

Hugo Almeida Orlando Macedo □

Who Tests the Tests?

What metrics should be used to measure the quality of the **Tests**?

Code Coverage

Its main purpose is to find how many lines and branches are **executed** and **covered** by the unit tests.

It does not check if the **Tests** are actually able to **detect faults** in the executed code.

It is therefore only able to **identify** code that is **definitely not tested**.

Mutation Testing

Form of white-box testing that evaluate the quality of unit tests by **changing** the source code or byte code (creating **mutants**) and running the tests.

As an example, changes (called **mutations**) can be accomplished by:

- Duplicating or deleting a statement
- Alter True or False expressions/variables

Types of Mutation Testing

```
int a = 75636737;
int b = 3454;
int mult = a * b;
print(mult);
```

```
int a = 75;
int b = 345466465;
int mult = a * b;
print(mult);
```

Decision Mutation

Control statements are changed

Value Mutation

Values of parameters are modified

```
if (a>b || b>c)
{
  print("yes");
}
else
{
  print ("No");
}
```

```
if (a<b || b<c)
{
  print("yes");
}
else
{
  print ("No");
}</pre>
```

Types of Mutation Testing

```
if (a > b)
{
print("a is greater");
}
else
{
print("b is greater");
}
```

```
if(a > b)
{
// removing the statement
}
else
{
print("b is greater");
}
```

Statement Mutation

Changes are made in the statements of code. These might include deleting, changing order, repeating, etc.

Traditional Mutation Operators

How to execute Mutation Testing

Types of Mutants

Survived/Live Mutants

Remain alive after the tests are ran. Test cases should be changed in order to kill them Killed Mutants

Killed after the tests are ran. Tests results are different between the original and mutated variant of the source code

Equivalent Mutants

Like Survived/Live
Mutants but the test
cases can't be
changed in order to
kill them

Types of Mutants

First Order Mutants

Simple faults, generated by a single syntactic change Higher Order Mutants

Combination of multiple first order faults

Mutation Score

Test cases are mutation adequate if the score is 100%

Is It Worth It?

Advantages

Ability to identify **weak tests** or **code**.

Uncovers **ambiguities** in the source code.

Evaluate the **quality** of our test suite and adjust accordingly.

Disadvantages

Can be **time-consuming** and **expensive**.

Not applicable for Black Box Testing.

Need to counter check the surviving mutants, as some are invalid.

Tools

- Llvm-mutate
- Frama-C plugin
- Mutate_cpp
- MUCPP
- Accmut

- Stryker
- Testura
- Faultify
- VisualMutator

- PIT
- MuJava
- Judy
- Jumble
- Major

- Stryker
- Mutode

- Cosmic-ray
- Mumut

- MutPy
- Mutatest

Infection

Java Mutation Test Tools

	Updated	Mutant Generation Level	Traditional & object oriented Mutation Operators available	Mutant Code	Operator selection available	Output Generated
MuJava	2015	Java Code and ByteCode	Both	Separate Source and Class Files	Yes	Live/Killed Mutants, Mutation Coverage
Judy	2017	Java Code	Both	In Memory	Yes	Live/Killed Mutants, Mutation Coverage
Jumble	2015	Byte Code	Just Traditional	In Memory	No	Mutation Coverage, Live Mutants
PIT	2021	Byte Code	Just Traditional	In Memory	Yes	Mutation Coverage, Live/Killed Mutants, Line Coverage
Major	2019	Java Code?	Just Traditional	In Memory, can be exported	Yes	Mutation Coverage, Live/Killed Mutants

Why PIT?

Compatible with Maven/Gradle

Easy to Use

IDE Plugins (Eclipse, IntelliJ, +)

Actively

developed

/supported

Fast

PIT Mutation Operators (Mutators)

- Conditionals Boundary Mutator
- Increments Mutator
- Invert Negatives Mutator
- Math Mutator
- Negate Conditionals Mutator
- Return Values Mutator
- Void Method Calls Mutator
- Empty Returns
- False/True/Null Returns
- Remove Conditionals Mutator

```
if (a < b) {
  // do something
}

if (a <= b) {
  // do something
}</pre>
```

```
if (a == b) {
  // do something
}

if (a != b) {
  // do something
}
```

```
int a = b + c; int a = b - c;
```

PIT Extra Features (Maven)

mutationsThreshold

Mutation Score Threshold At Which To Fail Build

withHistory

Use Historical Files
To Speed Up
Analysis

targetClass

Specify Which Classes Should Be Mutated

maxMutationsPerClass

Specify Max Mutations On A Class

threads

How Many Threads To Use When Making Mutations (default = 1)

mutators

Make Mutations
With List Of
Desired
Mutators

Demo

Questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

Please keep this slide for attribution