

კვადრატული ბადის თავსატეხი

ამ თავსატეხში თქვენ გეძლევათ 0-დან ინდექსირებული $N \times N$ კვადრატული ბადე, რომელიც შედგება განსხვავებული მთელი რიცხვებისგან 0 დან $N \times N - 1$ ჩათვლით. ჩვენი მიზანია მივაღწიოთ ისეთ დალაგებულ მდგომარეობას,რომელშიც i-ურ სტრიქონსა და j-ურ სვეტში არის $i \times N + j$ ყოველი $0 \le i,j < N$ -თვის. თქვენ შეგიძლიათ მიაღწიოთ ამ მიზანს ორი ტიპის სვლის გამოყენებით:

- **D** გემოთ გადანაცვლება: "**D** a[0] a[1] ... a[N-1]", სადაც a[0], a[1], ... a[N-1] არის რომელიმე გადანაცვლება ბადის ყველაზე გემოთ მდგომი სტრიქონის რიცხვებიდან. ამ სვლით ყველაზე გემოთ მდგომი სტრიქონი წაიშლება და ბადის ბოლოში დაემატება სტრიქონი,რომელიც შექმნილია რიცხვებით a[0], a[1], ... a[N-1] მარცხნიდან მარa3503.
- R მარჯვნივ გადანაცვლება: "R b[0] b[1] ... b[N-1]" , სადაც b[0], b[1], ... , b[N-1] არის გადანაცვლება ბადის ყველაზე მარცხნივ მდგომი სვეტის რიცხვებიდან. ამ ამ სვლით ყველაზე მარცხნივ მდგომი სვეტი წაიშლება და დაემატება ახალი სვეტი, რომელიც შექმნილია რიცხვებით b[0] b[1] ... b[N-1]" ზემოდან ქვემოთ.

მაგალითად, თუ გვაქვს ბადე:

სტრიქონი/სვეტი	0	1	2
0	2	4	6
1	8	1	5
2	7	3	0

"**D** 6 2 4" სვლის შესრულებით ჩვენ მივიღებთ ბადეს:

სტრიქონი/სვეტი	0	1	2
0	8	1	5
1	7	3	0
2	6	2	4

"**R** 2 8 7" სვლის შესრულებით ჩვენ მივიღებთ ბადეს:

სტრიქონი/სვეტი	0	1	2
0	4	6	2
1	1	5	8
2	3	0	7

N=3-თვის სამიზნე ბადე ასე გამოიყურება:

სტრიქონი/სვეტი	0	1	2
0	0	1	2
1	3	4	5
2	6	7	8

თქვენ მიზნად ისახავთ თავსატეხის ამოხსნას $3 \times N$ -ზე ნაკლები სვლით. თუმცა, ნაწილობრივი ქულები შეიძლება მიენიჭოს იმ შემთხვევაში, თუ თქვენ გამოიყენებთ მეტ სვლას ან არ ამოხსნით თავსატეხს. დეტალებისთვის იხილეთ ქულების განყოფილება.

შემავალი ფორმატი

პირველი ხაზი შეიცავს ერთ მთელ რიცხვს: N. შემდეგი N ხაზი აღწერს საწყის ბადეს, თითოეულ სტრიქონში N რიცხვია.

გამომავალი ფორმატი

პირველი ხაზი უნდა შეიცავდეს ერთ მთელ რიცხვს M- გადანაცვლებების რიცხვი. ყოველი შემდეგი ხაზი M უნდა შეიცავდეს ერთ გადანაცვლებას.

ქულები

აღვნიშნოთ M-ით გადანაცვლებების რაოდენობა თქვენს ამოხსნაში. აგრეთვე A=3 imes N და $B=2 imes N^2.$

თუ თქვენი ამოხსნა არასწორია, ან თუ M>B, თქვენ მიიღებთ 0 ქულას. წინააღმდეგ შენთხვევაში, თქვენი ქულები დამოკიდებულია სწორ სამიზნე პოზიციებზე მყოფი რიცხვების რაოდენობაზე (აღვნიშნოთ C).

თუC < N imes N არ არის ამოხსნილი და თქვენ მიიღებთ $(50 imes rac{C}{N imes N})$ % ტესტის ქულებისას. წინააღმდეგ შემთხვევაში:

- ullet If M < A, შენ მიიღებ 100% ტესტის ქულებიდან.
- ullet If $A \leq M \leq B$, შენ მიიღებ $(40 imes ig(rac{B-M}{B-A}ig)^2 + 50)$ % ტესტის ქულებიდან.

ყოველი ტესტი ფასდება ერთდაიგივე რაოდენობის ქულებით. თქვენი ქულები არის ცალკეული ტესტებიდან მიღებული ქულების ჭამი და საბოლოო შედეგი იქნება ყველა ცდებს შორის მიღებული საუკეთესო შეფასება.

მაგალითი 1

Standard input	Standard output
3	4
1 4 2	R 3 6 1
375	D 2 3 4
680	D 5 6 7
	R 2 5 8

ეს ამოხსნა აღწევს 9-ზე ნაკლები სვლით და აგროვებს სრულ ქულებს.

მაგალითი 2

Standard input	Standard output
2	0
2 1	
03	

თავსატეხი არ არის ამოხსნილი, რადგან მხოლოდ ორი რიცხვია (1 და 3) 4 -დან სწორ პოზიციაში. ეს მიიღებს $50 imes rac{2}{4} = 25\%$ ქულას.

შეზღუდვები

• $2 \le N \le 9$

ქვეამოცანები

- ქვეამოცანები არ არის.
- ullet ყოველი N-თვის 2-დან 9-მდე არის თანაბარი რაოდენობის შემთხვევები.