

The Problem

- Bike Sharing Facilities very prevalent in major metropolitan cities
- Used by commuters for daily office commutes
- Used by tourists for short distance travel
- For example in Washington D.C, Number of bikes rented out at a particular time varies from <10 to 1000
 - What factors affect Bike Sharing rental count?
 - How many Bikes will be required at a given time of the day?

Who might care?

- Bike Company Vendors
 - Capital BikeShare
 - Citi Bike
 - Bird
- Mobile Apps
- Kiosks/Bike stores
- Government Bodies Parking Facilities

Data Overview

- Data set obtained from Kaggle
- Factors that affect Bike Sharing count
 - Weather conditions Temperature, Humidity, Windspeed
 - Day Working day or not
 - Time of the day

Exploratory Data Analysis – Weather

- Higher bike rental when weather is more clear and sunny
- Single instance of a Heavy Snow/Rain condition → Changed to Light Snow/Rain condition

Exploratory Data Analysis – Season

 Highest bike reservations during Summer (April to June) and Fall (July to September) and lowest in Spring (January to March)

Exploratory Data Analysis – Working Day

Overall average bike rental count on a Working day or Non-working day are sa

7

Exploratory Data Analysis Temperature

Steady increase in biking count with temperature

Ideal temperature for biking is between 32 and 36 degree Celsius

Exploratory Data Analysis

- Two biking patterns
 - Working Day Pattern: Registered Users + Working daily Commuters + 8am & 5pm peak hours
 - Non-Working Day Pattern: Casual Users + Tourists on Holidays + Steady pattern with ~12 noon peak count

Exploratory Data Analysis – Monthly Distribution

• Most rentals are in the months of June and May while least are on January and February.

Regression Plots

- We see a positive correlation between *count* and *temperature*
- We see a negative correlation between *count* and *humidity*
- Count has a weak dependence on windspeed and several missing (or erroneous) data points (labeled as 0s)

Correlation Analysis – Heatmap

- temp (true temperature) and atemp (feels like temperature) are highly correlated
- count = casual + registered → count is highly correlated with casual and registered

Feature Engineering

Feature Engineering – 1

		season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count	month	date	hour	day
	datetime			<u>I</u>												
2	2011-01-01 00:00:00	Spring	0	0	Clear	9.84	14.395	81	0.0	3	13	16	1	1	0	Saturday
2	2011-01-01 01:00:00	Spring	0	0	Clear	9.02	13.635	80	0.0	8	32	40	1	1	1	Saturday
2	2011-01-01 02:00:00	Spring	0	0	Clear	9.02	13.635	80	0.0	5	27	32	1	1	2	Saturday

weather_1 weather_2

datetime		
2011-01-01 00:00:00	1	0
2011-01-01 01:00:00	1	0
2011-01-01 02:00:00	1	0

month_1 month_2 month_3 ... month_9 month_10 month_11

	weather	monui	noui
datetime			
2011-01-01 00:00:00	1	1	0
2011-01-01 01:00:00	1	1	1
2011-01-01 02:00:00	1	1	2

weather month hour

OneHotEncoding

datetime						
2011-01-01 00:00:00	1	0	0	0	0	0
2011-01-01 01:00:00	1	0	0	0	0	0
2011-01-01 02:00:00	1	0	0	0	0	0

hour_0 hour_1 hour_2 ... hour_20 hour_21 hour_22

datetime

2011-01-01 00:00:00	1	0	0	0	0	0
2011-01-01 01:00:00	0	1	0	0	0	0
2011-01-01 02:00:00	0	0	1	0	0	0

13

Modeling Overview

Modeling Steps

Evaluation Metric - RMSLE

•
$$\sqrt{\frac{1}{n}\sum_{i}^{n}(\log (p_i+1) - \log(a_i+1))^2}$$

- *n* is the number of hours in the test set
- p_i is the predicted count
- ullet a_i is the actual count
- log(x) is the natural logarithm

Train-Test Split

Stacking Modeling Procedure

RMSLE & Modeling Time Summary

Random Forest Regression Hyperparameter Tuning

Random Forest Regression Model Performance

Random Forest Regression Feature Importance

Random Forest Regression One Sample Decision Tree

Limitations and Ideas for Model Imporvement

Conclusions