

AGENDA

- ☐ History of video coding
- ■Overview: color space
- □Overview: video coding
- Overview: MPEG-1 video codec
- □Overview: MPEG-2 video codec
- Overview: H.264/AVC video codec
- Overview: Multimedia SoC and software layers

HISTORY OF VIDEO CODING

MOVING PICTURE CODING

- Moving picture, also called film or movie or motion picture, is a series of still-images which, when shown on a screen, creates the illusion of moving images due to the phi phenomenon.
- □ Coding is a term from coding theory which may refer to either data compression or error-correcting codecs or cryptography or line coding.
- ☐ Within the scope in this training material, moving picture coding refers to data compression techniques that can be applied on a series of still-images.
- CODEC is a short term of "encode" and "decode". "Encode" is similar to "compress" and "decode" is similar to "decompress". Encrypt and decrypt are sound familiar here but actually off-topic.

MOVING PICTURE CODING: PHI PHENOMENON

- □ Phi phenomenon: a series of stillimages is displayed one-by-one in a short period to represent a circle movement.
- ☐ A still-image represents a *nick of time* or a *brief moment* in the time series.
- ☐ There is *nothing moving*, but human eyes and brain captured the picture information and then be *under an illusion that the circle is moving*.

(An animation image to represent Phi Phenomenon)

- □ There are thousands different technical methods to conduct "coding" in moving picture area. → Struggling to choose, huh?
- When moving picture area become popular, it requires a standardization in coding techniques. The standard does not necessarily represent the best technical solution, but rather attempt to achieve a compromise between various requirements.
- However, there are different regions and countries where a standard cannot be applied for some reasons. Still a lot of moving picture coding standards are available in the world, but only few famous ones are being widely supported.

☐ The standards are established among various organizations

BASIC TERMS: FRAME RESOLUTION

□Number of pixels count in digital image that is defined by two integer numbers: pixel columns (width) and pixel rows (height).

BASIC TERMS: FRAME RATE (FPS)

- □ The frequency at which an image device produces unique consecutive images called frames. The rate is expressed as either frames per second (FPS) or Hertz (Hz). In video coding, frame-rate usually refers to FPS which means the number of frames that system can build per second (24 FPS, 25 FPS, 30 FPS, etc.)
- ☐ For smoothly video processing, frames to be captured/displayed should be ready before/after a specific timestamp.

BASIC TERMS: FRAME RATE (FPS)

(An animation image to represent different frame rate visualizations)

BASIC TERMS: BITRATE (BPS)

- □ A number of bits that are processed per unit of time. Bitrate is either variable bitrate (VBR) or constant bitrate (CBR).
- ☐ In video coding, bitrate refers to the number of bits used per unit of playback time to represent a continuous video playback after source coding.
 - It also means the required data transfer speed to avoid interrupt of playback, for example: Youtube 720p (2.5 Mbps), DVD (9.8 Mbps), Blu-ray 1080p (40 Mbps)
- □ Bitrate decides the **quality of frame to be displayed**. If the same source is encoded into different bitrate streams, the higher bitrate stream will provide better quality of decoded frames than the lower bitrate stream.

BASIC TERMS: BITRATE (BPS)

High bitrate Low bitrate

BASIC TERMS: VIDEO SCANNING

- ☐ As the video information is actually 2 dimensional, video signal scans the 2dimensional information
- ☐ There 2 types of scanning: **Progressive Scan** and **Interlaced Scan**
 - Progressive (non-interlaced) scanInterlaced scan
 - It scans 2 dimensional area progressively

- - it scans 2 dimensional area alternatively

Odd-field scan Line scan

Even-field scan

BASIC TERMS: VIDEO SCANNING

OVERVIEW: COLOR SPACE

- □ Color is a chromaticity combination of the **Red**, **Green**, and **Blue**.
- ☐ Almost input sources (camera, etc.) provide RGB data naturally.
- ☐ Almost output sources (display, etc.) receive RGB data naturally.
- □ A (digital) pixel represents any color combined from the elements **Red**, **Green**, and **Blue**. If one element is 8-bit depth, then one pixel is 24-bit depth.
- □ Compression on RGB data pixels is less effective in general.

Chromaticity combination (Source from Wikipedia)

Pixels on camera devices (Source from Wikipedia)

Pixels on display devices (Source from Wikipedia)

- ☐ Color is a chroid ☐ Almost input s
- ☐ Almost output
- ☐ A (digital) pixe Blue. If one e

Compressed

Blue.
rally.
rally.
nents Red, Green, and epth.

□ Compression on RGB data pixels is less effective in general.

Chromaticity combination (Source from Wikipedia)

Pixels on camera devices (Source from Wikipedia)

Pixels on display devices (Source from Wikipedia)

Original (Lenna)

Red

Green

Blue

Each color channel contains both luma that helps to detect picture information and **chroma** that helps to detect color information by humaneyes.

Luma on grayscale

Each color channel contains both **luma** that helps to detect picture information and **chroma** that helps to detect color information by humaneyes.

Red

Luma on grayscale

Green

Blue

Scientists proved that human-eyes are more sensitive on **luma** differences than **chroma** differences. Then it's possible to reduce the **chroma** and retain the **luma**.

That sounds great!

Each color channel contains both luma that helps to detect picture information and chroma that helps to detect color information by humaneves.

Red

Luma on grayscale

Green

Blue

Scientists proved that human-eyes are more sensitive on **luma** differences than **chroma** differences. Then it's possible to reduce the **chroma** and retain the **luma**.

However, in RGB color space, reducing **chroma** will also lead to reducing **luma**. Hence it's not effective to do so with RGB.

Reducing the chroma and retaining the luma...

REDUCING THE CHROMA AND RETAINING THE LUMA...

Reducing the chroma retaining the luma...

Reducing the chroma and retaining the luma...

WE NEED TO WORK WITH ANOTHER COLOR SPACE...

Reducing the chroma retaining the luma...

- ☐ YCbCr color space separates the luminance from the color information. YUV is another name of this "color space" format.
- ☐ YCbCr can compress data by representing less resolution for chroma information than for luma information, taking advantage of the human visual system's less sensitive for color differences than for luminance.
- ☐ Y is the luma component and Cb and Cr are the blue-difference and red-difference chroma components.
- □ (We also have Cg which is the green-difference. But Cg component can be reconstructed from Y and Cb and Cr components or vice versa so that YCbCr is widely used instead of YCbCg or YCrCg or else.)

- □ On the color information, there are 3 types of widely used YCbCr format which are 4:4:4, 4:2:2, and 4:2:0. The number means the sampling frequency compared to color burst signal.
- □ (4:4:4) has same data density as RGB, while (4:2:2) has 2/3, and (4:2:0) has 1/2 of data density as RGB, respectively
 - **4:4:4**
 - Each pixel has Y and Cb, Cr data

- 4:2:2
 - Chroma have only half sample in horizontal dir.

O Luminance signal (Y)

- **4:2:0**
 - Chroma have only half samples in both dir.

Chroma signal (Cb/Cr)

Original (Lenna)

Both Blue-difference and Red-difference channels contain chroma data and are not as detail as Red, Green, Blue or luma channels.

Red

Luma on grayscale

Green

Blue-difference

Blue

Red-difference

Original (Lenna)

Both Blue-difference and Red-difference channels contain chroma data and are not as detail as Red, Green, Blue or luma channels.

Red

Luma on grayscale

Green

Reducing chroma does not affect much on human-eyes.

Blue-difference (1/4)

Red-difference (1/4)

□ Color conversion is defined by ITU-R BT 601 recommendation.

☐ Range of Y Cb Cr

Y (luminance) :[16..235]

Cb (chrominance) :[16..240] (center is 128) Cr (chrominance) :[16..240] (center is 128)

☐ Range of RGB (RGB are compensated by Gamma)

R (red) :[0..255]
G (green) :[0..255]
B (blue) :[0..255]

☐ Conversion equations:

Y = 0.257xR + 0.504xG + 0.098xB + 16

Cb = -0.148xR - 0.291xG + 0.439xB + 128

Cr = 0.439xR - 0.368xG - 0.071xB + 128

R = 1.164x(Y-16) + 1.596x(Cr-128)

G = 1.164x(Y-16) - 0.813x(Cr-128) - 0.392x(Cb-128)

B = 1.164x(Y-16) + 2.017x(Cb-128)

BIG IDEAS FOR EVERY SPACE

COLOR SPACE: YUV (EXAMPLE)

- ☐ Calculate one TV picture data volume with following conditions:
 - Picture size : 720 [pixels/line] x 480 [lines/frame]
 - Color format : (4:4:4)
 - Data depth: 8 bits for each Y/Cb/Cr
 720[pixels/line]*480[lines/frame]*8[bits/pixel]*3 = 720*480*24[bits/frame]
- □ Calculate data rate of TV signal with conditions above and following:
 - Frame rate: 30 [Frames/sec]720*480*24[bits/frame]*30[frames/sec] = 720*480*24*30[bps]
- □ Calculate TV picture data volume with conditions above but Color format is (4:2:0) 720[pixels/line]*480[lines/frame]*8[bits/pixel]*3*1/2 = 720*480*12[bits/frame]
- □ Calculate data rate of TV signal with conditions above (4:2:0) and following:
 - Frame rate: 30 [Frames/sec]720*480*12[bits/frame]*30[frame/sec] = 720*480*12*30[bps]

OVERVIEW: VIDEO CODING

BASIC VIDEO CODING TECHNOLOGY

■ Importance of Video coding

Original data rate: (720pixel)x(480Line)x(24bit/RGB)x(30picture/s) = 249Mbit/s

Traffic data rate : Digital Terrestrial Broadcasting (192 k bit/s), DVD (3~8Mbit/s)

HYBRID BLOCK-BASED ENCODING FLOW

HYBRID BLOCK-BASED ENCODING FLOW

HYBRID BLOCK-BASED ENCODING FLOW

From the 2nd time encoding.

From the 2nd time encoding.

IN DETAIL...

BIG IDEAS FOR EVERY SPACE

TRANSFORM

- □ Convert image or motion-compensated residual data into another domain, the transform domain.
- □ Data in the transform domain is de-correlated (to reduce the autocorrelation of a signal with itself) and compact.
- □ Popular transform: **DCT (Discrete Cosine Transform)**

TRANSFORM

Input of DCT process is a block of 8x8 sampling data.

Data that we're interesting on for compression.

Output of DCT process is a block of 8x8 coefficients which is used for DCT basis functions.

DCT

TRANSFORM

8 blocks

AND TRANSFORMING THE ANALYZED DATA...

HOW TO ANALYZE THE DATA BASE ON PREVIOUS DATA...

- □ It's possible to have some redundant data within a frame → use intra prediction.
- □ Intra prediction: The current block is predicted from previously-coded samples in the same frame.

☐ A sequence of frames have the same background → use inter prediction.

□ Inter prediction: reduce information using inter-frame correlation (only coding the differenced data)

■ Motion Vector : To minimize differential code

■ Motion Estimation: Process to search most similar block

- ☐ It's not important if either previous frame or next frame becomes reference frame.

 The differences between reference frame and coded frame are still the same.
 - **→** Bi-directional reference is also possible.

WORKING THE OUTPUT OF TRANSFORMING PROCESS...

QUANTIZATION

- □ Quantizer maps a signal with a range of values X to a quantized signal with a reduced range of values Y.
- ☐ It should be possible to represent the quantized signal with fewer bits than the original since the range of possible values is smaller.
- □ Quantization means "scale value of data to be something more simple".
- ☐ Scaling value will naturally cause a lost of data information.

QUANTIZATION

DCT/Quantization

RECONSTRUCTING DATA FOR LATER ANALYZING...

I-QUANTIZATION / I-DCT

☐ The reconstructed image may have a **small changes in color information and object recognition**. However, **human-visualization cannot recognize** difference in term of pixel values between original data and reconstructed data.

DCT / Quantization / I-quantization / I-DCT

I-QUANTIZATION / I-DCT

139	144	149	153	155	155	155	155	235.	6 -1	.0 -12.	1 -5.2	2.1	-1.7	-2.7	1.3	16	11	10	16	24	40	51	61
144	151	153	156	159	156	156	156	-22.	6 -17	.5 -6.	2 -3.2	-2.9	-0.1	0.4	-1.2	12	12	14	19	26	58	60	55
150	155	160	163	158	156	156	156	-10.	9 -9	.3 -1.	6 1.5	0.2	-0.9	-0.6	-0.1	14	13	16	24	40	57	69	56
159	161	162	160	160	159	159	159	-7.	1 -1	.9 0.	2 1.5	0.9	-0.1	0.0	0.3	14	17	22	29	51	87	80	62
159	160	161	162	162	155	155	155	-0.	6 -0	0.8 1.:	5 1.6	-0.1	-0.7	0.6	1.3	18	22	37	56	68	109	103	77
161	161	161	161	160	157	157	157	1.	8 -0	0.2 1.0	6 -0.3	-0.8	1.5	1.0	-1.0	24	35	55	64	81	104	113	92
162	162	161	163	162	157	157	157	-1	.3 -0	.4 -0.	3 -1.5	-0.5	1.7	1.1	-0.8	49	64	78	87	103	121	120	101
162	162	161	161	163	158	158	158	-2.	6 1	.6 -3.	8 -1.8	1.9	1.2	-0.6	-0.4	72	92	95	98	112	100	103	99
((a) source image samples					(b) forward DCT coefficients						(c) quantization table											
15	0	-1	0	0	0	0	0	240	0	-10	0	0	0	0	0	144	146	149	152	154	156	156	156
-2	-1	0	0	0	0	0	0	-24	-12	0	0	0	0	0	0	148	150	152	154	156	156	156	156
-1	-1	0	0	0	0	0	0	-14	-13	0	0	0	0	0	0	155	156	157	158	158	157	156	155
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	160	161	161	162	161	159	157	155
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	163	163	164	163	162	160	158	156
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	163	164	164	164	162	160	158	157
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	160	161	162	162	162	161	159	158
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	158	159	161	161	162	161	159	158
	(d) normalized quantized coefficients				(e) denormalized quantized coefficients							(f) reconstructed image samples											

COMPRESSING DATA...

From the 2nd time encoding.

ENTROPY CODING

- ☐ Entropy coding: To assign code according to occurrence probability.
- □ It converts a series of symbols (quantized transform coefficients, run-level, motion vectors, picture headers, etc.) representing elements of the video sequence into a compressed bitstream suitable for transmission or storage.

Value	Probability	Normal code	VLC
1	1/2	001	1
2	1/4	010	01
3	1/8	011	001
4	1/8	100	000

Coding value 1,2,1,1,2,3,1,4

In normal code 001,010,001,001,010,011,001,100 (24bit)

In VLC 1,01,1,1,01,001,1,000(14bit)

(Variable Length Coding)

ENTROPY CODING / ZIGZAG SCAN

Zigzag Scan/VLC

☐ ZigZag Scan is fixed between encoder and decoder, but can be customized depending to the codec specification itself.

DCT Coeff.	Zero Rur		Bit length
DC coeff.		16	15
AC coeff.	0	1	3
	0	2	5
	0	-2	5
	1	-1	4
	2	-1	5
	0	-2	5
	0	1	3
	0	1 -4	8
	0	-2	5
	0	1	3
	1	1	4
	0	1	3
	0	-1	3
	0	-3 -1	6
	0	-1	3
	0	2	5
	0	2	5
	0	1	3
	0	1	3
	0	1	3 3
	6	1	3
	0	1	3
	0	1	3
	1	-1	4
	0	-3 2	6
	0	2	5
	10	-1	9
EOB			2
Total			134

THAT'S ALMOST ABOUT VIDEO CODING, BUT...

OTHER BASIC VIDEO CODING TECHNOLOGY (1)

- □ **Dropping frame**: To decimate pictures by time.
- □ Dropping frame = resampling data → cause a big lost of information
 - In encoding viewpoint, input-captured may provide more frames than the processing capability of encoder.
 - In decoding viewpoint, output-displayed may slow down the processing of decoder due to its limitation in FPS.

OTHER BASIC VIDEO CODING TECHNOLOGY (1)

- □ **Sub-sampling**: To decimate pixels number in a picture (change resolution of picture)
- □ Sub-sampling = resizing image to be smaller one
- □ Less information → less data size → better compression → poor quality display

Picture

pixel

After cut off high frequency using filter, Decimate some pixels in a picture.

Picture

BASIC VIDEO CODING TECHNOLOGY: SUMMARY

Group	Method		Effectiveness	Deterioration	
Cut of	Drop frame			large	
information (irreversible)	Sub-sampling			large 7	
Reduce of information (reversible/irreversible)	In spatial	Intra prediction (DC prediction)		medium	
	In temporal	Inter prediction (difference motion vector)		medium	
in eversione)	Time-Frequency Transform	DCT		medium	
Use statistic feature (reversible)	Allocate suitable code	Entropy coding Zigzag scan	△ 7	small (non)	

BASIC VIDEO CODING TECHNOLOGY: SUMMARY

Group	Method			ctiveness	Deterioration
Cut of	Drop frame New CODEC is inver		nted	0	large
information (irreversible)	Sub-samplin to improve those grou			0	large 7
Reduce of information (reversible/irreversible)	In spatial	Intra prediction (DC prediction)		0	medium
	In temporal	Inter prediction (difference motion vector)			medium
	Time-Frequency Transform	DCT		0	medium
Use statistic feature (reversible)	Allocate suitable code	Entropy coding Zigzag scan		△ 7 '	small (non)

OTHER BASIC VIDEO CODING TECHNOLOGY (1)

OTHER BASIC VIDEO CODING TECHNOLOGY (1)

Block : 8[pixel]x8[line]pixel

Macro block: 16[pixel]x16[line]pixel, consists of several blocks

Slice : consists of several macro blocks

Picture or VOP : (Video object plane) one video image

GOP or VOL : Group Of Picture

OVERVIEW: MPEG-1 VIDEO CODEC

- MPEG1 video compression standard is developed by ISO/MPEG to realize video encode/decode with data rate about 1.5Mbps using compact disk (CD).
- ☐ Coding algorithm of MPEG1 Video consists of 3 major technologies:
 - Motion compensation (MC): Redundancy reduction in Time domain
 - Conversion coding (DCT): Redundancy reduction in Frequency domain
 - Entropy coding: Redundancy reduction by Probability/Statistics such as Huffman coding, Run length coding

Items	Specifications
Source format	SIF(Source input format); 352x240x30 / 352x288x25
Video format	Progressive (Frame picture)
Color format	(4:2:0)
Bitrate	About 1.5 Mbps
Target media	CD (Compact Disc) / DAT
Target quality	VCR (Video Cassette Recorder)

☐ The migrate path to reduce data rate is shown below:

☐ The MPEG1 video has following layers:

Picture types	Prediction types	Reference relation			
I-Picture/ Keyframe	Intra-Frame Prediction	Current			
P-Picture	Inter-Frame Prediction	Past Macroblock P Current			
B-Picture	Inter-Frame Bi-direction Prediction	Past Current Future			

MPEG-1 VIDEO: I VS P VS B

Efficiency

25

MPEG-1 VIDEO: I VS P VS B

MPEG-1 VIDEO: I VS P VS B

□ Prediction structure and GOP (Group of Picture): Prediction structure is based on a GOP unit.

□ Prediction structure and GOP (Group of Picture): Prediction structure is based on a GOP unit.

© 2017 Renesas Electronics Corporation. All rights reserved.

☐ Prediction structure and GOP (Group of Picture): Prediction structure is based on a GOP unit.

□ Prediction structure and GOP (Group of Picture): Prediction structure is based on a GOP unit.

□ Prediction structure and GOP (Group of Picture): Prediction structure is based on a GOP unit.

□ Prediction structure and GOP (Group of Picture): Prediction structure is based on a GOP unit.

□ Prediction structure and GOP (Group of Picture): Prediction structure is based on a GOP unit.

□ Prediction structure and GOP (Group of Picture): Prediction structure is based on a GOP unit.

□ Prediction structure and GOP (Group of Picture): Prediction structure is based on a GOP unit.

□ Picture re-ordering – The difference between decoding / encoding order and displaying order.

Original order 2 **Encoding/Decoding** 3 Displaying

□ Picture re-ordering – The difference between decoding / encoding order and displaying order.

□ Picture re-ordering – The difference between decoding / encoding order and displaying order.

□ Picture re-ordering — The difference between decoding / encoding order and displaying order. Original order 0 **Encoding/Decoding** 3 6 0 Displaying 0

□ Picture re-ordering — The difference between decoding / encoding order and displaying order. В В Original order 0 **Encoding/Decoding** 5 6 В Displaying

BIG IDEAS FOR EVERY SPACE

□ Picture re-ordering — The difference between decoding / encoding order and displaying order. Original order **Encoding/Decoding** Displaying

- ☐ Efficiency of using B-Picture
 - Assign many data to I and P to make good picture quality for I/P
 - B picture will be improved by adjacent I/P picture

OVERVIEW: MPEG-2 VIDEO CODEC

- ☐ The target application of MPEG2 Video standard is Digital TV or Digital Optical Disc system.
- MPEG2 Video also supports HDTV & SDTV. (MPEG3 is supposed to be HDTV coding standard, but it is skipped.)

Items	Specifications
Source format	SDTV / HDTV; SIF is also supported
Video format	Progressive / Interlace (Frame/Field picture)
Color format	(4:2:0); (4:2:2) is optional
Bitrate	Max.15 (SDTV) - 80 (HDTV) Mbps
Target media	Digital TV / Optical Disc
Target quality	Studio quality

☐ Comparison between MPEG1 and MPEG2

	MPEG1	MPEG2
System	Package Media onlyProgram Stream onlyUnique system clock	 Package Media and broadcasting Program Stream and Transport Stream Multiple Service (channel)
Video	 Frame operation (non interlace) 	 Frame/field adaptive operation (Interlace/non interlace) Profile/Level support Scalability support
Audio	Stereo (2 channel)Musicam	Multi channel/SurroundHalf Sampling RateNBC coding(AC-3)

☐ Profile and Level

_	Level 0x1152 @ 60fps	Х	MP@HL 80MBit/s	Х	х	HP@HL 100MBit/s
High-1440 Level 1440x1152 @ 60fps		х	MP@HL-1440 60MBit/s US ATSC	Х	Spatially@HL- 1440 60MBit/s	HP@HL-1440 80MBit/s EU dTTb
Main Level 720x576 @ 30fps		SP@ML 15MBit/s CATV	MP@ML 15MBit/s Generic	SNR@ML 15MBit/s	х	HP@ML 20MBit/s
Low Level 352x288 @ 30fps		Х	MP@LL 4MBit/s	SNR@LL 4MBit/s	Х	Х
		Simple Profile	Main Profile	SNR Scalable Profile	Spatially Scalable Profile	High Profile
	B-picture		0	0	0	0
	SNR scalability			\circ	0	0
ction	Spatial scalability				0	0
Function	Temporal scalability					
	4:2:2					0
	Data partitioning					

OVERVIEW: H.264/AVC VIDEO CODEC

- ☐ Improvement of image quality (70% improve from MPEG-4)
 - Some reports 2~3 dB improve in PSNR (in the case all tools are used)
- □ Network Friendliness
- ☐ Points of improvement
 - Intra-prediction
 - increase multi-mode prediction
 - de-blocking filter
 - integer transform by 4x4
 - Inter-prediction
 - variable block-size motion compensation
 - multi-reference
 - Entropy coding
 - CABAC (Context-based Adaptive Binary Arithmetic Coding), but not supported in Baseline profile
- ☐ Separate Coding layer from network layer
 - VCL: Video Coding Layer
 - NAL: Network Adaptation Layer

☐ Major differences of video coding methods are listed below

Specifications	MPEG1	MPEG2	H.264
Source format	Frame	Frame/Field	Frame/Field
Frame rate	25~30fps	24~60fps	Variable
Bit rate	Up to 1.5Mbps	Up to 60Mbps	16kbps~240Mbps
Picture type	I/P/B	I/P/B	I/P/B (slice)
Intra prediction	DC coef. prediction	DC coef. prediction	16x16, 4x4 intra prediction
Inter prediction	16x16	16x16	16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4
Prediction picture accuracy	1/2 cell	1/2 cell	1/4 cell
Transfer coding	8X8 DCT	8x8 DCT	4x4 DCT Integer
Loop filter	No	No	Yes

Picture types	Prediction types	Reference relation
IDR- Picture/ Keyframe	Intra-Frame Prediction (with Long-term prediction reset)	Past Past Current Future
I-Picture/ Keyframe	Intra-Frame Prediction	Past Past Current Future
P-Picture	Inter-Frame Prediction	Past Block Current
B-Picture	Inter-Frame Bi-direction Prediction	Past Current Future

☐ Prediction structure and GOP (Group of Picture): Prediction structure is based on a GOP unit.

Adaptive selection of I/P/B prediction for each Macro Block

BIG IDEAS FOR EVERY SPACE

IDR (Instantaneous Decoding Refresh)

→ Special I-picture that restricts reference between frames before and after it.

□ Prediction structure and GOP (Group of Picture): Prediction structure is based on a GOP unit.

Adaptive selection of I/P/B prediction for each Macro Block

IDR (Instantaneous Decoding Refresh)

→ Special I-picture that restricts reference between frames before and after it.

☐ Performance of various coding methods are compared in figure below.

OVERVIEW: MULTIMEDIA SOC AND SOFTWARE LAYERS

☐ Renesas R-Car M2

Application layer

Application Interface (API)

Middleware Layer

System-call API

Operating System

Device Driver Interface

Device Driver Layer

Hardware Layer

Navigation, video/audio playback, web browser, parent control, etc.

OpenMAX, Gstreamer, Stagefright, Digital Television Middleware, etc.

Windows, Linux, Android, QNX, INTEGRITY, etc.

Power management, thermal control, video/audio coding control, etc.

Video/Audio decoder IP, camera sensor, thermal sensor, USB port, etc.

☐ Product-specific software. Application layer ☐ Final specification is defined here. ☐ Customized for the actual product. Application Interface (API) Middleware Layer System-call API **Operating System Device Driver Interface Device Driver Layer** Hardware Layer

Application layer

Application Interface (API)

Middleware Layer

System-call API

Operating System

Device Driver Interface

Device Driver Layer

Hardware Layer

- ☐ Function-specific software.
- Common functions are realized here.
- Some functions can be replaced by hardware implementation.
- Not customized for the actual product because its mission is to generalize processing of various lower layer and hardware layer for the portability and maintainability of upper layer.

Application layer

Application Interface (API)

Middleware Layer

System-call API

Operating System

Device Driver Interface

Device Driver Layer

Hardware Layer

- ☐ Operating system offers general tools and software circumstance.
- □ However, it almost does nothing in the business logic of product that is realized both by other software layers and by hardware layer.
- ☐ It only provides service and helper for other layers to implement the business logic of product.

Application layer

Application Interface (API)

Middleware Layer

System-call API

Operating System

Device Driver Interface

Device Driver Layer

Hardware Layer

- ☐ Hardware-specific software.
- ☐ Hardware-dependent specification is assimilated here.
- ☐ It controls the logic of hardware, but need helper from OS layer to communicate with hardware layer.

Application layer Application Interface (API) Middleware Layer System-call API **Operating System** ☐ Product-specific hardware. **Device Driver Interface** ☐ With the same logic implementation, software is for optimal cost and hardware **Device Driver Layer** is for optimal performance. Hardware Layer

OPENMAX

- □ OpenMAX is a royalty-free, cross-platform set of C-language programming interfaces that provides abstractions for routines especially useful for audio, video, and still images.
- □ OpenMAX IL serves as a lowlevel interface for audio, video, and imaging codecs used in embedded devices.

☐ It gives applications and media frameworks the ability to interface with multimedia codecs and supporting components in a unified manner.

