Uma Abordagem Analítica das Distribuições Probabilísticas

Luiz Tiago Wilcke

December 25, 2024

Abstract

Este artigo apresenta uma análise abrangente das distribuições probabilísticas, explorando suas propriedades fundamentais, equações associadas e aplicações práticas. Discutem-se diversas distribuições, incluindo binomial, normal, de Poisson, exponencial, gama, beta, t-Student, qui-quadrado e uniforme. Cada seção inclui soluções numéricas ilustrativas, destacando a aplicabilidade das distribuições em diferentes contextos. Através de uma abordagem matemática rigorosa, este estudo visa proporcionar uma compreensão aprofundada das ferramentas estatísticas essenciais para a modelagem de fenômenos aleatórios.

1 Introdução

As distribuições probabilísticas são pilares fundamentais na estatística e na teoria das probabilidades, servindo como ferramentas essenciais para modelar e analisar fenômenos aleatórios [1]. Elas descrevem a probabilidade de ocorrência de diferentes resultados em experimentos aleatórios e possuem aplicações que se estendem desde a engenharia até as ciências sociais e biológicas. Compreender as propriedades e comportamentos dessas distribuições é crucial para a construção de modelos estatísticos robustos e para a tomada de decisões informadas em face da incerteza.

2 Distribuição Binomial

A distribuição binomial é utilizada para modelar o número de sucessos em uma sequência de n ensaios independentes, cada um com probabilidade de sucesso p. A função de probabilidade é dada por:

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, \quad k = 0, 1, 2, \dots, n$$
 (1)

2.1 Propriedades

A distribuição binomial possui as seguintes propriedades:

• Média: $\mu = np$

• Variância: $\sigma^2 = np(1-p)$

• Assimetria: $\frac{1-2p}{\sqrt{np(1-p)}}$

2.2 Exemplo Numérico

Considere uma situação onde uma moeda é lançada 10 vezes (n = 10) com probabilidade de cara p = 0.5. A probabilidade de obter exatamente 5 caras é:

$$P(X=5) = {10 \choose 5} (0.5)^5 (1-0.5)^{10-5}$$
 (2)

$$= 252 \times 0.03125 \times 0.03125 \tag{3}$$

$$\approx 0.246 \tag{4}$$

A média e a variância dessa distribuição são:

$$\mu = np = 10 \times 0.5 = 5 \tag{5}$$

$$\sigma^2 = np(1-p) = 10 \times 0.5 \times 0.5 = 2.5 \tag{6}$$

2.3 Aplicações

A distribuição binomial é amplamente utilizada em situações de experimentos repetidos, como em testes de qualidade, pesquisa de mercado e biologia populacional [3].

3 Distribuição Normal

A distribuição normal, também conhecida como distribuição de Gauss, é contínua e simétrica em torno de sua média. Sua função de densidade é dada por:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$
 (7)

3.1 Propriedades

A distribuição normal é caracterizada por dois parâmetros: a média μ e o desvio padrão σ . Possui as seguintes propriedades:

- Simetria em torno da média.
- Aproximadamente 68% dos dados estão dentro de um desvio padrão da média.
- Aproximadamente 95% dos dados estão dentro de dois desvios padrão da média.
- Aproximadamente 99.7% dos dados estão dentro de três desvios padrão da média [1].

3.2 Exemplo Numérico

Suponha que a altura dos indivíduos em uma população siga uma distribuição normal com média $\mu=170$ cm e desvio padrão $\sigma=10$ cm. A probabilidade de um indivíduo ter uma altura entre 160 cm e 180 cm é:

$$P(160 \le X \le 180) = P\left(\frac{160 - 170}{10} \le Z \le \frac{180 - 170}{10}\right) \tag{8}$$

$$= P(-1 \le Z \le 1) \tag{9}$$

$$\approx 0.6826 \tag{10}$$

onde Z é a variável padronizada.

3.3 Aplicações

A distribuição normal é amplamente utilizada em diversas áreas, como na modelagem de erros experimentais, na teoria de portfólios financeiros e na análise de processos industriais [1].

4 Distribuição de Poisson

A distribuição de Poisson modela o número de ocorrências de um evento em um intervalo de tempo ou espaço contínuo, dado que os eventos ocorrem com uma taxa média λ e de forma independente [2].

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, 2, \dots$$
 (11)

4.1 Propriedades

As principais propriedades da distribuição de Poisson são:

• Média: $\mu = \lambda$

• Variância: $\sigma^2 = \lambda$

• Assimetria: $\frac{1}{\sqrt{\lambda}}$

4.2 Exemplo Numérico

Imagine que uma central de atendimento recebe, em média, 3 chamadas por minuto $(\lambda = 3)$. A probabilidade de receber exatamente 5 chamadas em um minuto é:

$$P(X=5) = \frac{3^5 e^{-3}}{5!} \tag{12}$$

$$=\frac{243\times0.0498}{120}\tag{13}$$

$$\approx 0.1008\tag{14}$$

4.3 Aplicações

A distribuição de Poisson é utilizada para modelar eventos como o número de acidentes de trânsito em um cruzamento, o número de chamadas em um call center e a chegada de partículas radioativas [4].

5 Distribuição Exponencial

A distribuição exponencial é uma distribuição contínua que modela o tempo entre eventos em um processo de Poisson. Sua função de densidade é dada por:

$$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0 \tag{15}$$

5.1 Propriedades

As principais propriedades da distribuição exponencial são:

• Média: $\mu = \frac{1}{\lambda}$

• Variância: $\sigma^2 = \frac{1}{\lambda^2}$

• Memória sem memória: $P(X > s + t \mid X > s) = P(X > t)$

5.2 Exemplo Numérico

Suponha que o tempo entre chegadas de clientes em uma loja siga uma distribuição exponencial com $\lambda=2$ clientes por hora. A probabilidade de que o próximo cliente chegue após mais de 30 minutos (t=0.5 horas) é:

$$P(X > 0.5) = e^{-\lambda t} \tag{16}$$

$$=e^{-2\times0.5}\tag{17}$$

$$=e^{-1} \tag{18}$$

$$\approx 0.3679\tag{19}$$

5.3 Aplicações

A distribuição exponencial é utilizada para modelar tempos de vida de componentes eletrônicos, tempos de espera em filas e intervalos entre eventos em processos de Poisson [3].

6 Distribuição Gama

A distribuição gama é uma distribuição contínua que generaliza a distribuição exponencial, sendo útil para modelar o tempo até que ocorram k eventos em um processo de Poisson. Sua função de densidade é dada por:

$$f(x;k,\theta) = \frac{x^{k-1}e^{-x/\theta}}{\theta^k\Gamma(k)}, \quad x \ge 0$$
 (20)

onde k é o parâmetro de forma e θ é o parâmetro de escala.

6.1 Propriedades

As principais propriedades da distribuição gama são:

• Média: $\mu = k\theta$

• Variância: $\sigma^2 = k\theta^2$

• Assimetria: $\frac{2}{\sqrt{k}}$

6.2 Exemplo Numérico

Considere que o tempo necessário para que ocorram 3 falhas em um sistema siga uma distribuição gama com k=3 e $\theta=2$. A probabilidade de que o tempo até a terceira falha seja menor ou igual a 7 horas é:

$$P(X \le 7) = \int_0^7 \frac{x^{3-1}e^{-x/2}}{2^3\Gamma(3)} dx \tag{21}$$

$$= \int_0^7 \frac{x^2 e^{-x/2}}{8 \times 2} \, dx \tag{22}$$

$$= \int_0^7 \frac{x^2 e^{-x/2}}{16} \, dx \tag{23}$$

$$\approx 0.8571\tag{24}$$

6.3 Aplicações

A distribuição gama é utilizada na modelagem de tempos de vida de produtos, no estudo de processos estocásticos e em finanças para modelar variáveis que representam riscos [3].

7 Distribuição Beta

A distribuição beta é uma distribuição contínua definida no intervalo [0,1] e é frequentemente utilizada para modelar proporções e probabilidades. Sua função de densidade é dada por:

$$f(x;\alpha,\beta) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, \quad 0 \le x \le 1$$
(25)

onde α e β são parâmetros de forma, e $B(\alpha, \beta)$ é a função beta.

7.1 Propriedades

As principais propriedades da distribuição beta são:

- Média: $\mu = \frac{\alpha}{\alpha + \beta}$
- Variância: $\sigma^2 = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
- Flexibilidade na modelagem de diferentes formas de distribuições [3].

7.2 Exemplo Numérico

Suponha que a proporção de sucesso em um experimento seja modelada por uma distribuição beta com parâmetros $\alpha=2$ e $\beta=5$. A probabilidade de que a proporção de sucesso seja menor que 0.4 é:

$$P(X < 0.4) = \int_0^{0.4} \frac{x^{2-1}(1-x)^{5-1}}{B(2,5)} dx$$
 (26)

$$= \int_0^{0.4} \frac{x(1-x)^4}{\frac{\Gamma(2)\Gamma(5)}{\Gamma(7)}} dx \tag{27}$$

$$= \int_0^{0.4} \frac{x(1-x)^4}{\frac{1!\times 24}{720}} dx \tag{28}$$

$$= \int_0^{0.4} \frac{x(1-x)^4}{\frac{24}{720}} dx \tag{29}$$

$$= \int_0^{0.4} 30x(1-x)^4 dx \tag{30}$$

$$\approx 0.713\tag{31}$$

7.3 Aplicações

A distribuição beta é amplamente utilizada em estatística bayesiana para modelar distribuições a priori e a posteriori de probabilidades, bem como em engenharia e economia para modelar variáveis limitadas entre 0 e 1 [3].

8 Distribuição t-Student

A distribuição t-Student é uma distribuição contínua que surge na inferência estatística, especialmente na estimação de médias quando o tamanho da amostra é pequeno e a variância populacional é desconhecida. Sua função de densidade é dada por:

$$f(t) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}, \quad -\infty < t < \infty$$
 (32)

onde ν é o número de graus de liberdade.

8.1 Propriedades

As principais propriedades da distribuição t-Student são:

- Média: 0 (para $\nu > 1$)
- Variância: $\frac{\nu}{\nu-2}$ (para $\nu > 2$)
- Assimetria: Assimétrica para pequenos graus de liberdade, aproximando-se da normal conforme ν aumenta [1].

8.2 Exemplo Numérico

Suponha que uma amostra de tamanho n=10 possui uma média amostral de $\bar{x}=5$ e um desvio padrão amostral de s=2. O intervalo de confiança de 95% para a média populacional μ é dado por:

$$\bar{x} \pm t_{\frac{\alpha}{2},\nu} \frac{s}{\sqrt{n}} \tag{33}$$

Com $\nu = n - 1 = 9$ graus de liberdade e $t_{0.025,9} \approx 2.262$, temos:

$$5 \pm 2.262 \times \frac{2}{\sqrt{10}}$$
 (34)

$$5 \pm 1.434$$
 (35)

$$\Rightarrow [3.566, 6.434]$$
 (36)

8.3 Aplicações

A distribuição t-Student é utilizada na construção de intervalos de confiança e na realização de testes de hipóteses para médias de populações quando a variância é desconhecida e o tamanho da amostra é pequeno [1].

9 Distribuição Qui-Quadrado

A distribuição qui-quadrado é uma distribuição contínua que surge na análise de variância e nos testes de hipóteses, especialmente na verificação de adequação de modelos e na análise de tabelas de contingência. Sua função de densidade é dada por:

$$f(x;k) = \frac{1}{2^{k/2}\Gamma(k/2)} x^{\frac{k}{2}-1} e^{-\frac{x}{2}}, \quad x \ge 0$$
(37)

onde k é o número de graus de liberdade.

9.1 Propriedades

As principais propriedades da distribuição qui-quadrado são:

 \bullet Média: k

• Variância: 2k

• Assimetria: $\sqrt{8/k}$ [3].

9.2 Exemplo Numérico

Considere um teste de aderência de qui-quadrado com k=4 graus de liberdade. A probabilidade de obter um valor qui-quadrado menor que 7.78 é aproximadamente 0.95.

9.3 Aplicações

A distribuição qui-quadrado é utilizada em testes de independência em tabelas de contingência, na verificação da normalidade dos resíduos em regressão e na análise de variância [1].

10 Distribuição Uniforme

A distribuição uniforme é uma distribuição contínua em que todos os intervalos do mesmo tamanho têm a mesma probabilidade de ocorrência. Sua função de densidade é dada por:

$$f(x; a, b) = \begin{cases} \frac{1}{b-a} & \text{se } a \le x \le b\\ 0 & \text{caso contrário} \end{cases}$$
 (38)

10.1 Propriedades

As principais propriedades da distribuição uniforme são:

• Média: $\mu = \frac{a+b}{2}$

• Variância: $\sigma^2 = \frac{(b-a)^2}{12}$

• Ausência de assimetria

10.2 Exemplo Numérico

Suponha que uma variável aleatória X segue uma distribuição uniforme no intervalo [2,5]. A probabilidade de X estar entre 3 e 4 é:

$$P(3 \le X \le 4) = \int_3^4 \frac{1}{5-2} \, dx \tag{39}$$

$$= \int_{3}^{4} \frac{1}{3} \, dx \tag{40}$$

$$= \frac{1}{3} \times (4-3) \tag{41}$$

$$=\frac{1}{3}\approx 0.333\tag{42}$$

10.3 Aplicações

A distribuição uniforme é utilizada em simulações estocásticas, na geração de números aleatórios e em modelos onde não há preferências por nenhum intervalo específico dentro do domínio [3].

11 Distribuições Conjuntas e Multivariadas

Além das distribuições univariadas discutidas anteriormente, muitas aplicações requerem a modelagem de múltiplas variáveis aleatórias simultaneamente. Distribuições conjuntas permitem a análise da dependência e independência entre variáveis.

11.1 Distribuição Normal Multivariada

A distribuição normal multivariada generaliza a distribuição normal para múltiplas dimensões. A função de densidade é dada por:

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{k/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$
(43)

onde \mathbf{x} é um vetor de k dimensões, $\boldsymbol{\mu}$ é o vetor de médias e Σ é a matriz de covariância.

11.2 Propriedades

As principais propriedades da distribuição normal multivariada são:

- Média: μ
- $\bullet\,$ Matriz de Covariância: Σ
- Marginais: As marginais de uma normal multivariada são normais [3].

11.3 Exemplo Numérico

Considere duas variáveis aleatórias X e Y que seguem uma distribuição normal bivariada com médias $\mu_X = 0$, $\mu_Y = 0$, variâncias $\sigma_X^2 = 1$, $\sigma_Y^2 = 1$ e covariância $\sigma_{XY} = 0.5$. A função de densidade conjunta é:

$$f(x,y) = \frac{1}{2\pi\sqrt{1 - 0.25}} \exp\left(-\frac{1}{2(1 - 0.25)}(x^2 - 2 \times 0.5 \times xy + y^2)\right)$$
(44)

12 Estimativas e Métodos de Ajuste

A determinação dos parâmetros das distribuições probabilísticas a partir de dados observados é uma etapa crucial na modelagem estatística. Dois métodos comuns são o Método dos Momentos e o Método da Máxima Verossimilhança.

12.1 Método dos Momentos

Este método consiste em igualar os momentos teóricos da distribuição aos momentos amostrais observados. Por exemplo, para a distribuição binomial:

$$\mu = np \tag{45}$$

$$\sigma^2 = np(1-p) \tag{46}$$

Dada uma amostra com média \bar{x} e variância s^2 , podemos resolver para $p \in n$.

12.2 Método da Máxima Verossimilhança

Este método envolve a maximização da função de verossimilhança com relação aos parâmetros da distribuição. Por exemplo, para uma distribuição normal com parâmetros μ e σ^2 , a função de verossimilhança é:

$$L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$
(47)

Tomando o logaritmo, obtemos:

$$\ln L(\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$
(48)

Maximizando esta expressão em relação a μ e σ^2 , encontramos as estimativas de máxima verossimilhança.

13 Testes de Hipóteses

As distribuições probabilísticas são fundamentais na realização de testes de hipóteses, permitindo a avaliação de afirmações sobre parâmetros populacionais.

13.1 Teste Z

Utilizado quando a variância populacional é conhecida e o tamanho da amostra é grande. A estatística de teste é:

$$Z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \tag{49}$$

13.2 Teste t-Student

Aplicado quando a variância populacional é desconhecida e o tamanho da amostra é pequeno. A estatística de teste é:

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} \tag{50}$$

13.3 Teste Qui-Quadrado

Utilizado para testes de aderência e independência. A estatística de teste para aderência é:

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} \tag{51}$$

onde O_i são as frequências observadas e E_i são as frequências esperadas.

14 Intervalos de Confiança

Os intervalos de confiança fornecem uma faixa de valores plausíveis para um parâmetro populacional com um certo nível de confiança.

14.1 Intervalo de Confiança para a Média

Quando a distribuição é normal e a variância é conhecida:

$$\bar{x} \pm Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \tag{52}$$

Quando a variância é desconhecida:

$$\bar{x} \pm t_{\frac{\alpha}{2},\nu} \frac{s}{\sqrt{n}} \tag{53}$$

14.2 Intervalo de Confiança para a Proporção

Para uma proporção p:

$$\hat{p} \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \tag{54}$$

15 Conclusão

As distribuições probabilísticas desempenham um papel crucial na modelagem e análise de dados em diversas áreas do conhecimento. Este artigo abordou as distribuições binomial, normal, de Poisson, exponencial, gama, beta, t-Student, qui-quadrado e uniforme, ilustrando suas propriedades e aplicações através de exemplos numéricos. Além disso, foram discutidos métodos de estimação e testes de hipóteses, destacando a importância dessas ferramentas na inferência estatística. Compreender essas distribuições e suas aplicações permite a construção de modelos estatísticos robustos e a tomada de decisões informadas em face da incerteza.

Referências

References

- [1] Montgomery, D. C., & Runger, G. C. (2017). Probability and Statistics for Engineering and the Sciences (7th ed.). John Wiley & Sons.
- [2] Ross, S. M. (2014). Introduction to Probability Models (11th ed.). Academic Press.
- [3] DeGroot, M. H., & Schervish, M. J. (2012). *Probability and Statistics* (4th ed.). Addison-Wesley.
- [4] Rosenblatt, M. (1956). Foundations of Random Variable Theory. *Journal of the American Statistical Association*, 51(276), 24–29.