MECHANICS

YANNAN MAO

6TH MARCH 2024

\sim					
('	ſΩ	NΠ	T	ΝП	Γ \mathbf{C}

1 Th	e Ec	quations of Motion]	ĺ
------	------	--------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

MECHANICS YANNAN MAO

THE EQUATIONS OF MOTION

The position of a particle in three-dimensional Euclidean space is defined by its radius vector \mathbf{r} , whose components are its Cartesian coordinates x, y, and z. The derivative $\mathbf{v} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}$ of \mathbf{r} with respect to time t is the velocity of the particle, and the second derivative $\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2}$ is its acceleration. We denote differentiation with respect to time by \mathbf{v}