

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ :		A2	(11) International Publication Number: WO 00/04149
C12N 15/12, C07K 14/47, C12Q 1/68, A61K 39/395, G01N 33/68, 33/574, C07K 16/30, C12N 15/62, 5/02 // A61P 35/00			(43) International Publication Date: 27 January 2000 (27.01.00)
(21) International Application Number: PCT/US99/15838		(74) Agents: MAKI, David, J. et al.; Seed and Berry LLP, 6300 Columbia, 701 Fifth Avenue, Seattle, WA 98104-7092 (US).	
(22) International Filing Date: 14 July 1999 (14.07.99)		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(30) Priority Data:		Published	
09/115,453	14 July 1998 (14.07.98)		
09/116,134	14 July 1998 (14.07.98)	<i>Without international search report and to be republished upon receipt of that report.</i>	
09/159,822	23 September 1998 (23.09.98)		
09/159,812	23 September 1998 (23.09.98)		
09/232,880	15 January 1999 (15.01.99)		
09/232,149	15 January 1999 (15.01.99)		
09/288,946	9 April 1999 (09.04.99)		
(71) Applicant: CORIXA CORPORATION [US/US]; Suite 200, 1124 Columbia Street, Seattle, WA 98104 (US).			
(72) Inventors: DILLON, Davin, Clifford; 21607 N.E. 24th Street, Redmond, WA 98053 (US). HARLOCKER, Susan, Louise; 6203 20th Avenue N.W., Seattle, WA 98107 (US). YUQIU, Jiang; 5001 South 232nd Street, Kent, WA 98032 (US). XU, Jiangchun; 15805 S.E. 43rd Place, Bellevue, WA 98006 (US). MITCHAM, Jennifer, Lynn; 16677 Northeast 88th Street, Redmond, WA 98052 (US).			
(54) Title: COMPOSITIONS AND METHODS FOR THERAPY AND DIAGNOSIS OF PROSTATE CANCER			
(57) Abstract			
<p>Compositions and methods for the therapy and diagnosis of cancer, such as prostate cancer, are disclosed. Compositions may comprise one or more prostate tumor proteins, immunogenic portions thereof, or polynucleotides that encode such portions. Alternatively, a therapeutic composition may comprise an antigen presenting cell that expresses a prostate tumor protein, or a T cell that is specific for cells expressing such a protein. Such compositions may be used, for example, for the prevention and treatment of diseases such as prostate cancer. Diagnostic methods based on detecting a prostate tumor protein, or mRNA encoding such a protein, in a sample are also provided.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Republic of Korea	RO	Romania		
CU	Cuba	KZ	Kazakhstan	RU	Russian Federation		
CZ	Czech Republic	LC	Saint Lucia	SD	Sudan		
DE	Germany	LI	Liechtenstein	SE	Sweden		
DK	Denmark	LK	Sri Lanka	SG	Singapore		
EE	Estonia	LR	Liberia				

COMPOSITIONS AND METHODS FOR THERAPY AND DIAGNOSIS OF PROSTATE CANCER

TECHNICAL FIELD

The present invention relates generally to therapy and diagnosis of cancer, such as prostate cancer. The invention is more specifically related to polypeptides comprising at least a portion of a prostate tumor protein, and to polynucleotides encoding such polypeptides. Such polypeptides and polynucleotides may be used in vaccines and pharmaceutical compositions for prevention and treatment of prostate cancer, and for the diagnosis and monitoring of such cancers.

BACKGROUND OF THE INVENTION

Prostate cancer is the most common form of cancer among males, with an estimated incidence of 30% in men over the age of 50. Overwhelming clinical evidence shows that human prostate cancer has the propensity to metastasize to bone, and the disease appears to progress inevitably from androgen dependent to androgen refractory status, leading to increased patient mortality. This prevalent disease is currently the second leading cause of cancer death among men in the U.S.

In spite of considerable research into therapies for the disease, prostate cancer remains difficult to treat. Commonly, treatment is based on surgery and/or radiation therapy, but these methods are ineffective in a significant percentage of cases. Two previously identified prostate specific proteins - prostate specific antigen (PSA) and prostatic acid phosphatase (PAP) - have limited therapeutic and diagnostic potential. For example, PSA levels do not always correlate well with the presence of prostate cancer, being positive in a percentage of non-prostate cancer cases, including benign prostatic hyperplasia (BPH). Furthermore, PSA measurements correlate with prostate volume, and do not indicate the level of metastasis.

In spite of considerable research into therapies for these and other cancers, prostate cancer remains difficult to diagnose and treat effectively. Accordingly, there is a need in the art for improved methods for detecting and treating such cancers. The present invention fulfills these needs and further provides other related advantages.

SUMMARY OF THE INVENTION

Briefly stated, the present invention provides compositions and methods for the diagnosis and therapy of cancer, such as prostate cancer. In one aspect, the present

invention provides polypeptides comprising at least a portion of a prostate tumor protein, or a variant thereof. Certain portions and other variants are immunogenic, such that the ability of the variant to react with antigen-specific antisera is not substantially diminished. Within certain embodiments, the polypeptide comprises at least an immunogenic portion of a prostate tumor protein, or a variant thereof, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of: (a) sequences recited in any one of SEQ ID NOs: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472; (b) sequences that hybridize to any of the foregoing sequences under moderately stringent conditions; and (c) complements of any of the sequence of (a) or (b). In certain specific embodiments, such a polypeptide comprises at least a portion, or variant thereof, of a tumor protein that includes an amino acid sequence selected from the group consisting of sequences recited in any one of SEQ ID NO: 112-114, 172, 176, 178, 327, 329, 331, 336, 339, 376-380 and 383.

The present invention further provides polynucleotides that encode a polypeptide as described above, or a portion thereof (such as a portion encoding at least 15 amino acid residues of a prostate tumor protein), expression vectors comprising such polynucleotides and host cells transformed or transfected with such expression vectors.

Within other aspects, the present invention provides pharmaceutical compositions comprising a polypeptide or polynucleotide as described above and a physiologically acceptable carrier.

Within a related aspect of the present invention, vaccines are provided. Such vaccines comprise a polypeptide or polynucleotide as described above and a non-specific immune response enhancer.

The present invention further provides pharmaceutical compositions that comprise: (a) an antibody or antigen-binding fragment thereof that specifically binds to a prostate tumor protein; and (b) a physiologically acceptable carrier.

Within further aspects, the present invention provides pharmaceutical compositions comprising: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) a pharmaceutically acceptable carrier or excipient. Antigen presenting cells include dendritic cells, macrophages, monocytes, fibroblasts and B cells.

Within related aspects, vaccines are provided that comprise: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) a non-specific immune response enhancer.

The present invention further provides, in other aspects, fusion proteins that comprise at least one polypeptide as described above, as well as polynucleotides encoding such fusion proteins.

Within related aspects, pharmaceutical compositions comprising a fusion protein, or a polynucleotide encoding a fusion protein, in combination with a physiologically acceptable carrier are provided.

Vaccines are further provided, within other aspects, that comprise a fusion protein, or a polynucleotide encoding a fusion protein, in combination with a non-specific immune response enhancer.

Within further aspects, the present invention provides methods for inhibiting the development of a cancer in a patient, comprising administering to a patient a pharmaceutical composition or vaccine as recited above.

The present invention further provides, within other aspects, methods for removing tumor cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a prostate tumor protein, wherein the step of contacting is performed under conditions and for a time sufficient to permit the removal of cells expressing the protein from the sample.

Within related aspects, methods are provided for inhibiting the development of a cancer in a patient, comprising administering to a patient a biological sample treated as described above.

Methods are further provided, within other aspects, for stimulating and/or expanding T cells specific for a prostate tumor protein, comprising contacting T cells with one or more of: (i) a polypeptide as described above; (ii) a polynucleotide encoding such a polypeptide; and/or (iii) an antigen presenting cell that expresses such a polypeptide; under conditions and for a time sufficient to permit the stimulation and/or expansion of T cells. Isolated T cell populations comprising T cells prepared as described above are also provided.

Within further aspects, the present invention provides methods for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a T cell population as described above.

The present invention further provides methods for inhibiting the development of a cancer in a patient, comprising the steps of: (a) incubating CD4⁺ and/or CD8⁺ T cells isolated from a patient with one or more of: (i) a polypeptide comprising at least an immunogenic portion of a prostate tumor protein; (ii) a polynucleotide encoding such a polypeptide; and (iii) an antigen-presenting cell that expressed such a polypeptide; and (b) administering to the patient an effective amount of the proliferated T cells, and thereby inhibiting the development of a cancer in the patient. Proliferated cells may, but need not, be cloned prior to administration to the patient.

Within further aspects, the present invention provides methods for determining the presence or absence of a cancer in a patient, comprising: (a) contacting a biological sample obtained from a patient with a binding agent that binds to a polypeptide as recited

above; (b) detecting in the sample an amount of polypeptide that binds to the binding agent; and (c) comparing the amount of polypeptide with a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient. Within preferred embodiments, the binding agent is an antibody, more preferably a monoclonal antibody. The cancer may be prostate cancer.

The present invention also provides, within other aspects, methods for monitoring the progression of a cancer in a patient. Such methods comprise the steps of: (a) contacting a biological sample obtained from a patient at a first point in time with a binding agent that binds to a polypeptide as recited above; (b) detecting in the sample an amount of polypeptide that binds to the binding agent; (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and (d) comparing the amount of polypeptide detected in step (c) with the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

The present invention further provides, within other aspects, methods for determining the presence or absence of a cancer in a patient, comprising the steps of: (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a prostate tumor protein; (b) detecting in the sample a level of a polynucleotide, preferably mRNA, that hybridizes to the oligonucleotide; and (c) comparing the level of polynucleotide that hybridizes to the oligonucleotide with a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient. Within certain embodiments, the amount of mRNA is detected via polymerase chain reaction using, for example, at least one oligonucleotide primer that hybridizes to a polynucleotide encoding a polypeptide as recited above, or a complement of such a polynucleotide. Within other embodiments, the amount of mRNA is detected using a hybridization technique, employing an oligonucleotide probe that hybridizes to a polynucleotide that encodes a polypeptide as recited above, or a complement of such a polynucleotide.

In related aspects, methods are provided for monitoring the progression of a cancer in a patient, comprising the steps of: (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a prostate tumor protein; (b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide; (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and (d) comparing the amount of polynucleotide detected in step (c) with the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

Within further aspects, the present invention provides antibodies, such as monoclonal antibodies, that bind to a polypeptide as described above, as well as diagnostic

kits comprising such antibodies. Diagnostic kits comprising one or more oligonucleotide probes or primers as described above are also provided.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

BRIEF DESCRIPTION OF THE DRAWINGS AND SEQUENCE IDENTIFIERS

Figure 1 illustrates the ability of T cells to kill fibroblasts expressing the representative prostate tumor polypeptide P502S, as compared to control fibroblasts. The percentage lysis is shown as a series of effector:target ratios, as indicated.

Figures 2A and 2B illustrate the ability of T cells to recognize cells expressing the representative prostate tumor polypeptide P502S. In each case, the number of γ -interferon spots is shown for different numbers of responders. In Figure 2A, data is presented for fibroblasts pulsed with the P2S-12 peptide, as compared to fibroblasts pulsed with a control E75 peptide. In Figure 2B, data is presented for fibroblasts expressing P502S, as compared to fibroblasts expressing HER-2/neu.

Figure 3 represents a peptide competition binding assay showing that the P1S#10 peptide, derived from P501S, binds HLA-A2. Peptide P1S#10 inhibits HLA-A2 restricted presentation of fluM58 peptide to CTL clone D150M58 in TNF release bioassay. D150M58 CTL is specific for the HLA-A2 binding influenza matrix peptide fluM58.

Figure 4 illustrates the ability of T cell lines generated from P1S#10 immunized mice to specifically lyse P1S#10-pulsed Jurkat A2Kb targets and P501S-transduced Jurkat A2Kb targets, as compared to EGFP-transduced Jurkat A2Kb. The percent lysis is shown as a series of effector to target ratios, as indicated.

Figure 5 illustrates the ability of a T cell clone to recognize and specifically lyse Jurkat A2Kb cells expressing the representative prostate tumor polypeptide P501S, thereby demonstrating that the P1S#10 peptide may be a naturally processed epitope of the P501S polypeptide.

Figures 6A and 6B are graphs illustrating the specificity of a CD8⁺ cell line (3A-1) for a representative prostate tumor antigen (P501S). Figure 6A shows the results of a ⁵¹Cr release assay. The percent specific lysis is shown as a series of effector:target ratios, as indicated. Figure 6B shows the production of interferon-gamma by 3A-1 cells stimulated with autologous B-LCL transduced with P501S, at varying effector:target ratios as indicated.

SEQ ID NO: 1 is the determined cDNA sequence for F1-13

SEQ ID NO: 2 is the determined 3' cDNA sequence for F1-12

SEQ ID NO: 3 is the determined 5' cDNA sequence for F1-12
SEQ ID NO: 4 is the determined 3' cDNA sequence for F1-16
SEQ ID NO: 5 is the determined 3' cDNA sequence for H1-1
SEQ ID NO: 6 is the determined 3' cDNA sequence for H1-9
SEQ ID NO: 7 is the determined 3' cDNA sequence for H1-4
SEQ ID NO: 8 is the determined 3' cDNA sequence for J1-17
SEQ ID NO: 9 is the determined 5' cDNA sequence for J1-17
SEQ ID NO: 10 is the determined 3' cDNA sequence for L1-12
SEQ ID NO: 11 is the determined 5' cDNA sequence for L1-12
SEQ ID NO: 12 is the determined 3' cDNA sequence for N1-1862
SEQ ID NO: 13 is the determined 5' cDNA sequence for N1-1862
SEQ ID NO: 14 is the determined 3' cDNA sequence for J1-13
SEQ ID NO: 15 is the determined 5' cDNA sequence for J1-13
SEQ ID NO: 16 is the determined 3' cDNA sequence for J1-19
SEQ ID NO: 17 is the determined 5' cDNA sequence for J1-19
SEQ ID NO: 18 is the determined 3' cDNA sequence for J1-25
SEQ ID NO: 19 is the determined 5' cDNA sequence for J1-25
SEQ ID NO: 20 is the determined 5' cDNA sequence for J1-24
SEQ ID NO: 21 is the determined 3' cDNA sequence for J1-24
SEQ ID NO: 22 is the determined 5' cDNA sequence for K1-58
SEQ ID NO: 23 is the determined 3' cDNA sequence for K1-58
SEQ ID NO: 24 is the determined 5' cDNA sequence for K1-63
SEQ ID NO: 25 is the determined 3' cDNA sequence for K1-63
SEQ ID NO: 26 is the determined 5' cDNA sequence for L1-4
SEQ ID NO: 27 is the determined 3' cDNA sequence for L1-4
SEQ ID NO: 28 is the determined 5' cDNA sequence for L1-14
SEQ ID NO: 29 is the determined 3' cDNA sequence for L1-14
SEQ ID NO: 30 is the determined 3' cDNA sequence for J1-12
SEQ ID NO: 31 is the determined 3' cDNA sequence for J1-16
SEQ ID NO: 32 is the determined 3' cDNA sequence for J1-21
SEQ ID NO: 33 is the determined 3' cDNA sequence for K1-48
SEQ ID NO: 34 is the determined 3' cDNA sequence for K1-55
SEQ ID NO: 35 is the determined 3' cDNA sequence for L1-2
SEQ ID NO: 36 is the determined 3' cDNA sequence for L1-6
SEQ ID NO: 37 is the determined 3' cDNA sequence for N1-1858
SEQ ID NO: 38 is the determined 3' cDNA sequence for N1-1860
SEQ ID NO: 39 is the determined 3' cDNA sequence for N1-1861

SEQ ID NO: 40 is the determined 3' cDNA sequence for N1-1864
SEQ ID NO: 41 is the determined cDNA sequence for P5
SEQ ID NO: 42 is the determined cDNA sequence for P8
SEQ ID NO: 43 is the determined cDNA sequence for P9
SEQ ID NO: 44 is the determined cDNA sequence for P18
SEQ ID NO: 45 is the determined cDNA sequence for P20
SEQ ID NO: 46 is the determined cDNA sequence for P29
SEQ ID NO: 47 is the determined cDNA sequence for P30
SEQ ID NO: 48 is the determined cDNA sequence for P34
SEQ ID NO: 49 is the determined cDNA sequence for P36
SEQ ID NO: 50 is the determined cDNA sequence for P38
SEQ ID NO: 51 is the determined cDNA sequence for P39
SEQ ID NO: 52 is the determined cDNA sequence for P42
SEQ ID NO: 53 is the determined cDNA sequence for P47
SEQ ID NO: 54 is the determined cDNA sequence for P49
SEQ ID NO: 55 is the determined cDNA sequence for P50
SEQ ID NO: 56 is the determined cDNA sequence for P53
SEQ ID NO: 57 is the determined cDNA sequence for P55
SEQ ID NO: 58 is the determined cDNA sequence for P60
SEQ ID NO: 59 is the determined cDNA sequence for P64
SEQ ID NO: 60 is the determined cDNA sequence for P65
SEQ ID NO: 61 is the determined cDNA sequence for P73
SEQ ID NO: 62 is the determined cDNA sequence for P75
SEQ ID NO: 63 is the determined cDNA sequence for P76
SEQ ID NO: 64 is the determined cDNA sequence for P79
SEQ ID NO: 65 is the determined cDNA sequence for P84
SEQ ID NO: 66 is the determined cDNA sequence for P68
SEQ ID NO: 67 is the determined cDNA sequence for P80
SEQ ID NO: 68 is the determined cDNA sequence for P82
SEQ ID NO: 69 is the determined cDNA sequence for U1-3064
SEQ ID NO: 70 is the determined cDNA sequence for U1-3065
SEQ ID NO: 71 is the determined cDNA sequence for V1-3692
SEQ ID NO: 72 is the determined cDNA sequence for 1A-3905
SEQ ID NO: 73 is the determined cDNA sequence for V1-3686
SEQ ID NO: 74 is the determined cDNA sequence for R1-2330
SEQ ID NO: 75 is the determined cDNA sequence for 1B-3976
SEQ ID NO: 76 is the determined cDNA sequence for V1-3679

SEQ ID NO: 77 is the determined cDNA sequence for 1G-4736
SEQ ID NO: 78 is the determined cDNA sequence for 1G-4738
SEQ ID NO: 79 is the determined cDNA sequence for 1G-4741
SEQ ID NO: 80 is the determined cDNA sequence for 1G-4744
SEQ ID NO: 81 is the determined cDNA sequence for 1G-4734
SEQ ID NO: 82 is the determined cDNA sequence for 1H-4774
SEQ ID NO: 83 is the determined cDNA sequence for 1H-4781
SEQ ID NO: 84 is the determined cDNA sequence for 1H-4785
SEQ ID NO: 85 is the determined cDNA sequence for 1H-4787
SEQ ID NO: 86 is the determined cDNA sequence for 1H-4796
SEQ ID NO: 87 is the determined cDNA sequence for 1I-4807
SEQ ID NO: 88 is the determined cDNA sequence for 1I-4810
SEQ ID NO: 89 is the determined cDNA sequence for 1I-4811
SEQ ID NO: 90 is the determined cDNA sequence for 1J-4876
SEQ ID NO: 91 is the determined cDNA sequence for 1K-4884
SEQ ID NO: 92 is the determined cDNA sequence for 1K-4896
SEQ ID NO: 93 is the determined cDNA sequence for 1G-4761
SEQ ID NO: 94 is the determined cDNA sequence for 1G-4762
SEQ ID NO: 95 is the determined cDNA sequence for 1H-4766
SEQ ID NO: 96 is the determined cDNA sequence for 1H-4770
SEQ ID NO: 97 is the determined cDNA sequence for 1H-4771
SEQ ID NO: 98 is the determined cDNA sequence for 1H-4772
SEQ ID NO: 99 is the determined cDNA sequence for 1D-4297
SEQ ID NO: 100 is the determined cDNA sequence for 1D-4309
SEQ ID NO: 101 is the determined cDNA sequence for 1D-4278
SEQ ID NO: 102 is the determined cDNA sequence for 1D-4288
SEQ ID NO: 103 is the determined cDNA sequence for 1D-4283
SEQ ID NO: 104 is the determined cDNA sequence for 1D-4304
SEQ ID NO: 105 is the determined cDNA sequence for 1D-4296
SEQ ID NO: 106 is the determined cDNA sequence for 1D-4280
SEQ ID NO: 107 is the determined full length cDNA sequence for F1-12 (also referred to as P504S)
SEQ ID NO: 108 is the predicted amino acid sequence for F1-12
SEQ ID NO: 109 is the determined full length cDNA sequence for J1-17
SEQ ID NO: 110 is the determined full length cDNA sequence for L1-12
SEQ ID NO: 111 is the determined full length cDNA sequence for N1-1862
SEQ ID NO: 112 is the predicted amino acid sequence for J1-17

SEQ ID NO: 113 is the predicted amino acid sequence for L1-12
SEQ ID NO: 114 is the predicted amino acid sequence for N1-1862
SEQ ID NO: 115 is the determined cDNA sequence for P89
SEQ ID NO: 116 is the determined cDNA sequence for P90
SEQ ID NO: 117 is the determined cDNA sequence for P92
SEQ ID NO: 118 is the determined cDNA sequence for P95
SEQ ID NO: 119 is the determined cDNA sequence for P98
SEQ ID NO: 120 is the determined cDNA sequence for P102
SEQ ID NO: 121 is the determined cDNA sequence for P110
SEQ ID NO: 122 is the determined cDNA sequence for P111
SEQ ID NO: 123 is the determined cDNA sequence for P114
SEQ ID NO: 124 is the determined cDNA sequence for P115
SEQ ID NO: 125 is the determined cDNA sequence for P116
SEQ ID NO: 126 is the determined cDNA sequence for P124
SEQ ID NO: 127 is the determined cDNA sequence for P126
SEQ ID NO: 128 is the determined cDNA sequence for P130
SEQ ID NO: 129 is the determined cDNA sequence for P133
SEQ ID NO: 130 is the determined cDNA sequence for P138
SEQ ID NO: 131 is the determined cDNA sequence for P143
SEQ ID NO: 132 is the determined cDNA sequence for P151
SEQ ID NO: 133 is the determined cDNA sequence for P156
SEQ ID NO: 134 is the determined cDNA sequence for P157
SEQ ID NO: 135 is the determined cDNA sequence for P166
SEQ ID NO: 136 is the determined cDNA sequence for P176
SEQ ID NO: 137 is the determined cDNA sequence for P178
SEQ ID NO: 138 is the determined cDNA sequence for P179
SEQ ID NO: 139 is the determined cDNA sequence for P185
SEQ ID NO: 140 is the determined cDNA sequence for P192
SEQ ID NO: 141 is the determined cDNA sequence for P201
SEQ ID NO: 142 is the determined cDNA sequence for P204
SEQ ID NO: 143 is the determined cDNA sequence for P208
SEQ ID NO: 144 is the determined cDNA sequence for P211
SEQ ID NO: 145 is the determined cDNA sequence for P213
SEQ ID NO: 146 is the determined cDNA sequence for P219
SEQ ID NO: 147 is the determined cDNA sequence for P237
SEQ ID NO: 148 is the determined cDNA sequence for P239
SEQ ID NO: 149 is the determined cDNA sequence for P248

SEQ ID NO: 150 is the determined cDNA sequence for P251
SEQ ID NO: 151 is the determined cDNA sequence for P255
SEQ ID NO: 152 is the determined cDNA sequence for P256
SEQ ID NO: 153 is the determined cDNA sequence for P259
SEQ ID NO: 154 is the determined cDNA sequence for P260
SEQ ID NO: 155 is the determined cDNA sequence for P263
SEQ ID NO: 156 is the determined cDNA sequence for P264
SEQ ID NO: 157 is the determined cDNA sequence for P266
SEQ ID NO: 158 is the determined cDNA sequence for P270
SEQ ID NO: 159 is the determined cDNA sequence for P272
SEQ ID NO: 160 is the determined cDNA sequence for P278
SEQ ID NO: 161 is the determined cDNA sequence for P105
SEQ ID NO: 162 is the determined cDNA sequence for P107
SEQ ID NO: 163 is the determined cDNA sequence for P137
SEQ ID NO: 164 is the determined cDNA sequence for P194
SEQ ID NO: 165 is the determined cDNA sequence for P195
SEQ ID NO: 166 is the determined cDNA sequence for P196
SEQ ID NO: 167 is the determined cDNA sequence for P220
SEQ ID NO: 168 is the determined cDNA sequence for P234
SEQ ID NO: 169 is the determined cDNA sequence for P235
SEQ ID NO: 170 is the determined cDNA sequence for P243
SEQ ID NO: 171 is the determined cDNA sequence for P703P-DE1
SEQ ID NO: 172 is the predicted amino acid sequence for P703P-DE1
SEQ ID NO: 173 is the determined cDNA sequence for P703P-DE2
SEQ ID NO: 174 is the determined cDNA sequence for P703P-DE6
SEQ ID NO: 175 is the determined cDNA sequence for P703P-DE13
SEQ ID NO: 176 is the predicted amino acid sequence for P703P-DE13
SEQ ID NO: 177 is the determined cDNA sequence for P703P-DE14
SEQ ID NO: 178 is the predicted amino acid sequence for P703P-DE14
SEQ ID NO: 179 is the determined extended cDNA sequence for 1G-4736
SEQ ID NO: 180 is the determined extended cDNA sequence for 1G-4738
SEQ ID NO: 181 is the determined extended cDNA sequence for 1G-4741
SEQ ID NO: 182 is the determined extended cDNA sequence for 1G-4744
SEQ ID NO: 183 is the determined extended cDNA sequence for 1H-4774
SEQ ID NO: 184 is the determined extended cDNA sequence for 1H-4781
SEQ ID NO: 185 is the determined extended cDNA sequence for 1H-4785
SEQ ID NO: 186 is the determined extended cDNA sequence for 1H-4787

SEQ ID NO: 187 is the determined extended cDNA sequence for 1H-4796
SEQ ID NO: 188 is the determined extended cDNA sequence for 1I-4807
SEQ ID NO: 189 is the determined 3' cDNA sequence for 1I-4810
SEQ ID NO: 190 is the determined 3' cDNA sequence for 1I-4811
SEQ ID NO: 191 is the determined extended cDNA sequence for 1J-4876
SEQ ID NO: 192 is the determined extended cDNA sequence for 1K-4884
SEQ ID NO: 193 is the determined extended cDNA sequence for 1K-4896
SEQ ID NO: 194 is the determined extended cDNA sequence for 1G-4761
SEQ ID NO: 195 is the determined extended cDNA sequence for 1G-4762
SEQ ID NO: 196 is the determined extended cDNA sequence for 1H-4766
SEQ ID NO: 197 is the determined 3' cDNA sequence for 1H-4770
SEQ ID NO: 198 is the determined 3' cDNA sequence for 1H-4771
SEQ ID NO: 199 is the determined extended cDNA sequence for 1H-4772
SEQ ID NO: 200 is the determined extended cDNA sequence for 1D-4309
SEQ ID NO: 201 is the determined extended cDNA sequence for 1D.1-4278
SEQ ID NO: 202 is the determined extended cDNA sequence for 1D-4288
SEQ ID NO: 203 is the determined extended cDNA sequence for 1D-4283
SEQ ID NO: 204 is the determined extended cDNA sequence for 1D-4304
SEQ ID NO: 205 is the determined extended cDNA sequence for 1D-4296
SEQ ID NO: 206 is the determined extended cDNA sequence for 1D-4280
SEQ ID NO: 207 is the determined cDNA sequence for 10-d8fwd
SEQ ID NO: 208 is the determined cDNA sequence for 10-H10con
SEQ ID NO: 209 is the determined cDNA sequence for 11-C8rev
SEQ ID NO: 210 is the determined cDNA sequence for 7.g6fwd
SEQ ID NO: 211 is the determined cDNA sequence for 7.g6rev
SEQ ID NO: 212 is the determined cDNA sequence for 8-b5fwd
SEQ ID NO: 213 is the determined cDNA sequence for 8-b5rev
SEQ ID NO: 214 is the determined cDNA sequence for 8-b6fwd
SEQ ID NO: 215 is the determined cDNA sequence for 8-b6 rev
SEQ ID NO: 216 is the determined cDNA sequence for 8-d4fwd
SEQ ID NO: 217 is the determined cDNA sequence for 8-d9rev
SEQ ID NO: 218 is the determined cDNA sequence for 8-g3fwd
SEQ ID NO: 219 is the determined cDNA sequence for 8-g3rev
SEQ ID NO: 220 is the determined cDNA sequence for 8-h11rev
SEQ ID NO: 221 is the determined cDNA sequence for g-f12fwd
SEQ ID NO: 222 is the determined cDNA sequence for g-f3rev
SEQ ID NO: 223 is the determined cDNA sequence for P509S

SEQ ID NO: 224 is the determined cDNA sequence for P510S
SEQ ID NO: 225 is the determined cDNA sequence for P703DES
SEQ ID NO: 226 is the determined cDNA sequence for 9-A11
SEQ ID NO: 227 is the determined cDNA sequence for 8-C6
SEQ ID NO: 228 is the determined cDNA sequence for 8-H7
SEQ ID NO: 229 is the determined cDNA sequence for JPTPN13
SEQ ID NO: 230 is the determined cDNA sequence for JPTPN14
SEQ ID NO: 231 is the determined cDNA sequence for JPTPN23
SEQ ID NO: 232 is the determined cDNA sequence for JPTPN24
SEQ ID NO: 233 is the determined cDNA sequence for JPTPN25
SEQ ID NO: 234 is the determined cDNA sequence for JPTPN30
SEQ ID NO: 235 is the determined cDNA sequence for JPTPN34
SEQ ID NO: 236 is the determined cDNA sequence for PTPN35
SEQ ID NO: 237 is the determined cDNA sequence for JPTPN36
SEQ ID NO: 238 is the determined cDNA sequence for JPTPN38
SEQ ID NO: 239 is the determined cDNA sequence for JPTPN39
SEQ ID NO: 240 is the determined cDNA sequence for JPTPN40
SEQ ID NO: 241 is the determined cDNA sequence for JPTPN41
SEQ ID NO: 242 is the determined cDNA sequence for JPTPN42
SEQ ID NO: 243 is the determined cDNA sequence for JPTPN45
SEQ ID NO: 244 is the determined cDNA sequence for JPTPN46
SEQ ID NO: 245 is the determined cDNA sequence for JPTPN51
SEQ ID NO: 246 is the determined cDNA sequence for JPTPN56
SEQ ID NO: 247 is the determined cDNA sequence for PTPN64
SEQ ID NO: 248 is the determined cDNA sequence for JPTPN65
SEQ ID NO: 249 is the determined cDNA sequence for JPTPN67
SEQ ID NO: 250 is the determined cDNA sequence for JPTPN76
SEQ ID NO: 251 is the determined cDNA sequence for JPTPN84
SEQ ID NO: 252 is the determined cDNA sequence for JPTPN85
SEQ ID NO: 253 is the determined cDNA sequence for JPTPN86
SEQ ID NO: 254 is the determined cDNA sequence for JPTPN87
SEQ ID NO: 255 is the determined cDNA sequence for JPTPN88
SEQ ID NO: 256 is the determined cDNA sequence for JP1F1
SEQ ID NO: 257 is the determined cDNA sequence for JP1F2
SEQ ID NO: 258 is the determined cDNA sequence for JP1C2
SEQ ID NO: 259 is the determined cDNA sequence for JP1B1
SEQ ID NO: 260 is the determined cDNA sequence for JP1B2

SEQ ID NO: 261 is the determined cDNA sequence for JP1D3
SEQ ID NO: 262 is the determined cDNA sequence for JP1A4
SEQ ID NO: 263 is the determined cDNA sequence for JP1F5
SEQ ID NO: 264 is the determined cDNA sequence for JP1E6
SEQ ID NO: 265 is the determined cDNA sequence for JP1D6
SEQ ID NO: 266 is the determined cDNA sequence for JP1B5
SEQ ID NO: 267 is the determined cDNA sequence for JP1A6
SEQ ID NO: 268 is the determined cDNA sequence for JP1E8
SEQ ID NO: 269 is the determined cDNA sequence for JP1D7
SEQ ID NO: 270 is the determined cDNA sequence for JP1D9
SEQ ID NO: 271 is the determined cDNA sequence for JP1C10
SEQ ID NO: 272 is the determined cDNA sequence for JP1A9
SEQ ID NO: 273 is the determined cDNA sequence for JP1F12
SEQ ID NO: 274 is the determined cDNA sequence for JP1E12
SEQ ID NO: 275 is the determined cDNA sequence for JP1D11
SEQ ID NO: 276 is the determined cDNA sequence for JP1C11
SEQ ID NO: 277 is the determined cDNA sequence for JP1C12
SEQ ID NO: 278 is the determined cDNA sequence for JP1B12
SEQ ID NO: 279 is the determined cDNA sequence for JP1A12
SEQ ID NO: 280 is the determined cDNA sequence for JP8G2
SEQ ID NO: 281 is the determined cDNA sequence for JP8H1
SEQ ID NO: 282 is the determined cDNA sequence for JP8H2
SEQ ID NO: 283 is the determined cDNA sequence for JP8A3
SEQ ID NO: 284 is the determined cDNA sequence for JP8A4
SEQ ID NO: 285 is the determined cDNA sequence for JP8C3
SEQ ID NO: 286 is the determined cDNA sequence for JP8G4
SEQ ID NO: 287 is the determined cDNA sequence for JP8B6
SEQ ID NO: 288 is the determined cDNA sequence for JP8D6
SEQ ID NO: 289 is the determined cDNA sequence for JP8F5
SEQ ID NO: 290 is the determined cDNA sequence for JP8A8
SEQ ID NO: 291 is the determined cDNA sequence for JP8C7
SEQ ID NO: 292 is the determined cDNA sequence for JP8D7
SEQ ID NO: 293 is the determined cDNA sequence for P8D8
SEQ ID NO: 294 is the determined cDNA sequence for JP8E7
SEQ ID NO: 295 is the determined cDNA sequence for JP8F8
SEQ ID NO: 296 is the determined cDNA sequence for JP8G8
SEQ ID NO: 297 is the determined cDNA sequence for JP8B10

SEQ ID NO: 298 is the determined cDNA sequence for JP8C10
SEQ ID NO: 299 is the determined cDNA sequence for JP8E9
SEQ ID NO: 300 is the determined cDNA sequence for JP8E10
SEQ ID NO: 301 is the determined cDNA sequence for JP8F9
SEQ ID NO: 302 is the determined cDNA sequence for JP8H9
SEQ ID NO: 303 is the determined cDNA sequence for JP8C12
SEQ ID NO: 304 is the determined cDNA sequence for JP8E11
SEQ ID NO: 305 is the determined cDNA sequence for JP8E12
SEQ ID NO: 306 is the amino acid sequence for the peptide PS2#12
SEQ ID NO: 307 is the determined cDNA sequence for P711P
SEQ ID NO: 308 is the determined cDNA sequence for P712P
SEQ ID NO: 309 is the determined cDNA sequence for CLONE23
SEQ ID NO: 310 is the determined cDNA sequence for P774P
SEQ ID NO: 311 is the determined cDNA sequence for P775P
SEQ ID NO: 312 is the determined cDNA sequence for P715P
SEQ ID NO: 313 is the determined cDNA sequence for P710P
SEQ ID NO: 314 is the determined cDNA sequence for P767P
SEQ ID NO: 315 is the determined cDNA sequence for P768P
SEQ ID NO: 316-325 are the determined cDNA sequences of previously isolated genes
SEQ ID NO: 326 is the determined cDNA sequence for P703PDE5
SEQ ID NO: 327 is the predicted amino acid sequence for P703PDE5
SEQ ID NO: 328 is the determined cDNA sequence for P703P6.26
SEQ ID NO: 329 is the predicted amino acid sequence for P703P6.26
SEQ ID NO: 330 is the determined cDNA sequence for P703PX-23
SEQ ID NO: 331 is the predicted amino acid sequence for P703PX-23
SEQ ID NO: 332 is the determined full length cDNA sequence for P509S
SEQ ID NO: 333 is the determined extended cDNA sequence for P707P (also referred to as 11-C9)
SEQ ID NO: 334 is the determined cDNA sequence for P714P
SEQ ID NO: 335 is the determined cDNA sequence for P705P (also referred to as 9-F3)
SEQ ID NO: 336 is the predicted amino acid sequence for P705P
SEQ ID NO: 337 is the amino acid sequence of the peptide P1S#10
SEQ ID NO: 338 is the amino acid sequence of the peptide p5
SEQ ID NO: 339 is the predicted amino acid sequence of P509S
SEQ ID NO: 340 is the determined cDNA sequence for P778P
SEQ ID NO: 341 is the determined cDNA sequence for P786P
SEQ ID NO: 342 is the determined cDNA sequence for P789P

SEQ ID NO: 343 is the determined cDNA sequence for a clone showing homology to Homo sapiens MM46 mRNA

SEQ ID NO: 344 is the determined cDNA sequence for a clone showing homology to Homo sapiens TNF-alpha stimulated ABC protein (ABC50) mRNA

SEQ ID NO: 345 is the determined cDNA sequence for a clone showing homology to Homo sapiens mRNA for E-cadherin

SEQ ID NO: 346 is the determined cDNA sequence for a clone showing homology to Human nuclear-encoded mitochondrial serine hydroxymethyltransferase (SHMT)

SEQ ID NO: 347 is the determined cDNA sequence for a clone showing homology to Homo sapiens natural resistance-associated macrophage protein2 (NRAMP2)

SEQ ID NO: 348 is the determined cDNA sequence for a clone showing homology to Homo sapiens phosphoglucomutase-related protein (PGMRP)

SEQ ID NO: 349 is the determined cDNA sequence for a clone showing homology to Human mRNA for proteosome subunit p40

SEQ ID NO: 350 is the determined cDNA sequence for P777P

SEQ ID NO: 351 is the determined cDNA sequence for P779P

SEQ ID NO: 352 is the determined cDNA sequence for P790P

SEQ ID NO: 353 is the determined cDNA sequence for P784P

SEQ ID NO: 354 is the determined cDNA sequence for P776P

SEQ ID NO: 355 is the determined cDNA sequence for P780P

SEQ ID NO: 356 is the determined cDNA sequence for P544S

SEQ ID NO: 357 is the determined cDNA sequence for P745S

SEQ ID NO: 358 is the determined cDNA sequence for P782P

SEQ ID NO: 359 is the determined cDNA sequence for P783P

SEQ ID NO: 360 is the determined cDNA sequence for unknown 17984

SEQ ID NO: 361 is the determined cDNA sequence for P787P

SEQ ID NO: 362 is the determined cDNA sequence for P788P

SEQ ID NO: 363 is the determined cDNA sequence for unknown 17994

SEQ ID NO: 364 is the determined cDNA sequence for P781P

SEQ ID NO: 365 is the determined cDNA sequence for P785P

SEQ ID NO: 366-375 are the determined cDNA sequences for splice variants of B305D.

SEQ ID NO: 376 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO: 366.

SEQ ID NO: 377 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO: 372.

SEQ ID NO: 378 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO: 373.

SEQ ID NO: 379 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO: 374.

SEQ ID NO: 380 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO: 375.

SEQ ID NO: 381 is the determined cDNA sequence for B716P.

SEQ ID NO: 382 is the determined full-length cDNA sequence for P711P.

SEQ ID NO: 383 is the predicted amino acid sequence for P711P.

SEQ ID NO: 384 is the cDNA sequence for P1000C.

SEQ ID NO: 385 is the cDNA sequence for CGI-82.

SEQ ID NO: 386 is the cDNA sequence for 23320.

SEQ ID NO: 387 is the cDNA sequence for CGI-69.

SEQ ID NO: 388 is the cDNA sequence for L-iditol-2-dehydrogenase.

SEQ ID NO: 389 is the cDNA sequence for 23379.

SEQ ID NO: 390 is the cDNA sequence for 23381.

SEQ ID NO: 391 is the cDNA sequence for KIAA0122.

SEQ ID NO: 392 is the cDNA sequence for 23399.

SEQ ID NO: 393 is the cDNA sequence for a previously identified gene.

SEQ ID NO: 394 is the cDNA sequence for HCLBP.

SEQ ID NO: 395 is the cDNA sequence for transglutaminase.

SEQ ID NO: 396 is the cDNA sequence for a previously identified gene.

SEQ ID NO: 397 is the cDNA sequence for PAP.

SEQ ID NO: 398 is the cDNA sequence for Ets transcription factor PDEF.

SEQ ID NO: 399 is the cDNA sequence for hTGR.

SEQ ID NO: 400 is the cDNA sequence for KIAA0295.

SEQ ID NO: 401 is the cDNA sequence for 22545.

SEQ ID NO: 402 is the cDNA sequence for 22547.

SEQ ID NO: 403 is the cDNA sequence for 22548.

SEQ ID NO: 404 is the cDNA sequence for 22550.

SEQ ID NO: 405 is the cDNA sequence for 22551.

SEQ ID NO: 406 is the cDNA sequence for 22552.

SEQ ID NO: 407 is the cDNA sequence for 22553.

SEQ ID NO: 408 is the cDNA sequence for 22558.

SEQ ID NO: 409 is the cDNA sequence for 22562.

SEQ ID NO: 410 is the cDNA sequence for 22565.

SEQ ID NO: 411 is the cDNA sequence for 22567.

SEQ ID NO: 412 is the cDNA sequence for 22568.

SEQ ID NO: 413 is the cDNA sequence for 22570.

SEQ ID NO:414 is the cDNA sequence for 22571.
SEQ ID NO:415 is the cDNA sequence for 22572.
SEQ ID NO:416 is the cDNA sequence for 22573.
SEQ ID NO:417 is the cDNA sequence for 22573.
SEQ ID NO:418 is the cDNA sequence for 22575.
SEQ ID NO:419 is the cDNA sequence for 22580.
SEQ ID NO:420 is the cDNA sequence for 22581.
SEQ ID NO:421 is the cDNA sequence for 22582.
SEQ ID NO:422 is the cDNA sequence for 22583.
SEQ ID NO:423 is the cDNA sequence for 22584.
SEQ ID NO:424 is the cDNA sequence for 22585.
SEQ ID NO:425 is the cDNA sequence for 22586.
SEQ ID NO:426 is the cDNA sequence for 22587.
SEQ ID NO:427 is the cDNA sequence for 22588.
SEQ ID NO:428 is the cDNA sequence for 22589.
SEQ ID NO:429 is the cDNA sequence for 22590.
SEQ ID NO:430 is the cDNA sequence for 22591.
SEQ ID NO:431 is the cDNA sequence for 22592.
SEQ ID NO:432 is the cDNA sequence for 22593.
SEQ ID NO:433 is the cDNA sequence for 22594.
SEQ ID NO:434 is the cDNA sequence for 22595.
SEQ ID NO:435 is the cDNA sequence for 22596.
SEQ ID NO:436 is the cDNA sequence for 22847.
SEQ ID NO:437 is the cDNA sequence for 22848.
SEQ ID NO:438 is the cDNA sequence for 22849.
SEQ ID NO:439 is the cDNA sequence for 22851.
SEQ ID NO:440 is the cDNA sequence for 22852.
SEQ ID NO:441 is the cDNA sequence for 22853.
SEQ ID NO:442 is the cDNA sequence for 22854.
SEQ ID NO:443 is the cDNA sequence for 22855.
SEQ ID NO:444 is the cDNA sequence for 22856.
SEQ ID NO:445 is the cDNA sequence for 22857.
SEQ ID NO:446 is the cDNA sequence for 23601.
SEQ ID NO:447 is the cDNA sequence for 23602.
SEQ ID NO:448 is the cDNA sequence for 23605.
SEQ ID NO:449 is the cDNA sequence for 23606.
SEQ ID NO:450 is the cDNA sequence for 23612.

SEQ ID NO:451 is the cDNA sequence for 23614.
SEQ ID NO:452 is the cDNA sequence for 23618.
SEQ ID NO:453 is the cDNA sequence for 23622.
SEQ ID NO:454 is the cDNA sequence for folate hydrolase.
SEQ ID NO:455 is the cDNA sequence for LIM protein.
SEQ ID NO:456 is the cDNA sequence for a known gene.
SEQ ID NO:457 is the cDNA sequence for a known gene.
SEQ ID NO:458 is the cDNA sequence for a previously identified gene.
SEQ ID NO:459 is the cDNA sequence for 23045.
SEQ ID NO:460 is the cDNA sequence for 23032.
SEQ ID NO:461 is the cDNA sequence for 23054.
SEQ ID NOs:462-467 are cDNA sequences for known genes.
SEQ ID NOs:468-471 are cDNA sequences for P710P.
SEQ ID NO:472 is a cDNA sequence for P1001C.

DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for the therapy and diagnosis of cancer, such as prostate cancer. The compositions described herein may include prostate tumor polypeptides, polynucleotides encoding such polypeptides, binding agents such as antibodies, antigen presenting cells (APCs) and/or immune system cells (e.g., T cells). Polypeptides of the present invention generally comprise at least a portion (such as an immunogenic portion) of a prostate tumor protein or a variant thereof. A "prostate tumor protein" is a protein that is expressed in prostate tumor cells at a level that is at least two fold, and preferably at least five fold, greater than the level of expression in a normal tissue, as determined using a representative assay provided herein. Certain prostate tumor proteins are tumor proteins that react detectably (within an immunoassay, such as an ELISA or Western blot) with antisera of a patient afflicted with prostate cancer. Polynucleotides of the subject invention generally comprise a DNA or RNA sequence that encodes all or a portion of such a polypeptide, or that is complementary to such a sequence. Antibodies are generally immune system proteins, or antigen-binding fragments thereof, that are capable of binding to a polypeptide as described above. Antigen presenting cells include dendritic cells, macrophages, monocytes, fibroblasts and B-cells that express a polypeptide as described above. T cells that may be employed within such compositions are generally T cells that are specific for a polypeptide as described above.

The present invention is based on the discovery of human prostate tumor proteins. Sequences of polynucleotides encoding certain tumor proteins, or portions thereof, are provided in SEQ ID NOs:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472. Sequences of polypeptides comprising at least a portion of a tumor protein are provided in SEQ ID NOs:112-114, 172, 176, 178, 327, 329, 331, 336, 339, 376-380 and 383.

PROSTATE TUMOR PROTEIN POLYNUCLEOTIDES

Any polynucleotide that encodes a prostate tumor protein or a portion or other variant thereof as described herein is encompassed by the present invention. Preferred polynucleotides comprise at least 15 consecutive nucleotides, preferably at least 30 consecutive nucleotides and more preferably at least 45 consecutive nucleotides, that encode a portion of a prostate tumor protein. More preferably, a polynucleotide encodes an immunogenic portion of a prostate tumor protein. Polynucleotides complementary to any such sequences are also encompassed by the present invention. Polynucleotides may be single-stranded (coding or antisense) or double-stranded, and may be DNA (genomic, cDNA or synthetic) or RNA molecules. RNA molecules include HnRNA molecules, which contain introns and correspond to a DNA molecule in a one-to-one manner, and mRNA molecules, which do not contain introns. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide of the present invention, and a polynucleotide may, but need not, be linked to other molecules and/or support materials.

Polynucleotides may comprise a native sequence (*i.e.*, an endogenous sequence that encodes a prostate tumor protein or a portion thereof) or may comprise a variant of such a sequence. Polynucleotide variants may contain one or more substitutions, additions, deletions and/or insertions such that the immunogenicity of the encoded polypeptide is not diminished, relative to a native tumor protein. The effect on the immunogenicity of the encoded polypeptide may generally be assessed as described herein. Variants preferably exhibit at least about 70% identity, more preferably at least about 80% identity and most preferably at least about 90% identity to a polynucleotide sequence that encodes a native prostate tumor protein or a portion thereof.

Two polynucleotide or polypeptide sequences are said to be "identical" if the sequence of nucleotides or amino acids in the two sequences is the same when aligned for maximum correspondence as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50,

in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, WI), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M.O. (1978) A model of evolutionary change in proteins – Matrices for detecting distant relationships. In Dayhoff, M.O. (ed.) *Atlas of Protein Sequence and Structure*, National Biomedical Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) Unified Approach to Alignment and Phylogenies pp. 626-645 *Methods in Enzymology* vol. 183, Academic Press, Inc., San Diego, CA; Higgins, D.G. and Sharp, P.M. (1989) CABIOS 5:151-153; Myers, E.W. and Muller W. (1988) CABIOS 4:11-17; Robinson, E.D. (1971) Comb. Theor 11:105; Santou, N. Nes, M. (1987) Mol. Biol. Evol. 4:406-425; Sneath, P.H.A. and Sokal, R.R. (1973) *Numerical Taxonomy – the Principles and Practice of Numerical Taxonomy*, Freeman Press, San Francisco, CA; Wilbur, W.J. and Lipman, D.J. (1983) Proc. Natl. Acad. Sci. USA 80:726-730.

Preferably, the "percentage of sequence identity" is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (*i.e.*, gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid bases or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (*i.e.*, the window size) and multiplying the results by 100 to yield the percentage of sequence identity.

Variants may also, or alternatively, be substantially homologous to a native gene, or a portion or complement thereof. Such polynucleotide variants are capable of hybridizing under moderately stringent conditions to a naturally occurring DNA sequence encoding a native prostate tumor protein (or a complementary sequence). Suitable moderately stringent conditions include prewashing in a solution of 5 X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5 X SSC, overnight; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS.

It will be appreciated by those of ordinary skill in the art that, as a result of the degeneracy of the genetic code, there are many nucleotide sequences that encode a polypeptide as described herein. Some of these polynucleotides bear minimal homology to

the nucleotide sequence of any native gene. Nonetheless, polynucleotides that vary due to differences in codon usage are specifically contemplated by the present invention. Further, alleles of the genes comprising the polynucleotide sequences provided herein are within the scope of the present invention. Alleles are endogenous genes that are altered as a result of one or more mutations, such as deletions, additions and/or substitutions of nucleotides. The resulting mRNA and protein may, but need not, have an altered structure or function. Alleles may be identified using standard techniques (such as hybridization, amplification and/or database sequence comparison).

Polynucleotides may be prepared using any of a variety of techniques. For example, a polynucleotide may be identified, as described in more detail below, by screening a microarray of cDNAs for tumor-associated expression (*i.e.*, expression that is at least five fold greater in a prostate tumor than in normal tissue, as determined using a representative assay provided herein). Such screens may be performed using a Synteni microarray (Palo Alto, CA) according to the manufacturer's instructions (and essentially as described by Schena et al., *Proc. Natl. Acad. Sci. USA* 93:10614-10619, 1996 and Heller et al., *Proc. Natl. Acad. Sci. USA* 94:2150-2155, 1997). Alternatively, polypeptides may be amplified from cDNA prepared from cells expressing the proteins described herein, such as prostate tumor cells. Such polynucleotides may be amplified via polymerase chain reaction (PCR). For this approach, sequence-specific primers may be designed based on the sequences provided herein, and may be purchased or synthesized.

An amplified portion may be used to isolate a full length gene from a suitable library (*e.g.*, a prostate tumor cDNA library) using well known techniques. Within such techniques, a library (cDNA or genomic) is screened using one or more polynucleotide probes or primers suitable for amplification. Preferably, a library is size-selected to include larger molecules. Random primed libraries may also be preferred for identifying 5' and upstream regions of genes. Genomic libraries are preferred for obtaining introns and extending 5' sequences.

For hybridization techniques, a partial sequence may be labeled (*e.g.*, by nick-translation or end-labeling with ^{32}P) using well known techniques. A bacterial or bacteriophage library is then screened by hybridizing filters containing denatured bacterial colonies (or lawns containing phage plaques) with the labeled probe (*see* Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989). Hybridizing colonies or plaques are selected and expanded, and the DNA is isolated for further analysis. cDNA clones may be analyzed to determine the amount of additional sequence by, for example, PCR using a primer from the partial sequence and a primer from the vector. Restriction maps and partial sequences may be generated to identify one or more overlapping clones. The complete sequence may then be determined using

standard techniques, which may involve generating a series of deletion clones. The resulting overlapping sequences are then assembled into a single contiguous sequence. A full length cDNA molecule can be generated by ligating suitable fragments, using well known techniques.

Alternatively, there are numerous amplification techniques for obtaining a full length coding sequence from a partial cDNA sequence. Within such techniques, amplification is generally performed via PCR. Any of a variety of commercially available kits may be used to perform the amplification step. Primers may be designed using, for example, software well known in the art. Primers are preferably 22-30 nucleotides in length, have a GC content of at least 50% and anneal to the target sequence at temperatures of about 68°C to 72°C. The amplified region may be sequenced as described above, and overlapping sequences assembled into a contiguous sequence.

One such amplification technique is inverse PCR (see Triglia et al., *Nucl. Acids Res.* 16:8186, 1988), which uses restriction enzymes to generate a fragment in the known region of the gene. The fragment is then circularized by intramolecular ligation and used as a template for PCR with divergent primers derived from the known region. Within an alternative approach, sequences adjacent to a partial sequence may be retrieved by amplification with a primer to a linker sequence and a primer specific to a known region. The amplified sequences are typically subjected to a second round of amplification with the same linker primer and a second primer specific to the known region. A variation on this procedure, which employs two primers that initiate extension in opposite directions from the known sequence, is described in WO 96/38591. Another such technique is known as "rapid amplification of cDNA ends" or RACE. This technique involves the use of an internal primer and an external primer, which hybridizes to a polyA region or vector sequence, to identify sequences that are 5' and 3' of a known sequence. Additional techniques include capture PCR (Lagerstrom et al., *PCR Methods Applic.* 1:111-19, 1991) and walking PCR (Parker et al., *Nucl. Acids. Res.* 19:3055-60, 1991). Other methods employing amplification may also be employed to obtain a full length cDNA sequence.

In certain instances, it is possible to obtain a full length cDNA sequence by analysis of sequences provided in an expressed sequence tag (EST) database, such as that available from GenBank. Searches for overlapping ESTs may generally be performed using well known programs (e.g., NCBI BLAST searches), and such ESTs may be used to generate a contiguous full length sequence.

Certain nucleic acid sequences of cDNA molecules encoding at least a portion of a prostate tumor protein are provided in SEQ ID NOs:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472. Isolation of these

polynucleotides is described below. Each of these prostate tumor proteins was overexpressed in prostate tumor tissue.

Polynucleotide variants may generally be prepared by any method known in the art, including chemical synthesis by, for example, solid phase phosphoramidite chemical synthesis. Modifications in a polynucleotide sequence may also be introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis (see Adelman et al., *DNA* 2:183, 1983). Alternatively, RNA molecules may be generated by *in vitro* or *in vivo* transcription of DNA sequences encoding a prostate tumor protein, or portion thereof, provided that the DNA is incorporated into a vector with a suitable RNA polymerase promoter (such as T7 or SP6). Certain portions may be used to prepare an encoded polypeptide, as described herein. In addition, or alternatively, a portion may be administered to a patient such that the encoded polypeptide is generated *in vivo* (e.g., by transfecting antigen-presenting cells, such as dendritic cells, with a cDNA construct encoding a prostate tumor polypeptide, and administering the transfected cells to the patient).

A portion of a sequence complementary to a coding sequence (*i.e.*, an antisense polynucleotide) may also be used as a probe or to modulate gene expression. cDNA constructs that can be transcribed into antisense RNA may also be introduced into cells of tissues to facilitate the production of antisense RNA. An antisense polynucleotide may be used, as described herein, to inhibit expression of a tumor protein. Antisense technology can be used to control gene expression through triple-helix formation, which compromises the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors or regulatory molecules (see Gee et al., *In Huber and Carr, Molecular and Immunologic Approaches*, Futura Publishing Co. (Mt. Kisco, NY; 1994)). Alternatively, an antisense molecule may be designed to hybridize with a control region of a gene (*e.g.*, promoter, enhancer or transcription initiation site), and block transcription of the gene; or to block translation by inhibiting binding of a transcript to ribosomes.

A portion of a coding sequence, or of a complementary sequence, may also be designed as a probe or primer to detect gene expression. Probes may be labeled with a variety of reporter groups, such as radionuclides and enzymes, and are preferably at least 10 nucleotides in length, more preferably at least 20 nucleotides in length and still more preferably at least 30 nucleotides in length. Primers, as noted above, are preferably 22-30 nucleotides in length.

Any polynucleotide may be further modified to increase stability *in vivo*. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends; the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages in the backbone; and/or the inclusion of nontraditional bases such

as inosine, queosine and wybudosine, as well as acetyl-, methyl-, thio- and other modified forms of adenine, cytidine, guanine, thymine and uridine.

Nucleotide sequences as described herein may be joined to a variety of other nucleotide sequences using established recombinant DNA techniques. For example, a polynucleotide may be cloned into any of a variety of cloning vectors, including plasmids, phagemids, lambda phage derivatives and cosmids. Vectors of particular interest include expression vectors, replication vectors, probe generation vectors and sequencing vectors. In general, a vector will contain an origin of replication functional in at least one organism, convenient restriction endonuclease sites and one or more selectable markers. Other elements will depend upon the desired use, and will be apparent to those of ordinary skill in the art.

Within certain embodiments, polynucleotides may be formulated so as to permit entry into a cell of a mammal, and expression therein. Such formulations are particularly useful for therapeutic purposes, as described below. Those of ordinary skill in the art will appreciate that there are many ways to achieve expression of a polynucleotide in a target cell, and any suitable method may be employed. For example, a polynucleotide may be incorporated into a viral vector such as, but not limited to, adenovirus, adeno-associated virus, retrovirus, or vaccinia or other pox virus (e.g., avian pox virus). Techniques for incorporating DNA into such vectors are well known to those of ordinary skill in the art. A retroviral vector may additionally transfer or incorporate a gene for a selectable marker (to aid in the identification or selection of transduced cells) and/or a targeting moiety, such as a gene that encodes a ligand for a receptor on a specific target cell, to render the vector target specific. Targeting may also be accomplished using an antibody, by methods known to those of ordinary skill in the art.

Other formulations for therapeutic purposes include colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. A preferred colloidal system for use as a delivery vehicle *in vitro* and *in vivo* is a liposome (*i.e.*, an artificial membrane vesicle). The preparation and use of such systems is well known in the art.

PROSTATE TUMOR POLYPEPTIDES

Within the context of the present invention, polypeptides may comprise at least an immunogenic portion of a prostate tumor protein or a variant thereof, as described herein. As noted above, a "prostate tumor protein" is a protein that is expressed by prostate tumor cells. Proteins that are prostate tumor proteins also react detectably within an immunoassay (such as an ELISA) with antisera from a patient with prostate cancer. Polypeptides as described herein may be of any length. Additional sequences derived from

the native protein and/or heterologous sequences may be present, and such sequences may (but need not) possess further immunogenic or antigenic properties.

An "immunogenic portion," as used herein is a portion of a protein that is recognized (*i.e.*, specifically bound) by a B-cell and/or T-cell surface antigen receptor. Such immunogenic portions generally comprise at least 5 amino acid residues, more preferably at least 10, and still more preferably at least 20 amino acid residues of a prostate tumor protein or a variant thereof. Certain preferred immunogenic portions include peptides in which an N-terminal leader sequence and/or transmembrane domain have been deleted. Other preferred immunogenic portions may contain a small N- and/or C-terminal deletion (*e.g.*, 1-30 amino acids, preferably 5-15 amino acids), relative to the mature protein.

Immunogenic portions may generally be identified using well known techniques, such as those summarized in Paul, *Fundamental Immunology*, 3rd ed., 243-247 (Raven Press, 1993) and references cited therein. Such techniques include screening polypeptides for the ability to react with antigen-specific antibodies, antisera and/or T-cell lines or clones. As used herein, antisera and antibodies are "antigen-specific" if they specifically bind to an antigen (*i.e.*, they react with the protein in an ELISA or other immunoassay, and do not react detectably with unrelated proteins). Such antisera and antibodies may be prepared as described herein, and using well known techniques. An immunogenic portion of a native prostate tumor protein is a portion that reacts with such antisera and/or T-cells at a level that is not substantially less than the reactivity of the full length polypeptide (*e.g.*, in an ELISA and/or T-cell reactivity assay). Such immunogenic portions may react within such assays at a level that is similar to or greater than the reactivity of the full length polypeptide. Such screens may generally be performed using methods well known to those of ordinary skill in the art, such as those described in Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988. For example, a polypeptide may be immobilized on a solid support and contacted with patient sera to allow binding of antibodies within the sera to the immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example, ¹²⁵I-labeled Protein A.

As noted above, a composition may comprise a variant of a native prostate tumor protein. A polypeptide "variant," as used herein, is a polypeptide that differs from a native prostate tumor protein in one or more substitutions, deletions, additions and/or insertions, such that the immunogenicity of the polypeptide is not substantially diminished. In other words, the ability of a variant to react with antigen-specific antisera may be enhanced or unchanged, relative to the native protein, or may be diminished by less than 50%, and preferably less than 20%, relative to the native protein. Such variants may generally be identified by modifying one of the above polypeptide sequences and evaluating the reactivity of the modified polypeptide with antigen-specific antibodies or antisera as described herein.

Preferred variants include those in which one or more portions, such as an N-terminal leader sequence or transmembrane domain, have been removed. Other preferred variants include variants in which a small portion (e.g., 1-30 amino acids, preferably 5-15 amino acids) has been removed from the N- and/or C-terminal of the mature protein. Polypeptide variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% identity (determined as described above) to the identified polypeptides.

Preferably, a variant contains conservative substitutions. A "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. Amino acid substitutions may generally be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the residues. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; and serine, threonine, phenylalanine and tyrosine. Other groups of amino acids that may represent conservative changes include: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his. A variant may also, or alternatively, contain nonconservative changes. In a preferred embodiment, variant polypeptides differ from a native sequence by substitution, deletion or addition of five amino acids or fewer. Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the immunogenicity, secondary structure and hydropathic nature of the polypeptide.

As noted above, polypeptides may comprise a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

Polypeptides may be prepared using any of a variety of well known techniques. Recombinant polypeptides encoded by DNA sequences as described above may be readily prepared from the DNA sequences using any of a variety of expression vectors known to those of ordinary skill in the art. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are

E. coli, yeast or a mammalian cell line such as COS or CHO. Supernatants from suitable host/vector systems which secrete recombinant protein or polypeptide into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant polypeptide.

Portions and other variants having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may also be generated by synthetic means, using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, *J. Am. Chem. Soc.* 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied BioSystems Division (Foster City, CA), and may be operated according to the manufacturer's instructions.

Within certain specific embodiments, a polypeptide may be a fusion protein that comprises multiple polypeptides as described herein, or that comprises at least one polypeptide as described herein and an unrelated sequence, such as a known tumor protein. A fusion partner may, for example, assist in providing T helper epitopes (an immunological fusion partner), preferably T helper epitopes recognized by humans, or may assist in expressing the protein (an expression enhancer) at higher yields than the native recombinant protein. Certain preferred fusion partners are both immunological and expression enhancing fusion partners. Other fusion partners may be selected so as to increase the solubility of the protein or to enable the protein to be targeted to desired intracellular compartments. Still further fusion partners include affinity tags, which facilitate purification of the protein.

Fusion proteins may generally be prepared using standard techniques, including chemical conjugation. Preferably, a fusion protein is expressed as a recombinant protein, allowing the production of increased levels, relative to a non-fused protein, in an expression system. Briefly, DNA sequences encoding the polypeptide components may be assembled separately, and ligated into an appropriate expression vector. The 3' end of the DNA sequence encoding one polypeptide component is ligated, with or without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide component so that the reading frames of the sequences are in phase. This permits translation into a single fusion protein that retains the biological activity of both component polypeptides.

A peptide linker sequence may be employed to separate the first and the second polypeptide components by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into

the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., *Gene* 40:39-46, 1985; Murphy et al., *Proc. Natl. Acad. Sci. USA* 83:8258-8262, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may generally be from 1 to about 50 amino acids in length. Linker sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric interference.

The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements responsible for expression of DNA are located only 5' to the DNA sequence encoding the first polypeptides. Similarly, stop codons required to end translation and transcription termination signals are only present 3' to the DNA sequence encoding the second polypeptide.

Fusion proteins are also provided that comprise a polypeptide of the present invention together with an unrelated immunogenic protein. Preferably the immunogenic protein is capable of eliciting a recall response. Examples of such proteins include tetanus, tuberculosis and hepatitis proteins (see, for example, Stoute et al. *New Engl. J. Med.*, 336:86-91, 1997).

Within preferred embodiments, an immunological fusion partner is derived from protein D, a surface protein of the gram-negative bacterium *Haemophilus influenza B* (WO 91/18926). Preferably, a protein D derivative comprises approximately the first third of the protein (e.g., the first N-terminal 100-110 amino acids), and a protein D derivative may be lipidated. Within certain preferred embodiments, the first 109 residues of a Lipoprotein D fusion partner is included on the N-terminus to provide the polypeptide with additional exogenous T-cell epitopes and to increase the expression level in *E. coli* (thus functioning as an expression enhancer). The lipid tail ensures optimal presentation of the antigen to antigen presenting cells. Other fusion partners include the non-structural protein from influenzae virus, NS1 (hemagglutinin). Typically, the N-terminal 81 amino acids are used, although different fragments that include T-helper epitopes may be used.

In another embodiment, the immunological fusion partner is the protein known as LYTA, or a portion thereof (preferably a C-terminal portion). LYTA is derived from *Streptococcus pneumoniae*, which synthesizes an N-acetyl-L-alanine amidase known as

amidase LYTA (encoded by the LytA gene; *Gene* 43:265-292, 1986). LYTA is an autolysin that specifically degrades certain bonds in the peptidoglycan backbone. The C-terminal domain of the LYTA protein is responsible for the affinity to the choline or to some choline analogues such as DEAE. This property has been exploited for the development of *E. coli* C-LYTA expressing plasmids useful for expression of fusion proteins. Purification of hybrid proteins containing the C-LYTA fragment at the amino terminus has been described (see *Biotechnology* 10:795-798, 1992). Within a preferred embodiment, a repeat portion of LYTA may be incorporated into a fusion protein. A repeat portion is found in the C-terminal region starting at residue 178. A particularly preferred repeat portion incorporates residues 188-305.

In general, polypeptides (including fusion proteins) and polynucleotides as described herein are isolated. An "isolated" polypeptide or polynucleotide is one that is removed from its original environment. For example, a naturally-occurring protein is isolated if it is separated from some or all of the coexisting materials in the natural system. Preferably, such polypeptides are at least about 90% pure, more preferably at least about 95% pure and most preferably at least about 99% pure. A polynucleotide is considered to be isolated if, for example, it is cloned into a vector that is not a part of the natural environment.

BINDING AGENTS

The present invention further provides agents, such as antibodies and antigen-binding fragments thereof, that specifically bind to a prostate tumor protein. As used herein, an antibody, or antigen-binding fragment thereof, is said to "specifically bind" to a prostate tumor protein if it reacts at a detectable level (within, for example, an ELISA) with a prostate tumor protein, and does not react detectably with unrelated proteins under similar conditions. As used herein, "binding" refers to a noncovalent association between two separate molecules such that a complex is formed. The ability to bind may be evaluated by, for example, determining a binding constant for the formation of the complex. The binding constant is the value obtained when the concentration of the complex is divided by the product of the component concentrations. In general, two compounds are said to "bind," in the context of the present invention, when the binding constant for complex formation exceeds about 10³ L/mol. The binding constant may be determined using methods well known in the art.

Binding agents may be further capable of differentiating between patients with and without a cancer, such as prostate cancer, using the representative assays provided herein. In other words, antibodies or other binding agents that bind to a prostate tumor protein will generate a signal indicating the presence of a cancer in at least about 20% of patients with the disease, and will generate a negative signal indicating the absence of the disease in at least about 90% of individuals without the cancer. To determine whether a binding agent satisfies this requirement, biological samples (e.g., blood, sera, urine and/or tumor biopsies) from

patients with and without a cancer (as determined using standard clinical tests) may be assayed as described herein for the presence of polypeptides that bind to the binding agent. It will be apparent that a statistically significant number of samples with and without the disease should be assayed. Each binding agent should satisfy the above criteria; however, those of ordinary skill in the art will recognize that binding agents may be used in combination to improve sensitivity.

Any agent that satisfies the above requirements may be a binding agent. For example, a binding agent may be a ribosome, with or without a peptide component, an RNA molecule or a polypeptide. In a preferred embodiment, a binding agent is an antibody or an antigen-binding fragment thereof. Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988. In general, antibodies can be produced by cell culture techniques, including the generation of monoclonal antibodies as described herein, or via transfection of antibody genes into suitable bacterial or mammalian cell hosts, in order to allow for the production of recombinant antibodies. In one technique, an immunogen comprising the polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep or goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

Monoclonal antibodies specific for an antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, *Eur. J. Immunol.* 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient

time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and their culture supernatants tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

Within certain embodiments, the use of antigen-binding fragments of antibodies may be preferred. Such fragments include Fab fragments, which may be prepared using standard techniques. Briefly, immunoglobulins may be purified from rabbit serum by affinity chromatography on Protein A bead columns (Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988) and digested by papain to yield Fab and Fc fragments. The Fab and Fc fragments may be separated by affinity chromatography on protein A bead columns.

Monoclonal antibodies of the present invention may be coupled to one or more therapeutic agents. Suitable agents in this regard include radionuclides, differentiation inducers, drugs, toxins, and derivatives thereof. Preferred radionuclides include ⁹⁰Y, ¹²³I, ¹²⁵I, ¹³¹I, ¹⁸⁶Re, ¹⁸⁸Re, ²¹¹At, and ²¹²Bi. Preferred drugs include methotrexate, and pyrimidine and purine analogs. Preferred differentiation inducers include phorbol esters and butyric acid. Preferred toxins include ricin, abrin, diphtheria toxin, cholera toxin, gelonin, Pseudomonas exotoxin, Shigella toxin, and pokeweed antiviral protein.

A therapeutic agent may be coupled (e.g., covalently bonded) to a suitable monoclonal antibody either directly or indirectly (e.g., via a linker group). A direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other. For example, a nucleophilic group, such as an amino or sulfhydryl group, on one may be capable of reacting with a carbonyl-containing group, such as an anhydride or an acid halide, or with an alkyl group containing a good leaving group (e.g., a halide) on the other.

Alternatively, it may be desirable to couple a therapeutic agent and an antibody via a linker group. A linker group can function as a spacer to distance an antibody from an agent in order to avoid interference with binding capabilities. A linker group can also serve to increase the chemical reactivity of a substituent on an agent or an antibody, and

thus increase the coupling efficiency. An increase in chemical reactivity may also facilitate the use of agents, or functional groups on agents, which otherwise would not be possible.

It will be evident to those skilled in the art that a variety of bifunctional or polyfunctional reagents, both homo- and hetero-functional (such as those described in the catalog of the Pierce Chemical Co., Rockford, IL), may be employed as the linker group. Coupling may be effected, for example, through amino groups, carboxyl groups, sulphydryl groups or oxidized carbohydrate residues. There are numerous references describing such methodology, e.g., U.S. Patent No. 4,671,958, to Rodwell et al.

Where a therapeutic agent is more potent when free from the antibody portion of the immunoconjugates of the present invention, it may be desirable to use a linker group which is cleavable during or upon internalization into a cell. A number of different cleavable linker groups have been described. The mechanisms for the intracellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (e.g., U.S. Patent No. 4,489,710, to Spitzer), by irradiation of a photolabile bond (e.g., U.S. Patent No. 4,625,014, to Senter et al.), by hydrolysis of derivatized amino acid side chains (e.g., U.S. Patent No. 4,638,045, to Kohn et al.), by serum complement-mediated hydrolysis (e.g., U.S. Patent No. 4,671,958, to Rodwell et al.), and acid-catalyzed hydrolysis (e.g., U.S. Patent No. 4,569,789, to Blattler et al.).

It may be desirable to couple more than one agent to an antibody. In one embodiment, multiple molecules of an agent are coupled to one antibody molecule. In another embodiment, more than one type of agent may be coupled to one antibody. Regardless of the particular embodiment, immunoconjugates with more than one agent may be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers which provide multiple sites for attachment can be used. Alternatively, a carrier can be used.

A carrier may bear the agents in a variety of ways, including covalent bonding either directly or via a linker group. Suitable carriers include proteins such as albumins (e.g., U.S. Patent No. 4,507,234, to Kato et al.), peptides and polysaccharides such as aminodextran (e.g., U.S. Patent No. 4,699,784, to Shih et al.). A carrier may also bear an agent by noncovalent bonding or by encapsulation, such as within a liposome vesicle (e.g., U.S. Patent Nos. 4,429,008 and 4,873,088). Carriers specific for radionuclide agents include radiohalogenated small molecules and chelating compounds. For example, U.S. Patent No. 4,735,792 discloses representative radiohalogenated small molecules and their synthesis. A radionuclide chelate may be formed from chelating compounds that include those containing nitrogen and sulfur atoms as the donor atoms for binding the metal, or metal oxide, radionuclide. For example, U.S. Patent No. 4,673,562, to Davison et al. discloses representative chelating compounds and their synthesis.

A variety of routes of administration for the antibodies and immunoconjugates may be used. Typically, administration will be intravenous, intramuscular, subcutaneous or in the bed of a resected tumor. It will be evident that the precise dose of the antibody/immunoconjugate will vary depending upon the antibody used, the antigen density on the tumor, and the rate of clearance of the antibody.

T CELLS

Immunotherapeutic compositions may also, or alternatively, comprise T cells specific for a prostate tumor protein. Such cells may generally be prepared *in vitro* or *ex vivo*, using standard procedures. For example, T cells may be isolated from bone marrow, peripheral blood, or a fraction of bone marrow or peripheral blood of a patient, using a commercially available cell separation system, such as the CEPRATE™ system, available from CellPro Inc., Bothell WA (*see also* U.S. Patent No. 5,240,856; U.S. Patent No. 5,215,926; WO 89/06280; WO 91/16116 and WO 92/07243). Alternatively, T cells may be derived from related or unrelated humans, non-human mammals, cell lines or cultures.

T cells may be stimulated with a prostate tumor polypeptide, polynucleotide encoding a prostate tumor polypeptide and/or an antigen presenting cell (APC) that expresses such a polypeptide. Such stimulation is performed under conditions and for a time sufficient to permit the generation of T cells that are specific for the polypeptide. Preferably, a prostate tumor polypeptide or polynucleotide is present within a delivery vehicle, such as a microsphere, to facilitate the generation of specific T cells.

T cells are considered to be specific for a prostate tumor polypeptide if the T cells kill target cells coated with the polypeptide or expressing a gene encoding the polypeptide. T cell specificity may be evaluated using any of a variety of standard techniques. For example, within a chromium release assay or proliferation assay, a stimulation index of more than two fold increase in lysis and/or proliferation, compared to negative controls, indicates T cell specificity. Such assays may be performed, for example, as described in Chen et al., *Cancer Res.* 54:1065-1070, 1994. Alternatively, detection of the proliferation of T cells may be accomplished by a variety of known techniques. For example, T cell proliferation can be detected by measuring an increased rate of DNA synthesis (*e.g.*, by pulse-labeling cultures of T cells with tritiated thymidine and measuring the amount of tritiated thymidine incorporated into DNA). Contact with a prostate tumor polypeptide (100 ng/ml - 100 µg/ml, preferably 200 ng/ml - 25 µg/ml) for 3 - 7 days should result in at least a two fold increase in proliferation of the T cells. Contact as described above for 2-3 hours should result in activation of the T cells, as measured using standard cytokine assays in which a two fold increase in the level of cytokine release (*e.g.*, TNF or IFN- γ) is indicative of T cell activation (*see* Coligan et al., *Current Protocols in Immunology*, vol. 1, Wiley Interscience

(Greene 1998)). T cells that have been activated in response to a prostate tumor polypeptide, polynucleotide or polypeptide-expressing APC may be CD4⁺ and/or CD8⁺. Prostate tumor protein-specific T cells may be expanded using standard techniques. Within preferred embodiments, the T cells are derived from either a patient or a related, or unrelated, donor and are administered to the patient following stimulation and expansion.

For therapeutic purposes, CD4⁺ or CD8⁺ T cells that proliferate in response to a prostate tumor polypeptide, polynucleotide or APC can be expanded in number either *in vitro* or *in vivo*. Proliferation of such T cells *in vitro* may be accomplished in a variety of ways. For example, the T cells can be re-exposed to a prostate tumor polypeptide, or a short peptide corresponding to an immunogenic portion of such a polypeptide, with or without the addition of T cell growth factors, such as interleukin-2, and/or stimulator cells that synthesize a prostate tumor polypeptide. Alternatively, one or more T cells that proliferate in the presence of a prostate tumor protein can be expanded in number by cloning. Methods for cloning cells are well known in the art, and include limiting dilution.

PHARMACEUTICAL COMPOSITIONS AND VACCINES

Within certain aspects, polypeptides, polynucleotides, T cells and/or binding agents disclosed herein may be incorporated into pharmaceutical compositions or immunogenic compositions (*i.e.*, vaccines). Pharmaceutical compositions comprise one or more such compounds and a physiologically acceptable carrier. Vaccines may comprise one or more such compounds and a non-specific immune response enhancer. A non-specific immune response enhancer may be any substance that enhances an immune response to an exogenous antigen. Examples of non-specific immune response enhancers include adjuvants, biodegradable microspheres (*e.g.*, polylactic galactide) and liposomes (into which the compound is incorporated; *see e.g.*, Fullerton, U.S. Patent No. 4,235,877). Vaccine preparation is generally described in, for example, M.F. Powell and M.J. Newman, eds., "Vaccine Design (the subunit and adjuvant approach)," Plenum Press (NY, 1995). Pharmaceutical compositions and vaccines within the scope of the present invention may also contain other compounds, which may be biologically active or inactive. For example, one or more immunogenic portions of other tumor antigens may be present, either incorporated into a fusion polypeptide or as a separate compound, within the composition or vaccine.

A pharmaceutical composition or vaccine may contain DNA encoding one or more of the polypeptides as described above, such that the polypeptide is generated *in situ*. As noted above, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and viral expression systems. Numerous gene delivery techniques are well known in the art, such as those described by Rolland, *Crit. Rev. Therap. Drug Carrier Systems* 15:143-198, 1998,

and references cited therein. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as *Bacillus-Calmette-Guerrin*) that expresses an immunogenic portion of the polypeptide on its cell surface or secretes such an epitope. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Suitable systems are disclosed, for example, in Fisher-Hoch et al., *Proc. Natl. Acad. Sci. USA* 86:317-321, 1989; Flexner et al., *Ann. N.Y. Acad. Sci.* 569:86-103, 1989; Flexner et al., *Vaccine* 8:17-21, 1990; U.S. Patent Nos. 4,603,112, 4,769,330, and 5,017,487; WO 89/01973; U.S. Patent No. 4,777,127; GB 2,200,651; EP 0,345,242; WO 91/02805; Berkner, *Biotechniques* 6:616-627, 1988; Rosenfeld et al., *Science* 252:431-434, 1991; Kolls et al., *Proc. Natl. Acad. Sci. USA* 91:215-219, 1994; Kass-Eisler et al., *Proc. Natl. Acad. Sci. USA* 90:11498-11502, 1993; Guzman et al., *Circulation* 88:2838-2848, 1993; and Guzman et al., *Cir. Res.* 73:1202-1207, 1993. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be "naked," as described, for example, in Ulmer et al., *Science* 259:1745-1749, 1993 and reviewed by Cohen, *Science* 259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. Compositions of the present invention may be formulated for any appropriate manner of administration, including for example, topical, oral, nasal, intravenous, intracranial, intraperitoneal, subcutaneous or intramuscular administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactate polyglycolate) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109.

Such compositions may also comprise buffers (e.g., neutral buffered saline or phosphate buffered saline), carbohydrates (e.g., glucose, mannose, sucrose or dextrans), mannitol, proteins, polypeptides or amino acids such as glycine, antioxidants, chelating agents such as EDTA or glutathione, adjuvants (e.g., aluminum hydroxide) and/or

preservatives. Alternatively, compositions of the present invention may be formulated as a lyophilizate. Compounds may also be encapsulated within liposomes using well known technology.

Any of a variety of non-specific immune response enhancers may be employed in the vaccines of this invention. For example, an adjuvant may be included. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, *Bordetella pertussis* or *Mycobacterium tuberculosis* derived proteins. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quill A. Cytokines, such as GM-CSF or interleukin-2, -7, or -12, may also be used as adjuvants.

Within the vaccines provided herein, the adjuvant composition is preferably designed to induce an immune response predominantly of the Th1 type. High levels of Th1-type cytokines (e.g., IFN- γ , IL-2 and IL-12) tend to favor the induction of cell mediated immune responses to an administered antigen. In contrast, high levels of Th2-type cytokines (e.g., IL-4, IL-5, IL-6, IL-10 and TNF- β) tend to favor the induction of humoral immune responses. Following application of a vaccine as provided herein, a patient will support an immune response that includes Th1- and Th2-type responses. Within a preferred embodiment, in which a response is predominantly Th1-type, the level of Th1-type cytokines will increase to a greater extent than the level of Th2-type cytokines. The levels of these cytokines may be readily assessed using standard assays. For a review of the families of cytokines, see Mosmann and Coffman, *Ann. Rev. Immunol.* 7:145-173, 1989.

Preferred adjuvants for use in eliciting a predominantly Th1-type response include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-acylated monophosphoryl lipid A (3D-MPL), together with an aluminum salt. MPL adjuvants are available from Ribi ImmunoChem Research Inc. (Hamilton, MT; see US Patent Nos. 4,436,727; 4,877,611; 4,866,034 and 4,912,094). CpG-containing oligonucleotides (in which the CpG dinucleotide is unmethylated) also induce a predominantly Th1 response. Such oligonucleotides are well known and are described, for example, in WO 96/02555. Another preferred adjuvant is a saponin, preferably QS21, which may be used alone or in combination with other adjuvants. For example, an enhanced system involves the combination of a monophosphoryl lipid A and saponin derivative, such as the combination of QS21 and 3D-MPL as described in WO 94/00153, or a less reactogenic composition where the QS21 is

quenched with cholesterol, as described in WO 96/33739. Other preferred formulations comprises an oil-in-water emulsion and tocopherol. A particularly potent adjuvant formulation involving QS21, 3D-MPL and tocopherol in an oil-in-water emulsion is described in WO 95/17210. Any vaccine provided herein may be prepared using well known methods that result in a combination of antigen, immune response enhancer and a suitable carrier or excipient.

The compositions described herein may be administered as part of a sustained release formulation (*i.e.*, a formulation such as a capsule or sponge that effects a slow release of compound following administration). Such formulations may generally be prepared using well known technology and administered by, for example, oral, rectal or subcutaneous implantation, or by implantation at the desired target site. Sustained-release formulations may contain a polypeptide, polynucleotide or antibody dispersed in a carrier matrix and/or contained within a reservoir surrounded by a rate controlling membrane. Carriers for use within such formulations are biocompatible, and may also be biodegradable; preferably the formulation provides a relatively constant level of active component release. The amount of active compound contained within a sustained release formulation depends upon the site of implantation, the rate and expected duration of release and the nature of the condition to be treated or prevented.

Any of a variety of delivery vehicles may be employed within pharmaceutical compositions and vaccines to facilitate production of an antigen-specific immune response that targets tumor cells. Delivery vehicles include antigen presenting cells (APCs), such as dendritic cells, macrophages, B cells, monocytes and other cells that may be engineered to be efficient APCs. Such cells may, but need not, be genetically modified to increase the capacity for presenting the antigen, to improve activation and/or maintenance of the T cell response, to have anti-tumor effects *per se* and/or to be immunologically compatible with the receiver (*i.e.*, matched HLA haplotype). APCs may generally be isolated from any of a variety of biological fluids and organs, including tumor and peritumoral tissues, and may be autologous, allogeneic, syngeneic or xenogeneic cells.

Certain preferred embodiments of the present invention use dendritic cells or progenitors thereof as antigen-presenting cells. Dendritic cells are highly potent APCs (Banchereau and Steinman, *Nature* 392:245-251, 1998) and have been shown to be effective as a physiological adjuvant for eliciting prophylactic or therapeutic antitumor immunity (see Timmerman and Levy, *Ann. Rev. Med.* 50:507-529, 1999). In general, dendritic cells may be identified based on their typical shape (*stellate in situ*, with marked cytoplasmic processes (dendrites) visible *in vitro*) and based on the lack of differentiation markers of B cells (CD19 and CD20), T cells (CD3), monocytes (CD14) and natural killer cells (CD56), as determined using standard assays. Dendritic cells may, of course, be engineered to express specific cell-

surface receptors or ligands that are not commonly found on dendritic cells *in vivo* or *ex vivo*, and such modified dendritic cells are contemplated by the present invention. As an alternative to dendritic cells, secreted vesicles antigen-loaded dendritic cells (called exosomes) may be used within a vaccine (see Zitvogel et al., *Nature Med.* 4:594-600, 1998).

Dendritic cells and progenitors may be obtained from peripheral blood, bone marrow, tumor-infiltrating cells, peritumoral tissues-infiltrating cells, lymph nodes, spleen, skin, umbilical cord blood or any other suitable tissue or fluid. For example, dendritic cells may be differentiated *ex vivo* by adding a combination of cytokines such as GM-CSF, IL-4, IL-13 and/or TNF α to cultures of monocytes harvested from peripheral blood. Alternatively, CD34 positive cells harvested from peripheral blood, umbilical cord blood or bone marrow may be differentiated into dendritic cells by adding to the culture medium combinations of GM-CSF, IL-3, TNF α , CD40 ligand, LPS, flt3 ligand and/or other compound(s) that induce maturation and proliferation of dendritic cells.

Dendritic cells are conveniently categorized as "immature" and "mature" cells, which allows a simple way to discriminate between two well characterized phenotypes. However, this nomenclature should not be construed to exclude all possible intermediate stages of differentiation. Immature dendritic cells are characterized as APC with a high capacity for antigen uptake and processing, which correlates with the high expression of Fc γ receptor, mannose receptor and DEC-205 marker. The mature phenotype is typically characterized by a lower expression of these markers, but a high expression of cell surface molecules responsible for T cell activation such as class I and class II MHC, adhesion molecules (e.g., CD54 and CD11) and costimulatory molecules (e.g., CD40, CD80 and CD86).

APCs may generally be transfected with a polynucleotide encoding a prostate tumor protein (or portion or other variant thereof) such that the prostate tumor polypeptide, or an immunogenic portion thereof, is expressed on the cell surface. Such transfection may take place *ex vivo*, and a composition or vaccine comprising such transfected cells may then be used for therapeutic purposes, as described herein. Alternatively, a gene delivery vehicle that targets a dendritic or other antigen presenting cell may be administered to a patient, resulting in transfection that occurs *in vivo*. *In vivo* and *ex vivo* transfection of dendritic cells, for example, may generally be performed using any methods known in the art, such as those described in WO 97/24447, or the gene gun approach described by Mahvi et al., *Immunology and cell Biology* 75:456-460, 1997. Antigen loading of dendritic cells may be achieved by incubating dendritic cells or progenitor cells with the prostate tumor polypeptide, DNA (naked or within a plasmid vector) or RNA; or with antigen-expressing recombinant bacterium or viruses (e.g., vaccinia, fowlpox, adenovirus or lentivirus vectors). Prior to loading, the polypeptide may be covalently conjugated to an immunological partner that

provides T cell help (e.g., a carrier molecule). Alternatively, a dendritic cell may be pulsed with a non-conjugated immunological partner, separately or in the presence of the polypeptide.

CANCER THERAPY

In further aspects of the present invention, the compositions described herein may be used for immunotherapy of cancer, such as prostate cancer. Within such methods, pharmaceutical compositions and vaccines are typically administered to a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may or may not be afflicted with cancer. Accordingly, the above pharmaceutical compositions and vaccines may be used to prevent the development of a cancer or to treat a patient afflicted with a cancer. A cancer may be diagnosed using criteria generally accepted in the art, including the presence of a malignant tumor. Pharmaceutical compositions and vaccines may be administered either prior to or following surgical removal of primary tumors and/or treatment such as administration of radiotherapy or conventional chemotherapeutic drugs.

Within certain embodiments, immunotherapy may be active immunotherapy, in which treatment relies on the *in vivo* stimulation of the endogenous host immune system to react against tumors with the administration of immune response-modifying agents (such as polypeptides and polynucleotides disclosed herein).

Within other embodiments, immunotherapy may be passive immunotherapy, in which treatment involves the delivery of agents with established tumor-immune reactivity (such as effector cells or antibodies) that can directly or indirectly mediate antitumor effects and does not necessarily depend on an intact host immune system. Examples of effector cells include T cells as discussed above, T lymphocytes (such as CD8⁺ cytotoxic T lymphocytes and CD4⁺ T-helper tumor-infiltrating lymphocytes), killer cells (such as Natural Killer cells and lymphokine-activated killer cells), B cells and antigen-presenting cells (such as dendritic cells and macrophages) expressing a polypeptide provided herein. T cell receptors and antibody receptors specific for the polypeptides recited herein may be cloned, expressed and transferred into other vectors or effector cells for adoptive immunotherapy. The polypeptides provided herein may also be used to generate antibodies or anti-idiotypic antibodies (as described above and in U.S. Patent No. 4,918,164) for passive immunotherapy.

Effector cells may generally be obtained in sufficient quantities for adoptive immunotherapy by growth *in vitro*, as described herein. Culture conditions for expanding single antigen-specific effector cells to several billion in number with retention of antigen recognition *in vivo* are well known in the art. Such *in vitro* culture conditions typically use intermittent stimulation with antigen, often in the presence of cytokines (such as IL-2) and non-dividing feeder cells. As noted above, immunoreactive polypeptides as provided herein

may be used to rapidly expand antigen-specific T cell cultures in order to generate a sufficient number of cells for immunotherapy. In particular, antigen-presenting cells, such as dendritic, macrophage, monocyte, fibroblast or B cells, may be pulsed with immunoreactive polypeptides or transfected with one or more polynucleotides using standard techniques well known in the art. For example, antigen-presenting cells can be transfected with a polynucleotide having a promoter appropriate for increasing expression in a recombinant virus or other expression system. Cultured effector cells for use in therapy must be able to grow and distribute widely, and to survive long term *in vivo*. Studies have shown that cultured effector cells can be induced to grow *in vivo* and to survive long term in substantial numbers by repeated stimulation with antigen supplemented with IL-2 (see, for example, Cheever et al., *Immunological Reviews* 157:177, 1997).

Alternatively, a vector expressing a polypeptide recited herein may be introduced into antigen presenting cells taken from a patient and clonally propagated *ex vivo* for transplant back into the same patient. Transfected cells may be reintroduced into the patient using any means known in the art, preferably in sterile form by intravenous, intracavitory, intraperitoneal or intratumor administration.

Routes and frequency of administration of the therapeutic compositions disclosed herein, as well as dosage, will vary from individual to individual, and may be readily established using standard techniques. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Preferably, between 1 and 10 doses may be administered over a 52 week period. Preferably, 6 doses are administered, at intervals of 1 month, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of a compound that, when administered as described above, is capable of promoting an anti-tumor immune response, and is at least 10-50% above the basal (*i.e.*, untreated) level. Such response can be monitored by measuring the anti-tumor antibodies in a patient or by vaccine-dependent generation of cytolytic effector cells capable of killing the patient's tumor cells *in vitro*. Such vaccines should also be capable of causing an immune response that leads to an improved clinical outcome (e.g., more frequent remissions, complete or partial or longer disease-free survival) in vaccinated patients as compared to non-vaccinated patients. In general, for pharmaceutical compositions and vaccines comprising one or more polypeptides, the amount of each polypeptide present in a dose ranges from about 100 µg to 5 mg per kg of host. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.

In general, an appropriate dosage and treatment regimen provides the active compound(s) in an amount sufficient to provide therapeutic and/or prophylactic benefit. Such

a response can be monitored by establishing an improved clinical outcome (e.g., more frequent remissions, complete or partial, or longer disease-free survival) in treated patients as compared to non-treated patients. Increases in preexisting immune responses to a prostate tumor protein generally correlate with an improved clinical outcome. Such immune responses may generally be evaluated using standard proliferation, cytotoxicity or cytokine assays, which may be performed using samples obtained from a patient before and after treatment.

METHODS FOR DETECTING CANCER

In general, a cancer may be detected in a patient based on the presence of one or more prostate tumor proteins and/or polynucleotides encoding such proteins in a biological sample (for example, blood, sera, urine and/or tumor biopsies) obtained from the patient. In other words, such proteins may be used as markers to indicate the presence or absence of a cancer such as prostate cancer. In addition, such proteins may be useful for the detection of other cancers. The binding agents provided herein generally permit detection of the level of antigen that binds to the agent in the biological sample. Polynucleotide primers and probes may be used to detect the level of mRNA encoding a tumor protein, which is also indicative of the presence or absence of a cancer. In general, a prostate tumor sequence should be present at a level that is at least three fold higher in tumor tissue than in normal tissue.

There are a variety of assay formats known to those of ordinary skill in the art for using a binding agent to detect polypeptide markers in a sample. See, e.g., Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988. In general, the presence or absence of a cancer in a patient may be determined by (a) contacting a biological sample obtained from a patient with a binding agent; (b) detecting in the sample a level of polypeptide that binds to the binding agent; and (c) comparing the level of polypeptide with a predetermined cut-off value.

In a preferred embodiment, the assay involves the use of binding agent immobilized on a solid support to bind to and remove the polypeptide from the remainder of the sample. The bound polypeptide may then be detected using a detection reagent that contains a reporter group and specifically binds to the binding agent/polypeptide complex. Such detection reagents may comprise, for example, a binding agent that specifically binds to the polypeptide or an antibody or other agent that specifically binds to the binding agent, such as an anti-immunoglobulin, protein G, protein A or a lectin. Alternatively, a competitive assay may be utilized, in which a polypeptide is labeled with a reporter group and allowed to bind to the immobilized binding agent after incubation of the binding agent with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the binding agent is indicative of the reactivity of the sample with the immobilized binding

agent. Suitable polypeptides for use within such assays include full length prostate tumor proteins and portions thereof to which the binding agent binds, as described above.

The solid support may be any material known to those of ordinary skill in the art to which the tumor protein may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681. The binding agent may be immobilized on the solid support using a variety of techniques known to those of skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the agent and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the binding agent, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and about 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of binding agent ranging from about 10 ng to about 10 µg, and preferably about 100 ng to about 1 µg, is sufficient to immobilize an adequate amount of binding agent.

Covalent attachment of binding agent to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the binding agent. For example, the binding agent may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

In certain embodiments, the assay is a two-antibody sandwich assay. This assay may be performed by first contacting an antibody that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that polypeptides within the sample are allowed to bind to the immobilized antibody. Unbound sample is then removed from the immobilized polypeptide-antibody complexes and a detection reagent (preferably a second antibody capable of binding to a different site on the polypeptide) containing a reporter group is added. The amount of detection reagent that remains bound to the solid support is then determined using a method appropriate for the specific reporter group.

More specifically, once the antibody is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20TM (Sigma Chemical Co., St. Louis, MO). The immobilized antibody is then incubated with the sample, and polypeptide is allowed to bind to the antibody. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (*i.e.*, incubation time) is a period of time that is sufficient to detect the presence of polypeptide within a sample obtained from an individual with prostate cancer. Preferably, the contact time is sufficient to achieve a level of binding that is at least about 95% of that achieved at equilibrium between bound and unbound polypeptide. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. The second antibody, which contains a reporter group, may then be added to the solid support. Preferred reporter groups include those groups recited above.

The detection reagent is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound polypeptide. An appropriate amount of time may generally be determined by assaying the level of binding that occurs over a period of time. Unbound detection reagent is then removed and bound detection reagent is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of a cancer, such as prostate cancer, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value for the detection of a cancer is the average mean signal obtained when the immobilized antibody is incubated with samples from patients without the cancer. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for the cancer. In an alternate preferred

embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., *Clinical Epidemiology: A Basic Science for Clinical Medicine*, Little Brown and Co., 1985, p. 106-7. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (*i.e.*, sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (*i.e.*, the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for a cancer.

In a related embodiment, the assay is performed in a flow-through or strip test format, wherein the binding agent is immobilized on a membrane, such as nitrocellulose. In the flow-through test, polypeptides within the sample bind to the immobilized binding agent as the sample passes through the membrane. A second, labeled binding agent then binds to the binding agent-polypeptide complex as a solution containing the second binding agent flows through the membrane. The detection of bound second binding agent may then be performed as described above. In the strip test format, one end of the membrane to which binding agent is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing second binding agent and to the area of immobilized binding agent. Concentration of second binding agent at the area of immobilized antibody indicates the presence of a cancer. Typically, the concentration of second binding agent at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of binding agent immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of polypeptide that would be sufficient to generate a positive signal in the two-antibody sandwich assay, in the format discussed above. Preferred binding agents for use in such assays are antibodies and antigen-binding fragments thereof. Preferably, the amount of antibody immobilized on the membrane ranges from about 25 ng to about 1 μ g, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount of biological sample.

Of course, numerous other assay protocols exist that are suitable for use with the tumor proteins or binding agents of the present invention. The above descriptions are intended to be exemplary only. For example, it will be apparent to those of ordinary skill in the art that the above protocols may be readily modified to use prostate tumor polypeptides to

detect antibodies that bind to such polypeptides in a biological sample. The detection of such prostate tumor protein specific antibodies may correlate with the presence of a cancer.

A cancer may also, or alternatively, be detected based on the presence of T cells that specifically react with a prostate tumor protein in a biological sample. Within certain methods, a biological sample comprising CD4⁺ and/or CD8⁺ T cells isolated from a patient is incubated with a prostate tumor polypeptide, a polynucleotide encoding such a polypeptide and/or an APC that expresses at least an immunogenic portion of such a polypeptide, and the presence or absence of specific activation of the T cells is detected. Suitable biological samples include, but are not limited to, isolated T cells. For example, T cells may be isolated from a patient by routine techniques (such as by Ficoll/Hypaque density gradient centrifugation of peripheral blood lymphocytes). T cells may be incubated *in vitro* for 2-9 days (typically 4 days) at 37°C with prostate tumor polypeptide (e.g., 5 - 25 µg/ml). It may be desirable to incubate another aliquot of a T cell sample in the absence of prostate tumor polypeptide to serve as a control. For CD4⁺ T cells, activation is preferably detected by evaluating proliferation of the T cells. For CD8⁺ T cells, activation is preferably detected by evaluating cytolytic activity. A level of proliferation that is at least two fold greater and/or a level of cytolytic activity that is at least 20% greater than in disease-free patients indicates the presence of a cancer in the patient.

As noted above, a cancer may also, or alternatively, be detected based on the level of mRNA encoding a prostate tumor protein in a biological sample. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify a portion of a prostate tumor cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for (*i.e.*, hybridizes to) a polynucleotide encoding the prostate tumor protein. The amplified cDNA is then separated and detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes that specifically hybridize to a polynucleotide encoding a prostate tumor protein may be used in a hybridization assay to detect the presence of polynucleotide encoding the tumor protein in a biological sample.

To permit hybridization under assay conditions, oligonucleotide primers and probes should comprise an oligonucleotide sequence that has at least about 60%, preferably at least about 75% and more preferably at least about 90%, identity to a portion of a polynucleotide encoding a prostate tumor protein that is at least 10 nucleotides, and preferably at least 20 nucleotides, in length. Preferably, oligonucleotide primers and/or probes will hybridize to a polynucleotide encoding a polypeptide disclosed herein under moderately stringent conditions, as defined above. Oligonucleotide primers and/or probes which may be usefully employed in the diagnostic methods described herein preferably are at least 10-40 nucleotides in length. In a preferred embodiment, the oligonucleotide primers

comprise at least 10 contiguous nucleotides, more preferably at least 15 contiguous nucleotides, of a DNA molecule having a sequence recited in SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375 and 381. Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis et al., *Cold Spring Harbor Symp. Quant. Biol.*, 51:263, 1987; Erlich ed., *PCR Technology*, Stockton Press, NY, 1989).

One preferred assay employs RT-PCR, in which PCR is applied in conjunction with reverse transcription. Typically, RNA is extracted from a biological sample, such as biopsy tissue, and is reverse transcribed to produce cDNA molecules. PCR amplification using at least one specific primer generates a cDNA molecule, which may be separated and visualized using, for example, gel electrophoresis. Amplification may be performed on biological samples taken from a test patient and from an individual who is not afflicted with a cancer. The amplification reaction may be performed on several dilutions of cDNA spanning two orders of magnitude. A two-fold or greater increase in expression in several dilutions of the test patient sample as compared to the same dilutions of the non-cancerous sample is typically considered positive.

In another embodiment, the disclosed compositions may be used as markers for the progression of cancer. In this embodiment, assays as described above for the diagnosis of a cancer may be performed over time, and the change in the level of reactive polypeptide(s) or polynucleotide evaluated. For example, the assays may be performed every 24-72 hours for a period of 6 months to 1 year, and thereafter performed as needed. In general, a cancer is progressing in those patients in whom the level of polypeptide or polynucleotide detected increases over time. In contrast, the cancer is not progressing when the level of reactive polypeptide or polynucleotide either remains constant or decreases with time.

Certain *in vivo* diagnostic assays may be performed directly on a tumor. One such assay involves contacting tumor cells with a binding agent. The bound binding agent may then be detected directly or indirectly via a reporter group. Such binding agents may also be used in histological applications. Alternatively, polynucleotide probes may be used within such applications.

As noted above, to improve sensitivity, multiple prostate tumor protein markers may be assayed within a given sample. It will be apparent that binding agents specific for different proteins provided herein may be combined within a single assay. Further, multiple primers or probes may be used concurrently. The selection of tumor protein markers may be based on routine experiments to determine combinations that results in optimal sensitivity. In addition, or alternatively, assays for tumor proteins provided herein may be combined with assays for other known tumor antigens.

DIAGNOSTIC KITS

The present invention further provides kits for use within any of the above diagnostic methods. Such kits typically comprise two or more components necessary for performing a diagnostic assay. Components may be compounds, reagents, containers and/or equipment. For example, one container within a kit may contain a monoclonal antibody or fragment thereof that specifically binds to a prostate tumor protein. Such antibodies or fragments may be provided attached to a support material, as described above. One or more additional containers may enclose elements, such as reagents or buffers, to be used in the assay. Such kits may also, or alternatively, contain a detection reagent as described above that contains a reporter group suitable for direct or indirect detection of antibody binding.

Alternatively, a kit may be designed to detect the level of mRNA encoding a prostate tumor protein in a biological sample. Such kits generally comprise at least one oligonucleotide probe or primer, as described above, that hybridizes to a polynucleotide encoding a prostate tumor protein. Such an oligonucleotide may be used, for example, within a PCR or hybridization assay. Additional components that may be present within such kits include a second oligonucleotide and/or a diagnostic reagent or container to facilitate the detection of a polynucleotide encoding a prostate tumor protein.

The following Examples are offered by way of illustration and not by way of limitation.

EXAMPLES

EXAMPLE 1

ISOLATION AND CHARACTERIZATION OF PROSTATE TUMOR POLYPEPTIDES

This Example describes the isolation of certain prostate tumor polypeptides from a prostate tumor cDNA library.

A human prostate tumor cDNA expression library was constructed from prostate tumor poly A⁺ RNA using a Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning kit (BRL Life Technologies, Gaithersburg, MD 20897) following the manufacturer's protocol. Specifically, prostate tumor tissues were homogenized with polytron (Kinematica, Switzerland) and total RNA was extracted using Trizol reagent (BRL Life Technologies) as directed by the manufacturer. The poly A⁺ RNA was then purified using a Qiagen oligotex spin column mRNA purification kit (Qiagen, Santa Clarita, CA 91355) according to the manufacturer's protocol. First-strand cDNA was synthesized using the NotI/Oligo-dT18 primer. Double-stranded cDNA was synthesized, ligated with EcoRI/BAXI adaptors (Invitrogen, San Diego, CA) and digested with NotI. Following size fractionation with Chroma Spin-1000 columns (Clontech, Palo Alto, CA), the cDNA was ligated into the EcoRI/NotI site of pCDNA3.1 (Invitrogen) and transformed into ElectroMax *E. coli* DH10B cells (BRL Life Technologies) by electroporation.

Using the same procedure, a normal human pancreas cDNA expression library was prepared from a pool of six tissue specimens (Clontech). The cDNA libraries were characterized by determining the number of independent colonies, the percentage of clones that carried insert, the average insert size and by sequence analysis. The prostate tumor library contained 1.64×10^7 independent colonies, with 70% of clones having an insert and the average insert size being 1745 base pairs. The normal pancreas cDNA library contained 3.3×10^6 independent colonies, with 69% of clones having inserts and the average insert size being 1120 base pairs. For both libraries, sequence analysis showed that the majority of clones had a full length cDNA sequence and were synthesized from mRNA, with minimal rRNA and mitochondrial DNA contamination.

cDNA library subtraction was performed using the above prostate tumor and normal pancreas cDNA libraries, as described by Hara *et al.* (*Blood*, 84:189-199, 1994) with some modifications. Specifically, a prostate tumor-specific subtracted cDNA library was generated as follows. Normal pancreas cDNA library (70 µg) was digested with EcoRI, NotI, and SfI, followed by a filling-in reaction with DNA polymerase Klenow fragment. After phenol-chloroform extraction and ethanol precipitation, the DNA was dissolved in 100 µl of

H_2O , heat-denatured and mixed with 100 μl (100 μg) of Photoprobe biotin (Vector Laboratories, Burlingame, CA). As recommended by the manufacturer, the resulting mixture was irradiated with a 270 W sunlamp on ice for 20 minutes. Additional Photoprobe biotin (50 μl) was added and the biotinylation reaction was repeated. After extraction with butanol five times, the DNA was ethanol-precipitated and dissolved in 23 $\mu l H_2O$ to form the driver DNA.

To form the tracer DNA, 10 μg prostate tumor cDNA library was digested with BamHI and XhoI, phenol chloroform extracted and passed through Chroma spin-400 columns (Clontech). Following ethanol precipitation, the tracer DNA was dissolved in 5 $\mu l H_2O$. Tracer DNA was mixed with 15 μl driver DNA and 20 μl of 2 x hybridization buffer (1.5 M NaCl/10 mM EDTA/50 mM HEPES pH 7.5/0.2% sodium dodecyl sulfate), overlaid with mineral oil, and heat-denatured completely. The sample was immediately transferred into a 68 °C water bath and incubated for 20 hours (long hybridization [LH]). The reaction mixture was then subjected to a streptavidin treatment followed by phenol/chloroform extraction. This process was repeated three more times. Subtracted DNA was precipitated, dissolved in 12 $\mu l H_2O$, mixed with 8 μl driver DNA and 20 μl of 2 x hybridization buffer, and subjected to a hybridization at 68 °C for 2 hours (short hybridization [SH]). After removal of biotinylated double-stranded DNA, subtracted cDNA was ligated into BamHI/XhoI site of chloramphenicol resistant pBCSK⁺ (Stratagene, La Jolla, CA 92037) and transformed into ElectroMax *E. coli* DH10B cells by electroporation to generate a prostate tumor specific subtracted cDNA library (referred to as "prostate subtraction 1").

To analyze the subtracted cDNA library, plasmid DNA was prepared from 100 independent clones, randomly picked from the subtracted prostate tumor specific library and grouped based on insert size. Representative cDNA clones were further characterized by DNA sequencing with a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A (Foster City, CA). Six cDNA clones, hereinafter referred to as F1-13, F1-12, F1-16, H1-1, H1-9 and H1-4, were shown to be abundant in the subtracted prostate-specific cDNA library. The determined 3' and 5' cDNA sequences for F1-12 are provided in SEQ ID NO: 2 and 3, respectively, with determined 3' cDNA sequences for F1-13, F1-16, H1-1, H1-9 and H1-4 being provided in SEQ ID NO: 1 and 4-7, respectively.

The cDNA sequences for the isolated clones were compared to known sequences in the gene bank using the EMBL and GenBank databases (release 96). Four of the prostate tumor cDNA clones, F1-13, F1-16, H1-1, and H1-4, were determined to encode the following previously identified proteins: prostate specific antigen (PSA), human glandular kallikrein, human tumor expression enhanced gene, and mitochondria cytochrome C oxidase subunit II. H1-9 was found to be identical to a previously identified human

autonomously replicating sequence. No significant homologies to the cDNA sequence for F1-12 were found.

Subsequent studies led to the isolation of a full-length cDNA sequence for F1-12. This sequence is provided in SEQ ID NO: 107, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 108.

To clone less abundant prostate tumor specific genes, cDNA library subtraction was performed by subtracting the prostate tumor cDNA library described above with the normal pancreas cDNA library and with the three most abundant genes in the previously subtracted prostate tumor specific cDNA library: human glandular kallikrein, prostate specific antigen (PSA), and mitochondria cytochrome C oxidase subunit II. Specifically, 1 µg each of human glandular kallikrein, PSA and mitochondria cytochrome C oxidase subunit II cDNAs in pCDNA3.1 were added to the driver DNA and subtraction was performed as described above to provide a second subtracted cDNA library hereinafter referred to as the "subtracted prostate tumor specific cDNA library with spike".

Twenty-two cDNA clones were isolated from the subtracted prostate tumor specific cDNA library with spike. The determined 3' and 5' cDNA sequences for the clones referred to as J1-17, L1-12, N1-1862, J1-13, J1-19, J1-25, J1-24, K1-58, K1-63, L1-4 and L1-14 are provided in SEQ ID NOS: 8-9, 10-11, 12-13, 14-15, 16-17, 18-19, 20-21, 22-23, 24-25, 26-27 and 28-29, respectively. The determined 3' cDNA sequences for the clones referred to as J1-12, J1-16, J1-21, K1-48, K1-55, L1-2, L1-6, N1-1858, N1-1860, N1-1861, N1-1864 are provided in SEQ ID NOS: 30-40, respectively. Comparison of these sequences with those in the gene bank as described above, revealed no significant homologies to three of the five most abundant DNA species, (J1-17, L1-12 and N1-1862; SEQ ID NOS: 8-9, 10-11 and 12-13, respectively). Of the remaining two most abundant species, one (J1-12; SEQ ID NO:30) was found to be identical to the previously identified human pulmonary surfactant-associated protein, and the other (K1-48; SEQ ID NO:33) was determined to have some homology to *R. norvegicus* mRNA for 2-arylpropionyl-CoA epimerase. Of the 17 less abundant cDNA clones isolated from the subtracted prostate tumor specific cDNA library with spike, four (J1-16, K1-55, L1-6 and N1-1864; SEQ ID NOS:31, 34, 36 and 40, respectively) were found to be identical to previously identified sequences, two (J1-21 and N1-1860; SEQ ID NOS: 32 and 38, respectively) were found to show some homology to non-human sequences, and two (L1-2 and N1-1861; SEQ ID NOS: 35 and 39, respectively) were found to show some homology to known human sequences. No significant homologies were found to the polypeptides J1-13, J1-19, J1-24, J1-25, K1-58, K1-63, L1-4, L1-14 (SEQ ID NOS: 14-15, 16-17, 20-21, 18-19, 22-23, 24-25, 26-27, 28-29, respectively).

Subsequent studies led to the isolation of full length cDNA sequences for J1-17, L1-12 and N1-1862 (SEQ ID NOS: 109-111, respectively). The corresponding predicted

amino acid sequences are provided in SEQ ID NOS: 112-114. L1-12 is also referred to as P501S.

In a further experiment, four additional clones were identified by subtracting a prostate tumor cDNA library with normal prostate cDNA prepared from a pool of three normal prostate poly A+ RNA (referred to as "prostate subtraction 2"). The determined cDNA sequences for these clones, hereinafter referred to as U1-3064, U1-3065, V1-3692 and 1A-3905, are provided in SEQ ID NO: 69-72, respectively. Comparison of the determined sequences with those in the gene bank revealed no significant homologies to U1-3065.

A second subtraction with spike (referred to as "prostate subtraction spike 2") was performed by subtracting a prostate tumor specific cDNA library with spike with normal pancreas cDNA library and further spiked with PSA, J1-17, pulmonary surfactant-associated protein, mitochondrial DNA, cytochrome c oxidase subunit II, N1-1862, autonomously replicating sequence, L1-12 and tumor expression enhanced gene. Four additional clones, hereinafter referred to as V1-3686, R1-2330, 1B-3976 and V1-3679, were isolated. The determined cDNA sequences for these clones are provided in SEQ ID NO: 73-76, respectively. Comparison of these sequences with those in the gene bank revealed no significant homologies to V1-3686 and R1-2330.

Further analysis of the three prostate subtractions described above (prostate subtraction 2, subtracted prostate tumor specific cDNA library with spike, and prostate subtraction spike 2) resulted in the identification of sixteen additional clones, referred to as 1G-4736, 1G-4738, 1G-4741, 1G-4744, 1G-4734, 1H-4774, 1H-4781, 1H-4785, 1H-4787, 1H-4796, 1I-4810, 1I-4811, 1J-4876, 1K-4884 and 1K-4896. The determined cDNA sequences for these clones are provided in SEQ ID NOS: 77-92, respectively. Comparison of these sequences with those in the gene bank as described above, revealed no significant homologies to 1G-4741, 1G-4734, 1I-4807, 1J-4876 and 1K-4896 (SEQ ID NOS: 79, 81, 87, 90 and 92, respectively). Further analysis of the isolated clones led to the determination of extended cDNA sequences for 1G-4736, 1G-4738, 1G-4741, 1G-4744, 1H-4774, 1H-4781, 1H-4785, 1H-4787, 1H-4796, 1I-4807, 1J-4876, 1K-4884 and 1K-4896, provided in SEQ ID NOS: 179-188 and 191-193, respectively, and to the determination of additional partial cDNA sequences for 1I-4810 and 1I-4811, provided in SEQ ID NOS: 189 and 190, respectively.

Additional studies with prostate subtraction spike 2 resulted in the isolation of three more clones. Their sequences were determined as described above and compared to the most recent GenBank. All three clones were found to have homology to known genes, which are Cysteine-rich protein, KIAA0242, and KIAA0280 (SEQ ID NO: 317, 319, and 320, respectively). Further analysis of these clones by Synteni microarray (Synteni, Palo Alto, CA) demonstrated that all three clones were over-expressed in most prostate tumors and

prostate BPH, as well as in the majority of normal prostate tissues tested, but low expression in all other normal tissues.

An additional subtraction was performed by subtracting a normal prostate cDNA library with normal pancreas cDNA (referred to as "prostate subtraction 3"). This led to the identification of six additional clones referred to as 1G-4761, 1G-4762, 1H-4766, 1H-4770, 1H-4771 and 1H-4772 (SEQ ID NOS: 93-98). Comparison of these sequences with those in the gene bank revealed no significant homologies to 1G-4761 and 1H-4771 (SEQ ID NOS: 93 and 97, respectively). Further analysis of the isolated clones led to the determination of extended cDNA sequences for 1G-4761, 1G-4762, 1H-4766 and 1H-4772 provided in SEQ ID NOS: 194-196 and 199, respectively, and to the determination of additional partial cDNA sequences for 1H-4770 and 1H-4771, provided in SEQ ID NOS: 197 and 198, respectively.

Subtraction of a prostate tumor cDNA library, prepared from a pool of polyA+ RNA from three prostate cancer patients, with a normal pancreas cDNA library (prostate subtraction 4) led to the identification of eight clones, referred to as 1D-4297, 1D-4309, 1D.1-4278, 1D-4288, 1D-4283, 1D-4304, 1D-4296 and 1D-4280 (SEQ ID NOS: 99-107). These sequences were compared to those in the gene bank as described above. No significant homologies were found to 1D-4283 and 1D-4304 (SEQ ID NOS: 103 and 104, respectively). Further analysis of the isolated clones led to the determination of extended cDNA sequences for 1D-4309, 1D.1-4278, 1D-4288, 1D-4283, 1D-4304, 1D-4296 and 1D-4280, provided in SEQ ID NOS: 200-206, respectively.

cDNA clones isolated in prostate subtraction 1 and prostate subtraction 2, described above, were colony PCR amplified and their mRNA expression levels in prostate tumor, normal prostate and in various other normal tissues were determined using microarray technology (Synteni, Palo Alto, CA). Briefly, the PCR amplification products were dotted onto slides in an array format, with each product occupying a unique location in the array. mRNA was extracted from the tissue sample to be tested, reverse transcribed, and fluorescent-labeled cDNA probes were generated. The microarrays were probed with the labeled cDNA probes, the slides scanned and fluorescence intensity was measured. This intensity correlates with the hybridization intensity. Two clones (referred to as P509S and P510S) were found to be over-expressed in prostate tumor and normal prostate and expressed at low levels in all other normal tissues tested (liver, pancreas, skin, bone marrow, brain, breast, adrenal gland, bladder, testes, salivary gland, large intestine, kidney, ovary, lung, spinal cord, skeletal muscle and colon). The determined cDNA sequences for P509S and P510S are provided in SEQ ID NO: 223 and 224, respectively. Comparison of these sequences with those in the gene bank as described above, revealed some homology to previously identified ESTs.

Additional studies led to the isolation of the full-length cDNA sequence for P509S. This sequence is provided in SEQ ID NO: 332, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 339.

EXAMPLE 2
**DETERMINATION OF TISSUE SPECIFICITY OF PROSTATE TUMOR
POLYPEPTIDES**

Using gene specific primers, mRNA expression levels for the representative prostate tumor polypeptides F1-16, H1-1, J1-17 (also referred to as P502S), L1-12 (also referred to as P501S), F1-12 (also referred to as P504S) and N1-1862 (also referred to as P503S) were examined in a variety of normal and tumor tissues using RT-PCR.

Briefly, total RNA was extracted from a variety of normal and tumor tissues using Trizol reagent as described above. First strand synthesis was carried out using 1-2 µg of total RNA with SuperScript II reverse transcriptase (BRL Life Technologies) at 42 °C for one hour. The cDNA was then amplified by PCR with gene-specific primers. To ensure the semi-quantitative nature of the RT-PCR, β-actin was used as an internal control for each of the tissues examined. First, serial dilutions of the first strand cDNAs were prepared and RT-PCR assays were performed using β-actin specific primers. A dilution was then chosen that enabled the linear range amplification of the β-actin template and which was sensitive enough to reflect the differences in the initial copy numbers. Using these conditions, the β-actin levels were determined for each reverse transcription reaction from each tissue. DNA contamination was minimized by DNase treatment and by assuring a negative PCR result when using first strand cDNA that was prepared without adding reverse transcriptase.

mRNA Expression levels were examined in four different types of tumor tissue (prostate tumor from 2 patients, breast tumor from 3 patients, colon tumor, lung tumor), and sixteen different normal tissues, including prostate, colon, kidney, liver, lung, ovary, pancreas, skeletal muscle, skin, stomach, testes, bone marrow and brain. F1-16 was found to be expressed at high levels in prostate tumor tissue, colon tumor and normal prostate, and at lower levels in normal liver, skin and testes, with expression being undetectable in the other tissues examined. H1-1 was found to be expressed at high levels in prostate tumor, lung tumor, breast tumor, normal prostate, normal colon and normal brain, at much lower levels in normal lung, pancreas, skeletal muscle, skin, small intestine, bone marrow, and was not detected in the other tissues tested. J1-17 (P502S) and L1-12 (P501S) appear to be specifically over-expressed in prostate, with both genes being expressed at high levels in prostate tumor and normal prostate but at low to undetectable levels in all the other tissues examined. N1-1862 (P503S) was found to be over-expressed in 60% of prostate tumors and detectable in normal colon and kidney. The RT-PCR results thus indicate that

F1-16, H1-1, J1-17 (P502S), N1-1862 (P503S) and L1-12 (P501S) are either prostate specific or are expressed at significantly elevated levels in prostate.

Further RT-PCR studies showed that F1-12 (P504S) is over-expressed in 60% of prostate tumors, detectable in normal kidney but not detectable in all other tissues tested. Similarly, R1-2330 was shown to be over-expressed in 40% of prostate tumors, detectable in normal kidney and liver, but not detectable in all other tissues tested. U1-3064 was found to be over-expressed in 60% of prostate tumors, and also expressed in breast and colon tumors, but was not detectable in normal tissues.

RT-PCR characterization of R1-2330, U1-3064 and 1D-4279 showed that these three antigens are over-expressed in prostate and/or prostate tumors.

Northern analysis with four prostate tumors, two normal prostate samples, two BPH prostates, and normal colon, kidney, liver, lung, pancreas, skeletal muscle, brain, stomach, testes, small intestine and bone marrow, showed that L1-12 (P501S) is over-expressed in prostate tumors and normal prostate, while being undetectable in other normal tissues tested. J1-17 (P502S) was detected in two prostate tumors and not in the other tissues tested. N1-1862 (P503S) was found to be over-expressed in three prostate tumors and to be expressed in normal prostate, colon and kidney, but not in other tissues tested. F1-12 (P504S) was found to be highly expressed in two prostate tumors and to be undetectable in all other tissues tested.

The microarray technology described above was used to determine the expression levels of representative antigens described herein in prostate tumor, breast tumor and the following normal tissues: prostate, liver, pancreas, skin, bone marrow, brain, breast, adrenal gland, bladder, testes, salivary gland, large intestine, kidney, ovary, lung, spinal cord, skeletal muscle and colon. L1-12 (P501S) was found to be over-expressed in normal prostate and prostate tumor, with some expression being detected in normal skeletal muscle. Both J1-12 and F1-12 (P504S) were found to be over-expressed in prostate tumor, with expression being lower or undetectable in all other tissues tested. N1-1862 (P503S) was found to be expressed at high levels in prostate tumor and normal prostate, and at low levels in normal large intestine and normal colon, with expression being undetectable in all other tissues tested. R1-2330 was found to be over-expressed in prostate tumor and normal prostate, and to be expressed at lower levels in all other tissues tested. 1D-4279 was found to be over-expressed in prostate tumor and normal prostate, expressed at lower levels in normal spinal cord, and to be undetectable in all other tissues tested.

Further microarray analysis to specifically address the extent to which P501S (SEQ ID NO: 110) was expressed in breast tumor revealed moderate over-expression not only in breast tumor, but also in metastatic breast tumor (2/31), with negligible to low expression

in normal tissues. This data suggests that P501S may be over-expressed in various breast tumors as well as in prostate tumors.

The expression levels of 32 ESTs (expressed sequence tags) described by Vasmatzis *et al.* (*Proc. Natl. Acad. Sci. USA* 95:300-304, 1998) in a variety of tumor and normal tissues were examined by microarray technology as described above. Two of these clones (referred to as P1000C and P1001C) were found to be over-expressed in prostate tumor and normal prostate, and expressed at low to undetectable levels in all other tissues tested (normal aorta, thymus, resting and activated PBMC, epithelial cells, spinal cord, adrenal gland, fetal tissues, skin, salivary gland, large intestine, bone marrow, liver, lung, dendritic cells, stomach, lymph nodes, brain, heart, small intestine, skeletal muscle, colon and kidney). The determined cDNA sequences for P1000C and P1001C are provided in SEQ ID NO: 384 and 472, respectively. The sequence of P1001C was found to show some homology to the previously isolated Human mRNA for JM27 protein. No significant homologies were found to the sequence of P1000C.

The expression of the polypeptide encoded by the full length cDNA sequence for F1-12 (also referred to as P504S; SEQ ID NO: 108) was investigated by immunohistochemical analysis. Rabbit-anti-P504S polyclonal antibodies were generated against the full length P504S protein by standard techniques. Subsequent isolation and characterization of the polyclonal antibodies were also performed by techniques well known in the art. Immunohistochemical analysis showed that the P504S polypeptide was expressed in 100% of prostate carcinoma samples tested (n=5).

The rabbit-anti-P504S polyclonal antibody did not appear to label benign prostate cells with the same cytoplasmic granular staining, but rather with light nuclear staining. Analysis of normal tissues revealed that the encoded polypeptide was found to be expressed in some, but not all normal human tissues. Positive cytoplasmic staining with rabbit-anti-P504S polyclonal antibody was found in normal human kidney, liver, brain, colon and lung-associated macrophages, whereas heart and bone marrow were negative.

This data indicates that the P504S polypeptide is present in prostate cancer tissues, and that there are qualitative and quantitative differences in the staining between benign prostatic hyperplasia tissues and prostate cancer tissues, suggesting that this polypeptide may be detected selectively in prostate tumors and therefore be useful in the diagnosis of prostate cancer.

EXAMPLE 3

ISOLATION AND CHARACTERIZATION OF PROSTATE TUMOR POLYPEPTIDES BY PCR-BASED SUBTRACTION

A cDNA subtraction library, containing cDNA from normal prostate subtracted with ten other normal tissue cDNAs (brain, heart, kidney, liver, lung, ovary, placenta, skeletal muscle, spleen and thymus) and then submitted to a first round of PCR amplification, was purchased from Clontech. This library was subjected to a second round of PCR amplification, following the manufacturer's protocol. The resulting cDNA fragments were subcloned into the vector pT7 Blue T-vector (Novagen, Madison, WI) and transformed into XL-1 Blue MRF' *E. coli* (Stratagene). DNA was isolated from independent clones and sequenced using a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A.

Fifty-nine positive clones were sequenced. Comparison of the DNA sequences of these clones with those in the gene bank, as described above, revealed no significant homologies to 25 of these clones, hereinafter referred to as P5, P8, P9, P18, P20, P30, P34, P36, P38, P39, P42, P49, P50, P53, P55, P60, P64, P65, P73, P75, P76, P79 and P84. The determined cDNA sequences for these clones are provided in SEQ ID NO: 41-45, 47-52 and 54-65, respectively. P29, P47, P68, P80 and P82 (SEQ ID NO: 46, 53 and 66-68, respectively) were found to show some degree of homology to previously identified DNA sequences. To the best of the inventors' knowledge, none of these sequences have been previously shown to be present in prostate.

Further studies using the PCR-based methodology described above resulted in the isolation of more than 180 additional clones, of which 23 clones were found to show no significant homologies to known sequences. The determined cDNA sequences for these clones are provided in SEQ ID NO: 115-123, 127, 131, 137, 145, 147-151, 153, 156-158 and 160. Twenty-three clones (SEQ ID NO: 124-126, 128-130, 132-136, 138-144, 146, 152, 154, 155 and 159) were found to show some homology to previously identified ESTs. An additional ten clones (SEQ ID NO: 161-170) were found to have some degree of homology to known genes. Larger cDNA clones containing the P20 sequence represent splice variants of a gene referred to as P703P. The determined DNA sequence for the variants referred to as DE1, DE13 and DE14 are provided in SEQ ID NOS: 171, 175 and 177, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 172, 176 and 178, respectively. The determined cDNA sequence for an extended spliced form of P703 is provided in SEQ ID NO: 225. The DNA sequences for the splice variants referred to as DE2 and DE6 are provided in SEQ ID NOS: 173 and 174, respectively.

mRNA Expression levels for representative clones in tumor tissues (prostate (n=5), breast (n=2), colon and lung) normal tissues (prostate (n=5), colon, kidney, liver, lung (n=2), ovary (n=2), skeletal muscle, skin, stomach, small intestine and brain), and activated

and non-activated PBMC was determined by RT-PCR as described above. Expression was examined in one sample of each tissue type unless otherwise indicated.

P9 was found to be highly expressed in normal prostate and prostate tumor compared to all normal tissues tested except for normal colon which showed comparable expression. P20, a portion of the P703P gene, was found to be highly expressed in normal prostate and prostate tumor, compared to all twelve normal tissues tested. A modest increase in expression of P20 in breast tumor (n=2), colon tumor and lung tumor was seen compared to all normal tissues except lung (1 of 2). Increased expression of P18 was found in normal prostate, prostate tumor and breast tumor compared to other normal tissues except lung and stomach. A modest increase in expression of P5 was observed in normal prostate compared to most other normal tissues. However, some elevated expression was seen in normal lung and PBMC. Elevated expression of P5 was also observed in prostate tumors (2 of 5), breast tumor and one lung tumor sample. For P30, similar expression levels were seen in normal prostate and prostate tumor, compared to six of twelve other normal tissues tested. Increased expression was seen in breast tumors, one lung tumor sample and one colon tumor sample, and also in normal PBMC. P29 was found to be over-expressed in prostate tumor (5 of 5) and normal prostate (5 of 5) compared to the majority of normal tissues. However, substantial expression of P29 was observed in normal colon and normal lung (2 of 2). P80 was found to be over-expressed in prostate tumor (5 of 5) and normal prostate (5 of 5) compared to all other normal tissues tested, with increased expression also being seen in colon tumor.

Further studies resulted in the isolation of twelve additional clones, hereinafter referred to as 10-d8, 10-h10, 11-c8, 7-g6, 8-b5, 8-b6, 8-d4, 8-d9, 8-g3, 8-h11, 9-f12 and 9-f3. The determined DNA sequences for 10-d8, 10-h10, 11-c8, 8-d4, 8-d9, 8-h11, 9-f12 and 9-f3 are provided in SEQ ID NO: 207, 208, 209, 216, 217, 220, 221 and 222, respectively. The determined forward and reverse DNA sequences for 7-g6, 8-b5, 8-b6 and 8-g3 are provided in SEQ ID NO: 210 and 211; 212 and 213; 214 and 215; and 218 and 219, respectively. Comparison of these sequences with those in the gene bank revealed no significant homologies to the sequence of 9-f3. The clones 10-d8, 11-c8 and 8-h11 were found to show some homology to previously isolated ESTs, while 10-h10, 8-b5, 8-b6, 8-d4, 8-d9, 8-g3 and 9-f12 were found to show some homology to previously identified genes. Further characterization of 7-G6 and 8-G3 showed identity to the known genes PAP and PSA, respectively.

mRNA expression levels for these clones were determined using the microarray technology described above. The clones 7-G6, 8-G3, 8-B5, 8-B6, 8-D4, 8-D9, 9-F3, 9-F12, 9-H3, 10-A2, 10-A4, 11-C9 and 11-F2 were found to be over-expressed in prostate tumor and normal prostate, with expression in other tissues tested being low or undetectable.

Increased expression of 8-F11 was seen in prostate tumor and normal prostate, bladder, skeletal muscle and colon. Increased expression of 10-H10 was seen in prostate tumor and normal prostate, bladder, lung, colon, brain and large intestine. Increased expression of 9-B1 was seen in prostate tumor, breast tumor, and normal prostate, salivary gland, large intestine and skin, with increased expression of 11-C8 being seen in prostate tumor, and normal prostate and large intestine.

An additional cDNA fragment derived from the PCR-based normal prostate subtraction, described above, was found to be prostate specific by both micro-array technology and RT-PCR. The determined cDNA sequence of this clone (referred to as 9-A11) is provided in SEQ ID NO: 226. Comparison of this sequence with those in the public databases revealed 99% identity to the known gene HOXB13.

Further studies led to the isolation of the clones 8-C6 and 8-H7. The determined cDNA sequences for these clones are provided in SEQ ID NO: 227 and 228, respectively. These sequences were found to show some homology to previously isolated ESTs.

PCR and hybridization-based methodologies were employed to obtain longer cDNA sequences for clone P20 (also referred to as P703P), yielding three additional cDNA fragments that progressively extend the 5' end of the gene. These fragments, referred to as P703PDE5, P703P6.26, and P703PX-23 (SEQ ID NO: 326, 328 and 330, with the predicted corresponding amino acid sequences being provided in SEQ ID NO: 327, 329 and 331, respectively) contain additional 5' sequence. P703PDE5 was recovered by screening of a cDNA library (#141-26) with a portion of P703P as a probe. P703P6.26 was recovered from a mixture of three prostate tumor cDNAs and P703PX_23 was recovered from cDNA library (#438-48). Together, the additional sequences include all of the putative mature serine protease along with part of the putative signal sequence. Further studies using a PCR-based subtraction library of a prostate tumor pool subtracted against a pool of normal tissues (referred to as JP: PCR subtraction) resulted in the isolation of thirteen additional clones, seven of which did not share any significant homology to known GenBank sequences. The determined cDNA sequences for these seven clones (P711P, P712P, novel 23, P774P, P775P, P710P and P768P) are provided in SEQ ID NO: 307-311, 313 and 315, respectively. The remaining six clones (SEQ ID NO: 316 and 321-325) were shown to share some homology to known genes. By microarray analysis, all thirteen clones showed three or more fold over-expression in prostate tissues, including prostate tumors, BPH and normal prostate as compared to normal non-prostate tissues. Clones P711P, P712P, novel 23 and P768P showed over-expression in most prostate tumors and BPH tissues tested (n=29), and in the majority of normal prostate tissues (n=4), but background to low expression levels in all normal tissues.

Clones P774P, P775P and P710P showed comparatively lower expression and expression in fewer prostate tumors and BPH samples, with negative to low expression in normal prostate.

The full-length cDNA for P711P was obtained by employing the partial sequence of SEQ ID NO: 307 to screen a prostate cDNA library. Specifically, a directionally cloned prostate cDNA library was prepared using standard techniques. One million colonies of this library were plated onto LB/Amp plates. Nylon membrane filters were used to lift these colonies, and the cDNAs which were picked up by these filters were denatured and cross-linked to the filters by UV light. The P711P cDNA fragment of SEQ ID NO: 307 was radio-labeled and used to hybridize with these filters. Positive clones were selected, and cDNAs were prepared and sequenced using an automatic Perkin Elmer/Applied Biosystems sequencer. The determined full-length sequence of P711P is provided in SEQ ID NO: 382, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 383.

Using PCR and hybridization-based methodologies, additional cDNA sequence information was derived for two clones described above, 11-C9 and 9-F3, herein after referred to as P707P and P714P, respectively (SEQ ID NO: 333 and 334). After comparison with the most recent GenBank, P707P was found to be a splice variant of the known gene HoxB13. In contrast, no significant homologies to P714P were found.

Clones 8-B3, P89, P98, P130 and P201 (as disclosed in U.S. Patent Application No. 09/020,956, filed February 9, 1998) were found to be contained within one contiguous sequence, referred to as P705P (SEQ ID NO: 335, with the predicted amino acid sequence provided in SEQ ID NO: 336), which was determined to be a splice variant of the known gene NKX 3.1.

EXAMPLE 4 SYNTHESIS OF POLYPEPTIDES

Polypeptides may be synthesized on a Perkin Elmer/Applied Biosystems 430A peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugation, binding to an immobilized surface, or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0%-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following

lyophilization of the pure fractions, the peptides may be characterized using electrospray or other types of mass spectrometry and by amino acid analysis.

EXAMPLE 5

FURTHER ISOLATION AND CHARACTERIZATION OF PROSTATE TUMOR POLYPEPTIDES BY PCR-BASED SUBTRACTION

A cDNA library generated from prostate primary tumor mRNA as described above was subtracted with cDNA from normal prostate. The subtraction was performed using a PCR-based protocol (Clontech), which was modified to generate larger fragments. Within this protocol, tester and driver double stranded cDNA were separately digested with five restriction enzymes that recognize six-nucleotide restriction sites (MluI, MscI, PvuII, Sall and StuI). This digestion resulted in an average cDNA size of 600 bp, rather than the average size of 300 bp that results from digestion with RsaI according to the Clontech protocol. This modification did not affect the subtraction efficiency. Two tester populations were then created with different adapters, and the driver library remained without adapters.

The tester and driver libraries were then hybridized using excess driver cDNA. In the first hybridization step, driver was separately hybridized with each of the two tester cDNA populations. This resulted in populations of (a) unhybridized tester cDNAs, (b) tester cDNAs hybridized to other tester cDNAs, (c) tester cDNAs hybridized to driver cDNAs and (d) unhybridized driver cDNAs. The two separate hybridization reactions were then combined, and rehybridized in the presence of additional denatured driver cDNA. Following this second hybridization, in addition to populations (a) through (d), a fifth population (e) was generated in which tester cDNA with one adapter hybridized to tester cDNA with the second adapter. Accordingly, the second hybridization step resulted in enrichment of differentially expressed sequences which could be used as templates for PCR amplification with adaptor-specific primers.

The ends were then filled in, and PCR amplification was performed using adaptor-specific primers. Only population (e), which contained tester cDNA that did not hybridize to driver cDNA, was amplified exponentially. A second PCR amplification step was then performed, to reduce background and further enrich differentially expressed sequences.

This PCR-based subtraction technique normalizes differentially expressed cDNAs so that rare transcripts that are overexpressed in prostate tumor tissue may be recoverable. Such transcripts would be difficult to recover by traditional subtraction methods.

In addition to genes known to be overexpressed in prostate tumor, seventy-seven further clones were identified. Sequences of these partial cDNAs are provided in SEQ ID NO: 29 to 305. Most of these clones had no significant homology to database sequences. Exceptions were JPTPN23 (SEQ ID NO: 231; similarity to pig valosin-containing protein), JPTPN30 (SEQ ID NO: 234; similarity to rat mRNA for proteasome subunit), JPTPN45 (SEQ ID NO: 243; similarity to rat *norvegicus* cytosolic NADP-dependent isocitrate dehydrogenase), JPTPN46 (SEQ ID NO: 244; similarity to human subclone H8 4 d4 DNA sequence), JP1D6 (SEQ ID NO: 265; similarity to *G. gallus* dynein light chain-A), JP8D6 (SEQ ID NO: 288; similarity to human BAC clone RG016J04), JP8F5 (SEQ ID NO: 289; similarity to human subclone H8 3 b5 DNA sequence), and JP8E9 (SEQ ID NO: 299; similarity to human Alu sequence).

Additional studies using the PCR-based subtraction library consisting of a prostate tumor pool subtracted against a normal prostate pool (referred to as PT-PN PCR subtraction) yielded three additional clones. Comparison of the cDNA sequences of these clones with the most recent release of GenBank revealed no significant homologies to the two clones referred to as P715P and P767P (SEQ ID NO: 312 and 314). The remaining clone was found to show some homology to the known gene KIAA0056 (SEQ ID NO: 318). Using microarray analysis to measure mRNA expression levels in various tissues, all three clones were found to be over-expressed in prostate tumors and BPH tissues. Specifically, clone P715P was over-expressed in most prostate tumors and BPH tissues by a factor of three or greater, with elevated expression seen in the majority of normal prostate samples and in fetal tissue, but negative to low expression in all other normal tissues. Clone P767P was over-expressed in several prostate tumors and BPH tissues, with moderate expression levels in half of the normal prostate samples, and background to low expression in all other normal tissues tested.

Further analysis, by microarray as described above, of the PT-PN PCR subtraction library and of a DNA subtraction library containing cDNA from prostate tumor subtracted with a pool of normal tissue cDNAs, led to the isolation of 27 additional clones (SEQ ID NO: 340-365 and 381) which were determined to be over-expressed in prostate tumor. The clones of SEQ ID NO: 341, 342, 345, 347, 348, 349, 351, 355-359, 361, 362 and 364 were also found to be expressed in normal prostate. Expression of all 26 clones in a variety of normal tissues was found to be low or undetectable, with the exception of P544S (SEQ ID NO: 356) which was found to be expressed in small intestine. Of the 26 clones, 10 (SEQ ID NO: 340-349) were found to show some homology to previously identified sequences. No significant homologies were found to the clones of SEQ ID NO: 350-365.

EXAMPLE 6 PEPTIDE PRIMING OF MICE AND PROPAGATION OF CTL LINES

6.1. This Example illustrates the preparation of a CTL cell line specific for cells expressing the P502S gene.

Mice expressing the transgene for human HLA A2.1 (provided by Dr L. Sherman, The Scripps Research Institute, La Jolla, CA) were immunized with P2S#12 peptide (VLGVVAAEL; SEQ ID NO: 306), which is derived from the P502S gene (also referred to herein as J1-17, SEQ ID NO: 8), as described by Theobald et al., *Proc. Natl. Acad. Sci. USA* 92:11993-11997, 1995 with the following modifications. Mice were immunized with 100 μ g of P2S#12 and 120 μ g of an I-A^b binding peptide derived from hepatitis B Virus protein emulsified in incomplete Freund's adjuvant. Three weeks later these mice were sacrificed and using a nylon mesh single cell suspensions prepared. Cells were then resuspended at 6 x 10⁶ cells/ml in complete media (RPMI-1640; Gibco BRL, Gaithersburg, MD) containing 10% FCS, 2mM Glutamine (Gibco BRL), sodium pyruvate (Gibco BRL), non-essential amino acids (Gibco BRL), 2 x 10⁻⁵ M 2-mercaptoethanol, 50U/ml penicillin and streptomycin, and cultured in the presence of irradiated (3000 rads) P2S#12-pulsed (5mg/ml P2S#12 and 10mg/ml β 2-microglobulin) LPS blasts (A2 transgenic spleens cells cultured in the presence of 7 μ g/ml dextran sulfate and 25 μ g/ml LPS for 3 days). Six days later, cells (5 x 10⁵/ml) were restimulated with 2.5 x 10⁶/ml peptide pulsed irradiated (20,000 rads) EL4A2Kb cells (Sherman et al, *Science* 258:815-818, 1992) and 3 x 10⁶/ml A2 transgenic spleen feeder cells. Cells were cultured in the presence of 20U/ml IL-2. Cells continued to be restimulated on a weekly basis as described, in preparation for cloning the line.

P2S#12 line was cloned by limiting dilution analysis with peptide pulsed EL4 A2Kb tumor cells (1 x 10⁴ cells/ well) as stimulators and A2 transgenic spleen cells as feeders (5 x 10⁵ cells/ well) grown in the presence of 30U/ml IL-2. On day 14, cells were

restimulated as before. On day 21, clones that were growing were isolated and maintained in culture. Several of these clones demonstrated significantly higher reactivity (lysis) against human fibroblasts (HLA A2.1 expressing) transduced with P502S than against control fibroblasts. An example is presented in Figure 1.

This data indicates that P2S #12 represents a naturally processed epitope of the P502S protein that is expressed in the context of the human HLA A2.1 molecule.

6.2. This Example illustrates the preparation of murine CTL lines and CTL clones specific for cells expressing the P501S gene.

This series of experiments were performed similarly to that described above. Mice were immunized with the P1S#10 peptide (SEQ ID NO: 337), which is derived from the P501S gene (also referred to herein as L1-12, SEQ ID NO: 110). The P1S#10 peptide was derived by analysis of the predicted polypeptide sequence for P501S for potential HLA-A2 binding sequences as defined by published HLA-A2 binding motifs (Parker, KC, *et al*, *J. Immunol.*, 152:163, 1994). P1S#10 peptide was synthesized as described in Example 4, and empirically tested for HLA-A2 binding using a T cell based competition assay. Predicted A2 binding peptides were tested for their ability to compete HLA-A2 specific peptide presentation to an HLA-A2 restricted CTL clone (D150MS8), which is specific for the HLA-A2 binding influenza matrix peptide fluM58. D150MS8 CTL secretes TNF in response to self-presentation of peptide fluM58. In the competition assay, test peptides at 100-200 µg/ml were added to cultures of D150MS8 CTL in order to bind HLA-A2 on the CTL. After thirty minutes, CTL cultured with test peptides, or control peptides, were tested for their antigen dose response to the fluM58 peptide in a standard TNF bioassay. As shown in Figure 3, peptide P1S#10 competes HLA-A2 restricted presentation of fluM58, demonstrating that peptide P1S#10 binds HLA-A2.

Mice expressing the transgene for human HLA A2.1 were immunized as described by Theobald et al. (*Proc. Natl. Acad. Sci. USA* 92:11993-11997, 1995) with the following modifications. Mice were immunized with 62.5µg of P1S #10 and 120µg of an I-A^b binding peptide derived from Hepatitis B Virus protein emulsified in incomplete Freund's adjuvant. Three weeks later these mice were sacrificed and single cell suspensions prepared using a nylon mesh. Cells were then resuspended at 6 x 10⁶ cells/ml in complete media (as described above) and cultured in the presence of irradiated (3000 rads) P1S#10-pulsed (2µg/ml P1S#10 and 10mg/ml β2-microglobulin) LPS blasts (A2 transgenic spleens cells cultured in the presence of 7µg/ml dextran sulfate and 25µg/ml LPS for 3 days). Six days later cells (5 x 10⁵/ml) were restimulated with 2.5 x 10⁶/ml peptide-pulsed irradiated (20,000 rads) EL4A2Kb cells, as described above, and 3 x 10⁶/ml A2 transgenic spleen feeder cells. Cells were cultured in the presence of 20 U/ml IL-2. Cells were restimulated on a weekly

basis in preparation for cloning. After three rounds of *in vitro* stimulations, one line was generated that recognized P1S#10-pulsed Jurkat A2Kb targets and P501S-transduced Jurkat - targets as shown in Figure 4.

A P1S#10-specific CTL line was cloned by limiting dilution analysis with peptide pulsed EL4 A2Kb tumor cells (1×10^4 cells/ well) as stimulators and A2 transgenic spleen cells as feeders (5×10^5 cells/ well) grown in the presence of 30U/ml IL-2. On day 14, cells were restimulated as before. On day 21, viable clones were isolated and maintained in culture. As shown in Figure 5, five of these clones demonstrated specific cytolytic reactivity against P501S-transduced Jurkat A2Kb targets. This data indicates that P1S#10 represents a naturally processed epitope of the P501S protein that is expressed in the context of the human HLA-A2.1 molecule.

EXAMPLE 7

ABILITY OF HUMAN T CELLS TO RECOGNIZE PROSTATE TUMOR POLYPEPTIDES

This Example illustrates the ability of T cells specific for a prostate tumor polypeptide to recognize human tumor.

Human CD8⁺ T cells were primed *in vitro* to the P2S-12 peptide (SEQ ID NO: 306) derived from P502S (also referred to as J1-17) using dendritic cells according to the protocol of Van Tsai et al. (*Critical Reviews in Immunology* 18:65-75, 1998). The resulting CD8⁺ T cell microcultures were tested for their ability to recognize the P2S-12 peptide presented by autologous fibroblasts or fibroblasts which were transduced to express the P502S gene in a γ -interferon ELISPOT assay (see Lalvani et al., *J. Exp. Med.* 186:859-865, 1997). Briefly, titrating numbers of T cells were assayed in duplicate on 10^4 fibroblasts in the presence of 3 μ g/ml human β_2 -microglobulin and 1 μ g/ml P2S-12 peptide or control E75 peptide. In addition, T cells were simultaneously assayed on autologous fibroblasts transduced with the P502S gene or as a control, fibroblasts transduced with HER-2/neu. Prior to the assay, the fibroblasts were treated with 10 ng/ml γ -interferon for 48 hours to upregulate class I MHC expression. One of the microcultures (#5) demonstrated strong recognition of both peptide pulsed fibroblasts as well as transduced fibroblasts in a γ -interferon ELISPOT assay. Figure 2A demonstrates that there was a strong increase in the number of γ -interferon spots with increasing numbers of T cells on fibroblasts pulsed with the P2S-12 peptide (solid bars) but not with the control E75 peptide (open bars). This shows the ability of these T cells to specifically recognize the P2S-12 peptide. As shown in Figure 2B, this microculture also demonstrated an increase in the number of γ -interferon spots with increasing numbers of T

cells on fibroblasts transduced to express the P502S gene but not the HER-2/neu gene. These results provide additional confirmatory evidence that the P2S-12 peptide is a naturally processed epitope of the P502S protein. Furthermore, this also demonstrates that there exists in the human T cell repertoire, high affinity T cells which are capable of recognizing this epitope. These T cells should also be capable of recognizing human tumors which express the P502S gene.

EXAMPLE 8

PRIMING OF CTL *IN VIVO* USING NAKED DNA IMMUNIZATION WITH A PROSTATE ANTIGEN

The prostate tumor antigen L1-12, as described above, is also referred to as P501S. HLA A2Kb Tg mice (provided by Dr L. Sherman, The Scripps Research Institute, La Jolla, CA) were immunized with 100 µg VR10132-P501S either intramuscularly or intradermally. The mice were immunized three times, with a two week interval between immunizations. Two weeks after the last immunization, immune spleen cells were cultured with Jurkat A2Kb-P501S transduced stimulator cells. CTL lines were stimulated weekly. After two weeks of *in vitro* stimulation, CTL activity was assessed against P501S transduced targets. Two out of 8 mice developed strong anti-P501S CTL responses. These results demonstrate that P501S contains at least one naturally processed A2-restricted CTL epitope.

EXAMPLE 9

GENERATION OF HUMAN CTL *IN VITRO* USING WHOLE GENE PRIMING AND STIMULATION TECHNIQUES WITH PROSTATE TUMOR ANTIGEN

Using *in vitro* whole-gene priming with P501S-retrovirally transduced autologous fibroblasts (see, for example, Yee et al, *The Journal of Immunology*, 157(9):4079-86, 1996), human CTL lines were derived that specifically recognize autologous fibroblasts transduced with P501S (also known as L1-12), as determined by interferon- γ ELISPOT analysis as described above. Using a panel of HLA-mismatched fibroblast lines transduced with P501S, these CTL lines were shown to be restricted HLA-A2 class I allele. Specifically, dendritic cells (DC) were differentiated from monocyte cultures derived from PBMC of normal human donors by growing for five days in RPMI medium containing 10% human serum, 50 ng/ml human GM-CSF and 30 ng/ml human IL-4. Following culture, DC were infected overnight with recombinant P501S vaccinia virus at a multiplicity of infection (M.O.I) of five, and matured overnight by the addition of 3 µg/ml CD40 ligand. Virus was inactivated by UV irradiation. CD8+ T cells were isolated using a magnetic bead system, and

priming cultures were initiated using standard culture techniques. Cultures were restimulated every 7-10 days using autologous primary fibroblasts retrovirally transduced with P501S. Following four stimulation cycles, CD8+ T cell lines were identified that specifically produced interferon- γ when stimulated with P501S-transduced autologous fibroblasts. The P501S-specific activity could be sustained by the continued stimulation of the cultures with P501S-transduced fibroblasts in the presence of IL-15. A panel of HLA-mismatched fibroblast lines transduced with P501S were generated to define the restriction allele of the response. By measuring interferon- γ in an ELISPOT assay, the P501S specific response was shown to be restricted by HLA-A2. These results demonstrate that a CD8+ CTL response to P501S can be elicited.

EXAMPLE 10
IDENTIFICATION OF A NATURALLY PROCESSED CTL EPITOPE CONTAINED
WITHIN A PROSTATE TUMOR ANTIGEN

The 9-mer peptide p5 (SEQ ID NO: 338) was derived from the P703P antigen (also referred to as P20). The p5 peptide is immunogenic in human HLA-A2 donors and is a naturally processed epitope. Antigen specific CD8+ T cells can be primed following repeated *in vitro* stimulations with monocytes pulsed with p5 peptide. These CTL specifically recognize p5-pulsed target cells in both ELISPOT (as described above) and chromium release assays. Additionally, immunization of HLA-A2 transgenic mice with p5 leads to the generation of CTL lines which recognize a variety of P703P transduced target cells expressing either HLA-A2Kb or HLA-A2. Specifically, HLA-A2 transgenic mice were immunized subcutaneously in the footpad with 100 μ g of p5 peptide together with 140 μ g of hepatitis B virus core peptide (a Th peptide) in Freund's incomplete adjuvant. Three weeks post immunization, spleen cells from immunized mice were stimulated *in vitro* with peptide-pulsed LPS blasts. CTL activity was assessed by chromium release assay five days after primary *in vitro* stimulation. Retrovirally transduced cells expressing the control antigen P703P and HLA-A2Kb were used as targets. CTL lines that specifically recognized both p5-pulsed targets as well as P703P-expressing targets were identified.

Human *in vitro* priming experiments demonstrated that the p5 peptide is immunogenic in humans. Dendritic cells (DC) were differentiated from monocyte cultures derived from PBMC of normal human donors by culturing for five days in RPMI medium containing 10% human serum, 50 ng/ml human GM-CSF and 30 ng/ml human IL-4. Following culture, the DC were pulsed with p5 peptide and cultured with GM-CSF and IL-4 together with CD8+ T cell enriched PBMC. CTL lines were restimulated on a weekly basis

with p5-pulsed monocytes. Five to six weeks after initiation of the CTL cultures, CTL recognition of p5-pulsed target cells was demonstrated.

EXAMPLE 11
EXPRESSION OF A BREAST TUMOR-DERIVED ANTIGEN
IN PROSTATE

Isolation of the antigen B305D from breast tumor by differential display is described in US Patent Application No. 08/700,014, filed August 20, 1996. Several different splice forms of this antigen were isolated. The determined cDNA sequences for these splice forms are provided in SEQ ID NO: 366-375, with the predicted amino acid sequences corresponding to the sequences of SEQ ID NO: 292, 298 and 301-303 being provided in SEQ ID NO: 299-306, respectively.

The expression levels of B305D in a variety of tumor and normal tissues were examined by real time PCR and by Northern analysis. The results indicated that B305D is highly expressed in breast tumor, prostate tumor, normal prostate tumor and normal testes, with expression being low or undetectable in all other tissues examined (colon tumor, lung tumor, ovary tumor, and normal bone marrow, colon, kidney, liver, lung, ovary, skin, small intestine, stomach).

EXAMPLE 12
ELICITATION OF PROSTATE TUMOR ANTIGEN-SPECIFIC CTL RESPONSES IN
HUMAN BLOOD

This Example illustrates the ability of a prostate tumor antigen to elicit a CTL response in blood of normal humans.

Autologous dendritic cells (DC) were differentiated from monocyte cultures derived from PBMC of normal donors by growth for five days in RPMI medium containing 10% human serum, 50 ng/ml GMCSF and 30 ng/ml IL-4. Following culture, DC were infected overnight with recombinant P501S-expressing vaccinia virus at an M.O.I. of 5 and matured for 8 hours by the addition of 2 micrograms/ml CD40 ligand. Virus was inactivated by UV irradiation, CD8⁺ cells were isolated by positive selection using magnetic beads, and priming cultures were initiated in 24-well plates. Following five stimulation cycles, CD8⁺ lines were identified that specifically produced interferon-gamma when stimulated with autologous P501S-transduced fibroblasts. The P501S-specific activity of cell line 3A-1 could be maintained following additional stimulation cycles on autologous B-LCL transduced with P501S. Line 3A-1 was shown to specifically recognize autologous B-LCL transduced to

express P501S, but not EGFP-transduced autologous B-LCL, as measured by cytotoxicity assays (^{51}Cr release) and interferon-gamma production (Interferon-gamma Elispot; *see above* and Lalvani et al., *J. Exp. Med.* 186:859-865, 1997). The results of these assays are presented in Figures 6A and 6B.

EXAMPLE 13
IDENTIFICATION OF PROSTATE TUMOR ANTIGENS
BY MICROARRAY ANALYSIS

This Example describes the isolation of certain prostate tumor polypeptides from a prostate tumor cDNA library.

A human prostate tumor cDNA expression library as described above was screened using microarray analysis to identify clones that display at least a three fold over-expression in prostate tumor and/or normal prostate tissue, as compared to non-prostate normal tissues (not including testis). 372 clones were identified, and 319 were successfully sequenced. Table I presents a summary of these clones, which are shown in SEQ ID NOs:385-400. Of these sequences SEQ ID NOs:386, 389, 390 and 392 correspond to novel genes, and SEQ ID NOs: 393 and 396 correspond to previously identified sequences. The others (SEQ ID NOs:385, 387, 388, 391, 394, 395 and 397-400) correspond to known sequences, as shown in Table I.

Table I
Summary of Prostate Tumor Antigens

Known Genes	Previously identified Genes	Novel Genes
T-cell gamma chain	P504S	23379 (SEQ ID NO:389)
Kallikrein	P1000C	23399 (SEQ ID NO:392)
Vector	P501S	23320 (SEQ ID NO:386)
CGI-82 protein mRNA (23319; SEQ ID NO:385)	P503S	23381 (SEQ ID NO:390)
PSA	P510S	
Ald. 6 Dehyd.	P784P	
L-iditol-2 dehydrogenase (23376; SEQ ID NO:388)	P502S	
Ets transcription factor PDEF (22672; SEQ ID NO:398)	P706P	
hTGR (22678; SEQ ID NO:399)	19142.2, bangur.seq (22621; SEQ ID NO:396)	
KIAA0295(22685; SEQ ID NO:400)	5566.1 Wang(23404; SEQ ID NO:393)	
Prostatic Acid Phosphatase(22655; SEQ ID NO:397)	P712P	

transglutaminase (22611; SEQ ID NO:395)	P778P		
HDLBP (23508; SEQ ID NO:394)			
CGI-69 Protein(23367; SEQ ID NO:387)			
KIAA0122(23383; SEQ ID NO:391)			
TEEG			

CGI-82 showed 4.06 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 43% of prostate tumors, 25% normal prostate, not detected in other normal tissues tested. L-iditol-2 dehydrogenase showed 4.94 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 90% of prostate tumors, 100% of normal prostate, and not detected in other normal tissues tested. Ets transcription factor PDEF showed 5.55 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 47% prostate tumors, 25% normal prostate and not detected in other normal tissues tested. hTGR1 showed 9.11 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 63% of prostate tumors and is not detected in normal tissues tested including normal prostate. KIAA0295 showed 5.59 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 47% of prostate tumors, low to undetectable in normal tissues tested including normal prostate tissues. Prostatic acid phosphatase showed 9.14 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 67% of prostate tumors, 50% of normal prostate, and not detected in other normal tissues tested. Transglutaminase showed 14.84 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 30% of prostate tumors, 50% of normal prostate, and is not detected in other normal tissues tested. High density lipoprotein binding protein (HDLBP) showed 28.06 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 97% of prostate tumors, 75% of normal prostate, and is undetectable in all other normal tissues tested. CGI-69 showed 3.56 fold over-expression in prostate tissues as compared to other normal tissues tested. It is a low abundant gene, detected in more than 90% of prostate tumors, and in 75% normal prostate tissues. The expression of this gene in normal tissues was very low. KIAA0122 showed 4.24 fold over-expression in prostate

tissues as compared to other normal tissues tested. It was over-expressed in 57% of prostate tumors, it was undetectable in all normal tissues tested including normal prostate tissues. 19142.2 bangur showed 23.25 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 97% of prostate tumors and 100% of normal prostate. It was undetectable in other normal tissues tested. 5566.1 Wang showed 3.31 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 97% of prostate tumors, 75% normal prostate and was also over-expressed in normal bone marrow, pancreas, and activated PBMC. Novel clone 23379 showed 4.86 fold over-expression in prostate tissues as compared to other normal tissues tested. It was detectable in 97% of prostate tumors and 75% normal prostate and is undetectable in all other normal tissues tested. Novel clone 23399 showed 4.09 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 27% of prostate tumors and was undetectable in all normal tissues tested including normal prostate tissues. Novel clone 23320 showed 3.15 fold over-expression in prostate tissues as compared to other normal tissues tested. It was detectable in all prostate tumors and 50% of normal prostate tissues. It was also expressed in normal colon and trachea. Other normal tissues do not express this gene at high level.

EXAMPLE 14

IDENTIFICATION OF PROSTATE TUMOR ANTIGENS

BY ELECTRONIC SUBTRACTION

This Example describes the use of an electronic subtraction technique to identify prostate tumor antigens.

Potential prostate-specific genes present in the GenBank human EST database were identified by electronic subtraction (similar to that described by Vasmatis et al., *Proc. Natl. Acad. Sci. USA* 95:300-304, 1998). The sequences of EST clones (43,482) derived from various prostate libraries were obtained from the GenBank public human EST database. Each prostate EST sequence was used as a query sequence in a BLASTN (National Center for Biotechnology Information) search against the human EST database. All matches considered identical (length of matching sequence >100 base pairs, density of identical matches over this region > 70%) were grouped (aligned) together in a cluster. Clusters containing more than 200 ESTs were discarded since they probably represented repetitive elements or highly expressed genes such as those for ribosomal proteins. If two or more clusters shared common ESTs, those clusters were grouped together into a "supercluster," resulting in 4,345 prostate superclusters.

Records for the 479 human cDNA libraries represented in the GenBank release were downloaded to create a database of these cDNA library records. These 479 cDNA libraries were grouped into three groups, Plus (normal prostate and prostate tumor libraries, and breast cell lines, in which expression was desired), Minus (libraries from other normal adult tissues, in which expression was not desirable), and Other (fetal tissue, infant tissue, tissues found only in women, non-prostate tumors and cell lines other than prostate cell lines, in which expression was considered to be irrelevant). A summary of these library groups is presented in Table II.

Table II
Prostate cDNA Libraries and ESTs

Library	# of Libraries	# of ESTs
Plus	25	43,482
Normal	11	18,875
Tumor	11	21,769
Cell lines	3	2,838
Minus	166	
Other	287	

Each supercluster was analyzed in terms of the ESTs within the supercluster. The tissue source of each EST clone was noted and used to classify the superclusters into four groups: Type 1- EST clones found in the Plus group libraries only; no expression detected in Minus or Other group libraries; Type 2- EST clones found in the Plus and Other group libraries only; no expression detected in the Minus group; Type 3- EST clones found in the Plus, Minus and Other group libraries, but the expression in the Plus group is higher than in either the Minus or Other groups; and Type 4- EST clones found in Plus, Minus and Other group libraries, but the expression in the Plus group is higher than the expression in the Minus group. This analysis identified 4,345 breast clusters (see Table III). From these clusters, 3,172 EST clones were ordered from Research Genetics, Inc., and were received as frozen glycerol stocks in 96-well plates.

Table III
Prostate Cluster Summary

Type	# of Superclusters	# of ESTs Ordered
1	688	677
2	2899	2484
3	85	11
4	673	0
Total	4345	3172

The inserts were PCR-amplified using amino-linked PCR primers for Synteni microarray analysis. When more than one PCR product was obtained for a particular clone, that PCR product was not used for expression analysis. In total, 2,528 clones from the electronic subtraction method were analyzed by microarray analysis to identify electronic subtraction breast clones that had high tumor vs. normal tissue mRNA. Such screens were performed using a Synteni (Palo Alto, CA) microarray, according to the manufacturer's instructions (and essentially as described by Schena et al., *Proc. Natl. Acad. Sci. USA* 93:10614-10619, 1996 and Heller et al., *Proc. Natl. Acad. Sci. USA* 94:2150-2155, 1997). Within these analyses, the clones were arrayed on the chip, which was then probed with fluorescent probes generated from normal and tumor prostate cDNA, as well as various other normal tissues. The slides were scanned and the fluorescence intensity was measured.

Clones with an expression ratio greater than 3 (i.e., the level in prostate tumor cDNA was at least three times the level in normal prostate cDNA) were identified as prostate tumor-specific sequences (Table IV). The sequences of these clones are provided in SEQ ID NOS:401-453, with certain novel sequences shown in SEQ ID NOS:407, 413, 416-419, 422, 426, 427 and 450.

Table IV
Prostate-tumor Specific Clones

SEQ ID NO.	Sequence Designation	Comments
401	22545	previously identified P1000C
402	22547	previously identified P704P

403	22548	known
404	22550	known
405	22551	PSA
406	22552	prostate secretory protein 94
407	22553	novel
408	22558	previously identified P509S
409	22562	glandular kallikrein
410	22565	previously identified P1000C
411	22567	PAP
412	22568	B1006C (breast tumor antigen)
413	22570	novel
414	22571	PSA
415	22572	previously identified P706P
416	22573	novel
417	22574	novel
418	22575	novel
419	22580	novel
420	22581	PAP
421	22582	prostatic secretory protein 94
422	22583	novel
423	22584	prostatic secretory protein 94
424	22585	prostatic secretory protein 94
425	22586	known
426	22587	novel
427	22588	novel
428	22589	PAP
429	22590	known
430	22591	PSA
431	22592	known
432	22593	Previously identified P777P
433	22594	T cell receptor gamma chain
434	22595	Previously identified P705P
435	22596	Previously identified P707P
436	22847	PAP
437	22848	known
438	22849	prostatic secretory protein 57

439	22851	PAP
440	22852	PAP
441	22853	PAP
442	22854	previously identified P509S
443	22855	previously identified P705P
444	22856	previously identified P774P
445	22857	PSA
446	23601	previously identified P777P
447	23602	PSA
448	23605	PSA
449	23606	PSA
450	23612	novel
451	23614	PSA
452	23618	previously identified P1000C
453	23622	previously identified P705P

EXAMPLE 15
FURTHER IDENTIFICATION OF PROSTATE TUMOR ANTIGENS
BY MICROARRAY ANALYSIS

This Example describes the isolation of additional prostate tumor polypeptides from a prostate tumor cDNA library.

A human prostate tumor cDNA expression library as described above was screened using microarray analysis to identify clones that display at least a three fold over-expression in prostate tumor and/or normal prostate tissue, as compared to non-prostate normal tissues (not including testis). 142 clones were identified and sequenced. Certain of these clones are shown in SEQ ID NOS:454-467. Of these sequences SEQ ID NOs:459-461 correspond to novel genes. The others (SEQ ID NOs:454-458 and 461-467) correspond to known sequences.

EXAMPLE 16
FURTHER CHARACTERIZATION OF PROSTATE TUMOR ANTIGEN P710P

This Example describes the full length cloning of P710P

The prostate cDNA library described above was screened with the P710P fragment described above. One million colonies were plated on LB/Ampicillin plates. Nylon membrane filters were used to lift these colonies, and the cDNAs picked up by these filters were then denatured and cross-linked to the filters by UV light. The P710P fragment was radiolabeled and used to hybridize with the filters. Positive cDNA clones were selected and their cDNAs recovered and sequenced by an automatic ABI Sequencer. Four sequences were obtained, and are presented in SEQ ID NOs:468-471.

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the present invention is not limited except as by the appended claims.

CLAIMS

1. An isolated polypeptide comprising at least an immunogenic portion of a prostate tumor protein, or a variant thereof, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:

- (a) sequences recited in any one of SEQ ID NOs:2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471 or 472;
- (b) sequences that hybridize to any of the foregoing sequences under moderately stringent conditions; and
- (c) complements of any of the sequence of (a) or (b).

2. An isolated polypeptide according to claim 1, wherein the polypeptide comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOs:2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471 or 472, or a complement of any of the foregoing polynucleotide sequences.

3. An isolated polypeptide comprising a sequence recited in any one of SEQ ID NO: 108, 112, 113, 114, 172, 176, 178, 327, 329, 331, 339 and 383.

4. An isolated polynucleotide encoding at least 15 amino acid residues of a prostate tumor protein, or a variant thereof that differs in one or more substitutions, deletions, additions and/or insertions such that the ability of the variant to react with antigen-specific antisera is not substantially diminished, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide comprising a sequence recited in any one of SEQ ID NOs:2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434,

435, 442-444, 446, 450, 452, 453, 459-461, 468-471 or 472, or a complement of any of the foregoing sequences.

5. An isolated polynucleotide encoding a prostate tumor protein, or a variant thereof, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide comprising a sequence recited in any one of SEQ ID NOs:2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471 or 472, or a complement of any of the foregoing sequences.

6. An isolated polynucleotide comprising a sequence recited in any one of SEQ ID NOs:2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471 or 472.

7. An isolated polynucleotide comprising a sequence that hybridizes, under moderately stringent conditions, to a sequence recited in any one of SEQ ID NOs:2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471 or 472.

8. An isolated polynucleotide complementary to a polynucleotide according to any one of claims 4-7.

9. An expression vector comprising a polynucleotide according to any one of claims 4-7.

10. A host cell transformed or transfected with an expression vector according to claim 9.

11. An expression vector comprising a polynucleotide according to claim 8.

12. A host cell transformed or transfected with an expression vector according to claim 11.

13. A pharmaceutical composition comprising a polypeptide according to claim 1, in combination with a physiologically acceptable carrier.

14. A vaccine comprising a polypeptide according to claim 1, in combination with a non-specific immune response enhancer.

15. A vaccine according to claim 14, wherein the non-specific immune response enhancer is an adjuvant.

16. A vaccine according to claim 14, wherein the non-specific immune response enhancer induces a predominantly Type I response.

17. A pharmaceutical composition comprising a polynucleotide according to claim 4, in combination with a physiologically acceptable carrier.

18. A vaccine comprising a polynucleotide according to claim 4, in combination with a non-specific immune response enhancer.

19. A vaccine according to claim 18, wherein the non-specific immune response enhancer is an adjuvant.

20. A vaccine according to claim 18, wherein the non-specific immune response enhancer induces a predominantly Type I response.

21. An isolated antibody, or antigen-binding fragment thereof, that specifically binds to a prostate tumor protein that comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOs: 2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471 or 472 or a complement of any of the foregoing polynucleotide sequences.

22. A pharmaceutical composition comprising an antibody or fragment thereof according to claim 18, in combination with a physiologically acceptable carrier.

23. A pharmaceutical composition comprising an antigen-presenting cell that expresses a polypeptide according to claim 1, in combination with a pharmaceutically acceptable carrier or excipient.

24. A pharmaceutical composition according to claim 23, wherein the antigen presenting cell is a dendritic cell or a macrophage.

25. A vaccine comprising an antigen-presenting cell that expresses a polypeptide according to claim 1, in combination with a non-specific immune response enhancer.

26. A vaccine according to claim 25, wherein the non-specific immune response enhancer is an adjuvant.

27. A vaccine according to claim 25, wherein the non-specific immune response enhancer induces a predominantly Type I response.

28. A vaccine according to claim 25, wherein the antigen-presenting cell is a dendritic cell.

29. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a polypeptide according to claim 1, and thereby inhibiting the development of a cancer in the patient.

30. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a polynucleotide according to claim 4, and thereby inhibiting the development of a cancer in the patient.

31. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of an antibody or antigen-binding fragment thereof according to claim 21, and thereby inhibiting the development of a cancer in the patient.

32. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of an antigen-presenting cell that expresses a polypeptide according to claim 1, and thereby inhibiting the development of a cancer in the patient.
33. A method according to claim 32, wherein the antigen-presenting cell is a dendritic cell.
34. A method according to any one of claims 29-32, wherein the cancer is prostate cancer.
35. A fusion protein comprising at least one polypeptide according to claim 1.
36. A fusion protein according to claim 35, wherein the fusion protein comprises an expression enhancer that increases expression of the fusion protein in a host cell transfected with a polynucleotide encoding the fusion protein.
37. A fusion protein according to claim 35, wherein the fusion protein comprises a T helper epitope that is not present within the polypeptide of claim 1.
38. A fusion protein according to claim 35, wherein the fusion protein comprises an affinity tag.
39. An isolated polynucleotide encoding a fusion protein according to claim 35.
40. A pharmaceutical composition comprising a fusion protein according to claim 32, in combination with a physiologically acceptable carrier.
41. A vaccine comprising a fusion protein according to claim 35, in combination with a non-specific immune response enhancer.
42. A vaccine according to claim 41, wherein the non-specific immune response enhancer is an adjuvant.

43. A vaccine according to claim 41, wherein the non-specific immune response enhancer induces a predominantly Type I response.

44. A pharmaceutical composition comprising a polynucleotide according to claim 40, in combination with a physiologically acceptable carrier.

45. A vaccine comprising a polynucleotide according to claim 40, in combination with a non-specific immune response enhancer.

46. A vaccine according to claim 45, wherein the non-specific immune response enhancer is an adjuvant.

47. A vaccine according to claim 45, wherein the non-specific immune response enhancer induces a predominantly Type I response.

48. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a pharmaceutical composition according to claim 40 or claim 44.

49. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a vaccine according to claim 41 or claim 45.

50. A method for removing tumor cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a prostate tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:

(i) polynucleotides recited in any one of SEQ ID NOS:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472; and

(ii) complements of the foregoing polynucleotides;

wherein the step of contacting is performed under conditions and for a time sufficient to permit the removal of cells expressing the prostate tumor protein from the sample.

51. A method according to claim 50, wherein the biological sample is blood or a fraction thereof.

52. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient a biological sample treated according to the method of claim 50.

53. A method for stimulating and/or expanding T cells specific for a prostate tumor protein, comprising contacting T cells with one or more of:

- (i) a polypeptide according to claim 1;
- (ii) a polypeptide encoded by a polynucleotide comprising a sequence provided in any one of SEQ ID NOs:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472;
- (iii) a polynucleotide encoding a polypeptide of (i) or (ii); and/or
- (iv) an antigen presenting cell that expresses a polypeptide of (i) or (ii); under conditions and for a time sufficient to permit the stimulation and/or expansion of T cells.

54. An isolated T cell population, comprising T cells prepared according to the method of claim 53.

55. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a T cell population according to claim 54.

56. A method for inhibiting the development of a cancer in a patient, comprising the steps of:

(a) incubating CD4⁺ and/or CD8⁺ T cells isolated from a patient with at least one component selected from the group consisting of:

- (i) a polypeptide according to claim 1;
- (ii) a polypeptide encoded by a polynucleotide comprising a sequence of any one of SEQ ID NOs:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472;
- (iii) a polynucleotide encoding a polypeptide of (i) or (ii); or
- (iv) an antigen-presenting cell that expresses a polypeptide of (i) or (ii);

such that T cells proliferate; and

(b) administering to the patient an effective amount of the proliferated T cells, and thereby inhibiting the development of a cancer in the patient.

57. A method for inhibiting the development of a cancer in a patient, comprising the steps of:

(a) incubating CD4⁺ and/or CD8⁺ T cells isolated from a patient with at least one component selected from the group consisting of:

- (i) a polypeptide according to claim 1;
- (ii) a polypeptide encoded by a polynucleotide comprising a sequence of any one of SEQ ID NOs: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472;
- (iii) a polynucleotide encoding a polypeptide of (i) or (ii); or
- (iv) an antigen-presenting cell that expresses a polypeptide of (i) or (ii);

such that T cells proliferate;

(b) cloning at least one proliferated cell; and

(c) administering to the patient an effective amount of the cloned T cells, and thereby inhibiting the development of a cancer in the patient.

58. A method for determining the presence or absence of a cancer in a patient, comprising the steps of:

(a) contacting a biological sample obtained from a patient with a binding agent that binds to a prostate tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:

(i) polynucleotides recited in any one of SEQ ID NOs: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472; and

(ii) complements of the foregoing polynucleotides;

(b) detecting in the sample an amount of polypeptide that binds to the binding agent; and

(c) comparing the amount of polypeptide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.

59. A method according to claim 58, wherein the binding agent is an antibody.

60. A method according to claim 59, wherein the antibody is a monoclonal antibody.

61. A method according to claim 58, wherein the cancer is prostate cancer.

62. A method for monitoring the progression of a cancer in a patient, comprising the steps of:

(a) contacting a biological sample obtained from a patient at a first point in time with a binding agent that binds to a prostate tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOs:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472, or a complement of any of the foregoing polynucleotides;

(b) detecting in the sample an amount of polypeptide that binds to the binding agent;

(c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and

(d) comparing the amount of polypeptide detected in step (c) to the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

63. A method according to claim 62, wherein the binding agent is an antibody.

64. A method according to claim 63, wherein the antibody is a monoclonal antibody.

65. A method according to claim 62, wherein the cancer is a prostate cancer.

66. A method for determining the presence or absence of a cancer in a patient, comprising the steps of:

(a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a prostate tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOs:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472, or a complement of any of the foregoing polynucleotides;

(b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide; and

(c) comparing the amount of polynucleotide that hybridizes to the oligonucleotide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.

67. A method according to claim 66, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a polymerase chain reaction.

68. A method according to claim 66, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a hybridization assay.

69. A method for monitoring the progression of a cancer in a patient, comprising the steps of:

(a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a prostate tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOS:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472, or a complement of any of the foregoing polynucleotides;

(b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide;

(c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and

(d) comparing the amount of polynucleotide detected in step (c) to the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

70. A method according to claim 69, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a polymerase chain reaction.

71. A method according to claim 69, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a hybridization assay.

72. A diagnostic kit, comprising:

- (a) one or more antibodies according to claim 21; and
- (b) a detection reagent comprising a reporter group.

73. A kit according to claim 72, wherein the antibodies are immobilized on a solid support.

74. A kit according to claim 73, wherein the solid support comprises nitrocellulose, latex or a plastic material.

75. A kit according to claim 72, wherein the detection reagent comprises an anti-immunoglobulin, protein G, protein A or lectin.

76. A kit according to claim 72, wherein the reporter group is selected from the group consisting of radioisotopes, fluorescent groups, luminescent groups, enzymes, biotin and dye particles.

77. An oligonucleotide comprising 10 to 40 nucleotides that hybridize under moderately stringent conditions to a polynucleotide that encodes a prostate tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOs:2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471 or 472, or a complement of any of the foregoing polynucleotides.

78. A oligonucleotide according to claim 77, wherein the oligonucleotide comprises 10-40 nucleotides recited in any one of SEQ ID NOs:2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471 or 472.

79. A diagnostic kit, comprising:

- (a) an oligonucleotide according to claim 77; and
- (b) a diagnostic reagent for use in a polymerase chain reaction or hybridization assay.

1/5

Fig. 1

2/5

Fig. 2A

Fig. 2B

3/5

Fig. 3

4/5

Fig. 4

Fig. 5

5/5

Fig. 6

Fig. 7

SEQUENCE LISTING

<110> Corixa Corporation

<120> COMPOUNDS FOR IMMUNOTHERAPY AND DIAGNOSIS
OF PROSTATE CANCER AND METHODS FOR THEIR USE

<130> 210121.42701PC

<140> PCT

<141> 1999-07-08

<160> 472

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 814

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(814)

<223> n = A,T,C or G

<400> 1

tttttttttt	tttttcacag	tataacagct	ctttatttct	gtgagttcta	ctaggaaatc	60
atcaaatctg	agggttgtct	ggaggacttc	aatacacccctc	cccccatagt	gaatcagctt	120
ccagggggtc	cagtccctct	ccttacttca	tccccatccc	atgccaaagg	aagaccctcc	180
ctccttggtc	cacagccctc	tcttaggcctc	ccagtgccctc	caggacagag	tgggttatgt	240
tttcagctcc	atccttgctg	tgagtgtctg	gtgcgttgtg	cctccagctt	ctgctcagtg	300
cttcatggac	agtgtccagc	acatgtca	ctccactctc	tcagtgtgga	tccactagtt	360
ctagagcggc	cgccaccgcg	gtggagctcc	agcttttgg	cccttttagtg	agggttaatt	420
gcgcgcttgg	cgtaatcatg	gtcataactg	tttcctgtgt	gaaattgtta	tccgctcaca	480
attccacaca	acatacgagg	cggaaagcata	aagtgtaaag	cctgggtgc	ctaatgagtg	540
anctaactca	cattaattgc	gttgcgtca	ctgnccgctt	tccagtcnng	aaaactgtcg	600
tgccagctgc	attaatgaat	cggccaaacgc	ncggggaaaa	gcgggttgcg	tttgggggc	660
tcttcggctt	ctcgctca	nantcctgcg	ctcggtcntt	cggctgcggg	gaacggatc	720
actcctcaaa	ggnggttata	cggttatccn	naaatcnggg	gataccnng	aaaaaanhtt	780
aacaaaaggg	cancaaaggg	cngaaacgta	aaaa			814

<210> 2

<211> 816

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(816)

<223> n = A,T,C or G

<400> 2

acagaaatgt	tggatggtgg	agcaccccttc	tatacgactt	acaggacagc	agatggggaa	60
ttcatggctg	ttggagcaat	agaaccccag	ttctacgagc	tgctgatcaa	aggacttggaa	120

ctaaagtctg atgaacttcc caatcagatg agcatggatg attggccaga aatgaagaag	180
aagtttcag atgtatttgc aaagaagacg aaggcagagt ggtgtcaaatt cttgacggc	240
acagatgcct gtgtgactcc gggtctgact tttaggagggt tggttcatca tgatcacaac	300
aaggaacggg gctcgtttat caccagttag gagcaggacg tgagcccccg ccctgcacct	360 -
ctgctgttaa acaccccccacg catcccttct ttcaaaaaggg atccactagt tctagaagcg	420
ggcccccaccc cggtggagct ccagcttttg ttcccttttag tgagggttaa ttgcgcgtt	480
ggcgtaatca tggcatagc tggttcctgt gtggaaattgt tatccgcotca caattcccc	540
aacatacggc cccgaacata aagtgttaag cctgggggtgc ctaatgantg agctaactcn	600
cattaattgc gttgcgtca ctgcccgtt tccagtcggg aaaactgtcg tgccactgcn	660
ttantgaatc ngccacccccc cgggaaaagg cggttgcntt ttgggcctct tccgtttcc	720
tgcgtcatttgc atcctngcnc cccgtcttcg gtcgcggnga acggttcaact cctcaaaggc	780
ggtnnccgg ttatccccaa acnggggata cccnga	816

<210> 3

<211> 773

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(773)

<223> n = A,T,C or G

<400> 3

cttttggaaag aaggatggc tgggggtttt aacagcagag gtgcagggcg ggggctcacg	60
tcctgcctt cactggtgat aaacgagccc cggttcctgt tggatcatg atgaacaacc	120
tcctcaaaaag tcagaaccgg agtcacacag gcatctgtgc cgtcaagat ttgacaccac	180
tctgccttcg tcttctttgc aaatacatct gcaaaacttct tcttcatttc tggccaatca	240
tccatgtca tctgattggg aagttcatca gacttttagtc canntccctt gatcagcagc	300
tcgtagaact gggttctat tgctccaaca gccatgaatt ccccatctgc tgcctgtaa	360
gtcgataga aagggtctcc accatccaac atgttctgtc ctcgaggggg ggccgggtac	420
ccaatttcgcc ctatanttag tcgttattacg cgctact ggccgtgtt ttacaacgtc	480
gtgactggga aaaccttggg cggttaccac ttaatgcct tgcagcacat cccctttcg	540
ccagctgggc gtaatancga aaaggcccgc accgatcgcc cttccaacag ttgcgcacct	600
aatgggnna atgggacccc cctgttaccg cgcattnaac cccgcnggg tttngtttt	660
accccccacnt nnaccgctta cactttggca gcgccttanc gcccgcctcc tttnccttt	720
cttcccttcc ttncncnnn cttccccccg gggtttcccc cntcaaaccn cna	773

<210> 4

<211> 828

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(828)

<223> n = A,T,C or G

<400> 4

cctcctgagt cctactgacc tgggtttctt ggtgtggagt ccagggtgc tagggaaaagg	60
aatgggcaga cacagggtta tgccaaatgtt tctggaaatgg gtataatttc gtcctctct	120
tcggaaacact ggctgtctct gaagacttct cgctcgttt cagtggggac acacacaaag	180
acgtgggtga ccatgttgg tgggggtgc agagatggga ggggtggggc ccacccctgg	240
agagtggaca gtgacacaag gtggacactc tctacagatc actggggata agctggagcc	300
acaatgcata aggacacac acagcaagga tgacnctgta aacatagccc acgctgtcct	360

gngggcactg	ggaaggctan	atnaggccgt	gaggcanaaag	aaggggagga	tccactagtt	420
ctanagcggc	cgcaccgac	gtgganctcc	ancttttgtt	cccttagtg	agggttaatt	480
gcgcgcttgg	cntaatcatg	gtcatanctn	tttcctgtgt	gaaattgtta	tccgctcaca	540
atcccacaca	acatacganc	cgaaaacata	aantgtaaac	ctggggtgcc	taatgantga	600
ctaactcaca	ttaattgcgt	tgcgctcact	gcccgccttc	caatcngaa	acctgtcttg	660
ccncttgcat	tnatgaatcn	gccaaccccc	ggggaaaagc	gtttgcgtt	tgggcgtct	720
tccgcttct	cnctcantta	ntccctncnc	tcggtcattc	cggctgcngc	aaaccggttc	780
accncctcca	aagggggtat	tccggttcc	ccnaatccgg	ggananc		828

<210> 5
<211> 834
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(834)
<223> n = A,T,C or G

<400> .5

tttttttttt	ttttactga	tagatggaa	tttataagct	tttcacatgt	gatagcacat	60
agtttaatt	gcatccaaag	tactaacaaa	aactctagca	atcaagaatg	gcagcatgtt	120
attttataac	aatcaacacc	tgtggcttt	aaaatttggt	tttcataaga	taattttatac	180
tgaagtaaat	ctagccatgc	ttttaaaaaa	tgcttaggt	cactccaagc	ttggcagtt	240
acatttggca	taaacaataa	taaaaacaaatc	acaatttaat	aaataacaaa	tacaacattg	300
taggccataa	tcatatacag	tataaggaaa	aggtggtagt	gttgagtaag	cagtatttag	360
aatagaatac	cttggcctct	atgcaaataat	gtctagacac	tttgattcac	tcagccctga	420
cattcagttt	tcaaagttagg	agacaggttc	tacagtatca	ttttacagtt	tccaacacat	480
tgaaaacaag	tagaaaatga	tgagttgatt	tttattaatg	cattacatcc	tcaagagtta	540
tcaccaaccc	ctcagttata	aaaaattttc	aagttatatt	agtcatataa	cttggtgtgc	600
ttatTTTaaa	ttagtgctaa	atggattaag	tgaagacaac	aatggcccc	taatgtgatt	660
gatattgtc	atTTTtacca	gcttctaaat	ctnaacttcc	aggctttga	actggaacat	720
tgnatnacag	tgttccanag	ttncaaccta	ctggaacatt	acagtgtgt	tgattcaaaa	780
tgTTTattttg	taaaaattta	aatttttaacc	tggtgaaaa	ataatttgaa	atna	834

<210> 6
<211> 818
<212> DNA
<213> *Homo sapien*

```
<220>
<221> misc_feature
<222> (1)...(818)
<223> n = A,T,C or G
```

<400> 6

tttttttttt	tttttttttt	aagaccctca	tcaatagatg	gagacataca	gaaatagtca	60
aaccacatct	acaaaatgcc	agtatcaggc	ggcggttcg	aagccaaagt	gatgtttgga	120
tgtaaagtga	aatatttagtt	ggcgatgaa	gcagatagtg	aggaaagtgt	agccaataat	180
gacgtgaagt	ccgttgaagc	ctgtggctac	aaaaaatgtt	gagccgtaga	tgccgtcgga	240
aatggtgaag	ggagactcga	agtactctga	ggcttgttagg	agggtaaaat	agagaccagg	300
taaaattgtta	ataaggcgtg	cttgaattat	ttggtttccgg	ttgtttctta	ttagactatg	360
gtgagctcag	gtgattgata	ctccctgatgc	gagtaatacg	gatgtgttta	ggagtgggac	420
ttcttagggga	tttagcgggg	tgatgcctgt	tgggggccag	tgcctctta	gttgggggggt	480
aggggctagg	ctggagtgtt	aaaaggctca	aaaaaatcct	gcgaagaaaa	aaacttctga	540

ggtaataaat aggattatcc cgtatcgaaag gccttttgg acaggtggtg tgggtggcc	600
ttggtatgtg ctttcgtg ttacatcgcg ccatcattgg tatatggta gtgtgttgg	660
ttatanggc ctantatgaa gaactttgg antgaatta aatcaatngc ttgccggaa	720
gtcatttanga nggctnaaaa ggccctgtta nggctctggg ctnggtttta cccnaccat	780 -
ggaatncncc ccccgacna ntgnatccct attcttaa	818

<210> 7
<211> 817
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(817)
<223> n = A,T,C or G

<400> 7	
ttttttttttttttttt tggctctaga ggggttagag ggggtgtat aggtaaata	60
cggggccatat ttcaaagatt ttaggggaa ttaattctag gacgatgggt atgaaactgt	120
ggtttgcctcc acagatttca gaggatttgc cgtatatac ccccggtcggt gtagcggtga	180
aagtggtttgc gtttagacgt ccgggaatttgc catctgtttt taagcctaattt gttggggacag	240
ctcatgatgtt caagacgtct tggatgttaa ttattatacn aatggggct tcaatcggtt	300
gtactactcg attgtcaacg tcaaggagtc gcaggatcgcc tgggtctttagg aataatgggg	360
gaagtatgtt ggaatttgaag attaattccgc cgtatcggtt gttcttccat gttcaatacc	420
attgggtggcc aattgatttgc atggtaaggg gagggatcggt tgaactcggtc tggatgttaa	480
aggatncctt nggatggga aggcnatnaa ggactangga tnaatggcg gcanatattt	540
tcaaacngtct tctanttcct gaaacgtctg aatgttaat aanaattaan tttngttatt	600
gaatnttng gaaaagggtt tacaggacta gaaacccaaat angaaaanta atnntaangg	660
cnnntatcnntn aaaggtnata accnctctta tnatcccacc caatngnatt ccccaacnenn	720
acnattggat nccccanttc canaaanggc cnccccccgg tgnannccnc cttttgttcc	780
cttnantgan gtttattcnc ccctngcnnn atcanc	817

<210> 8
<211> 799
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(799)
<223> n = A,T,C or G

<400> 8	
catttccggg ttactttct aaggaaagcc gagcggaaagc tgcttaacgtg ggaatcggtt	60
cataaggaga actttctgtt ggcacgcgtt agggacaagc gggagagcga ctccgagcgt	120
ctgaagcgca cgtccccagaa ggtggacttg gcactgaaac agctgggaca catccgcgag	180
tacgaacacgc gcctgaaagt gctggagcgg gaggtccagc agttagccg cgtccctgggg	240
tgggtggccg angcttganc cgctctgtt tgctgcccc angtggggcg ccacccctgt	300
acctgcctgg gtccaaacac tgagccctgc tggggactt caagganaac ccccacangg	360
ggattttgcctt cctanantaa ggctcatctg ggcctcgcc ccccccacctg gttggcctt	420
tctttgangt gagccccatg tccatctggg ccactgtcng gaccacctt nggagtgtt	480
ctcccttacaa ccacannatg cccggctctt cccggaaacc antcccaccc tngaaaggat	540
caagnctgn atccactnnt nctanaaccg gcccncncg cngtggaaacc cncctntgt	600
tccttttctn ttagggttaa tnncgccttgc gcttncan ngtcctncnc ntttccnn	660
gttnaaatttgc ttangcnccc nccnntcccn cnncnnnnan cccgaccnnn annntnnnn	720

ncctgggggt nccnnncngat tgaccnncc nccctntant tgcnttnggg nncnntgcc	780
ctttccctct nggganncg	799
<210> 9	
<211> 801	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(801)	
<223> n = A,T,C or G	
<400> 9	
acgccttgat cctcccaaggc tgggactggc tctgggagga gcccggcatg ctgtggtttg	60
taangatgac actcccaaag gtggcttga cagtggccca gatggacatg gggctcacct	120
caaggacaag gccaccaggc gcggggccg aagccccat gatccttact ctatgagcaa	180
aatccctgt gggggcttct cttgaagtc cggccancagg gctcaagtctt tgacccang	240
caggtcatgg gggtgtngnc caactggggc ccncaacgca aaangcnca gggctcnng	300
caccatccc angacgcggc tacactnctg gacctcochc tccaccactt tcatgcgctg	360
ttcnntaccc cgnatntgctt ccanctttt cngtgcncac tccancttct nggacgtgctg	420
ctacatacgc cccgantcnc nctcccgctt tgccttacatc cacgtnccan caacaattt	480
cnccntantg caccnatttc cacnnttnc agntttccnc nnccngcttc ctntaaaag	540
ggttganccc cggaaaatnc cccaaagggg gggggccengg taccctactn cccctnata	600
gctgaantcc ccatnaccnn gnctcnatgg anccntccnt ttaannacn ttctnaactt	660
ggaaananc ctcgnccntn ccccnntaa tcccncttgc cnangnincnt ccccnntcc	720
ncccnntng gcnttnann cnaaaaaggc ccnnnancaa tctcctnnnc ctcanttcg	780
ccancctcg aaatcgccn c	801
<210> 10	
<211> 789	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(789)	
<223> n = A,T,C or G	
<400> 10	
cagtctatnt gcccagtgtg gcagcttcc ctgtggctgc cgggtccacaca tgctgtccc	60
acagtgtggc cgtggtgaca gttcagccg ccctcacccgg gttcaccccttc tcagccctgc	120
agatccctgcc ctacacactg gcctccctt accaccggga gaagcagggtg ttccctgcca	180
aataccgagg ggacacttggc ggtgctagca gtgaggacag cctgatgacc agttccctgc	240
caggccctaa gcctggagct ccctcccta atggacacgt ggggtctggaa ggcagtggcc	300
tgctccacc tccaccccgcg ctctgccccgg cctctgcctg tgatgtctcc gtacgtgtgg	360
tggtgggtga gcccaccgan gccagggtgg ttccggcccg gggcatctgc ctggaccccg	420
ccatccctggaa tagtgccttcc tgctgttccca ngtggccca tccctgttta tgggtccat	480
tgtccagctc agccagtcgtc tcactgccta tatggtgtct gcccaggcc tgggtctgg	540
cccattttact ttgctacaca ggtantattt gacaagaacg anttggccaa atactcagcg	600
ttaaaaaattt ccagcaacat tgggggtggc aggctgcct cactgggtcc aactcccccgc	660
tcctgttaac cccatggggc tgccggcttgc gcccacatt tctgttgcgt ccaaantnat	720
gtggctctct gctgccaccc tttgtggct gaagtgcnta cngcncanct nggggggtn	780
ggngttcccc	789

<210> 11
<211> 772
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(772)
<223> n = A,T,C or G

<400> 11

cccacccctac	ccaaatatta	gacaccaaca	cagaaaagct	agcaatggat	tcccttctac	60
tttgtaaat	aaataagtta	aatatttaaa	tgcctgtgtc	tctgtgtatgg	caacagaagg	120
accaacaggc	cacatcctga	taaaaggtaa	gagggggtg	gatcagcaaa	aagacagtgc	180
tgtgggctga	ggggacctgg	ttcttgtgt	ttgccctca	ggactcttcc	cctacaaaata	240
actttcatat	gttcaaattcc	catggaggag	tgtttcatcc	tagaaactcc	catgcaagag	300
ctacattaaa	cgaagctgca	ggtaagggg	cttanagatg	ggaaaccagg	tgactgagtt	360
tattcagtc	ccaaaaaccc	ttctcttaggt	gtgtctcaac	taggaggcta	gctgttaacc	420
ctgagcctgg	gtatccacc	tgcagagtcc	ccgcattcca	gtgcatggaa	cccttctggc	480
ctccctgtat	aagtccagac	tgaaaccccc	ttgaaaggnc	tccagtcagg	cagcctana	540
aactggggaa	aaaagaaaaag	gacgccccan	cccccaagctg	tgcanctacg	cacctaaca	600
gcacagggtg	gcagcaaaaa	aaccactta	cttggcaca	aacaaaaact	ngggggggca	660
accccgccac	cccnanggg	gttaacagga	ancnnggnnaa	cntggAACCC	aattnaggca	720
ggcccnccac	cccnaatntt	gctggaaat	ttttcctccc	ctaaattntt	tc	772

<210> 12
<211> 751
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(751)
<223> n = A,T,C or G

<400> 12

gcccccaattc	cagctgccac	accacccacg	gtgactgcac	tagttcgat	gtcataaaaa	60
agctgattga	agcaaccctc	tacttttgg	tcgtgagcct	tttgcttgg	gcaggttca	120
ttggctgtgt	tggtacggt	gtcattgca	cagaatgggg	gaaaggca	gttctctttg	180
aagtangtg	agtccctaaa	atccgtatag	ttggtaagc	cacagca	gagcccttc	240
atggtgtgt	tccacacttg	agtgaagtct	tcctggaaac	cataatctt	cttgcacggca	300
ggcactacca	gcaacgtcag	ggaagtgc	agccattgt	gtgtacacca	aggcaccac	360
agcagctgc	acctcagca	tgaagatgan	gaggangatg	aagaagaacg	tcncgaggc	420
acacttgc	tcagtcttan	caccatanca	gcccntgaaa	accaananca	aagaccacna	480
cnccggctgc	gatgaagaaa	tnaccccn	ttgacaaaact	tgcatggcac	tggganccac	540
agtggccna	aaaatctca	aaaaggatgc	cccacnatt	gacccccc	atgcccactg	600
ccaacagggg	ctgccccacn	cncnnacga	tgacccnatt	gnacaagatc	tncntggct	660
tnatnaacnt	gaaccctgc	tntgtggctcc	tgttcaggnc	cnnggcctga	cttctnaann	720
aangaactcn	gaagnccca	cngganann	g			751

<210> 13
<211> 729
<212> DNA
<213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(729)
 <223> n = A,T,C or G

<400> 13

gagccaggcg tcccactca	gtggcaacac	ccgggagctg	ttttgtcctt	60
tgtggancct cagcagtnc	ctcttcaga	actcantgcc	aaganccctg	120
accatgcagt gcttcagctt	cattaagacc	atgatgatcc	tcttcaattt	180
ctgtgtggtg cagccctgtt	ggcagtggc	atctgggtgt	caatcgatgg	240
ctgaagatct tcgggcaact	gtcgtccagt	gccatgcagt	ttgtcaacgt	300
ctcatcgag ccggcggtgt	ggtcttagct	ctaggtttcc	tgggctgcta	360
actgaagaca agtgtgcacct	cgtgaegtcc	ttcttcatcc	tcctccatcat	420
gagggtgcaa tgctgtggtc	gcctgggtgt	acaccacaat	ggctgagcac	480
tgctgtaat gcctgccatc	aanaaaagat	tatgggttcc	caggaanact	540
gttgaacac caccatgaaa	gggctcaagt	gctgtggctt	cnnccaacta	600
gaagantcac ctacttcaa	gaaaanagtg	ccttcccccc	tacggatttt	660
acgtccccaa cacagccaat	tgaaaacctg	cacccaaccc	aaangggtcc	720
attnaagg			ccaaaccanaa	729

<210> 14
 <211> 816
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(816)
 <223> n = A,T,C or G

<400> 14

tgctttcct caaagttgtt	cttggcoca	taacaaccac	cataggtaaa	60
tgttcgtga aggggtgtt	gtaccagcgc	gggatgctct	cottgcagag	120
ggcaggcaca cgcagtgc	tttgtcaact	ggaaatgg	tgcgctggag	180
ccactcgtgt attttcaca	ggcagcctcg	tccgacgcgt	cggggcagtt	240
tcacactcca gaaaactgtc	natgcagcag	ccattgctgc	agcggaaactg	300
cangtgcag agcacactgg	atggcgcctt	tccatgnnan	gggcctgng	360
tganccccan anctgcctc	caaangcccc	accttgacaca	ccccgacagg	420
atcttcttcc cgaaaaggtag	ttnttcttgc	tgcccaancc	ancccnntaa	480
gcanatctgc tccgnngggg	tcntantacc	ancgtggaa	aagaacccca	540
caanctgtt tggatncgaa	gcnataatct	nctnttctgc	ttggtgacaca	600
ctgtnnanct ttagnccntg	gtcctcntgg	gttgnncttgc	aacctaatcn	660
gggacaaggt aantngccnt	cctttnaatt	cccnancntn	ccccctggtt	720
cncnctctca ccccagaaaan	nccgtttcc	cccccaacta	ggggcnaaaa	780
cacaaccctn ccccacccac	gggttngnt	ggttng	ccnntnttc	816

<210> 15
 <211> 783
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(783)
 <223> n = A,T,C or G

<400> 15

ccaaggcctg	ggcaggcata	nacttgaagg	tacaacccca	ggaacccctg	gtgctgaagg	60
atgtggaaa	cacagattgg	cgcctactgc	gggtgacac	ggatgtcagg	gtagagagga	120
aagacccaaa	ccaggtggaa	ctgtgggac	tcaaggaang	cacctacctg	ttccagctga	180
cagtgactag	ctcagaccac	ccagaggaca	cggccaacgt	cacagtcact	gtgctgtcca	240
ccaagcagac	agaagactac	tgcctcgcat	ccaacaangt	gggtcgctgc	cggggctctt	300
tcccacgctg	gtactatgac	cccacggagc	agatctgcaa	gagtttcgtt	tatggaggct	360
gtttggcaa	caagaacaac	tacccctggg	aagaagagtg	cattctanc	tgtcnnggtg	420
tgcaagggtgg	gcctttgana	ngcanctctg	gggctcangc	gactttcccc	cagggccct	480
ccatggaaag	gcgccatcca	ntgttctctg	gcacctgtca	gcccacccag	ttccgctgca	540
ncaatggctg	ctgcatcnac	antttctng	aattgtgaca	acacccccc	ntgccccaa	600
ccctcccaac	aaagcttccc	tgttnaaaaa	tacnccant	ggcttttnac	aaacnccccgg	660
cncctccnnt	ttccccnnnt	aacaaaggc	nctngcntt	gaactgccc	aaccnnggaa	720
tctnccnngg	aaaaantncc	ccccctggtt	cctnnaancc	cctccncnaa	anctncccc	780
ccc						783

<210> 16

<211> 801

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(801)

<223> n = A,T,C or G

<400> 16

gccccaaatc	cagctgccac	accacccacg	gtgactgcat	tagttcgat	gtcatacaaa	60
agctgatga	agcaacccctc	tacttttgg	tcgtgagcct	tttgcttgg	gcaggtttca	120
ttggctgtgt	tggtgacgtt	gtcattgcaa	cagaatgggg	gaaaggcact	gttctctttg	180
aagttagggtg	agtccctaaa	atccgtatag	tttgtgaagc	cacagcactt	gagccctttc	240
atgggtgtgt	tccacacttg	agtgaagtct	tcctggaaac	cataatctt	cttcatggca	300
ggcaactacca	gcaacgttag	gaagtgctca	gccattgtgg	tgtacaccaa	ggcaccacaa	360
gcagctgcaa	cctcagcaat	gaagatgagg	aggaggatga	agaagaacgt	cncgaggcga	420
cacttgcct	ccgtcttagc	accatagcag	cccangaaac	caagagcaaa	gaccacaacg	480
ccngctgcga	atgaaagaaa	ntacccacgt	tgacaaactg	catggccact	ggacgacagt	540
tggcccgaa	atcttcagaa	aaggatgcc	ccatcgattt	aacacccana	tgccactgc	600
cnacagggt	gcncncncn	gaaagaatga	gccattgaag	aaggatcnc	ntgttctaa	660
tgaactgaaa	ccntgcatgg	tggccctgt	tcaggctct	tggcagtgaa	ttctganaaa	720
aaggaacngc	ntnagcccc	ccaaangana	aaacacccccc	gggtgttgc	ctgaattggc	780
ggccaaggan	ccctgccccn	g				801

<210> 17

<211> 740

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(740)

<223> n = A,T,C or G

<400> 17

gtgagagcca	ggcgccctc	tgcctgcccc	ctcagtgcc	acacccggga	gcttttgt	60
------------	-----------	------------	-----------	------------	----------	----

cctttgtgga gcctcagcag ttccctctt cagaactcac tgccaaagagc cctgaacagg	120
agccaccatg cagtgcattca gtttcattaa gaccatgatg atccctttca atttgctcat	180
ctttctgtgt ggtgcagccc tggcactgg gtgtcaatcg atggggcatc	240
ctttctgaag atcttcgggc cactgtcgtc cagtgcattc cagtttgtca acgtgggcta	300
cttccttcattc gcagccggcg ttgtggtctt tgctcttggt ttccctggct gctatgggtgc	360
taagacggag agcaagtgtg ccctcggtac gttcttcttc atccctctcc tcatcttcat	420
tgctgaagtt gcagctgctg tggtcgcctt ggtgtacacc acaatggctg aaccattcct	480
gacgttgctg gtantgcctg ccatcaanaa agattatggg ttcccaggaa aaattcactc	540
aantntggaa caccnccatg aaaagggctc caatttctgn tggcttcccc aactataccg	600
gaattttgaa agantcnccc tacttccaaa aaaaaanant tgccttncc ccnntctgt	660
tgcaatgaaa acntcccaan acngccaatn aaaacctgccc nnncaaaaaa ggntcncaaa	720
aaaaaaaaant nnaagggttn	740

<210> 18

<211> 802

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(802)

<223> n = A,T,C or G

<400> 18

ccgctggttg cgctggtcca gngnagccac gaagcacgtc agcatacaca gcctcaatca	60
caaggcttcc cagctgccgc acattacgca gggcaagagc ctccagcaac actgcataatg	120
ggatacactt tacttagca gccagggtga caactgagag gtgtcaagc ttattttttt	180
gagcctctgt tagtggagga agattccggg cttcagctaa gtatcagcg tatgtccccat	240
aagcaaacac tgtgagcagc cggaaaggtag aggcaaagtc actctcagcc agctctctaa	300
cattggccat gtccagcagt tctccaaaca ctagacacc agnggcctcc agcacctgat	360
ggatgagtgt gcccagcgct gcccccttgg ccgacttggc taggagcaga aattgtctct	420
ggttctgccc tgcacccatc acttccgcac tcatcactgc actgagttgtg gggacttgg	480
gtcaggatg tcacagagacg tggttccgccc cctcnctta atgacaccgn ccanncaacc	540
gtcggtcccc gcccantngn ttctgtcgtnc ctgggtcagg gtctgtcggc cnctacttgc	600
aancttcgtc ngccccatgg aattcaccnc accggaactn gtangatcca ctntttctat	660
aaccggncgc caccgcnnnt ggaactccac tcttnttncc ttactttag ggttaagggtc	720
acccttnncg ttaccttggt ccaaaccntn ccntgtgtcg anatngtnaa tcnggnccna	780
tnccanccnc atangaagcc ng	802

<210> 19

<211> 731

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(731)

<223> n = A,T,C or G

<400> 19

cnaagcttcc aggttacggg ccgcnaancc tgacccnagg tancanaang cagnncngccg	60
gagcccaccc tcacgnggng gngtctttat nggagggggc ggagccacat cnctggacnt	120
cntgaccncc actccccncc ncncantgca gtatcgtgtc cagaactgaa ggttacgtgg	180
caggaaccaa gancaaannc tgctccnncc caagtccggcn naggggccgg ggctggccac	240
gcncatccnt cnagtgtgn aaagccccnn cctgtctact tgtttgaga acngcnnnnga	300

catgcccagn gttanataac nggcngagag tnanttgcc tctcccttcc ggctgcgcan	360
cngtntgt tagnggacat aacctgacta cttaactgaa cccnngaatc tnccnccct	420
ccactaagct cagaacaaaa aacttcgaca ccactcantt gtcacctgnr tgctcaagta	480
aagtgtaccc catnccaat gtntgctnga ngctctgncc tgcnttangt tcggctctgg	540
gaagacctat caattnaagc tatgtttctg actgcctt gtcctgnr acaancnacc	600
cnnnntcca agggggggnc ggcccccaat cccccaacc ntnaatttnn tttancccn	660
ccccnngcc cggccttta cnancntnn nnacnnggna aaaccnnngc ttncccaac	720
nnaatccncc t	731

<210> 20

<211> 754

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(754)

<223> n = A,T,C or G

<400> 20

tttttttttt tttttttttt taaaaacccc ctccattnaa tgnaaacttc cgaaattgtc	60
caacccccc ntccaaatnn cnnttccgg gnnggggttc caaacccaan ttanntttgg	120
annttaaatt aaatnttnnt tggnggnnna anccnaatgt nangaaagtt naaccanta	180
tnancttnaa tncctggaaa cncgtngntt cccaaaaatnt ttaaccctta antccctccg	240
aaatngttta nggaaaaccc aanttctcnt aaggtgttt gaaggntnaa taaaaanccc	300
nnccaaattgt tttngccac gcctgaatta attggnttcc gntgtttcc nttaaaaanaa	360
ggnnanccccc ggttantaat tccccccnnc cccaaattata ccganttttt ttngaattgg	420
gancccncgg gaatttaacgg ggnnnntccc ttttgggggg cnggnncccc cccchtcggg	480
ggttngggnc aggnccnaat ttttaaggg tccgaaaaat ccctccnaga aaaaaanctc	540
ccaggnntgag nntnggttt nccccccccc cangggccct ctgnanagt tggggtttgg	600
ggggcctggg attttnttcc ccctnttncc tccccccccc cncggganag aggttngngt	660
tttgntcnncc ggcnnccnn agancttnn ccganttnan taaatccnt gcctnggcga	720
agtccnttgn agggntaaaan gccccctnn cggg	754

<210> 21

<211> 755

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(755)

<223> n = A,T,C or G

<400> 21

atcancat gacccnaac nnggaccnc tcancggnc nnnnacccnc cggccnatca	60
ngtnagnnc actncnntn natcacncc cnccnactac gcccncnanc cnacgncta	120
nnccanatncc actganngcg cgangtngan ngagaaanct nataccanag ncacccanacn	180
ccagctgtcc nanaangct nnnatacngg nnnatccaat ntgnancctc cnaagtattn	240
nnccnccanat gatttcctn anccgattac ccntcccccc tanccctcc ccccaacna	300
cgaaggcnct ggnccnaagg nngcgncc cccgtagnrc cccnncaagt cncncnctca	360
aactcanccn nattacnccgc ttctntgagta tcactccccg aatctccacc tactcaactc	420
aaaaanatcn gataaaaaat aatncaagcc tgnntatnac actntgactg ggtctctatt	480
tttagnggtcc nttaancntc ctaatacttc cagtcctncc tcnccaattt ccnaanggct	540
cttcnngaca gcatnttttg gttccnnntt gggttcttan ngaatttgcac ttcntngaac	600

gggctcntct tttccttcgg ttancctggg ttcnnccggc cagttattat ttcccnnnttt
 aaattcntnc cntttanttt tggcncntca aaccccccggc cttgaaaacg gccccctggt
 aaaagggttgt tttganaaaa tttttgtttt gttcc 660
 720
 755

<210> 22
 <211> 849
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(849)
 <223> n = A,T,C or G

<400> 22

ttttttttt tttttangtg tngtcgtgca ggttagaggct tactacaant gtgaanacgt
 acgctnggan taangcgacc cganttctag gannncnccct aaaatcanac tgtgaagatn
 atcctgnna cggaaanggtc accgggnngat nntgcttaggg tgnccnctcc cannnncttn
 cataactcng nggcctctgc caccacccctc ggcggcccng ngnccgggccc cgggtcattn
 gnnttaaccn cactnngcn a cactnngcn ncccccnncc acccnggca tccgggggtnc
 tctgttctcc cctgnagnnc anaaantggg ccncgggccc cttaaccctt nnacaageca
 cngccntcta ncccnengccc cccctccant nngggggact gccnnanngct ccgttntctng
 nnaccnccnnn gggtnccctcg gttgtcgant cnacccgnang ccanggattc cnaaggaagg
 tgcgtnttg gcccctaccc ttcgctncgg nncacccttc ccgacnanga nccgctcccg
 cncnncnng cctcnccctcg caacacccgc nctntcngt ncggnnnccccc ccccacccgc
 nccctcnccn ngnncnancn ctccnccncc gtcctcannca ccacccccc ccccccaggcc
 ntcancnccn ggnngacnng nagcncnntc gcncggcgn gcnccnccct cgcncnngaa
 ctnentcngg ccantnnncgc tcaanccnna cnaaacggcg ctgcggggcc cgnagcgncc
 ncctccnccga gtcctcccg n cttccnaccc angnnttccn cgaggacacn nnacccccc
 nncangcgg 60
 120
 180
 240
 300
 360
 420
 480
 540
 600
 660
 720
 780
 840
 849

<210> 23
 <211> 872
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(872)
 <223> n = A,T,C or G

<400> 23

gcgcaaacta tacttcgtc gnactcgtgc gcctcgctnc tcttttctc cgcaaccatg
 tctgacnanc cggattnngc ngatatcnn aagntcganc agtccaaact gantaacaça
 cacacnccnan aganaaatcc nctgccttcc anagtanacn attgaacnng agaaccangc
 nggcgaatcg taatnaggcg tgcggccca atnntgcncc gtttatntn ccagcncncc
 ctnccnaccc tacntcttcn nagctgtcnn accccctngt cgnacccccc naggtcggga
 tcgggtttnn nntgaccng cnccctcc cccctccat nacgancnc cccgaccacc
 nanngcncgc ncccccnnct tttgcctcc ctgtccttnn cccctgtngc ctggcncnng
 accgcattga ccctcgccnn ctnccnngaaa ncgnanacgt cccgggttgnn annancgctg
 tgggnnngcg tctgcncgc gttccttcn ncnncttcca ccatcttnt tacngggct
 ccngccntc tcnncnacnc cctgggacgc tntctntgc ccccttnac tccccccctt
 cgnctgncc cgncccccacc ntcatttca naçgntcttc acaannncct ggntnnctcc
 cnancnccn gtcancnccnag ggaaggngg ggnncnntg nttgacgtt ngngangtc
 cgaanantcc tcnccnctcan cnctaccctt cgggegnct ctcngttncc aacttancaa 60
 120
 180
 240
 300
 360
 420
 480
 540
 600
 660
 720
 780
 780

ntctcccccg ngnncnntc tcagccctcnc ccncccccnc ctctgcantg tnctctgctc	840
tnaccnnatc gantttcgn cnccctctt cc	872

<210> 24
<211> 815
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(815)
<223> n = A,T,C or G

<400> 24

gcatgcaagg tttagtatttc tatagngtca cctaaatanc ttggccta atggctnta	60
nctgncttcc tggtaaat gtatacnaan tanatatgaa tctnatntga caaganngta	120
tcntncatata gtaacaantg tnnntgtccat cctgtcngan canattccca tnnattncgn	180
cgcattcincn gcncantatn taatngggaa ntcnntnnn ncaccnnncat ctatcntncc	240
gcncctgac tggnagagat ggatnantic tnnntgtacc nacatgttca tcttgattt	300
aanancncc cgcngnccac cggttngnng cnagccnntc ccaagacctc ctgtggaggt	360
aacctgcgtc aganncatca acntggaa acccgcnnc angtnnaagt ngnnncanan	420
gatcccggtcc aggnntnacc atcccttccncc agcgccccct ttnngtgcctt anagnnagc	480
gtgtccnanc cnctcaacat ganacgcgcc agnccanccg caattnncca caatgtcgnc	540
gaacccctta ggggannta tncaaanccc caggattgtc cncncangaa atccncanc	600
cccnccctac cnnctttgg gacngtgcacc aantccggaa gtnccagtcc ggcngnctc	660
ccccacccgggt nncntgggg gggtaanct cngnntcanc cngncgaggn ntgcnaagga	720
accggncctn ggncaanng ancnntcnga agngccnntc cgtataaccc cccctcncca	780
nccnacngt agntcccccc cnnggtnccg aanggg	815

<210> 25
<211> 775
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(775)
<223> n = A,T,C or G

<400> 25

ccgagatgtc tcgctccgtg gccttagctg tgctcgcgct actctcttct tctggcctgg	60
aggctatcca gctactcca aagattcagg tttactcacg tcatccagca gagaatggaa	120
agtcaaattt cctgaatttc tatgtgtctg gtttcatcc atccgacatt gaanttgact	180
tactgaagaa tgganagaga attaaaaag tggagcattc agacttgtct ttcagcaagg	240
actggctttt ctatctntg tactacactg aattcacccc cactaaaaaa gatgagttat	300
cctggcgtgt gaaccatgtc actttgtcac agcccaagat agttaagtgg gatcgagaca	360
tgttaaggcgn cnncatggaa gtttgaagat gccgcatttg gattggatga attccaaatt	420
ctgcttgctt gnntttaat antgatatgc ntatacaccc taccctttat gnccccaat	480
tgttaggggtt acatnantic tcncntngga catgatcttcc tttataant cnccnttcg	540
aattggccgt cnccngttn ngtatgttcc cnnaaccacg gttggctccc ccaggtcncc	600
tcttacggaa gggctgggc cncttncaa gttggggga accnaaaaatt tcnctntgc	660
ccncccncca cnntcttngn nncncanttt ggaacccttc cnattcccc tggctcnna	720
nccttnncta anaaaacttn aaancgtngc naanntttn acttcccccc ttacc	775

<210> 26

<211> 820

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(820)

<223> n = A,T,C or G

<400> 26

anattantac agtgttaatct tttccocagag gtgtgtanag ggaacggggc ctagaggcat	60
cccanagata ncttatanca acagtgcctt gaccaagagc tgctggcac atttcctgca	120
aaaaagggtgg cggccccat cactcctcct ctcccatacg catcccaagag gggtgagtag	180
ccatcangcc ttcgggtggg gggagtcang gaaacaacan accacagagc anacagacca	240
ntgatgacca tgggcggag cgagcctt ccctgnaccg gggtgccana nganagccta	300
nctgagggtt cacactataa acgttaacga cnagatnan cacctgcctt aagtgcaccc	360
ttcctacctg acnaccagn accnnnaact gcngcctgg gacagcnctg ggancagcta	420
acnnagact cacctgcccc cccatggccg tnccgentccc tggtcctgnc aagggaaagct	480
ccctgttggg attnccggg naccaaggga nccccccttcc ccanctgtga agaaaaaann	540
gatgaaattt tncccttccg gccnnntcccc tcttccttta cacgccccctt nntactcnc	600
tcccttntt ntccctgnncn acttttacc ccnnnatttc ccttnattga tcggannctn	660
ganatccac nnncgcctnc ctnenatcng naanacnaaa nactntctna cccngggat	720
gggnncctcg ntcatctctt cttttcnct accnccnntt ctttgcctt ccttngatca	
780tccaaaccntc gntggccntn cccccccnnn tccctttnccc	
820	

<210> 27

<211> 818

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(818)

<223> n = A,T,C or G

<400> 27

tctgggtat ggcccttcttcc tcctcaggga cctctgactg ctctggcca aagaatctct	60
tgtttttctt ccgagccccca ggcagcggtg attcagccct gcccaacctg attctgtatga	120
ctgcggatgc tttgacggac ccaaggggca aatagggtcc cagggccag ggaggggcgc	180
ctgctgagca ctccggcccc tcaccctgcc cagccctgc catgagctct gggctgggtc	240
tccgcctcca gggttctgtctt cttccangca ngccancaag tggcgctggg ccacactggc	300
tttttcttcgc ccntccctg gctctgantc tctgtcttcc tgcctgtgc angcneetttg	360
gatctcagtt tcctctnctc annaaactct gtttctgann tcttcantta actntgantt	420
tatnaccnan tggncgtnc tgcnnactt taatggccn gacggctaa tccctccctc	480
nctcccttcc anttccnnna accngcttnc ctnenatcnc ccntancccg ccngggaaanc	540
ctcccttgc ctnaccangg gccnnnacccg cccntnnctn gggggcnnng gtnctnnc	600
ctgnnnccn ctnctcnccn tncctcgtcc cnncnncgcn nngcannttc nengtccnn	660
tnnctcttcn ngtntcgnaa ngntcnctn tnnnnngncn ngntnnntncn tccctctcnc	720
cnnntgnang tntttnnnnc ncngnncccc nnncnnnnn nggnnnntnnn tctncncngc	780
ccnnccccc ngnattaagg cctccnntct ccggccnc	818

<210> 28

<211> 731

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(731)

<223> n = A,T,C or G

<400> 28

aggaaggggcg gaggatatt gtangggatt gagggatagg agnataangg gggaggtgtg	60
tcccaacatg anggtgnngt tcttttga angagggttg nttnnnann ccnggtgggt	120
gattnaaccc cattgtatgg agnnaaaggm tttnaggat ttttcggctc ttatcgtat	180
ntanattcct gttaatcgga aaatnatntt tcnnncngaa aatnttgcctc ccattcgnaa	240
attntctcccg ggtatgtcat ttngggggm cncccangtt tcccaggctg ctanaatgt	300
actaaagntt naagtggan tncaaattgaa aacctnncac agagnatccn tacccgactg	360
tnnnntnccct tcgcccnnng actctgcnnng agcccaatac ccnnngnnat gtcnccnngn	420
nnngcgnncn taaaannnnncc tcngggctnn gancatcang gggtttcgca taaaagcnn	480
cgtttcnccat naaggcactt tngcctcattt caaccnctng ccctcnccca ttngggctc	540
ngggttccct acgctnnnng cnccctnnnntn ganattttnc cccgctnggg naancctct	600
gnaatgggta gggnccttntc tttnaccnn gnggtntact aatcnctnc acgcnctt	660
tctcnaccccc ccccttttta caatcccanc ggcnaatggg gtctccccnn cgangggggg	720
nnncccannc c	731

<210> 29

<211> 822

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(822)

<223> n = A,T,C or G

<400> 29

actagtccag tgggtggaa ttccattgtg ttgggnncnc ttctatgant antnttagat	60
cgctcanacc tcacancctc ccnacnangc ctataangaa nannaataga nctgtnnnnt	120
atntntacnc tcatannctc cnnnacccac tccctttaa cccntactgt gcctatngcn	180
tnnctantct ntggccctn cnanccacn gtgggnacn cnccnngnatt ctctatctcc	240
tcnccatntn gcctananta ngtnacacc ctatacctac nccaatgcta nnctaannc	300
tccatnanti annntaacta ccactgaat ngacttenc atnacntccct aatggat	360
tactctgact cccacngct annnattagc ancntccccca nacnatntct caaccaaact	420
ntcaacaacc tatctanctg ttcnccaaacc ttncctccg atccccnnac aacccccc	480
ccaaataccn nccacctgac ncctaaccn caccatcccg gcaagccnan ggncatttan	540
ccactggaat cacnatngga naaaaaaaac ccnaactctc tancncnnat ctccctaana	600
aatnctccctn naatttactn ncantnccat caanccacn tgaaacnnaa cccctgtttt	660
tanatccctt ctttggaaaa ccnaccctt annnccaaac ttngggcc ccccnctnc	720
ccnaatgaag gncnccaaat cnangaaacg nccntgaaaa ancnaggcn anannntccg	780
canatccatat cccttnttn ggggnccctt nccnngggcc cc	822

<210> 30

<211> 787

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (787)
 <223> n = A,T,C or G

<400> 30

cggccgcctg	ctctggaca	tgcctcctga	atggcatcaa	aagtgtatgga	ctgcccattg	60
ctagagaaga	ccttctctcc	tactgtcatt	atggagccct	gcagactgag	ggctccccc	120
gtctgcagga	tttgatgtct	gaagtcgtgg	agtgtggct	ggagctccctc	atetacatna	180
gctgaaagcc	ctggagggcc	tctctcgcca	gcctccccct	tctctccacg	ctctccangg	240
acaccagggg	ctccaggcag	cccattattc	ccagnangac	atggtgttcc	tccacgegga	300
cccatggggc	ctgnaaggcc	agggtctctt	ttgacaccat	ctctccgtc	ctgcctggca	360
ggccgtggga	tccactantt	ctanaacgn	cgccaccncng	gtggagctc	cagctttgt	420
tcccnnataat	gaaggttaat	tgcncgctt	gctgtatcat	ngtctcanaac	tntttccctgt	480
gtgaaattgt	ttntcccttc	ncnattccnc	ncnacatacn	aaccggaaan	cataaagtgt	540
taaagcctgg	gggtngcctn	nngaatnaac	ttaactcaat	taattgcgtt	ggctcatggc	600
ccgcttccn	ttcngaaaaa	ctgtcntccc	ctgcntnnnt	gaatcgccca	cccccnnggg	660
aaaagcggtt	tgcntttng	ggggntccctt	ccnctccccc	cctcnctaann	ccctncgcct	720
cggtcgttnc	nggtngcggg	gaangggnat	nnnctccnc	naaggggng	agnnnngntat	780
ccccaaaa						787

<210> 31

<211> 799

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (799)

<223> n = A,T,C or G

<400> 31

tttttttttt	tttttttggc	gatgctactg	ttaatttgc	ggaggtgggg	gtgtgtgtac	60
catgtaccag	ggttattaga	agcaagaagg	aaggagggag	ggcagagcgc	cctgtgtgac	120
aacaaggac	tcttcgtcgc	ttctctgtct	gtctttggc	gcaggcacat	ggggaggcct	180
cccgccagggt	ggggccacc	agtccagggg	tggagact	acanggggtg	ggagtgggtg	240
gtggctggtn	cnaatggcct	gnacanatc	cctacgattc	ttgacacctg	gatttccacca	300
ggggacettc	tgttctccca	ngnaacttc	ntnnatctcn	aaagaacaca	actgtttctt	360
cngcantct	ggctgttcat	ggaaagcaca	ggtgtccnat	ttnngctggg	acttggtaca	420
tatggttccg	gcccacctct	cccncnaan	aagtaattca	ccccccccc	ccntctnttg	480
cctggccct	taantaccca	caccgaaact	canttanta	ttcatcttng	gntgggcttg	540
ntnatcccn	cctgaangcg	ccaaatgtaa	aggccacgca	gtncnctc	cccatagnan	600
nttttnncnt	canctaattgc	cccccnngc	aacnatccaa	tcccccccn	tggggcccc	660
agcccanggc	ccccgnctcg	ggnncnccn	cnccnanc	ccaggnctc	ccantcngnc	720
ccnnngcncc	cccgacacgca	gaacanaagg	ntngagccnc	cgcannnnnn	nggttnncnac	780
ctcgcccccc	ccnncgnng					799

<210> 32

<211> 789

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (789)

<223> n = A,T,C or G

<400> 32

ttttttttt	ttttttttt	ttttttttt	ttttttttt	ttttttttt	ttttttttt	ttttttttt	60
ttttccnag	ggcagggtta	ttgacaacct	cncggacac	aancaggctg	gggacaggac		120
ggcaacaggc	tccggcgccg	gcggcgccgg	ccctacctgc	ggtaccaa	at ntgcagcctc		180
cgctccgct	tgatnttcct	ctgcagctgc	aggatgc	ccnt	aaaacagggc	ctcgccn	240
ggtgggcacc	ctgggattt	aatttccacg	ggcacaatgc	ggtgcanc	cctcaccacc		300
nattaggaat	agtggtn	cccncnccg	ttggcnact	ccccntggaa	accactntc		360
gcggctccgg	catctggct	taaaccttgc	aaacnctggg	gccctt	ttt	tggttantnt	420
nccngccaca	atcatnactc	agactggcnc	gggctggccc	aaaaaaancn	ccccaaaaacc		480
ggncatgtc	ttnnccgggt	tgctgcnatn	tncatcac	cccccgnca	ncaggnc	ac	540
ccaaaagttc	ttgnngcccn	aaaaaaanc	ccgggggn	ccagttcaa	caaagtcatc		600
ccccttggcc	cccaatcct	ccccccgn	ttt	gtaacccacg	cctctnn	tt	660
tggnngccaa	gntgntccc	ccttcggcc	cccggtggc	ccnnctctaa	ngaaaacncc		720
ntctnnnca	ccatcccccc	nngnnacgn	tancaangna	ttccctttt	tanaaacggg		780
ccccccncg							789

<210> 33

<211> 793

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(793)

<223> n = A,T,C or G

<400> 33

gacagaacat	gttggatgg	ggagcac	tttatac	gtacagg	aca	gcagatgggg	60
aattcatggc	tgtggagca	atanaacccc	agtttac	gctgctgatc	aaaggactt	g	120
gactaaagtc	tgatgaactt	cccaatcaga	tgagcatg	gta	ttggcc	aaatgaana	180
agaagttgc	agatgtattt	gcaaagaaga	cgaaggcaga	gtggtgt	caa	atcttga	240
gcacagatgc	ctgtgtact	ccgg	ttctg	ggtt	gttcat	catgatcaca	300
acaangaacg	gggctcg	ttt	atcacc	aggagc	aggcc	cgccctgcac	360
ctctgctgtt	aaacacccc	gccatcc	ctt	caaaa	gatccacta	tttctag	420
ggncgc	ccacc	gccc	ttt	gtt	gggtt	attgcgc	480
tggc	taatc	atgg	ctgtt	ttc	ttt	tttgc	540
acaacatacg	atgg	atgg	atgg	tttgc	tttgc	acaatcc	600
anccgaa	at	aa	at	tttgc	tttgc	at	660
nactcacatt	aattgg	ttt	ggct	act	ccgc	tttcc	720
gcttgc	ttt	ttt	ttt	ttt	ttt	tttgc	780
ccgc	ttt	ttt	ttt	ttt	ttt	tttgc	793

<210> 34

<211> 756

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(756)

<223> n = A,T,C or G

<400> 34

gcccgc	gac	gcat	gtac	ga	g	gcgact	60
gac	g	g	g	g	g	g	120

ccaaccacag ggaccaagct gaccaaacag cagctaattc tggcccgta cataactggag	180
atcggggccc aatggagcat cctacgaan gacatcccct cttcgagcg ctacatggcc	240
cagctcaaat gctactactt tgattacaan gagcagctcc ccgagtcgc ctatatgcac	300
cagctttgg gcctcaacct ccttccctg ctgtcccaga accgggtggc tgantnccac	360
acgganttg ancggtgcc tgcccaanga catacanacc aatgtctaca tcnaccacca	420
gtgtcctgga gcaatactga tgganggcag ctaccnccaa gtnttccctgg ccnagggtaa	480
catccccccgc cgagagctac accttcttca ttgacatcct gctcgacact atcagggtatg	540
aaaatcgcnng ggttgctcca gaaaggctnc aanaanatcc tttcnctga aggccccccgg	600
atncnctagt nctagaatcg gcccgcattc gccgtgganc ctccaaacctt tcgttccccct	660
ttactgaggg ttnattgccc cccttggcgt tatcatggtc acnccngttn cctgtgttga	720
aattnttaac cccccacaat tccacgcccna catng	756

<210> 35

<211> 834

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (834)

<223> n = A,T,C or G

<400> 35

ggggatctct anatcnacct gnatgcattt ttgtcggtgt ggtcgctgtc gatgaanatg	60
aacaggatct tgcccttgaa gctctcggt gctgtntttt aatgtgttcag tctccgtca	120
tagtcagaca cnctttggg caaaaaacan caggatntga gtcttgattt cacctccaaat	180
aatcttcnng gctgtctgtc cggtgaactc gatgacnang ggcagctgg tttgtntgtat	240
aaantccanc angttcttctt tggtgaccc tccttcaaaat ttgttccggc cttcatcaaa	300
cttctnnaan angannanc canctttgtc gagctggnat ttgganaaca cgtcaccgtt	360
ggaaactgtat cccaaatggt atgtcatcca tcgcctctgc tgccctgaaa aaacttgcgtt	420
ggcncaaattc cgactccccn tccttggaaag aagccnatca cacccttc cctggactcc	480
nncaangact ctncgctnc cccntccnng cagggttggt ggcannccgg gcccmtgcgc	540
ttcttcagcc agttcacnat ntcatcagc ccctctgcca gctgttttat tccttggggg	600
ggaancggc tctcccttcc tgaannaact ttgaccgtng gaatagccgc gcntcnccnt	660
acntnctggg cccgggttcaaa antccctccn ttgnccnntc ctcggggcca ttctggattt	720
nccnaacttt ttccttcccc cnccccncgg ngtttggntt ttcatnggg ccccaactct	780
gctnttggcc antccccctgg gggcnnntan cnccccctnt ggtcccnntng ggcc	834

<210> 36

<211> 814

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (814)

<223> n = A,T,C or G

<400> 36

cggncgttt ccngccgcgc cccgttcca tgacnaaggc tcccttcang ttaaatacnn	60
cctagnaaac attaatgggt tgctctacta atacatcata cnaaccgta agcctgccca	120
naacgccaac tcaggccatt cctaccaaag gaagaaaggc tggtctctcc accccctgt	180
ggaaaggcct gccttggtaag acaccacaat ncggctgaat cttaagtttctt gtgtttact	240
aatggaaaaa aaaaataaaac aanagttttt gttctcatgg ctgcccaccc cagcctggca	300
ctaaaacanc ccagcgctca cttctgttg ganaaatatt ctttgtctt ttggacatca	360

ggcttcatgg tattactgcc acnnttcac ccagctggc nccctcccc catntttgtc	420
antganctgg aaggcctgaa ncttagtctc caaaaagtctc ngcccacaag accggccacc	480
aggggangtc nttncaagt gatctgc当地 anantaccn tatcatcnnt gaataaaaag	540
gccccctgaac ganatgttc cancancctt taagacccat aatcctngaa ccatggtgcc	600
cttccggctct gatccnaag gaatgttctt gggtccc当地 ccctccttgc ttnccttacgt	660
tgtnttgac ccntgctgn atnacccan tganatcccc ngaagcaccc tnccctggc	720
atttganttt cntaaattct ctggccctacn nctgaaaagca cnatccctn ggcncnccnaan	780
ggngaaactca agaaggctcn ngaaaaaaccn cnccn	814

<210> 37
<211> 760
<212> DNA
<213> *Homo sapien*

```
<220>
<221> misc_feature
<222> (1)...(760)
<223> n = A,T,C or G
```

<400> 37

gcatgctgct	cttcctcaaa	gttgttcttg	ttgccataac	aaccaccata	ggtaaagcg	60
gcgcagtgtt	cgtgaagggg	gttgttagtac	cagcgcggga	tgctctccctt	gcagagtcct	120
gtgtctggca	ggtccacgca	atgcccttg	tcactgggg	aatggatgcg	ctggagtcg	180
tcnaancac	tctgttattt	ttcacangca	gcctctccg	aagcntccgg	gcagttgggg	240
gtgtcggtcac	actccactaa	actgtcgatn	cancagccca	ttgctgcagc	ggaacttgggt	300
gggctgacag	gtgccagaac	acactggatn	ggcccttcca	tggaaggggcc	tggggaaaat	360
cncctnanc	caaactgcct	ctcaaaggcc	accttgcaca	ccccgacacagg	ctagaaaatgc	420
actcttcttc	ccaaaggtag	tttgtctgt	tgcccaagca	ncctccanca	aaccaaaaanc	480
ttgaaaatc	tgctccgtgg	gggtcatnnn	taccanggtt	ggggaaaanaa	acccggcnng	540
ganccncctt	gttgaatgc	naaggnaata	atccctctgt	ttgcttggg	tggaanagca	600
caattgaact	gttaaacntt	ggccgngttc	cnctnggtg	gtctgaaact	aatcaccgtc	660
actggaaaaa	ggtangtgc	ttcccttgaat	tcccaaantt	ccctngntt	tgggttnntt	720
ctccctncc	ctaaaaatcg	tnttcccccc	ccntangqcq			760

<210> 38
<211> 724
<212> DNA
<213> *Homo sapien*

<220>
<221> misc_feature
<222> (1)...(724)
<223> n = A,T,C or G

<400> 38

tttttttttt	tttttttttt	tttttttttt	ttttaaaaaa	ccccctccat	tgaatgaaaa	60
cttccnaaat	tgtccaaccc	cctcnccaa	atnnccattt	ccgggggggg	gttccaaacc	120
caaattaatt	ttggantta	aattaaatnt	tnattnnnnn	aanaanccaa	atgttnaagaa	180
aatttaaccc	attatnaact	taaatnctn	gaaaccctng	gnntccaaaa	attttaacc	240
cttaaatccc	tccgaaattg	ntaangggaa	accaaattcn	cctaaggctn	tttgaaggtt	300
ngatttaaac	cccccttnant	tnttttnacc	cnnngctnaa	ntattnngnt	tccggtgttt	360
tcctnttaan	cntngtaac	tcccgnata	gaannncct	aanccaattt	aaccgaattt	420
ttttgaatt	ggaaattccn	ngggaaattna	ccggggttt	tcccnnnttg	gggcattncc	480
cccncttgc	gggtttgggn	ntaggtgaa	ttttnnnang	ncccaaaaaa	ncccccaana	540
aaaaaaaaactcc	caagnnttaa	ttngaatntc	ccccctccca	ggccttttg	gaaaggnggg	600

tttntgggg ccngggantt cttcccccn ttnccnccc ccccccnggt aaangttat	660
ngnnttttgtt tttgggccc cttnanggac cttccggatn gaaattaaat cccgggnncg	720
gccg	724
<210> 39	
<211> 751	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(751)	
<223> n = A,T,C or G	
<400> 39	
ttttttttt ttttcttg ctcacattta attttattt tgatttttt taatgctgca	60
caacacaata tttatcat ttgtttctt tatttcattt tatttgggg ctgctgtgt	120
tttatttattt tttactgaa gtgagaggga acttttgggg cttttttcc ttttctgtta	180
ggccgcctta agctttctaa atttggaaaca tctaagcaag ctgaanggaa aaggggggttt	240
cgcaaaatca ctcgggggaa nggaaagggtt gctttgttaa tcatgcctta tggtgggtga	300
ttaactgctt gtacaattac ntttcacttt taattaattt tgctnaangc ttaattana	360
cttgggggtt ccctccccc accaaccnn ctgacaaaaaa gtgcccngcc tcaaattnatg	420
tcccgcnnnt ctttggaaaca cacngcngaa ngttctcatt ntcccnncnc caggttaaaaa	480
tgaagggtta ccatnntttaa cnccacctcc acntggcnnn gcctgaatcc tcnaaaaancn	540
ccctcaanncn aattnctnnng ccccggtcnc gcntnnngtc cnccgggct cgggaantn	600
caccccnnga anncnntnnnc naacnaaaatt ccgaaaatat tcccnntncn tcaattcccc	660
cnnagactnt cctcnncnan cncaattttc ttttnntcac gaacncgnnc cnnaaaatgn	720
nnnnccctc cnctngtccn naatcnccan c	751
<210> 40	
<211> 753	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(753)	
<223> n = A,T,C or G	
<400> 40	
gtggtatttt ctgtaagatc aggtgttcct ccctcgtagg tttagaggaa acaccctcat	60
agatggaaac ccccccggaga cagcagcaact gcaactgcca agcagccggg gtaggagggg	120
cgcccttatgc acagctgggc ctttggagaca gcagggcttc gatgtcaggc tcgtatgtcaa	180
tggctctggaa gcccggcgtt tacctcgta ggggcacacc gtcagggccc accaggaact	240
tctcaaagtt ccaggcaacn tcgttgcac acaccggaga ccaggtgatn agcttgggt	300
cggtcataan cgggtggcg tcgtcgctgg gagctggcag ggccctccgc aggaaggcn	360
ataaaaaggtt cggcccccgc cggttcanct cgacttctc naanaccatg angttggct	420
cnaaccacc accannccgg acttccttga nggaaattccc aaatcttcc gntcttgggc	480
ttctnctgat gcccttanctg gttgcccngn atgccaanca ncccaancc cgggggtctt	540
aaancaccnn cctctctntt tcatctgggt ttttntcccc ggaccntggt tcctctcaag	600
gganccata tctcnaccan tactcacnt nccccccnt gnnacccanc cttctanngn	660
ttcccncccg ncctctggcc cttcaaanana gcttncacna cctgggtctg cttccccccc	720
tnccctatct gnaccccn cnctngtccn tttgtctcan tnt	753

<210> 41

<211> 341
 <212> DNA
 <213> Homo sapien

<400> 41
 actatatatcca tcacaacaga catgcttcat cccatagact tcttgacata gcttc当地 60
 agtgaaccca tccttgattt atatacatat atgttcttag tattttggga gccttccac 120
 ttcttaaac cttgttcatt atgaacactg aaaataggaa tttgtgaaga gttaaaaagt 180
 tatacgctgt ttacgttagta agttttgaa gtctacattc aatccagaca cttagttgag 240
 tgtaaactg tgattttaa aaaatatcat ttgagaatat tcttcagag gtattttcat 300
 ttttacttt tgattaattg tgatttatat attaggtag t 341

<210> 42
 <211> 101
 <212> DNA
 <213> Homo sapien

<400> 42
 acttactgaa tttagttctg tgctcttcct tatttagtgt tgtatcataa atactttgat 60
 gttcaaaaca ttctaaataa ataattttca gtggcttcat a 101

<210> 43
 <211> 305
 <212> DNA
 <213> Homo sapien

<400> 43
 acatctttgt tacagtctaa gatgtgttct taaatcacca ttcccttcctg gtc当地 60
 tccagggtgg tctcacactg taatttagagc tatttggag tctttacagc aaattaagat 120
 tcagatgcct tgctaaatgtct agagttctag agttatgtt cagaaagtct aagaaaccca 180
 cctcttgaga ggtcagtaaa gaggacttaa tatttcatat ctacaaaatg accacaggat 240
 tggatcaga acgagagttt ccctggataa ctcagagctg agtacctgcc cggggggccgc 300
 tcgaa 305

<210> 44
 <211> 852
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(852)
 <223> n = A,T,C or G

<400> 44
 acataaaat cagagaaaag tagtctttga aatatttacg tccaggagtt cttt当地 60
 gattattttgg tttgtgtttt gttttgtgtc caaatgttgc gtagtttgc ttttcatttt 120
 ctctccatcc tcggccattc ttcccaaatt tatataccag tcttcgtcca tccacacgt 180
 ccagaatttc tctttgttag taatatctca tagctggct gagttttca taggtcatgc 240
 tgctgttgc ttcttttta cccatagct gagccactgc ctctgatttc aagaacctga 300
 agacgccttc agatcggtct tcccatttta ttaatctgg gttttgtgtc gggttcaaga 360
 ggtatgtcgatc gatgaattcc cataagttag tccctctcggtt gttgtgttgc ttgggtgtggc 420
 acttggcagg ggggtcttgc tcccttttca tatcaggtga ctctgcaaca ggaagggtgac 480
 tgggtgttgc catggagatc tgagccccggc agaaagtttt gctgtccaaac aaatctaactg 540
 tgctaccata gttgggtgtca tataaatagt tctngtctt ccaggtgttc atgatgaaag 600

gctcagttt gtcagtctt acaatgacat tgggtgttgg a cttggacagg tcactactgc actggccgtt ccacttcaga tgctgcaagt tgctgttagag gagntgcccc gccgtccctg ccgccccgggt gaactcctgc aaactcatgc tgcaaagggtg ctgcgcgttg atgtcgaact cntggaaagg gataacaattt gcatccagct gttgggtgtc caggaggta tggagccact cccacacccgt gt	660 720 780 840 852
 <210> 45	
<211> 234	
<212> DNA	
<213> Homo sapien	
 <400> 45	
acaacagacc ttggctcgct aacgacacctca tgctcatcaa gttggacgaa tccgtgtccg agtctgacac catccggagc atcagcattt ctgcgcgttg ccctaccgcg gggaaactctt gcctcggttcc tggctgggggt ctgcgcga acggcagaat gcctaccgtg ctgcagtgcg tgaacgtgtc gttgggtgtct gaggaggctt gcatgacccgt ctgt	60 120 180 234
 <210> 46	
<211> 590	
<212> DNA	
<213> Homo sapien	
 <220>	
<221> misc_feature	
<222> (1)...(590)	
<223> n = A,T,C or G	
 <400> 46	
actttttttaaataatgtttta taaggcagat ctatgagaat gatagaaaaac atgggtgtta atttgatagc aatattttgg agattacaga gtttttagtaa ttaccaatta cacagttaaa aagaagataa tatattccaa gcanatacaa aatatctaatt gaaagatcaa ggaggaaaa tgantataac taattgacaa tggaaaatca attttatgtt gaattgcaca ttatccttta aaagctttca aaanaaanaaa ttattgcgtt ctanttaatt caaacagtgt taaatggtat caggataaaan aactgaaggg canaaagaat taattttcac ttcatgtaac ncacccanat ttacaatggc ttaaatgcan ggaaaagca gtggaaatgtt ggaagtantic aaggtctttc tggtctctaa tctgccttac ttttgggtt tggtttgtt cctctggaga cagctgccag ggctctgtt atatccacaa tcccagcagc aagatgaagg gatgaaaaag gacacatgt gccttcctt gaggagactt catctcactg gccaacactc agtcacatgt	60 120 180 240 300 360 420 480 540 590
 <210> 47	
<211> 774	
<212> DNA	
<213> Homo sapien	
 <220>	
<221> misc_feature	
<222> (1)...(774)	
<223> n = A,T,C or G	
 <400> 47	
acaagggggc ataatgaagg agtggggana gattttaaag aaggaaaaaa aacgaggccc tgaacagaat ttctctgnac aacggggctt caaaataatt ttcttggggta ggttcaagac gtttcaactgc ttgaaactta aatggatgtt ggacanaatt ttctgtatg accctgaggg cattacagac gggactctgg gaggaggat aaacagaaaag gggacaaaagg ctaatccca aacatcaaag aaaggaagg ggcgtcatac ctcccagcct acacagtttcc ccagggtct	60 120 180 240 300

cctcatccct ggaggacgac agtggagggaa caactgacca tgcgtccccagg ctccctgtgtg	360
ctggctcccg gtcttcagcc cccagctctg gaagcccacc ctctgctgtat cctgcgtggc	420
ccacactcct tgaacacaca tccccaggtt atattcctgg acatggctga acctcctatt	480
cctacttcgg agatgccttg ctcccctgcag cctgtcaaaa tcccactcac cctccaaacc	540
acggcatggg aagcctttct gacttgcctg attactccag catcttggaa caatccctga	600
ttccccactc ctttagaggca agatagggtt gttaaagagta gggctggacc acttggagcc	660
aggctgtgg cttcaaattt tggctcattt acgagctatg ggacccttggg caagtnatct	720
tcacttctat gggcncattt ttgttctacc tgcaaaaatgg gggataataa tagt	774
<210> 48	
<211> 124	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (124)	
<223> n = A,T,C or G	
<400> 48	
canaaaatttga aattttataa aaaggcattt ttctcttata tccataaaaat gatataattt	60
ttgcaantat anaaatgtgt cataaattat aatgttcctt aattacagct caacgcaact	120
tgggt	124
<210> 49	
<211> 147	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (147)	
<223> n = A,T,C or G	
<400> 49	
gccgatgcta ctattttattt gcaggaggtt ggggtgtttt tattattctc tcaacagctt	60
tgtggctaca ggtgggtct gactgcatna aaaanttttt tacgggttat tgcaaaaattt	120
ttagggcacc catatccaa gcantgt	147
<210> 50	
<211> 107	
<212> DNA	
<213> Homo sapien	
<400> 50	
acattaaattt aataaaagga ctgttgggggt tctgtaaaaa cacatggctt gatatattgc	60
atggttttagt gtttaggagga gtttaggcata tgtttggga gaggggt	107
<210> 51	
<211> 204	
<212> DNA	
<213> Homo sapien	
<400> 51	
gtccttagggaa gtcttagggaa cacacgactc tggggtcacg gggccgacac acttgcacgg	60

cgggaaggaa aggcagagaa gtgacaccgt cagggggaaa tgacagaaaag gaaaatcaag 120
 gccttgcagaag gtcagaaaagg ggactcaggg cttccaccac agccctgcc cacttggcca 180
 ctcctttt gggaccagca atgt 204

<210> 52
 <211> 491
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(491)
 <223> n = A,T,C or G

<400> 52

acaagataa catttatctt ataacaaaaa ttgtatgtt ttaaaggta gtattgtta 60
 gggattttc caaaagacta aagagataac tcaggtaaaa agtagaaat gtataaaaaca 120
 ccatacgaca ggttttaaa aaacaacata ttacaaaatt agacaatcat cttaaaaaaaa 180
 aaaaccttctt gtatcaattt cttttgtca aaatgactga cttaatattttttaatattt 240
 tcanaaacac ttctcaaaa atttcaana tggtagctt canatgncc ctcagtncc 300
 atgttgctca gataaataaa tctcgtgaga acttaccacc caccacaagc tttctggggc 360
 atgcaacagt gtcctttctt tncttttctt tttttttttt ttacaggcac agaaaactcat 420
 caattttatt tggataacaa agggtctcca aattatatttggaaaataat ccaagttat 480
 atcaactcttg t 491

<210> 53
 <211> 484
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(484)
 <223> n = A,T,C or G

<400> 53

acataattta gcagggctaa ttaccataag atgtatattta ttaanaggtt tatgtatctga 60
 gtattaacag ttgctgaagt ttggatattt tatgcagcat ttctttttt ctttgataac 120
 actacagaac ccttaaggac actgaaaatt agtaagtaaa gttcagaaaac attagctgt 180
 caatcaaatac tctacataac actatagtaa ttaaaacgtt aaaaaaaaaagt gttgaaatct 240
 gcaactagat anaccgtcc tgcaggata anactgctt ggaacagaaa gggaaaaanc 300
 agctttgant ttctttgtgc tgcattangagg aaaggctgaa ttaccttgc ttacccct 360
 aatgattggc aggtcnggta aatnccaaaa catattccaa ctcaacactt ctttccncg 420
 tancttgant ctgtgtattc caggancagg cggatgaaat gggccagccc ncggatgttc 480
 cant 484

<210> 54
 <211> 151
 <212> DNA
 <213> Homo sapien

<400> 54

actaaacctc gtgctgtga actccatatac gaaaacggtg ccattccctga acacggctgg 60
 ccactgggtta tactgctgac aaccgcaaca aaaaaaacac aaatccttgg cactggctag 120
 tctatgtcct ctcaagtgcc tttttgtttt t 151

<210> 55
 <211> 91
 <212> DNA
 <213> Homo sapien

<400> 55
 acctggcttg tctccgggtg gttcccggcg ccccccacgg tccccagaac ggacacttgc
 gccctccagt ggatactcga gccaaagtgg t 60
 91

<210> 56
 <211> 133
 <212> DNA
 <213> Homo sapien

<400> 56
 ggcggatgt cgttggttat atacaatat gtcatttat gtaagggact tgagtatact 60
 tggatttttg gtatctgtgg gttggggga cggtccagga accaatacc catggatacc 120
 aagggacaac tgt 133

<210> 57
 <211> 147
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(147)
 <223> n = A,T,C or G

<400> 57
 actctggaga acctgagccg ctgctccgcc tctggatga ggtgatgcan gcngtggcgc 60
 gactgggagc tgagcccttc ctttgcgcc tgcctcagag gattgttgcc gacntgcana 120
 tctcantgg ctggatncat gcagggt 147

<210> 58
 <211> 198
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(198)
 <223> n = A,T,C or G

<400> 58
 acagggatat aggtttaag ttattgtnat tgaaaatac attgaatttt ctgtatactc 60
 tgattacata catttacctt taaaaaaga tgtaaatctt aattttatcg ccattatca 120
 atttaccaat gagttacctt gtaaaatgaga agtcatgata gcactgaatt ttaacttagtt 180
 ttgacttcta agtttgg 198

<210> 59
 <211> 330
 <212> DNA
 <213> Homo sapien

<400> 59
acaacaaatg gggtgtgagg aagtcttatac agcaaaaactg gtgatggcta ctgaaaagat 60
ccattaaaa ttatcattaa tgattttaaa tgacaagtta tcaaaaactc actcaatttt 120
cacctgtgct agcttgctaa aatgggagtt aactcttagag caaatatagt atcttctgaa 180
tacagtcaat aaatgacaaa gccagggcct acaggtggtt tccagacttt ccagacccag 240
cagaaggaat ctatttatac acatggatct ccgtctgtgc tcääaataacc taatgatatt 300
tttcgtcttt attggacttc tttgaagagt 330

<210> 60
<211> 175
<212> DNA
<213> Homo sapien

<400> 60
accgtgggtg ccttctacat tcctgacggc tccttcacca acatctggtt ctacttcggc 60
gtcggtggct ctttcctctt catcctcatc cagctgtgc tgctcatcga ctttgcgcac 120
tcctggAACCC agcgggtggct gggcaaggcc gaggagtgcg attccctgtgc ctgg 175

<210> 61
<211> 154
<212> DNA
<213> Homo sapien

<400> 61
accccacttt tcctcctgtg agcagctctgg acttctcaact gctacatgat gagggtgagt 60
ggttgttgct cttcaacagt atcctcccct ttccggatct gctgagccgg acagcagtgc 120
tggactgcac agccccgggg ctccacattt ctgt 154

<210> 62
<211> 30
<212> DNA
<213> Homo sapien

<400> 62
cgctcgagcc ctatagttaga 30

<210> 63
<211> 89
<212> DNA
<213> Homo sapien

<400> 63
acaagtcttca tcagcacccct ttgctttca aaactgacca tcttttatat ttaatgcttc 60
ctgtatgaat aaaaatggtt atgtcaagt 89

<210> 64
<211> 97
<212> DNA
<213> Homo sapien

<400> 64
accggagtaa ctgagtcggg acgctgaatc tgaatccacc aataaataaa gttctgcag 60
aatcagtgcatacc tccaggattt gtccttggat ctggg 97

<210> 65
<211> 377
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(377)
<223> n = A,T,C or G

<400> 65

acaacaanaa ntcccttctt taggccactg atggaaacctt ggaacccctt tttgatggca	60
gcatggcgctc ctaggccttg acacagcggtc tggggtttgg gctntcccaa accgcacacc	120
ccaaccctgg tctacccaca nttctggcta tgggctgtct ctgccactga acatcagggt	180
tccgtcataaa natgaaatcc caanggggac agaggtcagt agaggaagct caatgagaaa	240
ggtgctgttt gctcagccag aaaacagctg cctggcattt gcccgtgaac tatgaacccg	300
tgggggtgaa ctaccccan gaggaatcat gcctggcga tgcaanggtt ccaacaggag	360
gggcgggagg agcatgt	377

<210> 66
<211> 305
<212> DNA
<213> Homo sapien

<400> 66

acgcctttcc ctcagaattt agggaaagaga ctgtgcctg ctttcctccg ttgttgcgtg	60
agaacccctg tgccccctcc caccatatcc accctcgctc catctttgaa ctcaaacaeg	120
aggaactaac tgcacccctgg tcctctcccc agtccccagt tcacccctcca tccctcacct	180
tcctccactc taaggatata caacactgccc cagcacaggg gcccgtgaatt tatgtggttt	240
ttatataattt ttaataaga tgcactttat gtcattttt aataaaagtct gaagaattac	300
tgttt	305

<210> 67
<211> 385
<212> DNA
<213> Homo sapien

<400> 67

actacacaca ctccacttgc ctttgtgaga cactttgtcc cagcacttta ggaatgctga	60
ggtcgccatcca gccacatctc atgtgcaga ttgcccagca gacatcagggt ctgagagttc	120
cccttttaaa aaaggggact tgctaaaaaa agaagtctag ccacgttgcgt gtagagcagc	180
tgtgctgtgc tggagattca cttttgagag agttctccctc tgagacctga tcttttagagg	240
ctgggcagtc ttgcacatga gatggggctg gtctgatctc agcactccctt agtctgcttgc	300
cctctcccaag ggccccagcc tggccacacc tgcttacagg gcactctcag atgcccatac	360
catagttct gtgctagtgg accgt	385

<210> 68
<211> 73
<212> DNA
<213> Homo sapien

<400> 68

acttaaccag atatattttt accccagatg gggatattct ttgtaaaaaaaaa tgaaaataaaa	60
gtttttttaa tgg	73

<210> 69
 <211> 536
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(536)
 <223> n = A,T,C or G

<400> 69

actagtccag tgggtggaa ttccattgtg ttggggcctc tcaccctcct ctcctgcagc	60
tccagctttg tgctctgcct ctgaggagac catggcccaag catctgatc ccctgctgtct	120
cctgtggcc accctagctg tggccctggc ctggagcccc aaggaggagg ataggataat	180
cccggtggc atctataacg cagacctcaa tggatgtgg gtacagcgtg cccttcactt	240
cgccatcagc gagtataaca aggccaccaa agatgactac tacagacgtc cgctgcgggt	300
actaagagcc aggcaacaga ccgtggggg ggtgaattac ttcttcgacg tagaggtggg	360
ccgaaccata tggatccaatg cccagccaa cttggacacc tggcccttcc atgaacagcc	420
agaactgcag aagaaaacagt tggctcttt cgagatctac gaagttccct ggggagaaca	480
gaangtccct gggtaaaatc caggtgtcaa gaaatcttan ggatctgtt ccagcc	536

<210> 70

<211> 477

<212> DNA

<213> Homo sapien

<400> 70

atgaccctta acaggggccccc ttcagccct cctaattgacc tccggccttag ccattgtgatt	60
tcacttccac tccataacgc tcctcataact aggcctacta accaacacac taaccatata	120
ccaatgatgg cgcgatgtaa cacgagaaag cacataccaa ggccaccaca caccacctgt	180
ccaaaaaggc cttcgatacg ggataatctt atttattacc tcagaagttt tttttttcgc	240
agggatttttt ctgagccctt taccactcca gcctagcccc taccggccaa ctggaggggc	300
actggccccc aacaggcata accccgctaa atccctaga agtcccactc ctaaacacat	360
ccgttattact cgcattcagga gatatcaatca cctgagctca ccatagtcata atagaaaaca	420
accgaaacca aattattcaa agcactgtttt attacaattt tactgggtctt ctat	477

<210> 71

<211> 533

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(533)

<223> n = A,T,C or G

<400> 71

agagctatag gtacagtgtg atctcagctt tgcaaaacaca ttttctacat agatagact	60
aggtttaat agatatgtaa agaaaagaaat cacaccatta ataatgtaa gattggttta	120
tgtgattttta gtggatttt tggcacccctt atatatgttt tccaaacttt cagcagtgtat	180
attatttcca taacttaaaa agtgatgtt aaaaagaaaa tctccagcaa gcatctcatt	240
taaataaaagg ttgtcatct ttaaaaataac agcaatatgt gactttttaa aaaagctgtc	300
aaataggtgt gaccctacta ataattatta gaaatacatt taaaacatc gagttacctca	360
agtcagtttgc ctttggaaaa tatcaaataat aactctttaga gaaatgtaca taaaagaatg	420
cttcgttaatt ttggagtang aggttccttc ctcaattttt tatttttaaa aagtacatgg	480
aaaaaaaaaa aattcacaac agtatataag gctgtaaaat gaagaattctt gcc	533

<210> 72
<211> 511
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(511)
<223> n = A,T,C or G

<400> 72

tattacggaa aaacacacca cataattcaa ctancaaaaga anactgcttc agggcgtgta	60
aaatgaaaagg cttccaggca gttatctgat taaaagaacac taaaagaggg acaaggctaa	120
aagccgcagg atgtctcacac tatancaggc gctatttggg ttggctggag gagctgtgga	180
aaacatggan agatttgtc tgganatcgc cgtggctatt cctcattgtt attacanagt	240
gaggttctt gtgtgcccac tggtttgaaa accgttctnc aataatgata gaatagtaca	300
cacatgagaa ctgaaatggc ccaaaccagg aaagaaagcc caactagatc ctcagaanac	360
gcttcttaggg acaataaccg atgaagaaaa gatggcetcc ttgtgcccc gtctgttatg	420
atttctctcc attgcagcna naaaccggtt cttctaagca aacncagggtg atgatggcna	480
aaatacacccc cctcttgaag naccnngagg a	511

<210> 73
<211> 499
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(499)
<223> n = A,T,C or G

<400> 73

cagtgccagc actggtgcca gtaccagtac caataacagt gccagtgccca gtgccagcac	60
cagtggtgcc ttcaagtgtg gtgccaggctt gaccggccact ctcacatttgggtcttcgc	120
tggccttgggt ggagctgggt ccagcaccagg tggcagctctt ggtgcctgtg gtttcttccta	180
caagttagat ttttagatatt gttaatcctg ccagtccttc tcttcaagcc aggggtgcac	240
ctcagaaacc tactcaaac acgactctag gcagccacta tcaatcaattt gaagttgaca	300
ctctgcattt aatctatttgc ccatttctga aaaaaaaaaaaa aaaaaaaaaaggcgccgcctcg	360
antctagagg gcccgtttaa acccgctgat cagcctcgac tttgccttctt anttgcctagc	420
catctgttgt ttgccttc cccgntgcct tccttgaccc tggaaagtgc cactccact	480
gtccttcctt aantaaaat	499

<210> 74
<211> 537
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(537)
<223> n = A,T,C or G

<400> 74

tttcatagga gaacacactg aggagatact tgaagaattt ggattcagcc gcgaagagat	60
---	----

ttatcagctt aactcagata aaatcattga aagtataaa gtaaaagcta gtctctaact
 tccaggccc cggctcaagt gaatttgaat actgcattt cagttagag taacacataa
 cattgtatgc atggaaacat ggaggaacag tattacagtg tcctaccact ctaatcaaga
 aaagaattac agactctgat tctacagtga tgattgaatt ctaaaaatgg taatcattag
 ggctttgat ttataanact ttgggtactt atactaaatt atggtagtta tactgccttc
 cagtttgctt gatataattt gttatattaa gattcttgac ttatattt aatgggttct
 actgaaaaan gaatgatata ttcttgaaga catcgatata catttattt cactcttgat
 tctacaatgt agaaaatgaa ggaaatgccc caaattgtat ggtgataaaa gtcgcgt
 120
 180
 240
 300
 360
 420
 480
 537

<210> 75

<211> 467

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(467)

<223> n = A,T,C or G

<400> 75

caaananacaat tggtaaaaag atgcaaatga tacactactg ctgcagctca caaacaccc
 tgcataattac acgtacacctc tcctgctctt caagtagtgtt ggtctatccc gccatcatca
 cctgctgtct gcttagaaga acggctttct gctgcaangg agagaaatca taacagacgg
 tggcacaagg aggccatctt ttcctcatcg ttattgtcc cttagaagctt cttctgagga
 tcttagttggg ctttctttctt gggtttgggc catttcantt ctcatgtgt tactattcta
 tcattattgt ataacggttt tcaaaccngt gggcacncag agaacctcac tctgtataataa
 caatgaggaa tagccacggt gatctccac accaaatctc tccatgtnt tccagagctc
 ctccagccaa cccaaatagc cgctgctatn gttttagaaca tccctgn

60

120

180

240

300

360

420

480

537

<210> 76

<211> 400

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(400)

<223> n = A,T,C or G

<400> 76

aagctgacag cattcggggcc gagatgtctc gctccgtggc cttagctgtg ctgcgcgtac
 tctcttttc tggcctggag gctatccagc gtactccaaa gattcagggt tactcacgtc
 atccagcaga gaatggaaag tcaaattcc tgaattgtt tttgtctggg tttcatccat
 ccgacattga agttgactta ctgaagaatg gagagagaat tgaaaaatgg gggcattcag
 acttgcctt cagcaaggac tggctttctt atctcttgc tttactgttcaatccat
 ctgaaaaaga tgtagtatgcc tgccgtgtga accatgttgc tttgttcacag cccaaatgtt
 tttagtggga tcganacatg taagcagcan catgggaggt

60

120

180

240

300

360

400

<210> 77

<211> 248

<212> DNA

<213> Homo sapien

<400> 77

ctggagggcc ttgggttttgc aagccctgc aggaaggcaga atgcacccctc tgaggcacct

60

ccagctgccc	cggcgaaaaa	tgcgaggctc	ggagcacccct	tgcccggtcg	tgattgctgc	120
cagggactgt	tcatctcage	tttctgtcc	cttgctccc	ggcaagcgct	tctgtgaaa	180
gttcatatct	ggaggctgat	gtcttaacga	ataaaggctcc	catgctccac	ccgaaaaaaaaa	240
aaaaaaaaaa						248
<210>	78					
<211>	201					
<212>	DNA					
<213>	Homo sapien					
<400>	78					
actagtccag	tgtggtgaa	ttccattgtg	ttggcccaa	cacaatggct	acctttaaca	60
tcacccagac	ccccccctgc	ccgtgcccc	cgctgctgct	aacgacagta	tgatgcttac	120
tctgctactc	ggaaactatt	tttatgtaat	taatgtatgc	tttcttgttt	ataaatgcct	180
gatttaaaaa	aaaaaaaaaa	a				201
<210>	79					
<211>	552					
<212>	DNA					
<213>	Homo sapien					
<220>						
<221>	misc_feature					
<222>	(1) ... (552)					
<223>	n = A,T,C or G					
<400>	79					
tccttttgtt	aggaaaaa	gacaacccta	gacctaaact	gtgtcacaga	cttctgaatg	60
tttaggcagt	gctagtaatt	tcctcgtaat	gattctgtta	ttactttcct	attctttatt	120
cctctttctt	ctgaagatta	atgaagttga	aaattggaggt	ggataaaatac	aaaaaggtag	180
tgtgatagta	taagtatcta	agtgcagatg	aaagtgtgtt	atatatatacc	attcaaaaatt	240
atgcaaggtt	gtaattactc	agggttaact	aaattacttt	aatatgctgt	tgaacctact	300
ctgttccttg	gctagaaaaa	attataaaca	ggactttgtt	agtttggaa	gccaaattga	360
taatattcta	tgttctaaaa	gttggctat	acataaanta	tnaagaaata	tggattttta	420
ttcccaggaa	tatggggttc	atttatgaat	antacccggg	anagaagttt	tganntaaac	480
cngtttttgtt	taatacgtaa	atatgtcccn	aatnaacaag	gcntgactta	tttccaaaaaa	540
aaaaaaaaaa	aa					552
<210>	80					
<211>	476					
<212>	DNA					
<213>	Homo sapien					
<220>						
<221>	misc_feature					
<222>	(1) ... (476)					
<223>	n = A,T,C or G					
<400>	80					
acagggattt	gagatgctaa	ggcccccagag	atcggttgat	ccaaccctct	tatttcaga	60
ggggaaaatg	gggcctagaa	tttacagagc	atctagctgg	tgcgctggca	ccccctggct	120
cacacagact	cccgagtagc	tgggactaca	ggcacacagt	cactgaagca	ggccctgttt	180
gcaatttcacg	ttgcacccctc	caacttaaac	attcttcata	tgtgatgtcc	ttagtcacta	240
aggtaaaact	ttcccaccca	gaaaaggcaa	cttagataaa	atcttagagt	actttcatac	300
tcttctaagt	cctctccag	cctcactttt	agtcctccct	gggggttcat	aggaantnc	360

tatgcttgtg tgaggcaatc atggtggcat caccatnaa gggAACACAT ttGANTTTT	420
tttcncatAT tttAAATTAC naccagaata ntTCAGAATA aatGAATTGA AAAACTCTTA	480
aaaaaaaaaaa aaaa	494
<210> 84	
<211> 380	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(380)	
<223> n = A,T,C or G	
<400> 84	
gctggtagcc tatggcgtgg ccacggangg gctcctgagg cacggacag tgacttccca	60
agtatcctgc gcccgtctt ctaccgtccc tacctgcaga tcttcgggca gatTECCCAG	120
gaggacatgg acgtggccct catggagcac agcaactgct cgTCGGAGCC cggcttctgg	180
gcacacccctc ctggggccca ggCGGGCACC tgctctccc agtatGCCAA ctggctggtg	240
gtgctgtcc tcgtcatctt cctgctcgta gccaacatcc tgctggcac ttgctcattg	300
ccatgttccag ttacacattc ggcaaagtac agggcaacag cnatctctac tgggaaggcc	360
agcgtnccg cctcatccgg	380
<210> 85	
<211> 481	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(481)	
<223> n = A,T,C or G	
<400> 85	
gagttagctc ctccacaacc ttgatgaggt cgtctgcagt ggcctctcgc ttcataccgc	60
tnccatctgc atactgtagg tttgccacca cctccctgcatttgggggg ctaatatcca	120
ggaaactctc aatcaagtca ccgtcnatna aacctgtggc tggttctgtc ttccgctcg	180
tgtgaaaga tctccagaag gagtgctcga tcttccccac acttttgatg actttattga	240
gtcgattctg catgtccagc aggaggttgt accagctctc tgacagttag gtcaccagcc	300
ctatcatgcc nttgaacgtg ccgaagaaca ccgagccttg tgggggggt gnagtctcac	360
ccagattctg cattaccaga nagccgtggc aaaaganatt gacaactcgc ccaggnngaa	420
aaagaacacc tcctggaagt gctngccgct cctcgccnt tggtnnnngc gcntnccctt	480
t	481
<210> 86	
<211> 472	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(472)	
<223> n = A,T,C or G	
<400> 86	

aacatcttcc tgtataatgc tgtgtaatat cgatccgatn ttgtctgctg agaattcatt 60
 acttgaaaa gcaacttnaa gcctggacac tggattaaa attcacaata tgcaacactt 120
 taaacagtgt gtcaatctgc tcccttactt tgtcatcacc agtctggaa taagggtatg 180
 ccctattcac acctgttaaa agggcgctaa gcattttga ttcaacatct tttttttga 240
 cacaagtccg aaaaaagcaa aagtaaacag ttnttaattt gtagccaat tcactttctt 300
 catgggacag agccatttga tttaaaaagc aaattgcata atattgagct ttgggagctg 360
 atatntgagc ggaagantag ctttctact tcaccagaca caactccctt catattggga 420
 tggtnacnaa agttatgtct ttacagatg ggatgctttt gtggcaattc tg 472

<210> 87

<211> 413

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(413)

<223> n = A,T,C or G

<400> 87

agaaaccagt atctctnaaa acaacctctc ataccttgcg gacctaattt tgtgtgcgtg 60
 tgtgtgtgcg cgcatattat atagacaggc acatctttt tacttttga aaagcttatg 120
 cctcttgggt atctatatct gtgaaagttt taatgatctg ccataatgtc ttggggacct 180
 ttgtcttctg tgtaaatggt actagagaaa acacctatnt tatgagtcaa tctagttngt 240
 tttatccgac atgaagggaaa ttccagatn acaacactna caaactctcc ctgactagg 300
 ggggacaaag aaaagcanaa ctgaacatna gaaacaattn cctggtgaga aattncataaa 360
 acagaaattt ggttgtatata tgaaanannn catcattnaa acgtttttt ttt 413

<210> 88

<211> 448

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(448)

<223> n = A,T,C or G

<400> 88

cgcagcgggt cctctctatc tagctccagc ctctcgctg ccccactccc cgctgtccccgc 60
 gtcctagccn accatggccg ggcccccgtcg cgcccccgtg ctccctgtgg ccattcctggc 120
 cgtggccctg ggcgtgagcc ccgcggccgg ctccagtccc ggcaagccgc cgccctgg 180
 gggaggccca tgaccccccgc gtgaaagaag aagggtgtcg gctgtcaactg gactttgccg 240
 tcggcnanta caacaaaccc gcaacnactt ttacccnagcn cgctgtcgag gttgtgccgc 300
 cccaancaaa ttgttactng ggtaantaa ttcttgaaag ttgaacctgg gccaaachnng 360
 ttaccagaa ccnagccaat tngaacaatt nccctccat aacagccctt tttaaaaagg 420
 gaancantcc tgncttttc caaattttt 448

<210> 89

<211> 463

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(463)

<223> n = A,T,C or G

<400> 89

gaatttgtg cactggccac	tgtgatggaa ccattggcc	aggatgctt gagtttatca	60
gtagtgatc tgccaaagtt	ggtgttgtaa catgagtatg	taaaatgtca aaaaatttagc	120
agaggcttag gtctgcata	cagcagacag tttgtccgt	tatTTTGTAG CCTTGAAGTT	180
ctcagtgaca agttnttct	gatgcgaagt tctnattcca	gtgttttagt ccttgcata	240
tttnatgtn agacttgct	ctntnaaatt gctttgtnt	tctgcaggta ctatctgtgg	300
tttaacaaaa tagaannact	tctctgcttn gaanattga	atatcttaca tctnaaaaatn	360
aattctctcc ccatannaaa	accangccc ttggganaat	ttgaaaaang gntccttcnn	420
aattcnanana anttcagnn	tcataacaaca naacngganc	ccc	463

<210> 90

<211> 400

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(400)

<223> n = A,T,C or G

<400> 90

agggattgaa ggtctnttnt	actgtcgac tgttcancca	ccaaactctac aagtgtgt	60
cttccactca ctgtctgtaa	gcntnttaac ccagactgta	tcttcataaa tagaacaat	120
tcttcaccag tcacatcttc	taggacctt ttggattcag	ttagtataag ctcttccact	180
tcctttgtta agacttcatac	tggtaaagtc ttaagtttg	tagaaaggaa tttaattgct	240
cgttctctaa caatgtctc	tccttgaagt atttggctga	acaacccacc tnaagtcct	300
ttgtgcattcc atttaaata	tacttaatag ggcattgtn	cactaggtta aattctgcaa	360
gagtcatctg tctgcaaaag	ttgcgttagt atatctgcca		400

<210> 91

<211> 480

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(480)

<223> n = A,T,C or G

<400> 91

gagctcgat ccaataatct	ttgtctgagg gcagcacaca	tatncagtgc catggnaact	60
ggtctacccc acatgggagc	agcatgccgt agntatataa	ggtcattccc tgagtcagac	120
atgcctcttt gactaccgtg	tgccagtgt ggtgattctc	acacacctcc nnccgcttt	180
tgtggaaaaa ctggcacttg	nctggaacta gcaagacatc	acttacaat tcacccacga	240
gacacttggaa aggtgtaaaca	aagcgactct tgcattgtt	tttgcctcc cgccaccagg	300
tgtcaataact aacccgctgg	tttgcctcca tcacattgt	gatctgtac tctggataca	360
tctcctgaca gtactgaaga	acttcttctt ttgtttcaaa	agcaactctt ggtgcctgtt	420
ngatcagggtt cccatttccc	agtccgaatg ttcacatggc	atatnttact tccccacaaaa	480

<210> 92

<211> 477

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(477)

<223> n = A,T,C or G

<400> 92

atacagccca natcccacca cgaagatgcg cttgttgact gagaacctga tgcggtaact	60
ggtcccgctg tagccccagc gacttccac ctgctgaaag cggttcatgc tgcactcctt	120
cccacgcagg cagcagcggg gccggtaat gaactccact cgtggcttgg gggtgacggt	180
taantgcagg aagaggctg ccaccccgcg gtccaccagg atgcccact gtgcgggacc	240
tgcagcggaaa ctccctcgatg gtcatgagcg ggaagcgaat gangcccagg gccttgcoca	300
gaaccttccg cctgttctct gggtcacct gcagctgctg ccgctnacac tggcctcg	360
accagcggac aaacggcgtt gaacagccgc acctcacgga tgcccantgt gtcgegctcc	420
aggaacggcn ccagcgtgtc caggtcaatg tcggtaanc ctccggggt aatggc	477

<210> 93

<211> 377

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(377)

<223> n = A,T,C or G

<400> 93

gaacggctgg accttgcctc gcattgtgct gctggcagga ataccttggc aagcagctcc	60
agtccgagca gccccagacc gctgccccc gaagctaagc ctgcctctgg cttccccc	120
cgcctcaatg cagaaccant agtgggagca ctgtgttag agttaagagt gaacactgt	180
tgattttact tggaaatttc ctctgtata tagctttcc caatgctaatttccaa	240
caacaacaaa ataacatgtt tgcctgttna gttgtataaa agtangtgat tctgtatnta	300
aagaaaatat tactgttaca tatactgctt gcaanttctg tatttattgg tnctctggaa	360
ataaaatatata tattaaa	377

<210> 94

<211> 495

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(495)

<223> n = A,T,C or G

<400> 94

ccctttgagg gtttagggtc cagttcccag tggaaagaaac aggccaggag aantgcgtgc	60
cgagctgang cagatttccc acagtgaccc cagagccctg ggctatagtc tctgacccct	120
ccaagggaaag accaccttct ggggacatgg gctggaggggc aggacctaga ggcaccaagg	180
gaaggccccca ttccggggct gttccccgag gggaaaggaa aggggctctg tggccccccc	240
acgaggaana gcccctgant cctggatca nacacccctt cacgtgtatc cccacacaaa	300
tgcaagctca ccaaggccc ctctcagtcc ctccctaca ccctgaacgg ncactggccc	360
acacccaccc agancancca cccgccccatgg ggaatgtntc caaggaatcg cngggcaacg	420
tggactctng tccnnnaagg gggcagaatc tccaatagan ggatingaacc ctggctnana	480

aaaaaaaaana aaaaa

495

<210> 95
<211> 472
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(472)
<223> n = A.T.C or G

<400> 95

ggttacttgg ttcattgcc accacttagt ggatgtcatt tagaaccatt ttgtctgctc	60
cctctggaaag ccttgcgca agcggacttt gtaattgttg gagaataact gctgaatttt	120
tagctgtttt gagttgattc gcaccactgc accacaactc aatatgaaaa ctattnact	180
tatttatttat ctttgtaaaa gtatacaatg aaaattttgt tcatactgta tttatcaagt	240
atgatgaaaa gcaatagata tatattcttt tattatgttn aattatgatt gcattatttt	300
atccggcaaaa tgtggagtgt atgttctttt cacagtaata tatgcctttt gtaacttcac	360
ttggtttattt tattgttaat gaattacaaa attcttaatt taagaaaaatg gtangttata	420
tttatttccan taatttcttt ctttgttac qttaaattttq aaaagaatgc at	472

<210> 96

<211> 476

<212> DNA

<213> Homo sapien

2202

<221> misc feature

<222> (1) ... (476)

<223> R = A,T,C or G

<400> 96

ctgaaggcatt	tctccaaact	tntctacttt	tgtcatttat	acctgttagta	agttgacaat	60
gtggtgaat	ttcaaaaatta	tatgtaaactt	ctactagttt	tactttctcc	cccaagtctt	120
ttttaaactca	tgattttac	acacacaatac	cagaacttat	tatatacgct	ctaagtcttt	180
attcttcaca	gtagatgtat	aaagagtcct	ccagtggttt	gnngcanaatg	ttcttagntat	240
agctggatac	atacngtggg	agttctataa	actcataacct	cagtggact	naacccaaaat	300
tgtgttagtc	tcaattccta	ccacactgag	ggagcctccc	aaatcactat	attcttatct	360
gcaggtactc	ctccagaaaa	acngacaggg	caggcttgc	tgaaaaagtn	acatctgcgt	420
tacaaaqtct	attttcctca	nanotctqtn	aaggaaacaat	ttaatcttct	agcttt	476

<210> 97

<211> 479

<212> DNA

<213> *Homo sapien*

<220>

<221> misc feature

<222> MISC_Ideas

~~223~~ P = A,T,C or G

<400> 97

acttttctta atgttgatata gatcttgagt ataagaatgc atatgtcact agaatggata	60
aaataatqct gcaaaacttaa tttttttatq caaaaatqaa cgctaatgaa acacagctta	120

ctgttctgga gggagattag gttttcttc caaatccaac aaaatccact gaaaaagttg gatgatcagt acgaataccg aggcatttc tcatacggt ggca	360 405
<210> 102	
<211> 470	
<212> DNA	
<213> Homo sapien	
<400> 102	
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt ggcacttaat ccatttttat ttcaaaaatgt ctacaaattt aatcccatta tacgttattt tcaaaatcta aattattcaa attagccaaa tccttaccaa ataataccca aaaatcaaaa atataacttct ttcagcaaac ttgttacata aattaaaaaa atatatacgg ctgggtttt caaagtacaa ttatctaact actgcaaaca tttttaggaa ctaaaataaa aaaaaacact ccgcaaagggt taaagggAAC aacaaattct tttacaacac cattataaaa atcatatctc aaatctttagg ggaatatata cttcacacgg gatcttaact tttactcaact ttgttttattt ttttaaacca ttgttgggc ccaacacaat ggaatcccc ctggactagt	60 120 180 240 300 360 420 470
<210> 103	
<211> 581	
<212> DNA	
<213> Homo sapien	
<400> 103	
tttttttttt ttttttttga ccccccctttt ataaaaaaaaca agttaccatt ttatTTTact tacacatatt tattttataa ttggatttag atattcaaaa ggcagctttt aaaatcaaaac taaatggaaa ctgcctttaga tacataattc ttaggaatta gcttaaaatc tgccctaaagt gaaaatcttc tctagctttt ttgactgtaa attttgact cttgtaaaac atccaaattt attttcttg tctttaaaat tatctaattt ttccattttt tcccttattcc aagtcaattt gcttctctag cctcattttcc tagctttat ctactattag taagtggcctt ttttcttaaa aggaaaaaca ggaagagaaaa tggcacacaaa aacaaacatt ttatattcat atttcttacct acgtaataaa aatagcattt tgtgaagcca gctaaaaaga aggcttagat ccttttatgt ccatTTtagt cactaaacga tatcaaagtg ccagaatgca aaaggTTTgt gaacatttt tcaaaagcta atataagata tttcacatac tcattttct g	60 120 180 240 300 360 420 480 540 581
<210> 104	
<211> 578	
<212> DNA	
<213> Homo sapien	
<400> 104	
tttttttttt tttttttttt tttttctttt cttttttttt gaaatgagga tcgagtttt caactctctag atagggcatg aagaaaaactc atcttccag ctttaaaaata acaatcaaat ctcttatgtc atatcatatt ttaagttaaa ctaatgagtc actggcttat cttctcctga aggaaaatctg ttcatcttc tcattcatat agttatatac agtactaccc tgcatttttga gaggTTTTTC ttctctatTT acacatatac ttccatgtga atttgtatca aacctttatt ttcatgcaaa cttagaaaata atgtttcttt tgcataagag aagagaacaa tatagcattt caaaaactgct caaattgtttt gtttagttat ccattataat tagttggcag gagctaatac aaatcacatt tacgacagca ataataaaac tgaagtacca gttaaatatc caaaataatt aaaggaacat ttttagcctg ggtataattt gctaattcac tttacaagca tttatttagaa tgaattcaca tttttttttt cctagcccaa cacaatgg	60 120 180 240 300 360 420 480 540 578
<210> 105	
<211> 538	
<212> DNA	

<213> Homo sapien

<400> 105

tttttttttt tttttcagta ataatcagaa caatatttat ttttatattt aaaattcata	60
gaaaagtgcc ttacatttaa taaaagtttgc ttctcaag tgatcagagg aatttagatat	120
gtcttgaaca ccaatattaa ttggaggaaa atacacccaa atacattaag taaaattttt	180
aagatcatag agcttgcata tgaaaagata aaatttgacc tcagaaactc tgagcattaa	240
aaatccacta ttagcaata aattactatg gacttcttgc tttaattttt tgatgaat	300
gggggtgtcac ttggtaaacca acacattctg aaggatacat tacttagtga tagatttta	360
tgtactttgc taatacgtgg atatgagttg acaagtttctt ctttcttcaa tttttaagg	420
ggcgagaaat gaggaagaaa agaaaaggat tacgcatact gttcttcttca tggaaaggatt	480
agatatgttt ctttgccaa tattaaaaaa ataataatgt ttactactag tggaaaccc	538

<210> 106

<211> 473

<212> DNA

<213> Homo sapien

<400> 106

tttttttttt ttttttagtc aagtttctat ttttatttata attaaagtct tggtcatttc	60
atttatttagc tctgcaacctt acatatttaa attaaagaaa cgttttagac aactgtacaa	120
tttataaatg taaggtgccca ttatttagta atatattcctt ccaagagtgg atgtgtccct	180
tctccacca actaatgaac agcaacatta gttaattttt attagtagat atacactgct	240
gcaaacgcta attcttcttccatccat gtgatattgtt gtatatgtgt gagttggtag	300
aatgcatac aatctacaat caacagcaag atgaagctag gctgggtttt cggtgaaaat	360
agactgtgtc tgcgtcaatc aaatgatctg acctatctc ggtggcaaga actcttcgaa	420
ccgcttcctc aaaggcgctg ccacattttgtt ggcctttgc acttgttca aaa	473

<210> 107

<211> 1621

<212> DNA

<213> Homo sapien

<400> 107

cgcctatggca ctgcaggggca tctcggtcat ggagctgtcc ggcttggccc cggggccgtt	60
ctgtgtatgc gtcctggctg acttcggggc gcgtgtggta cgcgtggacc ggccccggctc	120
ccgcctacgac gtgagccgct tggccgggg caagcgctcg ctagtgcgtt acctgaagca	180
gcccggggca gccgcgtgc tgcggcgtct gtgcaagcgg tcggatgtgc tgctggagcc	240
cttccgcgc ggtgtcatgg agaaactcca gctggggcca gagattctgc agcggaaaa	300
tccaggcattt atttatgcca ggctgagtgg atttggccag tcaggaagct tctggccgtt	360
agctggccac gatataactt atttggctt gtcaggtgtt ctctcaaaaa ttggcagaag	420
tggtgagaat ccgtatgccc cgctgaatct cctggctgac ttgtgttgcgtt gtggccttat	480
gtgtgcactg ggcattataa tggctttt tgaccgcaca cgcactgaca aggtcaggt	540
cattgtatgc aatatgggg aaggaacagc atatttaagt tctttctgt ggaaaactca	600
gaaatcgagt ctgtggaaag cacctcgagg acagaacatg ttggatggtg gggcccttt	660
ctatacgact tacaggacag cagatgggg attcatggct gttggagcaa tagaaccocca	720
gttctacgag ctgctgatca aaggacttgg actaaagtct gatgaacttc ccaatcgat	780
gagcatggat gattggccag aaatgaagaa gaagtttgc gatgtatttgc caaagaagac	840
gaaggccagag tgggtgtcaaa tctttgacgg cacagatgcc tgggtgtactc cggttctgac	900
ttttgaggag gttgttcatc atgatcaca caaggaacgg ggctcgatca tcaccagtga	960
ggagcaggac gtgagccccc gcccctgacc tctgtgtta aacaccccg ccatcccttc	1020
tttcaaaagg gatccttca taggagaaca cactgaggag atacttgc aattttggatt	1080
cagccgcgaa gagatttatac agcttaactc agataaaaatc attgaaagta ataaggtaaa	1140
agctagtc taacttccag gcccacggct caagtgcattt tgaatactgc atttacagtg	1200
tagagtaaca cataacatttgc tatgcatggaa aacatggagg aacagtatttta cagtgtccca	1260

<210> 108

<211> 382

<212> PRT

<213> Homo sapien

<400> 108

325	330	335
Ile Pro Ser Phe Lys Arg Asp Pro Phe Ile Gly Glu His Thr Glu Glu		
340	345	350
Ile Leu Glu Glu Phe Gly Phe Ser Arg Glu Glu Ile Tyr Gln Leu Asn		
355	360	365
Ser Asp Lys Ile Ile Glu Ser Asn Lys Val Lys Ala Ser Leu		
370	375	380

<210> 109

<211> 1524

<212> DNA

<213> Homo sapien

<400> 109

ggcacgagc tgcgccagg cctgagcgga ggccggggca gcctcgccag cggggggccc	60
ggccctggcc atgcctca ggcgcgc ctgcgcctct acctcgccga cagctggaaac	120
cagtgcgacc tagtggctct cacctgtttc ctccctggcg tgggctgccc gctgaccccg	180
ggtttttacc acctggcccg cactgttctc tgcatcgact tcatggttt cacggtgccg	240
ctgcttcaca tcttcacggt caacaaacag ctggggccca agatcgcat cgtgagcaag	300
atgatgaagg acgtgttctt cttccctttc ttccctggcg tgggtgtgtt agcctatggc	360
gtggccacgg aggggcttctt gaggccacgg gacagtgact tcccaagtat cctgcgcgc	420
gtcttctacc gtcccttaccgc gcatcgatcc gggcaggattt cccaggagga catggacgttg	480
gcctctatgg agcacagcaa ctgctcgctg gagccccggct tctgggcaca ccctcttggg	540
gcccaggccgg gcacctgctg ctcccaacttgc tgggtgtgtt gctcctcgat	600
atcttcttcgc tcgtggccaa catcctgttgc gtcaacttgc tcattggcat gttcagttac	660
acattcgca aagtacaggg caacagcgat ctctacttggaa aggccgcacgc ttaccgcctc	720
atccggaaat tccactctcg gcccgcgtt gccccggccct ttatcgat ctcccaacttgc	780
cgccctcttcgc tcaggcaattt gtgcaggcgat cccaggccgc cccaggccgc ctcccccggcc	840
ctcgagcattt tccgggtttt ccttcttaag gaagccggac ggaagctgtt aacgtggaa	900
tccggcata aggagaactt tctgctggca cgcgcgttggg acaagccggaa gagcgtactcc	960
gagcgtctga agcgcacgtt ccagaagggtt gacttggcac tgaaacagctt gggacacatc	1020
cgcgagttacg aacagcgccctt gaaagtgttggg gagccggggagg tccagcgttgc tagccgcgtt	1080
ctgggggtggg tggccggggc cctgagccgc tctgccttgc tgccccccagg tggccgc	1140
ccccctgacc tgcctgggttca caaagactga gcccctgtgg cggacttcaaa ggagaagccc	1200
ccacaggggaa ttttgccttca agatcgatcc tcattttgggc ctccggccccc gacactgggtt	1260
gccttgcctt tgaggtgttgc cccatgttca tctggccac tggcaggacc acctttggaa	1320
gtgtcatctt tacaaccac agcatcgcccg gtcctccca gaaccagtcc cagccctggaa	1380
ggatcaaggc ctggatcccg ggcgttaccatctggagg ctgcagggttcc tttgggtttaa	1440
caggggaccac agaccctca ccactcacag attcctcaca ctggggaaat aaagccattt	1500
cagagaaaaaaa aaaaaaaaaaaaaaaa	1524

<210> 110

<211> 3410

<212> DNA

<213> Homo sapien

<400> 110

gggaaccacgt ctgcacgcgc tggctccggg tgacagccgc gcgcctcgcc caggatctga	60
gtgtatgagac gtgtccccac tgagggttgcacagcagca ggtgttggac atgggcttag	120
aagctggacc ggcacccaaag ggctggcaga aatgggcgc tggctgattt ctggcgtt	180
ggccggcagca aggaggagag gcccgcacgtt ctggagcaga gcccggacacga agcgttctg	240
gagtgccctga acggcccccctt gggccctacc cgcctggccc actatggtcc agaggctgtt	300
ggtgagccgc ctgctcgccgc accggaaacgc ccagcttttgc tggtcaacc tgctaaac	360
tggcctggag gtgtgtttgg ccgcaggcat cacctatgttgc cgcctctgc tgctggaa	420
gggggttagag gagaagttca tgaccatgttgc gtcggcattt ggtccagtgcc tggccctgg	480

ctgtgtcccg ctccctaggct cagccagtga ccactggcgt ggacgctatg gcccggccg	540
gcccttcata tgggcactgt ctttggcat ctgtgtgagc ctctttctca tcccaaggcc	600
cggctggcta gcagggctgc tgtccccgga tcccaggccc ctggagctgg cactgctcat	660
cctggcgtg gggctgtgg acttctgtgg ccaggtgtgc ttcaactccac tggagggcc	720
gtctctgtac ctcttccggg accccggacca ctgtgcggcgc gcctactctg tctatgcctt	780
catgatcagt cttggggct gcctggcata cttctgcct gccattgact gggacaccag	840
tgcctggcc ccctacctgg gcacccaggaa ggagtgcctc ttggcctgc tcaccctcat	900
tttcctcacc tgcgtacgag ccacactgt ggtggctgag gaggcagcgc tgggccccac	960
cgagccagca gaagggtgt cggcccccactgtgc catgcgggc	1020
ccgcttggt ttccgaaacc tggggccct gcctcccccgtg ctcaccaggc tggctggc	1080
catgccccgc accctgcgac ggctttcggt ggctgagctg tgcagctgaa tggcaactcat	1140
gaccccaacg ctgtttaca cggatttcgt gggcgagggg ctgtaccagg gcgtgcccag	1200
agctgagccg ggcacccgagg cccggagaca ctatgatgaa ggcgttcggta tgggcaagcct	1260
ggggctgttc ctgcagtgcg ccacccctt ggtcttcctt ctggctatgg accggctgg	1320
gcagcgattc ggcactcggag cagtctattt ggccagtgtg gcagcttcc ctgtggctgc	1380
cggtgccaca tgcctgtccc acagtgtggc cgtgggacca gcttcageccg cccctcaccgg	1440
gttcaccttc tcagccctgc agatcctgcc ctacacactg gcctccctct accaccggaa	1500
gaagcagggtt ttccctgcca aataccggagg ggacactgaa ggtgttagca gtgaggacag	1560
cctgtatgacc agcttctgc caggccctaa gcctggagct cccttccctaa atggacacgt	1620
gggtgtggaa ggcagggtggc tggccacc tccacccggc ctctgcgggg cctctgcctg	1680
tgatgtctcc gtacgtgtgg tgggtgggtga gcccaccggc gccagggtgg ttccggggcc	1740
gggcattctgc ctggacccctg ccacccctggaa tagtgccttc ctgtgttccc aggtggcccc	1800
atccctgttt atgggctcca ttgtccagct cagccagtcgt gtcaactgcct atatggtgtc	1860
tgccgcaggc ctgggtctgg tcgccattta ctttgcata caggtagtat ttgacaagag	1920
cgacttggcc aaatactcag cgtagaaaac ttccagcaca ttgggggtgg gggctgcct	1980
cactgggtcc cagccccccg ctccctgttag ccccatgggg ctgccccggc ggcggccagt	2040
ttctgttgc gccaaagtaa tgggtcttc tgctgccacc ctgtgtgtc gaggtgcgt	2100
gctgcacaggc tggggctgg ggcgtccctc tccctctcc ccagtctcta gggctgcct	2160
actggaggcc ttccaaagggg gtttcagtcgg gacttatac agggaggccaa gaagggtcc	2220
atgcacttggaa atgcggggac tctgcagggtt gattacccag gtcagggtt aacagcttc	2280
ctccctagttt agacacaccc agagaagggt ttttggagc tgaataaaact cagtcaccc	2340
gtttcccatcc tctaagcccc ttaacctgca gcttcgttta atgtagctct tgcattggag	2400
tttcttaggt gaaacactcc tccatgggat ttgaacatat gacttattt tagggaaaga	2460
gtccctgaggg gcaacacaca agaaccagggt cccctcagcc cacagcactg tctttttgt	2520
gatccacccccc cctcttaccc ttatcagga tggccctgt tggcccttctt gttgcacatca	2580
cagagacaca ggcatttaaa tatttaactt atttatttaa caaagttagaa gggaatccat	2640
tgctagcttt tctgtgttgg tgcataatat ttgggtggg tgggggatcc ccaacaatca	2700
gttccccctga gatagtgtt cattggctgt atcattgcca gaatcttctt ctctgggtt	2760
ctggccccccc aaaatgccta acccaggacc ttggaaattt tactcatccc aaatgataat	2820
tccaaatgtt gttaccaag gttagggtgt tgaaggaaagg tagagggtgg ggcttcaggt	2880
ctcaacgggt tccctaaacca cccctcttctt cttggcccg cctgggttccc cccacttcca	2940
ctccctctta ctctctctag gactggctgt atgaaggcac tgcccaaaat ttcccttacc	3000
cccaactttc ccctacccccc aactttcccccc accagctcca caaccctgtt tggagctact	3060
gcaggaccag aagcacaaag tgcgggttcc caagcccttg tccatctcag ccccccagagt	3120
atatctgtgc ttggggaaatc tcaacacagaa actcaggagc accccctgcc tgagctaagg	3180
gagggtttat ctctcagggg ggggttaagt gccgttgcataatgtcg tttattttt	3240
tagcgggggtt aatattttt actgtaaatgtt agcaatcaga gtataatgtt tatggtgaca	3300
aaattaaagg ctttcttata ttgtttaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa	3360
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa	3410

<210> 111

<211> 1289

<212> DNA

<213> Homo sapien

<400> 111

agccaggcgt	ccctctgcct	gcccaactcag	tggcaacacc	cgggagctgt	tttgccttt	60
gtggagcctc	agcagttccc	tcttcagaa	ctcaactgcca	agagccctga	acaggagcca	120
ccatgcagt	cttcagttc	attaagacca	tgtatgatcct	cttcaatttg	ctcatctttc	180
tgtgtggc	agccctgtt	gcagtgccca	tctgggtgtc	aatcgatggg	gcatccttc	240
tgaagatctt	cgggcccact	tgtccagtg	ccatgcagtt	tgtcaacgt	ggctacttcc	300
tcatcgcagc	ccggcgttgt	gtcttgctc	ttggtttcc	ggctgctat	ggtgctaaga	360
ctgagagcaa	gtgtgcctc	gtgacgttct	tcttcatcct	cctccatc	ttcaattgctg	420
agggtgcagc	tgctgtggc	gccttgggt	acaccacaat	ggctgagcac	ttectgacgt	480
tgctggtagt	gcctgccatc	aagaagatt	atggttccca	ggaagacttc	actcaagtgt	540
ggaacaccac	catgaaaagg	ctcaagtct	gtggcttcac	caactatacg	gattttgagg	600
actcacccat	cttcaaaag	aacagtgcct	ttccccccatt	ctggtgcaat	gacaaacgtca	660
ccaacacagc	caatgaaacc	tgcaccaagc	aaaaggctca	cgacaaaaaa	gtagagggtt	720
gcttcatca	gctttgtat	gacatccgaa	ctaattgcagt	caccgtgggt	ggtgtggcag	780
ctggaaattgg	gggcctcgag	ctggctgcca	tgattgtgtc	catgtatctg	tactgcaatc	840
tacaataagt	ccacttctgc	ctctgccact	actgctgcca	catgggaact	gtgaagaggc	900
accctggcaa	gcagcagtga	ttgggggagg	ggacaggatc	taacaatgtc	acttgggcca	960
aatggacct	gccctttctg	ctccagactt	ggggctagat	agggaccact	cccttttagcg	1020
atgcctgact	ttccctccat	tggtggtgg	atgggtgggg	ggcattccag	agcctctaag	1080
gtagccagtt	ctgttgcctc	ttccccccagt	ctattaaacc	tttgatatgc	ccctctaggcc	1140
tagtggtagt	cccagtgc	tactggggga	tgagagaaaag	gcattttata	gcctggcat	1200
aagtgaaatc	agcagagcct	ctgggtggat	gtgtagaagg	cacttcaaaa	tgcataaacc	1260
tgttacaatg	ttaaaaaaaaaa	aaaaaaaaaa				1289

<210> 112

<211> 315

<212> PRT

<213> Homo sapien

<400> 112

Met	Val	Phe	Thr	Val	Arg	Leu	Leu	His	Ile	Phe.	Thr	Val	Asn	Lys	Gln
1						5				10					15
Leu	Gly	Pro	Lys	Ile	Val	Ile	Val	Ser	Lys	Met	Met	Lys	Asp	Val	Phe
						20				25					30
Phe	Phe	Leu	Phe	Phe	Leu	Gly	Val	Trp	Leu	Val	Ala	Tyr	Gly	Val	Ala
						35				40					45
Thr	Glu	Gly	Leu	Leu	Arg	Pro	Arg	Asp	Ser	Asp	Phe	Pro	Ser	Ile	Leu
						50				55					60
Arg	Arg	Val	Phe	Tyr	Arg	Pro	Tyr	Leu	Gln	Ile	Phe	Gly	Gln	Ile	Pro
65									70			75			80
Gln	Glu	Asp	Met	Asp	Val	Ala	Leu	Met	Glu	His	Ser	Asn	Cys	Ser	Ser
						85				90					95
Glu	Pro	Gly	Phe	Trp	Ala	His	Pro	Pro	Gly	Ala	Gln	Ala	Gly	Thr	Cys
						100				105					110
Val	Ser	Gln	Tyr	Ala	Asn	Trp	Leu	Val	Val	Leu	Leu	Leu	Val	Ile	Phe
						115				120					125
Leu	Leu	Val	Ala	Asn	Ile	Leu	Leu	Val	Asn	Leu	Leu	Ile	Ala	Met	Phe
						130				135					140
Ser	Tyr	Thr	Phe	Gly	Lys	Val	Gln	Gly	Asn	Ser	Asp	Leu	Tyr	Trp	Lys
145									150			155			160
Ala	Gln	Arg	Tyr	Arg	Leu	Ile	Arg	Glu	Phe	His	Ser	Arg	Pro	Ala	Leu
									165			170			175
Ala	Pro	Pro	Phe	Ile	Val	Ile	Ser	His	Leu	Arg	Leu	Leu	Arg	Gln	
									180			185			190
Leu	Cys	Arg	Arg	Pro	Arg	Ser	Pro	Gln	Pro	Ser	Ser	Pro	Ala	Leu	Glu

195	200	205
His Phe Arg Val Tyr Leu Ser Lys Glu Ala Glu Arg Lys Leu Leu Thr		
210	215	220
Trp Glu Ser Val His Lys Glu Asn Phe Leu Leu Ala Arg Ala Arg Asp		
225	230	235
Lys Arg Glu Ser Asp Ser Glu Arg Leu Lys Arg Thr Ser Gln Lys Val		240
245	250	255
Asp Leu Ala Leu Lys Gln Leu Gly His Ile Arg Glu Tyr Glu Gln Arg		
260	265	270
Leu Lys Val Leu Glu Arg Glu Val Gln Gln Cys Ser Arg Val Leu Gly		
275	280	285
Trp Val Ala Glu Ala Leu Ser Arg Ser Ala Leu Leu Pro Pro Gly Gly		
290	295	300
Pro Pro Pro Pro Asp Leu Pro Gly Ser Lys Asp		
305	310	315

<210> 113

<211> 553

<212> PRT

<213> Homo sapien

<400> 113

Met Val Gln Arg Leu Trp Val Ser Arg Leu Leu Arg His Arg Lys Ala		
1	5	10
Gln Leu Leu Leu Val Asn Leu Leu Thr Phe Gly Leu Glu Val Cys Leu		
20	25	30
Ala Ala Gly Ile Thr Tyr Val Pro Pro Leu Leu Leu Glu Val Gly Val		
35	40	45
Glu Glu Lys Phe Met Thr Met Val Leu Gly Ile Gly Pro Val Leu Gly		
50	55	60
Leu Val Cys Val Pro Leu Leu Gly Ser Ala Ser Asp His Trp Arg Gly		
65	70	75
Arg Tyr Gly Arg Arg Arg Pro Phe Ile Trp Ala Leu Ser Leu Gly Ile		
85	90	95
Leu Leu Ser Leu Phe Leu Ile Pro Arg Ala Gly Trp Leu Ala Gly Leu		
100	105	110
Leu Cys Pro Asp Pro Arg Pro Leu Glu Leu Ala Leu Leu Ile Leu Gly		
115	120	125
Val Gly Leu Leu Asp Phe Cys Gly Gln Val Cys Phe Thr Pro Leu Glu		
130	135	140
Ala Leu Leu Ser Asp Leu Phe Arg Asp Pro Asp His Cys Arg Gln Ala		
145	150	155
Tyr Ser Val Tyr Ala Phe Met Ile Ser Leu Gly Gly Cys Leu Gly Tyr		
165	170	175
Leu Leu Pro Ala Ile Asp Trp Asp Thr Ser Ala Leu Ala Pro Tyr Leu		
180	185	190
Gly Thr Gln Glu Glu Cys Leu Phe Gly Leu Leu Thr Leu Ile Phe Leu		
195	200	205
Thr Cys Val Ala Ala Thr Leu Leu Val Ala Glu Glu Ala Ala Leu Gly		
210	215	220
Pro Thr Glu Pro Ala Glu Gly Leu Ser Ala Pro Ser Leu Ser Pro His		
225	230	235
Cys Cys Pro Cys Arg Ala Arg Leu Ala Phe Arg Asn Leu Gly Ala Leu		240
245	250	255
Leu Pro Arg Leu His Gln Leu Cys Cys Arg Met Pro Arg Thr Leu Arg		

260	265	270
Arg Leu Phe Val Ala Glu Leu Cys Ser Trp Met Ala Leu Met Thr Phe		
275	280	285
Thr Leu Phe Tyr Thr Asp Phe Val Gly Glu Gly Leu Tyr Gln Gly Val		
290	295	300
Pro Arg Ala Glu Pro Gly Thr Glu Ala Arg Arg His Tyr Asp Glu Gly		
305	310	315
Val Arg Met Gly Ser Leu Gly Leu Phe Leu Gln Cys Ala Ile Ser Leu		
325	330	335
Val Phe Ser Leu Val Met Asp Arg Leu Val Gln Arg Phe Gly Thr Arg		
340	345	350
Ala Val Tyr Leu Ala Ser Val Ala Ala Phe Pro Val Ala Ala Gly Ala		
355	360	365
Thr Cys Leu Ser His Ser Val Ala Val Val Thr Ala Ser Ala Ala Leu		
370	375	380
Thr Gly Phe Thr Phe Ser Ala Leu Gln Ile Leu Pro Tyr Thr Leu Ala		
385	390	395
Ser Leu Tyr His Arg Glu Lys Gln Val Phe Leu Pro Lys Tyr Arg Gly		
405	410	415
Asp Thr Gly Gly Ala Ser Ser Glu Asp Ser Leu Met Thr Ser Phe Leu		
420	425	430
Pro Gly Pro Lys Pro Gly Ala Pro Phe Pro Asn Gly His Val Gly Ala		
435	440	445
Gly Gly Ser Gly Leu Leu Pro Pro Pro Ala Leu Cys Gly Ala Ser		
450	455	460
Ala Cys Asp Val Ser Val Arg Val Val Val Gly Glu Pro Thr Glu Ala		
465	470	475
Arg Val Val Pro Gly Arg Gly Ile Cys Leu Asp Leu Ala Ile Leu Asp		
485	490	495
Ser Ala Phe Leu Leu Ser Gln Val Ala Pro Ser Leu Phe Met Gly Ser		
500	505	510
Ile Val Gln Leu Ser Gln Ser Val Thr Ala Tyr Met Val Ser Ala Ala		
515	520	525
Gly Leu Gly Leu Val Ala Ile Tyr Phe Ala Thr Gln Val Val Phe Asp		
530	535	540
Lys Ser Asp Leu Ala Lys Tyr Ser Ala		
545	550	

<210> 114
 <211> 241
 <212> PRT
 <213> Homo sapien

<400> 114

Met Gln Cys Phe Ser Phe Ile Lys Thr Met Met Ile Leu Phe Asn Leu		
1	5	10
Leu Ile Phe Leu Cys Gly Ala Ala Leu Leu Ala Val Gly Ile Trp Val		
20	25	30
Ser Ile Asp Gly Ala Ser Phe Leu Lys Ile Phe Gly Pro Leu Ser Ser		
35	40	45
Ser Ala Met Gln Phe Val Asn Val Gly Tyr Phe Leu Ile Ala Ala Gly		
50	55	60
Val Val Val Phe Ala Leu Gly Phe Leu Gly Cys Tyr Gly Ala Lys Thr		
65	70	75
Glu Ser Lys Cys Ala Leu Val Thr Phe Phe Ile Leu Leu Ile		80

85	90	95
Phe Ile Ala Glu Val Ala Ala Val Val Ala Leu Val Tyr Thr Thr		
100	105	110
Met Ala Glu His Phe Leu Thr Leu Leu Val Val Pro Ala Ile Lys Lys		
115	120	125
Asp Tyr Gly Ser Gln Glu Asp Phe Thr Gln Val Trp Asn Thr Thr Met		
130	135	140
Lys Gly Leu Lys Cys Cys Gly Phe Thr Asn Tyr Thr Asp Phe Glu Asp		
145	150	155
160		
Ser Pro Tyr Phe Lys Glu Asn Ser Ala Phe Pro Pro Phe Cys Cys Asn		
165	170	175
Asp Asn Val Thr Asn Thr Ala Asn Glu Thr Cys Thr Lys Gln Lys Ala		
180	185	190
His Asp Gln Lys Val Glu Gly Cys Phe Asn Gln Leu Leu Tyr Asp Ile		
195	200	205
Arg Thr Asn Ala Val Thr Val Gly Val Ala Ala Gly Ile Gly Gly		
210	215	220
Leu Glu Leu Ala Ala Met Ile Val Ser Met Tyr Leu Tyr Cys Asn Leu		
225	230	235
Gln		240

<210> 115
 <211> 366
 <212> DNA
 <213> Homo sapien

<400> 115

gcttttctc tccccccctc tgaatttaat tctttcaact tgcaatttgc aaggattaca	60
catttcactg tgatgtatat tggttgcaa aaaaaaaaaa gtgttttg ttaaaaattac	120
ttggtttgtg aatccatctt gcttttccc cattgaaact agtcattaac ccattctgt	180
actggtagaa aaacatctga agagctagtc tatcagcatc tgacaggtga attggatgg	240
tctcagaacc atttcaccca gacagcctgt ttctatccctg ttaataaaat tagtttggt	300
tctctacatg cataacaaac cctgctccaa tctgtcacat aaaagtctgt gacttgaagt	360
tttagtc	366

<210> 116
 <211> 282
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(282)
 <223> n = A,T,C or G

<400> 116

acaaagatga accatccct atattatagc aaaattaaaa tctacccgta ttctaatttt	60
gagaaatgag atnaaacaca atnttataaa gtctacttag agaagatcaa gtgaccccaa	120
agactttact atttcataat tttaaagacac atgatttatac ctattttagt aacctggttc	180
atacgtaaaa caaaggataa tgtgaacaggc agagaggatt tggcaga aatctatgt	240
tcaatctngaa actatctana tcacagacat ttctattccct tt	282

<210> 117
 <211> 305

<212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(305)
 <223> n = A,T,C or G

<400> 117

acacatgtcg cttcaactgcc ttcttagatg cttctggtca acatanagga acagggacca	60
tatttacct ccctcctgaa acaattgcaa aataanacaa aatatatgaa acaattgcaa	120
aataaggcaa aatatatgaa acaacaggtc tcgagatatt gaaaatcagt caatgaagga	180
tactgatccc ttagtcaactgt cctaattgcag gatgtggaa acagatgagg tcacctctgt	240
gactccccca gcttactgcc tgttagagagt ttctangctg cagttcagac agggagaaat	300
tgggt	305

<210> 118
 <211> 71
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(71)
 <223> n = A,T,C or G

<400> 118

accaaggtgt ntgaatctct gacgtgggaa tctctgattc ccgcacaatc tgagtggaaa	60
aantccctggg t	71

<210> 119
 <211> 212
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(212)
 <223> n = A,T,C or G

<400> 119

actccggttg gtgtcagcag cacgtggcat tgaacatngc aatgtggagc ccaaaccaca	60
gaaaatgggg taaaaattggc caactttcta tnaacttatg ttggcaant tgccaccaac	120
agtaagctgg cccttctaatt aaaagaaaaat taaaaggttt ctcactaanc ggaatttaant	180
aatggantca aganactccc aggccctcagc gt	212

<210> 120
 <211> 90
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(90)
 <223> n = A,T,C or G

<400> 120
actcgttgca natcaggggc ccccccagagt caccgttgca ggagtccttc tggtcttgcc 60
ctccgcccgc gcagaacatg ctggggtgtt 90

<210> 121
<211> 218
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(218)
<223> n = A,T,C or G

<400> 121
tgtancgtga anacgacaga nagggttgtc aaaaatggag aanccttgaa gtcattttga 60
gaataagatt tgctaaaaga tttggggcta aaacatggtt attgggagac atttctgaag 120
atatncangt aaattangga atgaattcat ggttcttttgc ggaattccctt tacgatngcc 180
agcatanact tcatgtgggg atancagcta cccttgta 218

<210> 122
<211> 171
<212> DNA
<213> Homo sapien

<400> 122
taggggtgtga tgcaactgtga aggacaaaaaa ttgagactca actggcttaa ccaataaagg 60
catttgttag ctcatggAAC aggaagtccgg atggggggc atttcagtg ctgcatgagt 120
caccaccccg gcggggtcat ctgtgccaca ggtccctgtt gacagtgcgg t 171

<210> 123
<211> 76
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(76)
<223> n = A,T,C or G

<400> 123
tgtagcgtga agacnacaga atgggtgtgtc ctgtgtatc caggaacaca tttattatca 60
ttatcaanta ttgtgt 76

<210> 124
<211> 131
<212> DNA
<213> Homo sapien

<400> 124
acctttcccc aaggccaatg tcctgtgtgc taactggccg gctgcaggac agctgcaatt 60
caatgtgctg ggtcatatgg aggggaggag actctaaaat agccaaatTTT attctttgg 120
ttaagattttt t 131

<210> 125

<211> 432

<212> DNA

<213> Homo sapien

<400> 125

actttatcta ctggctatga aatagatggt gaaaaattgc gttaccaact ataccactgg 60
 cttaaaaag aggtgatagc tcttcagagg acttgtgact tttgctcaga tgctgaagaa 120
 ctacagtctg catttggcag aaatgaagat gaatttggat taaatgagga tgctgaagat 180
 ttgcctcacc aaacaaaagt gaaacaactg agagaaaattt ttcaggaaaa aagacagtgg 240
 ctcttgaagt atcagtcact tttgagaatg tttcttagtt actgcatact tcattggatcc 300
 catgggggg gccttgcatc tgtaagaatg gaattgattt tgctttgca agaatctcag 360
 cagaaacat cagaaccact attttctagc cctctgtcag agcaaaccctc agtgcctctc 420
 ctcttgctt gt 432

<210> 126

<211> 112

<212> DNA

<213> Homo sapien

<400> 126

acacaacttg aatagtaaaa tagaaactga gctgaaaattt ctaattcact ttctaaccat 60
 agtaagaatg atatttcccc ccagggatca ccaaataattt ataaaaattt gt 112

<210> 127

<211> 54

<212> DNA

<213> Homo sapien

<400> 127

accacgaaac cacaaacaag atggaagcat caatccactt gccaaagcaca gcag 54

<210> 128

<211> 323

<212> DNA

<213> Homo sapien

<400> 128

acctcattag taattgtttt gttgtttcat tttttctaa tgtctccctt ctaccagctc 60
 acctgagata acagaatgaa aatggaagga cagccagatt tctccttgc tctctgtca 120
 ttctctctga agtctaggtt acccattttg gggaccattt ataggcaata aacacagtcc 180
 ccaaagcatt tggacagttt cttgttggt tttagaatgg ttttcctttt tcttagcctt 240
 ttcctgcaaa aggctcactc agtcccttgc ttgctcagtg gactggcctc cccaggcct 300
 aggctgcctt ctttccatg tcc 323

<210> 129

<211> 192

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (192)

<223> n = A,T,C or G

<400> 129
acatacatgt gtgtatattt ttaaatatca ctttgtatc actctgactt ttttagcatac 60
tggaaaacaca ctaacataat ttntgtgaac catgatcaga tacaacccaa atcattcatc 120
tagcacatcc atctgtgata naaagatagg tgagttcat ttccctcacg ttggccaatg 180
gataaacaatgt 192

<210> 130
<211> 362
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(362)
<223> n = A,T,C or G

<400> 130
ccctttttta tggaatgagt agactgtatg tttgaanatt tanccacaac ctcttgaca 60
tataatgacg caacaaaaag gtgtctttt gtcctatgg tcagttatg cccctgacaa 120
gtttccattt tgtttgcccg atcttctggc taatcgtggt atcctccatg ttatttagtaa 180
ttctgtattt cattttgtta acgcctggta gatgtaacct gctangaggc taactttata 240
cttatttaaa agcttttatt ttgtggtcat taaaatggca atttatgtgc agcactttat 300
tgcagcagga agcacgtgtg ggttgggtgt aaagctctt gctaattttaaaaagtaatgg 360
362

<210> 131
<211> 332
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(332)
<223> n = A,T,C or G

<400> 131
ctttttgaaa gatcgtgtcc actcctgtgg acatcttgg ttaatggagt ttcccatgca 60
gtangactgg tatgggttgc gctgtccaga taaaacatt tgaagagctc caaaatgaga 120
gttctcccaag gttcgccttg ctgctccaag ttcagcagc agcctttt aggaggcatc 180
ttctgaactt gattaaggca gcttggtaat ctgatgtatg ttggtttattt atccaactaa 240
cttccatctt ttatcaactgg agaaagccca gactccccan gacnggtacg gattgtggc 300
atanaaggat tgggtgaagc tggcggtgtgt 332

<210> 132
<211> 322
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(322)
<223> n = A,T,C or G

<400> 132
acttttgcata ttttgtatataaaacaatc ttgggacatt ctccgtaaaa ctaggtgtcc 60

agtggctaag agaactcgat ttcaagcaat tctgaaagga aaaccagcat gacacagaat	120
ctcaaattcc caaacagggg ctctgtggga aaaatgaggg aggaccttgc tatctcggtt	180
tttagcaagt taaaatgaan atgacaggaa aggcttattt atcaacaaag agaagagtttggatgcttct aaaaaaaaaact ttggtagaga aaataggaat gctnaatcct agggaaagcct	240
gtaacaatct acaattggtc ca	300
	322
<210> 133	
<211> 278	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (278)	
<223> n = A,T,C or G	
<400> 133	
acaaggcttc acaagtttaa ctaaaattggg attaatcttt ctgtanttat ctgcataatt	60
cttgttttc ttccatctg gctcctgggt tgacaatttg tggaaacaac tctattgcta	120
ctattaaaaaaa aaaaatcacaa atctttccct ttaagctatg tttaattcaa actattcctg	180
ctattccctgt ttgtcaaag aaattatatt ttcaaaata tgtntatttg ttgtatgggt	240
ccccacgaaac actaataaaaa accacagaga ccagcctg	278
<210> 134	
<211> 121	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (121)	
<223> n = A,T,C or G	
<400> 134	
gtttanaaaaa ctgttttagc tccatagagg aaagaatgtt aaacttgta tttaaaaaca	60
tgattctctg aggttaaact tggtttcaa atgttatttt tacttgatt ttgttttgg	120
t	121
<210> 135	
<211> 350	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (350)	
<223> n = A,T,C or G	
<400> 135	
acttanaacc atgcctagca catcagaatc cctcaaagaa catcagtata atcctataacc	60
atancaagtgtgactgggtt aagcgctgcga caaaggctcag ctggcacatt acttgtgtgc	120
aaacttgcata cttttgttct aagttaggaac tagtatacag tncctaggan tggtactcca	180
gggtgcggcccaactcctgc agccgctcct ctgtgccagn ccctgnaagg aactttcgct	240
ccacccatcaat caagccctgg gccatgctac ctgcaattgg ctgaacaaac gtttgctgag	300
ttcccaagga tgcaaaagcct ggtgctcaac tcctggggcg tcaactcagt	350

<210> 136
 <211> 399
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(399)
 <223> n = A,T,C or G

<400> 136

tgtaccgtga agacgacaga agttgcattgg cagggacagg gcagggccga ggccagggtt	60
gctgtgattt tatccgataat ntccctcgta gaaaagataa tgtagatgacg tgagcagcct	120
gcagacttgt gtctgccttc aanaagccag acaggaaggc cctgcctgcc ttggctctga	180
cctggcgccc agccagccag ccacaggtgg gcttcttcct tttgtgtgtca caacnccaag	240
aaaactgcag aggcccaggc tcaggtgtta gtgggtangt gaccataaaa caccagggtgc	300
tcccaggaac ccgggcaaag gccatccccca cctacagcca gcatgcccac tggcgtgtat	360
ggtgccagaat gatgaagcag ccagntgttc tgctgtgtt	399

<210> 137
 <211> 165
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(165)
 <223> n = A,T,C or G

<400> 137

actgggtgtgg tnggggtga tgctgggtgg anaagttgan gtgacttcan gatgggtgtt	60
ggaggaagtgtgtgaacgtatggatgtaga nttttggcc gtgctaaatag agttcggga	120
ttggctggtc ccactgggtgg tcactgtcat tggtgggtt cctgt	165

<210> 138
 <211> 338
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(338)
 <223> n = A,T,C or G

<400> 138

actcaactgga atgccccatt cacaacagaa tcagaggatct gtaaaaacat taatggctcc	60
ttaacttctc cagtaagaat cagggacttg aaatggaaac gttAACAGCC acatgccccaa	120
tgctggcag tctcccatgc ctccacatgt gaaagggttt gaaaaaaatc acatccaatg	180
tcatgtgtttt ccagccacac caaaagggtgc ttgggtggaa ggcctggggg catananggt	240
cangcctcag gaagcccaa gtccattca gcttgcac tgcattcc ccatntttaa	300
aaaaactgtat gcctttttttt tttttttttaaaaattc	338

<210> 139

<211> 382

<212> DNA

<213> Homo sapien

<400> 139

ggaaatctt gttttggca tctgggttgc ctatagccga ggccactttg acagaacaaa	60
gaaaggact tcgagtaaga aggtgattt cagccagcct agtgcccgaa gtgaaggaga	120
attcaaacag acctcgtcat tcctggtgtg agcctggtcg gctcacccgc tatcatctgc	180
atttgccta ctcaggtgtc accggactct ggcccctgat gtctgttagtt tcacaggatg	240
ccttatttgt ctctcacacc ccacagggcc ccctacttct tcggatgtgt tttataaat	300
gtcagctatg tgccccatcc tccttcatgc cctccctccc ttccctacca ctgctgagtg	360
gcctggaact tgtttaaagt gt	382

<210> 140

<211> 200

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(200)

<223> n = A,T,C or G

<400> 140

accaaanc ttctctgttg ttttngattt tactataggg gtttngcttn ttctaaanat	60
acttttcatt taacanctt tttaagtgt caggctgcac ttgtccat anaattattt	120
ttttcacatt tcaacttgta ttgtttgtc tcttanagca ttggtaaat cacatatttt	180
atattcagca taaaggagaa	200

<210> 141

<211> 335

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(335)

<223> n = A,T,C or G

<400> 141

actttatttt caaaacactc atatgttgc aaaaacacat agaaaaataa agtttggtgg	60
gggtgcgtac taaacttcaa gtcacagact tttatgtgac agattggagc agggtttgtt	120
atgcatgtag agaaccctaaa ctaattttt aaacaggata gaaacaggt gtctgggtga	180
aatggttctg agaaccatcc aattcacctg tcagatgctg atanactagc tcttcagatg	240
tttttctacc agttcagaga tnggtaatg actantcca atggggaaaa agcaagatgg	300
attcacaaac caagtaattt taaacaaga cactt	335

<210> 142

<211> 459

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(459)

<223> n = A,T,C or G

<400> 142

accaggtaa tattgccaca tatatcctt ccaattgcgg gctaaacaga cgtgtattta	60
gggttgtta aagacaaccc agcttaatat caagagaaat tgtgacctt catggagtat	120
ctgatggaga aaacactgag ttttgacaaa tcttattttt ttcagatagc agtctgatca	180
cacatggtcc aacaacactc aaataataaa tcaaataatna tcagatgta aagattggtc	240
ttcaaacatc atagccaatg atgccccgct tgcctataat ctctccgaca taaaaccaca	300
tcaacaccc tc agtggccacc aaaccattca gcacagcttc cttaactgtg agctgtttga	360
agctaccagt ctgagcacta ttgactatnt tttcangct ctgaatagct ctagggatct	420
cagcangggt gggaggaacc agctcaacct tggcgta	459

<210> 143

<211> 140

<212> DNA

<213> Homo sapien

<400> 143

acatttcctt ccaccaagtc aggactcctg gcttctgtgg gagttcttat cacctgaggg	60
aaatccaaac agtctctcct agaaaaggaat agtgcacca acccccaccca tctccctgag	120
accatccgac ttccctgtgt	140

<210> 144

<211> 164

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (164)

<223> n = A,T,C or G

<400> 144

acttcagtaa caacatacaa taacaacatt aagtgtatat tgccatctt gtcatatctt	60
atctatacca ctctcccttc tgaaaacaan aatcactanc caatcactta tacaaatgg	120
aggcaattaa tccatatttgc ttcaataaa ggaaaaaaag atgt	164

<210> 145

<211> 303

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (303)

<223> n = A,T,C or G

<400> 145

acgttagacca tccaaactttg tatttgaat ggcaaacatc cagnagcaat tcctaaacaa	60
actggagggt atttataccc aattatccc ttcattaaca tgccctcctc ctcaggctat	120
gcaggacagc tatcataagt cggcccaggc atccagatac taccatttgataaaacttca	180
gtaggggagt ccatccaagt gacaggtcta atcaaaggag gaaatggaaac ataagccca	240
tagtaaaatn ttgcttagct gaaacagcca caaaagactt accgcccgtgg tgattaccat	300
caa	303

<210> 146

<211> 327
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(327)
 <223> n = A,T,C or G

<400> 146

actgcagctc aattagaagt ggtctctgac tttcatcanc ttctccctgg gctccatgac	60
actggcctgg agtactcat tgctctgggt ggttgagaga gctccttgc caacaggcct	120
ccaagtcaagg gctgggattt gtttccttc cacattctag caacaatatg ctggccactt	180
cctgaacagg gagggtgaaa ggagccagca tggaaacaagg tgccacttgc taaagttagcc	240
agacttgccc ctggcctgt cacacctact gatgaccccttgc tggcctgca ggatggaatg	300
tagggtgag ctgtgtgact ctatgt	327

<210> 147

<211> 173
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(173)
 <223> n = A,T,C or G

<400> 147

acattgttt tttagataaa agcattgana gagctctcct taacgtgaca caatggagg	60
actggAACAC atacccacat ctttgtctg agggataatt ttctgataaa gtcttgctgt	120
atattcaagc acatatgtta tatattatttc agttccatgt ttatagccctaa gtt	173

<210> 148

<211> 477
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(477)
 <223> n = A,T,C or G

<400> 148

acaaccactt tatctcatcg aatTTTAAC ccaaactcac tcactgtgcc tttctatcct	60
atgggatata ttatTTGATG ctccatttca tcacacatat atgaataata cactcataact	120
gccctactac ctgctgcaat aatcacattt cttctctgtc ctgaccctga agccattggg	180
gtggccttag tggccatcag tccangcctg cacattgagc ctttgagctc cattgtcac	240
nccancccac ctacccgacc ccattctt acacagctac ctccctgtc tctaacccca	300
tagattatnt ccaaattcag tcaattaagt tactattaac actctacccg acatgtccag	360
caccactggt aaggcttctc cagccaaacac acacacacac acacncacac acacacat	420
ccaggcacag gctacctcat ttccacaatc acccctttaa ttaccatgtc atgggtgg	477

<210> 149

<211> 207
 <212> DNA

<213> Homo sapien

<400> 149

acagtttatataaatatca agaaataaaac ttgcaatgag agcatttaag aggaaagaac	60
taacgtattt tagagagcca aggaagggtt ctgtggggag tggatgtaa ggtggggct	120
gatgataaat aagagtccgc cagtaatgt ggtgggtgtgg tatggcaca gtgaagaaca	180
tttcaggcag agggAACAGC agtgaaa	-207

<210> 150

<211> 111

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(111)

<223> n = A,T,C or G

<400> 150

accttgattt cattgctgct ctgatggaaa cccaaactatc taattttagct aaaacatggg	60
cacttaaatg tggtcagtgt ttggacttgt taactantgg catctttggg t	111

<210> 151

<211> 196

<212> DNA

<213> Homo sapien

<400> 151

agcgccggcag gtcatattga acattccaga tacctatcat tactcgatgc tttgataac	60
agcaagatgg ctttgaactc agggtcacca ccagctattg gaccttacta tgaaaaccat	120
ggataccaac cgaaaaaccc ctatcccgca cagccccactg tggccccac tgtctacgag	180
gtgcattccgg ctcagt	196

<210> 152

<211> 132

<212> DNA

<213> Homo sapien

<400> 152

acagcactt cacatgttaag aaggagaaaa ttccctaaatg taggagaaag ataacagaac	60
cttcccctt tcatcttagt gttggaaacct gatgtttat gttgacagga atagaaccag	120
gagggagttt gt	132

<210> 153

<211> 285

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(285)

<223> n = A,T,C or G

<400> 153

acaanaccca nganaggcca ctggccgtgg tgtcatggcc tccaaacatg aaagtgtcag	60
---	----

cttctgctct tatgtcctca tctgacaact ctttaccatt tttatcctcg ctcagcagga 120
 gcacatcaat aaagtccaaa gtcttgact tggccttggc ttggaggaaag tcatacacac 180
 cctggctagt gagggtgcgg cgccgcctt gatatgacggc atctgtgaag tcgtgcacca 240
 gtctgcaggc cctgtgaaag cgccgtccac acggagtnag gaatt 285

<210> 154
 <211> 333
 <212> DNA
 <213> Homo sapien

<400> 154
 accacagtcc tggggccca gggcttcatg accctttctg taaaaagcca tattatcacc 60
 acccccaaatt ttcccttaaa tatcttaac tgaagggtc agcctcttga ctgcaaagac 120
 cctaagccgg ttacacagct aactcccact gcccctgatt tgtgaaattt ctgctgcctg 180
 attggcacag gagtcgaagg tggtcagctc ccctccttgc ttggaaacgaga ctctgatttt 240
 agtttccacaa attctcgggc cacctcgatca ttgtctctt gaaataaaat ccggagaatg 300
 gtcaggcctg tctcatccat atggatcttc cgg 333

<210> 155
 <211> 308
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1) ... (308)
 <223> n = A,T,C or G

<400> 155
 actggaaata ataaaaaccca catcacagtg ttgtgtcaaa gatcatcagg gcatggatgg 60
 gaaagtgcctt tggaaactgt aaagtgccta acacatgatc gatgattttt ttataatat 120
 ttgaatcacg gtgcatacaa actctcctgc ctgtccttcc tggggccccag cccagcccc 180
 atcacagctc actgtctgt tcataccaggc ccagcatgtt gtggctgatt cttttggct 240
 gcttttagcc tccanaagtt tctctgaagc caacccaaacc tctangtgtt aggcattgtt 300
 gccctgtt 308

<210> 156
 <211> 295
 <212> DNA
 <213> Homo sapien

<400> 156
 accttgcctg gtgcttggaa catattagga actaaaata ttagatgata acagtgccta 60
 ttattgatta ctgagagaac ttttagacat ttagttgaag atttctaca caggaactgt 120
 gaataggaga ttatgtttgg ccctcatatt ctctcctatc ctccctgcctt cattctatgt 180
 ctaatatatt ctcaatcaa taaggttagc ataatcggg aatcgaccaa ataccaatat 240
 aaaaccagat gtctatcctt aagattttca aatagaaaac aaattaacag actat 295

<210> 157
 <211> 126
 <212> DNA
 <213> Homo sapien

<400> 157
 acaagttaa atagtgttgtt cactgtgcattt gtgtgaaat gtgaaatcca ccacatttctt 60

gaagagcaaa acaaattctg tcataatgtatc tctatcttgg gtcgtggta tatctgtccc	120
cttagt	126

<210> 158

<211> 442

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(442)

<223> n = A,T,C or G

<400> 158

acccactgg cttggaaaca cccatcccta atacgatgat tttctgtcg tgtgaaaatg	60
aanccagcag gctgccctta gtcagtccctt cttccagag aaaaagagat ttgagaaagt	120
gcctggtaa ttcaccatta atttcctccc ccaaactctc tgagtcttcc cttaatattt	180
ctgggtgttc tgaccaaagc aggtcatggt ttgtttagca tttggatcc cagtgaagta	240
natgtttgtt gccttgcata cttagccctt cccacgcaca aacggagtgg cagagtggtg	300
ccaaccctgt tttccagtc cacgttagaca gattcacagt gcggaattctt ggaagctgga	360
nacagacggg ctcttgcag agccgggact ctgagangga catgagggcc tctgcctctg	420
tgttcattct ctgatgtctt gt	442

<210> 159

<211> 498

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(498)

<223> n = A,T,C or G

<400> 159

acttccagg aacgtgttg tttccgttga gcctgaactg atgggtgacg ttgttaggttc	60
tccaaacaaga actgagggtt cagagcgggtt agggaaagat gctgttccag ttgcacctgg	120
gctgctgtgg actgttgttg attcctcaact acggcccaag gttgtggAAC tggcanaaag	180
gtgtgttgtt gganttgagc tcggcggtt gtggtaggtt gtgggtctt caacagggc	240
tgctgtgggtt ccgggangtg aangtgttg tgcacttgag ctggccagc tctggaaagt	300
antanattct tcctgaaggc cagcgcttggt ggagctggca ngggtcantg ttgtgtgtaa	360
cgaaccagtg ctgctgtggg tgggtgtana tcctccacaa agcctgaagt tatgggtcn	420
tcaggttaana atgtgggttc agtgcctctg ggcngctgtg gaaggttgta nattgtcacc	480
aagggataaa gctgtgg	498

<210> 160

<211> 380

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(380)

<223> n = A,T,C or G

<400> 160

acctgcatcc	agcttccctg	ccaaactcac	aaggagacat	caacctctag	acagggaaac	60
agcttcagga	tacttccagg	agacagagcc	accagcagca	aaacaaaatat	tcccatgcct	120
ggagcatggc	atagaggaag	ctganaaatg	tgggtctga	ggaagccatt	ttagtctggc	180
cactagacat	ctcatcagcc	acttgtgtga	agagatgccc	catgacccca	gatgcctctc	240
ccacccttac	ctccatctca	cacacttgag	cttccactc	tgtataattc	taacatcctg	300
gagaaaaatg	gcagtttgcac	cgaacctgtt	cacaacggta	gaggctgatt	tctaacgaaa	360
ctttagaaat	gaagcctgga					380
<210>	161					
<211>	114					
<212>	DNA					
<213>	Homo sapien					
<400>	161					
actccacatc	ccctctgagc	aggcggttgt	cgttcaaggt	gtatggcc	ttgcctgtca	60
caactgtccac	tggccctta	tccacttggt	gcttaatccc	tcgaaagagc	atgt	114
<210>	162					
<211>	177					
<212>	DNA					
<213>	Homo sapien					
<400>	162					
actttctgaa	tcgaatcaa	tgatacttag	tgtagttta	atatcctcat	atatatcaa	60
gttttactac	tctgataatt	ttgtaaacca	ggtaaccaga	acatccagtc	atacagctt	120
tggtgatata	taacttggca	ataacccagt	ctggtgatac	ataaaactac	tcactgt	177
<210>	163					
<211>	137					
<212>	DNA					
<213>	Homo sapien					
<220>						
<221>	misc_feature					
<222>	(1) ... (137)					
<223>	n = A,T,C or G					
<400>	163					
catttatata	gacaggcgtg	aagacattca	cgacaaaaac	gcgaaattct	atccctgtac	60
canagaaggc	agctacggct	actcctacat	cctggcgtgg	gtggccttcg	cctgcacctt	120
atcagcggc	atgtatgt					137
<210>	164					
<211>	469					
<212>	DNA					
<213>	Homo sapien					
<220>						
<221>	misc_feature					
<222>	(1) ... (469)					
<223>	n = A,T,C or G					
<400>	164					
tttatcacaa	tgaatgttct	cctggcagc	gttgtgatct	ttgccacett	cgtgacttta	60
gcaatgcac	catgttattt	cataccta	gaggagttc	caggagattc	aaccaggaaa	120

tgcatggatc tcaaaggaaa caaacaccca ataaactcg agtggcagac tgacaactgt	180
gagacatgca cttgtacga aacagaaatt tcatgttgc cccttgttc tacacctgt	240
ggttatgaca aagacaactg ccaaagaatc ttcaagaagg aggactgcaa gtatatcgt	300
gtggagaaga aggacccaaa aaagacctgt tctgtcagt aatggataat ctaatgtct	360
tcttagtaggc acagggctcc caggccaggc ctcatctcc tctggcctct aatagtcaat	420
gattgtgtag ccatgcctat cagaaaaag atnttgagc aaacacttt	469
<210> 165	
<211> 195	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(195)	
<223> n = A,T,C or G	
<400> 165	
acagttttt atanatatcg acattgccgg cacttgtt cagtttcata aagctggtgg	60
atccgctgtc atccactatt ccttggctag agtaaaaatt attcttatacg cccatgtccc	120
tgcaggccgc cgcggcgtag ttctegttcc agtcgtcttgc acacacaggg tgccaggact	180
tcctctgaga tgagt	195
<210> 166	
<211> 383	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(383)	
<223> n = A,T,C or G	
<400> 166	
acatcttagt agtgtggcac atcagggggc catcagggtc acagtcactc atagcctcgc	60
cggagtcgga gtccacacca cccgtttagg tgtgctcaat ctgggcttgc ggcggccacct	120
ttggagaagg gatatgtgc acacacatgt ccacaaagcc tgtgaactcg ccaaagaatt	180
tttgcagacc agcctgagca aggggcggat gttcagcttc agctcctcct tcgtcaggtg	240
gatgccaacc tcgtctangg tccgtggaa gctgggttcc acntcaccta caacctggc	300
gangatctta taaagaggct ccnagataaa ctccacgaaa cttctctggg agctgctagt	360
nggggccttt ttggtaact ttc	383
<210> 167	
<211> 247	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(247)	
<223> n = A,T,C or G	
<400> 167	
acagagccag accttggcca taaatgaanc agagattaag actaaacccc aagtgcanaat	60
tggagcagaa actggagcaa gaagtggcc tggggctgaa gtagagacca aggccactgc	120

tatancata cacagagcca actctcaggc caaggcnatg gttggggcag anccagagac 180
tcaatctgan tccaaagtgg tggctgaaac actggtcatg acanaggcag tgactctgac 240
tgangtc 247

<210> 168
<211> 273
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(273)
<223> n = A,T,C or G

<400> 168

acttctaagt ttcttagaag tggaggatt gtantcatcc tgaaaatggg ttacttcaa 60
aatccctcan ccttgttctt cacnactgtc tatactgana gtgtcatgtt tccacaaagg 120
gctgacacct gagcctgnat ttctactcat ccctgagaag ccctttccag tagggtggc 180
aattccaaac ttcccttgcac caagttccc aggcttctc ccctggaaaa ctccagcttg 240
agtcccgat acactcatgg gctgccctgg gca 273

<210> 169
<211> 431
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(431)
<223> n = A,T,C or G

<400> 169

acagccctgg ctccccaaa ctccacagtc tcagtgcaga aagatcatct tccagcagtc 60
agctcagacc agggtaaag gatgtgacat caacagttc tggtttcaga acaggttcta 120
ctactgtcaa atgacccccc atacttccctt aaaggctgtg gtaagtttg cacaggtgag 180
ggcagcagaa aggggtant tactgtatggc caccatctt tctgtataact ccacactgac 240
cttgccatgg gcaaaggccc ctaccacaaa aacaatagga tcactgctgg gcaccagctc 300
acgcacatca ctgacaaccg ggatggaaaa agaantgcca actttcatac atccaactgg 360
aaagtgtatct gatactggat tcttaattac cttcaaaagc ttctggggc catcagctgc 420
tcgaacactg a 431

<210> 170
<211> 266
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(266)
<223> n = A,T,C or G

<400> 170

acctgtggc tggctgtta tgcctgtgcc ggctgctgaa agggagttca gaggtggagc 60
tcaaggagct ctgcaggcat ttgcacanc ctctccanag canaggcag aacctacact 120
ccccgtaga aagacaccag attggagtcc tggaggggg agttgggtg ggcatttgat 180

gtatacttgt caccgtaaatg aangagccag agaggaanga gacgaanatg anattggcct 240
tcaaagctag gggctggca ggtgga 266

<210> 171
<211> 1248
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(1248)
<223> n = A,T,C or G

<400> 171

ggcagccaaa tcataaacgg cgaggactgc agcccgca ctgcagccctg gcaggcggca	60
ctggcatgg aaaacgaatt gttctgctcg ggcttcctgg tgcattccgca gtgggtgctg	120
tcaagccgac actgtttcca gaagttagtg cagagctctt acaccatcg gctggcctg	180
cacagtcttggccgacca agagccaggg agccagatgg tggaggccag cctctccgta	240
cggcacccag agtacaacag acccttgctc gctaaccacc tcatgctcat caagtggac	300
aatccgttccgacttccgatccgatccggc agcatcagca ttgttcgca gtgccttacc	360
gcggggaaact cttgcctcg ttcgtggctgg ggtctgtcg cgaacggcag aatgcctacc	420
gtgctgcagt gctgtggccgt gtcgggtgg tctgaggagg tctgcagtaa gctctatgac	480
ccgctgtacc accccagcat gttctgcgcc ggcggaggcc aagaccagaa ggactcctgc	540
aacggtgact ctggggggcc cctgatctgc aacgggtact tgcaggccc tgcgttttc	600
gaaaaagccc cgtgtggcca agttggcggt ccaggtgtct acaccaacct ctgcaattc	660
actgagtgaa tagagaaaac cgtccaggcc agttaactct gggactggg aaccatgaa	720
attgacccccca aatacatcc tgcggaaaggaa attcaggaat atctgttccc agccctcct	780
ccctcaggccc caggagtcca ggcggccagg ccctctccc tcaaaaccagg ggtacagatc	840
cccaagccccc cctccctcag acccaggagt ccagacccccc cagccctcc tccctcagac	900
ccaggagttcc accccctccct ccctcagacc caggagtcca gaccccccagg cccctctcc	960
ctcagacccca ggggtccagg ccccaacccc ctccctccctc agactcagag gtccaaagccc	1020
ccaaaccncatc attccccaga cccagaggc caggtcccag cccctcntcc ctcagacccca	1080
gcggtccaat gccacctaga ctntccctgt acacagtgcc cccttgcggc acgttgaccc	1140
aaccttacca gttggttttt cattttngt cccttcccc tagatccaga aataaagttt	1200
aagagaagng caaa	1248

<210> 172
<211> 159
<212> PRT
<213> Homo sapien

<220>
<221> VARIANT
<222> (1)...(159)
<223> Xaa = Any Amino Acid

<400> 172

Met Val Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro			
1	5	10	15
Leu Leu Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser			
20	25	30	
Glu Ser Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr			
35	40	45	
Ala Gly Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly			
50	55	60	

Arg Met Pro Thr Val Leu Gln Cys Val Asn Val Ser Val Val Ser Glu
 65 70 75 80
 Glu Val Cys Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe
 85 90 95
 Cys Ala Gly Gly Gln Xaa Gln Xaa Asp Ser Cys Asn Gly Asp Ser
 100 105 110
 Gly Gly Pro Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu Val Ser Phe
 115 120 125
 Gly Lys Ala Pro Cys Gly Gln Val Gly Val Pro Gly Val Tyr Thr Asn
 130 135 140
 Leu Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gin Ala Ser
 145 150 155

<210> 173

<211> 1265

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(1265)

<223> n = A,T,C or G

<400> 173

ggcagccgc	actcgccg	ctggcaggcg	gcactggtca	tggaaaacga	attgttctgc	60
tcggcg	tcggcatcc	gcagtgggt	ctgtcagccg	cacactgttt	ccagaactcc	120
tacaccatcg	ggctggccct	gcacagtctt	gaggccgacc	aagagccagg	gagccagatg	180
gtggagcc	gcctctccgt	acggcaccca	gagtaacaaca	gacccttgct	cgctaacgac	240
ctcatgtca	tcaagttgga	cgaatccgt	tccgagtcgt	acaccatccg	gagcatcgc	300
attgcttcgc	agtgcctac	cgcgggaaac	tctgcctcg	tttctggctg	gggtctgctg	360
gcgaacgg	agtcacggg	tgtgtgtctg	ccctttcaa	ggaggtccctc	tgcccagtcg	420
cggggctga	cccaagagctc	tgcgtccca	gcagaatgcc	taccgtgtg	cagtgcgtga	480
acgtgtcggt	ggtgtctgag	gagggtctgca	gtaagctcta	tgaccgcgt	taccacccca	540
gcatgttctg	cgcggcgg	gggcaagacc	agaaggactc	ctgcaacggt	gactctgggg	600
ggccccgtat	ctgcaacggg	tacttgcagg	gccttgcgtc	tttcggaaaa	gccccgtgtg	660
gccaagg	tgg	cgtgcaggt	gtctacacca	attcactgag	tggatagaga	720
aaaccgtcca	ggccagttaa	ctctgggac	tggaaaccca	tgaaattgac	ccccaaatac	780
atcctgcg	agaattcag	aatatctgt	tcccagcccc	tcctccctca	ggcccaggag	840
tccagg	ccccctcc	tccctcaa	caagggtaca	gatccccagc	ccctcctccc	900
tcagaccc	agtc	cccccagccc	ctcccccctc	agacccagga	gtccagcooc	960
tcctccntca	gacccaggag	tccagacccc	ccagccctc	ctccctcaga	cccagggtt	1020
gaggccccca	acccctcc	ttcagagtc	agaggtccaa	gcccccaacc	cctcggtccc	1080
cagacccaga	ggttnnagg	ccagccctc	ttccntcaga	cccagngtgc	caatgccacc	1140
tagatttcc	ctgnacacag	tgccccctt	tggangttg	acccaacctt	accagtttgt	1200
tttcatttt	tngtccctt	cccttagatc	cagaataaaa	gttaagaga	ngngcaaaaa	1260
aaaaaa						1265

<210> 174

<211> 1459

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(1459)

<223> n = A,T,C or G

<400> 174

ggtcagccgc	acactgtttc	cagaagttag	tgcagagctc	ctacaccatc	gggctgggcc	60
tgcacagtct	tgaggccgac	caagagccag	ggagccagat	gttggaggcc	agcctctccg	120
taacggcaccc	agagtacaac	agacccttgc	tcgctaaca	cctcatgctc	atcaagttgg	180
acgaatccgt	gtccgagtct	gacaccatcc	ggagcatcag	cattgttgc	cagtgcctca	240
cccgccccaa	ctcttcctc	gtttctggct	ggggctctgc	ggcgaacgg	gagctcacgg	300
gtgtgtgtct	gccctttca	aggaggctct	ctgcccagtc	gcgggggctg	acccagagct	360
ctgcgtccca	ggcagaatgc	ctaccgtgct	gcagtgcgtg	aacgtgtcgg	tttgtctga	420
ngaggtctgc	antaagctct	atgaccgcgt	gtaccacccc	ancatgttct	gcgcggcg	480
agggcaagac	cagaaggact	cctgcaacgt	gagagagggg	aaaggggagg	gcagggcact	540
cagggaaagg	tggagaagg	ggagacagag	acacacagg	ccgcattgg	agatgcagag	600
atggagagac	acacaggag	acagtgcacaa	ctagagagag	aaactgagag	aaacagagaa	660
ataaacacag	gaataaaagag	aagcaaaagga	agagagaaac	agaaacagac	atggggaggc	720
agaaacacac	acacatagaa	atgcagttga	ccttccaaca	gcatggggcc	tgagggcggt	780
gacccctccacc	caatagaaaa	tcctttata	acttttgcact	ccccaaaaac	ctgactagaa	840
atagcctact	gttgcgggg	agccttacca	ataacataaa	tagtgcattt	atgcatacgt	900
tttatgcatt	catgatatac	ctttgttgg	atttttgtat	atttctaagc	tacacagttc	960
gtctgtgaat	ttttttaaat	tttttgcact	ctcctaaaat	ttttctgtat	tttttattga	1020
aaaaatccaa	gtataagtgg	acttgcacat	tcaaaccagg	tttgcattca	ggtcaactgt	1080
gtaccccgag	ggaaacagtg	acacagattc	atagaggta	aacacgaaga	gaaacaggaa	1140
aaatcaagac	tctacaaaga	ggctggggcag	ggggctcat	gcctgtatc	ccagcaactt	1200
gggaggcgg	gcagggcagat	cacttgagg	aaggagttca	agaccgcct	ggccaaaatg	1260
gtgaaatcc	gtctgtacta	aaaataaaaa	agtttagctgg	atatgggc	aggcgcctgt	1320
aatcccagct	acttgggg	ctgaggcagg	agaattgctt	gaatatggg	ggcagagg	1380
gaagtgcagg	gagatcacac	cactatactc	cagctgggc	aacagagtaa	gactctgtct	1440
aaaaaaaaaa	aaaaaaaaaa					1459

<210> 175

<211> 1167

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(1167)

<223> n = A,T,C or G

<400> 175

gcgcagccct	ggcaggcggc	actggtcatg	aaaaacgaat	tgttctgctc	ggggcgctcg	60
gtgcattccgc	agtgggtct	gtcagccgca	cactgttcc	agaactccta	caccatcg	120
ctggccctgc	acagtttgc	ggccgaccaa	gagccagg	gcacatgg	ggaggccag	180
ctctccgtac	ggcacccaga	gtacaacaga	ctcttgc	ctaaacgc	catgctcatc	240
aagtggacg	aatccgtgtc	cgagtctgac	accatccgg	gcatcagcat	tgcttcgcag	300
tgccttacc	cggggaaactc	ttgcctcgtn	tctggctgg	gtctgcggc	gaacggcaga	360
atgccttacc	tgctgcact	cgtgaacgt	tcgggtgt	ctgaggang	ctgcagtaag	420
ctctatgacc	cgctgtacca	ccccagcat	ttctgc	ggggagg	agaccagaag	480
gactcctgca	acgggtactc	ttgggggccc	ctgatctgca	acgggtactt	gcagggcctt	540
gtgtcttcg	aaaaagcccc	gtgtggccaa	tttggctgc	cagggtgtct	caccaaccc	600
tgcaaattca	ctgagtgat	agagaaaacc	gtccagncca	gttaactctg	gggactgg	660
acccatgaaa	ttgacccca	aatacatct	gccaangaa	ttcaggaata	tctgttccca	720
gcccctcc	cctcaggccc	aggatccag	gccccccagcc	cctcctccct	caaaccagg	780
gtacagatcc	ccagcccc	ctccctcaga	cccaggagtc	cagacccccc	agccctc	840
ccntcagacc	caggagtcca	gcccctcc	cntcagacgc	aggagtccag	accccccagc	900

ccntcntccg tcagacccag	gggtgcaggc ccccaacccc	tcntccntca gagtcagagg	960
tccaagcccc caaccctcg	ttccccagac ccagaggtnc	aggcccagc ccctcctccc	1020
tcagacccag cggtccaatg	ccacctagan tntccctgta	cacagtggcc ccttgtggca	1080
ngttgaccca accttaccag	ttggttttc atttttgtc	ccttccct agatccagaa	1140
ataaaagtnta agagaagcgc	aaaaaaaaa		1167

<210> 176

<211> 205

<212> PRT

<213> Homo sapien

<220>

<221> VARIANT

<222> (1)...(205)

<223> Xaa = Any Amino Acid

<400> 176

Met	Glu	Asn	Glu	Leu	Phe	Cys	Ser	Gly	Val	Leu	Val	His	Pro	Gln	Trp
1				5					10						15
Val	Leu	Ser	Ala	Ala	His	Cys	Phe	Gln	Asn	Ser	Tyr	Thr	Ile	Gly	Leu
					20				25						30
Gly	Leu	His	Ser	Leu	Glu	Ala	Asp	Gln	Glu	Pro	Gly	Ser	Gln	Met	Val
					35			40						45	
Glu	Ala	Ser	Leu	Ser	Val	Arg	His	Pro	Glu	Tyr	Asn	Arg	Leu	Leu	Leu
					50			55					60		
Ala	Asn	Asp	Leu	Met	Leu	Ile	Lys	Leu	Asp	Glu	Ser	Val	Ser	Glu	Ser
					65		70			75					80
Asp	Thr	Ile	Arg	Ser	Ile	Ser	Ile	Ala	Ser	Gln	Cys	Pro	Thr	Ala	Gly
					85				90					95	
Asn	Ser	Cys	Leu	Val	Ser	Gly	Trp	Gly	Leu	Leu	Ala	Asn	Gly	Arg	Met
					100			105					110		
Pro	Thr	Val	Leu	His	Cys	Val	Asn	Val	Ser	Val	Val	Ser	Glu	Xaa	Val
					115			120					125		
Cys	Ser	Lys	Leu	Tyr	Asp	Pro	Leu	Tyr	His	Pro	Ser	Met	Phe	Cys	Ala
					130		135					140			
Gly	Gly	Gly	Gln	Asp	Gln	Lys	Asp	Ser	Cys	Asn	Gly	Asp	Ser	Gly	Gly
					145		150			155				160	
Pro	Leu	Ile	Cys	Asn	Gly	Tyr	Leu	Gln	Gly	Leu	Val	Ser	Phe	Gly	Lys
					165			170					175		
Ala	Pro	Cys	Gly	Gln	Leu	Gly	Val	Pro	Gly	Val	Tyr	Thr	Asn	Leu	Cys
					180			185					190		
Lys	Phe	Thr	Glu	Trp	Ile	Glu	Lys	Thr	Val	Gln	Xaa	Ser			
					195			200					205		

<210> 177

<211> 1119

<212> DNA

<213> Homo sapien

<400> 177

```

gcccactcgcc agccctggca ggccggactg gtcatggaaa acgaattgtt ctgctcgggc 60
gtcctgggtgc atccgcagtg ggtgctgtca gccgcacact gtttccagaa ctcctacacc 120
atcgggctgg gcctgcacag tcttgaggcc gaccaagagc cagggagcca gatgggtggag 180
gccagccctct ccgtacggca cccagagtag aacagacccct tgctcgctaa cgacacctatg 240
ctcatcaagt tggacgaatc cgtgtccgag tctgacacca tccggagcat caqcattqct 300

```

tgcgagtgcc	ctaccgcggg	gaactcttgc	ctcggttctg	gctggggctc	gctggcgaac	360
gatgctgtga	ttgcacatcca	gtcccagact	gtggaggct	gggagtgta	gaagctttcc	420
caaccctggc	agggttgtac	catttcggca	acttccagt	caaggacgtc	ctgctgcac	480
ctcaactgggt	gctcaactact	gctcaactgca	tcacccggaa	cactgtgatc	aactagccag	540
caccatagtt	ctccgaagtc	agactatcat	gattactgtg	ttgactgtgc	tgtctattgt	600
actaaccatg	ccgatgttta	ggtgaaat	gcgtcactt	gcctcaacca	tcttggtata	660
cagttatcct	cactgaattt	agatttcc	ttcagtgtc	agccattccc	acataatttc	720
tgacctacag	aggtgaggga	tcatatagt	ttcaaggat	gctggtaactc	ccctcaaaaa	780
ttcatttctc	ctgttgttagt	gaaagggtgc	ccctctggag	cctcccagg	ttgggtgtgca	840
ggtcacaatg	atgaatgtat	gatcgtgtc	ccattaccca	aagccattaa	atccctcatg	900
ctcagtagcac	cagggcaggt	ctagcattt	ttcattttagt	gtatgctgtc	cattcatgca	960
accacctcag	gactccctgga	ttctctgcct	agttgagctc	ctgcatgctg	cctccctggg	1020
gaggtgaggg	agagggccca	ttgttcaatg	ggatctgtgc	agttgtaaaca	cattaggtgc	1080
ttaataaaca	gaagctgtga	tgttaaaaaaa	aaaaaaaaaa			1119

<210> 178

<211> 164

<212> PRT

<213> Homo sapien

<220>

<221> VARIANT

<222> (1)...(164)

<223> Xaa = Any Amino Acid

<400> 178

Met	Glu	Asn	Glu	Leu	Phe	Cys	Ser	Gly	Val	Leu	Val	His	Pro	Gln	Trp
1				5					10				15		
Val	Leu	Ser	Ala	Ala	His	Cys	Phe	Gln	Asn	Ser	Tyr	Thr	Ile	Gly	Leu
					20				25				30		
Gly	Leu	His	Ser	Leu	Glu	Ala	Asp	Gln	Glu	Pro	Gly	Ser	Gln	Met	Val
				35			40					45			
Glu	Ala	Ser	Leu	Ser	Val	Arg	His	Pro	Glu	Tyr	Asn	Arg	Pro	Leu	Leu
					50		55		60						
Ala	Asn	Asp	Leu	Met	Leu	Ile	Lys	Leu	Asp	Glu	Ser	Val	Ser	Glu	Ser
				65		70			75				80		
Asp	Thr	Ile	Arg	Ser	Ile	Ser	Ile	Ala	Ser	Gln	Cys	Pro	Thr	Ala	Gly
					85			90				95			
Asn	Ser	Cys	Leu	Val	Ser	Gly	Trp	Gly	Leu	Leu	Ala	Asn	Asp	Ala	Val
					100			105				110			
Ile	Ala	Ile	Gln	Ser	Xaa	Thr	Val	Gly	Gly	Trp	Glu	Cys	Glu	Lys	Leu
					115			120				125			
Ser	Gln	Pro	Trp	Gln	Gly	Cys	Thr	Ile	Ser	Ala	Thr	Ser	Ser	Ala	Arg
				130		135			140						
Thr	Ser	Cys	Cys	Ile	Leu	Thr	Gly	Cys	Ser	Leu	Leu	Leu	Thr	Ala	Ser
				145			150			155			160		
Pro	Gly	Thr	Leu												

<210> 179

<211> 250

<212> DNA

<213> Homo sapien

<400> 179

ctggagtgcc ttgggtttc aagccctgc aggaagcaga atgcacccctc tgaggcacct	60
ccagctgccc cccggccgggg gatgcgaggc tcggagcacc cttgcggc tgtgattgct	120
gccaggcaact gttcatctca gctttctgt cccttgctc cccggcaagcg ctctgctga	180
aagttcatat ctggagcctg atgtcttaac gaataaaggc cccatgtcc acccgaaaaaa	240
aaaaaaaaaaa	250

<210> 180

<211> 202

<212> DNA

<213> Homo sapien

<400> 180

actagtccag tgggtggaa ttccattgtg tggggcccaa cacaatggct accttaaca	60
tcacccagac cccggccctg cccgtcccc acgctgctgc taacgacagt atgatgctta	120
ctctgctact cgaaaaactat tttatgtaa ttaatgtatg ctttctgtt tataaatgcc	180
tgatTTaaaa aaaaaaaaaaa aa	202

<210> 181

<211> 558

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(558)

<223> n = A,T,C or G

<400> 181

tccytttgkt naggttkkkg agacamccck agacctwaan ctgtgtcaca gacttcyngg	60
aatgtttagg cagtctagt aatttcytcg taatgattct gttattactt tcctnattct	120
ttattctct ttcttctgaa gattaatgaa gttaaaaatt gaggtggata aataaaaaaa	180
ggtagtgtga tagtataagt atctaagtgc agatgaaagt gtgttatata tatccattca	240
aaattatgca agttagtaat tactcagggta taactaaatt actttaatat gctgttgaac	300
ctactctgtt ccttggctag aaaaaattat aaacaggact ttgttagttt ggaaagccaa	360
attgataata ttctatgttc taaaagggtgg gctatacata aattattaag aaatatggaw	420
ttttatccc aggaatatgg kgttcatttt atgaatattt cscrggatag awgtwtgagt	480
aaaaycagtt ttggtwataa ygtwaatatg tcmtaaataa acaakgctt gacttatttc	540
aaaaaaaaaaa aaaaaaaaaa	558

<210> 182

<211> 479

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(479)

<223> n = A,T,C or G

<400> 182

acaggwttk grggatgcta agsccccrga rwygtttga tccaaaccctg gcttwtttc	60
agagggaaaa atggggcccta gaagttacag mscatytagy tggtgcmgtg gcacccctgg	120
cstcacacag astcccgagt agctggact acaggcacac agtcaactgaa gcagggccctg	180
ttwgcaattc acgttgccac ctccaactta aacattctc atatgtatg tccttagtca	240
ctaaggttaa acttcccac ccagaaaaagg caacttagat aaaatcttag agtactttca	300

tactmttcta agtcctcttc cagcctcaact kkgagtctm cytgggggtt gataggaant	360
ntctcttgcc tttctcaata aartctctat ycatctcatg ttaatttgg tacgcatara	420
awtgstgara aaattaaaat gttctggty mactttaaaa araaaaaaaaaaaaaaa	479

<210> 183
<211> 384
<212> DNA
<213> Homo sapien

<400> 183

aggcgggagc agaagctaaa gccaaagccc aagaagagtgcagtgccag cactgggcc	60
agtaccagta ccaataacag tgccagtgcc agtgcgcagca ccagtgggtgg cttagtgc	120
ggtgcgcagcc tgaccgcac ttcacattt gggcttgc ctggccttgg tggagctgg	180
gccagcacca gtggcagctc tgggcctgt ggtttctctt acaagtgaga tttagatat	240
tgttaatccct gccagtcttt ctcttcaagc cagggtgcatt cctcagaaac ctactcaaca	300
cagcactcta ggcagccact atcaatcaat tgaagttgac actctgcatt aratctattt	360
gccatttcaa aaaaaaaaaaaa aaaa	384

<210> 184
<211> 496
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(496)
<223> n = A,T,C or G

<400> 184

accgaattgg gaccgctggc ttataagcga tcatagttgc ccrgtatkac ctcaacgagc	60
agggagatcg agtctatacg ctgaagaaat ttgaccgcgat gggacaacag acctgctcag	120
cccatcctgc tcgggtctcc ccagatgaca aataactctsg acaccgaatc accatcaaga	180
aacgcttcaa ggtgctcatg acccagcaac cgccgcctgt cctctgaggg tcccttaaac	240
tgtatgtcttt tctgcacact gttacccttc ggagactccg taaccaaact cttcggactg	300
ttagccctga tgccttttg ccagccatac tctttggcat ccagtctctc gtggcgattt	360
attatgcttg tgtgaggcaa tcataggcgc atcaccata aagggAACAC atttgacttt	420
tttttctcat attttaattt actacmagaw tattwmagaw waaatgawtt gaaaaactst	480
aaaaaaaaaaa aaaaa	496

<210> 185
<211> 384
<212> DNA
<213> Homo sapien

<400> 185

gctggtagcc tatggcgkkgg cccacggagg ggctccctgag gccacggrac agtgacttcc	60
caagtatcyt ggcgsgcgtc ttctaccgtc cctacctgca gatcttcggg cagatcccc	120
aggaggacat ggacgtggcc ctcatggagc acagcaactg ytcgtcgag cccggcttct	180
gggcacaccc tcctggggcc caggcgccca cctgcgtctc ccagtatgcc aactggctgg	240
tgtgtctctc ctcgtctatc ttctctgtcg tggccaaat cctgcgtggc aacttgcctca	300
ttgcccatttt cagttacaca ttccggcaaag tacagggcaa cagcgatctc tactggaaag	360
gcccggcggtt accgcctcat ccgg	384

<210> 186
<211> 577

<212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(577)
 <223> n = A,T,C or G

<400> 186

gagtttagctc ctccacaacc ttgatgaggt cgtctgcagt ggctctcg	60
tncatcgta atactgtagg tttgccacca cytcctggca tcttggcg	120
ccagggaaact ctaaatcaag tcaccgtcga tgaaacctgt gggctgg	180
tcggtgtgaa agatctccc agaaggagtg ctcgatctt cccacactt	240
attgagtcga ttctgcatgt ccagcaggag gtttaccag ctctgcaca	300
cagccctatc atgcccgtga mcgtccgaa garcaccgag ctttgtgtgg	360
ctcaccaga ttctgcatta ccagagagcc gtggcaaaag acattgaca	420
gtggaaaaag amcamctcct ggargtctn gccgctcctc gtcmttggt	480
tcctttgac acacaaaaca gttaaaggca tttcagccc ccagaaantt	540
aagatntcgc acagcactna tccagttggg attaaat	577

<210> 187
 <211> 534
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(534)
 <223> n = A,T,C or G

<400> 187

aacatcttcc tgataatgc tggtaatat cgatccgatn ttgtctgstg	60
actkgggaaaa gmaacattaa agcctggaca ctggattaa aattcacat	120
atgcaacact tttaaacatgt tgcataatctg ctcccyynac ttgtcatca	180
ccagttctggg aakaagggtt gacacaatctt gattcaacat cttttttttt	240
tttgcacccatc aacaccttta aaaggcgct aacatttttt gatgtttttt	300
tttgcacccatc aacaccttta aaaggcgct aacatttttt gatgtttttt	360
tttgcacccatc aacaccttta aaaggcgct aacatttttt gatgtttttt	420
tttgcacccatc aacaccttta aaaggcgct aacatttttt gatgtttttt	480
tttgcacccatc aacaccttta aaaggcgct aacatttttt gatgtttttt	534

<210> 188
 <211> 761
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(761)
 <223> n = A,T,C or G

<400> 188

agaaaccagt atctctnaaa acaaccctctc ataccttg	60
gacctaattt tggatgtcg	120
cgcatattat atagacaggc acatttttt tacttttta aaagttatg	180
cctcttttgtt atctatatct gtggaaagttt taatgatctg ccataatgtc	
ttggggacct	

ttgtcttctg tgtaaatggc actagagaaa acacctatnt tatgagtcaa tcttagttngt	240
tttattcgac atgaaggaaa ttccagatn acaacactna caaactctcc ctkgackarg	300
ggggacaaag aaaagaaaa ctgamcataa raaacaatwa cctggtgaga arttgcataa	360
acagaaatwr ggtatatat tgaarnacag catcattaaa rmgttwtktt wttctccctt	420
gcaaaaaaaca tgtacngact tcccgttgag taatgccaag ttgtttttt tatnataaaa	480
cttgccttc attacatgtt tnaaagtggt gtgggtggcc aaaatattga aatgatggaa	540
ctgactgata aagctgtaca aataagcagt gtgcctaaca agcaacacag taatgttgac	600
atgcttaatt cacaatgtc aatttcattt aaaaatgtt ctaaaataca ctttgaacta	660
ttttctgtt tccccagac tgagatntt gatttatgt agtatnaagt gaaaaantac	720
gaaaataata acattgaaga aaaaananaaa aaanaaaaaa a	761

<210> 189
<211> 482
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(482)
<223> n = A,T,C or G

<400> 189

tttttttttt tttgccatn ctactatTTT attgcagggan gtgggggtgt atgcaccgca	60
caccggggct atnagaagca agaaggaagg agggaggggca cagccccctt ctgagcaaca	120
aaggccgctg ctgccttctc tgcgtgtctc ctgggtcagg cacatgggg aacccccc	180
aaggcagggg ccaccagtcc aggggtggga atacaggggg tgggangtgt gcataagaag	240
tgtataggcac aggcaccccg gtacagaccc ctggcttct gacaggtnga ttgcaccag	300
gtcattgtgc cctgcccagg cacagcgtan atctggaaaa gacagaatgc ttccctttc	360
aaatttggct ngtcatngaa ngggcanttt tccaanttng gctnggtctt ggtacncttg	420
gtcggggcca gctccncgtc caaaantat tcaccnnct ccnaattgct tgcnngcccc	480
cc	482

<210> 190
<211> 471
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(471)
<223> n = A,T,C or G

<400> 190

tttttttttt tttaaaaaca gtttttcaca acaaaatTTA tttagaagaat agtggttttg	60
aaaactctcg catccagtga gaactaccat acaccacatt acagctngga atgtntctca	120
aatgtctggt caaatgatac aatggAACCA ttcaatctt aacatgcacg aaagaacaag	180
cgttttgac atacaatgca caaaaaaaaaa aggggggggg gaccacatgg attaaaattt	240
taagtactca tcacatacat taagacacag ttcttagtcca gtcnaaaatc agaactgcnt	300
tggaaaattt catgtatgca atccaaacca agaacttnat tggtgatcat gantnctcta	360
ctacatcnac cttgatcatt gccaggaacn aaaagtttAA ancacncngt acaaaaaanaa	420
tctgtattn anttcaacctt ccgtacngaa aatntnnnt tataactcc c	471

<210> 191
<211> 402
<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (402)

<223> n = A, T, C or G

<400> 191

gagggattga aggtctgttc	tastgtcggm ctgttcagcc	accaactcta acaagttgct	60
gtcttccact cactgtctgt	aagctttta acccagacwg	tatcttcata aatagaacaa	120
attcttcacc agtcacatct	tcttaggacct tttggattc	agttagtata agctcttcca	180
cttccttgt taagacttca	tctggtaaag tcttaagttt	tgtagaagg aattyattg	240
ctcgttctct aacaatgtcc	tctccttgaa gtatttggct	gaacaaccca cctaaagtcc	300
ctttgtgcat ccattttaaa	tatacttaat aggcatttgk	tncacttaggt taaattctgc	360
aagagtcatc tgctgc当地	agttgc当地ta gtatatctgc	ca	402

<210> 192

<211> 601

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (601)

<223> n = A,T,C or G

<400> 192

gagctcgat	ccaataatct	ttgtctgagg	gcagcacaca	tatncagtgc	catggnaact	60
ggtctacccc	acatgggagc	agcatgccgt	agntatataa	ggtcattccc	tgagtcagac	120
atgcyyttt	gaytaccgtg	tgccaagtgc	tggtgattct	yaacacacyt	ccatcccgyt	180
cttttgtgga	aaaactggca	cttktctgga	actagcarga	catcaactac	aaattcaccc	240
acgagacact	tgaaagggtgt	aacaaagcga	ytcttgcatt	gcttttgc	cctccggcac	300
cagttgtcaa	tactaaccgg	ctgggttgc	tccatcacat	ttgtgatctg	tagctctgga	360
tacatctcct	gacagtactg	aagaacttct	tcttttgtt	caaaagcara	tcttggtgc	420
tgttggatca	ggtcccatt	tcccagtcyg	aatgttcaca	tggcatattt	wacttcccac	480
aaaacattgc	gatttgaggc	tcagcaacag	caaatctgt	tccggcattg	gctgcaagag	540
cctcgatgt	gccccccagc	gccaaggcag	gcccgtgag	ccccaccagc	agcagaagca	600
g						601

<210> 193

<211> 608

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(608)

<223> n = A, T, C or G

<400> 193

atacagcccc	natcccacca	cgaagatgcg	cttgttact	gagaacctga	tgcggtaact	60
ggtcccgtg	tagccccagc	gactctccac	ctgctgaaag	cggttgatgc	tgcactcytt	120
cccaacgcag	gcagmagcgg	gsccggtcaa	tgaactccay	tcgtggcttg	gggtkgacgg	180
tkaagtgcag	gaagaggctg	accacacctcg	ggtccaccag	gatgccgac	tgtgcgggac	240
ctgcagcga	actcctcgat	ggtcatgagc	gggaagcga	tgaggcccaag	ggcccttgccc	300

agaaccttcc	gcctgttctc	tggcgtcacc	tgcagctgct	gccgctgaca	ctcgccctcg	360
gaccagcga	caaacggcrt	tgaacagccg	cacccacgg	atgcccagt	tgtcgcgctc	420
caggammgs	accagcgtgt	ccaggtcaat	gtcggtaag	ccctccgcgg	gtratggcgt	480
ctgcagtgtt	tttgcgtat	ttctccagc	acaggctggc	cagctgcgtt	tcatcgaaga	540
gtcgccctg	cgtgagcagc	atgaaggcgt	tgtcggtcg	cagttttct	tcaggaactc	600
cacgcaat						608

<210> 194

<211> 392

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(392)

<223> n = A,T,C or G

<400> 194

gaacggctgg	accttgccctc	gcattgtgct	tgctggcagg	gaataccttgc	gcaagcagyt	60
ccagtcggag	cagccccaga	ccgctgccgc	ccgaagctaa	gcctgcctct	ggcctcccc	120
tccgcctcaa	tgcagaacca	gtagtggag	cactgtgtt	agagtttaga	gtgaacactg	180
tttgatttt	cttggaaatt	tcctctgtta	tatagtttt	cccaatgcta	atttccaaac	240
aacaacaaca	aaataaacatg	tttgcctgtt	aagttgtata	aaagtaggtt	attctgtatt	300
taaagaaaat	attactgtta	cataactgc	ttgcaatttc	tgtattttatt	gktnctstgg	360
aaataaaatat	agttattaaa	ggttgtcant	cc			392

<210> 195

<211> 502

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(502)

<223> n = A,T,C or G

<400> 195

ccsttkagg	gtkaggkyc	cagttycgga	gtggaagaaa	caggccagga	gaagtgcgtg	60
ccgagctgag	gcagatgttc	ccacagtgcac	ccccagagcc	stgggstatat	gttgtctgacc	120
cctcncaagg	aaagaccacs	ttctggggac	atgggctgga	gggcaggacc	tagaggcacc	180
aagggaggc	cccatccgg	ggstgttccc	cgaggaggaa	gggaaggggc	tctgtgtgcc	240
ccccasgagg	aagaggccct	gagtccctgg	atcagacacc	ccttcacgtt	tatccccaca	300
caaatgcag	ctcaccaagg	tcccctctca	gtcccccttc	stacaccctt	amcgccact	360
gscscacacc	cacccagagc	acgccaccccg	ccatgggar	tgtgctcaag	gartgcngg	420
gcarcgtgga	catctngtcc	cagaaggggg	cagaatctcc	aatagangga	ctgarcnstt	480
gctnanaaaaa	aaaaanaaaa	aa				502

<210> 196

<211> 665

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(665)

<223> n = A, T, C or G

<400> 196

ggttacttgg	tttcattgcc	accacttagt	ggatgtcatt	tagaacatt	ttgtctgctc	60
cctctggaaag	ccttgcgcag	agcggaactt	gtaattgtt	gagaataact	gctgaatttt	120
wagctgttk	gagggttgc	gcaccactgc	accacaact	tcaatatgaa	aacyawttga	180
actwatttat	tatcttgta	aaagtataac	aatgaaaatt	ttgttcatac	tgtattkac	240
aagtatgtg	aaaagcaawa	gatatatatt	cttttattat	gtttaaattat	gattgccatt	300
attaatcggc	aaaatgtgga	gtgtatgttc	ttttcacagt	aatataatgcc	ttttgttaact	360
tcacttgggtt	attttattgt	aaatgartta	caaaattctt	aatttaagar	aatggtatgt	420
watatttattt	tcattaattt	ctttccctkgt	ttacgtwaat	tttggaaaaga	wtgcatgatt	480
tcttgacaga	aatcgatctt	gatgctgtgg	aagttagttt	acccacatcc	ctatgagttt	540
ttcttagaaat	gtataaaaggt	tgtagcccat	cnaacttcaa	agaaaaaaaaat	gaccacatac	600
tttgcaatca	ggctgaaatg	tggcatgtn	ttctaattcc	aactttataaa	actagcaaann	660
aagtg						665

<210> 197

<211> 492

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (492)

<223> n = A, T, C or G

<400> 197

tttttttttt	tttttttgc	aggaggatt	ccatatttgc	tggatgcatt	ttcacaatat	60
atgttttattg	gaggcatcca	ttatcagtga	aaagtatcaa	gtgtttataaa	natttttagg	120
aaggcagatt	cacagaacat	gctngtcngc	ttgcagttt	acctcgatana	gatnacagag	180
aattatagtc	naaccagtaa	acnaggaatt	tactttcaaa	aagattaaat	ccaaactgaa	240
caaaaattcta	ccctgaaact	tactccatcc	aaatattgga	ataanagtc	gcagtgtatac	300
attctcttct	gaactttaga	ttttctagaa	aaatatgtaa	tagtgatcag	gaagagctct	360
tgttcaaaag	tacaacnaag	caatgttccc	ttaccatagg	ccttaatc	aactttgatc	420
catttcactc	ccatcacggg	agtcaatgct	acctgggaca	cttgtat	gttcatnctg	480
ancntggctt	aa					492

<210> 198

<211> 478

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(478)

<223> n = A,T,C or G

<400> 198

tttntttgn	atttcantct	gtannaanta	tttcattat	gtttattana	aaaatatnaa	60
tgtntccacn	acaaatcatn	ttacntnagt	aagaggccan	ctacattgta	caacatacac	120
ttagtatatt	ttgaaaagga	caagttaaa	gtanacncat	attgccganc	atancacatt	180
tatacatggc	ttgattgata	tttagcacag	canaaactga	gtgagttacc	agaaaanaaat	240
natatatgtc	aatcngattt	aagataaaaa	acagatccct	tggtacatan	catcntgtag	300
gagttgtggc	tttatgttta	ctgaaaagtca	atgcagttcc	tgtacaaaaga	gatggccgta	360
agcattctag	tacctctact	ccatggttaa	gaatcgtaa	cttatgttta	cataatgtnc	420

gggttaagaat tgggttaagt naanttatgg agaggtccan gagaaaaatt tgatncaa 478

<210> 199
<211> 482
<212> DNA
<213> *Homo sapien*

<220>
<221> misc_feature
<222> (1) ... (482)
<223> n = A,T,C or G

<400> 199

agtgacttgt	cctccaacaa	aacccttga	tcaagttgt	ggcactgaca	atcagaccta	60
tgctagttcc	tgtcatctat	tcgctactaa	atgcagactg	gaggggacca	aaaaggggca	120
tcaactccag	ctgattatt	ttggagcctg	caaatacttatt	cctacttgc	cgactttga	180
agtgattcag	tttctctac	ggatgagaga	ctggctcaag	aatatcctca	tgcagcttta	240
tgaagccnac	tctgaacacg	ctggttatct	nagatgagaa	ncagagaaaat	aaagtcnaga	300
aaatttacct	ggangaaaag	aggcttngg	ctggggacca	tcccattgaa	ccttcttta	360
anggacttta	agaanaaaact	accacatgt	tgtntgtatcc	tggtgcncng	ccgtttang	420
aacntngacn	ncacccttnt	ggaatanant	cttgacngcn	tcctgaactt	gctcctctgc	480
ga						482

<210> 200
<211> 270
<212> DNA
<213> *Homo sapien*

```
<220>
<221> misc_feature
<222> (1) ... (270)
<223> n = A, T, C or C
```

cgccgcgaag	tgcaactcca	gctggggccg	tgccgaccaa	gattctgccaa	gcagttggtc	60
cgactgcgac	gacggcggcg	gcgacagtcg	caggtgcagc	gcggggcgcct	gggttcttgc	120
aaggctgagc	tgacgcccga	gaggtcggt	cacgtccccac	gacccttgacg	ccgtcgggga	180
cagccgaaac	agagcccggt	gaangcgggaa	ggccctcgggg	agccccctcggt	gaagggcgcc	240
ccgagagata	cgcaggtgc	ggtgtggcc				270

<210> 201
<211> 419
<212> DNA
<213> *Homo sapien*

```
<220>
<221> misc_feature
<222> (1)...(419)
<223> n = A,T,C or G
```

<400> 201

tttttttttt ttttggaaatc tactgcgagc acagcaggc agcaacaagt ttatTTTgca	60
gcttagcaagg taacagggtta gggcatggtt acatgttcag gtcaacttcc tttgtcggtgg	120
ttgattggtt tgtctttatg ggggccccgggtt ggggttagggg aaancgaagc anaantaaca	180
tggagtgggt gcaccctccc tgttagaacct ggtagcnaaaa gcttggggca gttcacctqq	240

tctgtgaccg tcattttctt gacatcaatg ttattagaag tcaggatatc ttttagagag	300
tccactgtnt ctggagggag attagggttt cttgccaana tccaancaa atccacntga	360
aaaagttgga tgatncangt acngaatacc ganggcatan ttctcatant cggtggcca	419

<210> 202

<211> 509

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(509)

<223> n = A,T,C or G

<400> 202

tttntttttt tttttttttt tttttttttt tttttttttt tttttttttt	60
tggacttaa tccattttta ttcaaaatg tctacaant ttnaatncnc cattatacng	120
gtnattttnc aaaatctaaa ntttattcaa atntragcca aantccttac ncaaattnnaa	180
tacncncaaa aatcaaaaat atacnntct ttcagcaaac ttngttacat aaattaaaaa	240
aatatatacg gctgggttt tcaaagtaca attatctta cactgcaaac atnnttnnaa	300
ggaactaaaa taaaaaaaaaa cactnccgca aaggtaaag ggaacaacaa attcnnttta	360
caacancnc nattataaaa atcatatctc aaatcttagg ggaatatata cttcacacng	420
ggatcttaac tttactnca cttgtttat tttttanaa ccattgtntt gggcccaaca	480
caatggnaat nccncncnc tggactagt	509

<210> 203

<211> 583

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(583)

<223> n = A,T,C or G

<400> 203

ttttttttt ttttttttga cccccctttt ataaaaaaca agttaccatt ttatTTTact	60
tacacatatt tattttataa ttggatttag atattcaaaa ggcagctttt aaaaatcaaac	120
taaatggaaa ctgccttaga tacataattc ttaggaatta gcttaaaatc tgctctaaagt	180
aaaaatcttc tctagctttt ttgactgtaa attttgact cttgtaaaac atccaaattc	240
atttttcttg tctttaaaat tatctaattct ttccattttt tccctatcc aagtcaattt	300
gcttctctag cctcatttcc tagctttat ctactattag taagtggctt ttttcctaaa	360
agggaaaaaca ggaagagana atggcacaca aaacaaacat ttatattca tatttctacc	420
tacgttaata aaatagcatt ttgtgaagcc agctaaaaag aaggcttaga tcctttatg	480
tccatttttag tcactaaacg atatcnaaag tgccagaatg caaaagggtt gtgaacattt	540
attcaaaagc taatataaga tatttcacat actcatctt ctg	583

<210> 204

<211> 589

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(589)

<223> n = A,T,C or G

<400> 204

tttttttnt	ttttttttt	tttttnctc	ttctttttt	ttganaatga	ggatcgagtt	60
tttcaacttc	tagatagggc	atgaagaaaa	ctcatcttc	cagcttaaa	ataacaatca	120
aatctcttat	gctatatcat	attttaagtt	aaactaatga	gtcaactgct	tatcttctcc	180
tgaaggaat	ctgttcattc	ttctcatca	tatagttata	tcaagtacta	ccttgcatat	240
tgagaggttt	ttcttctcta	tttacacata	tatttccatg	tgaatttgta	tcaaaccctt	300
attttcatgc	aaactagaaa	ataatgtntt	cttttgcata	agagaagaga	acaatatnag	360
cattacaaaa	ctgctcaat	tgttgtaa	gnnttatccat	tataattagt	tnngcaggag	420
ctaatacaca	tcacatttac	ngacnagcaa	taataaaaact	gaagtaccag	ttaaaatatcc	480
aaaataatta	aagaacatt	tttagcctgg	gtataattag	ctaattcact	ttacaagcat	540
ttattnagaa	tgaattcaca	tgttattatt	ccntagccca	acacaatgg		589

<210> 205

<211> 545

<212> DNA

<213> Homo sapien

<220>

<221> misc feature

<222> (1) ... (545)

<223> n = A, T, C or G

<400> 205

tttttntttt	tttttcagt	aataatcaga	acaatattta	tttttatatt	taaaattcat	60
agaaaagtgc	cttacattta	ataaaagttt	gtttctcaaa	gtgatcagag	gaatttagata	120
tngtcttcaa	caccaatatt	aatttgagga	aaatacacca	aaatacatta	agtaaattat	180
ttaagatcat	agagcttgya	agtgaaaaga	taaaatttga	cctcagaaac	tctgagcatt	240
aaaaatccac	tattagcaaa	taaattacta	tggacttctt	gcttttaattt	tgtgatgaat	300
atggggtgtc	actggtaaac	caacacattc	tgaaggatac	attacttagt	gatagattct	360
tatgtacttt	gctanatnac	gtggatatga	gttgacaagt	ttctcttct	tcaatcttt	420
aaggggcnga	ngaaatgagg	aagaaaagaa	aaggattacg	catactgttc	tttctatnngg	480
aaggattaga	tatgtttcct	ttgccaatat	taaaaaaata	ataatgttta	ctactagtga	540
aaccc						545

<210> 206

<211> 487

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(487)

<223> n = A,T,C or G

<400> 206

tttttttttt	tttttagtc	aagtttctna	tttttattat	aattaaagtc	ttggtcattt	60
catttattag	ctctgcaact	tacatattta	aattaaagaa	acgttnttag	acaactgtna	120
caatttataa	atgtaaaggtg	ccatttatga	gtanatatat	tcctccaaga	gtggatgtgt	180
cccttctccc	accaactaat	gaancagcaa	cattagttt	attttattag	tagatnatac	240
actgctgcaa	acgctaattc	tcttctccat	ccccatgtng	atattgtgta	tatgtgtgag	300
ttggtnagaa	tgcatacana	atctnacaat	caacagcaag	atgaagctag	gcntggcctt	360
tcggtgaaaa	tagactgtgt	ctgtctgaat	caaatgatct	gacctatcct	cggtggcaag	420
aactcttcga	accgcttcct	caaaggcngc	tgccacattt	gtggcntctn	ttgcaacttgt	480

ttcaaaa

487

<210> 207
<211> 332
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(332)
<223> n = A,T,C or G

<400> 207

tgaattggct aaaagactgc attttanaaa cttagcaactc ttatTTCTTT cctttaaaaa	60
tacatagcat taaatcccaa atccttattta aagacctgac agcttgagaa ggtcactact	120
gcatttatag gaccttctgg tggttctgct gttacntttg aantctgaca atccttgana	180
atcttgcata gcagaggagg taaaaggtat tggatTTCA cagaggaana acacagcgca	240
gaaatgaagg gcccaggctt actgagcttgc tccactggag ggctcatggg tggacatgg	300
aaaagaaggc agcctaggcc ctggggagcc ca	332

<210> 208
<211> 524
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(524)
<223> n = A,T,C or G

<400> 208

agggcgttgtt gcccggggcg ttactgtttt gtctcagtaa caataaatac aaaaagactg	60
gttgtgttcc gccccatcc aaccacgaag ttgatttctc ttgtgtgcag agtactgtat	120
tttaaaggac atggagcttg tcacaatgtc acaatgtcac agtgtgaagg gacactcac	180
tcccgctgtca ttacacattta gcaaccaaca atagctcatg agtccataact tgtaaataact	240
tttggcagaa tacttnttga aacttgaga tgataactaa gatccaagat attcccaa	300
gtaaatagaa gtgggtcata atattaatta cctgttcaca tcagcttcca tttacaagtc	360
atgagcccaag acactgacat caaactaagc ccacttagac tcctcaccac cagtctgtcc	420
tgtcatcaga caggaggctg tcaccttgac caaattctca ccagtcaatc atctatccaa	480
aaaccattac ctgatccact tcggtaatg caccaccttgcgt	524

<210> 209
<211> 159
<212> DNA
<213> Homo sapien

<400> 209

gggtgaggaa atccagagtt gccatggaga aaattccagt gtcagcattc ttgctccttg	60
tggccctctc ctacactctg gccagagata ccacagtcaa acctggagcc aaaaaggaca	120
caaaggactc tcgacccaaa ctgccccaga ccctctcca	159

<210> 210
<211> 256
<212> DNA
<213> Homo sapien

<220>
 <221> misc_feature
 <222> (1) ... (256)
 <223> n = A,T,C or G

<400> 210

actccctggc agacaaaaggc agaggagaga gctctgttag ttctgtgttgc	60
actgaatttc tttccacttg gactattaca tgccanttga gggactaatg gaaaaacgta	120
tggggagatt ttanccaatt tangtntgta aatggggaga ctggggcagg cgggagagat	180
ttgcagggtg naaatgggan ggctggtttgc ttanatgaac agggacatag gagtaggca	240
ccaggatgct aaatca	256

<210> 211
 <211> 264
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1) ... (264)
 <223> n = A,T,C or G

<400> 211

acattgtttt tttgagataa agcattgaga gagctctcct taacgtgaca caatgaaagg	60
actggaacac ataccacat ctttgttctg agggataatt ttctgataaa gtctgctgt	120
atattcaagc acatatgtta tatattatttc agttccatgt ttatagccta gttaggaga	180
ggggagatac attcngaaag aggactgaaa gaaatactca agtnggaaaa cagaaaaaga	240
aaaaaaggag caaatgagaa gcct	264

<210> 212
 <211> 328
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1) ... (328)
 <223> n = A,T,C or G

<400> 212

acccaaaaat ccaatgctga atatttggttc tcattattcc canattcttt gattgtcaaa	60
ggattnaatg ttgtctcagc ttgggcactt cagttaggac ctaaggatgc cagccggcag	120
gttttatatac gcagcaacaa tattcaagcg cgacaacagg ttattgaact tgcccggcag	180
ttnaatttca ttccccattga cttgggatcc ttatcatcag ccagagagat tgaaaattta	240
cccccacnac tctttactct ctgganaggg ccagtggtgg tagctataag cttggccaca	300
tttttttttc ctttatttcc ttgtcaga	328

<210> 213
 <211> 250
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature

<222> (1)...(250)
<223> n = A,T,C or G

<400> 213

acttatgagc agagcgacat atccnagtgt agactgaata aaactgaatt ctctccagtt	60
taaaggcattt ctcactgaag ggatagaagt gactgccagg agggaaagta agccaaggct	120
cattatgccca aagganatat acatttcaat tctccaaact tcttcctcat tccaagagtt	180
ttcaatattt gcatgaacct gctgataanc catgttaana aacaaatatac tctctnacct	240
tctcatcggt	250

<210> 214

<211> 444

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(444)

<223> n = A,T,C or G

<400> 214

accccagaatc caatgctgaa tatttggctt cattattccc agattctttg attgtcaaag	60
gatttaatgt tgtctcagct tgggcacccatc agttaggacc taaggatgcc agccggcagg	120
tttatatatgt cagcaacaat attcaagcgc gacaacaggt tattgaactt gcccgccagt	180
tgaatttcat tcccatgtac ttgggatcct tatcatcgc canagagatt gaaaattttac	240
ccctacgact ctttactctt tggagagggc cagtggtgggt agctataagc ttggccacat	300
ttttttttcc ttatccctt tgtcagagat gcgattcatc catatgctan aaaccaacag	360
agtgactttt aaaaaattcc tataganatt gtgaataaaa ccttacccat agttggcatt	420
actttgctct ccctaataata cctc	444

<210> 215

<211> 366

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(366)

<223> n = A,T,C or G

<400> 215

acttatgagc agagcgacat atccaagtgt anactgaata aaactgaatt ctctccagtt	60
taaaggcattt ctcactgaag ggatagaagt gactgccagg agggaaagta agccaaggct	120
cattatgccca aagganatat acatttcaat tctccaaact tcttcctcat tccaagagtt	180
ttcaatattt gcatgaacct gctgataagc catgttgaga aacaaatatac tctctgacet	240
tctcatcggt aagcagaggc tggtaggcaac atggaccata gcgaanaaaa aacttagtaa	300
tccaagctgt tttctacact gtaaccaggc ttccaaccaa ggtggaaatc tcttataactt	360
ggtgcc	366

<210> 216

<211> 260

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature
 <222> (1)...(260)
 <223> n = A,T,C or G

<400> 216

ctgtataaac agaactccac tgcangaggg agggccgggc caggagaatc tccgcttgc	60
caagacaggg gcctaaggag ggtctccaca ctgctntaa gggctttnc attttttat	120
taataaaaag tnnaaaaaggc ctcttctcaa ctttttccc ttnggctgga aaattaaaaa	180
atcaaaaatt tcctnaagtt ntcaagctat catatatact ntatcctgaa aaagcaacat	240
aattcttcctt ccctccctt	260

<210> 217

<211> 262

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(262)

<223> n = A,T,C or G

<400> 217

acctacgtgg gtaagttan aaatgttata atttcaggaa naggaacgcata tataattgtat	60
tcttgccatat aattttctat tttataagg aaatagcaaa ttgggggtggg gggaatgttag	120
ggcattctac agttttagca aaatgcattt aaatgtggaa ggacagcact gaaaaatttt	180
atgaaaatc tgtatgatta tatgtctcta gagtagattt ataatttagcc acttacccta	240
atatccttca tgcttgtaaa gt	262

<210> 218

<211> 205

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(205)

<223> n = A,T,C or G

<400> 218

accaagggtgg tgcattaccg gaantggatc aangacacca tcgtggccaa cccctgagca	60
ccccctatcaa ctccctttt tagtaaactt ggaaccttgg aaatgaccag gccaaagactc	120
aggcctcccc agttctactg acctttgtcc ttangtnna ngtccagggt tgcttagaaaa	180
anaaatcagc agacacaggt gtaaa	205

<210> 219

<211> 114

<212> DNA

<213> Homo sapien

<400> 219

tactgttttg tctcagtaac aataaaataca aaaagactgg ttgtgttccg gccccatcca	60
accacgaagt tgatttctct tgggtgcaga gtgactgatt ttaaaggaca tgga	114

<210> 220

<211> 93

<212> DNA
 <213> Homo sapien

<400> 220

actagccagc acaaaaaggca gggtagcctg aattgccttc tgctctttac atttctttta
 aaataaagcat ttagtgctca gtcctactg agt

60
 93

<210> 221

<211> 167

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(167)

<223> n = A,T,C or G

<400> 221

actangtca ggtgcgcaca aatatttgc gatattccct tcatacttgg ttcctatgagg
 tcttttgcgc accctgtggc tctactgttag taagtttctg ctgatgagga gccagnatgc
 cccccactac cttccctgac gctcccccana aatcacccaa cctctgt

60
 120
 167

<210> 222

<211> 351

<212> DNA

<213> Homo sapien

<400> 222

agggcggtggt gcggaggggcg gtactgacct cattagtagg aggatgcatt ctggcacccc
 gttcttcacc tgcctcccaa tccttaaaag gcccatactgc ataaagtcaa caacagataaa
 atgtttgtcg aattaaagga tggatgaaaa aaattaataa tgaatttttgc cataatccaa
 ttttctcttt tatatttcta gaagaagttt ctttgagcctt attagatccc gggaatcttt
 taggtgagca tgatttagaga gctttaggt tgctttaca tatatctggc atatttgagt
 ctcgtatcaa aacaatagat tggtaaaggt ggtattattg tattgataag t

60
 120
 180
 240
 300
 351

<210> 223

<211> 383

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(383)

<223> n = A,T,C or G

<400> 223

aaaacaaaca aacaaaaaaaaa acaatttttc attcagaaaa attatcttag ggactgatat
 tggtaattat ggtcaattta atwrtrttkt gggcatttc cttacattgt cttgacaaga
 tttaaaatgtc tgcctcccaa ttttgttattt tatttggaga cttcttatca aaagtaatgc
 tgccaaagga agtctaagga attagtagtg ttcccmtcac ttgtttggag tgcatttc
 taaaagattt tgatttcctg gaatgacaat tatattttaa ctttgggggg gaaanagtt
 ataggaccac agtcttcaact tctgatactt gtaaattaat ctttattgc acttgggg
 accattaagc tataatgttta aaa

60
 120
 180
 240
 300
 360
 383

<210> 224

<211> 320
<212> DNA
<213> Homo sapien

<400> 224

ccccctgaagg cttcttgtta gaaaatagta cagttacaac caataggaac aacaaaaaga	60
aaaagtttgt gacattgtag tagggaggt gtaccctta ctccccatca aaaaaaaaaat	120
ggatacatgg ttaaaggata raagggcaat attttatcat atgttctaaa agagaaggaa	180
gagaaaatac tacttctcr aaatggaagc ccttaaaggt gctttgatac tgaaggcac	240
aatatgtggcc gtccatcctc cttaragtt gcatgacttg gacacggtaa ctgttgact	300
tttaractcm gcattgtgac	320

<210> 225

<211> 1214

<212> DNA

<213> Homo sapien

<400> 225

gaggactgca gccgcactc gcagccctgg caggccgcac tggcatgga aaacgaattt	60
ttctgtctgg gcgtcctggt gcatccgcag tgggtctgt cagccgcaca ctgttccag	120
aactcctaca ccatcggtt gggcctgcac agtctgagg ccgaccaaga gccaggagc	180
cagatgggtt aggccagcct ctccgtacgg cacccagagt acaaacagacc cttgctcgct	240
aacgaccta tgctcatcaa gttggacgaa tccgtgtccg agtctgacac catccggagc	300
atcagcattt cttcgcagtg ccctaccgcg gggacttgc ttgcgtttt tggctgggt	360
ctgctggcga acggcagaat gcctaccgtg ctgcagtgcg tgaacgtgtc ggtgggtct	420
gaggaggctt gcagtaagct ctatgaccgc ctgtaccacc ccagcatgtt ctgcggcgc	480
ggagggcaag accagaagga ctccgtcaac ggtactctg gggggcccct gatctgcaac	540
gggtacttgc agggccttgc gtcttgcga aaagccccgt gtggccaagt tggcgtgcca	600
gtgtctaca ccaacctctg caaatttactt gagtggatag agaaaaaccgt ccagggcagt	660
taactctggg gactggaaac ccatgaaatt gaccccaaa tacatctgc ggaaggaaatt	720
caggaatatc tttccctgc ccctccccc tcaggcccag gagtccaggc ccccagcccc	780
tcctccctca aaccaagggtt acagatcccc agccctctt ccctcagacc caggagtc	840
gaccccccag ccctccccc ctcagaccca ggagtccagc ccctccccc tcagacccag	900
gagtccagac ccccccagccc ctcccccctc agacccagggtt gtcacccccc ccaacccctc	960
ctccctcaga ctcagaggc caagccccca accccctctt ccccaagaccc agaggccag	1020
gtcccagccc ctcccccctc agacccaggcg gtccaatgcc acttagactc tccctgtaca	1080
cagtgcggcc ttgtggcacg ttgacccaaat cttaccagggtt gtttttcat ttttgc	1140
tttcccttag atccagaaat aaagtctaaag agaagcgc当地 aaaaaaaaaaaaaaaa	1200
aaaaaaaaaaaaaaa aaaa	1214

<210> 226

<211> 119

<212> DNA

<213> Homo sapien

<400> 226

acccagtatg tgcaggaga cggaaacccca tgtgacagcc cactccacca gggttcccaa	60
agaacctggc ccagtcataa tcattcatcc tgacagtggc aataatcagc ataaccagt	119

<210> 227

<211> 818

<212> DNA

<213> Homo sapien

<400> 227

acaattcata gggacgacca atgaggacag ggaatgaacc cggctctccc ccagccctga 60
ttttgtcac atatggggtc cttttcatt ctttgaaaa acactgggtt ttctgagaac 120
acggacggtt cttagcacaa tttgtaaat ctgtgtaraa cggggcttg caggggagat 180
aattttcetc ctctggagga aagggtgt a ttgacaggca gggagacagt gacaaggcta 240
gagaaagcca cgctcgccct tctctgaacc agatggaaac ggcagacccc tgaaaacgaa 300
gcttgtcccc ttccaatcatc ccacttctga gaacccccc ctaacttctt actggaaaag 360
agggccttctt caggagcagt ccaagagttt tcaaagataa cgtgacaact accatctaga 420
ggaaagggtg caccctcagc agagaagccg agagcttaac tctgggtcgtt tccagagaca 480
acctgctggc tttcttggg tgcgcggcagc ctttgagagg ccactacccc atgaaettct 540
gccatocact ggacatgaag ctgaggacac tgggcttcaa cactgagttt tcatgagagg 600
gacaggctt cccctcaaggc cggctgaggg cagcaaccac tcttctcccc ttcttcacgc 660
aaagccattt ccacaaatcc agaccatacc atgaagcaac gagacccaaa cagtttggct 720
caagaggata tgaggactgt ctcagcctgg ctttgggtg acaccatgca cacacacaag 780
gtccacttctt aggttttcag cctagatggg agtcgtgt 818

<210> 228

<211> 744

<212> DNA

<213> Homo sapien

<400> 228

actggagaca ctgttgaact ttagtcaagac ccagaccacc ccaggtctcc ttcgtggat 60
gtcatgacgt ttgacatacc tttggAACGA gcctccctt tggaaatgg aagaccgtgt 120
tcgtggccga cctggcctct cctggcctgt ttcttaagat gggagtcac atttcaatgg 180
tagaaaaagt ggcttcgtaa aatagaagag cagtcaactgt ggaactacca aatggcgaga 240
tgctcggcgc acattgggtt gctttggat aaaagatTTA tgagccaaactt attctctggc 300
accagattct aggccagttt gttccactga agctttccc acagcagtcc acctctgcag 360
gctggcagct gaatggcttg ccgggtggc tggcaaga tcacactgag atcgatgggt 420
gagaaggcta ggatgcttgc ctatgtttt tagctgtcac gttggcttcc tccagggttgg 480
ccagacgggtt tggccactc ccttctaaaaa cacaggcgcc ctccctggta cagtgaccccg 540
ccgtggatgt ctttggccca ttccagcagt cccagttatg catttcaagt ttggggttt 600
ttctttcgta taatgttccct ctgtgttgc agctgttcc atttcttggg ctaaggcagca 660
ttgggagatg tggaccagag atccacttctt taagaaccag tggcgaaaaga cactttttt 720
cttcactctg aagtagctgg tgg 744

<210> 229

<211> 300

<212> DNA

<213> Homo sapien

<400> 229

cgggtctggg ttttgcata aaagtttgc ccctcccttt ctcatccaaa tcacatgtgaac 60
cattacacat cggaaataaaa gaaagggtggc agacttgcac aacgcacggc tgacatgtgc 120
tgcagggttgg tttttttttt attattattt ttagaaacgt caccacagt ccctgttaat 180
ttgtatgtga cggccaaactc tgagaaggc tctttttcc acctgcacag gatccagttt 240
caactaggcctc cccttgcaccc tcacactgga gtctccggca gtgtgggtgc ccactgacat 300

<210> 230

<211> 301

<212> DNA

<213> Homo sapien

<400> 230

cagcagaaca aatacaaata tgaagagtgc aaagatctca taaaatctat gctgaggaat 60
gagcagacagt tcaaggaggaa gaagctgca gagcagctca agcaagctga ggagctcagg 120

caatataaaag tcctggttca cactcaggaa cgagagctga cccagtttaag ggagaagttg	180
cgggaaggga gagatgcctc cctctcatgg aatgagcatc tccaggccct cctcaactccg	240
gatgaaccgg acaagtcccc ggggcaggac ctccaagaaa cagacctcg ccgcgaccac	300
g	301

<210> 231

<211> 301

<212> DNA

<213> Homo sapien

<400> 231

gcaaggcacgc tggcaaattct ctgtcaggc agtccagag aagccatttag tcatttttagc	60
caggaactcc aagtccacat cttggcaac tgggacttg cgcaggtag cttgaggat	120
ggcaacacgg gacttctcat caggaagtgg gatgttagatg agctgatcaa gacggccagg	180
tctgaggatg gcaggatcaa tgatgtcagg ccggttggta ccgccaatgaa tgaacacatt	240
ttttttgtg gacatgccat ccattctgt caggatctgg ttgatgactc ggtcagcagc	300
c	301

<210> 232

<211> 301

<212> DNA

<213> Homo sapien

<400> 232

agttaggtatt tcgtgagaag ttcaacaccca aaactggAAC atagttctcc ttcaagtgtt	60
ggcgacacgc gggcttcctg attctggaat ataactttgt gtaaaattaac agccacctat	120
agaagagtcc atctgctgtg aaggagagac agagaactct gggttccgtc gtcctgtcca	180
cgtgctgtac caagtgtcgg tgccagccctg ttacctgttc tcaactgaaaa tctggctaat	240
gctcttgtgt atcacttctg attctgacaa tcaatcaatc aatggcctag agcactgact	300
g	301

<210> 233

<211> 301

<212> DNA

<213> Homo sapien

<400> 233

atgactgact tcccagtaag gctctctaag gggtaagtag gaggatccac aggatttgag	60
atgctaaggc cccagagatc gtttgatcca acccttttat tttcagaggg gaaaatgggg	120
cctagaagtt acagagcatc tagctggtgc gctggcaccc ctggcctcac acagactccc	180
gagtagctgg gactacaggg acacagtca tgaaggcaggc cctgttagca attctatgeg	240
tacaaattaa catgagatga gtagagactt tattgagaaa gcaagagaaa atcctatcaa	300
c	301

<210> 234

<211> 301

<212> DNA

<213> Homo sapien

<400> 234

aggtcctaca catcgagact catccatgtat tgatatgaat taaaaattaa caagcaaaga	60
catttttattc atcatgatgc ttctttttgt ttctttttttt cgttttcttc tttttttttt	120
tcaatttcag caacatactt ctcaatttct tcaggattta aatctttag ggtttttagt	180
ccctctatga cagcaagttc aatgtttttt ccacacttca gaaaccatcc caggagtgcc	240
ttgatcacca gcttaatggt cagatcatct gcttcaatgg ctctgtcagt atagtttttc	300

t

301

<210> 235

<211> 283

<212> DNA

<213> Homo sapien

<400> 235

tggggctgtg catcaggccg gttttagaaaa tattcaatttc tcagcagaag ccagaatttg
 aatccccta tcttttaggg aatcatttac caggtttggg gaggatttag acagctcagg
 tgcttcact aatgtctctg aacctctgtc cctctttgtt catggatagt ccaataaaata
 atgttatctt tgaactgtatg ctcataggag agaatataa aactctgagt gatatcaaca
 tttagggattc aaagaaatat tagattaag ctcacactgg tca

60

120

180

240

283

<210> 236

<211> 301

<212> DNA

<213> Homo sapien

<400> 236

aggtcctcca ccaactgcct gaagcacggt taaaattggg aagaagtata gtgcagcata
 aatactttta aatcgatcg attccctaa cccacatgca atcttcctca ccagaagagg
 tcggagcagc atcattaata ccaagcagaa tgcgtaatag ataaatacaa tggtatatag
 tggtagacg gcttcatgag tacagtgtac tggatgtatcg taatctggac ttgggttgta
 aagcatcgta taccagttag aagcatcaa tactcgacat gaacgaatat aaagaacact
 a

60

120

180

240

300

301

<210> 237

<211> 301

<212> DNA

<213> Homo sapien

<400> 237

cagtggtagt gggtggggac gtggcgttgg tcgtgggcc tttttgggt cccgtcacaa
 actcaatttt ttttcgtcc tttttggcct tttccaattt gtccatctca attttctggg
 ccttggctaa tgccatcata taggatcct cagaccagcc atggggatca aacatatcct
 ttggtagtt ggtgccaagc tcgtcaatgg cacagaatgg atcagttct cgtaaatct
 gggttccgaa attctttctt cctttggata atgttagttca tatccattcc ctctttatc
 t

60

120

180

240

300

301

<210> 238

<211> 301

<212> DNA

<213> Homo sapien

<400> 238

gggcagggttt tttttttttt tttttttagt gtgcagaccc ttgttttatt tgtctgactt
 gttcacagtt cagccccctg ctcagaaaaac caacgggcca gctaaggaga ggaggaggca
 ccttggact tccggagtcg aggctctcca gggttccca gcccatcaat cattttctgc
 accccctgcc tggaaagcag ctccctgggg ggtggaaatg ggtgactaga aggatttca
 gtgtgggacc cagggtctgt tcttcacagt aggaggtgga agggatgact aattttttta
 t

60

120

180

240

300

301

<210> 239

<211> 239

<212> DNA

<213> Homo sapien

<400> 239

ataaggagct	agggaaattct	ttatTTtagta	atgtcctaAC	ataaaAGTTC	acataACTGC	60
ttctgtcaAA	ccatgataCT	gagCTTGTG	acaACCCAGA	aATAACTAAG	agaAGGCAAA	120
cataatacCT	tagAGATCAA	gaaACATTAA	cACAGTTCAA	CTGTTAAA	AtAGCTCAAC	180
attcagCCAG	tGAGTAGAGT	gtGAATGCCA	gcataCACAG	tataCAGGTC	CTTCAGGGA	239

<210> 240

<211> 300

<212> DNA

<213> Homo sapien

<400> 240

ggTCCTAATG	aAGCAGCAGC	ttCCACATT	taACGCAGGT	ttACGGTGT	actGTCCTT	60
gggatCTGCC	ctCCAGTGG	acCTTTAAG	gaAGAAGTGG	gCCCAAGCTA	agTTCCACAT	120
-gCTGGGTGAG	ccAGATGACT	tCTGTTCCCT	gGTCACTTC	ttCAATGGGG	cGAATGGGGG	180
ctGCCAGGTT	tttAAATCA	tgCTTCATCT	tGAAGCACAC	gGTCACTTC	CCCTCCTCAC	240
gCTGTGGGTG	tACTTTGATG	aaaATACCCA	ctttGTTGGC	ctttCTGAAG	ctATAATGTC	300

<210> 241

<211> 301

<212> DNA

<213> Homo sapien

<400> 241

gaggTCTGGT	gCTGAGGTCT	ctgggCTAGG	aAGAGGAGTT	ctgtggAGCT	ggaAGCCAGA	60
cctCTTTGGA	ggAAACTCCA	gcAGCTATGT	tggTGTCTCT	gaggGAATGC	aACAAGGCTG	120
ctcCTCCATG	tATTGGAAAA	ctgCAAActG	gACTCAACTG	gAAGGAAGTG	ctgCTGCCAG	180
tGTGAAGAAC	cAGCCTGAGG	TGACAGAAAC	gGAAGCAAAC	AGGAACAGCC	AGTCTTTCT	240
tcctCCTCCT	gtCatacGGT	ctctCTCAAG	CATCCTTGT	TGTCAAGGGC	ctAAAAGGGA	300
g						301

<210> 242

<211> 301

<212> DNA

<213> Homo sapien

<400> 242

ccgaggTcCT	gggatGCAAC	caATCACTCT	gtttcacGtG	actTTTATCA	ccatacaATT	60
tgtggcATT	cctcATTTC	taCATTTGAG	aatcaAGAGT	gtAAATAAAAT	gtATATCGAT	120
gtCTTCAAGA	atATATCATT	cTTTTcac	tagAACCCAT	tCAAAATATA	AGTCAAGAAT	180
cttaATATCA	acAAATATAT	caAGCAAAct	gGAAGGcAGA	AtAACTACCA	taATTTAGTA	240
taagtACCCA	aAGTTTATA	aatCAAAGC	cCTAATGATA	accATTTTA	GAATTCAATC	300
a						301

<210> 243

<211> 301

<212> DNA

<213> Homo sapien

<400> 243

aggtaagtCC	cagtTTGAAG	ctcaAAAGAT	ctggTATGAG	cataggCTCA	tcgacgACAT	60
ggTGGCCCAA	gCTATGAAAT	cAGAGGGAGG	cttcatCTGG	gcCTGTAAAA	actATGATGG	120

tgacgtgcag tcgactctg tggcccaagg gtatggctct ctggcatga tgaccagcg 180
 gctggtttgc ccagatggca agacagtata agcagaggct gcccacggga ctgtaaaccg 240
 tcactaccgc atgttccaga aaggacagga gacgtccacc aatcccattt cttccatattt 300
 t 301

<210> 244
 <211> 300
 <212> DNA
 <213> Homo sapien

<400> 244
 gctggtttgc aagaatgaaa tgaatgattc tacagctagg acttaaccc gaaatggaaa 60
 gtcatcaat cccatttgc gatatgtct gtgcacatgc ctctgttagag agcagcattc 120
 ccagggaccc ttggaaacagt tgacactgta aggttgttgc tcccccaagac acatccctaaa 180
 aggtgttgc atggtgaaaa cgtttccctt ctttattgcc ctttcttatt tatgtgaaca 240
 actgttttgc ttttgttat cttttttaaa ctgtaaagtt caattgtgaa aatgaatatc 300

<210> 245
 <211> 301
 <212> DNA
 <213> Homo sapien

<400> 245
 gtctgagttat taaaatgtt attgaaatta tcccccaacca atgttagaaa agaaagaggt 60
 tataactta gataaaaaat gaggtgaaatt actatccatt gaaatcatgc tctttagaatt 120
 aaggccagga gatattgtca ttaatgtara cttcaggaca cttagtata gcagccctat 180
 gtttcaaag agcagagatg caattaaata ttgttagca tcaaaaaggc cactcaataac 240
 agctaataaaa atgaaagacc taatttetaa agcaattctt tataatttac aaagttttaa 300
 g 301

<210> 246
 <211> 301
 <212> DNA
 <213> Homo sapien

<400> 246
 gtctgtcct acaatgcctg ctttttgaaa gaagtcggca cttttctagaa tagctaaata 60
 ccctggcctt attttaaaga actattgtt gtcagattt gttttccat ggctaaaata 120
 gtgttgcgtt gtaaaaatta aataaaacag ttaattcaaa gccttgatata atgttaccac 180
 aacaatcat actaaatata ttttgaagta caaaggtttga catgctctaa agtgacaacc 240
 aaaaatgtgtc ttacaaaaca cgttccaaac aaggtatgct ttacactacc aatgcagaaaa 300
 301

<210> 247
 <211> 301
 <212> DNA
 <213> Homo sapien

<400> 247
 gtccttttgcaggcgtca tggatcagag ctcaaactgg agggaaaggc atttcggtt 60
 cctaagagg ggcactggcg gcagcacaaac caaggaaggc aaggttgggg ccccaacgct 120
 ttttttttttgcgtt gtcagggtcg acacacaatc ctcatggaa caggatcacc catgcgtgc 180
 ttgtatgtat caaggttggg gcttaagtgg attaagggg gcaagttctg gttcccttgc 240
 ttttcaaac catgaagtca ggctctgtat ccctccctt cctaactgat attctaacta 300
 301

<210> 248
 <211> 301
 <212> DNA
 <213> Homo sapien

<400> 248

aggcccttgg	agatgccatt	ttagccaaag	gactttctw	ttcggaagta	cacccteact	60
attagaaga	ttcttagggg	taattttct	gaggaaggag	aactagccaa	cttaagaatt	120
acaggaagaa	agtgggttgg	aagacagcca	aagaataaaa	agcagattaa	attgtatcag	180
gtacattcca	gcctgttggc	aactccataaa	aaacatttca	gattttaatc	ccgaatttag	240
ctaattgagac	tggatttttg	tttttatgt	tgtgtgtcgc	agagctaaaa	actcagtcc	300
C						301

<210> 249

<211> 301
 <212> DNA
 <213> Homo sapien

<400> 249

gtccagagga	agcacctgg	gctgaactag	gcttgccctg	ctgtgaactt	gcacttggag	60
ccctgacgct	gctgttctcc	ccgaaaaacc	cgaccgacct	ccgcgatctc	cgccccccc	120
ccagggagac	acagcagtga	ctcagagctg	gtcgacact	gtgcctccct	cctcaccggcc	180
catcgtaatg	aattatTTT	aaaattaatt	ccaccatctt	ttagattct	ggatggaaag	240
actgaatctt	tgactcagaa	ttgtttgctg	aaaagaatga	tgtgactttc	ttagtcattt	300
a						301

<210> 250

<211> 301
 <212> DNA
 <213> Homo sapien

<400> 250

ggctgtgac	aaggacttgc	aggctgtggg	aggcaagtga	cccttaaacac	tacacttctc	60
cttatctta	ttggcttgat	aaacataatt	atttctaaca	ctagcttatt	tccagttgcc	120
cataaggcaca	tcaagtacttt	tctctggctg	gaatagtaaa	ctaaagtatg	gtacatctac	180
ctaaaagact	actatgtgga	ataatacata	ctaataatgt	attacatgtat	ttaaagacta	240
caataaaacc	aaacatgctt	ataacattaa	gaaaaacaat	aaagatacat	gattggaaacc	300
a						301

<210> 251

<211> 301
 <212> DNA
 <213> Homo sapien

<400> 251

gccgaggccc	tacatttggc	ccagtttccc	cctgcaccc	ctccagggcc	cctgcctcat	60
agacaacctc	ataagacata	ggagaactgg	ttggccctggg	ggcaggggga	ctgtctggat	120
ggcaggggtc	ctcaaaaaatg	ccactgtcac	tgcaggaaa	tgcttctgag	cagtacaccc	180
cattgggatc	aataaaaagc	ttcaagaat	tttcaggctc	actctcttga	aggccccggaa	240
cctctggagg	ggggcagtgg	aatcccagct	ccaggacgg	tcctgtcgaa	aagatatcct	300
c						301

<210> 252

<211> 301

<212> DNA

<213> Homo sapien

<400> 252

gcaacccaatc actctgtttc acgtgacttt ttcaccata caatttggg catttcctca
 ttttctacat ttttagaatca agagtgtaaa taaatgtata tcgatgtctt caagaatata
 tcatttcctt ttcacttagga acccattcaa aatataagtgc aagaatctt atatcaacaa
 atatatcaag caaactggaa ggcagaataa ctaccataat ttatgtataag tacccaaagt
 tttataaaatc aaaagcccta atgataacca tttttagaat tcaatcatca ctgtagaatc
 a

60
120
180
240
300
301

<210> 253

<211> 301

<212> DNA

<213> Homo sapien

<400> 253

ttcccttaaga agatgttatt ttgttgggtt ttgttcccccc tccatctcgat ttctcgtaacc
 caactaaaaaaa aaaaaaaaataa agaaaaaaatg tgctgcgttc tgaaaaataa ctcccttagct
 tggtctgatt gtttcagac cttaaaaat aacttggttt cacaagcttt aatccatgtg
 gatttttttt cttagagaac cacaaaacat aaaaggagca agtcggactg aatacctgtt
 tccatagtgc ccacagggta ttccctcacat ttctccataa ggaaaatgct tttcccaag
 g

60
120
180
240
300
301

<210> 254

<211> 301

<212> DNA

<213> Homo sapien

<400> 254

cgctgcgcct ttcccttggg ggaggggcaa ggccagaggg ggtccaaatgc cagcacgggg
 aacttgcacca attcccttgc agcgggtggg ttaaaccctg taaatggaa caaaaatcccc
 ccaaatctct tcatcttacc ctgggtggact cctgactgtt gaattttttt gttgaaacaa
 gaaaaaaaaata aagcttttgc ctttcaagg ttgcttaaca, ggtactgaaa gactggcctc
 acttaaactg agccagggaaa agctgcagat ttattaatgg gtgtgttagt gtgcagtgcc
 t

60
120
180
240
300
301

<210> 255

<211> 302

<212> DNA

<213> Homo sapien

<400> 255

agctttttttt tttttttttt ttcataaaaa aatagtgc tttattataa
 attactgaaa tttttttttt ctgaatataa atataaaat atgtcaagtt tgacttggat
 tgggatttttgg ttagtttctt caagcatctc ctaataccctt caagggcctg agtaggggggg
 aggaaaaagg actggaggtg gaatctttat aaaaaacaag agtggattgag gcagattgt
 aacattatta aaaaacaaga aacaaacaaa aaatagaga aaaaaccac cccaaacacac
 aa

60
120
180
240
300
302

<210> 256

<211> 301

<212> DNA

<213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(301)
 <223> n = A,T,C or G

<400> 256

gttccagaaa acattgaagg tggctccca aagtctaact agggataccc cctctagcct
 aggaccctcc tccccacacc tcaatccacc aaaccatcca taatgcaccc agataggccc
 acccccaaaa gcctggacac cttagcaca cagttatgac caggacagac tcatacttat
 aggcaaatacg ctgctggcaa actggcatta cctgggttgt ggggatgggg gggcaagtgt
 gtggcctctc gcctggta gcaagaacat tcaggtagg cctaagttt tcgtgttagt
 t

60
 120
 180
 240
 300
 301

<210> 257

<211> 301
 <212> DNA
 <213> Homo sapien

<400> 257

gttgtggagg aactctggct tgctcattaa gtcctactga ttttactat cccctgaatt
 tccccactta tttttgtctt tcactatcgcc aggccttaga agaggctcac ctgcctccag
 tcttaccttag tccagtctac cccctggagt tagaatggcc atcctgaagt gaaaagtaat
 gtcacattac tccctttagt gatttttgtt agaagtgcctt atccctgaat gccaccaaga
 tcttaatctt cacatcttta atcttatctc tttgactcct ctttacaccg gagaaggctc
 C

60
 120
 180
 240
 300
 301

<210> 258

<211> 301
 <212> DNA
 <213> Homo sapien

<220>

<221> misc_feature
 <222> (1)...(301)
 <223> n = A,T,C or G

<400> 258

cagcagtatg agatgccgtt tgccagcactc cccagcactc ccaggatcg caccagcacc
 agggggcccg ccaccaggcg cagaagcaag ataaacagta ggctcaagac cagagccacc
 cccaggccaa caagaatcca ataccaggac tggcaaaaat cttcaagat ctttacactg
 atgtctcggg cattgaggct gtcaataana cgctgatccc ctgctgtatg gtgggtcat
 tggtgatccc tgggagcgcc ggtggagtaa cgttggtcctt tggaaagcag cgccccacaac
 t

60
 120
 180
 240
 300
 301

<210> 259

<211> 301
 <212> DNA
 <213> Homo sapien

<220>

<221> misc_feature
 <222> (1)...(301)
 <223> n = A,T,C or G

<400> 259

tcatatatgc aaacaaatgc agactangcc tcaggcagag actaaaggac atctttggg	60
gtgcctgaa gtgatttggc cccctgaggg cagacaccta agtaggaatc ccagtggaa	120
gcaaagccat aaggaagccc aggattcctt gtgatcgga agtgggccag gaaggtctgt	180
tccagctac atctcatctg catgcagcac ggaccggatg cgcccaactgg gtcttggct	240
ccctcccatc ttctcaagca gtgccttgt tgagccattt gcatecttgg ctccagggtgg	300
C	301
<210> 260	
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 260	
tttttttctt ccctaaggaa aaagaaggaa caagtctcat aaaaccaaata aagcaatgg	60
aagggtgtctt aacttggaaa agatttaggg tcaactggttt acaagttata attgaatgaa	120
agaactgtaa cagccacagt tggccatttc atgccaatgg cagcaaacaa caggattaac	180
tagggcaaaa taaaataagtg tggaaagcc ctgataagtg cttaaaataaac agactgattc	240
actgagacat cagtacactgc ccggcggcc gctcgagccg aattctgcag atatccatca	300
C	301
<210> 261	
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 261	
aatatttcga gcaaattctg taactaatgt gtctccataa aaggcttga actcagtgg	60
tctgttcca tccacgattc tagcaatgac ctctcgacaca tcaaagctcc tcttaaggtt	120
agcaccaact attccatatacattcatcagc agggaaataaaa ggctttcag aaggttcaat	180
ggtgacatcc aattttttctt gataatttag attcctcaca accttcttag ttaagtgaag	240
ggcatgatga tcatccaaag cccagtggc acttactcca gactttctgc aatgaagatc	300
a	301
<210> 262	
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 262	
gaggagagcc tggcacagca tttgttaagca cagaatactc caggaggattt tggtaattgtc	60
tgtgagcttc ttggccgcaag tctctcgagaa attttaaaaag atgcaaatcc ctgagtcacc	120
cctagacttc ctaaaccaga tcctctgggg ctggAACCTG gcactctgc tttgtaatga	180
gggctttctg gtgcacacccat aattttgtgc atctttgccca taaatctgg attagtgcoc	240
catcattacc cccacattat aatggatag attcagagca gatactctcc agcaaagaat	300
C	301
<210> 263	
<211> 301	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(301)	
<223> n = A,T,C or G	

<400> 263

ttagcttgt ggttaatgac tcacaaaact gatttaaaaa tcaagttaat gtgaattttg
 aaaattacta cttaatccta attcacaata acaatggcat taaggttga cttgagttgg
 ttcttagtat tattttaggt aaataggctc ttaccacttg caaataactg gccacatcat
 taatgactga ctccccaga aggctctcta aggggtaagt angagatcc acaggatttg
 agatgctaag gccccagaga tcgtttgc tcaaccctctt attttcagag gggaaaatgg
 g

60 -
120
180
240
300
301

<210> 264

<211> 301

<212> DNA

<213> Homo sapien

<400> 264

aaagacgtta aaccactcta ctaccacttg tggaactctc aaaggtaaa tgacaaaasc
 aatgaatgac tctaaaaaca atatttacat ttaatggttt gtagacaata aaaaaacaag
 gtggatagat ctagaattgt aacatttaa gaaaaccata scatttgaca gatgagaaag
 ctcaattata gatgcaaagt tataactaaa ctactatagt agtaaagaaa tacatccac
 acccttcata taaattcact atcttggctt gaggcactcc ataaaatgta tcacgtgcat
 a

60
120
180
240
300
301

<210> 265

<211> 301

<212> DNA

<213> Homo sapien

<400> 265

tgcccaagtt atgtgttaagt gtatccgcac ccagaggtaa aactacactg tcatctttgt
 cttcttgtga cgcagtattt cttctctggg gagaagccgg gaagtcttct cctggctcta
 catattcttg gaagtctcta atcaactttt gttccatttg tttcatttct tcaggaggg
 ttttcagttt gtcAACATGT tctctaacaa cacttgccca tttctgtaaa gaatccaaag
 cagtccaagg ctttgacatg tcaacaacca gcataactag agtacccctc agagatacgg
 C

60
120
180
240
300
301

<210> 266

<211> 301

<212> DNA

<213> Homo sapien

<400> 266

taccgtctgc ctttccccc atccaggcca tctgcgaatc tacatgggtc ctcctattcg
 acaccagatc acttttccct ttaaccacag gcttgctatg agcaagagac acaacctct
 ctcttgtt ttcacgtttc tttccctgtt cttccacccc cttaaatgtt atccctgggg
 atagagacac caatacccat aacccctcttc ctaaggctcc ttataaccca gggtgcacag
 cacagactcc tgacaactgg taaggccaat gaactgggag ctcacagctg gctgtgcctg
 a

60
120
180
240
300
301

<210> 267

<211> 301

<212> DNA

<213> Homo sapien

<400> 267

aaagagcaca ggccagctca gcctgcctg gccatctaga ctcagctgg ctccatgggg

60

<400> 271

aaaaggttct cataagatta acaatttaaa taaatatttgc atagaacatt ctttctcatt	60
tttatacgct acatggg ttgatattca gtcatgtt cccttgctgt tcttgcattca	120
gaattgcaat cacttcatca gcctgtatcc gctccaattc tctataaaagt gggtccaagg	180
tgaaccacag agccacagca caccttttc ccttggtgac tgcccttacc ccatganggt	240
tctctccccc agatganaac tgcattgtcg cccacatccc gggtttata gaagcagtca	300
c	301

<210> 272

<211> 301

<212> DNA

<213> Homo sapien

<400> 272

taaattgcta agccacagat aacaccaatc aaatggaaaca aatcaatgtc ttcaaattgtc	60
ttatcagaaa accaaatgag cctggatct tcataatacc taaacatgcc gtatggat	120
tccaaataatt ccctcatgtat gagcaagaaa aattcttgc gcacccctcc tgcatccaca	180
gcatcttctc caacaaatat aaccttgagt ggcttctgt aatctatgtt cttgttttc	240
ctaaggactt ccattgcatt tcctacaata tttctctac gcaccactag aattaagcag	300
g	301

<210> 273

<211> 301

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(301)

<223> n = A,T,C or G

<400> 273

acatgtgtgt atgtgttatct ttggggaaaan aanaagacat cttgtttayt atttttttgg	60
agagangctg ggacatggat aatcacwttaa tttgtayta tyactttaat ctgactyga	120
gaaccgtcta aaaataaaat ttaccatgtc dtatattcct tatgtatgc ttatccacc	180
ttytttctgt ccagagagag tatcatgtac ananatttma gggtaamac atgmatttgt	240
gggacttnty ttacngagm accctgccccg sgccctcg makcngantt ccgcsananc	300
t	301

<210> 274

<211> 301

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(301)

<223> n = A,T,C or G

<400> 274

cttataatact ctttctcaga ggcaaaagag gagatggta atgttagacaa ttctttgagg	60
aacagtaaat gattattaga gagaangaat ggaccaagga gacagaaatt aacttgcata	120
tgattctctt tggatctga atgagatcaa gaggccagct ttagcttgc gaaaagtcca	180
tcttaggtatg gttgcattct cgtcttctt tctgcagtag ataatgaggtaaccgaaggc	240
aatttgctt ctttgataa gaagcttctt tggtcatatc aggaaattcc aganaaaagtc	300

C

301

<210> 275

<211> 301

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(301)

<223> n = A,T,C or G

<400> 275

tcgggtgtcag cagcacgtgg cattgaacat tgcaatgtgg agcccaaacc acagaaaatg
 gggtaaaatt ggccaacttt ctattaacctt atgttggcaa ttttgccacc aacagtaagc
 tggcccttct aataaaagaa aattgaaagg ttctcaacta aacggatta agtagtggag
 tcaagagact cccaggcctc agcgtaacctg cccgggcggc cgctcgaagc cgaattctgc
 agatatccat cacactggcg gnncgctcgan catgcatcta gaaggmecaa ttccgccttat
 a

60

120

180

240

300

301

<210> 276

<211> 301

<212> DNA

<213> Homo sapien

<400> 276

tgtacacata ctcataataat aaatgactgc attgtggtat tattactata ctgattatat
 ttatcatgtg acttctaatt agaaaatgtt tccaaaagca aaacagcaga tatacaaaat
 taaagagaca gaagatagac attaacagat aaggcaactt atacattgag aatccaaatc
 caatacattt aaacatttgg gaaatgaggg ggacaaatgg aagccagatc aaatttgc
 aaaactattc agtatgtttc ctttgcgtca tgtctgagaa ggctctcctt caatgggat
 g

60

120

180

240

300

301

<210> 277

<211> 301

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(301)

<223> n = A,T,C or G

<400> 277

tttgttgcgt tcagtatattt attacttgcg ttatgagtgc tcacctggaa aattctaaag
 atacagagga ctggaggaa gcagagaac tgaatttaat taaaaagaag gaaaacattg
 gaatcatggc actcctgata ctttccaaa tcaacactct caatgcctt ccctcgct
 caccatagtg gggagactaa agtggccacg gatttgcctt angtgcag tgcgttctga
 gttcnctgtc gattacatct gaccagtctc cttttccga agtccntcgt ttcaatcttg
 C

60

120

180

240

300

301

<210> 278

<211> 301

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(301)

<223> n = A,T,C or G

<400> 278

taccactaca	ctccagcctg	ggcaacagag	caagacctgt	ctcaaagcat	aaaatggaat	60
aacatatcaa	atgaaacagg	aaaaatgaag	ctgacaattt	atggaagcca	ggcgttgtca	120
caigtctcac	tgttattatg	cattacctgg	gaatttatat	aagcccttaa	taataatgcc	180
aatgaacatc	tcatgtgtgc	tcacaatgtt	ctggcactat	tataagtgtct	tcacagggttt	240
tatgtttct	tcgtaacttt	atggantagg	tactcgcccg	cgaacacgct	aagccgaatt	300
C						301

<210> 279

<211> 301

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(301)

<223> n = A,T,C or G

<400> 279

aaagcaggaa	tgacaaagct	tgctttctg	gtatgttcta	ggtgtattgt	gactttact	60
gttatattaa	ttgccaatat	aagtaaatat	agattatata	tgtatagtgt	ttcacaaaagc	120
ttagaccttt	accttccagc	caccccacag	tgcttgatat	ttcagagtca	gtcattggtt	180
atacatgtgt	agttccaaag	cacataagct	agaanaanaa	atatttctag	ggagcaetac	240
catctgtttt	cacatgaaat	gccacacaca	tagaactcca	acatcaattt	cattgcacag	300
A						301

<210> 280

<211> 301

<212> DNA

<213> Homo sapien

<400> 280

ggtaactggag	tttcctccc	ctgtaaaaac	gtaactactg	ttgggagtga	attgaggatg	60
tagaaagggt	gtgaaaccaa	attgtggta	atggaaatag	gagaatatgg	ttctcaactct	120
tgaaaaaaa	acctaagatt	agcccaggt	gttgcctgt	acttcagttt	ttctgcctgg	180
gtttgatata	gtttagggtt	ggggtttagat	taagatctaa	attacatctag	gacaaagaga	240
cagactatta	actccacagt	taattaagga	ggtatgtcc	atgtttattt	gtttaagcag	300
T						301

<210> 281

<211> 301

<212> DNA

<213> Homo sapien

<400> 281

aggtaacaaga	agggaaatgg	gaaagagctg	ctgctgtggc	attgttcaac	ttggatattc	60
gccgagcaat	ccaaatcctg	aatgaagggg	catcttctga	aaaaggagat	ctgaatctca	120
atgtggtagc	aatggcttta	tcgggttata	cggtgagaa	gaactccctt	tggagagaaa	180
tgtgtacac	actgcgattt	cagctaaata	acccgtat	gtgtgtcatg	tttgcatttc	240

tgacaagtga aacaggatct tacgatggag ttttgtatga aaacaaaagtt gcagtacctc g	300 301
<210> 282	
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 282	
caggtaactac agaattaaaa tactgacaag caagtagttt cttggcgtgc acgaattgca tccagaaccc aaaaattaag aaattcaaaa agacattttgc tggcacctg ctagcacaga agcgccagaag caaagcccag gcagaaccat gctaaccctt cagctcagcc tgccacagaag cgcagaagca aagcccagggc agaaccatgc taaccttaca gctcagcctg cacagaagcg cagaagcaaa gcccaggcag aacatgctaa ctttacagct cagcctgcac agaagcacag a	60 120 180 240 300 301
<210> 283	
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 283	
atctgtatac ggcagacaaaa ctttatarag ttagagagg tgagcgaaag gatgc当地 caacttgagg gctttataat aatatgcgc ttgaaaaaaaaaa aaatgtgttag ttgataactca gtgc当地ctcc agacatagta aggggttgc ctgaccaatc aggtgatcat tt当地tata acttcccagg ttttatgcaa aaattttgtt aaatttctata atggatgatat gcat当地tta ggaacatatac acat当地ttaa aaatctat当地 tatgtaaagaa ctgacagacg aat当地tctt g	60 120 180 240 300 301
<210> 284	
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 284	
caggtacaaaa acgctattaa gtggcttatac atttgcacat ttgtggctt tatttacttt gcttcgtgtg tggcaaaagc aacatcttcc ctaaaatatac attaccaaga aaagcaagaa gcagattagg ttttgacaaa aacaacagg cccaaagggg gctgacctgg agcagagcat ggtagagggc aaggcatgag agggcaagtt ttgtggac agatctgtgc ctactttatt actggatgaa aagaaaacaa agttcattga tgtcgaagga tatatacagt gtttagaaatt a	60 120 180 240 300 301
<210> 285	
<211> 301	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(301)	
<223> n = A,T,C or G	
<400> 285	
acatcaccat gatcgatcc cccaccatt atacgttata tggcacata aatactttc aatgatcatt agtggataaa aaaaataact gaaaactcct tctgc当地ccc aatctctaaac	60 120

cagggaaagca aatgttattt acagacctgc aagccctccc tcaaacnaaa ctatttctgg	180
attaaatatg tctgacttct tttagggtca cacaactagg caaatgttat ttacgatctg	240
caaaaagctgt ttgaagagtc aaagccccca tgtgaacacg atttctggac cctgttaacag	300
t	301
<210> 286	
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 286	
taccactgca ttccagcctg ggtgacagag tgagactccg tctccaaaaaa aaactttgtct	60
tgtatattat ttttgcccta cagtggatca ttcttagtagg aaaggacagt aagatttttt	120
atcaaaatgt gtcatgccag taagagatgt tatattctt tctcatttct tccccaccca	180
aaaataagct accatatagc ttataagtct caaatttttt ccttttacta aaatgtgatt	240
gtttctgttc attgtgtatg cttcatcacc tatattaggc aaattccatt tttttcccttg	300
t	301
<210> 287	
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 287	
tacagatctg ggaactaaat attaaaaatg agtgtggctg gatatatggaa gaatgttggg	60
cccagaagga acgttagagat cagatattac aacagctttt ttttgggggt tagaaatatgt	120
aaatgattt gttatgaacg cacagtttag gcagcagggc cagaatctcg accctctgcc	180
ccgtggttat ctcccccacca gcttggctgc ctcatgttat cacagtattc cattttgttt	240
gttgcattgtc ttgtgaagcc atcaagattt tctcgtctgt tttcctctca ttggtaatgc	300
t	301
<210> 288	
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 288	
gtacacctaa ctgcaggac agctgagggaa tgtaatgggc agccgctttt aaagaagtag	60
agtcaatagg aagacaattt ccagttccag ctcagtctgg gtatctgcaa agctgcaaaa	120
gatctttaaa gacaatttca agagaatatt tccttaaagt tggcaatttg gagatcatac	180
aaaagcatct gcttttgtga ttttaatttag ctcatctggc cactggaaaga atccaaacag	240
tctgccttaa ttttggatga atgcattatg gaaattcaat aatttagaaa gttaaaaaaaaa	300
a	301
<210> 289	
<211> 301	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(301)	
<223> n = A,T,C or G	
<400> 289	

ggtacactgt ttccatgtta tgtttctaca cattgctacc tcagtgc tcc gggaaactta	60
gcttttcatg tctccaagta gtccaccccttc atttaactct ttgaaactgt atcatcttgc	120
ccaagtaaga gtgggtggcct atttcagctg ctttgacaaa atgactggct cctgacttaa	180
cgttctataa atgaatgtc tgaagcaaag tgcccattggt ggcggcgaan aagagaaaaga	240
tgtttttgtt tttggactct ctgtggccc ttccaatgct gtgggttcc aaccagngga	300
a	301
<210> 290	
<211> 301	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(301)	
<223> n = A,T,C or G	
<400> 290	
acactgagct cttcttgata aatatacaga atgcttggca tatacaagat tctatactac	60
tgactgatct gttcatttct ctcacagctc ttaccccaa aagctttcc accctaagtg	120
ttctgacctc cttttctaat cacagtaggg atagaggcag anccacctac aatgaacatg	180
gagttctatc aagaggcaga aacagcacag aatcccagtt ttaccatcg ctacgactgc	240
tgccttgaac aaaaacattt ctccatgtct cattttcttc atgcctcaag taacagttag	300
a	301
<210> 291	
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 291	
caggtaccaa ttcttcttat ccttagaaaca ttcatatata tggtgtgaa acataacaac	60
tatatacgct agattttttt tctatgctt acctgctatg gaaaatttga cacattctgc	120
tttactcttt tgtttatagg tgaatcacaa aatgtatattt tatgtattct gtatgttcaat	180
agccatggct gtttacttca tttatattt ttagcataaaa gacattatga aaaggoctaa	240
acatgagctt cacttccccca ctaactaatt agcatctgtt atttcttaac cgtaatgtct	300
a	301
<210> 292	
<211> 301	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(301)	
<223> n = A,T,C or G	
<400> 292	
acctttttagt agtaatgtct aataataat aagaaatcaa ttttataagg tccatataagc	60
tgtattaaat aattttttaag tttaaaagat aaaataccat cattttaaat gttggatttc	120
aaaacccaaag natataaccg aaaggaaaaa cagatgagac ataaaatgtat ttgnagatg	180
ggaaatatacgat taaaatgtatc atgttttattt aatcccgat ataaatgtgg ctacacactc	240
tcactacaca cacagacccc acagtccat atgccacaaa cacatttcca taacttgaaa	300
a	301

<210> 293

<211> 301

<212> DNA

<213> Homo sapien

<400> 293

ggtaccaagt gctgggtgcca gcctgttacc tttcttcact gaaaagtctg gctaattctc
 ttgttagtc acttctgatt ctgacaatca atcaatcaat ggcttagagc actgactgtt
 aacacaaaacg tcactagcaa agtagcaaca gcttaagtc taaataaaaa gctgttctgt
 gtgagaattt tttaaaaggc tacttgtata ataacccttg tcattttaa tgtacctcg
 ccgcgaccac gctaagccga attctgcaga tatccatcac actggccggcc gctcgagcat
 g

60

120

180

240

300

301

<210> 294

<211> 301

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(301)

<223> n = A,T,C or G

<400> 294

tgaccataa caatatacac tagctatctt tttaactgtc catcattagc accaatgaag
 attcaataaa attacctta ttcacacatc tcaaaaacaat tctgaaaatt ctttagtgaag
 tttaactata gtcacaganc ttaaatattc acattgtttt ctatgtctac tgaaaataag
 ttcactactt ttctggata ttctttacaa aatcttatta aaattctgg tattatcacc
 cccaaattata cagtagcaca accaccttat gtagttta catgataagct ctgttagaggt
 t

60

120

180

240

300

301

<210> 295

<211> 305

<212> DNA

<213> Homo sapien

<400> 295

gtactcttc tctccctcc tctgaattta attcttcaa cttgcaattt gcaaggatta
 cacatttcac tgtgtatgtat attgtgtgc aaaaaaaaaa gtgtcttgc ttaaaaattac
 ttggtttgc aatccatctt gcttttccc cattggaact agtcattaaac ccattctctga
 actggtagaa aaacrtctga agagctatgtc tatcagcatc tgacaggtga attggatggt
 tctcagaacc atttcaccca gacagcctgt ttctatcttg tttataaaat tagttgggt
 tctct

60

120

180

240

300

305

<210> 296

<211> 301

<212> DNA

<213> Homo sapien

<400> 296

aggtaatgtt ggaagctgtt aaaataatata ttgtatgtaa aagtatgtaa tttgtatct
 caccttagtt taaaactaaaa ataaaactgtttt acctttatggaa atctgtatgtt attttcttgc
 attaaatata ataaataaac caatatgagg aaacatgtttt ccatgtatcaac tactatcaac
 tttgaaaaag tgattgtttttt aaccacttag ctgtttttttt atgtttttttt ataaatgtttttt

60

120

180

240

tgtcattact ataaaattta aaatctgtta ataagatggc ctatagggag gaaaaagggg	300
c	301
<210> 297	
<211> 300	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(300)	
<223> n = A,T,C or G	
<400> 297	
actgagttt aactggacgc caagcaggca aggctgaaag gttttgtct ctttgtcta	60
aagttttga aaaccttga ggagaatcat tttgacaaga agtacttaag agtcttagaga	120
acaaagangt gaaccagctg aaagctctcg ggggaanctt acatgtgttg tttaggcctgt	180
tccatcattt ggagtgcact ggccatccct caaaattttgt ctgggctggc ctgagtggtc	240
accgcacctc ggccgcgacc acgctaagcc gaattctgca gatatccatc acactggcgg	300
<210> 298	
<211> 301	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(301)	
<223> n = A,T,C or G	
<400> 298	
tatggggttt gtcacccaaa agctgatgct gagaaaggcc tccctggggc ccctcccgg	60
ggcatctgag agacctggtg ttccagttt tctggaaatg ggtcccagtg ccgcgcggctg	120
tgaagctetc agatcaatca cgggaaggcc ctggcggtgg tggccacctg gaaccaccc	180
gtccctgtctg tttacatttc actaycaggt tttctctggg cattacnatt tggccccata	240
caacagtgac ctgtcattt tgctgtggcc tgctgtgtct gcaggtggct ctcaagcgagg	300
t	301
<210> 299	
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 299	
gttttgagac ggagtttac ttttggcc cagactggac tgcaatggca gggctctgtc	60
tcactgcacc ctctgcctcc caggttcag caattctct gcctcagcc cccaggtac	120
tgggattgca ggctcacgcc accataccca gctaatttt ttgtattttt agtagagacg	180
gagtttcgcc atgttggcca gctggtctca aactccgtac ctcaagcgac ctgcctgcct	240
cgccctccca aagtgctgga attataggca tgagtcaaca cgcccgaccc aaagatattt	300
t	301
<210> 300	
<211> 301	
<212> DNA	
<213> Homo sapien	

<400> 300

atccagttt atttgctgcc ccagtatctg taaccaggag tgccacaaaa tcttgecaga	60
tatgtcccac acccaactggg aaaggctccc acctggctac ttccctatc agctgggtca	120
gctgcattcc acaaggttct cagcctaatg agtttacta cctgcccagtc tcaaaaactta	180
gtaaagcaag accatgacat tccccacgg aaatcagagt ttgccccacc gtcttggttac	240
tataaagcct gcctctaaca gtccttgctt cttcacacca atccccagcg catcccccat	300
g	301

<210> 301

<211> 301

<212> DNA

<213> Homo sapien

<400> 301

ttaaattttt gagaggataa aaaggacaaa taatctagaa atgtgtcttc ttcaagtctgc	60
agaggacccc aggtctccaa gcaaccat ggtcaaggc atgaataatt aaaagttgg	120
ggaaactcac aaagaccctc agagctgaga caccacaaac agtgggagct cacaaagacc	180
ctcagagctg agacacccac aacagtggg gctcacaaag accctcagag ctgagacacc	240
cacaacagca cctcgttagt ctgcccacatg tgtgaataag gatgcaatgt ccagaagtgt	300
t	301

<210> 302

<211> 301

<212> DNA

<213> Homo sapien

<400> 302

aggtacacat tttagttgtg gtaaatgact cacaaaactg attttaaaat caagttaatg	60
tgaattttga aaatttactac ttaatcctaa ttccacaataa caatggcatt aagttttgac	120
tttagtttgtt tcttagtatt atttatggta aataggctct taccacttc aaataactgg	180
ccacatcatt aatgactgac ttcccagtaa ggctctctaa gggtaagta ggaggatcca	240
caggatttga gatgctaagg cccagagat cgtttgcattcc aaccctctta ttttcagagg	300
g	301

<210> 303

<211> 301

<212> DNA

<213> Homo sapien

<400> 303

aggtaccaaac tggaaata ggttagaggat catttttct ttccatatca actaagttgt	60
atattttttt ttgacagttt aacacatctt cttctgtcag agatttttc acaatagcac	120
tggctaatgg aactaccgct tgcattaa aaatgggtt ttgtgaaatg atcataggcc	180
agtaacgggt atgttttct aactgatctt ttgctcgatcc caaagggacc tcaagacttc	240
catcgatttt atatctgggg tctagaaaag gagttaatct gttttccctc ataaattcac	300
c	301

<210> 304

<211> 301

<212> DNA

<213> Homo sapien

<400> 304

acatggatgt tattttgcag actgtcaacc tgaatttgcata ttgccttgcac attgcctaatt	60
---	----

tattagtttc agtttcagct taccacttt ttgtctgcaa catgcaraas agacagtgcc 120
 cttttagtg tatcatatca ggaatcatct cacattgggtt tgtccatta ctggcagtt 180
 gactttcagc cacttggta aggtggagtt gcccatatgt ctccactgca aaattactga 240
 ttttcctttt gtaattaata agtgtgtgt tgaagattct ttgagatgag gtatatatct 300
 C 301

<210> 305

<211> 301

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (301)

<223> n = A,T,C or G

<400> 305

gangtacagc gtggcaagg taacaagaag aaaaaaatgt gagtggcatc ctgggatgag 60
 caggggaca gacctggaca gacacgttgtt catttgcgtgc tgtgggttagg aaaatggcg 120
 taaaggagga gaaacagata caaaatctcc aactcagttt taaggtattc tcattgcctag 180
 aatattggta gaaacaagaa tacattcata tggcaaataa ctaaccatgg tggaaacaaa 240
 ttctggatt taagttggat accaangaaa ttgtattaaa agagctgttc atggaataag 300
 a 301

<210> 306

<211> 8

<212> PRT

<213> Homo sapien

<400> 306

Val Leu Gly Trp Val Ala Glu Leu

1

5

<210> 307

<211> 637

<212> DNA

<213> Homo sapien

<400> 307

acagggratg aaggaaagg gagaggatga ggaagcccccttgggattt ggtttggtcc 60
 ttgtatcag gtggcttatg gggcttatcc ctacaaagaa gaatccagaa atagggcac 120
 attgagaat gatacttgag cccaaagagc attcaatcat tgttttatggtgcctttttt 180
 cacaccattt gtgagggagg gattaccacc ctggggttat gaagatgtt gaacacccca 240
 cacatagcac cggagatatg agatcaacag tttcttagcc atagagatcc acagccccaga 300
 gcaggaggac gcttgcacac catcaggat gacatgggg atgcgctcgg gattgggttg 360
 aagaagaag gactgttaga ggcaggctt atagtaacaa gacggtgggg caaactctga 420
 tttccgtggg ggaatgtcat ggtcttgcgtt tactaagttt tgagactggc aggtgtgaa 480
 actcatttagg ctgagaacct tggaaatgc acttgaccct sctgatagag gaagtagoca 540
 ggtggagcc ttcccactg ggtgtggac atatctggca agatttgtg gcactctgg 600
 ttacagatac tggggcagca aataaaactg aatcttg 637

<210> 308

<211> 647

<212> DNA

<213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(647)
 <223> n = A,T,C or G

<400> 308

acgattttca ttatcatgt	aatcgggtca ctc	aaggccc	caaccacagc tgggagccac	60
tgctcagggg aaggttata	tgggactt	cactgccc	aa ggttctatac aggtatataa	120
ggngcctcac agtatagatc	tggtagcaaa	gaagaagaaa	caaacaactga tctcttctg	180
ccaccctct gacccttgg aactcctctg	accctttaga	acaagcctac	ctaataatctg	240
ctagagaaaa gaccaacaac	ggcctcaaag	gatctcttac	catgaaggc tcagctaatt	300
cttggctaag atgtgggtc	cacatttagt	tctgaatatg	gggggaaggg tcaatttgct	360
cattttgtgt gtggataaaag	tcaggatgcc	caggggcccag	agcagggggc tgcttgctt	420
gggaacaatg gctgagcata	taaccatagg	tatggggaa	caaacaaca tcaaagtac	480
tgtatcaatt gccatgaaga	cttgaggac	ctgaatctac	cgattcatct taaggcagca	540
ggaccagttt gagtggcaac	aatgcagcag	cagaatcaat	ggaaacaaca gaatgattgc	600
aatgtccccc ttttctcc	gcttctgact	tgataaaaagg	ggaccgt	647

<210> 309

<211> 460
 <212> DNA
 <213> Homo sapien

<400> 309

actttatagt ttaggctgga	cattggaaaa	aaaaaaaaagc	cagaacaaca tigtatagat	60
aatatgattg gctgcacact	tccagactga	tgaatgtga	acgtgtatgg ctattgtatg	120
gagcacatct tcagcaagag	ggggaaatac	tcatcatttt	tggccagcag ttgtttgatc	180
accaaacatc atgcccagaat	actcagaaa	ccttcttagc	tcttgagaag tcaaagtccg	240
ggggaaatttta ttcttggcaa	ttttattgg	actcctttagt	tgagagcagc ggctaccccg	300
ctggggtgtt ggagcgaacc	cgtcactagt	ggacatgcag	tggcagagct cctggtaacc	360
acctagagga atacacaggc	acatgtgtga	tgccaagcgt	gacacctgt acaactcaa	420
ttgtcttggtt ttgtcttcc	ggtgtgtaa	gatcttaagt	ttt	460

<210> 310

<211> 539
 <212> DNA
 <213> Homo sapien

<400> 310

acgggactta tcaaataaaag	ataggaaaag	aagaaaactc	aaatattata ggcagaaaatg	60
ctaaaggttt taaaatatgt	caggattgga	agaaggcatg	gataaagaac aaagttcagt	120
tagggaaagag aaacacagaa	ggaagagaca	caataaaagt	cattatgtat tctgtgagaa	180
gtcagacagt aagatttgt	ggaaatgggt	tgggttgg	tatgttatgt attttacaa	240
taatctttat ggcagagaaa	gctaaaatcc	tttagctgc	gtgaatgtac acttgctgaa	300
ttcctcaagg taggcatgtat	gaaggagggt	tttagaggaga	cacagacaca atgaactgac	360
ctagatagaa agccttagta	tactcagcta	ggaatagtga	ttctgagggc acactgtgac	420
atgattatgt cattacatgt	atggtagtga	tgggatgtat	aggaaggaag aacttatggc	480
atattttcac cccccacaaaa	gtcagttaaa	tattggaca	ctaaccatcc aggtcaaga	539

<210> 311

<211> 526
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(526)
 <223> n = A,T,C or G

<400> 311

caaattttag	ccaatgacat	agaattttac	aatcaagaa	gcttattctg	ggccatttc	60
tttgacgtt	ttctctaaac	tactaaagag	gcattaatga	tccataaaatt	atattatcta	120
catttacagc	atttaaaatg	tgttcagcat	gaaaatattag	ctacagggga	agctaaataa	180
attnaacatg	gaataaaagat	ttgtccttaa	atataatcta	caagaagact	ttgatatttg	240
tttttcacaa	gtgaagcatt	cttataaaagt	gtcataacct	tttggggaa	actatggaa	300
aaaatgggaa	aactctgaag	ggtttaagt	atcttacctg	aagctacaga	ctccataacc	360
tctctttaca	gggagctcct	gcagccccta	cagaaatgag	tggctgagat	tcttgattgc	420
acagcaagag	cttctcatct	aaacccttc	ccttttttagt	atctgtgtat	caagtataaa	480
agttctataa	actgtagnt	acttattttt	atccccaaag	cacagt		526

<210> 312

<211> 500
 <212> DNA
 <213> Homo sapien

<220>

<221> misc_feature
 <222> (1)...(500)
 <223> n = A,T,C or G

<400> 312

cctctctctc	cccacccct	gactctagag	aactgggttt	tctccagta	ctccagcaat	60
tcatttctga	aagcagtta	gccactttat	tccaaagtac	actgcagatg	ttcaaactct	120
ccatttctct	ttcccttcca	cctgccagtt	ttgctgactc	tcaacttgtc	atgagtgtaa	180
gcattaagga	cattatgctt	cttcgattct	gaagacaggc	cctgctcatg	gatgactctg	240
gcttcttagg	aaaatatttt	tcttccaaaa	tcaatggaa	atctaaacctt	atccccttct	300
tgcagatgtc	tagcagcttc	agacatttgg	ttaagaaccc	atggggaaaa	aaaaaatcct	360
tgctaattgt	gtttcctttg	taaaccanga	ttcttatttg	nctggtatag	aatatcagct	420
ctgaacgtgt	ggtaaagatt	tttgcgttt	aatataggag	aaatcagttt	gctgaaaagt	480
tagtcttaat	tatctattgg					500

<210> 313

<211> 718
 <212> DNA
 <213> Homo sapien

<220>

<221> misc_feature
 <222> (1)...(718)
 <223> n = A,T,C or G

<400> 313

ggagatttgt	gtggtttgc	gccgagggag	accaggaaga	tctgcatggt	gggaaggacc	60
tgtatgataca	gaggtgagaa	ataagaaagg	ctgctgactt	taccatctga	ggccacacat	120
ctgctgaaat	ggagataatt	aacatcacta	gaaacagcaa	gatgacaata	taatgtctaa	180
gtatgtacat	gttttgcac	atttccagcc	ctttaaata	tccacacaca	caggaagcac	240
aaaaggaagc	acagagatcc	ctggagaaaa	tgcccgccg	ccatcttggg	tcatcgatga	300
gcctcgccct	gtgcctgn	ccgcttgc	gggaaggaca	ttagaaaaatg	aattgtatgt	360
ttccttaaag	gatggcagga	aaacagatcc	tgttgcggat	atttatttga	acgggattac	420

agatggaaa tgaagtcaca aagtgagcat taccaatgag aggaaaacag acgagaaaat	480
cttgtatggtt cacaagacat gcaacaaca aaatggaata ctgttatgtac acgagcagcc	540
aactggggag gagataccac ggggcagagg tcaggattct ggccctgctg cctaactgtg	600
cgttatcca atcatttcta ttctacccct caaaacaagct gtngaatatc tgacttacgg	660
ttcttntggc ccacattttc atnatccacc ccntcnntt aannttantic caaatgt	718

<210> 314

<211> 358

<212> DNA

<213> Homo sapien

<400> 314

gttattttac	attacagaaa	aaacatcaag	acaatgtata	ctatccaaa	tatatccata	60
cataatcaa	tatagctgt	gtacatgtt	tcattgggt	agattaccac	aatgcaagg	120
caacatgtgt	agatctttg	tcttattttt	ttgtctataa	tactgtattt	tgttagtccaa	180
gctctcgta	gtccagccac	tgtgaaacat	gctccctta	gattaacctc	gtggacgctc	240
ttgttgtatt	gctgaactgt	agtgcctgt	attttgctt	tgtctgtgaa	ttctgttgct	300
tctgggcat	ttccctgtga	tgcagaggac	caccacacag	atgacagcaa	tctgtgatt	358

<210> 315

<211> 341

<212> DNA

<213> Homo sapien

<400> 315

taccacctcc	ccgctggcac	tgtatgagccg	catcaccatcg	gtcaccaggca	ccatgaaggc	60
ataggtgatg	atgaggacat	ggaatggcc	cccaaggatg	gtctgtccaa	agaagcgagt	120
gacccccatt	ctgaagatgt	ctggAACCTC	taccagcagg	atgatgatag	ccccaaatgac	180
agtccaccagc	tccccgacca	gcccggatatc	gtcccttaggg	gtcatgttagg	tttccctgaag	240
tagcttctgc	tgtaaagaggg	tgttgtcccc	ggggctcgta	cggttattgg	tcctgggctt	300
gaggggggcgg	tagatgcagc	acatggtaaa	gcagatgtat	t		341

<210> 316

<211> 151

<212> DNA

<213> Homo sapien

<400> 316

agactggca agactttac gccccacact gcaatttggc cttgttgccg tatccatata
tgtgggcctt tctcgagttt ctgattataa acaccactgg agcgatgtgt tgactggact
cattcaggga gctctggttt caatattagt t

<210> 317

<211> 151

<212> DNA

<213> Homo sapien

<400> 317

agaactagtg gatcctaatg aaatacctga aacatatatt ggcatatc aatggctcaa
atcttcattt atctctggcc ttaaccctgg ctccctaggc tgccggccagc agatcccagg
ccagggtctt gtttttgcctt caccgtttt a

<210> 318

<211> 151

<212> DNA

<213> Homo sapien

<400> 318

actgggtggga ggcgctgtt agttggctgt tttcagaggg gtcttcgga gggacctcct
 gctgcaggct ggagtgtctt tattccctggc gggagaccgc acattccact gctgaggctg
 tggggggcggt ttatcaggca gtgataaaca t

60
120
151

<210> 319

<211> 151

<212> DNA

<213> Homo sapien

<400> 319

aactagtggaa tccagagcta taggtacagt gtgatctcag ctttgc当地 aacattttcta
 catagatagt actaggtatt aatagatatg taaagaaaaga aatcacacca ttaataatgg
 taagattggg tttatgtat ttttagtgggt a

60
120
151

<210> 320

<211> 150

<212> DNA

<213> Homo sapien

<400> 320

aactagtggaa tccactagtc cagtgtggtg gaattccatt gtgtgggggt tcttagatcgc
 gagcggctgc cctttttttt ttttttttg gggggaaatt tttttttttt aatagttatt
 gagtgttcta cagcttacag taaataccat

60
120
150

<210> 321

<211> 151

<212> DNA

<213> Homo sapien

<400> 321

agcaactttg tttttcatcc aggttatttt aggcttagga tttcctctca cactgc当地
 tagggggca ttgttaaccag ctatggcata ggtgttaacc aaaggctgag taaacatggg
 tgcctctgag aaatcaaagt cttcatacacac t

60
120
151

<210> 322

<211> 151

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (151)

<223> n = A, T, C or G

<400> 322

atccagcata ttctcctgtt tcttgcccttc ctttttttc ttcttasatt ctgcttgagg
 tttgggcttg gtcagttgc cacaggctt ggagatggtg acagtcttct ggcatccggc
 attgtgcagg gctcgcttca nacttccagg t

60
120
151

<210> 323

<211> 151

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(151)

<223> n = A,T,C or G

<400> 323

tgaggacttg tkttctttt ctttattttt aatccctcta ckttgtaaat atattgccta
 nagactcant tactacccag ttgtggttt twtgggagaa atgtaactgg acagtttagct
 gttcaatyaa aaagacactt ancccatgtg g

60

120

151

<210> 324

<211> 461

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(461)

<223> n = A,T,C or G

<400> 324

acctgtgtgg aatttcagct ttcctcatgc aaaaggattt tttatccccg gcctacttga
 agaagtggc agctaaagga atccaggttg ttgggtggac tgtaataacc ttgtatgaaa
 agagttacta cgaatcccat ctgggtcca gctatatac tgacagcatg gtagaagact
 gcgaacctca cttctagact ttcacgggtgg gacgaaacgg gttcagaaac tggcaggggc
 ctcatacagg gatatcaaaa taccctttgt gctaccccagg ccctggggaa tcaggtgact
 cacacaatg caatagttgg tcactgcatt ttacactgaa ccaaagctaa acccggtgtt
 gccaccatgc accatggcat gccagatgc aacactgttg ctctgaaaaa ttgggtctga
 aaaaacgcac aagagccctt gcccgcctt agctgangca c

60

120

180

240

300

360

420

461

<210> 325

<211> 400

<212> DNA

<213> Homo sapien

<400> 325

acactgtttc catgttatgt ttctacacat tgctaccta gtgtccctgg aaacttagct
 ttgtatgtct ccaagtagtc caccttcatt taactctttg aaactgtatc atctttgcca
 agtaagagtg gtggcctatt tcaagtgc ttgacaaaatg actggctcct gacttaacgt
 tctataaaatg aatgtgctga agcaaagtgc ccatggtggc ggcaagaag agaaagatgt
 gttttttttt ggactctctg tggcccttc caatgctgtg gtttccaac cagggaaagg
 gtccctttt cattgccaag tgccataacc atgagcacta cgctaccatg gttctgcctc
 ctggccaagc aggctgggtt gcaagaatga aatgaatgt

60

120

180

240

300

360

400

<210> 326

<211> 1215

<212> DNA

<213> Homo sapien

<400> 326

ggaggactgc agccgcact cgccgcctg gcaggcggca ctggctatgg aaaaacgaatt
 gttctgctcg gggtccctgg tgcacccgca gtgggtgctg tcaagccgcac actgtttcca
 gaactccctac accatcgggc tggccctgca cagtctttag ggcaccaag agccaggag

60

120

180

ccagatggtg gaggccagcc tctccgtacg gcacccagag tacaacagac cttgtctgc	240
taacgaccc atgctcatca agttggacga atccgtgtcc gagtctgaca ccataccggag	300
catcagcatt gtttcgcagt gccctaccgc gggactct tgcctcgaaa ctggctgggg	360
tctgtggcg aacggcagaa tgcctaccgt gtcgcgtgc gtgaacgtgt cggtgtgtc	420
tgaggaggc tcgcgtaaac tctatgaccc gctgtaccac cccagcatgt tctgcgccc	480
cggaggcggaa gaccagaagg actccgtacaa cggtgactct gggggcccc tgcgtgaaa	540
cgggtacttg caggccctt tgctttcgaaa aagcccccc tgcgtggata gaaaaacccg	600
agggtctac accaacctct gcaaattcac tgagtggata gaaaaacccg tccaggccag	660
ttaactctgg ggactggaa cccatgaaat tgaccccaatacatactcg cggaggaaat	720
tcaggaatat ctgttccca cccctccccc ctcaggccca ggagtccagg ccccccggcc	780
ctcctccccc aaaccaaggg tacagatccc cagccccc tccctcagac ccaggagtcc	840
agacccccc gcccctccccc ctcagaccc aggagtccag cccctccccc ctcagaccca	900
ggagttccaga ccccccagcc ctcctccccc cagacccagg ggtccaggcc cccaaacccct	960
cctccctcag actcagaggt ccaagcccccc aacccctccccc tcccccagacc cagaggtccca	1020
ggtcccgagcc ctcctccccc cagacccagg ggtccaatgc cacctagact ctcctgtac	1080
acagtgcccc cttgtggcac gttgacccaa ctttaccagt tggttttca tttttgtcc	1140
ctttcccta gatccagaaa taaagtctaa gagaagcgca aaaaaaaaaa aaaaaaaaaa	1200
aaaaaaaaaaaaaaa aaaaa	1215

<210> 327

<211> 220

<212> PRT

<213> Homo sapien

<400> 327

Glu Asp Cys Ser Pro His Ser Gln Pro Trp Gln Ala Ala Leu Val Met			
1	5	10	15
Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp Val			
20	25	30	
Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu Gly			
35	40	45	
Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val Glu			
50	55	60	
Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro Leu Leu Ala			
65	70	75	80
Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu Ser Asp			
85	90	95	
Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala Gly Asn			
100	105	110	
Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly Arg Met Pro			
115	120	125	
Thr Val Leu Gln Cys Val Asn Val Ser Val Val Ser Glu Glu Val Cys			
130	135	140	
Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe Cys Ala Gly			
145	150	155	160
Gly Gly Gln Asp Gln Lys Asp Ser Cys Asn Gly Asp Ser Gly Gly Pro			
165	170	175	
Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu Val Ser Phe Gly Lys Ala			
180	185	190	
Pro Cys Gly Gln Val Gly Val Pro Gly Val Tyr Thr Asn Leu Cys Lys			
195	200	205	
Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser			
210	215	220	

<210> 328

<211> 234

<212> DNA

<213> Homo sapien

<400> 328

cgctcgctc tggtagctgc agccaaatca taaaacggcga ggactgcagc ccgcactegc
 agccctggca ggcggcactg gtcatggaaa acgaattgtt ctgctcgggc gtccctgggtgc
 atcccgagtg ggtgctgtca gccacacact gtttccagaa ctcctacacc ategggctgg
 gcctgcacag tcttgaggcc gaccaagagc cagggagcca gatggtggag gcca

60

120

180

234

<210> 329

<211> 77

<212> PRT

<213> Homo sapien

<400> 329

Leu	Val	Ser	Gly	Ser	Cys	Ser	Gln	Ile	Ile	Asn	Gly	Glu	Asp	Cys	Ser
1					5				10					15	
Pro	His	Ser	Gln	Pro	Trp	Gln	Ala	Ala	Leu	Val	Met	Glu	Asn	Glu	Leu
					20					25				30	
Phe	Cys	Ser	Gly	Val	Leu	Val	His	Pro	Gln	Trp	Val	Leu	Ser	Ala	Thr
					35				40				45		
His	Cys	Phe	Gln	Asn	Ser	Tyr	Thr	Ile	Gly	Leu	Gly	Leu	His	Ser	Leu
					50				55			60			
Glu	Ala	Asp	Gln	Glu	Pro	Gly	Ser	Gln	Met	Val	Glu	Ala			
					65				70			75			

<210> 330

<211> 70

<212> DNA

<213> Homo sapien

<400> 330

cccaacacaa tggcccgatc ccatccctga ctccgcccctc aggatcgctc gtctctggta
 gctgcagcca

60

70

<210> 331

<211> 22

<212> PRT

<213> Homo sapien

<400> 331

Gln	His	Asn	Gly	Pro	Ile	Pro	Ser	Leu	Thr	Pro	Pro	Ser	Gly	Ser	Leu
1					5				10				15		
Val	Ser	Gly	Ser	Cys	Ser										
					20										

<210> 332

<211> 2507

<212> DNA

<213> Homo sapien

<400> 332

tggtgccgct gcagccggca gagatggttg agctcatgtt cccgctgttg ctcctccctc
 tgcccttcct tctgtatatg gctgcgcccc aaatcaggaa aatgctgtcc agtggggtgt

60

120

gtacatcaac tgttcagctt cctggaaag tagttgttgt cacaggagct aatacaggta 180
 tcgggaagga gacagccaaa gagctggctc agagaggagc tcgagtatat ttagcttgcc 240
 gggatgtgga aaagggggaa ttggggcca aagagatcca gaccacgaca gggAACAGC 300 -
 aggtgttgttgcg gacctgtctg atactaatgc tattcgagct ttgtctaagg 360
 gcttcttagc tgaggaaaag cacccacg ttttgatcaa caatgcagga gtgtatgt 420
 gtccgtactc gaagacagca gatggctttg agatgcacat aggagtcaac cacttggctc 480
 acttcctctt aaccatctg ctgctagaga aactaaaggaa atcagccccca tcaaggatag 540
 taaatgtgtc ttccctcgca catcacctgg gaaggatcca ctccataaac ctgcaggcg 600
 agaaattcta caatgcagc ctggctact gtcacagcaa gctagccaac atcccttca 660
 cccaggaact ggcccggaga ctaaaaggct ctggcgttac gacgtattct gtacaccctg 720
 gcacagtcca atctgaactg ttccggact catcttcat gagatggatg ttgtggctt 780
 tctcctttt catcaagact cctcagcagg gagcccgac cagcctgcac tttccatcaa 840
 cagaaggctc tgagattcta agtggaaatc atttcagtga ctgtcatgtg gcatgggtct 900
 ctgccaagc tcgtaatgag actatagcaa ggccgctgtg ggacgtcagt ttttttttttgc 960
 tggccctccc aatagactaa caggcagtgc cagttggacc caagagaaga ctgcagcaga 1020
 ctacacagta cttcttgc aatgattct cttcaaggt tttcaaaacc ttttagcacaa 1080
 agagagcaaa accttccagc cttgcctgtc ttgtgtccag ttttttttttgc gtttactgac 1140
 agattcgtct aatgtctgt catgtccaga ttactttgc ttctgttact gcccagatgtt 1200
 ctagagat cataatagga taagaagacc ctcatatgac ctgcacagct ctttttttttgc 1260
 ctgaaagaaaa ctactaccta ggagaatcta agtatacgaa gggatgattt atgcaaaattt 1320
 gaactagctt ctttgcac aattcgttc cttccaaacca accagtcttc acttcaagag 1380
 ggccacactg caacctcagc ttaacatgaa taacaaagac tggctcaggaa gcaagggttt 1440
 cccaggcatg gtggatcacc ggaggtcagt agttcaagac cagcctggcc aacatggta 1500
 aacccacccctt ctactaaaaaa ttgtgtatat ctttgcgttgc ttttttttttgc atgtgtgeca 1560
 agggagttt ttcacaaaatg tcaaaacagc cacaataatc agagatggag caaaccagg 1620
 ccacccatc tttatgcaaa tggatgtgttgc caaaggaaatg cagattctgt atatgtgtt 1680
 aactacccac caagagcaca tgggtacgat ggaagaagta aaaaaagaga aggagaatac 1740
 tggaaagataa tgcacaaaat gaaaggacta gtaaggatt aacttagccct ttaaggatta 1800
 acttagtaag gattaatgc aaaagayattt aatatgtca acatagctt ggagggattt 1860
 agggcaagca cccaggactg atgggttccctt aacaaaaacc agtgtggcaaa aaaaaaaaaa 1920
 aaaaaaaaaa aaaaatccta aaaaacaaaca aacaaaaaaa acaatttttc attcagaaaaa 1980
 attatcttag ggactgatat tggtaattat ggtcaattttt ataatattttt ggggcatttc 2040
 cttacattgt cttgacaaga ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2100
 cttcttatca aaagtaatgc tggccaaaggaa agtctaaggaa attagtagtgc ttttttttttgc 2160
 ttgtttggag ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2220
 ctttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2280
 ctttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2340
 aaatttagaaa aattctgtata atagtgcaga ataaatgaat taatgttttca ttttttttttgc 2400
 attgaactgt caatgcacaa taaaattctt ttttttttttgc ttttttttttgc ttttttttttgc 2460
 aataaaaaacg taagaattaa aagtttgattt acaaaaaaaa aaaaaaaaaa 2507

<210> 333

<211> 3030

<212> DNA

<213> Homo sapien

<400> 333

gcaggcgact tgcgagctgg gagcgattta aacgcctttt gattccccgg gcctgggtgg 60
 ggagagcgag ctgggtgccc cctagattcc cccggccccc acctcatgag cccgaccctcg 120
 gctccatgga gcccggcaat tatgccacct tggatggagc caaggatatc gaaggcttgc 180
 tgggagcggg agggggggcgaa aatctggctcg cccactcccc tctgaccaggc caccggcg 240
 cgcctacgct gatgcctgtc gtcaactatg ccccttggaa tctgcccaggc tcggcgaggc 300
 cgccaaagca atgccacccca tggccctgggg tggcccgaggc gacgtccccca gctccctgtc 360
 cttatgttta ctttggaggc gggtaactact cctgcccaggc gtcccgaggc tcgctgaaac 420
 cctgtgccccca ggcagccacc ctggcccggtt acccccgccgaa gactccccacg gccggggaaag 480

agtaccccccag	ycgccccact	gagttgcct	tctatccggg	atatccggga	acctaccaggc	540
ctatggccag	ttacctggac	gtgtctgtgg	tgcaagactct	gggtgctctt	ggagaaccgc	600
gacatgactc	cctgtgcct	gtggacagtt	accagtcttg	ggctctcgct	ggtggtctgg	660
acagccagat	gtgttgcag	ggagaaacaga	acccaccagg	tccctttgg	aaggcagcat	720
ttgcagactc	cagcgggcag	caccctcctg	acgcctgcgc	cttcgtcgc	ggccgcaaga	780
aacgcattcc	gtacagcaag	gggcagttgc	gggagctgg	gccccggat	gcccctaaca	840
agttcatcac	caaggacaag	aggcgaaga	tctcgccage	caccagcctc	tcggagcgcc	900
agattaccat	ctggtttcag	aaccggccgg	tcaaagagaa	gaaggttctc	gccaaagggt	960
agaacagcgc	taccccttaa	gagatctct	tgccctgggt	ggagggagcg	aagtgggggt	1020
gtccctgggg	gaccaggaac	ctgccaagcc	caggctgggg	ccaaggactc	tgctgagagg	1080
cccctagaga	caacaccctt	cccagccac	tggctgtgg	actgttctc	aggagccgccc	1140
tgggtaccca	gtatgtgcag	ggagacggaa	ccccatgtga	cagcccaactc	caccagggtt	1200
cccaaagaac	ctggcccagt	cataatcatt	cattctgaca	gtggcaataa	tcacgataaac	1260
cagtactagc	tgccatgatc	gttagcctca	tatttctat	ctagagctct	gtagagcact	1320
ttagaaaccg	cttcatgaa	tttagactaat	tatgaataaaa	tttggaaaggc	gatccctttg	1380
cagggaaagct	ttctctcaga	cccccttcca	ttacacccct	caccctggta	acagcaggaa	1440
gactgaggag	aggggaacgg	gcagattcgt	tgtgtggctg	tgatgtccgt	ttagcatttt	1500
tctcagctga	cagctgggt	ggtggacaat	ttagaggct	gtcttctct	ccctccctgt	1560
ccacccata	gggtgtaccc	actggcttt	gaagcaccca	tccttaatac	gatgattttt	1620
ctgtcgctgt	aaaatgaagc	cagcaggctg	cccttagtca	gtccttccctt	ccagagaaaa	1680
agagatttga	gaaagtgcct	ggtaattca	ccattaattt	cctcccccaa	actctctgag	1740
tcttccctta	atatttctgg	tggttctgac	caaagcaggt	catggtttgc	tgagcatttg	1800
ggatcccagt	gaagtagatg	ttttagcct	tgcatactta	gcccttccca	ggcacaaaacg	1860
gagtggcaga	gtggtgccaa	ccctgtttc	ccagtccacg	tagacagatt	cacagtgcgg	1920
aattctggaa	gctggagaca	gacggctct	ttgcagagec	gggactctga	gagggacatg	1980
agggcctctg	cctctgtgtt	cattctctga	tgtctgtac	ctgggctcag	tgcccggtgg	2040
gactcatctc	ctggccgcgc	agcaaagcca	gcgggttctgt	gctggtccctt	cctgcaccc	2100
aggctgggg	tggggggcct	gccggcgcac	tctccacgat	tgagcgcaca	ggcctgaagt	2160
ctggacaacc	cgcagaaccg	aagctccgag	cagcgggtcg	gtggcagata	gtgggggtcg	2220
tggcagcag	ttgttgggt	gccagggccg	ccactacctc	gaggacattt	ccctcccgga	2280
gccagctctc	ctagaaaccc	cgcggcggcc	gccgcagcca	agtgtttatg	gccgcggc	2340
gggtggatc	ctagccctgt	ctccctctct	ggaaaggagt	gagggtggga	cgtacttag	2400
acacctacaa	atctatattac	caaagaggag	ccgggactg	agggaaaagg	ccaaagagtg	2460
tgagtgcatg	cggactgggg	gttcagggg	agaggacgag	gaggaggaag	atgaggtcga	2520
tttcctgtatt	aaaaaaatcg	tccaaagcccc	gtggtccagc	ttaaggctct	cgggtacatg	2580
cgcgcgtcag	agcaggtcac	tttctgcctt	ccacgtctc	ttcaagaa	gccccatgtg	2640
ggtagcttc	aatatcgac	gttcttactc	ctctgcctct	ataagctaa	accacccaac	2700
gatcgccaa	gtaaaccccc	tccctcgccg	acttcggaa	tggcgagat	tcagcgcaga	2760
tgggcctgtg	gggagggggc	aagatagatg	agggggagcg	catggtgcg	gggtgacccc	2820
ttggagagag	aaaaaaggcc	acaagaggg	ctgccaccgc	cactaacgga	gatggccctg	2880
gtagagaccc	ttgggggtct	ggaacctctg	gactccccat	gctctaactc	ccacactctg	2940
ctatcagaaa	cttaaacttg	aggatttct	ctgttttca	ctcgcaataa	aytcagagca	3000
aacaaaaaaaaa	aaaaaaaaaa	aaaactcgag				3030

<210> 334

<211> 2417

<212> DNA

<213> Homo sapien

<400> 334

ggcggcccgct	ctagagctag	tgggatcccc	cgggctgcac	gaattcggca	cgagttagtt	60
ggagttttac	ctgtattgtt	ttaatttcaa	caaggcttag	gactagccac	aaatgtaccc	120
agtttacaaa	tgagggaaaca	ggtgcaaaaa	ggtgttacc	tgtcaaaggt	cgtatgtggc	180
agagccaaga	tttgagccca	gttatgtctg	atgaacttag	cctatgcct	ttaaacttct	240
gaatgctgac	cattgaggat	atctaaacctt	agatcaattg	cattttccct	ccaagactat	300

ttacttatca atacaataat accacctta ccaatctatt gtttgatac gagactcaaa	360
tatgccagat atatgtaaaa gcaacctaca agctctcaa tcatacgatcc ctaaaagatt	420
cccgggatct aataggctca aagaaacttc ttctagaaaat ataaaagaga aaattggatt	480
atgcaaaaat tcattattaa tttttcat ccataccttta attcagcaaa catttatctg	540
ttgttgactt tatgcagtat ggcctttaa ggattgggg acaggtgaag aacggggtgc	600
cagaatgcat cctcctacta atgaggctcg tacacattt cattttaaaa tgccctgtcc	660
agctgggcat ggtggatcat gcctgtatc tcaacattgg aaggccaagg caggaggatt	720
gttcagccc aggagttcaa gaccagcctg ggcaacatag aaagacccca tctcteaatc	780
aatcaatcaa tgccctgtct ttgaaaataa aactctttaa gaaaggttta atggcaggg	840
tgtggtagct catgcctata atacagcact ttggaggct gaggcaggag gatcacttta	900
gcccagaagt tcaagaccag cctggcaac aagtgcaccc tcatactcaat ttttaataa	960
aatgaataca tacataagga aagataaaaaa gaaaagttta atgaaagaat acagtataaa	1020
acaaatctct tggacctaaa agtattttt ttcagccaa atattgtgaa tcacccctct	1080
gtgtttagga tacagaatat ctaaggccag gaaactgagc agaaaggctca tgtactaact	1140
aatcaacccg aggcaaggca aaaatgagac taactaatca atccgaggca agggcaaat	1200
tagacggAAC ctgactctgg tctattaagc gacaactttc cctctgttgc atttttcttt	1260
tattcaatgt aaaaggataa aaactctcta aaactaaaaa caatgttgc caggagttac	1320
aaaccatgac caactaatta tggggaatca taaaatatga ctgtatgaga tcttgatggt	1380
ttacaaagtg tacccactgt taatcacttt aaacattaaat gaactaaaaa atgaattttac	1440
ggagattgga atgtttctt cctgttgc ttagttggctc aggctgcatt aacaaaatac	1500
cacagactgg gaggcttaag taacagaaat tcatttcata cagttctggg ggcttggaaat	1560
ccacgatcaa ggtgcaggaa aggccaggctt cattctgagg cccctctt ggctcacatg	1620
tggccaccct cccactgcgt gtcacatga cctctttgtg ctcttgaaa gaggtgtgg	1680
gggacagagg gaaagagaag gagagggAAC tctctgttgc ctgttgc aaggaccata	1740
acctggccca cttggccca ggcactgtgg ggtgggggt tggctgtct ctgtctgag	1800
tggcaagat aaagcaacag aaaaatgtcc aaagctgtgc agcaagaca agccacccaa	1860
cagggatctg ctcatcagtg tggggacctc caagtggcc accctggagg caagccccca	1920
cagagcccat gcaagggtggc agcagcagaa gaagggaaatt gtccctgtcc ttggcacatt	1980
cctcaccgc ctggatgc tggacactgc gatgaatggt aatgtggatg agaatatgat	2040
ggactcccg aaaaggagac ccagctgtc aggtggctgc aaatcattac agccttcate	2100
ctggggagga actggggcc tggttctggg tcaagagaca gcccagtgg ggtgagagct	2160
acagctgtc ctggcagctg gatccccagt cccggtaac cagtaatcaa ggctgagcag	2220
atcaggcttc cggagctgg tcttggaaag ccagccctgg ggtgagttgg ctctgtgt	2280
ggtactgaga caatattgtc ataaattcaa tgcgccttgc tattcccttt tctttttat	2340
ctgtctacat ctataatcac tatgcatact agtcttgc ttttttttttgcataactaa	2400
tagagatatg ttatact	2417

<210> 335

<211> 2984

<212> DNA

<213> Homo sapien

<400> 335

atccctccctt cccactctc cttccagaa ggcacttggg gtcttatctg ttggactctg	60
aaaacacttc aggccctt ccaaggcttc cccaaacccc taagcaggcc cagaagcgct	120
cccgagctgc ttctcccac actcaggtga tcgagttgg gaggagttc agccatcaga	180
agtacctgtc ggcccctgaa cggggccacc tggccaagaa cctcaagctc acggagaccc	240
aagtgaagat atggtccag aacagacgt ataagactaa gcgaaagcag ctctctcg	300
agctgggaga cttggagaag cactcctt tggccggccct gaaagaggag gccttctccc	360
ggccctccct ggtctccgtg tataacagct atccttacta cccataccctg tactgcgtgg	420
gcagctggag cccagctttt tggtaatgcc agctcaggtg acaaccatata tgataaaaa	480
ctgccttccc cagggtgtct ctatgaaaag cacaaggggc caaggtcagg gagcaagagg	540
tgtgcacacc aaagctattg gagatttgcg tggaaatctc asattcttca ctggtgagac	600
aatgaaacaa cagagacagt gaaagttta atacctaagt cattcccccgttgcatactg	660
taggtcattt ttttgcttc tggctacctg tttgaaggaa agagaggaa aatcaagtgg	720

tat	tttccag	cactttgtat	gat	tttgat	gagctgtaca	cccaaggatt	ctgttctgca	780					
act	ccatct	cctgtgtcac	tga	ataatcaa	ctctgaaaga	gcaaacctaa	caggagaaaag	840					
aca	accagg	atgaggatgt	cac	caactga	ataaaactta	agtccagaag	cctcctgttg	900					
gc	cttggaa	atggccaagg	ctc	tctgt	ccctgtaaaa	gagagggca	aatagagagt	960					
ct	ccaagaga	acgc	ccctcat	gctc	agcaca	tat	ttgcatg	ggagggggag	atgggtggga	1020			
gg	agatgaaa	at	atcagctt	tc	tattcc	ttt	tttattcc	ttt	aaaatg	gtatgccaac	1080		
tta	agtat	ttt	acagggtggc	ccaa	aatagaa	caagatgcac	tcg	ctgtgtat	ttt	aaagacaa	1140		
gct	gtataaa	caga	actcca	ctg	caagagg	gggggcggg	ccaggagaat	ctccgcftgt	1200				
ccaa	gacagg	ggc	ctaagga	gg	gtctccac	act	gctgta	ggggctgttg	catttttttta	1260			
tt	tagtagaa	gt	ggaaaggc	ct	tttctcaa	ctt	tttccc	tt	gggtggga	gaattttagaa	1320		
tc	agaagttt	cct	ggagttt	tc	aggctatc	at	atatactg	tat	cctgaaa	gcaacataaa	1380		
tt	tcccttc	cct	cctttta	aa	at	ttgt	ttc	ctt	tttgc	cagcaattac	tcactaaagg	1440	
gct	tcattt	at	gcccaggatt	tt	tagtctgg	ct	gcaccta	ctt	atgcctc	gcttattttag	1500		
cc	cgatct	gg	tctttttt	tt	ttttttt	ttt	ccgtc	tcc	ccaaagc	tttatctgtc	1560		
tt	gactttt	aaaa	aaagttt	gg	ggcagat	tct	gatttg	ctt	aaagaca	tgat	ttttta	1620	
aa	actagcaa	ct	tatttc	ttt	cctttaa	aa	atacatag	catt	aaatcc	caa	atcctat	1680	
ttaa	agacct	gac	agcttga	ga	aggctact	act	gcattt	tag	ac	ttt	tc	tggtggttct	1740
gct	gttacgt	tt	gaagtctg	ac	aatccttgc	ag	aatcttgc	cat	gcagagg	agg	taagagg	1800	
tat	tggattt	tc	acagagga	ag	aacacagc	gc	agaatgaa	gg	gccaggct	tac	tgcagctg	1860	
tcc	agtgag	gg	ctcatggg	tg	ggacatgg	aa	agaaggc	ag	cctaggcc	ct	ggggagcc	1920	
cag	tccactg	ag	caaggcaag	gg	actgagtg	ag	cctttgc	agg	aaaaggc	taa	gaaaaaaag	1980	
aaa	accatt	ct	aaaacaca	aca	agaaact	gt	ccaaatgc	ttt	ggaaact	gt	tttatttgc	2040	
cct	tataatgg	gt	ccccaaaa	tg	ggtaacct	ag	acttcaga	gaga	atgagc	ag	agagcaaa	2100	
gg	agaaatct	gg	ctgtcctt	cc	at	tttcat	tctgttatct	cagg	tgagct	gg	tagaggggg	2160	
ag	acataga	aa	aaaatgaa	aca	acaaaac	a	ttactaat	gagg	tacgct	gagg	ccttggg	2220	
ag	tctcttga	ct	ccactact	ta	ttccgtt	ta	tgtagaaaa	c	tttcaatt	tc	ttttattt	2280	
aga	agggcca	gt	tactgtt	gg	ggcaaaa	tt	gccaacat	a	gttaatag	aa	gttgcc	2340	
a	atttccaccc	catt	tttctgt	gg	tttggct	cc	acatttgc	at	gttcaatg	cc	acgtgtgt	2400	
ct	gacaccga	cc	ggagttact	ag	ccagcaca	aa	aggcaggg	tag	cctgtaat	tg	cttctgtc	2460	
t	ctttacatt	tct	ttttaaaa	ta	gcat	tt	gtgtcagtc	c	catactgagt	act	ctttctc	2520	
tc	cccccctc	tga	atttaat	tct	tcaact	tg	caatttgc	a	ggattaca	catt	tcaact	2580	
t	gtatgtat	tgt	tttgca	aa	aaaaaaa	a	agtgtctt	gtt	aaaatt	act	ttggtttg	2640	
tga	atccatc	tt	gttttttc	cc	cattggaa	c	tagtcatta	acc	catctct	ga	actggtag	2700	
aaa	acatct	ga	agagctag	tct	atcagca	tct	gacaggt	ga	attggatg	tt	tcagaa	2760	
cc	atccacc	cag	acagcct	gtt	tctatcc	tgt	taataa	at	agtttgg	tt	ctctaca	2820	
tg	cataacaa	ac	cctgtctcc	aa	tctgtcac	at	aaaagtct	gt	gactrgaa	ttt	tagtcag	2880	
cac	ccccccacc	aa	actttatt	ttt	ctatgt	ttt	tttgca	ca	atgagtg	ttt	gaaaat	2940	
aa	agtaccca	tgt	tttatt	ag	aaaaaaa	aa	aaaaaaa	aaa				2984	

<210> 336

<211> 147

<212> PRT

<213> Homo sapien

<400> 336

Pro	Ser	Phe	Pro	Thr	Leu	Leu	Ser	Arg	Arg	His	Leu	Gly	Ser	Tyr	Leu
1				5					10						15
Leu	Asp	Ser	Glu	Asn	Thr	Ser	Gly	Ala	Leu	Pro	Arg	Leu	Pro	Gln	Thr
					20				25						30
Pro	Lys	Gln	Pro	Gln	Lys	Arg	Ser	Arg	Ala	Ala	Phe	Ser	His	Thr	Gln
					35			40							45
Val	Ile	Glu	Leu	Glu	Arg	Lys	Phe	Ser	His	Gln	Lys	Tyr	Leu	Ser	Ala
					50			55							60
Pro	Glu	Arg	Ala	His	Leu	Ala	Lys	Asn	Leu	Lys	Leu	Thr	Glu	Thr	Gln
65					70					75					80

Val Lys Ile Trp Phe Gln Asn Arg Arg Tyr Lys Thr Lys Arg Lys Gln
 85 90 95
 Leu Ser Ser Glu Leu Gly Asp Leu Glu Lys His Ser Ser Leu Pro Ala
 100 105 110
 Leu Lys Glu Glu Ala Phe Ser Arg Ala Ser Leu Val Ser Val Tyr Asn
 115 120 125
 Ser Tyr Pro Tyr Tyr Pro Tyr Leu Tyr Cys Val Gly Ser Trp Ser Pro
 130 135 140
 Ala Phe Trp
 145

<210> 337

<211> 9

<212> PRT

<213> Homo sapien

<400> 337

Ala Leu Thr Gly Phe Thr Phe Ser Ala
 1 5

<210> 338

<211> 9

<212> PRT

<213> Homo sapien

<400> 338

Leu Leu Ala Asn Asp Leu Met Leu Ile
 1 5

<210> 339

<211> 318

<212> PRT

<213> Homo sapien

<400> 339

Met Val Glu Leu Met Phe Pro Leu Leu Leu Leu Leu Pro Phe Leu
 1 5 10 15
 Leu Tyr Met Ala Ala Pro Gln Ile Arg Lys Met Leu Ser Ser Gly Val
 20 25 30
 Cys Thr Ser Thr Val Gln Leu Pro Gly Lys Val Val Val Thr Gly
 35 40 45
 Ala Asn Thr Gly Ile Gly Lys Glu Thr Ala Lys Glu Leu Ala Gln Arg
 50 55 60
 Gly Ala Arg Val Tyr Leu Ala Cys Arg Asp Val Glu Lys Gly Glu Leu
 65 70 75 80
 Val Ala Lys Glu Ile Gln Thr Thr Gly Asn Gln Gln Val Leu Val
 85 90 95
 Arg Lys Leu Asp Leu Ser Asp Thr Lys Ser Ile Arg Ala Phe Ala Lys
 100 105 110
 Gly Phe Leu Ala Glu Glu Lys His Leu His Val Leu Ile Asn Asn Ala
 115 120 125
 Gly Val Met Met Cys Pro Tyr Ser Lys Thr Ala Asp Gly Phe Glu Met
 130 135 140
 His Ile Gly Val Asn His Leu Gly His Phe Leu Leu Thr His Leu Leu

145	150	155	160
Leu Glu Lys Leu Lys Glu Ser Ala Pro Ser Arg Ile Val Asn Val Ser			
165	170	175	
Ser Leu Ala His His Leu Gly Arg Ile His Phe His Asn Leu Gln Gly			
180	185	190	
Glu Lys Phe Tyr Asn Ala Gly Leu Ala Tyr Cys His Ser Lys Leu Ala			
195	200	205	
Asn Ile Leu Phe Thr Gln Glu Leu Ala Arg Arg Leu Lys Gly Ser Gly			
210	215	220	
Val Thr Thr Tyr Ser Val His Pro Gly Thr Val Gln Ser Glu Leu Val			
225	230	235	240
Arg His Ser Ser Phe Met Arg Trp Met Trp Trp Leu Phe Ser Phe Phe			
245	250	255	
Ile Lys Thr Pro Gln Gln Gly Ala Gln Thr Ser Leu His Cys Ala Leu			
260	265	270	
Thr Glu Gly Leu Glu Ile Leu Ser Gly Asn His Phe Ser Asp Cys His			
275	280	285	
Val Ala Trp Val Ser Ala Gln Ala Arg Asn Glu Thr Ile Ala Arg Arg			
290	295	300	
Leu Trp Asp Val Ser Cys Asp Leu Leu Gly Leu Pro Ile Asp			
305	310	315	

<210> 340

<211> 483

<212> DNA

<213> Homo sapien

<400> 340

gccgaggctc gccttcacac ggaggacacg agactgcttc ctcaagggtc cctgcctgcc	60
tggacactgg tggaggcgcc tgtttagtg gctgtttca gaggggtctt tcggagggac	120
ctccctgctgc aggctggagt gtctttattc ctggcgggag accgcacatt ccactgctga	180
ggttgtgggg gcggtttatc aggcaagtat aaacataaga tgtcatttcc ttgactccgg	240
ccttcaattt tctctttggc tgacgacgga gtccgtggtg tccccgatgta actgaccctt	300
gctccaaacg tgacatcaact gatgcttttc tcgggggtgc tgatggcccg cttggtcacg	360
tgctcaatct cgccattcga ctcttgctcc aaactgtatg aagacacctg actgcacgtt	420
ttttctgggc ttccagaatt taaaatgaaaa ggcagcactc ctaagctccg actccgatgc	480
ctg	483

<210> 341

<211> 344

<212> DNA

<213> Homo sapien

<400> 341

ctgctgctga gtcacagatt tcattataaa tagcctccct aaggaaaata cactgaatgc	60
tatttttact aaccattcta tttttataga aatagctgag agtttctaaa ccaactctct	120
gctgccttac aagtattaaa tattttactt cttccataaa agatgtgctc aaaatatgca	180
attaattttaa taatttctga tgatggttt atctgcagta atatgtatat catctattag	240
aattttactta atgaaaaact gaagagaaca aaatttgtaa ccactagcac ttaagtactc	300
ctgattctta acattgtctt taatgaccac aagacaacca acag	344

<210> 342

<211> 592

<212> DNA

<213> Homo sapien

<400> 342

acagaaaaaa	agaaaactgag	aagccaaaty	tgctttctt	ttaacatcca	cttatccaac	60
caatgtggaa	acttcttata	cttgggttcca	ttatgaagtt	ggacaattgc	tgctatcaca	120
cctggcagg	aaaccaatgc	caagagagt	atggaaacca	ttggcaagac	tttgtttag	180
accaggattt	gaattttata	aaaatattgt	tgtatggaa	ttgtctaaagg	gtgaattact	240
tccctcagaa	gagtgtaaag	aaaagtca	gatgtataa	tagcagctat	ttaattggc	300
aagtgcact	gtggaaaagag	ttccctgtgt	tgctgaagtt	ctgaaggca	gtcaaattca	360
tcagcatggg	ctgtttgggt	caaatgcaaa	agcacaggtc	tttttagcat	gtcggttct	420
cccgtgtct	tatgcaaaata	atcgcttct	tctaaatttc	tcctaggctt	cattttccaa	480
agttttctt	gttttgtgtat	gtctttctg	cttccattta	attctataaa	atagtatggc	540
ttcagccacc	cactttcgc	cttagctga	cctgtgagtct	cggctgccgc	tg	592

<210> 343

<211> 382

<212> DNA

<213> Homo sapien

<400> 343

ttcttgacct	cctccctcctt	caagctcaaa	caccacctcc	cttattcagg	accggcactt	60
c当地atgttt	gtggctttct	ctccagcctc	tcttaggagg	ggtatggtg	gagtggcat	120
cttctaactc	tcctttctcc	tttcttcccc	tttctctgcc	cgctttcccc	atccctgctgt	180
agacttctt	attgtcagtc	tgtgtcacat	ccagtgattt	ttttgggttc	tgttcccttt	240
ctgactgccc	aaggggctca	gaaccccagc	aatcccttcc	tttcaactacc	ttctttttt	300
ggggtagtt	gaagggactg	aaattgtggg	gggaaggttg	gaggcacatc	aataaaagagg	360
aaaccaccaa	gctgaaaaaaaaaa	aa				382

<210> 344

<211> 536

<212> DNA

<213> Homo sapien

<400> 344

ctgggcctga	agctgttaggg	taaatcagag	gcaggcttct	gagtgtatgag	agtctgtaga	60
caataggcca	cataaaactt	gctggatgga	acctcacaat	aagggtggca	cctttgttt	120
gttttaggggg	atgccaagg	taaggccagc	tca	taat	gaagagaagc	180
agtcttcag	agaaatggat	gcaatcagag	tggatccc	gtcacatcaa	ggtcacactc	240
cacccat	tgcctgaat	gttgcctagg	cagaaaaatc	caccccttac	gagtgcggct	300
tgcacctat	atccccggcc	cgcgtccctt	tctccataaa	attttctta	gtagcttatt	360
ccttcttatt	attgtatcta	gaaattggcc	tccttttacc	cctaccatga	gcccataaaa	420
caactaacct	gccactaata	gttatgtat	cccttatt	aatcatcatc	ctagccctaa	480
gtctggccta	tgagtgacta	caaaaaggat	tagactgagc	cgaataacaa	aaaaaa	536

<210> 345

<211> 251

<212> DNA

<213> Homo sapien

<400> 345

acctttttag	gtctctctca	ccacccac	agccacccgtc	accgtggat	gtgtggat	60
tgaatgaagc	ccccatctt	gtgcctcctg	aaaagagat	ggaagtgtcc	gaggacttt	120
gcgtggccca	gaaaatcaca	tcctacactg	cccaggagcc	agacacattt	atgaaacaga	180
aaataacata	tggatttgg	agagacactg	ccaaactggct	ggagattaat	ccggacactg	240
gtccatttc	c					251

<210> 346
<211> 282
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(282)
<223> n = A,T,C or G

<400> 346

cgcgtctctg acactgtat catgacaggg gttcaaacag aaagtgcctg ggccctcett	60
ctaagtcttg ttacaaaaaa aaggaaaaag aaaagatctt ctcagttaca aattctggga	120
agggagacta tacctggctc ttgccctaag tgagaggtct tccctccgc accaaaaaat	180
agaaaagctt tctatccac tggcccagg agggggaaagg agagtaacct tgagtctgtg	240
ggtctcattt cccaaagggtgc cttcaatgct catnaaaaacc aa	282

<210> 347
<211> 201
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(201)
<223> n = A,T,C or G

<400> 347

acacacataa tattataaaa tgccatctaa ttggaaggag ctttctatca ttgcaagtca	60
taaatataac tttaaaana ntactancag cttttaccta ngctcctaaa tgctgtaaa	120
tctgagactg actggaccctt cccagaccca gggcaaagat acatgttacc atatccatctt	180
tataaagaat tttttttgt c	201

<210> 348
<211> 251
<212> DNA
<213> Homo sapien

<400> 348

ctgttaatca caacatttgt gcatcaactt tgccaaagtga gaaaatgttc taaaatcaca	60
agagagaaca gtgcagaat gaaactgacc ctaagtccca ggtgccttgc ggcaggcaga	120
aggagacact cccagcatgg aggagggttt atctttcat cctaggtcag gtctacaatg	180
ggggaaagggtt ttattataga actcccaaca gcccacctca ctccgtccac ccacccgtatg	240
ggccctgcctc c	251

<210> 349
<211> 251
<212> DNA
<213> Homo sapien

<400> 349

taaaaatcaa gccatataat tgtatctttg aaggtaaaca atatatggga gctggatcac	60
aaccccttag gatgccagag ctatgggtcc agaacatggt gtggattat caacagagtt	120
cagaagggtc tgaactctac gtgttaccag agaacataat gcaattcatg cattccactt	180
agcaattttg taaaatacca gaaacagacc ccaagagtct ttcaagatga gggaaattca	240

actcctggtt t

251

<210> 350

<211> 908

<212> DNA

<213> Homo sapien

<400> 350

ctggacacctt tgcgagggt tttgctggct gctgctgtg cccgtcatgc tactcatgt
 agcccgccccg gtgaagctcg ctgccttcac tacctccta agtgaactgcc aaacgcccc
 cggttggaaat tgctctggtt atgatgacag agaaaaatgat ctcttcctct gtgacaccaa
 cacctgtaaa tttgatgggg aatgttaag aattggagac actgtgactt gcgtctgtca
 gttcaagtgc aacaatgact atgtgcctgt gtgtggctcc aatggggaga gttaccagaa
 tgagtgttac ctgcacagg ctgcatacaa acagcagagt gagatacttg tgggtgtcaga
 aggatcatgt gccacagtcc atgaaggctc tggagaaaact agtcaaaaagg agacatccac
 ctgtgatatt tgccagttt gtgcagaatg tgacgaagat gcccggatgt tctgggtgt
 gtgtaatatt gactgttctc aaaccaactt caatccccctc tgccgttctg atggaaatc
 ttatgataat gcatgccaat tcaaagaagc atcgtgtcag aaacaggaga aaattgaagt
 catgtctttt ggtcgatgtc aagataaac acatacaact actaagtctg aagatggc
 ttatgcaaga acagattatg cagagaatgc taacaaaatta gaagaaagtg ccagagaaca
 ccacataacct tgcgggaaat attacaatgg cttctgcattt catggaaagt gtgaggattc
 tatcaatatg caggagccat cttgcagggtg tgatgctggt tatactggac aacactgtga
 aaaaaaggac tacagtgttc tatacgttgc tcccggtctt gtacgatttc agtatgtctt
 aatcgcaag 908

60

120

180

240

300

360

420

480

540

600

660

720

780

840

900

908

<210> 351

<211> 472

<212> DNA

<213> Homo sapien

<400> 351

ccagttatcc gcaagtggta agaggctatt taccataaaat aataactaaga accaactcaa
 gtcaaacctt aatgccattt ttatttgtaa ttaggattaa gtagtaattt tcaaaaattca
 cattaacttg atttttaaat cagwtttgyg agtcatttac cacaagctaa atgtgtacac
 tatgataaaa acaaccattt tattctgtt ttcttaaaca gtcctaattt ctaacactgt
 atatatccctt cgacatcaat gaactttgtt ttctttactt ccagtaataa agtagggcaca
 gatctgtcca caacaaactt gccccttcattt gcttgcctc tcaccatgtt ctgctccagg
 tcagccccctt ttggcctgt ttgtttgtc aaaaacctaa tctgcttctt gctttcttgc
 gtaatatata tttagggaaat atgttgcttt gcccacacac gaagcaaagt aa 472

60

120

180

240

300

360

420

480

<210> 352

<211> 251

<212> DNA

<213> Homo sapien

<400> 352

ctcaaagcta atctctcggtt aatcaaaccat gaaaagggtt aaggatcttag gcatgggtgg
 tgtggataag gccaggtaa tggctcaag catgcagaga aagaggtaca tcggagcggt
 caggctgcgt tccgtccta cgtgaagac cacgtatgcgtt ttccaaaca ttggcactac
 atacatggaa aggagggggaa agccaacccaa gaaatgggtt ttctctaattt ctgggatacc
 aataaggcaca a 251

60

120

180

240

251

<210> 353

<211> 436

<212> DNA

<213> Homo sapien

<400> 353

tttttttttt tttttttttt tttttacaa caatgcagtc atttatttat tgagtatgtg	60
cacattatgg tatttact atactgatta tatttatcat gtgacttcta attaraaaat	120
gtatccaaaa gcaaaacagc agatatacaa aattaaagag acagaagata gacattaaca	180
gataaggcaa cttatacatt gacaatccaa atccaataca ttaaacatt tggaaatga	240
gggggacaaa tggaaagccar atcaaatttg tggaaaacta ttcatgtatgt ttcccttgct	300
ttcatgtctga raaggctctc cttcaatgg ggatgacaaa ctccaaatgc cacacaatg	360
ttaacagaat actagattca cactggaacg gggtaaaga agaaattatt ttctataaaa	420
gggctctaa tgttagt	436

<210> 354

<211> 854

<212> DNA

<213> Homo sapien

<400> 354

ccttttctag ttccaccagtt ttctgcaagg atgctggta gggagtgtct gcaggaggag	60
caagtctgaa accaaatcta ggaaacatag gaaacgagcc aggcacaggg ctggggcc	120
atcagggacc accctttggg ttgatattt gcttaatctg catcttttga gtaagatcat	180
ctggcagtag aagctgtct ccaggtacat ttctctagct catgtacaaa aacatctga	240
aggacttgtt caggtgcctt gctaaaagcc agatgcgtt ggcacttcct tggctgtgagg	300
ttaattgcac acctacaggg actgggtca tgcttcaag tattttgtcc tcacttttagg	360
gtgagtgaaa gatccccattt ataggagcac ttggagaga tcatataaaa gctgactctt	420
gagtacatgc agtaatgggg tagatgtgtg tgggtgtct tcattccctgc aagggtgcct	480
gttagggagt gttccagga ggaacaaatgc tgaaaccaat catgaaataa atggtaggtg	540
tgaactggaa aactaattca aaagagagat cgtgatatca gtgtgggtga tacaccttgg	600
caatatggaa ggctctaattt tgcccatatt tgaaataata attcagctt ttgtataaca	660
aaataacaaa ggatttgagaa tcatgtgtc taatgtataa aagacccagg aaacataaat	720
atataactg cataaaatgtt aaatgcattt gaccaagaa ggccccaaag tggcagacaa	780
cattgtaccc atttccctt cccaaatgtt agcggcgccc ctgctgtttt caaggctgtc	840
acacggatg tcag	854

<210> 355

<211> 676

<212> DNA

<213> Homo sapien

<400> 355

gaaattaagt atgagctaaa ttccctgtt aaacctctag gggtgacaga tctcttcaac	60
caggtcaaaat ctgatcttc tggaaatgtca ccaaccaagg gccttatattt atcaaaagcc	120
atccacaagt cataaccttggaa tgcacgcggaa gagggcacgg aggccacgc agccactggg	180
gacagcatcg ctgtaaaaat cctaccaatg agagctcagt tcaaggcgaa ccaccccttc	240
ctgttcttta taaggcacac tcataccaac acgatcttat tctgtggcaa gcttgcctct	300
ccctaatacg atggggttga gtaaggctca gagttcaga tgaggtgcag agacaatcct	360
gtgactttcc cacggccaaa aagctgttca cacctcacgc acctctgtgc ctcagttgc	420
tcatctgcaa aataggtcta ggatttcttc caaccatttc atgagttgtg aagctaaggc	480
tttggtaatc atggaaaaat gtagacttat gcagaaagcc tttctggctt tcttatactgt	540
ggtgtctcat ttgagtgctg tccagtgaca tgatcaagtc aatgagtaaa attttaaggg	600
attagattttt cttgacttgt atgtatctgt gagatcttga ataagtgacc tgacatctct	660
gcttaaagaa aaccag	676

<210> 356

<211> 574

<212> DNA

<213> Homo sapien

<400> 356

tttttttttt	tttttcagga	aaacattctc	ttactttatt	tgcatctcg	caaaggttct	60
catgtggcac	ctgactggca	tcaaaccaaa	gttcgttaggc	caacaaagat	ggccactca	120
caagttccc	attttagat	ctcagtgcct	atgagtatct	gacacctgtt	cctcttcca	180
gtctcttagg	gaggcttaaa	tctgtctcg	gtgtgctaag	agtgcagcc	caaggkggtc	240
aaaagtccac	aaaactgcag	tcttgcgtgg	gatagtaagc	caagcagtgc	ctggacagca	300
gagttctttt	cttgggcaac	agataaccag	acaggactct	aatcgtgctc	ttattcaaca	360
ttcttcgtc	tctgcctaga	ctggataaaa	aagccaatct	ctctcggtgc	acagggaaagg	420
agataacaagc	tcgtttacat	gtgatagatc	taacaaaggc	atctaccgaa	gtctggtctg	480
gatagacggc	acagggagct	tttagtgcag	cgctgctgg	tggaggacat	tcctgagtcc	540
agctttgcag	ccttgcga	acagtacttt	cccc			574

<210> 357

<211> 393

<212> DNA

<213> Homo sapien

<400> 357

tttttttttt	tttttttttt	tacagaatat	aratgcttta	tcactgkact	60
taatatggkg	kcttgttac	tatacttaaa	aatgcaccac	tcataaatat	120
aagccacaac	caaracttga	tttatcaac	aaaaacccct	aaatataaac	180
atagatataa	ttattccagt	tttttaaaa	cttaaaarat	attccattgc	240
araarataag	tgttatatgg	aaagaagggc	attcaagcac	actaaaraaa	300
gcataatctg	tacaaaatta	aactgtcctt	tttggcattt	taacaaattt	360
tttttttctt	tttctgtttt	ttttttttt	tac		393

<210> 358

<211> 630

<212> DNA

<213> Homo sapien

<400> 358

acagggtaaa	caggaggatc	tttgctctca	cgagcttac	attctagcag	gaggacaata	60
ttaatgttta	tagaaaatg	atgagttat	gacaaaggaa	gtagatagt	ttttacaaga	120
gcatagagta	gggaagctaa	tccagcacag	ggaggtcaca	gagacatccc	taaggaagt	180
gagtttaaac	ttagagaagc	aagtgcctaa	actgaaggat	gtgttgaaga	agaagggaga	240
gtagaacaat	ttggcagag	ggaacctt	atgcccataag	gtggaaagg	tcaaagaact	300
gaaagagagc	tagaacagct	ggagccgttc	tccgtgtaa	agaggatca	aagagataag	360
attaaagatg	tgaagattaa	gatcttgg	gcattcagg	attggcaatt	ctacaagaaa	420
tcactgaagg	gatgtatgt	acattactt	tcacttcagg	atggccat	taactccagg	480
ggtagactg	gacttagttaa	gactggaggc	agtagacat	cttctaaggc	ctgcgatagt	540
gaaagacaaa	aataagtgg	gaaattcagg	ggatagt	aatcagttag	acttaatgag	600
caagccagag	gttcctccac	aacaaccagt				630

<210> 359

<211> 620

<212> DNA

<213> Homo sapien

<400> 359

acagcattcc	aaaatataca	tctagagact	aarrgttaat	gctctatagt	gaagaagtaa	60
taattaaaaaa	atgctactaa	tatagaaaat	ttataatcag	aaaaataaaat	attcaggag	120

ctcaccagaa	gaataaaagtg	ctctgccagt	tatcaaaggaa	ttactgctgg	tgaattaaat	180
atggcattcc	ccaagggaaa	tagagagatt	cttctggatt	atgttcaata	tttatttcac	240
aggattaact	gttttaggaa	cagatataaa	gcttcgccac	ggaagagatg	gacaaagcac	300
aaagacaaca	tgatacctta	ggaagcaaca	ctacccttgc	aggcataaaaa	tttggagaaaa	360
tgcaacat	tgcttcatga	ataatatgt	gaaagaaggt	ctgatgaaaa	tgacatccctt	420
aatgtaaat	aactttataa	gaattctggg	tcaaaataaa	ttctttgaag	aaaacatcca	480
aatgtcatt	acttatcaaa	tactatcttgc	gcatataacc	tatgaaggca	aaactaaaca	540
aacaaaaggc	tcacacccaaa	caaaaaccatc	aaccttatttt	gtattctata	acatacgaga	600
ctgtaaaat	gtgacagtgt					620

<210> 360

<211> 431

<212> DNA

<213> Homo sapien

<400>. 360

```

aaaaaaaaaa agccagaaca acatgtata gataatatga ttggctgcac acttccagac 60
tgatgaatga tgaacgtgat ggactattgt atggaggcaca tcttcagcaa gagggggaaa 120
tactcatcat tttggccag cagttgttg atcaccaaac atcatgcccag aataactcagc 180
aaaccttctt agcttttag aagtcaaaat ccggggaaat ttattccctgg caattttaat 240
tggactcctt atgtgagac agcggttacc cagctgggtt ggtggagcga acccgtcact 300
agtggacatg cagtggcaga gctcctggta accacctaga ggaatacaca ggcacatgtg 360
tgatgccaag cgtgacacct gtagcactca aatttgtctt gttttgtct ttcgggtgtgt 420
agattcttag t

```

<210> 361

<211> 351

<212> DNA

<213> Homo sapien

<400> 361

acactgattt ccgatcaaaa gaatcatcat ctttaccttg actttcagg gaattactga	60
actttcttc cagaagatag ggcacagcca ttgccttggc ctcacttcaa gggctgcata	120
ttgggtcctc tggctcttgc ccaagttcc cagccactcg agggagaaat atcgggaggt	180
ttgacttctt ccggggcttt cccgagggttc acaccgttag ccctgcgc ctcaggctg	240
caatccttggatcaatgtct gaaaccttcgc tctctgcctg ctggacttctt gaggccgtca	300
ctgccactct gtccctccagc tctgacagct cctcatctgt ggctctttgtt t	351

<210> 362

<211> 463

<212> DNA

<213> Homo sapien

<400> 362

acttcatcag	ccataaatgg	gtgcctcccg	tgagaatcca	agcaccttg	gactgcgcga	60
tgttagatgag	ccgctgaag	atcttgcgca	tgcgcggctt	cagggcgaag	ttcttggcgc	120
ccccgggtcac	agaaatgacc	aggttgggtg	tttcaggtg	ccagtgcctgg	gtcagcagct	180
cgtaaaaggat	ttccgcgtcc	gtgtcgcagg	acagacgtat	atacttcct	ttcttccccca	240
gtgtctcaaa	ctgaatatcc	ccaaaggcgt	cggtagggaa	ttccttggtg	tgtttcttgt	300
agttccattt	ctcaactttgg	ttgatctggg	tgccttccat	gtgctggctc	tgggcatagc	360
cacacttgc	cacattctcc	ctgataagca	cgatgggtg	gacaggaagg	aaggatttca	420
ttgagcctgc	ttatggaaac	tggattgtt	agcttaaata	gac		462

<210> 363

<211> 653

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(653)

<223> n = A,T,C or G

<400> 363

accccccagt ncctgnctgg catactngaa acgacccaacg acacacccaa gctcgccctc	60
ctcttggngaa ttctgggtga catcttcatg aatggcaacc gtgccagwga ggctgtccctc	120
tgggaggcac taaccaagat gggactgcgt cctgggggtga gacatccctc ccttggagat	180
ctaaccaaacc ttctcaccta tgagttgtaa agcagaataa cctgnactac agacgagtgc	240
ccaaacagcaa cccccccggaa gtatgagttc ctctrgggc tccggttccta ccatgagasc	300
tagcaagatg naagtgttga gantcattgc agaggttcag aaaagagacc cntcgtgact	360
ggtctgcaca gttcatggag gctgcagatg aggcccttggaa tgctctggat gctgctgcag	420
ctgaggccga agcccccgggt gaagcaagaa cccgcattggg aattggagat gaggctgtgt	480
ntggggccctg gagctggat gacattgagt ttgagctgtc gacctggat gaggaaggag	540
attttggaga tccntggtcc agaattccat ttaccttctg ggccagatac caccagaatg	600
cccgctccag attccctcaag acctttgcgg gtcccattat tggcstgg ggt	653

<210> 364

<211> 401

<212> DNA

<213> Homo sapien

<400> 364

actagaggaa agacgttaaa ccactctact accacttggta gaactctcaa agggtaaatg	60
acaaaggccaa tgaatgactc taaaaacaat attacattt aatggtttgt agacaataaaa	120
aaaacaaggt ggatagatct agaattgtaa cattttaaaga aaaccatagc atttgacaga	180
tgagaaagct caattataga tgcaagtttta taactaaact actataatgtaaata	240
catttcacac ctttcatata aatttcaatctt cttggcttga ggcactccat aaaatgtatc	300
acgtgcatacg taaatcttta tatttgcattt ggcgttgcac tagaggactt ggactgcac	360
aagtggatgc gcggaaaatg aaatcttctt caatagccca g	401

<210> 365

<211> 356

<212> DNA

<213> Homo sapien

<400> 365

ccagtgtcat atttggcattt aaaaatttcaa gaaggccact tcaaatggct ttgcatttgc	60
atgtttcagt gcttagagcgt aggaatagac cctggcgatcc actgtgagat gtttttcagc	120
taccagagca tcaagtctct gcagcaggc attttgggt aaagaaatga cttccacaaa	180
ctctccatcc cctggcttttgc gtttgcgcct tgcgttttgc gcatcatctc cgttaatgg	240
gactgtcactg atgtgtatag tacagtttgc caagccttggg tccatacaga ccgttggaga	300
acattccggca atgtccccctt ttttttttttttgc agctccggaa gagcag	356

<210> 366

<211> 1851

<212> DNA

<213> Homo sapien

<400> 366

tcatcaccat tgccagcgc ggcacccgtt gtcaggtttt ctggaaatcc cacatgagta

60

c	ttcccggtt ctcattctt cttcaatgc cataaatctt ctagctctgg ctggctgttt	120
t	tcaactccct taagcctttg tgactctcc tctgatgtca gcttaagtc ttgttctgga	180
t	ttgctgtttt cagaagagat tttAACATC tgTTTCTT tgtagtcaga aagtaactgg	240-
c	caaattacat gatgatgact agaaaacagca tactctctgg ccgtcttcc agatcttgag	300
a	aagatacatc aacatTTGc tcaagttagag ggctgactat acttgctgat ccacaacata	360
c	cagcaagtt gagagcagtt cttccatatc tatccagcgc atttaaattc gctttttct	420
t	tgattaaaaa tttcaccact tgctgtttt gctcatgtat accaagtagc aagtgggtgtga	480
g	ggccatgctt gttttttgtat tcgatatcag caccgtataa gaggcgtgt ttggccatta	540
a	atttatcttc attttagaca gcatagtgta gagttggatt tccataactca tcttggatat	600
t	ttggatcagt gccatgttcc agcaacattt acgcacattc atcttcttgg cattgtacgg	660
c	cctttgtcag agctgtcctc ttttgtgt caaggacatt aagttgacat cgctgtcca	720
c	gcacgagttt tactacttctt gaattcccat tggcagaggc gagatgtaga gcagtcctct	780
t	tttgcgtgtc cctcttggtc acatccgtgt ccctgagcat gacgtgaga tccttctgg	840
g	ggactttacc ccaccaggca gctctgttgg a gctgtccag atcttcttcca tggacgtgg	900
a	acctgggatc catgaaggcg ctgtcatcg agtctccccaa agcgaccacg ttgtcttgc	960
c	cgccccctg cagcaggggc agcagtggca gcaccacttg cacctcttc tcccaagcgt	1020
t	tttcacagag gagtcgttgt ggtctccaga agtcccacg ttgtcttgc cgctccccct	1080
t	gtccatccag ggaggaagaa atgcaggaaa tgaaagatgc atgcacgtat gtatactct	1140
c	cagccatcaa acttctggac agcagggtc ac tccagcaag gtggagaaag ctgtccaccc	1200
a	acagaggatg agatccagaa accacaatat ccattcacaa acaaacactt ttcaagccaga	1260
c	cacaggtact gaaatcatgt catctgcggc aacatggtgg aaccttacca atcacacatc	1320
a	aagagatgaa gacactgcag tatatctgca caacgttaata ctcttcatcc ataacaat	1380
a	aatataattt tcctctggag ccatatggat gaactatgaa ggaagaactc cccgaagaag	1440
c	ccagtcgcag agaaggccaca ctgaagctt gtcctcagcc atcagcgcca cggacaggar	1500
t	tgtgtttttt cccccagtgtat gcaagctcaa gttatcccga agtgcgcga gcacacggtg	1560
g	gctcctgaga aacacccccag ctcttcgggt ctaacacagg caagtcaata aatgtgataa	1620
t	tcacataaaac agaattaaaaa gcaaagtca ataagcatct caacagacac agaaaaggca	1680
t	tttgacaaaaa tccagcatcc ttgtatTTT tgTTGcagt tctcagaggaa atgccttetaa	1740
c	cttttccccca ttttagtatta tgTTGGCTGT gggcttgc a taggtggttt ttattacttt	1800
a	aaggtagtgc ccttctatgc ctgttttgc gaggtttta attctcgatgc c	1851

<210> 367

<211> 668

<212> DNA

<213> Homo sapien

<400> 367

cttggatcc caaataygga agactggccc ttacacsgt caatgttaaa atgaatgcat
ttcagtatt tgaagataaa attrgttagat ctataccctt gttttgatt cgatatcagc
accrtataag agcagtgc ttggccattaa ttatcttc attrtagaca gcrtagtgya
gagttgtatt tccatactca tctggatat ttggatcagt gccatgttcc agcaacatt
acgcacattc atcttcctgg cattgtacgg cctgtcagta ttagacccaa aaacaaatt
catatcttag gaattcaaaa taacattcca cagcttcac caactagta tatttaaagg
agaaaaactca ttttatgcc atgtattgaa atcaaaccctt cctcatgctg atatagttgg
ctactgcata cctttatccag agctgtcc tc ttgttgcgtt caaggacatt aagttgacat
cgtctgtcca gcaggagtt tactacttctt gaattcccat tggcagagggc cagatgtaga
gcagtcctat gagagtgaga agacttttta ggaaattgtt gtgcacttagc tacagccata
gcaatgattc atgttaactgc aaacactgaa tagcctgcta ttactctgccc ttcaaaaaaaaa
aaaaaaaaaa

<210> 368

<211> 1512

<212> DNA

<213> Homo sapien

<400> 368

gggtcgccca	gggggsgcgt	gggcTTTctt	cgggtgggtg	tgggtttcc	ctgggtgggg	60
tggctggc	trgaatcccc	tgctggggtt	ggcaggTTT	ggctgggatt	gacttttytc	120
ttcaaacaga	ttggaaaccc	ggagttacct	gctagtttgt	gaaactgggt	gtagacgcg	180
atctgttgc	tactactggc	ttctcctggc	tgtaaaagc	agatgggtgt	tgaggttgat	240
tccatgccgg	ctgcttcttc	tgtgaagaaag	ccatttggc	tcaggagcaa	gatgggcaag	300
tggtctgccc	gttgcttccc	ctgctgcagg	gagagcggca	agagcaacgt	ggcacttct	360
ggagaccacg	acgactctgc	tatgaagaca	ctcaggagca	agatgggcaa	gtggtgccgc	420
cactgTTcc	cctgctgcag	ggggagtggc	aagagcaacg	tggcgttcc	tggagaccac	480
gacgaytctg	ctatgaagac	actcaggaac	aagatggca	agtgggtctg	ccactgcttc	540
ccctgctgca	gggggagcrg	caagagcaag	gtgggcgtt	ggggagacta	cgatgacagt	600
gccttcatgg	agcccaggta	ccacgtccgt	ggagaagatc	tggacaagatc	ccacagagct	660
gcctgggtgg	gtaaaagtccc	cagaaaggat	ctcatcgta	tgctcaggga	cactgacgtg	720
aacaagaagg	acaagcaaaa	gaggactgct	ctacatctgg	cctctgcca	tgggaattca	780
gaagtagtaa	aactcstgct	ggacagacga	tgtcaactt	atgtccttga	caacaaaaag	840
aggacagctc	tgayaaaggc	cgtacaatgc	caggaagatg	aatgtgcgtt	aatgttgctg	900
gaacatggca	ctgatccaaa	tattccagat	gagtatggaa	ataccactt	ractaygtc	960
rtctayaatg	aagataaaatt	aatggccaaa	gcactgctct	tataygtgc	tgatatcgaa	1020
tcaaaaaaca	aggtatagat	ctactaattt	tatcttcaaa	atactgaaat	gcattcattt	1080
taacatttgc	gtgtgttaagg	gccagtttc	cgtatttgg	agctcaagca	taacttgaat	1140
gaaaatattt	tgaaatgacc	taattatctt	agactttatt	ttaaatattt	ttatTTtca	1200
agaagcatta	gagggtacag	tttttttttt	ttaaatgcac	ttctggtaaa	tacttttgtt	1260
gaaaacactg	aatttgtaaa	aggttaatact	tactatTTTT	caattttcc	ctcttaggat	1320
ttttttcccc	taatgaatgt	aagatggca	aatttgcctt	gaaatagggtt	ttacatgaaa	1380
actccaagaa	aagttaaaca	tgttttagt	aatagagatc	ctgctcctt	ggcaagtccc	1440
taaaaaacag	taatagatac	gagggtatgc	gcctgtcagt	ggcaaggTTT	aagatattt	1500
tgatctcg	cc					1512

<210> 369

<211> 1853

<212> DNA

<213> Homo sapien

<400> 369

gggtcgccca	gggggsgcgt	gggcTTTctt	cgggtgggtg	tgggtttcc	ctgggtgggg	60
tggctggc	trgaatcccc	tgctggggtt	ggcaggTTT	ggctgggatt	gacttttytc	120
ttcaaacaga	ttggaaaccc	ggagttacct	gctagtttgt	gaaactgggt	gtagacgcg	180
atctgttgc	tactactggc	ttctcctggc	tgtaaaagc	agatgggtgt	tgaggttgat	240
tccatgccgg	ctgcttcttc	tgtgaagaag	ccatttggc	tcaggagcaa	gatgggcaag	300
tggtctgccc	gttgcttccc	ctgctgcagg	gagagcggca	agacgtggc	ggcacttct	360
ggagaccacg	acgactctgc	tatgaagaca	ctcaggagca	agatgggcaa	gtggtgccgc	420
cactgTTcc	cctgctgcag	ggggagtggc	aagagcaacg	tggcgttcc	tggagaccac	480
gacgaytctg	ctatgaagac	actcaggaac	aagatggca	agtgggtctg	ccactgcttc	540
ccctgctgca	gggggagcrg	caagagcaag	gtgggcgtt	ggggagacta	cgatgacagy	600
gccttcatgg	akcccaggta	ccacgtccrt	ggagaagatc	tggacaagatc	ccacagagct	660
gcctgggtgg	gtaaaagtccc	cagaaaggat	ctcatcgta	tgctcaggga	cackgatygt	720
aacaagargg	acaagcaaaa	gaggactgct	ctacatctgg	cctctgcca	tgggaattca	780
gaagtagtaa	aactcstgct	ggacagacga	tgtcaactt	atgtccttga	caacaaaaag	840
aggacagctc	tgayaaaggc	cgtacaatgc	caggaagatg	aatgtgcgtt	aatgttgctg	900
gaacatggca	ctgatccaaa	tattccagat	gagtatggaa	ataccactt	ractaygtc	960
rtctayaatg	aagataaaatt	aatggccaaa	gcactgctct	tataygtgc	tgatatcgaa	1020
tcaaaaaaca	agcatggcct	cacaccactg	ytacttggtr	tacatgagca	aaaacagcaa	1080
gtsgtgaaat	tttaatayaa	gaaaaaagcg	aattttaaaat	gcrctggata	gatatggaa	1140
ractgctctc	atacttgctg	tatgttgtgg	atcagcaagt	atagtcagcc	ytctacttga	1200
gcaaaatrtt	gatgtatctt	ctcaagatct	ggaaagacgg	ccagagagta	tgcttttct	1260

agtcatcatc atgtaatttgc cagttactt tctgactaca aaaaaaaaaca gatgttaaaa 1320
 atctttctg aaaacagcaa tccagaacaa gacttaaagc tgacatcaga ggaagagtca 1380
 caaaggctt aaggaagtga aaacagccag ccagaggcat ggaaactttt aaatttaaac 1440
 ttttggtttt atgtttttt ttttgcctt aataatatta gatagcccc aatggaaatwa 1500
 cctatgagac taggcttga gaatcaatag attcttttt taagaatctt ttggcttagga 1560
 gcggtgtctc acgcctgtaa ttccagcacc ttgagaggtt gaggtggca gatcacgaga 1620
 tcaggagatc gagaccatcc tggctaacac ggtggaaaccc catctctact aaaaatacaa 1680
 aaacttagct gggtgtggg ggggtgcctt gtagccccag ctactcaggag rgctgaggca 1740
 ggagaatggc atgaacccgg gaggtggagg ttgcagttag ccgagatccg ccactacact 1800
 ccagcctggg tgacagagca agactctgtc tcaaaaaaaaaaaa aaaaaaaaaaaa aaa 1853

<210> 370

<211> 2184

<212> DNA

<213> Homo sapien

<400> 370

ggcacgaga aaaaacccct cagcaaaaca ggcatagaag ggacataacct taaaaggtaata 60
 aaaaccacccat atgacaagcc cacagccaac ataatactaa atggggaaaa gtttagaagca 120
 tttccctctga gaactgcaac aataaataca aggatgctgg atttgtcaa atgccttttc 180
 tgggtctgtt gagatgctta tggactttt ctttaattt tggatgtgtt attatcacat 240
 ttattgtactt gcctgtgtta gaccgaaaga gctgggggtt ttctcaggag ccaccgtgtg 300
 ctgcggcagc ttccggataa cttggggctg catcaactggg gaagaacac acytcctgtcc 360
 gtggcgtga tggctgagga cagagctca gtgtggcttc tctggactg gcttcctcgg 420
 ggagttcttc cttcatagtt catccatagtg gtcggcaggaaaattatatttattttgtta 480
 tggatgaaaga gtattacgtt gtgcagatattt actgcagtgtt cttcatactct tggatgtgtga 540
 ttgggttaggt tccaccatgt tgccgcagat gacatgattt cagttactgtt gtcggctgtga 600
 aaagtgtttt ttgtgaatg gatattgtgg ttctggatc tcatcctctg tgggtggaca 660
 gctttctcca ctttgcggaa agtgcactgc tggccagaag tttgatggctt gaggagata 720
 ccatcgtca tgcatttttca atttctcga ttcttcctc cttggatggc cagggggagc 780
 ggcaagagca acgtgggcac ttctggagac cacaacgact cttctgtgaa gacgcttggg 840
 agcaagaggt gcaagtgggtt ctgccactgc ttcccctgtt gcaggggagc ggcaagagca 900
 acgtggcgc tttggggagac tacgatgaca ggccttcat ggttccagg taccacgtcc 960
 atggagaaga tctggacaag ctccacagag ctgcctgtt gggtaaagtc cccagaaaagg 1020
 atctcatctgtt catgctcagg gacacggatg tgaacaagag ggacaagcaa aagaggactg 1080
 ctctacatctt ggcctctgcc aatggaaattt cagaagttagt aaaactctgtt ctggacagac 1140
 gatgtcaactt taatgtctt gacaacaaa agaggacagc tctgacaaaag gccgtacaat 1200
 gccaaggaaaga tgaatgtgcg ttaatgtgc tggacatgg cactgatcca aatattccag 1260
 atgagtatgg aaataccactt ctacactatg ctgtctacaa tgaagataaa ttaatggcca 1320
 aagcaactgctt ctatacgggt gctgatatgc aatcaaaaaaa caagcatggc ctacacaccac 1380
 tgctacttgg tatacatgag caaaaacagc aagtgggtt aatttttaatc aagaaaaaaag 1440
 cgaattttaa tgcgctggat agatatggaa gaactgtctt catacttgcgtt gatgtgtgt 1500
 gatcagaag tatagtcagc cttctacttgc agcaaaaatgt tggatgtatct tctcaagatc 1560
 tggaaagacg gccagagagt atgctgtttc tagtcatcat catgtatattt gccagttact 1620
 ttctgactac aaagaaaaaaac agatgtttaa aatcttttctt gaaaacagca atccagaaca 1680
 agactttaaag ctgacatcag aggaagagtc acaaaaggctt aaaggaagtg aaaacagcca 1740
 gccaaggaa tggaaacrtt taaatttaaa cttttggttt aatgtttttt tttttgcctt 1800
 taataatattt agatagtccc aaatgaaatw acctatgaga ctggcttgg agaatcaata 1860
 gattttttt ttaagaatct tttggcttagg agcgggtgtctt cttccgttta attccagcac 1920
 cttggagggc tgagggtggc agatcagcagatcaggagatc cgagaccatc ctggcttacaca 1980
 cggtaaaacc ccacatcttac taaaatataca aaaaacttagc tgggtgtgtt ggcgggtgc 2040
 tggatgtccc gctactcagg argctgaggc aggagaatgg catgaacccgg ggaggtggag 2100
 gttgcagtga gccagatcc gccaactacac tccagcctgg gtgacagagc aagactctgtt 2160
 ctcaaaaaaaaaaaa aaaaaaaaaaaa aaaa 2184

<210> 371
 <211> 1855
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(1855)
 <223> n = A,T,C or G

<400> 371

tgcacgcac	ggccagtgtc	tgtgccacgt	acactgacgc	cccctgagat	gtgcacgccc	60
cacgcgcacg	ttgcacgcgc	ggcagcggct	tggctggctt	gtaacggctt	gcacgcgcac	120
gcccgcggcg	cataaccgtc	agactggct	gtaacggctt	gcaggcgcac	gccgcacgcg	180
cgtaacggct	tggctggctt	gtaacggctt	gcacgtcat	gctgcacgcg	cgttaacggc	240
ttggctggca	ttagccgt	tggcttggct	ttgcattt	tgctkgctk	ggcggttgkty	300
tcttgattt	acgcttcctc	tttggatkg	cgtttcctcc	tttggatkgac	gttctyty	360
tcgcgttctt	ttgctggact	tgacctt	tctgctgggt	ttggcattcc	tttgggggtgg	420
gctgggtgtt	ttctccgggg	gggktkgccc	ttcttgggt	gggcgtgggk	cgccccccagg	480
gggcgtgggc	tttccccggg	tgggtgtggg	tttccctggg	gtgggggtggg	ctgtgtgtgg	540
atccccctgc	tgggggttggc	agggatgtac	ttttttcttc	aaacagattt	gaaacccggaa	600
gtaacntgt	agtttgtgaa	actgggttgt	agacgcgtac	tgctgttact	actgtttctc	660
ctggctgtta	aaagcagatgt	gtggctgtgg	ttgattcaat	gcccgtgtct	tcttctgtga	720
agaaggcatt	tgttctcagg	agcaagatgg	gcaagtgggt	cgccactgtct	tccctgtgt	780
caggggggagc	ggcaagagca	acgtggcac	ttctggagac	cacaacact	cctctgtgaa	840
gacgcttggg	agaagaggt	gcaagtgggt	ctgcccactg	tttccccctgc	tgagggggag	900
cgcaagagc	aacgtggkcg	tttggggaga	ctacgtac	agcgccttca	tggakcccg	960
gtaccacgtc	crtggagaag	atctggacaa	gctccacaga	gctgccttgg	ggggtaaagt	1020
ccccagaaaag	gatctcatcg	tcatgtcag	ggacactgay	gtgaacaaga	rggacaagca	1080
aaagaggact	gctctacatc	tggcctctgc	caatggaaat	tcagaagtag	aaaaactctgt	1140
gctggacaga	cgatgtcaac	ttaatgtctt	tgacaacaaa	aagaggacag	ctctgacaaa	1200
ggccgtacaa	tgccaggaag	atgaatgtgc	gttaatgttg	ctggAACATG	gcactgtatcc	1260
aatatttcca	gatgagttatg	gaaataccac	tctacactat	gctgtctaca	atgaagataaa	1320
attaatggcc	aaagcaactgc	tcttatacgg	tgctgtatc	aatcaaaaa	acaaggatata	1380
gatctactaa	tttatcttc	aaaatactga	aatgcattca	tttaacatt	gacgtgtgt	1440
agggccagtc	ttccgtat	ggaagctcaa	gcataacttg	aatgaaaata	tttggaaatg	1500
acctaattat	ctaagacttt	attttaata	tttttatttt	caaagaagca	tttagagggta	1560
cagttttttt	tttttaatg	caactcttgt	aaatactttt	gttggaaaaca	ctgaatttgt	1620
aaaaggttaat	acttactatt	tttcaat	ttccctcttag	gat	tttcccttccctaatgaa	1680
tgtaagatgg	caaaaatttgc	cctgaaatag	gttttacatg	aaaactccaa	gaaaagttaa	1740
acatgtttca	gtgaatagag	atcctgtcc	tttggcaagt	tcctaaaaaa	cagtaataga	1800
tacgaggtga	tgcgcctgtc	agtggcaagg	tttaagatat	ttctgatctc	gtgcc	1855

<210> 372
 <211> 1059
 <212> DNA
 <213> Homo sapien

<400> 372

gcaacgtggg	cacttctgga	gaccacaacg	actcctctgt	gaagacgctt	gggagcaaga	60
ggtgcaagt	gtgctgccc	ctgttcccc	tgcgtcaggg	gagcggcaag	agcaacgtgg	120
gcccgttgg	agactmcgt	gacagygcct	tcatggagcc	caggtaccac	gtccgtggag	180
aagatctgga	caagctccac	agagctgc	tgggtgggt	aagtccccag	aaaggatctc	240
atcgatcatgc	tcaggacac	tgaygtgaac	aagarggaca	agcaaaaagag	gactgtctca	300
catctggcct	ctgccaatgg	gaattcagaa	gtagtaaaac	tcstgtgga	cagacgtatgt	360

caacttaatg tccttgacaa caaaaagagg acagctctga	yaaggccgt acaatgccag	420
gaagatgaat gtgcgttaat gttgctggaa catggcactg	atccaaatat tccagatgag	480
tatggaaata ccaactctrca ctaygctrca	tayaatgaag ataaattat	540
ctgctcttat ayggtgctga tatcgaatca	aaaaacaagg tatagatcta	600
cttcaaata ctgaaatgca	ttcattttaa cattgacgtg	660
atggaaagc tcaagcataa	tgttaaggcc agtcttccgt	720
ctttatTTTA aatattgtta	tttcaaga agcatttagag	780
aatgcacttc tggttaatac	tttgcgtgaa aacactgaat	840
tatTTTCAA ttttccctc	ttgtaaaagg taatacttac	900
ttgcccgtaa ataggttttta	catgaaaact ccaagaaaag	960
agagatctg ctcccttggc	ttaaacatgt ttcaagtgaat	1020
tgtcagtggc aaggTTtaag	atattctga tctcgtgcc	1059

<210> 373

<211> 1155

<212> DNA

<213> Homo sapien

<400> 373

atggtggttg aggttgattc catgccggt gcctttctg	tgaagaagcc atttggtctc	60
aggagcaaga tggcaagtg gtgctgccgt tgcttccct	gctgcaggg gaggccaaag	120
agcaacgtgg gcacttctgg agaccacgac gactctgcta	tgaagacact caggagcaag	180
atgggcaagt ggtgccgcca ctgctcccc	tgctgcaggg ggagtggcaa gagcaacgtg	240
ggcgcttctg gagaccacga cgactctgt	atgaagacac tcaggaacaa gatgggcaag	300
tggtgctgcc actgttccc	ctgctgcagg gggagccgca agagcaaggt gggcgcttgg	360
ggagactacg atgacagtgc	tttcatggag cccaggtacc acgtccgtgg agaagatctg	420
gacaagctcc acagagctgc	ctgggtgggt aaagtccccaa gaaaggatct catcgtcatg	480
ctcagggaca ctgacgtgaa	caagaaggac aagcaaaaaga ggactgtct acatctggcc	540
tctgccaatg ggaattcaga	agtagtaaaa ctcctgctgg acagacgtg tcaacttaat	600
gtccttgaca acaaaaagag	gacagctctg ataaaggccg tacaatgcca ggaaagatgaa	660
tgtcgtaa tggcgatgg	acatggcaact gatccaaata ttccagatga gtatggaaat	720
accactctgc actacgttat	ctataatgaa gataaaattaa tggccaaagc actgtcttta	780
tatggtgctg atatcgatc	aaaaacaag catggcctca caccactgtt acttggtgta	840
catgagcaaa aacagcaagt	cgtgaaattt ttaatcaaga aaaaagcgaa tttaaatgca	900
ctggatagat atgaaaggac	tgctctcata cttgtgtat gttgtggatc agcaagtata	960
gtcagccctc tacttgagca	aaatattgtat gtatcttcc aagatctatc tggacagacg	1020
gccagagagt atgctgtttc	tagtcatcat catgtaattt gccagttact ttctgactac	1080
aaagaaaaac agatgctaa	aatctttctt gaaaacagca atccagaaaa tgtctcaaga	1140
accagaaata aataa		1155

<210> 374

<211> 2000

<212> DNA

<213> Homo sapien

<400> 374

atggtggttg aggttgattc catgccggt gcctttctg	tgaagaagcc atttggtctc	60
aggagcaaga tggcaagtg gtgctgccgt tgcttccct	gctgcaggg gaggccaaag	120
agcaacgtgg gcacttctgg agaccacgac gactctgcta	tgaagacact caggagcaag	180
atgggcaagt ggtgccgcca ctgctcccc	tgctgcaggg ggagtggcaa gagcaacgtg	240
ggcgcttctg gagaccacga cgactctgt	atgaagacac tcaggaacaa gatgggcaag	300
tggtgctgcc actgttccc	ctgctgcagg gggagccgca agagcaaggt gggcgcttgg	360
ggagactacg atgacagtgc	tttcatggag cccaggtacc acgtccgtgg agaagatctg	420
gacaagctcc acagagctgc	ctgggtgggt aaagtccccaa gaaaggatct catcgtcatg	480
ctcagggaca ctgacgtgaa	caagaaggac aagcaaaaaga ggactgtct acatctggcc	540

tctggccaaatg	ggaaattcaga	agttagtaaaaa	ctccctgtcg	acagacgatg	tcaacttaat	600
gtccttgaca	acaaaaaagag	gacagctctg	ataaaggccg	tacaatgcc	ggaagatgaa	660
tgtgcgttaa	tgttgcgtga	acatggact	gatccaaata	ttccagatga	gtatggaaat	720
accactctgc	actaacgttat	ctataatgaa	gataaaattaa	tggccaaagc	actgctctta	780
tatgggtctg	atatcgaatc	aaaaaacaag	catggcctca	caccactgtt	acttgggtga	840
catgagcaaa	aacagcaagt	cgtgaaattt	ttaatcaaga	aaaaagcgaa	tttaaatgca	900
ctggatagat	atggaaggac	tgctctcata	cttgcgtgtat	gttgtggatc	agcaagtata	960
gtcagccttc	tacttggagca	aaatattgtat	gtatcttc	aagatctatc	tggacagacg	1020
gccagagagt	atgtcttttc	tagtcatcat	catgtatatt	gccagttact	ttctgactac	1080
aaagaaaaac	agatgctaaa	aatctcttct	gaaaacagca	atccagaaca	agacttaaag	1140
ctgacatcag	aggaagagtc	acaaaggttc	aaaggcagtg	aaaatagcca	gccagagaaaa	1200
atgtctcaag	aaccagaaat	aaataaggat	ggtgatagag	aggttgaaga	agaaatgaag	1260
aagcatgaaa	gtaataatgt	gggattacta	gaaaacctga	ctaattgggt	cäctgctggc	1320
aatggtgata	atggattat	tcctcaaagg	aagagcagaa	cacctgaaaa	tcagcaattt	1380
cctgacaacg	aaagtgaaga	gtatcacaga	atttgcgaat	tagttctga	ctacaaaagaa	1440
aaacagatgc	caaaaatactc	ttctgaaaac	agcaacccag	aacaagactt	aaagctgaca	1500
tcagaggaag	agtcacaaag	gcttgagggc	agtggaaatg	gccagccaga	gctagaaaaat	1560
tttatggcta	tcgaagaaat	gaagaagcac	ggaagtactc	atgtcggatt	cccagaaaaac	1620
ctgactaatg	gtgccactgc	tggcaatgg	gatgatggat	taattccctcc	aaggaagagc	1680
agaacacctg	aaagccagca	atttcctgac	actgagaatg	aagagtatca	cagtgacgaa	1740
caaaatgata	ctcagaagca	attttgtgaa	gaacagaaca	ctggaatatt	acacatgag	1800
attctgattc	atgaagaaaa	gcagatagaa	gtggttgaaa	aatgaattc	tgagcttct	1860
cttagttgta	agaaagaaaa	agacatcttgc	catggaaata	gtacgttgcg	ggaagaaaatt	1920
gccatgctaa	gactggagct	agacacaatg	aaacatcaga	gccagctaaa	aaaaaaaaaaa	1980
aaaaaaaaaa	aaaaaaaaaa					2000

<210> 375

<211> 2040

<212> DNA

<213> Homo sapien

<400> 375

atgggtggttg	agggttatttc	catgccggct	gcctcttctg	tgaagaagcc	atttggtctc	60
aggagcaaga	tggcaagtg	gtgctccgt	tgcttcccc	gctgcaggg	gagccgcaag	120
agcaacgtgg	gcacttctgg	agaccacac	gactctgcta	tgaagacact	caggagcaag	180
atgggcaagt	ggtgcggcca	ctgcttcccc	tgctgcagg	ggagtggcaa	gagaacacgtg	240
ggcgttctg	gagaccacga	cgactctgt	atgaagacac	tcaggaacaa	gatgggcaag	300
tggtgctgcc	actgttccc	ctgctgcagg	gggagcggca	agagcaaggt	gggcgttgg	360
ggagactaeg	atgacagtgc	cttcatggag	cccaggtacc	acgtccgtgg	agaagatctg	420
gacaagctcc	acagagctgc	ctggggggt	aaagtcccc	gaaaggatct	catgtcatg	480
ctcagggaca	ctgacgtgaa	caagaaggac	aagcaaaaaga	ggactgtct	acatctggcc	540
tctgccaatg	ggaattcaga	agtagtaaaa	ctcctgctgg	acagacgtg	tcaacttaat	600
gtcccttgaca	acaaaaagag	gacagctctg	ataaaaggccg	tacaatgcca	ggaagatgaa	660
tgtcgtaa	tgttgcgttga	acatggcact	gatccaaata	ttccagatga	gtatggaaat	720
accactctgc	actacgctat	ctataatgaa	gataaattaa	tggccaaagc	actgcttta	780
tatggtgctg	atatcgaaatc	aaaaaaacaag	catggcctca	caccactgtt	acttggtgta	840
catgagcaaa	aacagcaagt	cgtgaaattt	ttaatcaaga	aaaaagcgaa	tttaaatgca	900
ctggatagat	atggaaggac	tgctctcata	cttgcgttat	gttgtggatc	agcaagtata	960
gtcagccctc	tacttgagca	aaatattgtat	gtatcttctc	aagatctatc	tggacagacg	1020
gccagagagt	atgctgtttc	tagtcatcat	catgtatctt	gccagttact	ttctgactac	1080
aaagaaaaaac	agatgtctaa	aatctcttct	gaaaacagca	atccagaaca	agacttaaag	1140
ctgacatcg	aggaagagtc	acaaaagggtc	aaaggcagtg	aaaatagcca	gccagagaaa	1200
atgtctcaag	aaccagaaat	aaataaggat	ggtgatagag	aggttgaaga	agaaatgaag	1260
aagcatggaa	gtataatgt	gggattacta	gaaaacctga	ctaattggtgt	cactgtggc	1320
aatgggtgata	atggattaat	tcctcaaagg	aagagcagaa	cacctqaaaa	tcaqcaattt	1380

cctgacaacg aaagtgaaga gtatcacaga atttgcgaat tagttctga ctacaaagaa	1440
aaacagatgc caaaaatactc ttctgaaaac agcaaccagg aacaagactt aaagctgaca	1500
tcagaggaag agtcacaaag gcttgaggc agtggaaatg gccagccaga gaaaagatct	1560
caagaaccag aaataaataa ggatgggtat agagagctg aaaattttat ggctatcgaa	1620
gaaatgaaga agcacggaag tactcatgtc ggattcccag aaaacctgac taatgggcc	1680
actgctggca atgggtatga tggattaatt cctccaaggaa agagcagaac acctgaaagc	1740
cagcaatttc ctgacactga gaatgaagag tatcacagtg acgaacaaaa tgatactcag	1800
aagcaatttt gtgaagaaca gaacactgga atattacacg atgagattct gattcatgaa	1860
gaaaagcaga tagaagtgg tggaaaaatg aattctgagc tttcttttag ttgttaagaaa	1920
gaaaagaca tcittgatga aaatagtagc ttgcggaaag aaattgccat gctaagactg	1980
gagctagaca caatgaaaca tcagagccag ctaaaaaaaaaaaaaaaaaaaaaaaa	2040

<210> 376

<211> 329

<212> PRT

<213> Homo sapien

<400> 376

Met Asp Ile Val Val Ser Gly Ser His Pro Leu Trp Val Asp Ser Phe			
1	5	10	15
Leu His Leu Ala Gly Ser Asp Leu Leu Ser Arg Ser Leu Met Ala Glu			
20	25	30	
Glu Tyr Thr Ile Val His Ala Ser Phe Ile Ser Cys Ile Ser Ser Ser			
35	40	45	
Leu Asp Gly Gln Gly Glu Arg Gln Glu Gln Arg Gly His Phe Trp Arg			
50	55	60	
Pro Gln Arg Leu Leu Cys Glu Asp Ala Trp Glu Gln Glu Val Gln Val			
65	70	75	80
Val Leu Pro Leu Leu Pro Leu Leu Gln Gly Ser Gly Lys Ser Asn Val			
85	90	95	
Val Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe Met Asp Pro Arg Tyr			
100	105	110	
His Val His Gly Glu Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp			
115	120	125	
Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp			
130	135	140	
Val Asn Lys Arg Asp Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser			
145	150	155	160
Ala Asn Gly Asn Ser Glu Val Val Lys Leu Val Leu Asp Arg Arg Cys			
165	170	175	
Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr Ala Leu Thr Lys Ala			
180	185	190	
Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly			
195	200	205	
Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr			
210	215	220	
Ala Val Tyr Asn Glu Asp Lys Leu Met Ala Lys Ala Leu Leu Tyr			
225	230	235	240
Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu			
245	250	255	
Leu Gly Ile His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys			
260	265	270	
Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu			
275	280	285	
Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile Val Ser Pro Leu Leu			

290	295	300													
Glu	Gln	Asn	Val	Asp	Val	Ser	Ser	Gln	Asp	Leu	Glu	Arg	Arg	Pro	Glu
305					310					315					320
Ser	Met	Leu	Phe	Leu	Val	Ile	Ile	Met							
					325										

<210> 377
 <211> 148
 <212> PRT
 <213> Homo sapien

<220>
 <221> VARIANT
 <222> (1) ... (148)
 <223> Xaa = Any Amino Acid

<400> 377

Met	Thr	Xaa	Pro	Ser	Trp	Ser	Pro	Gly	Thr	Thr	Ser	Val	Glu	Lys	Ile
1									10					15	
Trp	Thr	Ser	Ser	Thr	Glu	Leu	Pro	Trp	Trp	Gly	Lys	Val	Pro	Arg	Lys
									20			25		30	
Asp	Leu	Ile	Val	Met	Leu	Arg	Asp	Thr	Asp	Val	Asn	Lys	Xaa	Asp	Lys
									35		40		45		
Gln	Lys	Arg	Thr	Ala	Leu	His	Leu	Ala	Ser	Ala	Asn	Gly	Asn	Ser	Glu
									50		55		60		
Val	Val	Lys	Leu	Xaa	Leu	Asp	Arg	Arg	Cys	Gln	Leu	Asn	Val	Leu	Asp
65									70		75		80		
Asn	Lys	Arg	Thr	Ala	Leu	Xaa	Lys	Ala	Val	Gln	Cys	Gln	Glu	Asp	
									85		90		95		
Glu	Cys	Ala	Leu	Met	Leu	Leu	Glu	His	Gly	Thr	Asp	Pro	Asn	Ile	Pro
									100		105		110		
Asp	Glu	Tyr	Gly	Asn	Thr	Thr	Leu	His	Tyr	Ala	Xaa	Tyr	Asn	Glu	Asp
									115		120		125		
Lys	Leu	Met	Ala	Lys	Ala	Leu	Leu	Leu	Tyr	Ala	Asp	Ile	Glu	Ser	
									130		135		140		
Lys	Asn	Lys	Val												
145															

<210> 378
 <211> 1719
 <212> PRT
 <213> Homo sapien

<400> 378

Met	Val	Val	Glu	Val	Asp	Ser	Met	Pro	Ala	Ala	Ser	Val	Lys	Lys	
1									10				15		
Pro	Phe	Gly	Leu	Arg	Ser	Lys	Met	Gly	Lys	Trp	Cys	Cys	Arg	Cys	Phe
									20		25		30		
Pro	Cys	Cys	Arg	Glu	Ser	Gly	Lys	Ser	Asn	Val	Gly	Thr	Ser	Gly	Asp
									35		40		45		
His	Asp	Asp	Ser	Ala	Met	Lys	Thr	Leu	Arg	Ser	Lys	Met	Gly	Lys	Trp
									50		55		60		
Cys	Arg	His	Cys	Phe	Pro	Cys	Cys	Arg	Gly	Ser	Gly	Lys	Ser	Asn	Val
65									70		75		80		
Gly	Ala	Ser	Gly	Asp	His	Asp	Asp	Ser	Ala	Met	Lys	Thr	Leu	Arg	Asn

Lys	Met	Gly	Lys	Trp	Cys	Cys	His	Cys	Phe	Pro	Cys	Cys	Arg	Gly	Ser
85															95
100								105							110
Gly	Lys	Ser	Lys	Val	Gly	Ala	Trp	Gly	Asp	Tyr	Asp	Asp	Ser	Ala	Phe
115								120							125
Met	Glu	Pro	Arg	Tyr	His	Val	Arg	Gly	Glu	Asp	Leu	Asp	Lys	Leu	His
130								135							140
Arg	Ala	Ala	Trp	Trp	Gly	Lys	Val	Pro	Arg	Lys	Asp	Leu	Ile	Val	Met
145								150							160
Leu	Arg	Asp	Thr	Asp	Val	Asn	Lys	Lys	Asp	Lys	Gln	Lys	Arg	Thr	Ala
165								170							175
Leu	His	Leu	Ala	Ser	Ala	Asn	Gly	Asn	Ser	Glu	Val	Val	Lys	Leu	Leu
180								185							190
Leu	Asp	Arg	Arg	Cys	Gln	Leu	Asn	Val	Leu	Asp	Asn	Lys	Lys	Arg	Thr
195								200							205
Ala	Leu	Ile	Lys	Ala	Val	Gln	Cys	Gln	Glu	Asp	Glu	Cys	Ala	Leu	Met
210								215							220
Leu	Leu	Glu	His	Gly	Thr	Asp	Pro	Asn	Ile	Pro	Asp	Glu	Tyr	Gly	Asn
225								230							240
Thr	Thr	Leu	His	Tyr	Ala	Ile	Tyr	Asn	Glu	Asp	Lys	Leu	Met	Ala	Lys
245								250							255
Ala	Leu	Leu	Leu	Tyr	Gly	Ala	Asp	Ile	Glu	Ser	Lys	Asn	Lys	His	Gly
260								265							270
Leu	Thr	Pro	Leu	Leu	Gly	Val	His	Glu	Gln	Lys	Gln	Gln	Val	Val	
275								280							285
Lys	Phe	Leu	Ile	Lys	Lys	Ala	Asn	Leu	Asn	Ala	Leu	Asp	Arg	Tyr	
290								295							300
Gly	Arg	Thr	Ala	Leu	Ile	Leu	Ala	Val	Cys	Cys	Gly	Ser	Ala	Ser	Ile
305								310							320
Val	Ser	Leu	Leu	Leu	Glu	Gln	Asn	Ile	Asp	Val	Ser	Ser	Gln	Asp	Leu
325								330							335
Ser	Gly	Gln	Thr	Ala	Arg	Glu	Tyr	Ala	Val	Ser	Ser	His	His	His	Val
340								345							350
Ile	Cys	Gln	Leu	Leu	Ser	Asp	Tyr	Lys	Glu	Lys	Gln	Met	Leu	Lys	Ile
355								360							365
Ser	Ser	Glu	Asn	Ser	Asn	Pro	Glu	Asn	Val	Ser	Arg	Thr	Arg	Asn	Lys
370								375							380
Pro	Arg	Thr	His	Met	Val	Val	Glu	Val	Asp	Ser	Met	Pro	Ala	Ala	Ser
385								390							400
Ser	Val	Lys	Lys	Pro	Phe	Gly	Leu	Arg	Ser	Lys	Met	Gly	Lys	Trp	Cys
405								410							415
Cys	Arg	Cys	Phe	Pro	Cys	Cys	Arg	Glu	Ser	Gly	Lys	Ser	Asn	Val	Gly
420								425							430
Thr	Ser	Gly	Asp	His	Asp	Asp	Ser	Ala	Met	Lys	Thr	Leu	Arg	Ser	Lys
435								440							445
Met	Gly	Lys	Trp	Cys	Arg	His	Cys	Phe	Pro	Cys	Cys	Arg	Gly	Ser	Gly
450								455							460
Lys	Ser	Asn	Val	Gly	Ala	Ser	Gly	Asp	His	Asp	Asp	Ser	Ala	Met	Lys
465								470							480
Thr	Leu	Arg	Asn	Lys	Met	Gly	Lys	Trp	Cys	Cys	His	Cys	Phe	Pro	Cys
485								490							495
Cys	Arg	Gly	Ser	Gly	Lys	Ser	Lys	Val	Gly	Ala	Trp	Gly	Asp	Tyr	Asp
500								505							510
Asp	Ser	Ala	Phe	Met	Glu	Pro	Arg	Tyr	His	Val	Arg	Gly	Glu	Asp	Leu
515								520							525

Asp Lys Leu His Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp
 530 535 540
 Leu Ile Val Met Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln
 545 550 555 560
 Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val
 565 570 575
 Val Lys Leu Leu Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn
 580 585 590
 Lys Lys Arg Thr Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu
 595 600 605
 Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp
 610 615 620
 Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys
 625 630 635 640
 Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys
 645 650 655
 Asn Lys His Gly Leu Thr Pro Leu Leu Leu Gly Val His Glu Gln Lys
 660 665 670
 Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu Asn Ala
 675 680 685
 Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly
 690 695 700
 Ser Ala Ser Ile Val Ser Leu Leu Leu Glu Gln Asn Ile Asp Val Ser
 705 710 715 720
 Ser Gln Asp Leu Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser
 725 730 735
 His His His Val Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln
 740 745 750
 Met Leu Lys Ile Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys
 755 760 765
 Leu Thr Ser Glu Glu Ser Gln Arg Phe Lys Gly Ser Glu Asn Ser
 770 775 780
 Gln Pro Glu Lys Met Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp
 785 790 795 800
 Arg Glu Val Glu Glu Met Lys Lys His Glu Ser Asn Asn Val Gly
 805 810 815
 Leu Leu Glu Asn Leu Thr Asn Gly Val Thr Ala Gly Asn Gly Asp Asn
 820 825 830
 Gly Leu Ile Pro Gln Arg Lys Ser Arg Thr Pro Glu Asn Gln Gln Phe
 835 840 845
 Pro Asp Asn Glu Ser Glu Glu Tyr His Arg Ile Cys Glu Leu Val Ser
 850 855 860
 Asp Tyr Lys Glu Lys Gln Met Pro Lys Tyr Ser Ser Glu Asn Ser Asn
 865 870 875 880
 Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Leu
 885 890 895
 Glu Gly Ser Glu Asn Gly Gln Pro Glu Leu Glu Asn Phe Met Ala Ile
 900 905 910
 Glu Glu Met Lys Lys His Gly Ser Thr His Val Gly Phe Pro Glu Asn
 915 920 925
 Leu Thr Asn Gly Ala Thr Ala Gly Asn Gly Asp Asp Gly Leu Ile Pro
 930 935 940
 Pro Arg Lys Ser Arg Thr Pro Glu Ser Gln Gln Phe Pro Asp Thr Glu
 945 950 955 960
 Asn Glu Glu Tyr His Ser Asp Glu Gln Asn Asp Thr Gln Lys Gln Phe

	965	970	975												
Cys	Glu	Glu	Gln	Asn	Thr	Gly	Ile	Leu	His	Asp	Glu	Ile	Leu	Ile	His
							980		985						990
Glu	Glu	Lys	Gln	Ile	Glu	Val	Val	Glu	Lys	Met	Asn	Ser	Glu	Leu	Ser
															995
Leu	Ser	Cys	Lys	Lys	Glu	Lys	Asp	Ile	Leu	His	Glu	Asn	Ser	Thr	Leu
								1010		1015					1005
Arg	Glu	Glu	Ile	Ala	Met	Leu	Arg	Leu	Glu	Leu	Asp	Thr	Met	Lys	His
							1025		1030						104
Gln	Ser	Gln	Leu	Pro	Arg	Thr	His	Met	Val	Val	Glu	Val	Asp	Ser	Met
							1045			1050					1055
Pro	Ala	Ala	Ser	Ser	Val	Lys	Pro	Phe	Gly	Leu	Arg	Ser	Lys	Met	
							1060		1065						1070
Gly	Lys	Trp	Cys	Cys	Arg	Cys	Phe	Pro	Cys	Cys	Arg	Glu	Ser	Gly	Lys
							1075		1080						1085
Ser	Asn	Val	Gly	Thr	Ser	Gly	Asp	His	Asp	Asp	Ser	Ala	Met	Lys	Thr
							1090		1095						1100
Leu	Arg	Ser	Lys	Met	Gly	Lys	Trp	Cys	Arg	His	Cys	Phe	Pro	Cys	Cys
							1105		1110						112
Arg	Gly	Ser	Gly	Lys	Ser	Asn	Val	Gly	Ala	Ser	Gly	Asp	His	Asp	Asp
							1125			1130					1135
Ser	Ala	Met	Lys	Thr	Leu	Arg	Asn	Lys	Met	Gly	Lys	Trp	Cys	Cys	His
							1140		1145						1150
Cys	Phe	Pro	Cys	Cys	Arg	Gly	Ser	Gly	Lys	Ser	Lys	Val	Gly	Ala	Trp
							1155		1160						1165
Gly	Asp	Tyr	Asp	Asp	Ser	Ala	Phe	Met	Glu	Pro	Arg	Tyr	His	Val	Arg
							1170		1175						1180
Gly	Glu	Asp	Leu	Asp	Lys	Leu	His	Arg	Ala	Ala	Trp	Trp	Gly	Lys	Val
							1185		1190			1195			120
Pro	Arg	Lys	Asp	Leu	Ile	Val	Met	Leu	Arg	Asp	Thr	Asp	Val	Asn	Lys
							1205			1210					1215
Lys	Asp	Lys	Gln	Lys	Arg	Thr	Ala	Leu	His	Leu	Ala	Ser	Ala	Asn	Gly
							1220		1225						1230
Asn	Ser	Glu	Val	Val	Lys	Leu	Leu	Asp	Arg	Arg	Cys	Gln	Leu	Asn	
							1235		1240						1245
Val	Leu	Asp	Asn	Lys	Lys	Arg	Thr	Ala	Leu	Ile	Lys	Ala	Val	Gln	Cys
							1250		1255						1260
Gln	Glu	Asp	Glu	Cys	Ala	Leu	Met	Leu	Leu	Glu	His	Gly	Thr	Asp	Pro
							1265		1270			1275			128
Asn	Ile	Pro	Asp	Glu	Tyr	Gly	Asn	Thr	Thr	Leu	His	Tyr	Ala	Ile	Tyr
							1285			1290					1295
Asn	Glu	Asp	Lys	Leu	Met	Ala	Lys	Ala	Leu	Leu	Tyr	Gly	Ala	Asp	
							1300		1305						1310
Ile	Glu	Ser	Lys	Asn	Lys	His	Gly	Leu	Thr	Pro	Leu	Leu	Gly	Val	
							1315		1320						1325
His	Glu	Gln	Lys	Gln	Gln	Val	Val	Lys	Phe	Leu	Ile	Lys	Lys	Lys	Ala
							1330		1335						1340
Asn	Leu	Asn	Ala	Leu	Asp	Arg	Tyr	Gly	Arg	Thr	Ala	Leu	Ile	Leu	Ala
							1345		1350			1355			136
Val	Cys	Cys	Gly	Ser	Ala	Ser	Ile	Val	Ser	Leu	Leu	Leu	Glu	Gln	Asn
							1365			1370					1375
Ile	Asp	Val	Ser	Ser	Gln	Asp	Leu	Ser	Gly	Gln	Thr	Ala	Arg	Glu	Tyr
							1380		1385						1390
Ala	Val	Ser	Ser	His	His	His	Val	Ile	Cys	Gln	Leu	Leu	Ser	Asp	Tyr
							1395		1400						1405

Lys Glu Lys Gln Met Leu Lys Ile Ser Ser Glu Asn Ser Asn Pro Glu
 1410 1415 1420
 Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Phe Lys Gly
 1425 1430 1435 144
 Ser Glu Asn Ser Gln Pro Glu Lys Met Ser Gln Glu Pro Glu Ile Asn
 1445 1450 1455
 Lys Asp Gly Asp Arg Glu Val Glu Glu Met Lys Lys His Glu Ser
 1460 1465 1470
 Asn Asn Val Gly Leu Leu Glu Asn Leu Thr Asn Gly Val Thr Ala Gly
 1475 1480 1485
 Asn Gly Asp Asn Gly Leu Ile Pro Gln Arg Lys Ser Arg Thr Pro Glu
 1490 1495 1500
 Asn Gln Gln Phe Pro Asp Asn Glu Ser Glu Glu Tyr His Arg Ile Cys
 1505 1510 1515 152
 Glu Leu Val Ser Asp Tyr Lys Glu Lys Gln Met Pro Lys Tyr Ser Ser
 1525 1530 1535
 Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu
 1540 1545 1550
 Ser Gln Arg Leu Glu Gly Ser Glu Asn Gly Gln Pro Glu Lys Arg Ser
 1555 1560 1565
 Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Leu Glu Asn Phe
 1570 1575 1580
 Met Ala Ile Glu Glu Met Lys Lys His Gly Ser Thr His Val Gly Phe
 1585 1590 1595 160
 Pro Glu Asn Leu Thr Asn Gly Ala Thr Ala Gly Asn Gly Asp Asp Gly
 1605 1610 1615
 Leu Ile Pro Pro Arg Lys Ser Arg Thr Pro Glu Ser Gln Gln Phe Pro
 1620 1625 1630
 Asp Thr Glu Asn Glu Glu Tyr His Ser Asp Glu Gln Asn Asp Thr Gln
 1635 1640 1645
 Lys Gln Phe Cys Glu Glu Gln Asn Thr Gly Ile Leu His Asp Glu Ile
 1650 1655 1660
 Leu Ile His Glu Glu Lys Gln Ile Glu Val Val Glu Lys Met Asn Ser
 1665 1670 1675 168
 Glu Leu Ser Leu Ser Cys Lys Lys Glu Lys Asp Ile Leu His Glu Asn
 1685 1690 1695
 Ser Thr Leu Arg Glu Glu Ile Ala Met Leu Arg Leu Glu Leu Asp Thr
 1700 1705 1710
 Met Lys His Gln Ser Gln Leu
 1715

<210> 379

<211> 656

<212> PRT

<213> Homo sapien

<400> 379

Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys
 1 5 10 15
 Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe
 20 25 30
 Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp
 35 40 45
 His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp
 50 55 60

Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val
 65 70 75 80
 Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn
 85 90 95
 Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser
 100 105 110
 Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe
 115 120 125
 Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His
 130 135 140
 Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met
 145 150 155 160
 Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala
 165 170 175
 Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu
 180 185 190
 Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr
 195 200 205
 Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met
 210 215 220
 Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn
 225 230 235 240
 Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys
 245 250 255
 Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly
 260 265 270
 Leu Thr Pro Leu Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val
 275 280 285
 Lys Phe Leu Ile Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr
 290 295 300
 Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile
 305 310 315 320
 Val Ser Leu Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu
 325 330 335
 Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser His His His Val
 340 345 350
 Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln Met Leu Lys Ile
 355 360 365
 Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu
 370 375 380
 Glu Glu Ser Gln Arg Phe Lys Gly Ser Glu Asn Ser Gln Pro Glu Lys
 385 390 395 400
 Met Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Val Glu
 405 410 415
 Glu Glu Met Lys Lys His Glu Ser Asn Asn Val Gly Leu Leu Glu Asn
 420 425 430
 Leu Thr Asn Gly Val Thr Ala Gly Asn Gly Asp Asn Gly Leu Ile Pro
 435 440 445
 Gln Arg Lys Ser Arg Thr Pro Glu Asn Gln Gln Phe Pro Asp Asn Glu
 450 455 460
 Ser Glu Glu Tyr His Arg Ile Cys Glu Leu Val Ser Asp Tyr Lys Glu
 465 470 475 480
 Lys Gln Met Pro Lys Tyr Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp
 485 490 495
 Leu Lys Leu Thr Ser Glu Glu Ser Gln Arg Leu Glu Gly Ser Glu

500	505	510
Asn Gly Gln Pro Glu Leu Glu Asn Phe Met Ala Ile Glu Glu Met Lys		
515	520	525
Lys His Gly Ser Thr His Val Gly Phe Pro Glu Asn Leu Thr Asn Gly		
530	535	540
Ala Thr Ala Gly Asn Gly Asp Asp Gly Leu Ile Pro Pro Arg Lys Ser		
545	550	560
Arg Thr Pro Glu Ser Gln Gln Phe Pro Asp Thr Glu Asn Glu Glu Tyr		
565	570	575
His Ser Asp Glu Gln Asn Asp Thr Gln Lys Gln Phe Cys Glu Glu Gln		
580	585	590
Asn Thr Gly Ile Leu His Asp Glu Ile Leu Ile His Glu Glu Lys Gln		
595	600	605
Ile Glu Val Val Glu Lys Met Asn Ser Glu Leu Ser Leu Ser Cys Lys		
610	615	620
Lys Glu Lys Asp Ile Leu His Glu Asn Ser Thr Leu Arg Glu Glu Ile		
625	630	635
Ala Met Leu Arg Leu Glu Leu Asp Thr Met Lys His Gln Ser Gln Leu		
645	650	655

<210> 380

<211> 671

<212> PRT

<213> Homo sapien

<400> 380

Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys		
1	5	10
Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe		
20	25	30
Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp		
35	40	45
His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp		
50	55	60
Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val		
65	70	75
Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn		
85	90	95
Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser		
100	105	110
Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe		
115	120	125
Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His		
130	135	140
Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met		
145	150	155
Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala		
165	170	175
Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu		
180	185	190
Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr		
195	200	205
Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met		
210	215	220
Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn		

225	230	235	240
Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys			
245	250	255	
Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly			
260	265	270	
Leu Thr Pro Leu Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val			
275	280	285	
Lys Phe Leu Ile Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr			
290	295	300	
Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile			
305	310	315	320
Val Ser Leu Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu			
325	330	335	
Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser His His His Val			
340	345	350	
Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln Met Leu Lys Ile			
355	360	365	
Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu			
370	375	380	
Glu Glu Ser Gln Arg Phe Lys Gly Ser Glu Asn Ser Gln Pro Glu Lys			
385	390	395	400
Met Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Val Glu			
405	410	415	
Glu Glu Met Lys Lys His Glu Ser Asn Asn Val Gly Leu Leu Glu Asn			
420	425	430	
Leu Thr Asn Gly Val Thr Ala Gly Asn Gly Asp Asn Gly Leu Ile Pro			
435	440	445	
Gln Arg Lys Ser Arg Thr Pro Glu Asn Gln Gln Phe Pro Asp Asn Glu			
450	455	460	
Ser Glu Glu Tyr His Arg Ile Cys Glu Leu Val Ser Asp Tyr Lys Glu			
465	470	475	480
Lys Gln Met Pro Lys Tyr Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp			
485	490	495	
Leu Lys Leu Thr Ser Glu Glu Ser Gln Arg Leu Glu Gly Ser Glu			
500	505	510	
Asn Gly Gln Pro Glu Lys Arg Ser Gln Glu Pro Glu Ile Asn Lys Asp			
515	520	525	
Gly Asp Arg Glu Leu Glu Asn Phe Met Ala Ile Glu Glu Met Lys Lys			
530	535	540	
His Gly Ser Thr His Val Gly Phe Pro Glu Asn Leu Thr Asn Gly Ala			
545	550	555	560
Thr Ala Gly Asn Gly Asp Asp Gly Leu Ile Pro Pro Arg Lys Ser Arg			
565	570	575	
Thr Pro Glu Ser Gln Gln Phe Pro Asp Thr Glu Asn Glu Glu Tyr His			
580	585	590	
Ser Asp Glu Gln Asn Asp Thr Gln Lys Gln Phe Cys Glu Glu Gln Asn			
595	600	605	
Thr Gly Ile Leu His Asp Glu Ile Leu Ile His Glu Glu Lys Gln Ile			
610	615	620	
Glu Val Val Glu Lys Met Asn Ser Glu Leu Ser Leu Ser Cys Lys Lys			
625	630	635	640
Glu Lys Asp Ile Leu His Glu Asn Ser Thr Leu Arg Glu Glu Ile Ala			
645	650	655	
Met Leu Arg Leu Glu Leu Asp Thr Met Lys His Gln Ser Gln Leu			
660	665	670	

<210> 381
 <211> 251
 <212> DNA
 <213> Homo sapien

<400> 381

ggagaagcgt ctgctggggc aggaagggtt ttccctgcc tctcacctgt ccctcaccaa	60
ggtaacatgc ttcccctaag ggtatccaa cccaggggcc tcaccatgac ctctgagggg	120
ccaatatccc aggagaagca ttggggagtt gggggcaggt gaaggacca ggactcacac	180
atcctgggcc tccaaggcag aggagagggt cctcaagaag gtcaggagga aaatccgtaa	240
caagcagtca g	251

<210> 382
 <211> 3279
 <212> DNA
 <213> Homo sapiens

<400> 382

cttcctgcag cccccatgct ggtgaggggc acgggcagga acagtggacc caacatggaa	60
atgctggagg gtgtcaggaa gtgatcgcc tctggggcag ggaggagggg tggggagtgt	120
cactggagg ggacatcctg cagaaggtag gaggagcaaa acacccgctg caggggaggg	180
gagagccctg cgccacctgg gggagcagag ggagcagcac ctgcccaggc ctgggaggag	240
gggcctggag ggcgtgagga ggagcggagg ggctgcatgg ctggagtgag ggatcagggg	300
cagggcgcga gatggcctca cacagggaaag agagggccccc ttctgcaggg cctcacctgg	360
gccacaggag gacactgctt ttccctctgag gagtcaggag ctgttgatgg tgctggacag	420
aagaaggaca gggcctggct caggtgtcca gaggtgtcg ctggcttccc ttggatca	480
gactgcaggg agggaggggcg gcagggttgtt ggggggagtg acgatgagga tgacctgggg	540
gtggctccag gccttgcccc ttgcctggcc ctcacccagc ctccctcaca gtctectggc	600
cctcagatcc tccccctccac tccatcctcc atctggcetc agtgggtcat tctgatcact	660
gaactgacca taccctggcc ttcccacggc cttccatggc tcccaatgc cttggagagg	720
ggacatcttag tcagagagta gtccctgaaga ggtggcctct gcgtatgtcc tggggggca	780
gcatctgcgatggatcc gatggtcccc gcctgcattcc tgctgaccc tctgcaggg ctgtccct	840
ggaccttgcc cttgtgcag gagctggacc ctgaagtcgc ctcccccata gccaagactg	900
gagcctgtt ccctctgtt gactccctgc ccattttctt gtgggagtg gttctggaga	960
catttcgttc tgttcctgag agctggaaat tgctctcact catctgcctg cgggttctg	1020
agagatggag ttgccttaggc agttattggg gccaatcttt ctcaactgtgt ctccctct	1080
ttacccttag ggtgattctg ggggtccact tgcgttaat ggtgtgcctc aaggatcac	1140
atcatggggc cctgagccat gtgcctgccc tgaaaagct gctgtgtaca ccaagggtgt	1200
gcattaccgg aagtggatca aggacaccat cgccggccaa ccctgagtgcc cccctgtccca	1260
ccctcacctc tagtaaaattt aagtccaccc cacattctgg catcaattgg ctttctgga	1320
tgcgtggacac ctgaagcttg gaactccaccc ggcggaaact cgagcctctc gagtcctact	1380
gacctgtgtt ttctgggtgt gaggccaggc ctgcgtggaa aaggaatggg cagacacagg	1440
tgtatgccaat tgttctgaa atgggtataa ttctgcctc tccttcggaa cactggctgt	1500
ctctgaagac ttctcgctca gtttcagtga ggacacacac aaagacgtgg gtgaccatgt	1560
tgtttgtggg gtgcagagat gggagggtg gggccccc tggaaagagt gacagtgaca	1620
caaggtggac actctctaca gatcaactgag gataagctgg agccacaatg catgaggcac	1680
acacacagca aggttgcgc tgtaaacata gcccacgctg tcctggggc actggaaagc	1740
ctagataagg ccgtgagcag aaagaagggg aggatcctcc tatgtttgtt aaggagggac	1800
tagggggaga aactgaaagc tgattaatta caggaggttt gttcagggtcc cccaaaccac	1860
cgtcagattt gatgattcc tagcaggact tacagaaata aagagctatc atgctgtgtt	1920
ttattatggt ttgttacatt gataggatac atactgaaat cagcaaacaa aacagatgt	1980
tagattagag tggagaaaa acagaggaaa acttcgcattt acgaagactg gcaacttggc	2040
tttactaagt ttccagactg gcaggaagtc aaacctatta ggctgaggac ctttggagt	2100
gtagctgatc cagctgatag aggaacttagc caggtggggg cttttccctt tggatggggg	2160

gcatatccga cagttattct ctccaagtgg agacttacgg acagcatata attctccctg 2220
 caaggatgt a tgataatatg tacaaggtaa ttccaactga ggaagctcac ctgatcctta 2280
 gtgtccaggg ttttactgg gggctctgtag gacgagtgatg gactactga ataattgacc 2340
 tgaagtccctc agacctgagg ttcccttagag ttcaaaacaga tacagcatgg tccagagtcc 2400
 cagatgtaca aaaacaggga ttcatcacaa atcccattt tagcatgaag ggtctggcat 2460
 ggcccaaggc cccaaagtata tcaaggcact tggcagaac atgccaagga atcaaatgtc 2520
 atctccagg agttattcaa gggtgagccc ttacttggg atgtacaggg tttgagcagt 2580
 gcagggctgc ttagtcaacc ttttattgt a cagggatga gggaaaggg gaggatgagg 2640
 aagccccctt ggggatttgg ttttgttgc tgatcaggtg gtctatggg ctatccctac 2700
 aaagaagaat ccagaaatag gggcacattg aggaatgata ctgagccaa agagcattca 2760
 atcattgtt tatttgcctt cttttcacac cattggtagg ggagggatta ccaccctggg 2820
 gttatgaaga tggtaaca ccccacacat agcaccggag atatgagatc aacagtttct 2880
 tagccataga gattcacagc ccagagcagg aggacgctgc acaccatgca ggtatgacatg 2940
 gggatgcgc tcgggattgg tgtgaagaag caaggactgt tagaggcagg ctatgtatgta 3000
 acaagacggt gggcaact ctgatttccg tggggatg tcatggctt gcttactaa 3060
 gttttagac tggcaggttag taaaactcat taggctgaga accttggaa atgcagctga 3120
 cccagctgat agaggaagta gccaggtggg agccttcccc agtgggtgtg ggacatatact 3180
 ggcaagattt tggcactc ctggttacag atactgggc agcaaataaaa actgaatctt 3240
 gtttcagac cttaaaaaaaaaaaaaaa aaaagttttt 3279

<210> 383

<211> 155

<212> PRT

<213> Homo sapiens

<400> 383

Met	Ala	Gly	Val	Arg	Asp	Gln	Gly	Gln	Gly	Ala	Arg	Trp	Pro	His	Thr
							5				10				15

Gly	Lys	Arg	Gly	Pro	Leu	Leu	Gln	Gly	Leu	Thr	Trp	Ala	Thr	Gly	Gly
						20			25					30	

His	Cys	Phe	Ser	Ser	Glu	Glu	Ser	Gly	Ala	Val	Asp	Gly	Ala	Gly	Gln
						35			40				45		

Lys	Lys	Asp	Arg	Ala	Trp	Leu	Arg	Cys	Pro	Glu	Ala	Val	Ala	Gly	Phe
						50			55				60		

Pro	Leu	Gly	Ser	Asp	Cys	Arg	Glu	Gly	Gly	Arg	Gln	Gly	Cys	Gly	Gly
						65			70			75			80

Ser	Asp	Asp	Glu	Asp	Asp	Leu	Gly	Val	Ala	Pro	Gly	Leu	Ala	Pro	Ala
						85			90				95		

Trp	Ala	Leu	Thr	Gln	Pro	Pro	Ser	Gln	Ser	Pro	Gly	Pro	Gln	Ser	Leu
						100			105				110		

Pro	Ser	Thr	Pro	Ser	Ser	Ile	Trp	Pro	Gln	Trp	Val	Ile	Leu	Ile	Thr
						115			120			125			

Glu	Leu	Thr	Ile	Pro	Ser	Pro	Ala	His	Gly	Pro	Pro	Trp	Leu	Pro	Asn
						130			135			140			

Ala	Leu	Glu	Arg	Gly	His	Leu	Val	Arg	Glu						
						145			150						

<210> 384
<211> 557
<212> DNA
<213> Homo sapiens

<400> 384
ggatcctcta gagcggccgc ctactactac taaattcgcg gccgcgtcga cgaagaagag 60
aaagatgtgt tttgtttgg actctctgtg gtcccttcca atgctgtggg ttcccaacc 120
ggggaaagggt cccttttgc ttgccaagtg ccataaccat gagcactact ctaccatgg 180
tctgcctcct ggccaagcag gctggtttc aagaatgaaa tgaatgatc tacagctagg 240
acttaacacctt gaaatggaaa gtcttgcaat cccatttgca ggatccgtct gtgcacatgc 300
ctctgttagag agcagcattc ccagggacct tggaaacagt tggcactgta aggtgcttgc 360
cccccaagac acatcctaaa aggtgttgta atggtaaaaa cgtcttcctt ctttattgcc 420
ccttcttatt tatgtgaaca actgtttgtc tttttttgtt tcttttttaa actgtaaagt 480
tcaattgtga aaatgaatat catgcaaata aattatgcga tttttttttc aaagtaaaaa 540
aaaaaaaaaa aaaaaaaaaa 557

<210> 385
<211> 337
<212> DNA
<213> *Homo sapiens*

<400> 385
ttccccagggtg atgtgcgagg gaagacacat ttactatcct tggatgggct gattccctta 60
gtttctctag cagcagatgg gtttaggagga agtgacccaa ytggttgact cctatgtgca 120
tctcaaagcc atctgtgtc ttgcagtacg gacacatcat cactcctgca ttgttgcata 180
aaacgtggag gtgcgtttcc tcagctaaga agcccttagc aaaagctcga atagacttag 240
tatcagacag gtccagttc cgcaccaaca cctgtggtt ccctgtcggt gtgtggatct 300
ctttggccac caattcccc ttttccacat cccggca 337

<210> 386
<211> 300
<212> DNA
<213> *Homo sapiens*

<400> 386
ggggccgccta ccggccccagg ccccgcctcg cgagtcctcc tccccgggtg cctgccccgca 60
gccccgctcgg cccagagggt gggcgcgggg ctgcctctac cggctggcggtt ctgttaactca 120
gcgcaccttgg cccgaagggtctt ctagcaaggg cccaccgacc ccagccgcgg cggcggcggc 180
gcggacttttgc cccgggtgtgt ggggcggagc ggactgcgtg tccgcggacg ggcagcgaag 240
atgtttagct tcgtgccag gaccgtggac cgatcccagg gctgtggtgtt aacctcaqcc 300

<210> 387
<211> 537
<212> DNA
<213> *Homo sapiens*

<400> 387
gggccgagtc gggcaccaag ggactcttg caggcttct tcctcgatc atcaaggctg 60
ccccctctg tgccatcatg atcagcacct atgagttcg caaaagctc ttccagggc 120
tgaaccagga ccggctctg ggcggctgaa aggggcaagg aggcaaggac cccgtctctc 180
ccacggatgg ggagagggca ggaggagacc cagccaagtg cttttcctc agcactgagg 240
gagggggctt gtttccctc cttcccggcg acaagctcca gggcaggqct qtccctctq 300

gccccccagc acttcctcag acacaacttc ttcctgctgc tccagtcgtg gggatcatca 360
cttaccacc ccccaagttc aagaccaa at cttccagctg ccccccttegt gtttccctgt 420
gttgctgta gctggcatg tctccaggaa ccaagaagcc ctcagcctgg tgttagtctcc 480
ctgaccctt ttaattcctt aagtctaaag atgatgaact taaaaaaaaaaaaaaa 537

<210> 388

<211> 520

<212> DNA

<213> Homo sapiens

<400> 388

aggataattt taaaaccaat caaatgaaaa aaacaaacaa aaaaaaaagg aaatgtcatg 60
tgaggttaaa ccagtttgc ttccccta at gtggaaaaag taagaggact actcagca 120
gtttgaagat tgcctcttct acagttctg agaattgtgt tatttcac tt gccaagt gaa 180
ggaccccttc cccaaacatgc cccagccac ccctaagcat ggtcccttgtt caccaggcaa 240
ccagggaaact gctacttgc gacctcacca gagaccagga gggtttgggtt agtcacagg 300
acttccccca ccccaagaaga ttagcatccc atactagact cataactcaac tcaactaggc 360
tcataactcaa ttgatggta ttagacaatt ccatttctt ctggttatta taaacagaaa 420
atcttcctc ttctcattac cagtaaaggc tcttggatc tttctgttgg aatgatttct 480
atgaacttgt ctat tttttaa tggtgggtt ttttctgtt 520

<210> 389

<211> 365

<212> DNA

<213> Homo sapiens

<400> 389

cgttgc cccca gtttgc acaga aggaaaggcg gagcttattc aaagtctaga gggagtgag 60
gagttaaaggc tggatttcag atctgcctgg ttccagccgc agtgtccct ctgtcccccc 120
aacgactttc caaaataatct caccagccgc ttccagctca ggcgtcctag aagcgtcttgc 180
aaggctatgg ccagctgtct ttgtgttccc tctcaccgc ctgtcctcac agctgagact 240
cccaggaaac ttccagacta ctttccctcg ctttccgcaaa ggggcgttgc ccacattctc 300
tgagggtcag tggaagaacc tagactccca ttgcttagagg tagaaagggg aagggtgctg 360
gggag 365

<210> 390

<211> 221

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) ... (221)

<223> n = A,T,C or G

<400> 390

tgcctctcca tcctggcccc gacttctctg tcaggaaagt ggggatggac cccatctgca 60
tacacggntt ctcatgggtg tggAACATCT ctgcttgcgg tttcaggaag gcctctggct 120
gctctangag tctganncga ntcttgc ctttccgcaaa naaggaaagg cggagcttat 180
tcaaagtctt gaggaggatgg aggaggtaag gctggatttc a 221

<210> 391

<211> 325

<212> DNA

<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(325)
<223> n = A,T,C or G

<400> 391
tggagcagg t cccgaggct ccctagagcc tggggccgac tctgtgnca tgcangctt 60
ctctcgccc caggctggag ctgctctgg catctaccaa caatcagnng aggccgac 120
tagccaggc actgctgcc a acagccagtc cnatnacat catgtnaccc ggtgngetct 180
naantngat ntccanagcc ctaccatn tagttctgct ctcccacccg ntaccagccc 240
caactgcccag gaatcctaca gccagtaccc tgtcccgacg tctctaccta ccagtacgt 300
gagacctccg gctactacta tgacc 325

<210> 392
<211> 277
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(277)
<223> n = A,T,C or G

<400> 392
atattgttta actccttcct ttatatctt taacattttc atggngaaag gttcacatct 60
agtctcaactt nggnagngn ctccctacttg agtctcttcc cccgcctgnn ccagtngnaa 120
antaccanga accgnatgn cttaaaacn ncctggttt tgggtnntc aatgactgca 180
tgcagtgcac cacccctgtcc actacgtat gctgttaggt taaagtctca cagtgccgg 240
ctgaggatac agccccgcgt cctgtgtgc tgggaa 277

<210> 393
<211> 566
<212> DNA
<213> Homo sapiens

<400> 393
actagtccag tgggtggaa ttccggccg cgtcgacgga caggtcagct gtctggctca 60
gtgatctaca ttctgaagtt gtctgaaaat gtctcatga taaaattcag cctaaacgtt 120
ttggccggaa cactgcagag acaatgctgt gagttccaa ctttagccca tctggggca 180
gagaaggctt agtttgcca tcagcattat catgatatca ggactggta cttgggtaag 240
gaggggctta ggagatctgt ccctttaga gacacccatc ttataatgaa gtatttggaa 300
gggtggttt caaaagtata aatgtccctgt attccgatga tcatcctgta aacattttat 360
catttatata tcatccctgc ctgtgtctat tattatattc atatctctac gctggaaact 420
ttctgcctca atgtttactg tgcctttgtt tttgttagtt tgggttggaa aaaaaaaaaa 480
cattctctgc ctgagttta attttgtcc aaagttatTT taatctatac aattaaaagc 540
ttttgcctat caaaaaaaaaaaaaa 566

<210> 394
<211> 384
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

<222> (1)...(384)

<223> n = A,T,C or G

<400> 394

gaacatacat gtccggcac ctgagctgca gtctgacatc atcgccatca cgggcctcgc 60
tgc当地 tng gaccggcca aggctggact gctggagcgt gtgaaggagc tacaggccna 120
gcaggaggac cgggcttaa ggagtttaa gctgagtgtc actgttagacc ccaaatacca 180
tcccaagatt atcgggagaa agggggcagt aattacccaa atccggttgg agcatgacgt 240
gaacatccag tttctgtata aggacatgg gaaccagccc caggacccaa ttaccatcac 300
agggtacgaa aagaacacag aagctgccag ggatgctata ctgagaattt tgggtgaact 360
tgagcagatg gttctgagg acgt 384

<210> 395

<211> 399

<212> DNA

<213> Homo sapiens

<400> 395

ggcaaaaactg tgtgacacctca ataagacctc gcagatccaa ggtcaagtat cagaagtgc 60
tctgaccccttgc gactccaaga cctacatcaa cagcctggct atatttagatg atgagccagt 120
tatcagaggt ttcatcattt cggaaatgtt ggagtctaag gaaatcatgg cctctgaagt 180
attcacgtctt ttccagtacc ctgagtttctc tatagatgtt cctaacacag gcagaattgg 240
ccagctactt gtctgcaattt gtatcttcaa gaataccctt gccatccctt tgactgacgt 300
caagttctctt ttgaaagcc tgggcatctc ctcactacag acctctgacc atgggacgg 360
gcagcctgggt gagaccatcc aatccaaat aaaatgcac 399

<210> 396

<211> 403

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(403)

<223> n = A,T,C or G

<400> 396

tggagttntc agtgcaaaca agccataaaag cttcagtagc aaattactgt ctcacagaaaa 60
gacattttca acttctgctc cagctgctga taaaacaaat catgtgttta gcttgcactcc 120
agacaaggac aacctgttcc ttccataactc tctagagaaaa aaaaggagtt gtttagtagat 180
actaaaaaaaaa gtggatgaat aatctggata tttttctaa aaagattcct tgaaacacat 240
taggaaaaatg gaggcctta tgatcagaat gctagaatta gtccattgtg ctgaagcagg 300
gtttagggga gggagtgagg gataaaagaa ggaaaaaaag aagagtgaga aaaccttattt 360
atcaaagcag gtgtatcac tcaatgttag gccctgctct ttt 403

<210> 397

<211> 100

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(100)

<223> n = A,T,C or G

<400> 397
actagtcag tgtggtgaa ttgcggccg cgtcgaccta naanccatct ctatagcaaa 60
tccatccccg ctctggttg gtnacagaat gactgacaaa 100

<210> 398
<211> 278
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(278)
<223> n = A,T,C or G

<400> 398
gcggccgcgt cgacagcagt tccgccagcg ctgcgcctg ggtggggatg tgctgcacgc 60
ccacctggac atctggaagt cagcggcctg gatgaaagag cggacttac ctggggcgat 120
tcactactgt gcctcgacca gtgaggagag ctggaccgac agcgaggatgg actcatcatg 180
ctccggcag cccatccacc tgtggcagtt cctcaaggag ttgctactca agccccacag 240
ctatggccgc ttcattangt ggctcaacaa ggagaagg 278

<210> 399
<211> 298
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(298)
<223> n = A,T,C or G

<400> 399
acggaggtgg aggaagcgnc cctggatcg anaggatggg tcctgnatt gaccnccctn 60
ggggtgccng catggagcgc atgggcgccc gcctggcca cggcatggat cgctgggct 120
ccgagatcga ggcgcattggc ctggatcg accgcattggg ctccgtggag cgcatgggct 180
ccggcattga ggcgcattggc ccgcattggcc tcgcaccat ggcctccanc attgancgca 240
tggccagac catggagcgc attggatcg gcgtggagcn catgggtgcc ggcattggg 298

<210> 400
<211> 548
<212> DNA
<213> Homo sapiens

<400> 400
acatcaacta cttcctcatt ttaaggtatg gcagttccct tcattccctt ttccctgcctt 60
gtacatgtac atgtatgaaa ttcccttctc ttaccaact ctctccacac atcacaagg 120
caaagaacca cacgcttaga aggtaagag ggcaccctat gaaatgaaat ggtgatttct 180
tgagtctttt tttccacgt ttaaggggcc atggcaggac tttaggttgc gaggtaagac 240
tgcagaggcc tagagaatta ttccatacag gctttgaggc caccatgtc acttatcccg 300
tataccctct caccatcccc ttgtctactc tgatcccccc aagatgcaac tggcagct 360
gttggcccca taattctggg cctttgttgtt ttgttttaat tactgggca tcccaggaaag 420
cttcccaatg atctccatcc atggccccc ctccctggat caagcccccc ccaggccctg 480
tccccagccc ctccctgcccc agcccccccg cttgccttgg tgctcagccc tcccattggg 540
agcagggtt 548

<210> 401
<211> 355
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(355)
<223> n = A,T,C or G

<400> 401
actgtttcca tggatgttt ctacacattg ctacctcagt gtcctggaa acttagctt 60
tgatgtctcc aagtagtcca ccttcattta actctttgaa actgtatcat ctttgcgaag 120
taagagtggg ggcttatttc agctgcttg aaaaaatgac tggctctga cttaacgttc 180
tataaatgaa tgtctgaag caaagtgcgg atggtggcg cgaagaagan aaagatgtgt 240
tttgggggg actctctgtg gtcccttcca atgctgnggg ttcccaacca ggggaaagggt 300
cccttttgcg ttgccaagtg ccataaccat gagcactact ctaccatggc tctgc 355

<210> 402
<211> 407
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(407)
<223> n = A,T,C or G

<400> 402
atggggcaag ctggataaaag aaccaagacc cactggagta tgctgtcttc aagaaaccca 60
tctcacatgc ggtggcatac ataggctaa aataaaaggaa tggagaaaaa tatttcaagc 120
aaatggaaaaa cagaaaaaaag caggtgtgc actccactt tctgacaaaa cagactatgc 180
gaataaaagat aaaaaagaga aggacattac aaagggtggc ctgaccccttgc ataaatctca 240
ttgcttgata ccaacctggg ctgttttaat tgcccaacc aaaaggataa tttgctgagg 300
ttgtggagct tctccccctgc agagactccc tgatctccca aaatttgggt gagatgtaaag 360
gntgattttg ctgacaactc cttttctgaa gtttactca tttccaa 407

<210> 403
<211> 303
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(303)
<223> n = A,T,C or G

<400> 403
cagtatttat agccnaactg aaaagctagt agcaggcaag tctcaaattcc aggcacccaa 60
tcctaagca gagccatggc atggtaaaaa tgcaaaagga gagtctggcc aatctacaaa 120
tagagaacaa gacctactca gtcataaca aaaaggcaga caccaacatg gatctcatgg 180
gggattggat attgttaatta tagagcagga agatgacagt gatgttcatt tggcacaaca 240
tcttaacaac gaccgaaacc cattatttc ataaacctcc attcgtaac catgtgaaa 300
gga 303

<210> 404
<211> 225
<212> DNA
<213> Homo sapiens

<400> 404
aagtgttaact tttaaaaatt tagtgattt tgaaaattct tagaggaaag taaaggaaaa 60
attgttaatg cactcattt aactttacatg gtggaaagttc tctcttgatc ctacaaacag 120
acattttcca ctctgtttc catagtttt aagtgtatca gatgtgttgg gcatgtgaat 180
ctccaaagtgc ctgtgtataa aataaagttt ctttatttca ttcat 225

<210> 405
<211> 334
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1) ... (334)
<223> n = A,T,C or G

<400> 405
gagctgttat actgtgagtt ctacttagaa atcatcaaattt ctgagggttg tctggaggac 60
ttcaatacac ctccccccat agtgaatcg cttccagggg gtcacgtccc ttccttact 120
tcatccccat cccatgccaa aggaagaccc tccctccttgc gtcacagcc ttctcttaggc 180
ttcccaatgc ctccaggaca gagtgggtt aatgtttcagc tccatccttgc ctgtgagtgt 240
ctggtgccgt tgccttcca gcttctgtc agtgcatttcat ggacagtgtc cagccatgt 300
cactctccac tctctcanng tggatcccac ccct 334

<210> 406
<211> 216
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1) ... (216)
<223> n = A,T,C or G

<400> 406
tttcataacct aatggggag ttganatnac atnnaccat gaaatgcattt gatctcaang 60
gaaacaaaca cccaaataaac tcggagtggc agactgacaa ctgtgagaca tgcacttgc 120
acnaaaacaca aattnatgt tgcacccttgc tttctacacc tgcgggttat gacaaagaca 180
actgccaag aatnttcaag aaggaggact gccant 216

<210> 407
<211> 413
<212> DNA
<213> Homo sapiens

<400> 407
gctgacttgc tagtatcatc tgcatttattt gaagcacaag aacttcattgc cttgactcat 60
gttaaatgcac taggattttt aaataaattt gatatcacaat gggaaacagac aaaaaatattt 120
gtacaacattt gcacccactg tcagatttca cacctggcca ctcaggaagc aaggttaat 180
cccagaggtc tatgttctaa tgcgttatgg caaatggatg tcatgcacgt accttcattt 240

ggaaaattgt catttgcata tggacagtt gatacttatt cacatttcat atgggcaacc 300
tgccagacag gagaaagtct tccccatgtta aaagacattt attatcttgt tttccctgtca 360
tgggagttcc agaaaaaggaa aaaacagaca atgggccagg ttctgttagta aag 413

<210> 408
<211> 183
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(183)
<223> n = A,T,C or G

<400> 408
ggagctngcc ctcaattcct ccatntctat gttancatat ttaatgtctt ttgnnattaa 60
tncttaacta gttaatcctt aaagggtctt ntaatcctta actagtcctt ccatgtgag 120
cattatcctt ccagtattcn ccttctnttt tatttactcc ttccctggcta cccatgtact 180
ntt 183

<210> 409
<211> 250
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(250)
<223> n = A,T,C or G

<400> 409
cccacgcattataaagctctt tatttctgtt agtccctgctt ggaaatcatc aaatgtgacg 60
gtgggtttggg ggacctgaac aaacccctcg taattaatca gtttcagg tctccccccta 120
gtccctcctt caacaacata ggaggatctt ccccttctt ctgctcacgg ccttatctag 180
gttccccagt gccccccagga cagcgtggc tatgtttaca ggcgcntcctt gctgggggggg 240
ggccntatgc 250

<210> 410
<211> 306
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(306)
<223> n = A,T,C or G

<400> 410
ggctggtttgc caagaatgaa atgaatgatt ctacagctgt gacttaacct tgaaatggaa 60
agtcttgcaa tccccatttgc aggatccgtc tggcacaatg cctctgttaga gagcagcatt 120
cccaggacc ttggaaacag ttggcactgt aagggtctt ccccccaaga cacatccaa 180
aagggttgtt aatggtggaa accgcttctt tctttatttgc cccttcttata ttatgtgaac 240
nactgggtgg cttttttgc atcttttta aactggaaag ttcaatttngaaaatgaata 300
tcntgc 306

<210> 411
<211> 261
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(261)
<223> n = A,T,C or G

<400> 411
agagatattt ctttaggttaaa agttcataga gttcccatga actatatgac tggccacaca 60
ggatcttttg tatttaagga ttctgagatt ttgccttgagc aggatttagat aaggctgttc 120
tttaaatgtc tgaatggaa cagatttcaa aaaaaaaaccc cacaatctag ggtggaaaca 180
aggaaggaaa gatgtgaata ggctgatggg caaaaaacca atttaccat cagtccagc 240
cttctctcaa ggngaggcaa a 261

<210> 412
<211> 241
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(241)
<223> n = A,T,C or G

<400> 412
gttcaatgtt acctgacatt tctacaacac cccactcacc gatgtattcg ttgcccagt 60
ggaacatacc agcttgaatt tggaaaaaaat aatttgtttt ctgccttccagg aaatactacg 120
actgactttg atggctccac aaacataacc cagtgtaaaa acagaagatg tggaggggag 180
ctgggagatt tcactggta cattgaattc ccaaactacc cangcaatta cccagccaac 240
a 241

<210> 413
<211> 231
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(231)
<223> n = A,T,C or G

<400> 413
aactcttaca atccaaagtga ctcatctgtg tgcttgaatc ctttccactg tctcatctcc 60
ctcatccaag tttcttagtac cttctcttttggtaagga taatcaaact gaacaacaaa 120
aagtttactc tccttcatttg gaacctaaaa actctttct tcctgggtct gagggctcca 180
agaatcccttg aatcatttct cagatcattg gggacacccan atcaggaacc t 231

<210> 414
<211> 234
<212> DNA
<213> Homo sapiens

<400> 414
actgtccatg aagcaactgag cagaagctgg aggcacaacg caccagacac tcacagcaag 60
gatggagctg aaaacataac ccactctgtc ctggaggcac tgggaaggct agagaaggct 120
gtgagccaag gagggagggt cttccttgg catggatgg gatgaagta aggagaggga 180
ctggaccccc tggaaagctga ttcaactatgg ggggaggtgt attgaagtcc tcca 234

<210> 415
<211> 217
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(217)
<223> n = A,T,C or G

<400> 415
gcataggatt aagactgagt atctttctta cattttta actttctaag gggcacttct 60
caaaaacacag accaggtgc aaatctccac tgctctaagg ntctcaccac cactttctca 120
caccttagcaa tagtagaatt cagtcctact tctgaggcca gaagaatggt tcagaaaaat 180
antggattat aaaaaataac aattaagaaa aataatc 217

<210> 416
<211> 213
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(213)
<223> n = A,T,C or G

<400> 416
atgcatatnt aaagganact gcctcgctt tagaagacat ctggnctgct ctctgcatga 60
ggcacagcag taaagctctt tgattcccag aatcaagaac tctcccccac agactattac 120
cgaatgcaag gtggtaatt gaaggccact aattgatgct caaatagaag gatattgact 180
atatttggaaac agatggagtc tctactacaa aag 213

<210> 417
<211> 303
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(303)
<223> n = A,T,C or G

<400> 417
nagtcttcag gcccatcagg gaagttcaca ctggagagaa gtcatacata tgtaactgtat 60
gtggaaagg ctttactctg agttcaaatc ttcaagccca tcagagagtc cacactggag 120
agaagccata caaatgcaat gagtggtggg agagcttcag gagggattcc cattatcaag 180
ttcatctagt ggtccacaca ggagagaaaac cctataaatg tgagatatgt gggaaaggct 240
tcantcaaag ttctgtatctt caaatccatc ngtggncatc cagtatanan aaacctttta 300
agt 303

<210> 418
<211> 328
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(328)
<223> n = A,T,C or G

<400> 418
tttttggcgg tgggtgggca gggacggac angagtctca ctctgttgcc caggctggag 60
tgcacaggca tgatctcgcc tcactacaac ccctgcctcc catgtccaag cgattttgt 120
gcctcagcct tccctgttagc tagaattaca ggcacatgcc accacaccca gctagtttt 180
gtatTTTtag tagagacagg gtttcaccat gttggccagg ctggctctcaa actccnacc 240
tcagnggtca ggctggtctc aaactcctga cctcaagtga tctgcccacc tcagcctccc 300
aaagtctan gattacaggc cgtgagcc 328

<210> 419
<211> 389
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(389)
<223> n = A,T,C or G

<400> 419
cctcctcaag acggcctgtg gtccgcctcc cggcaaccaa gaaggctgca gtgcataatg 60
acccctgagc catggactgg agcctgaaag gcagcgtaa ccctgcctcct gatttgtctg 120
cttggtttctt ctctgtggct ccattcatag cacagttgtt gcactgaggc ttgtgcaggc 180
cgagcaaggc caagctggct caaagagcaa ccagtcaact ctgccccgggt gtgcaggca 240
ccggttctcc agccaccaac ctcactcgct cccgcaaatg gcacatcaatg ttttctaccc 300
taaaggtagg accaaaggc atctgtttt ctgaagtctt ctgtctatc agccatcacg 360
tggcagccac tcnggctgtg tcgacgcgg 389

<210> 420
<211> 408
<212> DNA
<213> Homo sapiens

<400> 420
gttcctccta actcctgcca gaaacagctc tcctcaacat gagagctgca cccctcctcc 60
tggccaggc agcaagcctt agccttggct tcttggctt gcttttttc tggcttagacc 120
gaagtgtact agccaaggag ttgaagttt tgactttggt gtttcggcat ggagaccgaa 180
gtccccatga cacctttccc actgacccca taaaggaatc ctcatggcca caaggattt 240
gccaaactcac ccagctggc atggagcagc attatgaact tggagagttata ataagaaaaga 300
gatataaaaa attcttgaat gagtccataa aacatgaaca ggttttatatt cgaaggcacag 360
acgttgaccg gactttgtatg aagtgtatg acaaacctgg caagcccg 408

<210> 421
<211> 352
<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(352)

<223> n = A,T,C or G

<400> 421

gctcaaaaat ctttttactg atnggcatgg ctacacaatc attgactatt acggaggcca 60
gaggagaatg aggccctggcc tgggagccct gtgcctacta naagcacatt agattatcca 120
ttcaactgaca gaacaggctt tttttgggtc cttcttctcc accacnatat acttcagtc 180
ctccttcttg aagattcttt ggcagttgtc tttgtcataa cccacaggtg tagaaacaag 240
ggtgcaacat gaaatttctg tttcgttagca agtgcattgtc tcacaagttg gcangtctgc 300
cactccgagt ttattgggtg tttgttccct ttgagatcca tgcatttcct gg 352

<210> 422

<211> 337

<212> DNA

<213> Homo sapiens

<400> 422

atgccaccat gctggcaatg cagcgccgg tcgaaggcct gcatatccag cccaaagctgg 60
cgatgatcga cggcaaccgt tgcccgaagt tgccgatgcc agccgaagcg gtggtaagg 120
gcgatagcaa ggtgccggcg atcgcggccg cgtcaatcct gcccaagggtc agccgtgatc 180
gtgaaatggc agctgtcgaa ttgatctacc cgggttatgg catcggcggg cataagggtc 240
atccgacacc ggtgcacctg gaagccttgc agcggctggg gccgacgcgg attcacccgac 300
gcttcttccg ccggtaacggc tggcctatga aaattat 337

<210> 423

<211> 310

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(310)

<223> n = A,T,C or G

<400> 423

gctcaaaaat ctttttactg atatggcatg gctacacaat cattgactat tagaggccag 60
aggagaatga ggcctggccct gggagccctg tgcctactan aagncattt gattatccat 120
tcactgacag aacaggctt ttttgggtcc ttcttctcca ccacgatata cttgcagtcc 180
tccttcttg aagatttttg gcagttgtc ttgtcataac ccacaggtgt anaaacaagg 240
gtgcaacatg aaatttctgt ttcgttagca gtgcattgtc cacagttgtc aagtctgccc 300
tccgagttta 310

<210> 424

<211> 370

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(370)

<223> n = A,T,C or G

<400> 424

gctcaaaaat cttttactg ataggcatgg ctacacaatc attgactatt agaggccaga 60
ggagaatgag gcctggccctg ggagccctgt gcctactaga agcacattag attatccatt 120
caactgacaga acaggctttt tttggctct tcttctccac cacgatatac ttgcagtct 180
ccttcgtaa gattcttgg cagttgtctt tgtcataacc cacaggtgta gaaacatcct 240
ggttgaatct cctggaactc cctcatttagg tatgaaatag catgatgcat tgcataaaagt 300
cacgaaggta gcaaagatca caacgctgcc cagganaaca ttcatttgta taagcaggac 360
tccgtcgacg 370

<210> 425

<211> 216

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(216)

<223> n = A,T,C or G

<400> 425

aattgctatn ntttattttg ccactcaaaa taattacaa aaaaaaaaaa ntntaaatga 60
taacaacnca acatcaaggn aaananaaca ggaatggntg acntngcata aatngccga 120
anattatcca ttatnttaag ggttgacttc agntacagc acacagacaa acatgcccag 180
gaggntntca ggaccgcteg atgtntntg aggagg 216

<210> 426

<211> 596

<212> DNA

<213> Homo sapiens

<400> 426

cttccagtga ggataaccct gttgccccgg gccgagggtc tccattaggc tctgattgtat 60
tggcagtca gatggaaagg gtgttctgtat cattccgact gcccccaaggg tcgtggcca 120
gctctctgtt ttgctgagtt ggcagtagga cctaatttgta atttaaagag tagatggta 180
gctgtccttg tattttgatt aacctaattgg ccttcccagc acgactcgaa ttcaagctgga 240
gacatcacgg caacttttaa taaaaatgatt tgaaggccca ttaagaggca cttcccgta 300
ttaggcagtt catctgcact gataacttct tggcagctga gctggtoffa gctgtggccc 360
aaacgcacac ttggcttttgg ttttgagat acaactctta atcttttagt catgcttgag 420
ggtggatggc ctttcagct ttaacccaat ttgcaactgccc ttggaagtgt agccaggaga 480
atacactcat atactcgtgg gcttagaggc cacagcagat gtcattggc tactgcctga 540
gtcccgctgg tcccatccca ggaccttcca tcggcgagta cctggagcc cgtgct 596

<210> 427

<211> 107

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(107)

<223> n = A,T,C or G

<400> 427

gaagaattca agttaggtttt attcaaaggg cttacngaga atcctanacc caggnccag 60

cccgggagca gccttanaga gtcctgttt gactgcccgg ctcagng 107
 <210> 428
 <211> 38
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(38)
 <223> n = A,T,C or G

<400> 428
 gaacttccna anaangactt tattcactat tttacatt 38
 <210> 429
 <211> 544
 <212> DNA
 <213> Homo sapiens

<400> 429
 ctttgctgga cgaaataaaa gtggacgcaa gcatgaccc tcgtatgaggg cgctgcattt 60
 attgaagagc ggctgcagcc ctgcggttca gattaaaatc cgagaattgt atagacgccc 120
 atatccacga actcttgaag gactttctga tttatccaca atcaaatcat cggttttcag 180
 ttggatgtt ggctcatcac ctgtagaacc tgacttggcc gtggctggaa tccactcggt 240
 gccttccact tcagttacac ctcactcacc atcctctctt gttggttctg tgctgcttca 300
 agatactaag cccacattt agatgcagca gccatctccc ccaattcttc ctgtccatccc 360
 tgatgtgcag ttaaaaaatc tgccctttt tgatgtcctt gatgttctca tcaagcccc 420
 gagtttagtt caaagcagta ttcaagcgatt tcaagagaag ttttttattt ttgccttgac 480
 acctcaacaa gttagagaga tatgcataatc caggatttt ttgccagggtg gttaggagaga 540
 ttat 544

<210> 430
 <211> 507
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(507)
 <223> n = A,T,C or G

<400> 430
 cttatcncaa tggggctccc aaacttggct gtgcagtggaa aactccgggg gaattttgaa 60
 gaacactgac acccatcttc caccggaca ctctgatcca attgggctgc agtggaaaca 120
 gagcatcaat ttaaaaaagct gcccagaatg ttntccctggg cagcgttggc atctttgccc 180
 cttctgtgac tttatgcaat gcatcatgtt atttcataacc taatgaggga gttccaggag 240
 attcaaccag gatgtttctt cnccctgtggg ttatgacaaa gacaactgcc aaagaatntt 300
 caagaaggag gactgcaagt atatcgttgtt ggagaagaag gacccaaaaa agacctgttc 360
 tgtcagtggaa tggataatct aatgtgcttc tagtaggcac agggctccc ggccaggcct 420
 cattctccctc tggcctctaa tagtcaatga ttgtgttagcc atgcctatca gtaaaaaagat 480
 ttttggcaaa aaaaaaaaaa aaaaaaaaa 507

<210> 431
 <211> 392

<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(392)
<223> n = A,T,C or G

<400> 431
gaaaattcag aatggataaa aacaaaatgaa gtacaaaata tttcagattt acataggcat 60
aaacaagaaa gcacttatca ggaggactta caaatggaa tacactctan aaccatcatc 120
tatcatggct aaatgtgaga ttagcacagc tgttattattt gtacattgca aacacctaga 180
aagagatggg aaacaaaatc ccaggagttt tgtgtgtgga gtcctggggtt ttccaaacaga 240
catcattcca gcattctgag attaggngna ttgggatca ttctggagtt ggaatgttca 300
acaaaatgta tggtgttagg taaaatgtac aacttctgga tctatgcaga cattgaaggt 360
gcaatgagtc tggctttac tctgctttt ct 392

<210> 432
<211> 387
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(387)
<223> n = A,T,C or G

<400> 432
ggtateccnta cataatcaaa tatacgctgtat gtacatgttt tcattggngt agattaccac 60
aaatgcaagg caacatgtgt agatctcttg tcttattctt ttgtctataa tactgtattg 120
ngtagtccaa gctctcggnna gtccagccac tgngaaacat gctcccttta gattaacctc 180
gtggacnctn ttgttgnatt gtctgaactg tagngccctg tattttgcctt ctgtctgnga 240
attctgttgc ttctggggca tttccttngng atgcagagga ccaccacaca gatgacagca 300
atctgaattt ntccaaatcac agctgcgatt aagacataact gaaatcgtaa aggaccggga 360
acaacgtata gaacactgga gtccttt 387

<210> 433
<211> 281
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(281)
<223> n = A,T,C or G

<400> 433
ttcaacttagc anagaanact gcttcaggn gtgtaaaatg aaaggcttcc acgcagttat 60
ctgattaaag aacactaaga gagggacaag gctagaagcc gcaggatgtc tacactatag 120
caggcnctat ttgggttggc tggaggagct gtggaaaaca tggagagatt ggctgtggag 180
atcgccgtgg ctatccctcn ttgttattac accagngagg ntctctgtnt gcccactgg 240
tnaaaaaccg ntataacaata atgatagaat aggacacacata 281

<210> 434
<211> 484

<212> DNA

<213> Homo sapiens

<400> 434

tttaaaata agcatttagt gctcagtccc tactgagtag tctttctctc ccctccctcg 60
aatttaattc ttcaacttg caatttgc当地 ggattacaca ttcaactgtg atgtatattg 120
tggcaaaa aaaaaaaagt gtctttgtt aaaattactt ggttgtgaa tccatcttgc 180
ttttccccca ttgaacttag tcattaaccc atctctgaac tggtagaaaa acatctgaag 240
agctagtc当地 tcagcatctg acaggtgaat tggatggtc tcagaaccat ttcacccaga 300
cagcctgtt ctatcctgtt taataaaatta gtttgggtc tctacatgca taacaaaccc 360
tgctccaatc tgtcacataa aagtctgtga cttgaagttt agtcagcacc cccaccaaac 420
tttattttc tatgtgtttt ttgcaacata tgagtgtttt gaaaataaaag taccatgtc 480
ttta 484

<210> 435

<211> 424

<212> DNA

<213> Homo sapiens

<400> 435

gcgcgcgtca gagcagggtca ctttctgc当地 tccacgtc当地 ccttcaagga agccccatgt 60
ggtagctt caatatcgca ggttcttact cctctgc当地 tataagctca aaccaccaa 120
cgatcgccca agtaaaccggc ctccctcgcc gacttc当地 ctggcgagag ttcagegc当地 180
atgggc当地 ggggggggg caagatagat gaggggggagc ggc当地gggtgc ggggtgaccc 240
cttggagaga gaaaaaaaggc cacaagaggg gctgccaccg ccactaacgg agatggccct 300
ggtagagacc tttgggggtc tggAACCTCT ggactccccca tgctctaact cccacactct 360
gctatc当地 acttaaactt gaggatttc tctgttttc actcgcaata aattcagagc 420
aaac 424

<210> 436

<211> 667

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(667)

<223> n = A,T,C or G

<400> 436

accttggaa nactctcaca atataaaggc tcgttagactt tactccaaat tccaaaaagg 60
tcctggccat gtaatcctga aagtttccc aaggtagcta taaaatc当地 ataagggtgc 120
agcctcttct ggaattc当地 tgatttcaaa gtctactct caagttctg aaaacgaggg 180
cagttc当地 aaggcaggta tagcaactga tcttc当地 gaggactgt gtgc当地ccggg 240
atgggctgcc agagtaggat aggattccag atgctgacac cttctgggg aaacaggct 300
gccaggttt当地 tcatagcact catcaaagtc cggtaacgt ctgtgcttc当地 aatataaacc 360
tgttcatgtt tataggactc attcaagaat tttcttatc tctttcttat atactctcca 420
agttc当地aat gctgctccat gcccagctgg gtgagttggc caaatc当地 tggccatgag 480
gattc当地ttt当地 tgggtc当地 gggaaaggct tcaatggac ttc当地ctcc atgccc当地aaac 540
accaaagtca caaacttcaa ctccctggct agtacacttc ggtctagcca gaaaaaaaggc 600
agaaaacaaga agccaaggct aaggcttgc当地 gccc当地ccag gaggagggt gcaagcttca 660
tgtttag 667

<210> 437

<211> 693

<212> DNA

<213> Homo sapiens

<400> 437

ctacgtctca accctcattt ttaggtaagg aatcttaagt ccaaagatat taagtgactc 60
 acacagccag gtaaggaaag ctggattggc acactaggac tctaccatac cgggtttgt 120
 taaagctcg gttaggaggc tgataagctt ggaaggaact tcagacagct ttttcagatc 180
 ataaaaagata attcttagcc catgttcttc tccagagcg acctgaaatg acagcacagc 240
 aggtactcct ctatttcac ccctcttgc tctactctc ggcatcgaga cctgtggag 300
 gccatgggag aaagcagctc tctggatgtt tgtacagatc atggactatt ctctgtggac 360
 catttctcca ggttacccta ggtgtcacta ttggggggac agccagcatc ttttagcttc 420
 atttgagttt ctgtctgtct tcagtagagg aaactttgc tcttcacact tcacatctga 480
 acacctaact gctgttgctc ctgaggttgtt gaaagacaga tatagagctt acagatatta 540
 tccttatttctt aggcaactgag ggctgtgggg taccttgtgg tgccaaaaca gatccctgttt 600
 taaggacatg ttgottcaga gatgtctgtt actatctggg ggctctgttg gctctttacc 660
 ctgcatacatg tgctctcttg gctgaaaatg acc 693

<210> 438

<211> 360

<212> DNA

<213> Homo sapiens

<400> 438

ctgcttatca caatgaatgt tctcctggc agcggtgtga tctttgccac cttcgtgact 60
 ttatgcaatg catcatgcta tttcataacct aatgagggag ttccaggaga ttcaaccagg 120
 atgtttctac acctgtgggt tatgacaaag acaactgcca aagaatctc aagaaggagg 180
 actgcaagta tatctgggtt agaagaagga cccaaaaaaag acctgttctg tcagtgaatg 240
 gataatctaa tgtcttcta gttagcacag ggccccagg ccaggcctca ttctctctg 300
 gcctctaata gtcaataatt gtgtagccat gcctatcagt aaaaagattt ttgagcaaac 360

<210> 439

<211> 431

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(431)

<223> n = A,T,C or G

<400> 439

gttcctnnta actcctgcca gaaacagctc tcctcaacat gagagctgca cccctctcc 60
 tggccagggc agcaagcctt agccttgct tcttggctt gcttttttc tggcttagacc 120
 gaagtgtact agccaaggag ttgaagttt tgacttttgtt gtttccggcat ggagaccgaa 180
 gtcccatgta caccttccc actgacccca taaaggaatc ctatggcca caaggattt 240
 gccaactcac ccagctggc atggagcagc attatgaact tggagagttt ataagaaaga 300
 gatataaaaa attcttgaat gatgtctata aacatgaaca gtttataatt cgaagcacag 360
 acgttgaccg gactttgatg agtgcata gaaacctggc agcccgatcg a cgccggcccg 420
 aatttagtag t 431

<210> 440

<211> 523

<212> DNA

<213> Homo sapiens

<400> 440

agagataaaag cttaggtcaa agttcataga gttccatga actatatgac tggccacaca 60
 ggatctttg tatttaagga ttctgagatt ttgcttgagc aggatttagat aaggctgttc 120
 tttaaatgtc tgaatggaa cagatttcaa aaaaaaaccc cacaatctag ggtgggaaca 180
 aggaaggaaa gatgtgaata ggctgatggg caaaaaacca atttaccat cagttccagc 240
 cttctctcaa ggagaggcaa agaaaggaga tacagtggag acatctgaa agtttctcc 300
 actggaaaac tgctactatc tggtttata tttctgttaa aatatatgag gctacagaac 360
 taaaaatcaa aaccttttg tgccttgg tcctgaaaca ttatgttcc ttttaagaa 420
 aaaaaatca aactttacag aaagatttga tgtatgtaat acatatacgca gctcttgaag 480
 tatatatatc atagcaaata agtcatctga tgagaacaag cta 523

<210> 441

<211> 430

<212> DNA

<213> Homo sapiens

<400> 441

gttccttccta actcctgccaa gaaacagctc tcctcaacat gagagctgca cccctcctcc 60
 tggccaggc agcaagcctt agccttgct tcttggct gcttttttc tggcttagacc 120
 gaagtgtact agccaaggag ttgaagtttgc tgactttggt gtttcggcat ggagaccgaa 180
 gtcccattga caccttccc actgacccca taaaggaatc ctcatggcca caaggatttgc 240
 gccaactcac ccagctgggc atggagcagc attatgaact tggagagtat ataagaaaaga 300
 gatataaaaa attcttgaat gagtccctata aacatgaaca gtttatatt cgaagcacag 360
 acgttgacccg gactttgtatc agtgcctatga caaacctggc agcccgatcgca cgcggcccg 420
 aatttagtag 430

<210> 442

<211> 362

<212> DNA

<213> Homo sapiens

<400> 442

ctaaggaaatt agtagtgttc ccatcacttg tttggagtgt gctattctaa aagattttga 60
 tttcctggaa tgacaattat attttaaactt tggggggaa aagagtataa ggaccacagt 120
 cttcacttct gatacttgta aattaatctt ttatgcact tggatggacc attaagctat 180
 atgttttagaa atggcattt tacggaaaaa ttggaaaaat tctgataataa gtgcagaata 240
 aatgaattaa tggatggatc aattttatatt gaactgtcaa tgacaaataa aaattctttt 300
 tgattatattt ttggatggatc ttaccagaat aaaaactaag aattaaaagt ttgattacag 360
 tc 362

<210> 443

<211> 624

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(624)

<223> n = A,T,C or G

<400> 443

ttttttttt gcaacacaat atacatcaca gtgaaatgtg taatccttgc aaattgcaag 60
 ttgaaagaat taaaattcaga ggaggggaga gaaagagtac tcagtaggaa ctgagcacta 120
 aatgcttatt taaaaagaaa tggaaagagc agaaagcaat tcaggctacc ctgccttttgc 180
 tgctggctag tactccggc ggtgtcagca gcacgtggca ttgaacatttgc caatgtggag 240

cccaaaccac agaaaatgg gtgaaattgg ccaactttct attaacttgg cttoctgttt 300
tataaaatat tgtgaataat atcacctact tcaaaggca gttatgaggc ttaaatgaac 360
taacgcctac aaaacacta aacatagata acataggtgc aagtactatg tatctggtag 420
atggtaaaca tccttattat taaagtcaac gctaaaatga atgtgtgtc atatgtaat 480
agtagagaga gagggcactt aaaccaacta agggcctgaa gggäagggtt cctggaaaga 540
ngatgcttgt gctgggtcca aatcttggtc tactatgacc ttggccaaat tatttaaact 600
ttgtccctat ctgctaaaca gatc 624

<210> 444
<211> 425
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(425)
<223> n = A,T,C or G

<400> 444
gcacatcatt nntcttgcatt tctttgagaa taagaagatc agtaaatagt tcagaagtgg 60
gaagctttgt ccaggcctgt gtgtgaaccc aatgtttgc ttagaaatag aacaagtaag 120
ttcattgtca tagcataaca caaaatttcataataatgc ataagtggtag gtcagcaat ctttgcattgc 180
tgcttaatgt gagagggttgg taaaatcctt tgcgtcaacac tctaactccc tgatgtttt 240
gctgtgttgg gacctgttca tgccagacaa ggccaagctg gctgaaagag caaccagcca 300
cctctgcataat ctgccacccctc ctgcgtggcag gattttttt tgcatccctgt gaagagccaa 360
ggaggcacca gggcataagt gagtagactt atggtcgacg cggcccgcaaa ttttagtagta 420
gtaga 425

<210> 445
<211> 414
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(414)
<223> n = A,T,C or G

<400> 445
catgtttatg ntttggatt actttggca cctagtgttt ctaaatcgac tatcattctt 60
ttctgtttt caaaagcaga gatggccaga gtctcaacaa actgttatctt caagtctttg 120
tgaaaattctt tgcatgtggc agattattgg atgtatgttcc tttaacttag catataaaatc 180
tggtgtgttt cagataaaatg aacagcaaaa tgggtggaa ttaccatttg gaacattgtg 240
aatgaaaaat tgggtctcta gattatgtaa caaataacta ttccctaaacc attgtatgtt 300
ggatttttat aatcctactc acaaataactt aggcttctcc tcttgttattt tgaagcagtg 360
tgggtgttgg attgataaaa aaaaaaaaaaag tcgacgcggc cgcaattta gtag 414

<210> 446
<211> 631
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(631)

<223> n = A,T,C or G

<400> 446

acaaaattaga anaaaagtgcc agagaacacc acataccttgc tccggaacat tacaatggct 60
 tctgcattca tggaaagtgt gagcattcta tcaaatatgcg ggagccatct tgcagggttg 120
 atgctggta tactggacaa cactgtaaaaaa aggacta cagtgttcta tacgttgttc 180
 ccggtcctgt acgatttcag tatgtctta tcgcagctgt gattggaaaca attcagattg 240
 ctgtcatctg tgggtggtc ctctgcattca caagggccaa acttttagta atagcattgg 300
 actgagattt gtaaaacttcc caaccttcca gaaaaatgccc cagaagcaac agaattcaca 360
 gacagaagca aaatacaggg cactacagtt cagacaatac aacaagagcg tccacgaggt 420
 taatctaaag ggagcatgtt tcacagtggc tggactaccg agagcttggc ctacacaata 480
 cagtattata gacaaaagaa taagacaaga gatctacaca tggtgccttgc catttgtgtt 540
 aatctacacc aatgaaaaca tgtactacag ctatatttga ttatgtatgg atatatatttga 600
 aatagtatac attgtcttga tgtttttctt g 631

<210> 447

<211> 585

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(585)

<223> n = A,T,C or G

<400> 447

ccttggaaaa antntcacaa tataaagggt cgttagacttt actccaaatt ccaaaaagggt 60
 cctggccatg taatcctgaa agttttccca aggttagctat aaaatcctta taagggtgca 120
 gcctcttctg gaattcctct gatttcaaag tcteactctc aagttcttga aaacgagggc 180
 agttcctgaa aggccaggat agcaactgat cttcagaaag aggaactgtg tgcacccggga 240
 tgggctgcca gagtaggata ggattccaga tgctgacacc ttctggggga aacagggtctg 300
 ccaggttgc catagcaactc atcaaagtcc ggtcaacgtc tgcacccggga atataaacct 360
 gttcatgttt ataggactca ttcaagaatt ttctatatct ctttcttata tactctccaa 420
 gttcataatg ctgctccatg cccagctggg tgagggtggc aaatccttgtt ggccatgagg 480
 attcccttat ggggtcagtg gggaaagggtt caatggact tgggtctcca tgccgaaaca 540
 ccaaagtacaa acattcaac tccttggctt gtagacttcg gtctt 585

<210> 448

<211> 93

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(93)

<223> n = A,T,C or G

<400> 448

tgcgtggg tcattctgan nnccgaactg accntgccag ccctgcccggan gggccnccat 60
 ggctccctag tgccctggag agganggggc tag 93

<210> 449

<211> 706

<212> DNA

<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(706)
<223> n = A,T,C or G

<400> 449
ccaaatgttcat gctntgtgct ggacgctgga cagggggcaa aagcnnttgc tcgtgggtca 60
ttctgancac cgaactgacc atgccagccc tgccgatggt cctccatggc tccctagtgc 120
cctggagagg aggtgtctag tcagagagta gtccttggaaag gtggcctctg ngaggagcca 180
cggggacacgc atccctgcaga tggtcggcg cgtoccattc gccattcagg ctgcgcact 240
gttgggaagg gcgatcggtg cgggccttct cgcttattacg ccagctggcg aaaggggat 300
gtgctgcaag gcgattaagt tggtaacgc cagggttttc ccagtcncga cgttgtaaaa 360
cgacggccag tgaattgaat ttagtgacn ctatagaaga gctatgacgt cgcatgcacg 420
cgtacgtaag ctggatcct ctagagccgc cgcctactac tactaaattc gggccgcgt 480
cgacgtggga tccnactga gagagtggag agtacatgt gctggacnct gtccatgaag 540
caactgagcag aagctggagg cacaacgcnc cagacactca cagctactca ggaggctgag 600
aacaggttga acctgggagg tggaggttgc aatgagctga gatcaggccn ctgcncccc 660
gcatggatga cagagtgaaa ctccatctta aaaaaaaaaa aaaaaaa 706

<210> 450
<211> 493
<212> DNA
<213> Homo sapiens

<400> 450
gagacggagt gtcactctgt tgcccaggct ggagtgcagc aagacactgt ctaagaaaaaa 60
acagtttaa aaggtaaaac aacataaaaaa gaaatatcct atagtggaaa taagagagtc 120
aatagggtc gagaacttta caaaggatc ttacagacat gtcgccaata tcactgcatt 180
agcctaagta taagaacaac ctttggggag aaaccatcat ttgacagtga ggtacaattc 240
caagtcaaggta agtggaaatgg gtggaaattaa actcaaaattt atccctgcag ctgaaaacgc 300
agagacactg tcagagagtt aaaaagttag ttctatccat gaggtgattc cacagtcttc 360
tcaagtcac acatctgtga actcacagac caagtttta aaccactgtt ccaaactctgc 420
tacacatcag aatcacctgg agagcttac aaactcccat tgccgagggt cgacgeggcc 480
gcgaatttag tag 493

<210> 451
<211> 501
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(501)
<223> n = A,T,C or G

<400> 451
gggcgcgtcc cattcgccat tcaggctgctgcaactgttgg gaagggcgat cggtgcgggc 60
ctttcgcttta acgcccagc tggcgaaagg gggatgtgct gcaaggcgat taagttgggt 120
aacgccagggtttccctgt cncgacgttg taaaacgcacg gccagtgaat tgaattttagg 180
tgacnctata gaagagctat gacgtcgcat gcacgcgtac gtaagctgg atccctctaga 240
gcccgccttactactacta aattcgccgc cgctcgacg tggatccnc actgagagag 300
tggagagtga catgtgctgg acnctgtcca tgaagcactg agcagaagct ggaggcacaa 360
cgcnccagac actcacagact actcaggagg ctgagaacag gttgaacctg ggaggtggag 420
gttgcaatga gctgagatca ggcctgcn cccagcatg gatgacagag taaaactcca 480

tcttaaaaaa aaaaaaaaaa a

501

<210> 452
<211> 51
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(51)
<223> n = A,T,C or G

<400> 452
agacggtttc accnttacaa cncccttag gatgggnntt ggggagcaag c

51

<210> 453
<211> 317
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(317)
<223> n = A,T,C or G

<400> 453
tacatctgc ttttccccca ttggaactag tcattaaccc atctctgaac tggtagaaaa 60
acatctgaag agctagtcta tcagcatctg gcaagtgaat tggatgggtc tcagaaccat 120
ttcacccana cagcctgtt ctatcctgtt taataaaatta gtttgggttc tctacatgca 180
taacaaaccc tgctccaatc tgtcacataa aagtctgtga cttgaagttt antcagcacc 240
cccaccaaac tttatTTTc tatgtgttt ttgcaacata tgagtgttt gaaaataagg 300
tacccatgtc tttatta

317

<210> 454
<211> 231
<212> DNA
<213> Homo sapiens

<400> 454
ttcgaggtac aatcaactct cagagtgtag ttccttcta tagatgagtc agcattaata 60
taagccacgc cacgtcttg aaggagtctt gaattctctt ctgctcactc agtagaacca 120
agaagaccaa attctctgc atcccagctt gcaaacaaaa ttgttcttct aggtctccac 180
ccttccttt tcagtggtcc aaagctccctc acaatttcat gaacaacagc t

231

<210> 455
<211> 231
<212> DNA
<213> Homo sapiens

<400> 455
taccaaagag ggcataataa tcagtctcac agtagggttc accatccccc aagtaaaaaa 60
cattgttccg aatgggcttt ccacaggcta cacacacaaa acaggaaaca tgccaagttt 120
gtttcaacgc attgatgact tctccaagga tcttccttgc gcatcgacca cattcagggg 180
caaagaattt ctcatagcac agtcacaat acagggtttcc tttctctct a

231

<210> 456
<211> 231
<212> DNA
<213> Homo sapiens

<400> 456
ttggcaggta cccttacaaa gaagacacca taccttatgc gttatttaggt ggaataatca 60
ttccatttcag tattatcggtt attattcttg gagaaacctt gtctgtttac tgtaaccttt 120
tgcactcaaa ttcccttatac aggaataact acatagccac tatttacaaa gccattggaa 180
ccttttatt tggtcagct gctagtcagt ccctgactga cattgccaag t 231

<210> 457
<211> 231
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(231)
<223> n = A,T,C or G

<400> 457
cgaggtaccc aggggtctga aaatctctnn tttantagtc gatagcaaaa ttgttcatca 60
gcattccta atatgatctt gctataatta gatTTTCTC cattagagtt catacagttt 120
tatttgattt tatttagcaat ctctttcaga agacccttga gatcattaag ctttgtatec 180
agttgtctaa atcgatgcct catttcctct gaggtgtcgc tggctttgt g 231

<210> 458
<211> 231
<212> DNA
<213> Homo sapiens

<400> 458
aggctctggtt ccccccactt ccactccccct ctactctctc taggactggg ctggggcaag 60
agaagagggg tggtaggga agccgtttag acctgaagcc ccaccctcta ctttcttca 120
acaccctaac cttggtaac agcatttggaa attatcattt gggatgagta gaatttccaa 180
ggcctgggt taggcatttt gggggccag accccaggag aagaagattc t 231

<210> 459
<211> 231
<212> DNA
<213> Homo sapiens

<400> 459
ggtaccgagg ctcgtgaca cagagaaacc ccaacgcgag gaaaggaatg gccagccaca 60
ccttcgcgaa acctgtggtg gcccaccagt cctaacggga caggacagag agacagagca 120
gccctgcact gtttccctc caccacagcc atcctgtccc tcattggctc tgtgcttcc 180
actatacaca gtcaccgtcc caatgagaaa caagaaggag caccctccac a 231

<210> 460
<211> 231
<212> DNA
<213> Homo sapiens

<400> 460

gcaggataa catgctcaa caacagatgt gacttaggaac ggccggtgac atggggaggg 60
cctatcaccc tattttggg ggctgttct tcacagtat catgaagcct agcagcaat 120
cccaccccc cacacgcaca cggccagcct ggagccaca gaagggcct cctgcagcca 180
gtggagcttgc tccagcctc cagtccaccc ctaccaggct taaggataga a 231

<210> 461
<211> 231
<212> DNA
<213> Homo sapiens

<400> 461
cgagggttga gaagctctaa tttgcagggg agccgagaag caggcggcct agggagggtc 60
cgctgtgtc cagaagagtgt ttgcgtgcc agagggggaaa caggcgcctg ttgttccctgg 120
gtggggttca gtgaggagtgt ggaaatttgtt tcagcagaac caagccgttgc ggtgaataag 180
agggggatttc catggcactg atagagccct atagtttcag agctggaaat t 231

<210> 462
<211> 231
<212> DNA
<213> Homo sapiens

<400> 462
aggtaaccctc attgttagcca tggaaaattt gatgttcagt ggggatcagt gaattaaatg 60
gggtcatgca agtataaaaaaa ttaaaaaaaaa aagacttcat gcccaatctc atatgtatgt 120
gaagaactgt tagagagacc aacagggttag tggtttagag atttccagag tcttacattt 180
tctagaggag gtatTTTattt tcttctcaact catccagtgt ttgtatTTTtagg a 231

<210> 463
<211> 231
<212> DNA
<213> Homo sapiens

<400> 463
tactccagcc tggtagaca gcgagaccct atcaccgccc cccacccac caaaaaaaaaa 60
actgagtaga caggtgttct cttggcatgg taagtcttaa gtccctccccc agatctgtga 120
catttgcacag gtgttttttcc ctctggaccc cgggtgtcccc atctgatgtga gaaaaggcag 180
tggggaggtg gatcttccag tcgaagccgt atagaagccc gtgtgaaaag c 231

<210> 464
<211> 231
<212> DNA
<213> Homo sapiens

<400> 464
gtactctaag attttatcta agttgccttt tctgggtggg aaagtttaac ctttagtgact 60
aaggacatca catatgaaga atgtttaaatg tggaggtggc aacgtgaatt gcaaacaggg 120
cctgcttcag tgactgtgtg cctgtatgtcc cagctactcg ggagtctgtg tgaggccagg 180
ggtgcacccg caccagcttagt atgctctgtatc acttcttaggc cccatTTTcc c 231

<210> 465
<211> 231
<212> DNA
<213> Homo sapiens

<400> 465

catgttggtagctgtggat	atgcgtggcgtcataatcgaga	cagggttaac	ttcagctcc	60		
gtggcaaatt	agcaacaat	tctgacatca	tatttatgg	ttctgtatct	ttgttgatga	120
aggatggcac	aattttgct	tgtgttcata	atatactcag	attagttcag	ctccatcaga	180
taaactggag	acatgcagga	cattagggtat	gtgttgtac	tctggtaatg	a	231

<210> 466

<211> 231

<212> DNA

<213> Homo sapiens

<400> 466

caggtaacct	tttccattgg	atactgtgct	agcaagcatg	ctctccgggg	tttttttaat	60
ggccttcgaa	cagaacttgc	cacataccca	ggtataatag	tttctaacat	ttgcccagga	120
cctgtgcaat	caaatatgtt	ggagaattcc	ctagctggag	aagtcaaaaa	gactataggc	180
aataatggag	accagtcccc	caagatgaca	accagtcgtt	gtgtgcggct	g	231

<210> 467

<211> 311

<212> DNA

<213> Homo sapiens

<400> 467

gtacaccctg gcacagtcca atctgaactg gttccggact catcttcat gagatggatg 60
tggggcctt tctcctttt catcaagact cctcagcagg gagccccagac cagcctgcac 120
tgtgccttaa cagaaggctc tgagattcta agtggaaatc atttcagtgta ctgtcatgtg 180
gcatgggtct ctgoccaagc tcgtaatgag actatagcaa ggcqgctgtg ggacgtcagt 240
tgtgacctgc tgggcctccc aatagactaa caggcagtgc cagttggacc caagagaaga 300
ctgcagcaga c 311

<210> 468

<211> 3112

<212> DNA

<213> Homo sapiens

<400> 468

tttagctctc aaaatggtc attttaagag aaagttttag aatctcatat ttattcctgt 1260
 ggaaggacag cattgtggct tggactttat aaggtcttta ttcaactaaa tagtgagaa 1320
 ataagaaaagg ctgctgactt taccatctga ggccacacat ctgctgaaat ggagataatt 1380
 aacatcacta gaaacagcaa gatgacaata taatgtctaa gtatgtacat gttttgcac 1440
 atttccagcc cctttaaaaata tccacacaca caggaagcac aaaaggaagc acagagatcc 1500
 ctgggagaaaa tgccccggccg ccatcttggg tcatcgatga gcctcgccct gtgcctggc 1560
 ccgcttgtga gggaaaggaca ttagaaaatg aattgtatgtg ttcccttaaag gatggcagg 1620
 aaaacagatc ctgttgtgaa tatttatttg aacgggatta cagatggaa atgaagtcac 1680
 aaagtgagca ttaccaatga gaggaaaaaca gacgagaaaa tcttgatggc ttacaaagac 1740
 atgcaacaaa caaaaatggaa tactgtatg acatgaggca gccaaagctgg ggaggagata 1800
 accacggggc agagggtcag gattctggcc ctgctgccta aactgtgcgt tcataaccaa 1860
 atcatttcat atttctaacc ctcaaaaacaa agctgttgta atatctgatc tctacggc 1920
 cttctgggcc caacattctc catatatcca gccacactca ttttaatat ttagttccca 1980
 gatctgtact gtgaccttc tacactgttag aataacatta ctcatatgt tcaaagaccc 2040
 ttctgttgtc tgcctaataat gtatgtact gttttccta aggagtgtc tggcccagg 2100
 gatctgtgaa caggctggaa agcatctcaa gatcttcca gggttataact tactagcaca 2160
 cagcatgatc attacggagt gaattatcta atcaacatca tcctcagtgt cttgccc 2220
 actgaaattc atttcccact tttgtgccc ttctcaagac ctcaaaaatgt cattccatta 2280
 atatcacagg attaactttt ttttttaacc tggaaagaatt caatgttaca tgcagctatg 2340
 ggaatttaat tacatatttt gtttccagt gcaagatga ctaagtccct tatccctccc 2400
 ctttgttga tttttttcc agtataaagt taaaatgctt agccttgatc tgaggctgt 2460
 tacagccaca gcctctcccc atccctccag ccttatctgt catcaccatc aaccctccc 2520
 atgcacctaa aaaaaatcta acttgtattt ccttgaacat gtcaggcata cattattct 2580
 tctgcctgag aagctttcc ttgtcttta aatctagaat gatgtaaatg tttgaataag 2640
 ttgactatct tacttcatgc aaagaaggaa cacatatgag attcatcatc acatgagaca 2700
 gcaaaatacta aaagtgtat ttgattataa gagtttagat aaatataatga aatgcaagag 2760
 ccacagaggg aatgtttatg gggcacgtt gtaagctgg gatgtgaagc aaaggcagg 2820
 aacctcatag tattttatataatataacttc atttcttat ctctatcaca atatccaaca 2880
 agctttcac agaattcatg cagtcaaat cccaaaggt aacctttatc catttcatgg 2940
 tgagtgcgt ttagaatttt ggcaaatcat actggctact tatctcaact ttgagatgt 3000
 tttgtcccttg tagtaattt aaagaaatag ggcactcttgc tgagccactt tagggttac 3060
 tcctggcaat aaagaattt caaagagcaa aaaaaaaaaa aaaaaaaaaa aa 3112

<210> 469

<211> 2229

<212> DNA

<213> Homo sapiens

<400> 469

agctcttgc aaattcttta ttgccaggag tgaaccctaa agtggctcac aagagtgc 60
 tatttcttc aattaactac aaggacaaac acatctcaa gttgagataa gtgaccagta 120
 tgatttgccttcaaa aaattctaa ggcactcac catgaaatgg ataaaaggta ccttgggaa 180
 ttgcactgc atgaattctg tggaaagctt gttggatatt gtatgtatgaa tagagaaatg 240
 aagtatatta tataagatac tatgagggtt cctgccttgc ttccacatcc caggcttaca 300
 aacgtgc 360
 tataatcaaa tacatcttta gtatttgcgt tctcatgtga tgatgtatc cttatgtgtc 420
 ctttcttgc atgaagtaag atatgtcaact tattcaaaaac ttacatcatc tctatgttta 480
 agagacaagg aagagcttct caggcagaag gaataatgtt gtcctgacat gttcaaggaa 540
 ttacaaggta gattttgttt aggtgcattt gagggttga tggatgtac agataaggct 600
 ggagggatgg ggagaggctg tggctgtata cagccatgtt acaaggctaa gcatatcc 660
 ttatatactgg aaaaaaaaaatc aaacaaaggaa gagggataaa ggacttagtc atcttgcac 720
 tggaaaacaa aatatgtat taaattccca tagctgcattt taacattgaa ttcttccagg 780
 taaaaaaaaa agttaatctt gttatgtt gggaaatgaa tttcagtatg ggcaagaca ctgaggatgtg tggatgtt 840
 gcacaaaatgtt gggaaatgaa tttcagtatg ggcaagaca ctgaggatgtg tggatgtt 900
 ataatttactt ccgtatgtatcatgtgt gctatgtt gttatgtt gggaaatgaa tttcagtatg ggcaagaca ctgaggatgtg tggatgtt 960

agatgcttcc	caggcgttcc	acagatcccc	tgggccagaa	cactccttag	aaaaaacagt	1020
cagctacata	ttaggcagca	acacgaaggg	tctttaaca	aatgagtaa	tgttattcta	1080
cagtgtagaa	aggtcacagt	acagatctgg	gaactaaata	ttaaaaatga	gtgtggctgg	1140
atatatggag	aatgttgggc	ccagaaggaa	ccgttagagat	cagatattac	aacagctttg	1200
ttttgaggggt	tagaaaatatg	aatgtatttgc	gttatgaacg	cacagtttag	gcagcaggc	1260
cagaatcctg	accctctgccc	ccgtggttat	ctcctcccca	gcttggctgc	ctcatgtcat	1320
cacagtattc	cattttgttt	gttgcatgtc	ttgtgaagcc	atcaagattt	tctcgctgt	1380
tttcctctca	ttgtaatgc	tcactttgtg	acttcatttc	aaatctgtaa	tccccgttcaa	1440
ataaaatatcc	acaacaggat	ctgttttcct	gcccacatctt	taaggaacac	atcaatttcat	1500
tttctaattgt	ccttccctca	caagcgggac	caggcacagg	gcgaggctca	tcgatgaccc	1560
aagatggcgg	ccggcattt	ctccccaggg	tctctgtgt	tccttttgt	cttcctgtgt	1620
gtgtggatat	ttaaaggggc	tggaaatgtg	caaaaacatg	tcactactta	gacatttat	1680
tgtcatcttg	ctgtttctag	tgatgttaat	tatctccatt	tcagcagatg	tgtgcoctca	1740
gatggtaaag	tcagcagcct	ttcttatttc	tcacctggaa	atacatacga	ccatttgagg	1800
agacaaatgg	caaggtgtca	gcataccctg	aacttgagtt	gagagctaca	cacaatatta	1860
ttggtttccg	agcatcacaa	acaccctctc	tgttcttca	ctgggcacag	aattttaata	1920
cttatttcag	tggctgttg	gcaggaacaa	atgaagcaat	ctacataaag	tcactagtgc	1980
agtgcctgac	acacaccatt	ctcttgaggt	cccctctaga	gatcccacag	gtcatatgac	2040
ttcttggga	gcagtggctc	acacctgtaa	tcccagcact	ttgggaggct	gaggcagggt	2100
ggtcacctga	ggtcaggagt	tcaagaccag	cctggccaat	atggtaaaac	cccatctcta	2160
ctaaaaatac	aaaaatttagc	tggcgctgt	ggtgcatgcc	tgtaatccca	gcccccaacac	2220
aatgaaatt						2229

<210> 470

<211> 2426

<212> DNA

<213> Homo sapiens

<400> 470

gtaaaaattctt tattgccagg agtgaaccct aaagtggctc acaagagtgc cctatttctt 60
tcaattaact acaaggacaa acacatctca aagttgagat aagtgaccag tatgatttgc 120
caaatttcta aagcgcactc accatgaaat ggataaaggt tacctttggg gatttgact 180
gcatgaattc tgtaaaaagc ttgttggata ttgtgataga gatagagaaa tgaagtatat 240
tatataaagat actatgaggt tccctgcctt tgcttcacat cccaggctt caaacgtgcc 300
ccataaaacat tccctctgtg gctcttgcatt tcataatatt tatctaaact cttataatca 360
aattacacctt ttagtatttgc ctgtctcatg tgatgatgaa tctcataatgt gtcccttctt 420
tgcatgaagt aagatagtc aacttattccaa aactttacat cattcttagat ttaagagaca 480
aggaagagact tctcaggcgag aaggaataat gtatgcctga catgttcaag gaattacaag 540
tttagattttg ttttaggtgc a tggggaggggt tgatgggtat gacagataag gctggaggga 600
tggggagagg ctggcgtgt atacagcctc agtacaaggc taagcatttt aactttatac 660
tggaaaaaaaaa atcaaacaaa ggggaggggat aaaggactt gtcatttttg cactggaaaa 720
caaaatatgt aattaaattc ccatagctgc atgtAACATT gaattcttcc aggttaaaaa 780
aaaaagttaa tcctgtgata ttaatggaaat gacattttga ggtcttgaga atggcacaa 840
aagtggaaaa tgaatttcag tatgggcaaa gacactgagg atgatgttgc tttagataatt 900
caactccgtaa tgatcatgt gtgtgtctgt aagtataacc ctggaaagat cttgagatgc 960
ttcccagcct gttcacagat cccctggcc agaacactcc ttagggaaaaa cagtcagcta 1020
catatttaggc agcaacacga agggtcttgc aacaaaatga gtaatgttat tctacagtgt 1080
agaaagggtca cagtagcagat ctgggaacta aatattaaaa atgagtggttgc ctggatataat 1140
ggagaatgtt gggccccagaa ggaaccgttag agatcagata ttacaacacgc tttgtttga 1200
gggttagaaa tatgaaatga tttgggtatag aacgcacagt ttaggcagca gggccagaat 1260
cctgaccctc tgccccgtgg ttatctccctc cccagcttgg ctgcctcatg tcacacagt 1320
attccatattt gtttgttgc ttttgttgc agccatcaag atttcttgt ctgtttctt 1380
ctcattgtt atgctcaattt ttttgttgc tttcaaatct gtaatccctgt tcaaataaat 1440
atccacaaca ggtctgtttt ttttgttgc tttcaaatct gtaatccctgt tcaaataaat 1500
atgtccttcc ctcacaagcg ggaccaggca cagggcggagg ctcatcgatg acccaagatq 1560

gcggccggc atttctcca gggatctcg tgcttcctt tgcgttcct gtgtgtgtgg 1620
 atatttaag gggctggaaa tgcacaaaa catgtcacta cttagacatt atattgtcat 1680
 cttgctgtt ctatgtatgt taattatctc catttcagca gatgtgtggc ctcagatgg 1740
 aaagttagca gccttccta ttctcacct ggaataacat acgaccattt gaggagacaa 1800
 atggcaaggt gtcagcatac cctgaacttg agttgagagc tacacacaat attattgggt 1860
 tccgagcatc acaaaccaccc tctctgttcc ttcaactggc acagaatttt aatacttatt 1920
 tcagtggtgt gttggcagga acaaatacg caatctacat aaagtcacta gtgcagtgcc 1980
 tgacacacac cattctcttg aggtccccctc tagagatccc acaggtcata tgacttctt 2040
 gggagcagtg gtcacaccc gtaatcccag cacttggga ggctgaggca ggtgggtcac 2100
 ctgggttcag gagttcaaga ccagcctggc caatatggt aaaccccatc tctactaaaa 2160
 atacaaaaat tagctggcg tgctggcgca tgccctgtat cccagctact tgggaggctg 2220
 aggcaggaga attgtggaa catgggagggc ggaggttgca gtgagctgta attgtgccat 2280
 tgcactcgaa cctggcgac agagtggAAC tctgtttcca aaaaacaac aaacaaaaaaaa 2340
 ggcatacgta gatacaacgt ggggtggatg tgtaaataga agcaggatat aaaggccatg 2400
 ggggtacggt ttggccaaac acaatg 2426

<210> 471

<211> 812

<212> DNA

<213> Homo sapiens

<400> 471

gaacaaaatg agtaatgtt ttctacagtg tagaaaggc acagtacaga tctggaaact 60
 aaatattaaa aatgagtgtg gctggatata tggagaatgt tggggccaga aggaaccgt 120
 gagatcagat attacaacag cttgttttgg agggtagaa atatgaaatg atttggttat 180
 gaacgcacag tttaggcagc agggccagaa tcctgaccct ctgccccgtg gttatctcct 240
 cccccagcttgc gtcacatcagcatttgcattt tgtttggcgt atgtcttgc 300
 aagccatcaa gattttctcg tctgttttcc ttcattggt aatgctcaact ttgtgacttc 360
 atttcaatc tgtaatcccg ttcaaaataaa tatccacaac aggtatgtt ttctggccca 420
 tccttaagg aacacatcaa ttcatttct aatgtcttc cctcacaacggc gggaccaggc 480
 acagggcggag gtcacatcgat gacccaaagat ggcggccggg catttctccc agggatctct 540
 gtgcttcctt ttgtgcttcc tttgtgtgtg gatattaaa ggggctggaa atgtcaaaa 600
 acatgtact acttagacat tatattgtca tcttgctgtt tctatgtatg ttaattatct 660
 ccatttcagc agatgtgtgg ctcagatgg taaagtcaacg acctttctt atttctcacc 720
 tctgtatcat caggcccttc ccaccatgca gatcttcctg gtcacatcg gtcagccaa 780
 cacaaatctc ccctctgttt ttctgtatgcc ag 812

<210> 472

<211> 515

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(515)

<223> n = A,T,C or G

<400> 472

acggagacctt atttctgtatgtt ctgtatgtt tttaagagtc tggaaatagt 60
 cttatgactt tccttatcatg cttattaata aataatacag cccagagaag atgaaaatgg 120
 gttccagaat tattgtctt tgcagccgg tgaatctcg caagaggaac caccaactga 180
 caatcaggat attgaacctg gacaagagaa agaagaaca cctccgatcg aagaacgtaa 240
 agttagaaggatgtt gattgccagg aaatggatct gggaaagact cggagtgacg gtggagatgg 300
 ctctgtatgtt aaagagaaga ctccacactaa tcctaaagcat gctaagacta aagaagcagg 360
 agatggccag ccataagtta aaaagaagac aagctgaagc tacacacatg gctgtatgtca 420

cattgaaaat gtgactgaaa atttgaaaat tctctcaata aagtttgagt tttctctgaa 480
aaaaaaaaaaaa naaaaaaaaaa aaanaaaaan aaaaaa 515

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(S1) International Patent Classification ⁷ : C12N 15/12, C07K 14/47, C12Q 1/68, A61K 39/395, G01N 33/68, 33/574, C07K 16/30, C12N 15/62, 5/02 // A61P 35/00		A3	(11) International Publication Number: WO 00/04149 (43) International Publication Date: 27 January 2000 (27.01.00)																					
(21) International Application Number: PCT/US99/15838 (22) International Filing Date: 14 July 1999 (14.07.99)		(74) Agents: MAKI, David, J. et al.; Seed and Berry LLP, 6300 Columbia; 701 Fifth Avenue, Seattle, WA 98104-7092 (US).																						
(30) Priority Data: <table><tr><td>09/115,453</td><td>14 July 1998 (14.07.98)</td><td>US</td></tr><tr><td>09/116,134</td><td>14 July 1998 (14.07.98)</td><td>US</td></tr><tr><td>09/159,822</td><td>23 September 1998 (23.09.98)</td><td>US</td></tr><tr><td>09/159,812</td><td>23 September 1998 (23.09.98)</td><td>US</td></tr><tr><td>09/232,880</td><td>15 January 1999 (15.01.99)</td><td>US</td></tr><tr><td>09/232,149</td><td>15 January 1999 (15.01.99)</td><td>US</td></tr><tr><td>09/288,946</td><td>9 April 1999 (09.04.99)</td><td>US</td></tr></table>		09/115,453	14 July 1998 (14.07.98)	US	09/116,134	14 July 1998 (14.07.98)	US	09/159,822	23 September 1998 (23.09.98)	US	09/159,812	23 September 1998 (23.09.98)	US	09/232,880	15 January 1999 (15.01.99)	US	09/232,149	15 January 1999 (15.01.99)	US	09/288,946	9 April 1999 (09.04.99)	US	(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
09/115,453	14 July 1998 (14.07.98)	US																						
09/116,134	14 July 1998 (14.07.98)	US																						
09/159,822	23 September 1998 (23.09.98)	US																						
09/159,812	23 September 1998 (23.09.98)	US																						
09/232,880	15 January 1999 (15.01.99)	US																						
09/232,149	15 January 1999 (15.01.99)	US																						
09/288,946	9 April 1999 (09.04.99)	US																						
(71) Applicant: CORIXA CORPORATION [US/US]; Suite 200, 1124 Columbia Street, Seattle, WA 98104 (US).		Published <i>With international search report.</i>																						
(72) Inventors: DILLON, Davin, Clifford; 21607 N.E. 24th Street, Redmond, WA 98053 (US). HARLOCKER, Susan, Louise; 6203 20th Avenue N.W., Seattle, WA 98107 (US). YUQIU, Jiang; 5001 South 232nd Street, Kent, WA 98032 (US). XU, Jiangchun; 15805 S.E. 43rd Place, Bellevue, WA 98006 (US). MITCHAM, Jennifer, Lynn; 16677 Northeast 88th Street, Redmond, WA 98052 (US).		(88) Date of publication of the international search report: 20 July 2000 (20.07.00)																						
(54) Title: COMPOSITIONS AND METHODS FOR THERAPY AND DIAGNOSIS OF PROSTATE CANCER																								
(57) Abstract																								
Compositions and methods for the therapy and diagnosis of cancer, such as prostate cancer, are disclosed. Compositions may comprise one or more prostate tumor proteins, immunogenic portions thereof, or polynucleotides that encode such portions. Alternatively, a therapeutic composition may comprise an antigen presenting cell that expresses a prostate tumor protein, or a T cell that is specific for cells expressing such a protein. Such compositions may be used, for example, for the prevention and treatment of diseases such as prostate cancer. Diagnostic methods based on detecting a prostate tumor protein, or mRNA encoding such a protein, in a sample are also provided.																								

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 99/15838

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12N15/12	C07K14/47	C12Q1/68	A61K39/395	G01N33/68
G01N33/574	C07K16/30	C12N15/62	C12N5/02	
//A61P35/00				

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 97 33909 A (CORIXA CORP) 18 September 1997 (1997-09-18) the whole document ---	1-22, 29-31, 35-49, 53-79
A	SJOGREN H O: "Therapeutic immunization against cancer antigens using genetically engineered cells" IMMUNOTECHNOLOGY, vol. 3, no. 3, 1 October 1997 (1997-10-01), pages 161-172, XP004097000 ISSN: 1380-2933 the whole document ---	23-28, 32-34, 53-57

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "a" document member of the same patent family

Date of the actual completion of the international search

31 January 2000

Date of mailing of the international search report

04.05.00

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

ANDRES S.M.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 99/15838

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	CHU R S ET AL: "CPG OLIGODEOXYNUCLEOTIDES ACT AS ADJUVANTS THAT SWITCH ON T HELPER 1 (TH1) IMMUNITY" JOURNAL OF EXPERIMENTAL MEDICINE, vol. 186, no. 10, 1 November 1997 (1997-11-01), pages 1623-1631, XP002910130 ISSN: 0022-1007 the whole document ---	14-20, 25-27, 41-47
A	EP 0 317 141 A (BECTON DICKINSON CO) 24 May 1989 (1989-05-24) the whole document ---	50-52
A	ZITVOGEL L ET AL: "Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes" NATURE MEDICINE, vol. 4, no. 5, 1 May 1998 (1998-05-01), pages 594-600, XP002085387 ISSN: 1078-8956 cited in the application ---	
P,X	WO 98 37093 A (CORIXA CORP) 27 August 1998 (1998-08-27) page 3, line 20 -page 22, line 2 page 35, line 9 - last line page 76, line 34 -page 78, line 22 claims ----	1-15, 17-19, 21,22, 29-31, 34,35, 39-42, 44-46, 48,49, 58-79
P,X	WO 98 37418 A (CORIXA CORP) 27 August 1998 (1998-08-27) page 2 -page 24 example 2 page 35, line 15 -page 36, line 11 page 81, line 14 -page 83, line 11 claims -----	1-15, 17-19, 21,22, 29-31, 34,35, 39-42, 44-46, 48,49, 58-79

INTERNATIONAL SEARCH REPORT**Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)**

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Remark: Although claims 29-34, 48-49, 52, 55-57 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 5.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

1-79 all partially

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Invention 1. Claims: 1-79 (all partially)

A polypeptide comprising at least an immunogenic portion of a prostate tumor protein defined as SEQ ID 108 and which is encoded by the related SEQ IDs 2,3,107 (according to the Description of the Sequence Identifiers), fragments and variants thereof, fusion proteins comprising it, polynucleotides or oligonucleotides derived therefrom, antibodies or fragments thereof binding to the polypeptide, pharmaceutical compositions or vaccines comprising these products and their use in methods for inhibiting, monitoring or diagnosing the development of a prostate cancer, for removing tumor cells from a sample or for expanding and/or stimulating T-cells.

Inventions 2. to 439. Claims: 1-79 (all partially and as far as applicable)

As for subject 1. but concerning respectively SEQ IDs 1,4-106,109-111,115-171,173-175,177,179-305,307-315,326,328, 330,332-335,340-375,381,382 and 384-472.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/JS 99/15838

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9733909	A 18-09-1997	AU 2329597 A		01-10-1997
		BR 9708082 A		27-07-1999
		CA 2249742 A		18-09-1997
		EP 0914335 A		12-05-1999
		NO 984229 A		13-11-1998
		US 6034218 A		07-03-2000
EP 0317141	A 24-05-1989	US 5041289 A		20-08-1991
		AT 108659 T		15-08-1994
		DE 3850745 D		25-08-1994
		DE 3850745 T		24-11-1994
		ES 2059537 T		16-11-1994
		JP 2002345 A		08-01-1990
WO 9837093	A 27-08-1998	AU 6181898 A		09-09-1998
		NO 994069 A		22-10-1999
		ZA 9801585 A		04-09-1998
WO 9837418	A 27-08-1998	AU 6536898 A		09-09-1998
		EP 0972201 A		19-01-2000
		ZA 9801536 A		08-01-1999

