TA Lecture 06 - Continuous Random Variables

Nov 19-20

School of Information Science and Technology, ShanghaiTech University

Outline

HW₆

Challenge Questions of HW6-7

Suppose a fair coin is tossed repeatedly, and we obtain a sequence of H and T(H denotes Head and T denotes Tail). Let N denote the number of tosses to observe the first occurrence of the pattern "HH". Find the PMF of N.

Problem 1 Solution

The Cauchy distribution has PDF

$$f(x) = \frac{1}{\pi \left(1 + x^2\right)}$$

for all x. Find the CDF of a random variable with the Cauchy PDF. Hint: Recall that the derivative of the inverse tangent function $\tan^{-1}(x)$ is $\frac{1}{1+x^2}$.

$$F(x) = \pi' + an^{-1}(x) + \frac{1}{2}$$

4

Problem 2 Solution

The Pareto distribution with parameter a > 0 has PDF

$$f(x) = \frac{a}{x^{a+1}}$$

for $x \ge 1$ (and 0 otherwise). This distribution is often used in statistical modeling. Find the CDF of a Pareto r.v. with parameter a; check that it is a valid CDF.

6

Problem 3 Solution

The Beta distribution with parameters a = 3, b = 2 has PDF

$$f(x) = 12x^2(1-x)$$
, for $0 < x < 1$

Let X have this distribution.

- (a) Find the CDF of X. $47^3 37^4$ oc $x \in I$ (b) Find P(0 < X < 1/2). $\frac{5}{14}$

 - (c) Find the mean and variance of X (without quoting results about the Beta distribution).

$$E(X) = \frac{3}{5}$$

$$Var(X) = \frac{1}{25}$$

Problem 4 Solution

Problem 5 i

The Exponential is the analog of the Geometric in continuous time. This problem explores the connection between Exponential and Geometric in more detail, asking what happens to a Geometric in a limit where the Bernoulli trials are performed faster and faster but with smaller and smaller success probabilities.

Suppose that Bernoulli trials are being performed in continuous time; rather than only thinking about first trial, second trial, etc., imagine that the trials take place at points on a timeline. Assume that the trials are at regularly spaced times $0, \Delta t, 2\Delta t, \ldots$, where Δt is a small positive number. Let the probability of success of each trial be $\lambda \Delta t$, where λ is a positive constant. Let G be the

Problem 5 ii

number of failures before the first success (in discrete time), and T be the time of the first success (in continuous time).

- (a) Find a simple equation relating G to T. Hint: Draw a timeline and try out a simple example. $T = G \circ C$
- (b) Find the CDF of T. Hint: First find P(T > t).
- (c) Show that as $\Delta t \to 0$, the CDF of T converges to the Expo(λ) CDF, evaluating all the QDFs at a fixed $t \geq 0$.

(b)
$$PF_X(T) = 1 - (1 - \lambda_0 t)^{\lfloor \frac{\pi}{4t} \rfloor t \rfloor}$$

(c) $n \rightarrow \infty$, $(H \stackrel{\cancel{X}}{n})^n \rightarrow e^{x}$

Problem 5 Solution

The Gumbel distribution is the distribution of $-\log X$ with $X \sim \operatorname{Expo}(1)$.

- (a) Find the CDF of the Gumbel distribution.
- (b) Let X_1, X_2, \ldots be i.i.d. Expo(1) and let $M_n = \max(X_1, \ldots, X_n)$. Show that as $n \to \infty$, the CDF of $M_n \log n$ converges to the Gumbel CDF.

m=togntt
m=logntt

Outline

HW 6

Challenge Questions of HW6-7

(HW7) Optional Challenging Problem

Let $X \sim \mathcal{N}(0,1)$, its corresponding CDF is denoted as Φ and the corresponding PDF is denoted as φ .

(a) If x > 0, show the following inequality holds:

$$\frac{x}{x^2+1}\varphi(x) \le 1 - \Phi(x) \le \frac{1}{x}\varphi(x)$$

(b) Define the function g(x) as follows:

$$g(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^2} dt, \forall x \ge 0$$

Show the following inequality holds:

$$g(x) \le e^{-x^2}, \forall x \ge 0$$