Logical Devices

Building up from gates... Some common and more complex structures: Multiplexers (MUX) Decoders Seven-segment decoders Adders (half and full) Subtractors Comparators These are all Combinational Circuits

Combinational Circuits

- Combinational Circuits are any circuits where the outputs rely strictly on the inputs.
 - Everything we've done so far and what we'll do today is all combinational logic.
- Another category is sequential circuits that we will learn in the next weeks.

	B·€	B⋅C	в∙с	B ⋅ <u>C</u>
Ā	0	0	1	0
A	1	0	1	1

 K-maps provide an illustration of a circuit's minterms (or maxterms), and a guide to how neighbouring terms may be combined.

$$Y = \overline{\overline{A} \cdot B \cdot C} + \overline{A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C}} + \overline{A \cdot B \cdot C}$$

Karnaugh map review

	B·€	B ⋅C	в∙с	B⋅C
Ā	0	0	1	0
A	1	0	1	1

 K-maps provide an illustration of a circuit's minterms (or maxterms), and a guide to how neighbouring terms may be combined.

$$Y = \overline{\overline{A} \cdot B \cdot C} + \overline{A \cdot \overline{B} \cdot \overline{C}} + \overline{A \cdot B \cdot \overline{C}} + \overline{A \cdot B \cdot \overline{C}} + \overline{A \cdot B \cdot C}$$

Reminder on Reducing Circuits

- Eliminating variables in K-Maps by drawing larger (>1 elements) rectangles results in a circuit with a lower cost function.
- The resulting expression is still in sum-ofproducts form.
 - But, if simplified, it is no longer in sum-of-minterms form.
- Note: It is not only the number of gates that matters when reducing circuits, but also the number of inputs to each gate.

Karnaugh map example Create a circuit with four inputs (A, B, C, D), and two outputs (X, Y): The output X is high whenever two or more of the inputs are high. The output Y is high when three or more of

1 0

1 0

the inputs are high.

Multiplexers in Verilog

- A four-input multiplexer, created with gates.
 - Note that four input lines require two select bits to choose the output.

```
module mux_gates( select, d, q );
input[1:0] select;
input[3:0] d;
output
wire
          q, q1, q2, q3, q4;
wire
          not_s0, not_s1;
wire[1:0] select;
wire[3:0] d;
not n1( not_s0, select[0] );
not n2( not s1, select[1] );
and al( q1, not s0, not s1, d[0] );
and a2( q2, select[0], not_s1, d[1] );
and a3( q3, not s0, select[1], d[2] );
and a4( q4, select[0], select[1], d[3] );
or o1( q, q1, q2, q3, q4);
endmodule
```


Decoders

- Decoders are essentially translators.
 - Translate from the output of one circuit to the input of another.
 - Think of them as providing a mapping between 2 different encodings!
- Example: Binary signal splitter
 - Activates one of four output lines, based on a two-digit binary number.

7-segment decoder

- Common and useful decoder application.
 - Translate from a 4-digit binary number to the seven segments of a digital display.
 - Each output segment has a particular logic that defines it.
 - <u>Example:</u> Segment 0
 - Activate for values: 0, 2, 3, 5, 6, 7, 8, 9.
 - In binary: 0000, 0010, 0011, 0101, 0110, 0111, 1000, 1001.
 - First step: Build the truth table and K-map.

7-segment decoder

- For 7-seg decoders, turning a segment on involves driving it <u>low</u>.
- Example: Displaying digits 0-9
 - Assume input is a 4-digit binary number
 - Segment 0 (top segment) is low whenever the input values are 0000, 0010, 0011, 0101, 0110, 0111, 1000 or 1001, and high whenever input number is 0001 or 0100.
 - This create a truth table and map like the following....

"Don't care" values

- Input values that will never happen or are not meaningful in a given design, and so their output values do not have to be defined.
 - Recorded as 'X' in truth-tables and K-Maps.
- In the K-maps we can think of these don't care values as either o or 1 depending on what helps us simplify our circuit.
 - Note you do NOT change the X with a o or 1, you just include it in a grouping as needed.

- Also known as binary adders.
 - Small circuit devices that add two digits together.
 - Combined together to create iterative combinational circuits.
- Types of adders:
 - Half adders (HA)
 - Full adders (FA)
 - Ripple Carry Adder

Review of Binary Math

Each digit of a decimal number represents a power of 10:

258 =
$$2 \times 10^2 + 5 \times 10^1 + 8 \times 10^0$$

• Each digit of a binary number represents a power of 2:

$$01101_2 = 0x2^4 + 1x2^3 + 1x2^2 + 0x2^1 + 1x2^0$$
$$= 13_{10}$$

Decimal to Binary Conversion Let's say I give you number 11 in decimal. How would you represent this in binary? Reep dividing by 2 and write down the remainders! Use the quotient from previous row. Number Quotient = Remainder = Number % 2 Number /2 Number % 2

Half Adders

• A 2-input, 1-bit width binary adder that performs the following computations:

X	0	0	1	1	
+Y	+0	+1	+0	+1	
CS	00	01	01	10	

- A half adder adds two bits to produce a two-bit sum.
- The sum is expressed as a sum bit S and a carry bit C.

Half Adder Implementation

 Equations and circuits for half adder units are easy to define (even without Karnaugh maps)

Half Adder Implementation

 Equations and circuits for half adder units are easy to define (even without Karnaugh maps)

$$C = X \cdot Y \qquad S = X \cdot \overline{Y} + \overline{X} \cdot Y$$

$$= X \oplus Y$$

$$X \qquad Y$$

$$Y \qquad$$

Full Adders

- $^{\tt o}$ C and Z are sometimes labeled as ${\tt C_{out}}$ and ${\tt C_{in}}.$
- When Z is 0, the unit behaves exactly like a half adder.
- When Z is 1:

Adders in Verilog

• Verilog code that implements a full adder unit.

```
module full_adder(sum,cout,a,b,cin);
output sum, cout;
input a, b, cin;
assign sum = a^b^cin;
assign cout = (a&b)|(cin&(a^b));
endmodule

module full_adder(sum,cout,a,b,cin);
output sum, cout;
input a,b,cin;
assign {cout,sum}=a+b+cin;
endmodule
```

The role of C_{in}

- Why can't we just have a half-adder for the smallest (right-most) bit?
- We could, if we were only interested in addition. But the last bit allows us to do subtraction as well!
 - Time for a little fun with subtraction!

Fun with Subtraction

- 1. Find a partner.
- 2. Have each person choose a five-digit binary number.
- Aa BbCcDd Ee

 5+3=8

 12

 7×2 =
- 3. Take the smaller number, and invert all the digits.
- 4. Add this inverted number to the larger one.
- 5. Add one to the result.
- 6. Check what the result is...

Subtractors

- Subtractors are an extension of adders.
 - Basically, perform addition on a negative number.
- Before we can do subtraction, need to understand negative binary numbers.
- Two types:
 - Unsigned = a separate bit exists for the sign; data bits store the positive version of the number.
 - Signed = all bits are used to store a 2's complement negative number.
 - More common, and what we use for this course.

15

Two's complement

- Need to know how to get 1's complement:
 - Given number X with n bits, take $(2^{n}-1)-X$
 - Negates each individual bit (bitwise NOT).

01001101 → 10110010 11111111 → 00000000

2's complement = (1's complement + 1)

01001101 → 10110011 11111111 → 00000001

 Note: Adding a 2's complement number to the original number produces a result of zero.

Know

this!

Signed subtraction

- Negative numbers are generally stored in 2's complement notation.
 - Reminder: 1's complement → bits are the bitwise
 NOT of the equivalent positive value.
 - 2's complement → one more than 1's complement value; results in zero when added to equivalent positive value.
 - Subtraction can then be performed by using the binary adder circuit with negative numbers.

Signed representations

Decimal	Unsigned	Signed 2's
7	111	
6	110	
5	101	
4	100	
3	011	011
2	010	010
1	001	001
0	000	000
-1		111
-2		110
-3		101
-4		100

Rules about signed numbers

- When thinking of signed binary numbers, there are a few useful rules to remember:
 - The largest positive binary number is a zero followed by all ones.
 - □ The binary value for -1 has ones in all the digits.
 - The most negative binary number is a one followed by all zeroes.
- There are 2ⁿ possible values that can be stored in an n-digit binary number.
 - 2ⁿ⁻¹ are negative, 2ⁿ⁻¹-1 are positive, and one is zero.
 - For example, given an 8-bit binary number:
 - There are 256 possible values
 - One of those values is zero
 - 128 are negative values (11111111 to 10000000)
 - 127 are positive values (00000001 to 01111111)

1 to 12**7**

-1 to -128

Practice 2's complement!

- Assume 4-bits signed representation!
- Write these decimal numbers in binary:

⁻ 2	=> 0010
-1	=> 1111
п О	=> 0000
8	=> Not possible to represent!
□ -8	=> 1000

- What is max positive number?
- What is min negative number?

=> 7 (i.e., 2⁴⁻¹-1)

Subtraction at the core

- Subtraction is nothing more than addition of a negative number
 - □ 7 − 3 = 7 + (-3)
 - -3-2=-3+(-2)

Signed Subtraction example

What about bigger numbers

Food for Thought

- What happens if we add these two positive signed binary numbers 0110 + 0011 (i.e., 6 + 3)?
 - □ The result is 1001.
 - □ But that is a negative number (-7)! ⊗
- What happens if we add the two negative numbers 1000 + 1111 (i.e., -8 + (-1))?
 - □ The result is 0111 with a carry-out. ⊗
- We need to know when the result might be wrong.
 - This is usually indicated in hardware by the Overflow flag!
 - More about this when we'll talk about processors.

Unsigned subtraction

- Special case: separate sign bit is used.
- General algorithm:
 - 1. Get the 2's complement of the subtrahend (the term being subtracted).
 - 2. Add that value to the minuend (the term being subtracted from).
 - 3. If there is an end carry ($C_{\rm out}$ is high), the final result is positive and does not change.
 - 4. If there is no end carry (C_{out} is low), get the 2's complement of the result and add a negative sign to it (or set the sign bit high).

Sign & Magnitude Representation

- The Sign part: one bit is designated as the sign (+/-).
 - 0 for positive numbers
 - 1 for negative numbers
- The Magnitude part: Remaining bits store the positive (i.e., unsigned) version of the number.
- Example: 4-bit binary numbers:
 - 0110 is 6 while 1110 is –6 (most significant bit is the sign)
 - What about 0000 and 1000? => zero (two ways)
- Sign-magnitude computation is more complicated.
 - 2's complement is what today's systems use!

Comparators

- A circuit that takes in two input vectors, and determines if the first is greater than, less than or equal to the second.
- How does one make that in a circuit?

General Comparators

- The general circuit for comparators requires you to define equations for each case.
- Case #1: Equality
 - If inputs A and B are equal, then all bits must be the same.
 - $\quad \quad \text{Define } X_{\underline{i}} \text{ for any digit } \underline{i} \colon \left[\begin{array}{ccc} X_{\underline{i}} &=& A_{\underline{i}} \cdot B_{\underline{i}} &+& \overline{A}_{\underline{i}} \cdot \overline{B}_{\underline{i}} \end{array} \right.$ (equality for digit i)

$$X_i = A_i \cdot B_i + \overline{A}_i \cdot \overline{B}_i$$

Equality between A and B is defined as:

$$A==B : X_0 \cdot X_1 \cdot ... \cdot X_n$$

Comparators

- Case #2: A > B
 - The first non-matching bits occur at bit i, where $A_i=1$ and $B_i=0$. All higher bits match.
 - Using the definition for X₁ from before:

$$\mathsf{A} \!\!> \!\! \mathsf{B} \; = \; \mathsf{A}_n \; \cdot \! \overline{\mathsf{B}}_n \; + \; \mathsf{X}_n \; \cdot \! \mathsf{A}_{n-1} \; \cdot \! \overline{\mathsf{B}}_{n-1} \; + \; \ldots \; + \; \mathsf{A}_0 \; \cdot \! \overline{\mathsf{B}}_0 \; \cdot \! \overline{\mathsf{h}}_{n-1}^n \; \mathsf{X}_k$$

- Case #3: A < B
 - The first non-matching bits occur at bit i, where $A_i=0$ and $B_i=1$. Again, all higher bits match.

$$\mathbb{A} < \mathbb{B} = \overline{\mathbb{A}}_{n} \cdot \mathbb{B}_{n} + \mathbb{X}_{n} \cdot \overline{\mathbb{A}}_{n-1} \cdot \mathbb{B}_{n-1} + \dots + \overline{\mathbb{A}}_{0} \cdot \mathbb{B}_{0} \cdot \prod_{k=1}^{n} \mathbb{X}_{k}$$

Comparator truth table

Given two input vectors of size n=2, output of circuit is shown at right.

Inputs					Outputs	
A ₁	A ₀	B ₁	B ₀	A < B	A = B	A > B
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Comparator example (cont'd) A < B: $\overline{B}_0 \cdot \overline{B}_1$ $B_0 \cdot \overline{B}_1$ $B_0 \cdot B_1 \mid \overline{B}_0 \cdot B_1$ $\overline{\mathbf{A}}_{0} \cdot \overline{\mathbf{A}}_{1}$ $\mathbf{A}_0 \cdot \overline{\mathbf{A}}_1$ $\mathbf{A}_0 \cdot \mathbf{A}_1$ $\overline{\mathbf{A}}_0 \cdot \mathbf{A}_1$ $LT = B_1 \cdot \overline{A}_1 + B_0 \cdot B_1 \cdot \overline{A}_0 + B_0 \cdot \overline{A}_0 \cdot \overline{A}_1$

Comparator example (cont'd)

A=B:

	$\overline{\mathtt{B}}_{0}\cdot\overline{\mathtt{B}}_{1}$	$B_0 \cdot \overline{B}_1$	B ₀ ·B ₁	$\overline{\mathtt{B}}_{0}\cdot\mathtt{B}_{1}$
$\overline{\mathbf{A}}_0 \cdot \overline{\mathbf{A}}_1$	1	0	0	0
$A_0 \cdot \overline{A}_1$	0	1	0	0
A ₀ · A ₁	0	0	1	0
$\overline{\mathbf{A}}_0 \cdot \mathbf{A}_1$	0	0	0	1

 $\begin{array}{rclcrcl} \mathtt{EQ} & = & \overline{\mathtt{B}}_0 \cdot \overline{\mathtt{B}}_1 \cdot \overline{\mathtt{A}}_0 \cdot \overline{\mathtt{A}}_1 & + & \mathtt{B}_0 \cdot \overline{\mathtt{B}}_1 \cdot \mathtt{A}_0 \cdot \overline{\mathtt{A}}_1 & + \\ & \mathtt{B}_0 \cdot \mathtt{B}_1 \cdot \mathtt{A}_0 \cdot \mathtt{A}_1 & + & \overline{\mathtt{B}}_0 \cdot \mathtt{B}_1 \cdot \overline{\mathtt{A}}_0 \cdot \mathtt{A}_1 \end{array}$

Comparator example (cont'd)

A>B:

	$\overline{\mathbf{B}}_{0}\cdot\overline{\mathbf{B}}_{1}$	$B_0 \cdot \overline{B}_1$	$B_0 \cdot B_1$	$\overline{\mathbf{B}}_{0} \cdot \mathbf{B}_{1}$
$\overline{\mathbf{A}}_0 \cdot \overline{\mathbf{A}}_1$	0	0	0	0
$A_0 \cdot \overline{A}_1$	1	0	0	0
A ₀ · A ₁	1	1	0	1
$\overline{\mathbf{A}}_0 \cdot \mathbf{A}_1$	1	1	0	0

$$GT = \overline{B}_1 \cdot A_1 + \overline{B}_0 \cdot \overline{B}_1 \cdot A_0 + \overline{B}_0 \cdot A_0 \cdot A_1$$

Comparators in Verilog

 Implementing a comparator can be done by putting together the circuits as shown in the previous slide, or by using the comparison operators to make things a little easier:

module comparator_4_bit (a_gt_b, a_lt_b, a_eq_b, a, b);
input [3:0] a, b;
output a_gt_b, a_lt_b, a_eq_b;
assign a_gt_b = (a > b);
assign a_lt_b = (a < b);
assign a_eq_b = (a == b);
endmodule</pre>

Comparing larger numbers

- As numbers get larger, the comparator circuit gets more complex.
- At a certain level, it can be easier sometimes to just process the result of a subtraction operation instead.
 - Easier, less circuitry, just not faster.

