Equilibrio di un corpo rigido: il momento torcente

Lorenzo Mauro Sabatino

Sommario

L'obiettivo dell'esperienza è la verifica che un corpo rigido esteso è in equilibrio rispetto alla rotazione se la somma vettoriale dei momenti ad esso applicati è pari a zero.

1 Introduzione

Quando una forza F viene applicata a un corpo rigido ad una distanza r dal centro di massa, si produce un momento torcente M. Il modulo di M è:

$$M = r \cdot F \sin \theta \tag{1}$$

La condizione di equilibrio rispetto alla rotazione su un corpo rigido è la seguente:

$$\sum_{i} M_i = 0 \tag{2}$$

L'apparato consiste in un'asta con dei fori nei quali appendere diverse masse. Si dovranno posizionare i pesetti in modo da realzzare la condizione di equilibrio, verificando la correttezza delle leggi.

2 Metodo

2.1 Parte 1

Preparare il sistema come in figura 1 appendendo l'asta per il foro centrale (dove idealmemte si dovrebbe trovare il centro di massa dell'astra);
prima di cominciare: ogni qual volta che si appendono le masse in una configurazione di equilibrio, misurare le distanze tra esse e il fulcro, da confrontare con le predizioni teoriche. Segnarle sempre in tabelle ordinate;
appendere due masse uguali nei fori opposti rispetto al fulcro (meglio quelli più esterni) e verificare che il sistema rimanga in equilibrio;
ora tenere una massa fissa nel foro più esterno e, con le masse a disposizione, ricreare la condizione di equilibrio appendendole a fori differenti;
verificare che la relazione tra bracci e forze è inversamente proporzionale;

□ man mano che si procede alla ricerca della condizione di equilibrio, per capire che masse appendere ai vari fori, fare **PRIMA** i conti, cioè scrivere l'equazione per l'equilibrio dei momenti (è molto utile fare dei disegni).

Figura 1: Setup sperimentale

Figura 2: Setup sperimentale con masse in fori diversi. Procedere con una configurazione alla volta (1,2,3,...)

2.2 Parte 2

- □ A questo punto ripetere l'esperienza, ma appendendo non più una massa da un lato e una dall'altro, ma due da un lato e tenendone una fissa dall'altro;
- \square sarà utile di nuovo (anzi, indispensabile) fare i conti prima di procedere a cercare l'equilibrio.

Figura 3: Setup sperimentale con tre momenti torcenti applicati all'asta

2.3 Parte 3

- \square Appendere l'asta non più per il foro centrale, ma a un altro foro. Il CM si trova ora a una certa dal fulcro;
- □ ripetere quanto fatto in precedenza, ma adesso si dovrà tener conto del momento esercitato dalla forza peso dell'asta (perché prima non serviva farlo?).

Figura 4: Setup sperimentale con fulcro non nel baricentro dell'asta

3 Tabelle e analisi dati

I dati devono essere raccolte in tabelle ordinate. Esempio di tabella:

P	Counterclockwise Torques							Clockwise Torques							
a r	1st Torque			2 nd Torque			Total	1st Torque			2 nd Torque			Total	% Diff.
t	F	r	τ	F	r	τ	Torque	F	r	τ	F	r	τ	Torque	
3															
4															
5															
6															

Figura 5: Esempio di tabella in cui sono raccolti i dati per i momemti torcenti orari e antiorari

- Potete creare le tabelle nella maniera che preferite
- Importante: segnate sempre gli ERRORI (calcolati con le formule viste a lezione). Per quanto riguarda la stima della misura fate di nuovo riferimento alle formule viste (media aritmetica ed errore assoluto)

4 Conclusioni e domande

- Le leggi sono verificate?
- Se non lo sono, che ipotesi aggiuntive vanno fatte? Che cosa si poteva modificare o fare meglio?
- Quali sono le principali fonti di errore che potrebbero aver alterato i dati raccolti?
- Il fulcro dell'asta è rimasto stabile durante l'esperimento? Come potrebbe influenzare i risultati uno spostamento del fulcro?
- Come hai calcolato le incertezze associate alla misura della forza e della distanza?
- Se rifacessi l'esperimento con una barra non omogenea, quali difficoltà incontreresti?

Sensore di forza

Data la configurazione in *figura 6*, realizzata usando un'asta vincolata a un perno, variando il peso attaccato all'estremità, come possiamo ricavare il valore di tensione? Con la teoria dell'equilibrio dei momenti, la risposta si trova facilmente!

Figura 6: Setup sperimentale

Figura 7: Schema delle forze

Sappiamo che:

$$\sum_{i} M_i = 0 \tag{3}$$

da cui vale l'identità (si faccia riferimento alla figura 7):

$$M_{+} = M_{-} \tag{4}$$

$$\Rightarrow (\vec{F}_1 \cdot \vec{r}_3 + \vec{F}_p \cdot \vec{r}_1) \cdot \cos \theta = \vec{T} \cdot \sin \theta \cdot \vec{r}_2$$
 (5)

dove è stata usata la relazione trigonometrica: $\sin(\frac{\pi}{2}-\theta)=\cos\theta$

Figura 8: Relazione trigonometrica tra gli angoli

$$\Rightarrow \quad \vec{T} = \frac{\vec{F_1} \cdot \vec{r_3} + \vec{F_p} \cdot \vec{r_1}}{\vec{r_2}} \cdot \arctan \theta \tag{6}$$

Verificare tramite il sensore di forza di PASCO che ci sia accordo tra il valore di tensione previsto e quello misurato.

Ripetere l'esperimento variando la massa appesa e la lunghezza dei bracci.

Se avessimo usato l'equilibrio delle forze, come avremmo dovuto procedere? (Suggerimento: pensare alla forza vincolare esercitata dal perno sull'asta)