Automatic Deployment of MPI Applications on a Computational Grid

<u>Sébastien Lacour</u>, Christian Pérez IRISA / INRIA, France

SIAM-CSE 2005. Orlando, FL, USA. February 15th, 2005

Computational Grids

- Compute and storage resources:
 - Geographically distributed
 - Interconnected over a WAN
 - Not dedicated to one application
- Network bandwidth increase
- Potentially huge computer power
- Issues: security, heterogeneity
 - Compute resources
 - Network technology, performance, and topology / hierarchy
- Complex environment

Computational Grid Usage

- One of the goals: usage transparency
- In particular for application deployment

- MPI implementations for grids:
 - MPICH-G2, MagPIe, PACX-MPI, etc.
- Topology-aware collective operations:
 - Take network hierarchy into account
 - Optimize BroadCast, Reduce, Barrier, Gather, etc.
 - Minimize communications on slow networks
- Provide access to the underlying network topology (MPICH-G2)
 - MPI programmer can optimize his parallel algorithm
 - Dynamically create groups of communications

MPI Deployment on Grids: Complexity Accumulation (1)

- Select heterogeneous grid resources
 - OS and architecture compatibility
- Map application processes on selected compute nodes
- Select compatible compiled executables
- Upload executables, stage input files in
- Launch processes on remote computers

MPI Deployment on Grids: Complexity Accumulation (2)

- Set the configuration parameters
 - Provide network topology information to the MPI library
- MPICH-G2: environment variables
- MagPIe, PACX-MPI: description file to stage in
- All that manually...
 - Too complicated for grids!

4

MPICH-G2 Example: RSL

```
(& (resourceManagerContact="cluster.teragrid.org")
  (count=10)
  (environment=(GLOBUS DUROC SUBJOB INDEX 0)
               (LD LIBRARY PATH "/usr/globus/lib")
               (GLOBUS LAN ID my LAN))
  (executable="/homes/users/smith/myapp i386")
(& (resourceManagerContact="node.othersite.edu")
  (count=20)
  (environment=(GLOBUS DUROC SUBJOB INDEX 1)
               (GLOBUS LAN ID my LAN))
  (directory="/home/ux394/")
  (executable="/home/ux394/mpi proc sparc")
```


Automatic Application Deployment on Grids

- Our objective: hide all that complexity
- Automatic deployment tool
- Input:
 - Packaged application (self-described)
 - Description of grid resources
- Run the application automatically
 - Cluster: mpirun -machinefile ... -np 16 my_appl
 - Grid: grid_deploy -resources ... -application my_appl

15 February 2005

Automatic Deployment: Overview

A Software Architecture for Automatic Deployment of CORBA Components Using Grid Technologies, DECOR'2004, France, Oct. 2004

Input of the Deployment Tool: Application Package

- MPI application
 - Packaged (ZIP file)
 - Self-described
 - Number of MPI processes
 - Various compiled implementations
- Ongoing work
 - Count, groups

Input of the Deployment Tool: Grid Resource Description

- Distributed information
 - OS, architecture, CPU #
 - Network topology and performance characteristics
 - A Network Topology
 Description Model for Grid
 Application Deployment,
 Grid2004, Pittsburgh, PA,
 Nov. 2004

- Keep a certain level of control on the automatic deployment process
- Not specific to the application ("user's comfort")
 - Minimize execution time
 - Run the application close to a visualization site
- Example: no groups under 8 processes

Deployment Planning

- Heart of the automatic deployment tool
- Select grid resources
- Place application processes on computers
- Select compiled executables
 - Check OS and architecture compatibility
- Select a launch method (SSH, Globus GRAM)
- Produce a deployment plan

4

Deployment Plan Execution

Application Configuration

- Set configuration parameters
 - Provide network topology information
 - The planner has this information: placement decisions were based on it
 - MPICH-G2 (3 network hierarchy levels)
 - processes in a cluster
 - clusters in a LAN (local-area network)
 - LANs in a WAN (wide-area network)
 - MagPIe, PACX-MPI: 2 network hierarchy levels

ADAGE

- Automatic Deployment of Applications in a Grid Environment
 - http://www.irisa.fr/paris/ADAGE/
- Simple user-level constraints
- Already gained experience with distributed component-based applications
 - Deploying CORBA Components on a Computational Grid: General Principles and Experiments Using the Globus Toolkit, CD2004, Edinburgh, Scotland

MPI Application Deployment on a Grid with ADAGE

- Same simplicity as on a single cluster
 - grid_deploy -resource my_grid
 - -application my_appl.zip
 - -usr_lvl my_usr_lvl_contraints
- Resource selection among "my_grid"
- Placement and implementation selection among "my_appl.zip"
- Network topology information configuration

- MPI applications on computational grids
 - Complex to deploy
 - Need configuration: network topology
- Automatic deployment of MPI applications
 - Deployment planning
 - Resource selection, process placement, launch method selection, implementation selection
 - Transmit topology information to application
- Validation in ADAGE

Perspectives

- How to package MPI applications?
 - Ongoing work
- How about parallel components?
 - Distributed components made of an MPI program
- Re-deployment
 - Checkpoint/restart after failure or ETA
 - MPI-2 standard has MPI_Comm_spawn

Questions?

Thank you!