PL Lecture-5 Model free control.

on-beliey - learning on the job, observing behaviour

off-bolicy - learning following someone elie's behaviour.

Hodel

- optimize the value funde of an unknown MDP.

> most common problem are either.

i) model / MDP unknown, but experience can be sampled it is to expensive to compute even 1 step using the full model, except by sampling

On-telicy learning -> learning from job -> while following policy T. learn that policy T.

Off-policy learning -> observe someone do comothing and sampling trajectories from human's behavior (eg.), learn rey behaviour (eg. robot)

In DP, alternating bets policy evaluate & Hération converges to the optimal policy when only used oforative methods, we'll try to change a 2

Eg. Monte Carlo Control:

L-way → do monte Carlo policy evaduats . 2 then do greedy policy improvement:

Problemse.

(1) computing V(s) requires a model, but we want model V(s) = max(Rs + Pssi V(si))

But in madel free, want to learn a policy without any model. The p - function defined earlier - means that final core we would get at the end of a game (eg.) of we took action a, when in state s. - 9 (s, a) So, no model dependence new Just a state and possible For each (s, a) actions that can be taken -> greedy over & (sa) paction value) pair takenme across all exportance, for * K'(s)= argmax &(s,a) compute of (2, 4) Proposal changes: - Mc evaluate g= are Greedy policy improvement? 2nd problem - choosing greedily - we never visit some state. which means we and don't evaluate them correctly & hence, not selecting them. eg. to illustrate that point. -> suppose 2 attacks -> &, & &, Upon choosing both once, we found: $V(s_1) = -1$, $V(s_2) = 1$ we choose s_2 greatily how say, V (52) = +3 + mean = 2, again choosely and so on.. This shows that we haven't even considered state s, only after I seeing and hence, and Know what value as high have as we keep choosing sz untinutely K solution to ensure continual E- greedy exploration 6x blo ration - prob- E - choose random action - 1-E- choose the great oftion.

Thus $p(s) = \frac{\epsilon}{m} + (1-\epsilon) \rightarrow + \epsilon n$ greedy action $= \frac{\epsilon}{m} + \epsilon n$ any other action - keep exploring Egreely - policy improvement (ensures) TIT - both E-greedy policies (ε, π'(s)) = Σ π (ε/a) σπ(ε/a) · = (1-E) max q = (5, a) + E I 9(5, a) NOW, mex) greatistian $\geq (-\epsilon) \sum \pi(ya) - (\epsilon/m) q_{\pi}(s,a) + \epsilon \sum q(s,a)$ = $Z \pi(4a) 9(6,a) = \sqrt{\kappa(5)}$ · Vn' (5) ? V x (5). (From earlier similar derivates) - Finally. (MCPE) 1) Me policy evaluate $9 = 9_{R}$ sattening of the greaty policy improvement greaty policy Idea - no need to completely with evaluate the policy, when we can get a better policy un only a few initial step: (similar to DP Locture). Due extreme - do update every episode, basically on the most fresh de virtumate? estimate of the tralue function. 0 MCPE - 9= 9x ephone @ {-greedy -> For those states , which were visited in the How to ensure we get 97x? - trade of bets exploreds & exploitation. much

Idea for balancing the 21deas - GILIE. some up with schedule such that 2 conditions are met. O all state-action pairs explored infinitely times Win NK(sia) >0 greedy @ converges to the optimal folicy lim TK(CC) = I (a'= argman g(s/a)) One vdea - schedule / decay & for & - greedy. -> hyperbolic schedule - EK=YK. GLIEMC control sample kt <u>episode</u> following Tr -> update mean gralue & N(ct, At) N(+, A+) = N(+, A+)+1 (c1+, 4) = 9(5+, A+) + 1 (C17- 9(ST, A+)) this mean is not the actual statistical mean as we are accumulating values as we improve the policy! -> Improve policy T> E- greedy (9) GLIE makes sure that there collected statistics converge

to the actual mean over time.

P(5,0) -> 9, 4 (5,0) Iterate over the enture process. - considerably more efficiently has updating after a batu Initialization - In this case, for the 1st time we observe q state N(st, at) = 1, and a(st, at) = GT, so init doesn't matter. But for weighing other than I NELIAH it will affect much more. Now, will show TD. TD V, MC 3 variance law - online - incomplete sequences. · Look at P(s, a) for model-free slot in TD learning for policy evaluation E- greedy so, update bodicy after each step. called SARSA 9 (5, A) € 9(5, A) + × (R+89(5', A') - P(s, A)). (A) Sarsa update. In every time step, update value function. -> started with s. took action A (from current policy) and reached s: - update onego(s,A)] - only for this

DT-1- 1. 2 = 0.
1) Inthatice p(s, a) + s, ta . o (cominal;) = 0.
(Repeat to an inch
2 Repeat for each episode: Trittalize 5 uping policy derived
Choose A - sampled from 9.
P ()
The samuel & landed on 3.
CANDON N. WORK J. LIKING DEVICE
B(2,4) = B(2,4) + C(R+ & d(2,4)) - Q(2,4))
SES', A'EA.
Santa
and get to the obtained policy. That
policy - eg. E= YK
B\1 w
Extremely large to more sufficiently large to more
to, the practices)
Z x 2 x 0 (dep size become small)
Zxt2 x0 (step sizes become small) changes to? or clie gratues
In practice, sometimes don't depend on both D& D. @
A
Again apply similar concept of TD() - n-step SARS
to get the best of both worlds.
N=1. (EARSE)
N=0 (MC).
n-step 9 retarn:
Qt = Real + YREAZE . Yng Barn

n-step of Fetwin: 9(StA) = P(St,A) + x (q(h) - P(St,At)) Dothis for all the average over 'n' sarsa(x) > 9 (5+, A+) = 9(5+, A+)+ x (9+2- 9(5+, A+)) 9+2= (1-2) \(\frac{1}{2} \left(2n-1) \quad \frac{1}{2} \\ \frac{1 to make algo Forward view. Backward view - using Eligibility Traces Fo(5, a) = 0 Et (sa) = >Y Et, (sa) + I (St=s, At=a) P(sa) - updated for every (s,a) pair St = Rty + Y & (Sty, Aty) - B(St, At) Q(s,a) = Q(s,a) + x E(s,a) St. · Int P(s, a) = wrbitronly Repeal - (episode) SARSA (2) E(sia) = 0 + s, a. Init S, A. I faster flow of Repeal-(step): winto back through Take action A, observe R,SI Take A1 - from. Q. $S_{+} = R_{+} + Y (Q(S', A),) - Q(S, A)$ E(S,A) = E(SA) + 1J'aL. 45 Q(≥, a) = Q(≥, a) + < S+ E*(≥, a); E(s,a) = 2x E(s,a) SARSA(0) A = A', S = S'. needs many steps to until termination. frow the info. back.

Off-policy learning
wouldte torget John & to compute Vir 19th
Mry 3
I learn from about the same of the human
The g hehour as a not list supplies
* Re-use experience from old folicies TI, Tz, Tt-, greetated - ungeff-policy learning * Learn about optimal policy and that.
While tollow and optimal policy and that
While following explorations policy One want policy to be deterministic but also want to
explate, offered all bolices borrowing allows there as
following an exploratory paring.
-> hearn about multiple polities while tollowing one pair
Importance Sampling -> estimate expectator q a différent de
$E_{X} = F(X) = \sum_{x} g(x) F(x) = \sum_{x} g(x) \frac{f(x)}{f(x)} F(x)$
eg renord funds $= E_{X \cap Q} \left[\frac{\rho(x)}{q(x)} F(x) \right]$
Me Is for applicy MC
-> Sample setting from M. to evaluate T.
-) weigh Got as poor similarity bets policies
- multiply importance sampling corrections Gt = T(AHSt) T(Atri/Str) - TTATISTX
MALLS MALLY MALLY

-> Update value towards corrected meters N(2+) = N(2+) + x(P+) - Very high variance a multiplying so many nations diminishes value, → MC - very bad all-polity Thus, only TO learning for off toolicy Now, Is only after/ wto 1 step. → policies need to be similar only over a single step. - much lower variance than MC (and can still blow off) 9-learning -> Best with off ->ducy make use of of values. s who actually took Tho Is regal. next action from I Ata M(15) also an alternative successor action? (wat we could have taken following target policy in future Update 9 (St, At) towards valley successive octron 9(st, At) + 0(st, At) + x (R++) + x 0(still A) -P(S+1++)) -> allow both behaviour & trongel- policies to uniprove learn greedy policy from exploratory policy. N → greedy wrt. g(s a) T (Sto) = argmax () (Stor, a)