

2019

Universidad Nacional Autónoma de México

Facultad de Química Energía Eficiente 9 septiembre 2019

Proyecto 1: "Balance de energía y eficiencia de un horno". Uso eficiente de energía.

PROFESOR

Dr. Humberto Hinojosa Gómez

ALUMNO

Arvizu Cano Cristopher

"Proyecto 1: Balance de energía y eficiencia de un horno". Uso eficiente de energía.

Alumno: Arvizu Cano Cristopher Profesor: Dr. Humberto Hinojosa Gómez 09/09/2019

Efectuar el balance de energía y calcular la eficiencia de primera ley en un horno que utiliza gas natural como combustible.

Calcular la influencia del exceso de aire, la temperatura de los gases de chimenea y la inclusión de un pre-calentador de aire.

Especificaciones

- 1. Se desea proporcionar 1000 MJ/h de energía a corrientes de proceso
- 2. El combustible es Gas Natural
- 3. Gas Natural: (30°C, 30 bar) 89.6% mol CH4; 6% mol C2H6; 2.5% mol C3H8; 1.3% mol C4H10; 0.4% mol CO2; 0.2% mol N2.
- 4. Aire; (28 °C, 1 bar) 20.9% mol O2; 79.1 % mol N2, Humedad relativa del 70%

Resultados

- 1. La Temperatura adiabática de flama
- 2. La cantidad de combustible necesario (kmol/h)
- 3. La temperatura de los gases de combustión antes de entrar al pre-calentador de aire, cuando sea el caso.
- 4. Calcular la eficiencia de primera ley para los gases de combustión, tomando como base el poder calorífico bajo del combustible.

Reacciones de Combustión del gas natural

Las reacciones que se llevan a cabo en la cámara de combustión, son las siguientes:

$$CH_4 + 2O_2 \to CO_2 + 2H_2O$$
 (1)

$$2CH_4 + 3O_2 \to 2CO + 4H_2O \tag{2}$$

$$2C_2H_6 + 7O_24 \to CO_2 + 6H_2O \tag{3}$$

$$C_3H_8 + 5O_2 \to 3CO_2 + 4H_2O$$
 (4)

Tabla 1. Humedad relativa del aire.

Compuesto	gr mol	gr masa	% molar
O2	20.716	662.943	20.7%
N2	77.895	2181.082	77.9%
H2O	1.3871	24.967	1.4%
Suma	100	2868.99	100.0%

Consideraciones de entrada al horno, aire con humedad relativa del 70%.

Simulación del proceso de combustión en Hysys

La simulación del proceso de combustión en un horno se realizó mediante Hysys. Se seleccionó para el cálculo de las propiedades fisicoquímicas el modelo termodinámico Peng Robinson como ecuación de estado. La simulación del proceso usando Hysys se dividió en cuatro etapas: 1) definición del problema a resolver; 2) simulación del problema; 3) casos de sensibilidad; 4) análisis de resultados.

Para generar el proceso de la cámara de combustión en el simulador, se empleó un reactor tipo "bach", debido a que el simulador Hysys no dispone del módulo de combustión. En la Fig. 1 se muestra el esquema utilizado para la simulación. La segunda parte consiste en simular la corriente de proceso retirando una cantidad fija de calor de 1000 MJ/h, para simular esta parte se empleó un heat exchanger.

En la figura 2 se muestra el esquema utilizado para la simulación con una corriente de precalentamiento. Los hidrocarburos (corriente: Gas) y el aire (corriente: Aire) son combinados en un mezclador y la corriente mezclada es alimentada al reactor que opera a presión de 100kPa, la corriente líquida en nula a la salida del reactor (Líq).

Fig 1: Esquema de simulación del Proceso de combustión

Reactor simulación del proceso de combustión

Se utilizó el "reactor de conversión" disponible en el simulador. El reactor de conversión es un tanque agitado discontinuo en el cual ocurren reacciones de conversión; reacciones que proceden hasta que alcanza una conversión especificada o hasta que desaparece el reactivo limitante. No es necesario el uso de expresiones cinéticas. Dado que para las reacciones de combustión la constante de equilibrio es sumamente grande, puede considerarse las reacciones (1) a (4) como irreversibles y de primer orden. Este tipo de simulación nos permitirá conocer la temperatura adiabática de flama, de acuerdo a las cantidades estequiometrias que se ingresan de aire y gas.

Fig 2: Esquema de simulación incorporando la corriente de proceso.

Resultados y discusión

Sin precalentamiento

Considerando una temperatura de entrada de aire de 28°C y de gas de 30°C. Se trabajó variando el exceso de aire desde 10%, hasta un 30%. El cálculo de los flujos de aire estequiométrico y el exceso se realizó utilizando la relación estequiométrico de las reacciones.

En la Fig. 3 se muestran las temperaturas de los gases de combustión generadas en función del porcentaje de exceso de aire utilizado sin precalentar.

Fig. 3: Efecto del exceso de aire en la temperatura de gases de combustión.

Mientras más exceso de aire se tenga, mayor cantidad de gas se necesita para cumplir la carga térmica requerida de 1000 MJ/h, y entre más baja sea la temperatura de los gases combustión el consumo de gas va a empezar a disminuir ya que el gas transfiera energía a costa de su temperatura.

En la Fig. 4 se muestran las temperaturas de flama adiabática generadas en función del porcentaje de distintos excesos de aire utilizados, sin precalentar. Se observa que, al mantener la temperatura de gases de entrada constante, la temperatura de flama adiabática disminuye con el exceso de aire.

Fig 4. Temperatura adiabática de flama sin precalentar

Fig 5 Eficiencia del proceso en función del flujo de gas.

Fig 6. Eficiencia en función de la temperatura de los gases de combustión.

La eficiencia de forma general, sin precalentamiento de aire, aumenta entre más frio salgan los gases de combustión ya que se aprovecha más el calor disponible de los gases de combustión. El efecto del exceso de aire disminuye la eficiencia ya que se ingresa más aire frio que no tiene influencia en el proceso y solo se caliente provocando que se pierda energía y salga a temperatura de gases de chimenea.

Tabla 2. Temperatura de flama adiabática según el exceso de aire.

% exceso aire	Tem. Adia Flama (°C)	M gas (kmol/h)	Eficiencia
		1.2	76.3
0	2010	1.3	70.5
		1.6	57.2
		1.2	76.1
10	1888	1.3	70.2
		1.6	57.1
		1.2	75.9
20	1776	1.3	70.1
		1.6	56.9
		1.2	75.7
30	1675	1.3	69.9
		1.6	50.5

Con precalentamiento

En la Fig. 5 se muestra la eficiencia del proceso llevado a cabo en el horno en función del precalentamiento a distintos excesos de aire, utilizando 1.2 kgmol/h de gas combustible constante. De manera general se observa que la eficiencia aumenta con el precalentamiento, la eficiencia va a subir ya que la temperatura de los gases de salida que sin el precalentamiento es elevada, con el aire precalentado estamos haciendo que se enfríen más los gases de salida y el calor de los gases se aprovecha y se regresa al proceso. Entre más frio salgan los gases de combustión la eficiencia empieza a subir y el consumo de combustible va disminuir, la temperatura adiabática de flama solo es función entre la relación de aire/combustible y la temperatura de precalentamiento.

Fig. 6 Eficiencia horno en función del precalentamiento gas natural

El efecto neto del precalentamiento, es permitir que una de las corrientes entre más caliente, provocando que la temperatura adiabática de flama aumente, disminuyendo el consumo de combustible.

Fig 7. Temperatura adiabática de flama en función del precalentamiento.

En el precalentamiento, se da un poco más de energía a la corriente de aire aumentando la temperatura adiabática de flama, dependiendo de la temperatura de salida de los gases de combustión deseada se podrá disminuir el consumo de gas natural, en general disminuirá mientras más frio salgas los gases de combustión.

Mientras más exceso de aire se tiene, mayor cantidad de combustible se requiere para alcanzar la misma temperatura.

Fig 8. Temperatura adiabática de flama en función del exceso de aire.

Fig 9. Temperatura gases de chimenea en función del exceso de aire

Conclusiones

- ✓ La eficiencia con el precalentamiento de manera general aumenta, aunque no siempre es factible precalentar debido a los cruces de temperatura.
- ✓ La eficiencia más alta corresponde al exceso de aire más bajo.
- ✓ La temperatura adiabática de flama va a disminuir a medida que aumente el exceso de aire.
- ✓ El exceso de aire a utilizar debe ser el mínimo posible, compatible con la combustión completa del combustible, ya que el mismo diluye los gases de combustión y consume calor. Este calor perdido aumenta el consumo de combustible, por lo que el uso de exceso de aire correcto conlleva un ahorro de combustible, con la consiguiente disminución de emisión de dióxido de carbono a la atmósfera.
- ✓ Conviene aprovechar el calor de los gases de combustión, para precalentar el aire, disminuyendo la temperatura de salida de los gases de chimenea.
- ✓ Las variables significativas del proceso de combustión de gas natural son: Exceso de aire, temperatura del aire (con precalentamiento utilizando el calor sensible de los gases de chimenea) y temperatura de los gases de salida de chimenea.

Bibliografía

Gloria Villaflor , Graciela V. Morales y Jorge Velasco. (2008). Variables
Significativas del Proceso de Combustión del Gas Natural. Información Tecnológica,
Vol.19, paginas (57-67).De Dianlet Base de datos.

Anexos

Resultados sin precalentar

%	°C	°C	kmo	ol/h	MJ/h	KJ/h	%
Exceso de aire	Tem. Adia Flama	Tem. Gases de chimenea	M aire	M gas	Q	Q total	Eficiencia
0	2010	178	12.811	1.2	1000	1.310E+06	76.3
0	2010	344.9	13.879	1.3	1000	1.419E+06	70.5
0	2010	696.6	17.082	1.6	1000	1.747E+06	57.2
0	2010	857.8	19.217	1.8	1000	1.960E+06	51.0

%	°C	°C	kmo	ol/h	MJ/h		
Exceso de aire	Tem. Adia Flama	Tem. Gases de chimenea	M aire	M gas	Q	Q total	Eficiencia
10	1888	168.7	14.091	1.2	1000	1.314E+06	76.1
10	1888	322.3	15.265	1.3	1000	1.424E+06	70.2
10	1888	649.3	18.788	1.6	1000	1.753E+06	57.1
10	1888	799.6	21.136	1.8	1000	1.972E+06	50.7

%	°C	°C	kmo	ol/h	MJ/h		
Exceso de aire	Tem. Adia Flama	Tem. Gases de chimenea	M aire	M gas	Q	Q total	Eficiencia
20	1776	158.6	15.370	1.2	1000	1.318E+06	75.9
20	1776	301.6	16.651	1.3	1000	1.428E+06	70.1
20	1776	607.2	20.494	1.6	1000	1.757E+06	56.9
20	1776	747.9	23.055	1.8	1000	1.977E+06	50.6

%	°C	°C	kmol/h		kmol/h MJ/		°C kmol/h MJ/h			
Exceso de aire	Tem. Adia Flama	Tem. Gases de chimenea	M aire	Mgas	Q	Q total	Eficiencia			
30	1675	150	16.650	1.2	1000	1.321E+06	75.7			
30	1675	283.6	18.037	1.3	1000	1.431E+06	69.9			
30	1675	570.4	22.200	1.6	1000	1.761E+06	56.8			
30	1675	700.2	24.970	1.8	1000	1.982E+06	50.5			

%	°C	°C	kmol/h		MJ/h
Exceso de aiı	Tem. Adia Fl	Tem. Gases o	M aire	M gas	Q
0	2010	344.9	13.88	1.3	1000
10	1888	322.3	15.26	1.3	1000
20	1776	301.6	16.65	1.3	1000
30	1675	283.5	18.04	1.3	1000

Resultados con precalentamiento

			E	xeso de aire ()%				
Precalentami ento (°C)	Tem. Adia Flama (°C)	Tem. cProceso (°C)	Tem. Gases de chimenea (°C)	M aire (kgmol/h)	M gas (kgmol/h)	Q (MJ/h)	Q Aire (KJ/h)	Q total (KJ/h)	Eficiencia (%)
100	2051.00	238.25	179	12.81	1.2	1000	2.721E+04	1.201E+06	85.5
200	2107.30	320.86	179	12.81	1.2	1000	6.567E+04	1.239E+06	86.0
300	2163.28	403.46	179	12.81	1.2	1000	1.049E+05	1.279E+06	86.4
400	2218.74	486.05	179	12.81	1.2	1000	1.449E+05	1.319E+06	86.8
500	2273.59	568.63	179	12.81	1.2	1000	1.856E+05	1.359E+06	87.2
600	2327.70	651.19	179	12.81	1.2	1000	2.270E+05	1.401E+06	87.6
700	2380.91	733.72	179	12.81	1.2	1000	2.690E+05	1.443E+06	88.0
100	2051.00	481.44	345	13.88	1.3	1000	7.114E+04	1.301E+06	79.6
200	2107.30	481.44	345	13.88	1.3	1000	7.114E+04	1.343E+06	79.8
300	2163.28	561.13	345	13.88	1.3	1000	1.136E+05	1.385E+06	80.4
400	2218.74	641.01	345	13.88	1.3	1000	1.569E+05	1.428E+06	81.0
500	2273.59	721.08	345	13.88	1.3	1000	2.010E+05	1.473E+06	81.6
600	2327.70	801.34	345	13.88	1.3	1000	2.459E+05	1.517E+06	82.1
700	2380.91	881.75	345	13.88	1.3	1000	2.914E+05	1.563E+06	82.6
100	2051.00	749.75	697	17.08	1.6	1000	3.628E+04	1.601E+06	64.7
200	2107.30	831.44	697	17.08	1.6	1000	9.274E+04	1.653E+06	66.1
300	2163.28	898.77	697	17.08	1.6	1000	1.399E+05	1.705E+06	66.9
400	2218.74	981.65	697	17.08	1.6	1000	1.986E+05	1.758E+06	68.2
500	2273.59	1049.92	697	17.08	1.6	1000	2.474E+05	1.812E+06	68.8
600	2327.70	1126.19	697	17.08	1.6	1000	3.026E+05	1.868E+06	69.7
700	2380.91	1202.82	697	17.08	1.6	1000	3.587E+05	1.924E+06	70.6
100	2051.00	909.45	858	19.22	1.8	1000	4.082E+04	1.802E+06	57.8
200	2107.30	981.80	858	19.22	1.8	1000	9.850E+04	1.859E+06	59.1
300	2163.28	1054.81	858	19.22	1.8	1000	1.573E+05	1.918E+06	60.3
400	2218.74	1128.44	858	19.22	1.8	1000	2.173E+05	1.978E+06	61.5
500	2273.59	1202.62	858	19.22	1.8	1000	2.784E+05	2.039E+06	62.7
600	2327.70	1277.27	858	19.22	1.8	1000	3.405E+05	2.101E+06	63.8
700	2380.91	1352.27	858	19.22	1.8	1000	4.035E+05	2.164E+06	64.9

			i	xeso de aire :	10%				
Precalentami ento (°C)	Tem. Adia Flama (°C)	Tem. cProceso (°C)	Tem. Gases de chimenea (°C)	M aire (kgmol/h)	M gas (kgmol/h)	Q (MJ/h)	Q Aire (KJ/h)	Q total (KJ/h)	Eficiencia (%)
100	1931.68	229.12	169	14.09	1.2	1000	2.993E+04	1.204E+06	85.6
200	1992.00	313.06	169	14.09	1.2	1000	7.222E+04	1.246E+06	86.1
300	2052.68	396.99	169	14.09	1.2	1000	1.154E+05	1.289E+06	86.5
400	2112.82	480.90	169	14.09	1.2	1000	1.593E+05	1.333E+06	87.0
500	2172.47	564.80	169	14.09	1.2	1000	2.041E+05	1.378E+06	87.4
600	2231.47	648.68	169	14.09	1.2	1000	2.496E+05	1.423E+06	87.8
700	2289.00	732.54	169	14.09	1.2	1000	2.959E+05	1.469E+06	88.2
100	1931.68	380.54	322	15.26	1.3	1000	3.242E+04	1.304E+06	79.2
200	1992.00	461.59	322	15.26	1.3	1000	7.825E+04	1.350E+06	79.9
300	2052.68	542.80	322	15.26	1.3	1000	1.250E+05	1.396E+06	80.6
400	2112.82	624.19	322	15.26	1.3	1000	1.726E+05	1.444E+06	81.3
500	2172.47	705.76	322	15.26	1.3	1000	2.211E+05	1.493E+06	81.8
600	2231.47	787.49	322	15.26	1.3	1000	2.703E+05	1.542E+06	82.4
700	2289.00	869.37	322	15.26	1.3	1000	3.205E+05	1.592E+06	83.0
100	1931.68	703.76	649	18.79	1.6	1000	3.990E+04	1.605E+06	64.8
200	1992.00	779.76	649	18.79	1.6	1000	9.630E+04	1.661E+06	66.0
300	2052.68	856.29	649	18.79	1.6	1000	1.538E+05	1.719E+06	67.1
400	2112.82	933.33	649	18.79	1.6	1000	2.125E+05	1.777E+06	68.2
500	2172.47	1010.87	649	18.79	1.6	1000	2.721E+05	1.837E+06	69.3
600	2231.47	1088.83	649	18.79	1.6	1000	3.328E+05	1.898E+06	70.2
700	2289.00	1167.18	649	18.79	1.6	1000	3.945E+05	1.959E+06	71.2
100	1931.68	852.46	799	21.14	1.8	1000	4.490E+04	1.805E+06	57.9
200	1992.00	926.64	800	21.14	1.8	1000	1.084E+05	1.869E+06	59.3
300	2052.68	1001.45	799	21.14	1.8	1000	1.731E+05	1.934E+06	60.7
400	2112.82	1076.87	799	21.14	1.8	1000	2.391E+05	1.999E+06	62.0
500	2172.47	1152.86	799	21.14	1.8	1000	3.062E+05	2.067E+06	63.2
600	2231.47	1229.32	799	21.14	1.8	1000	3.745E+05	2.135E+06	64.4
700	2289.00	1306.17	799	21.14	1.8	1000	4.439E+05	2.204E+06	65.5

				Exeso de aiı	e 20 %				
Precalentami ento (°C)	Tem. Adia Flama (°C)	Tem. cProceso (°C)	Tem. Gases de chimenea (°C)	M aire (kgmol/h)	M gas (kgmol/h)	Q (MJ/h)	Q Aire (KJ/h)	Q total (KJ/h)	Eficiencia (%)
100	1822.12	219.86	159	15.37	1.2	1000	3.265E+04	1.205E+06	85.7
200	1886.08	304.96	159	15.37	1.2	1000	7.878E+04	1.251E+06	86.2
300	1950.00	390.05	159	15.37	1.2	1000	1.258E+05	1.299E+06	86.7
400	2014.07	475.13	159	15.37	1.2	1000	1.738E+05	1.347E+06	87.2
500	2077.71	560.19	159	15.37	1.2	1000	2.226E+05	1.395E+06	87.6
600	2140.85	645.22	159	15.37	1.2	1000	2.723E+05	1.445E+06	88.0
700	2203.28	730.23	159	15.37	1.2	1000	3.227E+05	1.495E+06	88.5
100	1822.12	360.82	302	16.65	1.3	1000	3.536E+04	1.306E+06	79.3
200	1886.08	443.22	302	16.65	1.3	1000	8.534E+04	1.356E+06	80.1
300	1950.00	525.77	302	16.65	1.3	1000	1.363E+05	1.407E+06	80.8
400	2014.07	608.47	302	16.65	1.3	1000	1.883E+05	1.459E+06	81.5
500	2077.71	691.34	302	16.65	1.3	1000	2.412E+05	1.512E+06	82.1
600	2140.85	774.36	302	16.65	1.3	1000	2.950E+05	1.565E+06	82.7
700	2203.28	774.36	302	16.65	1.3	1000	2.950E+05	1.620E+06	83.2
100	1822.12	662.84	607	20.49	1.6	1000	4.352E+04	1.607E+06	64.9
200	1886.08	740.40	607	20.49	1.6	1000	1.050E+05	1.669E+06	66.2
300	1950.00	818.46	607	20.49	1.6	1000	1.678E+05	1.731E+06	67.4
400	2014.07	897.01	607	20.49	1.6	1000	2.317E+05	1.795E+06	68.6
500	2077.71	976.02	607	20.49	1.6	1000	2.968E+05	1.860E+06	69.7
600	2140.85	1055.47	607	20.49	1.6	1000	3.630E+05	1.927E+06	70.7
700	2203.28	1135.28	607	20.49	1.6	1000	4.302E+05	1.994E+06	71.7
100	1822.12		748	23.06	1.8	1000		1.808E+06	58.0
200	1886.08		748	23.06	1.8	1000		1.877E+06	59.6
300	1950.00	954.38	748	23.06	1.8	1000		1.948E+06	61.0
400	2014.07	1031.36	748	23.06	1.8	1000	2.607E+05	2.020E+06	62.4
500	2077.71			23.06	1.8	1000		2.093E+06	63.7
600	2140.85		748	23.06	1.8	1000		2.167E+06	65.0
700	2203.28		748	23.06	1.8	1000		2.243E+06	66.2

				Exeso de a	aire 30%				
Precalenta miento (°C)	Tem. Adia Flama (°C)	Tem. cProceso (°C)	Tem. Gases de chimenea (°C)	M aire (kgmol/h)	M gas (kgmol/h)	Q (MJ/h)	Q Aire (KJ/h)	Q total (KJ/h)	Eficiencia (%)
100	1723.22	211.83	150	16.65	1.2	1000	3.536E+04	1.207E+06	85.8
200	1789.87	297.94	150	16.65	1.2	1000	8.534E+04	1.257E+06	86.3
300	1856.79	384.05	150	16.65	1.2	1000	1.363E+05	1.308E+06	86.9
400	1924.00	470.13	150	16.65	1.2	1000	1.883E+05	1.360E+06	87.4
500	1990.69	556.19	150	16.65	1.2	1000	2.412E+05	1.413E+06	87.8
600	2057.26	642.22	150	16.65	1.2	1000	2.950E+05	1.467E+06	88.3
700	2123.29	728.23	150	16.65	1.2	1000	3.496E+05	1.521E+06	88.7
100	1723.22	343.63	284	18.04	1.3	1000	3.832E+04	1.308E+06	79.4
200	1789.87	427.20	284	18.04	1.3	1000	9.247E+04	1.362E+06	80.2
300	1856.79	510.91	284	18.04	1.3	1000	1.477E+05	1.417E+06	81.0
400	1924.00	594.77	284	18.04	1.3	1000	2.040E+05	1.473E+06	81.7
500	1990.69	678.77	284	18.04	1.3	1000	2.613E+05	1.531E+06	82.4
600	2057.26	762.91	284	18.04	1.3	1000	3.196E+05	1.589E+06	83.0
700	2123.29	847.18	284	18.04	1.3	1000	3.788E+05	1.648E+06	83.7
100	1723.22	626.96	570	22.20	1.6	1000	4.715E+04	1.610E+06	65.1
200	1789.87	705.89	570	22.20	1.6	1000	1.138E+05	1.676E+06	66.4
300	1856.79	785.29	570	22.20	1.6	1000	1.818E+05	1.744E+06	67.8
400	1924.00	865.17	570	22.20	1.6	1000	2.510E+05	1.813E+06	69.0
500	1990.69	945.49	570	22.20	1.6	1000	3.216E+05	1.884E+06	70.1
600	2057.26	1026.23	570	22.20	1.6	1000	3.933E+05	1.956E+06	71.2
700	2123.29	1107.33	570	22.20	1.6	1000	4.662E+05	2.029E+06	72.3
100	1723.22	758.07	703	24.97	1.8	1000	5.304E+04	1.811E+06	58.2
200	1789.87	835.25	703	24.97	1.8	1000	1.280E+05	1.886E+06	59.8
300	1856.79	913.03	703	24.97	1.8	1000	2.044E+05	1.962E+06	61.4
400	1924.00	991.38	703	24.97	1.8	1000	2.824E+05	2.040E+06	62.9
500	1990.69	1070.28	703	24.97	1.8	1000	3.617E+05	2.119E+06	64.2
600	2057.26	1149.66	703	24.97	1.8	1000	4.424E+05	2.200E+06	65.6
700	2123.29	1229.46	703	24.97	1.8	1000	5.243E+05	2.282E+06	66.8