机器学习导论

第一次作业

191220008 陈南瞳

1 Basic Concepts

1.1 Probability

由贝叶斯公式:

$$Pr(D|T) = \frac{Pr(T|D)Pr(D)}{Pr(T|D)Pr(D) + Pr(T|\neg D)Pr(\neg D)}$$

$$= \frac{Pr(T|D)Pr(D)}{Pr(T|D)Pr(D) + Pr(T|\neg D)(1 - Pr(D))}$$

$$= \frac{0.98 \times 0.01}{0.98 \times 0.01 + 0.10 \times (1 - 0.01)}$$

$$= \frac{49}{544} = 0.09007$$

故他真的得病概率为0.09007

1.2 Maximum likelihood estimation

似然函数为:

$$\ell(p) = C_{10}^8 \cdot p^8 (1-p)^{10-8} = 45p^8 (1-p)^2$$

对数似然为:

$$\ln \ell(p) = \ln 45 + 8 \ln p + 2 \ln (1-p)$$

求导数:

$$(\ln \ell(p))' = \frac{8}{p} - \frac{2}{1-p} = \frac{8-10p}{p(1-p)} = 0$$

得到 p 的估计值:

$$p = \frac{8}{10} = \frac{4}{5} = 0.8$$

1.3 Performance meause

(实现代码见文件夹,直接运行即可)

在 python 中分别画出分类器 C1 和 C2 的 ROC 曲线,并计算 AUROC:

由图可知:

$$\begin{aligned} AUROC_1 &= 0.8667 \\ AUROC_2 &= 0.7333 \end{aligned}$$

(2)

C1 (th1=0.40)		预测结果	预测结果
		正例	反例
真实结果	正例	4	1
真实结果	反例	0	3

$$F1 = rac{2 imes TP}{$$
样例总数 $+ TP - TN} = rac{2 imes 4}{8 + 4 - 3} = rac{8}{9} = 0.8889$

C2 (th2=0.90)		预测结果	预测结果
		正例	反例
真实结果	正例	1	4
真实结果	反例	0	3

$$F1 = rac{2 imes TP}{$$
样例总数 $+ TP - TN} = rac{2 imes 1}{8 + 1 - 3} = rac{1}{3} = 0.3333$

2 Linear model

1.

$$f(\mathbf{w}) = \frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{2}^{2} + \lambda \|\mathbf{w}\|_{2}^{2}$$
$$= \frac{1}{2} ||(\mathbf{y} - \mathbf{X}\mathbf{w})^{\mathrm{T}}(\mathbf{y} - \mathbf{X}\mathbf{w})\|_{2} + \lambda ||\mathbf{w}^{\mathrm{T}}\mathbf{w}||_{2}$$

对w求偏导数:

$$\frac{\partial f}{\partial \mathbf{w}} = -\mathbf{X}^{\mathrm{T}}(\mathbf{y} - \mathbf{X}\mathbf{w}) + 2\lambda \mathbf{w} = 0$$

由X满秩可逆,得到w的闭式解为:

$$\mathbf{w} = (2\lambda \mathbf{I} + \mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

2.

由题可知:

$$\mathbf{X} = \begin{pmatrix} 2 & 9 & 1 \\ 9 & 3 & 1 \\ 8 & 3 & 1 \\ 8 & 8 & 1 \\ 2 & 1 & 1 \\ 8 & 4 & 1 \\ 4 & 3 & 1 \\ 1 & 8 & 1 \\ 3 & 3 & 1 \\ 5 & 3 & 1 \end{pmatrix}, \qquad \mathbf{y} = \begin{pmatrix} 290 \\ 1054 \\ 944 \\ 964 \\ 246 \\ 948 \\ 488 \\ 167 \\ 370 \\ 598 \end{pmatrix}$$

带入上述w的闭式解,可得w的最优解为:

$$\mathbf{w} = \begin{pmatrix} 112.93397617 \\ 6.18994302 \\ 11.97947962 \end{pmatrix}$$

3 Logistic Regression

1.

$$\ell(\beta) = \sum_{i=1}^{n} (-y_i \beta^{\mathbf{T}} \hat{\mathbf{x}}_i + \ln\left(1 + e^{\beta^{\mathbf{T}} \hat{\mathbf{x}}_i}\right))$$
(3.2)

欲证Eq.(3.2)为凸函数,只需证明其 Hessian Matrix 半正定,即证:

$$\forall \mathbf{A} \in \mathbf{R}^m, \quad \mathbf{A^THA} > 0$$

由教材中公式(3.31)可知,关于 β 的二阶导数为:

$$\frac{\partial^2 \ell(\beta)}{\partial \beta \partial \beta^{\mathbf{T}}} = \sum_{i=1}^n \hat{\mathbf{x}}_i \hat{\mathbf{x}}_i^{\mathbf{T}} p_1(\hat{\mathbf{x}}_i; \beta) (1 - p_1(\hat{\mathbf{x}}_i; \beta))$$

设 $eta\in\mathbf{R}^m,\hat{\mathbf{x}}\in\mathbf{R}^m,p_1=p_1(\hat{\mathbf{x}}_i;eta)$,则 Hessian Matrix 为:

$$\mathbf{H}_{m imes m} = \sum_{i=1}^n \hat{\mathbf{x}}_i \hat{\mathbf{x}}_i^{\mathbf{T}} p_1 (1-p_1) = \mathbf{X} \mathbf{P} \mathbf{X}^{\mathbf{T}}$$

其中:

$$\mathbf{X} = [\hat{\mathbf{x}}_1, \ \hat{\mathbf{x}}_2, \ \cdots, \ \hat{\mathbf{x}}_n]_{m \times n}$$

$$\mathbf{P} = egin{bmatrix} p_1(1-p_1) & 0 & \cdots & 0 \ 0 & p_2(1-p_2) & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & p_n(1-p_n) \end{bmatrix}_{n imes n}$$

由于:

$$p_i = rac{1}{1 + e^{eta_i^{ ext{T}}\hat{\mathbf{x}_i}}} \in [0, 1]$$

可得:

$$p_i(1-p_i) \geq 0$$

故对 $\forall \mathbf{A} \in \mathbf{R}^m$ 有:

$$\mathbf{A}^{\mathrm{T}}\mathbf{H}\mathbf{A} = \mathbf{A}^{\mathrm{T}}\mathbf{X}\mathbf{P}\mathbf{X}^{\mathrm{T}}\mathbf{A} = (\mathbf{X}^{\mathrm{T}}\mathbf{A})^{\mathrm{T}}\mathbf{P}(\mathbf{X}^{\mathrm{T}}\mathbf{A}) \\ \stackrel{\mathbf{B}=\mathbf{X}^{\mathrm{T}}\mathbf{A}}{=} \mathbf{B}^{\mathrm{T}}\mathbf{P}\mathbf{B} \\ = \sum_{i=1}^{n} (B_i)^2 p_i (1-p_i) \geq 0$$

因此,Hessian Matrix 为半正定矩阵,因而式(3.2)为凸函数,证毕。

若该二分类问题变为多分类问题,其中 $y_i\in\{1,2,\cdots,K\}$,可看作求解K个二分类问题。 假设 $y_i=K$ 为主类别,则其余K-1个类别满足对数几率:

$$egin{aligned} & \ln rac{p(y=1 \mid \mathbf{x})}{p(y=K \mid \mathbf{x})} = \mathbf{w}_1^{\mathrm{T}} \mathbf{x} + b_1 \ & \ln rac{p(y=2 \mid \mathbf{x})}{p(y=K \mid \mathbf{x})} = \mathbf{w}_2^{\mathrm{T}} \mathbf{x} + b_2 \ & \dots \ & \dots \ & \ln rac{p(y=K-1 \mid \mathbf{x})}{p(y=K \mid \mathbf{x})} = \mathbf{w}_{K-1}^{\mathrm{T}} \mathbf{x} + b_{K-1} \end{aligned}$$

因此有:

$$rac{p(y=i\mid \mathbf{x})}{p(y=K\mid \mathbf{x})} = e^{\mathbf{w}_i^{\mathrm{T}}\mathbf{x} + b_i}, \quad (i=1,2,\ldots,K-1)$$

求和得:

$$\sum_{i=1}^{K-1} rac{p(y=i\mid \mathbf{x})}{p(y=K\mid \mathbf{x})} = \sum_{i=1}^{K-1} e^{\mathbf{w}_i^{ ext{T}}\mathbf{x} + b_i} = rac{1-p(y=K\mid \mathbf{x})}{p(y=K\mid \mathbf{x})}$$

解得:

$$p(y = j \mid \mathbf{x}) = egin{cases} rac{e^{\mathbf{w}_{j}^{ ext{T}}\mathbf{x} + b_{j}}}{1 + \sum_{i=1}^{K-1} e^{\mathbf{w}_{i}^{ ext{T}}\mathbf{x} + b_{i}}}, & j = 1, 2, \dots, K-1 \ rac{1}{1 + \sum_{i=1}^{K-1} e^{\mathbf{w}_{i}^{ ext{T}}\mathbf{x} + b_{i}}}, & j = K \end{cases}$$

$$\begin{split} \ell(\beta) &= \sum_{i=1}^{n} \ln p(y_{i} \mid \hat{x}_{i}) \\ &= \sum_{i=1}^{n} \ln \prod_{j=1}^{K} (p(y_{i} = j \mid \hat{x}_{i}))^{\mathbb{I}(y_{i} = j)} \\ &= \sum_{i=1}^{n} \sum_{j=1}^{K} \mathbb{I}(y_{i} = j) \ln p(y_{i} = j \mid \hat{x}_{i}) \\ &= \sum_{i=1}^{n} (\sum_{j=1}^{K-1} \mathbb{I}(y_{i} = j) \ln p(y_{i} = j \mid \hat{x}_{i}) + \mathbb{I}(y_{i} = K) \ln p(y_{i} = K \mid \hat{x}_{i})) \\ &= \sum_{i=1}^{n} (\sum_{j=1}^{K-1} \mathbb{I}(y_{i} = j) \ln \left(\frac{e^{\mathbf{w}_{j}^{\mathsf{T}} \mathbf{x}_{i} + b_{j}}}{1 + \sum_{m=1}^{K-1} e^{\mathbf{w}_{m}^{\mathsf{T}} \mathbf{x}_{i} + b_{m}}}\right) + \mathbb{I}(y_{i} = K) \ln \left(\frac{1}{1 + \sum_{m=1}^{K-1} e^{\mathbf{w}_{m}^{\mathsf{T}} \mathbf{x}_{i} + b_{m}}}\right)) \\ &= \sum_{i=1}^{n} (\sum_{j=1}^{K-1} \mathbb{I}(y_{i} = j) \ln \left(\frac{e^{\beta_{j}^{\mathsf{T}} \hat{\mathbf{x}}_{i}}}{1 + \sum_{m=1}^{K-1} e^{\beta_{m}^{\mathsf{T}} \hat{\mathbf{x}}_{i}}}\right) + \mathbb{I}(y_{i} = K) \ln \left(\frac{1}{1 + \sum_{m=1}^{K-1} e^{\beta_{m}^{\mathsf{T}} \hat{\mathbf{x}}_{i}}}\right)) \\ &= \sum_{i=1}^{n} (\sum_{j=1}^{K-1} \mathbb{I}(y_{i} = j) (\beta_{j}^{\mathsf{T}} \hat{\mathbf{x}}_{i} - \ln \left(1 + \sum_{m=1}^{K-1} e^{\beta_{m}^{\mathsf{T}} \hat{\mathbf{x}}_{i}}\right)) - \mathbb{I}(y_{i} = K) \ln \left(1 + \sum_{m=1}^{K-1} e^{\beta_{m}^{\mathsf{T}} \hat{\mathbf{x}}_{i}}\right)) \\ &= \sum_{i=1}^{n} (\sum_{j=1}^{K-1} \mathbb{I}(y_{i} = j) \beta_{j}^{\mathsf{T}} \hat{\mathbf{x}}_{i} - \sum_{j=1}^{K} \mathbb{I}(y_{i} = j) \ln \left(1 + \sum_{m=1}^{K-1} e^{\beta_{m}^{\mathsf{T}} \hat{\mathbf{x}}_{i}}\right)) \\ &= \sum_{i=1}^{n} (\sum_{j=1}^{K-1} \mathbb{I}(y_{i} = j) \beta_{j}^{\mathsf{T}} \hat{\mathbf{x}}_{i} - \ln \left(1 + \sum_{m=1}^{K-1} e^{\beta_{m}^{\mathsf{T}} \hat{\mathbf{x}}_{i}}\right)) \end{aligned}$$

3.

(实现代码见文件夹,直接运行即可)

读取 Yeast 数据集后可知是多分类数据集,故可以采用不同的拆分方式进行训练,

如: OVO, OVR, Multi-Class

我将数据集的70%用于训练,30%用于测试(同时也会在训练集上进行测试)。

此外,我在数据集划分时让各类别在训练集和测试集中的比例分布相同,并且保证每一次的划分始终保持相同,以确保测试的科学性。

在模型评估中,我选取了精度、查准率、查全率、f1、kappa系数、混淆矩阵等参数进行评估,并分别 计算出其宏平均和微平均,通过分类报告列举出上述部分参数在各类别中的值。

测试集:

OVO:

accuracy: 58.97%

precision(宏平均): 60.31%, precision(微平均): 58.97%

recall(宏平均): 55.25%, recall(微平均): 58.97%

f1(宏平均): 57.16%, f1(微平均): 58.97% cohen kappa: 0.4617682552871585

cor	าfบร	sior	n ma	itri	ĹΧ:					
[]	96	0	0	0	0	1	. 6	34	1	1]
[0	2	0	0	0	0	0	0	0	0]
[1	0	6	2	0	0	2	0	0	0]
[0	0	1	8	4	0	0	0	0	0]
[3	0	1	1	5	3	0	2	0	0]
[1	0	0	0	1	39	1	7	0	0]
[2	21	0	0	0	1	4	40	6	1	0]
[5	54	0	0	0	0	5	6	64	0	0]
[2	0	0	0	0	0	1	0	3	0]
[4	0	0	0	0	4	0	1	0	0]]

classification	report:			
	precision	recall	f1-score	support
0	0.53	0.69	0.60	139
1	1.00	1.00	1.00	2
2	0.75	0.55	0.63	11
3	0.73	0.62	0.67	13
4	0.45	0.33	0.38	15
5	0.70	0.80	0.74	49
6	0.71	0.55	0.62	73
7	0.56	0.50	0.53	129
8	0.60	0.50	0.55	6
9	0.00	0.00	0.00	9
accuracy			0.59	446
macro avg	0.60	0.55	0.57	446
weighted avg	0.59	0.59	0.58	446

OVR:

accuracy: 58.30%

precision(宏平均): 59.40%, precision(微平均): 58.30%

recall(宏平均): 51.08%, recall(微平均): 58.30%

f1(宏平均): 53.43%, f1(微平均): 58.30% cohen kanna: 0.44957999920379

cor	ıfus	sior	n ma	atr:	ix:					
[]	96	0	0	0	0	1	. 6	35	1	0]
	0	2	0	0	0	0	0	0	0	0]
	3	0	3	2	0	0	3	0	0	0]
	1	0	1	6	3	0	2	0	0	0]
	3	0	0	1	5	2	1	3	0	0]
	3	0	0	0	0	39	1	6	0	0]
[2	21	0	0	0	1	4	39	6	2	0]
[5	52	0	0	0	0	5	5	67	0	0]
	2	0	0	0	0	0	1	0	3	0]
	4	n	n	n	n	4	n	1	n	n11

classification	report:				
	precision	recall	f1-score	support	
0	0.52	0.69	0.59	139	
1	1.00	1.00	1.00	2	
2	0.75	0.27	0.40	11	
3	0.67	0.46	0.55	13	
4	0.56	0.33	0.42	15	
5	0.71	0.80	0.75	49	
6	0.67	0.53	0.60	73	
7	0.57	0.52	0.54	129	
8	0.50	0.50	0.50	6	
9	0.00	0.00	0.00	9	
accuracy			0.58	446	
macro avg	0.59	0.51	0.53	446	
weighted avg	0.58	0.58	0.57	446	

Multi-Class:

accuracy: 57.85%

precision(宏平均): 58.96%, precision(微平均): 57.85%

recall(宏平均): 48.36%, recall(微平均): 57.85%

f1(宏平均): 51.83%, f1(微平均): 57.85 cohen kappa: 0.4457979444132325

cor	ıfus	sior	n ma	atri	ix:					
[]	96	0	0	0	0	0	6	35	1	1]
[1	1	0	0	0	0	0	0	0	0]
[1	0	5	2	0	0	3	0	0	0]
[0	0	1	7	4	0	1	0	0	0]
[3	0	0	1	5	3	1	2	0	0]
[2	0	0	0	0	40	1	6	0	0]
[2	23	0	0	0	2	4	37	5	2	0]
[5	54	0	0	0	0	5	6	64	0	0]
[2	0	0	1	0	0	0	0	3	0]
[5	0	0	0	0	4	0	0	0	0]]

classification	report:			
	precision	recall	f1-score	support
0	0.51	0.69	0.59	139
1	1.00	0.50	0.67	2
2	0.83	0.45	0.59	11
3	0.64	0.54	0.58	13
4	0.45	0.33	0.38	15
5	0.71	0.82	0.76	49
6	0.67	0.51	0.58	73
7	0.57	0.50	0.53	129
8	0.50	0.50	0.50	6
9	0.00	0.00	0.00	9
accuracy			0.58	446
macro avg	0.59	0.48	0.52	446
weighted avg	0.58	0.58	0.57	446
,				·

由上图可以得出,该模型在测试集上的测试结果为:

在所有的参数上(精度、查准率、查全率、f1、kappa系数),均有:OVO > OVR > Multi-Class

但我发现,上述比较关系的结果与数据集划分的随机种子的值有关,三者的相对大小并不固定。 此外,参数的值(如精度)均不太高,cohen kappa 均小于 0.8,说明都不是好的分类。 部分的类别,如类别9(ERL),甚至没有被预测到,导致其相关参数均为0,说明学习效果并不理想。

训练集:

OVO:

accuracy: 62.04%

precision(宏平均): 66.13%, precision(微平均): 62.04%

recall(宏平均): 60.81%, recall(微平均): 62.04%

f1(宏平均): 62.59%, f1(微平均): 62.04% cohen kappa: 0.503675359617282

con	fusi	ion n	natr:	ix:						
[[231	0	0	0	3	3	29	58	0	0]
[0	3	0	0	0	0	0	0	0	0]
[3	0	15	0	2	0	3	1	0	0]
[0	0	1	26	3	1	0	0	0	0]
[4	0	0	4	17	4	6	1	0	0]
[6	0	0	0	1	99	2	6	0	0]
[55	0	0	1	4	3	97	10	1	0]
[1	26	0	1	0	1	7	16	149	0	0]
[3	0	0	0	1	1	2	0	7	0]
[9	0	2	1	1	2	3	3	0	0]]

classification	report:			
	precision	recall	f1-score	support
0	0.53	0.71	0.61	324
1	1.00	1.00	1.00	3
2	0.79	0.62	0.70	24
3	0.81	0.84	0.83	31
4	0.52	0.47	0.49	36
5	0.82	0.87	0.85	114
6	0.61	0.57	0.59	171
7	0.65	0.50	0.56	300
8	0.88	0.50	0.64	14
9	0.00	0.00	0.00	21
accuracy			0.62	1038
macro avg	0.66	0.61	0.63	1038
weighted avg	0.62	0.62	0.61	1038

OVR:

accuracy: 60.50%

precision(宏平均): 64.44%, precision(微平均): 60.50%

recall(宏平均): 55.59%, recall(微平均): 60.50%

f1(宏平均): 58.50%, f1(微平均): 60.50% cohen kappa: 0.480362493498121

cor	ıfusi	ion n	natri	ix:						
[]	[230	0	0	1	0	2	28	63	0	0]
[0	3	0	0	0	0	0	0	0	0]
[6	0	10	1	2	0	4	1	0	0]
[0	0	2	21	2	2	4	0	0	0]
[6	0	0	5	12	3	9	1	0	0]
[9	0	0	0	0	98	0	7	0	0]
[55	0	0	1	3	4	95	12	1	0]
[2	122	0	1	0	0	11	14	152	0	0]
[5	0	0	0	0	0	2	0	7	0]
[10	0	2	0	0	4	2	3	0	0]]

recision	recall	f1-score	support
0.52	0.71	0.60	324
1.00	1.00	1.00	3
0.67	0.42	0.51	24
0.72	0.68	0.70	31
0.63	0.33	0.44	36
0.79	0.86	0.82	114
0.60	0.56	0.58	171
0.64	0.51	0.56	300
0.88	0.50	0.64	14
0.00	0.00	0.00	21
		0.61	1038
0.64	0.56	0.59	1038
0.61	0.61	0.60	1038
	1.00 0.67 0.72 0.63 0.79 0.60 0.64 0.88 0.00	0.52 0.71 1.00 1.00 0.67 0.42 0.72 0.68 0.63 0.33 0.79 0.86 0.60 0.56 0.64 0.51 0.88 0.50 0.00 0.00	0.52 0.71 0.60 1.00 1.00 1.00 0.67 0.42 0.51 0.72 0.68 0.70 0.63 0.33 0.44 0.79 0.86 0.82 0.60 0.56 0.58 0.64 0.51 0.56 0.88 0.50 0.64 0.00 0.00 0.00 0.61 0.64 0.55 0.59

Multi-Class:

accuracy: 61.75% precision(宏平均): 64.68%, precision(微平均): 61.75% recall(宏平均): 59.09%, recall(微平均): 61.75%

f1(宏平均): 60.96%, f1(微平均): 61.75% cohen kappa: 0.4994807589300354

con	fusi	.on r	natri	ix:						
[[233	0	0	0	2	3	29	57	0	0]
[0	3	0	0	0	0	0	0	0	0]
[3	0	13	2	3	0	2	1	0	0]
[0	0	2	24	3	1	1	0	0	0]
[5	0	0	4	16	3	7	1	0	0]
[7	0	0	0	1	99	0	7	0	0]
[55	0	0	2	5	3	96	9	1	0]
[1	.24	0	1	0	1	8	16	150	0	0]
[4	0	0	0	1	0	2	0	7	0]
[9	0	2	0	0	4	3	3	0	0]]

classification report: precision recall f1-score support 0 0.53 0.72 0.61 324
0 0.53 0.72 0.61 324
1 1.00 1.00 1.00 3
2 0.72 0.54 0.62 24
3 0.75 0.77 0.76 31
4 0.50 0.44 0.47 36
5 0.82 0.87 0.84 114
6 0.62 0.56 0.59 171
7 0.66 0.50 0.57 300
8 0.88 0.50 0.64 14
9 0.00 0.00 0.00 21
accuracy 0.62 1038
macro avg 0.65 0.59 0.61 1038
weighted avg 0.62 0.62 0.61 1038

由上图可以得出,该模型在训练集上的测试结果为:

在所有的参数上(精度、查准率、查全率、f1、kappa系数),均有:OVO > Multi-Class > OVR

但我发现,上述比较关系的结果与数据集划分的随机种子的值有关,三者的相对大小并不固定。 此外,参数的值(如精度)均不太高,cohen kappa 均小于 0.8,说明都不是好的分类。 部分的类别,如类别9(ERL),甚至没有被预测到,导致其相关参数均为0,说明学习效果并不理想。