Теория информации, решения задач части 2 (линейные коды)

Table of Contents

- 1. 2.1 Оптимальные коды для длины 6
- <u>2. 2.3/2.7 Подсчет параметров кода</u>
- 3. 2.5 Количество линейных кодов
- 4. 2.6 Соответствия синдромы/векторы ошибок
- 5. 2.8 Обобщения двоичных полей
- 6. 2.9 Циклические коды

1 2.1 Оптимальные коды для длины 6

Итак, для $i \in \{1..6\}$ мы хотим построить коды длины 6 максимизирующие минимальное расстояние d.

Для (6,1) мы хотим попробовать получить d=r+1=6 (граница Синглтона) и это в самом деле возможно: воспользуемся код дуальный к коду с проверкой на четность:

$$H = egin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 & 0 & 1 \ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Очевидно что такой код имеет d=6: любые 5 столбцов – это либо первые 5 (дают в сумме шестой), либо 4 из первых и последний (дают в сумме ровно отсутствующий).

Далее рассмотрим (6,2) код со следующей проверочной матрицей:

$$H = egin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \ 0 & 1 & 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

В этом случае d=4, недостижимость d=5 можно показать прямолинейным перебором (но и интуитивно понятно, что невозможно получить 4 ЛНЗ столбца).

Аналогично для (6,3) получаем d=3.

$$H = egin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \ 0 & 1 & 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Далее для (6,4) предлагается рассмотреть следующую проверочную матрицу:

$$H = \left(egin{array}{ccccccc} 1 & 1 & 1 & 1 & 1 & 1 \ 1 & 0 & 0 & 0 & 0 & 0 \end{array}
ight)$$

На самом деле неважно то, как строить матрицу – существует всего 4 разных вектора длины 2, поэтому матрица содержала бы дубликаты – почему бы не заполнить ее одним вектором в таком случае? Кстати, d такого кода равен 2, а еще оно проверяет, что вес кодвого слова четный и что первый бит – всегда ноль.

То же и для (6,5):

Такой код имеет d=1 и есть кодом с проверкой на четность.

Для кода (6,6) применим пример из учебника: $G=I_6$, а H неопределена поскольку r=0 . Такой код имеет d=1 .

2 2.3/2.7 Подсчет параметров кода

Дана проверочная матрица с параметрами r=4, n=10, то есть k=6, отсюда R=3/5. Поскольку все столбцы различны и ненулевые, то $d\geq 3$, собственно сумма первого, второго и последнего столбцов равна нулю, отсюда d=3.

$$H = egin{pmatrix} 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

Несложными преобразованиями (метод Гаусса, выполнил на бумаге) она приводится к следующему виду:

$$H = egin{pmatrix} 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

Из чего сразу следует (поскольку $G = (I_k P)$):

$$G = egin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \end{pmatrix}$$

Перейдем к задаче синдромного декодирования.

Реализация алгоритма на haskell (опущена большая часть методов реализации алгебры матриц по полю F_2).

```
syndromDecodeBuild :: [BVector] -> Map BVector BVector
syndromDecodeBuild h = flip execState mempty $ forM_ allEs $ \e -> do
```

```
let syndrom = e `vMulM` (transpose h)
let updateSyndrom = at syndrom ?= e
use (at syndrom) >>= \case
    Just x -> when (weight x > weight e) updateSyndrom
    Nothing -> updateSyndrom
where
    n = length h
allEs :: [BVector]
allEs = binaryVectors (fromIntegral n)
```

В результате получили следующую таблицу синдромного декодирования:

Синдром	Вектор ошибки
[0,0,0,0]	[0,0,0,0,0,0,0,0,0]
[0,0,0,1]	[0,0,1,0,0,0,1,0,0,0]
[0,0,1,0]	[0,0,0,0,0,1,1,0,0,0]
[0,0,1,1]	[0,0,0,0,0,0,0,0,1]
[0,1,0,0]	[0,0,0,1,0,0,0,0,0,1]
[0,1,0,1]	[0,0,0,0,0,0,0,1,0]
[0,1,1,0]	[0,0,0,0,0,0,0,1,1]
[0,1,1,1]	[0,0,0,1,0,0,0,0,0,0]
[1,0,0,0]	[0,0,0,0,0,1,0,0,0]
[1,0,0,1]	[0,0,1,0,0,0,0,0,0]
[1,0,1,0]	[0,0,0,0,0,1,0,0,0,0]
[1,0,1,1]	[0,0,0,0,0,1,0,0,1]
[1,1,0,0]	[0,0,0,0,0,0,1,0,1]
[1,1,0,1]	[0,0,0,0,1,0,0,0,0,0]
[1,1,1,0]	[1,0,0,0,0,0,0,0,0]
[1,1,1,1]	[0,0,0,0,0,0,1,0,0]

3 2.5 Количество линейных кодов

Каждая проверочная матрица порождает какой-то линейный код, плюс имеем тривиальный код (n,n), не имеющий проверочной. Поэтому суммарное количество возможных кодов для (n,k) есть $2^{n(n-k)}$ если k < n и еще какое-то количество способов представить $G = I_n$ в виде n ЛНЗ столбцов.

Но это маловажно. Интереснее обратить внимание на то, что, поскольку $H=(P^TI_r)$, и перестановки строк в H не несут большой разницы с точки зрения эквивалентности кодов (имеем один P^T , значит одна G, значит один базис), то можно считать что все H с одним P эквивалентны. Тогда, поскольку размер P есть $k \times r$, количество различных P есть 2^{kr} .

Если kr достаточно мало, наивный перебор P может быть эффективен для нахождения d кода.

4 2.6 Соответствия синдромы/векторы ошибок

Нетрудно применить решение 2.3/2.7 для того чтобы выявить соответствие между синдромами и векторами ошибок для кодов Хэмминга. Например, рассмотрим r=3 и код (7,4) и его синдромную таблицу:

Синдром	Вектор ошибки
[0,0,0]	[0,0,0,0,0,0,0]

Синдром	Вектор ошибки
[0,0,1]	[1,0,0,0,0,0,0]
[0,1,0]	[0,1,0,0,0,0,0]
[0,1,1]	[0,0,1,0,0,0,0]
[1,0,0]	[0,0,0,1,0,0,0]
[1,0,1]	[0,0,0,0,1,0,0]
[1,1,0]	[0,0,0,0,0,1,0]
[1,1,1]	[0,0,0,0,0,0,1]

Закономерность очевидна — если рассматривать синдром как двоичное представление десятичного числа, то это число будет индексом ошибки в векторе. Эта закономерность очевидно обобщается на любое r. Она имеет место по построению H — каждый ряд $i \in 1...r$ имеет 2^i "разбиений" на продолжительные последовательности битов (первая бьется на две части, вторая на 4, и так далее). Тогда, при подсчете синдрома $y\dot{H}^T$ мы r раз уточняем где находится единственная ошибка.

5 2.8 Обобщения двоичных полей

Я попытаюсь ответить на этот вопрос, хотя он сложный и требует более внимательного рассмотрения. Во-первых, начиная с определения расстояния между объектами, метрику Хэмминга следует заменить на иную. Интуитивно кажется, что Манхэттэнская метрика (расстояние Минковского с p=1) наиболее близка к расстоянию Хэмминга.

Теорема 2.1 о количестве исправлений ошибок не должна меняться, поскольку ее доказательство оперирует абстрактной метрикой, то есть всё же $\lfloor (d-1)/2 \rfloor$ ошибок код будет исправлять.

Теорема 2.2 также не меняет смысл, если определить вес w(x) как сумму расстояний от 0 до символа (в нашем случае с манхэттэнской метрикой это просто разница, так что w это сумма).

6 2.9 Циклические коды

Порождающая матрица кода полученного из (1101000) будет выглядеть так:

$$G = egin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \ 0 & 1 & 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix} = egin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \ 0 & 1 & 0 & 0 & 0 & 1 & 1 \ 0 & 0 & 1 & 0 & 1 & 1 & 1 \ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

Проверочная матрица:

$$H = egin{pmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \ 1 & 1 & 1 & 0 & 0 & 1 & 0 \ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Отсюда делаем вывод, что d=3. Увеличение длины $g\left(n\right)$ засчет добавления нулей в конец приведет лишь к тому что последние столбцы P будут нулевыми. Например, для n=8:

$$G_8 = egin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \end{pmatrix} = egin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \end{pmatrix}$$

$$H_8 = egin{pmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Заметим, что на d это преобразование не повлияет, так как те же столбцы что были независимы в H будут зависимы и в H_8 . Понятно, что такое строгое ограничение на форму порождающей матрицы отразится на минимальном расстоянии – циклических кодов меньше и поэтому они в среднем хуже. Лучший линейный код (7,4) имеет d=3 (как рассмотренный из примера), а вот лучший (8,4) имеет d=4, что уже больше.

Author: Волхов Михаил, M4139 Created: 2017-11-14 Tue 09:01

Validate