Analyse: Eksammens presentationer.

Martin Sig Nørbjerg

 $\mathrm{June}\ 11,\ 2022$

1 | Reel analyse

2 | Kompleks analyse

2.1 Opgave 1:

(a) Lad $f:G\to\mathbb{C}$ være en holomorf funktion på området $G\subseteq\mathbb{C}$, som udlukkende tager relle værdier, dvs $f(G)\subseteq\mathbb{R}$. Hvordan ser f ud?

For at f kan være holomorf på G skal den være differentiabel i alle $z_0 = x_0 + iy_0 \in G$. Opskriv f som f = u + iv, hvor $u, v : G \to \mathbb{R}$. Det gælder at funktionen er (kompleks) differentiabel hvis og kun hvis, den opfylder Cauchy-Riemann ligningerne

$$\frac{\partial}{\partial x}u(x_0,y_0) = \frac{\partial}{\partial y}v(x_0,y_0), \quad \frac{\partial}{\partial x}v(x_0,y_0) = -\frac{\partial}{\partial y}u(x_0,y_0)$$

hvor u,v ses som funktioner fra \mathbb{R}^2 til \mathbb{R} . Men hvis $f(G)\subseteq \mathbb{R}$, har vi at v(x,y)=0 for alle $z=x+iy\in G$. Heraf følger det at

$$\frac{\partial}{\partial x}u(x_0, y_0) = 0, \quad -\frac{\partial}{\partial y}u(x_0, y_0) = 0$$

Og heraf at der $\exists c \in \mathbb{R}$ således v(x,y) = c for alle $z = x + iy \in G$ hvilket medfører at f(z) = c.

(b) Undersøg om funtionen $f: \mathbb{C} \to \mathbb{C}, \ f(z) = \sqrt{|z^2 - \bar{z}^2|}, \ \text{er}$ kompleks differentiabel i z = 0. Er den tilsvarende funktion $u: \mathbb{R}^2 \to \mathbb{R}$ reel differentiabel?