التمرين 1

(Uranus) هو الكوكب السابع من المجموعة الشمسية ، تمّ اكتشافه سنة 1781 من طرف الفلكي William Herechelle ، وتعرّف عليه العالم أكثر سنة 1986 بواسطة (la sonde Voyager II) .

يستغرق (Wranus لكي ينجز دورة واحدة حول الشمس . هذا الكوكب له عدّة أقمار ، أهمها مدوّنة في الجدول الموالى :

نعتبر أن كتل الكواكب موزعة تناظريا على حجومها ، وندرس حركة أقمار (Uranus) في معلم مبدؤه منطبق مع مركز (Uranus) ونعتبره غاليليا . نعتبر كذلك مدارات الأقمار دائرية .

$$1J = 86400s$$
 $G = 6.67 \times 10^{-11} SI$ help the sign of the sign

1 - عرّف المعلم العطالي ، وما هو شرط أن يكون المعلم السابق عطاليا ؟

- 2 بين أن حركة أحد أقمار (Uranus) منتظمة.
 - 3 احسب سرعة القمر (Ariel).
- 4 مثلنا بيانيا مربع سرعة الأقمار بدلالة مقلوب نصف قطر الدوران $v^2 = f\left(\frac{1}{r}\right)$

$$r$$
 ، M_U ، G عبر عن سرعة أحد الأقمار بدلالة عن سرعة ميث M_U . (Uranus) حيث M_U

- . $M_{\scriptscriptstyle U}$ استنتج باستعمال البيان قيمة الكتلة
 - 5
- أ) اذكر نص القانون الثالث لكبلر ، ثم باستعمال الجدول السابق ، بين أن هذا القانون محقق .
 - ب) استنتج كتلة (Uranus) ، وقارنها مع القيمة المحسوبة سابقا .

$\frac{1}{r} (10^{-9} m^{-1})$	

التمرين 2:

ألسات 1 (Alsat1) قمر اصطناعي جزائري متعدد الاستخدامات كتلته $m_s = 90 \ kg$ ، أرسل إلى الفضاء بتاريخ $T = 98 \ min$ من محطة الفضاء الروسية، يدور حول الأرض وفق مسار اهليلجي ودوره $T = 98 \ min$

- 1- لأجل در اسة حركته نختار مرجعا مناسبا.
- أ- اقترح مرجعا لدراسة حركة القمر الاصطناعي حول الأرض وعرّفه.
 - ب- ذكر بنص القانون الثاني لكبلر.
- 2- بفرض أن القمر الاصطناعي (Alsat1) يدور حول الأرض وفق مسار دائري على ارتفاع h عن سطحها. أ- مثّل قوة جذب الأرض بالنسبة للقمر الاصطناعي .
- $R_{\scriptscriptstyle T}$, h , G , $m_{\scriptscriptstyle S}$, $M_{\scriptscriptstyle T}$:اكتب العبارة الحرفية لشدة قوة جذب الأرض للقمر الاصطناعي بدلالة
 - ج- بتطبيق القانون الثاني لنيوتن، تحقّق أن عبارة سرعة القمر الاصطناعي المدارية هي من

$$r = R_T + h$$
 :حیث $v = \sqrt{\frac{GM_T}{r}}$

- . r , G , $M_{\scriptscriptstyle T}$: عرقف الدور T واكتب عبارته بدلالة
- ه- احسب الارتفاع h الذي يتواجد عليه القمر الاصطناعي (Alsatl)عن سطح الأرض.
- ، $M_T = 6 \times 10^{24} kg$: ثابت التجاذب الكوني: $G = 6,67 \times 10^{-11} \ SI$ ؛ كتلة الأرض : ثابت التجاذب الكوني: $R_T = 6,38 \times 10^3 km$ نصف قطر الأرض:

التمرين 3:

 $r = 384 \times 10^3 \, km$ يدور كوكب القمر حول الأرض وفق مسار نعتبره دائريا مركزه هو مركز الأرض، ونصف قطره $T_r = 25.5 \, jour$ ودوره $T_r = 25.5 \, jour$

1- أ- ما هو المرجع الذي تنسب إليه حركة كوكب القمر ؟

ب- احسب قيمة السرعة ν لحركة مركز عطالة القمر.

- -2 المركبة الفضائية أبولو (Apollo) التي حملت رواد الفضاء إلى سطح القمر سنة 1968، حلقت في مدار دائري حول القمر على ارتفاع ثابت $h_A = 110 \, km$.
 - أ- ذكر بنص القانون الثالث لكبار.
 - G بارة دور المركبة T_A بدلالة H_A ونصف قطر القمر R_L وكتلته M_L وثابت الجذب العام M_L احسب قيمته العددية.
 - $r_{\rm S}$ للمدار الجيومستقر لقمر اصطناعي أرضي.

، $M_L = 7.34 \times 10^{22} kg$: كثلة القمر $G = 6.67 \times 10^{-11} N \cdot m^2 \cdot kg^{-2}$ المعطيات:

. نصف قطر القمر : $M_T = 81,3$ النسبة $R_L = 1,74 \times 10^3 \, km$ كتلة الأرض نصف قطر القمر : $M_T = 81,3$

4- يوجد تشابه واضح بين النظامين الكوكبي والذري، إلا أنه لا يمكن تطبيق قوانين نيوتن على النظام الذري. بين محدودية قوانين نيوتن.

التمرين 4:

نعتبر قمرا اصطناعيا (S) كتلته m_s يدور حول الأرض في جهة دورانها بسرعة ثابتة (الشكل-6).

1- مثّل القوى الخارجية المؤثرة على القمر الاصطناعي (S).

-2 ما هو المرجع المناسب لدراسة حركة القمر الاصطناعي (S)؟ عرّفه.

-3 بتطبيق القانون الثاني لنيوتن، جِدُ العبارة الحرفية لسرعة القمر الاصطناعي R_T بدلالة: ثابت الجذب العام G، كتلة الأرض M_T نصف قطر الأرض

وارتفاع مركز عطالة القمر الاصطناعي عن سطح الأرض h، ثمّ احسب قيمتها.

4- أ- جِدْ عبارة دور القمر الاصطناعي بدلالة: M_T ، G، h، R_T ، ثمّ احسب قيمته. - هل يمكن اعتبار هذا القمر جيو مستقر ؟ علّل.

6- ذكّر بالقانون الثالث لكبلر، ثمّ بيّن أن النسبة: $k : \frac{T^2}{(R_T + h)^3} = k$ عيث: k ثابت يطلب حسابه. الشكل -5

 $G=6.67 \times 10^{-11}$ (SI), $M_T=6.0 \times 10^{24}~kg$, $R_T=6380~km$, h=35800~km , $\pi^2=10$. يعطى: