If f is an injection then $f(A) \cap f(B) \subset f(A \cap B)$

Let x be an element of $f(A) \cap f(B)$. Then $x \in f(A)$ and $x \in f(B)$. That is, there exists $y \in A$ such that f(y) = x and there exists $z \in B$ such that f(z) = x. Since f is an injection, f(y) = x and f(z) = x, we have that y = z. We would like to find $u \in A \cap B$ s.t. f(u) = x. But $u \in A \cap B$ if and only if $u \in A$ and $u \in B$. Since y = z, we have that $y \in B$. Therefore, setting u = y, we are done.

If g, f are injections then $(g \circ f)$ is an injection.

Let x, y and z be such that g(f(x)) = z and g(f(y)) = z. Then, since g is an injection, we have that f(x) = f(y). Therefore, since f is an injection, x = y if f(y) = f(y). Since g is an injection and g(f(y)) = z, f(y) = f(y) if g(f(y)) = z. But this is clearly the case, so we are done.

Prove that
$$A \subseteq f^{-1}(f(A))$$

Let x be an element of A. We would like to show that $x \in f^{-1}(f(A))$, i.e. that $f(x) \in f(A)$. But this is clearly the case, so we are done.

Prove that
$$f(f^{-1}(A)) \subset A$$

Let x be an element of $f(f^{-1}(A))$. Then there exists $y \in f^{-1}(A)$ such that f(y) = x. Since $y \in f^{-1}(A)$, we have that $f(y) \in A$. Since f(y) = x, we have that $x \in A$. But this is clearly the case, so we are done.

Prove that
$$f(A \cap B) \subseteq f(A) \cap f(B)$$

By definition, since $y \in f(A \cap B)$, there exists $z \in A \cap B$ such that f(z) = y. Since $z \in A \cap B$, $z \in A$ and $z \in B$. We would like to show that $y \in f(A) \cap f(B)$, i.e. that $y \in f(A)$ and $y \in f(B)$. We would like to show that $y \in f(A)$. But this is clearly the case, so we are done. Thus $y \in f(B)$ and we are done.

Prove that
$$f^{-1}(A \cap B) \subseteq f^{-1}(A) \cap f^{-1}(B)$$

Since $x \in f^{-1}(A \cap B)$, we have that $f(x) \in A \cap B$. Then $f(x) \in A$ and $f(x) \in B$. We would like to show that $x \in f^{-1}(A) \cap f^{-1}(B)$, i.e. that $x \in f^{-1}(A)$ and $x \in f^{-1}(B)$. We would like to show that $x \in f^{-1}(A)$, i.e. that $f(x) \in A$. We would like to show that $x \in f^{-1}(B)$, i.e. that $f(x) \in B$. But this is clearly the case, so we are done.

Prove that
$$f^{-1}(A) \cap f^{-1}(B) \subseteq f^{-1}(A \cap B)$$

Let x be an element of $f^{-1}(A) \cap f^{-1}(B)$. Then $x \in f^{-1}(A)$ and $x \in f^{-1}(B)$. Then $f(x) \in A$ and $f(x) \in B$. We would like to show that $x \in f^{-1}(A \cap B)$, i.e. that $f(x) \in A \cap B$. We would like to show that $f(x) \in A \cap B$, i.e. that $f(x) \in A$ and $f(x) \in B$. But this is clearly the case, so we are done.

Prove that
$$f^{-1}(A \cup B) \subseteq f^{-1}(A) \cup f^{-1}(B)$$

Let x be an element of $f^{-1}(A \cup B)$. Then $f(x) \in A \cup B$. Then $f(x) \in A$ or $f(x) \in B$. We would like to show that $x \in f^{-1}(A) \cup f^{-1}(B)$, i.e. that $x \in f^{-1}(A)$ or $x \in f^{-1}(B)$. We would like to show that $x \in f^{-1}(A)$, i.e. that $f(x) \in A$. But this is clearly the case, so we are done. We would like to show that $x \in f^{-1}(A) \cup f^{-1}(B)$, i.e. that $x \in f^{-1}(A)$ or $x \in f^{-1}(B)$. We would like to show that $x \in f^{-1}(A)$, i.e. that $f(x) \in A$. We would like to show that $x \in f^{-1}(B)$, i.e. that $f(x) \in B$. But this is clearly the case, so we are done.

Prove that
$$f^{-1}(A) \cup f^{-1}(B) \subseteq f^{-1}(A \cup B)$$

Let x be an element of $f^{-1}(A) \cup f^{-1}(B)$. Then $x \in f^{-1}(A)$ or $x \in f^{-1}(B)$. Since $x \in f^{-1}(A)$, we have that $f(x) \in A$. Since $x \in f^{-1}(B)$, we have that $f(x) \in B$. We would like to show that $x \in f^{-1}(A \cup B)$, i.e. that $f(x) \in A \cup B$. We would like to show that $f(x) \in A \cup B$, i.e. that $f(x) \in A$ or $f(x) \in B$. But this is clearly the case, so we are done. We would like to show that $x \in f^{-1}(A \cup B)$, i.e. that $f(x) \in A \cup B$. We would like to show that $f(x) \in A \cup B$, i.e. that $f(x) \in A \cup B$. But this is clearly the case, so we are done.

If A and B are open sets, then $A \cup B$ is also open.

Let x be an element of $A \cup B$. Then $x \in A$ or $x \in B$. Since A is open and $x \in A$, there exists $\alpha > 0$ such that $w \in A$ whenever $d(x,w) < \alpha$. Since B is open and $x \in B$, there exists $\beta > 0$ such that $p \in B$ whenever $d(x,p) < \beta$. We would like to find $\eta > 0$ s.t. $z \in A \cup B$ whenever $d(x,z) < \eta$. But $z \in A \cup B$ if and only if $z \in A$ or $z \in B$. We know that $z \in A$ if $d(x,z) < \alpha$. Therefore, setting $\eta = \alpha$, we are done. We would like to find $\theta > 0$ s.t. $u \in A \cup B$ whenever $d(x,u) < \theta$. But $u \in A \cup B$ if and only if $u \in A$ or $u \in B$. We know that $u \in B$ if $d(x,u) < \beta$. Therefore, setting $\theta = \beta$, we are done.

If A, B, and C are open sets, then $A \cup (B \cup C)$ is also open.

Let x be an element of $A \cup B \cup C$. Then $x \in A$ or $x \in B \cup C$. Since A is open and $x \in A$, there exists $\alpha > 0$ such that $w \in A$ whenever $d(x,w) < \alpha$. Since $x \in B \cup C$, $x \in B$ or $x \in C$. Since B is open and $x \in B$, there exists $\delta' > 0$ such that $r \in B$ whenever $d(x, r) < \delta'$. Since C is open and $x \in C$, there exists $\delta'' > 0$ such that $s \in C$ whenever $d(x,s) < \delta''$. We would like to find $\eta > 0$ s.t. $z \in A \cup B \cup C$ whenever $d(x,z) < \eta$. But $z \in A \cup B \cup C$ if and only if $z \in A$ or $z \in B \cup C$. We know that $z \in A$ if $d(x,z) < \alpha$. Therefore, setting $\eta = \alpha$, we are done. We would like to find $\beta > 0$ s.t. $v \in A \cup B \cup C$ whenever $d(x,v) < \beta$. But $v \in A \cup B \cup C$ if and only if $v \in A$ or $v \in B \cup C$. We would like to show that $v \in B \cup C$, i.e. that $v \in B$ or $v \in C$. We know that $v \in B$ if $d(x, v) < \delta'$. Therefore, setting $\beta = \delta'$, we are done. We would like to find $\gamma > 0$ s.t. $p \in A \cup B \cup C$ whenever $d(x, p) < \gamma$. But $p \in A \cup B \cup C$ if and only if $p \in A$ or $p \in B \cup C$. We would like to show that $p \in B \cup C$, i.e. that $p \in B$ or $p \in C$. We know that $p \in C$ if $d(x, p) < \delta''$. Therefore, setting $\gamma = \delta''$, we are done.

If A and B are open sets, then $A \cap B$ is also open.

Let x be an element of $A\cap B$. Then $x\in A$ and $x\in B$. Therefore, since A is open, there exists $\eta>0$ such that $u\in A$ whenever $d(x,u)<\eta$ and since B is open, there exists $\theta>0$ such that $v\in B$ whenever $d(x,v)<\theta$. We would like to find $\delta>0$ s.t. $y\in A\cap B$ whenever $d(x,y)<\delta$. But $y\in A\cap B$ if and only if $y\in A$ and $y\in B$. We know that $y\in A$ whenever $d(x,y)<\eta$ and that $y\in B$ whenever $d(x,y)<\theta$. Assume now that $d(x,y)<\delta$. Then $d(x,y)<\eta$ if $\delta\leqslant\eta$ and $d(x,y)<\theta$ if $\delta\leqslant\theta$. We may therefore take $\delta=\min(\eta,\theta)$ and we are done.

If A and B are closed sets, then $A \cap B$ is also closed.

Let (a_n) and a be such that (a_n) is a sequence in $A \cap B$ and $a_n \to a$. Then (a_n) is a sequence in A and (a_n) is a sequence in B. Therefore, since A is closed and $a_n \to a$, we have that $a \in A$ and since B is closed and $a_n \to a$, we have that $a \in B$. We would like to show that $a \in A \cap B$, i.e. that $a \in A$ and $a \in B$. But this is clearly the case, so we are done.

The pre-image of a closed set U under a continuous function f is closed.

Let (a_n) and a be such that (a_n) is a sequence in $f^{-1}(U)$ and $a_n \to a$. Then $f(a_n)$ is a sequence in U. We would like to show that $a \in f^{-1}(U)$, i.e. that $f(a) \in U$ and since U is closed, $f(a) \in U$ if $f(a_n) \to f(a)$. Let $\epsilon > 0$. We would like to find N s.t. $d(f(a), f(a_n)) < \epsilon$ whenever $n \ge N$. Since f is continuous, there exists $\delta > 0$ such that $d(f(a), f(a_n)) < \epsilon$ whenever $d(a, a_n) < \delta$. Since $a_n \to a$, there exists N' such that $d(a, a_n) < \delta$ whenever $n \ge N'$. Therefore, setting N = N', we are done.

The pre-image of an open set U under a continuous function f is open.

Let x be an element of $f^{-1}(U)$. Then $f(x) \in U$. Therefore, since U is open, there exists $\eta > 0$ such that $u \in U$ whenever $d(f(x), u) < \eta$. We would like to find $\delta > 0$ s.t. $y \in f^{-1}(U)$ whenever $d(x,y) < \delta$. But $y \in f^{-1}(U)$ if and only if $f(y) \in U$. We know that $f(y) \in U$ whenever $d(f(x), f(y)) < \eta$. Since f is continuous, there exists $\theta > 0$ such that $d(f(x), f(y)) < \eta$ whenever $d(x, y) < \theta$. Therefore, setting $\delta = \theta$, we are done.

If f and g are continuous functions, then $g \circ f$ is continuous.

Take x and $\epsilon>0$. We would like to find $\delta>0$ s.t. $d(g(f(x)),g(f(y)))<\epsilon$ whenever $d(x,y)<\delta$. Since g is continuous, there exists $\eta>0$ such that $d(g(f(x)),g(f(y)))<\epsilon$ whenever $d(f(x),f(y))<\eta$. Since f is continuous, there exists $\theta>0$ such that $d(f(x),f(y))<\eta$ whenever $d(x,y)<\theta$. Therefore, setting $\delta=\theta$, we are done.

If f is a continuous function and $(a_n) \to a$, then $(f(a_n)) \to f(a)$

Let $\epsilon>0$. We would like to find N s.t. $d(f(a),f(a_n))<\epsilon$ whenever $n\geqslant N$. Since f is continuous, there exists $\delta>0$ such that $d(f(a),f(a_n))<\epsilon$ whenever $d(a,a_n)<\delta$. Since $a_n\to a$, there exists N' such that $d(a,a_n)<\delta$ whenever $n\geqslant N'$. Therefore, setting N=N', we are done.

Prove that $A^c \cap B^c \subseteq (A \cup B)^c$.

Let x be an element of $(A)^c \cap (B)^c$. Then $x \in (A)^c$ and $x \in (B)^c$. Then $x \notin A \cup B$ and $x \notin A$. Then it is not that case that $x \in A$. Since $x \in (B)^c$, we have that $x \notin B$. Then it is not that case that $x \in B$. Since $x \notin A \cup B$, it is not that case that $x \in A \cup B$. We would like to show that $x \in (A \cup B)^c$, i.e. that $x \notin A \cup B$. We would like to show that $x \notin A \cup B$, i.e. that it is not that case that $x \in A \cup B$. But this is clearly the case, so we are done.

If g, f are surjections then $(g \circ f)$ is a surjection.

Let y be an element of C. Then, since g from B to C is a surjection, there exists $u \in B$ such that g(u) = y and $g(u) \in C$. Since f from A to B is a surjection and $u \in B$, there exists $v \in A$ such that f(v) = u and $f(v) \in B$. We would like to find $x \in A$ s.t. g(f(x)) = y and $g(f(x)) \in C$.

If f is a surjection then $f(A)^c \subset f(A^c)$

Let x be an element of $(f(A))^c$. Then $x \notin f(A)$. Then it is not that case that $x \in f(A)$. We would like to find $y \in (A)^c$ s.t. f(y) = x. But $y \in (A)^c$ if and only if $y \notin A$. But $y \notin A$ if and only if it is not that case that $y \in A$.

Prove that
$$(A \cap B)^c \subset A^c \cup B^c$$

Let x be an element of $(A \cap B)^c$. Then $x \notin A \cap B$. Then it is not that case that $x \in A \cap B$. We would like to show that $x \in (A)^c \cup (B)^c$, i.e. that $x \in (A)^c$ or $x \in (B)^c$. We would like to show that $x \in (A)^c$, i.e. that $x \notin A$. We would like to show that $x \notin A$, i.e. that it is not that case that $x \in A$. We would like to show that $x \in (B)^c$, i.e. that $x \notin B$. We would like to show that $x \notin B$, i.e. that it is not that case that $x \in B$.

Prove that $A^c \cup B^c \subset (A \cap B)^c$

Let x be an element of $(A)^c \cup (B)^c$. Then $x \in (A)^c$ or $x \in (B)^c$. Since $x \in (A)^c$, we have that $x \notin A$. Then it is not that case that $x \in A$. Since $x \in (B)^c$, we have that $x \notin B$. Then it is not that case that $x \in B$. We would like to show that $x \in (A \cap B)^c$, i.e. that $x \notin A \cap B$. We would like to show that $x \notin A \cap B$, i.e. that it is not that case that $x \in A \cap B$. We would like to show that $x \notin A \cap B$, i.e. that it is not that case that $x \notin A \cap B$. We would like to show that $x \notin A \cap B$, i.e. that it is not that case that $x \notin A \cap B$.

Prove that
$$(A \cup B)^c = A^c \cap B^c$$

We would like to show that $(A \cup B)^c \subset (A)^c \cap (B)^c$, i.e. that $(A \cup B)^c \subset (A)^c$ and $(A \cup B)^c \subset (B)^c$.

If A, B, and C are open sets, then $A \cap (B \cap C)$ is also open.

Let x be an element of $A \cap B \cap C$. Then $x \in A$ and $x \in B \cap C$. Therefore, since A is open, there exists $\eta > 0$ such that $u \in A$ whenever $d(x,u) < \eta$ and $x \in B$ and $x \in C$. Therefore, since B is open, there exists $\theta > 0$ such that $v \in B$ whenever $d(x,v) < \theta$ and since C is open, there exists $\alpha > 0$ such that $w \in C$ whenever $d(x,w) < \alpha$. We would like to find $\delta > 0$ s.t. $y \in A \cap B \cap C$ whenever $d(x,y) < \delta$. But $y \in A \cap B \cap C$ if and only if $y \in A$ and $y \in B \cap C$. We know that $y \in A$ whenever $d(x,y) < \eta$. But $y \in B \cap C$ if and only if $y \in B$ and $y \in C$. We know that $y \in B$ whenever $d(x,y) < \theta$ and that $y \in C$ whenever $d(x,y) < \alpha$. Assume now that $d(x,y) < \delta$. Then $d(x,y) < \eta$ if $\delta \leqslant \eta$, $d(x,y) < \theta$ if $\delta \leqslant \theta$ and $d(x,y) < \alpha$ if $\delta \leqslant \alpha$.

If A and B are closed sets, then $A \cup B$ is also closed.

Let (a_n) and a be such that (a_n) is a sequence in $A \cup B$ and $a_n \to a$. We would like to show that $a \in A \cup B$, i.e. that $a \in A$ or $a \in B$. Since A is closed and $a_n \to a$, $a \in A$ if (a_n) is a sequence in A. Since B is closed and $a_n \to a$, $a \in B$ if (a_n) is a sequence in B. Take n. Take n'.