

第十三讲 命题演算

- 一、真值表方法
- 二、命题逻辑的自然推理

一、真值表方法

真值表是命题逻辑的重要工具,它不仅可以定义真值联结词,而且可以判定推理形式是否有效,分析几个真值形式相互之间的关系。

р	q	p→q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

一般步骤:

1.列出给定的真值形式所包含的所有的命题变项,并列出这些命题变项的各种真假组合。

$$(p \rightarrow q) \land p \rightarrow q$$

p	$\mathbf{p} \mid \mathbf{q}$					
Т	Т					
T	F					
F	T					
F	F					

2.根据构成过程,逐步地由简而繁地列出这个真值形式的各个组成部分,最后为这个真值形式本身。

$$p q p \rightarrow q (p \rightarrow q) \wedge p (p \rightarrow q) \wedge p \rightarrow q$$

3.根据基本真值表,逐个计算出每个组成部分的 真假情况,最后得出此真值形式的真假情况。

p	q	$p \rightarrow q$	(b→d) v b	$(p \rightarrow q) \wedge p \rightarrow q$
Т	Т	Т	Т	Т
T	F	F	F	T
F	T	T	F	T
F	T F T F	T	F	T

真值表的判定作用

一个正确的推理形式可以分析为一个蕴涵式,而且必是一个<u>重言的蕴涵</u>式(永真式)。反之,如果代表某一推理形式的蕴涵式不是重言式,则说明此推理形式无效。

p o	а р	p V q	$(p \vee q) \wedge \neg p$	$(p \lor q) \land \neg p \rightarrow q$
ТТ	F	Т	F	T
TF	F	T	F	T
F T	\mathbf{T}	$\mathbf{\underline{T}}$	<u>T</u>	<u>T</u>
F F	T	F	<u>F</u>	$\mathbf{T}_{\mathfrak{X}}$

一二、命题逻辑自然推理

- 1. 命题逻辑自然推理概述
- 2. 推理规则及其应用
- 3. 置换规则及其应用

1. 命题逻辑自然推理概述

- 传统的逻辑基于自然语言
 - 缺陷:
 - 歧义性
 - 模糊性
 - 不准确性
- 形式语言构造逻辑演算系统
 - 符号十规则

自然推理系统的内容

- 初始符号
- 形成规则
- 推演规则

① 初始符号

- 命题变项: p, q, r, s, p₁, q₁, r₁, s₁, ...;
- 联结词: ¬、∨、∧、→、
- 辅助符号: (,)。

②形成规则

- 决定哪些符号组合是有意义的
 - 有意义的符号组合=合式公式(公式)
- 命题变项是公式
- 如果A是公式,则¬A是公式;
- 如果A和B是公式,则A ∧B、 AVB、A→B、A B是公式;
- 只有符合上面三条的符号组合才是公式。

③推演规则

- 推理规则
- 置换规则
- 条件证明规则

2. 推理规则及其应用

推理规则1: 肯定前件(M.P.)

• 从 "A→B"和 "A"可以推得 "B"。

推理规则2: 否定后件(M.T.)

• 从 "A→B" 和 "¬B" 可以推得 "¬A"。

推理规则3: 析取三段论(D.S.)

- 从 "AVB"和 "¬A"可以推得 "B";
- 从 "AVB"和 "¬B"可以推得 "A"。

推理规则4: 简化律(Simp.)

- □ 从 "A∧B"可以推得 "A";
- □ 从 "A∧B"可以推得 "B"。

推理规则5:合取律(Conj.)

□ 从 "A" 和 "B" 可以推得"A∧B"。

推理规则6: 附加律(Add.)

- □ 从 "A"可以推得 "A∨B";
- □ 从 "B" 可以推得 "A∨B"。

推理规则7:假言三段论(H.S.)

□ 从 " $A \rightarrow B$ "和 " $B \rightarrow C$ "可以推得 " $A \rightarrow C$ "。

推理规则8:构造式二难(C.D.)

□ 从 "A→B" 、 "C→D" 和 "A∨C" 可以推得 "B∨D"。

推理规则9:吸收律(Abs.)

□ 从 "A→B" ,可以推得 "A→(A ∧ B)" 。

案 例

华夏队的实力将大增,并且有望获得全国象棋联赛的冠亚军,如果中国象棋特级大师许某加盟华夏队。 果然,中国象棋特级大师许某加盟到了华夏队,所 以,华夏队有望获得全国象棋联赛的冠亚军。

证明

令: p: 中国象棋特级大师许某加盟华夏队;

q: 华夏队的实力将大增;

r: 华夏队有望获得全国象棋联赛的冠军;

s: 华夏队有望获得全国象棋联赛的亚军,

则有:

- (1) p→qΛ (rVs) 前提
- (2) p 前提
- (3) qA (rVs) (1) (2) 肯定前件
- (4) rVs(3) 简化律证毕。

3. 置换规则及其应用

置换规则1:双否律(D.M.)

• "A"和"¬¬A"可以互相置换。

置换规则2:易位律(Trans.)

• "A→B"和"¬B→¬A"可以互相置换。

置换规则3: 德摩根律 (De M.)

- "¬(AAB)"和"¬AV¬B"可以互相置换;
- "¬(AVB)"和"¬A∧¬B"可以互相置换。

置换规则4:交换律(Com.)

- "AAB"和"BAA"可以互相置换;
- "AVB"和"BVA"可以互相置换。

置换规则5: 幂等律(Taut.) 重言律

- "A"和"A/A"可以互相置换;
- "A"和"AVA"可以互相置换。

置换规则6: 分配律(Dist.)

- "AA (BVC)"和"(AAB) V (AAC)"可以互相置换;
- "AV (BAC)"和"(AVB) A (AVC)"可以互相置换。

置换规则7:结合律(Assoc.)

- "AA (BAC)"和 "(AAB) AC"可以互相置换;
- "AV (BVC)"和"(AVB) VC"可以互相置换。

置换规则8:移出律(Exp.)输出律

" (A∧B→C)"和" (A→ (B→C))",可以互相置换。

置换规则9: 蕴析律(Impl.)实质蕴涵律

"A→B"和"¬AVB",可以互相置换。

置换规则10:等值律(Equiv.)实质等值律

"A➡B"和"(A→B)∧(B→A)",可以互相置换。

置换规则8:移出律(Exp.)输出律

" (A∧B→C)"和" (A→ (B→C))",可以互相置换。

真值表法

p	q	r	$p \wedge q$	$(p \land q) \rightarrow r$	$q \rightarrow r$	$p \rightarrow (q \rightarrow r)$	$((p \land q) \rightarrow r)$ $\rightarrow (p \rightarrow (q \rightarrow r))$
T	T	T	T	T	T	T	T
\overline{T}	T	F	T	F	F	F	ACCEPT THE
T	F	T	F	T	T	1 T 1:	
T	F	F	F	T	T	T	T
\overline{F}	T	T	F	$\mathcal{P}^{d} = T$	T	T	T
\overline{F}	T	F	F	T	F	T	T
\overline{F}	F	T	F	T	T	T	T
F	F	F	F	T	T	T	T

置换规则9: 蕴析律(Impl.)实质蕴涵律 "A→B"和"¬AVB",可以互相置换。

充分条件的否定

$$\neg(A \rightarrow B) = A \land \neg B$$

前真后假时,为假

р	q	p→q
Т	Т	Т
Т	F	F
F	T	Т
F	F	Т

案例

如果单位有事,那么小芳就不去太子湾公园游览了。 或许是单位有事,或许是另有约会。要是小芳去看 电影或者另有约会,那么小芳就不去城东公园练武 了。小芳现在刚从城东公园练武回来,所以,小芳 就不去太子湾公园游览了。

证明

```
♦:
```

p: 单位有事;

q: 小芳去太子湾公园游览;

r: 另有约会;

s: 小芳去看电影;

t: 小芳去城东公园练武,

则有

- (1) $p \rightarrow \neg q$
- (2) pVr
- $(3) sVr \rightarrow \neg t$
- (4) t
- $(5) \neg \tau$
- (6) \neg (sVr)
- (7) $\neg s \wedge \neg r$
- (8) \neg r
- (9) p
- (10) $\neg q$

证毕。

前提

前提

前提

前提/::q

- (4) 双否律
- (3) (5) 否定后件
 - (6) 德摩根律
 - (7) 合取化简
 - (2) (8) 析取否定
 - (1) (9) 肯定前件

课后作业

• 复习+练习——命题演算;