Table 1| Schögl Network

Table I Collegi Network		
Opened Network	Kinetic Constants	
3X> 2X	$k_1 = 0.0015$	
2X> 3X	$k_2 = 0.15$	
X> 0	$k_3 = 3.5$	
0> X	$k_4 = 22$	
Reference: Schlogl, F, 1971.		
On thermodynamics near a steady state. Z. Physik 458, 446–458		

The original network is a single component and four reaction network, that is already opened up. From the opened network a steady state mass balance on component X is derived.

$$\frac{dX}{dt} = 0 = -k_1 X^3 + k_2 X^2 - k_3 X + k_4 X \tag{1}$$

From the steady state balance there is one equation and five unknowns, this leaves four variables to be specified. The kinetic constants, k_1 , k_2 , k_3 , and k_4 are specified as 0.0015, 0.15, 3.5, and 22 respectively. To run the simulation the minimum value for component X is set to zero, and the maximum value for component X is set to 120. The maximum number of moments is set to 8, and all of the initial guesses for the Lagrange Multipliers are set to zero. Table 2 summarizes the parameters required for the simulation, and Figure 1 displays the results.

Table 2| Simulation Parameters

Minimum Value (X)	Maximum Value (X)	Maximum Number of Moments	LaGrange Multipliers (Initial Guess)
			(Illitial Cacoo)
0	120	8	0

Figure 1| Results from Simulation. Component X