I worked with Joseph Sullivan and Gahl Shemy.

- **1 Exercise 1.1.5** Let $V \leq \mathbb{R}^N$ be a linear subspace of dimension k. Choose a basis $\{v_1, \ldots, v_k\}$ of V and extend it to a basis $\{v_1, \ldots, v_k, u_{k+1}, \ldots, u_N\}$ of \mathbb{R}^N . Then there is a linear surjection $L: \mathbb{R}^N \to \mathbb{R}^k$ defined by $v_i \mapsto e_i$ and $u_i \mapsto 0$. This map is smooth, therefore the restriction $\varphi = L|_V: V \to \mathbb{R}^k$ is smooth. Moreover, this is an isomorphism of vector spaces, so there is a linear inverse $\varphi^{-1} \mathbb{R}^k \to V$. Since φ^{-1} is a linear map $\mathbb{R}^k \to \mathbb{R}^N$, it is smooth, hence φ is a diffeomorphism. That is, φ is a global parameterization giving V the structure of a manifold, diffeomorphic to \mathbb{R}^k .
- **2 Exercise 1.2.1** Take parameterizations $\varphi: U \to X$ and $\psi: V \to Y$ where $U \subseteq \mathbb{R}^k$ and $V \subseteq \mathbb{R}^\ell$ are open sets such that $\varphi(0) = x = \psi(0)$. Without loss of generality, we may assume U is chosen small enough that $\varphi(U) \subseteq \psi(V)$, giving us the following commutative diagram:

$$X \xrightarrow{\iota} Y$$

$$\varphi \uparrow \qquad \uparrow \psi$$

$$U \xrightarrow{h=\psi^{-1}\circ\varphi} V$$

Taking derivatives, we obtain

$$T_x X \xrightarrow{\mathrm{d}\iota_0} T_x Y$$

$$\mathrm{d}\varphi_0 \uparrow \qquad \qquad \uparrow \mathrm{d}\psi_0$$

$$\mathbb{R}^k \xrightarrow{\mathrm{d}h_0} \mathbb{R}^\ell$$

Note that we can write $\varphi = \psi \circ h$, so

$$d\varphi_0^{-1} = d(\psi \circ h)_0^{-1} = (d\psi_{h(0)} \circ dh_0)^{-1} = dh_0^{-1} \circ d\psi_0^{-1}.$$

Then we compute

$$\mathrm{d}\iota_x = \mathrm{d}\psi_0 \circ \mathrm{d}h_0 \circ \mathrm{d}(\varphi)_0^{-1} = \mathrm{d}\psi_0 \circ \mathrm{d}h_0 \circ \mathrm{d}h_0^{-1} \circ \mathrm{d}\psi_0^{-1} = \mathrm{id}.$$

That is, $d\iota_x$ acts as the identity on T_xX , so it must be the inclusion $T_xX \hookrightarrow T_xY$.

3 Exercise 1.2.4 Let $\varphi: U \to X$ be a local parameterization with $U \subseteq \mathbb{R}^k$ an open set such that $\varphi(0) = x$. In particular, φ is a diffeomorphism $U \to \varphi(U)$. Since f is a diffeomorphism, the composition $f \circ \varphi$ is a diffeomorphism $U \to f(\varphi(U)) \subseteq Y$. In other words, $\psi = f \circ \varphi: U \to Y$ is a local parameterization with $\psi(0) = f(x)$. Hence, we have the following commutative diagram:

$$\begin{array}{c} X \xrightarrow{f} Y \\ \varphi \uparrow & \uparrow \psi \\ U \xrightarrow{-\text{id}_U} U \end{array}$$

Taking derivatives, we obtain

$$T_{x}X \xrightarrow{\mathrm{d}f_{x}} T_{f(x)}Y$$

$$d\varphi_{0} \uparrow \qquad \uparrow d\psi_{0}$$

$$\mathbb{R}^{k} \xrightarrow{\mathrm{d}(\mathrm{id}_{U})_{0} = \mathrm{id}_{\mathbb{R}^{k}}} \mathbb{R}^{k}$$

Since each of $d\varphi_0$, $d\psi_0$, and $id_{\mathbb{R}^k}$ are isomorphisms, then df_x is necessarily an isomorphism.

4 Exercise 1.2.12 Fix $x \in X$ and choose a local parameterization $\varphi : U \to X$ with $U \subseteq \mathbb{R}^k$ open and $\varphi(0) = x$. Then φ is a diffeomorphism from U to the open set $\varphi(U) \subseteq X$, so its derivative is an isomorphism of tangent spaces

$$\mathbb{R}^k = T_0 U \xrightarrow{\mathrm{d}\varphi_0} T_x \varphi(U) = T_x X.$$

Given $v \in T_x X$, set $u = \mathrm{d} \varphi_0^{-1}(v) \in \mathbb{R}^k$ and define a linear map $\gamma : \mathbb{R}^1 \to \mathbb{R}^k$ by $\gamma(t) = tu$, so

$$d\gamma_0(t) = tu$$
.

Choose $\varepsilon > 0$ such that $(-\varepsilon, \varepsilon) \subseteq \gamma^{-1}(U)$ and define the curve $c = \varphi \circ \gamma|_{(-\varepsilon, \varepsilon)} : (-\varepsilon, \varepsilon) \to X$. Then the velocity vector of c at 0 is

$$dc_0(1) = d(\varphi \circ \gamma)_0(1) = d\varphi_0(d\gamma_0(1)) = d\varphi_0(u) = v.$$

Hence, every vector of X is the velocity vector of some curve in X.

Conversely, by definition, every velocity vector lives in some tangent space of X.

5 Exercise 1.4.11

(a) The determinant det : $M(n) \to \mathbb{R}$ is a polynomial with respect to the entries of the matrices, and is therefore smooth. By definition, $SL(n) = \det^{-1}(1) \subseteq M(n)$.

Let $A \in M(n)$ with det $A \neq 0$. Consider the line $\gamma : \mathbb{R} \to M(n)$ defined by $\gamma(t) = tA$. Define the map $f = \det \circ \gamma : \mathbb{R} \to \mathbb{R}$, which we can write as

$$f(t) = \det(tA) = t^n \det A.$$

Then the derivative of f at $1 \in \mathbb{R}$ is

$$f'(t) = nt^{n-1} \det A.$$

For t = 1 this is nonzero, which means the derivative is a surjective map on tangent spaces. And since $df_1 = d(det)_A \circ d\gamma_1$, then in particular $d(det)_A$ is surjective. In other words, A is a regular point of the determinant, so all nonzero values are regular values. Hence, SL(n) is a manifold by the preimage theorem. (b) Since $SL(n) = \det^{-1}(1) \subseteq M(n)$, the tangent space is given by

$$T_{I_n}SL(n) = \ker d(\det)_{I_n}.$$

Since det is smooth, we can use the directional derivative

$$d(\det)_{I_n}(A) = D_A(I_n) = \lim_{t \to 0} \frac{\det(I_n + tA) - \det I_n}{t}.$$

Note that A is similar to some (possibly complex) upper triangular matrix U, i.e., there is some (possibly complex) $P \in GL(n)$ with

$$PAP^{-1} = U = \begin{bmatrix} u_1 & & * \\ & \ddots & \\ 0 & & u_n \end{bmatrix}.$$

Since determinant is invariant under similarity, we have

$$\det(I_n + tA) = \det(P(I_n + tA)P^{-1}) = \det(I_n + tU).$$

Then $t_n + tU$ is upper triangular, so its determinant is the product of the diagonal entries:

$$\det(I_n + tU) = (1 + tu_1) \cdots (1 + tu_n) = 1 + t(u_1 + \cdots + u_n) + O(t^2).$$

We can compute the derivative

$$d(\det)_{I_n}(A) = \lim_{t \to 0} \frac{t(u_1 + \dots + u_n) + O(t^2)}{t} = u_1 + \dots + u_n,$$

but this is simply the trace, which is invariant under similarity, so

$$d(\det)_{I_n}(A) = \operatorname{tr}(U) = \operatorname{tr}(P^{-1}UP) = \operatorname{tr}(A).$$

Hence, the tangent space is

$$T_{I_n}SL(n) = \ker \operatorname{d}(\det)_{I_n} = \ker \operatorname{tr} = \{A \in M(n) \mid \operatorname{tr}(A) = 0\}.$$

6 Exercise 1.5.4 By Problem 2 Exercise 1.2.1, the derivatives of the inclusions $X \cap Z \hookrightarrow X$ and $X \cap Z \hookrightarrow Z$ are inclusions $T_y(X \cap Z) \hookrightarrow T_yX$ and $T_y(X \cap Z) \hookrightarrow T_yZ$, hence

$$T_y(X \cap Z) \subseteq T_yX \cap T_yZ.$$

We now count dimensions to prove equality. Note that $X \cap Z = \iota^{-1}(Z)$ where $\iota : X \to Y$ is the inclusion, so

$$\operatorname{codim}_X(X \cap Z) = \operatorname{codim}_X \iota^{-1}(Z) = \operatorname{codim}_Y Z.$$

This means the dimension $\dim T_y(X \cap Z) = \dim(X \cap Z)$ is given by

$$\dim X - \operatorname{codim}_Y Z = \dim X - (\dim Y - \dim Z) = \dim X + \dim Z - \dim Y.$$

The fact that X and Z are transverse tells us $T_yX + T_yZ = T_yY$, so

$$\dim T_y X + \dim T_y Z = \dim T_y Y - \dim(T_y X \cap T_y Z),$$

which implies

$$\dim(T_{\nu}X \cap T_{\nu}Z) = \dim T_{\nu}X + \dim T_{\nu}Z - \dim T_{\nu}Y = \dim X + \dim Z - \dim Y.$$

We conclude that

$$\dim T_y(X \cap Z) = \dim X + \dim Z - \dim Y = \dim(T_yX \cap T_yZ),$$

so we must have equality

$$T_u(X \cap Z) = T_uX \cap T_uZ.$$

7 Exercise 1.5.5 Denote y = f(x). By construction, f restricts to a map $W \to Z$, which means df_x restricts to a map $T_xW \to T_yZ$, so we have

$$T_xW \subseteq \mathrm{d}f_x^{-1}(T_yZ).$$

We now count dimensions to prove equality. First, $\operatorname{codim}_X W = \operatorname{codim}_Y Z$ gives us

$$\dim T_x W = \dim W = \dim X - \operatorname{codim}_X W = \dim X - \operatorname{codim}_Y Z.$$

The fact that f and Z are transverse means im df_x and T_yZ are transverse subspaces of T_yY .

Note that for any linear map $L:V\to V'$ of vector spaces and $U\le V'$ a subspace, it follows from the first isomorphism theorem that

$$\operatorname{codim}_V L^{-1}(U) = \operatorname{codim}_{V/\ker L}(L^{-1}(U)/\ker L) = \operatorname{codim}_{\operatorname{im} L}(U \cap \operatorname{im} L).$$

Applying this to $df_x: T_xX \to T_yY$ and $T_yZ \leq T_yY$, we get

$$\dim df_x^{-1}(T_y Z) = \dim T_x X - \operatorname{codim}_{T_x X} df_x^{-1}(T_y Z)$$

$$= \dim X - \operatorname{codim}_{\operatorname{im} df_x}(T_y Z \cap \operatorname{im} df_x)$$

$$= \dim X - \operatorname{codim}_{T_y Z + \operatorname{im} df_x} T_y Z$$

$$= \dim X - \operatorname{codim}_{T_y Y} T_y Z$$

$$= \dim X - \operatorname{codim}_Y Z$$

$$= \dim X - \operatorname{codim}_Y Z$$

$$= \dim T_x W.$$

Hence, we have equality

$$T_x W = \mathrm{d} f_x^{-1}(T_y Z).$$

(Exercise 1.5.4 is the case of f being the inclusion $X \hookrightarrow Y$.)

8 Exercise 1.5.6 Consider $Y = \mathbb{R}^4$ with subspaces $X = \langle e_1, e_2 \rangle$ and $Z = \langle e_1, e_3 \rangle$. Then $X \cap Z = \langle e_1 \rangle$ is still a manifold but

$$T_0X + T_0Z = X + Z = \langle e_1, e_2, e_3 \rangle \neq Y$$

which means X and Z are not transverse. Moreover,

$$\operatorname{codim}_Y(X \cap Z) = 3 \neq 4 = \operatorname{codim}_Y X + \operatorname{codim}_Y Z.$$

Lastly, if U and W are linear subspaces of V such that their intersection has codimension $\operatorname{codim}_V U + \operatorname{codim}_V W$, then U and V must be transverse. To see this, consider

$$\operatorname{codim}_V(U\cap W) = \operatorname{codim}_V U + \operatorname{codim}_V W$$

$$\dim V - \dim(U\cap W) = (\dim V - \dim U) + (\dim V - \dim W)$$

$$\dim V + \dim(U+W) - \dim U - \dim W = 2\dim V - \dim U - \dim W$$

$$\dim(U+W) = \dim V.$$

Since U + W is a subspace of V, this implies U + W = V, i.e., U and V are transverse. Applying this fact to the tangent spaces, we deduce that if X and Z are submanifolds of Y such that their intersection is a submanifold of codimension $\operatorname{codim}_Y X + \operatorname{codim}_Y Z$, then X and Z must be transverse.

9 Exercise 1.5.7 Fix a point $x \in X$ and denote y = f(x), z = g(y).

Assume f is transverse to $g^{-1}(W)$, which means

$$\operatorname{im} df_x + T_y g^{-1}(W) = T_y Y.$$

Notice that $T_y g^{-1}(W) = dg_y^{-1}(T_z W)$, so taking the image under dg_y , we obtain

$$\operatorname{im} d(g \circ f)_x + T_z W = \operatorname{im} dg_y.$$

We add T_zW to both sides, and the fact that g is transverse to W gives us

$$\operatorname{im} d(g \circ f)_x + T_z W = \operatorname{im} dg_y + T_z W = T_z Z.$$

Hence, $g \circ f$ is transverse to W.

Assume $g \circ f$ is transverse to W, which means

$$\operatorname{im} d(g \circ f)_x + T_z W = T_z Z.$$

Note that im $d(g \circ f)_x = dg_y(\operatorname{im} df_x)$, then taking the preimage under dg_y gives us

$$dg_y^{-1}(dg_y(\operatorname{im} df_x) + T_z W) = dg_y^{-1}(T_z Z) = T_y Y.$$

If $v \in T_yY$, then we can find $u \in T_xX$ and $w \in T_zW$ such that

$$dg_y(v) = dg_y(df_x(u)) + w.$$

Then

$$dg_y(v - df_x(u)) = dg_y(v) - dg_y(df_x(u)) = w,$$

which means

$$v - \mathrm{d}f_x(u) \in \mathrm{d}g_y^{-1}(T_z W) = T_y g^{-1}(W).$$

We deduce that

$$v \in \operatorname{im} df_x + T_y g^{-1}(W),$$

SO

$$T_y Y \subseteq \operatorname{im} df_x + T_y g^{-1}(W).$$

The reverse inclusions is clear since T_yY is the codomain of df_x and $g^{-1}(W)$ is a submanifold of Y. Hence, f is transverse to $g^{-1}(W)$.

10 Exercise 1.6.1 From Homework 3 Exercise 1.1.18, let $h : \mathbb{R} \to \mathbb{R}$ be a smooth function such that h(x) = 0 for $x \le 1/4$, h(x) = 1 for $x \ge 3/4$, and 0 < h(x) < 1 for 1/4 < x < 3/4. We may consider h as a smooth map $I \to I$.

Let $F: X \times I \to Y$ be a smooth homotopy from f_0 to f_1 . We define \tilde{F} as the following composition:

$$X \times I \xrightarrow{\operatorname{id}_X \times h} X \times I \xrightarrow{F} Y$$

Then \tilde{F} is a smooth map, given by $\tilde{F}(x,t) = F(x,h(t))$. So for $t \leq 1/4$

$$\tilde{F}(x,t) = F(x,h(t)) = F(x,0) = f_0(x)$$

and for $t \geq 3/4$

$$\tilde{F}(x,t) = F(x,h(t)) = F(x,1) = f_1(x).$$

11 Exercise 1.6.2 Let $F, G: X \times I \to Y$ be smooth homotopies from f to g and from g to h respectively which satisfy the conditions of Problem 10 Exercise 1.6.1. Define the function $H: X \times I \to Y$ by

$$H(x,t) = \begin{cases} F(x,2t) & \text{if } t \le 1/2, \\ G(x,2t-1) & \text{if } t \ge 1/2. \end{cases}$$

We obtain immediately that H is smooth for $t \neq 1/2$. Moreover,

$$F(x, 2(1/2)) = F(x, 1) = g(x) = G(x, 0) = G(x, 2(1/2) - 1),$$

so H(x, 1/2) = g(x) is well-defined. In fact, for all $t \in (3/8, 5/8)$ we have H(x, t) = g(x). In other words,

$$H|_{X\times(3/8,5/8)} = g \circ \pi_X,$$

where $\pi_X : X \times I \to X$ is the projection onto X. Since g and π_X are smooth, so is their composition, hence H is smooth at t = 1/2.