Beweistechniken

- 1. Direkter Beweis: Wird bei wenn-dann-Aussagen genutzt. Modus ponens: Aus p und $(p\Rightarrow q)$ ergibt sich s. Vorgehen dabei ist:
- ⇒ Satz genau studieren–Welche Parameter werden gestellt?
- \Rightarrow Bei der Hypothese beginnen. Diese muss wahr sein, denn $(p\Rightarrow q).$
- \Rightarrow ggf. die Hypothese mathematisch darstellen Bsp: gerade Zahl n=2k ungerade Zahl n=2k+1
- ⇒ Dann durch (beliebig viele) Folgeaussagen von der Hypothese zur Schlussfolgerung kommen.

 $p \Rightarrow s_1, s_1 \Rightarrow s_2, s_2 \Rightarrow q$ wobe
i $s_1 - s_n$ wieder wahre Aussagen sind.

⇒ Praktisch dabei: Es muss nicht jeder Schritt aufgeschrieben werden-nur solche, die wichtig für die Beweisführung des Lemma sind.

Beispiel: Satz: "Die Summe von drei aufeinander folgenden natürlichen Zahlen ist durch drei teilbar."

Gegebene Informationen: $n \in \mathbb{N}$ und p = n + (n+1) + (n+2) ist durch 3 teilbar

- 1. $n \in \mathbb{N} \Rightarrow (n+1) \in \mathbb{N}$
- $2. \Rightarrow n + (n+1) + (n+2) = (3n+3)$
- $3. \Rightarrow (3n+3) = 3(n+1)$

Damit ist der Satz bewiesen. \square

2. Kontraposition: Ist dem Direkten Beweis sehr ähnlich. Nur dass hier die Behauptung negiert und umgekehrt wird um zu der äquivalenten Kontraposition zu gelangen. Aus $(p \Rightarrow q)$ wird also $(\neg q \Rightarrow \neg p)$. Man beweist also quasi rückwärts.

Beispiel: Satz: "Wenn a^2 eine ungerade Zahl ist, dann ist a ungerade".

Die äquivalente Kontraposition dazu ist: "Wenn a gerade, dann ist a^2 gerade".

- 1. $\neg q = ,a$ ist gerade"
- 2. $a = 2 \cdot k$ (Def. gerade Zahl)
- 3. $a \cdot a = (2 \cdot k) \cdot a$ (mul. mit a)
- 4. $a^2 = 2 \cdot (k \cdot a)$ (Assoziativgesetz)
- 5. $a^2 = 2 \cdot k'$ (wobei $k' = a \cdot k$)
- 6. $\neg p = a^2 istgerade$ (durch $2 \cdot k'$)

Damit ist der Satz bewiesen. \Box

3. Wiederspruch: Basiert wieder auf der Implikation $(p \Rightarrow q)$. Hier wird aber ein Wiederspruch erzeugt sodass $(p \land \neg q)$

Beispiel: Satz: "Wenn a und b gerade natürliche Zahlen sind, dann ist auch $a \cdot b$ gerade".

- 1. Annahme: $a \cdot b$ ist ungerade.
- 2. $a \cdot b = 2 \cdot (a \cdot k)$ (denn: $b = 2 \cdot k$)
- 3. $a \cdot k$ ist gerade. Also muss $a \cdot b$ gerade sein.

Damit ist der Satz bewiesen. □

4. Äquivalenzbeweis Bei dieser Beweistechnik unterteilt man die Aussage in zwei direkte Beweise. Aus $(p \Leftrightarrow q)$ wir dann $(p \Rightarrow q)$ und $(q \Rightarrow p)$.

Beispiel: Satz: "a ist gerade genau dann, wenn a^2 gerade ist".

Dabei ist p "a ist gerade" und

 $q = ,a^2$ ist gerade"

In diesem Fall ist $(p \Rightarrow q)$ schon bewiesen. (siehe Bsp. Kontraposition)

 $(q \Rightarrow p)$ wird durch Kontraposition bewiesen:

- 1. $\neg p$: "a ist ungerade"
- 2. $a-1=2 \cdot k$ (def. ungerade Zahl umgestellt)
- 3. $a = 2 \cdot k + 1$
- 4. $a^2 = (2 \cdot k)^2 + 2 \cdot (2 \cdot k) + 1$ (quadrat schon ausmul.)
- 5. $a^2 = 2 \cdot (2 \cdot k \cdot k + 2 \cdot k) + 1$
- $6. \ a^2 istungerade$

Da nun sowohl $(p\Rightarrow q)$ als auch $(q\Rightarrow p)$ bewiesen ist, ist der Äquivalenzbeweis erbracht. \square

5. Fallunterscheidung: Jede Aussage p ist logisch äquivalent zu $(q \Rightarrow p) \land (\neg q \Rightarrow p)$. Dann Beweist man einfach beide Fälle.

Beispiel: Satz: "Jede natürliche Zahl n^2 geteilt durch 4 lässt entweder den Rest 1 oder 0".

$n \ {\bf ist \ gerade}$

- $\Rightarrow n = 2mf\ddot{\mathbf{u}}rm \in \mathbb{M}$
- $\Rightarrow n^2 = 4m^2$
- $\Rightarrow n^2 istdurch 4 teilbar$
- \Rightarrow Rest ist 0
- \Rightarrow Rest ist 1 oder 0

n ist ungerade

- $\Rightarrow n = 2m + 1f\ddot{\mathbf{u}}rm \in \mathbb{M}$
- $\Rightarrow n^2 = 4m^2 + 4m + 1 = 4(m^2 + m) + 1$
- $\Rightarrow n^2 istdurch4teilbarmitRest1$
- \Rightarrow Rest ist 1
- \Rightarrow Rest ist 1 oder 0
- Damit sind alle Fälle betrachtet und die Aussage bewiesen. \Box **6. Beweis mit Quantoren:** Bei universellen Aussagen $(\forall x)$ muss man unabhängig von konkreten Werten für die Quantifizierten Variablen Beweisen. Deswegen beginnt und beendet man den Beweis etwas anders:

Bei der Aussage $\forall x: (p(x) \Rightarrow q(x))$ würde man so vorgehen:

- 1. Sei a ein beliebiger, aber fester Wert aus dem Universum (also der Menge).
- 2. < Beweis >
- 3. Da a beliebig gewählt werden kann, folgt $\forall x : (p(x) \Rightarrow q(x)).$

Damit ist die Aussage Bewiesen \square

Bei existenziellen Aussagen $\exists x: (p(x) \Rightarrow q(x))$ geht man so vor:

- 1. Sei $a = \langle \text{Ein geeignetes Element aus dem Universum} \rangle$.
- 2. <Beweis>
- 3. Damit ist die Existenz eines a mit der Eigenschaft $(p(x) \Rightarrow q(x))$ bewiesen.
- 4. Damit ist die Gültigkeit der Aussage $\exists x: (p(x) \Rightarrow q(x))$ bewiesen.