

27 48 978 Offenlegungsschrift

(21)

Aktenzeichen:

@ 43

Anmeldetag:

P 27 48 978.7 2.11.77

Offenlegungstag:

3. 5.79

Unionspriorität:

3 3 3

(S)

Bezeichnung:

Azofarbstoffe

0

Anmelder:

BASF AG, 6700 Ludwigshafen

0

Erfinder:

Dimmler, Manfred, Dipl.-Chem. Dr., 6701 Dannstadt; Eilingsfeld, Heinz, Dipl.-Chem. Dr., 6710 Frankenthal; Hansen, Günter, Dipl.-Chem. Dr., 6700 Ludwigshafen; Kermer, Wolf-Dieter, Dipl.-Chem. Dr., 6701 Fussgönheim

909 818/550

BASF Aktiengesellschaft

2748978

Unser Zeichen: 0.Z. 32 852 Bg/Fe

6700 Ludwigshafen, 28.10.1977

Patentansprüche

1. Azofarbstoffe der allgemeinen Formel

in der

- K den Rest einer Kupplungskomponente,
- R gegebenenfalls durch Chlor, Brom, Methyl, Methoxy, Athoxy, Nitro oder Hydroxysulfonyl substituiertes Phenylmercapto oder Phenylsulfonyl und
- X Wasserstoff, Chlor, Brom oder Cyan bedeuten.
- 2. Farbstoffegemäß Anspruch 1 der Formel

$$0_2 N - \sum_{R}^{NO_2} - N = N - N - R^3$$

in der

R bis R und X die angegebenen Bedeutungen haben.

3. Verfahren zur Herstellung von Farbstoffen gemäß Anspruch 1, dadurch gekennzeichnet, daß man eine Diazoniumverbindung von Aminen der Formel

496/77

-2-

mit einer Kupplungskomponente der Formel

H-K

umsetzt.

4. Die Verwendung der Verbindungen gemäß Anspruch 1 zum Färben von Textilmaterial aus natürlichen und synthetischen Fasern, insbesondere aus Polyester.

-3-

Azofarbstoffe

Die Erfindung betrifft Verbindungen der allgemeinen Formel I

in der

- K den Rest einer Kupplungskomponente,
- R gegebenenfalls durch Chlor, Brom, Methyl, Methoxy, Äthoxy, Nitro oder Hydroxysulfonyl substituiertes Phenylmercapto oder Phenylsulfonyl und
- X Wasserstoff, Chlor, Brom oder Cyan bedeuten.

Die Reste K der Kupplungskomponente entstammen vorwiegend der Anilin-, Aminonaphthalin-, Pyrazolon-, Pyrazol-, Indol-, Chinolin-, Phenol-, Naphthol-, Pyridon-, Pyridin-, Barbitursäure-, Pyrimidin- oder Aceto-acetarylidreihe, ferner kommen Verbindungen wie Cyanmethylbenzimidazol,

4

Cyanmethylbenzthiazol, Cyanmethylphenylthiadiazol-1,3,4 und Tri-methylindolenine in Betracht.

Vorzugsweise entsprechen die Kupplungskomponenten den Formeln:

wobei

R¹ Wasserstoff, Methyl, Methoxy oder Äthoxy,

R² Wasserstoff, Methyl, Methoxy, Chlor oder C₁-bis C₄-Alkanoylamino,

R³ Wasserstoff, gegebenenfalls durch Chlor, Brom, Hydroxy, C₁- bis C₄-Alkoxy, Cyan, Carboxy, C₁- bis C₄-Alkanoyloxy, C₁- bis C₄-Alkoxy-carbonyl, C₁- bis C₄-Alkanoylamino, C₁- bis C₄-Alkylaminocarbonyloxy, Phenylaminocarbonyloxy oder C₁- bis C₄-Alkoxycarbonyloxy substituiertes C₁- bis C₄-Alkyl, Allyl, Benzyl, Phenyläthyl, Cyclohexyl, Phenyl oder Propargyl,

gegebenenfalls durch Chlor, Brom, Hydroxy, C_1 - bis C_4 -Alkoxy, Cyan, Carboxy, C_1 - bis C_4 -Alkanoyloxy, C_1 - bis C_4 -Alkoxycarbonyl, C_1 - bis C_4 -Alkanoylamino, C_1 - bis C_4 -Alkylaminocarbonyloxy, Phenylaminocarbonyloxy oder C_1 - bis C_4 -Alkoxycarbonyloxy substituiertes C_1 -

 C_A -Alkyl, Allyl oder Propargyl,

- R⁵ Wasserstoff, C₁- bis C₈-Alkyl, Benzyl, Cyclohexyl oder Phenyl,
- R⁶ Wasserstoff oder Methyl,
- R7 Wasserstoff, Methyl oder Phenyl,
- R⁸ Wasserstoff, Methyl oder 8-Cyanäthyl,
- R⁹ Wasserstoff oder gegebenenfalls durch Hydroxy oder C₁- bis C₄-Alkoxy substituiertes C₁- bis C₈-Alkyl und
- Y Hydroxy oder Amino bedeuten.

Einzelne Reste R³ und R⁴ sind neben den bereits genannten beispielsweise: Methyl, Äthyl, Propyl, Butyl, S-Hydroxyäthyl, S-Cyanäthyl, S-Chloräthyl, ferner

$$-cH_2-cH_2-ococH_3$$
, $-cH_2-cH_2-ococ_2H_5$, $-cH_2-cH_2-o-c-NH-cH_3$,

$$-cH_2-cH_2-o-c-NH-c_4H_9$$
, $-cH_2-cH_2-o-c-NH-cH_9$, $-cH_2-cH_2-o-c-NH-cH_9$,

Alkylreste R⁵ und R⁹ sind beispielsweise:

Methyl, Äthyl, Propyl, Butyl, 2-Äthylhexyl.

Zur Herstellung der Verbindungen der Formel I kann man eine Diazoniumverbindung von Aminen der Formel II

-6-

mit Kupplungskomponenten der Formel

H-K

III

umsetzen.

Verbindungen der Formel II lassen sich z. B. auf folgendem Wegeherstellen:

-7-

Die Mercaptoverbindung kann nach bekannten Methoden zum Sulfon oxidiert werden.

Hal bedeutet Chlor oder Brom und Ar wie oben angegeben substituiertes Phenyl.

Der Rest X kann ebenfalls nach bekannten Methoden eingeführt werden.

Einzelheiten der Herstellung können dem Beispielteil entnommen werden, in dem sich Argaben über Teile und Prozente, sofern nicht anders vermerkt, auf das Gewicht beziehen.

Verbindungen der Formel I eignen sich zum Färben und Bedrucken von Textilmaterial, insbesondere von Polyestern, wenn sie keine wasserlöslich-machenden Gruppen enthalten. Man erhält gelbe bis blaue Färbungen mit guten Echtheiten. Viele der Farbstoffe sind auch für das in der deutschen Patentschrift 1 811 796 beschriebene Verfahren geeignet. Von besonderer Bedeutung sind Verbindungen der Formel Ia

$$O_2N \longrightarrow N=N \longrightarrow R^1 \longrightarrow R^3$$
Ia,

in der R bis \mathbb{R}^4 und X die angegebenen Bedeutungen haben. Bevorzugt sind dabei für

R C6H5S und C6H5SO2

H¹ H, OCH₃ und OC₂H₅

-8-

R² H, Cl, CH₃, NHCOC₂H₅ oder NHCOCH₃

 E^3 C_2H_5 , C_2H_4CN , $C_2H_4OCOCH_3$, $C_2H_4OCOC_2H_5$, $-CH_2-CH=CH_2$,

 E^4 C_2H_5 , $CH_2-CH=CH_2$, $CH_2-CH_2OCOCH_3$, $CH_2-CH_2-OCOC_2H_5$, $CH_2-CH_2-COCH_3$, und

X H, Cl und Br.

Beispiel 1

14,6 Teile 5-Phenylthio-2,4-dinitranilin werden bei Raumtemperatur in 100 Teile Eisessig/Propionsäure (17:3) eingetragen, bei 5 bis 10°C langsam mit 15,0 Teilen 45 %iger Nitrosylschwefelsäure versetzt und bei 0 bis 5°C 4 Stunden nachgerührt.

Die erhaltene Diazolösung wird zur Lösung von 9,0 Teilen β-Cyanäthyläthyl-anilin in 50,0 Teilen Wasser und 20,0 Teilen 32 %gier Salzsäure getropft, der zuvor 1,0 Teile Harnstoff sowie 500,0 Teile Eis zugegeben wurden.

Der über Nacht ausgekuppelte Farbstoff wird abgesaugt, mit Wasser neutral gewaschen und getrocknet. Man erhält 20 Teile eines dunklen Pulvers, das auf Polyester in blaustichigroten Tönen von guten Echtheiten aufzieht.

Die obige Diazokomponente erhält man auf folgendem Wege:
N,N-Dimethyl-N'-(3-chlor-phenyl)-formamidiniumchlorid

-10-

49î -

In 1 000 Teilen Toluol werden bei Raumtemperatur 243,5 Teile N,N-Dimethylformamid und 243,5 Teile Thionylchlorid zusammengegeben und 1/2 Stunde verrührt. Danach werden 174,4 Teile 3-Chloranilin in 45 Minuten zugetropft, wobei die Temperatur auf 46°C ansteigt. Nach Zugabe des 3-Chloranilins wird langsam auf 70°C erhitzt und 2 Stunden bei 70 bis 75°C gehalten. Danach wird abgekühlt, wobei das Formamidiniumsalz ausfällt. Das Produkt wird abgesaugt, mit Äther gewaschen und bei 40°C unter vermindertem Druck getrocknet. Die Ausbeute beträgt 312 Teile, der Schmelzpunkt des Formamidiniumsalzes liegt bei 235 bis 236°C.

N, N-Dimethyl-N'-(5-chlor-2,4-dinitro-phenyl)-formamidin

C1
$$\bigoplus$$
HN-C=N(CH₃)₂

O₂N \bigoplus
C1
NO₂

624 Teile konz. Schwefelsäure werden bei 0 - 10 °C mit 504 Teilen Salpetersäure gemischt. Danach werden bei 0 - 20 °C 175,2 Teile N,N-Dimethyl-N'-(3-chlor-phenyl)-formamidiniumchlorid eingetragen, es wird 10 Stunden bei Raumtemperatur gerührt und unter starkem Rühren auf Sodalösung gegossen. Das gelbe Produkt wird abgesaugt, mit Methanol ausgerührt und getrocknet. Man erhält 237 Teile des Formamidins mit einem Schmelzpunkt von 156 - 159 °C.

-11-

2,4-Dinitro-5-(thiophenyl)-anilin

327,9 Teile N,N-Dimethyl-N'-(2,4-dimitro-5-chlorphenyl)-formamidin werden in 1250 Teilen N,N-Dimethylformamid mit 185,3 Teilen Pottasche gemischt.

Danach werden bei Raumtemperatur 132,4 Teile Thiophenol zugetropft,
es wird 10 Stunden bei Raumtemperatur gerührt, danach 5 Stunden auf 80°C
erhitzt, abgekühlt, auf Eiswasser gegossen und abgesaugt. Die Ausbeute beträgt 420 bis 430 Teile Amin, mit einem Schmelzpunkt von 199 bis 201°C.

Die in der Tabelle aufgeführten Farbstoffe wurden analog Beispiel 1 erhalten.

-12-

Bsp.	A	Х	B ¹	B ²	в ³	в4	Farbton auf Polyester
2	H	H	с ₂ н ₅	^С 2 ^Н 5	инсосн3	H	violett
3	H.	H	с ₂ н ₄ ососн ₃	с ₂ н ₄ ососн ₃	инсосн 3	OCH ₃	blaugrau
4	Ħ	H	с ₂ н ₅	c ₂ H ₄ cn	инсосн3	осн ₃	blaugrau
5	H	Ħ	с ₂ н ₄ осн ₃	C2H4CN	E	E	rot
6	CH ₃	Ħ	с ₂ н ₄ он	с ⁵ н ⁴ он	инсосн 3	H	violett
7	OCH ₃	H	с ₂ н ₅	C2=4CN	CH ₃	Ħ.	bordo
8	NO ₂	H	с ₂ н ₄ он	^C 2 ^E 5	CH ₃	Ħ	bordo
9	H	Н	С ₂ Н ₄ ОН	c ₂ e ₄ ch	Ħ	ñ	rotviolett
10	H	н	с ₂ н ₄ он	·с ₂ н ₄ он	Cl	H	bordo
11	H	н	с ₂ н ₄ он	с ₂ н ₄ он	CH ₃	Ħ	rotviolett
12	H	H	с ₂ н ₅	C ₃ H ₆ NECOCH ₃	H .	Ħ	violett
13	H	H	с ₂ н ₄ он	^С 2 ^Н 5	H	且	bordo
14	CH ₃	H	с ₂ н ₄ осн ₃	с ₂ н ₄ он	Ħ	H	bordo
15	OCH ₃	H	с ₂ н ₄ осн ₃	с ₂ н ₄ ососн ₃	H	H	bordo
16	H	H	с ₂ н ₄ осн ₃	с ₂ н ₄ си	CH ₃	H	bordo
17	CH ₃	H	с ₂ н ₅	с ₂ н ₄ с1	H	H.	bordo
18	СH ₃ 0	H	CH ₃	С ₂ H ₄ CO ₂ CH ₃	Cl	H	bordo
19	H	Ħ	С ₂ Н ₄ ОН	с ₂ н ₄ он	H	E	rotviolett
20	H	H	с ₂ н ₄ он	с ₂ н ₄ со ₂ сн ₃	Ħ	H	bordo
			·				·

-13-

							•
Bsp.	A	x	В	B ²	в ³	в4	Farbton auf Polyester
21	H	H	с ₂ н ₄ со ₂ сн ₃	С ₂ н ₅	H	Н	bordo
22	H	H	с ₂ н ₄ он	C2H4CN	Ħ	H	pordo
23	No ⁵	Ħ	с ₂ н ₅	C2H4OCH3	Ħ	н	rotviolett
24	н	H	C ₂ H ₄ CN	C2H4OCOCH3	H	н	rot
25	H .	Ħ	с ₂ н ₄ он	C2H4OCOCH3	H	H	bordo
26%	H	H	CH ₃	CH ₃	H	H	bordo
27	H	H	_C ₂ H ₄ OH	С ₂ Н ₄ ОН	NHCOCH ₃	осн	blaugrau
28	H	H	CH2-CH-CH2	CH2-CH=CH2	NECOCE ₃	H	blauviolett
29	Ξ.	Ħ	CH2-CH=CH2	C2H4CI	CE _D	Ξ	bordo
30	H	Ħ	CH ₂ -CH-CH ₂	C2H5	H	H .	bordo
31	H	H	CH2-CH-CH2	C2H4OCOCH3	H	H.	bordo
32	H	H	CH2-CH=CH2	с ₂ н ₅	Cl	H	rotviolett
33	H	H	CH2-C≣CH	C ₂ H ₄ CN	Ħ	Ħ	rot
34	H	H	CH2-C≣CH	сн ₂ -с∋сн	CH 3	Ħ	bordo
				•	•	,	•

Beispiel 35

8,1 Teile 5-Phenylsulfonyl-2,4-dinitroanilin werden bei Raumtemperatur in 50,0 Teile Eisessig/Propionsäure (17:3) eingetragen, nach dem Abkühlen auf 0°C mit 8,0 Teilen 45 Ziger Nitrosylschwefelsäure bei 0 bis 5°C diazotiert und 4 Stunden nachgerührt. Die so erhaltene Lösung wird zu 12,8 Teilen N-B-Methoxyäthyl-N-B-hydroxyäthyl-anilin in 50 Teilen Wasser, 20 Teilen einer 30 Zigen Salzsäure und 250 Teilen Eis gegeben. Nach etwa 6 Stunden ist die Kupplung beendet. Der gebildete Farbstoff wird abgesaugt, neutral gewaschen und getrocknet. Man erhält ein dunkles Pulver, das Polyester in rotstichig blauen Tönen färbt.

2,4-Dinitro-5-phenylsulfonyl-anilin

50 Teile 2,4-Dinitro-5-phenylmercapto-anilin (s. Beispiel 1) werden in 300 Teilen Eisessig bei Raumtemperatur mit 43 Teilen 30 %igem Wasserstoffperoxid versetzt. Danach wird 8 Stunden bei 60°C gerührt, abgekühlt und abgesaugt. Man erhält 32 Teile des Sulfons mit einem Schmelzpunkt von 106 bis 109°C.

Die in der folgenden Tabelle gekennzeichneten Farbstoffe wurden entsprechend Beispiel 35 hergestellt:

-15-

Bap.	A	х	B ¹	B ²	B ³	в4	Farbton auf Polyester- material
36	Ħ	Ħ	с2н4осн3	C2H4OCCH3	H	H	marineblau
37	H	H	с ₂ н ₄ осн ₃	C ₂ H ₄ CN	CH ₃	H	blauviolett
38	H	H	C2H5	с ₃ н ₆ мнсосн ₃	CH ₃	Ħ	marineblau
39	н	H	С ₂ н ₅	C ₂ H ₄ Cl	Ħ	H	rotviolett
40	H	н	с ₂ н ₄ он	с ₂ н ₄ он	CH ₃	H	dunkelblau
41	H	H	с ₂ н ₄ он	с ₂ н ₅	H	H	violett
42	H	H	с ₂ н ₄ он	с ₂ н ₄ он	Cl	H	rotviolett
43	H	H	C2H4CN	с ₂ н ₄ он	H	H	violett
44	H	H	C2H4CN	с ₂ н ₅	H	H	violett
45	H	H	C2H40H	С ₂ н ₄ он	NHCOCH ₃	H	blau
46	CH ₃ O	H	С ₂ Н ₄ ОН	с ₂ н ₄ со ₂ сн ₃	H	H	violett
47	CH ₃	H	C2H4OCH3	C ₂ H ₄ CN	H	H	violett
48	н	H	с ₂ н ₅	с ₂ н ₄ си	H	H	rotviolett
49	н	H	C2H5	с ₂ н ₅	nhcoch ³	H	blau
50	H	H	C2H4OCOCH3	C2H4OCOCH3	NHCOCH ₃	осн	türkis

o.z. 32 852 2748978

Bsp.	A	х	B ¹	B ²	B ³	В4	Farbton auf Polyester- material
	.						
51	H	H	CH2-CH=CH2	CH2-CH=CH2	田	ਜ਼	rotviolett
52	CH ₃	H	CH2-CH-CH2	сн ₂ -сн=сн ₂	NHCOC2H5	H	blauviolett
53	H	Ħ	CH ₂ -CH=CH ₂	с ₂ н ₅	CH ₃	н	violett
54	H	ਜ਼	сн ₂ -сн-сн ₂	C ₂ H ₄ CN	H	Ħ	rubin
55	, H	H	CH ₂ -C≡CH	с ₂ н ₄ он	н	п	bordo
56	Ħ	H	CH ₂ -C≡CH	^с 2 ^н 5	Ħ	a .	rotviolett

Beispiel 57

37,0 Teile 5-Phenylthio-6-brom-2,4-dinitranilin werden bei Raumtemperatur in 200 Teile Risessig/Propionsäure (17:3) eingetragen, bei 5 bis 10°C langsam mit 30,0 Teilen Nitrosylschwefelsäure (45 %ig) versetzt und 4 Stunden bei 0 bis 5°C nachgerührt. Die so erhaltene Diazolösung tropft man zu einer Lösung aus 23,6 Teilen 4-Methoxy-3-W-8-cyanäthyl-N-äthylamino-acetanilid, 200 Teilen Wasser, 40 Teilen einer 36 %igen Salzsäure und 800 Teilen Eis. Durch Zufügen von 400 Teilen einer 15 %igen Natriumacetatlösung wird die Kupplung vervollständigt. Der gebildete Farbstoff wird abgesaugt, neutral gewaschen und getrocknet. Man erhält ein dunkles Pulver, das Polyesterfasern in marineblauen Tönen echt färbt.

Herstellung der Diazokomponente:

N,

Herstellung von N-Dimethyl-N'-(6-brom-5-chlor-2,4-dinitrophenyl)formamidin

-18-

211,8 g N,N-Dimethyl-N'-(5-chlor-2,4-dinitrophenyl)-formamidin (s. Beispiel 1) werden in 600 Teilen Eisessig bei 100°C mit 136,8 Teilen Brom versetzt. Nach Zugabe des Broms wird noch 5 Stunden unter Rickfluß zum Sieden erhitzt, danach kalt abgesaugt. Der weiße Rickstand wird in 11 %iger Sodalösung angerührt. Nach dem Freisetzen des Amidins erhält man die gelbe Verbindung obiger Struktur mit einem Schmelzpunkt von 116 bis 118°C.

Herstellung von 6-Brom-2,4-dinitro-5-thiophenylanilin

191,5 Teile N,N-Dimethyl-N'-(6-brom-5-chlor-2,4-dinitro-phenyl)-formamidin werden in 600 Teilen N,N-Dimethylformamid gelöst und mit
75,2 Teilen gemahlener Pottasche versetzt. Bei Raumtemperatur werden
dann 60 Teile Thiophenol zugetropft, wobei die Temperatur auf 60°C ansteigt. Nach der Zugabe des Thiophenols wird noch 2 Stunden bei 120 bis
125°C gerührt, dann auf Wasser gegossen und mit Essigester extrahiert.
Der Essigesterextrakt wird mit Na₂SO₄ getrocknet und eingeengt. Das erhaltene Öl wird mit der 10-fachen Menge 20 %iger Schwefelsäure 3 Stunden
zum Sieden unter Rückfluß erhitzt, abgekühlt, die überstehende Säure

-19-

abdekantiert und das zurückgebliebene Öl mit der 3 bis 4-fachen Menge Methanol 2 Stunden bei 50°C gerührt, wobei Kristallisation eintritt. Man erhält auf diese Weise 105 Teile obiger Verbindung mit einem Schmelzpunkt von 138 bis 140°C.

Br.: 21,6 %

Brgef: 21,4 %.

Insder folgenden Tabelle sind weitere Farbstoffe aufgeführt, die analog Beispiel 57 erhalten wurden:

$$0_2 N - \sum_{R=X}^{NO_2} N = N - \sum_{B^3}^{B^4} N \sum_{B^2}^{B^1}$$

Bsp.	R	X	B ¹	B ²	B ³	B ⁴	Farbton auf Polyester
58 :	s-	Br	^С 2 ^Н 5	с ₂ н ₅	NHCOCH ₃	осн ₃	dunkelblau
59		Br	с ₂ н ₄ он	C ₂ H ₄ CN	инсосн 3	OCH ₃	dunkelblau
60	△ s-	Br	CH ₂ -CH=CH ₂	C ₂ H ₄ CN	инсосн 3	осн ₃	dunkelblau
61	₹ -	Cl	с ₅ н ₁₁	с ₂ н ₄ си	NHCOCH ₃	осн	dunkelblau
62	 s	Br	с ₂ н ₅	с ₂ н ₅	NECOCH ₃	Ħ	dunkelblau
63		Br	с ₂ н ₅	с ₂ н ₅	NHCOCH ₃	осн	blau
64		Cl	с ₂ н ₄ он	с ₂ н ₄ си	NHCOCH ₃	осн ₃	blau
65	so_2	Br	сн ₂ -сн=сн ₂	с ₂ н ₄ си	NHCOCH ₃	осн ₃	blau
66	⊘ _so ₂	Br	C5 ^H 11	с ₂ н ₄ си	инсосн ₃	осн	blau
67	So₂	Cl	с ₂ н ₅	с ₂ н ₅	NECOCE ₃	H	blau
68	⊘ -s-	CN	с ₂ н ₅	с ₂ н ₅	NECOCH ₃	Ħ	blau
69	_SO ₂	CN	C ₂ H ₄ CN	с ₂ н ₄ он	инсосн ₃	осн ₃	blau

0.z. 32 852

Bsp.	R	X	B ¹	B ²	в ³	в ⁴	Farb- ton auf Poly- ester
70	⟨` }-s	C1	с2н40сосн3	с ₂ н ₄ ососн ₃	NHCOCH ₃	ос ₂ н ₅	marine- blau
71	€ >- s	Br	с ₂ н ₄ ососн ₃	с ₂ н ₄ ососн ₃	necoc ₂ H ₅	och ³	n
72	C)-so ₂	Cl	CH2-CH=CH2	CH2-CH=CH2	инсосн ₃	OCH ₃	17
73	€ >s	C1	CH ₂ -C≡CH	CH ₂ -C≡CH	инсосн 3	ос ₂ н ₅	n
74	€Ŋ-so ₂	Br	c ₂ H ₄ ococH ₃	с ₂ н ₄ ососн ₃	инсосн ₃	^{ос} 2 ^н 5	n
75	⊘ -s	Cl	^С 2 ^Н 5	с ₂ н ₅	NHCOC ₂ H ₅	осн	11

. ...

Beispiel 76

14,6 Teile 5-Phenylthio-2,4-dinitranilin werden bei Raumtemperatur in 100 Teile Eisessig/Propionsäure (17:3) eingetragen, mit 15,0 Teilen Nitrosylschwefelsäure (45 proz.) bei 0 - 5 °C diazotiert und nach 4 Stunden zu der Lösung aus 8,7 Teilen 1-Phenyl-3-methyl-5-amino-pyrazol, 40,0 Teilen Eisessig und 500 Teilen Eis gegeben. Nach beendeter Kupplung wird der gebildete Farbstoff abgesaugt, mit Wasser neutral gewaschen und getrocknet.

Das braungefärbte Pulver eignet sich zum Färben und Bedrucken von Polyestergewebe, das in roten Tönen echt gefärbt wird.

Die in der Tabelle aufgeführten Farbstoffe wurden analog Beispiel 76 hergestellt:

-23-

Bsp.	x	I	6	Farbton auf Polyester
77	<u>_</u> -s-	Н	CH ₃ CH	rotstichig gelb
			HO H O	
78	⊘ -s-	Cl		rotstichig gelb
79		Br		rotstichig gelb
80	S−	CH	tt	orange
81	So ₂ -	H	•	rotstichig gelb
82	so ₂ -	C1	an .	rotstichig gelb
83	so ₂ -	- Br	•	rotatichig gelb
84	S02.	- CH	•	orange

-24-

Bsp.	х	Y	В	Farbton auf Polyester
85	⟨ }–s-	H	OH CH ₃	gelb
86	s-	Cl	. п	rotstichig gelb
87	s-	Br	17	rotstichig gelb
88	<u> </u>	CN	n	orange
89		H	н	rotstichig gelb
90	So _₹	Cl	п	rotstichig gelb
91	√So ₂	Br	Ħ	rotstichig gelb
92		CN	n	orange
93	_ s	Ħ	CH ₃ -C-CH ₂ -CONH-	gelb
94	s S	Cl	n	gelb
95	s	Br		gelb

-25-

Bap.	x	Y	В	Farbton auf Polyester
96	_s	CM	CH ₃ -C-CH ₂ -CONE-C	rotstichig gelb
97		H	17	rotstichig gelb
98		Cl	t ^o	rotstichig gelb
99	SO ₂	Br	- · · · · · · · · · · · · · · · · · · ·	rotstichig gelb
100	So ₂	CH	n	orange
101		H	H ₂ C =0	gelb
102	⟨_` >- s-	Cl	о́ ¬св ₃	gelb
103	(Br	11	gelb
104	⊘ - s-	CN	п	rotstichig gelb
105	S0 ₂ -	H	н	gelb
106	S02-	Cl	11	rotstichig gelb
107	S0 ₂ -	Br	m	rotstichig gelb
108	S02-	CN	n ·	rotstichig gelb
	1		000010/0550	

Bsp.	x	Y	В	Farbton auf Polyester
109		Ħ	H ₂ O H	gelb
110	s-	Cl	n	gelb
111	⟨\ }- s-	Br	tr'	gelb
112	(CN	H ₂ C S C ₆ H ₅	rotstichig gelb
113	50 ₂ -	H	II .	rotstichig gelb
114	S0 ₂ -	Cl		rotstichig gelb
115	so ₂ -	Br	H.C.	rotstichig gelb
116	⊘ -so ₂ -	СИ	H ₃ C CH ₃ CH ₂	rotstichig gelb
			cH ₃	

BASF Aktiengesellschaft

6

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.