

CLAIMS

What is claimed is.

1

1. A process of forming an oscillator comprising:
 - 2 patterning a plurality of spaced-apart stacks on an oscillator member; and
 - 3 removing at least one of the spaced-apart stacks.

1

1. 2. The process according to claim 1, before removing, further comprising:
 - 2 determining a first resonant frequency of the oscillator.

1

1. 3. The process according to claim 1, before patterning further comprising:
 - 2 forming a protective layer over the oscillator member.

1

1. 4. The process according to claim 1, before patterning further comprising:
 - 2 forming a protective layer over the oscillator member; and
 - 3 patterning the protective layer.

1

1. 5. The process according to claim 1, before patterning, further comprising:
 - 2 forming a protective layer over the oscillator member;
 - 3 forming an ablative layer over the oscillator member; and
 - 4 patterning to form a plurality of spaced-apart stacks.

1

1. 6. The process according to claim 1, before patterning further comprising:

2 forming a protective layer over the oscillator member, wherein the protective
3 layer is selected from a refractory metal, a refractory metal oxide, a refractory metal
4 silicide, a refractory metal nitride, and combinations thereof.

1
2 7. The process according to claim 1, before patterning further comprising:
3 forming a protective layer over the oscillator member, wherein the protective
layer is selected from a silicon-containing composition.

1
2 8. The process according to claim 1, wherein removing further comprises:
3 directing a radiant energy source to at least one of the spaced-apart stacks,
4 wherein the radiant energy source is selected from a laser, an ion beam, and combinations
thereof.

1
2 9. The process according to claim 1, wherein removing is repeated until an empirical
removal pattern is established, further comprising:
3 determining a second resonant frequency of the oscillator; and
4 forming the empirical removal pattern upon a second oscillator.

1
2 10. The process according to claim 1, wherein removing further comprises:
3 selecting at least one spaced-apart stack for removal based upon a first resonant
frequency of the oscillator member and based upon a respective position of each at least
4 one spaced-apart stack along the oscillator member, under conditions to approach a
second resonant frequency.

11. The process according to claim 1, further comprising:

providing the oscillator member, wherein the oscillator member is a beam and
wherein the oscillator member has a mass in the range from about 0.1×10^{-7} gram to
about 10×10^{-7} gram.

12. The process according to claim 1, wherein patterning further comprises:

1 forming a plurality of spaced-apart stacks, wherein each of the spaced-apart stacks
2 has a mass in a range from about 0.02 % the mass of the oscillator member to about 2 %
3 the mass of the oscillator member.

13. The process according to claim 1, further comprising:

2 determining first resonant frequency of the oscillator member; and after
3 removing, further comprising:

4 determining a second resonant frequency of the oscillator.

14. The process according to claim 1, wherein the oscillator member is oscillated

2 while removing.

15. The process according to claim 1, wherein patterning comprises forming a bulk

2 material on the oscillator member with deposition of a vapor.

1 13. A process of forming an oscillator comprising:

2 providing an oscillator member;

3 determining a first resonant frequency of the oscillator member;

4 patterning at least one structure on the oscillator member; and

5 determining a second resonant frequency of the oscillator member.

1

1 14. The process according to claim 13, before patterning further comprising:

2 forming a protective layer over the oscillator member.

1

1 15. The process according to claim 13, wherein patterning, further comprising:

2 directing radiant energy at the oscillator member.

1

1 16. The process according to claim 13, wherein patterning, further comprising:

2 directing radiant energy at the oscillator member; and

3 removing at least one structure from the oscillator member.

1

1 17. The process according to claim 13, wherein patterning, further comprising:

2 directing radiant energy at the oscillator member; and

3 precipitating a vapor on the oscillator member.

1

1 18. The process according to claim 13, wherein the radiant energy source is selected

2 from a focused ion beam and a laser.

1
2 19. The process according to claim 13, wherein patterning further comprises:
3 continuously monitoring the resonant frequency from the first frequency to the second
frequency by vibrating the oscillator member.

1
2 20. The process according to claim 13, wherein patterning is repeated to form an
3 empirical spaced-apart stack pattern, further comprising:
4 determining the second resonant frequency of the oscillator member; and
5 forming the empirical spaced-apart stack pattern upon a second oscillator
member.

21. A micro resonator comprising:

an oscillator member disposed upon an oscillator pedestal; and
at least one structure disposed upon the oscillator member.

22. The micro resonator according to claim 21, wherein the at least one structure comprises:

a pattern of spaced-apart stacks disposed upon the oscillator member, wherein
the oscillator member has a mass in a range from about 0.1×10^{-7} gram to about $10 \times$
 10^{-7} gram.

1 23. The micro resonator according to claim 22, the spaced-apart stacks further

2 comprising:

3 a protective layer disposed upon the oscillator member, wherein the protective
4 layer is selected from a refractory metal, a refractory metal oxide, a refractory metal
5 silicide, a refractory metal nitride, and combinations thereof.

1 24. The micro resonator according to claim 22, the spaced-apart stacks further

2 comprising:

3 a protective pad selected from aluminum, an aluminum alloy, silver, a silver alloy,
4 indium, an indium alloy.

1 25. The micro resonator according to claim 22, wherein the oscillator member is
2 made of a material selected from polysilicon, a metal, a metal nitride, a metal oxide, a metal
3 silicide, and combinations thereof.