

Scenario

Solution

Impact

Mitigation

Scenario

Solution

Impact

Mitigation

The Application of Music Labelling

Searching

Users use labels to find specific type of music.

Recommendation

Stream platforms use labels to produce user portrait and recommend music accordingly.

Standard Practice

Traditional Solutions

Potential Risks

Problems to Solve

Artists

Artists attempt another genres

Low accuracy

Music publishers

Label with popular but unmatched genre for exposure

Data labelers

No available crowdsourcing service Labor costs Inefficient and expensive

Scenario

Solution

Impact

Mitigation

Dataset Generation

Image, Time Series, Numerical Inputs

Mel Spectrograms

MFCC

Music Features

Tempo

Zero crossing rate

Harmony

• • •

MFCC

Models for Different Data

- > VGG16
- > VGG16_bn
- Inception-v3
- ResNet18
- ResNet34
- ResNet50

> LSTM

Model performance

MLP with dropout trained on Music Features Dataset is the BEST.

0

Scenario

Solution

Impact

Mitigation

Marginal Improvement

Cost Reduction & Efficient Improvement

HR demand

Human

High

Interns or outsourcing companies

Low

Equipment maintenance

Time cost

High

30 secs per song per person

Low

500 songs per second

Capital cost

High

Limited to efficiency

Medium

Maintenance cost + Algorithm price

15,000 times faster

Save 2,000,000 CNY

^{*}According to detailed assumptions.

0

Scenario

Solution

Impact

Mitigation

Further Improvements

Limitations

- Limited feature numbers
- General genres
- Uni-label classification

Genre-based classification

Data enrichment

- Extract more features, feature importance analysis
- More detailed labels, e.g. funk, garage rock, hard rock...

Mitigation plan

Multi-label deep learning

Dimension diversification

> Content-based classification, e.g. Lyrics analysis

Scenario

Solution

Impact

Mitigation

Automatic Music Genre Classifier

Scenario

Misclassification on music genre Expensive and time-consuming manual labelling

Solution

Enlarged sample + Music features + MLP

Impact

93% Accuracy Cost 37.5% Efficiency 15,000x

Mitigation

Data enrichment Classification Dimension Diversification

