Package 'spectral'

January 14, 2021

•
Version 0.8.1
Date 2021-01-13
Title A R package for carrying out the spectral analysis of univariate time series
Author Peter F. Craigmile
Maintainer Peter F. Craigmile <pfc@stat.osu.edu></pfc@stat.osu.edu>
Depends R ($>= 3.0$), statmod
Description A R package for carrying out the spectral analysis of univariate time series
License GPL-3
<pre>URL http://www.r-project.org, http://www.stat.osu.edu/~pfc/</pre>

R topics documented:

cvs.from.sdf	2
r.sdf	3
r2.example	3
r4.example	4
rma.sdf	4
rma.var.from.sdf	5
losest.Fourier.frequency	5
losest.Fourier.index	6
omplex.chol	6
osine.taper	7
reate.taper	7
lecibels	8
lirect.spectral	8
Dirichlet.kernel	9
lpss.taper	9
Fejer.kernel	10
ft1	11
Fisher.test	11
Fourier.frequencies	12
1	12
Hanning.taper	13
decibels	13
na.sdf	14
nean.spect	14

acvs.from.sdf

acvs.from.sdf Calculate the acvs via a Fourier transform of the SDF					
Index		23			
	transfer	21			
	Thomson.stat				
	Thomson.crit				
	squared.gain	20			
	spect.max	19			
	spect	19			
	sine.taper	18			
	renormalize.taper	18			
	rectangular.taper	17			
	plot.spect	16			
	periodogram	16			
	periodicity				
	multitaper.effective.bw	15			

Description

Calculate the ACVS from lags 0 to lag 'max.lag', given a function specifying the SDF, 'the.sdf'.

Usage

```
acvs.from.sdf(max.lag, the.sdf, use.integrate = TRUE, num.weights = 200, gq, ...)
```

Arguments

max.lag calculate the acvs from 0 to the lag 'max.lag'.

the.sdf an R function defining the SDF

use.integrate if use.integrate is TRUE use the 'integrate' function to calculate the integral.

Otherwise use Gauss-Legendre quadrature from the 'statmod' library using the 'gq' object, if available, or creating a new object with 'num.weights' weights.

num.weights the number of weights to use for the Gauss-Legendre quadrature

gq a Gauss-Legendre quadrature from the 'statmod' library

Other arguments are passed to 'the.sdf' function

Value

a vector of max.lag+1 acvs values.

Author(s)

ar.sdf 3

ar.sdf

Calculate the spectral density function (SDF) for an AR process

Usage

```
ar.sdf(freqs, phi, sigma2=1, delta.t=1)
```

Arguments

freqs frequencies to evaluate the SDF at

phi AR parameters
sigma2 innovation variance
delta.t sampling interval

Value

vector of SDF values

Author(s)

Peter F. Craigmile

ar2.example

Coefficients for an example AR(2) process

Usage

```
ar2.example
```

Format

A vector containing the coefficients of the AR(2) process.

Source

Equation 45 of Percival and Walden (1993).

References

Percival and Walden (1993) *Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques*. Cambridge: Cambridge University Press.

4 arma.sdf

ar4.example

Coefficients for an example AR(4) process

Usage

```
ar4.example
```

Format

A vector containing the coefficients of the AR(4) process.

Source

Equation 46a of Percival and Walden (1993).

References

Percival and Walden (1993) *Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques*. Cambridge: Cambridge University Press.

arma.sdf

Calculate the spectral density function (SDF) for an ARMA process

Usage

```
arma.sdf(freqs, phi, theta, sigma2=1, delta.t=1)
```

Arguments

freqs frequencies to evaluate the SDF at

phi AR parameters
theta MA parameters
sigma2 innovation variance
delta.t sampling interval

Value

vector of SDF values

Author(s)

arma.var.from.sdf 5

arma.var.from.sdf

Calculate the variance of an ARMA process using the spectral density function (SDF)

Usage

```
arma.var.from.sdf(phi, theta, sigma2=1, delta.t=1)
```

Arguments

phi AR parameters (may be omitted)
theta MA parameters (may be omitted)

sigma2 innovation variance delta.t sampling interval

Value

variance of the ARMA process

Author(s)

Peter F. Craigmile

closest.Fourier.frequency

Calculate closest Fourier frequency to a given frequency

Usage

```
closest.Fourier.frequency(freq, N, delta.t=1)
```

Arguments

freq frequency

N length of times series delta.t sampling interval

Details

Calculates the closest Fourier frequency to 'freq', obtained when performing a spectral analysis on a time series of length 'N', with sampling interval 'delta.t'.

Author(s)

6 complex.chol

closest.Fourier.index Calculate closest Fourier index to a given frequency

Usage

```
closest.Fourier.index(freq, N, delta.t=1)
```

Arguments

freq frequency

N length of times series delta.t sampling interval

Details

Calculates the closest Fourier index to 'freq', obtained when performing a spectral analysis on a time series of length 'N', with sampling interval 'delta.t'.

Author(s)

Peter F. Craigmile

complex.chol

Complex-valued Cholesky decomposition

Usage

```
complex.chol(x,upper=TRUE)
```

Arguments

x Matrix to calculate the complex-valued Cholesky of

upper If true (the default), calculate the upper triangular form, if false calculate the

lower triangular form.

Value

A matrix containing the complex-valued Cholesky decomposition in either the upper or lower triangular form.

Author(s)

cosine.taper 7

cosine.taper

Calculate a 100p% cosine taper

Usage

```
cosine.taper(N, p)
```

Arguments

N The length of the time series

p A single numeric value between 0 and 1, inclusive

Value

A vector of length N containing the cosine (100p)% taper

Author(s)

Peter F. Craigmile

References

Percival and Walden (1993) Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. Cambridge: Cambridge University Press, Equation 209.

create.taper

Create a spectral taper of a given type

Usage

```
create.taper(taper.name, N, ...)
```

Arguments

 $\begin{array}{ll} \text{taper.name} & \text{Name of the taper} \\ \text{N} & \text{Length of the taper} \end{array}$

... Extra arguments to pass to the taper

Value

A taper as a vector or matrix (if a multiple taper)

Author(s)

8 direct.spectral

decibels

Convert to decibels

Description

Converts a numerical vector to the decibels value

Usage

```
decibels(x)
```

Arguments

Х

a numerical vector

Value

The vector of x values converted to decibels

Author(s)

Peter F. Craigmile

Examples

```
decibels(1) # return 0
decibels(10) # returns 10
decibels(0) # return -Inf
```

direct.spectral

Direct spectral estimate

Description

Calculate the tapered direct spectral estimate

Usage

```
direct.spectral(x, taper.name, delta.t=deltat(x), taper=create.taper(taper.name, length(x), ...),
```

Arguments

x Time series object (the data)
taper.name The name of the taper
delta.t Sampling interval

taper The taper

... Optional arguments used to create the taper (if necessary)

Dirichlet.kernel 9

Details

Calculate the tapered direct spectral estimate of a univariate time series of 'x'.

Value

An object of class 'spect' containing the direct spectral estimate of 'x' using the taper, 'taper'.

Author(s)

Peter F. Craigmile

Dirichlet.kernel

Calculate Dirichlet's kernel

Usage

```
Dirichlet.kernel(freqs, N)
```

Arguments

freqs frequencies to evaluate at N length of time series

Value

Dirichlet's kernel at the evaluated frequencies

Author(s)

Peter F. Craigmile

References

Equation 1.3c of Percival and Walden (1993)

dpss.taper

Calculate a set of dpss tapers

Usage

```
dpss.taper(N, n.tapers, NW = 4, W = NW/N)
```

Arguments

N The length of the time series
n. tapers The number of tapers to calculate
NW N times by the bandwidth, W
W The bandwidth of the tapers, W

10 Fejer.kernel

Value

If n.tapers is one then the first dpss taper of bandwidth W is returned as a vector. If n.tapers is greater than one, this function returns a matrix of dimension N by n.tapers. Each column of the matrix contains a different dpss taper.

Author(s)

Peter F. Craigmile

References

Percival and Walden (1993) Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. Cambridge: Cambridge University Press.

Fejer.kernel

Calculate Fejer's kernel

Usage

```
Fejer.kernel(freqs, N, delta.t=1)
```

Arguments

freqs frequencies to evaluate at

N length of time series

delta.t sampling interval

Value

Fejer's kernel at the evaluated frequencies

Author(s)

Peter F. Craigmile

References

Equation 198b of Percival and Walden (1993)

fft1 11

fft1

Calculate fft of a vector using a starting time index of 1

Usage

fft1(x)

Arguments

Х

a numerical vector

Value

Calculates

$$J(k/n) = \sum_{t=1}^{n} x_t e^{-i2\pi(k/n)t}$$

for k = 0, ..., (n - 1), where n=length(x)

Author(s)

Peter F. Craigmile

Fisher.test

Fisher's test for an unknown periodicity

Usage

Fisher.test(sp, alpha=.05)

Arguments

sp

Spectral object to analyze.

alpha

Size of the test.

Value

hypothesis test ('h.test') object containing the results of Fisher's test for an unknown periodicity.

Author(s)

Peter F. Craigmile

References

Percival and Walden (1993) Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. Cambridge: Cambridge University Press, Section 10.9.

12 h

Fourier.frequencies Calculate all the Fourier frequencies

Usage

```
Fourier.frequencies(N, delta.t=1)
```

Arguments

N length of times series

delta.t sampling interval

Details

Calculates all the Fourier frequencies obtained when performing spectral analysis on a time series of length 'N', with sampling interval 'delta.tt'.

Author(s)

Peter F. Craigmile

h

Calculate the Hermitian transpose of a matrix

Usage

h(x)

Arguments

x a matrix

Value

a matrix, containing the Hermitian transpose of 'x'.

Author(s)

Hanning.taper 13

Hanning.taper

Calculate a Hanning taper

Usage

Hanning.taper(N)

Arguments

Ν

The length of the time series

Details

The Hanning taper is the same as a 100% cosine taper

Value

A vector of length N containing the Hanning taper

Author(s)

Peter F. Craigmile

References

Percival and Walden (1993) *Spectral Analysis for Physical Applic ations: Multitaper and Conventional Univariate Techniques*. Cambridge: Cambridge Univ ersity Press, Page 210.

idecibels

Convert from decibels

Description

Converts a numerical vector from the decibels value

Usage

idecibels(x)

Arguments

Х

a numerical vector

Value

The vector of x values converted from decibels to the original scale

Author(s)

14 mean.spect

Examples

```
idecibels(0) # return 1
idecibels(10) # returns 10
idecibels(-Inf) # return 0
```

ma.sdf

Calculate the spectral density function (SDF) for an MA process

Usage

```
ma.sdf(freqs, theta, sigma2=1, delta.t=1)
```

Arguments

freqs frequencies to evaluate the SDF at

theta MA parameters
sigma2 innovation variance
delta.t sampling interval

Value

Vector of SDF values

Author(s)

Peter F. Craigmile

mean.spect

Spectral Mean

Description

Average multiply tapered spectral estimates

Usage

```
## S3 method for class 'spect' mean(x, ...)
```

Arguments

x an item of class 'spect'

... Extra arguments from the 'mean' function'

Details

Average the different spectra in the spect class 'sp' (normally used for multitapering).

multitaper.effective.bw 15

Value

An object of class 'spect' which contains the averaged spectra.

Author(s)

Peter F. Craigmile

multitaper.effective.bw

Calculate the effective bandwidth of a set of multitapers

Usage

```
multitaper.effective.bw(tapers)
```

Arguments

tapers

a matrix of multitapers

Author(s)

Peter F. Craigmile

periodicity

Generate periodicity

Usage

```
periodicity(N, amps, freqs, phases, delta.t)
```

Arguments

N The length of the time series to generate.

 $\begin{array}{ll} \text{amps} & A \text{ vector of amplitudes.} \\ \text{freqs} & A \text{ vector of frequencies.} \end{array}$

phases A vector of phases (default is to generate from Uniform $[-\pi,\pi]$)

delta.t The sampling interval (The default is 1).

Value

The periodocity

Author(s)

16 plot.spect

periodogram

Periodogram

Description

Calculate periodogram

Usage

```
periodogram(x, delta.t=deltat(x))
```

Arguments

x Time series object (the data)

delta.t Sampling interval

Details

Calculate the periodogram of a univariate time series of 'x'.

Value

An object of class 'spect' containing the periodogram of 'x'.

Author(s)

Peter F. Craigmile

plot.spect

plot.spect

Usage

```
## S3 method for class 'spect'
plot(x, taper.num, xlab="Frequency", ylab="Spectrum",
    log.freq=FALSE, add=FALSE, type="l", ...)
```

Arguments

X	an object of class 'spect'
taper.num	if 'x' contains many tapers, which taper to show.
xlab	x label for the figure
ylab	y label for the figure
log.freq	if TRUE present the figure on the log frequency scale
add	if TRUE add to current plot, otherwise create new plot
type	line type is used by default in this figure
	further arguments that can be passed to the plot

rectangular.taper 17

Details

Plot the object 'sp' of class 'spect' in decibels, showing frequencies on the log scale if log.freq=T.

Value

No value is returned

Author(s)

Peter F. Craigmile

rectangular.taper

Calculate a rectangular taper

Usage

```
rectangular.taper(N)
```

Arguments

Ν

The length of the time series

Details

The rectangular taper is the same a 0% cosine taper

Value

A vector of length N containing the rectangular taper

Author(s)

Peter F. Craigmile

References

Percival and Walden (1993) *Spectral Analysis for Physical Applic ations: Multitaper and Conventional Univariate Techniques*. Cambridge: Cambridge Univ ersity Press, Page 209.

18 sine.taper

renormalize.taper

Renormalize the taper so that it has unit norm

Usage

```
renormalize.taper(taper)
```

Arguments

taper

The taper

Value

The taper renormalized to have unit norm

Author(s)

Peter F. Craigmile

sine.taper

Calculate a set of sine tapers

Usage

```
sine.taper(N, n.tapers)
```

Arguments

N The length of the time series

Value

If n.tapers is one then the single sine taper is returned as a vector. If n.tapers is greater than one, this function returns a matrix of dimension N by n.tapers. Each column of the matrix contains a different sine taper.

Author(s)

Peter F. Craigmile

References

Percival and Walden (1993) Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. Cambridge: Cambridge University Press.

spect 19

spect

Create a object of class 'spect'

Usage

```
spect(spec, N, delta.t=1)
```

Arguments

spec a numerical vector

N length of the original time series

delta.t sampling interval

Details

Create a class of type 'spect' from a spectrum 'spec' of a time series of length 'N' regularly sampled at rate 'delta.t'.

Value

An object of class 'spect' which contains the frequencies 'freq', spectral estimates 'spec', sampling interval 'delta.t', sample size 'N' and number of Fourier frequencies, 'n.Fourier'.

Author(s)

Peter F. Craigmile

spect.max

The frequency of maximum spectrum

Usage

```
spect.max(sp, f1, f2)
```

Arguments

sp object of class 'spect'

f1 lower bound of the frequency f2 upper bound of the frequency

Value

The frequency between 'f1' and 'f2' which has highest spectrum in the 'sp'.

Author(s)

Thomson.crit

squared.gain Calculate the squared gain function

Usage

```
squared.gain(fs, filter, multiplier=1, use.C=TRUE)
```

Arguments

fs a numerical vector of frequencies filter a vector of filter coefficients multiplier a multipler for the frequencies

use.C if use.C is TRUE use C code to calculate; otherwise using R code

Details

Calculate the squared gain function for the 'filter' at the frequencies 'multiplier * fs'.

Value

A numerical vector of squared gain function values, the same length as 'fs'.

Author(s)

Peter F. Craigmile

Thomson.crit Critical value of Thomson's F test

Usage

```
Thomson.crit(n.tapers, alpha)
```

Arguments

n. tapers The number of tapers

alpha The alpha value to evaluate critical value

Value

alpha'th critical value

Author(s)

Peter F. Craigmile

References

Percival and Walden (1993) Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. Cambridge: Cambridge University Press, Section 10.11.

Thomson.stat 21

Thomson.stat	Thomson's F statistic

Usage

```
Thomson.stat(x, index, tapers, n.tapers)
```

Arguments

x The time series of interestindex The Fourier index to test at

tapers The matrix of tapers to use for the test n.tapers The number of tapers to evaluate

Details

Perform Thomson's F test to test for a non-zero amplitude at Fourier index 'index' in the time series 'x' using 'n.tapers' tapers from the matrix of tapers 'tapers'.

Value

The F statistic of Thomson's F test

Author(s)

Peter F. Craigmile

References

Percival and Walden (1993) *Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques*. Cambridge: Cambridge University Press, Section 10.11.

transfer	Calculate the transfer function

Usage

```
transfer(fs, filter)
```

Arguments

fs a numerical vector of frequencies filter a vector of filter coefficients

Details

Calculate the transfer function for the 'filter' at the frequencies 'fs'.

22 transfer

Value

A numerical vector of transfer function values, the same length as 'fs'.

Author(s)

Index

```
* datasets
    ar2.example, 3
    ar4.example,4
acvs.from.sdf, 2
ar.sdf, 3
ar2.example, 3
ar4.example, 4
{\sf arma.sdf}, 4
arma.var.from.sdf, 5
closest.Fourier.frequency, 5
closest.Fourier.index, 6
complex.chol, 6
cosine.taper, 7
create.taper, 7
dB (decibels), 8
decibels. 8
direct.spectral, 8
Dirichlet.kernel, 9
dpss.taper, 9
Fejer.kernel, 10
fft1, 11
Fisher.test, 11
Fourier.frequencies, 12
h, 12
Hanning.taper, 13
idB (idecibels), 13
idecibels, 13
ma.sdf, 14
mean.spect, 14
multitaper.effective.bw, 15
periodicity, 15
periodogram, 16
pgram (periodogram), 16
plot.spect, 16
rectangular.taper, 17
renormalize.taper, 18
```

sine.taper, 18 spect, 19 spect.max, 19 squared.gain, 20 Thomson.crit, 20 Thomson.stat, 21 transfer, 21