MEEN 621 Notes

Shivanand P

November 16, 2022

Contents

1	Pote	ential Flow
	1.1	$Cartesian \Leftrightarrow Polar \ Velocities \qquad \dots \qquad $
	1.2	Stream Function \Leftrightarrow Potential Function \Leftrightarrow Velocities
	1.3	Complex Potentials
		1.3.1 Legend

1. Potential Flow

$$i = \sqrt{-1}$$

$$z = x + iy = re^{i\theta} = r(\cos\theta + i\sin\theta)$$

$$\bar{z} = x - iy = re^{-i\theta} = r(\cos\theta - i\sin\theta)$$

$$x = r\cos\theta$$

$$y = r\sin\theta$$

$$r = \sqrt{x^2 + y^2} = |z| = |z\bar{z}|^{\frac{1}{2}}$$

$$\theta = \arctan\frac{y}{x}$$

Complex Potential $F(z) = \phi(z) + i\psi(z)$

Complex Velocity
$$w(z) = u - iv = (v_r - iv_\theta)e^{-i\theta} = \frac{dF(z)}{dz}$$

$$\bar{w}(z) = u + iv = (v_r + iv_\theta)e^{i\theta}$$

1.1. Cartesian ⇔ Polar Velocities

$$u = v_r \cos \theta - v_\theta \sin \theta$$
$$v = v_r \sin \theta + v_\theta \cos \theta$$

$$v_r = u\cos\theta + v\sin\theta$$
$$v_\theta = -u\sin\theta + v\cos\theta$$

1.2. Stream Function ⇔ Potential Function ⇔ Velocities

Also called Cauchy Reimann Equations

$$u = \frac{\partial \phi}{\partial x} = \frac{\partial \psi}{\partial y}$$
$$v = \frac{\partial \phi}{\partial y} = -\frac{\partial \psi}{\partial x}$$

$$v_r = \frac{\partial \phi}{\partial r} = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$$
$$v_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta} = -\frac{\partial \psi}{\partial r}$$

1.3. Complex Potentials

	F(z)	φ	ψ	w(z)	u and v _r	v and $v_{ heta}$
Uniform	Ue ^{−iα} z	$U(x\cos\alpha+y\sin\alpha)$	$U(y\cos\alpha-x\sin\alpha)$	Ue ^{−iα}	$U\cos\alpha$	$U\sin \alpha$
Ormonn		$Ur\cos(\theta-lpha)$	$Ur\sin(\theta-lpha)$		$U\cos(\theta-lpha)$	$-U\sin(\theta-lpha)$
Corner	Cz ⁿ			nCz^{n-1}		
Comer		$Cr^n\cos n\theta$	Cr ⁿ sin nθ		$nCr^{n-1}\cos[(n-1)\theta]$	$-nCr^{n-1}\sin[(n-1)\theta]$
Source/Sink	$\frac{m}{2\pi}\ln(z-z_0)$	$\frac{m}{4\pi} \ln[(x-x_0)^2 + (y-y_0)^2]$	$\frac{m}{2\pi}$ arctan $\frac{y-y_0}{x-x_0}$	$\frac{m}{2\pi(z-z_0)}$	$\frac{m}{2\pi} \left(\frac{x}{x^2 + y^2} \right)$	$\frac{m}{2\pi} \left(\frac{y}{x^2 + y^2} \right)$
JOGICC/JII IK		$\frac{m}{2\pi} \ln r$	$\frac{m}{2\pi}\theta$		<u>m</u> 2πr	0
Free Vortex	$-\frac{i\Gamma}{2\pi}\ln(z-z_0)$	$\frac{\Gamma}{2\pi}$ arctan $\frac{y-y_0}{x-x_0}$	$-\frac{\Gamma}{2\pi} \ln r$	$-\frac{i\Gamma}{2\pi(z-z_0)}$	$-\frac{\Gamma}{2\pi}\frac{y}{x^2+y^2}$	$\frac{\Gamma}{2\pi} \frac{x}{x^2 + y^2}$
TIGG VOITEX		$\frac{\Gamma}{2\pi}\theta$	$-\frac{\Gamma}{2\pi} \ln r$		0	$\frac{\Gamma}{2\pi r}$

Legend

- Uniform
 - U: Uniform velocity magnitude
 - $-\alpha$: Angle of attack the angle at which the direction of the uniform velocity is oriented with respect to the horizontal
- Corner
 - C: Indicates the direction. C > 0 always
 - n: $\frac{\pi}{\text{angle of the corner}}$
- Source/Sink
 - m: Volume flow rate per unit dimension normal to the page. For source, m > 0, whereas for sink, m < 0