Instituto de Informática - UFRGS

Sistemas Operacionais

Sistema de arquivos Montagem Virtual File System Sistemas de arquivos jornalizados

Aula 28

Introdução

- Um sistema computacional pode ter vários sistemas de arquivos
 - e.g.: NTFS, FAT32, ext3, ReiserFS, ISO 9660 (cdrom), Universal Disk Format (dvd), etc
- Cada sistema de arquivos é um disco lógico (partição)
- Arquivos só podem ser acessados depois que o sistema de arquivo ser montado
 - Montagem: combina vários sistemas de arquivos em um único espaço de
- Sistema de arquivos pode estar em outro dispositivo ou em outra máquina (montagem remota)
 - e.g.: Network File System (NFS)
 - Conceito de exportação e de importação

Sistemas Operacionais 2

O conceito de montagem

- Montar um sistema de arquivo significa integrá-lo a uma hierarquia já existente de um outro sistema de arquivos
- Montagem é composta por:
 - Nome do dispositivo
 - Ponto de montagem
- Semânticas possíveis:
 - Ponto de montagem ser um diretório vazio ou não
 - Mesmo sistema de arquivos ser montado mais de uma vez
- Operações mount e unmount

Instituto de Informática - UFRGS A. Carissimi -

Sistemas Operacionais

Partição 2 Montagem de etc (usr bin ioão Is who Mail partições em um subdiretório passwd teste Pontos de montagem Instituto de Informática - UFRGS A. Carissimi -

Instituto de Informática - UFRGS A. Carissimi -

Sistemas Operacionais

3

Exemplo de montagem

Suporte a múltiplos sistemas de arquivos

- Fazer com que o sistema operacional suporte diversos sistemas de arquivos diferentes simultaneamente
 - Cada partição possui um sistema de arquivos auto-contido
- Solução inspirada na gerência de periféricos
 - Parte independente do dispositivo
 - Serviços idênticos independente do tipo de sistema de arquivos
 - Parte dependente do dispositivo
 - Interface padrão

Sistemas Operacionais

Virtual File System

Princípio de implementação

- Baseado em técnicas de orientação a objetos
 - Estrutura de dados e procedimentos são usados para isolar a funcionalidade básica de sua implementação
- Três camadas
 - API: interface entre os processos de usuário e o sistema de arquivos
 - VFS
 - Separação entre as operações genéricas da implementação
 - Identificador único (v-node)
 - Implementação do sistema de arquivos específicos

Instituto de Informática - UFRGS A. Carissimi -

Instituto de Informática - UFRGS A. Carissimi-21-juin-12

Sistemas Operacionais

Instituto de Informática - UFRGS A. Carissimi -

Instituto de Informática - UFRGS A. Carissimi -

Implementação de múltiplos sistemas de arquivos

- Tabela com descritores virtuais de arquivos abertos
 - Parte independente do sistema de arquivos
 - Uma entrada ocupada para cada arquivo aberto (descritor virtual)
- Descritor virtual
 - Informações comuns a todo sistema de arquivo (proteção, nro de acessos, ...)
 - Apontador para uma estrutura "Tipo do sistema de arguivos"
 - Apontador para o descritor do sistema de arquivos real
 - Lista de ponteiros para rotinas que implementam o código necessário a execução de uma dada chamada de sistema (read, write, close,...)
 - Informações sobre a gerência desse sistema de arquivos (blocos livres, ocupados, estrutura de diretórios, ...)

Sistemas Operacionais

Múltiplos sistemas de arquivos: estrutura de dados

Implementação de sistemas de arquivos distribuídos

Coleção de clientes e de servidores

Instituto de Informática - UFRGS A. Carissimi -

- Servidores: armazenamento do sistema de arquivos (recursos)
- Clientes: utilização de recursos remotos
- Arquitetura geral: (válida para o Network File System NFS)

Confiabilidade em sistemas de arquivos

- Modificações no sistema de arquivos são mantidas em memória (cache de disco) por questões de desempenho
 - Blocos de dados e estruturas de controle
- Em caso de panes ou desligamento inadequado da máquina o sistema de arquivos pode ficar inconsistente
 - Necessário reconstruir a consistência
 - Tempo depende do número de arquivos e de diretórios
 - Discos atuais pode chegar a horas
- Sistemas de arquivos jornalizados visam otimizar a verificação de consistência

Instituto de Informática - UFRGS A. Carissimi -21-juin-12

11

Sistemas Operacionais

12

Confiabilidade em sistemas de arquivos

- Três princípios básicos
- Preservação
 - Dados estáveis no disco não podem ser afetados por uma pane
- Predição
 - Comportamento de recuperação após a pane deve apresentar resultados previsíveis
- Atomicidade

Instituto de Informática - UFRGS A. Carissimi -21-juin-12

 Uma operação é <u>completamente realizada</u> ou é considerada como nunca iniciada

Sistemas Operacionais 13

O conceito de transação

- Analogia: "um negócio é considerado feito somente após o acordo entre as partes e a assinatura do contrato"
- Devem oferecer a propriedade ACID
 - Atomicidade: ser indivisível sob o ponto de vista externo
 - Consistência: não violar invariantes* do sistema
 - Isolamento: transações concorrentes não devem interferir uma nas outras
 - Durabilidade: uma vez concluída, os efeitos são permanentes
- Primitivas básicas: begin_transaction, end_transaction, commit e abort
- Procedimento de Roll-back
 - Uma transação não concluída deve manter inalterado o estado do sistema

Sistemas Operacionais 14

Fases de uma transação

Begin_transaction() Fase 1: Execução de operações Operações são realizadas que fazem parte da transação e registradas de forma a permitir que sejam confirmadas ou desfeitas. end_transaction() Abort transaction() Fase 2: Abort() Commit() Modificações decorrentes das operações são concretizadas Modificações realizadas Modificações realizadas ou desfeitas. não são concretizadas são tornadas permanentes

Sistemas de arquivos jornalizados

- Emprega tecnologia proveniente de sistemas de banco de dados
- Mecanismo de base é realizar as atualizações no sistema de arquivos através do emprego de transações
 - As operações (transações) são mantidas em um jornal (arquivo log)
 - Efetua um rastreamento das modificações feitas no sistema de arquivos

16

 Em caso de pane utiliza as informações do jornal para deixar o sistema em um estado consistente

Sistemas Operacionais

Instituto de Informática - UFRGS A. Carissimi -21-juin-12

Sistemas Operacionais

rissimi -21-juin-12

Instituto de Informática - UFRGS A. Carissimi -21-juin-12

15

Instituto de Informática - UFRGS A. Carissimi-21-juin-12

Implementação de ação atômica

- 1. Execução da ação atômica A
 - a. Na execução de begin atomic action criar uma lista de intenções e um flag commit commit flag = (A_i, "not commited")
 Lista de intenções = "vazia"
 - b. Para cada atualização feita por uma subação, adicionar um par (d, ν) na lista de intenções, onde d'é nro de um bloco e ν é novo valor para este bloco
 - c. Na execução de **end atomic action**, colocar o valor da ação A, para *commit*, ir passo 2.
- 2. Processamento do commit
 - 1. Para cada par (d, v) na lista de intenções, escrever v no bloco do disco d
 - 2. Apagar o flag commit e a lista de intenções
- 3. Na recuperação após uma falha: se o flag commit da ação A_i existir
 - Se o valor do flag é "not commited": apagar o flag commit e a lista de intenções e reiniciar a ação Ai
 - 2. Realizar o passo 2 se o valor do flag é commit

Sistemas Operacionais

Arquivo de jornal

- Composto por um registro
 - Identificador da transação, identificador do arquivo/bloco, valores novo/antigo
- Possui um tamanho fixo
 - Esquema de "rotate" apagando informações mais antigas
- Otimizado para escrita

• "janela" de perda

Sistemas Operacionais 18

Modos de jornalização

- Write behind
 - Garante a consistência apenas dos metadados
 - As operações de atualização de blocos de dados podem ser perdidas
- Ordered data
 - Garante a consistência dos metadados e dos dados, fazendo com que os metatados sejam confirmados somente após a escrita do bloco de dados
 - Pode acontecer de um bloco novo ter sido escrito no disco, mas ainda não ter sido atualizado como pertencente ao arquivo
- Full data
 - Garante a consistência dos metadados e dos dados por jornalização

Prós e contras da jornalização

- Tendência a fragmentar o disco
- Custo computacional
- Maior quantidade de operações de entrada e saída no disco
- Atualização do jornal no disco é sem uso de cache
- Paliativo:
 - Nem toda partição necessita ser jornalizada

Instituto de Informática - UFRGS A. Carissimi -21-juin-12

Instituto de Informática - UFRGS A. Carissimi -21-juin-12

17

19

Sistemas Operacionais

Sistemas Operacionais 20

Instituto de Informática - UFRGS A. Carissimi -

Sistemas de arquivos jornalizados em moda

- XFS (SGI-irix/linux)
- JFS (IBM-aix/linux)
- ReiserFS (linux)
- ext3fs (linux)
- NTFS (windows NT, XP)

Sistemas Operacionais

Estudo de caso: ext3fs (cont.)

- Metadados:
 - Superblocos, descritor de grupos, i-nodes, blocos de indireção, bitmap (blocos e i-nodes)
- Dois passos:
 - Metadados modificados são copiados para o arquivo de jornal (commit1)
 - Blocos do jornal são escritos no sistema de arquivos (commit 2)
- Situações na recuperação (usa dois commits):
 - Falha acontece antes do commit 1
 - Modificações são ignoradas (volta-se ao estado anterior)
 - Falha acontece depois do commit 1 e antes do commit 2
 - Cópias no jornal estão atualizadas, as transfere para o sistema de arquivos

Estudo de caso: Ext3fs

- Objetivos:
 - Ser sistema de arquivos jornalizado
 - Ser compatível com o ext2 (usa mesmas estruturas de controle)
- Permite ser configurado para metadados e dados regulares
 - Problema é o desempenho
- Três tipos de jornalização:
 - Jornal: dados e metadados
 - Ordenado: metadados porém os atualiza após ter escrito os dados regulares
 - Método default
 - Writeback: metadados
- Arquivo de jornal é .jornal no raiz do sistema de arquivos ext3

Sistemas Operacionais 22

Estudo de caso: NTFS

- Transações são mantidas no metafile (\$LogFile)
- Armazena apenas metadados
 - Garante a consistência do sistema de arquivos não de dados de usuário

Instituto de Informática - UFRGS A. Carissimi -21-juin-12

Instituto de Informática - UFRGS A. Carissimi -21-juin-12

21

23

Sistemas Operacionais

Sistemas Operacionais

Instituto de Informática - UI

Instituto de Informática - UFRGS A. Carissimi -21-juin-12

