Solution to Homework 9 (Finding Invariants, pt 1 & 2)

- 1. a. Roughly, the invariant will be weaker than the postcondition. (It certainly can't be stronger.)
 - b. The invariant must be true every time control is at the while test, including the first time.
 - c. The initialization code must establish the invariant even if we know we'll do zero iterations.
 - d. We can have $\neg B$ true anywhere inside the loop body (just not at its beginning or end).
- 2. u := 0; $\{inv(x^2 f(2^*y, u) < g(z^2, b) \land 0 \le u \le n\}$ while $u \ne a \ do ...; u := u+1 \ od$ v := -1; {inv (x² - f(2*y, a) < g(z², v) \wedge -n \leq v \leq -1} while $v \neq b$ do ...; v := v-1 od Replacing 2 by w in 2*y gives a candidate invariant of $(x^2 - f(w^*y, a) < g(z^2, v))$ but we don't know enough about the range of w to initialize it or to write a progress step.
- 3. For the postcondition $(x > 0 \lor y < n) \land (x < n \to f(x, n)) \land (f(y, n) \leftrightarrow y \ge 0)$, the invariants if we drop a conjunction are:
 - a. $\{inv (x < n \rightarrow f(x, n)) \land (f(y, n) \leftrightarrow y \ge 0)\}$ while $x \le 0 \land y \ge n ...$
 - b. $\{inv(x > 0 \lor y < n) \land (f(y, n) \leftrightarrow y \ge 0)\}$ while $x < n \land \neg f(x, n)$
 - c. $\{inv(x > 0 \lor y < n) \land (x < n \rightarrow f(x, n))\}\$ while $f(y, n) \oplus y \ge 0$ (where \oplus is logical XOR)
- 4. (Add a disjunct)
 - a. Taking the postcondition $p_1 \wedge p_2$ and dropping p_1 is the same as adding the disjunct $\neg p_1 \land p_2$ to $p_1 \land p_2$. Similarly, dropping p_2 is the same as adding $(p_1 \land \neg p_2)$ as a disjunct
 - b. Add a Disjunct is less constrained than Replace a Constant by a Variable or Drop a Conjunct because we can add any predicate as the disjunct (so long as we can test it). Replacing a constant by a variable is constrained by what constants appear in the postcondition. Dropping a conjunct is constrained by the number of conjuncts available.
- 5. (Full outline for Example 6: Faster Multiplication)

As in Example 5, x is the bound function. There's a slight complication in that after the if odd(x)... statement, either $x = x_0$ or $x_0 - 1$. For simplicity, I decided to use $x \le x_0$ instead.

$$\{x = x_0 \land y = y_0 \land x_0 \ge 0\}$$

 $z := 0;$
 $\{x = x_0 \land y = y_0 \land x_0 \ge 0 \land z = 0\}$
 $\{inv \ p = z = x_0 * y_0 - x * y \land x \ge 0\} \{bd \ x\}$
 $while \ x \ne 0 \ do$
 $\{p \land x \ne 0 \land x = x_0\}$

```
if odd(x) then
            \{p \land x \neq 0 \land odd(x) \land x = x_0\}
            \{p[x-1/x][z+y/z] \land even(x-1) \land x_0 \neq 0 \land 0 \leq x-1 \leq x_0\}
            z := z+y;
            \{p[x-1/x] \land even(x-1) \land x_0 \neq 0 \land 0 \leq x-1 \leq x_0\}
            \{p \land even(x) \land x_0 \neq 0 \land 0 \leq x \leq x_0\}
      else
            \{p \land x = x_0 \land x \neq 0 \land \neg odd(x)\}
            skip
            \{p \land x = x_0 \land x \neq 0 \land \neg odd(x)\}
            \{p \land even(x) \land x_0 \neq 0 \land 0 \leq x \leq x_0\}
     fi;
      \{p \land even(x) \land x_0 \neq 0 \land 0 \leq x \leq x_0\}
      {p[x \div 2/x][2*y/y] \land x \div 2 < x_0}
     y := 2*y;
     \{p[x \div 2/x] \land x \div 2 < x_0\}
     x := x \div 2
      \{p \land x < x_0\}
od
\{(p = z = x_0^*y_0 - x^*y) \land x = 0\} \{z = x_0^*y_0\}
```