DSO530 Statistical Learning Methods

Lecture 7a: Decision Trees

Dr. Xin Tong
Department of Data Sciences and Operations
Marshall School of Business
University of Southern California
xint@marshall.usc.edu

Decision Trees

- Decision tress are supervised learning methods.
- They can be used for both regression and classification.
- They involve partitioning the predictor space into a number of simple regions (boxes, in particular).
- To make a prediction for a given observation, we typically use the mean (regression) or the mode (classification) of the training observations in the region to which it belongs.
- For binary classification problems, we can of course change the decision threshold from 1/2 to other values.

Decision Tree for Hitters Data

• For a given decision tree, making prediction is straightforward.

FIGURE 8.1. For the Hitters data, a regression tree for predicting the log salary of a baseball player, based on the number of years that he has played in the major leagues and the number of hits that he made in the previous year. At a given internal node, the label (of the form $X_j < t_k$) indicates the left-hand branch emanating from that split, and the right-hand branch corresponds to $X_j \ge t_k$. For instance, the split at the top of the tree results in two large branches. The left-hand branch corresponds to Years>4.5, and the right-hand branch corresponds to Years>e4.5. The tree has two internal nodes and three terminal nodes, or leaves. The number in each leaf is the mean of the response for the observations

Some terms for a tree

- Root: no parent node, two children nodes
- Internal node: two children nodes
- Terminal node (leaf): one parent node, no children node
- Branch: a segment of the trees that connect the nodes

At terminal nodes, we make predictions.

Some terms for a tree

- Root: no parent node, two children nodes
- Internal node: two children nodes
- Terminal node (leaf): one parent node, no children node
- Branch: a segment of the trees that connect the nodes

At terminal nodes, we make predictions.

The previous decision tree corresponds to a partition of the feature space

FIGURE 8.2. The three-region partition for the Hitters data set from the regression tree illustrated in Figure 8.1.

Figure 2: Feature space partition

Some thoughts after seeing ths first tree example

- In each split of the tree, we need to decide
 - which variable to split?
 - where do we split this variable?
- To answer the two above questions, we need some formal criteria
- In the least squares approach to linear regression, we used RSS as a criterion. Can we borrow it?
- Another question: we should think about a stopping rule. That is, when do we stop splitting? or every formed node will be ft.
- Instead of the binary split, why didn't people split a variable into three parts in a step? Actually professed Sometimes, but exict to split in 2.
 Some people say once you split a variable, you should not use this multiple.
- Some people say once you split a variable, you should not use this variable in subsequent splits. Do you agree with this comment? If not, can you name some situations in which we'd better allow splitting a variable multiple times.

Decision tree for regression

- The RSS analog for decision tree for regression involves two steps:
 - We divide the feature space (i.e., the set of possible values for X_1, X_2, \dots, X_p) into J distinct and non-overlapping regions, R_1, R_2, \dots, R_J .
 - For every observation that falls into the region R_j, we make the same prediction, which is simply the mean of the response values for the training observations in R_j.
- But how to find regions R_1, \dots, R_J ? The goal is to find boxes R_1, \dots, R_J that minimize the RSS, given by

$$\sum_{j=1}^{J} \sum_{i \in R_i} (y_i - \hat{y}_{R_j})^2,$$

where \hat{y}_{R_j} is the mean response for the training observations within the *j*th box.

How to do the partition?

- It is computationally infeasible to consider every possible partition of the feature space into J boxes.
- We take a top-down, greedy approach that is known as recursive binary splitting.
- It is a greedy approach because at each step of the tree-building process, the best split is made at that particular step, rather than looking ahead and picking a split that will lead to a better tree in some future step.
- For any j and s, we define the pair of half-planes by

$$R_1(j,s) = \{X|X_j < s\}, \text{ and } R_2(j,s) = \{X|X_j \ge s\},$$

and set the values of j and s that minimize the equation

$$\sum_{i:x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i:x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

where \hat{y}_{R_1} is the mean response for the training observations in $R_1(j,s)$, and \hat{y}_{R_2} is the mean response for the training observations in $R_2(j,s)$.

- The process continues until a stopping criterion is reached; for instance, we may continue until no region contains more than five observations.
- Note that it is very tempting to stop where the reduction in RSS for the best split fall below a threshold. But this criterion is too greedy as a mediocre split might lead to the a very good split down the road.
- But when we grow a very deep and bushy tree T_0 , we have overfitted the training data (this tree has high variance or high bias?). To solve the problem:
- Cost complexity pruning (weakest link pruning): consider a sequence of trees indexed by a nonnegative tuning parameter α (how to tune it?). For each value of α , there exists a substree $T \subset T_0$ such that

$$\sum_{m=1}^{T} \sum_{i: x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha(T)$$
 this parameter to prove the provention to prove

is as small as possible. (Does this remind you LASSO and Ridge?)

- ullet As lpha increases, we get a sequence of nested trees
- The next algorithm summarizes the entire tree building process

DecisionTreeRegressor in sklearn for implementation

Algorithm 8.1 Building a Regression Tree

- 1. Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations.
- 2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α .
- 3. Use K-fold cross-validation to choose α . That is, divide the training observations into K folds. For each k = 1, ..., K:
 - (a) Repeat Steps 1 and 2 on all but the kth fold of the training data.
 - (b) Evaluate the mean squared prediction error on the data in the left-out kth fold, as a function of α .
 - Average the results for each value of α , and pick α to minimize the average error.
- 4. Return the subtree from Step 2 that corresponds to the chosen value of α .

Trees for classification k=2, m+n (1-6)+4 (1-4)[11 22]

= 8.48 {ufunplimited for Crini Index dass RSS is not a proper criterion for classification problems • The most natrual and intuitive substitue is the classification error But it turns out that classification error is not sufficiently sensitive for • In practice people use $Gini\ index\ G = \sum_{k=1}^{|K|} \hat{p}_{mk} (1 - \hat{p}_{mk})$ • entropy $D = -\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}$ • where \hat{p}_{mk} is the proportion of training observations in the mth region that are from the kth class, and K is the total number of classes The gini index is slightly faster to compute and is the default criterion used in the DecisionTreeClassifier model of scikit-learn Both Gini index and entropy measure *node purity* • When K=2, what is the maximum value for Gini index? what is the smallest? Spinory classification

Advantages and disadvantages of trees

- Trees are very easy to explain to people. In fact, they are even easier to explain than linear regression!
- Why? No mathematical formula needed in the communication
- Some people believe that decision trees more closely mirror human decision-making than do the regression and classification approaches seen in previous lectures.
- Trees can be displayed graphically, and are easily interpreted even by a non-expert (especially if they are small).
- Unfortunately, trees generally do not have the great predictive accuracy.
- This disadvantage motivates the ensemble methods such as bagging, random forests and boosting.

Update your sklearn if the version is older than 0.22

Cost-complexity pruning did not work with older sciki-learn

elect iter	ms to perform actions on them.	Upload New →
	# / Desktop / Thesis	Text File
_	o	Folder Terminal
	□ _oldScript	Idillina
	D Dati	Notebooks Python 2
	□ NewDati	Python 2
□ C	□ NowPatiNowFeatures	

Figure 3: Update instruction