Particle spectrograph

Wave operator and propagator

$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$	$\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$\frac{2 k^2 (6k^2 r_5 + t_1 + 4t_3)}{(1 + 2k^2)^2 (3t_1 t_3 + 2k^2 r_5 (t_1 + t_3))}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-lpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3t_1t_3+2 k^2 r_5 (t_1+t_3))}$	$\frac{6k^2r_5+t_1+4t_3}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$-\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2r_5(t_1+t_3)}$	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3t_1t_3+2 k^2 r_5 (t_1+t_3))}$	0	$\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\!$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$^{1}_{+}$ $^{+}$	$^{2}_{+}$ $^{+}$	$^{1}_{+} + ^{\alpha\beta}$	$_{1}^{#1}$ †	$\frac{#}{1}$ $+^{\alpha}$	$\frac{\#1}{1}$.#2 †α

	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\sharp 1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\sharp 1}$ †	0	0	0	$-\frac{1}{t_1}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}\dagger^{lphaeta\chi}$	0	0	$\frac{2}{t_1}$

	$\omega_0^{\#1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\#1}\dagger$	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{#1}\dagger$	$i\sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	$-t_1$

$f_{1^{ ext{-}}lpha}^{\#2}$	0	0	0	$\frac{1}{3}$ \bar{l} k $(t_1 - 2t_3)$	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3} k^2 (t_1 + t_3)$
$f_{1^{}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_3 \right)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}ik(t_1-2t_3)$
$f_1^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}_{+} g f_{1}^{\#1}_{+}\alpha\beta$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
,	$\omega_{1}^{\#1} + \alpha^{\beta} k^2 r_5 - \frac{t_1}{2}$	$\omega_1^{\#2} + \alpha \beta$	$f_{1+}^{#1} + ^{\alpha \beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_1^{\#1} +^\alpha$	$f_1^{\#2} + \alpha$

uge generators	Multiplicities	1	1	3	3	3	5	16
Source constraints/gauge generators	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$\tau_{1}^{\#2}{}^{\alpha} + 2 i k \sigma_{1}^{\#2}{}^{\alpha} = 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$t_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$	Total constraints:

$\omega_{2}^{\#1}$ $\alpha_{2}^{\#1}$ $\alpha_{2}^{\#1}$ $\alpha_{2}^{\#1}$	0	0	$\frac{t_1}{2}$	
$f_{2}^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0	
$\omega_2^{\#1}{}_+\alpha\beta$	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0	
·	$\omega_2^{\#1} \dagger^{\alpha \beta}$	$f_2^{#1} + \alpha \beta$	$\omega_2^{\#1} +^{lphaeta\chi}$	

Quadratic (free) action

 $S_{F} = \frac{1}{1} \int \int_{0}^{1} \left(-2 \left(t_{1} - 2 t_{3} \right) \omega_{i}^{\alpha i} \omega_{\kappa \alpha}^{\kappa} - 6 t_{1} \omega_{i}^{\kappa \lambda} \omega_{\kappa \lambda}^{i} + 6 f^{\alpha \beta} \tau_{\alpha \beta} + 6 \omega^{\alpha \beta \lambda} \sigma_{\alpha \beta \lambda}^{\alpha} \right) - 6 r_{5} \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\beta \kappa \lambda} + 6 r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\beta \kappa \lambda} - 6 r_{5} \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\beta \kappa \lambda} + 6 r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\beta \kappa \lambda} - 6 r_{5} \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + 12 r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} - 3 t_{1} \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{a} - 3 t_{1} \partial^{\alpha} f_{\kappa} \partial^{\kappa} f_{\alpha \lambda}^{a} + 2 t_{1} \omega_{\kappa \alpha}^{\alpha} \partial^{\kappa} f_{i}^{i} - 4 t_{3} \omega_{\kappa \alpha}^{\alpha} \partial^{\kappa} f_{i}^{i} + 2 t_{1} \omega_{\kappa \lambda}^{\alpha} \partial^{\kappa} f_{i}^{i} - 4 t_{3} \omega_{\kappa \lambda}^{\alpha} \partial^{\kappa} f_{i}^{i} + 4 t_{1} \partial^{\alpha} f_{\kappa \alpha} \partial^{\kappa} f_{i}^{i} - 8 t_{3} \partial^{\alpha} f_{\kappa \alpha} \partial^{\kappa} f_{i}^{i} - 2 t_{1} \omega_{\kappa \lambda}^{\alpha} \partial^{\kappa} f_{i}^{i} + 4 t_{3} \omega_{\kappa \lambda}^{\alpha} \partial^{\kappa} f_{i}^{i} + 12 t_{1} \omega_{\kappa \lambda}^{\alpha} \partial^{\kappa} f_{\kappa}^{i} - 2 t_{1} \omega_{\kappa \lambda}^{\alpha} \partial^{\kappa} f_{\kappa}^{i} + 4 t_{3} \omega_{\kappa \lambda}^{\alpha} \partial^{\kappa} f_{\kappa}^{i} + 3 t_{1} \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\kappa}^{i} + 4 t_{3} \omega_{\kappa \lambda}^{\alpha} \partial^{\kappa} f_{\kappa}^{i} + 3 t_{1} \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\kappa}^{i} + 4 t_{3} \omega_{\kappa \lambda}^{\alpha} \partial^{\kappa} f_{\kappa}^{i} + 3 t_{1} \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\kappa}^{i} + 4 t_{3} \omega_{\kappa \lambda}^{\alpha} \partial^{\kappa} f_{\kappa}^{i} + 4 t_{3} \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\kappa}^{i} \partial^{\kappa} f_{\kappa}^{i} \partial^{\kappa} f_{\kappa}^{i} \partial^{\kappa} f_{\kappa}^{i} \partial^{\kappa} f_{\kappa}^{i}$

Massive and massless spectra

	Massive partic	le
	Pole residue:	$\frac{6t_1t_3(t_1+t_3)-3r_5(t_1^2+2t_3^2)}{2r_5(t_1+t_3)(-3t_1t_3+r_5(t_1+t_3))} > 0$
,	Polarisations:	3
	Square mass:	$-\frac{3t_1t_3}{2r_5t_1+2r_5t_3} > 0$
	Spin:	1
	Parity:	Odd

(No massless particles)

Unitarity conditions

 $r_5 < 0 \&\& (t_1 < 0 \&\& 0 < t_3 < -t_1) || (t_1 > 0 \&\& (t_3 < -t_1) || t_3 > 0))$