Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_tehnologic*BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{5}(1+2\sqrt{5}) - \sqrt{5} = \sqrt{5} + 2\sqrt{5} \cdot \sqrt{5} - \sqrt{5} =$	3p
	$=2\cdot5=10$	2p
2.	$f(1) = 1^2 - 3 \cdot 1 + 1 = -1$	2p
	$f(2) = 2^2 - 3 \cdot 2 + 1 = -1$, deci $f(1) = f(2)$	3 p
3.	$x^2 - 21 = 4 \Rightarrow x^2 - 25 = 0$	3p
	x = -5 sau $x = 5$, care convin	2 p
4.	$x + \frac{10}{100} \cdot x = 220$, unde x este prețul inițial al obiectului	3 p
	x = 200 de lei	2p
5.	$x_M = \frac{x_A + x_B}{2} = 2$	3p
	$y_M = \frac{y_A + y_B}{2} = 6$	2p
6.	$m(A) = 180^{\circ} - 60^{\circ} - 60^{\circ} = 60^{\circ}$	3p
	$\cos A = \frac{1}{2}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 6 \\ -1 & -4 \end{vmatrix} = 1 \cdot (-4) - (-1) \cdot 6 =$	3p
	=-4+6=2	2 p
b)	$B \cdot A = \begin{pmatrix} -1 & -2 \\ -2 & -4 \end{pmatrix} = -\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$	3р
	$B \cdot A = -B$, deci $B \cdot A + B = O_2$	2p
c)	$B + nA = \begin{pmatrix} 1 + n & 2 + 6n \\ 2 - n & 4 - 4n \end{pmatrix} \Rightarrow \det(B + nA) = \begin{vmatrix} 1 + n & 2 + 6n \\ 2 - n & 4 - 4n \end{vmatrix} = 2n^2 - 10n, \text{ pentru orice număr}$	2p
	natural n	
	Cum det $B = 0$, obținem $2n^2 - 10n = 2n$, deci $n = 0$ sau $n = 6$, care convin	3 p
2.a)	$1 \circ (-1) = 1 + 2(-1) + 1 =$	3 p
	=1-2+1=0	2p
b)	$x \circ \left(-\frac{1}{2}\right) = x + 2 \cdot \left(-\frac{1}{2}\right) + 1 =$	3p
	= x + (-1) + 1 = x, pentru orice număr real x	2p

c)	Presupunem că legea de compoziție " \circ " admite elementul neutru $e \Rightarrow 0 \circ e = e \circ 0 = 0$	3 p
	$0 \circ e = 0 \Leftrightarrow 2e + 1 = 0 \Leftrightarrow e = -\frac{1}{2}, e \circ 0 = 0 \Leftrightarrow e + 1 = 0 \Leftrightarrow e = -1, \text{ contradicție, deci legea de}$	2 p
	compoziție " ° " nu admite element neutru	

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = \frac{2x(x^2+1)-2x(x^2+2)}{(x^2+1)^2} =$	3 p
	$= \frac{2x(x^2 + 1 - x^2 - 2)}{(x^2 + 1)^2} = \frac{-2x}{(x^2 + 1)^2}, \ x \in \mathbb{R}$	2 p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 + 2}{x^2 + 1} = \lim_{x \to +\infty} \frac{x^2 \left(1 + \frac{2}{x^2}\right)}{x^2 \left(1 + \frac{1}{x^2}\right)} = 1$	3 p
	Dreapta de ecuație $y=1$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2 p
c)	Dacă $g:[0,1] \to \mathbb{R}$, $g(x) = f(x) + \ln(x^2 + 1)$, atunci $g'(x) = \frac{-2x}{(x^2 + 1)^2} + \frac{2x}{x^2 + 1} = \frac{2x^3}{(x^2 + 1)^2} \ge 0$,	3p
	pentru orice $x \in [0,1]$, deci g este crescătoare pe $[0,1] \Rightarrow g(x) \le g(1)$, pentru orice $x \in [0,1]$	
	Cum $g(1) = \frac{3}{2} + \ln 2 < \frac{3}{2} + 1 = \frac{5}{2}$, obținem $g(x) < \frac{5}{2}$, deci $f(x) + \ln(x^2 + 1) < \frac{5}{2}$, pentru orice	2 p
	$x \in [0,1]$	
2.a)	$\int_{0}^{2} (x+1) f(x) dx = \int_{0}^{2} (x+1) \cdot \frac{e^{x}}{x+1} dx = \int_{0}^{2} e^{x} dx = e^{x} \Big _{0}^{2} =$	3 p
	$=e^2-e^0=e^2-1$	2p
b)		3p
	$= \ln \frac{e}{2} = 1 - \ln 2$	2 p
c)	$\int_{0}^{1} \frac{e^{x}}{x+1} dx + \int_{0}^{1} e^{x} \ln(x+1) dx = \int_{0}^{1} e^{x} (\ln(x+1))' dx + \int_{0}^{1} e^{x} \ln(x+1) dx =$	3p
	$= e^{x} \ln(x+1) \Big _{0}^{1} - \int_{0}^{1} e^{x} \ln(x+1) dx + \int_{0}^{1} e^{x} \ln(x+1) dx = e \ln 2$	2p