

PRÁCTICA 2: LÍNEAS DE CAMPO ELÉCTRICO Y SUPERFICIES EQUIPOTENCIALES

En esta práctica vamos a utilizar algunas funciones básicas de Matlab, para aplicarlas a la resolución de problemas concretos de representación gráfica de líneas de campo eléctrico y superficies equipotenciales.

PROBLEMA BASE

Una carga puntual q produce a su alrededor un campo eléctrico que sigue la ley de Coulomb

$$qq$$

$$EE \stackrel{\rightarrow}{=} kkrr \underline{\hspace{1cm}}_2 uu_{rr} \stackrel{\rightarrow}{\longrightarrow}$$

siendo q el valor de la carga, $k=9*10^9$ N.m²/C² la q constante de Coulomb, rr el vector posición del punto P(x,y) en el que calculamos el campo, rr=|rr el módulo o longitud de ese vector posición, y uu_{rr} un vector unitario que marca la dirección que une la carga y el punto.

El potencial creado por la carga en el punto P vendrá dado por:

$$VV = kk \underline{\quad} ccccc VV(\infty) = 0$$

$$rr$$

- 1. Dibujar las líneas de campo eléctrico y las superficies equipotenciales en dos dimensiones (plano XY) creados por una única carga situada en el punto (0.5,0) del plano (coordenadas expresadas en metros), para los siguientes valores de q: 10 nC y -10 nC.
- 2. Para los mismos valores de las cargas, además de dibujar el campo eléctrico obtenido a través de la ley de Coulomb, se calculará y dibujará, en figura a parte, el campo eléctrico obtenido a partir del gradiente del potencial:

$$EE = -\nabla VV$$

y se comprobará, mediante comparación de ambas representaciones gráficas, que los resultados finales son idénticos.

IMPLEMENTACIÓN EN MATLAB

Vamos a crear un fichero de comandos (M-archivo con extensión *.m) escribiendo un nuevo *script* en la ventana del editor. En la primera línea escribimos la descripción del problema:

```
% representación gráfica de líneas de campo y
superficies equipotenciales
```

A continuación, introducimos los datos del problema, teniendo cuidado de introducir las magnitudes en el SI:

```
% datos k=9*10^9; % constante de Coulomb x0=0.5; % posición x carga y0=0; % posición y carga
```

Introducimos por pantalla el valor de la carga:

```
q=input('valor de la carga en nC, q: '); q0=q*10^-
9; % valor carga en C
```

Creamos una matriz de puntos en el plano con las variables (x,y), variando éstas desde -1 hasta +1 con incrementos de 0.1 en el caso del eje Y, y desde -1 hasta +2 con incrementos de 0.2 en el caso del eje X (evitamos el cálculo del campo en el origen (0,0) donde la función gradiente posee una indeterminación):

```
a=-1.0:0.2:2.0; b=-1.0:0.1:1.0; [x,y]=meshgrid(a,b);
```

Calculamos las componentes del campo eléctrico que dependen de las variables (x,y) a partir de la ley de Coulomb:

```
r0=abs(sqrt((x-x0).^2+(y-y0).^2)); % módulo del vector posición fx=k*(q0*(x-x0)./r0.^3); % componente x del campo eléctrico fy=k*(q0*(y-y0)./r0.^3); % componente y del campo eléctrico
```

Calculamos el potencial:

```
V= k*q0./r0; %Valor del potencial
```


En una primera figura, dibujamos el campo de vectores con la función "quiver" y añadimos a la figura las líneas equipotenciales con ayuda de la función "contour":

```
f1=figure;
quiver(x,y,fx,fy,2,'r'); % dibujo las líneas del campo
vectorial hold on
contour(x,y,V, 40); % Dibujo de las líneas equipotenciales
xlabel('x (m)') ylabel('y (m)')
title('potencial y campo por Coulomb') hold
off
```

Calculamos el valor del campo eléctrico como gradiente del potenial y lo dibujamos, junto al potencial, en otra figura a parte:

```
[ex ey]=gradient(-V,0.2,0.1); % campo como gradiente del
potencial f2=figure;
quiver(x,y,ex,ey,1,'r') % dibujo las líneas del campo
vectorial hold on
contour(x,y,V,40); % Dibujo de las líneas equipotenciales
xlabel('x (m)') ylabel('y (m)')
title('potencial y campo por gradiente')
hold off
```

Guardamos el fichero de comandos: *practica2.m* y a continuación lo ejecutamos desde la ventana de comandos con los valores de la carga indicados en el enunciado del problema.

PROLEMA PROPUESTO

1. Utilizando como base el problema anterior, dibujar el campo eléctrico y las líneas equipotenciales que corresponden a un dipolo eléctrico con los siguientes datos:

```
q=±10 nC
+q situada en x1=+0,5 m e y1=0 m
-q situada en x2=-0,5 m e y2=0 m
```


- 2. ¿Qué ocurre si ambas cargas son positivas?
- 3. ¿Y si una carga es el doble de la otra?

En cada caso, hacer las representaciones e indicar las diferencias que puedan apreciarse.

1.

2. Si ambas son positivas crean un campo alrededor en sentidos opuestos.

3. Si una es el doble que la otra y ambas son positivas, el campo ejercido por la carga grande será mucho mayor con una densidad mucho más apreciable.

