			Sa		5S.
7	- \$	-8	0	D	0
51	1	1	0 1	O	6 -> 6/2 = 6
X282	5	9	O	1	45 -> 45/9=5

$$Z' = \left[-5 - \left(-8. \frac{8}{9} \right), -8 - \left(-8. 1 \right), 0, 0 - \left(-8. \frac{6}{9} \right), 0 - \left(-8. 5 \right) \right]^{-1} = \frac{8}{8}.$$

$$= \left[-5 + \frac{10}{9}, 0, 0, + \frac{8}{9}, 40 \right] = \left[-\frac{5}{9}, 0, 0, \frac{8}{9}, 40 \right]$$

$$S_{\lambda} = \left[1 - \left(1. \frac{5}{9} \right), 1 - \left(1. 1 \right), 1 - \left(1. 0 \right), 0 - \left(1. \frac{1}{9} \right), 6 - \left(1. 5 \right) \right] = \frac{8}{4}.$$

					200	
-2	0	ව	Syli	27/36	125/155	oftima= 31,25
X	1	0	9/4	-1/4	128/4 = 31,25 9/4 = 2,25 15/4 = 3,75	X1=2,25
X_2	D	4/3	-5/4	1/4	15/4 = 3,75	×2 = 3,75

Trovore lower bound smotondando le soluzioni di X, e X, upper bound le sciondole cosí come sono

$$B = X_1 = 2 \text{ max } 5X_1 + 8X_2 = 5 \cdot 2 + 8 \cdot 3 = 10 + 26 = 34$$

$$X_2 = 3$$

$$UB = X_1 = 2.25$$
 wax $5X_1 + 8X_2 = 5.2 \cdot 25 + 8.3 \cdot 75 = X_2 = 3.75$ $11,25 + 30 = 41,25$

34-50ltem Forever

 \bigcirc impostar $\times_1 = 2$, calcolore dai vinculi \times_2

perche é il piú

f2:5x,+8x2 = 5.2+8.388=41,04

P2) impostore $X_1=3$, colcele X_2 dai vincoli $3+X_2 \le 6 \Rightarrow X_2 \le 3$ $15+9 \times 2 \le 45 \Rightarrow 9 \times 2 \le 30 \Rightarrow X_2 \le 3.33$

f2: 5.3+8.3=15+24=39 i valori di Xn ex2 sous interi, e 39734, quindi si assiona

(P3) $X_1 \leq 2, X_2 \leq 3$

$$X_1 = 1.88$$
, $X_2 = 4 \rightarrow 5.7.88 + 8.4 = 61.4$

 $X_1 = 1 \rightarrow 1 + X_2 \le 6 \rightarrow X_2 \le 5$ $5 + 9 \times 2 \le 45 \rightarrow 9 \times 2 \le 40 \rightarrow 4,44$

Z=5.1 - 8.4,64=60,52

branch su X2

$$X_1 = 2 \rightarrow 2 + X_2 \le 6 \rightarrow X_2 \le 6$$

 $10 + 9 \times 2 \le 45 \rightarrow 9 \times 2 \le 35 = 3,88$

2=5.4+8.3,88:51,04 -> UB deve decrescere, quivoli

$$(P7)$$
 $X_2 = 4, X_1 = 7$, $X_1 + 4 \le 6 \Rightarrow X_1 \le 2$
 $SX_1 + 36 \le 45 \Rightarrow X_1 \le 4.8 \Rightarrow e \text{ quindi deve}$
 $SX_2 + 36 \le 45 \Rightarrow X_1 \le 4.8 \Rightarrow e \text{ quindi deve}$

$$Y_2 = 5, X_1 = ?$$
 $X_1 + 5 \le 6 \rightarrow X_1 \le 1$
 $5X_1 + 45 \le 45 \rightarrow X_1 \le 0$

2 wax
$$x_1 + 3x_2$$
 $-x_1 - 3x_2$
 $x_1 + 5x_2 \le 21$ $x_1 + 5x_2 + 5x_1 = 21$
 $8x_1 + 7x_2 \le 35$ $8x_1 + 2x_2 + 5x_2 = 35$

_		XΛ	Huz	ہدک	52	Sol	
	7.	-1	1-3	0	0	0	
X_2	Son	1	5	ノ	D	21	$\Rightarrow \frac{2\lambda}{5} = 4.2$
	S_{Z}	8	. 2	0	4	35	$\Rightarrow \frac{24}{5} = 4.2$ $\Rightarrow \frac{35}{2} = 17.5$

.

$$\begin{array}{l}
\times_{2} = \begin{bmatrix} \frac{1}{1} & \frac{1}{1}$$

LB = 3+ 3-3=(2 -> SOL. TEMPORA NEA

			54			
7	D	0	5.60Z	0.052	14	•
x_z	Q	1	o. 13	-0,076	3.5	I NO INTERE quindi si provo
XA	1	0	0.05	0,(3	3, 5	J-0 10 10 TERE quindi si provo il branching su X1 per esempio

$$(x_1 + 2x_2 \le 35) \times x_2 = ?$$
 $(x_1 = 3)$ $(x_2 \le 3.6)$ $(x_2 \le 3.6)$ $(x_3 + 5) \times x_2 \le 3.6$ $(x_4 + 2x_2 \le 35) \rightarrow x_2 \le 5.5$

Wax Zi X1+3×2=3+3-3.6 = 13.8

$$\begin{array}{ccc} (P2) & \times_{1}^{3}, & (4 \to \times_{2}^{1})^{2} & \times_{1}^{2} & (4 + 5) \times_{2}^{2} & (4$$

 $m_{\partial X} Z = X_{\Lambda} + 3X_2 = 4 + 3.1.5 : 8.5 \rightarrow 8.5 < 12$ Chived perchel UB ser decrease or

P3
$$X_1 \le 3$$
, $X_2 \le 3 \rightarrow X_2 = 3$
 $Siss_2 \longrightarrow X_1 + 15 = 621 \rightarrow X_1 \le 6$
 $8X_1 + 6 = 635 \rightarrow X_1 \le 3.625$
NO Fercher $X_1 \le 3$
quindi $X_1 \le 3$, $X_2 \le 3$

$$Wax = x_1 + 3x_2 = 3 + 3 - 3 = 12$$
 > CHIUDO solutione inters $\sqrt{|2 \ge 12|}$ $\sqrt{|2 \ge 12|}$

$$V_{1} = 1$$
, $V_{2} = 1$ $V_{2} = 1$ $V_{3} = 21$ $V_{3} = 21$ $V_{3} = 1$ $V_{4} = 1$ V

solution inter V

Esercizo 3

$$4 \times 3 \times_{1} + 4 \times_{2} \times_{2} \times_{1} + 2 \times_{2} \times_{1} \times_{2} \times_$$

		No	42	Sn	S2	Sol	
	Z	-5	-4	၁	O	٥	
X,	Su	3	2	Λ	3	16	-> 16/325,33
	S ₂	2	3	0	1	16	-> 16/325,33 -> 16/208

$$2^{1} = -S - (-5.1), -4 - (-5.2/3), 0 - (-5.16/3), 0 - (-5.16/3), 0 - (-5.16/3)] = [0, -2/3, 5/3, 0, 89/3]$$

$$S_{2}^{1} = 2 - (2.1), 3 - (2.2/3), 0 - (2.1/3), 1 - (2.0), 16 - (2.1/3), coeff$$

= $\left[0, \frac{5}{3}, -\frac{2}{3}, 1, \frac{16}{3}\right]$

	×Λ	x_2	51	Sz	Sol
7	Q	-2/3	5/3	0	80/3
X_{A}	1	2/3	1/3	Ö	16/3
Sz	٥	1-2/3 2/3 5/3	-2/3	1	16/3

-.. auh uva ...

$$X_1 = 3.2$$
 $\Rightarrow 5.3.2 + 4.3.2 = 28.8$
 $X_2 = 3.2$

Deamace quivdi BBB

$$(P_A)$$
 $X_A \le 3$, $X_2 = ?$ $3.3 + 2X_2 \le 16 \rightarrow X_2 \le 3.5$ $6 + 3 \times 2 \le 16 \rightarrow X_2 \le 3.3$

PZ
$$X_1 > 4, X_2 = ?$$
 $3 \cdot 4 \cdot 2 \times 2 \le [6 \rightarrow X_2 \le 2]$
8+3 $X_2 \le 16 \rightarrow X_2 \le 2.667$

3×1+8≤16 → ×1≤2.66 2×1+12≤16 → ×1≤2

X1=2, x2=4 -> max 7 = 5-2+6-4= 26 26428 gradi