# Using Convolutional Neural Networks for Streamflow Prediction and Projection

Shiheng Duan

April 14, 2021





#### Previous work and motivation

- Physical model and data-driven model: Hydrological models are slow and neural networks can be accelerated by GPU. Long-short memory (LSTM) model has been applied to hydrology prediction.
- Streamflow Prediction and Projection: Prediction models with streamflow as input predictors can help improve the accuracy but cannot be used for projection.
- LSTM can capture temporal features, but training is slow. CNN has been used for time series tasks in computer science.
- Can we use CNN to replace LSTM and design a projection (prediction) model?

#### LSTM vs CNN

• Problem to solve: Take input predictor series (meteorology forcing), generate one output (flow rate).





### Projection setup

 We selected 20 basins if for Large-Samples Studing Constructed Analogs), value
 (CanESM2, MIROC5, Hange)

•  $Q_t = F(P_t, P_{t-1}, ..., P_{t-1})$ 

Local model is trained sland 2419 testing sample performance. The loss formance.



#### Prediction Result

- Ensemble: train each model 10 times.
- Generally, TCNN and LSTM is better than linear regression and ANN.
- TCNN can achieve comparable performance to LSTM.

| Model                | Training time (s) |
|----------------------|-------------------|
| TCNN                 | 77                |
| Stacked LSTM         | 150               |
| One-layer LSTM (256) | 220               |
| One-layer LSTM (370) | 380               |



## Projection Result

 Historical climatology shows the result forced by LOCA historical data.
 Compared with USGS observations, most basins tend to match well.



## Projection Result

- Projection FDC (flow duration curve) shows the result forced by LOCA data at the end of the century.
- The x axis is the probability and y axis is the flow rate. In general, large flow rate corresponds to low probability.
- The projections generally indicate that higher streamflow become more probable, and the peak flow rate will be higher, except for SN.



#### Projection Decompose

 The change in streamflow can be decomposed into response of precipitation, solar radiation and temperature.

$$\Delta Q_{p} = Q(P', T, S) - Q(P, T, S)$$

$$\Delta Q_{T} = Q(P, T', S) - Q(P, T, S)$$

$$\Delta Q_{S} = Q(P, T, S') - Q(P, T, S)$$

$$\Delta Q_{PTS} = Q(P', T', S') - Q(P, T, S)$$

$$\Delta Q_{PTS} = \Delta Q_{p} + \Delta Q_{T} + \Delta Q_{S} + r$$

$$\Delta Q_{PTS} = \Delta Q_{linear} + r$$

• To reduce noise from daily streamflow, the monthly averaged streamflow is used for decomposition.



### Prediction intercomparison

- Local model can not be too complex because of limited available samples.
- With more forcing data, the prediction accuracy will increase.
- We intend to compare TCNN, selfattention with LSTM in continental scale.
- All models are trained with precipitation, temperature (min and max), vapor pressure from three different forcing sets.



#### Future work

- Find out the reason of poor performance in Great Plain.
- Use machine learning algorithms for precipitation analysis.
- The Milton Award funding is used for a new GPU (RTX 2080Ti) which can accelerate ML models.



## Questions

## Thank you