

SentiCap: Generating Image Descriptions with Sentiments

Alexander Mathews¹, Lexing Xie^{1,2}, Xuming He^{2,1}

This is a dog resting on a computer.

A white shaggy beautiful dog laying its head on top of a computer keyboard.

A motorcycle parked behind a truck on a green field. A beat up, rusty motorcycle on unmowed grass by a truck and trailer.

Image Captions and Sentiment

Sentiment is common in everyday language

Sentiment drives decision making

Where to eat for lunch

What to read

Who to vote for

I had a very tasty burger with some crunchy fries.

My overcooked burger and soggy fries.

With sentiment we can:

- Make more interesting and more human captions
- change the way people feel about an image

Contents

Related work

Dataset construction

Switching RNN Model

Evaluation + Results

Related work: Image to Sentence

Nearest neighbour images + caption transfer (Farhadi, 2010)

Detectors for nouns, scenes, actions. With template filling and/ or language model (Kulkarni, 2011)

Convolution Neural Network + Recurrent neural network

(Vinyals, 2014), (Donahue, 2015), (Karpathy, 2015), (Mao, 2014), (Kiros, 2014)

Related Work: Sentiment

Recognising sentiment has been studied extensively

Used in areas such as:

Predicting movie reviews (Pang, 2005)

Understanding public opinion (Tumasjan, 2010)

Exploring large text collections (Mei, 2007)

Predicting sentiment of images (Borth 2013)

Using Adjective Noun Pair (ANP) detectors

I really enjoyed this film. Post

A complete waste of my time. Neg-

Positive Sentiment Negative Sentiment

Generating image captions with sentiment is still an open problem.

Sentiment Dataset

Existing image-caption datasets focus on descriptiveness (eg MSCOCO)

Captions are short so we need a compact way of incorporating sentiment

Use Adjective Noun Pairs (ANPs)

Collect captions from Amazon Mechanical Turk

Task: Re-write a descriptive sentence using an ANP from a list

Word Pairs

sunny field	good man
good game	beautiful home
great game	
better home	best man
nice man	great ball

- 1. a man swinging a bat during a baseball game
- 2. a baseball player bending over to hit a ball
- 3. a baseball player hitting a baseball at home base

Description

Dataset Validation

Validation: Another AMT task asking if the sentiment is appropriate

The painted train drives through a lovely city with country charm.

The abandoned train sits alone in the gloomy countryside.

A train on the train tracks.

	#imgs	#sente	descrip- tiveness	Correct sentiment: #votes				
		nce		3	2	1	0	
Coco	124	372	3.42±0.81	355	16	1	0	
Pos	124	335	3.34 ± 0.79	315	20	0	0	
NEG	123	305	2.69±1.11	250	49	6	0	

Incorporating Sentiment: Approach

Challenges:

- 1. Big data + Small data: many descriptive captions, few sentiment captions
- 2. Generate descriptive captions that **also** have sentiment
- 3. Identify the important parts of the se

Design a switching RNN that addresses these challenges

Sentence Generation: Recurrent Neural Networks

Softmax Layer

Eml	Embedding Layer						
Α	0.3, 0.1, 0.2,						
dog	0.5, 0.7, 0.8,						
runs	0.3, 0.2, 0.9,						

SentiCap: Our Model

The Base-RNN produces descriptive sentences. (Trained on large data)

The FineTuned-RNN produces captions with sentiment. (Tuned on our dataset)

Switch component

Switch Component

 γ_t^0 Indicates the presence or absence of a sentiment word.

$$\gamma_t^0 = \sigma(W_s[h_t^0; h_t^1])$$

$$\gamma_t^0 = P(s_t = 0 | x, y_{1:t-1})$$

h0

$$P(y_t|h_1, h_0) = \gamma_t^0 P(y_t|s_t = 0, h_0) + \gamma_t^1 P(y_t|s_t = 1, h_1)$$

Training Objective

Train the joint model on the sentiment dataset.

 Keep the parameters in the Finetuned RNN "close" to the BaseRNN parameters

- Cross-entropy term ensures:
 - both RNNs are used
 - an increased weight for correctly generating sentiment words

$$\mathcal{L}(\Theta, \mathcal{D}) = -\sum_{i} \sum_{i} (1 + \lambda_{\eta} \eta_{t}^{i}) [L_{t}(\Theta, x^{i}, y^{i}) + \lambda_{\gamma} (\eta_{t}^{i} \log \gamma_{t}^{1,i} + (1 - \eta_{t}^{i}) \log \gamma_{t}^{0,i})] - R(\Theta)$$

$$R(\Theta) = \frac{\lambda_{\theta}}{2} \left\| \Theta^1 - \Theta^2 \right\|^2$$

Results: Examples

a great variety of fresh fruits and vegetables

a cuddly cat is laying on a bed

an ugly car is parked in front of an abandoned building

a lonely train pulling into a train station

a delicious piece of cake sitting on top of a white plate

a clock on the side of a beautiful building

a silly cat standing in front of a dirty wall

Evaluating the Result

Automatic:

N-gram based metrics: BLEU, ROUGE, METEOR, CIDEr

Human:

Used Amazon Mechanical Turk

- Most positive caption
- Most interesting caption
- How descriptive is the caption

Avoiding poor quality workers

- Reject using average accuracy on human written captions
- More restrictive worker qualifications

Caption	Most positive	More interesting	D	Describes the image			
			Correctly	Almost	Barely	Unrelated	
a group of people on a boat in a body of water			01	2	3	4	
a great group of people on a boat in the calm water		0	01	2	3	04	

Sentences are identical

Results

		SEN%	B-1	B-2	B-3	B-4	$Rouge_L$	METEOR	$Cide_r$	SENTI	DESC	DESCCMP
	CNN+RNN	1.0	48.7	28.1	17.0	10.7	36.6	15.3	55.6	_	2.90 ± 0.90	_
Pos	ANP-Replace	90.3	48.2	27.8	16.4	10.1	36.6	16.5	55.2	84.8%	2.89 ± 0.92	95.0%
	ANP-Scoring	90.3	48.3	27.9	16.6	10.1	36.5	16.6	55.4	84.8%	$2.86{\pm}0.96$	95.3%
	RNN-Transfer	86.5	49.3	29.5	17.9	10.9	37.2	17.0	54.1	84 2%	2.73 ± 0.96	76.2%
	SentiCap	93.2	49.1	29.1	17.5	10.8	36.5	16.8	54.4	88.4%	$2.86{\pm}0.97$	84.6%
	CNN+RNN	0.8	47.6	27.5	16.3	9.8	36.1	15.0	54.6	_	2.81 ± 0.94	_
NEG	ANP-Replace	85.5	48.1	28.8	17.7	10.9	36.3	16.0	56.5	61.4%	2.51 ± 0.93	73.7%
	ANP-Scoring	85.5	47.9	28.7	17.7	11.1	36.2	16.0	57.1	64.5%	$2.52{\pm}0.94$	76.0%
	RNN-Transfer	73.4	47.8	29.0	18.7	12.1	36.7	16.2	55.9	68.1%	$2.52{\pm}0.96$	70.3%
	SentiCap	97.4	50.0	31.2	20.3	13.1	37.9	16.8	61.8	72.5%	2.40 ± 0.89	65.0%

Automatic Evaluation:

 sentences are similar to those in the sentiment dataset

Human Evaluation:

 sentences express stronger sentiment according to human evaluators

Summary

- 1. Introduced the task of generating image captions with sentiment
- 2. Constructed a dataset of image sentiment caption pairs
- 3. Designed a switching RNN model which:
 - a. Generates image descriptions
 - b. Uses a large descriptive dataset and a small sentiment dataset for training

A first step towards more natural and more interesting captions

Future: more fine-grained sentiments

Our dataset is available at:

http://
users.cecs.anu.edu.au/
~u4534172/senticap.html

Thank You.