

Your First RecSys

Даниил Потапов

Руководитель группы персонализации и рекомендательных систем MTC BigData

GBDT алгоритмы для рекомендательных систем

План лекции

- GBDT
- Постановка задачи ранжирования
- Двухэтапная архитектура
- CatBoost

GBDT

GBDT - Gradient Boosting on Decision Trees

• MTC

GBDT

- XGBoost
- LightGBM
- CatBoost
- Scikit-learn
 - sklearn.ensemble.GradientBoostingClassifier/Regressor
 - sklearn.ensemble.HistGradientBoostingClassifier/Regressor

Регрессия

Мы хотим найти такую f(x), которая для x предскажет $y \in R$.

Классификация

Мы хотим найти такую f(x), которая для x предскажет класс $y \in \{1, 2, ..., N\}$

Ранжирование

Мы хотим найти такую f(u, ltems), которая для заданного пользователя u и набора объектов $ltems=\{i1,i2,...,iM\}$ предскажет ранг для каждого объекта в наборе

Связь с регрессией

 $f(u, i_K) = y_K \in R$ - рейтинг, время просмотра и тд Ранжируем $\{i_1, i_2, ..., i_M\}$ по соответствующим $\{y_1, y_2, ..., y_M\}$

Связь с бинарной классификацией

 $f(u, i_K) = p_K \in \{0, 1\}$ - вероятность клика или покупки Ранжируем $\{i_1, i_2, ..., i_M\}$ по соответствующим $\{p_1, p_2, ..., p_M\}$

Основные подходы:

- Pointwise
- Pairwise
- Listwise

Задача ранжирования. Pointwise

Основная идея - свести задачу от f(u, ltems) к $f(u, i_K)$

По факту получается либо задача регрессии, либо задача классификации

Задача ранжирования. Pairwise

Основная идея - также, как и в Pointwise, обучаем $f(u, i_K)$.

Но для обучения уже используем два объекта (u, i_M, i_N) и бинарный таргет, $f(u, i_M) > f(u, i_N)$

Задача ранжирования. Listwise

Основная идея - использовать информацию о целом наборе *Items* для обучения.

Получается из Pairwise, если мы считаем ошибку суммарно по парам в рамках одного запроса пользователя

Двухэтапная архитектура

- Генерация кандидатов более простыми моделями
 - Популярное
 - Item2item, User2user
 - ALS
 - LightFM
 - Random
- Реранжирование списка кандидатов с фичами более тяжелой моделью
 - GBDT
 - Neural nets

Двухэтапная архитектура. Таргет

Позитивные примеры

- Известные взаимодействия
- Порог по рейтингу

Негативные примеры

- Известные взаимодействия с негативной оценкой
 - Порог по рейтингу
 - Возврат после покупки
- Случайные
- На основе простых моделей

Двухэтапная архитектура. Таргет

Цель сэмплирования негативных примеров - научить модель выделять именно те зависимости, которые привели к позитивному взаимодействию.

Поэтому лучше использовать генерацию на основе простых моделей и с привязкой по времени.

Качество негативного сэмплирования - качество простых моделей на заданном топ-N.

Двухэтапная архитектура. Валидация

Два подхода:

- Случайное разбиение
 - По группе таргета из одного взаимодействия (positive + N negatives)
- По времени
 - Имитируем процесс эксплуатации в проде

Двухэтапная архитектура. Кандидаты

Популярное:

- Легко посчитать вплоть по каждому дню с разным окном
- Хранить можно в таблице вида [item_id, date, popularity, rank]

kNN и матричные разложения

Накладно хранить много моделей, поэтому можно увеличивать "временной шаг", 1 модель на месяц

Варианты ансамблирования:

- Rank average
- Model priority

Двухэтапная архитектура. Кандидаты

Для train после построения кандидатов надо убрать дубликаты.

Для test мы вначале строим кандидатов по всем пользователям из test, а потом к ним присоединяем кандидатов через left join.

На этом этапе мы сразу можем оценить качество кандидатов.

Двухэтапная архитектура. Кандидаты

Двухэтапная архитектура. Фичи

После генерации кандидатов получается каркас нашего датасета:

- user_id
- item_id
- date
- target

На этот каркас через join'ы присоединяются фичи. На практике это самый тяжелый этап.

CatBoost

Objectives:

- RMSE
- QueryRMSE
- PairLogit
- PairLogitPairwise
- YetiRank
- YetiRankPairwise

Metrics:

- Precision@K, Recall@K
- MAP
- DCG, NDCG
- PFound

https://catboost.ai/docs/concepts/loss-functions-ranking.html

CatBoost

catboost.Pool - класс для более оптимального использования датасета во время обучения

Ключевые аргументы:

- data наша таблица
- label таргет
- group_id user_id
- pairs матрица [Nx2] с парами для Pairwise

CatBoost

```
catboost_model = catboost.CatBoost({
    'loss_function': 'YetiRank',
    'learning_rate': 0.1,
    'iterations': 1000,
    'early stopping rounds': 30,
    'custom metric': ['RecallAt:top=1', 'RecallAt:top=10', 'PrecisionAt:top=10'],
    'eval_metric': 'MAP:top=3',
})
catboost_model.fit(
    catboost_pool_train,
    eval_set=catboost_pool_test,
    logging_level='Silent',
    plot=True
```


LightGBM

Objectives:

- LambdaRank
- XE_NDCG_MART

Metrics:

- MAP
- NDCG

LightGBM

Всем спасибо за внимание :)

Вопросы можно задавать здесь

▼ Telegram чате курса

sharthZ23