PATENT ABSTRACTS OF JAPAN

(11) Publication number: 05126980 A

(43) Date of publication of application: 25.05.93

(51) Int. CI

G21C 17/04

G01H 17/00

G06F 9/44

G06F 11/22

G06F 11/32

G21C 17/00

(21) Application number: 03315182

(22) Date of filing: 05.11.91

(71) Applicant:

ВАВСОСК НІТАСНІ КК

(72) Inventor:

MATSUMOTO SHINICHI

(54) ABNORMALITY DIAGONOSIS SUPPORTING DEVICE

(57) Abstract:

PURPOSE: To ensure plant safety by making a deduction part deduce a loose part generating place from the brought-in data, and a wave shape analysis part compare and analyze wave shape data, and by offering the information thereabout to operators.

CONSTITUTION: Analogue data which is detected by a detector, is brought in from an A/D converter 9. At a deduction part 3, a position and energy deduction part 4 deduces a sound source position and a loose part generating position in such a manner of the three points measurement, and then collision energy is deduced from the perceived energy, and energy attenuation factor data by distance stored at a data storage part 7. A wave shape analysis part 5 conducts frequency analysis of the brought-in wave shape data and compares it with the standard data stored at a memory part 7, to presume whether the similarity exists or not. A deduction part 6 of abnormal sound generating cause conducts deduction, using the deduction and analysis result by the deduction part 4 and the wave shape analysis part 5, and the judgement rule which is accumulated at the memory part 7, and then displays the result therefrom on a display part 8. In this way, materials for judgement related to plant operation are offered to plant operators.

COPYRIGHT: (C)1993,JPO&Japio

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-126980

(43)公開日 平成5年(1993)5月25日

(51)Int.Cl. ⁵ G 2 1 C 17/04 G 0 1 H 17/00 G 0 6 F 9/44 11/22	識別記号 F 330 U 360 G	9193-5B	F I G 2 1 C 審査請求 未請求	技術表示箇所 17/00 N 計求項の数1(全 7 頁) 最終頁に続く
(21)出願番号	特願平3-315182		(71)出願人	000005441 パブコツク日立株式会社
(22)出願日	平成3年(1991)11月	∄ 5 🖪	(72)発明者(74)代理人	東京都千代田区大手町2丁目6番2号 松本 真一 広島県呉市宝町6番9号 パブコツク日立 株式会社呉工場内 弁理士 武 顕次郎

(54)【発明の名称】 異常診断支援装置

(57)【要約】

【目的】 異常音の発生場所の推論と、波形の解析、比較を行い、異常の発生原因および対策の推論を行い、プラント運転員にその情報を提供することでプラントの安全性を保つようにする。

【構成】 監視装置で採取したデータを取り込むデータ入力部と、取り込んだデータからルースパーツ発生場所を推論する第1の推論部と、波形データを周波数解析し、基準データと比較解析する波形解析部と、異常音発生原因および発生原因から危険性を推測する第2の推論部と、該第2の推論部による推論結果を表示する表示部とを備えた。

【特許請求の範囲】

【請求項1】 原子炉装置の流体流路を構成する各機器 に取り付けられた複数個の検出器と、該検出器からの信 号を感知する異常音感知部と、異常音感知部で感知した 信号を受け、ルースパーツの監視をおこなう監視装置と を備え、該監視装置で採取したデータを解析し、プラン トの異常診断の支援を行う異常診断支援装置において、 前記監視装置で採取したデータを取り込むデータ入力部 と、取り込んだデータからルースパーツ発生場所を推論 する第1の推論部と、波形データを周波数分析し、基準 10 ことになるからである。 データと比較解析する波形解析部と、異常音発生原因お よび発生原因から危険性を推測する第2の推論部と、該 第2の推論部による推論結果を表示する表示部を備えた ことを特徴とする異常診断支援装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は原子炉装置の流体流路内 のルースパーツ監視装置で採取したデータを基に原子炉 の異常診断を支援する異常診断支援装置に関するもので

[0002]

【従来の技術】原子炉やこれに接続する蒸気発生部等、 原子炉の蒸気や液体が流動する管炉からなる各種循環系 において装置部品の脱落が生じると、この脱落部品(ル ースパーツ)により各種機器が損傷を受けたり、内部流 体の流れが阻害されるなどの問題が生じる。

【0003】原子力技術は他の技術分野以上に安全性が 強く要求されるものであつて、ルースパーツの発生は極 力低減する必要があり、また、ルースパーツが発生した ならば、その事実を早く察知し、かつ発生部位およびこ のルースパーツの移動状態を正確に検知する必要があ る。

【0004】このため従来から、色々な対策が考えられ ており、特願昭57-212687号、特願昭57-1 78567号、特願昭58-119834号、特願昭6 1-233443号、特願昭62-171853号、特 願昭63-40379号、特願昭63-55468号、 特願昭63-317313号、特願平2-4711号の ような出願が行われている。

【0005】従来の原子力プラントのルースパーツ監視 装置においては、原子炉の蒸気発生器のような1次冷却 系の各機器に取り付けられた検出器 (例えば加速度計) にて検出されたルースパーツのインパクト波形の値が、 各機器に発生するノイズ(例えばポンプやモータの運転 音、あるいは流体の流動音など、これらをバツクグラウ ンドノイズという) に比し、一定比率以上の大きさであ ればハイアラーム警報を発することにしている。

【0006】また、ルースパーツ監視装置には、各機器 に取り付けた検出器の検出信号の正誤を判断するロケー タという装置が内蔵されており、このロケータでは各検 50 出器からの信号の正誤を判断する機能を持たせている。

その正誤判断の基準としては

(イ) 50ミリ秒 (mm sec) 以内にハイアラーム 警報の受信回数が1回の場合は誤信号とみなす。

【0007】その理由は、鋼中の音速は3m/ミリ秒で あり、50ミリ秒間には150mの距離を伝わることに なり、各機器に取り付けた検出器間の距離は最大20m 程度であるため、ルースパーツが発生しているのであれ ば短時間内に付近の検出器から多数の信号が発信される

【0008】(ロ)0.5ミリ秒以内に3つ以上の警報 信号が受信された時は誤信号とみなす。

【0009】その理由は、検出器の配置上、0.5ミリ 秒以内に3つ以上の警報が受信されることは殆どあり得 ないことであり、これは各検出器から制御盤までを接続 するケーブル間で電気ノイズを誘導して発したパルス信 号である可能性が高いためである。

【0010】以上(イ)および(ロ)の場合は、信号調 整器、検出器をリセツトすると同時に、集中警報器やロ ケータなどもリセツトし、データをキヤンセルすること にしていた。

【0011】その他の場合は、妥当なルースパーツ警報 と判断して、集中警報器による警報を発し、データレコ ーダの自動起動、外部警報の発生、プリンタによる記録 などを行つていた。この記録と同時に、作動している外 部警報とデータレコーダを除いて装置の全構成機器をリ セツトすることにしている。

【0012】そして、外部警報が発令されるたびに運転 員は監視装置の所まで出向き、外部警報を一応停止して 30 オーデイオモニタで現場に異常音があるかどうか確認す る。さらに、データレコーダを停止し、プリンタの打ち 出しならびにオーデイオモニタの聴音結果を記録用紙に 記録するなどの作業を行つていた。

[0013]

【発明が解決しようとする課題】しかし上記監視装置で は、異常音らしき音がプラント内で発生していることは 判るが、本現象が本当に異常であるか否かは不明であ り、本点について考慮されていなかつた。

【0014】また、警報が発生した場合に、その警報か らでは、原子炉装置のどの部位から異常音が発生した か、発生原因が何か、プラント運転に問題があるかどう かなどの情報を得ることはできず、ベテランの運転員の 判断に頼つているのが現状である。

【0015】本発明の目的は上記従来装置の欠点を改善 し、異常音の発生場所の推論と、波形の解析、比較を行 い、異常音の発生原因および対策の推論を行い、プラン ト運転員にその情報を提供することでプラントの安全性 を保つことにある。

[0016]

【課題を解決するための手段】上記目的は、複数の検出

-2-

器から得られた信号からルースパーツがプラント構造物 に衝突した位置とエネルギを推定する機能と、入力した 波形データの波形解析機能と、プラントの警報発生時の 発生状況を問い合わせ、上記機能で推定、解析した位 置、エネルギ、波形解析結果と、本装置が記憶している 基準波形(例えば、各プラントで発生している特有音や 補機の操作音など) およびベテラン運転員から抽出した 判断ルールからなる知識ベースを用い、異常音の発生原 因、その危険性と対策を推測する機能と、その推論結果 を表示する機能とによつて達成できる。

[0017]

【作用】プラントの警報発生時の発生状況を問い合わ せ、複数の検出器から得られた信号からルースパーツが プラント構造物に衝突した位置とエネルギを推定する機 能および、入力した波形データの波形解析機能で推定、 解析した位置、エネルギ、波形解析結果と、本装置が記 憶している基準波形(例えば、各プラントで発生してい る特有音や補機の操作音など)およびベテラン運転員か ら抽出した判断ルールからなる知識ベースを用い、異常 音の発生原因、その危険性と対策を推測し、その推論結 20 果を表示する。

[0018]

【実施例】図1に本発明による異常診断支援装置の実施 例の概略構成図を、また、図2にその具体的構成図を示 す。

【0019】原子力プラントのルースパーツ監視装置で 採取した波形データ(原子炉や蒸気発生器のような1次 冷却系の各機器に取り付けた検出器で検出した信号)を 入力部1より推論部3に取り込む。データの入力方法は 監視装置との関係により、監視装置でデジタル化したデ 30 ータを各種記憶媒体を介して取り込む、監視装置と異常 診断支援装置とをネツトワークで結び、そのネツトワー ク回線を介して取り込む方法など考えられるが、ここで は図2の如く検出器で検知した信号をアナログデータと して記録し、そのアナログデータを記録媒体を介してA /D変換器9より波形データとして取り込む。

【0020】推論部3では、得られたデータからまず、 位置およびエネルギ推論部4にて三点測量の容量で音源 位置を推定し、データ記憶部7に蓄えたエネルギの距離 減衰率データと感知エネルギから衝突エネルギを推定す 40 る。

【0021】波形解析部5では、取り込んだ波形データ の周波数分析を行い、データ記憶部 7 に蓄えている基準 データ(各プラントの特有の音や補機操作音など)と比 較し、類似性の有無を推定する。

【0022】異常音発生原因推論部6では、位置および エネルギ推論部4、波形解析部5で推論、解析した結果 と、データ記憶部7に蓄積している判断ルールを用い、 推論に必要なプラントの異常音発生時の状況など表示部 8よりシステムが問い合わせ、その回答をキー入力部2 50 析された位置および周波数の類似性から異常音の発生原

より取り込み、得たデータとを基に判断ルールにより推 論する。また、推論結果を表示部8に表示する。

【0023】推論部3の位置およびエネルギ推論部4、 波形解析部5、異常音発生原因推論部6の各動作につい て説明する。

【0024】位置およびエネルギ推論部4では、入力し た時系列の多チヤンネルの波形データから時間差を求 め、位置およびエネルギを推定する。

【0025】図3に示すように、衝突点Pから発した音 10 はPから距離の近い順に検出する(その検出した時系列 の波形データをデータとして入力部1より取り込む)。 検出した検出器(センサ) A, B, Cの位置と点Pの位 置との距離 d 1, d 2, d 3 の関係を d 1 > d 2 > d 3 とすると、各センサA, B, Cで検出した波形は図4の ように、センサCの波形を先着とし、B、Aの順に時間 差 t 1, t 2を伴つたものとなる。時間差 t 1, t 2 は 機器中の音速をvとすると、

t 1 = (d 2 - d 3) / vt 2 = (d 1 - d 3) / v

となる。

【0026】従つて、時間差 t 1, t 2 が計測できれ ば、点Pを逆算することができる。点Pの位置が判れ ば、先着チヤンネルと衝突点Pとの距離d(図3ではd 3) を求めることができる。

【0027】その距離からそのセンサでのエネルギの距 離減衰データ (図5) を用いてセンサが感知したエネル ギから衝突エネルギを推定する。エネルギの距離減衰デ ータはプラント試運転時などに各機器のヒツテイングテ ストを実施して求めておき、データ記憶部7に記憶して おく。

【0028】波形解析部5では、入力した波形データを 周波数分析し、データ記憶部7に記憶している基準デー タの周波数特性と比較し、その類似性の有無を推定す

【0029】基準データには、補機の操作音、熱膨張に より発生するサーマルエキスパンシヨンなどの原子力プ ラントで発生する代表的な音や、各プラントでする特有 の音を用いる。

【0030】比較方法には、周波数分析の結果の特徴を ピークでとらえ、そのピークがどの周波数帯にあるかで 比較する方法や、周波数分析した特性値が基準データの 特性値に類似しているかをしきい値を設け、そのしきい 値内であるかを比較する方法がある。

【0031】例えば、図6に、ある基準データの周波数 特性としきい値の関係を示す。周波数特性値の±X d b以内であれば、類似しているとみなす。

【0032】異常音発生原因推論部6では、データ記憶 部7に蓄積している知識ベース(判断ルール)を用い、 位置およびエネルギ推論部4、波形解析部5で推定、解 5

因、対策、危険性を推論する。

【0033】判断ルールは、図7に示すようなテーブルを基に、各事象に対する確信度をif-then形式のプロダクションルールとして表す。テーブルはベテラン運転員にアンケートや問い合わせを行い、基準データとして記憶している音の発生する位置との関係、基準データとの周波数特性の類似性、基準データが発生する場合のプラントの運転状況、異常音の発生状況などの各事象と、その各事象に対する原因の可能性を、確信度(-1 ≤確信度≤1)として表す。

【0034】図8、図9に、判断ルールの基本的動作を 示す。まず、位置およびエネルギ推論部4、波形解析部 5で推定、解析された位置と基準データとの周波数特性 の類似性から考えられる原因の確信度を更新し(S1~ S 6) 、その確信度がしきい値 X 1 (-1 ≤確信度≤ 1)以上のものを原因の候補として選ぶ(S7)。次 に、その選ばれた候補が原因であると仮定し、仮定した 原因の場合に想定されるプラントの状況、発生音の特徴 が実際、異常音発生時にどうであつたかをシステムが運 転員に問い合わせ(S8)、問い合わせた結果により各 候補の確信度を更新する(S9)。そして、最終的に推 論された原因候補の確信度がしきい値X2(−1≤確信 度≤1)より高いものを推論原因として(S10)表示 部8に出力する(S11)。推論結果としては、異常音 の発生原因の他、原因の確信度、原因に対する対応策や 危険性等についても出力する。

[0035]

【発明の効果】本発明によれば、監視装置が発した発生原因、危険性、対応策等の警報の程度を知ることができ、これによりプラント運転員にプラントの停止などの 30プラント操作の判断材料を提供することが可能となり、

この結果、プラントの安全性を保つことができるように なる。

【図面の簡単な説明】

【図1】本発明による異常診断支援装置の実施例の構成 図である。

【図2】本発明による異常診断支援装置の実施例の具体 例を示す構成図である。

【図3】ルースパーツが衝突した際に発生した音響信号が複数個のセンサに検知されることを表した説明図であ 10 る。

【図4】図3のセンサが検知した信号の波形図である。

【図5】エネルギの距離減衰のカーブの1例を示す特性 図である。

【図 6 】基準データの周波数特性とそのデータのしきい 値の 1 例を示す特性図である。

【図7】ベテラン運転員より抽出した事象とその事象に対する原因の確信度を表すテーブルを示す図表である。

【図8】判断ルールの基本的動作のフローチヤートである。

20 【図9】判断ルールの基本的動作のフローチヤートである。

【符号の説明】

- 1 入力部
- 2 キー入力部
- 3 推論部
- 4 位置およびエネルギ推論部
- 5 波形解析部
- 6 異常音発生原因推論部
- 7 データ記憶部
- 80 8 表示部
 - 9 A/D変換部

【図1】

【図2】

【図7】

【図 7】

事象			2	3	4	5	6	7
推定位置	RV上部	0.5		0.3				
	RV下部		0.3	·	0.5			
	SG上部					0.5		0.4
	SG下部				0.2		0.5	
	配管		0.5					
周波数特柱の類似性	Aと類似	0.3			0.2			
	Bと類似		0.2					
	Cと類似			0.3				
	Dと類似					0.2		0.3
	Eと類似				0.3			
RCP	加速中		0.3		0.3		0.2	
	減速中	0.2	0.3		0.3			
	定速中		-0.2		-0.2			
RCS圧力 温度変動中						0.5	0.5	
発生頻度	連続的		0.2		0.2			
	单 発的					0.1	0.1	

🔆 数値は確信度を示す

フロントページの続き

(51) Int.CI.5

識別記号

庁内整理番号

FΙ

技術表示箇所

G 0 6 F 11/32

E 9290-5B