Teoria da Computação

3 Maio 2022 MAP30–1 Repescagem Duração: 30m

Nome:	Número:	

Considere o alfabeto $\Sigma = \{a, b\}$ e as linguagens $L_1, L_2 \subseteq \Sigma^*$ tais que:

 L_1 : conjunto das palavras em que o segundo símbolo é a e o penúltimo também

 L_2 : conjunto das palavras da forma ww^R com $w \in \Sigma^*$

Por exemplo, a palavra baa pertence a L_1 , pois o segundo e o penúltimo símbolo (que neste caso são o mesmo) é a, mas não pertence a L_2 (até porque tem comprimento ímpar). A palavra aabbaa pertence a L_1 , e também pertence a L_2 já que $aab^R = baa$.

a) (1.5 valores) Mostre (construindo um AFD) que L_1 é uma linguagem regular.

Resolução: Basta considerar o AFD que aceita precisamente as palavras de L_1 .

b) (1.5 valores) Mostre que L_2 não é uma linguagem regular.

Resolução: Se L_2 fosse regular, pelo lema da bombagem, existiria $k \in \mathbb{N}$ tal que se $w \in L_2$ e $|w| \ge k$ então $w = w_1 w_2 w_3$ com $|w_1 w_2| \le k$, $w_2 \ne \epsilon$ e $w_1 w_2^i w_3 \in L_2$ para qualquer $i \in \mathbb{N}_0$. Dado k, considere-se $w = a^k bba^k \in L_2$. Então ter-se-ia $w_1 = a^j$, $w_2 = a^l$ e $w_3 = a^{k-(j+l)}bba^k$ com $l \ne 0$. Logo, por exemplo com i = 0, tem-se $w_1 w_2^0 w_3 = w_1 w_2 = a^{k-l}bba^k \notin L_2$ pois $a^{k-l} \ne a^k$ já que $l \ne 0$.

c) (1.0 valores) Mostre (construindo um AP) que L_2 é independente do contexto.

Resolução: Basta considerar o AP que aceita precisamente as palavras de L_2 .

Teoria da Computação

3 Maio 2022 MAP30–2 Repescagem Duração: 30m

Nome:	Número:
	1 (differ 6)

a) (2.0 valores) Mostre (construindo uma máquina de Turing determinista, possivelmente bidireccional, multifita e com movimentos-S) que é computável a função $f: \mathbb{N}_0 \to \mathbb{N}_0$ tal que f(n) = n + 2, em que input e output adoptam a representação binária.

Nomeadamente, para o input 110 deverá obter-se o output 1000, pois 6 + 2 = 8.

Resolução: Basta considerar a MT seguinte, que calcula a função.

A máquina avança pelo input (q_{in}) e posiciona a cabeça de leitura/escrita no bit mais à direita (q_1) . Como 2 é 10 em binário, esse bit é mantido (q_2) e a soma é executada (q_3) , posicionando-se no final a cabeça de leitura/escrita no bit mais à esquerda (q_{ac}) .

b) (2.0 valores) Mostre (construindo uma máquina de Turing possivelmente bidireccional, multifita e com movimentos-S, e tirando partindo do não-determinismo) que é reconhecível a linguagem $L \subseteq \{1,\$\}^*$ constituída por todas as palavras da forma

$$1^{n_1} \$ 1^{n_2} \$ \dots \$ 1^{n_k}$$

em que $k \in \mathbb{N}_0$ e existem i < j tais que n_i é divisor de n_j . Note, nomeadamente, que 11\$1111\$111 $\in L$ pois 2 é divisor de 4, mas 1111\$111\$111 $\notin L$ pois 2 ocorre depois de 4, bem como 11111\$11\$111 $\notin L$ já que 2, 3 e 5 são números primos distintos.

Resolução: Basta considerar a MT não determinista de duas fitas seguinte, que reconhece a linguagem L.

A máquina usa não-determinismo (nd_1) para ignorar (ig_1) elementos do input até escolher copiar o potencial divisor n_i para a fita 2 (cp_1) . Depois, volta a usar não-determinismo (nd_2) para ignorar (ig_2) mais elementos do input até escolher o potencial dividendo n_j . Então, é testada a divisibilidade (esq, dir) e aceita-se o input caso n_i seja divisor de n_j .

Teoria da Computação

Nomo	Númor	. •
3 Maio 2022	MAP30–3 Repescagem	Duração: 30m

Considere um alfabeto Σ .

a) (2.0 valores) Sejam $L_1, L_2, L_3 \subseteq \Sigma^*$ linguagens tais que $L_1 \leq L_2$ e $L_2, \overline{L_3}$ são reconhecíveis. Mostre, justificando, que também é reconhecível a linguagem $L_1 \setminus L_3$.

Resolução: Como $L_1 \leq L_2$, seja F a máquina que calcula a função total $f: \Sigma^* \to \Sigma^*$ tal que $x \in L_1$ se e só se $f(x) \in L_2$.

Sejam ainda M_2 a máquina que reconhece L_2 e M_3 a máquina que reconhece $\overline{L_3}$.

Considere-se a máquina M, com duas fitas, descrita por:

Tem-se que:

- Se $w \in L_1 \setminus L_3 = L_1 \cap \overline{L_3}$ então $w \in L_1$ pelo que $f(w) \in L_2$ e M_2 aceita f(w), e também que $w \in \overline{L_3}$ e M_3 aceita w, pelo que M aceita w, já que a cópia do *input* e o cálculo de f terminam sempre.
- Se M aceita w então M_2 aceita f(w) pelo que $f(w) \in L_2$ e portanto $w \in L_1$, e também M_3 aceita w pelo que $w \in \overline{L_3}$, tendo-se portanto que $w \in L_1 \cap \overline{L_3} = L_1 \setminus L_3$.

Conclui-se que $L_{ac}(M) = L_1 \setminus L_3$ e portanto a linguagem é reconhecível.

b) (2.0 valores) Seja $A \subseteq \Sigma^*$ uma linguagem e $w \in \Sigma^* \setminus A$ uma palavra. Mostre, usando o teorema de Rice, que é indecidível a linguagem

$$L = \{ M \in \mathcal{M}^{\Sigma} : A \subseteq L_{ac}(M) \in w \notin L_{ac}(M) \}.$$

Resolução: Pelo teorema de Rice, precisamos de verificar quatro condições.

- 1. $L \subseteq \mathcal{M}^{\Sigma}$, por definição.
- 2. $L \neq \mathcal{M}^{\Sigma}$ pois a seguinte máquina $M_w \notin L$:

$$M_w$$
 : INPUT x se $x=w$ então aceita senão rejeita

já que $L_{ac}(M_w) = \{w\}$ e portanto $w \in L_{ac}(M_w)$.

3. $L \neq \emptyset$ pois a seguinte máquina $M_w^- \in L$:

$$M_w^-: \begin{array}{l} \mbox{INPUT } x \\ \mbox{se } x=w \end{array}$$
 então rejeita senão aceita

já que $L_{\rm ac}(M_w^-)=\Sigma^*\setminus\{w\}$ e como sabemos que $w\notin A$, tem-se $A\subseteq L_{\rm ac}(M_w^-)$ e também $w\notin L_{\rm ac}(M_w^-)$.

4. Se $M_1 \equiv M_2$ e $M_1 \in L$ então tem-se que $A \subseteq L_{ac}(M_1)$ e também $w \notin L_{ac}(M_1)$, mas nesse caso $L_{ac}(M_1) = L_{ac}(M_2)$, e portanto tem-se que $A \subseteq L_{ac}(M_2)$ e também $w \notin L_{ac}(M_2)$, ou seja, $M_2 \in L$.

Sendo satisfeitas todas as condições conclui-se que a linguagem L é indecidível.

Teoria da Computação

	3 Maio 2022	MAP30-4 Repescagem	Duração: 30m
--	-------------	--------------------	--------------

Considere a linguagem $L = \{0^{2n}1^n : n \in \mathbb{N}_0\}.$

a) (3.0 valores) Mostre que $L \in \mathbf{SPACE}(n) \cap \mathbf{TIME}(n, \log(n))$.

Resolução: Considere-se a MT M seguinte.

A máquina avança pelo input, da esquerda para a direita, garantindo que tem um bloco inicial de 0s de tamanho par e cancelando com # metade dos 0s, nos estados q_{0p}, q_{0i} , e depois um bloco final de 1s no estado q_1 ; de seguida repetidamente, a máquina volta a percorrer a fita, agora da direita para a esquerda, garantindo que o número de 0s e 1s remanescente é par, nos estados p e i, e depois novamente da esquerda para a direita, cancelando com # metade dos 0s, nos estados on, go_{00}, go_{0} , e também metade dos 1s, nos estados go_{10}, go_{1} . O input é aceite caso todos os seus símbolos sejam cancelados com #, e rejeitado caso alguma das condições intermédias não se verifique.

Naturalmente, a segunda fase repete-se um número logarítmico de vezes e portanto tem-se

$$time_M(n) = \mathcal{O}(n) + (\log_2(n) + 1).\mathcal{O}(n) = \mathcal{O}(n.\log(n))$$

 $space_M(n) = n + 2 = \mathcal{O}(n)$

e podemos concluir que $L \in \mathbf{SPACE}(n) \cap \mathbf{TIME}(n. \log(n))$.

b) (1.0 valor) Seja $S \subseteq \{0,1\}^*$ uma linguagem tal que $\overline{S} \leq_P L$. Use o resultado da alínea anterior para mostrar que $S \in \mathbf{P}$.

Resolução: Da alínea anterior sabemos que $L \in \mathbf{TIME}(n.\log(n)) \subseteq \mathbf{TIME}(n^2) \subseteq \mathbf{P}$. Seja M a respectiva máquina classificadora.

Como $\overline{S} \leq_P L$, seja F a máquina de tempo polinomial $time_F(n) = \mathcal{O}(n^a)$ que calcula a função total $f: \{0,1\}^* \to \{0,1\}^*$ tal que $x \in \overline{S}$ se e só se $f(x) \in L$.

Considere-se a seguinte máquina de Turing T descrita abaixo.

T: INPUT w $T: \begin{array}{l} \text{EXECUTA } F \text{ para calcular } f(w) \\ \text{EXECUTA } M \text{ sobre } f(w) \\ \text{SE } M \text{ ACEITA ENTÃO REJEITA SENÃO ACEITA} \end{array}$

Comecemos por verificar que T decide a linguagem S.

- T é classificadora pois F termina sempre e M é classificadora.
- -T aceita w sse M rejeita f(w) sse $f(w) \notin L$ sse $w \notin \overline{S}$ sse $w \in S$.

Para mostrar que $S \in \mathbf{P}$ basta agora verificar que T é de tempo polinomial. Na verdade, tem-se:

$$time_T(n) \le time_F(n) + time_M(n + time_F(n)) = \mathcal{O}(n^a) + \mathcal{O}((n + n^a)^2) = \mathcal{O}(n^{2a}).$$

Teoria da Computação

3 Maio 2022 MAP30–5 Repescagem Duração: 30m

	Nome:	Número:
a) (2.5 valores) Seja Σ um alfabeto, $\$ \notin \Sigma$, e considere linguagens $A,B,C,L \subseteq \Sigma^*$ tais qu		
	$-A \leq_P L$,	
	$-B \leq_P A$,	

Mostre, justificando, que $C \leq_P \{w_1 \$ w_2 : w_1, w_2 \in \Sigma^* \text{ com } w_1 \in L \text{ se e s\'o se } w_2 \notin L\}.$

Resolução: Seja $R = \{w_1 \$ w_2 : w_1, w_2 \in \Sigma^* \text{ com } w_1 \in L \text{ se e só se } w_2 \notin L\}.$

Como $A \leq_P L$, seja F a máquina de tempo polinomial $time_F(n) = \mathcal{O}(n^a)$ que calcula a função total $f: \Sigma^* \to \Sigma^*$ tal que $w \in A$ se e só se $f(w) \in L$.

Como $B \leq_P A$, seja G a máquina de tempo polinomial $time_G(n) = \mathcal{O}(n^b)$ que calcula a função total $g: \Sigma^* \to \Sigma^*$ tal que $w \in B$ se e só se $g(w) \in A$.

Como $C \leq_P (A \setminus B) \cup (B \setminus A)$, seja H a máquina de tempo polinomial $time_H(n) = \mathcal{O}(n^c)$ que calcula a função total $h: \Sigma^* \to \Sigma^*$ tal que $w \in C$ se e só se $h(w) \in (A \setminus B) \cup (B \setminus A)$.

Para mostrar que $C \leq_P R$ considere-se a função $k: \Sigma^* \to (\Sigma \cup \{\$\})^*$ definida por

$$k(w) = f(h(w)) f(g(h(w))).$$

A função k é total pois f, g, h são totais, e é facilmente computável pois, tirando partindo das máquinas F, G, H podemos considerar a máquina K, de duas fitas, descrita a seguir.

```
INPUT w
EXECUTA H NA FITA 1 PARA CALCULAR h(w)
COPIA h(w) PARA A FITA 2

K: EXECUTA F NA FITA 1 PARA CALCULAR f(h(w))
EXECUTA G NA FITA 2 PARA CALCULAR g(h(w))
EXECUTA F NA FITA 2 PARA CALCULAR f(g(h(w)))
OUTPUT f(h(w))$f(g(h(w)))
```

A máquina K é de tempo polinomial pois

 $-C \leq_P (A \setminus B) \cup (B \setminus A).$

```
time_{K}(n) \leq time_{H}(n) + \mathcal{O}(n + time_{H}(n)) + time_{F}(n + time_{H}(n)) + time_{G}(n + time_{H}(n)) + time_{G}(n + time_{H}(n)) + time_{F}(n + time_{H}(n) + time_{G}(n + time_{H}(n))) \leq \mathcal{O}(n^{c} + (n + n^{c}) + (n + n^{c})^{a} + (n + n^{c})^{b} + (n + n^{c} + (n + n^{c})^{b})^{a}) = \mathcal{O}(n^{abc})
```

que é um polinómio, e continuará a ser mesmo com uma desaceleração quadrática, por K ter duas fitas.

Finalmente, note-se a seguinte sequência de equivalências:

$$w \in C$$

$$h(w) \in (A \setminus B) \cup (B \setminus A)$$

$$h(w) \in A \text{ sse } h(w) \notin B$$

$$h(w) \in A \text{ sse } g(h(w)) \notin A$$

$$f(h(w)) \in L \text{ sse } f(g(h(w))) \notin L$$

$$f(h(w)) \$ f(g(h(w))) \in R$$

$$k(w) \in R$$

b) (1.5 valores) Demonstre que $P \neq NP$ se e só se não existe $L \in P$ tal que L é NP-difícil.

Resolução: Equivalentemente, mostramos que $\mathbf{P} = \mathbf{NP}$ se e só se existe $L \in \mathbf{P}$ tal que L é \mathbf{NP} -difícil.

- Se P = NP então tome-se uma qualquer linguagem L que seja NP-completa (como SUBSETSUM ou SAT). Obviamente L é NP-difícil e $L \in NP = P$.
- Se existe $L \in \mathbf{P}$ tal que L é \mathbf{NP} -difícil, então tem-se que $A \leq_P L$ qualquer que seja $A \in \mathbf{NP}$. Mas como $L \in \mathbf{P}$, se $A \leq_P L$, temos que também $A \in \mathbf{P}$, qualquer que seja $A \in \mathbf{NP}$. Daqui concluímos que $\mathbf{NP} \subseteq \mathbf{P}$. Como sabemos a priori que $\mathbf{P} \subseteq \mathbf{NP}$ (pois as máquinas de Turing deterministas são casos particulares da definição de máquina de Turing não-determinista), obtemos $\mathbf{P} = \mathbf{NP}$.