Hierarchical Surface Prediction

Christian Häne, Shubham Tulsiani, Jiterndra Malik University of California, Berkeley(UCB)

Published 30 January 2019

Slides compiled by Mengzhou Li

Contribution

 Proposed the hierarchical surface prediction (HSP) method which is able to generate 3D geometry prediction with high resolution voxel grids from one color/depth image.

Background

- ➤ Task: 3D voxels prediction from 2D image inputs
- Traditional method (from a large collection of multi-view images):
 - Dense matching
 - Minimization of reprojection errors
- > Recent method (from single images)
 - CNNs which directly map an input image to the geometry voxel grids

Limitations of current CNNs

>Cubic growth of the volume with increasing resolution

Principle behind HSP

>Cubic Growth => Quadratic Growth

3D object = 3D volume or 2D mesh surface

Surfaces are only two dimensional.

$$X^3 => X^2$$

2D image

2D image

2D Surfaces

≻Observation basis

Only **a few of the voxels** are in **the vicinity of** the object's **surface**. Most voxels are "boring" either completely inside or outside the object.

≻Principle

To only predict voxels around the surface

Computationally efficient 32³ => 256³

3D Voxels

HSP ideas

2D image

3D Voxels

Labels for voxels:

- Free space (outside)
- Occupied space (inside)

One to End

Benefits:

- Computationally efficient for high resolution
- Better for surface properties, i.e., color
 - Colors are defined around the surface, while voxel far away from the surface won't get assigned
 - But assignment is unclear for traditional method

2D image

2D Surfaces

Labels for voxels:

- Free
- **Boundary**
- Occupied
- subdivide
- 1 => 8
- One voxel to 8 child nodes

5-Level Coarse to Fine Resolution

Free

- Free
 - **Boundary** I

Occupied

- **Boundary**

Occupied

- - **Boundary**

Free

- **Occupied**
- Occupied

Free

Boundary

Networks

16*16*16

8*8*8 pixels

Туре	kW	kH	sW	sH	oC	oW	οН	_	
	10.17	1011	511	511				_	
Input	-	-	-	-	1/3	128	128		
Conv	5	5	1	1	16	128	128		
MP + IN + R	2	2	2	2	16	64	64		
Conv	3	3	1	1	32	64	64		
MP + IN + R	2	2	2	2	32	32	32	Conv	Convolution
Conv	3	3	1	1	64	32	32	UpCon	v Up-convolution
MP + IN + R	2	2	2	2	64	16	16	FC	Fully connected
Conv	3	3	1	1	128	16	16	MP	Max Pooling
MP + IN + R	2	2	2	2	128	8	8	R	ReLU
Conv	3	3	1	1	256	8	8	RS	Reshape
MP + IN + R	2	2	2	2	256	4	4	IN	Instance normalization
Conv	3	3	1	1	512	4	4	111	histance normanzation
MP + IN + R	2	2	2	2	512	2	2		
Conv + IN	3	3	1	1	1024	2	2	kW, kH, kD	Kernel sizes in the three dimensions
RS + R	-	-	-	-	4096	1	-	sW, sH, sD	Strides in the three dimensions
TAD	OLE 1.	Colo	/Da	n th	Engode	2 M		oC	Number of output feature channels
IAD	LE I	Corc	11 DE	:pui	Encode	21		oW, oH, oD	Output sizes in the three dimensions
ype	kW	kH k	D sW	sH	sD oC	oW	οН	oD	
C	_			_	- 409	6 1	_	_	
S + IN + R	_			_	- 512		2	2	

										OW	′
Туре	kW	kH	kD	sW	sН	sD	oC	oW	οН	oD	
FC	-	-	-	-	-	-	4096	1	-	-	
RS + IN + R	-	-	-	-	-	-	512	2	2	2	
UpConv + IN + R	4	4	4	2	2	2	256	4	4	4	
UpConv + IN + R	4	4	4	2	2	2	128	8	8	8	
UpConv + R	4	4	4	2	2	2	128	16	16	16	
Conv + R	3	3	3	1	1	1	64	16	16	16	
UpConv + R	4	4	4	2	2	2	64	32	32	32	
Conv	3	3	3	1	1	1	1	32	32	32	

TABLE 2: Baseline Decoder

Туре	kW	kH	kD	sW	sН	sD	oC	oW	οН	oD
FC	-	-	-	-	-	-	13824	-	-	-
RS + IN + R	-	-	-	-	-	-	512	3	3	3
UpConv + IN + R	4	4	4	2	2	2	256	6	6	6
UpConv + IN + R	4	4	4	2	2	2	128	12	12	12
UpConv + R	4	4	4	2	2	2	128	22	22	22
Conv + R	3	3	3	1	1	1	64	20	20	20
TARIF 3: Decode	ar m	odu	la b	ottle	noc	k to	footu	m bl	ock	T 1,1

TABLE 3: Decoder module, bottleneck to feature block *f*

Туре	kW	kH	kD	sW	sH	sD	oC	oW	οН	oD
UpConv + R	4	4	4	2	2	2	64/32	22	22	22
Conv + R	3	3	3	1	1	1	64/32	20	20	20

TABLE 4: Upsampling module oC oW oH oD Type kW kH kD sW sH sD Conv + R32/16 18 Conv 3/6 16 16

TABLE 5: Intermediate output module

Туре	kW	kH	kD	sW	sH	sD	oC	oW	οН	oD
UpConv + R	4	4	4	2	2	2	16	18	18	18
Conv	3	3	3	1	1	1	1/4	16	16	16

TABLE 6: Full output module

Networks Training

Loss functions:

- Occupancy Loss
 - Cross-Entropy for the occupancy prediction
- Color Loss * 10
 - Mean absolute difference for the color prediction
 - For voxel not on the boundary assign 0 loss

Loss balance for levels:

- Occupancy loss
 - Divided by 8^{l-1}
- > Color loss
 - Divided by 4^{l-1}

Network Training

- Subsampling of the child nodes
 - Trees get traversed in a depth first manner
 - The child node is traversed with a certain probability
- Gradient step
 - different sample => different tree
 - Traverse the tree for each example individually
 - Sum up all the gradients and only do a gradient step when a forward and backward traversal of all trees of the whole mini-batch have been done

> Dataset

ShapeNetCar 7497 3D models from the category Car ShapeNet3 18320 3D models from the categories: Car, Chair, Aeroplane

ShapeNet13 43784 3D models from the categories: Car, Chair, Aeroplane, Table, Couch, Rifle, Lamp,

Vessel, Bench, Speaker, Cabinet, Display, Tele-

phone

Baselines: traditional CNNs with two different ground truth labels.

LR H:

downsample the HR ground truth to 32³ (voxel value 0 or 1, contain boundary or not), then trilinearly upsample to 256³

LR S:

downsample the HR ground truth to 32^3 (voxel value represent the boundary to space ratio), then trilinearly upsample to 256^3

Computation Efficiency

Fig. 6: Number of predicted voxels at different resolutions for a dense baseline and our hierarchical prediction. As additional reference we also plot the number of voxels the ground truth voxel block octrees contain. The numbers were computed on the dataset ShapeNet13 with RGB images as input data.

Fig. 7: Runtime of a forward pass for different resultions using an NVIDIA Quadro M6000 GPU. The numbers were computed on the ShapeNet13 dataset with RGB images as input data.

Prediction performance

IoU The Intersection over Union is defined as

$$IoU(pred, gt) = \frac{|\operatorname{occ}(pred) \cap \operatorname{occ}(gt)|}{|\operatorname{occ}(pred) \cup \operatorname{occ}(gt)|},$$
(2)

where $occ(\cdot)$ returns the set of occupied voxels and $|\cdot|$ is the set cardinality.

CD We first define the asymmetric Chamfer Distance between volumes vol_1 and vol_2

$$CD_{as}(v_1, v_2) = \frac{1}{|\partial(v_1)|} \sum_{p \in \partial(v_1)} \min_{q \in \partial(v_2)} ||p - q||_2.$$
 (3)

$$CD(pred, gt) = \frac{CD_{as}(pred, gt) + CD_{as}(gt, pred)}{2}.$$
 (4)

Metric	Method	Car	Chair	Aero	Mean
	LR H	0.642	0.372	0.443	0.486
IoU	LR S	0.678	0.385	0.505	0.523
100	HSP	0.709	0.414	0.557	0.560
	HSP Color	0.691	0.379	0.519	0.530
	LR H	0.0161	0.0229	0.0171	0.0187
CD	LR S	0.0189	0.0269	0.0202	0.0220
CD	HSP	0.0116	0.0201	0.0131	0.0149
	HSP Color	0.0121	0.0241	0.0165	0.0176

TABLE 7: Results for RGB input on the ShapeNet3 dataset.

Metric	Method	Car	Chair	Aero	Table	Couch	Rifle	Lamp	Vessel	Bench	Speaker	Cabinet	Display	Phone	Mean
	LR H	0.624	0.389	0.411	0.349	0.556	0.383	0.232	0.437	0.277	0.511	0.547	0.377	0.604	0.438
IoU	LR S	0.675	0.374	0.487	0.351	0.589	0.354	0.241	0.436	0.166	0.530	0.583	0.383	0.585	0.443
	HSP	0.696	0.408	0.531	0.412	0.600	0.423	0.280	0.457	0.312	0.542	0.605	0.406	0.616	0.484
	LR H	0.0205	0.0223	0.0199	0.0226	0.0267	0.0208	0.0417	0.0264	0.0222	0.0294	0.0220	0.0273	0.0183	0.0246
CD	LR S	0.0198	0.0288	0.0228	0.0267	0.0288	0.0213	0.0495	0.0296	0.0263	0.0340	0.0249	0.0326	0.0276	0.0287
	HSP	0.0121	0.0223	0.0150	0.0195	0.0235	0.0155	0.0337	0.0227	0.0197	0.0271	0.0176	0.0270	0.0185	0.0211

TABLE 8: Results for RGB input on the ShapeNet13 dataset.

Metric	Method	Car	Chair	Aero	Table	Couch	Rifle	Lamp	Vessel	Bench	Speaker	Cabinet	Display	Phone	Mean
	LR H	0.589	0.370	0.386	0.320	0.542	0.355	0.226	0.416	0.223	0.495	0.537	0.365	0.556	0.414
IoU	LR S	0.636	0.358	0.430	0.321	0.550	0.334	0.234	0.417	0.155	0.516	0.554	0.378	0.541	0.417
	HSP	0.717	0.455	0.555	0.454	0.661	0.441	0.318	0.511	0.340	0.581	0.637	0.463	0.708	0.526
	LR H	0.0273	0.0272	0.0249	0.0271	0.0298	0.0236	0.0436	0.0291	0.0297	0.0329	0.0276	0.0324	0.0256	0.0293
CD	LR S	0.0215	0.0329	0.0290	0.0294	0.0299	0.0298	0.0632	0.0323	0.0494	0.0349	0.0274	0.0329	0.0282	0.0339
	HSP	0.0111	0.0192	0.0129	0.0161	0.0179	0.0149	0.0395	0.0192	0.0172	0.0235	0.0141	0.0214	0.0119	0.0184

TABLE 9: Results for depth input on the ShapeNet13 dataset.

Fig. 11: Selected examples on the task of occupancy prediction form RGB and Depth input on the ShapeNet13 dataset, continued.

Thanks for your attention