

Application Of Bilevel Programming To Model Predictive Control

Subhi Gupta and Hari S. Ganesh

Process Engineering, Control and
Optimization Research Group

Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar.

1. Background

- In any large-scale system there exist many levels in the *process* control hierarchy. The simplest hierarchical system is the Bilevel decision-making structure.
- **Hierarchy** is characterized by *vertical decomposition*, *priority of action*, and *performance interdependence*.
- Earlier such problems were solved independently using the multiobjective technique.

2. Motivation

 Sparse attempts have been made to solve hierarchical control problems using the multi-parametric technique.

Multi-parametric Bilevel Programming Algorithm used in the proposed work to solve
Bilevel multi-parametric/explicit MPC controller
(Bilevel mp-MPC) guarantees a global optimal solution.

3. Methodology

- System considered: Temperature Control Laboratory (TCLab)
- Steps Taken:
 - Modeling the system.
 - Reducing model equations to linear state-space equations.
 - Formulating the problem as Linear MPC.
 - Implementing MPC and mp-MPC algorithms on the system and comparing runtime operation.

Runtime operation reduced by 83.52%.

- Designing of Bilevel Control Structures and solving them using multi-parametric bilevel programming algorithm.
- Performing closed-loop validation.

Multilevel Structure RTO MPC Basic Control Process Bilevel MPC Control Structure Upper-level subsystem Controller 1 (Optimisation Problem 1) Lower-level subsystem Controller 2 (Optimisation Problem 2) Bilevel MPC Control Structure Upper-level subsystem Controller 1 (Optimisation Problem 2)

			T (1100	-
Comparison based on runtime operation.		No.	Type of MPC	Total runtime (s)
		1	Online MPC	5.351
,		2	mp-MPC	0.912

4. Results

Bilevel MPC Control Structures

$$\min_{u_1} (T_1 - T_1^R)^T Q_1 (T_1 - T_1^R) + (u_1 - u_1^R)^T R_1 (u_1 - u_1^R) + \Delta u_1^T R \mathbf{1}_1 \Delta u_1$$

$$\min_{u_2} (T_2 - T_2^R)^T Q_2 (T_2 - T_2^R) + (u_2 - u_2^R)^T R_2 (u_2 - u_2^R) + \Delta u_2^T R \mathbf{1}_2 \Delta u_2$$

5. Conclusion

• Bilevel mp-MPC framework applied to TCLab manage to follow the temperature set-point while optimizing an upper-level objective function.