De Morgan's Laws

Author:Shefali Garg 11678 CSE

November 5, 2012

Table of contents

Logic Gates

And Gate

Or Gate

Not Gate

De Morgan's laws

Prove De Morgan's Laws

First Law

Second Law

Generalised De Morgan's laws

References

And Gate

For any two given inputs A and B,output X is given as X=AB

Figure : AND gate

Truth table for AND gate [2]

Α	В	Χ
1	1	1
1	0	0
0	1	0
0	0	0

Or Gate

For any two given inputs A and B,output X is given as X=A+B

Figure: Or gate

$$A \xrightarrow{\qquad \qquad } X$$

Truth table for Or gate [4]

Α	В	Χ	
1	1	1	
1	0	1	
0	1	1	
0	0	0	

Not Gate

For given input A,output X is given as $X = \overline{A}$

Figure: Not gate

Truth table for not gate [1]

Α	Х
1	0
0	1

De morgan's laws for two variables

Let A and B be two inputs. Then by De Morgan's laws [3],

$$\overline{A+B} = \overline{A} \overline{B}$$

$$\overline{AB} = \overline{A} + \overline{B}$$

Prove of First Law

According to first law,an OR gate with all inputs inverted (a Negative-OR gate) behaves the same as a NAND gate that is, $\overline{AB} = \overline{A} + \overline{B}$

Figure: First Law

$$\begin{array}{c|c} A & AB \\ \hline B & is equivalent to \\ \hline A & \overline{A} \\ \hline B & \overline{B} & \overline{A} + \overline{B} \end{array}$$

This can be proved by truth table

Α	В	ĀB	Ā	\overline{B}	$\overline{A} + \overline{B}$
1	1	0	0	0	0
1	0	1	0	1	1
0	1	1	1	0	1
0	0	1	1	1	1

Proof of Second Law

According to first law,an AND gate with all inputs inverted (a Negative-AND gate) behaves the same as a NOR gate that is, $\overline{A+B}=\overline{A}~\overline{B}$

Figure: Second Law

$$\begin{array}{c} A+B \\ B \\ \hline \\ Is equivalent to \\ A \\ \hline \\ B \\ \hline \\ \end{array} \begin{array}{c} \bar{A}+\bar{B} \\ \bar{A}\bar{B} \\ B \\ \hline \end{array}$$

This can be proved by truth table

Α	В	$\overline{A+B}$	Ā	B	$\overline{A}\overline{B}$
1	1	0	0	0	0
1	0	0	0	1	0
0	1	0	1	0	0
0	0	1	1	1	1

De morgan's laws for n variables

Let $x_1, x_2, ..., x_n$ be two inputs. Then,

$$\overline{X_1 + X_2 + ... + X_n} = \overline{X_1 X_2} ... \overline{X_n}$$

References

- John Bird.

 Engineering Mathemetics.

 Newness, Reading, Stanford, 1999.
- Jaegar.

 Microelectronic Circuit Design.

 McGraw-Hill, Reading, Massachusetts, 1997.
- De Morgan.
 The Comprehensive Tex Archive Network (CTAN).

 TUGBoat, 14(3):342–351, 1999.
- Richard F Tinder.

 Engineering digital design: Revised Second Edition.

 McGraw-Hill, Reading, Massachusetts, 1990.