Lineaire Algebra Huiswerk

Jasper Vos Huiswerkset 3 23 september 2025

Studentnr: s2911159

Opgave 2.2.9 (4)

Nulelement

We stellen de nulfunctie op namelijk $f: \mathbb{R} \to \mathbb{R}$ met $f_0(x) = 0$, dan $f_0(3) = 0$ en dus $f_0 \in V$.

Optelling

Zij f_1, f_2 willekeurig gekozen in V, en laat $g = f_1 + f_2$, dan:

$$g(3) = (f_1 + f_2)(3)$$

$$= f_1(3) + f_2(3)$$

$$= 0 + 0$$

$$= \boxed{0}$$

Hieruit volgt dus dat g(3) = 0 en dus $g \in V$.

Vermedigvuldiging

Zij $\lambda \in \mathbb{R}$ en f willekeurig gekozen in V dan:

$$\lambda f(3) = \lambda(0)$$
$$= \boxed{0}$$

Axioma's

1. Additieve commutativiteit:

Te bewijzen: Voor alle $f, g \in V$ geldt f(x) + g(x) = g(x) + f(x).

Bewijs. Merk op dat $f(x), g(x) \in \mathbb{R}$, en voor \mathbb{R} geldt dat termen commutatief zijn. Dus f(x)+g(x)=g(x)+f(x). \square

2. Additieve associativiteit:

Te bewijzen: Voor alle $f, g, h \in V$ geldt dat (f + (g + h))(x) = ((f + g) + h)(x).

Bewijs.

$$(f+(g+h))(x)=f(x)+(g+h)(x) \quad (f(x),g(x),h(x)\in\mathbb{R} \text{ en dus associatief})$$

$$=f(x)+g(x)+h(x)$$

$$=(f+g)(x)+h(x)$$

$$=((f+g)+h)(x)$$

Dus V is associatief.

3. Neutraal element:

Te bewijzen: Voor alle $f \in V$ geldt $f + f_0 = f$

Bewijs. Merk op dat $f_0(x) = 0$ en dus $f(x) + f_0(x) = f(x) + 0 = f(x)$.

4. Bestaan van negatieven:

Te bewijzen: Voor alle $f \in V$ bestaat er een $f' \in V$ zodanig dat $f + f' = f_0$.

Bewijs. We weten dat $f(x) \in \mathbb{R}$ ligt en voor \mathbb{R} geldt dat elk element een additieve inverse heeft. Dus neem f'(x) = -f(x) dan $f(x) + f'(x) = f_0(x)$.

5. Scalaire Vermedigvuldiging is associatief:

Te bewijzen: Voor alle $\lambda, \mu \in \mathbb{R}$ en $f \in V$ geldt: $(\lambda \odot (\mu \odot f))(x) = ((\lambda \odot \mu) \odot f)(x)$.

Bewijs. We weten dat λ, μ en f(x) allemaal in \mathbb{R} liggen en voor \mathbb{R} geldt dat vermedigvuldiging associatief is dus:

$$\begin{split} (\lambda\odot(\mu\odot f))(x) &= \lambda(\mu\odot f)(x) \\ &= \lambda(\mu f(x)) \\ &= (\lambda\mu)f(x) \\ &= ((\lambda\odot\mu)\odot f)(x) \end{split}$$

6. Vermedigvuldiging met 1 doet niks:

Te bewijzen: Voor alle $f \in V$ geldt $1 \odot f = f$.

Bewijs. Merk op $f(x) \in \mathbb{R}$, dan $1 \odot f(x) = f(x)$.

7. Distributiviteit I:

Te bewijzen: Voor alle $\lambda \in \mathbb{R}$ en voor alle $f, g \in V$ geldt $(\lambda \odot (f+g))(x) = (\lambda \odot f)(x) \oplus (\lambda \odot g)(x)$.

Bewijs. Merk op dat $f(x) \in \mathbb{R}$ en voor \mathbb{R} geldt dat het distributief is, en dus:

$$(\lambda \odot (f+g))(x) = \lambda \odot (f(x) + g(x))$$
$$= (\lambda \odot f)(x) \oplus (\lambda \odot g)(x)$$

8. Distributiviteit II:

Te bewijzen: Voor alle $\lambda, \mu \in \mathbb{R}$ en voor alle $f \in V$ geldt $((\lambda + \mu) \odot f)(x) = (\lambda \odot f)(x) \oplus (\mu \odot f)(x)$.

Bewijs. Merk op dat $f(x) \in \mathbb{R}$ en voor \mathbb{R} geldt dat het distributief is, en dus:

$$((\lambda \odot \mu) + f)(x) = (\lambda \odot \mu)f(x)$$
$$= (\lambda \odot f)(x) \oplus (\mu \odot f)(x)$$

V heeft een Nulelement, optelling, vermedigvuldiging, en voldoet aan de acht axioma's waardoor we kunnen zeggen at V een vectorruimte is.

Opgave van brightspace

Bewijs met tegenvoorbeeld. Neem vectoren v=(3,9), w=(4,16), dan moet $v+w\in V$ zodat we een optelling kunnen definiëren. Hieruit volgt dat v+w=(3+4,9+16)=(7,25), maar $7^2=49\neq 25$ en dus is optelling niet goed gedefinieerd in V. Waardoor V dus geen vectorruimte kan zijn.