Title

D. Zack Garza

Friday 20th March, 2020

Contents

1	Frid	lay February 21st	1
	1.1	Singularities	1

1 Friday February 21st

1.1 Singularities

Recall that there are three types of singularities:

- Removable
- Poles
- Essential

Theorem 1.1(3.2).

An isolated singularity z_0 of f is a pole $\iff \lim_{z \to z_0} f(z) = \infty$.

Theorem 1.2(3.3, Casorati-Weierstrass).

If f is holomorphic in $D_r(z_0) \setminus \{z_0\}$ and has an essential singularity z_0 , then there exists a radius r such that $f(D_r(\{z_0\}) \setminus \{z_0\})$ is dense in \mathbb{C} .

Proof.

Proceed by contradiction. Suppose there exists a $w \in \mathbb{C}$ and a $\delta > 0$ such that

$$D_{\delta}(w) \bigcap f(D_r(\{z_0\}) \setminus \{z_0\}) = \emptyset.$$

If $z \in D_r(w) \setminus z_0$, then $|f(z) - w| > \delta$. Define $g(z) = \frac{1}{f(z) - w}$ on $D_r(z_0) \setminus \{z_0\}$; then $|g(z)| < \frac{1}{\delta}$. Then g(z) has a removable singularity at $z = z_0$ by theorem 3.1. If $g(z_0) \neq 0$, then f(z) - w is holmorphic at z_0 . If not, then z_0 is a pole.