Συστήματα Αποφάσεων

Εργαστηριακές Ασκήσεις στον Γραμμικό Προγραμματισμό

7° Εξάμηνο Η.Μ.Μ.Υ.	Αγγλογάλλος Αναστάσιος	03118641	
---------------------	------------------------	----------	--

Άσκηση 1 : Καθορισμός Παραγωγής Σοκολάτας

1.

Διατύπωση Προβλήματος

- Μεταβλητή Απόφασης : x_i, ποσότητα παραγωγής προϊόντος i (kg)
- Κριτήριο Απόφασης : Μεγιστοποίηση Κέρδους (€)

```
Προϊόν Α
```

Παράγουμε χ_α κιλά προϊόν Α

Περιορισμοί:

Προϊόν Β

Παράγουμε χο κιλά προϊόν Β

Περιορισμοί:

Προϊόν Γ

Παράγουμε χ_c κιλά προϊόν Γ

Περιορισμοί:

$$\chi_c \le \chi_a + \chi_b$$

Διαθέσιμοι Πόροι :

Γάλα:

$$0.65^*x_a + 0.7^*x_b + 0.8^*x_c \le 6,000$$

$$0.35^*x_a + 0.3^*x_b + 0.2^*x_c \le 2,600$$

Εργασία:

Ανθρωποώρες 1ου Σταδίου:

$$0.04*x_a + 0.05*x_b + 0.07*x_c \le 350$$

Ανθρωποώρες 2ου Σταδίου:

$$0.01^*x_a + 0.015^*x_b + 0.02^*x_c \le 120$$

Αντικειμενική Συνάρτηση:

max: Έσοδα Πώλησης - Έξοδα Κατασκευής

Έσοδα Πώλησης = 5*x_a + 6*x_b + 7*x_c Έξοδα Κατασκευής = Έξοδα Υλικών + Κόστοι Εργατών

Έξοδα Υλικών =

$$0.6*(0.65*x_a + 0.7*x_b + 0.8*x_c) + 6.5*(0.35*x_a + 0.3*x_b + 0.2*x_c)$$

= $0.39*x_a + 0.42*x_b + 0.48*x_c + 2.275*x_a + 1.95*x_b + 1.3*x_c$
= $2.665*x_a + 2.37*x_b + 1.78*x_c$

Κόστοι Εργατών =

$$6*(0.04*x_a + 0.05*x_b + 0.07*x_c) + 6*(0.01*x_a + 0.015*x_b + 0.02*x_c) = 0.3*x_a + 0.39*x_b + 0.54*x_c$$

Έξοδα Κατασκευής =
$$2.665*x_a + 2.37*x_b + 1.78*x_c$$
 + $0.3*x_a + 0.39*x_b + 0.54*x_c = 2.965*x_a + 2.76*x_b + 2.32*x_c$

Κέρδος = Έσοδα Πώλησης - Έξοδα Κατασκευής =
$$5*x_a + 6*x_b + 7*x_c$$
 - $(2.965*x_a + 2.76*x_b + 2.32*x_c)$ = $2.035*x_a + 3.24*x_b + 4.68*x_c$

max: $2.035^*x_a + 3.24^*x_b + 4.68^*x_c$

Κώδικας:

```
1 /* Objective function */
 2 max: 2.035*xa + 3.24*xb + 4.68*xc;
4 /* Variable bounds */
6 /* Resources */
7 /* Milk */
8 0.65*xa + 0.7*xb +0.8*xc <= 6000;
9 /* Cacao */
10 0.35*xa + 0.3*xb +0.2*xc <= 2600;
11 /* Man-hours Stage 1 */
12\ 0.04*xa + 0.05*xb + 0.07*xc <= 350;
13 /* Man-hours Stage 2 */
14 0.01*xa + 0.015*xb +0.02*xc <= 120;
15 /* Product A bound */
16 xa >= 1000;
17 xa >= 0;
18 /* Product B bound */
19 xb >= 0;
20 /* Product C bound */
21 xc <= xa + xb;
22 xc >= 0;
23
```

Variables	result
	22555
xa	1000
хЬ	2000
xc	3000

Constraints	result
	22555
R1	4450
R2	1550
R3	350
R4	100
R5	0

Variables	value	from	till
objective	22555	22555	22555
R1	0	-inf	+inf
R2	0	-inf	+inf
R3	66	110	418.571428571429
R4	0	-inf	+inf
R5	0.059999999999999	-7200	3428.57142857143
xa	-0.545	-8599.9999999999	3181.81818181818
хЬ	0	-inf	+inf
ХC	0	-inf	+inf

Απόφαση:

Το Βέλτιστο Πρόγραμμα Παραγωγής σύμφωνα με την παραπάνω ανάλυση είναι το εξής:

Θα παράγουμε:

- 1000 κιλά προϊόντος Α
- 2000 κιλά προϊόντος Β
- 3000 κιλά προϊόντος Γ

Έτσι θα αποκτήσουμε το μεγαλύτερο κέρδος δηλαδή 22,555 €

2.

Πρωτεύον Πρόβλημα:

max:
$$2.035^*x_a + 3.24^*x_b + 4.68^*x_c$$
 Περιορισμοί: $0.01^*x_a + 0.015^*x_b + 0.02^*x_c \le 120$ $0.04^*x_a + 0.05^*x_b + 0.07^*x_c \le 350$ $0.65^*x_a + 0.7^*x_b + 0.8^*x_c \le 6,000$ $0.35^*x_a + 0.3^*x_b + 0.2^*x_c \le 2,600$ $-x_a - x_b + x_c \le 0$ $-x_a \le -1000$

Μετατροπή του Πρωτεύοντος Προβλήματος σε Δυαδικό $\max \rightarrow \min$

Περιορισμοί:

$$0.01*p1 + 0.04*p2 + 0.65*p3 + 0.35*p4 - p5 - p6 <= 2.035$$

 $0.015*p1 + 0.05*p2 + 0.7*p3 + 0.3*p4 - p5 <= 3.24$
 $0.02*p1 + 0.07*p2 + 0.8*p3 + 0.2*p4 + p5 <= 4.68$

Οικονομική Ερμηνεία:

p1 : Οριακή Αξία δυναμικότητας Ανθρωποωρών 2ου Σταδίου

p2 : Οριακή Αξία δυναμικότητας Ανθρωποωρών 1ου Σταδίου

ρ3 : Οριακή Αξία της διαθεσιμότητας Γάλατος

ρ4 : Οριακή Αξία της διαθεσιμότητας Κακαόμαζας

p5 : Οριακή Αξία δυναμικότητας Προϊόντος Γ

ρ6 : Οριακή Αξία της δυναμικότητας Προϊόντος Α

Κώδικας:

```
1 /* Objective function */
2 min: 120*p1 + 350*p2 + 6000*p3 + 2600*p4 - 1000*p6;
3
4 /* Variable bounds */
5 0.01*p1 + 0.04*p2 + 0.65*p3 + 0.35*p4 - p5 - p6 >= 2.035;
6 0.015*p1 + 0.05*p2 + 0.7*p3 + 0.3*p4 - p5 >= 3.24;
7 0.02*p1 + 0.07*p2 + 0.8*p3 + 0.2*p4 + p5 >= 4.68;
8
```

Variables	result		
	22555		
p1	0		
p2	66	Constraints	result
p3	0		22555
p4	0	R1	2.035
p6	0.545000000000001	R2	3.24
p5	0.05999999999993	R3	4.68

Variables ▼	value	from	till
objective	22555	22555	22555
R3	3000	4.536	11.22
R2	2000	2.64545454545455	3.34285714285714
R1	1000	-inf	2.58
р6	0	-inf	+inf
p5	0	-inf	+inf
р4	1050	-0.654545454545447	15.84
р3	1550	-0.7999999999999	5.28
p2	0	-inf	+inf
р1	20	-144	226.285714285714

Άσκηση 2 : Σχεδιασμός Φόρτωσης ενός Πλοίου

Διατύπωση Προβλήματος

- Μεταβλητή Απόφασης : x_{ii} ,
 - ο i : φορτίο από προϊόν (τόνοι)
 - ο j: αμπάρι
 - πρύμνη: 1
 - μέσο: 2
 - πλώρη: 3
- Κριτήριο Απόφασης : Μεγιστοποίηση Κέρδους (€)

Αντικειμενική Συνάρτηση:

max:
$$8*(x_{a1} + x_{a2} + x_{a3}) + 7*(x_{b1} + x_{b2} + x_{b3})$$

Προϊόν Α (χ_{ai})

Περιορισμοί:

$$X_{a1} + X_{a2} + X_{a3} \le 5,000$$

Προϊόν B (x_{bj})

Περιορισμοί:

$$x_{b1} + x_{b2} + x_{b3} \le 3,000$$

Πρύμνη (1):

$$Φορτίο = Xa1 + Xb1$$

Όγκος Φορτίου =
$$60*x_{a1} + 50*x_{b1}$$

Περιορισμοί:

$$60^*x_{a1} + 50^*x_{b1} \le 60,000$$

Μέση (2):

$$Φορτίο = Xa2 + Xb2$$

Όγκος Φορτίου =
$$60*x_{a2} + 50*x_{b2}$$

Περιορισμοί:

$$x_{a2} + x_{b2} >= 1.3*(x_{a1} + x_{b1})$$

```
x_{a2} + x_{b2} >= 1.3*(x_{a3} + x_{b3})
x_{a2} + x_{b2} <= 0.9*(x_{a1} + x_{b1} + x_{a3} + x_{b3})
60*x_{a2} + 50*x_{b2} <= 160,000
Πλώρη (3):
Φορτίο = x_{a3} + x_{b3}
Όγκος Φορτίου = 60*x_{a3} + 50*x_{b3}
Περιορισμοί:
x_{a3} + x_{b3} = 1.3*(x_{a1} + x_{b1})
60*x_{a3} + 50*x_{b3} <= 100,000
```

Κώδικας:

```
1 /* Objective function */
 2 max: 8*xa1 + 8*xa2 + 8*xa3 + 7*xb1 + 7*xb2 + 7*xb3;
4 /* Variable bounds */
5 /* Product A */
6 xa1 + xa2 + xa3 <= 5000;</pre>
7 /* Product B */
8 \text{ xb1} + \text{xb2} + \text{xb3} \le 3000;
9 /* Stern (1) */
10 60*xa1 + 50*xb1 <= 60000;
11 /* Middle (2) */
12 60*xa2 + 50*xb2 <= 160000;
13 \times a2 + xb2 >= 1.3*xa1 + 1.3*xb1;
14 \times a2 + xb2 >= 1.3*xa3 + 1.3*xb3;
15 \times a2 + xb2 \le 0.9*xa1 + 0.9*xb1 + 0.9*xa3 + 0.9*xb3;
16 /* Bow (3) */
17 60*xa3 + 50xb3 <= 100000;
18 \times 3 + xb3 = 1.3 \times 1 + 1.3 \times 1;
20 integer xa1;
21 integer xa2;
22 integer xa3;
23 integer xb1;
24 integer xb2;
25 integer xb3;
26
```

Variables	MILP	result
	40752	40752
xa1	0	0
xa2	2484	2484
ха3	1560	1560
xb1	1200	1200
xb2	0	0
xb3	0	0

Απόφαση:

Σύμφωνα με την παραπάνω ανάλυση θα ακολουθήσουμε το εξής τρόπο φόρτωσης του πλοίου :

```
Πρύμνη (1) : 
 Προϊόν A (x_{a1}) : - 
 Προϊόν B (x_{b1}) : 1,200 τόνοι 
 Μέση (2) : 
 Προϊόν A (x_{a2}) : 2,484 τόνοι 
 Προϊόν B (x_{b2}) : 1,796 τόνοι 
 Πλώρη (3) : 
 Προϊόν A (x_{a3}) : 1,560 τόνοι 
 Προϊόν B (x_{b3}) : -
```

Επίσης με την παραπάνω κατανομή το αμπάρι της Πρύμνης και της Μέσης είναι γεμάτα. Ενώ της πλώρης είναι κατά 93,600 / 100,000 = 93,6% γεμάτο.