Interconnects

- Wire Resistance
- Wire Capacitance
- Wire RC Delay
- Crosstalk
- Wire Engineering
- Repeaters

Introduction

- Chips are mostly made of wires called *interconnect*
 - In stick diagram, wires set size
 - Transistors are little things under the wires
 - Many layers of wires
- Wires are as important as transistors
 - Speed
 - Power
 - Noise
- Alternating layers run orthogonally

Wire Geometry

- Pitch = w + s
- Aspect ratio: AR = t/w
 - Old processes had AR << 1
 - Modern processes have AR ≈ 2

• Pack in many skinny wires/

Layer Stack

- AMI 0.6 μm process has 3 metal layers
- Modern processes use 6-10+ metal layers

•	Example:	Layer	T (nm)	W (nm)	S (nm)	AR	
	Intel 180 nm process	6	1720	860	860	2.0	
•	M1: thin, narrow ($< 3\lambda$)		1000				
	 High density cells 	5	1600	800	800	2.0	
•	M2-M4: thicker		1000				
	 For longer wires 	4	1080 700	540	540	2.0	
•	M5-M6: thickest	3	700 700	320	320	2.2	
	- For V _{DD} , GND, clk	2	700 700	320	320	2.2	
		1	480 800	250	250	1.9	
							Substrate

Wire Resistance

$$\rho = resistivity (\Omega * m)$$

$$R = \frac{\rho}{t} \frac{l}{w} = R_{\Box} \frac{l}{w}$$

- $R_{\square} = sheet \ resistance \ (\Omega/\square)$
 - $-\Box$ is a dimensionless unit(!)
- Count number of squares
 - $-R = R_{\square} * (\# \text{ of squares})$

Choice of Metals

- Until 180 nm generation, most wires were aluminum
- Modern processes often use copper
 - Cu atoms diffuse into silicon and damage FETs
 - Must be surrounded by a diffusion barrier

Metal	Bulk resistivity (μΩ*cm)
Silver (Ag)	1.6
Copper (Cu)	1.7
Gold (Au)	2.2
Aluminum (Al)	2.8
Tungsten (W)	5.3
Molybdenum (Mo)	5.3

Sheet Resistance

• Typical sheet resistances in 180 nm process

Layer	Sheet Resistance (Ω/□)			
Diffusion (silicided)	3-10			
Diffusion (no silicide)	50-200			
Polysilicon (silicided)	3-10			
Polysilicon (no silicide)	50-400			
Metal1	0.08			
Metal2	0.05			
Metal3	0.05			
Metal4	0.03			
Metal5	0.02			
Metal6	0.02			

Contacts Resistance

- Contacts and vias also have 2-20 Ω
- Use many contacts for lower R
 - Many small contacts for current crowding around periphery

Wire Capacitance

- Wire has capacitance per unit length
 - To neighbors
 - To layers above and below
- $C_{total} = C_{top} + C_{bot} + 2C_{adj}$

Capacitance Trends

- Parallel plate equation: $C = \varepsilon A/d$
 - Wires are not parallel plates, but obey trends
 - Increasing area (W, t) increases capacitance
 - Increasing distance (s, h) decreases capacitance
- Dielectric constant
 - $\varepsilon = k\varepsilon_0$
- $\varepsilon_0 = 8.85 \text{ x } 10^{-14} \text{ F/cm}$
- k = 3.9 for SiO₂
- Processes are starting to use low-k dielectrics
 - k ≈ 3 (or less) as dielectrics use air pockets
- Typical (M2) wires have ~ 0.2 fF/ μ m
 - Compare to 2 fF/μm for gate capacitance

Diffusion & Polysilicon

- Diffusion capacitance is very high (about 2 fF/μm)
 - Comparable to gate capacitance
 - Diffusion also has high resistance
 - Avoid using diffusion runners for wires!
- Polysilicon has lower C but high R
 - Use for transistor gates
 - Occasionally for very short wires between gates

Lumped Element Models

- Wires are a distributed system
 - Approximate with lumped element models

N segments

- 3-segment π -model is accurate to 3% in simulation
- L-model needs 100 segments for same accuracy!
- Use single segment π -model for Elmore delay

Example

- Metal2 wire in 180 nm process
 - 5 mm long
 - $-0.32 \,\mu m$ wide
 - Number of squares = 5000/0.32 = 15625
- Construct a 3-segment π -model

$$-R_{\square} = 0.05 \Omega/\square$$

$$\Rightarrow$$
 R = 15625 * 0.05 = 781 Ω

$$- C_{permicron} = 0.2 \text{ fF/}\mu\text{m}$$

$$- C_{permicron} = 0.2 \text{ fF/}\mu\text{m}$$
 => $C = 0.2 \text{ fF/}\mu\text{m} * 5000 \mu\text{m} = 1 \text{ pF}$

Wire RC Delay

- Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 5mm wire from the previous example.
 - $R = 2.5 \text{ k}\Omega*\mu\text{m}$ for gates
 - Unit inverter: 0.36 μm nMOS, 0.72 μm pMOS
 - Unit inverter has $4\lambda = 0.36\mu m$ wide nMOS, $8\lambda = 0.72\mu m$ wide pMOS
 - Unit inverter: effective resistance of $(2.5 \text{ k}\Omega*\mu\text{m})/(0.36\mu\text{m}) = 6.9 \text{ k}\Omega$
 - Capacitance: $(0.36\mu m + 0.72 \mu m) * (2fF/\mu m) = 2fF$

 $- t_{pd} = 1.1 \text{ ns}$

Crosstalk

- A capacitor does not like to change its voltage instantaneously.
- A wire has high capacitance to its neighbor.
 - When the neighbor switches from 1-> 0 or 0->1, the wire tends to switch too.
 - Called capacitive *coupling* or *crosstalk*.
- Crosstalk effects
 - Noise on non-switching wires
 - Increased delay on switching wires

Crosstalk Delay

- Assume layers above and below on average are quiet
 - Second terminal of capacitor can be ignored
 - Model as $C_{gnd} = C_{top} + C_{bot}$
- Effective C_{adi} depends on behavior of neighbors
 - Miller effect

В	ΔV	$C_{\text{eff}(A)}$	MCF
Constant	V_{DD}	$C_{gnd} + C_{adj}$	1
Switching with A	0	C_{gnd}	0
Switching opposite A	$2V_{DD}$	$C_{gnd} + 2 C_{adj}$	2

Crosstalk Noise

- Crosstalk causes noise on non-switching wires
- If victim is floating:
 - model as capacitive voltage divider

$$\Delta V_{victim} = \frac{C_{adj}}{C_{gnd-v} + C_{adj}} \Delta V_{aggressor}$$

Coupling Waveforms

• Simulated coupling for $C_{adj} = C_{victim}$

Noise Implications

- *So what* if we have noise?
- If the noise is less than the noise margin, nothing happens
- Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes
 - But glitches cause extra delay
 - Also cause extra power from false transitions
- Dynamic logic never recovers from glitches
- Memories and other sensitive circuits also can produce the wrong answer

Wire Engineering

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:

- Spacing
- Layer
- Shielding

Repeaters

- R and C are proportional to *l*
- RC delay is proportional to l^2
 - Unacceptably great for long wires

Repeaters

- R and C are proportional to l
- RC delay is proportional to l^2
 - Unacceptably great for long wires
- Break long wires into N shorter segments
 - Drive each one with an inverter or buffer

Repeater Design

- How many repeaters should we use?
- How large should each one be?
- Equivalent circuit
 - Wire length *l*
 - Wire Capacitance C_w**l*, Resistance R_w**l*
 - Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C'*W, Resistance R/W

•

Repeater Results

- Write equation for Elmore Delay
 - Differentiate with respect to W and N
 - Set equal to 0, solve

$$\frac{l}{N} = \sqrt{\frac{2RC'}{R_w C_w}}$$

$$\frac{t_{pd}}{I} = \left(2 + \sqrt{2}\right) \sqrt{RC'R_{w}C_{w}}$$

$$W = \sqrt{\frac{RC_{w}}{R_{w}C'}}$$

~60-80 ps/mm

in 180 nm process