8.3 习题

张志聪

2024年11月21日

8.3.1

对 n 进行归纳。

归纳基始,n=0,此时,X 是空集,#(X)=0, $2^0=1$,这与空集的子集只有它本身是一致的。

归纳假设, n = k 时, $\#(2^X) = 2^k$ 。

当 n=k+1 时,在 X 中任取一个元素 x_0 ,此时,设 $X'=X\setminus\{x_0\}$ 。对 2^X 的任意子集 A:

- 如果 $x_0 \notin A$,此时 $A \subseteq 2^{X'}$,由归纳假设可知,这样的子集有 2^k 个。
- 如果 $x_0 \in A$,定义 $A' := A \setminus \{x_0\}$,显然 $A' \subseteq 2^{X'}$,因为 A' 有 2^k 个,所以 $A' \cup \{x_0\}$ 有 2^k 。

综上, $2^k + 2^k = 2^{k+1}$ 。

8.3.2

说明 1. 一开始,觉得题目不对! 理由如下: 由题设, $A\subseteq C$ 且单射 $f:C\to A$ 可知,f(C) 与 C 是双射,而 $f(C)\subseteq A$,所以只有 C=A 才能满足题设,进而 A=B=C。那么, $D_0=B\setminus A=\varnothing$,就没有证明的必要了。

问题出在对习题 3.6.7 的理解上了,这里只能证明 #(A) = #(B) = #(C), 而无法证明 A = B = C, 举一个反例,自然数 N 与偶数集合的基数相等,也可以构建一个单射,但不妨碍偶数集合是自然数子集这

一事实。

(1) 命题与 $D_n \cap D_{n+1} = \emptyset$ 等价。对 n 进行归纳。

归纳基始,n=0 时, $D_0:=B\setminus A, D_1:=f(D_0)$ 。反证法,假设 $D_0\cap D_1\neq\emptyset$,由题设可知 $D_1\subseteq A$,因为 $D_0\cap D_1\neq\emptyset$,所以存在元素 $x\in D_0, D_1, A$,这与 $D_0:=B\setminus A$ 矛盾。

归纳假设, n = k 时, 命题 $D_k \cap D_{k+1} = \emptyset$ 成立。

当 n = k+1 时, $D_{k+2} := f(D_{k+1})$ 。 反证法,假设 $D_{k+2} \cap D_{k+1} \neq \emptyset$,即存在 $d_0 \in D_{k+2}, D_{k+1}$,又因为 $D_{k+1} = f(D_k)$,于是,存在 x_0, x_1 使得

$$\begin{cases} d_0 = f(x_0) \not \exists r \mid x_0 \in D_k, f(x_0) \in D_{k+1} \\ d_0 = f(x_1) \not \exists r \mid x_1 \in D_{k+1}, f(x_1) \in D_{k+2} \end{cases}$$

由归纳假设可知 $x_0 \neq x_1$, 这与 f 是单射的矛盾。

- (2) A和B有相同的基数,在说明中已阐述。
- 单射; 函数 g 的定义域被定义成两个部分,各自显然是单射的,现在要证明两个部分的值域没有交集。反证法,假设存在 $x_0 \in \bigcup_{n=0}^{\infty} D_n, x_1 \not\in \bigcup_{n=0}^{\infty} D_n, x_0 \neq x_1$,使得 $g(x_0) = g(x_1)$,即: $f^{-1}(x_0) = x_1$, $f(x_1) = x_0$ 。因为 $x_0 \in \bigcup_{n=0}^{\infty} D_n$,所以存在 $x' \in \bigcup_{n=0}^{\infty} D_n$ 使得 $f(x') = x_0$ 。因为 $x_1 \not\in \bigcup_{n=0}^{\infty} D_n$,所以 $x' \neq x_1$,于是 $f(x') = f(x_1)$,这与 f 是单射矛盾。
- 满射; 对任意 $y \in B$, 如果 $y \in \bigcup_{n=0}^{\infty} D_n$, 由 f 的定义可知, $f(y) \in A$, $f(y) \in \bigcup_{n=0}^{\infty} D_n$, 满足 g 的定义,于是 $f^{-1}(f(y)) = y$; 如果 $y \notin \bigcup_{n=0}^{\infty} D_n$, 有 g(y) = y;