REMARKS

Entry of the foregoing, reexamination and reconsideration of the application identified in caption, as amended, pursuant to and consistent with 37 C.F.R. §1.111 and in light of the remarks which follow are respectfully requested.

At the outset, Applicants note with appreciation the indication that claims 1 and 7-15 stand allowed in view of the Decision on Appeal issued by the Board of Patent Appeals and Interferences on February 28, 2002 (Official Action at pages 2 and 3).

By the above amendments, claims 2 and 17 have been amended for clarification purposes to recite "processing an aluminum alloy containing Mg at a high temperature of 200°C or above to form the alloy into a processed article having a final shape." Support for these amendments can be found in the instant specification at least at page 1, lines 9-13; page 6, lines 13-15; taken in connection with page 15, lines 17-20.

Claims 2 and 17 have also been amended for readability purposes by replacing the term "the surface" with "the surface of the processed article." Claim 17 has been amended for clarification by replacing the term "high-pressure" with "high-temperature," and by replacing the term "200°" with "200°C".

New claims 29 and 30 depend from claims 2 and 17, respectively, and are directed to methods wherein an oxide layer is formed on the surface of the article during the step of processing the aluminum alloy containing Mg, and wherein the oxide layer is decreased or removed by the step of etching the surface of the processed article. Support for new claims 29 and 30 can be found in the specification at least at page 5, lines 5-11, taken in connection with page 7, lines 3 and 4.

In the Official Action, claim 17 stands rejected under 35 U.S.C. §112, second

paragraph, for reciting the term "200°" without indicating the temperature scale to which it

pertains. It is noted that claim 17 as originally presented in the Amendment and Election of

Species filed on August 12, 1994, recited the term "200°C." Accordingly, claim 17 has been

amended to conform same with the originally presented claim 17. As such, withdrawal of this

rejection is respectfully requested.

Claims 2, 5 and 17 stand rejected under 35 U.S.C. §103(a) as being obvious over U.S.

Patent No. 3,655,467 (Sopp Jr) combined with U.S. Patent No. 5,104,465 (McAuliffe et al).

Withdrawal of this rejection is respectfully requested for at least the following reasons.

According to one aspect of the present invention as defined by claim 2, a method for

treating the surface of an aluminum alloy high-temperature processed article is provided. The

method comprises processing an aluminum alloy containing Mg at a high temperature of 200°C

or above to form the alloy into a processed article having a final shape, etching the surface of

the processed article with an aqueous solution containing a chelating agent, and then carrying

out coating type chromating.

Claim 17 is also directed to a method for treating the surface of an aluminum alloy

high-temperature processed article.

Sopp Jr relates to the use of a cleaning-etching solution on aluminum base alloys (col.

1, lines 5 and 6). Sopp Jr discloses treating aluminum base alloys, especially aluminum base

alloys with a content of magnesium, with a caustic solution which contains a soluble pyro- or

polyphosphate (col. 1, lines 45-48).

Sopp Jr does not disclose or suggest each feature of aspects of the present invention as

defined by claims 2 and 17. For example, the Patent Office has correctly acknowledged that

Sopp Jr does not disclose or suggest "heating the aluminum-magnesium alloy at a temperature

of 200° or above" (Official Action at page 4). Moreover, it is submitted that Sopp Jr does not

disclose or suggest processing an aluminum alloy containing Mg at a high temperature of

200°C or above to form the alloy into a processed article having a final shape, as recited in

claims 2 and 17.

McAuliffe et al relates to the production of aluminum sheet stock having reduced earing

and improved strength which is suitable for conversion into useful products, such as container

ends and container bodies (col. 1, lines 12-15).

Like Sopp Jr, McAuliffe et al fails to disclose or suggest processing an aluminum alloy

containing Mg at a high temperature of 200°C or above to form the alloy into a processed

article having a final shape, as recited in claims 2 and 17. In this regard, the Patent Office has

acknowledged that "[t]he McAuliffe et al patent is directed to aluminum alloy sheet stock

which can be used for making cans" (Official Action at page 5). As well, McAuliffe et al

discloses that the aluminum alloy sheet stock "is suitable for conversion into useful products"

(col. 1, lines 14 and 15). Clearly, such aluminum alloy sheet stock cannot properly be

considered the same as or suggestive of the claimed processed article having a final shape in

light of the fact that McAuliffe et al discloses that the aluminum alloy sheet stock is

subsequently shaped into a different, "useful" product.

Moreover, one of ordinary skill in the art would not have been motivated to utilize the

Sopp Jr etching process to treat the aluminum alloy sheet stock of McAuliffe et al in the manner

suggested by the Patent Office. In this regard, the Patent Office has taken the following

position at page 5 of the Official Action:

It would have been obvious at the time the invention was made

to have utilized the etching and coating method of Sopp, Jr. to have processed the heat treated aluminum-magnesium alloy of

McAuliffe et al because improved adhesion of a chromate

coating and paint would have been achieved as taught by Sopp,

Jr.

Applicants respectfully but strenuously disagree with the Patent Office's assertion. As

discussed above, the aluminum alloy sheet stock formed from the process of McAuliffe et al

is further processed into a "useful" product. That is, McAuliffe et al has no recognition or

suggestion that the aluminum alloy sheet stock per se is useful as an end product.

Accordingly, one of ordinary skill in the art would not have been motivated to chromate coat

or paint the aluminum alloy sheet stock per se, let alone utilize the Sopp Jr process to treat the

aluminum alloy sheet stock prior to chromate coating or painting.

For at least the above reasons, it is apparent that no prima facie case of obviousness

exists. Accordingly, withdrawal of the §103(a) rejection over Sopp Jr and McAuliffe et al is

respectfully requested.

From the foregoing, further and favorable action in the form of a Notice of Allowance

is believed to be next in order, and such action is earnestly solicited.

Application No. <u>08/174,957</u> Attorney's Docket No. <u>024703-006</u> Page 7

If there are any questions concerning this paper or the application in general, the Examiner is invited to telephone the undersigned.

Respectfully submitted,

BURNS, DOANE, SWECKER & MATHIS, L.L.P.

By:

Registration No. 46,317

P.O. Box 1404 Alexandria, Virginia 22313-1404 (703) 836-6620

Date: March 17, 2003

Attachment to AMENDMENT dated March 17, 2003 Marked-up claims 2 and 17

- 2. (Amended) A method for treating the surface of an aluminum alloy high-temperature processed article, comprising [heating] processing an aluminum alloy containing Mg at a high temperature of 200°C or above to form the alloy into a processed article having a final shape, etching the surface of the processed article with an aqueous solution containing a chelating agent, and then carrying out coating type chromating.
- 17. (Three Times Amended) A method for treating the surface of an aluminum alloy [high-pressure] high-temperature processed article, comprising [heating] processing an aluminum alloy containing Mg at a high temperature of 200°C or above to form the alloy into a processed article having a final shape, etching the surface of the processed article by a single step process of exposing the surface to an aqueous solution containing a chelating agent wherein the aqueous solution consists of a solution having a pH of 7 or higher, and then carrying out at least one surface treatment selected from the group consisting of hydration oxidation treatment, coating type chromating, anodizing, alternating current electrolysis in an aqueous alkali solution, and coating.