Memory Hierarchies in Intelligent Memories: Energy/Performance Design

Wei Huang, Jose Renau, Seung-Moon Yoo and Josep Torrellas

University of Illinois at Urbana-Champaign

Motivation

- Advances in technology:
 - Processor and Memory integration
 - Many processors on a chip
- How to design for high performance
- Energy consumption is a big concern
- Problems in cooling system

Goals of this work

- Evaluate trade-offs in memory hierarchy
 - Energy consumption
 - ◆ Performance
 - Area requirements
- Detailed energy consumption analysis

Findings of the Work

- Modest cache size is necessary
- Easy modifications in memory reduce energy consumption

The FlexRAM Architecture

Yi Kang, Wei Huang, Seung-Moon Yoo, Diana Keen, Zhenzhou Ge, Vinh Lam, Pratap Pattanaik and Josep Torrellas - ICCD99

Chip Architecture

- 64 nodes, each one includes:
 - ◆ 2-issue processor @800Mhz
 - ◆ 1MByte DRAM (12 clk)
 - ◆ Row Buffers (6 clk)
 - ◆ Cache (1 clk)

How a Memory Bank Works

- 4 Memory sub-banks, each 256KBytes
- 5 Row Buffers, each 1KByte
- 1 Data Buffer 256bits

Small Area Memory Banks

Pipelining the requests

Faster memory system without increased energy consumption

Advanced Memory Banks I

-Less Energy and Contention

+More Area

Advanced Memory Banks II

Terminology for Memory Systems

- Trad(i,j): Traditional
- S(i,j): Segmented
- IS(i,j): Interleaved Segmented
- ISP(i,j): Interleaved Segmented Pipelined
- i : Degree of interleaving
- j : Number of sub-banks per interleaving way

Energy and Area Issues

Access Type	Trad(1,4)	S(1,4)	IS(2,4)	IS(2,8)
Cache hit (8KB)	191pj	191pj	191pj	191pj
RB Hit	468pj	468pj	506pj	517pj
Bank Access	6999pj	3729pj	2287pj	1556pj

	Trad(1,4)	S(1,4)	IS(2,4)	IS(2,8)
Area (.18μm)	4.25mm^2	4.25mm^2	4.83mm^2	5.23mm ²

- •More advanced configurations:
 - More Area
 - Less Energy

Evaluation Environment

- Fixed parameters:
 - ◆ 2-issue processor @800MHz
 - Prefetch
 - ◆ Cache, RB, Bank latencies (1,6,12 cycles)
- Variable parameters:
 - ◆ Cache sizes (256B,1KB,8KB,16KB)
 - Memory Banks:

```
Trad(1,4),S(1,4),SP(1,4)
IS(2,4),ISP(2,4),IS(2,8),ISP(2,8)
```


Applications

Applic	What It Does	Cache Hit Rate (%)
GTree	DM Tree Generation	50.7
DTree	DM Tree Deployment	98.6
BSOM	BSOM Neural Network	94.7
BLAST	Protein Matching	96.9
Mpeg	Mpeg-2 Motion Estimation	99.9
FIC	Fractal Image Compressor	97.8

Performance: Memory Banks

•Small performance improvement in advanced configurations with 1KByte cache

Performance: Cache Effect

Modest cache size is required for performance

Energy-Delay Product

•Big improvement in energy-delay product with more advanced memory configurations

Energy-Delay Product: Cache

•8KBytes have the best energy-delay product

Conclusions

- Modest size cache is enough (8KBytes)
 - Improves performance
 - Reduces energy consumption
- Segmentation S(1,4)
 - ◆ Reduces energy consumption
- When area is available: use interleaving
 - ◆ IS(2,4) increases by 14% the area

Backup Slides

Area-Delay Product: MB

•SP(1,4) best are utilization

Area-Delay Product: Cache

•8KBytes is a sweet point for area-delay product

Power Consumption: Cache

Power is a bad metric, only useful as a constraint

Memory Access Timing

Operation	Cycles
X-address buffer	1
X-address decoder	1
Wordline enabling	2
Charge sharing	2
Bit line sensing	2
DRAM Data buffer	2
L1 Cache	1
Total	11

Area Requirements

Cache size	Area
256B	0.07
1K	0.16
8K	0.60
16K	1.15

Bank size	Area
(1,4)	4.25
(2,4)	4.83
(2,8)	5.23

Small Area Memory Banks

Advanced Memory Banks

Less Energy and Contention

More area

Less Energy and Contention

Even more area

