Package 'zoeppritz'

August 19, 2023

Type Package Title Seismic Reflection and Scattering Coefficients									
				Version 1.0-9 Date 2023-08-19 Author Jonathan M. Lees [aut, cre] Maintainer Jonathan M. Lees < jonathan.lees@unc.edu>					
Description Calculate and plot scattering matrix coefficients for plane waves at interface. License GPL (>= 2) NeedsCompilation no Repository CRAN Date/Publication 2023-08-19 16:10:02 UTC									
									R topics documented:
									zoeppritz-package
				plotzoeppritz					
				pzoeppritz					
zoeppritz									
Index 10									
Index zoeppritz-package Zoeppritz Equations									

Description

Calculate and plot scattering matrix coefficients for plane waves at interface.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu> Maintainer: Jonathan M. Lees<jonathan.lees@unc.edu>

2 piczoeppritz

References

Young,~G.B., Braile, L. W. 1976. A computer program for the application of Zoeppritz's amplitude equations and Knott's energy equations, *Bulletin of the Seismological Society of America*, vol.66, no.6,1881-1885.

K. Aki and P.G. Richards. *Quantitative seismology*. University Science Books, Sausalito, Calif., 2nd edition, 2002.

Examples

```
##### demo(ZOEP)
########### Incident wave in Low velocity layer
alpha1 = 4.98
 beta1 = 2.9
  rho1 = 2.667
 alpha2 = 8.0
  beta2 = 4.6
  rho2 = 3.38
 App = pzoeppritz( "Amplitude" , alpha1, alpha2, beta1, beta2, rho1 ,rho2, "P", "ALL");
App = pzoeppritz( "Amplitude" , alpha1, alpha2, beta1, beta2, rho1 ,rho2, "S", "ALL");
App = pzoeppritz( "Energy", alpha1, alpha2, beta1, beta2, rho1, rho2, "P", "ALL");
App = pzoeppritz( "Potential" , alpha1, alpha2, beta1, beta2, rho1 ,rho2, "P", "ALL");
########### Incident wave in high velocity layer
 alpha1 = 8.0
 beta1 = 4.6
  rho1 = 3.38
 alpha2 = 4.98
  beta2 = 2.9
  rho2 = 2.667
App = pzoeppritz( "Amplitude" , alpha1, alpha2, beta1, beta2, rho1 ,rho2, "P", "ALL");
App = pzoeppritz( "Amplitude" , alpha1, alpha2, beta1, beta2, rho1 ,rho2, "S", "ALL");
```

plotzoeppritz 3

Description

Adds a small diagram showing two layers and labeled scattered ray paths.

Usage

```
piczoeppritz(LL = list(x = c(0, 1), y = c(0, 1)), chincw = "P")
```

Arguments

LL Bounds of Box for plotting chincw character for incident wave

Details

This code simply adds a small cartoon showing incoming and outgoing waves in scattering matrix.

Value

Graphical side effect.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

pzoeppritz

Examples

```
plot(c(0,1), c(0,1), type='n') 
piczoeppritz(LL = list(x = c(0.5, 0.75), y = c(0.5, 0.75)), chincw = "P")
```

plotzoeppritz

Plot Scattering (Zoeppritz) Coefficients

Description

Plot Scattering (Zoeppritz) Coefficients

Usage

```
plotzoeppritz(A, zoepcols = c("red", "green", "blue", "purple"), zoeplty = c(1, 1, 1, 1))
```

4 pzoeppritz

Arguments

A list output of pzoeppritz or zoeppritz

zoepcols vector of 4 colors zoeplty vector of 4 line types

Details

Used to plot the matrix of scattering coefficients with different colros and/or line types.

Value

Graphical side effects.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

zoeppritz, piczoeppritz

Examples

pzoeppritz

Plot Scattering (Zoeppritz) Coefficients

Description

Calculate and plot the P and S-wave scattering amplitudes for a plane wave at an interface.

pzoeppritz 5

Usage

```
pzoeppritz(chtype = "Amplitude", alpha1, alpha2,
  beta1, beta2, rho1, rho2, chincw = "P",
  choutkind = "ALL")
```

Arguments

chtype	character, type of output, one of: Amplitude, Potential, Energy
alpha1	P-wave Velocity of Upper Layer, km/s
alpha2	P-wave Velocity of Lower Layer, km/s
beta1	S-wave Velocity of Upper Layer, km/s
beta2	S-wave Velocity of Lower Layer, km/s
rho1	Density of Upper Layer, kg/m3
rho2	Density of Lower Layer, kg/m3
chincw	Incident Wave: P, S
choutkind	character, type of out put one of: P, S, ALL, NONE

Details

Front end for zoeppritz program.

Value

List output of zoeppritz call:

angle	Incident angles, degrees
rmat	Matrix of 4 by n reflection coefficients for each angle
rra	Matrix of 4 by n real part of scattering matrix
rra	Matrix of 4 by n imaginary part of scattering matrix
ang	Matrix of 4 by n phase angle
incw	integer, from input parameter
icoef	integer, from input parameter
alphacrit	critical angle

Note

This front end is easier to call because it is more verbose. Creates a plot of the coefficients versus incident angle. If coefficients are complex, they are replaced with NA and they are thus not plotted.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

6 pzoeppritz

References

Young,~G.B., Braile, L. W. 1976. A computer program for the application of Zoeppritz's amplitude equations and Knott's energy equations, *Bulletin of the Seismological Society of America*, vol.66, no.6,1881-1885.

K. Aki and P. G. Richards. *Quantitative seismology*. University Science Books, Sausalito, Calif., 2nd edition, 2002.

See Also

zoeppritz, pzoeppritz, piczoeppritz

Examples

```
########## Incident wave in Low velocity layer
alpha1 = 4.98
 beta1 = 2.9
  rho1 = 2.667
 alpha2 = 8.0
  beta2 = 4.6
  rho2 = 3.38
 App = pzoeppritz( "Amplitude" , alpha1, alpha2,
beta1, beta2, rho1, rho2, "P", "ALL");
App = pzoeppritz( "Amplitude" , alpha1, alpha2,
beta1, beta2, rho1 ,rho2, "S", "ALL");
########## Incident wave in high velocity layer
 alpha1 = 8.0
 beta1 = 4.6
  rho1 = 3.38
 alpha2 = 4.98
  beta2 = 2.9
  rho2 = 2.667
App = pzoeppritz( "Amplitude" , alpha1, alpha2,
beta1, beta2, rho1 ,rho2, "P", "ALL");
App = pzoeppritz( "Amplitude" , alpha1, alpha2,
beta1, beta2, rho1 ,rho2, "S", "ALL");
```

zoeppritz 7

|--|

Description

Calculate the P and S-wave scattering amplitudes for a plane wave at an interface.

Usage

```
zoeppritz(icoef, vp1, vp2, vs1, vs2, rho1, rho2, incw)
```

Arguments

icoef	type of out put Amplitude=1, Potential=2, Energy=3
vp1	P-wave Velocity of Upper Layer, km/s
vp2	P-wave Velocity of Lower Layer, km/s
vs1	S-wave Velocity of Upper Layer, km/s
vs2	S-wave Velocity of Lower Layer, km/s
rho1	Density of Upper Layer, kg/m3
rho2	Density of Lower Layer, kg/m3
incw	integer,Incident Wave: P=1, S=2

Details

Coeficiants are calculated at angles from 0-90 degrees. Zero is returned where coefficients are imaginary.

Value

T	•	
	.191	٠
_	1100	•

Incident angles (degrees)
Matrix of 4 by n reflection coefficients for each angle
Matrix of 4 by n real part of scattering matrix
Matrix of 4 by n imaginary part of scattering matrix
Matrix of 4 by n phase angle
integer, from input parameter
integer, from input parameter

Note

Based on the fortran algorithm in Young and Braile. Uses a linear approximation by Aki and Richards.

8 zoeppritz

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Young, G.B., Braile, L. W. 1976. A computer program for the application of Zoeppritz's amplitude equations and Knott's energy equations, *Bulletin of the Seismological Society of America*, vol.66, no.6,1881-1885.

K. Aki and P.G. Richards. *Quantitative seismology*. University Science Books, Sausalito, Calif., 2nd edition, 2002.

See Also

pzoeppritz, plotzoeppritz

Examples

```
######## set up 2-layer model
 alpha1 = 4.98
 beta1 = 2.9
  rho1 = 2.667
  alpha2 = 8.0
  beta2 = 4.6
   rho2 = 3.38
############### P-wave incident = 1
    incw=1;
   icoef=1
A = zoeppritz(icoef, alpha1, alpha2, beta1, beta2, rho1,rho2,
plot(A$angle, A$rmat[,1], xlab="Incident Angle", ylab="Ratio of Amplitudes",
main="P-wave incident/P-wave Reflected" )
plot(A$angle, A$rmat[,2], xlab="Incident Angle", ylab="Ratio of Amplitudes",
main="P-wave incident/S-wave Reflected" )
plot(A$angle, A$rmat[,3], xlab="Incident Angle", ylab="Ratio of Amplitudes",
main="P-wave incident/P-wave Refracted" )
plot(A$angle, A$rmat[,4], xlab="Incident Angle", ylab="Ratio of Amplitudes",
main="P-wave incident/S-wave Refracted" )
############## S-wave incident = 2
     incw=2
   icoef=1
```

zoeppritz 9

```
A = zoeppritz(icoef, alpha1, alpha2, beta1, beta2, rho1,rho2, incw)
plot(A$angle, A$rmat[,1], xlab="Incident Angle", ylab="Ratio of Amplitudes",
main="S-wave incident/P-wave Reflected")

plot(A$angle, A$rmat[,2], xlab="Incident Angle", ylab="Ratio of Amplitudes",
main="S-wave incident/S-wave Reflected")

plot(A$angle, A$rmat[,3], xlab="Incident Angle", ylab="Ratio of Amplitudes",
main="S-wave incident/P-wave Refracted")

plot(A$angle, A$rmat[,4], xlab="Incident Angle", ylab="Ratio of Amplitudes",
main="S-wave incident/S-wave Refracted")
```

Index

```
* aplot
    piczoeppritz, 2
* hplot
    plotzoeppritz, 3
    pzoeppritz, 4
* misc
    pzoeppritz, 7
* package
    zoeppritz-package, 1
piczoeppritz, 2
plotzoeppritz, 3
pzoeppritz, 4
zoeppritz, 4
zoeppritz, 7
zoeppritz-package, 1
```