An Introduction to Mathematical Cryptography Notes and Exercises

John Peloquin

Chapter 1

Exercise (1.5). Suppose A is an alphabet of n letters.

- (a) There are *n*! simple substitution ciphers on *A*.
- (b) Define the function !*n* recursively by¹

$$!n = \begin{cases} 1 & \text{if } n = 0 \\ 0 & \text{if } n = 1 \\ n! - \sum_{k=1}^{n} {n \choose k} \cdot !(n-k) & \text{if } n > 1 \end{cases}$$

- (i) There are !*n* simple substitution ciphers on *A* leaving no letters fixed.
- (ii) There are n! !n simple substitution ciphers on A leaving at least one letter fixed.
- (iii) There are $n \cdot !(n-1)$ simple substitution ciphers on A leaving exactly one letter fixed.
- (iv) There are $n!-!n-n\cdot!(n-1)$ simple substitution chipers on A leaving at least two letters fixed.

Proof. For (a), note that a simple substitution cipher on A is just a permutation of A, and there are n! permutations of A.

For (b), we prove (i) by induction on n. Cases n = 0, 1 are trivial. Suppose n > 1 and the result is true for all m < n. Let φ_k be the number of permutations

¹A more efficient recursive definition for n > 1 is given by !n = (n-1)[!(n-1)+!(n-2)].

of A fixing exactly k elements, for $1 \le k \le n$. Clearly the desired number is

$$n! - \sum_{k=1}^{n} \varphi_k$$

To compute φ_k , note that in order to permute the elements of A while fixing k elements, we must choose k elements to fix and then permute the remaining n-k elements without fixing any of them. The number of possible ways to choose k elements from A is just $\binom{n}{k}$. By induction, the number of ways to permute the remaining n-k elements without fixing any of them is !(n-k). So $\varphi_k = \binom{n}{k} \cdot !(n-k)$.

Now (ii) follows trivially from (a) and (i); (iii) follows from the proof of (ii) by taking φ_1 ; and (iv) follows trivially from (a), (i), and (iii).

For example, when n = 4, there are 24 simple substitution ciphers, 9 of which leave no letters fixed, 15 of which leave at least one letter fixed, 8 of which leave exactly one letter fixed, and 7 of which leave at least two letters fixed.

Exercise (1.11). Let a and b be positive integers.

- (a) If u and v are integers with au + bv = 1, then gcd(a, b) = 1.
- (b) If u and v are integers with au + bv = 6, it is not necessarily true that gcd(a, b) = 6, but gcd(a, b) will be a divisor of 6.
- (c) If (u_1, v_1) and (u_2, v_2) are solutions of au + bv = 1, then a divides $v_2 v_1$ and b divides $u_2 u_1$.
- (d) If $g = \gcd(a, b)$ and (u_0, v_0) is a solution to au + bv = g, then each other solution has the form

$$u = u_0 + \frac{kb}{g} \qquad v = v_0 - \frac{ka}{g}$$

for some integer *k*.

- *Proof.* (a) Trivially $1 \mid a$ and $1 \mid b$. If $d \mid a$ and $d \mid b$, then $d \mid au$ and $d \mid bv$, so $d \mid au + bv = 1$.
 - (b) Let a = b = 3 and u = v = 1. Then $au + bv = 6 \neq 3 = \gcd(a, b)$. The second claim follows from the proof of (a).

(c) We have

$$au_1 + bv_1 = au_2 + bv_2$$

 $au_1 - au_2 = bv_2 - bv_1$
 $a(u_1 - u_2) = b(v_2 - v_1)$

Now $a \mid b(v_2 - v_1)$, but gcd(a, b) = 1 by (a), so $a \mid v_2 - v_1$. Similarly $b \mid u_2 - u_1$.

(d) If (u, v) is another solution, then

$$au_0 + bv_0 = au + bv = g$$

Dividing by g, this becomes

$$\frac{a}{g}u_0 + \frac{b}{g}v_0 = \frac{a}{g}u + \frac{b}{g}v = 1$$

Let a' = a/g and b' = b/g. By the proof of (c), there exists k such that $ka' = v_0 - v$ and $kb' = u - u_0$, so

$$u = u_0 + kb' = u_0 + \frac{kb}{g}$$
 $v = v_0 - ka' = v_0 - \frac{ka}{g}$

Exercise (1.21). Let m > 1.

- (a) If *m* is odd, then $(m+1)/2 = 2^{-1} \mod m$.
- (b) If b > 0 and $m \equiv 1 \mod b$, then

$$\frac{(b-1)(m-1)}{b} + 1 = b^{-1} \bmod m$$

Proof. Note (a) follows from (b) by taking b = 2, so it is sufficient to prove (b). Since $b \mid m-1$, the quantity on the left of the equation is an integer, and since m > 1,

$$0 \le (b-1)(m-1) < b(m-1)$$
$$0 \le \frac{(b-1)(m-1)}{b} < m-1$$
$$1 \le \frac{(b-1)(m-1)}{b} + 1 \le m-1$$

Finally,

$$b\left[\frac{(b-1)(m-1)}{b} + 1\right] = (b-1)(m-1) + b = (b-1)m + 1 \equiv 1 \mod m$$

Exercise (1.26). There are infinitely many primes.

Proof. Suppose there are only finitely many primes, say $p_1, ..., p_k$. Let

$$N = p_1 \cdots p_k + 1$$

By the fundamental theorem of arithmetic, there exists a prime p with $p \mid N$, so $N \equiv 0 \mod p$. But by assumption, $p = p_i$ for some $1 \le i \le k$, so $p \mid p_1 \cdots p_k$ and hence $N \equiv 1 \mod p$, a contradiction.

Exercise (1.33). If p is prime, q = (p-1)/2 is also prime, 0 < g < p, $g \not\equiv \pm 1 \mod p$, and $g^q \not\equiv 1 \mod p$, then g is a primitive root mod p.

Proof. Let *n* be the order of $g \mod p$. We claim n = p - 1.

By assumption, $g^q \not\equiv 1 \mod p$, but by Fermat's little theorem,

$$(g^q)^2 = g^{2q} = g^{p-1} \equiv 1 \mod p$$

Therefore g^q has order 2 mod p, and hence $2 \mid n$ by Lagrange's theorem. If n = 2, then $g^2 \equiv 1 \mod p$, hence $g \equiv \pm 1 \mod p$, contrary to our assumption. So we must have n > 2.

Now $n \mid p-1$, so p-1=nk=2jk for some integers j and k with j>1. But since jk=(p-1)/2=q is prime, this means k=1 and hence n=p-1 as desired.

Exercise (1.46). The XOR cipher defined on bit strings by

$$e_k(m) = k \oplus m$$
 and $d_k(c) = k \oplus c$

is not secure against a chosen plaintext attack.

Proof. If the pair m and $c = k \oplus m$ are known, then k is easily recovered as

$$c \oplus m = (k \oplus m) \oplus m = k \oplus (m \oplus m) = k \oplus 0 = k$$

For example, working with 16-bit strings, if m = 0010010000101100 and c = 1001010001010111, then k = 1011000001111011.

Chapter 2

Exercise (2.3). Let g be a primitive root modulo p. Define

$$\log_g : \mathbb{F}_p^* \to \mathbb{Z}/(p-1)\mathbb{Z}$$

as follows: for $h \in \mathbb{F}_p^*$, $\log_g(h) = x$ if and only if $0 \le x < p-1$ and $g^x = h$. Then \log_g witnesses an isomorphism from \mathbb{F}_p^* to $\mathbb{Z}/(p-1)\mathbb{Z}$.

Proof. First observe that \log_g is well defined. Since g is a primitive root mod p, for each $h \in \mathbb{F}_p^*$ there exists at least one $0 \le x < p-1$ such that $g^x = h$. If $0 \le x, y < p-1$ and $g^x = h = g^y$, then $g^{x-y} = 1$, so $p-1 \mid x-y$ and hence x = y.

Observe also that \log_g is injective. If $h_1, h_2 \in \mathbb{F}_p^*$ and $\log_g h_1 = x = \log_g h_2$, then $h_1 = g^x = h_2$. Since \mathbb{F}_p^* and $\mathbb{Z}/(p-1)\mathbb{Z}$ both have order p-1, this this also shows that \log_g is surjective, and hence bijective.

If $h_1, h_2 \in \mathbb{F}_p^*$, we claim that

$$\log_g(h_1h_2) \equiv \log_g h_1 + \log_g h_2 \pmod{p-1}$$

Indeed, let $x_1 = \log_g h_1$ and $x_2 = \log_g h_2$, so $h_1 = g^{x_1}$ and $h_2 = g^{x_2}$. Then $h_1 h_2 = g^{x_1} g^{x_2} = g^{x_1 + x_2}$, so $\log_g (h_1 h_2) \equiv x_1 + x_2 \mod p - 1$ as claimed. This shows that \log_g is a homomorphism, and since it is bijective, an isomorphism.

Note by induction and the fact that $\log_g(h^{-1}) \equiv -\log_g(h) \mod p - 1$ for all $h \in \mathbb{F}_p^*$, it also follows that

$$\log_g(h^n) \equiv n \log_g h \pmod{p-1}$$

for all $h \in \mathbb{F}_p^*$ and $n \in \mathbb{Z}$.

Exercise (2.4). Using the brute force algorithm of computing powers $g^x \mod p$ manually for x = 0, 1, 2, ... we obtain the following discrete logarithms:

- (a) $\log_2 13 = 7 \mod 23$
- (b) $\log_{10} 22 = 11 \mod 47$
- (c) $\log_{627} 608 = 18 \mod 941$

Exercise (2.5). Let p be an odd prime and g be a primitive root modulo p. Then a has a square root modulo p if and only if $\log_g a$ is even.

Proof. Since \log_g is a homomorphism (Exercise 2.3), we know that

$$\log_g(x^2) \equiv 2\log_g(x) \pmod{p-1}$$

П

for all $x \in \mathbb{F}_p^*$, from which the desired result follows immediately.

Exercise (2.9). A Diffie-Hellman oracle can be used to decrypt arbitrary ElGamal ciphertexts.

Proof. Let p and g be known parameters for ElGamal encryption. Given an ElGamal ciphertext (c_1, c_2) , we know that $c_1 = g^k \mod p$ for some ephemeral key k and $c_2 = mA^k = m(g^a)^k = mg^{ak} \mod p$ for some plaintext message m and public key $A = g^a \mod p$ with corresponding private key a. Now given $A = g^a$ and $c_2 = g^k$, a Diffie-Hellman oracle provides us with g^{ak} , with which we can easily compute $m = c_2(g^{ak})^{-1}$.

This result shows that decrypting arbitrary ElGamal ciphertexts is no harder than the Diffie-Hellan problem. Together with the converse result (Proposition 2.10), this result shows that the difficulty of decrypting arbitrary ElGamal ciphertexts is equal to that of the Diffie-Hellman problem.

Exercise (2.17). Using the Shanks algorithm, we obtain the following discrete logarithms:

(a) $\log_{11} 21 = 37 \mod 71$

First we compute $n = \lfloor \sqrt{71} \rfloor + 1 = 8 + 1 = 9$. For i = 0, ..., 9 we compute values $11^i \mod 71$ to obtain the following list:

i	0	1	2	3	4	5	6	7	8	9
$11^i \mod 71$	1	11	50	53	15	23	40	14	12	61

Now we compute $u = 11^{-n} = 11^{-9} = (11^9)^{-1} = 61^{-1} = 7 \mod 71$. For j = 0, ..., 9 we compute values $21 \cdot 7^j \mod 71$ until we find a match:

j	0	1	2	3	4
$21 \cdot 7^j \mod 71$	21	5	35	32	11

We find a match 11 at i = 1 and j = 4, so $x = i + jn = 1 + 4 \cdot 9 = 37$ is the logarithm. Indeed, $11^{37} \equiv 21 \mod 71$.

Exercise (2.18). Using the Chinese remainder algorithm, we obtain solutions to the following systems of congruences:

(a) $x \equiv 3 \mod 7$ and $x \equiv 4 \mod 9$.

We start with the solution x = 3 to the first congruence. To find a solution to both congruences, we must find a solution to the second congruence which lies in the solution space of the first, which is x + 7y for $y \in \mathbb{Z}$. Such a solution must satisfy

$$3+7y \equiv 4 \pmod{9}$$

 $7y \equiv 1 \pmod{9}$
 $y \equiv 4 \pmod{9}$ since $7^{-1} \equiv 4 \pmod{9}$

We take y = 4 to yield the solution $3 + 7 \cdot 4 = 31$. Indeed, $31 \equiv 3 \mod 7$ and $31 \equiv 4 \mod 9$ as desired.

(d) $x \equiv 5 \mod 9$ and $x \equiv 6 \mod 10$ and $x \equiv 7 \mod 11$.

We start with the solution x = 5 to the first congruence. Proceeding as in (a), we obtain a solution to the first and second congruences by solving

$$5+9y \equiv 6 \pmod{10}$$

 $9y \equiv 1 \pmod{10}$
 $y \equiv 9 \pmod{10}$ since $9^{-1} \equiv 9 \pmod{10}$

We take y = 9 to yield the solution $5 + 9 \cdot 9 = 86$. Indeed, $86 \equiv 5 \mod 9$ and $86 \equiv 6 \mod 10$ as desired.

To find a solution to all three congruences, we must find a solution to the third congruence which lies in the *intersection* of the solution spaces of the first two, which is $86 + 9 \cdot 10z$ for $y \in \mathbb{Z}$. Such a solution must satisfy

$$86 + 90z \equiv 7 \pmod{11}$$

 $9 + 2z \equiv 7 \pmod{11}$
 $2z \equiv 9 \pmod{11}$
 $z \equiv 10 \pmod{11}$ since $2^{-1} \equiv 6 \pmod{11}$

We take z = 10 to yield the solution $86 + 90 \cdot 10 = 986$. Indeed, $986 \equiv 5 \mod 9$, $986 \equiv 6 \mod 10$, and $986 \equiv 7 \mod 11$.

Exercise (2.25). Let p and q be distinct odd primes and let n = pq.

- (a) If gcd(a, n) = 1 and a has a square root modulo n, then a has four square roots modulo n.
- *Proof.* (a) Let r be a square root of a modulo n. Then x is a square root of a modulo n if and only if $x^2 \equiv a \equiv r^2 \mod n$, which is true if and only if $x^2 \equiv r^2 \mod p$ and $x^2 \equiv r^2 \mod q$, which is true if and only if $x \equiv \pm r \mod p$ and $x \equiv \pm r \mod q$, since p and q are distinct primes.

This implies that the square roots of a modulo n are just the solutions to the following systems of congruences:

$x \equiv r \pmod{p}$	and	$x \equiv r \pmod{q}$	(1)
$x \equiv r \pmod{p}$	and	$x \equiv -r \pmod{q}$	(2)
$x \equiv -r \pmod{p}$	and	$x \equiv r \pmod{q}$	(3)
$x \equiv -r \pmod{p}$	and	$x \equiv -r \pmod{q}$	(4)

Since $p \neq q$, the Chinese remainder theorem guarantees that for each one of these systems, there is a unique solution modulo n = pq. This implies that there are *at most* four square roots of *a* modulo *n*.

Now r is one of the roots, and clearly so is -r. Note r is also a unit since a is a unit (because $\gcd(a,n)=1$). If $r\equiv -r \mod n$, then $1\equiv -1 \mod n$, so $2\equiv 0 \mod n$ —a contradiction since n>2. Therefore r and -r are distinct. Note r satisfies the first system, and -r satisfies the last system. Let s be the solution to the second system. Then -s is the solution to the third system, and s and s are also distinct. If s s mod s are distinct. If s s mod s are distinct. Similarly s and s are distinct since s such that s are distinct. Similarly s and s are distinct since s are distinct since s such that s are the four square roots of s modulo s.

References

[1] Hoffstein, J. and J. Pipher and J. H. Silverman. *An Introduction to Mathematical Cryptography.* Springer, 2008.