Universidad del Bío-Bío Facultad de Ciencias Empresariales Departamento de Sistemas de Información

PRACTICA 3 INTELIGENCIA ARTIFICIAL

- 1.- Supongamos que tenemos d heurísticas distintas, $\{h_i\}_{i=1}^d$ todas admisibles. Para las siguientes heurísticas se pide determinar, fundadamente, si las siguientes heurísticas son admisibles
 - a) max $\{h_i(n)/i=1,2,...,d\}$
 - b) $\frac{1}{d} \sum_{i=1}^{d} h_i(n)$
 - c) $\sum_{i=1}^d h_i(n)$
- 2.- Consideremos el problema de búsqueda con estados A, B, C, D y E. En el siguiente grafo se indica el costo de pasar de un estado a otro, siendo A el estado inicial y E el estado final.

Considere las heurísticas h₁ y h₂ que se indican

Universidad del Bío-Bío Facultad de Ciencias Empresariales Departamento de Sistemas de Información

nodo	h ₁ (nodo)	h ₂ (nodo) 7 8		
A	8			
В	6			
С	6	5		
D	4	7		
E	0	0		

Se pide determinar, fundadamente, si el algoritmo A* es óptimo con las heurísticas indicadas anteriormente.

3.- Para el siguiente grafo, donde el estado inicial es S y los estados metas son C y G, se pide determinar si A* garantiza encontrar una solución óptima. En caso de no ser posible introduzca algunas modificaciones de manera que A* garantice encontrar la solución óptima. Considere la siguiente función heurística

n	S	D	Α	E	В	F	G	С
h(n)	13	8	10	6	5	3	0	0

h(n) & h*(n) Une EE a) himmax 4 hi(n) / i=1,2, ..., ny & max h*(n) V n'(n) = m2x h h; (n)/1=1,2, ..., ny & h*(n) ¥n sigi h'an & h*an Yn el méximo de la hi(n) es comisible $\sum_{i=1}^{d} dn_i(n) \leq \sum_{i=1}^{d} h^*(n)$ b' hi(n) < 2 h*(n) $\frac{1}{2}h(n) \leq \frac{1}{d}dh^*(n) = h^*(n)$ hian es est misible

. 4

5

PAT es optimo si h es admisible h es admisible si h(m) & h*(m) Y n donde h* es la verdadera distanci desde el estado n al nodo meta Mas corcano. Debemn encontrar ht y compare las con hi y hz Costo del nodo n a E (todos in h, (11) | h2(n) h(n (COSOS) 8 11 A(13, 17, 11, 19, 11) 8 B(12,8,15 9 C(11,10,9 4 5 10(5 E B-C-E :12 A-C-E :13 B-17- E 38 :12 A-C-D-E : 11 B-C-D-E 0 15 A-C-B-D-E : 19 A-B-C-E 5 11 A-B-D-E C~ E 15 11 C-D-E: 10 C-B-D-E 39 Como h, (m) & h* (m) Yn, A* es optimo con hi. hiz no es admisible, por la tanto

3))
$$S-A-D-E-F-G$$
 $3+5+2+4+3=17$
 $S-A-B-E-F-G$ $3+4+5+4+3=19$
 $S-D-F-F-G$ $4+5+4+3=20$
 $S-D-A-B-E-F-G$ $4+5+4+4=20$
 $S-A-B-C$ $3+4+4=11$ *
 $S-D-A-B-C$ $4+5+4+4=19$
 $S-D-A-B-C$ $4+5+4+4=17$
 $S-D-E-B-C$ $4+5+4+3=19$
 $A-D-E-F-G$ $5+2+4+3=19$
 $A-D-E-F-G$ $5+2+4+3=19$
 $A-B-E-F-G$ $4+5+4+3=19$

$$5+4=9$$
 $4+3=7*$
 $3=3*$
 $4+6+4=13$