- ciphart ——

memory-hard key derivation with easier measurable security

caveman¹ 2021-02-03 00:28:26+00:00

argon2² is mostly nice, but trying to interpret its contribution to the protection against password brute-forcing attacks remains more difficult than it should be. this vagueness is a problem that is not limited to *argon2*, but also shared with every other key derivation function that i've known so far.

when one uses argon2, his derived key will surely have superior protection against password brute-forcing attacks, but by how much? to answer this, one would need to survey the industry that manufactures application-specific integrated circuits (asics) to obtain a map between time and money, in order to get an estimation on how much would it cost the adversary to discover the password in a given time window.

while the approach of surveying the asics industry is not wrong, it is largely subjective, with expensive housekeeping, and practically leads the user to rely on vague foundations to build his security on. this vagueness is not nice, and it would be better if we had an objective measure to quantify the security of our memory-hard key derivation functions.

resolving this vagueness is not a mere luxury to have, but a necessity for maximising survival, because it hinders the process of studying the cost-value of memory-hard key derivation functions, which, effectively, increases the risk of having a false sense of security.

so i propose *ciphart* — a memory-hard key derivation function with a security contribution that is measured in a unit that i call *relative entropy bits*. this unit is measured objectively and is guaranteed to be true irrespective of whatever alien technology that the adversary might have.

libciphart³ is a library that implements *ciphart* very closely to this paper, without much fluff. this should make integrating *ciphart* into other systems more convenient.

ciphart⁴ is an application for encrypting and decrypting files that makes use of libciphart. this application is intended for use by end-users or scripts, henceforth it has some fluff to treat mankind with dignity.

paper's layout

1	ciphart			
	1.1	parameters	1	
	1.2	internal variables	1	
	1.3	output	2	

	1.4 steps	2
2	parallelism	
3	memory-hardness	
4	security interpretation	2
	4.1 key brute-forcing	2
	4.2 normal password brute-forcing	3
	4.3 with $argon2 \dots \dots \dots \dots \dots$	3
	4.4 with $ciphart \dots \dots \dots \dots$	4
5	summary	

1 ciphart

1.1 parameters

enc encryption function.

p password.

s salt.

M total memory in bytes.

L number of memory lanes for concurrency.

T number of tasks per lane segment.

B minimum quantity of increased protection against password brute-forcing attacks in the unit of relative entropy bits.

K output key size in bytes.

1.2 internal variables

hash hashing function.

$$C \qquad \leftarrow \begin{cases} 64 \text{ bytes} & \text{if enc is } xchacha20\\ 16 \text{ bytes} & \text{if enc is } aes\\ \dots \end{cases}$$

this to reflect the block size of the encryption algorithm that implements enc.

$$V \qquad \leftarrow \begin{cases} 32 \text{ bytes} & \text{if enc is } xchacha20\\ 16 \text{ bytes} & \text{if enc is } aes\text{-}128\\ 32 \text{ bytes} & \text{if enc is } aes\text{-}256\\ \dots \end{cases}$$

this is the size of the encryption key that's used to solve *ciphart*'s tasks. this is different than the enc-independent K which is possibly used by other encryption algorithms in later stages⁵. $\leftarrow \max(\lceil VC^{-1} \rceil, T)$. this is to ensure that we have enough encrypted bytes for new keys.

 \hat{T} $\leftarrow \hat{T} - (\hat{T} \mod 2) + 2$. this is to ensure that there is an even number of tasks in a segment. why? because we need a buffer for storing the clear-text and another for storing the output ciphertext.

Ť

¹mail: toraboracaveman [at] protonmail [dot] com

²https://github.com/P-H-C/phc-winner-argon2

³https://github.com/Al-Caveman/libciphart

⁴https://github.com/Al-Caveman/ciphart

⁵at the expense of losing the meaning of relative entropy bits.

- $\hat{M} \leftarrow M (M \mod C\hat{T}L) + C\hat{T}L$. this is to ensure that it is in multiples of $C\hat{T}L$. why? so that all segments are of equal lengths in order to simplify *ciphart*'s logic. e.g. it wouldn't be nice if the last segments were of unequal sizes.
- $G \leftarrow \hat{M}C^{-1}\hat{T}^{-1}L^{-1}$. total number of segments per lane.
- $N \leftarrow 0$. actual number of times enc is called, where $\hat{N} > 2^B$.
- m_i C-bytes memory for i^{th} task in the \hat{M} -bytes pad.
- $n_l \leftarrow lG\hat{T}$. nonce variable for l^{th} lane with at least 64 bits.
- $f \leftarrow 0$. a flag indicating whether the \hat{M} -bytes pad is filled.
- $v \leftarrow * \text{hash}(p \parallel s, V)$. a pointer to the first byte where V-bytes key is stored.

1.3 output

- k K-bytes key.
- \hat{B} actual quantity of increased security against password brute-forcing attacks in the unit of *relative* entropy bits, where $\hat{B} \geq B$.

1.4 steps

steps of *ciphart* is shown in algorithm 1. this corresponds to *argon2d*. adding a *ciphart-i* variant is a trivial matter, i just didn't do it yet because my threat model currently doesn't benefit from a password independent variant.

2 parallelism

since iterations of the loop in line 3 in algorithm 1 are fully independent of one other, they can quite happily utilise L cpu cores, specially when segment sizes, T, are larger.

3 memory-hardness

Proof. algorithm 1 is just a variation of argon2d, except that it uses an encryption function, enc, instead of a hashing functionn. so if argon2d is memory-hard, then so is ciphart.

4 security interpretation

let's say that we used block encryption function enc and a key $v \leftarrow \mathtt{hash}(p||s,V)$ to encrypt some clear-text into a sequence of C-byte cipher-text blocks m_0, m_1, \ldots let's say that the adversary got those m_0, m_1, \ldots

adversary's goal is to decrypt those cipher-text blocks back into the original clear-text. so what options does he have?

```
algorithm 1: ciphart
```

```
1 while 1 do
        for q = 0, 1, ..., G - 1 do
 2
           for l = 0, 1, ..., L - 1 do
 3
               for t = 0, 1, ..., T - 1 do
 4
                  i \leftarrow qLT + lT + t;
 5
                  if t < T - 1 then
 6
                     i \leftarrow i + 1;
  7
                  else if t = T - 1 then
  8
                   j \leftarrow i - T + 1;
 9
                  m_i \leftarrow \text{enc}(m_i, n_l, v);
10
                  n_l \leftarrow n_l + 1;
11
                  if f = 0 then
12
                      v \leftarrow m_i \mod (gLTC + tC - V);
13
                      if v \geq gLTC - V then
14
                      v \leftarrow v + lTC;
15
                  else
16
                      v \leftarrow m_i \mod (\hat{M} - LTC + tC - V);
17
                      if v \geq gLTC + tC - V then
18
                       v \leftarrow v + LTC;
19
                      else if v \geq gLTC - V then
20
                         v \leftarrow v + lTC;
21
           N \leftarrow N + LT;
22
           if N \geq 2^B then
23
               g_{\text{last}} \leftarrow g;
\mathbf{24}
               go to line 27;
26
     f \leftarrow 1;
27 i \leftarrow g_{\text{last}} LT;
28 k \leftarrow \text{hash}(m_{i+0T} || m_{i+1T} || \dots || m_{i+(L-1)T}, K);
29 \hat{B} \leftarrow log_2N;
30 return k, \hat{B}
```

4.1 key brute-forcing

brute-force the V-bytes key space. in order to get a probability of 1 of finding the key v, the adversary would need to evaluate 2^{8V} many keys⁶.

this works by having the adversary repeatedly decrypting m_0 with enc, each time using a new key among

- $\hat{v}_0 \leftarrow \texttt{0x00...0}$,
- $\hat{v}_1 \leftarrow \texttt{0x00...1}$,
- :
- $\hat{v}_{2^{8V-1}} \leftarrow \texttt{Oxff...f},$

until the adversary finds a key that manages to decrypt m_0 .

the adversary could be extremely lucky and have v_0 manage to decrypt m_0 , hence needing to call enc only once

⁶assuming that each byte is 8 bits.

or he might be extremely unlucky and need to keep trying until $v_{2^{8V}-1}$ manages to do it, hence needing to call enc for 2^{8V} many times.

usually it's sometime in between. asymptotically n on average, the adversary would need to call enc for $2^{8V}/2$ many times.

but in order to guarantee finding v, the brute-forcing process would need to run 2^{8V} many evaluations, hence calling enc for 2^{8V} many times.

that said, the adversary would be fossilised long before his application completes. e.g. since 8V=256 is common for ciphers nowadays, on average while considering the lucky and the unlucky cases, it would take my laptop 4.28×10^{58} centuries to just increment a counter for 2^{256} many times. so if the adversary's best hope is to brute-force keys, our system has reached maximum security.

security interpretation 1. your protection against key brute-forcing attacks with key brute-forcing is $2^{8V} \cos(enc)$, where $\cos(enc)$ is the cost of executing enc a single time.

this is usually called 8V entropy bits. but for the purpose of helping later sections, i think it's better to call it 8V entropy bits from the viewing angle of enc, or, for short:

8V HENC

definition 1. HENC is entropy bits from the viewing angle of enc.

HENC is specific only to enc's algorithm, so must hold with whatever alien technology that the adversary may have, for as long as enc, as an algorithm, has no cryptanalysis. if there is any cryptanalysis, we'll have to subtract bits from 8V, e.g. 8V-z HENC, where z is number of reduced bits due to cryptanalysis.

4.2 normal password brute-forcing

brute-force the H(p) bits password space. where H(p) is the amount of entropy bits in p. in order to get a probability of 1 of finding the password p, the adversary would need to evaluate $2^{H(p)}$ many keys⁷.

this works by having the adversary repeatedly decrypting m_0 with enc, each time using a new key among:

- $\hat{v}_0 \leftarrow \text{hash}(\hat{p}_0 || s, V)$,
- $\hat{v}_1 \leftarrow \text{hash}(\hat{p}_1 || s, V)$,
- :
- $\bullet \ \hat{v}_{2^{H(p)}-1} \leftarrow \operatorname{hash}(\hat{p}_{2^{H(p)}-1} \| s, V),$

until the adversary finds a key that manages to decrypt m_0 .

security interpretation 2. your protection against password brute-forcing attacks with normal hashed passwords is $2^{H(p)} \cos t(\text{hash}) + 2^{H(p)} \cos t(\text{enc})$. the latter enc calls are due to trying to decrypt m_0 at every attempt.

this is usually called H(p) entropy bits. but for the purpose of this paper, i think it's better to be more specific. from the viewing angle of enc, we get the entropy:

$$H(p)$$
 HENC

and from the viewing angle of hash, we get the entropy:

$$H(p)$$
 HHASH

this may seem silly as it is too obvious, but i think it helps me to communicate my thoughts in later sections.

definition 2. HHASH is entropy bits from the viewing angle of hash.

4.3 with argon2

adversary evaluates keys from:

- $\hat{v}_0 \leftarrow \operatorname{argon2}(\hat{p}_0, N, M, \ldots),$
- $\hat{v}_1 \leftarrow \operatorname{argon2}(\hat{p}_1, N, M, \ldots),$
- :
- $\hat{v}_{2^{H(p)}-1} \leftarrow \operatorname{argon2}(\hat{p}_{2^{H(p)}-1}, N, M, \ldots),$

for every argon2 call, hash is called for N many times if there is M bytes of memory. so, from the viewing angle of hash, we get:

- $\hat{v}_0 \leftarrow \text{hash}(\hat{p}_0 || s_0, V)$,
- $\hat{v}_1 \leftarrow \text{hash}(\hat{p}_1 || s_1, V),$
- •
- $\hat{v}_{N2^{H(p)}-1} \leftarrow \text{hash}(\hat{p}_{N2^{H(p)}-1} || s_{N2^{H(p)}-1}, V),$

if an adversary lacks M bytes, he can still compute argon2(p, N, M, ...), but at the expense of needing exponentially more cpu time as his memory is linearly reduced.

security interpretation 3. your protection against password brute-forcing attacks under the argon2 protection is:

$$N2^{H(p)} \operatorname{cost}(\operatorname{hash}) + 2^{H(p)} \operatorname{cost}(\operatorname{enc})$$

= $2^{H(p) + \log_2 N} \operatorname{cost}(\operatorname{hash}) + 2^{H(p)} \operatorname{cost}(\operatorname{enc})$

from the viewing angle of enc we get the entropy:

$$H(p)$$
 HENC

while from the viewing angle of hash we get the entropy:

$$H(p) + \log_2 N$$
 HHASH

⁷the adversary does not know p, obviously, but he knows the process that the user used to generate p, henceforth he knows H(p).

so which one to pick? i think people so far just pick H(p) HENC to reflect password's entropy, and seem to not pick $H(p) + \log_2 N$ HHASH as they don't seem to consider it entropy. but i have two disagreements with people:

- i think not accepting that $H(p) + \log_2 N$ HHASH is entropy is needlessly limiting. because i think $H(p) + \log_2 N$ HHASH is entropy as much as H(p) HENC is entropy; it's just that they are measured from different viewing angles: former is measured from the hash viewing angle, while the latter is measured from the enc viewing angle.
 - i don't see any reason why any of them is more true than the other. i think that both of them are entropies, but of different units.
- why do people only pick either one of them? it's technically false my view. in my view truth is: we're just dealing with two entropies measured in different units. so i think truth is that we have the following number of entropy bits:

$$H(p)$$
 HENC (1)

$$+H(p) + \log_2 N \text{ HHASH}$$
 (2)

which obviously looks a bit ugly, since we cannot sum them due to the terms having different units, which also gives our brain a hard time to get a feeling of what that even means.

so what's the solution here to this ugliness? should we ignore H(p) HENC+H(p)+ $\log_2 N$ HHASH as an entropy measure that quantifies the security of our protection against password brute-forcing, as people currently do, and measure it only in terms of the computational cost by surveying the industry of asics in order to find a map between time and money?

my answer to the questions above is:

- no. the right approach is to just admit that argon2's approach is dragging us into the situation where we end up with two entropies measured in different units.
- argon2's security contribution is measurable as entropy, except that it is ugly since it is made of two entropies in distinct units. if we ignore this, we won't solve the problem, but end up stashing the dirts under the carpet.
- of course, we are always free to also survey the industry of asics to derive time-money maps, but this doesn't have to be our only approach to quantify our security gain.

4.4 with ciphart

adversary evaluates keys from:

•
$$\hat{v}_0 \leftarrow \text{ciphart}(\hat{p}_0, B, M, \ldots),$$

- $\hat{v}_1 \leftarrow \text{ciphart}(\hat{p}_1, B, M, \ldots),$
- :
- $\hat{v}_{2^{H(p)}-1} \leftarrow \text{ciphart}(\hat{p}_{2^{H(p)}-1}, B, M, ...),$

mostly similar to argon2. differences related to this section is that ciphart calls enc instead of hash, and specifies B instead of N, where $B \approx \log_2 N$. similar exponential time penalty applies with memory less than M.

security interpretation 4. your protection against password brute-forcing attacks under the ciphart protection approach is:

$$\begin{split} &\left(2^{H(p)}+2^{\hat{B}}\right) \operatorname{cost}(\operatorname{enc}) + 2^{H(p)} \operatorname{cost}(\operatorname{enc}) \\ &= \left(2^{H(p)}+2^{\hat{B}}+2^{H(p)}\right) \operatorname{cost}(\operatorname{enc}) \\ &= \left(2\times 2^{H(p)}+2^{\hat{B}}\right) \operatorname{cost}(\operatorname{enc}) \\ &= \left(2^{H(p)+\log_2 2}+2^{\hat{B}}\right) \operatorname{cost}(\operatorname{enc}) \\ &= \left(2^{H(p)+1}+2^{\hat{B}}\right) \operatorname{cost}(\operatorname{enc}) \end{split}$$

from the viewing angle of enc we get the entropy:

$$H(p) + 1 + \hat{B}$$
 HENC

and there is no other viewing angle than enc since only enc is used! as a result our brain can easily interpret it.

plus, if we wish to study the industry of asics to obtain time-money maps, our job will be much easier as we can simply look at the cost of asics that are already implemented for enc⁸.

5 summary

⁸e.g. if enc is a popular algorithm, such as aes-256, then we can get more specific data from manufacturers, ultimately giving us a more accurate time-money maps. but when enc is not popular, we may need to do rougher calculations based on the expected asics area as done in the *scrypt* paper.