Lecture 4

- Multi-layer Perceptrons
 - ✓ Linear Regression
 - ✓ Multilinear Regression
 - ✓ Logistic Regression
 - ✓ Gradient Descent
- ✓ Overview of Backpropogation Process

CENG 632- Computational Intelligence, 2024-2025, Spring Assist. Prof. Dr. Osman GÖKALP

Summary of Key Takeaways from Last Week

- Activation functions
 - Hidden neurons: sigmoid
 - Output neurons: sigmoid or linear
- Unipolar sigmoid functions' range: 0 to 1
 - **Bipolar** sigmoid functions' range: -1 to +1 (e.g., hyperbolic tangent)
- **ReLU** is a popular non-linear activation function in deep learning.
- Leaky ReLU prevents dying ReLU problem.
- If all the activations functions are linear, any MLP can be reduced to a two-layer perceptron. So it cannot solve non-linear problems.

Summary of Key Takeaways from Last Week

- Any Riemann-integrable function can be approximated with arbitrary accuracy by a four-layer perceptron using step functions. (using relative step heights one layer can be saved).
- Universal approximation theorem: Any continuous function can be approximated by 3-layer perceptron that has continuous, bounded and non-constant activation functions.

Mathematical Background: Linear Regression

Training neural networks is closely related to regression.

Given: \bullet A dataset $((x_1, y_1), \ldots, (x_n, y_n))$ of n data tuples and

• a hypothesis about the functional relationship, e.g. y = g(x) = a + bx.

Approach: Minimize the sum of squared errors, that is,

F is a function that calculates error (squared) given a and b.

$$F(a,b) = \sum_{i=1}^{n} (g(x_i) - y_i)^2 = \sum_{i=1}^{n} (a + bx_i - y_i)^2.$$

Necessary conditions for a minimum (a.k.a. Fermat's theorem, after Pierre de Fermat, 1601–1665):

Partial derivative of the error function F w.r.t. a and b.

$$\frac{\partial F}{\partial a} = \sum_{i=1}^{n} 2(a + bx_i - y_i) = 0 \quad \text{and}$$

$$\frac{\partial F}{\partial b} = \sum_{i=1}^{n} 2(a + bx_i - y_i)x_i = 0$$

Setting derivatives to zero minimizes the sum of squared errors function because it is convex.

Mathematical Background: Linear Regression

Result of necessary conditions: System of so-called **normal equations**, that is,

$$na + \left(\sum_{i=1}^{n} x_i\right)b = \sum_{i=1}^{n} y_i,$$

$$\left(\sum_{i=1}^{n} x_i\right) a + \left(\sum_{i=1}^{n} x_i^2\right) b = \sum_{i=1}^{n} x_i y_i.$$

- Two linear equations for two unknowns a and b.
- System can be solved with standard methods from linear algebra.
- Solution is unique unless all x-values are identical.
- The resulting line is called a **regression line**.

Linear Regression: Example

Given the data (x,y), calculate the regression line (best fit line).

1 input (x), n=8 samples.

$$y = \frac{3}{4} + \frac{7}{12}x. \qquad \longleftarrow$$

Mathematical Background: Polynomial Regression

Instead of the line, now we calculate the best fit polynomial (regression polynomial).

Generalization to polynomials

$$y = p(x) = a_0 + a_1 x + \ldots + a_m x^m$$

Approach: Minimize the sum of squared errors, that is,

$$F(a_0, a_1, \dots, a_m) = \sum_{i=1}^{n} (p(x_i) - y_i)^2 = \sum_{i=1}^{n} (a_0 + a_1 x_i + \dots + a_m x_i^m - y_i)^2$$

Necessary conditions for a minimum: All partial derivatives vanish, that is,

$$\frac{\partial F}{\partial a_0} = 0, \quad \frac{\partial F}{\partial a_1} = 0, \quad \dots \quad , \frac{\partial F}{\partial a_m} = 0.$$

Mathematical Background: Polynomial Regression

System of normal equations for polynomials

$$na_{0} + \left(\sum_{i=1}^{n} x_{i}\right) a_{1} + \dots + \left(\sum_{i=1}^{n} x_{i}^{m}\right) a_{m} = \sum_{i=1}^{n} y_{i}$$

$$\left(\sum_{i=1}^{n} x_{i}\right) a_{0} + \left(\sum_{i=1}^{n} x_{i}^{2}\right) a_{1} + \dots + \left(\sum_{i=1}^{n} x_{i}^{m+1}\right) a_{m} = \sum_{i=1}^{n} x_{i} y_{i}$$

$$\vdots$$

$$\left(\sum_{i=1}^{n} x_{i}^{m}\right) a_{0} + \left(\sum_{i=1}^{n} x_{i}^{m+1}\right) a_{1} + \dots + \left(\sum_{i=1}^{n} x_{i}^{2m}\right) a_{m} = \sum_{i=1}^{n} x_{i}^{m} y_{i},$$

- m+1 linear equations for m+1 unknowns a_0,\ldots,a_m .
- System can be solved with standard methods from linear algebra.
- Solution is unique unless the points lie exactly on a polynomial of lower degree.

Mathematical Background: Multilinear Regression

Multilinear regression: finding a best fitting linear function with multiple arguments.

Generalization to more than one argument

Approach: Minimize the sum of squared errors, that is,

$$F(a,b,c) = \sum_{i=1}^{n} (f(x_i, y_i) - z_i)^2 = \sum_{i=1}^{n} (a + bx_i + cy_i - z_i)^2$$

Necessary conditions for a minimum: All partial derivatives vanish, that is,

$$\frac{\partial F}{\partial a} = \sum_{i=1}^{n} 2(a + bx_i + cy_i - z_i) = 0,$$

$$\frac{\partial F}{\partial b} = \sum_{i=1}^{n} 2(a + bx_i + cy_i - z_i)x_i = 0,$$

$$\frac{\partial F}{\partial c} = \sum_{i=1}^{n} 2(a + bx_i + cy_i - z_i)y_i = 0.$$

Mathematical Background: Multilinear Regression

System of normal equations for several arguments

$$na + \left(\sum_{i=1}^{n} x_{i}\right)b + \left(\sum_{i=1}^{n} y_{i}\right)c = \sum_{i=1}^{n} z_{i}$$

$$\left(\sum_{i=1}^{n} x_{i}\right)a + \left(\sum_{i=1}^{n} x_{i}^{2}\right)b + \left(\sum_{i=1}^{n} x_{i}y_{i}\right)c = \sum_{i=1}^{n} z_{i}x_{i}$$

$$\left(\sum_{i=1}^{n} y_{i}\right)a + \left(\sum_{i=1}^{n} x_{i}y_{i}\right)b + \left(\sum_{i=1}^{n} y_{i}^{2}\right)c = \sum_{i=1}^{n} z_{i}y_{i}$$

- 3 linear equations for 3 unknowns a, b, and c.
- System can be solved with standard methods from linear algebra.
- Solution is unique unless all data points lie on a straight line.

Multilinear Regression

General multilinear case:

General case: m-argument (input) instead of 2.

$$y = f(x_1, \dots, x_m) = a_0 + \sum_{k=1}^{m} a_k x_k$$

Approach: Minimize the sum of squared errors, that is,

Error function: (Xa-y) is multiplied by itself to find square error. Note that the transpose is needed here. $-F(\vec{a}) = (\mathbf{X}\vec{a} - \vec{y})^{\top}(\mathbf{X}\vec{a} - \vec{y}).$

$$-F(\vec{a}) = (\mathbf{X}\vec{a} - \vec{y})^{\top}(\mathbf{X}\vec{a} - \vec{y})$$

where

Input data matrix: m inputs n samples

$$\mathbf{X} = \begin{pmatrix} 1 & x_{11} & \dots & x_{m1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1n} & \dots & x_{mn} \end{pmatrix},$$

$$\mathbf{X} = \begin{pmatrix} 1 & x_{11} & \dots & x_{m1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1n} & \dots & x_{mn} \end{pmatrix}, \qquad \vec{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \quad \text{and} \quad \vec{a} = \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{pmatrix}$$
Output data vector of n samples

of n samples

Necessary conditions for a minimum:

$$\vec{\nabla}_{\vec{a}} F(\vec{a}) = \vec{\nabla}_{\vec{a}} (\mathbf{X}\vec{a} - \vec{y})^{\top} (\mathbf{X}\vec{a} - \vec{y}) = \vec{0}$$

Parameters vector that needs be calculated by multilinear regression.

Multilinear Regression

• $\nabla_{\vec{a}} F(\vec{a})$ may easily be computed by remembering that the differential operator

$$\vec{\nabla}_{\vec{a}} = \left(\frac{\partial}{\partial a_0}, \dots, \frac{\partial}{\partial a_m}\right)$$

behaves formally like a vector that is "multiplied" to the sum of squared errors.

• Alternatively, one may write out the differentiation componentwise.

With the former method we obtain for the derivative:

$$\vec{\nabla}_{\vec{a}} F(\vec{a}) = \vec{\nabla}_{\vec{a}} ((\mathbf{X}\vec{a} - \vec{y})^{\top} (\mathbf{X}\vec{a} - \vec{y}))
= (\vec{\nabla}_{\vec{a}} (\mathbf{X}\vec{a} - \vec{y}))^{\top} (\mathbf{X}\vec{a} - \vec{y}) + ((\mathbf{X}\vec{a} - \vec{y})^{\top} (\vec{\nabla}_{\vec{a}} (\mathbf{X}\vec{a} - \vec{y})))^{\top}
= (\vec{\nabla}_{\vec{a}} (\mathbf{X}\vec{a} - \vec{y}))^{\top} (\mathbf{X}\vec{a} - \vec{y}) + (\vec{\nabla}_{\vec{a}} (\mathbf{X}\vec{a} - \vec{y}))^{\top} (\mathbf{X}\vec{a} - \vec{y})
= 2\mathbf{X}^{\top} (\mathbf{X}\vec{a} - \vec{y})
= 2\mathbf{X}^{\top} \mathbf{X}\vec{a} - 2\mathbf{X}^{\top} \vec{y} = \vec{0}$$

Multilinear Regression

Necessary condition for a minimum therefore:

$$\vec{\nabla}_{\vec{a}} F(\vec{a}) = \vec{\nabla}_{\vec{a}} (\mathbf{X} \vec{a} - \vec{y})^{\top} (\mathbf{X} \vec{a} - \vec{y})$$
$$= 2\mathbf{X}^{\top} \mathbf{X} \vec{a} - 2\mathbf{X}^{\top} \vec{y} \stackrel{!}{=} \vec{0}$$

As a consequence we obtain the system of **normal equations**:

$$\mathbf{X}^{\top}\mathbf{X}\vec{a} = \mathbf{X}^{\top}\vec{y}$$

This system has a solution unless $\mathbf{X}^{\top}\mathbf{X}$ is singular. If it is regular, we have

$$\vec{a} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \vec{y}.$$

 $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ is called the (Moore-Penrose-)**Pseudoinverse** of the matrix \mathbf{X} .

With the matrix-vector representation of the regression problem an extension to **multipolynomial regression** is straighforward: Simply add the desired products of powers to the matrix **X**.

Mathematical Background: Logistic Regression

Generalization to non-polynomial functions

Simple example: $y = ax^b$

Idea: Find transformation to linear/polynomial case.

Transformation for the above example: $\ln y = \ln a + b \cdot \ln x$.

Special case: logistic function

$$y = \frac{Y}{1 + e^{a + bx}}$$
 \Leftrightarrow $\frac{1}{y} = \frac{1 + e^{a + bx}}{Y}$ \Leftrightarrow $\frac{Y - y}{y} = e^{a + bx}$.

Result: Apply so-called **Logit-Transformation**

$$\ln\left(\frac{Y-y}{y}\right) = a + bx.$$

Logistic Regression: Example

x	1	2	3	4	5
y	0.4	1.0	3.0	5.0	5.6

Transform the data with

$$z = \ln\left(\frac{Y - y}{y}\right), \qquad Y = 6.$$

The transformed data points are

x	1	2	3	4	5
z	2.64	1.61	0.00	-1.61	-2.64

The resulting regression line and therefore the desired function are

$$z \approx -1.3775x + 4.133$$

and

$$y \approx \frac{6}{1 + e^{-1.3775x + 4.133}}.$$

Attention: Note that the error is minimized only in the transformed space! Therefore the function in the original space may not be optimal!

The function y is an approximation to this data.

Nevertheless, this approach usually yields very good results.

Logistic Regression: Example

The logistic regression function can be computed by a single neuron with

- network input function $f_{\rm net}(x) \equiv wx$ with $w \approx -1.3775$,
- activation function $f_{\rm act}({\rm net}, \theta) \equiv \left(1 + e^{-({\rm net} \theta)}\right)^{-1}$ with $\theta \approx 4.133$ and
- output function $f_{\text{out}}(\text{act}) \equiv 6 \text{ act}$.

Limitations of Logistic Regression Approach

- Since the sum of the squared errors can be determined **only for output neurons**, this method is **limited to two-layer** perceptrons (no hidden layer).
- This limitation reminds that we cannot transfer the delta rule for the training threshold logic units.
- Therefore we consider next a different method called gradient descent.

Training Multi-layer Perceptrons: Gradient Descent

- Problem of logistic regression: Works only for two-layer perceptrons.
- More general approach: **gradient descent**.
- Necessary condition: differentiable activation and output functions.

Illustration of the gradient of a real-valued function z = f(x, y) at a point (x_0, y_0) . It is $\nabla z|_{(x_0, y_0)} = \left(\frac{\partial z}{\partial x}|_{x_0}, \frac{\partial z}{\partial y}|_{y_0}\right)$. (∇z) is a differential operator called "nabla" or "del".)

Gradient Descent (Ascent) Algorithm

- 1. Choose a (random) starting point $\boldsymbol{u}^{(0)} = \left(u_1^{(0)}, \dots, u_n^{(0)}\right)^{\top}$
- 2. Compute the gradient of the objective function f at the current point $u^{(i)}$:

$$\nabla_{\boldsymbol{u}} f(\boldsymbol{u}) \Big|_{\boldsymbol{u}^{(i)}} = \left(\frac{\partial}{\partial u_1} f(\boldsymbol{u}) \Big|_{u_1^{(i)}}, \dots, \frac{\partial}{\partial u_n} f(\boldsymbol{u}) \Big|_{u_n^{(i)}} \right)^{\top}.$$

3. Make a small step in the direction (or against the direction) of the gradient:

$$u^{(i+1)} = u^{(i)} \pm \eta \nabla_u f(u)\Big|_{u^{(i)}}$$
. $+:$ gradient ascent $-:$ gradient descent

 η is a step width parameter ("learning rate" in artificial neuronal networks).

4. Repeat steps 2 and 3, until some termination criterion is satisfied (e.g., a certain number of steps has been executed, current gradient is small).

Gradient Descent Example

can be used to find the minimum of a polynomial function, here specifically

$$f(u) = \frac{5}{6}u^4 - 7u^3 + \frac{115}{6}u^2 - 18u + 6.$$

the derivative of the polynomial target function, that is,

$$f'(u) = \frac{10}{3}u^3 - 21u^2 + \frac{115}{3}u - 18,$$

The computations then proceed according to the scheme

$$u_{i+1} = u_i + \Delta u_i$$
 with $\Delta u_i = -\eta f'(u_i)$,

Gradient Descent Example

i	u_i	$f(u_i)$	$f'(u_i)$	Δu_i
0	0.200	3.112	-11.147	0.111
1	0.311	2.050	-7.999	0.080
2	0.391	1.491	-6.015	0.060
3	0.451	1.171	-4.667	0.047
4	0.498	0.976	-3.704	0.037
5	0.535	0.852	-2.990	0.030
6	0.565	0.771	-2.444	0.024
7	0.589	0.716	-2.019	0.020
8	0.610	0.679	-1.681	0.017
9	0.626	0.653	-1.409	0.014
10	0.640	0.635		

Fig. 5.21 Gradient descent with initial value 0.2 and step width parameter 0.01

i	u_i	$f(u_i)$	$f'(u_i)$	Δu_i
0	0.200	3.112	-11.147	0.011
1	0.211	2.990	-10.811	0.011
2	0.222	2.874	-10.490	0.010
3	0.232	2.766	-10.182	0.010
4	0.243	2.664	-9.888	0.010
5	0.253	2.568	-9.606	0.010
6	0.262	2.477	-9.335	0.009
7	0.271	2.391	-9.075	0.009
8	0.281	2.309	-8.825	0.009
9	0.289	2.233	-8.585	0.009
10	0.298	2.160		

Fig. 5.22 Gradient descent with initial value 0.2 and step width parameter 0.001

Gradient Descent Example

i	u_i	$f(u_i)$	$f'(u_i)$	Δu_i
0	1.500	2.719	3.500	-0.875
1	0.625	0.655	-1.431	0.358
2	0.983	0.955	2.554	-0.639
3	0.344	1.801	-7.157	1.789
4	2.134	4.127	0.567	-0.142
5	1.992	3.989	1.380	-0.345
6	1.647	3.203	3.063	-0.766
7	0.881	0.734	1.753	-0.438
8	0.443	1.211	-4.851	1.213
9	1.656	3.231	3.029	-0.757
10	0.898	0.766		

Fig. 5.23 Gradient descent with initial value 1.5 and step width parameter 0.25

i	u_i	$f(u_i)$	$f'(u_i)$	Δu_i
0	2.600	3.816	-1.707	0.085
1	2.685	3.660	-1.947	0.097
2	2.783	3.461	-2.116	0.106
3	2.888	3.233	-2.153	0.108
4	2.996	3.008	-2.009	0.100
5	3.097	2.820	-1.688	0.084
6	3.181	2.695	-1.263	0.063
7	3.244	2.628	-0.845	0.042
8	3.286	2.599	-0.515	0.026
9	3.312	2.589	-0.293	0.015
10	3.327	2.585		

Fig. 5.24 Gradient descent with initial value 2.6 and step width parameter 0.05

1. Logistic Function

The logistic (sigmoid) function is:

$$\sigma(z)=rac{1}{1+e^{-z}}$$

where $z = w^T x + b$.

- ullet w is the weight vector.
- x is the feature vector.
- *b* is the bias (intercept).
- $\sigma(z)$ is the predicted probability.

2. Sum of Squared Errors (SSE)

Instead of log-loss, we define the **error function** as the sum of squared errors:

$$F(w,b)=rac{1}{2}\sum_{i=1}^m(\sigma(z_i)-y_i)^2$$

where:

- ullet m is the number of training samples,
- y_i is the true label (0 or 1),
- $\sigma(z_i)$ is the predicted probability.

This is different from the standard log-loss, but we can still minimize it using gradient descent.

3. Partial Derivatives for Gradient Descent

To minimize F(w, b), we compute the **gradients w.r.t.** w and b.

Derivative w.r.t. w:

Using the chain rule:

$$rac{\partial F}{\partial w} = \sum_{i=1}^m (\sigma(z_i) - y_i) \cdot rac{\partial \sigma(z_i)}{\partial z_i} \cdot rac{\partial z_i}{\partial w}$$

• The derivative of the sigmoid function:

$$rac{\partial \sigma(z)}{\partial z} = \sigma(z)(1-\sigma(z))$$

• Since $z_i = w^T x_i + b$, we get:

$$\frac{\partial z_i}{\partial w} = x_i$$

Thus, the gradient of the SSE function w.r.t. w is:

$$rac{\partial F}{\partial w} = \sum_{i=1}^m (\sigma(z_i) - y_i) \cdot \sigma(z_i) (1 - \sigma(z_i)) \cdot x_i$$

Derivative w.r.t. b:

$$rac{\partial F}{\partial b} = \sum_{i=1}^m (\sigma(z_i) - y_i) \cdot \sigma(z_i) (1 - \sigma(z_i))$$

4. Gradient Descent Update Rules

Using gradient descent:

$$w := w - \eta \sum_{i=1}^m (\sigma(z_i) - y_i) \cdot \sigma(z_i) (1 - \sigma(z_i)) \cdot x_i$$

$$b:=b-\eta\sum_{i=1}^m(\sigma(z_i)-y_i)\cdot\sigma(z_i)(1-\sigma(z_i))$$

where η is the **learning rate**.

Gradient Descent for the Logistic Function (Binary Classification)

2. Cost Function (Log-Loss)

The loss function for logistic regression is the log-likelihood function (negative log-likelihood):

$$J(w,b) = -rac{1}{m} \sum_{i=1}^m \left[y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i)
ight].$$

where:

- m = number of training samples,
- y_i = true label (0 or 1),
- $\hat{y}_i = \sigma(w^Tx_i + b)$ = predicted probability.

Gradient Descent for the Logistic Function (Binary Classification)

3. Compute Gradients

To minimize the cost, compute the **partial derivatives**:

$$rac{\partial F}{\partial w} = rac{1}{m} \sum_{i=1}^m (\sigma(z_i) - y_i) x_i$$

$$rac{\partial F}{\partial b} = rac{1}{m} \sum_{i=1}^m (\sigma(z_i) - y_i)$$

Gradient Descent for the Logistic Function (Binary Classification)

4. Gradient Descent Update Rules

The parameters are updated using gradient descent:

$$w:=w-\eta rac{\partial F}{\partial w}$$

$$b:=b-\etarac{\partial F}{\partial b}$$

where η is the learning rate.

Overview of the Backpropogation Process

1. Forward Pass:

- The input data passes through the network (input → hidden layers → output).
- Each neuron applies weights and biases to the inputs and calculates an output using an activation function (e.g., sigmoid).

2. Calculate Error:

- Compare the network's output with the true target (the actual answer you want).
- The error is the difference between the predicted output and the actual output.

3. Backward Pass:

- The error is "backpropagated" through the network to adjust the weights.
- This is done layer by layer, starting from the output layer back to the input layer.

4. Use Chain Rule:

- To update weights, we calculate how much each weight contributed to the error. This is done
 using partial derivatives (from calculus).
- The **chain rule** is used to calculate these derivatives for each layer's weights and biases.

5. Update Weights:

 Adjust the weights to minimize the error. The update is done by subtracting a small step (called the learning rate) times the derivative (gradient) for each weight.