



UNIVERSITY OF  
FLORIDA



# Robust Capon Beamforming

DISTRIBUTION STATEMENT A  
Approved for Public Release  
Distribution Unlimited

*Yi Jiang*      University of Florida

*Petre Stoica*      Uppsala University

*Zhisong Wang*      University of Florida

*Jian Li*      University of Florida

March 11, 2003

ASAP Workshop 2003

# Outline

- Standard Capon Beamforming (SCB)
- Norm Constrained Capon Beamforming (NCCB)
- Robust Capon Beamforming (RCB)
- Coherent RCB (CRCB)
- Simulation Results
- Conclusions

20040303 255

March 11, 2003

ASAP Workshop 2003

2

# Standard Capon Beamforming (SCB)

$$\hat{\mathbf{w}}_{SCB} = \arg \min_{\mathbf{w}} \mathbf{w}^* \mathbf{R} \mathbf{w} \quad \text{s.t.} \quad \mathbf{w}^* \mathbf{a}_0 = 1$$

$$\hat{\mathbf{w}}_{SCB} = \frac{\mathbf{R}^{-1} \mathbf{a}_0}{\mathbf{a}_0^* \mathbf{R}^{-1} \mathbf{a}_0}$$

Signal power estimate

$$\hat{\sigma}_0^2 = \mathbf{w}_{SCB}^* \mathbf{R} \mathbf{w}_{SCB} = 1 / (\mathbf{a}_0^* \mathbf{R}^{-1} \mathbf{a}_0)$$

# Norm Constrained Capon Beamforming (NCCB)

$$\hat{\mathbf{w}}_{NCCB} = \arg \min_{\mathbf{w}} \mathbf{w}^* \mathbf{R} \mathbf{w} \quad \text{s.t.} \quad \mathbf{w}^H \mathbf{a}_0 = 1 \\ \|\mathbf{w}\|^2 \leq \zeta$$

Diagonal loading:

$$\hat{\mathbf{w}}_{NCCB} = \frac{(\mathbf{R} + \lambda \mathbf{I})^{-1} \mathbf{a}_0}{\mathbf{a}_0^* (\mathbf{R} + \lambda \mathbf{I})^{-1} \bar{\mathbf{a}}_0}$$

Loading level  $\lambda$  determined by norm constraint.

# Recent Robust Beamformers

## Directly Address Steering Vector Uncertainties!

- Based on original SCB formulation
  - Robust adaptive beamforming based on worst-case performance optimization  
[Vorobyov, Gershman, Luo, 2001]
  - Robust minimum variance beamforming  
[Lorenz, Boyd, 2001]

# Our RCB

Directly Address Steering Vector Uncertainties!

- Based on Covariance Fitting

- Robust Capon Beamforming [Stoica, Wang, Li, 2002]
- On Robust Capon Beamforming and Diagonal Loading [Li, Stoica, Wang, 2002]

- New features

- Steering vector within an uncertainty set
- Incorporate uncertainty set into formulation directly
- Computationally most efficient
- Conceptually simple
- Scaling ambiguity eliminated

# Covariance Fitting

$$\max_{\sigma^2} \sigma^2 \quad \text{s.t.} \quad R - \sigma^2 a_0 a_0^* \geq 0$$

$$\begin{aligned} & R - \sigma^2 a_0 a_0^* \geq 0 \\ \Leftrightarrow & I - \sigma^2 R^{-1/2} a_0 a_0^* R^{-1/2} \geq 0 \\ \Leftrightarrow & 1 - \sigma^2 a_0^* R^{-1} a_0 \geq 0 \\ \Leftrightarrow & \sigma^2 \leq \frac{1}{a_0^* R^{-1} a_0} = \hat{\sigma}_0^2 \end{aligned}$$

Same signal power estimate as SCB!

# Our Robust Capon Beamformer (RCB)

- Incorporate ellipsoidal uncertainty set into covariance fitting

$$\max_{\sigma^2, \mathbf{a}} \sigma^2 \quad \text{s.t.} \quad \mathbf{R} - \sigma^2 \mathbf{a}\mathbf{a}^* \geq 0$$
$$\forall \mathbf{a} \in \mathbf{a} = \mathbf{B}\mathbf{u} + \bar{\mathbf{a}}, \|\mathbf{u}\| \leq \epsilon$$

$\mathbf{B} \in \mathcal{C}^{M \times L}, L \leq M$  is of full column rank.

$$\Leftrightarrow \min_{\mathbf{a}} \mathbf{a}^* \mathbf{R}^{-1} \mathbf{a} \quad \text{s.t.} \quad \mathbf{a} = \mathbf{B}\mathbf{u} + \bar{\mathbf{a}}, \|\mathbf{u}\| \leq \epsilon$$

# Our RCB

- Without loss of generality, consider spherical uncertainty set:



- Solution at boundary of uncertainty set

$$\min_a a^* R^{-1} a \quad \text{s.t.} \quad \|a - \bar{a}\|^2 = \epsilon$$

March 11, 2003

ASAP Workshop 2003

# Our RCB

- o Use Lagrange multiplier method

$$\hat{a}_0 = \left( \frac{R^{-1}}{\lambda} + I \right)^{-1} \bar{a}$$

$$= \bar{a} - (I + \lambda R)^{-1} \bar{a}$$

- o Obtain Lagrange multiplier  $\lambda \geq 0$  by solving

$$g(\lambda) \stackrel{\Delta}{=} \| (I + \lambda R)^{-1} \bar{a} \|^2 = \epsilon$$

via Newton's method (monotonic polynomial -- computationally efficient)

## Scaling Ambiguity

- o Uncertainty in SOI steering vector cause scaling ambiguity

$(\sigma^2, \mathbf{a})$  and  $(\sigma^2/\alpha, \alpha^{1/2}\mathbf{a})$  yield same  $\sigma^2 \mathbf{a} \mathbf{a}^*$

- o Add constraint  $\|\mathbf{a}_0\|^2 = M$  to eliminate ambiguity

$$\hat{\mathbf{a}}_0 = \frac{M}{\|\hat{\mathbf{a}}_0\|} \hat{\mathbf{a}}_0 \quad \hat{\sigma}_0^2 = \hat{\sigma}_0^2 \|\hat{\mathbf{a}}_0\|^2 / M$$

# Main Steps of Our RCB

- o Step 1:  $R = U\Lambda U^*$
- o Step 2: Obtain Lagrange multiplier  $\lambda$
- o Step 3:  $\hat{a}_0 = \bar{a} - U(I + \lambda\Lambda)^{-1}U^*\bar{a}$
- o Step 4:  $\hat{\sigma}_0^2 = \frac{1}{\hat{a}_0^* \hat{R}^{-1} \hat{a}_0} = \frac{1}{\hat{a}_0^* (\frac{I}{\lambda} + \hat{R})^{-1} \bar{a}}$
- o Step 5:  $\hat{\sigma}_0^2 = \hat{\sigma}_0^2 \|\hat{a}_0\|^2 / M$

# Waveform Estimation

- Obtain weight vector based on  $\hat{a}_0$  or  $\bar{a}_0$
- Diagonal loading (spherical constraint)!

$$\begin{aligned}\hat{w}_0 &= \frac{\mathbf{R}^{-1}\hat{a}_0}{\hat{a}_0^*\mathbf{R}^{-1}\hat{a}_0} \\ &= \frac{\left(\mathbf{R} + \frac{1}{\lambda}\mathbf{I}\right)^{-1}\bar{a}}{\bar{a}^*\left(\mathbf{R} + \frac{1}{\lambda}\mathbf{I}\right)^{-1}\mathbf{R}\left(\mathbf{R} + \frac{1}{\lambda}\mathbf{I}\right)^{-1}\bar{a}}\end{aligned}$$

- Waveform estimate  $\hat{s}_0(n) = \hat{w}_0^* \mathbf{x}_n$

# Advantages of Our RCB

- Ambiguity elimination obvious for our RCB  
(not considered by others)
- Computation
  - Our RCB requires  $O(M^3)$  flops  
while  $O(M^{3.5})$  flops  
for [Vorobyov, Gershman, Luo, 2001]
  - More computations needed to determine Lagrange multiplier and polynomial not monotonic for [Lorenz, Boyd, 2001] -- also  $O(M^3)$  flops

# Numerical Examples

- $M = 10$  sensors
- Uniform linear array with half-wavelength spacing
- Array calibration error exists (independent complex Gaussian random variables added)

# Power Estimate vs. Angle

True powers denoted by circles.



March 11, 2003

ASAP Workshop 2003

# Making NCCB Have Same Diagonal Loading Level As RCB

$$\epsilon_0 = 1.0$$

$$\epsilon = 1.0$$



March 11, 2003

ASAP Workshop 2003

# NCCB and RCB Having Same Diagonal Loading Level



March 11, 2003

ASAP Workshop 2003

## Coherent RCB (CRCB)

- Motivation - GPS applications etc.



From Multipath Mitigation Performance of Planar GPS Adaptive Antenna Arrays for Precision Landing Ground Stations  
by J.H. Williams, et al., the MITRE Corporation

- Coherent multipaths exist
- DOAs of multipaths known relative to DOA of SOI

March 11, 2003

ASAP Workshop 2003

## CRCB

- Robust against coherent multipaths as well as steering vector errors.

Steering vector:  $\mathbf{a} + \mathbf{V}\mathbf{b}$

$\mathbf{a}$ : Steering vector of SOI

$\mathbf{V}$ : Steering vectors of coherent multipaths

- Covariance fitting

$$\max_{\sigma^2, \mathbf{a}, \mathbf{b}} \sigma^2 \quad \text{s.t.} \quad \mathbf{R} - \sigma^2(\mathbf{a} + \mathbf{V}\mathbf{b})(\mathbf{a} + \mathbf{V}\mathbf{b})^* \geq 0$$

$$\mathbf{a} = \mathbf{B}\mathbf{u} + \bar{\mathbf{a}}, \quad \|\mathbf{u}\|^2 \leq \epsilon$$

## Steps of CRCB

o Following similar steps in RCB

$$\Leftrightarrow \min_{\mathbf{a}, \mathbf{b}} (\mathbf{a} + \mathbf{V}\mathbf{b})^* \mathbf{R}^{-1} (\mathbf{a} + \mathbf{V}\mathbf{b})$$

$$\text{s.t. } \mathbf{a} = \mathbf{B}\mathbf{u} + \bar{\mathbf{a}}, \quad \|\mathbf{u}\|^2 \leq \epsilon$$

o Concentrating out  $\mathbf{b}$

$$\Leftrightarrow \min_{\mathbf{a}} \mathbf{a}^* \Gamma \mathbf{a}$$

$$\text{s.t. } \mathbf{a} = \mathbf{B}\mathbf{u} + \bar{\mathbf{a}}, \quad \|\mathbf{u}\|^2 \leq \epsilon$$

$$\text{with } \Gamma = \mathbf{R}^{-1/2} \mathbf{P}_V^\perp \mathbf{R}^{-1/2} \mathbf{V}$$

# Insight of CRCB

Let  $\mathcal{R}(G) = \mathcal{N}(V^*)$

$$\Leftrightarrow \min_a a^* G (G^* R G)^{-1} G^* a$$

$$\text{s.t. } a = Bu + \bar{a}, \|u\|^2 \leq \epsilon$$

- Project data to orthogonal subspace of  $V$
- Apply RCB to projected data

# Choice of Multipath Subspace

- o Error of  $V$  causes error of SOI steering vector
  - If  $G^*a_I \neq 0$ , it is combined with  $G^*a_0$
- o More columns in  $V$  means
  - o Better multipath elimination
  - o Loss of DOF for interference suppression.
- o Doubly RCB is robust against error of  $V$ 
  - o Columns in  $V$  should be as independent as possible

## Numerical Examples

- $M = 10$  sensors, 40 snapshots
- Uniform linear array with half-wavelength spacing
- 100 Monte-Carlo trials for average output SNR

March 11, 2003

ASAP Workshop 2003

24

# Power Estimate vs. Angle



Assume  $V = [a(-\theta_0)]$

March 11, 2003

ASAP Workshop 2003

# Output SINR vs. $\epsilon$



1-D null space: assume  $V = [a(-\theta_0)]$

2-D null space:  $V = [a(-\theta_0 - 0.5^\circ), a(-\theta_0 + 0.5^\circ)]$

March 11, 2003

ASAP Workshop 2003

# Summary

- Our RCB robust against steering vector errors.
  - Much more accurate SOI power estimate
  - Directly related to uncertainty of steering vector
  - Belongs to (extended) class of diagonal loading approaches
- Much better resolution and interference rejection capability than data-independent beamformers.
- Computationally efficient.
- Can be made robust against coherent interferences (CRCB).

**THANK YOU!**



March 11, 2003

ASAP Workshop 2003

# Array Calibration Errors

For small calibration errors

$$(1 + \delta_n)e^{j\phi_n} \simeq (1 + \delta_n)(1 + j\phi_n) \simeq 1 + \delta_n + j\phi_n$$

Random amplitude error

$$\delta_n \sim \mathcal{N}(0, \sigma_\delta^2)$$

Random phase error

$$\phi_n \sim \mathcal{N}(0, \sigma_\phi^2)$$

→ Array steering vector with calibration errors

$$\tilde{\mathbf{a}}(\theta) = (\mathbf{I} + \mathbf{P})\mathbf{a}(\theta)$$

where  $\mathbf{P} = \text{diag}\{\delta_1 + j\phi_1, \delta_2 + j\phi_2, \dots, \delta_N + j\phi_N\}$

$$\Rightarrow E\{\epsilon_0\} = E\{\|\tilde{\mathbf{a}}(\theta) - \mathbf{a}(\theta)\|^2\} = M(\sigma_\delta^2 + \sigma_\phi^2)$$

March 11, 2003

ASAP Workshop 2003