NOIP模拟赛

题目信息

序号	Α	В	С	D
题目中文名	运输	或	数	图
题目英文名	transport	or	number	graph
程序名称	transport.cpp	or.cpp	number.cpp	graph.cpp
输入文件	transport.in	or.in	number.in	graph.in
输出文件	transport.out	or.out	number.out	graph.out
时间限制	2s	2s	2s	2s
空间限制	512MB	512MB	512MB	512MB
题目类型	传统题	传统题	传统题	传统题
比较方式	全文比较	全文比较	全文比较	全文比较
测试点数量	10	20	6	25

注意事项:

- 1. 编译选项: [-1m -O2 -std=c++14 -W1,--stack=998244353]
- 2. C++ 中函数 main() 的返回值类型必须是 int, 程序正常结束时的返回值必须是 0
- 3. 若无特殊说明,结果比较方式为忽略行末空格,文末回车后的全文比较
- 4. 不保证题目按难度顺序排列,请选手自行判断做题顺序
- 5. 选手应将各题的源程序放在选手文件夹内,不要建立子文件夹
- 6. 评测使用 Windows 系统,系统为 64 位
- 7. 评测机配置: Intel(R) Core(TM) i7-10510U CPU @ 2.30GHz,内存 12G

A. 运输 (transport)

题目描述

松鼠王国有 n 个城市,城市与城市之间有道路相连,有 n-1 条道路,保证任意两个城市连通。每条道路都有边权。

现在,每个城市都贮存了一些松果。将x 个松果从u 城市运送到v 城市的代价为 $x \times dist(u,v)$,其中 dist(u,v)为 u 城市到v 城市的距离,定义为从u 城市到v 城市最短路径的边权之和。国王想要通过以一定的方式运输这些松果,使得每个城市最后的松果数尽可能平均。即是每个城市松果数的**方差**尽可能小。

求最小的运输代价,使得每个城市松果数的方差最小。

输入格式

第一行一个整数 T ,表示测试点数目。

对于每个测试点,第一行一个整数 n,表示城市数目,接下来一行 n 个整数 a_i ,表示第 i 个城市原始的 松果数量。接下来 n-1行,每行三个整数 u_i,v_i,w_i ,表示有一条边连接第 u_i 和第 v_i 个城市,边权为 w_i 。

输出格式

输出有T行,每行为一个测试点的最小运输代价。

样例 1 输入

```
3
3
1 2 3
1 2 1
1 3 1
3
1 3 3
1 2 3
1 3 4
2
1 2 19
```

样例 1 输出

```
1
3
0
```

数据范围与约定

对于 20%的数据, $n \leq 10, wi \leq 100, ai \leq 100$.

对于 50% 的数据, $n \leq 100$.

对于 100%的数据, $T \leq 5, n \leq 5000, a_i, w_i \leq 10000$ 。

B. 或 (or)

题目描述

和、或都是用来连接的词,两者结合到一起就会有神奇的反应。猫猫巧克力就在研究或与和的关系。她在考虑一个这样的问题:

给定集合 $H=\{a\ |\ a\in[L,R]\subseteq\mathbb{Z}^+\}$,令 f(S) 表示集合 S 内所有元素按位或的结果,求集合 $R=\{f(S)\ |\ S\subseteq H\}$ 的大小。换句话来说,就是要求 [L,R] 内能组出多少个不同的按位或的和。

巧克力不会这个题, 所以想让你帮帮忙。

输入格式

第一行包含两个正整数 L, R。

输出格式

输出一个整数,即满足条件的a数量。

样例 1 输入

1 1023

样例 1 输出

1023

数据范围与约定

对于所有数据,满足 $1 \le L \le R \le 10^{18}$ 。

对于第 i 组数据,满足 $R \leq 2^{3i}$ 。

C. 数 (number)

题目描述

有两个正整数 n 和 m。

我们考虑所有长度为 n,每个元素在 [1,m] 的整数序列。对于所有整数序列,设 lcm 为这个序列中元素的最小公倍数,gcd 为这个序列中元素的最大公约数,我们希望求出 lcm^{gcd} 。你需要对于所有这些整数序列,计算 lcm^{gcd} 之积 mod 998244353。

即,我们需要计算:

$$\left(\prod_{x_1,x_2,\ldots,x_n\in[1,m]} \mathrm{lcm}(x_1,x_2,\ldots,x_n)^{\gcd(x_1,x_2,\ldots,x_n)}
ight) mod 998244353$$

输入格式

一行两个正整数 n, m。

输出格式

输出一行一个整数,表示答案。

样例 1 输入

1 3

样例 1 输出

108

数据范围与约定

对于所有数据, $n \leq 10^8$, $m \leq 200000$ 。

子任务 1 (10分): $n, m \leq 5$ 。

子任务 2 (20 分): $n, m \leq 50$ 。

子任务 3 (10 分) : $n, m \leq 500$ 。

子任务 4 (20 分): $n, m \leq 50000$ 。

子任务 5 (20 分): $n, m \leq 200000$ 。

子任务 6 (20分): 无特殊限制。

D. 图 (graph)

题目描述

有 n 个点,编号为 1,2,3...n。求连一些边权是 1 的边,使得图满足以下性质的方案数:

- 1. 没有重边和自环。
- 2. 第 i 个点的度数是 d_i 。
- 3. 对于 $1 < i \le n$,1 到 i 存在唯一一条最短路。
- 4. 记 l_i 为 1 到 i 的最短路长度,对于 1 < i < n,满足 $l_i \le l_{i+1}$ 。

输入格式

第一行一个整数: n。

第二行 n 个整数: $d_1, d_2 \dots d_n$ 。

输出格式

输出一行表示答案。对 $10^9 + 7$ 取模。

样例 1 输入

5

2 3 3 2 2

样例 1 输出

2

数据范围与约定

所有数据保证 $3 \le n \le 1000, 2 \le d_i \le 3$ 。

测试点编号	n	测试点编号	n
1	≤ 5	13	= 15
2-4	≤ 50	14, 15	= 20
5-8	≤ 300	16-18	= 40
9, 10	≤ 1000	19, 20	= 50
11	= 10	21, 22	= 100
12	= 12	23-25	= 300