Task 1

Part A

Feature vector for the first 5 articles:

	Features	Article 1	Article 2	Article 3	Article 4	Article 5	Total
	000						
	05						
	06						
	10th						
704	worldwide						
705	would						
706	ya						
707	year						
708	years	0	3	0	0	1	4

Part B

Top-50 term frequency distribution for entire dataset:

Split by article category Technology:

Entertainment:

Combined:

Class Distribution:

Task 2

Logistic Regression

Regularization is the technique used to reduce error by fitting a function appropriately on the given training set and to avoid overfitting by controlling model complexity. L2-Regularization adds a regularization term to the loss function so it can prevent overfitting by penalizing larger parameters in favour of smaller parameters.

The effect of the regularization parameter λ on the outcome in terms of bias and variance is that as the lambda parameter increases, training error increases. Regularization forces weights towards 0 which causes the variance to

decrease, but as we are allowing less flexibility, the model moves away from the true values, thus slightly increasing bias.

The plot shows the inverse of this as the C parameter in the LogisticRegression class is the inverse of the hyperparameter λ . Smaller values specify stronger regularization.

If λ is too high, the model becomes too simple and tends to underfit. If λ is too low, the effect of regularization becomes negligible, and the model is likely to overfit. If λ is 0, then regularization is completely removed and runs a high risk of overfitting.

Training loss (log loss) vs lambda values

Naïve Bayes

(i) Top 20 identifiable words, split by category:

Top 20 Tech:		Ton 20 En	tertainment:
	002		465
said	892	said	
people	507	film	420
new	304	best	324
mobile	290	year	241
mr	288	music	210
one	286	also	206
also	273	us	201
would	267	new	196
could	255	one	193
technology	247	show	180
use	228	first	155
users	214	awards	137
net	214	tv	130
software	213	last	127
games	212	uk	127
us	210	actor	126
music	203	number	124
many	202	band	123
year	201	mr	120
phone	196	star	118

(ii) Top 20 words, maximising $P(Xw=1|Y=y)/P(Xw=1|Y\neq y)$:

. , .	-	
Top 20 Tech:		Top 20
users	107.500000	actre
software	107.000000	singe
mobile	97.000000	oscar
microsoft	77.500000	band
broadband	64.500000	stars
virus	61.500000	album
firms	57.000000	aviat
рс	54.500000	chart
net	53.750000	nomin
technology	49.600000	rock
phones	48.333333	festi
spam	42.500000	actor
gadget	36.000000	nomin
games	35.500000	charl
consumer	34.500000	foxx
mobiles	34.000000	comed
gadgets	33.500000	oscar
windows	33.500000	starr
machines	33.500000	singl
phone	32.833333	music

Top 20 Entertai	inment:
actress	45.500000
singer	45.000000
oscar	44.000000
band	41.333333
stars	38.000000
album	33.000000
aviator	31.500000
chart	30.000000
nominated	27.500000
rock	26.500000
festival	26.500000
actor	25.400000
nominations	24.000000
charles	23.500000
foxx	22.000000
comedy	21.666667
oscars	21.500000
starring	21.000000
singles	19.000000
musical	18.250000

The second list of words describes the two classes better. The top 20 words for each class in (ii) look to be more relevant than the top 20 words for each class in (i).

SVM

For both soft-margin SVM and hard-margin RBF kernel, we tested to find the best C-value and gamma respectively:

Soft-Margin Linear SVM: C = 10^-2 & accuracy = 0.9719

What the c-value does is tell the SVM how much slack we are allowing it when drawing its margins. The lower the

value the more misclassifications we allow, in other words the more data points we allow to be on the wrong side of the margin. The higher the value the less slack we give the SVM to allow misclassifications.

Hard-Margin RBF Kernel: gamma = 10^-3 & accuracy = 0.9743

The gamma value can be thought of setting the 'spread' of the kernel, in other words deciding how much 'curve' to allow the decision boundaries. The lower the gamma value the decision boundaries will appear straighter. And with a high gamma value we are allowing the decision boundaries to curve around the data points more concisely.

Neural Networks

As we increased the number of hidden units, the minimum achieved loss increased. This is likely due to overfit as we have too many hidden units

With 5 hidden units, we had a minimum loss of 0.5195 With 20 hidden units, we had a minimum loss of 0.6793 With 40 hidden units, we had a minimum loss of 0.6819

Task 3

Part A

Comparing the training accuracy and testing accuracy for different values of m:

Part B

Logistic Regression accuracy vs C-value:

Naïve Bayes accuracy vs alpha parameter:

A C-value of 0.01 is ideal. Any lower and we see underfitting, any higher and it could lead to a lack of generalisation - although we don't see this in the given dataset.

0.1 is the ideal alpha, since at 1 we can see some signs of underfit (falling training accuracy) and at 0.01 we can see some signs of overfit (validation accuracy reducing)

SVM Linear accuracy vs C-value

SVM RBF Kernel accuracy vs gamma-value:

For the linear SVM, a C-Value of 0.01 provides the strongest regulation without any underfit. For the RBF SVM, the only hyperparameter was the gamma value, since the C-value is set to 10^10, given that it is hard-margin. A gamma value of 10^4 appears to provide the best balance of fit.

NN accuracy vs learning rate:

The learning rate of 0.1 appears to be the best in this scenario, as it provides both a high validation and testing accuracy.

Part C

With the chosen hyperparameters, the logistic regression, support vector machine and neural network all work perfectly on the test data. Naive Bayes is close behind with a near perfect score. Based on what we have, any of these models could be considered good enough for our purposes.

We would likely need more data for testing if we wanted to separate these models in terms of accuracy.