

Why and Who Cares?

- Breast cancer is among the most common cancers and a common cause of death among women
- The Patients want to know is how long they will survive
- Patients with different criteria can have very different survival rates.
- We will predict survival rate for patients with different diagnostic criteria.

- Data is acquired from <u>Seer Breast Cancer Data</u>
- Was obtained from the 2017 November update of the SEER, from cancer patients
- From female patients with infiltrating duct and lobular carcinoma breast cancer diagnosed in 2006-2010.

Each record is consist of:

age, race, marital status, t stage, n stage, a stage, tumor size, estrogen status, progesterone status, regional nodes examined, regional nodes positive and status of the patient.

Data cleaning?

This dataset is not so dirty, no Null records. Some text cleaning

- Moderately differentiated; Grade II: ———— Grade II
- Poorly differentiated; Grade III:
- . . .

Categorical data to numeric

- For features "one hot encoding"
 - o features = pd.get_dummies(features,drop_first = True)

- For target "LabelEncoder"
 - o target = pd.DataFrame(le.fit_transform(target),columns = ['Status'])

Any correlation?

Is the target data balanced?

Apply SMOTH

Continuous data:

1. Age VS Survival

There is and increase rate in death numbers by age increase

2. Regional Node Positive VS Survival

Most of the survived patients have less number of positive nodes

Continuous data continued:

3. Tumor Size VS Survival

Most of the survived patients have smaller tumor size

4. Regional Node Examined VS Survival

The number of nodes being examined seems to be equal in most of the patient

Categorical data continued:

Most important ones:

Apparently the number of survived patients is higher with Estrogen positive

The survival rate is higher with Grade 2

Categorical data continued:

The number of survived patients is higher with progesterone positive

Married patients have higher chance to survive

Preprocessing

Which Features are more important?

Chi-squared function was used with SelectKBest from Sklearn to calculate the highest scores:

- Survival Months
- 2. Tumor Size
- 3. Regional Node Positive
- 4. Grade Grade II
- 5. Progesterone Status_Positive
- 6. 6th Stage_IIIC
- 7. Marital Status_Married
- 8. Marital Status_Single
- 9. Race_Other
- 10. Estrogen Status Positive

	Name	Score
0		17478.803015
1	Tumor Size	
2	Reginol Node Positive	
3		212.033694
4	Marital Status Married	182.786460
5	Progesterone Status Positive	173.888837
6		118.987770
7	6th Stage_IIB	
	Marital Status_Single	106.100394
8	N Stage_N3	105.947388
9	6th Stage_IIIC	105.947388
10	Race_Other	98.157095
11	Estrogen Status_Positive	64.603892
12	Age	40.265232
13	Marital Status_Widowed	37.917861
14	6th Stage_IIIA	31.855896
15	Race_White	22.984368
16	N Stage_N2	10.651684
17	A Stage_Regional	5.579573
18	T Stage_T3	5.100155
19	Marital Status_Separated	4.193361
20	Regional Node Examined	3.945062
21	6th Stage_IIIB	1.389694
22	T Stage_T4	1.146433
23	Grade_anaplastic	0.243042
24	T Stage_T2	0.155767
25	Grade_Grade III	0.131553

Are the data in the same range?

NO

Used MinMaxScaler to scale our data in the range of 0-5

Feature	Min	Max
Age	30	69
Tumor size (mm)	1	140
Regional node examined	1	61
Regional node positive f	1	46
Survival Months	1	107

There are 5 models that we will investigate

- 1. Logistic Regression
- 2. Decision Tree Classifier
- 3. Random Forest
- 4. KNeighborsClassifier
- 5. Support Vector Machine

♦ Default Model results for all available data

Model	Deafualt values	Accuracy	F1-Score	Elapsed time(s)
Logistic regression	Solver:lbfgs, Penalty:l2	0.87	0.87	0.0413
Random Forest	n_estimators=100,criterion=gini	0.93	0.93	0.0366
KNN	n_neighbors=5 ,algorithm='auto', leaf_size=30,metric='minkowski'	0.88	0.89	0.0412
Decesion Tree	criterion='gini'	0.86	0.86	0.0105
SVM	C=1.0, kernel='rbf', degree=3, gamma='scale'	0.80	0.78	2.3361

♦ Default Model results for Selected data

Model	Deafualt values	Accuracy	F1-Score	Elapsed time(s)
Logistic regression	Solver:lbfgs, Penalty:l2	0.82	081	0.0110
Random Forest	n_estimators=100,criterion=gini	0.87	0.87	0.0141
KNN	$n_neighbors=5 \ , algorithm='auto', \ leaf_size=30, metric='minkowski'$	0.85	0.85	0.0420
Decesion Tree	criterion='gini'	0.82	0.83	0.0015
SVM	C=1.0, kernel='rbf', degree=3, gamma='scale'	0.82	0.81	1.1410

Default Model conclusion:

- ➤ All models have very close Accuracy and F1-score when using all the data
- ➤ Elapsed time is much higher in the SVM model
- Accuracy declined in all models while selected data used
 - ('Grade_Grade II', 'Progesterone Status_Positive', '6th Stage_IIIC', 'Marital Status_Married', 'Estrogen Status_Positive')
- The elapsed time for running and predicting has decreased a lot.
- In conclusion, as the data is not so huge and the elapsed time does not seem to be a problem for the amount of the data we have, and the accuracy is better with all the data, we will use all the data for deeper analysis.

Models with hyper parameter tuning

Model	Best paramter	Classifier Score	Grid Search Elapsed time(s)
Logistic regression	{'C': '10'}	0.85	82.92
Decesion Tree	{'criterion': 'entropy', 'max_depth': 80, 'max_features': 'sqrt'}	0.85	0.90
Random Forest	{'criterion': 'gini', 'max_features': 'log2', 'n_estimators': 110}	0.92	9.3
KNN	{'algorithm': 'auto', 'n_neighbors': 3}	0.86	151
SVM	{'C': 100, 'gamma': 0.01, 'kernel': 'rbf'}	0.91	93.9

According to the different models' score result, **Random Forest** and **SVM** have the highest score equal to 92% AND 91%. Let's compare the performance of these models with the selected parameter.

Selected Model 1: RandomForestClassifier:

```
rf_model = RandomForestClassifier(criterion = 'gini', n_estimators= 110,max_features = 'log2')
apply mode(bc data X train,bc data y train,bc data X test,bc data y test,rf model,'Randome Forest')
```


Selected Model 2: SupportVectorMachineClassifier

```
svm_model = SVC(probability=True, C = 10, gamma =0.01, kernel ='rbf')
apply_mode(bc_data_X_train,bc_data_y_train,bc_data_X_test,bc_data_y_test,svm_model,'SVM')
```


Final Conclusion

Model	F1-score	AUC	Overal Elapsed time	Fitting Time	Predicting time
Random Forest	93%	98%	0.31	0.28	0.03
SVM	93%	97%	2.91	2.79	0.11

- RF slightly better AUC (98%) compared to SVM (97%)
- They both have an equal (93%) score
- Decision Tree took much much less time to fit (0.2877) compared to SVM fitting time (2.79)
- Less time to predict the test data (0.03) compared to the SVM (0.11 s).
- For our purpose, which is to predict the survival rate of cancer patients, we select **Random** Forest as our winning model.