Lineare Algebra 2 — Übungsblatt 7 Sommersemester 2020

AOR Dr. D. Vogel P. Gräf, R. Steingart

Abgabe: Do 18.06.2020 um 9:15 Uhr

26. Aufgabe: (6 Punkte, Universelle Eigenschaft des Kerns) Seien R ein Ring, M und N zwei R-Moduln und $\varphi: M \to N$ ein R-Modulhomomorphismus. Sei $\iota: \ker(\varphi) \to M$ die kanonische Inklusion. Man zeige, dass das Paar ($\ker(\varphi)$, ι) die folgende Eigenschaft erfüllt:

(UK) Zu jedem R-Modul U und jedem R-Modulhomomorphismus $f: U \to M$ mit $\varphi \circ f = 0$ gibt es einen eindeutig bestimmten R-Modulhomomorphismus $g: U \to \ker(\varphi)$ mit $f = \iota \circ g$,

d.h. die Abbildung von Mengen

$$\operatorname{Hom}_R(U, \ker(\varphi)) \to \{ f \in \operatorname{Hom}_R(U, M) \mid \varphi \circ f = 0 \}$$

 $g \mapsto \iota \circ g$

ist bijektiv.

27. Aufgabe: (2+4 Punkte, Direkte Summen von freien Moduln) Seien R ein Ring und $(M_i)_{i \in I}$ eine Familie von freien R-Moduln. Sei $M = \bigoplus_{i \in I} M_i$. In dieser Aufgabe soll mit Hilfe der universellen Eigenschaften von direkten Summen und freien Moduln gezeigt werden, dass M frei ist. Sei dazu $(x_{i,j})_{j\in J_i}$ eine Basis von M_i . Wir setzen

$$K:=\bigcup_{i\in I}(\{i\}\times J_i)$$

und betrachten $(x_{i,j})_{(i,j)\in K}$ via der kanonischen Inklusionen $q_i:M_i\to M$ als Familie von Elementen von M. Sei N ein Modul mit einer Familie von Elementen $(y_{i,j})_{(i,j)\in K}$ aus N.

- (a) Man zeige, dass es für alle $i \in I$ einen eindeutigen R-Modulhomomorphismus $f_i \colon M_i \to N$ mit $f_i(x_{i,j}) = y_{i,j}$ für alle $j \in J_i$ gibt.
- (b) Man folgere aus (a) und der universellen Eigenschaft der direkten Summe, dass $(M, (x_{i,i})_{(i,i)\in K})$ die Eigenschaft (UF) erfüllt, M also frei ist.

Die Übungsblätter sowie weitere Informationen zur Vorlesung sind über MaMpf abrufbar.