Segmentación de Tumores Cerebrales con CNNs

Deep Learning

Máster Universitario de Investigación en Inteligencia Artificial

Iván Penedo 100012493@alumnos.uimp.es

Introducción

Introducción

- Reto del ámbito médico.
- Segmentación automática de tumores cerebrales a partir de MRI.
- Métrica para evaluar: coeficiente Dice.
- Baseline de 0,6.

Descripción del conjunto de datos

Cada instancia con cuatro secuencias y una máscara.

Conjunto de datos ya dividido en:

- Entrenamiento.
- Validación.

Ampliación del conjunto de entrenamiento con transformaciones.

Diseño de la CNN1

Arquitectura

- Entrada: 240x240x4.
- Codificador:
 - Convolución.
 - Pooling.
 - Batch normalization.
 - Dropout.
- Bloque central: Capa convolucional.
- Decodificador: Proceso inverso a codificador con UpSampling.
- Salida: Activación sigmoide para máscara binaria.

Introducción CNN1 Conclusiones Conjunto de datos CNN2 Comparativa

Diseño de la CNN1

Evolución del entrenamiento

Diseño de la CNN2

Arquitectura

- Entrada: 240x240x4.
- Codificador:
 - 2 Convoluciones.
 - Pooling.
 - Batch normalization.
 - Dropout.
- Bloque central: 2 capas convolucionales.
- Decodificador: Proceso inverso a codificador con UpSampling, y skip connections
- Salida: Activación sigmoide para máscara binaria.

Diseño de la CNN2

Definición del entrenamiento

Introducción

- Entrenamiento en dos fases:
 - Primeras 25 etapas: learning rate de $1 \cdot 10^{-4}$.
 - Últimas 25 etapas: Con las primeras 5 capas congeladas, learning rate de $1 \cdot 10^{-6}$. Transfer learning.
- EarlyStopping.
- Función de pérdida basada en coeficiente Dice.

Introducción CNN1 CNN2 ○○●○ Comparativa Conclusiones Conjunto de datos

Diseño de la CNN2

Evolución del entrenamiento

Diseño de la CNN2

Evolución del entrenamiento

Introducción Conclusiones Conjunto de datos CNN1 CNN2 Comparativa

Comparación de predicciones

Conjunto de datos CNN1 CNN2 Comparativa Conclusiones

○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Conclusiones

Introducción

- Dos modelos de CNN para la segmentación de tumores cerebrales.
 - CNN1: Buenos resultados con arquitectura simple. Bajo coste computacional, pero poca definición de bordes en las regiones.
 - CNN2: Resultados superiores con especial captura en la forma de las máscaras.
- Pobre rendimiento de la técnica de dropout.
- Limitaciones por el entorno de Google Colab y el gran coste computacional del entrenamiento de CNNs.

Introducción Conjunto de datos CNN1 CNN₂ Comparativa Conclusiones 000

Conclusiones

Trabajos futuros

- Ajustar learning rate en las primeras etapas.
- Investigar el uso de modelos preentrenados.
- Estudiar el uso adecuado de las capas de dropout.

Segmentación de Tumores Cerebrales con CNNs

Deep Learning

Máster Universitario de Investigación en Inteligencia Artificial

Iván Penedo 100012493@alumnos.uimp.es

