

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik

Lineare Algebra für Informatik (MA0901)

PD Dr. S. Borgwardt, Dr. R. Brandenberg

Aufgabenblatt 11

Präsenzaufgabe 11.1 (Skalarprodukt und Geometrie)

Es seien $a, b \in \mathbb{R}^n$ und $a^T b$ das Skalarprodukt der beiden Vektoren.

- a) Zeichnen Sie a, b und $(b^T a)/|b|^2 \cdot b$ für $n = 2, a = (1, 4)^T$ und $b = (-3, 2)^T$.
- b) Zeigen Sie: $(b^T a)/|b|^2 \cdot b$ ist (grundsätzlich) die Orthogonalprojektion von a auf b (d.h. $(b^T a)/|b|^2 \cdot b$ steht senkrecht auf $a (b^T a)/|b|^2 \cdot b$).
- c) Zeigen Sie: Ist $b \neq 0$ und $A := bb^T \in \mathbb{R}^{n \times n}$, dann gilt rang(A) = 1.
- d) Zeigen Sie: Ist $|b|=1,\,B$ die Standardbasis des \mathbb{R}^n und $\varphi:\mathbb{R}^n\to\mathbb{R}^n,\,x\mapsto(b^Tx)\cdot b$, dann gilt $D_B(\varphi)=A$
- e) Bestimmen Sie für |b|=1 die Eigenwerte von A sowie die zugehörigen Eigenräume und Vielfachheiten.

Präsenzaufgabe 11.2 (Binomische Formeln für Vektoren)

Seien $x, y \in \mathbb{R}^n$. Zeigen Sie:

a)
$$|x+y|^2 = |x|^2 + 2x^Ty + |y|^2$$

b)
$$|x - y|^2 = |x|^2 - 2x^T y + |y|^2$$

c)
$$(x+y)^T(x-y) = |x|^2 - |y|^2$$

- d) Sind x und y gleich lang, dann sind x + y und x y orthogonal zueinander.
- e) Sind x und y orthogonal, dann sind x + y und x y gleich lang.

Präsenzaufgabe 11.3 (Gram-Schmidtsches Orthogonalisierungsverfahren)

Seien
$$v^1 = (0, 2, 0)^T$$
, $v^2 = (1, 2, 2)^T$, $v^3 = (2, 2, 4)^T$, $v^4 = (3, 0, 1)^T$.

Bestimmen Sie mithilfe des Gram-Schmidtschen Orthogonalisierungsverfahrens eine Orthonormalbasis des Unterraums $\langle v^1, v^2, v^3, v^4 \rangle$.

Hausaufgabe 11.4 (Skalarprodukt und Geometrie)

Es seien $a, v^1, \ldots, v^k \in \mathbb{R}^n$, $k \leq n, v^1, \ldots, v^k$ linear unabhängig und $|v^i| = 1, i \in [k]$. Ferner sei $\Pi : \mathbb{R}^n \to \langle v^1, \ldots, v^k \rangle$ die Orthogonalprojektion, d.h. $\Pi(x)$ orthogonal zu $x - \Pi(x)$ und $\Pi(x) = 0$, genau dann wenn $x \in (\langle v^1, \ldots, v^k \rangle)^{\perp}$.

- a) Zeigen Sie: Ist B die Standardbasis, dann gilt $D_B(\Pi) = A := \sum_{i=1}^k v^i(v^i)^T$.
- b) Bestimmen Sie die Eigenwerte von A, die zugehörigen Eigenräume und Vielfachheiten.

Hausaufgabe 11.5 (Kreuzprodukt)

Seien $x=(x_1,x_2,x_3)^T,y=(y_1,y_2,y_3)^T\in\mathbb{R}^3$. Dann ist das Kreuzprodukt $x\times y\in\mathbb{R}^3$ wie folgt definiert:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \times \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \end{pmatrix}$$

Zeigen Sie: $x \times y$ steht sowohl senkrecht auf x als auch auf y.

Hausaufgabe 11.6 (Gram-Schmidtsches Orthogonalisierungsverfahren 2) Seien $v^1 = (1, 1, 1, 1)^T$, $v^2 = (1, 0, 1, 0)^T$, $v^3 = (3, 0, 0, -4)^T$.

Bestimmen Sie mithilfe des Gram-Schmidtschen Orthogonalisierungsverfahrens eine Orthonormalbasis des Unterraums $\langle v^1, v^2, v^3 \rangle$.

Abgabe: bis Mittwoch, 6.7.2016, 11:00 Uhr im dafür vorgesehenen Kasten im Untergeschoss.

Verwenden Sie bei Abgabe das auf der Homepage hochgeladene Deckblatt und geben Sie in Zweier- oder Dreiergruppen ab.