Regression and Classification Trees

November 27, 2018

We have so far looked at generalized linear models for regression. Simple non-linear models are also quite often used. We shall briefly look at tree-based methods.

- We have so far looked at generalized linear models for regression. Simple non-linear models are also quite often used. We shall briefly look at tree-based methods.
- ► The basic idea behind these methods is the following. Group the *n* subjects into a bunch of groups based solely on the explanatory variables.

- We have so far looked at generalized linear models for regression. Simple non-linear models are also quite often used. We shall briefly look at tree-based methods.
- ► The basic idea behind these methods is the following. Group the *n* subjects into a bunch of groups based solely on the explanatory variables.
- Calculate the mean value of the response variable for each group. Prediction for a future subject is done in the following way.

- We have so far looked at generalized linear models for regression. Simple non-linear models are also quite often used. We shall briefly look at tree-based methods.
- ► The basic idea behind these methods is the following. Group the *n* subjects into a bunch of groups based solely on the explanatory variables.
- Calculate the mean value of the response variable for each group. Prediction for a future subject is done in the following way.
- Look at the explanatory variable values for the future subject to figure which group she belongs to.

- We have so far looked at generalized linear models for regression. Simple non-linear models are also quite often used. We shall briefly look at tree-based methods.
- ► The basic idea behind these methods is the following. Group the *n* subjects into a bunch of groups based solely on the explanatory variables.
- Calculate the mean value of the response variable for each group. Prediction for a future subject is done in the following way.
- Look at the explanatory variable values for the future subject to figure which group she belongs to.
- Then predict her response value by the mean response for her group.

When the response is binary, the mean value of the response in each group will be between 0 and 1 and can be interpreted as a probability.

- When the response is binary, the mean value of the response in each group will be between 0 and 1 and can be interpreted as a probability.
- ➤ The predictions provided by the method can therefore be interpreted as predictions of the probability that the response variable equals 1.

- When the response is binary, the mean value of the response in each group will be between 0 and 1 and can be interpreted as a probability.
- The predictions provided by the method can therefore be interpreted as predictions of the probability that the response variable equals 1.
- The main thing to understand here is how the grouping is constructed.

- When the response is binary, the mean value of the response in each group will be between 0 and 1 and can be interpreted as a probability.
- The predictions provided by the method can therefore be interpreted as predictions of the probability that the response variable equals 1.
- The main thing to understand here is how the grouping is constructed.
- Finding the best grouping is a computationally challenging task.

- When the response is binary, the mean value of the response in each group will be between 0 and 1 and can be interpreted as a probability.
- The predictions provided by the method can therefore be interpreted as predictions of the probability that the response variable equals 1.
- ► The main thing to understand here is how the grouping is constructed.
- Finding the best grouping is a computationally challenging task.
- ▶ In practice, a greedy algorithm, called Recursive Partitioning, is employed which produces a reasonable albeit not the best grouping. Let us first understand this for regression trees. The ideas for classification trees are similar.

► The grouping produced by Recursive Partitioning can be nicely represented by a tree.

- The grouping produced by Recursive Partitioning can be nicely represented by a tree.
- ➤ This tree is relatively easy to interpret. How is this constructed?

- ➤ The grouping produced by Recursive Partitioning can be nicely represented by a tree.
- ➤ This tree is relatively easy to interpret. How is this constructed?
- At each node of the tree, there is a variable and a cut-off. How to choose the variable and how to choose the cut-off?

- ➤ The grouping produced by Recursive Partitioning can be nicely represented by a tree.
- This tree is relatively easy to interpret. How is this constructed?
- At each node of the tree, there is a variable and a cut-off. How to choose the variable and how to choose the cut-off?
- ▶ Given a variable X_j and a cut-off c, we can divide the subjects into two groups: G_1 given by $X_j \le c$ and G_2 given by $X_j > c$. The *deviance* of this split is defined as:

- ➤ The grouping produced by Recursive Partitioning can be nicely represented by a tree.
- This tree is relatively easy to interpret. How is this constructed?
- At each node of the tree, there is a variable and a cut-off.
 How to choose the variable and how to choose the cut-off?
- ▶ Given a variable X_j and a cut-off c, we can divide the subjects into two groups: G_1 given by $X_j \le c$ and G_2 given by $X_j > c$. The *deviance* of this split is defined as:

$$RSS(j,c) := \sum_{i \in G_1} (y_i - \bar{y}_1)^2 + \sum_{i \in G_2} (y_i - \bar{y}_2)^2$$

where \bar{y}_1 and \bar{y}_2 denote the mean values of the response in the groups G_1 and G_2 respectively.

► The values of *j* and *c* for which *RSS*(*j*, *c*) is the smallest give the best split.

- ► The values of j and c for which RSS(j, c) is the smallest give the best split.
- The quantity $\min_{j,c} RSS(j,c)$ should be compared with $TSS = \sum_{i} (y_i \bar{y})^2$. The ratio $\min_{j,c} RSS(j,c)/TSS$ is always smaller than 1 and the smaller it is, the greater we

are gaining by the split.

- ► The values of j and c for which RSS(j, c) is the smallest give the best split.
- ► The quantity $\min_{j,c} RSS(j,c)$ should be compared with $TSS = \sum_i (y_i \bar{y})^2$. The ratio $\min_{j,c} RSS(j,c)/TSS$ is always smaller than 1 and the smaller it is, the greater we
- are gaining by the split.The recursive partitioning algorithm for constructing the
- ► The recursive partitioning algorithm for constructing the regression tree proceeds as follows:

- ▶ The values of j and c for which RSS(j, c) is the smallest give the best split.
- The quantity $\min_{j,c} RSS(j,c)$ should be compared with $TSS = \sum_{j} (y_{i} \bar{y})^{2}$. The ratio $\min_{j,c} RSS(j,c)/TSS$ is
- always smaller than 1 and the smaller it is, the greater we are gaining by the split.
 The recursive partitioning algorithm for constructing the
- ► The recursive partitioning algorithm for constructing the regression tree proceeds as follows:
- Find j and c such that RSS(j,c) is the smallest. Use the jth variable and the cut-off c to divide the data into two groups: G_1 given by $X_j \leq c$ and G_2 given by $X_j > c$.

- The values of j and c for which RSS(j, c) is the smallest give the best split.
- ▶ The quantity $min_{i,c} RSS(j,c)$ should be compared with $TSS = \sum_{i} (y_i - \bar{y})^2$. The ratio min_{i,c} RSS(j,c)/TSS is
- always smaller than 1 and the smaller it is, the greater we are gaining by the split.
- The recursive partitioning algorithm for constructing the regression tree proceeds as follows:
- Find j and c such that RSS(j, c) is the smallest. Use the ith variable and the cut-off c to divide the data into two
- groups: G_1 given by $X_i \le c$ and G_2 given by $X_i > c$.
- Repeat this process within each group separately.

$$RSS(T) := \sum_{j=1}^{m} \sum_{i \in G_j} (y_i - \bar{y}_j)^2$$

$$RSS(T) := \sum_{i=1}^{m} \sum_{j \in G_i} (y_i - \bar{y}_j)^2$$

where $\bar{y}_1, \dots, \bar{y}_m$ denote the mean values of the response in each of the groups.

How large should the tree be grown? In other words, when should the above process terminate?

$$RSS(T) := \sum_{i=1}^{m} \sum_{j \in G_i} (y_i - \bar{y}_j)^2$$

- How large should the tree be grown? In other words, when should the above process terminate?
- Very large trees obviously lead to over-fitting.

$$RSS(T) := \sum_{i=1}^{m} \sum_{j \in G_i} (y_i - \bar{y}_j)^2$$

- How large should the tree be grown? In other words, when should the above process terminate?
- Very large trees obviously lead to over-fitting.

$$RSS(T) := \sum_{j=1}^{m} \sum_{i \in G_j} (y_i - \bar{y}_j)^2$$

- How large should the tree be grown? In other words, when should the above process terminate?
- Very large trees obviously lead to over-fitting.
- Because incremental improvements due to each expansion of the tree may not necessarily always be decreasing.

In practice, one uses an AIC-type method (called cost-complexity pruning) to decide on an optimal tree length.

- In practice, one uses an AIC-type method (called cost-complexity pruning) to decide on an optimal tree length.
- A very large tree T_0 is first grown and then, one selects an appropriate subtree of T_0 by cost-complexity pruning.

- In practice, one uses an AIC-type method (called cost-complexity pruning) to decide on an optimal tree length.
- A very large tree T₀ is first grown and then, one selects an appropriate subtree of T₀ by cost-complexity pruning.
 For a tree T, let us denote by |T| its number of terminal
 - nodes. This is also the number of groups that the tree generates. |T| is large for large trees.

- In practice, one uses an AIC-type method (called cost-complexity pruning) to decide on an optimal tree length.
- A very large tree T₀ is first grown and then, one selects an appropriate subtree of T₀ by cost-complexity pruning.
 For a tree T, let us denote by |T| its number of terminal
- nodes. This is also the number of groups that the tree generates. |T| is large for large trees.
- The cost-complexity criterion for a subtree T of T_0 is defined by

$$C_{lpha}(T) = RSS(T) + lpha \ TSS(|T|).$$

- In practice, one uses an AIC-type method (called cost-complexity pruning) to decide on an optimal tree length.
- A very large tree T_0 is first grown and then, one selects an appropriate subtree of T_0 by cost-complexity pruning.
- ► For a tree T, let us denote by |T| its number of terminal nodes. This is also the number of groups that the tree generates. |T| is large for large trees.
- The cost-complexity criterion for a subtree T of T₀ is defined by

$$C_{\alpha}(T) = RSS(T) + \alpha TSS(|T|).$$

▶ Choose the subtree T_{α} of T_0 which minimizes $C_{\alpha}(T)$. α governs the trade-off between goodness of fit and tree size.

- In practice, one uses an AIC-type method (called cost-complexity pruning) to decide on an optimal tree length.
- A very large tree T_0 is first grown and then, one selects an appropriate subtree of T_0 by cost-complexity pruning.
- ► For a tree T, let us denote by |T| its number of terminal nodes. This is also the number of groups that the tree generates. |T| is large for large trees.
- ► The cost-complexity criterion for a subtree *T* of *T*₀ is defined by

$$C_{\alpha}(T) = RSS(T) + \alpha TSS(|T|).$$

- ▶ Choose the subtree T_{α} of T_0 which minimizes $C_{\alpha}(T)$. α governs the trade-off between goodness of fit and tree size.
- Large values of α result in smaller trees and small values give large trees. $\alpha = 0$ gives T_0 . In practice, α is chosen according to cross-validation. α is referred to as cp in R.

Classification Trees

► We looked at regression trees. The idea behind classification trees is similar.

Classification Trees

- We looked at regression trees. The idea behind classification trees is similar.
- ▶ The classification tree is constructed top down.

Classification Trees

- We looked at regression trees. The idea behind classification trees is similar.
- The classification tree is constructed top down.
- ▶ Given a variable X_j and a cut-off c, the subjects are divided into the two groups G_1 where $X_j \le c$ and G_2 where $X_j > c$. We measured the efficiency of this split by the RSS:

$$RSS(j,c) := \sum_{i \in G_1} (y_i - \bar{y}_1)^2 + \sum_{i \in G_2} (y_i - \bar{y}_2)^2$$

where \bar{y}_1 and \bar{y}_2 denote the mean values of the response in the Groups G_1 and G_2 respectively.

▶ In classification problems, the response values are 0 or 1. Therfore \bar{y}_1 equals the proportion of ones in G_1 while \bar{y}_2 equals the proportion of ones in G_2 .

- ▶ In classification problems, the response values are 0 or 1. Therfore \bar{y}_1 equals the proportion of ones in G_1 while \bar{y}_2 equals the proportion of ones in G_2 .
- lt is better to denote \bar{y}_1 and \bar{y}_2 by \bar{p}_1 and \bar{p}_2 respectively.

- ▶ In classification problems, the response values are 0 or 1. Therfore \bar{y}_1 equals the proportion of ones in G_1 while \bar{y}_2 equals the proportion of ones in G_2 .
- ▶ It is better to denote \bar{y}_1 and \bar{y}_2 by \bar{p}_1 and \bar{p}_2 respectively.
- ▶ The formula for RSS(j, c) then becomes:

$$RSS(j,c) = n_1\bar{p}_1(1-\bar{p}_1) + n_2\bar{p}_2(1-\bar{p}_2).$$

This quantity is also called the Gini index of the split corresponding to the *j*th variable and cut-off *c*.

- ▶ In classification problems, the response values are 0 or 1. Therfore \bar{y}_1 equals the proportion of ones in G_1 while \bar{y}_2 equals the proportion of ones in G_2 .
- ▶ It is better to denote \bar{y}_1 and \bar{y}_2 by \bar{p}_1 and \bar{p}_2 respectively.
- ▶ The formula for RSS(j, c) then becomes:

$$RSS(j,c) = n_1\bar{p}_1(1-\bar{p}_1) + n_2\bar{p}_2(1-\bar{p}_2).$$

This quantity is also called the Gini index of the split corresponding to the jth variable and cut-off c.

► The function p(1-p) takes its largest value at p=1/2 and it is small when p is close to 0 or 1.

- ▶ In classification problems, the response values are 0 or 1. Therfore \bar{y}_1 equals the proportion of ones in G_1 while \bar{y}_2 equals the proportion of ones in G_2 .
- ▶ It is better to denote \bar{y}_1 and \bar{y}_2 by \bar{p}_1 and \bar{p}_2 respectively.
- ▶ The formula for RSS(i, c) then becomes:

$$RSS(j,c) = n_1\bar{p}_1(1-\bar{p}_1) + n_2\bar{p}_2(1-\bar{p}_2).$$

This quantity is also called the Gini index of the split corresponding to the *j*th variable and cut-off *c*.

- ► The function p(1-p) takes its largest value at p = 1/2 and it is small when p is close to 0 or 1.
- ▶ Therefore the quantity $n_1\bar{p}_1(1-\bar{p}_1)$ is small if either most of the response values in the group G_1 are 0 (in which case $\bar{p}_1 \approx 0$) or when most of the response values are 1 (in which case $\bar{p}_1 \approx 1$).

➤ A group is said to be pure if either most of the response values in the group are 0 or if most of the response values are 1.

- ➤ A group is said to be pure if either most of the response values in the group are 0 or if most of the response values are 1.
- ► Thus the quantity $n_1\bar{p}_1(1-\bar{p}_1)$ measures the impurity of a group.

- A group is said to be pure if either most of the response values in the group are 0 or if most of the response values are 1.
- ► Thus the quantity $n_1\bar{p}_1(1-\bar{p}_1)$ measures the impurity of a group.
- ▶ If $n_1\bar{p}_1(1-\bar{p}_1)$ is low, then the group is pure and if it is

high, it is impure.

- A group is said to be pure if either most of the response values in the group are 0 or if most of the response values are 1.
- ► Thus the quantity $n_1\bar{p}_1(1-\bar{p}_1)$ measures the impurity of a group.
- If $n_1\bar{p}_1(1-\bar{p}_1)$ is low, then the group is pure and if it is
- high, it is impure. ▶ The group is maximally impure if $\bar{p}_1 = 1/2$.

- A group is said to be pure if either most of the response values in the group are 0 or if most of the response values are 1.
- Thus the quantity $n_1\bar{p}_1(1-\bar{p}_1)$ measures the impurity of a group.
 - If $n_1\bar{p}_1(1-\bar{p}_1)$ is low, then the group is pure and if it is high, it is impure.

▶ This divides the data into two groups with $X_j \le c$ and $X_j > c$. The process is then continued within each of these groups separately.

- This divides the data into two groups with X_j ≤ c and X_j > c. The process is then continued within each of these groups separately.
- ▶ The quantity $n_1\bar{p}_1(1-\bar{p}_1)$ is not the only function used for measuring the impurity of a group in classification. The key property of the function $p\mapsto p(1-p)$ is that it is symmetric about 1/2, takes its maximum value at 1/2 and it is small near the end points p=0 and p=1.

- ▶ This divides the data into two groups with $X_j \le c$ and $X_j > c$. The process is then continued within each of these groups separately.
- ► The quantity $n_1\bar{p}_1(1-\bar{p}_1)$ is not the only function used for measuring the impurity of a group in classification. The key property of the function $p \mapsto p(1-p)$ is that it is symmetric about 1/2, takes its maximum value at 1/2 and it is small near the end points p = 0 and p = 1.
- Two other functions having this property are:

- ▶ This divides the data into two groups with $X_j \le c$ and $X_j > c$. The process is then continued within each of these groups separately.
- ▶ The quantity $n_1\bar{p}_1(1-\bar{p}_1)$ is not the only function used for measuring the impurity of a group in classification. The key property of the function $p \mapsto p(1-p)$ is that it is symmetric about 1/2, takes its maximum value at 1/2 and it is small near the end points p = 0 and p = 1.
- Two other functions having this property are:
- ► Cross-entropy or Deviance: Defined as $-2n_1(\bar{p}_1 \log \bar{p}_1 + (1 \bar{p}_1) \log (1 \bar{p}_1))$.

- This divides the data into two groups with $X_j \le c$ and $X_j > c$. The process is then continued within each of these groups separately.
- The quantity $n_1\bar{p}_1(1-\bar{p}_1)$ is not the only function used for measuring the impurity of a group in classification. The key property of the function $p\mapsto p(1-p)$ is that it is symmetric about 1/2, takes its maximum value at 1/2 and it is small near the end points p=0 and p=1.
- Two other functions having this property are:Cross-entropy or Deviance: Defined as
- Cross-entropy or Deviance: Defined $-2n_1 (\bar{p}_1 \log \bar{p}_1 + (1 \bar{p}_1) \log (1 \bar{p}_1)).$
- This also takes its smallest value when \bar{p}_1 is 0 or 1 and it takes its maximum value when $\bar{p}_1 = 1/2$.

► **Misclassification Error**: This is defined as $n_1 \min(\bar{p}_1, 1 - \bar{p}_1)$.

- ▶ **Misclassification Error**: This is defined as $n_1 \min(\bar{p}_1, 1 \bar{p}_1)$.
- This equals 0 when \bar{p}_1 is 0 or 1 and takes its maximum value when $\bar{p}_1 = 1/2$.

- Misclassification Error: This is defined as
- $n_1 \min(\bar{p}_1, 1 \bar{p}_1).$ ▶ This equals 0 when \bar{p}_1 is 0 or 1 and takes its maximum
- value when $\bar{p}_1 = 1/2$. If we classify all the response values in the group G_1 by the

majority value, then the number of response values

misclassified in G_1 equals $n_1 \min(\bar{p}_1, 1 - \bar{p}_1)$.

Misclassification Error: This is defined as $n_1 \min(\bar{p}_1, 1 - \bar{p}_1).$

misclassified in G_1 equals $n_1 \min(\bar{p}_1, 1 - \bar{p}_1)$. This explains the name misclassification error.

- ▶ This equals 0 when \bar{p}_1 is 0 or 1 and takes its maximum
- value when $\bar{p}_1 = 1/2$. If we classify all the response values in the group G_1 by the
 - majority value, then the number of response values

 One can use Deviance or Misclassification error instead of the Gini index while growing a classification tree. The

default in R is to use the Gini index.

- ► One can use Deviance or Misclassification error instead of the Gini index while growing a classification tree. The default in R is to use the Gini index.
- ► The remaining aspects of classification trees work in exactly the same way as that of regression trees.