STRUMENTI FORMALI PER LA BIOINFORMATICA

Combinatoria delle parole (Parte 2)

Definizione

Sia $\Sigma = \{a_0, \ldots, a_k\}$ un alfabeto e sia $a_0 < a_1 < \ldots < a_k$ un ordinamento degli elementi di Σ . Siano $x, y \in \Sigma^*$. Diremo che x < y rispetto all'**ordine lessicografico** se $x \in y$ verificano una delle condizioni seguenti:

1 y = xz con $z \in \Sigma^+$, cioè x è un prefisso di y e $x \neq y$.

Definizione

Sia $\Sigma = \{a_0, \ldots, a_k\}$ un alfabeto e sia $a_0 < a_1 < \ldots < a_k$ un ordinamento degli elementi di Σ . Siano $x, y \in \Sigma^*$. Diremo che x < y rispetto all'**ordine lessicografico** se $x \in y$ verificano una delle condizioni seguenti:

- 1 y = xz con $z \in \Sigma^+$, cioè x è un prefisso di y e $x \neq y$.
- 2 x = zax', y = zby', $con z, x', y' \in \Sigma^*$, $a, b \in \Sigma$ $e \ a < b$.

Definizione

Sia $\Sigma = \{a_0, \ldots, a_k\}$ un alfabeto e sia $a_0 < a_1 < \ldots < a_k$ un ordinamento degli elementi di Σ . Siano $x, y \in \Sigma^*$. Diremo che x < y rispetto all'**ordine lessicografico** se $x \in y$ verificano una delle condizioni seguenti:

- 1 y = xz con $z \in \Sigma^+$, cioè x è un prefisso di y e $x \neq y$.
- 2 x = zax', y = zby', $con z, x', y' \in \Sigma^*$, $a, b \in \Sigma$ e a < b.

Le parole in un dizionario sono ordinate in base all'ordine lessicografico.

Definizione

Sia $\Sigma = \{a_0, \ldots, a_k\}$ un alfabeto e sia $a_0 < a_1 < \ldots < a_k$ un ordinamento degli elementi di Σ . Siano $x, y \in \Sigma^*$. Diremo che x < y rispetto all'**ordine lessicografico** se $x \in y$ verificano una delle condizioni seguenti:

- 1 y = xz con $z \in \Sigma^+$, cioè x è un prefisso di y e $x \neq y$.
- 2 x = zax', y = zby', $con z, x', y' \in \Sigma^*$, $a, b \in \Sigma$ $e \ a < b$.

Le parole in un dizionario sono ordinate in base all'ordine lessicografico.

 Date due qualsiasi parole x, y ∈ Σ*, con x ≠ y, risulta x < y oppure y < x.

Una parola w è primitiva se $w = v^n$ implica n = 1.

Una parola w è primitiva se $w = v^n$ implica n = 1.

Nota che la parola vuota non è primitiva.

Una parola w è primitiva se $w = v^n$ implica n = 1.

Nota che la parola vuota non è primitiva.

abab non è primitiva perché $abab = (ab)^2$.

Una parola w è primitiva se $w = v^n$ implica n = 1.

Nota che la parola vuota non è primitiva.

abab non è primitiva perché $abab = (ab)^2$.

aba, abb sono parole primitive.

Due parole x, y sono coniugate se esistono parole u, v tali che x = uv, y = vu.

La relazione di coniugazione è una relazione di equivalenza.

Una classe di coniugazione è una classe di questa relazione di equivalenza.

Una classe di coniugazione è spesso chiamata necklace.

Esempio 1

Sia w = banana.

```
banana
ananab
nanaba
anaban
nabana
abanan
```

Definizione

Una parola di Lyndon è una parola primitiva che è la più piccola nella sua classe di coniugazione rispetto all'ordine lessicografico.

Denotiamo con L l'insieme delle parole di Lyndon.

Sia w = banana.

tutte le coniugate		tutte le coniugate ordinate
banana		abanan
ananab		anaban
nanaba		ananab
anaban	\rightarrow	banana
nabana	ordine	nabana
abanan	lessicografico	nanaba

Sia $A = \{a, b\}$ con a < b.

Le parole *abab*, *aba* and *abaab* non sono parole di Lyndon.

La parola abab non è primitiva. Per quanto riguarda aba e abaab, non sono parole di Lyndon perché aab < aba e aabab < abaab.

Proposizione

Una parola è una parola di Lyndon se e solo se è minore di ogni suo suffisso proprio diverso dalla parola vuota.

Sia $A = \{a, b\}$ con a < b. Le parole a, b, aaab e abbb sono parole di Lyndon.

Sia $A = \{a, b\}$ con a < b. Le parole a, b, aaab e abbb sono parole di Lyndon.

Le parole a e b non hanno suffissi propri diversi dalla parola vuota.

Sia $A = \{a, b\}$ con a < b. Le parole a, b, aaab e abbb sono parole di Lyndon.

Le parole a e b non hanno suffissi propri diversi dalla parola vuota.

I suffissi propri diversi dalla parola vuota di aaab sono b, ab, aab e aaab < b, aaab < ab, aaab < aab.

Sia $A = \{a, b\}$ con a < b. Le parole a, b, aaab e abbb sono parole di Lyndon.

Le parole a e b non hanno suffissi propri diversi dalla parola vuota.

I suffissi propri diversi dalla parola vuota di aaab sono b, ab, aab e aaab < b, aaab < ab, aaab < aab.

I suffissi propri diversi dalla parola vuota di abbb sono b, bb, $bbb \in abbb < b$, abbb < bb, abbb < bbb.

Sia $A = \{a, b\}$ con a < b. Le parole aabab e aababaabb sono parole di Lyndon.

Sia $A = \{a, b\}$ con a < b. Le parole aabab e aababaabb sono parole di Lyndon.

I suffissi propri diversi dalla parola vuota di aabab sono b, ab, bab, abab e aabab < b, aabab < ab, aabab < bab, aabab < abab.

Sia $A = \{a, b\}$ con a < b. Le parole aabab e aababaabb sono parole di Lyndon.

I suffissi propri diversi dalla parola vuota di aabab sono b, ab, bab, abab e aabab < b, aabab < ab, aabab < bab, aabab < abab.

I suffissi propri diversi dalla parola vuota di aababaabb sono b, bb, abb, aabb, baabb, abaabb, abaabb, abaabb e aababaabb < b, aababaabb < abb, aababaabb < abb, aababaabb < ababb, aababaabb < babaabb, aababaabb < abaabb, aababaabb < babaabb, aababaabb < abaabb, aababaabb < abaababb.

L'overlap di due stringhe x e y è il più lungo suffisso proprio di x che è anche un prefisso proprio di y.

Esempio.

Siano x = abacaba e y = acabaca.

La stringa a è un suffisso proprio di x che è anche un prefisso proprio di y. Ma anche acaba è un suffisso proprio di x che è un prefisso proprio di y e |acaba|=5>1=|a|. Inoltre x non ha suffissi propri più lunghi che siano anche prefissi propri di y.

Quindi l'overlap di *abacaba* e *acabaca* è la stringa *acaba* di lunghezza 5.

L'overlap di due stringhe x e y è il più lungo suffisso proprio di x che è anche un prefisso proprio di y.

Qual è l'overlap di bbb e aaa?

L'overlap di x e y è uguale all'overlap di y e x?

L'overlap di x e y ha la stessa lunghezza dell'overlap di y e x?

L'overlap di due stringhe x e y è il più lungo suffisso proprio di x che è anche un prefisso proprio di y.

Qual è l'overlap di bbb e aaa?

L'overlap di bbb e aaa è la parola vuota.

L'overlap di x e y è uguale all'overlap di y e x?

No, l'overlap di *abacaba* e *acabaca* è *acaba* mentre l'overlap di *acabaca* e *abacaba* è *abaca*.

L'overlap di x e y ha la stessa lunghezza dell'overlap di y e x?

No, l'overlap di ca e ab è a che ha lunghezza 1 mentre l'overlap di ab e ca è la parola vuota che ha lunghezza 0.

Il bordo di una parola non vuota w è l'overlap di w e sé stessa.

Quindi è la più lunga parola u che è sia un prefisso proprio che un suffisso proprio di w.

Esempi:

Il bordo di amaca è a, il bordo di barba è ba.

Il bordo di ababab è abab.

Il bordo di *aaa* è *aa*, il bordo di *ca* è la parola vuota.

Un bordo di w è una parola che è sia un prefisso proprio che un suffisso proprio di w.

La parola aaa ha come bordi la parola vuota, a e aa.

La parola ca ha come bordo solo la parola vuota.

Una parola $w \in \Sigma^+$ è bordered se ha un bordo non vuoto. Altrimenti, w è unbordered.

Le stringhe *amaca*, *barba*, *ababab*, *aaa* sono bordered. La stringa *ca* è unbordered.

Proposizione

Ogni parola di Lyndon è unbordered.

La prova di questo risultato è un semplice corollario della proposizione che caratterizza le parole di Lyndon come quelle parole minori di ogni loro suffisso proprio diverso dalla parola vuota.

Teorema (Lyndon)

Ogni parola si fattorizza in modo unico come un prodotto di parole di Lyndon in cui ogni fattore è maggiore o uguale al successivo (nonincreasing product).

Fattorizzazione di Lyndon

Quindi ogni parola w può essere scritta in modo unico

$$w = \ell_1 \cdots \ell_m$$

con $\ell_1, \ldots, \ell_m \in L$ e $\ell_1 \geq \ldots \geq \ell_m$.

La sequenza $\mathsf{CFL}(w) = (\ell_1, \dots, \ell_m)$ è chiamata la *decomposizione* di Lyndon (o fattorizzazione di Lyndon) di w.

La notazione CFL(w) è dovuta al fatto che il teorema della fattorizzazione è in genere attribuito a Chen, Fox e Lyndon.

Le parole di Lyndon ℓ_1, \ldots, ℓ_m sono anche chiamate fattori di Lyndon di w.

Fattorizzazione di Lyndon

Esempio.

Sia
$$A = \{a, b, c, d\}$$
 con $a < b < c < d$.

Sia w = bbcbacad. Le stringhe bbc, b, acad sono parole di Lyndon e w = (bbc)(b)(acad).

Inoltre bbc > b > acad. Quindi CFL(w) = (bbc, b, acad).

Sia x = aababb. Le stringhe aab, abb sono parole di Lyndon e x = (aab)(abb). Ma aab < abb.

La stringa x è una parola di Lyndon. Quindi

$$CFL(x) = (x) = (aababb).$$

Sia y = abbaab. Le stringhe abb, aab sono parole di Lyndon e y = (abb)(aab).

Inoltre abb > aab. Quindi CFL(y) = (abb, aab).

Fattorizzazione di Lyndon

Proposizione

Sia $w \in \Sigma^+$, sia ℓ_1 il suo più lungo prefisso che è una parola di Lyndon e sia w' tale che $w = \ell_1 w'$. Se w' = 1, allora $\mathsf{CFL}(w) = (\ell_1)$. Se $w' \neq 1$, allora $\mathsf{CFL}(w) = (\ell_1, \mathsf{CFL}(w'))$.

CFL(w) è calcolabile in tempo lineare.

Esempio.

Sia
$$A = \{a, b, c, d\}$$
 con $a < b < c < d$.

La stringa x = aababb è una parola di Lyndon, quindi CFL(x) = (x) = (aababb).

Sia y = abbaab. Le stringhe a, ab, abb sono parole di Lyndon mentre abba, abbaa, abbaab non sono parole di Lyndon. Quindi CFL(y) = (abb, CFL(aab)). Siccome aab è una parola di Lyndon, abbiamo CFL(y) = (abb, aab).

Esempio.

Sia
$$A = \{a, b, c, d\}$$
 con $a < b < c < d$.

Sia w = bbcbacad. La stringa b è una parola di Lyndon, bb non è una parola di Lyndon mentre bbc lo è perché bbc < c, bbc < bc. Poiché bbcb, bbcba, bbcbac, bbcbac, bbcbaca, bbcbacad non sono parole di Lyndon, abbiamo CFL(w) = (bbc, CFL(bacad)).

La stringa b è una parola di Lyndon, mentre ba, bac, baca, bacad non sono parole di Lyndon. Quindi CFL(w) = (bbc, b, CFL(acad)). Siccome acad è una parola di Lyndon, abbiamo CFL(w) = (bbc, b, acad).

Esempio.

Sia
$$A = \{a, b, c, d\}$$
 con $a < b < c < d$.

Sia z=bbcbcacad. La stringa b è una parola di Lyndon, bb non è una parola di Lyndon mentre bbc lo è perché bbc < c, bbc < bc. La stringa bbcb non è una parola di Lyndon ma bbcbc lo è. Poiché bbcbca, bbcbcac, bbcbcac, bbcbcaca, bbcacaca, bbcacaca, bbcac

Varianti e applicazioni

- Nyldon words [Charlier,Philibert,Stipulanti, 2018; S. Gard, 2021]
- Generalized Lyndon words [Dolce, Restivo, Reutenauer, 2018]
- Inverse Lyndon Words [Bonizzoni, De Felice, Zaccagnino, Zizza, 2018 e 2021]

Definizione

Una parola w è una parola inversa di Lyndon (inverse Lyndon word) se w > s, per ogni s, con s suffisso proprio e diverso dalla parola vuota di w.

Esempio.

Sia $\Sigma = \{a, b\}$ con a < b. La parola aaba non è una parola inversa di Lyndon poiché aaba < ba. Analogamente, aabba < ba e quindi aabba non è una parola inversa di Lyndon.

Definizione

Una parola w è una parola inversa di Lyndon (inverse Lyndon word) se w > s, per ogni s, con s suffisso proprio e diverso dalla parola vuota di w.

Esempio.

Le parole a, b e aaaaa sono parole inverse di Lyndon su $\{a,b\}$, con a < b. Tutti i suffissi propri di aaaaa sono anche prefissi propri di aaaaa. Quindi, per ogni s, con s suffisso proprio e diverso dalla parola vuota di aaaaa, risulta aaaaa > s.

Definizione

Una parola w è una parola inversa di Lyndon (inverse Lyndon word) se w > s, per ogni s, con s suffisso proprio e diverso dalla parola vuota di w.

Esempio Le parole *bbba* e *baaab* sono parole inverse di Lyndon su $\{a,b\}$, con a < b. I suffissi propri e diversi dalla parola vuota di *bbba* sono *a*, *ba*, *bba*. Quindi, per ogni *s*, con *s* suffisso proprio e diverso dalla parola vuota di *bbba*, risulta *bbba* > *s*.

Analogamente, i suffissi propri e diversi dalla parola vuota di baaab sono b, ab, aab, aaab. Quindi, per ogni s, con s suffisso proprio e diverso dalla parola vuota di baaab, risulta baaab > s.

Definizione

Una parola w è una parola inversa di Lyndon (inverse Lyndon word) se w > s, per ogni s, con s suffisso proprio e diverso dalla parola vuota di w.

Esempio Le parole *bbaba* e *bbababbaa* sono parole inverse di Lyndon su $\{a, b\}$, con a < b.

Lemma

Ogni prefisso non vuoto di una parola inversa di Lyndon è una parola inversa di Lyndon.

Esempio Le parole *bbaba* e *bbababbaa* sono parole inverse di Lyndon su $\{a,b\}$, con a < b. La prima è un prefisso della seconda. Tutti i prefissi non vuoti di *bbababbaa* sono parole inverse di Lyndon.

Ordine lessicografico inverso

Definizione

Sia $(\Sigma, <)$ un alfabeto totalmente ordinato. Sia $<_{in}$ l'inversa of <, definita da

$$\forall a, b \in \Sigma \quad b <_{in} a \Leftrightarrow a < b$$

L'ordine lessicografico inverso, denotato $<_{in}$, su $(\Sigma^*,<)$ è l'ordine lessicografico su $(\Sigma^*,<_{in})$.

Esempio Sia $\Sigma = \{a, b, c, d\}$ con a < b < c < d. Allora dab < dabd e dabda < dac. Abbiamo $d <_{in} c <_{in} b <_{in} a$. Quindi $dab <_{in} dabd$ e $dac <_{in} dabda$.

Sia L_{in} l'insieme delle parole di Lyndon in Σ^* rispetto all'ordine lessicografico inverso.

Una stringa $w \in L_{in}$ è chiamata una parola anti-Lyndon.

Proposizione

Una parola $w \in \Sigma^+$ è una parola inversa di Lyndon se e solo se è un prefisso non vuoto di una potenza di una parola anti-Lyndon.

Quindi le parole inverse di Lyndon sono le sesquipotenze delle parole anti-Lyndon.

Sia L_{in} l'insieme delle parole di Lyndon in Σ^* rispetto all'ordine lessicografico inverso.

Una stringa $w \in L_{in}$ è chiamata una parola anti-Lyndon.

Proposizione

Una parola $w \in \Sigma^+$ è una parola anti-Lyndon se e solo se è una parola inversa di Lyndon ed è unbordered.

Quindi una parola anti-Lyndon è anche inversa di Lyndon. Ma non è vero il contrario. Ad esempio aaa è una parola inversa di Lyndon sull'alfabeto $\{a\}$ ma non è una parola anti-Lyndon.

Proposizione 1

Una parola $w \in \Sigma^+$ è una parola anti-Lyndon se e solo se è una parola inversa di Lyndon ed è unbordered.

Proposizione

Una parola $w \in \Sigma^+$ è una parola inversa di Lyndon se e solo se è un prefisso non vuoto di una potenza di una parola anti-Lyndon.

Esempio.

Le stringhe a, b, bbba, bbaba e bbababbaa sono parole inverse di Lyndon su $\{a,b\}$, con a < b.

Inoltre sono unbordered. Per la Proposizione 1 sono parole anti-Lyndon.

Proposizione

Una parola $w \in \Sigma^+$ è una parola inversa di Lyndon se e solo se è un prefisso non vuoto di una potenza di una parola anti-Lyndon.

Esempio.

Le stringhe aaaaa e baaab sono parole inverse di Lyndon su $\{a, b\}$, con a < b.

La stringa aaaaa è una potenza della parola anti-Lyndon a.

Inoltre la stringa baaa è una parola anti-Lyndon. Quindi baaab è un prefisso non vuoto della potenza $(baaa)^2$ della parola anti-Lyndon baaa.

Siano $x, y \in \Sigma^+$ con Σ alfabeto ordinato. Scriveremo $x \ll y$ se x < y ma x non è prefisso di y. In questo caso x = zax', y = zby', con $z, x', y' \in \Sigma^*$, $a, b \in \Sigma$ e a < b.

Definizione

Una fattorizzazione inversa di Lyndon (inverse Lyndon factorization) di $w \in \Sigma^+$ è una sequenza (f_1, f_2, \ldots, f_n) di parole tali che

- (1) $w = f_1 \cdots f_n$
- (2) per ogni $j \in \{1, ..., n\}$, la parola f_j è una parola inversa di Lyndon,
- $(3) f_1 \ll f_2 \ll \cdots \ll f_n$

Purtroppo data una stringa w non sempre esiste una sola fattorizzazione inversa di Lyndon di w.

Purtroppo data una stringa w non sempre esiste una sola fattorizzazione inversa di Lyndon di w.

Ad esempio, con a < b < c < d, per w = dabdadacddbdc abbiamo $dab \ll dadacd \ll db \ll dc$ e $dabda \ll dac \ll ddbdc$. Inoltre ogni stringa in $\{dab, dadacd, db, dc, dabda, dac, ddbdc\}$ è una parola inversa di Lyndon.

Purtroppo data una stringa w non sempre esiste una sola fattorizzazione inversa di Lyndon di w.

Ad esempio, con a < b < c < d, per w = dabdadacddbdc abbiamo $dab \ll dadacd \ll db \ll dc$ e $dabda \ll dac \ll ddbdc$. Inoltre ogni stringa in $\{dab, dadacd, db, dc, dabda, dac, ddbdc\}$ è una parola inversa di Lyndon.

Quindi (dab, dadacd, db, dc) e (dabda, dac, ddbdc) sono due fattorizzazioni inverse di Lyndon di w = dabdadacddbdc. La sequenza (dab, dadac, ddbdc) è ancora un'altra fattorizzazione inversa di Lyndon di w = dabdadacddbdc.

 La fattorizzazione inversa di Lyndon canonica (ICFL) di una stringa w è unica ICFL(dabdadacddbdc) = (dab, dadac, ddbdc)
 ⋄ come CFL

può essere calcolata in tempo lineare
 come CFL

Qual è la definizione di ICFL(w)?

Definizione (bounded right extension)

Sia $w \in \Sigma^+$, sia p una parola inversa di Lyndon che è un prefisso proprio non vuoto di w = pv.

La **bounded right extension** \overline{p} di p (relativamente a w), se esiste, è un prefisso non vuoto di v tale che:

- (1) \overline{p} è una parola inversa di Lyndon,
- (2) pz' è una parola inversa di Lyndon, per ogni prefisso proprio non vuoto z' di \overline{p} ,
- (3) pp non è una parola inversa di Lyndon,
- (4) $p \ll \overline{p}$.

Data una parola w, si può dimostrare che o nessun prefisso di w ha una bounded right extension oppure questo prefisso è unico (e la coppia (p, \overline{p}) è unica).

Il primo caso si verifica se e solo se w è una parola inversa di Lyndon.

La coppia (p, \overline{p}) è chiamata la coppia canonica associata a w.

Proposizione

Sia $w \in \Sigma^+$ una parola che non è una parola inversa di Lyndon. Una coppia di parole (p, \overline{p}) è la coppia canonica associata a w se e solo se sono soddisfatte le seguenti condizioni.

- (1) $z = p\overline{p}$ è il più corto prefisso non vuoto di w che non è una parola inversa di Lyndon.
- (2) $p = ras \ e \ \overline{p} = rb$, $con \ r, s \in \Sigma^*$, $a, b \in \Sigma$ dove $r \ e \ il \ più \ corto$ prefisso di $p\overline{p}$ tale che $p\overline{p} = rasrb$, $con \ a < b$.
- (3) \overline{p} è una parola inversa di Lyndon.

Esempio

Sia $\Sigma = \{a,b\}$ con a < b. La stringa w = babaaabb = yb non è una parola inversa di Lyndon. Invece babaaab = y è una parola inversa di Lyndon, quindi il più corto prefisso non vuoto di w che non è una parola inversa di Lyndon è w. Conseguentemente $w = p\overline{p}$.

Cerchiamo l'unica coppia (p, \overline{p}) . Siccome la stringa p inizia con b, la stringa \overline{p} non può iniziare con a, altrimenti non avremmo $p \ll \overline{p}$. Quindi i possibili prefissi candidati per p sono ba, babaaa e babaaab. Il primo caso non può verificarsi perché implicherebbe $\overline{p} = baaabb$ ma baaabb non è una parola inversa di Lyndon. Il terzo caso non può verificarsi perché implicherebbe $\overline{p} = b$ cioè $(p, \overline{p}) = (babaaab, b)$ e non avremmo $p \ll \overline{p}$. Infine la coppia $(p, \overline{p}) = (babaaa, bb)$ è la coppia richiesta.

Definizione

Sia $w \in \Sigma^+$.

(Passo Base) Se w è una parola inversa di Lyndon allora ICFL(w) = (w).

(Passo Ricorsivo) Se w non è una parola inversa di Lyndon,

- 1 trova il più corto prefisso non vuoto x di w che non è una parola inversa di Lyndon, quindi $x = rasrb = p\overline{p}$.
- 2 Trova (p, \overline{p}) .
- 3 Sia w = pv e sia $ICFL(v) = (m'_1, \dots, m'_k)$

$$\mathsf{ICFL}(w) = \begin{cases} (p, \mathsf{ICFL}(v)) & \text{se } \overline{p} = rb \text{ è prefisso di } m_1' \\ (pm_1', m_2', \dots, m_k') & \text{se } m_1' \text{ è prefisso di } r \end{cases}$$

L'algoritmo

1. Qual è il più corto prefisso non vuoto rasrb di w = dabdabdadac che non è una parola inversa di Lyndon?

dabdabdadac

L'algoritmo

2.
$$p = dabdab, \overline{p} = dad$$

dabdabdadac

L'algoritmo

- 2. $p = dabdab, \overline{p} = dad$
- 3. ICFL(dadac) = dadac
- 4. dad è prefisso di dadac, allora ICFL(w) = (dabdab, dadac).

La definizione di ICFL(w) è molto complicata...

La definizione di ICFL(w) è molto complicata...

Come semplificarla?

La definizione di ICFL(w) è molto complicata...

Come semplificarla?

Studiandone le proprietà.

Per ogni $w \in \Sigma^+$, denotiamo con $CFL_{in}(w)$ la fattorizzazione di Lyndon di w rispetto all'ordine lessicografico inverso. Costruzione alternativa diretta di ICFL(w) da $CFL_{in}(w)$?

Per ogni $w \in \Sigma^+$, denotiamo con $CFL_{in}(w)$ la fattorizzazione di Lyndon di w rispetto all'ordine lessicografico inverso. Costruzione alternativa diretta di ICFL(w) da $CFL_{in}(w)$? Recentemente ottenuta:

Per ogni $w \in \Sigma^+$, denotiamo con $CFL_{in}(w)$ la fattorizzazione di Lyndon di w rispetto all'ordine lessicografico inverso. Costruzione alternativa diretta di ICFL(w) da $CFL_{in}(w)$? Recentemente ottenuta:

Paola Bonizzoni, Clelia De Felice, Brian Riccardi, Rocco Zaccagnino, Rosalba Zizza, *Unveiling the Connection Between the Lyndon Factorization and the Canonical Inverse Lyndon Factorization via a Border Property*, **49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)**, Leibniz International Proceedings in Informatics (LIPIcs), 2024

Proposizione

Per ogni $w \in \Sigma^+$, ICFL(w) è un grouping di CFL $_{in}(w)$.

Proposizione

Per ogni $w \in \Sigma^+$, ICFL(w) è un grouping di CFL $_{in}(w)$.

Sfortunatamente, ICFL(w) non è sempre l'unico grouping di CFL $_{in}(w)$.

Sia $\Sigma = \{a, b, c, d\}$, a < b < c < d, and w = dabadabdabdadac.

Sia $\Sigma = \{a, b, c, d\}$, a < b < c < d, and w = dabadabdadadac.

Risulta $CFL_{in}(w) = (daba, dab, dab, dabac)$ e ICFL(w) = (daba, dabdab, dadac). ICFL(w) è un grouping di $CFL_{in}(w)$.

```
Sia \Sigma = \{a, b, c, d\}, a < b < c < d, and w = dabadabdadadac.
```

Risulta $CFL_{in}(w) = (daba, dab, dab, dadac)$ e ICFL(w) = (daba, dabdab, dadac). ICFL(w) è un grouping di $CFL_{in}(w)$.

Invece (dabadab, dabda, dac) non è un grouping di $CFL_{in}(w)$.

```
Sia \Sigma = \{a, b, c, d\}, a < b < c < d, and w = dabadabdabdabdadac.
```

Risulta $CFL_{in}(w) = (daba, dab, dab, dabac)$ e ICFL(w) = (daba, dabdab, dadac). ICFL(w) è un grouping di $CFL_{in}(w)$. Invece (dabadab, dabda, dac) non è un grouping di $CFL_{in}(w)$.

Sia y = dabadabdabdabdadac. Risulta $CFL_{in}(y) = (daba, dab, dab, dab, dadac)$ e $ICFL(y) = (daba, (dab)^3, dadac)$.

Sia
$$\Sigma = \{a, b, c, d\}$$
, $a < b < c < d$, and $w = dabadabdabdadac$.

Risulta $CFL_{in}(w) = (daba, dab, dab, dadac)$ e ICFL(w) = (daba, dabdab, dadac). ICFL(w) è un grouping di $CFL_{in}(w)$.

Invece (dabadab, dabda, dac) non è un grouping di $CFL_{in}(w)$.

Sia y = dabadabdabdabdadac. Risulta $CFL_{in}(y) = (daba, dab, dab, dab, dadac)$ e $ICFL(y) = (daba, (dab)^3, dadac)$. ICFL(y) è un grouping di $CFL_{in}(y)$.

Sia
$$\Sigma = \{a, b, c, d\}$$
, $a < b < c < d$, and $w = dabadabdabdadac$.

Risulta $CFL_{in}(w) = (daba, dab, dab, dadac)$ e ICFL(w) = (daba, dabdab, dadac). ICFL(w) è un grouping di $CFL_{in}(w)$. Invece (dabadab, dabda, dac) non è un grouping di $CFL_{in}(w)$.

Sia y = dabadabdabdabdadac. Risulta CFL x(y) = (daba, daba)

Risulta CFL_{in}(y) = (daba, dab, dab, dab, dadac) e

 $ICFL(y) = (daba, (dab)^3, dadac).$

ICFL(y) è un grouping di $CFL_{in}(y)$.

La fattorizzazione inversa di Lyndon $(dabadab, (dab)^2, dadac)$ è un altro grouping di $CFL_{in}(y)$.

Ma ci sono altre proprietà rispetto alle quali ICFL è unica.

Ma ci sono altre proprietà rispetto alle quali ICFL è unica.

Per ogni $w \in \Sigma^+$, ICFL(w) è l'unica fattorizzazione inversa di Lyndon di w che ha la proprietà del bordo.

Ma ci sono altre proprietà rispetto alle quali ICFL è unica.

Per ogni $w \in \Sigma^+$, ICFL(w) è l'unica fattorizzazione inversa di Lyndon di w che ha la proprietà del bordo.

Definizione (Border property)

Sia $w \in \Sigma^+$. Una fattorizzazione (m_1, \ldots, m_k) di w ha la border property se ogni bordo non vuoto z di m_i non è un prefisso di m_{i+1} , $1 \le i \le k-1$.

Ma ci sono altre proprietà rispetto alle quali ICFL è unica.

Per ogni $w \in \Sigma^+$, ICFL(w) è l'unica fattorizzazione inversa di Lyndon di w che ha la proprietà del bordo.

Definizione (Border property)

Sia $w \in \Sigma^+$. Una fattorizzazione (m_1, \ldots, m_k) di w ha la border property se ogni bordo non vuoto z di m_i non è un prefisso di m_{i+1} , $1 \le i \le k-1$.

Permette una costruzione alternativa diretta di ICFL(w) da CFL $_{in}(w)$.

Risultato recentemente ottenuto: costruzione alternativa diretta di ICFL(w) senza passare da $CFL_{in}(w)$.