FLIP(00) Mid-term Presentation

Rongxin Xu Hunan University

26 October 2019

FLIP(00) Presentation ©FLIP(00)

Outline

Introduction

Data Description

Exploratory Data Analysis

Stationarity

Conclusion

Introduction
Data Description
Exploratory Data Analysis
Stationarity
Conclusion

Problem Description

Data Description

Exploratory Data Analysis

Stationarity

Conclusion

Introduction

FLIP(00) Presentation ©FLIP(00) - 3 / 20

Problem Description

Introduction

Problem Description

Data Description

Exploratory Data Analysis

Stationarity

Conclusion

This is a problem with time-series prediction. There are six data sets with a total of 11 attributes. The following is some requirements.

FLIP(00) Presentation \bigcirc FLIP(00) - 4 / 20

Problem Description

Introduction

Problem Description

Data Description

Exploratory Data Analysis

Stationarity

Conclusion

- This is a problem with time-series prediction. There are six data sets with a total of 11 attributes. The following is some requirements.
 - ◆ According to the given train data set, training a model and then using the model to predict total sales for every product and store in the next month.

FLIP(00) Presentation \bigcirc FLIP(00) - 4 / 20

Data Description

Attribute Information
Detailed description
Summary

Exploratory Data Analysis

Stationarity

Conclusion

Data Description

FLIP(00) Presentation ©FLIP(00) - 5 / 20

Attribute Information

Introduction

Data Description

Attribute Information

Detailed description

Summary

Exploratory Data Analysis

Stationarity

Conclusion

- Attribute Information
- I. There are six data sets with a total of 11 attributes.

Attribute	description
name	
ID	An Id that represents a (Shop, Item) tuple within the test set.
shop_id	Unique identifier of a shop.
item_id	Unique identifier of a product.
item_categor	Unique identifier of item category.
y_id	
item_cnt_day	Number of products sold. You are predicting a monthly amount of this m
	easure.
item_price	Current price of an item.
date	Date in format dd/mm/yyyy.
date_block_n	A consecutive month number, used for convenience. January 2013 is 0, F
um	ebruary 2013 is 1,, October 2015 is 33.
item_name	Name of item.
item_categor	Name of item category.
y_name	
shop_name	Name of shop.

Figure 1: Attributes name and description

2. The detailed description of the data is shown in the following table.

Detailed description

Introduction
Data Description
Attribute Information
Detailed description
Summary
Exploratory Data Analysis
Stationarity
Conclusion

											ID	shop_id	item_id
	data	data black num	ahan id	itom id	itom price	itam ant day	_	item_category_name	item_category_id	0	0	5	5037
	date	date_block_num	Snop_iu	item_iu	item_price	nem_cm_day	0	РС - Гарнитуры/Наушники	0				
0	02.01.2013	0	59	22154	999.00	1.0		A B03		1	1	5	5320
1	03.01.2013	0	25	2552	899.00	1.0	1	Аксессуары - PS2	1	2	2	5	5233
							2	Аксессуары - PS3	2	2	_	3	3233
2	05.01.2013	0	25	2552	899.00	-1.0		A		3	3	5	5232
3	06.01.2013	0	25	2554	1709.05	1.0	3	Аксессуары - PS4	3				
4	15.01.2013	0	25	2555	1099.00	1.0	4	Аксессуары - PSP	4	4	4	5	5268
5	10.01.2013	0	25	2564	349.00	1.0	5	Аксессуары - PSVita	5	5	5	5	5039
		(a) sa	les_tr	ain.c	sv			(b) item_catego	ries.csv		(c) test.	esv

me s						
	ehon namo		item_category_id	item_id	item_name	
	shop_name !Якутск Орджоникидзе, 56 фран	0	40	0	! ВО ВЛАСТИ НАВАЖДЕНИЯ (ПЛАСТ.) D	0
	!Якутск ТЦ "Центральный" фран	1	76	1	!ABBYY FineReader 12 Professional Edition Full	ı
	Адыгея ТЦ "Мега"	2	40	2	***В ЛУЧАХ СЛАВЫ (UNV) D	
	Балашиха ТРК "Октябрь-Киномир"	3	40	3	***ГОЛУБАЯ ВОЛНА (Univ) D	3
	Волжский ТЦ "Волга Молл"	4	40	4	***КОРОБКА (СТЕКЛО) D	1
ад"	Вологда ТРЦ "Мармелад"	5	40	5	***HOBЫЕ АМЕРИКАНСКИЕ ГРАФФИТИ (UNI)	5

Figure 2: Data Description

FLIP(00) Presentation ©FLIP(00) - 7 / 20

Summary

Introduction

Data Description

Attribute Information

Detailed description

Summary

Exploratory Data Analysis

Stationarity

Conclusion

- The data is very clean and complete, so we only need to change the data type after importing.
- We also need to reorganize the table structure to make it more readable. An sample is given below.

			date		item_price	item_cnt_day															
			min max		mean	sum															
date_block_num	shop_id	item_id																			
0	0	32	2013-01- 03	2013-01- 31	221.0	6.0															
		33	2013-01- 03	2013-01- 28	347.0	3.0															
		35	2013-01- 31	2013-01- 31	247.0	1.0															
		43	2013-01- 31	2013-01- 31	221.0	1.0															
		51	2013-01- 13	2013-01- 31	128.5	2.0															
		61	2013-01- 10	2013-01- 10	195.0	1.0															
		75	2013-01- 17	2013-01- 17	76.0	1.0															
						88	2013-01- 16	2013-01- 16	76.0	1.0											

Figure 3: sample

FLIP(00) Presentation \bigcirc FLIP(00) - 8 / 20

Data Description

Exploratory Data Analysis

Exploratory Data Analysis

Summary

Stationarity

Conclusion

Exploratory Data Analysis

FLIP(00) Presentation ©*FLIP*(00) – 9 / 20

Exploratory Data Analysis

Introduction

Data Description

Exploratory Data Analysis

Exploratory Data Analysis

Summary

Stationarity

Conclusion

Figure 4: EDA

FLIP(00) Presentation \bigcirc FLIP(00) - 10 / 20

Summary

Introduction

Data Description

Exploratory Data Analysis

Exploratory Data Analysis

Summary

Stationarity

Conclusion

■ There is an obvious "seasonality" (Eg: peak sales around a time of year) and a decreasing "Trend".

FLIP(00) Presentation ©FLIP(00) - 11 / 20

Data Description

Exploratory Data Analysis

Stationarity

Seasonality and Trend
Stationarity Test
Remove seasonality and trends

Conclusion

Summary

Stationarity

FLIP(00) Presentation ©FLIP(00) - 12 / 20

Seasonality and Trend

Introduction

Data Description

Exploratory Data Analysis

Stationarity

Seasonality and Trend

Stationarity Test

Remove seasonality and trends

Summary

Conclusion

Figure 5: Seasonality and Trend

Stationarity Test

Introduction

Data Description

Exploratory Data Analysis

Stationarity

Seasonality and Trend

Stationarity Test

Remove seasonality and trends

Summary

Conclusion

Results of Dickey—Fuller Test:	
Test Statistic	-2.395704
p-value	0.142953
#Lags Used	0.000000
Number of Observations Used	33.000000
Critical Value (1%)	-3.646135
Critical Value (5%)	-2.954127
Critical Value (10%)	-2.615968
dtype: float64	

Figure 6: Stationarity Test

Remove seasonality and trends

Introduction

Data Description

Exploratory Data Analysis

Stationarity

Seasonality and Trend

Stationarity Test

Remove seasonality and trends

Summary

Conclusion

Figure 7: Remove seasonality and trends

Summary

Introduction

Data Description

Exploratory Data Analysis

Stationarity

Seasonality and Trend

Stationarity Test

Remove seasonality and trends

Summary

Conclusion

Now let's check the new P-value.

Results of Dickey-Fuller Test:	
Test Statistic	-3.270101
p-value	0.016269
#Lags Used	0.000000
Number of Observations Used	21.000000
Critical Value (1%)	-3.788386
Critical Value (5%)	-3.013098
Critical Value (10%)	-2.646397
dtype: float64	

Figure 8: new stationarity test

After the transformations, our p-value for the DF test is well within 0.05. Hence we can assume Stationarity of the series.

Data Description

Exploratory Data Analysis

Stationarity

Conclusion

Summary

Future research

Conclusion

FLIP(00) Presentation @FLIP(00) - 17 / 20

Summary

Introduction

Data Description

Exploratory Data Analysis

Stationarity

Conclusion

Summary

Future research

- From the above result presentation, we can find that There are seasonality and trend in data.
- From the Stationarity test, we can find that
 After removing seasonality and trends, the time series becomes smooth.

 So we can use traditional time series prediction methods for prediction.

FLIP(00) Presentation \bigcirc FLIP(00) - 18 / 20

Future research

Introduction

Data Description

Exploratory Data Analysis

Stationarity

Conclusion

Summary

Future research

- Predict by traditional time series prediction models such as AR, MA and ARMA.
- Using more models to predict, such as random forests and neural networks.
- Find the most effective model and get my own kaggle ranking.

FLIP(00) Presentation \bigcirc FLIP(00) - 19 / 20

Thank you & Question

FLIP(00) Presentation \bigcirc FLIP(00) - 20 / 20