

HARDWARE-BESCHREIBUNGSSPRACHEN

Hardwareentwurf mit VHDL

21. Oktober 2021 Revision: b941727 (2021-01-16 01:57:51 +0100)

Steffen Reith

Theoretische Informatik Studienbereich Angewandte Informatik Hochschule **RheinMain**

GRAY-CODES

Notizen			
lotizen			

GRUNDLAGEN

Digitale Schaltkreise verbrauchen durch jedem **Zustandswechsel** Energie (neben dem Energieverbrauch durch Leckströme).

Beispiel: Ein Binärzähler mit 3 Bit führt 11 Zustandswechsel durch.

Frage: Wie viele Zustandswechsel führt ein n Bit Binärzähler durch, wenn er von 0 bis 2^n-1 zählt?

Summiert man die Zustandswechsel in den **Spalten** der Wahrheitswertetabelle auf, so ergeben sich:

$$\sum_{i=1}^{n} (2^{i} - 1) = \sum_{i=1}^{n} 2^{i} - n$$
$$= \sum_{i=0}^{n} 2^{i} - n - 1$$
$$= 2^{n+1} - (n+2)$$

7ustandswechsel.

155

Gray-Codes

GRUNDLAGEN (II)

Die Wahrheitswertetabelle eines 3 Bit Zählers hat $2^3=8$ Zeilen, d.h. dieser führt durchschnittlich 11/8=1.375 Wechsel pro Schritt durch.

Für einen 10 Bit Zähler ergeben sich durchschnittlich 1.98828 und für einen 32 Bit Zähler 1.999999992 Zustandswechsel pro Schritt.

Grob kann man sagen, dass **pro Zählschritt zwei Zustandswechsel** durchgeführt werden müssen, da

$$\lim_{n \to \infty} \frac{2^{n+1} - (n+2)}{2^n} = 2$$

gilt.

Geht das auch besser?

Notizen			
Notizen			

GRAY-CODES

Kodiert man die Zahlen von 0 bis 7 durch

000,001,011,010,110,111,101,100

so findet nur ein Zustandswechsel pro Schritt statt.

Diese Codierung wurde durch **Frank Gray** 1934 eingeführt, war aber Émile Baudot (vgl. **Baud**) schon 1878 bekannt. Implizit wurde dieser Code von Louis Gros 1872 bei der Untersuchung von Knobelspielen (chinesisches Ringpuzzle) eingeführt.

157

Gray-Codes

ANWENDUNGEN

Eine Anwendung finden Gray-Codes bei

- → Inkrementgebern
- → Bestimmung des Drehwinkels

Verwendet ein Inkrementgeber die Binärkodierung, so **ändern** aufgrund von Laufzeitunterschieden **nicht** alle sich ändernden Bits **gleichzeitig den Wert**.

Es entstehen unerwünschte Zwischenwerte (vgl. Glitches)

Bei Drehwinkelgebern bewirken **kleine** Winkelfehler auch nur kleine Änderungen im Codewort. Dies gleicht Fertigungstoleranzen im optischen Sensor aus.

Diese Eigenschaft kann auch benutzt werden, um die **Auswirkungen von Laufzeitunterschieden** von Vektoren von Signalen zu **minimieren**.

lotizen			
lotizen			
Jotizen			
lotizen			

EINIGE DEFINITIONEN

Definition

Sei Γ ein beliebiges Alphabet, dann bezeichnet Γ_n eine **Folge von Strings der Länge** n bzgl. einer festgelegten Ordnung.

Definition

Sei $a \in \Gamma$ und $\Gamma_n = (w_1, w_2, \dots, w_m)$, dann ist

$$a\Gamma_n =_{\text{def}} (aw_1, aw_2, \dots, aw_m).$$

eine Folge von Strings der Länge n+1. Mit Γ_n^R bezeichnen wir die **reflektierte** Folge (w_m,\ldots,w_2,w_1) und \circ symbolisiert die **Konkatenation** von Folgen, d.h. $(v_1,v_2,\ldots,v_n)\circ (w_1,w_2,\ldots,w_m)=(v_1,v_2,\ldots,v_n,w_1,w_2,\ldots,w_m).$

159

Notizen

Gray-Codes

BINÄRER GRAY-CODE

Ein (binärer) Graycode Γ_n der Länge n kann nun leicht induktiv definiert werden:

Definition

Sei $\Gamma = \{0, 1\}$, dann

(IA) $\Gamma_0 = (\epsilon)$, wobei ϵ das leere Wort ist

(IS) $\Gamma_{n+1} = 0\Gamma_n \circ 1\Gamma_n^R$

Diese Definition funktioniert ähnlich für beliebige Alphabete, wir beschränken uns auf den binären Fall.

Fakt

Sei $\Gamma=\{0,1\}$, dann $\Gamma_n^R=\Gamma_n\oplus 10^{n-1}$.

Notizen		

BINÄRER GRAY-CODE (II)

Beispiel

Aus der induktiven Definition ergeben sich die folgenden Codewörter:

n = 1 : (0, 1)

n=2 : (00,01,11,10)

n = 3: (000, 001, 011, 010, 110, 111, 101, 100)

Theorem

Es gilt $\#(\Gamma_n) = (\#\Gamma)^n$, d.h. im binären Fall gibt es genau 2^n verschiedene Codewörter der Länge n. Der Gray-Code ist also eine **Permutation** der Binärdarstellung.

161

Gray-Codes

BINÄRER GRAY-CODE (III)

Die ersten $2^n/2$ Codewörter in Γ_n entsprechen (mit führender 0) immer den Codewörtern aus Γ_{n-1} . Die Funktion g mit

$$g \colon \mathbb{N} \to \bigcup_{n \ge 1} \Gamma_n$$

mit

 $g(0) =_{\operatorname{def}} (0), g(1) =_{\operatorname{def}} (1), g(2) =_{\operatorname{def}} (11), g(3) =_{\operatorname{def}} (110), \dots$ heißt Graysche Funktion.

Theorem

Die unendliche Folge $\Gamma_{\infty}=(g(0),g(1),g(2),g(3),\dots)$ ist eine Permutation der natürlichen Zahlen.

Votizen			
Notizen			
Votizen			
Notizen			
Votizen			
Notizen			

EIGENSCHAFTEN DES GRAY-CODES

Eine einfache Induktion über die induktive Struktur von Γ_n ergibt:

Theorem

Sei $i \in \mathbb{N}$, dann ist die **Hamingdistanz** zwischen g(i) und g(i+1) **genau** 1.

Lemma

Sei $k = 2^n + r$ mit $0 \le r < 2^n$, dann gilt

$$g(k) = 2^n + g(2^n - 1 - r).$$

Dies ergibt sich, da g(k) ein Codewort aus dem Block $1\Gamma_n$ ist. Der Summand 2^n entspricht der führenden 1 und 2^n-1-r entspricht dem reflektierten Wert von r.

163

Notizen

Gray-Codes

Eine Induktion über n zeigt dann:

Theorem

Sei $k \in \mathbb{N}$ mit der binären Repräsentation $(\dots b_2b_1b_0)_2$, dann ist $g(k) = (\dots a_2a_1a_0)_2$, wobei

$$a_j = b_j \oplus b_{j+1}, j \ge 0.$$

Dies führt direkt zur einer Methode eine Zahl in Binärdarstellung in Gray-Code umzuwandeln:

Theorem

Sei $b=(b_n\dots b_1b_0)_2$ eine natürliche Zahl, dann gilt

$$(b_n \dots b_1 b_0)_2 \oplus (0b_n \dots b_2 b_1)_2 = g(b).$$

Also gilt $g(b) = b \oplus b/2$.

Notizen			
Notizen			

EINE VHDL-IMPLEMENTIERUNG

```
1 library ieee;
use ieee.std_logic_1164.all;
   use ieee.numeric_std.all;
   entity GrayCnt is
     generic(width : integer := 5);
     port (clk : in std_logic;
           reset : in std_logic;
10
           enable : in std_logic;
11
           gval : out std_logic_vector(width - 1 downto 0));
12
13
14
   end GrayCnt;
15
   architecture BinConv of GrayCnt is
16
     signal val_reg : std_logic_vector(width - 1 downto 0);
     signal val_next : std_logic_vector(width - 1 downto 0);
19 begin
```

165

Gray-Codes

EINE VHDL-IMPLEMENTIERUNG (II)

```
state_logic : process (clk)
      begin
       if (rising_edge(clk)) then
          -- Synchron reset
         if(reset = '1') then
            -- Set binary counter to the predecessor of 0
            val_reg <= (others => '1');
10
          else
11
12
            -- Check if counter is enabled
13
            if (enable = '1') then
14
15
              -- Set value on rising edge
16
              val_reg <= val_next;</pre>
17
            end if;
19
          end if;
20
21
        end if;
      end process;
```

Notizen		
N1 - 12		
Notizen		

EINE VHDL-IMPLEMENTIERUNG (III)

```
1    -- Next state logic
2    val_next <= std_logic_vector(unsigned(val_reg) + 1);
3
4    -- Convert to Gray-Code as output (note: g(k) = k xor k/2)
5    gval <= val_reg xor ("0" & val_reg(width - 1 downto 1));
6
7    end architecture;</pre>
```


Diese Implementierung ist korrekt, aber es wurde nichts gewonnen, da die "Next state logic" eine Addition verwendet.

167

Gray-Codes

EINE BEMERKUNG ZUM ENERGIEVERBAUCH

Wir haben ja schon gesehen, dass bei einer Addition unerwünschte Zwischenzustände (Glitches) entstehen, die zu unerwünschtem Energieverbrauch führen:

Der gleiche Simulationslauf mit höherer Zeitauflösung:

Gibt es einen Gray-Counter ohne Addierer?

Notizen			
Votizen			
Jotizen			
Votizen			
lotizen			
lotizen			
Votizen			
Notizen			
Votizen			
Votizen			
Votizen			
Notizen			
Votizen			
Votizen			
Notizen			

BEISPIEL: EIN 4-BIT GRAY-COUNTER

Wert	Code	toggle	Wert	Gray	toggle
0	0000	0	8	1100	0
1	0001	1 1	9	1101	1
2	0011	0	10	1111	0
3	0010	1	11	1110	1
4	0110	0	12	1010	0
5	0111	1 1	13	1011	1
6	0101	0	14	1001	0
7	0100	1 1	15	1000	1

Beobachtung

Das LSB des Gray-Counters ändert sich immer, wenn toggle von 0 auf 1 springt.

169

Notizen

Gray-Codes

BESCHREIBUNG EINES GRAY-COUNTERS

Mit $Q^{(i)}$ wird ab jetzt ein Bit im Zählschritt i beschrieben.

Fakt

Das LSB Q_0 eines Gray-Counters kann mit Hilfe eine Hilfsbits Q_t Schritt für Schritt durch die Gleichungen

$$Q_t^{(0)} = 0$$

$$Q_t^{(i+1)} = \neg Q_t^{(i)}$$

$$Q_0^{(0)} = 0$$

$$Q_0^{(i+1)} = \neg (Q_0^{(i)} \oplus Q_t^{(i)})$$

beschrieben werden.

Damit entspricht $Q_t^{(i)}$ der Tabellenspalte toggle .

Notizen				
Notizen				
Votizen				
Notizen				
	Nat'-			
	Notizen			

BESCHREIBUNG EINES GRAY-COUNTERS (II)

Beobachtung

Das MSB eines Gray-Counters ändert sich immer, wenn alle Bits außer dem Bit n-2 des Codeworts 0 sind.

Das MSB eines n Bits Gray-Counters kann durch die folgenden Gleichungen beschrieben werden:

Fakt

$$\begin{array}{rcl} Q_{n-1}^{(0)} & = & 0 \\ Q_{n-1}^{(i+1)} & = & Q_{n-1}^{(i)} \oplus (Q_{n-2}^{(i)} \wedge \bigwedge_{j=0}^{n-3} \neg Q_j^{(i)}) \end{array}$$

171

Gray-Codes

BESCHREIBUNG EINES GRAY-COUNTERS (III)

Beobachtung

Ein "inneres" Bits eines Gray-Counters ändert sich immer, wenn die niederwertigen Bits der Codeworts auf den regulären Ausdruck 10^* matchen.

Die inneren Bits $Q_k^{(i)}$ mit $1 \leq k \leq n-2$ lassen sich zeitlich wie folgt beschreiben:

Fakt

$$Q_k^{(0)} = 0$$

$$Q_k^{(i+1)} = Q_k^{(i)} \oplus (Q_t^{(i)} \wedge Q_{k-1}^{(i)} \wedge \bigwedge_{j=0}^{k-2} \neg Q_j^{(i)})$$

Notizen			
Notizen			

EIN GRAY-COUNTER OHNE ADDIERER

```
architecture Native of GrayCnt is
     signal hBit_reg : std_logic; -- Hold the toggling bit
     signal hBit_next : std_logic;
     signal val_reg : std_logic_vector(width - 1 downto 0);
     signal val_next : std_logic_vector(width - 1 downto 0);
   begin
7
     state logic : process (clk, reset)
10
     begin
       if (rising_edge(clk)) then
11
         if(reset = '1') then
12
           hBit_reg <= '1';
13
           val_reg <= (val_reg'high => '1', others => '0');
14
15
           if (enable = '1') then
16
             hBit_reg <= hBit_next;
17
             val_reg <= val_next;</pre>
           end if;
20
         end if;
       end if:
     end process;
```

173

Gray-Codes

EIN GRAY-COUNTER OHNE ADDIERER(II)

```
gval <= val_reg; -- Output logic</pre>
     next_state : process(val_reg, hBit_reg)
       variable tmp : std_logic;
     begin
       hBit_next <= not hBit_reg; -- Toggle
        val next(val next'low) <=</pre>
         not(val_reg(val_reg'low) xor (hBit_reg)); -- LSB
10
       -- Teil der Gleichung fuer das MSB
11
       tmp := '1';
12
       for j in 0 to width - 3 loop
13
        -- Teste auf Muster 0^*
14
         tmp := tmp and not(val_reg(j));
15
        end loop;
16
        -- Vollstaendige Gleichung fuer das MSB
18
        val next(val next'high) <=</pre>
19
         val_reg(val_reg'high) xor (tmp and hBit_reg);
```

lotizen			
Votizen			
Notizen			
Notizen			
Votizen			
Votizen			
Jotizen			
lotizen			
Votizen			
lotizen			
lotizen			

EIN GRAY-COUNTER OHNE ADDIERER(III)

```
-- Erzeuge alle inneren Bits
       for i in 1 to width - 2 loop
2
         -- Test auf Muster 10^*
         tmp := '1';
         for j in 0 to i - 2 loop
         tmp := tmp and not(val_reg(j));
         end loop;
10
         tmp := val_reg(i - 1) and tmp and hBit_reg;
11
12
         -- Vollständige Gleichung fuer Bit i
13
         val_next(i) <= val_reg(i) xor tmp;</pre>
14
15
16
       end loop;
17
18
     end process;
19
   end architecture;
```

175

Gray-Codes

VERGLEICH

Obwohl die native Implementierung komplizierter wirkt, benötigt diese signifikant weniger Platz

Device Utilization Summary (estimated values)						
Logic Utilization	Used	Available	Utilization			
Number of Slice Registers	9	126800		0%		
Number of Slice LUTs	10	63400		0%		
Number of fully used LUT-FF pairs	9	10		90%		
Number of bonded IOBs	11	210		5%		
Number of BUFG/BUFGCTRLs	1	32		3%		

als die Variante mit einem binären Zähler:

Device Utilization Summary (estimated values)					
Logic Utilization	Used	Available	Utilization		
Number of Slice Registers	8	126800		09	
Number of Slice LUTs	15	63400		09	
Number of fully used LUT-FF pairs	8	15		539	
Number of bonded IOBs	11	210		59	
Number of BUFG/BUFGCTRLs	1	32		39	

Notizen			
Notizen			