Application: Cochlear Hair Cell Mechanics

Current Limits:

Flexible fiber: IkHz, ImN/m Stiff fiber: 5-I0kHz, >50 mN/m

Performance Goals

Building blocks:

- 1) Sensor bandwidth and resolution
- Actuator speed

Sensor Design Optimization

JC Doll, S-J Park, BL Pruitt "Design optimization of piezoresistive cantilevers for force sensing in air and water" Journal of Applied Physics (2009)

Piezoelectric Actuation

JC Doll, BC Petzold, B Ninan, R Mullapudi, BL Pruitt, "Aluminum Nitride on Titanium for CMOS Compatible Piezoelectric Transducers", Journal of Micromechanics and Microengineering (2010)

Piezoresistive vs. Piezoelectric Sensing and Power Dissipation Effects

JC Doll, BL Pruitt,

"Design of Piezoresistive vs. Piezoelectric Contact Mode Scanning Probes", Journal of Micromechanics and Microengineering (2010)

A Piezoresistor Self-Heating Model

JC Doll, EA Corbin, WP King, BL Pruitt, "Self-heating in piezoresistive cantilevers", Applied Physics Letters, in review

Water Operation Improves Resolution

JC Doll, EA Corbin, WP King, BL Pruitt, "Self-heating in piezoresistive cantilevers", Applied Physics Letters, in review