PROJECT REPORT

ON

"BIG-DATA Dataset Analysis Using Databricks, PySpark and Microsoft Azure"

FOR

"DINGIR,CIT"

BY

ALOK KUMAR AVINASH KUMAR SONI ABHISHEK KUMAR SINGH AVINASH KUMAR KUSHWAHA AMAN KUMAR SINGH

<u>University/College Name</u>:- Cambridge Institute of Technology, Tatisilwai, Ranchi, Jharkhand(835103)

Intership Period :- 20-05-2024 -07-07-2024

Internship Organization :- DINGIR

SUBMITTED TO - Deshbandhu Mishra Sir

Big Data Internship Project Assignment: Dataset Analysis Using Databricks, PySpark and Microsoft Azure

Objective:

- ◆ The primary objective of this project is to analyze State/UT wise Accidents Classified according to Age of impacting Vehicles during 2017.
- By leveraging Databricks powerful data processing and analysis capabilities, we aim to identify trends, patterns, and significant factors contributing to road accidents.
- This analysis will provide insights that can help in formulating strategies to reduce road accidents in the future.

• Dataset Used:

https://www.data.gov.in/resource/stateut-wise-accidents-classified-according-age-impacting-vehicles-during-2017

• Source:

https://www.data.gov.in/

• Team Members:

Sl.No.	Name	College Roll. No.	Registration No.	Semester
1	ALOK KUMAR	363/CSE/2022	22050440011	4th
2	AVINASH KUMAR SONI	342/CSE/2022	22050440030	4th
3	ABHISHEK KUMAR SINGH	381/CSE/2022	22050440005	4th
4	AVINASH KUMAR KUSHWAHA	378/CSE/2022	22050440029	4th
4	AMAN KUMAR SINGH	03/DIP/CSE/2022	22050445003	4th

• Project Responsibilities and Roles Assigned

- 1. ALOK KUMAR Data Collection, Editing, Azure Databricks & Presentation
- 2. **AVINASH KUMAR SONI** Data Processing and Transformation & Created Microsoft Azure Blob
- 3. ABHISHEK KUMAR SINGH Statistical Analysis
- 4. AVNASH KUMAR KUSHWAHA Data Visualization
- 5. **AMAN KUMAR SINGH** Data Ingestion, Preprocessing, Report Writing & GitHub Linking

Tools and Technologies:

- Databricks
- ◆ Databricks File System (DBFS)
- PySpark
- ◆ Spark SQL
- - Python
- ◆ Visualization libraries (e.g., Matplotlib, Plotly)
- ◆ Azure Databricks
- Git and GitHub
- ◆ Microsoft Excel

• Tools and Technologies Details:

- **1. Databricks:** Databricks is a unified analytics platform that accelerates innovation by unifying data science, engineering, and business. It is used for data processing, machine learning, and collaborative data analysis.
- **2. Databricks File System (DBFS):** DBFS is a distributed file system integrated with Databricks, allowing easy storage and management of large datasets.
- **3.** PySpark: PySpark is the Python API for Apache Spark, enabling Python developers to write Spark applications.
- **4. Spark SQL:** Spark SQL is a module for structured data processing with Apache Spark. It allows querying of structured data using SQL.
- **5. Python:**Python is a versatile programming language widely used in data science and machine learning.
- **6.Visualization Libraries:** Visualization is crucial for understanding data patterns and communicating insights.(e.g., Matplotlib, Plotly)
- **7. Azure Databricks:** Azure Databricks is a cloud-based analytics platform that combines the capabilities of Apache Spark and Databricks, provided as a first-party service on Microsoft Azure. It is designed to help users perform large-scale data processing and analytics, machine learning, and data engineering tasks.
- **8. Git and GitHub:** Git is a version control system used for tracking changes in source code. GitHub is a platform for hosting and collaborating on Git repositories.
- **9. Microsoft Excel:** Microsoft Excel is used for initial data inspection and basic analysis.

• Detailed Responsibilities & Roles Assigned:

- 1. ALOK KUMAR Data Collection, Transformation, Azure Databricks Linking & Presentation
 - I. *Data Collection*:
 - Finding the Dataset
 - Verified the upload by listing the contents of the DBFS directory
 - II. *Data Cleaning and Transformation*:
 - Cleaned the dataset by handling any missing or inconsistent data.
 - Perform necessary transformation to prepare the data for analysis
 - III. *Azure Databricks Linking*:
 - Connected Azure Blob Storage with Azure Databricks
 - Connected Azure Databricks with Community Databricks
 - **IV. *Created Presentation*:**
 - -Gave a detailed overview of the projects
 - -Explained Various Steps using appropriate Screenshots for better Understanding of the Project

2. AVINASH KUMAR SONI - Data Processing & Created Microsoft Azure Blob Storage

I. *Load the Dataset into a Spark DataFrame*:

- Used PySpark to read the dataset from DBFS into a Spark DataFrame.

II. *Created a Temporary View*:

- Created a temporary view of the DataFrame for SQL querying.

III. *Created Microsoft Azure Blob Storage*:

- Created an Azure Storage Account
- Created Blob Storage Folders in Azure
- Create a Container in the Storage Account

3. ABHISHEK KUMAR SINGH - Statistical Analysis

I. *Analyze Demographic Impact using Spark SQL*:

- Calculated the total number of people injured or died in each state.
- Determine the total share of each state.
- Analyze the impact on different age groups.

II. *Find Patterns and Trends*:

- Identify any patterns or trends in the data (e.g., which age group is most affected in each state).

4. AVNASH KUMAR KUSHWAHA - Data Visualization

I. *Created visualizations to show*:

- The total number of people died/injured by vehicles in each state.
- The distribution of injured individuals across different age groups.
- Any trends or patterns identified in the analysis.

5. AMAN KUMAR SINGH - Data Ingestion, Preprocessing, Report Writing, & GitHub

I. *Setting up Databricks Environment*:

- Created a Databricks workspace.
- Set up a cluster with appropriate configurations.

II. *Upload the Dataset to DBFS*:

- Uploaded the dataset to Databricks File System (DBFS).
- Verified the upload by listing the contents of the DBFS directory

III. *Created a Report*:

- Compiled the findings into a comprehensive report.
- Included analysis, visualizations, and recommendations based on the data.
- Discussed any limitations or challenges faced during the analysis.

IV. *GitHub Linking*:

- Linked the Code and the databricks notebook with the GitHub
- GitHub Repository Link:

https://github.com/aksgithub250502/Big-Data-Project-Repository.git

• Challenges Faced During the Analysis and It's Solutions:

I. Data Quality and Completeness:

Challenges:

Missing Data: Some records had missing values for critical variables.

Data Inconsistencies: Inconsistent data entries and formats across different sources.

Solutions:

Data Imputation: Used statistical methods or machine learning models to fill in missing values.

Data Cleaning: Cleaned inconsistencies using automated scripts and manual checks.

II. Data Integration:

Challenges:

Combining Multiple Sources: Integrating data from various sources with different formats.

Data Merge Issues: Merging datasets with different levels of detail and quality.

Solutions:

ETL Processes: Implement Extract, Transform, Load (ETL) processes to standardize and integrate data.

III. Technical Challenges:

Challenges:

Processing Large Datasets: Efficient handling and processing of large datasets.

Performance Optimization: Avoiding performance bottlenecks during complex queries and transformations.

Solutions:

Optimization Techniques: Use Spark's optimization features like caching and partitioning.

IV. Visualization Challenges:

Challenges:

Interactive Visualizations: Creating interactive visualizations that effectively communicate findings.

Data Representation: Ensuring accurate data representation without bias.

Solutions:

Advanced Visualization Tools: Used libraries like Plotly for interactive visualizations. Best Practices: Followed data visualization best practices to ensure clarity and accuracy.

V. Collaboration and Coordination:

Challenges:

Team Coordination: Ensuring effective communication and coordination among team members.

Version Control: Managing changes to the codebase and data.

Solutions:

Collaboration Tools: Used tools like Slack and GitHub for communication and version control.

Regular Meetings: Hold regular team meetings to discuss progress and address issues.

VI. Time Constraints:

Challenges:

Project Timeline: Balancing thorough analysis with project deadlines.

Resource Allocation: Efficiently managing time and resources across different project phases.

Solutions:

Prioritization: Prioritize tasks based on importance and deadlines.

VII.Connecting Azure Databricks with Databricks Community Edition

Challenges:

Authentication and Authorization: Setting up correct authentication.

Resource Configuration: Properly configuring resources for seamless connectivity.

Solutions:

Configuration Guides: Followed detailed configuration guides and best practices.

Support Channels: Utilized support channels and documentation for troubleshooting.

• Future Perspectives:

- **Extended Analysis:** Incorporate more recent data and additional variables.
- ➤ Collaborative Efforts: Work with government agencies and stakeholders to implement and monitor interventions.
- **Technology Integration:** Use IoT and telematics for real-time monitoring and predictive analytics.

• Conclusion:

- ➤ The analysis of State/UT wise accidents classified according to the age of impacting vehicles during 2017 highlights critical insights into road safety in India.
- > The project provided significant insights into the impact of vehicle age on road accidents.
- Data-driven approaches are crucial in addressing road safety issues.
- > Continuous efforts are needed to improve road safety standards and reduce accidents.

• References:

Databricks Documentation:

- Databricks Overview: https://docs.databricks.com/en/index.html
- Databricks File System (DBFS): https://docs.databricks.com/en/dbfs/index.html

PySpark Documentation:

- PySpark API Reference: https://spark.apache.org/docs/latest/api/python/
- Spark SQL Guide: https://spark.apache.org/docs/latest/sql-programming-guide.html

Python Libraries:

- Pandas Documentation: https://pandas.pydata.org/docs/
- NumPy Documentation: https://numpy.org/doc/

Visualization Libraries:

- Matplotlib Documentation: https://matplotlib.org/stable/index.html
- Plotly Documentation: https://plotly.com/python/

Azure Databricks Documentation:

• Azure Databricks : https://learn.microsoft.com/en-us/azure/databricks/

Road Accident Data Sources:

- Open Government Data (OGD) Platform India: https://www.data.gov.in/
- Road Accidents Dataset: https://www.data.gov.in/catalog/road-accidents-india-2017

General References:

- YouTube: https://www.youtube.com/
- Google: https://www.google.com/
- These references provide a comprehensive foundation for understanding the tools, technologies, and methodologies used in the analysis of state/UT wise road accidents classified according to the age of impacting vehicles during 2017. They also offer additional resources for further study and exploration in data analysis, statistical analysis.