Chimica

prof. Angelo Agostino

Diagrammi di Fase & Proprietà Colligative

Angelo Agostino

sistemi omogenei

sistemi omogenei

Diagramma di fase CO₂

sistemi supercritici

potenziale chimico

$$\Delta G_{
m reaz}^\circ = \sum
u_j \Delta G_f^\circ ({
m prodotti}) - \sum
u_i \Delta G_f^\circ ({
m reagenti})$$

$$\mu_i = \left(rac{\partial G}{\partial n_i}
ight)_{T,P,n_{j
eq i}}$$
 $G(P) = G^\circ + nRT \ln\left(rac{P}{P^\circ}
ight)$

$$\mu_i = \mu_i^\circ + RT \ln \left(rac{P_i}{P^\circ}
ight)$$

potenziale chimico

$$A \longrightarrow B$$

$$dG = \sum_i \mu_i \ dn_i$$
 dn_A = - dn (perché A diminuisce) dn_B = + dn (perché B aumenta)

$$dG = \mu_A \, dn_A + \mu_B \, dn_B = \mu_A(-dn) + \mu_B(dn)$$

$$dG = (\mu_B - \mu_A) \, dn$$

grado di avanzamento della reazione (ξ)

$$\xi = rac{\Delta n_i}{
u_i}$$

$$aA + bB \rightleftharpoons cC + dD$$

$$egin{aligned} n_A &= n_A^0 - a \xi \ n_B &= n_B^0 - b \xi \ n_C &= n_C^0 + c \xi \ n_D &= n_D^0 + d \xi \end{aligned}$$

grado di avanzamento della reazione (ξ)

$$dG = (\mu_B - \mu_A) \, d\xi$$

$$dG=0$$
 e quindi $\mu_A=\mu_B$

equilibrio

$$egin{align} \mu_i &= \mu_i^\circ + RT \ln \left(rac{P_i}{P^\circ}
ight) \ \mu_B &= \mu_A \Rightarrow \mu_B^\circ - \mu_A^\circ + RT \ln \left(rac{P_B}{P_A}
ight) = 0 \ \end{gathered}$$

$$\mu_B = \mu_A \Rightarrow \mu_B^\circ - \mu_A^\circ + RT \ln \left(rac{P_B}{P_A}
ight) = 0.$$

costante di equilibrio K_p

$$\ln\left(rac{P_B}{P_A}
ight) = -rac{\Delta_r G^\circ}{RT}$$

$$K_p = rac{P_B}{P_A} = e^{-\Delta_r G^\circ/RT}$$

equazione di Clausius-Clapeyron

L'equazione di Clausius-Clapeyron descrive come cambia la pressione di vapore al variare della temperatura, assumendo che:

- ➤ Il gas si comporti da gas perfetto
- Il volume del liquido sia trascurabile
- L'entalpia di vaporizzazione sia costante nel range considerato

$$\ln\left(rac{P_2}{P_1}
ight) = -rac{\Delta H_{\mathrm{vap}}}{R}\left(rac{1}{T_2} - rac{1}{T_1}
ight)$$

L'equazione fornisce la pendenza della curva di equilibrio fase-fase nei diagrammi P vs T.

equazione di Clausius-Clapeyron

$$dG = VdP - SdT$$

Legge fondamentale di equilibrio di fase

$$dG_{
m liquido} = dG_{
m vapore}$$

equilibrio liquido-vapore

$$V_{
m liquido} \, dP - S_{
m liquido} \, dT = V_{
m vapore} \, dP - S_{
m vapore} \, dT$$

$$(V_{
m vapore} - V_{
m liquido})dP = (S_{
m vapore} - S_{
m liquido})dT$$

equazione di Clausius-Clapeyron

$$\Delta S = rac{\Delta H_{ ext{vap}}}{T}$$

$$\Delta V\,dP = rac{\Delta H_{
m vap}}{T}\,dT$$

$$V_{ ext{vapore}} = rac{RT}{P}$$

Il vapore si comporta da gas perfetto

$$\frac{RT}{P} dP = \frac{\Delta H_{\text{vap}}}{T} dT$$

$$\frac{dP}{P} = \frac{\Delta H_{\text{vap}}}{R} \frac{dT}{T^2}$$

$$rac{dP}{P} = rac{\Delta H_{
m vap}}{R} rac{dT}{T^2}$$

integrazione tra due stati
$$\int_{P_1}^{P_2} rac{dP}{P} = rac{\Delta H_{
m vap}}{R} \int_{T_1}^{T_2} rac{dT}{T^2}$$

equazione di Clausius-Clapeyron

$$\int_{P_1}^{P_2} rac{dP}{P} = rac{\Delta H_{\mathrm{vap}}}{R} \int_{T_1}^{T_2} rac{dT}{T^2}$$

$$\int rac{dP}{P} = \ln \left(rac{P_2}{P_1}
ight)$$

$$\int rac{dT}{T^2} = -\left(rac{1}{T_2} - rac{1}{T_1}
ight)$$

$$\ln\left(rac{P_2}{P_1}
ight) = -rac{\Delta H_{\mathrm{vap}}}{R}\left(rac{1}{T_2} - rac{1}{T_1}
ight)$$

diagrammi binari o ternari

Un diagramma di fase binario o ternario è un tipo di rappresentazione grafica che mostra quali fasi (solido, liquido, gas o miscela di più fasi) sono stabili in funzione di composizione e temperatura (o anche pressione).

Angelo Agostino

regola della leva

$$rac{n_L}{n_L+n_S} = rac{\chi-\chi_S}{\chi_L-\chi_S} \qquad rac{n_S}{n_L+n_S} = rac{\chi_L-\chi}{\chi_L-\chi_S}$$

azeotropo

Un azeotropo è una miscela liquida che bolle a temperatura costante come se fosse un componente puro, mantenendo composizione costante in fase liquida e vapore.

In un diagramma T vs χ , è un punto in cui le due curve si toccano. Si distinguono due tipi di azeotropo

Azeotropo positivo: temperatura di ebollizione minore di entrambi i componenti (es. etanolo/acqua).

Azeotropo negativo: temperatura di ebollizione maggiore (meno comune).

Gli azeotropi non possono essere separati per semplice distillazione.

azeotropo

 $\Delta H_{sol} > 0$

 $\Delta H_{sol} < 0$

azeotropo

eutettico

Un eutettico si trova nei diagrammi di fase solidi/liquidi (es. sali, metalli) e rappresenta la miscela di due solidi che fonde a temperatura più bassa di ciascun componente puro.

Nel diagramma, è il punto di minimo nella curva di fusione.

Alla temperatura eutettica, la miscela fonde o solidifica completamente e simultaneamente.

eutettico

diagrammi bifasici

diagrammi bifasici

diagrammi bifasici

diagrammi ternari

Angelo Agostino

sospensioni, dispersioni colloidali, soluzioni

Le proprietà colligative sono proprietà delle soluzioni che dipendono solo dal numero di particelle di soluto presenti nella soluzione e non dalla loro natura chimica.

Effetto Tindall

entalpia di solubilizzazione

Quando una sostanza si scioglie, avvengono tre stadi principali:

> Interazione tra soluto e solvente (es. formazione di legami ioni-dipolo o legami a idrogeno) \longrightarrow rilascia energia $\longrightarrow \Delta H < 0$

abbassamento relativo della tensione di vapore

$$G(P) = G^{\circ} + nRT \ln \left(rac{P}{P^{\circ}}
ight)$$
 attiv

$$\mu_i = \mu_i^\circ + RT \ln \left(rac{P_i}{P^\circ}
ight)$$

Legge di Raoult

$$P = X_{
m solvente} imes P_0$$

$$a = rac{P}{P_0} \hspace{1cm} a pprox X_{
m solvente}$$

$$approx X_{
m solvente}$$

$$rac{P}{P_0} = X_{
m solvente}$$

$$X_{
m soluto} = rac{P_0 - P}{P_0}$$

François-Marie Raoult

sistema multicomponente

abbassamento relativo della tensione di vapore

 $\chi_{A} = 0$ $\chi_{B} = 1$

chimica

innalzamento ebullioscopico

$$T_{
m eb,\,soluzione} = T_{
m eb,\,solvente\,puro} + \Delta T_{
m eb}$$

innalzamento ebullioscopico

$$\mu_{
m liquido}^0(T_{
m eb}^0) = \mu_{
m vapore}^0(T_{
m eb}^0)$$

equilibrio liquido-vapore

$$\mu_{
m liquido}^0(T_{
m eb}) - \mu_{
m liquido}^0(T_{
m eb}^0) pprox -\Delta S_{
m vap}(T_{
m eb}-T_{
m eb}^0)$$

$$\Delta H_{
m vap} rac{T_{
m eb} - T_{
m eb}^0}{T_{
m eb}^0} = R T_{
m eb} \ln X_{
m solvente}$$

$$X_{
m solvente}pprox 1-X_{
m soluto}$$
 $\ln X_{
m solvente}pprox -X_{
m soluto}$

$$\ln X_{
m solvente} pprox -X_{
m soluto}$$

$$\Delta H_{
m vap} rac{T_{
m eb} - T_{
m eb}^0}{T_{
m eb}^0} = -RT_{
m eb}X_{
m soluto}$$

$$\Delta S_{
m vap} = rac{\Delta H_{
m vap}}{T_{
m eb}^0}.$$

innalzamento ebullioscopico

$$\Delta H_{
m vap} rac{T_{
m eb} - T_{
m eb}^0}{T_{
m eb}^0} = -RT_{
m eb}X_{
m soluto}$$

$$\Delta T_{
m eb} = rac{R T_{
m eb}^{0\,2}}{\Delta H_{
m vap}} X_{
m soluto}$$

$$mpprox X_{
m soluto} \ M_{
m Solvente}$$

MM_{solvente} = massa molecolare del solvente

$$K_{
m eb} = rac{RT_{
m eb}^{0\,2}}{\Delta H_{
m vap}} M_{
m solvente}$$

$$\Delta T_{
m eb} = K_{
m eb} imes m$$

abbassamento crioscopico

L'abbassamento crioscopico è il fenomeno per cui la temperatura di congelamento di una soluzione è inferiore a quella del solvente puro.

$$\Delta T_{
m cr} = K_{
m cr} imes m$$

$$T_{\rm cr, \, soluzione} = T_{\rm cr, \, solvente \, puro} - \Delta T_{\rm cr}$$

abbassamento crioscopico

$$\mu_{
m liquido}^0(T_{
m cr}^0)=\mu_{
m solido}^0(T_{
m cr}^0)$$

equilibrio liquido-solido

$$\mu_{
m liquido}^0(T)pprox \mu_{
m liquido}^0(T_{
m cr}^0) - \Delta S_{
m fus}(T_{
m cr}^0-T)$$

$$\mu_{
m solido}^0(T)pprox \mu_{
m solido}^0(T_{
m cr}^0) - \Delta S_{
m fus}(T_{
m cr}^0-T)$$

Entropia di fusione
$$\Delta S_{
m fus} = rac{\Delta H_{
m fus}}{T_{
m cr}^0}$$

$$RT_{
m cr} \ln X_{
m solvente} = \Delta H_{
m fus} \left(rac{T_{
m cr}^0 - T_{
m cr}}{T_{
m cr}^0}
ight)$$

$$\ln X_{
m solvente} pprox - X_{
m soluto}$$

pressione osmotica

La pressione osmotica è la pressione che una soluzione esercita per effetto della presenza di particelle di soluto ed è proporzionale alla concentrazione molare del soluto disciolto

$$\Pi = MRT$$

pressione osmotica

Per bloccare il passaggio spontaneo del solvente, occorre eguagliare i potenziali chimici imponendo una pressione alla soluzione.

$$\mu_0(P,T) = \mu(P+\Pi,T)$$

$$\mu(P+\Pi,T)pprox \mu(P,T)+V_{
m solvente}\Pi$$

$$\mu_0(P,T) = \mu_0(P,T) + RT \ln X_{
m solvente} + V_{
m solvente} \Pi$$

$$0 = RT \ln X_{
m solvente} + V_{
m solvente} \Pi$$

$$V_{
m solvente}\Pi = -RT \ln X_{
m solvente}$$

$$V_{
m solvente}\Pi=RTX_{
m soluto}$$

coefficiente di Van't Hoff (i)

È un numero che misura l'effettivo aumento del numero di particelle in soluzione rispetto a quelle previste per un soluto puro.

- > non si dissocia (es. zucchero, urea), i=1
- \triangleright si dissocia completamente (es. NaCl \longrightarrow Na⁺ + Cl⁻), i \approx 2
- > si associa (formazione di dimeri, complessi), i<1

osmolarità
$$\Pi = iMRT$$

$$\Delta T_{
m eb} = i K_{
m eb} m$$

$$\Delta T_{
m cr} = i K_{
m cr} m$$

legge di Henry

La quantità di gas disciolto in un liquido è proporzionale alla pressione che il gas esercita sul liquido.

La legge di Henry collega la pressione del gas sopra un liquido con quanto gas può essere dissolto nel liquido stesso.

$$C = k_H \times P$$

C = concentrazione del gas disciolto (mol/L oppure g/L)

P = pressione parziale del gas sopra il liquido (atm)

k_H = costante di Henry (dipende dal gas, dal solvente e dalla temperatura)

LEGGE DI HENRY

aumenta

