4	(a)	State what is meant by <i>elastic potential energy</i> .
		r

(b) A spring is extended by applying a force. The variation with extension x of the force F is shown in Fig. 4.1 for the range of values of x from 20 cm to 40 cm.

Fig. 4.1

(i)	Use data from extensions.	Fig. 4.1 to	show that	the spring	obeys	Hooke's	law for	this	range of
									[2]

© UCLES 2016 9702/21/M/J/16

	(ii)	Use Fig. 4.1 to calculate	
		1. the spring constant,	
		spring constant =	N m ⁻¹ [2]
		2. the work done extending the spring from $x = 20 \mathrm{cm}$ to $x = 40 \mathrm{cm}$.	
		work done =	J [3]
(c)	A fo	orce is applied to the spring in (b) to give an extension of 50 cm.	
	Sta	te how you would check that the spring has not exceeded its elastic limit.	
			[1]
			[Total: 9]

BLANK PAGE

© UCLES 2016 9702/21/M/J/16

	(a)	Stat	e what is meant by
		(i)	work done,
			[1]
		(ii)	elastic potential energy.
			[1]
	(b)		ock of mass 0.40kg slides in a straight line with a constant speed of $0.30\text{m}\text{s}^{-1}$ along a zontal surface, as shown in Fig. 3.1.
		mo	block ss 0.40 kg Spring
		IIIa	SS 0.40 Kg
			Fig. 3.1
		The	block hits a spring and decelerates. The speed of the block becomes zero when the

(i) Calculate the initial kinetic energy of the block.

spring is compressed by $8.0\,\mathrm{cm}.$

kinetic energy = J [2]

© UCLES 2016 9702/22/F/M/16

(ii) The variation of the compression *x* of the spring with the force *F* applied to the spring is shown in Fig. 3.2.

Fig. 3.2

Use your answer in **(b)(i)** to determine the maximum force $F_{\rm MAX}$ exerted on the spring by the block.

Explain your working.

$F_{MAX} =$	N	1 [3]
-------------	---	-------

(iii) Calculate the maximum deceleration of the block.

deceleration =
$$ms^{-2}$$
 [1]

[2]

- (iv) State and explain whether the block is in equilibrium
 - 1. before it hits the spring,

2. when its speed becomes zero.

.....

(c) The energy E stored in a spring is given by

$$E = \frac{1}{2}kx^2$$

where k is the spring constant of the spring and x is its compression.

The mass m of the block in **(b)** is now varied. The initial speed of the block remains constant and the spring continues to obey Hooke's law.

On Fig. 3.3, sketch the variation of the maximum compression x_0 of the spring with mass m.

Fig. 3.3

[Total: 12]

[2]

© UCLES 2016 9702/22/F/M/16

BLANK PAGE