

STIC Search Report

Biotech-Chem Library

STIC Database Tracking Number: 102806

TO: Minh-Tam Davis
Location: CM1/8A01&8E12
Art Unit: 1642
Sept 6, 2003

Case Serial Number: 09/700700

From: P. Sheppard
Location: CM1-1E03
Phone: (703) 308-4499
sheppard@uspto.gov

Search Notes

THIS PAGE BLANK (USPTO)

STIC-Biotech/Ch mLib

102806

From: Chan, Christina
Sent: Saturday, August 30, 2003 9:39 AM
To: Davis, Minh-Tam; STIC-Biotech/ChemLib
Subject: RE: Rush search request for 09/700700

RECEIVED

SEP - 2 2003

Please ~~rush~~: Thanks Chris

Chris Chan

TC 1600 New Hire Training Coordinator and SPE 1644
308-3973
CM-1, 9B19

-----Original Message-----

From: Davis, Minh-Tam
Sent: Friday, August 29, 2003 10:49 AM
To : Chan, Christina
Subject: Rush search request for 09/700700

1) Please search SEQ ID NO:335 in the following parent cases of 09/439313 for priority date determination.

09439313 <snquery.pl?APPL_ID=09439313>

is a continuation in part of 09352616 <snquery.pl?APPL_ID=09352616>

Which is a continuation in part of 09288946 <snquery.pl?APPL_ID=09288946>

Which is a continuation in part of 09232149 <snquery.pl?APPL_ID=09232149>

Which is a continuation in part of 09159812 <snquery.pl?APPL_ID=09159812>

Which is a continuation in part of 09115453 <snquery.pl?APPL_ID=09115453>

Which is a continuation in part of 09030607 <snquery.pl?APPL_ID=09030607>

Which is a continuation in part of 09020956 <snquery.pl?APPL_ID=09020956>

Which is a continuation in part of 08904804 <snquery.pl?APPL_ID=08904804>

Which is a continuation in part of 08806099 <snquery.pl?APPL_ID=08806099>

Leave # 335
→ 07/14/98 full dict
Same as # 115
Leave both filing 8/25/98
part of # 335
Do not leave any
part of # 335

1) Please search SEQ ID NO:1 of the instant application against the sequences of 20030022275 (or US 6617129) and 60/051080

11

STN = 09/105, 470

Thank you.

(MINH TAM DAVIS)

ART UNIT 1642, ROOM 8A01, MB 8E12

305-2008

Point of Contact
P. Sheppard
telephone number: (703) 308-4499

Searcher: _____
Phone: _____
Location: _____
Date Picked Up: 9/6/03
Date Completed: 9/6/03
Searcher Prep/Review: _____
Clerical: _____
Online time: _____

TYPE OF SEARCH:
NA Sequences: _____
AA Sequences: _____
Structures: _____
Bibliographic: _____
Litigation: _____
Full text: _____
Patent Family: _____
Other: _____

VENDOR/COST (where applic.)
STN: _____
DIALOG: _____
Questel/Orbit: _____
DRLink: _____
Lexis/Nexis: _____
Sequence Sys.: _____
WWW/Internet: _____
Other (specify): _____

THIS PAGE BLANK (USPTO)

SEQ ID NO: 3394
LENGTH: 2984
TYPE: DNA
ORGANISM: Homo sapien

Initial Score	=	2984	Optimized Score	=	2984	Significance	=	26.07
Residue Identity	=	100%	Matches	=	2984	Mismatches	=	0
Gaps	=	0	Conservative Substitutions	=	0			

X 10 20 30 40 50 60 70
 ATCCCTTCCCACTTCCGAGGCACTGGGCTATCTGTGACTCGAAACACTCG
 ATCCCTTCCCACTTCCGAGGCACTGGGCTATCTGTGACTCGAAACACTCG
 X 10 20 30 40 50 60 70
 ggccttccaaaggccccaacccctaagcggcgagggctccgacactgccttc
 ggccttccaaaggccccaacccctaagcggcgagggctccgacactgccttc
 80 90 100 110 120 130 140
 AGGTGATCAGAGTGAGGAGTCAGGCATCAGAGRACTGTGCGCCCTGAG
 AGGTGATCAGAGTGAGGAGTCAGGCATCAGAGRACTGTGCGCCCTGAG
 150 160 170 180 190 200 210
 AGAACCTAAGCTCAGGAGAACCCAGCTAGGAGACTGTTCCGACAGAGC
 AGAACCTAAGCTCAGGAGAACCCAGCTAGGAGACTGTTCCGACAGAGC
 220 230 240 250 260 270 280
 AGCTCTCTGGAGGTGGAGACTGGAGACTCTCTGGAGACTGGAGACTGG
 AGCTCTCTGGAGGTGGAGACTGGAGACTGGAGACTGGAGACTGGAGC
 290 300 310 320 330 340 350
 ggacctctgtgtccctgtataacacgtatccttaccatccatacgtact
 ggacctctgtgtccctgtataacacgtatccttaccatccatacgtact
 370 380 390 400 410 420 430
 CAGCTTGTGATGCCGAGCTAGGTACACCATATGATCAAACAGCTTGTG
 CAGCTTGTGATGCCGAGCTAGGTACACCATATGATCAAACAGCTTGTG
 440 450 460 470 480 490 500
 GAAAGCAAGGGCAAGCTCACGGCAAGAGGTGTGACACAACTATGGAGA
 GAAAGCAAGGGCAAGCTCACGGCAAGAGGTGTGACACAACTATGGAGA
 510 520 530 540 550 560 570
 TCTCAGATCTCACTGGAGACATGAACACAGAGACAGCTAAATCCAGTC
 TCTCAGATCTCACTGGAGACATGAACACAGAGACAGCTAAATCCAGTC
 580 590 600 610 620 630 640
 CAGTCATCTGAGGTCAATTGTGCTACTGTGAGGAGAGGAGAAATCA
 CAGTCATCTGAGGTCAATTGTGCTACTGTGAGGAGAGGAGAAATCA
 650 660 670 680 690 700 710
 TATTTCCGACATTGTTGATTTGAGCTTGAGCTTGAGCTTGAGGAGAG
 TATTTCCGACATTGTTGAGCTTGAGGAGAGGAGAAATCA
 730 740 750 760 770 780 790
 TATTTCCGACATTGTTGAGCTTGAGGAGAGGAGAAATCA
 TATTTCCGACATTGTTGAGGAGAGGAGAAATCA
 800 810 820 830 840 850 860

	730	740	750	760	770	780	790	
800	810	820	830	840	850	860	TGTGTCAGTAACTCTGAAAGGCAACCTTACAGGAAAGCAACAGGATGTCACC	
							TCTGTCATCGAATACACTCTGAAAGGCAACCTTACAGGATGTCACC	
800	810	820	830	840	850	860	TCTGTCATCGAATACACTCTGAAAGGCAACCTTACAGGATGTCACC	
870	880	890	900	910	920	930	AAGCTGAACTTAAGCTCAGAACGCTCCCTGTCGGATATGCCAAGGCTCTGTCCT	
							AAGCTGAACTTAAGCTCAGAACGCTCCCTGTCGGATATGCCAAGGCTCTGTCCT	
870	880	890	900	910	920	930	AAGCTGAACTTAAGCTCAGAACGCTCCCTGTCGGATATGCCAAGGCTCTGTCCT	
940	950	960	970	980	990	1000	AAAGAGGGGAATAGAGCTCCAGAGAGAGGCCCTCGCTCGCACATATTGCTGGAGGG	
							AAAGAGGGGAATAGAGCTCCAGAGAGAGGCCCTCGCTCGCACATATTGCTGGAGGG	
940	950	960	970	980	990	1000	AAAGAGGGGAATAGAGCTCCAGAGAGAGGCCCTCGCTCGCACATATTGCTGGAGGG	
1010	1020	1030	1040	1050	1060	1070	1080	AGATGGGGGGAGATGAAATATCGTTTCTATTCCTTTATCCCTTAATGGTAGGCCAC
							AGATGGGGGGAGATGAAATATCGTTTCTATTCCTTTATCCCTTAATGGTAGGCCAC	
1010	1020	1030	1040	1050	1060	1070	1080	AGATGGGGGGAGATGAAATATCGTTTCTATTCCTTTATCCCTTAATGGTAGGCCAC
1090	1100	1110	1120	1130	1140	1150	TTAGTTTACAGGAGATGAAATATCGTTTCTATTCCTTTATCCCTTAATGGTAGGCCAC	
							TTAGTTTACAGGAGATGAAATATCGTTTCTATTCCTTTATCCCTTAATGGTAGGCCAC	
1090	1100	1110	1120	1130	1140	1150	TTAGTTTACAGGAGATGAAATATCGTTTCTATTCCTTTATCCCTTAATGGTAGGCCAC	
1160	1170	1180	1190	1200	1210	1220	GAACCTCACCTAACAGGGGGGGCGCGAGCAGAGGGCTTAAAGGGGG	
							GAACCTCACCTAACAGGGGGGGCGCGAGCAGAGGGCTTAAAGGGGG	
1160	1170	1180	1190	1200	1210	1220	GAACCTCACCTAACAGGGGGGGCGCGAGCAGAGGGCTTAAAGGGGG	
1230	1240	1250	1260	1270	1280	1290	CTCCAGACTGTCAGGGCGCTGTCAGTTCAGAGCTCTCTCACATT	
							CTCCAGACTGTCAGGGCGCTGTCAGTTCAGAGCTCTCTCACATT	
1230	1240	1250	1260	1270	1280	1290	CTCCAGACTGTCAGGGCGCTGTCAGTTCAGAGCTCTCTCACATT	
1300	1310	1320	1330	1340	1350	1360	TCCCTTGCGCTGGAGATTAGATCGAGAATTCCTGGATTCAGGCCTCTCTCACATT	
							TCCCTTGCGCTGGAGATTAGATCGAGAATTCCTGGATTCAGGCCTCTCTCACATT	
1300	1310	1320	1330	1340	1350	1360	TCCCTTGCGCTGGAGATTAGATCGAGAATTCCTGGATTCAGGCCTCTCTCACATT	
1370	1380	1390	1400	1410	1420	1430	AAGGCAACTTAATCTCCCTCTTAAATTGTCGCTCTTACATATCTCACTAAGG	
							AAGGCAACTTAATCTCCCTCTTAAATTGTCGCTCTTACATATCTCACTAAGG	
1370	1380	1390	1400	1410	1420	1430	AAGGCAACTTAATCTCCCTCTTAAATTGTCGCTCTTACATATCTCACTAAGG	
1450	1460	1470	1480	1490	1500	1510	GCTTCATTTAGTCAGATTTAGTCGCTCTTAAATTGTCGCTCTTACATATCTCACTAAGG	
							GCTTCATTTAGTCAGATTTAGTCGCTCTTAAATTGTCGCTCTTACATATCTCACTAAGG	
1450	1460	1470	1480	1490	1500	1510	GCTTCATTTAGTCAGATTTAGTCGCTCTTAAATTGTCGCTCTTACATATCTCACTAAGG	
1520	1530	1540	1550	1560	1570	1580	TCTTTTTTTTTTTTTCGTCCTCCCAGGTTATCTGCTCTTACATTTAAAGCTTGG	
							TCTTTTTTTTTTTCGTCCTCCCAGGTTATCTGCTCTTACATTTAAAGCTTGG	
1520	1530	1540	1550	1560	1570	1580	TCTTTTTTTTTTTCGTCCTCCCAGGTTATCTGCTCTTACATTTAAAGCTTGG	
1590	1600	1610	1620	1630	1640	1650	GGAGATCTGAAATGGCTAAAGGACATCATTTAAACTAGCACTCTTATCTCTTAAAGATAC	
							GGAGATCTGAAATGGCTAAAGGACATCATTTAAACTAGCACTCTTATCTCTTAAAGATAC	
1590	1600	1610	1620	1630	1640	1650	GGAGATCTGAAATGGCTAAAGGACATCATTTAAACTAGCACTCTTATCTCTTAAAGATAC	

1660 1670 1680 1690 1700 1710 1720
 ATACATTAATCCAAATCTTATAAGACTGACAGCTTGAGAAGGTCACTGCATTATAGAACCT
 ||||| ||||| ||||| ||||| ||||| ||||| |||||
 ATAGGTTAAATCCAAATCTTATAAGACTGACAGCTTGAGAAGGTCACTGCATTATAGAACCT
 1660 1670 1680 1690 1700 1710 1720
 1730 1740 1750 1760 1770 1780 1790
 TCTGGTGTGTCGTTGCTGTTGAGTCGATCTTGAGCTGACATTCCTTGAGCTGCTGAGGG
 ||||| ||||| ||||| ||||| ||||| ||||| |||||
 TCTGGTGTGTCGTTGAGTCGATCTTGAGCTGACATTCCTTGAGCTGCTGAGGG
 1730 1740 1750 1760 1770 1780 1800
 1810 1820 1830 1840 1850 1860 1870
 TATGGGTTTACAGAGGAACACCGCAGATGAGGCCAGCTTGAGCTGCTGAGGG
 ||||| ||||| ||||| ||||| ||||| ||||| |||||
 TATGGGTTTACAGAGGAACACCGCAGATGAGGCCAGCTTGAGCTGCTGAGGG
 1810 1820 1830 1840 1850 1860 1870
 1880 1890 1900 1910 1920 1930 1940
 CTCATGGGGGGCATGGAAAGAGGACACCGCAGCTTGAGCTGCTGAGGG
 ||||| ||||| ||||| ||||| ||||| ||||| |||||
 CTCATGGGGGGCATGGAAAGAGGACACCGCAGCTTGAGCTGCTGAGGG
 1880 1890 1900 1910 1920 1930 1940
 1950 1960 1970 1980 1990 2000 2010
 TGACTGGAACCTTGTGAGAAAGGAAACCTTCTAAACCAAAAGAAACTGCTCAA
 ||||| ||||| ||||| ||||| ||||| ||||| |||||
 TGACTGGAACCTTGTGAGAAAGGAAACCTTCTAAACCAAAAGAAACTGCTCAA
 1950 1960 1970 1980 1990 2000 2010
 2020 2030 2040 2050 2060 2070 2080
 ATGCTTGGAACTGTGTTATGCTATATGGCTCCAAATGGTAACTCTAGACTCAGAGGATGA
 ||||| ||||| ||||| ||||| ||||| ||||| |||||
 ATGCTTGGAACTGTGTTATGCTATATGGCTCCAAATGGTAACTCTAGACTCAGAGGATGA
 2020 2030 2040 2050 2060 2070 2080
 2090 2100 2110 2120 2130 2140 2150
 GCAGAGGAGAAAGGAGAACTGTGCTTCATTTCATCTGTTACGGTAACTCTAGAGGG
 ||||| ||||| ||||| ||||| ||||| ||||| |||||
 GCAGAGGAGAAAGGAGAACTGTGCTTCATTTCATCTGTTACGGTAACTCTAGAGGG
 2090 2100 2110 2120 2130 2140 2150
 2170 2180 2190 2200 2210 2220 2230
 AGACATGAGAAAATGAGAACACAAACAATTACTATGAGGTAACGTTCTTCTTATAGAAGGGC
 ||||| ||||| ||||| ||||| ||||| ||||| |||||
 AGACATGAGAAAATGAGAACACAAACAATTACTATGAGGTAACGTTCTTCTTATAGAAGGGC
 2170 2180 2190 2200 2210 2220 2230
 2240 2250 2260 2270 2280 2290 2300
 CCCTACTTAATCCGTTAGTGAGAACTCTTCATTTCTTATAGAAGGGCCGCTTACTGTGCTG
 ||||| ||||| ||||| ||||| ||||| ||||| |||||
 CCACTTAATCCGTTAGTGAGAACTCTTCATTTCTTATAGAAGGGCCGCTTACTGTGCTG
 2240 2250 2260 2270 2280 2290 2300
 2310 2320 2330 2340 2350 2360 2370
 GCAAAATTCGCAACTAGTTAATGAGAAGTTGCGCAATTTCACCCATTTCACCCATTTCAC
 ||||| ||||| ||||| ||||| ||||| ||||| |||||
 GCAAAATTCGCAACTAGTTAATGAGAAGTTGCGCAATTTCACCCATTTCACCCATTTCAC
 2310 2320 2330 2340 2350 2360 2370
 2380 2390 2400 2410 2420 2430 2440
 TGCAATGTCGCAACTAGTTAATGAGAAGTTGCGCAATTTCACCCATTTCACCCATTTCAC
 ||||| ||||| ||||| ||||| ||||| ||||| |||||
 GCAAAATTCGCAACTAGTTAATGAGAAGTTGCGCAATTTCACCCATTTCACCCATTTCAC
 2380 2390 2400 2410 2420 2430 2440
 2450 2460 2470 2480 2490 2500 2510
 ATTGCTTCTGCTCTTAACTGATCTTAAATAGCATTTAGTCGCTGCTGCTCTACTGTACTCT
 ||||| ||||| ||||| ||||| ||||| ||||| |||||
 ATTGCTTCTGCTCTTAACTGATCTTAAATAGCATTTAGTCGCTGCTGCTCTACTGTACTCT
 2450 2460 2470 2480 2490 2500 2510
 2520 2530 2540 2550 2560 2570 2580
 TGGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG
 ||||| ||||| ||||| ||||| ||||| ||||| |||||
 TGGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG
 2520 2530 2540 2550 2560 2570 2580

TC	CCCTCTCTGATTTAATTCTTCACTTGCAATTGCAAGGATACACATTCACTGTGATATG	2530	2540	2550	2560	2570	2580	2590
T	CCCTCTCTGATTTAATTCTTCACTTGCAATTGCAAGGATACACATTCACTGTGATATG	2530	2540	2550	2560	2570	2580	2590
TG	TGTTGCAAAAAAAAGTGCTCTGTGTTAACATTACTTGTTGTGATCCTCTGCTTTC	2600	2610	2620	2630	2640	2650	2660
TG	TGTTGCAAAAAAAAGTGCTCTGTGTTAACATTACTTGTTGTGATCCTCTGCTTTC	2600	2610	2620	2630	2640	2650	2660
TG	TGTTGCAAAAAAAAGTGCTCTGTGTTAACATTACTTGTTGTGATCCTCTGCTTTC	2600	2610	2620	2630	2640	2650	2660
TG	TGTTGCAAAAAAAAGTGCTCTGTGTTAACATTACTTGTTGTGATCCTCTGCTTTC	2670	2680	2690	2700	2710	2720	2730
TG	TGTTGCAAAAAAAAGTGCTCTGTGTTAACATTACTTGTTGTGATCCTCTGCTTTC	2670	2680	2690	2700	2710	2720	2730
AG	AGGTGAATTGGATGGTCTCGAGAACATTGACCCAGACGCCGTGTTCTACCGTTAA	2740	2750	2760	2770	2780	2790	2800
AG	AGGTGAATTGGATGGTCTCGAGAACATTGACCCAGACGCCGTGTTCTACCGTTAA	2740	2750	2760	2770	2780	2790	2800
AG	AGGTGAATTGGATGGTCTCGAGAACATTGACCCAGACGCCGTGTTCTACCGTTAA	2740	2750	2760	2770	2780	2790	2800
AG	AGGTGAATTGGATGGTCTCGAGAACATTGACCCAGACGCCGTGTTCTACCGTTAA	2810	2820	2830	2840	2850	2860	2870
AG	AGGTGAATTGGATGGTCTCGAGAACATTGACCCAGACGCCGTGTTCTACCGTTAA	2810	2820	2830	2840	2850	2860	2880
AG	AGGTGAATTGGATGGTCTCGAGAACATTGACCCAGACGCCGTGTTCTACCGTTAA	2810	2820	2830	2840	2850	2860	2880
CAC	CACCCACCAACTTATTCTATGTTGCAACATATGAGTGTTGAAATAAGTCC	2890	2890	2900	2910	2920	2930	2940
CAC	CACCCACCAACTTATTCTATGTTGCAACATATGAGTGTTGAAATAAGTCC	2890	2890	2900	2910	2920	2930	2950
TCT	TCTTTTGTAGAAAAAAAAGAAAAAAAGAAAAAA	2960	2970	2980	X			
TCT	TCTTTTGTAGAAAAAAAAGAAAAAAAGAAAAAA	2960	2970	2980	X			

GCGCCCTTCAAGGTTCCCAAACCCCTTAAGCAGGCCAGAAGGGCTCCGAGCTGCTTCACAC
 GCGCCCTTCAAGGTTCCCAAACCCCTTAAGCAGGCCAGAAGGGCTCCGAGCTGCTTCACAC
 80 80 90 100 110 120 130 140
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 150 150 90 100 110 120 130 140
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 160 160 170 180 190 200 210 220
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 220 220 230 240 250 260 270 280
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 290 290 300 310 320 330 340 350
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 300 300 310 320 330 340 350 360
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 370 370 380 390 400 410 420 430
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 440 440 450 460 470 480 490 500
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 510 510 520 530 540 550 560 570
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 580 580 590 600 610 620 630 640
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 650 650 590 600 610 620 630 640
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 730 730 740 750 760 770 780 790
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 730 730 740 750 760 770 780 790
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 800 800 810 820 830 840 850 860
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 870 870 880 890 900 910 920 930
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 870 870 880 890 900 910 920 930
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 AGGATCTACTTGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 940 940 950 960 970 980 990 1000

AAAGGAGGGCAATAAGAGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 AAAGGAGGGCAATAAGAGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 940 940 950 960 970 980 990 1000
 AGATGGTGGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 AGATGGTGGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 1010 1010 1020 1030 1040 1050 1060 1070
 AGATGGTGGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 AGATGGTGGAGAGGAAGTCAGCCATCAGAGAAGCTGCGCCACTGGCA
 1010 1010 1020 1030 1040 1050 1060 1070
 TAAGTATTACAGGGTGGCCAAATGAGAACAGATCAGCTGCTGAGTTAAGCAGCTGTAACA
 TAAGTATTACAGGGTGGCCAAATGAGAACAGATCAGCTGCTGAGTTAAGCAGCTGTAACA
 1090 1090 1100 1110 1120 1130 1140 1150
 GAACCTCAGGGTGGCCAAATGAGAACAGATCAGCTGCTGAGTTAAGCAGCTGTAACA
 GAACCTCAGGGTGGCCAAATGAGAACAGATCAGCTGCTGAGTTAAGCAGCTGTAACA
 1160 1160 1170 1180 1190 1200 1210 1220
 GAACCTCAGGGTGGCCAAATGAGAACAGATCAGCTGCTGAGTTAAGCAGCTGTAACA
 GAACCTCAGGGTGGCCAAATGAGAACAGATCAGCTGCTGAGTTAAGCAGCTGTAACA
 1230 1230 1240 1250 1260 1270 1280 1290
 TCACACAGTCGAGAAAGGGGGCTGGAGGATTCAGCTCGCTGTGCAAGACAGGGCTTGGAGGT
 TCACACAGTCGAGAAAGGGGGCTGGAGGATTCAGCTCGCTGTGCAAGACAGGGCTTGGAGGT
 1300 1300 1310 1320 1330 1340 1350 1360
 TCACACAGTCGAGAAAGGGGGCTGGAGGATTCAGCTCGCTGTGCAAGACAGGGCTTGGAGGT
 TCACACAGTCGAGAAAGGGGGCTGGAGGATTCAGCTCGCTGTGCAAGACAGGGCTTGGAGGT
 1370 1370 1380 1390 1400 1410 1420 1430
 AAGGCACATATTCTCCCTCCCTTAAATTGAGTGGCTTCAAGCTATACCTGATCTGG
 AAGGCACATATTCTCCCTCCCTTAAATTGAGTGGCTTCAAGCTATACCTGATCTGG
 1370 1370 1380 1390 1400 1410 1420 1430
 TCCTTGCGCTGAGAAATTAGAATGAGAAGTCAGCTGCTGAGTTTCAGCTGATATACTGATCTGG
 TCCTTGCGCTGAGAAATTAGAATGAGAAGTCAGCTGCTGAGTTTCAGCTGATATACTGATCTGG
 1450 1450 1460 1470 1480 1490 1500 1510
 GTCTCATTTAGTCAGATTTCAGTTAGTCAGCTGCTGAGCTTATGCTGCTTAAAGTTGGG
 GTCTCATTTAGTCAGATTTCAGTTAGTCAGCTGCTGAGCTTATGCTGCTTAAAGTTGGG
 1520 1520 1530 1540 1550 1560 1570 1580
 TCTTTTTTTTTTTTTCGTTCCCAAAGCTTAAACTGCACTTTTCTCTTAAAGTTGGG
 TCTTTTTTTTTTTTTCGTTCCCAAAGCTTAAACTGCACTTTTCTCTTAAAGTTGGG
 1590 1590 1600 1610 1620 1630 1640 1650
 GCAGATTCAGAACTGTTAAAGCATCATTTAAACTGCACTTTTCTCTTAAAGTTGGG
 GCAGATTCAGAACTGTTAAAGCATCATTTAAACTGCACTTTTCTCTTAAAGTTGGG
 1590 1590 1600 1610 1620 1630 1640 1650
 ATAGATTAATCCAAATCCATTAAAGCATCATTTAAACTGCACTTTTCTCTTAAAGTTGGG
 ATAGATTAATCCAAATCCATTAAAGCATCATTTAAACTGCACTTTTCTCTTAAAGTTGGG
 1660 1660 1670 1680 1690 1700 1710 1720
 TCTGGTGTCTGCTGCTGAGTTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCT
 TCTGGTGTCTGCTGAGTTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCT
 1730 1730 1740 1750 1760 1770 1780 1790
 TCTGGTGTCTGCTGCTGAGTTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCT
 TCTGGTGTCTGCTGAGTTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCT
 1730 1730 1740 1750 1760 1770 1780 1790
 TATGGATTTACAGGGAGAACACAGGCCAGATGAGGGCCAGGTTACTGAGCTGCTGAGGG
 TATGGATTTACAGGGAGAACACAGGCCAGATGAGGGCCAGGTTACTGAGCTGCTGAGGG

TATGGGATTTCAGAGGAGAACAGCAGGAGATGGAGGCCAGCTTCACTGAGGG
 1810 1820 1830 1840 1850 1860 1870
 CTCATGGGGAGCATGAAAGAGGGCGCTTAAGCCCTCGGGAGGCCAGCTTCACTGAGGG
 1880 1890 1900 1910 1920 1930 1940
 TGAGTGAGCTTGCAGGAAAGGCGCTTAAGCCCTCGGGAGGCCAGCTTCACTGAGGG
 1950 1960 1970 1980 1990 2000 2010
 ATGCTTGGGAACCTGTGTTATGCTTCACTGAGGCCAGCTTCACTGAGGG
 2020 2030 2040 2050 2060 2070 2080
 ATGCTTGGGAACCTGTGTTATGCTTCACTGAGGCCAGCTTCACTGAGGG
 2090 2100 2110 2120 2130 2140 2150
 AGCAGAGGAGAACGAGAACTCTGCTTCACTGAGGCCAGCTTCACTGAGGG
 2160 2170 2180 2190 2200 2210 2220
 AGACATAGAAAGAAATGAAACACAACTAACTAAGGAGCTGAGGCCAGCTTCACT
 2230 2240 2250 2260 2270 2280 2290
 CCACTACTTAATTCGTTAGTGAGAACCTTCATTCTTATTAGAAGGCGCACCTACTG
 2310 2320 2330 2340 2350 2360 2370
 GCGAAATGCCCACATAAGTTAATAGAAGGTTGCCAATTTCACCCATTTCTGGTTGGCTCCAT
 2380 2390 2400 2410 2420 2430 2440
 TCCAATGTTCACTGCCACCTGCTGAGCACCGCCGGACTAGGCCACAAAGCAGGGTAGCTGA
 2450 2460 2470 2480 2490 2500 2510
 ATGCTTCTGCTTAACTTCTTAAATAGCATTTAGCTGCTGCTGCTCCACTAGTACTCTC
 2520 2530 2540 2550 2560 2570 2580
 ATGGCTTCTGCTTAACTTCTTAAATAGCATTTAGCTGCTGCTGCTCCACTAGTACTCTC
 2590 2600 2610 2620 2630 2640 2650
 TCCCTCTCTGAAATTCTCACTGCAATTGCAAGGATTACATTCACCTGCTGATGTTTG
 2530 2540 2550 2560 2570 2580 2590
 TGTGCAAAAAGAGTGCTTGTAAATTACTGCTGCTGCTGCTCCACTGCTGCTTTC
 2660 2670 2680 2690 2700 2710 2720
 TTGGAACATGTCATTAACCATCTGAACTGGTAGAAACATCTGANGAGCTAGTCATCAGCATGAC
 2730 2740 2750 2760 2770 2780 2790
 AGGTGAATGGGGTTCTGAGGACATTCAACAGACGGTTCATGTTAAAGTCTGTTAATAGTT
 2800 2810 2820 2830 2840 2850 2860
 AGGTGAATGGGGTTCTGAGGACATTCAACAGACGGTTCATGTTAAAGTCTGTTAATAGTT
 2870 2880 2890 2900 2910 2920 2930
 GGGTCTCTACATGATAACACACCTGCTCCATCTGTCACATTAAGTCTGTTAATAGTT
 2940 2950 2960 2970 2980 2990 2990
 TCTTTATAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAA
 2990 3000 3010 3020 3030 3040 3050
 TCTTTATAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAA
 3060 3070 3080 3090 3100 3110 3120
 4. US-09-439-313-334 (1-2984)
 US-09-352-616A-4 Sequence 434, Application US/09352616A
 Sequence 434, Application US/09352616A
 Patent No. 6395278
 GENERAL INFORMATION:
 APPLICANT: Dillon, Davin C.
 APPLICANT: Harlocker, Susan Louise
 APPLICANT: Jiang, Yuqui
 APPLICANT: Xu, Jiachun
 TITLE OF INVENTION: COMPOUNDS FOR IMMUNOTHERAPY AND DIAGNOSIS
 FILE REFERENCE: 210121_47C8
 CURRENT APPLICATION NUMBER: US/09/352.616A
 CURRENT FILING DATE: 1999-07-13
 NUMBER OF SEQ ID NO: 472
 SOFTWARE: PastSeq for Windows Version 3.0
 SEQ ID NO 434
 LENGTH: 484
 TYPE: DNA
 ORGANISM: Homo sapiens
 Initial Score = 358 Optimized Score = 483 Significance = 2.77
 Residue Identity = 99% Matches = 484 Mismatches = 0
 Gaps = 2 Conservative Substitutions = 0
 2430 2440 2450 2460 2470 2480 2490
 CCAGCACAAAGCAGGGTAGCTGATTGCTTCTGCTCTTACATTCTTAAATAGGATTAGTC
 2500 2510 2520 2530 2540 2550 2560
 TCACTCCCTACTGAGACTCTCTCTCCCTCTGATTATTCCTGCAATTGCAATTGCAAGGAT
 2570 2580 2590 2600 2610 2620 2630
 TACACATTCTGAGTGTGATATGTTGGAATTCATCTGCTTCTGCTTCTGCTTCTGCTTCTGCT
 2640 2650 2660 2670 2680 2690 2700
 TACACATTCTGAGTGTGATATGTTGGAATTCATCTGCTTCTGCTTCTGCTTCTGCTTCTGCT
 2710 2720 2730 2740 2750 2760 2770
 TACACATTCTGAGTGTGATATGTTGGAATTCATCTGCTTCTGCTTCTGCTTCTGCTTCTGCT
 2780 2790 2800 2810 2820 2830 2840
 TACACATTCTGAGTGTGATATGTTGGAATTCATCTGCTTCTGCTTCTGCTTCTGCTTCTGCT
 2850 2860 2870 2880 2890 2900 2910
 TACACATTCTGAGTGTGATATGTTGGAATTCATCTGCTTCTGCTTCTGCTTCTGCTTCTGCT
 2920 2930 2940 2950 2960 2970 2980
 TACACATTCTGAGTGTGATATGTTGGAATTCATCTGCTTCTGCTTCTGCTTCTGCTTCTGCT
 2990 3000 3010 3020 3030 3040 3050
 TACACATTCTGAGTGTGATATGTTGGAATTCATCTGCTTCTGCTTCTGCTTCTGCTTCTGCT
 3060 3070 3080 3090 3100 3110 3120

LENGTH: 366
TYPE: DNA
ORGANISM: Homo sapien

Initial Score = 278 Optimized Score = 364 Significance = 2.05
Residue Identity = 99% Matches = 365 Mismatches = 1
Gaps = 2 Conservative Substitutions = 0

TCTTACATTCTTTAAATAAGCATTTAGTGCAGTCCTACTGAGTACTCTTCTCCCTCTCG
2470 2480 2490 2500 2510 2520 2530
TCTTACATTCTTTAAATAAGCATTTAGTGCAGTCCTACTGAGTACTCTTCTCCCTCTCG
2470 2480 2490 2500 2510 2520 2530
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTACATTTCAGTGATGTTATGGTGCAGAAA
30 40 50 60 70 80 90
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTACATTTCAGTGATGTTATGGTGCAGAAA
30 40 50 60 70 80 90
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTACATTTCAGTGATGTTATGGTGCAGAAA
2540 2550 2560 2570 2580 2590 2600
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTACATTTCAGTGATGTTATGGTGCAGAAA
2540 2550 2560 2570 2580 2590 2600
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTACATTTCAGTGATGTTATGGTGCAGAAA
2610 2620 2630 2640 2650 2660 2670
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTACATTTCAGTGATGTTATGGTGCAGAAA
2610 2620 2630 2640 2650 2660 2670
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTACATTTCAGTGATGTTATGGTGCAGAAA
2680 2690 2700 2710 2720 2730 2740
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTACATTTCAGTGATGTTATGGTGCAGAAA
2680 2690 2700 2710 2720 2730 2740
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTACATTTCAGTGATGTTATGGTGCAGAAA
2750 2760 2770 2780 2790 2800 2810
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTACATTTCAGTGATGTTATGGTGCAGAAA
2750 2760 2770 2780 2790 2800 2810
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTACATTTCAGTGATGTTATGGTGCAGAAA
2820 2830 2840 2850 2860 2870 2880
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTACATTTCAGTGATGTTATGGTGCAGAAA
2820 2830 2840 2850 2860 2870 2880
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTACATTTCAGTGATGTTATGGTGCAGAAA
2890 2900 2910 2920 2930 2940 2950
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTACATTTCAGTGATGTTATGGTGCAGAAA
2890 2900 2910 2920 2930 2940 2950
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTACATTTCAGTGATGTTATGGTGCAGAAA
2960 2970 2980 2990 3000 3010 3020
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTACATTTCAGTGATGTTATGGTGCAGAAA
2960 2970 2980 2990 3000 3010 3020
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTACATTTCAGTGATGTTATGGTGCAGAAA
3090 3100 3110 3120 3130 3140 3150
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTACATTTCAGTGATGTTATGGTGCAGAAA
3090 3100 3110 3120 3130 3140 3150
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTACATTTCAGTGATGTTATGGTGCAGAAA
3160 3170 3180 3190 3200 3210 3220
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTACATTTCAGTGATGTTATGGTGCAGAAA
3160 3170 3180 3190 3200 3210 3220
X 10 20

ACTTTTCTATGTTGACATATGAG

9. US-09-439-313-335 (1-2984)

Sequence 115, Application US/09232149A

PATENT NO. 645611
GENERAL INFORMATION:

APPLICANT: Xu, Jiangchun

APPLICANT: Dillon, Devin C.

APPLICANT: Mitcham, Jennifer Lynn

TITLE OF INVENTION: COMPOUNDS FOR IMMUNOTHERAPY OF PROSTATE

FILE REFERENCE: 210121_428C5
CURRENT APPLICATION NUMBER: US/09/159, 812A

CURRENT FILING DATE: 1998-09-23

NUMBER OF SEQ ID NOS: 306

SOFTWARE: FastSEQ for Windows Version 3.0

SEQ ID NO: 115

LENGTH: 366

TYPE: DNA

ORGANISM: Homo sapien

Initial Score = 278 Optimized Score = 364 Significance = 2.06

Residue Identity = 99% Matches = 365 Mismatches = 1

Gaps = 2 Conservative Substitutions = 0

TCTTACATTCTTTAAATAAGCATTTAGTGCAGTCCTACTGAGTACTCTTCTCCCTCTCG
2470 2480 2490 2500 2510 2520 2530
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2540 2550 2560 2570 2580 2590 2600
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2540 2550 2560 2570 2580 2590 2600
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2610 2620 2630 2640 2650 2660 2670
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2610 2620 2630 2640 2650 2660 2670
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2680 2690 2700 2710 2720 2730 2740
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2680 2690 2700 2710 2720 2730 2740
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2750 2760 2770 2780 2790 2800 2810
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2750 2760 2770 2780 2790 2800 2810
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2820 2830 2840 2850 2860 2870 2880
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2820 2830 2840 2850 2860 2870 2880
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2890 2900 2910 2920 2930 2940 2950
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2890 2900 2910 2920 2930 2940 2950
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
3060 3070 3080 3090 3100 3110 3120
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
3060 3070 3080 3090 3100 3110 3120
X 10 20

ACTTTTCTATGTTGACATATGAG

10. US-09-439-313-335 (1-2984)

Sequence 115, Application US/09159812A

GENERAL INFORMATION:

APPLICANT: Xu, Jiangchun

APPLICANT: Dillon, Devin C.

APPLICANT: Mitcham, Jennifer Lynn

TITLE OF INVENTION: COMPOUNDS FOR IMMUNOTHERAPY OF

PROSTATE CANCER AND METHODS FOR THEIR USE

FILE REFERENCE: 210121_428C5

CURRENT APPLICATION NUMBER: US/09/159, 812A

CURRENT FILING DATE: 1998-09-23

NUMBER OF SEQ ID NOS: 306

SOFTWARE: FastSEQ for Windows Version 3.0

SEQ ID NO: 115

LENGTH: 366

TYPE: DNA

ORGANISM: Homo sapien

Initial Score = 278 Optimized Score = 364 Significance = 2.06

Residue Identity = 99% Matches = 365 Mismatches = 1

Gaps = 2 Conservative Substitutions = 0

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2470 2480 2490 2500 2510 2520 2530
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2470 2480 2490 2500 2510 2520 2530
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2540 2550 2560 2570 2580 2590 2600
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2540 2550 2560 2570 2580 2590 2600
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2610 2620 2630 2640 2650 2660 2670
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2610 2620 2630 2640 2650 2660 2670
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2680 2690 2700 2710 2720 2730 2740
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2680 2690 2700 2710 2720 2730 2740
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2750 2760 2770 2780 2790 2800 2810
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2750 2760 2770 2780 2790 2800 2810
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2820 2830 2840 2850 2860 2870 2880
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2820 2830 2840 2850 2860 2870 2880
X 10 20

AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2890 2900 2910 2920 2930 2940 2950
AATTAACTTCACTGCAATTGCAAGGATTACATTCACGTGATGTTATGGTGCAGAAA
2890 2900 2910 2920 2930 2940 2950
X 10 20

ACTTTTCTATGTTGACATATGAG

240 250 260 270 280 290 300
 TGCTAAACGAAACCTCTGCATCTGTCACTAAAGCTGACTGAGTTAGTCAGCACCCACCAA
 310 320 330 340 350 360 X
 ACTTATTTCTATGTTTGCAACATATGAG

13 . US-09-439-313-335 (1-2984)
 US-09-030-607 Sequence 207, Application US/09030607

Sequence 207, Application US/09030607
 Patent No. 6262245

GENERAL INFORMATION:

APPLICANT: Xu, Jiangchun
 TITLE OF INVENTION: COMPOUNDS FOR IMMUNOTHERAPY OF PROSTATE CANCER AND METHODS FOR THEIR USE

NUMBER OF SEQUENCES: 224
 CORRESPONDENCE ADDRESS: FO

ADDRESSEE: SEED and BERRY LLP
 STREET: 6300 Columbia Center, 701 Fifth Avenue
 CITY: Seattle
 STATE: WA
 ZIP: 98104

COMPUTER READABLE FORM:
 MEDIUM TYPE: FLOPPY DISK
 COMPUTER: IBM PC COMPATIBLE
 OPERATING SYSTEM: PC-DOS/MS-DOS

SOFTWARE: PatentIn Release #1.0, Version #1.30
 CURRENT APPLICATION NUMBER: 10/121,427C3

APPLICATION NUMBER: US/09/030,607
 FILING DATE: 23-FEB-1998

CLASSIFICATION:
 ATTORNEY/AGENT INFORMATION:
 NAME: Mak, David J.

REGISTRATION NUMBER: 31,392
 REFERENCE/DOCKET NUMBER: 210121,427C3

TELECOMMUNICATION INFORMATION:
 TELEPHONE: (206) 622-4300
 TELEFAX: (206) 682-6031

INFORMATION FOR SEQ ID NO: 207:

SEQUENCE CHARACTERISTICS:
 LENGTH: 332 base pairs

TYPE: nucleic acid
 STRANDEDNESS: single

TOPOLOGY: linear
 MOLECULE TYPE: cDNA

Initial Score = 253 Optimized Score = 318 Significance = 1.84
 Residue Identity = 96% Matches = 322 Mismatches = 7
 Gaps = 4 Conservative Substitutions = 0

1550 1560 1570 1580 1590 X 1600 1610
 CCCAAGCTTATCTGCTTGACTTTAAAGTTGGGGCAGTTCTGAATTGGCTAAAGACATGCA
 TGAATGGCTAAAGAC-TGCA
 X 10 20

1620 1630 1640 1650 1660 1670 1680
 TTCTAAACTGCACTCTTCTCTTAAATAATCATGCTTAATCCAACTCTTAAAG
 TTCTTAACTGCACTCTTCTCTTAAATAATCATGCTTAATCCAACTCTTAAAG
 30 40 50 60 70 80 90

1690 1700 1710 1720 1730 1740 1750
 ACCTGACAGCTGAGAAGTCTACTACGCTTAAAGCTGCTCTGCTGTTACGTTGAGTC
 ACCTGACAGCTGAGAAGTCTACTACGCTTAAAGCTGCTCTGCTGTTACGTTGAGTC

1690 1700 1710 1720 1730 1740 1750
 ACCTGACAGCTGAGAAGTCTACTACGCTTAAAGCTGCTCTGCTGTTACGTTGAGTC
 ACCTGACAGCTGAGAAGTCTACTACGCTTAAAGCTGCTCTGCTGTTACGTTGAGTC

14 . US-09-439-313-335 (1-2984)

US-09-352-616A-2 Sequence 207, Application US/09352616A

Sequence 207, Application US/09352616A
 Patent No. 6395278

GENERAL INFORMATION:
 APPLICANT: Dillon, Davin C.

APPLICANT: Harlocker, Susan Louise

APPLICANT: Jiang, Yugu

APPLICANT: Xu, Jiangchun

APPLICANT: Mitcham, Jennifer Lynn

TITLE OF INVENTION: COMPOUNDS FOR IMMUNOTHERAPY AND DIAGNOSIS

FILE REFERENCE: 210121,427C8

CURRENT APPLICATION NUMBER: US/09/352,616A

CURRENT FILING DATE: 1999-07-13

NUMBER OF SEQ ID NOS: 472

SOFTWARE: FastSeq for Windows Version 3.0

SEQ ID NO: 207
 LENGTH: 332

TYPE: DNA
 FEATURE:
 NAME/KEY: misc_feature
 ORGANISM: Homo sapien
 FEATURE:
 NAME/KEY: misc_feature
 LOCATION: (1..:(332))
 OTHER INFORMATION: n = A,T,C or G

Initial Score = 253 Optimized Score = 318 Significance = 1.84
 Residue Identity = 96% Matches = 322 Mismatches = 7
 Gaps = 4 Conservative Substitutions = 0

1550 1560 1570 1580 1590 X 1600 1610
 CCCAAGCTTATCTGCTTGACTTTAAAGTTGGGGCAGTTCTGAATTGGCTAAAGACATGCA
 TGAATGGCTAAAGAC-TGCA
 X 10 20

1620 1630 1640 1650 1660 1670 1680
 TTCTAAACTGCACTCTTCTCTTAAATAATCATGCTTAATCCAACTCTTAAAG
 TTCTTAACTGCACTCTTCTCTTAAATAATCATGCTTAATCCAACTCTTAAAG
 30 40 50 60 70 80 90

1690 1700 1710 1720 1730 1740 1750
 ACCTGACAGCTGAGAAGTCTACTACGCTTAAAGCTGCTCTGCTGTTACGTTGAGTC
 ACCTGACAGCTGAGAAGTCTACTACGCTTAAAGCTGCTCTGCTGTTACGTTGAGTC

1690 1700 1710 1720 1730 1740 1750
 ACCTGACAGCTGAGAAGTCTACTACGCTTAAAGCTGCTCTGCTGTTACGTTGAGTC
 ACCTGACAGCTGAGAAGTCTACTACGCTTAAAGCTGCTCTGCTGTTACGTTGAGTC

1760 1770 1780 1790 1800 1810 1820 1830
 TGACAATCCTTGAGATCTTCATGCAGGGAGGAGGTTACAGAGGAACACAGC
 ||||| ||||| |||||
 TGACAATCCTTGAGATCTTCATGCAGGGAGGAGGTTACAGAGGAACACAGC
 170 180 190 200 210 220 230
 ||||| |||||
 1840 1850 1860 1870 1880 1890
 GCAG-AATGAA-GGGCAGGTACTTGAGC-TGTCCAGTGGGGCTCATGGGGACATGGAGAAGGG
 ||||| |||||
 GCAG-AATGAA-GGGCAGGTACTTGAGC-TGTCCAGTGGGGCTCATGGGGACATGGAGAAGGG
 170 180 190 200 210 220 230
 ||||| |||||
 1900 1910 1920 X 1930 1940 1950 1960 1970
 CAGCTTGGCCCTGGAGGCCAGTCACCTGAGCAAGCAAGGACTGAGTGAGCCTTTCAGGAAAGGCT
 ||||| |||||
 CAGCTTGGCCCTGGAGGCCAGTCACCTGAGCAAGCAAGGACTGAGTGAGCCTTTCAGGAAAGGCT
 310 320 330 X
 ||||| |||||

A

15. US-09-439-313-335 (1-2984)
 US-09-232-149A-2 Sequence 207, Application US/09232149A

Sequence 207, Application US/09232149A
 Patent No. 6455611
 GENERAL INFORMATION:
 APPLICANT: Xu, Jiangchun
 APPLICANT: Dillon, Davin C.

APPLICANT: Mitcham, Jennifer Lynn

TITLE OF INVENTION: COMPOUNDS FOR IMMUNOTHERAPY OF PROSTATE

TITLE OF INVENTION: CANCER AND METHODS FOR THEIR USE

FILE REFERENCE: 210121-427C6

CURRENT APPLICATION NUMBER: US/09/232,149A

CURRENT FILING DATE: 1999-01-15

NUMBER OF SEQ ID NOS: 338

SOFTWARE: FastSEQ for Windows Version 3.0

SEQ ID NO: 207

LENGTH: 332

TYPE: DNA
 ORGANISM: Homo sapien

FEATURE:
 NAME/KEY: misc_feature
 LOCATION: (1)..(332)

OTHER INFORMATION: n = A,T,C or G

Initial Score = 253 Optimized Score = 318 Significance = 1.84
 Residue Identity = 96% Matches = 322 Mismatches = 7
 Gaps = 4 Conservative Substitutions = 0

X

10 20

1550 1560 1570 1580 1590 X 1600 1610

10 20

1620 1630 1640 1650 1660 1670 1680

10 20

1690 1700 1710 1720 1730 1740 1750

10 20

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

19. US-09-439-313-335 (1-2984)
US-09-352-616A-2 Sequence 295, Application US/09352616A

Sequence 295, Application US/09352616A
Patent No. 6355278

GENERAL INFORMATION:

APPLICANT: Dillon, Davin C.

APPLICANT: Jiang, Yuqij

APPLICANT: Mitcham, Jennifer Lynn

APPLICANT: Xu, Jiangchun

APPLICANT: Billon, Davin C.

APPLICANT: Mitcham, Jennifer Lynn

APPLICANT: Jiang, Yuqij

APPLICANT: Dillon, Davin C.

APPLICANT: Mitcham, Jennifer Lynn

APPLICANT: Jiang, Yuqij

APPLICANT: Mitcham, Jennifer Lynn

APPLICANT: Dillon, Davin C.

APPLICANT: Mitcham, Jennifer Lynn

APPLICANT: Jiang, Yuqij

TITLE OF INVENTION: CANCER AND METHODS FOR THEIR USE
FILE REFERENCE: 210121-427C6
CURRENT APPLICATION NUMBER: US/09/232,149A
CURRENT FILING DATE: 1999-01-15
NUMBER OF SEQ ID NOS: 338

SEQUENCE: FastSEQ for Windows Version 3.0

SEQ ID NO: 295

LENGTH: 305

TYPE: DNA

ORGANISM: Homo sapien

Initial Score = 215 Optimized Score = 303 Significance = 1.50
Residue Identity = 98% Matches = 305 Mismatches = 0
Gaps = 4 Conservative Substitutions = 0

2460 2470 2480 2490 2500 2510 2520 2530
GCTCTTACATTTCTTTAAAGCATTTAGTGCTCAGTCCTACTGAGTACTCTTCTCCCTCTC
GTAACCTCTCTCCCTCCCTC

X GTACCTCTCTCCCTCCCTC
X 10 20

2540 2550 2560 2570 2580 2590 2600
TGAATTAACTCTTCACTGCAATTGCAAGGATCACATTCACTGAGTATATGTGTGCAA
TGAATTAACTCTTCACTGCAATTGCAAGGATCACATTCACTGAGTATATGTGTGCAA
X 30 40 50 60 70 80 90

2610 2620 2630 2640 2650 2660 2670
AAAAMAAAGGTCTCTGTAAATTACTGTGTTGATCCATTCTGCTTTCCCATGGACTAG
AAAAMAAAGGTCTCTGTAAATTACTGTGTTGATCCATTCTGCTTTCCCATGGACTAG
X 100 110 120 130 140 150 160

2680 2690 2700 2710 2720 2730 2740
TCATTAACCACTCTGAACTGGTAGAACACATCGAGAGCTGATCTACGAGCTGAGGTGAATTG
TCATTAACCACTCTGAACTGGTAGAACACATCGAGAGCTGATCTACGAGCTGAGGTGAATTG
X 170 180 190 200 210 220 230

2750 2760 2770 2780 2790 2800 2810
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X 240 250 260 270 280 290 300

2820 2830 2840 2850 2860
CATGCATAACAAACCTGCTCCAATGTGTCACATAAAAGCTGTGACTT

X

2890 2900 2910 2920 2930 2940 2950
CATGCATAACAAACCTGCTCCAATGTGTCACATAAAAGCTGTGACTT

X

2960 2970 2980 2990 3000
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

3010 3020 3030 3040 3050 3060 3070
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

3080 3090 3100 3110 3120 3130 3140
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

3150 3160 3170 3180 3190 3200 3210
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

3220 3230 3240 3250 3260 3270 3280
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

3290 3300 3310 3320 3330 3340 3350
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

3360 3370 3380 3390 3400 3410 3420
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

3430 3440 3450 3460 3470 3480 3490
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

3500 3510 3520 3530 3540 3550 3560
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

3570 3580 3590 3600 3610 3620 3630
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

3640 3650 3660 3670 3680 3690 3700
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

3710 3720 3730 3740 3750 3760 3770
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

3780 3790 3800 3810 3820 3830 3840
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

3850 3860 3870 3880 3890 3900 3910
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

3920 3930 3940 3950 3960 3970 3980
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

3990 4000 4010 4020 4030 4040 4050
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

4060 4070 4080 4090 4100 4110 4120
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

4130 4140 4150 4160 4170 4180 4190
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

4200 4210 4220 4230 4240 4250 4260
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

4270 4280 4290 4300 4310 4320 4330
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

4340 4350 4360 4370 4380 4390 4400
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

4410 4420 4430 4440 4450 4460 4470
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

4480 4490 4500 4510 4520 4530 4540
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

4550 4560 4570 4580 4590 4600 4610
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

4620 4630 4640 4650 4660 4670 4680
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

4690 4700 4710 4720 4730 4740 4750
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
GATGGTTCTGAGAACATTGACCCAGACAGCCTGTTCTACCTGTTAAATTAGTTGGTTCTA
X

20. US-09-439-113-335 (1-2984)
US-09-232-149A-2 Sequence 295, Application US/09232149A
Sequence 295, Application US/09232149A
Patient No. 6455611
GENERAL INFORMATION:
APPLICANT: Xu, Jiangchun
APPLICANT: Dillon, Davin C.
APPLICANT: Mitcham, Jennifer Lynn
TITLE OF INVENTION: COMPOUNDS FOR IMMUNOTHERAPY OF PROSTATE

THIS PAGE BLANK (USPTO)

TTTTTCGG-TTCTCCCAAGCATTATCTGCTTGACTTAAAGTTRGGGCCAGATCTGATGG
 TAATGCAGCTGCCACGAGCTT-----TCCGAC--TGGAAAGCGGCCAGTCGAC-GCACGCAATT
 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 2410 2420
 540 550 560 570 580 590 600
 CTAAGA-CATGCAATTAA-AACTAGCAGCTTATTCTTCTT-TAAAATCATAGCATTA
 GTAAAGTAGCCGAATTGTCACCACAGCGC-CATCGTCCTCCACTCTGCAAGTGGGGCATGAA
 2430 2440 2450 2460 2470 2480 2490
 610 620 630 640 650 660 670
 ATCCC-AAACCTAA-TAAAGACCTGACGCTTGAAGG-TCACTACTGCAATTAGACCCCTCTGT
 TGCGCGGATACCGCTGCTGGTTCTCTG---GATGCCGACCGATTGACCTCCGCTAGAACCTCG
 2500 2510 2520 2530 2540 2550 2560
 680 690 700 710 720 730 740 750 760 770 780 790 800
 GGTTCGCTGCTGAGCTGAGCTCTA-CIA-TC-CTTGAGAATTGCGATGAGAGGGTAA---
 CGTCAGCTGCTGCTGGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG
 2570 2580 2590 2600 2610 2620 2630
 810 820 830 840 850 860
 AGTGGGGGCGATGCTGGGACATGAAA---AGAACGGCAGCTAGG---CCCTGGAGGCCAGT---
 CAGCATGAGATCCCGCTGGAGTCACTCGCAG-CGGCGTCCGAAAGATGATGCCAACCTTT
 CATAGAAGG-CGGCGTGG---AATCGAACCTCGTGTGATGCGAGGTTGGGCTGCGTGGGGTCAATTG
 2640 2650 2660 2670 2680 2690 2700
 870 880 890 900 910 920 930 940 950 960 970 980 990
 --CCACTGAG-CAAGC-AAG-GGAC---TCACTGGCTTGGGAAAG-GCTAACAAAGGA-AAA
 AACCCTAGAGTCCGCTGGAGAAGCTGTCAGAAGGGCATGCGATGCGCTGGAGGGCG
 2710 2720 2730 2740 2750 2760 2770
 1000 1010 1020 1030 1040 1050 1060
 CCCCAAC-AATCGTAACC---TAGACTCTGAGAGATGAGCAGAGCAAGGAACTGGTGTGCTT
 CGATAACGCTAACGAC---GAGGAAGCGCTGCCCCATCGCCCA-GCTCTCA-GCATATACCGGG
 2850 2860 2870 2880 2890 2900 2910
 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190
 CCATTTCATCTGTTGAGCTTCAAGGCTGTA---GGGGGGAGC-ATTAA---AAAAATGAAACA
 AGCCAAACGCTATGT---CCTGATAGCTCCACACCCACCGGCCACAGCTGAGTAACAGGG
 2920 2930 2940 2950 2960 2970 2980
 1260 1270 1280 1290 1300 1310
 TTGAGCTGAGA-ACC---TTCTT---TTATAGAAGGGCCGCTACTGTTGGTGCCTAA
 TGGCGC-CTTGAGCCGCTTCATCCGAGTGTGCTGCTGCA---TGGATGTTGCTGTTGGTGC
 2990 3000 3010 3020 3030 3040 3050 3060 3070 3080 3090 3100 3110
 3120 3130 3140 3150 3160 3170 3180
 1320 1330 1340 1350 1360 1370
 -TTGCAATGTCATGCCACCTGCTGCTGACACCG-A-C-G-GAGTACTAGCCAG-----CACAAA
 GGAGCAGGGTAGATGACAGGAGATCCGCCCCGCACTTGCCCAAATACAGCCAGTCCTCCCGCTCA
 3190 3200 3210 3220 3230 3240 3250
 1380 1390 1400 1410 1420 1430
 --GGCGGGT--AGC-CTGAAATTGCTCTGCTCTACAT-TCTTTTAATAA-ASCATT---TAGTC
 GTGACAGCTGAGCAGCTGCGAAAGAACGCCAGATGCCGGCTGCTCGCTCGCTCG
 3260 3270 3280 3290 3300 3310 3320
 1440 1450 1460 1470 1480
 T-CAGCCTACTGAGTACTCTTCTCCCTCTCTGATTTTCATTCCTTC-RACTTCGAAATTGCA-A
 TGCAGTCATTAGGGCOC-GGACAGGAGGGCTGACAAAGAACCCGGGCCCTGC-GCTGACGCC
 3340 3350 3360 3370 3380 3390 3400
 1510 1520 1530 1540 1550 1560
 GGATTAC---ACATTCA-CTG-TGA-TCTATATGTTGCTGAGNGAAAGAACAGTCTTGTAA
 GGAAACGGCGCATGAGGAGCCGATTCGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCT
 3410 3420 3430 3440 3450 3460 3470
 1570 1580 1590 1600 1610 1620 1630
 ATTACTGG---TTGTG-AATTCATCTGCTTTCCTCCATGGCATAGTACAGTACATACCCATC-TGA
 GGGCGGAGACCTGGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCT
 3480 3490 3500 3510 3520 3530 3540
 1640 1650 1660 1670 1680 1690
 ACTGGTAAAGAAACCTG---AAGA-GCTACTCTACAGCA-TCTGACGGGATTTGATGTTCT
 TCAGAT-CTTGTATCCCCTGCCCCATCAGTCTTGGGAAAGAACCCATCCAGTTACTTGAGGGTT
 3550 3560 3570 3580 3590 3600 3610
 1700 1710 1720 1730 1740 1750
 CAGAACCTTCA---CCCA---GACA-GCTGTTCTMCCTCTCTTATAAA---TTAGTTGG
 OCCAACTTACAGAGGGCCCCAGCTGCAATCCGGTCTGCTGCTGCTGCTGCTGCT
 3620 3630 3640 3650 3660 3670 3680
 1760 1770 1780 1790
 GTCCTCTACATG---CATACTACAC-CCTGC-TCCATCTG---TCA---ACATA-
 OCTATGCCATGTAACCCACTGCAAGCTACTGCTCTCTGCTGCTGCTGCT
 3690 3700 3710 3720 3730 3740 3750
 1800 1810 1820 1830 1840 1850
 -AAAGCTGAGC-TTGAAGTTTACTGAGC---CCCGCCAACCTTATTCTTCTATGTT-----T
 CCCAGTACTGACTACATCTCCGGGTCAGCACGTTCTCGGAC-TGGCTTCTACGTTCTGCT
 3760 3770 3780 3790 3800 3810 3820
 1860 1870 1880 1890 1900 1910 1920
 TTGCAACATATGAGTGTGAAATAAGTACCCATGCTTATTAAAAA---NAAAAAAAGG-GGCC
 TTGCGCCCTGCGCCCTGAGTGTGCTGCTGCA-GTGAAGCTAAACTGCCAAATAGTGTGAC
 3830 3840 3850 3860 3870 3880 3890
 1930 X
 --G-GCCGCCGACTAGTGA
 TTGCGCCCTGCGCCCTGAGTGTGCTGCTGCA-GTGAAGCTAAACTGCCAAATAGTGTGAC
 3900 3910 X 3920 3930 3940 3950 3960

CTGAATTAACTCTTCAACTTGCAATTGCAA

5. US-09-700-700-1 (1-1936)
US-09-105-470B-1 Sequence 1, Application US/09105470B

Initial Score = 42 Optimized Score = 308 Significance = 1.22
Residue Identity = 47% Matches = 415 Mismatches = 268
Gaps = 186 Conservative Substitutions = 0

560 570 580 590 600 X 610 620
TAATACTTAGGAACTCTTATTTCTTCTTAAATACTAGCATTAATCCAAATCCTTAAAGAC
X 10

630 640 650 660 670 680 690
CTGACAGCTTCTAGAACGGTCACTACTGCAATTATAGGACCTTCTGCTGCTGTCTGCTG
OCG-cggccggggggg---CGAACGC-GGAGGGGCC---GCG---CGCCGACCCGCTCCAGGCC
20 30 40 50 60 70

700 710 720 730 740 750 760
ACA-ATTCCTGAGAATCTTC-CATCGAGAGGTAAGAGGTATGGATTTCACAGAGAGAC-ACA
TCACGCTCTCTCATCCAGCACATCTGGG-----GAGGGCGAGGGCAGGGCGCACGGCA
80 90 100 110 120 130 140

770 780 790 800 810 820 830
GCGCAGAGATGA-AGGCCAGCTTACTGAGCTG-TCCAGTG-GAGGTCAATGGTGGGACATGAAAGA
QC-CAGA-GACAGCGCA---CCCGAGCGGAGCAGACGAGC-X 190

840 850 860 870 880 890 900
AGGAGACCTAGGGCTGGGAGCCCA-GTCCA-CYTAGAGCAGCAGGGACTGAGGCTTGTGAGGA
ACGGAGCC---GCGCGGGGCGAGAACGACAGCTGAGCA---CCGGCC---GGCGGC-240 250

910 920 930 940 950 960 970
AAGGGCTAGAAAGGAAACCATCTTAAACACACAGAACT---GTCACAAAGGCTTGGGACTGTGTT
GAGGCCGAGAGCCTGGCA---GAGACGGAGCCAGA---AGGCACTGGGCTTAT-CGTGGA-CTCTG-
260 270 280 290 300 310

980 990 1000 1010 1020 1030 1040
TTATTCCTATATGGTCC-CCAAAATGGCTAACACACAGAACT---GAGACGGAGATGAGCAGAAAGGG
-AAACACT-TAGGCCCTTCCAA---GGCTTCCCACAAACCC-----TAACAG-CGGCGAGAGG
320 330 340 350 360 370

1050 1060 1070 1080 1090 1100 1110
AAATCTGGCTCTCTCCATTTCTCATCTGTTACAGGCTGCTGAGAGGAGACATTAGAAAMA
CTCCCGAGCTG-CCTTC-TCCCA-CA---CTCAGGATGATCGAGT---TGAAGA---GGA---AG
380 390 400 410 420

1120 1130 1140 1150 1160 1170 1180
TGAACACACAAACAATTACTATGAGGTAACTGAGGCCCTGGAGGTCTCTGACTCCACTTAATTCG
TTTCAGC-CATCAGAGTAC-CTGCGCCCTGA-ACGGG---CCCACTGGC-CAGAACCTCA---AG
430 440 450 460 470 480 490

1190 1200 1210 1220 1230 1240 1250
CTGAGGAACTTCTTCAATTGAGGCAAGCTACTGTTGGGCTGAGGAAACCTTCAATTCTTATA
CTCACCGAG-ACC---CAATG-----GAAG-----ATA-----TGGTCAGAGACAGCTA
490 500 510 520 530

1270 1280 1290 1300 1310 1320 1330
AAG-TTAACTAGGAAAGTGGCAATTGCACTTCTGAGGTTGGCTCACATGCAAGTCAATG
590 600 610 620 630 640 650

AAGACTAAGGAAA---CGAGCTCTC-CCTCGGGGCTSGAGACTTG3---AGA-AAGCACTCTCTTG
540 550 560 570 580 590

CACGTGCTGACACGGGAGGAC-TAGCCAGCACAAAGGCAGGGTAGCC-TG---AATGCTCT
C---GGC-CCTGAA---GA---GGGGCTCTCTCCGGGC---CTCCCTGCTCGTGTATAAGCTATCC
600 610 620 630 640 650

1400 1410 1420 1430 1440 1450 X 1460
GCTCTTACATTCT-TTAATAATAGCATTTAGCTGCTAGCCCTACTGAGTACTCTCTCTCCCT
TTACFACCCATACCGTACTGCGTGGGAGCTGAGCTGAGCAG---CTTTRGGTAA
660 670 680 690 700 X

1470 1480 1490 1500
CTGAATTAACTCTTCAACTTGCAATTGCAA

6. US-09-700-700-1 (1-1936)

US-09-105-470B-2 Sequence 29, Application US/09105470B

Initial Score = 34 Optimized Score = 229 Significance = 0.71
Residue Identity = 46% Matches = 294 Mismatches = 0.71
Gaps = 112 Conservative Substitutions = 0

740 750 760 770 780 790 800
GGTAAGGTATTGGATTTCACAGAGGAACACAGGCAAGATGAGGGCAGGGCTACTGAGGCTC
X 10

810 820 830 840 850 860 870
CACTGGGGGCTCAGGGTGGGAGATGAAAAGA---AGGCACTCTAGGCCCTGGGAGGCCAGTCACG
---TGGAGGCTTATCTGTTGACTGTGTTGACTTAACTTCAAGGCGCTT---TCCAAGGCTTCCCACACCTA
20 30 40 50 60 70 80

880 890 900 910 920 930 940
AGCA---AGCA---AGGG---ACTGAGTGGCTT-TGGAGGAAAGGCTGAGAAAGGAAACCTTCTAA
AGCAGCGCANAGGCCCTCGAG-CTGCTCTCTCCCAACTCTAGGTGATGAGTGGAGGGAGT-TGAG
90 100 110 120 130 140 150

940 950 960 970 980 990 1000
ACACACAGAAACTGCAATGTTGGAGACTGTGTTA-TTGCTTATAATGGTCCCCAAATGGT
CCATCAAGGAGTCTGTC---GGCCCTGGAC-GGCCACCTGGCCAGAA---CCTCA---GCT
160 170 180 190 200 210

1010 1020 1030 1040 1050 1060 1070
AACTGAGTTCAGGAGAATGAGGAGAGGAAATCTGGCTCTCCATTCTCATCTGTAA
CAGGAGAC-CCA---ACTGAL-GATWTGGTCCAGACAG-----CGCTATAAGCTA-AGCGAAACAG-C
220 230 240 250 260 270

1080 1090 1100 1110 1120 1130 1140
TCTCAGGTTGAGCTGGTAGAGGGAGACATTAAGGAAATCTGGCTCTCCATTCTCATCTGTAA
CTCCCTGGGANCT-----GGGGAGCT-TGGA-----GAAGG-ACTCTCTTGTGNCGGCCCTGGA
280 290 300 310 320 330

1150 1160 1170 1180 1190 1200 1210
TGAGGCGCTGGGAGTCTGACTTCAACTTAATTCGTTAGTGGAGAACCTTCAATTCTTATA
GGAGGC---NTCCCGGGCCNN---CTGGTNCCTGTTAAT---AAC---AGCGA---NCCTTNTAA
340 350 360 370 380

1230 1240 1250 1260 1270 1280 1290
GAGGGCGAGCTACTGTTGGCTAACATAGTAAAGTGGCTAACATTACCCAT
CCCATGNTG-TAANGCTGG-GGC---ANNGGAAGCCAGTTINTGCTTAANGGCCAGTCTCA---
390 400 410 420 430 440

TTCTCTGGTTGGGCTCCAGATGCCATGCTCAATGCCACGTGCTGCTCACACCGACGGAGTACTAG--C
 |||||
 -----GG--TGAACAAC-CATT--AAGCTCAA--AANG-GG--CTTNC-CCCAGGGTGTNCATGAA
 450 460 470 480 490 500
 1300 1310 1320 1330 1340 1350 1360
 CAGCACAAAGGCAGGGT-AGCCGTGATTCCTTCCTGCTTTAGTTGATTGTTAAATAAGCATTTAGTC
 |||||
 AAGCACAGGGCAGGTCTAGGAGGAAAGN
 510 520 530 X
 1370 1380 1390 X 1400 1410 1420 1430
 TCAGTCCT
 1440

7r. US-09-700-700-1 (1-1936)
US-09-105-470B-3 Sequence 30, Application US/09105470B

	X	AAGCTTAA- AACTGCAA-				
1150	1160	1170	1180	1190	1200	1210
AGGTACGC-GAGGCCGTGGAGTCCTGACTCCACTTAATTCGGTTAGTGAGAACCTTCAATTTC						
AATAGCTTCA- CTTGCGAG-CGATAA- CATTAAAGTGTCCAAATTCGAG-CGATAACAA-TTC	30	40	50	60	70	80
1220	1230	1240	1250	1260	1270	1280
TTCATTAGGAGGCCAGCTTACTGTGGTGGCAAAATTGCCAACATAAGTTAATAGAAAGTTGCCAATT						
ACACATTAAAGAGGAATTACATAG	90	100	110	X		
1290						
CACCC						

9 . US-09-700-700-1 (1-1936) Sequence 28, Application US/09105470B
 US-09-105470B-2 Sequence 28, Application US/09105470B

Initial Score	Optimized score	Significance
= 25	= 219	= 0.13
Residue Identity =	Matches =	Mismatches =
= 45%	= 276	= 221
Gaps	Conservative Substitutions	
= 96	= 0	

410 420 430 440 450 460 470 480
 CTTAACTATGCCCTGCCTTATTAGCCGAGATCCTGGCTTTTGTGTTTTTTCGGTCCTCCCC
 CACCCC
 1290
 AAGCTTAAA-AACTGCAA-X
 10

20 30 40 50 60 70 80
 1150 1160 1170 1180 1190 1200 1210
 AGGTACCTGAGGGCTGGAGTCTCTTGACGCCACTTAATTGGCTTAGTGAGAACITTCATT
 AAATGTTCA- -CTTGAG-CGGATAA- -CAATTAGATGCTACCAATTGAG-CGGATACAA-TTT
 1220 1230 1240 1250 1260 1270 1280
 TTTTATTAGAGGGCCAGCTTACTGTTGGTGGCAAAATTGCCAACATAAGTTAATAGAAAGTGGCCATT
 ACACCTTAAAGAGGGAAATTACATAG
 90 100 110 X

	850	850	850	870		880	890	900	910
CTAGGCCCTGGGGAGGCCAGTC	CACTGAG	--CA	-AGCA	-AGGACT	TGAGT	GACGCC	TTTG	CAGAAAGGCT	
c-	AGAGCC	--	AGAT	TCAAGGAACTGGGT	ATTCGA	TAGAGC	GTGCCAGA	-CAGT	CTGCAG
20	30	40	50	60	70	80	90	100	110
	920								
AGAAAAGG	--	AAACCATCTAAAC	AACAGAACTG	TCCAATG	TGTTTG	GGAACTG	TGTTATT		
	930	940	950	960	970				
CAGCGCCCTGGGTCA	AC	AC	AC	AC	AC				
90	100	110	120	130	140				
	980	990	1000	1010	1020	1030	1040		
GCCTATAATGGGTCCCA	--	AAATGGTAA	CCPAGACTCAG	GAGAATGAGG	AGAGGAGA	ACAAAGGAGA	ATC		
GCC-A	ATTCCTTGCC	GTGAA	TGGGACTCTTACT	CTTACTCC	AGGTTAT	--	TTTGAGATG	GAGATG	
150	160	170	180	190	200				
	1050	1060	1070	1080	1090	1100	1110		
TGGCTTCCTTCAT	--	TTTCA	TCTGTATTC	CAGGAGCTG	TAGAGGG	GACATTGAA	AAATGA		
AAGTC	ACAGTGATG	TATGCTG	GTTGTC	CCC	--	TGCCCTGT	-G	GGGGATG	AC
210	220	230	240	250	260	270		--	AGAGTATG
	1120	1130	1140	1150	1160	1170	1180	1190	
AAACACAAAC	AACTTA	CTAATGAGG	TACGCTGAG	GCTGGAG	TCTTGACT	CCACTRACT	TAATCCGTT		
GACCA	GACCGAGG	CT	CGCTG	-GG	CATCA	TG-GTCT	-TCTTGAG		
280	290	300	310	X					
	1200	1210	1220						
AGTAGGAAACCTTCA	TTCTT	TATTAGA	GG						

US-09-105-470B-2 Sequence 26, Application US/09105470B

Initial Score =	28	Optimized Score =	54	Significance =	0.32		
Residue Identity =	50% Matches		62 Mismatches	=	50		
Gaps	10	Conservative Substitutions		=	0		
1070	1080	1090	1100	1110	1120	1130	1140
.	TCTGTATCTAGGAGCTGGAGACATTAGAAATAATGAAACACACACAACTACTATG						

400 410 420 430 440 450

US-09-105-470B-3 sequence 24: Application US/09105470B

```

980 ATGGCTCTATAATG-GGTCTCCAAAATGGCTAACCGACTTCAGAGAATGAGCAGAGAGAA
990 990 1000 1010 1020 1030 1040 X
ATGGCTCTATAATG-GGTCTCCAAAATGGCTAACCGACTTCAGAGAATGAGCAGAGAGAA

```

460		470		480		490
TCTTGCTGCTCCATTTCATTCGTTATCTCAGGTGAGCTGG						
050	1050	1070	1080	1090		

10. US-09-700-700-1 (1-1936)
US-09-105-470B-1 Sequence 16, Application US/09105470B

Initial Score = 12 Residual Identity = 53% Gaps = 0 Optimized Score = 14 Significance = -0.71% Mismatches = 12% Conservative Substitutions = 0

GCGCTTGGGCTGTGCAATTTTATAGGAACTGGAAAGGCCTCTTCACATTTCCTGGGTG
 GCGACTTTRACCCAAAAGGCG

X 250 260 270 280 290
GAGCAATTAGAACCTAGAACTTCCGGCTATCATATACGTA

US-09-105-470B-2 Sequence 20, Application US/09105470B

Gaps = 2 Conservative Substitutions = 0

X CACTGCCGAGTCAACTG--TTC
10
20

GGGCCTTGTGAGGAAGGCTAGAAAAACCATCTAAACACAA
 |||||
 TTAGA

12. US-03-700-700-1 (1-1935)

12. US-09-700-700-1 (1-1936)
US-09-105-470B-1 Sequence 15, Application US/09105470B

Initial Score =	11	Optimized Score =	13	Sigma
Residue Identity =	48%	Matches =	13	Mism
Gaps =	0	Conservative Substitutions		

TGCTGTTCAGNAAAAGAAAAGTGTCTTGTTAAATTACTTGTTGTGATCCCTCTTCTTCTC
 GCGGATCATGCTTCAAGGGTC
 X 10 20

CCCCATGGAACTAGTCATTAACCCATCTCTGAAGCTGGTAGAAAACATCTGANGA
|
CGGAG
X

13. US-09-700-700-1 (1-1936)

17. US-09-700-700-1 (1-1936)

US-09-105-470B-1 Sequence 17, Application US/09105470B

Initial Score = 9 Optimized Score = 13 Significance = -0.90
 Residue Identity = 46% Matches = 13 Mismatches = 15
 Gaps = 0 Conservative Substitutions = 0

1530 1540 1550 1560 1570 1580 1590 1600
 ATTGIGTTGCAGNGAAAGAAAAAGTGTCTTGTAAATTACTGGTTTGANTCATTGCTT
 GCAGGATCCATGCTCAGGTT

1610 1620 1630 1640 1650
 CCCCCATTGGAACTAGTCATAACCCATCTCTGAACGGGAGAAAACATCTGAGA
 CCGGAG
 X

18. US-09-700-700-1 (1-1936)

US-09-105-470B-2 Sequence 23, Application US/09105470B

Initial Score = 8 Optimized Score = 8 Significance = -0.96
 Residue Identity = 53% Matches = 8 Mismatches = 7
 Gaps = 0 Conservative Substitutions = 0

1300 1310 1320 1330 1340 X 1350 1360
 TTCTCTGTTGGGTTGGGCTCCACATGCAATGTCATGCCACGGCTGCTCACCGACCGAGACTAGCCA

X |||||
 ACACATACATGGAGC
 X 10 X

1370 1380 1390 1400
 GCACAAAGGCGGGTAGCTGCTCTGCTCTTACA

19. US-09-700-700-1 (1-1936)

US-09-105-470B-2 Sequence 21, Application US/09105470B

Initial Score = 8 Optimized Score = 13 Significance = -0.96
 Residue Identity = 54% Matches = 13 Mismatches = 11
 Gaps = 0 Conservative Substitutions = 0

820 830 840 850 860 X 870 880
 ATGGGTTGGACATGGAAAGAACAGGCAAGCTAGGCCCTGGAGGCCACTGAGGAGGACTGA

X |||||
 CACTGCCACAGTCACGTTCT
 X 10 20

890 900 910 920 930
 GTGAGCCTTGTGAGAAAGGCTAAGAAAAGGAAACCATCTAAACAC
 GA
 X

	2050	2060	2070	2080	2090	2100	2110
TG-TGCCCTCCCTAATGAT	350	360	370	380	390	400	
TCCTTCCATTTCATTCGTTA	2120	2130	2140	2150	2160	2170	2180
AACACTT-CT--TTCNCGTA-NCT-TGANTCTGTATTCAGGA-NCAGCGGATGGATGGC	410	420	430	440	450	460	
AACTATTTAATGAGGTTAGGCTGAGGCCTGGAGCTCTGACTCCCTACTTAATTCGG-TTTAGCTGAG-	2190	2200	2210	2220	2230	2240	2250
CAGCCCNCGGATGTCANT	470	480	X				
AAACCTTCAATTCTTTATTAGAACGGCCAGCTTACTGTTGGCAAAATTGCCAACATAAGTTAA	2260	2270	2280	2290	2300	2310	2320