Examen en probabilité & statistique à rendre à l'adresse mail : m.addam@uae.ac.ma

N.B. : Pour la bonne visibilité de vos comptes-rendus, merci de rédiger sur le papier ${\bf A4}$

Exercice 1

Soit X une variable aléatoire discrète avec $J_X = X(\Omega) = \{x_k : k \in \mathbb{N}\}$. On appelle fonction caractéristique de X, notée ϕ_X , la fonction définie de \mathbb{R} à valeurs dans \mathbb{C} par

$$\phi_X(t) = \sum_{k=0}^{+\infty} e^{it x_k} P([X = x_k])$$

où $P([X = x_k])$ est la probabilité de l'événement $[X = x_k]$.

- 1. Montrer que la fonction ϕ_X est bien définie et que : $\phi_X(0) = 1$ et $|\phi_X(t)| \le 1$ pour tout $t \in \mathbb{R}$.
- 2. Montrer que la fonction ϕ_X est uniformément continue dans \mathbb{R} .
- 3. Déterminer la fonction caractéristique ψ de la variable aléatoire $Y = \alpha X + \beta$ en fonction de ϕ_X , α et β .
- 4. Montrer que si la variable aléatoire X a une espérance, alors la fonction ϕ_X est dérivable et que

$$\phi_X'(0) = i\mathbb{E}(X).$$

5. Montrer que si $J_X = \mathbb{N}$, alors $\phi_X(t) = g(e^{it})$ où g est la fonction génératrice de X.