Prática Avançada de Programação A

Busca em Grafos

Prof. Alexandre Donizeti Alves

Bacharelado em Ciência da Computação

Terceiro Quadrimestre - 2017

Grafos

- Grafos são estruturas de dados muito importantes e recorrentes
 - Representam arbitrárias relações entre elementos.
- O primeiro registro de uso data de 1736, por Euler
 - O problema era encontrar um caminho circular por Königsberg (atual Kaliningrado) usando cada uma das pontes sobre o rio Pregel (ou Pregolya, Pregola) exatamente uma vez.

Grafos

- Infelizmente (?), este problema não tem solução;
- Por outro lado, a teoria de grafos foi desenvolvida.

Grafos-Aplicações

- Grafos podem ser utilizados para modelar:
 - Malhas viárias;
 - Dutos (oleodutos, gasodutos etc.);
 - Circuitos eletrônicos;
 - Redes (elétricas, de computadores etc.);
 - Programas;
 - Interações humanas;
 - Enfim, inúmeras situações.

Grafos - Definições

- Um grafo G é um par G=(V, E) consistindo de um conjunto não vazio V e um conjunto E de pares de elementos contidos em V
 - Os elementos de V são os vértices ou nós;
 - Os elementos de E são as arestas entre vértices, e podem ter pesos, ou valores associados.

Grafos - Definições

- Se existe uma aresta e entre os vértices u e v
 - □ Usamos a notação e = (u, v);
 - Os vértices são ditos vizinhos ou adjacentes;
 - □ A aresta e é dita **incidente** a u e v;
- O grau de um vértice u, denotado por d(u), é o número de arestas incidentes a u.

Arestas Especiais

- Se em e = (u, v), u e v são o mesmo vértice, a aresta e é um laço ou loop;
- Em alguns casos, entre o mesmo par de vértices pode haver mais de uma aresta. Neste caso, elas são paralelas ou múltiplas.

Grafo simples x não simples

- Um grafo sem arestas múltiplas, ou loops é dito simples;
- Um grafo com este tipo de arestas é dito não simples
 - Pode ser utilizado para representar situações em que dois elementos são ligados por mais que um meio
 - Diferentes estradas entre duas cidades;
 - Ou diferentes dutos entre dois pontos.
- Algoritmos diferenciados para percurso em cada um dos tipos de grafos.

Grafo Orientado (Direcionado)

- Em um grafo orientado, ou dígrafo, as arestas possuem uma orientação definida
 - O termo arco também é utilizado para se referir a este tipo de aresta;
 - □ Ao invés de denotarmos e=(u, v), denotamos e=uv indicando os vértices inicial e final;

Grafo orientado x não orientado

- Grafos direcionados podem ser utilizados para modelar ruas de cidades, pois (geralmente) são de mão única;
- Em um grafo não orientado, as arestas podem ser consideradas em qualquer direção
 - Por exemplo, modelam estradas, que usualmente são de mão dupla;

Grafos ponderados

 Grafos nos quais as arestas possuem valores ou pesos são chamados grafos ponderados

Representam situações em que haja distância, tempo,

fluxo ou capacidade.

Grafo ponderado x não ponderado

- A noção de valores em arestas introduz o conceito de menor caminho entre vértices
 - Para grafos não ponderados, o menor caminho é aquele com menos arestas, uma vez que todas têm o mesmo peso (considerado unitário);
 - Para grafos ponderados, algoritmos mais elaborados são necessários, uma vez que há diversas combinações de arestas com pesos diferentes.

Caminhos

- Um caminho em um grafo é uma sequência de vértices conectados entre si, formando um percurso em um grafo.
 - O caminho é delimitado por um vértice inicial e um vértice final;
 - Em um caminho simples, cada vértice aparece uma única vez;
 - O comprimento de um caminho é a sua quantidade de vértices.

Este exemplo de caminho é denotado por 1→2→4→3→5

Ciclos

- Um ciclo ou circuito é um caminho em que o vértice inicial também é o vértice final
 - A escolha do vértice inicial é arbitrária.
 - Um grafo com ciclos é chamado cíclico;

Este exemplo de ciclo pode ser denotado por 1→2→4→3→5→1.

Grafo cíclicos x acíclico

- Um grafo acíclico não possui ciclos
 - Árvores são grafos acíclicos não orientados;
 - Grafos orientados acíclicos (DAGs) são utilizados para modelar precedência entre eventos ou elementos
 - Ordenação topológica.

Densidade

- Um grafo G=(V, E) em que |E| é muito menor que |V|² é considerado esparso;
- Simetricamente, se |E| está próximo de |V|², o grafo é considerado denso;
- De acordo com a densidade do grafo, diferentes estruturas de dados são utilizadas para representá-lo.

Representação de Grafos

- Duas formas padrão
 - Matriz de adjacências
 - Indicada para grafos densos.
 - Lista de adjacências
 - Indicada para grafos esparsos.

Matriz de Adjacências

- Consiste em uma matriz | V| × | V| em que a posição i representa o vértice i;
- Caso exista uma adjacência entre os vértices i e j a posição i,j na matriz tem o valor 1, caso contrário tem o valor 0
 - Em grafos não orientados, a matriz de adjacências é simétrica ao longo da diagonal principal;
 - Em grafos orientados, apenas as arestas de saída são representadas;
 - No caso de grafos ponderados, o valor 1 pode ser substituído pelo peso da aresta.

Matriz de Adjacências

	1	2	3	4	5
1	0	1	0	1	0
2	1	0	1	1	1
3	0	1	0	0	1
4	1	1	0	0	1
5	0	1	1	1	0

	1	2	3	4	5
1	0	1	0	1	0
2	0	0	1	0	1
3	0	0	0	0	1
4	0	1	0	0	0
5	0	0	0	1	0

Lista de Adjacências

- Consiste em um vetor de | // listas. Em cada posição i, há uma lista onde cada elemento é um vértice adjacente ao vértice i;
 - No caso de grafos não orientados, as adjacências são armazenadas em ambos os vértices de incidência;
 - Em grafos dirigidos, apenas as arestas de saída são armazenadas.
 - Em casos de grafos orientados, pode ser criado um campo em cada elemento da lista para armazenar o valor.

Lista de Adjacências

Percurso em Grafos

- A operação básica em grafos é o percurso
 - Ou seja, visitar todos os vértices e arestas uma única vez em alguma ordem;
- Uma possível dificuldade seria não terminar a busca nunca, por causa de repetição
 - Por isso marcamos os vértices já visitados.
- Existem dois algoritmos básicos
 - Busca em Largura
 - Busca em Profundidade

- A busca em largura (Breadth-First Search BFS) expande a exploração de um grafo em níveis
 - A partir do vértice inicial, o nível explorado é o dos vértices adjacentes;
 - Após a exploração deste nível, passa-se à exploração do vértices adjacentes aos do nível anterior;
 - Caso o grafo seja desconectado, ao fim da exploração de um componente, passa-se ao próximo;
 - O procedimento se repete até que todos os vértices tenham sido explorados.

- Uma estrutura de fila é utilizada para guiar os passos da busca;
- Durante a exploração, um vértice é descoberto na primeira vez em que é encontrado, quando é então enfileirado
 - Representado pela cor cinza.
- Quando o vértice é retirado da fila, ele é considerado visitado
 - Todas as arestas incidentes a ele foram exploradas;
 - Representado pela cor preta.

F: null

• F: 1→null

• F: $2\rightarrow 3\rightarrow 4\rightarrow 5\rightarrow null$

• F: 3→4→5→null

• F: $3\rightarrow 4\rightarrow 5\rightarrow 6\rightarrow null$

• F: $4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow \text{null}$

• F: $5\rightarrow 6\rightarrow 7\rightarrow 8\rightarrow null$

• F: $6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow \text{null}$

• F: $7 \rightarrow 8 \rightarrow 9 \rightarrow \text{null}$

• F: 8→9→null

• F: 9→null

F: null

Busca em Largura (BFS)

- Existe uma relação entre o penúltimo e último vértice descobertos
 - O último foi descoberto a partir do penúltimo;
 - Dizemos então que o penúltimo é pai do último;
- Se seguirmos a genealogia dos vértices, obtemos o caminho de menor comprimento entre o vértice inicial da busca e todos os outros
 - Em grafos não ponderados.

- A busca em profundidade (Depth-First Search -DFS) explora todos os níveis de cada adjacência, uma por vez
 - A partir do vértice inicial, explora-se todos os níveis possíveis de uma adjacência;
 - Quando não for mais possível expandir a busca, retornase ao último nó com adjacências ainda não exploradas e retoma-se o processo;
 - Em caso de grafos desconectados, uma vez que um componente for totalmente explorado, passa-se ao próximo;
 - A exploração é repetida até que todos os nós tenham sido visitados.

- Uma estrutura de pilha é utilizada para guiar os passos da busca;
- Durante a exploração, um vértice é descoberto na primeira vez em que é encontrado, quando é então empilhado
 - Representado pela cor cinza.
- Quando o vértice não possui mais adjacências a serem exploradas, ele é desempilhado, sendo considerado visitado ou terminado
 - Representado pela cor preta.

P: null

P: 1→null

• P: 2→1→null

• P: 6→2→1→null

• P: 2→1→null

P: 1→null

• P: 9→5→1→null

P: 8→4→1→null

• P: 7→3→1→null

P: 1→null

P: null

Largura x Profundidade

- Apesar de terem a mesma complexidade, e explorarem o grafo completamente, as diferentes ordens de visitação dos nós conferem diferentes propriedades:
 - A busca em largura é usada para detecção de componentes conexos e obtenção da menor distância em grafos não orientados;
 - A busca em profundidade é utilizada para ordenação topológica, para verificar se um grafo é acíclico, bipartido, quais são seus vértices de articulação etc.;
 - Em outros problemas, ambos podem ser utilizados sem distinção.

Agradecimentos

Slides baseados nas aulas dos professores

Túlio A. M. Toffolo (UFOP) e Marco

Antonio M. Carvalho (UFOP)

Referências

