Particle spectrograph

Wave operator and propagator

${\mathfrak l}_{1^-}^{\#2}{}_{lpha}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0 0		0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}_{+}\alpha_{\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{lphaeta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\!$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	$\sigma_{1}^{#2} +^{\alpha}$ 0	0	0
				_α			†

Quadratic (free) Lagrangian density	$-\frac{1}{3}t_1\;\omega_{,}^{\alpha\prime}\;\omega_{\kappa\alpha}^{}-t_1\;\omega_{,\kappa\lambda}^{}\;\omega_{\kappa\lambda}^{\prime}+f^{\alpha\beta}\;\tau_{\alpha\beta}+\omega^{\alpha\beta\chi}\;\sigma_{\alpha\beta\chi}+\frac{2}{3}r_2\;\partial^\beta\omega^{\theta\alpha}_{\alpha\beta}^{\alpha}-$	$rac{1}{3}r_2\partial_ heta\omega_{lphaeta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$4 r_3 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} - \frac{1}{2} t_1 \partial^\alpha f_{\theta \kappa} \partial^\kappa f_\alpha^{\ \theta} - \frac{1}{2} t_1 \partial^\alpha f_{\kappa \theta} \partial^\kappa f_\alpha^{\ \theta} - \frac{1}{2} t_1 \partial^\alpha f_\lambda^{\ \rho} \partial^\kappa f_{\alpha \lambda} +$	$rac{1}{3}t_{1}\;\omega_{\kappa\alpha}^{\;$	$2t_1 \omega_{\prime\kappa\theta} \partial^{\kappa} f^{\prime\theta} - \frac{1}{3}t_1 \omega_{\prime\alpha}^{} \partial^{\kappa} f^{\prime}_{} - \frac{1}{3}t_1 \omega_{\prime\lambda}^{\lambda} \partial^{\kappa} f^{\prime}_{\kappa} + \frac{1}{2}t_1 \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\lambda\alpha} +$	$\frac{1}{2}t_1\partial_\kappa f_{\beta}^{\lambda}\partial^\kappa f_{\lambda}^{\theta} + \frac{1}{2}t_1\partial_\kappa f^{\lambda}_{\theta}\partial^\kappa f_{\lambda}^{\theta} - \frac{1}{3}t_1\partial^\alpha f^{\lambda}_{\alpha}\partial^\kappa f_{\lambda\kappa} + \frac{1}{3}r_2\partial_\kappa \omega^{\alpha\beta\theta}\partial^\kappa \omega_{\alpha\beta\theta} +$	$rac{2}{3}r_2\partial_\kappa\omega^{ hetalphaeta}\partial^\kappa\omega_{lphaeta heta}-rac{2}{3}r_2\partial^\beta\omega_{,}^{lpha\lambda}\partial_\lambda\omega_{lphaeta}^{\prime}+rac{2}{3}r_2\partial^\beta\omega_{,}^{\lambdalpha}\partial_\lambda\omega_{lphaeta}^{\prime}-$	$4r_3\partial^\beta\omega_{\lambda}{}^{\lambda\alpha}\partial_\lambda\omega_{\alpha\beta}{}^{\prime\prime}-4r_3\partial_\alpha\omega_{\lambda}{}^{\alpha}\partial^\lambda\omega^{\theta\kappa}{}_{\kappa}+4r_3\partial_\theta\omega_{\lambda}{}^{\alpha}{}_{\alpha}\partial^\lambda\omega^{\theta\kappa}{}_{\kappa}$
-------------------------------------	--	---	--	--	---	---	--	--

$f_{1^-}^{\#2}$	0	0	0	<u>ikt1</u> 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	2 k ² t ₁
$f_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>†1</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	1 1 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}ikt_1$
$f_{1}^{\#1}\alpha\beta$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}{}_{\alphaeta}$ ι	- <u>t1</u>	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + \alpha \beta$	$_{1}^{*1}+^{\alpha\beta}$	$\omega_1^{\#1} +^{lpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} + \alpha$

$\sigma_{0}^{\#1}$ $t_{0}^{\#1}$ $t_{0}^{\#2}$ $\sigma_{0}^{\#1}$	$\frac{1}{6k^2r_3} 0 0 0$	0 0 0	0 0 0	0 0 0 0 2) 	","#1 f#1 ',"#1	$\omega_2 + \alpha \beta$	$+^{\alpha\beta}$ $\frac{^{\prime}1}{2}$ $-\frac{^{\prime\prime}\kappa^{\prime}1}{\sqrt{2}}$ 0	$-\alpha\beta = \frac{ikt_1}{\sqrt{2}} = k^2 t_1 = 0$	$\alpha \beta \chi$ 0 0 $\frac{t_1}{2}$		$\omega_{0^+}^{\#1}$ $f_{0^+}^{\#1}$ $f_{0^+}^{\#2}$ $\omega_{0^-}^{\#1}$	$6k^2r_3$ 0 0 0	0 0 0 0	0 0 0	$0 0 0 k^2 r_2$
Source constraints/gauge generators	3) irreps Multiplicities $\sigma_{0^+}^{\#1}$ †		α + 2 π μ π π 1 α 0	T 2 " K O ₁ - == O	= 0	= Q	$\tau_1^{\#1}{}^{\alpha\beta} + ik \ \sigma_1^{\#2}{}^{\alpha\beta} == 0$ 3	$2ik \ \sigma_{2+}^{\#1}\alpha\beta == 0 \ 5 \qquad \qquad \omega_{2+}^{\#1}$	Fotal constraints: $\frac{2}{19}$ $f_2^{*+} \dagger^{\alpha\beta}$	#	$\sigma_2^{r+} + \alpha_{eta} \qquad \tau_2^{r+} + \alpha_{eta} \qquad \sigma_2^{r-} + \alpha_{eta}$	$\sigma_{2}^{\#1} + \alpha \beta \left(\frac{2}{(1+2k^2)^2 t_1} \right) - \frac{2i\sqrt{2}k}{(1+2k^2)^2 t_1} = 0$	$\frac{4k^2}{0}$ 0 $\omega_{0+}^{#1}$ +	$(1+2k^2)^2 t_1$ $(1+2k^2)^2 t_1$	$\sigma_{2}^{\#1} + ^{\alpha \beta \chi} = 0 = 0$ $f_{1}^{\#2} + f_{0}^{\#2} + 1$	$\omega_{\tilde{c}}^{*1}$

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$