А. Ю. Пирковский

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ

Лекция 11

11.1. Каноническое вложение во второе сопряженное. Рефлексивные пространства

Пусть X — нормированное пространство над полем $\mathbb{K}=\mathbb{R}$ или $\mathbb{K}=\mathbb{C}$. Для каждого $x\in X$ рассмотрим функцию

$$\varepsilon_x \colon X^* \to \mathbb{K}, \quad \varepsilon_x(f) = f(x).$$

Очевидно, ε_x — ограниченный линейный функционал, и $\|\varepsilon_x\| \leqslant \|x\|$.

Предложение 11.1. Для каждого $x \in X$ справедливо равенство $\|\varepsilon_x\| = \|x\|$.

Доказательство. Применяя следствие 9.8 из теоремы Хана-Банаха, получаем

$$\|\varepsilon_x\| = \sup_{\|f\| \le 1} |\varepsilon_x(f)| = \sup_{\|f\| \le 1} |f(x)| = \|x\|.$$

Определение 11.1. *Каноническим вложением* нормированного пространства X в его второе сопряженное X^{**} называется отображение

$$i_X \colon X \to X^{**}, \quad i_X(x) = \varepsilon_x.$$

Очевидно, отображение i_X линейно и, в силу предложения 11.1, изометрично.

Канонические вложения разных пространств согласованы друг с другом следующим образом.

Предложение 11.2 (естественность канонического вложения). Пусть X, Y — нормированные пространства и $T \in \mathcal{B}(X,Y)$. Следующая диаграмма коммутативна:

$$X^{**} \xrightarrow{T^{**}} Y^{**}$$

$$i_X \downarrow \qquad \qquad \downarrow i_Y$$

$$X \xrightarrow{T} Y$$

Доказательство. Прямое вычисление (упражнение).

Таким образом, если считать каждое нормированное пространство канонически вложенным в его второе сопряженное, то второй сопряженный оператор $T^{**}: X^{**} \to Y^{**}$ оказывается продолжением оператора $T: X \to Y$.

Замечание 11.1. На категорном языке предложение 11.2 означает, что каноническое вложение во второе сопряженное представляет собой морфизм из тождественного функтора $\mathbf{1}_{\mathscr{N}orm}$ в функтор двойного сопряжения $** = (*)^2 \colon \mathscr{N}orm \to \mathscr{N}orm$ (см. замечание 7.1). То же самое верно и для категории $\mathscr{N}orm_1$.

Замечание 11.2. Отметим, что каноническое вложение дает простой способ доказать существование пополнения у любого нормированного пространства X (см. замечание 4.2). В самом деле, подпространство $\widetilde{X} = \overline{\text{Im } i_X} \subseteq X^{**}$ полно ввиду полноты X^{**} (см. теорему 3.18), и X линейно изометрически вкладывается в \widetilde{X} с плотным образом.

Определение 11.2. Нормированное пространство X называется $pe\phi$ лексивным, если каноническое вложение $i_X \colon X \to X^{**}$ — изометрический изоморфизм.

Наблюдение 11.3. Отметим, что рефлексивное нормированное пространство с необходимостью полно ввиду полноты X^{**} (см. теорему 3.18).

Пример 11.1. Всякое конечномерное нормированное пространство X рефлексивно. В самом деле, в этом случае все линейные функционалы как на X, так и на X^{**} ограничены (см. задачу 9 из листка 2), поэтому $\dim X^{**} = \dim X$ и, следовательно, i_X — сюръекция.

Пример 11.2. Пусть $1 . Мы утверждаем, что пространство <math>\ell^p$ рефлексивно. В самом деле, пусть $\alpha_{qp} \colon \ell^q \to (\ell^p)^*$ (где 1/p + 1/q = 1) — канонический изоморфизм (см. предложение 7.4). Прямая проверка (проведите ее!) показывает, что следующая диаграмма коммутативна:

$$\ell^{p} \xrightarrow{i_{\ell^{p}}} (\ell^{p})^{**}$$

$$\downarrow^{\alpha_{qp}^{*}}$$

$$(\ell^{q})^{*}$$

Следовательно, $i_{\ell p}$ — изоморфизм.

Аналогичное рассуждение показывает, что пространства $L^p(X,\mu)$ (где 1) также рефлексивны.

Предостережение 11.3. Рассуждение типа «раз $(\ell^p)^*$ изоморфно ℓ^q , а $(\ell^q)^*$ изоморфно ℓ^p , то ℓ^p рефлексивно» на самом деле не доказывает рефлексивность $\ell^p!$ Из него следует лишь, что ℓ^p изоморфно $(\ell^p)^{**}$, но вовсе не следует, что каноническое вложение является изоморфизмом. Отметим, что банахово пространство может оказаться изометрически изоморфным своему второму сопряженному, не будучи при этом рефлексивным. Исторически первый пример такого пространства — пространство Джеймса; см., например, F. Albiac, N. Kalton, "Topics in Banach Space Theory", Springer, 2006.

Упражнение 11.1. Гильбертово пространство рефлексивно.

Упражнение 11.2. Композиция канонического вложения $c_0 \to (c_0)^{**}$ и стандартного изоморфизма $(c_0)^{**} \cong \ell^{\infty}$ (см. упражнение 7.1) — это тождественное вложение c_0 в ℓ^{∞} .

Упражнение 11.3. Композиция канонического вложения $\ell^1 \to (\ell^1)^{**}$ и стандартного изоморфизма $(\ell^1)^{**} \cong (\ell^\infty)^* \cong M(2^\mathbb{N})$ (см. следствие 10.4) — это вложение ℓ^1 в $M(2^\mathbb{N})$, описанное в замечании 10.1.

Упражнение 11.4. Пространства c_0 , ℓ^1 , ℓ^∞ и C[a,b] нерефлексивны.

Лекция 11 75

11.2. Теорема Бэра

Мы уже упоминали выше (см. начало лекции 9), что функциональный анализ базируется на трех фундаментальных теоремах — теореме Хана-Банаха, теореме Банаха об обратном операторе и теореме Банаха-Штейнгауза. С первой из них мы уже знакомы; наша ближайшая задача — познакомиться с оставшимися двумя. Для этого нам понадобится теорема Бэра — несложный, но чрезвычайно полезный факт о полных метрических пространствах.

Определение 11.3. Пусть X — топологическое пространство. Подмножество $B \subseteq X$ называется *нигде не плотным*, если $\operatorname{Int}(\overline{B}) = \varnothing$. Эквивалентно, B нигде не плотно, если в каждом непустом открытом множестве $U \subseteq X$ найдется такое непустое открытое подмножество $V \subseteq U$, что $V \cap B = \varnothing$.

Примеры 11.3. Любое дискретное подмножество в \mathbb{R}^n нигде не плотно. Канторово множество на отрезке [0,1] нигде не плотно (хотя и не содержит изолированных точек).

Теорема 11.4 (Бэр). Пусть X — полное метрическое пространство и $\{X_n\}_{n\in\mathbb{N}}$ — счетное семейство его нигде не плотных подмножеств. Тогда множество $X\setminus\bigcup_n X_n$ плотно в X. Как следствие, если $X\neq\emptyset$, то $X\neq\bigcup_n X_n$.

Доказательство. Будем считать, что $X \neq \varnothing$. Пусть U_1 — непустой открытый шар в X радиуса r_1 . Наша задача — найти в нем точку, не лежащую ни в одном из множеств X_n . Поскольку X_1 нигде не плотно, существует непустой открытый шар U_2 радиуса r_2 , такой, что $\overline{U}_2 \subseteq U_1$ и $\overline{U}_2 \cap X_1 = \varnothing$. При этот мы можем считать, что $r_2 \leqslant r_1/2$. Аналогично, пользуясь нигде не плотностью множества X_2 , найдем непустой открытый шар U_3 радиуса $r_3 \leqslant r_2/2$, такой, что $\overline{U}_3 \subseteq U_2$ и $\overline{U}_3 \cap X_2 = \varnothing$. Продолжая этот процесс, мы получим убывающую последовательность $\{\overline{U}_n\}$ замкнутых шаров с радиусами, стремящимися к нулю. Ввиду полноты пространства X, у этих шаров есть общая точка x. Если предположить, что $x \in X_n$ для какого-то n, то из построения следует, что $x \notin \overline{U}_{n+1}$, что противоречит определению точки x. Следовательно, $x \notin \bigcup_n X_n$, как и требовалось. \square

Упражнение 11.5. Докажите, что теорему Бэра можно эквивалентно сформулировать так: в полном метрическом пространстве пересечение счетного числа открытых всюду плотных множеств всюду плотно.

Замечание 11.4. Теорема Бэра является мощным инструментом для доказательства неконструктивных теорем существования. А именно, если требуется доказать существование объекта с какими-то специальными свойствами, то достаточно построить полное метрическое пространство, элементом которого должен быть искомый объект, а затем найти в этом пространстве последовательность нигде не плотных множеств так, чтобы искомый объект не мог лежать ни в одном из них. С помощью такого подхода можно доказать, например, существование непрерывных, но нигде не дифференцируемых функций. Теорема Бэра имеет многочисленные приложения в разных областях математики – анализе, топологии, теории динамических систем, теории игр, теории чисел...Про результаты, связанные с теоремой Бэра, и про различные ее приложения можно прочитать в книге Дж. Окстоби «Мера и категория» (М.: Мир, 1974). О приложениях в топологии см. книгу М. Хирша «Дифференциальная топология» (М.: Мир, 1979) или записки лекций Ю. М. Бурмана (http://ium.mccme.ru/ancient/mapsf96.html).

11.3. Свойство бочечности банаховых пространств

Геометрическое свойство банаховых пространств, о котором пойдет речь ниже, понадобится нам дважды — при доказательстве теоремы Банаха-Штейнгауза и теоремы Банаха об обратном операторе.

Пусть X — нормированное пространство.

Определение 11.4. Абсолютно выпуклое, поглощающее и замкнутое подмножество в X называется бочкой.

Пример 11.4. Типичный пример бочки — замкнутый шар $\mathbb{B}_r = \{x \in X : ||x|| \leq r\}$ положительного радиуса. Более общим образом, любое абсолютно выпуклое замкнутое множество, содержащее окрестность нуля, является бочкой.

Оказывается, предыдущий пример полностью характеризует бочки в банаховых пространствах:

Теорема 11.5. Любая бочка в банаховом пространстве содержит окрестность нуля.

Доказательство. Пусть B — бочка в банаховом пространстве X. Поскольку B — поглощающее множество, справедливо равенство $X = \bigcup_{n \in \mathbb{N}} nB$. Применяя теорему Бэра и учитывая замкнутость B, мы видим, что $\mathrm{Int}(nB) \neq \varnothing$ для некоторого n. Следовательно, $\mathrm{Int}(B) \neq \varnothing$. Зафиксируем произвольый $x \in \mathrm{Int}(B)$. Пользуясь сперва закругленностью, а потом выпуклостью B, получаем цепочку включений

$$0 \in \operatorname{Int}(B - x) \subseteq \operatorname{Int}(B + B) = \operatorname{Int}(2B).$$

Иначе говоря, 2B (a, значит, и B) содержит окрестность нуля, как и требовалось. \Box

11.4. Теорема Банаха—Штейнгауза (принцип равномерной ограниченности)

Теорема 11.6 (Банах, Штейнгауз). Пусть X — банахово пространство, Y — нормированное пространство. Следующие свойства подмножества $M \subseteq \mathcal{B}(X,Y)$ эквивалентны:

- (i) M ограничено;
- (ii) для каждого $x \in X$ множество $\{Tx : T \in M\} \subseteq Y$ ограничено.

Доказательство. (i) \Longrightarrow (ii): это очевидно и верно без предположения о полноте X.

(ii) \Longrightarrow (i). Рассмотрим множество $B = \bigcap_{T \in M} T^{-1}(\mathbb{B}_1)$. Ясно, что B абсолютно выпукло и замкнуто (почему?). Покажем, что B — бочка. В самом деле, из (ii) следует, что для любого $x \in X$ найдется такое C > 0, что $||Tx|| \leqslant C$ для всех $T \in M$. Следовательно, при $|\lambda| \geqslant C$ имеем $\lambda^{-1}x \in T^{-1}(\mathbb{B}_1)$ для всех $T \in M$, т.е. $x \in \lambda B$. Таким образом, B — поглощающее множество, а значит, оно является бочкой. В силу теоремы 11.5, для некоторого $\varepsilon > 0$ имеем $\mathbb{B}_{\varepsilon} \subseteq B$. Это означает, что для любого $T \in M$ справедливо включение $T(\mathbb{B}_{\varepsilon}) \subseteq \mathbb{B}_1$, или, эквивалентно, $||T|| \leqslant 1/\varepsilon$. Следовательно, M ограничено.

Лекция 11 77

Следствие 11.7. Пусть X — банахово пространство, и пусть подмножество $M \subseteq X^*$ таково, что $\sup_{f \in M} |f(x)| < \infty$ для каждого $x \in X$. Тогда M ограничено.

Следствие 11.8. Пусть X — нормированное пространство, и пусть подмножество $M \subseteq X$ таково, что $\sup_{x \in M} |f(x)| < \infty$ для каждого $f \in X^*$. Тогда M ограничено.

Доказательство. Достаточно применить следствие 11.7 к подмножеству $i_X(M) \subseteq X^{**}$, где $i_X \colon X \to X^{**}$ — каноническое вложение.

Теперь можно несколько усилить теорему 11.6:

Теорема 11.9. Пусть X — банахово пространство, Y — нормированное пространство. Следующие свойства подмножества $M \subseteq \mathcal{B}(X,Y)$ эквивалентны:

- (i) M ограничено;
- (ii) для каждого $x \in X$ и каждого $f \in Y$ подмножество $\{f(Tx) : T \in M\} \subseteq \mathbb{K}$ ограничено.

Доказательство. Достаточно объединить теорему 11.6 со следствием 11.8.

Следствие 11.10 («классическая» теорема Банаха—Штейнгауза). Пусть X -банахаово пространство, Y -нормированное пространство, $(T_n) -$ последовательность в $\mathcal{B}(X,Y)$. Предположим, что для каждого $x \in X$ последовательность (T_nx) сходится в Y. Тогда $\sup_n ||T_n|| < \infty$, и существует такой оператор $T \in \mathcal{B}(X,Y)$, что $T_nx \to Tx$ для каждого $x \in X$.

Доказательство. Определим отображение $T\colon X\to Y$ формулой $Tx=\lim_n T_nx$. Легко проверить (проверьте), что T — линейный оператор. Осталось доказать его ограниченность. Поскольку для каждого $x\in X$ последовательность (T_nx) ограничена в Y, применима теорема 11.6, согласно которой $C=\sup_n \|T_n\|<\infty$. Из неравенства $\|T_nx\|\leqslant C\|x\|$, справедливого для всех $x\in X$ и всех $n\in\mathbb{N}$, получаем при $n\to\infty$, что $\|Tx\|\leqslant C\|x\|$ для всех $x\in X$. Следовательно, оператор T ограничен, как и требовалось.