de $\mathscr{P}(E)$ vers $\mathscr{F}(E, \{0; 1\})$ qui à toute partie de E associe sa fonction caractéristique, est une bijection. Or l'ensemble $\mathcal{F}(E, \{0; 1\})$ est fini de cardinal 2^n ce qui donne le résultat.

Remarque 23.4 – Le théorème justifie le raisonnement suivant : pour construire une partie de E il y a deux choix possibles pour chaque élément de E (on le prend ou on ne le prend pas), comme il y a n éléments dans E cela fait 2^n constructions possibles, soit 2^n parties.

Le nombre de bijections

阿 Théorème 23.13

Si E et de F sont deux ensembles finis de même cardinal n > 0, il y a n! bijections de E vers F. En particulier, $card(\mathcal{S}(E)) = n!$ (groupe des permutations de E).

Preuve: Lorsque card(E) = card(F) = n, l'ensemble des bijections de E vers F est inclus dans l'ensemble des applications, c'est donc un ensemble fini de cardinal inférieur ou égal à n^n . On montre ensuite la formule par récurrence sur n, le résultat étant immédiat pour n = 1, supposons le vrai au rang n - 1. Posons $F = \{d_1, ..., d_n\}$, soit $e \in E$ fixé, on pose $D_k = \{ f \in Bij(E, F) \mid f(e) = d_k \} \text{ pour } k \in [1; n]. \text{ Il est clair que Bij} = D_1 \cup \ldots \cup D_n \text{ et que card}(D_k) = card(Bij(E \setminus \{e\}, F \setminus \{d_k\}), d_k) \}$ on obtient ainsi que card(Bij(E, F)) = $n \times (n-1)! = n!$.

Le nombre de p-parties (ou p-combinaisons) 5)

Définition 23.5

Soit E un ensemble de cardinal $n \in \mathbb{N}$ et soit $p \in \mathbb{N}$, on appelle p - combinaison d'éléments de E (ou p- partie) toute partie de E de cardinal p. L'ensemble des p - parties de E est noté $\mathscr{P}_p(E)$.

Remarque 23.5 – $\mathscr{P}_p(E)$ est un ensemble fini car il est inclus dans $\mathscr{P}(E)$, et son cardinal est majoré par 2^n . Cas particuliers:

- a) Si p = 0 la seule partie de E à 0 élément est \emptyset , donc card $(\mathscr{P}_0(E)) = 1$.
- b) Si p = n, la seule partie de E à n éléments est E, donc card $(\mathscr{P}_n(E)) = 1$.
- c) Si p > n il n'y a aucune partie de E à p éléments donc dans ce cas, card $(\mathcal{P}_p(E)) = 0$.

🙀 Théorème 23.14

Si $n, p \in \mathbb{N}$, alors $\operatorname{card}(\mathscr{P}_p(E)) = \frac{\prod_{k=0}^{p-1} (n-k)}{p!} = \binom{n}{p}$ (avec la convention que le produit vaut 1 lorsque p = 0, et que $\binom{n}{p} = 0$ si p > n).

Preuve: Par récurrence sur n: pour n = 0 et n = 1, la vérification est immédiate.

Supposons le théorème vrai pour un entier $n \ge 1$ et supposons card(E) = n + 1, si p = 0 la formule est vraie, supposons $p\geqslant 1$, on fixe un élément $a\in E$, soit A l'ensemble des p - parties de E contenant a et B l'ensemble des p - parties de E ne contenant pas a, alors $\mathscr{P}_p(E) = A \cup B$ et $A \cap B = \emptyset$, donc card $(\mathscr{P}_p(E)) = \operatorname{card}(A) + \operatorname{card}(B)$, or card(B) = $\frac{\prod_{k=0}^{p-1}(n-k)}{p!}$ (car B est en bijection avec $\mathscr{P}_p(\mathbb{E}\setminus\{a\})$) et card(A) = $\frac{\prod_{k=0}^{p-2}(n-k)}{(p-1)!}$ (car A est en bijection avec $\mathscr{P}_{p-1}(\mathbb{E}\setminus\{a\})$), d'où :

$$\operatorname{card}(\mathscr{P}_p(\mathsf{E})) = \frac{n \times \dots \times (n-p+1)}{p!} + \frac{n \times \dots \times (n-p+2)}{(p-1)!}$$
$$= \frac{n \times \dots (n-p+2)[n-p+1+p]}{p!}$$
$$= \frac{(n+1)n \times \dots (n+1-p+1)}{p!}$$

la formule est donc vraie au rang n + 1.

★Exercice 23.1 À l'aide d'un raisonnement de dénombrement, retrouver sans calcul les propriétés suivantes :

1/
$$Si p \leq n$$
, $\binom{n}{p} = \binom{n}{n-p}$.

2/ Si
$$0 \le p \le n-1$$
, $\binom{n}{p} + \binom{n}{n+1} = \binom{n+1}{n+1}$.

3/ Binôme de Newton : $\forall n \in \mathbb{N}, \forall x, y \in \mathbb{C}, (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$.

4/ Si
$$1 \le p \le n$$
, $\binom{n}{p} = \frac{n}{p} \binom{n-1}{p-1}$.

III SOLUTION DES EXERCICES

Solution 23.1

- 1/ L'application de $f: \mathscr{P}_p(E) \to \mathscr{P}_{n-p}(E)$ définie par $f(A) = \overline{A}$ (complémentaire de A dans E) est bijective.
- **2/** Pour compter le nombre de (p+1)-parties de [1; n+1], on compte celles qui contiennent n+1 (il y en a $\binom{n}{p}$) et celles qui ne contiennent pas n+1 (il y en a $\binom{n}{n+1}$).
- 3/ Lorsqu'on développe $(x + y)^n = (x + y) \times \cdots \times (x + y)$ on obtient une somme de termes $f_1 \times \cdots \times f_n$ où f_i provient du facteur numéro i, on a $f_i = x$ ou y, par conséquent on a une somme de termes du type $x^k y^{n-k}$ avec $k \in [0; n]$, et chacun de ces termes est obtenu $\binom{n}{k}$ fois (k facteurs parmi n égaux à x et les autres égaux à y).
- 4/ Considérons un ensemble constitué de p boules rouges et n-p bleues. Le nombre de façons de ranger ces n boules dans n boites (une par boite) est : $\binom{n}{p}$ (p boites parmi n pour les rouges, celles qui restent sont pour les bleues), imaginons que pour chacun de ces rangements on peint une des boules rouges en blanc, on obtient alors $p\binom{n}{p}$ façons de ranger n boules dont 1 blanche, p-1 rouges et n-p bleues, c'est à dire $n\binom{n-1}{p-1}$ (une boite pour la blanche, p-1 pour les rouges, celles qui restent pour les bleues).