

de qualidade de software Introdução ao mercado

Carolina Santana Louzada Engenheira de Qualidade de Software na UOLEdtech

Mais sobre mim

- Graduada em Engenharia de Computação- UFS
- Fazendo especialização em qualidade e desenvolvimento de software
- Qualidade de software -> automação
- Educação + tecnologia
- Jogos + música + aprender novas atividades
- LinkedIn -> Carolina Santana Louzada | LinkedIn

Objetivo do curso

Entender como a área de qualidade de software está inserida no mercado de TI, bem como compreender os perfis, responsabilidades e skills necessárias para se tornar um excelente profissional de qualidade de software.

Aula 1

Mercado e tendências

Aula 2

Afinal, o que faz um QA?

Aula 3

Roadmap de aprendizagem para QAs

Dúvidas durante o CUISO?

- > Fórum do curso
- > Comunidade online (discord)

Aula 1: Qualidade de software: mercado e tendências

de Qualidade de Software Introdução ao Mercado

Objetivos

- 1. Contextualizar sobre o mercado de TI
- 2. Importância da qualidade de software
- 3. Compreender os desafios e futuro da área de qualidade de software

DIGITAL INNOVATION ONE

Receita do mercado de software a nível mundial

Fonte: Statista(2022)

Investimentos em II

Investimentos em TI por País	Valor(bilhões)
1. Estados Unidos da América	U\$914
2. China	U\$266
3. Japão	U\$145
4. Reino Unido	U\$117
5. Alemanha	U\$108
6. França	0\$76
7. Índia	U\$58
8. Canadá	U\$53
9. Brasil	U\$49.5
10. Austrália	U\$42

Software, Hardware e Serviços Fonte: Associação Brasileira de Empresas de Software

Investimentos em TI

Investimentos em TI a nível mundial no ano de 2020(mercado interno)

Crescimento de II

Crescimento de TI no ano de 2020

Mundial	2.5%
Brasil	22.9%

Crescimento esperado de TI no ano de 2021

Mundial	4.3%
Brasil	11.1%

Dados do Setor | ABES (abessoftware.com.br)

DIGITAL Majores desafios em desenvolvimento one

Previsão de empregos em II

Profissões Emergentes na Era Digital

Fonte: Portal da Industria(2021)

Profissões emergentes

Gestor de mídias sociais

Especialista em Blockchain

Engenheiro de software

Programador de

Especialista em

inteligencia artificial

jogos digitais

Programador /Coder

Especialista em Cloud

cibersegurança Analista de

Engenheiro de banco de dados

Programador multimídia

Desenvolvedor de

sistemas

Fonte: Portal da Industria(2021)

Sobre as linguagens mais utilizadas

Fonte: Pesquisa Código Fonte (2021)

Importância da qualidade de Aula 1 | Etapa 2: software

de Qualidade de Software Introdução ao Mercado

A qualidade na história

qualidade baseados em métodos usados na indústria Adoção de métodos formais no gerenciamento de de manufatura

Preocupações da qualidade

→ Nível organizacional : processos organizacionais e padrões

→ Nível de projeto:

plano de qualidade

aplicação de processos específicos de qualidade

→ Gerenciamento qualidade != burocratização

Atributos de qualidade de software

10		
Segurança	Compreensibilidade	Portabilidade
Proteção	Testabilidade	Usabilidade
Confiabilidade	Adaptabilidade	Reusabilidade
Resiliência	Modularidade	Eficiência
Robustez	Complexidade	Capacidade de aprendizado

Fonte: Sommerville, Ian. Engenharia de Software. 9. ed. São Paulo: Pearson Prentice Hall, 2011.

Quanto vale testes com qualidade?

Estágio	Equipe sem testes	Equipe com testes
Implementação	7 dias	14 dias
Integração	7 dias	2 dias
Testes e correções	12 dias	9 dias
Tempo de lançamento da feature	26 dias	24 dias
Bugs encontrados em produção	71	11

Fonte: A Arte dos Testes Unitários - 2ª ed

O presente e futuro da área de Aula 1 | Etapa 3: qualidade

de Qualidade de Software Introdução do Mercado

O futuro (ou presente) para qualidade

- Experiência de usuário
- usuários mais exigentes
- performance
- acessibilidade
- segurança
- usabilidade
- maior alcance populacional 0

Pandemia -> Aceleração do processo de transformação digital

O futuro (ou presente) para qualidade

- ★ Capacitação para novas tecnologias
- **∀** ○
- O 0
- Cloud
- Blockchain
- Foco em segurança
- ★ Uso de metodologias ágeis e DevOps

Aula 2: Afinal, o que faz um QA?

de Qualidade de Software Introdução ao Mercado

Objetivos

- Engenharia de software e suas vertentes
- . Perfis e Responsabilidade de um QA
- O papel das certificações na carreira de qualidade de software

A qualidade de software no mundo da engenharia

Engenharia de software

processos técnicos

processos gerenciais

> Presente em todo o ciclo de produção de software

Processo de software =

especificação + desenvolvimento + validação + evolução

Engenharia de software X QA

- ★ Engenharia de software != codificação
- Tipos básicos de engenheiros de software:
- Front-End : parte visual da aplicação e interação com usuário
- Back-End: processamento de dados, regras de negócio
- Quality Assurance: validações e verificações de funcionalidade, gestão de defeitos e processos de qualidade 0
 - Devops/SRE(Site reliability engineering): cultura e processos de operações para garantir confiabilidade, monitoramento, desempenho e pipelines de desenvolvimento 0

Perfis e responsabilidades de Aula 2 | Etapa 2: UM QA

de Qualidade de Software Introdução ao Mercado

Objetivos de QA

- ▶ Redução de custos e retrabalho
- Identificação de problemas
- Entrega de produtos com qualidade
- Melhora na satisfação do cliente
- Melhora na estimativa dos projetos
- Otimização da rotina de trabalho

Papel X Função x Cargo

- Função: Time ou grupo de pessoas e ferramentas para realizar um ou mais processos/atividades
- Papel: conjunto de responsabilidades, atividades e autoridades
 - definidas em um processo de forma mais específica
- Cargo: responsabilidade que a pessoa assume em relação ao processo da empresa

ITIL: Information Technology Infrastructure Library

Práficas para gerenciamentos de serviços de TI

Cargos X responsabilidades

- Para um mesmo cargo podemos ter perfis e responsabilidades diferentes:
- Gerenciamento
- Análise
- ▼ Testes manuais
- Testes automatizados
 - Ul/Interface
- APIS
- Performance/Desembenho

O papel das certificações na carreira como QA Aula 2 | Etapa 3:

de Qualidade de Software Introdução ao Mercado

Certificações e sua importância na construção da carreira

I • B • 0 • T • S

Certificações para área de qualidade de software - ISTQB

- Esquema de certificações internacionais quem trabalha com testes de software para desenvolvimento da carreira de
 - Começou no ano de 1998 com o lançamento do Certified Tester Syllabus pela ISEB(Information Systems Examinations Board)

ISTQB

Certificações para área de qualidade de software - IBQTS

- → Instituto Brasileiro de Qualidade em Testes de Software
- Certificações reconhecidas internacionalmente para área de engenharia de requisitos e engenharia de testes
 - → Fundado em 2006
- Reconhecido oficialmente pelo IREB (International Requirements Engineering Board,

Por que tirar certificações?

- → Validação internacional de skills em testes de software
- → Criação e melhoria nas skills para progressão de carreira
- → Credibilidade profissional

Portfólio de certificações da ISTQB

Separação por levels (níveis):

Foundation

Advanced

Expert

Agrupamento de certificações = **Streams(fluxos)**◆ Core

◆ Agile

◆ Specialist

Início | BSTQB

Arquitetura do Portfólio ISTQB

disponível no BSTQB | em tradução pelo BSTQB | em Beta no ISTQB | em desenvolvimento no ISTQB

Arquitetura do Portfólio ISTQB

- Cobertura ampla nos conceitos de testes de software 0
- Válidos para qualquer domínio de tecnologia, metodologia ou aplicativo 0
- Entendimento comum

Foco em práticas de testes dentro de contextos ágeis 0

Arquitetura do Portfólio ISTQB

Specialist

- Abordagem vertical de conhecimento
- Podem abordar características específicas de qualidade usabilidade, desempenho, segurança...)
 - Podem abordar práticas para tecnologias específicas
- Atividades de testes específicas
- Agrupamento de conhecimentos para domínios de aplicativos 0

Conhecendo a base

- 1. CTFL (Certified Tester Foundation Level)
- ▶ Base das certificações
- → Conhecimento prático de conceitos fundamentais de teste de software
- Syllabus 3.1

DIGITAL INNOVATION ONE

Arquitetura do Portfólio IBQTS - Engenharia de testes

Construindo caminho com outras certificações

- → Conceitos sobre nuvem
- → Descrição de serviços
- → Ferramentas de gerenciamento e soluções
- → Descrição de custos, SLA, segurança, privacidade...

AWS Certification - Valide suas habilidades na nuvem - Seja certificado pela AWS (amazon.com)

Certificações da Microsoft | Microsoft Docs

Comparação entre as certificações em qualidade de software | by Carla Crude | Training Center

Aula 3: Roadmap de aprendizagem para qualidade de software

de Qualidade de Software Introdução ao Mercado

Objetivos

- 1. Compreender os conceitos e conhecimentos necessários para ser um QA completo
- 2. Refletir sobre o mindset de um QA e soft skills

Roadmap básico para QAs

Fundamentos de qualidade de software

→ Definições de qualidade

▶ Priorização e técnicas de testes

▶ Plano de testes e documentação

Gerenciamento de casos de testes

Taxonomia de testes

Gerenciamento de defeitos

Métricas/Relatórios

Processos de software e ciclo de vida

- → Modelos de processo de software
- ▶ Desenvolvimento ágil de software
- → Testes dentro do modelo ágil

Fundamentos de aplicações Web e Redes

- → Fundamentos de redes
- Arquitetura da internet e protocolos importantes
- Funcionamento de webpages
- → Linguagens e tecnologias

Fundamentos de ciência da computação

→ Representações e estrutura de dados

Compilação x Interpretação

♦ Concorrência e threading

→ Conceitos de sistemas operacionais

→ Algoritmos e complexidade

Fundamentos de programação

→ Uso de linha de comando

Editores e IDEs

→ Sintaxe e fluxo de controle

→ Paradigmas da programação

Padrões de projeto e arquitetura de sistemas

- → Conceitos e tipos de padrões
- → Tipos de Arquitetura e
- → Modelagem de sistemas

Testes automatizados

- → Pirâmide de testes
- → Automação como investimento
- ▶ Tipos de testes automatizados
- ▶ Frameworks para automação
- ♦ Objetos falsos e seus tipos
- ▶ BDD e linguagem Gherkin

CI/CD

- → Estratégias de versionamento e tecnologias
- ▶ Deploys, release e orquestração
- ◆ Configuração e builds
- → Uso de containers
- → Testes integrados à pipeline
- → Device farms e execução remota

Soft skills e mindset de um QA Aula 3 | Etapa 2:

de Qualidade de Software Introdução ao Mercado

Erros que QAs podem cometer

- → Falhas na análise de uma ocorrência
- Medo de fazer perguntas
- ♦ Automações falhas e sem padrões
- Esquecer do usuário
- Culpar outros por defeitos/bugs
- Não ter a visão do que ocorre em produção
- Não se importar com processos técnicos do desenvolvimento

1. Funcionalidade

As funcionalidades são apropriadas? Foram implementadas corretamente?

Como estão sendo guardados os dados? O sistema é responsivo?

2. Confiabilidade

Como o software se comporta mediante condições específicas de falha?

Quão frequente falha? Qual tempo de recuperação?

3. Usabilidade

Os usuários entendem o software?

Qual esforço para essa compreensão?

4. Eficiência

O time de desenvolvimento segue boas práticas?

A Arquitetura do projeto foi pensada para ser eficiente?

5. Manutenibilidade

Quão difícil é encontrar um problema e corrigi-lo?

Qual o esforço para modificar o código?

6. Portabilidade

O sistema se adapta a mudanças no ambiente?

Quão difícil é migrar um componente do sistema?

Para saber mais

ISO 9126 NBR 13596 ANALISE .pdf (Icvdata.com)

nbr-iso-9000-2005.pdf (wordpress.com)

Qualidade, Qualidade de Software e Garantia da Qualidade de Software são as mesmas coisas? (linhadecodigo.com.br)

Software Development Trends 2021: The Latest Research Data (codingsans.com)

Dados do Setor | ABES (abessoftware.com.br)

Software Developer Shortage in the World | Ncube

Pesquisa Salarial de Programadores 2020-2021 - Código Fonte TV (codigofonte.com.br)

4 grandes tendências de TI e os desafios para a área de QA (onedaytesting.com.br)

Everything you should know about QA in software development: The beginner's guide | by Concise Software | Medium

estudo profissoes emergentes - giz ufras e senai,pdf (portaldaindustria.com.br)

Para saber mais

Quality Assurance (QA) e sua importância no desenvolvimento de software | Blog TreinaWeb

A importância da qualidade de software na vida das pessoas - WarmUP (warmupweb.com.br)

Dúvidas?

- > Fórum do curso
- > Comunidade online (discord)