Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.) E.g., situations where I will/won't wait for a table:

Example	Attributes										Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	<i>\$\$\$</i>	F	T	French	>60	F
X_6	F	T	F	T	Some	<i>\$\$</i>	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	Τ	F	Burger	0–10	F
X_8	F	F	F	T	Some	<i>\$\$</i>	Τ	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	Τ	F	Burger	>60	F
X_{10}	T	T	T	T	Full	<i>\$\$\$</i>	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Classification of examples is positive (T) or negative (F)

Decision trees

One possible representation for hypotheses

E.g., here is the "true" tree for deciding whether to wait:

Expressiveness

Decision trees can express any function of the input attributes. E.g., for Boolean functions, truth table row \rightarrow path to leaf:

Trivially, there is a consistent decision tree for any training set w/ one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples

Prefer to find more compact decision trees

How many distinct decision trees with n Boolean attributes??

How many distinct decision trees with \underline{n} Boolean attributes??

= number of Boolean functions

How many distinct decision trees with n Boolean attributes??

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows

How many distinct decision trees with n Boolean attributes??

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows = 2^{2^n}

How many distinct decision trees with n Boolean attributes??

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows = 2^{2^n}

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many distinct decision trees with n Boolean attributes??

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows = 2^{2^n}

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., $Hungry \land \neg Rain$)??

How many distinct decision trees with n Boolean attributes??

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows = 2^{2^n}

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., $Hungry \land \neg Rain$)??

Each attribute can be in (positive), in (negative), or out

 \Rightarrow 3ⁿ distinct conjunctive hypotheses

More expressive hypothesis space

- increases chance that target function can be expressed
- increases number of hypotheses consistent w/ training set
 - ⇒ may get worse predictions

Decision tree learning

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose "most significant" attribute as root of (sub)tree

```
function DTL(examples, attributes, default) returns a decision tree if examples is empty then return default else if all examples have the same classification then return the classification else if attributes is empty then return Mode(examples) else best \leftarrow \texttt{CHOOSE-ATTRIBUTE}(attributes, examples) \\ tree \leftarrow \texttt{a} \text{ new decision tree with root test } best \\ \textbf{for each value } v_i \text{ of } best \textbf{ do} \\ examples_i \leftarrow \{ \text{elements of } examples \text{ with } best = v_i \} \\ subtree \leftarrow \texttt{DTL}(examples_i, attributes - best, \texttt{Mode}(examples)) \\ \texttt{add a branch to } tree \text{ with label } v_i \text{ and subtree } subtree \\ \textbf{return } tree
```

Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice—gives **information** about the classification

Information

Information answers questions

The more clueless I am about the answer initially, the more information is contained in the answer

Scale: 1 bit = answer to Boolean question with prior $\langle 0.5, 0.5 \rangle$

Information in an answer when prior is $\langle P_1, \dots, P_n \rangle$ is

$$H(\langle P_1, \dots, P_n \rangle) = \sum_{i=1}^n -P_i \log_2 P_i$$

(also called entropy of the prior)

Information contd.

Suppose we have p positive and n negative examples at the root

 $\Rightarrow H(\langle p/(p+n), n/(p+n)\rangle)$ bits needed to classify a new example E.g., for 12 restaurant examples, p=n=6 so we need 1 bit

An attribute splits the examples E into subsets E_i , each of which (we hope) needs less information to complete the classification

Let E_i have p_i positive and n_i negative examples

- $\Rightarrow H(\langle p_i/(p_i+n_i), n_i/(p_i+n_i)\rangle)$ bits needed to classify a new example
- ⇒ expected number of bits per example over all branches is

$$\sum_{i} \frac{p_i + n_i}{p + n} H(\langle p_i / (p_i + n_i), n_i / (p_i + n_i) \rangle)$$

For *Patrons*?, this is 0.459 bits, for *Type* this is (still) 1 bit

⇒ choose the attribute that minimizes the remaining information needed

Example contd.

Decision tree learned from the 12 examples:

Substantially simpler than "true" tree—a more complex hypothesis isn't justified by small amount of data