

 $\bar{z} = x - iy = re^{-i\theta}$ est le *conjugué* de z

 $\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2 \text{ et } \overline{z_1 - z_2} = \overline{z}_1 - \overline{z}_2$

 $\overline{z_1 \cdot z_2} = \overline{z}_1 \cdot \overline{z}_2 \text{ et } \left(\frac{z_1}{z_2}\right) = \frac{\overline{z}_1}{\overline{z}_2}$

 $\overline{z^n} = \overline{z}^n$

 $z + \bar{z} = 2\Re e(z)$ $z - \bar{z} = 2i \mathcal{I} m(z)$

$\mathcal L$ angage de la géométrie plane		£angage de l'algébre dans ℂ		
A	1	a		
В	Λ.	C = c-a $C(c)$ b		
C	A(a)	c		
D	$A(a) \xrightarrow{\theta \equiv \arg\left(\frac{c-a}{b-a}\right)} [2\pi]$ $B(b)$			
J	(4)	j		
G		8		
ABCD parallélogramme		b - a = c - d		
(AB) // (CD)		$\exists k \in \mathbb{R}, b-a=k(d-c), i.e. \frac{b-a}{d-c} \in \mathbb{R}$		
A,B,C alignés		$\exists k \in \mathbb{R}, b-a=k(c-a) i.e. \frac{b-a}{c-a} \in \mathbb{R}$		
J milieu de [AB]		$j = \frac{a+b}{2}$		
$G = bar \{(A, \alpha), (B, \beta), (C, \gamma)\}$		$g = \frac{\alpha a + \beta b + \gamma c}{\alpha + \beta + \gamma}$		
ABC triangle isocèle rectangle en A		$\frac{c-a}{b-a} = \pm i$		
ABC triangle rectangle en A		$\exists k \in \mathbb{R}, \frac{c-a}{b-a} = k i, i.e. \frac{c-a}{b-a} \in \mathbb{I}$		
ABC triangle isocèle en A		$\exists \theta \in \mathbb{R}, \frac{c-a}{b-a} = e^{i\theta}, i.e. \left \frac{c-a}{b-a} \right = 1$		
ABC triangle équilatérale		$\frac{c-a}{b-a} = e^{\pm i\frac{\pi}{3}}$		
M est sur la médiatrice du segment [AB]		b-z = a-z		
M est sur le cercle de centre Ω de rayon R		$ z - z_0 = R$		
$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$				

Formule de Moivre :

 $(\cos\theta + i\sin\theta)^n = (\cos n\theta + i\sin n\theta)$

 $\sin 2\theta = 2\sin\theta\cos\theta$

Langage des symétries planes	Repère complexe $(\Omega, \overrightarrow{u})$	Repère complexe (O, \overrightarrow{u})
$\cos(a+b) = \cos a \cos b - \sin a \sin b$	$-z_0$	0
$\cos(a-b) = \cos a \cos b + \sin a \sin b$	0	$Z = z - z_0 \qquad \qquad z_0$
$\sin(a+b) = \sin a \cos b + \cos a \sin b$	Z $ \frac{\Omega_1}{2}$	Z
$\sin(a-b) = \sin a \cos b - \cos a \sin b \qquad M'$	Z' O	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
M' est l'image de M par la translation de vecteur $\overrightarrow{\Omega M}$	Z' = Z + t	z' = z + t
M' est l'image de M par la rotation de centre Ω d'angle θ	$Z' = e^{i\theta}Z$	$z' = e^{i\theta} \left(z - z_0 \right) + z_0$
M' est l'image de M par l'homothétie de centre Ω de rapport k	Z' = kZ	$z' = k\left(z - z_0\right) + z_0$