Milestone 3

Code:

```
# Julia Cuellar
# DSC 540
# Final project
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import urllib.request as urllib2
from bs4 import BeautifulSoup
# Read csv file
def read csv file():
    evcp = pd.read csv('2019 EVCP use Q1 and Q2.csv')
    print("Csv data:\n", evcp)
# Drop 1st column from csv file
def csv drop():
    evcp = pd.read csv('2019 EVCP use Q1 and Q2.csv')
    evcp.drop('Charging event', axis=1, inplace=True)
    print("Remove 1st column from csv data:\n", evcp)
# Check, replace, and recheck the nulls from csv file
def csv cpr null():
    evcp = pd.read csv('2019 EVCP use Q1 and Q2.csv')
    evcp.drop('Charging event', axis=1, inplace=True)
    print("Display csv data with null:\n", evcp.isnull())
   print("Display counts of null from csv data:\n", evcp.isnull().sum())
    evcp = evcp.fillna(" ")
    print("Display csv data with replaced nulls:\n", evcp)
    print("Display recounts of null from csv data:\n", evcp.isnull().sum())
# Rename Model column from csv file
def csv rename col():
    evcp = pd.read csv('2019 EVCP use Q1 and Q2.csv')
    evcp.drop('Charging event', axis=1, inplace=True)
    evcp = evcp.fillna(" ")
    evcp.rename(columns={'Model': 'Charge'}, inplace=True)
    print("Rename Model column from csv data:\n", evcp)
# Display count plot of Total kWh column from csv file
def csv showCountplot kWh():
    evcp = pd.read csv('2019 EVCP use Q1 and Q2.csv')
    evcp.drop('Charging event', axis=1, inplace=True)
    evcp = evcp.fillna(" ")
    evcp.rename(columns={'Model': 'Charge'}, inplace=True)
    sns.countplot(x='Total kWh', data=evcp)
    plt.title('kWh')
   plt.show()
```

```
# Display count plot of Site column from csv file
def csv showCountplot Site():
    evcp = pd.read csv('2019 EVCP use Q1 and Q2.csv')
    evcp.drop('Charging event', axis=1, inplace=True)
    evcp = evcp.fillna(" ")
    evcp.rename(columns={'Model': 'Charge'}, inplace=True)
    sns.countplot(x='Site', data=evcp)
    plt.title('Site')
   plt.show()
# Display count plot of Charge column from csv file
def csv showCountplot Charge():
    evcp = pd.read csv('2019 EVCP use Q1 and Q2.csv')
    evcp.drop('Charging event', axis=1, inplace=True)
    evcp = evcp.fillna(" ")
    evcp.rename(columns={'Model': 'Charge'}, inplace=True)
    sns.countplot(x='Charge', data=evcp)
   plt.title('Charge')
   plt.show()
# Read web data
def read web():
    response = urllib2.urlopen('https://data.wa.gov/Transportation/Electric-
Vehicle-Population-Data/f6w7-q2d2/data')
    html doc = response.read()
    soup = BeautifulSoup(html doc, 'html.parser')
    evcp = soup.prettify()
    print(evcp)
    evcp web = pd.read csv('Electric Vehicle Population Data.csv')
    print("Web data:\n", evcp web)
# Drop 1st column from web data
def web drop():
    response = urllib2.urlopen('https://data.wa.gov/Transportation/Electric-
Vehicle-Population-Data/f6w7-q2d2/data')
    html doc = response.read()
    soup = BeautifulSoup(html doc, 'html.parser')
    evcp = soup.prettify()
    evcp web = pd.read csv('Electric Vehicle Population Data.csv')
    evcp web.drop('VIN (1-10)', axis=1, inplace=True)
    print("Remove 1st column from web data:\n", evcp web)
# Check, replace, and recheck the nulls from web data
def web cpr null():
    response = urllib2.urlopen('https://data.wa.gov/Transportation/Electric-
Vehicle-Population-Data/f6w7-q2d2/data')
   html doc = response.read()
    soup = BeautifulSoup(html doc, 'html.parser')
    evcp = soup.prettify()
    evcp web = pd.read csv('Electric Vehicle Population Data.csv')
    evcp web.drop('VIN (1-10)', axis=1, inplace=True)
```

```
print("Display web data with null:\n", evcp web.isnull())
   print("Display counts of null from web data:\n", evcp web.isnull().sum())
    evcp web = evcp web.fillna(" ")
    print("Display web data with replaced nulls:\n", evcp web)
    print("Display recounts of null from web data:\n",
evcp web.isnull().sum())
# Rename Electric Vehicle Type column from web data
def web rename col():
    response = urllib2.urlopen('https://data.wa.gov/Transportation/Electric-
Vehicle-Population-Data/f6w7-q2d2/data')
   html doc = response.read()
    soup = BeautifulSoup(html doc, 'html.parser')
    evcp = soup.prettify()
    evcp web = pd.read csv('Electric Vehicle Population Data.csv')
    evcp_web.drop('VIN (1-10)', axis=1, inplace=True)
    evcp web = evcp web.fillna(" ")
    evcp web.rename(columns={'Electric Vehicle Type': 'Charge'},
inplace=True)
   print("Rename Electric Vehicle Type column from web data:\n", evcp web)
# Display count plot of Electric Range column from web data
def web showCountplot ER():
    response = urllib2.urlopen('https://data.wa.gov/Transportation/Electric-
Vehicle-Population-Data/f6w7-q2d2/data')
    html doc = response.read()
    soup = BeautifulSoup(html_doc, 'html.parser')
    evcp = soup.prettify()
    evcp_web = pd.read_csv('Electric_Vehicle Population Data.csv')
    evcp_web.drop('VIN (1-10)', axis=1, inplace=True)
    evcp web = evcp web.fillna(" ")
    evcp web.rename(columns={'Electric Vehicle Type': 'Charge'},
inplace=True)
    sns.countplot(x='Electric Range', data=evcp web)
    plt.title('ER')
   plt.show()
# Display count plot of County column from web data
def web showCountplot County():
    response = urllib2.urlopen('https://data.wa.gov/Transportation/Electric-
Vehicle-Population-Data/f6w7-q2d2/data')
    html doc = response.read()
    soup = BeautifulSoup(html doc, 'html.parser')
    evcp = soup.prettify()
    evcp web = pd.read csv('Electric Vehicle Population Data.csv')
    evcp web.drop('VIN (1-10)', axis=1, inplace=True)
    evcp web = evcp web.fillna(" ")
    evcp web.rename(columns={'Electric Vehicle Type': 'Charge'},
inplace=True)
    sns.countplot(x='County', data=evcp web)
    plt.title('county')
   plt.show()
```

```
# Display count plot of Charge column from web data
def web showCountplot Charge():
    response = urllib2.urlopen('https://data.wa.gov/Transportation/Electric-
Vehicle-Population-Data/f6w7-q2d2/data')
   html doc = response.read()
    soup = BeautifulSoup(html doc, 'html.parser')
    evcp = soup.prettify()
    evcp web = pd.read csv('Electric Vehicle Population Data.csv')
    evcp web.drop('VIN (1-10)', axis=1, inplace=True)
    evcp web = evcp web.fillna(" ")
    evcp web.rename(columns={'Electric Vehicle Type': 'Charge'},
inplace=True)
    sns.countplot(x='Charge', data=evcp_web)
   plt.title('charge')
   plt.show()
if name == "__main__":
    read csv file()
    csv drop()
    csv cpr null()
    csv rename col()
    csv showCountplot kWh()
    csv showCountplot Site()
    csv showCountplot Charge()
    read web()
   web drop()
    web cpr null()
    web rename col()
    web showCountplot ER()
    web showCountplot_County()
    web_showCountplot_Charge()
```

Output:

Csv data:

Cha	arging event	Model
0	8124494	APT 7kW Dual Outlet
1	8124522	APT 7kW Dual Outlet
2	8124828	APT 7kW Dual Outlet
3	8124987	APT 7kW Dual Outlet
4	8125100	APT 7kW Dual Outlet
3401	8702065	APT Triple Rapid Charger
3402	8702103	APT Triple Rapid Charger
3403	8702255	APT Triple Rapid Charger
3404	8702426	APT 7kW Dual Outlet
3405	8702978	APT 7kW Dual Outlet

[3406 rows x 11 columns]

Remove 1st column from csv data:

	User ID (CP ID	Site	Model
0	User 406	70204	Woodhouse Lane Car Park	APT 7kW Dual Outlet
1	User 546	70204	Woodhouse Lane Car Park	APT 7kW Dual Outlet
2	User 279	80085 T	emple Green Park and Ride	APT 7kW Dual Outlet
3	User 399 '	70202	Woodhouse Lane Car Park	APT 7kW Dual Outlet
4	User 771	70202	Woodhouse Lane Car Park	APT 7kW Dual Outlet
•••				
340	1 User 131	80164	Elland Road Park and Ride	APT Triple Rapid Charger
340	2 User 573	80164	Elland Road Park and Ride	APT Triple Rapid Charger
340	3 User 418	8 80164	Elland Road Park and Ride	APT Triple Rapid Charger
340	4 User 306	70204	Woodhouse Lane Car Par	k APT 7kW Dual Outlet

[3406 rows x 10 columns]

Display csv data with null:

False False

4

User ID CP ID Connector Start Date ... End Time Total kWh Site Model

False

False False False

0	False False	False	False	False	False False False
1	False False	False	False	False	False False False
2	False False	False	False	False	False False False
3	False False	False	False	False	False False False

False ...

False

3401	False False	False	False	True	True False False
3402	False False	False	False	False	False False False
3403	False False	False	False	False	False False False
3404	False False	False	False	False	False False False

3405 False False False False False False False False

[3406 rows x 10 columns]

Display counts of null from csv data:

User ID 0

CP ID 0

Connector 0

Start Date 0

Start Time 0

End Date 52

End Time 52

Total kWh 52

Site 0

```
Model 0
```

dtype: int64

Display csv data with replaced nulls:

	User ID CP ID	Site	Model
0	User 406 70204	Woodhouse Lane Car Park	APT 7kW Dual Outlet
1	User 546 70204	Woodhouse Lane Car Park	APT 7kW Dual Outlet
2	User 279 80085 7	Temple Green Park and Ride	APT 7kW Dual Outlet
3	User 399 70202	Woodhouse Lane Car Park	APT 7kW Dual Outlet
4	User 771 70202	Woodhouse Lane Car Park	APT 7kW Dual Outlet
340	01 User 131 80164	Elland Road Park and Ride	APT Triple Rapid Charger
340	02 User 573 80164	Elland Road Park and Ride	APT Triple Rapid Charger
340	03 User 418 80164	Elland Road Park and Ride	APT Triple Rapid Charger
340	04 User 306 70204	Woodhouse Lane Car Par	k APT 7kW Dual Outlet
340	05 User 308 70204	Woodhouse Lane Car Par	k APT 7kW Dual Outlet

[3406 rows x 10 columns]

Display recounts of null from csv data:

User ID 0

CP ID 0

Connector 0

Start Date 0

Start Time 0

End Date 0

End Time 0

Total kWh 0

Site 0

Model 0

dtype: int64

Rename Model column from csv data:

	User ID CP ID	Site	Charge
0	User 406 70204	Woodhouse Lane Car Park	APT 7kW Dual Outlet
1	User 546 70204	Woodhouse Lane Car Park	APT 7kW Dual Outlet
2	User 279 80085	Temple Green Park and Ride	APT 7kW Dual Outlet
3	User 399 70202	Woodhouse Lane Car Park	APT 7kW Dual Outlet
4	User 771 70202	Woodhouse Lane Car Park	APT 7kW Dual Outlet
340	01 User 131 80164	Elland Road Park and Ride	e APT Triple Rapid Charger
340	2 User 573 80164	Elland Road Park and Ride	e APT Triple Rapid Charger
340	3 User 418 80164	Elland Road Park and Ride	e APT Triple Rapid Charger
340	04 User 306 70204	Woodhouse Lane Car Par	k APT 7kW Dual Outlet
340	05 User 308 70204	Woodhouse Lane Car Par	k APT 7kW Dual Outlet

[3406 rows x 10 columns]

Web data:

VIN (1-10) ... Vehicle Location

- 0 3FA6P0SU3L ... POINT (-122.11667400000002 47.363112)
- 1 5YJYGDEE6L ... POINT (-122.137386 47.444808)
- 2 KNDCC3LG6L ... POINT (-122.215501 47.476576)
- 3 1N4AZ0CP5D ... POINT (-122.31336800000001 47.54411)
- 4 5YJSA1H22E ... POINT (-122.297534 47.685291)

...

- 63850 YV4BC0ZX1H ... POINT (-117.50543600000002 47.633834)
- 63851 5YJ3E1EC5L ... POINT (-122.30033 47.585339)
- 63852 KNDCE3LG3K ... POINT (-122.9799689999998 47.078241)
- 63853 5YJ3E1EBXJ ... POINT (-122.227947 47.565443)
- 63854 5YJ3E1EA1L ... POINT (-122.132064 47.494834)

[63855 rows x 15 columns]

Remove 1st column from web data:

- County ... Vehicle Location
- 0 King ... POINT (-122.11667400000002 47.363112)
- 1 King ... POINT (-122.137386 47.444808)
- 2 King ... POINT (-122.215501 47.476576)
- 3 King ... POINT (-122.31336800000001 47.54411)
- 4 King ... POINT (-122.297534 47.685291)

...

- 63850 Spokane ... POINT (-117.50543600000002 47.633834)
- 63851 King ... POINT (-122.30033 47.585339)
- 63852 Thurston ... POINT (-122.97996899999998 47.078241)
- 63853 King ... POINT (-122.227947 47.565443)
- 63854 King ... POINT (-122.132064 47.494834)

[63855 rows x 14 columns]

Display web data with null:

	County City DC	L Vehicle ID	Vehicle Location
0	False False	False	False
1	False False	False	False
2	False False	False	False

3 False False ... False4 False False ... FalseFalse False

...

63850	False	False	•••	False	False
63851	False	False		False	False
63852	False	False		False	False
63853	False	False		False	False
63854	False	False		False	False

[63855 rows x 14 columns]

Display counts of null from web data:

County 2
City 0
State 0
ZIP Code 0
Model Year 0
Model 0
Model 0

Electric Vehicle Type 0

Clean Alternative Fuel Vehicle (CAFV) Eligibility 0

Electric Range 0

Base MSRP 0

Legislative District 43

DOL Vehicle ID 0

Vehicle Location 2

dtype: int64

Display web data with replaced nulls:

County ... Vehicle Location

0 King ... POINT (-122.11667400000002 47.363112) 1 POINT (-122.137386 47.444808) King ... 2 POINT (-122.215501 47.476576) King ... King ... POINT (-122.31336800000001 47.54411) 3 4 King ... POINT (-122.297534 47.685291) 63850 Spokane ... POINT (-117.50543600000002 47.633834) 63851 King ... POINT (-122.30033 47.585339) 63852 Thurston ... POINT (-122.9799689999998 47.078241) 63853 King ... POINT (-122.227947 47.565443) 63854 King ... POINT (-122.132064 47.494834)

[63855 rows x 14 columns]

Display recounts of null from web data:

County 0
City 0
State 0
ZIP Code 0
Model Year 0
Make 0
Model 0
Electric Vehicle Type

Clean Alternative Fuel Vehicle (CAFV) Eligibility 0

0

Electric Range	0
Base MSRP	0
Legislative District	0
DOL Vehicle ID	0
Vehicle Location	0

dtype: int64

Rename Electric Vehicle Type column from web data:

(County	Vehicle Location
0	King POIN	VT (-122.11667400000002 47.363112)
1	King	POINT (-122.137386 47.444808)
2	King	POINT (-122.215501 47.476576)
3	King POI	NT (-122.31336800000001 47.54411)
4	King	POINT (-122.297534 47.685291)
63850	Spokane I	POINT (-117.50543600000002 47.633834)
63851	King	POINT (-122.30033 47.585339)
63852	Thurston F	OINT (-122.97996899999998 47.078241)
63853	King	POINT (-122.227947 47.565443)
63854	King	POINT (-122.132064 47.494834)

[63855 rows x 14 columns]

