Agile Teams Performance Measurement

IT STARTS
WITH THE
FACTS.

How to measure and benchmark team value creation

Harold van Heeringen

ISBSG IT Confidence 2021

October 8th, 2021

Introducing me

Drs. Harold van Heeringen

Graduated in Business economics at the University of Groningen in 1997

>20 years experience in IT, >15 years in software measurement and metrics

Married, 3 kids, living in Veendam (North of the Netherlands)

Hobbies – Chess, soccer and software metrics:

Metri – Principal Consultant Estimation & Performance Measurement

Nesma – Board member International cooperation and partnerships

ISBSG – Immediate Past President (2011-2019)

COSMIC – Dutch representative in the International Advisory Council (IAC)

ICEAA – Trainer of CEBoK chapter 12: Software Cost Estimation

SCEBoK – initiator and module presenter

harold.van.heeringen@metrigroup.com

haroldvanheeringen

@haroldveendam

haroldveendam

Metri: ISBSG: Nesma: www.metrigroup.com www.isbsg.org www.nesma.org

Basic Performance Measurement

Agile vs. Traditional development

Iron Triangle Paradigm Shift

Subject to cost, time, and quality risks

Agile/Scrum

Team: 6 FTE

Sprint Effort: 6 * 2 weeks * 40 hours = 480 hours

Average rate = € 100 Sprint Cost = € 48000

Lean-Agile Leadership

SAFe metrics

Benefit	Expected Result	Metric Used
Employee engagement	Improved employee satisfaction; lower turnover	Employee survey; HR statistics
Customer satisfaction	Improved Net Promoter Score Net promoter score	
Productivity	Reduced average feature cycle time	Feature cycle time
Agility	Continuous improvement in team and program measures	Team, program, large solution and portfolio self-assessments; Release predictability measure
Time-to-market	More frequent releases	Number or releases per year
Quality	Reduced defect counts and support call volume	Defect data and support call volume
Partner health	Improved ecosystem relationships	Partner and vendor surveys

C Scaled Agile, Inc.

Observations:

- Proposed metrics are not standardized
- Value Feature Points?
- What about code quality/maintainability/security etc.?

Functionality	Iteration 1	Iteration 2	Iteration 2
Velocity planned			
Velocity actual			
# Stories planned			
# Stories accepted			
% Stories accepted			
Quality			
Unit test coverage %			
# Defects			
# New test cases			
# New test cases automated			
Total tests			
Total % tests automated			
# Refactors			

Efficiency

Sample Measures:

- Contribution margin
- Organizational stability
- Team velocity vs. capacity

Value delivery

Sample Measures:

- Number of releases
- Value feature points delivered
- Release date percentage - Architectural refactors

Quality

Sample Measures:

- Defects
- Support calls
- Support satisfaction
- Product satisfaction
- Escalation rate percentage

Agility

Sample Measures:

- Product ownership
- Release planning and tracking
- IP planning and tracking
- Teamwork
- Testing and dev practices

Effort hours spent per sprint

New Functionality vs. Other activities

Business value New New **Functionality Functionality** New **Functionality Planned** New Visible Business Value Modified/ **Functionality** deleted Modified/ functionality deleted 3rd line functionality support Modified/ deleted **Bug Fixing** Not Planned **Bug Fixing** functionality Invisible Business Value Refactoring Refactoring Refactoring code code code Time After "Go Live" First sprint Next sprints M.V.P.

Measure Functional Size

ISO/IEC 14143 - Functional Size Measurement

Objective (person independent)

Repeatable, Comparable, Verifiable

Technology independent

Applicable in early stage

Easy to use

Future proof

Measure of value

Easy and fast measurement of user stories

ISO/IEC certified

Defensible – estimation, performance measurement, benchmarking, contracting

Key performance metrics for agile teams

10

Productivity
 Effort hours spent / Size of the value delivered (FP)

Cost Efficiency
 Team cost / Size of the value delivered (FP)

• **Delivery Speed** Size of the value delivered (FP) / Duration (months)

Product Quality
 Defects Delivered / Size of the value delivered (FP)

• Code Quality Metrics

Maintainability
Robustness
Performance

Changeability Security

Technical Debt

Standard metrics cover the pyramid

Performance Measurement / Benchmark

- Agile Team Performance Measurement, based on standards
- Trends through time
- High performance teams vs. Low performance teams learn and improve!
- Benchmark! Metri Data engine or ISBSG D&E data repository

But how to determine the benchmark?

ISBSG Development & Enhancements

14

- The D&E repository is available as Microsoft .xls file.
- Every row (over 10000 rows in 2021) is a new development or enhancement (release) data point.
- Every column (>250 columns) is a data attribute of that data point.
- The data source is anonymous, but data attributes like industry sector, application type and others can be used to filter the data set.

	Rating	Rating	Software Age	Major Grouping	Major Grouping	Major Grouping	Major Grouping	Major Grouping	Major Grouping	Major Grouping	Major Grouping	Major Grouping
ISBSG Project ID	Data Quality	UFP	Year of	Industry Sector	Organisation Type	Application Group	Application Type	Development	Development	Language Type	Primary Programming	Count Approach
	Rating	rating	Project					Туре	Platform		Language	
_	_	_	Ţ,	Ţ	्रा	_	▼	▼	_	-	2	1 ▼
10109	В	В	2015	Insurance	Insurance;	Business Application	Workflow support & management;	New Development	PC	4GL	.Net	NESMA
10193	В	Α	2017	Government	Government;			Enhancement		3GL	Java	COSMIC
10293	В	В	2016	Utilities	General;	Business Application		Enhancement		4GL	.Net	NESMA
10313	В	В	2015	Insurance	Insurance;	Business Application	Workflow support & management;	Enhancement	PC	3GL	COBOL	NESMA
10317	В	В	2015	Government	Government;	Business Application	Business Application;	Enhancement		4GL	.Net	NESMA
10473	В	В	2015	Insurance	Insurance;	Business Application	Workflow support & management;	Enhancement	PC	3GL	COBOL	NESMA
10540	В	Α	2016	Insurance	Insurance;	Business Application	Financial transaction process/accounting;Cus	Enhancement	PC	3GL	Java	COSMIC
10551	В	Α	2016	Insurance	Insurance;	Business Application	Financial transaction process/accounting;Cus	Enhancement	PC	3GL	Java	COSMIC
10565	В	В	2016	Insurance	Insurance;	Business Application		Enhancement		3GL	PL/SQL	IFPUG 4+
10695	В	Α	2017	Insurance	Insurance;	Business Application	Financial transaction process/accounting;Cus	Enhancement	PC	3GL	Java	COSMIC
10776	Α	В	2015	Government	Other;	Business Application		Enhancement		3GL	Java	NESMA
10834	Α	В	2016	Government	General;	Business Application		Migration		3GL	Java	NESMA

Some screenshots

- Functional Size is an important data attribute for analysis.
- ISBSG provides size categories to facilitate the analysis as well.

	Sizing	Sizing	Sizing	Sizing	Ellort
ISBSG Project ID	Functional Size	Relative Size	Adjusted Function Points	Value Adjustment Factor	Normalised Work Effort Level 1
▼	▼	₩	₩	▼	▼
10109	317	M2	317		3735
10193	308	M2	308	1	4167
10293	32	S			1318
10313	402	M2	402		1073
10317	8	XXS	8		816
10473	56	S	56		295

- Effort is also an important attribute. Level 1 is Development Team only.
- Metrics are calculated.

Productivity	Productivity	Productivit y	Other Metrics	Other Metrics	Other Metrics
Normalised Level 1	Normalised PDR (ufp)	Pre 2002 PDR	Defect Density	Speed of Delivery	Manpower Delivery Rate
PDR (ufp)	run (uip)	- FDΠ	₩	Delively	Delively nate
				17.0	2.0
11,8	11,8	11,8	81,3	47,3	·
8,1	8,1		72,9	34,2	
41,2	41,2		53,2	10,3	
2,7	2,7	2,7	112,5	62,8	62,8

Benchmarking the metrics

16

Schedule and effort are recorded.

Schedule	Schedule	Schedule	Schedule	Schedule	Schedule	Schedule	Schedule	Schedule	Schedule	Schedule
Project Elapsed	Project Inactive	Implementation Date	Project Activity Scope	Effort Plan	Effort Specify	Effort Design	Effort Build	Effort Test	Effort Implement	Effort Unrecorded
Time	Time									
▼	▼	T.	Ţ,	▼	▼	▼	Ţ	▼	▼	▼
1,1		19-1-2015	Planning;Specification;Design;Build	3	3	262	274	219	55	0
5		30-11-2015	Design;Build;Test;Implement;Proj M			898	1181	945	236	
1		9-2-2015	Planning;Specification;Design;Build	0	0	295	210	168	42	
5			Planning;Specification;Build;Test;Irr	11	11		206	165	41	
6		30-11-2015	Design;Build;Test;Implement;Proj M			1080	728	582	146	

With this information, more detailed analysis can be done to calculate metrics:

- Project Delivery Rate (PDR) Hours spent (Scope) per Function Point (Sizing method)
- Cost Efficiency Cost of the effort hours (Scope) per Function Point (Sizing method)
- Delivery Speed Function Point (Sizing method) per calendar month
- Defect Density Defects found in tests (and 1st month production) per 1000 Function Points (Sizing method)

Create an analysis model

Create an Analysis tab and set up a table with metrics to analyze.

4	Α	В	С	D	Е	F	G	Н	l l	J
1										
2										
										Defect Density
3 4					N	Metric	PDR (h/FP)	Cost Efficiency (€/FP)	Delivery Speed (FP/Month)	(Defects/1000 FP)
4						N	=COUNT(A:A)	=COUNT(B:B)	=COUNT(C:C)	=COUNT(D:D)
5						Min	=MIN(A:A)	=MIN(B:B)	=MIN(C:C)	=MIN(D:D)
6					F	P10	=PERCENTILE(A:A:0,1)	=PERCENTILE(B:B;0,1)	=PERCENTILE(C:C;0,1)	=PERCENTILE(D:D;0,1)
6 7 8					F	P20	=PERCENTILE(A:A:0,2)	=PERCENTILE(B:B;0,2)	=PERCENTILE(C:C;0,2)	=PERCENTILE(D:D;0,2)
					F	P30	=PERCENTILE(A:A;0,3)	=PERCENTILE(B:B;0,3)	=PERCENTILE(C:C;0,3)	=PERCENTILE(D:D;0,3)
9					F	P40	=PERCENTILE(A:A:0,4)	=PERCENTILE(B:B;0,4)	=PERCENTILE(C:C;0,4)	=PERCENTILE(D:D;0,4)
10						Median	=MEDIAN(A:A)	=MEDIAN(B:B)	=MEDIAN(C:C)	=MEDIAN(D:D)
11					F	P60	=PERCENTILE(A:A;0,6)	=PERCENTILE(B:B;0,6)	=PERCENTILE(C:C;0,6)	=PERCENTILE(D:D;0,6)
12					F	P70	=PERCENTILE(A:A:0,7)	=PERCENTILE(B:B;0,7)	=PERCENTILE(C:C;0,7)	=PERCENTILE(D:D;0,7)
13					F	P80	=PERCENTILE(A:A:0,8)	=PERCENTILE(B:B;0,8)	=PERCENTILE(C:C;0,8)	=PERCENTILE(D:D;0,8)
14					F	P90	=PERCENTILE(A:A;0,9)	=PERCENTILE(B:B;0,9)	=PERCENTILE(C:C;0,9)	=PERCENTILE(D:D;0,9)
15					N	Max	=MAX(A:A)	=MAX(B:B)	=MAX(C:C)	=MAX(D:D)
16					F	Avg	=AVERAGE(A:A)	=AVERAGE(B:B)	=AVERAGE(C:C)	=AVERAGE(D:D)
17										
18										
19					F	Ą	PDR data set			
20					E	В	Cost data set			
21					(C	Delivery Speed data set			
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23					[D	Defect Density data set			
23							•			
24										

Enhance the dataset if necessary

- In this case: the Cost/FP metric is added:
- Select the data and paste the values in the analysis tab.
- There seem to be some outliers but for the analysis we take the P30 – Median – P70 values

Costs			Costs	Costs
Τo	tal project		Cost/FP	Cost
	cost			currency
	▼		▼.	▼
€	592.598	€	447,92	European, euro
€	944.460	€	530,00	European, euro
€	4.612.300	€	2.431,37	European, euro
€	969.883	€	475,20	European, euro
€	570.650	€	447,92	European, euro
€	743.673	€	737,04	European, euro
€	1.006.607	€	481,40	European, euro
€	734.189	€	410,85	European, euro
€	715.816	€	474,05	European, euro
€	508.260	€	482,22	European, euro
-		_		_

		Cost	Delivery	Defect
Metric	PDR (h/FP)	Efficiency	Speed	Density
N	92	88	92	18
Min	3,9	€ 340	66,2	272,0
P10	4,7	€ 388	93,1	283,9
P20	5,2	€ 431	102,0	295,7
P30	5,5	€ 448	121,3	307,6
P40	5,7	€ 475	136,5	319,4
Median	6,5	€ 497	153,0	331,3
P60	7,0	€ 529	164,6	418,8
P70	7,2	€ 549	184,4	506,3
P80	8,2	€ 604	194,8	593,9
P90	8,9	€ 679	199,8	681,4
Max	26,3	€ 2.431	461,2	768,9
Avg	7,0	€ 555	155,0	457,4

Benchmark P30 - Median - P70

20

Same for estimation

Metric	PDR (h/FP)	Cost Efficiency	Delivery Speed	Defect Density		Fu	ınctional Si:	ze
N	92	88	92	18	Project	Low	Likely	High
Min	3,9	€ 340	66,2	272,0	Effort hours	22.000	32.500	57.600
P10	4,7	€ 388	93,1	283,9	Project Cost	€ 1.791.680	€ 2.483.950	€ 4.394.323
P20	5,2	€ 431	102,0	295,7	Duration	33,0	32,7	43,4
P30	5,5	€ 448	121,3	307,6	Defects	1.230	1.656	4.051
P40	5,7	€ 475	136,5	319,4				
Median	6,5	€ 497	153,0	331,3				
P60	7,0	€ 529	164,6	418,8	Low	4000	FP	
P70	7,2	€ 549	184,4	506,3	Likely	5000	FP	
P80	8,2	€ 604	194,8	593,9	High	8000	FP	
P90	8,9	€ 679	199,8	681,4				
Max	26,3	€ 2.431	461,2	768,9				
Avg	7,0	€ 555	155,0	457,4				

Conclusions

- The Agile way of working has many advantages, however uses subjective metrics to control.
- Standardized metrics based on functional size are necessary to implement robust Performance Measurement and metrics on Portfolio level (SAFe).
- Performance measurement is extremely useful, especially when combined with benchmarking.
- For benchmarking, the ISBSG D&E repository provides invaluable data which can easily be analysed.

How to obtain your copy of the data? www.isbsg.org/isbsg-subscriptions/

Subscription Options

Corporate Subscription

Give your company the winning edge with ISBSG's premier subscription package.

The Corporate Subscription includes ISBSG project data, all analysis reports, access to the Productivity Query Tool and more.

Learn more

Or first become member of **Nesma** and get large discounts on the data and access to all ISBSG Analysis reports

https://nesma.org/members/membershiptypes/

Disclaimer

2021 METRI. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, transmitted or made public, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of METRI.