Electric Fuel Generation and Consumption

GROUP 3

Tomoki Kyotani (002986248) Sai Bhavana Atluri (001594085) Jignasuben Rohitbhai Vekariya (002981797) Bhavya Maheshwari (002116459)

Agenda

- 1. Introduction / Questions to answer
- 2. Software Requirements
- 3. Data Sources
- 4. Data Model
- 5. Data Flow
- 6. Data Preprocessing
- 7. Data Generation
- 8. Initial Load, Incremental Load, and SCD
- 9. OLAP Cube
- 10. Visualizations
- 11. Answers to Questions

1. Introduction

Nowadays the population is increasing day by day, use of energy sources and pollution is also increasing rapidly which affects weather as well. We U.S.decided to build a warehouse with respective fields for more effective analysis on how energy source generation and consumption is affected by population, pollution, and weather in the

2. Software Requirement

• SSIS : ETL & Data Warehouse

• SSAS: OLAP Cube

• Tableau: Visualization

3. Data Sources

Electric Power Data

Data Source: https://www.eia.gov/electricity/data/eia923/

Air Pollution

Quality Index

Data Source: https://www.kaggle.com/datasets/sogun3/uspollution scraped from the United States Environmental Protection Agency

NO₂ Air Date Local NO2 Mean O3 Mean State Quality Index O3 Air SO₂ Air

Quality Index

SO2 Mean

CO Air

Quality Index

CO Mean

Population

Data Source: https://www.census.gov/data/datasets/time-series/demo/popest/2010s-state-total.html#par textimage 500989927

Name

POPESTIMATE201X

NPOPCHG201X

BIRTHS201X

DEATHS201X

NETMIG201X

Weather

Data Source: https://data.world/mattwinter225/2015-usa-weather-avg-max-min

STATION STATION_NAME AvgTemp MaxTemp

MinTemp State Name Date

4. Data Model

- 1. In our data warehouse, the fact table is "FactElectric" which stores facts about electric power consumption and generation.
- 2. The dimension tables are "DimFacility", "DimPopulation", "DimPollution", and "DimWeather".
- 3. We choose state and year as our dimensions for the OLAP Cube and NO2Mean, NO2AQI, O3Mean, O3AQi, COMean, COAQL, SO2Mean, SO2AQI, AvgTemp, MaxTemp, MinTemp, ElecFuelConsumptionMmbtus, NetGenerationMegawatthours etc as our measures. This was all done to see the trends in the data we used

5. Data Flow

- 2010-2016 for the Initial Load and 2017 for the Incremental Load
- SCD is on the Facility dimension (DimFacility)
 - FacilityName, OperatorID, OperatorName, NaicsCode

6. Data Preprocessing

Electric Power Data

- Remove the first 5~7 rows
- Remove the aggregated records (at state/fuel type level) for the <u>FacilityName="State-Fuel Level Increment" & FacilityID=99999</u>
- Rename column names
- Replace "." values with an appropriate year for the Year column
- Done in Python

A	В	C	D	E	F	G	H	1	J	K	L	M	N	0	P	1
U.S. Dep	artment o	Energy		This file contains the final 2010 data. Durin	g the year, the EIA-9	23 survey	collected mo	onthly data fr	rom approxir	nately 1900	generating	plants. These data were published	each			
The Ener	gy Inform	ation Adı	ministration (EIA)	month as preliminary and subject to revision												
2010 Der	cember E	A-923 M	onthly Time Series File	proportionately distributed over the month												
Sources	: EIA-923	and EIA-8	160	shown below with plant-specific names and								 d. The estimates are rolled-into stat 	e/fuel			
				aggregates with a "99999" plant code. For	additional informat	ion, see the	documenta	ition file on p	page 6 of this	workbook.						
						_	1		_		_					_
	Combined Heat &	Nuclear					Census	NERC		NAICS	EIA		Reported	Reported	AER Fuel	
Plant ID	Power	Unit I.D.	Plant Name	Operator Name	Operator ID	State	Region	Region	Reserved	Code	Sector	Sector Name	Prime	Fuel Type		Rese
	Plant	OTTE T.D.					riogion	region		0000	Number		Mover	Code	Code	
2	N		Bankhead Dam	Alabama Power Co	195	AL	ESC	SERC		22	1	Electric Utility	HY	WAT	HYC	
3	N		Barry	Alabama Power Co	195	AL	ESC	SERC		22		1 Electric Utility	CA	NG	NG	
3	N		Barry	Alabama Power Co	195	AL	ESC	SERC		22		1 Electric Utility	CT	DFO	DFO	
2	M		Party.	Alahama Power Co	195	ΔI	EGC	SERC		22		Electric Littlity	CT	NG	NG	

6. Data Preprocessing

Air Pollution Data

- Put double quotes around non-numeric values/columns
 - Issue: Columns are separated by a comma, and values are not quoted in the original data files. However, some records contain a comma in their Address column.
- Done in Python
- Specify a double quote "for the Text Qualifier in Flat File Source in SSIS

7. Data Generation

Initial Load - Weather Data

- Found only the 2015 data for all states in the U.S.
- Generate 2010-2014 and 2016 data for initial load and 2017 data for incremental load
- Add random values between -3 and 3 to the AvgTemp, MaxTemp, and MinTemp from 2015 data

7. Data Generation

2017 Incremental Load

- Weather Data
- Air Pollution Data
 - Add random values between 0 and 1 to NO2Mean, NO2AQI, O3Mean, O3AQI, SO2Mean, SO2AQI, COMean, COAQI from 2016 data
- 2017 Electric Power Data and 2017 Population Data are provided from the original data sources.

7. Data Generation

Slowly Changing Dimension (SCD)

- DimFacility
 - FacilityName : Type 2
 - OperatorID: Type 1
 - OperatorName & NaicsCode: Type 3
- There are already value changes on these columns as we load data from 2010 to 2017
- For the testing purpose, selected and modified 5 records from the 2017
 Electric Power Data

Air Pollution, Population, and Weather Data

"Load to Staging" Data Flow

Pollution Source File

Load to Staging Pollution

"Transformation & Load to DW" Data Flow

Electric Power Data

"Load to Staging" Data Flow

"Transformation & Load to DW" Data Flow

"Aggregate & Load to FactElectric" Data Flow

Creating a Data Source and the Data Source View for the Cube.

Creating the dimensions for DimFacility and Fact Electric.

Creating the dimensions for DimPollution and DimPopulation.

Building, processing and deploying the Cube with the dimensions created.

Our Cube!!.

10. Visualization

1. Electricity generation v/s Consumption

2. Fuel Consumption for electricity generation VS Temperature

3. Population VS Net generation

4. Air Quality Analysis

5. Pollution VS Temperature

6. Correlation between pollution, population and fuel consumption

7. Population V/S Electricity generation

11. Answers to Questions

- 1. What kind of relationship/impact does Electric Power generation and fuel consumption have with various pollutions?
- 2. What kind of relationship/impact does Population have on Electric Power generation and fuel consumption?
- 3. What kind of relationship/impact does Temperature have on Electric Power generation and fuel consumption?

ANSWERS TO THE 1st QUESTION

ANSWERS TO THE 2nd and 3rd QUESTIONS USING THE OLAP SYSTEM

Year	Population Estimate	Elec Fuel Consumptio	Net Generation Megaw	Avg Temp
2010	309321666	121178154660	12371045677.8868	21254.29
2011	311556874	120067705431	12287117610.3441	21254.29
2012	313830990	116973398052	12134746138.7357	21254.29
2013	315993715	117709292109	12191178558.6457	21254.29
2014	318301008	118321878033	12265068983.601	21254.29
2015	320635163	115492978923	12170829183.6482	21254.29
2016	322941311	114444402549	12226172984.7506	21254.29
2017	324985539	75447167722	8062199133.88733	21254.29

State	Population Estimate	Elec Fuel Consumptio	Net Generation Megaw	Avg Temp
СО	2537566266	11993079303	1210830183.1181	21254.29
CT	2537566266	7615868645	806278230.56193	21254.29
DC	2537566266	33520221	2342362.93593025	21254.29
DE	2537566266	1584590439	173247678.180069	21254.29
FL	2537566266	46256822361	5267306397.47278	21254.29
GA	2537566266	27399341989	2931683990.76633	21254.29
HI	2537566266	2305952459	236329235.473618	21254.29
IA	2537566266	13066696413	1300623992.73295	21254.29
ID	2537566266	3237105122	351715897.376895	21254.29
IL	2537566266	46917415217	4521351545.34155	21254.29
IN	2537566266	26205147055	2577977248.3733	21254.29
KS	2537566266	11543412467	1088540100.16482	21254.29
KY	2537566266	21338032460	2033624844.71702	21254.29
LA	2537566266	22225838125	2391195432.9133	21254.29