STOCK MARKET TREND PREDICT FROM HEADLINES Nguyen Duc Duy UNITN - June 2016

Content

- 1. Introduction
- 2. Method
- 3. Experimental results
- 4. Conclusion & Discussion

1. Introduction

- 1.1. Stock market
- 1.2 Stock market indices & trend
- 1.3 Stock trend predict
- 1.4 Ideas

1.1 Stock market

- Aggregation of buyers and sellers of stocks (also called shares);
- These may include securities listed on a stock exchange as well as those only traded privately

Fig1. A European Stock Market session

Source: stockmarket-watch.com

1.2 Stock indices & trend

- A stock index or stock market index is a measurement of the value of a section of the stock market.
- US market:
 - **Dow Jones Industrial Average**
 - NASDAQ Composite

Fig2. Dow Jones & Nasdaq logos

1.3 Stock trend predict

WHY?

- Decision making
- Business Intelligence

Fig3. What affect the trends?

1.4 Ideas

Fig4. Project idea

2. Method

- 2.1 Dataset
- 2.2 Feature extraction
- 2.3 Model build
- 2.4 Evaluation

2 Method: overview

Fig5. Method overview

2.1 Dataset

Headlines

A crawler continuously collected:

- Corpus size: 545,323 headlines
- Time: (GMT+7)
 - From: 2016-04-01 23:02:21.285
 - To: 2016-06-05 21:21:20.656
- Site:
 - Time (http://time.com)
 - Google News (https://news.google.com/)
 - Wall Street Journal Europe (http://www.wsj.com/europe)
 - Washington Post (https://www.washingtonpost.com/)
 - New York Time (http://www.nytimes.com/)

Stock data

Download from Dukascopy Bank SA

- Data size: 95,040 records
- Index: Dow Jones Industrial Average (USA 30)
- Data freq: 1 record/min
- **Time**: (*GMT*)
 - From: 2016-04-01 00:00:00.000
 - To: 2016-06-05 23:59:00.000
- Site: https://www.dukascopy.com

2.2 Feature extraction

HEADLINE CORPUS

SEMANTIC SPACE Time window 1

H1: (X1_0, X1_1,X1_2,X1_3,X1_4...)

H2: (X2_0, X2_1,X2_2,X2_3,X2_4...)

H3: (X3_0, X3_1,X3_2,X3_3,X3_4...)

• • •

Hn: (Xn_0,Xn_1,Xn_2,Xn_3,Xn_4...)

Time window 2

•••

Time window m

Fig7. Feature Extraction

HEADLINE VECTORS

STOCK DATA

L1

TM1: (w1_0, w1_1,w1_2,w1_3,w1_4...)

TM2: (w2_0, w2_1,w2_2,w2_3,w2_4...) **L2**

TMm: (wm_0,wm_1,wm_2,wm_3,wm_4...) **Lm**

(LABELS)

TIME WINDOW VECTORS

2.2 Feature extraction: semantic space

- From 184,954 news headlines
- Collected continuously from September 16th to November 6 2015.

Fig8. Sample crawled record

2.2 Feature extraction: headline vector

Multiple words document composition

Word representation:

```
>>> print space.get_neighbours('Trump', 10, CosSimilarity())
[('Trump', 1.00000000000000000), ('Donald', 0.79194684810397509), ('Carson', 0.36608895821386095),
('Clinton', 0.26288749608776324), ('Iowa', 0.26155115776963084), ('Ben', 0.26102711264274758),
('Bush', 0.26014531421917397), ('campaign', 0.26010256987586372), ('Fix', 0.22267280244652179),
('Jeb', 0.2213852014605992)]
```

Fig10. Neighbors of keyword "Trump"

Headline representation: addictive composition

```
>>> my_space.get_neighbours('Greece Blasts Shipwrecks Leave Refugees Dead', 5,CosSimilarity())
[('Greece Blasts Shipwrecks Leave Refugees Dead', 1.0000000000000018), ('Refugee Shipwrecks
Greece Leave Dead Days', 0.67752684921750417), ('Refugees Relocated Greece Head Luxembourg',
0.6354818436302625), ('Greece Shipwrecks Kill People Aegean Sea', 0.47656395819802827),
('Protests India Desecration Holy Text Leave two Dead', 0.47384161346021847)]
```

Fig11. Neighbors of headline 'Greece Blasts Shipwrecks Leave Refugees Dead'

Multiple documents group composition

1. Inner-cluster: MEAN – Intra-cluster: MAX

With clustering

2. Inner-cluster: MAX – Intra-cluster: MEAN

3. Inner-cluster: SUM – Intra-cluster: SUM

Without clustering

4. Full addictive

Multiple documents group composition

*Cosine distance

Fig12.1. Scen 1. Inner-cluster: MEAN – Intra-cluster: MAX

Multiple documents group composition

*Cosine distance

Fig12.2. Scen 2. Inner-cluster: MAX – Intra-cluster: MEAN

Multiple documents group composition

*Cosine distance

Fig12.3. Scen 3. Inner-cluster: SUM – Intra-cluster: SUM

Multiple documents group composition

Fig12.4. Scen 4. Full addictive (Full sum)

2.2 Feature extraction: Stock trend

- Definition: stock trend is the *increase* or *decrease* of DJIA in a give time window
- Time window size: 1hr

```
Data: Stock database, target time window
Result: stock trend for the target time window
Query Open value at the beginning minute of the time window;
Query Close value at the ending minute of the time window;
if Close value equal to Open value then
    Ignore this time window;
else if Close value greater than Open value then
    Return positive label;
else
    Return negative label;
end
```

Alg1. Stock trend extraction

2.3 Model build: SVM classifier

Vectors Label TM1: (w1_0, w1_1,w1_2,w1_3,w1_4...) L1 TM2: (w2_0, w2_1,w2_2,w2_3,w2_4...) L2 SVM training MODEL TMm: (wm_0,wm_1,wm_2,wm_3,wm_4...) Lm

TIME WINDOW VECTORS

Fig13. Model construction

2.3 Model build: Data preprocessing

Standardize a dataset along columns. Center to the mean and component Scaling wise scale to unit variance. Normalization Scale input vectors individually to unit norm (vector length). Boolean thresholding of array-like or scipy.sparse matrix. Feature values Binarization below or equal to 0 are replaced by 0, above it by 1. Softmax by row value* Apply **softmax** function (**normalized exponential**) with max of each vector Softmax by the whole Apply **softmax** function (**normalized exponential**) with max the whole matrix value* matrix Compute the cosine similarity between the vector to each axis of the Cosine transformation* semantic space

*Self implemented

2.3 Model build: Parameter selection

- Grid search: (on scaled data)
 - 3 kernels,
 - 6 C values,
 - 8 gamma values

```
>>> svc = GridSearchCV(SVC(), cv=5, param_grid={"kernel": ['poly', 'rbf',
'sigmoid'],"C": [1e-2,1e-1,1e0, 1e1, 1e2, 1e3],"gamma": np.logspace(-2, 2, 8)})
>>> svc.fit(dataset_vectors_mat,dataset_labels_mat)
>>> svc.best_params_{'kernel': 'rbf', 'C': 10.0, 'gamma': 1.9306977288832496}
```

Fig15. Grid search for appropriate parameters (under 5 folds cross validation, accuracy as comparison metric)

2.4 Evaluation

- 5-folds cross validation, 10 iterations
- Estimators: mean...

Accuracy
$$= \frac{\Sigma \, True \, positive \, + \, \Sigma \, True \, negative}{\Sigma \, Total \, population}$$

$$= \frac{\Sigma \, True \, positive}{\Sigma \, \Sigma \, True \, positive}$$

$$= \frac{\Sigma \, True \, positive}{\Sigma \, \Sigma \, True \, positive}$$

$$= \frac{\Sigma \, True \, positive}{\Sigma \, True \, positive}$$

$$= \frac{\Sigma \, True \, positive}{\Sigma \, True \, positive}$$

$$= \frac{\Sigma \, True \, positive}{\Sigma \, True \, positive}$$

$$= \frac{\Sigma \, True \, positive}{\Sigma \, True \, positive}$$

$$= \frac{\Sigma \, True \, positive}{\Sigma \, True \, positive}$$

$$= \frac{\Sigma \, True \, positive}{\Sigma \, True \, positive}$$

$$= \frac{\Sigma \, True \, positive}{\Sigma \, True \, positive}$$

Accuracy comparison

*(Inner-cluster MEAN – Intra-cluster MAX: Low performance)

Composition Scenario	Kernel	Original data	Scaled data	Normalized data	Binarized data	Softmax row	Softmax full	Cosine transform
Max Mean	poly	0.5135	0.5016	0.5225	0.5000	0.5015	0.5015	0.5315
	rbf	0.5390	0.5015	0.5300	0.5150	0.5015	0.5015	0.5300
	sigmoid	0.4924	0.5076	0.5015	0.5015	0.5015	0.5015	0.5015
Sum Sum	poly	0.4761	0.4939	0.4385	0.4536	0.5015	0.5015	0.4790
	rbf	0.5015	0.5015	0.4536	0.5015	0.5015	0.5015	0.4536
	sigmoid	0.5015	0.4580	0.5015	0.5015	0.5015	0.5015	0.5015
Full Sum	poly	0.4669	0.4925	0.4955	0.4879	0.5015	0.5015	0.4624
	rbf	0.5015	0.5015	0.4834	0.5015	0.5015	0.5015	0.4834
	sigmoid	0.5015	0.4941	0.5015	0.5015	0.5015	0.5015	0.5015

Score details

2. Inner-cluster MAX – Intra-cluster MEAN

kernel	Scoring method	Original data	Scaled data	Normalized data	Binarized data	Softmax row	Softmax full	Cosine transform
	accuracy	0.5135	0.5016	0.5225	0.5000	0.5015	0.5015	0.5315
noly	f1	0.5389	0.6361	0.5347	0.6358	0.0000	0.0000	0.5510
poly	precision	0.5111	0.4996	0.5170	0.4990	0.0000	0.0000	0.5266
	recall	0.5723	0.8767	0.5601	0.8764	0.0000	0.0000	0.5814
	accuracy	0.5390	0.5015	0.5300	0.5150	0.5015	0.5015	0.5300
rbf	f1	0.5585	0.0000	0.5565	0.6218	0.0000	0.0000	0.5565
TOI	precision	0.5340	0.0000	0.5239	0.5085	0.0000	0.0000	0.5239
	recall	0.5874	0.0000	0.5965	0.8011	0.0000	0.0000	0.5965
	accuracy	0.4924	0.5076	0.5015	0.5015	0.5015	0.5015	0.5015
sigmoid	f1	0.4796	0.4926	0.0060	0.0000	0.0000	0.0000	0.0000
	precision	0.4918	0.5038	0.2000	0.0000	0.0000	0.0000	0.0000
	recall	0.4785	0.4851	0.0030	0.0000	0.0000	0.0000	0.0000

Score details

3. Inner-cluster: SUM – Intra-cluster: SUM

kernel	scoring_met hod	Original data	Scaled data	Normalized data	Binarized data	Softmax row	Softmax full	Cosine transform
	accuracy	0.4761	0.4939	0.4385	0.4536	0.5015	0.5015	0.4790
noly	f1	0.4736	0.4124	0.4319	0.4395	0.0000	0.0000	0.4540
poly	precision	0.4709	0.5948	0.4335	0.4368	0.0000	0.0000	0.4766
	recall	0.4878	0.4717	0.4491	0.4645	0.0000	0.0000	0.4486
	accuracy	0.5015	0.5015	0.4536	0.5015	0.5015	0.5015	0.4536
rbf	f1	0.0000	0.0000	0.4832	0.0000	0.0000	0.0000	0.4832
IDI	precision	0.0000	0.0000	0.4523	0.0000	0.0000	0.0000	0.4523
	recall	0.0000	0.0000	0.5430	0.0000	0.0000	0.0000	0.5430
	accuracy	0.5015	0.4580	0.5015	0.5015	0.5015	0.5015	0.5015
ciamoid	f1	0.0000	0.4542	0.0000	0.0000	0.0000	0.0000	0.0000
sigmoid	precision	0.0000	0.4517	0.0000	0.0000	0.0000	0.0000	0.0000
	recall	0.0000	0.4612	0.0000	0.0000	0.0000	0.0000	0.0000

Score details

4. Full addictive

kernel	Scoring method	Original data	Scaled data	Normalized data	Binarized data	Softmax row	Softmax full	Cosine transform
	accuracy	0.4669	0.4925	0.4955	0.4879	0.5015	0.5015	0.4624
noly	f1	0.4745	0.4288	0.5208	0.4952	0.0000	0.0000	0.4672
poly	precision	0.4656	0.3974	0.4987	0.4907	0.0000	0.0000	0.4618
	recall	0.4908	0.5387	0.5546	0.5032	0.0000	0.0000	0.4817
	accuracy	0.5015	0.5015	0.4834	0.5015	0.5015	0.5015	0.4834
rbf	f1	0.0000	0.0000	0.5229	0.0000	0.0000	0.0000	0.5229
IDI	precision	0.0000	0.0000	0.4840	0.0000	0.0000	0.0000	0.4840
	recall	0.0000	0.0000	0.6036	0.0000	0.0000	0.0000	0.6036
	accuracy	0.5015	0.4941	0.5015	0.5015	0.5015	0.5015	0.5015
sigmoid	f1	0.0000	0.4713	0.0000	0.0000	0.0000	0.0000	0.0000
	precision	0.0000	0.4828	0.0000	0.0000	0.0000	0.0000	0.0000
	recall	0.0000	0.4737	0.0000	0.0000	0.0000	0.0000	0.0000

3.1 Experimental results: comparison

	Method	Accuracy		
[1]	Rule-based system	Dow Jones Indus: FT-SE 100:	45% 46.7%	
[2]	Sentiment analysis from crawled headlines + paragraphNaïve Bayes Classifier	60%		
[3]	 Financial data + news database BoW, tf-idf, SVM classifier + time series 	51%		
[4]	indicators to enhance the predictability of the daily stock price trends	Direct news: Indirect news: Combined news:	62.5% 50.0% 64.7%	
	Twitter's data, S&P 100 index	47-61%	04.770	
[5]	 LDA, DPM Model, time series analysis 	(ts. param. dep	end)	
	My method: News headlines, DS + SVM	53.9%		

^[1] Wuthrich, B., Cho, V., Leung, S., Permunetilleke, D., Sankaran, K., & Zhang, J. (1998, October). Daily stock market forecast from textual web data. In *Systems, Man, and Cybernetics, 1998. 1998 IEEE International Conference on* (Vol. 3, pp. 2720-2725). IEEE.

^[2] Khare, R., Pathak, N., Gupta, S. K., & Sohi, S. (2004). Stock Broker P—sentiment extraction for the stock market. WIT Transactions on Information and Communication Technologies, 33.

^[3] Falinouss, P. (2007). Stock trend prediction using news articles. *Master's thesis, Lulea University of Technology*, 1653-0187.

^[4] Zhai, Y., Hsu, A., & Halgamuge, S. K. (2007, June). Combining news and technical indicators in daily stock price trends prediction. In *International Symposium on Neural Networks* (pp. 1087-1096). Springer Berlin Heidelberg.

^[5] Si, J., Mukherjee, A., Liu, B., Li, Q., Li, H., & Deng, X. (2013). Exploiting Topic based Twitter Sentiment for Stock Prediction. ACL (2), 2013, 24-29.

4. Conclusion & Discussion

4. Conclusion & Discussion

Conclusion

- Built a system to predict the stock trend of Dow Jones
- Using Distributional Semantic & Machine learning
- Gain positive result

Discussion

- Multiple documents composition
- Optimization problem
- Time series problem? The trend of time window t+1 and t

Thank you!

Word level

```
>>> print space.get_neighbours('Trump', 10, CosSimilarity())
\lceil ('Trump', 1.0000000000000000), ('Donald', 0.79194684810397509), ('Carson', 0.36608895821386095), ('Clinton',
0.26288749608776324), ('Iowa', 0.26155115776963084), ('Ben', 0.26102711264274758), ('Bush', 0.26014531421917397),
('campaign', 0.26010256987586372), ('Fix', 0.22267280244652179), ('Jeb', 0.2213852014605992)]
>>> print space.get neighbours('white', 10, CosSimilarity())
[('white', 1.0000000000000000), ('Middle-Aged', 0.43434476295700952), ('middle-aged', 0.42538979498306823),
(`imagine´, 0.39324544217072011), ('excessive', 0.33277541325341797), ('Unclear', 0.33046849974251508), ('girl',
0.28624748790974963), ('conduct', 0.25877685895710345), ('wish-fulfilment', 0.23135498204858113), ('married',
0.19623971970301651)
>>> print space.get_neighbours('gun', 10, CosSimilarity())
[('gun', 0.9999999999999991), ('responsible', 0.36225357781051504), ('Concealed', 0.30138341621840009), ('depress', 0.28923987568640214), ('control', 0.28590898402929354), ('mensch', 0.27584645652107687), ('holder',
0.27170801825035179), ('McAuliffé', 0.26057588403214715), ('destroy', 0.25531432678352373), ('grab',
0.24451666960944321)
>>> print space.get neighbours('language', 10, CosSimilarity())
KeyError
>>> print space.get neighbours('climate', 10, CosSimilarity())
[('climate', 1.0), ('sperm', 0.38511877454655646), ('sheet', 0.29643865194745761), ('Nations', 0.28639908624548105), ('Caldron', 0.27418766399727196), ('Warming', 0.24587961277971465), ('change', 0.24514464584529705), ('Enceladus',
0.24300109518305371), ('Temperature', 0.23641619876912837), ('Insect', 0.23502173156673303)]
>>> print space.get neighbours('space', 10, CosSimilarity())
[('space', 0.9999999999999997), ('astronaut', 0.25740411436493293), ('station', 0.24902884863755148), ('carmaker'
ð.24508193055967009), ('carve', 0.2360852512993625), ('moon', 0.23526086356409037), ('Saturn', 0.23450790736648702),
('Enceladus', 0.23356266344842602), ('suggest', 0.2313421429377184), ('icy', 0.22584685427169413)]
```

Composition

```
>>> my space.get neighbours('Jeb Bush need debate touchdown come close', 5, CosSimilarity())
[('Jeb Bush need debate touchdown come close', 1.000000000000000), ('Jeb Bush come back', 0.78122528432821681), ('Jeb Bush RNC restore Telemundo debate', 0.76557392997340901), ('next GOP debate make break Jeb Bush', 0.73312259216029552), ('Jeb Bush much rid tonight debate',
0.72930737412904312)
>>> my space.get neighbours('CIT CEO John Thain Retire', 5, CosSimilarity())
[('John Thain Retire CIT CEO', 1.00000000000000000, ('CIT CEO John Thain Retire', 1.000000000000000000, ('CIT Thain Plans Retire March Succeeded Alemany', 0.78405396092876556), ('John Legend', 0.51386409762434515), ('Ford General Counsel Retire', 0.49191847767332519)]
>>> my space.get neighbours('Chris Rock talk host 8th Academy Awards', 5, CosSimilarity())
[('Chris Rock talk host 8th Academy Awards', 1.000000000000011), ('Chris Rock host 016 Oscars', 0.76319296071656573), ('Chris Rock last time host Oscars', 0.71124408788285043), ('Chris Rock Host Oscars', 0.64919586653066208), ('Chris Rock Confirms Hosting Oscars 016', 0.64642261608492912)]
  >>> my space.get neighbours('Greece Blasts Shipwrecks Leave Refugees Dead', 5, CosSimilarity())
```

Composition

```
>>> my space.get neighbours('Amazon CEO Jeff Bezos become richest worldwide', 5, CosSimilarity())
[('Amazon CEO Jeff Bezos become richest worldwide', 1.0), ('become vegetarian', 0.46694138240927968), ('Amazon Removes Listings Apple Chromecast Add Amazon Fire', 0.46208520564853373), ('Evernote Jeff Shotts Startup Heading', 0.45750149518374256), ('final race Talladega Jeff Gordon win pole', 0.4572319440
0999145)]
>>> my space.get neighbours('Biden Says oppose Bin Laden Raid', 5, CosSimilarity())
>>> my space.get neighbours('White House Emphasizes Companies commitment cut Emissions', 5,
CosSimilarity())
```

2.1 Dataset

Fig6. data collecting methos

3.1 Experimental results: SumSum regression

3.1 Experimental results: MaxMean regression

