4. Translations d'adresses et architectures sécurisées

Rappel DHCP

- Dynamic Host Configuration Protocol
- Protocole permettant d'attribuer dynamiquement des @IP et d'autres paramètres de configuration IP tels que :
 - Adresse IP
 - Passerelle par défaut
 - Masque
 - Serveur DNS
 - Durée du bail, Etc.
- Serveurs \rightarrow @IP fixe, Station \rightarrow @IP dynamique
- Utilise les ports UDP 67 et 68
- Les routeurs peuvent jouer le rôle de serveur DHCP pour des clients

Allocations d'@IP par DHCP

- Il existe trois mécanismes d'allocation d'@IP
 - Allocation statique: l'administrateur attribue une adresse IP préallouée au client et le protocole DHCP communique uniquement l'adresse IP au périphérique.
 - Allocation automatique: le protocole DHCP attribue de façon automatique et permanente une adresse IP statique à un périphérique. Il n'y a pas de bail et l'adresse est attribuée de façon permanente au périphérique.
 - Allocation dynamique: le protocole DHCP attribue, ou loue, de façon automatique et dynamique une adresse IP pour une durée limitée.

Relais DHCP

- Les routeurs bloquent les diffusions
 - Les requêtes DHCP ne sont pas diffusées
- Nécessité de configurer un relais DHCP
 - Les routeurs peuvent transférer les diffusions
 DHCP à des serveurs situés sur d'autres réseaux IP

Adressage Internet

Adresses IP publiques enregistrées auprès

d'organismes ou des FAI

Adressage privé en interne

Pas besoin des les acheter

- Réutilisables
- Cependant adresses non routables sur Internet

ARIN

ACNIC

AfricNIC

- La traduction d'adresse de réseau (NAT)
- Mécanisme de sécurité très utilisé pour masquer des ressources internes à un réseau

Introduction NAT

- Adresse IP publique
 - Nécessaires pour le routage sur Internet
 - Les adresses IP publiques sont de moins en moins disponibles et doivent être achetées
 - On ne peut attribuer à chaque station d'un LAN une adresse IP publique → Solution NAT
- NAT (Network Address Translation)
 - Remplacer un grand nombres d'adresses privées par un plus petit nombre d'adresses publiques
- Un routeur du LAN gère la NAT
 - Il effectue les translations d'adresses dans le sens sortant et entrant

Dénomination des adresses

- Adresse locale interne
 - C'est l'adresse IP privée dans le LAN qui désire transmettre des informations sur Internet
- Adresse globale interne
 - C'est l'adresse IP publique obtenue après avoir effectuée une translation d'adresse
 - Le routeur remplace l'adresse source locale par cette nouvelle adresse globale interne
 - Il fera l'opération inverse en cas de réponse
- Adresse globale externe
 - C'est l'adresse IP publique de destination.
- Exemple transparent suivant.

NAT

- Traduction des adresses non routables, privées et internes en adresses routables publiques
- Empêche les réseaux externes de voir les adresses IP internes

Fonctionnement du NAT

- Exemple de fonctionnement
 - □ $PC1 \rightarrow R2$ (@IP source = 192.168.10.10)
 - R2 lit l'@IP de destination et vérifie si la NAT est autorisé pour ce paquet (ACL spécifique)
 - Traduit l'adresse locale interne 192.168.10.10 en adresse IP globale interne 209.165.200.226.
 - Stocke cette traduction dans la table NAT
 - Réponse du serveur à l'@IP 209.165.200.226
 - Consultation de sa table NAT
 - Retraduction inverse de l'@IP globale interne 209.165.200.226 en @IP locale interne 192.168.10.10 et envoi des données vers PC1

Mappage des adresses

- Mappage statique (NAT statique)
 - Association fixe et prédéfinie d'un @IP interne à une @IP publique
 - Utile pour des serveurs Web devant disposer d'une adresse permanente atteignable depuis l'extérieur
- Mappage dynamique (NAT dynamique)
 - Utilise un pool d'adresses publiques
 - Premier arrivé, premier servi
 - Affectation d'une @IP publique non utilisée par un autre hôte
- Les fonctions NAT statique et dynamique
 - Nécessitent un nombre suffisants d'@IP publiques

PAT ou surcharge NAT

- Translation d'adresse par port
 - Généralement un seule @IP publique
 - Chaque adresse IP privée est associé à un port
 - Plusieurs sessions TCP/IP sont donc distinguées par les numéros de ports utilisées pour la PAT
 - Fonctionne comme la NAT avec des différences

Différences entre NAT et PAT

- Principales différences
 - NAT association @IP privée → @IP publique
 - NAT nécessite au moins pour chaque @IP privée une @IP publique
 - PAT une seule adresse publique mais des numéros de ports différents pour chaque @IP privée
 - PAT nécessite au moins une @IP publique pour environ des milliers d'@IP privées (Numéros de ports codés sur 16 bits donc en théorie 65536 possibilités)
 - En pratique environ 4000 possibilités
 - Les ports déjà utilisés par d'autre services ne sont pas attribués pour les translations PAT

Avantages et inconvénients

- Avantages
 - Économie des adresses publiques et avec la PAT une seule adresse est partagée entre plusieurs hôtes
 - Sécurité car masque les @IP privées internes
- Inconvénients
 - Performances
 - Fonctionnalité de bout en bout affecté
 - Délai supplémentaire ajouté ce qui peut gêner les applications de types VoIP
 - Traçabilité IP de bout en bout perdue
- IPv6 abandonne le concept de NAT et PAT au profit des adresses de monodiffusion globale

Configuration NAT-PAT

- Elle se fait en 4 étapes
 - <u>Étape 1</u>: Définition du groupe d'adresses IP publiques utilisables
 - <u>Étape 2</u>: Définition d'une liste de contrôle d'accès correspondant aux adresses IP privées internes
 - <u>Étape 3</u>: Définition la traduction NAT de la liste interne vers le groupe d'adresses IP externes
 - Étape 4: Définition des interfaces actives sur le routeur en tant qu'interfaces internes ou externes par rapport à la NAT

Configuration NAT

- Adresses globales internes disponibles
 - Router(config)#ip nat pool extern 199.12.1.1 199.12.1.20
 netmask 255.255.255.0
- ACL des adresses locales internes autorisées
 - Router(config)#access-list 1 permit 10.0.0.0
 0.255.255.255
- Mise en place de la NAT dynamique
 - Router(config)#ip nat inside source list 1 pool extern
- Interface inside et outside
 - Router(config-if)#ip nat [inside | outside]
- Mise en place NAT statique
 - Router(config#ip nat inside source static 10.0.0.1 199.12.1.1

Configuration PAT

- ACL des adresses locales internes autorisées
 - Router(config)#access-list 1 permit 10.0.0.0
 0.255.255.255
- Mise en place de la PAT
 - Router(config)#ip nat inside source list 1 interface serial
 0/0 overload
- Interface inside et outside
 - Router(config-if)#ip nat [inside | outside]
- Possibilité de définir une plage d'adresses si une seule adresse est insuffisante pour la PAT
 - Router(config)#ip nat pool extern 199.12.1.1 199.12.1.5
 netmask 255.255.255.0
 - Router(config)#ip nat inside source list 1 pool extern overload

Architecture de réseau sécurisée

- Architectures modulaire à trois niveaux
- Niveau 1 : Le LAN
 - C'est le réseau interne de la société. Il doit avoir une protection maximale vis-à-vis de l'extérieur.
 - Ne doit pas être accessible depuis l'extérieur
- Niveau 2 : L'extérieur
 - Généralement l'Internet. Doit être accessible depuis le LAN pour les ressources externes
- Niveau 3 : La DMZ
 - Zone permettant de stocker les serveurs publics de la société. Doit avoir un niveau de sécurité élevé
 - Doit être accessible de l'extérieur et du LAN

Architecture sécurisée : Exemple

- Adressage
 - □ Internet → adressage publique
 - DMZ → adressage privée
 - □ LAN → adressage privée
- Translations d'adresses
 - □ DMZ → NAT statique
 - □ LAN \rightarrow PAT
- Architecture évolutive
 - DMZ externe pour les serveurs 192.168.1.
 publics DMZ internet pour les 192.168.1.0/24
 serveurs du LAN DMZ extranet pour les partenaires

Règles de sécurité globale

- DMZ: Zone tampon entre l'extérieur et le LAN
 - Sous réseau abritant les serveurs publics appelés également bastions d'une société qui doivent être accessibles depuis l'Internet
- DMZ interne (Plus grande sécurité dans le LAN)
- Politique de sécurité globale
 - □ Extérieur vers DMZ → autorisé
 - □ Extérieur vers LAN → interdit
 - □ LAN vers DMZ → autorisé
 - □ LAN vers extérieur → autorisé
 - □ DMZ vers LAN → interdit
 - □ DMZ vers extérieur → interdit

CBAC

- Context-Based Access Control
- Mécanisme de filtrage plus évolué que les ACL
 - Filtrage basé sur l'état des connexions
 - Examine la couche application pour apprendre et inspecter l'état des sessions TCP et UDP
 - Maintenance, pour chaque connexion, des informations d'état dans des structures de données
- Ce mécanisme permet de supplanter temporairement des instructions d'interdictions présentes dans des ACL
- Utile pour autoriser les connexions LAN → Exterieur ou LAN → DMZ malgré les interdictions des ACL dans le sens contraire.

Principe CBAC

Exemple 1

 Autoriser les connexions Telnet du LAN vers l'extérieur uniquement

Exemple 2

■ 1. Empêcher les connexions d'Internet vers le LAN

 2. Autoriser le ping, le web et le telnet depuis le LAN vers Internet

- Solution (LAN 192.168.1.0/24)
 - □ ACL 1. deny ip any 192.168.1.0 0.255.255.255
 - Inconvénient : cette ACL devrait bloquer même le trafic de réponse pour une connexion initié par PC1
 - □ Solution : CBAC → inspecter le trafic de PC1 et permettre les réponses de l'Internet vers PC1
 - Rappel de l'état d'une connexion (stateful)

Configuration CBAC

- Empêcher les connexions Internet LAN
 - R(config)#acces-list 101 deny ip any 192.168.1.0
 0.255.255.255
 - R(config-if)#ip access group 101 in
- CBAC pour le trafic de PC1 vers l'Internet
 - R(config)# ip inspect name lan_internet icmp
 - R(config)# ip inspect name lan_internet http
 - R(config)# ip inspect name lan_internet telnet
- Appliquer cette cbac à l'interface interne
 - R(config-if)#ip inspect lan_internet in
- Le trafic http, telnet et icmp peuvent à partir du LAN contourner l'ACL 101
 - R#show ip inspect sessions
 - R(config)#ip inspect name lan_internet http timeout 5