Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 19

Math 237 – Linear Algebra Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Determine if the set
$$\left\{ \begin{bmatrix} 3\\-1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\0\\2\\4 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\-1 \end{bmatrix}, \begin{bmatrix} -1\\3\\0\\5 \end{bmatrix} \right\}$$
 is a basis of \mathbb{R}^4 .

Solution:

$$RREF \left(\begin{bmatrix} 3 & 2 & 1 & -1 \\ -1 & 0 & -1 & 3 \\ 2 & 2 & 0 & 0 \\ 3 & 4 & -1 & 5 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the resulting matrix is not the identity matrix, it is not a basis.

Standard A3.

Mark:

Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

- (a) $S: \mathbb{R}^2 \to \mathbb{R}^4$ given by the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \\ 3 & -3 \end{bmatrix}$.
- (b) $T: \mathbb{R}^4 \to \mathbb{R}^3$ given by the matrix $\begin{bmatrix} 2 & 3 & -1 & 1 \\ -1 & 1 & 1 & 1 \\ 4 & 11 & -1 & 5 \end{bmatrix}$

Solution:

(a)
$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \\ 3 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$
. Since each column is a pivot column, S is injective. Since there a no zero row, S is not surjective.

(b) Since $\dim \mathbb{R}^4 > \dim \mathbb{R}^3$, T is not injective.

RREF
$$\left(\begin{bmatrix} 2 & 3 & -1 & 1 \\ -1 & 1 & 1 & 1 \\ 4 & 11 & -1 & 5 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -\frac{4}{5} & -\frac{2}{5} \\ 0 & 1 & \frac{1}{5} & \frac{3}{5} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there is a zero row, T is not surjective.

Standard A4.

Mark:

Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation given by

$$T\left(\begin{bmatrix} x\\y\\z\\w \end{bmatrix}\right) = \begin{bmatrix} x+3y+3z+7w\\x+3y-z-w\\2x+6y+3z+8w\\x+3y-2z-3w \end{bmatrix}$$

Compute the kernel and image of T.

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then the kernel is

$$\ker(T) = \left\{ \begin{bmatrix} -3a - b \\ a \\ -2b \\ b \end{bmatrix} \mid a, b \in \mathbb{R} \right\} = \operatorname{span} \left(\left\{ \begin{bmatrix} 3 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 2 \\ -1 \end{bmatrix} \right\} \right)$$

and the image is

$$\operatorname{Im}(T) = \operatorname{span}\left(\left\{\begin{bmatrix}1\\1\\2\\1\end{bmatrix}, \begin{bmatrix}3\\3\\6\\3\end{bmatrix}, \begin{bmatrix}3\\-1\\3\\-2\end{bmatrix}, \begin{bmatrix}7\\-1\\8\\-3\end{bmatrix}\right\}\right) = \operatorname{span}\left(\left\{\begin{bmatrix}1\\1\\2\\1\end{bmatrix}, \begin{bmatrix}3\\-1\\3\\-2\end{bmatrix}\right\}\right)$$

Additional Notes/Marks