Equivariant Graph Neural Networks

Kfir Eliyahu Ben Eliav Jonathan Kouchly

December 28, 2024

Outline

- Motivation
- 2 Mathematical Background
- Oeep Sets
- 4 Invariant and Equivariant Graph Networks

2 Mathematical Background

- 3 Deep Sets
- 4 Invariant and Equivariant Graph Networks

- Our neural networks can operate on data of many types.
- We often work with images, text, audio, graphs and more.
- These data types have different structures and qualities, and we would like to build architectures that best suit them.

A cat is a cat no matter how you look at it.

• It is acceptable to assume that being invariant to the rotation of the cat is a good property for a classification network.

• Our focus today is on sets and graph data.

Simple graph

	Α	В	С	D
Α	0	1	1	1
В	1	0	0	0
C	1	0	0	1
D	1	0	1	0

Construction of an Equivariant Neural Network

- When contructing an equivariant neural network, two things should always be considered:
 - The symmetries of the data: What inherent structure should our model be oblivious to?
 - ② The space of functions learnable by the network:

 Are we fully utilizing the space of functions that are equivariant

2 Mathematical Background

- 3 Deep Sets
- 4 Invariant and Equivariant Graph Networks

The Permutation Group S_n

- The permutation group S_n is the group of all permutations of n elements.
- It has n! elements, representing the n! ways to order n elements.
- Given a set $X = \{x_1, x_2, \dots, x_n\}$, a permutation $\pi \in S_n$ is a bijection $\pi : X \to X$
- e.g. $x = (x_1, x_2, x_3)$, and $\pi = (1, 2, 3) \in S_3$ is the permutation that maps $1 \to 2$, $2 \to 3$ and $3 \to 1$.
- We denote the **action** of π on x as $\pi x = (x_3, x_1, x_2)$.

Permutation Invariance

• Let $H \leq S_n$ be a subgroup of the symmetric group.

• $f: \mathbb{R}^n \to \mathbb{R}$ is permutation invariant if $f(x) = f(\pi x)$ for all $\pi \in H$.

$$f[\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc] = [0.15 \ 0.1 \ 0.05 \ \mathbf{0.8}]$$
$$f[\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc] = [0.15 \ 0.1 \ 0.05 \ \mathbf{0.8}]$$

Permutation Equivariance

• Let $H \leq S_n$ be a subgroup of the symmetric group.

• $f: \mathbb{R}^n \to \mathbb{R}^n$ is permutation equivariant if $\pi f(x) = f(\pi x)$ for all $\pi \in H$.

$$f[\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc] = [0.15 \ 0.1 \ 0.05 \ 0.8]$$

 $f[\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc] = [0.15 \ 0.1 \ 0.8 \ 0.05]$

Permutation of a Set

- Assume our set is $X = \{x_1, x_2, \dots, x_n\}$.
- We can represent X as a matrix $X \in \mathbb{R}^{n \times d}$.
- Any permutation $g \in S_n$ can be represented as a permutation matrix $P \in \mathbb{R}^{n \times n}$,
- The action of g on X is then **P**X.
- An invariant neural network is a function $f: \mathbb{R}^{n \times d} \to \mathbb{R}^{d'}$ such that f(X) = f(PX).
- An equivariant neural network is a function $f: \mathbb{R}^{n \times d} \to \mathbb{R}^{n \times d'}$ such that $\mathbf{P}f(X) = f(\mathbf{P}X)$.

Permutation of a Graph

• Our data is now a graph adjacency matric $A \in \mathbb{R}^{n \times n}$.

• A permutation matrix $P \in \mathbb{R}^{n \times n}$ acts on the adjacency matrix A.

• The action of **P** on A is:

$$P^TAP$$

Equivariant Network Construction

Theorem

Let L be a linear equivariant layer, and let f be a neural network constructed be stacking L and non-linearities σ . Then f is permutation equivariant.

Proof.

Let x be a set of n elements, and let $g \in S_n$ be a permutation.

$$f(gx) = L(\sigma(L(\sigma(\ldots L(gx)\ldots)))) = L(\sigma(L(\ldots g\sigma(L(x))\ldots))) = \ldots$$
$$gL(\sigma(L(\sigma(\ldots L(x)\ldots)))) = gf(x)$$

Invariant Network Construction

Theorem

Let f be an equivariant neural network and let ϕ be a permutation invariant function. Then $h = \phi(f(x))$ is a permutation invariant neural network.

Proof.

Let x be a set of n elements, and let $g \in S_n$ be a permutation.

$$h(gx) = \phi(f(gx)) = \phi(gf(x)) = \phi(f(x)) = h(x)$$

2 Mathematical Background

3 Deep Sets

4 Invariant and Equivariant Graph Networks

Deep Sets

- A seminal work in the field of equivariant neural networks.
- Recall the two properties we mentioned earlier (symmetries of the data and the space of functions learnable by the network).
- DeepSets is an architecture that is equivariant to set permutations and is maximally expressive in the space of permutation equivariant functions.
- We are going to see the construction and prove it satisfies equivariance and expressiveness.

- We saw a general structure of an invariant and equivariant network.
- To fill in the details, we need to define the equivariant layer L and the invariant function ϕ .

Definition

Consider a set $x = \{x_1, x_2, \dots, x_n\}$, where $x_i \in \mathbb{R}$. Define its representation $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$.

A DeepSets layer is defined as

$$L(x) = \lambda I x + x \mathbf{1}$$

Definition

Consider a set $x = \{x_1, x_2, \dots, x_n\}$, where $x_i \in \mathbb{R}$.

A DeepSets layer is defined as

$$L(x) = \lambda Ix + x1$$

Theorem

A DeepSets layer is permutation equivariant.

Proof.

Let x be a set of n elements, and let $g \in S_n$ be a permutation.

$$L(gx) = \lambda I(gx) + (gx)\mathbf{1} = g(\lambda Ix) + x\mathbf{1} = gL(x)$$

Theorem

Any linear equivariant layer is of the shape $L(x) = \lambda Ix + x1$.

Proof (through example).

Let $x = x_1, x_2, x_3$ be a set, $W \in \mathbb{R}^{3 \times 3}$, and $L(x) = W\mathbf{x}$ such that L is

equivariant. W =
$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
 Regard permutation $g = (2,3) \in S_3$. Note

that
$$\left(W\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}\right)_1 = (Wx)_1 = (Wgx)_1 = \left(W\begin{pmatrix}x_1\\x_3\\x_2\end{pmatrix}\right)_1$$
 from

equivariance.

Proof (through example) - continued.

 $ax_1 + bx_2 + cx_3 = ax_1 + bx_3 + cx_2$. This should hold for any choice of x_1, x_2, x_3 . $\Rightarrow b = c$. Similarly, d = f, g = h.

Proof (through example) - continued.

 $ax_1 + bx_2 + cx_3 = ax_1 + bx_3 + cx_2$. This should hold for any choice of x_1, x_2, x_3 . $\Rightarrow b = c$. Similarly, d = f, g = h. For the permutation $\sigma = (1, 3, 2)$:

$$W\begin{pmatrix} x_2 \\ x_3 \\ x_1 \end{pmatrix} = \begin{pmatrix} ax_2 + bx_3 + bx_1 \\ dx_2 + ex_3 + dx_1 \\ fx_2 + fx_3 + ix_1 \end{pmatrix}$$

$$(1,3,2)W\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = (1,3,2)\begin{pmatrix} ax_1 + bx_2 + bx_3 \\ dx_1 + ex_2 + dx_3 \\ fx_1 + fx_2 + ix_3 \end{pmatrix} = \begin{pmatrix} dx_1 + ex_2 + dx_3 \\ fx_1 + fx_2 + ix_3 \\ ax_1 + bx_2 + bx_3 \end{pmatrix} \stackrel{!}{=} W\begin{pmatrix} x_2 \\ x_3 \\ x_1 \end{pmatrix}$$

Intuitively, looking at all possible permutations, we can see why all values in the diagonal must be equal and all values in the off-diagonal must be

equal. That means
$$W = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$$
.

DeepSets Network

- We have an initial layer L, which we proved is equivariant.
- A deep sets invariant network is now constructed as:

$$f(x) = \phi(L\sigma(L\sigma(...L\sigma(L(x))...)))$$
 where $\phi(x) = \sum_{i=1}^{n} x_i$

- ullet It is easy to see that ϕ is permutation invariant, and thus f is permutation invariant.
- ullet For a classification network, take some classification module ho (e.g. an MLP), and define the final network as:

$$h(x) = \rho(f(x))$$

DeepSets Network

• Notice that the network is only defined for sets with elements in \mathbb{R} .

• We can extend this to a set $X = \{x_1, x_2, \dots x_n\} \subset \mathbb{R}^d$ with representation $\mathbf{X} \in \mathbb{R}^{n \times d}$ by defining L as:

$$L(x) = \mathbf{X} W_1 + \mathbf{1} \mathbf{1}^T \mathbf{X} W_2$$

 This keeps the general structure of the layer: a linear transformation of the distinct elements of the set summed with the mean of the set.

DeepSets Expressivity

- We have shown that the *DeepSets* network is permutation invariant.
- We now want to show that it is maximally expressive in the space of permutation invariant functions.
- We show outline for the proof, showing DeepSets can separate any two sets that are not equal.

Theorem

Let $x, y \in \mathbb{R}^{n \times d}$ s.t $x \neq gy$ $\forall g \in S_n$. Then there exists a DeepSets network that separates x and y, namely $F(x; \theta) \neq F(y; \theta)$.

DeepSets Expressivity

Proof outline:

- **1** Consider distinct rows of x, y.
- Onstruct input output pairs using standard basis elements (one hot encodings of the elements in the set).
- In each layer $L(x) = \mathbf{X} W_1 + \mathbf{1} \mathbf{1}^T \mathbf{X} W_2$, set $W_2 = 0$, collapsing our network to a standard MLP.
- According to a result of the universal approximation theorem, we can learn a one to one mapping between the input and output pairs.
- Output for each set the sum of the output pairs.
- For each set, we computed the hitogram of its elements, which is a unique representation of the set.

2 Mathematical Background

Beep Sets

4 Invariant and Equivariant Graph Networks

• We saw a simple, maximally expressive equivariant network for sets.

We now want to extend this to graphs.

 Recall the action of the permutation matrix P on the adjacency matrix A is:

$$P^TAP$$

• Lets use this to define a Linear invariant layer $L \in \mathbb{R}^{n \times n}$. We want to satisfy the following:

$$L\mathbf{P}^{\mathsf{T}}A\mathbf{P} = L(A)$$

• But working with bilinear forms is hard. We can define an equivalent condition by column stacking the adjacency matrix to get a vector, and then define a linear layer $L \in \mathbb{R}^{1 \times n^2}$.

$$Lvec(\mathbf{P}^T A \mathbf{P}) = Lvec(A)$$

We now introduce a crucial property of the Kronecker product:

$$\operatorname{vec}(XAY) = Y^T \otimes X \operatorname{vec}(A)$$

• Using this, the previous condition can be written as:

$$L(P^T \otimes P^T) \text{vec}(A) = L \text{vec}(A)$$

For this condition to hold for all A, we need L to satisfy:

$$L(P^T \otimes P^T) = L$$

• transposing the equation, and with severe abuse of notation $(L^T = \text{vec}(L))$, we finally get:

$$(P \otimes P) \text{vec}(L) = \text{vec}(L)$$

- After some work and moderate logic jumps, we got a condition for a permutation invariant linear layer L.
- Developing the condition for an equivariant layer is very similar:

$$L\text{vec}(\boldsymbol{P}^T A \boldsymbol{P}) = \boldsymbol{P}^T L\text{vec}(A) \boldsymbol{P}$$

Using the Kronecker product property, we get:

$$L(P^T \otimes P^T)$$
vec $(A) = (P^T \otimes P^T)L$ vec (A)

• This should hold for every A, so we get:

$$L(P^T \otimes P^T) = (P^T \otimes P^T)L$$

• $(P^T \otimes P^T)$ is an $n^2 \times n^2$ premutation matrix, and its inverse is $(P \otimes P)$.

$$(P \otimes P)L(P^T \otimes P^T) = L$$

Once again converting to a vector form, we get:

$$vec(L) = vec(P \otimes P)L(P^T \otimes P^T) = (P \otimes P) \otimes (P \otimes P)vec(L)$$
$$= (P \otimes P \otimes P \otimes P)vec(L)$$

Conclusion

end

Thank You!