DO-GON KIM

New York, NY | (646) 315-2260 | Email | Website | LinkedIn

EDUCATION

Columbia University

Sep 2023 – May 2025

 $Master\ of\ Science,\ Mechanical\ Engineering,\ \mathbf{GPA:\ 4.065}$

Relevant Coursework: Intro to Robotics, Applied Robotics, Computational Aspects of Robotics, Robot Learning

New York University

Sep 2020 - Jan 2023

Bachelor of Science, Mechanical Engineering, GPA: 3.823

Relevant Coursework: Robotic Manipulation and Locomotion, Robotic Vision

Honors & Awards: Tau Beta Pi, UGSRP, Founder's Day Award, Dr. Morris Young Outstanding Project Design Award

SKILLS

Programming Language: Python, MATLAB, C++

Software/OS: ANSYS Workbench, SOLIDWORKS, Onshape, Gazebo Simulator, Pybullet, ROS, Linux, Rviz, Simulink Machining/Tools: Laser cutting, 3D printing, Grizzly G7943, Baileigh WBS-22 Bandsaw, Jet JSG-96 Benchtop Sander

RESEARCH EXPERIENCE

Graduate Researcher, Columbia University Prof. Beigi's group, New York, NY

May 2025 - Present

• Learning-Adaptive Control for systems performing repetitive tasks

Graduate Researcher, Columbia University ROAM Lab, New York, NY

May 2024 – Present

- VibeCheck: Active Acoustic Sensing for Manipulation
 - Designed and developed fingers to enable active acoustic sensing for manipulation, enabling material, internal structure, and object state classification, grasp point, and contact type estimation
 - Developed and optimized tactile sensing systems using piezoelectric sensors and signal processing techniques, including FFT analysis for feature extraction, laying the groundwork for object classification using MLP
 - Demonstrated a peg-in-hole insertion task using active acoustic sensing, achieving a success rate of 70% using only acoustic tactile feedback
- SpikeATac: Multimodal Tactile Fingers
 - Developed a ROS2-based data pipeline that integrates PVDF and force-torque sensors with a linear probe to collect synchronized multimodal data for sensor sensitivity experiments
 - Tuned velocity PI gains on DYNAMIXEL XM430-W210-T to minimize post-contact encoder error, achieving error below 10 counts with optimal settings
 - Implemented a real-time gripper stopping algorithm based on output deviations from a 16-channel tactile sensor, improving grasp accuracy on deformable objects

Graduate Researcher, Columbia University DitecT Lab, New York, NY

Jan 2024 – Sep 2024

- Spearheaded the development of a simulation framework using ROS2 and PyBullet in AWS DeepRacer, enabling ML model testing without physical hardware and fostering a dynamic environment for autonomous vehicle research
- Developed visualization tools for LIDAR to effectively detect obstacles around the autonomous vehicle
- Developed a real-time ArUco marker detection system with OpenCV, allowing for accurate determination of position, orientation, and speed of markers, which were integrated into dynamic vision-based applications

Undergraduate Research Assistant, NYU Control/Robotics Research Lab, Brooklyn, NY Jun 2022 - Dec 2022

- Researched and utilized ROS with Gmapping and AMCL algorithms to build and localize maps using sensors
- Enabled Turtlebot3 Burger to detect obstacles and navigate autonomously with LIDAR, encoder, and IMU
- Studied SLAM algorithms (RTAB-Map, ORB-SLAM) and analyzed mapping errors to minimize discrepancies

TEACHING EXPERIENCE

 ${\bf Graduate\ Teaching\ Assistant},\ \underline{{\it Columbia\ University}},\ {\rm New\ York},\ {\rm NY}$

Jan 2025 - May 2025

MECE E4601 Digital Control Systems

- Assisted Professor Homayoon Beigi during lectures and weekly meetings
- Provided feedback on homework covering Laplace transforms, analyticity, and state-space representation
- Held weekly office hours, teaching control theory concepts

Graduate Teaching Assistant, Columbia University, New York, NY

Sep 2024 – Dec 2024

MECE E4602 Introduction to Robotics

- Assisted Professor Sunil Agrawal in lectures and weekly meetings
- Created homework and midterm problems on kinematics, Jacobian, and singularities
- Held weekly office hours for 2 hours, teaching class materials to help students better understand robotics concepts

PUBLICATIONS

• K. Zhang*, **D. Kim***, E. T. Chang*, H. Liang, Z. He, K. Lampo, P. Wu, I. Kymissis, M. Ciocarlie, "VibeCheck: Using Active Acoustic Tactile Sensing for Contact-Rich Manipulation," *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)* – Under Review

PROJECTS

Introduction to Robotics Project - Cable Driven Parallel Robot

Sep 2023 - Dec 2023

- Developed an adaptive velocity controller for a 4-cable-driven parallel robot, enabling dynamic speed adjustments based on the different objects, which enhances precision in handling diverse materials
- Validated performance through MATLAB 3D simulations, demonstrating successful integration of inverse kinematics and adaptive velocity control for smooth, responsive motion
- Optimized the cable-driven system design by reducing cables from 7 to 4, simplifying kinematic solutions and minimizing collision issues, demonstrating the system's applicability in industrial settings like distribution warehouses

Robotic Vision Project – Sheet Music Sight-Reader

Feb 2022 - May 2022

- Created a Colab-based CV pipeline that takes in the image of a sheet of music and outputs a playable music file
- Trained a model to detect a position of each note in sheet music using the YOLO algorithm with 90% accuracy
- Utilized Canny Edge Detector to find five lines in sheet music and applied a vertical slice on across the five lines to calculate an accurate position of five lines