用户手册

RIGOL

文件编号 UGA07018-1110 2015 年 12 月

DS1000E, DS1000D 系列数字示波器 DS1102E, DS1052E, DS1102D, DS1052D

版权信息

- 1. 北京普源精电科技有限公司版权所有。
- 2. 本公司的产品受已获准及尚在审批的中华人民共和国专利的保护。
- 3. 本手册提供的信息取代以往出版的所有资料。
- 4. 本公司保留改变规格及价格的权利。
- 注: RIGOL 是北京普源精电科技有限公司的注册商标。

一般安全概要

了解下列安全性预防措施,以避免受伤,并防止损坏本产品或与本产品连接的任何产品。为避免可能的危险,请务必按照规定使用本产品。

只有经授权人员才能执行维修程序。

避免起火和人身伤害。

使用正确的电源线。

只使用所在国家认可的本产品专用电源线。

正确插拔。

探头或测试导线连接到电压源时请勿插拔。

将产品接地。

本产品通过电源的接地导线接地。为避免电击,接地导体必须与地相连。在连接本产品的输入或输出端之前,请务必将本产品正确接地。

正确连接探头。

探头地线与地电势相同。请勿将地线连接高电压。

查看所有终端额定值。

为避免起火和过大电流的冲击,请查看产品上所有的额定值和标记说明,请在连接产品前查阅产品手册以了解额定值的详细信息。

请勿开盖操作。

外盖或面板打开时请勿运行本产品。

使用合适的保险丝。

只使用本产品指定类型和额定指标的保险丝。

避免电路外露。

电源接通后请勿接触外露的接头和元件。

怀疑产品出故障时,请勿进行操作。

如果您怀疑本产品已经出故障,可请合格的维修人员进行检查。

保持适当的通风。

请勿在潮湿环境下操作。

请勿在易燃易爆的环境下操作。

请保持产品表面的清洁和干燥。

所有型号的骚扰试验符合 A 类标准,基于 EN 61326: 1997+A1+A2+A3 的标准,但是不符合 B 类标准。

测量类别

DS1000E, DS1000D 系列数字示波器可在测量类别 I 下进行测量。

测量类别定义

测量类别 I 是在没有直接连接到主电源的电路上进行测量的。例如,对没有从主电源引出的电路,或者从市电引出,但经过了特殊保护(内部)的电路进行测量。在后一种情况下,瞬间应力会发生变化。因此,用户应了解设备的瞬间承受能力。

警告

IEC 测量类别。在 IEC 类别 I 安装条件下,可以将 HI 和 LO 输入终端连接到其线电压最大值为 300Vrms 的电路接线端。为避免电击的危险,请不要将输入端连接到线电压超过 300 Vrms 的电路。

瞬间过电压在与主电源隔离的电路中存在。DS1000E, DS1000D 系列数字示波器的设计可安全地承受偶发的最大 1000Vpk 的瞬间过电压。请不要使用本设备在瞬间过电压超过这个值的电路中测量。

安全术语和符号

本手册中的术语。以下术语可能出现在本手册中:

警告。警告性声明指出可能会危害生命安全的条件和行为。

注意。注意性声明指出可能导致此产品和其它财产损坏的条件和行为。

产品上的术语。以下术语可能出现在产品上:

危险 表示您如果进行此操作可能会立即对您造成损害。

警告 表示您如果进行此操作可能会对您造成潜在的损害。

注意 表示您如果进行此操作可能会对本产品或其它财产造成损害。

产品上的符号。以下符号可能出现在产品上:

高电压

安全警告

保护性接地端

壳体接地端

测量接地端

DS1000E, DS1000D 系列数字示波器简介

本书的说明和介绍涵盖下述 4 个型号的 DS1000E, DS1000D 系列数字示波器: DS1102E, DS1052E DS1102D, DS1052D (带逻辑分析仪)

该系列产品是一款高性能、经济型的数字示波器。其中,DS1000E 系列为双通道加一个外部触发输入通道的数字示波器。DS1000D 系列为双通道加一个外部触发输入通道以及带 16 通道逻辑分析仪的混合信号示波器(MSO)。

DS1000E, DS1000D 系列数字示波器前面板设计清晰直观,完全符合传统仪器的使用习惯,方便用户操作。为加速调整,便于测量,您可以直接使用 AUTO 键,将立即获得适合的波形显示和档位设置。此外,高达 1GSa/s 的实时采样、25GSa/s 的等效采样率及强大的触发和分析能力,可帮助用户更快、更细致地观察、捕获和分析波形。

主要特色:

- 提供双模拟通道输入,最大1GSa/s实时采样率,25GSa/s等效采样率,每通道带宽 100MHz(DS1102E、DS1102D) 50MHz (DS1052E、DS1052D)
- 16个数字通道,可独立接通或关闭,或以8个为一组接通或关闭(仅DS1000D系列)
- 5.6英寸64k色TFT LCD,波形显示更加清晰
- 具有丰富的触发功能:边沿、脉宽、视频、斜率、交替、码型和持续时间触发(仅 DS1000D系列)
- 独一无二的可调触发灵敏度,适合不同场合的需求
- 自动测量22种波形参数,具有自动光标跟踪测量功能
- 独特的波形录制和回放功能
- 精细的延迟扫描功能
- 内嵌FFT功能
- 拥有4种实用的数字滤波器: LPF, HPF, BPF, BRF
- Pass/Fail检测功能,可通过光电隔离的Pass/Fail端口输出检测结果
- 多重波形数学运算功能
- 提供功能强大的上位机应用软件UltraScope
- 标准配置接口: USB Device, USB Host, RS232, 支持U盘存储和PictBridge打印

RIGOL

- 独特的锁键盘功能,满足工业生产需要
- 支持远程命令控制
- 嵌入式帮助菜单,方便信息获取
- 多国语言菜单显示,支持中英文输入
- 支持U盘及本地存储器的文件存储
- 模拟通道波形亮度可调
- 波形显示可以自动设置(AUTO)
- 弹出式菜单显示,方便操作

目 录

	一般多	安全概要	11
	DS100	00E, DS1000D 系列数字示波器简介	V
第	1 章	初级操作指南	1-1
	一般性	挂检查	1-2
	初步了	了解 DS1000E, DS1000D 系列面板和用户界面	1-3
	外观片	7寸	1-7
	功能核	6	1-8
	探头衤	卜偿	1-10
	使用数	女字探头(仅 DS1000D 系列)	1-11
	波形显	显示的自动设置	1-13
	初步了	「解垂直系统	1-14
	初步了	「解水平系统	1-16
	初步了	「解触发系统	1-18
第	2 章	高级操作指南	2-1
	设置组	垂直系统	2-2
	设置才	〈平系统	2-26
	设置魚	虫发系统	2-31
	设置郑	· · · · · · · · · · · · · · · · · · ·	2-48
	设置』	显示系统	2-52
	存储和	口调出	2-54
	设置轴	甫助系统	2-62
	自动测	· · · · · · · · · · · · · · · · · · ·	2-81
	光标测	· 量	2-88
	使用护	执行按键	2-94
第	3 章	使用实例	3-1
	例一:	测量简单信号	3-1
		观察正弦波信号通过电路产生的延迟和畸变	
	例三:	捕捉单次信号	3-3
	例四:	减少信号上的随机噪声	3-4
	例五:	应用光标测量	3-6
	例六:	X-Y 功能的应用	3-8
	例七:	视频信号触发	3-10
	例八:	使用光标测定 FFT 波形	3-12
© :	2008 RIG	OL Technologies, Inc.	VII

RIGOL

		通过/失败测试数字信号触发	
第	4 章	故障排除	4-1
第	5 章	性能指标	5-1
		观格	
	一般打	支术规格	5-5
第	6 章	附录	6-1
	附录 /	A: DS1000E, DS1000D 系列数字示波器附件	6-1
	附录I	B: 保修概要	6-2
	附录(C: 保养和清洁维护	6-3
	附录[D: 联系我们	6-4
索	引		1

第 1 章 初级操作指南

本章将围绕以下几个方面为您介绍:

- 一般性检查
- 初步了解 DS1000E, DS1000D 系列面板和用户界面
- 外观尺寸
- 功能检查
- 探头补偿
- 使用数字探头(仅 DS1000D 系列)
- 波形显示的自动设置
- 初步了解垂直系统
- 初步了解水平系统
- 初步了解触发系统

一般性检查

当您得到一台崭新的 DS1000E, DS1000D 系列数字示波器时,建议您按以下步骤对仪器进行检查。

1. 检查是否存在因运输造成的损坏。

如果发现包装纸箱或泡沫塑料保护垫严重破损,请先保留,直到整机和附件通过电性和机械性测试。

2. 检查整机。

如果发现仪器外观破损,仪器工作不正常,或未能通过性能测试,请和负责此业务的 **RIGOL** 经销商或 **RIGOL** 的当地办事处联系。

如果因运输造成仪器的损坏,请注意保留包装,通知运输部门和负责此业务的 **RIGOL** 经销商。**RIGOL** 会为您安排维修或更换。

3. 检查附件。

关于提供的附件明细,在本说明书附录部分的"DS1000E, DS1000D 系列数字示波器附件"一节已经进行说明。您可以参照此项说明检查附件是否有缺失。如果发现附件缺少或损坏,请和负责此业务的 **RIGOL** 经销商或 **RIGOL** 的当地办事处联系。

初步了解 DS1000E, DS1000D 系列面板和用户界面

当您得到一款崭新的 DS1000E, DS1000D 系列数字示波器时,需要对示波器的操作面板有一定的了解。本章对于 DS1000E, DS1000D 系列的前后面板使用及功能做简单的描述和介绍,使您在最短的时间内熟悉该系列产品的使用。

1. 前面板

DS1000E, DS1000D 系列数字示波器向用户提供简单而功能明晰的前面板,以进行基本的操作。面板上包括旋钮和功能按键。旋钮的功能与其它示波器类似。显示屏右侧的一列 5 个灰色按键为菜单操作键(自上而下定义为 1 号至 5 号)。通过它们,您可以设置当前菜单的不同选项;其它按键为功能键,通过它们,您可以进入不同的功能菜单或直接获得特定的功能应用。

● DS1000E 系列前面板图:

● DS1000D 系列前面板图:

图 1-1 DS1000E, DS1000D 系列示波器前面板

图 1-2 DS1000E, DS1000D 系列前面板使用说明图

2. 后面板

图 1-3 DS1000E, DS1000D 系列后面板

图 1-4 DS1000E, DS1000D 系列后面板使用说明图

DS1000E, DS1000D 系列数字示波器的后面板主要包括以下几部分:

- ① Pass/Fail 输出端口: 通过/失败测试的检测结果可通过光电隔离的 Pass/Fail 端口输出。
- ② RS232接口: 为示波器与外部设备的连接提供串行接口。
- ③ USB Device 接口: 当示波器作为"从设备"与外部 USB 设备连接时,需要通过该接口传输数据。例如: 连接 PictBridge 打印机与示波器时,使用此接口。

本书表示定义:

本书对于按键的文字表示与面板上按键的标识相同。

值得注意的是,MENU 功能键的标识用一四方框包围的文字所表示,如 Measure 代表前面板上的一个标注着 Measure 文字的透明功能键:

标识为◎的多功能旋钮,用 • 表示;

两个标识为 POSITION 的旋钮,用 ②POSITION 表示:

两个标识为 SCALE 的旋钮,用 ③SCALE 表示:

标识为 LEVEL 的旋钮,用 ②LEVEL 表示:

菜单操作键的标识用带阴影的文字表示,如 存储类型 ,表示 Storage 菜单中的"存储类型"选项。

3. 显示界面

图 1-5 显示界面说明图(仅模拟通道打开)

图 1-6 显示界面说明图(模拟和数字通道同时打开)

外观尺寸

图 1-7 正视图

图 1-8 侧视图

功能检查

做一次快速功能检查,以核实本仪器运行是否正常。请按如下步骤进行:

1. 接通仪器电源

接通电源。电线的供电电压为 100 伏交流电至 240 伏交流电,频率为 45Hz 至 440Hz。接通电源后,仪器将执行所有自检项目,自检通过后出现开机画面。按 Storage 按钮,选择 存储类型 ,旋转多功能旋钮选中 出厂设置 菜单并按下多功能旋钮,此时按 调出 菜单即可。

警告:为避免电击,请确认示波器已经正确接地。

2. 示波器接入信号

DS1000E 系列为双通道输入加一个外部触发输入通道的数字示波器。

DS1000D 系列为双通道输入加一个外部触发输入通道以及十六路数字输入通道的数字示波器。

请按照如下步骤接入信号:

① 用示波器探头将信号接入通道 1 (CH1): 将探头连接器上的插槽对准 CH1 同轴电缆插接件 (BNC) 上的插口并插入, 然后向右旋转以拧紧探头,完成探头与通道的连接后,将数字探头上的开关设定为 10X。

图 1-10 探头补偿连接

② 示波器需要输入探头衰减系数。此衰减系数将改变仪器的垂直档位比例,以使得测量结果正确反映被测信号的电平(默认的探头菜单衰减系数设定值为 1X)。

设置探头衰减系数的方法如下:按 CH1 功能键显示通道 1 的操作菜单,应用与探头项目平行的 3 号菜单操作键,选择与您使用的探头同比例的衰减系数。如下图所示,此时设定的衰减系数为 10X。

- ③ 把探头端部和接地夹接到探头补偿器的连接器上。按 **AUTO** (**自动设置**) 按钮。 几秒钟内,可见到方波显示。
- ④ 以同样的方法检查通道 2 (CH2)。按 OFF 功能按钮或再次按下 CH1 功能按 钮以关闭通道 1,按 CH2 功能按钮以打开通道 2,重复步骤 2 和步骤 3。

注意: 探头补偿连接器输出的信号仅作探头补偿调整之用,不可用于校准。

探头补偿

在首次将探头与任一输入通道连接时,进行此项调节,使探头与输入通道匹配。未经补偿或补偿偏差的探头会导致测量误差或错误。若调整探头补偿,请按如下步骤进行:

1. 将示波器中探头菜单衰减系数设定为 **10X**,将探头上的开关设定为 **10X**,并将示波器探头与通道 1 连接。如使用探头钩形头,应确保探头与通道接触紧密。

将探头端部与探头补偿器的信号输出连接器相连,基准导线夹与探头补偿器的地线连接器相连,打开通道1,然后按下AUTO键。

2. 检查所显示波形的形状。

- 3. 如必要,用非金属质地的改锥调整探头上的可变电容,直到屏幕显示的波形如上 图"补偿正确"。
- 4. 必要时,重复以上步骤。

警告:为避免使用探头时被电击,请确认探头的绝缘导线完好。连接高压源时请不要接触探头的金属部分。

使用数字探头(仅 DS1000D 系列)

- 1. 如有必要,可切断被测电路的电源,以防止在连接探头时,因不小心把两条线短接而造成电路损坏。由于探头上没有电压,因此示波器电源可保持连接状态。
- 2. 把数字探头电缆连接到 DS1000D 系列数字示波器前面板的 D15-D0 数字信号输入端。数字探头电缆带有标识,因此只能沿一个方向连接。在连接电缆时,不必切断示波器电源。

图 1-14 数字探头组件与示波器连接示意图

注意: 只可使用 DS1000D 系列数字示波器附带的、**RIGOL** 产品的型号为 FC1868、LH1116、TC1100 和 LC1150 的数字探头套件。

3. 把探钩连到一条探头线上,要确保连接地线。

图 1-15 数字探头的探钩示意

4. 把探钩连到需要测试的电路结点。

图 1-16 连接探钩到地测试点

5. 用探钩连接通道的接地线。

图 1-17 将探钩接地

波形显示的自动设置

DS1000E, DS1000D 系列数字示波器具有自动设置的功能。根据输入的信号,可自动调整电压倍率、时基以及触发方式,使波形显示达到最佳状态。应用自动设置要求被测信号的频率大于或等于50Hz,占空比大于1%。

使用自动设置:

- 1. 将被测信号连接到信号输入通道;
- 2. 按下 AUTO 按键。

示波器将自动设置垂直、水平和触发控制。如需要,可手动调整这些控制使波形显示 达到最佳。

初步了解垂直系统

如下图所示,在**垂直控制区(VERTICAL)**有一系列的按键、旋钮(其中,仅 DS1000D 系列有 LA 按键)。下面的练习逐步引导您熟悉垂直设置的使用。

图 1-18 垂直控制系统

1. 使用垂直^{②POSITION}旋钮控制信号的垂直显示位置。

当转动垂直^②POSITION 旋钮,指示通道地(GROUND)的标识跟随波形而上下移动。

测量技巧

如果通道耦合方式为 DC,您可以通过观察波形与信号地之间的差距来快速测量信号的直流分量。

如果耦合方式为 AC, 信号里面的直流分量被滤除。这种方式方便您用更高的灵敏度显示信号的交流分量。

双模拟通道垂直位置恢复到零点快捷键

旋动垂直^②POSITION 旋钮不但可以改变通道的垂直显示位置,更可以通过按下该旋钮作为设置通道垂直显示位置恢复到零点的快捷键。

2. 改变垂直设置,并观察因此导致的状态信息变化。

按 CH1、CH2、MATH、REF、LA (仅 DS1000D 系列),屏幕显示对应通 道的操作菜单、标志、波形和档位状态信息。按 OFF 键关闭当前选择的通道。

Coarse/Fine (粗调/微调) 快捷键

可通过按下垂直**②SCALE**旋钮作为设置输入通道的粗调/微调状态的快捷键,调节该旋钮即可粗调/微调垂直档位。

初步了解水平系统

如下图所示,在**水平控制区(HORIZONTAL)**有一个按键、两个旋钮。下面的练习逐渐引导您熟悉水平时基的设置。

图 1-19 水平控制区

1. 使用水平^{⑤SCALE} 旋钮改变水平档位设置,并观察因此导致的状态信息变化。

Delayed(延迟扫描)快捷键

水平 ②SCALE 旋钮不但可以通过转动调整 "s/div (秒/格)",更可以按下此按钮切换到延迟扫描状态。

*注:示波器型号不同,其水平扫描速度也有差别。

2. 使用水平②POSITION 旋钮调整信号在波形窗口的水平位置。

当转动水平@POSITION 旋钼调节触发位移时,可以观察到波形随旋钼而水平移动。

触发点位移恢复到水平零点快捷键

水平**②POSITION**旋钮不但可以通过转动调整信号在波形窗口的水平位置,更可以按下该键使触发位移(或延迟扫描位移)恢复到水平零点处。

3. 按 MENU 按键,显示 TIME 菜单。

在此菜单下,可以开启/关闭延迟扫描或切换 Y-T、X-Y 和 ROLL 模式,还可以将水平触发位移复位。

名词解释

触发位移:指实际触发点相对于存储器中点的位置。转动水平**②POSITION**旋钮,可水平移动触发点。

初步了解触发系统

如下图所示,在**触发控制区(TRIGGER)**有一个旋钮、三个按键。下面的练习逐渐引导您熟悉触发系统的设置。

图 1-20 触发控制区

1. 使用 ②LEVEL 旋钮改变触发电平设置。

转动 ②LEVEL 旋钮,可以发现屏幕上出现一条桔红色的触发线以及触发标志,随旋钮转动而上下移动。停止转动旋钮,此触发线和触发标志会在约5秒后消失。在移动触发线的同时,可以观察到在屏幕上触发电平的数值发生了变化。

触发电平恢复到零点快捷键

旋动垂直**©LEVEL**旋钮不但可以改变触发电平值,更可以通过按下该旋钮作为设置触发电平恢复到零点的快捷键。

2. 使用 MENU 调出触发操作菜单(见下图),改变触发的设置,观察由此造成的状态变化。

图 1-21

- ·按1号菜单操作按键,选择 边沿触发。
- ·按2号菜单操作按键,选择"信源选择"为 CH1。
- ·按3号菜单操作按键,设置"边沿类型"为 🛕 。
- ·按 4 号菜单操作按键,设置"触发方式"为 自动。
- ·按5号菜单操作按键,进入"触发设置"二级菜单,对触发的耦合方式,触发灵敏度和触发释抑时间进行设置。
- 注: 改变前三项的设置会导致屏幕右上角状态栏的变化。
- 3. 按 50% 按键,设定触发电平在触发信号幅值的垂直中点。
- 4. 按 FORCE 按键:强制产生一个触发信号,主要应用于触发方式中的"普通"和"单次"模式。

第 2 章 高级操作指南

到目前为止,您已经初步了解了 DS1000E, DS1000D 系列数字示波器的垂直控制区 (VERTICAL)、水平控制区 (HORIZONTAL) 和触发系统 (TRIGGER) 的操作,以及前面板各功能区和按键、旋钮的作用。通过前一章的介绍,用户应该了解通过观察状态栏来确定示波器设置的变化,如果您还没有熟悉上述的操作和方法,建议您阅读第一章"初级操作指南"。

本章将围绕以下几个方面为您介绍:

- 设置垂直系统 (CH1、CH2、MATH、REF、LA (仅 DS1000D 系列)、OFF 、垂直②POSITION、垂直③SCALE)
- 设置水平系统 (MENU 、水平®POSITION、水平®SCALE)
- 设置触发系统 (⑤LEVEL、MENU 、50% 、FORCE)
- 设置采样系统 (Acquire)
- 设置显示系统 (Display)
- 存储和调出 (Storage)
- 设置辅助系统 (Utility)
- 自动测量 (Measure)
- 光标测量 (Cursor)
- 使用执行按键 (AUTO 、 RUN/STOP)

建议您详细阅读本章,了解DS1000E, DS1000D系列数字示波器多样的测量功能和其它操作方法。

设置垂直系统

通道设置

DS1000E, DS1000D 系列提供双通道输入。每个通道都有独立的垂直菜单。每个项目都按不同的通道单独设置。

按 CH1 或 CH2 功能键,系统将显示 CH1 或 CH2 通道的操作菜单,说明见下表 (以 CH1 为例)。

图 2-1

表 2-1 通道设置菜单

功能菜单	设定	说明
耦合	直流 交流 接地	通过输入信号的交流和直流成分 阻挡输入信号的直流成分 断开输入信号
带宽限制	打开 关闭	限制带宽至 20MHz,以减少显示噪音 满带宽
探头	1X 5X 10X 50X 100X 500X 1000X	根据探头衰减因数选取相应数值,确保 垂直标尺读数准确
数字滤波		设置数字滤波(见表 2-4)
(下一页)	1/2	进入下一页菜单(以下均同,不再说明)

图 2-2

表 2-2 通道设置菜单

(上一页)	2/2	返回上一页菜单(以下均同,不再说明)
档位调节	粗调 微调	粗调按 1-2-5 进制设定垂直灵敏度 微调是指在粗调设置范围之内以更小 的增量改变垂直档位
反相	打开 关闭	打开波形反向功能 波形正常显示

1. 设置通道耦合

以 CH1 通道为例,被测信号是一含有直流偏置的正弦信号。

按 CH1 → 耦合 → 交流 ,设置为交流耦合方式,被测信号含有的直流分量被阻隔,波形显示如下图所示。

图 2-3 交流耦合设置

按 CH1 → 耦合 → 直流 ,设置为直流耦合方式,被测信号含有的直流分量和交流分量都可以通过,波形显示如下图所示。

图 2-4 直流耦合设置

按 CH1 → 耦合 → 接地 ,设置为接地方式,信号含有的直流分量和交流分量都被阻隔,波形显示如下图所示。

图 2-5 接地耦合设置

2. 设置通道带宽限制

以 CH1 通道为例,被测信号是一含有高频振荡的脉冲信号。

接 CH1 \rightarrow 带宽限制 \rightarrow 关闭 ,设置带宽限制为关闭状态,被测信号含有的高频分量可以通过,波形显示如下图所示。

图 2-6 关闭带宽限制

按 CH1 → **带宽限制** → 打开 ,设置带宽限制为打开状态,被测信号含有的大于 20MHz 的高频分量被阻隔,波形显示如下图所示。

3. 调节探头比例

为了配合探头的衰减系数,需要在通道操作菜单中调整相应的探头衰减比例系数。如探头衰减系数为 10:1,示波器输入通道的比例也应设置成 10X ,以避免显示的档位信息和测量的数据发生错误。下图所示为应用 1000:1 探头时的设置及垂直档位的显示。

设置探头衰减系数

表	2-3	探头衰减系数菜单
表	2-3	採头衰减系数菜单

探头衰减系数	对应菜单设置
1:1	1X
5:1	5X
10:1	10X
50:1	50X
100:1	100X
500:1	500X
1000:1	1000X

4. 数字滤波设置

DS1000E, DS1000D 系列提供 4 种实用的数字滤波器(低通滤波器、高通滤波器、带通滤波器和带阻滤波器)。通过设定带宽范围,能够滤除信号中特定的波段频率,从而达到很好的滤波效果。

按 CH1 → 数字滤波 ,系统将显示 FILTER 数字滤波功能菜单,旋动多功能旋钮 (�) 选择数字滤波类型和频率上限、下限值,设置合适的带宽范围,如下图所示。

图 2-9 关闭数字滤波

图 2-11 表 2-4 滤波器设置菜单

Filter
数字滤波
美闭
滤波类型
t□→f
频率上限
24 50MU=
频率下限
₩
24.50MHz
1

功能菜单	设定	说明
数字滤波	关闭 打开	关闭数字滤波器 打开数字滤波器
滤波类型	† † † † † † † † † † † † † † † † † † †	设置滤波器为低通滤波 设置滤波器为高通滤波 设置滤波器为带通滤波 设置滤波器为带阻滤波
频率上限	い <上限频率>	多功能旋钮(4)设置频率上限
频率下限	も <下限频率>	多功能旋钮(4)设置频率下限
£		返回上一级菜单(以下均同,不再说明)

5. 档位调节设置

垂直档位调节分为粗调和微调两种模式。垂直灵敏度的范围是 2mV/div 至 10V/div(探头比例设置为 1X)。

粗调是以 1-2-5 步进序列调整垂直档位,即以 2mV/div、5mV/div、10mV/div、20mV/div......10V/div 方式步进。微调是指在粗调设置范围之内以更小的增量进一步调整垂直档位。如果输入的波形幅度在当前档位略大于满刻度,而应用下一档位波形显示幅度稍低,可以应用微调改善波形显示幅度,以利于观察信号细节。

操作技巧

切换粗调/微调不但可以通过此菜单操作,更可以通过按下垂直^{②SCALE}旋钮作为设置输入通道的粗调/微调状态的快捷键。

6. 波形反相的设置

波形反相设置,可将信号相对地电位翻转 180 度后再显示。

图 2-13 未反相的波形

图 2-14 反相的波形

数学运算

数学运算(MATH)功能可显示 CH1、CH2 通道波形相加、相减、相乘以及 FFT 运算的结果。数学运算的结果可通过栅格或游标进行测量。

按 MATH 功能键,系统将进入数学运算界面,如下图所示。

图 2-15 数学运算界面

图 2-16 表 2-5 数学运算菜单说明

Math
操作
A+B
信源A
CH1
信源B
CH2
反相
美闭

功能菜单	设定	说明
	A+B	信源 A 波形与信源 B 波形相加
操作	A -B	信源 A 波形减去信源 B 波形
1朱作	A×B	信源 A 波形与信源 B 波形相乘
	FFT	FFT 数学运算
信源 A	CH1	设定信源 A 为 CH1 通道波形
百分 A	CH2	设定信源 A 为 CH2 通道波形
信源 B	CH1	设定信源 B 为 CH1 通道波形
行 /	CH2	设定信源 B 为 CH2 通道波形
反相	打开	打开波形反相功能
	关闭	关闭波形反相功能

1. FFT 频谱分析

使用 FFT (快速傅立叶变换) 数学运算可将 Y—T 方式下的时域信号转换成频域信号, 其中, 水平轴代表频率, 垂直轴代表 dBVrms 或 Vrms。使用 FFT 函数可以发现串扰问题和由于放大器非线性造成的模拟波形失真问题, 也可用于调节模拟滤波器。

该运算可观察的信号类型有如下几种:

- 测量系统中谐波含量和失真
- 表现直流电源中的噪声特性
- 分析振动

按 MATH → 操作 → FFT , 进入下面所示菜单。

图 2-17 表 2-6 FFT 操作菜单说明

FFT
操作
FFT
信源选择
CH1
窗函数
Rectangle
显示
分屏
垂直刻度
VRMS

功能菜单	设定	说明
	A+B	信源 A 波形与信源 B 波形相加
操作	A -B	信源 A 波形减去信源 B 波形
1条11-	$A \times B$	信源 A 波形与信源 B 波形相乘
	FFT	FFT 数学运算
台湾水型	CH1	设定 CH1 为运算波形
信源选择	CH2	设定 CH2 为运算波形
	Rectangle	设定 Rectangle 窗函数
窗函数	Hanning	设定 Hanning 窗函数
图图数 	Hamming	设定 Hamming 窗函数
	Blackman	设定 Blackman 窗函数
显示	分屏	半屏显示 FFT 波形
	全屏	全屏显示 FFT 波形
垂直刻度	Vrms	设定以 Vrms 为垂直刻度单位
亜 旦 刈 及	dBVrms	设定以 dBVrms 为垂直刻度单位

FFT 操作技巧

具有直流成分或偏差的信号会导致 FFT 波形成分的错误或偏差。为减少直流成分可以选择**交流**耦合方式。

为减少重复或单次脉冲事件的随机噪声以及混叠频率成分,可设置示波器的获取模式 为**平均获取**方式。

如果在一个大的动态范围内显示 FFT 波形,建议使用 dBVrms 垂直刻度。dB 刻度应用对数方式显示垂直幅度大小。

2. 选择 FFT 窗口

在假设 Y—T 波形是不断重复的条件下,示波器对有限长度的时间记录并进行 FFT 变换。这样当周期为整数时,Y—T 波形在开始和结束处波形的幅值相同,波形就不会产生中断。但是,如果 Y—T 波形的周期为非整数时,就会引起波形开始和结束处的波形幅值不同,从而使连接处产生高频瞬态中断。在频域中,这种效应称为泄漏。因此为避免泄漏的产生,需要在原波形上乘以一个窗函数,强制开始和结束处的值为 0。

表 2-7 FFT 窗函数说明

FFT 窗	特点	最合适的测量内容
Rectangle	具有最好的频率分辨率,最 差的幅度分辨率。与不加窗 的状况基本类似	暂态或短脉冲,信号电平在此前后大致相等;频率非常相近的等幅正弦波;具有变化比较缓慢波谱的宽带随机噪声
Hanning	与矩形窗比,具有较好的频 率分辨率,较差的幅度分辨 率	正弦 周期 窄带随机噪声
Hamming	Hamming 窗的频率分辨率 稍好于 Hanning 窗	暂态或短脉冲,信号电平在此前后相差很大
Blackman	最好的幅度分辨, 最差的频 率分辨率	主要用于单频信号,寻找更高次谐波

名词解释

FFT 分辨率: 定义为采样率与运算点的商。在运算点数固定时,采样率越低 FFT 分辨率就越好。

奈奎斯特频率: 对最高频率量为 F 的波形,必须使用至少 2F 的采样率才能重建原波形。它也被称为奈奎斯特判则,这里 F 是奈奎斯特频率,而 2F 是奈奎斯特率。

REF 功能

在实际测试过程中,用 DS1000E, DS1000D 系列数字示波器测量观察有关组件的波形,可以把波形和参考波形样板进行比较,从而判断故障原因。此法在具有详尽电路工作点参考波形条件下尤为适用。

按 REF 功能键,系统将显示 REF 功能的操作菜单,说明见下表。

图 2-18 表 2-8 选择内部存储位置

REF
信源选择
CH1
存储位置
内部
保存
导入/导出
复位

功能菜单	设定	说明
	CH1	选择 CH1 作为参考通道
信源选择	CH2	选择 CH2 作为参考通道
情 你 起拜	MATH/FFT	选择 MATH/FFT 作为参考通道
	LA	选择 LA 作为参考通道(仅 DS1000D 系列)
存储位置	内部	选择内部存储位置
	外部	选择外部存储位置
保存		将 REF 波形保存到内部存储区
导入/导出		进入导入/导出菜单(见表 2-10)
复位		复位 REF 波形

图 2-19 表 2-9 选择外部存储位置

REF
信源选择
CH1
存储位置
外部
保存
春入
复位

功能菜单	设定	说明
	CH1	选择 CH1 作为参考通道
信源选择	CH2	选择 CH2 作为参考通道
1日/苏丛1年	MATH/FFT	选择 MATH/FFT 作为参考通道
	LA	选择 LA 作为参考通道(仅 DS1000D 系列)
方性原思	内部	选择内部存储位置
存储位置	外部	选择外部存储位置
保存		将 REF 波形保存到外部存储区
导入		进入导入菜单(见表 2-14)
复位		复位 REF 波形

1. 导入/导出操作

按 REF → 导入/导出 ,进入下面所示菜单。

图 2-20 表 2-10 导入/导出菜单说明

功能菜单	设定	说明
浏览器	路径 目录 文件	切换文件系统显示的路径、目录和文件
导出		将用户保存到内部存储区的 REF 文件导出 到外部存储器(见表 2-11)
导入		将用户选定的 REF 文件导入到内部存储区
删除文件		删除用户选定文件

图 2-21 导入导出界面

2. 导出操作

按 REF → 导入/导出 → 导出 ,进入下面所示菜单。

图 2-22 表 2-11 导入菜单说明

Export
<u></u>
$\overline{}$
保存
1_

功能菜单	设定	说明
†		文件名称的输入焦点向上移动
+		文件名称的输入焦点向下移动
×		删除文件名称字符串或拼音字符串 (中文输入)中高亮显示的字符
保存		执行导出文件操作

图 2-23 导出操作界面

3. 保存

按 REF → 保存 ,进入下面所示菜单。

图 2-24 表 2-12 保存菜单说明

功能菜单	设定	说明
浏览器	路径 目录 文件	切换文件系统显示的路径、目录和 文件
新建文件 (目录)		文件系统焦点在路径和文件时,该 键用来新建文件,否则为新建目录 操作(见表 2-13)
删除文件		删除用户选定文件

图 2-25 保存操作界面

新建文件(或新建目录)操作

按 REF → 保存 → 新建文件 (或 新建目录),进入下面所示菜单。

图 2-26 表 2-13 新建文件菜单说明

New File
$\overline{}$
保存
£

功能菜单	设定	定 说明	
Ť		文件名称的输入焦点向上移动	
+		文件名称的输入焦点向下移动	
×		删除文件名称字符串或拼音字 符串(中文输入)中高亮显示 的字符	
保存		执行保存文件操作	

© 2008 RIGOL Technologies, Inc.

4. 导入文件操作

按 REF → 导入 ,进入下面所示菜单。

图 2-28 表 2-14 导入菜单说明

功能菜单	设定	说明
浏览器	路径 目录 文件	切换文件系统显示的路径、目 录和文件
导入		将用户选定的 REF 文件导入到 内部存储区

图 2-29 导入操作界面

5. 参考波形显示

图 2-30 参考波形效果图

操作说明

- 1. 按下 REF 菜单按钮,显示参考波形菜单。
- 2. 按1号菜单操作键选择参考波形的 CH1 、 CH2 、 MATH 、 FFT 或 LA (仅 DS1000D系列)通道。
- 3. 旋转垂直**②POSITION**和垂直**③SCALE**旋钮调整参考波形的垂直位置和档位至适合的位置。
- 4. 按2号菜单操作键选择波形参考的存储位置。
- 5. 按3号菜单操作键保存当前屏幕波形到内部或外部存储区作为波形参考。

注意:参考波形不适用于X—Y方式存储。

LA 通道的设置(仅 DS1000D 系列)

DS1000D 系列混合信号示波器 (MSO) 配备 16 通道逻辑分析仪,提供 16 路逻辑通道,可配合 2 路模拟通道,实现混合信号的测量。您可以打开(或关闭)单个通道或一组(8 个)通道,以及设置波形的大小。改变数字通道在屏幕上的显示位置以及选择门限类型。

按 LA 功能键,系统将显示 LA 通道的操作菜单,说明见下表。

图 2-31 表 2-15 LA 操作菜单说明

功能菜单	设定	说明
D7-D0		设置通道组 D7-D0(见表 2-16)
D15-D8		设置通道组 D15-D8(见表 2-17)
当前通道	V <d15-d0></d15-d0>	多功能旋钮(①)选择当前可被移动的数字通道
门限类型	TTL CMOS ECL 用户定义	选择所有数字通道的门限类型,用户定义 类型时可以设置门限电平值
用户定义	も <门限电平>	多功能旋钮(心)设置用户定义类型的门限电平值

1. 显示和重新排列数字通道

- (1) 按 LA → D7-D0 或 D15-D8 , 进入通道组设置功能菜单, 开启或关闭数字通 道的显示。
- (2) 按 LA → 当前通道 , 令多功能旋钮 (♥) 选择数字通道有效, 旋动多功能旋 钮洗择数字通道, 所洗通道号在显示屏以红色显示。
- (3) 旋转垂直^②POSITION, 所选通道在显示屏上重新定位。

菜单显示如下图所示。

图 2-32 打开和排列数字通道

2. 设置数字通道的门限类型

按 LA → 门限类型 ,选择预设的门限类型或 用户定义 设置您自己的门限电平。 菜单显示如下图所示。

图 2-33 设置数字通道门限类型

设置通道组

按 LA → D7-D0 或 D15-D8, 系统显示 D7-D0 或 D15-D8 通道组设置功能菜单, 独立打开或关闭单个通道或以8个为一组控制通道的开关和设置波形大小。

图 2-34 表 2-16 数字通道设置菜单

D7-D0
◆通道设置
D7-D0
全部关闭
波形大小
复位
1

功能菜单	设定	说明	
通道设置	D7-D0	打开或关闭 D7-D0 内的单个通道	
D7-D0	全部打开 全部关闭	强制打开或关闭 D7-D0 内的 8 个通道	
波形大小	디	全屏显示 8 个通道 全屏显示 16 个通道	
复位		复位 D7-D0 通道组中的波形	

图 2-35 表 2-17 数字通道设置菜单

D15-D8
通道设置
D15-D8
全部关闭
波形大小
复位
£

功能菜单	设定	说明	
通道设置	D15-D8	打开或关闭 D15-D8 内的单个通道	
D15-D8	全部打开 全部关闭	强制打开或关闭 D15-D8 内的 8 个通道	
波形大小	디	全屏显示 8 个通道 全屏显示 16 个通道	
复位		复位 D15-D8 通道组中的波形	

1. 开启和关闭单个数字通道:

按 LA → D7-D0 → 通道设置, 旋动多功能旋钮(**\vertical**), 选择要开启或关闭的 数字通道,按下 通道设置 1号菜单操作键或多功能旋钮开启或关闭通道。在通道开启 时,通道设置菜单操作键中的方框被填充(■):通道关闭时方框未被填充(■)。

图 2-36 打开和关闭数字通道

2. 强制开启或关闭所有数字通道:

按 LA → D7-D0 → D7-D0 → 全部打开 或 全部关闭 , 或 D15-D8 → D15-D8 → 全部打开 或 全部关闭 ,将强制打开或关闭所选通道组中的所有数字通道。打开或关闭一个通道,旋动多功能旋钮 (�) 选择所需通道,然后按下 通道设置 1号菜单操作键或多功能旋钮。

3. 设置数字通道波形大小:

4. 复位数字通道波形显示:

按 LA \rightarrow D7-D0 \rightarrow 复位 ,或 D15-D8 \rightarrow 复位 ,设置数字通道显示复位。

选择和关闭通道

DS1000E, DS1000D 系列的 CH1、CH2 以及 LA(仅 DS1000D 系列)为信号输入通道。此外,对于数学运算(MATH)和(REF)的显示和操作也是按通道等同处理。即在处理 MATH 和 REF 时,也可以理解为是在处理相对独立的通道。

欲打开或选择某一通道时,只需按下相应的通道按键,按键灯亮说明该通道已被激活。若希望关闭某个通道,再次按下相应的通道按键或按下 OFF 即可,按键灯灭即说明该通道已被关闭。

各通道的显示状态会在屏幕的左下角标记出来,可快速判断出各通道的当前状态,说明见下表。

通道类型	通道状态	状态标志
通道 1(CH1)	打开 当前选中 关闭	CH1 (黑底黄字) CH1 (黄底黑字) 无状态标志
通道 2 (CH2)	打开 当前选中 关闭	CH2 (黑底蓝字) CH2 (蓝底黑字) 无状态标志
数学运算(MATH)	打开 当前选中 关闭	Math (黑底紫字) Math (紫底黑字) 无状态标志

表 2-18 通道打开和关闭的状态标志

注:对LA进行操作时,将关闭或打开所有数字通道。

垂直位移和垂直档位旋钮的应用

- 1. 垂直**②POSITION**旋钮可调整所有通道(包括数学运算,REF 和 LA)波形的垂直位置(DS1000E 和 DS1000D 系列均适用)。按下该旋钮,可使选中通道的位移立即回归零(DS1000E 和 DS1000D 系列均适用,但不包括数字通道)。
- 3. 需要调整的通道(包括数学运算, LA 和 REF)只有处于选中的状态(见上节所述), 垂直@POSITION和垂直@SCALE旋钮才能调节该通道。REF(参考波形)的垂直档位调整对应其存储位置的波形设置。
- 4. 调整通道波形的垂直位置时,屏幕左下角将会显示垂直位置信息。例如: POS: 32.4mV ,显示的文字颜色与通道波形的颜色相同,以"V"(伏)为单位。

设置水平系统

水平系统设置可改变仪器的水平刻度、主时基或延迟扫描(Delayed)时基;调整触发在内存中的水平位置及通道波形(包括数学运算)的水平位置;也可显示仪器的采样率。

按水平系统的 MENU 功能键,系统将显示水平系统的操作菜单,说明见下表。

图 2-37 表 2-19 水平系统设置菜单

Time
延迟扫描
美闭
时基
Y-T
采样率
100.0MS
触发位移
复位

功能菜单	设定	说明
延迟扫描	打开 关闭	进入 Delayed 波形延迟扫描 关闭延迟扫描
	Y-T	Y-T方式显示垂直电压与水平时间 的相对关系
时基	X-Y	X-Y 方式在水平轴上显示通道 1 幅值, 在垂直轴上显示通道 2 幅值
	Roll	Roll 方式下示波器从屏幕右侧到左 侧滚动更新波形采样点
采样率		显示系统采样率
触发位移 复位		调整触发位置至中心零点

在水平系统设置过程中,各参数的当前状态在屏幕中会被标记出来,方便用户观察和 判断,如下图所示。

水平设置标志说明

标志说明:

- ①. 表示当前的波形视窗在内存中的位置。
- ②. 表示触发点在内存中的位置。
- ③. 表示触发点在当前波形视窗中的位置。
- ④. 水平时基(主时基)显示,即"秒/格"(s/div)。
- ⑤. 触发位置相对于视窗中点的水平距离。

名词解释

Y-T 方式: 此方式下 Y 轴表示电压量, X 轴表示时间量。

X-Y 方式: 此方式下 X 轴表示通道 1 电压量, Y 轴表示通道 2 电压量。

滚动方式: 当仪器进入滚动模式,波形自右向左滚动刷新显示。在滚动模式中,波形水平位移和触发控制不起作用。一旦设置滚动模式,时基控制设定必须在 500ms/div或更慢时基下工作。

慢扫描模式: 当水平时基控制设定在 50 ms/div 或更慢,仪器进入慢扫描采样方式。在此方式下,示波器先采集触发点左侧的数据,然后等待触发,在触发发生后继续完成触发点右侧波形。应用慢扫描模式观察低频信号时,建议将通道耦合设置为 直流耦合。

秒/格(s/div): 水平刻度(时基)单位。如波形采样被停止(使用 RUN/STOP 键),时基控制可扩张或压缩波形。

延迟扫描

延迟扫描用来放大一段波形,以便查看图像细节。延迟扫描时基设定不能慢于主时基的设定。按水平系统的 MENU → 延迟扫描 ,如下图所示。

延迟扫描操作进行时,屏幕将分为上下两个显示区域,其中:

上半部分显示的是原波形。未被半透明蓝色覆盖的区域是期望被水平扩展的波形部分。此区域可以通过转动水平©POSITION旋钮左右移动,或转动水平©SCALE旋钮扩大和减小选择区域。

下半部分是选定的原波形区域经过水平扩展后的波形。值得注意的是,延迟时基相对于主时基提高了分辨率(如上图所示)。由于整个下半部分显示的波形对应于上半部分选定的区域,因此转动水平②SCALE旋钮减小选择区域可以提高延迟时基,即可提高波形的水平扩展倍数。

操作技巧

进入延迟扫描不但可以通过水平区域的 MENU 菜单操作,也可以直接按下此区域的水平 SCALE 旋钮作为延迟扫描快捷键,切换到延迟扫描状态。

X-Y 方式

此方式只适用于通道 1 和通道 2 同时被选择的情况下。选择 X-Y 显示方式以后,水平轴上显示通道 1 电压,垂直轴上显示通道 2 电压。

按水平系统的 MENU \rightarrow 时基 \rightarrow X—Y, 如下图所示。

图 2-40 X-Y 显示方式

注意: 示波器在正常 Y-T 方式下可应用任意采样速率捕获波形。在 X-Y 方式下同样可以调整采样率和通道的垂直档位。X-Y 方式缺省的采样率是 100MSa/s。一般情况下,将采样率适当降低,可以得到较好显示效果的李沙育图形。

以下功能在 X—Y 显示方式中不起作用。

- LA 功能(仅 DS1000D 系列)
- 自动测量模式
- 光标测量模式
- 参考或数学运算波形
- 延迟扫描(Delayed)
- 矢量显示类型
- 触发控制

水平控制旋钮的应用

使用水平控制钮可改变水平刻度(时基)、触发在内存中的水平位置(触发位移)。屏幕水平方向上的中点是波形的时间参考点。改变水平刻度会导致波形相对屏幕中心扩张或收缩。水平位置改变波形相对于触发点的位置。

1. 水平@POSITION:

调整通道波形(包括数学运算)的水平位置。按下此旋钮使触发位置立即回到屏幕中心。

2. 水平 OSCALE:

调整主时基或延迟扫描(Delayed)时基,即秒/格(s/div)。当延迟扫描被打开时,将通过改变水平**②SCALE**旋钮改变延迟扫描时基而改变窗口宽度。详情请参看延迟扫描(Delayed)的介绍。

设置触发系统

触发决定了示波器何时开始采集数据和显示波形。一旦触发被正确设定,它可以将不 稳定的显示转换成有意义的波形。

示波器在开始采集数据时,先收集足够的数据用来在触发点的左方画出波形,在等待触发条件发生的同时连续地采集数据,当检测到触发后,示波器连续地采集足够的数据以在触发点的右方画出波形。

DS1000E, DS1000D 系列数字示波器操作面板的触发控制区包含如下四个按键。

©LEVEL: 触发电平设定触发点对应的信号电压,按下此旋钮使触发电平立即回零; 50%: 将触发电平设定在触发信号幅值的垂直中点;

FORCE: 强制产生一触发信号,主要应用于触发方式中的"普通"和"单次"模式;

MENU: 触发设置菜单按键。

按触发系统的 MENU 功能键,系统将进入触发系统设置界面,如下图所示。

图 2-41 触发系统设置界面

触发控制

DS1000E, DS1000D 系列数字示波器具有丰富的触发功能,包括:边沿、脉宽、斜率、视频、交替、码型(仅 DS1000D 系列)和持续时间触发(仅 DS1000D 系列)。

边沿触发: 当触发输入沿给定方向通过某一给定电平时,边沿触发发生。

脉宽触发:设定脉宽条件捕捉特定脉冲。

斜率触发:根据信号的上升或下降速率进行触发。

视频触发:对标准视频信号进行场或行视频触发。

交替触发:稳定触发双通道不同步信号。

码型触发:通过查找指定码型识别触发条件。

持续时间触发: 在既满足码型条件,又满足持续时间限制的情况下进行触发。

边沿触发

边沿触发方式:通过在波形上查找指定斜率和电压电平来识别触发,并在输入信号边沿的触发阈值上进行触发。选取"边沿触发"时,可在输入信号的上升沿、下降沿或上升和下降沿处进行触发。

按触发系统的 MENU 功能键→ 触发模式 → 边沿触发,进入下面所示菜单。

图 2-42 表 2-20 边沿触发菜单

Trigger
触发模式
边沿触发
信源选择
CH1
边沿类型
<u>_</u>
触发方式
自动

功能菜单	设定	说明
	CH1	设置通道1作为信源触发信号
	CH2	设置通道2作为信源触发信号
信源选择	EXT	设置外触发输入通道作为信源触发信号
百·你是1年	AC Line	设置市电触发
	D15-D0	设置数字通道 D15-D0 中任一通道作为
	2.020	信源触发信号(仅 DS1000D 系列)
	★ (上升沿)	设置在信号上升边沿触发
边沿类型	₹ (下降沿)	设置在信号下降边沿触发
	↑↓ (上升&下降沿)	设置在信号上升沿和下降沿触发
	自动	在没有检测到触发条件下也能采集波形
触发方式	普通	设置只有满足触发条件时才采集波形
	单次	设置当检测到一次触发时采样一个波
		形,然后停止
舳坐 迟罕		进入触发设置菜单,详细说明见表
触发设置		2-38

脉宽触发

脉宽触发方式:将仪器设置为对指定宽度的正脉冲或负脉冲触发。您可以通过设定脉宽条件捕捉异常脉冲。

按触发系统的 MENU 功能键→ 触发模式 → 脉宽触发,进入下面所示菜单。

图 2-43 表 2-21 脉宽触发菜单(第一页)

Trigger
触发模式
脉宽触发
信源选择
CH1
脉冲条件
<u> </u>
脉宽设置
1.00us
1/2
-

功能菜单	设定	说明
信源选择	CH1 CH2 EXT D15-D0	设置通道 1 作为信源触发信号 设置通道 2 作为信源触发信号 设置外触发输入通道作为信源 触发信号 设置数字通道 D15-D0 中任一通 道作为信源触发信号(仅 DS1000D系列)
脉冲条件	【正脉宽大于】 【正脉宽小于】 【正脉宽等于】 【正脉宽等于】 【近脉宽等于】 【负脉宽大于】 【负脉宽小于】 【负脉宽等于】	设置脉宽触发条件
脉宽设置 ^[1]	幻 <脉冲宽度>	设置脉冲宽度

图 2-44 表 2-22 脉宽触发菜单(第二页)

功能菜单	设定	说明
触发方式	自动 普通 单次	设置在没有检测到触发条件下也能采集波形设置只有满足触发条件时才采集波形设置当检测到一次触发时采样一个波形,然后停止
触发设置		进入触发设置菜单,详细说明见表 2-38

注^[1]: 脉冲宽度调节范围为 20ns ~ 10s。在信号满足设定条件时,将触发采样。

斜率触发

斜率触发方式: 把示波器设置为对指定时间的正斜率或负斜率触发。

按触发系统的 MENU 功能键→ 触发模式 → 斜率触发,进入下面所示菜单。

图 2-45 表 2-23 斜率触发菜单 (第一页)

Trigger 触发模式 斜率触发
201 -1-10#2X
信源选择
CH1
斜率条件
时间设置
1.00us
1/2
Ì

功能菜单	设定	说明
信源选择	CH1 CH2 EXT	设置通道 1 作为信源触发信号 设置通道 2 作为信源触发信号 设置外触发输入通道作为信源触发信号
斜率条件		设置斜率条件,共六种:正斜率小于、 大于、等于一个值;负斜率大于、小于、 等于一个值
时间设置[1]	ひ <设置时间 >	设置斜率时间

图 2-46 表 2-24 斜率触发菜单(第二页)

功能菜单	设定	说明
垂直窗[2]	*****	选择能被 ©LEVEL 调节的触发电平
触发方式	自动 普通 单次	设置在没有检测到触发条件下也能采集波形 设置只有满足触发条件时才采集波形 设置当检测到一次触发时采样一个波形,然 后停止
触发设置		进入触发设置菜单,详细说明见表 2-38

注^[1]: 斜率时间设置范围为 20ns~10s。在信号满足设定条件时,将触发采样。

[2]: 可选择<a>©LEVEL 键调节 LEVEL A,LEVEL B,或同时调节 LEVEL A 和 LEVEL B。

视频触发

视频触发方式:用于捕获电视(TV)设备的复杂波形。触发电路检测波形的水平和垂直间隔,根据您选择的视频触发设置产生触发。选择视频触发以后,即可在 NTSC、PAL/SECAM 标准视频信号的场或行上触发。触发耦合预设为直流。

按触发系统的 MENU 功能键→ 触发模式 → 视频触发,进入下面所示菜单。

图 2-47 表 2-25 视频触发菜单 (第一页)

Trigger 触发模式 视频触发 信源选择 CH1 视频极性 同步 指定行	
视频触发 信源选择 CH1 视频极性 同步 指定行	Trigger
信源选择 CH1 视频极性 同步 指定行	触发模式
CH1 视频极性 同步 指定行	《视频触发
视频极性 同步 指定行	信源选择
同步 4 指定行	CH1
指定行	视频极性
指定行	
	同步
1/2	▼指定行
-	1/2
	þ

功能菜单	设定	说明
信源选择	CH1 CH2 EXT	设置通道 1 作为信源触发信号 设置通道 2 作为信源触发信号 设置外触发输入通道作为信源触发信号
视频极性	∏ (正极性) ∐ (负极性)	适用于黑色电平为低的视频信号 适用于黑色电平为高的视频信号
同步	所有行 指定行 奇数场 偶数场	设置在视频行上触发同步 设置在指定视频行上触发同步 设置在视频奇数场上触发同步 设置在视频偶数场上触发同步

图 2-48 表 2-26 视频触发菜单(第二页,同步为指定行)

功能菜单	设定	说明
指定行 ^[1]	も <行数设置>	设置同步的指定行数
视频标准	PAL/SECAM NTSC	设置同步和计数选择视频标准
触发方式	自动 普通 单次	设置在没有检测到触发条件下也能采集波 形 设置只有满足触发条件时才采集波形 设置当检测到一次触发时采样一个波形, 然后停止
触发设置		进入触发设置菜单,详细说明见表 2-39

注^[1]: 视频标准为 NTSC 时,行数范围为 1~525; 视频标准为 PAL/SECAM 时,行数范围为 1~625。

图 2-49

表 2-27 视频触发菜单(第二页,同步为所有行,奇数场和偶数场)

Trigger
-
2/2
视频标准
NTSC
触发方式
自动
触发设置

功能菜单	设定	说明
视频标准	PAL/SECAM NTSC	设置同步和计数选择视频标准
触发方式	自动 普通 单次	设置在没有检测到触发条件下也能采集 波形 设置只有满足触发条件时才采集波形 设置当检测到一次触发时采样一个波 形,然后停止
触发设置		进入触发设置菜单,详细说明见表 2-39

名词解释

同步脉冲: 当选择"正极性"时,触发总是发生在负向同步脉冲上。如果视频信号具有正向同步脉冲,则选择"负极性"。

图 2-50 视频触发: 行同步

图 2-51 视频触发:场同步

交替触发

交替触发方式: 触发信号来自于两个垂直通道,此方式可用于同时观察两路不相关信号。您可在该菜单中为两个垂直通道选择不同的触发类型,可选类型有边沿触发,脉宽触发,斜率触发和视频触发,两通道的触发电平等信息显示于屏幕右上角。

按触发系统的 MENU 功能键→ 触发模式 → 交替触发,进入下面所示菜单。

图 2-52 表 2-28 交替触发菜单(触发类型为边沿触发)

T
Trigger
触发模式
交替触发
通道选择
CH1
触发类型
边沿触发
边沿类型
<u>-</u>
触发设置

功能菜单	设定	说明
通道选择	CH1 CH2	设置通道 1 的触发类型等信息 设置通道 2 的触发类型等信息
触发类型	边沿触发	设置垂直通道的触发类型为边沿触发
边沿类型	★ (上升沿) ★ (下降沿)	设置在信号上升边沿触发 设置在信号下降边沿触发
触发设置		进入触发设置菜单,详细说明见表 2-38

图 2-53 表 2-29 交替触发菜单(触发类型为脉宽触发,第一页)

功能菜单	设定	说明
通道选择	CH1 CH2	设置通道 1 的触发类型等信息 设置通道 2 的触发类型等信息
触发类型	脉宽触发	设置垂直通道的触发类型为脉宽触 发
脉冲条件		设置脉冲条件

图 2-54 表 2-30 交替触发菜单(触发类型为脉宽触发,第二页)

功能菜单	设定	说明
脉宽设置	も <脉冲宽度>	设置脉冲宽度
触发设置		进入触发设置菜单,详细说明见表 2-38

图 2-55 表 2-31 交替触发菜单(触发类型为斜率触发,第一页)

Trigger
触发模式
·交替触发
通道选择
CH1
触发类型
<お薬触发 ●
斜率条件
- →} / =
1/2
•

功能菜单	设定	说明
通道选择	CH1 CH2	设置通道 1 的触发类型等信息 设置通道 2 的触发类型等信息
触发类型	斜率触发	设置垂直通道的触发类型为斜率触发
斜率条件		设置斜率条件

图 2-56 表 2-32 交替触发菜单(触发类型为斜率触发,第二页)

功能菜单	设定	说明
时间设置	も <设置时间>	设置斜率时间
垂直窗	**************************************	选择能被 ②LEVEL 调节的触发电平
触发设置		进入触发设置菜单,详细说明见表 2-38

图 2-57 表 2-33 交替触发菜单(触发类型为视频触发,第一页)

Trigger
触发模式
₹交替触发
通道选择
CH1
触发类型
视频触发
视频极性
1/2
Ì

功能菜单	设定	说明
通道选择	CH1 CH2	设置通道 1 的触发类型等信息 设置通道 2 的触发类型等信息
触发类型	视频触发	设置垂直通道的触发类型为视频触发
视频极性		适用于黑色电平为低的视频信号 适用于黑色电平为高的视频信号

图 2-58 表 2-34 交替触发菜单(触发类型为视频触发且为指定行,第二页)

Trigger
2/2
同步
指定行
指定行
Ð
No.1 →回业西共二次共
视频标准
NTSC
触发设置

功能菜单	设定	说明
同步	所有行 指定行 奇数场 偶数场	设置在视频行上触发同步 设置在指定视频行上触发同步 设置在视频奇数场上触发同步 设置在视频偶数场上触发同步
指定行	い <行数设置>	设置同步的指定行数
视频标准	PAL/SECAM NTSC	设置同步和计数选择视频标准
触发设置		进入触发设置菜单,详细说明见表 2-39

图 2-59 表 2-35 交替触发菜单(触发类型为视频触发且为所有行、奇数场或偶数场,第二页)

功能菜单	设定	说明
同步	所有行 指定行 奇数场 偶数场	设置在视频行上触发同步 设置在指定视频行上触发同步 设置在视频奇数场上触发同步 设置在视频偶数场上触发同步
视频标准	PAL/SECAM NTSC	设置同步和计数选择视频标准
触发设置		进入触发设置菜单,详细说明见表 2-39

码型触发(仅 DS1000D 系列)

码型触发方式:通过查找指定码型识别触发条件。码型是各通道的逻辑与组合,每个通道都有高(H)、低(L)和忽略(X)值。可以指定码型中包括的一个通道的上升或下降沿。

按触发系统的 MENU 功能键→ 触发模式 → 码型触发,进入下面所示菜单。

图 2-60 表 2-36 码型触发菜单

功能菜单	设定	说明	
通道选择	D15-D0	选择设置码型的数字通道	
码型设置	H L X 4	高 低 忽略 上升沿 下降沿	
触发方式	自动 普通 单次	设置在没有检测到触发条件下也能采集波形 设置只有满足触发条件时才采集波形 设置当检测到一次触发时采样一个波形,然 后停止	
触发设置		进入触发设置菜单,详细说明见表 2-40	

要点说明:

- 1. H(高): 把所选通道码型设置为高。高代表电压电平高于通道的门限电平。
- 2. L(低): 把所选通道码型设置为低。低代表电压电平低于通道的门限电平。
- **3. X (忽略)**: 把所选通道码型设置为忽略。任何被设置为忽略的通道都被忽略,不作为码型的一部分。如果码型中所有通道均被设置为忽略,示波器将不触发。
- 4. 上升沿(上)或下降沿(上): 把码型设置为所选通道上的一个边沿。码型中只能指定一个上升沿或下降沿。当指定边沿后,如果其他通道的码型设置均为真,示波器将在指定的边沿上触发。如果未指定边沿,示波器将在码型为真的最后一个边沿上触发。

指定码型中的边沿

在码型中您只能指定一个上升沿或下降沿项。如果您定义了一个边沿项,然后在码型中选择不同通道定义另一个边沿项,那么原先定义的边沿项就变成忽略。

持续时间触发(仅 DS1000D 系列)

持续时间触发方式: 在既满足码型条件, 又满足持续时间限制的情况下进行的触发。

按触发系统的 MENU 功能键→ 触发模式 → 持续时间触发,进入下面所示菜单。

图 2-61 表 2-37 持续时间触发 (第一页)

Trigger
migger
触发模式
持续时间
通道选择
(÷)
DØ
码型设置
X
限定符
< <
1/2
÷

功能菜单	设定	说明
通道选择	D15-D0	选择设置码型的数字通道
码型设置	H L X	高 低 忽略
限定符	> < =	设置时间限定条件

图 2-62 表 2-38 持续时间触发(第二页)

Trigger 2/2 时间设置 1.00us 触发方式 自动

功能菜单	设定	说明
时间设置	も <时间设置>	设置持续时间限定符时间
触发方式	自动 普通 单次	设置在没有检测到触发条件下也能采集形设置只有满足触发条件时才采集波形设置当检测到一次触发时采样一个波形,然后停止
触发设置		进入触发设置菜单,详细说明见表 2-40

要点说明:

- 1. H(高): 把所选通道码型设置为高。高代表电压电平高于通道的门限电平。
- 2. L(低): 把所选通道码型设置为低。低代表电压电平低于通道的门限电平。
- **3. X (忽略)**: 把所选通道码型设置为忽略。任何被设置为忽略的通道都被忽略,不作为码型的一部分。如果码型中所有通道均被设置为忽略,示波器将不触发。
- 4. 限定符: 在满足码型条件后开始计时, 在限定符规定的时间上持续时间触发发生。

触发设置

进入触发设置菜单,您可对触发的相关选项进行设置。针对不同的触发方式,可设置的触发选项有所不同。边沿触发和脉宽触发在信源选择为 D15-D0 时(仅 DS1000D 系列),仅能设置触发释抑,信源选择非数字通道和斜率触发时,可对触发耦合,灵敏度和触发释抑进行设置;视频触发时,可对灵敏度和触发释抑进行设置;交替触发时,根据已选的触发类型不同,可设置的相关选项不同;码型触发(仅 DS1000D 系列)和持续时间触发(仅 DS1000D 系列)时,仅能设置触发释抑。

图 2-63 表 2-39 触发设置菜单(可设置触发耦合,灵敏度和触发释抑)

Set Up
耦合
直流
灵敏度
♦ 0.38div
触发释抑
<u> </u>
500ns 触发释抑
复位
一番庫
1

功能菜单	设定	说明
耦合	交流 直流 低频抑制 高频抑制	设置阻止直流分量通过 设置允许所有分量通过 阻止信号的低频部分通过,只允许高 频分量通过 阻止信号的高频部分通过,只允许低 频分量通过
灵敏度	も <灵敏度设置>	设置触发灵敏度, 范围为: 0.1div~1div
触发释抑	も <触发释抑设置>	设置重新启动触发电路的时间间隔,时间范围为: 500ns~1.5s
触发释抑	复位	使触发释抑复位到 500ns

图 2-64 表 2-40 触发设置菜单(可设置灵敏度和触发释抑)

功能菜单	设定	说明
灵敏度	も <灵敏度设置>	设置触发灵敏度
触发释抑	も <触发释抑设置>	设置重新启动触发电路的时间 间隔,时间范围为:500ns~1.5s
触发释抑	复位	使触发释抑复位到 500ns

图 2-65

表 2-41 触发设置菜单(仅能设置触发释抑)

功能菜单	设定	说明
触发释抑	く 触发释抑设置>	设置重新启动触发电路的时间间隔,时间范围为: 500ns~1.5s
触发释抑	复位	使触发释抑复位到 500ns

触发释抑

使用触发释抑可稳定触发复杂的波形(如脉冲系列)。释抑时间是指示波器重新启用触发电路所等待的时间。在释抑期间,示波器不会触发,直至释抑时间结束。例如,一组脉冲系列,要求在该脉冲系列的第一个脉冲触发,则可以将释抑时间设置为脉冲串的宽度。如下图所示。

图 2-66 触发抑释示意图

操作说明:

- 1. 按下触发 MENU 菜单按钮,显示触发菜单。
- 2. 按 触发设置 对应的菜单操作键,进入触发设置菜单。
- 3. 旋动多功能旋钮(**划**)改变释抑时间,直至波形稳定触发。
- 4. 按 复位 键,释抑时间恢复至默认值。

名词解释

1. 信源:

触发可以从多种信源得到: 输入通道(CH1、CH2、D15-D0(仅 DS1000D 系列)), 外部触发(EXT), AC Line(市电)。

- **输入通道:** 最常用的触发信源是输入通道(可任选一个)。被选中作为触发信源 的通道,无论其输入是否被显示,都能正常工作。
- **外部触发:** 这种触发信源可用于在两个通道上采集数据的同时在第三个通道上触发。例如,可利用外部时钟或来自待测电路的信号作为触发信源。EXT 触发源都使用连接至 EXT TRIG 接头的外部触发信号。EXT 可直接使用信号,您可在信号触发电平范围在 -1.2V 至 +1.2V 时使用 EXT。
- AC Line: 即交流电源。这种触发信源可用来显示信号与动力电,如照明设备和动力提供设备之间的关系。示波器将产生触发,无需人工输入触发信号。在使用交流电源作为触发信源时,触发电平设定为 0 伏,不可调节。

2. 触发方式:

决定示波器在无触发事件情况下的行为方式。本示波器提供三种触发方式:自动,普通和单次触发。

● **自动触发**:在该触发方式下,即使没有检测到触发条件,示波器也能够进行波形 采样。在一定的等待时间(该时间可由时基设置决定)内,若没有触发条件发生, 示波器将进行强制触发。强制触发无效时,示波器虽然显示波形,但不能使波形 同步,所显示的波形不稳定。若强制触发有效,将显示稳定的波形。

注意: 自动触发模式可用来检测影响波形显示不稳定的因素,如;幅值电平、动力供应输出等。扫描波形设定在 50ms/div 或更慢的时基上时,"自动"方式允许没有触发信号。

- **普通触发:** 示波器在普通触发方式下只有当触发条件满足时才能采样到波形。在 没有触发时,示波器将显示原有波形而等待触发。
- **单次触发:** 在单次触发方式下,用户按一次"运行"按钮,示波器等待触发,当 检测到一次触发时,示波器将显示一个波形,然后停止。

3. 耦合:

触发耦合决定信号的何种分量被传送到触发电路。耦合类型包括直流,交流,低 频抑制和高频抑制。

- 直流: 让信号的所有成分通过。
- 交流:阻挡直流成分并衰减 10Hz 以下信号。
- 低频抑制:阻挡直流成分并衰减低于 8kHz 的低频成分。
- **高频抑制**: 衰减超过 150kHz 的高频成分。

4. 预触发/延迟触发: 触发事件以前/以后采样的数据。

触发位置通常设定在屏幕的水平中心。在全屏显示情况下,您可以观察到 6 格的预触发和延迟信息。您可以旋转水平@POSITION调节波形的水平位移,查看更多的预触发信息,或者最多触发 1s 后的延迟触发信息。

通过观察预触发数据,可以了解触发以前的信号情况。例如捕捉到电路产生的毛刺,通过观察和分析预触发数据,可能会查出毛刺产生的原因。

5. 可变触发灵敏度:

为了排除现实世界信号噪声的影响,得到稳定的触发,触发电路引入了迟滞。 DS1000E, DS1000D 系列示波器,迟滞可调,范围是 0.1div-1.0div。

即当设置为 1.0div 时,触发电路对于任何峰—峰幅度≤1.0div 的信号,不做响应,从而排除噪声的影响。

设置采样系统

如下图所示,在 MENU 控制区中, Acquire 为采样系统的功能按键。

图 2-67 采样功能按键

使用 Acquire 按键,弹出下图所示采样设置菜单。通过菜单控制按钮可调整波形采样方式。

图 2-68 表 2-42 采样功能设置菜单

Acquire
获取方式
平均
平均次数
采样方式
实时采样
存储深度
长存储
Sinx/x
打开

功能菜单	设定	说明
获取方式	普通 平均 峰值检测	打开普通采样方式 设置平均采样方式 打开峰值检测方式
平均次数[1]	2 256	在 2~256 范围内以 2的 N 次幂步 进设置平均采样次数
采样方式	实时采样 等效采样	设置采样方式为实时采样 设置采样方式为等效采样
存储深度	长存储 普通	设置存储深度为 512kpts 或 1Mpts 设置存储深度为 8kpts 或 16kpts
Sinx/x ^[2]	打开 关闭	选择 Sinx/x 插值方式 选择线性插值方式

注[1]: 获取方式为"平均"时,显示此项功能;

[2]: 采样方式为"实时"时,显示此项功能。

选取不同的获取方式和采样方式,可得到不同的波形显示效果:

- 期望减少所显示信号中的随机噪声,请选用**平均采样**方式;
- 期望观察信号的包络,避免混淆,请选用**峰值检测**方式;
- 观察单次信号请选用**实时采样**方式:
- 观察高频周期性信号请选用等效采样方式。

通过改变获取方式的设置, 观察因此造成的波形显示变化, 如下图所示。

图 2-69 选用普通采样方式,信号包含噪声

图 2-70 选用平均采样方式,去除噪声

图 2-71 选用普通方式

图 2-72 选用峰值检测方式,显示信号包络

停止采样: 运行在采样功能时,显示波形为活动状态。停止采样,则显示冻结波形。 无论处于上述哪一种状态,显示波形都可用垂直控制和水平控制度量或定位。

名词解释

实时采样: 在一次触发事件里即可获得所有的波形采样,适于捕获重复信号、非重复信号和单次信号。实时采样率最高可达 1GSa/s。在 50ns 或更快的设置下,示波器将自动进行插值算法(即在采样点之间插入光点)。

等效采样: 即重复采样方式,有利于细致观察重复的周期性信号。使用等效采样方式可得到比实时采样高得多的 40ps 的水平分辨率,其等效采样率可达 25GSa/s。

普通获取方式:示波器按相等的时间间隔对信号采样以重建波形。

平均获取方式:在实时采样或等效采样方式下采样数值后,将多次采样的波形平均计算。应用平均值获取方式可减少所显示信号中的随机或无关噪音。

峰值检测方式:通过采集采样间隔信号的最大值和最小值,获取信号的包络或可能 丢失的窄脉冲。应用峰值检测方式可以避免信号的混淆,但显示的噪声比较大。

设置显示系统

如下图所示,在 MENU 控制区中, Display 为显示系统的功能按键。

使用 **Display** 按键,弹出下图所示显示系统设置菜单。通过菜单控制按键可调整波形显示方式。

图 2-74 表 2-43 显示设置菜单(第一页)

功能菜单	设定	说明
显示类型	矢量 点	采样点之间通过连线的方式显示 直接显示采样点
清除显示		清除所有先前采集的显示及任何 从内部存储区或 USB 存储设备中 调出的轨迹
波形保持	关闭 无限	记录点以高刷新率变化 记录点一直保持,直至波形保持 功能被关闭
波形亮度	も < 波形亮度 >	设置波形亮度,可调范围为 0%~100%

表 2-44 显示设置菜单(第二页)

功能菜单	设定	说明
屏幕网格		打开背景网格及坐标 打开坐标,关闭背景网格 关闭背景网格及坐标
网格亮度	も < 网格亮 度 >	设置网格亮度,可调范围为 0%~100%
菜单保持	1s 2s 5s 10s 20s 无限	设置隐藏菜单时间。菜单将在 最后一次按键动作后的设置时 间内隐藏。

要点说明:

- **1. 显示类型:**显示类型包含"矢量"和"点"显示。矢量显示模式下,示波器将采用线性或 sin(x)/x 数字内插方式连接采样点。其中, sin(x)/x 内插方式适用实时采样方式,并且在 50ns 或更快时基下有效。
- **2. 刷新率:** 刷新率是数字示波器的一项重要指标,它是指示波器每秒钟刷新屏幕波形的次数。刷新率的快慢将影响示波器快速观察信号动态变化的能力。

调节波形亮度

在未指定任何功能时,旋动多功能旋钮(***)均是调节模拟通道波形亮度值。

存储和调出

如下图所示,在 MENU 控制区中, Storage 为存储系统的功能按键。

图 2-76 存储功能按键

使用 Storage 按键,弹出下图所示存储设置菜单。您可以通过该菜单对示波器内部存储区和 USB 存储设备上的波形和设置文件进行保存和调出操作,也可以对 USB 存储设备上的波形文件、设置文件、位图文件以及 CSV 文件进行新建和删除操作(注:可以删除仪器内部的存储文件,或将其覆盖)。操作的文件名称支持中英文输入。

图 2-77 表 2-45 存储设置菜单(存储类型为波形存储和设置存储)

Storage
存储类型
波形存储
内部存储
外部存储
磁盘管理

功能菜单	设定	说明
存储类型	波形存储 设置存储	存储或调用波形或设置文件(适用于内/外部存储器)
内部存储		进入内部存储菜单(见表 2-48)
外部存储		进入外部存储菜单(见表 2-49)
磁盘管理		进入磁盘管理菜单(见表 2-50)

图 2-78 表 2-46 存储设置菜单(存储类型为位图存储)

Storage
存储类型
位图存储
参数保存
打开
外部存储
磁盘管理

功能菜单	设定	说明
存储类型	位图存储	存储或删除位图文件(适用于外部存储器)
参数保存	打开 关闭	设置在保存位图文件时,是否以同一 文件名保存示波器参数文件
外部存储		进入外部存储菜单(见表 2-49)
磁盘管理		进入磁盘管理菜单(见表 2-50)

图 2-79 表 2-47 存储设置菜单(存储类型 CSV 存储)

Storage
存储类型
CSV存储
数据长度
屏幕
参数保存
打开
外部存储
磁盘管理

功能菜单	设定	说明
存储类型	CSV 存储	存储或删除 CSV 文件(适用于外部存储器)
数据长度	屏幕 内存	CSV 文件存储屏幕显示的波形数据 CSV 文件存储内存的波形数据
参数保存	打开 关闭	设置在保存 CSV 文件时,是否以同一 文件名保存示波器参数文件
LA 数据格 式 ^[1]	十六进制 二进制 十进制	以十六进制形式存储 以二进制形式存储 以十进制形式存储
外部存储		进入外部存储菜单(见表 2-49)
磁盘管理		进入磁盘管理菜单(见表 2-50)

注^[1]: 此菜单适用于 DS1000D 系列。

图 2-80 表 2-48 存储设置菜单(存储类型为出厂设置)

功能菜单	设定	说明
存储类型	出厂设置	设置调出出厂设置操作
调出		调出出厂设置或指定位置的存储文件
磁盘管理		进入磁盘管理菜单(见表 2-50)

内部存储

按 Storage → 内部存储 进入下面所示菜单。

图 2-81

表 2-49 内部存储菜单

功能菜单	设定	说明
	Int_00 (S)	
存储位置	•	设置、波形在内部存储区内
行阻匹且		的存储位置
	Int_09 (N)	
调出		调出内部存储区指定位置的
hil 111		波形和设置文件
保存		保存波形和设置文件到内部
WIT		存储区的指定位置
删除文件		删除选中的文件

外部存储

按 Storage → 外部存储 进入下面所示菜单。

图 2-82 表 2-50 外部存储菜单

External 浏览器
文件
新建文件
删除文件
调出
£

功能菜单	设定	说明
浏览器	路径 目录 文件	切换文件系统显示的路径、目录 和文件
新建文件 (目录)		新建文件或目录(见表 2-13)
删除文件		删除用户选定文件
调出		调出 USB 存储设备上的波形和 设置文件

图 2-83 文件系统说明图

磁盘管理

按 Storage → 磁盘管理 进入下面所示菜单。

图 2-84

表 2-51 磁盘管理菜单(第一页)

功能菜单	设定	说明
浏览器	路径 目录 文件	切换文件系统显示的路径、目 录和文件
新建目录		新建目录(与新建文件类似, 见表 2-13)
删除文件		删除用户选定文件
调出		调出 USB 存储设备上的波形、 设置、波形录制和 Pass/Fail 文件

图 2-85

表 2-52 磁盘管理菜单(第二页)

功能菜单	设定	说明
重命名		对文件重命名(见表 2-52)
磁盘信息		显示磁盘信息

重命名

按 Storage → 磁盘管理 → 重命名 进入下面所示菜单。

图 2-86 表 2-53 重命名菜单

功能菜单	设定	说明
Ť		文件名称的输入焦点向上移动
+		文件名称的输入焦点向下移动
×		删除文件名称字符串或拼音字符 串(中文输入)中高亮显示的字符
确定		执行重命名文件操作

图 2-87 重命名操作界面

要点说明:

- **1. 出厂设置:** 示波器出厂前已为各种正常操作进行了预先设定。任何时候用户都可根据需要调出厂家设置。
- 2. 存储位置: 指定存储器地址,以存储/调出当前波形或设置。

- 3. 调出:示波器可调出已保存的波形、设置、出厂设置。
- 4. 保存:保存当前的波形、设置到指定位置。

注意:

- 1. 选择波形存储不但可以保存当前通道的波形,同时还可存储当前的状态设置。
- **2.** 更改设置后,请至少等待 5 秒才关闭示波器,以保证新设置得到正确的储存。用户可在示波器的存储器里永久保存 10 种设置,并可在任意时刻重新写入设置。

设置辅助系统

如下图所示,在 MENU 控制区中, Utility 为辅助系统功能按键。

图 2-88 系统功能设置按键

使用 Utility 按键弹出辅助系统功能设置菜单。

图 2-89

表 2-54 系统功能设置菜单(第一页)

功能菜单	设定	说明
接口设置		进入接口设置菜单
声音	∜ (打开声音) ∜ ×(关闭声音)	打开/关闭按键声音
频率计	关闭 打开	关闭频率计功能 打开频率计功能
Language	简体中文 繁体中文 English 日本語 Français	选择界面语言(新的软件版本可能增加更多语言选择)

图 2-90 表 2-55 系统功能设置菜单(第二页)

功能菜单	设定	说明
通过测试		设置通过测试操作
波形录制		设置波形录制操作
打印设置		设置打印设置操作

图 2-91 表 2-56 系统功能设置菜单(第三页)

Utilities
3/3
参数设置
自校正
系统信息
生产模式

功能菜单	设定	说明
参数设置		进入参数设置菜单
自校正		执行自校正操作
系统信息		查看系统信息
生产模式 (键盘锁定)	取消 确定	设定或取消键盘锁定功能

要点说明:

自校正: 指示波器自动校正垂直系统(CH1, CH2, Ext), 水平系统和触发系统的各项参数,以保证示波器在不同环境变化下均能满足指标要求(具体说明请参见"自校正"功能介绍)。

接口设置

按 Utility → 接口设置 , 进入下面所示菜单。

图 2-92 表 2-57 接口设置菜单

功能菜单	显示	说明
RS-232 波特率	300 38400	RS-232 波特率的选择值为: 300, 2400, 4800, 9600, 19200, 38400。
USB 设备 ^[1]	计算机 PictBridge	设置 USB 设备
GPIB#	0~30	设置 GPIB 地址

注^[1]:

通过 USB Device 接口连接设备时,如果设备从计算机(或 PictBridge 打印机)切换到 PictBridge 打印机(或计算机)时,需要手动设置 USB 设备 类型,以确保所连接的设备与设置类型一致。

语言选择

DS1000E, DS1000D 系列数字示波器配备多国语言菜单, 供用户选择。

按 Utility → Language , 进入下面所示菜单。

图 2-93 系统语言设置菜单

使用 4 号菜单操作键或通过旋转多功能旋钮 ひ选择所需的语言.

通过测试

通过测试功能通过判断输入信号是否在创建规则范围内,以输出通过或失败波形,用以监测信号变化情况。其检测结果可以通过屏幕显示或通过光电隔离的 Pass/Fail 端口进行输出,用户也可打开系统声音设置,对结果进行报警提示。

按 Utility → 通过测试 ,进入下面所示菜单。

图 2-94 表 2-58 通过/失败测试菜单 (第一页)

Pass/Fail
允许测试
美闭
信源选择
CH1
操作
显示信息
美闭
1/2
-

功能菜单	设定	说明
通过测试	打开	打开通过测试功能
,C,C(),#1	关闭	关闭通过测试功能
信源选择	CH1 CH2	选择通过测试信号输入通道
場 <i>化</i>	▶ (运行)	运行通过测试
操作	■ (停止)	停止通过测试
显示信息	打开	打开/关闭波形通过/失败次数的
	关闭	显示信息

图 2-95 表 2-59 通过/失败测试菜单(第二页)

Pass/Fail
-
2/2
输出
失败
输出即停
打开
规则设置
£

功能菜单	设定	说明
	失败	检测波形失败时输出
输出	失败+ € [*	检测波形失败时输出并发提示音
湘江	通过	检测波形通过时输出
	通过+ ∜ *	检测波形通过时输出并发提示音
输出即停	打开	设置检测输出即停止采样
棚山即行	关闭	设置检测输出并继续采样
规则设置		进入规则设置菜单(如下说明)

注*:蜂鸣器打开时才显示。

规则设置

通过规则设置菜单,用户可根据需要创建、保存、调出、导入/导出 Pass/Fail 规则文件。按 Utility → 通过测试 → 规则设置 , 进入下面所示菜单。

2-66 © 2008 RIGOL Technologies, Inc.

图 2-96

表 2-60 规则设置菜单(第一页)

Mask
水平调整
. ₹
0.20div
垂直调整
4.5
0.20div
创建规则
存储位置
外部
1/2

功能菜单	设定	说明
水平调整	¢	设置水平容限范围
八十州金	< x div>	(0.04 div - 4.00 div)
垂直调整	¢	设置垂直容限范围
亚 且 児 登	< y div>	(0.04div-4.00div)
创建规则		根据已设置的水平和垂直容限
		范围创建通过/失败容限范围
存储位置	内部	设置规则文件的存储位置
行阳位且	外部	以且

图 2-97

表 2-61 规则设置菜单(第二页,存储位置为内部时)

功能菜单	设定	说明
保存		将规则设置文件保存到内部存储 区
调出		调出内部存储区的规则设置文件
导入/导出		进入导入/导出菜单,同 REF 导入/ 导出菜单类似(见表 2-10)

图 2-98

表 2-62 规则设置菜单(第二页,存储位置为外部时)

功能菜单	设定	说明
保存		进入保存菜单,同 REF 保存菜 单类似(见表 2-12)
调出		进入调出菜单(见表 2-63)
导入		进入导入菜单,同 REF 导入菜 单类似(见表 2-14)

调出

按 Utility → 通过测试 → 规则设置 → 调出 ,进入下面所示菜单。

图 2-99 表 2-63 调出菜单

功能菜单	设定	说明
浏览器	路径 目录 文件	切换文件系统显示的路径、目 录和文件
调出		调出用户选定的文件

注意: 在时基为 X-Y 模式下,不能运行通过/失败检测功能。

通过/失败输出物理连接

在 DS1000E, DS1000D 系列数字示波器中,通过/失败测试输出电路采用了光电隔离技术。用户需外接一部份电路,实现该功能,最大电流不超过 100mA,最大电压不超过 400V。此电路输出级使用光电继电器,无极性限制,可与任意极性连接。

图 2-100 通过/失败输出示意图

波形录制

波形录制不仅可录制通道 1 和通道 2 输入的波形,还可以录制通过/失败检测输出的波形。您可以设置帧一帧之间的时间间隔,最大录制 1000 帧波形,并通过回放和保存功能达到更好的波形分析效果。

该功能提供四种模式供用户选择:关闭、录制、回放和存储,以下将分别为您介绍:

- 1. 关闭: 关闭所有的录制功能。
- 2. 录制: 以指定的时间间隔录制波形, 直至达到设置的终止帧数。

按 Utility → 波形录制 → 模式 → 录制 ,进入下面所示菜单。

图 2-101 表 2-64 波形录制菜单(第一页)

功能菜单	设定	说明
	关闭	关闭所有录制功能
模式	录制	设置录制功能菜单
疾 式	回放	设置回放功能菜单
	存储	设置存储功能菜单
	CH1	
信源选择	CH2	设置录制信号源
	P/F-OUT	
终止帧	\(\frac{\lambda}{\colony}\)	设置波形录制的最大帧数
操作	● (录制)	开始录制波形
	■ (停止)	停止录制波形

图 2-102 表 2-65 波形录制菜单 (第二页)

功能菜单	设定	说明
时间间隔	\(\right) <1.00ms-1000s>	设置时间间隔

3. 回放: 回放当前的录制波形或调出的录制存储波形。

按 Utility → 波形录制 → 模式 → 回放 。进入下面所示菜单。

图 2-103 表 2-66 波形回放菜单 (第一页)

Record
模式
回放
操作
回放模式
Į.
时间间隔
1.00ms
1/2
-

	,	
功能菜单	设定	说明
操作	▶ (运行)	开始回放波形
1朱7下	■ (停止)	停止播放波形
回放模式	ij	循环回放录制波形
凹从侯氏	▶ — ■	播放录制波形后即停止
时间间隔	\(\begin{align*} \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	设置回放帧-帧的时间间隔

图 2-104 表 2-67 波形回放菜单 (第二页)

Record
-
2/2
起始帧
Ų
当前帧
Ą
终止帧
Ų
1
1

•			
	功能菜单	设定	说明
	起始帧	\ <1-1000>	设置回放的起始帧数
	当前帧	\(\frac{\frac{1}{1}}{1}\)	设置当前屏幕显示帧数
	终止帧	\(\frac{\frac{1}{1}}{1}\)	设置回放的终止帧数

注:可执行 RUN/STOP 键停止或继续波形回放功能。

4. 存储: 根据当前设置的帧数存储或调出当前录制的波形。

按 Utility → 波形录制 → 模式 → 存储 ,进入下面所示菜单。

图 2-105 表 2-68 录制波形存储菜单(第一页)

功能菜单	设定	说明
起始帧	\(\frac{\frac{1}{1000}}{1000}\)	设置开始存储的帧数
终止帧	\(\frac{\frac{1}{1000}}{1000}\)	设置结束存储的帧数
存储位置	外部 内部	设置录制波形的存储位置

图 2-106 表 2-69 录制波形存储菜单(第二页,存储位置为内部时)

功能菜单	设定	说明
保存		将波形录制文件保存到内部存储 区
调出		调出内部存储区的波形录制文件
导入/导出		进入导入/导出菜单,同 REF 导入/ 导出菜单类似(见表 2-10)

图 2-107 表 2-70 录制波形存储菜单(第二页,存储位置为外部时)

功能菜单	设定	说明
保存		进入保存菜单,同 REF 保存菜单 类似(见表 2-12)
调出		进入调出菜单,同规则设置文件的调出菜单类似(见表 2-63)
导入		进入导入菜单,同 REF 导入菜单 类似(见表 2-14)

打印设置

DS1000E, DS1000D 系列数字示波器支持打印功能。您可以参照如下步骤完成打印操作:

1. 连接打印机;

DS1000E, DS1000D 系列数字示波器支持"PictBridge"和"普通"两种打印模式。

● 若使用 PictBridge 打印机,请选择"PictBridge"模式,此时示波器作为从设备,通过后面板的 USB Device 接口与打印机连接,如下图所示:

图 2-108 PictBridge 打印机操作

● 若使用普通打印机,请选择"普通"模式,此时示波器作为主设备,通过前面板的 USB Host 接口与打印机连接,如下图所示:

图 2-109 普通打印机操作

2. 设置打印参数:

按 Utility → 打印设置 ,进入下面所示菜单。

图 2-110 表 2-71 打印设置菜单("普通"模式)

Print Set
打印模式
普通
打印
反相
打开
打印颜色
灰度
£

功能菜单	设定	说明
打印模式	普通 PictBridge	执行打印操作
打印		执行打印操作,将屏幕波形 按照设置进行打印
反相	打开 关闭	设置打印颜色是否反相
打印颜色	灰度 彩色	设置打印颜色

图 2-111 表 2-72 打印设置菜单 ("PictBridge"模式,第一页)

		•
功能菜单	设定	说明
打印模式	普通 PictBridge	执行打印操作
打印		执行打印操作,将屏幕波形 按照设置进行打印
终止打印		停止打印操作
状态查询		查询当前打印状态

图 2-112 表 2-73 打印设置菜单 ("PictBridge"模式,第二页)

Print Set
•
2/3
纸张尺寸
默认
图像类型
∢ 默认
打印份数
<u> </u>
2/3
-

功能菜单	设定	说明
纸张尺寸	默认	选择打印纸张, 可选默认、
	A4,A5 等	A2、A3、A4、A5、A6 和 B5
图像类型	默认	
	Bmp	选择打印图像类型
	Exif/Jpeg	
打印份数	\(\begin{array}{c}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	调整打印份数

图 2-113 表 2-74 打印设置菜单 ("PictBridge"模式,第三页)

Print Set
3/3
打印质量
默认
打印颜色
灰度
反相
打开
Ĺ

功能菜单	设定	说明
打印质量	默认 普通 草稿 精细	设置打印质量
打印颜色	灰度 彩色	设置打印颜色
反相	打开 关闭	控制打印颜色是否反相

3. 打印:

打印之前,请首先确保已经正确连接好打印机,并完成了打印设置。此时,您可通过 Utility → 打印设置→ 打印,完成打印操作。

参数设置

在仪器使用过程中,对于常用参数,您可以通过参数设置功能进行调整,以得到更好的使用效果。

按 Utility → 参数设置 , 进入下面所示菜单。

图 2-114 表 2-75 参数设置菜单 (第一页)

功能菜单	显示	说明
屏幕保护	1 min 5 hour 关闭	设置示波器屏幕保护时间,可设置时间为: 1min、2min、5min、15min、30min、45min、60min、2hour、5hour和关闭
扩展参考	接地电平屏幕中心	设置模拟信号垂直扩展参考
粘滯		设置 CH1、CH2、MATH、REF,Trig. Lev. 和 Trig.Pos.的粘滞状态
界面方案	经典 现代 传统 简洁	设置示波器的界面方案

图 2-115 表 2-76 参数设置菜单(第二页)

	功能菜单	显示	说明	
,	密码设置		设置锁键盘功能的解锁密码,长度为 6位,初始密码为 111111	j

要点说明:

- **1. 屏幕保护:** 如果示波器在指定的时间内闲置,可打开示波器的屏幕保护功能。该功能打开时,可延长示波器背光灯的使用寿命。
- 2. 扩展参考:在改变模拟通道的垂直档位设置时,可以选择围绕信号接地点或屏幕中心进行信号扩展或压缩。选择接地电平后,改变"伏/格"设置时,波形的接地电平将保持在显示屏的同一点,波形非接地部分将扩展或压缩;选择屏幕中心后,改变伏/格设置时,波形将围绕屏幕中心扩展或压缩。
- **3. 粘滞:** CH1、CH2、MATH、REF, Trig.Lev. 和 Trig.Pos.的粘滞状态打开时,调节上述通道的垂直位置,触发电平或触发位移位置至零点时,将粘滞不动。此功能对快速将波形定位于中心位置很方便。
- **4. 密码设置**;生产模式下的锁键盘功能,初始解锁密码为 111111,用户可通过该功能设置新的解锁密码,长度为 6 位。

自校正

自校正程序可迅速地使示波器达到最佳状态,以取得最精确的测量值。您可在任何时候执行这个程序,但如果环境温度变化范围达到或超过 5 个摄氏度时,您必须执行这个程序。

若要进行自校准,应将所有探头或导线与输入连接器断开。然后,按 Utility → 自校正 ,进入下图所示界面。按下"RUN/STOP"键,开始执行自校正操作,按下"AUTO"键,将退出自校正界面。

图 2-116 自校正界面

注意:运行自校正程序以前,请确认示波器已预热或运行达 30 分钟以上。

系统信息

欲查询设备型号、主机序列号、系统软件版本或系统已安装模块等信息,可通过系统 信息功能实现。

按 Utility → 系统信息 , 进入如下所示界面。按下 "RUN/STOP" 键将退出系统信息界面。

图 2-117 系统信息界面

生产模式

DS1000E、DS1000D 系列数字示波器新增了锁键盘功能,应用于生产工作模式。在键盘锁定模式下,除 F1-F5 及 MENU ON/OFF 键外,其他按键全部被锁定。键盘锁定使用菜单进行操作;键盘解锁则需要输入解锁密码,解锁密码为六位,出厂的初始密码为"111111",用户可以在 Utility 的参数设置中设置新的解锁密码。

具体操作步骤如下:

1. 键盘锁定功能

按 Utility 功能键,选择 生产模式 菜单,将出现 键盘锁定 模式,进入该模式后,选择 确定 ,开启键盘锁定功能,如下图所示。

图 2-118 键盘锁定界面

此时,除了 F1-F5 键及 MENU ON/OFF 键可以使用外,其他按键全部被锁定。若选择 取消 ,将取消键盘锁定设置操作。

2. 键盘解锁功能

按下 F1-F5 任意一个按键,将出现 键盘解锁 模式,进入该模式,出现如下图所示界面,输入解锁密码(初始密码为"111111",用户可重新输入新的密码,密码长度为六位)即可完成键盘解锁。

图 2-119 键盘解锁界面

3. 密码重设

按下 Utility 功能键,选择 参数设置 菜单,在参数设置菜单的第二页中选择密码设置 选项,此时将出现下图所示界面。请根据输入旧的解锁密码,选择确定,然后输入用户自定义的新密码,并进行二次确定,系统将提示您的新解锁密码设置成功。

图 2-120 密码设置界面

自动测量

如下图所示,在 MENU 控制区中, Measure 为自动测量功能按键。下面的介绍将使您逐渐熟悉 DS1000E, DS1000D 系列数字示波器强大的测量功能。

自动测量按键

图 2-121 自动测量功能按键

菜单说明:

按 | Measure | 自动测量功能键,系统将显示自动测量操作菜单。

该系列示波器提供 22 种自动测量的波形参数,包括 10 种电压参数和 12 种时间参数:峰峰值、最大值、最小值、顶端值、底端值、幅值、平均值、均方根值、过冲、预冲、频率、周期、上升时间、下降时间、正占空比、负占空比、延迟 $1 \rightarrow 2f$ 、延迟 $1 \rightarrow 2f$ 、相位 $1 \rightarrow 2f$ 、相位 $1 \rightarrow 2f$ 、相位 $1 \rightarrow 2f$ 、正脉宽和负脉宽。

图 2-122 表 2-77 测量功能菜单

Measure 信源选择 CH1
电压测量
*时间测量
清除测量
全部测量

功能菜单	显示	说明
信源选择	CH1 CH2	设置被测信号的输入通道
电压测量		选择测量电压参数
时间测量		选择测量时间参数
清除测量		清除测量结果
全部测量	关闭 打开	关闭全部测量显示 打开全部测量显示

10 种电压测量参数

图 2-123 表 2-78 电压测量参数 (第一页)

1~~~ ₩
【 最大值 】
* ~~~~~~
最小值
1111
峰峰值
1744
顶端值

功能菜单	显示	说明
最大值		测量信号最大值
最小值		测量信号最小值
峰峰值		测量信号峰峰值
顶端值		测量信号顶端值

图 2-124 表 2-79 电压测量参数 (第二页)

功能菜单	显示	说明
底端值		测量信号底端值
幅度		测量信号幅度值
平均值		测量信号平均值
均方根值		测量信号均方根值

图 2-125 表 2-80 电压测量参数 (第三页)

功能菜单	显示	说明
过冲		测量信号过冲值
预冲		测量信号预冲值

10 种时间测量参数

图 2-126 表 2-81 时间测量参数 (第一页)

ŤŤſ A	
周期	
弹	
频率	?
上升时间	l
#	
下降时间	

功能菜单	显示	说明
周期		测量信号周期
频率		测量信号频率
上升时间		测量上升沿信号上升时间
下降时间		测量下降沿信号下降时间

图 2-127 表 2-82 时间测量参数 (第二页)

功能菜单	显示	说明
正脉宽		测量脉冲信号的正脉宽
负脉宽		测量脉冲信号的负脉宽
正占空比		测量信号的正占空比
负占空比		测量信号的负占空比

图 2-128 表 2-83 时间测量参数 (第三页)

功能菜单	显示	说明
延迟 1 → 2 €		测量 CH1, CH2 信号在上升沿 处的延迟时间
延迟 1 → 2 t		测量 CH1, CH2 信号在下降沿 处的延迟时间

图 2-129 表 2-84 时间测量参数 (第四页)

功能菜单	显示	说明
相位 1 → 25		测量 CH1,CH2 信号在上升沿 处的相位差
相位 1 → 2₹		测量 CH1,CH2 信号在下降沿 处的相位差

注意: 自动测量的结果显示在屏幕下方,最多可同时显示 3 个。当显示已满时,新的测量结果会导致原结果左移,从而将原屏幕最左端的结果挤出屏幕之外。

操作说明:

①. 选择被测信号通道:

根据信号输入通道不同,选择 CH1 或 CH2。 按钮操作顺序为: Measure → 信源选择 → CH1 或 CH2 。

②. 获得全部测量数值:

如下图菜单所示,按 5 号菜单操作键,设置"全部测量"项状态为 打开 。18 种 测量参数(不包括"延迟 1 \rightarrow 2+ 2+ "和"延迟 1 \rightarrow 2+ "参数)值显示于屏幕下方。

③. 选择参数测量:

按 2 号或 3 号菜单操作键选则测量类型,查找感兴趣的参数所在的分页。按钮操作顺序为: Measure → 电压测量 、 时间测量 → 最大值 、 最小值

④. 获得测量数值:

应用 2、3、4、5 号菜单操作键选择参数类型,并在屏幕下方直接读取显示的数据。若显示的数据为"*****",表明在当前的设置下,此参数不可测。

⑤. 清除测量数值:

如下图菜单所示,按 4 号菜单操作键选择 清除测量 。此时,所有屏幕下端的自动测量参数(不包括"全部测量"参数)从屏幕消失。

图 2-130 打开/关闭测量参数

电压参数的自动测量

DS1000E, DS1000D 系列数字示波器可自动测量的电压参数包括峰峰值、最大值、最小值、平均值、均方根值、顶端值、低端值。下图表述了各个电压参数的物理意义。

图 2-131 电压参数示意图

峰峰值(Vpp):波形最高点至最低点的电压值。

最大值(Vmax):波形最高点至GND(地)的电压值。

最小值(Vmin):波形最低点至GND(地)的电压值。

幅值(Vamp): 波形顶端至底端的电压值。

顶端值(Vtop):波形平顶至GND(地)的电压值。

底端值(Vbase):波形平底至GND(地)的电压值。

过冲(Overshoot):波形最大值与顶端值之差与幅值的比值。

预冲 (Preshoot): 波形最小值与底端值之差与幅值的比值。

平均值(Average):单位时间内信号的平均幅值。

均方根值(Vrms): 即有效值。依据交流信号在单位时间内所换算产生的能量,对 应于产生等值能量的直流电压,即均方根值。

时间参数的自动测量

DS1000E, DS1000D 系列数字示波器可自动测量的时间参数包括频率、周期、上升时间、下降时间、正脉宽、负脉宽、延迟 $1\rightarrow 2^{\frac{1}{2}}$ 、延迟 $1\rightarrow 2^{\frac{1}{2}}$ 、相位 $1\rightarrow 2^{\frac{1}{2}}$ 、相位 $1\rightarrow 2^{\frac{1}{2}}$ 、相位 $1\rightarrow 2^{\frac{1}{2}}$ 、相位 $1\rightarrow 2^{\frac{1}{2}}$ 、正占空比、负占空比。下图表述了各个时间参数的物理意义。

图 2-132 时间参数示意图

上升时间(RiseTime):波形幅度从 10%上升至 90%所经历的时间。

下降时间(FallTime):波形幅度从90%下降至10%所经历的时间。

正脉宽(+Width): 正脉冲在50%幅度时的脉冲宽度。

负脉宽(-Width): 负脉冲在50%幅度时的脉冲宽度。

延迟 $1\rightarrow 2^{f}$ (Delay $1\rightarrow 2^{f}$): 通道 1、2 相对于上升沿的延时。

延迟 $1\rightarrow 2^{\frac{1}{2}}$ (Delay $1\rightarrow 2^{\frac{1}{2}}$): 通道 1、2 相对于下降沿的延时。

相位 $1\rightarrow 2^f$ (Delay $1\rightarrow 2^f$): 通道 1、2 相对于上升沿的相位差。

相位 $1\rightarrow 2$ (Delay $1\rightarrow 2$): 通道 1、2 相对于下降沿的相位差。

正占空比(+Duty):正脉宽与周期的比值。

负占空比(-Duty): 负脉宽与周期的比值。

光标测量

如下图所示,在 MENU 控制区中, Cursor 为光标测量功能按键。

图 2-133 光标测量功能按键

光标模式允许用户通过移动光标进行测量,使用前请首先将信号源设定成您所要测量的波形。光标测量分为 3 种模式:

1. 手动模式:

出现水平调整或垂直调整的光标线。通过旋动多功能旋钮(**\vee**)手动调整光标的位置,示波器同时显示光标点对应的测量值。

2. 追踪模式:

水平与垂直光标交叉构成十字光标。十字光标自动定位在波形上,通过旋动多功能旋钮(**划**)可以调整十字光标在波形上的水平位置。示波器同时显示光标点的 坐标。

3. 自动测量模式:

通过此设定,在自动测量模式下,系统会显示对应的电压或时间光标,以揭示测量的物理意义。系统根据信号的变化,自动调整光标位置,并计算相应的参数值。 此种方式在未选择任何自动测量参数时无效。

手动模式

按 Cursor → 光标模式 → 手动,进入下面所示菜单。

图 2-134 表 2-85 手动模式菜单

Cursors
光标模式
← 手动
光标类型
Y
信源选择
∢ CH1
CurA
Ð
CurB
4)
_

功能菜单	设定	说明		
光标模式	手动	手动调整光标间距以测量 X 或 Y 参数		
光标类型	X Y	光标显示为垂直线,测量时间值 光标显示为水平线,测量电压值		
信源选择	CH1 CH2 MATH LA	选择被测信号的输入通道 (LA 只适用于 DS1000D 系列)		
CurA		设置光标 A 有效,调整光标 A 位置		
CurB		设置光标B有效,调整光标B位置		

选择 X 光标类型时,屏幕上将出现一对垂直光标 CurA 和 CurB,可测量对应波形处的时间值及二者之间的时间差值。通过旋动多功能旋钮(**心**)改变光标的位置,将获得相应波形处的时间值及差值,如下图所示。

图 2-135 手动模式光标测量

选择Y光标类型时,屏幕上将出现一对水平光标CurA和CurB,可测量对应波形处的电压值及二者之间的电压差值。通过旋动多功能旋钮(**心**)改变光标的位置,将获得相应波形处的电压值及差值。

操作步骤如下:

- ①. 选择手动测量模式: 按键操作顺序为: Cursor > 光标模式 > 手动 。
- ②. 选择被测信号通道:根据被测信号的输入通道不同,选择 CH1 或 CH2。按键操作顺序为: 信源选择 → CH1 、 CH2 、 FFT 或 LA (仅 DS1000D 系列)。
- ③. 选择光标类型:根据需要测量的参数分别选择 X 或 Y 光标。按键操作顺序为:光标类型 → X 或 Y 。
- ④. 移动光标以调整光标间的增量:(见下表)

表 2-86 光标操作说明

光标	增量	操作
CurA	X	旋动多功能旋钮(ひ)使光标 A 左右移动
(光标 A)	Y	旋动多功能旋钮(ひ)使光标 A 上下移动
CurB	X	旋动多功能旋钮(ひ)使光标 B 左右移动
(光标 B)	Y	旋动多功能旋钮(ひ)使光标 B 上下移动

注意: 只有当前菜单为光标功能菜单时,才能移动光标。

⑤. 获得测量数值:

光标 1 位置(时间以触发偏移位置为基准,电压以通道接地点为基准) 光标 2 位置(时间以触发偏移位置为基准,电压以通道接地点为基准)

光标 1、2 的水平间距 (ΔX): 即光标间的时间值。

光标 1、2 水平间距的倒数 (1/△X)。

光标 1、2 的垂直间距 (ΔY): 即光标间的电压值。

如果信源选择为 LA(仅 DS1000D 系列),测量数值为:

光标 1 位置(时间以触发偏移位置为基准)

光标 2 位置(时间以触发偏移位置为基准)

光标 1 的数字通道数值(十六进制形式)。

光标 1 的数字通道数值(二进制形式)。

光标 2 的数字通道数值(十六进制形式)。

光标 2 的数字通道数值(二进制形式)。

注意: 当光标功能打开时,测量数值自动显示于屏幕右上角。

名词解释

Y光标:Y光标是进行垂直调整的水平虚线,通常指 Volts 值,当信源为数学函数时,测量单位与该数学函数相对应。

X光标:是进行水平调整的垂直虚线,通常指示相对于触发偏移位置的时间。当信源为FFT时,X光标代表频率。

追踪模式

按 Cursor → 光标模式 → 追踪,进入下面所示菜单。

图 2-136 表 2-87 追踪模式菜单

功能菜单	设定	说明
光标模式	追踪	设定追踪方式,定位和调整十字 光标在被测波形上的位置。
光标 A	CH1 CH2 无光标	设定追踪测量通道 1 的信号 设定追踪测量通道 2 的信号 不显示光标 A
光标 B	CH1 CH2 无光标	设定追踪测量通道1的信号 设定追踪测量通道2的信号 不显示光标B
CurA (光标 A)	٦	设定旋动多功能旋钮(心)调整 光标 A 的水平坐标
CurB (光标 B)	Ŷ	设定旋动多功能旋钮(心)调整 光标 B 的水平坐标

光标追踪测量模式是在被测波形上显示十字光标,通过移动光标的水平位置,光标自动在波形上定位,并显示当前定位点的水平、垂直坐标和两光标间水平、垂直的增量。 其中,水平坐标以时间值显示,垂直坐标以电压值显示,如下图所示。

图 2-137 追踪模式光标测量

操作步骤如下:

- ①. 选择光标追踪测量模式: 按键操作顺序为: Cursor → 光标模式 → 追踪 。
- ②. 选择光标 A、B 的信源:根据被测信号的输入通道不同,选择 CH1 或 CH2 。若不希望显示此光标,则选择 无光标。

按键操作顺序为: 光标 A 或 光标 B → CH1 、 CH2 或 无光标。

③. 移动光标在波形上的水平位置:(见下表)

表 2-88 光标操作说明

光标	操作
光标 A	旋动多功能旋钮(ひ) 使光标 A 在波形上水平移动
光标 B	旋动多功能旋钮(心)使光标 B 在波形上水平移动

注意:只有当前菜单是光标追踪菜单时,才能水平移动光标。在其它菜单状态下,十字光标在当前窗口的水平位置不会改变,垂直光标可能因为波形的瞬时变化而上下摆动。

④. 获得测量数值:

光标 1 位置(时间以触发偏移位置为基准,电压以通道接地点为基准) 光标 2 位置(时间以触发偏移位置为基准,电压以通道接地点为基准) 光标 1、2 的水平间距(ΔX):即光标间的时间值。(以"秒"为单位) 光标 1、2 水平间距的倒数($1/\Delta X$)。(以"赫兹"为单位) 光标 1、2 的垂直间距(ΔY):即光标间的电压值。(以"伏"为单位)

自动测量模式

按 Cursor → 光标模式 → 自动测量,进入下面所示菜单。

图 2-138 表 2-89 自动模式菜单

Cursors 光标模式	
4自动测量	:

功能菜单	设定	说明
光标模式	自动测量	显示当前自动测量的参数所应 用的光标。(见下图)

使用自动测量模式时,您首先要通过 Measure 菜单选定需要测量的参数。选定后,屏幕上将显示与该测量参数对应的光标,否则,没有光标显示。

本示波器可以自动移动光标测量 Measure 菜单下的所有参数(22种)。

图 2-139 频率自动测量光标示意图

使用执行按键

执行按键包括 AUTO (自动设置) 和 RUN/STOP (运行/停止)

AUTO (自动设置): 自动设定仪器各项控制值,以产生适宜观察的波形显示。

按 AUTO (自动设置)键,快速设置和测量信号。按 AUTO 后,菜单显示如下:

图 2-140 表 2-90 自动设置菜单

AUTO
JUUL
多周期
7.7.
单周期
上升沿
下降沿
Ŋ

功能菜单	设定	说明	
JJJJJ J		设置屏幕自动显示多个周期信号	
」「 」「 」 単周期		设置屏幕自动显示单个周期信号	
上升沿		自动设置并显示上升时间	
下降沿		自动设置并显示下降时间	
(撤消)		撤消自动设置,返回前一状态	

自动设定功能项目

表 2-91 自动设定项目

功能	设定
显示方式	Y-T
获取方式	普通
垂直耦合	根据信号调整到交流或直流
垂直位置	调节至适当位置
垂直 "V/div"	调节至适当档位
垂直档位调节	粗调
带宽限制	关闭(即满带宽)
信号反相	关闭
水平位置	居中
水平 "s/div"	调节至适当档位
触发类型	边沿
触发信源	自动检测到有信号输入的通道
触发耦合	直流
触发电平	中点设定
触发方式	自动

RUN/STOP (运行/停止):运行和停止波形采样。

注意: 波形垂直档位和水平时基可以在一定的范围内调整,相当于对信号进行水平或垂直方向上的扩展。

第 3 章 使用实例

例一:测量简单信号

观测电路中的一个未知信号,迅速显示和测量信号的频率和峰峰值。

1. 欲迅速显示该信号,请按如下步骤操作:

- (1) 将探头菜单衰减系数设定为 10X, 并将探头上的开关设定为 10X。
- (2) 将通道 1 的探头连接到电路被测点。
- (3) 按下 | AUTO | (自动设置) 按键。

示波器将自动设置使波形显示达到最佳状态。在此基础上,您可以进一步调节垂直、 水平档位,直至波形的显示符合您的要求。

2. 进行自动测量

示波器可对大多数显示信号进行自动测量。欲测量信号频率和峰峰值,请按如下步骤操作:

(1) 测量峰峰值

按下 Measure 按键以显示自动测量菜单。按下 1 号菜单操作键以选择信源 CH1。按下 2 号菜单操作键选择测量类型: 电压测量。在电压测量弹出菜单中选择测量参数: 峰峰值。此时,您可以在屏幕左下角发现峰峰值的显示。

(2) 测量频率

按下3号菜单操作键选择测量类型: 时间测量。 在时间测量弹出菜单中选择测量参数: 频率。 此时,您可以在屏幕下方发现频率的显示。

注意:测量结果在屏幕上的显示会因为被测信号的变化而改变。

例二:观察正弦波信号通过电路产生的延迟和畸变

与上例相同,设置探头和示波器通道的探头衰减系数为 10X。将示波器 CH1 通道与电路信号输入端相接,CH2 通道则与输出端相接。

操作步骤如下:

1. 显示 CH1 通道和 CH2 通道的信号

- (1) 按下 | AUTO | (自动设置) 按键。
- (2) 继续调整水平、垂直档位直至波形显示满足您的测试要求。
- (3) 按 CH1 按键选择通道 1, 旋转垂直(VERTICAL)区域的垂直 POSITION 旋 钮调整通道 1 波形的垂直位置。
- (4) 按 CH2 按键选择通道 2,如前操作,调整通道 2 波形的垂直位置。使通道 1、2 的波形既不重叠在一起,又利于观察比较。

2. 测量正弦信号通过电路后产生的延时,并观察波形的变化

(1) 自动测量通道延时

按下 Measure 按钮以显示自动测量菜单。按下 1 号菜单操作键以选择信源 CH1。按下 3 号菜单操作键选择 时间测量。在时间测量选择测量类型: 延迟 1→25。

(2) 观察波形的变化(见下图)

图 3-1 波形畸变示意图

例三: 捕捉单次信号

方便地捕捉脉冲、毛刺等非周期性的信号是数字示波器的优势和特点。

若捕捉一个单次信号,首先需要对此信号有一定的了解,才能设置触发电平和触发沿。例如,若脉冲是一个 TTL 电平的逻辑信号,触发电平应该设置为 2 伏,触发沿设置为上升沿触发。如果对于信号的情况不确定,可以通过自动或普通的触发方式先行观察,以确定触发电平和触发沿。

操作步骤如下:

- 1. 如前例设置探头和 CH1 通道的衰减系数。
- 2. 进行触发设定。
- (1) 按下触发(TRIGGER)控制区域 | MENU | 按钮,显示触发设置菜单。
- (2) 在此菜单下分别应用 1~5 号菜单操作键设置**触发类型**为 边沿触发 、 **边沿类型** 为 上升沿 、**信源选择**为 CH1、**触发方式** 单次 、触发设置 → **耦合**为 直流 。
- (3) 调整水平时基和垂直档位至适合的范围。
- (4) 旋转**触发(TRIGGER**)控制区域^{②LEVEL}旋钮,调整适合的触发电平。
- (5) 按 RUN/STOP 执行按钮,等待符合触发条件的信号出现。如果有某一信号达到设定的触发电平,即采样一次,显示在屏幕上。

利用此功能可以轻易捕捉到偶然发生的事件,例如幅度较大的突发性毛刺:将触发电平设置到刚刚高于正常信号电平,按 RUN/STOP 键开始等待,则当毛刺发生时,机器自动触发并把触发前后一段时间的波形记录下来。通过旋转面板上水平控制区域(HORIZONTAL)的水平©POSITION旋钮,改变触发位置的水平位置可以得到不同长度的负延迟触发,便于观察毛刺发生之前的波形。

例四:减少信号上的随机噪声

如果被测试的信号上叠加了随机噪声,您可以通过调整示波器的设置,滤除或减小噪声,避免其在测量中对本体信号的干扰。(波形见下图)

图 3-2 叠加噪声的波形

操作步骤如下:

- 1. 如前例设置探头和 CH1 通道的衰减系数
- 连接信号使波形在示波器上稳定地显示 操作参见前例,水平时基和垂直档位的调整见前章相应描述。
- 3. 通过设置触发耦合改善触发
- (1) 按下触发(TRIGGER)控制区域 | MENU | 按键,显示触发设置菜单。
- (2) 触发设置 → 耦合选择 低频抑制 或 高频抑制。

低频抑制是设定一个高通滤波器,可滤除 8kHz 以下的低频信号分量,允许高频信号分量通过。

高频抑制是设定一个低通滤波器,可滤除 150kHz 以上的高频信号分量(如 FM 广播信号),允许低频信号分量通过。通过设置 低频抑制 或 高频抑制 可以分别抑制低频或高频噪声,以得到稳定的触发。

- 4. 通过设置采样方式和调整波形亮度减少显示噪声
- (1) 如果被测信号上叠加了随机噪声,导致波形过粗。可以应用平均采样方式,去除随机噪声的显示,使波形变细,便于观察和测量。取平均值后随机噪声被减小而信号的细节更易观察。

具体的操作是:按面板 **MENU** 区域的 **Acquire** 按钮,显示采样设置菜单。按 1 号菜单操作键设置**获取方式**为 平均 状态,然后按 2 号菜单操作键调整平均次数,依次由 2 至 256 以 2 倍数步进,直至波形的显示满足观察和测试要求。(见下图)

图 3-3 减少噪声后的波形

(2) 减少显示噪声也可以通过减低波形亮度来实现。

注意: 使用平均采样方式会使波形显示更新速度变慢, 这是正常现象。

例五:应用光标测量

本示波器可以自动测量 **22** 种波形参数。所有的自动测量参数都可以通过光标进行测量。使用光标可迅速地对波形进行时间和电压测量。

测量 Sinc 第一个波峰的频率

欲测量信号上升沿处的 Sinc 频率,请按如下步骤操作:

- 1. 按下 Cursor 按钮以显示光标测量菜单。
- 2. 按下 1 号菜单操作键设置光标模式为 手动。
- 3. 按下 2 号菜单操作键设置光标类型为 X 。
- 4. 旋动多功能旋钮(**心**)将光标 1 置于 Sinc 的第一个峰值处。
- 5. 旋动多功能旋钮 (♥) 将光标 2 置于 Sinc 的第二个峰值处。

图 3-4 测量第一个波峰的频率

注意: 光标菜单中显示出增量时间和频率 (测得的 Sinc 频率)。

测量 Sinc 第一个波峰的幅值

欲测量 Sinc 幅值,请按如下步骤操作:

- 1. 按下 Cursor 按钮以显示光标测量菜单。
- 2. 按下1号菜单操作键设置光标模式为 手动。
- 3. 按下 2 号菜单操作键设置光标类型为 Y 。
- 4. 旋动多功能旋钮 (♥) 将光标 1 置于 Sinc 的第一个峰值处。
- 5. 旋动多功能旋钮 (♥) 将光标 2 置于 Sinc 的第二个峰值处。

光标菜单中将显示下列测量值:

- 增量电压(Sinc 的峰一峰电压)
- 光标 1 处的电压
- 光标 2 处的电压

图 3-5 测量第一个波峰的幅值

例六: X-Y 功能的应用

查看两个通道信号的相位差:测试信号经过一电路网络产生的相位变化。

将示波器与电路连接,监测电路的输入输出信号。

欲以 X-Y 坐标图的形式查看电路的输入输出,请按如下步骤操作:

- 1. 将探头菜单衰减系数设定为 10X, 并将探头上的开关设定为 10X。
- 2. 将通道 1 的探头连接至网络的输入,将通道 2 的探头连接至网络的输出。
- 3. 若通道未被显示,则按下 CH1 和 CH2 菜单按钮。
- 4. 按下 AUTO (自动设置) 按钮。
- 5. 调整垂直 SCALE 旋钮使两路信号显示的幅值大约相等。
- 6. 按下水平控制区域的 MENU 菜单按钮以调出水平控制菜单。
- 7. 按下**时基**菜单框按钮以选择 **X**-Y 。示波器将以李沙育(Lissajous)图形模式显示网络的输入输出特征。
- 9. 应用椭圆示波图形法观测并计算出相位差。(见下图)

3-8

根据 $sin\theta = A/B$ 或 C/D,其中 θ 为通道间的相差角,A,B,C,D 的定义见上图。因此可以得出相差角,即:

θ =±arcsin (A/B)或±arcsin(C/D).

如果椭圆的主轴在 I、III 象限内,那么所求得的相位差角应在 I、IV 象限内,即在 $(0 \sim n/2)$ 或 $(3n/2 \sim 2n)$ 内。如果椭圆的主轴在 II、IV 象限内,那么所求得的相位差角应在 II、III 象限内,即在 $(n/2 \sim n)$ 或 $(n \sim 3n/2)$ 内。

例七:视频信号触发

观测一 DVD 机中的视频电路,应用视频触发并获得稳定的视频输出信号显示。

视频场触发

欲在视频场上触发,请按如下步骤操作:

- 1. 按下触发控制区域(TRIGGER)的 MENU 按键以显示触发菜单。
- 2. 按下 1 号菜单操作键选择 视频触发 。
- 3. 按下 2 号菜单操作键设置**信源选择**为 CH1 。
- 4. 按下 3 号菜单操作键选择视频极性为][。
- 5. 按下 4 号菜单操作键选择同步为 奇数场 或 偶数场 。
- 6. 调整 LEVEL 旋钮使触发电平位于视频同步脉冲,以得到良好的触发状态。
- 7. 应用水平控制区域的水平 SCALE 旋钮调整水平时基,以得到清晰的波形显示。

图 3-7 视频场触发示意图

本示波器可指定在视频奇数场或偶数场触发,从而避免奇偶视频场同时触发造成的混淆。只需按上述步骤 5 选择 奇数场 或 偶数场 即可。

视频行触发

欲在视频行上触发,请按如下步骤操作:

- 1. 按下触发控制区域(TRIGGER)的 MENU 按键以显示触发菜单。
- 2. 按下 1 号菜单操作键选择 视频触发。
- 3. 按下 2 号菜单操作键设置**信源选择**为 CH1 。
- 4. 按下 3 号菜单操作键选择视频极性为 7 [。
- 5. 按下 4 号菜单操作键选择同步为 指定行。
- 6. 旋动多功能旋钮(**) 以在感兴趣的某一行处触发。
- 7. 调整**②LEVEL**旋钮以得到良好的触发状态。
- 8. 应用水平控制区域的水平 ③SCALE 旋钮调整水平时基,以得到清晰的波形显示。

图 3-8 视频行触发示意图

例八: 使用光标测定 FFT 波形

可以对 FFT 波形进行两项测量:幅度(以 Vrms 或 dBVrms 为单位)和频率(以 Hz 为单位)测量,调节两水平和垂直光标,可以从光标间的增量读出测量值。

欲进行 FFT 光标测量,请按以下步骤操作:

- 1. 按 Cursor 按键显示光标测量菜单。
- 2. 按 2 号菜单操作按钮,选择光标类型为 X 或 Y。
- 3. 按 3 号菜单操作按钮,选择信源为 FFT,菜单将转移到 FFT 窗口。
- 4. 旋动多功能旋钮(**\verts**)移动光标至感兴趣的波形位置。

图 3-9 光标测量 FFT 幅值实例

图 3-10 光标测量 FFT 频率实例

例九:通过/失败测试

检测通道输入信号是否在规则范围之内,超出范围即为失败,反之则为通过,并且可以通过光电隔离的 Pass/Fail 端口输出检测结果。

欲执行通过/失败检测, 按以下步骤操作:

- 1. 按 Utility → 通过测试 ,显示 Pass/Fail 菜单。
- 2. 打开允许测试: 进入 Pass/Fail (1/2)菜单,按 1 号菜单操作按钮,选择打开。
- 3. 创建规则: 进入 Pass/Fail (2/2)菜单,按 4 号菜单操作按钮,进入 MASK 菜单。在 MASK (1/2)菜单中,按 1 号和 2 号菜单操作按钮,设置水平和垂直的容限范围,最后按 3 号操作键创建规则;也可在 MASK (2/2)菜单中,按 3 号操作按钮调出已 经保存的规则。
- 4. 设置输出方式: 进入 Pass/Fail (2/2)菜单,按 2 号菜单操作按钮,设置输出选项。
- 5. 开始检测: 进入 Pass/Fail (1/2)菜单,按 3 号菜单操作按钮,运行。

图 3-11 通过/失败测试

例十: 数字信号触发

码型和持续时间触发是专门用来对**数字信号**进行触发时使用的触发方式。这两种触发方式只能针对数字信号进行触发,而不能在触发模拟信号时使用。

码型触发

欲对数字信号进行码型触发,请按以下步骤操作:

- 1. 按下触发控制区域(TRIGGER)的 MENU 按键以显示触发菜单。
- 2. 按下 1 号菜单操作键选择 码型触发。
- 3. 旋动功能键 (**①**),选择需要设置通道 (D0~D15)。
- 4. 按下 3 号功能键选择**码型设置** (H、L、X、**→**或 **→**)。
- 5. 按下 4 号功能键选择触发方式为:自动、普通或单次。
- 6. 按下 5 号功能键进行触发设置,调整**触发释抑**,以使信号达到稳定显示。

图 3-12 码型触发数字信号

持续时间触发

欲对数字信号进行持续时间触发,请按以下步骤操作:

- 1. 按下触发控制区域(TRIGGER)的 MENU 按键以显示触发菜单。
- 2. 按下1号菜单操作键选择 持续时间触发 。
- 3. 旋动功能键 (♥),选择需要设置通道 (D0~D15)。
- 4. 按下 3 号功能键选择码型设置 (H、L 或 X)。
- 5. 按下 4 号功能键选择限定符为: <、>或=。
- 6. 按下5号功能键进入菜单第二页。
- 7. 按下2号功能按键进行持续时间设置。
- 8. 按下3号功能按键选择触发方式为:自动、普通或单次。
- 9. 按下 4 号功能键进行触发设置,调整触发释抑,以使信号达到稳定显示。

图 3-13 持续时间触发数字信号

第 4 章 故障排除

1. 如果按下电源开关示波器仍然黑屏,没有任何显示:

- (1) 检查电源接头是否接好。
- (2) 检查电源开关是否按实。
- (3) 做完上述检查后,重新启动仪器。
- (4) 如果仍然无法正常使用本产品,请与 **RIGOL** 联系。

2. 采集信号后,画面中并未出现信号的波形:

- (1) 检查探头是否正常接在信号连接线上。
- (2) 检查信号连接线是否正常接在 BNC (即通道连接器)上。
- (3) 检查探头是否与待测物正常连接。
- (4) 检查待测物是否有讯号产生(可将探头补偿输出信号连接到有问题的通道确定是通道还是待测物的问题)。
- (5) 再重新采集信号一次。

3. 测量的电压幅度值比实际值大 10 倍或小 10 倍:

检查通道衰减系数是否与实际使用的探头衰减比例相符。

4. 有波形显示,但不能稳定下来:

- (1) 检查触发面板的**信源选择**项是否与实际使用的信号通道相符。
- (2) 检查触发类型:一般的信号应使用 边沿触发 方式,视频信号应使用 视频触发 方式。只有应用适合的触发方式,波形才能稳定显示。
- (3) 尝试改变 耦合 为 高频抑制 和 低频抑制 显示,以滤除干扰触发的高频或低频噪声。
- (4) 改变触发灵敏度和触发释抑设置。

5. 按下 RUN/STOP | 键无任何显示:

检查触发面板(TRIGGER)的**触发方式**是否在 普通 或 单次 档,且触发电平超出波形范围。如果是,将触发电平居中,或者设置**触发方式**为 自动 档。另外,按**自动设置「AUTO**」按键可自动完成以上设置。

6. 选择打开平均采样方式时间后,显示速度变慢:

正常。

7. 波形显示呈阶梯状:

- (1) 水平时基档位可能过低,增大水平时基以提高水平分辨率,可以改善显示。
- (2) **显示类型**可能为 矢量 ,采样点间的连线,可能造成波形阶梯状显示。将**显示类** 型设置为 点 显示方式,即可解决。

第 5 章 性能指标

除非另有说明,所用技术规格都适用于 DS1000E, DS1000D 系列数字示波器。示波器 须首先满足以下两个条件,才能达到这些规格标准:

- 仪器必须在规定的操作温度下连续运行 30 分钟以上。
- 如果操作温度变化范围达到或超过 5°C,必须打开系统功能菜单,执行"自校正" 程序。

注意:除标有"典型值"字样的规格以外,所用规格都有保证。

技术规格

采样			
采样方式	实时采样	等	效采样
采样率	1GSa/s ^[1] ,500MSa/s	DS1102X	DS1052X
不什华	1G3a/S , 500ivi3a/S	25GSa/s	10GSa/s
平均值	所有通道同时达到 N 次采样后完成-	一次波形显示,N 🛭	次数可在 2、4、8、
十均但	16、32、64、128 和 256 之间选择		

输入		
输入耦合	直流、交流或接地(DC、AC、GND)	
输入阻抗	1MΩ±2%	
	输入电容为 18pF±3pF	
探头衰减系数设定	1X, 5X, 10X, 50X, 100X, 500X, 1000X	
最大输入电压	400V (DC+AC 峰值、 1MΩ 输入阻抗)	
取入	40V(DC+AC 峰值) ^[2]	
通道间时间延迟(典型值)	500ps	

水平				
采样率范围	实时: 13.65Sa/s ~1GSa/s 等效: 13.65Sa/s ~25GSa/s			
波形内插	Sin(x)/x			
	通道模式	采样率	存储深度 (普通)	存储深度 (长存储)
	单通道	1GSa/s	16kpts	N.A.
存储深度	单通道	500MSa/s 或 更低	16kpts	1Mpts
	双通道	500MSa/s 或 更低	8kpts	N.A.
	双通道	250MSa/s 或 更低	8kpts	512kpts
扫速范围(s/div)	2ns/div-50s/div, DS1102X 5ns/div-50s/div, DS1052X 1-2-5 进制			
采样率和延迟时间精 确度	±50ppm(任何≥1ms 的时间间隔)			

_ 垂直			
模拟数字转换器 (A/D)	8 比特分辨率,两个通道同时采样		
え 灵敏度(伏/格)范 围(V/div)	2mV/div~10V/div(在输入 BNC 处)		
最大输入	模拟通道最大输入电压 CAT I 300Vrms, 1000Vpk; 瞬态过压 1000Vpk CAT II 100Vrms, 1000Vpk 使用 RP2200 10:1 探头时: CAT II 300Vrms 使用 RP3300A 10:1 探头时: CAT II 300Vrms		
位移范围	$\pm 40V (250 \text{mV/div} \sim 10 \text{V/div})$ $\pm 2V (2 \text{mV/div} \sim 245 \text{mV/div})$		
等效带宽	100MHz(DS1102D,DS1102E) 50MHz(DS1052D, DS1052E)		
单次带宽			
可选择的模拟带宽 限制(典型值)	20MHz		
低频响应 (交流耦合,-3dB)	≤5Hz (在BNC上)		
上升时间(BNC 上典型值,等效采样时)	<3.5ns,<7ns 分别在带宽(100MHz,50MHz)上		
直流增益精确度	2mV/div~5mV/div,±4%(普通或平均值获取方式) 10 mV/div~10V/div,±3%(普通或平均值获取方式)		
直流测量精确度(平均值获取方式)	垂直位移为零,且 N≥16 时: ±(直流增益精确度×读数+0.1 格+1mV) 垂直位移不为零,且 N≥16 时: ±[直流增益精确度×(读数+垂直位移读数)+(1%×垂直位移读数)+0.2 格] 设定值从 2mV/div 到 245 mV/div 加 2mV。 设定值从 250 mV/div 到 10V/div 加 50 mV。		
电压差(ΔV)测量精确度(平均值获取方式)			

触发		
触发灵敏度	0.1div ~ 1.0div,用户可调节	
触发电平范围	内部 距屏幕中心±6格	
	EXT	±1.2V
触发电平精确度(典型值)适用于上升和	内部	±(0.3div×V/div)(距屏幕中心±4div 范围内)
下降时间≥20ns 的信号	EXT	±(6%设定值+200mV)
触发位移	正常模式:	预触发(存储深度/(2×采样率)),延迟触发1s

RIGOL

		慢扫描模式: 预触发 6div, 延迟触发 6div	
释抑范围		500ns~1.5s	
设定电平至 50%		输入信号频率≥50Hz 条件下的操作	
(典型值)		個八百 5 <u> </u>	
边沿触发			
边沿类型	上升	、下降、上升+下降	
脉宽触发			
触发条件	(大	于、小于、等于)正脉宽,(大于、小于、等于)负脉宽	
脉冲宽度范围	20ns	~ 10s	
视频触发			
信号制式	支持	标准的 NTSC、PAL 和 SECAM 广播制式,行数范围是 1~525	
行频范围	(NTS	SC) 和 1-625 (PAL/SECAM)	
斜率触发			
触发条件	(大	于、小于、等于)正斜率,(大于、小于、等于)负斜率	
时间设置	20ns	~10s	
交替触发			
CH1 触发	边沿	、脉宽、视频、斜率	
CH2 触发	边沿	、脉宽、视频、斜率	
码型触发[2]			
码型类型	D0 ~D15 选择 H、L、X、 f 、 ₹		
持续时间触发[2]			
码型类型	D0 ~	· D15 选择 H、L、X	
限定符	大于	、小于、等于	
时间设置	20ns	~ 10s	

测量		
光标	手动模式	光标间电压差(△V)
		光标间时间差(△T)
		△T 的倒数(Hz)(1/△T)
	追踪模式	波形点的电压值和时间值
	自动测量模式	允许在自动测量时显示光标
自动测量	峰峰值、幅值、	最大值、最小值、顶端值、底端值、平均值、均方
	根值、过冲、预	冲、频率、周期、上升时间、下降时间、正脉宽、
	负脉宽、正占空!	比、负占空比、延迟1→25、延迟1→21、相位
	1 → 2 、相位 1	→ 21 的测量

注^[1]: 采样率为 1GSa/s 时,只有 1 个通道可用。

^{[2]:} DS1000D 系列逻辑分析仪指标。

一般技术规格

显示		
显示类型	对角线为 145 毫米(5.6 英寸)的 TFT 液晶显示	
显示分辨率	320 水平×RGB×234 垂直像素	
显示色彩	64k 色	
对比度(典型值)	150 : 1	
背光强度(典型值)	300 nit	

探头补偿器输出	
输出电压(典型值)	约 3Vpp,峰峰值
频率(典型值)	1kHz

电源	
电源电压	100~240 VAC _{RMS} , 45~440Hz, CAT II
耗电	小于 50W
保险丝	2A, T级, 250V

环境	
温度范围	操作: 10℃~+40℃
(血)文化团	非操作: -20℃~+60℃
冷却方法	风扇强制冷却
湿度范围	+35℃以下: ≤90%相对湿度
並浸池団	+35℃~+40℃: ≤60%相对湿度
海拔高度	操作 3,000 米以下
	非操作 15,000 米以下

机械规格		
	宽	303 毫米
尺寸	高	154 毫米
	深	133 毫米
重量	不含包装	2.3 千克
	含包装	3.5 千克

IP 防护	
IP2X	

调整间隔期	
建议校准间隔期为一年	

第6章 附录

附录 A: DS1000E, DS1000D 系列数字示波器附件

标准附件:

- 两支 (1.5m), (1:1 或 10:1 可调) 无源探头 当开关处于 1X 位置时,此无源探头具有 6MHz 带宽,属 150V CAT II 级 当开关处于 10X 位置时,探头具有满足示波器上限的带宽,属 300 V CAT II 级
- 一根符合所在国标准的电源线
- 一条数据排线(仅 DS1000D 系列)
- 一个有源逻辑探头(仅 DS1000D 系列)
- 20 个逻辑测试夹(仅 DS1000D 系列)
- 20 根逻辑测试线(仅 DS1000D 系列)
- 一本《快速指南》
- 一份《产品保修卡》

选购附件:

- BNC 电缆
- USB 数据线
- RS232 电缆
- USB-GPIB 适配器
- DS1000E, DS1000D 系列专用便携软包

所有附件(标准件和选购件),请向当地的 RIGOL 代表处订购。

附录 B: 保修概要

北京普源精电科技有限公司及其授权生产的苏州普源精电有限公司(**RIGOL** Technologies, Inc.)承诺其生产仪器的主机和附件,在产品保修期内无任何材料和工艺缺陷。在保修期内,若产品被证明有缺陷,**RIGOL** 将为用户免费维修或更换。详细保修说明请参见 **RIGOL** 官方网站或产品保修卡。

若欲获得维修服务或索取保修说明全文,请与 RIGOL 维修中心或各地办事处联系。

除本概要或其他适用的保修卡所提供的保证以外,**RIGOL**公司不提供其他任何明示或暗示的保证,包括但不局限于对产品可交易性和特殊用途适用性之任何暗示保证。在任何情况下,**RIGOL**公司对间接的,特殊的或继起的损失不承担任何责任。

附录 C: 保养和清洁维护

一般保养

请勿将仪器放置在长时间受到日照的地方。

小心

请勿使任何腐蚀性的液体沾到仪器或探头上,以免损坏仪器或探头。

清洁

请根据使用情况经常对仪器和探头进行清洁。方法如下:

- **1**. 断开电源。
- **2.** 用柔和的清洁剂或清水浸湿软布擦拭仪器外部。清洁带有液晶显示屏的仪器时,请注意不要划伤 LCD 显示屏。

警告: 重新通电之前,请确认仪器已经干透,避免因水分造成电气短路甚至人身 伤害。

附录 D: 联系我们

如您在使用此产品或本手册的过程中有任何问题或需求,可与 RIGOL 联系:

电子邮箱: service@rigol.com

网址: www.rigol.com

索引

50% 按钮1-18	触发电平1-17
AC Line2-46	触发耦合2-46
ACQUIRE2-48	触发设置2-43
AUTO2-93	触发释抑2-45
CURSOR2-87	触发系统1-17, 2-31, 5-3
DISPLAY2-52	垂直档位调节2-7
EXT2-46	垂直系统1-13, 2-2, 5-3
FFT 分辨率2-12, 2-21	粗调/细调 1-14, 2-8
FFT 频谱分析2-11	存储和调出2-54
FORCE 1-18, 2-31	打印设置2-72
HORIZONTAL1-15	带宽限制2-4
MEASURE2-81	单次触发2-46
OFF2-24	等效采样2-51
REF 功能2-13	底端值2-85
RS-2322-64	电压光标2-89
RUN/STOP2-93	电源5-5
STORAGE2-54	调出2-61
TRIGGER1-17	顶端值2-82, 2-85
UTILITY2-62	峰峰值2-81, 2-85
VERTICAL1-13	峰值检测2-51
X一Y 方式 2-27, 2-29	辅助系统功能2-62
X一Y 功能 3-8	负脉宽2-83, 2-86
Y-T方式2-27	功能检查1-7
保存2-61	光标测定 FFT 波形 3-12
保修概要6-2	光标测量2-87, 3-4, 3-6
边沿触发2-33	光标手动方式2-87, 2-88
标准附件6-1	光标追踪方式2-87
波形反相2-8	光标追踪模式2-90
波形录制2-69	光标自动测量方式2-87, 2-92
捕捉单次信号 3-3	滚动模式2-27
采样系统2-48, 5-2	交替触发2-38
测量简单信号 3-1	接口设置2-14, 2-64
场同步2-45	均方根值2-85
持续时间触发2-42	联系我们6-4
出厂设置2-60	录制存储2-70
© 2008 RIGOL Technologies, Inc.	1

RIGOL

通过失败3-13 同步脉冲2-37 外部触发2-46
外部触发2-46
下降时间2-86
显示类型2-53, 2-63
显示设置2-52
显示系统5-5
斜率触发2-35
信源2-46
行同步2-37
选择和关闭通道2-24
延迟扫描2-28
一般保养6-3
一般性检查 1-2
语言选择2-65
预触发2-47
正脉宽2-83, 2-86
执行按钮2-93
周期2-83
自动测量2-81
自动触发2-46
自动设定功能项目2-94
自动设置1-10, 1-12
自校正2-77, 2-78, 2-79
最大值2-81, 2-85
最小值2-81, 2-85
3