Noms: KIEFFER CHEVALLIER Prénoms: Gr : 31

Thomas Arthur

Partie 1

Analyse des images :

	Méthode de calcul – Outils utilisés	Key_16_17_D	Key_16_17	Key_16_17_L
Contraste	On utilise la formule Contraste = (Imax-	1	1	0.68
	Imin)/(Imax+Imin) avec I le niveau de gris			
Dynamique	Dynamique = niveau gris max – niveau gris min (avec	135 – 0 =	255-0 = 255	255-48 =
	l'histogramme)	135		207

Seuils manuels: (min-max)

	Key_16_17_D	Key_16_17	Key_16_17_L	Key_8_9	Key_12_13	Key_14_15	Key_20_22
Valeurs	3-135	20-255	150-255	15-255	10-255	113-255	108-255

Seuils automatiques:

Méthode(s)	Key_16_17_D	Key_16_17	Key_16_17_L	Key_8_9	Key_12_13	Key_14_15	Key_20_22
Menu Image	Otsu	Otsu	Otsu	Huang	MaxEntropy	Moments	Li
> Adjust >							
Auto							
Thresold							
Valeurs	37-135	101-255	157-255	15-255	11-255	108-255	74-255

Calibration:

Résolution en x : 1.956px/mm Résolution en y : 1.956px/mm Précision : 0.5mm

Prétraitement(s):

Avant d'appliquer l'algorithme, on étalonne la mesure avec l'image Etalon_45 (implémenté dans la macro) et on a mesuré la résolution (pour en faire une constante dans la macro de mesure).

Ensuite, on utilise la méthode de Otsu afin de faire une détection de contour puis un seuillage pour binariser l'image.

Hypothèses:

- Etalonnage avant la mesure
- Résolution constante
- Les clefs doivent être positionnés à peu près au même endroit (horizontalement, d'après l'énoncé).

Méthode de calcul (algorithme) :

- On trace une ligne sur l'image.
- On se rend compte que la ligne traverse différents contours qui induisent des pics à 255 sur le profil de ligne.
- On différencie les groupes de contour : bords extérieurs de la clef et bords intérieurs.
- On mesure la distance entre les 2 bords intérieurs (bordures de l'arrondi de la clef) : c'est la largeur d'écartement.

La distance est normalement obtenue avec x1-x2 les coordonnées des bords, mais on obtient un résultat en pixel : il faut la diviser par la résolution de l'image.

On a aussi remarqué que l'image pouvait contenir des pixels en escalier (2pixels à 255 à la suite sur la ligne) dans le contour. On doit donc les prendre en compte dans l'algorithme en ne gardant que le premier pixel afin de calculer le bon écart.

Résultats :

	Key_16_17_D	Key_16_17	Key_16_17_L	Key_8_9	Key_12_13	Key_14_15	Key_20_22
Valeur	15.5mm	15.5mm	13.5mm	7,5mm	13mm	14mm	20mm
mesurée							

Conclusions - Commentaires:

Nous avons effectué certaines hypothèses afin de simplifier le fonctionnement de l'algorithme. Dans le cadre d'une industrialisation du processus, elles sont faciles à suivre si on fait défiler les clefs sous une caméra linéaire par exemple.

Pour conclure, les résultats de notre algorithme sont plutôt très bons, en l'état nous ne pouvons pas savoir si les quelques écarts constatés sont dus à une imprécision de l'algorithme ou dans le nom de la clef.

Nous pouvons toutefois rajouter une hypothèse sur la luminosité : on peut voir dans les valeurs obtenues qu'avec un éclairage trop lumineux les résultats sont plus éloignés de la réalité (car les niveaux de gris sont faussés, en particulier aux contours). Cela reste une contrainte peu restrictive puisque la luminosité peut être contrôlable dans l'environnement d'acquisition.

Partie 2

Binarisation (si utilisée) :

Méthode choisie: Otsu

Images testées	Valeur de seuil calculée
Clef.tif	139
Rondelle.tif	147

Pré-traitements éventuels (et paramètres de réglage) :

On a fait une binarisation en utilisant un seuillage automatique en utilisant la méthode de Li Dark pour séparer les objets du fond (en gardant un fond noir). Ensuite, nous avons également effectué un Outline et une Dilatation afin de récupérer tous les contours d'objets (en blanc sur fond noir).

Pour les caractéristiques, on a utilisé le Shape Filter fourni par IJ Blob.

Caractéristiques choisies :

Feature	C	lé	Rond	elle	Pièce			Dé
	Min	Max	Min	Max	Min	Max	Min	Max
Périmètre	2,382	3,813	0,614	0,754	0,614	1,108	0,555	0,582
Surface	0,071	0,210	0,027	0,043	0,031	0,100	0,022	0,025
Circularité	66,701	80,218	13,230	16,674	12,154	12,497	13,356	13,817
Nombre de trous	0	0	1	1	0	0	1	6
Maximum inscriped circle diameter	0,97	0,196	0,061	0,094	0,192	0,350	0,050	0,105

Lot de données : L'étalon sera toujours considéré comme étant une pièce. En sachant cela, on pourrait ne pas le compter comme une erreur dans les résultats suivants.

Images testées : Objet1 à 7 (dans l'ordre)

Nombre d'objets : détectés / présents :

#Clés : 3/3 #Rondelles: 2/2 #Pièces : 2/1 #Dés : 0/0 #Clés: 3/3 #Rondelles: 3/3 #Pièces : 3/2 #Dés : 0/0 #Clés : 3/3 #Rondelles: 2/2 #Pièces : 2/1 #Dés : 0/1 #Clés : 2/2 #Rondelles: 2/2 #Pièces : 2/1 #Dés : 3/3 #Clés : 1/1 #Rondelles: 2/2 #Pièces : 2/1 #Dés : 1/1 #Clés : 1/1 #Rondelles: 1/1 #Pièces : 2/1 #Dés : 2/2 #Clés : 1/1 #Rondelles: 1/1 #Pièces : 2/1 #Dés : 0/1

Matrice de confusion : Pour l'image Objet2_L.tif. On considère que l'étalon est bien placé dans pièce.

	Clé	Rondelle	Pièce	Dé	Rejet
Clé	1	0	0	0	2
Rondelle	0	2	0	0	1
Pièce	0	0	3	0	0
Dé	0	0	0	0	0
Rejet	0	0	0	0	1

Commentaires:

Nous pouvons calculer la précision :

Pour les clefs : 100%Pour les rondelles : 100%

- Pour les dés: 100% - l'échelon (soit 66%)

- Pour le rejet : 1/3 = 33%

Les objets sont toujours soit mis dans la bonne classe soit dans la classe de rejet, ce qui permet d'éviter de faux positifs et donc par exemple un mauvais tri des éléments.

Exemples d'images résultats (si noms de classes affichés) : Pour Objet4 puis Objet2_L

Limites de votre méthode :

L'étalon pose toujours problème pour la classification puisque ce n'est pas possible de le distinguer par rapport aux pièces (en tout cas avec nos caractéristiques). Cela n'est cependant pas important si l'étalonnage se fait sur une image à part, ce qui permettrait d'enlever l'étalon des images à analyser.

Les résultats sont également moins bons avec une luminosité élevée, ce qui est aussi gérable dans un environnement industriel.

Conclusion:

Pour conclure, notre classificateur semble assez performant. Les résultats sur les images acquises sont très bons.

Si on imagine que ce classificateur sera utilisé dans une optique de tri des objets, la classe de rejet permet de ne pas attribuer des éléments dans la mauvaise classe et pourrait signifier la nécessité d'une vérification humaine, sur un nombre très réduit d'objets.

Dans un milieu adapté, avec une bonne luminosité et un environnement d'acquisition constant, les résultats de classement seront encore meilleurs.