CSCI 2270 Data Structures and Algorithms Lecture 19

Elizabeth White

elizabeth.white@colorado.edu

Office hours: ECCS 112/128

Wed 11:30am-1:30pm

Thurs 9am-11am

Administrivia

Exam grading in process

HW2 graded

HW3 part 2 will be graded soon

HW4 will post by tomorrow lunchtime

Engineering is closed for the FE exam Saturday, 5 am – 7pm

David Baird's help hours are moved to Sunday

(Tell David congratulations if you see him; he just got into the Masters program in computer science. Selah!)

Doubly linked list Node class

Linked lists depend on a Node class; ours will be called polynode

```
private:

double coef_field; // coefficient for power of x

unsigned int exponent_field; // the power of x

polynode* link_fore; // next node in the list
```

// previous node in the list

polynode* link back;

Doubly linked list Node class

Doubly linked list efficiencies

Double links let us zoom backwards through the list

Along with head_ptr, we keep a pointer to the LAST node in the list (tail_ptr)

And we keep a pointer to the most recently touched node in the list (recent_ptr)

Having this makes our list a little faster

Polynomial as DLL

Every polynomial makes a node for the x^0 term

even if its coefficient is zero

so, no empty lists

After that, each polynomial stores non-zero coefficients of higher powers of x, in order of increasing exponents

Polynomial as DLL

$$p = 3*x^0 + 4.5*x^6 + 0.9*x^14$$

Memory operations

Default constructor (single node polynomial)

Copy constructor (deep copy, please)

Operator = (deep copy, please)

Destructor (clear helper function)

Output operations

Operator <<

Changing coefficients

assign_coef(coef, exponent)

add_to_coef(coef, exponent)

Changing the node we're looking at

```
next_term(exponent)
```

prev_term(exponent)

Adding, subtracting, multiplying, etc...

$$(8 + 7x + 3x^2) + (4 + 5x + 4x^5) = ...$$

$$(8 + 7x + 3x^2) - (4 + 5x + 4x^5) = ...$$

$$(8 + 7x + 3x^2) * (4 + 5x + 4x^5) = ...$$

Derivative of $(8 + 7x + 3x^2) = ...$

Evaluate $(8 + 7 + 3x^2)$, for x == 8.7

Extra credit: root finding with Newton's method

Start with initial guess for x₀

Update
$$x_{n+1} = x_n - f(x_n)/f'(x_n)$$
 (note: f'(x) is the derivative)

Stop when $f(x_n)$ is close to 0; x_n is your root

Does not always find a solution...

Watch out for one problem that will trip you up if you forget it