Universidade Federal de Juiz de Fora Instituto de Ciências Exatas Departamento de Ciência da Computação

$\begin{array}{c} {\rm DCC001} \\ {\rm AN\acute{A}LISE~E~PROJETO~DE~ALGORITMOS} \end{array}$

Trabalho Prático

Rafael Terra de Souza Mateus Coutinho Marim Aleksander Yacovenco Mattheus Soares Santos

Professor - Stênio Soares

Juiz de Fora - MG 24 de abril de 2017

Sumário

T	Intr	3	T
	1.1	Considerações iniciais	1
	1.2	Especifição do problema	1
2	\mathbf{Alg}	oritmo e estruturas de dados	1
	2.1	Estruturas gerais	1
	2.2		2
3	Aná	ilise de complexidade dos algoritmos	5
	3.1	1	5
	3.2		5
	3.3		5
	3.4		5
	3.5	1	5
	0.0	quendore	
4	Tes	tes	5
	4.1	Lista ordenada em ordem crescente	6
		4.1.1 Algoritmos ineficientes	6
			6
	4.2	9	7
	4.3		8
	4.4	-	9
5	Cor	iclusão 1	1
L	ista	de Figuras	
	1	Comparações - Lista aleatória	
	2	Atribuições - Lista aleatória	
	3	Tempo gasto - Lista aleatória	1
_	• ,	l D	
L	ısta	de Programas	
	1	Struct	1
	2		2
	3	-	2
	4		$\frac{1}{2}$
	5		2
	6		- 3
	7	•	3
	•	O	
	8	HeapSort	4

Lista de Tabelas

1	Comparações - lista ordenada crescentemente	ĵ
2	Atribuições - lista ordenada crescentemente	3
3	Tempo gasto - lista ordenada crescentemente	7
4	Comparações - Lista ordenada decrescentemente	7
5	Atribuições - lista ordenada decrescentemente	7
6	Tempo gasto - lista ordenada decrescentemente	3
7	Comparações - lista quase ordenada	3
8	Atribuições - lista quase ordenada	3
9	Tempo gasto - lista quase ordenada	
10	Comparações - lista aleatória)
11	Atribuições - lista aleatória	
12	Tempo gasto - lista aleatória)

1 Introdução

O objetivo deste trabalho é a implementação e análise de algoritmos de ordenação, dentre os quais foram utilizados: BubbleSort, SelectionSort, InsertionSort, MergeSort, QuickSort e HeapSort. Foram analisados o número de comparações realizadas, o número de atribuições realizadas e o tempo de execução para cada um dos algoritmos citados anteriormente.

1.1 Considerações iniciais

- Ambiente de desenvolvimento do código fonte: CLion, Atom+terminal e Gedit+terminal.
- Linguagem utilizada: Linguagem C/C++.
- Ambiente de desenvolvimento da documentação: TexStudio, editor de latex para Texlive.

1.2 Especifição do problema

A partir de vetores de dados passados, utilizar os algoritmos BubbleSort, SelectionSort, InsertionSort, MergeSort, QuickSort e HeapSort para ordenar os dados dos vetores, calcular o tempo de execução de cada um desses algoritmos, assim como quantas atribuições e quantas comparações são feitas por cada um dos algoritmos citados anteriormente. Após tais dados coletados, comparar os algoritmos não eficientes (BubbleSort, InsertionSort e SelectionSort) e eficientes (QuickSort, HeapSort e MergeSort), apontando a análise de complexidade de cada um dos algoritmos e quais foram os testes realizados com os vetores passados.

2 Algoritmo e estruturas de dados

Estrutura de dados utilizada:

As instâncias utilizadas são armazenadas em uma struct contendo uma chave to tipo inteiro e uma string que armazena o nome de cada elemento.

2.1 Estruturas gerais

```
typedef long long int lli;

extern lli comp;
extern lli atrib;

struct Node{
  int key;
  std::string info;
};
```

Algoritmo 1: Struct

Função swap, utilizada para trocar realizar a troca de dois elementos do vetor.

```
void swap(Node v[], int a, int b){
   Node aux = v[a];
   v[a] = v[b];
   v[b] = aux;
   atrib += 3;
}
```

Algoritmo 2: Swap

2.2 Algoritmos de ordenação

```
void bubble_sort(Node v[], int n){
   int i, j, swaps;

for(i = 0; ; ++i){
      swaps = 0;
   for(j = 0; j < n-1; ++j){
      comp++;
      if(v[j].key > v[j + 1].key){
         swap(v, j + 1, j);
      swaps++;
      }
    }
   if(!swaps) return;
}
```

Algoritmo 3: BubbleSort

```
void insertion sort(Node v[], int n){
     int i, j;
     Node temp;
     for (i = 1; i \le n-1; i++)
           temp = v[i];
            j = i - 1;
     comp++;
            while ((j >= 0) \&\& (temp.key < v[j].key)) {
                v[j+1] = v[j];
                j = j-1;
10
                comp++;
                atrib += 2;
            v[j+1] = temp;
            atrib += 3;
15
```

Algoritmo 4: InsertionSort

```
void selection_sort (Node v[], int n){
  int i, j, min, pos_min;
  for (i = 0; i < n-1; i++){
    for (j = i + 1, min = v[i].key, pos_min = i; j < n; j++){
      atrib++;
      comp++;
      if (v[j].key < min) {</pre>
```

```
min = v[j].key;
    pos_min = j;
    atrib += 2;
}

v[pos_min] = v[i];
v[i].key = min;
atrib += 4;
}
```

Algoritmo 5: SelectionSort

```
void quick_sort(Node v[], int low, int high)
     int pivot , aux;
     int i, j;
     pivot = v[(low + high) / 2].key;
5
     i = low;
     j = high;
     atrib += 3;
     while (i \le j)
10
        while (v[i].key < pivot)</pre>
          comp++;
          i++;
        while(v[j].key > pivot)
          comp++;
20
          j --;
        if ( i <= j )
          comp++;
          swap(v, i, j);
25
          i++;
     }
     if(j > low)
        quick sort(v, low, j);
     if(i < high)</pre>
        quick sort (v, j + 1, high);
35
```

Algoritmo 6: QuickSort

```
void merge_sort(Node v[], int n)
{
    mergePart(v, 0, n / 2 - 1);
    mergePart(v, n / 2, n - 1);
    merge(v, 0, n - 1);
}
```

```
void mergePart(Node v[], int a, int b)
      comp++;
10
      if (b - a > 1)
        mergePart\left(\,v\,,\ a\,,\ \left(\,a\,+\,b\,\right)\ /\ 2\,\right)\,;
        mergePart(v, (a + b) / 2 + 1, b);
        merge(v, a, b);
15
      else if (v[a].key > v[b].key)
        comp++;
        swap(v, a, b);
20
   void merge(Node v[], int a, int b)
      int tam = b - a + 1;
25
      int m = (a + b) / 2;
      int j = a;
      int k = m + 1;
      int vetAux[tam];
      atrib += 5;
30
      for (int i = 0; i < tam; i++)
        if (v[j]. key < v[k]. key && j <= m)
           \operatorname{vet} \operatorname{Aux}[i] = \operatorname{v}[j++]. \operatorname{key};
35
        else
           vetAux[i] = v[k++].key;
        atrib++;
        comp += 3;
      for (int i = 0; i < tam; i++)
40
        v[a+i].key = vetAux[i];
        comp++;
        atrib++;
45
```

Algoritmo 7: MergeSort

```
void max heapify(Node a[], int i, int n)
   {
        int largest = i;
        \mathbf{int} \quad \mathbf{l} = 2 * \mathbf{i} + 1;
        int r = 2*i + 2;
5
        if (1 < n \&\& a[1]. key > a[largest]. key) {
             largest = 1;
           atrib++;
        if (r < n && a[r].key > a[largest].key){
10
             largest = r;
           atrib++;
        }
        comp += 2;
        if (largest != i)
15
```

```
{
    comp++;
    swap(a, i, largest);
    max_heapify(a, largest, n);
}

return;
}

void heap_sort(Node a[], int n)
{
    for (int i = n / 2 - 1; i >= 0; i--){
        max_heapify(a, i, n);
}

for (int i=n-1; i>=0; i--)
{
    swap(a, 0, i);

    max_heapify(a, 0, i);
}
```

Algoritmo 8: HeapSort

3 Análise de complexidade dos algoritmos

- 3.1 BubbleSort
- 3.2 InsertionSort
- 3.3 MergeSort
- 3.4 HeapSort
- 3.5 QuickSort

O algoritmo quicksort possui a seguinte equação de recorrência:

$$T(n) = T(k) + T(n-k) + c \times n \tag{1}$$

Onde o algoritmo particiona a lista recursivamente em duas partes escolhendo um pivô e as partes são k e n - k. No pior caso o pivô é o pior possível, então:

(2)

A equação resultante da análise de complexidade pode ser vista na Equação 3.

$$O(n) = \sum_{i=1}^{n} i^2 + 1 \tag{3}$$

4 Testes

Os testes foram realizados com os quatro algoritmos de ordenação. Como os algoritmos BubbleSort, InsertionSort e SelectionSort são considerados ineficientes

em relção aos outros eles foram separados e comparados entre si. Para realizar os testes utilizamos quatro tipos de instâncias: lista ordenada em ordem crescente, lista ordenada em ordem decrescente, lista quase aleatória(primeiro e ultimo elementos trocados) e lista aleatória. Cada tipo possui instâncias de 10, 100, 1000, 10000, 100000 e 1000000 elementos.

4.1 Lista ordenada em ordem crescente

4.1.1 Algoritmos ineficientes

4.1.2 Algoritmos eficientes

Tabela 1: Comparações - lista ordenada crescentemente

Quantidade de comparações				
Tamanho da lista	Algoritmo	Algoritmo de ordenação utilizado		
	Merge	Quick	Heap	
10	114	53	93	
100	2526	866	1923	
1000	37022	11896	29127	
10000	513502	154739	395871	
100000	6531070	1868358	4952565	
1000000	77048574	21880232	59363379	

Tabela 2: Atribuições - lista ordenada crescentemente

Quantidade de atribuições				
Tamanho da lista	Algoritmo de ordenação utilizado			
	Merge	Quick	Heap	
10	77	42	121	
100	1515	456	2718	
1000	20555	4506	42090	
10000	280363	47706	576455	
100000	3527675	465528	7255742	
1000000	40621435	4524282	87453863	

Tabela 3: Tempo gasto - lista ordenada crescentemente

Tempo gasto em segundos			
Tamanho da lista	Algoritmo de ordenação utilizado		
Tamamio da fista	Merge	Quick	Heap
10	1,00E-05	1,10E-05	1,80E-05
100	3,60E-05	3,70E-05	0,000171
1000	9,20E-05	7,50E-05	0,000687
10000	0,001205	0,000783	0,009227
100000	0,014039	0,007828	0,093136
1000000	0,153944	0,083055	1,19613

4.2 Lista ordenada em ordem decrescente

4.2.1 Algoritmos ineficientes

4.2.2 Algoritmos eficientes

Tabela 4: Comparações - Lista ordenada decrescentemente

Quantidade de comparações				
Tamanho da lista	Algoritmo	Algoritmo de ordenação utilizado		
Tamamio da fista	Merge	Quick	Heap	
10	118	50	66	
100	2562	870	1551	
1000	37510	11894	24951	
10000	517598	154736	350091	
100000	6565534	1868362	4492305	
1000000	77524286	21880230	55000227	

Tabela 5: Atribuições - lista ordenada decrescentemente

Tabela 3. Attibulções - lista ordenada decrescentemente				
Quantidade de atribuições				
Tamanho da lista	Algoritmo	Algoritmo de ordenação utilizado		
Tamamio da fista	Merge	Quick	Heap	
10	89	54	81	
100	1623	609	2112	
1000	22019	6003	35291	
10000	292651	62703	503710	
100000	3631067	615531	6517115	
1000000	42048571	6024279	80233851	

Tabela 6: Tempo gasto - lista ordenada decrescentemente

discission in the discission of the discission o				
Tempo gasto em segundos				
ção utilizado				
Heap				
$4,\!00 ext{E-}06$				
$3,\!60\text{E-}05$				
0,000498				
0,006804				
0,087639				
1,12486				

4.3 Lista quase ordenada

4.3.1 Algoritmos ineficientes

${\bf 4.3.2}\quad {\bf Algoritmos\ eficientes}$

Tabela 7: Comparações - lista quase ordenada

Quantidade de comparações				
Tamanho da lista	Algoritmo de ordenação utilizado			
	Merge	Quick	Heap	
10	116	53	84	
100	2527	866	1914	
1000	37023	11896	29088	
10000	513504	154739	395796	
100000	6531071	1868358	4952538	
1000000	77048575	21880232	59366004	

Tabela 8: Atribuições - lista quase ordenada

Quantidade de atribuições				
Tamanho da lista	Algoritmo	Algoritmo de ordenação utilizado		
	Merge	Quick	Heap	
10	83	45	109	
100	1518	459	2707	
1000	20558	4509	42036	
10000	280369	47709	576361	
100000	3527678	465531	7253529	
1000000	40621438	4524285	87457639	

Tabela 9: Tempo gasto - lista quase ordenada

Tempo gasto em segundos				
Tamanho da lista	Algoritmo	Algoritmo de ordenação utilizado		
Tamamo da nsta	Merge	Quick	Heap	
10	3,00E-06	3,00E-06	4,00E-06	
100	9,00E-06	1,00E-05	4,20E-05	
1000	0,000105	6,10E-05	0,000559	
10000	0,000998	0,00064	0,007651	
100000	0,012542	0,007002	0,09462	
1000000	0,153052	0,086916	1,18886	

4.4 Lista Aleatória

4.4.1 Algoritmos ineficientes

4.4.2 Algoritmos eficientes

Tabela 10: Comparações - lista aleatória

Quantidade de comparações				
Tamanho da lista	Algoritmo de ordenação utilizado			
	Merge	Quick	Heap	
10	117	62	84	
100	2546	989	1737	
1000	37279	14712	27102	
10000	515561	189538	372300	
100000	6548267	2448530	4726323	
1000000	77286078	29393733	57147021	

Tabela 11: Atribuições - lista aleatória

Quantidade de atribuições				
Tamanho da lista	Algoritmo de ordenação utilizado			
	Merge	Quick	Heap	
10	86	63	107	
100	1575	852	2403	
1000	21326	10674	38742	
10000	286540	130830	538751	
100000	3579266	1528554	6890311	
1000000	41333947	17559420	83768004	

Tabela 12: Tempo gasto - lista aleatória

rabela 12. Tempo gasto fista alcatoria				
Tempo gasto em segundos				
Tamanho da lista	Algoritmo de ordenação utilizado			
	Merge	Quick	Heap	
10	3,00E-06	1,80E-05	4,00E-06	
100	1,30E-05	2,10E-05	4,00E-05	
1000	0,000134	0,000248	0,000592	
10000	0,001644	0,003233	0,00768	
100000	0,01941	0,039624	0,106496	
1000000	0,239133	0,470272	1,91489	

Figura 1: Comparações - Lista aleatória

Figura 2: Atribuições - Lista aleatória

Figura 3: Tempo gasto - Lista aleatória

5 Conclusão

Escrever conclusão