

Breeding stock 'D' humpback whale population estimates from NWC, WA

Using line transect sampling to monitor the recovery of large cetaceans from the air

Phil Bouchet

Research Associate

Centre for Whale Research (WA) Inc. PO Box 1622, Fremantle 6959 WA

Line transect sampling 101

Quick refresher on the basics

Background

Humpback whales (M. novaeangliae) in Western Australia

- Migrate between Australia and Antarctica
- WA = breeding stock "D" (formerly "group IV")

Decimated during whaling times

From Jenner et al. 2001

12 July 2011

Murdoch

University

Study area

North West Cape, Western Australia

Design of an aerial line transect survey

Data processing and analysis

Perpendicular distances

Data processing and analysis

Data processing and analysis

- Perpendicular distances
- Swimming directions

- Perpendicular distances
- Swimming directions
- Sighting availability

When things start getting more complicated

Availability bias

Whales at depth so cannot be detected

Perception bias

Whales at surface but limited detectability

12 July 2011 Murdoch University

Methods

- Perpendicular distances
- Swimming directions
- Sighting availability
- Detectability conditional on being available

- Right-truncation (7 nm = 13 km)
- Left-truncation (0.4 nm)
- Constrained HN model
- No covariates

- Perpendicular distances
- Swimming directions
- Sighting availability
- Detectability conditional on being available
- Detectability adjusted for availability

- Perpendicular distances
- Swimming directions
- Sighting availability
- Detectability conditional on being available
- Detectability adjusted for availability
- Pod sizes

- Positive slope
- Negative bias
- Smaller pods (+) conspicuous at large distances

- Perpendicular distances
- Swimming directions
- Sighting availability
- Detectability conditional on being available
- Detectability adjusted for availability
- Pod sizes
- Migratory movements

- Perpendicular distances
- Swimming directions
- Sighting availability
- Detectability conditional on being available
- Detectability adjusted for availability
- Pod sizes
- Migratory movements
- Daily abundance

- Perpendicular distances
- Swimming directions
- Sighting availability
- Detectability conditional on being available
- Detectability adjusted for availability
- O Pod sizes
- Migratory movements
- Daily abundance
- Population abundance

12 July 2011

Murdoch University

Running distance from R

When things get even more complicated

```
Tinn-R - [C:\Users\20878483\Documents\Data\Humpback project\Project\NWC-abundance estimation-16.12.2009.R]
File Project Edit Format Marks Insert Search Options Tools R View Window Web Help
                        🕶 💝 🦊 🤧 🔯 🖟 👰
                                NWC-abundance estimation-16.12.2009.R
               for (m in 1:boot.iter) {
 Misc Mar ⁴ →
               begin<-numeric()
               p.x <- numeric(length(res.boot[1,])/5)

    All (*.* ▼)

              n.covered <- numeric(length(res.boot[1,])/5)
               n.covered.daily<-numeric(length(res.boot[1,])/5)
 🕰 Local D 🔻
               N.total.pod <- numeric(length(res.boot[1,])/5)
               N.indiv <- numeric(length(res.boot[1,])/5)
               # Takes a random sample of dive-surface pairs (with replacement) and calculates the average dive time and surfacing time.
  🚳 config.sys
   nicinfo.txt
               temp.divesurface<-DShump[sample(nrow(DShump), replace=T),]
   RHDSetup.ld
               d.average <- mean(temp.divesurface["Dive"])</pre>
   vcredist_x86
               s.average <- mean(temp.divesurface["Surface"])</pre>
               # Takes a random sample (vith replacement) from the speed dataset.
               temp.speed<-speed[sample(nrow(speed), replace=T),]
               whales.speed<-mean(temp.speed$Km)
               speed.correct<-daily*whales.speed
              matrix.speeds[m] <- speed.correct
               # For each survey, computes the integral Eqn (1) of report, and uses that in the equation shown in
               # section 2.3 of report to produce survey-specific estimated number of humpback pods.
               # Adjusts up the estimated number of pods to estimated number of individuals using
               # size-bias adjusted expected cluster sizes.
               nombre<-length(res.boot[1,])/5
               for (survey in 1:nombre) {
                 p.x[survey] <- integrate(p.of.y, sigma.sq=res.boot[m,paste("S", survey, sep="")], trunc.dist=trunc.dist,
                                   d.average=d.average, s.average=s.average, 0, trunc.dist)$value
                  matrix.p.of.x[m,survey] <-p.x[survey] # Fills in matrix of detectabilities.
                  # If p.x[survey] is equal to 0 as a result of the Bootstrap loop having resampled empty lines only (by chance), then the
                  # the total number of pods cannot be calculated (as dividing by p.x[survey] which is 0 returns an error).
                  # This causes the migration curve fitting functions to crash.
                  # To fix this, I introduced a conditional statement, which gives the value of 0 to the number of pods and individuals
                  # if the probability p.x is itself 0.
                  if (p.x[survey] == 0) {N.total.pod[survey]}
```

Variance estimation

When things get even more complicated

- Bootstrap procedure (with replacement,
 B=1,000 pseudo-samples)
- Coefficients of variation (CVs)
- 95% confidence intervals (CIs) using the percentile method (Buckland et al. (2001)).
- Overall CV using the **Delta method** (Buckland et al. (2001)).

$$CV_{\hat{N}_{POP}} = \sqrt{\left(CV_{\frac{n}{L}}\right)^2 + \left(CV_{p(x)}\right)^2 + \left(CV_{speed}\right)^2 + \left(CV_{cluster}\right)^2 + \left(CV_{MLE}\right)^2}$$

Results

2000: **7,276** (CI = 4,993-10,167)

2001: **12,280** (CI = 6,830-49,434)

2006: **18,692** (CI = 12,980-24,477)

2007: **20,044** (CI = 13,815-31,646)

2008: **26,100** (CI = 20,152-33,272)

Uncorrected for PB

2000: 9,281

2001: 15,663

2006: 23,842

2007: 25,566

2008: 33,291

PB correction

Conclusions and future directions

- Population recovering well (13% per annum)
- Sample sizes (number of flights) = limit accuracy
- Need for more adequate g(0) protocol
- Investigating the possibility of combined aerial and land-based surveys

Useful references

- **Bannister, J.L., 1994.** Continued increase in humpback whales off Western Australia. *Report of the International Whaling Commission, 44*: 309-310.
- Bannister, J.L., Hedley, S.L., 2001. Southern hemisphere group IV humpback whales: Their status from recent aerial surveys. *Memoirs of the Queensland Museum*, 47(2): 587-598.
- Borchers, D.L., Buckland, S.T., Zucchini, W., 2002. Estimating animal abundance: Closed populations (Statistics for biology and health). London, Springer-Verlag, 314 p.
- Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L., Thomas, L., 2004. Advanced distance sampling: Estimating abundance of biological populations. Oxford University Press, 416 p.
- Hedley, S.L., Bannister, J.L., Dunlop, R.A., (in press). Abundance estimates of southern hemisphere breeding stock 'D' humpback whales from aerial and land-based surveys off Shark Bay, Western Australia. *Journal of Cetacean Research and Management*.
- Lerczak, J.A., Hobbs, R.C., 1998. Calculating sighting distances from angular readings during shipboard, aerial, and shore-based marine mammal surveys. *Marine Mammal Science*, 14(3): 590-599.
- **Noad, M., Paton, D., Cato, D., 2005.** Absolute and relative abundance estimates of Australian east coast humpback whales (*Megaptera novaeangliae*). *Report of the International Whaling Commission,* SC/A06/HW27, 15 p.
- Salgado Kent, C., Jenner, K.C.S., Jenner, M.-N., Bouchet, P., Rexstad, E., (in press). Southern Hemisphere breeding stock "D" humpback whale population estimates from North West Cape, Western Australia. *Journal of Cetacean Research and Management*.
- Thomas, L., Buckland, S.T., Rexstad, E.A., Laake, J.L., Strindberg, S., Hedley, S.L., Bishop, J.R.B., Marques, T.A., Burnham, K.P., 2010. Distance software: design and analysis of distance sampling surveys for estimating population size. *Journal of Applied Ecology*, 47: 5-14.