Computational Physics Übungsblatt 8

Ausgabe: 10.06.2016 Abgabe: 17.06.2016

Aufgabe 1. Bifurkationsdiagramme

(10 P.)

Berechnen und plotten Sie die Bifurkationsdiagramme für die Abbildungen

a) logistische Abbildung $(x_n \in [0,1])$

$$x_{n+1} = rx_n(1 - x_n), (1)$$

b) kubische Abbildung $(x_n \in [-\sqrt{1+r}, \sqrt{1+r}])$

$$x_{n+1} = rx_n - x_n^3 \,, (2)$$

durch numerische Iteration. Vergrößern Sie dafür den Parameter r in kleinen Schritten in einem Bereich $0 < r < r_{\text{max}}$. Was passiert, wenn Sie r zu groß wählen und welche r_{max} ergeben sich? Iterieren Sie dann für jedes r lange genug, bis sich ein Fixpunkt oder ein Orbit einstellt. Jeder Punkt des Orbits ergibt einen Punkt im Bifurkationsdiagramm.

Abgabe: Plots der Bifurkationsdiagramme

Aufgabe 2. Feigenbaum-Konstante

(10 P.)

Die Fixpunkt-Gleichung für die 2^n -fach iterierte logistische Abbildung f(r,x) = rx(1-x),

$$x = f^{2^n}(r, x), (3)$$

gibt für $r < r_{\infty} = 3.5699\dots$ die Werte eines Orbits der Länge 2^n im Periodenverdopplungsszenario nach Feigenbaum.

Bestimmen Sie für n=1,2,3 numerisch die Werte $r=R_n < r_\infty$, für die superstabile Fixpunkte existieren. Diese Werte erfüllen die Gleichung

$$\frac{1}{2} = f^{2^n}\left(r, \frac{1}{2}\right). \tag{4}$$

a) Plotten Sie zunächst

$$g_n(r) \equiv 1/2 - f^{2^n}\left(r, \frac{1}{2}\right) \tag{5}$$

als Funktion von r für n=0,1,2,3 im Bereich $0 < r < r_{\infty}$. Wird n um 1 vergrößert, kommt jeweils eine Nullstelle von $g_n(r)$ bei $r=R_n$ hinzu. Machen Sie die Schrittweite in Ihrem Plot so klein, dass Sie Schranken für die Nullstellen angeben können.

Abgabe: Plots von $g_n(r)$ in den jeweiligen Schranken

b) Bestimmen Sie numerisch mit Hilfe von Intervallhalbierung oder Regula falsi ausgehend von den Schranken aus a) die Nullstellen R_n von $g_n(r)$ für n=1,2,3.

Abgabe: Werte R_1 , R_2 , R_3

c) Gewinnen Sie aus Ihren Ergebnissen eine erste Schätzung der Feigenbaum-Konstante

$$\delta = \lim_{n \to \infty} \frac{R_{n-1} - R_{n-2}}{R_n - R_{n-1}} \tag{6}$$

Abgabe: Feigenbaum-Konstante

Freiwillige Zusatzaufgabe:

(+5 P.)

d) Es kann auch ein Newton Verfahren zur Bestimmung der Nullstellen von R_n von $g_n(r)$ aufgesetzt werden, dass hier schnell und genau arbeitet. Dazu braucht man eine separate Iteration für die Ableitung $g'_n(r)$ (Strich = Ableitung nach r). Zeigen Sie, dass die Iteration

$$y_{k+1} = ry_k(1 - y_k), \quad y_0 = \frac{1}{2},$$
 (7)

$$y'_{k+1} = y_k(1 - y_k) + r(1 - 2y_k)y'_k, \quad y'_0 = 0$$
 (8)

auf

$$y_k = f^k\left(r, \frac{1}{2}\right) \,, \tag{9}$$

$$y_k' = \partial_r f^k \left(r, \frac{1}{2} \right) \tag{10}$$

führt. Daher gilt

$$g_n(r) = \frac{1}{2} - y_{2^n} \,, \tag{11}$$

$$g_n'(r) = -y_{2^n}'. (12)$$

Damit können Sie dann das Newton-Verfahren realisieren, um zur Nullstelle ${\cal R}_n$ zu konvergieren:

$$\rho_{i+1} = \rho_i - \frac{g_n(\rho_i)}{g_n'(\rho_i)} \tag{13}$$

und ρ_i konvergiert gegen $R_n.$ Dazu brauchen Sie allerdings einen "guten" Startwert. Hier können Sie benutzen, dass für $n\geq 2$

$$\delta_n = \frac{R_{n-1} - R_{n-2}}{R_n - R_{n-1}} \tag{14}$$

gegen die Feigenbaumkonstante konvergieren sollte. Damit kann man ausgehend von der Nullstelle R_n eine gute Approximation für R_{n+1} finden:

$$R_{n+1} \approx R_n + \frac{R_n - R_{n-1}}{\delta_n} \,, \tag{15}$$

die man als Startwert im Newtonverfahren für R_{n+1} verwenden kann. (Sie können $R_0=2$ und $R_1=1+\sqrt{5}$ als bekannt voraussetzen und mit der Bestimmung von R_2 starten; benutzen Sie dabei $\delta_1=5$, um den Startwert zu generieren.) Mit diesem Startwert sollten zehn Iterationen im Newton-Verfahren in jedem Fall ausreichen.

Dieses Verfahren ist hochgenau und sollte bis $n \sim 10-15$ erfolgreich funktionieren.

Abgabe: Werte R_n und δ_n bis zu möglichst hohem n