Prueba Practica Sistemas Expertos Basados en casos.

Estudiante: Rafael Angamarca:

Fecha: 02/07/2021

Enunciado:

Se desea generar un sistema de recomendación de películas, por tal motivo se va a utiliza una base de datos orientada a grafos para lograr esto se describe los pasos a seguir:

- 1) Con estos datos aplicar el algoritmo de KNN y Similitud de Coseno para la recomendación de películas, seguir el siguiente tutorial: https://www.markhneedham.com/blog/2018/09/28/neo4jgraph-algorithms-cosine-game-of-thrones/ o https://vladbatushkov.medium.com/one-month-graphchallenge-flags-5d30aec366a0.
- 2) Finalmente realizar alguna interfaz para poder acceder a la recomendación e ingreso de datos y resultados de los procesos en python.
- 3) Generar el Informe en PDF y subir los scripts al repositorio Git para su evaluación. Scripts para la creación de la creación de las banderas con sus colores.

Desarrollo.

Creamos una base de datos en la cual creamos varios nodos para especificar el nombre de cada color

```
CREATE (red:Color { name: "Red" })
CREATE (white:Color { name: "White" })
CREATE (blue:Color { name: "Blue" })
CREATE (green:Color { name: "Green" })
CREATE (yellow:Color { name: "Yellow" })
CREATE (black:Color { name: "Black" })
CREATE (f1:Flag { name: "Belarus" })
CREATE (f1)-[:CONTAINS { weight: 60 }]->(red)
CREATE (f1)-[:CONTAINS { weight: 30 }]->(green)
CREATE (f1)-[:CONTAINS { weight: 10 }]->(white)
CREATE (f2:Flag { name: "Russia" })
CREATE (f2)-[:CONTAINS { weight: 33 }]->(red)
CREATE (f2)-[:CONTAINS { weight: 33 }]->(blue)
CREATE (f2)-[:CONTAINS { weight: 33 }]->(white)
CREATE (f3:Flag { name: "Ukrain" })
CREATE (f3)-[:CONTAINS { weight: 50 }]->(yellow)
CREATE (f3)-[:CONTAINS { weight: 50 }]->(blue)
CREATE (f4:Flag { name: "Finland" })
CREATE (f4)-[:CONTAINS { weight: 80 }]->(white)
CREATE (f4)-[:CONTAINS { weight: 20 }]->(blue)
CREATE (f5:Flag { name: "Sweden" })
CREATE (f5)-[:CONTAINS { weight: 20 }]->(yellow)
CREATE (f5)-[:CONTAINS { weight: 80 }]->(blue)
CREATE (f6:Flag { name: "Norway" })
```

```
CREATE (f6)-[:CONTAINS { weight: 70 }]->(red)
CREATE (f6)-[:CONTAINS { weight: 20 }]->(white)
CREATE (f6)-[:CONTAINS { weight: 10 }]->(blue)
CREATE (f7:Flag { name: "Denmark" })
CREATE (f7)-[:CONTAINS { weight: 80 }]->(red)
CREATE (f7)-[:CONTAINS { weight: 20 }]->(white)
CREATE (f8:Flag { name: "Estonia" })
CREATE (f8)-[:CONTAINS { weight: 33 }]->(white)
CREATE (f8)-[:CONTAINS { weight: 33 }]->(blue)
CREATE (f8)-[:CONTAINS { weight: 33 }]->(black)
CREATE (f9:Flag { name: "Latvia" })
CREATE (f9)-[:CONTAINS { weight: 66 }]->(red)
CREATE (f9)-[:CONTAINS { weight: 33 }]->(white)
CREATE (f10:Flag { name: "Lithuania" })
CREATE (f10)-[:CONTAINS { weight: 33 }]->(yellow)
CREATE (f10)-[:CONTAINS { weight: 33 }]->(green)
CREATE (f10)-[:CONTAINS { weight: 33 }]->(red)
CREATE (f11:Flag { name: "Poland" })
CREATE (f11)-[:CONTAINS { weight: 50 }]->(red)
CREATE (f11)-[:CONTAINS { weight: 50 }]->(white)
CREATE (f12:Flag { name: "Germany" })
CREATE (f12)-[:CONTAINS { weight: 33 }]->(red)
CREATE (f12)-[:CONTAINS { weight: 33 }]->(black)
CREATE (f12)-[:CONTAINS { weight: 33 }]->(yellow)
CREATE (f13:Flag { name: "Belgium" })
CREATE (f13)-[:CONTAINS { weight: 33 }]->(red)
CREATE (f13)-[:CONTAINS { weight: 33 }]->(black)
CREATE (f13)-[:CONTAINS { weight: 33 }]->(yellow)
CREATE (f14:Flag { name: "Czechia" })
CREATE (f14)-[:CONTAINS { weight: 33 }]->(red)
CREATE (f14)-[:CONTAINS { weight: 33 }]->(white)
CREATE (f14)-[:CONTAINS { weight: 33 }]->(blue)
CREATE (f15:Flag { name: "Hungary" })
CREATE (f15)-[:CONTAINS { weight: 33 }]->(red)
CREATE (f15)-[:CONTAINS { weight: 33 }]->(white)
CREATE (f15)-[:CONTAINS { weight: 33 }]->(green)
CREATE (f16:Flag { name: "Romaina" })
CREATE (f16)-[:CONTAINS { weight: 33 }]->(red)
CREATE (f16)-[:CONTAINS { weight: 33 }]->(yellow)
CREATE (f16)-[:CONTAINS { weight: 33 }]->(blue)
CREATE (f17:Flag { name: "Austria" })
CREATE (f17)-[:CONTAINS { weight: 66 }]->(red)
CREATE (f17)-[:CONTAINS { weight: 33 }]->(white)
CREATE (f18:Flag { name: "Italy" })
CREATE (f18)-[:CONTAINS { weight: 33 }]->(red)
CREATE (f18)-[:CONTAINS { weight: 33 }]->(white)
CREATE (f18)-[:CONTAINS { weight: 33 }]->(green)
CREATE (f19:Flag { name: "Switzerland" })
CREATE (f19)-[:CONTAINS { weight: 90 }]->(red)
CREATE (f19)-[:CONTAINS { weight: 10 }]->(white)
```

```
CREATE (f20:Flag { name: "Spain" })
CREATE (f20)-[:CONTAINS { weight: 60 }]->(red)
CREATE (f20)-[:CONTAINS { weight: 40 }]->(yellow)
CREATE (f21:Flag { name: "Portugal" })
CREATE (f21)-[:CONTAINS { weight: 60 }]->(red)
CREATE (f21)-[:CONTAINS { weight: 40 }]->(green)
CREATE (f22:Flag { name: "Netherlands" })
CREATE (f22)-[:CONTAINS { weight: 33 }]->(red)
CREATE (f22)-[:CONTAINS { weight: 33 }]->(white)
CREATE (f22)-[:CONTAINS { weight: 33 }]->(blue)
```

Una vez creada los nodos mandamos a visualizar los colores que se han creado de acorde al script

Hacemos un filtrado para buscar el color más usado

```
MATCH (:Flag)-[c1:CONTAINS]->(:Color)
WITH sum(c1.weight) as total
MATCH (:Flag)-[c2:CONTAINS]->(cl:Color)
WITH cl.name as colorName, sum(c2.weight) as colorUsed, total
RETURN colorName, colorUsed * 100 / total as percentage
ORDER BY percentage DESC
LIMIT 10
```


A continuación, hacemos la comparación de las banderas mas similares de acuerdo al color.

```
MATCH (item:`Flag`), (category:`Color`)

OPTIONAL MATCH (item:`Flag`)-[rel:`CONTAINS`]->(category:`Color`)

WITH {item:id(item), weights: collect(coalesce(rel.`weight`, gds.util.NaN()))} as userD ata

WITH collect(userData) as data

WITH $config AS config, data

WITH config { .*, data: data} as config

CALL gds.alpha.similarity.cosine.stream(config)

YIELD item1, item2, similarity

RETURN gds.util.asNode(item1) AS from, gds.util.asNode(item2) AS to, similarity

ORDER BY similarity DESC

LIMIT toInteger($limit)
```

"from"	"to"	"similarity"
{"name":"Belarus"}	{ "name": "Germany"}	1.0
{"name":"Belarus"}	{"name":"Estonia"}	1.0
{"name":"Russia"}	{"name":"Ukrain"}	1.0
{"name":"Russia"}	{"name":"Estonia"}	1.0
{"name":"Russia"}	{"name":"Sweden"}	1.0
{"name":"Ukrain"}	{"name":"Russia"}	1.0
{"name":"Ukrain"}	{"name":"Norway"}	1.0
{"name":"Ukrain"}	{"name":"Finland"}	1.0
{"name":"Finland"}	{"name":"Belarus"}	1.0
{"name":"Finland"}	{"name":"Sweden"}	1.0
{"name":"Finland"}	{"name":"Ukrain"}	1.0
{"name":"Sweden"}	{"name":"Russia"}	1.0
{"name":"Sweden"}	{"name":"Norway"}	1.0
{"name":"Sweden"}	{"name":"Finland"}	1.0
{"name":"Belarus"}	{"name":"Finland"}	1.0

Como resultado tenemos

Conclusiones

Se ha desarrollado la prueba basados en casos de manera satifactoria.