

Triedenie – Usporadúvanie 2

28.4.2021

letný semester 2020/2021

prednášajúci: Lukáš Kohútka

Tree sort a Heap sort

- Heapsort používa binárnu haldu ako dátovú štruktúru
- Naplníme binárnu haldu všetkými údajmi, ktoré chceme zoradiť
- Potom postupne voláme Extract-Min (alebo Max) až kým nevyberieme všetky prvky
- Po každej extrakcii použijeme Select sort

- Tree sort používa binárny strom ako dátovú štruktúru
- Naplníme binárny strom všetkými údajmi, ktoré chceme zoradiť
- Potom použijeme in-order prehľadávanie

Halda (heap)

- Využíva špeciálny typ binárneho stromu
 - Tzv. úplný binárny strom (complete binary tree)
 - Na každej úrovni je úplne naplnený, okrem možno poslednej úrovne (rozdiel oproti plnému binárnemu stromu)
- Halda poskytuje len obmedzené operácie
 - insert (pridať prvok), delete (odstrániť prvok)
 - getmax (vyhľadať najväčší prvok)
- Implementácia pomocou BVS:
 - insert /delete O(n), getmax O(1)
- Cieľ je vyváženejšia zložitosť:
 - insert /delete /getmax O(log n)

ADT Prioritný rad /front (Priority queue)

- Množina prvkov, ktorým je pridelená priorita (kľúč) je ich možné podľa priority porovnávať.
- Prvky je možné vkladať v akomkoľvek poradí s rôznou prioritou avšak, pri výbere sa vyberá vždy len prvok s najvyššou prioritou.

Operácie:

- insert(S,x) vloženie prvku x do množinyS
- maximum(S) vrátenie prvku s najväčšímkľúčom
- removeMax(S) odstránenie prvku s najväčším kľúčom

Implementácia pomocou spájaného zoznamu

- insert pridávanie prvkov na začiatok zoznamu
 - O(1)
- maximum/removeMax nájdenie prvku s najväčšou prioritou, ten sa vymaže
 - O(N)

Implementácia pomocou binárnej haldy

 Binárna halda je úplný binárny strom, pre ktorý platí, že hodnota kľúča vo vrchole je väčšia alebo rovná hodnotám kľúčov jeho nasledovníkov

Vlastnosti binárnej haldy

- Binárna halda má voľnejšie pravidlá usporiadania kľúčov (umiestnenie prvkov) ako binárny vyhľadávací strom
- Nemusí platiť, že ľavý podstrom obsahuje prvky s nižšími hodnotami kľúčov ako pravý podstrom!
- Platí tzv. haldová vlastnosť:

kľúč(PARENT(i)) ≥ kľúč(i) pre všetky vrcholy i okrem koreňa

Dôsledok: koreň stromu (binárnej haldy) má vždy najväčšiu hodnotu kľúča (≥ ako ostatné vrcholy).

Binárna halda - Implementácia vektorom

- Koreň stromu na 1. pozícii heap[1]
- Nasledovníky vrchola zapísaného na i-tej pozícii vektora sú (ak existujú):
 - left(i) = 2*i
 - right(i) = 2*i + 1
 - parent(i) = |i/2|
- heap[i..j], kde i>=1, je binárna halda právevtedy, ak každý prvok nie je menší ako jeho nasledovníky.

- Operácia maximum prvokheap[1]
 - O(1)

Binárna halda - Operácia insert

- 1. Vytvorí sa nový vrchol na najnižšej úrovni, označme v
- 2. Ak je v koreň stromu (haldy), končíme.
- 3. Ak kľúč(v) ≤ kľúč(parent(v)), končíme.
- Inak (ak kľúč(v) > kľúč(parent(v))), vymeníme vrchol v so svojím rodičom, a pokračujeme na krok 2 pre v ← parent(v)

(Ak je kľúč vrchola v väčší ako kľúč nového rodiča, vymení sa aj s ním, ... opakujeme, kým nie je strom opäť haldou - spĺňa haldovú vlastnosť)

Binárna halda - Vykonanie insert(40)

Vloženie na najnižšiu úroveň

Binárna halda - Vykonanie insert(40)

Prvá výmena s rodičom (22)

Binárna halda - Vykonanie insert(40)

Druhá výmena s rodičom (26)

- Hotovo obnovená haldová vlastnosť
 - v každom vrchole platí kľúč(PARENT(i)) ≥ kľúč(i)

Binárna halda - Insert (pseudokód)

```
Heap-INSERT(heap, key):
  heap-size (heap) = heap-size(heap) +
  1   i = heap-size (heap)
  while i > 1   and heap[PARENT(i)] <
     key do heap[i] = heap[PARENT(i)]
     i = PARENT(i)
  heap[i] = key</pre>
```

Zložitosť?

- O(log n), kde n je počet prvkov v halde
- Pretože: úplný binárny strom s n prvkami má hĺbku O(log n)

Odstránenie najväčšieho prvku z binárnej haldy

- Odstránime koreň haldy.
- Odstránime najpravejší vrchol na najnižšej úrovni (jeho kľúč označme P) a hodnotu P zapíšeme do koreňa
 - Mohli sme porušiť haldovú vlastnosť!
- Obnovíme haldovú vlastnosť smerom dole
 - 1. Ak P je list, končíme.
 - 2. Označme Q najväčšiu z hodnôt priamych potomkov P Ak Q ≤ P,teda v potomkoch nie sú väčšie kľúče, končíme.
 - 3. Inak (ak Q > P) vymeníme vrchol P s vrcholom Q, pokračujeme na krok 1 pre nižšie umiestnený vrchol P.

- Odstránime koreň haldy
- Odstránime najpravejší vrchol na najnižšej úrovni (jeho kľúč označme P) a hodnotu P zapíšeme do koreňa

Označme Q najväčšiu z hodnôt priamych potomkov P

- Označme Q najväčšiu z hodnôt priamych potomkov P
- Ak Q > P vymeníme vrchol P svrcholom Q

Označme Q najväčšiu z hodnôt priamych potomkov P

- Označme Q najväčšiu z hodnôt priamych potomkov P
- Ak Q > P vymeníme vrchol P svrcholom Q

Označme Q najväčšiu z hodnôt priamych potomkov P

П

- Označme Q najväčšiu z hodnôt priamych potomkov P
- Ak Q > P vymeníme vrchol P svrcholom Q
- Ak P je list, končíme.

Binárna halda - extractMax (pseudokód)

```
Heap-EXTRACT-MAX(heap)
  if heap-size(heap) < 1</pre>
     then error
  max = heap[1]
  heap[1] = heap[heap-size(heap)]
  heap-size(heap) = heap-size(heap)-1
  HEAPIFY(heap, 1)
  return max
```

Binárna halda - heapify (pseudokód)

```
HEAPIFY(heap, i)
  lavy = left(i)
  pravy = right(i)
  if lavy <= heap-size(heap) and heap[lavy] > heap[i]
      then largest = lavy
      else largest = i
  if pravy <= heap-size(heap) and heap[pravy] > heap[largest]
      then largest = pravy
  if largest <> i
      then exchange (heap[i], heap[largest])
             HEAPIFY(heap, largest)
```

- Zložitosť?
 - O(log n), kde n je počet prvkov v halde

Binárna halda - vytvorenie haldy

- z vektora heap[1..n], kde n=length(heap)
- všetky prvky v podvektore heap[(|n/2|+1..n] súlisty a teda aj 1-prvkové haldy
- Pseudokód:

```
BUILD-HEAP(heap):
 heap-size(heap) = length(heap)
 for i = |length[heap] / 2 | downto 1
     do HEAPIFY(heap, i)
```

- Zložitosť?

• Vo výške h je najviac
$$\frac{n}{2^{h+1}}$$
 vrcholov, heapify haldy výšky h trvá O(h)
• $T_{BUILD-HEAP}(n) = \sum_{h=0}^{\lfloor \log n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) = O\left(n \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h}\right) = O(2n) = O(n)$

Binárna halda - vytvorenie haldy (ukážka)

Usporadúvanie haldou (Heapsort)

- Pomocou haldy dokážeme spraviť efektívny triediaci algoritmus, tzv. Heapsort
- Postup: Vytvorím haldu a postupne z nej vyberiem všetky prvky

```
■ HEAP-SORT(A):

BUILD-HEAP(A);
for i = length(A) downto 2 do

{ A[1] ↔ A[i];
  heap-size(A) = heap-size(A)-1;
  HEAPIFY(A, 1)
}
```

- Zložitosť?
 - Vytvorenie (O(n)) a n krát vybratie max (n*O(log n)) = O(n log n)

Porovnávacie algoritmy

- Algoritmus usporadúvania, ktorý prechádza vstupné kľúče a na základe operácie porovnávania rozhoduje, ktorý z dvoch prvkov sa má v usporiadanom poli objaviť ako prvý
- Operácia porovnávania musí mať tieto vlastnosti:

```
Ak a \le b a b \le c, tak a \le c
Pre všetky a a b, bud a \le b alebo b \le a
```

 Základným limitom je dolné ohraničenie počtu potrebných porovnávaní Ω(n log n), ktoré je v najhoršom prípade potrebné na usporiadanie postupnosti

Výhody porovnávacích algoritmov

- Výhody porovnávacách algoritmov
 - Použiteľné as-is pre rôzne dátové typy Čísla, reťace, ...
 - Jednoduchá implementácia porovnávania n-tíc v lexikografickom usporiadaní
 - Reverzná funkcia porovnávania = reverzne usporiadaná postupnosť
- Ako prekonať teoretický limit Ω(n log n) porovnávacích algoritmov?
 - Zbaviť sa porovnávania prvkov :)
 (budeme vyšetrovať štruktúru hodnôt kľúčov)
 - Obetovať priestorovú zložitosť

Usporadúvanie spočítavaním (Counting sort)

- Usporadúvanie výpočtom poradia
 - Neporovnávame kľúče!
 - Pokúsime sa priamo určiť jeho poradie v postupnosti
- Vstup: n čísel v rozsahu 0..k-1
- Určuje počet prvkov menších ako prvok x, pomocou čoho zistí správnu pozíciu prvku x vo vstupnom poli

Usporadúvanie spočítavaním (Counting sort)

- Určuje počet prvkov menších ako prvok x, pomocou čoho zistí správnu pozíciu prvku x vo vstupnom poli
- Algoritmus pracuje s tromi poliami:
 - Pole *a*[0..*n*-1] obsahuje údaje, ktoré sa majú usporiadať
 - Pole b[0..n-1] obsahuje konečný usporiadaný zoznam údajov
 - Pole c[0..k-1] je použité na počítanie počtu prvkov

```
// pocet vyskytov konkretnej hodnoty
for(i = 0; i < n; i++)
    c[a[i]]++;

// prefixove sucty: urcime index posledneho prvku s hodnotou j
for(j = 1; j < k; j++)
    c[j] = c[j] + c[j-1];

// prvky z pola a vložíme na prislusny index v poli b
for(i = n-1; i >= 0; i--)
    b[--c[a[i]]] = a[i];
```

Usporadúvanie spočítavaním (Counting sort)

- Koľko operácií algoritmus vykoná?
 - rádovo n+k+n
- Koľko pomocnej pamäte potrebuje?
 - pole veľkosti n a pole veľkosti k
- Vhodný len pre malé k << n
- Pre veľký rozsah (int) je potrebné veľa pomocnej pamäte

```
// pocet vyskytov konkretnej hodnoty
for(i = 0; i < n; i++)
    c[a[i]]++;

// prefixove sucty: urcime index posledneho prvku s hodnotou j
for(j = 1; j < k; j++)
    c[j] = c[j] + c[j-1];

// prvky z pola a vložíme na prislusny index v poli b
for(i = n-1; i >= 0; i--)
    b[--c[a[i]]] = a[i];
```

Counting sort - príklad

Counting sort - príklad

Stabilný algoritmus

- Algoritmus usporadúvania je stabilný, ak vždy zachová pôvodné poradie prvkov s rovnakými kľúčmi
- Ak prvky s rovnakými kľúčmi sú neodlíšiteľné, tak nie je potrebné sa zaoberať stabilitou algoritmu (napr. ak kľúčom je samotný prvok)
- Zachovať pôvodné poradie prvkov je dôležité napr. pri viacnásobnom usporiadaní - najprv podľa priezviska a potom podľa mena.

Stabilný algoritmus (2)

- Každý nestabilný algoritmus sa dá implementovať ako stabilný tým, že sa zapamätá pôvodné poradie prvkov a pri zhodných kľúčoch sa berie do úvahy toto poradie
- Viacnásobné usporiadanie je možné obísť vytvorením jedného kľúča usporiadania, ktorý je zložený z primárneho, sekundárneho, atď.
 - Takéto úpravy nestabilných algoritmov majú negatívny vplyv na výpočtovú zložitosť

Stabilný algoritmus (3)

Príklad - dvojice (kľúč, prvok):
 (4, 5) (2, 7) (2, 3) (5, 6)

Dve možné usporiadania:

```
(2, 7) (2, 3) (4, 5) (5, 6) - zachované poradie prvkov s kľúčmi 2 - stabilné usporiadanie (2, 3) (2, 7) (4, 5) (5, 6) - zmenené poradie prvkov s kľúčmi 2 - nestabilné usporiadanie
```

- Príklad na viacnásobné usporiadanie dvojice (kľúč 1, kľúč 2):
 (4, 5) (2, 7) (2, 3) (4, 6)
- Usporiadanie najprv podľa kľúča 2, potom podľa kľúča 1:

```
(2, 3) (4, 5) (4, 6) (2, 7) - podľa kľúča 2 (2, 3) (2, 7) (4, 5) (4, 6) - podľa kľúča 1
```

Usporiadanie najprv podľa kľúča 1, potom podľa kľúča 2:

```
(2, 7) (2, 3) (4, 5) (4, 6) - podľa kľúča 1 (2, 3) (4, 5) (4, 6) (2, 7) - podľa kľúča 2 - narušené poradie
```

 Pre zachovanie stability viacnásobného usporadúvania je potrebné usporadúvať postupne podľa kľúčov so zvyšujúcou sa prioritou

Radixové usporadúvanie

- Spracovanie sčítania ľudu USA 1880 trvalo skoro 10 rokov (robí sa každých 10 rokov)
- Herman Hollerith (1860-1929)
- Ako prednášateľ na MIT navrhol prototyp strojov na spracovanie diernych štítkov, doba spracovania ďalšieho sčítania ľudu v 1890 sa tým skrátila na 6 týždňov
- Základná myšlienka: začni triediť podľa najnižšieho rádu
- Založil firmu Tabulating Machine Company (1911), ktorá sa spojila s d'alšími firmami v 1924 - vznikla IBM (International Business Machines)

Radixové usporadúvanie - schéma

RADIX-SORT(A, d) **for** i ← 1 **to** d **do** stabilné usporadúvanie(A) podľa i-tej číslice

- Radixové usporadúvanie neporovnáva dva celé kľúče, ale spracúva a porovnáva len časti kľúčov
- Kľúče považuje za čísla zapísané v číselnej sústave so základom k (radix, koreň), pracuje s jednotlivými číslicami:

hodnota =
$$x_{d-1}k^{d-1} + x_{d-2}k^{d-2} + ... + x_2k^2 + x_1k^1 + x_0k^0$$

- Dokáže usporadúvať čísla, znakové reťazce, dáta, ...
 (počítače reprezentujú všetky údaje ako postupnosti 1 a 0 binárna sústava => 2 je základ)
 - Uvažujme problém: usporiadať milión 64-bitových čísiel
 - Prvé riešenie: 64 prechodov cez milión čísiel?
 - Lepšie riešenie: interpretovať ich ako čísla v sústave so základom (radixom) 2¹⁶, budú to najviac 4-miestne čísla …vtedy to algoritmus usporiada len v 4 prechodoch!

Radixové usporadúvanie - príklad

 usporiada množinu čísiel vo viacerých prechodoch, začínajúc od číslic najnižšieho (jednotkového) rádu, potom usporiada podľa číslic najbližšieho vyššieho (desiatkového) rádu atď.

príklad: 23, 45, 7, 56, 20, 19, 88, 77, 61, 13, 52, 39, 80, 2, 99

Radixové usporadúvanie - príklad

Radixové usporiadanie

- LSD Radix sort (least significant digit) usporadúvanie podľa číslic postupuje od poslednej číslice (s najmenšou váhou) k prvej číslici (s najväčšou váhou) - stabilný.
- MSD Radix sort od prvej číslice k poslednej lexikografické usporiadanie - nestabilný
- Je dôležité na samotné usporadúvanie podľa jednotlivých číslic použiť nejaký stabilný algoritmus, aby sa nemenilo poradie prvkov s rovnakými číslicami jednej váhy pri usporadúvaní podľa inej váhy.
- Keďže počet možných číslic (ak k=10) je len 10, tak na usporiadanie podľa nich je výhodné použiť usporadúvanie spočítavaním.

Vedierkové usporadúvanie (Bucket sort)

 Predpokladá, že vstup je akoby generovaný náhodným procesom, ktorý prvky distribuuje rovnomerne na celom intervale

- Rozdelí interval na n rovnako veľkých disjunktných podintervalov (vedierok - bucketov) a potom do nich rozmiestni vstupné čísla
- Osobitne v každom vedierku sa potom tieto čísla usporiadajú

Vedierkové usporadúvanie - príklad

- Vytvoria sa prázdne vedierka veľkosti M/n (M maximálna hodnota vstupného poľa, n - počet prvkov vstupného poľa)
- Rozptýlenie prechádzanie vstupným poľom a rozmiestnenie každého prvku do prislúchajúceho vedierka

- Usporiadanie naplnených vedierok
- Zreťazenie vedierok postupné prechádzanie usporiadaných vedierok a presúvanie prvkov späť do vstupného poľa

vedierko i obsahuje hodnoty z polouzavretého intervalu [i/10, (i+1)/10).

Analýza zložitosti (Bucket sort)

- Jednotlivé vedierka väčšinou predstavujú spájaný zoznam, do ktorého sa na správne miesto presúvajú prvky zo vstupného poľa (insert sort)
- Činnosti ako vytvorenie vedierok, určenie prislúchajúceho vedierka, presunutie prvku do vedierka a zreťazenie vedierok do výslednej postupnosti trvajú O(n)
- Výpočtová zložitosť usporiadania prvkov vo vedierkach Insert sortom O(n²)

Analýza zložitosti (Bucket sort)

- Výsledná časová zložitosť závisí od rozloženia prvkov vo vedierkach. Ak sú prvky rozmiestnené nerovnomerne a v niektorých vedierkach ich je veľmi veľa, tak časová zložitosť Insert sortu O(n²) prevažuje nad lineárnou zložitosťou a predstavuje výslednú zložitosť celého usporadúvania
- Takýto stav sa môže vyskytnúť ak rozsah prvkov m je oveľa väčší ako ich počet
- Preto sa niekedy celková zložitosť značí podobne ako pri Counting sorte O(n+m). Ak m=O(n), tak výsledná časová zložitosť je O(n)
- Ak sa počet vedierok rovná počtu vstupných prvkov, tak v priemere to vychádza na jeden prvok v každom vedierku, a preto sa za priemernú zložitosť berie O(n)

Ďakujem za pozornosť